Exercise 12

David Wiedemann

27 mai 2021

1

We prove the double implication.

 \Rightarrow

Let us denote by A the adjacency matrix.

First suppose that G contains a cycle of length three, without loss of generality, we can suppose that the three vertices of the cycle are numbered by 1, 2 and 3.

Hence, $(1,2) \in E(G)$, and we deduce that the (1,2) entry of the adjacency matrix is different from 0.

Now consider the (1,2) entry of A^2 , applying the formula for matrix multiplication yields

$$\left(A^{2}\right)_{1,2} = \sum_{i=1}^{n} A_{1,i} A_{i,2}$$

Note that if i=3, by defintion $A_{1,3}A_{3,1}=1$, and, since all other terms of the sum are nonnegative, $(A^2)_{1,2}\geq 1$.

 \leftarrow

Now suppose that G is a graph such that $A_{i,j} \neq 0$ and $(A^2)_{i,j} \neq 0$.

This implies that the vertices i and j are adjacent.

Furthermore, this implies that

$$\sum_{k=1}^{n} A_{i,k} A_{k,j} \neq 0$$

This implies that there exists $l \in [n]$ such that $A_{i,l} = A_{l,j} = 1$, and hence $(i,j), (i,l), (l,j) \in E(G)$, which means G contains a triangle.

$\mathbf{2}$

We will proceed by induction on the number n of vertices of T which are not leafs

If n = 1, let v be the vertice of degree different to 1 and l_1, \ldots, l_k the set of all leafs.

Since $f(l_i) = g(l_i) \forall i \in [k]$ and since f and G are bijections on the set of vertices, we immediatly deduce that f(v) = g(v). Suppose the result shown for n, we will now show it for n+1.