

Overview of today's lecture

- Some motivational imaging experiments.
- Pinhole camera.
- Accidental pinholes.
- Camera matrix.
- Perspective.
- Other camera models.
- Pose estimation.

... and an object we like to photograph

digital sensor (CCD or CMOS)

What would an image taken like this look like?

digital sensor (CCD or CMOS)

All scene points contribute to all sensor pixels

What does the image on the sensor look like?

All scene points contribute to all sensor pixels

Let's add something to this scene

What would an image taken like this look like?

most rays are blocked real-world digital sensor (CCD or CMOS) object one makes it through

Each scene point contributes to only one sensor pixel

What does the image on the sensor look like?

copy of real-world object (inverted and scaled)

Pinhole camera

Pinhole camera a.k.a. camera obscura

Pinhole camera a.k.a. camera obscura

First mention ...

Chinese philosopher Mozi (470 to 390 BC)

First camera ...

Greek philosopher Aristotle (384 to 322 BC)

Pinhole camera terms

barrier (diaphragm) pinhole (aperture) real-world object

digital sensor

(CCD or CMOS)

Pinhole camera terms

What happens as we change the focal length?

What happens as we change the focal length?

What happens as we change the focal length? object projection is half the size real-world object focal length 0.5 f

Ideal pinhole has infinitesimally small size

• In practice that is impossible.

What happens as we change the pinhole diameter?

What happens as we change the pinhole diameter?

What happens as we change the pinhole diameter? real-world object

What about light efficiency?

What is the effect of doubling the pinhole diameter?

What about light efficiency?

• 2x pinhole diameter → 4x light

In practice

Lenses map "bundles" of rays from points on the scene to the sensor.

How does this mapping work exactly?

Accidental pinholes

What does this image say about the world outside?

Accidental pinhole camera

Antonio Torralba, William T. Freeman Computer Science and Artificial Intelligence Laboratory (CSAIL) MIT

Accidental pinhole camera

projected pattern on the wall

upside down

window with smaller gap

view outside window

window is an aperture

Camera matrix

The camera as a coordinate transformation

A camera is a mapping from:

the 3D world

to:

a 2D image

2D to 2D transform (image warping)

The camera as a coordinate transformation

A camera is a mapping from:

the 3D world

to:

a 2D image

What are the dimensions of each variable?

The camera as a coordinate transformation

$$x = PX$$

$$\left[\begin{array}{c} X \\ Y \\ Z \end{array}\right] = \left[\begin{array}{cccc} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{array}\right] \left[\begin{array}{c} X \\ Y \\ Z \\ 1 \end{array}\right]$$

homogeneous image coordinates 3 x 1

camera matrix 3 x 4 homogeneous world coordinates 4 x 1

The pinhole camera

The (rearranged) pinhole camera

The (rearranged) pinhole camera

What is the equation for image coordinate \mathbf{x} in terms of \mathbf{X} ?

The 2D view of the (rearranged) pinhole camera

What is the equation for image coordinate \mathbf{x} in terms of \mathbf{X} ?

The 2D view of the (rearranged) pinhole camera

The (rearranged) pinhole camera

What is the camera matrix **P** for a pinhole camera?

$$x = PX$$

The pinhole camera matrix

Relationship from similar triangles:

$$[X \quad Y \quad Z]^\top \mapsto [fX/Z \quad fY/Z]^\top$$

General camera model:

$$\left[egin{array}{c} X \ Y \ Z \end{array}
ight] = \left[egin{array}{cccc} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{array}
ight] \left[egin{array}{c} X \ Y \ Z \ 1 \end{array}
ight]$$

What does the pinhole camera projection look like?

Relating a real-world point to a point on the camera

In homogeneous coordinates:

$$P' = \begin{bmatrix} f & x \\ f & y \\ z \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

ideal world

- Unit aspect ratio
- Optical center at (0,0)
- No skew

Intrinsic Assumptions Extrinsic Assumptions

- No rotation
- Camera at (0,0,0)

Relating a real-world point to a point on the camera

In homogeneous coordinates:

$$P' = \begin{bmatrix} f & x \\ f & y \\ z \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = K[I \quad 0]P$$

- Unit aspect ratio
- Optical center at (0,0)
- No skew

Intrinsic Assumptions Extrinsic Assumptions

- No rotation
- Camera at (0,0,0)

Remove assumption: known optical center

Intrinsic Assumptions

- Optical center at (0,0)
 No rotation
- Optical center at (u₀, v₀)
- Square pixels
- No skew

- Camera at (0,0,0)

$$P' = K \begin{bmatrix} I & 0 \end{bmatrix} P \Longrightarrow w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & u_0 & 0 \\ 0 & f & v_0 & 0 \\ 0 & 0 & 1! & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Remove assumption: square pixels

Intrinsic Assumptions

- Optical center at (u₀, v₀)
- Square pixels
- Rectangular pixels
- No skew

- No rotation
- Camera at (0,0,0)

$$P' = K \begin{bmatrix} I & 0 \end{bmatrix} P \Longrightarrow w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & 0 & u_0 & 0 \\ 0 & \beta & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Remove assumption: non-skewed pixels

Intrinsic Assumptions

- Optical center at (u₀, v₀)
 No rotation
- Rectangular pixels
- No skew
- Small skew

- Camera at (0,0,0)

$$P' = K \begin{bmatrix} I & 0 \end{bmatrix} P \Longrightarrow w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & S & u_0 & 0 \\ 0 & \beta & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Remove assumption: non-skewed pixels

Intrinsic Assumptions

- Optical center at (u₀, v₀)
- Rectangular pixels
- Small skew

- No rotation
- Camera at (0,0,0)

$$P' = K \begin{bmatrix} I & 0 \end{bmatrix} P \implies \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 & 0 \\ 0 & \beta & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Real world camera: Translate + Rotate

Remove assumption: allow translation

Intrinsic Assumptions

- Optical center at (u₀, v₀)
 No rotation
- Rectangular pixels
- Small skew

- Camera at (0,0,0) -> (tx,ty,tz)

$$P' = K\begin{bmatrix} I & \overline{t} \end{bmatrix} P \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & 0 & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Remove assumption: allow rotation

- Optical center at (u₀, v₀)
 Morotation
- Rectangular pixels
- Small skew

Intrinsic Assumptions Extrinsic Assumptions

- Camera at (tx,ty,tz)

$$R_{x}(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$$

$$R_{y}(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$$

$$R_z(\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Rotation around the coordinate axes, counter-clockwise

Remove assumption: allow rotation

Intrinsic Assumptions

- Optical center at (u₀, v₀)
 No rotation
- Rectangular pixels
 Camera at (t_x,t_y,t_z)
- Small skew

$$P' = K \begin{bmatrix} R & \overline{t} \end{bmatrix} P \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

A generic projection matrix

Intrinsic Assumptions

- Optical center at (u₀, v₀)
- Rectangular pixels
- Small skew

- Allow rotation
- Camera at (t_x,t_y,t_z)

$$P' = K \begin{bmatrix} R & \overline{t} \end{bmatrix} P \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

A generic projection matrix

Intrinsic Assumptions

- Optical center at (u₀, v₀)
 Allow rotation
- Rectangular pixels
- Small skew

Extrinsic Assumptions

- Camera at (t_x,t_y,t_z)

$$P' = K \begin{bmatrix} R & \overline{t} \end{bmatrix} P \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Degrees of freedom??

A generic projection matrix

Intrinsic Assumptions

- Optical center at (u₀, v₀)
- Rectangular pixels
- Small skew

Extrinsic Assumptions

- Allow rotation
- Camera at (tx,ty,tz)

$$P' = K \begin{bmatrix} R & \overline{t} \end{bmatrix} P \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 \\ 0 & D & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Degrees of freedom??

The camera matrix relates what two quantities?

The camera matrix relates what two quantities?

$$x = PX$$

The camera matrix relates what two quantities?

$$x = PX$$

3D points to 2D image points

The camera matrix relates what two quantities?

$$x = PX$$

3D points to 2D image points

The camera matrix can be decomposed into?

The camera matrix relates what two quantities?

$$x = PX$$

3D points to 2D image points

The camera matrix can be decomposed into?

$$\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$$

The camera matrix relates what two quantities?

$$x = PX$$

3D points to 2D image points

The camera matrix can be decomposed into?

$$\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$$

intrinsic and extrinsic parameters

Perspective

Forced perspective

The Ames room illusion

The Ames room illusion

The 2D view of the (rearranged) pinhole camera

Magnification depends on depth

What happens as we change the focal length?

Magnification depends on focal length

What if...

What if...

Is this the same image as the one I had at focal length 2f and distance 2Z?

- Set depth to half

Perspective distortion

long focal length

mid focal length

short focal length

Different cameras

Perspective camera

Orthographic camera

When can you assume a weak perspective camera model?

When can you assume a weak perspective camera model?

all the mountains are roughly 'far away'

Pose estimation

	Structure (scene geometry)	Motion (camera geometry)	Measurements
Pose Estimation	known	estimate	3D to 2D correspondences
Triangulation	estimate	known	2D to 2D coorespondences
Reconstruction	estimate	estimate	2D to 2D coorespondences

Pose Estimation

Given a single image, estimate the exact position of the photographer

3D Pose Estimation

(Resectioning, Geometric Calibration, Perspective n-Point)

Given a set of matched points

$$\{\mathbf{X}_i, oldsymbol{x}_i\}$$

point in 3D space

point in the image

and camera model

$$oldsymbol{x} = oldsymbol{f}(\mathbf{X}; oldsymbol{p}) = \mathbf{P} \mathbf{X}$$

projection parameters Camera matrix

Find the (pose) estimate of

What is Pose Estimation?

What is Pose Estimation?

3D locations of planar marker features are known in advance

3D content prepared in advance

Simple AR program

- 1. Compute point correspondences (2D and AR tag)
- 2. Estimate the pose of the camera **P**
- 3. Project 3D content to image plane using P

References

Basic reading:

Szeliski textbook, Section 2.1.5, 6.2.

Additional reading:

- Hartley and Zisserman, "Multiple View Geometry in Computer Vision," Cambridge University Press 2004.
 chapter 6 of this book has a very thorough treatment of camera models.
- Torralba and Freeman, "Accidental Pinhole and Pinspeck Cameras," CVPR 2012. the eponymous paper discussed in the slides.