Chapitre 5

Opérateurs non-bornés

0.1 Définitions et propriétés

Définition 0.1. Soient \mathcal{H}_1 et \mathcal{H}_2 des espaces de Hilbert. Un opérateur linéaire nonborné est une application linéaire

$$A \colon \mathcal{D}(A) \subset \mathcal{H}_1 \to \mathcal{H}_2$$

définie sur un sous-espace vectoriel $\mathcal{D}(A)$ de \mathcal{H}_1 et à valeurs dans \mathcal{H}_2 .

L'ensemble $\mathcal{D}(A)$ est dit domaine de A.

On note un tel opérateur par $(A, \mathcal{D}(A))$ ou simplement A s'il n y a pas d'ambiguïté.

Exemple

$$A \colon \ell_2 \to \ell_2$$

 $x \mapsto Ax = A((x_n)_n) = (nx_n)_{n \ge 1}$

A est linéaire, mais A n'est pas borné sur ℓ_2 . Le domaine de A est l'ensemble

$$\mathcal{D}(A) = \left\{ (x_n)_n \in \ell_2 : \sum_{n=1}^{+\infty} n^2 |x_n|^2 < +\infty \right\}$$

A est donc un opérateur non-borné de domaine $\mathcal{D}(A)$.

Définition 0.2. Un opérateur non-borné est borné sur $\mathcal{D}(A)$ s'il existe C > 0 tel que

$$\forall x \in \mathcal{D}(A) : ||Ax|| \le C \, ||x||$$

Il peut donc arriver qu'un opérateur non-borné soit borné sur son domaine.

Définition 0.3. Soit $A \colon \mathcal{D}(A) \subset \mathcal{H}_1 \to \mathcal{H}_2$ un opérateur non-borné. Alors, le graphe de A est l'ensemble

$$G(A) = \{(x, Ax), x \in \mathcal{D}(A)\} \subset \mathcal{H}_1 \times \mathcal{H}_2$$

Définition 0.4. L'image de A est l'ensemble

$$ImA = \{Ax, x \in \mathcal{D}(A)\} \subset \mathcal{H}_2$$

De même,

Définition 0.5. *Le noyau de A est l'ensemble*

$$\ker A = \{x \in \mathcal{D}(A) : Ax = 0\} \subset \mathcal{H}_1$$

Définition 0.6. Un opérateur non-borné $(A, \mathcal{D}(A))$: $\mathcal{D}(A) \to \mathcal{H}_2$ est fermé si son graphe G(A) est fermé, i.e.,

$$(\forall (x_n)_n \in \mathcal{D}(A) / \lim_{n \to +\infty} x_n = y) \Rightarrow (y = Ax \ \text{et} \ x \in \mathcal{D}(A))$$

. Il est clair que A est fermé si et seulement si son graphe est fermé.

Exemples 1. Tout opérateur borné $A: \mathcal{H}_1 \to \mathcal{H}_2$ est fermé. (Par application du Théorème du graphe fermé)

2. Soit $\mathcal{H}=L_{2}\left(\left[a,b\right] \right) ,$ et soit A l'opérateur différentiel défini sur l'ensemble

$$\mathcal{D}(A) = \{ f \in \mathcal{H} : f \text{ absolument continue, } f' \in \mathcal{H} \text{ et } f(0) = 0 \}$$

par

$$Af = f', f \in \mathcal{D}(A)$$

On a donc:

i. A n'est pas borné sur \mathcal{H} . En effet, la suite $(f_n)_n$ où $f_n(x)=x^n,\ (n\geq 1)$ vérifie

$$f_n \in \mathcal{D}(A), ||f_n||^2 = \int_0^1 t^{2n} dt = \frac{1}{2n+1} \le 1, \ n \ge 1$$

De plus

$$||Af_n||^2 = ||f_n'||^2 = \int_0^1 n^2 t^{2n-2} dt = \frac{n^2}{2n-1} \underset{n \to +\infty}{\longrightarrow} 0$$

ii.

$$\ker A = \{0\} \text{ et } ImA = \mathcal{H}$$

En effet, soit $g \in \mathcal{H}$ tel que

$$f(t) = \int_{0}^{t} g(s)ds$$

Comme $L_2([a,b]) \subset L_1([a,b])$

$$f \in \mathcal{D}(A)$$
 et $Af = q$

D'où, A est inversible. Soit

$$A^{-1}g = f, g \in \mathcal{H}$$

L'opérateur A^{-1} est borné sur \mathcal{H} et $ImA^{-1} = \mathcal{D}(A)$ car

$$\left| \left(A^{-1}g \right)(t) \right| \le \int_{0}^{1} |g(s)| \, ds \le \left(\int_{0}^{1} |g(s)|^{2} \, ds \right)^{\frac{1}{2}} = \|g\|$$

par l'inégalité de Cauchy-Schwartz. D'où

$$\left\| A^{-1}g \right\|^2 = \int_0^1 \left| (A^{-1}g)(s) \right|^2 ds \le \int_0^1 \|g\|^2 ds = \|g\|^2$$

Donc $||A^{-1}|| \le 1$.

iii. A est fermé. Soit $(f_n)_n$ une suite dans $\mathcal{D}(A)$ telle que

$$(f_n)_n \underset{n \to +\infty}{\rightarrow} f$$
, et $Af_n \underset{n \to +\infty}{\rightarrow} h$, $h \in \mathcal{H}$

Alors

$$f_n = A^{-1}Af_n \xrightarrow[n \to +\infty]{} A^{-1}h$$

car A^{-1} est continu. D'où,

$$f = A^{-1}h \in \mathcal{D}(A)$$

et donc Af = h.

Proposition 0.1. Soit $(A, \mathcal{D}(A))$ un opérateur fermé. Alors A est borné sur \mathcal{H} si et seulement si $\mathcal{D}(A) = \mathcal{H}$.

Théorème 0.1. Soit $A: \mathcal{H}_1 \to \mathcal{H}_2$ un opérateur inversible. Alors A est fermé.

0.2 Extension d'un opérateur non-borné

Définition 0.7. Soit $(A, \mathcal{D}(A))$: $\mathcal{D}(A) \to \mathcal{H}_2$ un opérateur non-borné. On dit que $(S, \mathcal{D}(S))$ est une extension de $(A, \mathcal{D}(A))$, et l'on écrit $A \subset S$, si

$$\mathcal{D}(A) \subset \mathcal{D}(S)$$
 et $Ax = Sx, x \in \mathcal{D}(A)$

Autrement dit, si $G(A) \subset G(S)$.

0.2.1 Opérateurs fermables

Définition 0.8. Un opérateur non-borné $(A, \mathcal{D}(A))$ est dit fermable si A admet une extension fermée.

Proposition 0.2. [?????] Soit $(A, \mathcal{D}(A))$ un opérateur non-borné de graphe G(A). On suppose que A n'est pas fermé. Alors,

Si $\overline{G(A)}$ est le graphe d'un opérateur noté \overline{A} , alors A est fermable.

De plus, \overline{A} est la plus petite extension fermée de A avec $G(\overline{A}) = \overline{G(A)}$.

A. Nasli Bakir 4 2018/2019

0.3 Adjoint d'un opérateur non-borné

0.3.1 Définitions

Introduction

Rappelons que si $A\in\mathcal{L}(\mathcal{H}_1,\mathcal{H}_2)$, alors pour tout $y\in\mathcal{H}_2$, il existe un unique $A^*y\in\mathcal{H}_1$ tel que

$$\forall x \in \mathcal{H}_1, \forall y \in \mathcal{H}_2 : \langle Ax, y \rangle = \langle x, A^*y \rangle$$

Cependant, si *A* est non-borné, on pose

$$\forall x \in \mathcal{D}(A), \forall y \in \mathcal{D}(A^*) : \langle Ax, y \rangle = \langle x, A^*y \rangle \tag{*}$$

Toutefois, si $\mathcal{D}(A)$ est quelconque dans \mathcal{H}_1 , alors A^*y n'est pas défini de façon unique. En effet, soit $x_0 \in \mathcal{H}_1$ avec $x_0 \perp \mathcal{D}(A)$. On a donc

$$\forall x \in \mathcal{D}(A), \forall y \in \mathcal{D}(A^*) : \langle x, x_0 + A^*y \rangle = \langle x, A^*y \rangle$$

Pour cela, et afin d'éviter cet inconvénient, il faut que tout vecteur orthogonal à $\mathcal{D}(A)$ soit 0, i.e., $\mathcal{D}(A)$ soit dense dans \mathcal{H}_1 .

Définition 0.9. Un opérateur non-borné $(A, \mathcal{D}(A))$ est dit à domaine dense si $\overline{\mathcal{D}(A)} = \mathcal{H}$.

On aboutit donc à la définition suivante

Définition 0.10. Soit $A \colon \mathcal{D}(A) \subset \mathcal{H}_1 \to \mathcal{H}_2$ un opérateur non-borné à domaine dense. L'adjoint A^* de A est l'unique opérateur ayant pour domaine

$$\mathcal{D}(A^*) = \{ y \in \mathcal{H}_2 : l'application \ x \mapsto \langle Ax, y \rangle \ \text{est continue } \}$$

et vérifiant l'égalité (*)

Théorème 0.2. Soit $A \colon \mathcal{D}(A) \subset \mathcal{H}_1 \to \mathcal{H}_2$ un opérateur non-borné à domaine dense. Alors, A^* est fermé.

Théorème 0.3. Soit $A : \mathcal{D}(A) \subset \mathcal{H}_1 \to \mathcal{H}_2$ un opérateur non-borné à domaine dense. Si $A \subset B$, alors $B^* \subset A^*$.

Théorème Soit $A \colon \mathcal{D}(A) \subset \mathcal{H} \to \mathcal{H}$ un non-borné possédant un adjoint A^* tel que $\overline{\mathcal{D}(A^*)} = \mathcal{H}$. Alors A^{**} est une extension de A.

A. Nasli Bakir 6 2018/2019

Bibliographie

- [1] N.I. Akhiezer, I.M. Glazman, *Theory of linear operators in Hilbert space*, Dover Publications Inc., New York, (1993).
- [2] B. Bendoukha, *Analyse fonctionnelle et théorie des opérateurs*, Cours et exercices corrigés, (2017)????.
- [3] J. Charles, M. Mbekhta, H. Queffélec, *Analyse fonctionnelle et théorie des opérateurs*, Dunod, Paris, (2010).
- [4] J.B. Conway, A Course in Functional Analysis, Second édition, Springer-Verlag NewYork, Inc, (1990).
- [5] L. Debnath, P. Mikusinski, *Hilbert Spaces with Applications*, Elsevier Academic Press, (2005).
- [6] I. Gohberg, S. Goldberg, *Basic Operator Theory*, Birkhäuser, Boston, Basel, Berlin(1981).
- [7] W. Hengartner, M. Lambert and C. Reischer, *Introduction à l'analyse fonc-tionnelle*, Les Presses de l'Université de Québec, (1981).
- [8] A. Nasli Bakir, Mon cours d'analyse fonctionnelle, (2015-2018).
- [9] A. Nasli Bakir, Mes sujets d'examens et séries de travaux dirigés d'analyse fonctionnelle, (2015-2018).