

Survie nette

Nolwenn Le Stang

Unité d'Epidémiologie et de Biostatistique, Registre des cancers PÔLE PHARMACIE ET SANTE PUBLIQUE FACULTÉ DE MÉDECINE - CHU POITIERS

09 juin 2023

Survie nette et excès de risque

- Par qui cette méthode est-elle utilisée ?
- Définition et concept d'excès de risque
- Définition et concept de survie nette
- Exemples : le cancer du poumon et le mélanome

Registres de population, pathologie étudiée : cancer

- De couverture nationale, mono ou multi-départementale
- général : cancer de toute localisation, ou spécialisé : cancer d'une localisation ou d'une tranche d'âge particulière
- Méthodologie
 - Enregistrement exhaustif et continu des données
 - Pop. atteinte de cancer d'une région géographique donnée
 - Identifiée à partir de différentes sources
- Finalité : veille sanitaire et recherche épidémiologique

Le réseau Francim – réseau des registres de cancer français

Les données des registres

- Données collectées en routine
 - Date de diagnostic
 - Date de naissance
 - Date de décès (suivi actif)
 - Cause de décès : non fiable et inconnue le plus souvent
 - Attribution subjective => non comparable entre unité géographique
 - Sexe
 - Localisation et type de tumeur
- Données collectées pour des études spécifiques
 - Marqueurs biologiques, catégorie socio-professionnelles, ...

Analyse en base populationnelle

Statistiques nationales

Population générale

 Population par sexe, âge, période et département

 Mortalité toutes causes par sexe, période et département

Registres de cancer

Pop. atteinte de cancer

- Population par sexe, âge, période et département
- Mortalité observée par sexe, période et département

Informations sur la performance des soins contre le cancer : Prévalence, Incidence, Mortalité, Survie

Finalité ++ : produire des indicateurs comparables entre pays

Postulat

cause de décès était le cancer

Exemple du cancer de l'estomac en fonction du stade de la maladie

Courbe de survie d'une population « normale » similaire en sexe et âge

Courbes de survie des patients atteints de cancer en fonction du stade de la maladie

Note: taux sur échelle logarithmique => la pente représente la décroissance proportionnelle par décès (taux de mortalité instantané - excès)

Exemple du cancer de l'estomac en fonction du stade de la maladie

Convexité ascendante : augmentation des taux de mortalité avec l'âge

Convexité descendante, puis parallèle à la courbe "normale"

Note: taux sur échelle logarithmique => la pente représente la décroissance proportionnelle par décès (taux de mortalité instantané - excès)

Exemple du cancer de l'estomac en fonction du stade de la maladie

Convexité ascendante : augmentation des taux de mortalité avec l'âge

Convexité descendante, puis parallèle à la courbe "normale".

Décroissance du taux de mortalité

Exemple du cancer de l'estomac en fonction du stade de la maladie

Convexité ascendante : augmentation des taux de mortalité avec l'âge

Convexité vers le bas, puis parallèle à la courbe "normale".

Tendances similaires à la courbe « normale »

Exemple du cancer de l'estomac en fonction du stade de la maladie

Comparaison de la pente de ces courbes de survie

Dynamique de la pente

Différence entre la pente « cancer » et la pente « normale »

=> Fonction de mortalité en excès

Calcul du risque en excès – approche 1 : le concept

Calcul du risque en excès – approche 1 : la méthode

Sous l'hypothèse que la part de la mortalité pour un cancer spécifique est négligeable par rapport à la mortalité de l'ensemble de la population

Notez que les causes de décès agissent de manière concurrente

Concept de survie relative

Calcul du ratio de survie relative

Différents estimateurs disponibles : Ederer I, Hakulinen et Ederer II

Calcul du risque en excès – approche 1 : les limites

Sous l'hypothèse que la part de la mortalité pour un cancer spécifique est négligeable par rapport à la mortalité de l'ensemble de la population Notez que les causes de décès agissent de manière concurrente

Survie relative peut être surestimée

Estimateurs non paramétriques Ederer I, Hakulinen et Ederer II biaisés, en particulier en cas de d'un mécanisme de censure informatif

Calcul du risque en excès – approche 2 : correction des biais

Dans le monde réel, on se rend compte que :

- Tous les décès ne sont pas dus au cancer, il faut donc diminuer le total par le nombre attendu de décès dus à la population
 - Utiliser les tables de mortalité de la population pour obtenir ce chiffre
- Le groupe à risque n'est pas le même que dans le monde hypothétique dans lequel il y a moins de personnes décédées pour d'autres causes
 - Utiliser la probabilité de survie de la population pour pondérer le nombre de personnes décédées

Concept de survie nette

Estimateur non paramétrique : Pohar-Perme (2011)

- Correct pour un mécanisme de censure informatif
- Indépendant du risque dû à d'autres causes de décès
- Test de type log-rank pour comparer les distributions de survie nette (Grafféo et al. 2016)

Tables de mortalité

Les taux de mortalité attendus ont été dérivés des taux de mortalité observés disponibles par sexe, âge annuel, année de décès (1975 à 2017), département de résidence et fournis par l'Institut National de la Statistique et des Etudes Economiques.

Pour un sexe et un département donnés, ces taux de mortalité observés ont été lissés pour les âges supérieurs à 15 ans à l'aide d'un modèle de régression de Poisson comprenant une spline de lissage bidimensionnelle de l'âge et du temps.

Les taux de mortalité ont été projetés pour les années 2018 à 2022 en utilisant ce même modèle. Ce travail a été réalisé par l'unité de biostatistique des Hospices Civils de Lyon, à l'aide du package mgcv

Tables de mortalité

	 mua	pax	decx	sexe	agex	dept	annee
	.0276604	184885.4	5114	1	0	0	1975
Proba. o	.0212317	176622.7	3750	2	0	0	1975
décès p sexe, ur	.0026002	397270.5	1033	1	1	0	1975
âge, un	.0021891	378241.5	828	2	1	0	1975
départe et une a	.0009015	427043	385	1	2	0	1975
donnés	.0007793	406763.5	317	2	2	0	1975

 dept: numéro du département concerné. '00' pour les données concernant la France métropolitaine.

·annee: de 1975 à 2007

·Sexe: codé en 1/2

*agex: âge atteint (en année); de 0 à 99 ans (les lignes avec agex=99 portent sur les personnes âgés de 99 ans ou plus)

pax: personnes années exposées par dept, annee, agex et sexe

decx: décès par dept, annee, agex et sexe

·MUA: decx/pax

Mise en œuvre sous

Survie globale Kaplan-Meier, test du log-rank

Package « survival »

Fonctions

« survfit », « survdiff »

Ratio de survie relative et survie nette

Estimateurs non paramétriques Ederer I et II, Hakulinen, Pohar et test du log-rank Package « relsurv »

« rs.surv », « rs.diff »

Excès de risque, modèle paramétrique d'Estève, de Giorgi ou modèles flexibles

Packages « Rsurv »
 « mexhaz »
 « flexsurv »

« xhaz » « mexhaz » « standsurv »

Mise en œuvre sous

```
### 2.1. Télécharger le package relsurv
# Contient les fonctions pour :
# - obtenir les tables de population dans R : transrate(), transrate.hmd(), transrate.hld(), joinrate()
# - les estimations non-paramétriques : ratio de survie relative ou survie nette : rs.surv()
                                         taux de mortalité
                                                                         : cmp.rel()
# - comparer des courbes non-paramétriques : rs.diff()
# - Etude de la décroissance dans le temps de la taille de l'échantillon
#
                                       due à la mortalité populationnelle : nessie()
# - modéliser une régression :
        - additive : semi-parametrique, step-wise constant hazard : rsadd()
#
        - multiplicative : rsmul()
        - model de transformation : rstrans()
# - fonctions auxiliaires pour modéliser les régressions: nrs.zph(), rs.br()
```

Descriptif des données analysées

	Hommes	Femmes	Ensemble
Nombre de cas	36 442	14 147	50 589
Nombre de décès à 5 ans	29 973	10 568	40 541
Age médian au diagnostic (percentiles 5 et 95), en années	67 (50-85)	65 (46-87)	66 (48-86)

Survies observées, nette et nette standardisée à 1 et 5 ans par âge

	1 an			5 ans			
	Hommes	Femmes	Ensemble	Hommes	Femmes	Ensemble	
Survie observée	45 [44 ; 45]	54 [53 ; 54]	47 [47 ; 48]	16 [15 ; 16]	23 [22 ; 23]	18 [17 ; 18]	
Survie nette	46 [45; 46]	54 [53;55]	48 [48; 48]	18 [17; 18]	24 [24; 25]	20 [19 ; 20]	
Survie nette standardisée *	45 [45; 46]	54 [53;55]	48 [47 ; 48]	18 [17; 18]	24 [23; 25]	20 [19; 20]	
Survie nette par âge							
50 ans	50 [49;51]	59 [58; 61]	53 [52;54]	21 [20; 22]	29 [28; 31]	24 [23 ; 25]	
60 ans	50 [49; 50]	59 [58; 61]	52 [52;53]	19 [19; 20]	28 [26; 29]	22 [21;22]	
70 ans	49 [49 ; 50]	59 [58 ; 60]	52 [51 ; 52]	20 [20 ; 21]	27 [25 ; 28]	22 [21 ; 22]	
80 ans	38 [37; 39]	47 [45; 48]	40 [39;41]	13 [12;13]	17 [15; 18]	14 [13; 14]	

^{*} Pour contrôler les variations de structures d'âges, la survie nette 'tous âges' est standardisée sur l'âge.

Meilleure survie chez les femmes

Cancer à forte létalité : peu de décès « autres causes », survie observée et nette sont très proches

Perte ~10% de survie pour les patients de 80 ans à 1 et 5 ans

Taux de mortalité en excès plus élevé au cours de 1e année et plus élevé chez les patients de 80 ans

Survie nette avec une forte décroissance la 1^e année et plus péjorative chez les patients de 80 ans

Pour différents âges, tous sexes confondus

- (a) Taux de mortalité en excès (en nombre de décès par personne-année)
- (b) Survie nette selon le temps depuis le diag

Tendances chronologiques de la survie nette standardisée à 1, 5 et 10 ans

Tendances chronologiques de la survie nette standardisée à 1, 5 et 10 ans pour différents âges

- Augmentation de la survie entre 1990 et 2015 pour tous les âges
- Différence de survie marquée entre les 80 ans et les autres, en particulier à 1 an
- Gain de survie à 1 an plus important pour les 70 ans et plus (+14%)
- Gain de survie à 5 ans s'atténuant pour les 80 ans (+10%)

Exemple : le mélanome (étude Francim 1989-2018)

Descriptif des données analysées

	Hommes	Femmes	Ensemble
Nombre de cas	7 913	8 249	16 162
Nombre de décès à 5 ans	1 520	1 034	2 554
Age médian au diagnostic (percentiles 5 et 95), en années	64 (35-86)	60 (31-88)	63 (32-87)

Survies observées, nette et nette standardisée à 1 et 5 ans par âge

	1 an			5 ans			
	Hommes	Femmes	Ensemble	Hommes	Femmes	Ensemble	
Survie observée	95 [95 ; 95]	97 [97;97]	96 [96 ; 96]	79 [78 ; 79]	86 [85 ; 86]	82 [82 ; 83]	
Survie nette	97 [97; 98]	99 [98; 99]	98 [98; 99]	89 [88; 91]	93 [92;94]	91 [91;92]	
Survie nette standardisée	* 98 [97; 98]	99 [99; 99]	98 [98; 99]	91 [90; 92]	94 [93; 95]	93 [92 ; 93]	
Survie nette par âge							
30 ans	98 [97; 99]	99 [99 ; 100]	99 [99; 99]	92 [90;94]	97 [95; 98]	95 [94 ; 96]	
40 ans	98 [98; 99]	99 [99; 100]	99 [99; 99]	93 [91;94]	96 [96; 97]	95 [94; 96]	
50 ans	98 [98; 99]	99 [99 ; 100]	99 [99; 99]	93 [92 ; 94]	96 [95; 97]	95 [94 ; 95]	
60 ans	98 [97; 98]	99 [99 ; 99]	99 [98; 99]	92 [91;93]	95 [94; 96]	94 [93 ; 95]	
70 ans	98 [97; 98]	99 [98; 99]	98 [98; 99]	91 [89; 92]	93 [92;94]	92 [91;93]	
80 ans	97 [96; 98]	98 [97; 99]	98 [97; 98]	85 [82;88]	89 [86; 91]	87 [85; 89]	

Survie légèrement plus élevée chez les femmes

Cancer à faible létalité : plus de décès « autres causes », survie nette augmentée de +11% par rapport à la survie observée

Perte de 7% de survie à 5 ans pour les patients de 80 ans à 1 et 5 ans

^{*} Pour contrôler les variations de structures d'âges, la survie nette 'tous âges' est standardisée sur l'âge.

Exemple : le mélanome (étude Francim 1989-2018)

Taux de mortalité en excès augmentent jusqu'à 18 mois, en particulier pour les patients de 80 ans chez qui la probabilité de décédé dans l'année est proche de 5%

Survie nette plus péjorative chez les patients de 80 ans avec une décroissance plus marquée la 1^e année

Pour différents âges, tous sexes confondus

- (a) Taux de mortalité en excès (en nombre de décès par personne-année)
- (b) Survie nette selon le temps depuis le diag

Exemple: le mélanome (étude Francim 1989-2018)

Exemple: le mélanome (étude Francim 1989-2018)

Tendances chronologiques de la survie nette standardisée à 1, 5 et 10 ans pour différents âges

- Augmentation de la survie entre 1990 et 2015 pour tous les âges
- En 2015, même survie par âge à 1 an
- Différence de survie plus marquée entre les 80 ans et les autres à partir de 5 ans
- Gain de survie à 5 ans important pour les 70 ans et plus (+7% pour les 30 ans et +19% pour les 80 ans), se maintenant à 10 ans

Merci!

