

Graphs

Algorithmic Thinking Luay Nakhleh

Department of Computer Science Rice University

Why Graphs?

- * Biological networks
- * Maps
- Social networks
- *

Graphs: Basic Definitions

The Connectivity of Networks

Common to all networks we saw is that the <u>connectivity</u> of each of them can be represented via some form of a graph

Undirected graph

Directed graph

 $1) \longrightarrow 2 : directed edge$ (1,2)

Graphs

- * An **undirected graph**, or **graph** for short, G, is a pair (V,E), where
 - * $V=\{0,1,...,n-1\}$ is a nonempty set of nodes, and
 - * $E\subseteq\{\{i,j\}: i,j\in V\}$ is a set of <u>unordered pairs</u>, each of which corresponds to an <u>undirected edge</u> in the graph G.
- * A **directed graph**, or **digraph** for short, G, is a pair (V,E), where
 - * $V=\{0,1,...,n-1\}$ is a nonempty set of nodes, and
 - * $E\subseteq (V\times V)$ is a set of ordered pairs, each of which corresponds to a directed edge in the graph G.

Basic Terminology

- * Two nodes i and j in a graph G=(V,E) are called <u>adjacent</u> (or neighbors) in G if there is an edge between i and j; that is, if {i,j}∈E.
- * The <u>degree</u> of a node in an undirected graph is the number of edges incident with it. The degree of node i is denoted by deg(i).

What are the degrees of the nodes?

Degree Distribution

- * Define pk to be the fraction of nodes in the graph that have degree k.
- * The degree distribution of a graph can be visualized by making a histogram of the p_k values.

Degree Distribution

$$p_0=1/7$$
 $p_1=1/7$ $p_2=1/7$ $p_3=1/7$ $p_4=3/7$

Notice that if m is the highest node degree, then:

$$\sum_{k=0}^{m} p_k = 1$$

Basic Terminology

- * If e=(i,j) is a directed edge from node i to node j, we say that i is the tail (or, initial node) of e and j is the head (or, terminal node) of e.
- * The <u>in-degree</u> of a node i in a directed graph is the number of edges whose head is the node i. The in-degree of node i is denoted by indeg(i).
- * The <u>out-degree</u> of i, denoted by outdeg(i), is the number of edges whose tail is the node i.

What are the in- and out-degrees of the nodes?

In- and Out-Degree Distributions

- * For in-degree distribution: Define p_k to be the fraction of nodes in the graph that have in-degree k.
- * For out-degree distribution: Define q_k to be the fraction of nodes in the graph that have out-degree k.
- * The in- and out-degree distributions of a graph can be visualized by making a histogram of the p_k and q_k values, respectively.

Graph Representation: Adjacency Lists

Adjacency lists specify the nodes that are adjacent to each node of the graph.

Node	Adjacent nodes
a	b, c, e
b	a
c	a, d, e
d	c, e
e	a, c, d

While "adjacency list" is a historical name, the adjacent nodes of a given node form a set; so, you can think of this representation as an "adjacency set."

Graph Representation: Adjacency Lists

Adjacency lists specify the nodes that are adjacent to each node of the graph.

Node	Adjacent nodes
a	b, c, e
b	a
c	a, d, e
d	c, e
e	a, c, d

Notice the redundancy!

(ensures symmetry)

In the case of digraphs,
there is no redundancy.

While "adjacency list" is a historical name, the adjacent nodes of a given node form a set; so, you can think of this representation as an "adjacency set."

Adjacency Lists and Their Dictionary Representation

Node	Adjacent nodes
a	b, c, e
b	a
c	a, d, e
d	c, e
e	a, c, d

{a: set([b,c,e]),
 b: set([a]),
 c: set([a,d,e]),
 d: set([c,e]),
 e: set([a,c,d])}

Graph Representation: Adjacency Matrices

- * Let G=(V,E) be a graph with V={0,1,...,n-1}
- * The <u>adjacency matrix</u> of G, denoted by A_G , is the n×n 0-1 matrix with 1 as its (i,j)th entry when i and j are adjacent, and 0 as its (i,j)th entry when i and j are not adjacent.

Notice the redundancy! In the case of digraphs, A_G is not necessarily symmetric.

Draw a graph whose adjacency matrix is

Trade-offs Between Adjacency Lists and Adjacency Matrices

- * When the graph is <u>sparse</u>, i.e., contains relatively few edges (relative to what?), it is usually preferable to use adjacency lists (Why?)
- * When the graph is <u>dense</u>, i.e., contains relatively many edges (again, relative to what?), it is usually preferable to use adjacency matrices (Why?)

Graph Connectivity: Paths

- * Let k be a nonnegative integer and G a graph.
 - * A path of length k from node v_0 to node v_k in G is a sequence of k edges $e_1,e_2,...,e_k$ of G such that $e_1=\{v_0,v_1\}$, $e_2=\{v_1,v_2\}$, ..., $e_k=\{v_{k-1},v_k\}$, where $v_0,...,v_k$ are all nodes in V, and $e_1,...,e_k$ are all edges in E.
- * We usually denote such a path by its node sequence $(v_0, v_1, ..., v_k)$.
- * A path is <u>simple</u> if it does not contain the same node more than once.
- * A cycle is a simple path that begins and ends at the same node.
- * A path (not necessarily simple) that begins and ends at the same node is called a <u>circuit</u>.

Graph Connectivity: Paths

* If G is a directed graph, a path must traverse edges in their respective directions.

Show a simple path from node e to node d in each of the following two graphs:

Graph Connectivity

- * An undirected graph is called <u>connected</u> if there is a path between every pair of distinct nodes of the graph.
- * A <u>connected component</u> (CC) of a graph G is a connected subgraph of G that is not a proper subgraph of another connected subgraph of G.

A graph with 3 CCs

Graph Connectivity

- * A digraph is <u>strongly connected</u> if there is a path from i to j for every pair of nodes i and j of the digraph (note that there must be a path from i to j and another from j to i).
- * A digraph is weakly connected if there is a path between every two nodes in the underlying undirected graph.
- * The subgraphs of a directed graph G that are strongly connected but not contained in larger strongly connected subgraphs are called the <u>strongly connected components</u> (SCC) of G.

Strongly connected? Weakly connected? What are the SCCs?