ИНСТИТУТ ТРАНСПОРТА И СВЯЗИ ФАКУЛЬТЕТ КОМПЮТЕРНЫХ НАУК И ЭЛЕКТРОНИКИ

Домашняя работа

по дисциплине «Численные методы и прикладное программирование»

Вып	олнил:
********	*****
Г	руппа:
•	pymai
4	1***B*

Оглавление

Домашняя работа номер 1.	
Решение системы линейных уравнений методом исключения Гаусса	3
Домашняя работа номер 2.	_
Интерполяция и аппроксимация.	5
Домашняя работа номер 3.	
Методы численного интегрирования и дифференцирования функции	9
Домашняя работа номер 4.	
Решение нелинейного уравнения.	11
Домашняя работа номер 5.	
Решение линейного дифференциального уравнения 2-го порядка	13
Индивидуальное задание Matlab.	
Интерполяция и аппроксимация.	15
Индивидуальное задание Matlab.	
Решение обыкновенных дифференциальных уравнений	16

Домашняя работа номер 1. Решение системы линейных уравнений методом исключения Гаусса.

$$\begin{cases} 30x_1 - 3x_2 + 4x_3 = 3\\ -3x_1 + 8x_2 + x_3 = 1\\ 0x_1 + 6x_2 + 16 = 0 \end{cases}$$

$$\begin{pmatrix}
30 & -3 & 4 & | & 3 \\
-3 & 8 & 1 & | & 1 \\
0 & 6 & 16 & | & 0
\end{pmatrix} * 10 = > \begin{pmatrix}
30 & -3 & 4 & | & 3 \\
-30 & 80 & 10 & | & 10 \\
0 & 6 & 16 & | & 0
\end{pmatrix} e_2 + e_1 = > \begin{pmatrix}
30 & -3 & 4 & | & 3 \\
0 & 77 & 14 & | & 13 \\
0 & 77 & 14 & | & 3 \\
0 & 77 & 14 & | & 3
\end{pmatrix} e_3 - e_2 = > \begin{pmatrix}
30 & -3 & 4 & | & 3 \\
0 & 77 & 14 & | & 3 \\
0 & 0 & \frac{1148}{6} & | & -13
\end{pmatrix} = \\
> \begin{pmatrix}
30 & -3 & 4 & | & 3 \\
0 & 77 & 14 & | & 3 \\
0 & 77 & 14 & | & 3
\end{pmatrix} a_3 \\
-13
\end{pmatrix} =$$

$$\begin{cases} 30x_1 - 3x_2 + 4x_3 = 3\\ 77x_2 + 14x_3 = 13\\ \frac{574}{3}x_3 = -13 \end{cases}$$

$$x_3 = -13 * \frac{3}{574} = -0.067944$$

$$x_2 = \frac{13 - 14x_8}{77} = \frac{13 - 14 \cdot (-0.067944)}{77} = 0.181184$$

$$x_1 = \frac{3 + 3x_2 - 4x_3}{30} = \frac{3 + 3 * 0.181184 - 4 * (-0.067944)}{30} = 0.127177$$

Проверка:

$$\begin{cases} 30 * 0.127177 - 3 * 0.181184 + 4 * (-0.067944) = 2.999982 \\ -3 * 0.127177 + 8 * 0.181184 + 1 * (-0.067944) = 0.999997 \\ 0 * 0.127177 + 6 * 0.181184 + 16 * (-0.067944) = 0 \end{cases}$$

Невязка:

$$\Delta b_1 = |3 - 2.999982| = 0.000018$$

$$\Delta b_2 = |1 - 0.999997| = 0.000003$$

$$\Delta b_3 = |0-0| = 0$$

$$\sigma(b_i) = \frac{|\Delta b_i|}{b_i} + 100\%$$

$$\sigma(b_1) = \frac{0.000018}{3} * 100\% = 0.0006\%$$

$$\sigma(b_2) = \frac{0.000003}{1} * 100\% = 0.0003\%$$

$$\sigma(b_3) = |\Delta b_3 - b_3| = 0 - 0 = 0$$

ОК

Домашняя работа номер 2. Интерполяция и аппроксимация.

Исходные данные:

х	-1	26	6	10
y	1	11	8	-2

Полином Лагранжа 3-го порядка

$$l_{0}(x) = \frac{(x-26)(x-6)(x-10)}{-27\cdot(-7)\cdot(-11)} = \frac{(x^{2}-6x-26x+156)(x-10)}{77\cdot(-27)} = \frac{x^{3}-6x^{2}-26x^{2}+156x-10x^{2}+60x+260x-1560}{-2079} = \frac{x^{3}-42x^{2}+476x-1560}{-2079}$$

$$l_{1}(x) = \frac{(x+1)(x-6)(x-10)}{27\cdot2016} = \frac{(x+1)(x^{2}-10x-6x+60)}{8640} = \frac{x^{3}-10x^{2}-6x^{2}+60x+x^{2}-10x-6x+60}{8640} = \frac{x^{3}-15x^{2}+44x+60}{8640}$$

$$l_{2}(x) = \frac{(x+1)(x-26)(x-10)}{7\cdot(-20)\cdot(-4)} = \frac{(x+1)(x^{2}-10x-26x+260)}{560} = \frac{x^{3}-10x^{2}-26x^{2}+260x+x^{2}-10x-26x+260}{560} = \frac{x^{3}-35x^{2}+224x+260}{560}$$

$$l_{3}(x) = \frac{(x+1)(x-26)(x-6)}{11\cdot(-16)\cdot4} = \frac{(x+1)(x^{2}-6x-26x+156)}{-704} = \frac{x^{3}-6x^{2}-26x^{2}+156x+x^{2}-6x-26x+156}{-704} = \frac{x^{3}-31x^{2}+124x+156}{-704}$$

$$l_{3}(x) = \frac{x^{3}-42x^{2}+476x-1560}{11\cdot(-16)\cdot4} + 11\frac{x^{3}-15x^{2}+44x+60}{8640} + 8\frac{x^{3}-35x^{2}+224x+260}{560} - 2\frac{x^{3}-31x^{2}+124x+156}{-704} = \frac{x^{3}-31x^{2}+124x+156}{-704} = \frac{x^{3}-31x^{2$$

Проверка

Х	γ*
-1	0.999999909
26	11.0000558
6	8.00000286
10	-1.9999918

Полином Ньютона 3-го порядка

Х	Υ	ΔY	$\Delta^2 Y$	$\Delta^3 Y$
-1	1	1	-0.3181818	0.0179187
6	8	-2.5	0.165625	
10	-2	0.8125		
26	11		•	

$$\Delta y_0 = \frac{y_1 - y_0}{x_1 - x_0} = \frac{8 - 1}{6 - (-1)} = 1$$

$$\Delta y_1 = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-2 - 8}{10 - 6} = -2.5$$

$$\Delta y_2 = \frac{y_3 - y_2}{x_3 - x_2} = \frac{11 - (-2)}{26 - 10} = 0.8125$$

$$\Delta^2 y_0 = \frac{\Delta y_1 - \Delta y_0}{x_2 - x_0} = \frac{-2.5 - 1}{10 - (-1)} = -0.3181818$$

$$\Delta^2 y_1 = \frac{\Delta y_2 - \Delta y_1}{x_3 - x_1} = \frac{0.8125 - (-2.5)}{26 - 6} = 0.165625$$

$$\Delta^3 y_0 = \frac{\Delta^2 y_1 - \Delta^2 y_0}{x_3 - x_0} = \frac{-0.3181818 - 0.165625}{26 - (-1)} = 0.0179187$$

$$N_3(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + a_3(x - x_0)(x - x_1)(x - x_2)$$

$$\begin{split} N_3(x) = &1 + 1*(x - (-1)) - 0.3181818*(x - (-1))(x - 6) + 0.0179187*(x - (-1))(x - 6)(x - 10) = \\ = &1 + (x + 1) - 0.3181818*(x + 1)(x - 6) + 0.0179187*(x + 1)(x - 6)(x - 10) = \\ = &2 + x - 0.3781818*(x^2 - 5x - 6) + 0.0179187*(x^2 - 5x - 6)(x - 10) = \\ = &2 + x - 0.3781818*(x^2 - 5x - 6) + 0.0179187*(x^3 - 10x^2 - 5x^2 + 50x - 6x + 60) = \end{split}$$

$$= 0.0179187x^3 - 0.586962x^2 + 3.37933x + 4.98421$$

Аппроксимация по МНК полиномом 2-го порядка

$$\begin{cases} a_0 * n + a_1 * \sum_{i=0}^{n} x_i + a_2 * \sum_{i=0}^{n} x_i^2 = \sum_{i=0}^{n} f(x_i) \\ a_0 * \sum_{i=0}^{n} x_i + a_1 * \sum_{i=0}^{n} x_i^2 + a_2 * \sum_{i=0}^{n} x_i^3 = \sum_{i=0}^{n} x_i * f(x_i) \\ a_0 * \sum_{i=0}^{n} x_i^2 + a_1 * \sum_{i=0}^{n} x_i^3 + a_2 \sum_{i=0}^{n} x_i^4 = \sum_{i=0}^{n} x_i^2 * f(x_i) \end{cases}$$

$$\begin{cases} a_0 * 3 + a_1 * (-1 + 26 + 6 + 10) + a_2 * ((-1)^2 + 26^2 + 6^2 + 10^2) = 1 + 11 + 8 + (-2) \\ a_0 * (-1 + 26 + 6 + 10) + a_1 * ((-1)^2 + 26^2 + 6^2 + 10^2) + a_2 * ((-1)^3 + 26^3 + 6^3 + 10^3) = -1 * 1 + 26 * 11 + 6 * 8 + 10 * (-2) \\ a_0 * ((-1)^2 + 26^2 + 6^2 + 10^2) + a_1 * ((-1)^3 + 26^3 + 6^3 + 10^3) + a_2 * ((-1)^4 + 26^4 + 6^4 + 10^4) = (-1)^2 * 1 + 26^2 * 11 + 6^2 * 8 + 10^2 * (-2) \\ \begin{cases} 4a_0 + 41a_1 + 813a_2 = 18 \\ 41a_0 + 813a_1 + 18791a_1 = 313 \\ 813a_0 + 18791a_1 + 468273a_2 = 7525 \end{cases}$$

$$\begin{cases} a_0 = 0.0181 \\ a_1 = -0.1550 \\ a_2 = 2.4080 \end{cases}$$

$$\varphi_2(x) = 0.0181x^2 - 0.1550x + 2.4080$$

Проверка результата в matlab:

График интерполяции Лагранжа и аппроксимации МНК

Домашняя работа номер 3. Методы численного интегрирования и дифференцирования функции.

Исходные данные:

$$f(x) = \frac{x}{\sin(3x)^2}$$
, a = 0.1, b = 1.0

х	f(x)	S _і прям.	S _і трап.	S _i Симпсон.	f'центр.разн	$F(x_i)$
0,1	1,145053	0,206109563				0
0,28	0,504965	0,090893782	0,14850167	0,129299042	-1,855257492	0,148502
0,46	0,47716	0,085888877	0,08839133	0,087557179	0,610807921	0,236893
0,64	0,724856	0,130474135	0,10818151	0,115612382	4,412917448	0,345075
0,82	2,065811	0,371845928	0,25116003	0,291388664	137,4692001	0,596235
1	50,21377	9,038478305	4,70516212	6,149600846		5,301397
	Интеграл	9,923690589	5,30139666	6,773458113		6,6281

По полученным данным видно, что результаты для различных методов получились весьма различными. Данное поведение можно объяснить самим видом функции, т.к. при значениях х от 0,82 до 1 наблюдается значительный рост значений исходной функции. Наиболее точный результат был получен методом трапеций.

Квадратурная форма Гаусса

$$\begin{split} &P_{0}(t) = 1 \\ &P_{1}(t) = t \\ &P_{2}(t) = \frac{(2 \cdot 1 + 1)t \cdot t - 1}{1 + 1} = \frac{3t^{2} - 1}{2} \\ &P_{3}(t) = \frac{(2 \cdot 2 + 1)t \frac{3t^{2} - 1}{2} - 2t}{3} = 2.5t^{3} - 1.5t = 2.5t \left(t^{2} - \frac{3}{5}\right) = 2.5t \left(t - \sqrt{\frac{3}{5}}\right) \left(t + \sqrt{\frac{3}{5}}\right) \\ &I_{1} = 0; \quad t_{2} = \sqrt{\frac{3}{5}}; \quad t_{3} = -\sqrt{\frac{3}{5}} \\ &I = \int_{-1}^{1} f(t)dt = A_{1}f(t_{1}) + A_{2}f(t_{2}) + A_{3}f(t_{3}) \\ &P_{3}(t) = 2.5t \left(t^{2} - \frac{3}{5}\right) = 2.5t^{3} - 1.5t \\ &P_{3}^{*}(t) = 7.5t^{2} - 1,5 \\ &A_{1} = \frac{2}{(1 - t_{1}^{2})(P_{3}^{*}(t_{1}))^{2}} = \frac{2}{1 \cdot (-1.5)^{2}} = \frac{2}{2.25} \\ &A_{2} = \frac{2}{(1 - t_{2}^{2})(P_{3}^{*}(t_{2}))^{2}} = \frac{2}{(1 - \frac{3}{5})\left(7.5 \cdot \frac{3}{5} - 1.5\right)^{2}} = \frac{2}{5} \cdot (4.5 - 1.5)^{2}} = \frac{5}{9} \\ &A_{3} = \frac{2}{(1 - t_{2}^{2})(P_{3}^{*}(t_{3}))^{2}} = \frac{5}{9} \\ &I = \frac{2}{2.25}f(0) + \frac{5}{9}f\left(\sqrt{\frac{3}{5}}\right) + \frac{5}{9}f\left(-\sqrt{\frac{3}{5}}\right) \\ &x = \frac{a + b}{2} + \frac{b - a}{2}t \\ &t_{1} = 0 \qquad x_{1} = \frac{1.1}{2} + \frac{0.9}{2} \cdot 0 = 0.55 \\ &t_{2} = \sqrt{\frac{3}{5}} \qquad x_{2} = \frac{1.1}{2} + \frac{0.9}{2} \cdot \sqrt{\frac{3}{5}} \approx 0.899 \\ &t_{2} = -\sqrt{\frac{3}{5}} \qquad x_{3} = \frac{1.1}{2} + \frac{0.9}{2} \cdot \sqrt{\frac{3}{5}} \approx 0.201 \\ &I = \left[\frac{2}{2.25} \cdot f(0.55) + \frac{5}{9}f(0.899) + \frac{5}{9}f(0.201)\right] \cdot \frac{0.9}{2} = (0.492 + 2.7 + 0.347) \cdot 0.45 = 1.593 \end{split}$$

Домашняя работа номер 4. Решение нелинейного уравнения.

$$f(x) = N_g$$

$$\frac{x}{\sin(3x)^2} = 26$$

$$g(x) = \frac{x}{\sin(3x)^2} - 26 = 0$$

Метод бисекции					
Номер итерации	а	b	new X	g(x)	g(a) * g(x)
1	0.1	1	0.55	-25.44653525	632.4722817
2	0.55	1	0.775	-24.54096845	624.4826187
3	0.775	1	0.8875	-21.82347416	535.5691909
4	0.8875	1	0.94375	-15.88043754	346.5663184
5	0.94375	1	0.971875	-6.639241269	105.4340563
6	0.971875	1	0.9859375	3.522092357	-23.3840209
	0.971875	0.98594			
	delta=	0.01406			

	Метод Хорд						
Номер итерации	а	b	new X	g(x)	g(a) * g(x)	g(a)	g(b)
1	0.1	1	0.555880128	-25.43887363	632.2818526	-24.8549	24.21377
2	0.55588	1	0.783419002	-24.45154937	622.0198786	-25.4389	24.21377
3	0.783419	1	0.892238612	-21.56065454	527.1914093	-24.4515	24.21377
4	0.892239	1	0.942996525	-16.02951059	345.6063795	-21.5606	24.21377
5	0.942997	1	0.965702083	-9.518217969	152.5714909	-16.0294	24.21377
6	0.965702	1	0.975379956	-4.659725521	44.35244382	-9.51825	24.21377
	0.97538	1					
	delta=	0.02462					

Метод Ньютона					
Номер итерации	X	g(x)	g'(x)	new X	
1	0.96	-11.6468	336.6188249	0.977299663	
2	0.9773	-3.44556	658.9453463	0.979914115	
3	0.979914	-1.6199	739.7090995	0.981009074	
4	0.981009	-0.78952	777.4387018	0.981516845	
5	0.981517	-0.39012	795.8030165	0.981761958	
6	0.981762	-0.19395	804.8740144	0.981882444	
	0.981882				
delta=	0.00012				

В методе простых итераций использовался коэффициент коррекции k = -0.002чтобы удовлетворять условию устойчивости:

$$\varphi'(x) = |1 + k * f'(x)| < 1$$

Метод простых итераций				
Номер				
итерации	X	fi'(x)		
	0.96			
1	0.983294	0.32676		
2	0.981126	-0.72956		
3	0.982523	-0.56321		
4	0.981664	-0.66785		
5	0.982209	-0.60246		
6	0.98187	-0.64357		
	0.982084	-0.6178		
delta=	0.000214			

В пакете matlab был посчитан точный корень нелинейного уравнения:

Из-за вида функции метод хорд показал наихудший вариант, так как за все 6 необходимых итераций правая граница интервала не изменялась вообще, приближение происходило только по левой границе. В итоге метод хорд за 6 итераций дал погрешность вычислений равную 0.02462.

Метод бисекции по поведению оказался схож с методом хорд, так как за все 6 итераций правая граница интервала не менялась, что привело к погрешности вычислений в 0.01406.

Наилучшие результаты вычислений были получены методом Ньютона и методом простых итераций - оба метода приблизились к решению вплотную и погрешности вычислений соответственно равны 0.00012 и 0.000214. **ОК**

Домашняя работа номер 5. Решение линейного дифференциального уравнения 2-го порядка.

$$y''(t) + 5* y'(t) + 16* y(t) = 26$$

 $y(0) = 5,$
 $y'(0) = 10.$

Решение:

$$p^{2} + 5p + 16 = 26$$

$$D = \sqrt{25 - (4*1*16)} = 25 - 64 = \sqrt{-39}$$

$$p_{1,2} = \frac{-b \pm \sqrt{D}}{2a} \Rightarrow$$

$$p_1 = \frac{-5 + i\sqrt{39}}{2} = -2.5 + 3.12i$$

$$p_2 = \frac{-5 - i\sqrt{39}}{2} = -2.5 - 3.12i$$

$$\tau = \frac{1}{|p_{\min}|} = \frac{1}{|-2.5|} = 0.4$$

$$T = 5 * \tau = 2$$

$$h = \frac{T}{200} = 0.01$$
-для машинного счета

$$\begin{cases} y' = z & y(0) = 5 \\ z' = -5z - 16y + 26 & z(0) = y'(0) = 10 \end{cases}$$

М-файл:

function
$$y = Pdu2(t, x)$$

 $y = [x(2); 26 - 5 * x(2) - 16 * x(1)];$

Код в MatLab:

Результат:

t
0
0,007692
0,046154

Χ	
5	10
5,073873464	9,21064057
5,3566532	5,580716163

0,118195
0,166213
0,214231
0,268362
0,327785
0,391036
0,457354
0,526739
0,600253
0,678252
0,761789
0,853562
0,962951
1,068393
1,121706
1,175018
1,220648
1,274685
1,334014
1,397193
1,463452
1,532748
1,606173
1,684069
1,76747
1,859015
1,967774
2

5,553082296	0,152915925
5,492909975	-2,54818346
5,31917801	-4,589701552
5,024478222	-6,192835622
4,622680237	-7,227915146
4,149234462	-7,655037153
3,643383996	-7,533261056
3,138839756	-6,965900798
2,659281064	-6,058793683
2,230745714	-4,929389998
1,871536344	-3,691033374
1,592166616	-2,437404139
1,396240251	-1,211351648
1,316823562	-0,350968599
1,306911234	-0,033254288
1,311957055	0,211478194
1,325354076	0,368518341
1,349033612	0,499337609
1,381423966	0,584222348
1,419684549	0,619829002
1,460635961	0,610821845
1,501520873	0,565546668
1,540433164	0,492555415
1,57525081	0,401354836
1,604477717	0,301145777
1,6272493	0,199565988
1,643263255	0,100244265
1,646094928	0,075906971

Индивидуальное задание Matlab. Интерполяция и аппроксимация.

1.3) Выполнить интерполяцию функции x(t), $x = \sin(0.67*t)*\cos(0.2*t)$, t = 0, 1, 2, ..., 20 с помощью а) кусочно-линейной интерполяции, б) кубическими сплайнами. Построить графики x(t), $x_i(t_i)$. Шаг изменения времени для графика интерполирующей функции выбрать 0.05.

```
t = [0:1:20];

x = sin(0.67.*t).*cos(0.2.*t);

t2 = [0:0.05:20];

x1 = interp1(t, x, t2, 'line');

x2 = interp1(t, x, t2, 'spline');

plot(t, x, '*b', t2, x1, '-b', t2, x2, '-r'), grid on
```


Индивидуальное задание Matlab. Решение обыкновенных дифференциальных уравнений.

2.1) Решение системы ОДУ (модель Лоттки-Вольтерра "хищник-жертва"):

$$\begin{cases} x' = x * (1 - y) \\ y' = a * y * (x - 1) \end{cases}$$

При a = 0.1, a = 0.6, a = 1.2 и начальных условиях x(0) = 0.7 b y(0) = 0.01. Построить для каждого значения а графики x(t), y(t) и фазовый портрет системы на временном интервале [0; 50].

function y = LotkiVolter(t, x)
y =
$$[x(1) * (1 - x(2));$$

0.1 * $x(2) * (x(1) - 1)];$

>> [t x] = ode23('LotkiVolter', [0 50], [0.7 0.01]);

>> plot(t,x), grid on, zoom on

>> comet(x(:,1),x(:,2))

function y = LotkiVolter(t, x)
y =
$$[x(1) * (1 - x(2));$$

0.6 * $x(2) * (x(1) - 1)];$
>> $[t x] = ode23('LotkiVolter', [0 50], [0.7 0.01]);$
>> plot(t,x), grid on, zoom on

ОК

