

B4B38PSIA

Počítačové sítě

Metalické vedení

Laboratorní protokol

Jakub Adamec, Daniel Petránek 19. března 2024

Cvičící: Martin Šimůnek Verse dokumentu: 1.0

Obsah

1	Zada	ání	3
	1.1	Úvod	3
	1.2	Postup měření	3
	1.3	Impulsní generátor	3
	1.4	Činitel odrazu na konci vedení	3
	1.5	Reflektometrické měření délky vedení	4
	1.6	Měření charakteristické impedance vedení	4
	1.7	Impedanční přizpůsobení na počátku vedení	5
	1.8	Dodatečné informace	5
	1.9	Šíření signálu v bezeztrátovém vedení	5
2	Nan	něřené hodnoty	6
	2.1	Nastavení pulsu	6
	2.2	Činitel odrazu na konci vedení	7
	2.3	Měření délky vedení	7
	2.4	Měření impedance vedení	7
	2.5	Data impedančního přizpůsobení	8
3	Zho	dnocení	8

1 Zadání

1.1 Úvod

Metalická vedení jsou nejčastěji používanou variantou fyzické vrstvy komunikačního kanálu. Při použití je nutno uvažovat jejich vlastnosti jako dlouhého vedení, tzn. respektovat konečnou rychlost šíření elektromagnetických vln a potřebu impedančního přizpůsobení.

1.2 Postup měření

V rámci měření se nejprve seznámíte s nastavením impulsního generátoru, který poté spolu s osciloskopem využijete pro studium šíření číslicových signálů metalickým vedením.

1.3 Impulsní generátor

Seznamte se s ovládáním impulsního generátoru (nastavení periody, střídy, rychlosti hran), průběhy zobrazte na osciloskopu. Na generátoru nastavte pulsy s šířkou 150 – 200 ns, periodou cca 2 ms a maximální rychlostí hrany.

Obrázek 1: Generovaný signál

1.4 Činitel odrazu na konci vedení

Definujte činitel odrazu na konci vedení a určete jeho hodnoty pro koaxiální kabel s charakteristic-kou impedancí 50 Ω , pokud je zakončen impedancemi 0 Ω , 25 Ω , 50 Ω , 100 Ω a ∞ Ω .

1.5 Reflektometrické měření délky vedení

Pomocí osciloskopu a generátoru změřte délku předloženého "dlouhého" koaxiálního kabelu. Rychlost šíření signálu kabelem je 0,65 násobek rychlosti světla ve vakuu. Vysvětlete princip měření a uveďte, jakou základní podmínku musíte splnit, aby měření bylo principiálně možné?

Osciloskop a začátek kabelového vedení připojte paralelně k výstupu generátoru. Konec vedení můžete připojit na druhý kanál osciloskopu.

Obrázek 2: Uspořádání pro měření délky kabelu

1.6 Měření charakteristické impedance vedení

Ověřte hodnotu charakteristické impedance předloženého koaxiálního kabelu. Na konec kabelu připojte nastavitelný rezistor R_Z a nastavte hodnotu, při níž nedochází k odrazu. Multimetrem pak změřte hodnotu jeho odporu.

Obrázek 3: Uspořádání pro měření impedance vedení

1.7 Impedanční přizpůsobení na počátku vedení

Demonstrujte metodu přizpůsobení vedení na jeho počátku. Vedení připojené ke generátoru je na vstupu impedančně přizpůsobeno, neboť výstupní impedance generátoru je 50 Ω . Konec vedení ponechte nepřizpůsobený – 1 M Ω vstupní impedance osciloskopu. Na generátoru nastavte délku pulsu alespoň na 100 μ s a pozorujte průběhy (speciálně hrany pulsů v časovém detailu) na počátku i na konci vedení. Průběh na počátku vedení vysvětlete.

1.8 Dodatečné informace

U všech měření je třeba dbát na to, aby vstupní impedance osciloskopu byla 1 M Ω , nikoliv 50 Ω .

1.9 Šíření signálu v bezeztrátovém vedení

2 Naměřené hodnoty

2.1 Nastavení pulsu

Obrázek 5: Používaný signál

Z toho jsme určili t= $1, 6 \cdot 10^{-6}$ s.

2.2 Činitel odrazu na konci vedení

Nechť činitel odrazu

$$\rho_b = \frac{R - Z}{R + Z}$$

a mějme $Z=50~\Omega$. Pak:

Tabulka 1: Spočítané hodnoty činitele odrazu

R/Ω	ρ_b / Ω			
0	-1			
25	$-\frac{1}{3}$			
50	0			
100	$\frac{2}{3}$			
∞	1			

2.3 Měření délky vedení

Délka vedení je

$$l = 0,65 \cdot c \cdot t \cdot \frac{1}{2} \doteq 0,65 \cdot 3 \cdot 10^{-8} \cdot 1,6 \cdot 10^{-6} \cdot \frac{1}{2} \doteq 156 \, m.$$

2.4 Měření impedance vedení

K odrazu nedochází při odporu $R=50,3~\Omega.$

2.5 Data impedančního přizpůsobení

Obrázek 6: Průběh signálu

Signál se nejspíše z části odrazí na začátku vedení, což se zobrazí jako meziskok na osciloskopu.

3 Zhodnocení

Během měření jsme si ukázali možnosti využití impedančního přizpůsobení pro detekce různých vad na metalickém vedení. Všechna měření jsme stihli v požadovaném čase i s ohledem na různé pokusy nad rámec zadání.