MATH50001 Analysis II, Complex Analysis

Lecture 4

Section: Elementary functions.

1. Exponential function.

Definition. We define exponential e^z $(z = x + iy \in \mathbb{C})$ as:

$$e^z = e^x \cos y + i e^x \sin y$$
.

Properties:

- a) If y = 0 then $e^z = e^x$.
- b) e^z is entire (holomorphic for any $z \in \mathbb{C}$)

Indeed, for that we check the C-R equations. Since $u=\mathrm{Re}\,f=e^x\cos y$ and $v=\mathrm{Im}\,f=e^x\sin y,$ we have

$$\mathfrak{u}_x'=e^x\cos y=\nu_y'\quad\text{and}\quad\mathfrak{u}_y'=e^x(-\sin y)=-\nu_x'.$$

c)
$$\frac{\partial}{\partial z} e^z = \frac{\partial}{\partial x} e^x \cos y + i \frac{\partial}{\partial x} e^x \sin y = e^z.$$

d) Let g(z) be holomorphic. Then

$$\frac{\partial}{\partial z} e^{g(z)} = e^{g(z)} g'(z).$$

e) Let $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$. Then

$$\begin{split} e^{z_1+z_2} &= e^{x_1+x_2} \left(\cos(y_1+y_2) + i \sin(y_1+y_2) \right) \\ &= e^{x_1+x_2} \left(\cos y_1 \cos y_2 - \sin y_1 \sin y_2 + i (\sin y_1 \cos y_2 + \cos y_1 \sin y_2) \right) \\ &= e^{x_1+x_2} \left(\cos y_1 + i \sin y_1 \right) \left(\cos y_2 + i \sin y_2 \right) = e^{z_1} e^{z_2}. \end{split}$$

f)
$$|e^z| = |e^x| |e^{iy}| = e^x \sqrt{\cos^2 y + \sin^2 y} = e^x$$
.

The function e^z is 2π -periodic with respect to y.

g) Applying the De Moivres formula

$$(\cos y + i \sin y)^n = \cos ny + i \sin ny$$

we obtain

$$\left(e^{iy}\right)^n = e^{iny}.$$

h) Since $\arg z = \arctan y/x$

$$\arg e^z = \arctan \frac{e^x \sin y}{e^x \cos y} = \arctan(\tan y) = y + 2\pi k, \quad k = 0, \pm 1, \pm 2, \dots$$

Definition. If f is holomorphic for all $z \in \mathbb{C}$ then it calls entire.

Clearly the exponential function e^z is entire.

2. Trigonometric functions.

$$\begin{cases} e^{i\theta} = \cos \theta + i \sin \theta \\ e^{-i\theta} = \cos \theta - i \sin \theta \end{cases} \Rightarrow \begin{cases} \cos \theta = \frac{1}{2} \left(e^{i\theta} + e^{-i\theta} \right) \\ \sin \theta = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right) \end{cases}$$

Definition. For any $z \in \mathbb{C}$ we define

$$\sin z = \frac{1}{2i} \left(e^{iz} - e^{-iz} \right), \qquad \cos z = \frac{1}{2} \left(e^{iz} + e^{-iz} \right).$$

Properties:

a) $\sin z$ and $\cos z$ are entire functions

b)
$$\frac{\partial}{\partial z} \sin z = \cos z$$
 and $\frac{\partial}{\partial z} \cos z = -\sin z$.

c)
$$\sin^2 z + \cos^2 z = 1$$
.

Indeed:

$$-\frac{1}{4} \left(e^{iz} - e^{-iz} \right)^2 + \frac{1}{4} \left(e^{iz} + e^{-iz} \right)^2 = \dots = 1.$$

d)
$$\sin(z_1 \pm z_2) = \sin z_1 \cos z_2 \pm \cos z_1 \sin z_2,$$
 $\cos(z_1 \pm z_2) = \cos z_1 \cos z_2 \mp \sin z_1 \sin z_2.$

3. Logarithmic functions.

Let
$$z = r(\cos \theta + i \sin \theta) = r e^{i \theta}$$
.

Definition.
$$\log z = \ln |z| + i \arg z = \log r + i(\theta + 2\pi k), \quad z \neq 0,$$
 where $k = 0, \pm 1, \pm 2, \dots$

Clearly:

$$e^{\log z} = e^{\ln r + i(\theta + 2\pi k)} = re^{i(\theta + 2\pi k)} = r(\cos \theta + i\sin \theta) = x + iy = z.$$

Remark. The function log is a multi-valued function.

Definition. We define $\log z$ as the singe-valued function:

$$\text{Log } z = \ln |z| + i \operatorname{Arg} z,$$

where Arg z is the principal value of the argument, namely, $-\pi < \text{Arg } z \leq \pi$. Remark. The function Log is a single-valued function.

Examples.

Log
$$(-1) = i\pi$$
,
Log $(2i) = \ln 2 + i\pi/2$,
Log $(1 - i) = \ln \sqrt{2} - i\pi/4$.

Properties:

a)
$$\log(z_1 \cdot z_2) = \log(z_1) + \log(z_2)$$
. Indeed

$$\log(z_1 \cdot z_2) = \ln|z_1 z_2| + i \arg(z_1 \cdot z_2)$$

$$= \ln|z_1| + \ln|z_2| + i \arg z_1 + i \arg z_2 = \log z_1 + \log z_2.$$

Remark. $\operatorname{Log}(z_1 \cdot z_2) \neq \operatorname{Log} z_1 + \operatorname{Log} z_2$, because $\operatorname{Arg}(z_1 \cdot z_2) \neq \operatorname{Arg} z_1 + \operatorname{Arg} z_2$.

b) The function Log z is holomorphic in $\mathbb{C} \setminus \{(-\infty, 0]\}$.

Indeed, we have already checked that the C-R equations are satisfied:

$$\text{Log } z = \ln r + i\theta = u + iv, \qquad -\pi < \theta \le \pi.$$

Therefore we have

$$\frac{\partial u}{\partial r} = \frac{1}{r} \cdot 1 = \frac{1}{r} \frac{\partial v}{\partial \theta}, \quad \frac{\partial v}{\partial r} = 0 = -\frac{1}{r} \frac{\partial u}{\partial \theta}.$$

Exercise. Compute (Log z)'.

4. Powers.

Definition. For any $\alpha \in \mathbb{C}$, we define $z^{\alpha} = e^{\alpha \log z}$ as a multi-valued function.

Example.
$$i^i = e^{i \log i} = e^{i (i\pi/2 + i2\pi k)} = e^{-\pi/2} e^{-2\pi k}, k = 0, \pm 1, \pm 2, \dots$$

Definition. We define the principal value of z^{α} , $\alpha \in \mathbb{C}$, as

$$z^{\alpha} = e^{\alpha \operatorname{Log} z}$$
.

Property:

a)
$$z^{\alpha_1} \cdot z^{\alpha_2} = e^{\alpha_1 \text{Log } z} e^{\alpha_2 \text{Log } z} = e^{(\alpha_1 + \alpha_2) \text{Log } z} = z^{\alpha_1 + \alpha_2}$$
.

Section: Parametrised curve.

Definition. A parametrised curve is a function z(t) which maps a closed interval $[a,b] \subset \mathbb{R}$ to the complex plane. We say that the parametrised curve is smooth if z'(t) exists and is continuous on [a,b], and $z'(t) \neq 0$ for $t \in [a,b]$. At the points t=a and t=b, the quantities z'(a) and z'(b) are interpreted as the one-sided limits

$$z'(a) = \lim_{h \to 0, h > 0} \frac{z(a+h) - z(a)}{h}, \quad z'(b) = \lim_{h \to 0, h < 0} \frac{z(b+h) - z(b)}{h}.$$

Similarly we say that the parametrised curve is piecewise - smooth if z is continuous on [a,b] and if there exist a finite number of points $a=a_0< a_1< \cdots < a_n=b$, where z(t) is smooth in the intervals $[a_k,a_{k+1}]$. In particular, the righthand derivative at a_k may differ from the left-hand derivative at a_k for $k=1,2,\ldots,n-1$.

Two parametrisations,

$$z: [\mathfrak{a},\mathfrak{b}] \to \mathbb{C} \quad \text{and} \quad \tilde{z}: [\mathfrak{c},\mathfrak{d}] \to \mathbb{C},$$

are equivalent if there exists a continuously differentiable bijection $s \to t(s)$ from [c,d] to [a,b] so that t'(s)>0 and

$$\tilde{z}(s) = z(t(s)).$$

The condition t'(s) > 0 says precisely that the orientation is preserved: as s travels from c to d, then t(s) travels from a to b.

Given a smooth curve γ in $\mathbb C$ parametrised by $z:[\mathfrak a,\mathfrak b]\to\mathbb C$, and f a continuous function on γ we define the integral of f along γ by

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(z(t)) z'(t) dt.$$

In order for this definition to be meaningful, we must show that the right-hand integral is independent of the parametrisation chosen for γ . Say that \tilde{z} is an equivalent parametrisation as above. Then the change of variables formula and the chain rule imply that

$$\int_a^b f(z(t)) z'(t) dt = \int_c^d f(z(t(s))) z'(t(s)) t'(s) ds$$

$$= \int_c^d f(\tilde{z}(s)) \tilde{z}'(s) ds.$$

This proves that the integral of f over γ is well defined.

If γ is piecewise smooth, then the integral of f over γ is the sum of the integrals of f over the smooth parts of γ , so if z(t) is a piecewise-smooth parametrisation as before, then

$$\int_{\gamma} f(z) dz = \sum_{k=0}^{n-1} \int_{a_k}^{a_{k+1}} f(z(t)) z'(t) dt.$$

We can define a curve γ^- obtained from the curve γ by reversing the orientation (so that γ and γ^- consist of the same points in the plane). As a particular parametrisation for γ^- we can take z^- : $[\mathfrak{a},\mathfrak{b}] \to \mathbb{C}$ defined by

$$z^{-}(t) = z(b + a - t).$$

A smooth or piecewise-smooth curve is closed if z(a) = z(b) for any of its parametrisations. A smooth or piecewise-smooth curve is simple if it is not self-intersecting, that is, $z(t) \neq z(s)$ unless s = t, $s, t \in (a, b)$.

A basic example consists of a circle. Consider the circle $C_r(z_0)$ centred at z_0 and of radius r, which by definition is the set

$$C_{r}(z_{0}) = \{z \in \mathbb{C} : |z - z_{0}| = r\}.$$

The positive orientation (counterclockwise) is the one that is given by the standard parametrisation

$$z(t) = z_0 + re^{it}$$
, where $t \in [0, 2\pi]$,

while the negative orientation (clockwise) is given by

$$z(t) = z_0 + re^{-it}$$
, where $t \in [0, 2\pi]$.

Section: Integration along curves.

By definition, the length of the smooth curve γ is

$$\operatorname{length}(\gamma) = \int_a^b |z'(t)| \, dt = \int_a^b \sqrt{(x'(t))^2 + (y'(t))^2} \, dt.$$

Thank you