Projeto: Sensor de corrente online para monitoramento de qualidade de energia

Produto: Sensor de corrente para uso Online

Justificativas:

- ampliar as falhas detectáveis através do monitoramento da corrente elétrica;
- criar uma alternativa online ao monitoramento do MTE Online;
- detecção de falhas elétricas e mecânicas, status de operação (ligado/desligado, carga e sobrecarga) e monitoramento de qualidade de energia

Objetivo SMART: desenvolvimento de um sensor de grandezas elétricas (corrente e tensão) que se conecte ao SMQ 985 v.2.3 (Paçokinha Analógico) e seja capaz de detectar falhas mecânicas e elétricas via FFT, desbalanço de correntes e tensões, sobre-carga, monitoramento de qualidade de energia etc.

Benefícios:

- criar uma alternativa online ao monitoramento do MTE Online;

Requisitos / Escopo:

- 3 sensores de corrente e de tensão instalados nos cabos de alimentação do motor conectados a um SMQ 985 v.2.3 (Paçokinha Analógico) instalado no painel de alimentação;
- sensores não invasivos: instalação por contato sem a necessidade de alterar o circuito de alimentação do motor;
- Duas, ou mais, versões de sensores de corrente: Range de medição 0 a 100 A e 0 a 1000A;
- sensor de baixo custo;
- duração mínima de bateria de 2 anos;
- alimentação dos sensores através da bateria do SMQ 985 v.2.3;
- aquisição e transmissão das ondas no tempo das correntes e tensões aquisitadas simultaneamente: definir taxa e tempo de aquisição;

- desenvolvimento da mecânica para os sensores de tensão e corrente fixos;

Fora do escopo:

- desenvolvimento do SMQ 985 v.2.3 e do Gateway;
- medições em motores alimentados acima de 440 V sem TP;
- medições em motores com correntes superiores a 1.000A sem TC;

Premissas:

- SMQ 985 v.2.3 possuir 6 entradas analógicas disponíveis para aquisição simultânea e com taxa adequada;
- utilizar os mesmos sensores de corrente validados no "Projeto_Sensor de corrente online para detecção falha mecânica";

Equipe:

- Marcos H. Pitoli;
- Arnaldo: projeto mecânico;
- Felipe / Luiz / Vitor: firmeware SMQ 985 v.2.3;
- Amaury: process;
- Diego: interface;

Riscos:

- não encontrarmos o sensor escolhido para comprar devido a crise dos semicondutores:
- não ser possível realizar algum dos ensaios do M.T.E. utilizando o sensor selecionado: problema dos ângulos alterados por exemplo;
- devido a grande variedade de circuitos de alimentação existentes podemos ter que desenvolver várias soluções de mecânica diferentes;
- ser necessário alterar o hardware do projeto SMQ 985 v.2.3 devido a limitações na aquisição;
- não ser possível alterar o hardware do projeto SMQ 985 v.2.3 para resolver as limitações da aquisição e ser necessário projetar um circuito de controle para o sensor;

Custos:

Protótipo PCB: 5.000 R\$

Mecânica: 200 R\$

Primeiro Lote: 20.000 R\$

Entregas + Linha do tempo

1.1 Desenvolvimento do Hardware - 2 meses //

1.2 Desenvolvimento do Firmware - 2 semanas //

1.3 Desenvolvimento da mecânica - 2 semanas // ???

1.4 Testes dos protótipos - 2 semanas

1.5 Desenvolvimento do Process - 2 Meses /// ???

1.6 Desenvolvimento da Interface - 2 Meses /// ???

2.1 Produção do Primeiro lote - 1 mês

2.2 Testes de validação - 1 semana

2.3 Testes externos - 1 mês

3.1 Arquivos e manuais de produção - 2 dias

3.2 Desenvolvimento da linha de produção - 1 semana

Total geral = 6 meses 4 semanas e 2 dias

Recursos - Projeto_Sensor de corrente online para monitoramento de qualidade de energia			
Pacote de trabalho	Tempo Estimado	Custo estimado	Colaboradores
1.1 Desenvolvimento do Hardware	2 meses //	5.000 R\$	Pitoli
1.2 Desenvolvimento do Firmware	2 semanas //	-	Felipe
1.3 Desenvolvimento da mecânica	2 Semanas // ???	200 R\$	Arnaldo / Fernando
1.4 Testes dos protótipos	2 semanas	-	Pitoli / Felipe
1.5 Desenvolvimento do Process	2 Meses /// ???	-	Amaury
1.6 Desenvolvimento da interface	2 Meses /// ???	-	Diego
2.1 Produção do Primeiro lote	1 mês	20.000 R\$???	Arnaldo
2.2 Testes de validação	1 semana	-	Pitoli / Felipe
2.3 Testes externos	1 mês	-	PCP
3.1 Arquivos e manuais de produção	2 dias	-	Pitoli
3.2 Desenvolvimento da linha de produção	1 semana	-	Arnaldo / Luis

1. Prototipagem

- **1.1 Desenvolvimento do Hardware**: será reaproveitado a parte da eletrônica referente aos sensores de corrente e desenvolvido o hardware dos sensores de tensão
 - 1.1.1 Projeto Eletrônico:
 - 1.1.2 Design da PCB:
 - 1.1.3 Produção e validação dos circuitos:

1.2 Desenvolvimento do Firmware:

1.2.1 Alterar rotina de aquisição e transmissão dos sinais;

1.3 Desenvolvimento da mecânica:

- 1.3.1 Criação dos requisitos para a mecânica baseados no levantamento dos circuitos existentes e considerando instalação fixa;
- 1.3.2 Projeto da mecânica para o sensor de tensão e reaproveitamento da mecânica do sensor de corrente;
- 1.3.3 Testes de validação da mecânica: testes interno de fixação e medição em diferentes cabos e circuitos;

1.4 Testes dos protótipos:

- 1.4.1 Consumo e estimativa de bateria;
- 1.4.2 Testes internos: testes nos motores da Semeq comparando com ensaios realizados com o M.T.E, com e sem falha:

Power: ondas no tempo e valores RMS

Eccentricit e Rotor Evaluation: FFTs

In Rush: ondas no tempo e valores RMS

1.5 Desenvolvimento do Process: cálculos dos índices referentes a qualidade de energia, FFTs etc;

1.6 Desenvolvimento da Interface:

2. Cabeça de série

2.1 Produção do Primeiro lote

- 2.1.1 Compra materiais
- 2.1.2 Montagem primeiro lote

2.2 Testes de validação:

- 2.2.1 Repetitibilidade
- 2.2.3 Stress
- 2.2.4 Disponibilidade
- 2.2.5 Bancada

2.3 Testes externos:

- 2.3.1 Instalação em motores monitorados pela Semeq comparando com os sinais medidos pelo M.T.E.;
- 2.3.2 Instalação em motores com cabos e distâncias mecânicas diferentes;
 - 2.3.3 Instalação em motores com correntes nominais diversas;

3. Produção

3.1 Arquivos e manuais de produção

- 3.1.1 Gerbers
- 3.1.2 Datasheet
- 3.1.3 Lista de Materiais
- 3.1.4 Pick and Place
- 3.1.5 Manual de Instalação

3.2 Desenvolvimento da linha de produção

- 3.2.1 Criação dos processos e sequências
- 3.2.2 Teste e registro de Validação