

PostgreSQL

Преподаватель: Валентин Степанов

Оптимизация запросов

• Соединение вложенным циклом

Соединения

- Способы соединения не соединения SQL
 - inner/left/right/full/cross join, in, exists логические операции
 - способы соединения механизм реализации
- Соединяются не таблицы, а наборы строк
 - могут быть получены от любого узла дерева плана
- Наборы строк соединяются попарно
 - порядок соединений важен с точки зрения производительности
 - обычно важен и порядок внутри пары

SELECT a.title, s.name FROM albums a JOIN songs s ON a.id = s.a_id;

для каждой строки одного набора перебираем подходящие строки другого набора

id	title	year	all	oum_i	d name
3	Let It Be	1970		5	A Day in the Life
1	Yellow Submarine	1969	-	1	All Together Now
6	Abbey Road	1969		2	Another Girl
4	The Beatles	1968		3	Across the Universe
3.5		XI.	,	1	All You Need Is Love
				2	Act Naturally

id	title	year	all	oum_i	d name
3	Let It Be	1970		5	A Day in the Life
1	Yellow Submarine	1969		1	All Together Now
6	Abbey Road	1969		2	Another Girl
4	The Beatles	1968		3	Across the Universe
3			`	1	All You Need Is Love
				2	Act Naturally

id	title	year
3	Let It Be	1970
1	Yellow Submarine	1969
6	Abbey Road	1969
4	The Beatles	1968

albı	um_i	d name
	5	A Day in the Life
	1	All Together Now
	2	Another Girl
	3	Across the Universe
	1	All You Need Is Love
	2	Act Naturally

SELECT a.title, s.name FROM albums a JOIN songs s ON a.id = s.a_id;

id	title	year
3	Let It Be	1970
1	Yellow Submarine	1969
6	Abbey Road	1969
4	The Beatles	1968

name

5	A Day in the Life
1	All Together Now
2	Another Girl
3	Across the Universe
1	All You Need Is Love
2	Act Naturally

не все строки внутреннего набора рассматривались

Вычислительная сложность

- ~ *N×M*, где
 - N число строк во внешнем наборе данных,
 - М среднее число строк внутреннего набора, приходящееся на одну итерацию
- Соединение эффективно только для небольшого числа строк

В параллельных планах

Оптимизация запросов

• Соединение хешированием

Однопроходное соединение

• Применяется, когда для хеш-таблицы достаточно оперативной памяти

Построение хеш-таблицы

Двухпроходное соединение

 Применяется, когда хеш-таблица не помещается в оперативную память: наборы данных разбиваются на пакеты и последовательно соединяются

Построение хеш-таблицы

Вычислительная сложность

~ *N*+*M*, где N и M — число строк в первом и втором наборах данных

- Начальные затраты на построение хеш-таблицы
- Эффективно для большого числа строк

Параллельно, один проход

• Процессы используют общую хеш-таблицу

Параллельный алгоритм

Построение хеш-таблицы

Параллельно, два прохода

• Наборы строк разбиваются на пакеты, которые затем параллельно обрабатываются рабочими процессами

Разбиение на пакеты

Оптимизация запросов

• Соединение слиянием

Соединение слиянием

- Алгоритм соединения слиянием
- Вычислительная сложность
- Соединение слиянием в параллельных планах

Сортировка

SELECT a.title, s.name FROM albums a JOIN songs s ON a.id = s.a_id;

id	title	year
1	Yellow Submarine	1969
3	Let It Be	1970
4	The Beatles	1968
6	Abbey Road	1969

lbum_	id name
1	All Together Now
1	All You Need Is Love
2	Another Girl
2	Act Naturally
3	Across the Universe
5	A Day in the Life

либо сортировка, либо получение отсортированных данных от нижестоящего узла плана

SELECT a.title, s.name FROM albums a JOIN songs s ON a.id = s.a_id;

результат соединения автоматически отсортирован

id	title	year	a	lbum_	id name
1	Yellow Submarine	1969	-	1	All Together Now
3	Let It Be	1970	—	1	All You Need Is Love
4	The Beatles	1968		2	Another Girl
6	Abbey Road	1969		2	Act Naturally
				3	Across the Universe
				5	A Day in the Life

id	title	year	a	lbum_	id name
1	Yellow Submarine	1969	•	1	All Together Now
3	Let It Be	1970		1	All You Need Is Love
4	The Beatles	1968	-	2	Another Girl
6	Abbey Road	1969		2	Act Naturally
				3	Across the Universe
				5	A Day in the Life

id	title	year	a	lbum_	id name
1	Yellow Submarine	1969		1	All Together Now
3	Let It Be	1970	•	1	All You Need Is Love
4	The Beatles	1968		2	Another Girl
6	Abbey Road	1969		2	Act Naturally
		•		3	Across the Universe
				5	A Day in the Life

id	title	year		album_	id name
1	Yellow Submarine	1969		1	All Together Now
3	Let It Be	1970	•	1	All You Need Is Love
4	The Beatles	1968		2	Another Girl
6	Abbey Road	1969		2	Act Naturally
				3	Across the Universe
				5	A Day in the Life

id	title	year	a	lbum_	id name
1	Yellow Submarine	1969		1	All Together Now
3	Let It Be	1970	•	1	All You Need Is Love
4	The Beatles	1968		2	Another Girl
6	Abbey Road	1969		2	Act Naturally
				3	Across the Universe
			•	- 5	A Day in the Life

id	title	year	a	lbum_	id name
1	Yellow Submarine	1969		1	All Together Now
3	Let It Be	1970		1	All You Need Is Love
4	The Beatles	1968	•	2	Another Girl
6	Abbey Road	1969		2	Act Naturally
,				3	Across the Universe
			•	- 5	A Day in the Life

id	title	year	a	lbum_	id name
1	Yellow Submarine	1969		1	All Together Now
3	Let It Be	1970		1	All You Need Is Love
4	The Beatles	1968		2	Another Girl
6	Abbey Road	1969	•	2	Act Naturally
				3	Across the Universe
			-	5	A Day in the Life

Вычислительная сложность

- ~ N+M, где
 N и M число строк в первом и втором наборах данных, если не требуется сортировка
- ~ *N log N* + *M log M*, если сортировка нужна

- Возможные начальные затраты на сортировку
- Эффективно для большого числа строк

В параллельных планах

Сортировка

- Сортировка в памяти
- Внешняя сортировка
- Группировка с помощью сортировки
- Сортировка в параллельных планах

Сортировка в памяти

- Быстрая сортировка (quick sort)
- Частичная пирамидальная сортировка (top-N heapsort)
 - когда нужна только часть значений
- Инкрементальная сортировка
 - когда данные уже отсортированы, но не по всем ключам

Внешняя сортировка

Внешняя сортировка

Внешняя сортировка

Параллельная сортировка

- Узел Gather Merge сохраняет порядок сортировки
 - выполняет слияние данных, поступающих от нижестоящих узлов

Создание индекса

- Используется сортировка сначала все строки сортируются затем строки собираются в листовые индексные страницы ссылки на них собираются в страницы следующего уровня и так далее, пока не дойдем до корня
- Может выполняться параллельно
 - max_parallel_maintenance_workers
- Ограничение
 - maintenance_work_mem, так как операция не частая

Оптимизация запросов

• Статистика

Базовая статистика

- Размер таблицы
 - строки (pg_class.reltuples) и страницы (pg_class.relpages)
- Собирается
 - операциями DDL
 - очисткой
 - анализом
- Настройка
 - default_statistics_target = 100

Базовая статистика

pg_statistic (pg_stats)

Наиболее частые значения

Гистограмма

Комбинация методов

Дополнительные поля

- Упорядоченность (использовать ли битовую карту?)
 - pg_stats.correlation (1 по возрастанию, 0 хаотично, –1 по убыванию)
- Видимость (использовать ли сканирование только индекса?)
 - pg_class.relallvisible
- Средний размер значения в байтах (оценка памяти)
 - pg_stats.avg_width
- Информация об элементах массивов, tsvector и т. п.
 - pg_stats.most_common_elems
 - pg_stats.most_common_elem_freqs
 - pg_stats.elem_count_histogram

Расширенная статистика

- CREATE STATISTICS
 - объект базы данных, создается вручную
 - после создания статистика собирается автоматически
 - pg_statistic_ext и pg_statistic_ext_data; представление pg_stats_ext
- Функциональные зависимости между столбцами и списки наиболее частых комбинаций значений
 - улучшают оценку селективности условий с коррелированными предикатами
- Число уникальных комбинаций значений
 - улучшает оценку кардинальности для группировки

Оптимизация запросов

• Профилирование

Инструмент

- Профилирование
 - выделение подзадач
 - продолжительность
 - количество выполнений
- Что оптимизировать?
 - чем больше доля подзадачи в общем времени выполнения, тем больше потенциальный выигрыш
 - необходимо учитывать затраты на оптимизацию
 - полезно взглянуть на задачу шире

Что профилировать

- Всю активность системы
 - полезно администратору для поиска ресурсоемких задач
 - мониторинг, расширение pg_profile
- Отдельную задачу, вызывающую нарекания
 - полезно для решения конкретной проблемы
 - чем точнее, тем лучше: широкий охват размывает картину

Что измерять

- Время выполнения
 - имеет смысл для пользователя
 - крайне нестабильный показатель
- Страничный ввод-вывод
 - стабилен по отношению ко внешним факторам
 - мало что говорит пользователям

Профиль приложения

- Подзадачи
 - клиентская часть
 - сервер приложений
 - сервер баз данных ← проблема часто, но не всегда, именно здесь
 - сеть
- Как профилировать
 - технически трудно, нужны разнообразные средства мониторинга
 - подтвердить предположение обычно несложно

Профиль PL/pgSQL

- Расширение PL Profiler
 - стороннее расширение
 - предназначено только для функций на PL/pgSQL
 - профилирование отдельного скрипта или сеанса
 - отчет о работе в html, включая flame graph

Профиль запросов

- Журнал сообщений сервера
 - включается конфигурационными параметрами: log_min_duration_statements=0 время и текст всех запросов log_line_prefix идентифицирующая информация
 - сложно включить для отдельного сеанса
 - большой объем; при увеличении порога времени теряем информацию
 - не отслеживаются вложенные запросы (можно использовать расширение auto_explain)
 - анализ внешними средствами, такими, как pgBadger

Профиль запросов

- Расширение pg_stat_statements
 - подробная информация о запросах в представлении (в том числе о вложенных)
 - ограниченный размер хранилища
 - запросы считаются одинаковыми «с точностью до констант», даже если имеют разные планы выполнения
 - идентификация только по имени пользователя и базе данных

Профиль одного запроса

EXPLAIN ANALYZE

- подзадачи узлы плана
- продолжительность actual time или страничный ввод-вывод buffers
- количество выполнений loops

• Особенности

- помимо наиболее ресурсоемких узлов, кандидаты на оптимизацию
 — узлы с большой ошибкой прогноза кардинальности
- любое вмешательство может привести к полной перестройке плана
- иногда приходится довольствоваться простым EXPLAIN

Оптимизация запросов

• Приемы оптимизации

Пути оптимизации

- Цель оптимизации получить адекватный план
- Исправление неэффективностей
 - каким-то образом найти и исправить узкое место
 - бывает сложно определить, в чем проблема
 - часто приводит к борьбе с планировщиком
- Правильный расчет кардинальности
 - добиться правильного расчета кардинальности в каждом узле и положиться на планировщик
 - если план все еще неадекватный, настраивать глобальные параметры

Статистика

- Актуальность
 - настройка автоочистки и автоанализа
 - autovacuum_max_workers, autovacuum_analyze_scale_factor, ...
- Точность
 - default statistics target = 100
 - индекс по выражению
 - расширенная статистика (например, для коррелированных предикатов)
- Использование имеющейся статистики
 - планировщик не всегда может сделать правильные выводы из имеющихся данных
 - переформулирование запроса, временные таблицы

Настройки стоимости

- Ввод-вывод
 - можно (и нужно) указывать на уровне табличных пространств

```
• seq_page_cost = 1.0
```

- random_page_cost = 4.0
- effective_io_concurrency = 1

Настройки стоимости

• Время процессора

```
• cpu tuple cost = 0.01
```

- cpu_index_tuple_cost = 0.005
- cpu_operator_cost = 0.0025
- CREATE FUNCTION ... COST стоимость

Настройки стоимости

- Параллельное выполнение
 - parallel_setup_cost = 1000
 - parallel_tuple_cost = 0.1
- Курсоры
 - cursor tuple fraction = 0.1

Настройки памяти

• Память

```
• work mem = 4MB
```

- hash_mem_multiplier = 1
- maintenance_work_mem = 64MB
- effective_cache_size = 4GB

Локализация настроек

- На уровне табличного пространства
 - ALTER TABLESPACE SET ...
- На уровне базы данных
 - ALTER DATABASE SET ...
- На уровне роли и базы данных
 - ALTER ROLE [IN DATABASE ...] SET ...
- На уровне процедуры или функции
 - ALTER ROUTINE SET ...
- На уровне сеанса или транзакции
 - SET [LOCAL] ...

Отладка

- Отключение определенных способов доступа
 - enable_seqscan
 - enable_indexscan, enable_bitmapscan, enable_indexonlyscan
- Отключение определенных методов соединений
 - enable_nestloop, enable_hashjoin, enable_mergejoin
- Отключение определенных операций enable_hashagg,
 - enable_sort, enable_incremental_sort
- Проверка возможности распараллеливания
 - force_parallel_mode

Схема данных

- Нормализация устранение избыточности в данных
 - упрощает запросы и проверку согласованности
- Денормализация привнесение избыточности
 - может повысить производительность, но требует синхронизации
 - индексы
 - предрассчитанные поля (генерируемые столбцы или триггеры)
 - материализованные представления
 - кеширование результатов в приложении

Схема данных

- Типы данных
 - выбор подходящих типов
 - составные типы (массивы, JSON) вместо отдельных таблиц
- Ограничения целостности
 - помимо обеспечения целостности данных, могут учитываться планировщиком для устранения ненужных соединений, улучшения оценок селективности и других оптимизаций
 - первичный ключ и уникальность уникальный индекс
 - внешний ключ
 - отсутствие неопределенных значений
 - проверка CHECK (constraint_exclusion)

Физическое расположение

- Табличные пространства
 - разнесение данных по разным физическим устройствам
- Секционирование
 - разделение таблицы на отдельно управляемые части для упрощения администрирования и ускорения доступа
- Шардирование
 - размещение секций на разных серверах для масштабирования нагрузки на чтение и запись
 - секционирование и расширение postgres-fdw или сторонние решения

Порядок соединений

- Автоматический выбор порядка соединений
 - если число соединяемых таблиц не превышает join_collapse_limit планировщик выбирает лучший порядок соединений
 - при большем количестве рассматриваются не все варианты
- Ручное управление порядком соединений
 - материализация подзапросов с помощью СТЕ или временных таблиц
 - явные соединения (JOIN) и join_collapse_limit = 1
 - подзапросы в предложении FROM и from_collapse_limit = 1

Изменение запросов

- Альтернативные способы выполнения
 - планировщик не всегда рассматривает все возможные трансформации
 - раскрытие коррелированных подзапросов
 - устранение лишних таблиц
 - замена UNION на OR и обратно
 - И Т. П.
- Замена процедурного кода декларативным
 - чтобы избавиться от большого числа мелких запросов

Подсказки оптимизатору

- Отсутствуют в явном виде
 - хотя средства влияния имеются: конфигурационные параметры, материализация СТЕ и другие
- Сторонние расширения
 - pg_hint_plan