Tidying data: extras

Packages

library(tidyverse)

The pig feed data again

```
my_url <- "http://ritsokiguess.site/datafiles/pigs1.txt"
pigs <- read_table(my_url)
pigs</pre>
```

Make longer (as before)

7

8

10

11

2 feed3 92.1

2 feed4 84.2 3 feed1 65

90.2

3 feed2 74

3 feed3

```
pigs %>% pivot_longer(-pig, names_to="feed",
                     values_to="weight") -> pigs_longer
pigs_longer
# A tibble: 20 x 3
    pig feed weight
  <dbl> <dbl> <dbl>
      1 feed1 60.8
 1
 2
      1 feed2 68.7
3
      1 feed3 92.6
      1 feed4 87.9
 5
      2 feed1 57
6
      2 feed2 67.7
```

Make wider two ways 1/2

pivot_wider is inverse of pivot_longer:

```
pigs_longer %>%
  pivot_wider(names_from=feed, values_from=weight)
```

we are back where we started.

Make wider 2/2

Or

```
pigs_longer %>%
   pivot_wider(names_from=pig, values_from=weight)
# A tibble: 4 x 6
```

```
# A tibble: 4 x 6
feed '1' '2' '3' '4' '5'
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 1
feed1 60.8 57 65 58.6 61.7
feed2 68.7 67.7 74 66.3 69.8
feed3 92.6 92.1 90.2 96.5 99.1
feed4 87.9 84.2 83.1 85.7 90.3
```

Disease presence and absence at two locations

Frequencies of plants observed with and without disease at two locations:

Species	s Dise	ase present	Dis	Disease absent			
	Location	X Location	Y Location	${\tt X}$ Location ${\tt Y}$			
Α	44	12	38	10			
В	28	22	20	18			

This has two rows of headers, so I rewrote the data file:

Species	present_x p	resent_y	absent_x	absent_y
Α	44	12	38	10
В	28	22	20	18

Read into data frame called prevalence.

```
my_url <- "http://ritsokiguess.site/STAC32/disease.txt"
prevalence <- read_table(my_url)
prevalence</pre>
```

Lengthen and separate

4 A

5 B

6 B

7 B

8 B

absent v

present x

present y

absent x

absent y

```
prevalence %>%
 pivot longer(-Species, names to = "column",
             values to = "freq") %>%
 separate_wider_delim(column, "_",
                     names = c("disease", "location"))
# A tibble: 8 x 4
 Species disease location freq
 <chr> <chr> <chr>
                         <dbl>
1 A present x
                           44
2 A present y
                           12
3 A absent x
                           38
```

10

28

22

20

18

Making longer, the better way

prevalence

```
# A tibble: 8 x 4
Species disease location frequency
<chr> <chr> <chr> <chr> < dbl>
1 A present x 44
```

Making wider, different ways

```
prevalence_longer %>%
 pivot_wider(names_from=c(Species, location), values_from=
# A tibble: 2 x 5
 disease A_x A_y B_x B_y
```

<chr> <dbl> <dbl> <dbl> <dbl> <dbl> 1 present 44 12 28 22 2 absent 38 10 20 18 prevalence_longer %>%

3 B present 28 22

pivot wider(names from=location, values from=frequency) # A tibble: 4×4

Species disease x

<chr> <chr> <dbl> <dbl>

1 A present 44 12

2 A absent 38 10

Interlude

pigs_longer

```
A tibble: 20 x 3
     pig feed weight
   <dbl> <chr>
                <dbl>
1
       1 feed1
                 60.8
2
       1 feed2
                 68.7
3
       1 feed3
                 92.6
4
       1 feed4
                 87.9
5
       2 feed1
                 57
6
       2 feed2
                 67.7
7
       2 feed3
                 92.1
8
       2 feed4
                 84.2
9
       3 feed1
                 65
10
                 74
       3 feed2
11
       3 feed3
                 90.2
12
       3 feed4
                 83.1
       4 feed1
                 58.6
13
```

What if summary is more than one number? eg. quartiles:

```
pigs_longer %>%
  group_by(feed) %>%
  summarize(r=quantile(weight, c(0.25, 0.75)))
# A tibble: 8 x 2
```

```
# A tibble: 8 x 2
# Groups: feed [4]
feed r
<chr> <dbl>
1 feed1 58.6
2 feed1 61.7
3 feed2 67.7
4 feed2 69.8
```

5 feed3 92.1 6 feed3 96.5 7 feed4 84.2 8 feed4 87.9

Following the hint...

7 feed4 84.2 8 feed4 87.9

```
pigs_longer %>%
 group_by(feed) %>%
 reframe(r=quantile(weight, c(0.25, 0.75)))
# A tibble: 8 x 2
 feed
 <chr> <dbl>
1 feed1 58.6
2 feed1 61.7
3 feed2 67.7
4 feed2 69.8
5 feed3 92.1
6 feed3 96.5
```

this also works

```
pigs_longer %>%
  group_by(feed) %>%
  summarize(r=quantile(weight, c(0.25, 0.75)))
# A tibble: 8 x 2
# Groups: feed [4]
 feed r
  <chr> <dbl>
1 feed1 58.6
2 feed1 61.7
3 feed2 67.7
4 feed2 69.8
5 feed3 92.1
6 feed3 96.5
7 feed4 84.2
8 feed4 87.9
pigs longer %>%
```

or, even better, use enframe:

```
quantile(pigs_longer$weight, c(0.25, 0.75))
  25% 75%
65.975 90.225
enframe(quantile(pigs_longer$weight, c(0.25, 0.75)))
# A tibble: 2 \times 2
 name value
 <chr> <dbl>
1 25% 66.0
2 75% 90.2
```

A nice look

2 feed2 67.7 69.8 3 feed3 92.1 96.5 4 feed4 84.2 87.9

Run this one line at a time to see how it works:

```
pigs_longer %>%
  group_by(feed) %>%
  summarize(r=list(enframe(quantile(weight, c(0.25, 0.75)))
  unnest(r) %>%
  pivot wider(names from=name, values from=value) -> d
d
# A tibble: 4 \times 3
  feed `25%` `75%`
  <chr> <dbl> <dbl>
1 feed1 58.6 61.7
```

A hairy one

18 people receive one of three treatments. At 3 different times (pre, post, followup) two variables y and z are measured on each person:

```
my_url <- "http://ritsokiguess.site/STAC32/repmes.txt"
repmes0 <- read_table(my_url)
repmes0</pre>
```

# 1	A tibble: 1	18 x 8						
	${\tt treatment}$	rep	pre_y	post_y	fu_y	pre_z	post_z	fu_z
	<chr></chr>	<dbl></dbl>						
1	Α	1	3	13	9	0	0	9
2	Α	2	0	14	10	6	6	3
3	Α	3	4	6	17	8	2	6
4	Α	4	7	7	13	7	6	4
5	A	5	3	12	11	6	12	6
6	A	6	10	14	8	13	3	8
7	В	1	9	11	17	8	11	27

Attempt 1

```
# A tibble: 108 \times 5
   id
        treatment time var
                                VVV
  <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <dbl>
 1 A.1 A
                  pre y
 2 A.1 A
              post y
                                 13
3 A.1 A
                  fu y
4 A.1 A
                  pre z
 5 A.1 A
                  post z
6 A.1 A
                  fu z
7 A.2 A
                  pre y
8 A.2 A
                                 14
                  post y
 9 A.2
                  fu
                                 10
```

Attempt 2

repmes

13 Control.1 Control

#	A tibble:	18 x 8						
	id	treatment	pre_y	post_y	fu_y	pre_z	post_z	fu
	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<db:< td=""></db:<>
	1 A.1	Α	3	13	9	0	0	
	2 A.2	Α	0	14	10	6	6	
	3 A.3	Α	4	6	17	8	2	
	4 A.4	Α	7	7	13	7	6	
	5 A.5	Α	3	12	11	6	12	
	6 A.6	Α	10	14	8	13	3	
	7 B.1	В	9	11	17	8	11	1
	8 B.2	В	4	16	13	9	3	1
	9 B.3	В	8	10	9	12	0	-
1	0 B.4	В	5	9	13	3	0	-
1	1 B.5	В	0	15	11	3	0	4
1	2 B.6	В	4	11	14	4	2	

10

12

15

make a graph

or do the plot with means

