A Theoretical Framework for Understanding Mutation-Based Testing Methods

Donghwan Shin and Doo-Hwan Bae

KAIST, South Korea

@ ICST 2016

Mutation-based testing has been widely studied for addressing various testing problems

Systematically generate $m{m}$ from $m{p}_o$ and use the differences between them

- Test set selection
- Fault localization
- Program repair

© Donghwan Shin, 2016 2

There is a solid theoretical framework for general testing process – "testing system"

Fundamental testing factors and their relationships[1][2]

- P attempts to implement S
- T is designed to consider S and P
- O determines the correctness of P for T

• •

- P is a set of programs
- *S* is a set of specifications
- T is a set of tests
- O is a set of oracles

Such theoretical framework facilitates a clear understanding of the essence of complex problems

[1] J. S. Gourlay, "A mathematical framework for the investigation of testing," Software Engineering, IEEE Transactions on, no. 6, pp. 686-709, 1983.

[2] M. Staats, M. W. Whalen, and M. P. E. Heimdahl, "Programs, tests, and oracles: the foundations of testing revisited," in Proceedings of ICSE 2011, pp. 391-400.

Surprisingly little attention has been paid to the theoretical framework of mutation-based testing

 Even the testing system is not adequate to mutationbased testing because it focuses on the correctness.

- S is a set of specifications
- P is a set of programs
- T is a set of tests
- *O* is a set of oracles

P attempts to implement S
T is designed to consider S and P
O determines the correctness of P for T

How to formally describe the behavioral differences between programs and its mutants in testing?

Key idea: a new testing factor for difference

In the testing system, an oracle o implies the correctness of a program p for a test t as follows:

$$o(t,p) = \begin{cases} 1 \ (true), & \text{if } p \text{ is correct for } t \\ 0 \ (false), & \text{otherwise} \end{cases}$$

Let us define a new testing factor X to imply the difference between two programs for a test

$$X(t, p_x, p_y)$$

© Donghwan Shin, 2016 5

A theoretical framework for the difference in mutation-based testing

In this talk:

- Define and extend a new testing factor to formalize the "difference-based testing framework"
- What you can do using this framework:
 - Formally describe the behavioral differences of programs given a set of tests.
 - Quantitatively represent and analyze the behavioral differences in a multi-dimensional space.
 - Guide to understand mutation-based testing methods.

© Donghwan Shin, 2016 6

Outline

- Test differentiator
 - A new testing factor for the notion of difference
- d-vector
 - Extended differentiator for a set of tests
- Position
 - Redefined d-vector in a multi-dimensional space
- Position deviance relation
 - Formal relation between positions
- Position Deviance Lattice
 - Graphical model for positions and its deviance relation
- Applications

Outline

- Test differentiator
 - A new testing factor for the notion of difference
- d-vector
 - Extended differentiator for a set of tests
- Position
 - Redefined d-vector in a multi-dimensional space
- Position deviance relation
 - Formal relation between positions
- Position Deviance Lattice
 - Graphical model for positions and its deviance relation
- Applications

Test differentiator: a new testing factor (1/2)

Def. 1: A test differentiator d is a function such that

$$d(t, p_x, p_y) = \begin{cases} 1 \ (true), & \text{if the behaviors of } p_x \text{ and } p_y \text{ are different for } t \\ 0 \ (false), & \text{otherwise} \end{cases}$$

Example

 $d(t, p_o, m) = 1$ "t detects the difference between p_o and m"

"The test kills the mutant"

Test differentiator: a new testing factor (2/2)

It clarifies tricky concepts in mutation-based testing.

A test t detects a fault in p_o

A test t kills a mutant m

 p_s : the projection of the specification (i.e., true requirements of p_o)

lacktriangle It shows how d is important in mutation-based testing.

Weak mutationStrong mutationd observesd observesinternal valuesonly output

Outline

- Test differentiator
 - A new testing factor for the notion of difference
- d-vector
 - Extended differentiator for a set of tests
- Position
 - Redefined d-vector in a multi-dimensional space
- Position deviance relation
 - Formal relation between positions
- Position Deviance Lattice
 - Graphical model for positions and its deviance relation
- Applications

d-vector: extended d as a vector form

Def. 2: A d-vector d is an n-dimensional vector, such that $\frac{d(t, p_x, p_y)}{d(t, p_x, p_y)} = \left\langle d(t_1, p_x, p_y), \dots, d(t_n, p_x, p_y) \right\rangle$ for a collection of tests $\mathbf{t} = \langle t_1, t_2, \cdots, t_n \rangle \in T^n$.

Example

d-vector = position in a multi-dimensional space

- A vector represents a point in a multi-dimensional space.
- The position of a point is relative to the origin.

We can think of a d-vector as the representation of a position in a space.

Position and its space from a d-vector

Def. 3: The position of a program p_x relative to another program p_r in a multi-dimensional space corresponding to a set of tests t is

$$\mathbf{d}(\mathbf{t}, p_r, p_x) = \mathbf{d}_{p_r}^{\mathbf{t}}(p_x).$$

- The space is induced by (\mathbf{t}, p_r, d) .
 - \checkmark t = $\langle t_1, \dots, t_n \rangle$ corresponds to the *n*-dimensions.
 - $\checkmark p_r$ corresponds to the origin of the space.
 - \checkmark d corresponds to the notion of difference in the space.
- A position of p_x relative to the origin p_r implies the behavioral difference between p_x and p_r for a set of tests t.

Outline

- Test differentiator
 - A new testing factor for the notion of difference
- d-vector
 - Extended differentiator for a set of tests
- Position
 - Redefined d-vector in a multi-dimensional space
- Position deviance relation
 - Formal relation between positions
- Position Deviance Lattice
 - Graphical model for positions and its deviance relation
- Applications

Position deviance relation (1/3)

■ Add more tests → increasing dimensions
 → make positions deviant from its origin

Example

Position deviance relation (2/3)

Forms a partial order based on transitivity.

Position deviance relation (3/3)

• If $p_r = p_o$, the deviance relation on positions *implies* the dynamic subsumption* on mutants at the positions.

$$\mathbf{p_o} = \langle 0, \cdots, 0 \rangle = \{p_o\}$$

$$\mathbf{p_x} = \langle \cdots, 0, 0, \cdots \rangle = \{m_x\}$$

$$\mathbf{Dynamic\ subsumption}$$

$$\mathbf{lf\ } m_x \mathbf{ is\ killed,\ then\ } m_y \mathbf{ must\ be\ killed.}$$

$$\mathbf{p_y} = \langle \cdots, 0, 1, \cdots \rangle = \{m_y\}$$

^{*} Ammann, Paul, Marcio E. Delamaro, and Jeff Offutt. "Establishing theoretical minimal sets of mutants." ICST 2014.

Outline

- Test differentiator
 - A new testing factor for the notion of difference
- d-vector
 - Extended differentiator for a set of tests
- Position
 - Redefined d-vector in a multi-dimensional space
- Position deviance relation
 - Formal relation between positions
- Position Deviance Lattice
 - Graphical model for positions and its deviance relation
- Applications

Position Deviance Lattice (PDL) (1/4)

- It shows the positions with their deviance relation.
 - Each dimension (=test) has only two positions, 0 or 1.
 - The number of positions in a n-dimensional space = 2^n .

Position Deviance Lattice (PDL) (2/4)

It growths as more tests added.

Example

Outline

- Test differentiator
 - A new testing factor for the notion of difference
- d-vector
 - Extended differentiator for a set of tests
- Position
 - Redefined d-vector in a multi-dimensional space
- Position deviance relation
 - Formal relation between positions
- Position Deviance Lattice
 - Graphical model for positions and its deviance relation
- Applications

Minimal set of mutants in PDL (1/2)

• In PDL where $p_r=p_o$, mutants in "the least deviant" positions form the minimal set of mutants.

Minimal set of mutants in PDL (2/2)

- What is the maximum bound of the minimal set of mutants for n tests?
 - Key: if two mutants are at two comparable positions, then one must be dynamically subsumed by another.
 - Sperner's theorem says that the maximum number of incomparable nodes in an n-dim lattice is given as follows:

$$\max(|M_{minimal}|) = \binom{n}{\lfloor n/2 \rfloor}$$

(E.g.) If we have 10 tests, # of minimal mutants $\leq {10 \choose 5} = 252$

$d(t_j, p_o, m_i)$	m_1	m_2	m_3	m_4
t_1	1	1	0	0
t_2	0	0	1	1

$$TS = \{\}$$

$$p_0, m_1, m_2, m_3, m_4$$

Not-killed area

Killed area

$d(t_j, p_o, m_i)$	m_1	m_2	m_3	m_4
t_1	1	1	0	0
t_2	0	0	1	1

 $TS = \{t_1\}$ p_o, m_3, m_4 Not-killed area m_1, m_2

Killed area

$d(t_j, p_o, m_i)$	m_1	m_2	m_3	m_4
t_1	1	1	0	0
t_2	0	0	1	1

27

- Traditional mutation adequacy criterion
 - A test suite that distinguishes the positions of mutants from the position of p_o will likely detect real faults.

- Claim for the existing mutation adequacy criterion
 - In the "killed area", there are still several mutants which are not distinguished in terms of their positions.

- Distinguishing more mutants increases fault detection*
 - A test suite that distinguishes the positions of mutants from each other will likely detect real faults.

* Donghwan Shin, Shin Yoo, and Doo-Hwan Bae. "Diversity-aware mutation adequacy criterion for improving fault detection capability." Mutation 2016

(empty) Killed area

© Doughwan Shin, 2010 30

Conclusion

- Correctness-based think difference-based think
 - Incorrect programs seem useless, while different programs seems meaningful.
- PDL may guide you to consider difference-based think.

