NATURAL LANGUAGE PROCESSING: O53OP

ДМИТРИЙ НОВИЦКИЙ

1

ВВЕДЕНИЕ: ЗАДАЧИ, РЕШАЕМЫЕ NLP

- Машинный перевод
- Понимание текста
- Текстовый поиск
- Кластеризация и классификация текстов
- Аннотирование и реферирование
- Генерация текста
- Диалоговые системы (чатботы)

ТРАДИЦИОННЫЙ (GOOD OLD FASHIONED)

- Первичный: токенизация
- Морфологический: лемматизация
- Синтаксический: Синтаксический анализ, парсинг, синтаксические деревья
- Семантический: тезаурусы, семантические сети, онтологии, лексические функции
- Прагматический:

ЛЕММАТИЗАЦИЯ

Основные процедуры обработки ЕЯ

- Лемматизация процесс образования первоначальной формы слова, исходя из других его словоформ.
- Во многих языках слово может встречаться в нескольких формах с различными флексиями.
- Например, английский глагол walk может быть представлен следующими формами: walk, walked, walks, walking.
- Базовая форма, walk, зафиксированная в словаре, называется леммой слова.

СИНТАКСИЧЕСКИЙ АНАЛИЗ

ОНТОЛОГИИ

СЕМАНТИЧЕСКАЯ СЕТЬ (WORDNET)

WordNet Sub-Graph (English)

ЛЕКСИЧЕСКИЕ ФУНКЦИИ

 $Syn - синоним; <math>Syn_c$, Syn_3 и Syn_n обозначают, соответственно, синоним с более узким, более широким и пересекающимся значением. (Символы $_c$, $_3$ и $_n$ используются в том же смысле при Conv, Anti и некоторых других ЛФ.) Примеры: Syn(cmpename) = nanume; $Syn_c(cmpename) = oбcmpenaeame$.

 $Conv_{ij}$ - конверсив, т.е. лексическая единица с тем же смыслом, что и C_0 , но с перестановкой аргументов і и ј: $Conv_{2i}(\varepsilon \kappa n v_{2mb}) = n p u h a \partial n e k a m b$ [мно-жеству]; $Conv_{2i}(\kappa h e h u e) = p e n y m a u u s$.

Anti - антоним: Anti(победа) = поражение.

Gener — такое родовое понятие, что 'Gener + C_0 ' = ' C_0 ' (где C_0 — заглавная лексема): Gener(eas) = eeщecmso, ср. easoofpashoe seщecmso = eas.

Figur — стандартная метафора для C_0 : Figur(блохада) = кольцо [кольцо блохады]; Figur(туман) = пелена [пелена тумана].

 $Dimun - диминутив, или уменьшительная форма: <math>Dimun(\partial o M) = \partial o M U K$; Dimun(o sepo) = o sep Ko.

Rugm — аугментатив, или увеличительная форма: **Rugm**(∂o_N) = $\partial o_N u_{MB}$, $\partial o_N u_{$

 S_0 , R_0 , Rdv_0 , V_0 — синтаксические дериваты от C_0 , т.е., соответственно, существительное, прилагательное, наречие и глагол, имеющие тот же смысл, что и C_0 : S_0 (стрелять) = стрельба; R_0 (стрелять) = стрелковый.

WORD2VEC : KPATKOE СОДЕРЖАНИЕ

- Represent each word with a low-dimensional vector
- Word similarity = vector similarity
- Key idea: Predict surrounding words of every word
- Faster and can easily incorporate a new sentence/document or add a word to the vocabulary

REPRESENT THE MEANING OF WORD – WORD2VEC

- 2 basic neural network models:
 - Continuous Bag of Word (CBOW): use a window of word to predict the middle word
 - Skip-gram (SG): use a word to predict the surrounding ones in window.

WORD2VEC - CONTINUOUS BAG OF WORD

- E.g. "The cat sat on floor"
 - Window size = 2

We can consider either W or W' as the word's representation. Or even take the average.

SOME INTERESTING RESULTS

Word Analogies

Test for linear relationships, examined by Mikolov et al. (2014)

a:b :: c:?

$$d = \arg\max_{x} \frac{(w_b - w_a + w_c)^T w_x}{||w_b - w_a + w_c||}$$

man:woman :: king:?

- + king [0.30 0.70]
- man [0.20 0.20]
- + woman [0.60 0.30]

queen [0.70 0.80]

WORD ANALOGIES

ОСНОВНАЯ СТАТЬЯ

- Continuous Distributed Representation of Biological Sequences for Deep Proteomics and Genomics
- Ehsaneddin Asgari,
- Mohammad R. K. Mofrad
- PLOS ONE November 10, 2015
- https://doi.org/10.1371/journal.pone.0141287

РАЗБИВКА БЕЛКОВОЙ ПОСЛЕДОВАТЕЛЬНОСТИ

Original Sequence

 $(1)\overrightarrow{M}^{(2)}\overrightarrow{A}^{(3)}\overrightarrow{F}SAEDVLKEYDRRRRMEAL..$ Splittings

- 1) MAF, SAE, DVL, KEY, DRR, RRM, ...
- (2) AFS, AED, VLK, EYD, RRR, RME, ..
 - 3) FSA, EDV, LKE, YDR, RRR, MEA, ...

NEURAL MACHINE TRANSLATION

Figure 1.7: Sequence Models for NMT – example of a deep recurrent architecture for translating a source sentence "She loves cute cats" into a target sentence "Elle aime les chats mignons". On the decoder side, words generated from previous timesteps are used as inputs for the next ones. Here, "_" marks the end of a sentence.

СПАСИБО ЗА ВНИМАНИЕ!

