Banner appropriate to article type will appear here in typeset article

Frictionally Driven Convection

- 2 M. Coppin¹[†], B. Deremble¹, T. Valran², S. Viboud², and J. Sommeria²
- 3 ¹Institut des Géosciences de l'Environnement (IGE), Grenoble, France
- ⁴ Laboratoire des Écoulements Géophysiques et Industriels (LEGI), Grenoble, France
- 5 (Received xx; revised xx; accepted xx)
- 6 A series of Spin-up experiments were carried out in the 13 m diameter Coriolis rotating tank
- 7 in Grenoble, France, to investigate stress induced entrainment in a stratified fluid. A global
- 8 flow rotation is produced by an initial change in the tank rotation speed. The velocity is
- 9 measured in a vertical plane by Particle Imaging Velocimetry (PIV) simultaneously by two
- cameras (Stereoscopic PIV), giving the three components.
- 11 Key words: Entrainement; Mixed Layer; Forced Convection; Stratified Fluid; Shear flow
- 12 Turbulence; Spin-Up

13 1. Introduction

- 14 Context; MLD; Forced convection;
- 15 Introduire notion de mélange; Stirring VS mixing; Entrainment
- Ocean captation Carbon/Chaleur
- 17 Application de l'entrainement Turbulent au ecoulement Geophysiques : Turner 1986
 - 1.1. Description of previous model

19 Commencer avec model Theorique:

- 20 Pollard 1973 (Theorie MLD)
- Philips 1971 (Théorie entrainement)
- puis avec les experiences:
- focus sur Kato Philips (KP) (experience historique) (essayer de trouver si les parametrisation
- issue du model KP sont encore utilisé)
- 25 Kantha Phillips Azard (KP-A) 1976
- 26 Wyatt 1977 : Mechanisme d'entrainement (selon exp de KP-A)
- 27 Price 1978

18

- 28 Deardoff and Willis 1980
- 29 Ellison et Turner 1959
- 30 Turner 1968
- 31 Narimousa et al, 1985
- 32 Moor et Long 1971
 - † Email address for correspondence: max.coppin@univ-grenoble-alpes.fr

37

43

48

53

60

62

63

64

65

66

67

68

33 Si on utilise des models Num:

- 34 Lignères, Califano et Mangeney 1997 Parler des simulation LES
- 35 Wang 2003
- 36 Shonker, Reeuwijk, Sulivan et Patton 2013

2. Experimental Apparatus

- 38 Experiments were carried out in a 13 m diameter rotating platform which can be filled with
- 39 water to a depth H of up to 1 m. These experiment consist to produce an Azimuthal flow
- 40 in the platform frame (referential frame) by an impulsive change in its rotation speed. Such
- 41 procedure are referred as Spin-up when the rotation speed increases and Spin Down when it
- 42 reduces.

2.1. Stereoscopic Particle Image Velocimetry and Images Processing

- Two PCO cameras (2048×2048 pixels, B&W, 16bit) are positioned on both sides of the
- 45 vertical laser sheet so as to observe the same plane from two different perspectives.
- Simultaneous images of Neutral buoyant particles were illuminated by a laser sheet in a vertical plane are captured in short burst of 3 images at 100Hz, fives times at each second.

2.2. Thermal Acquisition

- 49 Acquisition des sondes:
- 50 Filtrage des données,
- 51 Interpolation des données de température sur une grille (Temps, Vretical)

52 3. Parameter of control

3.1. Vertical stratification

A stable stratification in temperature is created by a progressive filling carried out by the bottom with the help of filling nozzle located at the bottom of the platform as shown fig. The injected water is a composition of water heated preliminary in tanks annexed to the platform (until a temperature 40°C) and fresh water resulting from the network of the laboratory (approximately 17°C). Filling starts with 100% of heated water and ends with 100% of fresh water.

As the air temperature in the laboratory is 25° C, heat loss and convective mixing are inevitable in the upper layers. On the other hand, the filling must not be too rapid to avoid turbulent mixing. A compromise was therefore found for a filling time of 4 h for a height of $50 \text{ cm } (66\text{m}^3)$.

The temperature profiles obtained, shown as an example in figure ...present a linear gradient over the first 25-30 cm and then a homogeneous layer above. The interest of this study is to investigate the erosion of the stratification by a background friction and therefore this homogeneous layer does not impact significantly on our results.

3.2. dimensionless Parameter

69 Ekman:

$$Ek = \frac{v}{2\Omega H^2} \tag{3.1}$$

71 Rossby:

$$Ro = \frac{U}{fR} \tag{3.2}$$

 u_* $\Delta\Omega$ Re f N Ro

Table 1: External parameters for the Main experiment

73 Froud:

80

$$Ro = \frac{U}{fR} \tag{3.3}$$

75 Ekman spin-down time scale:

$$\tau_{Ek} = \frac{H}{\sqrt{\nu\Omega}} \tag{3.4}$$

- 77 Tables des parametre
- 78 u*, f, N, Ro, (Q), Fr

79 4. Characterisation of stress forcing

4.1. Evaluation of the friction Velocity

81 4.1.1. Turbulent momentum fluxes

Cf papier Smith et al, 2021 (https://doi.org/10.1017/jfm.2021.736)

82 4.1.2. Decay of friction law

Cf Papier Sous et al, 2013

$$U(t) = f(u_*, t)$$

83 4.2. Turbulent diffusion

Obtenire la diffusion turbulente à partir de la concentration de colorant

$$w'C' \approx w'T'$$

84 4.3. *Self-similar solution*

- 85 Es-ce que toutes les quantités sont auto-similaire dans la couche de mélage ?
- 86 4.4. Estimation of lateral boundaries effects
- 87 Estimation des effets de bords (Cf papiers de Jan-Bert)

88 5. Mixed Layer Evolution

- 5.1. *Deepening Rate*
- 90 Retrouve-t-on les lois données par pollard/ KP

126

127

91	5.2. Interface Layer
92	Y-a-t-il une relation entre la taille de la couche de mélange et la couche d'interface
93	d'entrainement.
94	Transition vers la partie entrainement
95	6. Structure and Dynamics of the Entrainement
96	6.1. Qualitatives description
97	6.2. Developement of the entrainement Layer
98	- Observe t-on différent régimes (couche de Boldvald/ Karman)
99	- Il y a t-il un blocage qui apparait par l'effet de la rotation
100	6.3. Low Ri Number
101	on se situe a des nombres de richardson tres faible, car des stratifications assez faibles es-ce
102	la cas dans les régions de forte convection (mer d'Irminger, etc), (justification de l'interêt
103	d'une telle stratification/ Faire un lien avec les valeures en convection oceanique (valeur de
104 105	vents, rotation (ou pas) et stratification) - qu'es ce que cela implique pour nos résultat : (approche du régime de scalaire passife)
105	qu'es ce que cela implique pour nos resultat. (approene da regime de seulane passine)
106	6.4. Structure de l'entrainement
107	-Peut on identifier/Quantifier des structures coherentes d'entrainement
108	si oui, peut on relier des longueur /temps caracteristiques avec les parametre de l'experience.
109	7. Energetics of Forced convection
110	7.1. Estimation des flux radiaux
111	Reprendre les Résultat de Lorenzo p16 -18 de son rapport
112	7.2. Internal wave Generation
113	- Quelle est la part d'energie dissipé/transporté par ondes internes Source Linden 1973
113	Quene est la part à chergie dissipe/transporte par ondes internes source Emden 1975
114	8. Discussion
115	-Quelle est la pertinence d'un model 1D pour ce problems : (Divergence avec model Gotm)
116	9. Conclusion
117	10. Citations and references
11/	10. Citations and references
118 119	Supplementary data. Supplementary material and movies are available at https://doi.org/10.1017/jfm.2019
120 121	Acknowledgements. Acknowledgements may be included at the end of the paper, before the References section or any appendices. Several anonymous individuals are thanked for contributions to these instructions.
122	Funding. Please provide details of the sources of financial support for all authors, including grant numbers.
123 124	Where no specific funding has been provided for research, please provide the following statement: "This research received no specific grant from any funding agency, commercial or not-for-profit sectors."
125	Declaration of interests. A Competing Interests statement is now mandatory in the manuscript PDF. Please

note that if there are no conflicts of interest, the declaration in your PDF should read as follows: Declaration

of Interests. The authors report no conflict of interest.

- 128 Data availability statement. The data that support the findings of this study are openly available
- 129 in [repository name] at http://doi.org/[doi], reference number [reference number]. See JFM's research
- 130 transparency policy for more information
- 131 Author ORCIDs. Authors may include the ORCID identifiers as follows. F. Smith, https://orcid.org/0000-
- 132 0001-2345-6789; B. Jones, https://orcid.org/0000-0009-8765-4321
- 133 Author contributions. Authors may include details of the contributions made by each author to the
- 134 manuscript'

135 Appendix A.