

주차수요 예측 AI 경진대회

한예송, 홍재령

목차

#01 Introduction

#02 AutoML & Pycaret

#03 Other AutoML frameworks

Introduction

#1 대회 소개

주제: 유형별 임대주택 설계 시 단지 내 적정 주차 수요 예측

데이터셋

- train.csv 학습용 데이터 (단지코드, 총세대수, 지역, 전용면적 등)
- test.csv 테스트 데이터
- age_gender_info.csv 지역 임대주택 나이별, 성별 인구 분포
- sample_submission.csv 제출 양식

평가산식: MAE(Mean Absolute Error)

현재 장래주차수요는 '주차원단위'와 '건축연면적'을 기초로 하여 산출됨 '주차원단위' - 신규 건축예정 부지 인근의 유사 단지를 피크 시간대 방문하여 주차된 차량대수를 세는 방법으로 조사 → 인력조사로 인한 오차발생, 현장조사 시점과 실제 건축시점과의 시간차 등의 문제로 과대 또는 과소 산정의 가능성을 배제할 수 없음

#1 1등 솔루션 소개

- EDA를 굉장히 많이 함
 - → 데이터를 이해하고, 이상치들을 확인하는 데에 큰 도움이 됨
- Pycaret으로 모델 생성
 - 해당 대회가 워낙 데이터도 이상하고 이상치들이 많이 존재해 모델을 너무 잘 만들었다간 private 점수가 많이 안 좋을 것으로 예상
 - model에 대한 신경↓ & Pycaret에 집어넣고 가장 성능이 잘 나오는 5개로 블랜딩해서 최종 모델을 생성
 - 모델 튜닝을 더 진행하고 파라미터 값 등을 더 좋게 변경해줬을 때 public score가 더 떨어지거나 cv 값이 더 떨어짐

AutoML & Pycaret

#2 AutoML이란?

Automated Machine Learning

시간 소모적이고 반복적인 기계 학습 모델 개발 작업을 자동화하는 프로세스

(= 머신러닝 모델을 개발을 자동화하는 분야)

머신러닝 모델 개발 과제에서 반복적으로 수행하게 되는 데이터 분할, 정제, 특징 선택 및 추출, 모델 선택, 하이퍼 파라미터 튜닝 등을 함수화하여 자동화

- → 비효율적인 작업을 최대한 자동화하여 생산성 & 효율 1
- → 모델 개발자의 개입을 최소화 → 효율적인 모델 개발

AutoML 기술로 해결하고자 하는 문제

- 1) 다양한 알고리즘들과 연관된 하이퍼 파라미터들을 실험하고 성능을 비교하여 최상의 성능을 갖는 모델을 찾는 과정을 자동화 (Combined Algorithm Selection and Hyper-parameter optimization, CASH)
- 2) 문제에 적합한 architecture를 찾는 과정을 자동화 (Neural Architecture Search, NAS)

AutoML

AutoML Workflow

Data

Model /alidation 8

Explanation

#2 Pycaret이란?

기존에 있던 Scikit-learn, spaCy 등 여러가지 머신러닝 라이브러리를 ML High-Level API로 제작한 라이브러리 몇 줄만에 데이터 분석 및 머신러닝 모델 성능 비교 & Log를 생성하여 이력을 남겨줌

- xgb, lightgbm, extratrees 등의 알고리즘을 이것저것 넣어서 성능을 평가해보고 모델별로 성능을 나열
 - → 그 중에 가장 좋은 모델을 선택
 - → 모델 최적화하는 과정을 단 몇 줄로 만듦
- classification, regression, clustering, anomaly detection, NLP, association rules, datasets 등의 패키지

적용 순서

- 1. 데이터 준비 (setup)
- 2. 모델 생성 및 비교
- 3. 모델 최적화
- 4. 학습된 모델 분석

Classification

```
1 # load dataset
2 import pandas as pd
3 train = pd.read_csv('train.csv')
4 test = pd.read_csv('test.csv')
 6 # init setup
7 from pycaret.classification import *
8 s = setup(train, target = 'target')
10 # model training and selection
11 best = compare_models()
13 # analyze best model
14 evaluate_model(best)
15
16 # predict on new data
17 predictions = predict_model(best, data = test)
19 # save best pipeline
20 save_model(best, 'my_best_pipeline')
```


#2 Pycaret - (1) 데이터 준비

setup()

로드되어진 데이터를 머신러닝에 사용할 수 있도록 로드 및 전처리하는 기능 데이터 전처리 단계에서 적용하는 기법들에 대해 파라미터로 간단하게 사용할 수 있도록 구현됨

```
reg = setup(data=train_data,
target='주차면수대비등록확률',
session_id = 201,
numeric_imputation = 'mean',
fold_shuffle = True,
numeric_features=list(train_data.drop(columns = ['주차면수대비등록확률']).columns),
ignore_low_variance = True,
combine_rare_levels = True, rare_level_threshold = 0.05,
remove_multicollinearity = True, multicollinearity_threshold = 0.90,
normalize = True,
silent= True)
```

	Description	Value
0	session_id	201
1	Target	주차면수대비등록확률
2	Original Data	(397, 82)
3	Missing Values	False
4	Numeric Features	81
5	Categorical Features	0
6	Ordinal Features	False
7	High Cardinality Features	False
8	High Cardinality Method	None
9	Transformed Train Set	(277, 40)
10	Transformed Test Set	(120, 40)
11	Shuffle Train-Test	True
12	Stratify Train-Test	False

#2 Pycaret - (2) 모델 생성 및 비교

머신러닝 모델을 선언해서 사용하거나, 전처리한 데이터셋에 맞는 모델 비교

- model() 각각 머신러닝 기법(Classification, Regression 등)에 따라 구현된 모델들을 나열
- compare_models()
 setup된 데이터를 각각 머신러닝 모델에 적용 후 비교
- create_model()
 model()에 적힌 머신러닝 모델을 선택해서 생성

best_5_l = compare_models(sort='MAE', n_select=5)

	Model	MAE	MSE	RMSE	R2	RMSLE	MAPE	TT (Sec)
rf	Random Forest Regressor	0.1985	0.0753	0.2706	0.2295	0.1391	0.2628	0.575
catboost	CatBoost Regressor	0.2004	0.0767	0.2736	0.2085	0.1404	0.2624	5.027
br	Bayesian Ridge	0.2052	0.0765	0.2719	0.2132	0.1399	0.2699	0.016
lightgbm	Light Gradient Boosting Machine	0.2078	0.0810	0.2809	0.1605	0.1431	0.2664	0.042
gbr	Gradient Boosting Regressor	0.2120	0.0845	0.2854	0.1368	0.1462	0.2755	0.117
et	Extra Trees Regressor	0.2120	0.0915	0.2987	0.0583	0.1501	0.2758	0.461
knn	K Neighbors Regressor	0.2126	0.0805	0.2812	0.1620	0.1450	0.2832	0.063
ridge	Ridge Regression	0.2150	0.0891	0.2925	0.0802	0.1476	0.2834	0.013
omp	Orthogonal Matching Pursuit	0.2152	0.0820	0.2824	0.1645	0.1442	0.2788	0.016
lr	Linear Regression	0.2190	0.0969	0.3031	0.0032	0.1497	0.2893	0.016

#2 Pycaret - (3) 모델 최적화

(2)에서 compare_models나 create_model을 사용해서 각각의 모델들을 생성하거나 비교하였으니 그 결과를 바탕으로 성능이 좋은 모델들을 조합하여 실험해볼 수 있는 모듈을 제공

tune_model()

모델의 하이퍼파라미터를 최적화하는 모듈 하이퍼파라미터 반복 횟수/최적화할 매트릭 선택

ensemble_model()
 ensemble 기법을 구현한 모듈

blend_models()

Voting 알고리즘을 구현한 모듈 compare_models()에서 성능이 잘 나온 모델들을 선택하는 파라미터를 적용(n_select)시켜서 사용

stack_models()

stacking ensemble 방법을 구현한 모듈 compare_models()에서 성능이 잘 나온 모델들을 선택하는 파라미터를 적용(n_select)시켜서 사용

blended_I = blend_models(estimator_list= best_5_I, fold=5, optimize='MAE')
pred_holdout = predict_model(blended_I)
final_model_I = finalize_model(blended_I)
pred_esb_I = predict_model(final_model_I, test_data)

	MAE	MSE	RMSE	R2	RMSLE	MAPE
0	0.1819	0.0901	0.3002	0.1841	0.1353	0.1908
1	0.2162	0.0808	0.2842	0.2599	0.1549	0.3462
2	0.1704	0.0505	0.2247	0.2862	0.1147	0.2010
3	0.2037	0.0712	0.2668	0.2749	0.1437	0.3007
4	0.2060	0.0705	0.2656	0.3145	0.1358	0.2479
Mean	0.1956	0.0726	0.2683	0.2639	0.1369	0.2573
SD	0.0169	0.0132	0.0252	0.0437	0.0132	0.0591

Model	MAE	MSE	RMSE	R2	RMSLE	MAPE
0 Voting Regressor	0.2075	0.0819	0.2862	0.2505	0.1575	0.3819

#2 Pycaret - (4) 학습된 모델 분석

학습한 이후에 데이터셋이 잘 학습되었는지 검증을 도와주는 모듈을 제공

- plot_model() 학습한 모델에 대한 각종 지표들을 시각화한 플롯을 그려주는 모듈
- interpret_model() 모델이 예측한 결과에 대해서 각 파라미터들이 얼마나 영향을 줬는지 시각화
- evaluate_model()
 모델 분석 후 각 플롯을 볼 수 있도록 사용자 인터페이스를 제공
- get_leaderboard()
 setup 이후 훈련된 모든 모델을 출력
- dashboard() 모델 분석에 대한 사용자 인터페이스를 제공
- eda()
 데이터셋 분석 결과를 제공

plot_model(final_model_l, plot='residuals')

#2 Pycaret - (4) 학습된 모델 분석

학습한 이후에 데이터셋이 잘 학습되었는지 검증을 도와주는 모듈을 제공

- plot_model() 학습한 모델에 대한 각종 지표들을 시각화한 플롯을 그려주는 모듈
- interpret_model()
 모델이 예측한 결과에 대해서 각 파라미터들이 얼마나 영향을 줬는지 시각화
- evaluate_model()
 모델 분석 후 각 플롯을 볼 수 있도록 사용자 인터페이스를 제공
- get_leaderboard()
 setup 이후 훈련된 모든 모델을 출력
- dashboard() 모델 분석에 대한 사용자 인터페이스를 제공
- eda()
 데이터셋 분석 결과를 제공

plot_model(final_model_l, plot='cooks') ## 심한 아웃 라이어들이 존재

#2 Pycaret

rf_model = create_model('rf')

	MAE	MSE	RMSE	R2	RMSLE	MAPE
0	0.1888	0.0577	0.2402	0.3248	0.1269	0.2528
1	0.1871	0.1375	0.3709	-0.0827	0.1568	0.1522
2	0.1994	0.0634	0.2518	0.3384	0.1316	0.2618
3	0.2322	0.0933	0.3054	0.2266	0.1710	0.4205
4	0.1543	0.0371	0.1926	0.4983	0.1051	0.2118
5	0.2024	0.0745	0.2730	-0.1471	0.1362	0.2142
6	0.1910	0.0603	0.2455	0.4116	0.1347	0.2923
7	0.2013	0.0756	0.2749	0.1881	0.1479	0.3013
8	0.2033	0.0605	0.2459	0.3254	0.1257	0.2310
9	0.2254	0.0936	0.3059	0.2113	0.1550	0.2904
Mean	0.1985	0.0753	0.2706	0.2295	0.1391	0.2628
SD	0.0204	0.0262	0.0460	0.1941	0.0179	0.0680

plot_model(rf_model, plot='feature')

Other AutoML Frameworks

#3-0 AutoML frameworks

일반적인 ML model steps

- 1) Data reading
- 2) pre-processing
- 3) Optimization
- 4) Result prediction

Data collection, prediction이 자동화하기 힘든 부분 – AutoML: prediction을 위한 최적화 및 준비 제공

AutoML frameworks categories

- 1) 자동으로 Parameter tuning해주는 AutoML
- 2) AutoML for non-deep learning: data 전처리, 자동 feature 분석, 자동 feature detection, 자동 feature/model selection에 사용
- 3) AutoML for deep learning/neural networks: NAS를 포함하여 최적의 architectrue까지 찾아줌

#3-1 MLBox

#1 빠른 reading과 분산 데이터 전처리 및 cleaning 및 formatting

#2 매우 robust한 feature selection, leak detection

#3 높은 dimensional space에서 hyper-parameter 최적화 정확도 높음

#4 classification과 regression에 SOTA predicted models을 사용할 수 있음

MLBox, Machine Learning Box

#3-2 TPOT

#1 유전 알고리즘을 사용하여 ML 파이프라인을 최적화

#2 가능한 수많은 파이프라인들 중에서 데이터에 가장 맞는 것 찾아줌으로써 ML 자동화

#3 scikit-learn framework로 만들어짐 -> scikit-learn에 익숙한 사람에게 익숙

#3-3 Auto-sklearn

#1 알고리즘 선택과 hyperparameter tuning을 자동으로 해줌

#2 Meta learning: Bayes를 사용하여 optimizer를 초기화 및 설정값을 자동으로 평가하는데 사용

#3 Bayes: channel을 최적화하기 위해 사용

#4 sklearn estimators를 classificatio과 regression 문제에 사용

#5 작은 데이터셋에도 잘 동작, 큰 데이터셋에는 좋은 성능을 잘 내지 못함

#3-4 AutoKeras

#1 keras를 기반의 AutoML system

#2 자동으로 최적의 hyper-parameter, architecture 찾아줌

#3 NAS(Neural Architecture Search)를 사용하여 ML를 단순화하는 것이 AutoKeras내의 trend

#3-5 H20 AutoML

#1 scalable 분산 ML에 사용되는 in-memory platform

#2 R, Python 모두 지원

#3 GLM(Generalized Linear Models), Gradient Boosting Machines, Random Forests, DNN, Stacked Ensembles 등과 같은 많은 유명한 알고리즘 지원

#4 feature engineering, model validation, model adjustment, model selection, model deploymen와 같은 복잡한 데이터 사이언스와 ML 업무에도 사용가능

#3-6 AutoGluon

#1 다층 Stacking과 repeated k-fold bagging에 의한 강력한 앙상블 학습

#2 자동으로 견고한 predictive performance를 빨리 낼 수 있게 함

#3 높은 성능의 ML과 텍스트, 이미지, tabular의 딥러닝 모델을 몇 줄의 코드로 학습 및 사용 가능

#4 해당 논문에 따르면 H20, TPOT, auto-sklearn보다 더 좋은 성능과 빠르게 동작한다고 함

Framework	Wins	Losses	Failures	Champion	Avg. Rank	Avg. Rescaled Loss	Avg. Time (min)
AutoGluon	-	-	1	23	1.8438	0.1385	201
H2O AutoML	4	26	8	2	3.1250	0.2447	220
TPOT	6	27	5	5	3.3750	0.2034	235
GCP-Tables	5	20	14	4	3.7500	0.3336	195
auto-sklearn	6	27	6	3	3.8125	0.3197	240
Auto-WEKA	4	28	6	1	5.0938	0.8001	244

#3-7 MLJAR

#1 AutoML 학습의 모든 단계의 세부사항을 확인할 수 있음 #2 적합한 알고리즘과 hyper-parameter tuning을 찾아줌 #3 분석내용과 ML모델을 저장, 재실행, 로드할 수 있음 #4 tabular data에 대해 가장 좋은 성능(2021년 기준)

Dataset	Auto-WEKA	auto-sklearn	TPOT	H2O AutoML	GCP-Tables	AutoGluon	MLJAR
ieee-fraud	0.119	0.349			0.119	0.322	0.172
value	0.114	0.319	0.325	0.377		0.415	0.445
walmart		0.390	0.379		0.398	0.384	0.423
transaction	0.131	0.329	0.326		0.404	0.406	0.463
porto	0.158	0.331	0.315	0.406	0.434	0.462	0.540
allstate	0.124	0.310	0.237	0.352	0.740	0.706	0.764
mercedes	0.160	0.444	0.547	0.363	0.658	0.169	0.879
otto	0.145	0.717	0.597	0.729	0.821	0.988	0.924
satisfaction	0.235	0.408	0.495	0.740	0.763	0.823	0.975
bnp-paribas	0.193	0.412	0.460	0.417	0.440	0.986	0.986

THANK YOU

