Sequential Recommendation System via Pretain

repo link: https://github.com/nancheng58/Pretraining-for-Recommender-Systems

Overview

This is a repo of several Sequential Recommendation System baseline.

Model	Paper title and link	Code link	Topic	From
ASReP	Augmenting Sequential Recommendation with Pseudo-Prior Items via Reversely Pre-training Transformer	https://github. com/DyGRec/ ASReP	Sequential Rec	SIGIR2021
SASRec	Self-Attentive Sequential Recommendation	https://github. com/kang20 5/SASRec	Sequential Rec	ICDM2018
DHCN	Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation	https://github. com/xiaxin19 98/DHCN	Session Rec	AAAI2021
S3Rec	S3Rec: Self-Supervised Learning for Sequential Recommendation with Mutual Information Maximization	https://github. com/RUCAIBo x/CIKM2020-S 3Rec	Sequential Rec	CIKM2020
MrTransformer	Improving Transformer- based Sequential Recommenders through Preference Editing	https://github. com/mamuya ng/MrTransfo rmer	Sequential Rec	arXiv
BERT4Rec	BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer	https://github. com/FeiSun/B ERT4Rec	Sequential Rec	CIKM2019
CL4SRec	Contrastive Learning for Sequential Recommendation	our reproduction via <u>RecBole</u>	Sequential Rec	arXiv
SGL	Self-supervised Graph Learning for Recommendation	https://github. com/wujcan/S GL	Session Rec	SIGIR2021

For CL4Rec and SGL models, we reproduce them and run experiment with RecBole.

The code is changed relative to the original code. For example, we have added the code to count the indicators of different length series in each model. In addition, for ASReP model and BERT4Rec model, we add ablation study.

AsReP ablation study

消融实验	说明	对应参数	
findByEmbed	先计算pretrain model的item embedding,再mean pool得到seq的 embedding,	aug_mode inspire(在 run_pretrain.bash文件里更改)	
рор	随机选择top50物品,再随机增广	用到的函数在已写到util.py中, 稍作修改即可用(需在源码更 改)	
point	选择top-k物品一次性生成	aug_mode seq2point(在 run_pretrain.bash文件里更改)	
seq	按照自回归的方式生成	aug_mode seq2seq(在 run_pretrain.bash文件里更改)	
-pretrain	去掉pretrain过程	reversed_pretrain -1(在 run_finetune.bash文件里更改)	
-aud data	去掉增广数据,其实就是生成阈值M设为0	M 0(在run_finetune.bash文件 里更改)	

Usage

Environments

In every baseline model folder, if you can find the requirement.txt, you can use pip install -r requirements.txt if you use pip.

conda install --yes --file requirements.txt if you use conda.

Slurm

In every baseline folder, there is a slurm execute script.

About slurm usage,you can reference this link: https://slurm.schedmd.com/documentation.ht ml

[Note: you ought to create result folder before execute script]

[Note: you ought to modify "conda activate envname" to your environment]

```
#!/bin/bash
#SBATCH -e result/sas_ans_FT.err
#SBATCH -o result/sas_ans_FT.out
#SBATCH -J sas4recFT
```

```
#SBATCH --partition=debug
#SBATCH --nodelist=gpu03
#SBATCH --gres=gpu:1
#SBATCH --cpus-per-task=4
#SBATCH --time=999:00:00

conda activate torch1.8
python main.py
```