1. Calcular los siguientes límites (si hay indeterminación hay que usar la regla de L'Hôpital)

a)
$$\lim_{x \to +\infty} (3x + e^x)^{\frac{5}{x}}$$

b)
$$\lim_{x\to 0} (3x + e^x)^{\frac{5}{x}}$$

a)
$$\lim_{x \to +\infty} (3x + e^x)^{\frac{5}{x}}$$
 b) $\lim_{x \to 0} (3x + e^x)^{\frac{5}{x}}$ c) $\lim_{x \to (\frac{\pi}{4})^-} (sen(2x))^{tag(2x)}$ d) $\lim_{x \to 0^+} (3x)^{\ln(1+3x)}$

d)
$$\lim_{x\to 0^+} (3x)^{\ln(1+3x)}$$

e)
$$\lim_{x \to +\infty} x \left(\frac{\pi}{2} - arctg(x) \right)$$
 f) $\lim_{x \to 0} \frac{tg(3x)}{tg(5x)}$

f)
$$\lim_{x\to 0} \frac{tg(3x)}{tg(5x)}$$

g)
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{\ln(1+x)}\right)$$

h)
$$\lim_{x \to +\infty} \left(\frac{1}{x} - \frac{1}{\ln(1+x)} \right)$$

2. Aplicar la fórmula de Taylor de orden 5 para calcular aproximadamente $\sqrt[3]{e^2}$. Dar una acotación para el error cometido.

¿De qué grado hay que tomar el polinomio de Taylor Para aproximar $\sqrt[3]{e^2}$ con un error menor que 10^{-5} ?

- 3. Calcular $\frac{1}{\sqrt{e}}$ con un error menor que 10^{-3} ?
- 4. Aplicar la fórmula de Taylor de orden 4 centrada en $x_0 = 4$ para obtener una aproximación de $\sqrt{3.8}$ y de $\sqrt{4.2}$. Acotar en ambos casos los errores que se producen.
- 5. Aplicar la fórmula de Taylor de orden 4 para obtener una aproximación de $\frac{\sqrt{2}}{\sqrt{2}-1}$ usando la función $f(x) = \frac{1}{1-x}$