## บทที่ 3

**Discrete Mathematics for Computer Science** 

อ.เอิญ สุริยะฉาย (ENS)

ภาควิชาวิทยาการคอมพิวเตอร์และสารสนเทศ

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

Earn S. (ENS) ComSci, KMUTNB



- ในสาขาวิชาทางด้านคอมพิวเตอร์ ข้อมูลต่างๆ นั้น มีความสัมพันธ์กัน ซึ่งผู้เรียนต้องมีความรู้เรื่องพื้นฐานของสัมพันธ์ จึงสามารถวิเคราะห์ และนำไปประยุกต์ใช้ในสาขาต่างๆ ของคอมพิวเตอร์ได้
  - เช่น กรณีของการออกแบบฐานข้อมูล ต้องรู้จักความสัมพันธ์แบบหนึ่งต่อ หนึ่ง หรือแบบหนึ่งต่อหลายตัว เพื่อจะใช้ในการสร้างตารางฐานข้อมูล เป็นต้น
- ดังนั้นนักศึกษาจึงมีความจำเป็นต้อง เรียนเรื่องความสัมพันธ์ เพื่อเป็น พื้นฐานของการศึกษาในสาขาด้านคอมพิวเตอร์ต่อไป

## ความหมายของความสัมพันธ์



- คู่อันดับ (Ordered Pairs) คือ สัญลักษณ์ที่แสดงการจับคู่กันระหว่าง สิ่ง 2 สิ่ง
  - เช่น ระยะทางกับเวลา ถ้าเราจะแสดงการจับคู่ระยะทาง (กิโลเมตร) กับ เวลา (ชั่วโมง) การเขียนระยะทางกับเวลาลงในวงเล็บ และคั่นด้วย เครื่องหมายจุลภาค เช่น (200, 4) จะหมายถึง ระยะทาง 200 กิโลเมตร ต้องใช้เวลา 4 ชั่วโมง เป็นต้น
- คู่อันดับประกอบด้วยสมาชิก 2 ตัว คือ สมาชิกตัวหน้า และ สมาชิกตัว หลัง เขียนแทนในรูป (a, b)
  - โดยที่ a เป็นสมาชิกตัวหน้า และ b เป็นสมาชิกตัวหลัง <mark>ลำดับของคู่อันดับ มีความสำคัญ</mark> การสลับที่กันระหว่างสมาชิกทั้ง 2 ของคู่อันดับ ทำให้ ความหมายเปลี่ยนไป

# ตัวอย่างของคู่อันดับ



- (a, b) อ่านว่า คู่อันดับ เอบี
  - a เป็นสมาชิกตัวหน้าหรือสมาชิกตัวที่หนึ่งของคู่อันดับ (a, b)
  - b เป็นสมาชิกตัวหลังหรือสมาชิกตัวที่สองของคู่อันดับ (a, b)
- การเขียนคู่อันดับจะสลับที่สมาชิกไม่ได้ จะทำให้ความหมายเปลี่ยนไป เช่น (a, b) เป็น (b, a) โดยทั่วไป (a, b) ไม่เท่ากับ (b, a) ยกเว้น a = b

# สมบัติของคู่อันดับ



• (a, b) = (b, a) ก็ต่อเมื่อ a = b

• ถ้า (a, b) = (c, d) แล้วจะได้ว่า a = c และ b = d

• ถ้า (a, b)  $\neq$  (c, d) แล้วจะได้ว่า a  $\neq$  c หรือ b  $\neq$  d

# ผลคูณคาร์ทีเชียน



- ผลคูณคาร์ที่เชียน ของเซต A และ B แทนสัญลักษณ์ด้วย A x B
- A x B = เซตของคู่อันดับทั้งหมดที่เป็นไปได้ เมื่อสมาชิกตัวหน้าอยู่ใน เซต A และ สมาชิกตัวหลังอยู่ในเซต B
  - ตัวอย่าง เช่น
     ถ้า A = {1, 2} และ B = {a, b}
     A x B = { (1,a), (1,b), (2,a), (2,b) }
  - สามารถเขียนแผนภาพการคูณคาร์ทีเชียนดังรูปข้างล่าง



# สมบัติของผลคูณคาร์ทีเชียน



| 1)<br>$A \times (B \cup C) = (A \times B) \cup (A \times C)$<br>$(A \cup B) \times C = (A \times C) \cup (B \times C)$ | 2)<br>$A \times (B \cap C) = (A \times B) \cap (A \times C)$<br>$(A \cap B) \times C = (A \times C) \cap (B \times C)$ |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 3)<br>$A \times (B - C) = (A \times B) - (A \times C)$<br>$(A - B) \times C = (A \times C) - (B \times C)$             | 4)<br>n(AxB) = n(A) x n(B)                                                                                             |
| 5) $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$                                                     |                                                                                                                        |



- ความสัมพันธ์ เป็นเซตซึ่งสมาชิกในเซตคู่อันดับหรือความสัมพันธ์ เป็นสับเซตของผลคูณคาร์ทีเซียนระหว่างเซตสองเซต
- การเขียนแสดงความสัมพันธ์อาจเขียนในรูป แผนภาพ เซตสมการ ตาราง และกราฟก็ได้ โดยปกติจะเห็นความสัมพันธ์โดยทั่วไป
  - เช่น เป็นพ่อของ..., มากกว่า..., เป็นสมาชิกของ..., เป็นสับเซตของ...
- ซึ่งเป็นความสัมพันธ์ระหว่าง 2 สิ่ง เรียกว่า ความสัมพันธ์ทวิภาค



- ถ้าให้ A = {3, 4} และ B = {3, 4, 5}
- จะได้ว่า A x B = {(3, 3), (3, 4), (3, 5), (4, 3), (4, 4), (4, 5)}

- และถ้าให้ r เป็นเซตของคู่อันดับที่เกี่ยวข้องกันแบบน้อยกว่าจะได้
- $r = \{(3, 4), (3, 5), (4, 5)\}$ 
  - เราเรียก r ว่าเป็นความสัมพันธ์แบบน้อยกว่าจาก A ไป B



- ลักษณะของความสัมพันธ์ r นั้น ต้องเป็นเซตของคู่อันดับที่ได้มาจาก สมาชิกใน A x B และมีความสัมพันธ์เงื่อนไขที่กำหนด ซึ่งสามารถ นิยามความสัมพันธ์ได้ดังนี้
- บทนิยามให้ A และ B เป็นเซต r เป็นความสัมพันธ์จาก A ไป B ก็
   ต่อเมื่อ r เป็นสับเซตของ A x B



- กำหนด A = {2, 3}, B = {4, 6, 9} และให้
  - r1 แทนความสัมพันธ์ เป็น สองเท่า จาก A ไป B
  - r2 แทนความสัมพันธ์ เป็น หารลงตัว จาก A ไป B
  - r3 แทนความสัมพันธ์ เป็น รากที่สอง จาก A ไป B
- วิธีทำ A x B = {(2, 4), (2, 6), (2, 9), (3, 4), (3, 6), (3, 9)}
  - $r1 = \emptyset$ 
    - เพราะไม่มีสมาชิกของ A ที่มีค่าเท่าสมาชิก B คูณสอง
  - r2 = {(2, 4), (2, 6), (3, 6), (3, 9)}
    - เพราะสมาชิก A สามารถนำไปหารสมาชิก B ลงตัว
  - $r3 = \{(2, 4), (3, 9)\}$ 
    - เพราะสมาชิก A สามารถเป็นรากที่สองของสมาชิก B ได้



- r เป็นความสัมพันธ์จาก A ไป B ก็ต่อเมื่อ r เป็นสับเซตของ A×B หรือ
   r ⊂ A×B
  - ถ้า (a, b)  $\in$  r จะกล่าวว่า a มีความสัมพันธ์ r กับ b
  - ถ้า (a, b) ∉ r จะกล่าวว่า a ไม่มีความสัมพันธ์ r กับ b
- ถ้า A = B
   จะกล่าวว่า r เป็นความสัมพันธ์บน A หรือ r ⊂ A×A



## • จงหาจำนวนสับเซตทั้งหมดของ A x B

```
A = \{1\}
B = \{2, 3\}
A \times B = \{ (1,2), (1,3) \}
จำนวนสับเซตทั้งหมดของ A \times B คือ 2^{1\times 2} = 4 เซต ได้แก่
r_1 = \emptyset
r_2 = \{ (1,2) \}
r_3 = \{ (1,3) \}
r_4 = \{ (1,2), (1,3) \}
```



## • จงพิจารณาว่า $r_1$ , $r_2$ , $r_3$ เป็นความสัมพันธ์ของ $A \times B$



#### • จงพิจารณาว่า r เป็นความสัมพันธ์ของ A x A

## ลักษณะของความสัมพันธ์



 หนึ่งต่อหนึ่ง (One to one)
 ความสัมพันธ์นี้คือ ผู้ชายหนึ่งคนต่อผู้หญิงหนึ่งคน เช่น a เชื่อมต่อกับ x เท่านั้น
 b เชื่อมต่อกับ y เท่านั้น



2) หนึ่งต่อหลากหลาย (One to many)
ความสัมพันธ์นี้คือ ผู้ชายหนึ่งคนต่อผู้หญิงหลายคนได้
เช่น a เชื่อมต่อกับ x และ y
b ไม่ได้เชื่อมต่อกับใคร
ทั้ง x และ y เชื่อมต่อกับ a ตัวเดี่ยว



## ลักษณะของความสัมพันธ์



3) หลากหลายต่อหนึ่ง (Many to one) ความสัมพันธ์นี้คือ ผู้ชายหลายคนต่อผู้หญิงหนึ่งคน เช่น a เชื่อมต่อกับ x b เชื่อมต่อกับ x ทั้ง a และ b เชื่อมต่อกับ x ตัวเดี่ยว







## ความสัมพันธ์ผกผัน



#### ความสัมพันธ์ผกผัน หรือ อินเวอร์สของความสัมพันธ์ (Inverse of r)

- คือ ความสัมพันธ์ซึ่งเกิดจากการสลับที่ของสมาชิกตัวหน้าและสมาชิก ตัวหลังในแต่ละคู่อันดับที่เป็นสมาชิกของ r
- ความผกผันของความสัมพันธ์ r เขียนแทนด้วย r-1

กำหนดให้ r เป็นความสัมพันธ์จาก A ไป B

 $r^{-1}$  คือ ความสัมพันธ์จาก B ไป A

เขียนแทนด้วย  $r^{-1} = \{ (y, x) \mid (x, y) \in r \}$ 

r¹ จะมีสมาชิกเป็นคู่อันดับ (y, x)



#### ตัวอย่างที่ 1 จงหาความสัมพันธ์ผกผันของความสัมพันธ์ r

- กำหนดให้ A = { 1, 2, 3, 4 } และ B = { a, b, c, d }
- สำหรับความพันธ์ r มีดังนี้

$$r = \{ (1,b), (1,d), (2,a), (4,a) \}$$

โดย r อยู่ในความสัมพันธ์ A x B

ดังนั้นความสัมพันธ์ผกผันของ r คือ

$$r^{-1} = \{ (b,1), (d,1), (a,2), (a,4) \}$$



#### • ตัวอย่างที่ 2 จงหาความสัมพันธ์ผกผันของความสัมพันธ์ r

• กำหนดให้ความพันธ์ r มีดังนี้

$$r = \{ (1,2), (3,4), (5,6) \}$$

ดังนั้นความสัมพันธ์ผกผันของ r คือ

$$r^{-1} = \{ (2,1), (4,3), (6,5) \}$$

## โดเมนและพิสัย



• โดเมน (Domain) ของ r คือ เซตที่ประกอบด้วยสมาชิก ตัวหน้าของ คู่ลำดับใน r เขียนแทนด้วย D<sub>r</sub>

$$D_r = \{x \mid (x, y) \in r\}$$
 สำหรับตัวอย่างนี้  $D_r$  คือ  $x$ 

• พิสัย (Range) ของ r คือเซตที่ประกอบด้วยสมาชิก ตัวหลังของ คู่ลำดับใน r เขียนแทนด้วย R<sub>r</sub>

$$R_r = \{y \mid (x, y) \in r\}$$
 สำหรับตัวอย่างนี้  $R_r$ คือ y



#### ตัวอย่าง จงหาโดเมนและพิสัยของความสัมพันธ์ r

กำหนดให้ A = { 1, 2, 3, 4 } และ B = { a, b, c, d } สำหรับความพันธ์ r มีดังนี้ r = { (1,a), (1,b), (1,c), (2,a), (3,c) } โดย r อยู่ในความสัมพันธ์ A x B โดเมนของ r คือสมาชิกตัวหน้าของความสัมพันธ์ r คือ  $D_r = \{ 1, 2, 3 \}$  พิสัยของ r คือสมาชิกตัวหลังของความสัมพันธ์ r คือ  $R_r = \{ a, b, c \}$  สามารถเขียนแผนภาพได้ดังนี้



## ตัวอย่างการหาความสัมพันธ์



- 1 หา y จัด x / หา x จัด y
  - หา Domain จัด y ในเทอมของ x
  - หา Range จัด x ในเทอมของ y
- 2 พิจารณาเงื่อนไข = root / เศษส่วน
  - root ≥ 0
  - เศษส่วน ตัวส่วนต้องไม่เท่ากับ 0
- 3 เขียนเส้นจำนวน และตอบ
  - ใช้วิธีแก้ อสการ



• กำหนดให้ r เป็นความสัมพันธ์ในเซตของจำนวนจริง

■ โดยที่ 
$$r = \{(x, y) \in R \times R \mid y = \frac{5}{2-x^2}\}$$
 จงหา  $R_r$ 

วิธีทำ หา 
$$R_r$$
 จัด  $x$  ในเทอมของ  $y$   $2-x^2=\frac{5}{y}$   $x^2=2-\frac{5}{y}$   $x=\pm\sqrt{\frac{2y-5}{y}}$  โดย  $y\neq 0$  พิจารณา  $\frac{2y-5}{y}$   $\geq 0$  คูณ  $y$  ทั้งสองข้าง  $2y-5\geq 0$ 



ดังนั้น 
$$R_r = (-\infty,0) \cup [\frac{\mathbf{5}}{\mathbf{2}},\infty)$$

## แบบฝึกหัด 1



• กำหนดให้ r เป็นความสัมพันธ์ในเซตของจำนวนจริง

• โดยที่ 
$$r = \{ (x, y) \mid y = \sqrt{\frac{1-x^2}{1+x^2}} \}$$
 จงหา  $D_r$ 

### แบบฝึกหัด 2



• กำหนดให้ r เป็นความสัมพันธ์ในเซตของจำนวนจริง

■ โดยที่ 
$$r = \{ (x, y) \in R \times R \mid y = 2 - \frac{4}{(x-1)^2 - 4} \}$$
 จงหา  $R_r$ 

## แบบฝึกหัด 3



• กำหนดให้  $r = \{ (x, y) \in R \ x \ R \ | \ y = \sqrt{x - 3} \ \}$  จงหา  $r^{-1}$ 

## กฎของความสัมพันธ์



1. 
$$(r^{-1})^{-1} = r$$

ตัวอย่าง  $(r^{-1})^{-1} \subset r$  และ  $r \subset (r^{-1})^{-1}$ 

สมมุติ  $r = \{ (1,2) , (2,3) \}$  แล้ว  $(x,y) \in r$ 
 $r^{-1} = \{ (2,1), (3,2) \}$  แล้ว  $(y,x) \in r^{-1}$ 
 $(r^{-1})^{-1} = \{ (1,2) , (2,3) \}$  แล้ว  $(x,y) \in (r^{-1})^{-1}$ 

# กฎของความสัมพันธ์



# กฎของความสัมพันธ์



3. ถ้า s 
$$\subset$$
 r แล้ว s<sup>-1</sup>  $\subset$  r<sup>-1</sup>

$$(x, y) \in r$$

$$(x, y) \in S$$

$$r^{-1}$$
 = { (2,1), (3,2) }  
 $s^{-1}$  = { (3,2) }  
 $s^{-1}$   $r^{-1}$ 

$$(y, x) \in r^{-1}$$

$$(y, x) \in r^{-1}$$
$$(y, x) \in s^{-1}$$

4. 
$$D_{r^{-1}} = R_{r}$$
  
 $R_{r^{-1}} = D_{r}$ 



• สมบัติสะท้อน  $r = \{ (x, x) \in A \times A \mid x \in A \}$  ดังนั้น r ไม่มีสมบัติสะท้อน เมื่อ มี  $x \in A$  อย่างน้อย 1 ตัว ที่  $(x, x) \notin r$  โดยหลักการพิจารณาต้องมีตัวที่ซ้ำกัน ระหว่าง x, y ครบทุกตัว

```
A = {1,2,3}

A X A = {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)}

r<sub>1</sub> = {(x, y) ∈ A×A | x ≤ y }

= {(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)} มีสมบัติสะท้อน

r<sub>2</sub> = {(x, y) ∈ A×A | x < y }

= {(1,2), (1,3), (2,3)} ไม่มีสมบัติสะท้อน ไม่มี (1,1) (2,2) (3,3)

r<sub>3</sub> = {(1,1), (2,2)} ไม่มีสมบัติสะท้อน ไม่มี (3,3)
```



สมบัติสมมาตร (Symmetric) สำหรับ x, y ∈ A ถ้า (x, y) ∈ r แล้ว (y, x) ∈ r ดังนั้น r ไม่มีสมบัติสมมาตร เมื่อมี (x, y) ∈ r แต่ (y, x) ∉ r โดยหลักการพิจารณาไม่จำเป็นต้องครบ แต่ถ้ามีต้องมีคู่ของมัน



- **สมบัติถ่ายทอด** (Transitive) สำหรับ x, y, z ∈ A ถ้า (x, y) ∈ r และ (y, z) ∈ r แล้ว (x, z) ∈ r ดังนั้น r ไม่มีสมบัติถ่ายทอด เมื่อมี (x, y) ∈ r และ (y, z) ∈ r <mark>แต่ (x, z) ∉ r</mark>
  - โดยหลักการพิจารณาเมื่อไรมีคู่ลำดับที่มีความสัมพันธ์แบบเชื่อมกันเกิดขึ้น เช่น (1,2) (2,3) ต้องมีตัวที่ 3 ตามมา ถ้าไม่มีไม่เป็นไร แต่ถ้ามีต้องมีตัวที่สาม ตามมา เท่านั้น นั้นคือ (1,3)

```
r_1 = \{ (1,1), (2,4) \} มีสมบัติถ่ายทอด r_2 = \{ (1,2), (2,4), (1,4), (1,3) \} มีสมบัติถ่ายทอด r_3 = \{ (1,2), (2,4), (1,3) \} ไม่มีสมบัติถ่ายทอด ไม่มี (1,4) r_4 = \{ (1,1), (2,2), (3,3), (1,2), (2,1) \} มีสมบัติถ่ายทอด r_5 = \{ (2,2), (3,3), (1,2), (2,1) \} ไม่มีสมบัติถ่ายทอด ไม่มี (1,1) r_6 = \{ (1,1), (3,3), (1,2), (1,3) \} มีสมบัติถ่ายทอด ไม่มี (1,3) r_7 = \{ (1,1), (2,2), (1,2), (2,3) \} ไม่มีสมบัติถ่ายทอด ไม่มี (1,3)
```



• ความสัมพันธ์สมมูล (Equivalence relation) จะมีสมบัตินี้เมื่อ r มีสมบัติ สะท้อน สมมาตร ถ่ายทอด

A = { 1, 2, 3 } แล้ว r = { (1,1), (2,2), (3,3), (1,2), (2,1) }

จงพิสูจน์ว่า r มีความสัมพันธ์สมมูล

มีสมบัติสะท้อน r ต้องมี (1,1), (2,2), (3,3)

มีสมบัติสมมาตร ถ้า r มี (1,2) ต้องมี (2,1)

มีสมบัติถ่ายทอด ถ้า r มี (1,2) และ (2,1) ต้องมี (1,1)

ดังนั้น r มีความสัมพันธ์สมมูล



• จงพิสูจน์  $r = \{ (x, y) \in R \times R \mid x = y \}$  มีสมบัติสะท้อน สมมาตร และ ถ่ายทอด



จงพิสูจน์ r = { (x, y)∈R×R | x + y = 10 } มีสมบัติสมมาตร

การพิสูจน์สมบัติสมมาตร

$$y + x = 10$$

$$(y, x) \in r$$

ดังนั้น r มีสมบัติสมมาตร

โดยอาศัยกฎสลับที่ 
$$x + y = y + x$$

โดยอาศัยกฎสลับที่ 
$$x + y = y + x$$

### ตัวอย่าง 3



• จงพิสูจน์  $r = \{ (x, y) \in I \times I \mid x \le y \}$  มีสมบัติถ่ายทอด

การพิสูจน์สมบัติถ่ายทอด

สมมุติ  $(x, y) \in r$  และ  $(y, z) \in r$   $x \le y$  และ  $y \le z$   $x \le z$   $(x, z) \in r$ 

ดังนั้น r มีสมบัติถ่ายทอด

• โดยอาศัยสมบัติการถ่ายทอดของจำนวนเต็ม ถ้า  $x \le y$  และ  $y \le z$  แล้ว  $x \le z$ 

### ตัวอย่าง 4



r เป็นความสัมพันธ์บนเซต I+ และ r = { (x, y) | x + y หารด้วย 2 ลงตัว } จงพิสูจน์แสดงว่า r เป็นความสัมพันธ์สมมูล

### ความสัมพันธ์ประกอบ



- นิยามความสัมพันธ์ประกอบ (Composite Relation) จากรูปข้างล่าง กำหนดให้ r เป็นความสัมพันธ์จาก A ไป B
   และ s เป็นความสัมพันธ์จาก B ไป C
   ความสัมพันธ์ประกอบของ r และ s คือ ความสัมพันธ์ซึ่งประกอบด้วยคู่ อันดับ (a, c) โดยที่ (a, b) ∈ r และ (b, c) ∈ s
- เขียนแทนด้วย sor นั้นคือ
- sor = { (a, c) ∈ A × C มี b ∈ B ซึ่ง (a, b) ∈ r และ (b, c) ∈ s }







Discrete Math.

39

### ความสัมพันธ์ประกอบ



```
ตัวอย่าง กำหนดให้ A = { 1, 2, 3 }, B = { 1, 2, 3, 4 }, C = { 0, 1, 2 }
แล้ว r เป็นความสัมพันธ์จาก A ไป B และ s เป็นความสัมพันธ์จาก B ไป C
แล้ว กำหนดให้ r = { (1,1) , (1,4), (2,3), (3,1), (3,4) }
s = { (1,0), (2,0), (3,1), (3,2), (4,1) }
```

จงหาเซตความสัมพันธ์ประกอบของ sor

จากโจทย์ ให้พิจารณาจากพิสัยของ r เชื่อมกับโดเมนของ s ถ้าโดเมนของ s และพิสัยของ r เป็นค่าเดี่ยวกัน ให้เขียน โดเมน r เป็นโดเมนของ sor และเขียนพิสัยของ s เป็นพิสัยของ sor

```
r = (1, 1) ตรงกับ s = (1, 0) ดังนั้น sor คือ (1, 0) r = (1, 4) ตรงกับ s = (4, 1) ดังนั้น sor คือ (1, 1) r = (2, 3) ตรงกับ s = (3, 1) ดังนั้น sor คือ (2, 1) r = (2, 3) ตรงกับ s = (3, 2) ดังนั้น sor คือ (2, 2) r = (3, 1) ตรงกับ s = (1, 0) ดังนั้น sor คือ (3, 0) r = (3, 4) ตรงกับ s = (4, 1) ดังนั้น sor คือ (3, 1)
```

ดังนั้นเซตของ sor คือ { (1,0), (1,1), (2,1), (2,2), (3,0), (3,1) }



• จงแสดงให้เห็นว่าความสัมพันธ์ต่อไปนี้มีสมบัติ สะท้อน สมมาตร ถ่ายทอด และความสัมพันธ์สมมูล  $r = \{ (x, y) \in R \times R \mid x \geq y \}$ 



• จงแสดงให้เห็นว่าความสัมพันธ์ต่อไปนี้มีสมบัติ สะท้อน สมมาตร ถ่ายทอด และความสัมพันธ์สมมูล  $r = \{ (x, y) \in R \times R \mid x^2 + y^2 = 1 \}$ 



• จงแสดงให้เห็นว่าความสัมพันธ์ต่อไปนี้มีสมบัติ สะท้อน สมมาตร ถ่ายทอด และความสัมพันธ์สมมูล  $r = \{ (x, y) \in I \times I \mid x - y$  หารด้วย 2 ลงตัว  $\}$ 



• จงแสดงให้เห็นว่าความสัมพันธ์ต่อไปนี้มีสมบัติ สะท้อน สมมาตร ถ่ายทอด และความสัมพันธ์สมมูล  $r = \{ (x, y) \in I \times I \mid x - y$  เป็นเลขคี่  $\}$ 

# ความสัมพันธ์เวียนเกิด

### บทที่ 4

**Discrete Mathematics for Computer Science** 

อ.เอิญ สุริยะฉาย (ENS)

ภาควิชาวิทยาการคอมพิวเตอร์และสารสนเทศ

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

Earn S. (ENS) ComSci, KMUTNB

# ลำดับและอนุกรม



- ลำดับ (Sequences) หมายถึง จำนวนหรือพจน์ที่เขียนเรียงกันภายใต้ กฎเกณฑ์อย่างใดอย่างหนึ่ง สำหรับนิยามคือฟังก์ชันที่มีโดเมนเป็น เซตจำนวนเต็มบวก (1, 2, 3, ...)
  - เช่น มีฟังก์ชัน f(n)=n²+1 เมื่อ n=1, 2, 3, ... จะได้ f(1)=2, f(2)=5, f(3)=10, f(4)=17, ...
  - ค่าฟังก์ชันเหล่านี้ที่เขียนต่อกันเป็น 2, 5, 10, 17, ... เรียกว่า ลำดับ นิยม เขียนฟังก์ชันด้วย a<sub>n</sub> คือ a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>, ..., a<sub>n</sub>
  - เขียนแทนด้วย f(1), f(2), f(3), ..., f(n) เพื่อให้ทราบว่าเป็นลำดับ โดย โดเมนต้องเป็นจำนวนนับเท่านั้น เรียก a<sub>1</sub> ว่า "พจน์ที่ 1" ของลำดับ เรียก a<sub>2</sub> ว่าพจน์ที่ 2 ของลำดับ, ไปเรื่อยๆ จนถึงพจน์ที่ n ใดๆ เขียนแทนด้วย a<sub>n</sub> จะเรียกว่า พจน์ทั่วไปของลำดับ เช่น ลำดับ 2, 5, 10, 17, ... มีพจน์ ทั่วไปเป็น a<sub>n</sub> =n<sup>2</sup>+1

### ลำดับ



- การหาพจน์ทั่วไปนั้น โดยปกติมีได้มากกว่า 1 แบบ
- เช่น ลำดับ 2, 4, 8,...
  - อาจมีพจน์ทั่วไปเป็นคือ  $a_n = 2^n$  ทำให้  $a_4$  มีค่าเท่ากับ 16
  - หรือมีพจน์ทั่วไปเป็น a<sub>n</sub> =(n+1)(n2-n+6)/6 ทำให้ a<sub>4</sub> มีค่าเท่ากับ 15 ซึ่งมีค่าไม่เท่ากัน แต่ 3 พจน์แรกมีค่าเท่ากัน กลายเป็นลำดับที่ต่างกัน
- หรืออีกกรณี ลำดับ 1, 2, 3, 4, ...
  - อาจมีพจน์ทั่วไปเป็น a<sub>n</sub> = n ซึ่งทำให้พจน์ที่ 5 มีค่าเท่ากับ 5
  - หรือ a<sub>n</sub> = (n-1)(n-2)(n-3)(n-4)+n ซึ่งทำให้พจน์ที่ 5 มีค่าเท่ากับ 29 ซึ่งมีค่าไม่เท่ากัน แต่ 4 พจน์แรกมีค่าเท่ากัน กลายเป็นลำดับที่ต่างกัน

### ลำดับ



#### ลำดับทั่วๆ ไปแบ่งเป็น 2 ชนิดคือ

- ลำดับจำกัด (finite sequence)
  - คือลำดับที่มีจำนวนพจน์ที่แน่นอน เช่น 8 พจน์, 15 พจน์, หรือ n พจน์
- ลำดับอนันต์ (infinite sequence)
  - คือลำดับที่มีจำนวนพจน์มากจนนับไม่ได้ เช่น 1,2,3,4,...

### ลำดับเลขคณิต



- ลำดับเลขคณิต (Arithmetic Sequence) คือ ลำดับที่มีผลต่างของ พจน์หลังลบด้วยพจน์หน้าที่ติดกันมีค่าคงตัวเท่ากันเสมอนี้ จะเรียกว่า ลำดับเลขคณิต และเรียกผลต่างที่มีค่าคงตัวเท่ากันเสมอว่าผลต่าง ร่วม
- สำหรับนิยามคือลำดับที่ผลต่างซึ่งได้จากพจน์ที่ n+1 ลบด้วยพจน์ที่ n
   มีค่าคงตัว ค่าคงตัวนี้เรียกว่าผลต่างร่วม เขียนแทนผลต่างร่วมด้วย d

### ลำดับเลขคณิต



- พิจารณาลำดับ 1, 4, 7, 10, 13, ...
- จะเห็นว่าเมื่อนำพจน์หลังลบด้วยพจน์หน้าที่อยู่ติดกันมีผลต่างเป็นค่า คงตัวเท่ากับ 3 เสมอนั่น

• คือ 
$$4-1=3$$
,  $7-4=3$ ,  $10-7=3$ ,  $13-10=3$ 

$$7 - 4 = 3$$
,

$$10 - 7 = 3$$
,

$$13 - 10 = 3$$

• ตัวอย่าง

### ลำดับเลขคณิต



- สูตรการหาพจน์ทั่วไปของลำดับเลขคณิต การหาพจน์ที่ n
   คือ a<sub>n</sub> = a<sub>1</sub> + (n-1)d
- ตัวอย่าง จงหาค่าของ a<sub>5</sub> และ a<sub>10</sub> จากลำดับเลขคณิตนี้ 2, 5, 8, 11, ...
- จากโจทย์มี ผลต่างร่วมเท่ากับ 3
- เมื่อแทนค่าลงในสูตร a<sub>n</sub> = a<sub>1</sub> + (n-1)d ได้ผลลัพธ์ดังนี้

$$a_5 = 2 + (5-1) * 3 = 14$$

$$a_{10} = 2 + (10-1) * 3 = 29$$

### ลำดับเรขาคณิต



- ลำดับเรขาคณิต (Geometric Sequence) คือจับพจน์ที่อยู่ข้างหลังหารด้วย พจน์ที่อยู่ติดกันข้างหน้าจะแล้วได้ค่าเท่ากันตลอดลำดับนั้นจะเป็นลำดับ เรขาคณิต
- สำหรับนิยามคือลำดับที่มีผลหารซึ่งเกิดจากพจน์ที่ n+1 หารด้วยพจน์ที่ n แล้วมีค่าคงตัว และค่าคงตัวนี้เรียกว่า **อัตราส่วนร่วม เขียนแทนอัตราส่วน** ร่วมนี้ด้วย r
- พิจารุณาลำดับ 4, 8, 16, 32, 64, ... จะเห็นว่าเมื่อนำพจน์หลังหารด้วยพจน์ หน้าที่อยู่ติดกันมีผลหารเป็นค่าคงตัวเท่ากับ 2 เสมอ

$$16/8 = 2$$
.

$$32/16 = 2$$
,

$$64/32 = 2$$

### ลำดับเรขาคณิต



- สูตรการหาพจน์ทั่วไปของลำดับเรขาคณิต การหาพจน์ที่ n คือ  $a_n = a_1 r^{n-1}$
- ตัวอย่างเช่น จงหาค่าของ  $a_5$  และ  $a_{10}$  จากลำดับเรขาคณิตนี้ 3, 6, 12, 24, ...
- จากโจทย์มี r เท่ากับ 2 เมื่อแทนค่าลงในสูตร a<sub>n</sub> = a<sub>1</sub>r<sup>n-1</sup> ได้ผลลัพธ์ ดังนี้

$$a_5 = 3*2^4 = 48$$

$$a_{10} = 3*2^9 = 1536$$

#### ผลรวม



 ผลรวม (Summation) หมายถึงการบวกของเซตของจำนวน ซึ่งจะให้ ผลลัพธ์เป็นผลบวกจำนวนที่กล่าวถึงเป็นจำนวนธรรมชาติ

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots = \frac{n(n+1)}{2}$$

• ตัวอย่างการหาผลรวมพจน์ที่  $10 = \frac{10(10+1)}{2} = 55$ 

## อนุกรม



- อนุกรม (Series) คือ ผลจากการบวกสมาชิกทุกตัวของลำดับไม่จำกัด เข้าด้วยกัน
- หากกำหนดให้ลำดับของจำนวนเป็นอนุกรมของลำดับนี้ก็คือ อนุกรม สามารถเขียนแทนได้ด้วย a<sub>1</sub> + a<sub>2</sub> + a<sub>3</sub> + ...
- สัญลักษณ์ของผลรวม ∑ เช่นตัวอย่างนี้เป็น
- อนุกรมของลำดับ 2<sup>n</sup> คือ  $\sum_{{
  m i}=1}^n {
  m i} = 2+4+8+\cdots$

# อนุกรมเลขคณิต



• อนุกรมเลขคณิต (Arithmetic Series) คือ อนุกรมที่ได้จากลำดับเลข คณิต เรียกว่า อนุกรมเลขคณิต และผลต่างรวมของลำดับเลขคณิต เป็นผลต่างรวมของอนุกรมเลขคณิตด้วย หรืออาจกล่าวว่า เป็น ผลบวก n พจน์แรก

เมื่อ 
$$a_1$$
,  $a_1$  + d,  $a_1$  + 2d, ...,  $a_1$  + (n – 1)d เป็นลำดับเลขคณิต จะได้  $a_1$  + ( $a_1$  + d) + ( $a_1$  + 2d) + ... + ( $a_1$  + (n – 1)d) เป็นอนุกรมเลขคณิต

ซึ่งมี a<sub>1</sub> เป็นพจน์แรกของอนุกรม และ d เป็นผลต่างรวมของอนุกรม เลขคณิต จากบทนิยาม จะได้ว่า ถ้า a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>, ..., a<sub>n</sub> เป็นลำดับเลข คณิตที่มี n พจน์ จะเรียกการเขียนแสดงผลบวกของพจน์ทุกพจน์ของ ลำดับในรูป a<sub>1</sub> + a<sub>2</sub> + a<sub>3</sub> + ... + a<sub>n</sub> ว่า อนุกรมเลขคณิต และผลต่าง รวม ( d ) ของลำดับเลขคณิต เป็นผลต่างรวมของอนุกรมเลขคณิต

# ตัวอย่างของอนุกรมเลขคณิต



เป็น อนุกรมเลขคณิต เป็น ลำดับเลขคณิต และมี d เท่ากับ 2

เป็น อนุกรมเลขคณิต เป็น ลำดับเลขคณิต และมี d เท่ากับ - 5

เป็น อนุกรมเลขคณิต เป็น ลำดับเลขคณิต และมีมี d เท่ากับ 7

# สูตรการหาผลบวก อนุกรมเลขคณิต



สูตรการหาผลบวก n พจน์แรกของอนุกรมเลขคณิต

คือ 
$$S_n = \frac{n}{2}(a_1 + a_n)$$

- คือ  $S_n = \frac{n}{2}(a_1 + a_n)$  ตัวอย่าง จงหาผลรวมพจน์ที่ 5 จากลำดับ**เลขคณิต** 2, 5, 8, 11, 14, ...
- จากโจทย์เมื่อแทนค่าลงในสูตร  $S_n = \frac{n}{2}(a_1 + a_n)$  ได้ผลลัพธ์ดังนี้

$$S_n = \frac{5}{2}(2+14) = 40$$

# อนุกรมเรขาคณิต



• อนุกรมเรขาคณิต (Geometric Progression) อนุกรมที่ได้จากจาก ลำดับเรขาคณิตเรียกว่า อนุกรมเรขาคณิต และอัตราส่วนรวมของ ลำดับเรขาคณิตจะเป็นอัตราส่วนรวมของอนุกรมเรขาคณิตด้วย

กำหนด 
$$a_1$$
,  $a_1r$ ,  $a_1r^2$ , ...,  $a_1r^{n-1}$  เป็นลำดับเรขาคณิต จะได้  $a_1 + a_1r + a_1r^2 + ... + a_1r^{n-1}$  เป็นอนุกรมเรขาคณิต

ซึ่งมี a₁ เป็นพจน์แรก และ r เป็นอัตราส่วนรวมของอนุกรมเรขาคณิต

# ตัวอย่างของอนุกรมเรขาคณิต



เป็น อนุกรมเรขาคณิต เป็น ลำดับเรขาคณิต และมี r เท่ากับ 2

เป็น อนุกรมเรขาคณิต เป็น ลำดับเรขาคณิต และมี r เท่ากับ 3

เป็น อนุกรมเรขาคณิต เป็น ลำดับเรขาคณิต และมี r เท่ากับ 1

# สูตรการหาผลบวก อนุกรมเรขาคณิต



สูตรการหาผลบวก n พจน์แรกของอนุกรมเรขาคณิต

คือ 
$$S_n = rac{a_1(1-r^n)}{1-r}$$
 โดยที่  $\mathbf{r} 
eq 1$ 

- จงหาผลรวมพจน์ที่ 5 จากลำดับ**เรขาคณิต** 3, 6, 12, 24, 48 ...
- จากโจทย์ มี r = 2 และเมื่อแทนค่าลงใน

สูตร 
$$S_n = \frac{a_1(1-r^n)}{1-r}$$
ได้ผลลัพธ์ดังนี้

$$S_n = \frac{3(1-2^5)}{1-2} = 93$$

### ความหมายการเวียนเกิด (Recursion)



- การเรียกซ้ำหรือการเรียกตัวเองหรือการเวียนเกิด (Recursion)
- คือ วิธีการที่ฟังก์ชันสามารถ**เรียกใช้ฟังก์ชันตัวเอง** โดยแต่ละครั้งที่ ฟังก์ชันถูกเรียก จะเกิดค่าตัวแปรหรือพารามิเตอร์เปลี่ยนแปลงไป อย่างอัตโนมัติ **แล้วกำหนดการทำงานขั้นสุดท้ายไว้** เมื่อทำงานถึงขั้น สุดท้ายก็จะสิ้นสุดการทำงานและส่งผลลัพธ์กลับไป

### ความสัมพันธ์เวียนเกิด



• ความสัมพันธ์เวียนเกิด (Recurrence Relations) สำหรับอันดับ a<sub>0</sub>, a<sub>1</sub>, ..., a<sub>n</sub> เป็นสมการที่แสดงความสัมพันธ์ของพจน์ a<sub>n</sub> กับพจน์ a<sub>0</sub>, a<sub>1</sub>, ..., a<sub>n-1</sub> ที่เกิดก่อน โดยมีเงื่อนไขเริ่มต้นสำหรับพจน์ a<sub>0</sub>, a<sub>1</sub>, ..., a<sub>n-1</sub> ที่ชัดแจ้ง หรืออาจจะกล่าวได้ คือตัวเลขถัดไปนั้นมีความสัมพันธ์กับ ตัวเลขก่อนหน้า โดยสามารถนำมาเขียนสมการคณิตศาสตร์ได้

### ความสัมพันธ์เวียนเกิด



• ตัวอย่าง จงหาความสัมพันธ์เวียนเกิดของอันดับ 5, 8, 11, 14, 17,...

$$a_0 = 5$$
 $a_1 = 8 = 5+3 = a_0+3$  $a_2 = 11 = 8+3 = a_1+3$  $a_3 = 14 = 11+3 = a_2+3$  $a_4 = 17 = 14+3 = a_3+3$ 

พิจารณาต่อไปจะได้

$$a_n = a_{n-1} + 3 \; ; \; n \geq 1 \;$$
 เป็น ความสัมพันธ์เวียนเกิด โดยมี  $a_0 = 5$  เป็น เงื่อนไขเริ่มต้น

### ตัวอย่าง 1



• จงหาความสัมพันธ์เวียนเกิดของอันดับ 1, 2, 4, 7, 11, 16 ...

### ลักษณะของความสัมพันธ์เวียนเกิด



- 1. เป็นฟังก์ชันที่ต้องมีพารามิเตอร์
- 2. แต่ละครั้งที่เรียกใช้ฟังก์ชันนั้น พารามิเตอร์ของฟังก์ชันต้องค่า เปลี่ยนแปลง
- 3. ฟังก์ชันการเรียกซ้ำ <mark>ต้องมีกรณีหยุดอย่างน้อย 1 กรณี</mark> หรือ กรณี จำกัด (Stopping Case)
- โดยเมื่อพารามิเตอร์ของฟังก์ชันมีค่าถึงขอบเขตที่กำหนดให้หยุดนี้ ฟังก์ชันจะสามารถให้คำตอบและจะไม่ต้องเรียกตัวเองซ้ำอีก

#### ความสัมพันธ์เวียนเกิด



```
function A()
  if()
    function A()
  return or print
```

#### เงื่อนไขในการหยุดอย่างน้อย 1 กรณี (หยุด)

เปลี่ยนแปลงค่าพารามิเตอร์ และเรียก ฟังก์ชันตัวเอง (เรียกตัวเอง หรือ วนซ้ำ)

ส่งหรือแสดงผลลัพธ์ย้อนกลับไป (คำตอบ)

### ข้อดีและข้อเสียการเวียนเกิด



- ข้อดีของวิธีการเวียนเกิด คือ ทำให้สามารถเขียนโปรแกรมได้สั้น และ สามารถเขียนฟังก์ชันบางรูปแบบได้ง่าย
- ข้อเสียของวิธีการเวียนเกิด คือ ทำให้ใช้เนื้อที่ในหน่วยความจำมาก และการรันโปรแกรมทำได้ช้า
- การเขียนโปรแกรมเข้าใจยาก อาจเกิดการเรียกซ้ำไม่รู้จบหากกำหนด
   เงื่อนไขเพื่อหยุดทำงานไม่รัดกุม



• จงหาความสัมพันธ์เวียนเกิดของอันดับ 3, 6, 9, 12, 15, 18, ...



• จงหาความสัมพันธ์เวียนเกิดของอันดับ 1, 3, 7, 13, 21, 31, ...

### แฟกทอเรียล



- แฟกทอเรียล ของจำนวนเต็มไม่ติดลบ n คือ ผลคูณของจำนวนเต็ม บวกทั้งหมดที่น้อยกว่าหรือเท่ากับ n เขียนแทนด้วย n!
- คำตอบเกิดจากการคูณของจำนวนเต็มบวกชุดหนึ่ง ซึ่งถ้าคำตอบเกิด จากการคูณของจำนวนเต็มบวกตั้งแต่ 1 ถึง n เช่น 1 x 2 x 3 x 4 x 5 จำนวนเหล่านี้เราสามารถใช้สัญลักษณ์ แฟกทอเรียล เขียนแทนได้ คือ 5!

 $N! = N \times (N-1)!$   $= N \times (N-1) \times (N-2)!$ 

 $= N \times (N-1) \times (N-2) \times (N-3) \times ... \times 3 \times 2 \times 1$ 

โดย 0! มีค่า เป็น 1

โดย 1! มีค่า เป็น 1

#### แฟกทอเรียล



- จากนิยามสามารถสรุปการหาคำตอบของ N! ได้เป็น 2 กรณี คือ
  - ถ้า N มีค่าเท่ากับ 0 คำตอบที่ได้คือ N! = 1
  - ถ้า N มีค่ามากกว่า 0 คำตอบที่ได้คือ N! = N x (N-1)!
- สำหรับ 5! การคำนวณหาค่าแฟกทอเรียล

 $= 5 \times 4 \times 3 \times 2 \times 1 = 120$ 

$$5! = 5 \times 4!$$
  
= 5 \times 4 \times 3!  
= 5 \times 4 \times 3 \times 2!  
= 5 \times 4 \times 3 \times 2 \times 1!

| 1 | ft = 5 * fact(4);             |              |
|---|-------------------------------|--------------|
| 2 | ft = 5 * 4 * fact(3);         |              |
| 3 | ft = 5 * 4 * 3 * fact(2);     |              |
| 4 | ft = 5 * 4 * 3 * 2 * fact(1); |              |
| 5 | ft = 5 * 4 * 3 * 2 * 1;       | หยุดการทำงาน |

#### แฟกทอเรียล



n! = 
$$1x2x3...x(n-1) \times n = (n-1)! \times n$$
  
 $a_n$  =  $(n-1)! \times n$   
 $= a_{n-1} \times n$ 

- ดังนั้น ความสัมพันธ์เวียนเกิดของ n!
- คือ a<sub>n</sub> = na<sub>n-1</sub> ; n ≥ 1
- เงื่อนไขเริ่มต้น  $a_0 = 1$  และ  $a_1 = 1$

## **ฟีโบนักชี**



- ลำดับฟิโบนัชชี (Fibonacci Sequence) มีนิยามของความสัมพันธ์ว่า จำนวนถัดไปเท่ากับผลบวกของจำนวนสองจำนวนก่อนหน้า และสอง จำนวนแรกก็คือ 0 และ 1 ตามลำดับ หากเขียนให้อยู่ในรูปของ สัญลักษณ์ ลำดับ F<sub>n</sub> ของฟิโบนัชชี
- สามารถเขียนความสัมพันธ์เวียนเกิดได้ดังนี้

$$F_n = F_{n-1} + F_{n-2}$$

โดยกำหนดค่าเริ่มแรกให้

## **ฟีโบนักชี**



0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 ,... จากตัวเลขอนุกรมดังกล่าว สามารถแสดงวิธีการหาค่าเทอมต่างๆ ได้ดังนี้

- 1)  $F_0 = 0$
- 2)  $F_1 = 1$
- 3)  $F_n = F_{n-1} + F_{n-2}$

พจน์ที่ 3 มาจาก พจน์ที่ 1 +พจน์ที่ 2 = 0 + 1 = 1 โดยเริ่มจากพจน์ที่ 3 เป็นต้นไป พจน์ที่ 4 มาจาก พจน์ที่ 2 +พจน์ที่ 3 = 1 + 1 = 2 พจน์ที่ 5 = 1 + 1 = 1

ดังนั้น ความสัมพันธ์เวียนเกิด คือ  $a_n = a_{n-1} + a_{n-2}$ ;  $n \ge 2$  และเงื่อนไขเริ่มต้น  $a_0 = 0$  และ  $a_1 = 1$  จากนิยามสามารถสรุปการหาคำตอบออกเป็น 2 ทางคือ ถ้า n มีค่าเป็น 0 หรือ 1 คำตอบที่ได้คือ  $F_n = n$  ถ้า n มีค่ามากกว่า 1 คำตอบที่ได้คือ  $F_n = F_{n-1} + F_{n-2}$ 

### **ฟีโบนักชี**



- จงคำนวณหาค่าอนุกรมไฟโบเนชชีที่ 4
- วิธีคิดแบบต้นไม้แตกกิ่งก้านสาขา

วิธีคิดแบบปกติ

$$F(4) = F(3) + F(2)$$

$$= (F(2) + F(1)) + (F(1) + F(0))$$

$$= ((F(1) + F(0)) + F(1)) + (F(1) + F(0))$$

$$= ((1+0) + 1) + (1+0)$$

$$= 3$$



$$a_2 = a_1 + a_0$$
  
= 1 + 0



 มีเงินฝาก 1,000 บาท อัตราดอกเบี้ย 12% ต่อปี ถ้าฝากแบบดอกเบี้ย ทบต้นสิ้นปีที่ n จะมีเงินรวมทั้งหมดเท่าไร

```
สิ้นปีที่ 1 มีเงิน 1000.00 + (0.12) (1000.00) = 1120.00 สิ้นปีที่ 2 มีเงิน 1120.00 + (0.12) (1120.00) = 1254.40 สิ้นปีที่ 3 มีเงิน 1254.40 + (0.12) (1254.40) = 1404.92 ... สิ้นปีที่ n มีเงิน เงินรวมสิ้นปีที่ n-1 + ดอกเบี้ย ให้ a<sub>n</sub> เป็นเงินรวมเมื่อสิ้นปีที่ n a_n = (1) (a_{n-1}) + (0.12) (a_{n-1}) a_n = (1.12) (a_{n-1})
```

• ดังนั้น ความสัมพันธ์เวียนเกิด คือ  $a_n = (1.12) (a_{n-1}) ; n \ge 1$  และเงื่อนไขเริ่มต้น  $a_0 = 1000$ 

## ปริศนาหอคอยฮานอย



 EDOUARD LUCAS คือ นักคณิตศาสตร์ชาวฝรั่งเศส เป็นผู้คิดค้น ปริศนาหอคอยฮานอย (The Tower of Hanoi) โดยปริศนาหอคอย ฮานอย นั้นจะมีแผ่นจานไม้ 8 แผ่น รัศมีแตกต่างกัน แต่ละแผ่นมีรูตรง กลาง นำมาใส่ไว้ในหลักเป็นกองซ้อน โดยให้แผ่นที่เล็กกว่าทับแผ่นที่ ใหญ่กว่า และมีหลักเปล่าสองหลัก ดังรูป



### ปริศนาหอคอยฮานอย



• ปริศนาหอคอยฮานอย คือ ให้ย้ายแผ่นจานทั้งหมดไปกองไว้ที่หลัก เปล่าหลักหนึ่ง โดยมีเงื่อนไขว่า เคลื่อนย้ายได้คราวละแผ่น และต้อง นำไปไว้ที่หลักใดหลักหนึ่ง และห้ามแผ่นที่มีขนาดใหญ่กว่าวางทับ แผ่นที่มีขนาดเล็กกว่า ต่อไปนี้แสดงขั้นตอนการเคลื่อนย้ายแผ่นจาน จำนวน 3 แผ่นจากแผ่น A ไปแผ่น C





Earn S. (ENS) ComSci, KMUTNB

# จำนวนการเคลื่อนย้ายแผ่น



• ให้ a<sub>n</sub> เป็นจำนวนครั้งน้อยสุดในการเคลื่อนย้ายแผ่นจาน n แผ่นจาก หลักหนึ่งไปยังอีกหลักหนึ่ง







1. ต้องย้ายแผ่นที่เล็กกว่าทั้งหมด n-1 แผ่น ไปยังหลักที่ว่างก่อน จำนวนการ เคลื่อนย้าย คือ a<sub>n-1</sub> ครั้ง

3. ย้ายแผ่นจานทั้งหมดในข้อ 1. ไป ยังหลักเป้าหมาย จำนวนการ เคลื่อนย้าย คือ a<sub>n-1</sub> ครั้ง



2. ย้ายแผ่นใหญ่ที่สุดไปยังหลักเป้าหมาย จะได้ จำนวนการเคลื่อนย้ายคือ 1 ครั้ง





จงหาผลเฉลยของความสัมพันธ์เวียนเกิด a<sub>n</sub> = -3a<sub>n-1</sub> และ a<sub>0</sub>=7

ขั้นตอนที่ 1 จากสูตรการแปลง  $a_n = ra_{n-1}$  เป็นรูปแบบนี้  $a_n = Ar^n$ 

$$a_n = -3a_{n-1}$$

$$a_n = -3a_{n-1}$$

$$a_n = A(-3)^n$$

ขั้นตอนที่ 2 หาค่า A โดยการแก้สมการ

$$n=0$$
;  $a_0 = (-3)^0 \times A$ 

$$A = 7$$

แก้สมการ (1) จะได้ A = 7

ผลเฉลยของความสัมพันธ์เวียนเกิด a<sub>n</sub> = 7x(-3)<sup>n</sup>

Discrete Math.

Earn S. (ENS)



■ จงหาผลเฉลยของความสัมพันธ์เวียนเกิด  $a_n = 3a_{n-1}$ - 5;  $n \ge 1$  และ  $a_0 = 6$ 



• จงหาผลเฉลยของความสัมพันธ์เวียนเกิด  $a_n = a_{n-1} + 2a_{n-2}; n \ge 2$  และเงื่อนไขเริ่มต้น  $a_0 = 0$  และ  $a_1 = 1$ 



■ จงหาผลเฉลยของความสัมพันธ์เวียนเกิด  $a_n = 4a_{n-1}$ - $4a_{n-2}$  ;  $n \ge 2$  โดยที่  $a_0 = 1$  และ  $a_1 = 3$ 



- จงหาผลเฉลยของความสัมพันธ์เวียนเกิดปริศนาหอคอยฮานอย
- ถ้า n = 1 คือมีแผ่นจานเพียง 1 แผ่น จำนวนการเคลื่อนย้ายเป็น 1 ครั้ง และ n = 0 ไม่มีแผ่นจาน จำนวนการเคลื่อนย้ายเป็น 0 ครั้ง ความสัมพันธ์เวียน บังเกิดของปริศนาหอคอยฮานอย คือ  $a_n = 2a_{n-1} + 1$ ;  $n \ge 2$
- เงื่อนไขเริ่มต้น

- a<sub>0</sub> = 0 และ a<sub>1</sub> = 1
- จากปริศนาหอคอยฮานอย ทำแปลงรูปจากสูตรการแปลง a<sub>n</sub> = ra<sub>n-1</sub> +d เป็นรูปแบบนี้  $a_n = Ar^n + B$

| ผลเฉลยอยู่ในรูป | $a_n$  | $= Ax2^n + B$         | เมื่อ r = 2   |
|-----------------|--------|-----------------------|---------------|
| จะได้           | $a_0$  | $= Ax2^0 + B$         | แล้ว 0 = A+B  |
|                 | $a_1$  | $= Ax2^1 + B$         | แล้ว 1 = 2A+B |
| แก้สมการ        | A = 1, | B = -1                |               |
| ผลเฉลยคือ       | a"     | $= 2^{n}-1 : n \ge 2$ |               |

ComSci, KMUTNB



- ถ้าจานมีจำนวน 3 อัน ต้องใช้จำนวนรอบทั้งหมดน้อยสุด = 7
- ถ้าจานมีจำนวน 4 อัน ต้องใช้จำนวนรอบทั้งหมดน้อยสุด = 15
- ถ้าจานมีจำนวน 5 อัน ต้องใช้จำนวนรอบทั้งหมดน้อยสุด = 31
- ถ้าจานมีจำนวน 6 อัน ต้องใช้จำนวนรอบทั้งหมดน้อยสุด = 63
- ถ้าจานมีจำนวน 7 อัน ต้องใช้จำนวนรอบทั้งหมดน้อยสุด = 127
- ถ้าจานมีจำนวน 8 อัน ต้องใช้จำนวนรอบทั้งหมดน้อยสุด = 255
- หมายเหตุ รูปแบบของความสัมพันธ์เวียนบังเกิด คือ จะนำพจน์ก่อนหน้ามาคำนวณ ซึ่งถ้าต้องการทราบพจน์ที่ n ต้องทราบพจน์ที่ n-1 ก่อน จากตัวอย่างปริศนาหอคอย ฮานอย คือ a<sub>n</sub> = 2a<sub>n-1</sub> + 1 ถ้าต้องการทราบพจน์ที่ 8 ต้องหาพจน์ที่ 7 ก่อนแล้ว นำมาเข้าสูตร คือ a<sub>8</sub> = 2(127) + 1 = 255 จึงจะสามารถหาพจน์ที่ 8 แต่ถ้ารูปแบบ ผลเฉลยของความสัมพันธ์เวียนเกิดนั้นไม่มีความจำเป็นต้องรู้ค่าพจน์ก่อนหน้า จาก ตัวอย่างปริศนาหอคอยฮานอย คือ a<sub>n</sub> = 2<sup>n</sup>-1 ถ้าต้องการทราบพจน์ที่ 8 สามารถ แทนค่า n ด้วย 8 เข้าไปได้ ตัวอย่างเช่น a<sub>8</sub> = 2<sup>8</sup> 1 = 255 จึงไม่มีความจำเป็นต้อง หาพจน์ก่อนหน้าจึงสะดวกในการใช้งานมากกว่า