Метастабильность. Пересечение тактовых

доменов. FIFO-буфер

Проблема метастабильности

https://habr.com/ru/post/254869/

D-триггер

Источники метастабильности

- Нарушение времён T_s и T_h слишком высокая частота работы
- Нарушение времён по входу асинхронного сброса должен быть синхронен тактовому сигналу
 - o glitch «сбой», «глюк»

Решение проблемы (простой случай)

https://habr.com/ru/post/254869/

Решение проблемы (сложный случай)

https://habr.com/ru/post/254869/

Пересечение тактовых доменов

- $f_A < f_B$
- $f_A = f_B$
- $f_A > f_B$

$f_{\rm A} < f_{\rm B}$: фазы не совпадают

$f_{_{ m A}} < f_{_{ m B}}$: фазы близки

Возникновение ошибок - использование синхронизации

Синхронизация

$f_{A} = f_{B}$: фазы совпадают

Тот же тактовый домен

$f_{A} = f_{B}$: фазы не совпадают

Возможна ошибка → требуется синхронизация

$f_{_{\rm A}} > f_{_{\rm B}}$: сигнал длинный

Длительность сигнала превышает несколько периодов синхроимпульса

Проблем нет

$f_{_{\rm A}} > f_{_{ m B}}$: сигнал короткий

Длительность сигнала менее длительности одного длинного периода

Возможна потеря данных → FIFO-буфер

FIFO-буфер

First in, first out

Загрузка данных

- Синхронный FIFO: частоты кратные
- Асинхронный FIFO: частоты некратные

https://radiolaba.ru/microcotrollers/koltsevoy-bufer.html

Синхронный FIFO-буфер (single clock)

Флаги:

- 1. FIFO полон
- 2. FIFO пуст
- 3. FIFO почти полон
- 4. FIFO почти пуст

Заполненность FIFO

Пустой FIFO: W ADR == R ADR

Полный FIFO: W NEXT ADR == R ADR

Количество слов: $USEDWD = |W_ADR - R_ADR|$

Пустой FIFO: USEDWD == 0

Полный FIFO: USEDWD == DEPTH

Определение глубины FIFO-буфера

Непрерывная передача данных не возможна → размер буфера бесконечный

Данные передаются пакетами → определеяется число пакетов

Пакет из 100 посылок

Определение глубины FIFO

Время, необходимое для записи одной посылки модулем А:

$$T_{\Delta} = 1/(200 \text{ M}\Gamma\text{ц}) = 5 \text{ нc}$$

Время, необходимое для чтения одной посылки модулем В:

$$T_{_{\rm B}} = 1/(20 \ {\rm M}\Gamma {\rm H}) = 50 \ {\rm Hc}$$

Время записи одного пакета данных модулем А:

$$t_{A} = N_{A} \cdot T_{A} = 500 \text{ HC}$$

Число считанных посылок модулем В:

$$N_{R} = (500 \text{ Hc})/(50 \text{ Hc}) = 10$$

Глубина FIFO-буфера:

$$D = N_A - N_B = N_A \cdot (1 - f_B / f_A) = 90$$

(A)синхронный FIFO-буфер (dual clock)

Асинхронный FIFO-буфер

Код Грэя

$$G_i = B_i \oplus B_{i+1}$$

gray = (bin >> 1) ^ bin bin[i] = ^(gray >> i)

Двоичный код	Код Грея	Двоичный код	Код Грея
0000	0000	1000	1100
0001	0001	1001	1101
0010	0011	1010	1111
0011	0010	1011	1110
0100	0110	1100	1010
0101	0111	1101	1011
0110	0101	1110	1001
0111	0100	1111	1000

Ограничения в использовании кода Грэя

- Работает для буфера глубиной 2^N
- Для формирования флагов «частично полон» и «частично пуст» требуется перевод в прямой код

Управление потоком данных (flow control)

valid = ~empty
ready = ~full

