Relatório - Experimento 05

Fausto Emrich Brenner - 17/0009777

I. Introdução

Neste experimento, estudaremos a modulação angular em FM e PM. Ambas partem do mesmo princípio, uma portadora cura frequência (ou fase) é modulada pelo sinal-mensagem

$$s(t) = A_c \cos(\theta[m(t)]) \tag{1}$$

A distinção entre os dois tipos de modulação mencionados está na forma dessa variação de fase

$$\theta_{PM}(t) = 2\pi f_c t + k_p m(t) \tag{2}$$

$$\theta_{FM}(t) = 2\pi f_c t + k_f \int_{-\infty}^t m(\tau) d\tau \tag{3}$$

Podemos expressar a frequência angular instantânea dos sinais modulados por

$$\omega_i(t) = \frac{d\theta[m(t)]}{dt} \tag{4}$$

Ou seja, para PM temos

$$f_{i_{PM}}(t) = f_c + \frac{k_p}{2\pi}\dot{m}(t) \tag{5}$$

E, similarmente, para FM

$$f_{i_{FM}}(t) = f_c + \frac{k_f}{2\pi} m(t) \tag{6}$$

Dessa forma, o sinal modulado em FM é expresso por

$$s_{AM}(t) = A_c \cos \left[2\pi f_c t + 2\pi k_f \int_{-\infty}^t m(\tau) d\tau \right]$$
 (7)

Variações na amplitude de m(t) causarão mudanças na frequência desse sinal de forma que

$$\Delta f = k_f \frac{m_{max} - m_{min}}{2} = k_f m_p \tag{8}$$

é seu desvio máximo de frequência. A razão entre esse valor e a largura de banda do sinal modulante é definida como

$$\beta_f = \frac{\Delta f}{B_m} \tag{9}$$

A partir desses parâmetros, a largura de banda do sinal modulado em FM pode ser estimada pela regra de Carson [1], segundo a qual

$$B_{FM} \approx 2(\Delta f + Bm) = 2B_m(1 + \beta_f) \tag{10}$$

[T1] Para um sinal m(t) de banda $B_m=8\,\mathrm{kHz}$ e $m_p=7.5\,\mathrm{V}$, modulado em FM com $f_c=96.3\,\mathrm{kHz}$ e $A_c=100\,\mathrm{V}$, para que o sinal transmitido tenha $\Delta f=75\,\mathrm{kHz}$, a sensibilidade do modulador, a partir de (8), será

$$k_f = \frac{\Delta f}{m_p} = \frac{75k}{7.5} = 10 \,\text{kHz/V}$$
 (11)

As frequências máximas e mínimas do sinal modulado serão

$$f_{max} = f_c + \Delta f = 96.3 + 75 = 171.3 \,\text{kHz}$$
 (12)

$$f_{min} = f_c - \Delta f = 96.3 - 75 = 21.3 \,\text{kHz}$$
 (13)

A partir da expressão (10), temos que

$$B_{FM} \approx 2(75k + 8k) = 166 \,\text{kHz}$$
 (14)

Como essa banda está centrada na frequência da portadora, suas frequências superiores e inferiores serão

$$f_{sup} = f_c + B_{FM}/2 = 96.3 + 83 = 179.3 \,\text{kHz}$$
 (15)

$$f_{inf} = f_c - B_{FM}/2 = 96.3 - 83 = 13.3 \,\text{kHz}$$
 (16)

[T2.a] Para a AR02a, modularemos uma onda triangular de média nula, frequência de $500 \,\mathrm{Hz}$ e amplitude 5V, com $k_p = 2\pi$. Esse sinal pode ser expresso por

$$m(t) = -5 + 10 \sum_{n = -\infty}^{+\infty} \Delta \left(\frac{t - nT_m}{T_m} \right)$$
(17)

Ou seja, sua derivada é

$$\frac{dm(t)}{dt} = 10 \sum_{n=-\infty}^{+\infty} \frac{d\Delta}{dt} \left(\frac{t - nT_m}{T_m} \right)$$
 (18)

A função triangular é tal que, para $\tau > 0$, têm-se

$$\Delta(x/\tau) = \begin{cases} 1 - 2|x|/\tau, & |x| < \tau/2\\ 0, & |x| > \tau/2 \end{cases}$$
 (19)

$$\frac{d\Delta(x/\tau)}{dx} = \begin{cases}
+2/\tau, & -\tau/2 < x < 0 \\
-2/\tau, & 0 < x < \tau/2 \\
0, & |x| > \tau/2
\end{cases}$$
(20)

Como m(t) se trata de uma função periódica, a partir de (18), em seu primeiro período (n=0), temos

$$\frac{dm_{n=0}(t)}{dt} = \begin{cases}
+10^4, & -0.001 < t < 0 \\
-10^4, & 0 < t < 0.001 \\
0, & |x| > 1/2
\end{cases}$$
(21)

Esses valores da derivada vão se repetindo periodicamente a cada T_m . Assim, temos que

$$\Delta f = \frac{k_p}{2\pi} max \left[\frac{dm(t)}{dt} \right] = 10 \,\text{kHz}$$
 (22)

$$\beta_f = \frac{\Delta f}{B_m} = \frac{10 \,\text{kHz}}{5 \cdot 500} = 4$$
 (23)

Logo, a banda do sinal modulado pode ser aproximada pela regra de Carson

$$B_{PM} = 2 \cdot B_m (1 + \beta_f) = 2 \cdot 2.5 \,\text{kHz} (1 + 4) = 25 \,\text{kHz}$$
 (24)

Figura 1: Configuração da AT para os primeiros procedimentos da AR01

II. ATIVIDADES

A. AR 01

Um modulador FM foi construído no GRC, sua AT encontra-se na Figura 1. Primeiramente, o gerador de sinais foi configurado como uma onda quadrada de $f_m = 1 \,\mathrm{Hz}, \ m_p = 5 \,\mathrm{V}$ e média nula. Neste caso, o desvio máximo de frequência esperado era de

$$\Delta f = k_f m_p = 2000 \cdot 5 = 10 \,\text{kHz}$$
 (25)

Com $f_c = 30 \,\mathrm{kHz}$, esse valor significa que as frequências máximas e mínimas do sinal modulado serão $40 \,\mathrm{kHz}$ e $20 \,\mathrm{kHz}$, respectivamente. Com essa configuração de m(t), obteve-se o gráfico no tempo (**Fig. 6**) e na frequência (**Fig. 7**) simultaneamente para os sinais modulante e modulado. O sinal modulado, $s_{FM}(t)$ também foi observado no espectograma (**Fig. 8**).

Encontrou-se que a frequência do sinal modulado variou de $20.03\,\mathrm{kHz}$ a $40\,\mathrm{kHz}$, ou seja, o desvio de frequência experimental foi de $\Delta f = 9.985\,\mathrm{kHz}$. Ao compararmos esse valor com o teórico vemos que houve uma variação. Essa variação se deve ao passo de frequência de amostragem do espectro de frequência. Com $f_{sample} = 254\,\mathrm{kHz}$ e *FFT Size* de 4096, o passo de frequência é de $62.011\,\mathrm{Hz}$. Isso significa que a amostragem mais próxima de $20\,\mathrm{kHz}$ foi em $20.0298\,\mathrm{kHz}$. A partir desse valor de Δf , o valor experimental de k_f é calculado por 8, de forma que

$$k_f = \frac{9.985}{5} = 1.997 \,\text{kHz/V}$$
 (26)

A partir desse valor experimental de k_f o valor de Δf , para cada uma das configurações descritas nas **Tabelas I**, **II** e **III** foi calculado e preenchido. Para o caso senoidal, temos $B_m = f_m$, para a onda triangular, consideraremos $B_m = 3f_m$ e para a onda triangular $B_m = 5f_m$. A partir dos valores de Δf experimental e B_m , β_f é calculado para cada caso pela eq. (9) e B_{carson} pela eq. (10). Para encontrar $B_{98\%}$, foi utilizado um filtro passa faixa de largura de banda variável, centrado em f_c e com banda de transição de $100 \, \mathrm{Hz}$, seguido por um medidor de RMS, conforme o esquema da Figura 2. Como a potência do sinal

Figura 2: Configuração da AT para o preenchimento das Tabelas

f_m [Hz]	m_p [V]	Δf [kHz]	B_m [Hz]	β_f	B_{cars} [kHz]	$B_{98\%}$ [kHz]
10	0,25	0,50	10	49,93	1,02	1,1
	1,00	2,00	10	199,70	4,01	4,1
	5,00	9,99	10	998,50	19,99	20,0
100	0,25	0,50	100	4,99	1,20	1,3
	1,00	2,00	100	19,97	4,19	4,3
	5,00	9,99	100	99,85	20,17	20,3
1000	0,25	0,50	1000	0,50	3,00	2,1
	1,00	2,00	1000	2,00	5,99	6,1
	5,00	9,99	1000	9,99	21,97	22,1

Tabela I: Parâmetros da modulação FM para m(t) senoidal

modulado é $P_s = \frac{1^2}{2}$, assim que o valor de RMS atinja $\sqrt{98\%P_s} = 0.7$, o valor da banda correspondente foi registrado.

[A1.a] Percebe-se que, independente da forma dos sinais ou de sua frequência, o valor de Δf depende apenas de m_p e k_f . O resultado disso é que β_f , para a mesma m_p , será inversamente proporcional à largura de banda do sinal. É possível perceber também que a largura de banda do sinal modulado em FM foi muito maior do que a do mesmo sinal modulado em AM-DSB+C, $2B_m$. De fato, a largura de banda de um sinal FM é, no mínimo, igual a $2B_m$ e essa condição só é atingida para casos de modulação em banda estreita, onde $|k_f \int_{-\infty}^t m(t) dt| \ll 1$. No nosso contexto, esse caso poderia ser buscado diminuindo a amplitude do sinal e k_f , de forma a satisfazer a condição descrita. Assim, Δf atingiria valores muito pequenos e, consequentemente β_f também, de forma que a banda de Carson (10) poderia ser reduzida a $2B_m$. Comparando os valores de B_{cars} com os de $B_{98\%}$, nota-se que B_{cars} foi uma boa estimativa de B_{FM} para a maioria dos sinais, pois ele ficou muito próximo de $B_{98\%}$. Já para sinais com maiores larguras de banda, B_{cars} chegou a ser uma medida generosa para B_{FM} , pois conseguiu contemplar mais de 98% da

f_m [Hz]	m_p [V]	Δf [kHz]	B_m [Hz]	β_f	B_{cars} [kHz]	$B_{98\%}$ [kHz]
10	0,25	0,50	30	16,64	1,06	1,0
	1,00	2,00	30	66,57	4,05	3,9
	5,00	9,99	30	332,83	20,03	19,4
100	0,25	0,50	300	1,66	1,60	1,2
	1,00	2,00	300	6,66	4,59	4,0
	5,00	9,99	300	33,28	20,57	19,5
1000	0,25	0,50	3000	0,17	7,00	2,1
	1,00	2,00	3000	0,67	9,99	4,2
	5,00	9,99	3000	3,33	25,97	20,1

Tabela II: Parâmetros da modulação FM para m(t) triangular

f_m [Hz]	m_p [V]	Δf [kHz]	B_m [Hz]	β_f	B_{cars} [kHz]	$B_{98\%}$ [kHz]
10	0,25	0,50	50	9,99	1,10	1,2
	1,00	2,00	50	39,94	4,09	4,2
	5,00	9,99	50	199,70	20,07	20,2
100	0,25	0,50	500	1,00	2,00	1,4
	1,00	2,00	500	3,99	4,99	4,7
	5,00	9,99	500	19,97	20,97	20,8
1000	0,25	0,50	5000	0,10	11,00	2,2
	1,00	2,00	5000	0,40	13,99	6,1
	5,00	9,99	5000	2,00	29,97	26,1

Tabela III: Parâmetros da modulação FM para m(t) quadrada

potência do sinal.

[A1.b] Para efeitos didáticos, utilizando uma caixa de som (Audio Sink) escutou-se o sinal FM gerada a partir de uma mensagem m(t) senoidal, com f_c variando entre 1 e 5 kHz, m_p entre 0 e 2 V e f_m entre 0.5 e 5 Hz. Esse tipo de modulação de uma mensagem senoidal é denominada modulação tonal [1] e o efeito observado foi de acordo com sua denominação. Com $m_p = 0$ V, o sinal apresenta um tom controlado por f_c , quanto maior essa frequência, mais alto o tom de s(t). Ao aumentar m_p , mantendo $f_m = 0.5$ Hz, o tom do sinal passa a variar ao entorno da frequência f_c , quando maior m_p maior essa variação. Ao aumentar f_m , percebe-se que isso aumenta a velocidade da alternância, como uma sirene aumentando sua frequência. A conclusão que se chega a partir deste pequeno experimento é de que a modulação de 1 tom (uma senoide de frequência f_m), a modulação gera uma variação de tons ao redor de f_c .

B. AR 02a

Figura 3: Modulação em PM

Um modulador em PM foi construído conforme a **Fig. 3**. O resultado no tempo pode ser visto na **Fig. 9** e na frequência na **Fig. 10**. Conforme calculado no item **T2.a**, o sinal modulado apresentou Δf de $10 \, \text{kHz}$ que, considerando uma banda do sinal mensagem iguala $2.5 \, \text{kHz}$, resulta em uma banda de Carson de $25 \, \text{kHz}$.

C. AR 02b

Um modulador PSK foi implementado utilizando um modulador AM-DSB-SC conforme a Fig. 4. Os resultados no tempo e na frequência podem ser vistos na Fig. 11. Percebe-se que, diferentemente dos resultados observados para as modulações FM e PM, neste caso, a saída varia linearmente com o sinal

Figura 4: Esquema do modulador PSK

modulante. O resultado no espectro e no tempo foi, como esperado, o mesmo de uma modulação AM com portadora suprimida. O espectro da mensagem foi deslocado para o entorno de f_c e, no tempo, o sinal apresentou uma inversão de fase sempre que o sinal de m(t) se inverte.

D. AR 03

Figura 5: Esquema do modulador e demodulador FM

Vimos como se da a modulação de um sinal FM. Agora, veremos o seu processo de demodulação. Para isso, é necessário algum dispositivo cuja amplitude da saída varie linearmente com a frequência da entrada. Esse será o papel do bloco $Decimating\ FIR\ Filter$, que foi configurado conforme Taps indicados no roteiro. Esse bloco é um filtro passa altas de $f_{corte}\gg f_c$ que, na região da banda de $s_{FM}(t)$ possui uma resposta linear. O sinal $s_{FM}(t)$ e sua derivada $s'_{FM}(t)$ podem ser visualizados na Fig. 12. Percebe-se que a derivada do sinal apresenta uma forma muito próxima à de um sinal AM-DSC+C da nossa mensagem. É exatamente essa propriedade que será utilizada em nossa demodulação. A saída do bloco $Decimating\ FIR\ Filter\ será\ um\ sinal\ AM-DSC+C\ que\ será\ demodulado\ por\ um\ retificador,\ FPB\ e\ DC\ Blocker\ ,\ conforme\ já\ vimos\ anteriormente. O sinal\ recuperado\ por\ ser\ comparado\ ao\ sinal\ original\ na\ Fig.\ 13\ .$ Também pode-se comparar os espectros desses sinais na Fig. 14.

Percebe-se que o sinal recuperado possui algumas diferenças quando comparado ao original. Antes de discutirmos sobre essas diferenças, podemos visualizar mais de perto o sinal recuperado pela Fig. 15.

Primeiramente, ele apresenta uma amplitude muito menor. Em segundo lugar, sua forma de onda apareceu com algumas deformações. O primeiro ponto pode ser explicada pela resposta do filtro passa altas que acaba atenuando o sinal. O segundo ponto pode ser explicado pela natureza não perfeitamente linear do filtro passa altas. Fora essas diferenças, tivemos sucesso em demodular o sinal gerado.

III. IMAGENS

As imagens de oscilografia e espectrais se encontram ao final do documento, em uma página reservada.

IV. CONCLUSÃO

Neste experimento testamos algumas variações de sinais modulados em ângulo. Foi possível compreender o comportamento de várias variáveis do sistema, como a largura de banda do sinal modulado, e aplicações dessa técnica (PSK e áudio). Observamos o comportamento da demodulação desse tipo de sinal, comparando-o com técnicas já vistas anteriormente.

REFERÊNCIAS

[1] B. P Lathi and Z. Ding, Sistemas de Comunicações Analógicos e Digitais Modernos, 4th ed. Rio de Janeiro: LTC, 2019.

Figura 6: Gráfico no tempo da AR01

Figura 7: Gráfico na frequência da AR01

Figura 8: Espectograma da AR01

Figura 9: Resultado da AR02a no tempo

Figura 10: Resultado da AR02a na frequência

Figura 11: Modulação PSK no tempo e na frequência

Figura 12: Sinal $s_{FM}(t)$ e sua derivada no tempo

Figura 13: Sinal recuperado, $\hat{m}(t)$, e sinal original, m(t), no tempo

Figura 14: Sinal recuperado, $\hat{m}(t)$, e sinal original, m(t), na frequência

Figura 15: Sinal recuperado visto mais de perto