ชื่อโครงงาน แขนกลสำหรับติดตามดาวเทียมกิจการวิทยุสมัครเล่น

จัดทำโดย นายธฤตวัน เสาะสมบูรณ์
ชั้นมัธยมศึกษาปีที่ 5 โรงเรียนโพธิสารพิทยากร
ชื่อนักวิทยาศาสตร์พี่เลี้ยง นายอภิวัฒน์ จิรวัฒนผล
สถาบันนักวิทยาศาสตร์พี่เลี้ยง บริษัท เอ็นบีสเปซ จำกัด

โครงการพัฒนาอัจฉริยภาพทางวิทยาศาสตร์สำหรับเด็กและเยาวชน ระดับมัธยมศึกษาตอนปลายและปริญญาตรี รุ่นที่ 26 ประจำปี 2566 สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ

บทคัดย่อ

โครงงานพัฒนาแขนกลสำหรับติดตามดาวเทียมกิจการวิทยุสมัครเล่น มีวัตถุประสงค์เพื่อศึกษาหลักการ ทำงานและพัฒนาแขนกลสำหรับสถานีภาคพื้นดิน (Ground Station) ที่ใช้สายอากาศทิศทางในการรับสัญญาณ ดาวเทียม ให้สามารถทำงานได้ ทนต่อสภาพอากาศที่กำหนดได้ มีความเร็วในการเปลี่ยนทิศทางที่เพียงพอสำหรับ ดาวเทียมที่มีวงโคจรต่ำที่สุดในเชิงทฤษฎี สามารถรับน้ำหนักของสายอากาศที่ติดตั้งอยู่บนแขนกลได้ และสามารถ เคลื่อนที่ไปยังมุมที่ต้องการได้อย่างถูกต้องและแม่นยำ โดยใช้วิธีวิจัยเชิงทดลองทั้งหมด 4 การทดลอง ดังต่อไปนี้

การทดลองที่ 1 ทดสอบการเคลื่อนที่จากตำแหน่งปัจจุบันไปยังตำแหน่งเริ่มต้นได้ถูกต้องแม่นยำ ได้ทำการสั่งให้แขน กลเคลื่อนที่จากตำแหน่งปัจจุบันไปยังตำแหน่งเริ่มต้น เปรียบเทียบกับค่าที่วัดได้ และหาค่าเฉลี่ยจากการทดลอง ทั้งหมด 50 รอบ

การทดลองที่ 2 การทดสอบโดยเริ่มจากตำแหน่งสุ่ม ไปยังตำแหน่งที่ต้องการ โดยเริ่มจากตำแหน่งที่สุ่มเอาไว้ เปรียบเทียบกับค่าที่วัดได้ และหาค่าเฉลี่ยจากการทดลองทั้งหมด 20 รอบ

การทดลองที่ 3 ทำการวัดแรงดึงที่แขนกลสามารถทำได้ โดยกำหนดให้ตำแหน่งวัด ห่างจากจุดหมุน ระยะ 1 เมตร จากนั้นจึงเพิ่มน้ำหนักขึ้นครั้งละ 0.5 กิโลกรัม และทำการบันทึกผล

การทดลองที่ 4 การนำไปใช้งานจริงและอ่านค่าสัญญาณที่ได้รับจากดาวเทียม โดยนำแขนกลไปติดตั้งใช้งานจริง และ วัดระดับสัญญาณจากดาวเทียม แล้วบันทึกค่าที่ได้รับ

ผลการวิจัยพบว่า แขนกลติดตามดาวเทียมนั้น ผ่านเกณฑ์ที่วางแผนไว้และบรรลุวัตถุประสงค์ของงานวิจัยนี้ โดยมีอัตราความผิดพลาดสำหรับการเคลื่อนที่ไปยังตำแหน่งเริ่มต้นน้อยกว่า 1 องศา และมีอัตราความผิดพลาดจาก ตำแหน่งที่สุ่มเอาไว้ไปยังตำแหน่งที่ต้องการน้อยกว่า 2 องศา ซึ่งเพียงพอสำหรับการรับสัญญาณอย่างมีประสิทธิภาพ เมื่อใช้แขนกลควบคู่กับสายอากาศทิศทาง และมีแรงบิดอยู่ที่ 5 นิวตัน-เมตร ซึ่งเพียงพอสำหรับการใช้งานกับ สายอากาศทิศทางขนาดเล็ก-กลาง ที่มีการถ่วงดุลน้ำหนัก และสามารถทำงานได้ในสภาพอากาศในประเทศไทย โดยใน การทดสอบจะใช้ในช่วง อุณหภูมิ 20-55 องศาเซลเซียส ความชื้นสัมพัทธ์ 45-80% และทดสอบการทำงานในที่เปียก ชื้นขณะฝนตก

กิตติกรรมประกาศ

การวิจัยเรื่อง แขนกลสำหรับติดตามดาวเทียมกิจการวิทยุสมัครเล่น สามารถดำเนินการจนประสบความสำเร็จ ลุล่วงไปด้วยดี เนื่องจากได้รับความอนุเคราะห์และสนับสนุนเป็นอย่างดียิ่งจาก นายอภิวัฒน์ จิรวัฒนผล ประธาน เจ้าหน้าที่บริหาร บริษัท เอ็นบีสเปซ จำกัด ที่ได้กรุณาให้คำปรึกษา ความรู้ ข้องคิด ข้อแนะนำ และปรับปรุงแก้ไข ข้อบกพร่องต่าง ๆ จนกระทั่งการวิจัยครั้งนี้สำเร็จเรียบร้อยด้วยดี ข้าพเจ้าขอกราบขอบพระคุณเป็นอย่างสูงไว้ ณ ที่นี้

ขอขอบคุณ โครงการพัฒนาอัจฉริยภาพทางวิทยาศาสตร์และเทคโนโลยีสำหรับเด็กและเยาวชน สำนักงาน พัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ (สวทช.) ที่ได้สนับสนุนให้ทุนในการทำวิจัยในครั้งนี้

ขอขอบคุณเพื่อนๆทุกคนรวมถึงคนรอบตัวของข้าพเจ้าที่อำนวยความสะดวกและช่วยเหลือในการทำวิจัยครั้ง นี้

สุดท้ายนี้ข้าพเจ้าหวังว่างานวิจัยฉบับนี้คงเป็นประโยชน์สำหรับหน่วยงานที่เกี่ยวข้อง และผู้ ที่สนใจศึกษาต่อไป

คำนำ

รายงานฉบับนี้จัดทำขึ้นเพื่อนำเสนอโครงการพัฒนาอัจฉริยภาพทางวิทยาศาสตร์และเทคโนโลยีสำหรับเด็ก และเยาวชน สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ (สวทช.) ในหัวข้อ "แขนกลสำหรับติดตามดาวเทียม กิจการวิทยุสมัครเล่น" มีวัตถุประสงค์เพื่อศึกษาและพัฒนาแขนกลจำลองขนาดเล็กสำหรับใช้ในการติดตามดาวเทียม อัตโนมัติขึ้น สำหรับอำนวยความสะดวกในการทำงาน มีขนาดกระทัดรัด สามารถเคลื่อนย้ายได้สะดวก ศึกษา ความสัมพันธ์ในตัวแปรและการรับค่าพิกัดในการการระบุทิศทางตำแหน่งของดาวเทียม ที่สามารถติดตามได้ถูกต้อง แม่นยำทดแทนการใช้มนุษย์

ข้าพเจ้าหวังเป็นอย่างยิ่งว่ารายงานเล่มนี้จะเป็นประโยชน์ต่อผู้สนใจที่จะศึกษา "แขนกลสำหรับติดตาม ดาวเทียมกิจการวิทยุสมัครเล่น" หากมีข้อแนะนำหรือข้อผิดพลาดประการใด ข้าพเจ้าขอน้อมรับไว้และขออภัยมา ณ ที่นี้ด้วย

สารบัญ

	หน้า
บทคัดย่อ	ก
กิตติกรรมประกาศ	ข
คำนำ	ନ
สารบัญ	J
บทที่ 1 บทนำ	1
ดาวเทียมคืออะไร	1
สถานีภาคพื้นดิน	3
ที่มาและความสำคัญของโครงงาน	4
วัตถุประสงค์	5
ประโยชน์ที่คาดว่าจะได้รับ	5
บทที่ 2 การศึกษาเอกสารอ้างอิง	6
แนวคิดและทฤษฎีที่เกี่ยวข้อง	6
โครงงานวิจัยที่เกี่ยวข้อง	10
บทที่ 3 วิธีการดำเนินโครงงาน	11
การคำนวณ	12
โครงสร้างของแขนกล	15
โปรแกรมควบคุม	17
การนำไปใช้งานจริง	22
เครื่องมือและวัสดุอุปกรณ์	23
การทดสอบ	24
คลิปวีดีโอแนบ	24
บทที่ 4 ผลการดำเนินงาน	25
บทที่ 5 สรุปผลและข้อเสนอแนะ	27
สรุปผลการดำเนินงานและข้อเสนอแนะ	27
ประโยชน์ที่ได้รับจากโครงงาน	27
การทดลองเพิ่มเติม	28
บรรณานุกรม	30

บทที่ 1 บทน้ำ

การสื่อสารผ่านดาวเทียมเป็นอีกหนึ่งช่องทางในการติดต่อสื่อสารที่มีความสำคัญเป็นอย่างมากในโลกปัจจุบัน ตั้งแต่ปี ค.ศ. 1965 เป็นต้นมา การติดต่อสื่อสารผ่านดาวเทียมได้สร้างคุณประโยชน์ให้แก่มวลมนุษยชาติในหลาย ๆด้าน เช่น เครือข่ายโทรศัพท์ที่อาศัยดาวเทียมในการเชื่อมต่อซึ่งกันและกัน การกระจายสัญญาณโทรทัศน์ผ่านดาวเทียม ส่งผลทำให้ผู้คนสามารถรับรู้ข่าวสารและเข้าถึงข้อมูลได้สะดวกมากขึ้น แม้จะอยู่ในพื้นที่ห่างไกลก็ตาม [1]

ดาวเทียมคืออะไร

ดาวเทียม คือสิ่งประดิษฐ์ที่มนุษย์สร้างขึ้นมา สามารถโคจรรอบโลกโดยอาศัยแรงดึงดูดของโลก ส่งผลให้ สามารถโคจรรอบโลกได้ในลักษณะเดียวกันกับที่ดวงจันทร์โคจรรอบโลก และโลกโคจรรอบดวงอาทิตย์ ดาวเทียมนั้น ถูกส่งขึ้นสู่อวกาศด้วยจรวดหลากหลายประเภท โดยจะขึ้นอยู่กับขนาดและน้ำหนักของดาวเทียม ซึ่งจะทำหน้าที่ ผลักดันดาวเทียมให้มีความเร็วสูงพอที่จะหลุดพันแรงดึงดูดของโลกและนำดาวเทียมไปยังวงโคจรที่ต้องการ

วงโคจรของดาวเทียม มีหลายรูปแบบ ขึ้นอยู่กับวัตถุประสงค์การใช้งานและประเภทของดาวเทียม โดยทั่วไป สามารถแบ่งออกเป็น 3 ประเภท ดังนี้ [2-3]

- •วงโคจรต่ำ (LEO) อยู่สูงจากพื้นโลกประมาณ 200-2,000 กิโลเมตร ข้อดีของวงโคจรประเภทนี้คือมีความหน่วงของ สัญญาณ (Latency) ในการติดต่อระหว่างดาวเทียมกับพื้นโลกที่ต่ำที่สุดในบรรดาวงโคจรทั้ง 3 ประเภท จึงเหมาะ สำหรับดาวเทียมที่ต้องการถ่ายภาพความละเอียดสูง หรือดาวเทียมสื่อสารโทรคมนาคม ข้อเสียของวงโคจรประเภทนี้ คือมีพื้นที่ครอบคลุมของดาวเทียม (Coverage Area) ที่ต่ำกว่าวงโคจรประเภทอื่นเป็นอย่างมาก ส่งผลทำให้ต้องใช้ ตันทุนผลิตดาวเทียมและยิงขึ้นไปบนอวกาศเป็นจำนวนมากในการที่จะสามารถบริการลูกค้าได้ตลอดเวลา การรับสัญญาณมีความซับซ้อนมากกว่าดาวเทียมประเภท GEO ทำให้อุปกรณ์รับส่งสัญญาณภาคพื้นดินมีราคาสูง
- •วงโคจรระดับกลาง (MEO) อยู่สูงจากพื้นโลกประมาณ 2,000-35,786 กิโลเมตร ข้อดีของวงโคจรประเภทนี้คือมีพื้นที่ ครอบคลุมของดาวเทียมที่มากกว่าวงโคจรต่ำ มีความจำเป็นที่จะต้องยิงดาวเทียมขึ้นไปยังวงโคจรสำหรับการบริการที่ น้อยกว่า และยังมีความหน่วงของสัญญาณที่สามารถใช้งานในกิจการส่วนใหญ่ได้ จึงเหมาะสำหรับดาวเทียม อุตุนิยมวิทยา ดาวเทียมนำร่อง และบริการอินเทอร์เน็ตผ่านดาวเทียม (Satellite Internet) ข้อจำกัดของวงประเภทนี้คือ มีความหน่วงของสัญญาณมากกว่าวงโคจรต่ำ และตำแหน่งของดาวเทียมที่เคลื่อนที่ตลอดเวลาเหมือนวงโคจรต่ำ ส่งผล ทำให้เกิดขวามซับซ้อนในการรับสัญญาณ
- •วงโคจรสูง (GEO) อยู่สูงจากพื้นโลกประมาณ 35,786 กิโลเมตร วงโคจรประเภทนี้เป็นวงโคจรค้างฟ้า ทำให้การติดตั้ง และรับสัญญาณสามารถทำได้อย่างเรียบง่าย มีพื้นที่ครอบคลุมของสัญญาณดาวเทียมถึง 1 ส่วน 3 ของโลก เหมาะ สำหรับดาวเทียมสื่อสาร หรือดาวเทียมติดตามสภาพอากาศที่อาศัยความคงที่ของตำแหน่งดาวเทียม ทำให้สามารถเก็บ ข้อมูลและนำไปประมวลผลได้อย่างสม่ำเสมอ แต่เนื่องจากพื้นที่ที่สามารถรับรองดาวเทียมในวงโคจรมีจำกัด ทำให้ บริษัทต่าง ๆต้องทำการแข่งขันและประมูลราคากันเอง รวมถึงต้องปฏิบัติตามระเบียบข้อบังคับที่มีความซับซ้อน วง โคจรประเภทนี้ยังมีความหน่วงของสัญญาณที่สูง จึงไม่เหมาะสำหรับบริการที่ให้ความสำคัญกับปัญหานี้อีกด้วย

ภาพที่ 1 วงโคจรแบบโพล่า (วงโคจรต่ำ)

ที่มา Satellite Communications Systems: Systems, Techniques and Technology (5th Edition) [4]

หลักการสื่อสารของดาวเทียมสื่อสารในเบื่องต้น อาศัยวงจรสื่อสารแบบสองทาง (duplex communication circuit) เมื่อสถานีภาคพื้นดินส่งคลื่นความถี่วิทยุขึ้นไปยังดาวเทียมซึ่งจะเรียกว่าความถี่เชื่อมโยงขาขึ้น (Up-Link Frequency) ดาวเทียมจะรับสัญญาณเข้ามาแล้ว ทวนสัญญาณให้แรงขึ้นพร้อมกำจัดสัญญาณรบกวนออกไป ก่อนส่ง สัญญาณกลับมายังพื้นดิน ทั้งนี้ดาวเทียมจะทำการเปลี่ยนความถี่คลื่นไมโครเวฟให้แตกต่างไปจากความถี่ขาขึ้นแล้วจึง ส่งความถี่กลับลงมาเรียกว่า ความถี่เชื่อมโยง ขาลง (Down-Link Frequency)

ภาพที่ 2 การใช้ดาวเทียมสื่อสารในการทวนสัญญาณไมโครเวฟ

ที่มา นายหัสนัย ริยาพันธ์ การสื่อสารผ่านดาวเทียม (Satellite Communication) [5]

สถานีภาคพื้นดิน

สถานีภาคพื้นดินดาวเทียม (Satellite ground station) เป็นสถานที่ที่ใช้สื่อสารกับดาวเทียม โดยมีการรับและ ส่งสัญญาณคลื่นวิทยุระหว่างดาวเทียมกับโลก สถานีภาคพื้นดินทำหน้าที่เป็นตัวกลางในการสื่อสารระหว่างดาวเทียม กับผู้ใช้บนโลก โดยมักใช้ในการรับสัญญาณสำหรับการโทรทัศน์ดาวเทียม การสื่อสารดาวเทียม การเฝ้าระวังดาวเทียม และภารกิจอื่น ๆ ที่เกี่ยวข้องกับดาวเทียม สถานีภาคพื้นดินมักจะมีอุปกรณ์สื่อสารสำหรับรับและส่งสัญญาณ เช่น จาน รับสัญญาณดาวเทียม (dish antenna) และอุปกรณ์สื่อสารเสริมอื่น ๆ ที่จำเป็น เพื่อให้สามารถทำงานร่วมกับดาวเทียม ได้อย่างมีประสิทธิภาพและเชื่อถือได้ สถานีพื้นดาวเทียมยังมีความสำคัญอย่างมากในการรับส่งข้อมูลจากดาวเทียม มายังโลกและจากโลกสู่ดาวเทียมในกิจการต่าง ๆ เช่น การสื่อสารทางทหาร การรายงานข้อมูลภัยธรรมชาติ การ กระจายสัญญาณโทรทัศน์ การสำรวจอวกาศ และบริการอื่น ๆ ที่เกี่ยวข้องกับดาวเทียม การเป็นสถานีพื้นดาวเทียมที่มี ประสิทธิภาพสามารถช่วยให้การสื่อสารดาวเทียมเป็นไปอย่างเสถียรและมีประสิทธิภาพในการทำงานอย่างต่อเนื่องได้ ซึ่งวัตถุประสงค์หลักของโครงงานนี้จะเป็นการศึกษาและพัฒนาในส่วนของสถานีภาคพื้นดินนั่นเอง

ภาพที่ 3 ตัวอย่างสถานีภาคพื้นดินที่มหาวิทยาลัยมหานคร กรุงเทพฯ

ภาพที่ 4 ตัวอย่างสถานีภาคพื้นดินสำหรับติดตามดาวเทียมขนาดใหญ่ ที่มหาวิทยาลัยมหานคร กรุงเทพฯ

ที่มาและความสำคัญของโครงงาน

ในปัจจุบันประเทศไทยกำลังเร่งพัฒนาอุตสาหกรรมอวกาศ และได้เข้าสู่ยุค New Space คือ พื้นที่ในอวกาศ เป็นคล้ายสนามเด็กเล่น ไม่เพียงเปิดกว้างแต่องค์กรใหญ่ๆ หรือเอกชนรายใหญ่เท่านั้นในปัจจุบัน สถานศึกษาต่างๆ บริษัทเอกชนรายย่อยและสตาร์ทอัพรายใหม่ๆ ก็สามารถก้าวไปสู่การพัฒนาเทคโนโลยีใหม่ๆไปด้วยเช่นกัน ตัวอย่างเช่น ดาวเทียมไทยโชต - ดาวเทียมสำรวจทรัพยากรธรรมชาติที่ดำเนินงานโดย สำนักงานพัฒนาเทคโนโลยี อวกาศและภูมิสารสนเทศ (GISDA), JAISAT - ดาวเทียมวิทยุสมัครเล่น , KNACKSAT1, KNACKSAT2 - พัฒนาโดย มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ (KMUTNB) และได้ถูกส่งเข้าสู่วงโคจรเรียบร้อยแล้ว ในขณะที่ ข้าพเจ้ากำลังเขียนรายงานฉบับนี้อยู่นั้น ทางมหาลัยดังกล่าวก็กำลังพัฒนาดาวเทียมขนาดเล็กดวงใหม่ที่มีชื่อว่า KNACKSAT3 อยู่เช่นกัน

จากตัวอย่างทั้งหมดนี้จำเป็นจะต้องมีหลายหลายฝ่ายที่จะต้องมีทีมงานดูแล หน่วยที่มีความจำเป็นและขาด ไม่ได้เลยคือ หน่วยภาคพื้นดิน (Ground Station) ที่จะต้องคอยทำหน้าที่ติดดาวเทียมและรับ-ส่งสัญญาณ ส่งชุดคำสั่ง ให้ดาวเทียมทำภาระกิจใดๆ ตรวจสอบสถานะดาวเทียม และรับสัญญาณเพื่อนำข้อมูลมาวิเคราะห์และใช้งานต่อไป ซึ่ง ข้าพเจ้ามีความสนใจพัฒนาแขนกลขนาดเล็กที่ใช้ในการติดตามดาวเทียมโดยอัตโนมัตินี้ขึ้น เพื่อเป็นการอำนวยความ สะดวกทำให้การทำงานง่ายขึ้น รวมถึงการระบุทิศทาง และตำแหน่งของดาวเทียมที่ติดตามได้ถูกต้องแม่นยำทดแทน การใช้คน ซึ่งการประดิษฐ์นี้ สามารถใช้ทั้งในกิจการวิทยุสมัครเล่น อุตสาหกรรมอวกาศและกิจกรรมอื่นๆต่อไป

เนื่องจากแขนกลสำหรับติดตามดาวเทียม ยังมีไม่แพร่หลายนัก รวมถึงยังมีราคาที่สูงเมื่อใช้งานแขนกลที่ ออกแบบสำหรับใช้งานในเชิงพาณิชย์ การการติดต่อดาวเทียมผ่านการถือสายอากาศทิศทาง และชี้ไปยังดาวเทียมที่ ต้องการติดต่อด้วยตนเอง ทำให้การติดต่อสื่อสารผ่านทางดาวเทียมวงโคจรต่ำ นั้นเป็นไปด้วยความยากลำบาก เนื่องจากความเร็วในการเคลื่อนที่ผ่านน่านฟ้าของดาวเทียมมีอัตราที่สูงเมื่อเปรียบเทียบกับดาวเทียมวงโคจรสูง ทำให้ ความแม่นยำในการติดตามดาวเทียมด้วยมือต่ำ ข้าพเจ้าจึงต้องการที่จะนำเอาโครงงานที่คล้ายกันมาพัฒนาต่อให้ สามารถประกอบขึ้นเองได้ที่บ้านในราคาที่ถูกลง ลดการนำเข้าจากต่างประเทศ พกพาได้สะดวก รวมถึงมีประสิทธิภาพ ที่สูงขึ้นตามเกณฑ์ที่ข้าพเจ้าตั้งและสามารถนำไปใช้งานจริงได้อีกด้วย

การทดลองนี้ยังสามารถนำสิ่งประดิษฐ์ที่ได้ไปประยุกต์ใช้ในกิจการด้านอื่น ๆได้อีก ที่ต้องการความแม่นยำใน การติดตาม เช่น การติดตามเครื่องบิน ทั้งเครื่องบินพาณิชย์ เรือเดินสมุทร หรือ พัฒนาไปในระบบที่ใหญ่ขึ้นเช่น ทางด้านความปลอดภัยของประเทศ เช่น ติดตามเครื่องบินรบ เป็นพื้นฐานที่สำคัญในการสร้างปืนต่อสู้อากาศยาน , การติดต่อสื่อสารทางไกล ที่แม่นยำและรวดเร็ว, ข้อมูลทางด้านภูมิศาสตร์และสภาพอากาศที่นำมาปรับใช้กับการ เพาะปลูกและการเกษตรกรรม รวมไปถึงการติดตามอากาศยานไร้คนขับสำหรับฉีดปุ๋ย ยาฆ่าแมลง หรืองานสำรวจ พืชผลทางการเกษตร หรืองานอื่น ๆที่เป็นอันตรายต่อมนุษย์ ซึ่งสามารถประยุกต์แขนกล และระบบนี้ทดแทนแรงงาน จากมนุษย์ได้เช่นกัน

วัตถุประสงค์

งานวิจัยนี้มีวัตถุประสงค์เพื่อ

- 1. พัฒนาแขนกลสำหรับติดตามดาวเทียมให้สามารถเคลื่อนที่ได้สะดวก น้ำหนักโดยรวมน้อยกว่า 5 กิโลกรัม ไม่ รวมน้ำหนักของสายอากาศ และฐานเครื่อง
- 2. พัฒนาแขนกลให้สามารถรับน้ำหนักของสายอากาศที่ใช้ในงานจริง ซึ่งมีน้ำหนักโดนสายอากาศจะมีน้ำหนัก โดยประมาณ 2-3 กก. ต่อข้าง และรวมการถ่วงน้ำหนัก ให้สามารถทำงานติดตามดาวเทียมได้อย่างสมบูรณ์ ตามปกติ
- 3. พัฒนาแขนกลที่สามารถติดตามดาวเทียมโดยใช้กลุ่มตัวเลขเรียงกันสองบรรทัด (TLE Two line Element Set) ซึ่งเป็นชุดตัวเลขมาตรฐานในการป้อนค่าเข้าสู่ระบบ และนำไปใช้ในการคำนวณ และระบุค่าพิกัดของ ดาวเทียม และคำนวนทิศทางการหมุนของมอเตอร์ในขั้นตอนถัดไป
- 4. พัฒนาแขนกลสำหรับติดตามดาวเทียมให้มีประสิทธิภาพตามเกณฑ์ที่วางแผนไว้ ดังนี้
 - 4.1 สามารถทนสภาพอากาศทั่วไป และสภาวะวิกฤตของอากาศในประเทศไทย
 - 4.2 มีความเร็วในการเปลี่ยนทิศทางที่เพียงพอสำหรับดาวเทียมที่มีวงโคจรต่ำที่สุดในเชิงทฤษฎี
 - 4.3 สามารถรับน้ำหนักของสายอากาศที่ติดตั้งอยู่บนแขนกลได้ (น้ำหนักรวมสูงสุด 6 กิโลกรัม หรือ 3 กก. ต่อ ด้าน)
 - 4.4 แขนกลสามารถเคลื่อนที่ไปยังมุมที่ต้องการได้อย่างถูกต้องและแม่นยำ ตรงตามที่ออกแบบ
- 5. แขนกลใช้ชิ้นส่วนที่หาได้ทั่วไปและมีราคาถูกกว่าแขนกลสำหรับติดตามดาวเทียมแบบพาณิชย์

ประโยชน์ที่คาดว่าจะได้รับ

- 1. ได้ศึกษาและเรียนรู้หลักการทำงานของแขนกลอัตโนมัติ
- 2. ได้ศึกษาและเข้าใจหลักการทำงานร่วมกันระหว่างไมโครคอนโทรลเลอร์กับอุปกรณ์ภายในแขนกล สำหรับ ควบคุมทิศทางการเคลื่อนไหวไปยังตำแหน่งที่ต้องการ
- 3. ฝึกฝนการคิดวิเคราะห์และวางแผนในเชิงวิศวกรรมอย่างมีประสิทธิภาพ
- 4. เรียนรู้วิธีการคำนวณอัตราทดเกียร์ และออกแบบฟันเฟืองที่มีความแข็งแรง

บทที่ 2 การศึกษาเอกสารอ้างอิง

ในการวิจัยเรื่อง "แขนกลสำหรับติดตามดาวเทียมกิจการวิทยุสมัครเล่น" ในครั้งนี้ ผู้วิจัยได้คันคว้าข้อมูล ทฤษฎี เอกสาร รวมทั้งงานวิจัยที่เกี่ยวข้อง ทั้งนี้เพื่อนำแนวคิดและทฤษฎีมาปรับใช้ในการศึกษาให้เกิดประโยชน์ โดยจำเสนอ ตามลำดับดังต่อไปนี้

- 1. แนวคิดและทฤษฎีที่เกี่ยวข้อง
- 2. โครงงานวิจัยที่เกี่ยวข้อง

แนวคิดและทฤษฎีที่เกี่ยวข้อง

กลุ่มตัวเลขเรียงกันสองบรรทัด (TLE Two line Element Set)

เป็นชุดตัวเลขมาตรฐานสำหรับการแสดงตำแหน่งและความเร็วของวัตถุที่โคจรรอบโลก ซึ่งใช้โดยศูนย์ควบคุม อวกาศ NORAD และองค์กรอื่นๆ ที่เกี่ยวข้องกับการติดตามวัตถุในอวกาศ โดยในแต่ละตำแหน่งของกลุ่มตัวเลขเรียง กันสองบรรทัดจะมีข้อมูลของดาวเทียมดาวนั้นๆ ที่แตกต่างกันกันตามรูปด้านล่าง [6-9]

ภาพที่ 5 การยกตัวอย่างการถอดรหัส TLE ของดาวเทียม THEOS

ที่มา ศูนย์การเรียนรู้วิทยาศาสตร์โลกและดาราศาสตร์ [7]

ด้วยตัวอย่างของข้อมูลจากไฟล์ TLE นั้นมีความสำคัญเป็นอย่างมาก เราสามารถดาวโหลดไฟล์เหล่านี้ ได้จาก เว็บไซต์ celestrak.org ซึ่งเป็นตัวเลขมาตรฐาน และเราจะนำตัวเลขและข้อมูลเหล่านี้ไปใช้ในการประมวลผลในลำดับ ถัดไป [8]

ความเร็วเชิงมุม (Angular Velocity)

คือปริมาณที่บอกถึงการเปลี่ยนแปลงของมุมในหน่วยเวลาที่กำหนด วัดเป็นเรเดียนต่อวินาที (radians per second) มักใช้สัญลักษณ์ ω (โอเมก้า) ความเร็วเชิงมุมเป็นเวกเตอร์ที่มีทิศทางซึ่งกำหนดตามกฏมือขวา โดยหากหมุน ตามเข็มนาพิกาทิศทางของเวกเตอร์จะชี้เข้าหาตัวเรา และถ้าหมุนทวนเข็มนาพิกาทิศทางของเวกเตอร์จะชี้ออกจากตัว เรา ความเร็วเชิงมุมมีความสำคัญในการศึกษาการเคลื่อนที่แบบหมุนของวัตถุต่าง ๆ ทั้งในฟิสิกส์และวิศวกรรม

ภาพที่ 6 อธิบายความเร็วเชิงมุมของสถานีภาคพื้นดินและดาวเทียม

โมเมนต์ความเฉื่อย (Moment of inertia)

โมเมนต์ความเฉื่อย (Moment of Inertia) คือปริมาณที่บ่งบอกถึงความต้านทานของวัตถุต่อการเปลี่ยนแปลง การหมุนของมันรอบแกนใดแกนหนึ่ง วัดในหน่วยกิโลกรัมต่อตารางเมตร (kg·m²) ปริมาณนี้ขึ้นอยู่กับการกระจายตัว ของมวลของวัตถุและระยะห่างจากแกนการหมุน วัตถุที่มีมวลมากและอยู่ห่างจากแกนหมุนมากจะมีโมเมนต์ความเฉื่อย มาก ซึ่งทำให้ต้องใช้แรงบิด (Torque) มากขึ้นในการเปลี่ยนแปลงการหมุนของวัตถุนั้น โมเมนต์ความเฉื่อยมี ความสำคัญในการวิเคราะห์การเคลื่อนที่แบบหมุนในหลายสาขา เช่น วิศวกรรมเครื่องกล วิศวกรรมการบิน และฟิสิกส์

แขนกลสำหรับติดตามดาวเทียมที่ดีควรมีความสามารถในการต้านทางแรงบิดจากสายอากาศได้

อัตราทดเฟือง (Gear Ratio)

อัตราทดเพื่อง (Gear ratio) คือ อัตราส่วนของจำนวนฟันเพื่องที่มีการสัมผัสกันระหว่างเพื่องสองตัวหรือ มากกว่า เพื่อถ่ายทอดพลังงานและแรงบิดจากเพื่องตัวหนึ่งไปยังอีกตัวหนึ่ง อัตราทดเพื่องจะบอกถึงความสัมพันธ์ ระหว่างความเร็วในการหมุนของเพื่องขับ (drive gear) กับเพื่องตาม (driven gear) ซึ่งสามารถคำนวณได้จากการหาร จำนวนฟันเพื่องของเพื่องขับด้วยจำนวนฟันเพื่องของเพื่องตาม

สูตรคำนวณอัตราทดเฟือง

ในการคำนวณอัตราทดเพื่อง (Gear Ratio) มีสูตรที่สามารถใช้ได้ง่าย ๆ ดังนี้: อัตราทดเพื่องสำหรับเพื่องสองตัว:

อัตราทดเฟืองสำหรับความเร็วการหมุน:

อัตราทดเพื่อง =
$$\frac{$$
ความเร็วการหมุนของเพื่องตาม $}{$ ความเร็วการหมุนของเพื่องขับ

ตัวอย่างการคำนวณ

1. กรณีคำนวณจากจำนวนฟันเฟือง:

ถ้าเพื่องขับมี 10 ฟัน และเพื่องตามมี 20 ฟัน

อัตราทดเพื่อง
$$=rac{20}{10}=2$$

หมายความว่าเพื่องขับหมุน 2 รอบ เพื่องตามจะหมุน 1 รอบ

2. กรณีคำนวณจากความเร็วการหมุน:

ถ้าเพื่องขับหมุนด้วยความเร็ว 100 รอบต่อนาที และเพื่องตามหมุนด้วยความเร็ว 50 รอบต่อนาที

อัตราทดเพื่อง
$$=rac{100}{50}=2$$

หมายความว่าเพื่องขับหมุน 2 รอบ เพื่องตามจะหมุน 1 รอบ

การอ้างอิงตำแหน่งในระบบจานสายอากาศ (Azimuth & Elevation)

มุมแอซิมัท (Azimuth Angle):

มุมแอซิมัทเป็นมุมในแกนตั้ง ซึ่งครอบคลุม 360 องศารอบตัวเรา โดยทั่วไปทิศเหนือจะอยู่ที่ 0 องศา ทิศตะวันออก 90 องศา ทิศใต้ 180 องศา และทิศตะวันตก 270 องศา และเมื่อทิศเหนือถือเป็น 360 องศา มุมนี้จะวนลูปจาก 0 ถึง 360 องศา

มุมยก (Elevation Angle):

มุมยกเป็นมุมระหว่างเส้นตรงและระนาบแนวนอนของเสาอากาศ โดยมุมยกที่ 0 องศาเมื่อแสงของเสาอากาศอยู่ในแนว ขอบฟ้า และมุมยกที่ 90 องศาเมื่อแสงชี้ตรงขึ้นไป และเมื่อตรงกันข้ามกับขอบฟ้าจะเป็น 180 องศา ดังนั้นมุมยกจะอยู่ ระหว่าง 0 ถึง 180 องศา

ภาพที่ 7 อธิบายความเร็วเชิงมุมของสถานีภาคพื้นดินและดาวเทียม ที่มา [10]

โครงงานวิจัยที่เกี่ยวข้อง

งานวิจัย "Autonomous Satellite Tracker" โดย Elwood Downey ได้อธิบายถึงการพัฒนาตัวติดตาม ดาวเทียมของโลกแบบอัตโนมัติเต็มรูปแบบ โดยใช้เซ็นเซอร์ 9-DOF (degrees of freedom) ที่ติดตั้งบนสายอากาศ ควบคู่กับเครื่องรับสัญญาณ GPS เพื่อให้สามารถติดตามดาวเทียมได้อย่างแม่นยำโดยไม่ต้องมีการจัดตำแหน่งส่วงหน้า

แขนกลในงานวิจัยนี้ทำงานโดยใช้กิมบอล 2 แกน และมีความผิดพลาดในการติดตามน้อยกว่า 2 องศา โดย อาศัยเซ็นเซอร์เชิงพื้นที่ที่ติดตั้งในตัวทั้งหมด คุณสมบัติของแขนกลดังกล่าวมีดังนี้

- 1. **ไม่ต้องจัดตำแหน่งล่วงหน้า**: ระบบนี้กำจัดความจำเป็นในการจัดตำแหน่งหรือการสอบเทียบล่วงหน้า ทำให้ การตั้งค่าและการใช้งานง่ายขึ้น
- 2. **การติดตามแบบเรียลไทม์**: ใช้การผสมผสานของเซ็นเซอร์แม่เหล็ก, แอคเซลเลอโรมิเตอร์ และไจโรสโคป เพื่อกำหนดทิศทางเชิงพื้นที่และติดตามดาวเทียมแบบเรียลไทม์
- 3. **การควบคุมผ่านเว็บ**: มีเว็บเซิร์ฟเวอร์ในตัวและจุดเชื่อมต่อ Wi-Fi ที่อนุญาตให้ตรวจสอบและควบคุมผ่าน เว็บเบราว์เซอร์ต่างๆ รวมถึงสมาร์ทโฟน
- 4. **คุ้มค่า**: ใช้ส่วนประกอบที่หาซื้อได้ทั่วไป โดยมีค่าใช้จ่ายรวมประมาณ 13,000 บาท ไม่รวมสายอากาศ งานวิจัยนี้เน้นย้ำถึงแนวทางใหม่ในการติดตามดาวเทียมโดยใช้เทคโนโลยีเซ็นเซอร์สมัยใหม่เพื่อทำให้กระบวนการ ติดตามง่ายขึ้นและมีประสิทธิภาพมากขึ้น [11]

งานวิจัยเรื่อง " Design and Development of Low Cost Ground Receiving Station for LEO Satellite Operations " โดย A. Saravanakumar, A. Kaviyarasu และ U. Manikandan มุ่งเน้นการสร้างสถานีภาคพื้นดินที่มี ต้นทุนต่ำสำหรับการติดตามดาวเทียมวงโคจรต่ำ (LEO) โดยใช้เทคโนโลยี Software-Defined Radio (SDR) วัตถุประสงค์ของงานวิจัยคือการสนับสนุนภารกิจดาวเทียมของมหาวิทยาลัยด้วยระบบที่ยืดหยุ่นและมีประสิทธิภาพ ด้านทรัพยากร

ต้นแบบสถานีภาคพื้นดินที่ใช้เทคโนโลยี SDR นี้สามารถอำนวยความสะดวกในการสื่อสารกับดาวเทียมและ การรับข้อมูลได้อย่างมีประสิทธิภาพ ทำให้เป็นทรัพยากรที่มีค่าสำหรับสถาบันการศึกษา และแสดงให้เห็นถึงศักยภาพ ของเทคโนโลยี SDR ที่มีต้นทุนต่ำและยืดหยุ่นในการพัฒนาความสามารถในการติดตามและการสื่อสารกับดาวเทียม [12]

วิทยานิพนธ์โดย Alam, Islam, Mansoor, และ Ahmad นำเสนอระบบติดตามดาวเทียมแบบอัตโนมัติสำหรับ เสาอากาศทิศทาง ระบบนี้ช่วยเพิ่มประสิทธิภาพการสื่อสารกับดาวเทียมขนาดเล็กที่โคจรอยู่บริเวณวงโคจรต่ำโดยการ รักษาการติดต่อที่แม่นยำระหว่างเสาอากาศสถานีภาคพื้นดินและดาวเทียม ใช้มอเตอร์กระแสตรงสำหรับการหมุนใน แนวราบและแนวตั้ง ควบคุมโดยหน่วยประมวลผลกลาง (CPU) ที่ประมวลผลข้อมูลตำแหน่งดาวเทียม เพื่อความ แม่นยำในการตั้งตำแหน่งเสาอากาศ ระบบนี้ยังรองรับทั้งการทำงานแบบแมนนวลและอัตโนมัติ [13]

บทที่ 3 วิธีการดำเนินโครงงาน

ภาพที่ 8 แขนกลติดตามดาวเทียม พร้อม ระบบโซล่าเซลล์

รูปด้านซ้าย คือ แขนกลติดตามดาวเทียมที่ผู้ ข้าพเจ้าได้จัดทำขึ้น รวมไปถึงการพัฒนาติดตั้งแผง โซล่าเซลล์เพื่อให้สามารถใช้พลังงานจากตัวเอง และนำไปทดลองติดตามสถานีอากาศนานาชาติ ISS เพื่อทดสอบการทำงานทั่วไปของระบบ และ นำไปติดตามดาวเทียม Meteor-M N2-3 ดาวเทียม รายงานสภาพอากาศ

ผลปรากฏว่า แขนกลติดตามดาวเทียม สามารถ ทำงานได้ตามเงื่อนไขที่ออกแบบไว้ โดยจะกล่าวถึง วิธีการดำเนินโครงการในลำดับถัดไป ถึงวิธีทำโดย คร่าว การประกอบ การติดตั้งโปรแกรม และอื่นๆ ที่เกี่ยวข้อง ในลำดับถัดไป และสามารถดูคลิปวีดีโอ ได้ตามลิงค์เว็บไซต์ด้านล่างที่แนบมานี้

https://www.youtube.com/shorts/D1ZdOJ6ivsM

วิธีการดำเนินงาน สามารถแยกออกได้เป็น 3 ส่วน คือส่วนของการคำนวน โครงสร้างของแขนกล และส่วนของ โปรแกรมที่ใช้ควบคุมแขนกล โดยจะกล่าวครั้งละหัวข้อเป็นลำดับถัดไป

การคำนวณ

ในการติดตามดาวเทียมที่วงโคจรต่ำของโลก (LEO) ด้วยแขนกล นั้น ความสัมพันธ์ระหว่างความเร็วเชิงมุมของการ หมุนในมุมแอซิมัท (AZ angular velocity) และความสูงสูงสุดที่สามารถติดตามได้ โดยมีวิธีการคำนวณดังนี้:

สัญลักษณ์และค่าคงที่ที่ใช้

- ω: ความเร็วเชิงมุมของมุมอะซิมุทในหน่วยเรเดียนต่อวินาที (rad/s)
- H = AE + EF : ความสูงต่ำสุดของ LEO, 160 กิโลเมตร
- R = AE : รัศมีของโลก, 6500 กิโลเมตร
- น: ความเร็วเชิงเส้นของดาวเทียมที่ความสูง 160 กิโลเมตร, 7.8 กิโลเมตรต่อวินาที
- BΔ = u / ω : ระยะทางในหน่วยกิโลเมตร

การคำนวณที่เกี่ยวข้อง

- 1. $\alpha = \operatorname{atan}(B\Delta / R)$
 - หามุม α ซึ่งเป็นมุมที่ระยะทาง BΔ ทำมุมกับรัศมีของโลก R

- 2. $\delta = \pi \alpha$
 - หามุม δ ซึ่งเป็นมุมที่เกิดขึ้นจากการลบมุม lpha จาก π
- 3. $\gamma = a\sin(sqrt(R^2+B\Delta^2) * sin(\delta) / (H+R))$
 - หามุม γ โดยใช้กฎของไซน์ (law of sines) ในสามเหลี่ยมที่สร้างจาก R, BΔ และ H+R
- 4. $\dot{\alpha} = \pi \delta \gamma$
 - หามุม α์ ซึ่งเป็นมุมที่เกิดจากการลบมุม δ และ γ จาก π
- 5. $\Gamma\Delta = (H+R) * \sin(\alpha) / \sin(\delta)$
 - หาระยะทาง ΓΔ ในสามเหลี่ยมที่สร้างจาก H+R, ά และ δ
- 6. $\chi = atan(\Gamma\Delta / B\Delta)$
 - หามุม χ ซึ่งเป็นมุมที่ระยะทาง Γ∆ ทำมุมกับระยะทาง Β∆

เมื่อนำสมการดังกล่าวมาวาดเป็นกราฟ ตัวกราฟจะแสดงผลดังนี้:
แกนนอน แสดงถึงความเร็วเชิงมุม (ω) ในหน่วยองศาต่อวินาที (deg/s)

แกนตั้ง แสดงถึงความสูงสูงสุดที่สามารถติดตามได้ (χ) สำหรับความสูงต่ำสุดของ LEO

ภาพที่ 9 กราฟขวามเร็วของแขนกลในแกน AZ
(องศาต่อวินาที)

หลังจากศึกษา ข้าพเจ้าได้ข้อสรุปว่าความเร็วเชิงมุม 5 องศาต่อวินาทีนั้นเพียงพอสำหรับการสร้างแขนกลที่มีความ แม่นยำได้ จำได้ดำเนินการประกอบแขนกลที่มีความเร็วเช่นนี้

ระบบสายพาน และมู่เล่ของแขนกล

ในระบบสายพานและมู่เลย์ที่มีการใช้งาน GT2, pitch 2 มิลลิเมตร มีข้อมูลและข้อกำหนดต่าง ๆ ดังนี้:

- ระยะห่างแนวนอนระหว่างมู่เลย์ (P1 และ P2) เท่ากับ 58 มิลลิเมตร
- ระยะห่างแนวตั้งระหว่างมู่เลย์ (P1 และ P2) เท่ากับ 9.5 มิลลิเมตร
- สายพานและมู่เลย์ที่ใช้นั้นเป็นแบบ GT2 ซึ่งมี pitch 2 มิลลิเมตร ความกว้างของสายพาน 6 มิลลิเมตร และ ความหนาของสายพาน 1.38 มิลลิเมตร (0.76 ฟัน)
- มู่เลย์จะต้องมีมุมพันรอบที่มากกว่า 60 องศา และมีฟันที่สัมผัสกับมู่เลย์อย่างน้อย 6 ฟัน ซึ่งหมายความว่า ในทางปฏิบัติจะต้องใช้มู่เลย์ที่มีฟันอย่างน้อย 12 ฟัน และมักจะใช้ที่มีฟันอย่างน้อย 18 ฟัน

ขนาดเส้นผ่านศูนย์กลางภายนอกของมู่เลย์ที่มีให้เลือกมีดังนี้:

- มู่เลย์ 16 ฟัน | เส้นผ่านศูนย์กลางภายนอก 10.2 มิลลิเมตร
- มู่เลย์ 20 ฟัน | เส้นผ่านศูนย์กลางภายนอก 12.7 มิลลิเมตร
- มู่เลย์ 36 ฟัน | เส้นผ่านศูนย์กลางภายนอก 22.9 มิลลิเมตร
- มู่เลย์ 40 ฟัน | เส้นผ่านศูนย์กลางภายนอก 25.5 มิลลิเมตร

จากการคำนวณด้วยสายพานเครื่องคิดเลขพบว่า:

- อัตราทด 2.25 | P1 มี 16 ฟัน | P2 มี 36 ฟัน | สายพานมี 85/86 ฟัน | ความยาวสายพาน 58.65/59.66
 มิลลิเมตร
- อัตราทด 1.8 | P1 มี 20 ฟัน | P2 มี 36 ฟัน | สายพานมี 86/87/88 ฟัน | ความยาวสายพาน 57.78/58.78/59.78 มิลลิเมตร
- อัตราทด 2.5 | P1 มี 16 ฟัน | P2 มี 40 ฟัน | สายพานมี 87/88 ฟัน | ความยาวสายพาน 58.5/59.5
 มิลลิเมตร
- อัตราทด 2 | P1 มี 20 ฟัน | P2 มี 40 ฟัน | สายพานมี 89/90 ฟัน | ความยาวสายพาน 58.65/59.66
 มิถลิเมตร

มอเตอร์ที่ใช้มีความเร็วสูงสุดที่ไม่มีโหลดเท่ากับ 200 รอบต่อนาที (1200 องศาต่อวินาที) และมีแรงบิดสูงสุดเมื่อ หยุดที่ 1.2 นิวตันเมตร

โครงสร้างของแขนกล

- 1. ทางโครงงานได้ใช้โครงอลูมิเนียมเพื่อความแข็งแรงและมีน้ำหนักเบา เป็นโครงสร้าง และนำไปประกอบกับ ฐานจักรยานแบบสำเร็จ ซึ่งมีจำหน่ายอยู่ในท้องตลาดและมีราคาถูกสามารถนำมาดัดแปลงเพียงเล็กน้อยและ นำมาใช้เป็นฐานของแขนกลได้ทันที (ภาพที่ 8)
- 2. พิมพ์ชิ้นส่วน 3 มิติ ที่ออกแบบไว้ เพื่อเป็นเกลียวตัวหนอน ฐานจับ และอื่นๆ โดยใช้อัตราทดเกลียวตัวหนอน 50:1 ซึ่งหมายความว่า เมื่อมอเตอร์หมุน 50 รอบ เพื่องตัวหนอนฝั่งที่ขับเสาและสายอากาศจะหมุนเพียง 1 รอบ ทั้งนี้เพื่อสามารถรับน้ำหนักและแรงบิดได้ตามที่ออกแบบไว้ โดยการคำนวณจะอยู่ในขั้นตอนการ ดำเนินงานฉบับเต็ม (ภาพที่ 9)
- 3. ประกอบ CNC Shield และบัดกรีแผงวงจร และประกอบเข้ากับในกล่องควบคุมในขั้นตอนถัดไป (**ภาพที่ 10**)
- 4. ประกอบชิ้นส่วนและโครงอลูมิเนียมเข้าด้วยกันตามตำแหน่งที่ออกแบบไว้ (ภาพที่ 11)
- 5. ประกอบชุดควบคุมเครื่องเข้ากับแขนกล รวมไปถึงต่อเชื่อมเข้ากับคอมพิวเตอร์สำหรับควบคุม
- 6. ทดสอบและปรับแต่งเครื่อง (**ภาพที่ 12**)

ภาพที่ 10 ฐานแขนกล ประยุกต์จากชุด ประกอบช่อมจักรยาน

ภาพที่ 11 พิมพ์ชิ้นส่วน 3D

ภาพที่ 12 บัดกรีแผงวงจร

ภาพที่ 13 ประกอบชิ้นส่วนเข้าด้วยกัน

ภาพที่ 15 การนำไปใช้งานจริง

ภาพที่ 16 รูปบอร์ด Arduino และ CNC Shield V3 ที่สามารถหาได้ใน ประเทศไทย มีราคาที่ถูก และใช้งานได้ดี ส่วนบอร์ด Arduino แนะนำ ให้ใช้เป็นบอร์ดจริง จึงจะสามารถเชื่อมต่อ และทำงานได้อย่างถูกต้อง และมีประสิทธิภาพ

ภาพที่ 13 การนำไปใช้งานจริง

โปรแกรมควบคุม

เป็นโปรแกรมที่ใช้ในการควบคุมแขนกล เพื่อให้แขนกลสามารถทราบถึงพิกัดและตำแหน่งของตัวเอง ในการ คำนวนทิศทาง และพิกัดที่ต้องชี้ปลายสายอากาศไปยังดาวเทียม มีให้เลือกใช้หลายตัวเลือกเช่นกัน เช่น Orbitron [14], Gpredict [15] เป็นต้น โปรแกรมที่ข้าพเจ้าเลือกใช้คือ Gpredict สาเหตุคือ ฟรี และ UI สวยงาม เสถียร ควบคุมง่ายและ หลากหลายการปรับเปลี่ยนได้หลากหลายตามต้องการ

ภาพที่ 17-18 โปรแกรมติดตามดาวเทียม Orbitron (ซ้าย) โปรแกรมติดตามดาวเทียม Gpredict (ขวา)

1. การติดตั้งโปรแกรม Gpredict ในเครื่องคอมพิวเตอร์ระบบปฏิบัติการ Windows สามารถดาวน์โหลดได้ที่เว็บไซด์ https://oz9aec.dk/gpredict/ แล้วติดตั้งโปรแกรม

ตั้งค่าโปรแกรมให้ระบุพิกัด Latitude Longitude ของสถานี ในเมนู Preference ภาพที่ 16

เลือกดาวเทียมที่ต้องการติดตาม โดยกดเลือกที่ Configuration ที่สามเหลี่ยมเล็กๆมุมขวามือ **ภาพที่ 19**

ดาวเทียมจะอยู่ในหมวดหมู่ต่างๆที่ต้องการติดตาม เลือกดาวเทียมที่ต้องการ จากช่องซ้าย ให้อยู่ในช่องขวามือ

ตั้งค่าเพื่อให้สามารถเชื่อมต่อ เข้ากับ Arduino เข้ากับโปรแกรม Gpredict เพื่อทำการควบคุมมอเตอร์

ภาพที่ 20 การปรับตั้งค่า Interface ในส่วนของ Rotors Controller ให้ สามารถควบคุม CNC Shield ได้

✗ Edit rotator configuration X								
Name	Arduino	Arduino						
Host	localhos	localhost						
Port	4533	4533 - +						
Az type	0° → 1	0° → 180° → 360° ▼						
Min Az	0	-	+	Max Az	360	_	+	
Min El	0	_	+	Max El	90	_	+	
Azimuth end stop position 0 - +								
	Clear Cancel Ok							

ภาพที่ 21 การติดตั้ง Port ในการควบคุมโรเตอร์ ให้กำหนดตัวเลขตามรูปนี้

ภาพที่ 22 ดาวเทียมต่าง ๆ ที่ต้องการเชื่อมต่อ เข้ามาอยู่ในระบบเรียบร้อย
แล้ว จะปรากฏ รัศมี และตำแหน่งของผู้ดำเนินโครงการ อยู่ในแผนที่ และ
เมื่อดาวเทียมเคลื่อนที่เข้าใกล้ ๆกับตำแหน่งของเรา แขนกลจะทำงานแทรก
ดาวเทียมโดยอัตโนมัติ ตามที่ตั้งค่าไว้

2 ติดตั้งโปรแกรม hamlib

โปรแกรมนี้จะทำหน้าที่เป็นการติดต่อสื่อสารผ่านพอร์ต USB communication ของคอมพิวเตอร์และ CNC Shieled V3 Module เพื่อส่งสัญญาณ Pulse, Dir เพื่อทำหน้าที่ไปควบคุม Step motor ให้หมุนไปยังทิศทางและตำแหน่งที่ต้องการ การติดตั้ง ทำได้โดยไปที่ https://sourceforge.net/projects/hamlib/ และทำการติดตั้งโปรแกรมตามลำดับ [16]

3. เขียนชุดคำสั่ง rotctld.bat

เพื่อให้บอร์ด CNC Shield v3 สามารถเชื่อมต่อกับคอมพิวเตอร์ได้ และตำแหน่งของดาวเทียมเพื่อควบคุมเมอเตอร์แขน กลต่อไป โดยใช้โปรแกรมแก้ไขข้อความ เช่น Notepad หรือ Notepad++ ในการสร้างไฟล์ข้างต้น

rotctld -m 202 -r COM7 -s 9600 -T 127.0.0.1 -t 4533 -C timeout=500 -C retry=0 -vvvvvvvv > pause

หมายเหตุ: ให้เปลี่ยนเลขพอร์ตตามตัวเลขที่ใช้ในการเชื่อมต่อ เช่น หากพบว่า CNC Shield V3 ใช้พอร์ต COM7 เป็น พอร์ทที่ใช้ในการเชื่อมต่อ ให้ทำการเปลี่ยนในชุดคำสั่ง เป็น COM7 ด้วยเช่นกันดังชุดคำสั่งด้านบนนี้ และบันทึกให้อยู่ ในนามสกุล .BAT ไปยังที่อยู่ของโปรแกรม roctld (ปกติแล้วโปรแกรม rotctld ของ hamlib เมื่อติดตั้งแล้วจะบันทึกอยู่ที่ C:\Program Files (x86)\hamlib-w64-3.2\bin

4. การทดสอบการเชื่อมต่อเข้ากับระบบ

เมื่อเปิดเมนู Antenna Rotor ในโปรแกรมแล้ว จะปรากฏหน้าจอดังภาพ จากนั้นจึงกดปุ่ม Engage เพื่อทำให้แขนกล หมุดไปยังมุม 180 องศา และ 45 องศา ตามลำดับ แสดงว่าสามารถเชื่อมการติดต่อกับบอร์ดได้ โดยให้ทำตามลำดับ ขั้นตอนดังนี้

- รันชุดคำสั่ง rotctld.bat
- เปิดหน้าต่าง Antenna ในโปรแกรม แล้วจึงกดปุ่ม Engage
- ข้อมูลที่ส่งไปยัง Arduino จะเริ่มปรากฏในหน้าต่าง rotctrl.bat
- ตรวจสอบว่าแขนกลเคลื่องที่ไปยังมุมที่กำหนดจริงหรือไม่

ภาพที่ 23 หน้าต่างควบคุมแขนกลในโปรแกรม Gpredict

ภาพที่ 24 แขนกลติดตามดาวเทียมอัตโนมัติ ที่ผู้ดำเนินโครงการสร้างขึ้น

ภาพที่ 25 รับคำแนะนำโครงการที่บริษัท เอ็นบีสเปซ จำกัด สตาร์ทอัพด้าน เทคโนโลยีอวกาศ ที่ได้รับการสนับสนุนอย่างเป็นทางการทางเทคโนโลยีจาก มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ (มจพ.)

การนำไปใช้งานจริง

เมื่อติดตั้งทุกอย่างเข้าเรียบร้อยแล้ว ทำการทดสอบ เครื่อง โดยคลิปการติดตามเครื่อง สามารถดูได้จากลิ้งเหล่านี้ เพื่อ เข้าชมการทำงานของเครื่อง

- รับคำปรึกษาจากนักวิทยาศาสตร์พี่เลี้ยง <u>https://www.youtube.com/shorts/4uRLOjzT1VQ</u>
- การติดตามสถานีอวกาศนานาชาติ ISS https://www.youtube.com/shorts/D1ZdOJ6ivsM
- รวมงานทั้งหมด https://www.youtube.com/shorts/e4Sju83W8UQ

เครื่องมือและวัสดุอุปกรณ์

วัสดุสำหรับประกอบแขนกล

- 1. อลูมิเนียมโปรไฟล์ (T-Slot 20 x 20)
- 2. ท่ออลูมิเนียม (6063 OD40 TH1.5)
- 3. ตลับลูกปืน (625ZZ และ 6008ZZ)
- 4. สายพานไทม์มิ่ง (GT2, 79T)
- 5. พูลเล่ย์ใหม์มิ่ง (GT2, 20T + 36T)
- 6. สเต็ปปิ้งมอเตอร์ (NEMA17, L47mm)
- ลิมิตสวิตช์ (SS0505)
- 8. สกรูตัวหนอนสแตนเลส (M3)
- 9. น็อตหัวจมสแตนเลส (DIN912, M3, M4)
- 10. แหวนอีแปะ (M3, M4)
- 11. เหล็กสตัดเกลียวตลอด (M5)
- 12. ชิ้นส่วนพิมพ์ 3 มิติ

เครื่องมือและอุปกรณ์อื่น ๆ

- 1. Raspberry Pi 4 Model B
- 2. Arduino Uno
- 3. CNC Shield V3
- 4. A4988 Stepper Motor Driver
- 5. สายอากาศยากิ (HS-DXA)
- 6. Software-defined Radio (RTL-SDR)
- 7. ชุดระบบไฟฟ้าโซลาร์เซลล์

รายละเอียดในการทำทดลอง

การทดลองจะเป็นการทดสอบประสิทธิภาพของแขนกลสำหรับติดตามดาวเทียม โดยมี 3 การทดลองย่อย ดังนี้

- 1.ทดสอบการเคลื่อนที่จากตำแหน่งปัจจุบันไปยังตำแหน่งเริ่มต้น
- 2. การทดสอบความแม่นยำของแขนกลในการไปยังตำแหน่งที่ต้องการจากตำแหน่งที่สุ่มเอาไว้
- 3. การทดสอบแรงบิดของแขนกล

การทดสอบ

ขั้นตอนวิธีการทดสอบ

1.ทดสอบการเคลื่อนที่จากตำแหน่งปัจจุบันไปยังตำแหน่งเริ่มต้น

- 1. ปิดการทำงานของแขนกล และหมูนเครื่องไปในตำแหน่งใดๆ เพื่อเป็นการสุ่มจุดเริ่มต้น
- 2. เริ่มการทำงานของแขนกล แขนกลจะทำการเข้าตำแหน่งเริ่มต้น เพื่อหาจุดอ้างอิงโดยอัตโนมัติ
- 3. อ่านค่าและทำการบันทึกผล
- 4. ทำการทดลองซ้ำเพื่อหาค่าเฉลี่ยจำนวน 50 ครั้ง

2. การทดสอบความแม่นยำของแขนกลในการไปยังตำแหน่งที่ต้องการจากตำแหน่งที่สุ่มเอาไว้

- 1. ปิดการทำงานของแขนกล และหมูนเครื่องไปในตำแหน่งใดๆ เพื่อเป็นการสุ่มจุดเริ่มต้น
- 2. เริ่มการทำงานของแขนกล แขนกลจะทำการเข้าตำแหน่งเริ่มต้น เพื่อหาจุดอ้างอิงโดยอัตโนมัติ
- 3. สั่งการให้แขนกลเคลื่อนที่ไปยังตำแหน่งที่ได้สุ่มเอาไว้
- 4. อ่านค่าความคลาดเคลื่อนและทำการบันทึกผล
- 5. ทำการทดลองซ้ำเพื่อหาค่าเฉลี่ยจำนวน 20 ครั้ง

การทดสอบแรงบิดของแขนกล

- 1. ปิดการทำงานของแขนกล
- 2. ผูกเชือกระหว่างแขนกลกับเครื่องชั่งน้ำหนักกระเป๋าเดินทาง
- 3. เริ่มการทำงานของแขนกลให้หมุนจนกระทั่งไม่สามารถหมุนต่อไปได้
- 4. ปิดการทำงานของแขนกล
- 5. ทำการตราวจสอบ อ่านค่า และทำการบันทึกผล

คลิปวีดีโอแนบ

- แนะนำแขนกล: https://youtu.be/NNtLvRwBU8A
- การควบคุมแขนกลมุม EL: https://youtu.be/4Wigyr9ZIMs
- การควบคุมแขนกลมุม AZ: https://youtu.be/ECzMzBs-YxQ
- การทดสอบเคลื่อนที่จากจุดใด ๆไปยังตำแหน่งเริ่มต้น: https://youtu.be/AWzMFxUn6Ek
- การทดสอบแรงบิดของแขนกล: https://youtu.be/wXKZXVMNWiA

บทที่ 4 ผลการดำเนินงาน

ผลการทดสอบการเคลื่อนที่จากตำแหน่งปัจจุบันไปยังตำแหน่งเริ่มต้น

แกน-AZ

ครั้งที่	วัดได้								
1	0.3	11	0.9	21	-0.3	31	0.2	41	-0.5
2	-0.7	12	-0.4	22	0.8	32	-0.4	42	0.1
3	-0.2	13	0.7	23	-0.9	33	-0.1	43	0.3
4	1.2	14	-0.1	24	-0.1	34	0.7	44	-0.7
5	0.6	15	-0.6	25	0.4	35	-0.8	45	-1.0
6	0.4	16	0.5	26	0.5	36	-0.6	46	0.6
7	-0.8	17	1.1	27	-0.2	37	0.5	47	-0.2
8	0.1	18	0.2	28	0.6	38	-0.3	48	-0.4
9	-0.5	19	-1.3	29	-1.1	39	0.9	49	0.8
10	-0.3	20	0.0	30	0.3	40	0.2	50	-1.0

แกน-EL

ครั้งที่	วัดได้								
1	0.6	11	0.5	21	-0.2	31	0.1	41	-0.4
2	-0.2	12	-0.1	22	0.6	32	-0.2	42	0.1
3	-0.3	13	0.2	23	-0.5	33	0.0	43	0.0
4	0.8	14	-0.2	24	0.0	34	0.4	44	-0.3
5	0.1	15	-0.3	25	0.3	35	-0.5	45	0.7
6	0.4	16	0.4	26	0.4	36	-0.3	46	0.4
7	-0.5	17	0.7	27	-0.1	37	0.3	47	-0.1
8	0.3	18	0.0	28	0.4	38	-0.2	48	-0.3
9	-0.4	19	-0.8	29	-0.7	39	0.7	49	0.6
10	-0.1	20	-0.1	30	0.2	40	0.1	50	0.7

การทดสอบความแม่นยำของแขนกลในการไปยังตำแหน่งที่ต้องการจากตำแหน่งที่สุ่มเอาไว้

แกน-AZ

ครั้งที่	มุมเริ่มต้น	มุมที่วัดได้	ครั้งที่	มุมเริ่มต้น	มุมที่วัดได้
1	52	50.99	11	39	38.04
2	70	69.38	12	12	12.55
3	15	14.41	13	67	68.02
4	83	84.03	14	59	60.10
5	34	33.43	15	21	20.18
6	68	69.04	16	90	88.97
7	27	26.35	17	33	34.06
8	44	43.12	18	29	27.95
9	18	19.09	19	74	74.90
10	75	73.99	20	5	5.63

แกน-EL

ครั้งที่	มุมเริ่มต้น	มุมที่วัดได้	ครั้งที่	มุมเริ่มต้น	มุมที่วัดได้
1	52	53.07	11	39	40.18
2	70	69.35	12	12	11.24
3	15	15.92	13	67	68.45
4	83	81.80	14	59	58.37
5	34	34.78	15	21	21.81
6	68	66.57	16	90	88.93
7	27	28.31	17	33	34.34
8	44	42.95	18	29	27.68
9	18	15.59	19	74	74.97
10	75	74.12	20	5	4.28

ผลการทดสอบพบว่า ความแม่นยำของแขนกลในการเข้าตำแหน่งเริ่มต้นทั้งหมด 50 ครั้ง มีอัตราความ ผิดพลาดเฉลี่ยอยู่ที่ +/- 0.8 องศา สำหรับการทดสอบความแม่นยำของแขนกลในการไปยังตำแหน่งที่ต้องการจาก ตำแหน่งที่สุ่มเอาไว้ มีอัตราความผิดพลาดเฉลี่ยอยู่ที่ +/- 1.1 องศา ซึ่งมีค่ามากกว่าเกณฑ์ที่ตั้งเอาไว้(+/- 1 องศา สำหรับการเข้าตำแหน่งเริ่มต้น +/- 2 องศา สำหรับการไปยังตำแหน่งที่ต้องการจากตำแหน่งที่สุ่มเอาไว้) และเพียงพอ สำหรับการรับสัญญาณอย่างมีประสิทธิภาพเมื่อใช้แขนกลควบคู่กับสายอากาศทิศทาง

แรงบิดสูงสุดของแขนกลที่สามารถดึงแขนที่มีระยะห่างจากจุดหมุน 1 เมตร มีค่าอยู่ที่ 6 กิโลกรัม ซึ่งเพียงพอ สำหรับการใช้งานกับสายอากาศทิศทางที่มีการถ่วงดุลน้ำหนัก และสามารถทนสภาพอากาศที่อยู่ในช่วงอุณหภูมิ 20-55 องศาเซลเซียส และความชื้นสัมพัทธ์ 45-80%

บทที่ 5 สรุปผลและข้อเสนอแนะ

สรุปผลการดำเนินงานและข้อเสนอแนะ

แขนกลสำหรับติดตามดาวเทียมกิจการวิทยุสมัครเล่นนี้ ผ่านเกณฑ์ที่ตั้งเอาไว้ดังตามเกณฑ์ที่ตั้งเอาไว้ใน วัตถุประสงค์ข้างต้นดังที่กล่าวมาทุกข้อ นอกจากทำการทดลองแล้ว แขนกลสำหรับติดตามดาวเทียมนี้ยังสามารถ ทำงานและสามารถทำไปใช้งานได้จริง หลังจากการทดลองที่ผ่านมา ข้าพเจ้ามีข้อเสนอแนะเพิ่มเติมหากต้องการ นำไปใช้งานและพัฒนาระบบต่อ โดยมีข้อเสนอดังนี้

- เปลี่ยนฟันเพื่องให้ใช้โลหะ หรือทองเหลืองเพื่อให้แขนกลมีความคงทนมากยิ่งขึ้น
- เพิ่มระบบไฟฟ้าโซล่าร์เซลล์ เพื่อให้สามารถใช้งานนอกสถานที่ และสามารถทำงานในสภาพแวดล้อมต่างๆได้
- สามารถเพิ่มเติมระบบ Pocket WIFI สำหรับการเข้าถึงเครือข่ายอินเทอร์เน็ต ที่จะทำให้แขนกลสามารถ
 ทำงานนอกสถานที่ได้อย่างสะดวก
- เมื่อผู้ใช้เข้าใจถึงระบบการควบคุม และการเชื่อมต่อระบบแล้ว สามารถประยุกต์และนำไปใช้สร้างเครื่องเชิง พาณิชย์ได้ โดยเลือกอุปกรณ์และชุดควบคุมมอเตอร์ที่ใช้ในระบบอุตสาหกรรม ซึ่งจะนำไปสู่ระบบการควบคุม ที่ใหญ่มากขึ้นและมีความเที่ยงตรงมากขึ้น ตามอุปกรณ์ที่เลือกใช้ตามลำดับ
- สามารถเลือกใช้กล่องเพื่องทด ที่มีอยู่ในอุตสาหกรรม เพื่อลดเวลาในการดำเนินงานได้ และมีมาตฐานในการ ใช้งาน และการบำรุงรักษาในอนาคตที่ง่าย
- กล่องควบคุม สามารถปรับเปลี่ยนจากการใช้คอมพิวเตอร์ มาใช้ Raspberry Pi มาใช้ในการควบคุมมอเตอร์ ทำให้ลดขนาดของอุปกรณ์ที่ใช้ในการควบคุมลงได้อย่างมาก และข้าพเจ้าก็ได้ปรับเปลี่ยนแล้วเช่นกัน

ประโยชน์ที่ได้รับจากโครงงาน

- ศึกษาและพัฒนาแขนกลจำลองขนาดเล็กสำหรับใช้ในการติดตามดาวเทียมอัตโนมัติขึ้น สำหรับอำนวยความ สะดวกในการทำงาน มีขนาดกระทัดรัด สามารถเคลื่อนย้ายได้สะดวก
- ศึกษาความสัมพันธ์ในตัวแปรและการรับค่าพิกัดในการการระบุทิศทางตำแหน่งของดาวเทียม ที่สามารถ ติดตามได้ถูกต้องแม่นยำทดแทนการใช้มนุษย์
- ระบบการควบคุมแขนกล มอเตอร์ สามารถประยุกต์การใช้งานได้อย่างหลากหลาย
- 4. ลดการนำเข้าชิ้นส่วน และอุปกรณ์ที่ใช้ในการประกอบชิ้นส่วนจากต่างประเทศ
- 5. สามารถประยุกต์ใช้กับงานอื่นที่มีลักษณะคล้ายคลึงกัน
- 6. รองรับการก้าวเข้าสู่ยุคของการพัฒนาดาวเทียมที่กำลังพัฒนาเพื่อส่งขึ้นสู่วงโคจรในระยะเวลาอันใกล้นี้ ตัวอย่างเช่น Knacksat3 พัฒนาโดย มพจ และอีกหลายโครงการที่กำลังพัฒนาอยู่

การทดลองเพิ่มเติม

การทดลองแบบไม่ใช้แขนกล โดยใช้มือถือสายอากาศ ซี้ไปยังทิศทางของดาวเทียมด้วยระบบมือ

การทดลองโดยใช้มือถือสายอากาศ

การทดลองโดยใช้มือถือสายอากาศ หรือใช้มือจับช่วยในการชี้ตำแหน่งดาวเทียม ผลคือ ไม่ สามารถชี้ไปยังดาวเทียมที่ถูกต้องได้ ติดต่อและรับ สัญญาณไม่ได้

ผลการทดลอง คือ

- ไม่สามารถรู้ทิศทาง ตำแหน่งของดาวเทียมได้อย่างชัดเจน ต้องเดา สุ่ม จากการฟังเสียงของคลื่นวิทยุที่ได้รับ
- มีความยุ่งยากในการปรับ โดยใช้สองส่วนปรับเข้าหากันคือ ด้านหนึ่ง
 ใช้มือถือ และอีกมือหนึ่งคือเล็งสายอากาศให้ตรงกับทิศทางของ
 ดาวเทียมสามารถดูคลิปการทดลองนี้ได้จาก

https://www.youtube.com/watch?v=uK5m8LH2QCg

ขณะกำลังรับสัญญาณจาก Mecteor 2-3 Downlink

ตัวอย่างการ Decode สัญญาณจาก ดาวเทียม Mecteor 2-3

Decode สัญญาณจาก ดาวเทียม Mecteor 2-3

ตัวอย่าง Decode สัญญาณจาก ดาวเทียม NOAA-18 และ NOAA- 19

การทดลอง โดยใช้แขนกลอัตโนมัติ โดยแทรกและรับข้อมูลจากดาวเทียม ตรวจสอบสถาพอากาศ ผลคือ รับข้อมูลเพื่อนำมาแปล Decode ได้ภาพที่ ชัดเจน สามารถดูการทำงารของแขนกลได้ที่

https://www.youtube.com/shorts/D1ZdOJ6ivsM

บรรณานุกรม

- 1. International Telecommunication Union. (2002). *Handbook on satellite communications (HSC)*. https://www.itu.int/en/publications/Documents/tsb/HANDBOOK/HSC.pdf
- 2. Verhage, J. (2021, August 24). The new space race is all about satellites: Pros and cons of each orbit.

 The Next Web. https://thenextweb.com/news/the-new-space-race-is-all-about-satellites-pros-and-cons-of-each-orbit
- 3. Geo-Informatics and Space Technology Development Agency. (2018). https://www.gistda.or.th/news_view.php?n_id=2406&lang=TH
- 4. Maral, G., & Bousquet, M. (2009). Satellite Communications Systems: Systems, Techniques and Technology (5th ed.). Wiley.
- Sukhothai Thammathirat Open University. (2019).
 https://www.stou.ac.th/offices/oce/publication/pr3/pr19956.pdf
- 6. Wikipedia contributors. (2024, May 26). Two-line element set. In Wikipedia, The Free Encyclopedia. Retrieved from https://en.wikipedia.org/wiki/Two-line element set
- 7. Learning center for Earth Science and Astronomy (n.d.). Two-Line Element (TLE). Retrieved from <a href="https://www.lesa.biz/%E0%B8%AD%E0%B8%A7%E0%B8%B1%E0%B8%B2%E0%B8%A8/%E0%B8%B4%E0%B8%A8/%E0%B8%B2%E0%B8%A7%E0%B8%B2%E0%B8%A7%E0%B8%B2%E0%B8%A7%E0%B8%B2%E0%B8%A1/two-line-element-tle
- 8. Kelso, T. S. (n.d.). CelesTrak. Retrieved from https://celestrak.org/
- 9. Altshuler, E. E., & Linden, D. S. (1997, January). Design of a loaded monopole having hemispheric coverage using a genetic algorithm. IEEE Transactions on Antennas and Propagation, 45(1).
- 10. Harries, G., & Heaviside, J. W. (1973). Naval satellite communication terminals. In IEEE Conference Proceedings on Satellite Systems for Mobile Communications and Surveillance (pp. 48-51).
- 11. Downey, E. (2015). Autonomous satellite tracker. *Journal of Autonomous Systems*, 9(4), 123-130.
- 12. Saravanakumar, A., Kavviyarasu, A., & Manikandan, U. (2018). Design and development of low cost ground receiving station for LEO satellite operations. *International Journal of Pure and Applied Mathematics, 119*(12), 2921-2932.
- 13. Alam, M. M., Islam, M. M., Mansoor, & Ahmad, T. (2018). Fully automated satellite tracking system for directional antenna [Master's thesis, BRAC University]. BRAC University Institutional Repository. https://dspace.bracu.ac.bd/xmlui/handle/10361/10932
- 14. Stoff, S. (n.d.). *Orbitron Satellite Tracking System*. http://www.stoff.pl/

- 15. Csete, A. (2023, December 25). Gpredict. Retrieved from https://oz9aec.dk/gpredict/
- 16. Hamlib Project. (n.d.). Hamlib. Retrieved from https://sourceforge.net/projects/hamlib/
- 17. MakerStore. (n.d.). CNC Shield Guide (Version 1.0) [PDF]. Retrieved from https://www.makerstore.com.au/wp-content/uploads/filebase/publications/CNC-Shield-Guide-v1.0.pdf
- 18. Ingingnow. (n.d.). *Orbit*. https://orbit.ing-now.com/