

Table Of Content

- Introduction
- Objective
- Methodology
- Detailed Methodology
- Visualization
- Challenges
- Insights
- Conclusion and Feature Work

Introduction

- This project focuses on energy usage analysis to identify patterns and optimize consumption.
- The analysis leverages data to track energy consumption trends and behavior, providing valuable insights into how energy is used over time.
- The project involves processing and analyzing large datasets related to energy usage, identifying key patterns

Objective

The aim is to develop strategies for better energy
management, enabling users or organizations to reduce
costs, improve energy efficiency, and make informed
decisions based on data-driven insights.

Methodology

- Data aggregated by hourly, daily, monthly usage.
- Python libraries used for analysis and visualization.
- Key steps include cleaning, aggregation, and trend analysis.
- Steps followed to achieve the objectives.

Detailed Methodology

- Step-by-step process: Data collection and preprocessing
- Why Use Both ffill and bfill?
- I. Forward fill fills gaps after a valid value.
- II. Backward fill fills gaps before a valid value.
- transformation of variables(DateTime).
- check missing values.
- check inconsistencies.

Detailed Methodology

- Feature Engineering:
- From consumption file & demand file extract new columns from column

(DateTime) like: - Hour

- Day
- Month
- Year
- WeekDay
- And merge files depend on this columns.

Detailed Methodology

• And merge files depend on this extracted columns:

	cell_id	DateTime	KWH/hh (per half hour)	site_id	region	Hour	Weekday	Month	Year	Day	KWH/hh (per half hour) _hourly_mean	Demand	Demand_Cost	Season
0	MAC000002	2013-01-01 00:00:00	0.219	А	Α	0	Tuesday	1	2013	Tuesday	0.292001	Normal	19.46	Winter
1	MAC000002	2013-01-01 00:30:00	0.241	А	Α	0	Tuesday	1	2013	Tuesday	0.292001	Normal	19.46	Winter
2	MAC000002	2013-01-01 01:00:00	0.191	А	Α	1	Tuesday	1	2013	Tuesday	0.265175	Normal	19.46	Winter
3	MAC000002	2013-01-01 01:30:00	0.235	А	Α	1	Tuesday	1	2013	Tuesday	0.265175	Normal	19.46	Winter
4	MAC000002	2013-01-01 02:00:00	0.182	А	Α	2	Tuesday	1	2013	Tuesday	0.251485	Normal	19.46	Winter
1379305	MAC000100	2013-12-20 18:30:00	0.260	N	В	18	Friday	12	2013	Friday	0.358768	Normal	19.46	Winter
1379306	MAC000100	2013-12-20 19:00:00	0.267	N	В	19	Friday	12	2013	Friday	0.337095	Normal	19.46	Winter

Visualization

• Box plot of energy consumption by region:

Visualization

Heatmap of energy consumption across sites and cells:

Visualization Anomaly Count by Season Season analysis: 40000 35000 30000 Number of Anomalies 25000 20000 15000 10000 5000 Summer Season

Visualization

• Demand analysis:

Challenges

- Addressing missing or inconsistent data.
- Visualizing multi-dimensional patterns.
- Balancing regional and temporal analysis.

Insights

- Region A has the highest energy consumption, likely due to high population.
- June is the peak consumption month.
- Fridays show the highest daily energy usage.
- Most demand prices fall within a normal range.

Conclusion and Future Work

- Key insights provide a foundation for energy-saving strategies.
- Recommendations include targeting high-consumption regions.
- Future focus: Implement dynamic pricing models for demand management.

