

Ciência dos Materiais A

Departamento de Ciência dos Materiais Margarida Lima, Rui Borges, Carmo Lança

mmal@fct.unl.pt, rcb@fct.unl.pt, mcl@fct.unl.pt

FACULDADE DE CIÊNCIAS E TECNOLOGIA

UNIVERSIDADE NOVA DE LISBOA

Ano letivo de 2023-2024

Conteúdos programáticos

- Identificar os índices de Miller para planos e direções cristalográficas dentro das células unitárias do sistema cristalográfico cúbico,
- Lei de Bragg, determinação de estruturas cristalinas através da difração de raios X.

Os **indices de Miller** para os planos pretendem definir de forma precisa os **conjuntos de planos** (**palalelos e equidistantes**) na rede cristalina.

Em particular, uma família de **planos** de rede é determinada por três inteiros **h**, **k** e ℓ , os índices Miller. Eles são expressos por (**h** ℓ ℓ) e denotam uma família de planos paralelos e ortogonais à direcção $\mathbf{h}a\vec{e}_x + \mathbf{k}b\vec{e}_v + \mathbf{\ell}c\vec{e}_z$

Como se determinam:

- 1º Determinar as intersecções com os eixos cristalográficos X, Y e Z;
- 2º Determinar os inversos dessas coordendas;
- 3º Representar esses valores pelos menores mútiplos inteiros;
- 4° Caso haja valores negativos, estes representam-se com um macrón, $-1 \rightarrow \overline{1}$

Nota: os índices de Miller são independentes da origem (nó da rede escolhido para a origem) e representam toda uma família de planos paralelos equivalentes.

1º Intersecções: $\frac{1}{2}$, -1, 2 2º Inversos: 2, -1, $\frac{1}{2}$ 3º Inteiros: (4 $\overline{2}$ 1)

Nota: os índices de Miller são independentes da origem (nó da rede escolhido para a origem) e representam toda uma família de planos paralelos equivalentes.

1º Intersecções: ½, -1, ∞ 2, -1, 0 2º Inversos:

 $(2 \overline{1} 0)$ 3º Inteiros:

(hkℓ)

Quando as intersecções com os eixos não são óbvias, deve deslocarse o plano ou a origem.

Planos cristalográficos

Family of Planes {hkl}

Ex: $\{100\} = (100), (010), (001), (\bar{1}00), (0\bar{1}0), (00\bar{1})$

Planes and Family of Planes

Plano compacto (densidade atómica ou molecular máxima):

- 3 direcções compactas

Os índices de Miller servem também para definir direcções na rede cristalina.

Em particular, uma direcção é também determinada por três inteiros h, k e ℓ . Eles são expressos por [hk ℓ] e denotam a direcção h $a\vec{e}_x + kb\vec{e}_v + \ell c\vec{e}_z$

Como se determinam:

- 1º Selecciona-se um ponto da rede (por exemplo, um nó) que com a origem (0,0,0) defina essa direcção;
- 2º Determinam-se as coordenadas fraccionárias desse ponto ou nó;
- 3º Representação-se esses conjunto de valores pelos menores mútiplos inteiros;
- 4º Caso haja valores negativos, estes representam-se com um macrón, -1 $\rightarrow \bar{1}$

Os **índices de Miller** de um plano são idênticos aos indices de Miller da direcção normal a esse plano:

(hkl) vs [hkl]

Esquema do choque dos eletrões com o alvo metálico e emissão de raios-X

Identificação de estruturas cristalinas por DRX

Radiação branca e radiação característica

O espectro emitido pelo alvo de Mo (radiação contínua de raios-X com comprimentos de onda entre 0,2-1,4Å, e dois picos de radiação característicos, designados por linhas K_{α} e K_{β} .

Espectro de emissão de raios-X produzido por uma ampola de Mo

Níveis de energia dos eletrões do Mo (origem das radiações K_{α} e K_{β})

Radiação característica

A energia depende do átomo e do nível energético de onde ocorre o decaimento electrónico

X-Ray Emission Lines

K-level and *L*-level emission lines in KeV

No.	Element	Ka1	Ka2	Kb1	La1	La2	Lb1	Lb2
3	Li	0.0543						
4	Be	0.1085						
S	В	0.1833						
6	C	0.277						
7	N	0.3924						
8	0	0.5249						
9	F	0.6768						
10	Ne	0.8486	0.8486					
11	Na	1.04098	1.04098	1.0711				
12	Mg	1.25360	1.25360	1.3022				
13	Al	1.48670	1.48627	1.55745				
14	Si	1.73998	1.73938	1.83594				
15	P	2.0137	2.0127	2.1391				
16	S	2.30784	2.30664	2.46404				
17	Cl	2.62239	2.62078	2.8156				
18	Ar	2.95770	2.95563	3.1905				
19	K	3.3138	3.3111	3.5896				
20	Ca	3.69168	3.68809	4.0127	0.3413	0.3413	0.3449	
21	Sc	4.0906	4.0861	4.4605	0.3954	0.3954	0.3996	
22	Ti	4.51084	4.50486	4.93181	0.4522	0.4522	0.4584	
23	V	4.95220	4.94464	5.42729	0.5113	0.5113	0.5192	
24	Cr	5.41472	5.405509	5.94671	0.5728	0.5728	0.5828	
25	Mn	5.89875	5.88765	6.49045	0.6374	0.6374	0.6488	
26	Fe	6.40384	6.39084	7.05798	0.7050	0.7050	0.7185	
27	Co	6.93032	6.91530	7.64943	0.7762	0.7762	0.7914	
28	Ni	7.47815	7.46089	8.26466	0.8515	0.8515	0.8688	
29	Cu	8.04778	8.02783	8.90529	0.9297	0.9297	0.9498	
30	Zn	8.63886	8.61578	9.5720	1.0117	1.0117	1.0347	
31	Ga	9.25174	9.22482	10.2642	1.09792	1.09792	1.1248	
32	Ge	9.88642	9.85532	10.9821	1.18800	1.18800	1.2185	
33	As	10.54372	10.50799	11.7262	1.2820	1.2820	1.3170	
34	Se	11.2224	11.1814	12.4959	1.37910	1.37910	1.41923	

Lei de Bragg $n \lambda = 2 d \sin \theta$

- n ordem de difracção =1,2,...
- λ: comprimento de onda
- θ: ângulo de Bragg
- d : espaçamento interplanar

Reflexão de um feixe de raios-X pelos planos (hkl) de um cristal, (a)-ângulo de incidência for arbitrário, (b)- ângulo de Bragg, os raios reflectidos reforçam-se, (c)-igual a (b).

Difração de raios-X:

Sir William Henry Bragg (1862 - 1942) Sir William Lawrence Bragg (1890 - 1971)

Laureados Nobel

"pelos seus serviços na análise das estruturas cristalinas por meios de raios-X"

A lei de Bragg

$$n\lambda = 2d_{(hkl)} \sin\theta$$

 $d_{(hkl)} = \frac{ao}{\sqrt{h^2 + k^2 + l^2}}$

As faces dos cristais refletem raios-X a certos ângulos de incidência (θ) . A variável d é a distância entre as camadas de átomos no cristal, e a variável lambda λ é o comprimento de onda do raio-X incidente; n é a ordem de difracção (número inteiro).

Representação esquemática do método de difração

Planos cristalográficos

Figure 3.25 Representations of a series each of (a) (001), (b) (110), and (c) (111) crystallographic planes.

Planos de reflexão

Espaçamento interplanar

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

TABELA 3.6 Regras para determinação dos planos difractores {h k /} em cristais cúbicos

Rede de Bravais	Reflexões presentes	Reflexões ausentes
CCC CFC	(h + k + l) = par (h, k, l) todos pares ou todos ímpares	(h + k + l) = impar (h, k, l) nem todos pares nem todos impares

TABELA 3.7 Índices de Miller dos planos difractores nas redes CCC e CFC

	Soma	Planos difractores {h k /}		
$h^2+k^2+l^2$	$\Sigma(h^2+k^2+l^2)$	CFC	CCC	
$1^2 + 0^2 + 0^2$	1			
$1^2 + 1^2 + 0^2$	2	•••	110	
$1^2 + 1^2 + 1^2$	3	111	***	
$2^2 + 0^2 + 0^2$	4	200	200	
$2^2 + 1^2 + 0^2$	5			
$2^2 + 1^2 + 1^2$	6	***	211	
	7		TV.	
$2^2 + 2^2 + 0^2$	8	220	220	
$2^2 + 2^2 + 1^2$	9			
$3^2 + 1^2 + 0^2$	10	***	310	
	$ \begin{array}{r} 1^2 + 0^2 + 0^2 \\ 1^2 + 1^2 + 0^2 \\ 1^2 + 1^2 + 1^2 \\ 2^2 + 0^2 + 0^2 \\ 2^2 + 1^2 + 0^2 \\ 2^2 + 1^2 + 1^2 \\ \end{array} $ $ \begin{array}{r} 2^2 + 2^2 + 0^2 \\ 2^2 + 2^2 + 1^2 \end{array} $	$h^{2} + k^{2} + l^{2} \qquad \Sigma(h^{2} + k^{2} + l^{2})$ $1^{2} + 0^{2} + 0^{2} \qquad 1$ $1^{2} + 1^{2} + 0^{2} \qquad 2$ $1^{2} + 1^{2} + 1^{2} \qquad 3$ $2^{2} + 0^{2} + 0^{2} \qquad 4$ $2^{2} + 1^{2} + 0^{2} \qquad 5$ $2^{2} + 1^{2} + 1^{2} \qquad 6$ 7 $2^{2} + 2^{2} + 0^{2} \qquad 8$ $2^{2} + 2^{2} + 1^{2} \qquad 9$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Restauro e Consolidação de vidrados azulejares

Compatibilidade entre materiais originais e produtos novos utilizados no restauro

1000 JCPDS-International Centre for Diffraction Data. All rights reserved PCPDFWIN v. 2.2