实验十七 RLC 电路的谐振现象

实验人: 钟易轩 指导教师: 彭莹莹

组号: 九组七号 学号: 2000012706

实验时间: 2021 年 12 月 17 日 实验地点: 物理楼南楼 234

【实验目的】

(1) 研究 RLC 电路的谐振现象;

(2) 了解 RLC 电路的相频特性和幅频特性;

【数据处理】

1. 谐振状态下的测量结果

将示波器调整为 "x-y" 模式,调节信号发生器的频率,当示波器中曲线由椭圆变为直线时,说明达到谐振状态,此时 $f_0 = 2.251(kHz)$. 在此状态下,数据如表 1 所示.

表 1: 谐振状态下的测量结果

$U_{\boxtimes 1}/\mathrm{V}$	U_R/V	$U_{\mbox{$\dot{\mathbb{Z}}$}2}/{ m V}$	U_C/V	$C/\mu { m F}$	L/H
2.840	2.195	1.0001	10.789	0.05	0.1

对于 $Q_1 = \frac{1}{\omega_0 R_{\stackrel{.}{\bowtie}} C}$ 来说, $R_{\stackrel{.}{\bowtie}}$ 并不好测,因此采用 $R_{\stackrel{.}{\bowtie}} = \frac{U_{\stackrel{.}{\bowtie}}}{U_R} R$ 来间接计算 $R_{\stackrel{.}{\bowtie}}$.

$$\begin{split} R_{\begin{subarray}{l} \end{subarray}} & = \frac{2.840}{2.195} \times 100 = 129.38(\Omega) \\ & \omega_0 = 2\pi f_0 \\ & Q_1 = \frac{1}{\omega_0 R_{\begin{subarray}{l} \end{subarray}} = 10.93 \\ & Q_2 = \frac{U_C}{U_{\begin{subarray}{l} \end{subarray}} = 10.79 \end{split}$$

对 Q_1 与 Q_2 进行误差分析:

仪器的允差为 $e_L=0.1\times0.1\%=0.0001(\mathrm{H}),\ e_C=0.05\mu\mathrm{F}\times0.65\%=0.325(\mathrm{nF}),$ $\sigma_{f_0}=0.001\times10^3\div\sqrt{3}=0.6(\mathrm{Hz}),\ \sigma_{R_{\&}}=0.07(\Omega).$

则有

$$\begin{split} \sigma_{Q_1} &= \sqrt{(\frac{\partial Q_1}{\partial \omega_0} \sigma_{\omega_0})^2 + (\frac{\partial Q_1}{\partial R_{\overset{\bowtie}{\bowtie}}} \sigma_{R_{\overset{\bowtie}{\bowtie}}})^2 + (\frac{\partial Q_1}{\partial C} \sigma_C)^2} \\ &\approx 0.07 \\ \sigma_{Q_2} &= \sqrt{(\frac{\partial Q_2}{\partial U_C} \sigma_{U_C})^2 + (\frac{\partial Q_2}{\partial U_{\overset{\bowtie}{\bowtie}}} \sigma_{U_{\overset{\bowtie}{\bowtie}}})^2} \\ &\approx 0.02 \end{split}$$

因此, $Q_1 = 10.93 \pm 0.07$, $Q_2 = 10.79 \pm 0.02$.

2. 相频特性数据表

在测试相频特性时,有

$$\Delta \varphi = \varphi_U - \varphi_I$$
$$= \Delta t \times f \times 360^{\circ}$$

根据上式,可得表 2.

表 2: 相频特性数据表

f/kHz	1.850	1.973	2.073	2.153	2.195	2.224	2.251
$\Delta t/\mathrm{ms}$	-0.119	-0.102	-0.082	-0.057	-0.039	-0.021	0.002
$\Delta \varphi / \circ$	-79.3	-72.4	-61.2	-44.2	-30.8	-16.8	1.6
f/kHz	2.278	2.311	2.356	2.436	2.588	2.900	
$\Delta t/\mathrm{ms}$	0.017	0.037	0.055	0.068	0.079	0.075	
$\Delta \varphi / \circ$	13.9	30.8	46.6	59.6	73.6	78.3	

根据表 2 中数据,可以作出相频特性图.

图 1: 相频特性曲线图

3. 幅频特性数据表

表 3: 幅频特性数据表

f/kHz	1.850	1.900	1.973	2.000	2.073	2.100
U_R/mV	174.9	200.8	253.7	279.5	377.3	428.1
f/kHz	2.153	2.175	2.195	2.210	2.224	2.230
U_R/mV	586.1	623.2	684.6	722.3	750.9	759.5
f/kHz	2.251	2.260	2.278	2.300	2.311	2.320
U_R/mV	774.6	769.8	745.8	696.1	665.6	641.0
f/kHz	2.356	2.400	2.436	2.500	2.588	2.700
U_R/mV	543.2	445.4	384.5	306.4	238.6	186.5
f/kHz	2.900	2.149	2.354			
U_R/mV	135.3	547.7	547.7			

若要转化为电流,那么只需将表 3 中的 U_R 除以 100 即可. 根据上表中原始数据转换得到的电流数据可以作出如下图像.

图 2: 幅频特性曲线图

可以算得
$$Q_3=\frac{f_0}{\Delta f}=\frac{2.251}{2.354-2.149}=10.98.$$
 且有
$$\sigma_{Q_3}=\sqrt{(\frac{\partial Q_3}{\partial f_0}\sigma_{f_0})^2+(\frac{\partial Q_3}{\partial \Delta f}\sigma_{\Delta f})^2}$$

$$=0.03$$

则有 $Q_3 = 10.98 \pm 0.03$.

4. 黑盒子实验

选取的是 7 号黑盒子,当 f=3.085kHz 时达到谐振状态,因此应该是电容电感电阻 串联. 在谐振状态下, $\omega L-1/\omega C=0$,则有 $|Z|=R=177.03\div707.2\times100=25.05(\Omega)$. 又测试了两个状态,如表 4 所示.

表 4: 黑盒子数据表

f/kHz	U_R/mV	U_i/mV
3.096	706.3	177.3
3.146	702.4	184.3

根据上表可联立方程解出 C = 267.68(nF), L = 9.957(mH).

【思考题】

(1) 对谐振频率 f_0 来说,有

$$f_0 = \frac{1}{2\pi\sqrt{LC}}\tag{17.1}$$

说明 f_0 与 R 无关,故谐振频率不会变化.而对于其他参量,则有

$$|Z| = \sqrt{R^2 + (\omega L - 1/\omega C)^2}$$

$$\tan \varphi = \frac{\omega L - 1/\omega C}{R}$$

$$i = \frac{u}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}}$$

$$Q = \frac{\omega_0 L}{R} = \frac{1}{R\omega_0 C}$$

因此, 电流会变小, 阻抗会增大, 且品质因数 Q' = 0.2Q, $\tan \varphi' = 0.2 \tan \varphi$.

(2)①对于品质因数 Q 来说,还有另一种表示方法,即

$$Q = \frac{U_C}{U} \tag{17.2}$$

因此可以依靠仪器中的电压表测出的数据计算出 Q 值.

②将信号源频率调至谐振频率,测出此时的 U_C 与 U,利用上述公式计算出 Q.

③先计算 Q 值:

$$Q = \frac{u_C}{u} = \frac{1000}{10} = 100$$

由 (17.1) 式得,已知 C 与 f_0 的情况下,有 $L=2.13\times 10^{-4}(\mathrm{H})$. 又根据 $Q=\frac{\omega_0 L}{R_m}$ 得,

$$R_r = \frac{2\pi f_0 L}{Q} \tag{17.3}$$

则有 $R_r = 8.03(\Omega)$.

【分析与讨论】

- 1. 实验中测得的曲线都以 f_0 为转折点,阻抗特性图与幅频特性图是以 f_0 为一阶导数的转折点,而相频特性图则是以 f_0 为二阶导数的转折点.
- 2. 根据计算结果表明, σ_{Q_2} 是最小的, σ_{Q_1} 是最大的. 且 Q_1 与 Q_3 更为接近, Q_2 偏小.