talk03 练习与作业

目录

0.1	练习和作业说明	1
0.2	talk03 内容回顾	1
0.3	练习与作业: 用户验证	2
0.4	练习与作业 1,data.frame	2
0.5	练习与作业 2,tibble	15
0.6	练习与作业 3: IO	23

0.1 练习和作业说明

将相关代码填写入以"'{r}" 标志的代码框中,运行并看到正确的结果; 完成后,用工具栏里的"Knit" 按键生成 PDF 文档;

将生成的 PDF 改为: 姓名-学号-talk03 作业.pdf, 并提交到老师指定的 平台/钉群。

0.2 talk03 内容回顾

- 二维表: data.frame, tibble
 - 声明
 - 操作
 - * 增减行、列

- * 合并
- 常用相关函数
 - * nrow, ncol, dim , str , head, tail
- data.frame 和 tibble 的不同
- 高级技巧:
 - * with, within
- IO
 - 系统自带函数
 - readr 带的函数
 - 不同格式的读取
 - 从网络、压缩文件读取

0.3 练习与作业:用户验证

请运行以下命令,验证你的用户名。

如你当前用户名不能体现你的真实姓名,请改为拼音后再运行本作业!

Sys.info()[["user"]]

[1] "mingyuwang"

Sys.getenv("HOME")

[1] "C:/Users/rhong/Documents"

0.4 练习与作业 1, data.frame

注: 以下内容来自 https://www.r-exercises.com/。

• 生成下面的 data.frame 的前三列, 之后再增加 Sex 这列

```
Age Height Weight Sex
Alex
           25
                 177
                          57
                               F
                               F
Lilly
           31
                          69
                 163
Mark
           23
                 190
                          83
                               М
Oliver
           52
                 179
                          75
                               М
Martha
           76
                 163
                          70
                               F
Lucas
           49
                 183
                          83
                               М
Caroline
           26
                 164
                          53
                               F
```

```
names <- c("Alex", "Lilly", "Mark", "Oliver", "Martha", "Lucas", "Caroline")
age <- c(25, 31, 23, 52, 76, 49, 26)
height <- c(177, 165, 180, 175, 160, 185, 170)
weight <- c(70, 50, 80, 60, 45, 90, 65)
sex <- c("F", "F", "M", "M", "F", "M", "F")
## 先生成前三列;
df1 <- data.frame(Age = age, Height = height, Weight = weight,
row.names = names)
## 再插入第四列
df1 <- cbind(df1, sex)
## 显示最终结果
df1
```

```
##
           Age Height Weight sex
## Alex
            25
                  177
                          70
                               F
## Lilly
                 165
                               F
            31
                          50
## Mark
            23
                 180
                          80
                               M
## Oliver
            52
                 175
                          60
                               M
## Martha
            76
                  160
                               F
                          45
## Lucas
            49
                  185
                          90
                               Μ
## Caroline 26
                          65
                               F
                  170
```

• 生成以下 data.frame, 确保 Working 这列的类型是 character, 而不是 factor

	Working
Alex	Yes
Lilly	No
Mark	No
Oliver	Yes
Martha	Yes
Lucas	No
Caroline	Yes

```
working <- c("Yes", "No", "No", "Yes", "Yes", "No", "Yes")

## 生成 data.frame

df1 <- data.frame(Working = working, row.names = names)

## 显示结果

df1
```

##		Working
##	Alex	Yes
##	Lilly	No
##	Mark	No
##	Oliver	Yes
##	Martha	Yes
##	Lucas	No
##	Caroline	Yes

```
## 显示 Working 列的性质
with(df1, class(working))
## [1] "character"
  • 检查系统自带变量 state.center 的内容,将其转化为 data.frame
## 代码写这里,并运行;
state.center
## $x
##
   [1]
       -86.7509 -127.2500 -111.6250 -92.2992 -119.7730 -105.5130 -72.3573
  [8]
        -74.9841 -81.6850 -83.3736 -126.2500 -113.9300 -89.3776 -86.0808
## [15]
       -93.3714 -98.1156 -84.7674 -92.2724 -68.9801 -76.6459 -71.5800
## [22]
        -84.6870 -94.6043 -89.8065 -92.5137 -109.3200 -99.5898 -116.8510
## [29]
       -71.3924 -74.2336 -105.9420 -75.1449 -78.4686 -100.0990 -82.5963
## [36]
        -97.1239 -120.0680 -77.4500 -71.1244 -80.5056
                                                       -99.7238 -86.4560
## [43]
        -98.7857 -111.3300 -72.5450 -78.2005 -119.7460 -80.6665 -89.9941
## [50] -107.2560
##
## $y
   [1] 32.5901 49.2500 34.2192 34.7336 36.5341 38.6777 41.5928 38.6777 27.8744
## [10] 32.3329 31.7500 43.5648 40.0495 40.0495 41.9358 38.4204 37.3915 30.6181
## [19] 45.6226 39.2778 42.3645 43.1361 46.3943 32.6758 38.3347 46.8230 41.3356
## [28] 39.1063 43.3934 39.9637 34.4764 43.1361 35.4195 47.2517 40.2210 35.5053
## [37] 43.9078 40.9069 41.5928 33.6190 44.3365 35.6767 31.3897 39.1063 44.2508
```

class(state.center)

[46] 37.5630 47.4231 38.4204 44.5937 43.0504

[1] "list"

data.frame(state.center)

```
##
             Х
                     У
## 1
      -86.7509 32.5901
     -127.2500 49.2500
## 2
## 3
    -111.6250 34.2192
     -92.2992 34.7336
## 4
## 5
     -119.7730 36.5341
## 6
     -105.5130 38.6777
## 7
      -72.3573 41.5928
## 8
     -74.9841 38.6777
      -81.6850 27.8744
## 9
## 10 -83.3736 32.3329
## 11 -126.2500 31.7500
## 12 -113.9300 43.5648
## 13 -89.3776 40.0495
## 14 -86.0808 40.0495
## 15
      -93.3714 41.9358
## 16 -98.1156 38.4204
## 17
      -84.7674 37.3915
      -92.2724 30.6181
## 18
## 19
      -68.9801 45.6226
## 20
      -76.6459 39.2778
## 21 -71.5800 42.3645
## 22
      -84.6870 43.1361
## 23
      -94.6043 46.3943
## 24
      -89.8065 32.6758
## 25
      -92.5137 38.3347
## 26 -109.3200 46.8230
## 27 -99.5898 41.3356
## 28 -116.8510 39.1063
## 29 -71.3924 43.3934
## 30 -74.2336 39.9637
```

```
## 31 -105.9420 34.4764
## 32 -75.1449 43.1361
## 33 -78.4686 35.4195
## 34 -100.0990 47.2517
## 35 -82.5963 40.2210
## 36 -97.1239 35.5053
## 37 -120.0680 43.9078
## 38 -77.4500 40.9069
## 39 -71.1244 41.5928
## 40 -80.5056 33.6190
## 41 -99.7238 44.3365
## 42 -86.4560 35.6767
## 43 -98.7857 31.3897
## 44 -111.3300 39.1063
## 45 -72.5450 44.2508
## 46 -78.2005 37.5630
## 47 -119.7460 47.4231
## 48 -80.6665 38.4204
## 49 -89.9941 44.5937
## 50 -107.2560 43.0504
```

• 生成一个 50 行 * 5 列的 matrix, 将其行名改为: row_i 格式, 其中 i 为当前的行号, 比如 row_1, row_2 等

```
## 代码写这里,并运行;
m <- matrix(sample(50 * 5), nrow = 50, ncol = 5)
rownames(m) <- pasteO("row_", 1:50)
m

## [,1] [,2] [,3] [,4] [,5]
## row_1 146 53 122 45 77
## row_2 163 176 100 185 75
```

```
## row_3
           223
                 220
                     244
                           196
                                 203
## row_4
                                  78
           183
                112
                       68
                            40
## row_5
            14
                  90
                      190
                           117
                                 239
## row_6
           184
                  36
                      128
                            79
                                  48
## row_7
           165
                  42
                      250
                           248
                                  55
## row_8
            82
                   4
                       28
                            228
                                  41
## row_9
           118
                 158
                      141
                            114
                                 111
## row_10
             8
                  72
                      202
                            99
                                  12
## row_11
           155
                 108
                       71
                           147
                                 198
## row_12
            74
                119
                       70
                            22
                                  65
## row_13
                      150
                                 127
           148
                  21
                            19
## row_14
                                 101
           205
                166
                       97
                             6
## row_15
           209
                  39
                       44
                            26
                                  30
## row_16
           189
                149
                      212
                            85
                                 181
## row_17
                      143
                                 130
            61
                  69
                            199
## row_18
                 195
                      162
                            137
            66
                                  17
## row_19
             7
                 240
                       38
                            80
                                  23
## row_20
           151
                 197
                      140
                           171
                                  89
## row_21
            29
                 249
                      126
                           221
                                  27
## row_22
           188
                  25
                      138
                           234
                                 113
## row_23
           123
                 224
                       13
                            67
                                 210
## row_24
             9
                  59
                       46
                              5
                                  10
## row_25
           174
                  34
                      134
                           132
                                 136
## row_26
           235
                121
                      153
                           238
                                 131
## row_27
           175
                 142
                      179
                           192
                                  32
## row_28
           180
                 193
                      144
                           222
                                 169
## row_29
            43
                  62
                      125
                            15
                                  11
## row_30
            51
                  31
                       86
                           225
                                 208
## row_31
                      105
            16
                  50
                            56
                                  37
## row_32
                      227
            92
                 103
                            33
                                 215
## row_33
           115
                 237
                      201
                            167
                                  64
## row_34
           243
                 216
                       98
                            52
                                  58
## row_35
          160
                161
                      107
                           139
                                 230
```

```
## row_36
           204 214
                     226
                            3
                               116
## row_37
            81
                246
                      20
                          200
                               241
## row_38
            60 110
                      73
                          194
                               129
## row_39
           247 178
                    207
                          232
                                87
## row_40
                217
                     242
                          231
            47
                                93
## row_41
           109
                206
                      84
                          159
                               152
## row_42
            94
                133
                     164
                          172
                                76
## row_43
           106
                 35
                     135
                          104
                               120
## row_44
           229
                 49
                     211
                          186
                               182
## row_45
             2 102
                     233
                           96
                                91
## row_46
            83
                213
                      57
                          170
                               177
## row_47
           219
                 24 245
                           18
                              145
## row_48
                    156
           124
                 63
                           54
                                 1
## row_49
           187
                 95
                     168
                          236
                              173
## row_50 157
                 88
                     218
                          191
                               154
```

- 使用系统自带变量 VADeaths, 做如下练习:
- 检查 VADeaths 的类型,如果不是 data.frame,则转换之;
- 添加新的一列,取名 Total,其值为每行的总合
- 调整列的顺序,将 Total 变为第一列。

代码写这里,并运行; class(VADeaths)

[1] "matrix" "array"

```
df_deaths <- data.frame(VADeaths)
df_deaths$Total <- rowSums(df_deaths)
df_deaths <- df_deaths[, c(ncol(df_deaths), 1:(ncol(df_deaths) - 1))]
df_deaths</pre>
```

```
##
         Total Rural.Male Rural.Female Urban.Male Urban.Female
## 50-54 44.2
                     11.7
                                    8.7
                                              15.4
                                                             8.4
## 55-59 67.7
                     18.1
                                   11.7
                                              24.3
                                                            13.6
## 60-64 103.5
                     26.9
                                   20.3
                                              37.0
                                                            19.3
## 65-69 161.6
                     41.0
                                   30.9
                                              54.6
                                                            35.1
## 70-74 241.4
                     66.0
                                   54.3
                                              71.1
                                                            50.0
```

- 用系统自带的 swiss 数据做练习:
- 取子集,选取第 1, 2, 3, 10, 11, 12 and 13 行,第 Examination, Education 和 Infant.Mortality 列;
- 将 Sarine 行 Infant. Mortality 列的值改为 NA;
- 增加一列,命名为 Mean,其值为当前行的平均值;

```
## 代码写这里,并运行;
(df_swiss <- swiss[c(1, 2, 3, 10, 11, 12, 13),
    c("Examination", "Education", "Infant.Mortality")])
```

```
Examination Education Infant.Mortality
##
## Courtelary
                          15
                                     12
                                                     22.2
                                                     22.2
## Delemont
                           6
                                      9
## Franches-Mnt
                                                     20.2
                           5
                                      5
## Sarine
                                                     24.4
                          16
                                     13
## Veveyse
                          14
                                      6
                                                     24.5
## Aigle
                          21
                                     12
                                                     16.5
## Aubonne
                          14
                                      7
                                                     19.1
```

```
df_swiss["Sarine", "Infant.Mortality"] <- NA
df_swiss</pre>
```

##

## Courtelary	15	12	22.2
## Delemont	6	9	22.2
## Franches-Mnt	5	5	20.2
## Sarine	16	13	NA
## Veveyse	14	6	24.5
## Aigle	21	12	16.5
## Aubonne	14	7	19.1

```
df_swiss$Mean <- rowMeans(df_swiss)
head(df_swiss)</pre>
```

##		${\tt Examination}$	${\tt Education}$	Infant.Mortality	Mean
##	Courtelary	15	12	22.2	16.40000
##	Delemont	6	9	22.2	12.40000
##	Franches-Mnt	5	5	20.2	10.06667
##	Sarine	16	13	NA	NA
##	Veveyse	14	6	24.5	14.83333
##	Aigle	21	12	16.5	16.50000

• 将下面三个变量合并生成一个 data.frame

```
Id <- LETTERS
x <- seq(1,43,along.with=Id)
y <- seq(-20,0,along.with=Id)</pre>
```

```
## 代码写这里,并运行;
Id <- LETTERS
x <- seq(1, 43, along.with = Id)
y <- seq(-20, 0, along.with = Id)
data.frame(Id, x, y)
```

```
##
            х
                  у
      A 1.00 -20.0
## 1
## 2
      B 2.68 -19.2
## 3
      C 4.36 -18.4
## 4
      D 6.04 -17.6
## 5
      E 7.72 -16.8
## 6
      F 9.40 -16.0
## 7
      G 11.08 -15.2
## 8
      H 12.76 -14.4
      I 14.44 -13.6
## 9
## 10 J 16.12 -12.8
## 11 K 17.80 -12.0
## 12 L 19.48 -11.2
## 13 M 21.16 -10.4
## 14 N 22.84 -9.6
## 15
     0 24.52 -8.8
     P 26.20 -8.0
## 16
## 17 Q 27.88 -7.2
## 18 R 29.56 -6.4
## 19 S 31.24 -5.6
     T 32.92 -4.8
## 20
## 21 U 34.60 -4.0
## 22 V 36.28 -3.2
## 23 W 37.96 -2.4
## 24 X 39.64 -1.6
## 25
     Y 41.32 -0.8
## 26 Z 43.00
                0.0
```

问: seq 函数中的 along.with 参数的意义是什么?请举例说明。

答: seq 函数中的 along.with 参数的意义是指定序列的长度,即 along.with 参数指定的变量的长度。

```
## 代码写这里,并运行;
seq(1, 19, along.with = 1:10)
## [1] 1 3 5 7 9 11 13 15 17 19
seq(1, 19, along.with = 1:19)
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 • 提供代码,合并以下两个 data.frame
> df1 的内容
Id Age
1 14
2 12
3 15
4 10
>df2 的内容
Id Sex Code
1 F a
2 M b
3 M c
4 F d
合并之后的结果:
> M
Id Age Sex Code
1 14 F a
2 12 M b
3 15 M c
4 10 F d
```

```
## 代码写这里,并运行;
library(dplyr)
## Warning: 程辑包'dplyr'是用R版本4.1.3 来建造的
##
## 载入程辑包: 'dplyr'
## The following objects are masked from 'package:stats':
##
       filter, lag
##
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
Id <- 1:4
Age \leftarrow c(14, 12, 15, 10)
Sex <- c("F", "M", "M", "F")</pre>
Code <- c("a", "b", "c", "d")
df1 <- data.frame(Id, Age)</pre>
df2 <- data.frame(Id, Sex, Code)</pre>
M <- left_join(df1, df2, by = "Id")
М
     Id Age Sex Code
##
## 1 1 14
              F
## 2 2 12
              M
                   b
## 3 3 15
            M
                   С
## 4 4 10
            F
                   d
```

• 从上面的 data.frame 中删除 code 列

```
## 代码写这里,并运行;
(M <- M[, -4])
```

• 练习,回答代码中的问题

1. 生成一个10 行2 列的data.frame df3 <- data.frame(data = 1:10, group = c("A","B")) ## 2. 增加一列, 其长度是1, 可以吗? cbind(df3, newcol = 1); ## 3. 增加一列, 其长度是10, 可以吗? cbind(df3, newcol = 1:10); ## 4. 增加一列, 其长度是2, 可以吗? cbind(df3, newcol = 1:2); ## 5. 增加一列, 其长度是3, 可以吗? cbind(df3, newcol = 1:3);

答: 2. 可以, 3. 可以, 4. 可以, 5. 不可以。增加的列的长度必须与原 data.frame 的行数是整数倍。

0.5 练习与作业 2, tibble

• 运行以下代码, 生成一个新的 tibble:

```
## 如果系统中没有 lubridate 包,则安装:
if (!require("lubridate")){
  chooseCRANmirror();
  install.packages("lubridate");
}
## 载入需要的程辑包: lubridate
## Warning: 程辑包'lubridate'是用R版本4.1.3 来建造的
##
## 载入程辑包: 'lubridate'
## The following objects are masked from 'package:base':
##
      date, intersect, setdiff, union
##
library(lubridate);
if (!require("tibble")){
  chooseCRANmirror();
  install.packages("tibble");
}
## 载入需要的程辑包: tibble
## Warning: 程辑包'tibble'是用R版本4.1.3 来建造的
library(tibble);
tibble(
  a = lubridate::now() + runif(1e3) * 86400,
 b = lubridate::today() + runif(1e3) * 30,
```

```
c = 1:1e3,
 d = runif(1e3),
 e = sample(letters, 1e3, replace = TRUE)
## # A tibble: 1,000 x 5
                                     c de
##
     a
     <dttm>
                       <date> <int> <dbl> <chr>
##
## 1 2022-09-10 13:31:07 2022-09-27
                                    1 0.326 i
## 2 2022-09-10 01:31:39 2022-09-16
                                    2 0.226 w
## 3 2022-09-10 10:25:54 2022-09-11
                                   3 0.748 s
## 4 2022-09-09 16:08:08 2022-10-05
                                    4 0.0435 f
## 5 2022-09-10 08:44:28 2022-09-25 5 0.0521 b
## 6 2022-09-10 10:49:09 2022-09-26
                                    6 0.348 e
## 7 2022-09-09 21:33:01 2022-09-14 7 0.0984 1
## 8 2022-09-09 21:21:11 2022-09-10
                                   8 0.521 h
## 9 2022-09-10 01:24:25 2022-10-02 9 0.923 i
## 10 2022-09-10 03:52:25 2022-09-15 10 0.702 k
## # ... with 990 more rows
从中可以看出,tibble 支持一些细分数据类型,包括:
  • <dttm>
  date>
等;
  • 生成一个如下的 tibble, 完成以下任务:
df <- tibble(</pre>
 x = runif(5),
 y = rnorm(5)
)
```

任务:

```
• 取一列,比如 x 这一列,得到一个 tibble;
```

```
• 取一列,比如 y这一列,得到一个 vector;
```

```
## 代码写这里,并运行;
df <- tibble(</pre>
 x = runif(5),
 y = rnorm(5)
)
df["x"]
## # A tibble: 5 x 1
##
##
      <dbl>
## 1 0.493
## 2 0.917
## 3 0.856
## 4 0.0256
## 5 0.782
df$y
## [1] 0.478923432 0.008944953 -2.090207816 -0.158646217 0.612396930
```

• 用 tibble 函数创建一个新的空表,并逐行增加一些随机的数据,共增加三行:

```
## 代码写这里,并运行;
## 新 tibble, with defined columns ... 创建表头
tb <- tibble( name = character(), age = integer(), salary = double() );
```

```
## 增加三行随机数据;
tb <- add_row(tb, name = sample(letters, 3),</pre>
 age = sample(50, 3), salary = sample(1000, 3))
tb
## # A tibble: 3 x 3
            age salary
##
    name
    <chr> <int> <dbl>
##
## 1 n
             26
                   641
## 2 q
             29
                   734
## 3 d
             3
                   317
```

• ** 请解释为什么下面第一行代码能够运行成功,但第二个不行? **

这个可以:

```
data.frame(a = 1:6, b = LETTERS[1:2]);
但下面这个不行:
tibble(a = 1:6, b = LETTERS[1:2]);
问: 为什么? tibble 循环的规则是什么?
答: Only values of size one are recycled.
```

• attach 和 detach:

问:这个两个函数的用途是什么?请用 iris 这个系统自带变量举例说明。

答: attach() 函数将一个数据框绑定到当前的搜索路径中,这样就可以直接使用数据框中的变量名而不用加上数据框的名字。detach() 函数将一个数据框从当前的搜索路径中分离出来。

try(head(Septal.Length)) ## Error in head(Septal.Length) : 找不到对象'Septal.Length' # Sepal.Length 是 iris 数据框中的变量名,但是在当前的搜索路径中没有,所以不能直接使用 attach(iris) # attach() 函数将 iris 数据框绑定到当前的搜索路径中,之后就可以直接访问 Sepal.Length 这个变 head(Sepal.Length) ## [1] 5.1 4.9 4.7 4.6 5.0 5.4 detach(iris) • 使用内置变量 airquality: • 检查它是否是 tibble; • 如果不是,转化为 tibble; ## 代码写这里,并运行; is_tibble(airquality) ## [1] FALSE airquality <- as_tibble(airquality)</pre> is_tibble(airquality) ## [1] TRUE

• 问: tibble::enframe 函数的用途是什么? 请举例说明:

答: enframe() 函数将一个向量转换为一个数据框,其中第一列是向量的名字,第二列是向量的值。

```
head(iris$Sepal.Length, n = 10)
```

[1] 5.1 4.9 4.7 4.6 5.0 5.4 4.6 5.0 4.4 4.9

```
enframe(iris$Sepal.Length[1:10])
```

```
## # A tibble: 10 x 2
##
       name value
##
      <int> <dbl>
    1
           1
               5.1
##
    2
##
           2
               4.9
##
    3
           3
               4.7
    4
           4
               4.6
##
##
    5
           5
               5
    6
##
           6
               5.4
    7
           7
               4.6
##
          8
               5
    9
##
          9
               4.4
## 10
          10
               4.9
```

• 简述 tibble 相比 data.frame 的优势? 并用实例展示

答: tibble 显示每一列的数据类型,而 data.frame 不显示。tibble 按顺序计算列,而 data.frame 同时计算所有列。tibble 取子集将得到一个 tibble,而 data.frame 取子集可能得到 vector。data.frame 存在部分匹配的问题,而 tibble 不存在。

```
## 代码写这里,并运行;
df1 <- data.frame(aaa = 1:6, b = LETTERS[1:6])</pre>
tib1 <- tibble(aaa = 1:6, b = LETTERS[1:6])</pre>
df1[, 1]
## [1] 1 2 3 4 5 6
# dataframe 子集变成了向量类型而不是 data.frame
tib1[, 1]
## # A tibble: 6 x 1
##
      aaa
## <int>
## 1
       1
## 2
## 3
        3
## 4
       4
## 5
        5
## 6
        6
# tibble 子集仍然是 tibble 类型
tibble(a = 1:6, b = a * 2)
## # A tibble: 6 x 2
##
        a
             b
## <int> <dbl>
## 1
       1
            2
## 2
        2
            4
## 3
       3
            6
## 4
        4
            8
## 5
       5
           10
## 6
     6 12
```

```
# tibble 按顺序计算列; dataframe 同时计算所有列.
try(data.frame(a = 1:6, b = a * 2))
```

Error in data.frame(a = 1:6, b = a * 2) : 找不到对象'a'

0.6 练习与作业 3: IO

• 提供代码,正确读取以下文件:

注:数据在当前目录下的 data/ 子目录里

- Table0.txt
- Table1.txt
- Table2.txt
- Table3.txt
- Table4.txt
- Table5.txt
- Table6.txt
- states1.csv
- states2.csv

注 2: 每个文件读取需要提供两种方法,一种是利用系统自带函数,另一种是 readr 包的函数;

```
## 用系统自带函数,并显示读取的内容;
read.table("data/Table0.txt", header = FALSE)
```

```
## V1 V2 V3 V4 V5
## 1 Alex 25 177 57 F
## 2 Lilly 31 163 69 F
## 3 Mark 23 190 83 M
## 4 Oliver 52 179 75 M
## 5 Martha 76 163 70 F
```

```
## 6
       Lucas 49 183 83 M
## 7 Caroline 26 164 53 F
read.table("data/Table1.txt", header = TRUE)
##
        Name Age Height Weight Sex
        Alex 25
                    177
                            57
## 1
                                F
## 2
       Lilly 31
                    163
                            69
                               F
        Mark 23
## 3
                    190
                           83 M
## 4
      Oliver 52
                    179
                           75 M
## 5
      Martha 76
                    163
                           70 F
## 6
       Lucas 49
                    183
                           83 M
## 7 Caroline 26
                    164
                            53
read.table("data/Table2.txt", header = TRUE, quote = "/", skip = 1)
##
        Name Age Height Weight Sex
## 1
       Alex 25
                    177
                           57
## 2
      Lilly 31
                    163
                           69 F
       Mark 23
## 3
                    190
                           83 M
      Oliver 52
## 4
                    179
                           75 M
## 5
      Martha 76
                    163
                           70 F
## 6
       Lucas 49
                    183
                           83
                                Μ
## 7 Caroline 26
                    164
                            53
                                F
read.table("data/Table3.txt", header = TRUE, skip = 1,
na.strings = c("", "NA", "--", "*", "**"))
        Name Age Height Weight Sex
##
## 1
        Alex 25
                    177
                           57 F
## 2
       Lilly 31
                    NA
                           69 F
## 3
        Mark NA
                    190
                           83 M
## 4
      Oliver 52
                    179
                           75 M
```

```
## 5
      Martha 76
                     NA
                            70 F
                     183
## 6
       Lucas
              49
                            NA
                                 М
## 7 Caroline 26
                     164
                             53
                                 F
# Table4.txt 身高数据 Height 中的值有逗号去掉
table4 <- read.table("data/Table4.txt", header = TRUE,</pre>
  na.strings = c("", "NA", "--", "*", "**"))
within(table4, Height <- as.numeric(gsub(",", "", Height)))</pre>
##
        Name Age Height Weight Sex
        Alex 25
## 1
                     177
                             57
                                 F
                                 F
## 2
       Lilly
              31
                             69
                     NA
## 3
        Mark NA
                     190
                            83 M
## 4
      Oliver 52
                     179
                            75 M
## 5
      Martha 76
                    NA
                            70 F
## 6
       Lucas 49
                     183
                            NA
                                M
## 7 Caroline 26
                     164
                             53
                                 F
table5 <- read.table("data/Table5.txt", header = TRUE, sep = ";",</pre>
 na.strings = c("", "NA", "--", "*", "**"))
table5$Height <- as.numeric(gsub(",", "", table5$Height))</pre>
table5
##
        Name Age Height Weight Sex
## 1
        Alex 25
                     177
                             57
                                 F
## 2
       Lilly 31
                             69
                                 F
                     NA
        Mark NA
## 3
                     190
                            83 M
## 4
      Oliver 52
                     179
                            75 M
## 5
      Martha 76
                            70 F
                    NA
## 6
       Lucas
              49
                     183
                            NA M
                            53
                                 F
## 7 Caroline 26
                     164
```

```
read.table("data/Table6.txt", header = TRUE,
comment.char = "@", skip = 1)
```

##		Name	Age	Height	Weight	Sex
##	1	Alex	25	177	57	F
##	2	Lilly	31	163	69	F
##	3	Mark	23	190	83	M
##	4	Oliver	52	179	75	M
##	5	Martha	76	163	70	F
##	6	Lucas	49	183	83	M
##	7	Caroline	26	164	53	F
##	8	Alex	25	177	57	F
##	9	Lilly	31	163	69	F
##	10	Mark	23	190	83	M
##	11	Oliver	52	179	75	M
##	12	Martha	76	163	70	F
##	13	Lucas	49	183	83	М
##	14	Caroline	26	164	53	F
##	15	Alex	25	177	57	F
##	16	Lilly	31	163	69	F
##	17	Mark	23	190	83	M
##	18	Oliver	52	179	75	M
##	19	Martha	76	163	70	F
##	20	Lucas	49	183	83	M
##	21	Caroline	26	164	53	F
##	22	Alex	25	177	57	F
##	23	Lilly	31	163	69	F
##	24	Mark	23	190	83	M
##	25	Oliver	52	179	75	М
##	26	Martha	76	163	70	F
##	27	Lucas	49	183	83	M
##	28	Caroline	26	164	53	F
##	29	Alex	25	177	57	F

##	30	Lilly	31	163	69	F
##	31	Mark	23	190	83	М
##	32	Oliver	52	179	75	М
##	33	Martha	76	163	70	F
##	34	Lucas	49	183	83	M
##	35	Caroline	26	164	53	F
##	36	Alex	25	177	57	F
##	37	Lilly	31	163	69	F
##	38	Mark	23	190	83	M
##	39	Oliver	52	179	75	M
##	40	Martha	76	163	70	F
##	41	Lucas	49	183	83	M
##	42	Caroline	26	164	53	F
##	43	Alex	25	177	57	F
##	44	Lilly	31	163	69	F
##	45	Mark	23	190	83	M
##	46	Oliver	52	179	75	M
##	47	Martha	76	163	70	F
##	48	Lucas	49	183	83	M
##	49	Caroline	26	164	53	F
##	50	Alex	25	177	57	F
##	51	Lilly	31	163	69	F
##	52	Mark	23	190	83	M
##	53	Oliver	52	179	75	M
##	54	Martha	76	163	70	F
##	55	Lucas	49	183	83	M
##	56	Caroline	26	164	53	F
##	57	Alex	25	177	57	F
##	58	Lilly	31	163	69	F
##	59	Mark	23	190	83	M
##	60	Oliver	52	179	75	M
##	61	Martha	76	163	70	F
##	62	Lucas	49	183	83	M

##	63	Caroline	26	164	53	F
##	64	Alex	25	177	57	F
##	65	Lilly	31	163	69	F
##	66	Mark	23	190	83	M
##	67	Oliver	52	179	75	M
##	68	Martha	76	163	70	F
##	69	Lucas	49	183	83	M
##	70	Caroline	26	164	53	F
##	71	Alex	25	177	57	F
##	72	Lilly	31	163	69	F
##	73	Mark	23	190	83	M
##	74	Oliver	52	179	75	M
##	75	Martha	76	163	70	F
##	76	Lucas	49	183	83	M
##	77	Caroline	26	164	53	F
##	78	Alex	25	177	57	F
##	79	Lilly	31	163	69	F
##	80	Mark	23	190	83	M
##	81	Oliver	52	179	75	M
##	82	Martha	76	163	70	F
##	83	Lucas	49	183	83	M
##	84	Caroline	26	164	53	F
##	85	Alex	25	177	57	F
##	86	Lilly	31	163	69	F
##	87	Mark	23	190	83	M
##	88	Oliver	52	179	75	M
##	89	Martha	76	163	70	F
##	90	Lucas	49	183	83	M
##	91	Caroline	26	164	53	F
##	92	Alex	25	177	57	F
##	93	Lilly	31	163	69	F
##	94	Mark	23	190	83	M
##	95	Oliver	52	179	75	M

```
## 96
         Martha 76
                       163
                               70
                                   F
## 97
         Lucas
                49
                       183
                               83
                                    M
## 98
      Caroline
                 26
                       164
                               53
                                    F
## 99
          Alex 25
                       177
                               57
                                    F
         Lilly 31
## 100
                       163
                               69
                                    F
## 101
         Mark 23
                       190
                               83
                                    М
## 102
         Oliver
                52
                       179
                               75
                                    Μ
## 103
         Martha
                76
                       163
                               70
                                    F
## 104
         Lucas 49
                       183
                               83
                                    М
## 105 Caroline 26
                                    F
                       164
                               53
```

Table6.txt 中 @ 为注释符号

read.csv("data/states1.csv", header = TRUE)

##		X	Population	Income	Illiteracy	Life.Exp	Murder	HS.Grad	Frost
##	1	Alabama	3615	3624	2.1	69.05	15.1	41.3	20
##	2	Alaska	365	6315	1.5	69.31	11.3	66.7	152
##	3	Arizona	2212	4530	1.8	70.55	7.8	58.1	15
##	4	Arkansas	2110	3378	1.9	70.66	10.1	39.9	65
##	5	California	21198	5114	1.1	71.71	10.3	62.6	20
##	6	Colorado	2541	4884	0.7	72.06	6.8	63.9	166
##	7	Connecticut	3100	5348	1.1	72.48	3.1	56.0	139
##	8	Delaware	579	4809	0.9	70.06	6.2	54.6	103
##	9	Florida	8277	4815	1.3	70.66	10.7	52.6	11
##	10	Georgia	4931	4091	2.0	68.54	13.9	40.6	60
##	11	Hawaii	868	4963	1.9	73.60	6.2	61.9	0
##	12	Idaho	813	4119	0.6	71.87	5.3	59.5	126
##	13	Illinois	11197	5107	0.9	70.14	10.3	52.6	127
##	14	Indiana	5313	4458	0.7	70.88	7.1	52.9	122
##	15	Iowa	2861	4628	0.5	72.56	2.3	59.0	140
##	16	Kansas	2280	4669	0.6	72.58	4.5	59.9	114
##	17	Kentucky	3387	3712	1.6	70.10	10.6	38.5	95
##	18	Louisiana	3806	3545	2.8	68.76	13.2	42.2	12

##	19	Maine	1058	3694	0.7	70.39	2.7	54.7	161
##	20	Maryland	4122	5299	0.9	70.22	8.5	52.3	101
##	21	Massachusetts	5814	4755	1.1	71.83	3.3	58.5	103
##	22	Michigan	9111	4751	0.9	70.63	11.1	52.8	125
##	23	Minnesota	3921	4675	0.6	72.96	2.3	57.6	160
##	24	Mississippi	2341	3098	2.4	68.09	12.5	41.0	50
##	25	Missouri	4767	4254	0.8	70.69	9.3	48.8	108
##	26	Montana	746	4347	0.6	70.56	5.0	59.2	155
##	27	Nebraska	1544	4508	0.6	72.60	2.9	59.3	139
##	28	Nevada	590	5149	0.5	69.03	11.5	65.2	188
##	29	New Hampshire	812	4281	0.7	71.23	3.3	57.6	174
##	30	New Jersey	7333	5237	1.1	70.93	5.2	52.5	115
##	31	New Mexico	1144	3601	2.2	70.32	9.7	55.2	120
##	32	New York	18076	4903	1.4	70.55	10.9	52.7	82
##	33	North Carolina	5441	3875	1.8	69.21	11.1	38.5	80
##	34	North Dakota	637	5087	0.8	72.78	1.4	50.3	186
##	35	Ohio	10735	4561	0.8	70.82	7.4	53.2	124
##	36	Oklahoma	2715	3983	1.1	71.42	6.4	51.6	82
##	37	Oregon	2284	4660	0.6	72.13	4.2	60.0	44
##	38	Pennsylvania	11860	4449	1.0	70.43	6.1	50.2	126
##	39	Rhode Island	931	4558	1.3	71.90	2.4	46.4	127
##	40	South Carolina	2816	3635	2.3	67.96	11.6	37.8	65
##	41	South Dakota	681	4167	0.5	72.08	1.7	53.3	172
##	42	Tennessee	4173	3821	1.7	70.11	11.0	41.8	70
##	43	Texas	12237	4188	2.2	70.90	12.2	47.4	35
##	44	Utah	1203	4022	0.6	72.90	4.5	67.3	137
##	45	Vermont	472	3907	0.6	71.64	5.5	57.1	168
##	46	Virginia	4981	4701	1.4	70.08	9.5	47.8	85
##	47	Washington	3559	4864	0.6	71.72	4.3	63.5	32
##	48	West Virginia	1799	3617	1.4	69.48	6.7	41.6	100
##	49	Wisconsin	4589	4468	0.7	72.48	3.0	54.5	149
##	50	Wyoming	376	4566	0.6	70.29	6.9	62.9	173
##		Area							

- ## 1 50708
- ## 2 566432
- ## 3 113417
- ## 4 51945
- ## 5 156361
- ## 6 103766
- ## 7 4862
- ## 8 1982
- ## 9 54090
- ## 10 58073
- ## 11 6425
- ## 12 82677
- ## 13 55748
- ## 14 36097
- ## 15 55941
- ## 16 81787
- ## 17 39650
- ## 18 44930
- ## 19 30920
- ## 20 9891

21

23

22

7826

79289

- 56817
- ## 24 47296
- ## 25 68995
- ## 26 145587 ## 27
- 76483 ## 28 109889
- ## 29 9027
- ## 30 7521
- ## 31 121412
- ## 32 47831
- ## 33 48798

```
## 34
      69273
## 35
      40975
## 36
      68782
## 37
      96184
## 38
      44966
## 39
       1049
## 40
       30225
## 41
       75955
## 42 41328
## 43 262134
      82096
## 44
## 45
        9267
## 46 39780
## 47
      66570
      24070
## 48
## 49
      54464
## 50 97203
stats2 <- read.csv("data/states2.csv", header = TRUE,</pre>
sep = ";", dec = ",")
stats2
```

##		X	Population	Income	Illiteracy	Life.Exp	Murder	${\tt HS.Grad}$	Frost
##	1	Alabama	3615	3624	2.1	69.05	15.1	41.3	20
##	2	Alaska	365	6315	1.5	69.31	11.3	66.7	152
##	3	Arizona	2212	4530	1.8	70.55	7.8	58.1	15
##	4	Arkansas	2110	3378	1.9	70.66	10.1	39.9	65
##	5	California	21198	5114	1.1	71.71	10.3	62.6	20
##	6	Colorado	2541	4884	0.7	72.06	6.8	63.9	166
##	7	Connecticut	3100	5348	1.1	72.48	3.1	56.0	139
##	8	Delaware	579	4809	0.9	70.06	6.2	54.6	103
##	9	Florida	8277	4815	1.3	70.66	10.7	52.6	11
##	10	Georgia	4931	4091	2.0	68.54	13.9	40.6	60
##	11	Hawaii	868	4963	1.9	73.60	6.2	61.9	0

##	12	Idaho	813	4119	0.6	71.87	5.3	59.5	126
##	13	Illinois	11197	5107	0.9	70.14	10.3	52.6	127
##	14	Indiana	5313	4458	0.7	70.88	7.1	52.9	122
##	15	Iowa	2861	4628	0.5	72.56	2.3	59.0	140
##	16	Kansas	2280	4669	0.6	72.58	4.5	59.9	114
##	17	Kentucky	3387	3712	1.6	70.10	10.6	38.5	95
##	18	Louisiana	3806	3545	2.8	68.76	13.2	42.2	12
##	19	Maine	1058	3694	0.7	70.39	2.7	54.7	161
##	20	Maryland	4122	5299	0.9	70.22	8.5	52.3	101
##	21	Massachusetts	5814	4755	1.1	71.83	3.3	58.5	103
##	22	Michigan	9111	4751	0.9	70.63	11.1	52.8	125
##	23	Minnesota	3921	4675	0.6	72.96	2.3	57.6	160
##	24	Mississippi	2341	3098	2.4	68.09	12.5	41.0	50
##	25	Missouri	4767	4254	0.8	70.69	9.3	48.8	108
##	26	Montana	746	4347	0.6	70.56	5.0	59.2	155
##	27	Nebraska	1544	4508	0.6	72.60	2.9	59.3	139
##	28	Nevada	590	5149	0.5	69.03	11.5	65.2	188
##	29	New Hampshire	812	4281	0.7	71.23	3.3	57.6	174
##	30	New Jersey	7333	5237	1.1	70.93	5.2	52.5	115
##	31	New Mexico	1144	3601	2.2	70.32	9.7	55.2	120
##	32	New York	18076	4903	1.4	70.55	10.9	52.7	82
##	33	North Carolina	5441	3875	1.8	69.21	11.1	38.5	80
##	34	North Dakota	637	5087	0.8	72.78	1.4	50.3	186
##	35	Ohio	10735	4561	0.8	70.82	7.4	53.2	124
##	36	Oklahoma	2715	3983	1.1	71.42	6.4	51.6	82
##	37	Oregon	2284	4660	0.6	72.13	4.2	60.0	44
##	38	Pennsylvania	11860	4449	1.0	70.43	6.1	50.2	126
##	39	Rhode Island	931	4558	1.3	71.90	2.4	46.4	127
##	40	South Carolina	2816	3635	2.3	67.96	11.6	37.8	65
##	41	South Dakota	681	4167	0.5	72.08	1.7	53.3	172
##	42	Tennessee	4173	3821	1.7	70.11	11.0	41.8	70
##	43	Texas	12237	4188	2.2	70.90	12.2	47.4	35
##	44	Utah	1203	4022	0.6	72.90	4.5	67.3	137

6 103766

4862

1982

54090 58073

6425

82677

55748

36097

55941

81787

39650

44930

30920

9891

7826

56817

79289

47296

68995

26 145587

7

8

9

10 ## 11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

##	45	Vermont	472	3907	0.6	71.64	5.5	57.1	168
##	46	Virginia	4981	4701	1.4	70.08	9.5	47.8	85
##	47	Washington	3559	4864	0.6	71.72	4.3	63.5	32
##	48	West Virginia	1799	3617	1.4	69.48	6.7	41.6	100
##	49	Wisconsin	4589	4468	0.7	72.48	3.0	54.5	149
##	50	Wyoming	376	4566	0.6	70.29	6.9	62.9	173
##		Area							
##	1	50708							
##	2	566432							
##	3	113417							
##	4	51945							
##	5	156361							

```
## 27
      76483
## 28 109889
## 29
        9027
## 30
        7521
## 31 121412
## 32
       47831
## 33
       48798
## 34
       69273
## 35
       40975
## 36
       68782
## 37
       96184
## 38
       44966
## 39
        1049
## 40
       30225
## 41
       75955
## 42
       41328
## 43 262134
## 44
       82096
## 45
        9267
## 46
       39780
## 47
       66570
       24070
## 48
## 49
      54464
## 50
      97203
if (!require("readr")){
  chooseCRANmirror()
  install.packages("readr")
}
```

- ## 载入需要的程辑包: readr
- ## Warning: 程辑包'readr'是用R版本4.1.3 来建造的

A tibble: 7 x 5

```
library(readr)
## 用 readr 包的函数读取,并显示读取的内容;
read_table("data/Table0.txt", col_names = FALSE, show_col_types = FALSE)
## # A tibble: 7 x 5
##
    Х1
                X2
                      ХЗ
                            X4 X5
##
    <chr>
             <dbl> <dbl> <dbl> <chr>
## 1 Alex
                25
                    177
                            57 F
## 2 Lilly
                31
                    163
                            69 F
## 3 Mark
                23 190
                            83 M
## 4 Oliver
                52 179
                            75 M
## 5 Martha
                            70 F
                76 163
## 6 Lucas
                49
                    183
                            83 M
## 7 Caroline
                26
                    164
                            53 F
read_table("data/Table1.txt", col_names = TRUE, show_col_types = FALSE)
## # A tibble: 7 x 5
##
    Name
               Age Height Weight Sex
##
    <chr>
             <dbl> <dbl> <dbl> <chr>
## 1 Alex
                25
                      177
                              57 F
## 2 Lilly
                31
                      163
                              69 F
## 3 Mark
                23
                      190
                              83 M
## 4 Oliver
                52
                      179
                             75 M
## 5 Martha
                76
                      163
                              70 F
## 6 Lucas
                49
                      183
                              83 M
## 7 Caroline
                26
                      164
                              53 F
table2 <- read_table("data/Table2.txt", col_names = TRUE, skip = 1, show_col_types = FA
table2[, c(1,5)] <- lapply(table2[, c(1, 5)],
  gsub, pattern = "/", replacement = "")
table2
```

```
##
                Age Height Weight Sex
     Name
              <dbl> <dbl> <dbl> <chr>
##
     <chr>
## 1 Alex
                       177
                               57 F
                 25
## 2 Lilly
                 31
                       163
                               69 F
## 3 Mark
                 23
                       190
                               83 M
## 4 Oliver
                 52
                       179
                              75 M
## 5 Martha
                 76
                       163
                              70 F
## 6 Lucas
                 49
                       183
                               83 M
## 7 Caroline
                 26
                       164
                               53 F
read_table("data/Table3.txt", col_names = TRUE, skip = 1,
na = c("", "NA", "--", "*", "**"), show_col_types = FALSE)
## # A tibble: 7 x 5
##
    Name
                Age Height Weight Sex
     <chr>
              <dbl> <dbl> <dbl> <chr>
##
## 1 Alex
                               57 F
                 25
                       177
## 2 Lilly
                 31
                               69 F
                       NA
## 3 Mark
                 NA
                       190
                               83 M
## 4 Oliver
                 52
                       179
                               75 M
## 5 Martha
                 76
                       NA
                              70 F
## 6 Lucas
                 49
                       183
                               NA M
## 7 Caroline
                 26
                       164
                               53 F
read_table("data/Table4.txt", col_names = TRUE,
na = c("", "NA", "--", "*", "**"), show_col_types = FALSE)
## # A tibble: 7 x 5
##
                Age Height Weight Sex
    Name
##
     <chr>
              <dbl> <dbl> <dbl> <chr>
## 1 Alex
                 25
                       177
                               57 F
```

2 Lilly

3 Mark

4 Oliver

31

NA

52

NA

190

179

69 F

83 M

75 M

```
## 5 Martha
                76
                               70 F
                       NA
## 6 Lucas
                 49
                       183
                               NA M
## 7 Caroline
                               53 F
                 26
                       164
read_delim("data/Table5.txt", col_names = TRUE, delim = ";",
na = c("", "NA", "--", "*", "**"), show_col_types = FALSE)
## # A tibble: 7 x 5
               Age Height Weight Sex
    Name
##
     <chr>
             <dbl> <dbl> <dbl> <chr>
                               57 F
## 1 Alex
                25
                       177
## 2 Lilly
                31
                       NA
                               69 F
## 3 Mark
                NA
                       190
                               83 M
## 4 Oliver
                      179
                              75 M
                52
## 5 Martha
                76
                      NA
                              70 F
## 6 Lucas
                49
                       183
                              NA M
## 7 Caroline
                 26
                               53 F
                       164
read_table("data/Table6.txt", col_names = TRUE, skip = 1,
comment = "@", show_col_types = FALSE)
## # A tibble: 105 x 5
##
     Name
                Age Height Weight Sex
     <chr>
              <dbl> <dbl> <dbl> <chr>
##
                                57 F
   1 Alex
                  25
                        177
##
##
   2 Lilly
                  31
                        163
                                69 F
##
   3 Mark
                  23
                        190
                               83 M
## 4 Oliver
                  52
                        179
                               75 M
```

5 Martha

6 Lucas

8 Alex

9 Lilly

10 Mark

7 Caroline

76

49

26

25

31

23

163

183

164

177

163

190

70 F

83 M

53 F

57 F

69 F

83 M

... with 95 more rows read_csv("data/states1.csv", col_names = TRUE, show_col_types = FALSE) ## New names: ## * `` -> `...1` ## # A tibble: 50 x 9 Population Income Illiteracy Life E~1 Murder HS Gr~2 Frost ## ...1 Area ## <chr> <dbl> <dbl> <dbl><dbl> <dbl> <dbl> <dbl> <dbl> 1 Alabama 3615 3624 2.1 69.0 15.1 41.3 50708 ## 20 2 Alaska 365 6315 1.5 69.3 11.3 66.7 152 566432 ## 3 Arizona 7.8 2212 4530 1.8 70.6 58.1 15 113417 ## 1.9 70.7 4 Arkansas 2110 3378 10.1 39.9 65 51945 ## 5 California 21198 5114 1.1 71.7 10.3 62.6 20 156361 6 Colorado 2541 4884 0.7 72.1 6.8 63.9 166 103766 ## 72.5 ## 7 Connecticut 3100 5348 1.1 3.1 56 139 4862 ## 8 Delaware 579 4809 0.9 70.1 6.2 54.6 103 1982 9 Florida 4815 70.7 52.6 ## 8277 1.3 10.7 11 54090 2 68.5 13.9 ## 10 Georgia 4931 4091 40.6 60 58073 ## # ... with 40 more rows, and abbreviated variable names 1: `Life Exp`, 2: `HS Grad` ## # # 读取 states2.csv . colon 转换成点,使用分号作为分隔符 read_delim("data/states2.csv", col_names = TRUE, locale = locale(decimal_mark = ","), delim = ";", show_col_types = FALSE) ## New names: ## * `` -> `...1` ## # A tibble: 50 x 9 ## ...1 Population Income Illiteracy Life E~1 Murder HS Gr~2 Frost Area <dbl> <dbl> ## <chr> <dbl> <dbl> <dbl><dbl> <dbl> <dbl> ## 1 Alabama 3615 3624 2.1 69.0 15.1 41.3 20 50708

##	2	Alaska	365	6315	1.5	69.3	11.3	66.7	152	566432
##	3	Arizona	2212	4530	1.8	70.6	7.8	58.1	15	113417
##	4	Arkansas	2110	3378	1.9	70.7	10.1	39.9	65	51945
##	5	California	21198	5114	1.1	71.7	10.3	62.6	20	156361
##	6	Colorado	2541	4884	0.7	72.1	6.8	63.9	166	103766
##	7	Connecticut	3100	5348	1.1	72.5	3.1	56	139	4862
##	8	Delaware	579	4809	0.9	70.1	6.2	54.6	103	1982
##	9	Florida	8277	4815	1.3	70.7	10.7	52.6	11	54090
##	10	Georgia	4931	4091	2	68.5	13.9	40.6	60	58073

 $[\]mbox{\tt \#\# \# } \ldots$ with 40 more rows, and abbreviated variable names 1: `Life Exp`,

^{## # 2: `}HS Grad`