Typst Math for Undergrads

This is a Typst port of <u>ETEX Math for Undergrads</u> by Jim Hefferon. The original version is available at https://gitlab.com/jim.hefferon/undergradmath.

Meaning of annotations

This is unavailable. Last check date is $2023-03-24 \times 2023-03-24$.

Get this in a tricky way. Need a simpler method.

No idea Don't know how to get this.

Rule One Any mathematics at all, even a single character, gets a mathematical setting. Thus, for "the value of x is 7" enter the value of x is \$7\$.

Template Your document should contain at least this.

-- document body here --

Common constructs

$$\begin{array}{lll} x^2 \ x^{2} & \sqrt{2}, \ \sqrt[\eta]{3} \ \text{sqrt(2), root(n, 3)} \\ x_{i,j} \ x_{_}(\text{i, j}) & \frac{2}{3}, 2 \ / \ 3 \ \text{2 / 3, 2 } \ / \ 3 \ \text{or 2 slash 3} \end{array}$$

Calligraphic letters Use as in \$cal(A)\$.

ABCDEF GHIJKLMNOPQRSTUVWXYZ

Getting script letters is $2023-03-24 \times$.

Greek

lpha alpha	ξ,Ξ xi,Xi	
eta beta	o omicron	
γ,Γ gamma, Gamma	π,Π pi,Pi	
δ,Δ delta, Delta	arpi pi.alt	
ϵ epsilon.alt	ho rho	
arepsilon epsilon	arrho rho.alt	
ζ zeta	σ, Σ sigma, Sigma	
η eta	ς \u{03C2} 😽	
$ heta, \Theta$ theta, Theta	au tau	
artheta theta.alt	v,Υ upsilon, Upsilon	
ι iota	ϕ,Φ phi.alt,Phi	
$\kappa \mathrm{K}$	arphi phi	
λ,Λ lambda, Lambda	χ chi	
μ mu	ψ,Ψ psi, Psi	
u nu	ω,Ω omega, Omega	

Sets and logic

\cup union	\mathbb{R} RR, bb(R)	\forall forall
\cap sect	\mathbb{Z} ZZ, bb(Z)	\exists exists
\subset subset	\mathbb{Q} QQ, bb(Q)	\neg not
\subseteq subset.eq	\mathbb{N} NN, bb(N)	∨ or
⊃ supset	\mathbb{C} CC, bb(C)	\wedge and
\supseteq supset.eq	Øø🗞	⊢ tack.r
\in in	\emptyset nothing	⊨ models
∉ in.not	ℵ alef	\ without

Negate an operator, as in $\not\subset$, with subset.not. Get the set complement A^c with $A^c(sans(c))$ (or A^c with $A^c(complement)$, or \overline{A} with overline(A)).

Remark: The character \emptyset from \varnothing in \LaTeX is an alternative character of \emptyset from nothing in Typst (\emptyset in \LaTeX). See the Version 3.93 section

of README at https://www.ctan.org/tex-archive/fonts/newcomputermodern. You can create the \varnothing character with a let binding using specific fonts.

Decorations

```
f' f', f prime \dot{a} dot(a) \tilde{a} tilde(a) f'' f prime.double \ddot{a} diaer(a) \bar{a} macron(a) \Sigma^* Sigma^* \hat{a} hat(a) \vec{a} arrow(a)
```

If the decorated letter is i or j then some decorations need $\u\{1D6A4\}$ \mathbb{S} and $\u\{1D6A5\}$ \mathbb{S} , as in \vec{i} with arrow($\u\{1D6A4\}$). Some authors use boldface for vectors: bold(x).

Entering overline(x + y) produces $\overline{x+y}$, and hat(x + y) gives $\widehat{x+y}$. Comment on an expression as here (there is also overbrace(..)).

$$\underbrace{x+y}_{|A|}$$
 underbrace(x + y, |A|)

Dots Use low dots in a list $\{0,1,2,\ldots\}$, entered as $\{0,1,2,\ldots\}$. Use centered dots in a sum or product $1+\cdots+100$, entered as 1+ dots.h.c + 100. You can also get vertical dots dots.v, diagonal dots dots.down and anti-diagonal dots dots.up.

Roman names Just type them!

\sin sin	\sinh sinh	rcsin arcsin
\cos cos	\cosh \cosh	rccos arccos
tan tan	anh tanh	rctan arctan
\sec sec	\coth coth	\min min
\csc csc	\det det	\max max
\cot cot	\dim dim	\inf inf
\exp exp	ker ker	\sup sup
\log log	\deg deg	\liminf liminf
\ln ln	rg arg	\limsup limsup
lg lg	\gcd gcd	\lim lim

Other symbols

< <, lt	ot angle	· dot.op
\leq <=, lt.eq	\measuredangle angle.arc	\pm plus.minus
> >, gt	ℓ ell	\mp minus.plus
\geq >=, gt.eq	∥ parallel	imes times
\neq eq.not	45° 45 degree	÷ div
\ll <<, lt.double	\cong tilde.eqq	* *, ast.op
\gg >>, gt.double	$ ot\cong$ tilde.eqq.not	divides
pprox approx	\sim tilde.op	∤ divides.not
\u{224D} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \ \\ \ \\ \	\simeq tilde.eq	n! n!
\equiv ident	$ \sim$ tilde.not	∂ diff
\prec prec	\oplus plus.circle	abla nabla
≼ prec.eq	\ominus minus.cirle	\hbar planck.reduce
y succ y	⊙ dot.circle	∘ circle.stroked.tiny
\succcurlyeq succ.eq	\otimes times.circle	⋆ star.op
\propto prop	🕖 \u{2298} 😽	$\sqrt{sqrt("")}$
No idea 🖭	harpoon.tr	√ checkmark

Use a divides b for the divides relation, $a \mid b$, and a divides.not b for the negation, $a \nmid b$. Use | to get set builder notation $\{a \in S \mid a \text{ is odd}\}$ with $\{a \text{ in S } \mid a \text{ "is odd"}\}$.

Arrows

```
ightarrow ->, arrow.r.bar 
ightarrow arrow.r.not 
ightarrow arrow.r.long.bar
```

$$\begin{array}{lll} \longrightarrow \text{ arrow.r.long} & \leftarrow <-, \text{ arrow.l} \\ \Rightarrow =>, \text{ arrow.r.double} & \leftrightarrow <->, \text{ arrow.l.r} \\ \Rightarrow \text{ arrow.r.double.not} & \downarrow \text{ arrow.b} \\ \Rightarrow \text{ arrow.r.double.long} & \uparrow \text{ arrow.t.b} \\ \Rightarrow \text{ arrow.squiggly} & \uparrow \text{ arrow.t.b} \\ \end{array}$$

The right arrows in the first column have matching left arrows, such as arrow.l.not, and there are some other matches for down arrows, etc.

Variable-sized operators The summation $\sum_{j=0}^{3} j^2$ sum_(j = 0)^3 j^2 and the integral $\int_{x=0}^{3} x^2 \, \mathrm{d}x$ integral_(x = 0)^3 x^2 dif x expand when displayed.

$$\sum_{j=0}^{3} j^2 \qquad \int_{x=0}^{3} x^2 \, \mathrm{d}x$$

These do the same.

Fences

Fix the size with the lr function.

$$\left[\sum_{k=0}^{n} e^{k^2}\right] \text{ lr([sum_(k = 0)^n e^(k^2)], size: #50%)}$$

To have them grow with the enclosed formula, also use the lr function (although some of them scale by default).

$$\left\langle i,2^{2^{i}}
ight
angle$$
 lr(angle.l i, 2^(2^i) angle.r)

The 1r function also allows to scale unmatched delimiters and one-side fences.

$$\frac{\mathrm{d}f}{\mathrm{d}x}\Big|_{x_0}$$
 lr(frac(dif f, dif x) |)_(x_0)

Arrays, Matrices In Typst, <u>array</u> is a sequence of values, while in \LaTeX , array is a matrix without fences, which is 2023-03-24 % in Typst.

Definition by cases can be easily obtained with the function cases.

$$f_n = \begin{cases} a & \text{if } n = 0 \\ r \cdot f_{n-1} & \text{else} \end{cases} \quad \begin{array}{c} \$ \text{ f_n = cases(} \\ a \text{ \&"if" n = 0,} \\ r \text{ dot.op f_(n - 1) \&"else"} \\ \end{array} \right.$$

Get a matrix with the mat function. You can pass an array to it.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 \$ mat(a, b; c, d) \$

For the determinant use |A|, text operator det det or #set math.mat(delim: "|").

Spacing in mathematics Improve $\sqrt{2}x$ to $\sqrt{2}x$ with a thin space, as in sqrt(2) thin x. Slightly wider are medium and thick (the three are in ratio 3:4:5). Bigger space is quad

for \rightarrow \leftarrow , which is useful between parts of a display. Get arbitrary space with the h function. For example, use h(2em) for \qquad in \LaTeX and h(-0.1667em) for \!.

Displayed equations Display equations in a block level using \$... \$ with at least one space separating the math content and the \$.

$$S = k \cdot \lg W$$
 \$ S = k dot.op lg W \$

You can break into multiple lines.

$$\sin(x) = x - \frac{x^3}{3}! \\ + \frac{x^5}{5}! - \cdots \\ + x^5 / 5! - \text{dots.h.c} \ \$$$

Align equations using &

$$\begin{array}{lll} \nabla \cdot \pmb{D} = \rho & \text{\$ nabla dot.op bold(D) \&= rho \setminus} \\ \nabla \cdot \pmb{B} = 0 & \text{nabla dot.op bold(B) \&= 0 \$} \end{array}$$

(the left or right side of an alignment can be empty). Get a numbered version by #set math.equation(numbering: ..).

Calculus examples The last three here are display style.

$$\begin{split} f: \mathbb{R} &\to \mathbb{R} & \text{f: RR -> RR} \\ 9.8 \text{ m/s}^2 & \text{"9.8" "m/s"^2} & \\ &\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} & \lim_{} (\text{h -> 0) (f(x+h) -} \\ &\int x^2 \, \mathrm{d}x = x^3 \, / \, 3 + C & \text{integral x^2 dif x = x^3 \/ 3} \\ \nabla &= i \frac{\mathrm{d}}{\mathrm{d}x} + j \frac{\mathrm{d}}{\mathrm{d}y} + k \frac{\mathrm{d}}{\mathrm{d}z} & \text{nabla = bold(i) dif / (dif y) +} \\ &\text{bold(k) dif / (dif z)} \end{split}$$

Discrete mathematics examples For modulo, there is a symbol \equiv from ident and a text operator mod from mod.

For combinations the binomial symbol $\binom{n}{k}$ is from binom(n, k). This resizes to be bigger in a display.

For permutations use $n^{\underline{r}}$ from n^(underline(r)) (some authors use P(n,r), or ${}_nP_r$ from ""_n P_r).

Statistics examples

$$\begin{split} \sigma^2 &= \sqrt{\sum(x_i - \mu)^2 \, / \, N} & \text{sigma^2 = sqrt(sum(x_i - mu)^2 \/ N)} \\ E(X) &= \mu_X = \sum(x_i - P(x_i)) & \text{E(X) = mu_X = sum(x_i - P(x_i))} \end{split}$$

The probability density of the normal distribution

$$\frac{1}{\sqrt{2\sigma^2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

comes from this.

For more See also the Typst Documentation at https://typst.app/docs.