

Objective:

Predict road accident severity given weather conditions, location, points of interest, and other engineered features.

Outline

- Data Wrangling
 - Dataset
 - Data Manipulation
 - Missing Data Handling
 - Feature Engineering
- Exploratory Data Analysis
- Modeling
- Conclusions and Recommendations

Data Wrangling

Dataset:

```
<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 400000 entries, 0 to 399999
 Data columns (total 49 columns):
                          400000 non-null object
 ID
 Source
                          400000 non-null object
 TMC
                          301701 non-null float64
 Severity
                          400000 non-null int64
 Start Time
                          400000 non-null object
                          400000 non-null object
End_Time
 Start Lat
                          400000 non-null float64
 Start Lng
                          400000 non-null float64
                          98299 non-null float64
 End Lat
 End Lng
                          98299 non-null float64
 Distance(mi)
                          400000 non-null float64
                          400000 non-null object
 Description
 Number
                          141503 non-null float64
 Street
                          400000 non-null object
 Side
                          400000 non-null object
 City
                          399990 non-null object
 County
                          400000 non-null object
 State
                          400000 non-null object
 Zipcode
                          399870 non-null object
Country
                          400000 non-null object
Timezone
                          399552 non-null object
 Airport Code
                          399213 non-nuII object
Weather Timestamp
                          394983 non-null object
Temperature(F)
                          392443 non-null float64
 Wind Chill(F)
                          151072 non-null float64
```

```
Humidity(%)
                          392044 non-null float64
Pressure(in)
                          393526 non-null float64
Visibility(mi)
                          391156 non-null float64
Wind Direction
                          393897 non-null object
Wind Speed(mph)
                          341003 non-null float64
Precipitation(in)
                         131252 non-null float64
Weather Condition
                          391170 non-null object
Amenity
                          400000 non-null bool
Bump
                          400000 non-null bool
Crossing
                          400000 non-null bool
Give Way
                          400000 non-null bool
Junction
                         400000 non-null bool
No Exit
                         400000 non-null bool
Railway
                         400000 non-null bool
Roundabout
                         400000 non-null bool
Station
                         400000 non-null bool
Stop
                         400000 non-null bool
Traffic Calming
                         400000 non-null bool
Traffic Signal
                         400000 non-null bool
Turning Loop
                          400000 non-null bool
Sunrise Sunset
                          399989 non-null object
Civil Twilight
                          399989 non-null object
Nautical Twilight
                         399989 non-null object
Astronomical Twilight
                         399989 non-null object
dtypes: bool(13), float64(14), int64(1), object(21)
memory usage: 114.8+ MB
```


Data Manipulation - 1

Missing data handling:

- → isnull() count, and wasnull column addition.
- → Missing precipitation= 0
- → Start Lat/Ing instead of end Lat/Lng.
- → Wind_Chill: through linear regression.
- → Others by infilling with Mean/median.

Data Manipulation - 2 Feature Engineering

1. Wasnull columns → tag null values within DF

Crossing

Traffic_Signal

lunction

Data Manipulation - 3 Modeling prep

Modeling

Confusion Matrices: MultiClass & Binary

MultiClass and Binary Classification Reports Logistic Regression

	precision	recall	f1-score	support
1	0	0	0	3
2	0.72	0.92	0.81	10024
3	0.55	0.28	0.37	4481
4	0.25	0.01	0.01	492
	precision	recall	f1-score	support
high	0.61	0.34	0.43	4973
low	0.73	0.89	0.8	10027

Modeling

Random Forest

- 78% accuracy.
- f1 scores:
 - 'low' = 85%
 - 'high'=78%

Conclusions/ Recommendations

- Of the four machine learning algorithms used Random Forest gave the best results (78% accuracy).
- Room for improvements through:
 more feature engineering and advanced machine learning.

Q&A