ECHE 225: Fall 2024

Homework #2: Properties of pure substances, closed systems

Due: September 12

1. [Chapter 4] Complete this table for water.

T (° C)	P(kPa)	$v (m^3/kg)$	u(kJ/kg)	x (if applicable)	Phase description
50		7.72			Saturated mixture
	400				Saturated vapor
110	350				
250	500				

- 2. [Chapter 4] One kilogram of water fills a 150 L rigid container at an initial pressure of 2 MPa. The container is then cooled to 40° C. Determine the initial temperature and the final pressure of the water.
- 3. [Chapter 4] Water initially at 300 kPa and 250° C is contained in a piston-cylinder device fitted with stops. The water is allowed to cool at constant pressure until it exists as a saturated vapor and the piston rests at the stops. Then the water continues to cool until the pressure is 100 kPa. On a T-v diagram, sketch the process curve passing through the first, second, and third states. Label the T, P, and v values for the states. Find the overall change in the internal energy between the first and third states per unit mass of water.

- 4. [Chapter 4] A 20 m³ tank contains nitrogen (a near ideal gas) at 23°C and 600 kPa. Some nitrogen is allowed to escape until the pressure in the tank drops to 400 kPa. If the temperature at this point is 20°C, determine the amount of nitrogen that has escaped.
- 5. [Chapter 5] A piston-cylinder device contains helium gas intially at 150 kPa, 20°C, and 0.5 m³. The helium is now compressed in a polytropic process ($PV^n = \text{constant}$) to 400 kPa and 140°C. Determine the heat loss or gain during the process.

1.

T (° C)	P(kPa)	$v (m^3/kg)$	u(kJ/kg)	x (if applicable)	Phase description
50	12.352	7.72	1643	0.642	Saturated mixture
143.61	400	0.46242	2553.1	1	Saturated vapor
110	350	0.00105	461	N/A	Compressed liquid
250	500	0.47443	2723.8	N/A	Superheated vapor

- 2. 395°C and 7.385 kPa
- $3.\ 1566\ kJ/kg$
- 4. 44.6 kg
- 5. 11 kJ loss