CQFR : RÉACTIVITÉ en α d'un GROUPE ÉLECTRO-ATTRACTEUR

Lorsque l'on parle de groupe électro-attracteur, il peut s'agir d'un groupe **mésomère** attracteur ou **inductif** attracteur, dans le cadre du programme on s'intéresse aux **groupes mésomères attracteurs**

Groupe électro-attracteur :

- Un groupe mésomère attracteur confère une acidité aux protons en α car cela permet de stabiliser la base conjuguée.
 - Réflexe : lorsque l'on demande de justifier qu'un proton est acide il faut étudier la stabilité de la base conjuguée, plus celle-ci est stable plus l'acide est fort. La justification se fait grâce à l'écriture des formes mésomères montrant la délocalisation de la charge.
- Cas des cétones et aldéhydes
 - Connaître l'ordre de grandeur des p
K $_a$ en α d'une cétone, d'un aldéhyde, d'un ester (de 17 à 25)
 - Savoir donner les formes mésomères de l'ion énolate.
 - Savoir donner les deux réactivités de l'énolate :
 - \rightarrow Nucléophile : sous contrôle orbitalaire \rightarrow site réactif = carbone α
 - \rightarrow A/B : sous contrôle de charge \rightarrow site réactif = O⁻.

Réactivité de l'ion énolate :

- L'ion énolate est un bon nucléophile et une base. Il est essentiellement utilisé en tant que nucléophile.
 - Donner les formes mésomères de l'ion énolate pour justifier la réactivité donnée ci-dessus.
 - Donner le bilan et le mécanisme des réactions suivantes avec énolate provenant de la propanone :
 - \rightarrow C-alkylation : $(S_N 2)$
 - \Diamond énolate + Br-CH₃ \rightarrow
 - \Diamond énolate + Br-CH(CH₃)₂ \rightarrow
 - \rightarrow Aldolisation : donner la définition
 - \Diamond énolate + acétone \rightarrow
 - \Diamond énolate + propanal \rightarrow
 - \Diamond énolate + benzaldéhyde \rightarrow
 - \rightarrow Addition de Michaël :
 - \Diamond énolate + 2-cyclohexèn-1-one \rightarrow
- Savoir justifier qu'en contrôle orbitalaire le site nucléophile est le carbone α
 - Connaitre l'allure de la HO de l'énolate (voir Orbimol) :
 - \rightarrow HO = orbitale π délocalisée sur les trois atomes C_{α} -C-O, avec un plan nodal entre C et O. Le plus gros coefficient se trouve sur C_{α} .
 - Dans le cas où il y a deux carbones α et donc possibilité de former 2 énolates différents :
 - \rightarrow En contrôle thermodynamique :
 - \diamondsuit Contrôle thermodynamique si base faible, peu encombrée, température relativement élevée (de -20°C à T_{amb})
 - ♦ On forme l'énolate le plus stable i.e l'énolate le + substitué (analogue à Zaytsev)

\rightarrow En contrôle cinétique :

- ♦ Contrôle cinétique si base relativement forte, très encombrée, température basse (généralement LDA à -78°C) : on maximise l'importance des effets stériques pour observer une régiosélectivité dans la déprotonation.
- \Diamond On forme l'énolate cinétique : celui qui provient du carbone α le moins encombré

Crotonisation:

- Donner le bilan d'une aldolisation-crotonisation
 - La crotonisation est une réaction sous contrôle thermodynamique : quand on chauffe en conditions basiques on veut généralement obtenir le produit de la crotonisation et non pas l'aldol (chauffage = indice dans les énoncés).
- Donner le mécanisme de la crotonisation en milieu acide
 - Justifier le rôle de l'acide
 - Expliquer la régiosélectivité de la formation de l'alcène observée
- Donner le mécanisme de la crotonisation en milieu basique
 - Expliquez le terme \mathbf{E}_{1ch}
 - Justifier le rôle de la base

Equilibre céto-énolique:

- Définition
- Donner le mécanisme en conditions acides
- Donner le mécanisme en conditions basiques
- Définition tautomères
- Justifier le fait que pour la pentane-2,4-dione l'équilibre soit déplacé dans le sens de la formation de l'énol par rapport à l'équilibre observé pour la propanone.
- Donner la réactivité de l'énol

Réaction de Wittig:

- Ylures de phosphore :
 - Définition
 - Synthèse à partir d'un sel de phosphonium
 - Justifier l'acidité du proton de sel de phosphonium en écrivant les formes mésomères de l'ylure
 - Justifier la nucléophilie du carbone de l'ylure en écrivant les formes mésomères de l'ylure
 - Faire l'analogie réactivité avec l'ion énolate
- Donner le bilan de la réaction de Wittig