Протоколы Интернета (Сети II)

Солодушкин Святослав Игоревич, доцент кафедры вычислительной математики, каб. 613. Учебный план:

одна лекция и одна практика в неделю;

в конце семестра экзамен;

в середине семестра коллоквиум.

- Для допуска к экзамену необходимо сдать обязательные задачи в течение семестра.
- Экзамен начинается с inetmin'a. На экзамене два вопроса.
- Если коллоквиум сдан, то с экзамена снимается один вопрос.

Задачи на практике, баллы

Обязательные задачи и сроки их сдачи: низкий уровень — 1 апреля, кэширующий DNS сервер — 6 мая, HTTP-proxy или API — 27 мая.

Постановки задач и баллы см. http://solod.zz.mu/edu/inet/

Итоговый балл = 0.5*Балл_семестр + 0.5*Балл_экзамен.

Балл_семестр = за работу на парах + сдачу задач.

Балл_экзамен = за ответ на экзамене, не более 100 баллов.

Итоговый балл	Оценка
81 и более	Отлично
61 – 80	Хорошо
41 – 60 (+ сдан inetmin)	Удовлетворительно
менее 40	Неудовлетворительно

Лекция № 1. Маршрутизация Введение и мотивировка

Технология канального уровня Ethernet предполагает общий доступ к среде и широковещательные рассылки.

Для изоляции трафика сеть делят на подсети, ограниченные маршрутизаторами.

Для продвижения трафика между сетями необходимо поддерживать актуальные таблицы маршрутизации.

Существуют различные протоколы маршрутизации: RIP, OSPF, IS-IS, EIGRP, имеющие свои плюсы и минусы.

Маршрутизация

Маршрутизация (англ. Routing) — процесс определения маршрута следования информации в сетях связи.

Gateway of last resort is 0.0.0.0 to network 0.0.0.0

10.0.0/30 is subnetted, 3 subnets

- C 10.0.0.0 is directly connected, FastEthernet0/1
- C 10.0.0.4 is directly connected, Serial0/0/1
- R 10.0.0.8 [120/1] via 10.0.0.1, 00:00:06, FastEthernet0/1 [120/1] via 10.0.0.5, 00:00:05, Serial0/0/1
- R 192.168.1.0/24 [120/1] via 10.0.0.1, 00:00:06, FastEthernet0/1
- C 192.168.2.0/24 is directly connected, FastEthernet0/0
- S* 0.0.0.0/0 is directly connected, FastEthernet0/0

	1 байт	2 байта	3	байта	4 байта	
	клас	ера сети са В емое поле) 44	№ подсети	узлов (адресов адресное ранство)	
1	10000001	00101100	00	111111	11111111	Сеть 129.44.0.0 Маска 255.255.192.0 Диапазон номеров узлов от 0 до 2 ¹⁴
странство 216	ายนนนบบ1	00101100	0 1	000000	11111111	Сеть 129.44.64.0 Маска 255.255.192.0 Диапазон номеров узлов от 0 до 2 ¹⁴
Адресное пространство	10000001	00101100	10	000000	11111111	Сеть 129.44.128.0 Маска 255.255.192.0 Диапазон номеров узлов от 0 до 2 ¹⁴
	1000±001 10000001 10000001	00101100 00101100 00101100	111	000000 000000 000000	00000000 00000001 00000010	Сеть 129.44.192.0 Маска 255.255.192.0
	Неи	спользован	ные	адреса (2	17 - 4)	Диапазон номеров узлов от 0 до 2 ¹⁴
*	10000001	00101100	11	111111	11111111	7,5000.0402

129.44.0.0 129.44.128.0 129.44.192.1 129.44.192.1 129.44.192.0 255.255.255.252 Подключена

129.44.128.2

129.44.192.2

129.44.128.1

129.44.192.1

1

255.255.224.0

0.0.0.0

129.44.224.0

0.0.0.0

Перекрытие адресных пространств

Таблица маршрутизации для R2						
131.75.8.0 255.255.252.0 131.57.8.2 131.57.8.2 Подключена						
131.75.9.0	255.255.255.0	131.57.9.1	131.57.9.1	Подключена		
131.75.9.16	255.255.255.240	131.57.8.1	131.57.8.2	1		
131.75.9.32	255.255.252	131.57.8.1	131.57.8.2	1		

Classless Inter-Domain Routing

Каждому поставщику услуг Интернета назначается непрерывный диапазон IP-адресов.

Все адреса каждого поставщика услуг имеют общую старшую часть — префикс, поэтому маршрутизация на магистралях Интернета может осуществляться на основе префиксов, а не полных адресов сетей.

Достаточно поместить одну запись сразу для всех сетей, имеющих общий префикс.

Routing Information Protocol

RIP – протокол динамической маршрутизации, относящийся к дистанционно-векторным (Distance Vector) протоколам.

Очень простой. Применяется в небольших сетях. В качестве метрики использует число переходов (хопов).

Использует алгоритм Форда-Беллмана для нахождения кратчайшего пути.

Протокол внутридоменной маршрутизации.

Создан в: 1969 г.

Порт: 520/UDP

Спецификация: RFC 1058 (v1), RFC 2453 (v2)

Номер сети	Адрес следующего маршрутизатора	Порт	Метрика
201.36.14.0	201.36.14.3	1	1
132.11.0.0	132.11.0.7	2	1
194.27.18.0	194.27.18.1	3	1

Номер сети	Адрес следующего маршрутизатора	Порт	Метрика
132.11.0.0	132.11.0.101	1	1
132.17.0.0	132.17.0.1	2	1
132.15.0.0	132.15.0.6	3	1

Получение RIP-сообщений от соседей и обработка

Номер сети	Адрес следующего маршрутизатора	Порт	Метрика
201.36.14.0	201.36.14.3	1	1
132.11.0.0	132.11.0.7	2	1
194.27.18.0	194.27.18.1	3	1
132.11.0.0	132.11.0.101	2	2
132.17.0.0	132.11.0.101	2	2
132.15.0.0	132.11.0.101	2	2
194.27.18.0	194.27.18.51	3	2
194.27.19.0	194.27.18.51	3	2
202.101.15.0	194.27.18.51	3	2

Получение RIP-сообщений от соседей и обработка

Номер сети	Адрес следующего маршрутизатора	Порт	Метрика
201.36.14.0	201.36.14.3	1	1
132.11.0.0	132.11.0.7	2	1
194.27.18.0	194.27.18.1	3	1
132.11.0.0	132.11.0.101	2	2
132.17.0.0	132.11.0.101	2	2
132.15.0.0	132.11.0.101	2	2
194.27.18.0	194.27.18.51	3	2
194.27.19.0	194.27.18.51	3	2
202.101.15.0	194.27.18.51	3	2

Алгоритм Форда-Беллмана

```
Дан граф (V, E).
Найти расстояния от источника з до всех вершин
for v in V
      do d[v] := +infty
d[s] := 0
for i :=1 to |V|-1
      do for (u,v) in E
             if d[v] > d[u] + w(u,v)
                    then d[v] := d[u] + w(u,v)
return d
```


Номер сети (R2)	Адрес следующего маршрутизатора	Порт	Метрика
201.36.14.0	132.11.0.7	1	2

Номер сети (R1)	Адрес следующего маршрутизатора	Порт	Метрика
201.36.14.0	132.11.0.101	2	3

Расщепление горизонта — метод борьбы с проблемой петель, образующихся между соседними маршрутизаторами. Заключается в том, что информация, хранящаяся в таблице маршрутизации не передается маршрутизатору, от которого она получена.

Методы предотвращения зацикливания по составным петлям.

triggered updates – обновления, инициируемые немедленно, при возникновении изменений в топологии сети, содержат обновленную информацию о маршрутизации, которая отражает эти изменения.

hold down – введение таймаута на принятие новых данных о сети, которая стала только что недоступной.

Методы предотвращения зацикливания по составным петлям.

poison reverse — когда обрывается связь с сетью, анонсирующий ее маршрутизатор сохраняет в своей таблице данные об этой сети на время посылки нескольких периодических сообщений об обновлении. При этом в широковещательных сообщениях указывается бесконечная стоимость маршрута к сети, с которой отсутствует связь.

Рекомендуемая литература

Данная лекция составлена по книге Олифер В.Г. Олифер Н.А.

Компьютерные сети: принципы, технологии, протоколы.

4-е изд. – СПб.: Питер, 2010. – 944 с.

Гл. 16. Протоколы межсетевого взаимодействия, стр. 517 – 533.

Гл. 17. Базовые протоколы ТСР/ІР, стр. 572 — 581.