Язык программирования Питон (Python)

Типы и структуры данных

<u>Числа</u>

Числа в Python могут быть

- целыми (тип int),
- вещественными (тип **float**),
- комплексными (тип **complex**).

Замечание.

Heт отдельного типа 'long int' (длинное целое). Целые числа по умолчанию могут быть произвольной длины.

Встроенные функции для работы с числами:

преобразование типов	<pre>int()</pre>
	float()
– определение типа	type()
- вычисление абсолютного значения	abs()
– возведение в степень	pow()
– выч. результата целочисленного деления и ос	статка divmod()
– округление	round()

Все *прочие функции* для работы с числами (математические) требуют подключения модуля math.

Примеры:

 $int(-22.3) \rightarrow -22;$ abs $(-3) \rightarrow 3;$ divmod $(17, 5) \rightarrow (3, 2);$

float(12) \rightarrow 12.0; pow(2, 3) \rightarrow 8; round(100.0/6, 3) \rightarrow 16.667.

print(2 ** 1000) ->

10715086071862673209484250490600018105614048117055336
07443750388370351051124936122493198378815695858127594
67291755314682518714528569231404359845775746985748039
34567774824230985421074605062371141877954182153046474
98358194126739876755916554394607706291457119647768654
2167660429831652624386837205668069376

type (1) -> int type (int(1.0)) -> int

type (1.0) -> float type (-1.2+3.7j + 5) -> complex

Операции с числами

Операция	Описание	
x + y	Сложение (сумма х и у)	
ж - у	Вычитание (разность х и у)	
х * у	Умножение (произведение х и у)	
х/у	Деление х на у (частное).	
	<u>Внимание</u> ! Если х и у целые, то результат всегда будет целым числом! (в Python 2) Для получения вещественного результата хотя бы одно из чисел должно быть вещественным.	
	<u>Пример:</u> 100/8 -> 12, а вот 100/8.0 -> 12.5	
х//у	Целочисленное деление (результат — целое число). Если оба числа в операции вещественные, получается вещественное число с дробной частью, равной нулю.	
	<u>Пример:</u> $100//8 \rightarrow 12$, $100//12.0 \rightarrow 8.0$	
х%у	Остаток от целочисленного деления х на у	
	<u>Пример:</u> 10%4 -> 2	
x**y	Возведение в степень (х в степени у).	
	<u>Примеры:</u> 2**3 -> 8, 2.3**(-3.5) -> 0.05419417057580235	
-x	Смена знака числа	

Операции с числами (продолжение)

Операция	Описание
<<	Сдвигает биты числа влево на заданное количество позиций.
	<u>Пример:</u> 2 << 2 -> 8.
>>	Сдвигает биты числа вправо на заданное число позиций.
	<u>Пример:</u> 11 >> 1 -> 5.
&	Побитовая операция И над числами
	<u>Пример:</u> 5 & 3 -> 1.
I	Побитовая операция ИЛИ над числами
	<u>Пример:</u> 5 3 -> 7
^	Побитовая операция ИСКЛЮЧАЮЩЕЕ ИЛИ
	<u>Пример:</u> 5 ^ 3 -> 6
~	Побитовая операция НЕ
	<u>Пример:</u> ~5 -> 6

Логические значения

Логические значения в Python представлены константами **True** (Истина) **False** (Ложь).

Замечание: Тип **bool** – подтип целочисленного типа для обозначения логических величин.

Основные логические операции и выражения

Операция	Описание
>	Условие "больше"
	<u>Пример:</u> 5 < 3 -> False; 3 < 5 -> True
<	Условие "меньше"
<=	Определяет, верно ли, что х меньше или равно у
	$\underline{\Pi pumep:}$ $\mathbf{x} = 3;$ $\mathbf{y} = 6;$ $\mathbf{x} <= \mathbf{y} \rightarrow \mathbf{True}$
>=	Определяет, верно ли, что х больше или равно у
==	Условие равенства
!=	Условие неравенства
	$\underline{\Pi pumep:}$ $\mathbf{x} = 2;$ $\mathbf{y} = 3;$ $\mathbf{x} != \mathbf{y} \rightarrow \mathbf{True}$

Основные логические операции и выражения (продолжение)

Операция	Описание
not x	Отрицание (условие х не выполняется)
	$\underline{\Pi pumep:}$ x = True; not x -> False
x and y	Логическое "И" (умножение). Чтобы выполнилось условие х and у, необходимо, чтобы одновременно выражения х и у были истинными.
	$\underline{\Pi pumep:}$ x = True; y = False; x and y -> False
x or y	Логическое "ИЛИ" (сложение). Чтобы выполнилось условие х ог у, необходимо, чтобы истинным было хотя бы одно из выражений.
	$\underline{\Pi pumep:}$ x = True; y = False; x or y -> True
x in A	Проверка принадлежности элемента х множеству (структуре) А
a < x < b	Эквивалентно $(x > a)$ and $(x < b)$

Примеры:

```
print((1 == 2) | (2 == 2)) -> True

print (1 < 2 < 3 < 4) -> True

print (1 < 3 < 3 < 4) -> False

'a' in 'abc' -> True

'A' in 'abc' -> False
```

Примеры: Неожиданный результат при сравнении вещественных чисел!

Логическим высказыванием (предикатом) называют любое повествовательное предложение, в отношении которого можно однозначно сказать, истинно оно или ложно.

Примеры:

Замечание:

Для Python истинным или ложным может быть не только логическое высказывание, но и объект:

- любое <u>число, не равное нулю</u>, или <u>непустой объект</u> интерпретируется как **True**.
- <u>числа, равные нулю</u>, <u>пустые объекты</u> и специальный объект <u>None</u> интерпретируются как False.

Приоритет операций

Оператор	Описание
lambda	лямбда-выражение
or	Логическое "ИЛИ"
and	Логическое "И"
not x	Логическое "НЕ"
in, not in	Проверка принадлежности
is, is not	Проверка тождественности
<, <=, >, >=, !=, ==	Сравнения
I	Побитовое "ИЛИ"
۸	Побитовое "ИСКЛЮЧИТЕЛЬНО ИЛИ"
&	Побитовое "И"
<<, >>	Сдвиги
+, -	Сложение и вычитание
*, /, //, %	Умножение, деление, целочисленное деление и остаток от деления
+x, -x	Положительное, отрицательное
~x	Побитовое НЕ
**	Возведение в степень
x.attribute	Ссылка на атрибут
х[индекс]	Обращение по индексу
х[индекс1:индекс2]	Вырезка
f(аргументы)	Вызов функции
(выражения,)	Связка или кортеж ²
[выражения,]	Список
{ключ:данные,}	Словарь

Структуры данных

Структуры данных используются для хранения связанных данных.

В Python определены такие структуры данных (составные типы):

- 1. Последовательности: обеспечивают индексирование и проверку принадлежности
 - изменяемые: позволяют добавлять или удалять элементы этой последовательности.
 - списки: упорядоченные наборы объектов, возможно объекты разных типов.
 - элементы списка разделяются запятыми и заключаются в квадратные скобки.

– неизменяемые

- строки: последовательности символов.
 - задаются при помощи одиночных или двойных кавычек.
 - можно указывать «многострочные» строки с использованием <u>тройных кавычек</u>.
- кортежи: упорядоченный набор объектов, возможно объекты разных типов.
 - обозначаются указанием элементов, разделённых запятыми;
 - по желанию их можно ещё заключить в круглые скобки.

Структуры данных (продолжение)

- **2.** Отображения (*словари*) устанавливают связи (ассоциации) "уникальный ключ значение".
 - пары ключ-значение указываются в словаре следующим образом:

```
d = \{key1 : value1, key2 : value2 \}.
```

- 3. Множества неупорядоченные наборы простых объектов.
 - присутствие объекта в наборе важнее порядка или того, сколько раз данный объект там встречается
 - можно осуществлять проверку принадлежности, определять, является ли данное множество подмножеством другого множества, находить пересечения множеств и так далее
 - задаются при помощи ключевого слова set

```
Dri = set(['Бразилия', 'Россия', 'Индия'])
    'Индия' in bri -> True
    'США' in bri -> False
    bric = bri.copy()
    bric.add('Китай')
    bric.issuperset(bri) -> True
    bri.remove('Россия')
    bri & bric -> {'Бразилия', 'Индия'}
```