USB (2.0) Introduction

https://github.com/Wei1234c/Universal_Serial_Bus/blob/master/notebooks/USB%202.0%20Introduction.pdf

How to profile a surfboard?

In a Cheap & Easy & Accurate & non-destructive way

About Me

- Wei Lin
 - fb : https://www.facebook.com/wei.lin.921025
- GitHub:
 - https://github.com/Wei1234c
- PyCon TW:
 - Building Distributed System with Celery on Docker Swarm

 https://tw.pycon.org/2016/zh-hant/events/talk/68823578639859763/
 - Elastic Network of Things with MQTT and MicroPython
 - https://tw.pycon.org/2017/zh-hant/events/talk/319284977214685262/
- Projects:
 - ESP32 cluster,
 - https://github.com/Wei1234c/Broccoli/blo
 - LoRa transceiver driver
 - https://wei1234c.blogspot.com/2017/
 - LoRa cellular networks
 - https://wei1234c.blogspot.com/2017/

Motivation of USB

Goals of USB

- Comprehension of various PC configurations and form factors
- Low-cost solution that supports transfer rates up to 480 Mb/s
- Integration in commodity device technology
- Full support for real-time data for voice, audio, and video
- Full backward compatibility of USB 2.0 for devices built to previous versions of the specification
- Enabling new classes of devices that augment the PC's capability
- Provision of a standard interface capable of quick diffusion into product
- Ease-of-use for PC peripheral expansion
- Protocol flexibility for mixed-mode isochronous data transfers and asynchronous messaging

USB documents

- USB 2.0:
 - https://zh.wikipedia.org/wiki/USB
 - https://www.usb.org/document-library/usb-20specification
- USB HID:
 - https://www.usb.org/documents?search=hid&items_per_page=50
- USB Audio:
 - https://www.usb.org/document-library/audiodevices-rev-20-and-adopters-agreement

Other documents

- USB in a NutShell
 - https://www.beyondlogic.org/usbnutshell/usb1.shtml
- USB made simple:
 - http://www.usbmadesimple.co.uk
- 成大資工 on USB:
 - http://wiki.csie.ncku.edu.tw/embedded/USB
- USB 實驗室
 - http://www.usblab.idv.tw/
- USB 101: An Introduction to Universal Serial Bus 2.0
 - https://www.cypress.com/file/134171/download

An USB environment

Bus Topology

Layers – from ground up

Connectors

USB 2.0 Type A Plug

USB 2.0 Type A Jack

USB 3.0 Type A Plug

USB 3.0 Type A Jack

USB 2.0 Type B Plug

USB 2.0 Type B Jack

USB 3.0 Type B Plug

USB 3.0 Type B Jack

USB 2.0 Mini Type B Plug (4 Position)

USB 2.0 Type B Jack (4 Position)

USB 2.0 Micro Type B Plug

USB 2.0 Micro Type B Jack

USB 2.0 Mini Type B Plug (5 Position)

USB 2.0 Type B Jack (5 Position)

USB 3.0 Micro Type B Plug

USB 3.0 Micro Type B Jack

Pin outs

Inside the cable

Why twisted?

Why differential?

NRZI(Non Return to Zero Invert)

Something special about USB

- Asynchronous
- Half-duplex
- Centralized
 - In, Out @ host' s viewpoint
 - Only host can start a transaction
- Token is Addressed

(lsb)

(msb)

- Bits order little endian
 - 0x09 = > 10010000
 - 0x05 = > 10100000

PID	ADDR	ENDP	CRC5
8	7	4	5

bits

- Bytes order of a multi-bytes field little endian
 - 0x0905 => 0x05, 0x09 => 1010 0000 1001 0000

USB Communication

Packet types https://www.beyondlogic.org/usbnutshell/usb3.shtml#USBProtocols

Group	PID Value	Packet Identifier
Token	0001	OUT Token
	1001	IN Token
	0101	SOF Token
	1101	SETUP Token
Data	0011	DATA0
	1011	DATA1
	0111	DATA2
	1111	MDATA
	0010	ACK Handshake
Handahaka	1010	NAK Handshake
Handshake	1110	STALL Handshake
	0110	NYET (No Response Yet)
Special	1100	PREamble
	1100	ERR
	1000	Split
	0100	Ping

Transfer (Transaction) types

- Control Transfers
- Isochronous Transfers
- Interrupt Transfers
- Bulk Transfers

Control Transfers

(Figure 8-37)

Interrupt Transfers

Isochronous Transfers

Bulk Transfers

Standard Requests

Standard Request Codes (Table 9-4)

bRequest	Value	
GET_STATUS	0	
CLEAR_FEATURE	1	
Reserved for future use	2	
SET_FEATURE	3	
Reserved for future use	4	
SET_ADDRESS	5	
GET_DESCRIPTOR	6	
SET_DESCRIPTOR	7	
GET_CONFIGURATION	8	
SET_CONFIGURATION	9	
GET_INTERFACE	10	
SET_INTERFACE	11	
SYNCH_FRAME	12	

USB Descriptors

Descriptor Types (Table 9-5)

Descriptor Types	Value
DEVICE	1
CONFIGURATION	2
STRING	3
INTERFACE	4
ENDPOINT	5
DEVICE_QUALIFIER	6
OTHER_SPEED_CONFIGURATION	7
INTERFACE_POWER ¹	8

Format of Setup Data (Table 9-2)

Offset	Field	Size	Value	Description		
0	bmRequestType	1	Bitmap	Characteristics of request:		
				D7: Data transfer direction 0 = Host-to-device 1 = Device-to-host		
				D65: Type 0 = Standard 1 = Class 2 = Vendor 3 = Reserved		
				D40: Recipient 0 = Device 1 = Interface 2 = Endpoint 3 = Other 431 = Reserved		
1	bRequest	1	Value	Specific request (refer to Table 9-3)		
2	wValue	2	Value	Word-sized field that varies according to request		
4	wIndex	2	Index or Offset	Word-sized field that varies according to request; typically used to pass an index or offset		
6	wLength	2	Count	Number of bytes to transfer if there is a Data stage		

Standard Device Requests (Table 9-3)

bmRequestType	bRequest	wValue	windex	wLength	Data
00000000B 00000001B 00000010B	CLEAR_FEATURE	Feature Selector	Zero Interface Endpoint	Zero	None
10000000B	GET_CONFIGURATION	Zero	Zero	One	Configuration Value
10000000В	GET_DESCRIPTOR	Descriptor Type and Descriptor Index	Zero or Language ID	Descriptor Length	Descriptor
10000001B	GET_INTERFACE	Zero	Interface	One	Alternate Interface
10000000B 10000001B 10000010B	GET_STATUS	Zero	Zero Interface Endpoint	Two	Device, Interface, or Endpoint Status
00000000В	SET_ADDRESS	Device Address	Zero	Zero	None
00000000В	SET_CONFIGURATION	Configuration Value	Zero	Zero	None
00000000В	SET_DESCRIPTOR	Descriptor Type and Descriptor Index	Zero or Language ID	Descriptor Length	Descriptor
00000000B 00000001B 00000010B	SET_FEATURE	Feature Selector	Zero Interface Endpoint	Zero	None
0000001B	SET_INTERFACE	Alternate Setting	Interface	Zero	None
10000010B	SYNCH_FRAME	Zero	Endpoint	Two	Frame Number

USB Functions

When a device is plugged in

• Low Speed (1.5Mbits/s)

• Full Speed (12Mbits/s)

High Speed (480Mbits/s

Bus Enumeration

- Get device descriptor
- Set Address
- Get device descriptor
- Get configuration descriptor
- Set configuration
- Set interface

Tools

- Logic Analyzer
 - Software:
 - Sigrok PulseView: https://sigrok.org/wiki/PulseView
 - Hardware:
 - Cypress EZ-USB FX2LP: <u>https://www.cypress.com/products/ez-usb-fx2lp</u>

Cypress EZ-USB FX2LP (CY7C68013A) /

Tracing USB packets

Tools

- Software
 - Packets tracking:
 - Wireshark: https://www.wireshark.org/
 - Bus Hound: http://www.perisoft.net/bushound/
 - Device Monitoring Studio: <u>https://www.hhdsoftware.com/Downloads/device-monitoring-studio</u>

Tools

- Python package:
 - PyUSB:
 - https://github.com/pyusb/pyusb
 - https://github.com/pyusb/pyusb/blob/master/docs/tutorial.rst
- My packages:
 - https://github.com/Wei1234c/Universal_Serial_Bus
 - https://github.com/Wei1234c/USB_HID
 - https://github.com/Wei1234c/USB_Audio

USB Descriptors

Defined Class Codes

https://www.usb.org/defined-class-codes

- Audio: 1
 - https://www.usb.org/documentlibrary/audio-devices-rev-20-andadopters-agreement
- HID (Human Interface Device): 3
 - https://www.usb.org/documentlibrary/device-class-definition-hid-111

Report Descriptor Short Items Types and Tags (6.2.2.2)

Part	Description
bSize	Numeric expression specifying size of data:
	0 = 0 bytes 1 = 1 byte 2 = 2 bytes 3 = 4 bytes
bType	Numeric expression identifying type of item where: 0 = Main 1 = Global 2 = Local 3 = Reserved
bTag	Numeric expression specifying the function of the item.
[data]	Optional data.

Report descriptor structure

Tracking Mouse with Python

Inside an USB device

- Hardware:
 - Cypress EZ-USB FX2LP:
 https://www.cypress.com/products/ez-usb-fx2lp
- SDK:
 - https://www.cypress.com/products/ez-usb-fx2lp#tabs-0-bottom_side-2
- Firmware examples:
 - https://www.cypress.com/documentation/applicationnotes/an65209-getting-started-fx2lp#res574
- Books:
 - https://www.books.com.tw/products/0010505575

Vendor defined device

https://www.cypress.com/documentation/application-notes/an45471-create-your-own-usb-vendor-commands-using-fx2lp

Tools

- Hardware:
 - FTDI FT232H:
 https://www.ftdichip.com/Products/ICs/FT232H.ht
 m
- Python modules:
 - PyFtdi: https://github.com/eblot/pyftdi
- My packages:
 - Bridges: https://github.com/Wei1234c/Bridges

Bridges as I2C

https://github.com/Wei1234c/Bridges

```
# On real Raspberry Pi
from smbus2 import SMBus
bus = SMBus(1)
b = bus.read byte data(80, 0)
print(b)
# On PC with FTDI FT232H
from bridges.ftdi.controllers.i2c import I2cController
SMBus = I2cController().SMBus
bus = SMBus(1)
b = bus.read byte data(80, 0)
print(b)
```

Profile a surfboard

http://ryanschenk.com/code/scanbot.html

Profile a surfboard

http://ryanschenk.com/code/scanbot.html

Q & A

