

Iluminação em OpenGL

André Tavares da Silva

andre.silva@udesc.br

Iluminação em OpenGL

- Assume fontes pontuais de luz
 - Omnidirecionais: todas as direções.
 - Ex.: sol (direcional), luz incandescente (pontual);
 - Spot : um feixe de luz.
 Exemplo: lanterna, luminária de mesa, holofote
- Interações de luz com superfície modeladas em componentes (modelo de *Phong*):
 - Emissão
 - Ambiente
 - Difusa
 - Especular

Iluminação em OpenGL

- Suporte a efeitos atmosféricos como
 - -Fog
 - Atenuação
- Modelo de iluminação é calculada apenas nos vértices das superfícies
 - Cor dos demais pixels é interpolada linearmente (sombreamento *Gouraud*)

Fontes de Luz

- Para ligar uma fonte: glEnable (source);
 - source é uma constante cujo nome é GL_LIGHT_i,
 começando com GL_LIGHTO
 - Quantas? Pelo menos 8, mas para ter certeza:
 - glGetIntegerv(GL_MAX_LIGHTS, &n);
- Não esquecer de ligar o cálculo de cores pelo modelo de iluminação
 - glEnable (GL LIGHTING);

Fontes de Luz

- Para configurar as propriedades de cada fonte: glLightfv(source, property, value);
 - **Property** é uma constante designando:
 - Coeficientes de cor usados no modelo de iluminação:
 - GL AMBIENT, GL DIFFUSE, GL SPECULAR
 - Geometria da fonte
 - GL_POSITION, GL_SPOT_DIRECTION, GL_SPOT_CUTOFF, GL_SPOT_EXPONENT
 - Coeficientes de atenuação
 - GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION, GL_QUADRATIC ATTENUATION

Exemplo

```
GLfloat light0 ambient[] = \{0.0, 0.1, 0.0, 1.0\};
GLfloat light0 diffuse[] = \{0.0, 0.0, 1.0, 1.0\};
GLfloat light0 specular[] = \{1.0, 1.0, 1.0, 1.0\};
GLfloat light0 position[] = \{1.0, 2.0, 3.0, 1.0\};
glLightfv(GL_LIGHT0, GL POSITION, light0 position);
glLightfv(GL LIGHT0, GL AMBIENT, light0 ambient);
glLightfv(GL LIGHT0, GL DIFFUSE, light0 diffuse);
glLightfv(GL LIGHT0, GL SPECULAR, light0 specular);
glEnable(GL LIGHT0);
glEnable(GL LIGHTING);
```


Fontes de Luz (relembrando...)

- Para configurar as propriedades de cada fonte: glLightfv(source, property, value);
 - **Property** é uma constante designando:
 - Coeficientes de cor usados no modelo de iluminação:
 - GL AMBIENT, GL DIFFUSE, GL SPECULAR
 - Geometria da fonte
 - GL_POSITION, GL_SPOT_DIRECTION, GL_SPOT_CUTOFF, GL_SPOT_EXPONENT
 - Coeficientes de atenuação
 - GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION, GL_QUADRATIC ATTENUATION

Como criar uma luz direcional?

Exemplo

```
GLfloat light0 ambient[] = \{0.0, 0.1, 0.0, 1.0\};
GLfloat light0 diffuse[] = \{0.0, 0.0, 1.0, 1.0\};
GLfloat light0 specular[] = \{1.0, 1.0, 1.0, 1.0\};
GLfloat light0 position[] = \{1.0, 2.0, 3.0, 0.0\}; \blacktriangleleft
glLightfv(GL_LIGHT0, GL POSITION, light0 position);
glLightfv(GL LIGHT0, GL AMBIENT, light0 ambient);
glLightfv(GL LIGHT0, GL DIFFUSE, light0_diffuse);
glLightfv(GL LIGHT0, GL SPECULAR, light0 specular);
glEnable(GL LIGHT0);
glEnable(GL LIGHTING);
```

Isso significa que esse vetor agora será interpretado como uma direção, e não mais como uma posição.

Propriedades de Material

Especificados por

```
glMaterialfv (face, property, value)
```

- Face define quais lados da superfície se quer configurar:
 - GL_FRONT, GL_BACK, GL_FRONT_AND_BACK
- Property a propriedade do modelo de iluminação:
 - GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, GL_EMISSION, GL_SHININESS

Exemplo

```
GLfloat mat_ambient[] = {0.2, 0.2, 0.2, 1.0};
GLfloat mat_diffuse[] = {0.7, 0.0, 0.0, 1.0};
GLfloat mat_specular[] = {1.0, 1.0, 1.0, 1.0};
GLfloat mat_shininess[] = {5.0};
glMaterialfv(GL_FRONT, GL_AMBIENT, mat_ambient);
glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);
```


Valores default OpenGL

- Fonte de luz: GL_LIGHT0
 - Luz difusa e especular branca!
 - Não existe componente ambiente
 - posição: infinito (0,0,1,0) // Z+
 - atenuação constante: 1.0
- Material: (Reflexão
 - Reflexão de 80% da luz difusa e 20% da luz de ambiente,
 0% de especular, 0% de emissiva;
 - brilho=0.0;

Modelo de Sombreamento (shade)

 Especificados por glShadeModel (Glenum mode);

- mode estabelece o modo de colorização:

```
• GL_FLAT, GL_SMOOTH
```

GL_FLAT - cor da face não varia

GL_smooth – cor da face é calculada pela interpolação dos vértices (Gouraud)

Modelo de Sombreamento (shade)

 Especificados por glShadeModel (Glenum mode);

- mode estabelece o modo de colorização:

```
• GL_FLAT, GL_SMOOTH
```

gl_flat - cor da face não varia

GL_smooth – cor da face é calculada pela interpolação dos vértices (Gouraud)

Phong?

Exercício

- O primeiro passo é ler com atenção os slides que falam sobre iluminação;
- O segundo passo é compilar e executar o exemplo;
- Veja o que acontece quando desabilitamos a iluminação;
 (glEnable(GL_LIGHTING);)
- Veja o que acontece quando desabilitamos a "luz 0";
 (glEnable(GL_LIGHT0);)
- Transforme a luz pontual em uma luz direcional;
- Veja o que acontece se mudarmos o modelo de sombreamento para *flat shading*;
- Troque a esfera pelo "Utah teapot" (glutSolidTeapot).

Exercício

- Insira uma luz do tipo *spot* de cor amarela apontada para o objeto;
- Mude a distância da luz spot ao objeto;
- Coloque dois retângulos lado a lado;
- Faça com que ambos fiquem a um certo ângulo entre eles (como uma folha dobrada);
- Altere a normal dos vértices de forma que seja a média da normal das duas faces.