Petr Kurapov

Fall 2024

MIPT

- Notion of computation: numbers juggling while following some rules
- 20th century precise definition
- Diverse physical and mathematical systems: Turing machines, lambda calculus, cellular automata, pointer machines, the game of life, ...
- Standard Universal electronic computer capable of executing any program

Source:

https://en.wikipedia.org/wiki/Cellular automaton (Gosper's Glider Gun creating "gliders" in the cellular automaton Conway's Game of Life)

- Some of the problems appeared to be *uncomputable*
- Computational efficiency how to quantify?

- Main objective:
 - Estimate resource (time, memory, communication, randomness, etc.) amount required to solve a problem computational efficiency.
- Questions examples:
 - Relations between computation problems
 - Worst-case vs average-case
 - Approximation benefit

Computational efficiency: a simple example

- a*b
 - Add to a b-1 times.
 - Grade-school algorithm
- 422 vs 3 + 2

			5	/	/	
			4	2	3	
		1	7	3	1	
	1	1	5	4		
2	3	0	8			
2	4	4	0	7	1	

Computational efficiency: a simple example

- a*b
 - Add to a b 1 times.
 - Grade-school algorithm
- 422 vs 3 + 2

			5	/	/	
			4	2	3	
		1	7	3	1	
	1	1	5	4		
2	3	0	8			
2	4	4	0	7	1	

Quantify efficiency as how number of basic ops scales with inputs

• le. $2n^2 vs n10^{n-1}$, n — num of digits

VS

Matrix multiplication: Ideal case & real-world algorithms

- Lower bound: $\Omega(n^{\omega+o(1)})$
- $2 \le \omega \le 3$

Even simple problems may have nonobvious algorithms that were not discovered for centuries

- 1969: $n^{2.807}$ (Strassen)
- 1978 $n^{2.796}$ (Pan)
- 1979 $n^{2.780}$ (Bini, Capovani, Romani)
- 1981 $n^{2.522}$ (Schönhage)
- 1981 $n^{2.517}$ (Romani)
- 1981: $n^{2.496}$ (Coppersmith, Winograd)
- 2010: $n^{2.37293}$ (Stothers)
- 2012: $n^{2.372873}$ (todo)
- 2014: $n^{2.3728639}$ (Le Gall)
- 2020: $n^{2.3728596}$ (Williams)
- 2022: $n^{2.37188}$ (Duan, Wu and Zhou)

^{*}details will be covered later in the course when we have all the required tools to properly analyze

Computational efficiency

- Dinner party:
 - Find the largest subset of guests given a list of pairs who don't get along with each other so that every pair of invitees have a good relationship
- Obvious yet inefficient solution: check all 2^n subsets exhaustive search. (get yourself a datacenter if you want a 70+ person party!)
 - Any better algorithm?

More questions than answers...

- Can we prove the algorithm we came up with is the best possible?
- Can we replace an exhaustive search with a better alternative?
- Can an algorithm use randomness to speed up computation?
- Can hard problems become easier if we allow errors or approximations on small input subsets?
- Can we use hard problems for constructing cryptographic protocols that are unbreakable?
- Can we use quantum mechanics to build faster computers?
- Can we generate mathematical proofs automatically?

Types of complexity

- Decompressor: $D(x) = y : x, y \in \{0,1\}$, so D: $\{0,1\} \to \{0,1\}$
- Kolmogorov complexity of an object is the length of a shortest computer program that produces the object as output:

$$KS_D(x) = \min\{len(y) | D(y) = x\}$$

- Berry paradox: наименьшее число, которое нельзя определить фразой из не более, чем тринадцати русских слов
- Shannon's entropy: $H(x) = \sum_{x \in \mathcal{X}} p_x \log 1/p_x$, $P(X = x) = p_x$
- Occam's razor or Minimal Description Length (MDL)

Notations & representation

- String finite ordered tuple of elements from alphabet S.
- S^n set of n-length strings over S
- $S^* = \bigcup_{n \geq 0} S^n$
- Binary strings: {0, 1}*
- Functions with string inputs and outputs
- Any input can be encoded with binary strings
- Concat of strings a,b can be encoded as a#b, and then $1 \to 11, 0 \to 01, \# \to 00$
- $L_f = \{x: f(x) = 1\}$ of $\{0, 1\}^*$ decision problem/language (example?)

Notations & representation

- $L_f = \{x: f(x) = 1\}$ of $\{0, 1\}^*$ decision problem/language
- $ISet = \{(G, k): \exists S \subseteq V_G: |S| \ge k \& \forall u, v \in S, \overline{uv} \notin E_G\}$ (independent set a set of vertices no two of which are adjacent).

Big-Oh quick recap

- f, g: N → N
 f = O(g) if there's c: f(n) ≤ cg(n)
 f = Ω(g) if g = O(f)
 f = Θ(g) if both f = O(g) & f = Ω(g)
 f = o(g) if ∀ε > 0 ∃n: f(n) ≤ εg(n)
 f = ω(g) if g = o(f)
- Example: f(n) = f(n-1) + 5

Computation model

- Computation numbers manipulation under some rules using a scratch pad with intermediate results
- Mathematical model?
- Turing machine

Turing machine

- Have a function $f: \{0,1\}^* \rightarrow \{0,1\}$. An **algorithm** – set of *fixed* rules:
 - Read input bit
 - Read a bit/symbol from scratch pad (allows greater alphabet)
 - Write to scratch pad
 - Stop and output 0/1 or next rule
- Running time number of basic ops, asymptotic T(n)
- Universal Turing machine
 U, works in O(T(|x|)log(T(|x|)))

Turing machine

- Scratch pad = k-tape (1 input, work, 1 output), each has its own head, stores alphabet $\Gamma = \{ \triangleright, \square, 0, 1 \}$
- Register for states (Q, finite)
- Transition function δ

IF			THEN			
Input symbol read	Work/out tape symbol read	Current state	Move input head	New work/out tape symbol	Move work/out tape	New state
Α	В	Q	Right	B'	Left	Q'

Turing machine

- M Turing machine, $T: \mathbb{N} \to \mathbb{N}$
- M computes *f* if:
 - For every {0, 1}* and M initialized to start config M halts
 - *f*(*x*) written to output tape
- M computes f in T(n) time if computation on every x requires T(|x|) at most
- PAL example
- Time constructible (n, nlogn, n^2):
 - $T(n) \ge n$
 - $\exists M$, computes $x \to T(x)_{binary}$ in T(n)

Turing machine: important notes

- The set of rules is fixed and remains the same for all inputs
- Execution time asymptotic number of steps required for an algorithm to reach a "finished" state
- Any machine can have a string *description* (for invalid machines we can set an empty MT). This means that a machine can be an input to another machine.

 $Machine \approx algorithm$

Turing machine: robustness

- Turing machines (TM) do not change efficiency properties on its structure changes
- By alphabet: assume TM M with alphabet Γ , a computable f is computable in $4\log|\Gamma|T(n)$ using $\Gamma=\{\triangleright,\;\square,0,1\}$
- Single tape can simulate k-tape in $5kT(n)^2$
- How to simulate a bidirectional work tape machine?

Turing machine: robustness

- Turing machines (TM) do not change efficiency properties on its structure changes
- By alphabet: assume TM M with alphabet Γ , a computable f is computable in $4\log|\Gamma|T(n)$ using $\Gamma=\{\triangleright,\;\square,0,1\}$
- Single tape can simulate k-tape in $5kT(n)^2$
- Bidirectional tape can be simulated with unidirectional with Γ^2 alphabet in 4T(n)
 - What would be the slowdown?

Universal Turing machine

- $\exists TM\ U: \forall x, a \in \{0,1\}^*\ U(x,a) = M_a(x)$, halts in CTlogT
- Machine description as input
- 3-tape, simplest alphabet transformation

Undecidable functions

- UC: {0,1}* -> {0, 1}:
 - $UC :: \forall a \in \{0,1\}^* \ if M_a(a) = 1 \ then \ UC(a) = 0, and 1 \ otherwise$
- Diagonalization

MT description {0,1}*

_
Θ
ĭ
Θ
Ξ
Ŋ
Ф
Q
ட
$\overline{}$
\preceq
\mathbf{C}
\subseteq

	0	1	а
0	$M_a(a)$ $\rightarrow 1 - M_a(a)$	*	$M_0(a)$
	$\rightarrow 1 - M_a(a)$		
1	*		*
а	*	*	a a a a a a a a a a a a a a a a a a a

Halting problem

- HALT: $\langle a, x \rangle$, 1 if M_a halts on x, 0 otherwise
- HALT is not computable by any TM
- Reduction:
 - M_{UC} on input a runs $M_{HALT(a,a)}$
 - If result is 0 (M_a doesn't halt on a), then M_{UC} outputs 1
 - Otherwise M_{UC} runs universal TM to compute $b=M_a({\bf a})$, if ${\bf b}=1$ M_{UC} outputs 0, and vise versa
 - As $M_{HALT(a,a)}$ outputs HALT(a,a) in finite number of steps $M_{UC}(a)$ outputs UC(a)
- UC is reducible to HALT + Gödel's theorem

Class P

- Complexity class set of functions that can be computed within resource bounds
- Machine decides language $L \subseteq \{0,1\}^*$ if computes $f_L: \{0,1\}^* \to \{0,1\}$;
 - $f_L(x) = 1 \leftrightarrow x \in L$
- DTIME: $T: \mathbb{N} \to \mathbb{N}$, L is in DTIME(T(n)) if $\exists M$ that decides L and runs in cT(n)
- $P = \bigcup_{c \ge 1} DTIME(n^c)$ -- note: DTIME (n^{100}) is also in P. In practice if a problem is in P there is an algorithm with $\sim n^5$ complexity
- $ISet \in P$?

Other model?

• Church-Turing (CT) thesis: every physically realizable device can be simulated with a TM

Universal Turing machine

Few notes

- Worst-case exact computation is too strict for practical purposes (usually addressed by a sort of mean complexity)
- Physics:
 - Precision (int vs float)
 - Randomness (BPP P analogue)
 - Quantum mechanics (BQP)
- Decision problems are too limited

Resources

- Computational Complexity: A Modern Approach (https://theory.cs.princeton.edu/complexity/book.pdf)
- Колмогоровская сложность и алгоритмическая случайность (https://www.mccme.ru/free-books/shen/kolmbook.pdf)

Backup