

Université Libre de Bruxelles

Synthèse

Physique des télécommunications ELEC-H-304

Auteur:

Nicolas Englebert

Professeur:

Philippe DE DONCKER

Année 2015 - 2016

Appel à contribution

Synthèse Open Source

Ce document est grandement inspiré de l'excellent cours donné par Philippe De Doncker à l'EPB (École Polytechnique de Bruxelles), faculté de l'ULB (Université Libre de Bruxelles). Il est écrit par les auteurs susnommés avec l'aide de tous les autres étudiants et votre aide est la bienvenue! En effet, il y a toujours moyen de l'améliorer

surtout que si le cours change, la synthèse doit être changée en conséquence. On peut retrouver le code source à l'adresse suivante

https://github.com/nenglebert/Syntheses

Pour contribuer à cette synthèse, il vous suffira de créer un compte sur *Github.com*. De légères modifications (petites coquilles, orthographe, ...) peuvent directement être faites sur le site! Vous avez vu une petite faute? Si oui, la corriger de cette façon ne prendra que quelques secondes, une bonne raison de le faire!

Pour de plus longues modifications, il est intéressant de disposer des fichiers : il vous faudra pour cela installer LATEX, mais aussi git. Si cela pose problème, nous sommes évidemment ouverts à des contributeurs envoyant leur changement par mail ou n'importe quel autre moyen.

Le lien donné ci-dessus contient aussi le README contient de plus amples informations, vous êtes invités à le lire si vous voulez faire avancer ce projet!

Licence Creative Commons

Le contenu de ce document est sous la licence Creative Commons : Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). Celle-ci vous autorise à l'exploiter pleinement, compte- tenu de trois choses :

- 1. Attribution; si vous utilisez/modifiez ce document vous devez signaler le(s) nom(s) de(s) auteur(s).
- 2. Non Commercial; interdiction de tirer un profit commercial de l'œuvre sans autorisation de l'auteur
- 3. Share alike; partage de l'œuvre, avec obligation de rediffuser selon la même licence ou une licence similaire

Si vous voulez en savoir plus sur cette licence :

http://creativecommons.org/licenses/by-nc-sa/4.0/

Merci!

Chapitre 1

L'électrodynamique

1.1 Les équations de Maxwell

Soit les densités de charges ρ et de courant \vec{J} . Ces équations s'écrivent dans le vide

$$\operatorname{rot} \vec{E}(\vec{r},t) = -\frac{\partial \vec{B}(\vec{r},t)}{\partial t}
\operatorname{rot} \vec{B}(\vec{r},t) = \mu_0 \vec{J}(\vec{r},t) + \epsilon_0 \mu_0 \frac{\partial \vec{E}(\vec{r},t)}{\partial t}
\nabla \cdot \vec{B}(\vec{r},t) = 0
\nabla \cdot \vec{E}(\vec{r},t) = \frac{\rho(\vec{r},t)}{\epsilon_0}$$
(1.1)

où $\epsilon_0 = \frac{10^{-9}}{36\pi} F/m$ et $\mu_0 = 4\pi 10^{-7} H/m$. Celles-ci sont locales : en un \vec{r} et t donnés. Souvent, à l'endroit où l'on souhaite résoudre ces équations il n'y a pas de ρ et \vec{J} . Dès lors, à l'instant t :

$$\text{rot } \vec{E}(\vec{r},t) = -\frac{\partial \vec{B}(\vec{r},t)}{\partial t}
 \text{rot } \vec{B}(\vec{r},t) = \epsilon_0 \mu_0 \frac{\partial \vec{E}(\vec{r},t)}{\partial t}
 \nabla \cdot \vec{B}(\vec{r},t) = 0
 \nabla \cdot \vec{E}(\vec{r},t) = 0$$
(1.2)

Ces équations sont bien locales; les champs satisfont à cette équation, mais il faut bien avoir une source quelque part : il y en a forcément (au moins) une, mais elle n'apparaît pas localement.

 \triangle Il peut exister \vec{J} en un point en l'absence de ρ en ce point, car ρ est la densité **totale** de charge en un point : on somme toutes les charges + et - ce qui donne un résultat généralement nul. C'est typiquement le cas dans un fil conducteur ou le courant circule, mais $\rho=0$. Cependant, \vec{J} et ρ sont liés par l'équation de continuité

$$\nabla \cdot \vec{J}(\vec{r},t) = -\frac{\partial \rho(\vec{r},t)}{\partial t}$$
(1.3)

Considérons un courant traversé par un courant. Si la quantité sortante est inférieure à la quantité entrante, il y a accumulation : c'est ce que nous montre cette équation.

Tenir compte du milieu est difficile (courant, charges de polarisation, ...). Pour régler ça facilement, on procède à un astuce mathématique en remplaçant μ_0 et ϵ_0 par μ et ϵ possédant les caractéristique du milieu. Il s'agit d'un formalisme plus simple, mais la physique se voit être "cachée".

1.1.1 La statique

Dans ce cas, on obtient deux équations d'électrostatique et deux équations de magnétisme

$$\operatorname{rot} \vec{E}(\vec{r}) = 0, \qquad \nabla \cdot \vec{E}(\vec{r}) = \frac{\rho(\vec{r})}{\epsilon_0}$$

$$\operatorname{rot} \vec{B}(\vec{r}) = \mu_0 \vec{J}(\vec{r}), \quad \nabla \cdot \vec{B}(\vec{r}) = 0$$
(1.4)

Pour résoudre ces équations, il existe deux méthodes

- 1. Résolution directe
- 2. Méthode des potentiels

La première méthode n'étant efficace que pour des géométries simples, intéressons-nous à la seconde méthode. La petite difficulté est qu'il faut considérer en plus des équations le potentiel scalaire V et vecteur \vec{A} . Il suffit de voir ceci comme une méthode de résolution des ED sans donner plus d'importance à ces potentiels. Pour résoudre les équations il faut premièrement calculer les potentiels

$$V(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int_{\mathcal{D}} \frac{\rho(\vec{r'})}{|\vec{r} - \vec{r'}|} dV', \qquad \vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \int_{\mathcal{D}} \frac{\vec{J}(\vec{r'})}{|\vec{r} - \vec{r'}|} dV'$$

$$\tag{1.5}$$

Et en déduire les champs

$$\vec{E}(\vec{r}) = -\nabla V(\vec{r}), \qquad \vec{B}(\vec{r}) = \operatorname{rot} \vec{A}(\vec{r})$$
 (1.6)

Physiquement, c'est plus facilement interprétable que les équations de Maxwell car on peut clairement voir le lien de cause à effet. En effet, si le circuit possède une densité de charge ρ et que l'on veut le potentiel scalaire au point r, on peut facilement deviner que celui-ci sera $\propto \rho$ et diminuera avec la distance. Pour avoir le potentiel en tout point, il suffira d'intégrer.

1.1.2 L'électrodynamique

Les équations ne peuvent plus être découplées : "bon chance" pour la résolution analytique. La méthode des potentiels reste d'application dans un cas général si on déduit les champ à partir de :

$$\vec{E}(\vec{r},t) = -\nabla V(\vec{r},t) - \frac{\partial \vec{A}(\vec{r},t)}{\partial t}, \qquad \qquad \vec{B}(\vec{r},t) = \cot \vec{A}(\vec{r},t)$$
(1.7)

où le "terme correcteur" traduit le couplage entre \vec{E} et \vec{B} . Jusqu'ici nous avions considérer une approche quasi-statique en supposant que V à l'instant t dépendait de la densité de charge à ce même instant, de même pour \vec{A} négligeant ainsi le temps de propagation.

La nouveauté, c'est qu'à partir de maintenant on considérera que s'il y a une cause quelque part, l'effet ne peut se faire ressentir qu'ultérieurement. Ainsi V et \vec{A} ne peuvent dépendre des sources qu'à un moment un peu ultérieur : le temps de propagation. On peut postuler le délai de propagation

$$t_p = \frac{|\vec{r} - \vec{r}'|}{c} \tag{1.8}$$

soit la distance divisée par la vitesse de la lumière. Pour tenir compte de ces délais, il faut réadapter nos définitions

A retenir : Tout l'électromagnétisme en une box

$$V(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int_{\mathcal{D}} \frac{\rho(\vec{r}', t - \frac{|\vec{r} - \vec{r}''|}{c})}{|\vec{r} - \vec{r}'|} dV', \qquad \vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \int_{\mathcal{D}} \frac{\vec{J}(\vec{r}', t - \frac{|\vec{r} - \vec{r}''|}{c})}{|\vec{r} - \vec{r}'|} dV'$$
(1.9)

On les dénomme les **potentiels retardés**.

Il est utile de savoir lorsque l'approximation quasi-statique peut être utilisée. Soit τ l'échelle de temps caractéristique de variation des sources et L la dimension caractéristique du système étudié. Le retard doit être pris en compte s'il est de l'ordre du temps caractéristique : $L/c \sim \tau$, ou encore

$$L \sim c\tau \tag{1.10}$$

Si la source est sinusoïdale de fréquence f, on peut considérer que τ est la période d'oscillation $(\tau = 1/f)$ de sorte à écrire la précédente équation

$$L \sim \frac{c}{f} = \lambda \tag{1.11}$$

En résumé

A retenir : La modélisation quasi-statique n'est plus applicable si les dimensions du système sont comparables ou supérieures à la longueur d'onde

$$L \sim \lambda$$

Pour 1 GHz, la longueur d'onde dans le vide vaut 30cm. On fera ainsi l'approximation quasistatique lorsque $L/\lambda \ll 1$.

Région	f (Hz)	λ (m)
ELF	< 300	$> 10^{6}$
ULF	300 -3000	$10^5 - 10^6$
radio	310^3 - 310^9	$0.1 - 10^5$
micro-ondes	3 109 - 3 1011	$10^{-3} - 10^{-1}$
infrarouge	$3\ 10^{11}$ - $4\ 10^{14}$	$7\ 10^{-7} - 10^{-3}$
lumière visible	4 10 ¹⁴ - 7,5 10 ¹⁴	$4\ 10^{-7}$ - $7\ 10^{-7}$
ultra-violet	$7,5\ 10^{14} - 3\ 10^{16}$	10^{-8} - 4 10^{-7}
rayons X	$3\ 10^{16}$ - $3\ 10^{19}$	10^{-11} - 10^{-8}
rayons gamma	$> 3 \ 10^{19}$	$< 10^{-11}$

Tableau 1.1 – Régions du spectre électromagnétique

Nous nous intéresserons à la zone radio/micro-onde ou $\lambda \approx 30 \mathrm{cm}$. Pour un GSM, la taille de ce-dernier n'est pas négligeable par rapport à ce λ de même pour le wifi à $5.5 \mathrm{GHz}$ où $\lambda \approx 12 \mathrm{cm}$. C'est aussi vrai dans l'infrarouge, mais il existe un formalisme plus simple à hautes fréquences.

"En fait, passer de la quasi-statique à l'électrodynamique revient à déplacer la modélisation physique des charges et courants vers les champs."

1.2 Énergétique

1.2.1 L'énergie électrique

Il existe dans tout l'espace une densité d'énergie électrique, venant de la "séparation" des charges électriques (énergie potentielle pouvant être libérée) :

$$w_e(\vec{r},t) = \frac{1}{2}\epsilon |\vec{E}(\vec{r},t)|^2$$
 (1.12)

On obtient l'énergie électrique du système de charge par intégration.

1.2.2 L'énergie magnétique

Déplacer des charges pour créer un courant exige de fournir un travail stocké sous la forme "d'énergie cinétique" : on définit une densité d'énergie magnétique :

$$w_m(\vec{r},t) = \frac{1}{2\mu} |\vec{B}(\vec{r},t)|^2 \tag{1.13}$$