1. Recap of Functions vs. Relations

- A function maps each element in a set A to exactly one element in set B.
- A relation is a broader concept: it allows an element in A to relate to multiple or no elements in B.
- Relations are subsets of the Cartesian product A x B.

Example: $R = \{(1, 2), (1, 3), (2, 3)\}$ is a relation, not a function.

2. Definition of a Relation

- A relation R from A to B is any subset of the Cartesian product A x B.
- That is, $R \subseteq A \times B$.
- If A = B, R is called a relation on A.

Example: $A = \{1, 2\}, B = \{x, y\}, R = \{(1, x), (2, y)\} \subseteq A \times B$

3. Representations of Relations

- Ordered Pairs: Set notation $(x, y) \in R$
- Arrow Diagrams: Nodes with arrows indicating relations
- Adjacency Matrix: M[i][j] = 1 if (i, j) ∈ R

4. Types of Relations

- Binary: Relates two elements (x, y)
- Ternary: Relates three elements (x, y, z), e.g., multiplication
- N-ary: Relates n elements, used in databases and predicates

5. Properties of Relations - Detailed Explanation

- 1. Reflexive:
- A relation R on a set A is reflexive if every element relates to itself.
- Formally: $\forall x \in A, (x, x) \in R$
- This means all diagonal elements must be present.

Example: $A = \{1,2,3\}, R = \{(1,1), (2,2), (3,3)\}$ is reflexive.

Why it's useful:

- Reflexive relations capture ideas of self-inclusion (e.g., 'is equal to').

2. Irreflexive:

- A relation R on A is irreflexive if no element relates to itself.
- Formally: $\forall x \in A, (x, x) \notin R$
- None of the diagonal elements should exist in the relation.

Example: $A = \{1,2\}, R = \{(1,2), (2,1)\}\$ is irreflexive.

Note:

- A relation cannot be both reflexive and irreflexive unless A is empty.
- 3. Symmetric:
- A relation R is symmetric if whenever $(x, y) \in R$, then $(y, x) \in R$.
- Reflects bidirectional or mutual relationships.

Example: $R = \{(1,2), (2,1)\}$ is symmetric.

Counterexample: $R = \{(1,2)\}$ is not symmetric (missing (2,1)).

Usage:

- Symmetric relations model concepts like "is a sibling of", "is adjacent to".
- 4. Antisymmetric:
- R is antisymmetric if $(x, y) \in R$ and $(y, x) \in R \Rightarrow x = y$.
- That is, two distinct elements cannot relate in both directions.

Example: $R = \{(1,1), (2,2), (1,2)\}$ is antisymmetric.

Counterexample: $R = \{(1,2), (2,1)\}$ is not antisymmetric.

Usage:

- Antisymmetric relations appear in "less than or equal to", "subset of" etc.
- 5. Transitive:
- R is transitive if $(x, y) \in R$ and $(y, z) \in R$ implies $(x, z) \in R$.
- Ensures chain-link consistency in relationships.

Example: $R = \{(1,2), (2,3), (1,3)\}$ is transitive.

Counterexample: $R = \{(1,2), (2,3)\}$ is not transitive (missing (1,3)).

Application:

- Transitive relations help define orderings, inheritance, or access control chains.

6. Worked Examples

Example 1: Reflexivity

 $A = \{1, 2, 3\}$

R1 = $\{(1,1), (2,2), (3,3)\}$ Reflexive

 $R2 = \{(1,1), (2,2)\} \times Not reflexive$

Example 2: Symmetry and Antisymmetry

R3 = $\{(1,2), (2,1)\}$ $\checkmark \blacksquare$ Symmetric X Not antisymmetric

R4 = $\{(1,2)\}$ $\checkmark \blacksquare$ Antisymmetric x Not symmetric

R5 = $\{(1,1), (2,2)\}$ $\checkmark \blacksquare$ Both symmetric and antisymmetric

Example 3: Transitivity

R6 = $\{(1,2), (2,3), (1,3)\}$ Transitive

 $R7 = \{(1,2), (2,3)\} \times \text{Not transitive}$

Example 4: Transitive Closure

Start: $R = \{(1,2), (2,3)\}$

Closure adds (1,3): $R = \{(1,2), (2,3), (1,3)\}$

7. Summary and Applications

- Reflexive: Every node relates to itself (e.g., 'is equal to')
- Irreflexive: No self-relations (e.g., 'is taller than')
- Symmetric: Mutual relation (e.g., 'is a sibling of')
- Antisymmetric: No bidirectional relation unless identical (e.g., 'is a subset of')
- Transitive: Links carry over (e.g., 'ancestor of')

Real-world examples:

- Graphs, databases, ordering systems, social networks

Reflexivity

A relation R on set A is reflexive if $\forall x \in A$, $(x, x) \in R$.

Examples:

 $A = \{1, 2, 3\}, R = \{(1,1), (2,2), (3,3)\}$ is reflexive.

 $R = \{(1,1), (2,2)\}\$ is not reflexive as (3,3) is missing.

Exam-style Questions:

- 1. Let $A = \{a, b, c\}$. Is $R = \{(a,a), (b,b)\}$ reflexive?
- 2. Give an example of a reflexive relation on the set {1, 2}.
- 3. True/False: If a relation on A is reflexive, then it must have exactly |A| elements.

- 1. No, since (c, c) is missing.
- 2. Example: $R = \{(1,1), (2,2)\}.$
- 3. False. A reflexive relation must include all (x,x), but may include more.

Irreflexivity

R is irreflexive if $\forall x \in A$, $(x, x) \notin R$.

Examples:

 $R = \{(1,2), (2,1)\}$ is irreflexive on $A = \{1,2\}$.

 $R = \{(1,1)\}$ is not irreflexive.

Exam-style Questions:

- 1. Give an irreflexive relation on {1, 2, 3}.
- 2. Can a relation be both reflexive and irreflexive?

- 1. Example: $R = \{(1,2), (2,3), (3,1)\}.$
- 2. No, unless A is empty.

Symmetry

R is symmetric if $\forall x, y \in A$, $(x,y) \in R \Rightarrow (y,x) \in R$.

Examples:

 $R = \{(1,2), (2,1)\}$ is symmetric.

 $R = \{(1,2)\}$ is not symmetric as (2,1) is missing.

Exam-style Questions:

- 1. Is $R = \{(a, b), (b, a), (c, c)\}$ symmetric on $A = \{a, b, c\}$?
- 2. Can a symmetric relation be irreflexive?

- 1. Yes, all pairs have their symmetric counterparts.
- 2. Yes, e.g., $R = \{(1,2), (2,1)\}$ on $A = \{1,2\}$ is symmetric and irreflexive.

Antisymmetry

R is antisymmetric if $(x,y) \in R$ and $(y,x) \in R \Rightarrow x = y$.

Examples:

 $R = \{(1,2)\}$ is antisymmetric.

 $R = \{(1,2), (2,1)\}$ is not antisymmetric.

Exam-style Questions:

- 1. Let $R = \{(a,a), (a,b), (b,c)\}$. Is R antisymmetric?
- 2. Can a relation be both symmetric and antisymmetric?

- 1. Yes, no counterexample to antisymmetry appears.
- 2. Yes, if only (x,x) pairs exist, e.g., $R = \{(1,1), (2,2)\}.$

Transitivity

R is transitive if $(x,y) \in R$ and $(y,z) \in R \Rightarrow (x,z) \in R$.

Examples:

 $R = \{(1,2), (2,3), (1,3)\}$ is transitive.

 $R = \{(1,2), (2,3)\}\$ is not transitive (missing (1,3)).

Exam-style Questions:

- 1. Given $R = \{(a,b), (b,c)\}$, what must be added to make R transitive?
- 2. Describe the transitive closure of $R = \{(0,1), (1,2)\}$ on $A = \{0,1,2,3\}$.

- 1. Add (a,c) to make it transitive.
- 2. Closure adds (0,2). Final $R \blacksquare = \{(0,1), (1,2), (0,2)\}.$

Equivalence Relations

R is an equivalence relation if it is reflexive, symmetric, and transitive.

Examples:

 $R = \{(1,1), (2,2), (3,3), (1,3), (3,1)\}$ is an equivalence relation on $A = \{1,2,3\}$.

Exam-style Questions:

- 1. Prove that 'congruent modulo n' is an equivalence relation.
- 2. What are the equivalence classes of $R = \{(0,0), (1,1), (1,3), (3,1), (3,3)\}$?

- 1. It is reflexive: $a \equiv a \mod n$; symmetric: if $a \equiv b \mod n$, then $b \equiv a$; transitive: if $a \equiv b \mod b \equiv c$, then $a \equiv c$.
- 2. $[\{0\}]$, $[\{1,3\}]$, $[\{2\}]$ assuming A = $\{0,1,2,3\}$.

Partial Orders

R is a partial order if it is reflexive, antisymmetric, and transitive.

Examples:

' \leq ' on numbers and ' \subseteq ' on sets are partial orders.

Hasse diagrams can represent partial orders efficiently.

Exam-style Questions:

- 1. Is the subset relation \subseteq a partial order?
- 2. Draw the Hasse diagram for $(P(\{a,b\}), \subseteq)$

- 1. Yes, it satisfies reflexivity, antisymmetry, and transitivity.
- 2. Hasse diagram would include: $\emptyset < \{a\}, \{b\} < \{a,b\},$ with lines from lower sets to their supersets.