Problem 1. Write the function $P = 11e^{0.38t}$ in the form $P = P_0a^t$. Is this exponential growth or exponential decay?

Problem 2. Put the function $P = 16(15)^t$ in the form $P = P_0 e^{kt}$. Do not use your calculator—provide an exact answer.

Problem 3. Put the function $P = 12(1.8)^t$ in the form $P = P_0 e^{kt}$. Do not use your calculator—provide an exact answer.

Problem 4. Put the function $P = 160(0.44)^t$ in the form $P = P_0 e^{kt}$. Do not use your calculator—provide an exact answer.

Problem 5. A quantity P is an exponential function of time t, such that P = 60 when t = 4 and P = 90 when t = 3. Use the given information about the function $P = P_0 e^{kt}$ to:

- Find values for the parameters k and P_0 (round your answers to three decimal places).
- State the initial quantity and the continuous percent rate of growth or decay. Round your answer for the initial quantity to three decimal places. Is the quantity growing or decaying?