

Certification Exhibit

FCC ID: 2AJX7KP9000D

FCC Rule Part: 47 CFR Part 2.1091

Project Number: 16-0272

 $\label{eq:Manufacturer: QSR Automations, Inc.} \\$

Model: KP-9000D

RF Exposure

Model: KP-9000D FCC ID: 2AJX7KP9000D

General Information:

Applicant: QSR Automations, Inc.

Device Category: Mobile

Environment: General Population/Uncontrolled Exposure

Technical Information:

Antenna Type: Printed Meandering Trace Antenna

Antenna Gain: -7 dBi

Maximum Transmitter Conducted Power: 2.70 dBm, 1.86 mW

Maximum System EIRP: -4.3 dBm, 0.37 mW Exposure Conditions: 20 centimeters or greater

MPE Calculation

The Power Density (mW/cm²) is calculated as follows:

$$S = \frac{PG}{4\pi R^2}$$

Where:

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Table 1: MPE Calculation

Transmit Frequency (MHz)	Radio Power (dBm)	Power Density Limit (mW/Cm2)	Radio Power (mW)	Antenna Gain (dBi)	Antenna Gain (mW eq.)	Distance (cm)	Power Density (mW/cm^2)
2440	2.7	1.00	1.86	-7	0.200	20	0.0001

Project No.: 16-0272 TUV SUD America Page 2