Direct-Write Patterning of Marker-Free Nano Devices

Onri Jay Benally
University of Minnesota
Department of Electrical & Computer Engineering
Principal Investigator: Prof. Jian-Ping Wang

Table of Contents

- Background & Motivation.
- II. Electron-Beam Lithography Overview.
- III. Equipment Limitations.
- IV. Design Process Flow.
- V. Device Results.
- VI. Examples of Alternative E-Beam Resist.
- VII. Conclusion.

Crippa et al., Phys. Rev. Lett. (2018)

Background & Motivation

- Conventional optical lithography = ultraviolet photon exposure.
- Electron beam lithography = **electron** beam exposure.
- Ultimately, the wavelength of the energy being applied to a resist coating determines the feature size.
- It's possible to obtain 3-5 nm resolution with electron-beam lithography
 - Depends on your <u>skill level</u> (abstract).

Expose light through mask

Maskless Ultraviolet Lithography

Maskless Extreme
Ultraviolet
Lithography

1. Venturi, PhD Thesis (2017)

3. Taken from: Wikimedia Commons

^{2.} Taken from: thumbs.gfy.com

Basic Principle of Electron-Beam Exposed Features

Typical Markers Used in E-Beam

Marks are usually squares, 4 to 20 μm on a side. Etched holes should be $\leq 5 \mu m$ wide. Crosses can also be used, compatible with JEOL

Equipment Advantages & Disadvantages

Advantages:

- Relatively high-resolution lithography.
- Maskless procedure allows for indirectly importing AutoCAD drawings.
- Fast design modification.
- Vacuum environment leads to better control of contamination.
- Markers can be avoided

Disadvantages:

- Vacuum environment required.
- Charge build-up, even during SEM inspection.
- Low throughput.
- Proximity effects.

Equipment Advantages & Disadvantages

VS.

Design Process Flow

Design file conversion is a bit extensive.

Maskless Direct Writing Using "Joyplus"

- Doses:
 - For relatively larger features (pads & stripes): 450 μC/cm².
 - For smaller features (pillars): 825-875 μC/cm².
- Basically:

• Locate 4 Points - SEM-Aided 'Marker' Location - Record Final Marker Position - &

Confirm

Basic Flow Summary of "Joyplus" for E-Beam

- Enter relative coordinates >> locate desired marker reference points >> record real coordinates found >> enter (pg move position) of real coordinates >> type (joyplus) >> confirm real coordinates of marker locations by inspecting SEM scan >> press Enter.
- You may now continue with job file locations and other parameters for stage selection >> copy-paste job command into teminal >> press Enter >> watch 1st few steps of exposure >> Done!

Randomized Example of Standard Fabrication Flow

*PR = Photoresist ***EBR = Electron-Beam Resist

** Ω = Resistance

Magnetic Device Rendering Results

Double Squares Array Success (No Markers)

Green Lithography Methods

Table 1. The cost comparison among egg white, silk protein, organic and polymer resists

Туре	Material	Source	Cost
EBL positive resist	Poly(methyl methacrylate)	EM Resist Ltd. ^{a)}	1.49 [\$ mL ⁻¹]
EBL negative resist	Hydrogen silsesquioxane	Meryer Chemical Technology b)	25.17 [\$ g ⁻¹]
UV positive resist	2,3,4-Trihydroxybenzophenone	Sigma-Aldrich	3.68 [\$ g ⁻¹]
UV negative resist	Poly(vinyl cinnamate)	Sigma-Aldrich	45.88 [\$ g ⁻¹]
Silk resist	Fibroin silk solution	Advanced BioMatrix ^{C)}	12.75 [\$ mL ⁻¹]
Egg white resist	Egg white solution	Local Supermarket	0.37 [¢ mL ⁻¹]
	Glycerol	Sigma-Aldrich	0.45 [\$ mL ⁻¹]

*Resolution limit was verified at 15 nm.

CPr09dDGqdACFZclvQodcVcKEA.

a) http://www.emresist.com/webshop/pmma-product-details.php

http://www.meryer.com/cn/products/detail.aspx?ProID=19970

c) https://www.advancedbiomatrix.com/fibroin-silk-solution-2/fibroin-silk-solution/?gclid =

Green Lithography Methods

Green Lithography Methods 1. E-beam exposure

University of Minnesota

Driven to Discover®

Summary

- Electron-beam lithography can provide repeatable/modifiable design steps.
- The stage setup can be taped to reduce charge build up.
- Operation of design can be automated with Python code if needed in Beamer.
- Green lithography can be used to reduce cost as an experimental electron-beam resist.
- A repository will be made available on marker-free electron-beam patterning.