Chapter 1

\mathbb{R}^n and $\mathbb{R}^{m \times n}$

The set \mathbb{R}^n

- \mathbb{R} is the set of all real numbers.
- Let n be a positive integer.
- We can write (x_1, x_2, \dots, x_n) of real numbers, which is an ordered *n*-tuple of real numbers.
- \mathbb{R}^n is the set of all ordered *n*-tuples of real numbers.
- An element $x \in \mathbb{R}^n$ can be written in

row
$$x = (x_1, x_2, x_3, \dots, x_n)$$
 or in column $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix}$, or any other form.

As long as the order of listed n real numbers are seen, there would not be a problem.

Addition and Scalar multiplication

Addition

2

1. If $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ and $y = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$, we can add the two to obtain an element in \mathbb{R}^n :

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ x_3 + y_3 \\ \vdots \\ x_n + y_n \end{pmatrix},$$

which is denoted by $x + y \in \mathbb{R}^n$.

Scalar multiplication

- 1. In this course, the scalar is a synonym of real number.
- 2. If λ is a real number and $x=(x_1,x_2,\cdots,x_n)\in\mathbb{R}^n$, then we can scale x to obtain λx :

$$\lambda \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \lambda x_1 \\ \lambda x_2 \\ \lambda x_3 \\ \vdots \\ \lambda x_n \end{pmatrix} \in \mathbb{R}^n.$$

The set $\mathbb{R}^{m \times n}$

- Let \mathbb{R} be again the set of all real numbers.
- \bullet Let m and n be two positive integers.
- The set of all $(A_{ij})_{i=1,j=1}^{i=m,j=n}$ of real numbers indexed by $(i,j) \in \{1,2,\cdots,m\} \times \{1,2,\cdots,n\}$ is denoted by $\mathbb{R}^{m\times n}$.
- The notation for an element $A \in \mathbb{R}^{m \times n}$ in this time is more specific. We distinguish two indices $i = 1, 2, \dots, m$ and $j = 1, 2, \dots, n$. We list mn real numbers in a box so that i is a row index, and j is a column index:

$$A = \begin{pmatrix} A_{11} & A_{12} & A_{13} & \cdots & A_{1n} \\ A_{21} & A_{22} & A_{23} & \cdots & A_{2n} \\ A_{31} & A_{32} & A_{33} & \cdots & A_{3n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ A_{m1} & A_{m2} & A_{m3} & \cdots & A_{mn} \end{pmatrix}.$$

- We call an element of $\mathbb{R}^{m \times n}$ an $(m \times n)$ matrix, which reads as "m by n matrix".
- Why ..?

Addition and Scalar multiplication

Addition

1. If $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{m \times n}$, i.e., if the matrix A and B are in same shape, we can add the two to obtain an element in $\mathbb{R}^{m \times n}$:

$$\begin{pmatrix} A_{11} & A_{12} & A_{13} & \cdots & A_{1n} \\ A_{21} & A_{22} & A_{23} & \cdots & A_{2n} \\ A_{31} & A_{32} & A_{33} & \cdots & A_{3n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ A_{m1} & A_{m2} & A_{m3} & \cdots & A_{mn} \end{pmatrix} + \begin{pmatrix} B_{11} & B_{12} & B_{13} & \cdots & B_{1n} \\ B_{21} & B_{22} & B_{23} & \cdots & B_{2n} \\ B_{31} & B_{32} & B_{33} & \cdots & B_{3n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ B_{m1} & B_{m2} & B_{m3} & \cdots & B_{mn} \end{pmatrix}$$

$$= \begin{pmatrix} A_{11} + B_{11} & A_{12} + B_{12} & A_{13} + B_{13} & \cdots & A_{1n} + B_{1n} \\ A_{21} + B_{21} & A_{22} + B_{22} & A_{23} + B_{23} & \cdots & A_{2n} + B_{2n} \\ A_{31} + B_{31} & A_{32} + B_{32} & A_{33} + B_{33} & \cdots & A_{3n} + B_{3n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ A_{m1} + B_{m1} & A_{m2} + B_{m2} & A_{m3} + B_{m3} & \cdots & A_{mn} + B_{mn} \end{pmatrix},$$

which is denoted by $A + B \in \mathbb{R}^{m \times n}$.

Scalar multiplication

1. If λ is a real number and $A \in \mathbb{R}^{m \times n}$, then we can scale A to obtain λA :

$$\lambda \begin{pmatrix} A_{11} & A_{12} & A_{13} & \cdots & A_{1n} \\ A_{21} & A_{22} & A_{23} & \cdots & A_{2n} \\ A_{31} & A_{32} & A_{33} & \cdots & A_{3n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ A_{m1} & A_{m2} & A_{m3} & \cdots & A_{mn} \end{pmatrix} = \begin{pmatrix} \lambda A_{11} & \lambda A_{12} & \lambda A_{13} & \cdots & \lambda A_{1n} \\ \lambda A_{21} & \lambda A_{22} & \lambda A_{23} & \cdots & \lambda A_{2n} \\ \lambda A_{31} & \lambda A_{32} & \lambda A_{33} & \cdots & \lambda A_{3n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \lambda A_{m1} & \lambda A_{m2} & \lambda A_{m3} & \cdots & \lambda A_{mn} \end{pmatrix}.$$

In summary,

1. We have the set \mathbb{R}^n , equipped with the addition and the scalar multiplication, that we denote by $(\mathbb{R}^n,+,s)$.

$$+: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n,$$

 $s: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n.$

2. We have the set $\mathbb{R}^{m \times n}$, equipped with the addition and the scalar multiplication, that we denote by $(\mathbb{R}^{m \times n}, +, s)$.

$$+: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n,$$

 $s: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n.$

1. That we work with $(\mathbb{R}^n, +, s)$, i.e., that \mathbb{R}^n are equipped with the addition and the scalar multiplication may, more importantly, mean that we do not perform other operations.

These are illegal expressions:

- (a) $\mathbb{R}^n + \mathbb{R}$, $n \geq 2$:
- (b) $\mathbb{R}^n + \mathbb{R}^m$, $n \neq m$.
- (c) product in general. $\times : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$, though in some dimensions we can define meaningful product.
- (d) comparison in general.
- 2. Likewise, for the case of $\mathbb{R}^{m \times n}$, we do not perform other operations, unless otherwise defined later of this course.
- We have so far

$$(\mathbb{R}^n, +, s)$$
 and $(\mathbb{R}^{m \times n}, +, s)$,

respectively a set equipped with the addition and scalar multiplication.

• Expression that makes use of the addition and scalar multiplication, and use only of them such as

$$\lambda_1 x + \lambda_2 y + \lambda_3 z + \lambda_4 w, \quad x, y, z, w \in \mathbb{R}^n$$

comes as an important expression to us.

• The expression is called a "Linear Combination" of x, y, z, w; Linear, meaning that the scalar multiplication $x \mapsto \lambda x$ is to make something proportional, and Combination, meaning here we are adding things.

The final comment on $(\mathbb{R}^n, +, s)$ and $(\mathbb{R}^{m \times n}, +, x)$:

As stated earlier, in some dimensions we may additionally define product, for example in \mathbb{R}^2 we can define

$$(x_1, x_2) \times (y_1, y_2) = (v_1, v_2), \text{ where } v_1 + iv_2 = (x_1 + ix_2)(y_1 + iy_2).$$

However, all of such operations are treated in this course to be exceptional and come as addendum, emphasizing that there are only $\underline{(i)}$ the addition and $\underline{(ii)}$ the scalar multiplication we are allowed to operate so far.

Chapter 2

Matrix Matrix multiplication

- Emphasizing that there are no other general product operations, now we define the unique product operation between matrices.
- For given matrix $A \in \mathbb{R}^{\ell \times m}$ and matrix $B \in \mathbb{R}^{m \times n}$, we define the matrix $C \in \mathbb{R}^{\ell \times n}$ to be the product denoted by AB so that

$$C_{ij} = \sum_{\alpha=1}^{m} A_{i\alpha} B_{\alpha j}$$
 for $i = 1, 2, \dots, \ell$ and $j = 1, 2, \dots, n$.

- Importantly, the product is defined only for the case where the second component of shape of A and the first component of shape of B are the same, and the product is not defined for all remaining cases.
- Why .. ?

The defined product can be regarded in a few different ways.

1.	The product can be regarded as to build new n linear combinations of columns of A , as designated by numbers in B :
2.	The product can be regarded as to build new ℓ linear combinations of rows of B , as designated by numbers in A :
	The product can be regarded as to build new ℓn real numbers, out of rows of A and columns of B .

The produce is useful in many places.

Perfect for the chain rule in multivariable calculus

Suppose that $X = \mathbb{R}^{\ell}$, $Y = \mathbb{R}^{m}$, and $Z = \mathbb{R}^{n}$, and

$$f: X \to Y, \quad g: Y \to Z.$$

Multivariable Calculus:

- 1. Also assume f and g are many times differentiable functions.
- 2. For a given point \bar{x} , we collect numbers

$$B_{\alpha j} = \frac{\partial f^{\alpha}}{\partial x^{j}}(\bar{x}) = \lim_{h \to 0} \frac{f^{\alpha}(\bar{x} + he_{j}) - f^{\alpha}(\bar{x})}{h}.$$

3. Similarly, for a given poit \bar{y} , we collect numbers

$$A_{i\alpha} = \frac{\partial g^i}{\partial u^{\alpha}}(\bar{y}) = \lim_{h \to 0} \frac{g^i(\bar{y} + he_{\alpha}) - g^i(\bar{y})}{h}.$$

4. Now we consider the composition

$$g \circ f : X \to Z, \quad g \circ f(x) = g(f(x))$$

and collect numbers

$$C_{ij} = \frac{\partial (g \circ f)^i}{\partial x^j}(\bar{x}) = \lim_{h \to 0} \frac{(g \circ f)^i(\bar{x} + he_j) - (g \circ f)^i(\bar{x})}{h}.$$

5. Then C turns out to equal to AB.

Writing a system of linear equations

If we are given

$$\begin{cases} 3x - 7y + 4z = -2, \\ 9x - 2y - 6z = 0, \\ -5x + 3y - 11z = -8 \end{cases}$$

It is nice that we can write also

$$\begin{pmatrix} 3 & -7 & 4 \\ 9 & -2 & -6 \\ -5 & 3 & -11 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -2 \\ 0 \\ -8 \end{pmatrix}$$

Using $\ell = 3$, m = 3, and n = 1 in the left-hand-side.

The question of why..?

- 1. Why does it have to be in that way?
- 2. Why not we define for $A, B \in \mathbb{R}^{m \times n}$ a product with the same shape in $\mathbb{R}^{m \times n}$?

$$\begin{pmatrix} A_{11}B_{11} & A_{12}B_{12} & A_{13}B_{13} & \cdots & A_{1n}B_{1n} \\ A_{21}B_{21} & A_{22}B_{22} & A_{23}B_{23} & \cdots & A_{2n}B_{2n} \\ A_{31}B_{31} & A_{32}B_{32} & A_{33}B_{33} & \cdots & A_{3n}B_{3n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ A_{m1}B_{m1} & A_{m2}B_{m2} & A_{m3}B_{m3} & \cdots & A_{mn}B_{mn} \end{pmatrix}$$

- (a) Actually you can. In most of computer language, this entry-wise product in the same shape is provided by the broadcasting.
- 3. All why-questions come to the following one,
 Would other people be interested in the new definition?

A few important observations

- 1. Important: You don't mess up with the order of multiplication here.
- 2. Unlike multiplication we know for two real numbers, for the Matrix-Matrix multiplication for $A \in \mathbb{R}^{\ell \times m}$ and $B \in \mathbb{R}^{m \times n}$, the product BA is even not defined in general. This is simply because in general $n \neq \ell$.
- 3. In the special case of that $\ell=m=n,\,BA$ is defined. However even in such a case

 $AB \neq BA$ in general.

Summary

- 1. We have $(\mathbb{R}^{m \times n}, +, s)$ for m and n positive integers.
- 2. Linear combinations of members of $\mathbb{R}^{m \times n}$ are expressions using + and s such as

$$\lambda_1 A_1 + \lambda_2 A_2 + \cdots + \lambda_j A_j \in \mathbb{R}^{m \times n}.$$

3. We have a definition of multiplication for $A \in \mathbb{R}^{\ell \times m}$ and matrix $B \in \mathbb{R}^{m \times n}$ resulting in $AB \in \mathbb{R}^{\ell \times n}$.

Knowledge so far will be applied to mathematics, science, and engineering, and will be extremely important and powerful.