## MT Summer Term 2021 Ex8: A Bluffer's Guide to NNs

1. In your own words, please describe supervised machine learning. Think about data, descriptive features, labels to be predicted, finding a function that describes the data, models, model bias, parameters, error functions, what is adjusted by learning, how learning is driven by the error, how learning tries to minimise error, overfitting/underfitting the data, generalising to new unseen data, training test and development data etc. Use an example, if you find this useful.

## 2. Given the following AN:



where  $x_1=0.9$  ,  $x_2=-0.3$ ,  $x_3=1.2$ ,  $x_4=0.1$  and  $w_1=0.5$  ,  $w_2=0.8$ ,  $w_3=-1.1$  ,  $w_2=0.2$ , please compute

$$z = \sum_{i=1}^{4} x_i w_i$$

$$a = sigmoid(z)$$

3. Please write the input in (2) above as a column vector  $\mathbf{x}$ . What is the transpose  $\mathbf{x}^T$  of  $\mathbf{x}$ ? Please write the weights in (2) above as a column vector  $\mathbf{w}$ . What is the transpose  $\mathbf{w}^T$  of  $\mathbf{w}$ ?



4. Vectorise the AN in (2) above: please express the same AN as in (2) above in terms of an input column vector **x** and a weight column vector **w** (with the same values as in (2) above) in terms of an inner product between the vectors and an element-wise application of the sigmoid to the result of the inner product. Please do this once with **w** followed by **x**, and once the other way around. (Make sure you remember how to place the transpose to make this work).



5. Please complete the definition of the sigmoid below

$$sigmoid(z) = \cdots$$

and draw the sigmoid function in a coordinate system where  $z \in [-5, 5]$  and  $\operatorname{sigmoid}(z) \in [-0.5, 1.5]$ . What are  $\operatorname{sigmoid}(0)$ ,  $\operatorname{sigmoid}(-4)$  and  $\operatorname{sigmoid}(4)$ ?

6. Please work out the inner product between the following two matrices:

$$\left(\begin{array}{cc}1&2\\3&4\end{array}\right)\left(\begin{array}{cc}5&6\\7&8\end{array}\right)=$$

7. Given the following simple FFNN, please compute the activations (the outputs) of the two ANs in layer 2. Please assume that layer 1 ANs are just input neurons ("sensors") without activation functions, and that layer 2 ANs have sigmoid activation functions.





8. Please vectorise the simple FFNN in (7) above: define an input column vector  $\mathbf{I}$  and a weight matrix  $\mathbf{W}$  such that output column vector  $\mathbf{O} = \text{sigmoid}(\mathbf{W} \cdot \mathbf{I})$ , where "·" is the inner product, and  $\mathbf{I}$  and  $\mathbf{O}$  are column vectors.



9. Can you do the same thing as in (8 above) but where  $\mathbf{0} = \operatorname{sigmoid}(\mathbf{I} \cdot \mathbf{W}^T)$ , where "·" is the inner product, and  $\mathbf{I}$  and  $\mathbf{0}$  are row vectors. (Please make sure you adapt  $\mathbf{W}$  from (8) above in the right way for this to work).



10. Why do we vectorise ANs and ANNs?

## 11. Given the following FFNN



with

$$I = \begin{pmatrix} 0.9 \\ 0.1 \\ 0.8 \end{pmatrix} \qquad W_{input.hidden} = \begin{pmatrix} 0.9 & 0.3 & 0.4 \\ 0.2 & 0.8 & 0.2 \\ 0.1 & 0.5 & 0.6 \end{pmatrix} \qquad W_{hidden,output} = \begin{pmatrix} 0.3 & 0.7 & 0.5 \\ 0.6 & 0.5 & 0.2 \\ 0.8 & 0.1 & 0.9 \end{pmatrix}$$

please work out:

$$\mathbf{X}_{\text{hidden}} = \mathbf{W}_{\text{input\_hidden}} \cdot \mathbf{I}$$
  $\mathbf{O}_{\text{hidden}} = \text{sigmoid}(\mathbf{X}_{\text{hidden}})$   $\mathbf{X}_{\text{output}} = \mathbf{W}_{\text{hidden\_output}} \cdot \mathbf{O}_{\text{hidden}}$ 

and:

$$O_{output} = \text{sigmoid}(X_{output})$$