Blatt02

Toma-Stefan Cezar (Matr. 7678219), Elham Amini (Matr. 7606587) November 2022

Neue Abgabegruppen!

Inhaltsverzeichnis

1	Auf	gabe 1	. A																									2
	1.1	Induk	tionsanfang																			 						2
	1.2		tionsschritt																									2
${f 2}$	Auf	gabe 1	В																									3
_																						 						3
		2.1.1	Induktionsanfang .																									3
		2.1.2	Induktionsschritt																									3
	2.2	Teil 2																										3
		2.2.1	Induktionsanfang .																			 						3
		2.2.2	Induktionsschritt																									3
		2.2.3	Zusammenfassung																			 						3
3			tionsanfang tionsschritt																									4 4 4
	5.2	maak		•	•	•	•	•	•	•		•	•	•	 •	•	•	•	 •	•	•	 •	•	•	•	•	•	7
4	Aufgabe 3A														5													
5	Aufgabe 3B											5																

1 Aufgabe 1A

Beweisen Sie durch vollständige Induktion:

$$\forall n \in \mathbb{N}, n \ge 1 : \sum_{k=1}^{n} k(k+1) = \frac{1}{3}n(n+1)(n+2)$$

1.1 Induktionsanfang

Die Aussage gilt für n=1, da

$$\sum_{k=1}^{1} k(k+1) = \frac{1}{3}(1+1)(1+2)$$
$$1(1+1) = \frac{6}{3}$$
$$2 = 2$$

1.2 Induktionsschritt

$$z.z: \sum_{k=1}^{n+1} k(k+1) \stackrel{!}{=} \frac{1}{3} (n+1)(n+2)(n+3)$$

Angenommen die Induktionsvoraussetzung iv : $\sum_{k=1}^{n} k(k+1) = \frac{1}{3}n(n+1)(n+2)$ stimmt.

$$\begin{split} \sum_{k=1}^{n+1} k(k+1) &= (\sum_{k=1}^{n} k(k+1)) + (n+1)(n+2) \stackrel{\text{iv}}{=} \frac{1}{3} n(n+1)(n+2) + (n+1)(n+2) \\ &= \frac{1}{3} n(n+1)(n+2) + (n+1)(n+2) \\ &= (n+1)(n+2)(\frac{1}{3}n+1) \\ &= \frac{1}{3} (n+1)(n+2)(n+3) \end{split}$$

Somit ist der Induktionsschritt $\sum_{k=1}^{n+1} k(k+1) = \frac{1}{3}(n+1)(n+2)(n+3)$ beweisen. QED

2 Aufgabe 1B

Beweisen Sie durch vollständige Induktion:

$$\forall n \in \mathbb{N}, n > 4: 2n < n^2 - 1 < 2^n - 1$$

2.1 Teil 1

2.1.1 Induktionsanfang

Die Aussage gilt für n = 4, da

$$2 \cdot 4 < 4^2 - 1 \iff 8 < 15$$

2.1.2 Induktionsschritt

$$z.z: 2(n+1) \le (n+1)^2 - 1$$

Angenommen die Induktionsvoraussetzung iv $2n \le n^2 - 1$ stimmt.

$$2(n+1) \le (n+1)^2 - 1$$

$$\iff 2n+2 \le n^2 + 2n$$

$$\stackrel{\text{iV}}{=} (n^2 - 1) + 2 \le n^2 + 2n$$

$$\iff n^2 + 1 \le n^2 + 2n$$

$$\iff 1 \le 2n$$

Diese Aussage ist erfüllt, da 2n für $n \geq 4$ immer größer ist.

2.2 Teil 2

2.2.1 Induktionsanfang

Die Aussage gilt für n=4, da

$$4^2 - 1 \le 2^4 - 1 \iff 15 \le 15$$

2.2.2 Induktionsschritt

$$z.z:(n+1)^2-1 \le 2^{n+1}-1$$

Angenommen die Induktionsvoraussetzung iv $n^2 - 1 \le 2^n - 1 \Longrightarrow n^2 \le 2^n$ stimmt.

$$(n+1)^2 - 1 \le 2^{n+1} - 1$$

$$\iff n^2 + 2n \le 2^n \cdot 2^1 - 1$$

$$\stackrel{\text{iV}}{=} n^2 \le 2n^2 - 1$$

$$\iff n^2 + 2n + 1 \le 2n^2$$

$$\iff 2n + 1 \le n^2$$

Durch Ableiten erhält man.

$$\frac{d}{dn}2n + 1 = 2$$

$$\frac{d}{dn}n^2 = 2n$$

Anhand dieser Gleichungen lässt sich erkennen, dass n^2 für n>1 schneller wächst als 2n+1, deswegen gilt die Aussage $(n+1)^2-1\leq 2^{n+1}-1$ für alle $n\geq 4$.

2.2.3 Zusammenfassung

Da 2.1 und 2.2 bewiesen sind, ist auch $\forall n \in \mathbb{N}, n \geq 4: 2n \leq n^2 - 1 \leq 2^n - 1$ bewiesen. QED

3 Aufgabe 2

Beweisen Sie durch vollständige Induktion:

$$\forall m \in \mathbb{N}, m \ge 1 : \sum_{j=0}^{m} (2j+1)(2j+3) = \frac{1}{3}(m+1)(4m^2+14m+9)$$

3.1 Induktionsanfang

Die Aussage gilt für m=1, da

$$\sum_{j=0}^{1} (2j+1)(2j+3) = \frac{1}{3}(1+1)(4\cdot(1)^2+14\cdot1+9)$$

$$(2\cdot0+1)(2\cdot0+3) + (2\cdot1+1)(2\cdot1+3) = \frac{1}{3}(1+1)(4\cdot(1)^2+14\cdot1+9)$$

$$(1\cdot3) + (3\cdot5) = \frac{1}{3}\cdot2\cdot(4+14+9)$$

$$18 = \frac{1}{3}\cdot54$$

$$18 = 18$$

3.2 Induktionsschritt

$$z.z : \sum_{j=0}^{m+1} (2j+1)(2j+3) \stackrel{!}{=} \frac{1}{3} ((m+1)+1)(4(m+1)^2 + 14(m+1) + 9)$$

$$= \frac{1}{3} (m+2)(4((m+1)(m+1)) + 14(m+1) + 9)$$

$$= \frac{1}{3} (m+2)(4((m^2 + 2m + 1^2) + 14m + 14 + 9)$$

$$= \frac{1}{3} (m+2)(4m^2 + 8m + 4 + 14m + 23)$$

$$= \frac{1}{3} (4m^3 + 8m^2 + 4m + 14m^2 + 23m + 8m^2 + 16m + 8 + 28m + 46)$$

$$= \frac{1}{3} (4m^3 + 30m^2 + 71m + 54)$$
(1)

Angenommen die Induktionsvoraussetzung iv : $\sum_{j=0}^{m} (2j+1)(2j+3) = \frac{1}{3}(m+1)(4m^2+14m+9)$ stimmt.

$$\sum_{j=0}^{m+1} (2j+1)(2j+3) = \sum_{j=0}^{m} (2j+1)(2j+3) + (2(m+1)+1)(2(m+1)+3)$$

$$\stackrel{\text{iv}}{=} \frac{1}{3}(m+1)(4m^2+14m+9) + (2(m+1)+1)(2(m+1)+3)$$

$$= \frac{1}{3} \cdot \left((m+1)(4m^2+14m+9)\right) + (2m+3)(2m+5)$$

$$= \frac{1}{3} \cdot \left((m+1)(4m^2+14m+9)\right) + (2m)^2 + 10m + 6m + 15$$

$$= \frac{1}{3} \cdot (4m^3+14m^2+9m+4m^2+14m+9) + 4m^2+10m+6m+15$$

$$= \frac{(4m^3+14m^2+9m+4m^2+14m+9)}{3} + \frac{3 \cdot (4m^2+10m+6m+15)}{3}$$

$$= \frac{4m^3+14m^2+9m+4m^2+14m+9+12m^2+48m+45)}{3}$$

$$= \frac{1}{3}(4m^3+30m^2+71m+54)$$

Da (1) und (2) gleich sind ist der Induktionsschritt bewiesen. QED

4 Aufgabe 3A

Seien A, B, C, D Mengen und $f: A \to B, g: B \to C, h: C \to D$ Abbildungen, dann definieren die Verknüpfungen $(h \circ g) \circ f$ und $h \circ (g \circ f)$ beide die Funktion h(g(f(x))) bzw. die Abbildung $h \circ g \circ f: A \to D$.

$$((h \circ g) \circ f)(x) = (h \circ g)(f(x)) = h(g(f(x)))$$
$$(h \circ (g \circ f))(x) = h((g \circ f))(x = h(g(f(x)))$$
$$h \circ g \circ f : A \to D, x \mapsto (h \circ g \circ f) := h(g(f(x)))$$

Da beide Verknüpfungen die selbe Abbildung ergeben, ist das Verknüpfen von Abbildern assoziativ. QED

5 Aufgabe 3B

Beweis durch Gegenbeispiel: Angenommen $f:A\to B$ ist surjektiv, so muss jedes Element von A einem Element aus B zugeordnet sein $\forall a\in A\exists b\in B: f(a)=b$. Die Abbildung $g:B\to A$ ordnet nun jedem Element aus B mindestens ein Element aus A zu, daher ist $(f\circ g):B\to B=\mathrm{Id}_B$. Wenn f nicht surjektiv ist, muss es mindestens ein Element in B geben, zu welchem kein Element aus A zugeordnet werden kann, somit kann das Abbild $g:B\to A$ nicht existieren, da es mindestens einem Wert aus B keinen Wert zuweisen kann. QED

5