

面向云原生的内核威胁检测系统 设计与实现

答辩人: 丁浩卓 指导老师: 刘川意

面向云原生的内核威胁检测系统 设计与实现

01

主要研究内容

02

威胁分析

03

eBPF研究

04

入侵检测系统

05

后期工作

06

总结

威胁分析

eBPF研究

入侵检测系统

后期工作

总结

选题背景

云原生虽然具备着更大的灵活性、业务敏捷性和强扩展性,但同时也遭遇了巨大的安全风险。针对云原生的在野攻击数量巨大,容器成为重要的攻击环境。

2021年,腾讯云容器安全服务监测到的可疑容器逃逸行为84万次

参考来源:

[1] 腾讯云计算(北京)有限公司. 腾讯云容器安全白皮书. 2022.

选题意义

提升监控容器行 为的有效性,监 控容器生命周期 各阶段行为。

Rootkit

提升Rootkit病毒 检测的有效性, 研究Rootkit病毒 行为特征。

应用eBPF技术, 提高入侵检测系 统的性能。

威胁分析

eBPF研究

入侵检测系统

后期工作

总结

主要研究内容

威胁分析

- ▶ Docker容器逃逸
- ➤ Rootkit: 内核态Rootkit、用户态Rootkit

系统设计与实现

- ➤ 基于eBPF的内核实时监控模块
 - ▶ eBPF学习研究,实现内核运行时信息收集处理
- ▶ 威胁规则匹配模块
 - ▶ 分析容器逃逸&Rootkit, 形成针对入侵攻击的规则库, 实现规则匹配引擎

功能测试和性能评估

- ▶ 基于功能测试完善功能
 - ➤ 容器行为监控测试、Rootkit入侵检测测试
- ▶ 进行性能评估并优化性能

威胁分析

eBPF研究

入侵检测系统

后期工作

总结

容器逃逸

容器生命周期中三个过程的安全:构建时安全、部署时安全、运行时安全。

容器运行时相比于其他两个阶段更直接、也更容易分析出环境中的恶意行为。

根据风险所在层次的不同,容器运行时安全风险可以进一步展开为:

- 危险配置导致的容器安全风险
- 危险挂载导致的容器安全风险
- 相关程序漏洞导致的容器安全风险
- 内核漏洞导致的容器安全风险

容器之间共享操作系统内核,并未实现完全的隔离。若虚拟化软件存在缺陷,或宿主机内核被攻击,将会造诸多的安全问题,包括隔离资源失效、容器逃逸等,影响宿主机上的其他容器甚至整个内网环境的安全

威胁分析

eBPF研究

入侵检测系统

后期工作

总结

Rootkit攻击

Rootkit的本质是劫持函数,包含对于syscalls或是一般函数的劫持通过修改返回值或返回的缓冲区内容(数据结构)可实现:隐藏文件、目录;提权;隐藏进程;提供后门等

一次正常的系统调用陷入内核并返回的过程

威胁分析

eBPF研究

入侵检测系统

后期工作

总结

eBPF技术

bpf是运行在内核中的一个虚拟机,支持内核编程实现对收集的数据进行处理

威胁分析

eBPF研究

入侵检测系统

后期工作

总结

系统设计与实现

内核实时监控模块通过 eBPF在关键内核函数进行插 桩,实现对内核运行时的细 粒度监控。

威胁规则匹配模块将系 统运行时上下文信息与规则 库进行规则匹配, 匹配成功 则发出警告。

系统通过eBPF Map进行数据交互。

威胁分析

eBPF研究

入侵检测系统

后期工作

总结

内核实时监控模块设计与实现

内核实时监控模块由eBPF程序实现,本系统主要基于libbpf开发eBPF程序。主要插桩(hook)的函数如表2-1所示,主要有系统调用、内核函数两大类。通过对关键内核函数调用的监控,实现了内核运行时的细粒度信息收集,提供了全面丰富的运行时信息。

表 2-1 · 内核插桩点列表。

插桩点类型。	插桩点名称。	
tracepoint₄	module_load.	+
tracepoint	sys_exit_finit_module.	þ
tracepoint	sys_enter_mount.	42
tracepoint	sys_exit_mount	ķ2
tracepoint	sys_enter_open	ą2
tracepoint	sys_exit_open₽	E.
tracepoint₊	sys_enter_openat	E.
tracepoint.	sys_exit_openat	2
tracepoint	sys_enter_execve	ç.
tracepoint	sys_enter_execveat	ķī
tracepoint	sys_enter_kill+	ن <u>م</u>
kretprobe	kprobe_lookup_name+	ب
kretprobe _"	arm_kprobe₄	ę.
kretprobe _*	insn_init+	p
kretprobe _*	insn_get_length₄	ب

威胁分析

eBPF研究

入侵检测系统

后期工作

总结

功能测试 - 检测危险配置容器启动

开启HIDS后成功检测到高权限容器启动

```
dhz@ubuntu:~$ sudo docker run -it --privileged ubuntu:20.04
[sudo] password for dhz:
root@0d85acbc0ef6:/# |
```


威胁分析

eBPF研究

入侵检测系统

后期工作

总结

功能测试 - 检测Rootkit加载

开启HIDS后成功检测到Rootkit加载入内核

o dhz@ubuntu:~/workspace/HIDS-eBPF/hids\$ sudo ./hids

======										
TIME	EVENT	COMM	PID	PPID	PID_NS	S DESC	CRIBE			
06:04:4	5 MODULE_LOAD	insmod		154436	154435	4026531836	load module,	module-name	is diamorphine!	
06:04:4	5 KHOOK	insmod		154436	154435	4026531836	using Kernel	instruction	operation function!	
06:04:4	5 KPROBE	insmod		154436	154435	4026531836	using Kernel	KPROBE frame	ework!	
06:04:4	5 SYSCALL_TABLE_HOOK	insmod		154436	154435	4026531836	syscall[62]:	be changed. I	May have been attacked by kernel rootkit	!
06:04:4	5 SYSCALL TABLE HOOK	insmod		154436	154435	4026531836	syscall[78]:	be changed. I	May have been attacked by kernel rootkit	!
06:04:4	5 SYSCALL TABLE HOOK	insmod		154436	154435	4026531836	syscall[217]:	be changed.	May have been attacked by kernel rootkit	
06:04:4	5 INSERT MODULE FINISH	H insmod		154436	154435	4026531836	insert modul	e finished, i	module-name is diamorphine !	
Discove	r IKM-RootkitsIII roo	otkit name	is diamorph	ine l					III	

Rootkit加载命令为: insmod diamorphine.ko

后期工作

主要研究内容

威胁分析

eBPF研究

入侵检测系统

后期工作

总结

总结

主要研究内容

威胁分析

eBPF研究

入侵检测系统

后期工作

请各位老师指正

目前毕业设计进度正常,与开题时预期的进度安排基本相符,预计能够按期完成,并取得预期的研究成果。

总结

请各位老师指正