Dijkstra's Algorithm

By Team 3 SCSF:

- Matthew Heng
- Siah Yee Long
- Wang Anqi

- - Code overview
 - ▼ Theoretical time complexity
 - Empirical time complexity
 - (b) Yee Long
 - Code overview
 - Theoretical time complexity
 - Empirical time complexity
 - · C) An Qi
 - Comparison of performance between the two
 - Use graph to plot
 - SWOT analysis

Graph representation	Priority guaya using uncorted array	
Data structure for traversal		

(a) Data structures

(a) Theoretical Time Complexity

(a) Theoretical Time Complexity

count++;


```
// explore the rest of the vertices
while(count<g->V-1){
    int min distance = INFINITY;
    int next_vertex;
   // find the smallest cost neighbour to pursue
                                                                                       Find the frontier node to
    for(i=0;i<q->V;i++){
        if(d[i] < min_distance && !visited[i]){</pre>
                                                                                       be explored
                                                                         V times
           next_vertex = i;
                                                                                           Smallest d[i]
           min distance = d[i];
                                                                                           Never visited before
   visited[next_vertex] = 1;
   if(count==1) prev vertex[next vertex] = start; // NO I CANT JUST DO THIS
    // update the new d reachable from this new node and update the prev vertex accordingly
    for(i=0;i<q->V;i++){
       if (!visited[i]){
            if (min_distance + g->adj.matrix[next_vertex][i] < d[i]) {</pre>
                                                                                          Update the d and pi of d[i]
                d[i] = min_distance + g->adj.matrix[next_vertex][i];
                                                                              V times
                                                                                           neighbors
                prev vertex[i] = next vertex;
                                                                                             Loop through the row
                                                                                           Matrix[i]
```

$$T(V, E) = V (V + V) = O(V^{2})$$

Find out best, average, worse

a) Empirical (runtime vs %of connectiveness)

		% of connected graph				
		4000/			•	000/
		100%	80%	60%	40%	20%
		runtime (s)	runtime (s)	runtime (s)	runtime (s)	runtime (s)
	200	0.000351	0.000299	0.000304	0.000322	0.000312
	400	0.001486	0.001084	0.0011	0.001117	0.001125
	600	0.006012	0.002365	0.002377	0.002426	0.002441
	800	0.006206	0.004213	0.004206	0.004303	0.00431
	1000	0.006545	0.006581	0.006597	0.006791	0.00707
>	1200	0.009523	0.009525	0.009605	0.009928	0.009933
ph,	1400	0.013138	0.013178	0.013281	0.013636	0.013645
ص	1600	0.017443	0.017602	0.017801	0.018285	0.018195
ρ0	1800	0.022808	0.022926	0.023149	0.023893	0.023473
of	2000	0.029113	0.029994	0.02956	0.029641	0.029703
Size	2200	0.035624	0.036088	0.036247	0.036621	0.036461
S	2400	0.043432	0.043814	0.050391	0.044477	0.04498
	2600	0.051982	0.052352	0.053574	0.053249	0.053163
	2800	0.061299	0.061939	0.063356	0.062728	0.063651
	3000	0.07162	0.072241	0.073745	0.073567	0.073554
	3200	0.083397	0.083636	0.08434	0.085197	0.087928
	3400	0.095156	0.095922	0.099128	0.097163	0.097464
	3600	0.10845	0.109505	0.110335	0.11222	0.111405
	3800	0.122346	0.123558	0.128157	0.13002	0.126584
	4000	0.138674	0.139326	0.145105	0.142221	0.141585

Empirical runtime vs % connected

a) Empirical vs Theoretical runtime

Graph representation	Adjacency list		
Data structure for traversal	Priority queue using minimizing heap		

(b) Data structures

(b) Pseudo-code

```
Initialise pq
                        of size |V|
Initialise d[]
            of size |V|, all INFINITY
Initialise visited[] of size |V|, all 0
d[start] = 1
visited[start] = 1
For each vertex adjacent to start:
        d[vertex] = cost of start → vertex)
        prev vertex[vertex] = start
        pq insert(pq, vertex, d[vertex])
While pq is not empty:
        new = pq_pop(pq)
        visited[new] = 1
```


(b) Pseudo-code


```
void pq_swap(PQueue *pq, int a, int b)
{

// this function simply swaps the data of vertex at index a and vertex at index b
  int temp_vertex = pq->qvertex[a];
  int temp_cost = pq->qcost[a];
  int temp_prev = pq->qprev[a];

pq->qvertex[a] = pq->qvertex[b];
 pq->qcost[a] = pq->qcost[b];
 pq->qprev[a] = pq->qprev[b];

pq->qvertex[b] = temp_vertex;
 pq->qcost[b] = temp_cost;
 pq->qprev[b] = temp_prev;
}
```

```
pq_swap = O(1)
```

```
void pq_minHeapify(PQueue *pq, int i)
{
    // this function floats the smallest cost item to the top
    int smallest = i;
    int left = 2 * i + 1;
    int right = 2 * i + 2;

    if (left < pq->size && pq->qcost[left] < pq->qcost[smallest])
        smallest = left;

    if (right < pq->size && pq->qcost[right] < pq->qcost[smallest])
        smallest = right;

    if (smallest != i) {
        pq_swap(pq, i, smallest);
        pq_minHeapify(pq, smallest);
    }
}
```

```
pq_minHeapify = O(lg[n])
```



```
void pg insert(PQueue *pg, int vertex, int cost, int prev)
   // at every insertion, float the smallest cost vertex to the top
    int i = pq->size++;
    pq->qvertex[i] = vertex;
   pq->qcost[i] = cost;
    pq->qprev[i] = prev;
    while (i != 0 && pq->qcost[i] < pq->qcost[(i - 1) / 2]) {
       pq_swap(pq, i, (i - 1) / 2);
       i = (i - 1) / 2:
int pq_pop(PQueue *pq)
   // this function pops the vertex with the smallest cost and minHeapifies to fix the heap
    if (pq->size == 0) {
        printf("Queue is empty!\n");
        return -1:
    int smallest = pq->qvertex[0];
    pq->qvertex[0] = pq->qvertex[pq->size-1];
    pq->qcost[0] = pq->qcost[pq->size-1];
    pq->qprev[0] = pq->qprev[pq->size-1];
    pq->size--;
    pq_minHeapify(pq, 0);
    return smallest;
```

```
pq_insert = O(lg[n])
```

```
pq_pop = pq_minHeapify = O(lg[n])
```

```
int pq_findVertex(PQueue *pq, int vertex, int cost, int index)
{
    // this function returns the index of the found vertex
    if(pq->qvertex[index] == vertex) return index;

int found;
int left = index*2+1;
if(left < pq->size && pq->qcost[left] <= cost){
    found = pq_findVertex(pq, vertex, cost, left);
    if(found!=-1 && pq->qvertex[found] == vertex) return found;
}

int right = index*2+2;
if(right < pq->size && pq->qcost[right] <= cost){
    found = pq_findVertex(pq, vertex, cost, right);
    if(found!=-1 && pq->qvertex[found] == vertex) return found;
}

return -1;
}
```

```
void pq_updateCost(PQueue *pq, int vertex, int old_cost, int new_cost, int new_prev)
{
    // this function will search for the vertex and update its cost, then fix it
    int index = pq_findVertex(pq, vertex, old_cost, 0); // find the index of the target vertex
    // update the new cost and prev
    pq->qcost[index] = new_cost;
    pq->qprev[index] = new_prev;

    // float the vertex up due to the new cost potentially being smaller than the parent
    while (index != 0 && pq->qcost[index] < pq->qcost[(index - 1) / 2]) {
        pq_swap(pq, index, (index - 1) / 2);
        index = (index - 1) / 2;
    }
}
```

```
pq_findVertex = O(lg[n])
```

```
pq_updateCost = pq_findVertex + O(lg[n])
= O(lg[n])
```



```
void dijkstra_list(Graph *g, int start)
// mark start as visited and explore it
visited[start] = 1:
d[start] = 0;
while(vertex != NULL){
   d[vertex->vertex] = vertex->cost;
   prev_vertex[vertex->vertex] = start;
                                                 O(V) + O(V*lg[V]) = O(V*lg[V])
    vertex = vertex->next;
for(i=0;i<q->V;i++)
    pq_insert(pq, i, d[i], prev_vertex[i]);
// while pq is not empty, extract cheapest vertex and explore it
while(pq->size){ ----
    // extract cheapest vertex
                                               O(lg[V])
    new_vertex = pq_pop(pq);
    visited[new_vertex] = 1;
                                                                                   O(lg[V])
    // explore new vertex
                                                 E/V
   vertex = g->adj.list[new_vertex];
    while(vertex!=NULL){
       // if there is a new shorter path found, update the pg and d
        if(!visited[vertex->vertex] && d[vertex->vertex] > d[new_vertex]+vertex->cost/{
            int old cost = d[vertex->vertex];
            d[vertex->vertex] = d[new vertex]+vertex->cost;
            pq_updateCost(pq, vertex->vertex, old_cost,d[vertex->vertex], new_vertex);
            prev vertex[vertex->vertex] = new vertex;
            // pg checkViolation(pg);
        vertex = vertex->next;
```



```
void dijkstra_list(Graph *g, int start)
// mark start as visited and explore it
visited[start] = 1:
d[start] = 0:
while(vertex != NULL){
    d[vertex->vertex] = vertex->cost;
                                                 O(V) + O(V*lg[V]) = O(V*lg[V])
   prev_vertex[vertex->vertex] = start;
    vertex = vertex->next;
for(i=0;i<q->V;i++)
    pq_insert(pq, i, d[i], prev_vertex[i]);
// while pq is not empty, extract cheapest vertex and explore it
while(pq->size){ ----
    // extract cheapest vertex
                                                O(lg[V])
    new_vertex = pq_pop(pq);
    visited[new_vertex] = 1;
                                                                                   O(lg[V])
    // explore new vertex
                                                  E/V
    vertex = g->adj.list[new_vertex];
    while(vertex!=NULL){
        // if there is a new shorter path found, update the pg and d
        if(!visited[vertex->vertex] && d[vertex->vertex] > d[new_vertex]+vertex->cost /{
            int old cost = d[vertex->vertex];
            d[vertex->vertex] = d[new vertex]+vertex->cost;
            pq_updateCost(pq, vertex->vertex, old_cost,d[vertex->vertex], new_vertex);
            prev vertex[vertex->vertex] = new vertex;
            // pg checkViolation(pg);
        vertex = vertex->next;
```

```
V ( O(lg[V]) + E/V (O(lg[V])))
= O(V*lg([V])) + O(E*lg([V]))
= O([V+E]*lg([V]))
```


(b) Empirical time complexity

		% connected graph				
		100%	80%	60%	40%	20%
	200	0.000443	0.000443	0.000433	0.000416	0.000368
	400	0.001732	0.001743	0.00171	0.001648	0.001471
	600	0.004042	0.004007	0.003947	0.003805	0.003414
	800	0.007294	0.007313	0.007119	0.006891	0.006198
	1000	0.011448	0.011846	0.011204	0.010839	0.009819
	1200	0.017182	0.017186	0.0169	0.016329	0.014883
	1400	0.023874	0.023859	0.023548	0.022739	0.020697
>	1600	0.031436	0.031619	0.031153	0.030183	0.027592
Ž,	1800	0.0404	0.040736	0.039817	0.038522	0.035358
graph,	2000	0.050289	0.050286	0.049606	0.048134	0.044344
ੋ	2200	0.062401	0.062634	0.0618	0.060048	0.055439
size	2400	0.075864	0.075935	0.074836	0.073214	0.067367
S	2600	0.090346	0.090448	0.089688	0.087094	0.080458
	2800	0.106087	0.106623	0.104979	0.102447	0.094485
	3000	0.124031	0.123915	0.121682	0.118881	0.110291
	3200	0.140675	0.141581	0.140082	0.13766	0.127851
	3400	0.160557	0.160852	0.159331	0.155558	0.144458
	3600	0.180906	0.18218	0.179347	0.17574	0.165109
	3800	0.202853	0.202438	0.2002	0.196016	0.183532
	4000	0.225478	0.232061	0.217394	0.199833	0.173005

(b) Empirical time complexity

b) Empirical vs Theoretical runtime

(c) Time complexity

(c) Empirical time complexity

(c) Time complexity

(c) Time complexity

(c) Empirical time complexity

(c) Time complexity

(c) Memory Usage

(a) Data structures

Priority Queue array

int visited[g->V]; // S
int d[g->V];
int prev_vertex[g->V];
// pi

(c) Memory Usage

For **dense** graphs (where |E| is close to $|V|^2$), the **adjacency matrix** approach consumes **more memory**. In contrast, for **sparse** graphs, the **adjacency list** approach is **more memory-efficient**.

Comparison

	Time Complexity	Memory Usage	Ease of Implementation
Adjacency matrix	O(V^2)	 dense graphs consumes more memory 	 conceptually simpler to implement
Adjacency list	O([V+E]*lg([V]))	 dense graphs consumes less memory 	more complex to implement
Conclusion	the adjacency matrix is	 adjacency list approach is more memory- 	

efficient in most cases

better in most scenarios

Just one more thing...

What about graphs which are disjoint?

What about graphs which are disjoint?

Thanks!

