

Disciplina: Natureza da Informação (BCM0504) - 2018-Q3

Prof. Alexandre Donizeti Alves

GABARITO [Lista de Exercícios 05 - Erros]

1. Os códigos binários abaixo representam caracteres ASCII de 7 bits. Acrescente o bit de paridade em cada caso de acordo com a paridade:

a) 1110001 - paridade par	0 1110001
b) 0101010 - paridade ímpar	0 0101010
c) 1111111 - paridade par	1 1111111
d) 0000001 - paridade ímpar	0 0000001

2. Escreva os equivalentes binários dos caracteres ASCII de A até J (7 bits), adicionando bit de paridade ímpar na posição mais significativa (MSB). Qual é a função do bit de paridade? Mostre um exemplo de uso desse bit.

Caractere	Código ASCII	Paridade Ímpar (MSB)		
Α	65	1 100 0001		
В	66 1 100 0010			
С	67	0 100 0011		
D	68	1 100 0100		
Е	69	0 100 0101		
F	70	0 100 0110		
G	71	1 100 0111		
Н	72	1100 1000		
I	73	0 100 1001		
J	74	0 100 1010		

O bit de paridade permite detectar a ocorrência de uma quantidade ímpar de erros. Exemplo: caso o código da letra A (1100 0001) tenho um bit alterado (1100 0101), é possível verificar que houve um erro, pois a quantidade de bits 1 é par (sendo que a paridade deveria ser ímpar).

3. Escreva os equivalentes binários dos caracteres ASCII de 0 até 9 (7 bits), adicionando bit de paridade par na posição menos significativa (LSB).

Caractere	Código ASCII	Paridade Par (LSB)
0	48	0110 000 0
1	49	0110 001 1
2	50	0110 010 1
3	51	0110 011 0
4	52	0110 100 1
5	53	0110 101 0
6	54	0110 110 0
7	55	0110 111 1
8	56	0111 000 1
9	57	0111 001 0

4. Os bytes a seguir (mostrados em hexadecimal) representam o nome de uma pessoa do modo como foi armazenado na memória de um computador. Cada byte é um código em ASCII com um bit de paridade (MSB) anexado. Determine o nome da pessoa.

4A 6F 65 20 47 72 65 65 6E

byte (hexadecimal com paridade)	ASCII (7 bits)	Caractere
4A	100 1010	J
6F	110 1111	0
65	110 0101	е
20	010 0000	(espaço)
47	100 0111	G
72	111 0010	r
65	110 0101	е
65	110 0101	е
6E	110 1110	n

Nome: Joe Green

5. Converta os seguintes números decimais para o código BCD e, em seguida, anexe um bit de paridade ímpar.

a) 38 **0** 0011 1000

b) 275 **1** 0010 0111 0101

c) 9201 **1** 1001 0010 0000 0001

6. Explique o que significa a distância de Hamming. Qual é a distância de Hamming entre os códigos 10011, 11101, 01110, 00000? Quantos erros podem ser detectados e corrigidos com esse código?

A distância de Hamming é a quantidade de bits diferentes por posição entre duas cadeias de bits. A distância de Hamming mínima entre os códigos é 3. Este código pode detectar até 2 erros e corrigir até 1 erro.

- 7. Considere uma codificação de Hamming para 3 bits de dados a serem transmitidos.
- a) Quantos bits de paridade devem ser introduzidos?

3 bits de paridade

b) Qual a posição dos bits de paridade no código?

P1 a P3 são as posições dos três bits de paridade (ficam nas posições que são potências de 2: 1, 2 e 4)

P1 P2 D1 P3 D2 D3

c) Monte uma tabela com os 8 códigos de Hamming construídos, um para cada mensagem possível com 3 bits de dados. Assuma paridade par.

1	2	3 4		5	6	
P1	P2	D1	P3	D2	D3	
0	0	0	0	0	0	
0	1	0	1	0	1	
1	0	0	1	1	0	
1	1	0	0	1	1	
1	1	1	0	0	0	
1	0 1		1	0	1	
0	1	1	1	1	0	
0	0	0 1 0 1		1	1	

8. Qual é o código de Hamming resultante para proteger o byte 10100101 assumindo paridade par?

1	2	3	4	5	6	7	8	9	10	11	12
P1	P2	D1	P3	D2	D3	D4	P4	D5	D6	D7	D8
1	1	1	0	0	1	0	0	0	1	0	1

- 9. Corrija qualquer erro em cada um dos seguintes códigos de Hamming com paridade par.a) 1110100b) 1000111
 - 10. Corrija qualquer erro em cada um dos seguintes códigos de Hamming com paridade ímpar.
 - a) 110100011
 - b) 10000<mark>1</mark>101