base_data.head()

	PatientId	AppointmentID	Gender	ScheduledDay	AppointmentDay	Age	Neighbou
0	2.987250e+13	5642903	F	2016-04- 29T18:38:08Z	2016-04- 29T00:00:00Z	62	JARE F
1	5.589978e+14	5642503	М	2016-04- 29T16:08:27Z	2016-04- 29T00:00:00Z	56	JARE F
2	4.262962e+12	5642549	F	2016-04- 29T16:19:04Z	2016-04- 29T00:00:00Z	62	MA
₹	Ջ 670512△±11	5642828	E	2016-04-	2016-04-	Ω	PON1

base_data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 110527 entries, 0 to 110526
Data columns (total 14 columns):
```

#	Column	Non-Null Count	Dtype
0	PatientId	110527 non-null	float64
1	AppointmentID	110527 non-null	int64
2	Gender	110527 non-null	object
3	ScheduledDay	110527 non-null	object
4	AppointmentDay	110527 non-null	object
5	Age	110527 non-null	int64
6	Neighbourhood	110527 non-null	object
7	Scholarship	110527 non-null	int64
8	Hipertension	110527 non-null	int64
9	Diabetes	110527 non-null	int64
10	Alcoholism	110527 non-null	int64
11	Handcap	110527 non-null	int64
12	SMS_received	110527 non-null	int64
13	No-show	110527 non-null	object
dtype	es: float64(1),	int64(8), object(5)
memor	ry usage: 11.8+ /	MB	

base_data.isnull().sum()

PatientId AppointmentID Gender 0 ScheduledDay AppointmentDay Age Neighbourhood Scholarship Hipertension Diabetes Alcoholism Handcap SMS_received No-show dtype: int64

#modifying the date and time into standard form
base_data['ScheduledDay'] = pd.to_datetime(base_data['ScheduledDay']).dt.date.astype('datetime6'
base_data['AppointmentDay'] = pd.to_datetime(base_data['AppointmentDay']).dt.date.astype('datetime')

```
base_data.head()
```

	PatientId	AppointmentID	Gender	ScheduledDay	AppointmentDay	Age	Neighbourhood	Scholarship	Hipertension	Diabetes	Alcoh
0	2.987250e+13	5642903	F	2016-04-29	2016-04-29	62	JARDIM DA PENHA	0	1	0	
1	5.589978e+14	5642503	М	2016-04-29	2016-04-29	56	JARDIM DA PENHA	0	0	0	
2	4.262962e+12	5642549	F	2016-04-29	2016-04-29	62	MATA DA	0	0	0	
•)		

```
#for the schedule day and appointment day storing the weekdays only into a variable
# 5 is Saturday, 6 is Sunday
base_data['sch_weekday'] = base_data['ScheduledDay'].dt.dayofweek
base_data['app_weekday'] = base_data['AppointmentDay'].dt.dayofweek
base_data['sch_weekday'].value_counts()
        26168
        24262
        23085
        18915
        18073
          24
    Name: sch_weekday, dtype: int64
base_data['app_weekday'].value_counts()
        25867
        25640
        22715
        19019
        17247
          39
    Name: app_weekday, dtype: int64
base_data.columns
    Index(['PatientId', 'AppointmentID', 'Gender', 'ScheduledDay'
          'AppointmentDay', 'Age', 'Neighbourhood', 'Scholarship', 'Hipertension', 'Diabetes', 'Alcoholism', 'Handcap', 'SMS_received', 'No-show', 'sch_weekday', 'app_weekday'],
         dtype='object')
#changing the name of some cloumns
base_data= base_data.rename(columns={'Hipertension': 'Hypertension', 'Handcap': 'Handicap', 'SM'
# dropping some columns which have no significance
base_data.drop(['PatientId', 'AppointmentID', 'Neighbourhood'], axis=1, inplace=True)
base_data.shape
    (110527, 13)
base_data.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 110527 entries, 0 to 110526
    Data columns (total 13 columns):
     # Column
                     Non-Null Count
                      110527 non-null object
```

1 ScheduledDay 110527 non-null datetime64[ns]

```
AppointmentDay 110527 non-null datetime64[ns]
3
                    110527 non-null int64
    Age
4
    Scholarship
                    110527 non-null
                    110527 non-null int64
    Hypertension
                    110527 non-null int64
6
    Diabetes
                    110527 non-null int64
    Alcoholism
8
    Handicap
                    110527 non-null int64
9
    SMSReceived
                    110527 non-null int64
10 NoShow
                    110527 non-null object
11 sch_weekday
                    110527 non-null int64
12 app_weekday
                    110527 non-null int64
dtypes: datetime64[ns](2), int64(9), object(2)
memory usage: 11.0+ MB
```

base_data.describe()

	Age	Scholarship	Hypertension	Diabetes	Alcoholism	Handicap	SMSReceived	sch_weekday	app_wee
count	110527.000000	110527.000000	110527.000000	110527.000000	110527.000000	110527.000000	110527.000000	110527.000000	110527.00
mean	37.088874	0.098266	0.197246	0.071865	0.030400	0.022248	0.321026	1.851955	1.85
std	23.110205	0.297675	0.397921	0.258265	0.171686	0.161543	0.466873	1.378520	1.37
min	-1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.00
25%	18.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	1.00
50%	37.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	2.000000	2.00
75%	55.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	3.000000	3.00
max	115.000000	1.000000	1.000000	1.000000	1.000000	4.000000	1.000000	5.000000	5.00

```
key = 'NoShow'
key = key.strip() # Remove leading and trailing whitespaces
base_data[key].value_counts().plot(kind='barh', figsize=(8, 6))
plt.xlabel("Count", labelpad=14)
plt.ylabel("Target Variable", labelpad=14)
plt.title("Count of TARGET Variable per category", y=1.02)
```

Text(0.5, 1.02, 'Count of TARGET Variable per category')

Count of TARGET Variable per category

print(base_data.columns)

```
# calculating the % of appointments or not
100*base data['NoShow'].value counts()/len(base data['NoShow'])
         79.806744
   Yes
         20.193256
   Name: NoShow, dtype: float64
base_data['NoShow'].value_counts()
         88208
   No
         22319
   Yes
   Name: NoShow, dtype: int64
missing = pd.DataFrame((base_data.isnull().sum()) * 100 / base_data.shape[0]).reset_index()
plt.figure(figsize=(16, 5))
ax = sns.pointplot(x='index', y=0, data=missing)
plt.xticks(rotation=90, fontsize=7)
plt.title("Percentage of Missing values")
```


Missing Data - Initial Intuition

Here, we don't have any missing data.

General Thumb Rules:

- For features with less missing values- can use regression to predict the missing values or fill with the mean of the values present, depending on the feature. For features with very high number of missing values- it is better to drop those columns as they give very less insight on analysis.
- As there's no thumb rule on what criteria do we delete the columns with high number of missing values, but generally you can delete the columns, if you have more than 30-40% of missing values.

→ Data Cleaning

Create a copy of base data for manupulation & processing

```
new data = base data.copy()
```

```
new_data.info()
     <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 110527 entries, 0 to 110526
    Data columns (total 13 columns):
                         Non-Null Count
     # Column
                                           Dtype
     0 Gender 110527 non-null object
1 ScheduledDay 110527 non-null datetime64[ns]
         AppointmentDay 110527 non-null datetime64[ns]
                        110527 non-null int64
         Age
         Scholarship
                         110527 non-null int64
     5 Hypertension 110527 non-null int64
        Diabetes 110527 non-null int64
Alcoholism 110527 non-null int64
        Handicap
                         110527 non-null int64
        SMSReceived 110527 non-null int64
     10 NoShow
                        110527 non-null object
     11 sch_weekday
                         110527 non-null
                        110527 non-null int64
     12 app_weekday
    dtypes: datetime64[ns](2), int64(9), object(2)
    memory usage: 11.0+ MB
```

As we don't have any null records, there's no data cleaning required

```
# Get the max tenure
print(base_data['Age'].max())
   115
# Group the tenure in bins of 12 months
labels = ["{0} - {1}".format(i, i + 20) for i in range(1, 118, 20)]
base_data['Age_group'] = pd.cut(base_data.Age, range(1, 130, 20), right=False, labels=labels)
base_data.drop(['Age'], axis=1, inplace=True)
```

```
Data Exploration
  list(base_data.columns)
      ['Gender'
       'ScheduledDay'
       'AppointmentDay',
       'Scholarship'
       'Hypertension'
       'Diabetes',
       'Alcoholism',
       'Handicap'
       'SMSReceived',
       'NoShow'
       'sch_weekday',
       'app_weekday',
       'Age_group']
  #having a loook into the values of count of each columns and there count in respect to NoShow co
  for i, predictor in enumerate(base_data.drop(columns=['NoShow'])):
      print('-'*10,predictor,'-'*10)
      print(base_data[predictor].value_counts())
      plt.figure(i)
      sns.countplot(data=base data, x=predictor, hue='NoShow')
```

```
----- Gender -----
F 71840
M 38687
Name: Gender, dtype: int64
----- ScheduledDay -----
2016-05-03
            4238
2016-05-02
            4216
2016-05-16
            4120
2016-05-05
            4095
2016-05-10
            4024
2016-04-16
2016-01-28
               1
2015-11-10
2016-03-19
               1
2016-03-05
               1
Name: ScheduledDay, Length: 111, dtype: int64
----- AppointmentDay -----
2016-06-06
            4692
2016-05-16
             4613
2016-05-09
2016-05-30
            4514
2016-06-08
            4479
2016-05-11
            4474
2016-06-01
            4464
2016-06-07
            4416
2016-05-12
            4394
2016-05-02
            4376
2016-05-18
            4373
2016-05-17
            4372
2016-06-02
            4310
2016-05-10
2016-05-31
            4279
2016-05-05
            4273
2016-05-19
            4270
2016-05-03
            4256
2016-05-04
            4168
2016-06-03
            4090
2016-05-24
            4009
2016-05-13
            3987
2016-05-25
            3909
2016-05-06
            3879
2016-05-20
            3828
2016-04-29
            3235
2016-05-14
            39
Name: AppointmentDay, dtype: int64
----- Scholarship -----
   99666
1
   10861
Name: Scholarship, dtype: int64
----- Hypertension -----
0 88726
    21801
Name: Hypertension, dtype: int64
----- Diabetes -----
0 102584
     7943
1
Name: Diabetes, dtype: int64
----- Alcoholism -----
    107167
     3360
Name: Alcoholism, dtype: int64
----- Handicap
0
    108286
      2042
       183
3
       13
         3
Name: Handicap, dtype: int64
----- SMSReceived -----
    75045
    35482
Name: SMSReceived, dtype: int64
----- sch_weekday -----
1
    26168
    24262
0
    23085
    18915
4
3
    18073
      24
Name: sch_weekday, dtype: int64
----- app_weekday -----
2
    25867
    25640
    22715
4
    19019
    17247
      39
5
Name: app_weekday, dtype: int64
----- Age_group -----
```


Convert all the categorical variables into dummy variables

base_data_dummies = pd.get_dummies(base_data)
base_data_dummies.head()

	ScheduledDay	AppointmentDay	Scholarship	Hypertension	Diabetes	Alcoholism	Handicap	SMSReceived	NoShow	sch_weekday	арр_w
0	2016-04-29	2016-04-29	0	1	0	0	0	0	0	4	
1	2016-04-29	2016-04-29	0	0	0	0	0	0	0	4	
2	2016-04-29	2016-04-29	0	0	0	0	0	0	0	4	
3	2016-04-29	2016-04-29	0	0	0	0	0	0	0	4	
4	2016-04-29	2016-04-29	0	1	1	0	0	0	0	4	
1	•										
4 (•

Build a corelation of all predictors with 'NoShow'

```
plt.figure(figsize=(20,8))
base_data_dummies.corr()['NoShow'].sort_values(ascending = False).plot(kind='bar')
```

<ipython-input-61-2af5ffecb2b2>:2: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future ve base_data_dummies.corr()['NoShow'].sort_values(ascending = False).plot(kind='bar') <Axes: >

plt.figure(figsize=(12,12))
sns.heatmap(base_data_dummies.corr(), cmap="Paired")