

第七章 时序逻辑电路的分析和设计 第八章 常用时序逻辑电路芯片

- 时序逻辑电路认识(7.1)
- 时序逻辑电路的一般分析方法(7.2)
- 时序逻辑电路的一般设计方法(7.3)
- 计数器 (8.1)
- 寄存器 (8.2)

§ 8.2 寄存器

- 8.2.1 寄存器的功能和类型
- 8.2.2 常用寄存器芯片
- 8.2.3 移位寄存器型计数器
- 8.2.4 寄存器应用举例

8.2.1 寄存器的功能和类型

寄存器基本功能: 暂存数据

一个触发器可以存储一位二进制代码

存放N位二进制代码的寄存器,需用N个触发器构成

移位寄存器: 使数据按指定的方式移位

移位寄存器中几种常见的数据移动方式

串入/串出移位寄存器

接收串行数据 以串行方式输出数据

举例:用 D 触发器构成的串入/串出移位寄存器

每个脉冲信号将输入数据移给下一个触发器

移位寄存器逻辑符号

"SRG 8"表示一个具有8位数据存储能力的移位寄存器

8.2.2 常用寄存器芯片

4位通用移位寄存器芯片

IC: 74HC194

S₁, S₀ 工作模式控制输入

S_1	S_0	工作模式
0	0	保持
0	1	右移
1	0	左移
1	1	并入

SR SER 右移数据输入端数据从Q₀送进去 SL SER 左移数据输入端数据从Q₃送进去

74HC194典型时序图

8.2.3移位寄存器型计数器

扭环形计数器

环形计数器

扭环形计数器

Department of Electrical & Electronic Technology, SAEE, USTB

扭环形计数器

状态转换表

$$Q_1^{n+1} = Q_0$$

$$Q_2^{n+1} = Q_1$$

$$Q_3^{n+1} = Q_2$$

$$Q_0^{n+1} = \overline{Q_3}$$

CLK	Q_0	Q_1	Q_2	Q_3
0	0	0	0	0
1	1	0	0	0
2	1	1	0	0
3	1	1	1	0
4	1	1	1	1
5	0	1	1	1
6	0	0	1	1
7	0	0	0	1

N个触发器构成的扭环形计数器为2N进制

由5个触发器构成的扭环形计数器为几进制?

- A 4进制
- B 5进制
- € 8进制
- 10进制

提交

环形计数器

环形计数器

$$Q_1^{n+1} = Q_0$$

$$Q_2^{n+1} = Q_1$$

$$Q_3^{n+1} = Q_2$$

$$Q_0^{n+1} = Q_3$$

无效循环

工作时必须先置数 (通常是单个0或or 1)

Department of Electrical & Electronic Technology, SAEE, USTB

下面哪个选项为4位环形计数器可能的序列

- A ... 1111, 1110, 1101 ...
- B ... 0000, 0001, 0010 ...
- ... 0001, 0011, 0111 ...
- ... 1000, 0100, 0010 ...

8.2.4 移位寄存器应用举例——环形计数器

单稳态触发器 (oneshot)

只有一个稳定状态,另一个状态是<mark>暂稳态</mark>。 加入触发信号后,它可以由稳定状态转入暂稳态,但经过一 定时间后,它又会自动返回原来的稳定状态。

逻辑符号

简化的键盘 编码电路

- 1) 找出电路中的环形寄存器,它的作用是?
- 2)电路右侧非或门输出何时为1?作用?
- 3) Clock inhibit 作用?
- **4)**电路是如何进行编码的?第二行第三列键按下时编码结果?

Ring counter scan the row lines for a key closure;

Column line which the key is closed will be connected to row line;

Row line is taken LOW, and the corresponding column line is pulled LOW.

The first one-shot inhibits the counter to prevent it from scanning.

串行和并行数据的转换

串行数据格式

Start bit (0) D ₇	D_6	D_5	D_4	D_3	D_2	D_1	D_0	Stop Stop bit (1) bit (1)	
------------------------------	-------	-------	-------	-------	-------	-------	-------	---------------------------	--

串行数据转换 成并行数据的 典型波形

第8章 常用时序逻辑电路

P185:

- 8.3 163芯片置位法实现计数
- 8.6 163芯片清零法应用
- 8.8 160芯片置位法实现计数
- 8.9 163芯片清零法实现计数
- 8.13 移位寄存器