Increasing student engagement in massive open online courses

Use of technology in education

In spite of tremendous technological advancements, education hasn't really changed for centuries.

MIT (1960)

MIT (2010)

Massive open online courses (MOOC)

Online technologies can transform education in both scale and access.

- 155000 registrants: bigger than total MIT alumni
- 7157 certified: 40 years of traditional lecture time

Massive open online courses (MOOC)

Massive open online courses (MOOC)

Certification vs enrollment date

Data is aggregated from a series of 17 online courses offered in 2012-2013 by Harvard & MIT on *edX* (445000 active registrants).

Can we construct a churn predictor for student certification?

Data is aggregated from a series of 17 online courses offered in 2012-2013 by Harvard & MIT on *edX* (445000 active registrants).

RF classification of a balanced population

Focus on 'course view' instead of 'certification'

Certification rate is not a good measure of course effectiveness in MOOC:

most students don't attend online courses to get certificates.

73% viewed vs 4% certified

Thinking in terms of probabilities

Holes in magnetic materials

Holes in magnetic materials

High-temperature superconductors

Hadi Ebrahimnejad

Holes in magnetic materials

High-temperature superconductors

nature physics

ARTICLES
PUBLISHED ONLINE: 19 OCTOBER 2014 | DOI: 10.1038/NPHYS3130

The dynamics of a doped hole in a cuprate is not controlled by spin fluctuations

Hadi Ebrahimnejad¹, George A. Sawatzky^{1,2} and Mona Berciu^{1,2}*

Understanding what controls the dynamics of the quasiparticle that results when a hole is doped into an antiferromagnetically ordered CuO₂ layer is the first necessary step in the quest for a theory of the high-temperature superconductivity in cuprates.

