

Fig. 1

Fig. 2

Fig. 4

Fig. 5

Fig. 6A

Fig. 6B

Fig. 6C

Fig. 6D

Fig. 6E

Fig. 6F

Fig. 6G

Fig. 6H

Fig. 7A

date 7/12 | 11/12 | 15/12 | 10/12 | 21/12 | 28/12 0.03 1.03 G2 HeXTK + GCV I.p. 0.07 Ganckovin(GCV) 100mg/kg lp. 09-14/12/98(d6-d11). Tumor growth in DA3 mice treated with Adenovirus 1.12 #1 0.09 0.13 0.10 1.04 #2 0.11 0.14 0.12 1.46 V.05 0.64 C 0.73 0.82 0.52 0.64 1.10 1.12 #12 0.46 0.58 1.24 1.30 0.58 0.67 0.76 0.79 0.83 \$5 0.09 0.15 #7 0.11 0.21 0.70 0.73 #10 0.09 0.20 0.50 0.64 0.58 0.72 1.04 0.45 0.62 0.60 0.78 43 0.13 0.15 0.58 0.64 0.65 | 0.75 | 0.82 | \$12 | 0.07 | 0.11 0.19 0.17 0.30 SD 0.02 0.03 Adenovirus intratumoral injections on 08, 10/12/98(d5, d17). 0.56 0.58 0.87 0.92 #9 0.11 1.22 1.37 #6 2 8 1.00 | 1.05 | 1.19 | 1.23 | #1 0.52 0.75 0.80 1.06 1.14 1.22 1.20 1.18 #2
 0.68
 0.98
 1.24
 1.28
 1.40
 1.50
 1.48
 1.50

 0.48
 0.53
 0.66
 0.78
 0.75
 0.86
 1.01
 1.18
 #3

 0.62
 0.64
 0.78
 0.98
 1.24
 1.33
 1.43
 1.64
* v 1.13 45 1.19 47 0.35 0.48 0.54 0.76 0.79 1.14 0.38 0.48 0.64 0.76 0.79 0.83 late 7/12 | 11/12 | 15/12 | 18/12 | 21/12 | 28/12 | 13/1 | 19/1 1.07 1.00 41 1 47 0.68 0.85 1.04 1.19 1.18 1.32 1.38 1.47 0.46 | 0.48 | 0.75 | 1.04 1.60 0.35 0.46 0.57 0.65 0.91 0.40 0.72 0.91 1.12 1.07 1.12 25 80. 1.50 1.05 1.21 ÷. 5x106 DA3 cells s.c. on 03/12/98(d0). 0.19 0.30 0.45 0.54 #1 0.63 0.78 0.87 0.95 0.60 0.73 0.89 0.57 0.60 0.64 0.92 1.04 1.14 1.27 GT GCV 1.P. 0.94 0.58 0.73 0.90 0.73 0.85 1.05 0.57 0.65 0.68 1.17 0.58 0.84 0.84 1.28 0.75 0.77 0.90 0.26 0.62 0.55 0.62 0.67 0.96 0.53 0.62 0.52 0.68 0.09 16 0.11 0.80 0.84 112 0.56 0.15 0.07 0.73 0.05 0.01 30

Tumor growth in DA3 mice treated with Adenovirus

		,	_,			- ,			_	_		_							_			_	-,	_				-		_	_		_	_	-	_	-	_		_			, ,
	7	19/1	0.97	1.13	1.28	1.86	9.	1.45	0.83	1.02	1.30	1.37	0.60	0.78	1.06	1.13	1.08	1.47	1.00	1.55	1.12	1.28	0.96	1.32	1.1	1.80	0.53	1.54	0.73	0.35	1.16	0.1	0.63	98.0	0.78	0.80	0.61	1.23	0.78	0.39	0.11		
	F	13/1	0.74	1.16	9.	99.	0.79	1.36	0.76	1.00	0.98	1.35	0.54	0.60	0.90	1.02	0.97	1.25	0.76	1.50	0.71	1.10	0.73	1.40	0.67	1.74	0.32	1.01	0.43	0.29	0.52	0.09	0.41	0.59	0.43	0.28	0.37	0.66	0.45	0.23	0.07		
	25	20/12	0.62	1.03	0.70	1.26	0.88	1.18	0.66	0.74	0.78	1.00	0.48	0.62	0.90	0.98	0.88	1.14	0.67	1.12	0.57	0.74	0.68	1.02	0.90	1.40	0.20	0.31	0.46	0.16	0.30	0.07	0.40	0.44	0.25	0.12	0.24	0.57	0.29	0.15	0.04		
	-		0.53	20.	0.53	1.10	0.93	1.16	0.55	0.62	0.78	0.88	0.40	0.48	0.80	0.85	0.80	1.12	09.0	1.04	0.50	0.72	0.57	96.0	0.87	1.35	0.15	0.15	0.50	0.09	0.27	0.04	0.27	0.36	0.19	0.09	0.16	0.51	0.23	0.16	0.04		
GCV Lp.		112	0.55	0.98	0.57	1.18	0.0	1.12	95.0	0.60	0.70	0.86	0.43	0.48	0.76	0.87	99.0	1.10	0.57	1.00	0.50	0.94	0.54	0.88	0.85	1.17	0.15	0.19	0.45	0.09	0.21	0.04	0.25	0.24	0.16	0.12	0.13	0.42	0.21	0.12	0.04	<u></u>	
HeXRSV + GCV LP	-	=	0.53	1.06	0.60	1.18	0.90	1.06	0.55	0.82	29.0	0.92	0.45	0.55	9.78	0.88	0.58	1.03	0.55	96.0	0.52	1.18	0.56	0.83	0.82	1.07	0.15	0.21	0.34	0.12	0.19	0.06	0.27	0.17	0.15	0.16	0.15	0.36	0.19	0.09	0.03	12/88(d6-	
3	Н	11/12	0.54	0.00	0.65	0.78	0.74	0.80	0.58	0.80	0.50	0.80	0.45	0.58	0.65	0.77	0.53	0.85	0.57	0.68	0.50	1.05	0.57	0.68	0.63	0.00	0.13	0.16	0.22	0.13	0.10	0.08	0.16	0.12	0.11	0.13	0.11	0.16	0.13	0.04	0.01	Ganciclovir(GCV) 100mg/kg l.p. 09-14/12/88(d6-d11).	څ
	•	7/12	0,50	0.68	0.48	0.73	0.67	0.78	0.57	0.76	0,48	0.73	0.45	0.53	0.48	0.80	0.48	0.67	0.54	0.60	0.47	0.65	0.52	0.60	0.48	0.77	0.09	90.0	0.18	0.12	0.08	0.05	0.09	90.0	90.0	0.07	90.0	0.09	0.09	0.03	0.01	mg/kg i.	B(d5, d1
	P	date	1.8	Ţ	7.5		63		=		\$	Ī	2		*	Γ	8.		6#	Γ	5	Γ	==		#12		=	#2	£3	*	# 5	9#	18	8.#	8.#	10	114	#12	=	83	1000	S 5	92129
	14	19/1	0.92	1.02	0.85	0.98	1.18	1.64	0.93	1.22	1.28	1.74	1.47	1.85	တ	s	s	တ	٥	٥	0.92	1.23	1.03	1.42	06.0	1.25	0.43	0.35	1.10	0.53	1.43	2.00				0.52	0.75	0.51	0.85	0.58		iovir(GC	on 06, 1
	41	13/1	0.80	0.82	0.77	0.88	1.04	1.50	06.0	0.99	1.23	1.80	1.40	1.68							0.84	1.20	9.0	1.20	0.72	1.25	0.26	0.26	0.81	0.40	1.36	1.65				0.42	0.43	0.32	99.0	0.51	0.17	Ganck	njections
	2.5	28/12	0.68	0.80	0.70	0.66	0.73	1.08	0.77	0.84	0.60	1.16	0.84	1.28	S	S	S	S			0.74	1.07	0.73	1.28	0.67	1.06	0.18	0.21	0.29	0.25	0.37	0.45	S	S		0.29	0.34	0.24	0.59	0.08	0.03	8	furnoral
đ	18	21/12 28/12	0.65	0.72	0.70	0.72	99.0	0.95	0.64	0.60	0.73	1.08	0.70	1.17	99.0	1.18	0.74	1.17			0.70	1.03	0.70	1.12	09.0	0.87	0.15	0.18	0.21	0.16	0.29	0.29	0.27	0.32		0.25	0.27	0.16	0.23	90.0	0.02	s.c. on 03/12/98(d0).	Adenovirus intratumoral injections on 06, 10/12/98(dS, d17)
+ acv l.p.	15	18/12	0.57	0.64	09.0	0.77	0.63	0.86	09.0	0.78	0.67	0.92	0.60	1.05	0.75	0.94	0.70	1.06			99.0	1.02	0.68	1.06	0.57	0.82	0.10	0.14	0.17	0.14	0.21	0.19	0.26	0.26		0.24	0.25	0.13	0.19	90.0	0.02		1
Hextac	12	~	-	0.64	0.65	0.78	0.57	0.80	0.57	0.76	0.67	96.0	0.58	1.04	0.72	0.80	0.65	1.05			0.73	0.80	0.72	0.80	0.58	0.78	0.12	0.16	0.13	0.12	0.20	0.17	0.21	0.22		0.21	0.21	0.13	0.17	0.04	0.01	DA3 calls	
8		11/12	0.64	0.70	0.70	0.78	99.0	0.68	0.48	0,75	0.72	0.83	0.62	0.78	0.60	0.78	0.60	0.65	۵	٥	0.65	0.70	0.62	0.70	0.56	0.73	0.14	0.19	0.15	0.09	0.22	0.15	0.14	0.15	٥	0.16	0.13	0.11	0.15	0.03	0.01	5x106 D	
	-	7/12	_	9.65	0.60	0.68	0.58	0.65	0.48	0.67	0.56	0.77	0.47	0.53	0.52	0.72	0.45	0.50	0.50	0.63	0.48	99.0	0.54	0.58	0.55	0.58	60.0	0.12	0.41	0.09	0.12	90.0	0.10	0.05	0.08	0.08	0.08	0.09	60.0	0.02	0.01		
	0	10			#2		63	-	3		\$		9		5		2		6.		100		E		#12		Ξ	\$2	53	7	5#	9#	2.8	8	6.0	01.0	#11	#12	3	8	8		

Fig. 7C

Strategy for generating the HK II promoter reporter gene construct pHexII4557 CAT, and pUC/HexII/LacZ and pAdBN/HexLacZ

Fig. 9A

Fig. 9B

Fig. 9C

Fig. 10A

Fig. 10B

Fig. 10C

Fig. 12A

Fig. 12B

