8. Modeli i postupci osvjetljavanja, sjenčanje, sjene

PODJELA MODELA OSVJETLJAVANJA I PRIPADNIH POSTUPAKA SJENČANJA

- temelje se na iskustvu i estetskim aproksimacijama
- npr. jednostavni model osvjetljavanja (lokalni)
- u postupcima sjenčanja koji ga koriste Gouraud '71 i Phong '75.

PRELAZNI MODELI

- uključuju prozirnost, zrcaljenje i sjene, geometrijski egzaktan
- npr. Whittedov model '80.
- koristi se u postupku sjenčanja pretrage zrake (engl. ray tracing)

ANALITIČKI MODELI

- temelji se na energetskoj ravnoteži
- npr. model Cook-Torrancea '82 i Goralov model '84.
- koristi se u postupku isijavanja (engl. radiosity method)

HIBRIDNI MODELI

- integriraju postupak pretrage zrake i postupak isijavanja
- npr. Wallace '87.

Prema modelu osvjetljavanja u pojedinoj točki računa se osvjetljenje

- interakcija svjetla i površine
- složena priroda svjetlosti i površine (različito reflektiranje raznih valnih duljina, ista valna duljina različito reflektirana ovisno o kutu)

Sjenčanje (engl. shading) dio je postupka izrade prikaza (engl. rendering).

Izvori svjetla

• točkasti, linijski, poligonalni, reflektori (usmjereni).

Materijali - površine

• hrapave (mat), glatke (sjajne), prozirne

8.1. EMPIRIJSKI MODEL OSVIJETLJENJA

(Phongov model)

TRI KOMPONENTE

- ambijentna
- difuzna
- zrcalna

AMBIJENTNA KOMPONENTA

$$I = k_a I_a$$

- k_a koeficijent reflektirane ambijentne svjetlosti (ovisi o materijalu)
- I_a intenzitet ambijentne svjetlosti

Reflektiranje svih poligona okolnog prostora. Aproksimacija globalnog osvjetljenja. Ukoliko ova komponenta nije prisutna stražnji poligoni obzirom na izvor svjetla bit će crni.

DIFUZNA KOMPONENTA (engl. diffuse reflection)

LAMBERT-OV ZAKON

Djelić površine dS rasvijetljen je proporcionalno kosinusu kuta pod kojim snop svjetlosti upada na površinu.

Količina svjetlosti koju vidi promatrač **neovisna** o položaju promatrača i proporcionalna je kosinusu kuta između normale na površinu i vektora prema izvoru.

<u>LIGHTPOSITION</u>

$$I_d = k_d I_p \cos \theta$$
, $0 \le k_d \le 1$, $0 \le \theta \le 90^\circ$

- k_d koeficijent difuzne refleksije
- I_p intenzitet točkastog izvora
- θ kut između normale na površinu i vektora prema izvoru

$$I_d = k_d I_p \max(\vec{l} \cdot \vec{n}, 0)$$

- \vec{l} normirani vektor prema izvoru svjetlosti
- \vec{n} normirani vektor normale na površinu
- http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/exploratories/applets/dotProduct/dot product java browser.html

U praksi moramo uzeti u obzir i udaljenost izvora do površine d_L .

$$I = k_a I_a + k_d I_p \frac{\vec{l} \cdot \vec{n}}{d_L^2}$$

Bolje rezultate dobit ćemo formulom

$$I = k_a I_a + k_d I_p \frac{\vec{l} \cdot \vec{n}}{d_L + k}$$

• *k* iskustvena konstanta

U slučaju potpunog modela boja, komponente se posebno računaju:

$$I_R = k_a O_{dR} I_{aR} + k_d O_{dR} I_{pR} \frac{\vec{l} \cdot \vec{n}}{d_L + k}$$

• O_{dR} definira komponentu boje objekta

ZRCALNA KOMPONENTA (engl. specular reflection)

Zrcalna refleksija nastaje na blještavoj površini.

Blještavilo (engl. highlight) obojeno je bojom upadne svjetlosti.

$$I_s = k_s I_p \frac{\cos^n \alpha}{d_L + k} = k_s I_p \frac{(\vec{r} \cdot \vec{v})^n}{d_L + k}$$

- \vec{r} vektor usmjeren u pravcu reflektirane zrake <u>r reflektirana zraka</u>
- \vec{v} vektor prema očištu
- α kut između reflektirane zrake i zrake prema očištu
- k_s koeficijent zrcalne refleksije
- *n* određuje prostornu razdiobu i vezan je uz materijal

[•]http://micro.magnet.fsu.edu/primer/java/reflection/reflectionangles/index.html

u praksi se često koristi vektor h, odnosno produkt hn umjesto vektora r, odnosno produkta rv

• jednostavno se računa
$$\vec{h} = \frac{\vec{l} + \vec{v}}{2}$$

• ukoliko pretpostavimo da su promatrač i izvor vrlo daleko tj. vektore možemo smatrati konstantnima, konačna jednadžba ovisit će samo o normali na površinu $I_s = k_s I_p \frac{\left(\vec{h} \cdot \vec{n}\right)^n}{d \cdot k}$

http://www.cs.princeton.edu/~min/cs426/jar/light.html

Za realne blještave površine imamo nepotpunu zrcalnu refleksiju. (Phong, 1975)

$$I_s = k_s I_p \frac{\cos^n \alpha}{d_I + k} = k_s I_p \frac{(\vec{r} \cdot \vec{v})^n}{d_I + k}$$

Funkcija cosⁿα:

LIGHTMATERIAL

$$n = 1$$

$$n = 15$$

$$n = 30$$

$$n = 1$$
 $n = 15$ $n = 30$ $n = 45$ $n = 60$

$$n = 60$$

PLASTIKA

METAL

Opća jednadžba sjenčanja za slučaj *m* izvora:

$$I = k_a I_a + \left[k_d \sum_{j=1}^m \frac{(\vec{l}_j \cdot \vec{n}) I_{p,j}}{d_{L,j} + k} + k_s \sum_{j=1}^m \frac{(\vec{r}_j \cdot \vec{v})^n I_{p,j}}{d_{L,j} + k} \right]$$

Sjenčanje u boji (primjer komponente crvene boje):

$$I_{R} = k_{a}O_{dR}I_{aR} + \left[k_{d}O_{dR}\sum_{j=1}^{m} \frac{(\vec{l}_{j} \cdot \vec{n})I_{p,j}}{d_{L,j} + k} + k_{s}O_{sR}\sum_{j=1}^{m} \frac{(\vec{r}_{j} \cdot \vec{v})^{n}I_{p,j}}{d_{L,j} + k}\right]$$

http://www.cs.technion.ac.il/~cs234325/Applets/applets/shadingmodel/html/index.html

difuzna

ambijentna

ukupno

zrcalna

POSTUPCI SJENČANJA

Konstantno sjenčanje

Sve točke površine unutar jednog poligona imaju isti intenzitet. To znači da je za neki poligon

$$\vec{l} \cdot \vec{n} = konst.$$
 $\vec{r} \cdot \vec{v} = konst.$

http://www.neilwallis.com/3d/

određivanje normala u vrhovima:

- određivanje normala svih poligonskih površina
- aritmetička sredina normala poligona incidentnih s vrhom

$$\vec{n}_A = \frac{\vec{n}_1 + \vec{n}_2 + \vec{n}_3 + \vec{n}_4}{4}$$

Gouraud-ovo sjenčanje (interpolacija intenziteta):

• u svakom vrhu poligona računa se intenzitet

• dobivene intenzitete linearno interpoliramo Sjecišta ispitne linije s bridovima neka su *Q*, *R* interpoliranje duž bridova

$$I_{Q} = (1-u)I_{A} + uI_{B}, \ u = \frac{\overline{AQ}}{\underline{AB}}$$

$$I_{R} = (1-v)I_{D} + vI_{C}, \ v = \frac{\overline{DR}}{\overline{DC}}$$
interpoliranje unutar poligona

$$I_P = (1-t)I_R + tI_Q, \ t = \frac{\overline{RP}}{\overline{RQ}}$$

• inkrementalni oblik

$$\begin{split} I_{P1} &= (1-t_1)I_R + t_1 \, I_Q, \\ I_{P2} &= (1-t_2)I_R + t_2 \, I_Q, \\ I_{P2} &= I_{P1} + (I_Q - I_R)(t_2 - t_1) = I_{P1} + \Delta I \, \Delta t \end{split}$$

• nedostatak postupka je Machov vizualni učinak (svijetle i tamne pruge)

•http://www.sandlotscience.com/Guided Tours/Tour2/Tour2 4.htm

http://www.nbb.cornell.edu/neurobio/land/OldStudentProjects/cs490-96to97/anson/MachBandingApplet/

Phong-ovo sjenčanje (interpolacija normala):

- izračunamo normale u vrhovima
- interpoliramo normale duž bridova
- interpolirmo dobivene normale duž ispitne linije
- intenzitet izračunamo na kraju

$$\vec{n}_{Q} = (1 - u)\vec{n}_{A} + u\vec{n}_{B}, \ u = \frac{\overline{AQ}}{\overline{AB}}$$

$$\vec{n}_{R} = (1 - v)\vec{n}_{D} + v\vec{n}_{C}, \ v = \frac{\overline{DR}}{\overline{DC}}$$

$$\vec{n}_P = (1 - t)\vec{n}_R + t\vec{n}_Q, \ t = \frac{RP}{RQ}$$

inkrementalni oblik:

$$\vec{n}_{P2} = \vec{n}_{P1} + (\vec{n}_Q - \vec{n}_R)(t_2 - t_1)$$

- Phong-ovo sjenčanje je bolje od sjenčanja Gouraud
- sporije je (za svaki slikovni element treba odrediti v, l, r, I)
- umanjuje Mach-ov vizualni učinak

http://olli.informatik.uni-oldenburg.de/Grafiti3/grafiti/flow12/page12.html http://www.anlonchen.com/cs/CS263Applet/Renderer.html

Složeniji modeli:

http://www.graphics.cornell.edu/~westin/multimedia-paper/node9.html#SECTION0006

Problemi u postupku sjenčanja

• silueta objekta - broj poligona

• normale u vrhovima

8.2. PRELAZNI MODELI

WHITTEDOV MODEL OSVJETLJAVANJA

Intenzitet koji dolazi do promatrača iz točke na površini funkcija je intenziteta

- ambijentne svjetlosti
- difuzno odbijene svjetlosti
- zrcalno odbijene svjetlosti (intenzitet sa susjednih površina kao posebnih izvora)
- lomljena svjetlost

$$I = k_a I_a + k_d \sum_{i=1}^{m} I_{pi} (\vec{l}_i \cdot \vec{n}) + k_s I_s + k_t I_t$$

- I_{pi} intenzitet i-tog točkastog izvora
- k_s koeficijent zrcalnog odbijanja
- I_s intenzitet zrcalno odbijene svjetlosti
- k_t koeficijent lomljene svjetlosti
- *I_t* intenzitet lomljene svjetlosti
- http://micro.magnet.fsu.edu/primer/java/scienceopticsu/polarizedlight/brewster/index.html

doprinosi zrcaljenja i loma svjetlosti

$$I = k_a I_a + k_d \sum_{i=1}^{m} I_{pi} (\vec{l}_i \cdot \vec{n}) + k_s I_s + k_t I_t$$

http://www.phy.ntnu.edu.tw/ntnujava/viewtopic.php?t=66

- postupak se sastoji od određivanja slikovnog elementa pogođenog zrakom od promatrača (kroz ravninu projekcije) i praćenja zrake dalje u scenu
- kod svakog pogotka objekta u sceni postupak se rekurzivno nastavlja za reflektiranu I_s (primarnu zraku) i lomljenu I_t (sekundarnu) zraku
- postupak se završava kada zraka izađe iz scene bez pogotka ili na unaprijed zadanoj dubini rekurzije (3-10)
- ukoliko postoji prepreka između izvora i točke u kojoj računamo osvjetljenje tada neki drugi objekt baca sjenu na promatranu točku

 $\underline{http://www.siggraph.org/education/materials/HyperGraph/raytrace/}\underline{I_{t_j}} ava/raytrace.\underline{html}$

Određivanje reflektirane i lomljene zrake

• određivanje reflektirane zrake – slično kao kod zrcalne komponente normiramo vektore (duljina je jedan) projekcija vektora l na n je vektor p

$$\vec{p} = (\vec{l} \ \vec{n}) \vec{n}$$

$$\vec{r} = 2(\vec{p} - \vec{l}) + \vec{l} = 2\vec{p} - \vec{l}$$

- određivanje lomljene zrake
 - Snell-ov zakon loma

$$\frac{\sin\theta_1}{\sin\theta_2} = \frac{\eta_2}{\eta_1}$$

http://micro.magnet.fsu.edu/primer/java/refraction/criticalangle/index.html http://www.phy.ntnu.edu.tw/ntnujava/viewtopic.php?t=218

STABLO ZRAKE

- http://www.cs.technion.ac.il/~cs234325/Applets/doc/html/etc/AppletIndex.html (http://www.cs.technion.ac.il/~cs234325/)
- http://www.gris.uni-tuebingen.de/grisalt/projects/grdev/doc/html/Overview.html
- http://www.cs.technion.ac.il/~cs234325/Applets/NewApplets/experiments/raycasting.html

rekurzivna formula za računanje intenziteta

• koeficijenti s oznakom k+1 koeficijenti su konkretne površine na dubini k+1

$$I^{(k)} = k_a^{(k+1)} I_a^{(k+1)} + k_d^{(k+1)} \sum_{i=1}^m I_{pi} (\vec{l}_i^{(k+1)} \cdot \vec{n}^{(k+1)}) + k_s^{(k+1)} I_s^{(k+1)} + k_t^{(k+1)} I_t^{(k+1)}$$

nedostaci postupka

- 75-95 % vremena troši se na određivanje sjecišta zrake i poligona
- ⇒ koriste se minimaks provjere s kvadrima ili kuglama, oktalna stabla, BSP stabla kako bi se smanjio utrošak vremena na računanje sjecišta
- postupak svejedno ostaje vremenski zahtjevan

nedostaci

- pojava aliasa
- ⇒ povećano uzorkovanje 4, 9, po razdiobi, adaptivno)

http://www.povray.org/

http://www.cs.berkeley.edu/~efros/java/tracer/tracer.html

nema difuzne komp.

difuzna komponenta

zrcaljenje okoliša

proziran objekt

bačene sjene, reflektor

http://www.stefan-baur.de/cs.lang.tinyray.0.html#content285

Ž. Mihajlović, ZEMRIS, FER 8-25

 $Kaustika \ \underline{\text{http://graphics.ucsd.edu/~henrik/images/cbox.html}} \\ \underline{\text{http://www.math.harvard.edu/archive/21a_spring_06/exhibits/coffeecup/index.html}}$