

? AF
PTO/SB/21 (09-04)

Approved for use through 07/31/2006. OMB 0651-0031

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

TRANSMITTAL FORM

(to be used for all correspondence after initial filing)

Total Number of Pages in This Submission

Application Number	10/823,305
Filing Date	4-13-04
First Named Inventor	Scott Dewey
Art Unit	2838
Examiner Name	Richard D. Muralidhar
Attorney Docket Number	GP-303515

ENCLOSURES (Check all that apply)		
<input type="checkbox"/> Fee Transmittal Form <input type="checkbox"/> Fee Attached <input type="checkbox"/> Amendment/Reply <input type="checkbox"/> After Final <input type="checkbox"/> Affidavits/declaration(s) <input type="checkbox"/> Extension of Time Request <input type="checkbox"/> Express Abandonment Request <input type="checkbox"/> Information Disclosure Statement <input type="checkbox"/> Certified Copy of Priority Document(s) <input type="checkbox"/> Reply to Missing Parts/ Incomplete Application <input type="checkbox"/> Reply to Missing Parts under 37 CFR 1.52 or 1.53	<input type="checkbox"/> Drawing(s) <input type="checkbox"/> Licensing-related Papers <input type="checkbox"/> Petition <input type="checkbox"/> Petition to Convert to a Provisional Application <input type="checkbox"/> Power of Attorney, Revocation <input type="checkbox"/> Change of Correspondence Address <input type="checkbox"/> Terminal Disclaimer <input type="checkbox"/> Request for Refund <input type="checkbox"/> CD, Number of CD(s) _____ <input type="checkbox"/> Landscape Table on CD	<input type="checkbox"/> After Allowance Communication to TC <input type="checkbox"/> Appeal Communication to Board of Appeals and Interferences <input checked="" type="checkbox"/> Appeal Communication to TC (Appeal Notice, Brief, Reply Brief) <input type="checkbox"/> Proprietary Information <input type="checkbox"/> Status Letter <input checked="" type="checkbox"/> Other Enclosure(s) (please Identify below):
Remarks		
Applicant believes no fees are due for the enclosed filing, however, should additional fees be due in order to prevent the abandonment of this application, please consider this as authorization to charge or credit Deposit Account No. 070960 (General Motors Corporation) for any such fees due. A duplicate copy of this document is enclosed for this purpose.		

SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT			
Firm Name	Warn, Hoffmann, Miller & Ozga, P.C.		
Signature			
Printed name	John A. Miller		
Date	3-10-07	Reg. No.	34,985

CERTIFICATE OF TRANSMISSION/MAILING

I hereby certify that this correspondence is being facsimile transmitted to the USPTO or deposited with the United States Postal Service with sufficient postage as first class mail in an envelope addressed to: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on the date shown below:

Signature			
Typed or printed name	John A. Miller - Reg. No. 34,985	Date	3-10-07

This collection of information is required by 37 CFR 1.5. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Application No.: 10/823,305

Filing Date: April 13, 2004

Applicant: Scott Dewey

Group Art Unit: 2838

Examiner: Richard D. Muralidhar

Title: GIANT MAGNETORESISTIVE CELL
MONITORING

Attorney Docket: GP-303515

Mail Stop Appeal Brief - Patents
Commissioner of Patents
P.O. Box 1450
Alexandria, VA 22313-1450

RESPONSE TO NOTIFICATION OF NON-COMPLIANT APPEAL BRIEF
(37 CFR 41.37)

Sir:

In response to the Examiner's Notification of Non-Compliant Appeal Brief mailed February 20, 2006, Applicants are submitting herewith their Appellant's Amended Appeal Brief. The Amended Brief now fully complies with 37 CFR 41.37(c)(1)(v).

Respectfully submitted,

WARN, HOFFMANN, MILLER & OZGA, P.C.
Attorney for Applicants

By:

John A. Miller
Reg. No. 34985

Dated: 3/10/07
P.O. Box 70098
Rochester Hills, MI 48307
Telephone: (248) 364-4300
Facsimile: (248) 364-4285

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Application No.: 10/823,305

Filing Date: April 13, 2004

Applicant: Scott Dewey

Group Art Unit: 2838

Examiner: Richard D. Muralidhar

Title: GIANT MAGNETORESISTIVE CELL MONITORING

Attorney Docket: GP-303515

Mail Stop Appeal Brief - Patents
Commissioner of Patents
P.O. Box 1450
Alexandria, VA 22313-1450

APPELLANT'S AMENDED APPEAL BRIEF

This is Appellant's Amended Appeal Brief filed in response to Examiner's Notice of Non-Compliant Appeal Brief mailed February 20, 2007. Appellant's Appeal Brief was filed on December 18, 2006 in accordance with 37 CFR § 41.37 appealing the Examiner's Final Office Action mailed November 8, 2006. Appellant's Notice of Appeal, Notice of Appeal filing fee and Appeal Brief filing fee have been previously paid and Appellant believes no fees are due.

Table of Contents

Table of Authorities	iii
I. Real Party in Interest.....	1
II. Related Appeals and Interferences	1
III. Status of the Claims	1
IV. Status of Amendments	1
V. Summary of Claimed Subject Matter	1
VI. Grounds of Rejection to be Reviewed on Appeal	3
VII. Argument.....	3
A. Independent claims 1, 10 and 14 are not obvious in view of Barbeta and Yoshino et al.	3
1. Independent claims 1, 10 and 14	3
2. <i>Prima Facie</i> obviousness	3
3. Barbeta.....	5
4. Yoshino	6
5. Argument.....	6
B. Dependent claims 5, 11 and 18 are not obvious in view of Barbeta and Yoshino.....	9
VIII. Conclusion.....	11
CLAIMS APPENDIX.....	12
EVIDENCE APPENDIX.....	17
RELATED PROCEEDINGS APPENDIX	18

Table of Authorities

37 CFR §41.37	i
37 CFR §41.31	i
35 USC §41.20(b)(2)	1
35 USC §102(e)	2
MPEP 2143	3
MPEP 2143.01	3, 4, 5, 8
MPEP 2143.01 III	4
MPEP 2143.01 IV	5

I. Real Party in Interest

The real party in interest for this appeal is the General Motors Corporation of Detroit, Michigan, the assignee of the application.

II. Related Appeals and Interferences

There are no related appeals or interferences.

III. Status of the Claims

Claims 1-20 are pending. Claims 1-20 are rejected. Claims 1-20 are on appeal. No claims have been cancelled. No claims have been allowed. No claims have been objected to.

Claims 1-20 stand rejected under 35 USC 103(a) as being obvious over U.S. Patent No. 6,762,587 issued to Barbeta (hereinafter Barbeta) in view of U.S. Patent No. 4,937,521 issued to Yoshino et al. (hereinafter Yoshino).

IV. Status of Amendments

No amendments have been made.

V. Summary of Claimed Subject Matter

Independent apparatus claims 1 and 10 are directed to a monitoring system for monitoring the voltage across fuel cells 22 in a fuel cell stack 24, such as the cell monitoring system 20 shown in figure 3. Independent method claim 14 is a method for monitoring the voltage potential of the fuel cells 22 in the fuel cell stack 24, and closely parallels independent apparatus claim 1.

The monitoring system 20 includes a GMR device 28 having a wheatstone bridge 26, where at least one of the four resistors 30 in the bridge 26 is a giant magnetoresistive (GMR) resistor. The monitoring system 20 also includes a conductor 50 positioned in close proximity to the wheatstone bridge 26, and a plurality of switches 38-48 electrically coupled to the fuel cells 22 and to the conductor 50. The switches 38-48 are selectively switched on and off to separately electrically couple each fuel cell 22 in the fuel cell stack 24 to the conductor 50, and generate a current flow therethrough. As discussed in paragraph 0022, the current flow through the conductor 50 will produce a magnetic field that will upset the balance of the wheatstone bridge 26 by reducing the resistance of the GMR resistor. A differencing amplifier 52 amplifies the difference between the voltages at output ports 32 and 34 as a result of the imbalance, and provides an output signal that is a measurement of the voltage output of the particular fuel cell 22 currently coupled to the conductor 50. Because the coupling between the conductor 50 and the wheatstone bridge 26 is magnetic coupling, the GMR device 28 is electrically isolated from the high voltage of the fuel cell stack 24.

In one embodiment, the monitoring system 20 includes a polarity reverser that reverses the polarity of the current for every other fuel cell before the current is sent to the conductor 50 so that the current through the conductor 50 is always propagating in the same direction. This is desirable because the fuel cells 22 in the fuel cell stack 24 are electrically coupled together in series where a common electrical plate is provided between adjacent fuel cells. By sequentially measuring the voltage of the fuel cells in the fuel cell stack, a particular electrical plate will be a positive plate in one voltage measurement, and then will be a negative plate in the next voltage measurement. A discussion of the polarity reverser can be found in paragraph 0026 of the specification.

VI. Grounds of Rejection to be Reviewed on Appeal

Whether claims 1-20 should be rejected under 35 USC 103(a) as being obvious in view of Barbettta and Yoshino et al.

VII. Argument**A. Independent claims 1, 10 and 14 are not obvious in view of Barbettta and Yoshino et al.****1. Independent claims 1, 10 and 14**

Independent claims 1, 10 and 14 claim a monitoring system or method for monitoring the voltage potential of fuel cells in a fuel cell stack. The system employs a wheatstone bridge having a giant magnetoresistive resistor, and a conductor positioned proximate to the wheatstone bridge. A plurality of switches selectively electrically couple the fuel cells to the conductor. The current flowing through the conductor as a result of the voltage potential across the fuel cell generates a magnetic field that operates to reduce the resistance of the GMR resistor and unbalance the wheatstone bridge so that the voltage potential can be measured.

2. *Prima facie* obviousness

MPEP 2143 states that in order to establish a *prima facie* case of obviousness, three basic criteria must be met. First, there must be some suggestion or motivation, either in the references themselves or in the knowledge generally available to one of ordinary skill in the art, to modify the reference or to combine reference teachings. Second, there must be a reasonable expectation of success. Finally, the prior art reference(s) must teach or suggest all of the claim limitations. Applicant submits that the Examiner has not established a *prima facie* case of obviousness because there is no teaching, suggestion or motivation in either Barbettta or Yoshino, or in the knowledge

generally available to one of ordinary skill in the art, to use a wheatstone bridge including a magnetoresistive resistor for a fuel cell voltage monitoring device.

MPEP 2143.01 I addresses the requirements for the first criteria of *prima facie* obviousness, particularly the suggestion or motivation to modify references. That section states that there are three (3) possible sources for a motivation to combine references, namely, the nature of the problem to be solved, the teachings of the prior art and the knowledge of persons of ordinary skill in the art, citing In Re Rouffet, 149 F.3d, 1350, 1357, 47 USPQ2d 1453, 1457-58 (Fed. Cir. 1998). The In Re Rouffet Court stated that the combination of the references taught every element of the claimed invention, however, without a motivation to combine, a rejection based on a *prima facie* case of obviousness is improper. Further, MPEP 2143.01 states that the Court in Al-Site Corp. v. VSI Int'l Inc., 174 F.3d 1308, 50 USPQ 2nd 1161 (Fed. Cir. 1999) stated that the level of skill in the art cannot be relied upon to provide the suggestion to combine references.

MPEP 2143.01 I also states that, “[o]bviousness can only be established by combining or modifying the teachings of the prior art to produce the claimed invention where there is some teaching, suggestion, or motivation to do so, either explicitly or implicitly in the reference themselves, or in the knowledge generally available to one of ordinary skill in the art. The test for an implicit showing is what the combined teachings, knowledge of one of ordinary skill in the art, and the nature of the problem to be solved as a whole, would have suggested to those of ordinary skill in the art.” In Re Kotzab, 217 F.3d 1365, 1370, 55 USPQ 2d 1313, 1317 (Fed. Cir. 2000).

The nature of the problem addressed by Applicant's invention is to provide a reliable and inexpensive technique for monitoring the voltages of the fuel cells in a fuel cell stack. Appellant submits that nothing in Barbutta or Yoshino would suggest to a

person of ordinary skill in the art that using a device employing a giant magnetoresistive resistor to measure current flow through a conductor can be used for monitoring the voltage of the fuel cells in a fuel cell stack.

MPEP 2143.01 III states that the mere fact that references can be combined or modified does not render the combination obvious unless the prior art also suggests the desirability of the combination. Therefore, the fact that the current detecting device taught by Yoshino could be combined with the Barbeta fuel cell voltage monitoring device is not relevant because Yoshino does not teach or suggest that its current detecting device can be used in such a manner.

MPEP 2143.01 IV states that statements that the modification of the prior art based on the references would have been well within the ordinary skill of the art at the time the invention was made because the references relied upon teaches that all aspects of the claimed invention were individually known in the art is not sufficient to establish a *prima facie* case of obviousness without some objective reason to combine the teachings of the references. MPEP 2143.01 cites In Re Kotzab, 217 F3d 1365, 1371, 55 USPQ 2d, 1313, 1318 (Fed. Cir. 2000) to support this position, where the Court held that *prima facie* obviousness was not established because there was no finding as to the principle or specific understanding within the knowledge of a skilled artisan that would have motivated the skilled artisan to make the claimed invention.

3. Barbeta

Appellant states in paragraph 007 of the background discussion that it is necessary to monitor the output voltage of each fuel cell during operation of the fuel cell stack to ensure that each fuel cell is operating properly. Barbeta discloses one representative system for measuring the voltage of fuel cells in a fuel cell stack as

Appellant has suggested is known. Particularly, the Barbeta voltage monitoring system employs a particular contact and switch assembly that is selectively actuated to make electrical connections to individual cells or groups of cells in the fuel cell stack to measure the voltage of the individual cells or groups of cells. Appellant submits that nowhere in Barbeta does it teach or suggest using a wheatstone bridge including at least one giant magnetoresistive resistor that provides a voltage measurement in response to a current flowing through a conductor.

4. Yoshino

Appellant states in paragraph 008 of the background discussion that the giant magnetoresistive phenomenon that uses a magneto resistor whose resistance changes in response to a magnetic field is known in the art. Yoshino discloses a representative example of a current detecting device based on this phenomenon. Figure 11 in Yoshino shows a current detecting circuit including a bridge circuit having a magneto resistor 1, where the bridge circuit measures the current flow through a conductor 3. However, Appellant submits that nowhere in Yoshino does it teach or suggest using the current detecting circuit to measure the voltage of fuel cells in a fuel cell stack.

5. Argument

Appellant submits that the Examiner has not established a *prima facie* case of obviousness because there is no teaching, suggestion or motivation in either Barbeta or Yoshino, or in the knowledge generally available to one of ordinary skill in the art, to use a wheatstone bridge having a magnetoresistive resistor for measuring the current flow through a conductor electrically coupled to a fuel cell so as to measure the voltage of the fuel cell. The nature of the problem addressed by Appellant's invention is to provide

a reliable and inexpensive technique to monitor the voltages of the fuel cells in the fuel cell stack. Appellant submits that nothing in Barbettta or Yoshino would suggest to a person of ordinary skill in the art that using a current sensing device employing a giant magnetoresistive resistor to measure the current flow through the conductor can be used for monitoring the voltage of the fuel cells in a fuel cell stack. Because it is improper to combine reference teachings even though they can be combined unless the prior art also suggests the desirability of the combination, the fact that the current detecting device taught by Yoshino could possibly be combined in the Barbettta fuel cell voltage monitoring device is not relevant because Yoshino does not teach or suggest that its current detecting device can be used in such a manner.

In response to the first Office Action, Appellant submitted that the Examiner had failed to provide a reason as to why one of ordinary skill in the art would combine the current detecting device of Yoshino into the fuel cell voltage detecting device of Barbettta, and therefore used improper hindsight in this combination. Particularly, Appellant stated that In Re Conn, 78 USPQ2d 1329 (CAFC 2006) addresses the motivation/suggestion/teaching element of establishing a *prima facia* case of obviousness. The Court in In Re Conn at 1335 stated that the PTO is required to explain the motivation, suggestion or teaching that would have led the skilled artisan at the time of the invention to claim the combination as a whole, otherwise the PTO has used hindsight to conclude that the invention was obvious. The Examiner states on page 3 of the Office Action that "Babbetta and Yoshino et al. are analogous current measuring devices," and "[a]t the time of the invention it would have been obvious to add a Wheatstone bridge with GMR type resistors to Barbettta for the benefit of accurately reading current/voltage of each cell while ensuring isolation existed between the cells high voltage and the measurement electronics . . . ". However, what Appellant

submits that the Examiner has failed to do is explain why one of ordinary skill in the art would combine the current detecting device of Yoshino et al. into the fuel cell voltage detecting device of Barbeta, and therefore has used improper hindsight.

In response thereto, the Examiner stated in the final Office Action that he relies on the portion of MPEP 2143.01 that states, "...or in the knowledge generally available to one of ordinary skill in the art" to satisfy the motivation to combine Yoshino and Barbeta. Thus, it is the Examiner's position that neither Yoshino nor Barbeta independently or together provide the motivation to combine their teachings. Therefore, it is clear that the Examiner himself is providing the "knowledge generally available to one of ordinary skill in the art."

The Examiner then goes on to use his general knowledge of ordinary skill in the art to provide a reasoning as to why the skilled artisan would combine Barbeta and Yoshino in points (1)-(8) on pages 11 and 12 of the final Office Action. First, Appellant submits that if it requires an eight step process to arrive at obviousness, then it is unlikely on its face that the process is *prima facie* obvious.

The Examiner provides the following reasoning in points (1) - (8):

It is desirable to measure the quality of power from the fuel cells in a fuel cell stack;

The modern technique for monitoring voltage is using a microprocessor;

Microprocessors are low voltage circuits that require isolation; and

Thus the skilled artisan would look for the best technique to monitor the fuel cell voltage while insuring isolation between the microprocessor and the fuel cells.

The Examiner, as the skilled artisan, would then rule out the most common forms of voltage measurement, such as current sensing resistors and transformers, because current sensing resistors offer no isolation and waste power through heat

dissipation, and transformers are inaccurate and expensive. Upon elimination of these devices, the skilled artisan (Examiner) would arrive at the conclusion that using the giant magnetoresistive phenomenon in a wheatstone bridge as claimed by Applicant would be the best current detecting device to measure the voltage of the fuel cells and provide electrical isolation.

Appellant acknowledges the Examiner's artful discussion to come up with a motivation as to why combine Barbettta and Yoshino. However, it is still Appellant's opinion that this discussion does not satisfy a *prima facie* case of obviousness, and the Examiner has improperly used hindsight. For example, based on the Examiner's analysis, using a giant magnetoresistive resistor in a wheatstone bridge as claimed by Applicant is the best way of measuring the voltage of fuel cells in a fuel cell stack. However, Appellant submits that if this were in fact true and that it is the best way and is obvious, then skilled artisans other than the Examiner would have previously used this technique for measuring the voltage of fuel cells in a fuel cell stack, because all fuel cell systems monitor these voltages. Particularly, it is Appellant's position that if using a giant magnetoresistive resistor in a wheatstone bridge for measuring the voltage of fuel cells in a fuel cell stack is the best way of measuring the voltage, and it is obvious to do so, then the prior art would specifically indicate that. Thus, Appellant submits that the combination of Barbettta and Yoshino is outside the scope of *prima facie* obviousness.

B. Dependent claims 5, 11 and 18 are not obvious in view of Barbettta and Yoshino

Dependent claims 5, 11 and 18 include a polarity reverser that reverses the polarity of the current from the fuel cells before the current is applied to the conductor so that the current through the conductor is always propagating in the same direction. Appellant submits that Barbettta does not teach a polarity reverser in its fuel cell voltage

monitoring device because Barbeta is not using the propagation of current through a conductor as part of the voltage measuring device. Further, Appellant submits that the current detecting device in Yoshino would not need a polarity reverser because there is no indication in Yoshino that the current detected by the device could be propagating through the conductor in opposite directions.

The Examiner's response to this argument at the top of page 13 of the final Office Action is that the switch network shown in figure 13 of Barbeta in conjunction with the switch controller is capable of providing polarity reversal. The Examiner goes on to state to that, "[a] reason for the controller to reroute the switches to maintain the current flow in one direction would be to maintain the normal operating requirements of the monitor, which includes amplifier 5 and A/D converter 6 both of which are polarity dependent electronic devices. A polarity reversal through the sensing means would result in a failed input to microprocessor 7- Fig. 7, as well as possible damage to polarity dependent electronics."

Appellant submits that regardless of whether the switch network in figure 13 can provide a polarity reversal, or whether the controller would reroute the switches to maintain a current flow in one direction, does not provide teaching that the switch network does this for the reasons suggested by the Examiner. Appellant submits that there is no teaching in Barbeta of reversing the polarity of a fuel cell so that a current flow through a conductor flows in the same direction for all of the fuel cells.

The Examiner goes on to state that Yoshino requires a polarity reverser. Particularly, the Examiner states that, "Figs. 11 and 12 show that the GMR bridge sensor is connected to a comparator 40, or 41 and 42, to amplify the sensed magnetic field of current carrying conductor 3. If the current through conductor 3 were reversed, the input to comparators 40 or 41 and 42 would also be reversed. Since comparators

are polarity dependent as shown in Fig 12, the output of Figs. 11 and 12 would fail to produce a usable signal."

Appellant submits that the Examiner is making Appellant's point by stating "if the current through conductor 3 were reversed" because there is no teaching or suggestion in Yoshino that the current through the conductor 3 would be propagating in opposite directions. Without such teaching that the current through the conductor 3 may be in opposite directions and would need to be reversed, Appellant submits that Yoshino does not provide the teaching necessary for a *prima facie* case of obviousness. Further, Appellant is a little bit suspicious that changing the polarity of a comparator in this application would fail to provide a usable signal.

VIII. Conclusion

Appellant respectfully submits that claims 1-20 are not obvious in view of Barbetta and Yoshino. Therefore it is respectfully request that this rejection be reversed.

Respectfully submitted,

WARN, HOFFMANN, MILLER & OZGA, P.C.
Attorney for Applicants

By:

John A. Miller
Reg. No. 34985

Dated: 3/10/07
P.O. Box 70098
Rochester Hills, MI 48307
Telephone: (248) 364-4300
Facsimile: (248) 364-4285

CLAIMS APPENDIX

COPY OF CLAIMS INVOLVED IN THE APPEAL

1. A monitoring system for monitoring the voltage potential of fuel cells in a fuel cell stack, said system comprising:

a wheatstone bridge, said wheatstone bridge including at least one giant magnetoresistive (GMR) resistor and two output ports;

a conductor positioned proximate to the wheatstone bridge;

a plurality of switches electrically coupled to the fuel cells and to the conductor, said switches being selectively switched on and off to separately and selectively couple each fuel cell in the fuel cell stack to the conductor and generate a current flow therethrough, wherein a magnetic field generated by the current flow through the conductor reduces the resistance of the GMR resistor and unbalances the wheatstone bridge; and

a differencing amplifier electrically coupled to the output ports of the wheatstone bridge, said differencing amplifier providing an output signal indicative of the voltage potential of the selected fuel cell.

2. The system according to claim 1 wherein the switches are FET switches.

3. The system according to claim 1 wherein the at least one GMR resistor is two GMR resistors.

4. The system according to claim 1 wherein the conductor is an electrical trace positioned beneath the wheatstone bridge.

5. The system according to claim 1 further comprising a polarity reverser, said polarity reverser reversing the polarity of the current from the fuel cells before the current is applied to the conductor so that the current through the conductor is always in the same direction.

6. The system according to claim 1 further comprising at least one voltage divider electrically coupled between the fuel cells and the conductor.

7. The system according to claim 1 further comprising a controller for controlling the switches to separately measure the voltage potential of each fuel cell and for receiving the output signal from the amplifier.

8. The system according to claim 7 further comprising a plurality of opto-isolators for isolating the high voltage of the fuel cell stack and the switches from the low voltage of the controller.

9. The system according to claim 1 wherein the system monitors the fuel cell stack on a vehicle.

10. A monitoring system for monitoring the voltage potential of fuel cells in a fuel cell stack, said system comprising:

a wheatstone bridge, said wheatstone bridge including at least one giant magnetoresistive (GMR) resistor and two output ports;

an electrical trace positioned beneath the wheatstone bridge;

a plurality of FET switches electrically coupled to the fuel cells and to the trace, said FET switches being selectively switched on and off to separately and selectively couple each fuel cell in the fuel cell stack to the trace and generate a current flow therethrough, wherein a magnetic field generated by the current flow through the trace reduces the resistance of the GMR resistor and unbalances the wheatstone bridge;

a differencing amplifier electrically coupled to the output ports of the wheatstone bridge, said differencing amplifier providing an output signal indicative of the voltage potential of the selected fuel cell; and

a controller for controlling the switching of the FET switches to separately measure the voltage potential of each fuel cell and for receiving the output signal from the amplifier.

11. The system according to claim 10 further comprising a polarity reverser, said polarity reverser reversing the polarity of the current from the fuel cells before the current is applied to the trace so that the current through the trace is always in the same direction.

12. The system according to claim 10 further comprising at least one voltage divider electrically coupled between the fuel cells and the trace.

13. The system according to claim 10 further comprising a plurality of optoisolators for isolating the high voltage of the fuel cell stack and the FET switches from the low voltage of the controller.

14. A method for monitoring the voltage potential of fuel cells in a fuel cell stack, said method comprising:

providing a wheatstone bridge including at least one giant magnetoresistive (GMR) resistor and two output ports;

providing a conductor positioned proximate to the wheatstone bridge;

selectively and separately electrically coupling the fuel cells to the conductor to generate a current flow through the conductor, wherein a magnetic field generated by the current flow through the conductor reduces the resistance of the GMR resistor and unbalances the wheatstone bridge; and

electrically coupling the output ports of the wheatstone bridge to a differencing amplifier, said differencing amplifier providing an output signal indicative of the voltage potential of the selected fuel cell.

15. The method according to claim 14 wherein selectively and separately electrically coupling the fuel cells to the conductor includes using FET switches to selectively and separately electrically couple the fuel cells to the conductor.

16. The method according to claim 14 wherein providing a conductor positioned proximate to the wheatstone bridge includes providing an electrical trace positioned beneath the wheatstone bridge.

17. The method according to claim 14 wherein providing a wheatstone bridge includes providing a wheatstone bridge including two GMR resistors.

18. The method according to claim 14 further comprising providing a polarity reverser for reversing the polarity of the current from the fuel cells before the current is applied to the conductor so that the current through the conductor is always in the same direction.

19. The method according to claim 14 further comprising providing at least one voltage divider electrically coupled between the fuel cells and the conductor.

20. The method according to claim 14 wherein the fuel cell stack is on a vehicle.

EVIDENCE APPENDIX

There is no evidence pursuant to §1.130, §1.131 or §1.132.

RELATED PROCEEDINGS APPENDIX

There are no decisions rendered by a court or the Board in any proceeding identified in Section II of this Appeal Brief.