Contents

Chapter 9 표집분포

- 9.2 통계량의 확률분포
- 9.3 표본평균의 분포와 중심극한정리

• 통계학의 목표

: 관측한 자료(모집단의 일부)를 이용하여 모집단에 대한 추측을 하는 것

- 모집단에 대한 모든 자료를 얻는 것(전수조사)은 현실적으로 불가능
- 대신에 모집단의 일부 추출된 자료인 표본을 이용하여 모수에 대해 추론

01 통계량의 확률분포

- 용어
- 1) 모수 (parameter) : 수치로 표현되는 모집단의 특성 ex. 모평균 (μ) , 모표준편차 (σ)
- 2) 추론 (inference): 표본으로 부터 모집단의 성격(모수)을 알아내고자 하는 것
- 3) 통계량 (statistic) : 표본(관측한 자료)에 의해 결정되는 양 ex. 표본평균 (\overline{X}) , 표본분산(S^2)
- 통계량의 특징
- 1) 통계량의 값은 모수와 통상적으로 같지 않다. ex. $\overline{X} \neq \mu$
- 2) 통계량은 $X_1, X_2, ..., X_n$ 의 함수이다.
- 3) 통계량은 확률변수이다.

- 통계량의 확률분포 (sampling distribution, 표접분포)
 1) 임의표본(random sample) 서로 독립이고 모집단과 같은 분포를 갖도록 모집단으로 부터 임의로 추출된 표본
- 표집분포 : 통계량의 확률분포

표본평균의 분포

- 예제 1

어느 모집단이 세 개의 수 2, 3, 4로 이루어져 있는데 이 수치들은 세 주택의 방의 개수들을 나타내는 것이다. 이 때 X를 각 주택의 방의 개수라고 하면 X는 2, 3, 4 중 하나의 값을 갖게 된다. 세 주택으로부터 두주택을 복원 추출해서 X_1, X_2 를 각각 첫번째와 두번째 추출된 주택의 방의 개수라고 할 때, 표본평균 \overline{X} 의 분포는 X_1, X_2 의 분포에 의해 결정되는데 X_1 의 분포는 X의 분포와 일치하고, X_2 의 분포는 복원추출의 특성상 X_1 의 분포와 같이 모집단의 분포인 X의 분포를 따르게 된다. 확률변수 X의 분포는 각 값 2, 3, 4에 1/3씩의 확률을 주는 확률분포를 가지므로 (X_1, X_2) 가 취하는 모든 값 (x_1, x_2) 과 그에 대응하는 \overline{x} 값과 확률들은 다음과 같이 정리될 수 있다.

(x_1, x_2)	(2,2)	(2,3)	(2,4)	(3,2)	(3,3)	(3,4)	(4,2)	(4,3)	(4,4)
\bar{x}	2	2.5	3	2.5	3	3.5	3	3.5	4
확률	1/9	1/9	1/9	1/9	1/9	1/9	1/9	1/9	1/9

$ar{X}$ 가 취하는 값 $(ar{x})$	2	2.5	3	3.5	4	합계
$f(\bar{x})$	1/9	2/9	3/9	2/9	1/9	1

亚目是亚:至河际의 对多艺艺! **Chapter 9**

02 표본평균의 분포와 중심극한정리

$$ar{\mathcal{L}}$$
본평균 $(ar{X})$ 의 기대값과 분산: 모집단의 기대값이 μ

2) 표본평균(
$$\bar{X}$$
)의 기대값과 분산: 모집단의 기대값이 μ , 분산이 σ^2 일 때, ① $E(\bar{X}) = E\left(\frac{1}{n}\sum X_i\right) = \frac{1}{n}\sum E(X_i) = \frac{1}{n}\sum \mu = \mu$

$$Var(\bar{X}) = Var\left(\frac{1}{n}\sum X_i\right) = \frac{1}{n^2}\sum Var(X_i) = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}$$

(2)
$$Var(X) = Var\left(\frac{1}{n}\sum X_i\right) = 3$$

(3) $sd(\bar{X}) = \sqrt{Var(\bar{X})} = 3$

$$3 \qquad sd(\bar{X}) = \sqrt{Var(\bar{X})} = \frac{\sigma}{n}$$

3) 성규모집단에서의 표본평균 분포
: 확률분포가
$$X \sim N(\mu, \sigma^2)$$
인 모집단에서 n 개의 표본을 임의로 추출 할 때, 그 표본평균 X 의 분포-

E(X+Y)

- 모평균의 추론

 $\bar{X} \sim N(\mu, \frac{\sigma^2}{m})$ 예제 2

一种是国3 431 差 年 杂朴。