Divisão e conquista - Exercícios

Carlos Eduardo Gonzaga Romaniello de Souza - 19.1.4003

05 de maio de 2022

- 1) Para o problema de seleção de atividades, prove que a atividade que começa por último faz parte de alguma solução ótima do problema
 - Considerando um subproblema não vazio S_{ij} ;
 - seja a_m a atividade em S_{ij} que começa por último, ou seja, a atividade que possui o maior s_m ;
 - a_m é utilizado em um subconjunto méximo de atividades mutuamente comaptéveis de S_{ij} ;
 - o subproblema S_{mj} é vazio, sendo o subproblema S_{im} o único que pode ser não vazio;
 - supondo que exista algum $a_k \in S_{mj} \to s_m < f_m \le s_k < f_k \to s_m < s_k$;
 - \bullet isso é uma contradição \therefore a solução com a_m é uma solução otima
- 2) Faça um algoritmo guloso para o problema de seleção de atividades, sendo que a escolha gulosa consiste em escolher primeiro a atividade que começa por último, ou seja, com o maior tempo de início.

Algoritmo 1: Algoritmo guloso para o problema de seleção de atividades

```
Entrada: Atividades A,
  seletor_de_atividades(A)
       A \leftarrow sort(A, decrescente, s)
1
       n \leftarrow comprimento(A)
\mathbf{2}
3
       i \leftarrow 1
       S^* \leftarrow \{a_i\}
4
       para cada m \in \{2, ..., n\} faça
5
            se f_m \le s_i então

S^* = S^* \cup \{a_m\}
6
       retorne S^*
9
```