ABES ENGINEERING COLLEGE, GHAZIABAD (032)

B. TECH FIRST SEMESTER 2023-2024

ENGINEERING MATHEMATICS-I (BAS-103)

UNIT-5: VECTOR CALCULUS

QUESTION BANK

- 1. Find a unit vector normal to the surface $x^2y + 2xz = 4$ at the point (2, -2, 3).
- 2. Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at the point (2, -1, 2).
- 3. Find the directional derivative of $\emptyset = xy^2 + yz^3$ at the point (2, -1, 1) in the direction of the normal to the surface $x \log z y^2 + 4 = 0$ at (2, -1, 1).

 4. In what direction from (3, 1, -2) is the directional derivative of $\emptyset = x^2y^2z^4$ maximum and what
 - In what direction from (3,1,-2) is the directional derivative of $\emptyset = x^2y^2z^4$ maximum and what is its magnitude ?
- 5/ Find the directional derivative of $\frac{1}{r^2}$ in the direction of \vec{r} where $\vec{r}=x\ \hat{i}+y\ \hat{j}+z\ \hat{k}$.
 - 6. Find $\nabla logr^n$
 - 7. Find the divergence and curl of the vector $\vec{R} = (x^2 + yz)\vec{i} + (y^2 + zx)\vec{j} + (z^2 + xy)\vec{k}$.
- 8. Show that vector $\vec{V} = (x+3y)\vec{i} + (y-3z)\vec{j} + (x-2z)\vec{k}$ is solenoidal.
- 9. Show that $\vec{A} = (6xy + z^3)\hat{i} + (3x^2 z)\hat{j} + (3xz^2 y)\hat{k}$ is irrotational . Find the velocity potential \emptyset such that $\vec{A} = \vec{\nabla} \emptyset$.
- Find the directional derivative of $\vec{\nabla}$. $(\vec{\nabla} \phi)$ at the point (1, -2, 1) in the direction of the normal to the surface $xy^2z = 3x + z^2$, where $\phi = 2x^3y^2z^4$.
- 11. Find the total work done by a force $\vec{F} = (x^2 + y^2) \hat{i} 2xy \hat{j}$ in moving a point from (0,0) to (a,b) along the rectangle bounded by the lines x = 0, x = a, y = 0 & y = b. Answer: -2ab^2
- 12. Find the work done in moving a particle in the force field $\vec{F} = 3x^2 \, \hat{i} + (2xz y) \, \hat{j} + z \, \hat{k}$ along the curve defined by $x^2 = 4y$, $3x^3 = 8z$ from x = 0 to x = 2.
- 13. Use divergence theorem to Evaluate $\iint_S (xdydz + ydzdz + zdxdy)$, where S is the portion of the plane x + 2y + 3z = 6 which lies in the first octant.
- Verify the divergence theorem for $\vec{F} = (x^3 yz)\vec{i} 2x^2y\vec{j} + 2\vec{k}$ taken over the cube bounded by the planes x = 0, x = a, y = 0, y = a, z = 0, z = a.
- 15. Verify the Stoke's theorem for the function $\vec{F} = xy^2 \hat{i} + y \hat{j} + z^2 x \hat{k}$ for the surface of a rectangular lamina bounded by arc x = 0, y = 0, x = a, y = b.
- 16. Verify Green's theorem by evaluating $\int_C [(x^3 xy^3)dx + (y^2 2xy)dy]$, where C is the square having the vertices at the point (0,0), (2,0), (2,2)&(0,2).
- Verify Green's theorem in the plane for $\int_C [(xy+y^2)dx+x^2dy]$, where C is closed curve of the region bounded by y=x and $y=x^2$.
- 13. Using Green's theorem to evaluate $\int_C [2y^2 dx + 3x dy]$, where C is the boundary of the closed region bounded by y = x and $= x^2$.

ANSWERS

$$1.\frac{-\hat{i}+2\hat{j}+2\hat{k}}{3}$$

$$2. \theta = \cos^{-1}\left(\frac{8}{3\sqrt{21}}\right)$$

3.
$$-3\sqrt{2}$$

1.
$$\frac{-\hat{i}+2\hat{j}+2\hat{k}}{3}$$
 2. $\theta = cos^{-1}\left(\frac{8}{3\sqrt{21}}\right)$ 3. $-3\sqrt{2}$ 4.96 $\left(\hat{i}+3\hat{j}-3\hat{k}\right)$, 96 $\sqrt{19}$ 5. $-\frac{2}{r^3}$ 6. $\frac{n\vec{r}}{r^2}$ 7.2 $(x+y+z)$; $\vec{0}$ 9. $\emptyset = 3x^2y + xz^3 - zy + c$ 10. $\frac{1724}{\sqrt{21}}$ 11. $\frac{a^3}{3} - ab^2$ 12. 16 13. 18 18 . $\frac{7}{30}$

$$5.-\frac{2}{r^3}$$

$$6.\frac{n\bar{r}}{r^2}$$

$$7.2(x+y+z);$$

$$9.\emptyset = 3x^2y + xz^3 - zy +$$

$$10.\frac{1724}{\sqrt{21}}$$

$$11.\frac{a^3}{3} - ab^2$$