Exercice 1

1)
$$H = \hbar \omega \frac{\vec{\sigma} \vec{n}}{2}$$

Grenateur d'évolution

$$U(t) = \exp{-\frac{iHt}{t}} = \exp{-\frac{i\omega t}{2}} \overline{\sigma} \overline{n}$$

2)
$$|\psi(t)\rangle = \exp{-\frac{i\omega t}{2}} \sqrt{2} |\psi(0)\rangle$$

= $\exp{-\frac{i\omega t}{2}} \left[\cos{\frac{\theta}{2}} \right] + \rangle + e^{i\omega t + \frac{\theta}{2}} \sin{\frac{\theta}{2}} |-\rangle$

3) Etat initial
$$\theta(\phi = \frac{\pi}{2}, \phi(\phi = 0)$$

4) Etal initial
$$\theta = \frac{\pi}{2}$$
 $\theta = \frac{\pi}{2}$

Un
$$\left(\frac{\cos \theta_{2}}{\sin \theta_{2}}\right) = 2 \ln \left(\frac{\sqrt{2}}{2}\right) = \left(\frac{\cos \omega t}{2} - i \sin \frac{\omega t}{2}\right) \left(\frac{\sqrt{2}}{2}\right)$$

$$= \left(\frac{\cos \left(\frac{\pi}{4} - \frac{\omega t}{2}\right)}{2}\right)$$

$$= \left(\frac{\cos \left(\frac{\pi}{4} - \frac{\omega t}{2}\right)}{2}\right)$$

$$= \left(\cos \left(\frac{\pi}{4} - \frac{\omega t}{2} \right) \right)$$

$$i \sin \left(\frac{\pi}{4} - \frac{\omega t}{2} \right)$$

5)
$$\theta = 0$$
 pour $t = \frac{\pi}{2\omega}$

6) on a
$$\theta(0) = \frac{\pi}{2}$$
 et $\varphi(0) = \frac{\pi}{4}$

$$m\frac{\theta}{2} = \cos\frac{\theta}{2} = \frac{\sqrt{2}}{2}$$
 $e^{i\varphi(0)} = \frac{\sqrt{2}}{2}(1+i)$

Par consequent en appliquant un champ \vec{B} selon le verteur \vec{n} $(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}, 0)$ le spin bascule dans l'état (+) of en un tempo $t_o = \frac{\pi}{2\omega}$

Exercise 2

1)
$$\sigma_{\infty}|+\rangle = |-\rangle$$
 $\sigma_{\infty}|+\rangle = i|-\rangle$ $\sigma_{\infty}|+\rangle = |+\rangle$ $\sigma_{\infty}|-\rangle = -i|+\rangle$ $\sigma_{\infty}|-\rangle = -i|-\rangle$

On jeut aussi évuir $\sigma_{\epsilon}(\epsilon) = |-\epsilon\rangle$, $\sigma_{y}(\epsilon) = i\epsilon(-\epsilon)$, $\sigma_{z}(\epsilon) = \epsilon(\epsilon)$.

2)
$$\overrightarrow{\sigma_{1}} \cdot \overrightarrow{\sigma_{2}} | ++> = |--> -|--> +|++> = |++>$$
 $\overrightarrow{\sigma_{1}} \cdot \overrightarrow{\sigma_{2}} | --> = |++> -|++> +|--> = |-->$
 $\overrightarrow{\sigma_{1}} \cdot \overrightarrow{\sigma_{2}} | +-> = |-+> +|-+> -|+-> = 2|-+> -|+->$
 $\overrightarrow{\sigma_{1}} \cdot \overrightarrow{\sigma_{2}} | -+> = |+-> +|+-> -|-+> = 2|+-> -|-+>$

De façon plus comfacte, $\vec{\sigma}_1 \cdot \vec{\sigma}_2' \mid \epsilon, \epsilon' \rangle = (1 - \epsilon \epsilon') \mid -\epsilon, -\epsilon' \rangle + \epsilon \epsilon' \mid \epsilon, \epsilon' \rangle$

3)
$$\vec{\sigma}_{1} \vec{\sigma}_{2} | \phi_{+} \rangle = \frac{1}{\sqrt{2}} \left[2|-+\rangle - |+-\rangle + 2|+-\rangle - |-+\rangle \right] = |\phi_{+} \rangle$$

$$\vec{\sigma}_{1} \cdot \vec{\sigma}_{2} | \phi_{-} \rangle = \frac{1}{\sqrt{2}} \left[2|-+\rangle - |+-\rangle - 2|+-\rangle + |-+\rangle \right] = -3|\phi_{-} \rangle$$

4) Dans la base $\{|\phi_{+}\rangle, |\phi_{-}\rangle\}$, le hamiltonien s'évrit $\hat{H} = \hbar\alpha(t)\begin{pmatrix} 1 & 0 \\ 0 & -3 \end{pmatrix}$ L'ofinateur d'évolution want donc $U(t) = \exp(-i\frac{t}{\hbar}\hat{H}) = \begin{pmatrix} e^{-it\alpha(t)} & 0 \\ 0 & 3it\alpha(t) \end{pmatrix}$ pour $t \in [0,T]$ avec $\alpha(t) = \alpha_{o}$ (constante).

ettention, cette expression pour U(t) m'est valable que dans cet intervalle, car alors Ĥ est indépendant de t.

$$\begin{split} \text{I'état initial est } |Y_i\rangle &= \frac{1}{\sqrt{2}} \left(|\varphi_+\rangle + |\varphi_-\rangle \right) \quad \text{Donc apris la collision}, \\ |\Psi_+\rangle &= \left| U(T) |\Psi_i\rangle = \frac{1}{\sqrt{2}} \left(e^{-iT\alpha_0} |\varphi_+\rangle + e^{3iT\alpha_0} |\varphi_-\rangle \right) \\ &= \frac{1}{2} \left(\left(e^{-iT\alpha_0} + e^{3iT\alpha_0} \right) |+-\rangle + \left(e^{-iT\alpha_0} - e^{3iT\alpha_0} \right) |-+\rangle \right). \end{split}$$

5) La probabilité de retouvement est

$$|\langle -+| \gamma_f \rangle|^2 = \frac{1}{4} |e^{-i T \alpha_o} - e^{3i T \alpha_o}|^2 = \frac{1}{4} |2i e^{i T \alpha_o} \sin(2T \alpha_o)|^2$$

= $\sin^2(2T \alpha_o)$.

Elle est bien mulle si la durie d'interaction est mulle, et est toujours comprise entre 0 et 1.