PH20013/60 – Quantum and Atomic Physics – 2022-23 Problem Sheet 1

Wavefunctions, probability densities, and normalisation

1. A particle is constrained to move along the x-axis and has a time-independent wavefunction

$$\psi(x) = \begin{cases} Cx(2-x) & 0 \leq x \leq 2 \\ 0 & \text{otherwise} \end{cases}$$

where C is a constant.

- (a) Normalise the wavefunction $\psi(x)$.
- (b) Sketch the wavefunction and its associated probability density $|\psi(x)|^2$.
- (c) Calculate the probability of finding the particle between x=0.95 and x=1.05.
- (d) Find $\langle x \rangle$, the expectation value of the particle's position.
- 2. A particle of mass m has a time-independent wavefunction given by

$$\psi(x) = Ae^{-\frac{|x|}{a}},$$

where A and a are constants.

- (a) Sketch the wavefunction $\psi(x)$ and find the normalisation constant A.
- (b) Calculate the probability of finding the particle in the region $-a \le x \le a$.
- 3. Prove that the probability density $P(x,t) = \psi^*(x,t)\psi(x,t)$ associated with a general wavefunction $\psi(x,t)$ is always real and non-negative.

The Schrödinger equation

4. After separation of variables in the time-dependent Schrödinger equation, the time-dependent part becomes

$$\frac{i\hbar}{\phi(t)}\frac{\mathrm{d}\phi(t)}{\mathrm{d}t} = E.$$

Solve this first-order differential equation to find the time-dependent part of the solution to the Schrödinger equation.

lonc te fred

- 5. If ψ is a solution of the time-independent Schrödinger equation with energy E, show that $\tilde{\psi}=A\psi$ is also a solution with the same energy. What does this imply about the relationship between normalising a wavefunction and its energy?
- 6. $\psi_1(x)$ and $\psi_2(x)$ are stationary-state solutions of the one-dimensional time-independent Schrödinger equation with energy E_1 and E_2 respectively.
 - (a) Show that $\psi(x)=A\psi_1+B\psi_2$ is a solution to the time-independent Schrödinger equation only if $E_1=E_2$.
 - (b) If $E_1=E_2$ the two eigenfunctions ψ_1 and ψ_2 have the same energy. Given that we are solving the Schrödinger equation in one spatial dimension only with no other degrees of freedom, what relationship does this imply between ψ_1 and ψ_2 ?
 - (c) Assuming $E_1 \neq E_2$, show that $\Psi(x,t) = A\psi_1 e^{-\frac{iE_1t}{\hbar}} + B\psi_2 e^{-\frac{iE_2t}{\hbar}}$ is a solution to the time-dependent Schrödinger equation.

The infinite potential well

- 7. A particle of mass m is confined to the region $0 \le x \le a$ by a time-independent potential V(x). Within this region the potential energy of the particle is zero.
 - (a) Write down the time-independent Schrödinger equation for the region between x=0 and x=a.
 - (b) Show that the allowed energy levels and normalised eigenfunctions of the particle form a discrete set given by

$$E_n = \frac{\hbar^2 \pi^2 n^2}{2ma^2}, \qquad \psi_n(x) = \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a},$$

where n = 1, 2, 3, ...

- (c) What is the de Broglie wavelength of the particle in the $n^{\rm th}$ energy level?
- (d) Sketch the eigenfunctions and probability densities of the ground and first excited states.
- (e) Calculate the probability of finding the particle between 0.45a and 0.55a in each case.
- (f) Show that as $n \to \infty$ the probability of finding the particle between these two points approaches 0.1. How does this compare with the value for a classical particle?

- 8. An electron is strictly confined to a one-dimensional region in which its ground-state energy is 2 eV.
 - (a) What is the width of the region?
 - (b) How much energy is required to promote the electron to its first excited state?
- 9. An electron with an energy of approximately 6 eV moves between rigid walls exactly 1 nm apart.
 - (a) Find the quantum number of the energy state that the electron occupies.
 - (b) Find the exact value of the electron's energy.
- 10. By making an appropriate change of variable in equation (4.20) from the lecture notes, show mathematically that the eigenfunctions of the infinite square well have definite parity.
- 11. (a) Find the energy of the ground state and first two excited states of a proton in a one-dimensional box of length 0.2 nm (roughly the diameter of an H₂ molecule).
 - (b) Calculate the wavelength of electromagnetic radiation emitted when the proton makes a transition from

```
(i) n = 2 to n = 1;
```

(ii)
$$n = 3$$
 to $n = 1$;

(iii)
$$n = 3$$
 to $n = 2$.

- 12. For an electron in a one-dimensional infinite square well:
 - (a) Show that two eigenfunctions with different quantum numbers and opposite parity are orthogonal;
 - (b) Show that two eigenfunctions with different quantum numbers and the same parity are orthogonal.

13. During the lectures we wrote down an equally-weighted superposition state of the ground state and first excited state eigenfunctions of the infinite square well:

$$\Psi(x,t) = \frac{1}{\sqrt{2}}\psi_1(x)e^{-\frac{iE_1t}{\hbar}} + \frac{1}{\sqrt{2}}\psi_2(x)e^{-\frac{iE_2t}{\hbar}}.$$

(a) Show that the probability density of this state can be written as

$$\Psi(x,t) = \frac{1}{2} \left(\psi_1^2 + \psi_2^2 \right) + \psi_1 \psi_2 \cos \left(\frac{\Delta E t}{\hbar} \right)$$

where $\Delta E = E_2 - E_1$.

(b) Sketch the probability density at times $t=0,\,t=\frac{\pi\hbar}{2\Delta E},$ and $t=\frac{\pi\hbar}{\Delta E}.$

Quantum vs. Classical

- 14. A particle of mass m is trapped in a one-dimensional box of length L.
 - (a) Write down the probability distribution P(x) for the particle assuming it obeys:
 - (i) classical (Newtonian) equations of motion;
 - (ii) the time-independent Schrödinger equation.
 - (b) Show that the expectation value of x^2 according to the classical probability distribution is $L^2/3$.
 - (c) Find the expectation value of x^2 for the n^{th} quantum state of the particle. Show that it tends to the classical limit for $n \gg 1$.

PJM, October 2021

Numerical answers

1 (a)
$$C = \sqrt{15}/4$$
; (c) 0.094; (d) 1.

2 (b) 0.87.

7 (e) 0.20, 6.5×10^{-3} .

8 (a) 0.44 nm; (b) 6 eV.

9 (a) 4; (b) 6.1 eV.

11 (a) 5.2, 21, 47 meV; (b) (i) 80, (ii) 30, (iii) 48 μ m.