Decision Trees -

- 1. Decision Tree is one of the most commonly used models in data science world
- 2. It also is a proven management tool used to take decisions in complex situations
- 3. It can be used for regression and classification, more often used for classification
- 4. Can be used for binary classification such as whether an applicant for loan is likely to turn into defaulter or not, whether a customer is likely to churn or not
- It can also be used for multi-class classification for e.g. identifying the character in English alphabet
- Decision Tree algorithm finds the relation between the target column and the independent variables and expresses it as a tree structure
- It does so by binary splitting data using functions based on comparison operators on the independent columns

Decision Trees Structure – Training / Building

- Suppose we are given the data about cars as shown
- Our objective is to find if any patterns exist that connect the "Horse-Power" and "Weight" to car type (Large or Small)
- The independent variables are "Horse-Power" and "Weight" while the target column is "Car Type"
- The target column has binary values (L and S) in equal numbers.

Horse-Power	Weight	Car Type
130	3500	L
90	2000	s
90	1500	S
150	3000	L
270	2500	L
200	2900	L
70	2530	S
215	2000	L
80	2200	S
100	1700	s

Decision Trees Structure – Training / Building

- This smaller node on top has "L" in majority in the target column hence gets label "L"
- The smaller node on the bottom has "S" in majority in the target column hence gets label "S"
- The homogeneity of the target column in both the smaller nodes has increased compared to parent
- But both the smaller nodes still have a mix of values in the target column
- Let us split the data further using Horse_Power

Decision Trees Structure - Training / Building

- The smaller node on the top now is perfectly homogenous in target column and belongs to class "S"
- 2. The second node similarly belongs to "L"
- The third node belongs to "S"
- The fourth node belongs to "L"
- 5. There is no further need to split the data as it is perfectly homogenous!

Decision Trees Structure - Training / Building

Note: The CART algorithm employed by scikitlearn creates only binary tree i.e. each node is split into two subnodes

Decision Trees Structure - Predicting

Decision Trees Structure - Predicting

Decision Trees Structure - Training Errors

- Suppose we come across a combination of "Weight" and "Horse-Power" for any of the classes which was not available in the training data on which the decision tree was built. For e.g. a Small Car with HorsePower of 250 and Weight is 2000. The Decision Tree will classify it as Large Car.
- Such classification errors can occur both during the training and testing. They are called training errors and testing errors. This is true for any algorithm
- The decision tree algorithm by default will try to build a tree where the smallest child nodes are perfectly homogenous in the target columns
- 4. To achieve perfect homogeneity in the target column, the algorithm may build a large tree where each leaf has only 1 record!!! Such models are overfit models. They give zero errors on training but perform poorly on test data

Decision Trees - Posterior Probability

 Sometimes when the algorithm runs out of independent attributes to use to break a node into smaller nodes or it is forced to stop, we may find nodes where the target column is not homogenous

Small Cars							
Horse- Power	Weight	Car Type					
90	1500	S					
100	1700	S					
90	2000	S					
215	2000	L					

In such case, the label assigned to the node is based on majority class and the ratio
of the classes indicates the posterior probability of the two classes at that node. P(s)
= ¾ and P(L) = ¼

Decision Trees - Structure & Node types

- Decision trees consist of nodes and branches. Nodes represent a decision function while branch represents the result of the function. Thus it is a flow chart for deciding how to classify a new observation:
- The nodes are of three types, Root Node (representing the original data), Branch Node (representing a function), Leaf Node (which holds the result of all the previous functions that connect to it)

How does decision tree algorithm select the column and the breakpoint in the column to create the tree?

Decision Trees - Learning Process / Loss function & impurity

- The decision tree algorithm learns (i.e. creates the decision tree from the data set) through optimization of a loss function
- 2. The loss function represents the reduction in impurity of the target column i.e. increase in the homogeneity of the target column at every split of the given data
- To understand the loss function we need to understand how it computes the impurity / purity of the target column. There are two measures of impurity viz Entropy and Gini...

Decision Trees - Learning Process / Loss function & impurity

Decision Trees - Learning Process / Loss function & impurity

- 1. There is a bag of 50 balls of orange and white respectively
- You have to pull out one ball from the bag with closed eyes. If the ball is
 - a. orange, explain the linear regression model
 - b. white, nothing to be done
- This state where you have to decide and your decision can result in multiple outcomes with equal probability is said to be state of maximum uncertainty

- If you have a bag full of balls of only one colour, then there is no uncertainty. You know what is going to happen. Uncertainty is zero.
- Thus, the more the homogeneity, lesser the uncertainty and vice versa
- 6. Uncertainty is expressed as entropy or Gini index

Entropy ... a measure of uncertainty

- a. Given that there are two possible outcomes (orange or white) for a given action (picking the ball)
- b. Given that we know the probability of getting each outcome (P(Orange) = .5 and P(White) = 1 .5 = .5)
- c. We also know that when only one outcome (White or Orange) is possible, there is no uncertainty. P(White = 1) and P(Orange = 1-1 = 0)
- We can express the relation between probability and impurity of target column in a mathematical form

Decision Trees - Shannon's Entropy

- Imagine a bag contains 6 Orange and 4 White balls. Let the two classes Orange -> class 0 and White -> class 1. The probability ranges from 0 to 1
- The impurity of the bag can be represented as a log to base 2 of probability of a class (pi). Impurity ranges from 0 to 1 (for binary classification). The relation between probability and impurity can be expressed as -

$$H(X) = -\sum_{i=0}^{N-1} p_i \log_2 p_i$$

- H(X), entropy of the bag (X) will be calculated as per the formula
 - a. The index i refers to the number of classes possible
 - H(X) = -(0.6 * log2(0.6)) (0.4 * log2(0.4)) = 0.9709506

- d. Suppose we remove all Orange balls from the bag and then entropy will be
 - a. $H(X) = -1.0 \cdot \log 2(1.0) 0.0 \cdot \log 2(0) = 0$ ## Entropy is 0! i.e. Information is 100%

Decision Trees - Shannon's Entropy

- Imagine a bag contains 6 Orange and 4 White balls. Let the two classes Orange -> class 0 and White -> class 1. The probability ranges from 0 to 1
- The impurity of the bag can be represented as a log to base 2 of probability of a class (pi). Impurity ranges from 0 to 1 (for binary classification). The relation between probability and impurity can be expressed as

- H(X), entropy of the bag (X) will be calculated as per the formula
 - H(X) = -(0.6 * log2(0.6)) (0.4 * log2(0.4)) = 0.9709506
- Suppose we remove all Orange balls from the bag and then entropy will be
- a. $H(X) = -1.0 \log 2(1.0) 0.0 \log 2(0) = 0$ ## Entropy is 0! i.e. Information is 100%

Decision Trees – Entropy & Objective

Suppose we wish to find if there was any influence of shipping mode, order priority on customer location. Customer location is target column and like the bag of coloured balls

low I'	Order ID	Order Date Order Priorit	Order Quantit;	Sales	Discour Ship Mod	Profit :	Unit Price	Shipping Cort Customer Nam	Provinc
1	1	13-10-2010 Low	6	26154	114 Regular Air	-21325	38.94	35 Muhammed Macintyr	Nuneval
49	293	01-10-2012 High	- 49	10123.02	0.07 Delivery Truck	457.81	208.16	68.02 Barry French	Nuneval
50	293	01-10-2012 High	27	244.57	0.01 Regular Air	46.71	8.69	2.99 Barry French	Nunevat
80	483	10-07-2011 High	30	4965,7595	0.08 Regular Air	1198.97	195.99	399 Clay Rozendal	Nuneval
85	515	28-08-2010 Not Specified	19	394.27	0.18 Regular Air	30.94	21.78	5.94 Carlos Soltero	Nunevat
86	515	28-68-2010 Not Specified	21	146.69	0.15 Regular Air	443	664	4.95 Carlos Soltero	Nuneval
97	613	17-06-2011 High	12	93.54	0.13 Réguler Air	-5404	7.3	7.72 Carl Jackson	Nuntral
98	613	1746-2011 High	22	905.08	0.19 Reguler Air	127.70	42.76	622 Cerl Jeckson	Nuneval
103	643	2403-2011 High	21	2781.82	0 17 Express Air	495.26	13814	35 Monica Federle	Nunevat
107	678	26-92-2010 Low	44	228.41	0.17 Regular Air	-225.36	498	8.33 Dorothy Badders	Naneval
127	807	23-11-2010 Medium	-6	196.85	0.01 Regular Air	-165.85	428	£18 Neole Schneider	Nunevat
128	807	23-11-2018 Medium	32	12456	0.14 Reguler Air	-1433	395	2 Neola Schneider	Nunevot
134	868	08-06-2012 Not Specified	12	715.84	0 Regular Air	134.72	21.78	5.94 Carlos Daly	Nuneval
135	868	08-06-2012 Not Specified	31	147433	0.14 Reguler Air	114.65	47.98	3.61 Cerlos Dely	Numeral
149	933	0460-2012 Not Specified	15	80.61	0.02 Regular Air	4.72	5.28	2.99 Claudia Miner	Nunevit
160	995	30-05-2011 Medium	- 6	1815.49	0.03 Regular Air	782.91	39.89	3.04 Neola Schneider	Nunevat
161	916	25-11-2009 Not Specified	16	248.26	0.17 Regular Air	93.80	15.74	1.39 Allen Poserblet	Nuneval
175	1154	1442-2012 Officel	44	4462.23	0.04 Delivery Truck	440.72	100.98	26.22 Sylvie Foulston	Nuneval
176	1154	1442-2012 Ortical	11	663.794	0.25 Regular Air	481.04	71.37	69 Sylvia Foulston	Nuneval
283	1344	15-04-2012 Low	15	834 904	0.16 Regular Air	-11.68	\$5.99	5.26 Jim Radford	Nunevat
204	1344	15-04-2012 Low	18	2480 5205	0.01 Régular Air	313.58	155.99	8.99 Jim Redford	Nuneval
213	1412	12-83-2018 Not Specified	13	5503	0.1 Express Air	28.92	369	0.5 Cerlos Soltero	Nunevat
214	102	12-03-2010 Not Specified	21	97.48	0.05 Regular Air	4.77	471	0.7 Cerios Soltero	Nuntral
229	1539	8943-2011 Low	33	51183	01 Regular Air	-172.88	15.99	13.18 Carl Ludwig	Nuneval
230	1539	0943-2011 Low	38	184.99	05 Pegular Air	-14455	4.89	493 Cerl Ludwig	Nunevat
231	1540	0409-2012 High	30	80.9	0 N Regular Ar	5.76	2.89	0.7 Con Miller	Nunevat
249	1702	86-85-2011 High	23	67.24		450	284		Nuntral

Decision Trees – Entropy & Objective

Suppose we wish to find if there was any influence of shipping mode, order priority on customer location. Customer location is target column and like the bag of coloured balls

Row IC	Order F	Order Date Order Prooft	Order Quantity	Sales :	Discourt Ship Mode	Profit (e)	Out Proc	Shipping Cory, Customer Name	Province
4055	4531	1349-2012 Not Specified	4	294	101 Egren Ar	200.31	62.18	10 M Victoria Brannan	Aborts
7119	\$1726	39-19-2011 Law	21	50.00	1:17 Egress At	36.01	413	£ 19 Fluben Derff	Abete
1293	\$1877	23-04-2012 Needsum	11	812.498	t Egress As	129.95	35.95	125 Sha Ton	Alberta
7658	54913	0345-2010 High	11	5481	110 Epress Ar	1439	4.76	ERETona Tunat	Abete
7718	55404	62-63-2012 Hindum	- 1	25.94	104 Egress Az	-411	176	4.85 Victorie Brannen	Abete
7688	56327	11-01-2010 Medium	40	1276.70	118 Egress Ar	35775	25.18	8 SS Victors Brenners	Abets

Decision Trees - Entropy & Objective

Suppose we wish to find if there was any influence of shipping mode, order priority on customer location. Customer location is target column and like the bag of coloured balls

Row I's	Order II	Order Date 🙀 Order Priorit	Order Quantit	Sales .	Discourt Ship Mode	Profit	Unit Price	Shipping Corty Customer Name	Province
1	7	13-10-2018 Low	-	26154	E 04 Fragular Air	-20125	36.54	35. Muhammad Macint	p.Namant
107	179	29-02-2018 Low	44	229.41	5.07 Flegulat Air	-228.36	430	833 Dorothy Badders	Nument
200	1344	15-04-2912 Low	.15	814 904	0.06 Regular Air	11160	65.59	5.26 Jim Radford	National
204	1344	15-04-2012 Low	.10	2480.9285	0.01 Regular Air	313.56	155.99	£99 Jim Redtonii	Niemot:
229	1539	09-03-2011 Low	33	\$31.83	0.1 Purgular Air	-172.88	15.99	1319 Cmf Ludwig	Nonexal
230	1539	09-03-0011 Low	38	184.99	0.05 Regular Air	-14455	4.01	493 Claff Ludwig	Numeral
256	1792	88-11-2018 Low	28	172.48	0.04 Regular Air	5.45	13.48	457 Cartos Solven	Nuneval
381	2631	23-09-2018 Low	27	1079.45	6.05 Regular Air	252.66	40.96	199 Jack Gerre	Nunmost
755	5409	98-01-0912 Low	11	48.91	0.01 Require Air	-7.04	3.98	Z 57 Don Jones	Name

Decision Trees - Entropy & Objective

Suppose we wish to find if there was any influence of shipping mode, order priority on customer location. Customer location is target column and like the bag of coloured balls

| Row II* | Order II* | Order Proces | Order Proces

When sub branches are created, the total entropy of the sub branches should be less than the entropy of the parent node. More the drop in entropy, more the information gained

Tree will stop growing when stop criterion for the splitting is reached which could be -

- a. Tree has reached certain pre-fixed depth (longestt path from root node to leaf node)
- Tree has achieve maximum number of nodes (tree size)
- Exhausted all attributes to split
- d. Leaf node on split will have less than predefined number of data points

Decision Trees – Loss functions

Common measures of purity

- 1. Gini index is calculated by subtracting the sum of the squared probabilities of each class from one $Gini=1-\sum_{i=1}^{C}(p_i)^2$
 - a. Uses squared proportion of classes
 - b. Perfectly classified, Gini Index would be zero
 - c. Evenly distributed would be 1 (1/# Classes)
 - d. You want a variable split that has a low Gini Index
 - e. Used in CART algorithm
- 2. Entropy –

$$Entropy = \sum_{i=1}^{C} -p_{i}*log_{2}(p_{i})$$

- a. Favors splits with small counts but many unique value
- b. Weights probability of class by log(base=2) of the class probability
- c. A smaller value of Entropy is better. That makes the difference between the parent node's entropy larger
- Information Gain is the Entropy of the parent node minus the entropy of the child nodes

Decision Trees - Information Gain using Entropy

$$H(X) = -\sum_{i=0}^{N-1} p_i \log_2 p_i$$

$$I_{H}\left(\overrightarrow{D_{p}}\right) = -\left(0.5 \log_{2}\left(0.5\right) + 0.5 \log_{2}\left(0.5\right)\right) = 1$$

$$-\left(\frac{3}{4}\log_{2}\left(\frac{3}{4}\right) + \frac{1}{4}\log_{2}\left(\frac{1}{4}\right)\right) = 0.81$$

$$-\left(\frac{1}{4}\log_{2}\left(\frac{1}{4}\right) + \frac{3}{4}\log_{2}\left(\frac{3}{4}\right)\right) = 0.81$$

Information Gain = reduction in entropy = $1 - \frac{4}{8}0.81 - \frac{4}{8}0.81 = 0.19$

Decision Trees - Information Gain using Gini index

$$Gini = 1 - \sum_{i=1}^{C} (p_i)^2$$

$$(40, 40) \quad 1 - (0.5^2 + 0.5^2) = 0.5$$

$$(10, 30) \quad 1 - \left(\left(\frac{3}{4}\right)^2 + \left(\frac{1}{4}\right)^2\right) = \frac{3}{8} = 0.375$$

$$1 - \left(\left(\frac{1}{4}\right)^2 + \left(\frac{3}{4}\right)^2\right) = \frac{3}{8} = 0.375$$

Information Gain = reduction in Gini index = $0.5 - \frac{4}{8}0.375 - \frac{4}{8}0.375 = 0.125$

Decision Trees - Gini, Entropy, Misclassification Error

Note: Misclassification Error is not used in Decision Trees

Decision Trees -

Advantages -

- 1. Simple, Fast in processing and effective
- 2. Can work with missing data
- 3. Handles numeric and categorical variables
- 4. Interpretation of results is easier when represented as rules

Dis-advantages -

- 1. Often biased towards features have large number of levels
- 2. May not be optimum as modelling some relations on axis parallel basis is not optimal
- 3. Small changes in training data can result in large changes to the logic
- 4. Decision trees tend to become overfit by default creating large complex trees
- 5. Large trees can be difficult to interpret

Decision Trees - Algorithms

- ID3 (Iterative Dicotomizer 3) developed by Ross Quinlan. Creates a <u>multi</u> <u>branch tree</u> at each node using greedy algorithm. Trees grow to maximum size before pruning
- C4.5 succeeded ID3 by overcoming limitation of features required to be categorical. It dynamically defines discrete attribute for numerical attributes. It converts the trained trees into a set of if-then rules. Accuracy of each rule is evaluated to determine the order in which they should be applied
- C5.0 is Quinlan's latest version and it <u>uses less memory and builds smaller</u> <u>rulesets</u> than C4.5 while being more accurate
- CART (Classification & Regression Trees) is similar to C4.5 but it <u>supports</u> numerical target variables and does not compute rule sets. Creates binary tree. Scikit uses CART

Help

Friday, August 23, 2019 9:21 PM

https://scikit-learn.org/stable/modules/tree.html