Задачи к лекции 8

Задача 1. Риманова метрика на n-мерном многообразии называется евклидовой, если в некоторой окрестности каждой точки можно ввести такие локальные координаты x^i , что метрика запишется в виде $\sum_i (dx^i)^2$. (1) Докажите, что не существует открытого подмножества плоскости Лобачевского, на котором можно ввести такую систему координат (u,v), в которой метрика Лобачевского запишется в виде $du^2 + dv^2$. (2) Постройте вложение тора T^2 в стандартную сферу $S^3 \subset \mathbb{R}^4$ так, чтобы индуцированная на T^2 метрика была евклидовой.

Задача 2. (1) Вычислите кривизну: (1) окружности $\gamma(t) = (R\cos t, R\sin t)$; (2) цепной линии $y = a \operatorname{ch}(x/a), \ a > 0$; (3) окружности $x^2 + y^2 = R^2$. (4) Докажите, что кривизна k(t) произвольно параметризованной плоской кривой (x(t), y(t)) может быть вычислена по формуле:

$$k = \frac{|x\ddot{y} - y\ddot{x}|}{(x^2 + y^2)^{3/2}}.$$

(5) Вычислите кривизну циклоиды $\gamma(t) = (a(t-\sin t), a(1-\cos t)), a>0$

(6) Опишите все плоские кривые постоянной кривизны. (7) Решите натуральное уравнение k=1/s. (8) Овалом называется простая замкнутая гладкая кривая положительной кривизны (овал ограничивает строго выпуклую область). Вершиной овала называется точка, в которой кривизна имеет локальный минимум или максимум. Докажите, что на каждом овале существует по меньшей мере четыре вершины.

Задача 3. (1) Найдите векторы репера Френе и вычислите кривизну и кручение (1a) винтовой линии $\gamma(t)=(a\cos t,a\sin t,b\,t);$ (1b) кривой $\gamma(t)=(t^2,1-t,t^3).$ (2) Опишите все пространственные бирегулярные кривые (2a) с постоянными кривизной и кручением; (2b) с постоянной кривизной; (2c) с постоянным кручением. (3) Верно ли, что если в каждой точке регулярной пространственной кривой γ смешанное произведение $(\gamma,\ddot{\gamma},\ddot{\gamma})$ равно нулю, то γ — плоская кривой γ смешанное произведение визна пространственной бирегулярной кривой γ пропорциональна кручению, если и только если найдется постоянный ненулевой вектор γ такой что γ 0 совт, где γ 1 совт, где γ 2 докажите, что пространственная натурально параметризованная бирегулярная кривая с ненулевым кручением γ 1 лежит на сфере радиуса γ 2 тогда и только тогда, когда справедливо соотношение

$$R^{2} = \frac{1}{k^{2}} \left(1 + \frac{(k)^{2}}{(\varkappa k)^{2}} \right),$$

где k — кривизна кривой.