M - 33 - 2012

식품가공 공장에서 벨트컨베이어의 방호에 관한 기술지침

2012. 6.

한국산업안전보건공단

안전보건기술지침의 개요

ㅇ 작성자 : 한성대학교 최기흥

ㅇ 개정자 : 안전연구실

○ 제·개정경과

- 2010년 10월 기계안전분야 기준제정위원회 심의

- 2012년 4월 기계안전분야 기준제정위원회 심의(개정)

ㅇ 관련규격 및 자료

- FIS-25: Safeguarding flat belt conveyors in the food and drink industries

o 관련 법규·규칙·고시 등

- 산업안전보건기준에 관한 규칙 제2편 제1장 제11절 (컨베이어)

ㅇ 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈 페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2012년 6 월 20 일

제 정 자 : 한국산업안전보건공단 이사장

식품가공 공장에서 벨트컨베이어의 방호에 관한 기술지침

1. 목 적

이 지침은 산업안전보건기준에 관한 규칙(이하 "안전보건규칙"이라 한다) 제2 편 제1장 제11절 (컨베이어)에 의거 식품가공 공장에서 벨트컨베이어의 방호에 관한 기술적 사항을 정함을 목적으로 한다.

2. 적용범위

이 지침은 식품가공 공장에서 벨트컨베이어의 사용시에 적용한다.

3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
- (가) "고정식 가드(Fixed guard)"라 함은 가드가 특정위치에 용접 등으로 영구적으로 고정되거나 고정장치 (스크류, 너트 등)로 부착된 구조로서, 공구를 사용하지 아니하고는 가드의 제거 또는 개방이 불가능한 구조의 가드를 말한다.
- (나) "연동식 가드(Interlocking guard)"라 함은 기계의 위험한 부분이 가드로 방호되어 가드가 닫혀야 만 작동될 수 있고 가드가 열리면 정지명령이 주어지는 연동장치와 조합된 가드를 말한다. 단, 가드가 닫혔을 때 기계 의 작동이 초기화되는 방식을 의미하는 것은 아니다.
- (다) "유지보수 (Maintenance)"라 함은 장비의 양호한 작동 상태를 유지하기 위한 정기 또는 비정기적 행위를 말한다.

M - 33 - 2012

- (라) "작업자"라 함은 기계의 설치, 운전, 조정, 보수, 청소, 수리 또는 운반 등의 주어진 업무를 수행하는 자를 총칭하는 것을 말한다.
- (마) "결함(Fault)"이라 함은 본래 주어진 기능을 수행할 수 없는 상태를 말한다
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 이 지침에 특별한 규정이 있는 경우를 제외하고는 「산업안전보건법」, 같은 법 시행령, 같은 법 시행규칙, 안전보건규칙 및 고용노동부 고시에서 정하는 바에 따른다.

4. 배경

- (1) 이 지침은 식품 가공 공장에서 사용되는 신형 및 기존의 평 벨트 컨베이어 의 방호에 대한 지침을 제공한다. 또한 유지보수 및 점검 절차도 포함한다.
- (2) 평 벨트 컨베이어는 매끄러운(Smooth), 편향(Slanted), 메시(Mesh) 및 직물 (Woven) 벨트 등 다양한 벨트 형태를 포함하며, 버킷(Bucket), 롤러 (Roller), 스크류(Screw) 및 회전 테이블 (Rotating table) 형태의 컨베이어는 포함하지 않는다.
- (3) 주요 위험 구역 (회전말림점(In-running nip point) 및 이송(Transmission) 부분)은 지금까지 고정 방호 장치에 의해 방호되어 왔었다. 그러나 부상사고에 대한 조사 결과에 따르면 고정 방호 장치에만 의존하는 것은 효과적이지 못하며 대체 예방 조치가 필요한 것으로 드러났다.
- (4) 고정 방호 장치를 사용하는 경우, 방호 장치를 치우지 않은 상태에서 기계 를 안전하게 청소할 수 있도록 설계되어야 한다.
- (5) 또한 매일 접근이 요구되는 부분에는 방호 장치를 연동시키는 새로운 방안 이 제기되었다. 이런 새로운 표준은 식품 장비 공급업체 및 사용자들과의 협의를 통해 도출된 내용이다.

5. 위험요인(Hazard) 및 위험성(Risk)

- (1) 지난 10년간에 영국의 식품 가공 공장 내 기계에 의해 발생한 부상 사례들을 분석한 결과에 따르면 부상의 30 %가 컨베이어에 의해 야기된 것으로 나타났다. 이는 다른 어떤 종류의 기계보다도 높은 수치이다.
- (2) 분석에 따르면 컨베이어 부상의 90 %는 벨트 컨베이어에서 발생하였으며, 부상의 90 %는 회전말림점, 이송 부분, 이동 및 고정 부품간의 협착 (Trapping) 지점 등과 같이 이미 기존에 파악된 위험에 의한 것이다.
- (3) 또한 사고의 90 %는 생산, 장애물 제거, 청소 등 식품 가공 산업에서 일반 적으로 행해지는 정상 작업 도중 발생하였다.
- (4) 식품 가공 공장에서 사용되는 벨트 컨베이어는 청소 작업을 위한 접근 때문에 특별한 방호 문제를 갖고 있다.
- (5) 또한 세척액, 물 및 식품 등을 사용하기 때문에 액체가 민감한 부품에 들어가거나, 화학 반응으로 인해 문제가 발생할 수 있다.

6. 방호조치

6.1 법적요건

- (1) 작업장에서 사용되는 자체 제작 또는 구입한 중고 기기 모두를 포함한 모든 신형 기기는 안전보건규칙을 준수해야 한다.
- (2) 위의 요건을 준수하더라도, 사용자는 이 기기가 안전하다고 단정해서는 안된다.
- (3) 사용자는 모든 관련 규정이 지켜지고 있으며 공급된 기기가 안전한지를 자체적으로 점검해야 한다.

M - 33 - 2012

- (4) 현재, 국내 컨베이어 제조자를 위한 법정 안전인증 기준은 없으며 사용자는 안전보건규칙 제2편 제1장 제11절 기준을 준수해야 한다.
- (5) 국내에는 컨베이어 안전에 관한 임의인증 기준으로 KS T 2013 : 2004-09-04 (변경전: KS A 1624(20090101)) "컨베이어 안전 기준" 등이 있으며 유럽에서는 제조업체들의 관련 규정 준수를 지원하기 위해 (전 산업의) 컨베이어 시스템에 대한 기준이 마련되어 있다. 특히 평 벨트 컨베이어에 가장 관련이 큰 기준은 EN619: 2003 "지속적인 취급 장비 및 시스템, 운반물의 기계적 취급 장비의 안전 요건" 및 EN620: 2003 "지속적인취급 장비 및 시스터, 자개를 위한 평 벨트 컨베이어의 안전 기준"이다. 따라서 제조업체는 이들 기준을 참고할 수 있다.
- (6) 이외에도 식품 위생의 추가적인 위험성과 관련한 설계 기준에 대한 조언은 EN 1672-2: 1997 "식품 가공 기계. 안전 및 위성 요건: 기본 개념. 2장: 위생 요건"에 제시되어 있으며 제조업체는 이들 기준을 참고할 수 있다.
- (7) 식품 가공 기계의 방호 방안에 대한 조언은 현재 초안 구성 단계로서 prEN 1672-1: 1997 "식품 가공 기계. 안전 및 위생 요건: 기본 개념. 1장. 안전"에 제시되어 있다.
- (8) 상기 기술된 것 외에 컨베이어를 포함하는 작업 장비는 다음 사항을 준수 하여야 한다.
- (가) 사용되는 목적에 부합되어야 한다.
- (나) 효율적인 상태, 효율적인 작업 순서 및 제대로 수리된 상태로 유지, 보수 되어야 한다.
- (다) 안전하게 사용하고 안전하게 청소하고 유지, 보수되어야 한다.
- (9) 컨베이어를 작업장에 재배치하는 경우, 사용자는 컨베이어가 안전보건규칙을 준수하도록 하며, 위험성을 재평가해야 할 수도 있다.

6.2 컨베이어 방호를 위한 설계 고려

(1) 일반적 방호 (사용 중 청소 포함)

컨베이어의 경우 다음과 같은 일련의 방호 조치들을 고려해야 한다. 사용되는 자재들은 적절히 견고해야 하며 필요시 (예, 스테인레스 스틸) 위생 요건들을 충족해야 한다.

(2) 설계에 의한 안전 확보

- (가) 회전말림점 및 기타 협착지점을 설계 단계에서 제거한다. 예를 들면, 위로 들어 올리는 롤러(Lift-out roller)를 사용하고, 영구적인 방호 장치를 사용한다 (예를 들면, 용접으로 고정시키거나, 구조의 일부로 편입시킨다).
- (나) 영구적인 방호 장치는 부상의 리스크를 방지하고, 청소 및 안전한 제품 수거를 가능케 하는 한 가장 최선의 방안이다. 예를 들면, 근접 설치된 영구적인 방호 장치는 벨트와 끝단 롤러(End roller) 간에 만들어진 회전 말림점에 적합하다. 벨트 컨베이어 방호 조치에 대한 추가적인 내용은 안 전보건규칙 제2편 제1장 제11절 또는 BS 5667: 1980 "지속적인 기계적취급 장비의 사양 19장 안전 요건, 컨베이어 벨트 회전말림점 방호에 대한 사례"에 나타나 있다.

6.3 고정식 방호 장치

- (1) 고정식 방호장치는 (즉, 유지보수를 위해 분리 가능하나, 스크류, 너트, 볼 트 등의 수공구를 사용하여 고정되어 있는 장치) 방호 장치를 자주 움직일 필요가 없다면 사용될 수 있다.
- (2) 방호 장치는 위험 구역을 에워싸거나, 아니면 위험 구역과 적절한 거리를 확보함으로써 접근을 방지해야 한다. S-마크 안전인증기준 S2-G-15-1999 "기계의 안전설계를 위한 기술적 원칙 및 사양에 관한 안전인증기준" 또는 EN 294 : 1992 "기계 안전. 팔에 의한 위험 구역 접근을 방지하기 위한 안전 거리

(<표 4>)"를 참조한다.

- (3) 고정식 방호 장치의 단점은 설치 장소를 바꾸는 것이 불가능할 수 있다는 것이다. 혹은 이것이 가능하더라도, 예전처럼 견고함을 유지 못 할 수 있다. 청소를 위한 접근이 제한될 수 있다.
- (4) 전동 부분을 조정하거나 윤활유를 칠하기 위해서 매월 한번 이상 접근이 필요한 경우, 방호장치를 치우지 않아도 이런 작업이 가능하도록 설계되어 야 한다.

6.4 연동식 방호 장치

- (1) 연동식 방호 장치 (예를 들면, 열린 상태에서 기계가 작동하는 것을 방지하기 위해 코드화된 마그네틱 연동 스위치를 장착한 방호 장치)는 고정식 장치와 비교하여 여러 장점 및 단점을 갖고 있다.
- (2) 장점은 청소 및 유지보수 작업시 접근이 쉽다는 것이다. 단점은 특히 세척 액 사용과 관련하여 연동 장치를 좋은 상태로 유지해야 하는 필요성 등을 포함한다.
- (3) 이러한 방호 방식은 하루 한번 청소 또는 장애물을 제거하기 위해 방호 장치를 자주 치워야 할 경우에 사용된다.
- (4) 고정식 방호 장치와 마찬가지로 연동식 방호 장치는 위험 구역을 방호해야 한다.
- (5) 연동 장치는 위생을 확보하는 설계여야 하며, 물의 침투 및 식품 또는 청소시 사용하는 화학 용품으로부터의 화학적 공격에 견딜 수 있어야 한다.
- (6) 사용 가능한 화학 용품은 지시서에 명시되어야 한다. 이는 코드화된 마그네틱 또는 인접 연동 스위치의 사용을 의미할 수 있다.
- (7) 제어 시스템 및 연동 정합성은 최소한 S-마크 인증기준 S2-G-16-1999:

M - 33 - 2012

"기계의 제어시스템의 안전부분에 관한 안전인증기준" 또는 EN 954-1: 1997 "기계의 안전. 제어 시스템의 안전 관련 부품 - 설계의 일반 원칙"에 명시된 항목 1의 규정 수준으로 유지되어야 한다.

(8) 제어 방호 장치 (즉, 닫혀졌을 때 기계를 구동시키는 방호 장치)는 가동 중 단 시간을 줄이기 위해 사용될 수 있다. 그러나 방호 장치가 닫힌 상태에서 방호 장치와 위험 구역 사이에 작업자가 위치할 가능성이 없고, 연동 장치가 최고의 높은 신뢰도를 갖추고 있으며, 방호장치가 열려있을 때 정지시간 (Rundown time)과 관련된 위험이 없을 때만 그러하다.

6.5 트리핑(Tripping) 장비

- (1) 기계로 구동되거나 (예를 들면, 트립 봉(Trip bar), 안전 매트) 전기감응식으로 작동되는 트리핑 장비도 또 다른 방호 방안이 될 수 있다.
- (2) 트리핑 장비는 작업자 또는 작업자의 일부분이 위험 구역에 들어올 때 자동적으로 기계를 중단시킨다.
- (3) 트리핑 장비는 다른 수단으로 방호가 불가능 할 경우에만 고려되어야 한다.
- (4) 트리핑 장비가 식품이나 세척 화학품에 노출될 수 있기 때문에 장비 선정시 위생 및 안전 요건을 검토한다.
- (5) 기계식으로 구동되는 트리핑 장비의 정합성은 최소한 S-마크 인증기준 S2-G-16-1999: "기계의 제어시스템의 안전부분에 관한 안전인증기준" 또는 EN 954-1: 1997에 명시된 항목 1(Category 1), 전자김응식 장비의 정합성은 항목 2(Category 2)를 충족시켜야 한다.

6.6 양손 제어

양손 제어는 근방에 위한 다른 작업자들을 보호해주지 않기 때문에 컨베이어 방호에는 적합한 방식이 아니다.

6.7 기타 설계시 고려사항

모든 벨트 컨베이어의 설계는 다음을 고려해야 한다.

- (1) 자동 시스템 사용(스프레이 노즐 등) 등을 통해 장애물 제거 및 사용 중 청소가 안전히 행해지도록 한다.
- (2) 컨베이어 기동(Start-up)시 안전. 대형 컨베이어 시스템의 경우, 제어 패널에서 모든 위치를 조망할 수 없어 작업자가 위험에 처한 상태를 제대로 파악 못할 수 있다. 이런 경우 자동적인 기동 경고가 울려서 컨베이어 시스템이 구동하기 전에 작업자가 비상 정지 제어를 작동할 수 있는 충분한 시간을 제공해준다 (아니면 거울 및 기타 보조기구를 제공할 수도 있다).
- (3) 올바른 벨트 자재 선정 표면이 매끄러운 벨트는 사용 자재 또는 코팅이 다르기 때문에 접지력(Grip)의 수준이 각기 다를 수 있으며 이는 빨려 들어 가는 위험을 증가/감소시킬 수 있다. 특히 접지력 수준이 다른 컨베이어들이 나란히 설치되어 있을 경우에 더욱 그러하다.
- (4) 벨트 윤활유가 흐르는 것을 받아내기 위한 트레이(Tray) 및 배수구의 필요 성
- (5) 물, 세척 용액의 침투를 막기 위해 모터, 스위치를 적절히 에워싸거나 보호 장치를 제공한다.
- (6) 안전한 작업 방식, 적절한 세척액/방식 등에 대한 지침을 지시서에 포함시킨다.

6.8 대대적인 청소(Deep cleaning)시 방호

정기적인 대대적인 청소(Deep cleaning)는 종종 기계 분해를 필요로 할 수 있다. "정상적인" 방호 장치가 있는 상태에서 청소가 어려우면, 다음과 같은 조치를 고려한다.

(1) 동력 공급 중단

- (가) 컨베이어에 동력 공급을 중단한 상태에서 안전한 작업 시스템을 사용하여 컨베이어를 청소할 수도 있다.
- (나) 이는 컨베이어의 플러그를 뽑거나 (산업용 플러그를 위한 잠금식 플러그 커버가 있다), 차단기(Isolator)를 잠금(Lock off) 상태로 놓는 것을 뜻한 다.
- (다) 이런 방식의 사용은 컨베이어가 위험도가 낮은 식품으로 가볍게 더럽혀 졌으며, 청소가 비교적 용이할 때만으로 한정된다.
- (라) 컨베이어의 오염도가 심하고, 고위험 식품으로 더렵혀졌다면, 벨트 표면에 대한 집중적인 청소가 요구되며, 청소 작업의 일환으로 벨트를 움직여야 할 필요가 있을 수 있다.
- (마) 이 경우, 벨트를 수작업으로 움직이는 것이 하나의 방안이다. 그러나 이를 위해 지나친 노력이 필요하면 이 방안을 사용하지 않는다. 특별한 공구가 필요하다면 제공되어야 하며, 사용하기 편리해야 한다.

(2) 수동으로 동력 제공

- (가) 이 방안은 정상적인 방호 장치가 있거나, 동력 공급을 중단한 상태에서 컨베이어를 청소하는 것이 가능하지 않을 경우 사용한다.
- (나) 이 경우, 수시로 (예를 들면, 매일) 방호 장치를 치워야 한다면 연동식을 채택한다. 가동유지(Hold to run) 제어 장치(해제(Release)될 때 컨베이어를 정지시킨다) 및 제한된 움직임 (예를 들면, 컨베이어가 저속 또는 저동력 상태에서 작동함)에 의해 연동식 방호 장치를 열고 동력 공급이 이루어진 상태에서 청소가 행해져야 한다.
- (다) 엔지니어링 방호 조치 외에도, 안전한 작업 시스템에 따라 청소가 행해져 야 한다.

(라) 비상 정지 장비는 적합한 위치에 있어야 한다 (예를 들면, 트립와이어 (Trip wire), 푸시버튼(Push button) 등).

7. 유지보수

7.1 컨베이어의 유지보수

- (1) 유지보수는 신형 컨베이어의 설계 단계에서부터 고려되어야 한다. 예를 들면, 컨베이어가 작동 중인 상태에서 검사하거나 조정해야 할 필요가 있다면 방호 장치를 제거하지 않은 상태에서 안전하게 실시하는 것이 가능해야 한다.
- (2) 방호 장치를 제거한 상태에서 유지보수 작업을 해야 한다면 컨베이어를 에 너지 공급원으로부터 적절히 격리한 한 후 (예를 들면, 동력 공급 차단 등) 실시한다.
- (3) 오래된 컨베이어의 경우 유지보수 작업을 하기 위해 위험하기 움직이는 부분을 노출시켜야 한다면 추가적인 방호 조치 및 안전한 작업 시스템을 실행하여 부상을 방지한다.

7.2 컨베이어 방호 장치의 점검

- (1) 작업자 점검
 - (가) 점검은 가급적 자주 실시해야 하며, 다음 사항을 확보하기 위한 것이다.
 - ① 방호 장치가 제 위치에 놓여 있다 (예, 매일 외관 체크).
 - ② 방호 장치가 정확히 장착되어 있다 (예, 뒤틀리거나, 틈이 발생했는지 여부를 체크).
 - ③ 고정장치(Fixing)가 빠짐없이 있다 (예, 볼트 등).

- ④ 연동 장치 및 비상 정지 시스템에 결함이 없다 (예를 들면, 없거나, 부서 졌는지 여부 등을 확인한다).
- ⑤ 위험 정도에 따라 연동 장치가 의도대로 작동한다.
- (나) 작업자는 다음에 대한 교육/훈련을 받는다.
 - ① 점검을 안전하게 실행하는 방법
 - ② 결함이 발견된 경우 어떻게 해야 하는지 등의 방법
 - ③ 장애물 제거 및 청소 등을 포함한 정상적인 생산 작업 시 안전한 작업 방식

7.3 일상적인 검사

- (1) 이는 정기적으로 행하는 검사로, 빈도는 위험성 평가 및 경험, 제조업체의 정보 등을 고려해서 결정된다.
- (2) 일상적인 검사는 해당 교육을 받은 전문 인력에 의해 수행되어야 한다.
- (3) 검사를 수행하는 사람들은 방호 방식을 이해하고, 결함을 어떻게 발견하며, 안전하게 작업하며, 필요한 조치 등을 제대로 알기 위해서 충분한 교육 및 훈련을 받고 지식을 갖추어야 한다.
- (4) 또한 각기 다른 속도로 작동하는 컨베이어들이 나란히 놓여있을 경우 빨려 들어갈 위험이 있음을 인지해야 한다.

7.4 일상적인 점검

(1) 안전뿐만 아니라 기타 많은 사항들을 포함할 수 있으며, 컨베이어 제조업체 가 권장한 바에 따라 수행되어야 한다.

(2) 컨베이어 유지보수에 대한 정보가 제공되지 않으면, 적절한 위험성 평가에 따라 유지보수 요건을 작성해야 한다.

7.5 유지보수 작업 또는 대대적인 청소작업 후

정확한 위치 확인 (Positioning), 방호 장치의 안전 및 작동 여부를 점검해야 한다.

7.6 추가적인 방호장치 점검

- (1) 연동 장치의 기능 시험, 틈새의 측정 (예, 꼭 끼워맞춤 (Close-fitting), 회전 말림점 방호 장치), 고정장치의 조임새 확인 등을 포함한다.
- (2) 작업자의 점검, 일상적인 검사 또는 위험에 근거한 주기적 유지보수에 포함되어야 한다.