Classification with generative models II

ECE407

Recall: generative model framework

Labels
$$\mathcal{Y} = \{1, 2, ..., k\}$$
, density $\Pr(x) = \pi_1 P_1(x) + \cdots + \pi_k P_k(x)$.
where $P_1(x) = \Pr(x|Y=1),...,P_k(x) = \Pr(x|Y=k)$

Approximate each P_j with a simple, parametric distribution:

- Product distributions.
 Assume coordinates are independent: naive Bayes.
- Multivariate Gaussians.
 Linear and quadratic discriminant analysis.
- · More general graphical models.

The univariate Gaussian

The Gaussian $N(\mu,\sigma^2)$ has mean μ , variance σ^2 , and density function

$$p(x) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

The multivariate Gaussian

 $N(\mu, \Sigma)$: Gaussian in \mathbb{R}^p

- mean: $\mu \in \mathbb{R}^p$
- covariance: $p \times p$ matrix Σ

$$p(x) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{p/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

The multivariate Gaussian

 $N(\mu, \Sigma)$: Gaussian in \mathbb{R}^p

- mean: $\mu \in \mathbb{R}^p$
- covariance: $p \times p$ matrix Σ

$$p(x) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{p/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

Let $X = (X_1, X_2, \dots, X_p)$ be a random draw from $N(\mu, \Sigma)$.

- $\mathbb{E}X = \mu$. That is, $\mathbb{E}X_i = \mu_i$ for all $1 \leq i \leq p$.
- $\mathbb{E}(X \mu)(X \mu)^T = \Sigma$. That is, for all $1 \le i, j \le p$,

$$\mathsf{cov}(X_i, X_j) = \mathbb{E}(X_i - \mu_i)(X_j - \mu_j) = \Sigma_{ij}$$

In particular, $var(X_i) = \mathbb{E}(X_i - \mu_i)^2 = \Sigma_{ii}$.

The X_i are independent and all have the same variance σ^2 . Thus

$$\Sigma = \sigma^2 I_p$$

The X_i are independent and all have the same variance σ^2 . Thus

$$\Sigma = \sigma^2 I_p$$

Simplified density:

$$p(x) = \frac{1}{(2\pi)^{p/2}\sigma^p} \exp\left(-\frac{\|x - \mu\|^2}{2\sigma^2}\right)$$

The X_i are independent and all have the same variance σ^2 . Thus

$$\Sigma = \sigma^2 I_p$$

Simplified density:

$$p(x) = \frac{1}{(2\pi)^{p/2}\sigma^p} \exp\left(-\frac{\|x - \mu\|^2}{2\sigma^2}\right)$$

Density at a point depends only on its distance from μ :

The X_i are independent and all have the same variance σ^2 . Thus

$$\Sigma = \sigma^2 I_p$$

Simplified density:

$$p(x) = \frac{1}{(2\pi)^{p/2}\sigma^p} \exp\left(-\frac{\|x - \mu\|^2}{2\sigma^2}\right)$$

Density at a point depends only on its distance from μ :

Each X_i is an independent univariate Gaussian $N(\mu_i, \sigma^2)$.

Special case: diagonal Gaussian

The X_i are independent, with variances σ_i^2 . Thus

$$\Sigma = \mathsf{diag}(\sigma_1^2, \dots, \sigma_p^2)$$

Special case: diagonal Gaussian

The X_i are independent, with variances σ_i^2 . Thus

$$\Sigma = \operatorname{diag}(\sigma_1^2, \dots, \sigma_p^2)$$

Simplified density:

$$p(x) = \frac{1}{(2\pi)^{p/2}\sigma_1\cdots\sigma_p} \exp\left(-\sum_{i=1}^p \frac{(x_i - \mu_i)^2}{2\sigma_i^2}\right)$$

Contours of equal density are axis-aligned ellipsoids centered at μ :

Special case: diagonal Gaussian

The X_i are independent, with variances σ_i^2 . Thus

$$\Sigma = \mathsf{diag}(\sigma_1^2, \dots, \sigma_p^2)$$

Simplified density:

$$p(x) = \frac{1}{(2\pi)^{p/2}\sigma_1\cdots\sigma_p} \exp\left(-\sum_{i=1}^p \frac{(x_i - \mu_i)^2}{2\sigma_i^2}\right)$$

Contours of equal density are axis-aligned ellipsoids centered at μ :

Each X_i is an independent univariate Gaussian $N(\mu_i, \sigma_i^2)$.

The general Gaussian

Eigendecomposition of Σ :

- Eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p$
- Corresponding eigenvectors u_1, \ldots, u_p

The general Gaussian

Eigendecomposition of Σ :

- Eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p$
- ullet Corresponding eigenvectors u_1,\ldots,u_p

 $N(\mu, \Sigma)$ is simply a rotated version of $N(\mu, \text{diag}(\lambda_1, \dots, \lambda_p))$.

Example: Two classes: ω_1 and ω_2 with $N(\mu_i, \sigma_i)$, respectively

- Red and blue dots are the training data. Estimate the mean and variance of distributions of each class.
- Decision threshold is x_0 assuming that class prob are equal $\pi_1 = \pi_2$)

Estimate class probabilities π_1, π_2 and fit a Gaussian to each class:

$$P_1 = N(\mu_1, \Sigma_1), P_2 = N(\mu_2, \Sigma_2)$$

E.g. If data points $x^{(1)}, \ldots, x^{(m)} \in \mathbb{R}^p$ are class 1:

$$\mu_1 = \frac{1}{m} \left(x^{(1)} + \dots + x^{(m)} \right) \text{ and } \Sigma_1 = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu_1) (x^{(i)} - \mu_1)^T$$

Estimate class probabilities π_1, π_2 and fit a Gaussian to each class:

$$P_1 = N(\mu_1, \Sigma_1), P_2 = N(\mu_2, \Sigma_2)$$

E.g. If data points $x^{(1)}, \ldots, x^{(m)} \in \mathbb{R}^p$ are class 1:

$$\mu_1 = \frac{1}{m} \left(x^{(1)} + \dots + x^{(m)} \right) \text{ and } \Sigma_1 = \frac{1}{m} \sum_{i=1}^m (x^{(i)} - \mu_1) (x^{(i)} - \mu_1)^T$$

Given a new point x, predict class 1 iff:

$$\pi_1 P_1(x) > \pi_2 P_2(x)$$

Estimate class probabilities π_1, π_2 and fit a Gaussian to each class:

$$P_1 = N(\mu_1, \Sigma_1), P_2 = N(\mu_2, \Sigma_2)$$

If data points $x^{(1)}, \ldots, x^{(m)} \in \mathbb{R}^p$ are class 1, e.g.,:

$$\mu_1 = \frac{1}{m} \left(x^{(1)} + \dots + x^{(m)} \right) \text{ and } \Sigma_1 = \frac{1}{m} \sum_{i=1}^m (x^{(i)} - \mu_1) (x^{(i)} - \mu_1)^T$$

 $\pi_{1},\,\pi_{2},\,\mu_{2}$ and Σ_{2} are estimated from the training data in a similar manner .

Given a new point x, predict class 1 iff:

$$\pi_1 P_1(x) > \pi_2 P_2(x) \Leftrightarrow x^T M x + 2 w^T x \ge \theta,$$

where:

$$M = \frac{1}{2} (\Sigma_2^{-1} - \Sigma_1^{-1})$$

$$w = \Sigma_1^{-1} \mu_1 - \Sigma_2^{-1} \mu_2$$

and θ is a constant depending on the various parameters.

Estimate class probabilities π_1, π_2 and fit a Gaussian to each class:

$$P_1 = N(\mu_1, \Sigma_1), P_2 = N(\mu_2, \Sigma_2)$$

E.g. If data points $x^{(1)}, \ldots, x^{(m)} \in \mathbb{R}^p$ are class 1:

$$\mu_1 = \frac{1}{m} \left(x^{(1)} + \dots + x^{(m)} \right) \text{ and } \Sigma_1 = \frac{1}{m} \sum_{i=1}^m (x^{(i)} - \mu_1) (x^{(i)} - \mu_1)^T$$

or divide by (m-1) instead of m Given a new point x, predict class 1 iff:

$$\pi_1 P_1(x) > \pi_2 P_2(x) \Leftrightarrow x^T M x + 2 w^T x \geq \theta,$$

where:

$$M = \frac{1}{2} (\Sigma_2^{-1} - \Sigma_1^{-1})$$

$$W = \Sigma_1^{-1} \mu_1 - \Sigma_2^{-1} \mu_2$$

and θ is a constant depending on the various parameters.

$$\Sigma_1 = \Sigma_2$$
: linear decision boundary. Otherwise, quadratic boundary.

Common covariance: $\Sigma_1 = \Sigma_2 = \Sigma$

Linear decision boundary: choose class 1 iff

$$x \cdot \underbrace{\Sigma^{-1}(\mu_1 - \mu_2)}_{w} \geq \theta.$$

Common covariance: $\Sigma_1 = \Sigma_2 = \Sigma$

Linear decision boundary: choose class 1 iff

$$\times \underbrace{\Sigma^{-1}(\mu_1 - \mu_2)}_{w} \geq \theta.$$

Example 1: Spherical Gaussians with $\Sigma = I_p$ and $\pi_1 = \pi_2$.

Example 2: Again spherical, but now $\pi_1 > \pi_2$.

Example 2: Again spherical, but now $\pi_1 > \pi_2$.

Example 2: Again spherical, but now $\pi_1 > \pi_2$.

1-D example:

Decision boundary is x_0 is closer to the mean of class 2 because $\pi_1 > \pi_2$

Example 3: Non-spherical.

Example 3: Non-spherical.

Rule: $w \cdot x \ge \theta$

- w, θ dictated by probability model, assuming it is a perfect fit
- Common practice: choose w as above, but fit θ to minimize training/validation error

Different covariances: $\Sigma_1 \neq \Sigma_2$

Quadratic boundary: choose class 1 iff $x^T M x + 2w^T x \ge \theta$, where:

$$M = \frac{1}{2} (\Sigma_2^{-1} - \Sigma_1^{-1})$$
$$w = \Sigma_1^{-1} \mu_1 - \Sigma_2^{-1} \mu_2$$

Example 1: $\Sigma_1 = \sigma_1^2 I_p$ and $\Sigma_2 = \sigma_2^2 I_p$ with $\sigma_1 > \sigma_2$

Different covariances: $\Sigma_1 \neq \Sigma_2$

Quadratic boundary: choose class 1 iff $x^T M x + 2 w^T x \ge \theta$, where:

$$M = \frac{1}{2} (\Sigma_2^{-1} - \Sigma_1^{-1})$$
$$w = \Sigma_1^{-1} \mu_1 - \Sigma_2^{-1} \mu_2$$

Example 1: $\Sigma_1 = \sigma_1^2 I_p$ and $\Sigma_2 = \sigma_2^2 I_p$ with $\sigma_1 > \sigma_2$

Example 2: Same thing in 1-d. $\mathcal{X} = \mathbb{R}$.

Example 2: 1-D example. $\mathcal{X} = \mathbb{R}$.

You may have two decision thresholds

Example 3: A parabolic boundary.

Example 3: A parabolic boundary.

Many other possibilities!

Multiclass discriminant analysis

k classes: weights π_j , class-conditional distributions $P_j = N(\mu_j, \Sigma_j)$.

Multiclass discriminant analysis

k classes: weights π_j , class-conditional distributions $P_j = N(\mu_j, \Sigma_j)$.

Each class has an associated quadratic function

$$f_j(x) = \log (\pi_j P_j(x))$$

To class a point x, pick arg $\max_j f_j(x)$.

Multiclass discriminant analysis

k classes: weights π_j , class-conditional distributions $P_j = N(\mu_j, \Sigma_j)$.

Each class has an associated quadratic function

$$f_j(x) = \log (\pi_j P_j(x))$$

To class a point x, solve $arg max_j f_j(x)$.

Example: If $\Sigma_1 = \cdots = \Sigma_k$, the boundaries are **linear**.

A framework for linear classification without Gaussian assumptions.

A framework for linear classification without Gaussian assumptions.

Use only first- and second-order statistics of the classes.

Class 1	Class 2
mean μ_1	mean μ_2
$cov\ \Sigma_1$	$cov\ \Sigma_2$
$\#$ pts n_1	$\#$ pts n_2

A framework for linear classification without Gaussian assumptions.

Use only first- and second-order statistics of the classes.

Class 1	Class 2
mean μ_1	mean μ_2
$cov\ \Sigma_1$	cov Σ_2
$\#$ pts n_1	# pts <i>n</i> ₂

A linear classifier projects all data onto a direction w. Choose w so that:

A framework for linear classification without Gaussian assumptions.

Use only first- and second-order statistics of the classes.

$$\begin{array}{c|ccc} \text{Class 1} & \text{Class 2} \\ \hline \text{mean } \mu_1 & \text{mean } \mu_2 \\ \text{cov } \Sigma_1 & \text{cov } \Sigma_2 \\ \# \text{ pts } n_1 & \# \text{ pts } n_2 \\ \end{array}$$

A linear classifier projects all data onto a direction w. Choose w so that:

• Projected means are well-separated, i.e. $(w \cdot \mu_1 - w \cdot \mu_2)^2$ is large.

A framework for linear classification without Gaussian assumptions.

Use only first- and second-order statistics of the classes.

Class 1	Class 2
mean μ_1	mean μ_2
$cov\ \Sigma_1$	cov Σ_2
$\#$ pts n_1	$\#$ pts n_2

A linear classifier projects all data onto a direction w. Choose w so that:

- 1. Projected means are well-separated, i.e. $(w \cdot \mu_1 w \cdot \mu_2)^2$ is large.
- 2. Projected within-class variance is small.

better than

Two classes: means μ_1, μ_2 ; covariances Σ_1, Σ_2 ; sample sizes n_1, n_2 .

Two classes: means μ_1, μ_2 ; covariances Σ_1, Σ_2 ; sample sizes n_1, n_2 .

Project data onto direction (unit vector) w.

- Projected means: $w \cdot \mu_1$ and $w \cdot \mu_2$
- Projected variances: $w^T \Sigma_1 w$ and $w^T \Sigma_2 w$
- Average projected variance:

$$\frac{n_1(w^T\Sigma_1w)+n_2(w^T\Sigma_2w)}{n_1+n_2}=w^T\Sigma w,$$

where
$$\Sigma = (n_1\Sigma_1 + n_2\Sigma_2)/(n_1 + n_2)$$
.

Two classes: means μ_1, μ_2 ; covariances Σ_1, Σ_2 ; sample sizes n_1, n_2 .

Project data onto direction (unit vector) w.

- Projected means: $w \cdot \mu_1$ and $w \cdot \mu_2$
- Projected variances: $w^T \Sigma_1 w$ and $w^T \Sigma_2 w$
- Average projected variance:

$$\frac{n_1(w^T\Sigma_1w)+n_2(w^T\Sigma_2w)}{n_1+n_2}=w^T\Sigma w,$$

where
$$\Sigma = (n_1\Sigma_1 + n_2\Sigma_2)/(n_1 + n_2)$$
.

Find w to maximize
$$J(w) = \frac{(w \cdot \mu_1 - w \cdot \mu_2)^2}{w^T \Sigma w}$$

Two classes: means μ_1, μ_2 ; covariances Σ_1, Σ_2 ; sample sizes n_1, n_2 .

Project data onto direction (unit vector) w.

- Projected means: $w \cdot \mu_1$ and $w \cdot \mu_2$
- Projected variances: $w^T \Sigma_1 w$ and $w^T \Sigma_2 w$
- Average projected variance:

$$\frac{n_1(w^T \Sigma_1 w) + n_2(w^T \Sigma_2 w)}{n_1 + n_2} = w^T \Sigma w,$$

where
$$\Sigma = (n_1\Sigma_1 + n_2\Sigma_2)/(n_1 + n_2)$$
.

Find w to maximize
$$J(w) = \frac{(w \cdot \mu_1 - w \cdot \mu_2)^2}{w^T \Sigma w}$$

Solution: $w \propto \Sigma^{-1}(\mu_1 - \mu_2)$. Look familiar?