第1章

双線形形式

内積と双線形形式

 \mathbb{R}^n 上の内積は、2 つのベクトル $\boldsymbol{a},\boldsymbol{b}\in\mathbb{R}^n$ のペア(直積)から、スカラー値 \mathbb{R} を返す関数として捉えることができる。

このように内積を写像に見立てて、この写像を b とおくと、

$$b: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$$

と表すことができる。

さらに、 \mathbb{R}^n 上の内積は次のような \mathbf{Z} 線形性を満たすものだった。

i.
$$({m u}_1 + {m u}_2, {m v}) = ({m u}_1, {m v}) + ({m u}_2, {m v})$$

ii.
$$(\boldsymbol{u}, \boldsymbol{v}_1 + \boldsymbol{v}_2) = (\boldsymbol{u}, \boldsymbol{v}_1) + (\boldsymbol{u}, \boldsymbol{v}_2)$$

iii.
$$(c\boldsymbol{u}, \boldsymbol{v}) = (\boldsymbol{u}, c\boldsymbol{v}) = c(\boldsymbol{u}, \boldsymbol{v})$$

双線形性とは、2つの引数それぞれに対して線形性があるという性質である。

線形性をもつ写像を線形写像として特別視したように、双線形性をもつ写像について考えて みよう。 双線形形式 U,V を線型空間とする。直積集合 $U\times V$ から \mathbb{R} への写像 b が次の条件を満たすとき、b は $U\times V$ 上の双線形形式(bilinear form)であるという。

i.
$$b(\boldsymbol{u}_1 + \boldsymbol{u}_2, \boldsymbol{v}) = b(\boldsymbol{u}_1, \boldsymbol{v}) + b(\boldsymbol{u}_2, \boldsymbol{v})$$

ii.
$$b(\boldsymbol{u}, \boldsymbol{v}_1 + \boldsymbol{v}_2) = b(\boldsymbol{u}, \boldsymbol{v}_1) + b(\boldsymbol{u}, \boldsymbol{v}_2)$$

iii.
$$b(c\boldsymbol{u}, \boldsymbol{v}) = b(\boldsymbol{u}, c\boldsymbol{v}) = cb(\boldsymbol{u}, \boldsymbol{v})$$

例:行列による双線形形式

 $oldsymbol{\iota}$ 行列による双線形形式の構成 A を $m \times n$ 型行列とするとき、 $oldsymbol{\iota}$ $oldsymbol{\iota}$ に対して

$$b(\boldsymbol{u}, \boldsymbol{v}) = \boldsymbol{u}^{T} A \boldsymbol{v}$$

により $\mathbb{R}^m \times \mathbb{R}^n$ 上の双線形形式が得られる。

▲ 証明

和に対する双線形性 (i)

行列の和に対して転置を分配できることを用いて、

$$b(\boldsymbol{u}_1 + \boldsymbol{u}_2, \boldsymbol{v}) = (\boldsymbol{u}_1 + \boldsymbol{u}_2)^T A \boldsymbol{v}$$
$$= \boldsymbol{u}_1^T A \boldsymbol{v} + \boldsymbol{u}_2^T A \boldsymbol{v}$$
$$= b(\boldsymbol{u}_1, \boldsymbol{v}) + b(\boldsymbol{u}_2, \boldsymbol{v})$$

和に対する双線形性 (ii)

(i) と同様に、

$$b(\boldsymbol{u}, \boldsymbol{v}_1 + \boldsymbol{v}_2) = \boldsymbol{u}^T A(\boldsymbol{v}_1 + \boldsymbol{v}_2)$$

$$= \boldsymbol{u}^T A \boldsymbol{v}_1 + \boldsymbol{u}^T A \boldsymbol{v}_2$$

$$= b(\boldsymbol{u}, \boldsymbol{v}_1) + b(\boldsymbol{u}, \boldsymbol{v}_2)$$

スカラー倍に対する双線形性 (iii)

行列の積に対する転置の性質と、スカラー(1×1 型行列)を転置しても変わらないことを用いて、

$$b(c\mathbf{u}, \mathbf{v}) = (c\mathbf{u})^{T} A \mathbf{v}$$
$$= c(\mathbf{u}^{T} A \mathbf{v})$$
$$= cb(\mathbf{u}, \mathbf{v})$$

以上より、b は $\mathbb{R}^m \times \mathbb{R}^n$ 上の双線形形式である。

特に、m=n で A=E の場合、

$$b(\boldsymbol{u}, \boldsymbol{v}) = \boldsymbol{u}^{\top} \boldsymbol{v}$$

となり、 \mathbb{R}^n 上の内積と一致する。