組込みシステム概論

第5章 ホームエレクトロニクス

扇風機の構成

- ハードウェア部
 - マイクロプロセッサが制御の中心
- ソフトウェア部
 - ハードウェア部,機構部を制御
- 機構部(メカ)
 - モーターで送風と首振り
 - リモコンで操作

出典 三菱電機

第4章 ホームエレクトロニクス"扇風機" 学習のポイント

- マイクロプロセッサが制御の中心
 - ソフトウェアがハードウェア部と機構部を制御
- 組込みシステムを多方面から捉える
 - システム、機構、ハードウェア、ソフトウェア
 - 4項目の技術面に留まらず、地球環境、対人間対応、 事業性などから考える

扇風機とマイクロプロセッサ

表4.1 扇風機の機能

(V:対応 N:非対応)

	マイクロプロセッサ有り		マイクロプロセッサ無し	
機能	高機能版	廉価版	高機能版	廉価版
風量調整 強·中·弱	V	٧	V	V
風量リズム風	V	V	V	N
首振り	V	V	V	V
タイマ	V	V	V	N
リモコン	V	N	V	N
運転メモリ	V	V	N	N
安全	V	V	V	N

マイクロプロセッサ無しでも製品はできるが 専用IC, LEDドライバ,タイマーなどが必要 → 部品コスト合計よりマイコンが安価になった

組込みシステムの捉え方 企業/事業

企業が扇風機を事業としてみる

- ・全世界の生産数1億台で市場規模4000億円
- そのうち日本市場は約10% (2010年)

事業戦略の考え方

- 安い海外市場を無視してはいけない
- 海外市場のニーズをくみ取った商品開発
- ・良い商品を安く生産
- 日本メーカのブランドを生かし高級版と超廉 価版の2本立て

図4.1 扇風機を外と内から見る

設計時には様々な立場から眺めることが重要

扇風機の開発

- 扇風機制御基板
 - 両面基板に回路実装
- LEDによる表示回路
 - コストダウン設計
- プログラム開発
 - 開発支援システムを使用

出典 三菱電機

図4.3 扇風機制御基板

(b)制御基板裏面 金属板はシールド

小型化するには部品を 基盤の表裏の両面に実装する

ç

図4.4 扇風機の基盤回路を読む

(a) パソコンに画像を取り込み、回路を読取る

(b) 読取った基板のLED表示回 路の部分

他社製品を購入して 分解することも行われる

10

図4.5 扇風機のLEDによる表示

LEDの点灯回路を工夫してコストダウン

表4.2 7つのLED表示方式一覧

		必要ポート数	最大表示数
(i) 方式	LED-ポート個別対応	7	7
(ii) 4x2	ダイナミック表示	6	8
(iii) 3x3	ダイナミック表示	6	9
(iv) 4x3	ダイナミック表示	7	12
(iv)	2線式シリアル	2	7以上任意
(V)	1線式シリアル	1	7以上任意

12

図4.6 扇風機のLED表示の推測

(a)LED-ポート個別(b)ダイナミック方式(c)出力ポート方式抵抗7つ抵抗4つ

ダイナミック方式で抵抗を3つ削減

図4.7 プログラム開発支援システム

PCを接続してプログラム開発とデバッグ

図4.8 プログラム開発支援システム

13

(b)左から絶縁トランス (a)扇風機本体、ノートPC (100v),M16Cデバッガ、開発基板

扇風機の内部状態がPCからモニタ出来る

図4.9 プログラム開発基板

M16Cマイコンのポート

図4.10 プログラムフローチャート

Arduinoの制御プログラムと基本は同じ

演習問題

教科書80 ページの設問2,3,4に答えよ

設問2 1 つの機器でマイクロプロセッサをもたないものともつものを5 例あげて、どちらが適切であるかを説明せよ

設問3 同じ海外で生産しても、海外メーカの開発 品の方が安い理由を示せ

設問4役に立つ(新しい)扇風機の仕様を示せ

18