Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pavel Král, Ph.D

Autentizace

pomoci tajemstv

heslo výzva -

odpověď

fyzického objektu pomocí

pomoci biometrickýc informací

Autentizačn protokoly

Bezpečnost v informačních technologiích (KIV/BIT)

5. Autentizace, autentizační protokoly

Ing. Pavel Král, Ph.D.

Katedra informatiky a výpočetní techniky Západočeská Univerzita

16. března 2016

Obsah

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pavel Král, Ph.D

Autentizac

pomocí tajemství heslo

výzva odpověď

> omocí yzického objektu

pomocí biometrických informací

- 1 Autentizace
 - pomocí tajemství
 - heslo
 - výzva odpověď
 - pomocí fyzického objektu
 - pomocí biometrických informací
- 2 Autentizační protokoly

Autentizace Autentizační protokoly

Autentizace

- autentizace ???
- autorizace ???

Autentizace Autentizační protokoly

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pavel Král, Ph.D

Autentizace

pomocí tajemství heslo výzva odpověď

odpověď pomocí yzického objektu pomocí piometrických

Autentizačn protokolv

Autentizace

- proces ověření proklamované identity subjektu (druhé strany)
 - = autentikace (z anglického authentication) příp. autentifikace (z franc. authentification).
 - jednotnost odborné terminologie → termíny nedoporučovány
 - lacksquare autentizace entity (osoby, programu) imes autentizace zprávy
 - $lue{}$ útočník aktivní ightarrow obtížnost autentizace

Pozor: autentizace \neq autorizace

 autorizace = povolení přístupu k souboru, souhlas s provedením operace (např. smazání souboru "data.txt")

Autentizační metody

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pave Král. Ph.D

Autentizace

pomocí tajemství

heslo

výzva odpověd

oomocí yzického objektu

pomocí biometrický informací

Autentizační protokoly **???**

Autentizační metody

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pavel Král, Ph.D

Autentizace

pomocí tajemství heslo výzva odpověd

odpověď pomocí vzického objektu pomocí piometrických

- 1 uživatel zná
 - tajemství (např. PIN, heslo či přístupová fráze, soukromý klíč)
- uživatel vlastní
 - fyzické objekty (platební či ID karta)
- 3 vlastnosti uživatele (biometrické charakteristiky)
 - vrozené charakteristiky daného jedince (otisk prstu, duhovky oka, hlas, DNA, ...)
- výhody × nevýhody
- max. eliminace nevýhod → vzájemná kombinace metod
 - dvoufaktorová autentizace
 - třífaktorová autentizace

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pavel Král, Ph.D

Autentizac pomocí

pomocí tajemství heslo

výzva odpověď pomocí fyzického objektu pomocí biometrických

- nejčastější forma zadání jména a hesla
- nezobrazovat při zadání (← minimalizace možnosti okopírování)
 - Př: Linux/Unix nezobrazováno nic
 - Windows * pro každý znak → nevýhoda ???
- reakce na chybné zadání neposkytnutí užitečné informace útočníkovi
 - Př: způsoby reakce na chybu
- jmeno: king
- chybne jmeno
- jmeno:

- jmeno: king
- heslo: ******
- chyba pri prihlasovani

Vlastnosti & bezpečnost

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pave Král, Ph.D

pomocí tajemství heslo výzva odpověď pomocí fyzického objektu

Autentizačn protokoly

Bezpečné heslo

- obtížná zjistitelnost, uhodnutelnost
- → Nevhodná hesla
 - vlastní jméno, jméno někoho z rodiny, přítelkyně, manželky, milenky, jméno psa, kočky, apod.
 - rodné číslo, datum narození
 - číslo domu, adresa, telefonní číslo, SPZ, apod.
 - heslo, root, guest, user, 1234, 12345, apod.

Deset nejhorších hesel z pohledu bezpečnosti

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pave Král, Ph.D

Autentizac pomocí tajemství

heslo výzva -

pomocí fyzického objektu pomocí biometrických informací

Autentizačn protokolv "Hackerská" studie: prolomení 1M uživatelských účtů na serveru http://rockyou.com

Pořadí	Heslo	Počet uživatelů	
1.	123456	290 731	
2.	12345	79 078	
3.	123456789	76 790	
4.	Password	61 958	
5.	iloveyou	51 622	
6.	princess	35 231	
7.	rockyou	22 588	
8.	1234567	21 726	
9.	12345678	20 553	
10.	abc123	17 542	

Vlastnosti & bezpečnost

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pave Král, Ph.D

pomocí tajemství heslo výzva odpověď pomocí fyzického obiektu

fyzického objektu pomocí biometrických informací

Autentizačn protokoly

Bezpečné heslo

- obtížná zjistitelnost, uhodnutelnost
- \rightarrow Vhodná hesla
 - "nesmyslná" kombinace znaků (tj. písmen, čísel a interpunkce)
 - lacksquare ightarrow obtížná zapamatovatelnost (i pro autora) -
 - tendence zapsání (př. PIN na papírku u plat. karty, otevřený soubor hesla.txt na disku, apod.) = neakceptovatelné!!!
 - — použití mnemotechnické pomůcky (př. posl. 3 písmena na kláv. vpravo odělená čísly, "zašifrovat", apod.)

Délka hesla

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pave Král, Ph.E

Autentizac pomocí tajemství

heslo výzva -

pomocí fyzického objektu pomocí biometrických informací

- délka hesla → doba prolomení hesla
- PIN karty pouze 4 znaky dostatečná délka? NE!
- ← zablokování karty po několika chybných pokusech
- s touto vlastností obecně nepočítat
- ares.zcu.cz také zablokování po několika neúspěšných přihlášeních - POZOR !!!
- → eliminace útoku xxx ???
- dostatečná délka >= 8 **znaků** (zdůvodnění viz dále)

Použité znaky

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pave Král, Ph.D

Autentizac pomocí tajemství

pomoci tajemství heslo

výzva -

pomocí fyzického objektu pomocí biometrických informací

- počet různých znaků v hesle \rightarrow doba prolomení hesla (s jeho délkou)
- 10 číslic
- 2 × 26 základních písmen abecedy (a-z, A-Z)
- znaky s diakritikou (á, é, ř, …)
- interpunkční symboly (. , : ; ? !, ...)
- speciální znaky (\$, %, &, @, ...)
- počet znaků k dispozici > 80

Rozbor hesla

heslo

	élka hesla	4	5	6	7	8
		Kombinací	Kombinací	Kombinací	Kombinací	Kombinací
Délka hesla Použité znaky		100 hesel/sec	100 hesel/sec	100 hesel/sec	100 hesel/sec	100 hesel/sec
0-9	10	10 000	100 000	1 000 000	10 000 000	100 000 000
	znaků	2 minuty	16 minut	3 hodiny	l den	ll dní
a-z; 0-9	36	1679616	60466176	2 x 10 ⁹	8 x 10 ¹⁰	3 x10 ¹²
	znaků	5 hodin	7 dní	8 měsíců	25 let	900 let
a-z; A-Z; 0-9	62	14776336	916132832	5 x 10 ¹⁰	4 x 10 ¹²	2 x 10 ¹⁴
	znaků	2 dny	3 měsíce	18 let	1000 let	70 000 let
a-z; A-Z; 0-9;	85	52200625	443705312	3 x 10 ¹¹	3 x 10 ¹³	3 x 10 ¹⁵
ščáéě;@#\$^*?!	. znaků	6 dní	l xok	120 let	10 000 let	800 000 let

Autentizace typu výzva - odpověď Seznam otázek

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pavel Král, Ph.D

Autentizac

pomocí tajemství heslo výzva odpověď

pomocí fyzického objektu pomocí biometrických informací

- alternativa k systému hesel
- na serveru dostatečně dlouhý seznam otázek a odpovědí
- volba otázek bez nutnosti zaznamenání uživatelem
- Př:
 - Jméno matky za svobodna?
 - Jméno sestry/bratra?
 - Název střední/vysoké školy?
- přihlášení: náhodný výběr otázky / kontrola odpovědi systémem
- potřeba velkého počtu otázek
- nepříliš praktické

Autentizace typu výzva - odpověď Algoritmus

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pave Král, Ph.D

Autentizac

pomocí tajemstv heslo výzva -

odpověď pomocí fyzického objektu pomocí biometrických informací

Autentizačn protokoly uživatel: volba algoritmu

■ Př:

■ 9 × x

přihášení: zobrazení č. 5

uživatel: zadání č. 45 (výsledek algoritmu)

varianty: různý algoritmus v různou dobu

- terminál má výpočetní výkon (přihlašování pomocí mob. telefonu,
 PDA, příp. smartcard)
- použití kryptografického protokolu výzva odpověď
 - uživatel A server sdílení tajného klíče K
 - Server: zaslání výzvy N_A (náhodně gen. číslo)
 - uživatel A: zaslání odpovědi $E_K(A, N_A)$

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pavel Král, Ph.D

pomocí
tajemství
heslo
výzva odpověď
pomocí
fyzického
objektu
pomocí
biometrických
informací

Autentizačn protokoly

- princip: podobně jako klíč od bytu
- dnes většinou karta (např. zákaznická karta do supermarketu, debetní karta, Plzeňská k., JIS, apod.)
- vložení karty do (ke) čtecího zařízení
 - někdy doplnění o zadání hesla (PIN) ← ne-zneužití ztracené karty

Karta s čárovým kódem

- pruhy (příp. mozaika) definované šířky → zakódování znaků
 - jednorozměrný kód
 - dvojrozměrný kód
- možno přečíst pomocí čteček (příp. scannerů)
- př. většina zákaznických karet
- + cena, jednoduchá výroba
- triviální kopie karty na kopírce

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pave Král, Ph.D

heslo
výzva odpověď
pomocí
fyzického
objektu
pomocí
biometrickýcl
informací

Autentizačn protokoly

Magnetická karta

- magnetický proužek na zadní straně (např debetní karta, karta z pojišťovny, apod.)
- zapsáno cca 150B informace
- PIN na kartě zašifrovaný pomocí soukromého (tajného) klíče (banky)
- další informace např na adr. http://pandatron.cz/?535&karty_s_magnetickym_pruhem
- + cena, 1 karta cca 3 Kč
- běžná dostupnost čtecích/zápisových zařízení \rightarrow kopie karty
- snadné smazání pouze přiblížení magnetu

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pavel Král, Ph.D

Autentizac pomocí tajemství

heslo výzva odpověď

pomocí fyzického objektu pomocí

biometrických informací

Autentizačn protokoly

Čipová karta

- integrován polovodičový čip (mikroprocesor)
 - komunikace se čtecím zařízením
 - bezpečné uložení citlivých dat
 - kontaktní
 - bezkontaktní
 - s pamětí (stored value cards)
 - inteligentní (smartcards)

Karty s pamětí

- malé množství paměti (E)PROM (obvykle < 1 KB)
- čtecí/zapisovací zařízení: čtení a zápis do paměti
- př. tel. karty (dříve); pro autentizaci nepoužívány
- zneužití rel. snadná výroba "věčných" tel. karet

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pavel Král, Ph.D

heslo
výzva odpověď
pomocí
fyzického
objektu
pomocí
biometrických
informací

Autentizačn protokoly

Inteligentní čipová karta (smartcard)

- př: 8 bitový CPU, frekvence 4MHz, 16KB ROM, 4KB EEPROM, 1KB RAM
- komunikace pomocí sériové linky 9600 bps
- kryptografický koprocesor, JVM v ROM (někdy)
- rychlý vývoj
- velké množství využití (zdravotní karty, apod.)
- autentizace: protokol výzva odpověď klíč uložen na kartě
- + obtížné zkopírování (nicméně možné)
- cena, cca 100-1000 Kč

Autentizace pomocí biometrických informací

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pavel Král, Ph.D

Autentiza pomocí tajemství heslo výzva odpověď pomocí

výzva odpověď pomocí fyzického objektu pomocí biometrických informací

Autentizačn protokoly

dva kroky:

- zápis uživatele (provede se 1 ×):
 - 1 změření vlastností snímacím zařízením
 - 2 digitalizace
 - 3 uložení *podstatných* vlastností = *vzor* uživatele
- identifikace:
 - (1) a (2)
 - porovnání se vzory (příp. uživatel: zadání jména \rightarrow porovnání pouze s jedním vzorem)
- verifikace × identifikace
- + nutná fyzická přítomnost osoby
- cena technologie
- spolehlivost některých metod ne vždy funguje tak, jak bychom chtěli

Autentizace pomocí biometrických informací

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pave Král, Ph.D

pomocí tajemství heslo výzva odpověď pomocí fyzického objektu

pomocí fyzického objektu pomocí biometrických informací

Autentizačn protokoly

Vlastnosti použitých charakteristik

- dostatečná variabilita (ne např. barva vlasů)
- lacksquare ightarrow příznaky dostatečná *diskriminativnost*
- psychologická akceptovatelnost (snímání obličeje někde tváře zakryty)
- praktická získatelnost informace (DNA)
- časová neměnnost (stárnutí obličej, hlas)
- spolehlivost: odolnost vůči podvodům
- dostatečná rychlost: zprac. 2-3 osoby / min je málo

Běžně používané metody

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pave Král, Ph.D

Autentizac

pomocí tajemství heslo

odpověď

pomocí fyzického objektu

pomocí biometrických informací

- otisk prstu
- charakteristiky očí sítnice, duhovka
- rozpoznání obličeje
- rozpoznání geometrie ruky
- rozpoznání hlasu
- rozpoznání pohybu pera

Otisk prstů

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pavel Král, Ph.D

pomocí tajemství heslo výzva odpověď pomocí fyzického objektu pomocí biometrických informací

- jedinečná charakteristika
- použití tzv. markantů (specifických bodů):
 - zakončení linie, rozvětvení linie, sloučení linií, křížení, bod (ostrov), apod.
- počet rýh mezi danými markanty
- rozdělení na sektory: extrakce směru a vzdálenosti rýh

- snímače: optické, elektrické, teplotní, ...
- nejrozšířenější biometrika
- v praxi často v kombinaci s čtečkou karet

Sítnice

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pave Král, Ph.D

Autentiza pomocí tajemství heslo výzva -

odpověd pomocí fyzického objektu pomocí biometrických informací

- snímán vzor cév na pozadí oka jedinečnost
- osvětlení zdrojem světla nízké intenzity, optické zesílení (LED dioda)
- metoda nepříliš rozšířena (viz níže)
- lacksquare + přesnost ightarrow velká míra bezpečnosti
- potřeba pohledu přesně do snímače nepříjemné
- lidé s brýlemi problém identifikace

Duhovka

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pave Král, Ph.D

Autentiza

pomocí tajemství heslo výzva -

odpověď pomocí fyzického objektu pomocí biometrických informací

- barva, textura a vzor jedinečnost
- kvalitní kamera, zdroj infračerveného světla
- informace o orientaci, četnosti a pozici specifických plošek
 → tzv. duhovková mapa
- vytvoření vzoru, porovnání se vzorem
 - + bez nutnosti blízkého kontaktu
 - přesnost rozpoznání
 - cena

Rozpoznání obličeje

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pavel Král, Ph.D

Autentizac

tajemství heslo výzva -

pomocí fyzického objektu pomocí biometrických informací

- snímání kamerou
- uložení charakteristikých vlastností (pozice očí, nosu, úst, obočí, příp. uší)
- důraz na automatické určení těchto vlastností
- porovnání se vzorem
- + velký prostor pro oblast vědy
- nespolehlivost, t.j. chybná funkce systému při řadě událostí
 - změna vzhledu (brýle, vousy, makeup, stárnutí)
 - změna orientace

Rozpoznání geometrie ruky

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pave Král, Ph.[

Autentizac

pomocí tajemství heslo

výzva odpověď pomocí

pomocí fyzického objektu pomocí

pomoci biometrických informací

- měření délek prstů
- příp. šířka nebo kontura prstů (lepší systémy)
- + jednoduchá technická realizace
- možnost kopie např. plastu, apod.
- oteklá ruka, zranění → chybná funkce systému

Rozpoznání hlasu

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pave Král, Ph.D

pomocí tajemství heslo výzva odpověď

pomocí fyzického objektu pomocí biometrických informací

- vstup signálu: telefon, mikrofon
- nalezení "vhodných" charakteristik osob (mluvčích)
- modelování mluvčích
- v praxi integrace s jinou metodou např. s rozpoznáním obličeje
- + minimání nároky na HW
- vyžadována znalost řečových technologií (složité)
- náchylné na šum hlučné prostředí
- změny hlasu nemoc, stárnutí

Rozpoznání pohybu pera při podpisu

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pavel Král, Ph.D

Autentiza pomocí tajemství heslo

vyzva odpověď pomocí fyzického objektu pomocí biometrických informací

- jedinečnost, nemožnost napodobení na základě znalosti podpisu
- $lue{}$ speciální pero ightarrow informace o rychlosti, směru a tlaku psaní
- zápis: podpis několikrát (alespoň 5 x) → vzor
- autentizace samotná
- lack + lidé jsou na podepisování zvyklí o oblasti využití (banky, apod.)
- praktické problémy v technické realizaci (dlouho nevydrží nešetrné zacházení) → malé rozšíření

Autentizace - obecný model

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pave Král, Ph.D

pomocí tajemství heslo výzva odpověď pomocí fyzického

vyzva – odpověď pomocí vzického objektu pomocí piometrických nformací

Autentizační protokoly

- Alice: snaha o vytvoření bezpečného spojení s Bobem
 - výměna zpráv s Bobem případně s důvěryhodnou třetí stranou (různé role: certifikační autorita, centrum pro distribuci klíčů, tzv. KDC, atd.)

Předpoklad

■ Oskar (aktivní útočník) → odposlech, modifikace, vkládání, příp. mazání zpráv

Cíl

- po dokončení výměny zpráv (=protokolu) zajištěno, že Alice i Bob mají ověřeny identity
 - Alice opravdu komunikace s Bobem
 - Bob opravdu komunikace s Alicí
- většinou zároveň vytvoření klíče pro šifrování jednoho spojení (relace) symetrickým šifrovacím algoritmem (tzv. relační klíč, angl. session key)

Autentizace - základní předpoklady

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pave Král, Ph.D

pomocí tajemství heslo výzva odpověď pomocí fyzického objektu pomocí biometrických informací

Autentizační protokoly

- přenos zpráv protokolu otevřenou (nechráněnou) sítí
- možnost odposlechu, modifikace, vkládání vlastních zpráv, příp. mazání zpráv zasílaných útočníkem
 - obvykle uváděn násl. model; správní účastnící komunikace získávají zprávy výhradně prostřednictvím útočníka (možnost provádění akcí - viz výše - bez zpoždění)
- základní kryptografické algoritmy bezpečné
- $lue{}$ ightarrow nemožnost jejich napadení útočníkem imes snaha napadení $\it kombinace$ těchto mechanismů, tedy vlastního protokolu

Subjekty

- A = Alice, B = Bob ... potřeba vzájemné zabezpečené komunikace
- O = Oskar ... útočník

Autentizace založená na sdíleném tajném klíči

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pave Král, Ph.D

Autentiza pomocí tajemství heslo

výzva odpověď pomocí fyzického objektu pomocí piometrických

Autentizační protokoly

Předpoklad

účastníci komunikace (Alice a Bob) - sdílení tajného klíče
 K_{AB} (např. osobní předání dříve)

Princip protokolu

- účastník č.1 zaslání výzvy (challenge) účastníkovi č.2
 - náhodné číslo (někdy označováno jako "nonce") *Ni*
- druhý účastník transformace výzvy, zaslání odpovědi
- lacktriangledown ightarrow označení protokolů: *výzva-odpověd (challenge-response protocols)*

Autentizační protokoly typu challenge-response jednoduchý příklad

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pavel Král, Ph.D

pomocí tajemství heslo výzva -

pomocí fyzického objektu pomocí piometrických informací

- **1** $A \rightarrow B$: $\{A\}$ info o své identitě
- **2** $B \rightarrow A$: $\{N_B\}$ výběr (vygenerování) velkého náhodného čísla (alespoň 128 bit)
- $oxed{3}$ $A o B\colon \{N_B\}_{K_{AB}}$ zašifrování sdíleným klíčem K_{AB}
 - → Bob autentizoval Alici (ne ale obráceně Alice Boba),
 - lacksquare Oskar mohl zachytit první zprávu a poslat zpět N_B
- 4 $A \rightarrow B$: $\{N_A\}$ výběr náhodného čísla N_A
- **5** $B \to A$: $\{N_A\}_{K_{AB}}$
 - i Alice ví, že komunikuje s Bobem
 - možnost výběru relačního klíče, zašifrování klíčem K_{AB} a zaslání zpět Bobovi

Autentizační protokoly typu challenge-response $z_{jednodušení} \rightarrow chybný protokol$

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pave Král, Ph.D

Autentizac

pomocí tajemství heslo výzva -

pomocí fyzického objektu pomocí biometrickýc

Autentizační protokoly

Zjednodušený protokol (5. zpráv seskupeno pouze do tří)

- na 1. pohled OK, ale ..
- umožňuje tzv. reflection attack

Autentizační protokoly typu challenge-response Útok na zjednodušenou verzi

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pavel Král, Ph.D

pomocí tajemství heslo výzva odpověď pomocí fyzického objektu pomocí

Autentizační protokoly

Předpoklad

 možnost navázání více relací současně s Bobem (např. Bob banka, více klientů chce provést transakci)

Autentizační protokoly - poznámky

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pave Král, Ph.E

Autentizad

pomocí tajemství heslo

odpověď pomocí fyzického objektu pomocí biometrických

- /
 - obtížnot bezchybného návrhu autentizačního protokolu
 - používání pouze otestovaných publikovaných metod v praxi
 - posílání odpovědi na výzvu N_X $\{X, N_X\}_{K_{XY}}$ (místo $\{N_X\}_{K_{XY}}$, kde X= id vyzývajícího účastníka) \to zamezení reflexivního útoku
 - součástí standardu ISO 9798-2

Authenticated Key Exchange Protocol 2 (AKEP2) [1] Autentizační protokoly

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pavel Král, Ph.D

pomocí tajemství heslo výzva odpověď pomocí fyzického objektu pomocí biometrických

Autentizační protokoly

- Bellare & Rogaway v roce 1993
- vzájemná autentizace a dohodnutí sdíleného relačního klíče pomocí tří zpráv

Předpoklad

- oba subjekty, které chtějí bezpečně komunikovat, sdílejí od dříve tajné klíče K₁ a K₂
- k dispozici klíčovaná jednosměrná hash funkce
 - tzv. Message Authentication Code (MAC) většinou modifikace jednosměrné hash funkce

Protokol AKEP2

Autentizační protokoly

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pavel Král, Ph.D

Autentizac

pomocí tajemství heslo výzva odpověď

odpověď pomocí fyzického objektu pomocí biometrických informací

- $oxed{1}$ $A o B\colon \{N_A\}$ výběr (vygenerování) velkého náhodného čísla N_A , poslání
- 2 B o A: $M_1=\{A,B,N_A,N_B\},\{M1\}_{MAC_{K1}}$ výběr náhodného čísla N_B , poslání zprávy
- 3 $A \to B$: $M_2 = \{A, N_B\}, \{M2\}_{MAC_{K1}}$ ověření identit A a B, porovnání zaslané a přijaté N_A , ověření $MAC_{K1} \to Bob$ autentizován, zaslání zprávy
- 4 B ověření N_B a $\{M2\}_{MAC_{K1}} o Alice je opravdová$
- 5 B&A výpočet relačního klíče $K_{rel}=\{N_B\}_{MAC_{K2}}$ pro komunikaci

Hash vs. šifrovací funkce

Autentizační protokoly

Hash

???

Šifrovací funkce

???

Hash vs. šifrovací funkce

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pave Král, Ph.D

Autentiza pomocí tajemství heslo

výzva odpověď pomocí vzického objektu pomocí piometrických

Autentizační protokoly

Hash

- jednocestná funkce, která z libovolně dlouhého textu vyrobí krátký řetězec konst. délky, tzv. hash.
- → není možno zpětně vytvořit původní text

Šifrovací funkce

- ukrytí zprávy
- mám klíč → možnost získání původního textu
- P = D(E(P,K),K)

Protokol AKEP2

Autentizační protokoly

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pave Král, Ph.E

Autentiza pomocí tajemství heslo

> výzva odpověď pomocí fyzického objektu pomocí biometrickýcl

Autentizační protokoly

Výhoda

 neplatí restrikce některých států = zákaz používaní šifrovacích fcí - zde v protokolu není použita

Nevýhoda

získání klíče K₂ útočníkem → dešifrování již proběhlé komunikace

Autentizace pomocí třetí strany

Autentizační protokoly

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pave Král, Ph.D

pomocí tajemství heslo výzva odpověď pomocí fyzického objektu pomocí biometrických informací

Autentizační protokoly

Dříve:

- účastníci komunikace sdílení tajného klíče
- lacktriangle ightarrow pro komunikaci s N stranami potřeba N (párů) klíčů
- → složitost distribuce a správy klíčů

Nyní:

- ightharpoonup ightharpoonup zavedení třetí strany, centrum pro správu a distribuci klíčů, tzv. Key Distribution Center (KDC), dále značení S (server)
- každý uživatel pouze jeden klíč, který sdílí se S (např. Alice K_{AS}; Bob K_{BS})
- autentizace + vytváření rel. klíče pomocí KDC

Autentizace pomocí třetí strany

Nejjednodušší varianta

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pavel Král, Ph.D

Autentizac pomocí

tajemství heslo výzva -

pomocí fyzického objektu pomocí biometrických informací

Autentizační protokoly

- 1 $A \rightarrow S$: $A, \{B, K\}_{K_{AS}}$ vygenerování rel. klíče K, poslání zprávy
- 2 S o B: $\{A,K\}_{K_{BS}}$ dešifrování, vytvoření a odeslání nové zprávy
- KDC ověření, že první zpráva je od Alice (pomocí klíče)
- zpráva č. 2 pouze Bob může dešifrovat
- = autentizace stran vedlejším efektem

Bezpečnostní nedostatek

- 1 A: vytvoření rel. klíče K s Bobem pomocí (1) a (2)
- $m{2}$ $A o B\colon \{X\}_K$ požadavek (např. zaslání peněz)
 - Oskar odposlech
- $O o B\colon\{X\}_K$ opětovné zasílání stejného požadavku, tzv. replay attack (přehrávka)

Autentizace pomocí třetí strany Možnosti obrany

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pave Král, Ph.D

pomocí tajemství heslo

> vyzva – odpověď pomocí yzického objektu pomocí piometrických

- vložení časových razítek do každé zprávy *T_A*
 - "stará" zpráva → nepoužití
 - problém se synchronizací hodin v síti → platnost razítek (možnost zneužití útočníkem v době platnosti)
- vložení "noncí"
 - potřeba zapamatování všech předchozích noncí; stará nonce → odmítnutí
 - problém se zapamatováním
- adaptace protokolu výzva-odpověď pro více stran nejlepší

Bezpečnost v informačních technologiích (KIV/BIT)

Ing. Pave Král, Ph.D

Autentizac

pomocí tajemstv

heslo

odpověd

fyzického objektu pomocí biometrický

Autentizační protokoly

Mihir Bellare and Phillip Rogaway,

"Random oracles are practical: A paradigm for designing efficient protocols,"

1993, pp. 62–73, ACM Press.