Modern Algebra

Assignment 1

Yousef A. Abood

ID: 900248250

September 2025

1 Dihedral Groups

Problem 2

	e	$R_{60^{\circ}}$	$R_{120^{\circ}}$	s_1	s_2	s_3
e	e	$R_{60^{\circ}}$	$R_{120^{\circ}}$	s_1	s_2	s_3
$R_{60^{\circ}}$	$R_{60^{\circ}}$	$R_{120^{\circ}}$	e	s_3	s_1	s_2
$R_{120^{\circ}}$	$R_{120^{\circ}}$	e	$R_{60^{\circ}}$	s_2	s_3	s_1
s_1	s_1	s_2	s_3	e	$R_{60^{\circ}}$	$R_{120^{\circ}}$
s_2	s_2	s_3	s_1	$R_{120^{\circ}}$	e	$R_{60^{\circ}}$
s_3	s_3	s_1	s_2	$R_{60^{\circ}}$	$R_{120^{\circ}}$	e

 D_3 is not Abelien, a counter example for commutativity is $R_{120^{\circ}} \cdot s_1 = s_3$ but $s_1 \cdot R_{120^{\circ}} = s_2$

Problem 3

- a) $\{V\}$
- b) $\{R_{270^{\circ}}\}$
- c) $\{R_{0^{\circ}}\}$
- d) $\{R_{0^{\circ}}, R_{180^{\circ}}, H, V, D, L\}$
- e) Ø

Problem 5

For an n-gon, we have 2n of operations that preserve symmetry, these operations are rotations and reflections.

For rotations, there are n possible rotations for every n-gon including the identity element. The rotations other than the identity are the multiples of $\frac{360}{n}$ degrees. We can represent the rotations by r^c , where $1 \le c \le n-1$ is the number we can multiply $\frac{360}{n}$ with. Thus, the available rotations for an n-gon are: $e, r^1, r^2, r^3, ..., r^{n-1}$.

For reflections, the available reflections differ whether n is even or odd.

n is odd: The available reflections are the reflections about the axes of symmetry, which are axes from one vertix to the midpoint of the opposite side. Then, there are n reflections as there are n vertices.

n is even: The available reflections are the reflections about the axes of symmetry, $\frac{n}{2}$ of them are axes from one vertix to the opposite vertix, and the other $\frac{n}{2}$ are those from one midpoint of one side to the midpoint of the opposite side. Then there are n reflections.

Problem 11

When we do a reflection twice, we get the original orientation, so it is just like if we rotate by zero degree. Hence, any even number of similar reflections leads to a rotation. And if we rotate the shape any number of rotations we get a resultant rotation with the sum of angles of the rotations. If we applied a reflection followed by a rotation or vice versa, we get a reflection. We represent rotations in this problem by r and reflections by s.

Thus, for the given formula $a^2b^4ac^5a^3c$, we can expan it to $a^2b^4ac^4ca^2ac = rrarcrac = (rr)arcrac = rarcrac$. If both a, c are rotations then the previous expression is rotation.

However, let both a, c be reflections. Then, rarcrac = rsrsrss = (rs)rsrss = srsrss = (sr)srss = ssrss = (ss)rss = rrss = (rr)ss = rss = (rs)s = ss = r. The result is rotation.

Now, we let a = r and c = s, we observe that rarcrac = (rr)rsrrs = (rr)srrs = (rs)rrs = (sr)rs = (sr)s = ss = r. The result is reflection.

Finally, let c = r, a = s, then rarcrac = (rs)rrrsr = (sr)rrsr = (sr)rsr = (sr)sr = (ss)r = rr = r. The result is also a rotation.

Therefore, we showed that the expression $a^2b^4ac^5a^3c$ is a rotation for every a, b, c in a dihedral group.

Problem 13

We observe the cayley table of D_4 in Modern Algebra Lecture Notes by Dr. Daoud Siniora. We find that $VR_{90^{\circ}} = R_{90^{\circ}}H$, but $V \neq H$.

Problem 21

If we applied any reflection twice, we get the identity element, so X cannot be a reflection. Since $Y \neq R_{90}$, then it can be e, R_{180}, R_{270} . It cannot be reflection as reflection after rotation leads to a reflection. By observing the same table in the Lecture Notes that we mentioned in Problem 13, we see that $R_{270}R_{180} = R_{180}R_{270} = R_{90}e = R_{90}$. But R_{270}, R_{90} cannot be represented in X^2 as $R_{270} = R_{90}R_{90}R_{90}$. and R_{90} is the smallest rotation we can do. Thus, $X = R_{90}$ and $X^2Y = R_{180}R_{270} = R_{90}R_{90}R_{270} = R_{90}$, and $Y = R_{270} \neq R_{90}$.