IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re PATENT APPLICATION of:

LEE

Appln. No. 08/966,223

Group Art Unit: 1645

72798

Filed: November 7, 1997

Examiner: M.P. Allen

FOR:

210 APR 2 4 1998 RULE

É 132 DECLARATION

I, Ted spendal, declare and state as follows:

- (1) I reside at Börjegatan 45 B, S-752 29 Uppsala, Sweden.
- (2) I am a Professor and Chairman in the Department of Developmental Biology, Faculty of Medicine, Uppsala University since 1988. I hold a Ph.D. (Doctor of Philosophy) degree which was earned from Uppsala University, Sweden in 1976. A copy of my curriculum vitae is attached.
- (3) I am an author of over 100 peer-reviewed publications in the field of neuronal growth factors and neurotrophic factors.
- (4) Recombinant human GDF-1 (rhGDF-1) was provided by Michael Jarpe of Cambridge NeuroScience for use in the assays reported herein.

- (5) On information and belief, rhGDF-1 was produced as follows. The cDNA of human GDF-1 (amino acid residues 255 to 373) was cloned into pRSET (Invitrogen). The construct was designed to produce a fusion protein which adds 34 amino acid residues to the N-terminus of rhDGF-1 including six histidine residues. There is an enterokinase cleavage site between the N-terminal extension and the rhGDF-1 sequence to facilitate removal of the tag. However, this extension was not removed for the assays reported herein.
- (6) On information and belief, the above-described expression construct was inserted into the *E. coli* cell line BL21(DE3)pLysS to induce rhGDF-1 expression. Expression was induced by the addition of IPTG and was allowed to proceed for 4 hours. rhGDF-1 was produced in inclusion bodies.
- (7) On information and belief, the inclusion bodies containing rhGDF-1 were solubilized and folded in 6 M guanidine and 100 mM dithiothreitol. Reducing agent and denaturing agent was removed by reverse phase HPLC. The protein was dried down in a Speed Vac and resuspended in 8 M urea at 5 mg/ml protein concentration. The protein solution was then diluted 1/100 to a final concentration of 50 μ g/ml in refolding buffer of 10 mM reduced glutathione, 1 mM oxidized glutathione, and 50 mM Tris buffer (pH 9.0). The rhGDF-1 protein was allowed to refold for 20 hours at 25°C.

- (8) On information and belief, a sample of the refolded rhGDF-1 protein was then analyzed by reducing and non-reducing SDS-PAGE. The gel was stained with Coomassie and the proportion of dimer was determined by densitometry. The rhGDF-1 dimer was found to be approximately 20% of total protein. The rhGDF-1 preparation was stored at -80°C.
- (9) The following assays were performed under my direction and the results were analyzed by me.
- using sympathetic ganglia from embryonic day 9 chicken embryo explanted into a collagen gel. See Ebendal et al., Journal of Neuroscience Research, vol. 40, pp. 276-284 for a description of the use of explanted ganglia in collagen gels. Neurotrophin-3 (NT-3) only weakly stimulates sympathetic fibre outgrowth in this assay (see panel d of Fig. 4 in Ernfors et al., Proceedings of the National Academy of Science, U.S.A., vol. 87, pp. 5454-5458).

 Members of the TGF-beta superfamily of proteins potentiate the effects of NT-3 in this assay.
- (11) The sample of GDF-1 was diluted 100-fold and then further diluted in culture medium with 1% fetal calf serum as a carrier. GDF-1 was assayed on sympathetic ganglia at a

concentration of 2.5 to 250 ng/ml. The ganglia were examined after two days of incubation using darkfield microscopy. No fibre outgrowth was evoked by GDF-1 at any of these concentrations.

- (12) Therefore, the potentiating effect of GDF-1 on neurotrophin activity could be assessed by comparing fibre outgrowth induced by NT-3 in the presence or the absence of GDF-1. Any increased fibre outgrowth caused by the combination of NT-3 and GDF-1 would be due to potentiation, instead of the effects of GDF-1 alone.
- (13) The potentiating effect of GDF-1 in the sympathetic fibre outgrowth assay (Ernfors et al., id.) was determined with human NT-3 (Austral Biologicals) at a concentration of 2 ng/ml and GDF-1 at concentrations between 0 to 250 ng/ml. Fibre outgrowth density was scored in a blinded fashion by two independent observers with culture dishes arranged in random order. Scores were recorded on a scale from 0 (no fibres) to 5 (very high density of fibres forming a circular halo around the explanted nervous tissue). The assay was repeated three times. The results below represent the mean of the scores given for each culture by each observer.

LEE - Appln. No. 08/966,223

	GDF-1 concentration	Mean Score
Medium Only	0 ng/ml	0.0
NT-3 alone	0 ng/ml	1.7
GDF-1 alone	250 ng/ml	0.0
NT-3 + GDF-1	250 ng/ml	3.1
NT-3 + GDF-1	50 ng/ml	2.3
NT-3 + GDF-1	5 ng/ml	1.8

- (14) The combination of GDF-1 at 250 ng/ml with NT-3 shows a significant potentiation effect in comparison to the response obtained with NT-3 alone (statistically significant difference at P < 0.001 using Mann-Whitney U test). There is also a clear trend of potentiation of NT-3 by GDF-1 at 50 ng/ml, although this difference is not statistically significant in the present format of the assay.
- (15) The specific activity of GDF-1 in the assay shows a reasonable dose-response relationship between 50 to 250 $\,$ ng/ml.
- (16) In view of the above results, I conclude that GDF-1 has biological activity on neurons similar to members of the TGF-beta superfamily of proteins.
- (17) I declare further that all statements made herein of my own knowledge are true and that all statements made on

information and belief are believed true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Ted Ebendal

* April 9 1998

08/400233

CURRICULUM VITAE for TED EBENDAL

Born: September 21, 1948. Stockholm, Sweden

Sex: Male

Marital status: Married, 1 child (born 1974)

Address: Börjegatan 45 B, S-752 29 UPPSALA, Sweden

Education/academic degrees:

1971 Bachelor of Science. Uppsala University, Sweden

1972 Master of Science, Uppsala University

1976 Doctor of Philosophy, Uppsala University

1977 Docent in Zoology, Uppsala University

1987 Professor, Faculty of Medicine, Uppsala University

Professional Experience:

1972-76	Teaching Instructor in Zoology, Uppsala University
1977	A seistant Professor in Zoology, Uppsala University
1977	Visiting scientist at Strangeways Research Laboratory, Cambridge, England
1977-81	Docent (Associate Professor) appointment in Zoology, Uppsala University
1981-87	Research Associate Professor in Neurobiology at the Swedish Natural Science
	Research Council
1988-	Full Professor of Developmental Biology, Faculty of Medicine, Uppsala University

Scientific Awards: King Oscar Prize, Uppsala University (1982). Erik K. Fernström's prize to especially promising young scientists (1991).

Invited Oral Presentations have been given at about 80 international meetings.

Current research interests: Molecular and developmental neuroscience, development and repair mechanisms in the nervous system, neuronal growth factors and their receptors including NGF, NT-3, GDNF and BMPs. Homologous recombination in transgenic mice using embryonic stem cells.

Administrative and scientific duties at the Faculty of Medicine, Uppsala University
Chairman at the Dept of Developmental Biology (1988-). Member of the Medical
Faculty Board (1988-93). Member of various scientific priority committees etc
(1988-), Vice Chairman of Neuroscience Center at Uppsala University, (1989-1995).
Chairman Uppsala University Animal Research Board (1997-)

Pre-doctoral advisor: Supervised 11 PhD students of which 8 have finished their PhD thesis and three are on the way.

Post-doctoral advisor for: Wilma Friedman (USA, 1986-88), Reg Williams (Australia, 1991-94).

Organization of scientific meetings, courses etc: Organized EMBO and BMC Summer School courses for graduate students in Uppsala and at the Karolinska Institute and participated in the organization committees for international meetings in Sweden and abroad (ISDN Biennial Meeting in Tampere 1996, 5th NGF Meeting 1998).

Referee assignments etc: Exp. Cell Res., Exp. Brain Res.

Associate editor: J. Neurosci. Res., Int. J. Dev. Neurosci, Neuron, Alzheinmer's Disease.

Reviewer of applications for grants and research positions: Uppsala University, Karolinska Institute, Stockholm University, Umeå University. MRC Sweden, NSF USA and various Swedish Universities.

Member of scientific committees: The Swedish Foundation for Brain Research (1995-), The International Human Frontier Science Program (Brain Functions 1996-), The Royal Swedish Academy of Sciences National Committee on Biology (1997-).

Major funding (Principal Investigator): Swedish NFR (SEK 900,000/yr for 1997 to 1999). Publications: Over 300 scientific papers, reviews and reports in the area of developmental neuroscience

SELECTED LIST OF PAPERS PUBLISHED BY TED EBENDAL

1 Ebendal, T. & Hedlund, K.-O. 1974. Histology of the chick embryo trigeminal ganglion and initial effects of its cultivation with and without nerve growth factor. Zoon 2: 25-35.

- Ebendal, T. 1974. Scanning electron microscopy of the chick embryo nerve fibres and heart fibroblasts on collagen substrata in vitro. Zoon 2: 99-104.
- Ebendal, T. & Hedlund, K.-O. 1975. Effects on nerve growth factor on the chick embryo trigeminal ganglion in culture. Zoon 3: 33-47.
- 5 Ebendal, T. 1975. Effects of nerve growth factor on the synthesis of nucleic acids and proteins in cultured chick embyo trigeminal ganglia. Zoon 3: 159-167.
- 6 Ebendal, T. & Jacobson, C.-O. Human glial cells stimulating outgrowth of axons in cultured chick embryo ganglia. Zoon 3: 169-172.
- 7 Ebendal, T. 1976. The relative roles of contact inhibition and contact guidance in orientation of axons extending on aligned collagen fibrils in vitro. Exp. Cell Res. 98: 159-169.
- 12 Ebendal, T. 1977. Extracellular matrix fibrils and cell contacts in the chick embryo: Possible roles in orientation of cell migration and axon extension. Cell Tissue Res. 175: 439-458.
- 13 Ebendal, T. 1976. Migratory mesoblast cells in the young chick embryo examined by scanning electron microscopy. Zoon 4: 101-108.
- 14 Ebendal, T. & Jacobson, C.-O. 1977. Tissue explants affecting extension and orientation of axons in cultured chick embryo ganglia. Exp. Cell Res. 105: 379-387.
- Ebendal, T. & Jacobson, C.-O. 1977. Tests of possible role of NGF in neurite outgrowth stimulation by glial cells and heart explants in culture. Brain Res. 131: 373-378.
- 17 Ebendal, T. 1977. A cover glass dish for cell cultures intended for observation with inverted microscopes. Zoon 5: 73-75.
- 18 Ebendal, T. & Heath, J.P. 1977. Self-contact inhibition of movement in cultured chick heart fibroblasts. Exp. Cell Res. 110: 469-473.
- 19 Schultzberg, M., Ebendal, T., Hökfelt, T., Nilsson & Pfenninger, K. 1978. Substance P-like immunoreactivity in cultured spinal ganglia from chick embryos. J. Neurocytol. 7: 107-117.
- 20 Dunn, G. A. & Ebendal, T. 1978. Contact guidance on oriented collagen gels. Exp. Cell Res. 111: 475-479.
- Dunn, G. A. & Ebendal, T. 1978. Some aspects on contact guidance. In: Formshaping Movements in Neurogenesis (ed. C.-O. Jacobson and T.Ebendal), Zoon 6: 217-223. Almqvist & Wiksell International, Stockholm.
- 23 Hedlund, K.-O. & Ebendal, T. 1978. Different ganglia from the chick embryo in

studies on neuron development in culture. In: Formshaping Movements in Neurogenesis (ed. C.-O. Jacobson and T. Ebendal), Zoon 6: 217-223. Almqvist & Wiksell International, Stockholm.

- 24 Ebendal, T., Jordell-Kylberg, A. & Söderström, S. 1978. Stimulation by tissue explants on nerve fibre outgrowth in culture. In: Formshaping Movements in Neurogenesis (ed. C.-O. Jacobson and T. Ebendal), Zoon 6: 235-243. Almqvist & Wiksell International, Stockholm.
- 27 Ebendal, T. 1979. Stage-dependent stimulation of neurite outgrowth exerted by nerve growth factor and chick heart in cultured embryonic ganglia. Dev. Biol. 72: 276-290.
- Ebendal, T., Belew, M., Jacobson, C.-O. & Porath, J. 1979. Neurite outgrowth elicited by embryonic chick heart: partial purification of the active factor. Neurosci. Lett. 14: 91-95.
- 29 Olson, L., Ebendal, T. & Seiger, Å. 1979. NGF and anti-NGF: Evidence against effects on fiber growth in locus coeruleus from cultures of perinatal CNS tissues. Dev. Neurosci. 2: 160-176.
- Löfberg, J. & Ebendal, T. 1979. Substrate topography and shape of motile cells. Experientia 36: 508-510.
- Olson, L., Seiger, Å., Ebendal, T. & Hoffer, B. 1980. Comparisons of nerve fiber growth from three major catecholamine producing cell systems: adrenal medulla, superior cervical ganglion and locus coeruleus. In: Histochemistry and Cell Biology of Autonomic Neurons, SIF cells and Paraneurons (ed. O. Eränkö et al.), pp. 27-34. Raven Press, N.Y.
- Jacobson, C.-O., Ebendal, T., Hedlund, K.-O. & Norrgren, G. 1981. Factors stimulating neurite outgrowth in chick embryo ganglia. In: Control Mechanisms in Animal Cells - Specific Growth Factors (ed. I.. Jimenez de Azua et al.), pp. 325-332. Raven Press, N.Y.
- Hedlund, K.-O. & Ebendal, T. 1980. The chick embryo nodose ganglion: effects of nerve growth factor in culture. J. Neurocytol. 9: 665-682.
- 36 Ebendal, T., Olson, L., Seiger, Å. & Hedlund, K.-O. 1980. Nerve growth factors in the rat iris. Nature (London) 286: 25-28.
- Norrgren, G., Ebendal, T., Belew, M., Jacobson, C.-O. & Porath, J. 1980. Release of nerve growth factor by human glial cells in culture. Exp. Cell Res. 130: 31-39.
- 41 Ebendal, T. 1981. Control of neurite extension by embryonic heart explants.
 J. Embryol. Exp. Morphol. 61: 289-301.
- 42 Ebendal, T. 1982. Orientational behaviour of extending neurites. In: Cell Behaviour (ed. R. Bellairs, A.S.G. Curtis & G. Dunn) pp. 281-297. Cambridge University Press.
- Olson, L., Björklund, H., Ebendal, T., Hedlund, K.-O. & Hoffer, B. 1981. Factors regulating growth of catecholamine-containing nerves, as revealed by transplantation experiments. Ciba Found. Symp. 83: 213-231.
- 49 Richardson, P.M. & Ebendal, T. 1982. Nerve growth activities in rat peripheral

nerve. Brain Res. 246: 57-64.

- 50 Carri, N.G. & Ebendal, T. 1983. Organotypic cultures of neural retina: neurite outgrowth stimulated by brain extracts. Dev. Brain Res. 6: 219-229.
- 52 Ebendal, T., Hedlund, K.-O., & Norrgren, G. 1982. Nerve growth factors in chick tissues. J. Neurosci. Res. 8: 153-164.
- 53 Ebendal, T., Norrgren, G. & Hedlund, K.-O. 1983. Nerve growth-promoting activity in the chick embryo: Quantitative aspects. Med. Biol. 61: 65-72.
- 56 Ebendal, T. 1984. Nerve growth-promoting activities in embryonic and adult tissues. In: Organizing Principles of Neural Development (ed. S.C. Sharma), pp. 93-107, NATO ASI Series A: Vol. 78, Plenum Press, N. Y.
- Norrgren, G., Ebendal, T., Gebb, C. & Wikström, H. 1984. The use of Cytodex 3 microcarriers and reduced-serum media for the production of nerve growth promoters from chicken heart cells. Devel. Biol. Stand. 55: 43-51.
- 58 Ebendal, T., Norrgren, G., Carri, N.G. & Belew, M. 1985. Nerve growth factors in peripheral tissues and CNS. In: Upper Motor Neuron Functions and Dysfunctions, Recent Achievements in Restorative Neurology. Vol. I (ed. Sir John Eccles & M.R. Dimitrijevic), pp. 311-320. Karger, Basel.
- 59 Ebendal, T., Olson, L., Seiger, Å. & Belew, M. 1984. Nerve growth factors in chick and rat tissues. In: Cellular and Molecular Biology of Neuronal Development (ed. I. B. Black) pp. 231-242. Plenum Press, New York.
- 60 Ebendal, T., Olson, L. & Seiger, Å. 1983. The level of nerve growth factor (NGF) as a function of innervation: A correlative radioimmunoassay and bioassay study of the rat iris. Exp. Cell Res. 148: 311-317.
- Norrgren, G., Wikström, H. & Ebendal, T. 1984. Production of nerve growth promoting factor(s) from chick embryo heart cells. Use of Cytodex 3 microcarriers and serum-free media. Exp. Cell Res. 152: 427-435.
- 71 Ayer-LeLièvre, C.S., Ebendal, T., Olson, L. & Seiger, Å. 1983. Localization of nerve growth factor-like immunoreactivity in rat nervous tissue. Med. Biol. 61: 296-304.
- 73 Olson, L., Ebendal, T. & Seiger, Å. 1984. Intraocular grafting of cultured brain tissue: Growth, vascularizaion and neuron survival in locus coeruleus and cortex cerebri. Neurosci. Lett. 47: 139-144.
- 74 Ebendal, T. & Lundin, L.-G. 1984. Nerve growth factor in three neurologically deficient mouse mutants (Swl, Sp and dt^J). Neurosci. Lett. 50: 121-126.
- 75 Richardson, P.M., Ebendal, T. & Riopelle, R. 1985. Nerve growth and nerve growth factor within peripheral nervous tissue. In: Neural Grafting in the Mammalian CNS (ed. A. Björklund and U. Stenevi), pp. 319-327. Elsevier.
- 76 Olson, L., Strömberg, I. Herrera-Marschitz, Ungerstedt, U. & Ebendal, T. 1985. Adrenal medullary tissue grafted to the dopamine-denervated rat striatum: Histochemical and functional effects of additions of nerve growth factor. In: Neural Grafting in the Mammalian CNS. (ed. A. Björklund and U. Stenevi), pp. 505-518. Elsevier.

- 78 Ebendal, T., Lärkfors, L., Ayer-LeLievre, C., Seiger, Å. & Olson, L. 1985. New approaches to detect NGF-like activity in tissues. In: Hormones and Cell Regulation, Vol. 9 (ed. J.E. Dumont, B. Hamprecht & J. Nunez), pp. 361-376. Elsevier, Amsterdam.
- 79 Strömberg, I., Ebendal, T., Seiger, Å. & Olson, L. 1985. Nerve fiber production by intraocular adrenal medullary grafts: Stimulation by nerve growth factor or sympathetic denervation of the host iris. Cell Tissue Res. 241: 241-249.
- 80 Strömberg, I., Herrera-Marschitz, M., Ungerstedt, U., Ebendal, T. & Olson, L. 1985.

 Chronic implants of chromaffin tissue into the dopamine-denervated striatum. Effects of NGF on survival, fiber growth and rotational behavior. Exp. Brain Res. 60: 335-349.
- 82 Norrgren, G. & Ebendal, T. 1986. Nerve growth factor in medium conditioned by embryonic chicken heart cells. Int. J. Devl. Neurosci. 4: 41-49.
- 95 Carri, N.G. & Ebendal, T. 1986. Selected optic lobe extracts stimulating retinal neurite outgrowth. In: Progress in Developmental Biology, part A (ed. H.C. Slavkin). Alan R. Liss, Inc., N.Y., pp. 119-122.
- 96 Belew, M. & Ebendal, T. 1986. Chick embryo nerve growth factor. Fractionation and biological activity. Exp. Cell Res. 167: 550-558.
- 97 Carri, N.G. & Ebendal, T. 1986. A method for explantation of selected areas of the neural retina. Anat. Rec. 214: 226-229.
- Whittemore, S.R., Ebendal, T., Lärkfors, L., Seiger, Å., Strömberg, I. & Persson, H. 1986. Developmental and regional expression of β nerve growth factor messenger RNA and protein in the rat central nervous system. Proc. Natl. Acad. Sci. USA 83: 817-821.
- Thompson, W.J., Bicker, G., Changeux, J.-P., Ebendal, T.L., Heisenberg, M., Henderson, C.E., Huttner, W., Kandel, E.R., Mallet, J.B., Stent, G.S., Thoenen, H. & Yaniv, M. 1987. Activity-dependent regulation of gene expression (Group report). In: The Neural and Molecular Bases of Learning (ed. J.-P. Changeux & M. Konishi). Dahlem Workshop Reports, Life Sciences 38: 13-29. John Wiley, Chichester.
- 100 Whittemore, S.R., Lärkfors, L., Ebendal, T., Ericsson, A., Holets, V.R. & Persson, H. 1987. Increased β-nerve growth factor messenger RNA and protein in neonatal rat hippocampus following specific cholinergic lesions. J. Neurosci. 7: 244-251.
- 101 Carri, N.G. & Ebendal, T. 1987. Target-field specificity in the induction of retinal neurite outgrowth. Dev. Brain Res. 31: 83-90.
- 102 Lärkfors, L. & Ebendal, T. 1987. Highly sensitive immunoassays for β-nerve growth factor. J. Immunol. Meth. 97: 41-47.
- 103 Ebendal, T., Larhammar; D. & Persson, H. 1986. Structure and expression of the chicken β-nerve growth factor gene. EMBO J. 5: 1483-1487.
- 104 Dimberg, Y. & Ebendal, T. 1987. Effects of nerve growth factor on autonomic neurons in the chick embryo. A stereological study: Int. J. Devl. Neurosci. 5: 195-205.

105 Lärkfors, L., Strömberg, I., Ebendal, T. & Olson, L. 1987. Nerve growth factor protein level increases in the adult rat hippocampos after a specific cholinergic lesion. J. Neurosci. Res. 18: 525-531.

- 106 Olson, L., Ayer-LeLievre, C., Ebendal, T. & Seiger, Å. 1987. Nerve growth factor-like immunoreactivities in rodent salivary glands and testis. Cell Tissue Res. 248: 275-286.
- 107 Olson, L., Ayer-LeLievre, C., Ebendal, T. & Seiger, Å. 1987. NGF-like immunoreactivities in rodent salivary glands and testis. Cell Tissue Res. 248: 275-286.
- 108 Dimberg, Y., Hedlund, K.-O. & Ebendal, T. 1987. Effects of β-nerve growth factor on sensory neurons in the chicken embryo. A stereological study. Int. J. Devl. Neurosci. 5: 207-213.
- 109 Ebendal, T. 1987. Comparative screening for ciliary neurotrophic activity in organs of the rat and chicken. J. Neurosci. Res. 17: 19-24.
- 110 Ebendal, T., Askmark, H. & Aquilonius, S.-M. 1989. Screening for neurotrophic disturbances in amyotrophic lateral sclerosis. Acta Neurol. Scand. 79: 188-193.
- 114 Aquilonius, S.-M., Askmark, H., Ebendal, T. & Gillberg, P.-G. 1987.
 Neuropharmacology of motor neuron disease. In: Cellular and Molecular
 Basis of Cholinergic Function. (ed. M. J. Dawdal and Hawthorne, J. N.),
 pp. 729-735. Wiley, Chichester.
- 116 Lärkfors, L., Ebendal, T., Whittemore, S.R., Persson, H., Hoffer, B. & Olson, L. 1987. Decreased level of nerve growth factor (NGF) and its messenger in the aged rat brain. Mol. Brain Res. 3: 55-60.
- 117 Ayer-LeLievre, C., Olson, L., Ebendal, T., Seiger, Å. & Persson, H. 1988. Expression of the β-nerve growth factor gene in hippocampal neurons producing NGF mRNA in the brain by *in situ* hybridization. Science 240: 1339-1341.
- 119 Hallböök, F., Ebendal, T., & Persson, H. 1988. Production and characterization of biologically active recombinant beta nerve growth factor. Mol. Cell. Biol. 8: 452-456.
- 120 Ayer-LeLievre, C., Olson, L., Ebendal, T., Hallböök, F. & Persson, H. 1988. Nerve growth factor mRNA and protein in the testis and epididymis of mouse and rat. Proc. Natl. Acad. Sci. USA 85: 2628-2632.
- 121 Carri, N.G., Perris, R., Johansson, S. & Ebendal, T. 1988. Differential outgrowth of retinal neurites on purified extracellular matrix molecules. J. Neurosci. Res. 19: 428-439.
- 122 Ebendal, T. & Persson, H. 1988. Detection of nerve growth factor mRNA in the developing chicken embryo. Development 102: 101-106.
- 123 Ebendal, T & Persson, H. 1988. Developmental expression of nerve growth factor. In: Neural Development and Regeneration (ed. A. Gorio et al.). NATO ASI Series, Vol. H 22: 233-244. Springer, Berlin.
- 124 Whittemore, Scott R., Persson, H., Ebendal, T., Lärkfors, L., Larhammar, D. &

Ericsson, A. 1988. Structure and expression of β-nerve growth factor in the rat central nervous system. In: Neural Development and Regeneration (ed. A. Gorio et al.). NATO ASI Series, Vol. H 22: 245-256. Springer, Berlin.

- 125 Strömberg, I, Hultgård-Nilsson, A., Hedin, U. & Ebendal, T. 1988. Fate of intraocular chromaffin cell suspensions: role of initial nerve growth factor support. Cell Tissue Res. 254: 487-497.
- 142 Dimberg, Y. & Ebendal, T. 1988. Effects on injecting antibodies to mouse nerve growth factor into the chick embryo. Int. J. Devl. Neurosci. 6: 513-523.
- 143 Ernfors, P., Hallböök, F., Ebendal, T., Schooter, E.M., Radeke, M.J., Misko, T.P. & Persson, H. 1988. Developmental and regional expression of β-nerve growth factor receptor mRNA in the chick and rat. Neuron 1: 983-996.
- 147 Ayer-LeLievre, C., Ebendal, T., Olson, L., Seiger, Å. & Persson, H. 1989. Detection of nerve growth factor and its mRNA by separate and combined immunohistochemistry and *in situ* hybridization in mouse salivary glands. Histochem. J. 21: 1-7.
- 148 Lärkfors, L., Ebendal, T., Whittemore, S.R., Persson, H., Hoffer, B. & Olson, L. 1988. Developmental appearance of nerve growth factor in the rat brain: significant deficits in the aged forebrain. In: Transplantation into the Mammalian CNS (ed. D.M. Gash & J. R. Sladek, Jr.), Progr. Brain Res. 78: 27-31. Elsevier, Amsterdam.
- Ebendal, T., Persson, H., Larhammar, D., Lundströmer, K. & Olson, L. 1989. Characterization of antibodies to synthetic nerve growth factor (NGF) and proNGF peptides. J. Neurosci. Res. 22: 223-240.
- 150 Nylén, P., Ebendal, T., Eriksdotter-Nilsson, M., Hansson, T., Henschen, A., Johnson, A.-C., Kronevi, T., Kvist, U., Sjöstrand, N.O., Höglund, G. & Olson, L. 1989. Testicular atrophy and loss of nerve growth factor-immunoreactive germ cell line in rats exposed to n-hexane and a protective effect of simultaneous exposure to toluene or xylene. Arch. Toxicol. 63: 296-307.
- 152 Eriksdotter-Nilsson, M., Skirboll, S., Ebendal, T., Hersh, L., Grassi, J., Massoulié, J. & Olson, L. 1989. NGF treatment promotes development of basal forebrain tissue grafts in the anterior chamber of the eye. Exp. Brain Res. 74: 89-98.
- 153 Eriksdotter-Nilsson, M., Skirboll, S., Ebendal, T. & Olson, L. 1989. Nerve growth factor can influence growth of cortex cerebri and hippocampus: Evidence from intraocular grafts. Neuroscience 30: 755-766.
- 154 Strömberg, I. & Ebendal, T. 1989. Aged adrenal medullary tissue survives intraocular grafting, forms nerve fibers and responds to nerve growth factor. J. Neurosci. Res. 23: 162-171.
- 155 Ebendal, T. 1989. Use of collagen gels to bioassay nerve growth factor activity. In: Nerve growth factors (ed. R. A. Rush). IBRO Handbook series: Methods in the Neurosciences Vol. 12: 81-93. John Wiley, Chichester.

- 157 Hallböök, F., Persson, H., Barbany, G. & Ebendal, T. 1989. Developmental and regional expression of chicken neuroleukin (glucose-6-phosphate isomerase) messenger RNA. J. Neurosci. Res. 23: 142-151.
- 158 Olson, L., Ayer-Le Lievre, C., Bygdeman, M., Ebendal, T., Ernfors, P., Eriksdotter-Nilsson, M., Giacobini, M.B., Henschen, A., Hoffer, B., Mouton, P., Palmer, M., Persson, H., Sara, V., Seiger, Å., Strömberg, I. & Trok, K. 1989. Brain tissue transplantation and growth factors: Basic research and clinical applications. In: Bioinformatics. Information, Transduction and Processing Systems from Cell to Whole Body (O. Hatase and J. H. Wang, eds.), pp. 297-304, Elsevier, Amsterdam.
- 159 Carri. N.G. & Ebendal, T. 1989. Staining of developing neurites with Coomassie blue. Stain Tech. 64: 50-52.
- Olson, L., Ayer-Lievre, C., Ebendal, T., Eriksdotter-Nilsson, M., Ernfors, P., Mouton, P., Persson, H. & Strömberg, I. 1989. NGF in CNS: Sites of synthesis and effects of novel ways to administer NGF on intrinsic cholinergic neurons and grafts of cholinergic neurons and their target areas. In: Neuronal Grafting and Alzheimer's Disease (F. Gage, A. Privat and Y. Christens, eds.), pp. 73-84. Springer, Berlin.
- 161 Ernfors, P., Ebendal, T., Olson, L., Mouton, P., Strömberg, I. & Persson, H. 1989. A cell line producing recombinant nerve growth factor evokes growth responses in intrinsic and grafted central cholinergic neurons. Proc. Natl. Acad. Sci. USA. 86: 4756-4760.
- 170 Ebendal, T. 1989. NGF in CNS: Experimental data and clinical implications. Progr. Growth Factor Res. 1: 143-159.
- 171 Ebendal, T. 1990. Developmental control of nerve growth factor expression in the nervous system. In: Regulation of Gene Expression in the Nervous System (A.-M. Giuffrida-Stella, J. de Vellis and J. Regino Perez-Polo, eds.). Neurology and Neurobiology, Vol. 59, pp. 19-30, Wiley-Liss, New York.
- Persson, H., Ernfors, P., Friedman, W., Hallböök, F., Ayer-LeLievre, C.,
 Ebendal, T.,Olson, L., Henschen, A., Mouton, P. & Strömberg, I. 1990.
 Expression of β-nerve growth factor and its receptor in the mammalian central nervous system. In: Brain Repair (ed. A. Björklund, A.J. Aguayo and D. Ottoson). Wenner-Gren Intern. Symp. Series Vol. 56, pp. 73-86.
 MacMillan Press, London.
- 173 Ebendal, T., Hallböök, F., Ibáñez, C., Persson, H. & Lärkfors, L. 1990. Activity and immunological properties of recombinant nerve growth factor (β-NGF). In: Brain Repair (A. Björklund, A. J. Aguayo and D. Ottoson, eds.). Wenner-Gren Intern. Symp. Series Vol. 56, pp. 57-71. MacMillan Press, London.
- Olson, L., Ayer-LeLievre, C., Ebendal, T., Eriksdotter-Nilsson, M., Ernfors, P., Henschen, A., Hoffer, B., Giacobini, M., Mouton, P., Palmer, M., Persson, H., Sara, V., Strömberg, I. & Wetmore, C. 1990. Grafts, growth factors, and grafts that make growth factors. In: Neural Transplantation: From Molecular Bases to Clinical Application. Progr. Brain Res. 82: 55-65.
- 176 Strömberg, I., Ebendal, T., Olson, L. & Hoffer, B. 1990. Chromaffin grafts:

Survival and nerve fiber formation as a function of donor age, nerve growth factor and host sympathetic denervation. Progr. Brain Res. 82: 87-93.

- 177 Friedman, W., Lärkfors, L., Ayer-LeLievre, C., Ebendal, T., Olson, L. and Persson, H. 1990. Regulation of β-nerve growth factor expression by inflammatory mediators in hippocampal cultures. J. Neurosci. Res. 27: 374-382.
- 179 Strömberg, I., Wetmore, C.J., Ebendal, T., Ernfors, P., Persson, H. & Olson, L. 1990. Rescue of basal forebrain cholinergic neurons after implantation of genetically modified cells producing recombinant NGF. J. Neurosci. Res. 25: 405-411.
- 180 Strömberg, I., Ebendal, T., Eriksdotter-Nilsson, M., Ernfors, P., Friedman, W., Persson, H., Wetmore, C, & Olson, L. 1990. Strategies to increase NGF levels and effect thereof on lesioned and grafted brain tissue. In: Brain Repair (A. Björklund, A.J. Aguayo and D. Ottoson, eds.). Wenner-Gren Intern. Symp. Series Vol. 56, pp. 87-98, Mac Millan Press, London.
- 181 Mohammed, A. K., Winblad, B., Ebendal, T. & Lärkfors, L. 1990. Environmental influence on behaviour and nerve growth factor in the brain. Brain Res. 528: 62-72.
- 185 Hallböök, F., Ayer-LeLievre, C., Ebendal, T & Persson, H. 1990. Expression of nerve growth factor receptor mRNA during early development of the chicken embryo emphasis on cranial ganglia. Development 108: 693-704.
- 187 Ibáñez, C.F., Hallböök, F., Ebendal, T. & Persson, H. 1990. Structure-function studies of nerve growth factor: Functional importance of highly conserved amino acid residues. EMBO J. 9: 1477-1483.
- 191 Ernfors, P., Ibáñez, C. F., Ebendal, T., Olson, L. & Persson, H. 1990.

 Molecular cloning and neutrophic activities of a protein with structural similarities to nerve growth factor: Developmental and topographical expression in the brain. Proc. Natl. Acad. Sci. USA, 87: 5454-5458.
- 192 Olson, L., Eriksdotter-Nilsson, M., Ernfors, P., Henschen, A., Strömberg, I., Wetmore, C., Ebendal, T. & Persson, H. 1990. On the roles of neurotrophic factors in the CNS: Focus on the NGF/BDNF family. Third Conference, Institute of Developmental Neuroscience and Aging: "Plasticity and regeneration of the nervous system". (Abstr.).
- 193 Aquilonius, S-M., Askmark, H. Ebendal, T. & Gillberg, P.-G. 1992. No re-expression of high-affinity nerve growth factor binding sites in spinal motor neurons in amyotrophic lateral sclerosis. Eur. Neurol. 32: 216-218.
- 195 Westermark, K., Nilsson, M., Ebendal, T. & Westermark, B. 1991. Thyrocyte migration and histiotypic follicle regeneration are promoted by EGF in primary culture of thyroid follicles in collagen gel. Endocrinology 129: 2180-2186.
- 197 Olson, L., Ayer-LeLievre, C., Björklund, H., Ebendal, T., Hedlund, K.-O., Strömberg, I., Björklund, H., Hökfelt, T., Melander, T., Seiger, Å. & Strömberg, I. 1988. The innervation apparatus of the rodent iris. In: Handbook of Chemical Neuroanatomy, Vol. 6 The Peripheral Nervous System, pp. 545-597 (A. Björklund, T. Hökfelt and C. Owman, eds.).

Elsevier.

198 Olson, L., Henschen, A., Eriksdotter-Nilsson, M., Strömberg, I., Wetmore, C., Ernfors, P., Friedman, W., Persson, H. & Ebendal, T. 1990. The expanding role of nerve growth factor in the nervous system. In: Growth Factors: From Genes to Clinical Application (Vicki R. Sara et al. eds.) Raven Press, New York, pp. 167-177.

- 199 Söderström, S., Hallböök, C.F., Ibáñez, C.F., Persson, H & Ebendal, T. 1990. Recombinant human \(\beta\)-nerve growth factor (NGF): Biological activity and properties in an enzyme immunoassay. J. Neurosci. Res. 27: 665-677.
- 201 Olson, L., Backlund, E.-O., Ebendal, T., Freedman, R., Hamberger, B., Hansson, P., Hoffer, B., Lindblom, U., Meyerson, B., Strömberg, I., Sydow, O. & Seiger, Å. 1991. Intraputaminal infusion of nerve growth factor to support adrenal medullary autografts in Parkinson's disease: One-year follow-up of first clinical trial. Arch. Neurol. 48: 373-381.
- 202 Ibáñez, C. F., Hallböök, F., Söderström, S., Ebendal, T. & Persson, H. 1991. Biological and immunological properties of recombinant human, rat and chicken nerve growth factors: a comparative study. J. Neurochem. 57: 1033-1041.
- 203 Lärkfors, L., Oskarsson, A., Sundberg, J. & Ebendal, T. 1991. Methylmercury induced alterations in the nerve growth factor level in the developing brain. Dev. Brain Res. 62: 287-291.
- Ebendal, T., Söderström, S., Hallböök, F., Ernfors, P., Ibáñes, C.F., Persson, H., Wetmore, C., Strömberg, I. & Olson, L. 1991. Human nerve growth factor: Biological and immunological activities, and clinical possibilities in neurodegenerative disease. In: Plasticity and Regeneration of the Nervous System (P. S. Timiras, A. Privat, E. Giacobini, J. Lauder and A. Vernadakis, eds.), Adv. Exp. Med. Biol. 296, pp. 207-225. Plenum Publ., N.Y.
- 212 Ibáñez, C.F., Ebendal, T. & Persson, H. 1991. Chimeric molecules with multiple neurotrophic activities reveal structural elements determining the specificities of NGF and BDNF. EMBO J. 10: 2105-2110.
- Olson, L., Nordberg, A., von Holst, H., Bäckman, L., Ebendal, T., Alafuzoff, I., Amberla, K., Hartvig, P., Herlitz, A., Lilja, A., Lundqvist, H., Långström, B., Meyerson, B., Persson, A., Viitanen, M., Winblad, B. & Seiger, Å. 1992. Nerve growth factor affects "C-nicotine binding, blood flow, EEG, and verbal episodic memory in an Alzheimer patient (Case Report). J. Neural Transm. (P-D Sect.) 4: 79-95.
- 214 Hallböök, F., Ibáñez, C. F., Ebendal, T. & Persson, H. 1993. Cellular localization of brain-derived neurotrophic factor and neurotrophin-3 mRNA expression in the early chicken embryo. Eur. J. Neurosci. 5: 1-14.
- 215 Olson, L., Wetmore, C., Strömberg, I. & Ebendal, T. 1991. Endogenous and exogenous nerve growth factor in the central nervous system. In: Volume Transmission in the Brain: Novel Mechanisms for Neural Transmission (K. Fuxe and L. F. Agnati, eds.), pp. 455-462. Raven Press, Ltd., New York.
- 216 Dimberg, Y., Tottmar, O., Aspberg, A., Ebendal, T., Johansson, K.-J. &

Walinder, G. 1992. Effects of low-dose X-irradiation on mouse-brain aggregation cultures. Int. J. Radiat. Biol. 61: 355-363.

- 217 Ebendal, T., Persson, H. & Olson, L. 1991. New directions in NGF experimental therapy of Alzheimer's disease. In: Cholinergic Basis for Alzheimer Therapy (R. Becker and E. Giacobini, eds.), pp. 468-473. Birkhäuser, Boston.
- Parvinen, M., Pelto-Hoikko, M., Söder, O., Schultz, R., Kaipia, A., Mali, P., Toppari, J., Lönnerberg, P., Ritzen, E. M., Ebendal, T., Olson, L., Hökfelt, T. & Persson, H. 1992. Expression of β-nerve growth factor and its receptor in rat seminiferous epithelium specific function at the onset of meiosis. J. Cell Biol. 117: 629-641.
- 223 Vazquez, E. M. & Ebendal, T. 1991. Messenger RNAs for trk and the low-affinity NGF receptor in rat basal forebrain. NeuroReport 2: 593-596.
- 224 Ibáñez, C. F., Ebendal, T., Barbany, G., Murray-Rust, J., Blundell, T. L. & Persson, H. 1992. Disruption of the low-affinity receptor-binding site in nerve growth factor allows neuronal survival and differentiation by binding to the trk gene product. Cell 69: 329-341.
- 225 Carri, N. G., Rubin, K., Gullberg, D. & Ebendal, T. 1992. Neuritogenesis on collagen substrates. Involvement of integrin-like matrix receptors in retinal fibre outgrowth on collagen. Int. J. Dev. Neurosci. 10: 393-405.
- 227 Ekblom, J., Ebendal, T., Gillberg, P-G., Nordhage, I. & Aquilonius, S-M. 1992. Quantitative autoradiography of high-affinity nerve growth factor receptors in various segments of the human spinal cord fails to demonstrate alterations in amyotrophic lateral sclerosis. Neurodegeneration 1: 163-168.
- 228 Henriksson, B. G., Söderström, S., Gower, A. J., Ebendal, T., Winblad, B. & Mohammed, A. H. 1992. Hippocampal nerve growth factor levels are related to spatial learning ability in aged rats. Behav. Brain Res. 48: 15-20.
- Persson, H., Ernfors, P., Ibáñez, C. F., Hallböök, F., Friedman, W. J., Merlio, J-P., Lindvall, O., Bengzon, J., Lindefors, N., Ebendal, T. & Olson, L. 1992. Neurotrophins and their receptors. In: "Gene Transfer and Therapy in the Nervous System". (Fondation Ipsen Meeting). (Eds. F. Gage and W. Cristen), pp 180-200. Springer Verlag, Berlin-Heidelberg.
- Ebendal, T. 1992. Function and evolution of the NGF family and its receptors.J. Neurosci. Res. 32: 461-470.
- 231 Lorigados, L., Söderström, S. & Ebendal, T. 1992. Two-site enzyme immunoassay for bNGF applied to human patient sera. J. Neurosci. Res. 32: 329-339.
- 232 Carri, N. G., Richardson, P. M. & Ebendal, T. 1994. Choroid coat extract and ciliary neurotrophic factor strongly promote neurite outgrowth in the embryonic chick retina. Int. J. Dev. Neurosci. 12: 567-578.
- 235 Söderström, S. & Ebendal, T. 1995. *In vitro* toxicity of methyl mercury: effects on nerve growth factor (NGF)-responsive neurons and on NGF synthesis in fibroblasts. Toxicol. Lett. 75: 133-144.
- 236 Palmer, M. R., Eriksdotter-Nilsson, M., Henschen, A., Ebendal, T. & Olson, L.

1993. Nerve growth factor-induced excitation of selected neurons in the brain which is blocked by a low-affinity receptor antibody. Exp. Brain Res. 93: 226-230.

- 237 Söderström, S., Fredriksson, A., Dencker, L. & Ebendal, T. 1995. The effect of mercury vapour on cholinergic neurons in the fetal brain: studies on the expression of nerve growth factor and its high- and low-affinity receptors. Dev. Brain Res. 85: 96-108.
- 239 Bengzon, J., Söderström, S., Kokaia, Z., Kokaia, M., Ernfors, P., Persson, H., Ebendal, T. & Lindvall, O. 1992. Widespread increase of nerve growth factor protein in the rat forebrain after kindling-induced seizures. Brain Res. 587: 338-342.
- 241 Williams, R., Bäckström, A., Ebendal, T. & Hallböök, F. 1993. Molecular cloning and cellular localization of trkC in the chicken embryo. Dev. Brain Res. 75: 235-252.
- 242 Williams, R., Bäckström, A., Kullander, K., Hallböök, F. & Ebendal, T. 1995. Developmentally-regulated expression of mRNA for neurotrophin high-affinity (trk) receptors within chick trigeminal sensory neurons. Eur. J. Neurosci. 7: 116-128.
- 243 Kullander, K. & Ebendal, T. 1994. Neurotrophin-3 acquires NGF-like activity after exchange to five NGF amino acid residues: Molecular analysis of the sites in NGF mediating the specific interaction with the NGF high affinity receptor. J. Neurosci. Res. 39: 195-210.
- 244 Durbeej, M., Söderström, S., Ebendal, T. & Ekblom, P. 1993. Differential expression of neurotrophin receptors during renal development. Development 119: 977-989.
- Granholm, A.-C., Bäckman, C., Bloom, F., Ebendal, T., Gerhardt, G., Hoffer, B., Mackerlova, L., Olson, L., Söderström, S., Walus, L. R. & Friden, P. M. 1994. NGF and anti-transferrin receptor antibody conjugate Short and long-term effects on survival of cholinergic neurons in intraocular septal transplants. J. Pharmacol. Exp. Ther. 268: 448-459.
- 250 Jazin, E. E., Zhang, X., Söderström, S., Williams, R., Hökfelt, T., Ebendal, T. & Larhammar, D. 1993. Expression of peptide YY and mRNA for the NPY/PYY receptor of the Y1 subtype in dorsal root ganglia during rat embryogenesis. Dev. Brain Res. 76:105-113.
- 251 Schwarting, R.K.W., Pei, G., Söderström, S., Ebendal, T. & Huston, J.P. 1994. Unilateral stimulation or removal of rat vibrissae: analysis of nerve growth factor and tyrosine hydroxylase mRNA in the brain. Behav. Brain Res. 60: 63-71.
- 252 Humpel, C., Ebendal, T., Cao, Y., & Olson, L. 1993. Pentylenetetrazol seizures increase pro-nerve growth factor-like immunoreactivity in the reticular thalamic nucleus and nerve growth factor mRNA in the dentate gyrus. J. Neurosci. Res. 35: 419-427.
- 253 Ekblom, J., Jossan, S. S., Ebendal, T., Söderström, T., Oreland, L. & Aquilonius, S.-M. 1994. mRNA expression of neurotrophins and members of the trk family in the rat brain after treatment with L-deprenyl. Acta Neurol. Scand. 89: 147-148.
- 255 Granholm, A-C., Biddle, P. T., Bäckman, C., Ebendal, T., Gerhardt, G., Hoffer, B., Mackerlova, L., Olson, L., Söderström, S., Walus, L. & Friden, P. 1994. Peripheral administration of nerve growth factor conjugated to an anti-transferrin receptor antibody increases cholinergic neuron survival in intraocular forebrain transplants. In "Methods in Neurosciences". Providing pharmacological access to the brain: Alternate

approaches. Vol. 21 (T.R. Flanagan, D.F. Emerich and S. Vinn, Eds.), pp. 71-92. Academic Press, N.Y.

- 256 Seiger, Å., Nordberg, A., von Holst, H., Bäckman, L., Ebendal, T., Alafuzoff, I., Amberla, K., Hartvig, P., Herlitz, A., Lilja, A., Lundqvist, H., Långström, B., Meyerson, B., Persson, A., Viitanen, M., Winblad, B. & Olson, L. 1993. Intracranial infusion of purified nerve growth factor to an Alzheimer patient: The first attempt of possible future treatment strategy. In: Alzheimer's Disease: Animal Models and Clinical Perspectives. (A. Mohammed, B. Henriksson, B. Winblad and P. Södersten, Eds.), Behav. Brain Res. 57: 255-261.
- 265 Bartheld, C. S. von, Schober, A., Kinoshita, Y., Williams, R., Ebendal, T. & Bothwell, M. 1995. Noradrenergic neurons in the locus coeruleus of birds express TrkA, transport NGF and respond to NGF. J. Neurosci. 15: 2225-2239.
- 266 Lorigados, L., Molina, H., Serrano, T., Pavón, N., Robinson, M.A., Alvarez, L., Söderström, S. & Ebendal, T. 1995. Evolutive levels of NGF in neurodegenerative disorders. Mol. Chem. Neuropathol. 24: 231-234.
- 269 Ebendal, T., Tomac, A., Hoffer, B. J. & Olson, L. 1995. Glial cell line-derived neurotrophic factor (GDNF) stimulates fibre formation and survival in cultured neurons from peripheral autonomic ganglia. J. Neurosci. Res. 40: 276-284.
- Hallböök, F., Bäckström, A., Kullander, K., Ebendal, T. & Carri, N. 1996.
 Expression of neurotrophins and trk receptors in the avian retina.
 J. Comp. Neurol. 364: 664-676.
- 277 Humpel, C., Lindqvist, E., Söderström, S., Kylberg, A., Ebendal, T. & Olson, L. 1995. Monitoring release of neurotrophic activity in the brains of awake rats. Science 269: 552-554.
- Bäckman, C., Biddle, P. T., Ebendal, T., Friden, P., Gerhardt, G., Henry, M., Mackerlova, L., Söderström, S., Strömberg, I., Walus, L., Hoffer, B. J. & Granholm, A.-Ch. 1995. Effects of transferrin receptor antibody-NGF conjugate on young and aged septal transplants in oculo. Exp. Neurol. 132: 1-15.
- 279 Pei, G. & Ebendal, T. 1995. Specific lesions in the extrapyramidal system of the rat brain induced by 3-nitropropionic acid (3-NPA). Exp. Neurol. 132: 105-115.
- 280 Hallböök, F., Bäckström, A., Kullander, K., Kylberg, A., Williams, R. & Ebendal, T. 1995. Neurotrophins and their receptors in chicken neuronal development. Int. J. Dev. Biol. 39: 855-868.
- 281 Holst, A. von, Rodriguez-Tébar, A., Michaille, J.J., Dhouailly, D., Bäckström, A., Ebendal, T. & Rohrer, H. 1995. Retinoic acid-mediated increase in TrkA expression is sufficient to elicit NGF-dependent survival of sympathetic neurons. Mol. Cell. Neurosci. 6: 185-198.
- 282 Sydow, O., Hansson, P., Young, D., Meyerson, B., Backlund, E-O., Ebendal, T., Farnebo, L. O., Freedman, R., Hamberger, B., Hoffer, B., Seiger, Å., Strömberg, I., & Olson, L. 1995. Long-term beneficial effects of adrenal medullary autografts supported by nerve growth factor in Parkinson's

disease. Eur. J. Neurol. 2: 445-454.

- 283 Tomac, A., Widenfalk, J., Lin, L-F. H., Kohno, T., Ebendal, T., Hoffer, B. J. & Olson, L. 1995. Retrograde axonal transport of glial cell line-derived neurotrophic factor in the adult nigrostriatal system suggests a trophic role in the adult. Proc. Natl. Acad. Sci. USA 92: 8274-8278.
- 285 Söderström, S. & Ebendal, S. 1995. Levels of neurotrophin-3 protein in the rat brain as determined by enzyme immunoassay show a pattern distinct from nerve growth factor. Neurosci. Lett. 189: 5-8.
- 286 Hallböök, F., Ebendal, T. & Carri, N.G. 1995. Neurotrophins in the developing avian visual system. In: "Life and Death in the Nervous System. Role of Neurotrophic Factors and their Receptors". Wenner-Gren Foundation International Series Vol. 67 (C. Ibáñez, T. Hökfelt, L. Olson, K. Fuxe, H. Jörnvall and D. Ottoson, Eds.), pp. 143 153. Stockholm, Sweden.
- Williams, R., Bäckström, A. & Ebendal, T. 1995. Embryonic expression of neurotrophin high-affinity (trk) receptor mRNAs within sensory neurons: chicken development as a model. In: "Life and Death in the Nervous System. Role of Neurotrophic Factors and their Receptors". Wenner-Gren Foundation International Series Vol. 67 (C. Ibáñez, T. Hökfelt, L. Olson, K. Fuxe, H. Jörnvall and D. Ottoson, Eds), pp. 113 130. Stockholm, Sweden.
- 290 Martínez-Serrano, A., Fischer, W., Söderström, S., Ebendal, T. & Björklund, A. 1996. Long-term functional recovery from age-induced spatial memory impairments by nerve growth factor gene transfer to the rat basal forebrain. Proc. Natl. Acad. Sci. USA 93: 6355-6360.
- 291 Durbeej, M., Fecker, L., Hjalt, T., Zhang, H.-Y., Salmivirta, K., Klein, G., Timpl, R., Sorokin, L., Ebendal, T., Ekblom, P. & Ekblom, M. 1996. Expression of laminin α1, α5 and β2 chains during embryogenesis of the kidney and vasculature. Matrix Biol. 15: 397-413.
- 292 Hasenöhrl, R.U., Söderström, S., Mohammed, A.H., Ebendal, T. & Huston, J.P. 1997. Reciprocal changes in expression of mRNA for nerve growth factor and its receptors TrkA and LNGFR in brain of aged rats in relation to maze learning deficits. Exp. Brain Res. 114: 205-213.
- 293 Bengtsson, H., Söderström, S. & Ebendal, T. 1995. Expression of activin receptors type I and II only partially overlaps in the nervous system. NeuroReport 7: 113-116.
- Estenne-Bouhtou, G., Kullander, K., Karlsson, M., Ebendal, T., Hacksell, U.,
 & Luthman, K. 1996. Design, synthesis, tandem mass spectrometric sequencing, and biological activity of NGF-mimetics. Int. J. Peptide Prot. Res. 48: 337-346.
- 296 Williams, R. & Ebendal, T. 1995. Neurotrophin receptor expression during development of the chick spinal sensory ganglion. NeuroReport 6: 2277-2282.
- 300 McGrath, J.P., Cao, X., Schutz, A., Lynch, A., Ebendal, T., Coloma, M.J., Morrison, S.L. & Putney, S.D. 1997. Bifunctional fusion between nerve growth factor and a transferrin receptor antibody. J. Neurosci. Res. 47: 123-133.
- 301 Nosrat, C.A., Ebendal, T. & Olson, L., 1996. Differential expression of brain-derived neurotrophic factor and neurotrophin 3 mRNA in lingual papillae and taste buds

indicates roles in gustatory and somatosensory innervation. J. Comp. Neurol. $376:\ 587-602.$

- j303 Aoyagi, K., Bergsten, P., Eriksson, U.J., Ebendal, T. & Hellerström, C. 1997. In vitro regulation of insulin release and biosynthesis of fetal rat pancreatic cells explanted on pregnancy day 16. Biol. Neonate 71: 60-68.
- 305 Kobayashi, S., Ögren, S.-O., Ebendal, T. & Olson, L. 1997. Intraventricular injection of NGF, but not BDNF, induces rapid motor activation that is inhibited by nicotinic receptor antagonists. Exp. Brain Res. 116: 315-325.
- 306 Lewén, A., Söderström, S., Hillered, L. & Ebendal, T. 1997. Expression of serine/threonine kinase receptors in traumatic brain. NeuroReport 8: 475-479.
- 307 Söderström. S., Bengtsson, H. & Ebendal, T. 1996. Expression of serine-threonine protein kinase receptors including the bone morphogenetic factor type II receptor in a developing and adult rat brain. Cell Tiss. Res. 286: 269-279.
- Bäckström, A., Söderström, S., Kylberg, A. & Ebendal, T. 1996. Molecular cloning the chicken trkA and its expression in early peripheral ganglia. J. Neurosci. Res. 46: 67-81.
- Nosrat, C., Tomac, A., Lindqvist, E., Lindskog, S., Humpel, C., Strömberg, L. i
 T., Hoffer, B.J. & Olson, L. 1996. Cellular expression of GDNF mRNA sugger multiple functions inside and outside the nervous system. Cell Tissue Res. 28
 207.
- 312 Lorentzon, M., Hoffer, B., Ebendal, T., Olson, L. & Tomac, A. 1996. Habrec1, a novel serine/threonine kinase TGFβ type I-like receptor, has a specific cellular expression suggesting function in the developing organism and adult brain. Exp. Neurol. 143: 351-360.
- Humpel, C., Ebendal., T. & Olson, L. 1996. Microdialysis: a way to study in voor neurotrophic bioactivity: A critical summary. J. Mol. Med. 74: 523-526.
- 318 Kullander, K., Kaplan, D. & Ebendal, T. 1997. Two restricted sites on the still control NGF molecule independently determine specific TrkA receptor binding and active in J. Biol. Chem. 272: 9300-9307.
- 219 Carri, N.G., Bengtsson, H., Charette, M.F. & Ebendal, T. 1998. BMP receptor II expression and OP-1 effects in developing chicken retinal explants. NeuroReport 9 (in press).
- 320 Bäckström, A., Söderström, S. & Ebendal, T. 1997. Cloning of a new chicken trkC extracellular isoform and its mRNA expression in E9 sensory and autonomic ganglio. Int. J. Dev. Neurosci. 15: 275-284.
- 321 Dimberg, Y., Vazquez, E. M., Söderström, S. & Ebendal, T. 1997. Effects on irradiation on nerve growth factor in the developing mouse brain. Toxicol. Lett. 90: 35-43.
- Nordberg, A., Almkvist, O., Amberla, K., Basun, H., Corder, B., Ebendal, T., Cott Met., C.-G., Hartwig, P., Hellström-Lindahl, E., Jelic, V., Jönhagen, M., Lannfelt, L., Lehman, W., Långström, B., Lundquist, H., Meurling, L., Meyersson, B., Olson. Seiger, Å., Valind, S., Viitanen, M., Wahlund, L.-O. & Winblad, B. 1997. Responders and non-responders to tacrine, ondansetron and NGF treatment in Alzheimer patients as evaluated by positron emission tomography and APOE genotype. In: Alzheimer's

Disease: Biology, Diagnosis and Therapeutics (eds. Iqbal et al.), John Wiley & Sons, pp. 647-653.

- 323 Kobayashi, S., Ögren, S.-O., Ebendal, T. & Olson, L. 1997. Dopamine receptor antagonists block NGF-induced hyperactivity. Eur. J. Pharmacol. 326: 1-5.
- 324 Lindeberg, J., Klint, P., Bäckström, A., Williams, R. & Ebendal, T. 1997. Identification of a chicken homologue in the Brn-3 subfamily of POU-transcription factors. Dev. Brain Res. 100: 169-182.
- 325 Granholm, A.-C., Albeck, D., Bäckman, C., Curtis, M., Ebendal, T., Friden, P., Henry, M., Hoffer, B., Kordower, J., Rose, G.M., Söderström, S. and Bartus, R.T. 1998. A non-invasive system for delivering neural growth factors across the blood-brain barrier: a review. Rev. Neurosci. (in press).
- 326 Kullander, K., Kylberg, A. & Ebendal, T. 1997. Specificity of neurotrophin-3 determined by loss-of-function mutagenesis. J. Neurosci. Res. 50: 496-503.
- Jazin, E.E., Söderström, S., Ebendal., T. & Larhammar, D. 1997. Embryonic expression of the mRNA for the rat homologue of the fusin/CXCR-4 HIV-1 co-receptor. J. Neuroimmunol. 79: 148-154.
- Riikonen, R., Söderström, S., Vanhala, R., Ebendal, T. & Lindholm, D.B. 1997. West's syndrome: Cerebrospinal fluid nerve growth factor and effect of ACTH. Pediatr. Neurol. 17: 224-229.
- 330 Kobayashi, S., Ögren, S.-O., Ebendal, T. & Olson, L. 1997. Intraventricular injection of NGF, but not BDNF, induces rapid motor activation that is inhibited by nicotinic receptor antagonists. Exp. Brain Res. 116: 315-325.
- 331 Nosrat, C., Fried, K., Ebendal, T., & Olson, L. 1998. NGF, BDNF, NT3, NT4 and GDNF in tooth development. Eur. J. Oral. Sci. 106 (suppl. 1): 94-99.
- 332 Kadari, A., Windisch, J.M., Ebendal, T., Schneider, R. & Humpel, C. 1997. Cell death of adult pyramidal CA1 neurons after intraventricular injection of a novel peptide derived from trkA. J. Neurosci. Res. 50: 402-412.
- 337 Eriksdotter Jönhagen, M., Amberlaa, K., Bäckman, L., Ebendal, T., Meyerson, B., Nordberg, A., Olson, L., Seiger, Å., Shigeta, M., Theodorson, E., Wahlund, L.-O., Viitanen, M. & Winblad, B. 1998. Intracerebroventricular infusion of nerve growth factor in three patients with Alzheimer's disease. Dementia Geriatric Cogn. Disord. (in press).
- 338 Ebendal, T., Bengtsson, H. & Söderström, S. 1998. Bone morphogenetic proteins and their receptors: potential functions in the brain. J. Neurosci. Res. 51: 139-146.

Molecular cloning and neurotrophic activities of a protein with structural similarities to nerve growth factor: Developmental and topographical expression in the brain

(nerve growth factor family/cDNA/neurotrophic factor/hippocampal neurons/nerve growth factor receptor binding)

Patrik Ernfors*, Carlos F. Ibáñez*, Ted Ebendal†, Lars Olson‡, and Håkan Persson*§

*Department of Medical Chemistry, Laboratory of Molecular Neurobiology, and [‡]Department of Histology and Neurobiology, Karolinska Institute, Box 60400, S-104 01 Stockholm, Sweden; and [†]Department of Developmental Biology, Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden

Communicated by Peter Reichard, April 25, 1990 (received for review April 2, 1990)

We have used a pool of degenerate oligonucleotides representing all possible codons in regions of homology between brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) to prime rat hippocampal cDNAs in the polymerase chain reaction. The amplified DNA included a product with significant similarity to NGF and BDNF, which was used to isolate a 1020-nucleotide-long cDNA from a rat hippocampal library. From the nucleotide sequence, a 282amino-acid-long protein with ≈45% amino acid similarity to both pig BDNF and rat NGF was deduced. In the adult brain, the mRNA for this protein was predominantly expressed in hippocampus, where it was confined to a subset of pyramidal and granular neurons. The developmental expression in brain showed a clear peak shortly after birth, 1 and 2 weeks earlier than maximal expression of BDNF and NGF, respectively. It was also expressed in several peripheral tissues with the highest level in kidney. The protein, transiently expressed in COS cells, was tested on chicken embryonic neurons and readily stimulated fiber outgrowth from explanted Remak's ganglion and, to a lesser extent, the nodose ganglion. A weak, but consistent, fiber outgrowth response was also seen in the ciliary ganglion and in paravertebral sympathetic ganglia. Moreover, the protein displaced binding of NGF to its receptor, suggesting that it can interact with the NGF receptor. Thus, this factor, although structurally and functionally related to NGF and BDNF, has unique biological activities and represents a member of a family of neurotrophic factors that may cooperate to support the development and maintenance of the vertebrate nervous system.

During development of the vertebrate nervous system, a vast overproduction of neurons is compensated for by naturally occurring neuronal death, which is regulated by their targets (1). Within the targets, specific proteins, referred to as neurotrophic factors, are produced in limiting amounts and the release of these proteins is believed to regulate both the timing and the extent of innervation (2).

In the peripheral nervous system, the most well-characterized neurotrophic factor, nerve growth factor (NGF), supports the development of sympathetic and neural crest-derived sensory neurons, and in the adult the maintenance of the sympathetic nervous system is critically dependent on NGF (3, 4). In agreement with a trophic role of NGF for adult sympathetic neurons, the levels of both NGF mRNA and protein correlate with the density of sympathetic innervation (5, 6). NGF mRNA and protein have also been found in the brain, with the highest levels in hippocampus and cerebral cortex, to which the major cholinergic pathways in the brain project (7-10). Basal forebrain cholinergic neurons can be

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

prevented from dying after axonal transection by addition of NGF (11–15) and they respond to NGF *in vivo* by a marked increase in fiber outgrowth (16).

In addition to NGF, one other protein, termed brain-derived neurotrophic factor (BDNF), has been shown to be present in low amounts (17), secreted from cells (18), and to support survival of embryonic sensory neurons in vivo (19). In common with NGF, BDNF supports the survival of neural crest-derived embryonic sensory neurons in vitro, but nonoverlapping trophic activities are suggested by the finding that BDNF also supports placode-derived neurons from the nodose ganglia and retinal ganglion cells (20, 21), which are less sensitive to NGF (22, 23). Regulation of neuronal survival in vivo in the brain by BDNF has not yet been demonstrated, although its sites of synthesis have recently been mapped by in situ hybridization where a high level of labeling was found in hippocampal neurons (24).

NGF is synthesized as a preproprotein and the structure of both the precursor and the mature protein has been deduced from cDNA and genomic clones (25, 26). More recently, a genomic clone has been isolated for porcine BDNF (18). Of considerable interest is the finding that the mature BDNF and NGF proteins show striking amino acid similarities, suggesting that they are structurally related and may be members of a family of neurotrophic factors (18).

In this study, we report on the cloning and expression of an additional member of the NGF family. Due to its restricted expression in the brain, being mostly confined to a subset of pyramidal and granular neurons in the hippocampus, we have named this protein hippocampus-derived neurotrophic factor (HDNF).

MATERIALS AND METHODS

RNA Preparation, Molecular Cloning, and DNA Sequencing. Polyadenylylated RNA [poly(A) $^+$] was prepared as described (27). For cloning, rat hippocampus poly(A) $^+$ RNA (5 μ g) was used as a template for synthesis of single-stranded cDNA using Moloney murine leukemia virus reverse transcriptase (Pharmacia). Six separate mixtures of 28-mer oligonucleotides representing all possible codons corresponding to the amino acid sequence KQYFYET (5'-oligonucleotide) and WRFIRID (3'-oligonucleotide) were synthesized on an Applied Biosystems A381 DNA synthesizer. The 5'-oligonucleotide contained a synthetic *Eco*RI site and the 3'-oligonucleotide contained a synthetic *Hin*dIII site. Each mixture of oligonucleotides was then used to prime the amplification of hippocampal cDNA (25 ng) by the polymer-

Abbreviations: NGF, nerve growth factor; BDNF, brain-derived neurotrophic factor; HDNF, hippocampus-derived neurotrophic factor; PCR, polymerase chain reaction.
§To whom reprint requests should be addressed.

The sequence reported in this paper has been deposited in the GenBank data base (accession no. M34643).

FIG. 2. Developmental and regional expression of HDNF and BDNF mRNA in rat brain. (a) Poly(A)⁺ RNA (20 µg per slot) isolated from Sprague-Dawley rat brain at the indicated developmental stages was hybridized to the indicated probes (HDNF and BDNF). Adult rats were 12 weeks old. E, embryonic day; P, postnatal day; wks, weeks. (b) Same analysis as in a using poly(A)⁺ RNA (20 µg per slot) isolated from the indicated regions of adult male Sprague-Dawley rat brain. Medulla, medulla oblongata; hypo, hypothalamus; hippo, hippocampus; cortex, cerebral cortex; cblm, cerebellum; olf, olfactory bulb.

brain showed remarkable regional specificity with high levels in hippocampus compared with other brain regions analyzed (Fig. 2b). In fact, cerebellum was the only other region where HDNF mRNA was clearly detected, with the exception of cerebral cortex, which showed a weak signal. BDNF mRNA was more widely distributed in rat brain, although hippocampus also contained the highest amount, followed by cerebral cortex, pons, and cerebellum (Fig. 2b).

Neurons Expressing HDNF and BDNF mRNA Are Located in a Distinct Topographical Arrangement in Hippocampus. Anterior sections of the dorsal hippocampus showed neurons expressing high levels of HDNF mRNA primarily confined to the medial part of CA1 and CA2 (Fig. 3 a and c). Few HDNF mRNA-expressing neurons were also found in lateral parts of CA1. Granular cells of the dentate gyrus were also highly labeled (Fig. 3a). CA3 and hilar cells of the dentate gyrus showed no labeling for HDNF mRNA at any level (Fig. 3d). No labeling was seen over any sections after hybridization to a control probe, complementary to the specific HDNF probe. Adjacent sections hybridized to a BDNF-specific probe revealed labeling over granular neurons in the dentate gyrus (Fig. 3b), although possibly with lower intensity than that seen after hybridization for HDNF mRNA. Strong labeling with the BDNF-specific probe was found over neurons in the hilar region (Fig. 3e), CA3, and part of CA2 (Fig. 3b). Few BDNF mRNA-expressing neurons, which appeared to be less intensively labeled, were also detected in CA1 and CA2 (Fig. 3b). Intensely labeled neurons were seen in claustrum, located lateral to the external capsule. This region showed no labeling for HDNF mRNA.

Neurotrophic Activities of HDNF in Explanted Chicken Embryonic Ganglia. The 1020-bp HDNF cDNA insert was cloned in the expression vector pXM (34), designed for transient expression in COS cells. Two plasmid constructs were isolated, containing the HDNF insert either in the correct or opposite orientation for translation of the HDNF protein. The latter construct was used as a negative control. Included was also a construct containing the rat NGF gene (36). The different constructs were transfected into COS cells and 3 days later conditioned medium was tested for biological activity in bioassays that measured fiber outgrowth from various chicken embryo ganglia. A marked stimulation of neurite outgrowth, consistently resulting in circular or oval fiber halos, was seen in the ganglion of Remak, a ganglionated nerve trunk in the mesorectum of the chicken embryo (38, 39) (Fig. 4a). Although NGF is known to stimulate the explanted ganglion of Remak (39), it was far less efficient than HDNF (Fig. 4b). A modest stimulation of fiber outgrowth was also seen with HDNF in the nodose ganglion, consisting of neurons exclusively derived from an epidermal placode (22)

Fig. 3. Expression of HDNF and BDNF mRNA in hippocampal neurons. Rat (Sprague-Dawley) brain sections hybridized to either HDNF- or BDNFspecific oligonucleotide probes. (a) Autoradiogram from a section at the level of hippocampus hybridized to the HDNFspecific probe. Note labeling over medial CA1, CA2, and the dentate gyrus. (b) Adjacent section hybridized to a BDNFspecific probe. Note labeling over CA2 and CA3 as well as hilar cells and dentate granule layer. (c) Pyramidal neurons in medial CA1 labeled with the HDNFspecific probe. (d) Nonlabeled hilar neurons after hybridization to the HDNFspecific probe. (e) Hilar neurons labeled with the BDNF-specific probe. DG, dentate gyrus; CA1m, CA1 medial; Hi, hilus of dentate gyrus; Cl, claustrum. (a and b, bar = 1.3 mm; c-e, bar = 10 μ m.)

FIG. 4. Stimulation of fiber outgrowth from chicken embryonic ganglia. Biological activity of recombinant HDNF shown as effects on different nerve tissues from the chicken embryo. Remak ganglion stimulated by HDNF (a) or NGF (b). (c) Nodose ganglion with HDNF. Paravertebral sympathetic ganglion in response to HDNF (d) and recombinant rat NGF (e). (f) Ciliary ganglion with HDNF. All figures show ganglia after 1.5 days in culture. Dark-field microscopy. (Bars = 0.3 mm.)

(Fig. 4c). Again, HDNF was superior to NGF in evoking this response. A weak, but consistent, fiber outgrowth response with HDNF was seen in paravertebral sympathetic trunk ganglia (Fig. 4d), which, however, was much less pronounced compared with the massive response to rat NGF (Fig. 4e). In the ciliary ganglion, a weak but consistent fiber outgrowth response, manifested by the projection of short neurite fascicles, was seen with HDNF but never with NGF (Fig. 4c). In the dorsal root ganglia, HDNF stimulated neurite outgrowth to the same extent as NGF.

Displacement of NGF Binding to PC12 Cells by HDNF. Concentrated conditioned medium from transfected COS cells was tested for its ability to compete for binding ¹²⁵I-labeled NGF (¹²⁵I-NGF) to its receptor on PC12 cells. The concentration of ¹²⁵I-NGF used allowed ≈80% of the labeled NGF to be bound to the low-affinity receptor site in the absence of competition (40). Twenty-five times concentrated medium containing the HDNF protein displaced ≈70% of the labeled NGF and a 20% displacement was seen after a 25-fold dilution (Fig. 5). In contrast, 25 times concentrated medium from COS cells transfected with the HDNF cDNA in the opposite orientation did not show any displacement. Con-

FIG. 5. Displacement of ¹²⁵I-NGF from its receptor on PC12 cells by HDNF and NGF. Serial dilutions of transfected COS cell medium with (□) or without (○) HDNF or containing rat NGF (■) were assayed for their ability to displace ¹²⁵I-NGF from its receptor on PC12 cells. Data are from two independent experiments that showed a variation of ±20%.

centrated medium from cells transfected in parallel with a rat NGF gene displaced 50% of the labeled NGF when diluted 250 times.

DISCUSSION

The cDNA clone isolated in this study encodes a protein, HDNF, with a remarkable sequence similarity to both NGF and BDNF and therefore represents an additional member of a family of neurotrophic proteins. Recently (at the time of submission of this manuscript), two groups (41, 42) independent of us isolated genomic clones for a protein (neurotrophin 3) from mouse and rat, respectively, which is identical to the neurotrophic protein characterized in this study. Our cDNA clone predicts a 282-amino-acid-long protein, which is 24 amino acids longer than the protein deduced from the genomic clones (41, 42). Two alternative start sites for translation of the NGF protein have been proposed; the first is located in a separate 5' exon (43). The second start site, located in the 3' exon, is also efficiently used for translation of the NGF protein (36, 44) and generates a 68-amino acid shorter protein. Thus, the structure of our cDNA clone indicates that the HDNF protein utilizes two alternative start sites for translation, located in separate exons, and suggests that the genomic organization of HDNF and NGF is very similar.

In peripheral ganglia bioassays, HDNF showed neurotrophic activities that were to some extent reminiscent of both NGF and BDNF. Thus, in similarity to BDNF (20), HDNF stimulated fiber outgrowth from the nodose ganglia and, as for NGF, evoked a fiber outgrowth response in sympathetic ganglia. In the latter case, however, the response was clearly weaker than with NGF. The partially overlapping activities seen in vitro may reflect a cooperation of these factors in vivo, where two or more proteins from the same family may support the development and/or maintenance of specific neurons. The most striking stimulation of fiber outgrowth evoked by HDNF was seen in the peripheral, autonomic, ganglion of Remak containing mostly cholinergic but also some adrenergic neurons (38, 39). This effect was clearly more pronounced than effects seen with NGF (39), suggesting that HDNF also evokes trophic responses different from both NGF and BDNF. In agreement with this, HDNF showed a weak, but consistent, neurite outgrowth response in the ciliary ganglion, which does not respond to NGF or BDNF. The ciliary ganglion is known to respond to ciliary neurotrophic factor (45), which lacks a signal sequence, but could be released by an as yet unknown mechanism (46). Thus, HDNF is the only secreted neurotrophic factor today that is known to affect fiber outgrowth, at least in vitro, from the ciliary ganglion.

The HDNF protein displaced ¹²⁵I-NGF from PC12 cells. indicating that it can interact with the NGF receptor. With the assumption that NGF and HDNF were produced in equal amounts in parallel transfections and that the conditioned medium lacks interfering substances, the interaction of NGF to its receptor was 30-fold more efficient. PC12 cells have both low- and high-affinity receptors but only the highaffinity receptor mediates a biological response (47). The fact that recombinant rat NGF readily stimulated neurite outgrowth from PC12 cells, whereas HDNF, even at 30-fold higher concentrations than NGF, did not suggests that HDNF can only interact with the NGF receptor in its low-affinity form. It therefore appears likely that the biological responses elicited by HDNF are mediated by either a separate second messenger system compared with NGF or that the HDNF receptor is different from the NGF receptor.

In similarity with NGF, HDNF mRNA was found in several peripheral rat tissues, with the highest level in kidney. Hybridization of the same filters to a rat NGF probe revealed that the level of HDNF mRNA in kidney was only slightly

5458

have nonoverlapping functions outside the nervous system. Interestingly, the three neurotrophic proteins were maximally expressed at different times of brain development with a peak of HDNF mRNA shortly after birth, BDNF mRNA around 2 weeks, and NGF mRNA around 3 weeks after birth (see ref. 8 for NGF). Moreover, the mRNA's for all three proteins were expressed in hippocampus at levels higher than in other regions, particularly in the case of HDNF. Within hippocampus, all three mRNAs were also confined to neurons (see ref. 10 for NGF) and a clear topographical division was seen, where HDNF mRNA was concentrated to pyramidal neurons in medial CA1, CA2, and granular neurons in dentate gyrus. Strongly labeled BDNF neurons were primarily seen in CA3 and the hilar region of dentate gyrus. Neurons with apparent lower levels of BDNF mRNA were seen in the dentate gyrus. The hilar region, containing neurons with high levels of BDNF mRNA, showed no labeling for HDNF mRNA.

different reproductive tissues and suggests that they may

This remarkable concentration of trophic factors in the adult hippocampus suggests that maintenance of plasticity is crucial to its function and may relate to the presumed morphological sequelae of long-term potentiation and memory consolidation processes. The intriguing temporal and spatial expression of the three neurotrophic proteins in the brain suggests that they predominantly support neuronal innervation at different times of development and that they may also exert specific trophic support for different central nervous system neurons, a possibility that will be an interesting topic for future studies.

We thank Annika Jordell-Kylberg for expert technical assistance with the bioassays. This work was supported by The Swedish Natural Science Research Council, the Swedish Medical Research Council, the Swedish Natural Environment Protection Board, Magnus Bergvalls Stiftelse, US Grants (University of Colorado) AG 04418 and NS-09199, and funds from the Karolinska Institute. P.E. was supported by the Swedish Medical Research Council.

- Cowan, W. M., Fawcett, J. W., O'Leary, D. D. M. & Stanfield, B. B. (1984) Science 225, 1258-1265.
- Black, I. B. (1986) Proc. Natl. Acad. Sci. USA 83, 8249-8252.
- Levi-Montalcini, R. (1987) Science 237, 1154-1162.
 Thoenen, H. & Barde, Y.-A. (1980) Physiol. Rev. 60, 1284-1335.
- Heumann, R., Korsching, S., Scott, J. & Thoenen, H. (1984) EMBO J. 3. 3183-3189.
- Shelton, D. L. & Reichardt, L. F. (1984) Proc. Natl. Acad. Sci. USA 81, 7951-7955.

- Korsching, S., Auberger, G., Heumann, R., Scott, J. & Thoenen, H. (1985) EMBO J. 4, 1389-1393.
- Whittemore, S. R., Ebendal, T., Lärkfors, L., Olson, L., Seiger, A. Strömberg, I. & Persson, H. (1986) Proc. Natl. Acad. Sci. USA 83,
- Shelton, D. L. & Reichardt, L. F. (1986) Proc. Natl. Acad. Sci. USA 83, 2714-2718.
- Ayer-LeLièvre, C., Olson, L., Ebendal, T., Seiger, A. & Persson, H.
- (1988) Science 240, 1339-1341.

 Hefti, F. (1986) J. Neurosci. 6, 2155-2162.

 Williams, L. R., Varon, S., Peterson, G. M., Wictorin, K., Fischer, W., Björklund, A. & Gage, F. H. (1986) Proc. Natl. Acad. Sci. USA 83, 9231-9235
- Kromer, L. F. (1987) Science 235, 214-216.
- Rosenberg, M. B., Friedmann, T., Robertson, R. C., Tuszynski, M., Wolff, J. A., Breakefield, X. O. & Gage, F. (1988) Science 242, 1575-
- Strömberg, I., Wetmore, C. J., Ebendal, T., Ernfors, P., Persson, H. &
- Olson, L. (1990) J. Neurosci. Res. 25, 405-411. Ernfors, P., Ebendal, T., Olson, L., Mouton, P., Strömberg, I. &
- Ermors, F., Edendal, I., Olson, L., Modion, F., Stromberg, I. & Persson, H. (1989) Proc. Natl. Acad. Sci. USA 86, 4756-4760.
 Barde, Y.-A., Edgar, D. & Thoenen, H. (1982) EMBO J. 1, 549-553.
 Leibrock, J., Lottspeich, F., Hohn, A., Hofer, M., Hengerer, B., Masiakowski, P., Thoenen, H. & Barde, Y.-A. (1989) Nature (London) 341, 149-152
- Hofer, M. M. & Barde, Y.-A. (1988) Nature (London) 331, 261-262.
- Lindsay, R. M., Thoenen, H. & Barde, Y.-A. (1985) Dev. Biol. 112, 319–328.
- Johnson, J. E., Barde, Y.-A., Schwab, M. & Thoenen, H. (1986) J. Neurosci. 6, 3031-3038.
- Hedlund, K. & Ebendal, T. (1980) J. Neurocytol. 9, 665-682.
- Davies, A. M., Thoenen, H. & Barde, Y.-A. (1986) J. Neurosci. 6, 1897-1904
- Wetmore, C., Ernfors, P., Persson, H. & Olson, L. (1990) Exp. Neurol. 109, in press.
- Scott, J., Selby, M., Urdea, M., Quiroga, M., Bell, G. I. & Rutter, W. J. (1983) *Nature (London)* 302, 538-540.
- Ullrich, A., Gray, A., Berman, C. & Dull, T. J. (1983) Nature (London) 303, 821-825
- Ernfors, P., Hallböök, F., Ebendal, T., Shooter, E. M., Radeke, M. J., Misko, T. P. & Persson, H. (1988) Neuron 1, 983-996.
- Sanger, F., Nicklen, S. & Coulson, A. (1977) Proc. Natl. Acad. Sci. USA **74,** 5463–5467.
- Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982) Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Lab., Cold Spring Harbor, NY).
- Frohman, M. A., Dush, M. K. & Martin, G. P. (1988) Proc. Natl. Acad.
- Sci. USA 85, 8998-9002.
 Whittemore, S. R., Friedman, P. L., Larhammar, D., Persson, H., Gonzalez-Carvajal, M. & Holets, V. R. (1988) J. Neurosci. Res. 20, 403-410.
- Minty, A. J., Caravatti, M., Benoit, R., Cohen, A., Daubas, P., Weydert, A., Gros, F. & Buckingham, M. E. (1981) J. Biol. Chem. 286, 1008-1014.
- Ernfors, P., Henschen, A., Olson, L. & Persson, H. (1989) Neuron 2, 1605-1613.
- Yang, Y. C., Ciarlette, A. B., Temple, P. A., Chung, M. P., Kovacic, S., Wilek-Giannotti, J. S., Leary, N. C., Kriz, R., Donahue, R. E., Wong, G. G. & Clark, S. C. (1986) *Cell* 47, 3–10.
- Luthman, H. & Magnusson, G. (1983) Nucleic Acids Res. 11, 1295-1305.
- Ibanez, C., Hallböök, F., Ebendal, T. & Persson, H. (1990) EMBO J. 9, 1477-1483.
- Ebendal, T. (1989) IBRO Handb. Ser. 12, 81-93. Le Douarin, N. M., Teillet, M. A., Ziller, C. & Smith, J. (1978) Proc. Natl. Acad. Sci. USA 75, 2030-2034.
- Ebendal, T. (1979) Dev. Biol. 72, 276-290.
- Sutter, A., Riopelle, R. J., Harris-Warrick, R. M. & Shooter, D. M. (1979) J. Biol. Chem. 254, 5972-5982. Hohn, A., Leibrock, J., Bailey, K. & Barde, Y.-A. (1990) Nature
- (London) 344, 339-341.
- Mainsonpierre, P. C., Belluscio, L., Squinto, S., Ip, N. Y., Furth, M. E., Lindsay, R. M. & Yancopoulos, G. D. (1990) Science 247, 1446-1451.
- Selby, M. J., Edwards, R., Sharp, F. & Rutter, W. J. (1987) Mol. Cell Biol. 7, 3057-3064.
- Hallböök, F., Ebendal, T. & Persson, H. (1988) Mol. Cell. Biol. 8, 452-456.
- Adler, R., Landa, K., Manithorpe, M. & Varon, S. (1979) Science 204, 45. 1434-1436.
- 46. Stöckli, K. A., Lottspeich, F., Sendtner, M., Maslakowski, P., Carroll, P., Götz, R., Lindholm, D. & Thoenen, H. (1989) Nature (London) 342,
- Eveleth, D. D. & Bradshaw, R. A. (1988) Neuron 1, 929-936.
- Ayer-LeLiévre, C., Olson, L., Ebendal, T., Hallböök, F. & Persson, H. (1988) Proc. Natl. Acad. Sci. USA 85, 2628-2632. Persson, H., Ayer-LeLiévre, C., Söder, O., Villar, M. J., Metsis, M.,
- Olson, L., Ritzen, M. & Hökfelt, T. (1990) Science 247, 704-707.