

Universität Bayreuth 95447 Bayreuth

Anorganische Chemie III

Ton und Tonminerale

Justus Friedrich Studiengang: B.Sc. Chemie 4. Fachsemester

Matrikelnummer: 1956010 E-Mail: bt725206@myubt.de

Inhaltsverzeichnis

1	Ziel des Versuches	1
2	Durchführung 2.1 Synthese von $Na_{0.5} \cdot nH_2O[Zn_{2.5}Li_{0.5}](Si_4O_{10})F_2$	2 2
3	Auswertung 3.1 Schichtdicke von $Na_{0.5} \cdot nH_2O[Zn_{2.5}Li_{0.5}](Si_4O_{10})F_2 \dots \dots$	3
4	Zusammenfassung	4
5	Literaturverzeichnis	5

1 Ziel des Versuches

Tonminerale sind ein Wichtiger Bestandteil der Industrie, da diese als Katalysator oder Einlagerungsstätte dienen können. Daruter zählt auch der Zn

2 Durchführung

2.1 Synthese von $Na_{0.5} \cdot nH_2O[Zn_{2.5}Li_{0.5}](Si_4O_{10})F_2$

3 Auswertung

3.1 Schichtdicke von $Na_{0.5} \cdot nH_2O[Zn_{2.5}Li_{0.5}](Si_4O_{10})F_2$

Um die Schichtdicke des Hectorits zu bestimmen, wird ein Pulverdiffraktogramm aufgenommen und mit dem Programm $HighScore\ Plus$ ausgewertet. Dies wird in der Abbildung 1 abgebildet. Dabei wird der Abstand des d_{001} -Reflexes ermittelt.

Abbildung 1: Zeigt das Pulverdiffraktogramm des Hectorits, dabei sind die Reflexe mit den Abstand der d_{00n} Serie markiert.

Aus Abbildung 1 ist ersichtlich, dass der d_{001} -Reflex bei einem Abstand von 12.46937 Åliegt. Auf Grundlage dieses Werts lassen sich die theoretischen Abstände der d_{00n} -Serie berechnen. Dies erfolgt mithilfe der Formel 1.

$$d_{00n} = \frac{d_{001}}{n} \tag{1}$$

Die daraus erhaltene Werte werden mit den aus der Abbildung 1 verglichen und in der Tabelle xy dargestellt.

4 Zusammenfassung

1

5 Literaturverzeichnis

Literatur

(1) Breu, J.; Senker, J., Praktikum Präparative Anorganische Chemie, 2025, S. 17–30.