Andover Robotics Team Training Series

IX. Robust Design

The 4 Steps of Project Management

STEP 1 – Establish The Objective

- □ capture the requirement
- □ define the strategy

STEP 2 – Plan The Project

- □ determine tasks
- □ allocate resources
- □ establish timing plan

STEP 3 – Implement The Project

- □ execute the plan
- □ monitor progress and adjust resources

STEP 4 – Wrap up Project

- □ deliver product
- □ establish lessons learned and best practices

Ideal FIRST Robot Design Process

- Understand the rules
- 2. Analyze the game, examine all possible scoring and defensive scenario
- 3. Play mock-up game
- 4. List the tasks, no robot talk, no design talk
- Note cost (game play effort, time)
- 6. Note benefit (points reward/deny, reversible?)
- 7. Rank based on cost/benefit
- 8. Brainstorm chokehold strategy if any
- The ranked list of tasks becomes the Customer Wants, sometimes known as the Voice of the Customer (VOC)

Ideal FIRST Robot Design Process (cont.)

- 10. Translate Customer Wants into appropriate Engineering Requirements using Quality Function Deployment (QFD)
- 11. Generate Design Concepts based on Engineering Requirements
- 12. Select Concept based on function, cost, weight, build time, risks, durability, ease of repair and WOW factor using Pugh Concept Selection or Decision Matrix
- 13. Run full system test to failure and improve design
- 14. Develop list of spare parts for replacement

Quality Function Deployment

Customer Wants

					•				
1		casy to Open/Close	Easy Close From O/S	5					
2	0		Easy Open From O/S	4	k				
3	0		Easy Open From I/S	3					
4	2	2	Easy Close From I/S	4					
5	4	oy 10	Stays Open in Check Pos.	3					
6	2	Eas	Handle Looks Nice	2					
7							Crank-Easy to Reach	4	
8	S		Crank-Easy to Grasp/Hold	3	ľ				
9	erate		Easy to Operate (Manual)	3					
10	Ope		Wipes Dry	2					
11	ndow Operates	ily	ily	ily	sily	Operated Rapidly (Elect)	2	Γ	
12	Wir	Easily	Doesn't Leak Water	5					
13							Lock Knobs Oper. Easily	4	-
14	tch								Latch Lasts Long Time
15	ock Latch	sily	Key Operates Easily	3					
16	Loc	Easily	Doesn't Freeze	4					

importance

Translate Customer Wants into Engineering Language

Add Engineering Requirements

- ♠ Larger is better
- → Smaller is better
- O Nominal is best

*	+	+	0	+	A	0	0	+		*	0		+	+	+	+	+	A		
	Door System						Window System									Lock System				
Door Closing Effort O/S	Door Opening Effort O/S	Door Opening Effort I/S	Reach Dist - Open Mech	Pull Force I/S	Dynamic Hold Open Force	Static Hold Open Force	Reach Dist - W/O Mech	Grip Force to Crank	Hand Clearance	Manual Wdo Oper Effort	Wdo Motor Current	Amount of Water Removed	Wdo Cycle Time (Elec.)	Water Leak Amount	Lock/Unlock Time (O/S)	Unlock Force	Key Insert/Rotation Effort	Freeze Resistance		
~	2	3	4	5	9	7	8	6	10	1	12	13	14	15	16	17	18	19		

Group
Heading
(optional)

Column Number (optional)

Symbols for Relationship Matrix

- ❖ The relationship matrix is completed using the best judgment of the team. It is not a vote, but rather a technical decision. There are no absolute rules for this, but the following may be helpful:
- Use the double circle (strong relationship) where the engineering requirement is a primary driver for the customer requirement.
- Use the single circle (medium relationship) where the engineering requirement clearly has some influence on the customer requirement, but is not a primary driver.
- Use the triangle (weak relationship) where the engineering requirement may have some degree of influence.

It's a good idea to document your thinking as you proceed!

Fill In Relationship Matrix

Symbols for Correlation Matrix

- While we may develop the engineering requirements as a set of individual specifications, there often are related to each other.
- For instance:
- as we seek to improve door closing effort, we may find that leak resistance is compromised. Such cases, where the engineering requirements work against each other, are called negative correlations, shown with a cross or double cross, depending upon the strength of the adverse correlation.
- As we seek to improve door opening effort from the outside, we may find that door opening effort from the inside improves as well. This is a positive correlation, shown as a circle or double circle
 - The correlation matrix is used to show the relationship between pairs of engineering requirements.

Fill In Correlations

Fill In Correlation Matrix

Add Target Values

Engineering Requirements	1 Door Closing Effort O/S	2 Door Opening Effort O/S	3 Door Opening Effort I/S	4 Reach Dist – Open Mech	5 Pull Force I/S	6 Dynamic Hold Open Force	7 Static Hold Open Force	8 Reach Dist – W/O Mech	9 Grip Force to Crank	. 10 Hand Clearance	11 Manual Wdo Oper Effort	12 Wdo Motor Current	13 Amount of Water Removed	14 Wdo Cycle Time (Elec.)	15 Water Leak Amount	(O/S)	Values of engineering requirements needed to satisfy customer requirements			
Target Values	7.5 ft. lbs.	15 ft. lbs.	8 ft. lbs.	26 inches	12 ft. lbs.	15 ft lbs	10 lbs	22 inches	5% f/m hd-2 lbs	95% male hand	20 inch lbs	15 amps	100%	2 seconds	4 hr spray – 0 leak	0.5 seconds	0.75 lbs	3 lbs	71 hrs @ -40 deg F	

Completed House of Quality

Pugh Concept Selection

		NAME OF TAXABLE PARTY.		and the same of			
CONCEPT	po 1	2	3		5	6	7
Closing Effort		+	+	+	+	S	+
Durometer		+	+	+ ,	+		+
Compression Set		E E + Leite	+	1936 + 8366	+ 300	+	+
Meet Freeze Test	CONTROL OF	S	S		S	+ 2,-	S
Durability		S	S	S	S		4.14.0
Section Change @ Radius	- S -		S	+	+	+	+
Squeak		S	S	S	S	S	S
Water Leak	AT	S	S	+	+	S	+
Wind Noise	A		S	+	+	S	+
Pleasing to Customer		S	S	S	+	S	S
Accommodate Mfg Var		S	S	+ 1	S	S	787-18T
Process Capability		S	_	B - H		+	
Cost		S	S			S	-1-
# Installation Operations		S	S		1-11	S	S
R and R for Repair		S	S			+	S
Robustness			S	+	+	S	+
TOTAL + -		3	3	8	(8)	5	7
TOTAL		3	1	5	4	2	4

Conduct Controlled Convergence Runs

Controlled Convergence is a powerful methodology that intertwines Generation, Synthesis, and Selection in ways that strengthen both Creativity and Analysis.

Controlled Convergence is simultaneously a synthesis and selection process. It fosters synthesis of the best attributes of several designs into new design Concepts.

- It involves alternate convergent (analysis) and divergent (synthesis) thinking
- It helps the team to attack weaknesses and enhance strengths
- As team members learn more and gain new insights, they will consistently derive and create new, stronger Concepts

Decision Matrix

600 B. 16	FAST			46							
Attribute	Weight	Blu	е	Rec	d	Blac	ck	White			
		Simple known de	· ·	Complex stretch de	•	Simple ro	obot, no	Complex robot, very risky			
	1969	can sco	<u> </u>	does all fu	O ,		•	designs, can do			
WE BEE	E days	and defer	nd OK.	well if the	y work.	easiest d	esigns.	it all if it works.			
MARKE	1-5	Rank 1-5		Rank 1-5		Rank 1-5		Rank 1-5			
Speed	4	4	16	5	20	2	8	5	20		
Power	4	3	12	4	16	4	16	5	20		
Score-ability	5	4	20	5	25	3	15	5	25		
Reliability	5	5	25	2	10	5	25	1.	5		
Defense	3	2	6	4	12	5	15	5	15		
Easy to build	5	5	25	2	10	5	25	1	5		
Innovation	2	2	4	4	8	1	2	5	10		
Wow	2	2	4	4	8	1	2	5	10		
Total points			112		109		108		110		