Jamboree Case Study - Linear Regression

Problem Statement

Jamboree recently launched a feature where students/learners can come to their website and check their probability of getting into the IVY league college. This feature estimates the chances of graduate admission from an Indian perspective.

Additional View

- Lin Reg. will also help predict one's chances of admission given the rest of the variables.
- GRE Score, TOEFL Score & CGPA are most important attributes as per Indian Perspective.

Installing Dependencies

In [709]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Loading Dataset

In [710]:

```
jamboree = pd.read_csv('https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/0
```

In [711]:

```
jamboree.head(5)
```

Out[711]:

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
0	1	337	118	4	4.5	4.5	9.65	1	0.92
1	2	324	107	4	4.0	4.5	8.87	1	0.76
2	3	316	104	3	3.0	3.5	8.00	1	0.72
3	4	322	110	3	3.5	2.5	8.67	1	0.80
4	5	314	103	2	2.0	3.0	8.21	0	0.65

```
In [712]:
```

```
jamboree.drop(["Serial No."], axis = 1, inplace = True)
```

In [713]:

```
jamboree.shape
```

Out[713]:

(500, 8)

In [714]:

```
jamboree.dtypes
```

Out[714]:

GRE Score int64 TOEFL Score int64 University Rating int64 SOP float64 LOR float64 **CGPA** float64 int64 Research Chance of Admit float64 dtype: object

· All the features are numerical

In [715]:

```
jamboree.isnull().sum()
```

Out[715]:

GRE Score 0 TOEFL Score 0 University Rating 0 SOP LOR 0 **CGPA** Research 0 Chance of Admit 0 dtype: int64

· There is no null values

In [716]:

```
jamboree.describe().T
```

Out[716]:

	count	mean	std	min	25%	50%	75%	max	
GRE Score	500.0	316.47200	11.295148	290.00	308.0000	317.00	325.00	340.00	
TOEFL Score	500.0	107.19200	6.081868	92.00	103.0000	107.00	112.00	120.00	
University Rating	500.0	3.11400	1.143512	1.00	2.0000	3.00	4.00	5.00	
SOP	500.0	3.37400	0.991004	1.00	2.5000	3.50	4.00	5.00	
LOR	500.0	3.48400	0.925450	1.00	3.0000	3.50	4.00	5.00	
CGPA	500.0	8.57644	0.604813	6.80	8.1275	8.56	9.04	9.92	
Research	500.0	0.56000	0.496884	0.00	0.0000	1.00	1.00	1.00	
Chance of Admit	500.0	0.72174	0.141140	0.34	0.6300	0.72	0.82	0.97	

- While Observing the mean and 50% percentile of data there is no significant difference observed
- · We can conclude there are no outliers in the dataset.

In [717]:

```
jamboree.duplicated().sum()
```

Out[717]:

0

There is no duplicated values in the dataset

```
In [718]:
```

```
jamboree.columns = map(lambda x: x.strip(), jamboree.columns)
```

Non-Graphical Analysis

```
In [719]:
```

```
jamboree["University Rating"].value_counts(normalize=True)
```

Out[719]:

- 0.324 3
- 2 0.252
- 0.210
- 5 0.146
- 0.068 1

Name: University Rating, dtype: float64

· While observing the university rating. Most of universities average rated.

```
In [720]:
jamboree["SOP"].value_counts(normalize=True)
Out[720]:
4.0
      0.178
3.5
      0.176
      0.160
3.0
2.5
      0.128
4.5
       0.126
      0.086
2.0
       0.084
5.0
1.5
      0.050
1.0
       0.012
Name: SOP, dtype: float64
In [721]:
jamboree["Research"].value_counts(normalize=True)
Out[721]:
     0.56
     0.44
Name: Research, dtype: float64
```

· Above stats shows there are almost equal distribution among students who did research

Graphical Analysis: Univariate

In [722]:

20

TOEFL Score

```
num_cat = ["GRE Score", "TOEFL Score", "University Rating", "SOP", "LOR", "CGPA", "Resea
for i in range(len(num_cat)):
   fig = plt.figure(figsize = (15, 8))
   ax1 = plt.subplot2grid((1, 2), (0, 0))
   ax1.set_title(f"Distribution of {num_cat[i]}")
   ax1.set_xlabel(ax1.get_xlabel(), fontsize = 15)
   ax1.axvline(jamboree[num_cat[i]].mean(),color="green", label = "mean")
   ax1.axvline(jamboree[num cat[i]].median(),color="red", label = "median")
   ax1.legend(loc = "best")
   sns.histplot(data=jamboree, x=num_cat[i], ax=ax1, kde=True)
   ax2 = plt.subplot2grid((1, 2), (0, 1))
   ax2.set_title(f"Box plot for {num_cat[i]}")
   ax2.set_xlabel(ax1.get_xlabel(), fontsize = 15)
   sns.boxplot(data = jamboree, x=num_cat[i], ax=ax2)
plt.show()
```


100

105

TOEFL Score

110

115

120

- Mean of GRE Score is approx 315

- There is no outliers detected as mean and median overlaps
- TOEFL Score Analysis
 - Distribution of TOEFL somewhat resembles like Gaussian
 - Mean of TOEFL Score is approx 108
 - There is no outliers detected as mean and median overlaps
- LOR Analysis
 - Most of the students gets 3.5 out 5
- CGPA Analysis
 - Distribution of CGPA resembles like Gaussian
 - Mean of CGPA Score is approx 8.5
 - There is no outliers detected as mean and median overlaps
- · Chance of Admit
 - Mean of chance of admission is 0.72

Outliers Detection

From the above observation, There is no outliers detected in the dataset

In []:		

Graphical Analysis: Bivariate

In [723]:

```
num_cat = ["GRE Score", "TOEFL Score", "University Rating", "SOP", "LOR", "CGPA"]
target_cat = "Chance of Admit"

for i in range(len(num_cat)):
    fig = plt.figure(figsize = (15, 8))

    ax1 = plt.subplot2grid((1, 2), (0, 0))
    ax1.set_title(f"Distribution of {num_cat[i]}")
    ax1.set_xlabel(ax1.get_xlabel(), fontsize = 15)

# sns.histplot(data=jamboree, x=num_cat[i], ax=ax1, kde=True)
sns.regplot(data=jamboree, ax=ax1, x=num_cat[i], y=target_cat)

ax2 = plt.subplot2grid((1, 2), (0, 1))
    ax2.set_title(f"Box plot for {num_cat[i]}")
    ax2.set_xlabel(ax1.get_xlabel(), fontsize = 15)

# sns.boxplot(data = jamboree, x=num_cat[i], ax=ax2)
sns.lineplot(data=jamboree, x=num_cat[i], y=target_cat, ax=ax2)

plt.show()
```


- There is linear relationship between GRE and Chance of Admission
- Higher the GRE -> Higher the chance of admission
- TOEFL vs Chance of Admit Analysis
 - There is linear relationship between TOEFL and Chance of Admission
 - Higher the TOEFL -> Higher the chance of admission
- LOR / SOP / University Rating vs Chance of Admit Analysis
 - There is no significant linear relationship between TOEFL and Chance of Admission
- CGPA vs Chance of Admit Analysis
 - There is linear relationship between TOEFL and Chance of Admission
 - Higher the CGPA -> Higher the chance of admission

In [724]:

```
fig = sns.regplot(x="GRE Score",y="TOEFL Score",data=jamboree)
plt.title("GRE Score vs TOEFL Score")
plt.show()

fig = sns.regplot(x="GRE Score",y="CGPA",data=jamboree)
plt.title("GRE Score vs CGPA")
plt.show()
```


- People with higher GRE Scores also have higher TOEFL Scores which is justified because both TOEFL and GRE have a verbal section which although not similar are relatable
- Although there are exceptions, people with higher CGPA usually have higher GRE scores maybe because they are smart or hard working

```
In [725]:
```

```
fig = sns.scatterplot(x="CGPA", y="LOR", data=jamboree, hue="Research")
plt.title("LOR vs CGPA")
plt.show()
```


- LORs are not that related with CGPA so it is clear that a persons LOR is not dependent on that persons academic excellence.
- Having research experience is usually related with a good LOR which might be justified by the fact that supervisors have personal interaction with the students performing research which usually results in good LORs

In [726]:

```
fig = sns.scatterplot(x="GRE Score", y="LOR", data=jamboree, hue="Research")
plt.title("GRE Score vs CGPA")
plt.show()
```


 GRE scores and LORs are also not that related. People with different kinds of LORs have all kinds of GRE scores

In [727]:

```
fig = sns.scatterplot(x="CGPA", y="SOP", data=jamboree)
plt.title("SOP vs CGPA")
plt.show()

fig = sns.scatterplot(x="GRE Score", y="SOP", data=jamboree)
plt.title("GRE Score vs SOP")
plt.show()

fig = sns.scatterplot(x="TOEFL Score", y="SOP", data=jamboree)
plt.title("TOEFL Score vs SOP")
plt.show()
```


Correlation Analysis: Heat Map

In [728]:

```
fig = plt.figure(figsize = (15, 8))
corr = jamboree.corr()
sns.heatmap(corr, linewidths=.5, annot=True, cmap="Blues")
plt.show()
```


High Correlation

- 1. GRE Score vs TOEFL Score
- 2. CGPA vs TOEFL Score
- 3. CGPA vs GRE Score
- 4. Chance of Admit vs CGPA
- 5. GRE Score vs Chance of Admit

Data Preprocessing

Duplicate Value Check

```
In [729]:
```

```
np.any(jamboree.duplicated())
```

Out[729]:

False

Missing Value Check

In [730]:

```
jamboree.isnull().sum()
```

Out[730]:

GRE Score	0
TOEFL Score	0
University Rating	0
SOP	0
LOR	0
CGPA	0
Research	0
Chance of Admit	0
dtype: int64	

Outlier Check

```
In [731]:
```

```
for i in data.columns:
  print("=====" * 10)
  print("Mean of {}: ".format(i), jamboree[i].mean())
  print("Median of {}: ".format(i), jamboree[i].median())
______
Mean of GRE Score: 316.472
Median of GRE Score: 317.0
______
Mean of TOEFL Score: 107.192
Median of TOEFL Score: 107.0
______
Mean of University Rating: 3.114
Median of University Rating: 3.0
_____
Mean of SOP: 3.374
Median of SOP: 3.5
_____
Mean of LOR: 3.484
Median of LOR: 3.5
______
Mean of CGPA: 8.576440000000003
Median of CGPA: 8.56
_____
Mean of Research: 0.56
Median of Research: 1.0
______
Mean of Chance of Admit: 0.721739999999999
Median of Chance of Admit: 0.72
```

No outliers detected. As each and every feature overlaps its mean and median

Feature Engineering & Data Modelling

```
In [732]:
```

```
from sklearn.model_selection import train_test_split

X = jamboree.drop(['Chance of Admit'], axis=1)
y = jamboree['Chance of Admit']

print("X shape: {}".format(X.shape))
print("y shape: {}".format(y.shape))

X shape: (500, 7)
y shape: (500,)
```

Train & Test Split

In [733]:

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=True)

print("X_train shape: {}".format(X_train.shape))
print("X_test shape: {}".format(X_test.shape))
print("y_train shape: {}".format(y_train.shape))
print("y_test shape: {}".format(y_test.shape))

X_train shape: (400, 7)
X_test shape: (100, 7)
y_train shape: (400,)
y_test shape: (100,)
```

In [734]:

```
X_train.head(5)
```

Out[734]:

	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research
312	311	107	4	4.5	4.5	9.00	1
32	338	118	4	3.0	4.5	9.40	1
194	316	109	3	3.5	3.0	8.76	0
490	307	105	2	2.5	4.5	8.12	1
470	320	110	5	4.0	4.0	9.27	1

In [735]:

```
y_train
```

```
Out[735]:
```

```
312
       0.78
       0.91
32
       0.77
194
490
       0.67
470
       0.87
145
       0.81
       0.53
492
59
       0.42
339
       0.81
88
       0.64
Name: Chance of Admit, Length: 400, dtype: float64
```

Feature standardization

In [736]:

```
# Standarization
from sklearn.preprocessing import StandardScaler
X_train_columns=X_train.columns
std=StandardScaler()
X_train_std=std.fit_transform(X_train)
```

In [737]:

```
X_train_std
```

Out[737]:

```
array([[-0.48601649, -0.0276501 , 0.79650712, ..., 1.11439835, 0.695962 , 0.86413245],
[ 1.87625988, 1.761474 , 0.79650712, ..., 1.11439835, 1.36072183, 0.86413245],
[ -0.0485579 , 0.29764519, -0.08361124, ..., -0.53047007, 0.2971061 , -1.15723001],
...,
[ -0.48601649, -0.51559304, -0.96372961, ..., -1.62704901, -0.46736771, -1.15723001],
[ 0.65137584, -0.0276501 , 1.67662549, ..., 0.56610888, 0.13091614, 0.86413245],
[ -0.22354134, 0.13499755, -0.08361124, ..., 0.01781941, -0.73327164, -1.15723001]])
```

In [738]:

```
X_train = pd.DataFrame(data = X_train_std, columns = X_train_columns)
X_train.head(5)
```

Out[738]:

	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research
0	-0.486016	-0.027650	0.796507	1.119664	1.114398	0.695962	0.864132
1	1.876260	1.761474	0.796507	-0.379886	1.114398	1.360722	0.864132
2	-0.048558	0.297645	-0.083611	0.119964	-0.530470	0.297106	-1.157230
3	-0.835983	-0.352945	-0.963730	-0.879736	1.114398	-0.766510	0.864132
4	0.301409	0.460293	1.676625	0.619814	0.566109	1.144675	0.864132

Model Building: Lin Reg, Lasso Reg, Ridge Reg

In [739]:

```
from sklearn.linear model import LinearRegression, Lasso, Ridge
from sklearn.metrics import mean_squared_error
from statsmodels.stats.outliers_influence import variance_inflation_factor
import statsmodels.api as sm
lm = LinearRegression()
lm.fit(X_train.values, y_train)
predictions = lm.predict(std.transform(X_test))
print("RMSE Linear Regression: ", np.sqrt(mean_squared_error(y_test, predictions)))
list(zip(X train.columns, lm.coef ))
RMSE Linear Regression: 0.06568274378853765
Out[739]:
[('GRE Score', 0.02279984761710703),
 ('TOEFL Score', 0.018155915077019393),
 ('University Rating', 0.008078145789796546),
 ('SOP', 0.0009158722244926622),
 ('LOR', 0.012516168309954182),
 ('CGPA', 0.07159838907779793),
 ('Research', 0.009193614982627534)]
```

In [740]:

```
lm = Lasso()
lm.fit(X_train.values, y_train)
predictions = lm.predict(std.transform(X_test))
print("RMSE Lasso Regression: ", np.sqrt(mean_squared_error(y_test, predictions)))
list(zip(X_train.columns, lm.coef_))
```

RMSE Lasso Regression: 0.1448401877933055

Out[740]:

```
[('GRE Score', 0.0),
 ('TOEFL Score', 0.0),
 ('University Rating', 0.0),
 ('SOP', 0.0),
 ('LOR', 0.0),
 ('CGPA', 0.0),
 ('Research', 0.0)]
```

```
In [741]:
lm = Ridge()
lm.fit(X_train.values, y_train)
predictions = lm.predict(std.transform(X_test))
print("RMSE Lasso Regression: ", np.sqrt(mean_squared_error(y_test, predictions)))
list(zip(X_train.columns, lm.coef_))
RMSE Lasso Regression: 0.0656776692949077
Out[741]:
[('GRE Score', 0.022981409017396162),
 ('TOEFL Score', 0.018297984338214893),
 ('University Rating', 0.008146094998667114),
 ('SOP', 0.0010764691675055765),
 ('LOR', 0.01256553212079061),
 ('CGPA', 0.07094749270353783),
```

Model Summary using stats model library

('Research', 0.009223428627942506)]

```
In [742]:
```

```
def build model(X,y):
   X = sm.add_constant(X) #Adding the constant
   lm = sm.OLS(y.values,X).fit() # fitting the model
   print(lm.summary()) # model summary
   return X
def checkVIF(X):
   vif = pd.DataFrame()
   vif['Features'] = X.columns
   vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
   vif['VIF'] = round(vif['VIF'], 2)
   vif = vif.sort_values(by = "VIF", ascending = False)
   return(vif)
```

Model 1

```
In [743]:
```

X_train_new = build_model(X_train, y_train)

OLS Regression Results

	=======	:=====			
====					
Dep. Variable:		у	R-squared:		
0.828 Model:		OLS	Adj. R-squar	and:	
0.825		UL3	Auj. K-Squai	eu.	
Method:	Least	Sauanes	F-statistic:		2
70.2	Least	Squar es	r-statistic.	•	2
Date:	Thu 2/1 /	ug 2023	Prob (F-stat	istic).	1.01e
-145	111u, 24 P	ug 2023	1100 (1-3ca)	ciscic).	1.016
Time:	2	2:43:25	Log-Likeliho	ood:	57
1.18	2	.2.73.23	LOG LIKCIIN	Jou.	57
No. Observations:		400	AIC:		-1
126.		400	AIC.		-
Df Residuals:		392	BIC:		-1
094.		332	DIC.		_
Df Model:		7			
Covariance Type:	nc	nrobust			
===========			========		:=======
========					
	coef	std err	t	P> t	[0.025
0.975]					L
const	0.7244	0.003	247.175	0.000	0.719
0.730					
GRE Score	0.0228	0.006	3.676	0.000	0.011
0.035					
TOEFL Score	0.0182	0.006	3.207	0.001	0.007
0.029					
University Rating	0.0081	0.005	1.656	0.099	-0.002
0.018					
SOP	0.0009	0.005	0.186	0.853	-0.009
0.011					
LOR	0.0125	0.004	2.995	0.003	0.004
0.021					
CGPA	0.0716	0.006	11.183	0.000	0.059
0.084					
Research	0.0092	0.004	2.551	0.011	0.002
0.016					
=======================================	=======	:======	========		========
====		04 400	5 11 11 1		
Omnibus:		91.100	Durbin-Watso	on:	
1.968				(35)	0.4
Prob(Omnibus):		0.000	Jarque-Bera	(JR):	21
6.020		4 435	D I. (3D)		4 0 4
Skew:		-1.135	Prob(JB):		1.24
e-47		F 704	Cond No		
Kurtosis:		5.794	Cond. No.		
5.69					
=======================================	========	:======	========	========	========
====					

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is cor rectly specified.

In [744]:

```
checkVIF(X_train_new)
```

Out[744]:

	Features	VIF
6	CGPA	4.77
1	GRE Score	4.48
2	TOEFL Score	3.73
4	SOP	2.82
3	University Rating	2.77
5	LOR	2.03
7	Research	1.51
0	const	1.00

Inference

• p-vale of SOP seems to be higher than the significance value of 0.05, hence dropping it as it is insignificant in presence of other variables.

In [745]:

```
X_train_new = X_train_new.drop(["SOP"], axis = 1)
```

Model 2

In [746]:

X_train_new = build_model(X_train_new, y_train)

OLS Regression Results					
====					
Dep. Variable: 0.828		у	R-squared:		
Model:		OLS	Adj. R-squa	red:	
0.826 Method:	Least	Squares	F-statistic	:	3
16.1					Г ГГо
Date: -147	111u, 24 <i>F</i>	Aug 2023	Prob (F-sta	(15(16):	5.55e
Time: 1.16	2	22:43:25	Log-Likelih	ood:	57
No. Observations:		400	AIC:		-1
128. Df Residuals:		393	BIC:		-1
100.					
Df Model:		6			
Covariance Type:	no	onrobust			
=======================================	=======	=======	========	=======	=======
	coef	std err	+	P> t	[0.025
0.975]	2021	Jed C		. , , e	[0.023
	0.7044	0.000	247 470	0.000	0 710
const 0.730	0.7244	0.003	247.479	0.000	0.719
GRE Score	0.0228	0.006	3.678	0.000	0.011
0.035					
TOEFL Score	0.0182	0.006	3.224	0.001	0.007
0.029 University Rating	0.0084	0.004	1.893	0.059	-0.000
0.017	0.0004	0.004	1.055	0.033	0.000
LOR	0.0127	0.004	3.162	0.002	0.005
0.021					
CGPA	0.0718	0.006	11.427	0.000	0.059
0.084 Research	0.0092	0.004	2.562	0.011	0.002
0.016	0.002		_,,,	0.022	0.002
=======================================	=======		========	=======	========
====					
Omnibus:		90.434	Durbin-Wats	on:	
1.968 Prob(Omnibus):		0.000	Jarque-Bera	(JR).	21
3.539		0.000	Jai que Dei a	(30).	21
Skew:		-1.129	Prob(JB):		4.27
e-47			• •		
Kurtosis:		5.778	Cond. No.		
5.26					
=======================================	=======		========	=======	========
====					

[1] Standard Errors assume that the covariance matrix of the errors is cor rectly specified.

```
In [747]:
```

```
checkVIF(X_train_new)
```

Out[747]:

	Features	VIF
5	CGPA	4.61
1	GRE Score	4.48
2	TOEFL Score	3.72
3	University Rating	2.32
4	LOR	1.89
6	Research	1.51
0	const	1.00

In [748]:

```
X_train_new = X_train_new.drop(["University Rating"], axis = 1)
```

Inference

• p-vale of University Rating seems to be higher than the significance value of 0.05, hence dropping it as it is insignificant in presence of other variables.

MultiCollinearity Check using VIF

```
In [749]:
```

```
checkVIF(X_train_new)
```

Out[749]:

	Features	VIF
1	GRE Score	4.47
4	CGPA	4.38
2	TOEFL Score	3.65
3	LOR	1.71
5	Research	1.50
0	const	1.00

Inferences

· VIF looks fine and hence, we can go ahead with the predictions

In [750]:

```
lm = sm.OLS(y_train.values,X_train_new).fit()
y_train_admit = lm.predict(X_train_new)
```

Residual Analysis of the Model

In [751]:

```
# Plot the histogram of the error terms
fig = plt.figure()
sns.distplot((y_train - y_train_admit), bins = 20)
fig.suptitle('Error Terms', fontsize = 20)  # Plot heading
plt.show()
```

C:\Users\91798\miniconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Inferences

 Error terms seem to be approximately normally distributed, so the assumption on the linear modeling seems to be fulfilled.

Mean of Residuals

In [752]:

```
residuals = (y_train - y_train_admit)
np.mean(residuals)
```

Out[752]:

0.008274902905840436

```
In [753]:
```

```
X_train_new = X_train_new.drop('const',axis=1)
```

Mean of Residuals: -0.00277305161296889

```
In [754]:
```

```
# Now Let's use our model to make predictions.
# Creating X_test_new dataframe by dropping variables from X_test
X_test_new = X_test[X_train_new.columns]

# Adding a constant variable
X_test_new = sm.add_constant(std.fit_transform(X_test_new))
# Making predictions
y_pred = lm.predict(X_test_new)
```

Linearity of Variables: Residual Plot

In [755]:

```
for i in X_train_new.columns:
   plt.figure(figsize = (15, 8))
   sns.residplot(x=X_train_new[i], y=y_train_admit)
```


In [756]:

```
residuals = y_test - y_pred
p = sns.scatterplot(x=y_pred,y=residuals)
plt.xlabel('predicted values')
plt.ylabel('Residuals')
# plt.ylim(-0.4,0.4)
# plt.xlim(0,1)
```

Out[756]:

Text(0, 0.5, 'Residuals')

In [757]:

```
import statsmodels.stats.api as sas
from statsmodels.compat import lzip
name=['F statistics','p-value']
test=sas.het_goldfeldquandt(residuals,X_test)
lzip(name,test)
```

Out[757]:

```
[('F statistics', 1.1495491734096537), ('p-value', 0.32487005690653364)]
```

Inferences

• Here null hypothesis is - error terms are homoscedastic and since p-values >0.05, we fail to reject the null hypothesis

Normality of Residual

In [758]:

```
# Plotting y_test and y_pred to understand the spread.
fig = plt.figure()
plt.scatter(y_test.values, y_pred)
fig.suptitle('y_test vs y_pred', fontsize=20)  # Plot heading
plt.xlabel('y_test', fontsize=18)  # X-label
plt.ylabel('y_pred', fontsize=16)
```

Out[758]:

Text(0, 0.5, 'y_pred')

Inferences

y_test and y_pred overlaps for the most of the datapoints

In []:

```
fig = plt.figure()
sns.distplot(residuals, bins = 20)
fig.suptitle('Distribution of Residuals', fontsize = 20)
plt.show()
```

In [760]:

```
import matplotlib.pyplot as plt

#create Q-Q plot with 45-degree line added to plot
fig = sm.qqplot(residuals, line = "r")
plt.show()
```


Inferences

QQ Plots suggest majority of the data points fit the regression line.

Model performance evaluation

Metrics checked - MAE, RMSE, R2, Adj R2

In [761]:

```
from sklearn.metrics import mean_squared_error,r2_score,mean_absolute_error

print("======" * 10)
print('Mean Absolute Error: ',mean_absolute_error(y_test.values,pred))
print("=====" * 10)
print('Root Mean Square Error: ',np.sqrt(mean_squared_error(y_test.values,pred)))
print("======" * 10)
r2Score = r2_score(y_test, y_pred)
print('R2 Score: ', r2Score)
print("======" * 10)
aR2Score = 1 - (1-r2Score/(len(y_test)-X_test_new.shape[1]-1))
print('Adjusted. R2 Score: ', r2Score)
print("======" * 10)
```

Performance test Train & Test Dataset

In [762]:

```
print("======" * 10)
Trainr2Score = r2_score(y_train, y_train_admit)
print('Train R2 Score: ', Trainr2Score)
print("=====" * 10)
Testr2Score = r2_score(y_test, y_pred)
print('Test R2 Score: ', Testr2Score)
```

Train R2 Score: 0.8267706543222355

Test R2 Score: 0.7867445264177775

In [763]:

print(lm.summary())

OLS Regression Results						
====						
Dep. Variable:)	y R-squ	ared:		
0.827						
Model:		OLS	S Adj.∣	R-squared:		
0.825						
Method:	I	_east Squares	s F-sta	tistic:		3
76.1						
Date:	Thu	, 24 Aug 2023	3 Prob	(F-statistic):		1.61e
-147						
Time:		22:43:27	7 Log-L	ikelihood:		56
9.34						_
No. Observation	ıs:	400	AIC:			-1
127.		20	4 576			4
Df Residuals:		394	4 BIC:			-1
103.		,	_			
Df Model:		1 - -				
Covariance Type	: : 	nonrobust	L 			
=====			======			=====
=====	coof	std err	+	P> t	[0.025	
0.975]	coei	Stu en	·	PYICI	[0.025	
0.9/5]						
const	0.7244	0.003	246.672	0.000	0.719	
0.730	•••	0.005		0.000	• • • • • • • • • • • • • • • • • • • •	
GRE Score	0.0233	0.006	3.752	0.000	0.011	
0.035					****	
TOEFL Score	0.0197	0.006	3.509	0.001	0.009	
0.031						
LOR	0.0150	0.004	3.911	0.000	0.007	
0.023						
CGPA	0.0745	0.006	12.119	0.000	0.062	
0.087						
Research	0.0096	0.004	2.676	0.008	0.003	
0.017						
=========			======		======	=====
====						
Omnibus:		86.89	ð Durbi	n-Watson:		
1.980						
Prob(Omnibus):		0.000	∂ Jarqu	e-Bera (JB):		20
1.597						
Skew:		-1.093	B Prob(JB):		1.67
e-44						
Kurtosis:		5.70	5 Cond.	No.		
4.82						
==========	:======:		======	========		=====
====						

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is cor rectly specified.

Actionable Insights and Recommendations

- 1. R-sqaured and Adjusted R-squared (extent of fit) 0.83 and 0.82 85% variance explained.
- 2. F-stats and Prob(F-stats) (overall model fit) 387.9 and 1.03e-149(approx. 0.0) Model fit is significant and explained 82% variance is just not by chance.
- 3. p-values p-values for all the coefficients seem to be less than the significance level of 0.05. meaning that all the predictors are statistically significant.
- 4. There is lot of chance for the model improvement by tunining the parameters.
- 5. Currently this models attains accuracy around 80%. This can be improved further by doing some feature engg.
- 6. As the dataset is strictly provided for the Indian perspective. This model is not generalized, there is scope for the generalization of this model.
- 7. LogLikelihood is around 570 which indicates model is significantly fit.
- 8. Performance of training and test data is almost same indicates the model will work significantly on unseen data.
- 9. While observing the model and according to test assumptions We can infer errors are homoscedasticity according to p-value
- 10. While observing the linearity of residual there is no significant pattern found which indicates the residual plots are not correlated
- 11. While observing the normality of residual the distribution resembles like bell-shaped and the reg. line fits almost every point

In []:		