

磨銳 STIHL 鏈條

2012-10

簡介

STIHL 為所有業餘或專業使用者提供保養切割裝置所需的適當工具。

切割裝置包括鏈條、導板和鏈輪。

本手冊可指引使用者選擇保養切割裝置所需的適當工具, 並學習如何使用這些工具。只要稍加練習,您即可像專業 人員一樣將鏈條磨銳。

請先詳讀並遵照油鋸手冊中的說明以及保養工具說明,然 後再執行本手冊所述的作業。

若您在讀完本手冊後有任何疑問,請洽 STIHL 經銷商。

使用油鋸及切割裝置時,請務必戴上防護手套; 否則,極其尖銳的鋸齒可能有導致人員受傷的 風險。

目錄

STIHL 進階技術	1
鏈條結構	3
準備鏈條	6
原理 – 磨鋭鏈條	8
銼磨輔助器	12
張緊鏈條	17
磨銳錯誤與損害	18
導板保養	23
檢查鏈輪	27
決定適當的切割裝置	28
核對清單	33

STIHL 進階技術

除了油鋸的品質與引擎功率之外,切割性能主要取決於選 擇的切割裝置及其狀態。

磨銳程度適當且保養良好的鏈條可讓您工作時事半功倍。 其有助延長整個切割裝置(包括鏈條、導板及鏈輪)的使 用壽命。 STIHL 是全球唯一自行研發與生產鏈條及導板的油鋸製造商。因此,自 1926 年起,STIHL 即保證切割裝置的三個零件總是能與油鋸完美配合。

STIHL 鏈條及導板不只可在 STIHL 油鋸上提供優異的切割性能,在他牌油鋸上亦然。

鏈條

STIHL 由 STIHL 位於瑞士的工廠精密製作而成。它們是採用STIHL 設計與打造的特殊製造機台製作。

■ 平滑鉚釘孔

特別的鑽孔程序使得 STIHL 的 鉚釘孔平滑得如同抛光鏡面; 鏈條的彈性因此獲得強化,使 用壽命也因而延長。

■ 預先拉伸

STIHL 鏈條的每一寸長度均在 製作程序完結時進行恆定張力 負載工序。

此預先拉伸程序可將新鏈條的 初次拉伸程度降至最低、增加 耐用性並減低磨損度。

■ Comfort 鏈條

幾乎所有的 STIHL 鏈條皆為 Comfort 鏈條。每個鋸齒上印有 「C」字戳記者即為 Comfort 鏈條。

改良後的基本齒形主體結構可 降低 70% 的下鋸震動。

1

STIHL 進階技術

導板

STIHL 導板的耐用性、堅固性及重量皆做了最佳處理。

■ 完全對稱

STIHL 導板完全對稱,因此可予以翻轉;如此可確保兩側的磨損程度一致。

■ 經感應硬化處理的導板鏈槽

感應硬化處理可提高導板鏈槽的彈性與抗磨損性,並可延 長導板的使用壽命。

■ 具有封裝滾柱軸承的鏈輪端部

標準封裝軸承可防止進塵,且不需保養。製造過程中注入 的潤滑油即足夠供整個使用壽命期間使用。

Oilomatic 潤滑系統

此系統可降低磨擦與磨損,因而可延長切割裝置的使用壽命。潤滑油經由傳動節中的小油槽往上流至鏈條關節及鏈條節的轉動面。此外,鏈條潤滑油會沉積在傳動節兩側的許多小凹洞內。如此可確保傳動節和導板鏈槽之間維持一層完整的潤滑油膜。

STIHL 建議使用者僅使用 STIHL 鏈條油 ,以確保能獲得最佳的滑潤效果。

STIHL 鏈條是三節式鏈條,始終以相同的基本模式裝配。

它們的鋸齒形狀及個別鏈條節的尺寸有所不同。

鏈條由傳動節 (1)、聯結節 (2)、左向鋸齒 (3) 與右向鋸齒 (4) 構成。

反彈小的鏈條具有突起的傳動節 (5), 命名時以數字 3 加以識別,例如 36 RS3。

STIHL 鏈條可由 STIHL 服務經銷商以更換個別傳動節的方式加以更換。

鏈條結構

鋸齒

鋸齒由基本齒形體 (1)、限深 (5) 及有側板切割稜面 (4) 及 頂板切割稜面 (3) 的頂部金屬板 (2) 構成。

側板與頂板切割稜面彼此呈特定角度,這對於獲得最佳切 割性能來說至關重要。若遵守確切的磨銳角度,即可自動 取得稜面角度。

操作方法

鋸齒以切屑齒原理運作。

它們可除去木屑。在此過程中,頂板切割稜面可將木屑從 切口底部拉起,而側板切割稜面則可將木屑從切割壁分離 出來。

限深距離決定油鋸進入木頭的深度和切割厚度。

限深頂部與頂板前緣之間的高低差就是所謂的限深距離。

銼磨角度

頂板切割角度

側板角度

為確保鏈條可平均、順暢地運行,所有鋸齒的長度必須保 持相同,而且也需磨銳至特定角度。

保養與磨損標示

幾乎所有鏈條都有保養與磨損標示,以簡化重新磨銳的程 序,並可用於監控磨損度:

1) 銼磨角度:

正確頂板切割稜面銼磨角度及最小鋸齒長度的標示。若在重新磨銳時達到此標示,就必須更換鏈條。

2) 側板角度:

正確側板角度及最小鋸齒長度的標示。

3) 限深

正確限深角度與檢查磨損程序的標示。必須以平行於此標示的方式重新銼磨限深輪廓。

4) 齒尖與齒根磨損:

鋸齒底部(轉動面)磨損的參考標示。與標示平行的一致 磨損是正常鏈條磨損。

STIHL[®]專業提示

過去的經驗顯示,最好輪流使用四個鏈條、兩個鏈輪和 一個導板。(4-2-1 原理)

準備鏈條

切屑齒鏈條的一大好處是可用圓銼重新磨銳。

但稱為「Duro」的 STIHL 尖端碳化處理鏈條除外。Duro 特別抗磨損,且其超硬切割稜面必須用特殊的鑽石研磨滾輪重新磨銳。詳情請洽 STIHL 服務經銷商。

相較之下,其他所有鏈條可在使用適當的工具與技巧下, 更輕鬆地重新磨銳。

什麼時候需要磨銳鏈條?

即使是品質最好的鏈條也會在使用一段時間後漸漸磨損、變鈍。若有下列任一情況,即需重新磨銳鏈條。

- 鏈條無法自動拉回切口,必須加壓驅動裝置,強行將鏈 條拉回切口。
- 執行截短操作時,從切口而排出的是細粉塵,而非粗厚 木屑。
- 即使鏈條潤滑油狀態正常且鏈條張緊度正確無誤,但 切口處還是冒煙。
- 切片往某一個方向偏離。這表示鏈條一側的鋸齒變鈍, 或鋸齒長度不正常。
- 執行切割作業時,油鋸發出「噠噠」聲且上下震動。 在這種情況下,您必須檢查限深距離。

準備鏈條

■ 從**徹底**清潔油鋸開始,例如,使用 STIHL 樹脂溶劑清潔。您應一邊清潔一邊檢查鏈條是否有受損的跡象。若有任何毀損或磨損的零件,請立即更換。

- 若已到達磨損標記,請安裝新鏈條。
- 在這種情況下,請向 STIHL 服務經銷商洽詢建議。

鏈條的張緊度必須比一般情況高,才可重新磨銳。此舉可防止鋸齒翻倒,並讓您更易於保持正確的角度。重新 磨銳後,請將鏈條張緊度調整回正常情況。

- 找到**最短的鋸齒。**
- 將之標記為主鋸齒。鏈條上的其他所有鋸齒必須等長。 先磨銳主鋸齒,再將其他所有鋸齒銼成統一長度。
- 使用虎頭鉗夾緊導板,以配合主鋸齒的位置。

右向主鋸齒

夾緊導板,端部朝左。

左向主鋸齒

- 夾緊導板,端部朝右。
- 將主鋸齒推入銼磨位置,然後用鏈閘鎖定鏈條。
- 鬆開鏈鉀,沿著導板拉動鏈條並固定鏈閘,然後再銼磨下一個鋸齒。

選擇銼刀

選擇適合鏈條齒距的圓銼直徑。

- 檢查限深外側的鏈條齒距編碼數字。
- 請參閱下表以獲得鏈條齒鋸資訊。

每一個鏈條齒距都有適用的圓銼直徑。

只能使用專用鏈條銼刀。STIHL 服務經銷商有各式各樣的 高品質銼刀可供選擇。

風深上的 編碼數字	限深上的 替代標示	鑵條齒距	■銼直徑
1	1/4	1/4"	4.0 mm
2	325	.325"	4.8 mm
3	3/8	3/8"	5.2 mm
4	404	.404"	5.5 mm
6	P, PM	3/8" Picco	4.0 mm
7		1/4" Picco	3.2 mm

握住銼刀

- 一手握緊銼刀刀柄,用另一手將銼刀穿入鋸齒向前銼。
- 先從主鋸齒開始,然後調整銼刀位置,以便從鋸齒內側 向外施力與磨銼。

- 請一律以對導板呈 90°的正確角度握持銼刀。
- 銼刀只有向前銼時才有磨銳的效果,在銼刀向後移動時,請將銼刀從鋸齒上提起。
- 為了避免局部磨損,銼刀在使用時要稍加轉動。

我們通常會將 STIHL 鏈條銼磨至 30° – 與銼磨角度的保養標示平行。

■ 請握好銼刀,使銼刀直徑的四分之一位於頂板上方。

STIHL 專業提示

如果您遵照上述規則行事,自然可獲得完美的磨銳結果、正確的側板及頂板角度,而且一定能得到最佳的切割性能。

STIHL® 專業提示

開始磨銳之前,請先用簽字筆在一個鋸齒上做記號。 銼磨兩、三次後,請檢查物質的磨去狀況。

若表面看起來很平整,就表示您的銼磨動作正確無誤。

若表面仍然殘留色塊,請確認您的角度是否正確,以及 您未將銼刀握得太高或太低。

■ 銼磨主鋸齒,直到達到理想的切割稜面。

檢查結果:

若切割稜面上有暗色區域,即表示鋸齒尚未磨銳。

切割稜面呈均匀明亮狀時,即表示磨銳程度適當。

然後請銼磨該列所有鋸齒至等長狀態,再將油鋸翻轉 180°,繼續銼磨另一列的所有鋸齒。所有鋸齒的長度必須 與主鋸齒相同。

5TIHL[®]專業提示

- 切勿持續使用鏈條直至完全變鈍。定期稍加銼磨可輕 鬆維持最佳銳利度。
- 請計算銼磨次數,然後對每一個鋸齒進行相同次數的 銼磨,使鋸齒等長。
- 若您發現一列的鋸齒比另一列短,就表示您在銼磨那一列的鋸齒時施力較重。請對較長鋸齒多銼磨一兩次,以修正鋸齒長度。

降低限深

限深距離隨著鋸齒磨銳而降低。

磨銳鋸齒後,請檢查限深距離,必要時降低限深。

STIHL 專業提示

在溫和的氣候條件 (非凍結期)下切割軟木時 ,最高可增加 0.2 mm 的限深距離。

在這種情況下,可對下一個鏈條齒距使用銼卡尺。

鏈條齒距		限深距離	
英吋	(mm)	mm	英吋
1/4	6.35	0.65	0.026
1/4 P	6.35	0.45	0.018
.325	8.25	0.65	0.026
3/8	9.32	0.65	0.026
3/8 P	9.32	0.65	0.026
.404	10.26	0.80	0.031

使用適用於鏈條齒距的銼卡尺檢查限深距離。

請參閱下一章 🛄 「銼磨輔助器」的相關說明。

■ 將銼卡尺放在鏈條上。

若限深比銼卡尺高,就必須降低限深。

5TIHL 專業提示

銼卡尺的材質硬度低於銼刀,因此只可用來作為測量工 具。銼磨限深之前,請先移開銼卡尺。

■ 將限深往下銼,直到與銼卡尺的標準相同。

STIHL 專業提示

- ■計算降低第一個限深所需的銼磨次數。
- 對其他所有限深進行相同次數的向下銼磨。所有限深 距離應相同。不定時用銼卡尺稍做檢查。

在有突起傳動節的鏈條上,突起部份會隨限深下降。

將限深的頂端銼到與戳記的服務標示平行 – 但是在此過程中,不得低於限深的最高點。

請注意,勿用平銼碰觸剛磨銳的鋸齒。

如果限深太短,油鋸的反彈就會變大。

使用圓銼手工重新磨銳鏈條需要豐富經驗,差異在所難免。

徒手銼磨時要保持所有角度及尺寸非常困難,需要多加練習。因此,STIHL 建議您使用銼磨輔助器,並定期將機具交由 STIHL 服務經銷商檢修。

STIHL 有一系列的銼磨輔助器,可因應每一名使用者的需求。

銼卡尺

- 1) 用於檢查限深距離的挖空部份
- 2) 用於檢查銼磨角度的瞄準邊緣
- 3) 用於檢查導鏈槽深度的導板凹槽清潔尖端與刻度尺
- 4) 用於檢查側板角度的瞄準邊緣

STIHL 提供可用於檢查限深距離與鋸齒角度的銼卡尺。請選擇鏈條齒距適用的銼卡尺,即可檢查所有必要的角度與尺寸。銼卡尺可大幅簡化檢查及降低限深的程序。

5TIHL[®]專業提示

銼卡尺的材質硬度低於銼刀,因此只可用來作為測量工具。싖磨之前,請先將銼卡尺從限深上移開。

使用銼卡尺可快速、簡單地檢查限深距離,並應連同下列 銼磨輔助器一併使用(二合一銼架及 FG 4 除外)。

銼磨模板

STIHL **銼磨模板**是簡單易用的工具,可幫助您保持正確的 銼磨角度。

其具備兩塊磁鐵,易於吸附在導板上,有凸紋瞄準線,可 幫助您保持正確的銼磨角度。

5TIHL[®]專業提示

若您使用銼磨模板後未達到所需的結果,STIHL 建議您使用其他工具,例如銼架、銼架導板或 STIHL 銼磨工具。

銼架

STIHL **銼架**有助您在銼磨時將銼刀保持在正確的高度與角度。銼架必須適用於鏈條齒距。

將 STIHL 銼架妥當放置在頂板及限深上,可確保將銼刀維持在正確的高度,並維持正確的側板角度。銼架上的 30°標示亦有助您維持銼磨角度。

您也可以使用銼磨模板來作為銼磨校準的其他目測輔 助器。

FF 1 銼架導板

若您在磨銳鏈條時不想光靠目視校準輔助器,STIHL **銼架 導板**是最理想的補充工具。

■ 請選用鏈條齒距適用的銼架導板,以 30°的角度將之 放在導板的鏈條上。

銼架導板會架住並導引銼架,並以 30° 的正確銼磨角度與 導板對齊。

- 只要以對導板呈直角的方式將銼架滑入銼架導板即可。
- 磨銳所有鋸齒後,請檢查限深距離,必要時予以修正。

二合一銼架

若您想要一次同時磨銳鋸齒及降低限深,STIHL 建議您使 用**二合一銼架**。

與標準銼架相同的是,二合一銼架可使銼刀在鋸齒上保持 正確高度。把手與標示的安排可讓您用目測方式輕鬆保持 30°的銼磨角度。

上圖顯示二合一銼架的橫截面。

可一次同時用圓銼 (1) 磨銳鋸齒,並用平銼 (2) 將限深降低至正確距離。將導軌 (3) 放在頂板上,即可將兩個銼刀安置在最適當的位置。

FG4

FG 4 滾筒銼磨導板是手工銼磨的最佳輔助器。

- 請選擇鏈條齒距適用的滾筒銼磨導板與圓銼。
- 將滾筒銼磨導板直接放置在導板鏈條上,如此即可協助您以各種方向放置銼刀。
- 將圓銼放置在滾筒銼磨導板上。
- 在正確的角度下,銼刀在兩個較底滾筒平滑移動且不 會卡時,即可獲得最理想的銼刀校準結果。

FG 4 也有一個小型摺疊式銼板可供檢查及降低限深。

STIHL[®]專業提示

銼板可檢查兩個不同的限深距離,一個用於硬木, 一個用於軟木。

此銼板經過特別硬化處理,可在下銼限深時留置原位。

銼板的方向讓使用者可輕鬆保持限深距離,而且之後不需 要用斜角銼磨限深。

銼磨工具

手動銼磨工具最適合用於鏈條精密磨銳作業。它們可將銼 刀保持在正確的定位,使所有變鈍的鏈條回復至最尖銳的 狀態。

待磨銳鋸齒的定位停止點可簡化保持最佳鋸齒長度的工作。

FG 2

FG 2 被安裝至鉗工臺上。必須將鏈條從導板上卸下,才能 予以磨銳。

FG1、FG3

FG 1 與 FG 3 安裝至導板上。它們的運作方式與 FG 2 相同。

張緊鏈條

正確的鏈條張緊度對於切割裝置的使用壽命有決定性的影響,因此必須定期檢查鏈條張緊度。在出廠前經過「預先拉伸」處理後,已降低了鏈條的鬆弛程度,但新鏈條變鬆弛仍屬正常現象。請經常檢查與調整鏈條張緊度。

適當張緊的鏈條會與導板的下方恰好吻合 – 鏈閘必須要鬆開,以便用手沿著導板拉動鏈條。

使用 Carving 導板時,應稍微降低鏈條張緊度。在這種情況下,應可看到導板下方的一半傳動節。

這是因為導板頂端的半徑非常小,所以當鏈條張緊度過高 時,就會發生極高負荷。

下列情況適用於其他所有導板:若導板下方鏈條鬆垂 – 請重新張緊鏈條。

每一本 STIHL 油鋸手冊內均有如何張緊鏈條的詳細說明。

若磨銳後,鏈條仍無法正常運作,在下切時發出 「噠噠」聲,上下震動或偏離,則應檢查是否磨銳不當。

狀況	磨鋭錯誤	改正方法
鏈條卡在切口內	磨銳角度太尖銳(太窄)	■ 請使用銼磨輔助器維持磨銳角度
	彎曲的側板角度	■ 請使用銼磨輔助器,抬高銼刀,使用適當(較大) 直徑的銼刀
	不同的側板角度	■ 請使用銼磨輔助器,注意保持一致的施力
	不同的鋸齒長度	■ 找出主鋸齒後再將所有鋸齒銼磨至相同的長度
		■ 可能的話,請銼磨所有鋸齒,否則請更換鏈條
	不同的限深距離	■ 請找出最短的限深,銼磨所有鋸齒以配合最短限深距離, 修正其他所有限深
切割性能不彰	磨銳角度太鈍 (太寬)	■請使用銼磨輔助器維持磨銳角度
		■ 請使用銼磨輔助器,降低銼刀,使用適當(較小) 直徑的銼刀
	限深距離不足	■ 降低限深,使用適用於鏈條齒距的銼卡尺
切片偏離	不同的側板角度	■ 請使用銼磨輔助器,注意保持一致的施力
	不同的銼磨角度	■ 請使用銼磨輔助器,在所有鋸齒上小心維持正確的磨銳 角度
	不同的鋸齒長度	■ 找出主鋸齒後再將所有鋸齒銼磨至相同的長度
	不同的限深距離	■ 請找出最短的限深,銼磨所有鋸齒以配合最短限深距離, 修正其他所有限深
反彈的風險變高	彎曲的側板角度	■ 請使用銼磨輔助器,抬高銼刀,使用適當(較大) 直徑的銼刀
	限深距離過寬	■ 可能的話,請銼磨所有鋸齒,否則請更換鏈條
限深壽命變短	磨銳角度太尖銳 (太窄)	■ 請使用銼磨輔助器維持磨銳角度
	向後傾斜的側板角度	■ 請使用銼磨輔助器,降低銼刀,使用適當(較小) 直徑的銼刀
	彎曲的側板角度	■ 請使用銼磨輔助器,抬高銼刀,使用適當(較大) 直徑的銼刀

下列各頁說明一些常見的錯誤、後果及改正方式。

磨銳角度太尖銳(太窄)

錯誤	錯誤的磨銳角度
後果	鋸齒咬入木頭過深,卡住並陷入木頭, 使用壽命變短,鏈條負荷過高
改正方法	■請使用銼磨輔助器維持磨銳角度

磨銳角度太鈍(太寬)

錯誤	錯誤的磨銳角度
後果	切割性能不彰,需要極高的進給力
改正方法	■請使用銼磨輔助器維持磨銳角度

彎曲的側板角度

錯誤	未正確握持銼刀,銼刀直徑不正確
後果	鏈條卡在切口內,使用壽命縮短, 反彈的風險變高
改正方法	■ 使用銼磨輔助器
	■ 抬高銼刀
	■ 使用正確 (較大) 直徑的銼刀

向後傾斜的側板角度

錯誤	未正確握持銼刀,銼刀直徑不正確
後果	切割性能不彰,需要極高的進給力, 使用時更費力及更容易耗損
改正方法	■ 使用銼磨輔助器
	■ 降低銼刀
	■ 使用正確(較小)直徑的銼刀

不同的側板角度

錯誤	未正確握持銼刀,施力不均
後果	切片偏離,鏈條卡在切口內
改正方法	■ 使用銼磨輔助器
	■請小心維持一致的進給力

不同的鋸齒長度

錯誤	磨銳時,磨下的物質量不同
後果	切片偏離,鏈條卡在切口內,切割效能 不彰
改正方法	■ 找出主鋸齒後再將所有鋸齒銼磨至相 同長度

不同的銼磨角度

錯誤	未正確握持銼刀
後果	切片偏離
改正方法	■ 使用銼磨輔助器 ■ 請小心修正所有鋸齒的磨銳角度

限深距離不足

錯誤	磨銳後未檢查限深距離
後果	雖然鏈條很銳利,但切割性能仍然不彰
改正方法	■ 降低限深,使用適用於鏈條齒距的銼 卡尺

限深距離過寬

錯誤	限深距離過寬
後果	鏈條卡在切口內,反彈及鏈條斷裂的 風險提高
改正方法	■ 可能的話,請銼磨所有鋸齒,否則請 更換鏈條

不同的限深距離

錯誤	磨銳時,磨下的物質量不同
後果	鏈條卡在切口內,鏈條偏離
改正方法	■ 找出最短的限深
	■ 銼磨所有鋸齒,直到符合最短限 深距離
	■ 修正所有限深

機器磨銳

若角度與規格有很大的出入,且難以或無法用銼刀修正, STIHL 建議您將鏈條送交 STIHL 服務經銷商磨銳。

服務經銷商具備必要的知識與磨銳設備,可將鏈條回復至 原始及最尖銳的狀態。

進行全面檢修後,您日後重新磨銳鏈條時就能更加省力。

導板是切割作業的主要作業區塊,因此最容易磨損,且大 多是發生在導板下方。在沒有鏈輪端部的導板 (Duromatic 導板)上,導板端部承受極高壓力。安裝導板及鏈條之前, 請先:

- 清潔進油孔及導板凹槽。銼卡尺上的清潔尖端適用於 此清潔作業
- 檢查凹槽深度
- 檢查導板鏈槽是否有毛邊,必要時去除毛邊
- 將導板翻面,確保兩面的磨損度趨近一致

5TIHL 專業提示

過去的經驗顯示,最好輪流使用四個鏈條、兩個鏈輪和 一個導板。(4-2-1 原理)

凹槽深度

凹槽會隨著導板鏈槽磨損而變淺。必須保持最低深度,以 確保傳動節柄腳不會刮傷凹槽底部。

若發生這種情況,傳動節柄腳會迅速磨損,且鋸齒及聯結節轉動面將無法再掛在鏈槽上。

鏈條齒距	導鏈槽最低深度
1/4" P	4 mm
1/4"	4 mm
3/8" P	5 mm
.325"	6 mm
3/8"	6 mm
.404"	7 mm

檢查凹槽深度

附鏈輪端部的 Rollomatic 導板

■ 請使用銼卡尺上的刻度 (凹槽清潔尖端)檢查導板頂端 與底部的凹槽深度。

Duromatic 導板 (無鏈輪端部)

■ 請使用銼卡尺上的刻度 (凹槽清潔尖端) 檢查整個凹槽 的深度。

若測量的深度低於指定深度,請更換導板。

去除導板鏈槽毛邊

導板鏈槽日漸磨損後,外緣會形成毛邊。

導板保養

用平銼或 STIHL 導板修整工具即可去除毛邊。

若因鏈條磨銳不當導致左側與右側的導板鏈槽磨損不均, 則在差異不大的情況下,可使用 STIHL 導板修整工具使磨 損狀況一致。

請務必在導板鏈槽齊平後,保持最低凹槽深度。

若導板的磨損情況更為嚴重,請洽 STIHL 服務經銷商。

服務經銷商會評估是否需要維修,必要時進行維修或更換 導板。

導板磨損

長期張緊力過鬆的鏈條對於導板會造成不良影響。 若及時發現,可採取適當措施來抵消高磨損率。 因此,請定期檢查導板是否有不正常磨損的跡象。

檢查 Rollomatic 導板的鏈輪端部

鏈條和導板端部之間必須維持一定間隙 (a)。若沒有間隙 (即鏈條緊貼著導板端部),就代表鏈輪齒已磨損,或鏈輪 軸承已毀壞。

STIHL 服務經銷商會評估是否需要維修,必要時進行維修 或更換導板。

下列圖片顯示嚴重磨損與毀壞狀況,以及其後果與改正方式:

磨損的導板鏈槽

左:

至 磨損平均的導板鏈槽,已達最低深度,屬正常磨損 – 更換 整個切割裝置。

右:

磨損不平均的導板鏈槽。

錯誤	因鏈條磨銳不當導致導板鏈槽磨損 不平均
後果	鏈條朝一邊傾斜,無法垂直切割
改正方法	■ 使導板鏈槽齊平,並將鏈條適當磨銳 若無法保持最低凹槽深度,請更換切割 裝置

導板鏈槽變扁

導板鏈槽入口處頂端及端部背面底部變扁;導板下方呈波 浪狀。

錯誤	鏈條張緊力長期過鬆
後果	鏈條運轉不均勻。使用這種情況下的 導板是導因,且將造成鏈條很快磨損
改正方法	■ 使導板鏈槽齊平 若毀損過於嚴重,請安裝新的切割裝置 (鏈輪、導板、鏈條)。若只更換上列其 中一個零件,其他已毀損的零件會造成 更換的零件很快磨損

導板保養

導板鏈槽卡住或傾斜

錯誤	使用蠻力,例如導板卡在切口內時
後果	鏈條搖晃或卡住
改正方法	STIHL 服務經銷商會評估是否可維修 或是否需更換導板

導板鏈槽有缺口

錯誤	未及時去除導板毛邊
後果	鏈條運轉不均勻,且很快磨損
改正方法	■ 若可維持最低導板凹槽深度,請將導 板鏈槽齊平
	■ 若導板磨損過於嚴重,請由 STIHL 服 務經銷商修整鏈槽
	■ 必要時,請更換導板
	■請務必及時去除毛邊

若發生比上述任一項更嚴重的情況且無法輕易改正, STIHL 建議您向 STIHL 服務經銷商洽詢。服務經銷商會評 估是否需要維修,必要時進行維修或更換切割裝置。 鏈鏈也會自然磨損。嚴重磨損的鏈輪會加快鏈條及導板磨 損的速度。因此,請定期檢查鏈輪。 張緊度過鬆的鏈條會加快鏈輪的磨損速度。因此,請定期 檢查鏈條是否保持適當的張緊度。

檢查鏈輪磨損情形

若磨損標示的深度達到約 0.5 mm (磨損極限),請更換 鏈輪。

最好用 STIHL 尺規檢查。

齒形鏈輪

環形鏈輪

■ 將尺規放在鏈輸上。若磨損標示的深度相同 (a = 0.5 mm) 或比尺規凸點深,請更換鏈輪。

5TIHL[®]專業提示

過去的經驗顯示,最好輪流使用四個鏈條、兩個鏈輪和 一個導板。(4-2-1 原理)

5TIHL[®]專業提示

由於切割裝置的已磨損元件會加快其他元件的磨損速度,因此,建議您在一個鏈輸上輪流使用兩組鏈條。鏈輸與兩個鏈條的磨損速度大致相同,因此兩個元件(鏈條與鏈輪)可同時更換。

若您需要新的切割裝置或想要在油鋸上安裝不同的切割裝 置,下列資訊可協助您做出適當的選擇。

油鋸說明手冊列出了您所用特定 STIHL 油鋸型號適用的 切割裝置。

下列參數可用於決定現有的鏈條、導板或鏈輪。

鏈條特性

鏈條具備下列特性:

- **1 鏈條齒距**指出鏈條適用的特定油鋸型號 (功率等級)
- **2 傳動節厚度**指出鏈條適用的導板(具備特定凹槽深度)
- 3,4 齒形
- 5 鏈條長度取決於導板長度,長度計算單位為傳動節數目

鏈條齒距

您在選擇正確的磨銳銼刀時就已經大致瞭解鏈條齒距。下 列是鏈條齒距的完整說明:

各個鏈條節的尺寸彼此相關。鋸齒及其他鏈條節的大小取 決於鏈條齒距。

鏈條齒距以英吋計。限深區每一個鋸齒上均有一數字戳記。 請參閱 **□□ 「選擇銼刀」**一章中的表格。

測量一鉚釘中心至下一鉚釘中心的距離,將測量結果除以 2 即得出齒距。所得出的齒距以英吋或公釐為單位。

(例如:3/8"=9.32 mm)

測量時請務必橫跨三個鉚釘,因為傳動節及鋸齒或聯結節 上的鉚釘中心距離可能有所不同。

傳動節厚度

傳動節厚度是決定鏈條適用於哪些特定導板 (凹槽寬度) 的 測量值。其必須配合導板凹槽寬度,如此鏈條才能與導板 緊密貼合。傳動節厚度的單位是公釐。

每個傳動節上均戳印了此測量值的最後一個數字(箭頭)。

數字	傳動節厚度
1	1.1 mm
3	1.3 mm
5	1.5 mm
6	1.6 mm

齒形

您可從鋸齒後方(沿著導板往導板端部的方向看)看到鋸齒剖面。

基本類型:

傳統型附標準高度鋸齒的切屑齒鏈條稱為 Oilomatic 「Rapid」。

附窄剖面鋸齒的切屑齒鏈條則稱為 Oilomatic 「Picco」。 基本類型又細分為下列各個版本:

Micro 半鑿齒鏈條:

直筒鋸齒。堅固的通用鏈條,結合了高切割效能、便利、 使用壽命長及保養簡易等優點於一身。可滿足農業與建築 業使用者的需求,但也適用於業餘使用者。易於保養與重 新磨銳。

Super 全鑿齒鏈條:

剃刀邊緣的方形鋸齒。融合了優異的切割效能與便利性。 可滿足砍伐業專業使用者的最高性能要求。需具備豐富經 驗方可順利進行重新磨銳作業。

Duro 尖端碳化處理鏈條:

尖端經過碳化處理的鋸齒。Duro 鏈條具備超長使用壽命、便利性及良好的切割性能。髒污木材或短暫接觸到地面均不會有所影響。保持尖銳的時間是標準半鑿齒鏈條長的四倍長。尖端碳化處理鏈條無法以手工方式磨銳,必須由STIHL 經銷商以特殊形狀的鑽石研磨滾輪加以重新磨銳。

長度

鏈條長度的計算單位是傳動節數目。

導板特性

導板具備下列四大特性:

槽寬

導板四周有特定尺寸的連續凹槽。傳動節柄腳延伸至凹槽 內,使鏈條保持直線運轉。導板凹槽同時也作為鏈條及導 板潤滑油的供應通道。鏈條掛在凹槽任一邊的鏈槽上。

槽寬必須與所用鏈條的傳動節厚度相符。

切割長度

導板長度決定了應用範圍(例如,木材直徑)。

鏈輪端部

鏈輪端部的齒距指出 Rollomatic 導板適用於哪些特定的鏈 條及鏈輪齒距。上述三元件的齒距必須相同。

導板尾部

導板尾部有用於安裝螺釘的插槽 (1) 位置、進油孔 (3) 位置 及緊鏈裝置的固定孔 (2)。

鏈輪特性

鏈輪由**齒數**及**鏈條齒距**界定。這兩個數字都會戳印在鏈輪上。 同樣地,請務必確定鏈條、導板及鏈輪的齒距都相同。

保養資料

上:舊保養資料區塊下:新保養資料區塊

除了鋸齒剖面及鏈輪齒數之外,每一個 STIHL 導板尾部的 保養資料區塊上均列有前述所有特性。這些資料以下列順 序雷射蝕刻在導板尾部。

1	零件序號
2	切割長度
3	槽寬 / 傳動節厚度
4	傳動節數目
5	鏈條齒距(僅 Rollomatic 導板適用)

測定資料

STIHL 提供可簡易測定所有導板、鏈輪及鏈條資料的尺規。

><

| 切割裝置保養 機器: 零件 運轉 日期 日期 O 清潔鏈條並檢查是否毀損 O 找出並標記主鋸齒 O 稍微張緊鏈條 O 選擇並使用鏈條齒距適用的銼磨輔助器及銼刀直徑 O 注意保持相同鋸齒長度 - (計算銼磨次數) O 為了避免局部磨損,銼刀在使用時要稍加轉動 O 檢查限深距離,必要時降低限深 – 使用鏈條齒距適用的銼卡尺 O 磨銳後,卸下並清潔鏈條 – 除去附著的銼刺 O 徹底潤滑鏈條 O 保養導板 O 安裝導板及鏈條 O 張緊鏈條 O 檢查鏈條潤滑狀態 O 清潔進油孔 - 使用銼卡尺 O 清潔導板凹槽 – 使用銼卡尺 O 用銼卡尺的刻度測量槽深 O 注意鏈條齒距適用的最低槽深 O 檢查導板是否有裂縫及其他毀損 O 檢查導板鏈槽,必要時去除毛邊 O 檢查鏈輪端部是否可自由旋轉,並檢查鏈條及導板頂端是否維持一定間隙 O 每次磨銳及更換鏈條後翻轉導板 O 檢查磨損標示深度 (使用校對規檢查 (特殊配件)) - 若磨損標示低於 0.5 mm, 請更換鏈輪