R-Fans 导航型激光雷达

用户手册

(版本: 4.4)

北京北科天绘科技有限公司 2019.12

目录

1.	安全提	禄	1
	1.1.	禁止拆开	1
	1.2.	激光安全	1
	1.3.	声明	1
2.	产品介	↑绍	2
	2.1.	R-FANS 技术参数	3
	2.2.	激光线束分布	3
3.	开箱须	页知	5
4.	机械安	₹装	6
	4.1.	安装说明	6
	4.2.	机械安装注意事项	8
5.	电气安	₹装	9
	5.1.	雷达接口	9
	5.2.	转接线缆	9
	5.3.	线缆连接	11
	5.4.	连接完成	11
6.	通信协	y议	12
	6.1.	激光点云数据通信协议	12
	6.2.	设备信息通信协议	16
	6.3.	用户配置信息写入协议	17
7.	时间同]步	19
8.	相位同]步	20
9.	ROSD	PRIVER	21
10.	CTRL	VIEW	22
	10.1.	软件安装	22
	10.2.	软件启动	22
	10.3.	激光雷达控制	24
	10.4.	播放点云数据	26

	10.5.	Ķ	点云显示设置	26
	10.6.	Ķ	点云数据浏览设置	28
	10.7.	Ķ	点云数据流存储	29
	10.8.	X	网络配置工具	30
11.	常见问	题		33
12.	售后技	术支	持及联系方式	35
	12.1.	ŧ	支术支持	35
	12.2.	厉	质保与维修	35
附录	A R	-FAN	NS 产品角度定义表	36
	A.1.	R-FA	xns-16 偏角定义	36
	A.2.	R-FA	NS-16M 偏角定义	37
	A.3.	R-FA	ANS-32 偏角定义	38
	A.4.	R-FA	NS-32M 偏角定义	39
附录	B R	-FAN	NS 数据计算	40
	B.1.	坐标	示系	40
	B.2.	坐板	示计算	40
	B.3.	时间	引计算	41
	В.3	3.1.	R-Fans-32、R-Fans-32M 时间计算方式	41
	В.3	3.2.	R-Fans-16、R-Fans-16M 时间计算方式	41
	B.4.	偏角	自定义	42

1. 安全提示

非常感谢您选择了 R-Fans 激光雷达产品, R-Fans 将为您提供实时高效的全方位空间三维数据。

请您在产品使用前,认真阅读所有安全和操作说明,因违规操作而造成的损失,北科天绘不承担任何责任。

1.1. 禁止拆开

为减少触电危险,避免损坏设备及违反保修条款,请勿私自拆开或改装传感器。

CAUTION

In order to reduce the risk of electric shock, avoid damaging the equipment and violating the warranty, do not disassemble or modify the sensor.

1. 2. 激光安全

北科天绘 R-Fans 系列产品是 1 类激光安全产品,符合 IEC 60825-1:2014 标准。

CLASS 1

IEC 60825-1:2014/2017

1.3. 声明

本手册内容归北京北科天绘科技有限公司版权所有,如有修改,恕不另行通知,本公司尽力确保该手册内容的完整性和准确性,如您发现任何遗漏、错误之处,请联系北科天绘,我司将会及时修订。

用户可以在北科天绘官方网站 www.isurestar.com 下载最新版用户手册。

2. 产品介绍

R-Fans 通过多线激光束 360° 扫描实现三维探测成像。基于高精度激光回波信号测量技术,R-Fans 具备测程远,测量精度高,回波强度准确等技术特点,同时兼顾俯仰方向角度覆盖和角分辨率,主要特点包括:

- 1. 探测能力最远可达 200m, 测距精度 2 cm;
- 2. 可有效抵抗环境背景光干扰;
- 3. 目标反射回波强度标准 8 bit, 可选 12 bit;
- 4. 重量仅 738g, 功耗低于 8W;
- 5. 工业化设计,可以有效适应车载平台的温湿度、运动及振动环境。

图 2-1 使用示例及点云示例

2. 1. R-Fans 技术参数

表格 2-1 R-Fans 技术参数

	R-Fans-16	R-Fans-16M	R-Fans-32	R-Fans-32M
激光波长	905nm	905nm	905 nm	905 nm
激光等级	Class 1	Class 1	Class 1	Class 1
发射点频	320kHz	320kHz	640kHz	640kHz
回波模式		单回》	支/双回波	
回波强度	8 bit/12bit	8 bit/12bit	8 bit/12bit	8 bit/12bit
垂直视场	30 ° (15 °∼-15 °)	26 ° (11 °∼-15 °)	31 ° (11 °∼-20 °)	27.5 ° (11 °∼-16.5 °)
垂直角分辨率	2°	1° $(1^{\circ} \sim -6^{\circ})$ 1.5° $(-6^{\circ} \sim -7.5^{\circ})$ 2° $(5^{\circ} \sim 1^{\circ}, -7.5^{\circ} \sim -9.5^{\circ})$ 2.5° $(-9.5 \sim -12^{\circ})$ 3° $(11^{\circ} \sim 5^{\circ}, -12^{\circ} \sim -15^{\circ})$	1°	0.5° (1° ~ -6.5°) 1° (5° ~1° , -6.5° -10.5° (11° ~5° , -10.5° ~ -10.5° ~ -10.5°)
水平视场角	360°	360°	360°	360°
水平角分辨率	0.09° ~0.36° (5~20Hz)	0.09° ~0.36° (5~20Hz)	0.09° ~0.36° (5~20Hz)	0.09° ~0.36° (5~20Hz)
最大测距	200 m	200 m	200 m	200 m
测距精度	2cm	2cm	2cm	2cm
扫描帧频	5-20Hz	5-20Hz	5-20 Hz	5-20 Hz
通信接口	Ethernet, PPS	Ethernet, PPS	Ethernet, PPS	Ethernet, PPS
重量	~738 g	~738g	~738g	~738g
工作电压	9∼32 VDC	9∼32 VDC	9 ∼32 VDC	9 ∼32 VDC
功耗	≤ 8W	≤8W	≤8W	≤8W
设备尺寸(mm)	113(D)×70(H)	113 (D) ×70 (H)	113 (D) ×70 (H)	113 (D) ×70 (H)

2. 2. 激光线束分布

R-Fans 的扫描线分布区间如下,各条扫描线的垂直角度参考附录 A《R-Fans 产品角度定义表》。

图 2-1 R-Fans-16 角度分布区间

图 2-2 R-Fans-16M 角度分布区间

图 2-3 R-Fans-32 角度分布区间

图 2-4 R-Fans-32M 角度分布区间

4

3. 开箱须知

R-Fans 包装内包括以下物品: R-Fans 1 台,测试线缆 1 套,电源适配器 1 个, 出厂合格证 1 个, U 盘一个。

图 3-1 开箱图

表格 3-1 装箱清单

名称	详细信息		
激光雷达	R-Fans		
转接线缆	一分三线缆,包括以太网接口、GPS 接口、电源接口		
U盘	包含三维图纸、控制软件及相关电子文档		
电源适配器	R-Fans 供电线缆		
合格证	R-Fans 出厂合格证		

打开包装箱后,应先对照装箱清单,查看物品状态,如与装箱清单不符,请 联系供货单位。

4. 机械安装

4.1. 安装说明

图 4-1 R-Fans 结构图

1	上壳体	尺寸 113mm (D) x 11.1mm (H)
2	防护窗口	43mm (H)
3	线缆	电源/数据线缆电气接口
4	下壳体	尺寸 111.5mm (D) x 15.8mm (H)
5	标签	含设备型号、编号
6	安装螺孔	用于安装固定 R-Fans

图 4-2 R-Fans 主视图

R-Fans 呈圆柱体结构, 高 69.9mm。上壳体直径 113mm, 高 11.1mm, 中间 防护玻璃高 43mm, 下壳体直径 111.5mm, 高 15.8mm。

图 4-3 R-Fans 安装图纸

R-Fans 壳体底部有 3 个用于安装固定的 M4 螺钉孔, 3 个螺钉孔成 120°均 布在和下壳体底面同心的圆上,同心圆直径为 46 mm。螺钉孔深 6 mm。

图 4-4 R-Fans 设备出口线缆

R-Fans 下壳体的侧面引出线缆(电源/数据线缆)用于连接主控计算机、GPS设备以及电源。线缆直径 5mm, R-Fans 和线缆连接部位直径 11.9mm。

线缆另一端采用 SP1310/P9 插头,线缆(0.5m)及插头总重约为 28g。

4. 2. 机械安装注意事项

- 用于固定激光雷达的安装底座建议尽可能的平整,不要出现凹凸不平的 现象。
- 安装底座的材质建议使用铝合金材质,有助于激光雷达的散热。
- R-Fans 应稳固安装于车辆或其他平台,所安装平台及附属物避免遮挡激 光扫描视场。
- 激光雷达可以以任意角度或姿态安装固定。
- 激光雷达安装走线时,需要让线缆保持一定程度的松弛。

5. 电气安装

5.1. 雷达接口

图 5-1 壳体引出线缆示意图

R-Fans 下壳体侧面引出线缆(电源/数据线缆)长度为 0.3 米,线缆另一端 采用 SP1310/P9 插头,其电气接口定义见表格 5-1。

用户使用 R-Fans 设备,可将 SP1310 插头与转接线缆对应的接口相连。

pin 脚	颜色	定义	功能描述
pin1	灰	E0_P	以太网发送数据正极
pin2	透明	EO_N	以太网发送数据负极
pin3	蓝	E1_P	以太网接收数据正极
pin4	绿	E1_N	以太网接收数据负极
pin5	黑	TX	串口发送数据
pin6	棕	RX	串口接收数据
pin7	黄	PPS	GPS 授时同步脉冲
pin8	红	V+	电源输入
pin9	白	GND	接地

表格 5-1 SP1310 接口定义

5. 2. 转接线缆

图 5-2 转接线缆示意图 (两头视角)

转接线缆为一分三线缆,分线端 3 根线缆分别对应标准以太网口、RS-232 标准串口、电源接口。用户使用转接线缆单线端与激光雷达相连。

表格 5-2 转接线分线端接口描述

接口	说明
标准以太网口	RJ45, 百兆以太网
RS-232 标准串口	PPS 信号要求为 TTL 信号正脉冲,可根据使用要求调整
电源接口	设备供电要求电压范围为 9 - 32 VDC

其中串口引脚的定义如下:

表格 5-3 串口引脚定义

pin 脚	定义	功能描述	
pin2 RS232 Rx 接		接收数据	
pin3	RS232 Tx	发送数据	
pin5	GND	接地	
Pin6	TTL	晶体管-晶体管逻辑电平	

5.3. 线缆连接

图 5-3 线缆连接示意图

注意:外部连接系统供电电源负极("地")与 PPS、UTC 串口的信号"地" 必须是非隔离的共地系统。

5.4. 连接完成

将 R-Fans 接通电源并用网线与上位机连接后,打开电源开关,R-Fans 将进入工作状态,并开始自动传输数据。

R-Fans 默认 IP 地址为 192.168.0.3,用户将上位机 IP 设置为 192.168.0.x(x 在 0~255 之间任意设置,不为 3 即可),子网掩码设置为 255.255.255.0 之后,就可以用上位机接收 R-Fans 传输的数据。用户可以使用北科天绘 CtrlView 软件,来实时查看或者录制点云数据。

6. 通信协议

R-Fans 与上位机之间采用以太网介质,使用 UDP 协议进行通信。通信的内容主要有 3 类: 雷达数据通信、雷达设备信息通信、用户配置写入.。

R-Fans 网络参数可配置,出厂默认的设备 IP 和端口号模式,见如下表格。

表格 6-1 R-Fans 出厂默认网络配置表

设备 IP	点云数据通信端口	设备信息通信端口	用户配置写入端口
192.168.0.3	2014	2030	2015

使用 R-Fans 设备时, 需将上位机的 IP 设置为与 R-Fans 在同一网段, 即 IP 地址为 192.168.0.x(x 值不能为 3), 子网掩码为 255.255.255.0。

R-Fans 与上位机之间的 3 类通信协议一览表如下:

表格 6-2 设备协议一览表

协议功能	端口号	类型	包大小
激光点云数据通信	2014	UDP	1248 Byte
用户配置写入	2015	UDP	60 Byte
设备信息通信	2030	UDP	256 Byte

6.1. 激光点云数据通信协议

本协议主要用于传输三维测量相关数据,包含水平角度值、激光测距值,回波反射率值和时间戳。

协议端口 2014, I/0 类型为设备输出,上位机解析。协议数据包有效载荷长度为 1248 字节,其中包头 42 字节,数据块 1200 字节,包尾 6 字节。根据数据包内灰度输出模式的不同,可以将数据包分为 8bit 灰度数据包和 12bit 灰度数据包,出厂默认为 8bit 灰度数据包,如需要 12bit 数据包,用户可以在订货时说明。

8bit 灰度数据包基本结构如下表所示:

表格 6-3 8bit 灰度数据包结构

Byte Offset	Content	Byte Counts
0	UDP Header	42
42	Group 0	100
142	Group 1	100
242	Group 2	100
342	Group 3	100
442	Group 4	100
542	Group 5	100
642	Group 6	100
1142	Group 11	100
1242	GPS Timestamp	4
1246	Factory	2

Byte Offset	Content	Byte Count
0	Flag "xFFEE"	2
2	Azimuth Angle	2
4	Point 0	3
7	Point 1	3
49	Point 15	3
52	Point 16	3
55	Point 17	3
94	Point 30	3
97	Point 31	3

Byte Offset	Content	Byte Count
0	Range	2
2	Intensity	1

包头

包头一共 42 字节, 主要包括物理地址、IP 地址和端口号等。

● 数据块

数据块一共 1200 字节,主要包含传感器的测量内容,由 12 个长度为 100 字节的 Group 组成。

每个 Group 代表一次完整的测量数据,包含:

- (1) 2 个字节的 Flag, 表示数据内部标识;
- (2) 2 个字节的 Azimuth Angle,表示水平角度信息;Azimuth Angle 为 2 字节的 unsigned integer,高位在后,单位为 0.01° ,取值范围为 0~35999,表示所在 Group 中 Point 0 的方位角,其它 Point 对应的角度计算参考 B.2 章节。
- (3) 32 组 Point 数据,用来表示 32 个通道的信息,其中每组 point 数据由 2 个字节的 Range 和 1 个字节的 Intensity 组成。Range 为 2 字节的 unsigned integer,高位在后,单位为 4.0mm。Intensity 长度为 1 个字节,取值范围为 0~255。表示经过处理后的回波强度值。

● 包尾

包尾一共6字节,由4字节的GPS timestamp和2字节的Factory组成。

GPS Timestamp 为 4 字节的 unsigned integer, 高位在后,取值范围为 0~3,599,999,999,表示 Group 0 中 Point 0 的时间戳,该时间戳为从上一个整点时间开始计时的微秒数 (如果没有授时信息输入,则时间戳为从设备上电开始计时的微秒数)。其它 Point 对应的时间戳计算参考 B.3 章节。

Factory 长度为 2 字节, 高位在后, 表示设备型号。

Factory			
Bits Offset			
0	Package Format	8	数据打包编号
8	Device ID	8	设备类型编号

设备类型	Device ID
RFans-16	0x22 (34)
RFans-16M	0x24 (36)
RFans-32	0x27 (39)
RFans-32M	0x28 (40)

十六进制值(十进制)	回波打包方式分类	说明
0x37 (55)	最强回波输出 Strongest	输出最强回波数据

12bit 灰度数据包基本结构如下表所示:

表格 6-4 12bit 灰度数据包结构

Byte Offset	Content	Byte Counts	
0	UDP Header	42	
42	Group 0	116	
158	Group 1	116	
274	Group 2	116	
390	Group 3	116	
970	Group 8	116	
1086	Group 9	116	
1202	Reserved	40	
1242	GPS Timestamp	4	
1246	Factory	2	

/	Byte Offset	Content	Byte Count
	0	Flag	2
	2	Azimuth Angle	2
	4	Point 0-1	7
	11	Point 2-3	7
	53	Point 14-15	7
\			
\	109	Point 30-31	7

/	Byte Offset	Content	Byte Count
	0	Range1	2
	2	Range2	2
	4	{Intensit y1,Inten sity2}	3

● 包头

包头一共 42 字节, 主要包括物理地址、IP 地址和端口号等。

● 数据块

数据块一共 1200 字节,由 10 个长度为 116 字节的 Group 和 1 个 40 字节的 Reserved 组成。

每个 Group 代表一次完整的测量数据,包含:

- (1) 2 个字节的 Flag, 表示数据内部标识;
- (2) 2 个字节的 Azimuth Angle, 表示水平角度信息; Azimuth Angle 为 2 字节的 unsigned integer, 高位在后,单位为 0.01°, 取值范围为 0~35999, 表示所在 Group 中 Point 0 的方位角,其它 Point 对应的角度计算参考 B.2 章节。
- (3) 32 组 Point 数据,用来表示 32 个通道的信息,其中每组 point 数据由 2 个字节的 Range1、2 个字节的 Range2、3 个字节的{Intensity1,Intensity2}组成;

Range1 和 Range2 为 2 字节的 unsigned integer, 高位在后,单位为 4.0mm。 Intensity1 和 Intensity2 为 12bit 的灰度值,两个灰度值拼接成 3 个字节,拼

接方式从前到后高 12bit 为 Intensity1[11:0], 低 12bit 为 Intensity2[11:0], 每个

Intensity 代表原始灰度信息,高位在前,取值范围为 0~4095,用户可根据实际场景灰度直方图动态调整感兴趣的灰度区间。

(4) 40 个字节的 Reserved, 这部分为预留字节。

● 包尾

包尾一共6字节,由4字节的GPS timestamp和2字节的Factory组成。

GPS Timestamp 为 4 字节的 unsigned integer, 高位在后,取值范围为 0~3,599,999,999,表示 Group 0 中 Point 0 的时间戳,该时间戳为从上一个整点时间开始计时的微秒数(如果没有授时信息输入,则时间戳为从设备上电开始计时的微秒数)。其它 Point 对应的时间戳计算参考 B.3 章节。

Factory 长度为2字节,高位在后,表示设备型号。

Factory			
Bits Offset	Content	Bit Counts	
0	Package Format	8	数据打包编号
8	Device ID	8	设备类型编号

设备类型	Device ID
RFans-16	0x22 (34)
RFans-16M	0x24 (36)
RFans-32	0x27 (39)
RFans-32M	0x28 (40)

十六进制值(十进制)	回波打包方式分类	说明
0x37 (55)	最强回波输出 Strongest	输出最强回波数据

6.2. 设备信息通信协议

本协议主要用于激光雷达向上位机传输设备状态信息,包含固件信息,电机运行状态信息,设备温度,时间等。

协议端口为 2030, I/O 类型为设备输出,上位机解析,R-Fans 设备每间隔 1 秒定期向上位机发送数据包,数据包共 256 字节,基本结构如下:

表格 6-5 设备信息通信协议数据包结构

Package header(4 Bytes)	: 0xE1, 0xE2, 0xE3, 0xE4;
Package id(4 Bytes)	: 0x00000000-0xFFFFFFF;
GPS Time(6Byte)	: YY, MM, DD, HH, MM, SS;
Device MAC_ADDRESS(6 Bytes)	:
Point Cloud data port(2 Bytes)	:
Command data port(2Bytes)	:
Motor speed(1Byte)	: unit in 0.1Hz;
Device_info(4Byte)	:
PPS encode(2Byte)	:
Device_id(2Byte)	:
Temperature(2Byte)	: unit in 0.01°C;
ERR 8b10b cksum(4Byte)	:
Padding(217Bytes)	: 0xFF

6.3. 用户配置信息写入协议

本协议主要用于接收上位机的用户配置信息,用户可以根据需求配置电机参数和修改 IP。

协议端口为 2015, I/O 类型为上位机输出,设备解析,命令和消息格式如下。

```
typedef struct { //! USB 报文传输配置 unsigned char msgHead; //!< 报文头 unsigned char msgCheckSum; //!< 校验和 unsigned short regAddress; //!<寄存器地址 unsigned int regData; //!< 命令数据、寄存器数据 } DEB FRAME S;
```

每一个 DEB_FRAME_S 结构体包含一个 8bits 的报文头 msgHead, 一个 8bits 的校验和 msgCheckSum, 一个 16bits 的命令 ID, 一个 32bits 的命令数据。

报文头	校验和	命令 ID	命令数据
8 bits	8 bits	16 bits	32 bits

结构体使用方法如下:

写命令:上位机指令格式为:

报文头	校验和	命令 ID	命令数据
0xA5	8 bits	16 bits	32 bits

上位机下发写寄存器指令主要有控制激光雷达启动、停止、待机等命令。

校验和的计算方式为: 将命令 ID、命令数据的所有字节相加求和, 再将和中因为进位超出 1 个字节的部分去掉, 剩下 1 个字节为校验和。例如"R-Fans 以 20Hz 转速(1200RPM)启动"命令中, 命令 ID、命令数据的字节数据和为0x 40+0x 0F+0x 00+0x 00+0xF7=0x146, 去掉进位剩下的字节为 0x46, 所以该命令的校验和为 0x46。

7. 时间同步

R-Fans 接入 GPS 接收机提供的标准时间信号时可开启时间同步功能。GPS 接收机时间信号包括 PPS 信号以及串口 GPRMC 数据(包含 UTC 时间信息)。

串口 GPRMC 数据默认要求串口波特率: 9600; 数据位: 8; 校验: 无; 停止位: 1。

PPS 信号需为 TTL 信号,脉宽大于 200ns,R-Fans 接收 GPS 接收机发出的 串口 GPRMC 数据(包含 UTC 时间信息)后,以下一个 PPS 信号的上升沿作为时间同步基准。

部分 GPS 接收机提供的 PPS 信号上升沿可能超前于串口 GPRMC 数据(包含 UTC 时间信息),那么 R-Fans 记录的当前 PPS 对应的时间值会比真实的 UTC 时间减去 1s,请用户自行纠正该差值。

如果 GPS 接收机提供的 PPS 信号上升沿晚于串口 GPRMC 数据(包含 UTC 时间信息),那么 R-Fans 记录的当前 PPS 对应的时间值即为该串口输入 UTC 时间。

8. 相位同步

相位同步功能默认为关闭状态,用户可通过串口命令启用该功能,设置相位同步角度并开启电机相位同步。

使用相位同步功能时,需给 R-Fans 输入 PPS 信号。

电机相位同步角度计算方式: 以 R-Fans X 轴方向为基准方向,按顺时针方向(y 正轴→x 正轴)计算角度。

当 R-Fans 收到 PPS 信号后,会自动调整电机旋转,保证收到 PPS 时刻电机角度值为设置的相位同步角度。

9. ROSDriver

ROSDriver 为本产品配套在 ROS 平台下使用控制软件, ROSDriver 安装要求如下,功能列表见表格 9-1,详细操作说明见 U 盘中 ROSDriver 用户手册。

ROSDriver 安装要求:

- 操作系统: Ubuntu14.04 (ros indigo) /16.04 (ros kinetic)
- 内存: 推荐最少 2GB 内存
- 硬盘: 硬盘 80G 以上,用于存储和分析点云数据

表格 9-1 ROSDriver 功能列表

模块分类	功能说明
	1、接收 UDP 数据包;
数据接收	2、 回放 pcap 文件。
	1、时间同步,点云数据的时间戳与激光雷达保持同步,也可连
	接 GPS 设备对激光雷达进行授时,点云时间戳同 GPS 时间
解码解算	保持同步;
	2、PointCloud2 数据转 LaserScan 格式的数据,将转化后的数
	据以"scan"的话题发布到 ROS 系统中。
	1、 点云显示: RVIZ 显示点云;
点云数据发布	2、 多台设备点云融合: 两台设备点云显示; 多台设备点云显示。
	1、输出指定通道的点云数据;
算法	2、输出指定距离的点云数据;
	3、输出指定水平角度范围的点云数据。

10. CtrlView

R-Fans 配套软件 CtrlView_vx.x.x 可用于配置、控制 R-Fans,并接收和显示 R-Fans 回传的实时点云图像。方便用户配置、测试和演示 R-Fans 作业。

软件安装要求计算机配置:

CPU: Intel Core i5 四核 CPU (或更高配置)

内存: ≥4GB

操作系统: Window 7 或 Windows 10 操作系统计算机的 IP 地址设置为 192.168.0.xxx, 子网掩码为 255.255.255.0。

10.1. 软件安装

双击安装包文件安装 CtrlView_vx.x.x,直接在安装界面中点击下一步,待进度条结束,点击完成,桌面上出现 CtrlView_vx.x.x 图标。

10.2. 软件启动

R-Fans 设备上电、网络连接完成后,右键 CtrlView_vx.x.x 图标,以管理员身份运行(打开 CtrlView 软件之前需保证上位机防火墙及其他防护软件,给予 CtrlView 通过权限)。启动后,打开控制面板雷达页面(如下图),点击启动按钮开始点云数据采集。

图 10-1 控制软件界面

CtrlView_vx.x.x 界面包括:

- ① 菜单栏;
- ② 点云显示窗口;
- ③ 控制面板。

其中控制面板有状态监视(State Monitor)、雷达(LiDAR)、点云视窗(ViewCtrl) 三个选择标签。

使用管理员账户启动 CtrlView 软件,会按照软件默认配置的 R-Fans IP 地址,连接 R-Fans,连接成功会在控制面板的雷达标签下显示绿色长条。

如果连接不成功,可能原因一:软件默认配置的 R-Fans IP 地址和 R-Fans 实际 IP 地址不匹配,可通过如下操作将软件默认配置 IP 设置修改为 R-Fans 实际 IP 地址。可能原因二:系统防火墙阻止了网络通讯,请设置防火墙总是允许程序访问网络。

点击菜单栏上的"设置",选择"设置 IP 地址",在弹出的对话框中配置 R-Fans 实际 IP (默认为 192.168.0.3),以及端口。(使用此功能设置 IP 地址在 设备断电或重启软件恢复默认值,需要重新设置)

图 10-2 设置 IP 地址

10.3. 激光雷达控制

R-Fans 连通状态下,选择"雷达(LiDAR)"标签页,设置"雷达类型(LidarType)" 为 "R-Fans"模式,点击"开始(Start)",R-Fans 便可旋转采集点云数据,并将数据实时传输到上位机,并在"点云显示窗口"显示三维点云。在设备工作过程中可以设置扫描频率和所显示点云的最小距离,扫描频率 R-Fans 模式可设置为5Hz、10Hz、20Hz。

图 10-3 雷达标签页

在控制面板"状态监视"标签页下,可以查看 R-Fans 的运行状态。

R-Fans 正常运行时, "状态监视"标签页能显示以下信息:

- 接收激光回波的强度范围
- 测量获得的测距范围
- 实时传输数据速率
- 已经采集的数据总量
- 设备内温度
- UTC 时间
- 设备实时转速
- 设备实时点频
- 水平角度分辨率
- 设备类型
- 实时显示的相位角
- 设备 IP

R-Fans 在接收 GPS 信息时, UTC 时间栏实时显示"周秒",PPS 角栏实时显示同步的相位角。每秒加 1,在 R-Fans 未接收 GPS 信息时,R-Fans 能正常采集和传输数据,但 UTC 时间和 PPS 角不能正常显示。

点击"设置"菜单栏"保存点云数据"按钮,可以将点云数据保存到指定路径,选择"使用 UTC 时间保存文件"以 UTC 时间命名保存的仿真文件。

图 10-4 状态监视标签页

10.4. 播放点云数据

在 R-Fans 连通状态下,选择"雷达"标签页,设置"雷达类型"为"回放模式",打开"设置"菜单 ,点击 "打开 ISF 数据"选择需要播放的 isf 数据,再点击"播放工具栏"的 按钮或点击控制面板"雷达"界面的开始按钮,即可回放保存好的 ISF 数据。

点击 和 ▶ 按钮,播放上一个文件和下一个文件。

播放速度: x1 ▼ 在 下拉菜单中,可进行播放速度选择。

10.5. 点云显示设置

有两种途径对实时点云显示进行设置,一种方式是在右击点云显示窗口弹出的右键菜单栏中进行设置,另一种方式是在点云视图标签页中进行设置。

右键点云显示窗口右半部分;出现右键菜单栏,在右键菜单栏中有以下设置项:

隐藏/显示极坐标系(直角坐标系)网格

复位原点:点击复位原点,点云显示窗口中 R-Fans 的位置自动移动至窗口坐标系原点。

显示模式:包括 Normal 模式、Laser Number (用不同颜色标记不同扫描线)、Intense (用不同颜色标记回波强度)、Range (用不同颜色标记距离)、change (用不同颜色标记发生变化的点)。

视图:调整不同点云视图角度,可设置为顶视图、对角线视图、主视图。 颜色:调整点云显示窗口的背景色(默认为黑色)。

图 10-5 右键菜单栏

在点云视窗标签页可以设置项目包括:

视图角度控制:设置视角的 $X \times Y \times Z$ 三个轴的转动角度调整视图角度。ISF 文件选项:

文件大小一设置保存的 isf 文件的大小(最大值 1024M);

扫描线选择:选择打勾的扫描线 ID 在点云显示窗口中显示,取消打勾则相应 ID 的扫描线在点云显示窗口中不显示。

颜色模式:选择和编辑点云颜色和参数(回波强度、扫描线 ID、测距等参数)对应序列。

显示模式:包括 Normal 模式、Laser Number(用不同的颜色标记不同的扫描线)、Intense(用颜色标记回波强度)、Range(用颜色标记距离)、change(用不同颜色标记发生变化的点)。

步长:设置颜色和参数对应序列的步长。

可见:设置在点云显示窗口显示或隐藏图例。

网格选项:对点云视窗的网格和字体进行设置。

图 10-6 点云视窗标签页

10.6. 点云数据浏览设置

在点云视窗面板上使用 "工具选项"功能区,可以对点云进行简单操作。 点击"点云文本输出"可以将连续帧的点云转换为文本数据。

点击"选择区域"可以在点云显示界面上选出部分点云转换为文本数据。

"选择量表"状态下,使用鼠标滚轮,可以以鼠标为中心,缩放整个点云; 非"选择量表"状态下,使用鼠标滚轮,可以以 R-Fans 坐标中心为中心,缩放 整个点云。

"距离显示"状态下,点云界面显示界面中心(白点)到 R-Fans 坐标中心的实际距离。

10.7. 点云数据流存储

在"设置"菜单栏勾选"保存点云数据文件",即可保存点云数据。文件后缀名为.isf。

图 10-7 保存点云数据

默认点云数据为在软件安装目录的子目录 ISF 文件夹中,可通过"设置"菜单栏中的"设置文件保存路径"更改点云数据保存目录。

图 10-8 更改点云数据保存目录

isf 文件格式分两部分,第一部分为预留文件头信息,大小为 80KB,数据位置 [0,81920]。第二部分为点云数据信息。数据格式参考 6.1 章节。

10.8. 网络配置工具

R-Fans 设备网络配置工具集成于 CtrlView 软件中。打开 CtrlView 软件,选择"设置一打开配置工具",出现软件界面如下:

图 10-9 R-Fans 配置工具

当设备通电并连接上位机后,设备信息栏会显示 R-Fans 设备信息。

点击设备信息配置栏"修改"按钮,可在弹出对话框中修改设备的 MAC 地址、IP 地址、目标 IP、目标物理地址、端口、点云角度显示范围、回波模式、默认电机转速、相位同步角等信息。

图 10-10 R-Fans 设备配置

表格 10-1 设备参数配置说明

参数配置	说明
SN/Mac	修改设备的 MAC
IP 地址	修改设备的 IP 地址
目标主机	修改设备数据发送的目标主机 IP (255.255.255.255 为广播 发送)
目标主机 MAC	修改设备数据发送的目标主机 MAC(目标主机 IP 不为广播时才可修改,跨网段点播时需指定目标主机 MAC)
数据端口	修改设备的数据端口
消息端口	修改设备的消息端口
心跳包端口	修改设备的心跳包及参数配置反馈包端口
角度范围	修改设备所需裁剪的角度范围(可选范围为0°-360°)
零位角	修改设备的零位角(可选范围为 0°-360°)
回波模式	修改设备回波模式(可选模式有:第一回波、最强回波、双回波、最远回波)
默认转速	修改设备的默认上电转速(可选转速有: 0、5、10、20hz)
相位同步角	修改设备的相位同步角

11. 常见问题

问题	分析及解决							
	1、检查电源供电是否满足要求。							
	2、检查上位机网卡是否可用。							
设备内部旋转,但	3、检查上位机 IP 是否和设备 IP 在同一个子网内。							
下	4、检查网络中是否有其他计算机或设备 IP 地址冲突。							
	5、检查防火墙或其他可能阻止网络的安全是否已经设							
	置允许程序访问网络。							
	6、使用 wireshark 软件检查数据是否接收到数据。							
	1、检查电源供电是否满足要求。							
电机未运转	2、检查启动扫描命令是否正确。							
	3、检查线缆是否连接正常。							
, ,	1、检查上位机防火墙或其他可能阻止网络安全的软							
777 1 1 7 NIVA	件是否关闭。							
Wireshark 可以收 到数据但 Ctrlview	2、运行 Ctrlview 通过防火墙。							
不显示点云	3、 确认上位机的 IP 地址、端口号和设备内部配置一							
17	致。							
>	4、以管理员模式运行 CtrlView。							
设备存在频发的数	1、确认网络中是否有网络冲突。							
据丢失	2、 确认网络中是否存在其他网络设备以广播模式发							
	送大量数据造成传感器数据阻塞。							

	3、将 R-Fans 直连上位机,确认数据丢失现象是否存在。
无法升级固件或	1、 检查是否使用了具有 ConfigDevice 功能的软件。
更新配置	2、 检查串口连接和配置是否正确。

注意事项:

- ! 使用交换机连接上位机请采用单播模式
- 1 多开时注意修改设备的 IP 和 Port, 避免冲突
- ! 修改设备 IP 和 Port 后注意在 Setting 菜单下修改对应的 IP 和 Port

12. 售后技术支持及联系方式

12.1. 技术支持

如果遇到本手册无法解决的问题,请通过以下方式联系我们:

地址:北京市海淀区永丰路 5号院 1号楼 501室

联系电话: 010-58711158、、58717175、58717176、58717178

邮政编码: 100094

邮箱: bkth@isurestar.com

网址: www.isurestar.com

12.2. 质保与维修

在质保期内,由于产品自身的软硬件问题导致产品无法正常使用,我们会对产品进行免费维修。但是由于以下违规操作导致的问题,不享有质保服务。

这些情况包括但不仅限于:

- 1) 无产品保修资料和有效购买凭据
- 2) 不按说明书要求使用仪器
- 3) 用户私自改装、拆解、维修仪器
- 4) 人为故意导致的损坏
- 5) 仪器被偷、被盗、被抢、失踪、被遗忘或被丢弃
- 6) 不可抗力导致的损坏,如水灾、火灾、地震、雨雪、雷击等

附录A R-Fans 产品角度定义表

A. 1. R-Fans-16 偏角定义

R-Fans-16输出数据的Group中, Point 0~Point 31对应的各个通道号依次为: C1、B1、C2、B2、C3、B3、C4、B4、C5、B5、C6、B6、C7、B7、C8、B8、C1、B1、C2、B2、C3、B3、C4、B4、C5、B5、C6、B6、C7、B7、C8、B8。

表格 A-1 RFans-16 角度定义表

通道号	水平 角度 (°)	垂直 角度 (°)	时间 偏差 (μ sec)	通道号	水平 角度 (°)	垂直 角度 (°)	时间 偏差 (µ sec)
	H_ BETA	V_ theta	ΔΤ		H_ BETA	V_ theta	ΔΤ
B1	3. 377	-13	13. 32	C1	6.01	-15	0
B2	3. 377	-9	16. 65	C2	6.01	-11	3. 33
В3	3. 377	-5	19. 98	C3	6. 01	-7	6.66
B4	3. 377	-1	23. 31	C4	6.01	-3	9. 99
В5	3. 377	3	39. 96	C5	6.01	1	26.64
В6	3. 377	7	43. 29	C6	6.01	5	29. 97
В7	3. 377	11	46. 62	C7	6. 01	9	33. 3
В8	3, 377	15	49. 95	C8	6.01	13	36. 63

A. 2. R-Fans-16M 偏角定义

R-Fans-16M输出数据的Group中, Point 0~Point 31对应的各个通道号依次为: C1、B1、C2、B2、C3、B3、C4、B4、C5、B5、C6、B6、C7、B7、C8、B8、C1、B1、C2、B2、C3、B3、C4、B4、C5、B5、C6、B6、C7、B7、C8、B8。

表格 A-2 R-Fans-16M 角度定义表

通道号	水平 角度 (°)	垂直 角度 (°)	时间 偏差 (μ sec)	通道号	水平 角度 (°)	垂直 角度 (°)	时间 偏差 (μ sec)
	H_ BETA	V_ theta	ΔΤ		H_ BETA	V_ theta	ΔΤ
B1	-1.325	-15	13. 32	C1	1.325	-12	0
B2	-1.325	-9.5	16. 65	C2	1.325	-7.5	3. 33
В3	-1.325	-6	19. 98	C3	1.325	-5	6.66
B4	-1.325	-4	23. 31	C4	1.325	-3	9. 99
В5	-1.325	-2	39. 96	C5	1.325	-1	26.64
В6	-1.325	0	43. 29	C6	1. 325	1	29. 97
В7	-1.325	3	46. 62	C7	1.325	5	33. 3
В8	-1.325	8	49. 95	C8	1.325	11	36. 63

A. 3. R-Fans-32 偏角定义

R-Fans-32输出数据的Group中, Point 0~Point 31对应的各个通道号依次为: D1、B1、C1、A1、D2、B2、C2、A2、D3、B3、C3、A3、D4、B4、C4、A4、D5、B5、C5、A5、D6、B6、C6、A6、D7、B7、C7、A7、D8、B8、C8、A8。

表格 A-3 R-Fans-32 角度定义表

通道号	水平 角度 (゜)	垂直 角度 (°)	时间 偏差 (μ sec)	通道号	水平角度(゜)	垂直 角度 (°)	时间 偏差 (µ sec)	通道号	水平 角度 (゜)	垂直 角度 (°)	时间 偏差 (µ sec)	通道号	水平 角度 (゜)	垂直 角度 (°)	时间 偏差 (μ sec)
	H_ BETA	V_ theta	ΔΤ		H_ BETA	V_ theta	ΔΤ		H_ BETA	V_ theta	ΔΤ		H_ BETA	V_ theta	ΔΤ
A1	-6. 713	-17	18. 75	B1	-4. 068	-19	6. 25	C1	+3. 377	-18	12. 5	D1	+6.01	-20	0
A2	-6. 713	-13	20. 3125	B2	-4. 068	-15	7. 8125	C2	+3. 377	-14	14. 0625	D2	+6.01	-16	1. 5625
A3	-6. 713	-9	21.875	В3	-4. 068	-11	9. 375	СЗ	+3. 377	-10	15. 625	D3	+6.01	-12	3. 125
A4	-6. 713	-5	23. 4375	B4	-4. 068	-7	10. 9375	C4	+3. 377	-6	17. 1875	D4	+6.01	-8	4. 6875
A5	-6. 713	-1	43.75	В5	-4. 068	-3	31. 25	C5	+3. 377	-2	37. 5	D5	+6.01	-4	25
A6	-6. 713	3	45. 3125	В6	-4. 068	1	32. 8125	C6	+3. 377	2	39. 0625	D6	+6.01	0	26. 5625
A7	-6. 713	7	46. 875	В7	-4. 068	5	34. 375	C7	+3. 377	6	40. 625	D7	+6.01	4	28. 125
A8	-6 . 713	11	48. 4375	B8	-4. 068	9	35. 9375	C8	+3. 377	10	42. 1875	D8	+6.01	8	29. 6875

A. 4. R-Fans-32M 偏角定义

R-Fans-32M输出数据的Group中, Point 0~Point 31对应的各个通道号依次为: C1、A1、D1、B1、C2、A2、D2、B2、C3、A3、D3、B3、C4、A4、D4、B4、C5、A5、D5、B5、C6、A6、D6、B6、C7、A7、D7、B7、C8、A8、D8、B8。

表格 A-4 R-Fans-32M 角度定义表

通道号	水平 角度 (°)	垂直 角度 (°)	时间 偏差 (µ sec)	通道号	水平 角度	垂直角度(゜)	时间 偏差 (µ sec)	通道号	水平 角度	垂直角度(゜)	时间 偏差 (µ sec)	通道号	水平 角度 (゜)	垂直 角度 (°)	时间 偏差 (μ sec)
	H_ BETA	V_ theta	ΔΤ		H_ BETA	V_ theta	ΔΤ		H_ BETA	V_ theta	ΔΤ		H_ BETA	V_ theta	ΔΤ
A1	-6.35	-15	6. 25	B1	-3.7	-12	18. 75	C1	+3.7	-16.9	0	D1	+6.35	-13.6 8	12. 5
A2	-6 . 35	-9.5	7.8125	B2	-3.7	-7.5	20. 3125	C2	+3.7	-10.5	1. 5625	D2	+6.35	-8.5	14. 0625
А3	-6 . 35	-6	9. 375	В3	-3.7	-5	21.875	С3	+3.7	-6. 5	3. 125	D3	+6.35	-5.5	15. 625
A4	-6 . 35	-4	10. 9375	B4	-3.7	-3	23. 4375	C4	+3.7	-4.5	4. 6875	D4	+6.35	-3.5	17. 1875
A5	-6 . 35	-2	31. 25	B5	-3.7	-1	43.75	C5	+3.7	-2.5	25	D5	+6.35	-1.5	37.5
A6	-6 . 35	0	32. 8125	В6	-3.7	1	45. 3125	C6	+3.7	-0.5	26. 5625	D6	+6.35	0.5	39. 0625
A7	-6 . 35	3	34. 375	В7	-3.7	5	46. 875	С7	+3.7	2	28. 125	D7	+6.35	4	40.625
A8	-6 . 35	8	35. 9375	B8	-3.7	11	48. 4375	C8	+3. 7	6. 37	29. 6875	D8	+6.35	9.26	42. 1875

附录B R-Fans 数据计算

B. 1. 坐标系

R-Fans坐标系相对于设备壳体固定不变,坐标系原点O位于设备中心轴上, 距底座中心39.8mm,Z轴垂直于R-Fans底面,向上为正方向,X轴指向设备侧面 引出缆线的方向,XYZ构成右手坐标系(设备开机启动后顺时针旋转)。

图 B-1 设备与坐标系

B. 2. 坐标计算

计算 R-Fans 某一点坐标(x,y,z)需要该点回波距离 Range、垂直角度 V_theta、水平角度 H_Beta、水平角度 Angle 等参数。

图 B-2 坐标系与角度参数

计算方法如下:

$$Angle = -wt - w \times \Delta T - (H _Beta);$$

$$X = Range * cos(V_theta) * cos(Angle);$$

$$Y = Range * cos(V _theta) * sin(Angle);$$

$$Z = Range * sin(V_theta)$$

任意通道数据的水平角度Angle等于 $-wt-w\times\Delta T-(H_Beta)$,其中wt为 Group中的Azimuth Angle, (H_Beta) 可根据通道号查询《角度定义表》获得,w 为计算得出的瞬时角速度(5Hz转速下角速度为0.0018°/ μ sec,10Hz转速下角速度为0.0036°/ μ sec,20Hz转速下角速度为0.0072°/ μ sec), Δ T值可根据通道号查询《角度定义表》得到(R-Fans-16所求Point的时间如果位于Group中后16个的位置,应在表格查询值基础上加上53.28 μ sec)。

回波距离Range值可根据附录A激光点云数据解析和计算方法计算获得。 垂直角度V_theta值可根据通道号查询《角度定义表》获得。

B. 3. 时间计算

UDP 包中的 GPS Timestamp 表示 Group 0 中 Point 0 的时间戳, UDP 包中其它 Point 的时间戳都通过 GPS Timestamp 为基础计算得到。

B. 3. 1. R-Fans-32、R-Fans-32M 时间计算方式

$$t = t0 + 1.5625 \times 32 \times D + \Delta T$$

公式中 t0 为所在 UDP 包的 GPS Timestamp,即 Group 0 中 Point 0 的时间戳, D 为所求 Point 所在的 Group 的序号(0~11)。 Δ T 表示所求 Point 和 Point 0 的时间差, Δ T 的值可根据通道号查询《角度定义表》得到。

B. 3. 2. R-Fans-16、R-Fans-16M 时间计算方式

$$t = t0 + 3.33 \times 32 \times D + \Delta T$$

公式中 t0 为所在 UDP 包的 GPS Timestamp,即 Group 0 中 Point 0 的时间戳, D 为所求 Point 所在的 Group 的序号(0~11)。 Δ T 表示所求 Point 和 Point 0 的时间差, Δ T 的值可根据通道号查询《角度定义表》得到。

注意: 如果所求 Point 在 Group 中位于后 16 个的位置(Point 16~ Point 31), Δ T 应该在表格查询值基础上加 53.28 μ sec(即 16*3.33 μ sec),如果所求 Point 在 Group 中位于前 16 个的位置(Point 0~ Point 15),直接使用表格查询值。

B. 4. 偏角定义

R-Fans-32、R-Fans-32M 发送的 UDP 包中, Group 包含的 32 个 Point (Point 0~ Point 31) 分别对应 32 个通道。

R-Fans-16、R-Fans-16M 发送的 UDP 包中, Group 包含的 32 个 Point (Point 0~ Point 31) 分别对应 2 组各 16 个通道。

不同型号设备对应的各通道号角度和时间定义见附件 A。