A Generalization of Credal Networks

Marco Cattaneo
Department of Statistics, LMU Munich
cattaneo@stat.uni-muenchen.de

June 24, 2009

frequentist approach empirical repeated-sampling **likelihood approach** empirical conditional

Bayesian approach personalistic conditional

frequentist approach empirical repeated-sampling **likelihood approach** empirical conditional Bayesian approach personalistic conditional

can be interpreted as an **imprecise probability** approach: (profile) likelihood function =: membership function of fuzzy probability

frequentist approach empirical repeated-sampling likelihood approach empirical conditional Bayesian approach personalistic conditional

can be interpreted as an **imprecise probability** approach: (profile) likelihood function =: membership function of fuzzy probability

generalizations:

precise probability

frequentist approach empirical repeated-sampling likelihood approach empirical conditional Bayesian approach personalistic conditional

can be interpreted as an **imprecise probability** approach: (profile) likelihood function =: membership function of fuzzy probability

generalizations:

frequentist approach empirical repeated-sampling **likelihood approach** empirical conditional Bayesian approach personalistic conditional

can be interpreted as an **imprecise probability** approach: (profile) likelihood function =: membership function of fuzzy probability

generalizations:

 $X,\,Y,Z\in\{0,1\}$

Y and Z independent conditional on X:

 $X, Y, Z \in \{0, 1\}$

Y and Z independent conditional on X:

$$X, Y, Z \in \{0, 1\}$$

Y and Z independent conditional on X:

generalizations:

precise probabilities: Bayesian networks

$$X, Y, Z \in \{0, 1\}$$

Y and Z independent conditional on X:

generalizations:

precise probabilities: Bayesian networks

interval probabilities: credal networks

$$X, Y, Z \in \{0, 1\}$$

Y and Z independent conditional on X:

generalizations:

precise probabilities: Bayesian networks

interval probabilities: credal networks

fuzzy probabilities: hierarchical networks

training data

X	Y	Ζ	#
0	0	0	21
0	0	1	6
0	1	0	30
0	1	1	7
1	0	0	9
1	0	1	15
1	1	0	5
1	1	1	7
			100

training data

X	Y	Ζ	#
0	0	0	21
0	0	1	6
0	1	0	30
0	1	1	7
1	0	0	9
1	0	1	15
1	1	0	5
1	1	1	7
			100

simulated according to:

$$P(Y = 1 | X = 1) = 0.3$$

 $P(Y = 1 | X = 0) = 0.6$
 $P(X = 1) = 0.4$
 $P(Z = 1 | X = 1) = 0.7$
 $P(Z = 1 | X = 0) = 0.2$

Bayesian network via MLE

Bayesian network via MLE

$$\Rightarrow P(X = 1 | Y = 0, Z = 1):$$

credal network via IDM (with s = 2)

$$\Rightarrow P(X = 1 | Y = 0, Z = 1):$$

hierarchical network

prior ignorance about $heta \in [0,1]^5$

 $\begin{array}{l} \text{prior ignorance} \\ \text{about } \theta \in [0,1]^5 \end{array}$

302 variables observed

 $\begin{array}{l} \text{prior ignorance} \\ \text{about } t \in [0,1]^5 \end{array}$

 $\begin{array}{l} \text{prior ignorance} \\ \text{about } \theta \in [0,1]^5 \end{array}$

302 variables observed

 $\begin{array}{l} \text{prior ignorance} \\ \text{about} \ t \in [0,1]^5 \end{array}$

302 variables observed

conclusions and results

advantages of (likelihood-based) **fuzzy probability** over interval probability:

- more expressive (relative plausibility of different values in the probability interval)
- more powerful updating rule (extracts more information from the data)
- more robust updating rule (less sensitive to small perturbations of the model)

conclusions and results

advantages of (likelihood-based) **fuzzy probability** over interval probability:

- more expressive (relative plausibility of different values in the probability interval)
- more powerful updating rule (extracts more information from the data)
- more robust updating rule (less sensitive to small perturbations of the model)

mathematical results of the paper:

- d-separation implies conditional irrelevance in hierarchical networks
- hierarchical networks can be described by convex sets of measures, and it suffices to consider the extreme points