Quiz 2: Control Systems Eng. 2019/05/14

Student Number: [] Name:

- 1. (20 points = 2×10 pts)
- (1) Find the transfer function using Mason's rule of the signal flow graph shown below.

(2) Find A, B, C, D for the state-space representation of the signal flow graph shown below.

- 2. (20 points = 2×10 pts) An unit step input is applied to the following system.
- (1) Find the transfer function (Y(s)/R(s)).
- (2) Find the steady-state error, $\lim_{t\to\infty} e(t)$, where e(t) = r(t) y(t).

3. (20 points) Determine the condition of K using Routh-Hurwitz criterion so that the following system is stable.

G(s)
$$Y(s)$$
 $G(s) = \frac{K}{s(s^2 + s + 1)(s + 4)}, K > 0$

4. (20 points) Show the region of the K-T plane in which the following feedback system is stabilized.

$$G(s) = \frac{K(1+s)}{s(1+Ts)(1+2s)}$$
 with $K > 1, T > 1$

5. (20 points) Determine the value of ' α ' to have a zero steady-state error $(\lim_{t\to\infty} e(t))$ for a step input in the following feedback system.

$$R(s)$$
 $\xrightarrow{+}$ $e(t)$ $G(s)$ $H(s)$

$$G(s) = \frac{s+1}{s^2 + 5s + \alpha}$$

$$H(s) = \frac{1}{s+4}$$

$$E(s) = R(s) - H(s)Y(s)$$