XXIV Olimpíada de Matemática do Pacífico-Asiático

12 de Março de 2012

Duração da prova: 4 horas

Cada problema vale 7 pontos

Problema 1. Seja P um ponto no interior de um triângulo ABC, e sejam D, E, F a interseção da reta AP com o lado BC, da reta BP com o lado CA e da reta CP com o lado AB, respectivamente. Prove que se a área de cada um dos triângulos PFA, PDB e PEC é 1 então a área do triângulo ABC é 6.

Problema 2. Escreve-se, em cada casinha de um tabuleiro 2012×2012 , um número maior ou igual a 0 e menor ou igual a 1. O tabuleiro pode ser dividido em dois retângulos não vazios utilizando uma de suas linhas horizontais ou uma de suas linhas verticais. Suponha que, não importando como é feita a divisão, a soma de todos os números escritos em pelo menos um dos retângulos é menor ou igual a 1. Encontre o valor máximo da soma de todos os 2012×2012 números escritos.

Problema 3. Determine todos os pares de inteiros positivos (p, n) com p primo para os quais $\frac{n^p+1}{p^n+1}$ é um inteiro.

Problema 4. Seja ABC um triângulo acutângulo. Sejam D a projeção ortogonal de A sobre o lado BC, M o ponto médio de BC e H o ortocentro de ABC. A semirreta MH corta o circuncentro Γ de ABC em E e a reta ED corta Γ em $F \neq E$. Prove que $\frac{BF}{CF} = \frac{AB}{AC}$.

Problema 5. Seja n um inteiro maior ou igual a 2. Prove que se a_1, a_2, \ldots, a_n são reais tais que $a_1^2 + a_2^2 + \cdots + a_n^2 = n$, então

$$\sum_{1 \le i \le j \le n} \frac{1}{n - a_i a_j} \le \frac{n}{2}.$$

^{*} Essa prova também servirá para a seleção da equipe do Brasil na IMO.

^{*} Os problemas da prova devem ser mantidos CONFIDENCIAIS até eles serem divulgados no website oficial da APMO (http://www.mmjp.or.jp/competitions/APMO). Não divulgue ou discuta os problemas pela Internet até essa data. Não é permitido o uso de calculadoras.