Metody selekcji zmiennych w modelach skoringowych Modelowanie dla Biznesu 2019

dr Sebastian Zając, dr Karol Przanowski

Instytut Statystyki i Demografii Zakład Analizy Historii Zdarzeń i Analiz Wielowymiarowych

28.11.2019

Analiza danych

Nie bój się – to tylko synonimy analityki

S.Zając et al. (SGH) 28.11.2019

2/21

Zastosowanie ... danych

PRZYKŁADY BRANŻ, W KTÓRYCH MODELE PREDYKCYJNE MOGĄ BYĆ WYKORZYSTYWANE

FINANSE

- o Fundusze inwestycyjne i gwarancyjne
- Ubezpieczenia
- o Kredyty / Leasing/ Faktoring
- Windykacja
- Ochrona przed nadużyciami

MARKETING

- Częstotliwości i rodzaj kontaktu z klientem
- Programy lojalnościowe
- · Retencja w usługach abonamentowych
- Promocje cenowe
- Sprzedaż internetowa

INNE

- Centra usług wspólnych
- o Punkty masowej obsługi klienta
- Domy wysyłkowe
- Logistyka
- o Firmy windykacyjne

NAUKA

Prosty przykład

ZAŁOŻENIA: Wysyłamy wszystkim ○20 tvs. Klientów Przychody: 28 000 000 Koszty: 35 000 000 348 kampanii marketingowych Zvsk: -7 000 000 rocznie Całkowicie nieopłacalne ○~7 mln decvzji – wysłać czy nie? Reguly eksperckie Koszt jednostkowy: 5 Przychody: 15 895 139 Zarobek przy zakupie: 800 Koszty: 12 250 000 Zvsk: 3 645 139 Średnia szansa zakupu: 0,5% Zauważalne zvski Występują zauważalne zyski, ale czy można je poprawić?

\$

Wyniki Finansowe

Prosty przykład

\$

Wyniki Finansowe

Prosty przykład

				Γ
Number of cases	7 000 000	Number of campaigns	29	
Average income on responded case	800			
Average cost of contact, offer, campaign	5	Number of months	12	
		Number of customers	20 115	
Gini global	78,36%	Number of cases	7 000 000	
Global response rate	0,5%			
Accepted response rate	1,83%	Delta Gini	Delta Profit	ш
Acceptance rate	25,00%			ш
Cummulative lift on accepted	3,66			ш
Captured percent (Gains)	91,43%	401	070 500	ш
Global cost	35 000 000	1%	272 569	ŀ
Global income	28 000 000	E0/	4 202 044	
Global profit	-7 000 000	5%	1 362 844	
		10%	2 725 687	
Accepted cost	8 750 000	10 70	2 720 007	
Accepted income	25 599 340			
Accepted profit	16 849 340			
Number of offers	1 750 000			
Number of expected responders	31 999			

6/21

Przykład studium przypadku w Excelu:

http://administracja.sgh.waw.pl/pl/OW/publikacje/Strony/

2015.aspx

Aurelien Geron - Uczenie maszynowe z użyciem Scikit-Learn i TensorFlow

"Z gipsu tortu nie ulepisz". System zawsze uczy się jedynie za pomocą danych zawierających wystarczającą liczbę istotnych cech i niezaśmieconych nadmiarem cech nieistotnych. Elementem krytycznym jest wybór dobrego zbioru cech uczących (feature enginering)." Składa się on z :

• dobór cech (feature selection)

Aurelien Geron - Uczenie maszynowe z użyciem Scikit-Learn i TensorFlow

"Z gipsu tortu nie ulepisz". System zawsze uczy się jedynie za pomocą danych zawierających wystarczającą liczbę istotnych cech i niezaśmieconych nadmiarem cech nieistotnych. Elementem krytycznym jest wybór dobrego zbioru cech uczących (feature enginering)." Składa się on z :

- dobór cech (feature selection)
 - odkrywanie cech (feature extraction)

Aurelien Geron - Uczenie maszynowe z użyciem Scikit-Learn i $\mathsf{TensorFlow}$

"Z gipsu tortu nie ulepisz". System zawsze uczy się jedynie za pomocą danych zawierających wystarczającą liczbę istotnych cech i niezaśmieconych nadmiarem cech nieistotnych. Elementem krytycznym jest wybór dobrego zbioru cech uczących (feature enginering)."

Składa się on z:

- dobór cech (feature selection)
- odkrywanie cech (feature extraction)
- nowe cechy z nowych danych

Aurelien Geron - Uczenie maszynowe z użyciem Scikit-Learn i $\mathsf{TensorFlow}$

"Z gipsu tortu nie ulepisz". System zawsze uczy się jedynie za pomocą danych zawierających wystarczającą liczbę istotnych cech i niezaśmieconych nadmiarem cech nieistotnych. Elementem krytycznym jest wybór dobrego zbioru cech uczących (feature enginering)."

Składa się on z:

- dobór cech (feature selection)
- odkrywanie cech (feature extraction)
- nowe cechy z nowych danych

o czym nie będzie? feature extraction / streaming feature selection

PCA oraz autoencondery czyli liniowe i nieliniowe kombinacje zmiennych. wybieranie zmiennych w czasie rzeczywistym

Przygotowanie danych

Python

```
from random import choice
import pandas as pd
import numpy as np
from sklearn.datasets import make-classification
import os
class DataOptions(object):
   n_samp = 50000
    n_feat = 50
    n_{infor} = [10, 11, 12, 13, 14, 15]
    n_{-red} = [0, 1, 2, 3, 4, 5, 6, 7]
    w_weights = []
    flip_y = [0,0.01,0.02,0.03]
   names = ['zm'+str(x) for x in range(n-feat)]
   def __init__(self):
        self.n_informative = choice(self.n_infor)
        self.n_redundant = choice(self.n_red)
        self.flipv = choice(self.flip_v)
```

20 zestawów danych:50 zmiennych po 50.000 przypadków.

SAS - generator danych

ABT: 212 zmiennych, 68500 przypadków.

(Pre)Selekcja

• Wariancja, testy statystyczne dla zmiennych - univariate methods

(Pre)Selekcja

- Wariancja, testy statystyczne dla zmiennych univariate methods
- Gini, Information Value

(Pre)Selekcja

- Wariancja, testy statystyczne dla zmiennych univariate methods
- Gini, Information Value

Metody rekurencyjne

• Forward, Backward (RFE), Stepwise selection

(Pre)Selekcja

- Wariancja, testy statystyczne dla zmiennych univariate methods
- Gini, Information Value

Metody rekurencyjne

• Forward, Backward (RFE), Stepwise selection

Metody modelowe

Regularyzacja lasso

(Pre)Selekcja

- Wariancja, testy statystyczne dla zmiennych univariate methods
- Gini, Information Value

Metody rekurencyjne

• Forward, Backward (RFE), Stepwise selection

Metody modelowe

- Regularyzacja lasso
- drzewa decyzyjne, lasy losowe

(Pre)Selekcja

- Wariancja, testy statystyczne dla zmiennych univariate methods
- Gini, Information Value

Metody rekurencyjne

• Forward, Backward (RFE), Stepwise selection

Metody modelowe

- Regularyzacja lasso
- drzewa decyzyjne, lasy losowe

Metody zaawansowane

Branch and bound w SAS

Wyniki Python

Wyniki Python

S.Zając et al. (SGH)

Wyniki SAS

Wyniki Python

Wyniki SAS

Wyniki Python

Wyniki SAS

Wyniki Python

Wyniki SAS

Plany na przyszłość

Co chcielibyśmy jeszcze przetestować?

- Algorytmy genetyczne,
- Persistent topology,
- mieszanie metod ML z uczeniem głębokim.

Quantum Computing

Facebook group: https://www.facebook.com/groups/gpoland

Facebook page: https://www.facebook.com/QPoland-110308580421373

Twitter: OPolandCousin

QWORLD

S.Zając et al. (SGH)

Podsumowanie

Dziękujemy za uwagę! kprzan@sgh.waw.pl, szajac2@sgh.waw.pl

Zakończenie konferencji

Dziękujemy za udział w konferencji "Modelowanie dla Biznesu" Zapraszamy na rozdanie certyfikatów SAS

S.Zając et al. (SGH) 28.11.2019

21 / 21