06 ゲノムデータ解析

この講義の内容

- NGSデータ解析、特に、RNA-seqデータ解析について概略
- ・実習の準備をする
 - がんのRNA-seqデータを統合して、間質細胞から腫瘍細胞への細胞間相互作用についての仮説を導出する
- JOIN について学ぶ

NGS解析

次世代シーケンサー (Next Generation Sequencer; NGS)

- サンガー法以降、2000年代中頃から登場した、新しい DNAシーケンス技術の総称
 - 「次世代」というには登場から時間が経ちすぎていることもあり、最近ではHigh Throughput Sequencer (HTS) と呼ばれることも
- ハイスループットな塩基配列読み取り(シーケンシング)ができる

NGSの分類

- <u>第二世代 (塩基配列決定時に電気泳動を必要としない)</u>
 - Illumina の HiSeqシリーズ、MiSeq, NextSeq500, MiniSeq, iSeq100
 - BGI のBGISEQシリーズ
 - Qiagen の GeneReader
- <u>第三世代(鋳型のPCR増幅が必要ない)</u>
 - PacBio の PacBio RS, Sequel
- <u>第四世代(蛍光色素を使わない)</u>
 - Oxford Nanopore MinION, GridION X5, PromethION RnD

NGS=汎用超並列塩基配列決定装置

- NGSはライブラリDNAを入れるとシーケンシングする
- → 対象とするDNAやRNAをライブラリDNAに変換できれば、多様な生命現象を網羅的に測定可能

NGS解析の流れ

実験

情報解析

変動パターン解析

エンリッチメント解析

関連性解析

クラスタリング

RNA-seq: mRNAを試料とし、遺伝子発現量を定量

Zhong Wang et al., RNA-Seq: a revolutionary tool for transcriptomics, Nat Rev Genet. 2009 Jan; 10(1): 57–63. doi: 10.1038/nrg2484

RNA-Segデータの前処理の例

ソフトウェア・ツール

ファイル形式

FASTQフォーマット

 NGSから出力される一次データ (primary data, 生データ) はこの断片 化された塩基配列 (リード) の情報

@USSD-TL1-1227:179:C4E9UACXX:6:1101:12730:2322 1:N:0:GATCAG

- 拡張子: .fastq や .fq
- 4行で一つのリードを表す
 - 1. `@`+配列のID
 - 2. 塩基配列
 - 3. `+`

4. 各塩基の読み取り精度のスコア (Quality score)

ゲノム座標 Genome coordinate

ゲノム配列上の位置(点)を表す

染色体名:整数(端から何塩基目か)

例(1番染色体の1000塩基目):

chr1:1000

ゲノム上の区間を表す

染色体名:整数(区間の始まり)-整数(区間の終わり)

例(1番染色体の1000塩基目から1010塩基まで):

chr1:1000-1010

遺伝子のゲノム上での表現

- ・ゲノム
 - エキソンとイントロン
 - =ゲノム上の区間の集合
- pre-mRNA
 - エキソンとイントロン
- mRNA
 - ・エキソン

RNA-seqデータを遺伝子発現データに変換する

- マッピング:RNA-seqのリードを、塩基配列が一致する遺伝子に割り当てる
- 発現量定量:遺伝子ごとに割り当てられたリードの数をカウントする

https://www.otogenetics.com/rna-sequencing-vs-microarray/

がんのRNA-seqデータの統合

非小細胞肺癌 (non-small-cell lung cancer; NSCLC)

• 問い: NSCLCにおいて、腫瘍組織内に存在する間質細胞から腫瘍細胞にシグナルのクロストークが起こって腫瘍が活性化されるか?

データの出どころ

- Toi et al., Transcriptome Analysis of Individual Stromal Cell Populations Identifies Stroma-Tumor Crosstalk in Mouse Lung Cancer Model, Cell Reports (2015)
- https://doi.org/10.1016/j.celrep.2015.01.040

非小細胞肺癌 (non-small-cell lung cancer; NSCLC)

- 計測: RNA-seqデータ
- ・ サンプル:
 - マクロファージ、単球細胞、好中球、上皮細胞(NSCLCモデルマウスと野生型のマウスの肺からセルソーターで分けた)
 - Total lung cells
- 種:マウス

非小細胞肺癌 (non-small-cell lung cancer; NSCLC)

Cells	Surface markers
Total lung cells	
Macrophages (Tumor)	CD11c+ CD11b+
Macrophages (WT)	CD11c+ CD11b-
Neutrophils	CD11b+ Ly6G+
Monocytes	CD11b+ Ly6C+
Epithelial cells	Epcam+ CD11c-

方針

- 1. 間質細胞において「正常組織由来のサンプル」に比べて「腫瘍組織由来のサンプル」で 発現量が増加している遺伝子群を抽出する
- 2. 腫瘍組織において正常組織において発現量が増加している遺伝子群を抽出する
- 3. 「1.に含まれるリガンド」と「2.に含まれる受容体(レセプター)」をリガンド・受容体のペアのデータベースと比較する

JOINについて

表形式データについて

Gene ID	Case	Control
7 1	-	
104	U	400
	000	F
701	7	2
′ – '	'	
(0	1400	1
	12	

行: サンプル 列: 変数 (属性)

JOIN は2つの表を結合すること

Gene ID	Case	Control
104	10	400
905	980	50
721	41	39
98	1200	40

Pathway	Gene ID
Pathway A	104
Pathway B	501
Pathway C	721
Pathway B	98
Pathway C	110

キー:2つの表に共通に存在し、

結合するために使う列

2つの表をどう結合するか

Gene ID	Case	Control
104	10	400
905	980	50
721	41	39
98	1200	40

Pathway	Gene ID
Pathway A	104
Pathway B	501
Pathway C	721
Pathway B	98
Pathway C	110

Left join Right join Inner join Outer join

Inner join: 両方の表に存在するキーの行だけが残る

Gene ID	Case	Control
104	10	400
905	980	50
721	41	39
98	1200	40

Pathway	Gene ID
Pathway A	104
Pathway B	501
Pathway C	721
Pathway B	98
Pathway C	110

Gene ID	Case	Control	Pathway
104	10	400	Pathway A
721	41	39	Pathway C
98	1200	40	Pathway B

Left join: 左の表に存在する行が残る

Gene ID	Case	Control
104	10	400
905	980	50
721	41	39
98	1200	40

Pathway	Gene ID
Pathway A	104
Pathway B	501
Pathway C	721
Pathway B	98
Pathway C	110

Gene ID	Case	Control	Pathway
104	10	400	Pathway A
905	980	50	
721	41	39	Pathway C
98	1200	40	Pathway B

Right join: 右の表に存在する行が残る

Gene ID	Case	Control
104	10	400
905	980	50
721	41	39
98	1200	40

Pathway	Gene ID
Pathway A	104
Pathway B	501
Pathway C	721
Pathway B	98
Pathway C	110

Gene ID	Case	Control	Pathway
104	10	400	Pathway A
721	41	39	Pathway C
98	1200	40	Pathway B
501	_	_	Pathway B
110	_	_	Pathway C

Outer join: 少なくとも一方に存在する行が残る

Gene ID	Case	Control
104	10	400
905	980	50
721	41	39
98	1200	40

Pathway	Gene ID
Pathway A	104
Pathway B	501
Pathway C	721
Pathway B	98
Pathway C	110

Gene ID	Case	Control	Pathway
104	10	400	Pathway A
501	_	-	Pathway B
905	980	50	_
721	41	39	Pathway C
98	1200	40	Pathway B
110	-	-	Pathway C

pandas で join ができる

- pandas.merge
 - https://www.tutorialspoint.com/python_pandas/ python_pandas_merging_joining.htm

