화학과 강화학습 세미나

임도형 dh-rim@hanmail.net

DNN

DNN is Universal Approximator

- DNN은 임의의 함수를 근사화 할 수 있다.
- 함수의 내부를 모르더라도
- 입력과 출력의 쌍으로

Gradient Descent

- cost function을 정의하고
- DNN을 정의하는 weight들에 의한 cost function의 경사를 구한다.
- 그리고 그 경사를 사용하여 weight들을 업데이트 한다.

$$\theta = \theta - \alpha \frac{dLoss}{d\theta}$$

고전적인 강화학습

Agent and Environment

State, Action, Reward

$$J(heta) = \sum_{s \in \mathcal{S}} d^\pi(s) V^\pi(s) = \sum_{s \in \mathcal{S}} d^\pi(s) \sum_{a \in \mathcal{A}} \pi_ heta(a|s) Q^\pi(s,a)$$

 θ : pi를 정의하는 파라매터

 $d^{\pi}(s)$ is the stationary distribution of Markov chain for $\pi_{ heta}$

V(s)	State-value function measures the expected return of state $s; V_w(.)$ is a value function parameterized by w .
$V^{\pi}(s)$	The value of state s when we follow a policy π ; $V^\pi(s)=\mathbb{E}_{a\sim\pi}[G_t S_t=s].$
Q(s,a)	Action-value function is similar to $V(s)$, but it assesses the expected return of a pair of state and action (s,a) ; $Q_w(.)$ is a action value function parameterized by w .
$Q^{\pi}(s,a)$	Similar to $V^\pi(.)$, the value of (state, action) pair when we follow a policy π ; $Q^\pi(s,a)=\mathbb{E}_{a\sim\pi}[G_t S_t=s,A_t=a].$

$$J(heta) = \sum_{s \in \mathcal{S}} d^\pi(s) V^\pi(s) = \sum_{s \in \mathcal{S}} d^\pi(s) \sum_{a \in \mathcal{A}} \pi_ heta(a|s) Q^\pi(s,a)$$

폴리시 함수 pi에 의해 상태 s일때 액션 a를 할때의 가치

$$J(heta) = \sum_{s \in \mathcal{S}} d^\pi(s) V^\pi(s) = \sum_{s \in \mathcal{S}} d^\pi(s) \sum_{a \in \mathcal{A}} \pi_{ heta}(a|s) Q^\pi(s,a)$$
 폴리시 함수 pi에 의해 상태 s일때 액션 a를 할때의 가치

폴리시 함수 pi에 의해 상태 s일때 액션 a가 발생할 확율

$$J(heta) = \sum_{s \in \mathcal{S}} d^\pi(s) V^\pi(s) = \sum_{s \in \mathcal{S}} d^\pi(s) \sum_{a \in \mathcal{A}} \pi_{ heta}(a|s) Q^\pi(s,a)$$
 폴리시 함수 pi에 의해 X 상태 s일때 액션 a를 할때의 가치

폴리시 함수 pi에 의해

상태 s일때 액션 a가 발생할 확율

$$J(heta) = \sum_{s \in \mathcal{S}} d^\pi(s) V^\pi(s) = \sum_{s \in \mathcal{S}} d^\pi(s) \sum_{a \in \mathcal{A}} \pi_ heta(a|s) Q^\pi(s,a)$$

상태 s일때 폴리시 함수 pi에 의해 액션 a를 할때의 가치

$$J(heta) = \sum_{s \in \mathcal{S}} d^\pi(s) V^\pi(s) = \sum_{s \in \mathcal{S}} d^\pi(s) \sum_{a \in \mathcal{A}} \pi_{ heta}(a|s) Q^\pi(s,a)$$
 모든 액션에 대하여 상태 s일때 폴리시 함수 pi에 의해 액션 a를 할때의 가치

$$J(heta) = \sum_{s \in \mathcal{S}} d^\pi(s) V^\pi(s) = \sum_{s \in \mathcal{S}} d^\pi(s) \sum_{a \in \mathcal{A}} \pi_ heta(a|s) Q^\pi(s,a)$$

모든 액션에 대하여 상태 **s**일때 폴리시 함수 **pi**에 의해 액션 **a**를 할때의 가치

$$J(heta) = \sum_{s \in \mathcal{S}} d^\pi(s) V^\pi(s) = \sum_{s \in \mathcal{S}} d^\pi(s) \sum_{a \in \mathcal{A}} \pi_{ heta}(a|s) Q^\pi(s,a)$$
 상태 s일때 폴리시 함수 pi에 의한 가치

$$J(heta) = \sum_{s \in \mathcal{S}} d^\pi(s) V^\pi(s) = \sum_{s \in \mathcal{S}} d^\pi(s) \sum_{a \in \mathcal{A}} \pi_{ heta}(a|s) Q^\pi(s,a)$$
 폴리시 함수 pi에 의해 상태 s일 때의 가치

상태 s가 발생할 확률 x 상태 s일 때의 가치

폴리시 함수 pi에 의해 모든 상태에 대하여 각 상태 s가 발생할 때의 가치의 합

모든 상태에 대한 가치의 합

$$J(heta) = \sum_{s \in \mathcal{S}} d^\pi(s) V^\pi(s) = \sum_{s \in \mathcal{S}} d^\pi(s) \sum_{a \in \mathcal{A}} \pi_ heta(a|s) Q^\pi(s,a)$$

폴리시 함수 pi에 의한 가치

강화학습의 목적

$$J(heta) = \sum_{s \in \mathcal{S}} d^\pi(s) V^\pi(s) = \sum_{s \in \mathcal{S}} d^\pi(s) \sum_{a \in \mathcal{A}} \pi_ heta(a|s) Q^\pi(s,a)$$

- 보상을 최대로 하는 pi를 구하자.
- pi를 정의하는 theta를 찾자.

Value Function

$$egin{aligned} V(s) &= \mathbb{E}[G_t|S_t = s] \ &= \mathbb{E}[R_{t+1} + \gamma V(S_{t+1})|S_t = s] \end{aligned}$$

Action-Value Function, Q-value

$$egin{aligned} Q(s,a) &= \mathbb{E}[R_{t+1} + \gamma V(S_{t+1}) \mid S_t = s, A_t = a] \ &= \mathbb{E}[R_{t+1} + \gamma \mathbb{E}_{a \sim \pi} Q(S_{t+1},a) \mid S_t = s, A_t = a] \end{aligned}$$

Value Function, Action-Value Function

$$egin{aligned} V(s) &= \mathbb{E}[G_t|S_t = s] \ &= \mathbb{E}[R_{t+1} + \gamma V(S_{t+1})|S_t = s] \end{aligned}$$

$$egin{aligned} Q(s,a) &= \mathbb{E}[R_{t+1} + \gamma V(S_{t+1}) \mid S_t = s, A_t = a] \ &= \mathbb{E}[R_{t+1} + \gamma \mathbb{E}_{a \sim \pi} Q(S_{t+1},a) \mid S_t = s, A_t = a] \end{aligned}$$

Bellman Optimality Equations

value function, action-value function을 최대화하는 pi

$$V_*(s) = \max_{\pi} V_{\pi}(s)$$

$$Q_*(s,a) = \max_{\pi} Q_{\pi}(s,a)$$

$$\pi_* = rg \max_{\pi} V_{\pi}(s)$$

$$\pi_* = rg \max_{\pi} Q_{\pi}(s,a)$$

강화학습

Bellam Optimality Equation의 해를 푸는 과정

$$V_*(s) = \max_{\pi} V_{\pi}(s)$$
 $Q_*(s,a) = \max_{\pi} Q_{\pi}(s,a)$

$$\pi_* = rg \max_{\pi} V_{\pi}(s)
onumber \ \pi_* = rg \max_{\pi} Q_{\pi}(s,a)
onumber \ \pi_* = rg \max_{\pi} Q_{\pi}(s,a)$$

강화학습의 방법들

$$J(heta) = \sum_{s \in \mathcal{S}} d^\pi(s) V^\pi(s) = \sum_{s \in \mathcal{S}} d^\pi(s) \sum_{a \in \mathcal{A}} \pi_ heta(a|s) Q^\pi(s,a)$$

- Dynamic Programming
- Monte-Carlo methods
- Temporal-Difference Learning
- MC와 TD 결합
- Evolution Strategies
- Policy Gradient

현재의 강화학습

Gradient Descent

$$\theta = \theta - \alpha \frac{dLoss}{d\theta}$$

Gradient Descent 적용

$$J(heta) = \sum_{s \in \mathcal{S}} d^\pi(s) V^\pi(s) = \sum_{s \in \mathcal{S}} d^\pi(s) \sum_{a \in \mathcal{A}} \pi_ heta(a|s) Q^\pi(s,a)$$

- reward function은 cost function의 반대이다. 클수록 <--> 작을수록 좋다.
- $\frac{d}{d\theta}J(\theta)$, $\stackrel{\frown}{=}\nabla_{\theta}J(\theta)$ $\stackrel{\frown}{=}$ 구해 반대로 더하자.

Policy Gradient Theorem

$$J(heta) = \sum_{s \in \mathcal{S}} d^\pi(s) V^\pi(s) = \sum_{s \in \mathcal{S}} d^\pi(s) \sum_{a \in \mathcal{A}} \pi_ heta(a|s) Q^\pi(s,a)$$

- reward function은 cost function의 반대이다.
- $\frac{d}{d\theta}J(\theta)$, $\stackrel{\frown}{\rightarrow}\nabla_{\theta}J(\theta)$ $\stackrel{\frown}{=}$ $\overrightarrow{-}$ $\overrightarrow{$

$$egin{aligned}
abla_{ heta} J(heta) &=
abla_{ heta} \sum_{s \in \mathcal{S}} d^{\pi}(s) \sum_{a \in \mathcal{A}} Q^{\pi}(s,a) \pi_{ heta}(a|s) \\ &\propto \sum_{s \in \mathcal{S}} d^{\pi}(s) \sum_{a \in \mathcal{A}} Q^{\pi}(s,a)
abla_{ heta} \pi_{ heta}(a|s) \\ &= \mathbb{E}^{\pi} \left[
abla_{ heta} \pi(s,a) \ Q^{\pi}(s,a) \right] \end{aligned}$$

- 1. Initialize the policy parameter θ at random.
- 2. Generate one trajectory on policy π_{θ} : $S_1, A_1, R_2, S_2, A_2, \ldots, S_T$.
- 3. For t=1, 2, ..., T:
 - 1. Estimate the the return G_t ;
 - 2. Update policy parameters: $\theta \leftarrow \theta + \alpha \gamma^t G_t \nabla_\theta \ln \pi_\theta(A_t | S_t)$

$$heta \leftarrow heta + lpha \gamma^t G_t
abla_ heta \ln \pi_ heta(A_t|S_t)$$

$s\in \mathcal{S}$	States.
$a\in \mathcal{A}$	Actions.
$r\in \mathcal{R}$	Rewards.
G_t	Return; or discounted future reward; $G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$
$\pi(a s)$	Stochastic policy (agent behavior strategy); $\pi_{\theta}(.)$ is a policy parameterized by $\theta.$

- 2개의 모델
 - Policy Network : a = P(s). time t일 때의 액션을 출력. 모델의 weight가 theta
 - Value Network : v = V(s). time t일 때의 가치를 출력

REINFORCE - 실제 적용

- Stage 1. Value Network을 먼저 학습시킨다.
- Stage 2. Value Network을 가지고 Policy Network을 학습 시킨다.

Actor-Critic

$$egin{aligned}
abla_{ heta} J(heta) &=
abla_{ heta} \sum_{s \in \mathcal{S}} d^{\pi}(s) \sum_{a \in \mathcal{A}} Q^{\pi}(s,a) \pi_{ heta}(a|s) \ &\propto \sum_{s \in \mathcal{S}} d^{\pi}(s) \sum_{a \in \mathcal{A}} Q^{\pi}(s,a)
abla_{ heta} \pi_{ heta}(a|s) \ &= \mathbb{E}^{\pi} \left[
abla_{ heta} \pi(s,a) \ Q^{\pi}(s,a)
ight] \end{aligned}$$

- 2개의 모델
 - o Actor : policy parameter theta를 업데이트
 - o Critic: value function parameter w를 업데이트.

Actor-Critic

- 1. Initialize s, θ, w at random; sample $a \sim \pi_{\theta}(a|s)$.
- 2. For t = 1 ... T:
 - 1. Sample reward $r_t \sim R(s,a)$ and next state $s' \sim P(s'|s,a)$;
 - 2. Then sample the next action $a' \sim \pi_{\theta}(a'|s')$;
 - 3. Update the policy parameters: $\theta \leftarrow \theta + \alpha_{\theta} Q_w(s, a) \nabla_{\theta} \ln \pi_{\theta}(a|s)$;
 - 4. Compute the correction (TD error) for action-value at time t:

$$\delta_t = r_t + \gamma Q_w(s',a') - Q_w(s,a)$$

and use it to update the parameters of action-value function:

$$w \leftarrow w + \alpha_w \delta_t \nabla_w Q_w(s, a)$$

5. Update $a \leftarrow a'$ and $s \leftarrow s'$.

with environment - 실제 적용

- Environment에서 reward를 구하고 이를 가지고 Policy Network을 학습 시킨다.
- Atari Game등의 경우.

Policy Gradient Algorithms

- REINFORCE
- Actor-Critics
- Off-Policy Policy Gradient
- A3C
- A2C
- DPG
- D4PG
- MADDPG
- TRPO
- PPO

- PPG
- ACER
- ACTKR
- SAC
- SAC with Automatically Adjusted Temperature
- TD3
- SVPG
- IMPALA

Reinforcement Learning vs REINFORCE

- 혼동되는 용어
- 강화학습 vs 강화학습?
- 기존 강화학습에 DNN을 적용하니 잘 풀린다.
- DNN으로 Policy Function을 구성하고 Gradient를 사용하여 학습.
- 이제는 전통적인 방법을 대신하여 DNN을 사용한 것을 강화학습이라 칭한다.

보다 쉬운 강화학습

Value Network as Reward Function

$$\theta = \theta - \alpha \frac{dLoss}{d\theta}$$

- 전통 강화학습과 관계 없다.
- - Value Network을 Loss Function으로 한다.
- 이 Loss Function으로 대상 네트웤을 직접 학습 시킨다.

$$\theta = \theta - \alpha \frac{d(-V)}{d\theta} = \theta + \alpha \frac{dV}{d\theta}$$

Reference

- A (Long) Peek into Reinforcement Learning :
 https://lilianweng.github.io/lil-log/2018/02/19/a-long-peek-into-reinforcement-learning.html#ke
 y-concepts
- Policy Gradient Algorithms :
 https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
- Reinforcement Learning : An Introduction :
 https://www.slideshare.net/carpedm20/reinforcement-learning-an-introduction-64037079