Análisis preliminar

Revisión de los datos

Generar escenarios de sensibilidad

[1] FALSE FALSE

Ejecute escenarios

Lee salidas

Revisión de los datos del Método de Producción Diaria de Huevos (MPDH)

Table 1: Índices de abundancia con los coeficientes de variación utilizados en el modelo de evaluación de stock de sardina común.

Año	Crucero verano	cvV	Crucero otoño	cvO	Crucero huevos	cvH	dtH
1991	0	0.3	0	0.3	0	100	0.16
1992	0	0.3	0	0.3	0	100	0.16
1993	0	0.3	0	0.3	0	100	0.16
1994	0	0.3	0	0.3	0	100	0.16
1995	0	0.3	0	0.3	0	100	0.16
1996	0	0.3	0	0.3	0	100	0.16
1997	0	0.3	0	0.3	0	100	0.16
1998	0	0.3	0	0.3	0	100	0.16
1999	0	0.3	0	0.3	0	100	0.16
2000	252601	0.3	0	0.3	0	100	0.16
2001	567819	0.3	0	0.3	0	100	0.16
2002	844713	0.3	0	0.3	0	100	0.16
2003	477998	0.3	0	0.3	498337	100	0.16
2004	351125	0.3	0	0.3	0	100	0.16
2005	339783	0.3	0	0.3	5186	100	0.16
2006	2178397	0.3	552880	0.3	125008	100	0.16
2007	2134043	0.3	188675	0.3	0	100	0.16
2008	4813144	0.3	0	0.3	168611	100	0.16
2009	1555625	0.3	991730	0.3	109162	100	0.16
2010	2623565	0.3	2467720	0.3	213762	100	0.16
2011	3216857	0.3	1416034	0.3	579715	100	0.16
2012	3843000	0.3	1217169	0.3	649985	100	0.16
2013	1133477	0.3	2296489	0.3	157893	100	0.16
2014	3079434	0.3	1805815	0.3	87575	100	0.16
2015	1972148	0.3	0	0.3	83554	100	0.16
2016	2032684	0.3	1482799	0.3	210694	100	0.16
2017	2025002	0.3	1565315	0.3	70296	100	0.16
2018	2424330	0.3	1577507	0.3	0	100	0.16
2019	2275425	0.3	1421176	0.3	107559	100	0.16
2020	1050175	0.3	867257	0.3	103333	100	0.16
2021	2363380	0.3	1100020	0.3	445601	100	0.16
2022	3189821	0.3	1062045	0.3	22526	100	0.16
2023	1530352	0.3	0	0.3	28222	100	0.16

Figure 1: Índices de biomasa estimados en los cruceros de verano, otoño y huevos.

Figure 2: Índices de biomasa observados (puntos) y estimados (línea) por el modelo de evaluación de stock de sardina común.

Figure 3: Comparación de Biomasa desovante estimada por el método de producción diaria de huevos y modelo de evaluación de stock

Table 2: Comparación de coeficiente de capturabilidad estimada por el modelo de evaluación de stock de sardina común para cada índice de biomasa.

Índices de biomasa	dt	CV	Capturabilidad q
Crucero Verano	0.50	0.3	1.25
Crucero Otoño	0.83	0.3	1.54
Crucero Huevos	0.16	100.0	0.16

Table 3: Fechas de inicio, término y duración en días de los cruceros de huevos. Fracción del año biológico considerando la fecha de inicio del crucero

Año Crucero	Fecha de inicio	Fecha de término	Duración del crucero	Año biológico	Fracción del año biológico (dt)
2022	2022-09-10	2022-11-12	63	2022-23	0.19
2021	2021-10-08	2021-11-13	36	2021-22	0.27
2020	2020-09-27	2020-10-19	22	2020-21	0.24
2019	2019-08-20	2019-10-28	69	2019-20	0.14
2018	2018-09-09	2018-10-24	45	2018-19	0.19
2017	-	-	-	2017-18	-
2016	2016-09-06	2016-10-21	45	2016 - 17	0.18
2015	2015-09-27	2015 - 10 - 27	30	2015-16	0.24
2014	2014-09-06	2014-10-21	45	2014-15	0.18
2013	2013-09-27	2013-10-27	30	2013-14	0.24
2012	2012-10-07	2012-10-29	22	2012-13	0.27
2011	2011-09-21	2011-10-15	24	2011-12	0.22
2010	2010-09-10	2010-10-15	35	2010-11	0.19
2009	2009-09-03	2009-10-05	32	2009-10	0.18
2008	2008-09-05	2008-09-26	21	2008-09	0.18
2007	2007-08-29	2007-09-28	30	2007-08	0.16
2006	-	-	-	2006-07	-
2005	2005 - 08 - 21	2005-09-22	32	2005-06	0.14
2004	2004-08-21	2004-09-29	39	2004-05	0.14
2003	2003-08-23	2003-10-29	67	2003-04	0.15
2002	2002-08-15	2002-09-12	28	2002-03	0.12

Figure 4: Fracción del año biológico en que comienza el crucero de huevos por año

Figure 5: Distribución espacial de huevos de sardina común desde el año 2002 al 2021 (Fuente: Grendi et al 2022).

Escenarios de sensibilidad del índice de biomasa desovante estimada por el MPDH

Table 4: Escenarios de sensibilidad del índice de biomasa desovante estimada por el Método de Producción Diaria de Huevos (MPDH).

Escenarios	Descripción			
Caso base				
S1	CV C.huevos=100, dt_C.huevos=0.16 y bloque_q_C.huevos=0			
Cambios e	en dt_C.huevos y bloque_q_C.huevos			
S2	S1 + dt_C.huevos=variable			
S3	S2 + bloque_q_C.huevos=3			
S3 y Cambios en CV C.huevos				
S4	S3 + CV C.huevos = 0.30			
S5	S3 + CV C.huevos=0.15 (alta ponderación)			
S6	S3 + CV C.huevos=0.50 (baja ponderación)			
S4 y Cambios en CV C.verano y C.otoño				
S7	S4 + CV C.verano=100 (no aporta información)			
S8	S4 + CV C.otoño=100 (no aporta información)			
S9	S4 + CV C.verano=0.15 y CV C.otoño=0.25			

Cambios en d
t ${\bf y}$ bloques de capturabilidad biomasa desovante del índice de biomasa desovante (MPDH)

Table 5: Error cuadrático medio para medir la bondad de ajuste de cada escenario.

	RMSE		
Escenarios	C.Huevos	C.Verano	C.Otono
caso base	1.18	0.33	0.45
$dt_mph\ variable$	1.17	0.33	0.45
dt_mph variable y 3 bloques_qmph	1.01	0.33	0.45

Figure 6: Perfiles de verosimilitud de las fuentes de datos para el parámetro de reclutamiento medio (R_0) , donde la línea horizontal representa el nivel crítico para el test χ^2 .

Figure 7: Análisis retrospectivo relativo

Figure 8: Variables poblacionales de sardina común

Cambios en CV mpdh

Table 6: Error cuadrático medio para medir la bondad de ajuste de cada escenario.

		RMSE			
	Escenarios	C.Huevos	C.Verano	C.Otono	
1	caso base	1.18	0.33	0.45	
4	$cv_mph=0.3$	0.74	0.40	0.45	
5	$cv_mph=0.15$	0.48	0.54	0.48	
6	$cv_mph{=}0.5$	0.89	0.34	0.45	

Figure 9: Perfiles de verosimilitud de las fuentes de datos para el parámetro de reclutamiento medio (R_0) , donde la línea horizontal representa el nivel crítico para el test χ^2 .

Figure 10: Análisis retrospectivo relativo

Figure 11: Variables poblacionales de sardina común

Cambios en CV reclas y pelaces

Table 7: Error cuadrático medio para medir la bondad de ajuste de cada escenario.

			RMSE	
	Escenarios	C.Huevos	C.Verano	C.Otono
1	caso base	1.18	0.33	0.45
γ	cv_reclas=100	0.65	0.59	0.42
8	cv_pelaces=100	0.74	0.38	0.61
9	cv_reclas=0.15, cv_pelaces=0.25, cv_mph=0.3	0.85	0.27	0.48

Figure 12: Perfiles de verosimilitud de las fuentes de datos para el parámetro de reclutamiento medio (R_0) , donde la línea horizontal representa el nivel crítico para el test χ^2 .

Figure 13: Análisis retrospectivo relativo

Figure 14: Variables poblacionales de sardina común

