### AI505 Optimization

### Second-Order Methods

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

## Outline

1. Newton Method

2. Secant Method

3. Quasi-Newton Method

### **Descent Direction Methods**

How to select the descent direction?

- first-order methods that rely on gradient
- second-order methods that rely on Hessian information

Advantages of second order methods in descent algorithms:

- way of accelerating the iteration [Davidon mid 1950s]
- additional information that can help improve the local model for informing the selection of
  - · directions and
  - step lengths

## Second-Order Methods

- Locally approximate function as quadratic
- Comparison of first-order and second order approximations



#### Newton Method Secant Method Quasi-Newton Method

## Outline

1. Newton Method

2. Secant Method

3. Quasi-Newton Method

5

## Newton's Method – Univariate

- Approximate a function using second-order Taylor series expansion
- analytically obtain the location where a quadratic approximation has a zero gradient.
- use that location as the next iteration to approach a local minimum.
- Univariate function

$$q(x) = f(x_k) + (x - x_k)f'(x_k) + \frac{(x - x_k)^2}{2}f''(x_k)$$

$$\frac{dq(x)}{dx} = f'(x_k) + (x - x_k)f''(x_k) = 0$$

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$





## Newton's Method - Multivariate

Multivariate function

$$f(\mathbf{x}) \approx q(\mathbf{x}) = f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)^T (\mathbf{x} - \mathbf{x}_k) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_k)^T H_k (\mathbf{x} - \mathbf{x}_k)$$

• Multivariate update rule

$$\mathbf{x}_{k+1} = \mathbf{x}_k - H_k^{-1} \nabla f(\mathbf{x}_k)$$

- H is the Hessian matrix
- (If f is quadratic and its Hessian is positive definite, then the update converges to the global minimum in one step. )

# Algorithm

```
Input: \nabla f, H, \mathbf{x}_0, \epsilon, k_{max}

Output: \mathbf{x}^*

Set k = 0, \Delta = 1, \mathbf{x} = \mathbf{x}_0;

while \|\Delta\| > \epsilon and k \le k_{max} do \Delta = H(\mathbf{x})^{-1} \nabla f(\mathbf{x});

\mathbf{x} = \mathbf{x} - \Delta;

k = k + 1;
```

It can be modified to only give a descent direction  $\mathbf{d} = -H(\mathbf{x})^{-1}\nabla f(\mathbf{x})$  and leave the step size to be determined with line search.

3

# Newton's method - Example

### Minimize Booth's function:

$$f(x) = (x_1 + 2x_2 - 7)^2 + (2x_1 + x_2 - 5)^2$$

- $x_0 = [9, 8]$
- The gradient of Booth's function is:

$$\nabla f(x) = [10x_1 + 8x_2 - 34, 8x_1 + 10x_2 - 38]$$

• The Hessian of Booth's function is:

$$H(x) = \begin{bmatrix} 10 & 8 \\ 8 & 10 \end{bmatrix}$$

9

• The first iteration of Newton's method yields:

$$\mathbf{x}_{1} = \mathbf{x}_{0} - H(\mathbf{x}_{0})^{-1} \nabla f(\mathbf{x}_{0})$$

$$= \begin{bmatrix} 9 \\ 8 \end{bmatrix} - \begin{bmatrix} 10 & 8 \\ 8 & 10 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 10 \cdot 9 + 8 \cdot 8 - 34 \\ 8 \cdot 9 + 10 \cdot 8 - 38 \end{bmatrix} = \begin{bmatrix} 9 \\ 8 \end{bmatrix} - \begin{bmatrix} 10 & 8 \\ 8 & 10 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 120 \\ 114 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

• Second iteration: The gradient at  $x_1$  is zero, so we have converged after a single iteration. The Hessian is positive definite everywhere, so  $x_1$  is the global minimum.

### Newton's Method

### Common causes of error in Newton's method







## Newton's Method

- has quadratic convergence, meaning the difference between the minimum and the iterate is approximately squared with every iteration.
- This rate of convergence holds for Newton's method starting from  $x_0$  within an interval  $I = [x^* \delta, x^* + \delta]$ , for a root  $x^*$ , if
  - 1.  $f''(x) \neq 0$  for all points in I,
  - 2. f'''(x) is continuous on I, and
  - 3.  $\frac{1}{2} \left| \frac{f'''(x_0)}{f''(x_0)} \right| < c \left| \frac{f'''(x^*)}{f''(x^*)} \right|$  for some  $c < \infty$  sufficient closeness condition, ensuring that the function is sufficiently approximated by the Taylor expansion and no overshoot.

Newton Method Secant Method Quasi-Newton Method

## Outline

1. Newton Method

2. Secant Method

3. Quasi-Newton Method

### Secant Method - Univariate

 For univariate functions, if the second derivative is unknown, it can be approximated using the secant method

$$f''(x_k) = \frac{f'(x_k) - f'(x_{k-1})}{x_k - x_{k-1}}$$

Update equation

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f'(x_k) - f'(x_{k-1})} f'(x_k)$$

• It requires an additional initial design point and suffers from the same problems as Newton's method and may take more iterations to converge due to approximating the second derivative.

#### Newton Method Secant Method Quasi-Newton Method

## Outline

1. Newton Method

2. Secant Method

3. Quasi-Newton Method

## Quasi-Netwon Methods - Multivariate

- Automatic differentiation tools may not be applicable in many situations, and it may be much
  more costly to work with second derivatives in automatic differentiation software than with the
  gradient.
- Quasi-Newton methods, like steepest descent, require only the gradient of the objective function to be supplied at each iterate.
- By measuring the changes in gradients, they construct a model of the objective function that is good enough to produce superlinear convergence.
- The improvement over steepest descent is dramatic, especially on difficult problems.

## Quasi-Netwon Methods - Multivariate

Use an approximation  $Q_k \approx H^{-1}(\mathbf{x}_k)$ 

```
Input: \mathbf{x}_0, convergence tolerance \epsilon > 0, Q_0 (typically the n \times n identity matrix)

Output: \mathbf{x}^*

Set k \leftarrow 0;

while \|\nabla f(\mathbf{x}_k)\| > \epsilon do

Compute search direction \mathbf{d}(\mathbf{x}_k) = -Q_k \nabla f(\mathbf{x}_k);

Set \mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}(\mathbf{x}_k) where \alpha_k is computed from a line search procedure to satisfy the Wolfe conditions;

Define \delta_{k+1} \stackrel{def}{=} \mathbf{x}_{k+1} - \mathbf{x}_k and \gamma_{k+1} \stackrel{def}{=} \nabla f(\mathbf{x}_{k+1}) - \nabla f(\mathbf{x}_k);

Compute Q_{k+1};
k \leftarrow k+1;
```

- Davidon-Fletcher-Powell (DFP) method
- Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
- Limited-memory BFGS (L-BFGS) method

# Davidon-Fletcher-Powell (DFP) method

$$Q_{k+1} = Q_k - rac{Q_k \gamma_k \gamma_k^{ op} Q_k}{\gamma_k^{ op} Q_k \gamma_k} + rac{\delta_k \delta_k^{ op}}{\delta_k^{ op} \gamma_k}$$

where all terms on the right hand side are evaluated at the same iteration k.

The update for Q in the DFP method has three properties:

- Q remains symmetric and positive definite.
- If  $f(x) = \frac{1}{2}x^T Ax + b^T x + c$ , then  $Q = A^{-1}$ . Thus the DFP has the same convergence properties as the conjugate gradient method.
- For high-dimensional problems, storing and updating Q can be significant compared to other methods like the conjugate gradient method.

# Broyden-Fletcher-Goldfarb-Shanno (BFGS) method ussi-Newton Method

$$Q_{k+1} = Q_k - \left(rac{\delta_k \gamma_k^{ op} Q_k + Q_k \gamma_k \delta_k^{ op}}{\delta_k^{ op} \gamma_k}
ight) + \left(1 + rac{\gamma_k^{ op} Q_k \gamma_k}{\delta_k^{ op} \gamma_k}
ight) rac{\delta_k \delta_k^{ op}}{\delta_k^{ op} \gamma_k}$$

BFGS better than DFP with approximate line search but still uses an  $n \times n$  dense matrix.

Theorem: Suppose that f is twice continuously differentiable and that the iterates generated by the BFGS algorithm converge to a minimizer  $x^*$  at which the Hessian matrix G is Lipschitz continuous Suppose also that the sequence  $\|\mathbf{x}_k - \mathbf{x}^*\|$  converges to zero rapidly enough that  $\sum_{k=1}^{\infty} \|x_k - x^*\| < \infty$ . Then  $x_k$  converges to  $x^*$  at a superlinear rate (ie, faster than linear).

# Limited-memory BFGS (L-BFGS) method

### For large-scale unconstrained optimization

It stores the last m values for  $\delta$  and  $\gamma$  rather than the full inverse Hessian (i=1 oldest, i=m last). Compute d at x as  $d=-z_m$  using:

$$oldsymbol{q}_m = 
abla f(oldsymbol{x}_k) \qquad \qquad oldsymbol{q}_i = oldsymbol{q}_{i+1} - rac{oldsymbol{\delta}_{i+1}^T oldsymbol{q}_{i+1}}{oldsymbol{\gamma}_{i+1}^T oldsymbol{\delta}_{i+1}} oldsymbol{\gamma}_{i+1}, \quad i = m-1, \dots, 1$$

$$\mathbf{z}_0 = \frac{\delta_m \odot \delta_m \odot \mathbf{q}_m}{\gamma_m^T \gamma_m} \qquad \mathbf{z}_i = \mathbf{z}_{i-1} + \delta_{i-1} \left( \frac{\delta_{i-1}^T \mathbf{q}_{i-1}}{\gamma_{i-1}^T \delta_{i-1}} - \frac{\gamma_{i-1}^T \mathbf{z}_{i-1}}{\gamma_{i-1}^T \gamma_{i-1}} \right), \quad i = 1, ..., m$$

For minimization, the inverse Hessian Q must remain positive definite.

The initial Hessian is often set to the diagonal of

$$Q_0 = rac{\gamma_0 \delta_0^{ au}}{\gamma_0^{ au} \gamma_0}$$

Computing the diagonal for the above expression and substituting the result into  $\mathbf{z}_0 = Q_0 \mathbf{q}_0$  results in the equation for  $\mathbf{z}_0$ .

### L-BFGS

```
(L-BFGS two-loop recursion)
          Input:
          Output: Q_k \nabla f_k
          Set \boldsymbol{a} \leftarrow \nabla f_{\nu}:
          for i = k - 1, k - 2, ..., k - m do
              oldsymbol{z}_i \leftarrow rac{\delta_i^T oldsymbol{q}}{\gamma_i \cdot oldsymbol{\delta}_i^T};
                \mathbf{q} \leftarrow \mathbf{q} - \alpha_i \cdot \gamma_i;
          r \leftarrow Q_0 a:
          for i = k - m, k - m + 1, \dots, k - 1
            dο
```

### Input:

### Output: x\*

Choose starting point  $\mathbf{x}_0$ , integer m > 0;  $k \leftarrow 0$ :

### while not convergence do

Set  $Q_0$ ;

Compute  $\mathbf{d}_k \leftarrow -Q_k \nabla f_k$  from Algorithm on the left;

Compute  $\mathbf{x}_{k+1} \leftarrow \mathbf{x}_k + \alpha_k \mathbf{d}_k$ , where  $\alpha_k$  is chosen to satisfy the Wolfe conditions;

### if k > m then

Discard the vector pair  $\{\delta_{k-m}, \gamma_{k-m}\}$  from storage;

Compute and save  $\delta_k = \mathbf{x}_{k+1} - \mathbf{x}_k$ ,

$$\gamma_k = \nabla f_{k+1} - \nabla f_k$$
;  $k \leftarrow k+1$ ;

# BFGS Methods - Comparison



# **Summary**

- Incorporating second-order information in descent methods often speeds convergence.
- Newton's method is a root-finding method that leverages second-order information to quickly descend to a local minimum.
- The secant method and quasi-Newton methods approximate Newton's method when the second-order information is not directly available.
- In Python, methods implemented in the module scipy https://docs.scipy.org/doc/scipy/tutorial/optimize.html