Working on the training data

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import ConfusionMatrixDisplay

df=pd.read_csv('instagram_user.csv')
df=df.iloc[:,:12]
df.sample(5)
```

Out[70]:		profile pic	nums/length username	fullname words	nums/length fullname	name==username	description length	extema URI
	42	1	0.00	2	0.0	0	23	(
	313	0	0.00	1	0.0	0	0	(
	212	1	0.00	2	0.0	0	62	
	494	0	0.20	1	0.0	0	0	(
	195	1	0.14	2	0.0	0	0	(
	4							•

In [71]: # check for the missing values
df.shape

Out[71]: (576, 12)

In [72]: df.describe()

Out[72]:

	profile pic	nums/length username	fullname words	nums/length fullname	name==username	description length
coun	t 576.000000	576.000000	576.000000	576.000000	576.000000	576.000000
meai	0.701389	0.163837	1.460069	0.036094	0.034722	22.623264
sto	0.458047	0.214096	1.052601	0.125121	0.183234	37.702987
miı	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.000000	0.000000	1.000000	0.000000	0.000000	0.000000
50%	1.000000	0.000000	1.000000	0.000000	0.000000	0.000000
75%	1.000000	0.310000	2.000000	0.000000	0.000000	34.000000
max	1.000000	0.920000	12.000000	1.000000	1.000000	150.000000

In [73]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 576 entries, 0 to 575 Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	profile pic	576 non-null	int64
1	nums/length username	576 non-null	float64
2	fullname words	576 non-null	int64
3	nums/length fullname	576 non-null	float64
4	name==username	576 non-null	int64
5	description length	576 non-null	int64
6	external URL	576 non-null	int64
7	private	576 non-null	int64
8	#posts	576 non-null	int64
9	#followers	576 non-null	int64
10	#follows	576 non-null	int64
11	fake	576 non-null	int64

dtypes: float64(2), int64(10)

memory usage: 54.1 KB

In [74]: # number of unique values in dataframe

df.nunique()

```
Out[74]: profile pic
                                      2
          nums/length username
                                     54
                                      9
          fullname words
                                     25
          nums/length fullname
                                      2
          name==username
          description length
                                    104
          external URL
                                      2
                                      2
          private
                                    193
          #posts
          #followers
                                    372
          #follows
                                    400
          fake
                                      2
          dtype: int64
```

CORRELATION MATRIX BETWEEN EACH FEATURE

```
In [76]: correlation=df.corr()
  plt.subplots(figsize=(15,5))
  sns.heatmap(correlation,annot=True)
  plt.title('Correlation Matrix')
  plt.show()
```


EDA

```
In [78]: df.hist(figsize=(10,10))
  plt.title('EDA of feature')
  plt.show()
```


• Profile picture (Fake vs genuine)

```
In [80]: print(df['profile pic'].value_counts())
    sns.barplot(x='fake', y='profile pic', data=df)
    plt.show()

    profile pic
    1    404
    0    172
    Name: count, dtype: int64
```


In [81]: sns.regplot(data=df,x='nums/length username',y='fake')

Out[81]: <Axes: xlabel='nums/length username', ylabel='fake'>

Followers VS fake

```
In [83]: # Followers column
bins=[0,25,50,100,200,300,500,1000,5000,10000]
df['followers_bins']=pd.cut(df['#followers'],bins=bins)
plt.subplots(figsize=(15,8))
plt.title('Followers Range (Fake VS Genuine)')
sns.countplot(data=df,x='followers_bins',hue='fake')
plt.show()
```


Follows which are fake

```
In [85]: # Follows column which are fake
bins=[0,25,50,100,200,300,500,1000,5000,10000]
df['follows_bins']=pd.cut(df['#follows'],bins=bins)
plt.subplots(figsize=(15,8))
plt.title('Follows Range (Fake VS Genuine)')
sns.countplot(data=df,x='follows_bins',hue='fake')
plt.show()
```


In [86]: # Now removing the follows_bin and followers_bin for further process
 df=df.drop(columns=['follows_bins','followers_bins'])
 df.head()

Out[86]:		profile pic	nums/length username	fullname words	nums/length fullname	name==username	description length	external URL
	0	1	0.27	0	0.0	0	53	0
	1	1	0.00	2	0.0	0	44	0
	2	1	0.10	2	0.0	0	0	0
	3	1	0.00	1	0.0	0	82	0
	4	1	0.00	2	0.0	0	0	0
	4							•

• Private account (Fake vs Genuine)

```
In [88]: sns.countplot(data=df,x='private',hue='fake')
  plt.title('Private account (Fake VS Genuine)')
  plt.legend()
  plt.show()
```

Private account (Fake VS Genuine)

• outlier detection

In [90]: df.plot(kind='box', subplots=True, layout=(4,4), figsize=(10,10))

Out[90]: profile pic nums/length username fullname words nums/length fullname name==username description length external URL private #posts #followers #follows fake

dtype: object

Axes(0.125,0.712609;0.168478x0.167391)
Axes(0.327174,0.712609;0.168478x0.167391)
Axes(0.529348,0.712609;0.168478x0.167391)
Axes(0.731522,0.712609;0.168478x0.167391)
Axes(0.125,0.511739;0.168478x0.167391)
Axes(0.327174,0.511739;0.168478x0.167391)
Axes(0.529348,0.511739;0.168478x0.167391)
Axes(0.731522,0.511739;0.168478x0.167391)
Axes(0.125,0.31087;0.168478x0.167391)
Axes(0.327174,0.31087;0.168478x0.167391)
Axes(0.529348,0.31087;0.168478x0.167391)
Axes(0.529348,0.31087;0.168478x0.167391)
Axes(0.731522,0.31087;0.168478x0.167391)

calculating accuracy score

```
In [92]: from sklearn.preprocessing import StandardScaler
         from sklearn.ensemble import RandomForestClassifier, BaggingClassifier
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score
         from sklearn.metrics import accuracy score
         import numpy as np
         # Splitting features and target
         x = df.drop(columns=['fake'])
         y = df['fake']
         # Train-test split
         x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_sta
         # Scaling the training and testing data
         scaler = StandardScaler()
         x_train = scaler.fit_transform(x_train)
         x test = scaler.transform(x test)
         # Initial Random Forest model
         clf = RandomForestClassifier(n estimators=100, random state=42)
         clf.fit(x_train, y_train)
         y_pred = clf.predict(x_test)
```

```
# Accuracy before GridSearchCV
 accuracy = accuracy score(y test, y pred) * 100
 print('Accuracy before GridSearchCV:', accuracy)
 # GridSearchCV
 param grid = {
     'n_estimators': [50, 100, 200],
     'max_depth': [None, 10, 20],
     'min samples split': [2, 5]
 grid_search = GridSearchCV(estimator=clf, param_grid=param_grid, cv=10, scoring='ac
 grid search.fit(x train, y train)
 # Best model from grid search
 best model = grid search.best estimator
 y pred best = best model.predict(x test)
 best_accuracy = accuracy_score(y_test, y_pred_best) * 100
 print("Accuracy after GridSearchCV:", best accuracy)
 # Bagging with Decision Tree
 bag = BaggingClassifier(
     estimator=DecisionTreeClassifier(),
     n estimators=100,
     random state=42
 bag.fit(x_train, y_train) # Corrected this line
 y pred1 = bag.predict(x test)
 print('Accuracy after Bagging technique:', accuracy_score(y_test, y_pred1) * 100)
 # Cross-validation score using DecisionTree
 clf_dt = DecisionTreeClassifier(random_state=42)
 scores = cross_val_score(clf_dt, x, y, cv=25, scoring='accuracy')
 print("Accuracy with DecisionTree (25-fold CV):", np.mean(scores) * 100)
Accuracy before GridSearchCV: 93.0635838150289
Accuracy after GridSearchCV: 93.0635838150289
Accuracy after Bagging technique: 93.0635838150289
Accuracy with DecisionTree (25-fold CV): 88.35507246376812
```

visualize confusion matrix

Confusion Matrix:

[[89 8] [4 72]]

Classification Report:

	precision	recall	f1-score	support
0	0.96	0.92	0.94	97
1	0.90	0.95	0.92	76
accuracy			0.93	173
macro avg	0.93	0.93	0.93	173
weighted avg	0.93	0.93	0.93	173

plotting feature importance

```
In [157... from sklearn.ensemble import RandomForestClassifier

rf = RandomForestClassifier(random_state=42)
    rf.fit(x_train, y_train)
    importances = rf.feature_importances_
    feature_importance_series = pd.Series(importances, index=x.columns)
    print("Feature Importances:\n", feature_importance_series.sort_values(ascending=Fal

plt.barh(x.columns,clf.feature_importances_,color='green')
    plt.title('Features vs target column(fake)')
    plt.xlabel('feature importance')
```

```
plt.ylabel('feature')
# It shows that '#followers' column is most proportional to the detection of fake
```

```
Feature Importances:
 #followers
                         0.301345
#posts
                        0.239232
nums/length username
                        0.131646
profile pic
                        0.105637
#follows
                        0.075417
description length
                        0.065220
fullname words
                        0.049328
private
                        0.012381
nums/length fullname
                        0.009872
external URL
                        0.007455
name==username
                        0.002467
dtype: float64
```

Out[157... Text(0, 0.5, 'feature')

In [153... # Final dataset would look as :
 df.sample(5)

Out[153		profile pic	nums/length username	fullname words	nums/length fullname	name==username	description length	extema URI
	165	1	0.00	6	0.00	0	117	
	529	0	0.44	1	0.00	0	0	(
	103	1	0.00	1	0.00	0	28	(
	67	1	0.00	1	0.00	0	42	(
	294	0	0.22	1	0.22	0	43	(
	4							•
In []:								