DEEP LEARNING FOR IMAGE SEARCH WEEK_3

DEEP LEARNING ARCHITECTURES:

- Recurrent neural networks(RNN)- Speech recognition, handwriting recognition
- **Convolution neural networks(CNN)-** Image recognition, video analysis, natural language processing
- **LSTM**-Natural language text compression, handwriting recognition, speech recognition, gesture recognition, image captioning
- **Deep beliefs networks(DBN)-** Image recognition, information retrieval, natural language understanding, failure prediction
- **Deep stacking networks(DSN)-** Information retrieval, continuous speech recognition

RNN	CNN		
RNN is made up of one node. It is fed data	CNNs essentially have three parts,		
then outputs a result back into itself, and	convolution layers, pooling layers, and fully-		
continues to do this.	connected layers.		
RNN unlike feedforward neural networks -	CNN is a type of feed-forward artificial neural		
can use their internal memory to process	network - are variations of multilayer		
arbitrary sequences of inputs.	perceptron which are designed to use		
	minimal amounts of preprocessing.		
RNNs are ideal for text and speech analysis.	CNNs are ideal for images and video		
	processing.		

Basics of RNN:

The primary difference between a typical multilayer network and a recurrent network is that rather than completely feed-forward connections, a recurrent network might have connections that feed back into the same layer. This feedback allows RNNs to maintain memory of past inputs and model problems in time.

DEEP LEARNING FRAMEWORKS:

Implementing these deep learning architectures is certainly possible, but starting from scratch can be time-consuming, and they also need time to optimize. Many frameworks are available to build deep learnings solutions. Every framework is different, built for a different purpose and offering a unique range of features.

- 1. 1.TensorFlow
- 2. 2.Caffe
- 3. 3.Keras
- 4. 4.DeepLearning4j

Brief Introduction to TensorFlow:

Tensorflow is a Python-based library capable of running on multiple CPUs and GPUs. Mathematically a Tensor is a N-dimensional vector, means a Tensor can be used to represent Ndimensional datasets.

't'	
'e'	
'n'	
's'	
'o'	
'r'	

3	1	4	1			
5	9	2	6			
5	3	5	8			
9	7	9	3			
2	3	8	4			
6	2	6	4			
tensor of dimensions [6,4]						

(matrix 6 by 4)

tensor of dimensions [4,4,2]

So, difference between Arrays and Tensors?

The first is a type of function, the second is a data structure suitable for representing a tensor in a coordinate system. Tensors are defined as a multilinear function. A multi-linear function consists of various vector variables.

Computational Graph:

A computational graph is a series of TensorFlow operations arranged into a graph of nodes.

Each node takes zero or more tensors as inputs and produces a tensor as an output. One type of node is a constant. Like all TensorFlow constants, it takes no inputs, and it outputs a value it stores internally.

Other Frameworks:

Keras:

Though TensorFlow is a very good deep learning library, creating models using only TensorFlow can be a challenge, as it is a pretty low-level library and can be quite complex to use for a beginner. To tackle this challenge, Keras was built as a simplified interface for building efficient neural networks in just a few lines of code and it can be configured to work on top of TensorFlow.

Caffe:

It is a C++ library which also has a Python interface and finds its primary application in modeling Convolutional Neural Networks. Caffe supports a wide range of deep learning architectures, including CNN and LSTM,

DeepLearing4j:

Deeplearning4j is a popular deep learning framework that is focused on Java technology,