Interpretation of PTM Data

Marc Vaudel

Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway

KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway

Some PTMs and associated functions

רח	ПΙ	Λ	Λ
\mathbf{P}	ш	I١	/1

- 1- Glycosylation
- 2- Phosphorylation
- 3- Ubiquitination
- 4- Sumoylation
- 5- Acetylation
- 6- Oxydation
- 7- Methylation

Function

- A- Signalling
- **B- Tagging**
- **C-** Receptors
- D- Adhesion/Contact
- E- Mobility
- F- Packaging

→ One pipeline fits all

Database Search Engines

Database Search Engines

Verheggen et al., Mass Spectrom. Rev., 2017

- → Open search: MSFragger, PMID 28394336
- → Parameters optimization: Param-Medic, PMID 28263070
- → Limit PTMs per peptide

Phosphorylation

Noise level

Isoform score

Significance

Noise level

$$p = \frac{N_{Peaks} \cdot d}{w}$$

$$P = \sum_{k}^{n} p^k \cdot (1 - p)^{n - k}$$

$$\frac{\text{phospho}RS}{\text{Peptide Score}} = -10 \cdot \log(P)$$

Isoform score

Significance

- → Simplistic fragmentation model
- → Challenges in noise estimation

Noise level

$$p = \frac{N_{Peaks} \cdot d}{w}$$

$$P = \sum_{k}^{n} p^k \cdot (1 - p)^{n - k}$$

$$\frac{\text{phospho}RS}{\text{Peptide Score}} = -10 \cdot \log(P)$$

Isoform score

phospho <i>RS</i> Peptide Score	1/P value	phospho <i>RS</i> Sequence Probability	phosphoRS Site Probability Calculation					
121.7	1.48·10 ¹²	99.8%	AD	Т	(pS)	QEIC	(pS)	PR
93.8	$2.40 \cdot 10^9$	0.2 %	AD	(pT)	S	QEIC	(pS)	PR
24.8	$3.02 \cdot 10^2$	0.0 %	AD	(pT)	(pS)	QEIC	S	PR
	$\Sigma = 1.48 \cdot 10^{12}$	Σ = 100.0 %		0.2 %	99.8 %	6	100.0 %	

Significance

False Localization Rate Estimation

target permutations

LQTVHSIPLTINK 124.66 LQTVHSIPLTINK 84.35 LQTVHSIPLTINK 10.99

decoy permutations

LQTVHSIPLTINK 51.09 LQTVHSIPLTINK 68.26 LQTVHSIPLTINK 64.66 LQTVHSIPLTINK 49.83 LQTVHS PLTINK 33.12 LQTVHSIPLTINK 13.55 LQTVHSIPLTINK 14.01 LQTVHSIPLT NK 9.90 LQTVHSIPLTINK 6.24 LQTVHSIPLTINK 4.46

Antibody Capillary Electrophoresis Capillary Electrophoresis

