

additive inverse of a sum in a ring

 ${\bf Canonical\ name} \quad {\bf Additive InverseOf A Sum In A Ring}$

Date of creation 2013-03-22 15:45:02 Last modified on 2013-03-22 15:45:02

Owner rspuzio (6075) Last modified by rspuzio (6075)

Numerical id 11

Author rspuzio (6075) Entry type Theorem Classification msc 16B70 Let R be a ring with elements $a, b \in R$. Suppose we want to find the inverse of the element $(a+b) \in R$. (Note that we call the element (a+b) the sum of a and b.) So we want the unique element $c \in R$ so that (a+b)+c=0. Actually, let's put c=(-a)+(-b) where $(-a) \in R$ is the additive inverse of a and $(-b) \in R$ is the additive inverse of b. Because addition in the ring is both associative and commutative we see that

$$(a + b) + ((-a) + (-b)) = (a + (-a)) + (b + (-b))$$

= 0 + 0 = 0

since $(-a) \in R$ is the additive inverse of a and $(-b) \in R$ is the additive inverse of b. Since additive inverses are unique this means that the additive inverse of (a + b) must be (-a) + (-b). We write this as

$$-(a+b) = (-a) + (-b).$$

It is important to note that we *cannot* just distribute the minus sign across the sum because this would imply that $-1 \in R$ which is not the case if our ring is not with unity.