

ProCysPheValCysGinAspLysSerSerGlyTyrHisTyrGiyValSerAlaCysGluGlyCysLysGlyPhePhaArgArgSeriie CCTTGCTTTGTCTGTCAGGACAAGTCCTCAGGCTACCACTATGGGGTCAGCGCCTGTGAGGGCTGCAAGGGCTTCTTCCGCCGCAGGCATC

361

7 131

CAGAAGAACATGGTGTACACGTGTCACCGGGACAAGAACTGCATCATCAACAAGGTGACCCGGAACCGCTGCCAGTACTGCCGACTGCAG GinLysAsmMetVaiTyrThrCysHisArgAspLysAsnCysiiolioAsnLysVaiThrArgAsnArgCysGinTyrCysArgLeuGin 451

LysCysPheGiuValGlyMetSerLysGluSerValArgAsnAspArgAsnLysLysLysLysGluValProLysProGluCysSerGlu 161

AAGTGCTTTGAAGTGGGCATGTCCAAGGAGTCTGTGAGAACGACCGAAACAAGAAGAAGAAGGAGGTGCCCAAGCCCGAGTGCTCTGAG 541

SerTyrThrLeuThrProGluVaIGIyGluLeuIleGluLysVaIArgLysAIaHIsGInGluThrPheProAlaLeuCysGInLeuGIy AGCT ACACGCTGACGCCGGAGGTGGGGGGGGCTCATTGAGAAGGTGCGCAAAGCGCACCAGGAAACCTTCCCTGCCCTCTGCCAGCTGGGC 191 181 631

211

LystyrThrThrAsnAsnSerSerGluGlnArgValSerLeuAspileAspLeuTrpAspLysPheSerGluLeuSerThrLysCysile AAATÁCACTACGAACAACAGCTCAGAACAACGTGTCTCTCTGGACATTGACCTCTGGGACAAGTTCAGTGAACTCTCCACCAAGTGCATC 721

i leLysThrVaiGiuPheAiaLysGinLeuProGiyPheThrThrLeuThrileAiaAspGinileThrLeuLeuLysAiaAiaCysLeu 811

AspileLeulieLeuArglieCysThrArgTyrThrProGluGinAspThrWetThrPheSerAspGlyLeuThrLeuAsnArgThrGin GACATCCTGATCCTGCGGATCTGCACGCGGTACACGCCCGAGCAGCACCCATGACCTTCTCGGACGGGGCTGACCCTGAACCGGACCCAG 901

281

WetHisAsnAlagiyPheGiyProLeuThrAspLeuVaiPheAiaPheAlaAsnGinLeuLeuProLeuGiuMetAspAspAlaGiuThr 5 991

GiyLouLouSerAiaiieCysLouiieCysGiyAspArgGInAspLouGiuGinProAspArgVaiAspMetLouGinGiuProLouLeu GGGCTGCTCAGCGCCATCTGCCTCATCTGCGGAGACCGCCAGGACCTGGAGCAGCCGGACCGGGTGGACATGCTGCAGGAGCCGCTGCTG 1081

And the last that the last the last the last St. Sur. By Ind. St.

FIG. 18-2

ļ.

GAGGCGCTAAAGGTCTACGTGCGGAAGCGGAGGCCCAGCCGCCCCACATGTTCCCCAAGATGCTAATGAAGATTACTGACCTGCGAAGC GiuaialoulysvaityrvaiarglysargargproserargprohismetpheprolysmetleumetlysiieThraspleuargser

i i eser Ai a Lysgiy Ai a Giu Argya i i i e Thr Leu Lys Met Giu i i e Pro Giy Ser Met Pro Pro Leu i i e Gin Giu Met Leu Giu Asn

ATCAGCGCCAAGGGGGGTGAGCGGGTGATCACGCTGAAGATGGAGATCCCGGGCTCCATGCCGCCTCTCATCCAGGAAATGTTGGAGAAC 1261

SergiugiyLeuAspThrLeuSerGiyGiyGiyGiyGiyGiyGiyArgAspGiyGiyGiyLeuAlaProProProGiySerCysSerPro 131 1351

SerLeuSerProSerSerAsnArgSerSerProAlaThrHisSerProEnd 451

CGGCTTTTCTCTGCCCTTTCTACCGACCATGTGACCCCGCACCAGCCCTGCCCCCACCTGCCCTCCCGGGCAGTACTGGGGACCTTCCCTG 7 621

1 CCCAGACCT GGCT CCT CGGCAGAGCT GCCT CCCGT CAGGCC CACAT CAT CTAGGCT CCCCAGCCC CCACT GTGAAGGGGGT GGCCAGG ACACACACACACTGGACAGTAGATGGGCCGACACACTTGGCCCGAGTTCCTCCATTTCCCTGGCCTGCCCCCACCCCCACCTGTCC AAĞGCCTGCCTTCCCCTCCCACTGGAGAAGCCGCCACTTTCTCCCTCTGCCTGACCACTGGGTGTGGGACGGTGTGGGGCACT gacccaagct goccccacccccggcct cagccaccaccaccatagggcccccagacaccacacacatgcgcgt gcgcacacacacaa CCTGAAAGGACAGGCTCCTGGCCTTGGCACTTGCCTGCACCCATGAGGCATGGAGCAGGGCAGAGGAAAGGGCCCCGGGACAGAGTTT 2161 2341 2431 2521

CCCCGACCTCCTTCACCAGGGGTTGGGGCCCCTTCCCCTGGAGCCCGTGGGTGCACCTGTTACTGTTGGGGCTTTCCACTGAGATCTACTG CACCCCGTGCCCCCTCCTTACCCCGCAGGACGGGCCTACAGGGGGGTCTCCCCTCACCCCTGCACCCCCAGCTGGGGGAGCTGGCTCTG 2704 2791 1881

2611

C PEX RA — DEX RA — DEX RA — DEX RA PRShGR PRShRR PRShRR PRShRRR

FIG.4A

Bam HI
Bgl II
EcoRI
Hind III
Pst I

FIG.4B

Bam HI Bgl II EcoRI Hind III Pst I

9.5 – 6.6-

4.2 -

2.3-2.0-

0.5-

285 -

18S -

FIGURE 5

FIG. 8-1

The state of the s

FIG. 8-2

	HRE	DNA BINDING		E BINDING IN VIVO	TRANS- ACTIVATION	CHROMO- SOME	SPECIES
GR	+15-19	+16,17,21	+26,82	+ 48,52. + 77	48,52. 78,79	5 ²⁶	h, r, m,
MR	nd	nd	лd	+36	+36	4 ³⁶	h _{3e}
PR	+24,34	+24,34	nd	nd	+34	1 1 ⁷⁹	rabbit, ³² h, ³³ c, ³⁴
ER	+22,23	+23,62	nd	+ ^{23,53} .	+53,62	6 ⁶²	h, c, frog ³¹
ERR1	nd	nd	nd	nd	nd	nd	h ³⁹
ERR2	nd	nd	nd	nd	nd	nd	h ³⁹
VDR	nd	กd	nd	+35	nd	nd	h; ³⁵ c ³⁵
T ₃ R _β	+ 25	+25	+37	nd	+*0	3 37	h ³⁷
T_3R_{α}	nd	nd	38,40	nd	+*0	1740	r, ⁴⁰ h, ⁴¹ c ³⁸
V-erb A	+	+	(—) ³⁸	nd	nd	virus	C ²⁸
RAR	nd	nd	nd	+42,43	+42,43	17*3	h ^{42,43}
HAP	nd	nd	nd	nd	nd	345	h⁴⁵
E75	nd	nd	nd	nd	nd		d ⁴⁶

STYFELD DIES

AAB - Activation Above Background