Standard Tantalum

- General purpose SMT chip tantalum series
- 7 case sizes available
- Low profile options available
- CV range: 0.10-2200µF / 2.5-50V

SnPb termination option is not RoHS compliant.

CASE DIMENSIONS: millimeters (inches)

For part marking see page 169

Code	EIA Code	EIA Metric	L±0.20 (0.008)	W+0.20 (0.008) -0.10 (0.004)	H+0.20 (0.008) -0.10 (0.004)	W ₁ ±0.20 (0.008)	A+0.30 (0.012) -0.20 (0.008)	S Min.
Α	1206	3216-18	3.20 (0.126)	1.60 (0.063)	1.60 (0.063)	1.20 (0.047)	0.80 (0.031)	1.10 (0.043)
В	1210	3528-21	3.50 (0.138)	2.80 (0.110)	1.90 (0.075)	2.20 (0.087)	0.80 (0.031)	1.40 (0.055)
С	2312	6032-28	6.00 (0.236)	3.20 (0.126)	2.60 (0.102)	2.20 (0.087)	1.30 (0.051)	2.90 (0.114)
D	2917	7343-31	7.30 (0.287)	4.30 (0.169)	2.90 (0.114)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
E	2917	7343-43	7.30 (0.287)	4.30 (0.169)	4.10 (0.162)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
U	2924	7361-43	7.30 (0.287)	6.10 (0.240)	4.10 (0.162)	3.10 (0.120)	1.30 (0.051)	4.40 (0.173)
V	2924	7361-38	7.30 (0.287)	6.10 (0.240)	3.55 (0.140)	3.10 (0.120)	1.30 (0.051)	4.40 (0.173)
		W₁ di	imension appl	ies to the termina	tion width for A d	limensional ar	ea only.	

HOW TO ORDER

M

050=50Vdc

Packaging R = Pure Tin 7" Reel S = Pure Tin 13" Reel A = Gold Plating 7" Reel B = Gold Plating 13" Reel H = Tin Lead 7" Reel (Contact Manufacturer) K = Tin Lead 13" Reel

(Contact Manufacturer)

H, K = Non RoHS

Specification Suffix NJ = StandardSuffix

Additional characters may be added for special requirements

V = Dry pack Option (selected codes only)

TECHNICAL SPECIFICATIONS

multiplier (number of

zeros to follow)

All technical data relate to an ambient temperature of +25°C											
0.10 μF to 2200 μF											
±10%; ±20%											
≤ +85°C: 2.5 4 6.3 10 16 20 25 35 50											
≤ +125°C:	1.7	2.7	4	7	10	13	17	23	33		
≤ +85°C:	3.3	5.2	8	13	20	26	32	46	65		
≤ +125°C:	2.2	3.4	5	8	13	16	20	28	40		
	-55°	°C to +12	25°C								
	1%	per 1000) hours a	t 85°C, \	I_R with 0	.1Ω/V se	ries impe	edance,			
	60%	6 confide	nce level								
	CEC	CC 3080	1 - 005 i	ssue 2							
	EIA	535BAA	С								
	Sn	Plating (s	tandard)	, Gold ar	nd SnPb	Plating u	ıpon requ	uest			
	For	AEC-Q2	00 availa	bility, ple	ase cont	act AVX					
	≤ +125°C: ≤ +85°C:	0.10 ±10 ≤ +85°C: 2.5 ≤ +125°C: 1.7 ≤ +85°C: 3.3 ≤ +125°C: 2.2 -55° 1% 60% CEC EIA Sn	0.10 μ F to 2 ±10%; ±20% ≤ +85°C: 2.5 4 ≤ +125°C: 1.7 2.7 ≤ +85°C: 3.3 5.2 ≤ +125°C: 2.2 3.4 -55°C to +12 1% per 1000 60% confide CECC 3080 EIA 535BAA Sn Plating (s	0.10 μF to 2200 μF ±10%; ±20% ≤ +85°C: 2.5 4 6.3 ≤ +125°C: 1.7 2.7 4 ≤ +85°C: 3.3 5.2 8 ≤ +125°C: 2.2 3.4 5 -55°C to +125°C 1% per 1000 hours a 60% confidence level CECC 30801 - 005 is EIA 535BAAC Sn Plating (standard)	0.10 µF to 2200 µF ±10%; ±20% ≤ +85°C: 2.5 4 6.3 10 ≤ +125°C: 1.7 2.7 4 7 ≤ +85°C: 3.3 5.2 8 13 ≤ +125°C: 2.2 3.4 5 8 -55°C to +125°C 1% per 1000 hours at 85°C, \ 60% confidence level CECC 30801 - 005 issue 2 EIA 535BAAC Sn Plating (standard), Gold ar	0.10 µF to 2200 µF ±10%; ±20% ≤ +85°C: 2.5 4 6.3 10 16 ≤ +125°C: 1.7 2.7 4 7 10 ≤ +85°C: 3.3 5.2 8 13 20 ≤ +125°C: 2.2 3.4 5 8 13 -55°C to +125°C 1% per 1000 hours at 85°C, V_R with 0 60% confidence level CECC 30801 - 005 issue 2 EIA 535BAAC Sn Plating (standard), Gold and SnPb	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.10 μF to 2200 μF $\pm 10\%$; $\pm 20\%$ ≤ +85°C: 2.5 4 6.3 10 16 20 25 ± 125 °C: 1.7 2.7 4 7 10 13 17 ± 85 °C: 3.3 5.2 8 13 20 26 32 ± 125 °C: 2.2 3.4 5 8 13 16 20 ± 125 °C to +125°C 1% per 1000 hours at 85°C, V _R with 0.1Ω/V series imper 60% confidence level CECC 30801 - 005 issue 2 EIA 535BAAC Sn Plating (standard), Gold and SnPb Plating upon requ	0.10 μF to 2200 μF ±10%; ±20% ≤ +85°C: 2.5 4 6.3 10 16 20 25 35 ≤ +125°C: 1.7 2.7 4 7 10 13 17 23 ≤ +85°C: 3.3 5.2 8 13 20 26 32 46 ≤ +125°C: 2.2 3.4 5 8 13 16 20 28 -55°C to +125°C 1% per 1000 hours at 85°C, V_R with 0.1Ω/V series impedance, 60% confidence level CECC 30801 - 005 issue 2 EIA 535BAAC Sn Plating (standard), Gold and SnPb Plating upon request	0.10 μF to 2200 μF ±10%; ±20% ≤ +85°C: 2.5	

CAPACITANCE AND RATED VOLTAGE, VR (VOLTAGE CODE) RANGE (LETTER DENOTES CASE SIZE)

Capacitance					Rated vol	tage DC (V	′ _R) to 85°C			
μF	Code	2.5V (e)	4V (G)	6.3V (J)	10V (A)	16V (C)	20V (D)	25V (E)	35V (V)	50V (T)
0.10 0.15 0.22	104 154 224								A A A	A A/B A/B
0.33 0.47 0.68	334 474 684						A	A A	A A/B A/B	A/B A/B/C A/B/C
1.0 1.5 2.2	105 155 225			А	A A	A A A/B	A A A/B	A A/B A/B	A/B A/B/C A/B/C	AM/B/C B/C/D B/C/D
3.3 4.7 6.8	335 475 685		A A	A A A/B	A A/B A/B	A/B A/B A/B/C	A/B A/B/C A/B/C	A/B/C A/B/C B/C	B/C B/C/D C/D	C/D C/D C/D
10 15 22	106 156 226		A A/B A	A/B A/B A/B/C	A/B/C A/B/C A/B/C	A/B/C AM/B/C B/C/D	AM*/B/C B/C/D B/C/D	B/C/D C/D C/D	C/D/E C/D D/E	D/E/V D/E/V V
33 47 68	336 476 686	A A A	A/B A/B A/B/C	A/B/C A/B/C/D B/C/D	A/B/C/D B/C/D B/C/D	B/C/D C/D C/D	C/D C/D/E CM/D/E	D/E D/E E/V	D/E/V E/V V	
100 150 220	107 157 227	A/B B B/D	A/B/C B/C BM/C/D	B/C/D BM/C/D C/D/E	BM/C/D/E C/D/E C/D/E	C/D/E D/E/V E/V	D/E/V E/V	E(M)/V V(M)		
330 470 680	337 477 687	D C/D C/D/E	C/D/E C/D/E D/E	C/D/E D/E/V E/V	D/E/V E/U/V	E(M)				
1000 1500 2200	108 158 228	D(M/E D/E/V(M) V(M)	D/E/V E/V ^(M)	E(M)/V(M)						

Not recommended for new designs, higher voltage or smaller case size substitution are offered.

Released codes (M tolerance only)

Engineering samples - please contact manufacturer

*Codes under development - subject to change

Note: Voltage ratings are minimum values. AVX reserves the right to supply higher ratings in the same case size, to the same reliability standards.

Standard Tantalum

RATINGS & PART NUMBER REFERENCE

			Rated	DCL	DF	ESR	
AVX	Case	Сар	Voltage	(µA)	%	Max. (Ω)	MSL
Part No.	Size	(μF)	(V)	Max.	Max.	@100kHz	
TA 14 000 0 to 000 (IA) 1			C (1.7 Vo				
TAJA336*002#NJ	A	33	2.5	0.8	8	1.7	1
TAJA476*002#NJ	A	47	2.5	0.9	6	3	1
TAJA686*002#NJ	A	68	2.5	1.4	8	1.5	1
TAJA107*002#NJ	A	100	2.5	2.5	30	1.4	1
TAJB107*002#NJ	В	100	2.5	2.5	8	1.4	1
TAJB157*002#NJ	В	150	2.5	3	10	1.6	1
TAJB227*002#NJ	В	220	2.5	4.4	16	1.6	1
TAJD227*002#NJ	D	220	2.5	5.5	8	0.3	1
TAJD337*002#NJ	D C	330 470		8.2	12	0.3	1
TAJC477*002#NJ	D	470	2.5	9.4	8	0.2	1
TAJD477*002#NJ TAJC687*002#NJ	C			11.6 17.0			1
TAJD687*002#NJ	D	680 680	2.5	17.0	18 16	0.2	1
	E	680	2.5	17	10	0.2	11)
TAJE687*002#NJ	D		2.5	25	20	0.2	1
TAJD108M002#NJ TAJE108*002#NJ	E	1000	2.5	20	14	0.2	11)
TAJE108 002#NJ	D	1500	2.5	37.5	60	0.4	1
TAJE158*002#NJ	E	1500	2.5	37.3	20	0.2	11)
TAJE 158 002#NJ	V	1500	2.5	30	20	0.2	11)
TAJV228M002#NJ	V	2200	2.5		50	0.2	11)
TAJVZZOIVIUUZ#INJ			∠.ე C (2.7 Vol	55		0.2	17
TAJA336*004#NJ	4 V O	33	4 (2.7 V OI	1.3	6	3	1
TAJA336 004#NJ	A	47	4	1.9	8	2.6	1
TAJA686*004#NJ	A	68	4	2.7	10	1.5	1
TAJB686*004#NJ	В	68	4	2.7	6	1.8	1
TAJA107*004#NJ	A	100	4	4	30	1.4	1
TAJB107*004#NJ	В	100	4	4	8	0.9	1
TAJB167 004#NJ	В	150	4	6	10	1.5	1
TAJC157*004#NJ	С	150	4	6	6	0.3	1
TAJB227M004#NJ	В	220	4	8.8	12	1.1	1
TAJC227*004#NJ	C	220	4	8.8	8	1.2	1
TAJD227*004#NJ	D	220	4	8.8	8	0.9	1
TAJC337*004#NJ	C	330	4	13.2	8	0.3	1
TAJD337*004#NJ	D	330	4	13.2	8	0.9	1
TAJC477*004#NJ	C	470	4	18.8	14	0.3	1
TAJD477*004#NJ	D	470	4	18.8	12	0.9	1
TAJE477*004#NJ	E	470	4	18.8	10	0.5	11)
TAJD687*004#NJ	D	680	4	27.2	14	0.5	1
TAJE687*004#NJ	E	680	4	27.2	14	0.9	11)
TAJD108*004#NJ	D	1000	4	40	60	0.2	1
TAJE108*004#NJ	E	1000	4	40	14	0.4	11)
TAJV108*004#NJ	V	1000	4	40	16	0.2	11)
TAJE158*004#NJ	Ė	1500	4	60	30	0.2	11)
TAJV158M004#NJ	V	1500	4	60	30	0.2	11)
			°C (4 Vol				
TAJA106*006#NJ	Α	10	6.3	0.6	6	4	1
TAJA156*006#NJ	Α	15	6.3	0.9	6	3.5	1
TAJA226*006#NJ	Α	22	6.3	1.4	6	3	1
TAJA336*006#NJ	Α	33	6.3	2.1	8	2.2	1
TAJA476*006#NJ	Α	47	6.3	2.8	10	1.6	1
TAJB476*006#NJ	В	47	6.3	3	6	2	1
TAJC476*006#NJ	С	47	6.3	3	6	1.6	1
TAJB686*006#NJ	В	68	6.3	4	8	0.9	1
TAJC686*006#NJ	С	68	6.3	4.3	6	1.5	1
TAJB107*006#NJ	В	100	6.3	6.3	10	1.7	1
TAJC107*006#NJ	С	100	6.3	6.3	6	0.9	1
TAJB157M006#NJ	В	150	6.3	9.5	10	1.2	1
TAJC157*006#NJ	С	150	6.3	9.5	6	1.3	1

AVX	Case	Сар	Rated Voltage	DCL (µA)	DF %	ESR Max. (Ω)	MSL
Part No.	Size	(μF)	(V)	Max.	Max.	@100kHz	IVIOL
TAJD157*006#NJ	D	150	6.3	9.5	6	0.9	1
TAJC227*006#NJ	C	220	6.3	13.9	8	1.2	1
TAJD227*006#NJ	D	220	6.3	13.9	8	0.4	1
TAJE227*006#NJ	Е	220	6.3	13.9	8	0.4	1 ¹⁾
TAJC337*006#NJ	С	330	6.3	19.8	12	0.5	1
TAJD337*006#NJ	D	330	6.3	20.8	8	0.4	1
TAJE337*006#NJ	Е	330	6.3	20.8	8	0.4	11)
TAJD477*006#NJ	D	470	6.3	28	12	0.4	1
TAJE477*006#NJ	Е	470	6.3	28	10	0.4	11)
TAJV477*006#NJ	V	470	6.3	28	10	0.4	11)
TAJE687*006#NJ	E	680	6.3	42.8	10	0.5	11)
TAJV687*006#NJ	V	680	6.3	42.8	10	0.5	11)
TAJE108M006#NJ	E	1000	6.3	60	20	0.2	11)
TAJV108M006#NJ	V	1000	6.3	60	16	0.2	11)
			°C (7 Volt				
TAJA475*010#NJ	Α	4.7	10	0.5	6	5	1
TAJA685*010#NJ	Α	6.8	10	0.7	6	4	1
TAJA106*010#NJ	Α	10	10	1	6	3	1
TAJA156*010#NJ	A	15	10	1.5	6	3.2	1
TAJB156*010#NJ	В	15	10	1.5	6	2.8	1
TAJA226*010#NJ	A	22	10	2.2	8	3	1
TAJB226*010#NJ	В	22	10	2.2	6	2.4	1
TAJA336*010#NJ	A	33	10	3.3	8	1.7	1
TAJB336*010#NJ	В	33	10	3.3	6	1.8	1
TAJC336*010#NJ	С	33	10	3.3	6	1.6	1
TAJB476*010#NJ	В	47	10	4.7	8	1	1
TAJC476*010#NJ	С	47	10	4.7	6	1.2	1
TAJB686*010#NJ	В	68	10	6.8	6	1.4	1
TAJC686*010#NJ	С	68	10	6.8	6	1.3	1
TAJB107M010#NJ	В	100	10 10	10 10	8	1.4	1
TAJC107*010#NJ TAJD107*010#NJ	C D	100 100	10	10	8	1.2 0.9	1
TAJC157*010#NJ		150	10	15			1
TAJD157*010#NJ	C D	150	10	15	8	0.9	1
TAJE157*010#NJ	E	150	10	15	8	0.9	11)
TAJC227*010#NJ	С	220	10	22	16	0.5	1
TAJD227*010#NJ	D	220	10	22	8	0.5	1
TAJE227*010#NJ	E	220	10	22	8	0.5	11)
TAJD337*010#NJ	D	330	10	33	8	0.9	1
TAJE337*010#NJ	E	330	10	33	8	0.9	11)
TAJV337*010#NJ	V	330	10	33	10	0.9	11)
TAJE477*010#NJ	E	470	10	47	10	0.5	1 1)
TAJU477*010RNJ	U	470	10	47	12	0.5	1 ¹⁾
TAJV477*010#NJ	V	470	10	47	10	0.5	11)
	16 Vo		C (10 Vol				
TAJA225*016#NJ	Α	2.2	16	0.5	6	6.5	1
TAJA335*016#NJ	A	3.3	16	0.5	6	5	1
TAJB335*016#NJ	В	3.3	16	0.5	6	4.5	1
TAJA475*016#NJ	A	4.7	16	0.8	6	4	1
TAJB475*016#NJ	В	4.7	16	0.8	6	3.5	1
TAJA685*016#NJ	Α	6.8	16	1.1	6	3.5	1
TAJB685*016#NJ	В	6.8	16	1.1	6	2.5	1
TAJA106*016#NJ	Α	10	16	1.6	6	3	1
TAJB106*016#NJ	В	10	16	1.6	6	2.8	1
TAJC106*016#NJ	С	10	16	1.6	6	2	1
TAJA156M016#NJ	Α	15	16	2.4	6	2	1
TAJB156*016#NJ	В	15	16	2.4	6	2.5	1
TAJC156*016#NJ	С	15	16	2.4	6	1.8	1
TAJB226*016#NJ	В	22	16	3.5	6	2.3	1
TAJC226*016#NJ	С	22	16	3.5	6	1	1

 $^{1^{\}circ}$ Dry pack option (see How to order) recommended for reduction of stress during soldering. Dry pack parts should be treated as MSL 3.

Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

For AEC-Q200 availability, please contact AVX.

All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5V RMS with a maximum DC bias of 2.2 volts. DCL is measured at rated voltage after 5 minutes.

For typical weight and composition see page 162.

NOTE: AVX reserves the right to supply a higher voltage rating or tighter tolerance part in the same case size, to the same reliability standards.

RATINGS & PART NUMBER REFERENCE

TIATINGO G							
AVX Part No.	Case Size	Cap (μF)	Rated Voltage (V)	DCL (μA) Max.	DF % Max.	ESR Max. (Ω) @100kHz	MSL
TAJD226*016#NJ	D	22	16	3.5	6	1.1	1
TAJB336*016#NJ	В	33	16	5.3	8	2.1	1
TAJC336*016#NJ	С	33	16	5.3	6	1.5	1
TAJD336*016#NJ	D	33	16	5.3	6	0.9	1
TAJC476*016#NJ	C	47	16	7.5	6	0.5	1
TAJD476*016#NJ	D	47	16	7.5	6	0.9	1
TAJC686*016#NJ	C	68	16	10.9	6	1.3	1
TAJD686*016#NJ	D	68	16	10.9	6	0.9	1
TAJC107*016#NJ	C	100	16	16	8	1	1
TAJD107*016#NJ	D	100	16	16	6	0.6	1
TAJE107*016#NJ	E	100	16	16	6	0.9	11)
TAJD157*016#NJ	D	150	16	24	6	0.9	1
TAJE157*016#NJ	E	150	16	23	8	0.3	11)
TAJV157*016#NJ	V	150	16	24	8	0.5	11)
TAJE227*016#NJ	Ē	220	16	35.2	10	0.5	1 1)
TAJV227*016#NJ	V	220	16	35.2	8	0.9	11)
TAJE337M016#NJ	E	330	16	52.8	30	0.4	1 1)
IAULUUT IVIU TURTNU			C (13 Vol			0.4	
TAJA105*020#NJ	A	1	20	0.5	4	9	1
TAJA155*020#NJ	A	1.5	20	0.5	6	6.5	1
TAJA225*020#NJ	A	2.2	20	0.5	6	5.3	1
TAJB225*020#NJ	В	2.2	20	0.5	6	3.5	1
TAJA335*020#NJ	A	3.3	20	0.5	6	4.5	1
	В	3.3		0.7	6		1
TAJB335*020#NJ			20	0.7	_	3 4	1
TAJA475*020#NJ	A	4.7			6	3	1
TAJB475*020#NJ	В	4.7	20	0.9	6		1
TAJA685*020#NJ	A	6.8	20	1.4	6	2.4	
TAJB685*020#NJ	В	6.8	20	1.4	6	2.5	1
TAJC685*020#NJ	C	6.8	20	1.4	6	2	1
TAJB106*020#NJ	В	10	20	2	6	2.1	1
TAJC106*020#NJ	C	10	20	2	6	1.2	1
TAJB156*020#NJ	В	15	20	3	6	2	1
TAJC156*020#NJ	C	15	20	3	6	1.7	1
TAJB226*020#NJ	В	22	20	4.4	6	1.8	1
TAJC226*020#NJ	C	22	20	4.4	6	1.6	1
TAJD226*020#NJ	D	22	20	4.4	6	0.9	1
TAJC336*020#NJ	C	33	20	6.6	6	1.5	1
TAJD336*020#NJ	D	33	20	6.6	6	0.9	1
TAJC476*020#NJ	C	47	20	9.4	6	0.5	1
TAJD476*020#NJ	D	47	20	9.4	6	0.9	1
TAJE476*020#NJ	E	47	20	9.4	6	0.9	11)
TAJC686M020#NJ	C	68	20	13.6	8	0.5	1
TAJD686*020#NJ	D	68	20	13.6	6	0.4	1
TAJE686*020#NJ	E	68	20	13.6	6	0.9	11)
TAJD107*020#NJ	D	100	20	20	6	0.5	1
TAJE107*020#NJ	E	100	20	20	6	0.4	1 ¹⁾
TAJV107*020#NJ	V	100	20	20	8	0.9	11)
TAJE157*020#NJ	E	150	20	30	8	0.3	1 ¹⁾
TAJV157*020#NJ	V	150	20	30	8	0.3	11)
			C (17 Vol				
TAJA474*025#NJ	Α	0.47	25	0.5	4	14	1
TAJA684*025#NJ	Α	0.68	25	0.5	4	10	1
TAJA105*025#NJ	Α	1	25	0.5	4	8	1
TAJA155*025#NJ	Α	1.5	25	0.5	6	7.5	1
TAJB155*025#NJ	В	1.5	25	0.5	6	5	1
TAJA225*025#NJ	Α	2.2	25	0.6	6	7	1
TAJB225*025#NJ	В	2.2	25	0.6	6	4.5	1
TAJA335*025#NJ	Α	3.3	25	0.8	6	3.7	1

AVX Part No.	Case Size	Cap (μF)	Rated Voltage (V)	DCL (μΑ) Max.	DF % Max.	ESR Max. (Ω) @100kHz	MSL
TAJB335*025#NJ	В	3.3	25	0.8	6	3.5	1
TAJA475*025#NJ	A	4.7	25	1.2	6	3.1	1
TAJB475*025#NJ	В	4.7	25	1.2	6	1.5	1
TAJB685*025#NJ	В	6.8	25	1.7	6	2.8	1
TAJC685*025#NJ	C	6.8	25	1.7	6	2	1
TAJB106*025#NJ	В	10	25	2.5	6	2.5	1
TAJC106*025#NJ	C	10	25	2.5	6	1.8	1
TAJD106*025#NJ	D	10	25	2.5	6	1.2	1
TAJC156*025#NJ	C	15	25	3.8	6	1.6	1
TAJD156*025#NJ	D	15	25	3.8	6	1	1
TAJC226*025#NJ	C	22	25	5.5	6	1.4	1
TAJD226*025#NJ	D	22	25	5.5	6	0.9	1
TAJD336*025#NJ	D	33	25	8.3	6	0.9	1
TAJE336*025#NJ	E	33	25	8.3	6	0.9	1 ¹⁾
TAJD476*025#NJ	D	47	25	11.8	6	0.9	1
TAJE476*025#NJ	E	47	25	11.8	6	0.9	1 ¹⁾
TAJE686*025#NJ	E	68	25	17	6	0.9	1 1)
TAJV686*025#NJ	V	68	25	17	6	0.9	1 1)
TAJE107M025#NJ	Ē	100	25	25	10	0.3	1 1)
TAJV107*025#NJ	V	100	25	25	8	0.4	1 1)
TAJV157M025#NJ	V	150	25	37.5	10	0.4	1 1)
IAUVIUZU#INU			C (23 Vol			0.4	1.
TAJA104*035#NJ	A	0.1	35	0.5	4	24	1
TAJA154*035#NJ	A	0.15	35		4	21	1
TAJA224*035#NJ			35	0.5	4		1
TAJA224 035#NJ	A	0.22	35	0.5	4	18 15	1
TAJA334 035#NJ		0.33		0.5	4	12	1
	A B	0.47	35	0.5			
TAJB474*035#NJ		0.47	35	0.5	4	10	1
TAJA684*035#NJ	A	0.68	35	0.5	4	8	1
TAJB684*035#NJ	В	0.68	35	0.5	4	8	1
TAJA105*035#NJ	A	1	35	0.5	4	7.5	1
TAJB105*035#NJ	В	1	35	0.5	4	6.5	1
TAJA155*035#NJ	A	1.5	35	0.5	6	7.5	1
TAJB155*035#NJ	В	1.5	35	0.5	6	5.2	1
TAJC155*035#NJ	C	1.5	35	0.5	6	4.5	1
TAJA225*035#NJ	A	2.2	35	0.8	6	4.5	1
TAJB225*035#NJ	В	2.2	35	0.8	6	4.2	1
TAJC225*035#NJ	С	2.2	35	0.8	6	3.5	1
TAJB335*035#NJ	В	3.3	35	1.2	6	3.5	1
TAJC335*035#NJ	С	3.3	35	1.2	6	2.5	1
TAJB475*035#NJ	В	4.7	35	1.6	6	3.1	1
TAJC475*035#NJ	С	4.7	35	1.6	6	2.2	1
TAJD475*035#NJ	D	4.7	35	1.6	6	1.5	1
TAJC685*035#NJ	С	6.8	35	2.4	6	1.8	1
TAJD685*035#NJ	D	6.8	35	2.4	6	1.3	1
TAJC106*035#NJ	C	10	35	3.5	6	1.6	1
TAJD106*035#NJ	D	10	35	3.5	6	1	1
TAJE106*035#NJ	E	10	35	3.5	6	0.9	11)
TAJC156*035#NJ	С	15	35	5.3	6	1.4	1
TAJD156*035#NJ	D	15	35	5.3	6	0.9	1
TAJD226*035#NJ	D	22	35	7.7	6	0.9	1
TAJE226*035#NJ	Е	22	35	7.7	6	0.5	1 ¹⁾
TAJD336*035#NJ	D	33	35	11.6	6	0.9	1
TAJE336*035#NJ	Е	33	35	11.6	6	0.9	1 ¹⁾
TAJV336*035#NJ	V	33	35	11.6	6	0.5	1 ¹⁾
TAJE476*035#NJ	Е	47	35	16.5	6	0.9	11)
TAJV476*035#NJ	V	47	35	16.5	6	0.4	1 ¹⁾
TAJV686*035#NJ	V	68	35	23.8	6	0.5	1 ¹⁾

^{1&}lt;sup>1)</sup> Dry pack option (see How to order) recommended for reduction of stress during soldering. Dry pack parts should be treated as MSL 3.

NOTE: AVX reserves the right to supply a higher voltage rating or tighter tolerance part in the same case size, to the same reliability standards.

Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

For AEC-Q200 availability, please contact AVX.

All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5V RMS with a maximum DC bias of 2.2 volts. DCL is measured at rated voltage after 5 minutes.

For typical weight and composition see page 162.

RATINGS & PART NUMBER REFERENCE

AVX	Case	Сар	Rated Voltage	DCL (µA)	DF %	ESR Max. (Ω)	MSL					
Part No.	Size	(μ F)	(V)	Max.	Max.	@100kHz						
50 Volt @ 85°C (33 Volt @ 125°C)												
TAJA104*050#NJ	Α	0.1	50	0.5	4	22	1					
TAJA154*050#NJ	Α	0.15	50	0.5	4	15	1					
TAJB154*050#NJ	В	0.15	50	0.5	4	17	1					
TAJA224*050#NJ	Α	0.22	50	0.5	4	18	1					
TAJB224*050#NJ	В	0.22	50	0.5	4	14	1					
TAJA334*050#NJ	Α	0.33	50	0.5	4	17	1					
TAJB334*050#NJ	В	0.33	50	0.5	4	12	1					
TAJA474*050#NJ	Α	0.47	50	0.5	4	9.5	1					
TAJB474*050#NJ	В	0.47	50	0.7	4	9.5	1					
TAJC474*050#NJ	С	0.47	50	0.5	4	8	1					
TAJA684*050#NJ	Α	0.68	50	0.5	4	7.9	1					
TAJB684*050#NJ	В	0.68	50	0.5	4	8	1					
TAJC684*050#NJ	С	0.68	50	0.5	4	7	1					
TAJA105M050#NJ	Α	1	50	0.5	4	6.6	1					
TAJB105*050#NJ	В	1	50	0.5	6	7	1					
TAJC105*050#NJ	С	1	50	0.5	4	5.5	1					
TAJB155*050#NJ	В	1.5	50	0.8	8	5.4	1					
TAJC155*050#NJ	С	1.5	50	0.8	6	4.5	1					
TAJD155*050#NJ	D	1.5	50	0.8	6	4	1					
TAJB225*050#NJ	В	2.2	50	1.1	8	4.5	1					
TAJC225*050#NJ	С	2.2	50	1.1	8	2.5	1					
TAJD225*050#NJ	D	2.2	50	1.1	6	2.5	1					
TAJC335*050#NJ	С	3.3	50	1.6	6	2.5	1					
TAJD335*050#NJ	D	3.3	50	1.7	6	2	1					
TAJC475*050#NJ	С	4.7	50	0.5	4	1.4	1					
TAJD475*050#NJ	D	4.7	50	2.4	6	1.4	1					
TAJC685*050#NJ	С	6.8	50	3.4	6	1	1					
TAJD685*050#NJ	D	6.8	50	3.4	6	1	1					
TAJD106*050#NJ	D	10	50	5	6	0.8	1					
TAJE106*050#NJ	Е	10	50	5	6	1	11)					
TAJV106*050#NJ	V	10	50	5	6	0.65	11)					
TAJD156*050#NJ	D	15	50	7.5	6	0.6	1					
TAJE156*050#NJ	Е	15	50	7.5	6	0.6	11)					
TAJV156*050#NJ	V	15	50	7.5	6	0.6	11)					
TAJV226*050#NJ	V	22	50	11	8	0.6	11)					

^{1&}lt;sup>1)</sup> Dry pack option (see How to order) recommended for reduction of stress during soldering. Dry pack parts should be treated as MSL 3.

For AEC-Q200 availability, please contact AVX.

Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5V RMS with a maximum DC bias of 2.2 volts. DCL is measured at rated voltage after 5 minutes.

For typical weight and composition see page 162.

NOTE: AVX reserves the right to supply a higher voltage rating or tighter tolerance part in the same case size, to the same reliability standards.

