LLaMA: Open and Efficient Foundation Language Models

Hugo Touvron; Thibaut Lavril; Gautier Izacard; Xavier Martinet Marie-Anne Lachaux, Timothee Lacroix, Baptiste Rozière, Naman Goyal Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin Edouard Grave; Guillaume Lample*

Meta AI

- Problem / objective
 - Propose Large Language Model, called LLaMA
- Contribution / Key idea
 - Propose Large Language Model, called LLaMA

Chinchilla 논문에서 말하기를,

- 기존의 LLM 들은 under-trained 되었다! 왜냐하면, 학습 데이터 양은 그대로 두고, 모델 크기만을 증가시키며 실험해왔음.
- LLM 을 최적으로 학습하려면, 주어진 예산 안에서, '모델 크기' 및 '학습 데이터 양' 이 동등하게 scaling 되어야 한다.

'적은 양의 데이터로 학습된 큰 모델' 보다, '**많은 양의 데이터로 학습된 작은 모델'** 의 성능이 더 좋다.

-> 이를 LLaMA 에서도 동일하게 적용.

Pre-training data

- 공개적으로 사용 가능하고, open-source 인 데이터셋만 학습에 사용.
- SentencePiece 프레임워크를 사용해서 BPE 기반 토크나이저 사용.
- 토큰화 결과, 학습 데이터셋에 총 1.4T 개수의 토큰 포함.
- 학습중 대부분 토큰들은 한번만 비춰짐, 그러나 Wikipedia 와 Books 의 경우 대략 2 에포크 학습.

Dataset	Sampling prop.	Epochs	Disk size
CommonCrawl	67.0%	1.10	3.3 TB
C4	15.0%	1.06	783 GB
Github	4.5%	0.64	328 GB
Wikipedia	4.5%	2.45	83 GB
Books	4.5%	2.23	85 GB
ArXiv	2.5%	1.06	92 GB
StackExchange	2.0%	1.03	78 GB

Table 1: **Pre-training data.** Data mixtures used for pretraining, for each subset we list the sampling proportion, number of epochs performed on the subset when training on 1.4T tokens, and disk size. The pre-training runs on 1T tokens have the same sampling proportion.

- 기본 트랜스포머 구조에 아래 3가지 사항 추가.
 - 1. Pre-normalization
 - GPT3 에서 제안.
 - SwiGLU activation function
 - PaLM 에서 제안.
 - 3. Rotary Embeddings
 - GPTNeo 에서 제안.

Figure 1: The Transformer - model architecture.

- Pre-normalization [GPT3]
 - 각 sublayer 의 인풋을 정규화 (원래는 아웃풋을 정규화했음.)
 - RMS normalization 사용
 - 효과 : 학습 안정성 향상.

$$\mathbf{y} = \gamma \cdot rac{\mathbf{x}}{\sqrt{rac{1}{d} \sum_{i=1}^d x_i^2} + \epsilon}$$

• SwiGLU activation function [PaLM]

- SwiGLU = Swish + GLU activation 사용. (원래는 ReLU 사용했었음.)
- Swish = sigmoid를 게이트로 사용하는 자기-게이트형 활성화 함수
- GLU = 입력을 둘로 분리해서 하나는 정보, 하나는 게이트로 사용

$$Swish(x) = x\sigma(\beta x)$$

게이트 역할.

$$\sigma$$
: Sigmoid Function $\sigma(x) = \frac{1}{1+e^{-x}}$

$$GLU(x, W, V, b, c) = \sigma(xW + b) \otimes (xV + c)$$

$$SwiGLU(x, W, V, b, c, \beta) = Swish_{\beta}(xW + b) \otimes (xV + c)$$

• Rotary Embeddings [GPTNeo]

- Rotary Positional Embeddings (RoPE) 사용. (원래는 absolute positional embeddings 사용했었음.)
- 각 위치마다 임베딩 벡터에 회전을 적용하여, 절대 위치 정보를 유지하면서도 Attention score가 상대 위치에만 의존하도록

만드는 위치 인코딩 기뻐

