可換環論

—— commutative algebra ———

2024年1月4日2:31am

はじめに

自分用のノートでしかない。self-contained は目指さないし、書籍の受け売りしか無いと思う。とりあえず [アティマク] M.F.Atiyah & I.G.Macdonald. **可換代数入門**, 2006. に書いてあることをまとめていこうと思う。

また、断らない限り「環」は乗法単位元を持つ可換環を指す。

目次

	•
1章 環とイデアル	2
1.1 環	2
1.2 素イデアルと極大イデアル	2
付録 A 圏論······	3
±31	

^{第1章} 環とイデアル

1.1 環

定義 1.1.1:環

集合 $A \neq \emptyset$ と演算 +, と $0,1 \in A$ の組 $(A,+,\cdot,0,1)$ が次の条件を満たす時、A は環であるという。

- (1) 加法 +、乗法・についての結合則が成り立つ。
- (2) 0 は加法、1 は乗法の単位元である。
- (3) 各 $a \in A$ は加法逆元を持つ。
- (4) 加法について可換則が成り立つ。
- (5) 分配則が成り立つ。

さらに、

(6) 乗法について可換則が成り立つ。

も満たす時、A は**可換環**であるという。

1.2 素イデアルと極大イデアル

定理 1.2.1:極大イデアルの存在

全ての環 $A \neq 0$ は少なくとも 1 つの極大イデアルを持つ。

これは選択公理依存の定理である。また、実はこれは ZF 上選択公理と同値な命題である。(https://alg-d.com/math/ac/krull.html)

系 1.2.2

 $\mathfrak{a} \neq (1)$ を A のイデアルとすると、A の極大イデアル \mathfrak{m} であって、 $\mathfrak{a} \subset \mathfrak{m}$ となるものが存在する。

系 1.2.3

A の全ての非単元 a に対して、ある極大イデアル \mathfrak{m} が存在して、 $a \in \mathfrak{m}$ となる。

証明: $\mathfrak{a}=(a)\neq(1)$ に対して上の系を適用する。

定義 1.2.4: 局所環・剰余体・半局所環

ただ1つの極大イデアル \mathfrak{m} を持つ環Aを**局所環**という。

このとき、体 A/\mathfrak{m} を A の**剰余体**という。

極大イデアルが有限個である環を半局所環という。

付録A 圏論

定義 1.0.1:ファイバー積 [数学原論, p.2]

X,Y,S を集合、 $f:X\to S,\ g:Y\to S$ を写像とする。積集合 $X\times Y$ の部分集合

$$X \times_S Y := \{(x,y) \in X \times Y \mid f(x) = g(y)\}$$

を X と Y の S 上の**ファイバー積**という。写像を明示して、 $X \times_{f,S,g} Y$ と書くこともある。

第 1 成分と第 2 成分への射影の制限もそれぞれ $\operatorname{pr}_1:X\times_SY\to X,\ \operatorname{pr}_2:X\times_SY\to Y$ と書く。

定義 1.0.2: 圏 [数学原論, p.3]

集合 C, M と写像

$$s: M \to C$$
, $t: M \to C$, $c: M \times_{s,C,t} M \to M$, $e: C \to M$

で、次の図式が可換になるものからなる組(C, M, s, t, c, e)を**圏**という。

(C, M, s, t, c, e) が圏であるとき、省略して C を圏と呼ぶことが多い。

写像 s を源 (source)、t を的 (target)、c を合成 (composition) とよぶ。

集合 C の元を圏 C の対象 (object) とよぶ。また、集合 C を「圏 C の対象の集合」とよび、 $\mathrm{Ob}(C)$ で表すことが多い。

集合 M の元を圏 C の**射 (morphism)** とよぶ。 $A,B \in \mathsf{Ob}(C)$ で、C の射 f が s(f) = A, t(f) = B をみたすとき、f は A から B への射であるといい、 $f:A \to B$ で表す。A から B への射全体の集合を

$$\operatorname{Hom}_{\mathcal{C}}(A,B) = \operatorname{Mor}_{\mathcal{C}}(A,B) := \{ f \in M \mid s(f) = A, t(f) = B \}$$

で表す。

 $(g,f) \in M \times M$ が、写像 c の定義域 $M \times_{s,C,t} M$ の元であるとき、f と g は合成できるという。左上の可換図式から s(c(g,f)) = s(f), t(c(g,f)) = t(g) なので、 $g \circ f := c(g,f)$ は s(f) から t(g) への射である。つまり、射 $f:A \to B$ と $g:B \to D$ の合成は $g \circ f:A \to D$ である。

右上の可換図式は $f \, \mathcal{E} \, g \, \mathcal{G} \, \mathcal{E} \, h \,$ が合成できる時、結合則

$$(h \circ g) \circ f = h \circ (g \circ f) \tag{1.0.3}$$

が成り立つことを表す。

左下の可換図式は、 $A \in \mathrm{Ob}(C)$ に対して、e(A) は C の射 $e(A): A \to A$ であることを表す。これを A の単位射 (identity) とよび、 $1_A: A \to A$ で表す。 右下の可換図式は、射 $f: A \to B$ に対して、

$$1_B \circ f = f = f \circ 1_A \tag{1.0.4}$$

を表す。

注意 1.0.5:対象に焦点を当てた解釈 [数学原論, p.5]

圏 C とは、

- (1) 対象の集合 C
- (2) $A, B \in C$ に対して定まる射の集合 $Mor_C(A, B)$
- (3) C の射 $f:A \rightarrow B, g:B \rightarrow D$ に対して定まる合成射 $g\circ f:A \rightarrow D$
- (4) $A \in C$ に対して定まる単位射 $1_A : A \rightarrow A$

からなり、合成に関する結合則 (1.0.3) (p.3) と、単位射の性質 (1.0.4) (p.3) を満たすものと考えることができる。

定義 1.0.6: 可環単系 [数学原論, p.35]

圏 (C,M,s,t,c,e) の対象がただ 1 つであるとき、M を**単系 (monoid)、モノイド**とよび、写像 $c:M\times M\to M$ を $^{\dagger 1}M$ の**演算**とよぶ。 $e:C\to M$ の像のただ 1 つの元 (C の元は 1 つなので、像は 1 元)を M の単位元という。

 $^{\dagger 1}$ C の対象がただ 1 つなので、 $M \times M = M \times_C M$ となっているために、c の定義域はこのように書いて良い。

定義 1.0.7:群 [数学原論, p.7]

単系 M の全ての射が可逆であるとき、M を**群**という。 $g\in M$ の逆射を g の逆元とよび、 g^{-1} で表す。

とここまで書いたが、これは脇においておくことにする。

索引

■ 記号 ■ X× _{f,S,g} Y3	■ き ■ 局所環2	■ し ■ 射 (morphism) (圏論) 3 剰余体 2	■ は ■ 半局所環
■ え ■	群 4	■ た ■	■ ふ ■
演算 (モノイド)4		対象 (object) (圏論)3	ファイバー積
■ か ■	■ け ■	単位射 (identity) (けんろん) 3	■ も ■
可換環2	圏3	単系 (monoid) (圏) 4	モノイド

参考文献

参考文献

[アティマク] M.F.Atiyah & I.G.Macdonald. 可換代数入門. 共立出版, 2006.

[数学原論] 斎藤 毅. 数学原論. 東京大学出版会, 2020.