Math 225B–Final Project

Edward Kim

May 10, 2016

Problem 1

Proof: Following the hint provided, suppose we had a function f such that f maps x to the least stage such that the approximation to A is correct on all numbers n such that n < x. Since A is a Δ_2^0 subset of \mathbb{N} , it follows that it can be computed from the halting set \emptyset' . We recall the halting set can compute the least stage s where:

$$n \in A \Leftrightarrow (\forall t \ge s) \ g(n,t) = 1$$

$$n \notin A \Leftrightarrow (\forall t \ge s) \ g(n,t) = 0$$

Thus, f(x) can retrieve this information directly from A for all inputs $n \leq x$ and it follows that f is computable from A. Now suppose, we have a function g computable from a set X such that g dominates f on all inputs $n \in \mathbb{N}$. However, we observe that g computes A by the following scheme: we compute A(n) by running the program that approximates A at input g for g(n+1) stages. In other words, let g if g if g is definition of g:

$$n \in A \Leftrightarrow (\forall t \ge y) \ g(n,t) = 1$$

$$n\not\in A\Leftrightarrow (\forall t\geq y)\ g(n,t)=0$$

From $g(n+1) \ge f(n+1)$, it follows that running the program for g(n+1) stages will result in the correct output. Thus, A can be computed by X through g. \square

Problem 2

Proof: We provide a priority construction where the negative requirements are injured finitely often. We give the requirements below:

$$P_e: \{e\}^D \neq G$$

and

$$N_e: \{e\}^G \neq D$$

For the positive requirements, we hold on a potential witness x and observe if $\{e\}^D(x) \downarrow = 0$ on stage s. If so, we enumerate x into G_{s+1} . If not, no action is required since either $\{e\}^D \downarrow \neq 0$ or $\{e\}^D(x) \uparrow$. Hence, we say that P_e requires attention at stage s if for some potential witness s

$$\{e\}_s^{D_s}(x) \downarrow = 0$$

The negative requirements will require us to restrain values from being enumerated into G. Thus, we shall define the following length function:

$$L(e,s) = \max\{x : \forall n \le x \ \{e\}_s^{G_s}(n) \downarrow = D_s(n)\}$$

We similarly define the restraint function r(e, s) which prohibits any values smaller than the largest value used in the computation of all $\{e\}_s^{G_s}(n) \downarrow$ for some stage s where $n \leq L(e, s)$. Lastly, we give the priority list:

$$P_1, N_1, P_2, N_2, \dots$$

and outline the construction:

Stage 0: Let $G_0 = \emptyset$. For each positive requirement P_e , let the first picked potential witness be e. For each negative requirement N_e , let the restraint functions be initialized r(e,0) = -1. Stage s: We find the least positive requirement P_i that requires attention at this stage. We enumerate the witness x into G_s . We require all positive requirements P_j where $j \ge i$ to find new witnesses x_j where $x_j \ge r(e,s)$ for $e \le i$ and $x_j \notin G_s$.

We see that all of the positive requirements are eventually met. All there is left to verify is that our negative requirements are met.

Claim: $\{e\}^G \neq D$ for all e.

Proof: Suppose that $\{e\}^G = D$ for some e. Then we see that $\lim_s L(e,s) = \infty$. Thus, for all input n, there must exist a stage s such that L(e,s) > n and N_e is never injured after stage s. By definition of L, $\{e\}_s^G(n) \downarrow = D(n)$. Thus, D is recursive which contradicts our original assumption. \square

Problem 3

Proof: We use a priority argument where we enumerate W one element x per stage ($x \in W_{s+1} - W_s$). We only enumerate the element x into one of the sets A and B and the elements must respect the negative requirements of higher priority. We outline the positive and negative criterion below:

$$P:$$
 For every $x\in W_{s+1}-W_s,\ x\in A_s$ or $x\in B_s$
$$N_{[e,A]}:\{e\}^A\neq D$$

$$N_{[e,B]}:\{e\}^B\neq D$$

Let us define $L^A(e,s)$ as we did in Problem 2. That is $L^A(e,s)$ the largest input x in which the computations of $\{e\}_s^A$ and D_s agree on inputs $n \leq x$. We define the restraint function $r^A(e,s)$ similarly as in Problem 2 as well. Functions $L^B(e,s)$ and $r^B(e,s)$ are defined similarly with B in place of A.

Stage 0:
$$A = \emptyset$$
, $B = \emptyset$

Stage s: Let $x \in W_{s+1} - W_s$. Choose the highest negative priority $N_{[e,i]}$ where i = A, B and enumerate x on into the other set. In other words, if i = A, then enumerate x into B_{s+1} and if i = B, then enumerate x into A_{s+1} .

We prove that every negative requirement is injured finitely many times and that r^A and r^B converge through induction. For any [e,i], let us assume that after stage s', all priorities [g,j] < [e,i] are never injured and $r^A(g)$ and $r^B(g)$ converge for stages $s \ge s'$. Let us find a stage t where $N_{[e,i]}$ is never injured after stage t. To find this, we have to ensure that B does not enumerate anymore elements after this stage into any of the restraints of higher priority. This ensures that no elements enumerated from B can injure $N_{[e,i]}$ since all of the higher priority restraints are completely settled. Take a value $r > \max\{r^j(g) \mid [g,j] < [e,i]\}$. Let t be the stage such that $B_t \upharpoonright r = B \upharpoonright r$. As mentioned previously, $N_{[e,i]}$ cannot be injured after this point and it follows that $r^A(e)$ and $r^B(e)$ converge through the proof of the claim in Problem 2. \square

Problem 4

Proof: We will first conclude that every branch in the aforementioned tree must split into two infinite branches. We shall proceed by contradiction and assume that there exists an isolated branch B in T. We recursively compute B as follows: let $\sigma \subset B$. We can compute the next branch B will take by computing strings of T longer than $|\sigma|$ and extending σ . Let $\sigma * 0$ or $\sigma * 1$ represent strings σ concatenated with 0 and 1 respectively. Since B is an isolated branch, there must exist a level L such that all strings extending one of the branches must eventually terminate within a finite amount of stages. The next step of the path will traverse the branch which has not terminated within the level L. However, this implies that f is a recursive path in T which contradicts our original assumption about the infinite paths in T. Thus, every branch in T must split into two infinite branches. Thus, given a set $X \subseteq \mathbb{N}$, we can trace a path P in T such that if a real number z_i codes a set recursive in X, then $z_i \not\subset P$ (follows from the observation that only a countable number of these types of real numbers can exist). Hence, this path P is an infinite path such that $X \not\geq_T P$. We give a simple argument for the uncountability of the infinite paths in T. Suppose that there were a countable number of infinite paths in T, then we can code these paths into a countable set of real numbers X'. However, by the result above, there must exist an infinte path P'in T such that $X' \not\geq_T P'$. However, by construction, P' cannot be any of the infinite paths in X' which contradicts the definition of X'. Hence, the uncountability of the infinite paths in T follows.

Problem 5

Proof: The intuition behind the proof of this proposition is to create two sets A and B such that $\{e\}^A \neq X$ and $\{e\}^B \neq X$ for all e but the join $A \oplus B$ encodes enough information about X to ensure that $X \leq_T A \oplus B$. We provide the following finite extension construction by constructing the characteristic function of A and B through finite initial segments $\{f_s\}_{s\in\omega}$ and $\{g_s\}_{s\in\omega}$ respectively:

Stage 0: $f_{A_0} = \emptyset$, $f_{B_0} = \emptyset$.

Stage s+1=2e: We shall ensure that $\{e\}^A \neq X$. We proceed by finite extension and query the following Σ_1^0 sentence to a \emptyset' -oracle:

$$(\exists \sigma)(\exists \tau)(\exists x)(\exists x)(\exists x)(\exists w)[f_s \subset \sigma, \tau \& \{e\}_s^{\sigma}(x) = y \& \{e\}_s^{\tau}(x) = z \& y \neq z] \tag{1}$$

This ensures that at least one of the finite extensions σ, τ disagrees with X on witness x. We then use a X-oracle to find if $\{e\}_s^{\sigma}(x) \neq X(x)$ or $\{e\}_s^{\tau}(x) \neq X(x)$. Without the loss of generality, we then

let σ be the extension that disagrees with X. In addition, we extend g_s by copying the $|\sigma| - |f_s|$ bits that were added to f_s . This can be recursively done by appending $\sigma(n)$ for $|f_s| + 1 \le n \le |\sigma|$ to the end of g_s in order. We then code the necessary information into A and B to code X. Let $n = |\sigma|$. If X(e) = 0, then let $f_{s+1}(n) = 0$ and $g_{s+1}(n) = 1$. If X(e) = 1, then let $f_{s+1}(n) = 1$ and $g_{s+1}(n) = 0$. By construction, we see that both f_{s+1} and g_{s+1} are of the same length.

Stage s+1=2e+1: We shall now ensure that $\{e\}^B \neq X$. Repeat the above steps except replace f with g and A with B.

Claim: $A \oplus B \leq_T X$

Proof: This claim follows from our construction procedure above. Each nonzero stage queries a \emptyset' -oracle and a X-oracle. By our assumption that $X \geq_T \emptyset'$, we see that the construction is done X-recursively. \square

Claim: $X \leq_T A \oplus B$

Proof: We see that, by construction, the differences between A and B code the characteristic function for X. We can recursively check for any difference between A and B. If a difference is detected at index n, we consider two cases. If A(n) = 1, then X(n) = 1. If B(n) = 1, then X(n) = 0. \square