Alan Palayil (A20447935)

ECE 242

Exercise #1

- 1) Can MC68000 read a word beginning at address 5003? Explain your answer.
 - ➤ No, the MC68000 cannot read a word beginning at address 5003 as words need to have an even address.
- 2) Name the 3 internal bus in a microcomputer organization and describe their functionalities.
 - > The 3 internal buses in a microcomputer are:
 - (1) Address Bus: It is a unidirectional bus that carries location/ memory addresses from processor to other components like the storage and I/O devices.
 - (2) Data Bus: It is a bidirectional bus that carries data between processor and other components.
 - (3) Control Bus: It is a unidirectional bus that carries control signals from the processor to other components.
- 3) How many bits (address lines) are necessary to address a memory with:

Let 'n' be the number of address lines (address bits) and 'a' is the number of locations using the formula $n = \log_2 a$

a) 256 locations

$$n = \log_2 256$$
$$= 8$$

Thus, 8 bits (address lines) are necessary to address a 256-location memory.

b) 1,024 locations

$$n = \log_2 1024$$
$$= 10$$

Thus, 10 bits (address lines) are necessary to address a 1,024-location memory.

c) 16,777,216 locations

$$n = \log_2 16777216$$

Thus, 24 bits (address lines) are necessary to address a 16,777,216-location memory.

4) Convert the binary number to decimal: 0100.0110₂

$$(0100.0110)_2 = (0 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (0 \times 2^0) + (0 \times 2^{-1}) + (1 \times 2^{-2}) + (1 \times 2^{-3}) + (0 \times 2^{-4})$$

$$= (4.375)_{10}$$

Thus, the decimal value is 4.375.

- 5) Compute the decimal value of the following numbers:
 - a) 130_9

$$130_9 = (1*9^2) + (3*9^1) + (0*9^0)$$

= (81 +27+ 0)₁₀
= (108)₁₀

Thus, the decimal value is 108.

b) 120₅

Converting
$$120_5$$
 to base 10

$$120_5 = (1*5^2) + (2*5^1) + (0*5^0)$$

$$= (25 + 10 + 0)_{10}$$

$$= (35)_{10}$$

Thus, the decimal value is 35.

c) 0.7132_8

Converting
$$0.7132_8$$
 to base 10
 $0.7132_8 = (0*8^0) + (7*8^{-1}) + (1*8^{-2}) + (3*8^{-3}) + (2*8^{-4})$

$$= (0+\frac{7}{8} + \frac{1}{64} + \frac{3}{512} + \frac{1}{2048})_{10}$$

$$= (\frac{1837}{2048})_{10}$$

$$= (0.896973)_{10}$$

Thus, the decimal value is 0.896973.

d) FD5A₁₆

$$\begin{aligned} FD5A_{16} &= (F*16^3) + (D*16^2) + (5*16^1) + (A*16^0) \\ &= (15*4096 + 13*256 + 5*16 + 10*1)_{10} \\ &= (64858)_{10} \end{aligned}$$

Thus, the decimal value is 64858.

6) Convert the following numbers as indicated:

a) 1024₁₀ to hexadecimal

Division by 16	Quotient	Reminder (Digit)	Digit Position
(1024) /16	64	0	0
(64)/16	4	0	1
(4)/16	0	4	2

$$(1024)_{10} = (400)_{16}$$

Thus, the hexadecimal value is 400.

b) 530_{16} to binary

> First convert to binary:

$$(5)_{16} = (0101)_2$$

$$(3)_{16} = (0011)_2$$

$$(0)_{16} = (0000)_2$$

$$(530)_{16} = (10100110000)_2$$

Thus, the binary value is 10100110000.

c) FFFFFFFF₁₆ to octal

First convert to binary:

$$(F)_{16} = (1111)_2$$

Second break in sets of three and convert it into octal:

$$(FFFFFFFF)_{16} = (37777777777)_8$$

Thus, the octal value is 3777777777.

d) 35₁₀ to base 5

Division by 5	Quotient	Reminder (Digit)	Digit Position
(35) /5	7	0	0
(7) /5	1	2	1
(1)/5	1	1	2

$$(35)_{10} = (120)_5$$

Thus, the value to base 5 is 120.

- 7) Show the machine representation of the number 128 in the following ways:
 - a) Binary

Division by 2	Reminder (Digit)	Digit Position
(128) /2	0	0
(64) /2	0	1
(32) /2	0	2
(16)/2	0	3
(8) /2	0	4
(4) /2	0	5
(2)/2	0	6
(1)/2	1	7

Thus, 128 in binary is 10000000.

b) Binary-coded decimal

To convert spilt each digit to 1, 2 and 8 then convert them to binary 1 = 0001, 2 = 0010, and 8 = 1000

Thus, 128 in BCD is 000100101000.

- c) ASCII
 - ➤ Using ASCII Extended character table, the machine representation of 128 is Ç.

Thus, 128 in ASCII is Ç.

- 8) Answer the following question on floating-point representation:
 - a) Convert AD510010₁₆ to an IEEE single-precision floating-point number
 - \triangleright Sign Bit [S (1)] is 0 since the number is positive.

```
Converting AD51001016 to binary:
```

```
(A)_{16} = (1010)_2
(D)_{16} = (1101)_2
(5)_{16} = (0101)_2
(1)_{16} = (0001)_2
(0)_{16} = (0000)_2
(0)_{16} = (0000)_2
(1)_{16} = (0001)_2
(0)_{16} = (0000)_2
(AD510010)_{16} = (1010\ 1101\ 0101\ 0001\ 0000\ 0000\ 0001\ 0000)_2
(Format the above value to (-1)^S \times (1 + \text{Fraction}) \times 2^e)
                =(-1)^{0*}(1.010110101010001000000000010000)_{2}^{*}2^{31}
                 =(-1)^{0*}(1+0.01011010101010001000000000010000)_{2}^{*}2^{31}
Fraction= 0101 1010 1010 0010 0000 000
(As IEEE is a 32-bit number, I ignored everything after the 23<sup>rd</sup> bit)
Exp = 31 + 127
           = 158
           =(10011110)_2
IEEE number = S Exp Fraction (Placement)
               = 0\ 1001\ 1110\ 0101\ 1010\ 1010\ 0010\ 0000\ 000
```

Thus, the IEEE number is 01001111001011010101000100000000.

1 0	<u> </u>	
1	0111 1111	1010 0000 0000 0000 0000 000
Sign Bit [S ((1)] Exponent Bit [Exp	(8)] Fraction (23)

I. Since S is 1 it is negative.

II. Exp (8) is 0111 1111
=
$$1 \times 2^0 + 1 \times 2^1 + 1 \times 2^2 + 1 \times 2^3 + 1 \times 2^4 + 1 \times 2^5 + 1 \times 2^6 + 0 \times 2^7$$

= 127
e = Exp (8) value – 127
= 127- 127

$$=0$$

III. Fraction (23) is 1010 0000 0000 0000 0000 0000 (conversion to 1.xxx format)
=
$$1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} + 0 \times 2^{-4} + \cdots$$

$$=0.5+0.125$$

$$=0.625$$

Decimal form of IEEE single-precision floating-point number IV.

$$=(-1)^S \times (1 + \text{Fraction}) \times 2^e$$

$$= (-1)^1 \times (1 + 0.625) \times 2^0$$

Thus, the decimal number is -1.625.