FLS 6441 - Methods III: Explanation and Causation

Week 5 - Natural Experiments

Jonathan Phillips

April 2019

Classification of Research Designs

	Independence of Treatment Assignment?	Researcher Controls Treatment Assignment?
Controlled Experiments	✓	✓
Natural Ex- periments	✓	
Observational Studies		

Classification of Research Designs

		Independence of Treatment Assignment	Researcher Controls Treatment Assignment?
Controlled Experiments	Field Experiments	√	√
	Survey and Lab Experiments	√	√
Natural Experiments	Natural Experiments	√	
	Instrumental Variables	√	
	Discontinuities	√	
Observational Studies	Difference-in-Differences		
	Controlling for Confounding		
	Matching		
	Comparative Cases and Process Tracing		

Section 1

Natural Experiments

► Advantages:

► We don't need to run our own experiment!

► Advantages:

- We don't need to run our own experiment!
- Still have independence of potential outcomes from treatment

► Advantages:

- ▶ We don't need to run our own experiment!
- Still have independence of potential outcomes from treatment
- Treatment may be more 'realistic' than in a controlled experiment

► Advantages:

- ▶ We don't need to run our own experiment!
- Still have independence of potential outcomes from treatment
- Treatment may be more 'realistic' than in a controlled experiment

▶ Disadvantages:

▶ We can never be sure randomization worked

► Advantages:

- We don't need to run our own experiment!
- Still have independence of potential outcomes from treatment
- Treatment may be more 'realistic' than in a controlled experiment

Disadvantages:

- We can never be sure randomization worked
- ► We don't get to choose the treatments we want to evaluate

► Advantages:

- We don't need to run our own experiment!
- Still have independence of potential outcomes from treatment
- Treatment may be more 'realistic' than in a controlled experiment

► Disadvantages:

- We can never be sure randomization worked
- We don't get to choose the treatments we want to evaluate
- ► We don't get to choose the population and sample

► Causal Process Observations

The Problem of not picking your own treatment

Section 2

Randomized

► Does accountability also work for negative politician performance like corruption?

- ► Does accountability also work for negative politician performance like corruption?
- ▶ But corruption is hard to manipulate ethically

- ► Does accountability also work for negative politician performance like corruption?
- ▶ But corruption is hard to manipulate ethically
- What is the inferential problem of using observational data on corruption?

- ► Does accountability also work for negative politician performance like corruption?
- But corruption is hard to manipulate ethically
- What is the inferential problem of using observational data on corruption?
- ► We can also look at voters' information about corruption

- ► Does accountability also work for negative politician performance like corruption?
- But corruption is hard to manipulate ethically
- What is the inferential problem of using observational data on corruption?
- ► We can also look at voters' *information* about corruption
- What is the inferential problem of using information on corruption?

- ► **Population:** Brazilian municipalities with population less than 450,000
- ➤ **Sample:** 373 Municipalities with audits either side of 2004 elections and first-term mayors
- ► Treatment: CGU Audit before election
- ► Control: Audit after election
- ► Treatment Assignment Mechanism: Randomized (Caixa)
- ▶ Outcome: Vote Share for the Incumbent

- Methodology
 - ► IncumbVoteShare_{ms} = $\alpha + \beta$ AuditedEarly_{ms} + $X_{ms} + FE_s + \epsilon_{ms}$

- ► Methodology
 - ► IncumbVoteShare_{ms} = α + β AuditedEarly_{ms} + X_{ms} + FE_s + ϵ _{ms}
 - ► NO EFFECT

- ▶ The importance of a theoretical model:
 - The content of the information released varies
 - 2. People's expectations/priors vary
 - 3. For reports to have an effect, voters must receive it through the media
- ► It's the interaction of expectations and information content that matters

- ► Methodology
 - ► So expected results are conditional on content of the audit report

- ► Methodology
 - So expected results are conditional on content of the audit report
 - ► IncumbVoteShare_{ms} = $\alpha + \beta AuditedEarly_{ms} + \beta_2 Corruption_{ms} + \beta_3 AuditedEarly_{ms} * Corruption_{ms} + X_{ms} + FE_s + \epsilon_{ms}$

▶ Results

- Strong corruption information (2 violations) reduces re-election by 7% points
- Stronger corruption information (3 violations) reduces re-election by 14% points
- Strong corruption information (2 violations) with local radio reduces re-election by 11% points

- ► Did randomization work?
- Excludability: Is treatment the same in pre/post-election audits?
- ► Are corruption measures exogenous?

Section 3

Non-Randomized

Non-Randomized Natural Experiments

► How can we achieve causal inference without randomization?

Non-Randomized Natural Experiments

- ► How can we achieve causal inference without randomization?
- Our assumption is always "The treatment Assignment Mechanism is independent of potential outcomes"

Non-Randomized Natural Experiments

- ► How can we achieve causal inference without randomization?
- Our assumption is always "The treatment Assignment Mechanism is independent of potential outcomes"
- Can we find real-world treatment assignments that ignored potential outcomes?

Posner (2004)

► How can we achieve causal inference without randomization?

Posner (2004)

- ► How can we achieve causal inference without randomization?
- Our assumption is always "The treatment Assignment Mechanism is independent of potential outcomes"

Posner (2004)

- ► How can we achieve causal inference without randomization?
- Our assumption is always "The treatment Assignment Mechanism is independent of potential outcomes"
- Can we find real-world treatment assignments that ignored potential outcomes?