MECHANICAL PROPERTY DATA FOR ALUMINUM ALLOY 2419-T851 PLATE

UNIVERSITY OF DAYTON RESEARCH INSTITUTE DAYTON, OHIO

SEPTEMBER 1975

TECHNICAL REPORT AFML-TR-75-136 FINAL REPORT FOR PERIOD MAY 1974 — JUNE 1975

Approved for public release; distribution unlimited

20080820 066

AIR FORCE MATERIALS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
Air Force Systems Command
Wright-Patterson Air Force Base, Ohio 45433

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This final report was submitted by the University of Dayton Research Institute, Dayton, Ohio, under contract F33615-74-C-5024, Job Order 73810678, with the Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio. Mr. David C. Watson, AFML/MXE, was the Laboratory Project Monitor.

This report has been reviewed by the Information Office (IO) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

DAVID C. WATSON

Project Monitor

Supervisor

FOR THE COMMANDER

David C Watson

ALBERT OLEVITCH

Chief, Materials Engineering Branch

Materials Support Division

albert Olevitch

Copies of this report should not be returned unless otherwise required by security considerations, contractual obligations, or notice on a special document.

AIR FORCE - 17-11-75 - 275

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION	N PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. PECIPIENT'S CATALOG NUMBER
AFML-TR-75-136		
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
MECHANICAL PROPERTY DAT	TA FOR	Final Report
ALUMINUM ALLOY 2419-T851	PLATE	May 1974 - June 1975
ALUMINUM ALLO1 2117 1001		6. PERFORMING ORG. REPORT NUMBER
		8. CONTRACT OR GRANT NUMBER(s)
7. AUTHOR(s)		
John J. Ruschau		F33615-74-C-5024
9. PERFORMING ORGANIZATION NAME AND ADDR		10. PROGRAM SLEMENT, PROJECT, TASK
University of Dayton Research	Institute	Job Order No. 73810678
300 College Park Avenue		Project No. 7381 Task No. 738106
Dayton, Ohio 45469		12. REPORT DATE
11. CONTROLLING OFFICE NAME AND ADDRESS Air Force Materials Laborator	v (MXE)	September 1975
Air Force Systems Command	, (13. NUMBER OF PAGES
Wright-Patterson Air Force Ba	ase. Ohio 45433	26
14. MONITORING AGENCY NAME & ADDRESS(If diff	ferent from Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified
		15a. DECLASSIFICATION/DOWNGRADING
		SCHEDULE
Approved for public release; d		
17. DISTRIBUTION STATEMENT (of the abstract en	tered in Block 20, il different fr	om Report)
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necess	ary and identify by block numbe	r)
aluminum fract	ure toughness	fatigue
GIGITIAN COLOR	k growth	notched fatigue strength
	s corrosion	
tensile		
20. ABSTRACT (Continue on reverse side if necessary	ary and identify by block number	was crack growth and stress
Tensile, fracture tought	ness, fatigue, fatig	ue crack growth, and stress
corrosion properties for alum	inum alloy/temper	and from the Aluminum
plate were determined. The	material was obtain	ned from the Athinimum
Company of America (ALCOA	Material proper	of the test allowand
drawn between data developed	from a single plat	e of the test arroy and
aluminum alloy 2219 plate in t	the T851 heat treat	condition.

SECURITY	CLASSIFICATION	OF THI	S PAGE(When	Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Deta Entered)
20. Abstract (Continued)
Material property comparisons indicate the two alloys possess very
similar tensile properties, comparable fatigue crack growth rate properties,
and similar fracture toughness properties. Notched ($K_t = 3.0$) fatigue results for alloy 2419 coincide with those found for alloy 2219, while smooth fatigue
results for 2419 were superior to 2219. Aluminum alloy 2419-T851 also
demonstrated excellent resistance to stress corrosion cracking.

ADA018159

FOREWORD

This final report was submitted by the University of Dayton Research Institute, Dayton, Ohio, under contract F33615-74-C-5024, Job Order 73810678, with the Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio. Mr. David C. Watson, AFML/MXE, was the Laboratory Project Monitor.

The author, Mr. John J. Ruschau, was responsible for the direction of the program, and would like to extend recognition to Messers. Woleslagle, Eblin, and Marton of the University of Dayton for their supporting efforts in this program. The author would also like to thank Mr. Charles Houston, AFML/TUA, for obtaining the chemical analysis.

The effort described was conducted in support of Project No. 7381, "Materials Application," Task No. 738106, "Engineering and Design Data," during the period of May 1974 through June 1975.

This report was submitted by the author in September 1975.

TABLE OF CONTENTS

SECTION		PAGE
I	INTRODUCTION	1
II	MATERIALS AND SPECIMENS	2
III	PROCEDURES	8
IV	RESULTS AND DISCUSSION	10
REFEREN	CES	22

LIST OF ILLUSTRATIONS

FIGURE		PAGE
1	Aluminum Alloy 2419-T851 Microstructure Composite [100X]	3
2	Standard Tensile Specimen	4
3	Sub-sized Tensile Specimen	4
4	Compact Specimen Configuration	6
5	Smooth Fatigue Specimen Configuration	7
6	Notched Fatigue Specimen Configuration	7
7	Typical Room Temperature Tensile Stress-Strain Curves for Aluminum Alloy 2419-T851	13
8	Fatigue Curves for Aluminum Alloy 2419-T851	15
9	Fatigue Curves for Aluminum Alloy 2419-T851	16
10	Fatigue Crack Growth Rate Data for Aluminum Alloy 2419-T851	20
11	Stress Corrosion Specimen after 1000 Hour Exposure in 3.5-Percent NaCl Environment	21
	LIST OF TABLES	
TABLE	*	PAGE
1	Tensile Data for Aluminum Alloy 2419-T851 (2-Inch-Thick Plate)	11
2	Average Room Temperature Tensile Properties for Aluminum Alloy 2419 and 2219	14
3	Fracture Toughness Properties of Aluminum Alloy 2419-T851 Plate	18
4	Average Room Temperature Fracture Toughness Properties for Aluminum Alloys 2419 and 2219	19

SUMMARY

The following conclusions are based on test results from a single 2-inch plate of aluminum alloy 2419 with the T851 heat treatment. Findings could be altered by an in-depth program that included numerous lots of test material.

- 1. Tensile properties of alloy 2419-T851 closely parallel those of 2219-T851. The strength levels for each of the principal directions are essentially equal, with the short-transverse orientation demonstrating far less ductility than the longitudinal or transverse orientations.
- 2. Notched fatigue results for 2419 and 2219 are similar, while 2419 possesses superior smooth fatigue life for "R" ratios of 0.1 and 0.5.
- 3. Fracture toughness properties for alloy 2419 are similar to those for 2219 for the longitudinal (L-T), transverse (T-L), and short-transverse (S-T) directions.
- 4. Fatigue crack growth rates for both 2419 and 2219 alloys are comparable; the cracking rates for the longitudinal (L-T) and transverse (T-L) orientations are equal.
- 5. Alloy 2419-T851 showed excellent resistance to stress corrosion cracking when loaded at 87 percent of K_{IC} in a 3.5-percent-by-weight NaCl solution environment.
- 6. Material property comparisons of alloys 2419-T851 and 2219-T851, show the properties of the two alloys are comparable with the exception of smooth fatigue resistance where 2419 proved superior.

SECTION I

INTRODUCTION

This program was initiated to develop mechanical property data for the new aluminum alloy/temper 2419-T851 plate. The test material, which was produced by the Aluminum Company of America (ALCOA), was developed to provide the strength, weldability, and stress corrosion resistance of alloy 2219 but with improved fracture toughness.

The mechanical properties investigated were tensile, smooth and notched fatigue, fracture toughness, fatigue crack growth, and stress corrosion cracking. Tensile and fracture toughness testing were performed at elevated temperatures as well as room temperature. The effects of long-term temperature exposure on tensile properties were also investigated.

SECTION II

MATERIALS AND SPECIMENS

The test material, a 2-inch-thick plate of aluminum alloy 2419-T851, was procured from ALCOA. The chemical composition limits of the alloy are shown in the first table below and the chemical composition of the material tested in this program is shown in the second table.

CHEMICAL COMPOSITION LIMITS OF 2419 (Wt. %)

Silicon	Iron	Copper	Manganese	Magnesium	Zinc	Vanadium	Zirconium	Titanium	Others	Aluminum
0.15 max.	0.18 max.	5.8-6.8	0.2-0.40	0.02 max.	0.10 max.	0.05-0.15	0.1-0.25	0.02-0.10	Ea. 0.05 Tot. 0.15	

CHEMICAL COMPOSITION OF TEST PLATE OF 2419-T851 [Lot No. 108-566] (Wt. %)

Silicon	Iron	Copper	Manganese	Magnesium*	Zinc*	Vanadium	Zirconium	Titanium	Aluminum
0.05	0.08	6.4	0.26	< 0.02	<0.15	0.068	0.12	0.06	Balance

*Values are the lowest resolution limits for the analysis used.

Photomicrographs of the alloy showing the grain orientation with respect to rolling direction are shown in Figure 1.

Tensile specimens in the longitudinal and transverse directions were machined to the configuration shown in Figure 2, while specimens taken from the short transverse direction were machined to the configuration shown in Figure 3. The fracture toughness and stress corrosion specimens, 2-inches and 3/4-inch thick, were machined from the plate to the

Figure 1. Aluminum Alloy 2419-T851 Microstructure Composite (100X)

Figure 2. Standard Tensile Specimen

DIMENSIONS IN INCHES (mm)

Figure 3. Sub-sized Tensile Specimen

configurations shown in Figure 4, along with the 0.5-inch-thick elongated compact specimens used in fatigue crack growth investigation. The L, T, and S designations used to identify the specimen orientation indicate the three principal directions of the plate from which the specimens were taken: longitudinal, transverse, and short transverse, respectively.

The two-letter designations used with the fracture toughness, stress corrosion, and crack growth specimens are used in accordance with the ASTM ''two letter code''; the first letter indicating the direction of loading, the second indicating the direction of crack propagation.

Smooth and notched ($K_t = 3.0$) fatigue specimens were machined to the configurations shown in Figure 5 and Figure 6, respectively.

DIMENSIONS

SPECIMEN THICKNESS INCHES	А	В	w	w _I	н	D
a) 2.000	2.250	2.000	4.000	4.625	2.400	0.625
(50.80)	(57.15)	(50.80)	(101.60)	(117.48)	(60.96)	(15.87)
b) 0.750	0.915	0.750	1.500	1.875	0.900	0.375
(19.05)	(23.24)	(19.05)	(38.10)	(47.62)	(22.86)	(9.52)
c)0.500 * (12.70)	1.450 (36.83)	0.500	1.850 (46.99)	2.315 (58.80)	0.900 (22.86)	0.375 (9.52)

DIMENSIONS IN INCHES (mm)

* ELONGATED COMPACT SPECIMEN

Figure 4. Compact Specimen Configurations

- (a) fracture toughness
- (b) fracture toughness and stress corrosion
- (c) fatigue crack growth

Figure 5. Smooth Fatigue Specimen Configuration

Figure 6. Notched Fatigue Specimen Configuration

(mm)

SECTION III

PROCEDURES

Tensile testing was performed at room temperature, 200°F (93°C), and 300°F (149°C) using an Instron tensile testing machine equipped with an environmental test chamber. Fracture toughness testing was accomplished by using a Weidemann tensile testing machine which also was equipped with an environmental test chamber for the same elevated temperatures. All precracking was accomplished with closed-loop load-controlled MTS hydraulic fatigue testing machines.

Precracked compact specimens used to determine the threshold for stress corrosion cracking were initially loaded at specific stress intensity values, $K_{\underline{I}}$, in a 3.5 percent-by-weight NaCl solution using Satec stress-rupture testing machines. If no failure occurred after 1000 hours the test was terminated and the test specimen broken apart to visually examine the precracked surface and to make accurate measurements of the crack length.

Constant amplitude fatigue crack growth rate testing was performed with a closed-loop load-controlled MTS hydraulic testing machine. All crack growth rate testing was carried out in a laboratory air environment with an "R" ratio of 0.1. The frequency was maintained at 30 cps. Crack length was monitored with a 30x traveling microscope. Crack growth data reduction was accomplished with the aid of a computer. Raw data was analyzed by using a least-squares regression method of fitting a straight line, a power function, and an exponential function to an interval of nine raw data points (a, N) to obtain da/dN, the crack growth rate, at the midpoint. Simultaneously the change in stress intensity, Δ K, was calculated at the midpoint of the nine-point subset. When the computation was completed, the first point was dropped, the next sequential data point added, and the calculations were repeated until all data points were analyzed.

Smooth and notched fatigue testing was performed in a laboratory air environment with a Rumul resonant frequency fatigue testing machine. The loading frequency was maintained at 100 Hz for stress ratios (R) of 0.1 and 0.5, where R is equal to the minimum stress divided by the maximum stress.

SECTION IV

RESULTS AND DISCUSSION

The individual tensile results from the room temperature, 200°F (93°C), and 300°F (149°C) tests, as well as the results from the specimens that underwent a 300°F (149°C) exposure for 1000 hours prior to room temperature testing, are presented in Table 1. Typical stress-versus-strain curves for alloy 2419 in each of the three principal orientations are illustrated in Figure 7.

Tensile data presented in Table 2 for the same alloy but a different lot (Ref. 1) confirm the results obtained for the test material. Strength levels for all three orientations are essentially equal. Ductility is greatest for the longitudinal orientation with the transverse orientation being slightly lower. Ductility in the short-transverse orientation was inferior, approximately a third that of the longitudinal. Loss in tensile strength at 300°F (149°C) was roughly 25 percent while the yield strength diminished approximately 16 percent.

The thermal exposure cycle of 300°F (149°C) for 1000 hours diminished the test material's load carrying capability slightly; a decrease of 10 - 15 percent in yield strength while only 6 - 7 percent loss in ultimate strength was observed. Typical room temperature tensile properties for aluminum alloy 2219-T851 (Ref. 2) presented in Table 2 indicate the two alloys exhibit very similar tensile properties.

Smooth and notched ($K_t = 3.0$) fatigue data for alloy 2419 for "R" ratios of 0.1 and 0.5 are shown in Figures 8 and Figure 9. Results for alloy 2219-T851 (Ref. 3) under similar testing conditions are also presented. Fatigue property comparisons indicate the notched fatigue strengths of the two alloys are very similar, but the smooth fatigue strength of alloy 2419 is superior to that of 2219 for both "R" ratios investigated.

TABLE 1 TENSILE DATA FOR ALUMINUM ALLOY 2419-T851 (2-INCH-THICK PLATE)

Specimen Orientation Transverse Longitudinal	Test Te	Temp.	Yield Strength	trenoth	Tiltimate	Ultimate Strength	Elongation	Reduction of
Transverse	B.	(O)	KSI	(MPa)	KSI	(MPa)	6%	Area (%)
Longitudinal		1	50.5	(348)	67.5	(465)	10.0	20
Longitudinal			51.3	(354)	0.99	(455)	11.1	25
Longitudinal			55.8	(385)	66.4	(458)	10.0	18
Longitudinal			52.5	(362)	9.99	(459)	10.4	2.1
	R. T.	i.	52.3	(360)	8.79	(468)	10.5	2.1
			51.3	(354)	66.2	(456)	10.6	23
			51.6	(356)	8.99	(461)	11.2	25
			51.7	(356)	6.99	(461)	10.8	23
Short Trans.	R. T.	ï.	51.8	(357)	63.0	(434)	3.1	9
			52.2	(360)	62.6	(432)	2.7	10
			51.1	(352)	63.2	(436)	3.0	5
			51.7	(356)	65.9	(434)	5.9	7
Transverse 2	200	(63)	47.1	(325)	59.4	(410)	14.0	56
			46.7	(322)	58.5	(403)	12.6	97
			47.6	(328)	59.6	(411)	13.0	29
			47.1	(325)	59.2	(408)	13.2	27
Longitudinal 2	200	(63)	45.4	(313)	62.7	(432)	13.0	30
			48.4	(334)	59.5	(410)	16.0	
			46.7	(322)	58.6	(404)	13.6	31
			47.6	(328)	29.0	(404)	14.8	31
Short Trans. 2	200	(63)	50.5	(348)	58.8	(405)	3.3	80
			48.5	(334)	58.0	(400)	5.6	10
			48.0	(331)	58.5	(403)	2.8	10
			49.0	(338)	58.4	(403)	2.9	6
			48.5 48.0 49.0	(334) (331) (338)	58.0 58.5 58.4			(400) (403) (403)

TABLE 1 (Continued)
TENSILE DATA FOR ALUMINUM ALLOY 2419-T851
(2-INCH-THICK PLATE)

Specimen No.	Specimen Orientation	Test o	Temp.	Yield S KSI	Yield Strength KSI (MPa)	Ultimate KSI	Ultimate Strength KSI (MPa)	Elongation %	Reduction of Area (%)
T7	Transverse	300	(149)	43.1	(262)	49.8	(343)	13.0	44
T8				42.2	(291)	49.4	(341)	13.2	34
4T				44.2	(305)	50.1	(345)	18.0	54
Average				43.2	(862)	49.8	(343)	14.8	44
17	Longitudinal	300	(149)	43.8	(305)	48.4	(334)	16.1	52
L8)			43.7	(301)	49.3	(340)	18.0	50
Average				43.8	(302)	48.8	(337)	17.0	51
27	Short Trans.	300	(149)	42.3	(292)	49.5	(341)	9.3	22
88				,	1	50.0	(345)	6.7	20
89				42.5	(293)	49.8	(343)	8.2	22
Average				42.4	(262)	49.8	(343)	8.1	2.1
T10*	Transverse	R	R.T.	44.9	(310)	62.2	(429)	11.6	2.1
T11*				44.5	(307)	61.2	(422)	0.6	17
T12**				44.4	(306)	63.6	(438)	11.1	20
Average				44.7	(308)	61.7	(425)	10.3	19
L10*	Longitudinal	R.	R. T.	46.8	(323)	63.6	(438)	11.6	25
L11*)			46.1	(318)	62.1	(428)	11.3	92
Average				46.4	(320)	62.8	(433)	11.4	97
\$10*	Short Trans.	R	R. T.	45.8	(316)	58.6	(404)	4.8	80
S11*				45.7	(316)	57.6	(397)	4.7	2
S12*				45.0	(310)	58.3	(402)	5.4	8
Average				45.5	(314)	58.2	(401)	5.0	7

* Specimen underwent thermal cycle of 300°F (270°C) for 1000 hours.

^{**} Loading rate exceeded ASTM maximum allowable rate for tensile testing. Not included in average.

Figure 7. Typical Room Temperature Tensile Stress-Strain Curves for Aluminum Allov 2419-T851

TABLE 2

AVERAGE ROOM TEMPERATURE TENSILE PROPERTIES FOR ALUMINUM ALLOYS 2419 AND 2219

Alloy	Orientation	Yield S	strength	Ulti	mate	Elongation
		KSI	(MPa)	Str	ength	in 2-in(50.8mm)
				KSI	(MPa)	G. L. (%)
2419-T851	Longitudinal Transverse	51.7	(356) (362)	66.9	(461) (459)	10.8* 10.4*
2219-T851(2)	Longitudinal	50	(345)	66	(455)	10
	Transverse	50	(345)	66	(455)	10
2419-T851(1)	Longitudinal Transverse	52.4 52.1	(361) (359)	66.7	(460) (458)	11.0 10.7

^{*}Gage Length = 1 inch (25.4 mm)

Figure 8. Fatigue Curves for Aluminum Alloy 2419-T851

Figure 9. Fatigue Curves for Aluminum Alloy 2419-T851

Fracture toughness values for alloy 2419-T851 for room and elevated temperatures, 200°F (93°C) and 300°F (149°C), are presented in Table 3. All toughness values determined are in accordance with the ASTM E399-74 criteria for validity with the exception of specimen number TL8 which failed the $P_{max}/P_Q < 1.10$ criterion. However, the deviation from the standard is very small and the value obtained can be assumed accurate for most engineering design considerations. Results indicate greatest toughness in the longitudinal (L-T) orientation, with the short transverse (S-T) orientation being lowest. Toughness values presented in Table 4 for the same alloy (Ref. 1) are comparable to those determined for the test material. Specimens tested at temperatures of 200°F (93°C) and 300°F (149°C) exhibited only a slight decrease in fracture toughness values from those tested at room temperature. Based on results (Ref. 4) presented in Table 4, fracture toughness properties for alloy 2419 are similar to those of alloy 2219 in each of the three principal directions.

Constant amplitude fatigue crack growth rate data for alloy 2419-T851 in a laboratory air environment are presented in Figure 10 along with data from Reference 4 for 2219-T851. Crack growth rates are approximately equal for specimens taken from the test material with longitudinal (L-T) and transverse (T-L) orientation. From the data presented, it is apparent that both alloys 2419 and 2219 have similar crack growth rates.

Precracked compact specimens with short-transverse orientation (S-T) were loaded at various stress intensity levels and immersed in a 3.5 percent by weight NaCl solution at room temperature. Specimens loaded at 87 percent of K_{IC} produced no failures after 1000 hours, although the machined surfaces of the specimens were severely pitted (Figure 11). After 1000 hours the specimens were loaded to failure and the fracture faces examined. There were no signs of stress corrosion cracking in any of the test specimens.

TABLE 3
FRACTURE TOUGHNESS PROPERTIES OF ALUMINUM
ALLOY 2419-T851 PLATE

Specimen No.	Specimen Orientation		est perature	K	IC	Pmax
	Orientation	o _F	(°C)	KSI√in	$(MPa\sqrt{m})$	PQ
LTl	Longitudinal	I	R.T.	35.3	(38.8)	1.04
LT2	(L-T)			34.2	(37.6)	1.06
LT3				34.9	(38.3)	1.06
Average				34.8	(38.2)	
TL1	Transverse	1	R. T.	31.3	(34.4)	1.05
TL2	(T-L)			32.3	(35.5)	1.05
TL3				30.6	(33.6)	1.06
Average				31.4	(34.5)	
STI	Short Transverse	I	R. T.	22.9	(25.2)	1.08
ST2	(S-T)			22.9	(25.2)	1.04
ST3				23.2	(25.5)	1.08
Average				23.0	(25.3)	
LT4	Longitudinal	200	(93)	32.9	(36.2)	1.07
LT5	(L-T)			32.6	(35.8)	1.09
LT6				31.7	(34.8)	1.09
Average				32.4	(35.6)	
TL4	Transverse	200	(93)	29.3	(32.2)	1.07
TL5	(T-L)			28.9	(31.8)	1.08
TL6				28.3	(31.1)	1.06
Average				28.8	(31.6)	
LT7	Longitudinal	300	(149)	32.2	(35.4)	1.08
LT8	(L-T)			31.9	(35.0)	1.08
LT9				31.8	(34.9)	1.09
Average				32.0	(35.2)	
TL7	Transverse	300	(149)	28.9	(31.8)	1.08
TL8*	(T-L)			28.2	(31.0)	1.11
TL9				28.5	(31.3)	1.09
Average				28.5	(31.3)	1

^{*}Invalid due to $P_{\text{max}}/P_{Q} > 1.10$.

TABLE 4

AVERAGE ROOM TEMPERATURE FRACTURE TOUGHNESS PROPERTIES FOR ALUMINUM ALLOYS 2419 AND 2219

Specimen Orientation	Fracture Toughness (K _{IC}) KSI (MPa√m)					
	2419-T851		2219-T851(4)		2419-T851(1)	
Longitudinal (L-T)	34.8	(38.2)	36	(39.6)	35.3	(38.8)
Transverse (T-L)	31.4	(34.5)	33	(35.2)	30.2	(33.2)
Short Transverse (S-T)	23.0	(25.3)	23	(25.3)	-	-

Figure 10. Fatigue Crack Growth Rate Data for Aluminum Alloy 2419-T851

Figure 11. Stress Corrosion Specimen After 1000-Hour Exposure in 3.5 Percent NaCl Environment

REFERENCES

- 1. "Mechanical Property Data 2419 Aluminum Alloy," Battelle, Columbus Laboratories.
- 2. Mayer, L.W., "ALCOA Aluminum Alloy 2219," Aluminum Company of America, June 1967.
- 3. Ferguson, R. R., "B-1 Material S-N Fatigue Data," B-1 Division, North American Rockwell, NA-72-1088.
- 4. Damage Tolerance Design Handbook, MCIC-HB-01, December 1972.