6.0 Ensemble Methods using SAS Enterprise Miner

6.1 Bagging

Create a model for Bagging using "HP Forest" node. Keep default settings.

. Property	Value
General	
Node ID	HPDMForest
Imported Data	
Exported Data	
Notes	
Train	
Variables	
□Tree Options	
Maximum Number of Trees	100
Seed	12345
Type of Sample	Proportion
Proportion of Obs in Each Sample	0.6
Number of Obs in Each Sample	
■Splitting Rule Options	
Maximum Depth	50
Missing Values	Use In Search
Minimum Use In Search	1
Number of Variables to Consider in S	
Significance Level	0.05
Max Categories in Split Search	30
Minimum Category Size	5
i. Exhaustive	5000
□Node Options	
Method for Leaf Size	Default
Smallest Percentage of Obs in Node	1.0E-5
Smallest Number of Obs in Node	1
^L Split Size	
Use as Modeling Node	Yes
Score	
Variable Selection	Yes
Variable Importance Method	Loss Reduction
Number of Variables to Consider	25
Cutoff Fraction	0.01

Based on Iteration Plot, misclassification rate plateaued out when number of trees reaches 20.

Based on Fit Statistics, misclassification rate is 0.09952 for training dataset and 0.1070 for validation dataset.

6.2 Boosting

Create a model for Boosting using "Gradient Boosting" node. Keep default settings.

. Property	Value
General	
Node ID	Boost
Imported Data	
Exported Data	
Notes	
Train	
Variables	
□Series Options	
-N Iterations	50
Seed	12345
Shrinkage	0.1
-Train Proportion	60
□Splitting Rule	
Huber M-Regression	No
-Maximum Branch	2
-Maximum Depth	2
-Minimum Categorical Size	5
Reuse Variable	1
Categorical Bins	30
Interval Bins	100
-Missing Values	Use in search
L. Performance	Disk
□Node	2.004
Leaf Fraction	0.001
Number of Surrogate Rules	0
^L Split Size	
□Split Search	5000
Exhaustive	5000
Node Sample	20000
⊒Subtree	D!-!
Assessment Measure	Decision
Score Subseries	Doct Assessment Value
	Best Assessment Value
Number of Iterations	1 No
Create H Statistic Variable Selection	
	Yes
Report Observation Based Importance	No
Number Single Var Importance	
Number Single var Importance	J

Based on Iteration Plot, misclassification rate plateaued out at 48th iteration.

Based on Fit Statistics, misclassification rate is 0.1056 for training dataset and 0.1064 for validation dataset.

6.3 Model Comparison

Compare model performance using "Model Comparison" node.

Figure below shows the Fit Statistics for model comparison.

Fit Statistics Model Selection based on Valid: Misclassification Rate (_VMISC_)									
Selected Model	Model Node	Model Description	Valid: Misclassification Rate	Train: Average Squared Error	Train: Misclassification Rate	Valid: Average Squared Error			
Y	Tree2 Boost HPDMForest Tree	Decision Tree Gradient Boosting HP Forest Maximal Tree	0.09698 0.10645 0.10704 0.10999	0.089704 0.078212 0.073619 0.070517	0.11094 0.10561 0.09952 0.09571	0.082430 0.074786 0.074995 0.079098			

The selected model is pruned Decision Tree (Tree2 in the figure) with a validation misclassification rate of 0.09698 or 9.698%. Although the two ensemble methods helped reduce the training misclassification rate, ensemble methods resulted in higher validation misclassification rate than the pruned Decision Tree. This outcome is not uncommon and can be due to various reasons:

1. Overfitting in Ensemble Methods:

• While ensemble methods (such as Random Forest or Gradient Boosting) aim to reduce overfitting, improper tuning or inadequate control over model complexity might lead to overfitting the training data. This can result in poorer performance on unseen validation data.

2. Sensitivity to Hyperparameters:

• Ensemble methods often have multiple hyperparameters to tune (e.g., number of trees in Random Forest, learning rate in Gradient Boosting). Suboptimal hyperparameters can negatively affect model performance on validation data.

Nevertheless, the resulting difference is not significant (1 - 2%). It is fair to conclude that all the models including pruned Decision Tree, Random Forest and Gradient Boosting managed to deliver good classification accuracy, with small misclassification rate of 9.6 - 10.7%.