Calculus I Derivative of a^x

Todor Milev

2019

Example (Chain Rule, general exponential function)

Differentiate
$$y = 2^x$$
.
 $y = (e^{\ln 2})^x$
 $y = e^{x \ln 2}$.
Let $u =$
Then $y =$
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= ()()$
 $=$
 $=$

Example (Chain Rule, general exponential function)

Differentiate
$$y = a^x$$
.
 $y = \left(e^{\ln a}\right)^x$
 $y = e^{x \ln a}$.
Let $u = x \ln a$.
Then $y = e^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (e^u)(\ln a)$
 $= \left(e^{(x \ln a)}\right)(\ln a)$
 $= \left(e^{\ln a}\right)^x(\ln a)$
 $= a^x \ln a$.

Theorem (The Derivative of a^x)

$$\frac{\mathsf{d}}{\mathsf{d}x}(a^x) = a^x \ln a.$$