

. Б

FIG. 3a

ITEM	TERMI- NAL NO.	TERMI- NAL NAME	INPUT/ OUTPUT	FUNCTION
POWER	35,68	Vcc		+ 5 V IS SUPPLIED.
SUPPLY	17,18 51,52	Vcc	_	GND IS CONNECTED.
OPERATION	65	INCLK	INPUT	BASIC CLOCK OF MIVAC IS INPUTTED.
CONTROL SIGNAL	66	TEST	INPUT	MIVAC OPERATION IS TESTED. SET THIS TERMINAL TO "LOW" LEVEL.
	15	2CLK	OUTPUT	2CLK SIGNAL IS SUPPIED TO ACRTC. THIS SIGNAL IS ASYMMETRIC, NAMELY, HAS DIFFERENT CYCLE LENGTHS IN THE FIRST HALF AND SECOND HALF OF A MEMORY CYCLE.
	14	MCYC	INPUT	MCYC SIGNAL FROM ACRTC IS INPUTTED. MCYC INDICATES "LOW" AND "HIGH" LEVELS WHEN ACRTC IS IN ADDRESS AND DATA CYCLES, RESPECTIVELY.
	12	DRAW	INPUT	DRAW SIGNAL FROM ACRTC IS INPUTTED. DRAW INDICATES WHETHER OR NOT ACRTC IS IN THE DRAW CYCLE. DRAW IS "LOW" LEVEL IN THE DRAW CYCLE AND IS "HIGH" LEVEL IN THE OTHER CYCLES.
A CRTC INTERFACE SIGNAL	.11	MRD	INPUT	MRD SIGNAL FROM ACRTC IS INPUTTED. MRD CONTROLS DATA TRANSFER DIRECTION BETWEEN FRAME BUFFER AND ACRTC. WHEN DATA IS READ FROM FRAME BUFFER, "HIGH" LEVEL IS INPUTTED. WHEN DATA IS WRITTEN IN FRAME BUFFER, "LOW" LEVEL IS INPUTTED.
	13	ĀS	INPUT	AS SIGNAL IS INPUTTED FROM ACRTC AS INDICATES PRESENCE OR ABSENCE OF MEMORY ACCESS.
	64	HSYNC	INPUT	HSYNC SIGNAL IS INPUTTED FROM ACRTC. UNDER CONDITIONS OF HSYNC="LOW" AND DRAW = "HIGH", IF AS PULSE IS RECEIVED, CS BEFORE RAS REFRESH OPERATION IS CARRIED OUT.
	67	VSYNC	INPUT	VSYNC SIGNAL IS INPUTTED FROM ACRTC. RECEIVED VSYNC IS DIVIDED BY TWO SO AS TO OUTPUTTED AS VSYNC/2 SIGNAL AND IS ALSO USED TO CONTROL MULTIPLEXER OF VIDEO OUTPUT.
	2	DISP 1	INPUT	DISP 1 SIGNAL IS INPUTTED FROM ACRTC. DISP 1 INDICATES SCREEN DISPLAY PERIOD. ORDINARILY, SET "I" TO DISPLAY SIGNAL CONTROL (DSC) BIT OF ACRTC.
	l	CUD1	INPUT	CUD 1 SIGNAL IS INPUTTED FROM ACRTIC. CUD 1 IS LOADED WITH "LOW" LEVEL DURING GRAPHIC CURSOR DISPLAY PERIOD.
	6- 10 16 19-28	MADO -MAD 15	INPUT/ OUTPUT	MODO-MAD 15 OF ACRTC ARE INPUTTED. THESE SIGNALS ARE USED AS FRAME BUFFER ACCESS ADDRESS IN ADDRESS CYCLE FOR MCYC="LOW", AS DATA INPUT/OUTPUT FOR DATA TRANSFER BETWEEN ACRTC AND FRAME BUFFER IN DATA TRANSFER CYCLE FOR MCYC="HIGH".
	29-32	MA16- MA19	INPUT	FRAME BUFFER ACCESS ADDRESS MAIG - MAI9 IS INPUTTED FROM ACRTC.

FIG. 3b

ITEM	TERMI- NAL NO.	TERMI- NAL NAME	INPUT/ OUTPUT	FUNCTION
	50	RAS	OUTPUT	RAS TIMING SIGNAL IS OUTPUTTED FOR DRAM.
	49	CS	OUTPUT	CS TIMING SIGNAL IS OUTPUTTED FOR DRAM.
FRAME	48	WE	OUTPUT	WE TIMING SIGNAL IS OUTPUTTED FOR DRAM.
BUFFER	53	ŌE	OUTPUT	OE TIMING SIGNAL IS OUTPUTTED FOR DRAM.
INTERFACE SIGNAL_	56,58 60,62 63,61 59,57 55,54	FAO – FA 9	OUTPUT	MULTIPLEX ADDRESS IS OUTPUTTED FOR DRAM. ADDRESS TO BE MULTIPLEXED VARIES DEPENDING ON VCFO-VCF 3 AND VMD O ATTRIBUTE CODES.
	44,46 47,45 40,42 43,41		INPUT/ OUTPUT	FD IS 8-BIT INPUT/OUTPUT SIGNAL FOR DATA TRANSFER BETWEEN ACRTC AND FRAME BUFFER AND FOR FETCHING DISPLAY DATA READ FROM FRAME BUFFER. IN A CASE OF ONE MEMORY CHIP, FD 0-FD3 ARE USED, WHEREAS IN A CASE OF TWO FOUR MEMORY CHIPS, FD 0-FD7 ARE USED.
	3	DOTCLK	OUTPUT	DOTCLK SIGNAL IS DELIVERED BY DIVIDING INCLK SIGNAL AS BASIC INPUT SIGNAL OF MIVAC BY 1, 2 OR 4. DIVISION RATIO IS SET DEPENDING ON VCF G - VCF 3 OF ATTRIBUTE CODE.
CRT DISPLAY INTERFACE SIGNAL	i .	Video A -Video D	OUTPUT	VIDEO A-DSIGNAL IS 4-BIT OUTPUT SIGNAL WHICH IS OBTAINED BY CONVERTING DISPLAY DATA FROM PARALLEL SIGNAL INTO SERIAL SIGNAL BY SHIFT REGISTER OF MIVAC AND WHICH IS DELIVERED DURING DISPLAY PERIOD INDICATED BY SHFTEN OUTPUT. 4-BIT VIDEO SIGNAL IS DETERMINED BY ATTRIBUTE CODE VCF 0-VCF 3.
	5	SHFTEN	OUTPUT	SHFTEN INDICATES DISPLAY PERIOD OF VIDEO SIGNAL AND IS SET TO "HIGH" LEVEL DURING DISPLAY PERIOD. IN SINGLE ACCESS, DISP1 FROM ACRTC IS ELONGATED BACKWARD BY ONE CYCLE, AND IN DUAL ACCESS, DISP1 IS ELONGATED BACKWARD BY TWO CYCLES SO AS TO PRODUCE THIS SIGNAL.
	4	VSYNC/2	OUTPUT	VSYNC/2 SIGNAL IS INPUTTED TO ACRTC. VSYNC IS DIVIDED BY TWO FOR PRODUCING THIS SIGNAL.
OTHERS	38	BL2IRQ	OUTPUT	BL 2 IRQ IS SET BY BLINK 2 (MAI9) INPUTTED IN ATTRIBUTE CYCLE, WHEN BLINK 2 IS AT "HIGH" LEVEL, BLZIRQIS SET TO LOW LEVEL.
JIIIENG	39	IRQCLR	INPUT	IRQCLR SIGNAL IS USED TO CLEAR BLZIRQ SIGNAL. WHEN "LOW" IS INPUTTED TO IRQCLR, BLZIRQ IS CLEARED TO "HIGH" LEVEL.

F I G. 4

I-CHIP MEMORY

F I G. 5b 2-CHIP MEMORY

F I G. 5 c

4-CHIP MEMORY

-- DRAW --- DRAW -- DRAW + DRAW → - DRAW -- DRAW -LEDISPLAY->LEDISPLAY-LEDISPLAY-LEDISPLAY-LEDRAW ← DRAW → ► DRAW ... T DISPLAY TOISPLAY ◆DISPLAY → DRAW — 9 1234 **Б** 1234 4000 14000 - DISPLAY --+ DISPLAY --◆ DRAW — کر 4 **→**DISPLAY → SCLK THOUSE ACCESS
DISPI THOUSE ACCESS
DISPI THOUSE TO THOUSE ACCESS
NIDEO THOUSE ACCE

F I G. 7

F | G. | |

1015	C al C	acios Avidala dosario
- 600	ט ציט	כמיסטי בשו כסביסי
0	0	BLACK (VIDEO A - VIDEO D = O)
0		WHITE (VIDEO A - VIDEO D = 1)
_	0	COLOR REVERSION FOR EACH BIT OF VIDEO A - VIDEO D
		COLOR REVERSION FOR EACH BIT OF VIDEO A-VIDEO C (VIDEO D IS KEPT UNCHANGED)

BLZIRQ OUTPUT IS SET	BLINKING OF GRAPHIC CURSOR IS SET					> NOT USED IN MIVAC				MULTIPLEXING OF VIDEO OUTPUT IS SET	DEPTH OF FRAME BUFFER MEMORY IS SET	TES SI MOSMIC CHAPMED TO MO IOD AV INSIN			OPERATION MODE (DISPLAY COLOR, SHIFT AMOUNT OF	SHIFT REGISTER, ACCESS MODE, ETC.) OF MIVAC IS SET	
BLINK 2	BLINK 1	SPL 2	SPL I	HZ 3	<u> </u>	HZ 0	HSD 3	~	HSDO	MUXEN	VMD	CURI	CURO	VCF 3	VCF 2	VCF I	VCF 0
MA19	MA18	MA17	MA16	MAD 15	∽	MAD 12	MAD II	<u>~</u>	MAD 8	MAD 7	MAD 6	MAD 5	MAD 4	MAD 3	MAD 2	MAD	MAD 0

F I G. 9

												_		_		_
MAXIMUM DOT CLOCK FREQ. (MHz)	33	16.5	8.25	33	16.5	33	16.5	8.25	33	16.5	8.25	33	16.5	33	16.5	33
SHIFT AMOUNT (BITS)	91	8	4	91	ω		9	8	32	91	8	35	91	32	91	32
COLOR/ GRADA- TION		4	9	4	91			4		4	9	4	91	4	91	
NUMBER OF MEMO- RIES		_			0	4				7			4		-	2
HIGH- SPEED DRAMING										0					l	
MEMORY ACCESS SPEED						480 ns /	4ACCESSES								960ns/ I6ACCESSES	
ACRTC OP- ERATION FREQUENCY (MHz)								4. 13								
MAXIMUM FRAME BUFFER CA- PACITY (BYTES)		512K/128K			IM/256K	2M/512K	512K/128K			IM/256K			2M/5I2K		512K/128K	480 IM/256K
CRT SCREEN LAYOUT EXAM- PLE (DOTS X RASTER)	640x200, 350, 400, 480	640×200. 480×240. 320×200, 240	320×200, 240 266×192	640×200, 350, 400, 480	640x200, 480x240, 320x200,240	350, 400, 480	640×200, 480×240, 320×200,240	320 x 200, 240 256 x 192 ,	640x200,350, 400, 480	640x200. 480x240, 320x200, 240	320 x 200, 240 256 x 192	640x200, 350, 400, 480	640x200, 480x240, 320x200, 240	IN	640x 200, 480x 240, 320x 200, 240	480,
MODE	0	_	2	3	4	5	9	7	8	6	Α	В	ပ	۵	ш	ட

FIG. 10

MODE	DOT CLOCK FREQUENCY
O, 3, 5, 8 B, D, F	33MHz ~ IIMHz
I, 4, 6, 9 C, E	16.5MH _z ∼ 5.5MH _z
2, 7, A	$8.25 \mathrm{MH_Z} \sim 2.75 \mathrm{MH_Z}$

F I G. 12

VMD	MEMORY CHIP EMPLOYED
0	256 K × 4BIT DRAM
I	IM × 4BIT DRAM

F I G. 13

MUXEN	VSYNC / 2	VIDEO A	VIDEO B		
	0	А	В		
	1	А	В		
	0	А	В		
'	ı	С	D		

F I G. 14

BLINK I	GRAPHIC CURSOR DISPLAY
0	NOT DISPLAYED
-1	DISPLAYED

A ¥ 9 1 ନ୍ଧ(890 8 194 <u>ଦା</u> φ 9 ω 121 144 141 TOL 19-1 19 ¥ 9 1 HSYNC INCLK MCYC 2CLK DISPI DRAW MRD AS

F I G. 15a

ဖ(₩ ₩ <u>___</u> 194 0 ଧ 8 ଞ୍ଚା 8 23 191 <u></u> 9 1 80 -¥ 9 F 9 œ ¥12¥ 十9十十 *14* 6 ဖ 19 **HSYNC** INCLK - DRAW 2CLK MCYC DISPI MRD AS

F I G. 16a

T 8 <u>o</u> \ 197 8 8 성(19/ <u></u> <u>9</u> 4 **A** 191 <u></u> σ **小**のサ 12 ဖ ¥ 9 1 <u>19</u> INCLK **MSYNC** DRAW MCYC 2CLK DISPI MRD S

F I G. 17a

M 00 1-0 <u>⊇</u> ¥ 9 1 0 8 8 श्र 81 ଧ୍ୟ 194 ನಿ(<u>დ</u> <u>യ</u> 4 2 **ω** <u>\\</u> 의 ω **本**の上 4 191 727 9 19/1 ¥ 9 1 INCLK HSYNC MCYC DISPI DRAW 2CLK MRD AS

F I G. 18a

ſ

ω 19 ଧ **%**(ાજ 었(80 194 RE <u>@</u> <u>9</u> -14-8-4 임 191 의 ω 71t 92 44 6 4 4 <u>2</u> 19 INCLK **HSYNC** DRAW 2CLK MCYC MRD DISPI AS

F I G. 19a

ω(8 19 S **%** 8 8 F I G. 20a <u>@</u> 2 19 <u></u> Φ **√ ★ ★** 1-12-1 <u>+</u> HSYNC INCLK MCYC 2CLK DISPI MRD DRAW AS

81 k F-56 ¥ 34 588 8 F F I G. 20b 88 <u>4</u> <u>4</u> 1 **₩** SI2 + 37 ADDRESS VALID 13 R ¥8± ± 88 ↑ <u>₹</u>8 COLUMN 3, MAIS-MAI9 MAD 0-MAD 15 FDO-FD7 FAO-FA9 RAS CNDI WE R S

1-92 -24-89 F 1 G. 21b 121 -22 -23 -24 -24 -24 8 <u>+</u>89 + 8 MAD 0-MAD 15 MA 16-MA 19 VSYNC CUDI RAS <u>CS</u> OE

13 3 DATÁ VALID - <u>8</u> 130 130 130 ROW **COLUMN 3/15** FAO-FA9 FD0-FD7 WE

8 9 1 ଧା 58 છ્ર 성 ଧା <u>დ</u> φ 1 2 8 -4 <u>~</u> 19 의 ω H-16-1 ₩ 6 ¥ <u>2</u> 19 9 INCLK **HSYNC** DRAW 2CLK MCYC DISPI MRD AS

F I G. 22a

1-38 OATA VALID XCOLUMN I XCOLUMN 2X COLUMN ¥31 + 32 + 13 52 131 22b <u>8</u> Н — Э →127| 188 + 61 - 81 + ADDRESS VALID 1021- 1021-1021- 1021-ROW 1 7 1 7 1 8 -25 -24 -24 FAO-FA9 COLUMN3/15 FD0-FD7 MAIG-MAI9-MAD 0 -MAD 15 VSYNC RAS CUDI OE OE S

WE

T 8 L 20 22 24 26 28 33 23 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64/02 4<u>7</u> <u>ا</u>ھ 4 <u>~</u> 의 ∞ HSMC INCLK MCYC 2CLK

23a

<u>ල</u>

L

VSYNC: VALID

VSYNC =

DISPI

DRAW

AS

MRD

F I G. 23b

F I G. 24a

-56-F24-REFRESH ROW ADDRESS VALID (BUT IGNORED) AT TRIBUTE F I G. 24b - 25 - -22 - 25 T R . FAO-FA9 COLUMN 0/3/15 FDO-FD7 MAI6-MAI9 MAD 0-MAD 15 RAS <u>OE</u> SS

WE

F I G. 25

F I G. 26

F I G. 29a

		CCESSES RAW, D	_		_	CCESSE ISPLAY		CYCs
FA	256Kx (VMD)		IM x 4 (VMD		256Kx (VMD0		IM x 4-	
	ROW	COLUMN	ROW	COLUMN	ROW	COLUMN	ROW	COLUMN
9	-	_	MAD8	NCO		-	MAD 8	NCO
8	MAD 9	NCI	MAD 9	NCI	MAD 9	NCI	MAD 9	LNC I
7	MAD8	NC2	MA 17	MAD7	MAD 8	NC2	MA 17	MAD7
6	MAD 7	MAD 6	MA 16	MAD6	MAD7	MAD 6	MA 16	MAD 6
5	MADI5	MAD 5	MAD 15	MAD 5	MAD 15	MAD 5	MAD 15	MAD 5
4	MAD 14	MAD 4	MAD 14	MAD 4	MAD 14	MAD 4	MAD 14	MAD 4
3	MAD 13	MAD 3	MAD 13	MAD 3	MAD 13	MAD 3	MAD 13	MAD 3
2	MAD 12	MAD 2	MAD 12	MAD 2	MAD 12	MAD 2	MAD 12	MAD 2
	MADII	MADI	MADII	MADI	MADII	[WC]	MAD II	[WC]
0	MAD IO	MADO	MAD IO	MAD O	MAD IO	MC 07	MAD IO	wco_

[]: COLUMN ADDRESS COUNTER

	•											
	2 A (2 ACCESSES / MCYC (DRAW)	S/MC)	رد	4 ACI	CESSES (DISPL	4 ACCESSES / MCYC (DISPLAY)	()	16 ACCI	ESSES /	I6 ACCESSES /2MCYCS (DISPLAY)	S
ΡΑ	256Kx4 - BIT (VMD0=0)	-BIT)=0)	IMx 4-BIT (VMD0=1)	-BIT =1)	256Kx 4 -BIT (VMD0 = 0)	1-BIT =0)	IMx 4 – BIT (VMDO=1)	-BIT)=1)	256K×4-BIT (VMD0=0)	4-BIT =0)	IMx 4-BIT (VMD0=1)	- BIT = 1.)
	ROW	ROW COLUMN	i	ROW COLUMN	ROW	ROW COLUMN	ŀ	ROW COLUMN	ROW	COLUMN	ROW COLUMN ROW COLUMN	COLUMN
၈	ı	1	MA 18	MA 18 NCO	ı	ı	MA 18	MA IB NCO	ı	l	MA 18	MA IB NCO
ω	MAD 9 [NCI]		MAD 9	MAD 9 MAD 9 NCI MAD 9 MAD 8	MAD 9	NCI	MAD 9	MAD 8	MAD 9	NC	MAD 9 NCI MAD 9 MAD 8	MAD 8
7	MAD 8	MAD 7	MA 17		MAD 7 MAD 8 MAD7		MA 17		MAD 7 MAD 8 MAD 7 MA 17	MAD 7	MA 17	MAD 7
9	MA 16	MAD 6	MA 16	MA 16 MAD 6 MA 16 MAD 6 MA 16 MAD 6 MA 16 MAD 6 MA 16	MA 16	MAD 6	MA 16	MAD 6	MA 16	MAD 6	MA 16	MAD 6
2	MAD 15	MAD 5	MAD 15	MAD 5	MAD 15	MAD 5	MAD 15	MAD 5 MAD 15 MAD 5 MAD 15 MAD 5 MAD 15 MAD 15 MAD 15	MAD 15	MAD 5	MAD 15	MAD 5
4	MAD 14	MAD 14 MAD 4	MAD 14	MAD 14 MAD 4 MAD 14 MAD 4 MAD 14 MAD 14 MAD 14 MAD 14	MAD 14	MAD 4	MAD 14	MAD 4	MAD 14	MAD 4	MAD 14	MAD 14
3	MAD 13	MAD 13 MAD 3	MAD 13	MADIS MAD 3	MAD 13	MAD 3	MAD 13	MAD 3	MAD 13	MAD 3	MAD 13	MAD 3
2	MAD 12	MAD IZ MAD 2	MAD 12	MAD 2		MAD 2	MAD12	MADIZ MAD 2 MADIZ MAD 2 MADIZ WCZ MADIZ WCZ	MAD12	WC 2	MAD 12	WC 2
_	MAD II MAD I	MAD I	MADII	MADII MAD I		MAD I	MAD II	MADII MAD I MAD II MAD I MAD II WC I	MAD II	MC	MADII WC I	WC
0	O MAD IO MAD O	MAD O	MAD 10	MAD IO MAD O MAD IO WEO MAD IO WEO MAD IO WEO MAD IO WEO	MAD 10	[WCO]	MAD 10		MAD 10	WC 0	MAD 10	WC0

[_]; COLUMN ADDRESS COUNTER

F I G. 29c

	1,	ACCESSE (DRAV		°C	4AC	CESSES /		
FA	256K x 4 (VMD0		IM x 4 (VMDC		256K x (VMD0	4-BIT)=0)	IM×4 (VMD)	_
	ROW	COLUMN	ROW	COLUMN	ROW	COLUMN	ROW	COLUMN
9	-	_	MA 18	MAD 9	_	_	MA 18	MAD 9
8	MAD 9	MAD 8	MA 19	MAD 8	MAD 9	MAD 8	MA 19	MAD 8
7	MA 17	MAD 7	MA 17	MAD 7	MA 17	MAD 7	MAD 17	MAD 7
6	MA 16	MAD 6	MA 16	MAD 6	MA 16	MAD 6	MA 16	MAD 6
5	MAD 15	MAD 5	MAD 15	MAD 5	MAD 15	MAD 5	MAD 15	MAD 5
4	MAD 14	MAD 4	MAD 14	MAD 4	MAD 14	MAD 4	MAD 14	MAD 4
3	MAD 13	MAD 3	MAD 13	MAD 3	MAD 13	MAD 3	MAD 13	MAD 3
2	MAD 12	MAD 2	MAD 12	MAD 2	MAD 12	MAD 2	MAD 12	MAD 2
	MADII	MAD I	MAD II	MAD I	MADII	WCT 7	MAD II	[WC]
0	MADIO	MADO	MAD 10	MAD O	MAD IO	wco	MAD IO	wco

[]: COLUMN ADDRESS COUNTER

4 - 3