Answer Key to Homework #1

Raymond Deneckere

Fall 2017

1. Sundaram, #9, p.67.

I will only show the first statement about \limsup Let $\sup A_n = \{a_n, a_{n+1}, ...\}$, $\sup B_n = \{b_n, b_{n+1}, ...\}$, and $\sup C_n = \{a_n + b_n, a_{n+1} + b_{n+1}, ...\}$. First observe that $A_n + B_n \ge a_i + b_i$ for all $i \ge n$. So $A_n + B_n$ is an upper bound of $\{a_n + b_n, a_{n+1} + b_{n+1}, ...\}$. This means $A_n + B_n \ge C_n$. Taking limits on both sides completes the proof.

Next, let $\{a_n\}$ and $\{b_n\}$ be given by

$$a_n = \begin{cases} 0, & \text{if } n \text{ is even} \\ 1, & \text{if } n \text{ is odd} \end{cases}$$

and

$$b_n = \begin{cases} 0, & \text{if } n \text{ is even} \\ -1, & \text{if } n \text{ is odd.} \end{cases}$$

Then $\limsup a_n + \limsup b_n = 1 + 0 > 0 = \limsup (a_n + b_n)$.

2. Sundaram, #13, p.68.

Note that the lim sup and lim inf of a sequence are the largest and smallest subsequential limit, respectively. Hence we have:

- (a) $\lim \sup x_k = 1$, $\lim \inf x_k = -1$
- (b) $\limsup x_k = \infty$, $\liminf x_k = -\infty$

- (c) $\lim \sup x_k = 1$, $\lim \inf x_k = -1$
- (d) $\lim \sup x_k = 1$, $\lim \inf x_k = -\infty$
- 3. Sundaram, #23, p.68.

Let $Y = X \setminus \{x_1, x_2, ..., x_n\}$. Then the $Y^c = X^c \cup \{x_1, x_2, ..., x_n\}$. Since both X^c and $\{x_1, x_2, ..., x_n\}$ are closed, their union is closed. The statement is not true if we remove a countable infinity of points from X. As a counterexample, let X = (-1, 1), $x_n = \frac{1}{n+1}$ and $Y = X \setminus \{x_n\}_{n=1}^{\infty}$. Y^c is not closed because 0 is a limit point of Y^c , $0 \notin Y^c$.

- 4. Let (X, d) be a metric space. Prove the following statement : $A \subset X$ is closed iff for every sequence $\{x_n\} \subset A$, $x_n \to x$ implies $x \in A$.
 - \Rightarrow Suppose A is closed. Then there are two possibilities. Either x is a limit point of A, in which case closedness of A implies $x \in A$. Otherwise, x is an isolated point of A, in which case $x_n = x$ for sufficiently large n (otherwise $\{x_n\}$ cannot converge to x).
 - \Leftarrow Let x be a limit point of A. Then there exists a sequence $x_n \to x$ such that $x_n \neq x$ for all n. Because x_n converges to x, it is the case that $x \in A$, i.e. A is closed.
- 5. Consider the set of all rational numbers \mathbb{Q} , and make it into a metric space by defining d(p,q) = |p-q| for all $p,q \in \mathbb{Q}$. Let E be the set of all $p \in \mathbb{Q}$ such that $2 < p^2 < 3$. Show that E is closed and bounded in \mathbb{Q} , but that E is not compact. Conclude that \mathbb{Q} is not a compact space. Is E open in \mathbb{Q} ?

HINT: Be very careful here. The notions closed, open and compact are all with reference to the space \mathbb{Q} , not the space \mathbb{R} .

E is closed. We will show that every point $x \in \mathbb{Q}$ that is a limit point of E must satisfy $2 < x^2 < 3$, i.e. $x \in E$. Indeed, if we had $x^2 > 3$ of $x^2 < 2$, then by choosing r small enough the ball B(x,r) would contain no points in E, so x cannot be a limit point of E. Also, $x = \pm \sqrt{3}$ or $x = \pm \sqrt{2}$ do not belong to \mathbb{Q} , so they cannot be a limit point of E either.

E is bounded since $E \subset B(0,3)$.

E is not compact. Since \mathbb{Q} is dense in \mathbb{R} , we can construct a sequence $\{x_n\}$ in E such that $x_n \longrightarrow \sqrt{2}$ (for example longer and longer decimal expansions of $\sqrt{2}$). But $\sqrt{2} \notin \mathbb{Q}$, so $\{x_n\}$ has no convergent subsequence. So E is not sequentially compact, and hence not compact.

E is open since for all $x \in E$ we can select r small enough so that $B(x,r) \subset E$.