3 személy szavazatát kell összegeznünk. Ha 3-ból legalább 2-en igennel szavaznak, akkor elfogadott a javaslat.

Megoldás: A 3 szavazó személy lesz a bemeneti, vagyis független változó, jelöljük őket A, B, C-vel. A kimenet, a függő változó jelölésére használjuk az Y-t. A bemenetnél az igen szavazathoz rendeljük hozzá az 1-et, a nem szavazathoz 0-t. A kimenet esetében 0 azt jelenti, hogy nem fogadták el a javaslatot, az 1 pedig azt, hogy elfogadták a javaslatot. Első lépésként írjuk fel az igazságtáblát, aminek bal oldali része a bemeneti változók lehetséges értékeit tartalmazza. Ez 3 változó esetén összesen 8 különböző variációt jelent, vagyis a fejléccel együtt 9 sora lesz az igazságtáblának.

	C	В	A	Y	
0	0	0	0	0	Mind a 3 ember nemmel szavazott, ezért nem fogadták el a javaslatot.
1	0	0	1	0	Csak 1 ember szavazot igennel, ezért nem fogadták el a javaslatot.
2	0	1	0	0	Csak 1 ember szavazott igennel, ezért nem fogadták el a javaslatot.
3	0	1	1	1	2 ember igennel szavazott, ezértelfogadták a javaslatot.
4	1	0	0	0	Csak 1 ember szavazott igennel, ezért nem fogadták el a javaslatot.
5	1	0	1	1	2 ember igennel szavazott, ezért elfogadták a javaslatot.
6	1	1	0	1	2 ember igennel szavazott, ezért elfogadták a javaslatot.
7	1	1	1	1	Mind a 3 ember igennel szavazott, ezért elfogadták a javaslatot.

A következő lépés, hogy az igazságtáblából felírjuk a logikai egyenletet. Vesszük azokat a sorokat, ahol a kimenet (Y) 1-es értékű. Ezek a 3-as, 5-ös, 6-os, 7-es sorok. Megnézzük, hogy ezekben a sorokban a bemeneti változók (A, B, C) milyen értékűek. A 3-as jelű sorban A=1, B=1, C=0. Soron belül felírjuk a változók ÉS kapcsolatát, úgy hogy amelyik változó 1-es értékű, azt ponáltan, amelyik 0 azt negáltan szerepeltetjük.

sorszám	C	В	A	
3	0	1	1	$\bar{C} * B * A$
5	1	0	1	$C*\bar{B}*A$
6	1	1	0	$C*B*\bar{A}$
7	1	1	1	C*B*A

Ezután az egyes sorokra felírt ÉS kapcsolatokat VAGY kapcsolatba hozzuk és kész is a logikai egyenletünk, amely a függvényünk diszjunktív kanonikus alakja:

$$Y = (\bar{C} * B * A) + (C * \bar{B} * A) + (C * B * \bar{A}) + (C * B * A),$$

egyszerűbb alakban felírva: $Y = \sum m_i^3 \ (i = 3,5,6,7)$

Minden egyenletnek egy ilyen alakja létezik, ami persze nem a legegyszerűbb alak, de egyértelműen leírja az adott feladatot. Már csak az van hátra, hogy áramköri rajzjelekkel felrajzoljuk az adott feladatot megvalósító kombinációs hálózatot.

Van 4 kapcsoló, amelyek közül, ha legalább 2 be van kapcsolva, akkor világít egy izzó.

Megoldás: a bemeneti változók a kapcsolók lesznek, ezekből 4 db van, jelöljük őket A, B, C, D-vel. A bemeneteknél az 1-es értékhez rendeljük hozzá azt, hogy a kapcsoló be van kapcsolva, a 0-hoz, hogy a kapcsoló ki van kapcsolva. A kimenet azt mutatja meg, hogy világít-e az izzó vagy sem. Ha világít, ahhoz rendeljük az 1-es értéket, ha nem világít, ahhoz a 0 értéket. Első lépésként felírjuk az igazságtáblát. Nézzük hány sora lesz. Ezt a bemeneti változók száma határozza meg, ami jelen esetben 4. 4 változóval a 0, 1 értékeknek összesen 16 különböző variációja létezik, ezért a fejléccel együtt 17 sora lesz az igazságtáblának.

	D	С	В	A	Y	
0	0	0	0	0	0	1 kapcsoló sincs bekapcsolva, ezért nem világít az izzó.
1	0	0	0	1	0	1 kapcsoló van bekapcsolva, ezért nem világít az izzó.
2	0	0	1	0	0	1 kapcsoló van bekapcsolva, ezért nem világít az izzó.
3	0	0	1	1	1	2 kapcsoló van bekapcsolva, ezért világít az izzó.
4	0	1	0	0	0	1 kapcsoló sincs bekapcsolva, ezért nem világít az izzó.
5	0	1	0	1	1	2 kapcsoló van bekapcsolva, ezért világít az izzó.
6	0	1	1	0	1	2 kapcsoló van bekapcsolva, ezért világít az izzó.
7	0	1	1	1	1	3 kapcsoló van bekapcsolva, ezért világít az izzó.
8	1	0	0	0	0	1 kapcsoló sincs bekapcsolva, ezért nem világít az izzó.
9	1	0	0	1	1	2 kapcsoló van bekapcsolva, ezért világít az izzó.
10	1	0	1	0	1	2 kapcsoló van bekapcsolva, ezért világít az izzó.
11	1	0	1	1	1	3 kapcsoló van bekapcsolva, ezért világít az izzó.
12	1	1	0	0	1	2 kapcsoló van bekapcsolva, ezért világít az izzó.
13	1	1	0	1	1	3 kapcsoló van bekapcsolva, ezért világít az izzó.
14	1	1	1	0	1	3 kapcsoló van bekapcsolva, ezért világít az izzó.
15	1	1	1	1	1	4 kapcsoló van bekapcsolva, ezért világít az izzó.

Az igazságtáblából látszik, hogy kevesebb olyan sor van, ahol a kimenet 0 értékű, mint ahol 1-es értékű. Ezért most ezekre az esetekre írjuk fel az egyenletet. Tehát ilyen a 0-s, 1-es, 2-es, 4-es, 8-as sor. Egy adott soron belül vesszük a bemeneti változók VAGY kapcsolatát, oly módon, hogy ahol a változó 0 étékű, ott ponáltan, ahol 1-es értékű ott negáltan szerepeltetjük a VAGY kapcsolatban.

		D	C	В	Α	
ĺ	0	0	0	0	0	D+C+B+A
ĺ	1	0	0	0	1	$D+C+B+\bar{A}$
ĺ	2	0	0	1	0	$D+C+\bar{B}+A$
ĺ	4	0	1	0	0	$D + \bar{C} + B + A$
	8	1	0	0	0	$\overline{D} + C + B + A$

Ezek után az egyes sorok között felírt VAGY kapcsoltatokat ÉS kapcsolatba hozzuk. Tehát az egyenletünk a következő lesz, ami a függvényünk konjunktív kanonikus alakja:

$$Y = (D + C + B + A) * (D + C + B + \bar{A}) * (D + C + \bar{B} + A) * (D + \bar{C} + B + A) * (\bar{D} + C + B + A),$$
egyszerűbb alakban felírva: $Y = \prod M_i^4 \ (j = 15,14,13,11,7)$

Ezután már csak fel kell rajzolni az egyenletet megvalósító kombinációs hálózatot a megismert rajzjelekkel.

5 nyomógombunk van, amelyekből bármelyik 4 együttes lenyomása kinyit egy ajtót.

Megoldás: Az 5 nyomógomb lesz a bemenet. A bemenet 0 értékű, ha a nyomógomb nincs benyomva, 1-es értékű, ha be van nyomva. A kimenet azt mutatja, hogy az ajtó nyitva van, vagy nincs. Ha nyitva van, akkor a kimenet 1-es értékű, ha nincs nyitva, akkor 0 értékű. Mivel 5 bemeneti változónk van, és ezeknek 32 különböző variációja létezik, így az igazságtáblánknak a fejléccel együtt 33 sora lesz.

	Е	D	C	В	A	Y
0	0	0	0	0	0	0
1	0	0	0	0	1	0
2	0	0	0	1	0	0
3	0	0	0	1	1	0
4	0	0	1	0	0	0
5	0	0	1	0	1	0
6	0	0	1	1	0	0
7	0	0	1	1	1	0
8	0	1	0	0	0	0
9	0	1	0	0	1	0
10	0	1	0	1	0	0
11	0	1	0	1	1	0
12	0	1	1	0	0	0
13	0	1	1	0	1	0
14	0	1	1	1	0	0
15	0	1	1	1	1	1

	Е	D	С	В	A	Y
16	1	0	0	0	0	0
17	1	0	0	0	1	0
18	1	0	0	1	0	0
19	1	0	0	1	1	0
20	1	0	1	0	0	0
21	1	0	1	0	1	0
22	1	0	1	1	0	0
23	1	0	1	1	1	1
24	1	1	0	0	0	0
25	1	1	0	0	1	0
26	1	1	0	1	0	0
27	1	1	0	1	1	1
28	1	1	1	0	0	0
29	1	1	1	0	1	1
30	1	1	1	1	0	1
31	1	1	1	1	1	1

Látható, hogy a kimenet kevesebbszer 1-es, mint 0, ezért 1-esekre írjuk fel az egyenletet. A 15-ös, 23-as, 27-es, 29-es, 30-as, 31-es sorokban 1-es értékű az Y kimenet. Az adott soron belül vesszük a változók ÉS kapcsolatát, oly módon, hogy ahol a bemeneti változó 1-es ott ponáltan, ahol 0, ott negáltan írjuk be a változót az ÉS kapcsolatba.

	Е	D	C	В	Α	
15	0	1	1	1	1	$\bar{E} * D * C * B * A$
23	1	0	1	1	1	$E*\overline{D}*C*B*A$
27	1	1	0	1	1	$E * D * \bar{C} * B * A$
29	1	1	1	0	1	$E*D*C*\bar{B}*A$
30	1	1	1	1	0	$E*D*C*B*\bar{A}$
31	1	1	1	1	1	E*D*C*B*A

Ezután az egyes sorokban felírt ÉS kapcsolatokat VAGY kapcsolatba hozzuk. A végső egyenletünk a következő lesz, ami a függvényünk diszjunktív kanonikus alakja:

$$Y = (\bar{E} * D * C * B * A) + (E * \bar{D} * C * B * A) + (E * D * \bar{C} * B * A) + (E * D * C * \bar{B} * A) + (E * D * C * B * \bar{A}) + (E * D * C * B * \bar{A}) + (E * D * C * B * A),$$

egyszerűbb alakban felírva: $Y = \sum m_i^5$ (i = 15,23,27,29,30,31)

Most már csak az a dolgunk, hogy a tanult rajzjelekkel felírjuk a feladatot megvalósító kombinációs hálózatot.

Adott az alábbi Z függvény diszjunktív kanonikus alakja:

 $Z = \sum m_i^4$ (i = 1,3,5,6,7,13,14,15). Adjuk meg a függvény konjunktív kanonikus alakját!

Megoldás: első lépésben felírjuk a Z függvény negáltját: $\bar{Z} = \sum m_i^4$ (i = 0,2,4,8,9,10,11,12), azok a sorszámok, ahol a függvény 0 értékű.

Az így kapott minterm sorszámokból a tanult képlettel meghatározzuk a konjunktív alakban szereplő maxtermek sorszámait: $j = (2^N - 1) - i$, ahol az N a bemeneti változók száma, ez a jelen feladatban 4.

i (mintermsorszám)	$(2^N - 1) - i$	j (maxtermsorszám)
0	15-0	15
2	15-2	13
4	15-4	11
8	15-8	7
9	15-9	6
10	15-10	5
11	15-11	4
12	15-12	3

A táblázat alapján a konjunktív kanonikus alak: $Z = \prod M_i^4 \ (j = 15,13,11,7,6,5,4,3)$

5. Feladat

Adott az alábbi Z függvény konjunktív kanonikus alakja:

 $Z = \prod M_i^4$ (j = 2,4,5,7,10,12,13). Adjuk meg a függvény diszjunktív kanonikus alakját!

Megoldás: első lépésben felírjuk a Z függvény negáltját:

 $\bar{Z} = \prod M_j^4$ (j = 0,1,3,6,8,9,11,14,15), azok a sorszámok, ahol a függvény 1-es értékű. Az így kapott maxterm sorszámokból a tanult képlettel meghatározzuk a diszjunktív alakban szereplő mintermeksorszámait: $i = (2^N - 1) - j$, ahol az N a bemeneti változók száma, ez a jelen feladatban 4.

j (maxtermsorszám)	$(2^N-1)-j$	i (mintermsorszám)
0	15-0	15
1	15-1	14
3	15-3	12
6	15-6	9
8	15-8	7
9	15-9	6
11	15-11	4
14	15-14	1
15	15-15	0

A táblázat alapján a diszjunktív kanonikus alak: $Z = \sum m_i^4 \ (i=0,1,4,6,7,9,12,14,15)$

Adott az alábbi Z függvény diszjunktív kanonikus alakja:

 $Z = \sum m_i^4$ (i = 1,2,6,9,10,11 X = 3,13). Adjuk meg a függvény konjunktív kanonikus alakját!

Megoldás: azX azt jelenti, hogy a függvény értéke hol közömbös. Első lépésben felírjuk a Z függvény negáltját, az nem változik, hogy a függvény hol közömbös értékű:

 $\bar{Z}=\sum m_i^4$ (i=0,4,5,7,8,12,14,15 X=3,13), azok a sorszámok, ahol a függvény 0 értékű, a közömbös értékeknél nincs változás..

Az így kapott minterm sorszámokból a tanult képlettel meghatározzuk a konjunktív alakban szereplő maxtermek sorszámait: $j = (2^N - 1) - i$, ahol az N a bemeneti változók száma, ez a jelen feladatban 4.

i (mintermsorszám)	$(2^N-1)-i$	j (maxtermsorszám)
0	15-0	15
4	15-4	11
5	15-5	10
7	15-7	8
8	15-8	7
12	15-12	3
14	15-14	1
15	15-15	0
3	15-3	12
13	15-13	2

A táblázat alapján a konjunktív kanonikus alak:

$$Z = \prod M_j^4 \ (j = 15,11,10,8,7,3,1,0 \ X = 12,2)$$

Adott az alábbi Z függvény konjunktív kanonikus alakja:

 $Z = \prod M_j^4$ (j = 2,4,6,8,12,14 X = 5,10,15). Adjuk meg a függvény diszjunktív kanonikus alakját!

Megoldás:az Xazt jelenti, hogy a függvény értéke hol közömbös. Első lépésben felírjuk a Z függvény negáltját, az nem változik, hogy a függvény hol közömbös értékű:

 $\bar{Z} = \prod M_j^4$ (j = 0,1,3,7,9,11,13 X = 5,10,15), azok a sorszámok, ahol a függvény 1-es értékűa közömbös értékeknél nincs változás. Az így kapott maxterm sorszámokból a tanult képlettel meghatározzuk a diszjunktív alakban szereplő mintermeksorszámait: $i = (2^N - 1) - j$, ahol az N a bemeneti változók száma, ez a jelen feladatban 4.

j (maxterm sorszám)	$(2^N-1)-j$	i (mintermsorszám)
0	15-0	15
1	15-1	14
3	15-3	12
7	15-7	8
9	15-9	6
11	15-11	4
13	15-13	2
5	15-5	10
10	15-10	5
15	15-15	0

A táblázat alapján a diszjunktív kanonikus alak:

$$Z = \sum m_i^4 \ (i = 2,4,6,8,12,14,15 \ X = 0,5,10)$$