Total No	o. of Questions ; 8]	SEAT No.:
P9115	,	[Total No. of Pages : 5
	[6179]=240	
S.E. (Computer Engineering/Computer Science & Design Engineering/		
Artificial Intelligence & Data Science Engineering)		
DISCRETE MATHEMATICS		
(2019 Pattern) (Semester-III) (210241)		
Time : 2	% Hours	
	ions to the candidates:	[Max. Marks : 70
1) Answer Question No. Q1 or Q2, and Q3 or Q4, and Q5 or Q6 and Q7 or Q8.		
2)	Neat diagram must be drawn whenever necessary	
3)	Figures to the right indicate full marks.	·
4)	Assume suitable data, if necessary.	.6
01))		·M
Q1) a)	How many bit strings of length 8 bits can be con	
	start with '1' or end with '00'?	[6]
b) In how many ways can 6 Boys and 2 Girls be seating in a row such that		
	i) 2 Girls are seating together	
	ii) 2 Girls are not seating together.	[6]
c)	How many bit strings can be formed of length 1	0 bits which contains?[6]
	i) at least four 1's	
	ii) at most four 1's?	137
	* .	100
	OR	. 3
Q2) a)	How many bit strings of length 10 can be fo	rmed which will contain
	either 5 consecutive 0s or 5 consecutive 1s?	[6]
b)	A zip code contains 6 digits. How many different	ent zip codes can be made
	with the digits 0-9 if.	
	i) No digit is used more than once.	
	ii) The first digit is not '0'	5. [6]
c)	Use the Binomial theorem to expand (3a-2b)	[6]
 (Q2) a) How many bit strings of length 10 can be formed which will contain either 5 consecutive 0s or 5 consecutive 1s? [6] b) A zip code contains 6 digits. How many different zip codes can be made with the digits 0-9 if. i) No digit is used more than once. ii) The first digit is not '0' [6] c) Use the Binomial theorem to expand (3a-2b)⁶ [6] 		
	L CA	

b) Explain with example:

[5]

[7]

- Bipartite Graph
- Connected Graphs
- What is Graph isomorphism? Which of the following graphs are isomorphic? Justify your answer. [5] c)

Q4) a)

b)

- Hamilton path & Hamilton circuit. ii)

- What is planar Graph? A simple planar graph G contains 20 vertices and c) degree of each vertex is 3. Determine the number of regions in planar [5] graph G?
- Q5) a) For the following graph find different cut set and identify the max flow in [6] given network

b) Find the optimal prefix code for the given characters with the frequency of occurrences as below. [6]

Character A E I 0

c)

Construct Binary search Tree: Q6) a)

[6]

21, 28, 14,18,11, 32, 25, 23, 37, 27, 5, 15, 19, 30, 12, 26

For the following transport network find the maximum flow using max flow min cut theorem.

Find minimum spanning tree using Kruskals Algorithm.

Let $Z_4 = \{0,1,2,3\}$ and 'R' be the relation under operation '+' defined as Q7) a)

$$a+b=a+b$$
: if $(a+b)<4$,

$$a+b=a+b-4$$
: if $(a+b) \le 4$

Where $a,b \in Z_4$

Determine Algebraic System $(Z_4,+)$ is abellian group or not Explain:

i) Integral domain

[6] [6]

- b)

 - Field
- Let $A=\{0,1,2,3\}$ and 'R' be the relation under operation ' \odot ' defined c) as a ⊙ b=a,b%4. Determine algebraic system (A, ⊙) is monoid or not? [5]

OR

4

- **Q8)** a) Let $Z_n = \{0,1,2,3,...n-1\}$
 - Consider 'R' relation under operation '+' defined as "addition Modulo 5" and operation '*' defined as "multiplication modulo 5". Does the Algebraic system. $(Z_5,+,*)$ forms Ring"? [8]
 - b) Explain the following properties of Algebraic structure with example [4]
 - i) Identity
 - ii) Inverse
 - c) Consider 'R' be the relation under binary operation '*' on a set Z. Does the algebraic system (Z,*) is Abelian Group? [5]

014211202309:31.16