Teoria de grupos - Exercício 1

Mateus Marques

5 de abril de 2024

Grupo da molécula de amônia NH₃

- ightharpoonup Rotação própria de $2\pi/3$ em torno de $z \implies \mathcal{C}_3$
- Rotação própria de $2(2\pi/3)$ em torno de $z \implies C_3^2$ Rotação própria de $3(2\pi/3)$ em torno de $z \implies C_3^3 = E$
- 3 Reflexões $\sigma_{\rm v}$ em planos que contém o eixo z (planos paralelos ao eixo C_3) com $\not = 2\pi/3$
- Sem eixos impróprios

Grupo C_{3v}

Figura 1: Grupo C_{3v} associado à molécula de amônia.

Nos slides da Aula 3 (Figura 1), a professora deu como exemplo o grupo C_{3v} da amônia. Este grupo contém 6 elementos, sendo eles

- a identidade E;
- as três reflexões σ_{v1} , σ_{v2} e σ_{v3} representadas na Figura 1;
- as rotações C_3 (por 120°) e C_3^2 (por 240°) pelo eixo que passa pelo átomo de nitrogênio N e o baricentro do triângulo definido pelos três átomos de hidrogênio H.

Figura 2: Grupo do triângulo visto na Aula 2.

Nos slides da Aula 2 (Figura 2) a professora passou o grupo do triângulo. Note bem que se compararmos as Figuras 1 e 2, conseguimos estabelecer diretamente um isomorfismo entre o grupo do triângulo e o grupo C_{3v} . De fato, colocando os dois desenhos lado a lado na Figura 3 vemos imediatamente a identificação:

$$E \leftrightarrow E, \quad \sigma_{v1} \leftrightarrow B, \quad \sigma_{v2} \leftrightarrow A, \quad \sigma_{v3} \leftrightarrow C, \quad C_3 \leftrightarrow D, \quad C_3^2 \leftrightarrow F.$$
 (1)

Devido a esse isomorfismo, todas as propriedades algébricas entre os grupos seram iguais, em particular a tabela de multiplicação e a partição do grupo em classes.

Figura 3: Identificação imediata entre os elementos do grupo do triângulo e o grupo C_{3v} .

1. Ordem

O grupo se escreve $C_{3v} = \{E, \sigma_{v1}, \sigma_{v2}, \sigma_{v3}, C_3, C_3^2\}$ e possui ordem 6.

2. Tabela de Multiplicação

Pelo isomorfismo, a tabela de multiplicação do grupo C_{3v} é idêntica ao do grupo do triângulo (mostrada na Figura 2), dado que façamos a identificação 1. Portanto ela é:

Tabela 1: Tabela de multiplicação do grupo C_{3v} , construída pela tabela de multiplicação do grupo do triângulo (Figura 2) e o isomorfismo da equação 1.

	E	$\sigma_{ m v1}$	$\sigma_{ m v2}$	$\sigma_{ m v3}$	C_3	C_3^2
E	E	$\sigma_{ m v1}$	$\sigma_{ m v2}$	$\sigma_{ m v3}$	C_3	C_3^2
$\sigma_{ m v1}$	$\sigma_{ m v1}$	E	C_3	C_3^2	$\sigma_{ m v1}$	$\sigma_{ m v3}$
$\sigma_{ m v2}$	$\sigma_{ m v2}$	C_3^2	E	C_3	$\sigma_{ m v3}$	$\sigma_{ m v2}$
$\sigma_{ m v3}$	$\sigma_{ m v3}$	C_3	C_3^2	E	$\sigma_{ m v2}$	$\sigma_{\mathrm{v}1}$
C_3	C_3	$\sigma_{ m v3}$	$\sigma_{ m v2}$	$\sigma_{ m v1}$	C_3^2	E
C_3^2	C_3^2	$\sigma_{ m v1}$	$\sigma_{ m v3}$	$\sigma_{ m v2}$	E	C_3

3. Cíclico?

Como vemos na tabela de multiplicação 1, ela não é simétrica e portanto o grupo não é abeliano. Assim, ele também não é cíclico (não existe um único elemento gerador que gera todo o grupo).

4. Abeliano?

A tabela de multiplicação 1 não é simétrica, logo o grupo não é abeliano.

5. Classes

As classes do grupo C_{3v} são idênticas às classes do grupo do triângulo, ao realizarmos a identificação na equação 1. Portanto, olhando na Figura 2 vemos que as três classes são $\{E\}$, $\{\sigma_{v1}, \sigma_{v2}, \sigma_{v3}\}$ e $\{C_3, C_3^2\}$.