Digital Integrated Circuit Lecture 11 Delay

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

GIST Lecture

Review of Previous Lecture

Lecture 10

- Noise margin of a CMOS inverter
- Delay
 - Transient simulation (SPICE)
 - Propagation delay

4.3 RC delay model

4.3. RC delay model (1)

- RC delay models approximate the nonlinear transistor IV and CV characteristics with an average resistance and capacitance over the switching range of the gate.
 - Total capacitance on output node: *C*
 - Effective resistance: *R*
 - − Propagation delay ~ RC

4.3. RC delay model (2)

- Equivalent R, gate and diffusion capacitance
 - Unit NMOS (for example, $4\lambda/2\lambda$) is defined to have an effective resistance of R. An NMOS, whose width is k times unit width, has a resistance of R/k.
 - Let us assume that unit PMOS has an effective resistance of 2R.
 - Capacitance is linearly scaled with the width.

4.3. RC delay model (3)

- A fanout-of-1 inverter
 - Estimate the delay.

4.3. RC delay model (4)

- Example 4.2
 - Consider a 3-input NAND gate.
 - What is the effective resistance?

Fig. 4.7(a)

4.3. RC delay model (5)

Anotate the gate with its gate and diffusion capacitances.

Fig. 4.7(c)

4.3. RC delay model (6)

- Example 4.4
 - -Estimate t_{pd} for a "unit" inverter (PMOS width:NMOS width=2:1 & minimum length) driving identical "unit" inverters.
 - Effective resistance is R. (Same for NMOS and PMOS)
 - -Capacitance is (3 + 3m)C. $t_{nd} = (3 + 3m)RC$

4.3. RC delay model (7)

- Example 4.5
 - -The driver is w times unit size.
 - The effective resistance is $\frac{R}{w}$ and the diffusion capacitance is wC.
 - Estimate t_{pd} .

$$t_{pd} = \left(3 + 3\frac{m}{w}\right)RC$$

$$t_{pd} = \left(3 + 3 - \frac{1}{w}\right)RC$$

$$- \text{With a fanout of } h = \frac{m}{w'},$$

$$t_{pd} = (3 + 3h)RC$$

4.3. RC delay model (8)

- A chain of R and C
 - A simple single time constant approximation

$$t_{pd} \approx \sum_{\text{nodes } i} R_{i-to-source} C_i$$

$$= R_1 C_1 + (R_1 + R_2) C_2 + ... + (R_1 + R_2 + ... + R_N) C_N$$

4.3. RC delay model (9)

- Example 4.7 (*h* identical NANDs)
 - We studied it in Example 4.2.

4.3. RC delay model (10)

- For the falling transition
 - Estimate t_{pdf} .
- For the rising transition (in the worst case)
 - Estimate t_{pdr} .

Fig. 4.15

4.3. RC delay model (11)

- For the falling transition
 - Estimate t_{pdf} .
- For the rising transition (in the worst case)
 - Estimate t_{pdr} .

Fig. 4.15

4.3. RC delay model (12)

- Delay components
 - Parastic delay: Time for a gate to drive its own internal diffusion capacitance
 - Effort delay: It depends on the ratio of external load capacitance to input capacitance.
 - -The normalized delay, $d = \frac{t_{pd}}{3RC}$, can be written as

d = parastic delay + effort delay

4.3. RC delay model (13)

- Layout dependence of capacitance
 - A good layout minimizes the diffusion area.

Thank you!