

المتمم

الطريقة العامة لإيجاد متمم هي:

- 1. نحافظ على الحالة البدائية
- لا نقلب كل حالة عادية (غير نهائية) لحالة نهائية وبالعكس مع الانتباه إلى ضرورة أن يكون الأوتومات المراد DFA التحويل منه هو DFA حصراً وإذا لم يكن DFA نحوله إلى DFA

1. مثال: أوجد المتمم للأوتومات الكلي

نحافظ على الحالة البدائية

ونقلب الحالات الغير نهائية (العادية) إلى نهائية وبالعكس مع المحافظة على الأسهم

إيجاد تقاطع لغتين (أوتوماتين)

إن عملية التقاطع بين لغتين L_{2} , L_{2} هو مجموعة السلاسل الموجودة في اللغتين معاً

خوارزمية إيجاد التقاطع:

- 1. إيجاد حالات أوتومات التقاطع، فإذا كان عدد الحالات في M_1 هو N هو M_2 هو أون عدد الحالات $(Q_1 \times Q_2)$ هو $N \times M$ هو $M(L_1 \cap L_2)$ حيث M_2 هي مجموعة حالات M_2 هي مجموعة حالات M_2 هي مجموعة حالات M_2
 - S_0 هي M_1 هي الحالة: إذا كانت الحالة البدائية في M_1 هي M_2 هي اجتماع الحالة البدائية من وفي m_1 هي أي هي احتماع الحالة البدائية من الأوتومات الأول مع الحالة البدائية من الأوتومات الثاني
- F_1 هي M_1 هي النهائية والمائية أو الموائية أو ا
 - 🖊 إيجاد الانتقالات: ويكون بالشكل التالي:

- إذا كان لدينا M_1 الانتقال:
 - وفي M_2 الانتقال: lacktriangle
- يكون الانتقال في الاوتومات النابج عن تقاطع اللغتين: a $q_i \, s_k$

2. مثال: أوجد تقاطع الأوتوماتين التاليين:

أوتومات يقبل السلاسل ذات Q_1 العدد الزوجى من الأصفار

أوتومات يقبل السلاسل ذات Q_2 العدد الفردي من الواحدات

- $Q=2\times 2=4$: Q_1,Q_2 يتم إيجاد عدد الحالات عن طريق أخذ الجداء الحيكارتي لـ Q=2
 - $Q=\{q_0s_0$, q_0s_1 , q_1s_0 , $q_1s_1\}$ الأوتومات الناتج): وحالات التقاطع هي (الأوتومات الناتج):
- q_0s_0 هي Q_1 هي الحالة البدائية هي Q_2 هي والحالة البدائية البدائية والحالة البدائية Q_1 هي Q_2 عن الحالة البدائية ا
- الحالة النهائية في Q_1 هي Q_0 والحالة النهائية في Q_2 هي Q_1 إذاً الحالة النهائية الناتجة هي Q_1 لوجود حالة نهائية وحيدة في كلا الأوتوماتين.

إيجاد الانتقالات:

	0	1
$\rightarrow q_0 s_0$	$q_1 s_0$	$q_0 s_1$
\star $q_0 s_1$	$q_1 s_1$	$q_0 s_0$
$q_1 s_0$	$q_0 s_0$	$q_1 s_1$
$q_1 s_1$	$q_0 s_1$	$q_1 s_0$

 q_1 في Q_1 عند الـ0 تنتقل إلى Q_1 في S_0 عند الـ0 تنتقل إلى S_0 نفسها S_0

 $q_1\,s_0$ عند الـ0 تنتقل إلى $q_0\,s_0$

في Q_1 عند الـ1 تنتقل إلى q_0 نفسها q_0 عند الـ1 تنتقل إلى q_0 في q_0 عند الـ1 تنتقل إلى q_0

 $q_0 \, s_1$ عند الـ1 تنتقل إلى $q_0 \, s_0$

- وبنفس الطريقة السابقة نوحد الانتقالات لبقية حالات الأوتومات الجديد...
 - لنرسم:

يمثل تقاطع سلاسل ذات عدد زوجي من الأصفار وعدد فردي من الواحدات بنفس الوقت.

توطئة الضخ

كما نعلم وذكرنا في المحاضرات النظرية تعتمد توطئة الضخ على مبدأ برج الحمام والذي ينص على:

- إذا كان لدينا m حمامة في n مكان حيث: $m\gg n$ مكان حيث $m\gg n$ وبالتالي إذا التمامات في m كائن في m مكان فإنه في مكان أو أكثر هناك كائنين أو أكثر موجودين في نفس المكان.
- m ويقبل سلسلة تحوي على عدد حالات n ويقبل سلسلة تحوي على عدد حالات n ويقبل سلسلة تحوي على وبشكل مماثل لمبدأ برج الحمام إذا كان لدينا أوتومات يحتوي على حالة معينة مرتين أو أكثر وبالتالي يوجد ضخ عند حالة ما. m>n

تعريف؛ من أجل كل لغة منتظمة يوجد ثابت (ثابت التوطئة أو الضخ)

طولها أكبر أو يساوي N فيمكن تقسيم الـ $S \in L \ |s| \geq N$ الله الـ $S \in L \ |s| \geq N$ طولها أكبر أو يساوي N > 1 فيمكن تقسيم الـ $S \in L \ |s| \geq N$ إلى ثلاث سلاسل أي إذا كان $S = L \ |s|$

$$S=X\ Y\ Z$$
 $\hat{\mathbf{m}}$ قسم بعد الحلقة $\hat{\mathbf{m}}$ قسم ما قبل الحلقة (الدوران)

(X,Y,Z سلسلة كيفية أي نحن من يقوم باختيار X,Y,Z بحيث تحقق:

شروط ثابتة دوماً
$$|XY| \leq N$$

$$|Y| > 0 \quad \text{ o} \quad |Y| \geq 1$$

$$\forall i > 0 \Rightarrow S = XYZ \in L$$

إذا اختل الشرط $L \leftarrow S = XYZ \in L$ لغة غير منتظمة

طول Y لا يساوي 0 أي على الأقل تحوي رمز واحد غير $\, arepsilon \,$ وطول |XY| أصغر أو يساوي ثابت الضخ.

تستخدم توطئة الضخ لإثبات أن اللغة غير منتظمة عن طريق نقض الفرض (وهو أن اللغة منتظمة) لأنه في حال كان الأوتومات غير منتهي فلدي عدد لا نهائي من الحالات.

وبدايةً نفرض أن N هو ثابت التوطئة وهو يتعلق بعدد الحالات.

(لأننا استطعنا تمثيلها بأوتومات N>0 اللغة منتظمة (لأننا استطعنا تمثيلها بأوتومات i=3

L عتى تكون اللغة منتظمة مهما تكن قيمة i إذا تم ضخ S بعدد مرات N يجب استمرار انتمائها ل

$L = \{a^i, b^j, i = j\}$ تمرين 1: أثبت أن اللغة غير منتظمة.

الحل: يمكن إثباتها عن طريق نقض الفرض

أى: نفرض أن (L) لغة منتظمة و N ثابت توطئة الضخ

$$N$$
 يجب أن تحقق L وتكون بدلالة

$$S = a^N . b^N$$

:نفرض
$$S$$
 سلسلة من L ولتكن

$$N+N=2N \Leftarrow$$
 مرة و b تحسب کالتالی: a تحسب کالتالی: S تحسب کالتالی: S طویلة S طویلة S

$$|S| = 2N > \Lambda$$

$$Y = a^k$$
; $k \ge 1$

$$|Y| \ge 1$$
 g $|XY| < N$

$$S = XYZ \in ^{?} L$$
 , $\forall i \geq 0$

ملاحظة: يختلف ثابت التوطئة من تمرين إلى أخر.

 $a^k \dots a$ تسلسل حالات |XY|

a على الأقل |Y|

$$XY$$
 عند زيادة b تزداد a وتبقى b ثابتة لأنها ليست ضمن c عند زيادة c عند زي

$$i = 2$$

$$i=2$$
 بفرض

$$a$$
 الا Z تحوي على تكرارات b وقد تحوي \leftarrow

$$b$$
 تکرارات a أکبر من تکرارات \leftarrow

$$a$$
 تزداد \leftarrow

$$i \geq 1$$

عند ضخ

وبالتالى اللغة غير منتظمة. $S \notin L \Leftarrow$

$$L = \{a^P : P \text{ is prime}\}$$
 : 2 تمرین

الحل: نفرض أن اللغة L منتظمة وأن N ثابت توطئة الضخ

Y هو عدد أولى أكبر أو يساوى الا P لكى تتكون حلقة تتكرر فيها N

$$S = a^{N}$$
; $|S| = N > P$
 $S = XYZ = a^{N}$
 $|XY| < P$, $|Y| \ge 1$
 $\forall i \ge 0 \implies S, X, Y^{i}, Z \in^{?} L$

$$Y = a^K; K \ge 1$$
:نفرض

$$S = XYZ = a^N \leftarrow i = 1$$
 بفرض

$$S = XYYZ = a^{N+K} \Leftarrow i = 2$$

قابل أن يكون أولى وغير أولى وهذا لا

 $S = XYYYZ = a^{N+2K} \leftarrow i = 3$ يكفي يجب أن تكون الحالة غير أولي حصراً

 $S = XY^{N+1}Z = a^{N+NK} = a^{N(1+K)} \Leftarrow i = N+1$ N(1+K) على الأقل K=1 وعلى N(1+K) ليس أولى لأنه يقبل القسمة على N و K=1

(ضرب عدد أولي بعدد غير الـ1 يصبح غير أولي $S \notin L \Leftarrow S$ اللغة غير منتظة)

 $L = \{a^i : i = j^2, j > 0\}$

: 3 تمرین

الحل $^{f t}$ نفرض L منتظمة و N ثابت التوطئة

الـN عدد حالات الأوتومات بما
 أن لا منتظمة فإن N تعبر عن
 ثابت التوطئة وهي عدد
 حالات الأوتومات المحتملة.

إذا لم تكن ا منتظمة لا
 يمكن تطبيق توطئة الضخ.

 $S=a^i:i=j^2 o a^{N^2}$ $|S|=N^2>N$ S=XYZ $|Y|\geq 1$, |XY|< N $K\geq 1\;;Y=a^K$: نفرض , $S=X\,Y^i\,Z\in ^?L \, \forall i\geq 0$ $X\,Y\,Z=a^{N^2+iK}$

$$S = XYZ = a^{N^2 + K} \quad \Leftarrow \quad i = 1$$
 نفرض:

نريد معرفة فيما اذا كان N^2+K هو مربع العدد أم لا

نعلم أن $N^2 < N^2 + K$ وبما أن K < N وبما أن نكتب:

$$N^2 < N^2 + K < N^2 + N < N^2 + 2N + 1$$

$$N^2 < (N+1)^2$$

مربع عددين متتاليين لا يمكن أن يوجد بينهما عدد

أي $N^2 + K$ ليس مربع لعدد

اللغة غير منتظمة $S \notin L$

نلاحظ أن خطوات الحل في توطئة الضخ ثابتة والاختلاف يكون في ثابت التوطئة

انتهت المحاضرة