Física I Turno H

Clase 1 Módulo2, 2022

Turno H Prof. Pedro Mendoza Zélis

$$v = |\vec{\mathbf{v}}| = |\vec{\boldsymbol{\omega}} \times \vec{\mathbf{r}}| = |\vec{\boldsymbol{\omega}}| \cdot |\vec{\mathbf{r}}| \ sen 90^{\circ} = |\vec{\boldsymbol{\omega}}| \cdot |\vec{\mathbf{r}}| = \omega \ r$$

Para a =cte

$$x(t) = x_0 + v_0 t + a t^2 / 2$$

$$v(t) = v_0 + a t$$

posición x velocidad v

Cinemática del movimiento de rotación $para \ \alpha = cte$

$$\theta(t) = \theta_0 + \omega_0 t + \alpha t^2 / 2$$

$$\omega(t) = \omega_0 + \alpha t$$

 θ ángulo

 \rightarrow

ω vel. angular

 α acel. Angular

Mov. Lineal

Rotación

posición	X	\rightarrow	θ	ángulo
velocidad	V	\rightarrow	ω	vel. angular
aceleración	a	\rightarrow	α	acel. angular
fuerza	F	\rightarrow	τ	torque
masa	m	\rightarrow	?	momento inercia
cant. de mov.	Р	\rightarrow	L	momento angular

$$\begin{array}{ll} v = dx/dt & \rightarrow & \omega = d\theta/dt \\ a = dv/dt & \rightarrow & \alpha = d\omega/dt \\ dP/dt = F & \rightarrow & dL/dt = \tau \end{array}$$

m
$$\rightarrow$$
F = m a \rightarrow
Ec = ½ m v² \rightarrow

¿Cuál es la energía cinética de un disco que rota?

Rotación

posición	X	\rightarrow	θ	ángulo
velocidad	V	\rightarrow	ω	vel. angular
aceleración	a	\rightarrow	α	acel. angular
fuerza	F	\rightarrow	τ	torque
masa	m	\rightarrow	1	momento inercia
cant. de mov.	Р	\rightarrow	L	momento angular

$$v = dx/dt$$
 $\rightarrow \omega = d\theta/dt$
 $a = dv/dt$ $\rightarrow \alpha = d\omega/dt$
 $dP/dt = F$ $\rightarrow dL/dt = \tau$
 m $\rightarrow I$
 $F = m a$ $\rightarrow \tau = I \alpha$
 $Ec = \frac{1}{2} m v^2$ $\rightarrow Ec = \frac{1}{2} I \omega^2$

Moments of Inertia for Various Rigid Objects of Uniform Composition

Hoop or thin cylindrical shell $I = MR^2$

Solid sphere

$$I = \frac{2}{5} MR^2$$

Solid cylinder or disk

$$I=\frac{1}{2}MR^2$$

Thin spherical shell

$$I = \frac{2}{3} MR^2$$

Long thin rod with rotation axis through center

$$I = \frac{1}{12}ML^2$$

Long thin rod with rotation axis through end

$$I = \frac{1}{3} ML^2$$

Momento de Inercia de diferentes cuerpos

Copyright © 2007 Pearson Prentice Hall, Inc.

¿Qué relación existe entre I_{CM} e I_O?

Teorema de Steiner o de "ejes paralelos": El momento de inercia de un objeto alrededor de un eje paralelo y separado a una distancia "d" del eje que pasa por el CM es:

$$I_0 = I_{CM} + M d^2$$

Ej.: En el caso de una varilla delgada donde M es la masa y L es la longitud:

$$I_{CN}$$

$$I_{O}$$

$$I_{O}$$

$$I_{CM}$$

$$I_{O}$$

$$I_{O}$$

$$I_{O}$$

$$I_{CM} = \frac{1}{12}M L^2$$

$$I_O = \frac{1}{12}M L^2 + M \left(\frac{L}{2}\right)^2 = \frac{1}{3}M L^2$$

Para una partícula

Cuerpo rígido

Traslación pura

Rotación pura

Cuerpo rígido en rotación pura

Cuerpo rígido en rotación pura

Cuerpo rígido en rotación pura

Para describir la rotación de un rígido alrededor de un punto O perteneciente a un sistema inercial:

$$\vec{\tau}_O = I_O \vec{\alpha}$$

Segunda Ley de Newton para la rotación alrededor de O

Es muy útil utilizar para los cálculos la misma expresión alrededor del CM:

$$|\vec{\tau}_{CM}| = I_{CM} |\vec{\alpha}|$$

Segunda Ley de Newton para la rotación alrededor del CM

Ejemplo: aceleración angular de una polea

Hallar la aceleración angular de la polea de masa M y radio R, la aceleración tangencial de la misma y la tensión de la cuerda.

Rotación:

$$au_{CM,O} = I_{CM} \ \alpha_z$$
 \longrightarrow $T \ R = I_{CM} \ \alpha_z$
$$I_{CM} = \frac{1}{2}MR^2 \quad \text{para disco macizo}$$

Traslación:
$$\sum F = m \ a;$$

$$m g - T = m a_T$$

Otro ejemplo

¿Qué velocidad angular adquirirá el sistema en 10 s si se lo libera a partir del reposo?

Suponemos que la soga es ideal (masa despreciable) y que no desliza sobre el cilindro.

$$m_2 g - T_2 = m_2 a_2; \quad a_2 = R \alpha$$

$$T_1 - m_1 g = m_1 a_1; \quad a_1 = \frac{R}{2} \alpha$$

$$m_1g$$
 m_2g

$$T_2R - T_1 \frac{R}{2} = I_{CM} \alpha$$

$$I_{CM} = \frac{1}{2}MR^2$$

Trabajo y energía de un rígido en rotación pura

Eje fijo: perpendicular al plano y pasa por O

Bajo la acción de au el cuerpo rígido rota

Cuando rota un $d\theta$ el punto de aplicación de la fuerza se desplaza ds

$$dW = \vec{F} \bullet d\vec{s} = (F sen \Phi) r d\theta$$

Componente tangencial

$$|\vec{\tau}| = |\vec{r} \times \vec{F}| = r F sen \Phi$$

$$dW = \tau \ d\theta$$

Trabajo y energía de un rígido en rotación pura

$$\tau = I\alpha = I\frac{d\omega}{dt} = I\frac{d\omega}{d\theta}\frac{d\theta}{dt} = I\frac{d\omega}{d\theta}\omega$$

Como
$$\tau d\theta = dW$$
 $\tau d\theta = I \omega d\omega = dW$

$$W = \int_{\theta_0}^{\theta} \tau \, d\theta = \int_{\omega_0}^{\omega} I \, \omega \, d\omega = \frac{1}{2} I \omega^2 - \frac{1}{2} I \omega_0^2$$

Trabajo del momento de la fuerza

Variación de la energía cinética de rotación