在文件创建时不得不指定最终文件的大小,这个想法被放弃了。但是,随着CD-ROM、DVD以及其他一次性写光学介质的出现,突然间连续分配又成为一个好主意。所以研究那些具有清晰和简洁概念的老式系统和思想是很重要的,因为它们有可能以一种令人吃惊的方式在未来系统中获得应用。

2. 链表分配

存储文件的第二种方法是为每个文件构造磁盘块链表,如图4-11所示。每个块的第一个字作为指向下一块的指针,块的其他部分存放数据。

与连续分配方案不同,这一方法可以充分 利用每个磁盘块。不会因为磁盘碎片(除了最后一块中的内部碎片)而浪费存储空间。同样, 在目录项中,只需要存放第一块的磁盘地址, 文件的其他块就可以从这个首块地址查找到。

另一方面, 在链表分配方案中, 尽管顺序 读文件作常方便, 但是随机存取却相当缓慢。 要获得块n, 操作系统每一次都必须从头开始, 并且要先读前面的n-1块。显然, 进行如此多的 读操作太慢了。

而且,由于指针占去了一些字节,每个磁盘块存储数据的字节数不再是2的整数次幂。虽然这个问题并不是非常严重,但是怪异的大小

图4-11 以磁盘块的链表形式存储文件

确实降低了系统的运行效率,因为许多程序都是以长度为2的整数次幂来读写磁盘块的。由于每个块的前几个字节被指向下一个块的指针所占据,所以要读出完整的一个块,就需要从两个磁盘块中获得和拼接信息,这就因复制引发了额外的开销。

3. 在内存中采用表的链表分配

如果取出每个磁盘块的指针字,把它放在内存的一个表中,就可以解决上述链表的两个不足。图4-12表示了图4-11所示例子的内存中表的内容。这两个图中有两个文件,文件A依次使用了磁盘块4、7、2、10和12,文件B依次使用了磁盘块6、3、11和14。利用图4-12中的表,可以从第4块开始,顺着链走到最后,找到文件A的全部磁盘块。同样,从第6块开始,顺着链走到最后,也能够找出文件B的全部磁盘块。这两个链都以一个不属于有效磁盘编号的特殊标记(如-1)结束。内存中的这样一个表格称为文件分配表(File Allocation Table, FAT)。

按这类方式组织,整个块都可以存放数据。 进而,随机存取也容易得多。虽然仍要顺着链 在文件中查找给定的偏移量,但是整个链表都 存放在内存中,所以不需要任何磁盘引用。与

图4-12 在内存中使用文件分配表的链表分配

前面的方法相同,不管文件有多大,在目录项中只需记录一个整数(起始块号),按照它就可以找到文件的全部块。

这种方法的主要缺点是必须把整个表都存放在内存中。对于200 GB的磁盘和 1KB大小的块,这张表需要有2亿项,每一项对应于这2亿个磁盘块中的一个块。每项至少3个字节,为了提高查找速度,有时需要4个字节。根据系统对空间或时间的优化方案,这张表要占用600MB或800MB内存,不太实用。很显然FAT方案对于大磁盘而言不太合适。