ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

1. Описание задания

В рамках задания необходимо:

- 1. Использовать:
 - вычислительную систему с архитектурой х86-64;
 - операционную систему Linux;
 - язык программирования С++;
- 2. Разработать программу в виде консольного приложения с разделением вычислений между несколькими потоками.

Запуск программы должен осуществляться из командной строки, в которой указываются: количество булавок.

Пример:

command pins_number (целочисленное число от 0 до 10000)

3. Реализовать задачу о производстве булавок в соответствие с описанием (вариант 25):

В цехе по заточке булавок все необходимые операции осуществляются тремя рабочими. Первый из них берет булавку и проверяет ее на предмет кривизны. Если булавка не кривая, то рабочий передает ее своему напарнику. Напарник осуществляет собственно заточку и передает заточенную булавку третьему рабочему, который осуществляет контроль качества операции. Требуется создать многопоточное приложение, моделирующее работу цеха. При решении использовать парадигму «производитель-потребитель».

4. Провести отладку и тестирование разработанной программы. Программа должна правильно обрабатывать входные данные в соответствии с условием задания и реагировать на некорректно вводимые исходные данные. Ввод основных данных должен осуществляться в допустимом для условия задачи диапазоне без введения искусственных ограничений.

- 5. Создать отчёт по выполненному заданию, описав используемую модель вычислений. Привести источники информации, в которых описана данная модель.
- 6. В ходе выполнения программа должна выводить в консоль все события, доступно (в терминах предметной области) объясняющие последовательность моделируемых действия. При необходимости нужно выводить модельное время, формируемое на основе принятых единиц его измерения.

2. Описание модели вычислений.

Классическая постановка задачи подразумевает два потока данных (производитель и потребитель). Данные потоки обмениваются информацией через буфер (хранилище данных) ограниченного размера. Производитель добавляет данные в буфер, потребитель читает данные из буфера. Если в буфере нет данных, то потребитель будет ждать, а если буфер заполнен, ждать будет производитель.

Реализация модели требует выполнения следующих условий:

- 1. Потоки выполняются параллельно;
- 2. Доступ к критическому ресурсу в критической секции имеет только один поток;
- 3. Потоки завершают работу за конечное время;
- 4. Программа не завершается аварийно;

В задаче о производстве булавок используются три потока (1. поток работника, проверяющего булавку на кривизну / 2. поток работника, затачивающего булавку / 3. поток работника, проверяющего заточку булавки) и два буфера. Поток 1 берет булавку из массива необработанных булавок, обрабатывает её и, если булавка не кривая, добавляет в буфер проверенных булавок (буфер 1). Поток 2 берёт булавку из буфера 1 (если буфер 1 пуст, но ещё не все булавки обработаны, поток ждёт), обрабатывает её и добавляет в буфер заточенных булавок (буфер 2). Поток 3 берёт булавку из буфера 2 (если буфер 2 пуст, но ещё не все булавки обработаны, поток ждёт), обрабатывает её и, если булавка прошла контроль качества, добавляет её в массив готовых булавок.

Схема модели:

Источники:

- 1. http://vsyromyatnikov.blogspot.com/2014/11/blog-post_21.html
- 2. https://coderlessons.com/articles/java/model-parallelizma-proizvoditel-i-potrebitel
- 3. https://intuit.ru/studies/courses/4447/983/lecture/14923?page=4

3. Основные характеристики программы:

Число заголовочных файлов (внутренних): 5

Число заголовочных файлов (библиотек): 8 (ctime, string, iostream, mutex, shared_mutex, thread, random, chrono)

Число модулей: 6

Общий размер исходных текстов (программы): 15,955 Кбайт

Полученный размер исполняемого кода: 90,8 Кбайт

Пример вывода программы при параметре (количество булавок), равном 5:

Work in workshop started.

Worker 1 has checked pin's 1 curvature. The pin has passed the test.

Worker 1 has checked pin's 2 curvature. The pin has passed the test.

Worker 1 has checked pin's 3 curvature. The pin has passed the test.

Worker 1 has checked pin's 4 curvature. The pin has passed the test.

Worker 2 has sharpened pin 1.

Worker 1 has checked pin's 5 curvature. The pin has NOT passed the test.

Worker 2 has sharpened pin 2.

Worker 3 has checked pin's 1 quality. The pin has been verified.

Worker 2 has sharpened pin 3.

Worker 3 has checked pin's 2 quality. The pin has been verified.

Worker 2 has sharpened pin 4.

Worker 3 has checked pin's 3 quality. The pin has NOT been verified.

Worker 3 has checked pin's 4 quality. The pin has been verified.

Tested for the quality of pins:

Pin number 1.

Pin number 2.

Pin number 4.

Work in workshop has ended.