## Mini test 1 MAT-2910 Analyse numérique pour ingénieurs

- Cet examen contient 3 page(s) et 2 exercices.
- Durée de l'examen : 50 minutes
- Calculatrice autorisée

## Exercice 1: [35 points]

1) Donner les étapes de l'algorithme de bissection (condition initiale, étapes dans la boucle et hypothèses assurant la convergence)

**Solution :** La fonction f doit être continue. On part de deux points  $x_1$  et  $x_2$  tels que  $f(x_1)f(x_2) < 0$ . A chaque étape on dispose de  $x_n$  et  $x_{n+1}$  tel que  $f(x_n)f(x_{n-1}) < 0$ . On calule le point milieu  $x_{n+1}$  et on recommence l'algorithme sur l'intervalle où l'on détecte un changement de signe.

2) Soit g la fonction définie par  $g(x) = x^2 + 2x$ . Déterminer ses point fixes, l'ordre de convergence de la suite  $x_{n+1} = g(x_n)$  correspondant attendu et les caractériser (répulsifs, attractifs ou indéterminés). Enfin, pour  $x_0 = 2$ , calculer  $x_1$  et  $x_2$ .

**Solution :** On pose l'équation  $x^2 + 2x - x = 0$ , c'est à dire  $x^2 + x = 0$ . Les points fixes sont 0 et -1. La dérivée est g'(x) = 2x + 2 : g'(0) = 2 (point fixe répulsif pas de convergence) et g'(-1) = 0 (point fixe attractif et convergence quadratique). Enfin partant de 2 l'algorithme de point fixe donne  $x_1 = 2^2 + 2 \times 2 = 8$  et  $x_2 = x_1^2 + 2x_1 = 64 + 16 = 80$ .

## Exercice 2: [65 points]

On considère le triangle suivant :



On note x = CB et y = AC. On mesure approximativement  $x^* = 1.20$  et  $y^* = 2$  avec des erreurs respectives  $\Delta x = 0.01$  et  $\Delta y = 0.1$ . A l'aide de ces mesures on désire retrouver une approximation de l'angle  $\alpha$  et la précision de notre calcul. Celui-ci est donné par la formule  $\alpha = \arcsin(\frac{x}{y})$ .

1) On pose  $D^* = \frac{x^*}{y^*}$ . Déterminer la formule de propagation d'erreur pour l'opération de division et calculer  $\Delta D$  et  $D^*$ .

Solution: on a

$$\Delta D = \frac{|y^*| \, \Delta x + |x^*| \, \Delta y}{|y^*|^2} = 0.035$$

et  $D^* = 0.6$ 

2) Déterminer le polynome  $P_2(h)$  de Taylor de la fonction  $f = \arcsin$  de degré 2 en 0.5 et donner sa factorisation de Hörner. On rappelle que  $\arcsin(0.5) = \frac{\pi}{6}$ ,  $f'(x) = (1 - x^2)^{-\frac{1}{2}}$ , que  $f^{(2)}(x) = \frac{x}{(1 - x^2)^{\frac{3}{2}}}$ ,  $f^{(3)}(x) = \frac{1 + 2x^2}{(1 - x^2)^{\frac{5}{2}}}$  et que  $f^{(4)} = \frac{3x(2x^2 + 3)}{(1 - x^2)^{\frac{7}{2}}}$ 

**Solution :** La fonction arcsin est définie sur [-1,1], infiniment dérivable sur ]-1,1[. On a :

$$\arcsin'(x) = (1 - x^2)^{-\frac{1}{2}}$$

$$\arcsin^{(2)}(x) = \frac{x}{(1-x^2)^{\frac{3}{2}}} = x(1-x^2)^{-\frac{3}{2}}$$

On écrit le développement de Taylor avec  $x_0 = 0.5$ :

$$f(x_0 + h) = \frac{\pi}{6} + \frac{2h}{\sqrt{3}} + \frac{h^2}{2} \frac{1}{2} \left(\frac{4}{3}\right)^{\frac{3}{2}} + R_2(h)$$
$$= \frac{\pi}{6} + \frac{2h}{\sqrt{3}} + \frac{2h^2}{3\sqrt{3}} + R_2(h)$$

La factorisation de Hörner du polynome :

$$\frac{\pi}{6} + h(\frac{2}{\sqrt{3}} + \frac{2h}{3\sqrt{3}})$$

3) Calculer  $\alpha^* = \arcsin(D^*)$  à l'aide du polynome de Taylor trouvé.

**Solution**:  $f(0.6) \approx P_2(0.1) = 0.6429178$ .

4) Déterminer la formule du reste de développement de Taylor d'ordre 2 en 0.5 (dans le cas de la fonction arcsin).

**Solution:** 

$$\arcsin^{(3)}(x) = (1+2x^2)(1-x^2)^{-\frac{5}{2}}$$

Donc le reste  $R_2$  s'écrit avec un  $\xi$  compris entre 0.5 et 0.5+h :

$$R_2(h) = (1 + 2\xi^2)(1 - \xi^2)^{-\frac{5}{2}} \frac{h^3}{6}$$

5) Trouver une majoration du reste en supposant que  $x_0 + h > 0$  (on pourra étudier les variations de la fonction  $f^{(3)}$ ). A l'aide de cette majoration donner l'ordre de l'approximation et le nombre de chiffres significatifs de l'approximation  $\alpha^*$  trouvée.

**Solution :** Pour trouver une majoration du reste, on doit éliminer  $\xi$ . On étudie la fonction  $f^{(3)}$ . Sa dérivée est :

$$f^{(4)}(x) = \frac{3x(2x^2+3)}{(1-x^2)^{-\frac{7}{2}}}$$

La dérivée change de signe en 0, négative à gauche de 0 et positive à droite. La fonction  $f^{(3)}$  est donc croissante sur [0,1[ et décroissante sur ]-1,0]. Comme  $x_0+h>0$ , on majore le reste suivant le signe de h (on note par ailleurs que le minimum de  $f^{(3)}$  est atteint en 0 et qu'il est égal à  $f^{(3)}(0) = 1$ , donc  $f^{(3)}$  est positive). Si h < 0,  $0 \le f^{(3)}(0.5 + h) \le f^{(3)}(0.5)$  donc

$$|R_2(h)| \le |f^{(3)}(0.5)| \frac{|h|^3}{6}$$

Si h > 0,  $f^{(3)}(0.5 + h) \ge f^{(3)}(0.5) \ge 0$  donc

$$|R_2(h)| \le |f^{(3)}(0.5+h)| \frac{h^3}{6}.$$

L'approximation est d'ordre 3.

On fait le calcul pour h = 0.1:

$$|R_2(h)| \le f^{(3)}(0.6)\frac{h^3}{6}.$$

et  $f^{(3)}(0.6) = 5.2490234375$  donc

$$|R_2(h)| \le f^{(3)}(0.6) \frac{0.1^3}{6} = 0.000874 = 0.874 \times 10^{-3} \le 0.5 \times 10^{-2}$$

Le nombre de chiffres significatifs est de 2 : 6 et 4.

6) En calculant l'erreur "exacte" donnée par une calculatrice pour deux valeurs, vérifier votre réponse concernant l'ordre.

**Solution :** L'erreur exacte dans le cas de f(0.6) est  $E_1 = 0.000583278$  et dans le cas de f(0.7) est  $E_2 = 0.00546261$ . On quotiente :

$$\frac{E_2}{E_1} = 9.357$$

On n'est pas loin de  $8 = 2^3$ , donc ordre 3.

7) Calculer l'erreur faite en approchant  $\alpha = \arcsin(D)$  par  $P_2(D^*)$ .

## Solution:

$$|\arcsin(D) - P_2(D^*)| \le |\arcsin(D) - \arcsin(D^*)| + |\arcsin(D^*) - P_2(D^*)|$$
  
 $\le |f'(D^*)| \Delta D^* + |R_2(h)|$   
 $< 0.04375 + 0.000874 = 0.044624$ 

Dans cet exemple l'erreur de propagation est plus forte que l'erreur de troncature