Efficient *p*-Adic Arithmetic

Fré Vercauteren

Katholieke Universiteit Leuven

29-30 August 2005

p-adic Numbers

Frobenius Substitution

Newton Lifting

Logarithm, Exponential, Trace and Norm

p-adic Numbers

▶ *p*-adic valuation $\operatorname{ord}_p(r)$ of $r \in \mathbb{Q}$ is ρ with

$$r = p^{\rho}u/v, \quad \rho, u, v \in \mathbb{Z}, \quad p \not\mid u, p \not\mid v$$

- Non-archimedian p-adic norm $|r|_p = p^{-\rho}$
- ▶ Field of *p*-adic numbers \mathbb{Q}_p is completion of \mathbb{Q} w.r.t. $|\cdot|_p$,

$$\sum_{m=0}^{\infty}a_{i}p^{i},\quad a_{i}\in\{0,1,\ldots,p-1\},\quad m\in\mathbb{Z}.$$

- ▶ *p*-adic integers \mathbb{Z}_p is the ring with $|\cdot|_p \le 1$ or $m \ge 0$.
- ▶ Ideal $M = \{x \in \mathbb{Q}_p \mid |x|_p < 1\} = p\mathbb{Z}_p$ and $\mathbb{Z}_p/M \cong \mathbb{F}_p$.

p-adic Numbers in Practice

- ▶ \mathbb{Z}_p : for fixed absolute precision N, compute modulo p^N
- $ightharpoonup \mathbb{Q}_p$: write each element as $p^{\operatorname{ord}_p(x)}u_x$ with $u_x\in\mathbb{Z}_p^{\times}$
- ▶ \mathbb{Q}_p : for fixed relative precision of N, u_x mod p^N
- No rounding off errors occur unlike floating point
- Loss of absolute precision on division by p
- Possible loss of relative precision when subtracting
- ► All operations asymptotically in time O(log pN)^{1+ε}
- ▶ For $\log_2 p^N < 512$, schoolbook methods suffice

Unramified Extensions of p-adics

- ▶ K extension of \mathbb{Q}_p of degree n with valuation ring R and maximal ideal $M_R = \{x \in K \mid |x|_p < 1\}$ of R
- ▶ K is called unramified iff its residue field $R/M_R \cong \mathbb{F}_q$
- ightharpoonup K denoted with \mathbb{Q}_q and its valuation ring with \mathbb{Z}_q
- ▶ $Gal(\mathbb{Q}_q/\mathbb{Q}_p) \cong Gal(\mathbb{F}_q/\mathbb{F}_p)$ and $Gal(\mathbb{F}_q/\mathbb{F}_p) = <\sigma >$ with

$$\sigma: \mathbb{F}_q \to \mathbb{F}_q: \mathbf{X} \mapsto \mathbf{X}^p$$

- Gal(Q_q/Q_p) =< Σ > generated by Frobenius substitution
- Note: Σ is not simple p-powering!

Representation of \mathbb{Q}_q

▶ Let $\mathbb{F}_q \cong \mathbb{F}_p[t]/(\overline{f}(t))$ then \mathbb{Q}_q can be constructed as

$$\mathbb{Q}_q \cong \mathbb{Q}_p[t]/(f(t)),$$

with f(t) any lift of $\overline{f}(t)$ to $\mathbb{Z}_p[t]$.

- Different choices of f(t) have different advantages.
- ▶ Valuation ring $\mathbb{Z}_q \cong \mathbb{Z}_p[t]/f(t)$; $a \in \mathbb{Z}_q$ represented as

$$a=\sum_{i=0}^{n-1}a_it^i\ ,\quad a_i\in\mathbb{Z}_p\ .$$

▶ Reduction mod p^m gives $(\mathbb{Z}/p^m\mathbb{Z})[t]/(f_m(t))$ with $f_m(t) \equiv f(t) \mod p^m$

Sparse modulus representation of \mathbb{Q}_q

- ▶ Let $\overline{f}(t) = \sum_{i=0}^{n} \overline{f}_i t^i$ with $\overline{f}_i \in \mathbb{F}_p$ and $\overline{f}_n = 1$.
- ▶ Preserve the sparseness of \bar{f} , define

$$f(t) = \sum_{i=0}^{n} f_i t^i, 0 \le f_i < p, f_i \equiv \overline{f}_i \bmod p$$

- ▶ Reduction mod f of a polynomial of degree $\leq 2(n-1)$
 - ▶ n(w-1) multiplications of a \mathbb{Z}_p -element by a small integer
 - ▶ nw subtractions in \mathbb{Z}_p
 - w is the number of nonzero coefficients of f

Teichmüller Representation of \mathbb{Q}_q

- ▶ Let $\mathbb{F}_q \cong \mathbb{F}_p[t]/(\overline{f}(t))$, then since \mathbb{F}_q is splitting field $t^q t$ we have $\overline{f}(t)|t^q t$
- ▶ Hensel's Lemma: let $g(t) \in \mathbb{Z}_q[t]$ with l.c. a unit and let $g(t) \equiv \overline{r}(t)\overline{s}(t)$ mod p with $\overline{r}, \overline{s}$ coprime, then exist unique $r, s \in \mathbb{Z}_q[t]$ with g(t) = r(t)s(t).
- ▶ By Hensel, exists unique $f(t) \in \mathbb{Z}_p[t]$ such that

$$f(t)|t^{q-1}-1$$
 and $f(t) \equiv \overline{f}(t) \mod p$

- ▶ $\mathbb{Q}_q \cong \mathbb{Q}_p[\theta]$ with $f(\theta) = 0$ and θ is q 1-th root of unity.
- Practice: compute f(t) mod p^m and need fast division with remainder

Gaussian Normal Basis Representation of \mathbb{Q}_q

▶ Basis of $\mathbb{Q}_q/\mathbb{Q}_p$ is called normal if its of the form

$$\{\Lambda(\alpha)\}_{\Lambda\in\operatorname{Gal}(\mathbb{Q}_q/\mathbb{Q}_p)}$$

- Gauss period of type I generated by n + 1-th root of unity
 - ▶ n + 1 is prime different from p
 - ▶ gcd(n/e, n) = 1, with e order of p modulo n + 1
- ▶ Minimum polynomial of α is $\frac{t^{n+1}-1}{t-1} = t^n + t^{n+1} + \cdots + t + 1$
- ▶ Redundant representation modulo tⁿ⁺¹ 1 speeds up operations

Frobenius Substitution: All Moduli

▶ Let $\mathbb{Z}_q \cong \mathbb{Z}_p[\theta] \cong \mathbb{Z}_p[t]/(f(t))$ with $f(t) = \sum_{i=0}^{n-1} f_i t^i$

$$0 = \Sigma(f(\theta)) = \sum_{i=0}^{n-1} f_i \Sigma(\theta)^i = f(\Sigma(\theta)).$$

- ▶ Compute $\Sigma(\theta)$ as zero of f(t) from $\Sigma(\theta) \equiv \theta^p \mod p$.
- ▶ Frobenius of $a = \sum_{i=0}^{n-1} a_i \theta^i \in \mathbb{Q}_q$ is $\Sigma(a) = \sum_{i=0}^{n-1} a_i \Sigma(\theta)^i$
- ▶ Horner: O(n) multiplications $\Rightarrow O(n(nm)^{1+\varepsilon})$ time.
- ▶ Paterson-Stockmeyer: let $B = \lceil \sqrt{n} \rceil$ and rewrite

$$a(t) = \sum_{j=0}^{\lceil n/B \rceil} \left(\sum_{i=0}^{B-1} a_{i+Bj} t^i \right) t^{Bj},$$

compute $\Sigma(a)$ using $O(\sqrt{n})$ multiplications in \mathbb{Z}_q

Frobenius Substitution: Teichmüller Moduli

- ▶ f(t) is Teichmüller modulus iff $f(t)|t^{q-1}-1$, so zero θ of f is q-1-th root of unity
- ▶ As before: $f(\Sigma(\theta)) = 0$, so $\Sigma(\theta)$ also q 1-th root of unity
- ▶ Since $\Sigma(\theta) \equiv \theta^p \mod p$ conclude that

$$\Sigma(\theta) = \theta^p$$

▶ Frobenius of $a = \sum_{i=0}^{n-1} a_i \theta^i \in \mathbb{Q}_q$ is

$$\Sigma(a) = \sum_{i=0}^{n-1} a_i \theta^{ip} \bmod f(t).$$

▶ Reduction modulo f(t) takes at most p-1 multiplications over \mathbb{Z}_q

Frobenius Substitution: Gaussian Normal Basis

Gaussian Normal Basis of Type I embedded in

$$\mathbb{Z}_q[t]/(t^{n+1}-1)$$

- ▶ θ is n + 1-th root of unity, so as before $\Sigma(\theta) = \theta^p$
- Iterated Frobenius substitution:

$$\Sigma^{k}\left(\sum_{i=0}^{n}a_{i}\theta^{i}\right)=\sum_{i=0}^{n}a_{i}\theta^{ip^{k}}=a_{0}+\sum_{j=1}^{n}a_{j/p^{k} \bmod n+1}\theta^{j}$$

Newton Lifting

▶ Theorem: Let $g \in \mathbb{Z}_q[X]$ and assume that $a \in \mathbb{Z}_q$ satisfies

$$\operatorname{ord}_{p}(g'(a)) = k \text{ and } \operatorname{ord}_{p}(g(a)) = n + k$$

for some n > k, then exists a unique root $b \in \mathbb{Z}_q$ of f with $b \equiv a \pmod{p^n}$.

- a is called an approximate root of g known to precision n.
- Newton iteration: compute

$$z=a-\frac{g(a)}{g'(a)}$$

then $z \equiv b \pmod{p^{2n-k}}$, $g(z) \equiv 0 \pmod{p^{2n}}$ and $\operatorname{ord}_p(g'(z)) = k$.

Newton Lifting: Minimal Precision

- ▶ z has to be correct modulo p^{2n-k}
- ▶ $g'(a) \mod p^n$, so $g'(a)/p^k$ is a unit known $\mod p^{n-k}$
- ▶ $g(a) \mod p^{2n}$, then $g(a) \equiv 0 \mod p^{n+k}$ and $g(a)/p^{n+k}$ known $\mod p^{n-k}$
- Finally compute

$$z \equiv a - p^n \frac{g(a)/p^k}{g'(a)/p^k} \bmod p^{2n-k}$$

where inversion and multiplication is computed mod p^{n-k}

Newton Lifting: Algorithm

```
► If N \le n Then

z \leftarrow a

► Else

N' \leftarrow \left\lceil \frac{N+k}{2} \right\rceil

z \leftarrow \text{Newton iteration } (g, a, k, N')

z \leftarrow z - \frac{g(z)}{g'(z)} \pmod{p^N}

► Return z
```

Convergence is quadratic, so complexity determined by last step only!

Newton Lifting: Applications

▶ Inverse of $a \in \mathbb{Z}_q^{\times}$, NL on g(z) = az - 1

$$z \leftarrow z + z(1 - az)$$

▶ Inverse square root of $a \in \mathbb{Z}_q$, NL on $g(z) = a^2z - 1$

$$z \leftarrow z + z(1 - az^2)/2$$

- Actually faster than square root
- ▶ Teichmüller lift of element $\overline{a} \in \mathbb{F}_q^{\times}$, unique q-1-th root of unity $a \in \mathbb{Z}_q$ such that $a \equiv \overline{a} \bmod p$
- ▶ NL on $g(z) = z^q z$ starting from \overline{a}

Twisted Newton Lifting

▶ Polynomial $\Phi(X, Y) \in \mathbb{Z}_q[X, Y]$, consider the equation

$$\Phi(X,\Sigma(X))=0$$

- ▶ Solve from $\overline{x} \in \mathbb{F}_q$ with $\Phi(\overline{x}, \Sigma(\overline{x})) \equiv 0 \mod p$.
- ▶ Assume we have $x_t \equiv x \mod p^t$ and define $\delta = (x x_t)/p^t$,

$$0 = \Phi(x, \Sigma(x)) = \Phi(x_t + p^t \delta_t, \Sigma(x_t + p^t \delta_t))$$

= $\Phi(x_t, \Sigma(x_t)) + p^t \left(\frac{\partial \Phi}{\partial X}(x_t, \Sigma(x_t))\delta_t + \frac{\partial \Phi}{\partial Y}(x_t, \Sigma(x_t))\Sigma(\delta_t)\right) + O(p^{2t})$

$$\frac{\partial \Phi}{\partial Y}(\mathbf{x}_t, \Sigma(\mathbf{x}_t))\Sigma(\delta_t) + \frac{\partial \Phi}{\partial X}(\mathbf{x}_t, \Sigma(\mathbf{x}_t))\delta_t \equiv -\frac{\Phi(\mathbf{x}_t, \Sigma(\mathbf{x}_t))}{p^t} mod p^t$$

Generalised Artin-Schreier Equations

- ▶ Hilbert 90: $x^p x + \alpha = 0$ has solution iff $\text{Tr}_{\mathbb{F}_q/\mathbb{F}_p}(\alpha) = 0$.
- Definition: generalised Artin-Schreier equation

$$a\Sigma(X)+bX+c=0\,,\qquad a,b,c\in\mathbb{Z}_q,a\in\mathbb{Z}_q^{ imes}$$
 .

- ▶ Let $\beta = b/a$ and $\gamma = c/a$, then $\Sigma(X) + \beta X + \gamma = 0$.
- ▶ Define β_i , γ_i by $\Sigma^i(X) = \beta_i X + \gamma_i$, then

$$X = \Sigma^{n}(X) = \beta_{n}X + \gamma_{n} \Rightarrow X = \frac{\gamma_{n}}{1 - \beta_{n}}$$

Recurrence relation via

$$\Sigma^{i+1}(X) = \Sigma(\Sigma^{i}(X)) = \Sigma(\beta_{i}X + \gamma_{i}) = \Sigma(\beta_{i})(\beta_{1}X + \gamma_{1}) + \Sigma(\gamma_{i})$$

► Conclusion: $\beta_{i+1} = \beta_1 \Sigma(\beta_i)$ and $\gamma_{i+1} = \gamma_1 \Sigma(\beta_i) + \Sigma(\gamma_i)$

Lercier-Lubicz Algorithm: Gaussian Normal Basis

Apply square and multiply with recurrence relation, i.e.

$$\Sigma^{2k}(X) = \Sigma^{k}(\Sigma^{k}(X)) = \Sigma^{k}(\beta_{k}X + \gamma_{k}) = \Sigma^{k}(\beta_{k})(\beta_{k}X + \gamma_{k}) + \Sigma^{k}(\gamma_{k})$$

$$\begin{bmatrix} \beta_{2k} = \beta_{k}\Sigma^{k}(\beta_{k}) & \gamma_{2k} = \gamma_{k}\Sigma^{k}(\beta_{k}) + \Sigma^{k}(\gamma_{k}) \end{bmatrix}$$

$$\Sigma^{2k+1}(X) = \Sigma(\Sigma^{2k}(X)) = \Sigma(\beta_{2k}X + \gamma_{2k}) = \Sigma(\beta_{2k})(\beta_{1}X + \gamma_{1}) + \Sigma(\gamma_{2k})$$

$$\begin{bmatrix} \beta_{2k+1} = \beta_{1}\Sigma(\beta_{2k}) & \gamma_{2k+1} = \gamma_{1}\Sigma(\beta_{2k}) + \Sigma(\gamma_{2k}) \end{bmatrix}$$

- $O(\log n)$ iterations needed to reach $\Sigma^n(X)$.
- O(log *n*) multiplications and iterated Frobenius substitutions.
- Conclusion: efficient for fields with Gaussian Normal Basis.

Lercier-Lubicz Algorithm

```
If k = 1 Then
      a_k \leftarrow a \mod p^N and b_k \leftarrow b \mod p^N
Else
      k' \leftarrow \left| \frac{k}{2} \right|
      a_{k'}, b_{k'} \leftarrow \text{Lercier-Lubicz } (a, b, k', N)
      a_k \leftarrow a_{k'} \Sigma^{k'}(a_{k'}) \bmod p^N
      b_k \leftarrow b_{k'} \Sigma^{k'}(a_{k'}) + \Sigma^{k'}(b_{k'}) \mod p^N
       If k \equiv 1 \pmod{2} Then
                 b_k \leftarrow b \Sigma(a_k) + \Sigma(b_k) \bmod p^N
                 a_k \leftarrow a \Sigma(a_k) \bmod p^N
Return a_k, b_k
```

Harley's Algorithm

- ► $a\Sigma(X) + bX + c = 0$ with $a, b, c \in \mathbb{Z}_q$, $a \in \mathbb{Z}_q^{\times}$, $b \in p\mathbb{Z}_q$.
- ▶ Algorithm computes $x_t \mod p^t$, and let $\delta_t = (x x_t)/p^t$

$$0 = a\Sigma(x) + bx + c = a\Sigma(x_t + p^t\delta_t) + b(x_t + p^t\delta_t) + c$$

$$\equiv ap^t\Sigma(\delta_t) + bp^t\delta_t + (a\Sigma(x_t) + bx_t + c) \bmod p^{2t}$$

$$a\Sigma(\delta_t) + b\delta_t + \frac{a\Sigma(x_t) + bx_t + c}{p^t} \equiv 0 \bmod p^t$$

▶ Base case t = 1

$$a\Sigma(X)+bX+c\equiv aX^p+c\equiv 0 \bmod p \Rightarrow x\equiv -(\frac{c}{a})^{p^{n-1}} \bmod p$$

Harley's Algorithm

If
$$N = 1$$
 Then $x \leftarrow (-\gamma/\alpha)^{1/p} \pmod{p}$

Else

 $N' \leftarrow \left\lceil \frac{N}{2} \right\rceil$
 $x' \leftarrow \text{Harley } (\alpha, \beta, \gamma, N')$
 $\gamma' \leftarrow \frac{\alpha \Sigma(x') + \beta x' + \gamma}{p^{N'}} \pmod{p^{N-N'}}$
 $\Delta' \leftarrow \text{Harley } (\alpha, \beta, \gamma', N - N')$
 $x \leftarrow (x' + p^{N'} \Delta') \pmod{p^N}$

Return x

Twisted Newton Lifting

- ▶ If N < k + 1 Then
- $X \leftarrow X_0$
- Else
- $N' \leftarrow \left\lceil \frac{N+k}{2} \right\rceil$
- ▶ $x' \leftarrow \text{Twisted Newton lift } (\phi, x_0, N')$
- $y' \leftarrow \Sigma(x') \bmod p^{N+k}$
- $V \leftarrow \phi(\mathbf{x}', \mathbf{y}') \bmod p^{N+k}$
- $ightharpoonup \Delta_{\mathbf{v}} \leftarrow \frac{\partial \phi}{\partial \mathbf{v}}(\mathbf{x}', \mathbf{y}') \bmod p^{N'}$
- ▶ $\delta \leftarrow \text{Artin-Schreier} (\Delta_z/p^k, \Delta_y/p^k, V/p^{N'+k}, N'-k)$
- Return x

Application Twisted Newton Lifting

- ▶ Computing the Teichmüller lift of $\overline{a} \in \mathbb{F}_q$
- ▶ Find unique q-1-th root of unity $a \in \mathbb{Z}_q$ with $a \equiv \overline{a} \mod p$
- As before: $\Sigma(a) = a^p$, so solve the equation

$$\Sigma(X) = X^p$$
 from $X \equiv \overline{a} \mod p$

Teichmüller Lift of Field Polynomial

▶ Let $\mathbb{F}_q \cong \mathbb{F}_p[t]/(\overline{f}(t))$ and let $f(t) \in \mathbb{Z}_p[t]$ such that

$$f(t)|t^{q-1}-1$$
 and $f(t) \equiv \overline{f}(t) \bmod p$

- ▶ If $f(\theta) = 0$, then $f(t) = \prod_{i=0}^{n-1} (t \Sigma^i(\theta)) = \prod_{i=0}^{n-1} (t \theta^{p^i})$
- ▶ Let ζ_p be formal *p*-th root of unity then

$$f(t^p) = \prod_{i=0}^{p-1} f(\zeta_p t) \tag{*}$$

- ▶ Use Newton iteration to compute f(t) as the solution of (\star)
- ▶ Example p = 2: $f(t^2) = f(t)f(-t)$

Logarithm

▶ *p*-adic logarithmic function of $x \in \mathbb{Z}_q$ is defined by

$$\log(x) = \sum_{i=1}^{\infty} (-1)^{i-1} \frac{(x-1)^i}{i}$$

- ▶ log(x) converges for $ord_p(x-1) > 0$
- ► Horner: log(a) up to precision N takes O(N) multiplications
- ▶ Satoh, Skjernaa, and Taguchi: $\operatorname{ord}_p(a^{p^k} 1) > k$

$$\log(a) \equiv p^{-k} \Big(\log \big(a^{p^k} \big) \pmod{p^{N+k}} \Big) \pmod{p^N}$$

- ▶ $a \in \mathbb{Z}_q/p^N\mathbb{Z}_q$, then a^{p^k} is well defined in $\mathbb{Z}_q/p^{N+k}\mathbb{Z}_q$
- ▶ $k \simeq \sqrt{N}$, then $\log(a) \pmod{p^N}$ in $O(\sqrt{N})$ multiplications

Exponential

▶ *p*-adic exponential function of $x \in \mathbb{Z}_q$ defined by

$$\exp(x) = \sum_{i=0}^{\infty} \frac{x^i}{i!}$$

- ▶ Need $\operatorname{ord}_{p}(x) > 1/(p-1)$, since $\operatorname{ord}_{p}(i!) \leq (i-1)/(p-1)$
- ▶ For $a \in \mathbb{Z}_p$, $\operatorname{ord}_p(a) \ge 1$ for $p \ge 3$ and $\operatorname{ord}_p(a) \ge 2$ for p = 2.

$$\exp(a) \equiv \exp(p)^{a/p} \pmod{p^N}, \text{ for } p \ge 3,$$

 $\exp(a) \equiv \exp(4)^{a/4} \pmod{2^N}, \text{ for } p = 2.$

Trace

▶ The trace of $x \in \mathbb{Q}_q$ is

$$\operatorname{Tr}_{\mathbb{Q}_q/\mathbb{Q}_p}(x) = x + \Sigma(x) + \cdots + \Sigma^{n-2}(x) + \Sigma^{n-1}(x) \in \mathbb{Q}_p$$

- ▶ Let $a \in \mathbb{Q}_q$, then $\mathrm{Tr}_{\mathbb{Q}_q/\mathbb{Q}_p}(p^k a) = p^k \mathrm{Tr}_{\mathbb{Q}_q/\mathbb{Q}_p}(a)$
- ▶ Assume that a is unit in \mathbb{Z}_q , and for $a = \sum_{i=0}^{n-1} a_i t^i$

$$\operatorname{Tr}_{\mathbb{Q}_q/\mathbb{Q}_p}(a) = \sum_{i=0}^{d-1} a_i \operatorname{Tr}_{\mathbb{Q}_q/\mathbb{Q}_p}(t^i).$$

▶ $\operatorname{Tr}_{\mathbb{Q}_q/\mathbb{Q}_p}(t^i)$ for i = 0, ..., n-1 using Newton's formula:

$$\operatorname{Tr}_{\mathbb{Q}_q/\mathbb{Q}_p}(t^i) + \sum_{j=1}^{i-1} \operatorname{Tr}_{\mathbb{Q}_q/\mathbb{Q}_p}(t^{i-j}) f_{d-j} + i f_{d-i} \equiv 0 \pmod{p^N},$$

Norm Computation

Analytic

▶ $a \in \mathbb{Z}_q$ is close to unity, i.e. $\operatorname{ord}_p(a-1) > \frac{1}{p-1}$ then

$$\mathrm{N}_{\mathbb{Q}_q/\mathbb{Q}_p}(a) = \exp(\mathrm{Tr}_{\mathbb{Q}_q/\mathbb{Q}_p}(\log(a)))$$

Resultants

lacksquare $a=\sum_{i=0}^{n-1}a_i heta^i\in\mathbb{Z}_q^ imes$ and let $A(t)=\sum_{i=0}^{n-1}a_it^i$

$$N_{\mathbb{Q}_q/\mathbb{Q}_p}(a) = \prod_{i=0}^{n-1} \Sigma^i(a) = \prod_{i=0}^{n-1} A(\Sigma^i(\theta))$$

▶ If $\mathbb{Z}_q \cong \mathbb{Z}_p[t]/(f(t))$, then $f(t) = \prod_{i=0}^{n-1} (t - \Sigma^i(\theta))$, thus

$$N_{\mathbb{Q}_q/\mathbb{Q}_p}(a) = \prod_{i=0}^{n-1} A(\Sigma^i(\theta)) = \operatorname{Res}(f(t), A(t))$$