

Entrada e Saída e Suporte do SO

Entrada e Saída

Problemas de E/S

- Grande variedade de periféricos:
 - Entregando diferentes quantidades de dados.
 - -Em velocidades diferentes.
 - -Em formatos diferentes.

Todos mais lentos que CPU e RAM.

Precisa de módulos de E/S.

Módulo de entrada/saída

• Interface com CPU e memória.

• Interface com um ou mais periféricos.

Modelo genérico de módulo de E/S

Dispositivos externos

Quem usa os módulos de E/S:

- Legíveis ao ser humano:
 - —Monitor, impressora, teclado.
- Legíveis à máquina:
 - Monitoração e controle.
- Comunicação:
 - -Modem.
 - Placa de interface de rede.

Diagrama em blocos de um dispositivo externo

Funções do módulo de E/S

- Controle e temporização.
- Comunicação com CPU.
- Comunicação com dispositivo.
- Buffering de dados.
- Detecção de erro.

Etapas da E/S

CPU verifica estado do dispositivo do módulo de E/S.

Módulo de E/S retorna o estado.

 Se estiver pronto, CPU solicita transferência de dados.

Etapas da E/S

• Módulo de E/S recebe dados do dispositivo.

• Módulo de E/S transfere dados à CPU.

Variações para saída, DMA etc.

Diagrama do módulo de E/S

Decisões do módulo de E/S

Ocultar ou revelar propriedades do dispositivo à CPU.

Admitir dispositivo múltiplo ou único.

Controlar funções do dispositivo ou sair para CPU.

Técnicas de E/S

- Programada.
- Por interrupção.
- Acesso direto à memória (DMA).

E/S programada

- CPU tem controle direto sobre E/S:
 - -Conhecendo o estado.
 - Comandos de leitura/escrita.
 - Transferindo dados.

• CPU espera que módulo de E/S termine a operação.

Desperdiça tempo de CPU.

E/S programada – detalhamento

• CPU solicita operação de E/S.

Módulo de E/S realiza operação.

Módulo de E/S define bits de estado.

E/S programada – detalhamento

• CPU verifica bits de estado periodicamente.

• Módulo de E/S não informa à CPU diretamente.

Módulo de E/S não interrompe CPU.

• CPU deve esperar e acessar posteriormente.

E/S controlada por interrupção

• Contorna problema de espera da CPU.

• Sem verificação de dispositivo repetida da CPU.

 Módulo de E/S interrompe quando estiver pronto.

E/S controlada por interrupção – Operação básica

- CPU emite comando de leitura.
- Módulo de E/S recebe dados do periférico enquanto CPU faz outro trabalho.
- Módulo de E/S interrompe CPU.
- CPU solicita dados.
- Módulo de E/S transfere dados.

Ótica da CPU para a Interrupção

Emite comando de leitura.

Realiza outro trabalho.

 Verifica interrupção ao final de cada ciclo de instrução.

Ótica da CPU para a Interrupção

- Se interrompida:
 - -Salva contexto (registradores).
 - Processa interrupção.
 - Busca dados e armazena.

Aspectos de projeto da Interrupção

• Como identificar o módulo que emite a interrupção?

- Como lidar com interrupções múltiplas?
 - Ou seja, um tratador de interrupção sendo interrompido.

Formas de Identificar o módulo que interrompe

Linha diferente para cada módulo;

- Verificação por software:
 - -CPU verifica cada módulo por vez.
 - —Lento.
- Verificação por hardware;

- Arbitração de barramento (Mais utilizado):
 - Módulo deve reivindicar o barramento antes que possa causar uma interrupção.

Múltiplas interrupções - Pode haver

• Cada linha de interrupção tem uma prioridade.

 Linhas com prioridade mais alta podem interromper linhas com prioridade mais baixa.

• Com *bus mastering*, só o mestre atual pode interromper.

Acesso direto à memória (DMA)

- E/S controlada por interrupção e programada exige intervenção ativa da CPU.
 - —Taxa de transferência é limitada.
 - —CPU fica restrita.

• DMA é a **solução**.

Função do DMA

• Módulo adicional (hardware) no barramento.

 Controlador de DMA toma o comando da CPU para E/S.

Diagrama típico do módulo de DMA

Operação do DMA

- CPU diz ao controlador de DMA:
 - —Leitura/escrita.
 - Endereço do dispositivo.
 - -Endereço inicial do bloco de memória para dados.
 - Quantidade de dados a serem transferidos.

Operação do DMA

CPU prossegue com outro trabalho.

Controlador de DMA lida com transferência.

 Controlador de DMA envia interrupção quando terminar.

Transferência de DMA – Roubo de ciclo (*Cycle Stealing*)

Controlador de DMA assume o barramento por um ciclo.

• Transferência de uma palavra de dados.

- Não uma interrupção.
 - CPU n\u00e3o troca de contexto.

Transferência de DMA – Roubo de ciclo (*Cycle Stealing*)

- CPU suspensa logo antes de acessar o barramento.
 - —Ou seja, antes de uma busca de operando ou dados ou uma escrita de dados.

 Atrasa a CPU, mas não tanto quanto a CPU fazendo transferência.

DMA e pontos de interrupção durante um ciclo de instrução

Configurações de DMA

- Único barramento, controle de DMA separado.
- Cada transferência usa barramento duas vezes.
 - —E/S para DMA, depois DMA para memória.
- CPU é suspensa duas vezes.

Configurações de DMA

- Único barramento, controlador de DMA integrado.
- Controlador pode aceitar mais de um dispositivo.
- Cada transferência usa barramento uma vez.
 - DMA para memória.
- CPU é suspensa uma vez.

Configurações de DMA

- Barramento de E/S separado.
- Barramento aceita todos dispositivos habilitados para DMA.
- Cada transferência usa barramento uma vez.
 - DMA para memória.
- CPU é suspensa uma vez.

Processador fica desocupado

Enquanto DMA usa barramentos, processador fica ocioso.

- Processador usando barramento, DMA ocioso:
 - Conhecido como controlador de DMA flutuante.

- Dados não passam e são armazenados no chip de DMA.
 - DMA apenas entre porta de E/S e memória.
 - Não entre duas portas de E/S ou dois locais de memória.

Suporte do SO

Considerações Iniciais

 Verificou-se todo processo de construção de uma sistema computacional;

Este sistema precisa de uma suporte de software;

Gestão do conjunto de instruções;

Assim, o Sistema Operacional é fundamental.

Objetivos e funções

- Conveniência:
 - -Tornar o sistema computacional mais fácil de usar.

- Eficiência:
 - -Permitir o melhor uso dos **recursos** do computador.

Camadas e visões de um sistema de computação

Serviços do sistema operacional

Criação de programas.

• Execução de programas.

Acesso aos dispositivos de E/S.

Serviços do sistema operacional

Acesso controlado aos arquivos.

Acesso ao sistema.

• Detecção e resposta a erros.

SO como gerenciador de recursos

Tipos de sistemas operacionais

• Em lote (batch).

• Único programa (uniprogramação).

• Multiprogramação (multitarefa).

Primeiros sistemas

• Final da década de 1940 a meados da década de 1950.

Sem sistema operacional.

Programas interagem diretamente com o hardware.

- Dois problemas principais:
 - -Escalonamento.
 - -Tempo de preparação.

Sistemas de tempo compartilhado

Modelo utilizado atualmente;

 Multiprogramação permite que uma série de usuários interajam com o computador.

O segredo da multiprogramação: Escalonamento

• Chave para multiprogramação.

- Por fases:
 - Longo prazo.
 - Médio prazo.
 - Curto prazo.

Escalonamento a longo prazo

 Determina quais programas são submetidos para processamento (tamanho e prioridade).

 Ou seja, controla o grau de eficiência de multiprogramação.

 Uma vez submetido, um job (tarefa) torna-se um processo para o escalonador a curto prazo;

Escalonamento a médio prazo

• Parte da função de troca de processo;

 Normalmente baseado na necessidade de gerenciar a multiprogramação.

 Se não há memória virtual, o gerenciamento de memória também é um ponto (cuida da memória).

Escalonamento a curto prazo

Despachante;

 Decisões de nível mais baixo de qual tarefa executar em seguida.

 Ou seja, qual tarefa realmente usa o processador no próximo intervalo de tempo.

Exemplo de escalonamento

Tratamento de serviço Escalonador Tratamento de interrupção A "Em execução" B "Pronto"	Sistema operacional Tratamento de serviço Escalonador A "Suspenso" B "Pronto"	Tratamento de serviço Escalonador Tratamento de interrupção A "Suspenso" B "Em execução"
Outras partições	Outras partições	Outras partições
(a)	(b)	(c)

Modelo de processo com cinco estados

Um processo tem alguns estados que ele pode assumir:

Bloco de controle de processo (BCP)

Elementos que compõem o controle de um processo:

- Identificador.
- Estado.
- Prioridade.
- Contador de programa.
- Ponteiros de memória.
- Dados de contexto.
- Status de E/S.

Diagrama do bloco de controle de processo

Identificador		
Estado		
Prioridade		
Contador de programa		
Ponteiros da memória		
Dados de contexto		
Informação de status de E/S		
Informações contábeis		
*		

Principais elementos do sistema operacional

Escalonamento de processador

Gerenciamento de memória

- Uniprogramação:
 - -Memória dividida em duas.
 - —Uma para sistema operacional (monitor).
 - -Uma programa atualmente em execução.

- Multiprogramação:
 - Parte do "usuário" é subdividida e compartilhada entre processos ativos.

Problema de E/S

 Problema: E/S é tão lenta, em comparação com a CPU, que até mesmo em sistema de multiprogramação a CPU pode estar ociosa na maior parte do tempo.

Soluções:

- -Aumentar memória principal.
 - Cara.
 - Leva a programas maiores.

-Swapping

O que é swapping?

Fila a longo prazo dos processos armazenados no disco.

 Processos trocados para a memória quando existe espaço disponível.

• Swapping também é um processo de E/S.

Uso do swapping

(a) Escalonamento de tarefas simples

(b) Swapping

Particionamento da memória

Outro problema além do Swapping.

 Dividir a memória em seções para alocar processos (incluindo sistema operacional).

Partições de tamanho variável

- Alocam exatamente a memória requisitada a um processo.
- Isso leva a um buraco no final da memória, muito pequeno para ser usado.
- Quando todos os processos estão bloqueados, retira um processo e traz outro.
- Novo processo pode ser menor que o processo removido.
- Outro buraco.

Partições de tamanho variável

- Soluções:
 - —Aglutinação: juntar buracos adjacentes em um grande buraco.
 - -Compactação: de vez em quando, percorre a memória e move todos os buracos para um bloco livre (desfragmentação de disco).

Efeito do particionamento dinâmico

Relocação

Pode ser uma solução:

 Nenhuma garantia de que o processo será carregado no mesmo local na memória.

- Instruções contêm endereços:
 - Localizações dos dados.
 - -Endereços para instruções (desvio).

Relocação

• Endereço lógico – relativo ao início do programa.

- Endereço físico local real na memória (desta vez).
- Conversão automática usando endereço de base.