$12a_{0297} (K12a_{0297})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 2u^{60} - 3u^{59} + \dots + 4b - 6, \ -2u^{59} + 19u^{57} + \dots + 4a - 8, \ u^{61} - 2u^{60} + \dots - 4u + 2 \rangle \\ I_2^u &= \langle -65u^7a^2 + 366u^7a + \dots - 730a + 714, \ 2u^7a^2 - 4u^7a + \dots + 8a - 4, \\ u^8 + u^7 - u^6 - 2u^5 + u^4 + 2u^3 - 2u - 1 \rangle \\ I_3^u &= \langle -u^2 + b - u + 1, \ -u^3 + 2u^2 + 2a + u, \ u^4 - u^2 + 2 \rangle \\ I_4^u &= \langle b - 1, \ a + 1, \ u - 1 \rangle \\ I_5^u &= \langle b - 1, \ a, \ u + 1 \rangle \\ I_6^u &= \langle b + 1, \ a - 2, \ u - 1 \rangle \\ I_7^u &= \langle b, \ a - 1, \ u + 1 \rangle \\ I_8^u &= \langle u^3 + u^2 + b + 1, \ a - u - 1, \ u^4 + 1 \rangle \\ I_1^v &= \langle a, \ b + 1, \ v - 1 \rangle \end{split}$$

* 9 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 98 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 2u^{60} - 3u^{59} + \dots + 4b - 6, -2u^{59} + 19u^{57} + \dots + 4a - 8, u^{61} - 2u^{60} + \dots - 4u + 2 \rangle$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u^{59} - \frac{19}{4}u^{57} + \dots - \frac{3}{2}u + 2 \\ -\frac{1}{2}u^{60} + \frac{3}{4}u^{59} + \dots - \frac{5}{2}u + \frac{3}{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{2}u^{60} - u^{59} + \dots - 11u^{3} - \frac{1}{2} \\ u^{60} - 10u^{58} + \dots + \frac{3}{2}u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{5} + u \\ -u^{7} + u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{5} + u \\ -u^{7} + u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{5} - u \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{10} + u^{8} - 2u^{6} + u^{4} - u^{2} + 1 \\ u^{10} - 2u^{8} + 3u^{6} - 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{4}u^{56} - \frac{9}{4}u^{54} + \dots - \frac{3}{2}u + \frac{1}{2} \\ -\frac{1}{4}u^{58} + \frac{5}{2}u^{56} + \dots + 4u^{3} - u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{1}{4}u^{56} - \frac{9}{4}u^{54} + \dots - \frac{3}{2}u + \frac{1}{2} \\ -\frac{1}{4}u^{56} + \frac{5}{2}u^{54} + \dots - \frac{1}{2}u^{2} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $2u^{60} 4u^{59} + \cdots + 16u^2 2u$

Crossings	u-Polynomials at each crossing
c_1	$u^{61} + 21u^{60} + \dots + 741u + 225$
c_2, c_5	$u^{61} + 3u^{60} + \dots + 21u - 15$
c_3, c_8	$u^{61} - 2u^{60} + \dots - 10164u - 3866$
c_4, c_{10}	$u^{61} + 2u^{60} + \dots - 4u - 2$
c_6, c_7, c_{12}	$u^{61} - 3u^{60} + \dots - 15u - 17$
c_9,c_{11}	$u^{61} - 20u^{60} + \dots + 44u^2 - 4$

Crossings	Riley Polynomials at each crossing
c_1	$y^{61} + 51y^{60} + \dots - 783819y - 50625$
c_2, c_5	$y^{61} - 21y^{60} + \dots + 741y - 225$
c_{3}, c_{8}	$y^{61} - 44y^{60} + \dots + 225348784y - 14945956$
c_4, c_{10}	$y^{61} - 20y^{60} + \dots + 44y^2 - 4$
c_6, c_7, c_{12}	$y^{61} - 69y^{60} + \dots - 14123y - 289$
c_9,c_{11}	$y^{61} + 40y^{60} + \dots + 352y - 16$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.684026 + 0.730349I		
a = 1.009310 - 0.004276I	-3.51260 - 0.02973I	-1.53347 - 0.41407I
b = -0.980208 - 0.876387I		
u = 0.684026 - 0.730349I		
a = 1.009310 + 0.004276I	-3.51260 + 0.02973I	-1.53347 + 0.41407I
b = -0.980208 + 0.876387I		
u = -0.596675 + 0.818364I		
a = -0.780560 - 0.903959I	5.86684 + 10.52580I	7.47241 - 5.20514I
b = 1.80103 - 1.76065I		
u = -0.596675 - 0.818364I		
a = -0.780560 + 0.903959I	5.86684 - 10.52580I	7.47241 + 5.20514I
b = 1.80103 + 1.76065I		
u = 0.980120 + 0.257609I		
a = 1.103770 + 0.621483I	6.96905 + 0.16982I	14.1748 - 0.9961I
b = 0.089020 - 0.363650I		
u = 0.980120 - 0.257609I		
a = 1.103770 - 0.621483I	6.96905 - 0.16982I	14.1748 + 0.9961I
b = 0.089020 + 0.363650I		
u = 0.570037 + 0.804645I		
a = 0.113760 - 0.379871I	7.95075 - 4.31712I	9.88882 + 1.03046I
b = 0.174544 - 1.221640I		
u = 0.570037 - 0.804645I		
a = 0.113760 + 0.379871I	7.95075 + 4.31712I	9.88882 - 1.03046I
b = 0.174544 + 1.221640I		-
u = 0.594682 + 0.783135I		
a = -0.477300 + 1.212940I	-0.22057 - 6.22999I	4.63185 + 5.17897I
b = 2.02601 + 1.39309I		
u = 0.594682 - 0.783135I		
a = -0.477300 - 1.212940I	-0.22057 + 6.22999I	4.63185 - 5.17897I
b = 2.02601 - 1.39309I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.971831 + 0.354476I		
a = -0.11982 + 1.97303I	6.46298 - 5.79381I	12.8562 + 6.6036I
b = -0.327701 - 0.963726I		
u = -0.971831 - 0.354476I		
a = -0.11982 - 1.97303I	6.46298 + 5.79381I	12.8562 - 6.6036I
b = -0.327701 + 0.963726I		
u = -0.693342 + 0.628373I		
a = 1.030350 - 0.373254I	0.288787 + 0.262438I	10.25017 - 1.54244I
b = 0.509008 + 0.609720I		
u = -0.693342 - 0.628373I		
a = 1.030350 + 0.373254I	0.288787 - 0.262438I	10.25017 + 1.54244I
b = 0.509008 - 0.609720I		
u = -0.741367 + 0.781988I		
a = 0.968528 + 0.095329I	0.550417 - 1.022540I	7.58092 + 2.83590I
b = -0.766103 + 0.579735I		
u = -0.741367 - 0.781988I		
a = 0.968528 - 0.095329I	0.550417 + 1.022540I	7.58092 - 2.83590I
b = -0.766103 - 0.579735I		
u = -0.813495 + 0.728217I		
a = 1.226460 - 0.093979I	-5.14522 + 0.66407I	0
b = -1.10886 + 1.83090I		
u = -0.813495 - 0.728217I		
a = 1.226460 + 0.093979I	-5.14522 - 0.66407I	0
b = -1.10886 - 1.83090I		
u = -1.105450 + 0.040560I		
a = -1.17835 - 2.39972I	5.68265 - 5.26500I	11.79822 + 5.52257I
b = 0.67943 + 2.15568I		
u = -1.105450 - 0.040560I		
a = -1.17835 + 2.39972I	5.68265 + 5.26500I	11.79822 - 5.52257I
b = 0.67943 - 2.15568I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.798828 + 0.780694I		
a = 1.072690 + 0.319738I	-0.34087 - 3.55037I	6.00000 + 0.I
b = -0.61454 - 1.92988I		
u = 0.798828 - 0.780694I		
a = 1.072690 - 0.319738I	-0.34087 + 3.55037I	6.00000 + 0.I
b = -0.61454 + 1.92988I		
u = 0.456914 + 0.747552I		
a = 0.187992 + 0.418041I	8.62819 + 1.29175I	10.29853 - 0.71245I
b = 0.929221 + 0.981503I		
u = 0.456914 - 0.747552I		
a = 0.187992 - 0.418041I	8.62819 - 1.29175I	10.29853 + 0.71245I
b = 0.929221 - 0.981503I		
u = 1.128770 + 0.065228I		
a = -0.96345 + 2.31373I	12.1138 + 9.4985I	14.0807 - 5.6869I
b = 0.41291 - 2.04529I		
u = 1.128770 - 0.065228I		
a = -0.96345 - 2.31373I	12.1138 - 9.4985I	14.0807 + 5.6869I
b = 0.41291 + 2.04529I		
u = -1.133370 + 0.039127I		
a = -1.07901 + 1.94352I	13.9993 - 3.0917I	16.1356 + 0.I
b = 0.67010 - 1.57030I		
u = -1.133370 - 0.039127I		
a = -1.07901 - 1.94352I	13.9993 + 3.0917I	16.1356 + 0.I
b = 0.67010 + 1.57030I		
u = 0.789581 + 0.332833I		
a = 0.29668 - 2.08794I	0.18640 + 3.40430I	8.29784 - 8.43367I
b = -0.413297 + 0.458976I		
u = 0.789581 - 0.332833I		
a = 0.29668 + 2.08794I	0.18640 - 3.40430I	8.29784 + 8.43367I
b = -0.413297 - 0.458976I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.899967 + 0.713782I		
a = -1.58036 + 1.59577I	-4.88256 - 6.15868I	0
b = -0.51410 - 2.10453I		
u = -0.899967 - 0.713782I		
a = -1.58036 - 1.59577I	-4.88256 + 6.15868I	0
b = -0.51410 + 2.10453I		
u = -0.963966 + 0.649853I		
a = -0.433033 - 0.566210I	1.09575 - 5.31508I	0
b = 0.829635 - 0.624531I		
u = -0.963966 - 0.649853I		
a = -0.433033 + 0.566210I	1.09575 + 5.31508I	0
b = 0.829635 + 0.624531I		
u = -0.401857 + 0.728661I		
a = -0.711645 + 1.063690I	6.99087 - 7.50546I	8.25142 + 5.41277I
b = 0.222763 + 0.716405I		
u = -0.401857 - 0.728661I		
a = -0.711645 - 1.063690I	6.99087 + 7.50546I	8.25142 - 5.41277I
b = 0.222763 - 0.716405I		
u = 0.475808 + 0.672313I		
a = -0.225590 - 1.386850I	0.59272 + 3.70509I	5.79703 - 5.82804I
b = -0.018272 - 0.781142I		
u = 0.475808 - 0.672313I		
a = -0.225590 + 1.386850I	0.59272 - 3.70509I	5.79703 + 5.82804I
b = -0.018272 + 0.781142I		
u = 0.928616 + 0.747007I		
a = -1.66826 - 1.18025I	0.05447 + 9.30335I	0
b = -0.11509 + 2.08092I		
u = 0.928616 - 0.747007I		
a = -1.66826 + 1.18025I	0.05447 - 9.30335I	0
b = -0.11509 - 2.08092I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.990835 + 0.679184I		
a = -0.347057 - 1.318090I	-2.58879 + 5.43080I	0
b = -0.534238 + 1.253020I		
u = 0.990835 - 0.679184I		
a = -0.347057 + 1.318090I	-2.58879 - 5.43080I	0
b = -0.534238 - 1.253020I		
u = 1.028240 + 0.622031I		
a = -1.253520 - 0.573644I	2.08349 + 1.29638I	0
b = -0.78894 + 1.32269I		
u = 1.028240 - 0.622031I		
a = -1.253520 + 0.573644I	2.08349 - 1.29638I	0
b = -0.78894 - 1.32269I		
u = -1.051030 + 0.593594I		
a = -1.092970 + 0.306940I	8.82075 + 2.55632I	0
b = -0.664632 - 0.819333I		
u = -1.051030 - 0.593594I		
a = -1.092970 - 0.306940I	8.82075 - 2.55632I	0
b = -0.664632 + 0.819333I		
u = -0.967643 + 0.722048I		
a = -0.001148 + 0.746254I	1.23996 - 4.65549I	0
b = -0.390854 - 0.853517I		
u = -0.967643 - 0.722048I		
a = -0.001148 - 0.746254I	1.23996 + 4.65549I	0
b = -0.390854 + 0.853517I		
u = 1.055860 + 0.618891I		
a = 0.58117 + 1.82280I	10.34380 + 3.85829I	0
b = 1.34616 - 1.10013I		
u = 1.055860 - 0.618891I		
a = 0.58117 - 1.82280I	10.34380 - 3.85829I	0
b = 1.34616 + 1.10013I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.040000 + 0.677333I		
a = 0.70242 + 2.72007I	1.10337 + 11.75260I	0
b = 2.36433 - 2.02891I		
u = 1.040000 - 0.677333I		
a = 0.70242 - 2.72007I	1.10337 - 11.75260I	0
b = 2.36433 + 2.02891I		
u = 1.054830 + 0.675605I		
a = -1.53601 - 0.38119I	9.39588 + 9.88209I	0
b = -0.01333 + 1.41794I		
u = 1.054830 - 0.675605I		
a = -1.53601 + 0.38119I	9.39588 - 9.88209I	0
b = -0.01333 - 1.41794I		
u = -1.051510 + 0.689969I		
a = 1.00404 - 2.59975I	7.2336 - 16.1846I	0
b = 1.96259 + 2.37317I		
u = -1.051510 - 0.689969I		
a = 1.00404 + 2.59975I	7.2336 + 16.1846I	0
b = 1.96259 - 2.37317I		
u = -0.060491 + 0.608567I		
a = 0.847236 - 0.127415I	3.78928 + 2.56985I	6.99731 - 2.63136I
b = -0.534181 + 0.678808I		
u = -0.060491 - 0.608567I		
a = 0.847236 + 0.127415I	3.78928 - 2.56985I	6.99731 + 2.63136I
b = -0.534181 - 0.678808I		
u = -0.516262		
a = 1.73864	0.822482	12.8010
b = 0.0487944		
u = 0.132981 + 0.413625I		
a = 0.934359 + 0.065152I	-1.53288 - 0.93105I	-1.52612 + 1.38760I
b = -0.756818 - 0.341461I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.132981 - 0.413625I		
a = 0.934359 - 0.065152I	-1.53288 + 0.93105I	-1.52612 - 1.38760I
b = -0.756818 + 0.341461I		

II.
$$I_2^u = \langle -65u^7a^2 + 366u^7a + \cdots - 730a + 714, \ 2u^7a^2 - 4u^7a + \cdots + 8a - 4, \ u^8 + u^7 - u^6 - 2u^5 + u^4 + 2u^3 - 2u - 1 \rangle$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.631068a^{2}u^{7} - 3.55340au^{7} + \dots + 7.08738a - 6.93204 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1.32039a^{2}u^{7} - 5.01942au^{7} + \dots + 9.21359a - 7.61165 \\ -1.66990a^{2}u^{7} + 5.49515au^{7} + \dots - 8.44660a + 8.09709 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{5} - u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{5} - u \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{5} - u \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.834951a^{2}u^{7} - 1.74757au^{7} + \dots + 4.22330a - 3.04854 \\ 0.174757a^{2}u^{7} - 4.73786au^{7} + \dots + 8.11650a - 7.24272 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.834951a^{2}u^{7} - 1.74757au^{7} + \dots + 4.22330a - 3.04854 \\ -0.776699a^{2}u^{7} + 4.83495au^{7} + \dots + 9.18447a + 9.30097 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^7 + 8u^5 + 4u^4 8u^3 4u^2 + 4u + 14$

Crossings	u-Polynomials at each crossing
c_1	$u^{24} + 16u^{23} + \dots + 4u + 1$
c_2, c_5, c_6 c_7, c_{12}	$u^{24} - 8u^{22} + \dots + 2u - 1$
c_3, c_8	$(u^8 + u^7 - 3u^6 - 2u^5 + 3u^4 + 2u - 1)^3$
c_4, c_{10}	$(u^8 - u^7 - u^6 + 2u^5 + u^4 - 2u^3 + 2u - 1)^3$
c_9, c_{11}	$(u^8 - 3u^7 + 7u^6 - 10u^5 + 11u^4 - 10u^3 + 6u^2 - 4u + 1)^3$

Crossings	Riley Polynomials at each crossing
c_1	$y^{24} - 16y^{23} + \dots - 12y + 1$
c_2, c_5, c_6 c_7, c_{12}	$y^{24} - 16y^{23} + \dots - 4y + 1$
c_3, c_8	$(y^8 - 7y^7 + 19y^6 - 22y^5 + 3y^4 + 14y^3 - 6y^2 - 4y + 1)^3$
c_4, c_{10}	$(y^8 - 3y^7 + 7y^6 - 10y^5 + 11y^4 - 10y^3 + 6y^2 - 4y + 1)^3$
c_9, c_{11}	$(y^8 + 5y^7 + 11y^6 + 6y^5 - 17y^4 - 34y^3 - 22y^2 - 4y + 1)^3$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.570868 + 0.730671I		
a = 1.043500 - 0.060246I	1.04066 + 1.13123I	7.41522 - 0.51079I
b = -1.101120 + 0.799785I		
u = -0.570868 + 0.730671I		
a = 0.359671 + 0.817635I	1.04066 + 1.13123I	7.41522 - 0.51079I
b = -0.016317 + 1.139980I		
u = -0.570868 + 0.730671I		
a = 0.208103 - 1.124120I	1.04066 + 1.13123I	7.41522 - 0.51079I
b = 1.75850 - 0.67186I		
u = -0.570868 - 0.730671I		
a = 1.043500 + 0.060246I	1.04066 - 1.13123I	7.41522 + 0.51079I
b = -1.101120 - 0.799785I		
u = -0.570868 - 0.730671I		
a = 0.359671 - 0.817635I	1.04066 - 1.13123I	7.41522 + 0.51079I
b = -0.016317 - 1.139980I		
u = -0.570868 - 0.730671I		
a = 0.208103 + 1.124120I	1.04066 - 1.13123I	7.41522 + 0.51079I
b = 1.75850 + 0.67186I		
u = 0.855237 + 0.665892I		
a = 1.278090 - 0.370791I	-2.15941 + 2.57849I	4.27708 - 3.56796I
b = -1.93181 - 1.61226I		
u = 0.855237 + 0.665892I		
a = 0.504800 + 0.137739I	-2.15941 + 2.57849I	4.27708 - 3.56796I
b = 0.0664349 - 0.0459194I		
u = 0.855237 + 0.665892I		
a = -1.40393 - 2.38771I	-2.15941 + 2.57849I	4.27708 - 3.56796I
b = -1.22880 + 1.98137I		
u = 0.855237 - 0.665892I		
a = 1.278090 + 0.370791I	-2.15941 - 2.57849I	4.27708 + 3.56796I
b = -1.93181 + 1.61226I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.855237 - 0.665892I		
a = 0.504800 - 0.137739I	-2.15941 - 2.57849I	4.27708 + 3.56796I
b = 0.0664349 + 0.0459194I		
u = 0.855237 - 0.665892I		
a = -1.40393 + 2.38771I	-2.15941 - 2.57849I	4.27708 + 3.56796I
b = -1.22880 - 1.98137I		
u = 1.09818		
a = 1.32236	6.50273	13.8640
b = -0.189255		
u = 1.09818		
a = -1.39057 + 2.07577I	6.50273	13.8640
b = 0.97427 - 1.80941I		
u = 1.09818		
a = -1.39057 - 2.07577I	6.50273	13.8640
b = 0.97427 + 1.80941I		
u = -1.031810 + 0.655470I		
a = -1.50786 + 0.47222I	2.37968 - 6.44354I	9.42845 + 5.29417I
b = -0.28319 - 1.61385I		
u = -1.031810 + 0.655470I		
a = -0.13296 + 1.59682I	2.37968 - 6.44354I	9.42845 + 5.29417I
b = -0.67376 - 1.25902I		
u = -1.031810 + 0.655470I		
a = 0.22313 - 2.40784I	2.37968 - 6.44354I	9.42845 + 5.29417I
b = 2.31545 + 1.17039I		
u = -1.031810 - 0.655470I		
a = -1.50786 - 0.47222I	2.37968 + 6.44354I	9.42845 - 5.29417I
b = -0.28319 + 1.61385I		
u = -1.031810 - 0.655470I		
a = -0.13296 - 1.59682I	2.37968 + 6.44354I	9.42845 - 5.29417I
b = -0.67376 + 1.25902I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.031810 - 0.655470I		
a = 0.22313 + 2.40784I	2.37968 + 6.44354I	9.42845 - 5.29417I
b = 2.31545 - 1.17039I		
u = -0.603304		
a = 1.26502	0.845036	11.8940
b = -1.64063		
u = -0.603304		
a = 1.52434 + 0.84915I	0.845036	11.8940
b = 0.0352752 - 0.0977915I		
u = -0.603304		
a = 1.52434 - 0.84915I	0.845036	11.8940
b = 0.0352752 + 0.0977915I		

III.
$$I_3^u = \langle -u^2 + b - u + 1, \ -u^3 + 2u^2 + 2a + u, \ u^4 - u^2 + 2 \rangle$$

$$a_{4} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u^{3} - u^{2} - \frac{1}{2}u\\u^{2} + u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1\\-u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{2}u^{3} - u^{2} - \frac{1}{2}u + 1\\u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u\\-u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3}\\-u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3} - u\\u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{3} + u\\-u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -1\\u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{2}u^{3} - u^{2} - \frac{1}{2}u + 1\\u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{1}{2}u^{3} - u^{2} + \frac{1}{2}u + 1\\-1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4u^2 + 8$

Crossings	u-Polynomials at each crossing
c_1, c_5, c_6 c_7	$(u-1)^4$
c_2, c_{12}	$(u+1)^4$
c_3, c_4, c_8 c_{10}	$u^4 - u^2 + 2$
<i>c</i> 9	$(u^2+u+2)^2$
c_{11}	$(u^2 - u + 2)^2$

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_5 \\ c_6, c_7, c_{12}$	$(y-1)^4$
c_3, c_4, c_8 c_{10}	$(y^2 - y + 2)^2$
c_9,c_{11}	$(y^2 + 3y + 4)^2$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.978318 + 0.676097I		
a = -1.19178 - 0.84480I	-0.82247 + 5.33349I	6.00000 - 5.29150I
b = 0.47832 + 1.99897I		
u = 0.978318 - 0.676097I		
a = -1.19178 + 0.84480I	-0.82247 - 5.33349I	6.00000 + 5.29150I
b = 0.47832 - 1.99897I		
u = -0.978318 + 0.676097I		
a = 0.19178 + 1.80095I	-0.82247 - 5.33349I	6.00000 + 5.29150I
b = -1.47832 - 0.64678I		
u = -0.978318 - 0.676097I		
a = 0.19178 - 1.80095I	-0.82247 + 5.33349I	6.00000 - 5.29150I
b = -1.47832 + 0.64678I		

IV.
$$I_4^u = \langle b - 1, \ a + 1, \ u - 1 \rangle$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1\\1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 18

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5	u
c_3, c_4, c_6 c_7, c_8, c_{10} c_{12}	u+1
c_9, c_{11}	u-1

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5	y
c_3, c_4, c_6 c_7, c_8, c_9 c_{10}, c_{11}, c_{12}	y-1

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -1.00000	4.93480	18.0000
b = 1.00000		

V.
$$I_5^u = \langle b-1, \ a, \ u+1 \rangle$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -2\\1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 12

Crossings	u-Polynomials at each crossing
$c_1, c_5, c_6 \\ c_7, c_8, c_{10} \\ c_{11}$	u-1
c_2, c_3, c_4 c_9, c_{12}	u+1

Crossings	Riley Polynomials at each crossing	
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_9 c_{10}, c_{11}, c_{12}	y-1	

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 0 3.28987 12.0000		12.0000
b = 1.00000		

VI.
$$I_6^u=\langle b+1,\ a-2,\ u-1
angle$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1\\1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 12

Crossings	u-Polynomials at each crossing
c_1, c_3, c_4 c_5, c_6, c_7 c_{11}	u-1
c_2, c_8, c_9 c_{10}, c_{12}	u+1

Crossings	Riley Polynomials at each crossing	
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_9 c_{10}, c_{11}, c_{12}	y-1	

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 2.00000	3.28987	12.0000
b = -1.00000		

VII.
$$I_7^u=\langle b,\ a-1,\ u+1 \rangle$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -2\\1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 6

Crossings	u-Polynomials at each crossing
c_1	u+1
c_2, c_3, c_4 c_5, c_8, c_9 c_{10}, c_{11}	u-1
c_6, c_7, c_{12}	u

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_8 c_9, c_{10}, c_{11}	y-1
c_6, c_7, c_{12}	y

Solutions to I_7^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 1.00000	1.64493	6.00000
b = 0		

VIII.
$$I_8^u = \langle u^3 + u^2 + b + 1, \ a - u - 1, \ u^4 + 1 \rangle$$

a) Are colorings
$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_2 = \begin{pmatrix} u+1 \\ -u^3 - u^2 - 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} u \\ u^3 + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ -u^3 + u \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -u^3 \\ -u^3 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ -u^3 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ -u^3 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} u \\ -u^3 - 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} u \\ -u^3 - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 4

Crossings	u-Polynomials at each crossing
c_1, c_2, c_{12}	$(u-1)^4$
c_3, c_4, c_8 c_{10}	$u^4 + 1$
c_5, c_6, c_7	$(u+1)^4$
c_9, c_{11}	$(u^2+1)^2$

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_5 \\ c_6, c_7, c_{12}$	$(y-1)^4$
c_3, c_4, c_8 c_{10}	$(y^2+1)^2$
c_9,c_{11}	$(y+1)^4$

Solutions to I_8^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.707107 + 0.707107I		
a = 1.70711 + 0.70711I	-1.64493	4.00000
b = -0.29289 - 1.70711I		
u = 0.707107 - 0.707107I		
a = 1.70711 - 0.70711I	-1.64493	4.00000
b = -0.29289 + 1.70711I		
u = -0.707107 + 0.707107I		
a = 0.292893 + 0.707107I	-1.64493	4.00000
b = -1.70711 + 0.29289I		
u = -0.707107 - 0.707107I		
a = 0.292893 - 0.707107I	-1.64493	4.00000
b = -1.70711 - 0.29289I		

IX.
$$I_1^v = \langle a, b+1, v-1 \rangle$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1, c_2, c_{12}	u-1
$c_3, c_4, c_8 \\ c_9, c_{10}, c_{11}$	u
c_5, c_6, c_7	u+1

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_5 \\ c_6, c_7, c_{12}$	y-1
$c_3, c_4, c_8 \\ c_9, c_{10}, c_{11}$	y

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 1.00000		
a = 0	0	0
b = -1.00000		

X. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u(u-1)^{11}(u+1)(u^{24}+16u^{23}+\cdots+4u+1)$ $\cdot (u^{61}+21u^{60}+\cdots+741u+225)$
c_2	$u(u-1)^{6}(u+1)^{6}(u^{24} - 8u^{22} + \dots + 2u - 1)$ $\cdot (u^{61} + 3u^{60} + \dots + 21u - 15)$
c_3, c_8	$u(u-1)^{2}(u+1)^{2}(u^{4}+1)(u^{4}-u^{2}+2)$ $\cdot (u^{8}+u^{7}-3u^{6}-2u^{5}+3u^{4}+2u-1)^{3}$ $\cdot (u^{61}-2u^{60}+\cdots-10164u-3866)$
c_4, c_{10}	$u(u-1)^{2}(u+1)^{2}(u^{4}+1)(u^{4}-u^{2}+2)$ $\cdot ((u^{8}-u^{7}+\cdots+2u-1)^{3})(u^{61}+2u^{60}+\cdots-4u-2)$
c_5	$u(u-1)^{7}(u+1)^{5}(u^{24} - 8u^{22} + \dots + 2u - 1)$ $\cdot (u^{61} + 3u^{60} + \dots + 21u - 15)$
c_6, c_7	$u(u-1)^{6}(u+1)^{6}(u^{24}-8u^{22}+\cdots+2u-1)$ $\cdot (u^{61}-3u^{60}+\cdots-15u-17)$
<i>c</i> ₉	$u(u-1)^{2}(u+1)^{2}(u^{2}+1)^{2}(u^{2}+u+2)^{2}$ $\cdot (u^{8}-3u^{7}+7u^{6}-10u^{5}+11u^{4}-10u^{3}+6u^{2}-4u+1)^{3}$ $\cdot (u^{61}-20u^{60}+\cdots+44u^{2}-4)$
c_{11}	$u(u-1)^{4}(u^{2}+1)^{2}(u^{2}-u+2)^{2}$ $\cdot (u^{8}-3u^{7}+7u^{6}-10u^{5}+11u^{4}-10u^{3}+6u^{2}-4u+1)^{3}$ $\cdot (u^{61}-20u^{60}+\cdots+44u^{2}-4)$
c_{12}	$u(u-1)^{5}(u+1)^{7}(u^{24} - 8u^{22} + \dots + 2u - 1)$ $\cdot (u^{61} - 3u^{60} + \dots - 15u - 17)$

XI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y(y-1)^{12}(y^{24} - 16y^{23} + \dots - 12y + 1)$ $\cdot (y^{61} + 51y^{60} + \dots - 783819y - 50625)$
c_2,c_5	$y(y-1)^{12}(y^{24} - 16y^{23} + \dots - 4y + 1)$ $\cdot (y^{61} - 21y^{60} + \dots + 741y - 225)$
c_3, c_8	$y(y-1)^{4}(y^{2}+1)^{2}(y^{2}-y+2)^{2}$ $\cdot (y^{8}-7y^{7}+19y^{6}-22y^{5}+3y^{4}+14y^{3}-6y^{2}-4y+1)^{3}$ $\cdot (y^{61}-44y^{60}+\cdots+225348784y-14945956)$
c_4, c_{10}	$y(y-1)^{4}(y^{2}+1)^{2}(y^{2}-y+2)^{2}$ $\cdot (y^{8}-3y^{7}+7y^{6}-10y^{5}+11y^{4}-10y^{3}+6y^{2}-4y+1)^{3}$ $\cdot (y^{61}-20y^{60}+\cdots+44y^{2}-4)$
c_6, c_7, c_{12}	$y(y-1)^{12}(y^{24} - 16y^{23} + \dots - 4y + 1)$ $\cdot (y^{61} - 69y^{60} + \dots - 14123y - 289)$
c_9, c_{11}	$y(y-1)^{4}(y+1)^{4}(y^{2}+3y+4)^{2}$ $\cdot (y^{8}+5y^{7}+11y^{6}+6y^{5}-17y^{4}-34y^{3}-22y^{2}-4y+1)^{3}$ $\cdot (y^{61}+40y^{60}+\cdots+352y-16)$