Worked example of visualization tools when estimating effects in target populations

Karolinska Institutet Tuesday, November 16, 2021

General breakdown

- Variable selection and importance figures
 - Breakout group session #1-10 minutes
- Diagnosing potential problems with weighted analyses
 - Breakout group session #2-10 minutes
- Performing and interpreting results
- General discussion

Variable selection figures

Variable selection/importance and external validity

- Remember that whichever method we use, we need to select variables for an adjustment set
- There is ongoing work on using directed acyclic graphs and selection diagrams for this purpose
- Due to their non-parametric nature, these tools say very little about the relative importance of each variable
- Two plots can give some insight into variable importance
 - Love plots of standardized mean differences
 - A new plot (VITT plot) of multivariable relationships
 - These plots are method-agnostic

Love plots of standardized mean differences

VITT plots of "sampling" and outcome ORs

Discussion time: LOVE and VITT plots

Code to create this plot: Love_plot_code

Code to create this plot: VITT_plot_code

Questions:

- 1) What variables seem most important for inclusion in the adjustment set?
- 2) What variables seem the least important?
- 3) Are there any variables you would consider dropping completely?

Diagnosing potential problems

Solving the external validity problem with weights

- Once you have identified the key variables, it is necessary to choose an analytic method
- Here we'll be focusing on weights and potential issues that can arise (especially the lack of transport positivity)
- When using these weights, some preliminary visualizations can help diagnose potential problems
 - Histograms and density plots of estimated probabilities
 - "Skyscraper" plots of the weights to be used

Histograms of "sampling" probabilities

"Skyscraper" plots to identify high weights

Discussion time: probability and skyscraper plots

Code to create this plot: Density_plot_code

Code to create this plot: Skyscraper_plot_code

Questions:

- Do you see any potential problems with using this model based on the density plot?
- 2) What about the skyscraper plot? Do you see any potentially problematic weights?
- 3) Purely based on these plots, would you be comfortable proceeding with the analysis?

Analyzing data

Weighted analytics

- Having completed our diagnostics, how do we actually estimate a treatment effect?
- PROC PHREG conveniently allows use of a "WEIGHT" statement, as does many R packages for estimating hazard ratios
- Notably, traditional tools for estimating variance can ignore variability from sampling your target population
- Instead, we have bootstrapped, re-drawing from both the trial and target each iteration

Final results

Target population	Progression- free survival hazard ratio	95% confidence limits	Confidence limit ratio
PRIME trial	0.97	0.84, 1.11	1.33
SEER* population	0.88	0.74, 1.06	1.43

Questions? mawc@live.unc.edu