TÀI LIỆU HỌC TẬP MÔN VẬT LÍ LỚP 12

TÓM TẮT CÔNG THỰC VẬT LÍ 12

(CHƯƠNG TRÌNH CHUẨN)

യ്ക്ക

CÔNG THỨC VẬT LÝ 12 80 III 08

DAO ĐÔNG VÀ SÓNG CƠ I. DAO ĐÔNG ĐIỀU HÒA:

Chon gốc tọa độ tại vị trí cân bằng:

■ Phương trình dao động:

$$x = A\cos(\omega t + \varphi)$$

■ Phương trình vân tốc:

$$v = -\omega A \sin(\omega t + \varphi)$$

Phương trình gia tốc:

$$a = -\omega^2 A \cos(\omega t + \varphi) = -\omega^2 x$$

- x: Li đô dao động (cm, m)
- A: Biên đô dao động (cm, m)
- $\mathcal{P} \varphi$: Pha ban đầu (rad)
- $= \omega$: Tần số góc (rad/s)
- $(\omega t + \varphi)$: Pha dao động (rad)

Các giá trị cưc đại

$$x_{max} = A$$
 $v_{max} = \omega A$ (Tại VTCB)
 $a_{max} = \omega^2 A$ (Tại biên)

• Hệ thức độc lập: $A^2 = x^2 + \frac{v^2}{r^2}$

$$\rightarrow v = \pm \omega \sqrt{A^2 - x^2}$$

- +**Tai VTCB**: x = 0, $v_{max} = \omega A$, a = 0
- +**Tại biên**: $x_{max} = A$, v = 0, $a_{max} = \omega^2 A$
- +Tốc độ trung bình trong 1 chu kì:

$$\overline{v} = \frac{4A}{T}$$

- + Liên hệ về pha:
- v sớm pha $\frac{\pi}{2}$ hơn x;

• a sớm pha $\frac{\pi}{2}$ hơn v; a ngược pha với x

II. CON LẮC LÒ XO:

$$\text{ϖ Tần số góc: } \boxed{\omega = \sqrt{\frac{k}{m}}}$$

$$\Rightarrow \boxed{k = m\omega^2}; \ \boxed{\omega = 2\pi f}$$

From the left
$$T=\frac{2\pi}{\omega}$$
 $T=2\pi\sqrt{\frac{m}{k}}$

- Arr Nếu m=m₁ + m₂ $\Rightarrow \overline{T^2 = T_1^2 + T_2^2}$
- **3** Nếu m =m₁ m₂ ⇒ $T^2 = T_1^2 T_2^2$
- ⊃ Nếu trong thời gian t vật thực hiện được N dao đông:

Chu kì
$$T = \frac{t}{N}$$
 Tần số $f = \frac{N}{t}$

S Cắt lò xo:
$$k.l = k_1.l_1 = k_2.l_2$$

- **⊃** Ghép lò xo:
- + Nếu k_1 nối tiếp k_2 : $\frac{1}{k} = \frac{1}{k} + \frac{1}{k}$

$$\Rightarrow \boxed{T^2 = T_1^2 + T_2^2}$$

+ Nếu k_1 song song k_2 : $k = k_1 + k_2$

$$\Rightarrow \boxed{\frac{1}{T^2} = \frac{1}{T_1^2} + \frac{1}{T_2^2}}$$

⇒ Lập phương trình dao động điều hòa:

Phương trình có dang:

$$x = A\cos(\omega t + \varphi)$$

+ $Tim \omega$:

$$\omega = \sqrt{\frac{k}{m}}, \quad \omega = \frac{2\pi}{T}, \quad \omega = 2\pi f, \dots$$

+ Tîm A:

$$A^{2} = x^{2} + \frac{v^{2}}{\omega^{2}}, l = 2A, v_{\text{max}} = \omega A,...$$

+ $Tim \varphi$: Chọn t = 0 lúc vật qua vị trí x_0

$$\Rightarrow x_0 = A\cos\varphi$$

$$\Rightarrow \cos \varphi = \frac{x_0}{A} = \cos \theta$$

$$\Rightarrow \begin{cases} \varphi = \theta & \text{Vật CĐ theo chiều (-)} \\ \varphi = -\theta & \text{Vật CĐ theo chiều (+)} \end{cases}$$

⊃ Năng lượng dao động điều hòa:

☑ Động năng:

$$W_d = \frac{mv^2}{2} = \frac{kA^2}{2}\sin^2(\omega t + \varphi)$$

☑ Thế năng:

$$W_t = \frac{kx^2}{2} = \frac{kA^2}{2}\cos^2(\omega t + \varphi)$$

☑ Cơ năng:

$$W = W_d + W_t = h \dot{a} ng s \dot{o}$$

$$W = \frac{kA^2}{2} = \frac{m\omega^2 A^2}{2} = \frac{mv_{\text{max}}^2}{2}$$

a Con lắc lò xo treo thẳng đứng:

Goi l₀: Chiều dài tư nhiên của lò xo

 Δl : Độ dẫn của lò xo khi vật ở VTCB l_h: Chiều dài của lò xo khi vật ở VTCB

$$\Rightarrow l_b = l_0 + \Delta l$$

Khi vật ở VTCB: $F_{Ab} = P$

$$F_{dh} = P$$

$$\Rightarrow k\Delta l = mg$$

$$\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{g}{\Delta l}}$$

Chu kì của con lắc

$$T = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{\Delta l}{g}}$$

- *****Chiều dài của lò xo ở li độ x: $\mathbf{l} = \mathbf{l}_b + \mathbf{x}$
- Chiều dài cưc đại

(Khi vật ở vị trí thấp nhất) $I_{max} = I_b + A$

Chiều dài cưc tiểu

(Khi vật ở vị trí cao nhất) $I_{min} = I_b - A$

$$\Rightarrow A = \frac{l_{\text{max}} - l_{\text{min}}}{2}$$

$$l_b = \frac{l_{\text{max}} + l_{\text{min}}}{2}$$

★ Lưc đàn hồi của lò xo ở li đô x:

$$F_{dh} = k(\Delta l + x)$$

>Lưc đàn hồi cưc đại:

$$F_{dhmax} = k(\Delta l + A)$$

>Lưc đàn hồi cực tiểu:

$$F_{\text{dhmin}} = k(\Delta l - A) \text{ n\'eu } \Delta l > A$$

$$F_{\text{dhmin}} = 0 \text{ n\'eu } \Delta l \leq A$$

★ Lưc kéo về:

Là lực tổng hợp tác dụng lên vật (có xu hướng đưa vật về VTCB)

Độ lớn
$$F_{hp} = |kx|$$

 \Rightarrow Lực hồi phục cực đại: $\left|F_{hp}=\left|kA\right|\right|$

Lưu ý: Trong các công thức về lực và năng lượng thì A, x, Δl có đơn vị là (m).

III. CON LẮC ĐƠN

$$\text{Frin số góc: } \omega = \sqrt{\frac{g}{l}}$$

$$\text{P Chu ki:} T = 2\pi \sqrt{\frac{l}{g}} \quad \text{l(m), g(m/s^2)}$$

$$\vec{r} \, \vec{r} \, \hat{n} \, s \, \hat{o} : \left| f = \frac{1}{2\pi} \sqrt{\frac{g}{l}} \right| \text{(Hz)}$$

Phương trình dao động:

Theo cung lệch:
$$s = s_0 \cos(\omega t + \varphi)$$

Theo góc lệch:
$$\alpha = \alpha_0 \cos(\omega t + \varphi)$$

Với
$$s = l\alpha$$

l là chiều dài dây treo (m); α_0, s_0 là góc lệch , cung lệch khi vật ở biên (rad).

+ Công thức liên hệ:
$$S_0^2 = s^2 + \frac{v^2}{\omega^2}$$

$$Va v = \pm \omega \sqrt{S_0^2 - s^2}$$

Vận tốc:

lackip Khi dây treo lệch góc lpha bất kì:

$$v = \sqrt{2gl(\cos\alpha - \cos\alpha_0)}$$

ĭ Khi vật qua VTCB:

$$v = \sqrt{2gl(1 - \cos \alpha_0)}$$

lacktriangle Khi vật ở biên: v = 0

Lực căng dây:

lacksquare Khi vật ở góc lệch lpha bất kì:

$$T = mg(3\cos\alpha - 2\cos\alpha_0)$$

☑ Khi vật qua VTCB

$$T = mg(3 - 2\cos\alpha_0)$$

$$lacktriangle$$
 Khi vật ở biên: $T = mg \cos \alpha_0$

Khi $\alpha \le 10^{\circ}$ Có thể dùng

$$1-\cos\alpha_0 = 2\sin^2\frac{\alpha_0}{2} \approx \frac{\alpha_0^2}{2}$$

$$\Rightarrow \boxed{\mathbb{T}_{\text{max}} = mg(1+\alpha_0^2)};$$

$$\boxed{\mathbb{T}_{\text{min}} = mg(1-\frac{\alpha_0^2}{2})}$$

* Năng lượng dao động:

$$W = W_d + W_t = \text{hs}$$

$$W = mgl(1 - \cos \alpha_0) \approx \frac{1}{2} mgl\alpha_0^2$$

☑ Chu kì tăng hay giảm theo %:

$$\frac{\left|T_{2}-T_{1}\right|}{T_{1}}.100\%$$

☑ Chiều dài tăng hay giảm theo %:

$$\frac{|l_2 - l_1|}{l_1}.100\%$$

☑ Gia tốc tăng hay giảm theo %:

$$\frac{|g_2 - g_1|}{g_1}.100\%$$

IV. TỔNG HỢP DAO ĐỘNG

Xét 2 dao động điều hòa cùng phương cùng tần số:

$$x_1 = A_1 \cos(\omega t + \varphi_1)$$

$$va x_2 = A_2 cos(\omega t + \varphi_2)$$

Độ lệch pha:
$$\Delta \varphi = \varphi_2 - \varphi_1$$

Phương trình dao động tổng hợp có dạng:

$$x = A\cos(\omega t + \varphi)$$

$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos(\varphi_2 - \varphi_1)}$$

$$tg\,\varphi = \frac{A_1\sin\varphi_1 + A_2\sin\varphi_2}{A_1\cos\varphi_1 + A_2\cos\varphi_2}$$

☑ Nếu 2 dao động cùng pha:

$$\Delta \varphi = 2k\pi \implies A = A_1 + A_2$$

☑ Nếu 2 dao động ngược pha:

$$\Delta \varphi = (2k+1)\pi \implies A = |A_1 - A_2|$$

$$oxed{\square}$$
 Tổng quát $\left| A_1 - A_2 \right| \le A \le A_1 + A_2$

V. SÓNG CƠ HỌC

O Sóng do 1 nguồn

Xét sóng tại nguồn O có biểu thức

$$u_o = A\cos\omega t$$

Biểu thức sóng tại M cách O khoảng d:

$$u_{M} = A\cos(\omega t - \frac{2\pi d}{\lambda})$$

+ Bước sóng:
$$\lambda = \frac{v}{f} = v.T$$

+ Vận tốc truyền sóng:
$$v = \frac{s}{t}$$

* Độ lệch pha giữa 2 điểm trên phương truyền sóng cách nhau 1 khoảng d:

$$\Delta \varphi = \frac{2\pi d}{\lambda}$$

➤ Nếu 2 dao động cùng pha:

$$\left| \Delta \varphi = 2k\pi \right| \Rightarrow \left| d = k\lambda \right|$$

➤ Nếu 2 dao động ngược pha:

$$\Delta \varphi = (2k+1)\pi$$
 \Rightarrow $d = (k+\frac{1}{2})\lambda$

O Giao thoa sóng:

Xét sóng tại 2 nguồn S_1 và S_2 là 2 sóng kết hợp có biểu thức: $u = A\cos\omega t$

- + Xét điểm M cách nguồn A một khoảng d_1 , cách nguồn B một khoảng d_2
- + Biểu thức sóng tại M do S₁ truyền tới:

$$u_1 = A\cos(\omega t - \frac{2\pi d_1}{\lambda})$$

+ Biểu thức sóng tại M do S₂ truyền tới:

$$u_2 = A\cos(\omega t - \frac{2\pi d_2}{\lambda})$$

 \implies Biểu thức sóng tổng hợp tại M:

$$u_M = u_1 + u_2$$

$$ightharpoonup Biên độ: $A = 2A \left| \cos \left(\frac{d_2 - d_1}{\lambda} \right) \pi \right|$$$

> Pha ban đầu:
$$\varphi = -\frac{(d_1 + d_2)\pi}{\lambda}$$

■ Cực đại giao thoa:

$$A_{\text{max}} = 2A \iff d_2 - d_1 = k\lambda$$

■ Cưc tiểu giao thoa:

$$A_{\min} = 0 \iff d_2 - d_1 = (k + \frac{1}{2})\lambda$$

*Trường hợp sóng phát ra từ hai nguồn lệch pha nhau $\Delta \varphi = \varphi_2 - \varphi_1$ thì **số cực đại và cực tiểu trên đoạn thẳng S_1S_2** là số các giá trị của \mathbf{k} ($\in \mathbf{z}$) tính theo công thức:

Cực đại:

$$-\frac{S_1S_2}{\lambda} + \frac{\Delta \varphi}{2\pi} < k < \frac{S_1S_2}{\lambda} + \frac{\Delta \varphi}{2\pi}$$

Cực tiểu:

$$\frac{S_1S_2}{\lambda} - \frac{1}{2} + \frac{\Delta \varphi}{2\pi} < k < \frac{S_1S_2}{\lambda} - \frac{1}{2} + \frac{\Delta \varphi}{2\pi}$$

O Sóng dừng:

Gọi 1 là chiều dài của dây, k số bó sóng:

+ Nếu đầu A cố định, B cố định:

$$l = k \frac{\lambda}{2}$$

+ Nếu đầu A cố định, B tự do:

$$l = (k + \frac{1}{2})\frac{\lambda}{2}$$

DÒNG ĐIỂN XOAY CHIỀU

I. ĐẠI CƯƠNG ĐIỆN XOAY CHIỀU

Biểu thức cường độ dòng điện và điện áp

$$i = I_0 \cos(\omega t + \varphi_i)$$

 $va u = U_0 \cos(\omega t + \varphi_u)$

độ lệch pha của u so với i: $\varphi = \varphi_{_{\mathcal{U}}} - \varphi_{_{\dot{l}}}$

- $+ \varphi > 0$: u nhanh pha hơn i
- + φ < 0: u chậm pha hơn i
- $+ \varphi = 0$: u, i cùng pha

☑ Mạch chỉ có R:

 $\varphi = 0, \Rightarrow \mathbf{u_R}$, i cùng pha

$$\boxed{U_{0R} = I_0 R}$$
; $\boxed{U_R = I.R}$

- ☑ Mạch chỉ có cuộn cảm L:
- ightharpoonup Cảm kháng $Z_L = \omega L$

 $\varphi = \frac{\pi}{2} \Longrightarrow \mathbf{u_L}$ nhanh pha hơn $\mathbf{i} : \frac{\pi}{2}$

$$\boxed{\boldsymbol{U}_{0L} = \boldsymbol{I}_{0}.\boldsymbol{Z}_{L}}; \boxed{\boldsymbol{U}_{L} = \boldsymbol{I}.\boldsymbol{Z}_{L}}$$

- ☑ Mạch chỉ có tụ điện C:
- > Dung kháng $Z_C = \frac{1}{\omega C}$

$$\varphi = -\frac{\pi}{2} \Longrightarrow \mathbf{u_C}$$
 chậm pha hơn $\mathbf{i} : \frac{\pi}{2}$

$$\boxed{U_{0C} = I_0.Z_C}; \boxed{U_C = I.Z_C}$$

O Đoạn mạch R, L, C nối tiếp:

$$ightharpoonup Tổng trở: $Z = \sqrt{R^2 + (Z_L - Z_C)^2}$$$

Độ lệch pha của u so với i:

$$tg\,\varphi = \frac{Z_L - Z_C}{R}$$

➤ Định luật Ohm :

$$U_0 = I_0.Z$$
; $U = I.Z$

<u>Luru ý</u>: Số chỉ Ampe kế: $I = \frac{I_0}{\sqrt{2}}$

Số chỉ vôn kế: $U = \frac{U_0}{\sqrt{2}}$

○ Công suất mạch RLC:

$$P = UI \cos \varphi$$
; $P = RI^2 = U_R.I$

 $H\hat{e}$ số công suất mạch: $\cos \varphi = \frac{R}{Z}$

* Mạch RLC cộng hưởng:

Thay đổi L, C, ω đến khi $Z_L = Z_C$

Khi đó
$$Z_{\min} = R \Rightarrow I_{\max} = \frac{U}{Z_{\min}}$$

$$\Rightarrow P_{\text{max}} = R.I_{\text{max}}^2 = \frac{U^2}{R}$$

♦ Điều kiện cộng hưởng:

- + Công suất mạch cực đại
- + Hệ số công suất cực đại
- + Cđdđ, số chỉ ampe kế cực đại
- + u, i cùng pha

■ Cuộn dây có điện trở trong r:

- ightharpoonup Độ lệch pha giữa u_d và i: $tg \varphi_d = \frac{Z_L}{r}$
- ightharpoonup Công suất cuộn dây: $P_d = r.I^2$
- ➤ Hệ số công suất cuộn dây:

$$\cos \varphi_d = \frac{r}{Z_d}$$

OMạch RLC khi cuộn dâycó điện trở r:

➤ Tổng trở:

$$Z = \sqrt{(R+r)^2 + (Z_L - Z_C)^2}$$

➤ Độ lệch pha của u so với i:

$$tg\,\varphi = \frac{Z_L - Z_C}{R + r}$$

➤ Công suất mạch:

$$P=(R+r).I^2$$

➤ Hệ số công suất mạch:

$$\cos \varphi = \frac{R+r}{Z}$$

■ Ghép tụ điện:

Khi C' ghép vào C tạo thành C_b

+ Nếu $C_b < C$: \Rightarrow C' ghép nt C

$$\Rightarrow \boxed{\frac{1}{C_b} = \frac{1}{C} + \frac{1}{C'}}$$

+ Nếu C_b> C: ⇒ C' ghép // với C

$$\Rightarrow C_b = C + C'$$

Bài toán cực trị:

■ Thay đổi R để P_{max}:

Công suất
$$P = RI^2 =$$

Tổng trở cuộn dây:
$$Z_d = \sqrt{r^2 + Z_L^2}$$

$$\Rightarrow \text{ Dổ lệch pha giữa ud và i: } tg \varphi_d = \frac{Z_L}{R}$$

$$\Rightarrow \boxed{R = |Z_L - Z_C|} \Rightarrow \boxed{P_{\text{max}} = \frac{U^2}{2R}}$$

■ Thay đổi L để U_{Imax} :

$$U_{L} = I.Z_{L} = \frac{U.Z_{L}}{\sqrt{R^{2} + (Z_{L} - Z_{C})^{2}}} = \frac{U}{\sqrt{(R^{2} + Z_{C}^{2})\frac{1}{Z_{L}^{2}} - 2Z_{C}.\frac{1}{Z_{L}} + 1}} = \frac{U}{\sqrt{y}}$$

$$egin{aligned} & ext{D\'e} \ U_{L max} \ ext{thi} \ y_{min} \Rightarrow y' = 0 \ \\ & \Rightarrow \boxed{Z_L = rac{R^2 + Z_C^2}{Z_C}} \ \\ & \Rightarrow \boxed{U_{L max} = rac{U}{R} \sqrt{R^2 + Z_C^2}} \end{aligned}$$

■ Thay đổi C để U_{Cmax}:

Twong tw.
$$Z_C = \frac{R^2 + Z_L^2}{Z_L};$$

$$U_{C \max} = \frac{U}{R} \sqrt{R^2 + Z_L^2}$$

II. LIÊN HỆ GIỮA CÁC ĐIỆN ÁP:

- + Hai đầu R có điện áp hiệu dụng U_R
- + Hai đầu L có điện áp hiệu dụng U_L
- + Hai đầu C có điện áp hiệu dụng U_C
- ➤ Điện áp hiệu dụng 2 đầu mạch:

$$U = \sqrt{U_R^2 + (U_L - U_C)^2}$$

➤ Độ lệch pha của u so với i:

$$tg\,\varphi = \frac{U_L - U_C}{U_R}$$

► Hệ số công suất mạch:

$$\cos \varphi = \frac{U_R}{U}$$

Khi cuộn dây có điện trở trong:

$$U = \sqrt{(U_R + U_r)^2 + (U_L - U_C)^2}$$

■ Cuộn dây có:

$$U_{d} = \sqrt{U_{r}^{2} + U_{L}^{2}}$$

$$tg \varphi_{d} = \frac{U_{L}}{U_{r}}; \cos \varphi_{d} = \frac{U_{r}}{U_{d}}$$

III. <u>SẢN XUẤT VÀ TRUYỀN TẢI</u> ĐIỆN NĂNG

☑ Máy phát điện xoay chiều 1 pha:

 $T \hat{a} n s \hat{o}$: f = n.p

với p: Số cặp c

p: Số cặp cực của nam châm.

n: Số vòng quay trong 1s

> Suất điện động cảm ứng:

$$e = E_0 \cos \omega t$$

- $ightharpoonup Với SĐĐ cực đại: <math>E_0 = NBS \omega$
- \triangleright Tù thông cực đại: $\phi_0 = BS$

Nếu cuộn dây có N vòng: $\phi_0 = NBS$

+ Mắc hình sao:

$$\boxed{U_d = \sqrt{3}U_p} \, \text{và} \, \boxed{I_d = I_p}$$

+ Mắc hình tam giác:

$$\boxed{U_d = U_p}$$
 và $\boxed{I_d = \sqrt{3}I_p}$

☑ Máy biến thế:

Gọi:

N₁, U₁, P₁: Số vòng, điện áp hiệu dụng, công suất ở cuộn **sơ cấp**

N₂, U₂, P₂: Số vòng, điện áp hiệu dụng, công suất ở cuộn **thứ cấp**

$$\boxed{P_1 = U_1 I_1 \cos \varphi_1}; \boxed{P_2 = U_2 I_2 \cos \varphi_2}$$

> Hiệu suất của máy biến thế:

$$H = \frac{P_2}{P_1} \le 1 \tag{\%}$$

> Mạch thứ cấp không tải:

$$k = \frac{N_1}{N_2} = \frac{U_1}{U_2}$$

> Mạch thứ cấp có tải: (lí tưởng)

$$k = \frac{N_1}{N_2} = \frac{U_1}{U_2} = \frac{I_2}{I_1}$$

☑ Truyền tải điện năng:

➤ Độ giảm thế trên dây dẫn:

$$\Delta U = R_d I_d$$

> Công suất hao phí trên đường dây tải

$$\Delta P = R_d I_d^2 = R \cdot \frac{P^2}{U^2}$$

Với R_{d} : điện trở tổng cộng trên đường dây tải điện

 I_d : Cường độ dòng điện trên dây tải điện

+ Hiệu suất tải điện:

$$H = \frac{P_2}{P_1} = \frac{P_1 - \Delta P}{P_1}$$
 %. Với:

 P_1 : Công suất truyền đi

 P_2 : Công suất nhận được nơi tiêu thụ

 ΔP : Công suất hao phí

DAO ĐỘNG VÀ SÓNG ĐIỆN TỪ

- $ightharpoonup T an số góc: <math>\omega = \frac{1}{\sqrt{LC}}$
- ightharpoonup Chu kì riêng: $T = 2\pi\sqrt{LC}$
- > Tần số riêng: $f = \frac{1}{T} = \frac{1}{2\pi\sqrt{LC}}$
- ➤ Bước sóng điện từ:

$$\lambda = c.T = \frac{c}{f} = c.2\pi\sqrt{LC}$$

Với $C_s = 3.10^8 \text{ m/s}$: Vận tốc ánh sáng

Năng lượng mạch dao động:

☑ Năng lượng điện trường:

$$W_C = \frac{1}{2}Cu^2 = \frac{1}{2}qu = \frac{1}{2}\frac{q^2}{C}$$

⇒ Năng lượng điện trường cực đại:

$$W_{C \max} \frac{1}{2} C U_0^2 = \frac{1}{2} Q_0 U_0 = \frac{1}{2} \frac{Q_0^2}{C}$$

⇒ Năng lượng từ trường cực đại:

$$W_{L \max} = \frac{1}{2} L I_0^2$$

 \square Năng lượng điện từ: $W = W_C + W_L$

$$W = \frac{1}{2}Cu^{2} + \frac{1}{2}Li^{2}$$
$$= \frac{1}{2}qu + \frac{1}{2}Li^{2} = \frac{1}{2}\frac{q^{2}}{C} + \frac{1}{2}Li^{2}$$

$$\Rightarrow W = W_{C \max} = W_{L \max} = \frac{1}{2} C U_0^2$$

$$= \frac{1}{2} Q_0 U_0 = \frac{1}{2} \frac{Q_0^2}{C} = \frac{1}{2} L I_0^2$$

Năng lượng điện trường và năng lượng từ trường biến thiên điều hòa với tần số gấp đôi của dòng điện và điện tích:

$$(2f, 2\omega, \frac{T}{2})$$

GIAO THOA ÁNH SÁNG

I) Giao thoa với ánh sáng đơn sắc:

Goi:

- + a: Khoảng cách giữa 2 khe S_1S_2
- + D: Khoảng cách từ 2 khe tới màn
- + λ : Bước sóng của ánh sáng kích thích
- + x: Khoảng cách từ vị trí vân đang xét tới vân sáng trung tâm

+ Khoảng vân:
$$i = \frac{\lambda D}{a}$$

+ Vị trí vân sáng: (Vân sáng thứ k)

$$x = k \frac{\lambda D}{a} = ki$$

+ Vị trí vân tối: (Vân tối thứ k+1)

$$x = (k + \frac{1}{2})\frac{\lambda D}{a} = (k + 0.5).i$$

■ Khoảng cách giữa 2 vân x₁ và x₂:

Cùng phía:
$$\Delta x = |x_1 - x_2|$$

Khác phía: $\Delta x = x_1 + x_2$

■ Xét tại vị trí M cách vân trung tâm một khoảng x, cho vân gì:

$$\frac{x}{i} = k \rightarrow \text{Vân sáng thứ k}$$

$$\frac{x}{i} = k + 0.5 \rightarrow \text{Vân tối thứ k} + 1$$

- Hai vân trùng nhau: $x_1 = x_2$
- Tìm số vân sáng, vân tối quan sát được trên bề rộng trường giao thoa L:

Số khoảng vân trên nửa trường: $n = \frac{L}{2i}$

 $N_s = (phan nguyên của n) \times 2 + 1$

 $N_t = (ph \hat{a} n 1 \hat{a} m tr \hat{o} n c \hat{u} a n) \times 2$

II) Giao thoa với ánh sáng trắng:

 $0.4 \mu m \le \lambda \le 0.75 \mu m$

■ $B\hat{e}$ rộng quang phổ bậc 1: với k = 1

$$\Delta x_1 = x_{d1} - x_{t1} = k \frac{D}{a} (\lambda_d - \lambda_t)$$

■ Bề rộng quang phổ bậc n:

$$\Delta x_n = n\Delta x_1$$

■ M cách VS trung tâm 1 khoảng x cho bao nhiều vân sáng, bao nhiều vân tối: + Tại M cho vân sáng: $x_M = k \frac{\lambda D}{a}$

$$\Rightarrow \lambda = \frac{ax_M}{kD} (\mu m)$$

$$\Rightarrow 0.38 \mu m \le \frac{ax_M}{k.D} \le 0.76 \mu m$$

⇒ Các giá trị của k (k nguyên),

+ Tại M cho vân tối:

$$x_M = (k + \frac{1}{2}) \frac{\lambda D}{a}$$

$$\Rightarrow \lambda = \frac{ax_M}{(k+0.5).D}$$

$$\Rightarrow 0.38 \mu m \le \frac{ax_M}{(k+0.5).D} \le 0.76 \mu m$$

⇒ Các giá trị của k (k nguyên),

LUƠNG TỬ ÁNH SÁNG

Goi

+ λ : Bước sóng ánh sáng kích thích

 $+\lambda_0$: Bước sóng giới hạn của kim loại

■ Điều kiện để xảy ra hiện tượng quang điện: $\lambda \leq \lambda_0$

■ Năng lượng của phôtôn ánh sáng:

$$\varepsilon = hf = \frac{hc}{\lambda}$$
 (J)

• Công thoát của electron : $A = \frac{hc}{\lambda_0}$ (J)

■ Phương trình Anhxtanh:

$$\varepsilon = A + W_{d0\,\text{max}}$$

Với
$$W_{\text{d0max}} = \frac{1}{2} m v_{0 \text{ max}}^2$$

Các hằng số:

$$\begin{split} h &= 6,625.10^{\text{-}34} J.s; \ c = 3.10^8 \text{m/s}, \\ e &= 1,6.10^{\text{-}19} C \ ; \qquad m_e = 9,1.10^{\text{-}31} \text{kg} \end{split}$$

Cường độ dòng quang điện bảo hòa:

$$I_{bh} = \frac{n_e \cdot e}{t}$$
 (A)

Công suất nguồn bức xạ:
$$P = \frac{n_p \cdot \mathcal{E}}{t}$$
 (W)

Hiệu suất lượng tử:
$$H = \frac{n_e}{n_p}$$
 (%)

Với: n_e : Số electron bức ra khỏi Catốt n_p : Số phôtôn đến đập vào Catốt

Quang phổ nguyên tử hyđrô:

Năng lượng bức xạ hay hấp thụ :

$$\frac{hc}{\lambda} = E_{cao} - E_{th\acute{a}p}$$
, $E = -\frac{13.6}{n^2}$ (eV)

> Bước sóng bức xạ hay hấp thụ:

 $\boxed{\boldsymbol{\varepsilon}_{31} = \boldsymbol{\varepsilon}_{32} + \boldsymbol{\varepsilon}_{21}}; \boxed{\frac{1}{\lambda_{31}} = \frac{1}{\lambda_{32}} + \frac{1}{\lambda_{21}}}$

Laiman

+ Dãy Laiman:

Nằm trong vùng tử ngoại

+ Dãy Banme:

Nằm trong vùng ánh sáng nhìn thấy và một phần ở vùng tử ngoại

+ Dãy Pasen:

Nằm trong vùng hồng ngoại

VÂT LÝ HAT NHÂN

☑ Cấu tạo hạt nhân:

lacksquare Hạt nhân $_Z^A X$,

có A nuclon; Z prôtôn; N = (A - Z)notrôn.

- Liên hệ giữa năng lượng và khối lượng:
 E = mc².
- Độ hụt khối của hạt nhân :

$$\Delta m = Zm_p + (A - Z)m_n - m_{hn}$$

- Năng lượng liên kết: $W_{lk} = \Delta m.c^2$
- lacktriang Năng lượng liên kết riêng: $egin{aligned} \mathbf{W}_{lkr} = rac{oldsymbol{W}_{lk}}{oldsymbol{A}} \end{aligned}$

☑ Phóng xạ:

$$X \rightarrow Y$$
 + Hạt phóng xạ

Goi

T: Là chu kì bán rã

t: Thời gian phóng xạ

Hằng số phóng xa: $\lambda = \frac{\ln 2}{T}$

Gọi

m₀: Khối lượng chất phóng xạ lúc đầu (g)

m: Khối lượng chất phóng xạ còn lại

 N_0 : Số hạt nhân (nguyên tử) ban đầu

N: Số hạt nhân (nguyên tử) còn lại

A: Số khối hạt nhân

H₀: Độ phóng xạ lúc đầu (Bq)

H: Độ phóng xạ lúc sau (Bq)

■ Liên hệ giữa số hạt và khối lượng

$$N_0 = \frac{m_0}{A}.N_A N_A$$

■ Đinh luật phóng xa

$$m = m_0.2^{-\frac{t}{T}} = m_0.e^{-\lambda t}$$

$$N = N_0.2^{-\frac{t}{T}} = N_0.e^{-\lambda t}$$

$$H = \lambda N = \lambda . N_0 . 2^{-\frac{t}{T}} = H_0 . 2^{-\frac{t}{T}}$$

Chú ý: Trong công thức về đô phóng xa, T tính bằng giây; $1\text{Ci} = 3.7.10^{10} \text{ Bq}$

■ Tỉ lê hat nhân còn lai:

$$\frac{N}{N_0} = 2^{\frac{-t}{T}}$$
 (%)

■ Tỉ lệ hạt nhân bị phân rã:

$$\left| \frac{\Delta N}{N_0} = 1 - 2^{\frac{-t}{T}} \right| (\%)$$

■ Khối lượng hạt nhân mẹ **bị phân rã** sau

thời gian t:
$$\Delta m = m_0 (1 - 2^{\frac{-t}{T}})$$

■ Số hạt nhân con mới được tạo thành **bằng** số hạt nhân mẹ bị phân rã sau thời gian t:

$$N' = \Delta N = N_0 - N = N_0 (1 - 2^{\frac{-t}{T}})$$

■ Khối lượng hat nhân con tạo thành

$$m_Y = m_{0X} \frac{A_Y}{A_X} (1 - 2^{\frac{-t}{T}})$$

Các loại hạt cơ bản:

+ Hat α : ${}_{2}^{4}He$

+ Hat β^+ : ${}^{0}_{1}e$; + Hat β^- : ${}^{0}_{-1}e$

+ Hat no tron: ${}_{0}^{1}n$

+ Hat prôtôn: ${}_{1}^{1}p$ hay ${}_{1}^{1}H$

☑ Phản ứng hạt nhân:

Trong phản ứng hạt nhân:

$$A_1 \atop Z_1 X_1 + A_2 \atop Z_2 X_2 \rightarrow A_3 \atop Z_3 X_3 + A_4 \atop Z_4 X_4$$

■ Số nuclôn và số điện tích được bảo toàn:

$$A_1 + A_2 = A_3 + A_4$$
 và $Z_1 + Z_2 = Z_3 + Z_4$

■ Năng lượng tỏa ra hoặc thu vào trong phản ứng hạt nhân:

$$W = (m_1 + m_2 - m_3 - m_4)c^2$$

$$W = (m_1 + m_2 - m_3 - m_4).931,5 MeV$$

$$W = (\Delta m_3 + \Delta m_4 - \Delta m_1 - \Delta m_2).c^2$$

$$=A_3W_{lkr3}+A_4W_{lkr4}-A_1W_{lkr1}-A_2W_{lkr2}$$

$$W = (K_3 + K_4 - K_1 - K_2)$$

+ Nếu $m_1 + m_2 > m_3 + m_4 \Longrightarrow W > 0$ thì phản ứng hạt nhân tỏa năng lượng.

 $+ N\hat{e}u m_1 + m_2 < m_3 + m_4 \Longrightarrow W < 0$ thì phản ứng hạt nhân thu năng lượng. Đơn vi khối lương nguyên tử:

$$1u = 931,5 \frac{MeV}{c^2}$$

Khối lượng prôtôn: $m_p = 1,0073u$ Khối lượng notron $m_n = 1,0087u$

• Động lượng
$$\vec{p}_1 + \vec{p}_2 = \vec{p}_3 + \vec{p}_4$$

• Liên hệ động năng $p^2 = 2mK$

• Thuyết tương đối $mc^2 = m_0c^2 + \overline{K}$

