

Context-Sensitive Languages: Context-Sensitive Grammars (CSG) and Languages Chapter 3: Grammars

Prof. Riddhi Atulkumar Mehta Assistant Professor Department of Computer Science and Engineering

Parul® University

Content

1.	Context-Sensitive Languages (CSLs)	•
2.	Properties of Context-Sensitive Languages	,
3.	Example	
	Differences with Other Grammars	

Context-Sensitive Languages (CSLs)

Before we enter context-sensitive languages, it's essential to understand the context-free languages (CFLs), as they form the foundation for our discussion.

What is Context-Free Grammar?

A context-free language is generated by a context-free grammar (CFG). In a CFG, production rules have the form: $A \rightarrow X$, Where –

- A is a variable (non-terminal)
- X is any string of terminals or variables

Context-Sensitive Languages (CSLs)

- CSLs are languages generated by Context-Sensitive Grammars
- Can be recognized by Linear Bounded Automata (LBA)
- Used to describe more complex syntax rules, like type agreement in natural language
- The context-sensitive languages extend the concept of CFLs by allowing production rules to depend on the context in which variables appear.
- This seemingly small change leads to a significant increase in expressive power.
- A context-sensitive grammar has production rules of the form: $\alpha A\beta \rightarrow \alpha X\beta$, where –
- α , β are strings of terminals and/or variables (can be empty)
- A is a variable
- X is a non-empty string of terminals or variables

Context-Sensitive Languages (CSLs)

- Context Sensitive Grammar
- A context-sensitive grammar has production rules of the form: $\alpha A\beta \rightarrow \alpha X\beta$, where –
- α , β are strings of terminals and/or variables (can be empty)
- A is a variable
- X is a non-empty string of terminals or variables

Properties of Context-Sensitive Languages

Listed below are some of the important properties of context-sensitive languages –

- Context Preservation The production process maintains the same context (α and β) on both sides, ensuring that the replacement of A with X only occurs within the defined context.
- Non-Contracting The grammar's property X cannot be empty, ensuring it doesn't reduce string length during derivation. However, the start variable S can generate an empty string if it's part of the language.
- Increased Expressive Power CSLs can describe patterns that CFLs cannot, such as matching multiple repeated substrings.

Example

Consider the following CSG.

 $S \rightarrow abc/aAbc$

 $Ab \rightarrow bA$

 $Ac \rightarrow Bbcc$

 $bB \rightarrow Bb$

 $aB \rightarrow aa/aaA$

What is the language generated by this grammar?

Parul® University

Example

Solution:

- $S \rightarrow aAbc$
- \rightarrow abAc
- → abBbcc
- → aBbbcc
- → aaAbbcc
- → aabAbcc
- → aabbAcc

→ aabbBbccc

Parul® University

Differences with Other Grammars

Grammar Type	Example Language	Automaton
Regular	a*	Finite Automaton
Context-Free (CFG)	a^nb^n	Pushdown Automaton
Context-Sensitive	A^nb^nc^n	Linear Bounded Automaton
Recursively Enumerable	All computable languages	Turing Machine

https://paruluniversity.ac.in/

