Task 1 - Stock Market Prediction and Forcasting using stocked LSTM. !pip install -q yfinance In []: #1.Getting data from dataset import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns sns.set_style('whitegrid') plt.style.use("fivethirtyeight") %matplotlib inline # For reading stock data from yahoo from pandas_datareader.data import DataReader import yfinance as yf from pandas_datareader import data as pdr yf.pdr_override() # For time stamps from datetime import datetime # The tech stocks we'll use for this analysis tech_list = ['AAPL', 'GOOG', 'MSFT', 'AMZN'] # Set up End and Start times for data grab tech_list = ['AAPL', 'GOOG', 'MSFT', 'AMZN'] end = datetime.now() start = datetime(end.year - 1, end.month, end.day) for stock in tech_list: globals()[stock] = yf.download(stock, start, end) company_list = [AAPL, GOOG, MSFT, AMZN] company_name = ["APPLE", "GOOGLE", "MICROSOFT", "AMAZON"] for company, com_name in zip(company_list, company_name): company["company_name"] = com_name df = pd.concat(company_list, axis=0) df.tail(10) In []: #2.Describe data # Summary Stats AAPL.describe() In []: #3.Information about data # General info AAPL.info() In []: #4.Closing price # Let's see a historical view of the closing price plt.figure(figsize=(15, 10)) plt.subplots_adjust(top=1.25, bottom=1.2) for i, company in enumerate(company_list, 1): plt.subplot(2, 2, i) company['Adj Close'].plot() plt.ylabel('Adj Close') plt.xlabel(None) plt.title(f"Closing Price of {tech_list[i - 1]}") plt.tight_layout() In []: #5.Volume of sales # Now let's plot the total volume of stock being traded each day plt.figure(figsize=(15, 10)) plt.subplots_adjust(top=1.25, bottom=1.2) for i, company in enumerate(company_list, 1): plt.subplot(2, 2, i) company['Volume'].plot() plt.ylabel('Volume') plt.xlabel(None) plt.title(f"Sales Volume for {tech_list[i - 1]}") plt.tight_layout() In []: #Moving Average of various stock $ma_day = [10, 20, 50]$ for ma in ma_day: for company in company_list: column_name = f"MA for {ma} days" company[column_name] = company['Adj Close'].rolling(ma).mean() fig, axes = plt.subplots(nrows=2, ncols=2) fig.set_figheight(10) fig.set_figwidth(15) AAPL[['Adj Close', 'MA for 10 days', 'MA for 20 days', 'MA for 50 days']].plot(ax=axes[0,0]) axes[0,0].set_title('APPLE') GOOG[['Adj Close', 'MA for 10 days', 'MA for 20 days', 'MA for 50 days']].plot(ax=axes[0,1]) axes[0,1].set_title('GOOGLE') MSFT[['Adj Close', 'MA for 10 days', 'MA for 20 days', 'MA for 50 days']].plot(ax=axes[1,0]) axes[1,0].set_title('MICROSOFT') AMZN[['Adj Close', 'MA for 10 days', 'MA for 20 days', 'MA for 50 days']].plot(ax=axes[1,1]) axes[1,1].set_title('AMAZON') fig.tight_layout() In []: #6 .Daily return on the stock avg # We'll use pct_change to find the percent change for each day for company in company_list: company['Daily Return'] = company['Adj Close'].pct_change() # Then we'll plot the daily return percentage fig, axes = plt.subplots(nrows=2, ncols=2) fig.set_figheight(10) fig.set_figwidth(15) AAPL['Daily Return'].plot(ax=axes[0,0], legend=True, linestyle='--', marker='o') axes[0,0].set_title('APPLE') GOOG['Daily Return'].plot(ax=axes[0,1], legend=True, linestyle='--', marker='o') axes[0,1].set_title('GOOGLE') MSFT['Daily Return'].plot(ax=axes[1,0], legend=True, linestyle='--', marker='o') axes[1,0].set_title('MICROSOFT') AMZN['Daily Return'].plot(ax=axes[1,1], legend=True, linestyle='--', marker='o') axes[1,1].set_title('AMAZON') fig.tight_layout() In []: #7.Correlation between different stocks and closing prices plt.figure(figsize=(12, 9)) for i, company in enumerate(company_list, 1): plt.subplot(2, 2, i) company['Daily Return'].hist(bins=50) plt.xlabel('Daily Return') plt.ylabel('Counts') plt.title(f'{company_name[i - 1]}') plt.tight_layout() In []: # Grab all the closing prices for the tech stock list into one DataFrame closing_df = pdr.get_data_yahoo(tech_list, start=start, end=end)['Adj Close'] # Make a new tech returns DataFrame tech_rets = closing_df.pct_change() tech_rets.head() In []: # Comparing Google to itself should show a perfectly linear relationship sns.jointplot(x='G00G', y='G00G', data=tech_rets, kind='scatter', color='seagreen') In []: # We'll use joinplot to compare the daily returns of Google and Microsoft sns.jointplot(x='GOOG', y='MSFT', data=tech_rets, kind='scatter') In []: # We can simply call pairplot on our DataFrame for an automatic visual analysis # of all the comparisons sns.pairplot(tech_rets, kind='reg') In []: # Set up our figure by naming it returns_fig, call PairPLot on the DataFrame return_fig = sns.PairGrid(tech_rets.dropna()) # Using map_upper we can specify what the upper triangle will look like. return_fig.map_upper(plt.scatter, color='purple') # We can also define the lower triangle in the figure, inclufing the plot type (kde) # or the color map (BluePurple) return_fig.map_lower(sns.kdeplot, cmap='cool_d') # Finally we'll define the diagonal as a series of histogram plots of the daily return return_fig.map_diag(plt.hist, bins=30) In []: # Set up our figure by naming it returns_fig, call PairPLot on the DataFrame returns_fig = sns.PairGrid(closing_df) # Using map_upper we can specify what the upper triangle will look like. returns_fig.map_upper(plt.scatter,color='purple') # We can also define the lower triangle in the figure, inclufing the plot type (kde) or the color map (BluePurple) returns_fig.map_lower(sns.kdeplot,cmap='cool_d') # Finally we'll define the diagonal as a series of histogram plots of the daily return returns_fig.map_diag(plt.hist,bins=30) In []: plt.figure(figsize=(12, 10)) plt.subplot(2, 2, 1)sns.heatmap(tech_rets.corr(), annot=True, cmap='summer') plt.title('Correlation of stock return') plt.subplot(2, 2, 2) sns.heatmap(closing_df.corr(), annot=True, cmap='summer') plt.title('Correlation of stock closing price') In []: #8.risk by investing at a particular stock rets = tech_rets.dropna() area = np.pi * 20 plt.figure(figsize=(10, 8)) plt.scatter(rets.mean(), rets.std(), s=area) plt.xlabel('Expected return') plt.ylabel('Risk') for label, x, y in zip(rets.columns, rets.mean(), rets.std()): plt.annotate(label, xy=(x, y), xytext=(50, 50), textcoords='offset points', ha='right', va='bottom', arrowprops=dict(arrowstyle='-', color='blue', connectionstyle='arc3, rad=-0.3')) In []: # Get the stock quote df = pdr.get_data_yahoo('AAPL', start='2012-01-01', end=datetime.now()) # Show teh data df In []: plt.figure(figsize=(16,6)) plt.title('Close Price History') plt.plot(df['Close']) plt.xlabel('Date', fontsize=18) plt.ylabel('Close Price USD (\$)', fontsize=18) plt.show() In []: # Create a new dataframe with only the 'Close column data = df.filter(['Close']) # Convert the dataframe to a numpy array dataset = data.values # Get the number of rows to train the model on training_data_len = int(np.ceil(len(dataset) * .95)) training_data_len # Scale the data from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler(feature_range=(0,1)) scaled_data = scaler.fit_transform(dataset) scaled_data In []: # Scale the data from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler(feature_range=(0,1)) scaled_data = scaler.fit_transform(dataset) scaled_data In []: # Create the training data set # Create the scaled training data set train_data = scaled_data[0:int(training_data_len), :] # Split the data into x_train and y_train data sets $x_{train} = []$ $y_train = []$ for i in range(60, len(train_data)): x_train.append(train_data[i-60:i, 0]) y_train.append(train_data[i, 0]) **if** i<= 61: print(x_train) print(y_train) print() # Convert the x_train and y_train to numpy arrays x_train, y_train = np.array(x_train), np.array(y_train) # Reshape the data x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1)) # x_train.shape In []: from keras.models import Sequential from keras.layers import Dense, LSTM # Build the LSTM model model = Sequential() model.add(LSTM(128, return_sequences=True, input_shape= (x_train.shape[1], 1))) model.add(LSTM(64, return_sequences=False)) model.add(Dense(25)) model.add(Dense(1)) # Compile the model model.compile(optimizer='adam', loss='mean_squared_error') # Train the model model.fit(x_train, y_train, batch_size=1, epochs=1) In []: # Create the testing data set # Create a new array containing scaled values from index 1543 to 2002 test_data = scaled_data[training_data_len - 60: , :] # Create the data sets x_test and y_test $x_{test} = []$ y_test = dataset[training_data_len:, :] for i in range(60, len(test_data)): x_test.append(test_data[i-60:i, 0]) # Convert the data to a numpy array $x_{test} = np.array(x_{test})$ # Reshape the data x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1)) # Get the models predicted price values predictions = model.predict(x_test) predictions = scaler.inverse_transform(predictions) # Get the root mean squared error (RMSE) rmse = np.sqrt(np.mean(((predictions - y_test) ** 2))) rmse In []: # Plot the data train = data[:training_data_len] valid = data[training_data_len:] valid['Predictions'] = predictions # Visualize the data plt.figure(figsize=(16,6)) plt.title('Model') plt.xlabel('Date', fontsize=18) plt.ylabel('Close Price USD (\$)', fontsize=18) plt.plot(train['Close']) plt.plot(valid[['Close', 'Predictions']]) plt.legend(['Train', 'Val', 'Predictions'], loc='lower right') plt.show()