- Common-Collector (CC):
 - > Also known as *Emitter-Follower*

ac Schematic

ac Low-Frequency Equivalent

Simplified ac Low-Frequency Equivalent

> Biasing circuit not shown

> Voltage Gain:

$$A_{v} = \frac{v_{0}}{v_{i}} = \frac{i_{0}(R_{E} || r_{0})}{v_{1} + v_{0}} = \frac{(\beta + 1)i_{i}(R_{E} || r_{0})}{i_{i}r_{\pi} + (\beta + 1)i_{i}(R_{E} || r_{0})}$$
$$= \frac{R_{E} || r_{0}}{r_{\pi}/(\beta + 1) + R_{E} || r_{0}} = \frac{R_{E} || r_{0}}{r_{E} + R_{E} || r_{0}}$$

 \triangleright Now, in general, $r_0 >> R_E$

$$\Rightarrow$$
 $A_v = R_E/(r_E + R_E)$

- > Two important observations:
 - $\blacksquare A_v \leq 1$
 - No phase shift between v_i and v_0

> Current Gain:

$$A_i = i_e/i_b = \beta + 1$$
 (*large*)

> Input Resistance:

$$R_{i} = \frac{v_{i}}{i_{i}} = \frac{i_{i}r_{\pi} + i_{0}(R_{E} || r_{0})}{i_{i}}$$

$$= \frac{i_{i}r_{\pi} + (\beta + 1)i_{i}(R_{E} || r_{0})}{i_{i}}$$

$$= r_{\pi} + (\beta + 1)(R_{E} || r_{0})$$

■ If
$$r_0 >> R_E$$
, $R_i = r_\pi + (\beta + 1)R_E$

Note that this result could have been written from inspection from the ac schematic using the technique of Resistance Transformation

> Output Resistance:

$$i_{t} = i_{0} - g_{m} v_{1} - i_{i}$$

$$= \frac{v_{t}}{R_{E} || r_{0}} + g_{m} v_{t} + \frac{v_{t}}{r_{\pi}}$$

$$\Rightarrow R_0 = R_E ||r_0||r_E||r_\pi \approx r_E$$

Note that this expression also could have been written by inspection

- \triangleright Output excited by a test voltage source v_t :
 - The current has two parallel paths: one going through the parallel combination of r_0 and R_E , and the other into the emitter of Q
 - The resistance in the base lead of Q is r_{π} , which needs to be transformed to emitter by dividing it by $(\beta+1) \Rightarrow yields r_{E}$
 - Thus, R_0 becomes a parallel combination of r_0 , R_E , and r_E , which will be typically equal to r_E , since, in general, it's the least among the three
- > Understand the inspection technique, it will become immensely useful to analyze circuits