

TECHNISCHE UNIVERSITÄT BERLIN

Fakultät IV - Institut für Energie- und Automatisierungstechnik Fachgebiet Energieversorgungsnetze und Integration Erneuerbarer Energien

LABORVERSUCH AUSGLEICHSVORGANG 3. Labortermin

Protokoll zum Praktikum "elektrische Netzwerke"

vorgelegt von: Robert Focke

Matrikelnummer: 369264

Betreuer: Michael Smirnov

Labortermin: Mittwoch 14:00-16:00

eingereicht am: 17. Juni 2016

Eidesstattliche Erklärung

Ich, Robert Focke, versichere hiermit an Eides statt, dass ich mein Protokoll zum Praktikum "elektrische Netzwerke" mit dem Thema

LABORVERSUCH AUSGLEICHSVORGANG - 3. Labortermin

selbständig und eigenhändig angefertigt und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Berlin,	den	17.	Juni	2016	
Rober	т Го	ЭСК	Œ		

Inhaltsverzeichnis

1 Theorie						
	1.1 Resonanz	1				
	1.4 Logarithmische Darstellung					
2	Durchführung	2				
3	3 Mess- und Rechenergebnisse					
4	1 Simulationsergebnisse					
5	5 Interpretation					
Lit	teratur	1				

1 Theorie

1.1 Resonanz

Vorgänge, bei denen ein schwingfähiges System mit seiner Eigenfrequenz angeregt wird, werden als Resonanz bezeichnet.

Beispiele:

- Schaukeln verläuft sinusförmig, und diese kann deshalb optimiert werden durch Resonanz. Dann kann man z.B. statt jedes Mal die Schaukel anzuschubsen, nur jedes zweite Mal.
- Die Tonerzeugung von Musikinstrumente
- Ebben und Wellen im Meer

1.2 Eingangsstrom und Gesamtimpedanz

Das Verhalten von den Eingangstrom und Gesamtimpedanz bei verschiedenen Netzwerktopologien unter Anregung von der Resonanzfrequenz:

- Reihenschaltung
 - $-I_E$ wird maximal
 - \underline{Z}_{GES} wird minimal
- Parallelschaltung
 - $-I_E$ wird minimal
 - \underline{Z}_{GES} wird maximal

1.3 Resonanzfrequenz

Berechnung der Resonanzfrequenz der Schaltung:

Gesamtimpedanz der Schaltung:

$$\underline{Z} = R + j(\omega L - \frac{1}{\omega C}) \tag{1}$$

Wir untersuchen nun den Fall wo $\omega L - \frac{1}{\omega C} = 0$ also:

$$\omega_0 L - \frac{1}{\omega_0 C} = 0$$

$$\Longrightarrow \omega_0 = \frac{1}{\sqrt{LC}}$$

$$\omega_0 = 461265.60$$
(2)

Wir wissen auch, dass:

$$\omega_0 = f_0 2\pi$$

$$\implies f_0 = \frac{\omega_0}{2\pi}$$

$$f_0 \approx 73 \,\text{kHz}$$
(3)

1.4 Logarithmische Darstellung

Die logarithmische Darstellung ist eine Achsenbeschriftung, bei der in einer linearen Teilung nicht der Zahlenwert einer darzustellenden Größe aufgetragen wird, sondern der Logarithmus ihres Zahlenwertes.

• Vorteile:

 Wenn eine sehr große Wertebereich vorhanden ist, werden Zusammenhänge bei kleinen Zahlenwerte in der logarithmischen Darstellung überschaulicher sein als bei der linearen Darstellung.

• Nachteile:

- Null und negative Werte können nicht dargestellt werden
- Die logarithmische Darstellung ist weniger intuitiv als die lineare Darstellung.

2 Durchführung

Die folgende Schaltung würde im Labor gebaut:

Abbildung 1: Die im Labor gebaute Schaltung [1]

Die Spannung am Widerstand würde dann für verschiedene Frequenzen gemessen. Die Eingansspannung würde im Bereich $9.5\,\mathrm{V}$ bis $10.5\,\mathrm{V}$ gestellt, da bei Änderungen von der Frequenz die Eingangsspannung sich ändert.

Danach würde die Schaltung in LTSpice simuliert, und die simulierte Ergebnisse gespeichert.

3 Mess- und Rechenergebnisse

Tabellen 1 un 2 stellen die Mess- und Rechenergebnisse aus dem Labor dar. Die foldende Formeln würden benutzt:

- $I = \frac{U_R}{R}$
- $|\underline{Z}| = \frac{U_E}{I}$

4 Simulationsergebnisse

Die folgende Graphen vergleichen die Simulationsergebnisse und die berechnete Ergebnisse aus dem Labor.

Abbildung 2: Vergleich der Impedanzen [1]

Abbildung 3: Vergleich der Ströme [1]

5 Interpretation

Die in diesem Laborversuch untersuchte Schaltung, ist eine Reihe RCL Schaltung. Aus der Theorie, wissen wir, dass Reihenschaltungen bei der Resonanzfrequenz ihren maximalen Strom und minimale Impedanz erreichen. Das ist in den Graphen ganz leicht zu sehen. Bei ungefähr 75 kHz hat der Impedanzgraph seinen Tiefstpunkt und der Stromgraph seinen Höchstpunkt.

Die simulierte Ergebnisse und die Ergebnisse aus dem Labor sind sehr ähnlich zu einander. Die Ursache der Unterschiede ist wahrscheinlich ungenaue Messungen und imperfekte Bauelemente.

Literatur

- [1] Abbildung 1: Peter Teske, Christian Gornig, Laborpraktikum 3: Resonanz am RLC-Schwingkreis, TU Berlin, 2016.
- [2] Normenausschuss Technische Grundlagen (NATG) im DIN, DIN 1338:2011-03, Formelschreibweise und Formelsatz, DIN Deutsches Institut für Normung e. V., Berlin, 2011-03.
- [3] Resonanz Wikipedia, https://de.wikipedia.org/wiki/Resonanz, Wikipedia, 15.06.2016.

Tabelle 1: Gemessene und berechnete Werte

F kHz	$U_E V$	$U_R \text{ mV}$	U_R V	I A	$\underline{\mathbf{Z}} \Omega$
1	10	60	0.06	0.0012	8333.3333333333
2	10.2	100	0.1	0.002	5100
3	10.2	140	0.14	0.0028	3642.8571428572
4	10.2	180	0.18	0.0036	2833.3333333333
5	10.2	216	0.216	0.00432	2361.1111111111
6	10.2	252	0.252	0.00504	2023.8095238095
7	10.2	288	0.288	0.00576	1770.8333333333
8	10.2	320	0.32	0.0064	1593.75
9	10.2	352	0.352	0.00704	1448.8636363636
10	10.2	384	0.384	0.00768	1328.125
15	10.2	576	0.576	0.01152	885.4166666667
20	10	768	0.768	0.01536	651.0416666667
25	10	980	0.98	0.0196	510.2040816327
30	9.8	1201	1.201	0.02402	407.9933388843
35	10.2	1521	1.521	0.03042	335.3057199211
40	9.8	1921	1.921	0.03842	255.07548152
45	9.8	2321	2.321	0.04642	211.1158983197
50	9.8	2881	2.881	0.05762	170.0798333912
55	10	3761	3.761	0.07522	132.943366126
60	10	4801	4.801	0.09602	104.144969798
65	10	6321	6.321	0.12642	79.1014080051
66	9.8	6481	6.481	0.12962	75.6056164172
67	9.8	6801	6.801	0.13602	72.0482282017
68	10	7401	7.401	0.14802	67.5584380489
69	10	7601	7.601	0.15202	65.7808183134
70	10	8001	8.001	0.16002	62.4921884764
71	10	8201	8.201	0.16402	60.9681746129
72	10	8601	8.601	0.17202	58.1327752587
73	9.8	8801	8.801	0.17602	55.6754914214
74	9.8	8801	8.801	0.17602	55.6754914214
75	10	9001	9.001	0.18002	55.5493834018
76	10	9201	9.201	0.18402	54.3419193566

Tabelle 2: Gemessene und berechnete Werte

F kHz	$U_E V$	$U_R \text{ mV}$	U_R V	ΙA	$\underline{\mathbf{Z}} \Omega$	
77	10.2	9201	9.201	0.18402	55.4287577437	
78	10.2	9001	9.001	0.18002	56.6603710699	
79	10	8801	8.801	0.17602	56.8117259402	
80	10.2	8801	8.801	0.17602	57.947960459	
85	10	7201	7.201	0.14402	69.4348007221	
90	10.2	6201	6.201	0.12402	82.2447992259	
95	10.2	5001	5.001	0.10002	101.9796040792	
100	10.2	4401	4.401	0.08802	115.8827539196	
105	10	3801	3.801	0.07602	131.5443304394	
110	10	3201	3.201	0.06402	156.201187129	
120	10.2	2801	2.801	0.05602	182.0778293467	
130	10.2	2401	2.401	0.04802	212.4114952103	
140	10.2	2201	2.201	0.04402	231.7128577919	
150	10.2	1841	1.841	0.03682	277.0233568713	
160	10	1641	1.641	0.03282	304.6922608166	
170	10	1481	1.481	0.02962	337.60972316	
180	10.2	1361	1.361	0.02722	374.7244673035	
190	10.2	1281	1.281	0.02562	398.1264637002	
200	10	1161	1.161	0.02322	430.6632213609	
250	10.2	920	0.92	0.0184	554.347826087	
300	10.2	720	0.72	0.0144	708.3333333333	
350	10.2	600	0.6	0.012	850	
400	10	520	0.52	0.0104	961.5384615385	
450	10	440	0.44	0.0088	1136.3636363636	
500	10	440	0.44	0.0088	1136.3636363636	
600	10	360	0.36	0.0072	1388.8888888889	
700	10	320	0.32	0.0064	1562.5	
800	10	280	0.28	0.0056	1785.7142857143	
900	10	240	0.24	0.0048	2083.3333333333	
1000	10	200	0.2	0.004	2500	