Graphes

9. Ordonnancement

Solen Quiniou

solen.quiniou@univ-nantes.fr

IUT de Nantes

Année 2021-2022 – BUT 1 (Semestre 2)

[Mise à jour du 23 février 2022]

Plan du cours

- Introduction
- Types de contraintes
- Problème central de l'ordonnancement
- Modélisation à l'aide d'un graphe
- Ordonnancement au plus tôt
- Ordonnancement au plus tard
- Marges

Introduction

- Soit un projet découpé en n tâches A₁, A₂, ..., A_n ayant les propriétés suivantes :
 - tâches indivisibles ;
 - ▶ tâches de durée fixe d_i (pour la tâche A_i);
 - ▶ tâches soumises à un ensemble de contraintes.

ightarrow La problématique à résoudre est généralement la même : **déterminer un calendrier d'exécution des tâches respectant les contraintes**.

Plan du cours

- Introduction
- 2 Types de contraintes
- Problème central de l'ordonnancement
- Modélisation à l'aide d'un graphe
- Ordonnancement au plus tôt
- Ordonnancement au plus tard
- Marges

Notations

- Date de début de la tâche A_i : t_i
- Date de fin de la tâche A_i: t_i + d_i
- Tâche fictive de début de projet : A₀ (t₀ : date de début du projet)
- Tâche fictive de fin de projet : A_{n+1} (t_{n+1} : date de fin du projet)
- Durée du projet : $t_{n+1} t_0$ (en général, on a $t_0 = 0$)

Notations

- Date de début de la tâche A_i : t_i
- Date de fin de la tâche A_i : $t_i + d_i$
- Tâche fictive de début de projet : A₀ (t₀ : date de début du projet)
- Tâche fictive de fin de projet : A_{n+1} (t_{n+1} : date de fin du projet)
- Durée du projet : $t_{n+1} t_0$ (en général, on a $t_0 = 0$)

Définition : contrainte potentielle

 Une contrainte potentielle est une contrainte temporelle portant sur la date de début ou la date de fin de l'exécution d'une tâche :

Notations

- Date de début de la tâche A_i : t_i
- Date de fin de la tâche A_i : $t_i + d_i$
- Tâche fictive de début de projet : A₀ (t₀ : date de début du projet)
- Tâche fictive de fin de projet : A_{n+1} (t_{n+1} : date de fin du projet)
- Durée du projet : $t_{n+1} t_0$ (en général, on a $t_0 = 0$)

- Une contrainte potentielle est une contrainte temporelle portant sur la date de début ou la date de fin de l'exécution d'une tâche :
 - $t_i \geq T$: la tâche A_i ne peut pas commencer avant la date T

Notations

- Date de début de la tâche A_i : t_i
- Date de fin de la tâche A_i : $t_i + d_i$
- Tâche fictive de début de projet : A₀ (t₀ : date de début du projet)
- Tâche fictive de fin de projet : A_{n+1} (t_{n+1} : date de fin du projet)
- Durée du projet : $t_{n+1} t_0$ (en général, on a $t_0 = 0$)

- Une contrainte potentielle est une contrainte temporelle portant sur la date de début ou la date de fin de l'exécution d'une tâche :
 - $t_i \geq T$: la tâche A_i ne peut pas commencer avant la date T
 - ► $t_i \leq T$: la tâche A_i ne peut pas commencer après la date T

Notations

- Date de début de la tâche A_i : t_i
- Date de fin de la tâche A_i : $t_i + d_i$
- Tâche fictive de début de projet : A₀ (t₀ : date de début du projet)
- Tâche fictive de fin de projet : A_{n+1} (t_{n+1} : date de fin du projet)
- Durée du projet : $t_{n+1} t_0$ (en général, on a $t_0 = 0$)

- Une contrainte potentielle est une contrainte temporelle portant sur la date de début ou la date de fin de l'exécution d'une tâche :
 - $t_i \geq T$: la tâche A_i ne peut pas commencer avant la date T
 - ► $t_i \leq T$: la tâche A_i ne peut pas commencer après la date T
 - ▶ $t_i + d_i \le T$: la tâche A_i ne peut pas se terminer après la date T

Notations

- Date de début de la tâche A_i : t_i
- Date de fin de la tâche A_i : $t_i + d_i$
- Tâche fictive de début de projet : A₀ (t₀ : date de début du projet)
- Tâche fictive de fin de projet : A_{n+1} (t_{n+1} : date de fin du projet)
- Durée du projet : $t_{n+1} t_0$ (en général, on a $t_0 = 0$)

- Une contrainte potentielle est une contrainte temporelle portant sur la date de début ou la date de fin de l'exécution d'une tâche :
 - ▶ $t_i \ge T$: la tâche A_i ne peut pas commencer avant la date T
 - ► $t_i \leq T$: la tâche A_i ne peut pas commencer après la date T
 - ▶ $t_i + d_i \le T$: la tâche A_i ne peut pas se terminer après la date T
 - $t_i \geq t_j + d_j$: la tâche A_i ne peut pas commencer avant la fin de la tâche A_j

Notations

- Date de début de la tâche A_i : t_i
- Date de fin de la tâche A_i : $t_i + d_i$
- Tâche fictive de début de projet : A₀ (t₀ : date de début du projet)
- Tâche fictive de fin de projet : A_{n+1} (t_{n+1} : date de fin du projet)
- Durée du projet : $t_{n+1} t_0$ (en général, on a $t_0 = 0$)

- Une contrainte potentielle est une contrainte temporelle portant sur la date de début ou la date de fin de l'exécution d'une tâche :
 - $t_i \geq T$: la tâche A_i ne peut pas commencer avant la date T
 - $t_i \leq T$: la tâche A_i ne peut pas commencer après la date T
 - ▶ $t_i + d_i \le T$: la tâche A_i ne peut pas se terminer après la date T
 - $t_i \geq t_j + d_j$: la tâche A_i ne peut pas commencer avant la fin de la tâche A_j
- → Ensemble des contraintes potentielles : ensemble conjonctif de contraintes exprimées sous la forme d'un système d'inéquations $t_j \ge t_i + a_{i,j} \ (i,j \in \{0,..,n+1\})$

Définition : contrainte disjonctive

- Une contrainte disjonctive est une contrainte temporelle exprimant des incompatibilités entre des tâches :
 - ▶ $t_i \ge t_j + d_j$ ou $t_j \ge t_i + d_i$: les tâches A_i et A_j ne peuvent pas être réalisées simultanément (une seule des deux contraintes doit être vérifiée)

Définition : contraintes implicites

Définition : contrainte disjonctive

- Une contrainte disjonctive est une contrainte temporelle exprimant des incompatibilités entre des tâches :
 - $t_i \ge t_j + d_j$ ou $t_j \ge t_i + d_i$: les tâches A_i et A_j ne peuvent pas être réalisées simultanément (une seule des deux contraintes doit être vérifiée)
- → Ensemble des contraintes disjonctives : ensemble disjonctif de contraintes sous la forme d'un système d'inéquations

Définition : contraintes implicites

Définition : contrainte disjonctive

- Une contrainte disjonctive est une contrainte temporelle exprimant des incompatibilités entre des tâches :
 - $t_i \ge t_j + d_j$ ou $t_j \ge t_i + d_i$: les tâches A_i et A_j ne peuvent pas être réalisées simultanément (une seule des deux contraintes doit être vérifiée)
- → Ensemble des contraintes disjonctives : ensemble disjonctif de contraintes sous la forme d'un système d'inéquations

Définition : contraintes implicites

Contrainte implicite de début :

$$(\forall i=1,\ldots,n+1) \ t_i \geq t_0 \Rightarrow (x_0,x_i) \in \Gamma \wedge v(x_0,x_i) = 0$$

Définition : contrainte disjonctive

- Une contrainte disjonctive est une contrainte temporelle exprimant des incompatibilités entre des tâches :
 - $t_i \ge t_j + d_j$ ou $t_j \ge t_i + d_i$: les tâches A_i et A_j ne peuvent pas être réalisées simultanément (une seule des deux contraintes doit être vérifiée)
- → Ensemble des contraintes disjonctives : ensemble disjonctif de contraintes sous la forme d'un système d'inéquations

Définition : contraintes implicites

Contrainte implicite de début :

$$(\forall i=1,\ldots,n+1) \ t_i \geq t_0 \Rightarrow (x_0,x_i) \in \Gamma \wedge v(x_0,x_i) = 0$$

Contrainte implicite de fin :

$$(\forall i = 1, ..., n)$$
 $t_{n+1} \ge t_i + d_i \Rightarrow (x_i, x_{n+1}) \in \Gamma \land v(x_i, x_{n+1}) = d_i$

Définition : contrainte disjonctive

- Une contrainte disjonctive est une contrainte temporelle exprimant des incompatibilités entre des tâches :
 - $t_i \ge t_j + d_j$ ou $t_j \ge t_i + d_i$: les tâches A_i et A_j ne peuvent pas être réalisées simultanément (une seule des deux contraintes doit être vérifiée)
- → Ensemble des contraintes disjonctives : ensemble disjonctif de contraintes sous la forme d'un système d'inéquations

Définition : contraintes implicites

Contrainte implicite de début :

$$(\forall i = 1, ..., n+1)$$
 $t_i \ge t_0 \Rightarrow (x_0, x_i) \in \Gamma \land v(x_0, x_i) = 0$

• Contrainte implicite de fin :

$$(\forall i=1,\ldots,n) \ t_{n+1} \geq t_i + d_i \Rightarrow (x_i,x_{n+1}) \in \Gamma \land v(x_i,x_{n+1}) = d_i$$

→ Seules les contraintes implicites non redondantes avec les autres contraintes sont conservées dans le graphe

Soit le problème d'ordonnancement défini par le tableau suivant.

Tâches	A ₁	A_2	<i>A</i> ₃	A ₄	A ₅	A ₆	A ₇
Durées	6	3	6	2	4	3	1
Contraintes	-	-	-	A ₂ finie	A ₂ finie	A ₁ finie	A ₃ finie
						A ₄ finie	A ₅ finie
							A ₆ finie

Contraintes potentielles :

- Contraintes implicites non-redondantes de début :
 - → A₀: tâche fictive de début de projet

- Contraintes implicites non-redondantes de fin :
 - → A₈: tâche fictive de fin de projet

Soit le problème d'ordonnancement défini par le tableau suivant.

Tâches	A ₁	A ₂	<i>A</i> ₃	A_4	A ₅	A ₆	A ₇
Durées	6	3	6	2	4	3	1
Contraintes	-	-	-	A ₂ finie	A ₂ finie	A ₁ finie	A ₃ finie
						A ₄ finie	A ₅ finie
							A ₆ finie

- Contraintes potentielles :
 - ► $t_4 > t_2 + 3$

- Contraintes implicites non-redondantes de début :
 - → A₀: tâche fictive de début de projet

- Contraintes implicites non-redondantes de fin :
 - \rightarrow A_8 : tâche fictive de fin de projet

Soit le problème d'ordonnancement défini par le tableau suivant.

Tâches	A ₁	A ₂	A ₃	A ₄	A ₅	A ₆	A ₇
Durées	6	3	6	2	4	3	1
Contraintes	-	-	-	A ₂ finie	A ₂ finie	A ₁ finie	A ₃ finie
						A ₄ finie	A ₅ finie
							A ₆ finie

- Contraintes potentielles :
 - $t_4 > t_2 + 3$
 - ► $t_5 \ge t_2 + 3$

- Contraintes implicites non-redondantes de début :
 - → A₀: tâche fictive de début de projet

- Contraintes implicites non-redondantes de fin :
 - → A₈: tâche fictive de fin de projet

7/22

Soit le problème d'ordonnancement défini par le tableau suivant.

Tâches	A ₁	A_2	<i>A</i> ₃	A ₄	A ₅	A 6	A ₇
Durées	6	3	6	2	4	3	1
Contraintes	-	-	-	A ₂ finie	A ₂ finie	A ₁ finie	A ₃ finie
						A ₄ finie	A ₅ finie
							A ₆ finie

- Contraintes potentielles :
 - $t_4 > t_2 + 3$
 - ▶ $t_5 \ge t_2 + 3$
 - ► $t_6 \ge t_1 + 6$

- Contraintes implicites non-redondantes de début :
 - → A₀ : tâche fictive de début de projet

- Contraintes implicites non-redondantes de fin :
 - \rightarrow A_8 : tâche fictive de fin de projet

Soit le problème d'ordonnancement défini par le tableau suivant.

Tâches	A ₁	A_2	<i>A</i> ₃	A ₄	A ₅	A 6	A ₇
Durées	6	3	6	2	4	3	1
Contraintes	-	-	-	A ₂ finie	A ₂ finie	A ₁ finie	A ₃ finie
						A ₄ finie	A ₅ finie
							A ₆ finie

- Contraintes potentielles :
 - $t_4 > t_2 + 3$
 - ▶ $t_5 \ge t_2 + 3$
 - ► $t_6 \ge t_1 + 6$
 - ► $t_6 \ge t_4 + 2$

- Contraintes implicites non-redondantes de début :
 - → A₀ : tâche fictive de début de projet

- Contraintes implicites non-redondantes de fin :
 - → A₈: tâche fictive de fin de projet

7/22

Soit le problème d'ordonnancement défini par le tableau suivant.

Tâches	A ₁	A ₂	A ₃	A ₄	A ₅	A ₆	A ₇
Durées	6	3	6	2	4	3	1
Contraintes	-	-	-	A ₂ finie	A ₂ finie	A ₁ finie	A ₃ finie
						A ₄ finie	A ₅ finie
							A ₆ finie

- Contraintes potentielles :
 - $t_4 > t_2 + 3$
 - ▶ $t_5 \ge t_2 + 3$
 - ▶ $t_6 \ge t_1 + 6$
 - ▶ $t_6 \ge t_4 + 2$
 - ► $t_7 \ge t_3 + 6$

- Contraintes implicites non-redondantes de début :
 - → A₀ : tâche fictive de début de projet

- Contraintes implicites non-redondantes de fin :
 - → A₈: tâche fictive de fin de projet

Soit le problème d'ordonnancement défini par le tableau suivant.

Tâches	A ₁	A ₂	<i>A</i> ₃	A ₄	A ₅	A ₆	A ₇
Durées	6	3	6	2	4	3	1
Contraintes	-	-	-	A ₂ finie	A ₂ finie	A ₁ finie	A ₃ finie
						A ₄ finie	A ₅ finie
							A ₆ finie

- Contraintes potentielles :
 - $t_4 > t_2 + 3$
 - ▶ $t_5 \ge t_2 + 3$
 - ► $t_6 \ge t_1 + 6$
 - ▶ $t_6 \ge t_4 + 2$
 - ▶ $t_7 \ge t_3 + 6$
 - ► $t_7 \ge t_5 + 4$

- Contraintes implicites non-redondantes de début :
 - → A₀ : tâche fictive de début de projet

- Contraintes implicites non-redondantes de fin :
 - \rightarrow A_8 : tâche fictive de fin de projet

Soit le **problème d'ordonnancement** défini par le tableau suivant.

Tâches	A ₁	A ₂	<i>A</i> ₃	A ₄	A ₅	A ₆	A ₇
Durées	6	3	6	2	4	3	1
Contraintes	-	-	-	A ₂ finie	A ₂ finie	A ₁ finie	A ₃ finie
						A ₄ finie	A ₅ finie
							A ₆ finie

Contraintes potentielles :

$$t_4 > t_2 + 3$$

▶
$$t_5 \ge t_2 + 3$$

$$t_6 > t_1 + 6$$

▶
$$t_6 \ge t_4 + 2$$

▶
$$t_7 \ge t_3 + 6$$

$$t_7 \ge t_5 + 4$$

$$t_7 > t_6 + 3$$

►
$$t_7 \ge t_6 + 3$$

- Contraintes implicites non-redondantes de début :
 - → A₀: tâche fictive de début de projet

- Contraintes implicites non-redondantes de fin
 - \rightarrow A_8 : tâche fictive de fin de projet

7/22

Soit le **problème d'ordonnancement** défini par le tableau suivant.

Tâches	<i>A</i> ₁	A ₂	<i>A</i> ₃	A ₄	A ₅	A ₆	A ₇
Durées	6	3	6	2	4	3	1
Contraintes	-	-	-	A ₂ finie	A ₂ finie	A ₁ finie	A ₃ finie
						A ₄ finie	A ₅ finie
							A ₆ finie

Contraintes potentielles :

$$t_4 > t_2 + 3$$

▶
$$t_5 \ge t_2 + 3$$

$$t_6 > t_1 + 6$$

$$t_6 > t_4 + 2$$

$$t_7 > t_3 + 6$$

$$t_7 \leq t_5 + \delta$$

$$t_7 > t_6 + \Delta$$

▶
$$t_7 \ge t_5 + 4$$

▶
$$t_7 \ge t_6 + 3$$

- Contraintes implicites non-redondantes de début :
 - → A₀: tâche fictive de début de projet
 - $t_1 > t_0 + 0$
- Contraintes implicites non-redondantes de fin
 - \rightarrow A_8 : tâche fictive de fin de projet

Soit le problème d'ordonnancement défini par le tableau suivant.

Tâches	A ₁	A_2	<i>A</i> ₃	A ₄	A ₅	A ₆	A ₇
Durées	6	3	6	2	4	3	1
Contraintes	-	-	-	A ₂ finie	A ₂ finie	A ₁ finie	A ₃ finie
						A ₄ finie	A ₅ finie
							A ₆ finie

Contraintes potentielles :

- $t_4 > t_2 + 3$
- ▶ $t_5 \ge t_2 + 3$
- ► $t_6 \ge t_1 + 6$
- ▶ $t_6 \ge t_4 + 2$
- ▶ $t_7 \ge t_3 + 6$
- ▶ $t_7 \ge t_5 + 4$
- ▶ $t_7 \ge t_6 + 3$

- Contraintes implicites non-redondantes de début :
 - → A₀: tâche fictive de début de projet
 - ▶ $t_1 \ge t_0 + 0$
 - ▶ $t_2 \ge t_0 + 0$

Contraintes implicites non-redondantes de fin :

→ A₈: tâche fictive de fin de projet

Soit le **problème d'ordonnancement** défini par le tableau suivant.

Tâches	A ₁	A_2	<i>A</i> ₃	A ₄	A ₅	A ₆	A ₇
Durées	6	3	6	2	4	3	1
Contraintes	-	-	-	A ₂ finie	A ₂ finie	A ₁ finie	A ₃ finie
						A ₄ finie	A ₅ finie
							A ₆ finie

Contraintes potentielles :

$$t_4 > t_2 + 3$$

▶
$$t_5 \ge t_2 + 3$$

►
$$t_6 \ge t_1 + 6$$

►
$$t_6 \ge t_4 + 2$$

$$t_0 \ge t_4 + 2$$

 $t_7 > t_3 + 6$

▶
$$t_7 \ge t_5 + 4$$

$$t_7 > t_6 + 3$$

►
$$t_7 \ge t_6 + 3$$

Contraintes implicites non-redondantes de début :

→ A₀: tâche fictive de début de projet

▶
$$t_1 \ge t_0 + 0$$

▶
$$t_2 \ge t_0 + 0$$

►
$$t_3 \ge t_0 + 0$$

Contraintes implicites non-redondantes de fin

 \rightarrow A_8 : tâche fictive de fin de projet

Soit le problème d'ordonnancement défini par le tableau suivant.

Tâches	A ₁	A_2	<i>A</i> ₃	A ₄	A ₅	A ₆	A ₇
Durées	6	3	6	2	4	3	1
Contraintes	-	-	-	A ₂ finie	A ₂ finie	A ₁ finie	A ₃ finie
						A ₄ finie	A ₅ finie
							A ₆ finie

Contraintes potentielles :

$$t_4 > t_2 + 3$$

▶
$$t_5 \ge t_2 + 3$$

►
$$t_6 \ge t_1 + 6$$

►
$$t_6 \ge t_4 + 2$$

$$t_7 > t_3 + 6$$

▶
$$t_7 \ge t_5 + 4$$

▶
$$t_7 \ge t_6 + 3$$

• Co

Contraintes implicites non-redondantes de début :

→ A₀: tâche fictive de début de projet

►
$$t_1 \ge t_0 + 0$$

▶
$$t_2 \ge t_0 + 0$$

▶
$$t_3 \ge t_0 + 0$$

Contraintes implicites non-redondantes de fin :

→ A₈: tâche fictive de fin de projet

►
$$t_8 > t_7 + 1$$

Plan du cours

- Introduction
- Types de contraintes
- 3 Problème central de l'ordonnancement
- Modélisation à l'aide d'un graphe
- Ordonnancement au plus tôt
- Ordonnancement au plus tard
- Marges

Problème central de l'ordonnancement

Définition : ordonnancement compatible

Un **ordonnancement compatible** est un vecteur $T = (t_0, t_1, \dots, t_{n+1})$, avec $t_i \in \mathbb{R}^+$, pour lequel les contraintes de chaque tâche sont vérifiées et où

- t_i est la date de début de la tâche A_i (i = 1, ..., n)
- t₀ est la date de début du projet
- t_{n+1} est la date de fin du projet

Problème central de l'ordonnancement

Définition : ordonnancement compatible

Un **ordonnancement compatible** est un vecteur $T = (t_0, t_1, \dots, t_{n+1})$, avec $t_i \in \mathbb{R}^+$, pour lequel les contraintes de chaque tâche sont vérifiées et où

- t_i est la date de début de la tâche A_i (i = 1, ..., n)
- to est la date de début du projet
- t_{n+1} est la date de fin du projet

Problème central de l'ordonnancement

- Parmi tous les ordonnancements compatibles, en trouver un de durée F donnée
 - → Utilisation de la méthode des potentiels

Plan du cours

- Introduction
- Types de contraintes
- Problème central de l'ordonnancement
- Modélisation à l'aide d'un graphe
- Ordonnancement au plus tôt
- Ordonnancement au plus tard
- Marges

Modélisation à l'aide d'un graphe

Définition : graphe potentiels-tâches

Un graphe potentiels-tâches $G = (X, \Gamma, \nu)$ est un graphe orienté tel que

• $X = \{x_0, x_1, \dots, x_{n+1}\}$ représente l'ensemble des sommets du graphe, chaque sommet x_i étant associé à une tâche A_i

Modélisation à l'aide d'un graphe

Définition : graphe potentiels-tâches

Un graphe potentiels-tâches $G = (X, \Gamma, \nu)$ est un graphe orienté tel que

- $X = \{x_0, x_1, \dots, x_{n+1}\}$ représente l'ensemble des sommets du graphe, chaque sommet x_i étant associé à une tâche A_i
- Γ et v représentent l'ensemble des contraintes, chaque contrainte $t_j \geq t_i + a_{i,j}$ étant représentée par l'arc $(x_i, x_j) \in \Gamma$ de valuation $v(x_i, x_j) = a_{i,j}$

Modélisation à l'aide d'un graphe

Définition : graphe potentiels-tâches

Un graphe potentiels-tâches $G = (X, \Gamma, \nu)$ est un graphe orienté tel que

- $X = \{x_0, x_1, \dots, x_{n+1}\}$ représente l'ensemble des sommets du graphe, chaque sommet x_i étant associé à une tâche A_i
- Γ et v représentent l'ensemble des contraintes, chaque contrainte $t_j \geq t_i + a_{i,j}$ étant représentée par l'arc $(x_i, x_j) \in \Gamma$ de valuation $v(x_i, x_j) = a_{i,j}$

Remarques

- a_{i,j} ≥ 0 représente une contrainte au plus tôt sur la tâche A_j
- $a_{i,j} \le 0$ représente une **contrainte au plus tard** sur la tâche A_i

Exemple: graphe potentiels-tâches

- Contraintes potentielles :
 - $t_4 \ge t_2 + 3$
 - ▶ $t_5 \ge t_2 + 3$
 - ► $t_6 \ge t_1 + 6$
 - ▶ $t_6 \ge t_4 + 2$
 - ▶ $t_7 \ge t_3 + 6$
 - ► $t_7 \ge t_5 + 4$ ► $t_7 > t_6 + 3$

- Contraintes implicites non-redondantes :
 - ► $t_1 \ge t_0 + 0$
 - ▶ $t_2 \ge t_0 + 0$
 - ► $t_3 \ge t_0 + 0$
 - $t_8 > t_7 + 1$

• Graphe potentiels-tâches correspondant aux contraintes

Existence d'ordonnancements compatibles

Théorème

Le problème admet des ordonnancements compatibles ssi le graphe potentiels-tâches correspondant n'admet aucun circuit de valeur strictement positive.

Contre-exemple : circuit de valuation positive

Soit les contraintes suivantes :

$$0 t_B > t_A + 2$$

②
$$t_C \ge t_B + 4$$

On se retrouve avec une incompatibilité sur la tâche C. En effet, en fixant par exemple $t_A = 0$, on obtient à la fois

- Contraintes 1 et 2 : $t_B \ge 2$ et donc $t_C \ge 6$
- Contrainte 3 : $t_C \le 1$

Cela est impossible.

Plan du cours

- Introduction
- Types de contraintes
- Problème central de l'ordonnancement
- Modélisation à l'aide d'un graphe
- Ordonnancement au plus tôt
- Ordonnancement au plus tard
- Marges

Théorème

Soit G un graphe ne possédant pas de circuit de valeur strictement positive. L'ordonnancement au plus tôt est un ordonnancement compatible, de durée minimale, correspondant au vecteur $\Lambda = (\lambda_0, \lambda_1, \dots, \lambda_{n+1})$ défini par :

- $\lambda_0 = 0$
- λ_i = valeur maximale d'un chemin de x_0 à x_i (i = 1, ..., n+1)

Remarques

Définitions : chemin critique, tâche critique

Théorème

Soit G un graphe ne possédant pas de circuit de valeur strictement positive. L'ordonnancement au plus tôt est un ordonnancement compatible, de durée minimale, correspondant au vecteur $\Lambda = (\lambda_0, \lambda_1, \dots, \lambda_{n+1})$ défini par :

- $\lambda_0 = 0$
- λ_i = valeur maximale d'un chemin de x_0 à x_i (i = 1, ..., n+1)

Remarques

λ_i correspond à la date de début au plus tôt de la tâche A_i

Définitions : chemin critique, tâche critique

15/22

Théorème

Soit G un graphe ne possédant pas de circuit de valeur strictement positive. L'ordonnancement au plus tôt est un ordonnancement compatible, de durée minimale, correspondant au vecteur $\Lambda = (\lambda_0, \lambda_1, \dots, \lambda_{n+1})$ défini par :

- $\lambda_0 = 0$
- λ_i = valeur maximale d'un chemin de x_0 à x_i (i = 1, ..., n+1)

Remarques

- λ_i correspond à la date de début au plus tôt de la tâche A_i
- L'ordonnancement Λ est tel que, $\forall T = (t_0 = 0, t_1, \dots, t_{n+1})$ ordonnancement compatible, on a $\lambda_i \leq t_i \ (\forall i = 0, 1, \dots, n+1)$

Définitions : chemin critique, tâche critique

Théorème

Soit G un graphe ne possédant pas de circuit de valeur strictement positive. L'ordonnancement au plus tôt est un ordonnancement compatible, de durée minimale, correspondant au vecteur $\Lambda = (\lambda_0, \lambda_1, \dots, \lambda_{n+1})$ défini par :

- $\lambda_0 = 0$
- λ_i = valeur maximale d'un chemin de x_0 à x_i (i = 1, ..., n + 1)

Remarques

- λ_i correspond à la date de début au plus tôt de la tâche A_i
- L'ordonnancement Λ est tel que, $\forall T = (t_0 = 0, t_1, \dots, t_{n+1})$ ordonnancement compatible, on a $\lambda_i \leq t_i \ (\forall i = 0, 1, \dots, n+1)$

Définitions : chemin critique, tâche critique

• Un chemin critique est un chemin de valeur maximale de x_0 à x_{n+1}

Théorème

Soit G un graphe ne possédant pas de circuit de valeur strictement positive. L'ordonnancement au plus tôt est un ordonnancement compatible, de durée minimale, correspondant au vecteur $\Lambda = (\lambda_0, \lambda_1, \dots, \lambda_{n+1})$ défini par :

- $\lambda_0 = 0$
- λ_i = valeur maximale d'un chemin de x_0 à x_i (i = 1, ..., n+1)

Remarques

- λ_i correspond à la date de début au plus tôt de la tâche A_i
- L'ordonnancement Λ est tel que, $\forall T = (t_0 = 0, t_1, \dots, t_{n+1})$ ordonnancement compatible, on a $\lambda_i \leq t_i \ (\forall i = 0, 1, \dots, n+1)$

Définitions : chemin critique, tâche critique

- Un chemin critique est un chemin de valeur maximale de x_0 à x_{n+1}
- Une tâche critique est une tâche appartenant à un chemin critique
 - ightarrow Tout retard pris sur une tâche critique augmente la durée du projet

Exemple : ordonnancement au plus tôt

Tâches	A_0	<i>A</i> ₁	A_2	A ₃	A_4	A ₅	A_6	A ₇	A 8
Ordonnancement	0	0	0	0	3	3	6	9	10
au plus tôt (λ_i)									

La durée minimale du projet est donc égale à 10 (longueur du chemin critique, en bleu).

Plan du cours

- Introduction
- Types de contraintes
- Problème central de l'ordonnancement
- Modélisation à l'aide d'un graphe
- Ordonnancement au plus tôt
- Ordonnancement au plus tard
- Marges

Théorème

Soit G un graphe ne possédant pas de circuit de valeur strictement positive, F une durée fixée et λ_{n+1} la durée minimale du projet.

• Si $\lambda_{n+1} > F$ alors il n'existe pas d'ordonnancement compatible de durée F

Remarques

Théorème

Soit G un graphe ne possédant pas de circuit de valeur strictement positive, F une durée fixée et λ_{n+1} la durée minimale du projet.

- Si $\lambda_{n+1} > F$ alors il n'existe pas d'ordonnancement compatible de durée F
- Si $\lambda_{n+1} \leq F$ alors l'ordonnancement au plus tard de durée F correspond au vecteur $\Lambda' = (\lambda'_0, \lambda'_1, \dots, \lambda'_{n+1})$ défini par :
 - $\lambda_0'=0$
 - $\lambda_i^i = F \alpha_i$ avec α_i la valeur maximale d'un chemin de x_i à x_{n+1} (i = 1, ..., n+1)

Remarques

Théorème

Soit G un graphe ne possédant pas de circuit de valeur strictement positive, F une durée fixée et λ_{n+1} la durée minimale du projet.

- Si $\lambda_{n+1} > F$ alors il n'existe pas d'ordonnancement compatible de durée F
- Si $\lambda_{n+1} \leq F$ alors l'ordonnancement au plus tard de durée F correspond au vecteur $\Lambda' = (\lambda'_0, \lambda'_1, \dots, \lambda'_{n+1})$ défini par :
 - $\lambda_0' = 0$
 - $\lambda_i^{o} = F \alpha_i$ avec α_i la valeur maximale d'un chemin de x_i à x_{n+1} (i = 1, ..., n+1)

Remarques

 λ_i correspond à la date de début au plus tard de la tâche A_i, relativement à la durée F

Théorème

Soit G un graphe ne possédant pas de circuit de valeur strictement positive, F une durée fixée et λ_{n+1} la durée minimale du projet.

- Si $\lambda_{n+1} > F$ alors il n'existe pas d'ordonnancement compatible de durée F
- Si $\lambda_{n+1} \leq F$ alors l'ordonnancement au plus tard de durée F correspond au vecteur $\Lambda' = (\lambda'_0, \lambda'_1, \dots, \lambda'_{n+1})$ défini par :
 - $\lambda_0'=0$
 - $\lambda_i^i = F \alpha_i$ avec α_i la valeur maximale d'un chemin de x_i à x_{n+1} (i = 1, ..., n+1)

Remarques

- λ_i correspond à la date de début au plus tard de la tâche A_i, relativement à la durée F
- L'ordonnancement Λ' est tel que, $\forall T = (t_0 = 0, t_1, \dots, t_{n+1})$ ordonnancement compatible avec $t_{n+1} = \lambda'_{n+1} = F$, on a $t_i \leq \lambda'_i$ ($\forall i = 1, \dots, n+1$)

Exemple : ordonnancement au plus tard de durée 10

Tâches	<i>A</i> ₀	<i>A</i> ₁	A_2	A ₃	A_4	A ₅	A ₆	A ₇	<i>A</i> ₈
Ordonnancement	0	0	1	3	4	5	6	9	10
au plus tard (λ_i)									

Plan du cours

- Introduction
- Types de contraintes
- Problème central de l'ordonnancement
- Modélisation à l'aide d'un graphe
- Ordonnancement au plus tôt
- Ordonnancement au plus tard
- Marges

Marges

Définitions : marges totales

- Soit $\Lambda = (\lambda_0, \lambda_1, \dots, \lambda_{n+1})$ l'ordonnancement au plus tôt et $\Lambda' = (\lambda'_0, \lambda'_1, \dots, \lambda'_{n+1})$ l'ordonnancement au plus tard de durée $F \geq \lambda_{n+1}$. La marge totale de la tâche A_i , relativement à F, correspond à $m_i = \lambda'_i \lambda_i$ (i = 1, ..., n)
- \rightarrow C'est le retard maximum que peut prendre l'achèvement de A_i sans retarder la date F de fin de projet

Définitions : marges libres

Marges

Définitions : marges totales

- Soit $\Lambda = (\lambda_0, \lambda_1, \dots, \lambda_{n+1})$ l'ordonnancement au plus tôt et $\Lambda' = (\lambda'_0, \lambda'_1, \dots, \lambda'_{n+1})$ l'ordonnancement au plus tard de durée $F \geq \lambda_{n+1}$. La **marge totale de la tâche** A_i , relativement à F, correspond à $m_i = \lambda'_i \lambda_i$ (i = 1, ..., n)
- \rightarrow C'est le retard maximum que peut prendre l'achèvement de A_i sans retarder la date F de fin de projet

Définitions : marges libres

• Soit $T = (t_0, t_1, \dots, t_{n+1})$ un ordonnancement compatible. La **marge libre de la tâche** A_i , relativement à T, correspond à $\mu_i = \min_{x_j \in \Gamma(x_i)} t_j - t_i - a_{i,j} (i = 1, ..., n)$

21/22

Marges

Définitions : marges totales

- Soit $\Lambda = (\lambda_0, \lambda_1, \dots, \lambda_{n+1})$ l'ordonnancement au plus tôt et $\Lambda' = (\lambda'_0, \lambda'_1, \dots, \lambda'_{n+1})$ l'ordonnancement au plus tard de durée $F \geq \lambda_{n+1}$. La marge totale de la tâche A_i , relativement à F, correspond à $m_i = \lambda'_i \lambda_i$ (i = 1, ..., n)
- → C'est le retard maximum que peut prendre l'achèvement de A_i sans retarder la date F de fin de projet

Définitions : marges libres

- Soit $T = (t_0, t_1, \dots, t_{n+1})$ un ordonnancement compatible. La **marge libre de la tâche** A_i , relativement à T, correspond à $\mu_i = \min_{x_j \in \Gamma(x_i)} t_j - t_i - a_{i,j} (i = 1, \dots, n)$
- \rightarrow C'est le retard maximum que peut prendre l'achèvement de A_i sans retarder les dates de début t_j prévues pour les autres tâches

Exemple: marges totales et libres

Tâches	A_0	<i>A</i> ₁	A_2	<i>A</i> ₃	A_4	A ₅	A ₆	A ₇	A ₈
Ordonnancement	0	0	0	0	3	3	6	9	10
au plus tôt (λ_i)									
Ordonnancement	0	0	1	3	4	5	6	9	10
au plus tard (λ_i')									
Marges totales (m _i)	-	0	1	3	1	2	0	0	-
Marges libres pour	-	0	0	3	1	2	0	0	-
ordo. au plus tôt (μ_i)									

22/22