Self-supervised training for images Severina Ekaterina

Self-supervised pre-training

- colorization
- inpainting

- rotation angle prediction
- jigsaw puzzle

 $\begin{tabular}{ll} \hline (1) SimCLR \\ \hline \end{tabular}$

② BYOL

CONTENT

3 DINO

4 MAE

5 BEIT

Вспомним!

Swin (Shifted windows) Transformer

hierarchical attention mapping

shifted windows

SimCLR - a simple framework for Contrastive learning of representation

Main idea of contrastive learning

$$I(f_{\theta}(X), f_{\theta}(Y)) \to \max_{\theta}$$

 $f_{ heta}$ - our neural network with weights heta

$$I(X;Y) = \int p(x,y) \log \frac{p(x,y)}{p(x)p(y)} dxdy$$

InfoNCE loss and negative examples

$$\mathcal{L}_{NCE}(\theta) = \mathbb{E}_{p(x_{1:N}, y)} \left[-\log \frac{e^{f_{\theta}(x_{1}, y)}}{\sum_{n=1}^{N} e^{f_{\theta}(x_{n}, y)}} \right] \to \min_{\theta}$$

Noise Contrastive Estimation

$$I(X_1; Y) \ge \log N - \mathcal{L}_{NCE}$$

$$\mathcal{L}_{NCE}(\theta) = \mathbb{E}_{p(x_{1:N}, y)} \left[-\log \frac{e^{f_{\theta}(x_1, y)}}{\sum_{n=1}^{N} e^{f_{\theta}(x_n, y)}} \right]$$

SimCLR

DINO - self-Distillation with NO labels

Algorithm 1 DINO PyTorch pseudocode w/o multi-crop.

```
# gs, gt: student and teacher networks
# C: center (K)
# tps, tpt: student and teacher temperatures
# 1, m: network and center momentum rates
gt.params = gs.params
for x in loader: # load a minibatch x with n samples
    x1, x2 = augment(x), augment(x) # random views
    s1, s2 = gs(x1), gs(x2) # student output n-by-K
    t1, t2 = gt(x1), gt(x2) # teacher output n-by-K
    loss = H(t1, s2)/2 + H(t2, s1)/2
    loss.backward() # back-propagate
    # student, teacher and center updates
    update(qs) # SGD
    gt.params = l*gt.params + (1-1)*gs.params
    C = m*C + (1-m)*cat([t1, t2]).mean(dim=0)
def H(t, s):
    t = t.detach() # stop gradient
    s = softmax(s / tps, dim=1)
    t = softmax((t - C) / tpt, dim=1) # center + sharpen
    return - (t * log(s)).sum(dim=1).mean()
```

Supervised

DINO

Method	Arch.	Param.	im/s	Linear	k-NN	
Supervised	pervised RN50		1237	79.3	79.3	
SCLR [12]	RN50	23	1237	69.1	60.7	
MoCov2 [15]	RN50	23	1237	71.1	61.9	
InfoMin [67]	RN50	23	1237	73.0	65.3	
BarlowT [81]	RN50	23	1237	73.2	66.0	
OBoW [27]	RN50	23	1237	73.8	61.9	
BYOL [30]	RN50	23	1237	74.4	64.8	
DCv2 [10]	RN50	23	1237	75.2	67.1	
SwAV [10]	RN50	23	1237	75.3	65.7	
DINO	RN50	23	1237	75.3	67.5	
Supervised	ViT-S	21	1007	79.8	79.8	
BYOL* [30]	ViT-S	21	1007	71.4	66.6	
MoCov2* [15]	ViT-S	21	1007	72.7	64.4	
SwAV* [10]	ViT-S	21	1007	73.5	66.3	
DINO	ViT-S	21	1007	77.0	74.5	

$$\mathcal{L}_{ heta,\xi} riangleq \left\| \overline{q_{ heta}}(z_{ heta}) - \overline{z}_{\xi}'
ight\|_{2}^{2}$$

Method	Top	p-1	Top-5		
	1%	10%	1%	10%	
Supervised [77]	25.4	56.4	48.4	80.4	
InstDisc	323	2	39.2	77.4	
PIRL [35]		-	57.2	83.8	
SimCLR [8]	48.3	65.6	75.5	87.8	
BYOL (ours)	53.2	68.8	78.4	89.0	

Method	Architecture	Param.	Top-1		Top-5	
			1%	10%	1%	10%
CPC v2 [32]	ResNet-161	305M	_	<u></u>	77.9	91.2
SimCLR [8]	ResNet-50 (2 \times)	94M	58.5	71.7	83.0	91.2
BYOL (ours)	ResNet-50 (2 \times)	94M	62.2	73.5	84.1	91.7
SimCLR [8]	ResNet-50 $(4\times)$	375M	63.0	74.4	85.8	92.6
BYOL (ours)	ResNet-50 $(4\times)$	375M	69.1	75.7	87.9	92.5
BYOL (ours)	ResNet-200 (2 \times)	250M	71.2	77.7	89.5	93.7

⁽a) ResNet-50 encoder.

⁽b) Other ResNet encoder architectures.

(a) Impact of batch size

(b) Impact of progressively removing transformations

MAE - Masked AutoEncoder

UM-MAE

(a) RS

(b) GS

(c) US

(d) UM(US + SM)

75% masked

Sampling Strategy (25%)	Pyramid	SM	Pre-train	ImageNet-1K	ADE20K		COCO		
Sampling Strategy (2070)	Support	Ratio	Loss	Top-1 Acc	mIoU	aAcc	AP	AP_{50}	AP_{75}
(a) RS (MAE [19] Baseline)	×	-	0.4256	82.88	42.54	80.85	46.0	64.7	49.8
(b) GS	✓). 	0.3682	82.48	38.79	79.16	44.4	63.2	48.6
(c) US (Ours)	✓		0.3858	82.74	41.55	80.48	45.5	64.2	49.6
(d) UM (Ours)	✓	15%	0.4171	82.75	41.68	80.54	45.8	64.6	49.8
	✓	25%	0.4395	82.88	42.59	80.80	45.9	64.5	50.2
	✓	35%	0.4645	82.68	42.02	80.72	45.9	64.6	50.1

Figure 8: Uncurated reconstruction visualizations under the same 75% mask pattern. The models are both pre-trained for 800 epochs.

Architecture	Method	Pre-train (200 epoch)		Fine-tune (/Scratch) Performance			
	Wichiod	Time	Memory	Memory ImageNet-1K		COCO	
	Supervised from Scratch (Baseline)			77.84	40.38	42.3	
PVT-S [37]	SimMIM [42]	38.0 h	20.6 GB	79.28 (+1.44)	43.04 (+2.66)	44.8 (+2.5)	
	UM-MAE (ours)	21.3 h	11.6 GB	79.31 (+1.47)	43.01 (+2.63)	45.1 (+2.8)	
Swin-T [28]	Supervised from Scratch (Baseline)			81.82	44.51	47.2	
	SimMIM [42]	49.3 h	37.4 GB*	82.20 (+0.38)	45.35 (+0.84)	47.6 (+0.4)	
	UM-MAE (ours)	25.0 h	13.4 GB	82.04 (+0.22)	45.96 (+1.45)	47.7 (+0.5)	

