$(https://blog.frontiersin.org/2018/07/02/impact-factor-scientific-academic-journal-ranking-report/? \\utm_source=FWEB&utm_medium=FJOUR&utm_campaign=IF18_GEN_TOP)$

Frontiers journals are at the top of citation and impact metrics

in Astronomy and Space Sciences (https://www.frontiersin.org/j

THIS ARTICLE IS PART OF THE RESEARCH TOPIC

Quasars at all cosmic epochs (https://www.frontiersin.org/research-topics/5942)

OPINION ARTICLE

Front. Astron. Space Sci., 21 September 2017 | https://doi.org/10.3389/fspas.2017.00014 (https://doi.org/10.3389/fspas.2017.00014)

Optical Variability of Active Galactic Nuclei

🎎 Szymon Kozłowski (http://www.frontiersin.org/people/u/465731)*

Astronomical Observatory, University of Warsaw, Warsaw, Poland

1. Introduction

Variability studies of active galactic nuclei (AGNs) typically use either power spectral density (PSD) and structure function (SF) analyses or direct modeling of light curves with the damped random walk (DRW) and the continuous autoregressive moving average (CARMA) models. A fair fraction of research publications on the subject are flawed, and simply report incorrect results, because they lack a deep understanding of where these methods originate from and what their limitations are. For example, SF analyses typically lack or use a wrong noise subtraction procedure, leading to flat SFs. DRW, on the other hand, can only be used if the experiment length is sufficient, at least ten times the signal decorrelation time scale τ , and if the data show the power-law SF slope of $\gamma = 0.5$.

2. Structure Functions

The structure function (SF) analysis is a model-independent technique of converting an active galactic nucleus (AGN) light curve into a different space, the variability amplitude-timescale space. The basic approach behind the SF analysis is as follows. Data points y_i in an AGN light curve are, in the simplest case, a sum of the variable signal s_i (with the variance σ_s^2) and the observational noise n_i (with the variance σ_n^2), so $y_i = s_i + n_i$. SF originates from simple mathematical properties of the covariance of the light curve (index *i*) with a shifted copy of itself (index *j*) by the timelag $\Delta t = t_i - t_i$, via (MacLeod et al., 2010; Kozłowski, 2016b)

$$SF(\Delta t)^2 = 2\left(\sigma_s^2 - cov(s_i, s_i)\right) + 2\sigma_n^2, \tag{1}$$

where $SF(\Delta t)$ is typically measured from data as

$$\mathrm{SF}(\Delta t)^2 = rac{1}{N_{\Delta \mathrm{t\,pairs}}} \sum_{i=1}^{N_{\Delta \mathrm{t\,pairs}}} (y_i - y_j)^2.$$
 (2)

TABLE OF CONTENTS

In order to measure the true AGN variability, so in fact $cov(s_i, s_j)$ in Equation (1), one needs to subtract the full noise term ($2\sigma_n^2$) from the SF in Equation (2). This is either rarely done in recent works or done incorrectly, as commonly only a fraction of 1. Introduction the noise term (σ_n^2) is subtracted. This leads to flat power-law SF slopes of $\gamma = 0.1-0.4$ at short timescales Δt (SF(Δt) $\propto \Delta t^{\gamma}$) (e.g., Villigen Berk et al., 2004; de Vries et al., 2005), but when correctly measured, the SF slope in optical is significantly steeper $\gamma = 0.55 \pm 0.08$, based on ~9,200 SDSS AGN from Stripe 82 (Kozłowski, 2016b) and $\gamma \approx 0.45$ in mid-IR (Kozłowski et $\frac{31.756}{1.0000}$ Damped 6). An equally important variability observable to the SF slope is the decorrelation timescale τ , a timescale at Random Walk which the SF changes slope from the red noise ($\gamma = 0.5$) to the white noise ($\gamma = 0.0$). It seems to be about one year rest-frame, 4. Conclusions again based on ~9,200 SDSS AGN from Stripe 82 (Kozłowski, 2016b). I recently proposed a new method of the measurement or the fundamental decorrelation timescale au from SFs (Kozłowski, 2017a). Another SF observable is the AGN variability amplitude measured at 1 year (rest-frame) with the value of 0.20 ± 0.06 mag in optical bands, while the asymptotic variability halfillide at long timescales ($\Delta t \gg \tau$, so $\Delta t \gg 1$ year rest-frame) is 0.25 \pm 0.06 mag (Kozłowski, 2016b). The SF amplitude at 1 Geaffinag be effected, while the asymptotic variability amplitude is not, by the bias due to the unknown underlying stochastic Statement process for short datasets (Kozłowski, 2017a). References

3. The Damped Random Walk

AGN light curves can be modeled and interpolated using the damped random walk (DRW) stochastic process. DRW modeling (Kelly et al., 2009; Kozłowski et al., 2010b; MacLeod et al., 2010) by definition assumes an exponential covariance matrix of the signal of the form

$$\operatorname{cov}\left(s_{i}, s_{j}\right) = \sigma_{s}^{2} e^{-\frac{|t_{i} - t_{j}|}{\tau}}, \qquad (3)$$

that again by definition produces a fixed SF power-law slope of $\gamma \equiv 0.5$ at timelags $\Delta t = t_i - t_j$ shorter than the signal decorrelation timescale τ (Kozłowski, 2016b). If the variability signal is due to a different stochastic process, where the SF slope is shallower/steeper than $\gamma = 0.5$, DRW will obtain a reasonable fit, however, it will report biased measurements (Kozłowski, 2016a). As of now, there is no statistical correction available to this problem, however, using the information on the SF/PSD slope one can modify the DRW model covariance matrix (Equation 3) and model the light curves with the modified DRW model to obtain correct parameters. DRW should be used to model an AGN light curve if one is convinced that the SF slope for a light curve is $\gamma = 0.5$ (or equivalently the PSD slope is -2). There is another issue with DRW: if the light curve is shorter than 10τ (~ 10 years rest-frame), it will simply report meaningless variability parameters (Kozłowski, 2017b). DRW is the simplest of the CARMA models [i.e., DRW \equiv CARMA(1, 0)], therefore the whole CARMA model family is plausibly affected by biases or problems reported above.

4. Conclusions

Constraining the SF, PSD, and DRW (or more generally the Gaussian processes) parameters typically require long and well-sampled AGN light curves. Such tight constraints may soon be available from the OGLE Sky Survey (Udalski et al., 2015), that has been monitoring the sky for 25 years, and in particular from its 20-year-long monitoring of nearly 1,000 AGNs (each with ~1,000 epochs), discovered mostly by the Magellanic Quasars Survey (Kozłowski et al., 2013). Similarly to the results from the SDSS Stripe 82, preliminary results from OGLE point to the mean SF slope $\gamma \gtrsim 0.5$. For sparsely sampled or short light curves some corrections to improve biases in PSD/SF/excess variance measurements are available (Vaughan et al., 2003; Allevato et al., 2013), although in a statistical (ensemble) sense, rather than for individual objects.

Author Contributions

The author confirms being the sole contributor of this work and approved it for publication.

Funding

SK acknowledges the financial support of the Polish National Science Center through the OPUS grant 2014/15/B/ST9/00093 and MAESTRO grant 2014/14/A/ST9/00121.

Conflict of Interest Statement

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

2. Structure

References

3. The Damped Allevato, V. Paplillo, M., Papadakis, I., and Pinto, C. (2013). Measuring X-ray variability in faint/sparsely sampled active galactic nuclei. *Astrophys. J.* 771:9. doi: 10.1088/0004-637X/771/1/9

Crossper Usion Ext (https://doi.org/10.1088/0004-637X/771/1/9) | Google Scholar (http://scholar.google.com/scholar_lookup? author=V.+Allevato&author=M.+Paolillo&author=I.+Papadakis&author=C.+Pinto+&publication_year=2013&title=Measuring+X-ray+yarjability+in+faint%2Fsparsely+sampled+active+galactic+nuclei&journal=Astrophys.+J.&volume=771&pages=9) Contributions

de Vries, W. H., Becker, R. H., White, R. L., and Loomis, C. (2005). Structure function analysis of long-term quasar variability. Astron. J. 129, 615–629. doi: 16/10/86/2427393

Conflict Of Interestings://doi.org/10.1086/427393) | Google Scholar (http://scholar.google.com/scholar_lookup?

Subtom: Writh. +de+Vries&author=R.+H.+Becker&author=R.+L.+White&author=C.+Loomis+&publication_year=2005&title=Structure+function+analysis+of+long-term+quasar+variability&journal=Astron.+J.&volume=129&pages=615-629)

Kelly, B. C., Bechtold, J., and Siemiginowska, A. (2009). Are the variations in quasar optical flux driven by thermal fluctuations? *Astrophys. J.* 698, 895–910. doi: 10.1088/0004-637X/698/1/895

 $\label{lem:cossRefFull Text} $$\operatorname{Lorg}(0.004-637X/698/1/895) \mid \operatorname{Google Scholar}(\text{http://scholar.google.com/scholar_lookup?} \\ \text{author=B.+C.+Kelly&author=J.+Bechtold&author=A.+Siemiginowska+&publication_year=2009\&title=Are+the+variations+in+quasar+optical+flux+driven+by+thermal+fluctuations%3F&journal=Astrophys.+J.&volume=698\&pages=895-910) \\ \\ \text{CrossRef Full Text}(\text{https://doi.org/10.1088/0004-637X/698/1/895}) \mid \operatorname{Google Scholar}(\text{http://scholar.google.com/scholar_lookup?} \\ \text{author=B.+C.+Kelly&author=J.+Bechtold&author=A.+Siemiginowska+&publication_year=2009\&title=Are+the+variations+in+quasar+optical+flux+driven+by+thermal+fluctuations%3F&journal=Astrophys.+J.&volume=698\&pages=895-910) \\ \text{CrossRef Full Text}(\text{https://doi.org/10.1088/0004-637X/698/1/895}) \mid \operatorname{Google Scholar}(\text{http://scholar.google.com/scholar_lookup?} \\ \text{CrossRef Full Text}(\text{https://doi.org/10.1088/0004-637X/698/1/895}) \mid \operatorname{Google Scholar}(\text{http://scholar.google.com/scholar_lookup?} \\ \text{CrossRef Full Text}(\text{https://scholar.google.com/scholar_lookup?} \\ \text{CrossRef Full$

Kozłowski, S. (2016a). A degeneracy in DRW modelling of AGN light curves. Mon. Not. R. Astron. Soc. 459, 2787–2789. doi: 10.1093/mnras/stw819

CrossRef Full Text (https://doi.org/10.1093/mnras/stw819) | Google Scholar (http://scholar.google.com/scholar_lookup?

 $author=S.+Kozlowski+\&publication_year=2016a\&title=A+degeneracy+in+DRW+modelling+of+AGN+light+curves\&journal=Mon.+Not.+R.+Astron.+Soc.\&volumble author=S.+Kozlowski+\&publication_year=2016a\&title=A+degeneracy+in+DRW+modelling+of+AGN+light+curves\&journal=Mon.+Not.+R.+Astron.+Soc.\&volumble author=S.+Kozlowski+\&publication_year=2016a\&title=A+degeneracy+in+DRW+modelling+of+AGN+light+curves\&journal=Mon.+Not.+R.+Astron.+Soc.\&volumble author=S.+Kozlowski+\&publication_year=2016a\&title=A+degeneracy+in+DRW+modelling+of+AGN+light+curves\&journal=Mon.+Not.+R.+Astron.+Soc.\&volumble author=S.+Kozlowski+\&publication_year=2016a\&title=A+degeneracy+in+DRW+modelling+of+AGN+light+curves\&journal=Mon.+Not.+R.+Astron.+Soc.\&volumble author=S.+Kozlowski+\&publication_year=2016a\&title=A+degeneracy+in+DRW+modelling+of+AGN+light+curves\&journal=Mon.+Not.+R.+Astron.+Soc.\&volumble author=S.+Kozlowski+\&publication_year=2016a\&title=A+degeneracy+in+DRW+modelling+of+AGN+light+curves\&journal=Mon.+Not.+R.+Astron.+Soc.\&volumble author=S.+Kozlowski+\&publication=S.+Kozlowski+\&publicat$ me=459&pages=2787-2789)

Kozłowski, S. (2016b). Revisiting stochastic variability of AGNs with structure functions. Astrophys. J. 826:118. doi: 10.3847/0004-637X/826/2/118

CrossRef Full Text (https://doi.org/10.3847/0004-637X/826/2/118) | Google Scholar (http://scholar.google.com/scholar_lookup?

 $author=S.+Kozlowski+\&publication_year=2016b\&title=Revisiting+stochastic+variability+of+AGNs+with+structure+functions\&journal=Astrophys.+J.\&volume=8$ 26&pages=118)

Kozłowski, S. (2017a), A method to measure the unbiased decorrelation timescale of the AGN variable signal from structure functions, Astrophys, J. 835:250, doi: 10.3847/1538-4357/aa56c0

CrossRef Full Text (https://doi.org/10.3847/1538-4357/aa56c0) | Google Scholar (http://scholar.google.com/scholar_lookup?

 $author=S.+Kozłowski+\&publication\ vear=2017a\&title=A+method+to+measure+the+unbiased+decorrelation+timescale+of+the+AGN+variable+signal+from+strucking author=S.+Kozłowski+\&publication\ vear=2017a\&title=A+method+to+measure+the+unbiased+decorrelation+timescale+of+the+AGN+variable+signal+from+strucking author=S.+Kozłowski+\&publication\ vear=2017a\&title=A+method+to+measure+the+unbiased+decorrelation+timescale+of+the+AGN+variable+signal+from+strucking author=S.+Kozłowski+\&publication\ vear=2017a\&title=A+method+to+measure+the+unbiased+decorrelation+timescale+of+the+AGN+variable+signal+from+strucking author=S.+Kozłowski+\&publication\ vear=2017a\&title=A+method+to+measure+the+unbiased+decorrelation+timescale+of+the+AGN+variable+signal+from+strucking author=S.+Kozłowski+$ cture+functions&journal=Astrophys.+J.&volume=835&pages=250)

Kozłowski, S. (2017b). Limitations on the recovery of the true AGN variability parameters using damped random walk modeling. Astron. Astrophys. 597:A128. doi: 10.1051/0004-6361/201629890

CrossRef Full Text (https://doi.org/10.1051/0004-6361/201629890) | Google Scholar (http://scholar.google.com/scholar_lookup?

 $author=S.+Kozlowski+\&publication_year=2017b\&title=Limitations+on+the+recovery+of+the+true+AGN+variability+parameters+using+damped+random+walk+true+AGN+variability+parameters+using+damped+random+walk+true+AGN+variability+parameters+using+damped+random+walk+true+AGN+variability+parameters+using+damped+random+walk+true+AGN+variability+parameters+using+damped+random+walk+true+AGN+variability+parameters+using+damped+random+walk+true+AGN+variability+parameters+using+damped+random+walk+true+AGN+variability+parameters+using+damped+random+walk+true+AGN+variability+parameters+using+damped+random+walk+true+AGN+variability+parameters+using+damped+random+walk+true+AGN+variability+parameters+using+damped+random+walk+true+AGN+variability+parameters+using+damped+random+walk+true+AGN+variability+parameters+using+damped+random+walk+true+AGN+variability+parameters+using+damped+random+walk+true+AGN+variability+parameters+using+damped+random+walk+true+AGN+variability+parameters+using+damped+random+walk+true+AGN+variability+parameters+using+damped+random+walk+true+AGN+variability+damped+random+walk+true+AGN+variability+damped+random+walk+true+AGN+variability+damped+random+walk+true+AGN+variability+damped+random+walk+true+AGN+variability+damped+random+walk+true+AGN+variability+damped+random+walk+true+AGN+variability+damped+random+walk+true+AGN+variability+damped+random+walk+true+damped+random+wal$ modeling&journal=Astron.+Astrophys.&volume=597&pages=A128)

Kozłowski, S., Kochanek, C. S., Ashby, M. L. N., Assef, R. J., Brodwin, M., Eisenhardt, P. R., et al. (2016). Quasar variability in the mid-infrared. Astrophys. J. 817:119. doi: 10.3847/0004-637X/817/2/119

ssRef Full Text (https://doi.org/10.3847/0004-637X/817/2/119) | Google Scholar (http://scholar.google.com/scholar_lookup?

author = S, +Kozłowski & author = C, +S, +Kochanek & author = M, +L, +N, +Ashby & author = R, +J, +Assef & author = M, +Brodwin & author = P, +R, +Eisenhardt + & publication = M, +Brodwin & author = P, +R, +Eisenhardt + & publication = M, +Brodwin & author = M, +Brodwin &year = 2016 & title = Quasar + variability + in + the + mid-infrared & journal = Astrophys. + J. & volume = 817 & pages = 119)

Kozłowski, S., Kochanek, C. S., Stern, D., Ashby, M. L. N., Assef, R. J., Bock, J. J., et al. (2010a). Mid-infrared variability from the spitzer deep wide-field survey. Astrophys. J. 716, 530-543. doi: 10.1088/0004-637X/716/1/530

CrossRef Full Text (https://doi.org/10.1088/0004-637X/716/1/530) | Google Scholar (http://scholar.google.com/scholar_lookup?

 $author=S.+Kozłowski\&author=C.+S.+Kozłowski\&author=D.+Stern\&author=M.+L.+N.+Ashby\&author=R.+J.+Assef\&author=J.+J.+Bock+\&publication_year=201$ 0 a & title = Mid-infrared + variability + from + the + spitzer + deep + wide-field + survey & journal = Astrophys. + J. & volume = 716 & pages = 530-543)

Kozłowski, S., Kochanek, C. S., Udalski, A., Wyrzykowski, Ł., Soszyński, I., Szymański, M. K., et al. (2010b), Quantifying quasar variability as part of a general approach to classifying continuously varying sources. Astrophys. J. 708, 927-945. doi: 10.1088/0004-637X/708/2/927

CrossRef Full Text (https://doi.org/10.1088/0004-637X/708/2/927) | Google Scholar (http://scholar.google.com/scholar_lookup?

author=S.+Kozłowski&author=C.+S.+Kochanek&author=A.+Udalski&author=Ł.+Wvrzykowski&author=I.+Soszyński&author=M.+K.+Szymański+&publication year = 2010b & title = Quantifying + quasar + variability + as + part + of + a + general + approach + to + classifying + continuously + varying + sources & journal = Astrophys. + J. & volume + variability + as + part + of + a + general + approach + to + classifying + continuously + varying + sources & journal = Astrophys. + J. & volume + varying + varyme=708&pages=927-945)

Kozłowski, S., Onken, C. A., Kochanek, C. S., Udalski, A., Szymański, M. K., Kubiak, M., et al. (2013). The magellanic quasars survey. III. Spectroscopic confirmation of 758 active galactic nuclei behind the magellanic clouds. Astrophys. J. 775:92. doi: 10.1088/0004-637X/775/2/92

CrossRef Full Text (https://doi.org/10.1088/0004-637X/775/2/92) | Google Scholar (http://scholar.google.com/scholar_lookup?

author=S.+Kozłowski&author=C.+A.+Onken&author=C.+S.+Kochanek&author=A.+Udalski&author=M.+K.+Szymański&author=M.+Kubiak+&publication year $= 2013 \\ \&title = The + magellanic + quasars + survey. \\ + III. + Spectroscopic + confirmation + of + 758 + active + galactic + nuclei + behind + the + magellanic + clouds \\ \&journal = Astroperation + confirmation + of + 758 + active + galactic + nuclei + behind + the + magellanic + clouds \\ \&journal = Astroperation + of + 758 + active + galactic + nuclei + behind + the + magellanic + clouds \\ \&journal = Astroperation + of + 758 + active + galactic + nuclei + behind + the + magellanic + clouds \\ \&journal = Astroperation + of + 758 + active + galactic + nuclei + behind + the + magellanic + clouds \\ \&journal = Astroperation + of + 758 + active + galactic + nuclei + behind + the + magellanic + clouds \\ \&journal = Astroperation + of + 758 + active + galactic + nuclei + behind + the + magellanic + clouds \\ \&journal = Astroperation + of + 758 + active + galactic + nuclei + behind + the + nuclei + behind + the + nuclei +$ hvs.+J.&volume=775&pages=92)

MacLeod, C. L., Ivezić, Ž., Kochanek, C. S., Kozłowski, S., Kelly, B., Bullock, E., et al. (2010). Modeling the time variability of SDSS stripe 82 quasars as a damped random walk. Astrophys. J. 721, 1014-1033. doi: 10.1088/0004-637X/721/2/1014

 $author=C.+L.+MacLeod\& author=\breve{Z}.+Ivezi\& author=C.+S.+Kochanek\& author=S.+Kozlowski\& author=B.+Kelly\& author=E.+Bullock+\& publication_year=2010\& tolk author=B.+Kelly\& author$ it le=Modeling+the+time+variability+of+SDSS+stripe+82+quasars+as+a+damped+random+walk&journal=Astrophys.+J.&volume=721&pages=1014-1033)

Udalski, A., Szymański, M. K., and Szymański, G. (2015). OGLE-IV: fourth phase of the optical gravitational lensing experiment. Acta Astron. 65, 1–38. TABLE OF CONTENTS
Google Scholar (http://scholar.google.com/scholar_lookup?

 $author=A.+Udalski\&author=M.+K.+Szymański\&author=G.+Szymański+\&publication_year=2015\&title=OGLE-UDIIION author=A.+Udalski&author=M.+K.+Szymański&author=G.+Szymański+\&publication_year=2015\&title=OGLE-UDIIION author=A.+Astron.\&volume=65\&pages=1-38)$

1 Introduction Value Berk, D. E., Wilhite, B. C., Kron, R. G., Anderson, S. F., Brunner, R. J., Hall, P. B., et al. (2004). The ensemble photometric variability of ~25,000 quasars in the sloan digital sky survey. *Astrophys. J.* 601, 692–714. doi: 10.1086/380563

Eurochien Text (https://doi.org/10.1086/380563) | Google Scholar (http://scholar.google.com/scholar_lookup?

éar 🗠 200 부용대원의 He+ensemble+photometric+variability+of+~25,000+quasars+in+the+sloan+digital+sky+survey&journal=Astrophys.+J.&volume=601&pages=69 Rangom Walk

ঋa@phan, ኤiṣː৷Edwison, R., Warwick, R. S., and Uttley, P. (2003). On characterizing the variability properties of X-ray light curves from active galaxies. Mon. Not. R. Astron. Soc. 345, 1271-1284. doi: 10.1046/j.1365-2966.2003.07042.x

CrossRaf Full Text (https://doi.org/10.1046/j.1365-2966.2003.07042.x) | Google Scholar (http://scholar.google.com/scholar_lookup?

 $author=S.+Vaughan\&author=R.+Edelson\&author=R.+S.+Warwick\&author=P.+Uttley+\&publication_year=2003\&title=On+characterizing+the+variability+propertial properties of the proper$ EstrofftXgray+light+curves+from+active+galaxies&journal=Mon.+Not.+R.+Astron.+Soc.&volume=345&pages=1271-1284)

Conflict of Interest

Statement

Keywords: accretion, accretion disks, galaxies: active, methods: data analysis, quasars: general

Citation: Kozłowski S (2017) Optical Variability of Active Galactic Nuclei. Front. Astron. Space Sci. 4:14. doi: 10.3389/fspas.2017.00014

Received: 04 August 2017; Accepted: 31 August 2017;

Published: 21 September 2017

Edited by

Mauro D'Onofrio (https://loop.frontiersin.org/people/217246/overview), University of Padua, Italy

Reviewed by:

Maurizio Paolillo (https://loop.frontiersin.org/people/468784/overview), Dipartimento di Fisica Ettore Pancini, Università degli Studi di Napoli Federico II, Italy

Copyright © 2017 Kozłowski. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) (http://creativecommons.org/licenses/by/4.0/). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Szymon Kozłowski, simkoz@astrouw.edu.pl (mailto:simkoz@astrouw.edu.pl)

Write a comment...

Add

PEOPLE ALSO LOOKED AT

Self-Consistent Dynamical Model of the Broad Line Region (/articles/10.3389/fspas.2017.00005/full)

Bozena Czerny (https://loop.frontiersin.org/people/431088/overview), Yan-Rong Li, Justyna Sredzinska, Krzysztof Hryniewicz, Swayam Panda, Conor Wildy and Vladimir Karas

Long-Term Monitoring of the Broad-Line Region Properties in a Selected Sample of AGN (/articles/10.3389/fspas.2017.00012/full)

Dragana Ilić (https://loop.frontiersin.org/people/432904/overview), Alla I. Shapovalova, Luka Č. Popović (https://loop.frontiersin.org/people/122648/overview), Vahram Chavushyan (https://loop.frontiersin.org/people/256548/overview), Alexander N. Burenkov, Wolfram Kollatschny, Andjelka Kovačević (https://loop.frontiersin.org/people/224218/overview), Sladjana Marčeta-Mandić (https://loop.frontiersin.org/people/437572/overview), Nemanja Rakić (https://loop.frontiersin.org/people/432562/overview), Giovanni La Mura (https://loop.frontiersin.org/people/460351/overview) and Piero Rafanelli

On the Intermediate Line Region in AGNs (/articles/10.3389/fspas.2017.00019/full)

Tek P. Adhikari (https://loop.frontiersin.org/people/471318/overview), Agata Różańska, Krzysztof Hryniewicz, Bozena Czerny and Gary J. Ferland (https://loop.frontiersin.org/people/471508/overview)

A Catalog of Active Galactic Nuclei from the First 1.5 Gyr of the Universe (/articles/10.3389/fspas.2017.00009/full)

Krisztina Perger (https://loop.frontiersin.org/people/452634/overview), Sándor Frey (https://loop.frontiersin.org/people/453479/overview), Krisztina É. Gabányi and L. Viktor Tóth (https://loop.frontiersin.org/people/463974/overview)

Are the Fathers Alright? A Systematic and Critical Review of Studies on Gay and Bisexual Fatherhood (/articles/10.3389/fpsyg.2017.01636/full)

Francis A. Carneiro, Fiona Tasker (https://loop.frontiersin.org/people/446787/overview), Fernando Salinas-Quiroz (https://loop.frontiersin.org/people/446790/overview), Isabel Leal and Pedro A. Costa (https://loop.frontiersin.org/people/446709/overview)

TABLE OF CONTENTS

Opinion

- 1. Introduction
- 2. Structure

Functions

3. The Damped

Random Walk

4. Conclusions

Author

Contributions

Funding

Conflict of Interest

Statement

References