Assignment 4

Nohil Park

Electrical and Computer Engineering
Seoul National University

http://ailab.snu.ac.kr

Copyright (C) Data Science & Al Laboratory, Seoul National University. This material is for educational uses only. Some contents are based on the material provided by other paper/book authors and may be copyrighted by them. Written by Uiwon Hwang <shinyflight@gmail.com> , 2020.

Assignment 문제

- Problem 1: Evaluation problem
 - Forward algorithm & backward algorithm 구현
- Problem 2: Decoding problem
 - Viterbi algorithm 구현
- Problem 3: Learning problem
 - Baum Welch algorithm 구현
- Problem 4: Toy example 간단한 예제로 실험
 - Problem 4-1: Evaluation problem
 - Problem 4-2: Decoding problem
 - Problem 4-3: Learning problem
- Problem 4-1, 4-2, 4-3 의 결과는 보고서로 작성

Problem 1. Evaluation problem

- Forward algorithm
 - Input: pi, a, b, obs / Output: alpha
- Backward algorithm
 - Input: a, b, obs, c / Output: beta
- $\alpha_t(i)$, $\beta_t(i)$: 현재 시간 t에 상태 i에 있을 확률
- Scaling c
 - 확률값 계산 시 반복해서 곱하기 때문에 계속 작아지는 반올림
 오차 오류가 발생
 - 정규화를 위해, α 값을 매 반복 때마다 전체 α 값으로 나눔

Problem 2. Decoding problem

- Viterbi algorithm
 - Input: pi, a, b, obs / Output: path, delta, phi
 - Dynamic programming
 - ✓ Initialize δ , ϕ (= ψ in lecture notes)
 - \checkmark Compute δ , ϕ for every states through recursion
 - Compute path (state sequence) by backtracking

Problem 3. Learning problem

- Baum Welch algorithm
 - Input: obs, nStates / Output: pi, a, b
 - EM algorithm
 - Iterations while (Error > tol) & (nits < maxits)
 - E step:
 - \checkmark Use forward, backward algorithms to get α , β
 - \checkmark Compute ξ (xi)
 - M step:
 - \checkmark Compute $\hat{\pi}$
 - ✓ Compute $\hat{\alpha}$
 - \checkmark Compute $\hat{\beta}$

Problem 4. Toy example

- Problem 4-1.
 - Use Forward algorithm
- Problem 4-2.
 - Use Viterbi algorithm
- Problem 4-3.
 - Use Baum Welch algorithm
 - Set nStates = 4

Problem 4. Toy example

Transition probability

	Last night				
	TV	Bar	Party	Study	
TV	0.4	0.6	0.7	0.3	
Bar	0.3	0.05	0.05	0.4	
Party	0.1	0.1	0.05	0.25	
Study	0.2	0.25	0.2	0.05	

Emission probability

	TV	Bar	Party	Study
Tired	0.2	0.4	0.3	0.3
Hangover	0.1	0.2	0.4	0.05
Anxiety	0.2	0.1	0.2	0.3
Good	0.5	0.3	0.1	0.35

- Initial state probabilities are all equal to 0.25
- Observation =
 ['tired', 'tired', 'good', 'hangover', 'hangover', 'anxiety', 'hangover', 'good']

다운 후 설치 방법

- 포함된 파일: 1개
 - 1. AS4-HMM.ipynb
- 다운 후 설치 방법
 - tar zxvf Assignment4.tar.gz
 - 2. cd Assignment4
 - 3. Jupyter notebook
- Ipython notebook 상에서 과제 수행

공지

- 개인과제
- Due: 6/8 (Mon) 23:59 (5/28: AS4에 대한 설명)
- Google first before ask on eTL
- 제출 방법
 - DO NOT clear the final outputs
 - Problem 4-1, 4-2, 4-3 의 경우, Problem 1, 2, 3에서 구현한 알고리즘을
 주어진 Toy example에 적용한 결과를 capture해서 보고서로 제출하기
 - 과제 완료 후:
 - 1. AS4-HMM.ipynb 파일과 보고서를 {본인 학번} 폴더에 넣은 후 {본인 학번}.tar.gz로 압축
 - 2. 생성된 압축파일 (e.g., 2020-12345.tar.gz)을 eTL에 업로드
- Q&A: eTL 게시판 사용
- TA email: ml.class.snu@gmail.com

FAQ

- 실험 환경에 필요한 라이브러리는 다음과 같습니다.
 - python >= 3.5
 - pandas >= 1.0.0
 - numpy >= 1.12.0
- 문제에 제시된 numpy seed 및 Toy example 값은 변경할 수 없습니다.

