Name - Kartikay Pandon Poll no - 102117121 CS-5 f(n)= n, n, -- un is sample size of n L(n, n, n, nn) - f(nn).f(nz)--- f(nn) $= \left(\frac{1}{2\pi^{2}} - \frac{(\chi_{1} - M)^{2}}{2\sigma^{2}}\right), \left(\frac{1}{52\pi\sigma^{2}} - \frac{(\chi_{2} - M)^{2}}{2\sigma^{2}}\right) - \frac{1}{52\pi\sigma^{2}}$ taking In both sides $ln(2) = -n ln(2\pi e^2) + \sum_{i=1}^{n} (n_i - n_i)^2 - 0$ take partial derivate was to min (1) $= 0 + \frac{\pi}{2} - (2(n_{i} - \mu)) = 0$ $= \frac{\pi}{2} - (2(n_{i} - \mu)) = 0$

Page No.:____

$= \sum_{i=1}^{2} \left(n_i \cdot \mu \right) = 0$ $\Rightarrow n \times - n \mu = 0$ $\times = \mu$	
$= \sum_{x} nx - n\mu = 0$	
$\overline{x} = \mu$	
$=\mu$	
hence $\theta_1 = \overline{x}$ is therefore sample	e mean.
Taking derivate wort to 62 in	0
dln(2) = - n + 5 -1	(ni-m)2-0
7 62 2 2 12	2 6 2
$n = \frac{1}{5} \left(n_i - \mu\right)^2$	
121	
02 = 1x (2 (n; -M) 2)
n i='	
Shence $Q_2 = 1 \stackrel{\sim}{\leq} (n_i - \mu)$ $= 1 \stackrel{\sim}{\leq} (n_i - \mu)$	
12 Binomial distrition Cri Oni (1-	0)~~~i
1 = m (n 0 m (1 - 0)) ~ ~ ~ ·
Take log in both sides	
log 2 = = (log ("(ni) + log o"	+ log (1-0) n-mj
$log L = \sum_{i=1}^{\infty} log \binom{n}{(n_i)} + log 0 \sum_{i=1}^{\infty} n_i + l$	09 (1-0) 2 (n-ni)

différentiate was to