Experiment-13

Subnetting Scenario

Topology

Objectives

Part 1: Design an IP Addressing Scheme

Part 2: Assign IP Addresses to Network Devices and Verify Connectivity

Addressing Table

Device	Interface	IP Address	Subnet Mask	Default Gateway
	G0/0	192.168.100.1	255.255.255.224	N/A
R1	G0/1	192.168.100.33	255.255.255.224	N/A
	S0/0/0	192.168.100.129	255.255.255.224	N/A
R2	G0/0	192.168.100.65	255.255.255.224	N/A
	G0/1	192.168.100.97	255.255.255.224	N/A
	S0/0/0	192.168.100.158	255.255.255.224	N/A
S1	VLAN 1	192.168.100.2	255.255.255.224	192.168.100.1
S2	VLAN 1	192.168.100.34	255.255.255.224	192.168.100.33

S3	VLAN 1	192.168.100.66	255.255.255.224	192.168.100.65		
S4	VLAN 1	192.168.100.98	255.255.255.224	192.168.100.97		
PC1	NIC	192.168.100.30	255.255.255.224	192.168.100.1		
PC2	NIC	192.168.100.62	255.255.255.224	192.168.100.33		
PC3	NIC	192.168.100.94	255.255.255.224	192.168.100.65		
PC4	NIC	192.168.100.126	255.255.255.224	192.168.100.97		

Scenario

In this activity, you are given the network address of 192.168.100.0/24 to subnet and provide the IP addressing for the Packet Tracer network. Each LAN in the network requires at least 25 addresses for end devices, the switch and the router. The connection between R1 to R2 will require an IP address for each end of the link.

Part 1: Design an IP Addressing Scheme

Step 1: Subnet the 192.168.100.0/24 network into the appropriate number of subnets. Subnet Table

Subnet Number	Subnet Address	First Usable Host Address	Last Usable Host Address	Broadcast Address		
0	192.168.100.0	192.168.100.1	192.168.100.30	192.168.100.31		
1	192.168.100.32	192.168.100.33	192.168.100.62	192.168.100.64		
2	192.168.100.64	192.168.100.65	192.168.100.94	192.168.100.95		
3	192.168.100.96	192.168.100.97	192.168.100.126	192.168.100.127		
4	192.168.100.128	192.168.100.129	192.168.100.158	192.168.100.159		
5	192.168.100.160	192.168.100.161	192.168.100.190	192.168.100.191		
6.	192.168.100.192	192.168.100.193	192.168.100.222	192.168.100.223		
7	192.168.100.224	192.168.100.225	192.168.100.254	192.168.100.255		

Step 2: Assign the subnets to the network shown in the topology.

Step 3: Document the addressing scheme.

Part 2: Assign IP Addresses to Network Devices and Verify Connectivity

Step 1: Configure R1 LAN interfaces.

Step 2: Configure IP addressing on S3.

Step 3: Configure PC4.

Step 4: Verify connectivity.

Finally, the connection looks like this and all the green links tells us that the connections are done in the right manner.


```
R1>enable
Rl#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
R1(config)#inyerface gigabitEthernet 0/0
% Invalid input detected at '^' marker.
R1(config)#interface gigabitEthernet 0/0
Rl(config-if) #ip address 192.168.100.1 255.255.255.224
R1(config-if) #no shutdown
R1(config-if)#
%LINK-5-CHANGED: Interface GigabitEthernet0/0, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0, changed state to up
R1(config-if)#interface gigabitEthernet 0/1
R1(config-if) #ip add
% Incomplete command.
R1(config-if) #ip address 192.168.100.33 255.255.255.224
Rl(config-if) #no shutdown
Rl(config-if)#
%LINK-5-CHANGED: Interface GigabitEthernet0/1, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/1, changed state to up
```

```
Cisco Packet Tracer PC Command Line 1.0
C:\>ping 192.168.100.1

Pinging 192.168.100.1 with 32 bytes of data:

Reply from 192.168.100.1: bytes=32 time=2ms TTL=254

Reply from 192.168.100.1: bytes=32 time=15ms TTL=254

Reply from 192.168.100.1: bytes=32 time=16ms TTL=254

Reply from 192.168.100.1: bytes=32 time=15ms TTL=254

Ping statistics for 192.168.100.1:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 2ms, Maximum = 16ms, Average = 12ms
```

Questions based on this activity are:

Q1. Based on the topology, how many subnets are needed?

Ans: 5 Four for the LANs, and one for the link between the routers.

Q2. How many bits must be borrowed to support the number of subnets in the topology table? Ans:3

Q3. How many subnets does this create?

Ans: 8

Q4. How many usable hosts does this create per subnet?

Ans: 30

Q5. Calculate the binary value for the first five subnets.

Ans:

Subnet	Network Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	192.168.100.	0	0	0	0	0	0	0	0
1	192.168.100.	0	0	1	0	0	0	0	0
2	192.168.100.	0	1	0	0	0	0	0	0
3	192.168.100.	0	1	1	0	0	0	0	0
4	192.168.100.	1	0	0	0	0	0	0	0

Q6. Calculate the binary and decimal value of the new subnet mask.

Ans:

First	Second	Third	Mask							
Octet	Octet	Octet	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
11111111	11111111	11111111	1	1	1	0	0	0	0	

First	Second	Third	Fourth Decimal Octet
Decimal	Decimal	Decimal	
Octet	Octet	Octet	
255.	255.	255.	224

Result: Hence, the subnetting scenario has been made.