CONSTANTES

Constante de Avogadro = $6.02 \times 10^{23} \text{ mol}^{-1}$ Constante de Faraday (F) = $9.65 \times 10^4 \text{ C mol}^{-1}$ Volume molar de gás ideal = 22.4 L (CNTP)Carga elementar = $1.602 \times 10^{-19} \text{ C}$

Constante dos gases (R) = $8,21 \times 10^{-2}$ atm L K⁻¹ mol⁻¹ = 8,31 J K⁻¹ mol⁻¹ = 62,4 mmHg L K⁻¹ mol⁻¹ = 1,98 cal K⁻¹ mol⁻¹

DEFINIÇÕES

Condições normais de temperatura e pressão (CNTP): 0 °C e 760 mmHg.

Condições ambientes: 25 °C e 1 atm.

Condições-padrão: 25 °C, 1 bar, concentração das soluções: 1 mol L^{-1} (rigorosamente: atividade unitária das espécies). (s) ou (c) = sólido cristalino; (l) ou (ℓ) = líquido; (g) = gás; (aq) = aquoso; (graf) = grafite; (CM) = circuito metálico; (conc) = concentrado; (ua) = unidades arbitrárias; [A] = concentração da espécie química A em mol L^{-1} .

MASSAS MOLARES

Elemento Químico	Número Atômico	Massa Molar (g mol ⁻¹)	Elemento Químico	Número Atômico	Massa Molar (g mol ⁻¹)
Н	1	1,01	K	19	39,10
He	2	4,00	Ca	20	40,08
Li	3	6,94	Fe	26	55,85
Be	4	9,01	Ni	28	58,69
C	6	12,01	Cu	29	63,55
N	7	14,01	Zn	30	65,41
O	8	16,00	Br	35	79,91
F	9	19,00	Kr	36	83,80
Na	11	22,99	Ag	47	107,87
Mg	12	24,31	Sn	50	118,71
Si	14	28,09	I	53	126,90
P	15	30,97	Ba	56	137,33
S	16	32,07	Hg	80	200,59
Cl	17	35,45	Pb	82	207,21

Questão 1. Amostras de massas iguais de duas substâncias, I e II, foram submetidas independentemente a um processo de aquecimento em atmosfera inerte e a pressão constante. O gráfico abaixo mostra a variação da temperatura em função do calor trocado entre cada uma das amostras e a vizinhança.

Dados: ΔH_f e ΔH_v representam as variações de entalpia de fusão e de vaporização, respectivamente, e c_p é o calor específico.

Assinale a opção **ERRADA** em relação à comparação das grandezas termodinâmicas.

 \mathbf{A} () $\Delta H_f(I)$ < $\Delta H_f(II)$ \mathbf{B} () $\Delta H_v(I)$ < $\Delta H_v(II)$

C () $c_{p,I(s)} < c_{p,II(s)}$

 \boldsymbol{D} () $c_{p}\text{,}\mathrm{II}(g) < c_{p}\text{,}\mathrm{I}(g)$

 \mathbf{E} () $c_{p,II(l)} < c_{p,I(l)}$

Questão 2. Um recipiente aberto contendo inicialmente 30 g de um líquido puro a 278 K, mantido à pressão constante de 1 atm, é colocado sobre uma balança. A seguir, é imersa no líquido uma resistência elétrica de 3 Ω conectada, por meio de uma chave S, a uma fonte que fornece uma corrente elétrica constante de 2 A. No instante em que a chave S é fechada, dispara-se um cronômetro. Após 100 s, a temperatura do líquido mantém-se constante a 330 K e verifica-se que a massa do líquido começa a diminuir a uma velocidade constante de 0,015 g/s. Considere a massa molar do líquido igual a M. Assinale a opção que apresenta a variação de entalpia de vaporização (em J/mol) do líquido.

A() 500 M

B() 600 M

C() 700 M

D() 800 M

E() 900 M

Questão 3. Utilizando o enunciado da questão anterior, assinale a opção que apresenta o valor do trabalho em módulo (em kJ) realizado no processo de vaporização após 180 s de aquecimento na temperatura de 330 K.

A() 4,4/M

B() 5,4/M

C() 6,4/M

D() 7,4/M

E() 8,4/M

Questão 4. Dois béqueres, X e Y, contêm, respectivamente, volumes iguais de soluções aquosas: concentrada e diluída de cloreto de sódio na mesma temperatura. Dois recipientes hermeticamente fechados, mantidos à mesma temperatura constante, são interconectados por uma válvula, inicialmente fechada, cada qual contendo um dos béqueres. Aberta a válvula, após o restabelecimento do equilíbrio químico, verifica-se que a pressão de vapor nos dois recipientes é P_f . Assinale a opção que indica, respectivamente, as comparações $\bf CORRETAS$ entre os volumes inicial (VX_i) e final (VX_f) , da solução no béquer X e entre as pressões de vapor inicial (PY_i) e final (Pf) no recipiente que contém o béquer Y.

 \mathbf{A} () VX_i < VX_f e PY_i = P_f

 \mathbf{B} () VX_i < VX_f e PY_i > P_f

 \mathbf{C} () VX_i < VX_f e PY_i < P_f

 \mathbf{D} () VX_i > VX_f e PY_i > P_f

 $\boldsymbol{E}\left(\ \right)\ VX_{i}\ >\ VX_{f}\ e\ PY_{i}\ <\ P_{f}$

Questão 5. Utilizando o enunciado da questão anterior, assinale a opção que indica a curva no gráfico abaixo que melhor representa a quantidade de massa de água transferida ($Q_{água}$) ao longo do tempo (t) de um recipiente para o outro desde o instante em que a válvula é aberta até o restabelecimento do equilíbrio químico.

A() I

B() II

C() III

D() IV

E() V

Questão 6. Considere duas placas X e Y de mesma área e espessura. A placa X é constituída de ferro com uma das faces recoberta de zinco. A placa Y é constituída de ferro com uma das faces recoberta de cobre. As duas placas são mergulhadas em béqueres, ambos contendo água destilada aerada. Depois de um certo período, observa-se que as placas passaram por um processo de corrosão, mas não se verifica a corrosão total de nenhuma das faces dos metais. Considere sejam feitas as seguintes afirmações a respeito dos íons formados em cada um dos béqueres:

I. Serão formados íons Zn^{2+} no béquer contendo a placa X. II. Serão formados íons Fe^{2+} no béquer contendo a placa X. III. Serão formados íons Fe^{2+} no béquer contendo a placa Y. IV. Serão formados íons Fe^{3+} no béquer contendo a placa Y.

V. Serão formados íons Cu²⁺ no béquer contendo a placa Y.

Então, das afirmações acima, estão CORRETAS

A () apenas I, II e IV. **B**() apenas I, III e IV. C() apenas II, III e IV. **D**() apenas II, III e V. E() apenas IV e V.

Questão 7. Embrulhar frutas verdes em papel jornal favorece o seu processo de amadurecimento devido ao acúmulo de um composto gasoso produzido pelas frutas.

Assinale a opção que indica o composto responsável por esse fenômeno.

A () Eteno. **B**() Metano. **C** () Dióxido de carbono.

D () Monóxido de carbono. E() Amônia.

Questão 8. Assinale a opção que apresenta um sal que, quando dissolvido em água, produz uma solução aquosa ácida.

 \mathbf{A} () Na₂CO₃ **B**() CH₃COONa C() CH₃NH₃Cl

 $\mathbf{D}()$ Mg(ClO₄)₂ E() NaF

Questão 9. Duas células (I e II) são montadas como mostrado na figura. A célula I consiste de uma placa A(c) mergulhada em uma solução aquosa 1 mol L^{-1} em AX, que está interconectada por uma ponte salina a uma solução 1 mol L^{-1} em BX, na qual foi mergulhada a placa B(c). A célula II consiste de uma placa B(c) mergulhada em uma solução aquosa 1 mol L⁻¹ em BX, que está interconectada por uma ponte salina à solução 1 mol L^{-1} em CX, na qual foi mergulhada a placa C(c). Considere que durante certo período as duas células são interconectadas por fios metálicos, de resistência elétrica desprezível. Assinale a opção que apresenta a afirmação **ERRADA** a respeito de fenômenos que ocorrerão no sistema descrito.

Dados eventualmente necessários: $E^{\circ}_{A+(aq)/A(c)} = 0,400 \text{ V}; \quad E^{\circ}_{B+(aq)/B(c)} = -0,700 \text{ V} \quad \text{e} \quad E^{\circ}_{C+(aq)/C(c)} = 0,800 \text{ V}.$

A () A massa da placa C aumentará.

A polaridade da semicélula B/B⁺(aq) da célula II será negativa. **B**()

C () A massa da placa A diminuirá.

D () A concentração de B⁺(aq) na célula I diminuirá.

E () A semicélula A/A⁺(aq) será o cátodo.

São	fornecidos os segu	uintes resultados dos teste	es de solubilidade em vários s	solventes:	
Test Test	te 2. Somente os one te 3. Somente os o				
Con	sidere sejam feitas	as seguintes identificaçõ	ées:		
III. IV.	O composto D é a	o 1-pentanol. o propionato de etila.			
Entâ	ăo, das identificaçõ	ões acima, estão ERRAD	AS		
) apenas I, II e IV) apenas III e V.	7.	B() apenas I, III e IV. E() apenas IV e V.	C () ap	enas II e IV.
Que	estão 11. Consider	e sejam feitas as seguinte	s afirmações a respeito das f	ormas cristalinas do c	arbono:
	O monocristal de mesma. O diamante é um	e grafite é bom condutor a forma polimórfica meta	iamante, grafite e fulerenos. de corrente elétrica em uma nestável do carbono nas cond tomos de carbono são tetraéc	ições normais de tem	3
Entâ	ăo, das afirmações	acima, está(ão) CORRE	TA(S)		
) apenas I, II e III) apenas IV.	ī.	B () apenas I e III. E () todas.	C () ap	enas II e IV.
meti	il-2-propanotiol) te stância. Quando ac	ombou na Marginal Pin	que um caminhão transporta heiros – cidade de São Pau inha, tal substância fornece- composto.	lo. Devido ao aciden	ite, ocorreu o vazamento da
) (CH ₃) ₃ CNH ₂) (CH ₃) ₃ CCH ₂	NH_2	B () (CH ₃) ₃ CSH E () (CH ₃) ₃ CSCH ₂ OH		C() (CH ₃) ₃ CNHCH ₃
Que	estão 13. Assinale	a opção que nomeia o cie	entista responsável pela desco	oberta do oxigênio.	
A () Dalton	B () Mendeleev	C() Gay-Lussac	D () Lavoisier	E() Proust
bar, Dad ΔH _c	representada pela los eventualmente $\binom{\theta}{c} \left(C_4 H_{10}(g) \right) = -\frac{1}{2}$	seguinte equação: C_4H necessários: ΔH_f^{θ} (C_4H_8	riação CORRETA de entalp $I_{10}(g) \rightarrow C_4H_8(g) + H_2(g)$ $I_{10}(g) = -11,4$; $\Delta H_f^{\theta}(CO_2(g))$ ΔH_c^{θ} , em kJ/mol, represents	$(1) = -393.5; \Delta H_f^{\theta} (H_2)$	O(1)) = -285,8 e
A () -3.568,3	B () -2.186,9	C () +2.186,9	D () +125,4	E () +114,0

Questão 10. Realizaram-se testes de solubilidade de pequenas porções de compostos orgânicos constituídos de cinco átomos de carbono, denominados de *A*, *B*, *C*, *D* e *E*.

Questão 15. Durante a utilização de um extintor de incêndio de dióxido de carbono, verifica-se formação de um aerossol esbranquiçado e também que a temperatura do gás ejetado é consideravelmente menor do que a temperatura ambiente. Considerando que o dióxido de carbono seja puro, assinale a opção que indica a(s) substância(s) que torna(m) o aerossol visível a olho nu.

A () Água no estado líquido.

B () Dióxido de carbono no estado líquido.

C () Dióxido de carbono no estado gasoso.

D () Dióxido de carbono no estado gasoso e água no estado líquido.

E () Dióxido de carbono no estado gasoso e água no estado gasoso.

Questão 16. Um recipiente fechado contendo a espécie química A é mantido a volume (V) e temperatura (T) constantes. Considere que essa espécie se decomponha de acordo com a equação:

$$A(g) \rightarrow B(g) + C(g)$$
.

A tabela abaixo mostra a variação da pressão total (P_t) do sistema em função do tempo (t):

t (s)	0	55	200	380	495	640	820
P _t (mmHg)	55	60	70	80	85	90	95

Considere sejam feitas as seguintes afirmações:

- I. A reação química obedece à lei de velocidade de ordem zero.
- O tempo de meia-vida da espécie *A* independe da sua pressão parcial.
- III. Em um instante qualquer, a pressão parcial de A, P_A , pode ser calculada pela equação: $P_A = 2 P_0 P_t$, em que P_0 é a pressão do sistema no instante inicial.
- IV. No tempo de 640 s, a pressão P_i é igual a 45 mmHg, em que P_i é a soma das pressões parciais de B e C.

Então, das afirmações acima, está(ão) CORRETA(S)

A () apenas I e II.

B() apenas I e IV.

C () apenas II e III.

D() apenas II e IV.

E() apenas IV.

Questão 17. Assinale a opção que indica a substância que, entre as cinco, apresenta a maior temperatura de ebulição à pressão de 1 atm.

A() H₃CCHO \mathbf{D} () $\mathbf{H}_3\mathbf{CCOOH}$ \mathbf{B} () $\mathbf{H}_3\mathbf{CCOCH}_3$ E() H₃CCOOCH₃ C() H₃CCONH₂

Questão 18. Um indicador ácido-base monoprótico tem cor vermelha em meio ácido e cor laranja em meio básico. Considere que a constante de dissociação desse indicador seja igual a 8,0 x 10⁻⁵. Assinale a opção que indica a quantidade, em mols, do indicador que, quando adicionada a 1 L de água pura, seja suficiente para que 80% de suas moléculas apresentem a cor vermelha após alcançar o equilíbrio químico.

 \mathbf{A} () 1.3 x 10⁻⁵

B() 3.2×10^{-5} **C**() 9.4×10^{-5} **D**() 5.2×10^{-4} **E**() 1.6×10^{-3}

Questão 19. Nas condições ambientes, a 1 L de água pura, adiciona-se 0,01 mol de cada uma das substâncias A e B descritas nas opções abaixo. Dentre elas, qual solução apresenta a maior condutividade elétrica?

 \mathbf{A} () A = NaCl

 $B = AgNO_3$

 \mathbf{B} () A = HC1

B = NaOH

 \mathbf{D} () A = KI e $B = Pb(NO_3)_2$

 \mathbf{C} () A = HC1 e $B = CH_3COONa$ \mathbf{E} () $A = Cu(NO_3)_2$ e $B = ZnCl_2$

Questão 20. Considere a reação química representada pela equação abaixo e sua respectiva força eletromotriz nas condições-padrão:

$$O_2(g) + 4 H^+(aq) + 4 Br^-(aq) \implies 2 Br_2(g) + 2 H_2O(l), \Delta E^\circ = 0.20 V.$$

Agora, considere que um recipiente contenha todas as espécies químicas dessa equação, de forma que todas as concentrações sejam iguais às das condições-padrão, exceto a de H⁺. Assinale a opção que indica a faixa de pH na qual a reação química ocorrerá espontaneamente.

C() 4,8 < pH < 5,4

As questões dissertativas, numeradas de 21 a 30, devem ser resolvidas e respondidas no caderno de soluções.

Questão 21. Uma amostra de 1,222 g de cloreto de bário hidratado (B a Cl₂. n H₂O) é aquecida até a eliminação total da água de hidratação, resultando em uma massa de 1,042 g.

Com base nas informações fornecidas e mostrando os cálculos efetuados, determine:

- (a) o número de mols de cloreto de bário,
- (b) o número de mols de água e
- (c) a fórmula molecular do sal hidratado.

Questão 22. O composto mostrado abaixo é um tipo de endorfina, um dos neurotransmissores produzidos pelo cérebro.

- (a) Transcreva a fórmula estrutural da molécula.
- (b) Circule todos os grupos funcionais.
- (c) Nomeie cada um dos grupos funcionais circulados.

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Questão 23. Um dos métodos de síntese do clorato de potássio (KClO₃) é submeter uma solução de cloreto de potássio (KCl) a um processo eletrolítico, utilizando eletrodos de platina. São mostradas abaixo as semi-equações que representam as semi-reações em cada um dos eletrodos e os respectivos potenciais elétricos na escala do eletrodo de hidrogênio nas condições-padrão (E°):

ELETRODO I:
$$C1^{-}(aq) + 3H_{2}O(l)$$
 \rightleftharpoons $C1O_{3}^{-}(aq) + 6H^{+}(aq) + 6e^{-}(CM)$ 1,45
ELETRODO II: $2OH^{-}(aq) + H_{2}(g)$ \rightleftharpoons $2H_{2}O(l) + 2e^{-}(CM)$ -0,83

- (a) Faça um esquema da célula eletrolítica.
- (b) Indique o cátodo.
- (c) Indique a polaridade dos eletrodos.
- (d) Escreva a equação que representa a reação química global balanceada.

Questão 24. Em um recipiente que contém 50,00 mL de uma solução aquosa 0,100 mol/L em HCN foram adicionados 8,00 mL de uma solução aquosa 0,100 mol/L em NaOH. Dado: K_a (HCN) = 6,2 x 10^{-10} .

- (a) Calcule a concentração de íons H⁺ da solução resultante, deixando claros os cálculos efetuados e as hipóteses simplificadoras.
- (b) Escreva a equação química que representa a reação de hidrólise dos íons CN⁻.

Questão 25. Prepara-se, a 25 °C, uma solução por meio da mistura de 25 mL de *n*-pentano e 45 mL de *n*-hexano. Dados: massa específica do *n*-pentano = 0,63 g/mL; massa específica do *n*-hexano = 0,66 g/mL; pressão de vapor do *n*-pentano = 511 torr; pressão de vapor do *n*-hexano = 150 torr.

Determine os seguintes valores, mostrando os cálculos efetuados:

- (a) Fração molar do *n*-pentano na solução.
- (b) Pressão de vapor da solução.
- (c) Fração molar do *n*-pentano no vapor em equilíbrio com a solução.

Questão 26. A tabela abaixo apresenta os valores das temperaturas de fusão (T_f) e de ebulição (T_e) de halogênios e haletos de hidrogênio.

	T_f (°C)	T _e (°C)
F_2	-220	-188
Cl_2	-101	-35
Br_2	-7	59
I_2	114	184
HF	-83	20
HCl	-115	-85
HBr	-89	-67
ΗI	-51	-35

- (a) Justifique a escala crescente das temperaturas T_f e T_e do F_2 ao I_2 .
- (b) Justifique a escala decrescente das temperaturas $T_f\ e\ T_e\ do\ HF\ ao\ HC1$.
- (c) Justifique a escala crescente das temperaturas $T_f\ e\ T_e\ do\ HC1$ ao HI.

Questão 27. Utilizando uma placa polida de cobre puro, são realizados os seguintes experimentos:

- I. A placa é colocada diretamente na chama do bico de Bunsen. Após um certo período, observa-se o escurecimento da superfície dessa placa.
- II. Em seguida, submete-se a placa ainda quente a um fluxo de hidrogênio puro, verificando-se que a placa volta a apresentar a aparência original.
- III. A seguir, submete-se a placa a um fluxo de sulfeto de hidrogênio puro, observando-se novamente o escurecimento da placa, devido à formação de Cu₂S.
- IV. Finalmente, a placa é colocada novamente na chama do bico de Bunsen, readquirindo a sua aparência original.

Por meio das equações químicas balanceadas, explique os fenômenos observados nos quatro experimentos descritos.

Questão 28. Um cilindro de volume V contém as espécies A e B em equilíbrio químico representado pela seguinte equação: $A(g) \rightleftharpoons 2 B(g)$. Inicialmente, os números de mols de A e de B são, respectivamente, iguais a nA_1 e nB_1 . Realiza-se, então, uma expansão isotérmica do sistema até que o seu volume duplique (2V) de forma que os números de mols de A e de B passem a ser, respectivamente, nA_2 e nB_2 . Demonstrando o seu raciocínio, apresente a expressão algébrica que relaciona o número final de mols de B (nB_2) unicamente com nA_1 , nA_2 e nB_1 .

Questão 29. Dois recipientes contêm soluções aquosas diluídas de estearato de sódio (CH₃(CH₂)₁₆COONa). Em um deles é adicionada uma porção de *n*-octano e no outro, uma porção de glicose, ambos sob agitação. Faça um esquema mostrando as interações químicas entre as espécies presentes em cada um dos recipientes.

Questão 30. Dois frascos, *A* e *B*, contêm soluções aquosas concentradas em HCl e NH₃, respectivamente. Os frascos são mantidos aproximadamente a um metro de distância entre si, à mesma temperatura ambiente. Abertos os frascos, observa-se a formação de um aerossol branco entre os mesmos. Descreva o fenômeno e justifique por que o aerossol branco se forma em uma posição mais próxima a um dos frascos do que ao outro.