高级人工智能板书整理(10.29)

1.

证明: $M(\alpha)$ is the set of all models of α ,then $KB \models \alpha$ if and only if $M(KB) \subseteq M(\alpha)$.

说明:m是一种使 α 为真的"truth assignment"(真值指派); $M(\alpha)$ 是使所有 α 为真的model(模型) m的集合; $KB \models \alpha$ 直观理解就是在使KB为真的worlds(世界)里面 α 也全都要为真.

证:先证⇒

 $\forall m \in M(KB)$,因为 $KB \models \alpha$,可推出m也使 α 为真,所以 $m \in M(\alpha)$,所以 $M(KB) \subseteq M(\alpha)$.

再证⇐

 $\forall m \in M(KB), m \in M(\alpha)$,对于所有m来说,使得KB为真, α 也为真,根据定义即 $KB \models \alpha$.证毕.

2.

证明: $KB \models \alpha$ if and only if $(KB \Rightarrow \alpha)$ is valid.

先证⇒:

因为 $KB \models \alpha$ 所以 $M(KB) \subseteq M(\alpha), \forall m \in M(KB), m \in M(\alpha)$,即KB为真, α 为真, $KB \Rightarrow \alpha$ 为valid(永真式).

再证⇐:

1)若 $M(KB) \neq \varnothing$ 则 $\forall m \in M(KB)$,因为 $KB \Rightarrow \alpha$ 永真,所以 $m \in M(\alpha)$,可推出 $M(KB) \subseteq M(\alpha)$,即 $KB \models \alpha$.

2)若 $M(KB)=\varnothing$ 则不存在m使得KB为真,又因为 $\varnothing\subseteq M(\alpha)$ 所以 $M(KB)\subseteq M(\alpha)$,即 $KB\models\alpha$. 证毕.