Analyse numérique - TD6 & TD 7 - Corrigé Méthodes directes pour la résolution des systèmes linéaires

1 Méthode de Gauss et factorisation LU

Exercice 1: un exemple

Soient $\alpha, \beta, \gamma \in \mathbb{R}$. On considère le système linéaire suivant d'inconnues x_1, x_2, x_3 :

$$\begin{cases} x_1 + 2x_2 - 3x_3 &= \alpha \\ 2x_1 + 6x_2 - 5x_3 &= \beta \\ x_1 - 2x_2 + 7x_3 &= \gamma \end{cases}$$
 (1)

- 1. Écrire le système (1) sous la forme $\mathbb{A}\boldsymbol{x} = \boldsymbol{b}$, avec $\mathbb{A} \in \mathcal{M}_3(\mathbb{R})$, $\boldsymbol{x} \in \mathbb{R}^3$, et $\boldsymbol{b} \in \mathbb{R}^3$, que l'on explicitera.
- 2. Est-ce que le système (1) admet une unique solution pour tout $\alpha, \beta, \gamma \in \mathbb{R}$?
- 3. Montrer que $\mathbb A$ admet une unique factorisation $\mathbb L \mathbb U$.

Dans la suite on choisit $\alpha=1$, $\beta=-1$ et $\gamma=2$ et on va résoudre le système $\mathbb{A}\pmb{x}=\pmb{b}$ de plusieurs façons :

- (a) Résoudre le système (1) par l'algorithme de Gauss sans pivot.
- (b) Calculer la factorisation $\mathbb{L}\mathbb{U}$ de \mathbb{A} puis résoudre le système (1) en utilisant cette factorisation $\mathbb{L}\mathbb{U}$.
- (c) Résoudre le système (1) par l'algorithme de Gauss avec pivot partiel.
- (d) Calculer la factorisation $\bar{\mathbb{L}}\bar{\mathbb{U}}$ de $\mathbb{P}\mathbb{A}$ (où \mathbb{P} est la matrice produit des matrices de permutations effectuées dans l'algorithme de Gauss avec pivot partiel), puis résoudre le système (1) en utilisant cette factorisation.

Correction

1. On a

$$\mathbb{A} = \begin{pmatrix} 1 & 2 & -3 \\ 2 & 6 & -5 \\ 1 & -2 & 7 \end{pmatrix}, \qquad \boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \quad \boldsymbol{b} = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix},$$

A et \boldsymbol{b} étant les données, et $\boldsymbol{x} \in \mathbb{R}^3$ le vecteur inconnu.

- 2. On calcule $\det(\mathbb{A}) = 24 \neq 0$ donc \mathbb{A} est inversible. Le système admet donc une unique solution : $\mathbf{x} = \mathbb{A}^{-1}\mathbf{b}$, Pour tout $\mathbf{b} \in \mathbb{R}^3$, c'est-à-dire pour tout $\alpha, \beta, \gamma \in \mathbb{R}$.
- 3. On choisit $\alpha=1$, $\beta=-1$ et $\gamma=2$. Vérifions que $\mathbb A$ admet une unique factorisation $\mathbb L\mathbb U$. D'après le cours (ou l'exercice 3 ci-dessous), une condition suffisante est que les sous matrices principales de $\mathbb A$ sont inversibles. Ceci est bien le cas car : $\det(\Delta_1)=\det(1)=1\neq 0, \ \det(\Delta_2)=\det\begin{pmatrix}1&2\\2&6\end{pmatrix}=2\neq 0, \ \det(\Delta_3)=\det(\mathbb A)\neq 0.$
- 3. (a) Le fait que $\mathbb A$ admet une (unique) factorisation $\mathbb L \mathbb U$ revient à dire que l'on peut effectuer l'algorithme de Gauss sans pivot. On regroupe $\mathbb A$ et $\mathbf b$ (en ajoutant $\mathbf b$ à droite de $\mathbb A$) :

$$\begin{pmatrix} 1 & 2 & -3 & 1 \\ 2 & 6 & -5 & -1 \\ 1 & -2 & 7 & 2 \end{pmatrix} \xrightarrow{\mathcal{L}_2 \leftarrow \mathcal{L}_2 - 2\mathcal{L}_1} \begin{pmatrix} 1 & 2 & -3 & 1 \\ 0 & 2 & 1 & -3 \\ 0 & -4 & 10 & 1 \end{pmatrix} \xrightarrow{\mathcal{L}_3 \leftarrow \mathcal{L}_3 + 2\mathcal{L}_2} \begin{pmatrix} 1 & 2 & -3 & 1 \\ 0 & 2 & 1 & -3 \\ 0 & 0 & 12 & -5 \end{pmatrix}$$

$$\mathbb{A}^{(0)} = \mathbb{A} \quad \boldsymbol{b}^{(0)} = \boldsymbol{b} \qquad \mathbb{A}^{(1)} \quad \boldsymbol{b}^{(1)} \qquad \mathbb{A}^{(2)} \quad \boldsymbol{b}^{(2)}$$

En posant $\mathbb{U}=\mathbb{A}^{(2)}$ et $\boldsymbol{c}=\boldsymbol{b}^{(2)}$ on est ramené à résoudre le système triangulaire supérieur $\mathbb{U}\boldsymbol{x}=\boldsymbol{c}$, que l'on résout par remontée :

$$\begin{cases} 12x_3 &= -5 \\ 2x_2 + x_3 &= -3 \end{cases} \qquad \Rightarrow \text{permet de calculer } x_3 \ : \ x_3 = -\frac{5}{12} \\ \Rightarrow \text{permet de calculer } x_2 \text{ connaissant } x_3 \ : x_2 = -\frac{31}{24} \\ x_1 + 2x_2 - 3x_3 \ = \ 1 \qquad \Rightarrow \text{permet de calculer } x_1 \text{ connaissant } x_2, x_3 \ : x_1 = \frac{7}{3} \end{cases}$$

1

(b) Pour trouver la factorisation $\mathbb{L}\mathbb{U}$ de \mathbb{A} on reprend les étapes de l'algorithme de Gauss :

$$\underbrace{\begin{pmatrix} 1 & 2 & -3 \\ 2 & 6 & -5 \\ 1 & -2 & 7 \end{pmatrix}}_{\mathbb{A} = \mathbb{A}^{(0)}} \xrightarrow{\mathcal{L}_2 \leftarrow \mathcal{L}_2 - \mathbf{2} * \mathcal{L}_1}_{\mathcal{L}_3 \leftarrow \mathcal{L}_3 - \mathbf{1} * \mathcal{L}_1} \underbrace{\begin{pmatrix} 1 & 2 & -3 \\ 0 & 2 & 1 \\ 0 & -4 & 10 \end{pmatrix}}_{\mathbb{A}^{(1)}} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}}_{\mathbb{E}^{(1)}} \underbrace{\begin{pmatrix} 1 & 2 & -3 \\ 2 & 6 & -5 \\ 1 & -2 & 7 \end{pmatrix}}_{\mathbb{A}^{(0)}}$$

$$\xrightarrow{\mathcal{L}_3 \leftarrow \mathcal{L}_3 - (\mathbf{-2}) * \mathcal{L}_2}_{\mathbb{A}^{(2)}} \underbrace{\begin{pmatrix} 1 & 2 & -3 \\ 0 & 2 & 1 \\ 0 & 0 & 12 \end{pmatrix}}_{\mathbb{A}^{(2)}} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & -4 & 10 \end{pmatrix}}_{\mathbb{E}^{(2)}} \underbrace{\begin{pmatrix} 1 & 2 & -3 \\ 0 & 2 & 1 \\ 0 & -4 & 10 \end{pmatrix}}_{\mathbb{A}^{(1)}}$$

Notons que $\mathbb{E}^{(1)}$ est inversible, et $(\mathbb{E}^{(1)})^{-1}=\begin{pmatrix}1&0&0\\2&1&0\\1&0&1\end{pmatrix}$. De même, $\mathbb{E}^{(2)}$ est inversible, et $(\mathbb{E}^{(2)})^{-1}=\begin{pmatrix}1&0&0\\0&1&0\\0&-2&1\end{pmatrix}$. Ainsi, à la fin de la 1ère étape de la méthode de Gauss on a :

$$\mathbb{A}^{(1)} = \mathbb{E}^{(1)} \mathbb{A}.$$

et à la fin de la 2ème étape on obtient :

$$\mathbb{U} = \mathbb{A}^{(2)} = \mathbb{E}^{(2)} \mathbb{A}^{(1)} = \mathbb{E}^{(2)} \mathbb{E}^{(1)} \mathbb{A}.$$

De l'égalité ci-dessus, on a

$$\begin{split} \mathbb{E}^{(2)}\mathbb{E}^{(1)}\mathbb{A} &= \mathbb{U} \iff \mathbb{A} = (\mathbb{E}^{(2)}\mathbb{E}^{(1)})^{-1}\mathbb{U} \\ &\iff \mathbb{A} = \left((\mathbb{E}^{(1)})^{-1} (\mathbb{E}^{(2)})^{-1} \right) \mathbb{U} \\ &\iff \mathbb{A} = \mathbb{L}\mathbb{U} \end{split}$$

$$\operatorname{avec} \, \mathbb{L} \underset{\mathsf{def}}{=} \, = (\mathbb{E}^{(1)})^{-1} (\mathbb{E}^{(2)})^{-1} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{array} \right) \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{array} \right) = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & -2 & 1 \end{array} \right).$$

Notons que pour obtenir $\mathbb L$ il suffit de partir de la matrice identité $\mathbb I$ puis de recopier dans cette matrice, en les changeant de signe, les coefficients utilisés à chaque opération élémentaire

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ \mathbf{2} & 1 & 0 \\ \mathbf{1} & -\mathbf{2} & 1 \end{pmatrix}.$$

$$\mathbb{I} \qquad \qquad \mathbb{L} = (\mathbb{E}^{(1)})^{-1} (\mathbb{E}^{(2)})^{-1}$$

Si l'on souhaite directement trouver la factorisation $\mathbb{L}\mathbb{U}$ de \mathbb{A} sans passer par les étapes de l'algorithme de Gauss, alors on cherche $\mathbb{L}=\begin{pmatrix} 1 & 0 & 0 \\ \ell_{21} & 1 & 0 \\ \ell_{31} & \ell_{32} & 1 \end{pmatrix}$ et $\mathbb{U}=\begin{pmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{pmatrix}$ telles que $\mathbb{L}\mathbb{U}=\mathbb{A}$. Identifions les coefficients ligne par ligne :

Étape 1 : identification de la première ligne de $\mathbb{L}\mathbb{U}=\mathbb{A}$:

$$u_{11} = a_{11} = 1$$
, $u_{12} = a_{12} = 2$, $u_{13} = a_{13} = -3$.

Étape 2 : identification de la deuxième ligne de $\mathbb{L}\mathbb{U}=\mathbb{A}$:

$$\ell_{21}u_{11} = a_{21} = 2 \quad \Rightarrow \quad \ell_{21} = 2,$$

$$\ell_{21}u_{12} + u_{22} = a_{22} = 6 \quad \Rightarrow \quad u_{22} = 2,$$

$$\ell_{21}u_{12} + u_{23} = a_{23} = -5 \quad \Rightarrow \quad u_{23} = 1.$$

Étape 2 : identification de la troisième ligne de $\mathbb{L}\mathbb{U}=\mathbb{A}$:

$$\begin{array}{cccc} \ell_{31}u_{11}=a_{31}=1 & \Rightarrow & \ell_{31}=1, \\ \ell_{31}u_{12}+\ell_{32}u_{22}=a_{32}=-2 & \Rightarrow & \ell_{32}=-2, \\ \ell_{31}u_{13}+\ell_{32}u_{23}+u_{33}=a_{33}=7 & \Rightarrow & u_{33}=12. \end{array}$$

C'est cette méthode que l'on généralisera ci-dessous, dans l'exercice 2, pour écrire l'algorithme de calcul de la factorisation $\mathbb{L}\mathbb{U}$ d'une matrice \mathbb{A} de dimension quelconque.

Utilisons maintenant cette factorisation $\mathbb{L}\mathbb{U}$ pour résoudre le système $\mathbb{A}x=b$. On a

$$\mathbb{A}x = b \iff \mathbb{L}\mathbb{U}x = b$$
 $\iff \mathbb{L}y = b \text{ puis } \mathbb{U}x = y$

On résout par descente $\mathbb{L} \boldsymbol{y} = \boldsymbol{b}$ et on trouve $\boldsymbol{y} = (1, -3, -5)^t$ (notons que $\boldsymbol{y} = \boldsymbol{c}$ de la question (a)). Puis on résout $\mathbb{U} \boldsymbol{x} = \boldsymbol{y}$ par remontée, et on trouve $\boldsymbol{x} = (\frac{7}{3}, -\frac{31}{24}, -\frac{5}{12})^t$.

(c) Effectuons maintenant l'algorithme de Gauss avec pivot partiel. On commence par chercher dans la colonne 1 le plus grand nombre en valeur absolue : ici 2 (à la 2ème ligne) et on permute la 2ème ligne avec la 1ère :

$$\begin{pmatrix}
1 & 2 & -3 & 1 \\
2 & 6 & -5 & -1 \\
1 & -2 & 7 & 2
\end{pmatrix}
\xrightarrow{\mathcal{L}_2 \leftrightarrow \mathcal{L}_1}
\begin{pmatrix}
2 & 6 & -5 & -1 \\
1 & 2 & -3 & 1 \\
1 & -2 & 7 & 2
\end{pmatrix}$$

Ensuite on effectue la 1ère étape de la méthode de Gauss :

$$\begin{pmatrix}
2 & 6 & -5 & | & -1 \\
1 & 2 & -3 & | & 1 \\
1 & -2 & 7 & | & 2
\end{pmatrix}
\xrightarrow{\mathcal{L}_2 \leftarrow \mathcal{L}_2 - \frac{1}{2}\mathcal{L}_1}
\begin{pmatrix}
2 & 6 & -5 & | & -1 \\
0 & -1 & -\frac{1}{2} & | & \frac{3}{2} \\
0 & -5 & | & \frac{19}{2} & | & \frac{5}{2}
\end{pmatrix}$$

On cherche maintenant dans la colonne 2 à partir de la ligne 2 le plus grand nombre en valeur absolue : ici -5 (à la 3ème ligne) et on permute la 3ème ligne avec la 2ème :

$$\begin{pmatrix} 2 & 6 & -5 & | & -1 \\ 0 & -1 & -\frac{1}{2} & | & \frac{3}{2} \\ 0 & -5 & | & \frac{19}{2} & | & \frac{5}{2} \end{pmatrix} \xrightarrow{\mathcal{L}_3 \leftrightarrow \mathcal{L}_2} \begin{pmatrix} 2 & 6 & -5 & | & -1 \\ 0 & -5 & | & \frac{19}{2} & | & \frac{5}{2} \\ 0 & -1 & -\frac{1}{2} & | & \frac{3}{2} \end{pmatrix}$$

Puis on effectue la 2ème (et dernière) étape de la méthode de Gauss :

$$\begin{pmatrix} 2 & 6 & -5 & | & -1 \\ 0 & -5 & \frac{19}{2} & | & \frac{5}{2} \\ 0 & -1 & -\frac{1}{2} & | & \frac{3}{2} \end{pmatrix} \xrightarrow{\mathcal{L}_3 \leftarrow \mathcal{L}_3 - \frac{1}{5}\mathcal{L}_2} \begin{pmatrix} 2 & 6 & -5 & | & -1 \\ 0 & -5 & \frac{19}{2} & | & \frac{5}{2} \\ 0 & 0 & -\frac{12}{5} & | & 1 \end{pmatrix}$$

En posant $\bar{\mathbb{U}}=\begin{pmatrix}2&6&-5\\0&-5&\frac{19}{2}\\0&0&-\frac{12}{5}\end{pmatrix}$ et $\bar{\boldsymbol{c}}=\begin{pmatrix}-1\\\frac{5}{2}\\1\end{pmatrix}$ on est ramené à résoudre le système triangulaire supérieur $\bar{U}\boldsymbol{x}=\bar{\boldsymbol{c}}$, que l'on résout par remontée. On retrouve alors $\boldsymbol{x}=(\frac{7}{3},-\frac{31}{24},-\frac{5}{12})^t$.

(d) Pour trouver la factorisation $\bar{\mathbb{L}}\bar{\mathbb{U}}$ de $\mathbb{P}\mathbb{A}$ on reprend les étapes de l'algorithme de Gauss avec pivot partiel :

$$\underbrace{\begin{pmatrix} 1 & 2 & -3 \\ 2 & 6 & -5 \\ 1 & -2 & 7 \end{pmatrix}}_{\mathbb{A}=\mathbb{A}^{(0)}} \underbrace{\begin{pmatrix} 2 & 6 & -5 \\ 1 & 2 & -3 \\ 1 & -2 & 7 \end{pmatrix}}_{\mathbb{P}_{1}\mathbb{A}} = \underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mathbb{P}_{1}} \underbrace{\begin{pmatrix} 1 & 2 & -3 \\ 2 & 6 & -5 \\ 1 & -2 & 7 \end{pmatrix}}_{\mathbb{A}^{(0)}} = \underbrace{\begin{pmatrix} -5 \\ 0 & -1 & -\frac{1}{2} \\ 0 & -5 & \frac{19}{2} \end{pmatrix}}_{\mathbb{R}^{(1)}} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ 0 & -1 & -\frac{1}{2} \end{pmatrix}}_{\mathbb{P}_{1}\mathbb{A}^{(0)}} = \underbrace{\begin{pmatrix} 2 & 6 & -5 \\ 0 & -5 & \frac{19}{2} \\ 0 & -1 & -\frac{1}{2} \end{pmatrix}}_{\mathbb{P}_{2}\mathbb{A}^{(1)}} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}}_{\mathbb{P}_{2}} \underbrace{\begin{pmatrix} 2 & 6 & -5 \\ 0 & -1 & -\frac{1}{2} \\ 0 & -5 & \frac{19}{2} \\ 0 & 0 & -\frac{15}{5} \end{pmatrix}}_{\mathbb{P}_{2}\mathbb{A}^{(1)}} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{1}{5} & 1 \end{pmatrix}}_{\mathbb{P}_{2}\mathbb{A}^{(1)}} \underbrace{\begin{pmatrix} 2 & 6 & -5 \\ 0 & -5 & \frac{19}{2} \\ 0 & -1 & -\frac{1}{2} \end{pmatrix}}_{\mathbb{P}_{2}\mathbb{A}^{(1)}} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{1}{5} & 1 \end{pmatrix}}_{\mathbb{E}^{(2)}} \underbrace{\begin{pmatrix} 2 & 6 & -5 \\ 0 & -5 & \frac{19}{2} \\ 0 & -1 & -\frac{1}{2} \end{pmatrix}}_{\mathbb{P}_{2}\mathbb{A}^{(1)}} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{1}{5} & 1 \end{pmatrix}}_{\mathbb{E}^{(2)}} \underbrace{\begin{pmatrix} 2 & 6 & -5 \\ 0 & -5 & \frac{19}{2} \\ 0 & -1 & -\frac{1}{2} \end{pmatrix}}_{\mathbb{P}_{2}\mathbb{A}^{(1)}} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{1}{5} & 1 \end{pmatrix}}_{\mathbb{E}^{(2)}} \underbrace{\begin{pmatrix} 2 & 6 & -5 \\ 0 & -5 & \frac{19}{2} \\ 0 & -1 & -\frac{1}{2} \end{pmatrix}}_{\mathbb{E}^{(2)}} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{1}{5} & 1 \end{pmatrix}}_{\mathbb{E}^{(2)}} \underbrace{\begin{pmatrix} 2 & 6 & -5 \\ 0 & -5 & \frac{19}{2} \\ 0 & -1 & -\frac{1}{2} \end{pmatrix}}_{\mathbb{E}^{(2)}} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{1}{5} & 1 \end{pmatrix}}_{\mathbb{E}^{(2)}} \underbrace{\begin{pmatrix} 2 & 6 & -5 \\ 0 & -5 & \frac{19}{2} \\ 0 & -1 & -\frac{1}{2} \end{pmatrix}}_{\mathbb{E}^{(2)}} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{1}{5} & 1 \end{pmatrix}}_{\mathbb{E}^{(2)}} \underbrace{\begin{pmatrix} 2 & 6 & -5 \\ 0 & -5 & \frac{19}{2} \\ 0 & -1 & -\frac{1}{2} \end{pmatrix}}_{\mathbb{E}^{(2)}} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{1}{5} & 1 \end{pmatrix}}_{\mathbb{E}^{(2)}} \underbrace{\begin{pmatrix} 2 & 6 & -5 \\ 0 & -5 & \frac{19}{2} \\ 0 & -1 & -\frac{1}{2} \end{pmatrix}}_{\mathbb{E}^{(2)}} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{1}{5} & 1 \end{pmatrix}}_{\mathbb{E}^{(2)}} \underbrace{\begin{pmatrix} 2 & 6 & -5 \\ 0 & -5 & \frac{19}{2} \\ 0 & -1 & -\frac{1}{2} \end{pmatrix}}_{\mathbb{E}^{(2)}} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{1}{5} & 1 \end{pmatrix}}_{\mathbb{E}^{(2)}} \underbrace{\begin{pmatrix} 2 & 6 & -5 \\ 0 & -5 & \frac{19}{2} \\ 0 & -1 & -\frac{1}{2} \end{pmatrix}}_{\mathbb{E}^{(2)}} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{1}{5} & 1 \end{pmatrix}}$$

Notons que $\bar{\mathbb{E}}^{(1)}$ est inversible, et $(\bar{\mathbb{E}}^{(1)})^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{1}{2} & 0 & 1 \end{pmatrix}$. De même, $\bar{\mathbb{E}}^{(2)}$ est inversible, et $(\bar{\mathbb{E}}^{(2)})^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \frac{1}{5} & 1 \end{pmatrix}$.

Ainsi, à la fin de la 1ère étape de la méthode de Gauss on a :

$$\mathbb{A}^{(1)} = \bar{\mathbb{E}}^{(1)} \mathbb{P}_1 \mathbb{A},$$

et à la fin de la 2ème étape on obtient :

$$\begin{split} \bar{\mathbb{U}} &\stackrel{=}{\underset{\mathsf{def}}{=}} \mathbb{A}^{(2)} = \bar{\mathbb{E}}^{(2)} \mathbb{P}_2 \mathbb{A}^{(1)} = \bar{\mathbb{E}}^{(2)} \mathbb{P}_2 \bar{\mathbb{E}}^{(1)} \mathbb{P}_1 \mathbb{A} \\ &\iff \bar{\mathbb{U}} = (\bar{\mathbb{E}}^{(2)} \bar{\mathbb{E}}^{(1)}) (\mathbb{P}_2 \mathbb{P}_1) \mathbb{A} \end{split} \qquad \text{(car \mathbb{P}_2 et $\bar{\mathbb{E}}^{(1)}$ commutent)} \end{split}$$

De l'égalité ci-dessus, on a

$$\begin{split} (\bar{\mathbb{E}}^{(2)}\bar{\mathbb{E}}^{(1)})(\mathbb{P}_2\mathbb{P}_1)\mathbb{A} &= \bar{\mathbb{U}} \iff (\mathbb{P}_2\mathbb{P}_1)\mathbb{A} = (\bar{\mathbb{E}}^{(2)}\bar{\mathbb{E}}^{(1)})^{-1}\bar{\mathbb{U}} \\ &\iff (\mathbb{P}_2\mathbb{P}_1)\mathbb{A} = \left((\bar{\mathbb{E}}^{(1)})^{-1}(\bar{\mathbb{E}}^{(2)})^{-1}\right)\bar{\mathbb{U}} \\ &\iff \mathbb{P}\mathbb{A} = \bar{\mathbb{L}}\bar{\mathbb{U}} \end{split}$$

$$\mathsf{avec}\ \mathbb{P} = \mathbb{P}_2\mathbb{P}_1\ \mathsf{et}\ \mathbb{L}\ \underset{\mathsf{def}}{=}\ = (\bar{\mathbb{E}}^{(1)})^{-1}(\bar{\mathbb{E}}^{(2)})^{-1} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{1}{2} & 0 & 1 \end{array}\right) \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \frac{1}{5} & 1 \end{array}\right) = \left(\begin{array}{ccc} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{1}{2} & \frac{1}{5} & 1 \end{array}\right).$$

Notons que pour obtenir $\mathbb L$ et $\mathbb P$ il suffit de partir de la matrice identité $\mathbb I$ puis :

— pour obtenir $\mathbb L$: de recopier dans $\mathbb I$, en les changeant de signe, les coefficients utilisés à chaque opération élémentaire :

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{1}{2} & \frac{1}{5} & 1 \end{pmatrix}.$$

$$\mathbb{I} \qquad \qquad \mathbb{\bar{L}}$$

— pour obtenir $\bar{\mathbb{P}}$: de faire, à partir de \mathbb{I} , chaque permutation élémentaire :

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\mathcal{L}_2 \leftrightarrow \mathcal{L}_1} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\mathcal{L}_3 \leftrightarrow \mathcal{L}_2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix},$$

$$\mathbb{I} \qquad \mathbb{P}_1 \qquad \mathbb{P} = \mathbb{P}_2 \mathbb{P}_1$$

on a alors $\mathbb{P}\mathbb{A}=\bar{\mathbb{L}}\bar{\mathbb{U}}.$

Utilisons maintenant cette factorisation $\mathbb{P}\mathbb{A}=\bar{\mathbb{L}}\bar{\mathbb{U}}$ pour résoudre le système $\mathbb{A}x=b$. On a, puisque \mathbb{P} est inversible

$$\mathbb{A} oldsymbol{x} = oldsymbol{b} \iff \mathbb{P} \mathbb{A} oldsymbol{x} = \mathbb{P} oldsymbol{b} \iff \mathbb{L} ar{\mathbb{U}} oldsymbol{x} = \mathbb{P} oldsymbol{b} \; ext{puis} \; \mathbb{U} oldsymbol{x} = ar{oldsymbol{y}} \;$$

On résout par descente $\bar{\mathbb{L}} \boldsymbol{y} = \mathbb{P} \boldsymbol{b}$ et on trouve $\bar{\boldsymbol{y}} = (-1, \frac{5}{2}, 1)^t$ (notons que $\bar{\boldsymbol{y}} = \bar{\boldsymbol{c}}$ de la question (c)). Puis on résout $\bar{\mathbb{U}} \boldsymbol{x} = \bar{\boldsymbol{y}}$ par remontée, et on trouve $\boldsymbol{x} = (\frac{7}{3}, -\frac{31}{24}, -\frac{5}{12})^t$.

Exercice 2 : généralités

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$ une matrice inversible admettant une factorisation $\mathbb{L}\mathbb{U}$ où \mathbb{L} est une matrice triangulaire inférieure à diagonale unité et \mathbb{U} est une matrice triangulaire supérieure.

- 1. Montrer que si la factorisation $\mathbb{L}\mathbb{U}$ existe alors elle est unique.
- 2. Décrire une méthode permettant de calculer explicitement les coefficients des matrices $\mathbb L$ et $\mathbb U$.
- 3. (algo) Ecrire une fonction FACTLU permettant de calculer les matrices \mathbb{L} et \mathbb{U} . Quel est le coût de cette méthode? (on évaluera le nombre d'opérations élémentaires)
- 4. Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$ une matrice inversible. Est-il toujours possible de décomposer \mathbb{A} sous la forme $\mathbb{A} = \mathbb{L}\mathbb{U}$ où \mathbb{L} est une matrice triangulaire inférieure à diagonale unité et \mathbb{U} est une matrice triangulaire supérieure?

5. (algo) Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$ une matrice inversible admettant une factorisation \mathbb{LU} . Expliquer comment résoudre le système $\mathbb{A}x = b$ en utilisant cette factorisation et écrire l'algorithme (fonction RESFACTLU) correspondant. Calculer le coût de cet algorithme.

Correction

1. Supposons que la matrice $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$ vérifie

$$\mathbb{A} = \mathbb{L}_1 \mathbb{U}_1 = \mathbb{L}_2 \mathbb{U}_2,\tag{2}$$

οù

- $\mathbb{U}_1 \in \mathcal{M}_n(\mathbb{R})$ et $\mathbb{U}_2 \in \mathcal{M}_n(\mathbb{R})$ sont des matrices triangulaires supérieures,
- $\mathbb{L}_1 \in \mathcal{M}_n(\mathbb{R})$ et $\mathbb{L}_2 \in \mathcal{M}_n(\mathbb{R})$ sont des matrices triangulaires inférieures à diagonale unité (leurs coefficients diagonaux sont tous égaux à 1).

Nous allons montrer que $\mathbb{L}_1=\mathbb{L}_2$ et $\mathbb{U}_1=\mathbb{U}_2.$ Comme \mathbb{A} est inversible, alors

$$\mathsf{det}(\mathbb{A}) = \mathsf{det}(\mathbb{L}_1 \mathbb{U}_1) = \mathsf{det}(\mathbb{L}_1) \mathsf{det}(\mathbb{U}_1) \neq 0.$$

Cela signifie donc que $\det(\mathbb{L}_1) \neq 0$ et $\det(\mathbb{U}_1) \neq 0$, autrement dit que les matrices \mathbb{L}_1 et \mathbb{U}_1 sont inversibles (on savait déjà en fait que \mathbb{L}_1 était inversible puisque $\det(\mathbb{L}_1) = 1$). De manière similaire, on montre que \mathbb{L}_2 et \mathbb{U}_2 sont inversibles.

Ainsi, la seconde égalité de (2) est équivalente à

$$(\mathbb{L}_2)^{-1}\mathbb{L}_1 = \mathbb{U}_2(\mathbb{U}_1)^{-1}. \tag{3}$$

La matrice \mathbb{L}_2 est triangulaire inférieure à diagonale unité. Par conséquent, d'après l'exercice 4 du TD2, la matrice \mathbb{L}_2^{-1} est triangulaire inférieure à diagonale unité. Donc comme $\mathbb{L}_2^{-1}\mathbb{L}_1$ est le produit de deux matrices triangulaires inférieures à diagonale unité, le terme de gauche de l'égalité (3) est une matrice triangulaire inférieure à diagonale unité.

De manière similaire, comme la matrice \mathbb{U}_1 est triangulaire supérieure, son inverse $(\mathbb{U}_1)^{-1}$ est triangulaire supérieure. Donc, le terme de droite de l'égalité (3) est une matrice triangulaire supérieure.

Ainsi, l'égalité (3) implique que $(\mathbb{L}_2)^{-1}\mathbb{L}_1$ triangulaire inférieure est égale à et $\mathbb{U}_2(\mathbb{U}_1)^{-1}$ triangulaire supérieure, donc ce sont deux matrices diagonales identiques. De plus, $(\mathbb{L}_2)^{-1}\mathbb{L}_1$ étant à diagonale unité, elle est égale à la matrice identité :

$$(\mathbb{L}_2)^{-1}\mathbb{L}_1 = \mathbb{U}_2(\mathbb{U}_1)^{-1} = \mathbb{I},$$

ou de façon équivalente

$$\mathbb{L}_2 = \mathbb{L}_1 \quad \text{et} \quad \mathbb{U}_2 = \mathbb{U}_1.$$

Autrement dit, si $\mathbb A$ admet une factorisation $\mathbb L \mathbb U$ (avec $\mathbb L$ triangulaire inférieure à diagonale unité et $\mathbb U$ triangulaire inférieure), alors cette factorisation est unique.

Remarque. Ce résultat repose de manière essentielle sur le fait que \mathbb{L} est à diagonale unité. Sans cette hypothèse, il n'y a pas unicité de la décomposition \mathbb{LU} .

2. On suppose que $\mathbb A$ admet une décomposition $\mathbb L \mathbb U$. L'objectif de cette question de calculer $\mathbb L$ et $\mathbb U$. On pose $\mathbb A=(a_{ij})_{(i,j)\in \llbracket 1,n\rrbracket^2}$, $\mathbb L=(\ell_{ij})_{(i,j)\in \llbracket 1,n\rrbracket^2}$, $\mathbb U=(u_{ij})_{(i,j)\in \llbracket 1,n\rrbracket^2}$:

$$\mathbb{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & \cdots & a_{nn} \end{pmatrix}, \quad \mathbb{L} = \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ \ell_{21} & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \ell_{n1} & \ell_{n2} & \cdots & \cdots & 1 \end{pmatrix}, \quad \mathbb{U} = \begin{pmatrix} u_{11} & u_{12} & \cdots & \cdots & u_{1n} \\ 0 & u_{22} & u_{23} & \cdots & u_{2n} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & 0 & \ddots & \ddots \\ 0 & \cdots & \cdots & 0 & u_{nn} \end{pmatrix}$$

Comme \mathbb{L} est triangulaire inférieure à diagonale unité, on sait que, pour tout $i \in [1, n]$

$$\ell_{ii} = 1 \quad \text{et} \quad \ell_{ik} = 0 \quad \forall k > i.$$
 (4)

De manière similaire, comme \mathbb{U} est triangulaire supérieure, pour tout $j \in [1, n]$,

$$u_{kj} = 0 \quad \forall k > j. \tag{5}$$

Ainsi les inconnues du problèmes sont :

- les nombres ℓ_{ik} , pour tout $i \in [1, n]$ et pour tout k < i.
- les nombres u_{kj} , pour tout $j \in [1, n]$ et pour tout $k \leq j$.

Comme A = LU, et en utilisant (4) et (5),

$$\forall (i,j) \in [1,n]^2, a_{ij} = \sum_{k=1}^n \ell_{ik} u_{kj} = \sum_{k=1}^{\min(i,j)} \ell_{ik} u_{kj}.$$
(6)

De plus, comme \mathbb{A} est inversible, on a $\det(\mathbb{A}) \neq 0$, et ainsi l'égalité $\mathbb{A} = \mathbb{L}\mathbb{U}$ implique que $\det(\mathbb{L}) \det(\mathbb{U}) \neq 0$ donc \mathbb{U} est inversible. Or $\det(\mathbb{U}) = \prod_{j=1}^n u_{jj}$ (car \mathbb{U} est triangulaire supérieure), donc

$$u_{jj} \neq 0, \quad \forall j \in [1, n]. \tag{7}$$

La question est donc la suivante : comment utiliser la formule (6) pour touver un algorithme de calcul des inconnues ℓ_{ik} ($i \in [\![1,n]\!]$, k < i) et u_{kj} ($j \in [\![1,n]\!]$, $k \leqslant j$)? Pour déterminer ces coefficients, nous allons utiliser une identification des coefficients de $\mathbb{A} = \mathbb{L}\mathbb{U}$ ligne par ligne :

Étape 1 : identification de la première ligne de $\mathbb{A} = \mathbb{L}\mathbb{U}$

Nous allons voir que cette étape va nous permettre de calculer la première ligne de \mathbb{U} (i.e les coefficient u_{1j} pour tout $j \in [1, n]$) et la première ligne de \mathbb{L} (il n'y a en fait rien à calculer puisque $\ell_{11} = 1$ et $\ell_{1k} = 0$ sinon).

L'equation (6) pour i = 1 donne

$$a_{1j} = \sum_{k=1}^{1} \ell_{1k} u_{kj} = \ell_{11} u_{1j} = u_{1j}$$

car $\min(1,j)=1$ et $\ell_{11}=1$. Ainsi, pour tout $j\in [1,n]$,

$$u_{1j} = a_{1j} \tag{8}$$

ce qui nous permet de calculer la première ligne de \mathbb{U} . A l'issue de cette première étape, la première ligne de \mathbb{L} et la première ligne de \mathbb{U} sont intégralement déterminées.

Étape 2 : identification de la deuxième ligne de $\mathbb{A} = \mathbb{L}\mathbb{U}$

Nous allons voir que cette étape va nous permettre de calculer la deuxième ligne de \mathbb{L} (i.e, le coefficient ℓ_{21}) **puis** la deuxième ligne de \mathbb{U} (i.e les coefficient u_{2j} pour tout $j \ge 2$).

L'equation (6) pour i=2 donne

$$a_{2j} = \sum_{k=1}^{\min(2,j)} \ell_{2k} u_{kj} \tag{9}$$

Nous discutons deux cas, suivant la valeur de min(2, j):

a- j < 2 $(\min(2, j) = j)$: dans ce cas, j = 1, et on a $a_{21} = \ell_{21}u_{11}$. Comme u_{11} a été calculé à la première étape, et $u_{11} \neq 0$ d'après (7), on en déduit que

$$\ell_{21} = \frac{a_{21}}{u_{11}} \tag{10}$$

si bien que la deuxième ligne de $\mathbb L$ est maintenant déterminée.

b- $j \ge 2 \; (\min(2, j) = 2)$: la formule (9) devient $a_{2j} = \ell_{21} u_{1j} + \ell_{22} u_{2j}$, ou encore, puisque $\ell_{22} = 1$, pour tout $j \in [2, n]$,

$$u_{2j} = a_{2j} - \ell_{21} u_{1j}. (11)$$

Le terme de droite de l'equation précédente est connu intégralement : ℓ_{21} a été calculé lors de l'étape 2-a ((10)) et les termes $u_{1j},\ j\geqslant 2$, sont connus depuis l'étape 1. La seconde ligne de $\mathbb U$ est maintenant complètement déterminée.

Remarque. Dans le processus d'identification ci dessus, il n'est pas possible d'intervertir les étapes 2-a et 2-b.

Étape i : identification de la ligne i **de** $\mathbb{A} = \mathbb{L}\mathbb{U}$

Dans cette étape, nous allons calculer la ligne i de \mathbb{L} (i.e, le coefficient ℓ_{ij} , j < i) (Étape i-a) **puis** la ligne i de \mathbb{U} (i.e les coefficient u_{ij} pour tout $j \ge i$) (Étape i-b)).

Nous faisons l'hypothèse que les étapes précédentes (étapes k pour k < i) ont permis de calculer les i-1 premières lignes de $\mathbb L$ et les i-1 premières lignes de $\mathbb U$. On rappelle que l'equation (6) donne

$$a_{ij} = \sum_{k=1}^{\min(i,j)} \ell_{ik} u_{kj}.$$
 (12)

Nous discutons deux cas, suivant la valeur de min(i, j):

a- $j < i \pmod{i,j} = j$: L'équation (12) devient

$$a_{ij} = \sum_{k=1}^{j} \ell_{ik} u_{kj}. \tag{13}$$

On remarque que, comme $k \le j < i$, les nombres u_{kj} sont connus. Pour j=1, nous obtenons alors $a_{i1}=\ell_{i1}u_{11}$ ce qui nous permet de déterminer ℓ_{i1} par la formule

$$\ell_{i1} = \frac{a_{i1}}{u_{11}}$$

 ℓ_{i1} étant déterminé, nous allons pouvoir déterminer ℓ_{i2} . En effet, l'équation (13) pour j=2 donne

$$a_{i2} = \ell_{i1}u_{12} + \ell_{i2}u_{22}$$

Puisque les termes u_{12} et u_{22} ont été calculés lors d'étapes précédentes et que ℓ_{i1} vient d'être calculé, la seule inconnue de l'équation précédente est ℓ_{i2} . On obtient alors (puisque $\mathbb A$ est inversible et $\mathbb A = \mathbb L \mathbb U$, $u_{22} \neq 0$)

$$\ell_{i2} = \frac{a_{i2} - \ell_{i1} u_{12}}{u_{22}}.$$

On peut ainsi continuer à déterminer ℓ_{ij} de proche en proche pour tout j < i. En effet, supposons ℓ_{ik} connu pour tout $k \le j-1$. D'après (7) on a $u_{jj} \ne 0$, $\forall j \in [\![1,n]\!]$. On peut donc réécrire l'équation (13) comme

$$\ell_{ij} = \frac{a_{ij} - \sum_{k=1}^{j-1} \ell_{ik} u_{kj}}{u_{ij}} \quad (\forall j \le i - 1).$$
(14)

Le terme de droite de l'équation précédente est connu : en effet u_{kj} est connu pour tout k < i (donc en particulier pour $k \le j$). De même, les termes ℓ_{ik} sont connus, par conqéquent ℓ_{ij} est déterminé.

A l'issue de cette étape i-a, les coefficients ℓ_{ij} pour j < i sont déterminés.

b- $j \ge i \pmod{(i,j)} = i$: l'équation L'équation (12) devient

$$a_{ij} = \sum_{k=1}^{i} \ell_{ik} u_{kj} = \sum_{k=1}^{i-1} \ell_{ik} u_{kj} + \ell_{ii} u_{ij},$$
(15)

qui, comme $\ell_{ii}=1$ donne

$$u_{ij} = a_{ij} - \sum_{k=1}^{i-1} \ell_{ik} u_{kj} \quad (\forall j \ge i).$$
 (16)

Puisque les coefficients u_{kj} pour $k \le i-1$ ont été déterminés lors des étapes précédentes et que les coefficients ℓ_{ik} $(k \ge i)$ sont connus depuis l'étape i-a, le terme de droite de (16) est connu et l'équation (16) permet de construire u_{ij} pour tout $j \ge i$.

Algorithm 1 Fonction FACTLU: Calcule (en identifiant par lignes) les matrices $\mathbb L$ et $\mathbb U$ de la factorisation $\mathbb L\mathbb U$ d'une matrice $\mathbb A$

Données : \mathbb{A} : matrice de $\mathcal{M}_n(\mathbb{R})$ inversible et admettant une factorisation $\mathbb{L}\mathbb{U}$

Résultat : \mathbb{L} : matrice de $\mathcal{M}_n(\mathbb{R})$ triangulaire inférieure à diagonale unité

 \mathbb{U} : matrice de $\mathcal{M}_n(\mathbb{R})$ trianguaire supérieure inversible

1: Fonction $[\mathbb{L}, \mathbb{U}] \leftarrow \text{FactLU}(\mathbb{A})$

```
n \leftarrow size(\mathbb{A}, 1)
 2:
            \mathbb{L} \leftarrow \mathbb{I}_n

ightharpoonup matrice identité de \mathcal{M}_n(\mathbb{R})
 3:
            \mathbb{U} \leftarrow \mathbb{O}_n
 4:

ightharpoonup matrice nulle de \mathcal{M}_n(\mathbb{R})
            Pour i \leftarrow 1 à n faire
 5:
                   Pour j \leftarrow 1 à i-1 faire

ightharpoonup Calcul de la ligne i de \mathbb{L}\left(\ell_{ij},\ j < i\right) (formule (14))
 6:
                         \mathbb{L}(i,j) \leftarrow \mathbb{A}(i,j)
 7:
                         Pour k \leftarrow 1 à j-1 faire
 8:
 9:
                               \mathbb{L}(i,j) \leftarrow \mathbb{L}(i,j) - \mathbb{L}(i,k) * \mathbb{U}(k,j)
10:
                         fin Pour
                         \mathbb{L}(i,j) \leftarrow \mathbb{L}(i,j)/\mathbb{U}(j,j)
11:
                   fin Pour
12:
                   Pour j \leftarrow i à n faire

ightharpoonup Calcul de la ligne i de \mathbb{U}\left(u_{ij},\ j\geqslant i\right) (formule (16))
13:
                         \mathbb{U}(i,j) \leftarrow \mathbb{A}(i,j)
14:
                         Pour k \leftarrow 1 à i-1 faire
15:
                               \mathbb{U}(i,j) \leftarrow \mathbb{U}(i,j) - \mathbb{L}(i,k) * \mathbb{U}(k,j)
16:
                         fin Pour
17:
                   fin Pour
18:
            fin Pour
19:
20: fin Fonction
```

Remarque.

- 1. Une autre méthode est proposée en cours, pour calculer $\mathbb L$ et $\mathbb U$. Elle consiste à calculer, à chaque étape i, la i-ème ligne de $\mathbb U$ et la i-ème colonne de $\mathbb L$.
- 2. Dans le processus d'identification de l'étape i-a, il n'est pas possible d'intervertir les sous étapes : dans l'égalité (14), il faut connaître ℓ_{ik} pour $k \leq j-1$ pour pouvoir calculer ℓ_{ij} . Il faut donc commencer par calculer ℓ_{i1} , puis ℓ_{i2} et ainsi de suite jusqu à $\ell_{i,i-1}$. Par contre, la définition (16) de u_{ij} ne fait pas appel à u_{ik} pour $k \leq j-1$. Les calculs (16) peuvent donc être effectués en parallèle.
- 3. On aurait aussi pu identifier les équations (6) colonne par colonne.