## Module 12B: Setting up and analyzing mathematical induction proofs

MTH 225 2 December 2020

### Agenda

- Review of the steps of a mathematical induction proof
- Practice with constructing the framework
- Critical analysis of written induction proofs

### "For all natural numbers n,

$$1+2+4+8+\cdots+2^n=2^{n+1}-1$$
" To prove this conjecture using mathematical induction, we first

Prove that the statement above holds just for n = 0

Prove that the statement above holds just for n=1

Assume that the statement above holds for some natural number n

Prove that the statement above holds for some natural number n



### "For all natural numbers n,

$$1+2+4+8+\cdots+2^n=2^{n+1}-1$$
" To prove this conjecture using mathematical induction, after establishing the base case, we then

Assume that the statement above holds for all natural numbers n

Prove that the statement above holds for n=1

Assume that the statement above holds for n-1, where n is some natural number

Prove that the statement above holds for some natural number n



### Proof by ("weak") mathematical induction

To be used when proving a conjecture claimed to be true for all natural numbers (or all natural numbers of a certain pattern), involving recursively-defined objects.

Let P(n) be the predicate involved without the quantifier.

Step 1 (Base case): Show that P(n) is true for the initial value of n.

**Step 2 (Induction hypothesis): Assume that P(n-1) is true for some n.** 

Step 3 (Proof step): Prove that P(n) is true, making use of the induction hypothesis.



### A completed proof

To prove: For all natural numbers n,  $1 + 2 + 4 + 8 + ... + 2^n = 2^{n+1} - 1$ .

**Proof**: We will use mathematical induction. For the base case, look at n = 0. The left side above becomes just 1. The right side is  $2^{0+1}$  - 1, which equals 2 - 1 = 1. Since the left and right sides are equal, the statement holds in the base case.

Now let n be some natural number and assume that  $1 + 2 + 4 + 8 + ... + 2^{n-1} = 2^n - 1$ .

Take just the left side of the main statement to prove:

$$1 + 2 + 4 + 8 + ... + 2^{n}$$
=  $(1 + 2 + 4 + 8 + ... + 2^{n-1}) + 2^{n}$   
=  $2^{n} - 1 + 2^{n}$  (  $\leftarrow$  By the induction hypothesis)  
=  $2(2^{n}) - 1$   
=  $2^{n+1} - 1$ .

Therefore the inductive step works, and the statement is proven.

## Practice with induction proof setup

## Conjecture: Every set of n elements has $2^n$ subsets. To prove this by induction, first:

Assume that a set with 0 elements has 1 subset

Assume that a set with 1 element has 2 subsets

Prove (by demonstration) that a set with 0 elements has 1 subset

Prove (by demonstration) that a set with 1 elements has 2 subsets

### Conjecture: Every set of elements has subsets. To prove this by induction, after establishing the base case:

Prove (by demonstration) that a set with 2 elements has 4 subsets

Assume that for all natural numbers n, every set with n-1 elements has  $2^{n-1}$  subsets

Prove (by demonstration) that a set with 1 elements has 2 subsets

Assume that for some natural number n, every set with n-1 elements has  $2^{n-1}$  subsets

# Conjecture: Every set of n elements has n subsets. To prove this by induction, after assuming the induction hypothesis:

Prove (by demonstration) that a set with 3 elements has 8 subsets

Assume that for some natural number n, every set with n elements has  $2^n$  subsets

Assume that for all natural numbers n, every set with n elements has  $2^n$  subsets

Prove that every set with n elements has  $2^n$  subsets



### Critical analysis of a proof

### Given a written proof of a conjecture, three options:

- The conjecture itself is false (there is a "counterexample") and therefore the proof cannot be correct.
- The conjecture is true, but the proof has a significant/fatal mistake or omission in the logic or the mathematics.
- The conjecture is true and the proof has no significant/fatal mistakes or omissions.

# Proposition 1 For all natural numbers n, f<sub>3n+2</sub> is even.

https://docs.google.com/document/d/1J3lQabY7P3NpvxL5iUamtdLutYGcbXXm7lF3ptALB-M/edit?usp=sharing

### How would you rate the proposed proof of Proposition 1?

The proposition itself is false, so the proof can't be right.

The proposition is true, but the proof has a significant/fatal error or omission.

The proposition is true, and the proof has no significant/fatal errors or omissions.

## "For all natural numbers $n, f_{3n+2}$ is even." To establish the base case,

Prove (by demonstration) that  $f_0$  is even

Prove (by demonstration) that  $f_1$  is even

Prove (by demonstration) that  $f_2$  is even

None of the above

## "For all natural numbers $n, f_{3n+2}$ is even." After proving the base case,

We prove that  $f_5$  is even

We assume that  $f_{3n-2}$  is even for some n

We assume that  $f_{3n-1}$  is even for some n

We assume that  $f_{3n}$  is even for some n

We assume that  $f_{3n+1}$  is even for some n



## "For all natural numbers $n, f_{3n+2}$ is even." After assuming the induction hypothesis,

We prove that  $f_8$  is even

We prove that  $f_{3n-2}$  is even for some n

We assume that  $f_{3n+1}$  is even for some n

We prove that  $f_{3n+1}$  is even

### Corrected proof

To prove the base case, let n = 0. Then 3n + 2 = 2, and notice that  $f_2 = 2$  which is even.

Now assume that  $f_{3(n-1)+2} = f_{3n-1}$  is even for some n. We want to show that  $f_{3n+2}$  is even. To do this, start with  $f_{3n+2}$  and use the Fibonacci definition:

$$f_{3n+2} = f_{3n+1} + f_{3n} = f_{3n} + f_{3n-1} + f_{3n} = 2f_{3n} + f_{3n-1}$$

The first term is even because it's 2 times an integer, and the second term is even because of the induction hypothesis. Therefore  $f_{3n+2}$  is even.

### **Proposition 2**

Every set with n elements has 2<sup>n</sup> subsets.

https://docs.google.com/document/d/1J3lQabY7P3NpvxL5iUamtdLutYGcbXXm7lF3ptALB-M/edit?usp=sharing

### How would you rate the proposed proof of Proposition 2?

The proposition itself is false, so the proof can't be right.

The proposition is true, but the proof has a significant/fatal error or omission.

The proposition is true, and the proof has no significant/fatal errors or omissions.

### What we learned/what's next

- Proof by induction has a framework of three parts:
  - Proving that the proposition is true in the base case (by demonstration)
  - Assuming the inductive hypothesis (the proposition is true for n-1)
  - Proving the main proposition using the inductive hypothesis
- Proofs have to be critically analyzed in order to learn anything from them.

#### NEXT:

- Additional practice with setup and analysis of induction proofs
- Brief review of week 15 and final exams