Giảng viên ra đề:	(Ngày ra đề)	Người phê duyệt:	(Ngày duyệt đề)
		Chủ nhiệm bộ môn	
Hoàng Hải Hà	02/01/2021	TS. Nguyễn Tiến Dũng	10/01/2021

BK	THI CUỐI KỲ	Học kỳ/ Năm học			2020 - 2021			
TRACE		Ngày thi/Giờ thi	12/01/2	2021	13h			
TRƯỜNG ĐH BÁCH KHOA	Lớp	Chính Quy						
- ĐHQG-HCM	Môn học	Phương pháp tính						
KHOA KHUD	Mã môn học	MT1009						
	Thời lượng	100 phút	Mã đề	2020)			
Chi chức. Được sử dụng tài liệu, máy tính hỗ tới không được sử dụng điện thoại và máy tính có chức nặng lên trình								

- Được sử dụng tài liệu, máy tính bỏ túi, **không được** sử dụng điện thoại và máy tính có chức năng lập trình.

SINH VIÊN ĐỘC KỸ CÁC YÊU CẦU DƯỚI ĐÂY:

- Sinh viên ghi đầy đủ Họ, Tên, MSSV và làm bài trực tiếp lên đề thi.
- \bullet Đề thi gồm 10 câu . Mọi thắc mắc, sinh viên ghi trực tiếp lên đề thi.
- Gọi m và n là hai chữ số cuối cùng của mã số sinh viên (m là chữ số hàng chục, n là chữ số hàng đơn vị, $0 \le m, n \le 9$). $\text{Dăt } \mathcal{M} = \frac{2m+n+13}{2m+n+13}$
- Không ghi đáp án ở dạng phân số.
- Đáp số ghi vào bài thi **phải được** làm tròn đến 4 chữ số sau dấu phẩy thập phân.
- Sinh viên tự điền vào bảng sau. Nếu không điền, bài thi bị xem là không hợp lệ.

Họ và tên		Điểm
MSSV	Chữ ký giám thị 1	Dien
\mathcal{M}	Chữ ký giám thị 2	
	TAI LIĻO OO O TAI	

m toàn bài

Câu hỏi 1. (L.O.1) Cho đồ thị đường cong y = f(x) và điểm x_0 như hình vẽ. Bằng phương pháp Newton, hãy minh họa nghiệm xấp xỉ x_3 trên đồ thị.

Cau noi 2.	(L.O.1) Cho dạng tuon	g mi	nn cua	nė buu	ong trinn	$A_{2\times2}A$	$\cdot_{2\times 1} = \cdot$	$D_{2\times 1}$ ur	ong pn	long phap Gauss-Seider	
	là:			$\begin{cases} x_1^{\epsilon} \end{cases}$	$ \begin{pmatrix} (m) \\ 1 \end{pmatrix} = a $ $ \begin{pmatrix} (m) \\ 2 \end{pmatrix} = c $	$+\mathcal{M}bx$	$\binom{(m-1)}{2}$,				
				$\left(x_{2}^{\prime}\right)$	$c_2^{(m)} = c$	$+dx_1^{(m)}$)				
	với $X^{(m)} = \begin{pmatrix} x_1^{(m)} \\ x_2^{(m)} \end{pmatrix}$. D) ãy ca	ác vecto	nghiện	n gần đú	ng lần l	ượt như	t sau: X	$r^{(0)} = \left(\right)$	$\binom{1}{0.7}$; $X^{(1)} = \binom{-0.1}{0.33}$;	
	$X^{(2)} = \begin{pmatrix} 0.09 \\ 0.27 \end{pmatrix}$. Hãy x	ác đị	$nh \ a, b,$	c, d.							
	Kết quả: $a \approx$;i	b ≈			$c \approx \underline{\hspace{1cm}}$			_;d ≈	_
Câu hỏi 3.	và về đích với thời giar	n 10⊅	M giây.	Sử dụn	ng dữ liệu	ı tại ba	mốc th	nời gian	t = 0,	nạy được $\frac{1}{2}$ quãng đường $t=5.5\mathcal{M},t=10\mathcal{M}$ và và vận tốc của X khi về	
			YK	Li		CO					
	Kết quả: Quãng đường	$g \approx \bot$	<u>() </u>		1		_(m);Vậ	ın tốc ≈			_(m/s)
Câu hỏi 4.	Hàm $y = f(x)$ được cho	V		bảng s			3				
				x_k	1.0	1.5 2	.0 2.5				
				$f(x_k)$) M	5.7	4 3.5	•			
	Sử dụng nội suy đa thứ cho ba điểm cách đều,		giá trị d	đạo hàn		1.5.	ΙÀ	ử dụng	công th	nức sai phân hướng tâm	
	<u>Kết quả</u> : $f(1.6) \approx$					_; f'(1.5	(a) ≈				
Câu hỏi 5.	(L.O.1) Hàm cầu là hà	àm th	nể hiện s	sư phụ ⁻	thuộc của	a số lượi	ng sản r	ohẩm bá	in ra và	o giá của một sản phẩm	
	,		-		-	-				một lon là $S(\mathrm{USD})$ như	
	sau:										
		S	0.59	0.8	0.95	0.45	0.79	0.99	0.9		
		N	3980	2200	500M	2100	1700	2000	1500	. 	

Với $f(x) = \mathcal{M}x + (\mathcal{M} + 1)\cos x - e^x = 0$, tìm nghiệm xấp xỉ x_3 của phương trình bằng phương pháp

Newton trên đoạn [0.5; 2] và đánh giá sai số tuyệt đối nhỏ nhất của x_3 .

_____; $oldsymbol{\Delta_{x_3}} pprox$ ____

Kết quả: $x_3 \approx$ _____

bán được là 2400 lon.

Kết quả: Số lon≈____

____; Giá≈___

Bằng phương pháp bình phương cực tiểu, hãy xây dựng hàm tuyến tính N(S). Ước lượng số lon nước ngọt bán ra nếu bán với giá $0.82(\mathrm{USD})$ (làm tròn đến số nguyên gần nhất) và giá một lon khi số lượng

Câu hỏi 6. (L.O.2) Toa đô hai hàm f(x) và q(x) trên mặt phẳng được cho bởi bảng sau

x	1	1.2	1.4	1.6	1.8	2	2.2
f(x)	0.8	0.93	0.98	0.99	0.97	0.9	\mathcal{M}
g(x)	2.7	4.2	7.1	13	$3\mathcal{M}$	54.4	126.5

Dùng công thức Simpson mở rộng, tính diện tích miền phẳng giới hạn bởi hai đường này khi $1 \le x \le 2.2$.

Kết quả: Diện tích ≈_____

Câu hỏi 7. (L.O.1) Cho bài toán Cauchy $y'(x) = y^2 + x - \mathcal{M}$ với điều kiện đầu y(1) = 0.5. Sử dụng phương pháp Runge-Kutta 4 xấp xỉ giá trị nghiệm tại x = 1.2 và y'(1.2) với bước chia h = 0.2.

Kết quả: $y(1.2) \approx$ _______; $y'(1.2) \approx$ _______

Câu hỏi 8. (L.O.2) Mô hình logistic mô tả một quần thể dân cư được cho như sau:

$$\frac{dP}{dt} = 0.026P(1 - \frac{P}{12000}),$$

với t là thời gian tính bằng năm, P số dân(triệu người). Dân số năm 1950 là $500\mathcal{M}$ triệu người. Hãy sử dụng phương pháp Euler cải tiến, tính xấp xỉ số dân tại năm 1960 và năm 1970, với bước chia là 10 năm.(Làm tròn kết quả đến số nguyên gần nhất).

(triệu người); $P(1970) \approx$ _____(triệu người).

người). Câu hỏi 9. (L.O.1) Cho hệ phương trình vi phân cấp 1 : $\begin{cases} x'(t) &= t+x+y \\ y'(t) &= ty+\mathcal{M} \end{cases}$ thỏa điều kiện đầu x(1)=0.5, y(1)=0.50.5. Sử dụng phương pháp Euler và bước chia h=0.1. Tính giá trị của nghiệm tại t=1.1 và t=1.2.

Kết quả: Nghiệm tại t=1.1: _____ ____ Nghiệm tại t = 1.2:_____

Câu hỏi 10. (L.O.1) Cho bài toán biên $\begin{cases} y''(x) + (x+1)y'(x) - (\sin x)y(x) = x \\ y(0) = 0, \quad y(0.6) = \mathcal{M} \end{cases}$, dùng phương pháp sai phân hữu hạn tính gần đúng y(0.2) and y(0.4) and y(0.6) and y(0.6) and y(0.6) and y(0.6) and y(0.6) are the same phase y(0.6) and y(0.6) and y(0.6) are the same phase y(0.6) are the same phase y(0.6) and y(0.6) are the same phase y(0.6) are the same phase y(0.6) and y(0.6) are the same phase y(0.6) and y(0.6) are the same phase y(0.6) are the same phase y(0.6) and y(0.6) are the same phase y(0.6) and y(0.6) are the same phase y(0.6) are the same phase y(0.6) and y(0.6) are the same phase y(0.6) are the same phase y(0.6) and y(0.6) are the same phase y(0.6) are the same phase y(0.6) and y(0.6) are the same phase y(0.6) are the same phase y(0.6) and y(0.6) are the same phase y(0.6) are the same phase y(0.6) and y(0.6) are the same phase y(0.6) are the same phase y(0.6) and y(0.6) are the same phase

 $-H\hat{E}T$