一、填空题(共 18 分)

- 1. 设 A 是 3 阶方阵,|A| = 3,A*为 A 的伴随矩阵,则 $|3A^{-1}| = ($), $|A^*| = ($), $|3A^* - 7A^{-1}| = ($).
- 2. $\mathfrak{P}(\alpha) = (1, -2, 3)^{\mathrm{T}}, \ \beta = (-1, \frac{1}{2}, 0), \ A = \alpha \beta, \ \mathbb{M} |A^{100}| = ()$
- 3. 设向量 $\alpha = \begin{pmatrix} 1 \\ k \\ 1 \end{pmatrix}$ 是矩阵 $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$ 的一个特征向量,则 k = ().
- 4. A 为 3 阶实对称矩阵,向量 $\xi_1 = (1,2,5)^T$, $\xi_1 = (k,2k,3)^T$ 是分别对应于特征 值 2 和 3 的特征向量,则 k = ().
- 5. 设 η_1, η_2, η_3 为 4 元非齐次线性方程组 Ax = b 的三个解,r(A) = 3,已知 $\eta_1 + \eta_2 = (3,4,5,6)^T$, $\eta_3 = (1,2,3,4)^T$, 则 Ax = b 的一般解为().
- 二、选择题(共 6 题, 每题 3 分, 共 18 分)
- 1. 设 $M \times P$ 为 n 阶矩阵,且 P 可逆,则下列运算不正确的是().
 - A. $|M| = |P^{-1}MP|$;

- B. $|2E M| = |2E P^{-1}MP|$;
- C. $|2E M| = |2E (P^{-1}MP)^T|$; D. $P^{-1}MP = M$.
- 2. 设 M、N、P 为同阶矩阵,下列结论成立的有().
 - A. MN = NM;

- B. $(M+N)^{-1} = M^{-1} + N^{-1}$;
- C. 若 MP = NP,则 M = N; D. $(M+N)^T = M^T + N^T$.
- 3. 设 A 为 $m \times n$ 矩阵,线性方程组 Ax = b 有解的充分条件为().
 - A. 矩阵 A 行满秩;

- B. 矩阵 A 列满秩;
- C. 矩阵 A 的秩小于其行数; D. 矩阵 A 的秩小于其列数.
- 4. 设 A 是 n 阶实对称矩阵, P 是 n 阶可逆矩阵; 若 n 维列向量 α 是 A 的属于特征 值 λ 的特征向量,则矩阵 $(P^{-1}AP)^T$ 的属于特征值 λ 的特征向量是().
 - A. $P^{-1}\alpha$; B. $P^{T}\alpha$; C. $P\alpha$; D. $(P^{-1})^{T}\alpha$.
- 5. 设向量 α , β , γ 线性无关, α , β , δ 线性相关,下列哪个成立().

- A. α 必可由 β , γ , δ 线性表示; B. β 必不可由 α , γ , δ 线性表示;
- C. δ 必可由 α , β , γ 线性表示; D. δ 必不可由 α , β , γ 线性表示.
- 6. 设 A 是 n ($n \ge 2$)阶可逆矩阵,交换 A 的第 1 行与第 2 行得矩阵 B; A*、B*分别为 A、B 的伴随矩阵,则().
 - A. 交换 A*的第一列与第二列得 B*; B. 交换 A*的第一行与第二行得 B*;
 - C. 交换 A^* 的第一列与第二列得 $-B^*$; D. 交换 A^* 的第一行与第二行得 $-B^*$.
- 三、计算题(共 4 题, 共 28 分)
- 1. 计算行列式的值: $\begin{vmatrix} -a_1 & a_1 & 0 & \cdots & 0 & 0 \\ 0 & -a_2 & a_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -a_n & a_n \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{vmatrix}.$
- 2. 矩阵 $A = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$,矩阵 X 满足 $A^*X = A^{-1} + 2X$,其中 A^* 是 A 的伴随 矩阵,求矩阵 X.
- 3. 己知 R^3 的两组基 $B_1 = \{\alpha_1, \alpha_2, \alpha_3\}$ 和 $B_2 = \{\beta_1, \beta_2, \beta_3\}$,其中 $\alpha_1 = (1,1,1)^T$, $\alpha_2 = (0,1,1)^T$, $\alpha_3 = (0,0,1)^T$; $\beta_1 = (1,0,1)^T$, $\beta_2 = (0,1,-1)^T$, $\beta_3 = (1,2,0)^T$.
 - (1) 求基 B₁到基 B₂的过渡矩阵 A;
 - (2)已知 α 在基 B_1 下的坐标向量为 $(1,-2,-1)^T$,求 α 在基 B_2 下的坐标向量.
- 4. 求向量组 α_1 = (1,0,1,0), α_2 = (2,1,-3,7), α_3 = (4,1,-1,7), α_4 = (3,1,0,3), α_5 = (4,1,3,-1) 的秩,及其一个极大线性无关组,并将其余向量用极大线性无关组线性表示.

四、证明题(共 1 题, 共 8 分)

设A为n阶方阵,且 $4A^2-I=0$,证明:

(1) A 的特征值只能为 $-\frac{1}{2}$ 或 $\frac{1}{2}$; (2) r(2A + I) + r(2A - I) = n.

五、解方程组(共1题,13分)

当
$$\lambda$$
 取何值时,线性方程组
$$\begin{cases} (1+\lambda)x_1+x_2+x_3=0\\ x_1+(1+\lambda)x_2+x_3=3\\ x_1+x_2+(1+\lambda)x_3=\lambda \end{cases}$$

无解、有唯一解、有无穷多解?并在有无穷多解时求其通解.

六、二次型(共1题,12分)

- 二次型 $f(x_1, x_2, x_3) = 5x_1^2 + 5x_2^2 + cx_3^2 + 2x_1x_2 + 4x_1x_3 4x_2x_3$ 的秩为 2,
- (1)求c;
- (2)用正交变换法将二次型化为标准形,并写出对应的正交矩阵.