Greedy Algorithms

- Knapsack
- Coin Change
- Huffman Code
- Scheduling

Optimization Problems

- Optimization problem: a problem of finding the best solution from all feasible solutions.
- Two common techniques:
 - Greedy Algorithms
 - Dynamic Programming (global)

Elements of Greedy Strategy

- Greedy-choice property: A global optimal solution can be arrived at by making locally optimal (greedy) choices
- Optimal substructure: an optimal solution to the problem contains within it optimal solutions to subproblems

Greedy Algorithms

A greedy algorithm works in phases. At each phase:

- You take the best you can get right now,
 without regard for future consequences
- You hope that by choosing a local optimum at each step, you will end up at a global optimum

Greedy algorithms typically consist of

- A set of candidate solutions
- Function that checks if the candidates are feasible
- Selection function indicating at a given time which is the most promising candidate not yet used
- Objective function giving the value of a solution;
 this is the function we are trying to optimize

Analysis

- The selection function is usually based on the objective function; they may be identical. But, often there are several plausible ones.
- At every step, the procedure chooses the best candidate, without worrying about the future. It never changes its mind: once a candidate is included in the solution, it is there for good; once a candidate is excluded, it's never considered again.
- Greedy algorithms do NOT always yield optimal solutions, but for many problems they do.

Greedy vs DP

- Greedy and Dynamic Programming are methods for solving optimization problems.
- Greedy algorithms are usually more efficient than DP solutions.
- However, often you need to use dynamic programming since the optimal solution cannot be guaranteed by a greedy algorithm.
- DP provides efficient solutions for some problems for which a brute force approach would be very slow.
- To use Dynamic Programming we need only show that the principle of optimality applies to the problem.

Examples of Greedy Algorithms

- Knapsack
- Coin Change
- Data compression
 - Huffman coding
- Scheduling
 - Activity Selection
 - Task Scheduling
 - Minimizing time in system
 - Deadline scheduling
- Graph Algorithms
 - Breath First Search (shortest path 4 un-weighted graph)
 - Dijkstra's (shortest path) Algorithm
 - Minimum Spanning Trees

The 0/1 Knapsack problem

- Given a knapsack with weight W > 0.
- A set S of n items with weights $w_i > 0$ and benefits $b_i > 0$ for i = 1,...,n.
- $S = \{ (item_1, w_1, b_1), (item_2, w_2, b_2), \dots, (item_n, w_n, b_n) \}$
- Find a subset of the items which does not exceed the weight
 W of the knapsack and maximizes the benefit.

0/1 Knapsack problem

Determine a subset *T* of { 1, 2, ..., *n* } that satisfies the following:

$$\max \sum_{i \in T} b_i$$
 where $\sum_{i \in T} w_i \leq W$

In 0/1 knapsack a specific item is either selected or not

Greedy 1: Selection criteria: *Maximum beneficial* item. Counter Example:

 $S = \{ (item_1, 5, \$70), (item_2, 10, \$90), (item_3, 25, \$140) \}$

Greedy 2: Selection criteria: *Minimum weight* item Counter Example:

$$S = \{ (item_1, 5, \$150), (item_2, 10, \$60), (item_3, 20, \$140) \}$$

Greedy 3: Selection criteria: *Maximum weight* item Counter Example:

$$S = \{ (item_1, 5, \$150), (item_2, 10, \$60), (item_3, 20, \$140) \}$$

Greedy 4: Selection criteria: *Maximum benefit per unit* item Counter Example

 $S = \{ (item_1, 5, $50), (item_2, 20, $140) (item_3, 10, $60), \}$

0-1 Knapsack: Greedy Does Not Work

- Can use DP but it is pseudo-polynomial O(Wn)
- What DP doesn't work?

Situation where dynamic programming does not work

What if our problem can't be described with integers? W = 9

$$w_A = 2$$
 $b_A = 40
 $w_B = \pi$ $b_B = 50
 $w_C = 1.98$ $b_C = 100
 $w_D = 5$ $b_D = 95
 $w_E = 3$ $b_E = 30

We have to resort to brute force....

Brute Force

- Generate all possible solutions
 - With n items, there are 2ⁿ solutions to be generated
 - Check each to see if they satisfy the constraint
 - Save maximum solution that satisfies constraint
- Can be represented as a tree

Brute Force: Branching

A: 2, \$40

B: π , \$50

C: 1.98, \$100

D: 5, \$95

Weight = 15.12Value = \$315 Weight = 8.98Value = \$235 Weight = 9.98Value = \$225

Backtracking

2, \$40 π, \$50 1.98, \$100 5, \$95

Weight = 8.98 Value = \$235 Weight = 9.98Value = \$225

Fractional Knapsack

Let k be the index of the last item included in the knapsack. We may be able to include the whole or only a fraction of item k

Without item k totweight =
$$\sum_{i=1}^{k-1} w_i$$

$$FWK = \sum_{i=1}^{k-1} b_i + \min\{(\mathbf{W} - totweight), w_k\} \times (b_k / w_k)$$

 $min\{(W - totweight), w_k\}$, means that we either take the whole of item k when the knapsack can include the item without violating the constraint, or we fill the knapsack by a fraction of item

A Greedy Algorithm for Fractional Knapsack

In this problem a fraction of any item may be chosen

The greedy algorithm uses the *maximum benefit per unit* selection criteria

- 1. Calculate $v_i = b_i / w_i$ for $1 \le i \le n$ $\Theta(n)$
- 2. Sort items in decreasing b_i / w_i . $\Theta(nlgn)$
- 3. Add items to knapsack (starting at the first) until there are no more items, or until the capacity W is exceeded.

 If knapsack is not yet full, fill knapsack with a fraction

of next unselected item. $\Theta(n)$

Running time: $\Theta(nlgn)$

The Fractional Knapsack Algorithm

- Greedy choice: Keep taking item with highest value (benefit to weight ratio)
 - Use a heap-based priority queue to store the items, then the time complexity is O(n log n).

```
Algorithm FKnapsack(S, W)
   Input: set S of items w/ benefit b_i
      and weight w_i; max. weight W
   Output: amount x_i of each item i
      to maximize benefit with
      weight at most W
   for each item i in S
      x_i \leftarrow 0
      v_i \leftarrow b_i / w_i {value}
   \mathbf{w} \leftarrow 0 {current total weight}
   while w < W
      remove item i with highest v_i
      x_i \leftarrow \min\{w_i, W - w\}
      w \leftarrow w + \min\{w_i, W - w\}
```

Example of applying the optimal greedy algorithm for Fractional Knapsack Problem

 $S = \{ (item_1, 5, $50), (item_2, 20, $140) (item_3, 10, $60), \}$

Greedy Knapsack

- Given: A set S of n items, with each item i having
 - b_i a positive benefit
 - w_i a positive weight
- Goal: Choose items with maximum total benefit but with weight at most W.

Fractional Knapsack has greedy choice property

That is, if b_i/w_i is the maximum ratio, then there exists an optimal solution that contains item x_i up to the extent of min $\{w_i, W\}$.

Proof (by contradiction): Assume that there does not exist an optimal solution that contains x_i . Let $O = \{x_j, ..., x_k\}$ be an optimal solution that does not contain x_i . Let x_t be the item with maximum weight w_t in O.

- 1) If $w_t \ge w_i$, then replace w_i amount of x_t by w_i amount of x_i . This will either increase the value of the solution if $b_i/w_i > b_t/w_t$ or be an alternative maximum solution if $b_i/w_i = b_t/w_t$
- 2) If $w_t < w_i$, then
 - a) Let S be a subset of items in O whose is total weight is greater than w_i . Replacing w_i of this total weight by w_i of x_i will improve the value of the solution.

Fractional Knapsack has greedy choice property

b) If no such set S exists then the sum of the weights of all items in O = W \leq w_i. Replace all the items in O by W units of x_i and the solution will improve (or leading to an alternative solution containing x_i).

Therefore we have shown that adding item x_i to O will improve the solution or lead to an alternative maximum solution.

- Coin changing problem (informal):
 - Given certain amount of change: A
 - The denominations of coins are: 25, 10, 5, 1
 - How to use the fewest coins to make this change?
- A = 25q + 10d + 5n + p, what are the q, d, n, and p, minimizing (q+d+n+p)
- Can you design an algorithm to solve this problem?

Coin changing problem

- Greedy choice
 - Choose as many of the largest coins available.
- Optimal substructure
 - After the greedy choice, assuming the greedy choice is correct, can we get the optimal solution from a subproblem.
 - Given A = 63 cents
 - Assuming we have chosen 2*25 = 50
 - Is two quarters + optimal coin(63-50) the optimal solution of 63 cents?

• Step 1: A = 63

• Step 1: A = 63, q = 2

• Step 1: A = 63, q = 2

• Step 2: (63-50) = 13

• Step 1: A = 63, q = 2

• Step 1: A = 63, q = 2

• Step 3:
$$(13-10) = 3$$

• Step 1: A = 63, q = 2

• Step 3:
$$(13-10) = 3$$

• Step 1: A = 63, q = 2

• Step 3:
$$(13-10) = 3$$
, $p = 3$

• Step 1: A = 63, q = 2

• Step 2: (63-50) = 13, d = 1

• Step 3:
$$(13-10) = 3$$
, $p = 3$

Number of coins = 6

• Step 1: A = 63, q = 2

Step 2: (63-50) = 13, d = 1

• Step 3: (13-10) = 3, p = 3

Number of coins = 6

- For coin denominations of 25, 10, 5, 1
 - The greedy choice property is not violated

A failure of the Greedy Algorithm

- Suppose in a fictional monetary system, we have 1 cent, 7 cent, and 10 cent coins
- The greedy algorithm results in a solution, but not in an optimal solution

Coin Change Fail

• Step 1: A = 15

Coin Change Fail

• Step 1: A = 15

10

• Step2: (15-10) = 5

10

7

(1)

Coin Change Fail

• Step 1: A = 15

- Step2: (15-10) = 5 (1) (1) (1) (1)

This is six coins

The optimal solution is three coins

10

Huffman Codes

Text Compression (Zip)

- On a computer: changing the representation of a file so that it takes less space to store or/and less time to transmit.
- Original file can be reconstructed exactly from the compressed representation
- Very effective technique for compressing data, saving 20% 90%.

First Approach

- Consider the word ABRACADABRA
- How can we write this string in a most economical way?
- Since it has 5 letters, we would need 3 bits to represent each character. For example.

```
A = 000
B = 001
C = 010
D = 011
R = 100
```

- Since there are 11 letters in ABRACADABRA it requires 33 bits.
- Is there a better way?

Of Course!!

Magic word: ABRACADABRA

```
    LET A = 0
    B = 100
    C = 1010
    D = 1011
    R = 11
```

- Thus, ABRACADABRA = 01001101010010110100110
- So 11 letters demand 23 bits < 33 bits, an improvement of about 30%.

However...

- There are some concerns...
- Suppose we have
 - A -> 01
 - B -> 0101
- If we have 010101, is this AB? BA? Or AAA?
- Therefore: prefix codes, no codeword is a prefix of another codeword, is necessary

Prefix Codes

- Any prefix code can be represented by a full binary tree
- Each leaf stores a symbol.
- Each node has two children left branch means 0, right means 1.
- codeword = path from the root to the leaf interpreting suitably the left and right branches

For Example

$$A = 0$$

$$B = 100$$

$$C = 1010$$

$$D = 1011$$

$$R = 11$$

Decoding is unique and simple!

How do we find the optimal coding tree?

- It is clear that the two symbols with the smallest frequencies must be at the bottom of the optimal tree, as children of the lowest internal node
- This is a good sign that we have to use a bottom-up manner to build the optimal code!
- Huffman's idea is based on a greedy approach, using the previous notices.

Assume that frequencies of symbols are

A: 50 B: 15 C: 10 D: 10 R: 18

Smallest numbers are 10 and 10 (C and D)

Now Assume that frequencies of symbols are
 A: 50 B: 15 C+D: 20 R: 18

 C and D have already been used, and the new node above them (call it C+D) has value 20

• The smallest values are B + R

Now Assume that frequencies of symbols are
 A: 50 B+R: 33 C+D: 20

The smallest values are

$$(B + R) + (C + D) = 53$$

- Now Assume that frequencies of symbols are
 A: 50 (B+R) + (C+D): 53
- The smallest values are
 A+ ((B + R)+(C+D))=103

Assume that frequencies of symbols are

A: 50 B: 20 C: 10 D: 10 R: 30

Smallest numbers are 10 and 10 (C and D)

Assume that frequencies of symbols are

A: 50 B: 20 C: 10 D: 10 R: 30

- C and D have already been used, and the new node above them (call it C+D) has value 20
- The smallest values are B, C+D

Assume that frequencies of symbols are

A: 50 B: 20 C: 10 D: 10 R: 30

Next, B+C+D (40) and R (30)

Assume that frequencies of symbols are

A: 50 B: 20 C: 10 D: 10 R: 30

Finally

Suppose we have the

Following code:

10001011

What is the decode result?

Suppose we have the

Following code:

10001011

What is the decode

result?

Suppose we have the

Following code:

10001011

• What is the decode

result?

Suppose we have the

Following code:

10001011

What is the decode

result? BAD

Suppose we have the

Following code:

10001011

What is the decode

result? BAD

Greedy Algorithms

- The Greedy Algorithm Techniques
- Knapsack Problem
- Huffman Codes
- Scheduling

Scheduling Problems

There are many variations of the scheduling problem.

- Activity: Goal maximize the number of activities
- Machine/Task Scheduling: Goal minimize the number of machines needed to complete all Tasks with start/finish constraints.
- Job Scheduling: Goal minimize the total time it takes to complete all jobs on a set of machines.
- And more

An Activity Scheduling Problem

Input: A set of activities $S = \{a_1, ..., a_n\}$

- Each activity has start time and a finish time: $a_i = (s_i, f_i)$
- Two activities are compatible if and only if their interval does not overlap

Output: a maximum-size subset of mutually compatible activities

The Activity Scheduling Problem

Here are a set of start and finish times

What is the maximum number of activities that can be completed?

- $\{a_3, a_9, a_{11}\}$ can be completed
- But so can {a₁, a₄, a₈, a₁₁} which is a larger set
- But it is not unique, consider {a₂, a₄, a₉, a₁₁}

Activity Scheduling: Greedy Algorithms

Greedy. Consider activities in some natural order. Take each activity provided it's compatible with the ones already taken.

- [Earliest start time] Consider activities in ascending order of s_i.
- [Earliest finish time] Consider activities in ascending order of f_j.
- [Shortest interval] Consider activities in ascending order of $f_j s_j$.
- [Fewest conflicts] For each activity j, count the number of conflicting activities c_j . Schedule in ascending order of c_j .

Greedy Algorithms are not always Optimal

Counterexample for earliest start time

Counterexample for shortest interval

Counterexample for fewest conflicts

Earliest Finish Greedy Strategy

- Select the activity with the earliest finish
- Eliminate the activities that could not be scheduled
- Repeat!
- Greedy in the sense that it leaves as much opportunity as possible for the remaining activities to be scheduled
- The greedy choice is the one that maximizes the amount of unscheduled time remaining

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Assuming activities are sorted by finish time

```
GREEDY-ACTIVITY-SELECTOR (s, f)
   n \leftarrow length[s]
A \leftarrow \{a_1\}
3 \quad i \leftarrow 1
4 for m \leftarrow 2 to n
           do if s_m \geq f_i
                  then A \leftarrow A \cup \{a_m\}
                         i \leftarrow m
    return A
```

Why this Algorithm is Optimal?

We will show that this algorithm uses the following properties

- The problem has the optimal substructure property
- The algorithm satisfies the greedy-choice property

Thus, it is Optimal

Greedy-Choice Property

- Show there is an optimal solution that begins with a greedy choice (with activity 1, which as the earliest finish time)
- Suppose $A \subseteq S$ in an optimal solution
 - Order the activities in A by finish time. The first activity in A is k
 - If k = 1, the schedule A begins with a greedy choice
 - If $k \ne 1$, show that there is an optimal solution B to S that begins with the greedy choice, activity 1
 - Let $B = A \{k\} \cup \{1\}$
 - $f_1 \le f_k \implies$ activities in B are disjoint (compatible)
 - B has the same number of activities as A
 - Thus, B is optimal

Greedy-Choice Property

- A globally optimal solution can be arrived at by making a locally optimal (greedy) choice
 - Make whatever choice seems best at the moment and then solve the sub-problem arising after the choice is made
 - The choice made by a greedy algorithm may depend on choices so far, but it cannot depend on any future choices or on the solutions to sub-problems
- Of course, we must prove that a greedy choice at each step yields a globally optimal solution

Elements of Greedy Strategy

- An greedy algorithm makes a sequence of choices, each of the choices that seems best at the moment is chosen
 - NOT always produce an optimal solution
- Two ingredients that are exhibited by most problems that lend themselves to a greedy strategy
 - Greedy-choice property
 - Optimal substructure

Optimal Substructures

A problem exhibits optimal substructure if an optimal solution to the problem contains within it optimal solutions to sub-problems

Optimal Substructures

Once the greedy choice of activity 1 is made, the problem reduces to finding an optimal solution for the activity-selection problem over those activities in S that are compatible with activity 1

- If A is optimal to S, then $A' = A \{1\}$ is optimal to S'= $\{i \in S: s_i \ge f_1\}$
- If we could find a solution B' to S' with more activities than A', adding activity 1 to B' would yield a solution B to S with more activities than A → contradicting the optimality of A

After each greedy choice is made, we are left with an optimization problem of the same form as the original problem

• By induction on the number of choices made, making the greedy choice at every step produces an optimal solution

Machine Scheduling with start times

- Given: a set T of n tasks, each having:
 - A start time, s_i
 - A finish time, f_i (where $s_i < f_i$)
- Goal: Perform all the tasks using a minimum number of "machines."

Example

- Given: a set T of n=7 tasks, each having:
 - A start time, s_i
 - A finish time, f_i (where $s_i < f_i$)
 - [1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8] (ordered by start)
- Goal: Perform all tasks on min. number of machines

Machine Scheduling Algorithm

- Greedy choice: consider tasks by their start time and use as few machines as possible with this order.
 - Run time: $\Theta(n \log n)$.
- **Correctness:** Suppose there is a better schedule.
 - We can use k-1 machines
 - The algorithm uses k
 - Let i be first task scheduled on machine k
 - Task i must conflict with k-1 other tasks
 - K mutually conflict tasks
 - But that means there is no nonconflicting schedule using k-1 machines

```
Algorithm TaskSchedule(T)
   Input: set T of tasks w/ start time s_i
   and finish time f_i
   Output: non-conflicting schedule
   with minimum number of machines
   m \leftarrow 0
                         {no. of machines}
   while T is not empty
       remove task i w/ smallest s<sub>i</sub>
       if there's a machine j for i then
          schedule i on machine j
       else
          m \leftarrow m + 1
          schedule i on machine m
```

Job Scheduling Problem

- There is no specified start times only durations.
- You have to run nine jobs, with running times of 3, 5, 6, 10, 11, 14, 15, 18, and 20 minutes
- You have three processors on which you can run these jobs
- You decide to do the longest-running jobs first, on whatever processor is available

Time to completion: 18 + 11 + 6 = 35 minutes

This solution isn't bad, but we might be able to do better

Another approach

- What would be the result if you ran the shortest job first?
- Again, the running times are 3, 5, 6, 10, 11, 14, 15, 18, and 20 minutes

That wasn't such a good idea; time to completion is now 6 + 14 + 20 = 40 minutes

Note, however, that the greedy algorithm itself is fast

– All we had to do at each stage was pick the minimum or maximum

An optimum solution

- This solution is clearly optimal (why?)
- Clearly, there are other optimal solutions (why?)
- How do we find such a solution?
 - One way: Try all possible assignments of jobs to processors
 - Unfortunately, this approach can take exponential time