

Term End Examination - November 2011

Course: MAT101 - Multivariable Calculus and Differential Equations Slot: E2+TE2

Time : Three Hours Max.Marks:100

PART - A (10 X 3 = 30 Marks)Answer <u>ALL</u> the Questions

- 1. If u = xy + yz + zx, where $x = e^t$, $y = e^{-t}$ and $z = \frac{1}{t}$, find $\frac{du}{dt}$.
- 2. If u = 2xy, $v = x^2 y^2$, $x = r\cos\theta$ and $y = r\sin\theta$, compute the Jacobian of x, y with respect to r, θ .
- 3. Prove that $\int_{0}^{\infty} e^{-ax} x^{n-1} dx = \frac{\Gamma(n)}{a^n}$ where a and n are positive.
- 4. Evaluate $\iint_{0}^{2\pi\pi} \iint_{0}^{a} r^{4} \sin \phi \ dr \ d\phi \ d\theta.$
- 5. Show that $\vec{F} = (y^2 + 2xz^2)\hat{i} + (2xy z)\hat{j} + (2x^2z y + 2z)\hat{k}$ is irrotational and hence find its scalar potential.
- 6. Evaluate $\int_{c} \phi d \vec{r}$ where C is the curve x = t, $y = t^2$, z = (1-t) and $\phi = x^2y(1+z)$ from t = 0 to t = 1.
- 7. Solve $(D^4 2D^3 + D^2)$ $y = e^x$.
- 8. Solve $(D^2 + 4) y = \cos^2 x$.
- 9. Find the Laplace transform of $\frac{1+2t}{\sqrt{t}}$.
- 10. Find $L^{-1} \left[\frac{1}{(s+1)(s+2)} \right]$ using convolution theorem.

PART - B (5 X 14 = 70 Marks) Answer any <u>FIVE</u> Questions

11. (i) Using Taylor's series, verify that [7]

$$\log(1+x+y) = (x+y) - (1/2)(x+y)^2 + (1/3)(x+y)^3 - \dots$$

(ii) Examine $f(x, y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$ for extreme values. [7]

- i) By transforming into cylindrical coordinates, evaluate the integral $\iiint (x^2 + y^2 + z^2) dx dy dz \text{ taken over the region of space defined by } x^2 + y^2 \le 1 \text{ and}$ $0 \le z \le 1$.
 - (ii) Change the order of integration in $\int_{0}^{4} \int_{\frac{x^2}{4}}^{2\sqrt{x}} dxdy$ [7]
- (i) If \vec{r} is the position vector of the point (x, y, z) with respect to the origin, prove that $\nabla(r^n) = nr^{n-2}\vec{r}$.
 - (ii) Verify Stokes theorem for $\vec{F} = -y\hat{i} + 2yz \ \hat{j} + y^2 \hat{k}$, where S is the upper half of the sphere $x^2 + y^2 + z^2 = a^2$ and C is the circular boundary on the xoy plane. [9]
- 14. (i) Solve $[(2x+3)^2D^2 2(2x+3)D 12]y = 6x$ [7]
 - (ii) Solve the equation $(D^2 + a^2)y = \tan ax$, by the method of variation of parameters. [7]
- 15. (i) Verify the initial and final value theorems when $f(t) = (t + 2)^2 e^{-t}$. [7]
 - (ii) Solve $y'' 4y' + 8y = e^{2t}$, y(0) = 2 and y'(0) = -2. [7]
- 16. (i) Find the maximum value of $x^m y^n z^p$ when x + y + z = a. [7]
 - (ii) Find the Area between the circle $x^2 + y^2 = a^2$ and the line x + y = a lying in the first quadrant, by double integration. [7]
- 17. (i) Verify Green's theorem in a plane with respect to $\int_C [(x^2 y^2)dx + 2xydy]$, where c is the boundary of the rectangle in the xoy plane bounded by the lines

x = 0, x = a, y = 0 and y = b.

(ii) Find the Laplace transform of the "full – sine wave rectifier" function $f(t) = |\sin \omega t|, t \ge 0.$

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow$