泛函分析作业题 第 5 周

△ 作业题 1.1 设 $(X, \|\cdot\|)$ 是一个赋范空间, $x_0 \in X$, $\epsilon > 0$. 令

$$U(x_0, \epsilon) = \{x \mid ||x - x_0|| < \epsilon\},\$$

$$S(x_0, \epsilon) = \{x \mid ||x - x_0|| \le \epsilon\},\$$

则

$$\overline{U(x_0,\epsilon)} = S(x_0,\epsilon).$$

证明 由于范数 $\|\cdot\|$ 作为映射是赋范线性空间 X 上的连续映射, 则可证 $S(x_0, \epsilon)$ 是空间 X 中的闭集. 由于 $U(x_0, \epsilon) \subset S(x_0, \epsilon)$, 则 $\overline{U(x_0, \epsilon)} \subset S(x_0, \epsilon)$. 下证 $S(x_0, \epsilon) \subset \overline{U(x_0, \epsilon)}$.

$$D = \{ x \in X \mid ||x - x_0|| = \epsilon \},\$$

则 $S(x_0, \epsilon) = U(x_0, \epsilon) \cup D$. 显然, $U(x_0, \epsilon) \subset \overline{U(x_0, \epsilon)}$, 所以只需要证明 $D \subset \overline{U(x_0, \epsilon)}$. 任取 $y_0 \in D$. 对任意 $n \in \mathbb{N}$, 令

$$x_n = y_0 + \frac{x_0 - y_0}{n||x_0 - y_0||} = y_0 + \frac{1}{n\epsilon}(x_0 - y_0), (\underline{\mathbf{m}}$$
范线性空间里可以做加法和数乘)

则 $x_n \in X$, 并且当 n 足够大时, 就有(下式还用到了范数的正齐次性)

$$||x_n - x_0|| = \left\| \left(\frac{1}{n\epsilon} - 1 \right) (x_0 - y_0) \right\| = \left| \frac{1}{n\epsilon} - 1 \right| ||x_0 - y_0|| = \left| \frac{1}{n} - \epsilon \right| = \epsilon - \frac{1}{n} < \epsilon,$$

从而 $x_n \in U(x_0, \epsilon)$. 另一方面,

$$||x_n - y_0|| = \left\| \frac{1}{n\epsilon} (x_0 - y_0) \right\| = \frac{1}{n\epsilon} ||x_0 - y_0|| = \frac{1}{n},$$

所以 $\lim_{x\to\infty} ||x_n-y_0|| = 0$, y_0 就是 $U(x_0,\epsilon)$ 的聚点, 因此 $y_0 \in \overline{U(x_0,\epsilon)}$. 综上, $D \subset \overline{U(x_0,\epsilon)}$. 所以 $\overline{U(x_0,\epsilon)} = S(x_0,\epsilon)$.

作业题 1.2 (内插不等式) 设 $1 \le s \le r \le t < \infty, u \in L^s(\Omega) \cap L^t(\Omega)$, 利用 Hölder 不等式证明 $u \in L^r(\Omega)$ 并且

$$||u||_r \le ||u||_s^{\theta} ||u||_t^{1-\theta},$$

其中 $\theta \in [0,1]$ 满足

$$\frac{1}{r} = \frac{\theta}{s} + \frac{1 - \theta}{t}.$$

证明 当 r=s 时, 取 $\theta=1$; 当 r=t 时, 取 $\theta=0$. 在这两种情况下, 结论都成立. 下设

$$1 \le s < r < t < \infty.$$

若存在 m, n > 0 使得 $r = \frac{s}{m} + \frac{t}{n}$, 则

$$|u|^r = |u|^{\frac{s}{m}} \cdot |u|^{\frac{t}{n}}.$$

由于 $u \in L^s(\Omega) \cap L^t(\Omega)$, 则

$$\int_{\Omega} \left(|u|^{\frac{s}{m}} \right)^m dx = \int_{\Omega} |u|^s dx < +\infty,$$

$$\int_{\Omega} \left(|u|^{\frac{t}{n}} \right)^n \mathrm{d}x = \int_{\Omega} |u|^t \, \mathrm{d}x < +\infty,$$

从而 $|u|^{\frac{s}{m}} \in L^m(\Omega), |u|^{\frac{t}{n}} \in L^n(\Omega).$ 于是, 当 m, n 满足

$$\left\{ \begin{array}{l} m,n>0,\\ \frac{s}{m}+\frac{t}{n}=r,\\ \frac{1}{m}+\frac{1}{n}=1, \end{array} \right.$$

即 $m = \frac{t-s}{t-r}, n = \frac{t-s}{r-s}$ 时, 利用 Hölder 不等式可得

$$\int_{\Omega} |u|^r \, \mathrm{d}x = \int_{\Omega} |u|^{\frac{s}{m}} \cdot |u|^{\frac{t}{n}} \, \mathrm{d}x \le \left[\int_{\Omega} \left(|u|^{\frac{s}{m}} \right)^m \, \mathrm{d}x \right]^{\frac{1}{m}} \cdot \left[\int_{\Omega} \left(|u|^{\frac{t}{n}} \right)^n \, \mathrm{d}x \right]^{\frac{1}{n}}$$

$$= \left(\int_{\Omega} |u|^s \, \mathrm{d}x \right)^{\frac{1}{m}} \cdot \left(\int_{\Omega} |u|^t \, \mathrm{d}x \right)^{\frac{1}{n}} = \|u\|_s^{\frac{s}{m}} \cdot \|u\|_t^{\frac{t}{n}} < \infty,$$

所以 $u \in L^r(\Omega)$, 并且

$$||u||_r^r = \int_{\Omega} |u|^r dx \le ||u||_s^{\frac{s}{m}} \cdot ||u||_t^{\frac{t}{n}}.$$

 $\ \ \diamondsuit \ \theta = \tfrac{s}{rm}, \ \mathbb{M} \ \theta \in (0,1), \ \tfrac{t}{rn} = 1 - \theta,$

$$\frac{\theta}{s} + \frac{1-\theta}{t} = \frac{1}{rm} + \frac{1}{rm} = \frac{1}{r},$$

并且

$$||u||_r \le ||u||_s^{\theta} ||u||_t^{1-\theta}.$$

- △ 作业题 1.3 $(L^p(\Omega))$ 与 $L^\infty(\Omega)$ 的联系) 设 Ω 是 \mathbb{R}^n 中的可测集并且 $m(\Omega) < +\infty$, 证明
 - (1) 若 p, q 满足 $1 \le p < q \le \infty$, 则

$$L^q(\Omega) \subset L^p(\Omega),$$

并且存在与 $m(\Omega), p$ 和 q 相关的正常数 C 使得

$$||f||_p \le C||f||_q, \quad \forall f \in L^q(\Omega).$$

(2) 对任意 $f \in L^{\infty}(\Omega)$,都有

$$\lim_{p \to +\infty} ||f||_p = ||f||_{\infty}.$$

证明 (1) Step1. 任取 $f \in L^{\infty}(\Omega)$, 下证

$$f \in L^p(\Omega), \quad \forall p \ge 1.$$

由于 $f \in L^{\infty}(\Omega)$, 则存在 $E_0 \subset \Omega$ 使得 $m(E_0) = 0$ 并且

$$|f(x)|^p \le ||f||_{\infty}^p, \quad \forall x \in \Omega \setminus E_0, \quad \forall p \ge 1.$$

于是

$$\int_{\Omega} |f(x)|^p \, \mathrm{d}x = \int_{\Omega \setminus E_0} |f(x)|^p \, \mathrm{d}x + \int_{E_0} |f(x)|^p \, \mathrm{d}x$$

$$= \int_{\Omega \setminus E_0} |f(x)|^p dx$$

$$\leq \int_{\Omega \setminus E_0} ||f||_{\infty}^p dx$$

$$\leq m(\Omega) ||f||_{\infty}^p < +\infty,$$

所以 $f \in L^p(\Omega)$ 并且

$$||f||_p \le [m(\Omega)]^{\frac{1}{p}} ||f||_{\infty}.$$
 (1)

Step2. 下证当 p,q 满足

$$1 \le p < q < \infty$$

时结论成立.

任取 $f \in L^q(\Omega)$, 令 $t = \frac{q}{p}$, $s = \frac{t}{t-1}$, 则 t, s > 0, $\frac{1}{t} + \frac{1}{s} = 1$, 并且

$$\int_{\Omega} (|f(x)|^p)^t dx = \int_{\Omega} |f(x)|^q dx < \infty,$$

即 $|f|^p \in L^t(\Omega)$. 定义

$$g(x) \equiv 1, \quad x \in \Omega,$$

则 $g \in L^s(\Omega)$. 利用 Hölder 不等式可得

$$\int_{\Omega} |f(x)|^p dx$$

$$= \int_{\Omega} 1 \cdot |f(x)|^p dx$$

$$\leq \left(\int_{\Omega} 1^s dx \right)^{\frac{1}{s}} \left(\int_{\Omega} (|f(x)|^p)^t dx \right)^{\frac{1}{t}}$$

$$= [m(\Omega)]^{\frac{1}{s}} \left(\int_{\Omega} |f(x)|^q dx \right)^{\frac{1}{t}}$$

$$= [m(\Omega)]^{\frac{q-p}{q}} ||f||_q^p < +\infty,$$

所以 $f \in L^p(\Omega)$, 并且

$$||f||_p \le [m(\Omega)]^{\frac{q-p}{pq}} ||f||_q.$$

(2) 当 $||f||_{\infty} = 0$ 时,由 (1) 部分的结论可知 $||f||_{p} \equiv 0$, $\forall p > 1$,此时结论显然成立.下设 $||f||_{\infty} > 0$.

一方面,由(1)可得

$$\overline{\lim}_{p \to +\infty} \|f\|_p \le \overline{\lim}_{p \to +\infty} [m(\Omega)]^{\frac{1}{p}} \|f\|_{\infty} = \|f\|_{\infty}.$$
 (2)

另一方面, 对任意 $\epsilon \in (0, ||f||_{\infty})$, 令

$$E_{\epsilon} = \{ x \in \Omega \mid |f(x)| \ge ||f||_{\infty} - \epsilon \},$$

下证 $m(E_{\epsilon}) > 0$. 反证法, 假设 $m(E_{\epsilon}) = 0$, 由 $||f||_{\infty}$ 的定义可得

$$\sup_{x \in \Omega \setminus E_{\epsilon}} |f(x)| \ge \inf_{\substack{E_0 \subset \Omega \\ m(E_0) = 0}} \left(\sup_{x \in \Omega \setminus E_0} |f(x)| \right) = ||f||_{\infty}.$$
 (3)

但是另一方面,对任意 $x \in \Omega \setminus E_{\epsilon}$,有 $|f(x)| \le ||f||_{\infty} - \epsilon$,从而

$$\sup_{x \in \Omega \setminus E_{\epsilon}} |f(x)| \le ||f||_{\infty} - \epsilon,$$

这与(3)矛盾. 所以 $m(E_{\epsilon}) > 0$. 于是

$$\int_{\Omega} |f(x)|^p dx \ge \int_{E_{\epsilon}} |f(x)|^p dx$$

$$\ge \int_{E_{\epsilon}} (\|f\|_{\infty} - \epsilon)^p dx$$

$$= m(E_{\epsilon}) (\|f\|_{\infty} - \epsilon)^p,$$

进而

$$||f||_p = \left(\int_{\Omega} |f(x)|^p dx\right)^{\frac{1}{p}} \ge [m(E_{\epsilon})]^{\frac{1}{p}} (||f||_{\infty} - \epsilon),$$

$$\frac{\lim_{p \to +\infty} \|f\|_p}{\lim_{p \to +\infty}} \ge \lim_{p \to +\infty} [m(E_{\epsilon})]^{\frac{1}{p}} (\|f\|_{\infty} - \epsilon)$$

$$= \|f\|_{\infty} - \epsilon.$$

由 $\epsilon > 0$ 的任意性可知

$$\underline{\lim}_{p \to +\infty} \|f\|_p \ge \|f\|_{\infty}. \tag{4}$$

综合(2)与(4)式, 可得

$$\lim_{p \to +\infty} ||f||_p = ||f||_{\infty}.$$

- 作业题 1.4 (Brezis-Lieb 引理) 设 Ω 是 \mathbb{R}^n 中的可测集, $1 \leq p < \infty$. 若 $L^p(\Omega)$ 中的函数 列 $\{u_n\}$ 满足
 - (1) $\{u_n\}$ 是 $L^p(\Omega)$ 中的有界点列;
 - (2) $u_n(x) \to u(x) \ a.e. x \in \Omega \quad (n \to \infty).$

证明 $u \in L^p(\Omega)$ 并且

$$\lim_{n \to \infty} (\|u_n\|_p^p - \|u_n - u\|_p^p) = \|u\|_p^p.$$

证明 Step1. 由于 $\{u_n\}$ 在 $L^p(\Omega)$ 中有界, 则存在 M>0, 使得

$$||u_n||_p \le M, \quad \forall n \in \mathbb{N}_+.$$

由于

$$u_n(x) \to u(x) \ a.e. x \in \Omega \quad (n \to \infty),$$

则

$$|u_n(x)|^p \to |u(x)|^p \ a.e.x \in \Omega \quad (n \to \infty).$$

由 Fatou 引理 (P107) 可得

$$\int_{\Omega} |u(x)|^p dx = \int_{\Omega} \underline{\lim}_{n \to \infty} |u_n(x)|^p dx \le \underline{\lim}_{n \to \infty} \int_{\Omega} |u_n(x)|^p dx = \underline{\lim}_{n \to \infty} ||u_n||_p^p \le M^p < +\infty,$$

所以 $u \in L^p(\Omega)$.

Step2. (为什么要有这一步?从下面的(7)式最后一步估计可以看到端倪) 任取 $\epsilon > 0$. 下证存在只与 ϵ 和 p 有关的正常数 C > 0 使得

$$\left| |a+b|^p - |a|^p \right| \le \epsilon |a|^p + C|b|^p, \quad \forall a, b \in \mathbb{R}.$$

事实上, 当 p=1 时,

$$|a+b|-|a| \le |(a+b)-a| = |b| \le \epsilon |a| + |b|,$$

结论成立. 当 p > 1 时, 由微分中值定理, 存在 $\theta \in [0,1]$ 使得

$$\begin{aligned} \left| |a+b|^{p} - |a|^{p} \right| \\ &= \left| p |\theta a + (1-\theta)b|^{p-2} (\theta a + (1-\theta)b)b \right| \\ &= p |\theta a + (1-\theta)b|^{p-1} |b| \\ &\leq p 2^{p-1} \left(|\theta a|^{p-1} + |(1-\theta)b|^{p-1} \right) |b| \\ &\leq p 2^{p-1} \left(|a|^{p-1} + |b|^{p-1} \right) |b| \\ &= p 2^{p-1} |a|^{p-1} |b| + p 2^{p-1} |b|^{p}. \end{aligned}$$

$$(5)$$

令 $q = \frac{p}{p-1}$, 则 p > 1 且 $\frac{1}{p} + \frac{1}{q} = 1$. 由 Young 不等式可得

$$p2^{p-1}|a|^{p-1}|b| = \left[(q\epsilon)^{\frac{1}{q}} |a|^{p-1} \right] \cdot \left[(q\epsilon)^{-\frac{1}{q}} p2^{p-1}|b| \right]$$

$$\leq \frac{\left[(q\epsilon)^{\frac{1}{q}} |a|^{p-1} \right]^{q}}{q} + \frac{\left[(q\epsilon)^{-\frac{1}{q}} p2^{p-1}|b| \right]^{p}}{p}$$

$$= \epsilon |a|^{p} + \left(\frac{2^{p}(p-1)}{\epsilon} \right)^{p-1} |b|^{p}$$
(6)

\$

$$C = \left(\frac{2^p(p-1)}{\epsilon}\right)^{p-1} + p2^{p-1},$$

再将(6)式代入到(5)中可得

$$\left| |a+b|^p - |a|^p \right| \le \epsilon |a|^p + C|b|^p.$$

Step3. 下证

$$\lim_{n \to \infty} \left(\left(\|u_n\|_p^p - \|u_n - u\|_p^p \right) - \|u\|_p^p \right) = 0.$$

由 Step2 可得

$$\begin{aligned}
& \left| |u_n(x)|^p - |u_n(x) - u(x)|^p - |u(x)|^p \right| \\
& \leq \left| |u_n(x)|^p - |u_n(x) - u(x)|^p \right| + |u(x)|^p \\
& = \left| |(u_n(x) - u(x)) + u(x)|^p - |u_n(x) - u(x)|^p \right| + |u(x)|^p \\
& \leq \epsilon |u_n(x) - u(x)|^p + (C+1)|u(x)|^p.
\end{aligned} (7)$$

\$

$$f_n^{\epsilon}(x) = \left| |u_n(x)|^p - |u_n(x) - u(x)|^p - |u(x)|^p \right| - \epsilon |u_n(x) - u(x)|^p,$$

则由条件 (ii) 可知

$$f_n^{\epsilon}(x) \to 0$$
 a.e. $x \in \Omega$ $(n \to \infty)$,

同样也有 f_n^{ϵ} 的正部 $(f_n^{\epsilon})^+$ 也满足

$$(f_n^{\epsilon})^+(x) \to 0, \quad a.e. \ x \in \Omega \quad (n \to \infty).$$
 (8)

由(7)式可得

$$0 \le (f_n^{\epsilon})^+(x) \le (C+1)|u(x)|^p, \quad \forall x \in \Omega.$$

由于 $u \in L^p(\Omega)$, 则 $|u|^p \in L^1(\Omega)$, 综合(8)和(9), 利用 Lebesgue 控制收敛定理可得

$$\lim_{n \to \infty} \int_{\Omega} (f_n^{\epsilon})^+(x) \, \mathrm{d}x = \int_{\Omega} \lim_{n \to \infty} (f_n^{\epsilon})^+(x) \, \mathrm{d}x = 0. \tag{10}$$

再由(7)式可得

$$\begin{aligned} & \left| |u_n(x)|^p - |u_n(x) - u(x)|^p - |u(x)|^p \right| \\ &= f_n^{\epsilon}(x) + \epsilon |u_n(x) - u(x)|^p \\ &\le (f_n^{\epsilon})^+(x) + \epsilon |u_n(x) - u(x)|^p, \end{aligned}$$

上式两端在 Ω 上积分可得

$$\left| \left(\|u_n\|_p^p - \|u_n - u\|_p^p \right) - \|u\|_p^p \right|$$

$$\leq \int_{\Omega} \left| |u_n(x)|^p - |u_n(x) - u(x)|^p - |u(x)|^p \right| dx$$

$$\leq \int_{\Omega} (f_n^{\epsilon})^+(x) dx + \epsilon \|u_n - u\|_p^p$$

$$\leq \int_{\Omega} (f_n^{\epsilon})^+(x) dx + \left(M^p + \|u\|_p^p \right) \epsilon,$$

在上式两端令 $n \to \infty$ 可得

$$\overline{\lim}_{n \to \infty} \left| \left(\|u_n\|_p^p - \|u_n - u\|_p^p \right) - \|u\|_p^p \right| \\
\leq \overline{\lim}_{n \to \infty} \int_{\Omega} (f_n^{\epsilon})^+(x) \, \mathrm{d}x + \left(M^p + \|u\|_p^p \right) \epsilon \\
= \left(M^p + \|u\|_p^p \right) \epsilon$$

再由 $\epsilon > 0$ 的任意性可得

$$\lim_{n \to \infty} \left| \left(\|u_n\|_p^p - \|u_n - u\|_p^p \right) - \|u\|_p^p \right| = \overline{\lim}_{n \to \infty} \left| \left(\|u_n\|_p^p - \|u_n - u\|_p^p \right) - \|u\|_p^p \right| = 0,$$

所以

$$\lim_{n \to \infty} \left(\left(\|u_n\|_p^p - \|u_n - u\|_p^p \right) - \|u\|_p^p \right) = 0,$$

即

$$\lim_{n \to \infty} (\|u_n\|_p^p - \|u_n - u\|_p^p) = \|u\|_p^p.$$

6