Correction TD 8 : Équations différentielles à coefficients constants

Entraînements

Exercice 1. Résoudre les équations différentielles suivantes, puis déterminer l'unique solution vérifiant y(0) = 1

1.
$$y' - 2y = x + x^2$$

3.
$$y' = y + 1$$

2.
$$3y' - 2y = x$$

4.
$$y' = -y + e^x$$

Correction 1. $y' - 2y = x + x^2 \text{ sur } \mathbb{R}$:

- On reconnaît une équation différentielle linéaire du premier ordre à coefficients constants.
- Résolution de l'équation homogène associée : y' 2y = 0 :
 - * La fonction $a: x \mapsto a(x) = -2$ est continue sur $\mathbb R$ donc il existe une primitive A de a sur $\mathbb R$ et pour tout $x \in \mathbb{R}$, A(x) = -2x.
 - * La solution générale de l'équation homogène associée est alors : $y_h(x) = Ce^{2x}$ avec $C \in \mathbb{R}$ constante.
- Recherche d'une solution particulière de l'équation avec second membre : $y' 2y = x + x^2$: Comme la fonction a est constante et que le second membre est de type polynôme, on peut chercher cette solution sous la forme : $y_p(x) = ax^2 + bx + c$ avec $(a, b, c) \in \mathbb{R}^3$. On obtient ainsi pour tout $x \in \mathbb{R}$ que : $-2ax^2 + (-2b + 2a)x + b - 2c = x + x^2$. Par identification des coefficients, on obtient :

$$\begin{cases}
-2a &= 1 \\
-2b + 2a &= 1 \\
b - 2x &= 0
\end{cases}$$
 Ainsi, on obtient que : $y_p(x) = -\frac{1}{2}x^2 - x - \frac{1}{2}$.

• Conclusion : la solution générale de l'équation différentielle avec second membre est alors : $y(x) = Ce^{2x} - \frac{1}{2}x^2$ avec $C \in \mathbb{R}$ constante.

$$|y(x)| = Ce^{2x} - \frac{1}{2}x^2 - \frac{1}{2}x^2$$

2.
$$3\mathbf{y}' - 2\mathbf{y} = \mathbf{x} \operatorname{sur} \mathbb{R}$$
:

- On reconnaît une équation différentielle linéaire du premier ordre à coefficients constants.
- Résolution de l'équation homogène associée : $3y'-2y=0 \Longleftrightarrow y'-\frac{2}{3}y=0$:
 - * La fonction $a: x \mapsto a(x) = -\frac{2}{3}$ est continue sur $\mathbb R$ donc il existe une primitive A de a sur $\mathbb R$ et pour tout $x \in \mathbb R$, $A(x) = -\frac{2}{3}x$.
 - * La solution générale de l'équation homogène associée est alors : $y_h(x) = Ce^{\frac{2}{3}x}$ avec $C \in \mathbb{R}$ constante.
- Recherche d'une solution particulière de l'équation avec second membre : $y' \frac{2}{3}y = \frac{1}{3}x$: Comme la fonction a est constante et que le second membre est de type polynôme, on peut chercher

cette solution sous la forme :
$$y_p(x) = ax + b$$
 avec $(a,b) \in \mathbb{R}^2$. On obtient ainsi pour tout $x \in \mathbb{R}$ que : $a - \frac{2}{3}(ax + b) = x$. Par identification des coefficients, on obtient :
$$\begin{cases} -\frac{2}{3}a &= 1 \\ a - \frac{2}{3}b &= 0 \end{cases}$$
. Ainsi, on obtient

que :
$$y_p(x) = -\frac{3}{2}x - \frac{9}{4}$$
.

- Conclusion : la solution générale de l'équation différentielle avec second membre est alors : $y(x) = Ce^{\frac{2}{3}x} \frac{3}{2}x$ avec $C \in \mathbb{R}$ constante.

- 3. $\mathbf{y}' = \mathbf{y} + \mathbf{1} \text{ sur } \mathbb{R}$:
 - On reconnaît une équation différentielle linéaire du premier ordre à coefficients constants.
 - Résolution de l'équation homogène associée : y' y = 0 :
 - * La solution générale de l'équation homogène associée est alors : $y_h(x) = Ce^x$ avec $C \in \mathbb{R}$ constante.
 - Recherche d'une solution particulière de l'équation avec second membre : y' y = 1 : On cherche y_p sous forme constante on trouve $y_p(x) = -1$.
 - Conclusion : la solution générale de l'équation différentielle avec second membre est alors : $y(x) = Ce^x 1$ avec $C \in \mathbb{R}$ constante.
- 4. $\mathbf{y}' = -\mathbf{y} + \mathbf{e}^{\mathbf{x}} \mathbf{sur} \mathbb{R}$:
 - On reconnaît une équation différentielle linéaire du premier ordre à coefficients constants.
 - Résolution de l'équation homogène associée : y' + y = 0 :
 - * La solution générale de l'équation homogène associée est alors : $y_h(x) = Ce^{-x}$ avec $C \in \mathbb{R}$ constante.
 - Recherche d'une solution particulière de l'équation avec second membre : $y' + y = e^x$: On cherche y_p sous forme ae^x avec $a \in \mathbb{R}$ on trouve $y_p(x) = \frac{1}{2}e^x$.
 - Conclusion : la solution générale de l'équation différentielle avec second membre est alors : $y(x) = Ce^{-x} + \frac{1}{2}e^{x}$ avec $C \in \mathbb{R}$ constante.

Exercice 2. Résoudre les équations différentielles suivantes

1.
$$y'' + 4y' + 4y = x^2 e^x$$

2.
$$y'' + 4y' + 4y = x^2 e^{-2x}$$

3.
$$y'' + 4y' + 4y = \sin xe^{-2x}$$

4.
$$y'' - 6y' + 9y = e^x$$

5.
$$y'' - 2y' + 2y = x^2 + x$$

6.
$$2u'' - u' - u = e^x + e^{-x}$$

7.
$$y'' - 2y' + 3y = \cos x$$

8.
$$4y'' + 4y' + y = x + x^2 + 3\sin x + e^{3x} + xe^{-\frac{x}{2}}$$

9.
$$y'' - my + y = 0$$
 avec $m \in \mathbb{R}$

10.
$$y'' + y = x^2 \cos x$$

11.
$$y'' + y = \cos x + \sin(2x)$$

Correction 2. Résoudre les équations différentielles suivantes

1.
$$y'' + 4y' + 4y = x^2e^x$$
:

- \star On reconnaît une équation différentielle du second ordre à coefficients constants.
- * Résolution de l'équation homogène associée : y'' + 4y' + 4y = 0L'équation caractéristique associée est : $r^2 + 4r + 4 = 0$ dont le discriminant est $\Delta = 0$ et la solution est $r_0 = -2$. Ainsi la solution générale de l'équation homogène est : $y_h(x) = (A+Bx)e^{-2x}$ avec $(A,B) \in \mathbb{R}^2$ constantes.
- * Recherche d'une solution particulière de l'équation avec second membre $y'' + 4y' + 4y = x^2 e^x$: Le second membre est de la forme $P(x)e^{mx}$ avec m=1 non racine de l'équation caractéristique. On cherche alors y_1 sous la forme $y_p(x) = (ax^2 + bx + c)e^x$ avec $(a, b, c) \in \mathbb{R}^3$. On a alors:

$$y_p'(x) = (2ax + b + ax^2 + bx + c)e^x = (ax^2 + (2a + b)x + b + c)e^x,$$

puis on en déduit :

$$y_p''(x) = (2ax + 2a + b + ax^2 + (2a + b)x + b + c)e^x = (ax^2 + (4a + b)x + 2a + 2b + c)e^x.$$

Or on sait que $y_p''(x) + 4y_p'(x) + 4y_p(x) = x^2 e^x$, donc on obtient :

$$(ax^{2} + (4a + b)x + 2a + 2b + c + 4(ax^{2} + (2a + b)x + b + c) + 4(ax^{2} + bx + c))e^{x} = x^{2}e^{x}.$$

En divisant par e^x , et en identifiant les coefficients du polynôme, on obtient : $a = \frac{1}{9}$, $b = -\frac{4}{27}$ et $c = -\frac{2}{27}$. Ainsi une solution particulière de l'équation est : $y_p(x) = \left(\frac{x^2}{9} - \frac{4x}{27} - \frac{2}{27}\right)e^x$.

- * Conclusion : la solution générale de l'équation différentielle avec second membre est alors : $y(x) = (A + Bx)e^{-2}$ avec $(A, B) \in \mathbb{R}^2$ constantes.
- 2. $y'' + 4y' + 4y = x^2e^{-2x}$:

On a déjà résolu l'équation homogène associée.

Le second membre est cette fois de la forme $P(x)e^{mx}$ avec m=-2 racine double de l'équation caractéristique. On cherche donc une solution particulière sous la forme $y_p(x)=x^2(ax^2+bx+c)e^{-2x}$ avec $(a,b,c)\in\mathbb{R}^3$. On obtient par identification : $a=\frac{1}{12},\ b=0$ et c=0.

La solution générale est alors : $y(x) = \left(A + Bx + \frac{1}{12}x^2\right)e^{-2x}$ avec $(A, B) \in \mathbb{R}^2$ constantes.

3. $y'' + 4y' + 4y = \sin(x) e^{-2x}$:

On a déjà résolu l'équation homogène associée.

Le second membre est cette fois de la forme

$$f(x) = \sin(x) e^{-2x} = \frac{e^{ix} - e^{-ix}}{2} e^{-2x} = \frac{1}{2} e^{(-2+i)x} - \frac{1}{2} e^{-(2+i)x}.$$

On utilise alors le principe de superposition : on cherche tout d'abord une solution particulière pour l'équation $y'' + 4y' + 4y = \frac{1}{2}e^{(-2+i)x}$. Comme -2+i n'est pas solution de l'équation carcatéristique, on la cherche sous la forme $y_1(x) = ae^{(-2+i)x}$. Par identification, on trouve $A = -\frac{1}{2}$.

On cherche ensuite une solution particulière pour l'équation $y'' + 4y' + 4y = -\frac{1}{2}e^{-(2+i)x}$. On la cherche sous la forme $y_2(x) = be^{-(2+i)x}$. Par identification, on trouve $b = \frac{1}{2}$.

La solution générale est alors $y = y_h + y_1 + y_2$, soit : $y(x) = (A + Bx) e^{-2x} - \frac{1}{2} e^{(-2+i)x} + \frac{1}{2} e^{-(2+i)x}$ avec $(A, B) \in \mathbb{R}^2$ constantes. On simplifie pour retrouver une solution réelle, et on obtient $y(x) = (A + Bx - \sin x) e^{-2x}$.

4. $y'' - 6y' + 9y = e^x$:

La solution générale est $y(x) = (A + Bx)e^{3x} + \frac{1}{4}e^x$ avec $(A, B) \in \mathbb{R}^2$.

- 5. $y'' 2y' + 2y = x^2 + x$:
 - * On reconnaît une équation différentielle du second ordre à coefficients constants.
 - * Résolution de l'équation homogène associée : y'' 2y' + 2y = 0. L'équation caractéristique associée est : $r^2 - 2r + 2 = 0$ dont le discriminant est $\Delta = -4$ et les deux solutions complexes conjuguées sont $r_1 = 1 + i$ et $r_2 = 1 - i$. Ainsi la solution générale de l'équation homogène est : $y_h(x) = (A\cos(x) + B\sin(x))e^x$ avec $(A, B) \in \mathbb{R}^2$ constantes.
 - * Recherche d'une solution particulière : on a cherche une solution sous la forme d'un polynôme de degré 2, soit $y_p(x) = ax^2 + bx + c$. Par identification, on obtient $a = \frac{1}{2}, b = \frac{3}{2}, c = 1$.
 - * Conclusion : la solution générale est $y(x) = (A\cos(x) + B\sin(x))e^x + \frac{1}{2}x^2 + \frac{3}{2}x + 1$, avec $(A, B) \in \mathbb{R}^2$.

6.
$$2\mathbf{v''} - \mathbf{v'} - \mathbf{v} = \mathbf{e^x} + \mathbf{e^{-x}}$$
:

La solution générale est $y(x) = Ae^x + Be^{-\frac{x}{2}} + \frac{1}{2}xe^x + \frac{1}{2}e^{-x}$, avec $(A, B) \in \mathbb{R}^2$.

7.
$$\mathbf{y''} - 2\mathbf{y'} + 3\mathbf{y} = \cos \mathbf{x} :$$

La solution générale est $y(x) = (A\cos(\sqrt{2}x) + B\sin(\sqrt{2}x))e^x + \frac{1}{4}\cos x - \frac{1}{4}\sin x$, avec $(A, B) \in \mathbb{R}^2$.

8.
$$4y'' + 4y' + y = x + x^2 + 3\sin x + e^{3x} + xe^{-\frac{x}{2}}$$

La solution générale est

$$y(x) = (A + Bx)e^{-\frac{x}{2}} + x^2 - 7x + 20 - \frac{12}{25}\cos x - \frac{9}{25}\sin x + \frac{1}{49}e^{3x} + \frac{1}{24}x^3e^{-\frac{x}{2}}, \text{ avec } (A, B) \in \mathbb{R}^2.$$

9.
$$\mathbf{y''} - \mathbf{m}\mathbf{y} + \mathbf{y} = \mathbf{0} \text{ avec } \mathbf{m} \in \mathbb{R}$$
:

La solution générale est $y(x) = (A + Bx)e^{3x} + \frac{1}{4}e^x$, avec $(A, B) \in \mathbb{R}^2$.

10.
$$y'' + y = x^2 \cos x$$
:

La solution générale est $y(x) = (A + Bx)e^{3x} + \frac{1}{4}e^x$, avec $(A, B) \in \mathbb{R}^2$.

11.
$$\mathbf{y''} + \mathbf{y} = \cos \mathbf{x} + \sin (2\mathbf{x}) :$$

La solution générale est $y(x) = (A + Bx)e^{3x} + \frac{1}{4}e^x$, avec $(A, B) \in \mathbb{R}^2$.

Exercice 3. Résoudre les équations différentielles suivantes, puis déterminer l'unique solution vérifiant y(0) = 0 et y'(0) = 1.

1.
$$y'' + 8y' + 15y = 5$$

3.
$$y'' - 2y' + 5y = 5$$

$$2. \ 4y'' - 4y' + y = 4$$

4.
$$y'' - 2y' = 2$$

Correction 3. Résoudre les équations différentielles suivantes, puis déterminer l'unique solution vérifiant y(0) = 0 et y'(0) = 1.

1.
$$y'' + 8y' + 15y = 5$$

On doit résoudre une équation différentielle linéaire, du second ordre, à coefficients constants.

- Équation homogène associée : y'' + 8y' + 15y = 0. On étudie l'équation caractéristique associée : $r^2 + 8r + 15 = 0$. Ses solutions sont réelles distinctes, données par $r_1 = -5$ et $r_2 = -3$. Les solutions sont donc données par $y_h(t) = Ae^{-5t} + Be^{-3t}$, avec $(A, B) \in \mathbb{R}^2$.
- Solution particulière constante : $y_p(t) = \alpha$. On a alors $y_p'(t) = y_p''(t) = 0$, donc on doit avoir $0 + 15\alpha = 5$, soit $\alpha = \frac{1}{3}$.

On en déduit que l'ensemble des solutions est $S = \{y : t \mapsto Ae^{-5t} + Be^{-3t} + \frac{1}{3}\}$, avec $(A, B) \in \mathbb{R}^2\}$.

On étudie à présent les conditions initiales. On a y(0) = 0, soit $A + B + \frac{1}{3} = 0$. De plus, on doit avoir y'(0) = 0. Or on a : $q'(t) = -5Ae^{-5t} - 3Be^{-3t}$, donc q'(0) = -5A - 3B = 1. On doit donc résoudre :

$$\begin{cases} A+B &=& -\frac{1}{3} \\ -5A-3B &=& 1 \end{cases} \Leftrightarrow \begin{cases} A &=& 0 \\ B &=& -\frac{1}{3} \end{cases}$$

La solution est donc donnée par $y(t) = \frac{1}{3}(1 - e^{-3t})$

2.
$$4y'' - 4y' + y = 4$$

On doit résoudre une équation différentielle linéaire, du second ordre, à coefficients constants.

- Équation homogène associée : 4y'' 4y' + y = 0. On étudie l'équation caractéristique associée : $4r^2 4r + 1 = 0$. Cette équation admet une solution double, donnée par $r = \frac{1}{2}$. Les solutions sont donc données par $y_h(t) = Ae^{\frac{t}{2}} + Bte^{\frac{t}{2}}$, avec $(A, B) \in \mathbb{R}^2$.
- Solution particulière constante : $y_p(t) = \alpha$. On a alors $y_p'(t) = y_p''(t) = 0$, donc on doit avoir $0 + \alpha = 4$, soit $\alpha = 4$.

On en déduit que l'ensemble des solutions est $S = \{y: t \mapsto Ae^{\frac{t}{2}} + Bte^{\frac{t}{2}} + 4\}$, avec $(A, B) \in \mathbb{R}^2\}$. On étudie à présent les conditions initiales. On a y(0) = 0, soit A = 0. De plus, on doit avoir y'(0) = 0. Or on a : $y'(t) = \frac{A}{2}e^{\frac{t}{2}} + Be^{\frac{t}{2}} + \frac{B}{2}te^{\frac{t}{2}}$, donc $y'(0) = \frac{A+B}{2} = 1$, soit B = 2. La solution est donc donnée par $y(t) = 2te^{\frac{t}{2}} + 4$.

3. y'' - 2y' + 5y = 5

On doit résoudre une équation différentielle linéaire, du second ordre, à coefficients constants.

- Équation homogène associée : y''-2y'+5y=0. On étudie l'équation caractéristique associée : $r^2-2r+5=0$. Ses solutions sont réelles distinctes, données par $r_1=-5$ et $r_2=-3$. Les solutions sont donc données par $y_h(t)=Ae^{-5t}+Be^{-3t}$, avec $(A,B)\in\mathbb{R}^2$.
- Solution particulière constante : $y_p(t) = \alpha$. On a alors $y_p'(t) = y_p''(t) = 0$, donc on doit avoir $0 + 5\alpha = 5$, soit $\alpha = 1$.

On en déduit que l'ensemble des solutions est $S = \{y : t \mapsto e^t(A\cos(2t) + B\sin(2t)) + 1\}$, avec $(A, B) \in \mathbb{R}^2$. On étudie à présent les conditions initiales. On a y(0) = 0, soit A + 1 = 0, donc A = -1. De plus, on doit avoir y'(0) = 0. Or on a : $y'(t) = e^t(A\cos(2t) + B\sin(2t)) + e^t(-2A\sin(2t) + 2B\cos(2t))$, donc y'(0) = A + 2B = 1. On en déduit $B = \frac{1-A}{2} = 1$. La solution est donc donnée par $y(t) = e^t(-\cos(2t) + \sin(2t)) + 1$.

4.
$$y'' - 2y' = 2$$

On doit résoudre une équation différentielle linéaire, du second ordre, à coefficients constants. Cependant, ici le coefficient du terme y est nul : on se ramène à une équation du premier ordre, en z = y'.

On commence donc par résoudre l'équation z'-2z=2. La solution de l'équation homogène associée sont de la forme $z_h(t)=Ce^{2t}$, avec $C\in\mathbb{R}$. On cherche une solution particulière constante : $z_p(t)=\alpha$. On obtient $\alpha=-1$. Les solutions générales sont donc de la forme $z(t)=Ce^{2t}-1$, avec $C\in\mathbb{R}$.

Revenons à présent à y: on a y'=z, donc y est une primitive de z. On en déduit que y s'écrit sous la forme : $\boxed{y(t) = \frac{C}{2}e^{2t} - t + K}, \text{ où } (C,K) \in \mathbb{R}^2.$

On utilise les conditions initiales pour déterminer C et K: on a y(0) = 0, soit $\frac{C}{2} + K = 0$. De plus, on a $y'(t) = Ce^{2t} - 1$, donc y'(0) = 1 donne C - 1 = 1, soit C = 2. En revenant à l'équation $\frac{C}{2} + K = 0$, on obtient alors K = -1. On a donc finalement $y(t) = e^{2t} - t - 1$.

Exercice 4. On considère un paramètre réel m. Résoudre l'équation différentielle suivante en discutant selon les valeurs de m:

$$y'' - (m+1)y' + my = e^x - x - 1.$$

Correction 4. On considère un paramètre réel m. Résoudre l'équation différentielle suivante en discutant selon les valeurs de $m : y'' - (m+1)y' + my = e^x - x - 1$.

- On reconnaît une équation différentielle du second ordre à coefficients constants.
- Résolution de l'équation homogène associée : y'' (m+1)y' + my = 0L'équation caractéristique associée est : $r^2 - (m+1)r + m = 0$ dont le discriminant est $\Delta = (m+1)^2 - 4m = (m-1)^2$. Il faut donc distinguer deux cas :

- * Cas 1 : si $m \neq 1$. Alors on a $\Delta > 0$, donc l'équation caractéristique possède deux solutions réelles distinctes, qui sont $\frac{m+1-|m-1|}{2}$ et $\frac{m+1+|m-1|}{2}$, soit $r_1=1$ et $r_2=m$. Ainsi la solution générale de l'équation homogène est : $y_h(x)=Ae^x+Be^{mx}$ avec $(A,B)\in\mathbb{R}^2$ constantes.
- ★ Cas 2 : si m=1. Alors on a $\Delta=0$, donc l'équation caractéristique possède une solution réelle double, qui est $r_0=1$. Ainsi la solution générale de l'équation homogène est : $y_h(x)=(A+Bx)e^x$ avec $(A,B)\in\mathbb{R}^2$ constantes.
- Recherche d'une solution particulière de l'équation avec second membre $y'' (m+1)y' + my = e^x$: on doit à nouveau faire deux cas, selon la valeur de m.
 - ★ Cas 1 : si $m \neq 1$. Le second membre est de la forme e^x avec 1 racine simple de l'équation caractéristique. On cherche alors y_1 sous la forme $y_1(x) = axe^x$ avec $a \in \mathbb{R}$. En remplaçant dans l'équation, on obtient : $a = \frac{1}{1-m}$. Ainsi une solution particulière de l'équation est : $y_1(x) = \frac{1}{1-m}xe^x$.
 - * Cas 2: si m=1. Le second membre est de la forme e^x avec 1 racine double de l'équation caractéristique. On cherche alors y_1 sous la forme $y_1(x) = ax^2e^x$ avec $a \in \mathbb{R}$. En remplaçant dans l'équation, on obtient : $a = \frac{1}{2}$. Ainsi une solution particulière de l'équation est : $y_1(x) = \frac{1}{2}x^2e^x$.
- Recherche d'une solution particulière de l'équation avec second membre y'' (m+1)y' + my = x+1. Il faut distinguer le cas où le coefficient du y vaut 0.
 - * Cas 1 : si $m \neq 0$. Le second membre est un polynôme de degré 1, on cherche alors y_2 sous la forme $y_2(x) = ax + b$ avec $(a,b) \in \mathbb{R}^2$. En remplaçant dans l'équation, on obtient : $a = \frac{1}{m}$ et $b = \frac{2m+1}{m^2}$. Ainsi une solution particulière de l'équation est : $y_2(x) = \frac{1}{m}x + \frac{2m+1}{m^2}$.
 - ★ Cas 2 : si m = 0. On doit alors résoudre y'' y' = x + 1. On a une équation différentielle d'ordre 1 en y'. On cherche donc une solution particulière pour y' de la forme $y'_2(x) = ax + b$ avec $(a, b) \in \mathbb{R}^2$. En remplaçant dans l'équation, on obtient : a = -1 et b = 2. On a donc $y'_2(x) = -x + 2$, et on peut choisir comme solution particulière $y_2(x) = -\frac{x^2}{2} + 2x$.
- Conclusion : on utilise le principe de supersposition pour dire que la solution générale de léquation s'écrit $y = y_h + y_1 + y_2$. Selon les cas, on obtient donc :
 - * Cas 1 : si $m \notin \{0,1\}$. $y(x) = Ae^x + Be^{mx} + \frac{1}{1-m}xe^x \frac{1}{m}x \frac{2m+1}{m^2}$ avec $(A,B) \in \mathbb{R}^2$ constantes.
 - * Cas 2: si m = 1. $y(x) = (A + Bx)e^x + \frac{1}{2}x^2e^x x 3$ avec $(A, B) \in \mathbb{R}^2$ constantes.
 - * Cas 3: si m = 0. $y(x) = Ae^x + B + xe^x + \frac{x^2}{2} 2x$ avec $(A, B) \in \mathbb{R}^2$ constantes.

Exercice 5. Résoudre les problèmes de Cauchy suivants :

1.
$$y'' - 4y' + 5y = e^x$$
 avec $y(0) = 1$ et $y'(0) = 0$

2.
$$y'' - 4y' + 5y = e^{2x}$$
 avec $y(0) = 0$ et $y'(0) = 1$

Correction 5. Résoudre les problèmes de Cauchy suivants :

1.
$$y'' - 4y' + 5y = e^x$$
 avec $y(0) = 1$ et $y'(0) = 0$.

- * On reconnaît une équation différentielle du second ordre à coefficients constants.
- * Résolution de l'équation homogène associée : y'' 4y' + 5y = 0L'équation caractéristique associée est : $r^2 - 4r + 5 = 0$ dont le discriminant est $\Delta = -4 < 0$. L'équation caractéristique a donc deux solutions complexes conjuguées $r_1 = 2 + i$ et $r_2 = 2 - i$. Ainsi la solution générale de l'équation homogène est : $y_h(x) = e^{2x}(A\cos(x) + B\sin(x))$ avec $(A, B) \in \mathbb{R}^2$ constantes.

- * Recherche d'une solution particulière de l'équation avec second membre $y'' 4y' + 5y = e^x$: Le second membre est de la forme e^{mx} avec m = 1 et $i \times 1$ non racine de l'équation caractéristique. On cherche alors y_1 sous la forme $y_1(x) = ae^x$ avec $a \in \mathbb{R}$. En remplaçant dans l'équation, on obtient : $a = \frac{1}{2}$. Ainsi une solution particulière de l'équation est : $y_p(x) = \frac{1}{2}e^x$.
- * La solution générale de l'équation est alors : $y(x) = e^{2x}(A\cos(x) + B\sin(x)) + \frac{1}{2}e^x$ avec $(A, B) \in \mathbb{R}^2$.
- * Conditions initiales. On a y(0) = 1 et y'(0) = 0. Or on sait que $y(0) = A + \frac{1}{2}$, et d'autre part, on a $y'(x) = e^{2x}(2A\cos(x) + 2B\sin(x) A\sin x + B\cos x) + \frac{1}{2}e^x$. On en déduit que $y'(0) = 2A + B + \frac{1}{2}$. On doit donc résoudre :

$$\begin{cases} A + \frac{1}{2} &= 1 \\ 2A + B + \frac{1}{2} &= 0 \end{cases} \Leftrightarrow \begin{cases} A &= \frac{1}{2} \\ B &= -\frac{3}{2} \end{cases}$$

Ainsi, l'unique solution verifiant les conditions initiales données est

$$y(x) = \frac{e^{2x}}{2}(\cos(x) - 3\sin(x)) + \frac{1}{2}e^x.$$

- 2. $y'' 4y' + 5y = e^{2x}$ avec y(0) = 0 et y'(0) = 1.
 - \star On reconnaît une équation différentielle du second ordre à coefficients constants.
 - * Résolution de l'équation homogène associée : y'' 4y' + 5y = 0. D'après les calcules précédents, la solution générale de l'équation homogène est : $y_h(x) = e^{2x}(A\cos(x) + B\sin(x))$ avec $(A, B) \in \mathbb{R}^2$ constantes.
 - * Recherche d'une solution particulière de l'équation avec second membre $y'' 4y' + 5y = e^{2x}$: Le second membre est de la forme e^{mx} avec m = 2 et $i \times 2$ non racine de l'équation caractéristique. On cherche alors y_1 sous la forme $y_1(x) = ae^{2x}$ avec $a \in \mathbb{R}$. En remplaçant dans l'équation, on obtient : a = 1. Ainsi une solution particulière de l'équation est : $y_p(x) = e^x$.
 - * La solution générale de l'équation est alors : $y(x) = e^{2x}(A\cos(x) + B\sin(x) + 1)$ avec $(A, B) \in \mathbb{R}^2$.
 - ★ Conditions initiales. On a y(0) = 0 et y'(0) = 1. Or on sait que y(0) = A + 1, et d'autre part, on a $y'(x) = e^{2x}(2A\cos(x) + 2B\sin(x) + 2 A\sin x + B\cos x)$. On en déduit que y'(0) = 2A + 2 + B. On doit donc résoudre :

$$\left\{ \begin{array}{rcl} A+1 & = & 0 \\ 2A+B+2 & = & 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{rcl} A & = & -1 \\ B & = & 1 \end{array} \right.$$

Ainsi, l'unique solution verifiant les conditions initiales données est

$$y(x) = e^{2x}(-\cos(x) + \sin(x) + 1)$$
.

Type DS

Exercice 6. Cinétique chimique

On considère la réaction chimique d'équation bilan : $2N_2O_5 \rightarrow 4NO_2 + O_2$. Cette réaction a une cinétique d'ordre 1, c'est-à-dire que la vitesse de disparition du pentaoxyde de diazote, définie par $v = -\frac{1}{2}\frac{d[N_2O_5]}{dt}$ vérifie l'équation : $v = k[N_2O_5]$.

En posant $y(t) = [N_2O_5](t)$, et en notant $c_0 = y(0)$, donner l'expression exacte de la vitesse de disparition du pentaoxyde de diazote, et tracer sa courbe.

Correction 6. Cinétique chimique

On considère la réaction chimique d'équation bilan : $2N_2O_5 \rightarrow 4NO_2 + O_2$. Cette réaction a une cinétique d'ordre 1, c'est-à-dire que la vitesse de disparition du pentaoxyde de diazote, définie par $v=-rac{1}{2}rac{d[N_2O_5]}{dt}$ vérifie l'équation : $v=k[N_2O_5]$. En posant $y(t)=[N_2O_5](t)$, et en notant $c_0=y(0)$, donner l'expression exacte de la vitesse de dispa-

rition du pentaoxyde de diazote, et tracer sa courbe.

On doit résoudre l'équation différentielle : $-\frac{1}{2}y' = ky$, c'est-à-dire y' + 2ky = 0. C'est une équation différentielle linéaire, du premier ordre, à coefficients constants et homogène. On connaît donc l'ensemble des solutions :

$$S = \{y : t \mapsto Ce^{-2kt}, \text{ avec } C \in \mathbb{R}\}.$$

De plus, on a $y(0) = c_0$, donc $Ce^{-2k \times 0} = c_0$, soit $C = c_0$. On en déduit que y a pour expression $y(t) = c_0e^{-2kt}$.

Pour tracer la courbe, il suffit d'étudier les variations de la fonctions y, en supposant que k et c_0 sont des constantes strictement positives.

On peut calculer la constante de temps caractéristique de la réaction en calculant le point d'intersection entre la tangente à l'origine et l'axe des abscisses. Ce temps est ici $t_c = \frac{1}{2k}$.

Exercice 7. Loi de Fick

Une cellule est plongée dans une solution de potassium de concentration c_p . On note c(t) la concentration de potassium dans la cellule à l'instant t, et on suppose que c(0) = 0. D'après la loi de Fick, la vitesse de variation de la concentration de potassium dans la cellule est proportionnelle au gradient de concentration $c_p - c(t)$, c'est-à-dire qu'il existe une constante τ homogène à un temps telle que

$$c'(t) = \frac{c_p - c(t)}{\tau}.$$

Déterminer c(t) et tracer le graphe de c.

Correction 7. Loi de Fick

Une cellule est plongée dans une solution de potassium de concentration c_p . On note c(t) la concentration de potassium dans la cellule à l'instant t, et on suppose que c(0) = 0. D'après la loi de Fick, la vitesse de variation de la concentration de potassium dans la cellule est proportionnelle au gradient de concentration $c_p - c(t)$, c'est-à-dire qu'il existe une constante τ homogène à un temps telle que

$$\mathbf{c}'(\mathbf{t}) = \frac{\mathbf{c_p} - \mathbf{c}(\mathbf{t})}{\tau}.$$

Déterminer c(t) et tracer le graphe de c.

On doit résoudre l'équation différentielle : $c' + \frac{1}{\tau}c = \frac{1}{\tau}c_p$. C'est une équation différentielle linéaire, du premier ordre, à coefficients constants.

- On commence par étudier l'équation homogène associée : $c' + \frac{1}{\tau}c = 0$. L'ensemble des solutions est $S_h =$ $\{c_h: t \mapsto Ce^{-\frac{t}{\tau}}, \text{ avec } C \in \mathbb{R}\}.$
- On cherche une solution particulière constante : $f(t) = \alpha$. On a alors f'(t) = 0, donc on doit avoir $0 + \frac{1}{\tau}\alpha = 0$ $\frac{1}{\pi}c_p$, soit $\alpha=c_p$.

On en déduit que l'ensemble des solutions est $S = \{c : t \mapsto Ce^{-\frac{t}{\tau}} + c_p, C \in \mathbb{R}\}$. Comme de plus on a c(0) = 0, on a $C + c_p = 0$, soit $C = -c_p$. Finalement, la solution est donnée par $\left| c(t) = c_p \left(1 - e^{-\frac{t}{\tau}} \right) \right|$.

Pour tracer la courbe, il suffit d'étudier les variations de la fonctions c, en supposant que τ et c_p sont des constantes strictement positives.

On constate que la concentration tend vers c_p : les concentrations en potassium s'équilibrent entre le milieu extérieur et la cellule.

Exercice 8. Datation au carbone 14.

La vitesse de désintégration du carbone 14 est proportionnelle à sa quantité présente dans le matériau considéré. Ainsi, si on note y(t) le nombre d'atomes de carbone 14 présents dans un échantillon de matière organique à l'année t, y vérifie l'équation différentielle

$$y'(t) = -ky(t),$$

où $k = 1.238 \times 10^{-4} \text{an}^{-1}$ est la constante de désintégration du carbone 14.

- 1. Calculer l'expression explicite de y(t) en fonction du nombre N_0 d'atomes de carbone 14 à l'instant t=0.
- 2. On appelle demi-vie d'un élément radioactif le temps au bout duquel la moitié de ses atomes se sont désintégrés. Déterminer la demi-vie du carbone 14.
- 3. Lors de fouilles, on a découvert un fragment d'os dont la teneur en carbone 14 vaut 70% de celle d'un os actuel de même masse. Estimer l'âge de ces fragments.

Correction 8. Datation au carbone 14.

La vitesse de désintégration du carbone 14 est proportionnelle à sa quantité présente dans le matériau considéré. Ainsi, si on note y(t) le nombre d'atomes de carbone 14 présents dans un échantillon de matière organique à l'année t, y vérifie l'équation différentielle

$$\mathbf{y}'(\mathbf{t}) = -\mathbf{k}\mathbf{y}(\mathbf{t}),$$

où $k = 1.238 \times 10^{-4} \text{an}^{-1}$ est la constante de désintégration du carbone 14.

1. Calculer l'expression explicite de y(t) en fonction du nombre N_0 d'atomes de carbone 14 à l'instant t=0.

On doit résoudre l'équation différentielle y' + ky = 0. C'est une équation différentielle linéaire, du premier ordre, à coefficients constants et homogène. On connaît donc l'ensemble des solutions :

$$S = \{y : t \mapsto Ce^{-kt}, \text{ avec } C \in \mathbb{R}\}.$$

De plus, on a $y(0) = N_0$, donc $Ce^{-k\times 0} = N_0$, soit $C = N_0$. On en déduit que y a pour expression $y(t) = N_0 e^{-kt}$.

2. On appelle demi-vie d'un élément radioactif le temps au bout duquel la moitié de ses atomes se sont désintégrés. Déterminer la demi-vie du carbone 14.

On cherche $t_{0.5}$ tel que :

$$y(t_{0.5}) = \frac{1}{2}N_0 \iff N_0 e^{-kt_{0.5}} = \frac{1}{2}N_0 \iff e^{-kt_{0.5}} = \frac{1}{2} \iff -kt_{0.5} = \ln\left(\frac{1}{2}\right)$$

par stricte croissance de la fonction logarithme. On en déduit $t_{0.5} = \frac{\ln 2}{k}$. L'application numérique donne $t_{0.5} \simeq 5599$ ans.

3. Lors de fouilles, on a découvert un fragment d'os dont la teneur en carbone 14 vaut 70% de celle d'un os actuel de même masse. Estimer l'âge de ces fragments.

On cherche t_1 tel que :

$$y(t_1) = 0.7N_0 \Leftrightarrow N_0 e^{-kt_1} = 0.7N_0 \Leftrightarrow e^{-kt_1} = 0.7 \Leftrightarrow -kt_1 = \ln(0.7)$$

par stricte croissance de la fonction logarithme. On en déduit $t_1 = -\frac{\ln 0.7}{k}$. L'application numérique donne comme estimation $t_1 \simeq 2881$ ans pour ces fragments.

Exercice 9.

1. Circuit RC

On place en série un condensateur de capacité C et une résistance R, alimentés par un générateur de force électromotrice V. La charge q(t) du condensateur vérifie alors l'équation

$$q'(t) + \frac{1}{RC}q(t) = \frac{V}{R}.$$

Calculer l'expression explicite de q, sachant que la charge initiale est nulle, et tracer le graphe de q.

2. Circuit LC

On place en série un condensateur de capacité C et une bobine d'inductance L, alimentés par un générateur de force électromotrice V. La charge q(t) du condensateur vérifie alors l'équation

$$q''(t) + \frac{1}{LC}q(t) = \frac{V}{L}.$$

Calculer l'expression explicite de q, sachant que la charge initiale est nulle et que q'(0) = 0, et tracer le graphe de q.

Correction 9. 1. Circuit RC

On place en série un condensateur de capacité C et une résistance R, alimentés par un générateur de force électromotrice V. La charge q(t) du condensateur vérifie alors l'équation

$$\mathbf{q}'(\mathbf{t}) + \frac{1}{RC}\mathbf{q}(\mathbf{t}) = \frac{\mathbf{V}}{R}.$$

Calculer l'expression explicite de q, sachant que la charge initiale est nulle, et tracer le graphe de q. On doit résoudre une équation différentielle linéaire, du premier ordre, à coefficients constants.

- On commence par étudier l'équation homogène associée : $q' + \frac{1}{RC}q = 0$. L'ensemble des solutions est : $S_h = \{q_h : t \mapsto Ke^{-\frac{t}{RC}}, \text{ avec } K \in \mathbb{R}\}.$
- On cherche une solution particulière constante : $q_p(t) = \alpha$. On a alors $q'_p(t) = 0$, donc on doit avoir $0 + \frac{1}{RC}\alpha = \frac{V}{R}$, soit $\alpha = VC$.

On en déduit que l'ensemble des solutions est $S = \{q : t \mapsto Ke^{-\frac{t}{RC}} + VC, K \in \mathbb{R}\}$. Comme de plus on a q(0) = 0, on a K + VC = 0, soit K = -VC. Finalement, la solution est donnée par $q(t) = VC\left(1 - e^{-\frac{t}{RC}}\right)$.

On constate que la charge tend vers VC. On peut trouver le temps caractéristique du circuit en calculant le point d'intersection entre la tangente à l'origine et l'asymptote y = VC. Ce temps est ici $t_c = RC$.

2. Circuit LC

On place en série un condensateur de capacité C et une bobine d'inductance L, alimentés par un générateur de force électromotrice V. La charge q(t) du condensateur vérifie alors l'équation

$$\mathbf{q}''(\mathbf{t}) + \frac{1}{LC}\mathbf{q}(\mathbf{t}) = \frac{\mathbf{V}}{L}.$$

Calculer l'expression explicite de q, sachant que la charge initiale est nulle et que q'(0) = 0, et tracer le graphe de q.

On doit résoudre une équation différentielle linéaire, du second ordre, à coefficients constants.

• On commence par étudier l'équation homogène associée : $q'' + \frac{1}{LC}q = 0$. On étudie l'équation caractéristique associée : $r^2 + \frac{1}{LC} = 0$. Ses solutions sont complexes conjuguées, données par $r_1 = i\omega$ et $r_2 = -i\omega$ avec $\omega = \frac{1}{\sqrt{LC}}$. L'ensemble des solutions est $S_h = \{q_h : t \mapsto A\cos(\omega t) + B\sin(\omega t), \text{ avec } (A, B) \in \mathbb{R}^2\}$.

• On cherche une solution particulière constante : $q_p(t) = \alpha$. On a alors $q_p''(t) = 0$, donc on doit avoir $0 + \frac{1}{LC}\alpha = \frac{V}{L}$, soit $\alpha = VC$.

On en déduit que l'ensemble des solutions est $S = \{q : t \mapsto A\cos(\omega t) + B\sin(\omega t) + VC, (A, B) \in \mathbb{R}^2\}$. On étudie à présent les conditions initiales. On a q(0) = A + VC = 0, soit A = -VC. De plus, on doit avoir q'(0) = 0. On calcule la dérivée de $q : q'(t) = -A\omega\sin(\omega t) + B\omega\cos(\omega t)$, donc q'(0) = B = 0. On a donc finalement : $q(t) = VC(1 - \cos(\omega t))$.

On constate que la charge oscille entre 0 et 2VC. La période de charge est donnée par $T=\frac{2\pi}{\omega}=2\pi\sqrt{LC}$.