1 17.4: Green's Theorem

Green's Theorem — Circulation Form

Let C be a simple closed piecewise-smooth curve, oriented counterclockwise, that encloses a connected and simply connected regin R in the plane. Assume $\mathbf{F} = \langle f, g \rangle$, where f and g have continuous first partial derivatives in R. Then

$$\underbrace{\oint_{C} \mathbf{F} \cdot d\mathbf{r}}_{\text{circulation}} = \underbrace{\oint_{C} f \, dx + g \, dy}_{\text{circulation}} = \iint_{R} \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right) dA.$$

Area of a Plane Region by Line Integrals

Under the conditions of Green's Theorem, the area of a region R enclosed by a curve C is

$$\oint_C x \, dy = -\oint_C y \, dx = \frac{1}{2} \oint_C (x \, dy - y \, dx).$$

Green's Theorem — Flux Form

Let C be a simple closed piecewise-smooth curve, oriented counterclockwise, that encloses a connected and simply connected region R in the plane. Assume $\mathbf{F} = \langle f, g \rangle$, where f and g have continuous first partial derivatives in R. Then

$$\underbrace{\oint_{C} \mathbf{F} \cdot \mathbf{n} ds}_{\text{outward flux}} = \underbrace{\oint_{C} f \, dy - g \, dx}_{\text{outward flux}} = \iint_{R} \left(\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} \right) dA,$$

where \mathbf{n} is the outward unit normal vector on the curve.

Definition. (Two-Dimensional Divergence)

The **two-dimensional divergence** of the vector field $\mathbf{F} = \langle f, g \rangle$ is $\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y}$. If the divergence is zero throughout a region, the vector field is **source free** on that region.

Conservative Fields $\mathbf{F} = \langle f, g \rangle$

Source-Free Fields $\mathbf{F} = \langle f, g \rangle$

$$\operatorname{curl} = \frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} = 0$$

$$\text{divergence} = \frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} = 0$$

Potential function φ with

$$\mathbf{F} = \nabla \varphi$$
 or $f = \frac{\partial \varphi}{\partial x}$, $g = \frac{\partial \varphi}{\partial y}$

Stream function
$$\psi$$
 with $f = \frac{\partial \psi}{\partial y}$, $g = -\frac{\partial \psi}{\partial x}$

Circulation = $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$ on all closed curves C.

Flux = $\oint_C \mathbf{F} \cdot \mathbf{n} \, ds = 0$ on all closed curves C.

Evaluation of the line integral

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \varphi(B) - \varphi(A)$$

Evaluation of the line integral
$$\int_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \psi(B) - \psi(A)$$

Circulation/work integrals: $\int_C \mathbf{F} \cdot \mathbf{T} \, ds = \int_C \mathbf{F} \cdot d\mathbf{r} = \int_C f \, dx + g \, dy$

C closed

C not closed

F conservative $(\mathbf{F} = \nabla \varphi)$

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$$

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \varphi(B) - \varphi(A)$$

F not conservative

Green's Theorem
$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_R (g_x - f_y) dA$$

Green's Theorem
$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_R (g_x - f_y) dA$$
Direct evaluation
$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b (fx' + gy') dt$$

Flux integrals:
$$\int_C \mathbf{F} \cdot \mathbf{n} \, ds = \int_C f \, dy - g \, dx$$

C closed

C not closed

F source free $(f = \psi_u, q = -\psi_r)$

$$\oint_C \mathbf{F} \cdot \mathbf{n} \, ds = 0$$

$$\int_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \psi(B) - \psi(A)$$

F not source free

Green's Theorem
$$\oint_C \mathbf{F} \cdot \mathbf{n} \, ds = \iint_R (f_x + g_y) \, dA \qquad \int_C \mathbf{F} \cdot \mathbf{n} \, ds = \int_a^b (fy' - gx') \, dt$$

Direct evaluation
$$\int_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \int_{a}^{b} (fy' - gx') \, dt$$