1-MA'RUZA

MAVZU: VEKTOR XAQIDA TUSHUNCHA

1-Ta'rif: Berilgan kesmaning qaysi uchi birinchiligi va qaysi uchi ikkinchiligi aniqlangan bo'lsa bunday kesmaga yo'nalgan kesma deyiladi.

1.1-Ta'rif: Yo'nalishga ega bo'lgan kesma vector deb nom berilgan.

1-rasm

AB kesma uzunligi yo'nalgan kesmaning uzunligi deyiladi. (chiziqcha AB) (uzunligi |AB|)

2-rasm

2-Ta'rif: Agar AB va CD nurlar bir xil yo'nalishli bo'lsa AB va CD yo'nalgan kesmalar (vektorlar) bir xil yo'nalishli deyiladi $\overline{AB} \uparrow \uparrow \overline{CD}$ aks xolda qarama-qarshi yo'nalishli deyiladi. $\overline{AB} \uparrow \downarrow \overline{CD}$

3-Ta'rif: Uzunliklari teng va bir xil yo'nalishli barcha kesmalar to'plami ozod vektor yoki qisqacha vektor deb ataladi.

3-rasm

Vektorlar lotin harflarning kichkina harflari bilan belgilanadi va ustiga chiziqcha qo'yiladi yoki $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}, \overrightarrow{BA}, \overrightarrow{DC}$ katta harflar bilan belgilanadi. \overrightarrow{AB} vektorda A-uchi boshi B-uchi oxiri.

4- Ta'rif: \overrightarrow{AB} vektorning uzunligi deb $|\overline{AB}|$ kesmaning uzunligiga teng.

5- Ta'rif: Uzunligi birga teng bo'lgan vektor- Birlik vektor deyiladi.

6- Ta'rif: Boshi va oxiri ustma-ust tushgan vektor- Nol vektor deyiladi.

4-rasm

7-Ta'rif: Agar, $\overrightarrow{AB}va\overrightarrow{CD}$ yo'nalgan kesmalar bir xil yo'nalgan bo'lsa, $\overrightarrow{A}va\overrightarrow{B}$ vektorlar bir xil yo'nalishli deyiladi va \overrightarrow{a} $\uparrow \uparrow \overrightarrow{b}$

5-rasm

 \overrightarrow{AB} va \overrightarrow{CD} qarama-qarshi yo'nalishli bo'lsa \overrightarrow{a} va \overrightarrow{s} vektorlar qarama-qarshi bo'ladi.

8- Ta'rif: Bita to'g'ri chiziqqa parallel bo'lgan vektorlar koleniyar vektorlar deyiladi.

Bu erda \overrightarrow{AB} , $\overrightarrow{CD}va\overrightarrow{FE}$ vektorlar koleniar hisoblanadi.

VEKTORLAR USTIDA CHIZIQLI AMALLAR

Vektorlar ustida bajariladigan amallar:

- 1) qo'shish
- 2) ayirish
- 3) vektorni songa ko'paytirish.

Vektorlarni qo'shish.

1)uchburchak

2)paralellogram

1)
$$\overrightarrow{a} = \overrightarrow{AB}$$
 $\overrightarrow{6} = \overrightarrow{CD}$

5-rasm

 \vec{a} va \vec{b} vektorlarni qo'shish uchun \vec{a} vektor oxiriga \vec{b} vektorni boshi olib kelib qo'yiladi va \vec{a} vektorning boshidan \vec{b} vektorning oxiriga qarata \vec{c} vektor xosil bo'ladi. $\vec{c} = \vec{a} + \vec{b}$

6-rasm

2) \vec{a} va \vec{b} vektorlarning boshlari bir nuqtaga olib kelib qo'yiladi D uchdan \vec{a} vektor parallel qilib paralellogramm xosil bo'ladi.

7-rasm

 \vec{a} va \vec{b} vektorlarning yig'indisi uning diaganallari bo'yicha o'tadi.

Vektorlarni qo'shish amallari quyidagi xossalarga ega:

1⁰. Vektorlarning qo'shishning guruxlanish (assotsiativlik)

$$\vec{a} + (\vec{e} + \vec{c}) = (\vec{a} + \vec{e}) + \vec{c}$$

2⁰. Vektorlarning qo'shishning urin almashishligi (komutativlik).

$$\vec{a} + \vec{e} = \vec{e} + \vec{a}$$

 3^0 . Har qanday \vec{a} vektorga 0 vektori qo'shilsa, \vec{a} vektor hosil bo'ladi.

$$\vec{a} + 0 = \vec{a}$$

 4° . Har qanday \vec{a} vektor uchun shunday \vec{a} vektor mavjudki:

$$\vec{a} + \vec{a}' = 0$$

Isbot. $\vec{a} = \overrightarrow{OA}$ deb yozsak $\overrightarrow{OA} + \overrightarrow{AO} = \vec{0}$ $\vec{a} + \overrightarrow{AO} = \vec{0}$ $\vec{a}' = \overrightarrow{AO}$ \vec{a}' vektorga \vec{a} vektor qarama-qarshi vektor deyiladi.

Vektorlarni ayirish

 \vec{a} va \vec{b} vektorlarning ayirmasi deb, \vec{a} va $-\vec{b}$ vektorlarning yig'indisiga aytiladi.

 $\vec{a} - \vec{e}$ ko'rinishda yoziladi.

 \vec{a} va \vec{b} vektorlarning ayirmasini topish uchun ularning boshlarini bir nuqtaga olib kelamiz va ularning oxirlarini tutashtiramiz.

8-rasm

 \vec{a} va \vec{b} vektorlarni bir joyga olib kelamiz. Xosil bo'lgan vektor \vec{a} - \vec{b} deb yoziladi.

Vektorni songa ko'paytirish.

Ta'rif: $\vec{a} \neq 0$ vektorning $\alpha \in R$ ko'paytmasi deb, shunday vektorga aytiladiki, bu vektorning yo'nalishi $\alpha > 0$ bo'lsa \vec{a} vektorning yo'nalishi bilan bir xil, $\alpha < 0$ bo'lsa \vec{a} vektorning yo'nalishiga qarama-qarshi bo'lib, uzunligi α ning moduliga \vec{a} vektorning uzunligining ko'paytmasiga teng bo'ladi va $\alpha \cdot \vec{a}$ ko'rinishda yoziladi.

9-rasm

bu ta'rifdan quyidagi mulohazalar kelib chiqadi.

- 1) $\vec{a} \cdot 0 = \vec{0}$
- 2) $0 \cdot \alpha = \vec{0}$
- 3) $1 \cdot \vec{a} = \vec{a}$
- 4) $-1 \cdot \vec{a} = -\vec{a}$
- 5) \vec{a} va α \vec{a} vektorlar kollenear.

Teorema: $Agar \vec{a}// \vec{\epsilon} (\vec{a} \neq 0)$ bo'lsa, u xolda shunday α son mavjud bo'ladiki $\epsilon = \alpha \cdot \vec{a}$ tenglik o'rinli bo'ladi.

Bu erda uchta xol mavjud bo'lishi mumkin.

Isbot. 1) $\vec{a} \uparrow \uparrow \vec{b}$ bo'lsin $\frac{a}{|\vec{a}|}$ bu vektor yo'nalishi \vec{a} bilan bir xil bo'lgan

birlik vektordir. $\frac{\vec{a}}{|\vec{a}|} = \frac{\vec{b}}{|\vec{b}|}$ $\vec{b} = \frac{\vec{a}|\vec{b}|}{|\vec{a}|} = \left|\frac{\vec{b}}{|\vec{a}|}\right| \cdot \vec{a}$ bu erda $\alpha = \frac{|\vec{b}|}{|\vec{a}|}$ deb olsak $\vec{b} = \alpha \cdot \vec{a}$

bo'ladi. Yo'nalishda bo'lsa teorema isbotlandi.

2) $\vec{a} \uparrow \downarrow \vec{b}$ bo'lsin. $\frac{\vec{a}}{|\vec{a}|} \uparrow \uparrow \vec{a}$ birlik vektor. $\frac{\vec{b}}{|\vec{b}|} \uparrow \uparrow \vec{b}$ birlik vektor. $\vec{a} \uparrow \downarrow \vec{b}$ edi.

$$-\frac{\vec{a}}{|\vec{a}|} = \frac{\vec{b}}{|\vec{b}|}$$
 bo'ladi. $\vec{b} = -\frac{|\vec{b}|}{|\vec{a}|} \cdot \vec{a}$ $\alpha = -\frac{|\vec{b}|}{|\vec{a}|}$ $\vec{b} = \alpha \cdot \vec{a}$ bo'ladi.

3) $\vec{b} = 0$ bo'lsin u xolda $\alpha = 0$ deb olamiz. $\vec{b} = \alpha \cdot \vec{a}$ bo'ladi.

Teorema isbot bo'ladi.

Demak, vektorni songa ko'paytirishning bu teoremadan bu kelib chiqadi.

$$\vec{a}//\vec{b} \Leftrightarrow \vec{b} = \alpha \cdot \vec{a}$$

Demak, \vec{a} va \vec{b} vektorlar kollenear bo'lishi $\vec{b} = \alpha \cdot \vec{a}$ bo'lishi zarur va etarli. Vektorni songa ko'paytirish quyidagi:

- 1) $\forall \vec{a}$ va har qanday $\alpha, \beta \in R$ sonlar uchun $\alpha \cdot (\vec{\beta} \cdot \vec{a}) = (\alpha \cdot \beta) \cdot \vec{a}$ tenglik o'rinli.
- qanday $(\forall \vec{a})$ har qanday $\alpha, \beta \in R$ sonlar 2) har va uchun $(\alpha + \beta) \cdot \vec{a} = \alpha \cdot \vec{a} + \vec{a} \cdot \beta$
- 3) $\forall \vec{a} \text{ va } \vec{b} \text{ vektorlar va har qanday } \alpha \in R \text{ son uchun } \alpha \cdot (\vec{a} + \vec{b}) = \alpha \cdot \vec{a} + \alpha \cdot \vec{b}$ o'rinli.

Shunday qilib barcha vektorlar to'plami V da aniqlangan vektorlarni ko'shish va vektorni songa ko'paytirish amallari quyidagi xossalarni qanoatlantiradi.

1°.
$$(\vec{a} + \vec{b}) + \vec{c} = (\vec{b} + \vec{c}) + \vec{a}$$
 (assotsativlik)

$$2^0$$
. $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ (komutativlik)

$$3^{\circ}$$
. Shunday $\vec{0}$ vektor mavjudki $\vec{a} + \vec{0} = \vec{a}$

$$4^{\circ}$$
. Shunday \vec{a} vektor mavjud mavjudki $\vec{a} + \vec{a} = \vec{0}$

5°.
$$\alpha(\vec{a}\cdot\vec{\beta})=(\alpha\cdot\beta)\cdot\vec{a}$$

$$6^0$$
. $(\alpha + \beta) \cdot \vec{a} = \alpha \cdot \vec{a} + \beta \cdot \vec{a}$

70.
$$\alpha(\vec{a} + \vec{b}) = \alpha \cdot \vec{a} + \alpha \cdot \vec{b}$$

80. $1 \cdot \vec{a} = \vec{a}$

$$8^{\circ}$$
. $1 \cdot \vec{a} = \vec{a}$

bu sakkiz xossani qanoatlantiruvchi vektorlar to'plami V vektor fazo deviladi. (chiziqli fazo deb yuritiladi).

MISOL VA MASALALAR

- 1.ABC uchburchakka AD mediana o'tkazilgan. \overrightarrow{AD} vektorni \overrightarrow{AB} , \overrightarrow{AC} vektorlar orgali ifodalang.
- 2. \vec{a} va \vec{b} vektorlarning berilishiga ko'ra ularning quyidagi chiziqli kombinatsiyalarini yasang:

1)
$$3\vec{a} + \frac{1}{2}\vec{b}$$
 2) $\vec{a} - \frac{1}{2}\vec{b} + \vec{c}$ 3) $\vec{a} - \frac{2}{5}\vec{b}$

3. Quyidagi vektorlarni modulini hisoblang:

$$\vec{a} = \{3; 2; 1\} \vec{b} = \{4; 2; 1\} \vec{c} = \{5; 0; 7\}$$

- 4. A(3;2;1) va B(4;3;5) nuqtalar berilgan. \overrightarrow{AB} va \overrightarrow{BA} vektorlarning koordinatalarini toping.
- 5. Oxiri (1;-1;2) nuqtada bo'lgan $\vec{a} = \{2; -3; -1\}$ vector boshiining koordinatalarini toping
- 6. Agar $\vec{a}\{4;-7;3\}$ va $\vec{b} = \left\{-5;9;\frac{1}{2}\right\}$ bo'lsa $\vec{c} = 3\vec{a} + 2\vec{b}$ vektorning koordinatalarini toping.

7. \bar{a} va \bar{b} vektorlarning berilishiga ko'ra ularning quyidagi chiziqli kombinatsiyalarini yasang:

$$3\overline{a} + \frac{1}{2}\overline{b};$$
 $\frac{1}{2}\overline{a} + \frac{1}{3}\overline{b};$ $\overline{a} - 3\overline{b};$ $-3\overline{a} - \frac{1}{2}\overline{b} + \overline{c}.$

8. $\overline{AB} = \overline{c}$, $\overline{BC} = \overline{a}$, $\overline{CA} = \overline{b}$ vektorlar *ABC* uchburchakning tomonlari. *ABC* uchburchakning \overline{AQ} , \overline{BN} , \overline{CP} medianalaridan iborat vektorlarni \overline{a} , \overline{b} , \overline{c} vektorlar orqali ifodalang. $\overline{a} = \{-3, -2, 6\}$ va $\overline{b} = \{-2, 1, 10\}$ vektorlar berilgan. Quyidagi vektorlarning koordinatalarini toping:

$$2\overline{a} - \frac{1}{3}\overline{b}$$
; $\overline{a} + 2\overline{b}$; $\overline{4a} - 5\overline{b}$; $\frac{1}{3}\overline{a} + 2\overline{b}$.

- 9. B(4,-2,0) nuqta $\bar{a}(2,-3,-1)$ vektorning oxiri bo'lsa, bu vektor boshining koordinatalarini toping.
- 10. $\bar{a}(2,-3)$ va $\bar{b}(-3,4)$ vektorlar berilgan. Agar $\bar{a} = -\bar{c} + 3\bar{b}$ bo'lsa, \bar{c} vektorning koordinatalarini toping.
- 11. To'rtburchakning uchta M(2,-4), N(-4,0), P(2,-2) uchlari berilgan. Agar $\overline{MN} = 4\overline{QP}$ bo'lsa, Q uchining koordinatalarini toping.
- 12. $\bar{a}(2,3)$, $\bar{b}(3,-2)$, $\bar{c}(4,19)$ vektorlar uchun $\bar{c} = m\bar{a} + n\bar{b}$ tenglik o'rinli bo'lsa, mn ko'paytmaning qiymatini toping.
- 13. Quyidagi ifodani soddalashtiring:

$$\overline{OP} - \overline{EP} + \overline{KD} - \overline{KA},$$

$$\overline{AD} + \overline{MP} + \overline{EK} - \overline{EP} - \overline{MD},$$

$$\overline{AC} - \overline{BC} - \overline{PM} - \overline{AP} + \overline{BM},$$

$$\overline{AB} + \overline{BC} + \overline{CD} - \overline{AD} + \overline{MN}.$$

- 14. $ABCDA_1B_1C_1D_1$ parallelepiped berilgan bo'lsa, $\overline{AB} + \overline{AD} + \overline{AA_1}$ yig'indi vektorni toping.
- 15. ABCD parallelogrammning ikkita qo'shni tomoni $\overline{AB} = \overline{a}$, $\overline{AD} = \overline{b}$, diagonal-larining kesishish nuqtasi esa M bo'lsa, \overline{MA} , \overline{MB} , \overline{MC} , \overline{MD} vektorlarni \overline{a} va \overline{b} vektorlar orqali ifodalang.
- 16. M nuqta ABC uchburchak medianalarining kesishgan nuqtasi bo'lsa, $\overline{MA} + \overline{MB} + \overline{MC} = \overline{0}$ ekanligini isbotlang.
- 17. ABC uchburchak va uning og'irlik markazi G berilgan bo'lsa, u holda ixtiyoriy M nuqta uchun $\overline{MG} = \frac{1}{3} \left(\overline{MA} + \overline{MB} + \overline{MC} \right)$ ekanligini isbotlang.
- 18. $\overline{AB} = 2\overline{BC}$ shartni qanoatlantiruvchi A, B, C nuqtalar berilgan. Ixtiyoriy O nuqta uchun

$$\overline{OB} = \frac{1}{3}\overline{OA} + \frac{2}{3}\overline{OC}$$

tenglik o'rinli ekanligini isbotlang.

- 19. Muntazam ABCDEF oltiburchakda $\overline{AB} = \overline{p}$ va $\overline{BC} = \overline{q}$ ekani ma'lum: Quyidagi \overline{CD} , \overline{DE} , \overline{EF} , \overline{FA} , \overline{AC} , \overline{AD} va \overline{AE} vektorlar \overline{p} va \overline{q} vektorlar orqali ifodalansin.
- 20. Muntazam *ABCDEF* oltiburchakda $\overline{AB} = \overline{p}$ va $\overline{BC} = \overline{q}$ ekani ma'lum: Vektorlarning quyidagi nisbatlari topilsin:

$$\frac{\overline{BC}}{\overline{AD}}, \frac{\overline{BC}}{\overline{EF}}, \frac{\overline{CF}}{\overline{AB}}, \frac{\overline{AB}}{\overline{BC}}.$$

TESTLAR

- 1. $\overline{a} = \{1;5\}, \ \overline{b} = \{3;-1\}, \ \overline{c} = \{0;1\}$ векторлар берилган. α нинг кандай кийматларида $\overline{p} = \overline{a} + \alpha \overline{b}, \ \overline{q} = \overline{a} \overline{c}$ векторлар коллинеар булади?
 - A) 5
 - B) $-\frac{3}{11}$
 - C) $\frac{1}{13}$
 - D) $\frac{9}{11}$
- 2. $\overline{a}=\{1;5\},\ \overline{b}=\{3;-1\},\ \overline{c}=\{0;1\}$ векторлар берилган. α нинг кандай кийматларида $\overline{p}=\overline{a}+\alpha\overline{b},\ \overline{q}=\overline{a}-\overline{c}$ векторлар коллинеар булмайди?
 - A) 5
 - B) $-\frac{3}{11}$
 - C) $\frac{1}{13}$
 - $D)\frac{9}{11}$
- 3. Vektorlarning ta'rifiga asoslanib ushbu tushunchalardan qaysi biri toʻgʻriligini aniqlang
- a)Faqat son qiymati bilan aniqlangan kattalik vektor kattalikdir
- b)Faqat yo'nalish bilan aniqlangan kattalik vektor kattalikdir
- c)Xam son qiymati, xam yo'nalishi bilan aniqlangan kattalik vektor kattalikdir
- d)Ixtiyoriy jismning xajmi vektor kattalikdir
- 4. Uzunliklari teng, bir xil yo'nalishga ega ikkita vektorlarga
- a)birlik vektorlar deyiladi

- b)Qarama-qarshi vektorlar deyiladi
- c)ortogonal vektorlar deyiladi
- d)o'zaro teng vektorlar deyiladi

$$\vec{a}\left(-\frac{3}{5},\frac{4}{5}\right)$$
 $\vec{b}\left(\frac{2}{3},\frac{2}{3}\right)$

5. Quyidagi vektorlarning qaysi biri birlik vektor

$$\vec{c}(0,-1)$$
 $\vec{d}(\frac{3}{5},-\frac{4}{5})$

- a) A va B
- b) A, C, D
- c) C, D
- d) birlik vektor yo'q

6. Quyidagi mulohazalardan qaysi biri to'g'ri?

- a) \vec{a} vektorni k sonigi ko'paytirish uchun uning uzunligi k soniga ko'paytiriladi
- b) \vec{a} va \vec{b} vektorlarni yig'indisi deb, \vec{a} vektorning boshidan \vec{b} vektorning oxiriga yo'naltirilgan vektorga aytiladi
- c) \vec{a} va \vec{b} vektorlarning skalyar ko'paymasi deb, mos koordinatalarini ko'paytirishga aytiladi
- d) \vec{a} va \vec{b} vektorlarni ayirmasi deb, \vec{b} vektor bilan yig'indisi \vec{a} vektorga teng \vec{c} vektorga aytiladi
- 7. $\vec{a} = \{2; -1; 3\}$, $\vec{b} = \{-6; 3; -9\}$ vektorlar qanday o'zaro munosabatda bo'ladi?
- a) \vec{a}, \vec{b} kolleniar vector
- b) $\vec{a} \perp \vec{b}$
- c) $\vec{a}\vec{b} = 30^{\circ}$
- d) a,b kolleniar vector emas.
- 8. $\vec{a} = \{2;1;-3\}$, $\vec{b} = \{-6;-3;9\}$ vektorlar qanday o'zaro munosabatda bo'ladi?
- a) \vec{a}, \vec{b} kolleniar vector
- b) $\vec{a} \perp \vec{b}$
- $c)\vec{a} = \vec{b}$
- d) \vec{a} , \vec{b} kolleniar vector emas.
- 9. $\vec{P} = \{5;1;3\}$ va $Q = \{2;-1;4\}$ nuqtalar berilgan. \overrightarrow{PQ} vektorning koordinatasi topilsin
- a) $\{-3; -2; 1\}$
- b) {1;1;0}
- c) {0;4;0}
- $d){0;0;4}$

10. \vec{a} , \vec{b} vektorlar o'zaro qanday joylashgan bo'lsa, $|\vec{a} + \vec{b}| = |\vec{a}| + |\vec{b}|$ tenglik o'rinli bo'ladi.

- a) $\vec{a} \uparrow \uparrow \vec{b}$
- b) $\vec{a} \uparrow \downarrow \vec{b}$
- c) $\vec{a} \perp \vec{b}$
- d) $\vec{a} = -\vec{b}$