16. Suponha que queiramos testar $H_0: \mu = 50$ contra $H_1: \mu > 50$, em que μ é a média de uma normal $N(\mu, 900)$. Extraída uma amostra de n = 36 elementos da população, obtemos $\bar{x} = 52$. Calcule o valor-p, $\hat{\alpha}$, do teste.

Solução: Seja $X \sim N(\mu, 900)$. Uma amostra aleatória de tamanho n=36 é retirada. Assim

$$\bar{X} \sim N\left(\mu, \frac{900}{36}\right) = N\left(\mu, 25\right).$$

Se H_0 é verdade temos $\mu = 50$.

$$\bar{X} \sim N(50, 25)$$
.

$$Z = \frac{\bar{X} - 50}{5} \sim N(0, 1).$$

A região crítica é dada por:

$$RC = (k, \infty), k > 50$$

O nível descritivo é dada por:

$$\hat{\alpha} = P(\bar{X} > 52 \mid H_0 \text{ \'e verdade}) = P\left(Z > \frac{52 - 50}{5}\right) = P(Z > 0, 4) = 0, 5 - P(0 < Z < 0, 4),$$

$$\hat{\alpha} = 0, 5 - 0, 15542 = 0, 34458.$$

```
> pnorm(0.4)
[1] 0.6554217
> pnorm(0.4)-pnorm(0)
[1] 0.1554217
>
1-pnorm(0.4);round(1-pnorm(0.4),5)
[1] 0.3445783
[1] 0.34458
```