Mass Reweighting

May 5, 2022

We show the pion mass measured through reweighting. We compare the results for 10^3 and 10^4 measurements.

1 m_{π}

Figure 1: Pion mass as a function of the degenerate fermion mass for different flavors

Figure 2: Pion mass as a function of the degenerate fermion mass for different flavors

Next we show the pion mass as a function of $(m^2g)^{1/3}$. In order to extrapolate the pion mass we fitted a function of the form $m_{\pi} = \sqrt{a + b \, x^c}$, with $x = (m^2g)^{1/3}$ and a, b, c fitting parameters. We only fit the region x > 0.076.

Figure 3: Pion mass as a function of the degenerate $(m^2g)^{1/3}$ for different flavors. $L=4,\,L_t=32.$

Figure 4: Pion mass as a function of the degenerate $(m^2g)^{1/3}$ for different flavors. $L=6,\,L_t=32.$

Figure 5: Pion mass as a function of the degenerate $(m^2g)^{1/3}$ for different flavors. $L=8,\,L_t=32.$

Figure 6: Pion mass as a function of the degenerate $(m^2g)^{1/3}$ for different flavors. $L=10,\,L_t=32.$

Figure 7: Pion mass as a function of the degenerate $(m^2g)^{1/3}$ for different flavors. $L=12,\,L_t=32.$

2 F_{π}

We show the residual pion mass m_{π}^{R} as a function of the spatial size L and fit a function proportional to 1/L to obtain F_{π} .

Figure 8: $N_f = 2$; $1/\sqrt{2\pi} = 0.39894...$

Residual pion mass for $N_f = 3$

Figure 9: $N_f = 3$

Figure 10: $N_f = 4$

Residual pion mass for $N_f = 5$

Figure 11: $N_f = 5$

Residual pion mass for $N_f = 6$

Figure 12: $N_f = 6$

$\mathbf{3} \quad \langle \overline{\psi}\psi \rangle$

We show the chiral condensate for a 20x20 lattice together with some predictions, valid in different regimes, for N_f flavors that are written in eqs. (13), (15) and (16) of ref. [1].

Figure 13: Chiral condensate as a function of the degenerate fermion mass for different flavors

References

[1] J. E. Hetrick, Y. Hosotani, and S. Iso. Interplay between mass, volume, vacuum angle and chiral condensate in N avor QED in two-dimensions. *Phys. Rev. D*, **53**, 1996. arXiv:hep-th/9510090.