

Optimization and Decision Support Methodologies

Date: 29/01/2021 Exam – First call Duration: 2h

Note: Present all the calculations that you perform and justify your answers.

1. Consider the following Linear Programming problem:

Maximize
$$z = 2x_1 - x_2$$

subject to
$$2x_1 + 4x_2 \ge 8$$

$$x_1 + 2x_2 \ge 4$$

$$2x_1 + 2x_2 \le 6$$

$$x_1 \ge 0 , x_2 \ge 0$$
(1)
(2)
(3)

Considering x_3 and x_5 the surplus and artificial variables of the functional constraint (1), x_4 and x_6 the surplus and artificial variables of the functional constraint (2), and x_7 the slack variable of the functional restriction (3), the optimal tableau of the Simplex is:

	Ci	2	-1	0	0	-M	-M	0	
ΧB	C _B \ X i	X 1	X ₂	X 3	X_4	X 5	X 6	X 7	b
X 2	-1	0	1	0	-1	0	1	-1/2	1
X 3	0	0	0	1	-2	-1	2	0	0
X 1	2	1	0	0	1	0	-1	1	2
zj-cj		0	0	0	3	М	M-3	5/2	3

[2.75 points] a) Determine, by carrying out a <u>post-optimization study</u>, what are the implications in the value of x *, in the value of z *, and in the optimal basis, arising from the introduction of a new decision variable

 $\mathbf{x_8}$, with coefficients in constraints equal to $\begin{bmatrix} -2 \\ -1 \\ 1 \end{bmatrix}$, and coefficient in the objective function $\mathbf{c_8}$ =7.

[2.75 points] b) Determine for which interval of c_2 (coefficient of variable x_2 in the objective function), the table presented above will remain optimal.

2. Consider the following Pure Integer Linear Programming problem:

Maximize
$$z = 3x_1 + 4x_2$$

subject to
 $2x_1 + x_2 \le 6$ (1)
 $2x_1 + 3x_2 \le 9$ (2)
 $x_2 \le 1$ (3)
 $x_1 \ge 0, x_2 \ge 0$
 x_1 and x_2 integer

Departamento de Engenharia Informática e de Sistemas

Since x_3 , x_4 and x_5 are the slack variables associated with constraints (1), (2) and (3), respectively, suppose that the **Gomory algorithm** was applied to this same problem and that at the end of the 1st step, the following optimal tableau was obtained:

	Ci	3	4	0	0	0	
ΧB	C _B \ x i	X 1	X 2	X 3	X 4	X 5	b
X ₁	3	1	0	1/2	0	-1/2	5/2
X_4	0	0	0	-1	1	-2	1
X 2	4	0	1	0	0	1	1
zj-cj		0	0	3/2	0	5/2	23/2

[5.00 points]

a) Withdraw your conclusions and if necessary, proceed with the 2nd step of that algorithm.

[0.75 points]

- b) Could the restriction $2x_1 + x_2 \ge 2$ constitute an eventual cut constraint for this problem? Justify your answer.
- **3.** Consider the following Goal Programming problem:

Minimize z =
$$\left\{d_1^+, d_2^- + d_2^+, d_3^+\right\}$$

subject to
$$2x_1 - x_2 + d_1^- - d_1^+ = 2$$

$$x_1 + d_2^- - d_2^+ = 1$$

$$x_2 + d_3^- - d_3^+ = 1$$

$$3x_1 + 3x_2 + d_4^- = 12$$

$$x_1 \ge 0, \quad x_2 \ge 0, \quad d_i^- \ge 0, \quad d_i^+ \ge 0 \quad (i = 1, 2, 3, 4)$$

[5.00 points]

a) Solve the problem using the graphical method.

[0.75 points]

b) If you wanted the value of $x_1 - x_2$ to be mandatorily greater than or equal to 2, how would you represent it in the previous model?