

SPEECH DEREVERBERATION CONSTRAINED ON ROOM IMPULSE RESPONSE CHARACTERISTICS

Louis Bahrman¹, Mathieu Fontaine¹, Jonathan Le Roux², Gaël Richard¹

¹LTCI, Télécom Paris, IP-Paris, France; ²MERL, Cambridge, MA, USA

SUMMARY

Context

- DNN-based approaches for dereverberation are often not consistent with room acoustics
- We introduce a physical coherence loss which regularizes the training in a physically consistent manner

Main takeways

- Dereverberation performance comparable with the baseline, at no additional cost
- Extraction of an RIR from a dereverberation model

Code

EXPERIMENTS

Tasks

- Dereverberation
- RIR estimation

Data

- Training data: WSJ0, synthethic RIRs.
- Test data: WSJ0 or Librispeech clean, synthethic RIRs drawn from 2 settings:
 - Matched: Similar room parameters
 - Mismatched: Harder room parameters

Baseline FullSubNet (Hao et al. 21) (FSN)

RIR estimation metrics

- EDC-Fourier: Energy Decay Curve distance, deconvolution as $\mathrm{IDFT}\left[\frac{\mathrm{DFT}(y_n)}{\mathrm{DFT}(x_n)}\right]$
- EDR: Energy Decay Relief distance

RESULTS: RIR ESTIMATION

	WSJ0	EDC (↓)	EDR (↓)			
		Fourier	Subband Crossband			
	FSN	66.2 ± 28	39.0 ± 12 99.6 ± 24			
7	+SB	60.5 ± 21	$32.7 \pm 7100.7 \pm 22$			
ή	+CSB	$\textbf{52.6} \pm \textbf{24}$	34.1 ± 13 97.8 ± 24			
<u>2</u>	+SB +CSB +SSB +3B	$\textbf{76.4} \pm \textbf{23}$	$39.9 \pm 10\ 102.9 \pm\ 23$			
>	+3B	67.1 ± 27	$38.7 \pm 11\ 100.0 \pm\ 24$			
	dry	0.0 ± 0	$36.7 \pm 10 75.0 \pm 19$			
	, FSN	86.4 ± 15	$37.8 \pm 7116.7 \pm 6$			
hed	+SB	66.3 ± 16	$27.6 \pm \ 6114.9 \pm \ 7$			
5	+CSB	$\textbf{63.1} \pm \textbf{16}$	$\textbf{25.6} \pm \textbf{4113.6} \pm \textbf{7}$			
2	+SSB	86.2 ± 14	$40.4 \pm 8117.9 \pm 6$			
Misma	+3B	86.8 ± 15	$37.5 \pm 7117.2 \pm 6$			
	dry	0.0 ± 0	38.4 ± 8 84.4 ± 12			

METHOD

Convolutive model

Reverberation in the T-F domain

$$Y_{f,t} = \sum_{f'=0}^{F-1} \sum_{t'=-\infty}^{\infty} \mathcal{H}_{f,f',t'} X_{f',t-t'}$$

 $\mathcal{H}_{f,f',t'}$ is a tridimensional representation of an RIR \boldsymbol{H} (Avargel and Cohen 07).

RIR extraction steps

1. Compute the crossband filter for each f:

$$\mathcal{C}_f(\hat{oldsymbol{X}}) = rg \min_{oldsymbol{C}_f} \left\| ar{oldsymbol{\hat{X}}}_f oldsymbol{C}_f - oldsymbol{Y}_f
ight\|_2^2$$

where Y_f , \hat{X}_f are constructed by concatenating respectively $Y_{f',t}$ and Toeplitz matrices of $\hat{X}_{f',t}$, at different crossbands $f'=f-F',\ldots,f+F'$.

2. Extract a representation of the estimated RIR STFT:

$$I(\hat{X})_{f,t} = \sum_{f'=f-F'}^{f+F'} (-1)^{f'} \mathcal{C}_{f,f',t}(\hat{X})$$

3. (Optional) Correct the Subband modeling error $\mathcal{E}_{f,t} = I(\boldsymbol{X})_{f,t} - H_{f,t}$, by spectral subtraction:

$$I(\hat{X})_{f,t}^c = \left(|I(\hat{X})_{f,t}|^2 - |\mathcal{E}_{f,t}|^2 \right)^{1/2} e^{j \angle I(\hat{X})_{f,t}}$$

Physical model

Given a ground-truth or estimated RIR STFT \boldsymbol{R} , compute the bandwise dB-scaled Energy Decay Relief $\Phi_{f,t}(\boldsymbol{R}) = 10\log_{10}\frac{\mathrm{EDR}(\boldsymbol{R})_{f,t}}{\mathrm{EDR}(\boldsymbol{R})_{f,0}}$, where:

$$EDR(\mathbf{R})_{f,t} \triangleq \sum_{t'=t}^{+\infty} |R_{f,t'}|^2$$

Losses

- DNN Loss \mathcal{L}_d : Complex Ideal Ratio Mask between dereverberated and dry speech
- Physical coherence loss $\mathcal{L}_{\Phi}(\hat{m{R}},m{R})$

$$= \sum_{f,t} |\Phi_{f,t}(\hat{\boldsymbol{R}}) - \Phi_{f,t}(\boldsymbol{R})|^2 \mathbb{1}_{\{\Phi_{f,t}(\boldsymbol{R}) > -20\}}$$

Both losses are weighted using GradNorm.

Variants

- Subband (SB)
- Symmetric Subband (SSB)
- Corrected Subband (CSB)
- 3-band (3B)

Variant	Crossbands	Loss
SB	F'=0	$\mathcal{L}_{\Phi}(I(\hat{m{X}}),m{H})$
SSB	F'=0	$\mathcal{L}_{\Phi}(I(\hat{m{X}}),I(m{X}))$
CSB	F'=0	$\mathcal{L}_{\Phi}(I(\hat{m{X}})^c,I(m{X})^c)$
3B	F' = 1	$\mathcal{L}_{\Phi}(I(\hat{m{X}}),m{H})$

RESULTS: DEREVERBERATION

	Matched RIRs				Mismatched RIRs				
	WSJ0		LibriSpeech clean		WSJ0		LibriSpeech clean		
	SISDR	WB-PESQ	SISDR	WB-PESQ	SISDR	WB-PESQ	SISDR	WB-PESQ	
FSN	$\textbf{5.1} \pm \textbf{4.1}$	2.23 ± 0.60	3.1 ± 4.3	2.06 ± 0.55	0.9 ± 2.6	1.60 ± 0.21	-0.8 ± 3.4	1.53 ± 0.24	
+ SB	$\textbf{4.3} \pm \textbf{4.2}$	2.10 ± 0.56	2.5 ± 4.6	$\boldsymbol{1.98 \pm 0.51}$	$\textbf{-0.3} \pm \textbf{2.9}$	$\boldsymbol{1.46 \pm 0.19}$	-1.9 ± 3.5	$\boldsymbol{1.42 \pm 0.21}$	
+ CSB	$\textbf{4.2} \pm \textbf{4.6}$	2.11 ± 0.65	2.2 ± 5.1	$\boldsymbol{1.99 \pm 0.59}$	-0.7 ± 2.9	$\boldsymbol{1.43 \pm 0.18}$	-2.4 ± 3.8	$\textbf{1.41} \pm \textbf{0.21}$	
+ SSB	$\textbf{4.8} \pm \textbf{4.1}$	2.19 ± 0.59	2.6 ± 4.5	$\boldsymbol{1.99 \pm 0.52}$	0.6 ± 2.7	$\boldsymbol{1.57 \pm 0.20}$	-1.3 ± 3.8	$\textbf{1.49} \pm \textbf{0.23}$	
+ 3B	$\textbf{4.9} \pm \textbf{4.1}$	$\textbf{2.24} \pm \textbf{0.60}$	2.9 ± 4.6	$\textbf{2.07} \pm \textbf{0.57}$	$\textbf{0.7} \pm \textbf{2.6}$	$\textbf{1.61} \pm \textbf{0.21}$	-1.0 ± 3.7	$\textbf{1.54} \pm \textbf{0.25}$	
input	-0.2 ± 4.8	1.76 ± 0.67	-1.0 ± 5.5	1.89 ± 0.76	-4.5 ± 2.9	1.20 ± 0.11	-5.2 ± 3.7	1.24 ± 0.16	
STOI remains the same as the baseline across all variants									