IT1007 Extra Consult

Thiru SOC - BZA - Y4 ttt@u.nus.edu

- Computers are STUPID. Tell them *exactly* what you want them to do
- What can you tell them to do?
 - Keep track of variables
 - Conditional checking / Execution (Conditionals)
 - Do something X times (Iteration / Recursion)
 - Data Structure Manipulation (Lists, Dicts etc)

 Programming is just a tool to translate a method of solving problems to the computer to solve them.

This may seem super obvious, but you dont really get it until you can easily translate thoughts to code

Functions

Functions are re-usable bits of code that takes in something, and gives you something. Functions help you *not repeat code*.

Eg:

- Calculate e. Formula→ sum(1/n!)
- Now calculate binomial
 - Are you going to hardcode the calculation again?
 - No! call factorial function!

Lists

- Normally used when you're working with ordered data
 - CSV, blah.
- Collection of anything in a row / 2d matrix / etc.

Lists

- You're grading tests, and the score for 10
 students are 67,45,45,64,86,22,57,76,33,20
- Can you:
 - Find what the 8th student scored?
 - Calculate the mean? what about median?
 - Find if any 2 students scored a combined mark of 112

Dictionaries

- Normally used when you're working with unordered data
- "I give you this, you give me this" principle
- Eg, x = {"apples":2,"oranges":4}
 - $x["apples"] \rightarrow 2$

Dictionaries

- You're grading tests, and the score for 10
 students are 67,45,45,64,86,22,57,76,33,20
- Can you:
 - Find the number of times each mark appears?

Practice Paper

Q1:

If you can do the:

- Compute e question (duh)
- Bisection question (last question of Mock PE)

You should be able to do this. It's a combination!

- Iteration
- Conditionals

Q1:

Basic Idea

- You have a formula, that sums to infinity for the most accurate value of e.
- Obviously, you cant do infinity. BUT. You CAN do up to a given level of precision
- Core idea: Just keep adding new terms until your error criteria is fulfilled!

Q2:

If you can do the:

Filter wave lab (duh)

- Iteration
- List Manipulation
- Understanding of "Not modifying input list"

Q2: Basic Idea

- You don't want to modify the inputs because lists are mutable, modifying that will change the original value which may be used elsewhere. So create a clone list
 - list(wave)
- You have a list of values, that you want to modify according to some logic.
- Thats.. about it.

Q3:

If you can do the:

Integration lab (duh)

- Iteration
- Conditionals

Q3: Basic Idea

- First, UNDERSTAND WHAT YOURE DOING
 - O What is integration?
 - TLDR: Area under the curve. Obviously
 easiest way is then draw a huge rectangle,
 but thats inaccurate for curves. so draw
 miniscule rectangles

Q3: Basic Idea

- You have delta_x, which is the width of the rectangle.
- Hence, you just need to:
 - start from beginning (point a), add delta_x (point b)
 - find the height at point_a. multiply and get the area
 - Add the area to a storage variable.
 - your point_a is now point_b. add delta_x to the old point_b to get your new point_b.
 - Repeat!

Q4:

If you can do the:

Image processing lab (duh)

- Iteration
- Conditionals
- Understanding documentation (subplots / layouts)
- Understanding numpy arrays & indexing

Q4: Basic Idea

- Understand what is happening
 - 1st pic: original avengers
 - 2nd pic: school
 - 3rd pic: together
 - How to merge?
- How to get the layout? what function to use?

Q4: Basic Idea

- For the first 2 pics just set the layout and display
- Last pic:
 - Set layout
 - Loop and apply conditional logic
 - if G > R and G > B and G > 110
 - replace
 - o show

Q5: "Bonus" Question thats actually free marks

- Iteration
- Conditionals
- A bit of math

Q5: Basic Idea (Simplest Way - Brute Force)

- $a^2 + b^2 = C$
- Loop a from 1 to C
 - Loop b from 1 to C
 - Check $a^{**}2 + b^{**}2 = C$. If so, done
- Thats it!! 10 / 20 done

Q5: Basic Idea (Smarter Way)

- The previous way wont work for larger integers.
 we need to find a way to cut down the amount of computation
- Solution? Rearrange the formula!
- $a^{**}2 = (C b^2)$
 - If a can be square rooted, then its valid!
 - now you only need one loop to (n/2)!