Predictions and effects

Jonathan Dushoff, McMaster University

McMaster Statistics Seminar, March 2022

Thanks

- Bicko Cygu
- ► Ben Bolker
- ► Mike Li
- ► Chyun Shi

Visualizing results of complicated models

- What are the factors that predict?:
 - ► HIV risk
 - Tendency to circumcise sons and daughters
 - Access to clean water
- A variety of "socio-demographic" variables and complicated models

Types of variables

- An "input variable" can be associated with one or more parameters
 - And therefore one or more "model variables"
- Gender typically has a single parameter (two categories)
- Religion or ethnicity typically has multiple parameters (more than two categories)
- Wealth or education may have a single parameter (linear response)
- Age typically has multiple parameters (polynomial or spline response)

Tables

- ▶ Tables are generally bad for communicating model results
- ► Hard to see patterns
- ► Focus attention inappropriately on statistical "significance"

Coefficient plots

- ► Coefficient plots are a compact, effective way to communicate about single-parameter variables
 - Effects on the same axis should have the same units!
 - Normalize predictor variables under most circumstances
- ► They are not a good way to communicate about multi-parameter variables
 - Especially splines and polynomials

Effects plots

- An appealing way to visualize the results of model inference
- Particularly for multi-parameter variables
- Or possibly to aid understanding of generalized models
- Raise a number of interesting questions

Predictions vs. effects

Predictions vs. effects

No anchor

No anchor

Multi-parameter predictor

Prediction

Multi-parameter predictor

Effect

Univariate model

Multivariate model

The Model Center

- We define "model center" as the point at the mean of the model variables
 - Columns of the model matrix
- Centered columns are orthogonal to the intercept

Proxies

- ➤ Some common tricks to stabilize models may be imperfect attempts to move toward the model center:
- Averaging input variables
 - Works perfectly for single-parameter variables
- Sum-to-zero contrasts for categories
 - Works perfectly for balanced designs
 - Or if we use weights

- ► To calculate confidence intervals for (narrow-sense) effect plots, we need an *anchor*
 - ▶ Values for the *focal* statistical parameters defined as zero effect
- We argue that the model center should be the default
 - but it's not the only sensible value

Center anchoring

Reference point

- ► In a multivariate model, to calculate any estimates for (any) effect plots, we need a reference point
 - ▶ Values to use for the *non-focal* statistical parameters
- ▶ We again argue that the model center should be the default
 - Random effects can basically be neglected (we will center them by accident)
 - but it's going to turn out to be complicated for generalized models

Generalized models

Non-linear averaging

- ▶ The model center is not as beautiful here!
 - ▶ We need to generalize our idea of reference point
 - ▶ i.e., the values we consider for non-focal predictors
- ► The prediction of the averaged population ≠ the average of the predictions
- ► More work needs to be done

Bias correction

- Which biases should be corrected?
 - Use the linear model as a guide
- How to correct them?
 - Moment methods (Jensen)
 - Quantile-based methods
 - Population-based methods
 - Seem best; in some cases may be computationally demanding
 - Maybe solved by sampling

Naive use of model center

Population-based correction

Population-based correction

Population-based correction

Mixed models

- Averaging over random effects turns out to be pretty similar to averaging over fixed effects
 - In Im, you don't even need to think about it
 - In glm, you can correct using three methods discussed above

Work in progress

- ► Warning: alpha-level software!
- https://github.com/mac-theobio/effects

Thanks again

- Organizers
- Audience