P-adic Limits of Combinatorial Sequences

Alexandra Michel, Andrew Miller, Joseph Rennie

MSRI-UP Summer 2014

July 17th, 2014

Welcome to the p-adic $\mathbb{Z}\mathcal{O}\mathbb{N}\exists$

Introduction

Our Questions

Results

Directions

Introduction to the *p*-adics: \mathbb{Q}_p

 \mathbb{Q}_p is a completion of \mathbb{Q} analogous to the real numbers \mathbb{R} .

Instead of the familiar absolute value, we use the p-adic norm.

Introduction to the *p*-adics: \mathbb{Q}_p

 \mathbb{Q}_p is a completion of \mathbb{Q} analogous to the real numbers \mathbb{R} .

Instead of the familiar absolute value, we use the p-adic norm.

Define the *p-adic valuation* of an integer n to be the greatest power of p that divides n: $\nu_p(n)=k$

Then the *p-adic norm* of *n* is defined as $|n|_p = p^{-k}$.

P-adic Convergence

For example: $3^{2^n} \to 1$

The Catalan Numbers

What are the Catalan Numbers?

$$C(n) = \tfrac{1}{n+1} \tbinom{2n}{n}$$

The Catalan Numbers

What are the Catalan Numbers?

$$C(n) = \tfrac{1}{n+1} \tbinom{2n}{n}$$

Questions

 \blacktriangleright When does a subsequence of the catalan numbers converge p-adically?

Questions

- \blacktriangleright When does a subsequence of the catalan numbers converge p-adically?
- ▶ What are the limits of these subsequences?

An equivalent definition of p-adic convergence

$$\forall k \geq 1 \ \exists N \geq 1 \ \text{such that} \ \forall m, n \geq N,$$

$$|C(f(n)) - C(f(m))|_p \le p^{-k}$$

if and only if

$$\forall k \geq 1 \ \exists N \geq 1 \ \text{such that} \ \forall m, n \geq N,$$

$$C(f(n)) \equiv C(f(m)) \pmod{p^k}.$$

(In other words, $\{C(f(n))\}\$ converges if and only if it is eventually constant modulo arbitrarily large powers of p.)

A useful result

Using a theorem due to Granville, we can derive that

$$C(f(n)) \equiv (-1)^{\nu_{p^k}(C(f(n)))} p^{\nu_p(C(f(n)))} \prod_{j \ge 1} \frac{(2f(n)_j)!_p}{((f(n)_j)!_p)^2} \pmod{p^k}.$$

Let's look at $\prod_{j\geq 1} \frac{(2f(n)_j)!_p}{((f(n)_j)!_p)^2} \pmod{p^k}$.

When is $\prod_{j\geq 1} \frac{(2f(n)_j)!_p}{((f(n)_j)!_p)^2} \pmod{p^k}$ constant?

Writing
$$f(n) = a_{n,0} + a_{n,1}p + \dots + a_{n,n}p^n$$
, we have
$$f(n)_j = a_{n,j} + a_{n,j+1}p + \dots + a_{n,j+k-1}p^{k-1}.$$

 $\prod_{j\geq 1} \frac{(2f(n)_j)!_p}{((f(n)_j)!_p)^2} \pmod{p^k}$ varies with n only if the $f(n)_j$ s do.

Define $f(n)_J = \{f(n)_j\}_{j\geq 1}$. Our question is this:

For which f(n) do we have, for all k and all sufficiently large m and n, $f(m)_J = f(n)_J$?

Consider $\{C(f(n))\}\$ with $f(n)=p^n$. Suppose that k=4. Let m=50 and n=75.

Consider $\{C(f(n))\}\$ with $f(n)=p^n.$ Suppose that k=4. Let m=50 and n=75.

In this case, $f(n)_j = a_{n,j} + a_{n,j+1}p + a_{n,j+2}p^2 + a_{n,j+3}p^3$.

Consider $\{C(f(n))\}\$ with $f(n)=p^n.$ Suppose that k=4. Let m=50 and n=75.

In this case, $f(n)_j = a_{n,j} + a_{n,j+1}p + a_{n,j+2}p^2 + a_{n,j+3}p^3$.

Both $f(50)_j$ and $f(75)_j$ are 0 for most values of j.

Consider $\{C(f(n))\}\$ with $f(n)=p^n$. Suppose that k=4. Let m=50 and n=75.

In this case, $f(n)_j = a_{n,j} + a_{n,j+1}p + a_{n,j+2}p^2 + a_{n,j+3}p^3$.

Both $f(50)_j$ and $f(75)_j$ are 0 for most values of j.

When j = 50 we get $f(50)_{50} = 1$.

Consider $\{C(f(n))\}\$ with $f(n)=p^n.$ Suppose that k=4. Let m=50 and n=75.

In this case, $f(n)_j = a_{n,j} + a_{n,j+1}p + a_{n,j+2}p^2 + a_{n,j+3}p^3$.

Both $f(50)_j$ and $f(75)_j$ are 0 for most values of j.

When j = 50 we get $f(50)_{50} = 1$. When j = 75, we get $f(75)_{75} = 1$.

Consider $\{C(f(n))\}\$ with $f(n)=p^n$. Suppose that k=4. Let m=50 and n=75.

In this case, $f(n)_j = a_{n,j} + a_{n,j+1}p + a_{n,j+2}p^2 + a_{n,j+3}p^3$.

Both $f(50)_j$ and $f(75)_j$ are 0 for most values of j.

When j = 50 we get $f(50)_{50} = 1$. When j = 75, we get $f(75)_{75} = 1$.

We get $f(50)_J = f(75)_J = \{1, p, p^2, p^3\}.$

Generalizing the example

The sequence in the example, $f(n) = p^n$, can be generalized as follows.

Theorem

Let p be prime, and fix $l \ge 0$. Let α be a vector of l numbers arbitrarily chosen from $\{1, \ldots, \frac{p-1}{2}\}$. Write $\alpha = \langle \alpha_0, \ldots, \alpha_l \rangle$.

For $n \ge l$, define $f(n) = \alpha \cdot \langle p^{n-l}, p^{n-l+1}, \dots, p^n \rangle$, so that $f(n) = \sum_{i=n-l}^n a_i p^i$, with $a_i = \alpha_{i-n-l}$. Then $\{C(f(n))\}$ converges p-adically.

Finding a Limit

 $C(2^n) \rightarrow ?$

Finding a Limit

$$C(2^n) \rightarrow ?$$

The Catalan numbers can be expressed in terms of factorials:

$$C(2^n) = \frac{1}{(2^n+1)} \frac{2^{n+1}!}{2^{n!2}!} = \frac{(2^{n+1})!}{(2^n+1)!2^n!}$$

And we've already proven that if $\{\frac{1}{(2^n+1)}, \frac{2^{n+1}!}{2^n!^2}\} \to L$ 2-adically,

$$\{\frac{2^{n+1}!}{2^{n}!^2}\} \to L$$
 as well.

The p-adic Gamma Function

The *p*-adic Gamma function is defined as:

$$\Gamma_p(n) = (-1)^n \prod_{\substack{k=1 \ p \nmid k}}^{n-1} k \text{ where } \Gamma_p(0) = 1$$

So then,

$$\Gamma_2(n) = \begin{cases} \prod_{\substack{k=1 \ 2 \nmid k}}^{n-1} k = (1 \cdot 3 \cdot 5 \cdots (n-1)) & \text{even n} \\ 2 \nmid k \\ (-1)^n \prod_{\substack{k=1 \ 2 \nmid k}}^{n-1} k = (-1)(1 \cdot 3 \cdot 5 \cdots (n-2)) & \text{odd n} \end{cases}$$

Finding the Limit

We have
$$C(2^n) \equiv \frac{2\Gamma_2(2^{n+1})}{\prod_{i=1}^n \Gamma_2(2^i)} \pmod{2^k}$$
.

The numerator approaches 2, and
$$\prod_{i=k}^n \Gamma_2(2^i) \equiv_{2^k} 1$$

So this simplifies to $C(2^n) \equiv_{2^k} \frac{2}{1^k 3^{k-1} (5\cdot 7)^{k-2} (9\cdot 11\cdot 13\cdot 15)^{k-3} \dots}$

Since we know this sequence coverges to L, any subsequence of it will converge as well. Replace $k\to 2^k$

Finding the Limit

Focusing on the denominator, we have $1^{2^k} 3^{2^k-1} (5 \cdot 7)^{2^k-2} (9 \cdot 11 \cdot 13 \cdot 15)^{2^k-3} \cdots$

For all primes p, $\{p^{2^k}\}$ converges to 1, so we can write

$$L = 2 \cdot 3(5 \cdot 7)^2 (9 \cdot 11 \cdot 13 \cdot 15)^3 \cdots$$

Moving forward

We will attempt to...

Expand the class of sequences that we can show converge *p*-adically.

Moving forward

We will attempt to...

- Expand the class of sequences that we can show converge *p*-adically.
- ▶ Find limits of these sequences; e.g., $\{C(p^n)\}$.

Moving forward

We will attempt to...

- Expand the class of sequences that we can show converge *p*-adically.
- ▶ Find limits of these sequences; e.g., $\{C(p^n)\}$.
- ► Find similar results for other combinatorial sequences, e.g.

Acknowledgements

We would like to thank Dr. Moll, Dr. Medina, Dr. Rowland and Asia Wyatt for their support in our research process.

Questions?

Alexandra Michel Mills College amichel@mills.edu Joseph Rennie Reed College jrennie@reed.edu Andrew Miller Amherst College admiller15@amherst.edu

Citations

- ▶ Rowland, Eric. "Regularity Vs. Complexity in the Binary Representation of 3^n ". March 12, 2010.
- ► Granville, Andrew. "Binomial coefficints modulo prime powers". 2007.