Universität Rostock Institut für Mathematik Prof. Dr. Martin Redmann Franziska Schulz

Wahrscheinlichkeitstheorie und Mathematische Statistik Übungsblatt 1

Hinweis: Es werden die folgenden Bezeichnungen verwendet.

- $X_n \xrightarrow{f.s.} X$, falls $(X_n)_{n \in \mathbb{N}}$ fast sicher gegen X konvergiert.
- $X_n \xrightarrow{\mathbb{P}} X$, falls $(X_n)_{n \in \mathbb{N}}$ in Wahrscheinlichkeit gegen X konvergiert.
- $X_n \xrightarrow{d} X$, falls $(X_n)_{n \in \mathbb{N}}$ in Verteilung gegen X konvergiert.

Aufgabe 1.1

Gegeben seien unabhängige und identisch verteilte Zufallsvariablen X_1, X_2, \ldots , wobei X_1 exponentialverteilt mit Parameter $\lambda = 1$ sei, d.h. die Lebesguedichte $f(x) = \mathbbm{1}_{(0,\infty)}(x) \exp(-x)$ besitze. Zeigen Sie, dass $Y_n := \max\{X_1, \ldots, X_n\} - \ln(n)$ in Verteilung konvergiert und bestimmen Sie die Grenzverteilung.

Aufgabe 1.2

Es seien $a \in \mathbb{R}$ und $(X_n)_{n \in \mathbb{N}}$ eine Folge von quadratintegrierbaren Zufallsgrößen. Zeigen Sie:

- a) Gilt $\mathbb{E}[X_n] \xrightarrow{n \to \infty} a$ und $\mathbb{V}\operatorname{ar}[X_n] \xrightarrow{n \to \infty} 0$, so folgt $X_n \xrightarrow{\mathbb{P}} a$.
- b) Gilt $\mathbb{E}[X_n] \xrightarrow{n \to \infty} a$ und $\sum_{n=1}^{\infty} \mathbb{V}ar[X_n] < \infty$, so folgt $X_n \xrightarrow{f.s.} a$.

Aufgabe 1.3

Es sei $(Y_n)_{n\in\mathbb{N}}$ eine Folge unabhängiger und identisch exponentialverteilter Zufallsgrößen mit Parameter $\lambda > 0$. Zeigen Sie:

- a) Für $X_n := Y_n / \ln n$ gilt $X_n \xrightarrow{\mathbb{P}} 0$ aber nicht $X_n \xrightarrow{f.s.} 0$.
- b) Für $X_n := Y_n/(\ln n)^2$ gilt $X_n \xrightarrow{\mathbb{P}} 0$ und $X_n \xrightarrow{f.s.} 0$.

Hinweis: Verwenden Sie die folgende Aussage des Lemmas von Borel-Cantelli

$$X_n \xrightarrow{f.s.} X \Leftrightarrow \forall \varepsilon > 0 : \sum_{n=1}^{\infty} \mathbb{P}(|X_n - X| \ge \varepsilon) < \infty.$$

Aufgabe 1.4

Sei $(X_n)_{n\in\mathbb{N}}$ eine Folge von Zufallsvariablen und X eine weitere Zufallsvariable.

- a) Falls $X_n \xrightarrow{f.s.} X$, so folgt $X_n \xrightarrow{\mathbb{P}} X$.
- b) Es gelte $X_n \xrightarrow{d} c$, wobei c eine deterministische Konstante ist. Dann folgt $X_n \xrightarrow{\mathbb{P}} c$.

Abgabe: Mittwoch, 09.04.2025 bis 9.00 Uhr, online bei Stud.IP unter Aufgaben, im PDF Format.