INTERNATIONAL STANDARD

16022

Second edition 2006-09-15

Information technology — Automatic identification and data capture techniques — Data Matrix bar code symbology specification

Technologies de l'information — Techniques d'identification automatique et de capture des données — Spécification de symbologie de code à barres Data Matrix

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below

© ISO/IEC 2006

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Contents

Page

Indus dividian	
Introduction	viii
1 Scope	1
2 Normative references	1
Terms, definitions, symbols and abbreviated terms, and mathematical/logical notations Terms and definitions	2
4 Symbol description	3 4 5
5 ECC 200 requirements	5 6 6
5.2.4 Symbology control characters	7 9 11 11
5.2.8 EDIFACT encodation 5.2.9 Base 256 encodation 5.3 User considerations 5.3.1 User selection of Extended Channel Interpretation 5.3.2 User selection of symbol size and shape	12 13 13
5.4 Extended Channel Interpretation	13 14 15
5.5 ECC 200 symbol attributes	15 15 17
5.6.1 Basic principles	17 17 18
5.6.5 Buffered and unbuffered operation	18 18 18
5.7.2 Generating the error correction codewords 5.7.3 Error correction capacity 5.8 Symbol construction 5.8.1 Symbol character placement 5.8.2 Alignment Pattern module placement	19 20 20

5.8.3	Finder Pattern module placement	20
6	ECC 000 - 140 requirements	21
6.1	Use recommendations	
6.2	Encode procedure overview	
6.3	Data encodation	
6.3.1	Base 11 - Numeric encodation	
6.3.2 6.3.3	Base 27 - Upper-case Alphanymeric encodation	
6.3.4	Base 37 - Upper-case Alphanumeric encodation	
6.3. 4 6.3.5	ASCII encodation	
6.3.6	8-bit byte encodation	
6.4	User selection of error correction level	
6.4.1	Selection of error correction level	
6.4.2	Other error correction levels based on convolutional code algorithms	
6.5	Constructing the Unprotected Bit Stream	
6.5.1	Format ID Bit Field	
6.5.2	CRC Bit Field	
6.5.3	Data Length Bit Field	
6.5.4 6.5.5	Completing the Unprotected Bit Stream	
6.6	Constructing the Unrandomised Bit Stream	
6.6.1	Header construction	
6.6.2	Applying convolutional coding to create the Protected Bit Stream	
6.6.3	Trailer construction	
6.6.4	Completing the Unrandomised Bit Stream	27
6.7	Pattern randomising	
6.8	Module placement in matrix	27
7	Symbol dimensions	27
7.1	Dimensions	27
7.2	Quiet zone	27
8	Symbol quality	27
8.1	Symbol quality parameters	 28
8.1.1	Fixed pattern damage	
8.1.2	Scan grade and overall symbol grade	28
8.1.3	Grid non-uniformity	
8.2	Process control measurements	28
9	Reference decode algorithm for Data Matrix	28
10	User guidelines	38
10.1	Human readable interpretation	
10.2	Autodiscrimination capability	
10.3	System considerations	
11	Transmitted data	20
11.1	Protocol for FNC1 (ECC 200 only)	
11.2	Protocol for FNC1 in the second position (ECC 200 only)	
11.3	Protocol for Macro characters in the first position (ECC 200 only)	
11.4	Protocol for ECIs (ECC 200 only)	
11.5	Symbology identifier	
11.6	Transmitted data example	39
Annex	A (normative) ECC 200 interleaving process	40
A.1	Schematic illustration	
A.2	Starting sequence for interleaving in different sized symbols	
Annev	B (normative) ECC 200 pattern randomising	43
B.1	253-state algorithm	
B.1.1	253-state randomising algorithm	
B.1.2	253-state un-randomising algorithm	
B.2	255-state algorithm	

B.2.1 B.2.2	255-state randomising algorithm	. 44 . 44
Annex C.1 C.2 C.3	C (normative) ECC 200 encodation character sets	. 45 . 46
_	D (normative) ECC 200 alignment patterns	
	E (normative) ECC 200 Reed-Solomon error detection and correction	
E.1 E.2 E.3	Error correction codeword generator polynomials Error correction calculation	. 50 . 52
Annex F.1 F.2 F.2.1 F.2.2 F.3	F (normative) ECC 200 symbol character placement Symbol character placement rules Non-standard symbol character shapes Symbol character arrangement Symbol character placement examples for ECC 200	. 55 . 57 . 57 . 60
	G (normative) ECC 000 - 140 symbol attributes	
G.1 G.2	ECC 000ECC 050	
G.2 G.3	ECC 050	
G.4	ECC 100	
G.5	ECC 140	. 72
Annex	H (normative) ECC 000 - 140 data module placement grids	. 73
Annex	I (normative) ECC 000 - 140 character encodation schemes	
I.1	Base 11 encodation scheme	
1.1.1	First stage procedure	
1.1.2	Second stage procedure	
1.1.3	Example	
I.2 I.2.1	Base 27 encodation schemeFirst stage procedure	
1.2.1	Second stage procedure	
1.2.3	Example	
1.3	Base 37 encodation scheme	
I.3.1	First stage procedure	
1.3.2	Second stage procedure	. 96
1.3.3	Example	
1.4	Base 41 encodation scheme	
1.4.1	First stage procedure	
I.4.2 I.4.3	Second stage procedure	
Annex J.1 J.2 J.3	J (normative) ECC 000 - 140 CRC algorithm CRC state machine CRC polynomial CRC 2-byte header	. 98 . 98 . 98
	•	
Annex K.1	K (normative) ECC 000 - 140 error checking and correcting algorithms	
K.2	ECC 000	
K.2	ECC 080	
K.4	ECC 100	
K.5	ECC 140	
K.6	Processing the convolutional code	100
K.7	Convolutional codes reference decode algorithm	101
Annex	L (normative) ECC 000 - 140 Master Random Bit Stream (in hexadecimal)	104

Annex	M (normative) Data Matrix print quality – symbology-specific aspects	105
M.1	Data Matrix Fixed Pattern Damage	105
M.1.1	Features to be assessed	105
M.1.2	Grading of the outside L of the fixed pattern	105
M.1.3	Grading of the clock track and adjacent solid area segments	107
M.1.4	Calculation and grading of average grade	
M.2	Scan grade	
Annex	N (normative) Symbology identifier	113
Annex	O (informative) ECC 200 encode example	114
Annex	P (informative) Encoding data using the minimum symbol data characters for ECC 200	116
Annex	Q (informative) ECC 000 - 140 encode example using ECC 050	120
Q.1	Encode example	
Q.2	CRC calculation for example	125
Annex	R (informative) Useful process control techniques	128
R.1	Symbol contrast	
R.2	Special reference symbol	
R.3	Assessing Axial Nonuniformity	
R.4	Visual inspection for symbol distortion and defects	
Annex	S (informative) Autodiscrimination capability	130
Annex	T (informative) System considerations	131
Riblion	ranhy	132

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 16022 was prepared by Joint Technical Committee ISO/IEC JTC 1, *Information technology*, Subcommittee SC 31, *Automatic identification and data capture techniques*.

This second edition cancels and replaces the first edition (ISO/IEC 16022:2000), which has been technically revised. It also incorporates the Technical Corrigendum ISO/IEC 16022:2000/Cor.1:2004.

Introduction

Data Matrix is a two-dimensional matrix symbology which is made up of nominally square modules arranged within a perimeter finder pattern. Though primarily shown and described in this International Standard as a dark symbol on light background, Data Matrix symbols can also be printed to appear as light on dark.

Manufacturers of bar code equipment and users of the technology require publicly available standard symbology specifications to which they can refer when developing equipment and application standards. The publication of standardised symbology specifications is designed to achieve this.

Information technology — Automatic identification and data capture techniques — Data Matrix bar code symbology specification

1 Scope

This International Standard defines the requirements for the symbology known as Data Matrix. It specifies the Data Matrix symbology characteristics, data character encodation, symbol formats, dimensions and print quality requirements, error correction rules, decoding algorithm, and user-selectable application parameters.

It applies to all Data Matrix symbols produced by any printing or marking technology.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 15424, Information technology — Automatic identification and data capture techniques — Data Carrier Identifiers (including Symbology Identifiers)

ISO/IEC 19762-1, Information technology — Automatic identification and data capture (AIDC) techniques — Harmonized vocabulary — Part 1: General terms relating to AIDC

ISO/IEC 19762-2, Information technology — Automatic identification and data capture (AIDC) techniques — Harmonized vocabulary — Part 2: Optically readable media (ORM)

ISO/IEC 15415, Information technology — Automatic identification and data capture techniques — Bar code print quality test specification — Two-dimensional symbols

ISO/IEC 15416, Information technology — Automatic identification and data capture techniques — Bar code print quality test specification — Linear symbols

ISO/IEC 646:1991, Information technology — ISO 7-bit coded character set for information interchange

ISO/IEC 8859-1, Information technology — 8-bit single-byte coded graphic character sets — Part 1: Latin alphabet No. 1

ISO/IEC 8859-5:1999, Information technology — 8-bit single-byte coded graphic character sets — Part 5: Latin/Cyrillic alphabet

AIM Inc. ITS/04-001 International Technical Standard: Extended Channel Interpretations — Part 1: Identification Schemes and Protocol

---,,---,,,,,-------,,,-,,-,-,---

Terms, definitions, symbols and mathematical/logical notations

Terms and definitions 3.1

For the purposes of this document, the terms and definitions given in ISO/IEC 19762-1, ISO/IEC 19762-2 and the following apply.

3.1.1

codeword

symbol character value, an intermediate level of coding between source data and the graphical encodation in the symbol

3.1.2

module

single cell in a matrix symbology used to encode one bit of data, nominally a square shape in Data Matrix

3.1.3

convolutional coding

error checking and correcting (ECC) algorithm that processes a set of input bits into a set of output bits that can recover from damage by breaking the input bits into blocks, then convolving each input block with the contents of a multi-stage shift register to produce protected output blocks

These encoders can be constructed in hardware using input and output switches, shift registers, and exclusive-or (XOR) gates.

3.1.4

pattern randomising

procedure to convert an original bit pattern to another bit pattern, intended to reduce the probability of repeating patterns occurring in the symbol, by inverting selected bits

Symbols

For the purposes of this document, the following mathematical symbols apply unless defined locally.

- number of error correction codewords
- number of erasures е
- (for ECC 000 140) the number of bits in a complete segment input to the state machine to generate the k convolutional code (for ECC 200) total number of error correction codewords
- the memory order of the convolutional code m
- (for ECC 000 140) the number of bits in a complete segment generated by the state machine producing the convolutional code (for ECC 200) total number of data codewords
- the numerical base in an encodation scheme
- number of codewords reserved for error detection р
- S symbol character
- number of errors
- the input bit segment to the state machine, taken k bits at a time Ш
- the output bit segment from the state machine, generated n bits at a time

- X horizontal and vertical width of a module
- ε error correction codeword

3.3 Mathematical/logical notations

For the purposes of this document, the following notations and mathematical operations apply.

div integer division operator

mod integer remainder after division

XOR exclusive-or logic function whose output is one only when its two inputs are not equivalent.

LSB least significant bit

MSB most significant bit

4 Symbol description

4.1 Basic characteristics

Data Matrix is a two-dimensional matrix symbology.

There are two types:

ECC 200 which uses Reed-Solomon error correction. ECC 200 is recommended for new applications.

ECC 000 - 140 with several available levels of convolutional error correction, referred to as ECC 000, ECC 050, ECC 080, ECC 100 and ECC 140 respectively. ECC 000 - 140 should only be used in closed applications where a single party controls both the production and reading of the symbols and is responsible for overall system performance.

The characteristics of Data Matrix are:

- a) Encodable character set:
 - 1) values 0 127 in accordance with the US national version of ISO/IEC 646

NOTE 1 This version consists of the G0 set of ISO/IEC 646 and the C0 set of ISO/IEC 6429 with values 28 – 31 modified to FS, GS, RS and US respectively.

- 2) values 128 255 in accordance with ISO 8859-1. These are referred to as extended ASCII.
- b) Representation of data: A dark module is a binary one and a light module is a zero.

NOTE 2 This International Standard specifies Data Matrix symbols in terms of dark modules marked on a light background. However, subclause 4.2 provides that symbols may also be produced with light and dark modules reversed in colour (see 4.2), and in such symbols references in this International Standard to dark modules should be taken as references to light modules, and vice versa.

c) Symbol size in modules (not including quiet zone):

ECC 200 10 x 10 to 144 x 144 even values only

ECC 000 - 140 9 x 9 to 49 x 49, odd values only

Data characters per symbol (for maximum symbol size in ECC200):

Alphanumeric data: up to 2 335 characters

8-bit byte data: 1 555 characters 2)

Numeric data: 3 116 digits.

e) Selectable error correction:

ECC 200: Reed-Solomon error correction.

ECC 000 - 140: Four levels of convolutional error correction, plus the option to apply only error

detection

Code type: Matrix

Orientation independence: Yes

Summary of additional features 4.2

The following summarises additional features which are inherent or optional in Data Matrix:

- Reflectance reversal: (Inherent): Symbols are intended to be read when marked so that the image is either dark on light or light on dark (see Figure 1). The specifications in this International Standard are based on dark images on a light background, therefore references to dark or light modules should be taken as references to light or dark modules respectively in the case of symbols produced with reflectance reversal.
- b) Extended Channel Interpretations: (ECC 200 only, optional): This mechanism enables characters from other character sets (e.g. Arabic, Cyrillic, Greek, Hebrew) and other data interpretations or industryspecific requirements to be represented.
- Rectangular symbols: (ECC 200 only, optional): Six symbol formats are specified in a rectangular form.
- Structured append: (ECC 200 only, optional): This allows files of data to be represented in up to 16 Data Matrix symbols. The original data can be correctly reconstructed regardless of the order in which the symbols are scanned.

4.3 Symbol structure

Each Data Matrix symbol consists of data regions which contain nominally square modules set out in a regular array. In larger ECC 200 symbols, data regions are separated by alignment patterns. The data region, or set of data regions and alignment patterns, is surrounded by a finder pattern, and this shall in turn be surrounded on all four sides by a guiet zone border. Figure 1 illustrates an ECC 140 and two representations of an ECC 200 symbol.

(a) ECC200, dark on light

(b) ECC200, light on dark

(c) ECC140, dark on light

Figure 1 — ECC 200 (a & b) and ECC 140 (c) encoding "A1B2C3D4E5F6G7H8I9J0K1L2"

4.3.1 Finder pattern

The finder pattern is a perimeter to the data region and is one module wide. Two adjacent sides, the left and lower sides, forming the L boundary, are solid dark lines; these are used primarily to determine physical size, orientation and symbol distortion. The two opposite sides are made up of alternating dark and light modules. These are used primarily to define the cell structure of the symbol, but also can assist in determining physical size and distortion. The extent of the quiet zone is indicated by the corner marks in Figure 1.

4.3.2 Symbol sizes and capacities

ECC 200 symbols have an even number of rows and an even number of columns. Some symbols are square with sizes from 10 x 10 to 144 x 144 not including quiet zones. Some symbols are rectangular with sizes from 8 x 18 to 16 x 48 not including quiet zones. All ECC 200 symbols can be recognised by the upper right corner module being light. The complete attributes of ECC 200 symbols are given in Table 7 in Section 5.5.

ECC 000 - 140 symbols have an odd number of rows and an odd number of columns. Symbols are square with sizes from 9 x 9 to 49 x 49 (modules) not including quiet zones. These symbols can be recognised by the upper right corner module being dark. The complete attributes of ECC 000 - 140 symbols are given in Annex G.

5 ECC 200 requirements

5.1 Encode procedure overview

This section provides an overview of the encoding procedure. Following sections will provide more details. An encoding example for ECC 200 is given in Annex O. The following steps convert user data to an ECC 200 symbol:

Step 1: Data encodation

Analyse the data stream to identify the variety of different characters to be encoded. ECC 200 includes various encodation schemes which allow a defined set of characters to be converted into codewords more efficiently than the default scheme. Insert additional codewords to switch between the encodation schemes and to perform other functions. Add pad characters as needed to fill the required number of codewords. If the user does not specify the matrix size, then choose the smallest size that accommodates the data. A complete list of matrix sizes is shown in Section 5.5, Table 7.

Encodation scheme	Characters	Bits per data character				
	double digit numerics	4				
ASCII	ASCII values 0 - 127	8				
	Extended ASCII values 128 - 255	16				
C40	Upper-case alphanumeric	5,33				
C40	Lower case and special characters	10,66ª				
Text	Lower-case alphanumeric	5,33				
Text	Upper case and special characters	10,66 ^b				
X12	ANSI X12 EDI data set	5,33				
EDIFACT	ASCII values 32 - 94	6				
Base 256 All byte values 0 - 255		8				
a encoded as two C40 values as result of use of a shift character						

Step 2: Error checking and correcting codeword generation

For symbols with more than 255 codewords, sub-divide the codeword stream into interleaved blocks to enable the error correction algorithms to be processed as shown in Annex A. Generate the error correction codewords for each block. The result of this process expands the codeword stream by the number of error correction codewords. Place the error correction codewords after the data codewords.

Step 3: Module placement in matrix

Place the codeword modules in the matrix. Insert the alignment pattern modules, if any, in the matrix. Add the finder pattern modules around the matrix.

5.2 Data encodation

5.2.1 Overview

The data may be encoded using any combination of six encodation schemes (see Table 1). ASCII encodation is the basic scheme. All other encodation schemes are invoked from ASCII encodation and return to this scheme. The compaction efficiencies given in Table 1 need to be interpreted carefully. The best scheme for a given set of data may not be the one with the fewest bits per data character. If the highest degree of compaction is required, account has to be taken of switching between encodation schemes and between code sets within an encodation scheme (see Annex P). It should also be noted that even if the number of codewords is minimised, the codeword stream might need to be expanded to fill a symbol. This fill process is done using pad characters.

5.2.2 Default character interpretation

The default character interpretation for character values 0 to 127 shall conform to ISO/IEC 646. The default character interpretation for character values 128 to 255 shall conform to ISO 8859-1: Latin Alphabet No. 1. The graphical representation of data characters shown throughout this document complies with the default interpretation. This interpretation can be changed using Extended Channel Interpretation (ECI) escape sequences, see 5.4. The default interpretation corresponds to ECI 000003.

b encoded as two Text values as result of use of a shift character

5.2.3 ASCII encodation

ASCII encodation is the default set for the first symbol character in all symbol sizes. It encodes ASCII data, double density numeric data and symbology control characters. Symbology control characters include function characters, the pad character and the switches to other code sets. ASCII data is encoded as codewords 1 to 128 (ASCII value plus 1). Extended ASCII (data values 128 to 255) is encoded using the upper shift symbology control character (see 5.2.4.2). The digit pairs 00 to 99 are encoded with codewords 130 to 229 (numeric value plus 130). The ASCII code assignments are shown in Table 2.

Table 2 — ASCII encodation values

Codeword	Data or function
1 - 128	ASCII data (ASCII value + 1)
129	Pad
130 - 229	2-digit data 00 - 99 (Numeric Value + 130)
230	Latch to C40 encodation
231	Latch to Base 256 encodation
232	FNC1
233	Structured Append
234	Reader Programming
235	Upper Shift (shift to Extended ASCII)
236	05 Macro
237	06 Macro
238	Latch to ANSI X12 encodation
239	Latch to Text encodation
240	Latch to EDIFACT encodation
241	ECI Character
242 - 255	Not to be used in ASCII encodation

5.2.4 Symbology control characters

ECC 200 symbols have several special symbology control characters, which have particular significance to the encodation scheme. These characters shall be used to instruct the decoder to perform certain functions or to send specific data to the host computer as described in 5.2.4.1 to 5.2.4.9. These symbology control characters, with the exception of values from 242 through 255, are found in the ASCII encodation set (see Table 2).

5.2.4.1 Latch characters

A Latch Character shall be used to switch from ASCII encodation to one of the other encodation schemes. All codewords which follow a Latch Character shall be compacted according to the new encodation scheme. The encodation schemes have different methods for returning to the ASCII encodation set.

---,,---,,-----

5.2.4.2 Upper Shift character

The Upper Shift character is used in combination with an ASCII value (1 - 128) to encode an extended ASCII character (129-255). An extended ASCII character encoded in the ASCII, C40, or Text encodation scheme requires a preceding Upper Shift character and the extended ASCII character value decreased by 128 is then encoded according to the rules of the encodation scheme. In ASCII encodation, the Upper Shift character is represented by codeword 235. The reduced data value (i.e. ASCII value minus 128) is transformed into its codeword value by adding 1. For example, to encode ¥ (Yen currency symbol) (ASCII value 165), an Upper Shift character (Codeword 235) is followed by value 37 (165 - 128), which is encoded as codeword 38. If there are long data strings of characters from the extended ASCII range, a Latch to Base 256 encodation should be more efficient.

5.2.4.3 Pad character

If the encoded data, irrespective of the encodation scheme in force, does not fill the data capacity of the symbol, pad characters (value 129 in ASCII encodation) shall be added to fill the remaining data capacity of the symbol. The pad characters shall only be used for this purpose. Before inserting pad characters, it is necessary to return to ASCII encodation if in any other encodation mode. The 253-State pattern randomising algorithm is applied to the pad characters starting at the second pad character and continuing to the end of the symbol (see Annex B.1).

5.2.4.4 **Extended Channel Interpretation character**

An Extended Channel Interpretation (ECI) character is used to change from the default interpretation used to encode data. The Extended Channel Interpretation protocol is common across a number of symbologies and its application to ECC 200 is defined more fully in 5.4. The ECI character shall be followed by one, two, or three codewords which identify the ECI being invoked. The new ECI remains in place until the end of the encoded data, or until another ECI character is used to invoke another interpretation.

5.2.4.5 Shift characters in C40 and Text encodation

In C40 and Text Encoding, three special characters, called shift characters, are used as a prefix to one of 40 values to encode about three guarters of the ASCII characters. This allows the remaining ASCII characters to be encoded in a more condensed way with single values.

5.2.4.6 FNC1 alternate data type identifier

To encode data to conform to specific industry standards as authorised by AIM Inc., a FNC1 character shall appear in the first or second symbol character position (or in the fifth or sixth data positions of the first symbol of Structured Append). FNC1 encoded in any other position is used as a field separator and shall be transmitted as ^G_S control character (ASCII value 29).

5.2.4.7 **Macro characters**

Data Matrix provides a means of abbreviating an industry specific header and trailer in one symbol character. This feature exists to reduce the number of symbol characters needed to encode data in a symbol using certain structured formats. A Macro character must be in the first character position of a symbol. They shall not be used in conjunction with Structured Append and their functions are defined in Table 3. The header shall be transmitted as a prefix to the data stream and the trailer shall be transmitted as a suffix to the data stream. The symbology identifier, if used, shall precede the header.

Table 3 — Macro functions

Macro codeword	Name	Interpretation				
Wacro codeword	Name	Header	Trailer			
236	05 Macro	[)> ^R _S 05 ^G _S	R _S EO _T			
237	06 Macro	[)>R _S 06 ^G _S	R _S EO _T			

5.2.4.8 Structured Append character

A Structured Append character is used to indicate that the symbol is part of a Structured Append sequence according to the rules defined in 5.6.

5.2.4.9 Reader Programming character

A Reader Programming character indicates that the symbol encodes a message used to program the reader system. The Reader Programming character shall appear as the first codeword of the symbol and Reader Programming shall not be used with Structured Append.

5.2.5 C40 encodation

The C40 encodation scheme is designed to optimise the encoding of upper-case alphabetic and numeric characters but also enables other characters to be encoded by the use of shift characters in conjunction with the data character.

C40 characters are partitioned into 4 subsets. Characters of the first set, called the basic set, are the three special shift characters, the space character, and the ASCII characters A-Z and 0-9. They are assigned to a single C40 values. Characters of the other sets are assigned to one of the three shift characters, pointing to one of the 3 remaining subset, followed by one of the C40 values (see Annex C, Table C.1).

As a first stage, each data character is converted into a single C40 value or a pair of C40 values. The complete string of C40 values is then decomposed into groups of three values (special rules apply if one or two values remain at the end, see 5.2.5.2.). Each triplet (C1, C2, C3) is then encoded into a 16-bit value according to the formula: (1600 * C1) + (40 * C2) + C3 + 1. Each 16-bit value is then separated into 2 codewords by taking the most significant 8 bits and the least significant 8 bits.

5.2.5.1 Switching to and from C40 encodation

It is possible to switch to C40 encodation from ASCII encodation using the appropriate latch codeword (230). Codeword 254 immediately following a pair of codewords in C40 encodation acts as an Unlatch codeword to switch back to ASCII encodation. Otherwise, the C40 encodation remains in effect to the end of the data encoded in the symbol.

5.2.5.2 C40 encodation rules

Each pair of codewords represents a 16-bit value where the first codeword represents the most significant 8 bits. Three C40 values (C1, C2, C3) shall be encoded as:

$$(1600 * C1) + (40 * C2) + C3 + 1$$

which produces a value from 1 to 64000. Figure 2 illustrates three C40 values compacted into two codewords. Characters in the Shift 1, Shift 2 and Shift 3 sets shall be encoded by first encoding the appropriate shift character, and then the C40 value for the data. C40 encodation may be in effect at the end of the symbol's codewords which encode data.

The following rules apply when only one or two symbol characters remain in the symbol before the start of the error correction codewords:

- a) If two symbol characters remain and three C40 values remain to be encoded (which may include both data and shift characters) encode the three C40 values in the last two symbol characters. A final Unlatch codeword is not required.
- b) If two symbol characters remain and two C40 values remain to be encoded (the first C40 value may be a shift or data character but the second must represent a data character); encode the two remaining C40 values followed by a pad C40 value of 0 (Shift 1) in the last two symbol characters. A final Unlatch codeword again is not required.
- c) If two symbol characters remain and only one C40 value (data character) remains to be encoded, the first symbol character is encoded as an Unlatch character and the last symbol character is encoded with the data character using the ASCII encodation scheme.
- d) If one symbol character remains and one C40 value (data character) remains to be encoded, the last symbol character is encoded with the data character using the ASCII encodation scheme. The Unlatch character is not encoded, but is assumed, before the last symbol character.

In all other cases, either an Unlatch character is used to exit the C40 encodation scheme before the end of the symbol, or a larger symbol size is required to encode the data.

Data characters	AIM
C40 values	14, 22, 26
Calculate 16-bit value	(1600 * 14) + (40 * 22) + 26 + 1 = 23307
1st codeword: (16-bit value) div 256	23307 div 256 = 91
2nd codeword: (16-bit value) mod 256	23307 mod 256 = 11
Codewords	91, 11

Figure 2 — Example of C40 encoding

5.2.5.3 Use of Upper Shift with C40

In C40 encodation the Upper Shift character is not a symbology function character but a shift within the encodation set. When a data character from the extended ASCII character range is encountered, three or four values in C40 encodation need to be encoded according to the following rule:

IF [ASCII value - 128] is in the Basic Set then:

[1(Shift 2)] [30(Upper Shift)] [V(ASCII value - 128)]

ELSE

[1(Shift 2)] [30(Upper Shift)] [0, 1, or 2(Shift 1, 2, or 3)] [V(ASCII value - 128)]

In the rule the number in [] equates to the C40 values from Annex C.1; V has been used to indicate the appropriate C40 value.

5.2.6 Text encodation

Text encodation is designed to encode normal printed text, which is predominantly lowercase characters. It is similar in structure to the C40 encodation set, except that lowercase alphabetic characters are directly encoded (i.e. without using a shift). Upper-case alphabetic characters are preceded by a Shift 3. The full Text encodation character set assignments are shown in Annex C, Table C.2.

5.2.6.1 Switching to and from Text encodation

It is possible to switch to Text encodation from ASCII encodation using the appropriate latch codeword (239). Codeword 254 immediately following a pair of codewords in text encodation acts as an Unlatch codeword to switch back to ASCII encodation. Otherwise, the Text encodation remains in effect to the end of the data encoded in the symbol.

5.2.6.2 Text encodation rules

The rules for C40 encodation apply.

5.2.7 ANSI X12 encodation

ANSI X12 encodation is used to encode the standard ANSI X12 electronic data interchange characters, which are compacted three data characters to two codewords in a manner similar to C40 encodation. It encodes upper-case alphabetic characters, numerics, space and the three standard ANSI X12 terminator and separator characters. The ANSI X12 code assignments are shown in Table 4. There are no shift characters in the ANSI X12 encodation set.

X12 value	Encoded characters	ASCII values
0	X12 segment terminator <cr></cr>	13
1	X12 segment separator *	42
2	X12 sub-element separator >	62
3	space	32
4 - 13	0 - 9	48 - 57
14 - 39	A - Z	65 - 90

Table 4 — ANSI X12 encodation set

5.2.7.1 Switching to and from ANSI X12 encodation

It is possible to switch to ANSI X12 encodation from ASCII encodation using the appropriate latch codeword (238). Codeword 254 immediately following a pair of codewords in ANSI X12 encodation acts as an Unlatch codeword to switch back to ASCII encodation. Otherwise, the ANSI X12 encodation remains in effect to the end of the data encoded in the symbol.

5.2.7.2 ANSI X12 encodation rules

The rules of C40 encodation apply. The exception is at the end of encoding ANSI X12 data. If the data characters do not fully utilise pairs of codewords, then following the last complete pair of codewords switch to ASCII using codeword 254 and continue using ASCII encodation, except when a single symbol character is left at the end before the first error correction character. This single symbol character uses the ASCII encodation scheme without requiring an Unlatch codeword.

5.2.8 EDIFACT encodation

The EDIFACT encodation scheme includes 63 ASCII values (values from 32 to 94) plus an Unlatch character (binary 011111) to return to ASCII encodation. EDIFACT encodation encodes four data characters in three codewords. It includes all the numeric, alphabetic and punctuation characters defined in the EDIFACT Level A character set without any of the shifts required in C40 encodation.

5.2.8.1 Switching to and from EDIFACT encodation

It is possible to switch to EDIFACT encodation from ASCII encodation using the appropriate latch codeword (240). The Unlatch character in EDIFACT encodation shall be used as a terminator at the end of EDIFACT encodation, which reverts to ASCII encodation.

5.2.8.2 EDIFACT encodation Rules

The EDIFACT encodation character set is defined in Annex C, Table C.3. There is a simple relationship between the 6-bit EDIFACT value and the ASCII 8-bit byte. The leading two bits of the 8-bit byte are ignored to create the EDIFACT 6-bit value, as illustrated in Figure 3. Strings of four EDIFACT characters are encoded in three codewords. For a simple encodation process, the leading two bits of the 8-bit byte are removed. The remaining 6-bit byte is the EDIFACT value and shall be directly encoded into the codeword as illustrated in Figure 4. When EDIFACT encodation is terminated with the Unlatch character, any remaining bits left in the single symbol character shall be filled with zeros. ASCII mode starts with the next symbol character. If EDIFACT encodation is in effect at the end of the symbol before the first error correction character, and only one or two codewords remain after the last EDIFACT codeword triplet, these remaining codewords shall be encoded in ASCII encodation without requiring an Unlatch character.

Data character	AS	EDIFACT value	
	Decimal value 8-bit binary value		
А	65	01000001	000001
9	57	00111001	111001

NOTE During the decode process, if the leading (6th) bit is 1, the bits 00 are prefixed to create the 8-bit byte. If the leading (6th) bit is 0, the bits 01 are prefixed to create the 8-bit byte. The exception to this is the EDIFACT value 011111 which is the symbology control Unlatch character to return to ASCII encodation.

Figure 3 — The relationship between the EDIFACT value and the 8-bit byte value

Data characters		D			Α			Т			Α	
Binary values (Table C.3)	00	01	00	00	00	01	01	01	00	00	00	01
Divide into 3 8-bit bytes	00	01	00	00	00	01	01	01	00	00	00	01
Codeword values		1	6			2	1			1	1	

Figure 4 — Example of EDIFACT encodation

5.2.9 Base 256 encodation

The Base 256 encodation scheme shall be used to encode any 8-bit byte data, including extended channel interpretations and binary data. The default interpretation is defined in 5.2.2. The 255-State pattern randomising algorithm is applied to each Base 256 sequence within the encoded data (see B.2). It starts after the latch to Base 256 encodation and ends at the last character specified by the Base 256 field length.

5.2.9.1 Switching to and from Base 256 encodation

It is possible to switch to Base 256 encodation from ASCII encodation using the appropriate latch codeword (231). At the end of Base 256 encodation, encodation automatically reverts to ASCII encodation. The appropriate ECI, if other than the default, shall be invoked prior to switching. The ECI sequence need not occur immediately before switching to Base 256 encodation.

5.2.9.2 Base 256 encodation rules

After switching to Base 256 encodation, the first one (d1) or two (d1, d2) codewords define the data field length in bytes. Table 5 specifies how the field length is defined. Thereafter, all encodation shall be of the byte values.

 Field Length
 Values of d1, d2
 Permitted Values of d

 Remainder of Symbol
 d1 = 0 d1 = 0

 1 to 249
 d1 = length d1 = 1 to 249

 250 to 1555
 d1 = (length DIV 250) + 249 d1 = 250 to 255

 d2 = length MOD 250 d2 = 0 to 249

Table 5 — Base 256 field length

5.3 User considerations

ECC 200 offers flexibility in the way data is encoded. Alternate character sets may be invoked using the ECI protocol. Data may be encoded in square or rectangular symbols. Where the message length exceeds the capacity of a single symbol, it is also possible to encode it in a Structured Append sequence of up to 16 separate but logically linked ECC 200 symbols (see 5.6).

5.3.1 User selection of Extended Channel Interpretation

The use of an alternative Extended Channel Interpretation to identify a particular code page or more specific data interpretation requires additional codewords to invoke the feature. The use of the Extended Channel Interpretation protocol (see 5.4) provides the capability to encode data from alphabets other than the Latin alphabet (ISO 8859-1 Latin Alphabet No. 1) supported by the default interpretation (ECI 000003).

5.3.2 User selection of symbol size and shape

ECC 200 has twenty-four square and six rectangular symbol configurations. The size and shape may be selected to suit the requirement of the application. These configurations are technically specified in 5.5.

5.4 Extended Channel Interpretation

The Extended Channel Interpretation (ECI) protocol allows the output data stream to have interpretations different from that of the default character set. The ECI protocol is defined consistently across a number of symbologies. Four broad types of interpretations are supported in Data Matrix:

- a) international character sets (or code pages)
- b) general purpose interpretations such as encryption and compaction
- c) user defined interpretations for closed systems
- d) control information for structured append in unbuffered mode.

The Extended Channel Interpretation protocol is fully specified in AIM Inc. International Technical Specification – Extended Channel Interpretations Part 1. The protocol provides a consistent method to specify particular interpretations on byte values before printing and after decoding. The Extended Channel Interpretation is identified by a 6-digit number which is encoded in the Data Matrix symbol by the ECI character followed by one to three codewords. Specific interpretations are listed in AIM Inc. Extended Channel Interpretations Character Set Register. The Extended Channel Interpretation can only be used with readers enabled to transmit the symbology identifiers. Readers that are not enabled to transmit the symbology identifier shall not transmit the data from any symbol containing an ECI. An exception can be made if the ECI(s) can be handled entirely within the reader.

The Extended Channel Interpretation protocol shall only be applied to ECC 200 symbols. A specified Extended Channel Interpretation may be invoked anywhere in the encoded message.

5.4.1 Encoding ECIs

The various encodation schemes of Data Matrix for ECC 200 (defined in Table 1) may be applied under any of the Extended Channel Interpretations. The ECI can only be invoked from ASCII encodation; once this has occurred, switching may take place between any of the encodation schemes. The encodation mode used is determined strictly by the 8-bit data values being encoded and does not depend on the Extended Channel Interpretation in force. For example, a sequence of values in the range 48 to 57 (decimal) would be most efficiently encoded in numeric mode even if they were not to be interpreted as numbers. The ECI assignment is invoked using codeword 241 (ECI character) in ASCII encodation. One, two, or three additional codewords are used to encode the ECI Assignment number. The encodation rules are defined in Table 6.

The following examples illustrate the encodation:

```
ECI = 015000
```

Codewords:

```
[241] [(15000 - 127) div 254 + 128] [(15000 - 127) mod 254 + 1]

= [241] [58 + 128] [141 + 1]

= [241] [186] [142]

ECI = 090000

Codewords:

[241] [(90000 - 16383) div 64516 + 192] [((90000 - 16383) div 254) mod 254 + 1] [(90000 - 16383) mod 254 + 1]

= [241] [1 + 192] [289 mod 254 + 1] [211 + 1]
```

= [241] [193] [36] [212]

Table 6 — Encoding ECI assignment numbers in ECC 200

ECI assignment value	Codeword sequence	Codeword values	Ranges
000000 to 000126	C_{0}	241	
	C ₁	<i>ECI_no</i> + 1	$C_1 = (1 \text{ to } 127)$
000127 to 016382	C_{0}	241	
	C ₁	(ECI_no - 127) div 254 + 128	C_1 = (128 to 191)
	C_2	(ECI_no - 127) mod 254 + 1	C_2 = (1 to 254)
0016383 to 999999	C_{0}	241	
	C ₁	(ECI_no - 16383) div 64516 +192	C_1 = (192 to 207)
	C_2	[(ECI_no - 16383) div 254] mod 254 + 1	C_2 = (1 to 254)
	<i>C</i> ₃	(<i>ECI_no</i> - 16383) mod 254 + 1	$C_3 = (1 \text{ to } 254)$

5.4.2 ECIs and Structured Append

ECIs may occur anywhere in the message encoded in a single or Structured Append (see 5.6) set of Data Matrix symbols. Any ECI invoked shall apply until the end of the encoded data, or until another ECI is encountered. Thus the interpretation of the ECI may straddle two or more symbols.

5.4.3 Post-decode protocol

The protocol for transmitting ECI data shall be as defined in 11.4. When using ECIs, symbology identifiers (see 11.5) shall be fully implemented and the appropriate symbology identifier transmitted as a preamble.

5.5 ECC 200 symbol attributes

5.5.1 Symbol sizes and capacity

There are 24 square symbols and 6 rectangular symbols available in ECC 200. These are as specified in Table 7.

Table 7 — ECC 200 symbol attributes

Symbol size ^a		Data region		Mapping matrix	Total codewords		Reed- Solomon block		Inter– leaved	Maximum data capacity		% of codewords used for	Max. correctable codewords	
Row	Col	Size	No.	size	Data	Error	Data	Error	blocks	Num.	Alphanum.d	Byte	error correction	Error/ erasure ^b
10	10	8 x 8	1	8 x 8	3	5	3	5	1	6	3	1	62,5	2/0
12	12	10 x 10	1	10 x 10	5	7	5	7	1	10	6	3	58,3	3/0
14	14	12 x 12	1	12 x 12	8	10	8	10	1	16	10	6	55,6	5/7
16	16	14 x 14	1	14 x 14	12	12	12	12	1	24	16	10	50	6/9
18	18	16 x 16	1	16 x 16	18	14	18	14	1	36	25	16	43,8	7/11
20	20	18 x 18	1	18 x 18	22	18	22	18	1	44	31	20	45	9/15
22	22	20 x 20	1	20 x 20	30	20	30	20	1	60	43	28	40	10/17
24	24	22 x 22	1	22 x 22	36	24	36	24	1	72	52	34	40	12/21
26	26	24 x 24	1	24 x 24	44	28	44	28	1	88	64	42	38,9	14/25
32	32	14 x 14	4	28 x 28	62	36	62	36	1	124	91	60	36,7	18/33
36	36	16 x 16	4	32 x 32	86	42	86	42	1	172	127	84	32,8	21/39
40	40	18 x 18	4	36 x 36	114	48	114	48	1	228	169	112	29,6	24/45
44	44	20 x 20	4	40 x 40	144	56	144	56	1	288	214	142	28	28/53
48	48	22 x 22	4	44 x 44	174	68	174	68	1	348	259	172	28,1	34/65
52	52	24 x 24	4	48 x 48	204	84	102	42	2	408	304	202	29,2	42/78
64	64	14 x 14	16	56 x 56	280	112	140	56	2	560	418	277	28,6	56/106
72	72	16 x 16	16	64 x 64	368	144	92	36	4	736	550	365	28,1	72/132
80	80	18 x 18	16	72 x 72	456	192	114	48	4	912	682	453	29,6	96/180
88	88	20 x 20	16	80 x 80	576	224	144	56	4	1 152	862	573	28	112/212
96	96	22 x 22	16	88 x 88	696	272	174	68	4	1 392	1 042	693	28,1	136/260
104	104	24 x 24	16	96 x 96	816	336	136	56	6	1 632	1 222	813	29,2	168/318
120	120	18 x 18	36	108 x 108	1 050	408	175	68	6	2 100	1 573	1 047	28	204/390
132	132	20 x 20	36	120 x 120	1 304	496	163	62	8	2 608	1 954	1 301	27,6	248/472
							156	62	8 ^c			1 555	28,5	310/590
144	144	22 x 22	36	132 x 132	1 558	620	155	62	2 ^c	3 116	2 335			
Rectangular Symbols														
8	18	6 x 16	1	6 x 16	5	7	5	7	1	10	6	3	58,3	3/0
8	32	6 x 14	2	6 x 28	10	11	10	11	1	20	13	8	52,4	5/0
12	26	10 x 24	1	10 x 24	16	14	16	14	1	32	22	14	46,7	7/11
12	36	10 x 16	2	10 x 32	22	18	22	18	1	44	31	20	45,0	9/15
16	36	14 x 16	2	14 x 32	32	24	32	24	1	64	46	30	42,9	12/21
16	48	14 x 22	2	14 x 44	49	28	49	28	1	98	72	47	36,4	14/25

а symbol size does not include quiet zones

b See 5.7.3

In the largest symbol (144 x 144), the first eight Reed-Solomon blocks are 218 codewords long encoding 156 data codewords, and the last two blocks encode 217 codewords (155 data codewords). All the blocks have 62 error correction codewords.

Based on text or C40 encoding without switching or shifting; for other encoding schemes, this value may vary depending on the mix and grouping of character sets

5.5.2 Insertion of Alignment Patterns into larger symbols

As shown in Table 7, square symbols 32×32 and larger and four rectangular symbols $(8 \times 32, 12 \times 36, 16 \times 36, 16 \times 48)$ have two or more data regions. These data regions are bounded by alignment patterns (see Annex D). The square symbols are divided into 4, 16, or 36 data regions (as illustrated in Annex D, Figures D.1, D.2, and D.3). The rectangular symbols are divided into two data regions (as illustrated in Annex D, Figure D.4). The alternating dark modules of the alignment pattern shall be to the top and right of a data region and identify the even columns and rows.

5.6 Structured Append

5.6.1 Basic principles

Up to 16 ECC 200 symbols may be appended in a structured format. If a symbol is part of a Structured Append, this is indicated by codeword 233 in the first symbol character position. This is immediately followed by three structured append codewords. The first codeword is the symbol sequence indicator. The second and third codewords are the file identification.

5.6.2 Symbol sequence indicator

This codeword indicates the position of the symbol within the set (up to 16) of ECC 200 symbols in the Structured Append format in the form m of n symbols. The first 4 bits of this codeword identify the position of the particular symbol as the binary value of (m - 1). The last 4 bits identify the total number of the symbols to be concatenated in the Structured Append format as the binary value of (17 - n). The 4-bit patterns shall conform with those defined in Table 8.

Table 8 — Structured Append symbol position bits

Symbol position	Bits 1234	Total number of symbols	Bits 5678
1	0000		
2	0001	2	1111
3	0010	3	1110
4	0011	4	1101
5	0100	5	1100
6	0101	6	1011
7	0110	7	1010
8	0111	8	1001
9	1000	9	1000
10	1001	10	0111
11	1010	11	0110
12	1011	12	0101
13	1100	13	0100
14	1101	14	0011
15	1110	15	0010
16	1111	16	0001

EXAMPLE

To indicate the 3rd symbol of a set of 7, this shall be encoded thus:

3rd position: 0010

Total 7 symbols: 1010

Bit pattern: 00101010 Codeword value: 42

5.6.3 File identification

The file identification is defined by the value of its two codewords. Each file identification codeword may have a value 1 to 254, allowing 64516 different file identifications. The purpose of the file identification is to increase the probability that only logically linked symbols are processed as part of the same message.

5.6.4 FNC1 and Structured Append

If Structured Append is used in conjunction with FNC1 (see 5.2.4.6), the first four codewords shall be used for Structured Append and the fifth and sixth codewords are available for FNC1 usage. FNC1 shall not be repeated in these positions in the second and subsequent symbols, except when used as a field separator.

5.6.5 Buffered and unbuffered operation

The message within a Structured Append sequence can be buffered in the reader in its entirety and transmitted after all of the symbols have been read. Alternatively, the reader may transmit the decoded data in each symbol as it is read. In this unbuffered operation, the ECI protocol for structured append (specified in AIM ITS 04/001, Part 1) defines a control block that shall be prefixed to the beginning of the data transmitted for each symbol.

Error detection and correction

5.7.1 Reed-Solomon error correction

ECC 200 symbols employ Reed-Solomon error correction. For ECC 200 symbols with less than 255 total codewords, the error correction codewords are calculated from data codewords with no interleaving. For ECC 200 symbols with more than 255 total codewords, the error correction codewords are calculated from data codewords with the interleaving procedure described in Annex A. Each ECC 200 symbol has a specific number of data and error correction codewords which are divided into a specific number of blocks, as defined in Table 7, and to which the interleaving procedure defined in Annex A is applied.

The polynomial arithmetic for ECC 200 shall be calculated using bit-wise modulo 2 arithmetic and byte-wise modulo 100101101 (decimal 301) arithmetic. This is a Galois field of 2^8 with 100101101 representing the field's prime modulus polynomial: $x^8 + x^5 + x^3 + x^2 + 1$. Sixteen different generator polynomials are used for generating the appropriate error correction codewords. These are given in E.1.

5.7.2 Generating the error correction codewords

The error correction codewords are the remainder after dividing the data codewords by a polynomial q(x) used for Reed-Solomon codes (see E.1).

NOTE If this calculation is performed by "long division" the symbol data polynomial must first be multiplied by xk.

The data codewords are the coefficients of the terms of a polynomial with the coefficient of the highest term being the first data codeword and the lowest power term being the last data codeword before the first error correction codeword. The highest order coefficient of the remainder is the first error correction codeword and the zero power coefficient is the last error correction codeword and the last codeword. This can be implemented by using the division circuit as shown in Figure 5. The registers b_0 through b_{k-1} are initialised as zeros. There are two phases to generate the encoding. In the first phase, with the switch in the down position the data codewords are passed both to the output and the circuit. The first phase is complete after n clock pulses. In the second phase $(n + 1 \dots n + k \text{ clock pulses})$, with the switch in the up position, the error correction codewords $\varepsilon_{k-1}, \dots, \varepsilon_0$ are generated by flushing the registers in order while keeping the data input at 0. The codewords output from the shift register are in the order that they are to be placed in the symbol. If interleaving is used, the codewords will not be placed in consecutive symbol characters. (See Annex A).

Note: n and k are defined in 3.2 as the number of data codewords and the number of error correction codewords respectively.

Figure 5 — Error correction codeword encoding circuit

5.7.3 Error correction capacity

The error correction codewords can correct two types of erroneous codewords: erasures (erroneous codewords at known locations) and errors (erroneous codewords at unknown locations). An erasure is an unscanned or undecodable symbol character. An error is a misdecoded symbol character. The number of erasures and errors that can be corrected is given by the following formula:

 $e + 2t \le d - p$

where:

e = number of erasures

t = number of errors

d = number of error correction codewords

p = number of codewords reserved for error detection.

In the general case, p = 0. However, if most of the error correction capacity is used to correct erasures, then the possibility of an undetected error is increased. Whenever the number of erasures is more than half the number of error correction codewords, p = 3. For small symbols (10 x 10, 12 x 12, 8 x 18, and 8 x 32), erasure correction should not be used (e = 0 and p = 1).

Symbol construction

Given the codeword sequence obtained in the previous sections, an ECC 200 symbol is constructed using the following steps:

- Place codeword modules in a mapping matrix
- Insert alignment pattern modules, if any b)
- Place finder modules along the perimeter

5.8.1 Symbol character placement

Each symbol character shall be represented by eight modules which are nominally square in shape; each module represents a binary bit. A dark module is a one and a light module is a zero. The eight modules are in order from left to right and top to bottom to form a symbol character as shown in Figure 6. Because the symbol character shape defined in Figure 6 cannot be perfectly nested at the symbol boundary, some symbol characters are split into portions. Symbol character placement is defined in the C language program in F.1, described in F.2 and illustrated in F.3.

1 MSB	2	
3	4	5
6	7	8 LSB

LSB = Least significant bit MSB = Most significant bit

Figure 6 — Representation of a codeword in a symbol character for ECC 200

5.8.2 Alignment Pattern module placement

This step is only needed for larger matrices: square: 32 x 32 and larger rectangular: 8 x 32, 12 x 36 and larger The mapping matrix is sub-divided into data regions, of the sizes defined in Table 7, for the chosen symbol format. The data regions are separated from each other by two-module-wide alignment patterns. This will result in some of the symbol characters being split between two adjacent data regions. For square matrices, the alignment patterns are placed between the data regions horizontally and vertically in pairs with a total alignment pattern count of 2, 6, or 10 as shown in Figures D.1 - D.3. For rectangular matrices, only a single vertical alignment pattern is placed between the data regions as shown in Figure D.4.

5.8.3 Finder Pattern module placement

Modules are placed along the perimeter of the matrix to construct the finder pattern as described in Section 4.3.1.

6 ECC 000 - 140 requirements

6.1 Use recommendations

For new applications or open systems ECC 200 is recommended (See Clause 5). There is no known application where ECC 200 will be more likely to succumb to symbol damage than ECC 000 to 140 for a given symbol size.

6.2 Encode procedure overview

This section provides an overview of the encoding procedure. Following sections will provide more details. An example encode for ECC 050 is given in Annex Q. The following steps convert user data to an ECC 000 - 140 symbol:

Step 1: Data encodation

The user data is analysed to identify the variety of different characters to be encoded. For maximum compaction efficiency, the lowest level encodation scheme capable of encoding the data should be selected. If the user does not specify the matrix size, then choose the smallest size that accommodates the data. The result of this step is called the Encoded Data Bit Stream.

Step 2: Data prefix construction

A Data Prefix Bit Stream is constructed from the Format ID, CRC, and Data Length bit fields. This Data Prefix Bit Stream is prefixed to the Encoded Data Bit Stream to produce the Unprotected Bit Stream.

Step 3: Error checking and correction

The Unprotected Bit Stream is processed by the user specified convolutional coding encode algorithm to produce the Protected Bit Stream. This step is omitted for ECC 000.

Step 4: Header and trailer construction

A header containing only the ECC bit field is prefixed to the Protected Bit Stream. A trailer containing pad bits (zeros) is appended to the Protected Bit Stream. The Protected Bit Stream with the header and trailer added is called the Unrandomised Bit Stream.

Step 5: Pattern randomising

The Unrandomised Bit Stream is processed by the pattern randomising algorithm and produces the Randomised Bit Stream.

Step 6: Module placement in matrix

Modules are placed in a matrix to construct the finder pattern. The Randomised Bit Stream is placed into the matrix one module at a time according to the data module placement algorithm given in Annex H. Figure 7 shows the various bit streams during the encode process.

6.3 Data encodation

The data shall be encoded using one of six encodation schemes (see Table 9). The encodation scheme is fixed for the entire symbol, and thus the selection of the most appropriate encodation scheme can have a considerable effect on the number of bits required to encode any given data. The same data may be represented in ECC 000 - 140 symbols in different ways through the use of the different encodation schemes. The character sets of all the encodation schemes, except the 8-bit byte scheme, are given in Annex I. The 8-bit byte scheme is user definable. The most efficient scheme to use is the lowest base number scheme

which is capable of encoding all the characters in the message. Thus if all the characters can be encoded in Base 27, it is not efficient to use Base 37, Base 41 or ASCII.

Table 9 — Encodation schemes

Encodation scheme	Characters	Bits per data character	
Base 11	Numeric data	3,5	
Base 27	Upper-case alphabetic	4,8	
Base 37	Upper-case alphanumeric	5,25	
Base 41	Upper-case alphanumeric and punctuation	5,5	
ASCII	Full 128 ASCII set	7	
8-bit Byte	User defined	8	

Figure 7 — ECC 000-140 encode process bit streams

To determine the appropriate encodation scheme, the data to be encoded should be analysed. The character sets of each of the Base *N* encodation schemes should be compared with the data character set to be encoded starting with the Base 11 character set. If this is suitable then it should be used, if not, the comparisons should continue with Base 27, Base 37 and Base 41, until the appropriate lowest level encodation scheme is found. If data characters beyond the capability of Base 41 need to be encoded, the ASCII set should be used, unless characters are beyond this; in which case the 8-bit byte set should be used.

For all encodation schemes, each compressed sequence of 4 to 24 bits is placed into the Encoded Bit Stream in reverse order (LSB first). This means that each individual compressed sequence is composed, then reversed, and output immediately to the Encoded Bit Stream. This does not mean that a complete compressed bit stream is formed, then reversed.

The details of each encodation scheme are given in the following clauses.

6.3.1 Base 11 - Numeric encodation

The Base 11 (Numeric) encodation scheme encodes 6 data characters as 21 bits, achieving an encodation density of 3,5 bits per data character. The Base 11 code set enables the following 11 characters to be encoded:

0 to 9

space

The data is encoded in two stages. In the first stage, the actual data characters shall be replaced by their Base 11 code values, as given in Annex I. In the second phase, the Base 11 code values shall be compacted using a Base 11 to Base 2 conversion according to the procedures defined in I.1.

6.3.2 Base 27 - Upper-case Alphabetic encodation

The Base 27 (Upper-case Alphabetic) encodation scheme encodes 5 data characters as 24 bits, achieving an encodation density of 4,8 bits per data character. The Base 27 code set enables the following 27 characters to be encoded:

A to Z

space

The data is encoded in two stages. In the first stage, the actual data characters shall be replaced by their Base 27 code values, as given in Annex I. In the second stage, the Base 27 code values shall be compacted using a Base 27 to Base 2 conversion according to the procedures defined in I.2.

6.3.3 Base 37 - Upper-case Alphanumeric encodation

The Base 37 (Upper-case Alphanumeric) encodation scheme encodes 4 data characters as 21 bits, achieving an encodation density of 5,25 bits per data character. The Base 37 code set enables the following 37 characters to be encoded:

A to Z

0 to 9

space

The data is encoded in two stages. In the first stage, the actual data characters shall be replaced by their Base 37 code values, as given in Annex I. In the second stage, the Base 37 code values shall be compacted using a Base 37 to Base 2 conversion according to the procedures defined in I.3.

Base 41 - Upper-case Alphanumeric plus Punctuation encodation

The Base 41 (Upper-case Alphanumeric plus Punctuation) encodation scheme encodes 4 data characters as 22 bits, achieving an encodation density of 5,5 bits per data character. The Base 41 code set enables the following 41 characters to be encoded:

A to Z

0 to 9

space

- . (period)
- , (comma)
- (minus or hyphen)

/ (forward slash or solidus)

The data is encoded in two stages. In the first stage, the actual data characters shall be replaced by their Base 41 code values, as given in Annex I. In the second stage, the Base 41 code values shall be compacted using a Base 41 to Base 2 conversion according to the procedures defined in I.4.

6.3.5 ASCII encodation

The ASCII encodation scheme enables all 128 characters from ISO/IEC 646 to be encoded. Each data character shall be encoded as a 7-bit byte equivalent to the decimal value shown in the ASCII column of Table I.1 of Annex I.

6.3.6 8-bit byte encodation

The 8-bit byte encodation scheme shall be used for closed applications, where the data interpretation shall be determined by the user. Each data character shall be encoded as an 8-bit byte.

User selection of error correction level

6.4.1 Selection of error correction level

ECC 000 - 140 symbols offer five levels of error correction using convolutional code error correction, as set out in Table 10. In an application, it is important to understand that these error correction levels result in the generation of a proportional increase in the number of bits in the message (and hence increase in the size of the symbol), and offer different levels of error recovery.

Table 10 — Error correction, error recovery and overhead percentages

Error correction code level	Maximum % damage	% increase in user bits from ECC 000	
000	none	none	
050	2,8	33	
080	5,5	50	
100	12,6	100	
140	25	300	

6.4.2 Other error correction levels based on convolutional code algorithms

Other levels of error correction, based on convolutional code algorithms, have been used in Data Matrix applications implemented prior to the publication of this International Standard. Information on these non-standard Error Correction levels is available from AIM Inc. Such symbols do not conform with this International Standard.

6.5 Constructing the Unprotected Bit Stream

Figure 7 illustrates that the Unprotected Bit Stream has the Data Prefix Bit Stream as a prefix to the encoded data bits. The component parts of the Data Prefix Bit Stream are defined below.

6.5.1 Format ID Bit Field

The format ID defines the data encodation scheme. The format ID has a decimal value for the purposes of definition and a 5-bit segment value for encoding as defined in Table 11.

Format ID **Encodation scheme** Binary segment value MSB LSB 1 Base 11 00000 2 Base 27 00001 3 00010 Base 41 4 Base 37 00011 5 **ASCII** 00100 6 8-bit Byte 00101

Table 11 — Encoding the Format ID

6.5.2 CRC Bit Field

The CRC Bit Field is generated by the CRC algorithm. The CRC Value is generated from the original user data as 8-bit bytes before encodation and so produces an independent error check on the user data. Annex J describes the complete procedure for generating the CRC Value.

6.5.3 Data Length Bit Field

The Data Length Bit Field is 9 bits in length and represents, as a binary value, the number of user data characters being encoded.

6.5.4 Data prefix construction

The Data Prefix Bit Stream is constructed as 30 bits as illustrated in Figure 8.

Format ID 5 bits		Value bits		_ength oits
MSB LSB	LSB	MSB	LSB	MSB

Figure 8 — Structure of Data Prefix Bit Stream

NOTE Some bit fields start with the MSB, others start with the LSB.

Completing the Unprotected Bit Stream 6.5.5

The encoded data bits are added as a suffix to the Data Prefix Bit Stream to construct the Unprotected Bit Stream.

Constructing the Unrandomised Bit Stream

Figure 7 illustrates that the Unrandomised Bit Stream has three constituent parts:

- Header
- Protected Bit Stream b)
- Trailer c)

The component parts shall be generated as defined below.

6.6.1 Header construction

The header of the Unrandomised Bit Stream contains the ECC Bit Field, which identifies the convolutional code structure used to protect the data encoded in the symbol. The ECC Bit Field is 7 or 19 bits long and the values are shown in Table 12.

Binary Segment Identifier ECC Level **MSB LSB** 000 1111110 050 0001110000000001110 080 1110001110000001110 100 1111111110000001110 140 1111110001110001110

Table 12 — ECC Bit Field

6.6.2 Applying convolutional coding to create the Protected Bit Stream

One of the five error correction levels shall be applied. The selection criteria are defined in Section 6.4. No error correction is applied for ECC 000, so the Unprotected Bit Stream becomes the Protected Bit Stream. For the other four error correction levels, convolutional coding is applied. This expands the user data proportionally throughout its length. The encoded bit stream shall be created by processing the unprotected bit stream through the appropriate error correction state machine and reading the results. The circuit diagrams of the four state machines for ECC 050 to 140 are given in Annex K.

6.6.3 Trailer construction

A Trailer containing pad bits (zeros) is appended to the Protected Bit Stream. Pad bits shall be added at the end of the bit stream to ensure that the square root of the total number of bits in the Unrandomised Bit Stream shall be an odd integer between 7 and 47. This ensures that the symbol is square.

6.6.4 Completing the Unrandomised Bit Stream

The Protected Bit Stream, with the header and trailer added, is called the Unrandomised Bit Stream and is shown in Figure 7.

6.7 Pattern randomising

The Unrandomised Bit Stream is processed by the pattern randomising algorithm and produces the Randomised Bit Stream. The pattern randomising algorithm consists of a bitwise XOR operation between the Unrandomised Bit Stream and the Master Random Bit Stream as given in Annex L starting with the MSB position and continuing for the length of the Unrandomised Bit Stream.

6.8 Module placement in matrix

The size of the sides of the data module grid is given by the odd integer square root (between 7 and 47) calculated in the procedure defined in 6.6.3. The Randomised Bit Stream is placed into the matrix one module at a time according to the data module placement grids given in Annex H. The finder pattern (as defined in 4.3.1) shall be placed to produce an external border to the data module grid.

7 Symbol dimensions

7.1 Dimensions

Data Matrix symbols shall conform to the following dimensions:

X dimension: the width of a module shall be specified by the application, taking into account the scanning technology to be used, and the technology to produce the symbol.

finder pattern: the width of the finder pattern shall equal X.

alignment pattern: the width of the alignment pattern shall equal 2X.

Quiet zone: The minimum quiet zone is equal to X on all four sides. For applications with moderate to excessive reflected noise in close proximity to the symbol, a Quiet Zone of 2X to 4X is recommended

8 Symbol quality

Data Matrix symbols shall be assessed for quality using the 2D matrix bar code symbol print quality guidelines defined in ISO/IEC 15415, as augmented and modified below.

Some marking technologies may not be able to produce symbols conforming to this specification without taking special precautions. Annex T gives additional guidance to help any printing system achieve valid Data Matrix symbols.

Symbol quality parameters

8.1.1 Fixed pattern damage

Annex M defines the measurement and grading basis for Fixed Pattern Damage.

NOTE As provided for in Annex A of ISO/IEC 15415, the measurements and values defined in Annex M of this International Standard override those indicated in Annex A of ISO/IEC 15415.

8.1.2 Scan grade and overall symbol grade

The scan grade shall be the lowest of the grades for symbol contrast, modulation, fixed pattern damage, decode, axial non-uniformity, grid non-uniformity and unused error correction in an individual image of the symbol. The overall symbol grade is the arithmetic mean of the individual scan grades for a number of tested images of the symbol.

8.1.3 Grid non-uniformity

The ideal grid is calculated by using the four corner points of the sampling grid for each data region and subdividing it equally in both axes.

8.1.4 Decode

The reference decode algorithm specified in this international standard shall be applied to determine the grade for Decode. A failure of the reference decode algorithm to successfully decode the symbol shall result in a grade of 0 for decode.

Process control measurements

A variety of tools and methods can be used to perform useful measurements for monitoring and controlling the process of creating Data Matrix symbols. These are described in Annex R. These techniques do not constitute a print quality check of the produced symbols (the method specified earlier in this clause and Annex M is the required method for assessing symbol print quality) but they individually and collectively yield good indications of whether the symbol print process is creating workable symbols.

Reference decode algorithm for Data Matrix

This reference decode algorithm finds a Data Matrix symbol in an image and decodes it.

- Define measurement parameters and form a digitised image:
 - Define a distance d_{min} which is 7,5 times the aperture diameter defined by the application. This will be the minimum length of the "L" pattern's side.
 - Define a distance g_{max} which is 7,5 times the aperture diameter. This is the largest gap in the "L" finder that will be tolerated by the finder algorithm in step b).
 - Define a distance m_{min} which is 1,25 times the aperture diameter. This is the nominal minimum module size.
 - Form a black/white image using a threshold determined according to the method defined in ISO/IEC 15415.

- b) Search horizontal and vertical scan lines for the two outside edges of the Data Matrix "L":
 - Extend a scan line horizontally in both directions from the centre point of the image. Sample along the scan line. For each white/black or black/white transition found along the scan line resolved to the pixel boundary:
 - i) Follow the edge upward sampling pixel by pixel until either it reaches a point $3.5m_{min}$ distant from the intersection of the scan line and the edge starting point, or the edge turns back toward the intersection of the scan line and the edge the starting point.
 - ii) Follow the edge downward pixel by pixel until either it reaches a point $3.5m_{min}$ distant from the intersection of the scan line and the edge starting point, or the edge turns back toward the intersection of the scan line and the edge the starting point.
 - iii) If the upward edge reaches a point $3.5 m_{min}$ from the starting point
 - I) Plot a line A connecting the end points of the upward edge.
 - II) Test whether the intermediate edge points lie within $0.5m_{min}$ from line A and the edge point is farther from the starting point than the previous edge point. If so, continue to step iii. Otherwise proceed to step 1)iv) to follow the edge in the opposite direction.
 - III) Continue following the edge upward until the edge departs $0.5m_{min}$ from line A. Back up to the closest edge point greater than or equal to m_{min} from the last edge point along the edge before the departing point and save this as the edge end point. This edge point should be along the "L" candidate outside edge.
 - IV) Continue following the edge downward until the edge departs $0.5m_{min}$ from line A. Back up to the closest edge point greater than or equal to m_{min} from the last edge point along the edge before the departing point and save this as the edge end point. This edge point should be along the "L" candidate outside edge.
 - V) Calculate a new adjusted line A1 that is a "best fit" line to the edge in the two previous steps. The "best fit" line uses the linear regression algorithm (using the end points to select the proper dependent axis, i.e. if closer to horizontal, the dependent axis is x) applied to each point. The "best fit" line terminates lines at points p1 and p2 that are the points on the "best fit" line closest to the endpoints of the edge.
 - VI) Save the line A1 segment two end points, p1 and p2. Also save the colour of the left side of the edge viewed from p1 to p2.
 - iv) If step iii) failed or did not extend downward by $3.5m_{min}$ in step iii) IV), test if the downward edge reaches a point $3.5m_{min}$ from the starting point. If so, repeat the steps in iii) but with the downward edge.
 - v) If neither steps iii) or iv) were successful, test if both the upward and downward edges terminated at least $2m_{min}$ from the starting point. If so, form an edge comprised of the appended $2m_{min}$ length upward and downward edge segments and repeat the steps in iii) but with the appended edge.
 - vi) Proceed to and process the next transitions on the scan line, repeating from step i), until the edge of the image is reached.
 - 2) Extend a scan line vertically in both directions from the centre point of the image. Look for line segments using the same logic in step 1) above but following each edge transition first left and then right.

- 3) Search among the saved line A1 segments for pairs of line segments that meet the following four criteria:
 - Verify that the closest endpoints of the two line segments are less than g_{max} from each other. i)
 - Verify that the two lines are co-linear within 5 degrees.
 - iii) Verify that the two lines have the same colour if their p1 to p2 directions are the same or that the colours are opposite if their p1 to p2 directions are opposite to each other.
 - iv) Form two temporary lines by extending each line to reach to the point on the extension that is closest to the furthest end point of the other line segment. Verify that the two extended lines are separated by less than 0,5m_{min} at any point between the two extended lines.
- For each pair of lines meeting the criteria of step 3) above, replace the pair of line segments with a longer A1 line segment that is a "best fit" line to the four end points of the pair of shorter line segments. Also save the colour of the left side of the edge of the new longer line viewed from its p1 endpoint to its p2 endpoint.
- 5) Repeat steps 3) and 4) until no more A1 line pairs can be combined.
- 6) Select line segments that are at least as long as d_{min} . Flag them as "L" side candidates.
- Look for pairs of "L" side candidates that meet the following three criteria:
 - Verify that the closest points on each line are separated by less than $1.5q_{max}$.
 - Verify that they are perpendicular within 5 degrees. ii)
 - iii) Verify that the same colour is on the inside of the "L" formed by the two lines. Note that if one or both lines extend past their intersection, then the two or four "L" patterns formed will need to be tested for matching colour and maintaining a minimum length of d_{min} for the truncated side or sides before they can become "L" candidates.
- 8) For each candidate "L" pair found in step 7) form an "L" candidate by extending the segments to their intersection point.
- 9) If the "L" candidate was formed from line segments with the colour white on the inside of the "L", form a colour inverted image to decode. Attempt to decode the symbol starting with the appropriate normal or inverted image starting from step D below using each of the "L" candidates from step 8) as the "L" shaped finder. If none decode, proceed to step c).
- Maintain the line A1 line segments and "L" side candidates from the previous steps. Continue searching for "L" candidates using horizontal and vertical scan lines offset from previous scan lines:
 - Using a new horizontal scan line $3m_{min}$ above the centre horizontal scan line, repeat the process in step b) 1), except starting from the offset from the centre point, and then b)3) through b)9). If there is no decode, proceed to the next step.
 - Using a new vertical scan line $3m_{min}$ left of the centre vertical scan line, repeat the process in step b)2), except starting from the offset from the centre point, and then steps b)3) through b)9). If there is no decode, proceed to the next step 3).
 - Repeat step 1) above except using a new horizontal scan line $3m_{min}$ below the centre horizontal scan line. If there is no decode, repeat step 2) above except using a new vertical scan line $3m_{min}$ right of the centre vertical scan line. If there is no decode, proceed to step 4) below.

- 4) Continue processing horizontal and vertical scan lines as in steps 1) through 3) that are $3m_{min}$ above, then left, then below, then right of the previously processed scan lines until either a symbol is decoded or the edge of the image is reached.
- d) First assume that the candidate area contains a square symbol. If the area fails to decode as a square symbol, then try to find and decode a rectangular symbol starting from procedure j). For a square symbol, first plot a normalised graph of transitions for the equal sides of the candidate area in order to find the alternating module finder pattern:
 - 1) Project a line through the candidate area bisecting the interior angle of the two sides of the "L" found above as shown in figure 9. Define the two equal areas formed by the bisecting line as the right side and the left side as viewed from the corner of the "L".
 - 2) For each side, form a line called a "search line" between a point *d_{min}* distance from the corner along the "L" line, parallel to the other "L" side line, and extending to the bisecting line as shown in Figure 9.
 - 3) Move each search line away from the corner of the "L" as shown in Figure 9, lengthening each line as it expands to span its two bounding lines, the "L" line and the bisecting line. Keep each search line parallel to the other "L" side line. As each side is moved by an image pixel, plot the sum of number of black/white and white/black transitions multiplied by the length of the longest "L" side divided by the current length of the search line measured between the two bounding lines:

T = (number of transitions) ("L" max. line length) / (search line length).

This formula normalises *T* to keep it from increasing because the line lengthens.

Continue to calculate the T values until the search line is longer than the longest axis of the candidate area plus 50%.

Figure 9 — Expanding search lines

4) Form a plot of the *T* values for each side, where the *Y*-axis is the *T* value and the *X*-axis is the search line's distance from the corner of the "L". A sample plot is shown in Figure 10.

Figure 10 — Example plot of T as the search line expands

- Starting from the T value with the smallest X in the right side's plot and then increasing X, find the first instance of a descending line where the T_S value (T_S = maximum of zero and T - 1) at the valley is less than 15% of the peak's T value. If the peak or valley in the plot has a flat plateau or floor, select the peak or valley point closest to the descending line in the plot. The search line at the peak may correspond to an alternating finder pattern side. At the valley, the search line may correspond to the solid dark interior line or a light quiet zone.
- 6) Find a peak and valley in the left side's plot which most nearly matches the right peak and valley X values. If either of the selected left side peak or valley X values differ by more than 15% from the equivalent right side peak or valley X values, discard the right side peak and valley and continue searching from step d) 5) for the next peak and valley. The 15% specifies the maximum allowed foreshortening.
- The right side's valley search line, the left side's valley search line, and the two sides of the "L" outline a possible symbol's data region. Process the data region according to step E. If the decode fails, discard the right side peak and valley and continue searching from step d) 5) for the next peak and valley.
- e) For each of the two sides of the alternating pattern, find the line passing through the centre of the alternating light and dark modules:
 - For each side, form a rectangular region bounded by the side's peak and valley search lines as the longer two sides of the rectangle, and the "L" side and the other side's valley search line as the shorter two sides, as shown in Figure 11.

Figure 11 — Rectangular region construction

- 2) Within the rectangular region, find pixel edge pairs on the outside boundary of teeth:
 - i) Traverse test lines starting with and parallel to the minimum line looking for transitions to the opposite colour normally orthogonal to the test line. Select only transitions that are either dark to light or light to dark where the first colour matches the predominate colour of the image along the valley line.
 - ii) If the number of transitions found is less than 15% of the number of pixels comprising the valley line, and the test line is not the peak line, move the test line toward the peak line by approximately one pixel and repeat step a. If the 15% criterion is met or the peak line is reached continue to the next step.
 - iii) Calculate a preliminary "best fit line" with linear regression using the points on the edge between the selected pixel pairs.
 - iv) Discard the 25% of the points which are furthest from the preliminary "best fit line". Calculate a final "best fit line" with linear regression using the remaining 75% of points. This line should pass along the outside of the alternating pattern, shown as the "best fit line" in Figure 12.

Figure 12 — Alternating pattern module centre-line

3) For each side, construct a line parallel to the step e) 2) line which is offset toward the "L" corner by the length of the peak search line divided by twice the number of transitions in the peak search line:

Offset = length of peak line / (number of transitions * 2)

Each of the two constructed lines should correspond to the centre-line or midline of the alternating module pattern on that side, see Figure 13.

Figure 13 — Module sampling grid construction

- For each side, determine the number of data modules in the side of the square symbol or data region:
 - Bound the alternating pattern mid-line constructed in step e)3) by the adjacent "L" line and the other alternating pattern mid-line from step e)3). Call the length of this line M_d (see Figure 11).
 - 2) Along the bounded mid-line, measure the edge-to-edge distances between all the similar edges of all two-element pairs, i.e. dark/light and light/dark element pairs.

- 3) Select the median edge-to-edge measurement and set the current edge-to-edge measurement estimate, *EE_Dist*, to the median measurement.
- 4) Discard all element pairs with edge-to-edge measurements that differ more than 25% from EE_Dist.
- 5) Calculate the average of the remaining measurements for the side. Call the average E_{avg} .
- 6) The calculated number of data modules "dm" is defined by the formula:

$$dm = ((M_d * 2) / E_{avq}) - 1,5$$

where "dm" is rounded to the nearest integer value.

- 7) If "dm" differs for the two sides, discard the right side peak and valley and continue searching from step d)5) for the next peak and valley. Otherwise, dm is the size of the square data region.
- g) For each side, find the centre points of the alternating pattern modules:
 - 1) Using the remaining element pair measurements from f) 4), calculate the average ink spread (vertical or horizontal depending on the segment side) by the average of the element pair's ink spread, where bar is the dark element width and space is the light element width in a remaining element pair:

2) Calculate the centre of the bar in the median element pair using the following offset into the bar from the outside edge of the bar in the median pair:

3) Starting from the centre of the bar in the median element pair from step f).3), and proceeding in the direction of the space in the element pair, until reaching the end of the bounded mid-line, calculate each element's centre, shown by the speckled pattern in Figure 14, by the following steps:

Figure 14 — Edge-to-edge measurements for finding an element centre

(While three bars and two spaces are shown in Figure 14, if a space is the element for which the centre is to be calculated, then the diagram would have three spaces instead of the bars and two bars instead of the spaces. For light elements adjacent to the element at the end of the mid-line, either *D1* or *D4* measurements are omitted as they would fall outside the symbol's or segment's measurable element boundaries.)

- Calculate a point p1 along the mid-line which is EE_Dist/2 from the previously calculated element centre in the direction of the new element.
- ii) Calculate d₁ through d₄ where:

$$d_1 = D1 / 2$$

$$d_2 = D2$$

$$d_3 = D3$$

$$d_4 = D4 / 2$$

- If one of the values d_1 through d_4 is within 25% of EE Dist, select the one which is closest to EE Dist, and set the new EE Dist to be the average of the current EE Dist and the selected d₁ through d_4 distance.
 - If d_1 or d_4 are selected, select the corresponding D1 or D4 edge closest to the element the centre of which is to be calculated. Offset this edge by (ink_spread/2) * (EE_Dist/2) in the appropriate direction (i.e., if ink spread is positive, the offset will move the edge toward the space included in the distance D1 or D4 and if negative, the offset will move away from this space). Calculate a point p2 along the mid-line which is 0,75 times the selected d_1 or d_4 value from the offset edge and toward the element centre to be calculated.
 - II) If d_2 or d_3 are selected, select the corresponding D2 or D3 edge closest to the element the centre of which is to be calculated. Offset this edge by (ink spread/2) * (EE Dist/2)in the appropriate direction (i.e., if ink spread is positive, the offset will move the edge toward the space included in the distance D2 or D3 and if negative, the offset will move away from this space). Calculate a point p2 along the mid-line which is 0,25 times the selected d_2 or d_3 value from the offset edge and toward the element centre to be calculated.
 - III) Set the element's centre as halfway between p1 and p2.
- iv) Otherwise if none of the values d_1 through d_4 is within 25% of EE_Dist , leave EE_Dist at its current value, use p1 as the new element's centre, and proceed to the next element.
- Starting from the bar in the median element pair, and proceeding in the opposite direction from step 3), until reaching the other end of the bounded mid-line, calculate each element's centre, following the procedures in step 3).
- Plot the data module sampling grid in the data region by extending the alternating pattern module centres:
 - 1) Extend each side's step e)3) midline and the opposite side's "L" line to form the vanishing point of the two nearly parallel or parallel extended lines.
 - 2) Extend rays from each vanishing point passing through the step G module centres of the nearly perpendicular step e)3) line.
 - The intersection of the two sets of nearly perpendicular rays should correspond to the centres of the data modules in the data region, as shown in Figure 13.
- Continue to fill in the remaining data regions. i)
 - When a data region is processed, form a new "L" for the next data section to the "left" or "above" using one of two processes:
 - a. If the new data region is still bounded on one side by the original "L" from procedure B, repeat from procedure C to process the new data region using the selected set of points from step e)2) and the set of points on the "L" from step b)2) which lie beyond the step e)2) line.
 - b. If the new data region is bounded on two sides by data regions, repeat from procedure c) to process the new data region using the selected set of points from step e)2) for each data region which are adjacent and bound the new region on two sides
 - 2) If a data region does not match the number of modules in previously processed regions trim the symbol to the largest number of regions which correspond to a legal symbol.
 - 3) Decode the symbol with its one or more data regions starting with procedure k).

- j) Find the data sections of a rectangular symbol.
 - 1) For each side of the "L" move a line perpendicular to the side and scanning along the length of the other side of the "L". As each side is moved by a pixel, plot the sum of number of black/white and white/black transitions:

T = (number of transitions) ("L" max line length) / (search line length).

Continue until the parallel line moves further than the perpendicular leg of the "L" plus 10%.

- 2) Starting from the origin of the plot, for each direction, find the first instance of a descending line where the *T* value at the valley is less than 15% of the peak's value. If the peak or valley in the plot has a flat plateau or floor, select the peak or valley point closest to the descending line in the plot. The valley line at this point may form a side of a symbol or data region.
- 3) Find the alternating pattern lines for each side of the region similar to procedure e).
- 4) Plot the module sample grid in the data region or symbol as in procedures f), g), and h). Skip step f) 6) which requires that the region is square.
- 5) If the data region defined is not a valid rectangular symbol, try to form a new data region using further valid peak to valley plot transitions.
- 6) Process any additional regions as in procedure i).
- 7) If a valid data region or two regions are detected, attempt to decode the symbol as in procedures k) and l). If the region(s) were not valid or the decode fails, disregard the candidate area.
- k) If the number of data modules is even or the symbol forms a valid rectangular symbol, decode the symbol using Reed-Solomon error correction:
 - 1) Sample the data modules at their predicted centres. Black at the centre is a one and white is a zero.
 - 2) Convert the eight module samples in the defined codeword patterns into 8-bit symbol character values.
 - 3) Apply Reed-Solomon error correction to the symbol character values.
 - 4) Decode the symbol characters into data characters according to the specified encodation schemes.
- I) Otherwise the number of data modules is odd, so decode the symbol using convolution code error correction:
 - Sample the data modules at their predicted centres. Black at the centre is a one and white is a zero.
 - 2) Apply the black/white balancing mask.
 - 3) Use the bit ordering table to convert the data into a bit stream.
 - 4) Apply the appropriate convolution code error correction.
 - 5) Convert the bit stream to data characters according to the encodation scheme specified.
 - 6) Verify that the CRC is correct.

10 User guidelines

10.1 Human readable interpretation

Because Data Matrix symbols are capable of encoding thousands of characters, a human readable interpretation of the data characters may not be practical. As an alternative, descriptive text rather than the encoded text may accompany the symbol. The character size and font are not specified, and the message may be printed anywhere in the area surrounding the symbol. The human readable interpretation should not interfere with the symbol itself or the quiet zones.

10.2 Autodiscrimination capability

Data Matrix can be used in an autodiscrimination environment with a number of other symbologies. (See Annex S).

10.3 System considerations

Data Matrix applications must be viewed as a total system solution (see Annex T).

11 Transmitted data

This section describes the standard transmission protocol for compliant readers. These readers may be programmable to support other transmission options. All encoded data characters are included in the data transmission. The symbology control characters and error correction characters are not transmitted. More complex interpretations are addressed below.

11.1 Protocol for FNC1 (ECC 200 only)

When FNC1 appears in the first symbol character position (or in the fifth symbol character position of the first symbol of a Structured Append sequence), it shall signal that the data conforms to the GS1 Application Identifier standard format. FNC1 in any other later position in such symbols acts as a field separator. Transmission of symbology identifiers shall be enabled. The first FNC1 shall not be represented in the transmitted data, although its presence is indicated by the use of the appropriate option value (2) in the symbology identifier (see 11.5).

When used as a field separator, FNC1 shall be represented in the transmitted message by the ASCII character < G_S> (ASCII value 29).

11.2 Protocol for FNC1 in the second position (ECC 200 only)

When FNC1 is in the second symbol character position (or in the sixth symbol character position of the first symbol of a Structured Append sequence), it shall signal that the data conforms to a particular industry standard format. Transmission of symbology identifiers shall be enabled. The first FNC1 shall not be represented in the transmitted data, although its presence is indicated by the use of the appropriate option value (3) in the symbology identifier (see 11.5).

The data encoded in the first symbol character shall be transmitted as normal at the beginning of the data. When used as a field separator, FNC1 shall be represented in the transmitted message by the ASCII character < G_S> (ASCII value 29).

11.3 Protocol for Macro characters in the first position (ECC 200 only)

This protocol is used to encode two specific message headers and trailers in an abbreviated manner in ECC 200 symbols.

When a Macro character is in the first position a preamble and postamble shall be transmitted. If the first symbol character is 236 (i.e. encoding Macro 05), then the preamble [)> $^R_{\rm S}05^G_{\rm S}$ shall precede the encoded data that follows it. If the first symbol character is 237 (i.e. encoding Macro 06), then the preamble [)> $^R_{\rm S}06^G_{\rm S}$ shall precede the encoded data that follows it. The postamble $^R_{\rm S}^{\rm E}o_{\rm T}$ shall be transmitted after the data in both cases.

11.4 Protocol for ECIs (ECC 200 only)

In systems where ECIs are supported, the use of a symbology identifier prefix is required with every transmission. Whenever an ECI codeword is encountered, it shall be transmitted as the escape character 92_{DEC} (or $5C_{HEX}$), which represents the character "\" (backslash or reverse solidus) in the default interpretation. The next codeword(s) are converted into a 6-digit value, inverting the rules defined in Table 6. The 6-digit value is transmitted as the appropriate ASCII values (48 - 57). Application software recognising \nnnnnn should interpret all subsequent characters as being from the ECI defined by the 6-digit sequence. This interpretation remains in effect until the end of the encoded data or until another ECI sequence is encountered. If the backslash (byte 92_{DEC}) needs to be used as encoded data, transmission shall be as follows. Whenever (ASCII 92_{DEC}) occurs as data, two bytes of that value shall be transmitted, thus a single occurrence is always an escape character and a double occurrence indicates true data.

EXAMPLE

Encoded data: A\\B\C
Transmission: A\\\\B\\C

Use of the symbology identifier assures that the application can correctly interpret the escape character.

11.5 Symbology identifier

ISO/IEC 15424 provides a standard procedure for reporting the symbology which has been read, together with options set in the decoder and special features encountered in the symbol. Once the structure of the data (including the use of any ECI) has been identified, the appropriate symbology identifier should be added by the decoder as a preamble to the transmitted data. The symbology identifier is required if ECIs appear anywhere in the symbol, or if FNC1 is used as defined in 11.1 or 11.2. See Annex N for the symbology identifier and option values which apply to Data Matrix.

11.6 Transmitted data example

In this example, the two-character message "¶X" is to be encoded in ECC 200, using the ASCII encodation scheme. "¶" is represented by a byte value of 182 in Data Matrix's default character set (ECI 000003, which is equivalent to ISO 8859-1). "X" is a Cyrillic character not available in ECI 000003, but which can be represented in ISO 8859-5 (ECI 000007) by the same byte value of 182. The complete message can therefore be represented by inserting a switch to ECI 000007 after the first character, as follows: The symbol encodes the message <¶> <Switch to ECI 000007> <X>, using the following series of Data Matrix codewords: [Upper Shift] [55] [ECI] [8] [Upper Shift] [55], with decimal values of [235], [55], [241], [8], [235], [55].

NOTE 1 An Upper Shift character, followed by a codeword of value 55, encodes a byte value of 182.

The decoder transmits the following bytes (including the symbology identifier prefix with an option value of 4, which indicates use of the ECI protocol):

93, 100, 52, 182, 92, 48, 48, 48, 48, 48, 55, 182

which, if viewed entirely in the default interpretation, would appear graphically as:]d4¶\000007¶

The decoder is responsible for signalling the switch to ECI 000007, but not for interpreting the result. ECI-aware software in the receiving application would delete the ECI escape sequence \0000007, and the Cyrillic character "\mathbb{K}" would be represented in a system-dependent manner (e.g., by changing the font in a desktop-publishing file). The final result would match the original message of "\mathbb{K}".

Annex A (normative)

ECC 200 interleaving process

A.1 Schematic illustration

Using the example of the 72 x 72 symbol size, four levels of interleaving are required to encode a total of 368 data codewords and 144 error correction codewords. These are divided into four blocks of 92 data codewords and 36 error correction codewords, a total block length of 128 codewords.

CODEWORD	da	ta co	odew	ords	d						err	error correction codewords $\boldsymbol{\epsilon}$								
STREAM	1	2	3	4			365	366	367	368	1	2	3	4			141	142	143	144
BLOCK 1	da	ta co	odew	ords	d						err	or	corre	ction	codev	vords	ε			
	1	5				361	365				1	5				137	141			
											•									
BLOCK 2		data codewords d						error correction codewords ϵ												
		2	6				362	366				2	6				138	142		
BLOCK 3			data	a cod	lewoi	ds d							erro	or coi	rectio	on cod	ewords	3 8		
			3	7				363	367				3	7				139	143	
BLOCK 4		data codewords d							error correction codeword			words 8	5							
				4	8				364	368				4	8				140	144

Figure A.1 — Illustration of interleaving for 72 x 72 symbol

A.2 Starting sequence for interleaving in different sized symbols

The sequence of the interleaved data codewords and error correction codewords is given in Table A.1.

Table A.1 — Sequence of data and error correction codewords for different symbol sizes

Symbol size	Reed-Solomon block	Sequence of data codewords			Sequence of error correction codewords			
52 x 52	1	1, 3, 5		201, 203	1, 3, 5		81, 83	
	2	2, 4, 6		202, 204	2, 4, 6		82, 84	
64 x 64	1	1, 3, 5		277, 279	1, 3, 5		109, 111	
	2	2, 4, 6		278, 280	2, 4, 6		110, 112	
72 x 72	1	1, 5, 9		361, 365	1, 5, 9		137, 141	
	2	2, 6, 10		362, 366	2, 6, 10		138, 142	
	3	3, 7, 11		363, 367	3, 7, 11		139, 143	
	4	4, 8, 12		364, 368	4, 8, 12		140, 144	
80 x 80	1	1, 5, 9		449, 453	1, 5, 9		185, 189	
	2	2, 6, 10		450, 454	2, 6, 10		186, 190	
	3	3, 7, 11		451, 455	3, 7, 11		187, 191	
	4	4, 8, 12		452, 456	4, 8, 12		188, 192	
88 x 88	1	1, 5, 9		569, 573	1, 5, 9		217, 221	
	2	2, 6, 10		570, 574	2, 6, 10		218, 222	
	3	3, 7, 11		571, 575	3, 7, 11		219, 223	
	4	4, 8, 12		572, 576	4, 8, 12		220, 224	
96 x 96	1	1, 5, 9		689, 693	1, 5, 9		265, 269	
	2	2, 6, 10		690, 694	2, 6, 10		266, 270	
	3	3, 7, 11		691, 695	3, 7, 11		267, 271	
	4	4, 8, 12		692, 696	4, 8, 12		268, 272	
104 x 104	1	1, 7, 13		805, 811	1, 7, 13		325, 331	
	2	2, 8, 14		806, 812	2, 8, 14		326, 332	
	3	3, 9, 15		807, 813	3, 9, 15		327, 333	
	4	4, 10, 16		808, 814	4, 10, 16		328, 334	
	5	5, 11, 17		809, 815	5, 11, 17		329, 335	
	6	6, 12, 18		810, 816	6, 12, 18		330, 336	
120 x 120	1	1, 7, 13		1039, 1045	1, 7, 13		397, 403	
	2	2, 8, 14		1040, 1046	2, 8, 14		398, 404	
	3	3, 9, 15		1041, 1047	3, 9, 15		399, 405	
	4	4, 10, 16		1042, 1048	4, 10, 16		400, 406	
	5	5, 11, 17		1043, 1049	5, 11, 17		401, 407	
	6	6, 12, 18		1044, 1050	6, 12, 18		402, 408	

Symbol size	Reed-Solomon block	Sequence of data codewords			Sequence of error correction codewords			
132 x 132	1	1, 9, 17		1289, 1297	1, 9, 17		481, 489	
	2	2, 10, 18		1290, 1298	2, 10, 18		482, 490	
	3	3, 11, 19		1291, 1299	3, 11, 19		483, 491	
	4	4, 12, 20		1292, 1300	4, 12, 20		484, 492	
	5	5, 13, 21		1293, 1301	5, 13, 21		485, 493	
	6	6, 14, 22		1294, 1302	6, 14, 22		486, 494	
	7	7, 15, 23		1295, 1303	7, 15, 23		487, 495	
	8	8, 16, 24		1296, 1304	8, 16, 24		488, 496	
144 x 144	1	1, 11, 21		1541, 1551	1, 11, 21		601, 611	
	2	2, 12, 22		1542, 1552	2, 12, 22		602, 612	
	3	3, 13, 23		1543, 1553	3, 13, 23		603, 613	
	4	4, 14, 24		1544, 1554	4, 14, 24		604, 614	
	5	5, 15, 25		1545, 1555	5, 15, 25		605, 615	
	6	6, 16, 26		1546, 1556	6, 16, 26		606, 616	
	7	7, 17, 27		1547, 1557	7, 17, 27		607, 617	
	8	8, 18, 28		1548, 1558	8, 18, 28		608, 618	
	9	9, 19, 29		1549	9, 19, 29		609, 619	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	10	10, 20, 30		1550	10, 20, 30		610, 620	

Annex B

(normative)

ECC 200 pattern randomising

The pattern randomising algorithms convert an input codeword at a given position to a new randomised output codeword.

B.1 253-state algorithm

This algorithm adds a pseudo-random number to the Pad codeword value. The pseudo-random number will always be in the range 1 to 253 and the randomised Pad codeword value will be in the range 1 to 254.

The variable Pad_codeword_position is the number of data codewords from the beginning of encoded data.

B.1.1 253-state randomising algorithm

```
INPUT ( Pad_codeword_value, Pad_codeword_position )

pseudo_random_number = ( ( 149 * Pad_codeword_position ) mod 253 ) + 1

temp_variable = Pad_codeword_value + pseudo_random_number

IF ( temp_variable <= 254 )

OUTPUT ( randomised_Pad_codeword_value = temp_variable )

ELSE

OUTPUT ( randomised_Pad_codeword_value = temp_variable - 254 )

B.1.2 253-state un-randomising algorithm

INPUT ( randomised_Pad_codeword_value, Pad_codeword_position )
```

```
pseudo\_random\_number = (\ (\ 149\ *\ Pad\_codeword\_position\ )\ mod\ 253\ ) + 1
```

temp_variable = randomised_Pad_codeword_value - pseudo_random_number

```
IF ( temp_variable >= 1 )
```

OUTPUT (Pad_codeword_value = temp_variable)

ELSE

OUTPUT (Pad codeword value = temp variable + 254)

B.2 255-state algorithm

This algorithm adds a pseudo-random number to the Base 256 encodation codeword value. The pseudorandom number will always be in the range 1 to 255 and the randomised Base 256 codeword value will be in the range 0 to 255.

The variable Base256_codeword_position is the number of data codewords from the beginning of encoded data.

B.2.1 255-state randomising algorithm

```
INPUT (Base256_codeword_value, Base256_codeword_position)

pseudo_random_number = ( (149 * Base256_codeword_position) mod 255) + 1

temp_variable = Base256_codeword_value + pseudo_random_number

IF (temp_variable <= 255)

OUTPUT (randomised_Base256_codeword_value = temp_variable)

ELSE

OUTPUT (randomised_Base256_codeword_value = temp_variable - 256)
```

B.2.2 255-state un-randomising algorithm

```
INPUT ( randomised_Base256_codeword_value, Base256_codeword_position )

pseudo_random_number = ( ( 149 * Base256_codeword_position ) mod 255 ) + 1

temp_variable=randomised_Base256_codeword_value - pseudo_random_number

IF ( temp_variable >= 0 )

OUTPUT ( Base256_codeword_value = temp_variable )

ELSE

OUTPUT ( Base256_codeword_value = temp_variable + 256 )
```

Annex C (normative)

ECC 200 encodation character sets

Table C.1 — C40 encodation character set

C40 Value	Bas	sic set	Shi	ft 1 set	Shift 2	set	Shift 3 set		
	Char	Decimal	Char	Decimal	Char	Decimal	Char	Decimal	
0	Shift 1		NUL	0	!	33		96	
1	Shift 2		SOH	1	ш	34	а	97	
2	Shift 3		STX	2	#	35	b	98	
3	space	32	ETX	3	\$	36	С	99	
4	0	48	EOT	4	%	37	d	100	
5	1	49	ENQ	5	&	38	е	101	
6	2	50	ACK	6	í	39	f	102	
7	3	51	BEL	7	(40	g	103	
8	4	52	BS	8)	41	h	104	
9	5	53	HT	9	*	42	i	105	
10	6	54	LF	10	+	43	j	106	
11	7	55	VT	11	,	44	k	107	
12	8	56	FF	12	-	45	I	108	
13	9	57	CR	13		46	m	109	
14	Α	65	SO	14	1	47	n	110	
15	В	66	SI	15	:	58	0	111	
16	С	67	DLE	16	;	59	р	112	
17	D	68	DC1	17	<	60	q	113	
18	E	69	DC2	18	Ш	61	r	114	
19	F	70	DC3	19	>	62	S	115	
20	G	71	DC4	20	?	63	t	116	
21	Н	72	NAK	21	@	64	u	117	
22	I	73	SYN	22	[91	٧	118	
23	J	74	ETB	23	1	92	W	119	
24	K	75	CAN	24]	93	Х	120	
25	L	76	EM	25	٨	94	у	121	
26	М	77	SUB	26	I	95	Z	122	
27	N	78	ESC	27	FNC1		{	123	
28	0	79	FS	28				124	
29	Р	80	GS	29			}	125	
30	Q	81	RS	30	Upper Shift		~	126	
31	R	82	US	31			DEL	127	
32	S	83							
33	Т	84							
34	U	85			_	_			
35	V	86							

C40 Value	Bas	Basic set		ft 1 set	Shift 2	2 set	Shift 3 set	
	Char	Decimal	Char	Decimal	Char	Decimal	Char	Decimal
36	W	87						
37	Х	88						
38	Υ	89						
39	Z	90						

The relationship between the ASCII decimal value and the C40 value remains constant regardless of which ECI is in effect.

Table C.2 — Text encodation character set

Text value	Basic set		Shi	ft 1 set	Shif	t 2 set	Shi	ft 3 set
Text value	Char	Decimal	Char	Decimal	Char	Decimal	Char	Decimal
0	Shift	1	NUL	0	!	33		96
1	Shift	2	SOH	1	íí.	34	Α	65
2	Shift	3	STX	2	#	35	В	66
3	space	32	ETX	3	\$	36	С	67
4	0	48	EOT	4	%	37	D	68
5	1	49	ENQ	5	&	38	Е	69
6	2	50	ACK	6		39	F	70
7	3	51	BEL	7	(40	G	71
8	4	52	BS	8)	41	Н	72
9	5	53	HT	9	*	42	I	73
10	6	54	LF	10	+	43	J	74
11	7	55	VT	11	,	44	K	75
12	8	56	FF	12	-	45	L	76
13	9	57	CR	13		46	M	77
14	а	97	SO	14	/	47	N	78
15	b	98	SI	15	:	58	0	79
16	С	99	DLE	16	;	59	Р	80
17	d	100	DC1	17	'	60	Q	81
18	е	101	DC2	18	=	61	R	82
19	f	102	DC3	19	^	62	S	83
20	g	103	DC4	20	?	63	Т	84
21	h	104	NAK	21	@	64	U	85
22	i	105	SYN	22	[91	V	86
23	j	106	ETB	23	/	92	W	87
24	k	107	CAN	24]	93	Х	88
25	I	108	EM	25	^	94	Υ	89
26	m	109	SUB	26	ı	95	Z	90
27	n	110	ESC	27	FNC1		{	123
28	0	111	FS	28				124
29	р	112	GS	29			}	125
30	q	113	RS	30	Upper	Shift	~	126
31	r	114	US	31			DEL	127
32	S	115						
33	t	116						
34	u	117						
35	٧	118						
36	W	119						
37	Х	120						

	Text value	Bas	sic set	Shi	ft 1 set	Shif	ft 2 set	Shift 3 set		
		Char	Decimal	Char	Decimal	Char	Decimal	Char	Decimal	
	38	у	121							
	39	Z	122							

NOTE The relationship between the ASCII decimal value and the Text value remains constant regardless of which ECI is in effect.

Table C.3 — EDIFACT encodation character set

С	Data characte	er	EDIFACT		Data charact	er	EDIFACT
Char	Decimal value	Binary value	binary value	Char	Decimal value	Binary value	binary value
@	64	01000000	000000	space	32	00100000	100000
Α	65	01000001	000001	!	33	00100001	100001
В	66	01000010	000010	ű	34	00100010	100010
С	67	01000011	000011	#	35	00100011	100011
D	68	01000100	000100	\$	36	00100100	100100
E	69	01000101	000101	%	37	00100101	100101
F	70	01000110	000110	&	38	00100110	100110
G	71	01000111	000111	í	39	00100111	100111
Н	72	01001000	001000	(40	00101000	101000
I	73	01001001	001001)	41	00101001	101001
J	74	01001010	001010	*	42	00101010	101010
K	75	01001011	001011	+	43	00101011	101011
L	76	01001100	001100	,	44	00101100	101100
M	77	01001101	001101	-	45	00101101	101101
N	78	01001110	001110		46	00101110	101110
0	79	01001111	001111	1	47	00101111	101111
Р	80	01010000	010000	0	48	00110000	110000
Q	81	01010001	010001	1	49	00110001	110001
R	82	01010010	010010	2	50	00110010	110010
S	83	01010011	010011	3	51	00110011	110011
Т	84	01010100	010100	4	52	00110100	110100
U	85	01010101	010101	5	53	00110101	110101
V	86	01010110	010110	6	54	00110110	110110
W	87	01010111	010111	7	55	00110111	110111
X	88	01011000	011000	8	56	00111000	111000
Y	89	01011001	011001	9	57	00111001	111001
Z	90	01011010	011010	:	58	00111010	111010
[91	01011011	011011	. ,	59	00111011	111011
/	92	01011100	011100	<	60	00111100	111100
]	93	01011101	011101	=	61	00111101	111101
٨	94	01011110	011110	>	62	00111110	111110
Unlatch		01011111	011111	?	63	00111111	111111

NOTE The relationship between the ASCII decimal value and the EDIFACT value remain constant regardless of which ECI is in effect.

Annex D (normative)

ECC 200 alignment patterns

Figure D.1 — Alignment pattern configuration for 32 x 32 square symbol

Figure D.2 — Alignment pattern configuration for 64 x 64 square symbol

Figure D.3 — Alignment pattern configuration for 120 x 120 square symbol

Figure D.4 — Alignment pattern configuration for 12 x 36 rectangular symbol

Annex E

(normative)

ECC 200 Reed-Solomon error detection and correction

E.1 Error correction codeword generator polynomials

The error correction codewords are the coefficients of the remainder resulting from first multiplying the symbol data polynomial d(x) by x^k and then dividing it by the generator polynomial g(x). Each generator polynomial is the product of the first-degree polynomials: $x - 2^1$, $x - 2^2$, ..., $x - 2^n$; where n is the degree of the generator polynomial.

For example the fifth degree generator polynomial is:

$$(x + 2)(x + 4)(x + 8)(x + 16)(x + 32)$$

$$= x^5 + (2 + 4 + 8 + 16 + 32)x^4 + ((2 * 4) + (2 * 8) + (2 * 16) + (2 * 32) + (4 * 8) + (4 * 16) + (4 * 32) + (8 * 16) + (8 * 32) + (16 * 32))x^3 + ((2 * 4 * 8) + (2 * 4 * 16) + (2 * 4 * 32) + (2 * 8 * 16) + (2 * 8 * 32) + (2 * 16 * 32) + (4 * 8 * 16) + (4 * 8 * 32) + (4 * 16 * 32) + (8 * 16 * 32))x^2 + ((2 * 4 * 8 * 16) + (2 * 4 * 8 * 32) + (2 * 4 * 16 * 32) + (2 * 8 * 16 * 32) + (4 * 8 * 16 * 32))x + (2 * 4 * 8 * 16 * 32)$$

$$= x^5 + 62x^4 + 111x^3 + 15x^2 + 48x + 228.$$

Note that this Galois Field arithmetic is not normal integer arithmetic: - is equivalent to +, which is an "exclusive-or" operation in this Field, and multiplication is byte-wise modulo 100101101 for each binary polynomial term generated by bit-by-bit multiplication.

The polynomial divisor for generating 5 check characters is:

$$g(x) = x^5 + 62x^4 + 111x^3 + 15x^2 + 48x + 228.$$

The polynomial divisor for generating 7 check characters is:

$$q(x) = x^7 + 254x^6 + 92x^5 + 240x^4 + 134x^3 + 144x^2 + 68x + 23.$$

The polynomial divisor for generating 10 check characters is:

$$q(x) = x^{10} + 61x^9 + 110x^8 + 255x^7 + 116x^6 + 248x^5 + 223x^4 + 166x^3 + 185x^2 + 24x + 28$$

The polynomial divisor for generating 11 check characters is:

$$a(x) = x^{11} + 120x^{10} + 97x^9 + 60x^8 + 245x^7 + 39x^6 + 168x^5 + 194x^4 + 12x^3 + 205x^2 + 138x + 175$$

The polynomial divisor for generating 12 check characters is:

$$a(x) = x^{12} + 242x^{11} + 100x^{10} + 178x^{9} + 97x^{8} + 213x^{7} + 142x^{6} + 42x^{5} + 61x^{4} + 91x^{3} + 158x^{2} + 153x + 41$$

The polynomial divisor for generating 14 check characters is:

$$g(x) = x^{14} + 185x^{13} + 83x^{12} + 186x^{11} + 18x^{10} + 45x^{9} + 138x^{8} + 119x^{7} + 157x^{6} + 9x^{5} + 95x^{4} + 252x^{3} + 192x^{2} + 97x^{2} + 156$$

The polynomial divisor for generating 18 check characters is:

$$g(x) = x^{18} + 188x^{17} + 90x^{16} + 48x^{15} + 225x^{14} + 254x^{13} + 94x^{12} + 129x^{11} + 109x^{10} + 213x^{9} + 241x^{8} + 61x^{7} + 66x^{6} + 75x^{5} + 188x^{4} + 39x^{3} + 100x^{2} + 195x + 83.$$

The polynomial divisor for generating 20 check characters is:

$$g(x) = x^{20} + 172x^{19} + 186x^{18} + 174x^{17} + 27x^{16} + 82x^{15} + 108x^{14} + 79x^{13} + 253x^{12} + 145x^{11} + 153x^{10} + 160x^{9} + 188x^{8} + 2x^{7} + 168x^{6} + 71x^{5} + 233x^{4} + 9x^{3} + 244x^{2} + 195x + 15.$$

The polynomial divisor for generating 24 check characters is:

$$g(x) = x^{24} + 193x^{23} + 50x^{22} + 96x^{21} + 184x^{20} + 181x^{19} + 12x^{18} + 124x^{17} + 254x^{16} + 172x^{15} + 5x^{14} + 21x^{13} + 155x^{12} + 223x^{11} + 251x^{10} + 197x^{9} + 155x^{8} + 21x^{7} + 176x^{6} + 39x^{5} + 109x^{4} + 205x^{3} + 88x^{2} + 190x + 52.$$

The polynomial divisor for generating 28 check characters is:

$$g(x) = x^{28} + 255x^{27} + 93x^{26} + 168x^{25} + 233x^{24} + 151x^{23} + 120x^{22} + 136x^{21} + 141x^{20} + 213x^{19} + 110x^{18} + 138x^{17} + 17x^{16} + 121x^{15} + 249x^{14} + 34x^{13} + 75x^{12} + 53x^{11} + 170x^{10} + 151x^{9} + 37x^{8} + 174x^{7} + 103x^{6} + 96x^{5} + 71x^{4} + 97x^{3} + 43x^{2} + 231x + 211.$$

The polynomial divisor for generating 36 check characters is:

$$g(x) = x^{36} + 112x^{35} + 81x^{34} + 98x^{33} + 225x^{32} + 25x^{31} + 59x^{30} + 184x^{29} + 175x^{28} + 44x^{27} + 115x^{26} + 119x^{25} + 95x^{28} + 137x^{23} + 101x^{22} + 33x^{21} + 68x^{20} + 4x^{19} + 2x^{18} + 18x^{17} + 229x^{16} + 182x^{15} + 80x^{14} + 251x^{13} + 220x^{12} + 179x^{11} + 84x^{10} + 120x^{9} + 102x^{8} + 181x^{7} + 162x^{6} + 250x^{5} + 130x^{4} + 218x^{3} + 242x^{2} + 127x + 245.$$

The polynomial divisor for generating 42 check characters is:

$$g(x) = x^{42} + 5x^{41} + 9x^{40} + 5x^{39} + 226x^{38} + 177x^{37} + 150x^{36} + 50x^{35} + 69x^{34} + 202x^{33} + 248x^{32} + 101x^{31} + 54x^{30} + 57x^{29} + 253x^{28} + x^{27} + 21x^{26} + 121x^{25} + 57x^{24} + 111x^{23} + 214x^{22} + 105x^{21} + 167x^{20} + 9x^{19} + 100x^{18} + 95x^{17} + 175x^{16} + 8x^{15} + 242x^{14} + 133x^{13} + 245x^{12} + 2x^{11} + 122x^{10} + 105x^{9} + 247x^{8} + 153x^{7} + 22x^{6} + 38x^{5} + 19x^{4} + 31x^{3} + 137x^{2} + 193x + 77.$$

The polynomial divisor for generating 48 check characters is:

$$g(x) = x^{48} + 19x^{47} + 225x^{46} + 253x^{45} + 92x^{44} + 213x^{43} + 69x^{42} + 175x^{41} + 160x^{40} + 147x^{39} + 187x^{38} + 87x^{37} + 176x^{36} + 44x^{35} + 82x^{34} + 240x^{33} + 186x^{32} + 138x^{31} + 66x^{30} + 100x^{29} + 120x^{28} + 88x^{27} + 131x^{26} + 205x^{25} + 170x^{24} + 90x^{23} + 37x^{22} + 23x^{21} + 118x^{20} + 147x^{19} + 16x^{18} + 106x^{17} + 191x^{16} + 87x^{15} + 237x^{14} + 188x^{13} + 205x^{12} + 231x^{11} + 238x^{10} + 133x^{9} + 238x^{8} + 22x^{7} + 117x^{6} + 32x^{5} + 96x^{4} + 223x^{3} + 172x^{2} + 132x + 245.$$

The polynomial divisor for generating 56 check characters is:

```
g(x) = x^{56} + 46x^{55} + 143x^{54} + 53x^{53} + 233x^{52} + 107x^{51} + 203x^{50} + 43x^{49} + 155x^{48} + 28x^{47} + 247x^{46} + 67x^{45} + 127x^{44} + 245x^{43} + 137x^{42} + 13x^{41} + 164x^{40} + 207x^{39} + 62x^{38} + 117x^{37} + 201x^{36} + 150x^{35} + 22x^{34} + 238x^{33} + 144x^{32} + 232x^{31} + 29x^{30} + 203x^{29} + 117x^{28} + 234x^{27} + 218x^{26} + 146x^{25} + 228x^{24} + 54x^{23} + 132x^{22} + 200x^{21} + 38x^{20} + 223x^{19} + 36x^{18} + 159x^{17} + 150x^{16} + 235x^{15} + 215x^{14} + 192x^{13} + 230x^{12} + 170x^{11} + 175x^{10} + 29x^{9} + 100x^{8} + 208x^{7} + 220x^{6} + 17x^{5} + 12x^{4} + 238x^{3} + 223x^{2} + 9x + 175.
```

The polynomial divisor for generating 62 check characters is:

```
g(x) = x^{62} + 204x^{61} + 11x^{60} + 47x^{59} + 86x^{58} + 124x^{57} + 224x^{56} + 166x^{55} + 94x^{54} + 7x^{53} + 232x^{52} + 107x^{51} + 4x^{50} + 170x^{49} + 176x^{48} + 31x^{47} + 163x^{46} + 17x^{45} + 188x^{44} + 130x^{43} + 40x^{42} + 10x^{41} + 87x^{40} + 63x^{39} + 51x^{38} + 218x^{37} + 27x^{36} + 6x^{35} + 147x^{34} + 44x^{33} + 161x^{32} + 71x^{31} + 114x^{30} + 64x^{29} + 175x^{28} + 221x^{27} + 185x^{26} + 106x^{25} + 250x^{24} + 190x^{23} + 197x^{22} + 63x^{21} + 245x^{20} + 230x^{19} + 134x^{18} + 112x^{17} + 185x^{16} + 37x^{15} + 196x^{14} + 108x^{13} + 143x^{12} + 189x^{11} + 201x^{10} + 188x^{9} + 202x^{8} + 118x^{7} + 39x^{6} + 210x^{5} + 144x^{4} + 50x^{3} + 169x^{2} + 93x + 242.
```

The polynomial divisor for generating 68 check characters is:

 $g(x) = x^{68} + 186x^{67} + 82x^{66} + 103x^{65} + 96x^{64} + 63x^{63} + 132x^{62} + 153x^{61} + 108x^{60} + 54x^{59} + 64x^{58} + 189x^{57} + 211$ $x^{56} + 232x^{55} + 49x^{54} + 25x^{53} + 172x^{52} + 52x^{51} + 59x^{50} + 241x^{49} + 181x^{48} + 239x^{47} + 223x^{46} + 136x^{45} + 231x^{44} + 210x^{43} + 96x^{42} + 232x^{41} + 220x^{40} + 25x^{39} + 179x^{38} + 167x^{37} + 202x^{36} + 185x^{35} + 153x^{34} + 139x^{33} + 66x^{32} + 236x^{31} + 227x^{30} + 160x^{29} + 15x^{28} + 213x^{27} + 93x^{26} + 122x^{25} + 68x^{24} + 177x^{23} + 158x^{22} + 197x^{21} + 234x^{20} + 180x^{19} + 248x^{18} + 136x^{17} + 213x^{16} + 127x^{15} + 73x^{14} + 36x^{13} + 154x^{12} + 244x^{11} + 147x^{10} + 33x^{9} + 89x^{8} + 56x^{7} + 159x^{6} + 146x^{15} + 25x^{14} + 160x^{13} + 172x^{12} + 230x^{14} + 202x^{15} + 25x^{14} + 102x^{15} + 25x^{14} + 102x$ $149x^5 + 251x^4 + 89x^3 + 173x^2 + 228x + 220$.

E.2 Error correction calculation

The Peterson-Gorenstein-Zierler algorithm may be used to correct errors in decoded ECC 200 symbols.

The calculation described below follows this error correcting algorithm, using the Reed-Solomon error correction codewords.

Erasures shall be corrected as errors by initially filling any erasure codeword positions with dummy values.

All calculations shall be done using GF(28) arithmetic operations. Addition and subtraction are equivalent to the binary XOR operation. Multiplication and division can be performed using log and antilog tables.

Construct the symbol character polynomial $C(x) = C_{n-1}x^{n-1} + C_{n-2}x^{n-2} + ... + C_1x^1 + C_0$ where the *n* coefficients are the codewords read with C_{n-1} being the first symbol character and where n is the total number of symbol characters.

Calculate i syndrome values S_0 through S_{i-1} by evaluating C(x) at $x=2^k$ for k=1 through i, where i is the number of error correction codewords in the symbol.

Form and solve j simultaneous equations with j unknowns L_0 through L_{i-1} using the i syndromes:

$$S_{0}L_{0} + S_{1}L_{1} + \dots + S_{j-1}L_{j-1} = S_{j}$$

$$S_{1}L_{0} + S_{2}L_{1} + \dots + S_{j}L_{j-1} = S_{j+1}$$

$$\vdots$$

$$\vdots$$

$$S_{j-1}L_0 + S_jL_1 + ... + S_{2j-2}L_{j-1} = S_{2j-1}$$

where j is i/2.

Construct the error locator polynomial:

$$L(x) = L_{j-1}x^{j} + L_{j-2}x^{j-1} + \dots + L_{0}x + 1$$

from the j values of L obtained above. Evaluate L(x) at $x = 2^k$ for k = 0 through n - 1 where n is the total number of symbol characters in the symbol.

Whenever $L(2^k) = 0$, an error location is given by n - 1 - k. If more than j error locations are found, the symbol is not correctable.

Save the error locations in m error location variables E_0 through E_{m-1} where m is the number of error locations found. Form and solve m simultaneous equations with m unknowns X_0 through X_{m-1} (the error magnitudes) using the error location variables E and the first m syndromes S:

$$E_{0}X_{0} + E_{1}X_{1} + \dots + E_{m-1}X_{m-1} = S_{0}$$

$$E_{0}^{2}X_{0} + E_{1}^{2}X_{1} + \dots + E_{(m-1)}^{2}X_{m-1} = S_{1}$$

$$E_{0}^{3}X_{0} + E_{1}^{3}X_{1} + \dots + E_{(m-1)}^{3}X_{m-1} = S_{2}$$

$$\vdots$$

$$\vdots$$

$$E_{0}^{m}X_{0} + E_{1}^{m}X_{1} + \dots + E_{(m-1)}^{m}X_{m-1} = S_{m-1}$$

Add the error magnitudes X_0 through X_{m-1} to the symbol character values at the corresponding error locations E_0 through E_{m-1} to correct the errors.

NOTE $E_0 \dots E_{m-1}$ – are the roots of the error locator polynomial.

This algorithm, written in C, is available from AIM, Inc. on the Data Matrix Developers Diskette (see Bibliography).

E.3 Calculation of error correction codewords

The following is an example of a generic routine, written in C, which calculates the error correction codewords for a given data codeword string of length "nd", stored as an integer array wd[]. The function ReedSolomon() first generates log and antilog tables for the Galois Field of size "gf" (in the case of ECC 200, 2⁸) with prime modulus "pp" (in the case of ECC 200, 301), then uses them in the function prod(), first to calculate coefficients of the generator polynomial of order "nc" and then to calculate "nc" additional check codewords which are appended to the data in wd[].

```
/* "prod(x,y,log,alog,gf)" returns the product "x" times "y" */
int prod(int x, int y, int *log, int *alog, int gf) {
   if (!x || !y) return 0;
   ELSE return alog[(log[x] + log[y]) % (gf-1)];
}
/* "ReedSolomon(wd,nd,nc,gf.pp)" takes "nd" data codeword values in wd[] */
/* and adds on "nc" check codewords, all within GF(gf) where "gf" is a */
/* power of 2 and "pp" is the value of its prime modulus polynomial */
void ReedSolomon(int *wd, int nd, int nc, int qf, int pp) {
   int i, j, k. *log,*alog,*c;
/* allocate, then generate the log & antilog arrays: */
   log = malloc(sizeof(int) * gf);
   alog = malloc(sizeof(int) * gf);
   log[0] = 1-gf; alog[0] = 1;
   for (i = 1; i < gf; i++) {
      alog[i] = alog[i-1] * 2;
      if (alog[i] >= gf) alog[i] ^= pp;
      log[alog[i]] = i;
}
/* allocate, then generate the generator polynomial coefficients: */
   c = malloc(sizeof(int) * (nc+1));
   for (i=1; i <= nc; i++) c[i] = 0; c[0] = 1;
```

```
for (i=1; i<=nc; i++) {
       c[i] = c[i-1];
       for (j=i-1; j>=1; j--) {
   c[j] = c[j-1] ^ prod(c[j],alog[i],log,alog,gf);
       c[0] = prod(c[0],alog[i],log,alog,gf);
   }
/* clear, then generate "nc" checkwords in the array wd[] : */
   for (i=nd; i<=(nd+nc); i++) wd[i] = 0;
   for (i=0; i<nd; i++) {
      k = wd[nd] ^wd[i] ;
       for (j=0; j<nc; j++) {
          wd[nd+j] = wd[nd+j+1] ^ prod(k,c[nc-j-1],log, alog,gf);
   free(c);
   free(alog);
   free(log);
```

Annex F

(normative)

ECC 200 symbol character placement

F.1 Symbol character placement

The following C language program generates symbol character placement diagrams:

```
#include <stdio.h>
#include <alloc.h>
int nrow, ncol, *array;
/* "module" places "chr+bit" with appropriate wrapping within array[] */
void module(int row, int col, int chr, int bit)
{ if (row < 0) { row += nrow; col += 4 - ((nrow+4)%8); } if (col < 0) { col += ncol; row += 4 - ((ncol+4)%8); }
   array[row*ncol+col] = 10*chr + bit;
^{\prime} "utah" places the 8 bits of a utah-shaped symbol character in ECC200 */
void utah(int row, int col, int chr)
{ module(row-2,col-2,chr,1);
   module(row-2,col-1,chr,2);
   module(row-1,col-2,chr,3);
   module(row-1,col-1,chr,4);
   module(row-1,col,chr,5);
   module(row, col-2, chr, 6);
   module(row,col-1,chr,7);
   module(row,col,chr,8);
/* "cornerN" places 8 bits of the four special corner cases in ECC200 */
void corner1(int chr)
{ module(nrow-1,0,chr,1);
   module(nrow-1,1,chr,2);
   module(nrow-1,2,chr,3);
   module(0,ncol-2,chr,4);
   module(0,ncol-1,chr,5);
   module(1,ncol-1,chr,6);
   module(2,ncol-1,chr,7);
   module(3,ncol-1,chr,8);
void corner2(int chr)
{ module(nrow-3,0,chr,1);
   module(nrow-2,0,chr,2);
   module(nrow-1,0,chr,3);
   module(0,ncol-4,chr,4);
   module(0,ncol-3,chr,5);
   module(0,ncol-2,chr,6);
   module(0,ncol-1,chr,7);
   module(1,ncol-1,chr,8);
void corner3(int chr)
{ module(nrow-3,0,chr,1);
   module(nrow-2,0,chr,2);
   module(nrow-1,0,chr,3);
   module(0,ncol-2,chr,4);
   module(0,ncol-1,chr,5);
   module(1,ncol-1,chr,6);
```

```
module(2,ncol-1,chr,7);
   module(3,ncol-1,chr,8);
void corner4(int chr)
{ module(nrow-1,0,chr,1);
   module(nrow-1, ncol-1, chr, 2);
   module(0,ncol-3,chr,3);
   module(0,ncol-2,chr,4);
   module(0,ncol-1,chr,5);
   module(1,ncol-3,chr,6);
   module(1,ncol-2,chr,7);
   module(1, ncol-1, chr, 8);
/* "ECC200" fills an nrow x ncol array with appropriate values for ECC200 */
void ECC200 (void)
{ int row, col, chr;
/* First, fill the array[] with invalid entries */
   for (row=0; row<nrow; row++) {</pre>
       for (col=0; col<ncol; col++) {
          array[row*ncol+col] = 0;
/st Starting in the correct location for character #1, bit 8,... st/
   chr = 1; row = 4; col = 0;
   do {
/* repeatedly first check for one of the special corner cases, then... */
       if ((row == nrow) && (col == 0)) corner1(chr++);
       if ((row == nrow-2) && (col == 0) && (ncol%4)) corner2(chr++);
       if ((row == nrow-2) && (col == 0) && (ncol%8 == 4)) corner3(chr++);
       if ((row == nrow+4) && (col == 2) && (!(ncol%8))) corner4(chr++);
/* sweep upward diagonally, inserting successive characters,... */
   do
       if ((row < nrow) && (col >= 0) && (!array[row*ncol+col]))
          utah(row,col,chr++);
      row -= 2; col += 2;
   } while ((row >= 0) && (col < ncol));</pre>
   row += 1; col += 3;
/* & then sweep downward diagonally, inserting successive characters,... */
   do {
       if ((row >= 0) && (col < ncol) && (!array[row*ncol+col]))</pre>
          utah(row,col,chr++);
      row += 2; col -= 2;
   } while ((row < nrow) && (col >= 0));
   row += 3; col += 1;
   ... until the entire array is scanned */
   } while ((row < nrow) || (col < ncol));</pre>
/* Lastly, if the lower righthand corner is untouched, fill in fixed pattern */
   if (!array[nrow*ncol-1]) {
       array[nrow*ncol-1] = array[nrow*ncol-ncol-2] = 1;
}
/* "main" checks for valid command line entries, then computes & displays array
* /
void main(int argc, char *argv[])
{ int x, y, z;
   if (argc = < 3) {
       printf("Command line: ECC200 # of Data Rows # of Data Columns\n");
```

```
} ELSE {
      nrow = ncol = 0;
      nrow = atoi(arqv[1]); ncol = atoi(arqv[2]);
      if ((nrow >= 6) && (~nrow&0x01) && (ncol >= 6) && (~ncol&0x01)) {
          array = malloc(sizeof(int) * nrow * ncol);
          ECC200();
          for (x=0; x<nrow; x++) {
             for (y=0; y<ncol; y++) {
                 z = array[x*ncol+y];
                 if (z == 0) printf(" WHI");
                    ELSE if (z == 1) printf("BLK");
                        ELSE printf("%3d.%d",z/10,z%10);
             printf("\n");
          free (array);
   }
}
```

F.2 Symbol character placement rules

F.2.1 Non-standard symbol character shapes

Because the standard symbol character shape cannot always fit at the data module boundaries of the symbol and at some corners, a small set of non-standard symbol characters is required. There are six conditions: two boundary conditions which affect all symbol formats, and four different corner conditions which apply to certain symbol formats:

- a. One portion of the symbol character shape is placed on one side and the other on the opposite side. This applies to two basic symbol character shapes (see Figure F.1). Variants of these arrangements concern the row-to-row relationship between the left and right hand boundary (see Table F.1).
- b. One portion of the symbol character is placed on the top boundary and the other portion on the bottom boundary. This applies to two basic symbol character shapes (see Figure F.2). Variants of these arrangements concern the column-to-column relationship between the top and bottom boundary (see Table F.1).
- c. Four symbol character shapes are split between two or three corners (see Figures F.3 to F.6) The non-standard symbol shapes are placed at opposite boundaries. The number of these pairings increases in general proportion to the size of the perimeter of the mapping matrix. The basic pattern is as illustrated in Figures F.1 and F.2. In Figure F.1, modules a8 and a7 are in the same row, as are modules b7 and b6. In Figure F.2 module c6 and c3 are in the same column as are modules d3 and d1. There are seven cases for boundary placement, which define the relative vertical position of the symbol characters illustrated in Figure F.1, the horizontal position of the symbol characters illustrated in Figure F.2, and the corner conditions.

Table F.1 — Factors which determine the boundary placement cases

Boundary placement case	Row relationship of module a8 and a7	Column relationship of module c6 and c3	Corner condition Figure No.	Mapping matrices affected	Refer to Annex F. Figure no. for example
1	a7 Row = a8 Row	c3 Column = c6 Column	None	Square: 8 ² , 16 ² , 24 ² , 32 ² , 40 ² 48 ² , 56 ² , 64 ² , 72 ² , 80 ² , 88 ² , 96 ² , & 120 ²	Figure F.9 & F.16
2	a7 Row = a8 Row - 2		None	Square: 10 ² & 18 ²	Figure F.10 & F.17
3	a7 Row = a8 Row + 4	c3 Column = c6 Column + 4	F.3	Square: 12 ² , 20 ² ,28 ² , 36 ² , 44 ² , 108 ² , & 132 ²	Figure F.11 & F.18
4	a7 Row = a8 Row + 2	c3 Column = c6 Column + 2	F.4	Square: 14 ² &22 ²	Figure F.12 & F.19
5	a7 Row = a8 Row	c3 Column = c6 Column + 2	F.5	Rectangular: 6 x 16 & 14 x 32	Figure F.13
6	a7 Row = a8 Row	c3 Column = c6 Column - 2	None	Rectangular: 10 x 24 & 10 x 32	Figure F.14
7	a7 Row = a8 Row + 4	c3 Column = c6 Column + 2	F.6	Rectangular: 6 x 28 & 14 x 44	Figure F.15

Figure F.1 — Left and right symbol characters

Figure F.2 — Top and bottom symbol characters

Figure F.3 — Corner condition 1

Figure F.4 — Corner condition 2

Figure F.5 — Corner condition 3

Figure F.6 — Corner condition 4

Algebraic notation has been used to identify the symbol characters because these vary depending on the NOTE 1 symbol format

NOTE 2 The corner characters are identified by the module in the bottom left and top right corners.

F.2.2 Symbol character arrangement

The symbol characters are placed in a matrix in the following manner:

- A mapping matrix is created.
 - 1) For small symbols with only one data region, this equates to the mapping matrix.
 - For larger symbols with more than one data region, the mapping matrix equates to an area the size of the abutted data regions. In effect, the mapping matrix has no separating alignment patterns. For example, the 36 x 36 format symbol has four 16 x 16 data regions which abut to create a mapping matrix 32 x 32. The size of the mapping matrix for each symbol format is given in Table 7. The boundary placement case is given in Table F.1.
- Symbol character 2 is placed in the uppermost left position, with its modules conforming to the bit (or module) sequence defined in Figure 11. Using the notation 2.1 to identify module 1 of symbol character 2, this module is in the top row and leftmost column of every mapping matrix. The module array sequence shown in Figure F.7 is constant for all mapping matrices.

2.1	2.2	3.6	3.7	3.8	4.3	4.4	4.5
2.3	2.4	2.5	5.1	5.2	4.6	4.7	4.8
2.6	2.7	2.8	5.3	5.4	5.5		
1.a	6.1	6.2	5.6	5.7	5.8		
1.b	6.3	6.4	6.5				
	6.6	6.7	6.8				

Figure F.7 — Starting sequence for module placement

NOTE The values a and b depend on the size of the mapping matrix

- c) The corner shapes are positioned according to Table F.1 and the appropriate Figures F.3 to F.6. Plotting of the standard symbol character shapes continues, nesting the shapes as illustrated above for symbol characters 2, 5, and 6. The non-standard symbol characters are positioned as per Table F.1. This process results in the mapping matrix being completely covered in symbol characters, most of which are un-numbered.
- d) The sequence of symbol characters is determined as follows. Symbol characters are arranged on 45degree parallel diagonal lines between the lower left and upper right, generally linking through the centres on module 8.
- e) The first diagonal line starts with the line through module 8 of symbol character 1; this is module 8 except in the case of the 6 x 28 mapping matrix, where the corner condition, as defined in Figure F.6, determines the values of modules in symbol character 1 (i.e. making the module identified in Figure F.7 as 1.b represent module 1,2). The diagonal line continues through modules 2.8 and 3.8.
- f) At this point, the diagonal line crosses the top row boundary. The next diagonal line is started 4 modules to the right in the top row, or in the case of the 8 x 8 mapping matrix, 3 modules right and 1 module down; i.e. the diagonal line is always displaced by 4 modules. Symbol characters are numbered in order, based on the placement path crossing module 8. Thus the next characters are determined by the downward diagonal line crossing modules 4.8, 5.8, 6.8 and so on.
- g) As shown in Figure F.8, the placement path continues as diagonal lines four modules to the right (or four modules down, or combinations thereof) from the previous diagonal line. The first, and all odd numbered, diagonal lines map the symbol character sequence from bottom left to top right. The second, and all even numbered, diagonal lines map the symbol character sequence from the top right to the bottom left.

Figure F.8 — Symbol character placement sequence

h) When the placement path encounters a non-standard symbol character shape, which is not completely contained within the boundaries of the mapping matrix, that symbol character is continued on the opposite side of the matrix. This has the effect of numbering the opposite portions of these symbol characters before the placement path crosses that position. For example, in the illustrated mapping matrix (see Figure F.8) the other portions of symbol character 3 and 7 are pre-numbered before the placement path crosses them. Thus the placement path only numbers un-numbered symbol characters. These boundary and corner conditions are specified in Table F.1. This can be seen in Figure F.8 for symbol characters 1, 3, 4, and 7. The corner conditions also affect the numbering sequence. The bottom left corner as illustrated in:

Figure F.3 is numbered immediately before the symbol character above it (see Figures F.11 and F.18 for examples).

Figure F.4 is numbered immediately before the symbol character above it (see Figures F.12 and F.19 for examples).

Figure F.5 is numbered immediately after the symbol character to its right (see Figure F.13 for an example).

Figure F.6 is numbered immediately before the symbol character above it (see Figure F.15 for an example).

The remaining modules of the corner are numbered before the placement path crosses them.

i) The placement procedure continues until all symbol characters are placed, and it ends in the lower right of the mapping matrix. Four sizes of mapping matrix (10 x 10, 14 x 14, 18 x 18, and 22 x 22) have a 2 x 2 area remaining in the bottom right hand corner. The top left and bottom right modules of this area are dark (nominally encoding binary 1). This is illustrated in Figure F.8.

í

Typical mapping matrices conforming to this procedure are illustrated in F.3. Figures F.9 to F.15 cover respective cases 1 to 7 for boundary placement. Figures F.16 to F.19 are another set of examples for cases 1 to 4. F.1 provides a C language program capable of mapping all encoded bits into the appropriate mapping matrix.

F.3 Symbol character placement examples for ECC 200

2.1	2.2	3.6	3.7	3.8	4.3	4.4	4.5
2.3	2.4	2.5	5.1	5.2	4.6	4.7	4.8
2.6	2.7	2.8	5.3	5.4	5.5	1.1	1.2
1.5	6.1	6.2	5.6	5.7	5.8	1.3	1.4
1.8	6.3	6.4	6.5	8.1	8.2	1.6	1.7
7.2	6.6	6.7	6.8	8.3	8.4	8.5	7.1
7.4	7.5	3.1	3.2	8.6	8.7	8.8	7.3
7.7	7.8	3.3	3.4	3.5	4.1	4.2	7.6

Figure F.9 — Codeword placement for square mapping matrix of size 8

2.1	2.2	3.6	3.7	3.8	4.3	4.4	4.5	1.1	1.2
2.3	2.4	2.5	5.1	5.2	4.6	4.7	4.8	1.3	1.4
2.6	2.7	2.8	5.3	5.4	5.5	10.1	10.2	1.6	1.7
1.5	6.1	6.2	5.6	5.7	5.8	10.3	10.4	10.5	7.1
1.8	6.3	6.4	6.5	9.1	9.2	10.6	10.7	10.8	7.3
7.2	6.6	6.7	6.8	9.3	9.4	9.5	11.1	11.2	7.6
7.4	7.5	8.1	8.2	9.6	9.7	9.8	11.3	11.4	11.5
7.7	7.8	8.3	8.4	8.5	12.1	12.2	11.6	11.7	11.8
3.1	3.2	8.6	8.7	8.8	12.3	12.4	12.5	BLK	WHT
3.3	3.4	3.5	4.1	4.2	12.6	12.7	12.8	WHT	BLK

Figure F.10 — Codeword placement for square mapping matrix of size 10

2.1	2.2	3.6	3.7	3.8	4.3	4.4	4.5	13.1	13.2	8.4	8.5
2.3	2.4	2.5	5.1	5.2	4.6	4.7	4.8	13.3	13.4	13.5	8.6
2.6	2.7	2.8	5.3	5.4	5.5	12.1	12.2	13.6	13.7	13.8	8.7
1.5	6.1	6.2	5.6	5.7	5.8	12.3	12.4	12.5	14.1	14.2	8.8
1.8	6.3	6.4	6.5	11.1	11.2	12.6	12.7	12.8	14.3	14.4	14.5
7.2	6.6	6.7	6.8	11.3	11.4	11.5	15.1	15.2	14.6	14.7	14.8
7.4	7.5	10.1	10.2	11.6	11.7	11.8	15.3	15.4	15.5	1.1	1.2
7.7	7.8	10.3	10.4	10.5	16.1	16.2	15.6	15.7	15.8	1.3	1.4
9.1	9.2	10.6	10.7	10.8	16.3	16.4	16.5	18.1	18.2	1.6	1.7
9.3	9.4	9.5	17.1	17.2	16.6	16.7	16.8	18.3	18.4	18.5	7.1
9.6	9.7	9.8	17.3	17.4	17.5	3.1	3.2	18.6	18.7	18.8	7.3
8.1	8.2	8.3	17.6	17.7	17.8	3.3	3.4	3.5	4.1	4.2	7.6

Figure F.11 — Codeword placement for square mapping matrix of size 12

2.1	2.2	3.6	3.7	3.8	4.3	4.4	4.5	13.1	13.2	8.4	8.5	8.6	8.7
2.3	2.4	2.5	5.1	5.2	4.6	4.7	4.8	13.3	13.4	13.5	14.1	14.2	8.8
2.6	2.7	2.8	5.3	5.4	5.5	12.1	12.2	13.6	13.7	13.8	14.3	14.4	14.5
1.5	6.1	6.2	5.6	5.7	5.8	12.3	12.4	12.5	15.1	15.2	14.6	14.7	14.8
1.8	6.3	6.4	6.5	11.1	11.2	12.6	12.7	12.8	15.3	15.4	15.5	1.1	1.2
7.2	6.6	6.7	6.8	11.3	11.4	11.5	16.1	16.2	15.6	15.7	15.8	1.3	1.4
7.4	7.5	10.1	10.2	11.6	11.7	11.8	16.3	16.4	16.5	22.1	22.2	1.6	1.7
7.7	7.8	10.3	10.4	10.5	17.1	17.2	16.6	16.7	16.8	22.3	22.4	22.5	7.1
9.1	9.2	10.6	10.7	10.8	17.3	17.4	17.5	21.1	21.2	22.6	22.7	22.8	7.3
9.3	9.4	9.5	18.1	18.2	17.6	17.7	17.8	21.3	21.4	21.5	23.1	23.2	7.6
9.6	9.7	9.8	18.3	18.4	18.5	20.1	20.2	21.6	21.7	21.8	23.3	23.4	23.5
8.1	19.1	19.2	18.6	18.7	18.8	20.3	20.4	20.5	24.1	24.2	23.6	23.7	23.8
8.2	19.3	19.4	19.5	3.1	3.2	20.6	20.7	20.8	24.3	24.4	24.5	BLK	WHT
8.3	19.6	19.7	19.8	3.3	3.4	3.5	4.1	4.2	24.6	24.7	24.8	WHT	BLK

Figure F.12 — Codeword placement for square mapping matrix of size 14

2.1	2.2	3.6	3.7	3.8	4.3	4.4	4.5	9.1	9.2	10.6	10.7	10.8	7.3	7.4	7.5
2.3	2.4	2.5	5.1	5.2	4.6	4.7	4.8	9.3	9.4	9.5	11.1	11.2	7.6	7.7	7.8
2.6	2.7	2.8	5.3	5.4	5.5	8.1	8.2	9.6	9.7	9.8	11.3	11.4	11.5	1.1	1.2
1.5	6.1	6.2	5.6	5.7	5.8	8.3	8.4	8.5	12.1	12.2	11.6	11.7	11.8	1.3	1.4
1.8	6.3	6.4	6.5	3.1	3.2	8.6	8.7	8.8	12.3	12.4	12.5	10.1	10.2	1.6	1.7
7.1	6.6	6.7	6.8	3.3	3.4	3.5	4.1	4.2	12.6	12.7	12.8	10.3	10.4	10.5	7.2

Figure F.13 — Codeword placement for 6 x 16 rectangular mapping matrix

Figure F.14 — Codeword placement for 10 x 24 rectangular mapping matrix

Figure F.15 — Codeword placement for 6 x 28 rectangular mapping matrix

2.1	2.2	3.6	3.7	3.8	4.3	4.4	4.5	13.1	13.2	14.6	14.7	14.8	15.3	15.4	15.5
2.3	2.4	2.5	5.1	5.2	4.6	4.7	4.8	13.3	13.4	13.5	16.1	16.2	15.6	15.7	15.8
2.6	2.7	2.8	5.3	5.4	5.5	12.1	12.2	13.6	13.7	13.8	16.3	16.4	16.5	1.1	1.2
1.5	6.1	6.2	5.6	5.7	5.8	12.3	12.4	12.5	17.1	17.2	16.6	16.7	16.8	1.3	1.4
1.8	6.3	6.4	6.5	11.1	11.2	12.6	12.7	12.8	17.3	17.4	17.5	27.1	27.2	1.6	1.7
7.2	6.6	6.7	6.8	11.3	11.4	11.5	18.1	18.2	17.6	17.7	17.8	27.3	27.4	27.5	7.1
7.4	7.5	10.1	10.2	11.6	11.7	11.8	18.3	18.4	18.5	26.1	26.2	27.6	27.7	27.8	7.3
7.7	7.8	10.3	10.4	10.5	19.1	19.2	18.6	18.7	18.8	26.3	26.4	26.5	28.1	28.2	7.6
9.1	9.2	10.6	10.7	10.8	19.3	19.4	19.5	25.1	25.2	26.6	26.7	26.8	28.3	28.4	28.5
9.3	9.4	9.5	20.1	20.2	19.6	19.7	19.8	25.3	25.4	25.5	29.1	29.2	28.6	28.7	28.8
9.6	9.7	9.8	20.3	20.4	20.5	24.1	24.2	25.6	25.7	25.8	29.3	29.4	29.5	8.1	8.2
8.5	21.1	21.2	20.6	20.7	20.8	24.3	24.4	24.5	30.1	30.2	29.6	29.7	29.8	8.3	8.4
8.8	21.3	21.4	21.5	23.1	23.2	24.6	24.7	24.8	30.3	30.4	30.5	32.1	32.2	8.6	8.7
22.2	21.6	21.7	21.8	23.3	23.4	23.5	31.1	31.2	30.6	30.7	30.8	32.3	32.4	32.5	22.1
22.4	22.5	3.1	3.2	23.6	23.7	23.8	31.3	31.4	31.5	14.1	14.2	32.6	32.7	32.8	22.3
22.7	22.8	3.3	3.4	3.5	4.1	4.2	31.6	31.7	31.8	14.3	14.4	14.5	15.1	15.2	22.6

Figure F.16 — Codeword placement for square mapping matrix of size 16

2.1	2.2	3.6	3.7	3.8	4.3	4.4	4.5	13.1	13.2	14.6	14.7	14.8	15.3	15.4	15.5	1.1	1.2
2.3	2.4	2.5	5.1	5.2	4.6	4.7	4.8	13.3	13.4	13.5	16.1	16.2	15.6	15.7	15.8	1.3	1.4
2.6	2.7	2.8	5.3	5.4	5.5	12.1	12.2	13.6	13.7	13.8	16.3	16.4	16.5	29.1	29.2	1.6	1.7
1.5	6.1	6.2	5.6	5.7	5.8	12.3	12.4	12.5	17.1	17.2	16.6	16.7	16.8	29.3	29.4	29.5	7.1
1.8	6.3	6.4	6.5	11.1	11.2	12.6	12.7	12.8	17.3	17.4	17.5	28.1	28.2	29.6	29.7	29.8	7.3
7.2	6.6	6.7	6.8	11.3	11.4	11.5	18.1	18.2	17.6	17.7	17.8	28.3	28.4	28.5	30.1	30.2	7.6
7.4	7.5	10.1	10.2	11.6	11.7	11.8	18.3	18.4	18.5	27.1	27.2	28.6	28.7	28.8	30.3	30.4	30.5
7.7	7.8	10.3	10.4	10.5	19.1	19.2	18.6	18.7	18.8	27.3	27.4	27.5	31.1	31.2	30.6	30.7	30.8
9.1	9.2	10.6	10.7	10.8	19.3	19.4	19.5	26.1	26.2	27.6	27.7	27.8	31.3	31.4	31.5	8.1	8.2
9.3	9.4	9.5	20.1	20.2	19.6	19.7	19.8	26.3	26.4	26.5	32.1	32.2	31.6	31.7	31.8	8.3	8.4
9.6	9.7	9.8	20.3	20.4	20.5	25.1	25.2	26.6	26.7	26.8	32.3	32.4	32.5	38.1	38.2	8.6	8.7
8.5	21.1	21.2	20.6	20.7	20.8	25.3	25.4	25.5	33.1	33.2	32.6	32.7	32.8	38.3	38.4	38.5	22.1
8.8	21.3	21.4	21.5	24.1	24.2	25.6	25.7	25.8	33.3	33.4	33.5	37.1	37.2	38.6	38.7	38.8	22.3
22.2	21.6	21.7	21.8	24.3	24.4	24.5	34.1	34.2	33.6	33.7	33.8	37.3	37.4	37.5	39.1	39.2	22.6
22.4	22.5	23.1	23.2	24.6	24.7	24.8	34.3	34.4	34.5	36.1	36.2	37.6	37.7	37.8	39.3	39.4	39.5
22.7	22.8	23.3	23.4	23.5	35.1	35.2	34.6	34.7	34.8	36.3	36.4	36.5	40.1	40.2	39.6	39.7	39.8
3.1	3.2	23.6	23.7	23.8	35.3	35.4	35.5	14.1	14.2	36.6	36.7	36.8	40.3	40.4	40.5	BLK	WHT
3.3	3.4	3.5	4.1	4.2	35.6	35.7	35.8	14.3	14.4	14.5	15.1	15.2	40.6	40.7	40.8	WHT	BLK

Figure F.17 — Codeword placement for square mapping matrix of size 18

Figure F.18 — Codeword placement for square mapping matrix of size 20

_		_			_			_					_								
2.1	2.2	3.6	3.7	3.8	4.3	4.4	4.5	13.1	13.2	14.6	14.7	14.8	15.3	15.4	15.5	32.1	32.2	23.4	23.5	23.6	23.7
2.3	2.4	2.5	5.1	5.2	4.6	4.7	4.8	13.3	13.4	13.5	16.1	16.2	15.6	15.7	15.8	32.3	32.4	32.5	33.1	33.2	23.8
2.6	2.7	2.8	5.3	5.4	5.5	12.1	12.2	13.6	13.7	13.8	16.3	16.4	16.5	31.1	31.2.	32.6	32.7	32.8	33.3	33.4	33.5
1.5	6.1	6.2	5.6	5.7	5.8	12.3	12.4	12.5	17.1	17.2	16.6	16.7	16.8	31.3	31.4	31.5	34.1	34.2	33.6	33.7	33.8
1.8	6.3	6.4	6.5	11.1	11.2	12.6	12.7	12.8	17.3	17.4	17.5	30.1	30.2	31.6	31.7	31.8	34.3	34.4	34.5	1.1	1.2
7.2	6.6	6.7	6.8	11.3	11.4	11.5	18.1	18.2	17.6	17.7	17.8	30.3	30.4	30.5	35.1	35.2	34.6	34.7	34.8	1.3	1.4
7.4	7.5	10.1	10.2	11.6	11.7	11.8	18.3	18.4	18.5	29.1	29.2	30.6	30.7	30.8	35.3	35.4	35.5	49.1	49.2	1.6	1.7
7.7	7.8	10.3	10.4	10.5	19.1	19.2	18.6	18.7	18.8	29.3	29.4	29.5	36.1	36.2	35.6	35.7	35.8	49.3	49.4	49.5	7.1
9.1	9.2	10.6	10.7	10.8	19.3	19.4	19.5	28.1	28.2	29.6	29.7	29.8	36.3	36.4	36.5	48.1	48.2	49.6	49.7	49.8	7.3
9.3	9.4	9.5	20.1	20.2	19.6	19.7	19.8	28.3	28.4	28.5	37.1	37.2	36.6	36.7	36.8	48.3	48.4	48.5	50.1	50.2	7.6
9.6	9.7	9.8	20.3	20.4	20.5	27.1	27.2	28.6	28.7	28.8	37.3	37.4	37.5	47.1	47.2	48.6	48.7	48.8	50.3	50.4	50.5
8.5	21.1	21.2	20.6	20.7	20.8	27.3	27.4	27.5	38.1	38.2	37.6	37.7	37.8	47.3	47.4	47.5	51.1	51.2	50.6	50.7	50.8
8.8	21.3	21.4	21.5	26.1	26.2	27.6	27.7	27.8	38.3	38.4	38.5	46.1	46.2	47.6	47.7	47.8	51.3	51.4	51.5	8.1	8.2
22.2	21.6	21.7	21.8	26.3	26.4	26.5	39.1	39.2	38.6	38.7	38.8	46.3	46.4	46.5	52.1	52.2	51.6	51.7	51.8	8.3	8.4
22.4	22.5	25.1	25.2	26.6	26.7	26.8	39.3	39.4	39.5	45.1	45.2	46.6	46.7	46.8	52.3	52.4	52.5	58.1	58.2	8.6	8.7
22.7	22.8	25.3	25.4	25.5	40.1	40.2	39.6	39.7	39.8	45.3	45.4	45.5	53.1	53.2	52.6	52.7	52.8	58.3	58.4	58.5	22.1
24.1	24.2	25.6	25.7	25.8	40.3	40.4	40.5	44.1	44.2	45.6	45.7	45.8	53.3	53.4	53.5	57.1	57.2	58.6	58.7	58.8	22.3
24.3	24.4	24.5	41.1	41.2	40.6	40.7	40.8	44.3	44.4	44.5	54.1	54.2	53.6	53.7	53.8	57.3	57.4	57.5	59.1	59.2	22.6
24.6	24.7	24.8	41.3	41.4	41.5	43.1	43.2	44.6	44.7	44.8	54.3	54.4	54.5	56.1	56.2	57.6	57.7	57.8	59.3	59.4	59.5
23.1	_		-						_		1						1		59.6		
23.2	42.3	42.4	42.5	3.1	3.2	43.6	43.7	43.8	55.3	55.4	55.5	14.1	14.2	56.6	56.7	56.8	60.3	60.4	60.5	BLK	WHT
23.3	42.6	42.7	42.8	3.3					-								-				BLK

Figure F.19 — Codeword placement for square mapping matrix of size 22

Annex G (normative)

ECC 000 - 140 symbol attributes

Table G.1 — ECC 000

Symbo	ol size ^a	Data reç	gion size	Numeric	Alphanum	8-bit byte	% of codewords	
Row	Col	Row	Col	capacity	capacity	capacity	used for error correction	% correctable
9	9	7	7	3	2	1	0,0	0,0
11	11	9	9	12	8	5	0,0	0,0
13	13	11	11	24	16	10	0,0	0,0
15	15	13	13	37	25	16	0,0	0,0
17	17	15	15	53	35	23	0,0	0,0
19	19	17	17	72	48	31	0,0	0,0
21	21	19	19	92	61	40	0,0	0,0
23	23	21	21	115	76	50	0,0	0,0
25	25	23	23	140	93	61	0,0	0,0
27	27	25	25	168	112	73	0,0	0,0
29	29	27	27	197	131	86	0,0	0,0
31	31	29	29	229	153	100	0,0	0,0
33	33	31	31	264	176	115	0,0	0,0
35	35	33	33	300	200	131	0,0	0,0
37	37	35	35	339	226	148	0,0	0,0
39	39	37	37	380	253	166	0,0	0,0
41	41	39	39	424	282	185	0,0	0,0
43	43	41	41	469	313	205	0,0	0,0
45	45	43	43	500	345	226	0,0	0,0
47	47	45	45	560	378	248	0,0	0,0
49	49	47	47	596	413	271	0,0	0,0
^a excluding	g quiet zones			_	_			_

Table G.2 — ECC 050

Symbo	ol size ^a	Data reg	jion size				% of codewords	
Row	Col	Row	Col	Numeric capacity	Alphanum. capacity	8-bit byte capacity	used for error correction	% correctable
11	11	9	9	1	1	O _p	25,0	2,8
13	13	11	11	10	6	4	25,0	2,8
15	15	13	13	20	13	9	25,0	2,8
17	17	15	15	32	21	14	25,0	2,8
19	19	17	17	46	30	20	25,0	2,8
21	21	19	19	61	41	27	25,0	2,8
23	23	21	21	78	52	34	25,0	2,8
25	25	23	23	97	65	42	25,0	2,8
27	27	25	25	118	78	51	25,0	2,8
29	29	27	27	140	93	61	25,0	2,8
31	31	29	29	164	109	72	25,0	2,8
33	33	31	31	190	126	83	25,0	2,8
35	35	33	33	217	145	95	25,0	2,8
37	37	35	35	246	164	108	25,0	2,8
39	39	37	37	277	185	121	25,0	2,8
41	41	39	39	310	206	135	25,0	2,8
43	43	41	41	344	229	150	25,0	2,8
45	45	43	43	380	253	166	25,0	2,8
47	47	45	45	418	278	183	25,0	2,8
49	49	47	47	457	305	200	25,0	2,8

a excluding quiet zone

b this combination is not possible

Table G.3 — ECC 080

Row 13 15 17 19 21	Col 13 15 17 19 21	Row 11 13 15 17	Col 11 13 15	Numeric capacity 4 13	Alphanum. capacity	8-bit byte capacity 2	codewords used for error correction	% correctable
15 17 19 21	15 17 19	13 15	13			2	33,3	5.5
17 19 21	17 19	15		13	_			1 -,-
19 21	19		15		9	6	33,3	5,5
21		17		24	16	10	33,3	5,5
	21		17	36	24	16	33,3	5,5
		19	19	50	33	22	33,3	5,5
23	23	21	21	65	43	28	33,3	5,5
25	25	23	23	82	54	36	33,3	5,5
27	27	25	25	100	67	44	33,3	5,5
29	29	27	27	120	80	52	33,3	5,5
31	31	29	29	141	94	62	33,3	5,5
33	33	31	31	164	109	72	33,3	5,5
35	35	33	33	188	125	82	33,3	5,5
37	37	35	35	214	143	94	33,3	5,5
39	39	37	37	242	161	106	33,3	5,5
41	41	39	39	270	180	118	33,3	5,5
43	43	41	41	301	201	132	33,3	5,5
45	45	43	43	333	222	146	33,3	5,5
47	47	45	45	366	244	160	33,3	5,5
49	49	47	47	402	268	176	33,3	5,5

Table G.4 — ECC 100

Symbo	ol size ^a	Data reg	ion size				% of codewords	
Row	Col	Row	Col	Numeric capacity	Alphanum. capacity	8-bit byte capacity	used for error correction	% correctable
13	13	11	11	1	1	0 _p	50,0	12,6
15	15	13	13	8	5	3	50,0	12,6
17	17	15	15	16	11	7	50,0	12,6
19	19	17	17	25	17	11	50,0	12,6
21	21	19	19	36	24	15	50,0	12,6
23	23	21	21	47	31	20	50,0	12,6
25	25	23	23	60	40	26	50,0	12,6
27	27	25	25	73	49	32	50,0	12,6
29	29	27	27	88	59	38	50,0	12,6
31	31	29	29	104	69	45	50,0	12,6
33	33	31	31	121	81	53	50,0	12,6
35	35	33	33	140	93	61	50,0	12,6
37	37	35	35	159	106	69	50,0	12,6
39	39	37	37	180	120	78	50,0	12,6
41	41	39	39	201	134	88	50,0	12,6
43	43	41	41	224	149	98	50,0	12,6
45	45	43	43	248	165	108	50,0	12,6
47	47	45	45	273	182	119	50,0	12,6
49	49	47	47	300	200	131	50,0	12,6

a excluding quiet zones

b this combination is not possible

Table G.5 — ECC 140

Symbo	ol size ^a	Data reg	jion size				% of codewords	
Row	Col	Row	Col	Numeric capacity	Alphanum. capacity	8-bit byte capacity	used for error correction	% correctable
17	17	15	15	2	1	1	75,0	25,0
19	19	17	17	6	4	3	75,0	25,0
21	21	19	19	12	8	5	75,0	25,0
23	23	21	21	17	11	7	75,0	25,0
25	25	23	23	24	16	10	75,0	25,0
27	27	25	25	30	20	13	75,0	25,0
29	29	27	27	38	25	16	75,0	25,0
31	31	29	29	46	30	20	75,0	25,0
33	33	31	31	54	36	24	75,0	25,0
35	35	33	33	64	42	28	75,0	25,0
37	37	35	35	73	49	32	75,0	25,0
39	39	37	37	84	56	36	75,0	25,0
41	41	39	39	94	63	41	75,0	25,0
43	43	41	41	106	70	46	75,0	25,0
45	45	43	43	118	78	51	75,0	25,0
47	47	45	45	130	87	57	75,0	25,0
49	49	47	47	144	96	63	75,0	25,0

Annex H

(normative)

ECC 000 - 140 data module placement grids

Table H.1 — 7 x 7 data

2	45	10	38	24	21	1
12	40	26	5	33	19	47
22	31	29	15	43	8	36
34	20	48	13	41	27	6
44	9	37	23	17	30	16
39	25	4	32	18	46	11
0	28	14	42	7	35	3

Table H.2 — 9 x 9 data

2	19	55	10	46	28	64	73	1
62	17	53	35	71	8	80	44	26
49	31	67	4	76	40	22	58	13
69	6	78	42	24	60	15	51	33
74	38	20	56	11	47	29	65	37
25	61	16	52	34	70	7	79	43
12	48	30	66	63	75	39	21	57
32	68	5	77	41	23	59	14	50
0	72	36	18	54	9	45	27	3

Table H.3 — 11 x 11 data

2	26	114	70	15	103	59	37	81	4	1
117	73	18	106	62	40	84	7	95	51	29
12	100	56	34	78	92	89	45	23	111	67
65	43	87	10	98	54	32	120	76	21	109
82	5	93	49	27	115	71	16	104	60	38
96	52	30	118	74	19	107	63	41	85	8
24	112	68	13	101	57	35	79	48	90	46
75	20	108	64	42	86	9	97	53	31	119
102	58	36	80	77	91	47	25	113	69	14
39	83	6	94	50	28	116	72	17	105	61
0	88	44	22	110	66	11	99	55	33	3

2	159	29	133	81	16	120	68	42	146	94	91	1
37	141	89	24	128	76	50	154	102	11	115	63	167
83	18	122	70	44	148	96	5	109	57	161	31	135
125	73	47	151	99	8	112	60	164	34	138	86	21
40	144	92	107	105	53	157	27	131	79	14	118	66
103	12	116	64	168	38	142	90	25	129	77	51	155
110	58	162	32	136	84	19	123	71	45	149	97	6
165	35	139	87	22	126	74	48	152	100	9	113	61
132	80	15	119	67	41	145	93	55	106	54	158	28
23	127	75	49	153	101	10	114	62	166	36	140	88
69	43	147	95	4	108	56	160	30	134	82	17	121
150	98	7	111	59	163	33	137	85	20	124	72	46
0	104	52	156	26	130	78	13	117	65	39	143	3

Table H.5 — 15 x 15 data

2	187	37	157	97	217	22	142	82	202	52	172	112	7	1
41	161	101	221	26	146	86	206	56	176	116	11	131	71	191
93	213	18	138	78	198	48	168	108	105	123	63	183	33	153
28	148	88	208	58	178	118	13	133	73	193	43	163	103	223
80	200	50	170	110	5	125	65	185	35	155	95	215	20	140
54	174	114	9	129	69	189	39	159	99	219	24	144	84	204
106	127	121	61	181	31	151	91	211	16	136	76	196	46	166
134	74	194	44	164	104	224	29	149	89	209	59	179	119	14
186	36	156	96	216	21	141	81	201	51	171	111	6	126	66
160	100	220	25	145	85	205	55	175	115	10	130	70	190	40
212	17	137	77	197	47	167	107	67	122	62	182	32	152	92
147	87	207	57	177	117	12	132	72	192	42	162	102	222	27
199	49	169	109	4	124	64	184	34	154	94	214	19	139	79
173	113	8	128	68	188	38	158	98	218	23	143	83	203	53
0	120	60	180	30	150	90	210	15	135	75	195	45	165	3

Table H.6 — 17 x 17 data

2	69	205	35	171	103	239	18	154	86	222	52	188	120	256	273	1
220	50	186	118	254	33	169	101	237	67	203	135	271	16	288	152	84
178	110	246	25	161	93	229	59	195	127	263	8	280	144	76	212	42
250	29	165	97	233	63	199	131	267	12	284	148	80	216	46	182	114
157	89	225	55	191	123	259	4	276	140	72	208	38	174	106	242	21
235	65	201	133	269	14	286	150	82	218	48	184	116	252	31	167	99
193	125	261	6	278	142	74	210	40	176	108	244	23	159	91	227	57
265	10	282	146	78	214	44	180	112	248	27	163	95	231	61	197	129
274	138	70	206	36	172	104	240	19	155	87	223	53	189	121	257	137
83	219	49	185	117	253	32	168	100	236	66	202	134	270	15	287	151
41	177	109	245	24	160	92	228	58	194	126	262	7	279	143	75	211
113	249	28	164	96	232	62	198	130	266	11	283	147	79	215	45	181
20	156	88	224	54	190	122	258	255	275	139	71	207	37	173	105	241
98	234	64	200	132	268	13	285	149	81	217	47	183	115	251	30	166
56	192	124	260	5	277	141	73	209	39	175	107	243	22	158	90	226
128	264	9	281	145	77	213	43	179	111	247	26	162	94	230	60	196
0	272	136	68	204	34	170	102	238	17	153	85	221	51	187	119	3

Table H.7 — 19 x 19 data

2	82	234	44	348	196	120	272	25	329	177	101	253	63	215	139	291	6	1
239	49	353	201	125	277	30	334	182	106	258	68	220	144	296	11	315	163	87
343	191	115	267	20	324	172	96	248	58	210	134	286	310	305	153	77	229	39
132	284	37	341	189	113	265	75	227	151	303	18	322	170	94	246	56	360	208
28	332	180	104	256	66	218	142	294	9	313	161	85	237	47	351	199	123	275
185	109	261	71	223	147	299	14	318	166	90	242	52	356	204	128	280	33	337
251	61	213	137	289	4	308	156	80	232	42	346	194	118	270	23	327	175	99
225	149	301	16	320	168	92	244	54	358	206	130	282	35	339	187	111	263	73
292	7	311	159	83	235	45	349	197	121	273	26	330	178	102	254	64	216	140
316	164	88	240	50	354	202	126	278	31	335	183	107	259	69	221	145	297	12
78	230	40	344	192	116	268	21	325	173	97	249	59	211	135	287	158	306	154
55	359	207	131	283	36	340	188	112	264	74	226	150	302	17	321	169	93	245
198	122	274	27	331	179	103	255	65	217	141	293	8	312	160	84	236	46	350
279	32	336	184	108	260	70	222	146	298	13	317	165	89	241	51	355	203	127
326	174	98	250	60	212	136	288	285	307	155	79	231	41	345	193	117	269	22
110	262	72	224	148	300	15	319	167	91	243	53	357	205	129	281	34	338	186
62	214	138	290	5	309	157	81	233	43	347	195	119	271	24	328	176	100	252
143	295	10	314	162	86	238	48	352	200	124	276	29	333	181	105	257	67	219
0	304	152	76	228	38	342	190	114	266	19	323	171	95	247	57	209	133	3

ISO/IEC 16022:2006(E)

Table H.8 — 21 x 21 data

2	88	424	256	46	382	214	130	298	25	361	193	109	277	67	403	235	151	319	4	1
437	269	59	395	227	143	311	38	374	206	122	290	80	416	248	164	332	17	353	185	101
49	385	217	133	301	28	364	196	112	280	70	406	238	154	322	7	343	175	91	427	259
222	138	306	33	369	201	117	285	75	411	243	159	327	12	348	180	96	432	264	54	390
295	22	358	190	106	274	64	400	232	148	316	340	337	169	85	421	253	43	379	211	127
377	209	125	293	83	419	251	167	335	20	356	188	104	440	272	62	398	230	146	314	41
115	283	73	409	241	157	325	10	346	178	94	430	262	52	388	220	136	304	31	367	199
78	414	246	162	330	15	351	183	99	435	267	57	393	225	141	309	36	372	204	120	288
236	152	320	5	341	173	89	425	257	47	383	215	131	299	26	362	194	110	278	68	404
333	18	354	186	102	438	270	60	396	228	144	312	39	375	207	123	291	81	417	249	165
344	176	92	428	260	50	386	218	134	302	29	365	197	113	281	71	407	239	155	323	8
97	433	265	55	391	223	139	307	34	370	202	118	286	76	412	244	160	328	13	349	181
254	44	380	212	128	296	23	359	191	107	275	65	401	233	149	317	172	338	170	86	422
397	229	145	313	40	376	208	124	292	82	418	250	166	334	19	355	187	103	439	271	61
135	303	30	366	198	114	282	72	408	240	156	324	9	345	177	93	429	261	51	387	219
35	371	203	119	287	77	413	245	161	329	14	350	182	98	434	266	56	392	224	140	308
192	108	276	66	402	234	150	318	315	339	171	87	423	255	45	381	213	129	297	24	360
289	79	415	247	163	331	16	352	184	100	436	268	58	394	226	142	310	37	373	205	121
405	237	153	321	6	342	174	90	426	258	48	384	216	132	300	27	363	195	111	279	69
158	326	11	347	179	95	431	263	53	389	221	137	305	32	368	200	116	284	74	410	242
0	336	168	84	420	252	42	378	210	126	294	21	357	189	105	273	63	399	231	147	3

Table H.9 — 23 x 23 data

	1	108	280	433	145	335	392	137	310	454	166	20	192	474	48	251	515	38	210	501	22	265	3
	10	200	464	65	237	519	24	229	494	86	258	365	376	106	278	435	147	337	394	133	305	449	161
	355	384	96	295	421	151	323	413	126	316	442	181	8	198	462	29	239	521	26	225	489	81	253
	171	16	188	479	53	243	202	45	218	200	74	273	353	382	94	297	423	153	325	409	121	311	437
	263	361	372	111	283	427	139	344	402	132	304	457	169	14	186	481	22	245	609	41	213	495	69
	447	177	4	203	467	29	231	528	34	224	488	89	261	359	370	113	285	429	141	340	397	127	299
	62	269	349	387	66	289	415	160	333	408	120	319	445	175	194	205	469	61	233	524	29	219	483
	309	453	165	19	191	473	47	252	517	40	212	503	77	267	347	389	101	291	417	156	328	403	115
	493	85	257	364	375	105	277	436	149	339	968	135	307	451	163	21	193	475	49	248	512	35	207
	125	315	441	180	7	197	461	, 89	241	523	28	227	491	83	255	366	377	107	279	432	144	334	391
	217	499	73 4	272	352	381	93 4	298	425 2	55	327	411	123 4	313	439	182	6	66	463	64 4	. 382	518	23
	401 2	131 4	303	456 2	168	13 3	85	482 2	57 4	247 1	511 3	43 4	215 1	497 3	71 4	274 1	354	383 1	95 4	294	420 2	50 5	322
2	33 4	223 1	487 3	88 4	260 1	358	369 1	114 4	287	431 2	143 5	342	399 2	129 4	301	458 2	170 3	15 3	187	478 2	52 4	242 1	206 3
200	332	407 2	119 4	318	444 2	174 3	378 3	206 1	471 2	63 4	235 1	526 3	31 3	221 1	485 3	90 4	262	360	371 1	110 4	282	426 2	138 5
•	9	39 4	211 1	502 3	76 4.	266 1	346 3	390 2	103 4	293	6	158 5.	330	405 2:	117 4	320	446 2	176 3	345 3	202 1	466 2	58 4.	230 13
	18 51	338	395 2		306		162 3	22 39	195 10		51 41	250 1		37 4(78 4	268 17	348 3	386 20	98 46	288	
	.0 148		27 39	134		82 450				9 477			6 514		3 209	6 504				8 38			46 414
	4 240	4 522		0 226	2 490		8 254	3 367	11 379	1 109	5 281	66 434	8 146	0 336	25 393	8 136	2 308	84 452	6 164	3 1	4 190	4 472	
	56 424	6 154	0 326	2 410	4 122	6 312	0 438	5 183	1 1	5 201	7 465	9 9	2 238	2 520	2 2	2 228	492	4 8	0 256	9 363	6 374	104	60 276
		24	21	4	21	49	7	27	35	38	9 97	29	42	152	32	41	12	31	44	17		19	4
) 286	2 430	1 142	341	398	128	1 300	1 459	1 172	17	3 189	2 480	1 54	3 244	208	3 44) 216) 498	2 72	5 271	7 351	380	4 92
	470	62	234	525	30	. 220	484	91	264	362	373	. 112	284	428	140	343	400	130	302	455	167	12	184
	102	292	418	157	329	404	116	321	448	178	2	204	468	09	232	527	32	222	486	87	259	357	368
	2	476	20	249	513	36	208	202	80	270	350	388	100	290	416	159	331	406	118	317	443	173	0

Table H.10 — 25 x 25 data

~	623	511	29	255	220	33	239	526	66	287	293	9	221	109	315	452	172	360	441	129	344	482	188	3
375	223	111	317	455	170	358	439	126	349	487	193	381	421	609	515	52	272	560	41	229	544	82	288	575
378	423	611	517	22	270	558	39	226	549	87	293	581	21	209	115	302	472	160	366	429	144	332	488	175
578	23	211	117	305	470	158	364	426	149	337	493	181	396	409	615	502	72	260	999	29	244	532	88	275
178	398	411	617	505	70	258	564	26	249	537	93	281	596	6	215	102	322	460	166	354	444	132	338	475
278	598	11	217	105	320	458	164	351	449	137	343	481	196	384	415	602	522	09	266	554	44	232	538	75
478	198	386	417	909	520	28	264	551	49	237	543	81	296	584	15	202	122	310	466	154	369	432	138	325
78	298	586	17	205	120	308	464	151	374	437	143	331	496	184	390	402	622	510	99	254	569	32	238	525
328	498	186	392	405	620	508	64	251	574	37	243	531	96	284	290	203	222	110	316	454	169	357	438	125
528	86	286	592	9	220	108	314	451	174	362	443	131	346	484	190	377	422	610	516	54	269	222	38	225
128	348	486	192	380	420	809	514	51	274	562	43	231	546	84	290	222	22	210	116	304	469	157	363	425
228	548	98	292	280	20	208	114	301	474	162	368	431	146	334	490	117	397	410	616	504	69	257	263	25
428	148	336	492	180	368	408	614	501	74	262	899	31	246	534	06	277	269	10	216	104	319	457	163	350
28	248	989	85	280	<u> </u>	8	214	101	324	462	168	928	446	134	340	477	161	382	416	604	619	29	263	220
353	448	136	342	480	195	383	414	601	524	62	268	999	46	234	540	22	297	289	16	204	119	307	463	150
553	48	236	245	08	295	283	14	201	124	312	468	156	371	434	140	327	464	185	391	404	619	209	69	250
153	828	436	142	330	495	183	688	401	624	512	89	256	571	34	240	527	26	285	591	4	219	107	313	450
253	213	98	242	930	<u> </u>	283	689	403	224	112	318	456	171	698	440	127	347	485	191	379	419	209	513	20
453	173	361	442	130	345	483	189	928	424	612	518	99	271	699	40	227	547	98	291	629	19	207	113	300
53	273	561	42	230	545	83	289	929	24	212	118	908	471	159	365	427	147	332	491	179	394	407	613	200
303	473	161	298	430	145	333	489	921	668	412	618	909	71	529	<u> </u>	22	247	235	16	627	594	2	213	100
503	22	261	299	30	245	233	68	927	669	12	218	106	321	459	165	352	447	135	341	479	194	382	413	009
103	323	461	167	355	445	133	339	476	199	387	418	606	521	69	265	552	47	235	541	62	294	582	13	200
603	523	19	267	222	45	233	689	92	588	289	18	206	121	608	465	152	372	435	141	329	464	182	388	400
2	123	311	467	155	370	433	139	326	499	187	393	406	621	609	99	252	572	35	241	529	94	282	288	0

Table H.11 — 27 x 27 data

~	665	543	62	282	181	383	481	683	582	82	323	634	20	222	131	333	502	704	618	38	261	139	372	520	203	3
10	233	111	349	498	721	299	49	251	150	352	539	202	425	438	671	549	70	272	186	389	477	629	588	88	311	621
415	449	651	292	99	289	167	400	467	069	268	107	310	641	9	239	117	340	488	726	909	45	247	156	358	527	189
631	17	219	133	336	202	707	616	35	258	136	377	526	209	411	455	299	556	99	294	173	396	463	969	574	95	297
199	422	435	673	552	73	275	184	386	474	929	593	94	317	627	23	225	124	326	510	713	612	31	264	142	365	513
307	638	405	241	120	343	491	724	602	42	244	161	364	533	195	428	441	664	542	78	281	180	382	480	682	581	81
523	206	408	457	099	699	69	292	170	868	460	701	089	101	808	644	6	232	110	348	497	720	298	48	250	149	351
91	314	624	25	228	127	329	208	710	609	28	269	148	371	519	212	414	448	029	564	99	288	166	668	466	689	267
361	530	192	430	444	299	545	92	278	117	628	485	889	289	28	320	089	16	218	132	335	504	902	615	34	257	135
222	86	300	949	12	235	113	346	464	212	969	53	256	155	228	536	198	421	434	672	551	72	274	183	385	473	675
145	368	516	214	417	451	653	295	62	285	163	404	472	969	223	104	908	637	226	240	119	342	490	723	601	41	243
685	584	84	322	633	19	221	130	332	501	203	620	40	263	141	374	522	205	407	456	629	258	28	291	169	392	459
253	152	354	538	201	424	437	029	548	69	271	188	391	479	681	290	06	313	623	24	227	126	328	202	602	809	27
469	692	220	106	309	640	2	238	116	339	487	728	209	47	249	158	360	529	191	429	443	999	544	22	277	176	378
37	260	138	376	525	208	410	454	929	222	22	296	175	398	465	869	929	26	299	645	11	234	112	345	493	716	594
388	476	829	592	93	316	626	22	224	123	325	512	715	614	33	266	144	367	515	213	416	450	652	561	61	284	162
604	44	246	160	363	532	194	427	440	663	541	80	283	182	384	482	684	583	83	321	632	18	220	129	331	200	702
172	395	462	700	579	100	302	643	80	231	109	350	499	722	009	20	252	151	353	537	200	423	436	699	547	89	270
712	611	30	268	147	370	518	211	413	447	649	266	29	290	168	401	468	691	269	105	308	629	4	237	115	338	486
280	179	381	484	687	286	98	319	629	15	217	134	337	909	208	617	36	259	137	375	524	207	409	453	929	554	54
496	719	269	52	255	154	356	535	197	420	433	674	253	74	276	185	387	475	229	591	85	315	625	21	223	122	324
64	287	165	403	471	694	572	103	305	989	442	242	121	344	492	725	603	43	245	159	362	531	193	426	439	662	540
334	503	202	619	39	262	140	373	521	204	406	458	661	260	09	293	171	394	461	669	218	66	301	642	7	230	108
220	71	273	187	390	478	089	589	68	312	622	26	229	128	330	209	711	610	29	267	146	369	517	210	412	446	648
118	341	489	727	909	46	248	157	329	528	190	431	445	899	546	22	279	178	380	483	989	585	85	318	628	14	216
658	257	25	295	174	397	464	269	275	96	298	647	13	236	114	347	495	718	969	51	254	153	355	534	196	419	432
2	125	327	511	714	613	32	265	143	366	514	215	418	452	654	563	63	286	164	402	470	693	571	102	304	635	0

Table H.12 — 29 x 29 data

-	721	291	830	525	781	651	49	266	168	386	267	784	969	14	253	122	372	68	307	176	432	202	744	613	109	327	218	3
7	257 7	127 5	3 998	61 5	317 7	187 6	426	498 2	748 1	618	103 5	320 7	231 6	449	485 2	702	604	822	236	756 1	664 4	41 5	280 7	149 6	399	226	798	299
442	489	707	298	815	549	. 292	7 859	34 7	284 7	154 (393	225	811 2	681 4	21 4	238 7	140 6	358	12	292 7	200	418	512 2	729 1	631	36	334 7	203 6
674	25	243	134	351	82	303	194	411	216	734	625	88	347	217	456	470	720	290	829	524	280	920	48	. 592	167	385	999	783
210	460	475	714	583	839	535	774	643	25	270	161	378	629	162	, 889	9	. 528	126	365	09	316	186	425	497	747	617	102	319
790	692	1	250	119	375	7.1	310	179	429	502	741	610	115	333	224	441	488	902	262	814	548	992	259	33	283	153	392	551
326	228	446	482	669	209	825	542	759	661	38	277	146	405	292	804	673	24	242	133	350	84	302	193	410	515	733	624	87
929	808	829	18	235	143	361	78	295	197	415	609	726	637	101	340	209	459	474	713	582	838	534	773	642	51	569	160	377
94	344	214	453	467	723	263	832	527	222	647	45	262	173	391	572	682	691	10	249	118	374	20	309	178	428	501	740	609
384	929	794	685	435	259	129	368	63	313	183	422	494	753	623	108	325	227	445	481	869	909	824	541	758	099	37	276	145
919	112	330	221	438	491	602	009	817	545	292	654	30	289	159	398	222	807	677	17	234	142	360	2.2	294	196	414	208	725
152	402	299	801	029	27	245	136	353	81	299	190	407	521	739	630	93	343	213	452	466	722	592	831	526	922	646	44	261
732	634	86	337	206	462	477	716	282	835	531	770	639	22	275	166	383	575	793	684	239	258	128	367	62	312	182	421	493
268	170	388	269	786	694	13	252	121	371	29	306	175	434	202	746	615	111	329	220	437	490	708	299	816	544	762	653	29
200	750	620	105	322	230	448	484	102	£09	821	889	292	999	43	282	151	401	561	008	699	26	544	135	352	80	867	189	406
36	286	156	368	554	810	089	20	237	139	357	44	291	202	420	514	731	633	26	988	202	461	476	212	584	834	089	692	638
413	518	736	627	06	346	216	455	469	719	289	828	523	782	652	20	267	169	387	268	785	693	12	251	120	370	99	305	174
645	54	272	163	380	228	962	289	2	255	125	364	69	318	188	427	499	749	619	104	321	229	447	483	200	602	820	283	754
181	431	504	743	612	114	332	223	440	487	202	969	813	220	292	629	32	285	155	394	223	809	629	19	236	138	356	73	290
761	663	40	279	148	404	564	803	672	23	241	132	349	98	304	195	412	517	735	626	89	345	215	454	468	718	288	827	522
297	199	417	511	728	989	100	339	208	458	473	712	581	840	236	222	644	23	271	162	379	222	262	989	4	254	124	363	28
529	779	649	47	264	172	390	571	788	069	6	248	117	376	72	311	180	430	503	742	611	113	331	222	439	486	704	262	812
92	315	185	424	496	752	622	107	324	226	444	480	269	809	826	543	260	662	39	278	147	403	263	802	671	22	240	131	348
819	547	292	929	32	288	158	397	929	908	929	16	233	144	362	62	296	198	416	510	727	635	66	338	207	457	472	711	580
355	83	301	192	409	520	738	629	92	342	212	451	465	724	594	833	528	778	648	46	263	171	389	220	787	689	8	247	116
287	837	533	772	641	26	274	165	382	574	792	683	471	260	130	369	64	314	184	423	495	751	621	106	323	225	443	479	969
123	373	69	308	177	433	206	745	614	110	328	219	436	492	710	601	818	546	764	655	31	287	157	396	555	805	675	15	232
703	909	823	540	757	999	42	281	150	400	260	799	899	28	246	137	354	82	300	191	408	519	737	628	91	341	211	450	464
2	141	359	9/	293	201	419	513	730	632	96	335	204	463	478	717	286	836	532	771	640	22	273	164	381	573	791	682	0

Table H.13 — 31 x 31 data

_	292	627	895	269	825	685	959	540	962	929	924	298	854	714	30	262	146	378	88	320	204	436	26	291	175	407	117	349	233	က
15	271	131	399	73	329	189	463	44	300	160	428	102	358	218	495	510	992	626	894	268	824	684	928	539	795	655	923	262	853	713
480	519	751	647	879	222	808	711	943	548	780	929	806	909	838	743	14	270	130	398	72	328	188	462	43	299	159	427	101	357	217
728	23	255	151	383	81	313	215	447	52	284	180	412	110	342	247	479	518	750	646	878	929	808	710	942	547	6//	675	206	605	837
232	488	503	771	631	887	561	835	969	951	532	800	099	916	290	298	727	22	254	150	382	80	312	214	446	51	283	179	411	109	341
852	736	7	275	135	391	65	339	199	455	36	304	164	420	94	371	231	487	502	770	630	886	260	834	694	950	531	662	629	915	589
356	240	472	523	755	639	871	587	819	703	935	552	784	899	006	619	851	735	9	274	134	390	64	338	198	454	35	303	163	419	93
604	860	720	27	259	143	375	91	323	207	439	99	288	172	404	123	355	239	471	522	754	638	870	586	818	702	934	551	783	667	899
108	364	224	492	202	763	623	897	571	827	687	955	536	792	652	929	603	859	719	26	258	142	374	90	322	206	438	22	287	171	403
914	612	844	740	11	267	127	401	92	331	191	459	40	296	156	433	107	363	223	491	206	762	622	968	220	826	989	954	535	791	651
418	116	348	244	476	515	747	649	188	629	811	202	686	544	922	189	913	611	843	739	10	266	126	400	74	330	190	458	68	295	155
999	922	969	864	724	19	251	153	385	83	315	211	443	48	280	185	417	115	347	243	475	514	746	648	880	228	810	902	938	543	775
170	426	100	368	228	484	499	773	633	889	263	831	691	947	528	805	999	921	262	863	723	18	250	152	384	82	314	210	442	47	279
790	674	906	616	848	732	465	277	137	393	29	335	195	451	32	309	169	425	66	367	227	483	498	772	632	888	562	830	069	946	527
294	178	410	120	352	236	468	525	757	641	873	583	815	669	931	222	789	673	902	615	847	731	263	276	136	392	99	334	194	450	31
545	798	658	926	009	856	716	29	261	145	377	87	319	203	435	61	293	177	409	119	351	235	467	524	756	640	872	582	814	869	930
46	302	162	430	401	360	220	494	209	765	625	893	292	823	683	096	541	797	657	925	299	855	715	28	260	4	376	98	318	202	434
945	220	782	678	910	809	840	742	13	269	129	397	71	327	187	464	45	301	161	429	103	359	219	493	208	764	624	892	266	822	682
449	54	286	182	414	112	344	246	478	517	749	645	877	575	807	712	944	549	781	677	606	209	839	741	12	268	128	396	70	326	186
269	953	534	802	662	918	265	998	726	21	253	149	381	62	``	216	448	53	285	181	413	111	343		477	516	748	644	876	574	806
201	457	38	306	166	422	96	370	230	486	501		629	885	259	836	969	952	533	801	661	917	591	865	725	20	(1	148	380	78	310
821	705	937	554	786	670	902	618	850	734	2	273	133	389	63	340	200	456	37	305	165	421	98	369	229	485	200	292	628	884	558
325		441	28	290	174	. 406	122		238	470	521	753	637	698	288	820	704	936	553		699	901	617	849	733	4	272	132	388	62
573		689	957	538	794	654	928		828	718	25	257	141	373	92	324	208	440	25	(1	173	405	121	353	237	469	. 520	752	989	898
77	ဗ	193	1461	42	3 298	158	432		362	222	490	202	761	621	868	572	828	688	926	537	793	653	927	901	857	717	24	1 256	140	372
883	5 581	7 813	3 709	941	546	2 778	089	3 912	1 610	842	738	6 +	3 265	125	402	5 76	(,)	192	3 460	41	5 297	157	431	105	361	1 221	489	3 504	1 760	t 620
387	1 85	(r)	3 213	3 445	9 20) 282	184		114	346	242	474	513	745	029 †	3 882	1 580	812	2 708	1 940	545	777	629	911	609	841	737	8	2 264	124
9 635	5 891	9 565	7 833	693	3 949	1 530	3 804	3 664	1 920	3 594	3 862	3 722	17	7 249	154	1 386	84	1 316	2 212	444	3 49	9 281	3 183	3 415	113	345	1 241	1 473	5 512	3 744
139	395	69	337	197	1 453	34	(r)	3 168	424	86 †	998 †	3 226	482	1 497	3 774	3 634	068 †	3 564	832	692	948	3 529	803	2 663	919	293	5 861	5 721	16	3 248
2 759	7 643	9 875	9 585	1 817	5 701	2 933) 556		3 672	3 904	9 614	946	1 730	5 511	3 278	3 138	394	1 68	1 336	3 196) 452	33		7 167		3 97	365	5 225	9 481	0 496
2	147	379	88	321	205	437	09	292	176	408	118	350	234	466	526	758	642	874	584	816	200	932	222	787	671	903	613	845	729	

Table H.14 — 33 x 33 data

_																																
_	296	148	420	74	358	210	482	37	327	179	451	105	389	241	513	529	559	807	683	931	621	869	745	993	290	838	714	962	652	900	776	3
1057	999	808	684	932	622	870	746	994	591	628	715	£96	653	901	777	1025	1087	279	155	403	66	341	217	465	62	310	186	434	124	372	248	495
1024	1088	280	156	404	94	342	218	466	63	311	187	435	125	373	249	497	31	543	815	299	951	909	228	729	1019	574	846	869	982	929	806	759
496	32	544	816	899	952	909	878	730	1020	929	847	669	883	637	606	192	1054	1071	287	139	423	2.2	349	201	164	46	318	170	454	108	380	231
760	1055	1072	288	140	424	78	350	202	492	47	319	171	455	109	381	233	526	15	551	799	687	935	613	861	755	1003	582	830	718	996	644	891
232	527	16	222	008	889	936	614	862	226	1004	583	831	719	296	645	893	260	1038	1079	271	159	407	98	333	227	475	54	302	190	438	116	363
892	791	1039	1080	272	160	408	98	334	228	476	22	303	191	439	117	392	262	510	23	535	819	671	943	269	288	682	1011	999	850	702	974	627
364	263	511	24	536	820	672	944	298	888	740	1012	292	851	703	975	629	922	774	1046	1063	291	143	415	69	329	211	483	38	322	174	446	66
628	923	775	1047	1064	292	144	416	20	360	212	484	39	323	175	447	101	394	246	518	7	222	803	629	927	623	871	747	966	586	834	710	957
100	395	247	519	80	256	804	089	928	624	872	748	966	282	835	711	626	658	906	782	1030	1083	275	151	399	96	343	219	467	28	306	182	429
928	629	206	783	1031	1084	276	152	400	96	344	220	468	69	307	183	431	130	378	254	502	27	539	811	663	953	209	879	731	1015	220	842	693
430	131	379	255	503	28	540	812	664	954	809	880	732	1016	571	843	969	886	642	914	992	1050	1067	283	135	425	79	351	203	487	42	314	165
694	686	643	915	191	1051	1068	284	136	426	80	352	204	488	43	315	167	460	114	386	238	522	11	547	795	689	937	615	863	751	666	578	825
166	461	115	387	239	523	12	548	962	069	938	616	864	752	1000	629	827	724	972	029	868	786	1034	1075	267	161	409	87	335	223	471	20	297
826	725	973	651	899	787	1035	1076	268	162	410	88	336	224	472	51	299	196	444	122	370	258	909	19	531	821	673	945	299	883	735	1007	561
298	197	445	123	371	259	202	20	532	822	674	946	009	884	736	1008	263	856	208	086	634	918	170	1042	1059	293	145	417	71	355	207	479	33
562	857	602	981	635	919	771	1043	1060	294	146	418	72	356	208	480	35	328	180	452	106	390	242	514	1023	222	805	681	929	619	867	743	066
34	329	181	453	107	391	243	515	4	258	908	682	930	620	898	744	892	592	840	716	964	654	902	778	1026	1085	277	153	401	91	339	215	462
991	593	841	717	965	655	903	779	1027	1086	278	154	402	92	340	216	464	64	312	188	436	126	374	250	498	29	541	813	999	949	603	875	726
463	92	313	189	437	127	375	251	499	30	542	814	999	950	604	876	728	1021	929	848	700	984	638	910	762	1052	1069	285	137	421	75	347	198
727	1022	222	849	701	985	639	911	763	1053	1070	286	138	422	9/	348	200	493	48	320	172	456	110	382	234	524	13	549	797	685	933	611	828
199	464	49	321	173	457	111	383	235	525	14	220	862	989	934	612	098	757	1005	584	832	720	896	646	894	882	1036	1077	269	157	405	83	330
859	892	1006	289	833	721	696	647	895	789	1037	1078	270	158	406	84	332	229	477	99	304	192	440	118	366	260	809	17	233	817	699	941	594
331	230	478	22	305	193	44	119	367	261	609	22	534	818	029	942	969	889	741	1013	268	852	704	926	630	920	772	1044	1061	289	141	413	99
262	890	742	1	699	853	705	226	631	921	773	1045	1062	290	142	414	89	361	213	485	40	324	176	448	102	392	244	516	2	553	801		
29	362	214	486	41	325	177	449	103	393	245		9	39	802	829	926	625	873	749	266	288	836	712	096	929	904	780	1028	1081	273	149	396
925	626	874	092	866	289	837	713	961	657	906	781	1029	1082	274	150	398	26	345	221	469	09	308	184	432	128	376	252	200	25	537	809	099
397	86	(1)		470	61	(,)	185	433	129	377	253	501	26	538	810	662	955	609	881		1017	572	844	969	986	640	912	764	1048	1065	281	132
661		610	882	734	1018	573	845	269	286	641		292	1049	1066	282	134	427	81	353	205	489	44	316	168	458	112	384	236	520	6	545	792
133	428	82	(1)		490	45	317	169	459	113	385	237	521	10	2	794	691	939	617	865	753	,	280	828	722	970	648	968	784	1032	_	264
793		940		998	754	1	581	829	723	971	649	897	785	_	1074	266	163	411	88	337	225	473	52	300	194	442	120	368	256	504	17	528
265			06	6)	226	474	53	(1)	195	443	121	369	257	202	18	230	823	675	947	601	885	737	1009	564	854	206	978	632	916	768	1040	1056
2	824	929	948	602	886	738	1010	292	855	707	979	633	917	269	1041	1058	295	147	419	73	357	209	481	36	326	178	450	104	388	240	512	0

Table H.15 — 35 x 35 data

1	299	141	454	87	929	918	800	1063	177	319	207	470	129	391	273	536	20	562	873	716	900	197	379	222	511	38	979	889	758	1020	692	954	823	က
10	629	841	734	266	216	358	240	503	57 1	669	206	750	1039	671	973	816	1105	1122	313	156	445 1	177	629	922	791	1053	1186	329	198	460 1	132	394	263	525
1095	1139	281	174	437	96	638	940	783	1072	1159	347	190	479 1	111	413	256	545	570 1	593	856	725	286	1219	362	231	493	99	609	868	740	1042	674	963	805
535	19	561	874	717	1006	1198	380	223	512	39	627	890	759	1021	693	926	825	1087	1153	296	165	427	66	642	931	773	1081	1169	338	180	482	114	403	245
815	1104	1121	314	157	446	. 82	099	923	792	1054	1187	330	199	461	133	396	265	527	33	576	865	707	1009	1202	371	213	521	49	618	880	762	1024	683	945
255	544	1130	594	857	726	886	1220	363	232	494	29	610	899	741	1043	929	965	807	1118	1136	305	147	449	82	651	913	801	1064	1178	320	202	464	123	385
955	824	1086	1154	297	166	428	100	643	932	774	1082	1170	339	181	483	116	405	247	558	16	585	847	729	992	1211	353	241	504	58	009	902	744	1033	665
395	264	526	34	211	998	708	1010	1203	372	214	522	50	619	881	292	1026	685	947	838	1101	1145	287	169	432	91	633	941	784	1073	1160	342	184	473	105
675	964	806	1119	1137	306	148	450	83	652	914	802	1065	1179	321	203	466	125	387	278	541	25	267	869	712	1001	1193	381	224	513	40	622	884	753	1015
115	404	246	559	17	286	848	730	993	1212	354	242	505	29	601	903	746	1035	299	978	821	1110	1127	309	152	441	73	661	924	793	1055	1182	324	193	455
1025	684	946	839	1102	1146	288	170	433	92	634	942	785	1074	1161	343	186	475	107	418	261	550	7	589	852	721	983	1221	364	233	495	62	604	893	735
465	124	386	279	542	26	568	870	713	1002	1194	382	225	514	41	623	886	755	1017	698	961	830	1092	1149	292	161	423	101	644	933	775	1077	1164	333	175
745	1034	999	979	822	1111	1128	310	153	442	74	662	925	794	1056	1183	326	195	457	138	401	270	532	29	572	861	703	1011	1204	373	215	517	44	613	875
185	474	106	419	262	551	8	290	853	722	984	1222	365	234	496	63	909	895	737	1048	681	970	812	1114	1132	301	143	451	84	653	915	797	1059	1173	315
885	754	1016	669	962	831	1093	1150	293	162	424	102	645	934	776	1078	1166	335	177	488	121	410	252	554	12	581	843	731	994	1213	355	237	499	53	595
325	194	456	139	402	271	533	30	573	862	704	1012	1205	374	216	518	46	615	877	768	1031	069	952	834	1097	1141	283	171	434	93	635	937	779	1068	1155
605	894	736	1049	682	971	813	1115	1133	302	144	452	85	654	916	798	1061	1175	317	208	471	130	392	274	537	21	563	871	714	1003	1195	377	219	508	35
1165	334	176	489	122	411	253	555	13	582	844	732	995	1214	356	238	501	22	597	806	751	1040	672	974	817	1106	1123	311	154	443	75	657	919	788	1050
45	614	876	769	1032	691	953	835	1098	1142	284	172	435	94	636	938	781	1070	1157	348	191	480	112	414	257	546	1085	591	854	723	985	1217	359	228	490
1060	1174	316	209	472	131	393	275	538	22	564	872	715	1004	1196	378	221	510	37	628	891	760	1022	694	957	826	1088	1151	294	163	425	97	639	928	770
200	54	969	606	752	1041	673	975	818	1107	1124	312	155	444	9/	859	921	062	1052	1188	331	200	462	134	397	266	528	31	574	863	202	1007	1199	368	210
780	1069	1156	349	192	481	113	415	258	547	7	269	855	724	986	1218	361	230	492	89	611	006	742	1044	229	996	808	1116	1134	303	145	447	62	648	910
220	609	98	629	892	192	1023	969	928	827	1089	1152	295	164	426	86	149	086	772	1083	1171	340	182	484	117	406	248	556	14	583	845	727	686	1208	350
920	682	1021	1189	332	201	463	135	398	267	529	35	575	864	902	1008	1201	370	212	523	51	620	882	764	1027	989	948	836	1099	1143	282	167	429	88	089
360	229	491	69	612	901	743	1045	678	296	608	1117	1135	304	146	448	81	029	912	803	1066	1180	322	204	467	126	388	276	689	23	999	867	602	866	1190
640	676	122	1084	1172	341	183	485	118	407	249	299	15	584	846	728	166	1210	352	243	506	09	602	904	747	1036	668	926	819	1108	1125	307	149	438	20
80 1200	698	211	524	25	621	883	292	1028	289	646	288	540 1100	1144	286	168	431	06	632	943	786	1075	1162	344	187	476	108	416	259	548	9	287	849	718	980
	649	911	804	1067	1181	323	205	468	127	389	277		24	999	898	111	1000	1192	383	226	515	42	624	887	756	458 1018	969	626	828	1090	1147	289	158	420
990	89 1209	351	244	507	61	603	902	748	1037	699	977	820	549 1109	1126	308	151	440	72	663	926		1057	1184	327	196		136	399	268	530	27	269	858	700
430		631	944	787	1076	1163	345	188	477	109	417	260		9	588	851	720	982	1223	366		497	64	607	896	738	486 1046	629	896	810	1112	1129	298	140
710	666	71 1191	384	227	516	43	•	888	757	459 1019	269	960	829	531 1091	28 1148	291	160	422	103	646	935	777	519 1079	47 1167	336	178		119	408	250	552	6	578	840
150	439	71	664	927	962	1058	1185	328	197	459	137	400	269	531		571	860	702	1013	1206	375	217	519		616	878	292	1029	688	950	832	1094	1138	280
850	719	981	1224	367	236	498	92	809	897	739	1047	680	696	811	1113	1131	300	142	453	86	655	917	799	1062	1176	318	206	469	128	330	272	534	18	260
290	159	421	104	647	936	778	1080	1168	337	179	487	120	409	251	553	11	280	842	733	966	1215	357	239	502	26	598	906	749	1038	029	972	814	1103	0 1120
2	829	701	1014	1207	376	218	520	48	617	879	167	1030	689	951	833	1096	1140	282	173	436	92	637	626	782	1071	1158	346	189	478	110	412	254	543	0

1	325	159	092	1037	1294	388	249	527	69	643	948	781	1107	1311	432	266	282	12	613	068	1367	461	100	674	993	827	1132	1224	998	200	202	116	731	1009	870	3
9	621	899	1352	445	110	684	686	823	1142	1235	356	189	515	127	728	1006	881	1159	1205	298	183	757	1062	1266	401	235	540	40	662	940	801	1078	1323	417	278	555
1153	1213	307	168	741	1072	1276	397	231	250	51	652	929	811	1089	1320	414	289	267	21	264	923	1349	470	82	269	975	836	1113	1254	348	209	486	139	713	1018	851
561	58	603	806	1333	480	92	693	971	846	1124	1244	337	219	497	136	710	1029	863	1168	1186	331	165	992	1044	1289	383	244	521	02	644	646	782	1101	1305	426	259
857	1176	1195	316	149	922	1054	1285	379	254	532	09	633	626	262	1098	1302	437	271	929	869	279	902	1358	452	105	629	984	817	1143	1236	357	190	609	121	722	666
265	584	11	612	688	1368	462	101	675	994	828	1133	1225	298	201	909	118	733	1011	872	1149	1219	313	174	748	1067	1271	392	225	551	25	623	086	805	1083	1314	407
1005	088	1158	1204	262	184	758	1063	1267	402	236	541	41	699	146	802	1080	1325	419	280	299	32	609	914	1340	475	87	688	965	847	1125	1245	338	213	491	130	703
413	288	999	20	263	924	1350	471	83	869	926	837	1114	1255	349	210	488	141	715	1020	853	1182	1201	322	156	771	1049	1280	373	255	233	61	634	953	787	1092	1295
200	1028	862	1167	1185	332	166	767	1045	1290	384	245	522	11	645	026	784	1103	1307	428	261	069	17	618	968	1363	457	96	699	966	829	1134	1226	361	195	200	111
1301	436	270	2/2	1190	879	906	1359	453	106	089	985	818	1144	1237	358	192	511	123	724	1001	988	1164	1210	304	179	753	1058	1261	403	237	542	42	657	935	796	481 1073
117	732	1010	1/8	1148	1220	314	175	749	1068	1272	393	226	225	23	654	932	807	1085	1316	409	767	572	56	009	919	1345	466	77	669	226	838	1115	1249	343	204	481
1079	1324	418	647	929	98	610	915	1341	476	88	689	996	848	1126	1246	340	215	493	132	202	1034	898	1173	1192	327	161	762	1039	1291	382	246	523	65	629	944	117
487	140	714	1019	852	1183	1202	323	157	772	1050	1281	374	256	534	62	989	955	789	1094	1297	442	276	189	8	623	901	1354	447	101	189	986	819	1138	~	352	185
783	1102	1306	427	260	591	18	619	897	1364	458	97	670	966	088	1135	1228	363	197	205	113	738	1016	228	1155	1215	309	170	743	1069	1273	394	227	546	47	648	925
191	510	122	723	1000	288	1165	1211	305	180	754	1059	1262	404	238	543	44	629	937	862	1075	1330	424	285	263	31	609	910	1335	477	68	069	296	842	1120	1240	333
931	908	1084	1315	408	295	573	27	601	920	1346	467	78	002	826	628	1117	1251	345	206	483	146	720	1025	698	1178	1197	318	151	213	1021	1282	375	250	528	56	629
339	214	492	131	704	1035	698	1174	1193	328	162	292	1040	1292	988	247	525	29	641	946	622	1108	1312	433	267	286	13	614	891	1365	459	86	129	066	824	1129	1221
635	954	788	1093	1296	443	277	582	6	624	905	1355	448	108	682	286	821	1140	1233	354	187	516	128	729	1007	882	1160	1206	299	181	297	1060	1263	398	232	537	37
1227	362	196	201	112	682	1017	878	1156	1216	310	171	744	1070	1274	362	229	548	49	099	476	812	1090	1321	415	290	268	22	262	921	1347	468	62	694	972	833	1110
43	658	936	161	1074	1331	425	286	564	32	909	911	1336	478	06	691	696	844	1122	1242	332	220	498	137	711	1030	864	1169	1187	329	163	764	1041	1286	380	241	518
1116	1250	344	202	482	147	721	1026	860	1179	1198	319	152	774	1052	1283	377	252	530	89	631	096	794	1099	1303	438	272	577	1147	625	806	1356	449	102	929	981	814
524	99	640	942	778	1109	1313	434	268	587	14	615	892	1366	460	66	673	992	826	1131	1223	368	202	202	119	734	1012	873	1150	1217	311	172	745	1064	1268	389	222
820	1139	1232	353	186	212	129	730	1008	883	1161	1207	300	182	992	1061	1265	400	234	689	39	664	942	803	1081	1326	420	281	558	33	209	912	1337	472	84	685	962
228	547	48	649	926	813	1091	1322	416	291	269	23	969	922	1348	469	81	969	974	835	1112	1256	350	211	489	142	716	1021	854	1180	1199	320	153	768	1046	1277	370
896	843	1121	1241	334	221	499	138	712	1031	865	1170	1188	330	164	292	1043	1288	382	243	520	72	646	951	282	1104	1308	429	262	288	15	616	893	1360	454	93	999
376	251	529	25	089	961	795	1100	1304	439	273	218	4	626	904	1357	451	104	829	883	816	1145	1238	329	193	512	124	725	1002	884	1162	1208	301	176	750	1055	74 1258
672	991	825	1130	1222	369	203	208	120	735	1013	874	1151	1218	312	173	747	474 1066	1270	391	224	223	72	655	933	808	1086	1317	410	292	220	24	262	916	1342	463	
1264	399	233	538	38	999	943	804	1082	1327	421	282	228	34	809	913	1339		98	687	964	849	1127	1247	341	216	494	133	200	1032	998	1171	1189	324		759	1036
80	695	973	834	519 1111	1257	351	212	490	143	717	430 1022	855	589 1181	16 1200	321	155	770	456 1048	95 1279	372	257	535	63	637	926	790	503 1095	114 1298	440	274	219	2	620	868	1351	444
1042	103 1287	381	242		73	647	952	786	513 1105	125 1309		263			617	895	178 1362			899	266	831	544 1136	1229	364	198			736	1014	875	560 1152	28 1212	306	167	740
450		677	982	815	1146	1239	360	194			726	1003	885	1163	1209	303		752	465 1057	1260	405	239		45	099	938	799	1076	1328	422	283				907	148 1332
746	1065	1269	390	223	554	55	929	934	809	1087	1318	411	293	571	25		918	1344		92		979	840	1118	1252		207	484	144	718	1023	856	1175	`	315	
1338	473	85	989	963	850	1128	1248	342		495	134	l	1033		1172	1191	326	160	761	1038	1293	387	248	526	89	642	947	780	1106	1310	431	264	583		611	888
154	169	1047	1278	371	3 258	536	7	638	957	791	1096	1299	7 441	5 275	280	2 t	1 622	3 900	1353	446	109	683	988	822	1141	1234	355	188	514	126	727	1004	879	1157	1203	296
894	1361	455	94	199 (968	832	1137	3 1230	365	199	504	115	737	3 1015	928 1	1154	1214	308	169	1 742	1071	1275	396	230	5 549	3 50	8 651	928	810	1088	1319	3 412	287	1 565	3 19	592
302	177	751	1056	1259	406	240	1 545	9 46	3 661	939	3 800	1077	1329	423	1 284	3 562	30	904	606	1334	5 479	3 91	692	3 970	845	1123	1243	336	3 218	496	135	708	1027	9 861	1166	0 1184
2	917	1343	464	75	702	980	841	1119	1253	347	208	485	145	719	1024	828	1177	1196	317	150	277	1053	1284	378	253	531	59	632	928	792	1097	1300	435	269	574	<u> </u>

Table H.17 — 39 x 39 data

_	338	162	811	1103	1347	391	272	877	1199	1296	385	209	843	1135	1401	446	300	592	32	929	928	1406	505	96	730	1022	1515	559	62	999	1010	1458	532	122	771	1063	917	က
16	650	945	1435	479 1	99 1:	203	1052	1501	575 1	48 1,	: 269	686	1467	511 1	153 14	, 857	1080	904	1241	1260 (334	158 1	817	1110	1354	398 10	267 1	871	1193	1290	386 10	210 14	844	1136	1395	439 10	293	285
1225	1274 6	318 9	187 14	791 4	1113	1327 7	428 10	253 15	887	1179	1321 6	365	219 14	823	1167 1	1382 7	456 10	280	617 12	12 12	646	938	1441	486 11	106 13	710 3	1047	1495	569 11	42 12	869	066	1468 8	512 11	147 13	751 4	1073 2	897
601 13	26 1;	630	. 296	1415	1 88	79 1:	740	1033	1511	555 1	73 1;	229	666	1447	543 1	134 1;	768	1060	926	1221	1270	314	193 14	798	1120	1334	423 10	247 14	881	1173	1322 (366	220 14	824	1161	1375	449 10	273
913 6	1235	1254 6	343 8	167 14	801 4	1093	1364 7	409 10	263 15	867 5	1204	1301 6	375 8	199 14	855 5	1148 1	1392 7	436 10	305	597 12	22 12	626 3	973 1	1422 7	496 11	86 13	735 4	1027 2	1505 8	549 11	74 13	678	1000	1448 8	537 11	127 13	761 4	1053 2
289 9	611 12	6 12	655 3	947 1	1425 8	469 10	116 13	721 4	1043 2		580 12	53 13	887 3	979 1	1479 8	524 11	144 13	748 4	1085 3	606		1250 6	349 9	174 14	808 4			403 10	257 15	861 5	1205	1302 6	376 10	200 14	849 5			429 10
	923 6	15		323 9	177 14	781 4		1345 7	419 10	243 1491	892 5			355 9	231 14	836 5			461 10	285 9	607 1231	640 12	661 3	954		476 1100	111 1359	715 4		1485 8	581 12	54 13	688	980 2	1473 8	517 1141	137 1385	741 4
445 1069	299 93	591 1215	31 1279	635 33	957 1.	1405 7	506 1130	97 13	731 4			560 1184	63 1311	867 3		1460 8:	534 1158	124 1372	773 4	1065 2	919 6			330 9	184 1432	788 4	1125 1		413 1037	237 14	893 5	1185		356 9	225 14	829 5		
757 4		903 5			333	157 14	818			399 1023	268 1516	872 5			387 1011	212 14	846 5			441 10	295 9	587 1211	37 1285	642 3	964		501	91 1339	725 4			561 11	64 1312	899			527 1151	117 1365
ш	455 1079	279 9	616 1240	11 1259	645 3	937 1		487 1111	107 1355	711 3			570 1194	43 1291	8 669	992 2		514 1138	149 1397	753 4		899			340 9	164 1412	813 5			393 1017	269 1517	873 5			381 1005	205 1453	839 5	_
133 1381	767 4		928 6			313 93	194 1442	799 48			424 1048	248 1496	882 5.			368	222 1470	826 5			451 1075	275 89	622 1246	18 1266	652 34	944 10		481 1105	101 1349	705 38			571 1195	44 1292	693	985 20		507 1131
		435 1059	304 92	596 1220	21 1269	625 3	974 19		497 1121	87 1335	736 4,			550 1174	75 1323	980 36			539 1163	129 1377	763 4		934 6			320 9	189 1437	793 4			425 1049	249 1497	883 5			361 98	215 1463	819 50
523 1147	143 1391	747 43		908			350 97	175 1423	809 46			404 1028	258 1506	862 5			378 1002	202 1450	851 53			431 1055	310 93	603 1227	28 1276	632 32	969 18		491 1115	81 1329	737 42			551 1175	69 1317	673 36	995 2	
835 52	_		460 1084		606 1230	1249		955 17		1101	112 1360				582 1206	56 1304				519 1143	139 1387			915 60			345 96	169 1417				405 1029	259 1507					195 1443
	533 1157	123 1371	772 46	34 284		1264	36 662		185 1433	789 477		10 716	414 1038	238 1486			14 690	358 982	1475			37 743	466 1090		613 1237	8 1256		949 16	27 803	1095	113 1361			37 863	576 1200	49 1297	33 371	975 19
1 1459				1064	918	586 1210	38 1286	13 331			1126	92 1340			894	3 1187	66 1314		7227	55 831	1153	1367		71 291		7	1 657		9 1427	33 471		11 717	1039	1487			7 683	_
1 211	9 845	3 1137	8 1396	2 440	4 294			7 643	1 965	5 1413	4 502		0 726	4 1018	0 1518	2 263		4 670	3 1007	7 1455	.1 529	3 119	2 778	7 1071	1 925	3 1217	33 1281	7 325	9 179	7 783	3 1127	93 1341	7 415	9 239	2 888	1180	59 1307	3 351
7 997	1 1469	5 513	2 148	6 752	1074	4 898	3 1247	19 1267	3 341	5 165	8 814	2 1106	2 1350	6 394	0 270	9 875	3 1197	46 1294	5 383	7 207	5 841	9 1133	4 1402	9 447	1 301	5 593		1 637	5 959	9 1407	5 503		1 727	5 1019	4 1512	8 556		7 663
9 367	1 221	9 825	8 1162	8 1376	2 450	4 274	5 623		7 653	1 945	0 1438	4 482	6 102	0 706	6 1050	1 1499	5 573		9 695	3 987	7 1465	1 509	8 154	3 759	7 1081	1 905	8 1242	13 1261	7 335	9 159	9 815	3 1107	3 1351	7 395	4 264	2 868	6 1190	39 1287
3 679	1001	1449	0 538	2 128	6 762	1054	1 935	4 1228	29 1277	3 321	0 190	8 794	1116	1330	8 426	1 251	882	3 1177	1319	263	7 217	5 821	1168	5 1383	9 457	1 281	0 618			5 939	1 1439	5 483	7 103	1 707	1044	1492	8 566	
55 1303	377	1 201	4 850	8 1142	8 1386	2 430	1 311	604		7 633	6 970	1418	4 492	6 82	2 738	1031	1509	5 553	2 71	675	3 997	7 1445	5 544	135	3 769	1061	5 930	8 1222	3 1271	315	191	9 795	3 1117	3 1331	2 420	4 244	2 878	1170
	3 689	7 981	5 1474	0 518	2 138	5 742	7 1091	2 916	4 1238	9 1257	346	170	8 804	1096	1362	9 407	1 261	98 865	8 1202	1299	5 373	197	928 0	5 1149	5 1393	9 437	5 306	0 598	2 23	1 627	7 971	1 1419	5 493	7 83	5 732	1024	4 1502	8 546
1186	5 1313	357	3 226	4 830	3 1152	3 1366	9 467	292	5 614		2 658	3 950	1428	4 472	114	3 719	1041	1489	578	2 51	685	3 977	1480	7 525	145	3 749	1086	3 910	3 1232	1251	347	171	9 805	3 1097	3 1356	2 400	4 254	828
4 562	3 65	3 669	1006	3 1454	528	118	3 779	3 1072	2 926	1218	1282	326	180	3 784	1128	5 1343	9 417	1 241	4 890	3 1182	1309	5 353	232	1 837	1159	5 1373	462	3 286	0 608	1209	3 659	7 951	1429	5 473	108	3 712	1034	1482
874	1196	1293	382	3 206	840	1132	1403	448	302	594	34	2 638	3 960	1408	504	96	3 729	1021	1514	228	9 61	9 665	3 1012	1461	535	125	3 774	1066	3 920	1212	1283	327	181	785	1122	1336	2 410	1 234
1498	572	3 45	8 694	986	1464	508	155	1 760	$\overline{}$	906	1243	1262	336	160	816	1109	1353	397	3 266	028 1	1192	1289	388	3 213	1 847	1139	1398	442		588	35	9 63	7 961	1409	498	2 88	3 722	1014
250		1176	1318	362	3 216	820	1169	1384		282	619	14	648	940	1440	, 485		902	1046	1494	268	41		993	1471	515	150	754	$\overline{}$	3 900	1244	1263	337	161	810	478 1102	98 1346	390
1030	$\overline{}$	-,	70	674	966	1444	545	136		1062	931	1223	1272	316	192	161	1119	1333	422	246	880	548 1172	1324		223	827	1164	1378	452	276	620	. 15	649	941	1434			702
406	260		1201	1298	372	196	857	1150	1	438	307	299	24	628	972	1421	1	85	734	402 1026	256 1504			681	1003	1451	540	130	764	1056	932	1224	1273	317	186	790	488 1112	78 1326
718	1040	1488	577	50	684	926	1481	526		750	1087	911	1233	1252	348	173	807	1099	110 1358			860	1207			203	852	1144	1388	432	308	009	. 25	629	996	1414		
1342	416		889	1181	1308	352	233		1160	1374		287	609	4			`	475		714	1036	1484		22		983	1476	520		744	$\overline{}$	912	1234	1253	342	166	800	1092
94			1513		09	664	1013	1462		126	775	1067	921	1213	1284	329		187	500 1124	1338	412	236	895	1188			228	832	1154	1368	464		610	2	654	946	176 1424	468
1108	1352	396	265	869	1191	1288	389			1140	1399	443						1411		06	724	1016	•	564			1008	1456		120		٠.	922	1214	1278	322		780
484	104	708	1045	1493	267		701		_	516		755	453 1077	901	1245	1265		163	812	480 1104	100 1348	392	271		1198		384		842	1134	1400	444	298	290	30	634	926	156 1404
796	1118	1332	421	245	879	1171	1325		224	828	1165	1379	453	277	621	17		943	1436			704	1051	1500	214	47	969		1466	210	152	756	1078	902	1239	10 1258		
1420	494		733	401 1025	255 1503	247	77	682	1004	1452	541	131	765		633	`	1275	319	188	792	490 1114	80 1328	427	252		554 1178	1320	364		822	`	1380	454	278	615			936
172	806	1098	~	401		859	1208	1306	380	204	853	521 1145	1389	433	309	602	27		968	1416	490	80	739		`	554	72	676	866	1446	542	132	992	1058	927	1219		312
952		474	109	713	1035	1483	584	58	692	984	1477	521			1089	914	1236	1255	344	168	802	470 1094	1363	408	262	998	1203	1300	374	198		1146	1390	434	303	595	20	624
328	182	786	1123	1337	411	235	968	1189	1316	360	229	833	1155	1369	465	290	612	7	929	948	1426	470	115	720	1042	1490	579	52	989	978	1478	522	142	746	1083	907	1229	1248
2	962			88	723	1015	1520	_	89	672	1009	1457	531	121	777	1070	924	1216	1280	324	178	782	1129			242	891	1183	1310	354		834	1156	1370	459	283	605	0

Table H.18 — 41 x 41 data

_	2	_	က	ര	4	0	ω	ര	4	—	_	2	α	œ	œ	4	2	_	က	8	6	က	_	0	_	က	6	2	9	4	_	2	Ι-	_	2	—	8	ω	4	က
4	365	1001	1503	499	114	3 750	1088	1559	614	.9	3 727	1035	1552	3 548	148	784	1145	5 1617	1 643	6	689	1653	187	3 822	11187	1413	439		936	1244	137	372	1 241	3 877	1215	144) 482	3 298	964	10
	693	1657	191	827	1180	1406	432	247	942	1250	1383	379	240	876	1214	1440	489	305	971	1279	1345	341	1007	1478	531	101	192	1075	1592	2	99 1	200	1061	1533	229	129	810	1118	1620	8 615
1275	1349	345	1011	1483	254	94	260	1067	1598	594	11	707	1060	1532	258	128	817	1125	1627	623	33	699	1663	166	829	1167	1423		280		1254	1356	405	221	887	1195	1466	462	308	943
619	37	673	1667	171	852	1160	1416	411	286	922	1260	1363	404	220	988	1194	1473	469	315	951	1304	1325	351	986	1515	511	111	747	1100	1572	298	44	733	1041	1543	539	154	790	1128	287 1599
947	1308	1329	355	991	1508	504	104	739	1106	1578	604	51	732	1040	1542	238	191	797	1135	1607	648	13	629	1642	203	688	1177	1403	444		976	1233	1389	385	231	867	1220	1446	472	
1603	652	11	683	1647	196	832	1170	1395	450	266	932	1240	1388	384	230	998	1227	1453	479	295	926	1284	1335	330	1023	1495	521	91	772	1080	1582	229	22	713	1021	1523	564	134	800	1107
291	980	1288	1339	335	1016	1488	514	83	778	1086	1588	584	26	712	1050	1522	571	141	807	1115	1632	628	23	658	1679	183	849	1157	1428	424	270	905	1266	1369	395	211	892	1200	1456	451
1111	1636	632	27	663	1672	176	842	493 1149	1434	430	276	912	1265	1368	394	210	899	551 1207	1463	459	320	926	1294	1314	367	1003	1505	501	116	752	1090	1561	610	22	723	1031	1548	544	144	779
455	324	096	1298	1319	360	966	1498	493	122	758	1096	1568	609 1265	26	722	1030	1555	551	151 1463	787	1140	1612	638 1294	660 1314	695	1659 1003	193	829	1182	1408	434	249	938	1246	1379	375	236 1548	872	1210	1435
783	1144	1616	642	. 7	889	1652	186	821	1188	1414	440	256	937	1245	1378	374	243	879		1443	484	300	996	1273	1351	347	1013		226	. 96	762	1069		290	. 29	703	1056		554	123 1435
1439	488	304	970	1278	1344	340	1006	1477	532	102	292	1076	1593	289	. 99	702	1063	1535	561 1217	131	812	1120	1622	. 419	39	675	1669 1013	173 1485	854	1162	1418	413	282 1594	918	1256	1359	400 1056	216 1528	882	1189
127	816	1124	1626	622	32	899	1662	165	860	1168	1424	420	281	917	1255	1358	407	223	688	1197	1468	464	310	945	1310	1331		993	1510	206	106	741	1102	1574	009	47	728	1036	1538	533
1193	1472	468	314	950	1303	1324	350 1	985	1516	512	112 1	748	1101	1573	266	46	735	1043	1545	541	156 1	792	1130	1601	654	19 1	685	1649	198	834	1172	1397	446	262	928	1236	1384	380	226	861
537 1		962	1134	1606	647	12	829	1641	204	840	1178	1404	445	261	927	1235	1391	387	233 1	698	1222	1448	474	289	982	1290	1341	337	1018		516	85 1	774	1082	1584	580	72	208	1046	_
865		1452	478 1	294 1	975	1283	1334	329 1	1024	1496	522	92 1	773	1081	1583	579 1	79 1	715	1053	1525	566 1	136	802	1109	1638	634 1	29 1	665	1674 1	1	844	1151	1430	426 1	272 1	806	1261	1364	390 1	205 1517
1521	570 1	140 1	908	1114	1631	627 1	22 1	657	1680 1	184 1	820	1158	1429	425 1	271 1	206	1268	1371	397 1	213 1	894	1202	1458	453 1	326 1		1300	1321			1500	495 1	118 1	754	1092	1564	605 1	52 1	718	
209 1	868	1206	1462	458 1	319 1	922	1293		368 1		1506	502 1	117 1	753	1091	1563	612 1	59 1	725	1033	1550	546 1	146	781	l	1618	644 1	9 1	690	1654	188 1	823			436 1	252 1	933	241	1374	369 1025
1029		550 1	150 1	982	1139	1611	637	1316 1313	969	1660 1004	194	830	1183	1409	135 1	251	940	1248	1381	377 1	238 1	874	1212		490 1146	306	972	1280	1346	342	1008	1479	528 1184	98 1410	764	1072	1589	585 1241	62 1	269
373 1	$\overline{}$	878	1216	1442	183	299 1	965	1272 1:	1352	348 1	1014	1486	527 1	97 1	, 697	1071	1596	592 13	69 1:	202	1058	1530	556 13	125 1437	818	1126	1628	624 1:	34 1:	029	1 664 1	167 1	928	1164	1420	416 1	277 1:		1251	
701		1534	560 12	130 14	811	1119	1621	616 1;	40 1;	929	1670 10	174 14	855	1163	1419	415 10	284 1	920	1258	1361	402 10	218 1	884	1191	1474	470 1	316 10		1305	1326 (352 10	. 286	1512	508	108 14	744	1097	1569	595 12	41 1353
1357	406 10	222 1	888	1196	1467 8	463 1	309 16	944	1311	1332 (358 16	994	1511 8	507 1		743 4	1104	1576	602 12	49 13	730	1038	1540 8	535 1	162 14	7 862	1136	1608	649 13		089	1643	200 16	836	1174	1400	441 1(257 15	923	530
45 13	734 4	1042	1544 8	540 11	155 14	791 4	1129	1600	655 13	20 13	989	1650 9	199 15	835	1173 1	1399 7	448 11	264 15	930	1238	1386 7	382 10	228 15	863	1228 1	1454 7	480 11	296 16	977 6	1285	1336 6	331 16		1492 8	518 11	88 14	769 4	1077	1579 9	574 1230
1234	1390 7	386 10	232 15	898	221	1447 7	473 1	288 16	983 (1291	1342 (338 16		1491	517 11	87 13	7 922	1084	1586	582 12	74 13	710		1519 8	572 12	142 14	808	1116 2	1633	629 12	24 13	629	1676 1020	180 14	846	1154	1425 7	421 10	267 15	902
578 12	78 1;	714 :	1052	1524	565 1;	135 14	801	1108	1639	635 17	30 1;	999	1675 1019	179 14	845	1153	1432	428 10	274 1!	910	1263	1366	392 1048	207 1	006	1208	1464	460 1	321 16		1295	1315 (364 10	1000	1502	498 1	113 14	749	1087	1558
906	1267	1370	396	212 1	893	1201	1457	452 1	327 1	963	1301	1322		666	1501	197	120 1	, 957	1094	1566	1 209	54 1:	720	1027	1556	552 13	152 1		1141	1613	639 13	1271 1:		1656 1	190 1	826	1179	1405	431	246 1
1562	611 13	58 1:	724	1032	1549	545 13	145 1	780	1147	1619	645 13	10 1:	691	1655	189 1	825	1186		438 1	254 1	932	1243	. 9281	371 1	244	880	1218	1444	485 1	1	196	1274 13		344 1	1010	1482	523	93 1	, 652	
250 1	939 (1247		376 10	237 1	873			491	307 16	973 (281		343 16		_	530 1	100 1412	992		_	587 13	64 13	669		1536	562 13	132 14	813		1623	618 12	36 1348	672	1666 10	170 1	851	1159		738 410 1066
1070	1595	591 12	68 1380	704	1057	1529	555 1211	124 1436	819		1629	625 1281	35 1347	671	1665 1009	169 1481	828	1166	1422	418 1074	279 1591	915	1253	1355 (408 1064	224 1	890		1469	465 1121	311 16	946	1307	1328 (354 16	066	1507	503 1	103 1415	738
414 10	283 1	919	1257	1360	401	217 1	883	1190	1475	471 1	317 16	953 (1306	1327 (353 10	686	1514	510 1	110 14	746	1099	1571	597 13	43 13			1546	542 1	157 14			1602	651 13	16 13	682	1646	195 1	831		
742			601 12	48 1	729	1037	1539	534 1	163 14	7 662	1137		650 13	15 1;			202 1	838			443 10	259 1	922		80 1392 736	388 10	234 1		1223		475 1131	290 16	626			334 16			513 1169	82 1394
1398	447 1	263 1575	929	1237	1385	381 10	227 1	862	1229	1455	181	297 1609	978		337 (333 1645		1494	520 1176	90 1402	771			576 1232	80 1;	116		1526	567 1;		803	1110		631 1287	26 1338	662	1671 1015	175 1487	841	148
86 13	775 4	1083		581 12	73 13	602	1047	518	573 12	143 14	⁷ 608			630 1286	25 13	661	366 1678 1022	182 14	848	156	_	423 1079	761 433 1089 269 1581	904			398 1054	214 1				454 1	815 487 1143 323 1635	926			359 16	-		192 1
1152	1431 7	427 10	273 1585	606	1262	1365 7	391 10	206 1518	101	1209	1465 8	461 1117	322 1634	928			16			500 1156	115 1427	751 4	680	3 099	613 1269	60 1372			1551	547 12	147 1459	782 4	43		641 1297	6 1318	289		185 1497	164 1476 820 492 1148
496 11	119 14	755 4	93 2		606 12	53 13		26 2	25	553 12	153 14		42 3		40 12	5 13		58 10	92 15	828			33 10	48 15			82 7	78 10	239 15	875 5	1213 1	38 7	87 11	03 16	9 696	22	43 6	39 16	05 1	3 92
824 4	1185 1	1411 7	437 1093	253 1565	934 6	1242	1375 719	370 1026	245 1557	881 5	1219 1	1445 789	486 1142	302 1614	968 640 1296	1276	1350 694	346 1658 1002	356 1668 1012 192 1504	1484 8	525 1181	95 1407	.61	412 1068 248 1560	1597 9	593 1249	70 1382	706 378 1034	1059 2	1531 8	557 12	126 1438	15 4	1123 303 1615	1625 8	621 1277	31 1343	667 339 1651	349 1661 1005	64 14
1480 8	529 11	99 14	765 4			586 12	63 13	869	1065 2		563 12	133 14	814 4	22 3		620 12	38 13	674 3	68 10	172 14	853 5			12 10	285 15				403 10	219 15	885 5	1192			313 16	49 6		1323 6	49 16	984
168 14		1165	1421 7	417 1073	278 1590	914 5	1252	1354 6	409 10	225 1537		1199 1	1470 8	466 1122	312 1624	948 6	1309	1330 6	56 16	992	1509 8	505 1161	105 1417			1577 9	603 1259		731 4		1541 8	536 11	159 1471	795 467	1133 3	1605 9	646 1302	٠,		
1 988	13 8	509 11	109 14	745 4			596 12	42 13	737 4			543 11	158 14	794 4			653 13	18 13	684 3		197 15	833 5		2 96	11 644		931 6		87 7	383 10	29 15	864 5			477 11	293 16	974 6		33 6	328 1640
	`	837 50	l		442 1098	258 1570	924 56			389 1045	235 1547	871 5			476 1132	292 1604	981 6	l		336 1648			515 1171	84 1396 740	4 777			583 1239	`				569 1225	139 1451	805 47			626 1282		656 32
332 1644			519 1175	89 1401	770 44			575 1231	81 1393				568 1224	138 1450	804 47			633 1289	28 1340	664 33	73 1017	177 1489	843 5			429 1085	275 1587			37 7	393 1049	208 1520	897 56			457 1113	318 1630	_		_
2	1021	181 1493	847 51			422 1078	268 1580	903 57			399 1055	215 1527	896 56	l		56 1112	325 1637				361 1673			494 1150	1			37 9.	608 1264					549 1205	149 1461	l	l		636 1292	0 1312
	1677	18	8	1155	1426	4,5	26	6	1270	1373	36	2	8	1204	146	456	3,	96	1299	1320	36	66	1499	34	121	75	1095	1567	9	4)	7,7	1028	1553	24	14	78	1138	1610	9	

1.22 200 10.5 2.2 1.6 10.5 1
1.22 1.22
172 282 (1558) (1552
14.00 17.00 17.00 17.00 17.00 19.0
1,000, 10,00
14.20 1282 14.20 12.20 16.60 16.17 12.00
14.00 14.0
14.00 12.0
122 123
14.00 14.00 14.00 14.00 14.00 15.00 14.00 14.00 14.00 14.00 15.00 14.0
14.00. 1
14.00 14.0
1422 1486
1477 7289 445 1821 1133 273 1649 961 1671 305 681 473 474 402 1778 1090 250 1606 912 681 1321 133 1505 15
172 188 1445 1821 1432 1436 1446 1446 1445 1446 14
172 188 1445 1821 1432 1436 1446 1446 1445 1446 14
172 178 1445 1421 1133 273 1449 961 617 1305 618 1434 746 402 1778 1000 230 1251 1252 1144 224 1660 972 628 1316 69 1445 757 413 1799 1101 241 1617 929 1132 231
1477 789 445 482 1433 273 649 961 617 1305 58 443 746 402 1778 1000 245 1820 1445 1422 222 1436 264 1600 242 6180 242
122 222 123 144 1284 1413 273 1449 961 617 1305 581 434 746 402 775 449 1482 1442 284 1482 1432 284 1480 972 628 1316 69 1445 757 4419 1789 1410 241 1410 241 1411 1412 245 1632 1448 760 416 742 1432 233 1409 233 1409 241 1411 1
1477 788 445 1821 1133 273 1649 961 617 1306 58 1434 746 405 456
1477 789 445 1821 1133 273 1449 961 617 1305 58 1434 746 456 452 1432 222 628 636 6294 47 1422 735 391 1767 1079 249 1673 986 641 1329 82 448 770 426 1802 1147 710 425 1803 425 489 4770 426 42
1477 789 445 1821 1133 273 1649 961 617 1305 58 1434 456 1832 1144 284 1660 972 628 1316 69 4445 757 4131 1122 262 1638 950 606 1294 47 1423 735 391 7767 1078
456 1832 11133 273 1649 961 617 1305 581 456 1832 1144 284 1660 972 628 1316 69 1445 757 1122 262 1638 950 606 1294 47 1423 735 391 1767 1 620 1308 641 1329 82 1488 770 426 1802 114 264 72 1448 760 416 1792 140 244 1620 932 588 1767 73 394 1770 1082 222 1598 100 566 1243 1760 1771 1781 1781 1781 1781 1781 1781 1781 1781 1781 1781 1782 1881 1781 1781 1781 1781 1781 1781 1781 1781 1781 1781 1781 1781 1781
456 1832 1144 284 1660 972 628 1316 691 1445 456 1832 1144 284 1660 972 628 1316 691 1445 620 1308 641 1329 82 1458 770 426 1802 1114 620 1308 641 1329 82 1488 770 426 1803 233 1609 72 1448 760 416 1792 1104 244 1620 932 58 73 394 1770 1082 222 1598 910 566 1244 1509 244 1620 932 58 73 394 1770 1082 222 1598 160 666 1344 1620 932 58 1244 126 1329 821 140 1781 1620 932 66 1781 1782 188
456 1822 1451 1821 1133 273 1649 961 671 456 1832 1144 284 1660 972 628 1316 691 1122 282 1663 950 606 1294 47 1423 735 620 1308 641 1329 82 1485 770 426 1802 72 1448 760 416 1792 1104 244 1620 932 73 394 1770 1082 222 159 160 186 185 <t< td=""></t<>
456 182 145 182 145 182 145 182 145 182 145 182 145 182 145 182 142 145 145 145 145 145 145 145 142
445 1821 1133 273 1649 456 1832 1144 284 1660 972 628 1122 262 1638 950 606 1294 471 122 262 1638 950 606 1294 471 122 262 1638 950 606 1294 471 122 122 122 123 1648 123 123 1248 170 162 172 172 1448 170 162 172 172 1448 170 162 172 172 1448 170 162 172 172 1448 170 162 172 172 1441 172 172 172 1441 172 172 172 1441 172 172 172 1441 172 172 172 172 1441 172
456 1832 1445 1821 1433 273 1648 456 1832 1144 224 1660 972 628 1122 262 1638 950 606 1294 47 620 1308 641 1329 82 1458 770 72 1448 760 416 1792 1104 24 73 394 1770 1062 222 1598 910 72 1448 760 416 1792 1104 24 72 1448 760 416 1792 1104 24 122 1448 70 140 140 140 140 122 1448 70 140 170 140 140 124 126 141 151 140 24 140 125 140 140 140 140 140 140 124
456 1822 1446 1821 1133 273 456 1822 1444 284 1660 972 1122 2262 1638 950 606 1294 620 1308 641 1329 82 1458 620 1308 61 1437 749 405 72 1448 760 416 1792 1104 738 394 1770 1082 222 1598 1797 1109 249 1625 937 598 186 582 1270 152 1588 141 1877 1603 915 515 1608 92 188 1709 1021 671 188 93 189 655 1244 126 150 188 900 556 1244 126 160 188 900 656 1344 160 160 <
1477 789 445 4456 682
1477 789 445 4456 682
1477 789 445 4456 682
1219 1011 1488 800 1434 1810 1157 297 1152 964 1289 177 1289 177 1289 177 1289 177 1289 177 1289 177 1403 775 1403 751 1439 751 1439 751 1627 939 1627 939 1627 939 1627 939 1627 939 1627 939 1627 939 1638 1648 1638 1658 1638
875 531 1219 101 1230 112 1488 800 1466 778 434 1810 469 1845 1157 297 1136 276 1652 964 1653 975 631 1319 609 1297 50 1426 77 1453 76 421 77 1453 76 421 77 1453 76 421 77 1453 76 421 77 1453 76 421 77 1453 76 421 156 1453 16 176 180 1774 1026 682 190 271 1072 212 136 271 1015 873 131 693 349 1755 384 1760 1072 212 1381 693 349
875 531 1230 1128 1466 778 469 1845 1136 276 1138 276 1138 276 126 193 17 1453 17 1453 17 1453 17 1463 16 152 16 152 17 144 18 144 19 144 11 144 12 144 131 63 1450 762 284 1772 138 643 987 643 987 641 111 251 110 651 120 11 1178 318 1178 318 1178 318 1450 651 158 511 1742 </td
1663 875 531 1219 101 10
198 1574 886 542 1230 112 1488 800 884 520 1208 90 1466 778 434 1810 112 1488 800 1466 778 434 1810 112 1488 800 1466 778 434 1810 112 1488 800 142 752 448 1824 1136 276 1652 964 459 1835 1147 287 1663 975 631 1319 1125 265 1641 953 609 1297 50 1425 168 980 636 1324 77 1453 765 421 1319 125 265 1641 953 609 1297 50 1425 168 980 636 1324 77 1453 765 421 1400 1400 1400 1400 1400 1400 1400
198 1574 1871 198 1574 1871 198 1574 886 864 520 1208 1480 792 4481 1125 265 1641 1668 980 6561 66 1442 754 1806 1177 257 1806 1177 257 1806 1177 257 1806 1177 257 1806 1177 301 1806 1177 1089 1100 240 1616 1594 906 552 1428 1406 562 1428 1407 163 2891 1100 240 1616 1594 906 552 1428 1406 562 1428 1407 1701 022 6781 1408 152 834 1401 100 240 1616 1504 906 552 1428 1406 562 1428 1407 1701 022 6781 1408 152 834 1401 100 240 1616 1504 306 552 1428 1406 552 1428 1407 1777 1089 1707
1735 1147 198 1574 198 1574 1864 520 1864 520 187 125 1125 265 1125 285 1125 286 1127 388 1127 388 1127 386 117 400 117 400 1186 1190 1117 120 1117 120 130 140 130 1486 1486 170 1486 170 1486 170 1486 170 1486 170 1486 170 1486 170 1486 170 1486 170 1486 170 1486 170 1486 1486 1486
1552 864 520 1552 864 520 164 480 792 1803 459 1835 1813 1125 265 1292 1668 980 1803 459 1117 1096 236 1611 1096 236 1611 1096 236 1612 1023 938 591 106 136 1373 40 11728 1040 180 1228 1104 180 1228 1104 180 1338 148 1100 240 1245 1456 1617 1778 1100 1029 1833 845 501 1456 148 1456 148 1456 165 166 134 1456 165 166 134 177 188 1100 240 183 845 501 183 845 501 184 1100 240 185 334 170 1022 1000 666 134 136 146 146 152 153 845 501 166 154 166 165 166 166 167 177 188 1100 240 183 166 167 183 166 167 183 166 167 183 184 100 240 183 183 185 501 183 184 100 240 183 184 1100 240 183 185 281 1100 240 183 185 281 1100 240 183 184 1100 1028 183 184 1100 1028 183 184 1100 666 134 183 185 22 1398
2 359 1735 1047 187 1563 875 531 1219 101 1746 1058 198 1574 886 542 1230 112 1488 800 175 1052 884 520 1208 90 1466 778 434 1810 189 1555 1243 125 1601 813 468 1854 1157 297 180 1565 1243 125 1601 813 468 1854 1157 297 140 180 792 448 1824 1136 276 1652 964 143 1813 1125 265 1641 953 609 1297 631 1319 144 180 792 448 1824 1136 276 1652 964 145 1813 1125 265 1641 953 600 1297 631 1319 144 180 792 248 1824 1134 287 1663 975 631 1319 152 186 996 654 132 77 1453 78 1746 152 186 996 651 137 77 1453 78 1765 152 186 956 151 177 161 1682 94 177 152 186 956 151 177 161 1582 94 177 152 186 956 151 177 161 1682 96 175 152 187 188 152 1441 161 1682
2 359 1746 1058 899 555 899 555 1222 104 1491 803 437 1813 1152 292 1646 958 625 1313 429 173 429 173 429 178 1009 685 1313 500 1188 306 1682 1352 1728 1067 207 1067 207 1067 207 1186 1136 81 1406 178 1873 196 685 1352 1728 1406 718 81 1406 178 178 81 140 81

Table H.20 — 45 x 45 data

I-IM	(OL)	I ++	_	01		_	101	m	0	()	0		ml	(O.I	++1	ΔI	ω.		_		_	ω.	(0	+	10	01	ω.		ΔI	<u> </u>	_	<u> ОГ</u>		m I i	017	~ Ι.			<u></u>	<u> </u>	m	~
398	1096	54	130	$\overline{}$			1745	94	9	992	1889	247	978	131	1614	51,	124;	1760	71.	2(75,	1808	21(914	200	6	823	191	30;		~	_	5	1128	0/1			.98	196	35.	1058	
10 758	1816	904	2021	109	840	1897	305	1003	1374	1486	449	1147	1698	596	174	872	1963	320	1077	1415	1471	368	1116	1634	565	1262	1573	471	1202	1719	299	9	18/	1848	202	963	1334	1581	529	1227	1778	675
1405 1478	376 1816	1624	581	1279			1205	723	654	46	809	1867	258 1698	926	1344	1592	523	1220	1797	695	31	728	1836	194	925	1982	133	831	1922	279	1027	1365	1 0	408	COL	1683	614	141	889	1947	338	1035
685 1405 38 1478	736	184	941		_	817		283 1	1014	1351	1529	427 1	1158	1676	6241	1521	883	940	3571	1055	1426	1448	396	1094	1645	542	1303		4821	_	17471	6451		768	0 0		_	311		$\overline{}$	1238	17551
	1			_			٦			631 13		787 4	7811	236 16	984 6			500 15	Ļ	75 10	706 14	8 14	756	14 10	205 16	902		١		39	$\overline{}$			7	_			ļ				31517
5 1045 3 1433	6 1456	4 1084	1 1661		0 1290	,		31183	4 1734				8 1878			21322	3 1603		7 1257	5 1775		3		4 1814			32023		8 2	_	7 307	5 1005	0/5/0		٠,		~				~	
1765	16	1804			2			1	. 294	991	$\overline{}$	1507	438	1136	264 1704	602	163	860	1977	335	1066	1403	1476	374	1105	1622			$\overline{}$	_		_	۷	·	٠,	l		_	_	$\overline{}$	518	121
325 1073	1411 1467	364	1121	$\overline{}$	220	1267	$\overline{}$	463	1194	1711	674	67	798	$\overline{}$		962	6131333	1580	537	1235	1786	683	36	734	1825	182	943					285	201	6331353	2761	423	1154	1671	619		878	1935
1225 325 1793 1073	691	724	1841	199	930	1987	125	823	1914	271	1034	1372	1518	4161856	1164	1682	613	140	897	1955	346 1786	1043	1431	1454	385	1082	1663	561	1292	1539	487	1185	01.01.05/1	633	000	783	1874	231	979	1317	1598	49519351215
505 1945 1225 253 353 1793	1051	1444	401	1099		5471	1295	1543	4741	1171	17541	6521	781		18841	2421	973	1310	1617	5151	1246	17631	711	141	745	18021	2231	921	20121		847	19051	290	993	060	1503		1131		597 1	1581	855
505 19 1253 (1771 10	4	761		1	907			834	1891 1		1012	83	1496	444 18		1693	5901;	177 16	875	1966 1	323 1.		1409	1465	362 18			5722(_				7		L					1328	1575
	1	66					575 20					32 10	33 1383			32 1142	33 16	950 5			526 19		1071	689 14	25 14		131123		932 5	39 12			0			'		1 18			608 13	135 15
1	331	1399	1481			$\overline{}$	- 1	31273	1554	1 451	1214	21732	3 663			2 1862	3 253		1347	51595		31223	11791			2 722	1			1			_	3 273			1			$\overline{}$		
145 1585 893 533	1231	679		739	ļ		935	1993	114	811		292	102	1361	1524	422	115	1670	627	155	886	1943	351	104	1420	730 1442	403	1101	212 1652	549	1297	$\overline{}$	4/0	8931173	- 1	٥		771	1		968	1305
145 893	1951	1039	1436	1459	390	1087		553	1284	1531	494	1192	17431023	641	84	782	433 1873 1153	230	987	1325	1606	503	1251	17691049	700	730	763	1821	212	606	2017	105	830		200	1008	1379	1491	439	1137	1688	585
1315 1613	511	1759	716		750	1807	215	913	2004	91	854	1912	303	1001	1389	1502	433	1130	1707	605	166	863	1971	329	1060	1397			1112		577	1275	000	453	2012	1728	629	51	799	1857	248	945
595 173	871		1076		1470	367 1	_		5642	1261	1574	4721	1203	1721 1	669 1	621	793	18501	2671	965		1583	5311	1229	17801	6771		741	18321		937	19951	_	813	200	2881	_			_		
955 5 1343 1	591 8 52219	1219 3	179610	69414		727 3	183511	193 1633	924 5	1981 12	13415	832 4	192312			_	1513 7	41018	_	1685 9	6161336	14315	891 5	194912	34017	1037 6	1438	1461 7		_		55516		1533 8	06	1188 2	173910	6361356		777 4	18681148	2251665
	~		11				$\overline{}$						3 19	1 2	9 10	7 1367	73 15		11167	5 16				9 19		10	71814	~		10				`		11	$\overline{}$					
5 1675 3 623	1 151	$\overline{}$	6 356	4 1054		~	5 395	3 1093	4 1644	1 541	4 1304	21552	3 483	11181	309 1749 1029	7 647		0 770	7 1887	5 245	926 9	31313	11611	9 509	01240	71757			2 752	1		5 915	۷I	۲	9 6	_				$\overline{}$	8 428	51125
235	1321	499	1256	$\overline{}$	705			1813	204	901	2024	112	843	$\overline{}$		1007	658 1378	1490	447	1145	1696	593	171	869	1960	317	1078	1416	1472		1117		ogc	1263		468	1199	_	9		788	405 1845
1135 1703	162	859	1976	334	1065	1402	1475	373	1104	1621	584	1282	1563	461	1209	1727		50	807	1865	256	953	1341	1589	520	1217	1798	969	32	729	1837	195	920	1983	130	828	1919	276	1024	1362	1508	405
855 263	961	1579						733	1824	181	944	2002	123	821	929	287	1018	1355	1527	425	1156	1673	621	149	880	1937	358	1056	1427			095		543	2,10			1176			68	765
415 1855 1163 263	1681 961 6121332	1391	896	19541	3451			1453	3841	1081	1664	5622	1293	1541	4891929	1187	17381	6351	871	785	18761	2331	981	1319	1600	4971		17761	7071		757	18151095		903	1020	_		18961	$\overline{}$		1373	1485
775 4	24116						71017	1314	744	1801	~	922	201312	~	849	1907 1	298 17	962 (1392	1505	436 18			599 13	160 16	857	1978 12	336 17						623	000		269	456 18		22 10	653 13	45 14
35 7 13 18		~	ļ		35 12	ļ				31 18			320							65 15		53 1 133	11701				538 19		37 1067	¥ 4			1100		2 9	38 12	$\overline{}$		412	$\overline{}$		
55 1495 103 443	11141	9 589			~	322	0 10 70	8 1408	4 1464	1 361	41124	2 1642	3 573	11271	91569	7 467	81198	51715	2 672		6 796	3 1853	1 261	9 959	1330	71577		6 1236	$\overline{}$	w			_	3 183		_			Į		3 1013	01350
8	1861		1346	1	525	1222	1	688	24	721	$\overline{}$	202	933	1	129	85.	1918	275	1032	1370	1516	413	1161	1679	610	137	868	$\overline{}$	347	1044	1432	1	380	1083	-	866		1536	484	1182	1733	630
1360 1523	421 1152	1669	626	154	885		350	1048	1419	1441	404	1102	1653	551	1299	1547	478	1175	1752	650	26	773	1881	239	970	1307	1618	516	1247	$\overline{}$	712	15	/ 40	1803		918	ଧା	96	844	$\overline{}$		990
640 83	781	229	986	1324	1605	502	1250	1768	699	1450	764	1822	213	911	20191299	107	838	1895	312	1010	1381	1493	441	1139	1690	587	178	876	1967	324	1072	1410	1400	363	120	1638	569	1266	1564	462	1193	1710
1000	1501	1129	1706						1059	13961	1484	3821	1113	1631	5792	1277	1558	4551	1212	17301	661	531	801	18591	2501	947	1348		527 1		17921			723	040						19131	2701
1720 10 668 13	61 15	1					`	1228	177910	676 13	44	742	1833 1	191 16	939	1997 12	118	815 4	1932 12	290 17	1021	1358	1521	41918	1150 2	1667				`	ļ	_		1443				_			47318	1170
		·			_	1	_	`					-	_		•			•		`)			_		-	_	•				_	_			_		_
1900 1180 280 308 1748 1028	346 1366 72 1512	9 409	446 1886 1166	244 1684		2 142	0880	508 1948	339	316 1756 1036	9143	22 1462	753 393	371 1811 1091	9 16	7 557	568 2008 1288	95 1535	2 492	470 1910 1190	301 1741	8 638	8 81	9 779	790 430 1870	7 227	8 888	9132	167 1607	4 504	532 1972 1252	17,	10/	678 1398 1395	2 7	738 378 1818	9 209	186 1626 906	574 2014	7	3 833	810 450 1890
460 1900 1180 208 308 1748	49		188		975	592 1312	170 1610	20	123	175	71		75	181	21	917	200		85	191	30	278 1718 998	666 1386	59 1499	43	112	268 1708	8	16	864	197	950 1230 330	9	139	0 0	37	110	162	22	127	113 1553	45
190C 308	1006	1486	446	114		292	170	868	1956		1079	1417	33 1473	371	1118	197 1637		1265	1572	470	1201	1718			790	1847	268	996	1337	1584	232	1230	1/8/						934	1992	113	810
460	726 657	49	806	864	255	952	340	588	519 1959 1239	216	799	697	33	731	839	197	928	985	132 1572 852	830	921	278	026	364	70 1510	407	168	686	617 1337	144 1584	892	950	4	038	455	181458	389 1829 1109	086	654	552	283	530
820 928	286	354	526	424 1864 1144	155	672	980 620 1340	148 1588	879	49619361216	359	057	428	451	759 399 1839 1119 219 1659	097	648	545 1985 1265	302	550	481	178	746	644 1364	70	767	448 1888 1168	246	977	314	612	510	74.	758	0 9	18	749	806	214	912	003	8
88	86	6341354	861526	784	1221	2321672	080	18	669	961	26	771	.081	111	26	171	081		1221	1101550	141	1881	100	104	175	.87	481	46	269	5941314	1721612	02	0	181	0 0		69	199	4	32	632	09
00 15 48 4)6 11 37 17	94 6		7	35 18			598 1318	159 1599 879	56 4	79 12	37 17	38 7	90		377 1817 1097	38	25 C	32 2C	30 1	31 8	58 18	36	24 10	55 13	47 1487 767 407 1847 1127	38 4	36 11	57 16	54	12	8 7	521 1901 1241	18	30 5	93 14	29 1469	26 3	34 11	32 16	23 5	30 12
1901630 910 55019901270 1001540 820 460 938 57820181298 1281568 848 48819281208	916 55619961276 1061546 826 46619061186 28617261006 6461366 888 588 588 588 588 588 588 588 588 588	274 1714 994	671 1391	64 1504	795 435 1875 1155	52 1492 772 412 1852 1132	260 1700	9 3 3	6	136 1576 856	179 1619 899 539 1979 1259 359 1799 1079 719 1439	157 1597 877 517 1957 1237 337 1777 1057 697 1417	1608 888 52819681248 34817881068 7081428	₹ 14 14	391479	7 3.	28 1468 748 388 1828 1108 208 1648	51445 725 36518051085 1851625 905	942 582 2022 1302	380 1820 1100 200 1640 920 560 2000 1280	211 1651 931 571 2011 1291 121 1561 841 481 1921 1201	818 458 1898 1178	486 1926 1206 306 1746 1026	284 1724 1004			88 1528 808	786 42618661146 2461686 966 6061326	77 1517 797 437 1877 1157 257 1697	1674 954	213	015	c i	5881308 1381578 858 49819381218 31817581038 4751636 4751638	2 2	_	4	6 1446 726 366 1806 1086	754 394 1834 1114 214 1654	121452 732 37218121092 1921632 912 55219921272 102	23 1463 743 383 1823 1103 203 1643 923 563 2003 1283	0 19
3 156	3 46	1171	1 67		22 2	2 185		3 958	609 1329	3157	9 53	7 123	3178	99 6		737	3182	5 18	2 94	200	1 12	3 81	3 192		5 101	452 1892 1172 272 1712 992 632 1352	3 152	3 42	7115	234 1674	2 62	150	20	3 193	2 5	3105	704 1424	3144	4 36	2 105	3 164	54
1990	82(274	31117511031	289 1729 1009 649 1369	751515	41.	80 1520 800 440 1880 1160			136	899	195;	38	104	143	17 1457	38	108	402 1842 1122 222 1662	260	129	98 1538		104 1544 824 464 1904 1184	173	637			187.	23	86	600 1320	3	498	ĆŽ,	1//	7		75	181;	20;	90
550 1298	1546	1174	1751	649	75	772	1880	238	696	1306	1619	517	1248	1766	714	17	748	1805	222	920	2011	98	846	1904	295	992	1393	1506	437	1134	1702	009	0	858	973	333	1064	1401	341474	372	1103	1620
910	106	814 454 1894 1174	311	600	380	492	440	138	689	586	179	877	896	326	074	412	468	365	122	640	571;	268	566	464	195	712	673	99	797	774 414 1854 1134	2621702	960	331	578	222	233	344 1784 1064	681	34	732	823	180
530	276	154		7291	660 1380	521	300	418 1858 1138	2491	346		297	5281	226	794 1	3921	281	725	3421	2001	331	548 1988 1268	1261	324	9151	2721	333	371	517	414	162	1680 960		138 1	200	9531	3441	4	459	452	3831	080
38 €	17 15	14	31 12	89			20	181	49	3 99	291;	57 15	88	46 12	54	52 (45 ;	02 18	7 00	51	48 15	96	~	75 15	72 ;	53 10	511;	77 1	74	821	24016		80 4	0 4	131		61 1(00 17	121	. 43	9
1 08	56 19	34 8			300 1740 1020	637 1357	30 15	778 4	429 1869 1149 249 1689 969	226 1666 946 586 1306			8	16	54 3	332 1772 1052 692 1412	33 14	5 14	762 4	110	1116	38 5	576 2016 1296 126 1566 846	15	35 4	11	1317	11 6			442 1882 1162	2 5	8 5	38 13	0 6	3 5	524 1964 1244	321 1761 1041 681 1401	39 7		33 7	30 18
810 1090 218 1658	6 55	94 1534	1 45	9118	0 174	۳		77	9186			607 1327		9	4 125	2177	3 7		2 76	0 182		8 908	6201	4	5 835	2 185	3 31	1101	662 1382		2	0117	1601167	8 1		3 873			9106	687 1407	3146	36
		<u>ත</u>	851	$\overline{}$		7 997	6651385			112	2691709	. 60	16	3 866			3106	6801400	421482	38	111	1881628	57	127	1151555	45	121.	173	_		802	_	22	1668 948 5881308 1381578 858 49819381218 31817581038	104	1531593	52	122				72
	•				1200	277 1717	66 £		789	406 1846 1126		967	618 1338	1586		1232	17831063 7031423		42	740	18311111		936	554 1994 1274		812	493 1933 1213 313 1753 1033 673 1393	291	742 1022	1359			C	1668			884			767 1047	698 1418	0 1440
2	196	1984	131	829	1920	277		1363	1509	406	1169	1687	618	146	894	1952	343	1040	1437	1460	391	1088	1656	554		1532	493	1191	1742	639	82	780	1 /8	228	200	1323	1604	501	1249	1767	869	0
					<u>· · · · · · · · · · · · · · · · · · · </u>		<u>· </u>	- 1						!	!													- 1	<u>· </u>												!	_

Table H.21 — 47 x 47 data

410	1138	1732	580	1344	1602	513	1241	1817	665	1447	1564	448	1176	1785	634	1398	1656	228		1862	710	772	1912	196	978	α	120	(/	303	1067	2171	86	814	1954	238	1029	171	008	2057	341	1105
786	1		926	2096	98	889	1993	313	1041	2199	09	824	1928			2					1086		408	1136	1		1342		1243	1819		1449	~			Ļ	1303	1651	_	1	
1538	386	1	1708	592	1320	1641	489	1253	1793	969	1423	1576	424		1762	646		ļ			1838	20	7	1888			2094 96	ω	1995			22			1	777	2115			2033	
34	762	~	204	968	2072	137	865	2005	289	1071	2175	72	800	1973	258	1022	2126	182	910		334	1477	1536	384		1706	1318	1643	491	1255	1795	697	1425		426		1757	1360	1681	529	1293
1491	1514		1144	1720	568	1359	1617	501	1229	1823	671	1435	1552		1198	1774	622	1404	1662		12/4	725	32	760	1918	202	996	139	867	2007	291	1073	2177		802		4017	2121	177	905	2045
739	10	792	1896	216	944	2111	113	877	1981	319	1047	2187	48		1950						373		1489	1512	414	1142	1718	1361	1619			1825		1437			1760			1657	
1115	1467	544	392	1156	1696	607	1335	1629	477	1259	1799	683	1411			1210			1380	1674	522	1853	737	8	790	1894	214	2113	115	879			1049			841	265	200			
18671	_	401	292	1908	`	983	2087	1251	853	2011	295	1059	2163	`							898		1113	1465			1154	609	1337	1631	_		1801	685	1413		1205	1745			1669
363 1		1497	1520	404	1132	1735	583	1347	1605	507 2	1235	1811	629		1574				7		1650		1865 1	7131	38 1	992	1906 1	985					_	- 1	21651		10571			1	_
1303	1	•	161	780	1884		959	2099 1	101	883	1987	307 1	1035	2208 1	~						1461		361	1089			1130						1237				1569				_
2055 1		1121	1473	1532	380 1	1171	1711	595	1323	1635	483 1	1247	17871				·			640 2	1368	()		1841			778	233 1	961		$\overline{}$		1989 1		1037		600	1	271 1		1
551 20	_		721 14	28 1	756	1923 1	207 17	971	2075 13	131 16	859	1999 12	`						252 1		185 16			337 18	0		1530 A			Z			~				1581	_			
927	•	·	1097 7	1485		419 19	1147 2	1723 9	571 20	1353 1	1611 8	495 19			681 21						1407		. 4	1277	1871 11		26 15	~	209 17	973 5		` .				,	77 16		•		_
1679	7		1849 10	733 14	4 15	795 4	1899 11	219 17	947 5	2105 13	107 16	871 4	1975 12		1057 6		_			L	992 6			2029 12	7		1483	~	1149 2	1725 9	7			7	,		1440		-		7
175 16			345 18	1109 7	91		395 18			601 21	1329 1	1623 8	_		1809 10				~		655 21	1383		525 20			774 15	797 4					109 16				,			1	
_		7			709 1461	43 15		11 1159	195 1699				847 47	20 12				_			Ļ	_		\blacksquare		_			_			N			~		688 2102			1	_
			37 1285	1861			23 771	1911		65 977	7 2081		8 66	(1			7	_				1 2135	1.	53 901	(4		859 1107	45 1549		131161	-				9 4	0 1264				+	_
5 2149			3 2037				19 1523	3 407	7 1135	1729	3 577	3 1341	_			_					0 1783		_	9 1653			_		5 773	9 1913	_		,	_		. 4	900 900	2168		8	7
1 645	~		9 533	91297	3 1837	4 748		5 783	3 1887	5 225	5 953	9 2093		4 892	1		7 1045	2		0 828	8 1932	•	32147	1 149	3 931	α	5 355	0 1502	1 1525	5 409	91137	1	5 579	2095 1343	_	8 512	2 1240	2 0 0		9 1563	
3 1021			1 909	5 2049		51124	4 1476	1535	383	7 1165	1705			$\overline{}$	9 493		·		9 1427	_	4 428	5 1759	9 643	3 1371	~		7 1295	5 750			_						312	7			8
269 1773		-	1661	1 545	5 1273	1876	724	3 31	159	1917	1 201	7 965	(1		1 869	(7	3 293	1075	5		804	255		32123		907	331	-	31478	l	385	1167	~	591	1319	_	1 1252	1702	694	,	
		(1)	157	921	2025	372	1100	1488	1511	413	1141	1717			1		1233	Ļ			1556	•	1771	619		~	543	1878	726			1		967	(7)	136	C		_		
1209			1379	1673	521	1312	1852	736	2	789	1893	213	941	(1			~	323	1051	7	52	_		995	N		919	374	1102		7	415	1143	1	567	1358	1010	_			~
1961		_	2131			"	348	1112	1464	1541	389	1153	-			~	481	1263		/89	1415	443	~	1747			1671	-	1854	738			~		943	. V	211	_		_	
457	1185	1779	627	1391	-	560	1288	1864	712	37	292	1		986	2091	129	857		299	1063	7917			243	1025		167	(1	350	1114		-	391	1155	_	606	1534	476		1798	
833	1937		1003	2143	145	936	2040	360	1088	1494	1517	401	1129	1738	587	1351	1609	511	1239	1815	1454	1571		1183	1777	625	1389	562	1290	1866	714	39	767	1907	191	982	124	952		294	1058
1585	433	1215	1755	639	1367	1688	536	1300	1840	742	13	777			963						1039	67		1935	273	1001	2141	938	2042	362	1090	1496			1131		282	1604			1810
81,	809		251	1015	2119	184	912	2052	336	1118	1470	529	377	1174	1715		327			1251	702		583	431			637	1690	538	302	1842	744	15,		1883	230				986	
1444	561	٠.	1191	1767	615	1406	1664	548	276	1870	7181	25	753	`		975	2079	135	863		1078			807			1013	`	914	2054		1120	1472			11/0	0171		1634	482	1246
1961	57 1	_	943 1	263 1		21581	1601	924	2028	366 1	094	482	505							4992	227	6782	442	559	461		7651	41		550 2		8721	720 1	_	,	922 1	2002	_	130	858	
692 2	1420	591	١		743	554 2			524 2		18461	1	1		~	_		1	~		1	_	~	55 1		7	261 1	~	$\overline{}$		$\overline{}$	~	960					570 2	352		494
	1721	87 1591	63 1567 815 439	451 1955 1203	427 1931 1179 239 1743	330	134 1:	172 1676	006	554 2058 1306	342 1			220			203	3052	333	277	475 1979 1266 326	302 1806 1054	390 2		886			656 2		878	526 2030	2060 1308 368	344 1848 1096	32 1,	157 1	94	298	970	600 2104 1352	106 1610	870
	668 2172		3 299	151 18	79	82 10	30 2	394	1652	54 20		354 1858 1106	106		775	411 1915 1163	199 1703	981 605	85 13	23 16	12 2	302 18	990	2170 1418	85 1589	813 4	449 1953 1201	1032	2136 1384	174 1678	902	960 13	344	80	160 14	946	594	000	500	1328	
16 18	44	02 14	63 15	827 4	31 11	78 17	9 90	46 13	148 16		34 12	-			27 7			33	81 20	45	03	42 3	18 10			8 29	49 15	84 10			54 8	2e 2c	84	60 11	08 14	42.15	0 6	104 1698			118 1622
		98 22		79 8	27 19	18 2	58 10	4221		178 1682 930	530 2034 1282	94 3	330 1834 1082	751 1503	23 1527	87 4	387 1891 1139	29 17	57 5	97 13	99 16	94 12	14 18	42 6	00 14	61 1565	1577 825 449	280 1784	9 80	48 13	150 1654	932 556	36 12	56 18	84 7	1 2	7 27	34 5	28 9	576 2080	
	32 17	74 6	78 14	75 15	33 4	70 12	54 17	18 6	22 1370	78 16	906	542 2046 1294				35 1539 787	37 18	29 2	6 60	93.20	12 C	90 19	54	94 10			77 8	20 2	256 1760 1008	14 21		34	32 20	36	36 10	47 14	20 12	382 1886 1134	24 17	52 5	92 13
880 504 2008	32 2	56 10	7421	. 88	55 8	36 19.	34 2	70 10	6182122	1.	98		70 3	79 11;	728 1480	35 15	33	21 11	35 17	60	3 13	36 4	12	30 17	72 6	76 14	73 1577	468 1972 1220	56 17	50 6	24 13.	180 1684	38	18 12	32 18	53 7	2 2	1 0	2 2	9 1	38 20
		2 182	9 09	143	1156	.2 46	118	17.		52 14(154 1658	8 54	2 12	5 187			5 763	7 192	5 20	3 3	9 20,	8 8	2 200	30 29	4 107	2217		8 197	96 25	72 102		18	90	4 207	23	511	3 4	í č	6116	0 170	5
	480 1984 1232	2 32	2 105	6 219	4 5	4 84	66 1570 818 442 1946 1194 254 1758 1006 630 2134 1382	6 26	.6 994	8 215	9.	166 1670 918	518 2022 1270	5 37	352 1856 1104	0 145	11 1515	41 1545 793 417 1921 1169 229 1733	7 114	11/2	5 56 2 136	4 161	8 50	478 1982 1230 290 1794 1042	320 1824 1072 696 2200 1448	67	49 1553	4 46	820 444 1948 1196	8 177	6 62	4 140	6 166	0 54	4 127	18/	2/ 6	6 1510 758	412 1916 1164 224 1728 976	388 1892 1140 200 1704 952	96 9
3 163	3 48	4 126	8 180	2 68	6 141	0 159	8 44	8 120	2 174	4 64	8 137	6 167	4 51	7 131	2 185	6 74	8	5 79	3 185	7 21	94	5 11.	0 87	8 198	0 32	0 104			4 194	8 26	8 99	0 215	8 15	2 92	0 202	3/	100	15.1	4 4	2114	2 171
12	3 854) 201	3 29	106	2 216	3	7 81	195.	2 24.	3 102.	4 212,		894	3 206	2 35.	9 111	5 146	1154	66 6	9115	3 169	3 133	3 163	47.	2 126	5 180	1 141	92 1596	44,	120	4174	5 65	137	8 167	52	737	182	? *		3 189.	21;
1350	1 1608	3 51(123	181	3 66	5145;	3 157	45	118	177	, 62 ₄	138	142 1646	9 56;	129.	186		4	76.	190	90	1 2088	3 126	3 85	3 201;	3 29(2 106	9,7	2 82(3 1961	1 24.	3 102(3213(16	89	3206	34	146,	36 1540	388	1115
974 598 2102 1350 128 1632	574 2078 1326 104 1608 856	886	1990	310	1038	2205	99	78 1582 830 454 1958 1206 266 1770 1018 642 2146 1394	430 1934 1182 242 1746	272	1000	2140	142	187 1691 939 563 2067 1315 375 1879 1127	164 1668 916 540 2044 1292	364	1092	1498	1521	405	1736	584	1348	1606	884 508 2012 1260	484 1988 1236 296 1800 1048 672 2176 1424	308 1812 1060 684 2188 1436 1036 660 2164 1412 49 1553	703 2207 1455	68 1572	80 1584 832 456 1960 1208 268 1772 1020 644 2148 1396	1184	1778	626	1390	1648	225	1863	717	36	1.	776 40019041152 2121716 964 588 2092 1340
598	1326	1638	486	1250	1790	701	1429	1582	430	1212	1752	989	612 2116 1364	1691	540	1304	1844	746	1,	18/	1885	960	2100	102	884	1988	305	2207	99	832	1936	274	1002	2142	144	935	2035	1087	1493	1516	400
	2078	134	862	2002	286	1077	2181		806	1964	248	1012	2116	187	916	2056	340	1122	1474	1533	381	1712	596	1324	1636	484	1248	703	1431	1584	432	1214	1754	638	1366	1687	1200	1830	741		
222 1726	574	1356	1614	498	1226	1829	677	1441	54 1558 806	460	1188	1764	612	1409	1668	552	1280	1874	722	53	1024	208	972	2076	132	860	496 2000 1248	1079	2183		808	1966	250	1014	2118	183	911	335	1117	1469	24 1528
1162 222 1726	950	604 2108 1356 134 1638 886 510 2014 1262 322 1826 1074 698 2202 1450	2084 1332 110 1614 862 486 1990 1238 298 1802 1050 674 2178 1426	874	1978	325	1053	689 2193 1441	54	1588 836 460 1964 1212 272 1776 1024 648 2152 1400	436 1940 1188 248 1752 1000 624 2128 1376		988	2161 1409	164	176 1680 928 552 2056 1304 364 1868 1116 740 1492	528 2032 1280 340 1844 1092 716 1468	1310 370 1874 1122 746 1498	346 1850 1098	1486	1462 51509 /5/ 38118851133 193169/ 945 569120/31321 991603 851 4/5 1548 706 420140241472 23214736 084 608/24121360 1381642 800 544/20181266	1148	220 1724 972 596 2100 1348 126 1630 878 502 2006 1254 314 1818 1066 690 2194	948 572 2076 1324 102 1606 854	2106 1354 132 1636	108 1612 860	872 496 2000 1248 308 1812 1060 684 1926 1224 284 1788 1036 660 2164 1412	1831 1079	1055 679 2183 1431	1443	56 1560 808 432 1936 1184 244 1748 996 620 2124 1372	838 462 1966 1214 274 1778 1026 650 2154 1402	438 1942 1190 250 1754 1002 626 2130 1378 156 1660 908 532 2036 1284	1766	614	1405	1381 139 1663 911 3352039 1287 347 1831 1099 723 1475 18 1322 770 394 1898 1146 1452 603 547 1750 350 1863 1141 735 1487 603 547 1751 1752 785 1488 718 718 718 718 718 718 718 718 718 7	2027 1275 335 1830 1087 711 1463	365 1869 1117 741 1493	1845 1093 717 1469	24
1914 1162	1702 950	604	1332	1626	474	1265	1805	689	1417	1588	436	1200	1740		2138 1386	1680	528	1310	1850	734	206	. 0061	220	948	2106	108	872	327	1055	2195 1443	26	838	1942	262	066	712/	600	3027	365	1093	729 1481
4	1981	980	4	12	0	7	1	1065	21691	84 1	812	, 7	236 1	က	ω .	9		2062 1	9	0 0	νlα	, (0	1700	602 2		472 1	1267	1807	691 2		1590	· ·	2	2 6	7	- 10	503	1305	, ,	9

Annex I (normative)

ECC 000 - 140 character encodation schemes

This Annex provides details of the ASCII character set (ISO/IEC 646) used for one of the ECC 000 - 140 encodation schemes, and the four encodation schemes showing the mapping of the data character to the encodation scheme code value.

Table I.1 — Mapping of data character value to encodation scheme value

AS	CII SET		ENCODATIO	ON SCHEME	
Character	Decimal value	Base 11 code value	Base 27 code value	Base 37 code value	Base 41 code value
NUL	0				
SOH	1				
STX	2				
ETX	3				
EOT	4				
ENQ	5				
ACK	6				
BEL	7				
BS	8				
HT	9				
LF	10				
VT	11				
FF	12				
CR	13				
SO	14				
SI	15				
DLE	16				
DC1	17				
DC2	18				
DC3	19				
DC4	20				
NAK	21				
SYN	22	_	_	_	_
ETB	23				
CAN	24				
EM	25				

AS	CII SET		ENCODATIO	ON SCHEME	
Character	Decimal value	Base 11 code value	Base 27 code value	Base 37 code value	Base 41 code value
SUB	26				
ESC	27				
FS	28				
GS	29				
RS	30				
US	31				
space	32	0	0	0	0
!	33				
"	34				
#	35				
\$	36				
%	37				
&	38				
£	39				
(40				
)	41				
*	42				
+	43				
,	44				38
-	45				39
	46				37
1	47				40
0	48	1		27	27
1	49	2		28	28
2	50	3		29	29
3	51	4		30	30
4	52	5		31	31
5	53	6		32	32
6	54	7		33	33
7	55	8		34	34
8	56	9		35	35
9	57	10		36	36
:	58				
;	59				
<	60				

AS	CII SET		ENCODATIO	ON SCHEME	
Character	Decimal value	Base 11 code value	Base 27 code value	Base 37 code value	Base 41 code value
=	61				
>	62				
?	63				
@	64				
Α	65		1	1	1
В	66		2	2	2
С	67		3	3	3
D	68		4	4	4
E	69		5	5	5
F	70		6	6	6
G	71		7	7	7
Н	72		8	8	8
I	73		9	9	9
J	74		10	10	10
K	75		11	11	11
L	76		12	12	12
М	77		13	13	13
N	78		14	14	14
0	79		15	15	15
Р	80		16	16	16
Q	81		17	17	17
R	82		18	18	18
S	83		19	19	19
T	84		20	20	20
U	85		21	21	21
V	86		22	22	22
W	87		23	23	23
Х	88		24	24	24
Y	89		25	25	25
Z	90		26	26	26
[91				
1	92				
]	93				
٨	94				
-	95				

AS	CII SET		ENCODATIO	ON SCHEME	
Character	Decimal value	Base 11 code value	Base 27 code value	Base 37 code value	Base 41 code value
í	96				
а	97				
b	98				
С	99				
d	100				
е	101				
f	102				
g	103				
h	104				
i	105				
j	106				
k	107				
I	108				
m	109				
n	110				
0	111				
р	112				
q	113				
r	114				
s	115				
t	116				
u	117				
V	118				
W	119				
х	120				
у	121				
Z	122				
{	123				
	124				
}	125				
~	126				
DEL	127				

Base 11 encodation scheme

I.1.1 First stage procedure

The data characters shall be converted to their Base 11 code values using Table I.1 as the conversion table.

I.1.2 Second stage procedure

The following procedure shall be used to compact the Base 11 code values to a binary string.

- Sub-divide the number of Base 11 characters into a sequence of six characters, from left to right. If less than six characters go to Step 5.
- Assign the code values of the six Base 11 characters as C_1 to C_6 , where C_1 is the first character.
- Carry out a Base 11 to Base 2 conversion to produce a sequence of 21 bits, using equation 6 of Table I.2. c)
- d) Repeat from step a) as necessary.
- When there are less than six characters, carry out a Base 11 to Base 2 conversion using the appropriate equation of Table I.2 which corresponds to the number of remaining Base 11 characters.

Number of data characters	Encodation equation	Bit length
1	C ₁	4
2	$C_1 + C_2 * 11$	7
3	$C_1 + C_2 * 11 + C_3 * 11^2$	11
4	$C_1 + C_2 * 11 + C_3 * 11^2 + C_4 * 11^3$	14
5	$C_1 + C_2 * 11 + C_3 * 11^2 + C_4 * 11^3 + C_5 * 11^4$	18
6	$C_1 + C_2 * 11 + C_3 * 11^2 + C_4 * 11^3 + C_5 * 11^4 + C_6 * 11^5$	21

Table I.2 — Base 11 (Numeric) encodation equations

I.1.3 Example

Using the data character string: 123<space>45678 the complete Base 11 encodation process is shown in Figure I.1.

Data	1	2	3	<space></space>	4	5	6	7	8
Base 11 code value	2	3	4	0	5	6	7	8	9
Character position	C ₁	C_2	C ₃	C ₄	C ₅	C ₆	C ₁	C_2	C ₃
Weight	1	11	121	1331	14641	161051	1	11	121
Product	2	33	484	0	73205	966306	7	88	1089
Decimal value				1040030				118	4
Binary string			01111	110111101	0011110	1	100)1010	00000

Figure I.1 — Base 11 example

I.2 Base 27 encodation scheme

I.2.1 First stage procedure

The data characters shall be converted to their Base 27 code values using Table I.1 as the conversion table.

I.2.2 Second stage procedure

The following procedure shall be used to compact the Base 27 code values to a binary string.

- a) Sub-divide the number of Base 27 characters into a sequence of five characters, from left to right. If less than five characters go to Step 5.
- b) Assign the code values of the five Base 27 characters as C_1 to C_5 , where C_1 is the first character.
- c) Carry out a Base 27 to Base 2 conversion to produce a sequence of 24 bits, using equation 5 of Table I.3.
- d) Repeat from step a) as necessary.
- e) When there are less than five characters, carry out a Base 27 to Base 2 conversion using the appropriate equation of Table I.3 which corresponds to the number of remaining Base 27 characters.

Number of data Bit **Encodation equation** characters length 1 C_1 5 2 $C_1 + C_2 * 27$ 10 $C_1 + C_2 * 27 + C_3 * 27^2$ 3 15 $C_1 + C_2 * 27 + C_3 * 27^2 + C_4 * 27^3$ 4 20 $C_1 + C_2 * 27 + C_3 * 27^2 + C_4 * 27^3 + C_5 * 27^4$ 5 24

Table I.3 — Base 27 (Upper-case Alphabetic) encodation equations

I.2.3 Example

Using the data character string: DATA<space>MATRIX the complete Base 27 encodation process is shown in Figure I.2.

Data	D	Α	Т	Α	<space></space>	М	Α	Т	R	ı	Х
Base 27 code value	4	1	20	1	0	13	1	20	18	9	24
Character position	C ₁	C_2	C ₃	C ₄	C ₅	C ₁	C_2	C ₃	C ₄	C ₅	C ₁
Weight	1	27	729	19683	531441	1	27	729	19683	531441	1
Product	4	27	14580	19683	0	13	27	14580	354294	4782969	24
Decimal Value		34294					5151883				24
Binary String	(00000001000010111110110					0100	1110100	11100100	01011	11000

Figure I.2 — Base 27 example

Base 37 encodation scheme

I.3.1 First stage procedure

The data characters shall be converted to their Base 37 code values using Table I.1 as the conversion table.

I.3.2 Second stage procedure

The following procedure shall be used to compact the Base 37 code values to a binary string.

- Sub-divide the number of Base 37 characters into a sequence of four characters, from left to right. If less than four characters go to Step 5.
- Assign the code values of the four Base 37 characters as C_1 to C_4 , where C_1 is the first character.
- Carry out a Base 37 to Base 2 conversion to produce a sequence of 21 bits, using equation 4 of Table I.4. c)
- d) Repeat from step a) as necessary.

3

4

When there are less than four characters, carry out a Base 37 to Base 2 conversion using the equation (1 to 3) of Table I.4 which corresponds to the number of remaining Base 37 characters.

Number of data characters	Encodation equation	Bit length
1	C ₁	6
2	$C_1 + C_2 * 37$	11

 $C_1 + C_2 * 37 + C_3 * 37^2$

 $C_1 + C_2 * 37 + C_3 * 37^2 + C_4 * 37^3$

Table I.4 — Base 37 (Upper-case Alphanumeric) encodation equations

I.3.3 Example

Using the data character string:

123ABCD89

the complete Base 37 encodation process is shown in Figure I.3.

Data	1	2	3	Α	В	С	D	8	9
Base 37 code value	28	29	30	1	2	3	4	35	36
Character position	C ₁	C ₂	C ₃	C ₄	C ₁	C ₂	C ₃	C ₄	C ₁
Weight	1	37	1369	50653	1	37	1369	50653	1
Product	28	1073	41070	50653	2	111	5476	1772855	36
Decimal value		92824			1778444				36
Binary string	000	000010110101010011000			110110010001100001100				100100

Figure I.3 — Base 37 example

16

21

I.4 Base 41 encodation scheme

I.4.1 First stage procedure

The data characters shall be converted to their Base 41 code values using Table I.1 as the conversion table.

I.4.2 Second stage procedure

The following procedure shall be used to compact the Base 41 code values to a binary string.

- a) Sub-divide the number of Base 41 characters into a sequence of four characters, from left to right. If less than four characters go to Step 5.
- b) Assign the code values of the four Base 41 characters as C_1 to C_4 , where C_1 is the first character.
- c) Carry out a Base 41 to Base 2 conversion to produce a sequence of 22 bits, using equation 4 of Table I.5.
- d) Repeat from step a) as necessary.
- e) When there are less than four characters, carry out a Base 41 to Base 2 conversion using the appropriate equation of Table I.5 which corresponds to the number of remaining Base 41 characters.

Table I.5 — Base 41 (Upper-case alphanumeric + punctuation) encodation equations

Number of data characters	Encodation equation	Bit length
1	C ₁	6
2	$C_1 + C_2 * 41$	11
3	$C_1 + C_2 * 41 + C_3 * 41^2$	17
4	$C_1 + C_2 * 41 + C_3 * 41^2 + C_4 * 41^3$	22

I.4.3 Example

Using the data character string:

AB/C123-X

the complete Base 41 encodation process is shown in Figure I.4.

Data	Α	В	1	С	1	2	3	-	Х
Base 41 code value	1	2	40	3	28	29	30	39	24
Character position	C ₁	C_2	C ₃	C₄	C ₁	C ₂	C ₃	C ₄	C ₁
Weight	1	41	1681	68921	1	41	1681	68921	1
Product	1	82	67240	206763	28	1189	50430	2687919	24
Decimal value		274086			2739566				24
Binary string	000	0001000010111010100110			1010011100110101101110				011000

Figure I.4 — Base 41 example

Annex J (normative)

ECC 000 - 140 CRC algorithm

Following are two implementations for representing CRC.

J.1 CRC state machine

The CRC may be represented as a schematic, as illustrated in Figure J.1. After the data bits have been shifted through the state machine the resulting CRC is read out of the 16 memory registers (m) in the diagram (left most register is the MSB).

J.2 CRC polynomial

The CRC algorithm shall be the CCITT standard polynomial:

$$X^{16} + X^{12} + X^{5} + 1$$

With X = 2, the value of the polynomial shown as a 17 bit value is:

10001000000100001_{base 2}

The CRC is the remainder after dividing the data string by this value.

J.3 CRC 2-byte header

The CRC calculation headers, as defined in Table J.1, are used in the CRC operation as a prefix to the 8-bit byte values of the data characters. The CRC 2-byte header is shifted into the state machine prior to the calculation of the CRC.

Table J.1 — CRC calculation header

Format ID	Encodation	CR	C calculation hea	der
Formatio	scheme	MS Byte	LS Byte	Hex
1	Base 11	0000001	00000000	01 00
2	Base 27	00000010	00000000	02 00
3	Base 41	00000011	00000000	03 00
4	Base 37	00000100	00000000	04 00
5	ASCII	00000101	00000000	05 00
6	8-bit Byte	00000110	00000000	06 00

Figure J.1 — CRC algorithm schematic

Annex K (normative)

ECC 000 - 140 error checking and correcting algorithms

K.1 ECC 000

This provides no error correction.

K.2 ECC 050

The error correction bit stream 'v' for ECC 050 shall be created by processing the unprotected bit stream 'u' through a state machine suitable for a convolutional code of the structure 4-3-3, as illustrated in Figure K.1.

K.3 ECC 080

The error correction bit stream 'v' for ECC 080 shall be created by processing the unprotected bit stream 'u' through a state machine suitable for a convolutional code of the structure 3-2-11, as illustrated in Figure K.2.

K.4 ECC 100

The error correction bit stream 'v' for ECC 100 shall be created by processing the unprotected bit stream 'u' through a state machine suitable for a convolutional code of the structure 2-1-15, as illustrated in Figure K.3.

K.5 ECC 140

The error correction bit stream 'v' for ECC 140 shall be created by processing the unprotected bit stream 'u' through a state machine suitable for a convolutional code of the structure 4-1-13, as illustrated in Figure K.4.

K.6 Processing the convolutional code

such intersecting lines are not connected

In the	state machine circuit diagrams, the following notation is used:
m re	presents a single bit storage register
+ re	presents a one bit binary adder which outputs the lowest bit. It is equivalent to an odd parity generator.
determine the properties of the p	such adjoining lines are connected
\perp	

The state machine is operated as follows:

- a) The memory storage registers (m) are filled with a zero value before starting the process.
- b) An input cycle is performed, consisting of passing a user data bit through the input switch to a memory storage register (m) for each possible input switch position, i.e. for *k* bits.
- c) Once a complete set of *k* input bits has been entered, an output cycle is performed. An output cycle consists of reading out an error corrected bit for each possible output switch position, i.e. for *n* bits. At each position, the output bit is computed by performing an XOR operation on the connected memory storage register values.
- d) After one input and output cycle, a shift operation is performed by shifting all memory storage register values to the right by one position.
- e) Steps b) through d) are repeated until all raw data bits have been input. At the end:
 - 1) Some zero bits may need to be added to the end of the last segment of input bits to ensure that *k* bits are input.
 - 2) Sufficient additional zero bits shall be input to ensure that the *m* memory storage registers shall all return to zero values. The output from steps e) 1) and e) 2) is part of the encoded data. The process is complete when all true data bits have passed through the last (rightmost) memory storage register.

K.7 Convolutional codes reference decode algorithm

The Fano algorithm can be used for error correction of data protected by convolutional codes. A basic description of the operation of the Fano algorithm is given in Lin and Costello (see Bibliography). The following guidelines should be used in constructing a convolutional coding decoder.

The start-up variable values must be as follows:

Backward Metric = maximum negative number

Current Metric = 0

Forward Metric = 0

Threshold = 0

The metric is computed by determining the number of bits that are different between the damaged block and the candidate match block:

Metric = (1 * correct bits) - (penalty * incorrect)

Table K1 presents values for the Single Bit Penalty and Delta which should be used when decoding each of the ECC levels.

Table K.1 — Fano algorithm coefficients

ECC level	Single bit penalty	Delta
050	31	20
080	16	11
100	8	6
140	4	1

Figure K.1 — ECC 050; 4-3-3

Figure K.2 — ECC 080; 3-2-11

Figure K.3 — ECC 100; 2-1-15

Figure K.4 — ECC 140; 4-1-13

Annex L (normative)

ECC 000 - 140 Master Random Bit Stream (in hexadecimal)

(MSE	3)																		
05 f	E£	с7	31	88	a8	83	9c	64	87	9f	64	b3	e0	4d	9c	80	29	3a	90
b3 8	3b	9e	90	45	bf	f5	68	4b	08	cf	44	b8	d4	4c	5b	a0	ab	72	52
1c e	€4	d2	74	a4	da	8a	08	fa	a7	с7	dd	00	30	a9	e6	64	ab	d5	8b
ed 9	9c	79	f8	08	d1	8b	с6	22	64	0b	33	43	d0	80	d4	44	95	2e	6f
5e 1	13	8d	47	62	06	eb	80	82	с9	41	d5	73	8a	30	23	24	e3	7f	b2
a8 (Ob	ed	38	42	4c	d7	b0	се	98	bd	e1	d5	e4	с3	1d	15	4a	cf	d1
1f 3	39	26	18	93	fc	19	b2	2d	ab	f2	6e	a1	9f	af	d0	8a	2b	a0	56
b0 4	11	6d	43	a4	63	f3	aa	7d	af	35	57	с2	94	4a	65	0b	41	de	b8
e2 3	3 0	12	27	9b	66	2b	34	5b	b8	99	e8	28	71	d0	95	6b	07	4d	3с
7a k	о3	e5	29	b3	ba	8c	CC	2d	e0	с9	c0	22	ec	4c	de	f8	58	07	fc
19 f	E2	64	e2	с3	e2	d8	b9	fd	67	a0	bc	f5	2e	с9	49	75	62	82	27
10 f	E4	19	6f	49	f7	b3	84	14	ea	eb	e1	2a	31	ab	47	7d	08	29	ac
bb 7	72	fa	fa	62	b8	С8	d3	86	89	95	fd	df	CC	9c	ad	f1	d4	6c	64
23 2	24	2a	56	1f	36	eb	b7	d6	ff	da	57	f4	50	79	08	0	(LSI	3)	

Annex M

(normative)

Data Matrix print quality - symbology-specific aspects

Because of differences in symbology structures and reference decode algorithms, the effect of certain parameters on a symbol's reading performance may vary from one symbology to another. ISO/IEC 15415 provides for symbology specifications to define the grading of certain symbology-specific attributes. This annex therefore defines the method of grading Fixed Pattern Damage to be used in the application of ISO/IEC 15415 to Data Matrix.

M.1 Data Matrix Fixed Pattern Damage

M.1.1 Features to be assessed

The fixed pattern features to be assessed are contained in the one-module wide perimeter of the symbol and the quiet zone of a minimum of one module width (or more if specified by the application) surrounding the symbol. In larger symbols (square symbols 32 x 32 modules or larger, or rectangular symbols 8 x 32 or 12 x 36 or larger) with internal alignment patterns, the alignment pattern is also part of the fixed pattern. The left and lower side of the symbol should form a one-module wide solid "L" shape and the right and upper sides should consist of alternating dark and light single modules (known as the clock track). The alignment bars and internal clock track of the alignment pattern should similarly be a one-module wide solid bar or a series of alternating dark and light single modules respectively. The grading of Fixed Pattern Damage takes account not only of the total number of damaged modules but also of concentrations of damage.

M.1.2 Grading of the outside L of the fixed pattern

Damage to each side of the L shall be graded based on the modulation of the individual modules that compose it. These measurements are applied to the full length of the L sides and to the associated quiet zones.

Figure M.1 below indicates the four segments L1, L2, QZL1 and QZL2. Segment L1 is the vertical portion of the L and extends to the module in the quiet zone adjacent to the L corner. Segment L2 is the horizontal portion of the L and extends to the module in the quiet zone adjacent to the L corner. Segments QZL1 and QZL2 are the portions of the quiet zone adjacent to L1 and L2 respectively and extend one module beyond the end of L1 and L2 respectively, furthest from the corner and are shown shaded in Figure M.1. The corner module at the intersection of L1 and L2 is included in both segments, as is that at the intersection of QZL1 and QZL2.

Figure M.1 — Outside L and corresponding quiet zone segments of fixed pattern

The procedure described below shall be applied to each segment in turn.

- a) Find the modulation grade for each module based on the values in ISO/IEC 15415. Since the intended light or dark nature of the module is known, any module intended to be dark but the reflectance of which is above the global threshold, and any module intended to be light but the reflectance of which is below the global threshold shall be given modulation grade 0.
- b) For each modulation grade level apply the parameter grade overlay technique described in ISO/IEC 15415:
- c) For each side of the L (L1 and L2 in Figure M.1) and each quiet zone area (QZL1 and QZL2, adjacent to L1 and L2 respectively in Figure M.1), assume that all modules not achieving that grade or a higher grade are module errors, and derive a notional damage grade based on the grade thresholds shown in Table M.1. Take the lower of the modulation grade level and the notional damage grade.
- d) Additionally, for symbols with more than one data region, repeat step a) above where L1 and L2 start with the module in the quiet zone and extend to include the module in the solid interior region of the next data region and QZL1 and QZL2 consist of the quiet zone adjacent to these L1 and L2 segments. In other words treat the lower left data region as if it were a symbol with a single data region. If this grade is lower than that obtained in step a) replace the grade obtained in step a) with this grade.
- e) Additionally, for segments L1 and L2, verify that all gaps are separated by at least 4 correct modules and that no gaps are wider than three modules; if this test fails, the grade from step a) shall be reduced to 0 at that modulation grade level.

Percentage of modules damaged	Grade
0%	4
≤ 9%	3
≤ 13%	2
≤ 17%	1
> 17%	0

Table M.1 — Grade thresholds for notional damage

f) The grade for Fixed Pattern Damage for the segment shall be the highest resulting grade for all modulation grade levels.

M.1.3 Grading of the clock track and adjacent solid area segments

This section defines the measurement of damage to the internal alignment patterns (when present) and also external clock tracks and associated quiet zone areas. These tests are applied separately to each segment of the internal alignment patterns, the clock tracks, and associated quiet zone areas that bound the data region, or individual data regions of larger symbols. Each segment consists of a clock track portion and a solid area portion (which is part either of the quiet zone or of an internal alignment bar). A clock track portion commences with a dark module in the L side or internal alignment bar perpendicular to it and continues to the light module preceding either the quiet zone or the next internal alignment bar. A solid area portion commences with the module adjacent to the first module of the associated clock track portion and continues to the module one past the last module of the associated clock track portion. Figure M.2 illustrates the structures of these segments.

NOTE In a symbol without internal alignment patterns, the external clock track segments extend for the full width or height of the symbol.

Figure M.2 — Structure of external clock track segment and internal alignment pattern segment

a) For each external clock track segment or internal alignment pattern segment of a symbol (for multi-segment symbols), damage is measured according to the following procedure.

Transition ratio test.

On every clock track segment in the binarised image, both external (adjacent to the quiet zone) and internal (adjacent to the solid internal alignment bar), count the number of transitions in the clock track side, Tc, and the solid line side, Ts, and compute and grade the transition ratio TR as follows:

$$Ts' = Max(0, Ts - 1)$$

 $TR = Ts' / Tc$

Table M.2 — Grading of Transition ratio

TR	Grade
TR < 0,06	4
0,06 ≤ <i>TR</i> < 0,08	3
0,08 ≤ <i>TR</i> < 0,10	2
0,10 ≤ <i>TR</i> < 0,12	1
<i>TR</i> ≥ 0,12	0

NOTE The end points between which transitions are counted are the intersections of grid lines plotted by the reference decode algorithm in the first and last modules of the clock track or solid area. See Figure M.3.

Figure M.3 — Transitions in perfect symbol (left) and damaged symbol (right)

Notional damage grade

Find the modulation grade for each module based on the values in ISO/IEC 15415. Since the intended light or dark nature of the module is known, any module intended to be dark but the reflectance of which is above the global threshold, and any module intended to be light but the reflectance of which is below the global threshold shall be given modulation grade 0.

For each modulation grade level:

Assume that all modules not achieving that grade or a higher grade are module errors, and derive a notional damage grade based on the following three assessments:

e) Clock track regularity test

For each segment of clock track, taking groups of five adjacent modules and progressing along the segment in steps of one module, verify that in any group of five adjacent modules no more than two are module errors; if this condition is met, the clock track regularity grade shall be 4, otherwise it shall be 0.

f) Clock track damage test

For each segment, count the number of incorrect modules in the clock track for the segment; the percentage *P* of incorrect modules over the length of the area shall result in the percentage damage grades shown in Table M.3.

g) Solid fixed pattern test

For each segment, count the number of incorrect modules in the solid area (internal alignment bar or external quiet zone area) adjacent to the clock track; the percentage *P* of incorrect modules over the length of the area shall result in the percentage damage grades shown in Table M.3.

Table M.3 — Grading of percentage damage to clock track segments and solid area segments

P	Grade
<i>P</i> < 10%	4
10% ≤ <i>P</i> < 15%	3
15% ≤ <i>P</i> < 20%	2
20% ≤ <i>P</i> < 25%	1
P ≥ 25%	0

- h) At each grade level take the lowest of the modulation grade level, the clock track regularity grade, the clock track percentage damage grade, and the solid fixed pattern percentage damage grade.
- i) The notional damage grade for the segment shall be the highest resulting grade for all modulation grade levels.
- j) The Fixed Pattern Damage grade for the segment shall be the lower of the transition ratio grade and the notional damage grade.
- k) The overall Fixed Pattern Damage grade for the clock track and adjacent solid area segments is the lowest of the grades obtained for each of the individual segments.

The shaded areas in Figure M.4 below show an example of an internal alignment pattern segment, which includes the clock track portion and solid area portion to which the transition ratio, regularity and solid fixed pattern tests are applied.

Figure M.4 — Internal alignment pattern segment

The shaded areas in Figure M.5 below show an example of a segment of the external clock track and associated quiet zone to which the transition ratio, regularity and solid fixed pattern tests are applied.

Figure M.5 — External clock track segment

EXAMPLE Figure M.6 shows an example based on grading the L1 segment of a 36 x 36 symbol, with SC = 89% and GT = 51%. The reflectance and modulation values, and modulation grade, are shown in Table M.4 for each of the 36 modules in the segment.

Figure M.6 — Example of L1 segment to show modulation effects

Table M.4 — Example of modulation grading of 36-module segment

Module	1	2	3	4	5	6	7	8	9
Reflectance (%)	15	13	13	13	9	11	84	11	10
MOD	80	86	86	86	94	90	(74)	90	92
MOD Grade	4	4	4	4	4	4	0	4	4
Module	10	11	12	13	14	15	16	17	18
Reflectance (%)	9	11	70	13	12	15	11	11	11
MOD	94	90	(42)	86	88	80	90	90	90
MOD Grade	4	4	0	4	4	4	4	4	4
Module	19	20	21	22	23	24	25	26	27
Reflectance (%)	27	11	14	10	12	50	12	11	14
MÓD	54	90	83	92	88	2	88	90	83
MOD Grade	4	4	4	4	4	0	4	4	4
Module	28	29	30	31	32	33	34	35	36
Reflectance (%)	13	12	37	13	12	13	11	13	12
MOD	86	88	31	86	88	86	90	86	88
MOD Grade	4	4	2	4	4	4	4	4	4

Note that modules 7 and 12 are clearly light and module 24 and to a lesser extent module 30 suffer from low modulation.

Based upon these values, the segment grading would be as shown below:

Table M.5 — Example of grading of segment

MOD grade level	No. of modules	Cum. no. of modules	Remainder "damaged" modules	Damaged modules %	Notional damage grade	Lower of grades
4	32	32	4	11,1	2	2
3	0	32	4	11,1	2	2
2	1	33	3	8,3	3	2
1	0	33	3	8,3	3	1
0	3	36	0	0	4	0
Final Grade fo	2					

M.1.4 Calculation and grading of average grade

In addition to the assessment of the individual segments, a calculation of AG (average grade) is also made to take account of the cumulative effect of damage that is of relatively minor significance in individual segments but that affects several segments. This is based on averaging the grades for L1, L2, QZL1, QZL2 and the overall clock track and adjacent solid area segment grade

Once all segments have been graded, calculate the average grade AG:

AG = (Sum of the segment grades) / 5

Assign a grade to AG in accordance with Table M.6.

The Fixed Pattern Damage grade for the symbol shall be the lowest of the five segment grades and the grade for AG.

Table M.6 — Grading of AG

Mean of five segment grades	Grade
4	4
≥ 3,5	3
≥ 3,0	2
≥ 2,5	1
< 2,5	0

EXAMPLE 1

Assume that four of the five segments are graded 4, and one is graded 1. Then

$$(4 \times 4) + (1 \times 1) = 17$$

So AG = 17 / 5 = 3,4

From Table M.6, a mean of 3,4 will be graded 2. The lowest of the 6 grades is 1, and the symbol Fixed Pattern Damage grade, is therefore 1.

EXAMPLE 2

Assume that three of the five segments are graded 4, one is graded 3 and one is graded 1. Then

$$(3 \times 4) + (1 \times 3) + (1 \times 1) = 16$$

So AG = 16 / 5 = 3,2

From Table M.6, a mean of 3,2 will be graded 2. The lowest of the 6 grades is1, and the symbol Fixed Pattern Damage grade is therefore1.

EXAMPLE 3

Assume that all of the five segments are graded 3. Then

$$5 \times 3 = 15$$

So AG = 15 / 5 = 3,0

From Table M.6, a mean of 3,0 will be graded 2. The lowest of the 6 grades is 2, and the symbol Fixed Pattern Damage grade is therefore 2.

M.2 Scan grade

The scan grade shall be the lowest of the grades for the standard parameters evaluated according to ISO/IEC 15415 together with the grade for Fixed Pattern Damage evaluated in accordance with this Annex.

Annex N (normative)

Symbology identifier

ISO/IEC 15424 provides a uniform methodology for reporting the symbology read, options set in the reader and any special features of the symbology encountered.

The symbology identifier for Data Matrix is:

]dm

where:

-] is the symbology identifier flag (ASCII value 93)
- is the code character for the Data Matrix symbology
- is a modifier character with one of the values defined in Table N.1

Table N.1 — Symbology Identifier option values for Data Matrix

Option valu	e Option
0	ECC 000 - 140
1	ECC 200
2	ECC 200, FNC1 in 1st or 5th position
3	ECC 200, FNC1 in 2nd or 6th position
4	ECC 200 supporting ECI protocol
5	ECC 200, FNC1 in 1st or 5th position plus supporting ECI protocol
6	ECC 200, FNC1 in 2nd or 6th position plus supporting ECI protocol
NOTE (F	Permissible values of m: 0, 1, 2, 3, 4, 5, 6)

Annex O

(informative)

ECC 200 encode example

In this example the user data to be encoded is "123456" (length of 6).

Step 1: Data encodation

The ASCII representation is:

data character: '1' '2' '3' '4' '5' '6'

decimal: 49 50 51 52 53 54

ASCII encodation converts the above 6 characters to 3 bytes. This is done using the following formula for digit pairs.

Codeword = (numerical value of digit pairs) + 130

The details of this calculation are as follows.

The data stream after data encodation is:

decimal: 142 164 186

Consulting Table 7, three data codewords fit exactly into a 10×10 symbol, and five error correction codewords need to be added. If the encoded data did not exactly fill a data region, then additional pads would have to be encoded.

Step 2: Error checking and correction

Error correction codewords are generated using the Reed-Solomon algorithm and appended to the encodation data stream. The resulting data stream is:

codeword: 2 3 4 6 7 8 decimal: 142 164 186 114 25 5 88 102 hex: 8E A4 BA 72 19 05 58 66 data check

Annex E describes the error correction process for ECC 200 and E.3 gives an example of a routine to perform the calculation of the error correction codewords.

Step 3: Module placement in matrix:

The final codewords from Step 2 are placed in the binary matrix as symbol characters according to the algorithm described in 5.8.1 (also see Figure F.1):

Figure O.1 — Module positioning in matrix

Step 4: Actual symbol

The final Data Matrix symbol is produced by adding the finder pattern modules and converting the binary ones to black and binary zeroes to white.

Figure O.2 — Final Data Matrix symbol encoding "123456"

Annex P

(informative)

Encoding data using the minimum symbol data characters for ECC 200

The same data may be represented by different Data Matrix symbols through the use of different code sets.

The following algorithm will usually produce the shortest codeword stream.

- a) Start in ASCII encodation.
- b) While in ASCII encodation:
 - If the next data sequence is at least 2 consecutive digits, encode the next two digits as a double digit in ASCII mode.
 - 2) If the look-ahead test (starting at step j) indicates another mode, switch to that mode.
 - 3) If the Base 256 encodation mode has been indicated, encode the Latch to Base 256 encodation mode character followed by a currently undefined length byte; step G or step I will fill in the length field (this may require adding a second length byte).
 - 4) If the next data character is extended ASCII (greater than 127) encode it in ASCII mode first using the Upper Shift (value 235) character.
 - 5) Otherwise process the next data character in ASCII encodation.
- c) While in C40 encodation:
 - 1) If the C40 encoding is at the point of starting a new double symbol character and if the look-ahead test (starting at step J) indicates another mode, switch to that mode.
 - 2) Otherwise process the next character in C40 encodation.
- d) While in Text encodation:
 - 1) If the Text encoding is at the point of starting a new double symbol character and if the look-ahead test (starting at step J) indicates another mode, switch to that mode.
 - 2) Otherwise process the next character in Text encodation.
- e) While in X12 encodation:
 - 1) If the X12 encoding is at the point of starting a new double symbol character and if the look-ahead test (starting at step J) indicates another mode, switch to that mode.
 - 2) Otherwise process the next character in X12 encodation.
- f) While in EDIFACT (EDF) encodation:
 - If the EDIFACT encoding is at the point of starting a new triple symbol character and if the lookahead test (starting at step J) indicates another mode, switch to that mode.
 - 2) Otherwise process the next character in EDIFACT encodation.

- g) While in Base 256 (B256) encodation:
 - 1) If the look-ahead test (starting at step J) indicates another mode, switch to that mode.
 - 2) Otherwise, process the next character in Base 256 encodation.
- h) Repeat from step B until end of data.
- i) At the end of data, if in Base 256 encodation, set the length to 0 (0 indicates that Base 256 encodation terminates the symbol).

The look-ahead test (Steps J through S):

The look-ahead test scans the data to be encoded to find the best mode.

- j) Initialise the symbol character count for each mode:
 - 1) If the current mode is ASCII, initialise:

```
ASCII count = 0,

C40 count = 1,

Text count = 1,

X12 count = 1,

EDF count = 1,

B256 count = 1,25,
```

otherwise initialise:

```
ASCII count = 1,
C40 count = 2,
Text count = 2,
X12 count = 2,
EDF count = 2,
B256 count = 2,25.
```

- 2) If the current mode is C40 encodation, the C40 count = 0.
- 3) If the current mode is Text encodation, the Text count = 0.
- 4) If the current mode is X12 encodation, the X12 count = 0.
- 5) If the current mode is EDIFACT encodation, the EDF count = 0.
- 6) If the current mode is Base 256 encodation, the B256 count = 0.
- k) If at the end of data:
 - 1) Round up all the counts to whole numbers.
 - 2) If the ASCII count is less than or equal to all the other counts, return from the test indicating ASCII encodation.

ISO/IEC 16022:2006(E)

- If the B256 count is less than all the other counts, return from the test indicating Base 256 encodation.
- If the EDF count is less than all the other counts, return from the test indicating EDIFACT encodation.
- If the Text count is less than all the other counts, return from the test indicating Text encodation. 5)
- If the X12 count is less than all the other counts, return from the test indicating X12 encodation.
- Return from the test indicating C40 encodation.
- Process the ASCII count: I)
 - If the data character is a digit, add 1/2 to the ASCII count.
 - If the data character is extended ASCII (greater than 127), round up and add 2 to the ASCII count. 2)
 - Otherwise round up and add 1 to the ASCII count.
- m) Process the C40 count:
 - 1) If the data character is a native C40 character, add 2/3 to the C40 count.
 - If the data character is extended ASCII (greater than 127), add 8/3 to the C40 count.
 - 3) Otherwise add 4/3 to the C40 count.
- Process the Text count:
 - 1) If the data character is a native Text character, add 2/3 to the Text count.
 - 2) If the data character is extended ASCII (greater than 127), add 8/3 to the Text count.
 - 3) Otherwise add 4/3 to the Text count.
- Process the X12 count:
 - If the data character is a native X12 character, add 2/3 to the X12 count.
 - If the data character is extended ASCII (greater than 127), add 13/3 to the X12 count.
 - 3) Otherwise add 10/3 to the X12 count.
- Process the EDF count:
 - 1) If the data character is a native EDF character, add 3/4 to the X12 count.
 - If the data character is extended ASCII (greater than 127), add 17/4 to the X12 count. 2)
 - Otherwise add 13/4 to the X12 count.
- Process the B256 count:
 - 1) If the character is a Function character (FNC1, Structured Append, Reader Program, or Code Page), add 4 to the B256 count.
 - 2) Otherwise add 1 to the B256 count.

- r) If at least 4 data characters have been processed in this test loop:
 - 1) If the ASCII count plus 1 is less than or equal to all the other counts, return from the test indicating ASCII encodation.
 - 2) If the B256 count plus 1 is less than or equal to the ASCII count or less than the other counts, return from the test indicating Base 256 encodation.
 - 3) If the EDF count plus 1 is less than all the other counts, return from the test indicating EDIFACT encodation.
 - 4) If the Text count plus 1 is less than all the other counts, return from the test indicating Text encodation.
 - 5) If the X12 count plus 1 is less than all the other counts, return from the test indicating X12 encodation.
 - 6) If the C40 count plus 1 is less than the ASCII, B256, EDF, and Text counts:
 - i) If the C40 count is less than the X12 count, return from the test indicating C40 count.
 - ii) If the C40 count equals the X12 count:
 - I) If one of the three X12 terminator/ separator characters first occurs in the yet to be processed data before a non-X12 character, return from the test indicating X12 encodation.
 - II) Otherwise return with the C40 encodation.
- s) Repeat from step k) until a return condition occurs.

Annex Q

(informative)

ECC 000 - 140 encode example using ECC 050

Encode example Q.1

User data to be encoded: "AB12-X". This will be encoded in base 41 (format ID3)

Step 1: Data encodation

	sequence 1	sequence 2
a) break user data into 4-character sequences:		
	A B 1 2	- X
b) convert to Base 41 code values:		
	1 2 28 29	39 24
c) apply conversion equations:		
	2045860	1023
d) convert to binary bit stream:		
	0111110011011110100100	01111111111
e) reverse each sequence to create the final Encoded	d Data Bit Stream:	

Step 2: Data prefix construction

a) The format ID field for base 41 is given from Table 11 (Section 5.4.1):

00010

b) The CRC field is computed as shown in Q.2, then it receives an MSB/LSB reversal to result in:

1001 1010 1010 1110

c) The length field must be 6 in binary with MSB/LSB reversal:

011000000

d) The final Unprotected Bit Stream is shown in Figure Q.1.

0010010111101100111110

Step 3: Error checking and correction:

The Unprotected Bit Stream is broken into 3-bit input blocks in preparation for input to the ECC 050 state machine. Three extra input blocks of all zeros have been added to the input block list; this gives a total of 24 input blocks (see Figure Q.1). The number of extra zero blocks added is equal to the longest shift register path through the state machine for the ECC being used; for ECC 050, 3 zero blocks are added. The basic flow of all ECC state machines is as follows:

- a) Zero the state machine registers
- b) Switch in a new input block (MSB goes to position 1)
- c) Compute the output values from all XOR gates
- d) Switch out an output block (MSB comes from position 1)

Table Q.1 shows the values of all state machine elements during the process of performing convolutional coding on the 24 input blocks.

The final Protected Bit Stream (length = 96 bits) is:

0000 1010 1011 1111 1010 1010 1010 0000 0100 0011 0110 1000 0101 0001 1000 0000 1110 1010 1001 1010 1001 1000 0100 1010

Figure Q.1 — Unprotected Bit Stream from steps 2 and 3

Table Q.1 — Values of all registers during convolutional encoding

			output				output
	Input	register	1		input	register	1
state	1	1A 1B 1C	2	state	1	1A 1B 1C	
machine	2	2A 2B 2C	3	machine	2	2A 2B 2C	2
cycle	3	3A 3B 3C	4	cycle	3	3A 3B 3C	4
1	0	000	0	13	0	000	0
	0	000	0		1	000	1
	0	000	0		1	110	0
			0				1
2	1	000	1	14	1	000	0
	0	000	0		1	100	0
	1	000	1		0	111	0
			0				1
3	0	100	1	15	1	100	1
	0	000	0		1	110	0
	1	100	1		0	011	0
			1				0
4	1	010	1	16	0	110	0
	0	000	1		1	111	0
	1	110	1		1	001	0
			1				0
5	0	101	1	17	1	011	1
	1	000	0		1	111	1
	0	111	1		1	100	1
			0				0
6	1	010	1	18	0	101	1
	0	100	0		1	111	0
	1	011	1		1	110	1
			0				0
7	1	101	1	19	1	010	1
	1	010	0		1	111	0
	0	101	1		1	111	0
	0	440	0	00	4	101	1
8	0	110	0	20	1	101	1
-	1	101 010	0		1	111 111	0
		010	0		1	111	0
9	0	011	0	21	1	110	1
3	0	110	1	<u> </u>	1	111	0
	0	101	0		0	111	0
		101	0			111	1
10	0	001	0	22	0	111	1
'	0	011	0		0	111	0
	0	010	1		0	011	0
	_		1				0
11	0	000	0	23	0	011	0
	0	001	1		0	011	1
	1	001	1		0	001	0
			0				0
12	0	000	1	24	0	001	1
	0	000	0		0	001	0
	1	100	0		0	000	1
			0				0

Step 4: Header and trailer construction

The header contains the ECC bit field for 050 from Table 12 (6.6.1) with the bits reversed (MSB/LSB):

011100000000111000 (length = 19 bits)

The trailer contains enough pad bits to make the Unrandomised Bit Stream fit exactly into a square matrix of the smallest size. There are 96 bits in the Protected Bit Stream and 19 bits in the header for a total of 115 bits.

A 13 x 13 data matrix has 11 x 11 information bits available (121 bits); this is the smallest matrix size able to contain 115 bits. There are 6 bits (121 - 115) that are set to zero. Therefore, the trailer is:

000000

The final Unrandomised Bit Stream is shown in Figure Q.2.

0111000000000111000

header

Figure Q.2 — Final Unrandomised Bit Stream

Step 5: Pattern randomising

Partition the Unrandomised Bit Stream into 4-bit nibbles for easy XORing:

0111 0000 0000 0111 0000 0001 0101 0111 1111 0101 0101 0100 0000 1000 0110 1101 0000 1010 0011 0000 0001 1101 0101 0011 0101 0001 0100 0000 0

Get the required number (121) of random bits from the Master Random Bit Stream (Annex L):

(05, FF, C7, 31, 88, A8, 83, 9C, 64, 87, 9F, 64, B3, E0, 4D, first bit of 9C) =

0000 0101 1111 1111 1100 0111 0011 0001 1000 1010 1000 1000 0011 1001 1100 0110 0100 1000 0111 1001 1111 0110 0100 1011 1110 0000 0100 1101 1

Produce the Randomised Bit Stream by XORing the input with the random bits:

ISO/IEC 16022:2006(E)

Step 6: Module placement in matrix

Using the Data Module Placement Grid for this matrix size, the data modules are placed into the binary matrix data area:

After adding the finder pattern modules, the final binary matrix is produced:

Q.2 CRC calculation for example

Construct the bit stream for input to the CRC algorithm. This consists of the CRC 2-byte header followed by the original user data. The CRC 2-byte header from Annex J, Table J.1 for format 3 is:

0000 0011 0000 0000.

The original user data is:

AB12-X

0100 0001, 0100 0010, 0011 0001, 0011 0010, 0010 1101, 0101 1000

The complete pre-CRC bit stream before byte reversal is:

0000 0011, 0000 0000, 0100 0001, 0100 0010, 0011 0001, 0011 0010, 0010 1101, 0101 1000

The complete pre-CRC bit stream after byte reversal is: (64 bits)

1100 0000, 0000 0000, 1000 0010, 0100 0010, 1000 1100, 0100 1100, 1011 0100, 0001 1010

This bit stream is input to the CRC state machine shown in Table Q.2. The CRC MSB is in the left-most shift register, so the final computed CRC value is 01110 1010101 1001 when read directly from the state machine. Parsing into 4-bit nibbles yields: 0111, 0101, 0101, 1001 which is the CRC field value used in Annex Q, Step 2b.

Table Q.2 — Value of all registers during CRC calculation

Machine cycle	XOR register bits 1-5	gate out3	XOR register bits 6-12	gate out2	register bits 13-16	input bit	XOR gate out1
start-up	00000	1	0000000	1	0000	1	1
1	10000	1	1000000	1	1000	1	1
2	11000	0	1100000	0	1100	0	0
3	01100	0	0110000	0	0110	0	0
4	00110	1	0011000	1	0011	0	1
5	10011	0	1001100	1	1001	0	1
6	11001	1	0100110	0	1100	0	0
7	01100	0	1010011	1	0110	0	0
8	00110	1	0101001	0	1011	0	1
9	10011	0	1010100	1	0101	0	1
10	11001	1	0101010	0	1010	0	0
11	01100	1	1010101	0	0101	0	1
12	10110	0	1101010	0	0010	0	0
13	01011	0	0110101	0	0001	0	1
14	10101	1	0011010	0	0000	0	0
15	01010	0	1001101	1	0000	0	0
16	00101	0	0100110	1	1000	1	1
17	10010	0	0010011	1	1100	0	0

Machine cycle	XOR register bits 1-5	gate out3	XOR register bits 6-12	gate out2	register bits 13-16	input bit	XOR gate out1
18	01001	1	0001001	1	1110	0	0
19	00100	1	1000100	1	1111	0	1
20	10010	1	1100010	1	1111	0	1
21	11001	0	1110001	0	1111	0	1
22	11100	0	0111000	0	0111	1	0
23	01110	1	0011100	1	0011	0	1
24	10111	0	1001110	1	1001	0	1
25	11011	0	0100111	0	1100	1	1
26	11101	1	0010011	1	0110	0	0
27	01110	1	1001001	0	1011	0	1
28	10111	0	1100100	1	0101	0	1
29	11011	1	0110010	0	1010	0	0
30	01101	1	1011001	1	0101	1	0
31	00110	0	1101100	0	1010	0	0
32	00011	1	0110110	0	0101	1	0
33	00001	1	1011011	1	0010	0	0
34	00000	1	1101101	0	1001	0	1
35	10000	0	1110110	0	0100	0	0
36	01000	1	0111011	0	0010	1	1
37	10100	0	1011101	1	0001	1	0
38	01010	0	0101110	0	1000	0	0
39	00101	1	0010111	1	0100	0	0
40	00010	0	1001011	1	1010	0	0
41	00001	1	0100101	1	1101	1	0
42	00000	0	1010010	0	1110	0	0
43	00000	1	0101001	0	0111	0	1
44	10000	0	1010100	0	0011	1	0
45	01000	0	0101010	0	0001	1	0
46	00100	0	0010101	1	0000	0	0
47	00010	0	0001010	0	1000	0	0
48	00001	0	0000101	0	0100	1	1
49	10000	0	0000010	0	0010	0	0
50	01000	0	0000001	1	0001	1	0
51	00100	1	0000000	1	1000	1	1
52	10010	0	1000000	0	1100	0	0
53	01001	0	0100000	1	0110	1	1

Machine cycle	XOR register bits 1-5	gate out3	XOR register bits 6-12	gate out2	register bits 13-16	input bit	XOR gate out1
54	10100	1	0010000	1	1011	0	1
55	11010	1	1001000	1	1101	0	1
56	11101	1	1100100	0	1110	0	0
57	01110	1	1110010	1	0111	0	1
58	10111	0	1111001	0	1011	0	1
59	11011	1	0111100	0	0101	1	0
60	01101	0	1011110	1	0010	1	1
61	10110	1	0101111	0	1001	0	1
62	11011	0	1010111	0	0100	1	1
63	11101	1	0101011	1	0010	0	0
64	01110		1010101		1001		

Annex R (informative)

Useful process control techniques

This Annex describes tools and procedures useful for monitoring and controlling the process of creating scannable Data Matrix symbols. These techniques do not constitute a print quality check of the produced symbols (the method of Clause 8 and Annex M is the required method for assessing symbol print quality) but they individually and collectively yield good indications of whether the symbol print process is creating workable symbols.

R.1 Symbol contrast

Most linear bar code verifiers have either a reflectometer mode or a mode for plotting scan reflectance profiles and/or reporting Symbol Contrast (as defined in ISO/IEC 15415 and ISO/IEC 19762) from undecodable scans. Except with symbols requiring special illumination configurations, the symbol contrast readings that can be obtained using a 6 or 10 mil aperture at 660 nm wavelength (either the reported SC value, the peak-to-peak scan profile excursions, or the difference between peak reflectometer readings) are found to correlate well with an image-derived symbol contrast. In particular these readings can be used to check that symbol contrast stays well above the minimum allowed for the intended symbol quality grade.

R.2 Special reference symbol

For process control purposes, a 16 x 16 ECC 200 reference symbol can be printed which encodes the data "30Q324343430794<OQQ". As shown in Figure R.1, this reference symbol has a region of parallel bars and spaces which can be linearly scanned and then evaluated for print growth using the edge-measurement methodologies of ISO/IEC 15416.

Figure R.1 — ECC 200 reference symbol encoding "30Q324343430794<OQQ"

Many linear bar code verifiers can be programmed to list element widths derived by the ISO/IEC 15416 methodology even for undecoded scans. The left-hand portion of any linear test scan across the upper half of the ECC 200 reference symbol will contain four bar-space pairs whose widths may be designated b_1 to b_4 and s_1 to s_4 .

A normalised indication of horizontal print growth can be calculated as:

$$(b_1 + b_2 + b_3 + b_4) / (b_1 + s_1 + b_2 + s_2 + b_3 + s_3 + b_4 + s_4)$$

This value in Data Matrix symbols should nominally be 50% and stay within 35% to 65% limits.

Note that this measurement will not be sensitive to printing variations parallel to the long dimension of the elements in the reference symbol. If a more complete assessment of the print process is desired, the Data Matrix reference symbol should be printed in both orientations and tested.

R.3 Assessing Axial Nonuniformity

For any symbol, measure the length of both legs of the "L" shaped finder pattern. Divide each length by the number of modules in that dimension, e.g. a 12 x 36 symbol would have 12 and 36 as divisors. These two normalised dimensions are X_{AVG} and Y_{AVG} which can be used in the formula below to grade Axial Nonuniformity.

$$AN = abs(X_{AVG} - Y_{AVG}) / ((X_{AVG} + Y_{AVG}) / 2)$$

If the value of *AN* is greater than 0,12 the symbol would fail according to ISO/IEC 15415. Values up to 0,06 correspond to a grade 4 for this parameter.

R.4 Visual inspection for symbol distortion and defects

Ongoing visual inspection of the perimeter patterns in sample symbols can monitor two important aspects of the print process. First, 2D matrix symbols are susceptible to errors caused by local distortions of the matrix grid. Any such distortions will show up visually in a Data Matrix symbol as either crooked edges on the "L" shaped finder pattern or uneven spacings within the alternating patterns found along the other two margins of the symbol. Larger ECC 200 symbols also include alignment patterns whose straightness and evenness can be visually checked. Symbols likely to fail the reference decode can be quickly identified in this way. Second, the two arms of the finder pattern and the adjacent quiet zones should always be solidly in opposite reflectance states. Failures in the print mechanism which may produce defects in the form of light or dark streaks through the symbol should be visibly evident where they infringe the finder or quiet zone. Such systematic failures in the print process should be corrected.

Annex S (informative)

Autodiscrimination capability

Data Matrix may be read by suitably programmed bar code decoders which have been designed to autodiscriminate it from other symbologies. The decoder's valid set of symbologies should be limited to those needed by a given application to maximise reading security.

Annex T (informative)

System considerations

Any Data Matrix application must be viewed as a total system solution. All the symbology encoding/decoding components (surface marker or printer, labels, readers) making up an application need to operate together as a system. A failure in any link of the chain, or a mismatch between them, could compromise the performance of the overall system.

- While compliance with the specifications is one key to assuring overall system success, other considerations come into play which may influence performance as well. The following guidelines suggest some factors to keep in mind when specifying or implementing bar code systems:
- Select a print density which will yield tolerance values that can be achieved by the marking or printing technology being used.
- Choose a reader with a resolution suitable for the symbol density and quality produced by the printing technology.
- Ensure that the printed symbol's optical properties are compatible with the wavelength of the scanner's light source or sensor.
- Verify symbol compliance in the final label or package configuration. Overlays, showthrough, and curved or irregular surfaces can all affect symbol readability.

Marking technologies that are not consistently capable of producing a solid line of continuous modules, for example, dot peen and ink jet, require particular care to ensure that gaps between nominally touching modules do not interfere with the decoding of the symbol using the application specified aperture size. In addition, the relative positioning of modules and the horizontal and vertical axes needs to comply with the requirements for axial non-uniformity specified in ISO/IEC 15415. Application specifications should also consult ISO/IEC 15415 for guidance regarding the specification of aperture size, lighting, and other parameters.

Scanning systems must take into consideration the variations in diffuse reflection between dark and light features. At some scanning angles, the specular component of the reflected light can greatly exceed the desired diffuse component, making successful reading more difficult. In cases where the surface of the part or material can be altered, matte, non-glossy finishes may help minimise specular effects. Where this option is not available, particular care must be taken to ensure the illumination for the mark being read optimises the desired contrast components.

Not for Resale

Bibliography

- [1] LIN and COSTELLO, "Error Control Coding: Fundamentals and Applications," Prentice Hall, 1983.
- C. BRITTON RORBAUGH, "Error Coding Cookbook," McGraw Hill, 1996. [2]
- AIM Inc. "Data Matrix Developer's Diskette" (AIM Inc., 125 Warrendale-Bayne Road, Suite 100, [3] Warrendale, PA 15086, USA).

ISO/IEC 16022:2006(E)

ICS 01.080.50; 35.040

Price based on 132 pages