Studies of ERM Models with Correlated Disorder

by Tom Folgmann

Bachelor Thesis Presentation, 2024

What is ERM?

What is ERM?

Imagine a system of $N \in \mathbb{N}$ particles.

Imagine a system of $N \in \mathbb{N}$ particles.

→ How would you describe their relations?

Imagine a system of $N \in \mathbb{N}$ particles.

→ How would you describe their relations?

Imagine a system of $N \in \mathbb{N}$ particles.

→ How would you describe their relations?

A system with $N \in \mathbb{N}$ (related) particles can be described by a mathematical Graph.

$$L(G) := D(G) - W(G).$$

$$L(G) \coloneqq D(G) - W(G).$$

- D(G) gives the degree of each node: Number of connected edges.
- W(G) encodes the *strength* (and direction) of the connections.

$$L(G) := D(G) - W(G).$$

- D(G) gives the degree of each node: Number of connected edges.
- W(G) encodes the *strength* (and direction) of the connections.

$$\begin{split} D(G)\coloneqq \operatorname{diag}(d), & d_i\coloneqq \#\{e\in E: v_i\in e\},\\ W(G)\coloneqq \left(w_{ij}\right)_{(i,j)\in [N]^2}, & w: [N]^2\to \mathbb{R}. \end{split}$$

$$L(G) \coloneqq D(G) - W(G).$$

- D(G) gives the degree of each node: Number of connected edges.
- W(G) encodes the *strength* (and direction) of the connections.

$$\begin{split} D(G) &\coloneqq \operatorname{diag}(d), & d_i &\coloneqq \#\{e \in E : v_i \in e\}, \\ W(G) &\coloneqq \left(w_{ij}\right)_{(i,j) \in [N]^2}, & w : [N]^2 \to \mathbb{R}. \end{split}$$

.. special case is the Adjacency Matrix A, where $w_{i,j} \in \{0, -1, 1\}$.

Definition of the ERM Laplacian Matrix

In the ERM model the Laplacian matrix is defined as

$$\tilde{U}(f,r) \coloneqq \begin{pmatrix} \Sigma(f,1) & -f_{12} & \dots & -f_{1N} \\ -f_{21} & \Sigma(f,2) & \dots & -f_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ -f_{N1} & -f_{N2} & \dots & \Sigma(f,N) \end{pmatrix},$$

Definition of the ERM Laplacian Matrix

In the ERM model the Laplacian matrix is defined as

$$\tilde{U}(f,r) \coloneqq \begin{pmatrix} \Sigma(f,1) & -f_{12} & \dots & -f_{1N} \\ -f_{21} & \Sigma(f,2) & \dots & -f_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ -f_{N1} & -f_{N2} & \dots & \Sigma(f,N) \end{pmatrix},$$

• Interaction strength given by $f_{ij} \stackrel{\text{m}}{=} f(r_i - r_j)$

Definition of the ERM Laplacian Matrix

In the ERM model the Laplacian matrix is defined as

$$\tilde{U}(f,r) \coloneqq \begin{pmatrix} \Sigma(f,1) & -f_{12} & \dots & -f_{1N} \\ -f_{21} & \Sigma(f,2) & \dots & -f_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ -f_{N1} & -f_{N2} & \dots & \Sigma(f,N) \end{pmatrix},$$

- Interaction strength given by $f_{ij} \stackrel{\text{m}}{=} f(r_i r_j)$ Self-interaction given by $\Sigma(f, i) \stackrel{\text{m}}{=} \sum_{j \in [N] \setminus \{i\}} f_{ij}$

Let $\Lambda:[p] \to \sigma_P(\tilde{U}(f,r))$ map bijectively into the point spectrum of the ERM Laplacian.

... results in an (unnormalized) density function

$$E \mapsto \sum_{i \in [p]} \delta_{\Lambda_i}(E) \qquad \in \{0,p\}$$

The Resolvent Eigenvalue Approximation

.. by an example point Λ_i at $i \in [p]$.

The Resolvent Eigenvalue Approximation

.. by an example point Λ_i at $i \in [p]$.

The Resolvent Eigenvalue Approximation

.. by an example point Λ_i at $i \in [p]$.

 \hookrightarrow Usecase is the resolvent with a singularity at Λ_i .

$$[N] \ni i \to (x_i : \mathbb{R}_{>0} \to \mathbb{R}^d)$$
 map of a particle's position

$$[N] \ni i \to (x_i : \mathbb{R}_{>0} \to \mathbb{R}^d)$$
 map of a particle's position

.. using our Laplacian ERM Matrix and Newtonian dynamics:

$$[N] \ni i \to (x_i : \mathbb{R}_{>0} \to \mathbb{R}^d)$$
 map of a particle's position

.. using our Laplacian ERM Matrix and Newtonian dynamics:

$$\left(\frac{d}{dt}\right)^2 x_i(t) = -\tilde{U}(f,i\mapsto x_i(t))_{i,j}\cdot x_j(t), \qquad i,j\in[N].$$

$$[N] \ni i \to (x_i : \mathbb{R}_{>0} \to \mathbb{R}^d)$$
 map of a particle's position

.. using our Laplacian ERM Matrix and Newtonian dynamics:

$$\left(\frac{d}{dt}\right)^2 x_i(t) = -\tilde{U}(f,i\mapsto x_i(t))_{i,j}\cdot x_j(t), \qquad i,j\in[N].$$

.. looking at the behaviour with regard to the initial conditions:

$$\left(\frac{d}{dt}\right)^2\langle x_i(t),x_i(0)\rangle = -\tilde{U}(f,i\mapsto x_i(t))_{i,j}\cdot\langle x_j(t),x_i(0)\rangle.$$

Implementation of two initial configurations:

Implementation of two initial configurations:

 $\bullet \ \langle x_i(t), x_j(0) \rangle = \delta_{ij}$

Implementation of two initial configurations:

- $\begin{array}{ll} \bullet & \langle x_i(t), x_j(0) \rangle = \delta_{ij} \\ \bullet & \left(\frac{d}{dt}\right) \langle x_i(t), x_j(0) \rangle = 0 \end{array}$

Implementation of two initial configurations:

- $\begin{array}{ll} \bullet & \langle x_i(t), x_j(0) \rangle = \delta_{ij} \\ \bullet & \left(\frac{d}{dt}\right) \langle x_i(t), x_j(0) \rangle = 0 \end{array}$
- .. leads to the Resolvent representation (Green's

function): of the ERM Laplacian:⁵

Implementation of two initial configurations:

$$\bullet \quad \langle x_i(t), x_j(0) \rangle = \delta_{ij}$$

$$\begin{array}{ll} \bullet & \langle x_i(t), x_j(0) \rangle = \delta_{ij} \\ \bullet & \left(\frac{d}{dt}\right) \langle x_i(t), x_j(0) \rangle = 0 \end{array}$$

.. leads to the Resolvent representation (Green's

function): of the ERM Laplacian:⁶

$$\left(\mathcal{L}F_{j,i}\right)(s) = \pm \frac{1}{\tilde{U}(f,x^*(t))_{i,j} - \delta_{ij} \cdot \lambda_i^2}.$$

$$^6 \text{With } x^*(t) = \left(i \mapsto x_{i(t)}\right) \text{ and } F_{j,i}(t) \coloneqq \langle x_j(t), x_i(0) \rangle.$$

Where does *Randomness* come into play?

Where does *Randomness* come into play?

.. by a *slight* modification of functions!

Where does *Randomness* come into play?

.. by a slight modification of functions!

 $\Omega \ni \omega \mapsto R(\omega)$, equivalent to x from before.

Where does *Randomness* come into play?

.. by a *slight* modification of functions!

 $\Omega \ni \omega \mapsto R(\omega)$, equivalent to x from before.

Ev. step	Meaning
R	Random variable, abstract
$R(\omega)$	Vector of time dep. pos.
$\boxed{ R(\omega)_i}$	<i>i</i> -th particle position, time dep. path
$\boxed{R(\omega)_i(t)}$	Position of i -th particle at time t

The measurement of Eigenvalues

Eigenvalue measurement can be done via the resolvent. Gaussian representation gives us:

The measurement of Eigenvalues

Eigenvalue measurement can be done via the resolvent. Gaussian representation gives us:

$$\left(\tilde{U}(f,r)-z\right)_{ij}^{-1} = \int_{\mathbb{R}^d} \varphi_i \cdot \varphi_j \underbrace{\left(\underbrace{e^{-\frac{\beta}{2} \cdot \left\langle \left(\tilde{U}(f,r)-z\right) \cdot \varphi,\varphi\right\rangle}_{\text{Boltzmann density}} \cdot \lambda\right)}_{\text{Boltzmann density}} (d\varphi).$$

The measurement of Eigenvalues

Eigenvalue measurement can be done via the resolvent. Gaussian representation gives us:

$$\left(\tilde{U}(f,r)-z\right)_{ij}^{-1} = \int_{\mathbb{R}^d} \varphi_i \cdot \varphi_j \underbrace{\left(\underbrace{e^{-\frac{\beta}{2} \cdot \left\langle \left(\tilde{U}(f,r)-z\right) \cdot \varphi,\varphi\right\rangle}_{\text{Boltzmann density}} \cdot \lambda\right)}_{\text{Boltzmann density}} (d\varphi).$$

This is already a good starting point to understand our *Correlated Disorder* modification!

What is ERM?

.. missing key elements:

⁷Expansion to a functional can be argued, see thesis p. 19.

- .. missing key elements:
- The action (functional) $S_{z,R_{\omega}}$ at a test point $z \in \mathbb{C}$ and a particle position vector R_{ω} .

- .. missing key elements:
- The action (functional) $S_{z,R_{\omega}}$ at a test point $z \in \mathbb{C}$ and a particle position vector R_{ω} .

 \hookrightarrow see the Boltzmann density exponent for implicit def.:⁹

- .. missing key elements:
- The action (functional) $S_{z,R_{\omega}}$ at a test point $z \in \mathbb{C}$ and a particle position vector R_{ω} .

 \hookrightarrow see the Boltzmann density exponent for implicit def.:¹⁰

$$-\frac{\beta}{2} \cdot S_{z,R_{\omega}}(\varphi) \coloneqq -\frac{\beta}{2} \cdot \left\langle \left(\tilde{U}(f,r) - z \right) \cdot \varphi, \varphi \right\rangle$$

¹⁰Expansion to a functional can be argued, see thesis p. 19.

- .. missing key elements:
- The action (functional) $S_{z,R_{\omega}}$ at a test point $z \in \mathbb{C}$ and a particle position vector R_{ω} .

 \hookrightarrow see the Boltzmann density exponent for implicit def.:¹¹

$$-\frac{\beta}{2} \cdot S_{z,R_{\omega}}(\varphi) \coloneqq -\frac{\beta}{2} \cdot \left\langle \left(\tilde{U}(f,r) - z \right) \cdot \varphi, \varphi \right\rangle$$

• The moment generating function $Z_{z,R_{\omega}}[J]$. It requires the force field J.

¹¹Expansion to a functional can be argued, see thesis p. 19.

Definition 2.22. External Field Shift.

For $R: \Omega \to V_{d,N}$ and $\Phi \in \mathbb{F}_{d,N}$ we define

$$J \mapsto -\frac{1}{2} \cdot S_{z,R_{\omega}}^{(0)}(\Phi) + \int_{\mathbb{R}^d} J(x) \cdot \Phi(-x) + J(-x) \cdot \Phi(x) \; \lambda(dx)$$

the field shifted action $S_{z,R_{\omega}}^{(0)}$ by an external field $J \in \mathcal{S}(\mathbb{R}^d)$.

Definition 2.22. External Field Shift.

For $R: \Omega \to V_{d,N}$ and $\Phi \in \mathbb{F}_{d,N}$ we define

$$J \mapsto -\frac{1}{2} \cdot S_{z,R_{\omega}}^{(0)}(\Phi) + \int_{\mathbb{R}^d} J(x) \cdot \Phi(-x) + J(-x) \cdot \Phi(x) \; \lambda(dx)$$

the field shifted action $S_{z,R_{\omega}}^{(0)}$ by an external field $J \in \mathcal{S}(\mathbb{R}^d)$.

$$\hookrightarrow \frac{\delta}{\delta J(x)} S_{z,R_{\omega}}^{(0)}[\Phi] = i \cdot \Phi(-x).$$

The Generative Operator

Using these tools, an Operator generating $Z_{z,R_{\omega}}$ can be deduced:

The Generative Operator

Using these tools, an Operator generating $Z_{z,R_{\omega}}$ can be deduced:

$$Z_{z,R_{\omega}}[J] = \int_{\mathbb{F}_{d,N}} e^{\left(S_{z,R_{\omega}}^{(0)}\Phi + S_{z,R_{\omega}}^{(int)}\Phi\right)[J]} d\Phi = \underbrace{\left[\operatorname{Ex}_{\mathcal{L}_f}\left[\int_{\mathbb{F}_{d,N}} e^{\left(S_{z,R_{\omega}}^{(0)}\Phi\right)[\cdot]} d\Phi\right]\right]}_{\text{Generative Part}}[J].$$

 \rightarrow Looking at different Taylor expansion terms yields different integrals.

Feynman Diagrammatics - Edges

.. conveniently using symmetry in Fourierspace:

Feynman Diagrammatics - Edges

.. conveniently using symmetry in Fourierspace:

$$\begin{array}{ll} \longrightarrow & \coloneqq \frac{G_0(\boldsymbol{p},z)}{\rho_*} \\ & \stackrel{\gamma}{\underset{\rho_*}{\dots}} \coloneqq \frac{\mathbb{E}((\mathcal{F}\delta\rho_R)(\boldsymbol{q})\cdot(\mathcal{F}\delta\rho_R)(-\boldsymbol{q}))}{\rho_*} \end{array}$$

Feynman Diagrammatics - Edges

.. conveniently using symmetry in Fourierspace:

$$\begin{array}{ll} \longrightarrow & \coloneqq \frac{G_0(\boldsymbol{p},z)}{\rho_*} \\ & \stackrel{\gamma}{\underset{\rho_*}{\dots}} \coloneqq \frac{\mathbb{E}((\mathcal{F}\delta\rho_R)(\boldsymbol{q})\cdot(\mathcal{F}\delta\rho_R)(-\boldsymbol{q}))}{\rho_*} \end{array}$$

.. possible connections of these edges are given by *vertices*:

Feynman Diagrammatics - Vertices

Feynman Diagrammatics - Vertices

Feynman Diagrammatics - Vertices

.. which completes the set of Feynman rules.

How can we use diagrammatics?

.. displaying summands in operator expansion.

How can we use diagrammatics?

.. displaying summands in operator expansion.

We begin with **one** loop diagrams:

$$\begin{array}{c} \boldsymbol{p} \\ \begin{array}{c} \boldsymbol{p} \\ \end{array} \\ \boldsymbol{q} \end{array} = \frac{G_0(\boldsymbol{p},z)^2}{\rho_*} \cdot \int_{\mathbb{R}^d} G_0(\boldsymbol{q}-\boldsymbol{p},z) \cdot \mu_z(\boldsymbol{p},-\boldsymbol{q})^2 \ d\boldsymbol{q} \end{array}$$

What is Correlated Disorder?

What did we implement?