

Europäisches Patentamt European Patent Office Office européen des brevets

11) Publication number:

0 628 639 A1

12

EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

Application number: 92909376.3

2 Date of filing: 24.04.92

International application number: PCT/JP92/00544

International publication number: WO 92/19759 (12.11.92 92/28)

(5) Int. CI.5: C12P 21/08, C07K 15/28, C12N 15/13, //C12P21/00, (C12P21/08,C12R1:91)

- Priority: 25.04.91 JP 95476/91 19.02.92 JP 32084/92
- Date of publication of application: 14.12.94 Bulletin 94/50
- Designated Contracting States: AT BE CH DE DK ES FR GB GR IT LI LU MC NL SE
- Applicant: Chugal Selyaku Kabushiki Kalsha 5-1, 5-chome, Ukima Kita-ku Tokyo 115 (JP)
- Inventor: TSUCHIYA, Masayuki Chugal Seiyaku Kabushiki Kaisha 1-135, Komakado Gotenba-shi Shizuoka 412 (JP) Inventor: SATO, Koh

Chugal Seiyaku Kabushiki Kaisha 1-135, Komakado Gotenba-shi Shizuoka 412 (JP) Inventor: BENDIG, Mary, Margaret 64 Solent Road **West Hampsted** London NW6 1TX (GB) Inventor: JONES, Steven, Tarran 10 The Close Radlett Hertfordshire WD7 8HA (GB) inventor: SALDANHA, José, William 22 Lincoln Way Enfield Middlesex EN1 1TE (GB)

Representative: Davies, Jonathan Mark Reddie & Grose 16 Theobalds Road London WC1X 8PL (GB)

- MECONSTITUTED HUMAN ANTIBODY AGAINST HUMAN INTERLEUKIN 6 RECEPTOR.
- (5) A reconstituted human antibody against a human interleukin 6 receptor (IL-6R), which is composed of: (A) an L chain composed of (1) the C region of a human L chain and (2) the V region of an L chain comprising the framework region (FR) of a human L chain and the complementarity-determining region (CDR) of the L chain of a mouse monoclonal antibody against a human IL-6R, and (B) an H chain composed of (1) the C region of a human H chain and (2) the V region of an H chain comprising the FR of a human H chain and the CDR of the H chain of a mouse monoclonal antibody against a human IL-6R. Since most of the reconstituted human antibody originates in human antibodies and the CDR is lowly antigenic, this antibody is lowly antigenic against human and hence prospective as a therapeutic agent.

Fig. 14

Technical Field

The present invention relates to variable regions (V region) of a mouse monoclonal antibody to the human interleukin-6 receptor (IL-6R), human/mouse chimeric antibody to the human IL-6R, and reshaped human antibody comprising a human antibody wherein the complementarity determining regions (CDRs) of the human light chain (L chain) V region and of the human heavy chain (H chain) V region are grafted with the CDRs of a mouse monoclonal antibody to the human IL-6R. Moreover, the present invention provides DNA coding for the above-mentioned antibodies or part thereof. The present invention further provides vectors, especially expression vectors comprising said DNA, and host cells transformed or transfected with said vector. The present invention still more provides a process for production of a chimeric antibody to the human IL-6R, and process for production of a reshaped human antibody to the human IL-6R.

Background Art

Interleukin-6 (IL-6) is a multi-function cytokine that is produced by a range of cells. It regulates immune responses, acute phase reactions, and hematopoiesis, and may play a central role in host defense mechanisms. It acts on a wide range of tissues, exerting growth-inducing, growth inhibitory, and differentiation-inducing effects, depending on the nature of the target cells. The specific receptor for IL-6 (IL-6R) is expressed on lymphoid as well as non-lymphoid cells in accordance with the multifunctional properties of IL-6. Abnormal expression of the IL-6 gene has been suggested to be involved in the pathogenesis of a variety of diseases, especially autoimmune diseases, mesangial proliferative glomerulonephritis, and plasmacytoma/myeloma (see review by Hirano et al., Immunol. Today 11, 443-449, 1990). Human myeloma cells are observed to produce IL-6 and express IL-6R. In experiments, antibody against IL-6 inhibited the invitro growth of myeloma cells thus indicating that an autocrine regulatory loop is operating in oncogenesis of human myelomas (Kawano et al., Nature, 332, 83, 1988).

The IL-6R is present on the surface of various animal cells, and specifically binds to IL-6, and the number of IL-6R molecules on the cell surface has been reported (Taga et al., J. Exp. Med. 196, 967, 1987). Further, cDNA coding for a human IL-6R was cloned and a primary structure of the IL-6R was reported (Yamasaki et al., Science, 241, 825, 1988).

Mouse antibodies are highly immunogenic in humans and, for this reason, their therapeutic value in humans is limited. The half-life of mouse antibodies in vivo in human is relatively short. In addition, mouse antibodies can not be administered in multiple doses without generating an immune response which not only interferes with the planned efficacy but also risks an adverse allergic response in the patient.

To resolve these problems methods of producing humanized mouse antibodies were developed. Mouse antibodies can be humanized in two ways. The more simple method is to construct chimeric antibodies where the V regions are derived from the original mouse monoclonal antibody and the C regions are derived from suitable human antibodies. The resulting chimeric antibody contains the entire V domains of the original mouse antibody and can be expected to bind antigen with the same specificity as the original mouse antibody. In addition, chimeric antibodies have a substantial reduction in the percent of the protein sequence derived from a non-human source and, therefore, are expected to be less immunogenic than the original mouse antibody. Although chimeric antibodies are predicted to bind antigen well and to be less immunogenic, an immune response to the mouse V regions can still occur (LoBuglio et al., Proc. Natl. Acad. Sci. USA 84, 4220-4224, 1989).

The second method for humanizing mouse antibodies is more complicated but more extensively reduces the potential immunogenicity of the mouse antibody. In this method, the complementarity determining regions (CDRs) from the V regions of the mouse antibody are grafted into human V regions to create "reshaped" human V regions. These reshaped human V regions are then joined to human C regions. The only portions of the final reshaped human antibody derived from non-human protein sequences are the CDRs. CDRs consist of highly variable protein sequences. They do not show species-specific sequences. For these reasons, a reshaped human antibody carrying murine CDRs should not be any more immunogenic than a natural human antibody containing human CDRs.

As seen from the above, it is supposed that reshaped human antibodies are useful for therapeutic purposes, but reshaped human antibodies to the human IL-6R are not known. Moreover, there is no process for construction of a reshaped human antibodies, universally applicable to any particular antibody. Therefore to construct a fully active reshaped human antibody to a particular antigen, various devices are necessary. Even though mouse monoclonal antibodies to the human IL-6R, i.e., PM1 and MT18, were prepared (Japanese Patent Application No. 2-189420), and the present inventors prepared mouse monoclonal antibodies to the human IL-6R, i.e., AUK12-20, AUK64-7 and AUK146-15, the present inventors are not

aware of publications which suggest construction of reshaped human antibodies to the human IL-6R.

The present inventors also found that, when the mouse monoclonal antibodies to the human IL-6R were injected into nude mice transplanted with a human myeloma cell line, the growth of the tumor was remarkably inhibited. This suggests that the anti-human IL-6 receptor antibody is useful as a therapeutic agent for the treatment of myeloma.

Disclosure of Invention

15

20

30

35

40

Therefore, the present invention is intended to provide a less immunogenic antibody to the human IL-10 6R. Accordingly, the present invention provides reshaped human antibodies to the human IL-6R. The present invention also provides human/mouse chimeric antibodies useful during the construction of the reshaped human antibody. The present invention further provides a part of reshaped human antibody, as well as the expression systems for production of the reshaped human antibody and a part thereof, and of the chimeric antibody.

More specifically, the present invention provides L chain V region of mouse monoclonal antibody to the human IL-6R; and H chain V region of a mouse monoclonal antibody to the human IL-6R.

The present invention also provides a chimeric antibody to the human IL-6R, comprising:

- (1) an L chain comprising a human L chain C region and an L chain V region of a mouse monoclonal antibody to the IL-6R; and
- (2) an H chain comprising a human H chain C region and an H chain V region of a mouse monoclonal antibody to the human IL-6R.

The present invention also provides CDR of an L chain V region of a mouse monoclonal antibody to the human IL-6R; and CDR of an H chain V region of a mouse monoclonal antibody to the human IL-6R.

The present invention moreover provides a reshaped human L chain V region of an antibody to the human IL-6R, comprising:

- (1) framework regions (FRs) of a human L chain V region, and
- (2) CDRs of an L chain V region of a mouse monoclonal antibody to the human IL-6R; and a reshaped human H chain V region of an antibody to the human IL-6R comprising:
- (1) FRs of a human H chain V region, and
- (2) CDRs of an H chain V region of a mouse monoclonal antibody to the human IL-6R.

The present invention also provides a reshaped human L chain of an antibody to the human IL-6R, comprising:

- (1) a human L chain C region; and
- (2) an L chain V region comprising human FRs, and CDRs of a mouse monoclonal antibody to the human IL-6R; and
 - a reshaped human H chain of an antibody to the human IL-6R, comprising:
- (1) a human H chain C region, and
- (2) an H chain V region comprising a human FRs, and CDRs of a mouse monoclonal antibody to the human IL-6R.
- The present invention still more provides a reshaped human antibody to the human IL-6R, comprising:
- (A) an L chain comprising,
 - (1) a human L chain C region, and
 - (2) an L chain V region comprising human L chain FRs, and L chain CDRs of a mouse monoclonal antibody to the human IL-6R; and
- (B) an H chain comprising, 45
 - (1) a human H chain C region, and
 - (2) an H chain V region comprising human H chain FRs, and H chain CDRs of a mouse monoclonal antibody to the human IL-6R.

The present invention further provides DNA coding for any one of the above-mentioned antibody polypeptides or parts thereof.

The present invention also provides vectors, for example, expression vectors comprising said DNA.

The present invention further provides host cells transformed or transfected with the said vector.

The present invention still more provide a process for production of a chimeric antibody to the human IL-6R, and a process for production of reshaped human antibody to the human IL-6R.

Brief Description of Drawings

15

25

35

- Fig. 1 represents expression vectors comprising human cytomegalo virus (HCMV) promoter/enhancer system, useful for the expression of the present antibody peptide.
- Fig. 2 is a graph showing a result of ELISA for confirmation of an ability of the present chimeric antibody AUK12-20 to bind to the human IL-6R.
- Fig. 3 is a graph showing a result of measurement of an ability of the present chimeric antibody AUK12-20 to inhibit the binding of IL-6 to the human IL-6R.
- Fig. 4 is a graph showing a result of ELISA for binding of the present chimeric antibodies PM1a and PM1b to human IL-6R.
- Fig. 5 is a graph showing a result of ELISA testing the ability of the present chimeric antibodies PM1a and PM1b to inhibit IL-6 from binding to the human IL-6R.
 - Fig. 6 is a diagram of the construction of the first version of a reshaped human PM-1 H chain V region.
 - Fig. 7 is a diagram of the construction of the first version of a reshaped human PM-1 L chain V region.
- Fig. 8 represents a process for construction of an expression plasmid HEF-12h-g $_{7}$ 1 comprising a human elongation factor 1 α (HEF-1 α) promoter/enhancer, useful for the expression of an H chain.
- Fig. 9 represents a process for construction of an expression plasmid HEF-12k-gk comprising the HEF- 1α promoter/enhancer system, useful for the expression of an L chain.
- Fig. 10 represents a process for construction of an expression plasmid DHFR-PMh-g₇1 comprising HCMV promoter/enhancer and the dihydrofolate reductase (dhfr) gene linked to a defective SV40 promoter/enhancers sequence for amplification, useful for expression of an H chain.
- Fig. 11 represents a process for the construction of an expression plasmid DHFR- Δ E-RVh-PM1-f comprising EF1 α promoter/enhancer and dhfr gene linked to a defective SV40 promoter/enhancer sequence for amplification, useful for expression of an H chain.
- Fig. 12 is a graph showing an ability of version "a" and "b" of the reshaped human PM-1 L chain V region for binding to the human IL-6R.
- Fig. 13 is a graph showing an ability of version "f" of the reshaped human PM-1 H chain V region plus version "a" of the reshaped PM-1 L chain L chain V region for binding to the human IL-6R.
- Fig. 14 is a graph showing an ability of vergion "f" of the reshaped PM-1 H chain V region plus version "a" of the reshaped PM-1 L chain V region to inhibit the binding of IL-6 to the human IL-6R.
- Fig. 15 represents expression plasmids HEF- V_L -gk and HEF- V_H -g $_\gamma$ 1 comprising a human EF1- α promoter/enhancer, useful for expression of an L chain and H chain respectively.
- Fig. 16 shows a process for construction of DNA coding for reshaped human AUK 12-20 antibody L chain V region.
- Fig. 17 is a graph showing results of an ELISA for confirm of an ability of a reshaped human AUK 12-20 antibody L chain V region to bind to human IL-6R. In the Figure, "Standard AUK 12-20 (chimera) means a result for chimeric AUK 12-20 antibody produced by CHO cells and purified in a large amount.
- Fig. 18 is a graph showing a result of an ELISA for an ability of a reshaped human AUK 12-20 antibody (L chain version "a" + H chain version "b") to bind to human IL-6R.
- Fig. 19 is a graph showing a result of an ELISA for an ability of a reshaped human AUK 12-20 antibody (L chain version "a" + H chain version "d") to bind to the human IL-6R.
 - Fig. 20 shows a process for chemical synthesis of a reshaped human sle 1220 H antibody H chain V region.
- Fig. 21 is a graph showing a result of an ELISA for an ability of a reshaped human sle 1220 antibody (L chain version "a" + H chain version "a") to inhibit the binding of IL-6 to the human IL-6R.
- Fig. 22 is a graph showing a result of an ELISA for an ability of a reshaped human sle 1220 antibody (L chain version "a" + H chain version "b") to inhibit the binding of IL-6 to the human IL-6R.
- Fig. 23 is a graph showing a result of an ELISA for an ability of a reshaped human sle 1220 antibody (L chain version "a" + H chain version "c") to inhibit the binding of IL-6 to the human LI-6R.
- Fig. 24 is a graph showing a result of an ELISA for an ability of a reshaped human sle 1220 antibody (L chain version "a" + H chain version "d") inhibit the binding of IL-6 to the human LI-6R.

Best Mode for Carrying Out the Invention

55 Cloning of DNA coding for mouse V regions

More specifically, to clone DNA coding for V regions of a mouse monoclonal antibody to a human IL-6R, the construction of hybridoma, which produces a monoclonal antibody to the human IL-6R, is necessary

as a gene source. As such a hybridoma, Japanese Patent Application No. 2-189420 describes a mouse hybridoma PM-1 which produces a monoclonal antibody PM1 and the properties thereof. Reference Examples 1 and 2 of the present specification describe the construction process of the hybridoma PM1. The present inventors have constructed hybridomas AUK12-20, AUK64-7, and AUK146-15, each producing a mouse monoclonal antibody to the human IL-6R. The construction process of these hybridomas is described in the Reference Examples 3 of this specification.

To clone desired DNAs coding for V regions, of a mouse monoclonal antibody, hybridoma cells are homogenized and a total RNA is obtained according to a conventional procedure described by Chirgwin et al., Biochemistry 18, 5294, 1977. Next, the total RNA is used to synthesize single-stranded cDNAs according to the method described by J.W. Larrick et al., Biotechnology, 7, 934, 1989.

Next, a specific amplification of a relevant portion of the cDNA is carried out by a polymerase chain reaction (PCR) method. For amplification of a x L chain V region of a mouse monoclonal antibody, 11 groups of oligonucleotide primers (Mouse Kappa Variable; MKV) represented in SEQ ID NO: 1 to 11, and an oligonucleotide primer (Mouse Kappa Constant; MKC) represented in SEQ ID NO: 12 are used as 5'terminal primers and a 3'-terminal primer respectively. The MKV primers hybridize with the DNA sequence coding for the mouse x L chain leader sequence, and the MKC primer hybridizes with the DNA sequence coding for the mouse x L chain constant region. For amplification of the H chain V region of a mouse monoclonal antibody, 10 groups of oligonucleotide primers (Mouse Heavy Variable; MHV) represented in SEQ ID NO: 13 to 22, and a oligonucleotide primer (Mouse Heavy Constant MHC) represented in SEQ ID NO: 23 are used as 5'-terminal primers and a 3'-terminal primer, respectively.

Note, the 5'-terminal primers contain the nucleotide sequence GTCGAC near the 5'-end thereof, which sequence provides a restriction enzyme Sal I cleavage site; and the 3'-terminal primer contains the nucleotide sequence CCCGGG near the 5-end thereof, which sequence provides a restriction enzyme Xma I cleavage site. These restriction enzyme cleavage sites are used to subclone the DNA fragments coding for a variable region into cloning vectors.

Next, the amplification product is cleaved with restriction enzymes Sal I and Xma I to obtain a DNA fragment coding for a desired V region of a mouse monoclonal antibody. On the other hand, an appropriate cloning vector such as plasmid pUC19 is cleaved with the same restriction enzymes Sal I and Xma I and the above DNA fragment is ligated with the cleaved pUC19 to obtain a plasmid incorporating a DNA fragment coding for a desired V region of a mouse monoclonal antibody.

The sequencing of the cloned DNA can be carried out by any conventional procedure.

The cloning of the desired DNA, and the sequencing thereof, are described in detail in Examples 1 to 3.

Complementarity Determining Regions (CDRs)

The present invention provides hypervariable or complementarity determining regions (CDRs) of each V region of the present invention. The V domains of each pair of L and H chains from the antigen binding site. The domains on the L and H chains have the same general structure and each domain comprises four framework regions (FRs), whose sequences are relatively conserved, connected by three CDRs (see Kabat, E.A., Wu, T.T., Bilofsky, H., Reid-Miller, M. and Perry, H., in "Sequences of Proteins of Immunological Interest", US Dept. Health and Human Services 1983). The four FRs largely adopt a \$\beta\$-sheet conformation and the CDRs form loops connecting FRs, and in some cases forming part of, the β -sheet structure. The CDRs are held in close proximity by FRs and, with the CDRs from the other domain, contribute to the formation of the antigen binding site. The CDRs are described in Example 4.

Construction of Chimeric Antibody

35

45

Prior to designing reshaped human V regions of an antibody to the human IL-6R, it is necessary to confirm that the CDRs to be used actually form an effective antigen binding region. For this purpose, chimeric antibodies were constructed. In addition the amino acid sequences of V regions of mouse anti human IL-6R antibodies predicted from the nucleotide sequences of cloned DNAs of the 4 mouse monoclonal antibodies described in Example 1 and 2 were compared to each other and to V regions from known mouse and human antibodies. For each of the 4 mouse monoclonal antibodies, a set of typical, functional mouse L and H chain V regions had been cloned. All four mouse anti-IL-6R antibodies, however, had relatively distinct V regions. The 4 antibodies were not simply minor variations of each other. Using the cloned mouse V regions, 4 chimeric anti-IL-6R antibodies were constructed.

The basic method for constructing chimeric antibodies comprises joining the mouse leader and V region sequences, as found in the PCR-cloned cDNAs, to human C regions-coding sequence already

present in mammalian cell expression vectors. Among said 4 monoclonal antibodies, construction of a chimeric antibody from the monoclonal antibody AUK12-20 is described in Example 5.

Construction of a chimeric antibody from the monoclonal antibody PM-1 is described in Example 6. The cDNA coding for the mouse PM-1 x L chain leader and V region was PCR-subcloned into an expression vector containing a genomic DNA coding for the human kappa C region. The cDNA coding for the mouse PM-1 H chain leader and V regions was PCR-subcloned into an expression vector containing a genomic DNA coding for the human gamma-1 C region. Using specially designed PCR primers, the cDNA coding for the mouse PM-1 V region were adapted at their 5'- and 3'-ends (1) so that they would be easy to insert into the expression vectors and (2) so that they would function properly in these expression vectors. The PCR-modified mouse PM-1 V regions were then inserted into HCMV expression vectors already containing the desired human C regions (Figure 1). These vectors are suitable for either transient or stable expression of genetically-engineered antibodies in a variety of mammalian cell lines.

In addition to constructing a chimeric PM-1 antibody with V regions identical to the V regions present in mouse PM-1 antibody (version a), a second version of chimeric PM-1 antibody was constructed (version b). In chimeric PM-1 antibody (version b), the amino acid at position 107 in the L chain V region was changed from asparagine to lysine. In comparing the L chain V region from mouse PM-1 antibody to other mouse L chain V regions, it was noticed that the occurrence of an asparagine at position 107 was an unusual event. In mouse x L chain V regions, the most typical amino acid at position 107 is a lysine. In order to evaluate the importance of having the atypical amino acid asparagine at position 107 in the L chain V region of mouse PM-1 antibody, position 107 was changed to the typical amino acid lysine at this position. This change was achieved using a PCR-mutagenesis method (M. Kamman et al., Nucl. Acids Res. (1989) 17:5404) to make the necessary changes in the DNA sequences coding for the L chain V region.

The chimeric PM-1 antibody version (a) exhibited an activity to bind to the human IL-6R. The chimeric MP-1 antibody version (b) also binds to the human IL-6R as well as version (a). Similarly, from other 2 monoclonal antibodies AUK64-7 and AUK146-15, chimeric antibodies were constructed. All 4 chimeric antibodies bound well to the human IL-6R thus indicating in a functional assay that the correct mouse V regions had been cloned and sequenced.

From the 4 mouse anti-IL-6R antibodies, PM-1 antibody was selected as the first candidate for the design and construction of a reshaped human antibody to the human 1L-6R. The selection of mouse PM-1 antibody was based largely on results obtained studying the effect of the mouse anti-IL-6R antibodies on human myeloma tumor cells transplanted into nude mice. Of the 4 mouse anti-IL-6R antibodies, PM-1 antibody showed the strongest anti-tumor cell activity.

Comparison of the V regions from mouse monoclonal antibody PM-1 to V regions from known mouse and human antibodies

To construct a reshaped human antibody, wherein the CDRs of a mouse monoclonal antibody are grafted into a human monoclonal antibody, it is desired that there is high homology between FRs of the mouse monoclonal antibody and FRs of the human monoclonal antibody. Therefore, the amino acid sequences of the L and H chain V regions from mouse PM-1 antibody were compared to all known mouse and mouse V regions as found in the OWL (or Leeds) database of protein sequences.

With respect to V regions from mouse antibodies, the L chain V region of PM-1 antibody was most similar to the L chain V region of mouse antibody musigkcko (Chen, H.-T. et al., J. Biol. Chem. (1987) 262:13579-13583) with a 93.5% identity. The H chain V region of PM-1 antibody was most similar to the H chain V region of mouse antibody musigvhr2 (F.J. Grant et al., Nucl. Acids Res. (1987) 15:5496) with a 84.0% identity. The mouse PM-1 V regions show high percents of identity to known mouse V regions thus indicating that the mouse PM-1 V regions are typical mouse V regions. This provides further indirect evidence that the cloned DNA sequences are correct. There is generally a higher percent identity between the L chain V regions than between the H chain V regions. This is probably due to the lower amount of diversity generally observed in L chain V regions as compared to H chain V regions.

With respect to V regions from human antibodies, the L chain V region of PM-1 antibody was most similar to the L chain V region of human antibody klhure, also referred to as REI (W. Palm et al., Physiol. Chem. (1975) 356:167-191) with a 72.2% identity. The H chain V region of PM-1 antibody was most similar to the H chain V region of human antibody humighvap (VAP) (H.W. Schroeder et al., Science (1987) 238:791-793) with a 71.8% identity. The comparisons to human V regions are most important for considering how to design reshaped human antibodies from mouse PM-1 antibody. The percent identities to human V regions are less than the percent identities to mouse V regions. This is indirect evidence that the mouse PM-1 V regions do look like mouse V regions and not like human V regions. This evidence also

indicates that it will be best to humanize mouse PM-1 V regions in order to avoid problems of immunogenicity in human patients.

The V regions from mouse PM-1 antibody were also compared to the consensus sequences for the different subgroups of human V regions as defined by E. A. Kabat et al. ((1987) Sequences of Proteins of Immunological Interest, Forth Edition, U.S. Department of Health and Human servides, U.S. Government Printing Office). The comparisons were made between the FRs of the V regions. The results are shown in Table 1.

Table 1

Percent identities between the FRs from the mouse PM-1 V regions and the FRs from the consensus sequences⁽¹⁾ for the different subgroups of human V regions.

A. FRs in the L chain V regions

10

15

20

25

30

35

40

55

HSGI	HSGII	HSGIII	HSGIV
70.1	53.3	60.7	59.8

B. FRs in the H chain V regions

HSGI	••••	HSGII	HSGIII
44 1		52.9	49.2

(1) The consensus sequences were taken from the subgroups of human V regions as described in

Kabat et al., (1987).

The FRs of mouse PM-1 L chain V region are most similar to the FRs from the consensus sequence for subgroup I (HSGI) of human L chain V regions with 70.1% identity. The FRs of mouse PM-1 H chain V region are most similar to the FRs from the consensus sequence for subgroup II (HSGII) of human H chain V regions with 52.9% identity. These results support the results obtained from the comparisons to known human antibodies. The L chain V region in human REI belongs to subgroup I of human L chain V regions and the H chain V region in human VAP belongs to subgroup II of human H chain V regions.

From these comparisons to the V regions in human antibodies, it is possible to select human V regions that will be the basis for the design of reshaped human PM-1 V regions. It would be best to use a human L chain V region that belongs to subgroup I (SGII) for the design of reshaped human PM-1 L chain V region and a human H chain V region that belongs to subgroup II (SGII) for the design of reshaped human PM-1 H chain V region.

Design of reshaped human PM-1 variable regions

The first step in designing the reshaped human PM-1 V regions was to select the human V regions that would be the basis of the design. The FRs in the mouse PM-1 L chain V region were most similar to the FRs in human L chain V regions belonging to subgroup I (Table 1). As discussed above, in comparing the mouse PM-1 L chain V region to known human L chain V regions, it was most similar to the human L chain V region REI, a member of subgroup I of human L chain V regions. In designing reshaped human PM-1 L chain V regions, the FRs from REI were used. Moreover the REI FRs were used as starting material for the construction of reshaped human PM-1 L chain V region.

In these human FRs based on REI, there were five differences from the FRs in the original human REI (positions 39, 71, 104, 105, and 107 according to Kabat et al., 1987; see Table 2). The three changes in FR4 (positions 104, 105, and 107) were based on a J region from another human kappa L chain and, therefore, do not constitute a deviation from human (L. Riechmann et al., Nature (1988) 322:21-25). The two changes at positions 39 and 71 were changes back to the amino acids that occurred in the FRs of rat CAMPATH-1 L chain V region (Riechmann et al., 1988).

Two versions of reshaped human PM-1 L chain V region were designed. In the first version (version "a"), the human FRs were identical to the REI-based FRs present in reshaped human CAMPATH-1H (Riechmann et al., 1988) and the mouse CDRs were identical to the CDRs in mouse PM-1 L chain V region. The second version (version "b") was based on version "a" with only one amino acid change at position 71 in human FR3. Residue 71 is part of the canonical structure for CDR1 of the L chain V region as defined by C. Chothia et al., (J. Mol. Biol (1987) 196:901-917). The amino acid at this position is predicted to directly influence the structure of the CDR1 loop of the L chain V region and, therefore, may well influence antigen binding. In the mouse PM-1 L chain V region, position 71 is a tyrosine. In the modified REI FRs used in the design of version "a" of reshaped human PM-1 L chain V region, position 71 was a phenylalanine. In version "b" of reshaped human PM-1 L chain V region, the phenylalanine at position 71 was changed to a tyrosine as found in mouse PM-1 L chain V region. Table 2 shows the amino acid sequences of mouse PM-1 L chain V region, the FRs of REI as modified for use in reshaped human CAMPATH-1H antibody (Riechmann et al., 1988), and the two versions of reshaped human PM-1 L chain V region.

30

35

40

45

50

Table 2

Design of two different versions of reshaped human PM-1 L chain V region.

10		FR1		CDR1
		1 12345678901234567890123	4	5678901234
15	V _L PM-1 REI	DIQMTQTTSSLSASLGDRVTISC DIQMTQSPSSLSASVGDRVTITC	F	ASQDISSYLN
	RV _L a	DIQMTQSPSSLSASVGDRVTITC	F	RASQDISSYLN
20	RV_Lb		•	
25		FR2	CDR2	
		567890123456789	0123456	
30	V _L PM-1	WYQQKPDGTIKLLIY	YTSRLHS	
	REI	WYQQKPGKAPKLLIY		
	RV_La	WYQQKPGKAPKLLIY	YTSRLHS	
35	RV_L b			
		FR3		CDR3
40		6 7 8 78901234567890123456789012345	678	9 901234567
	V,PM-1	z GVPSRFSGSGSGTDYSLTINNLEQEDIAT	YFC	QQGNTLPYT
45		GVPSRFSGSGSGTD <u>F</u> TFTISSLQPEDIAT	YYC	
	RVLa	GVPSRFSGSGSGTDFTFTISSLQPEDIAT		QQGNTLPYT
	RVLD			

10

50

FR4

8901234567 V_LPM-1 FGGGTKLEIN REI $FGQGTK\underline{VEIK}$ RV_La FGQGTKVEIK RV_Lb

Note: The FRs given for REI are those found in the reshaped human CAMPATH-1H antibody

(Riechmann et al., 1988). The five underlined amino acid residues in the REI FRs are those that differ from the amino acid sequence of human REI (Palm et al., 1975; O. Epp et al., Biochemistry (1975) 14:4943-4952).

The FRs in the mouse PM-1 H chain V region were most similar to the FRs in human H chain V regions belonging to subgroup II (Table 1). As discussed above, in comparing the mouse PM-1 H chain V region to known human H chain V regions, it was most similar to the human H chain V region VAP, a member of subgroup II of human H chain V regions. DNA sequences coding for the FRs in human H chain V region NEW, another member of subgroup II of human H chain V regions, were used as starting material for the construction of reshaped human PM-1 H chain V region, and as a base for designing the reshaped human PM-1 H chain V region.

Six versions of reshaped human PM-1 H chain V region were designed. In all six versions, the human FRs were based on the NEW FRs present in reshaped human CAMPATH-1H (Riechmann et al., 1988) and the mouse CDRs were identical to the CDRs in mouse PM-1 H chain V region. Seven amino acid residues in the human FRs (positions 1, 27, 28, 29, 30, 48, and 71, see Table 3) were identified as having a possible adverse influence on antigen binding. In the model of mouse PM-1 V regions, residue 1 in the H chain V region is a surface residue that is located close to the CDR loops. Residues 27, 28, 29, and 30 are either part of the canonical structure for CDR1 of the H chain V region, as predicted by C. Chothia et al., Nature (1989) 34:877-883, and/or are observed in the model of the mouse PM-1 V regions to form part of the first structural loop of the H chain V region (Chothia, 1987). Residue 48 was observed in the model of the mouse PM-1 V regions to be a buried residue. Changes in a buried residue can disrupt the overall structure of the V region and its antigen-binding site. Residue 71 is part of the canonical structure for CDR2 of the H chain V region as predicted by Chothia et al., (1989). The six versions of reshaped human PM-1 antibody incorporate different combinations of amino acid changes at these seven positions in the human NEW FRs (see Table 3).

Table 3

Design of six different versions of reshaped human PM-1 H chain V region.

		FR1		CDR1
10	•	1 123456789012345678901	3 .234567890	123455 A
	V _B PM-1	DVQLQESGPVLVKPSQSLSLT	CTVTGYSIT	SDHAWS
15	NEW	QVQLQESGPGLVRPSQTLSLT	CTVSGSTFS	
	$RV_{H}a$	QVQLQESGPGLVRPSQTLSLT		SDHAWS
	RV _B b		T	<u>-</u>
20	RV _H C	D	YT	
20	RV _E d		YT	
	-		YT	
	RV _H e		YSIT	
25	RV_Bf			
		FR2	CDR2	
30		4 67890123456789	5 01223456789	6 012345
	$V_{E}PM-1$	WIRQFPGNKLEWMG	YIS-YSGITTY	MPSLKS
	NEW	WVRQPPGRGLEWIG		
35	$RV_{\mathtt{H}}$ a	WVRQPPGRGLEWIG	YIS-YSGITT	MPSLKS
	RV_B b			
	RV _B C			
40	RV _H d	M-	;	
	RV _B C	M_		
	RV _E £			

5		7 678901234567	FR3 8 9 89012222345678901234 ABC
	$V_{\mathtt{H}}\mathtt{PH-1}$	RISITRDTSKNQ	FFLQLNSVTTGDTSTYYCAR
	NEW	RVTMLVDTSKNQ	FSLRLSSVTAADTAVYYCAR
10	$RV_{\mathtt{H}}$ a	RVTMLVDTSKNQ	FSLRLSSVTAADTAVYYCAR
	$RV_{\mathtt{H}}\mathbf{b}$	R	
•	RV_BC	R	
15	RV_Bd	R	
	RV _B e	R	
20	RV _H f	R	
25		CDR3 10 5678900012 AB	FR4 11 34567890123
	$V_{H}PM-1$	SLARTTAMDY	WGQGTSVTVSS
	NEW		WGQGSLVTVSS
30	$RV_{B}a$	SLARTTAMDY	WGQGSLVTVSS
	RV_Bb		
	$RV_{\mathtt{H}}c$		
35	$RV_{\mathtt{H}}e$		
	$RV_{\mathtt{B}}$ e		~~~~~~~
•	$RV_{H}f$		
40			,

Note: The FRs given for NEW are those found in the first version of reshaped human CAMPATH-1H antibody (Riechmann et al., 1988).

Construction of reshaped human PM-1 V regions

45

The first versions of the reshaped human PM-1 L and H chain V regions were each constructed using a novel PCR-based method. Essentially, a plasmid DNA coding for reshaped human V region that already contained suitable human FRs was modified using PCR primers to replace the CDRs present in the starting reshaped human V region with the CDRs from mouse PM-1 antibody. The starting material for the construction of the reshaped human PM-1 L chain V region was a plasmid DNA containing the reshaped human D1.3 L chain V region. The reshaped human D1.3 L chain V region was constructed based on the FRs present in the human L chain V region of REI. The starting material for the construction of the reshaped human PM-1 H chain V region was a plasmid DNA containing the reshaped human D1.3 H chain

V region. The reshaped human D1.3 H chain V region was constructed based on the FRs present in the human H chain V region of NEW (M. Verhoeyen et al., Science (1988) 239:1534-1536).

Once the starting plasmid DNAs containing the desired human FRs were selected, PCR primers were designed to-enable the substitution of the mouse PM-1 CDRs in place of the mouse D1.3 CDRs. For each reshaped human PM-1 V region, three primers containing the DNA sequences coding for the mouse PM-1 CDRs and two primers flanking the entire DNA sequence coding for the reshaped human V region were designated and synthesized. Using the five PCR primers in a series of PCR reactions yielded a PCR product that consisted of the human FRs present in the starting reshaped human V region and the CDRs present in mouse PM-1 V region (see Example 7, and Figures 7 and 8). The PCR products were cloned and sequenced to ensure that the entire DNA sequence of version "a" of reshaped human PM-1 L and H chain V region coded for correct amino acid sequence (SEQ ID NO 55).

The remaining versions of the reshaped human PM-1 V regions were constructed using slight modifications of published PCR-mutagenesis techniques (Kamman et al., 1989). As described for the design of the reshaped human PM-1 V regions, one additional version (version "b") of the reshaped human PM-1 L chain V region was constructed and five additional versions (versions "b", "c", "d", "e", and "f") of the reshaped human PM-1 H chain V region were constructed. These additional versions contain a series of minor changes from the first versions. These minor changes in the amino acid sequences were achieved using PCR mutagenesis to make minor changes in the DNA sequences. PCR primers were designed that would introduce the necessary changes into the DNA sequence. Following a series of PCR reactions, a PCR product was cloned and sequenced to ensure that the changes in the DNA sequence had occurred as planned. Sequence of the reshaped human PM-1 antibody H chain V region version "f" is shown in SEQ ID NO 54).

Once the DNA sequences of the different versions of reshaped human PM-1 V regions were confirmed by sequencing, the reshaped human PM-1 V regions were subcloned into mammalian cell expression vectors already containing human C regions. Reshaped human PM-1 L chain V regions were joined to DNA sequences coding for human x C region. Reshaped human PM-1 H chain V regions were joined to DNA sequences coding for human gamma-1 C region. In order to achieve higher levels of expression of the reshaped human PM-1 antibodies, the HCMV expression vectors, as shown in Figure 1, were modified to replace the HCMV promoter-enhancer region with the human elongation factor (HEF-1a) promoter-enhancer (see Figure 15).

Next, all combinations of the reshaped human L chain versions (a) and (b) with the H chain V region versions (a) to (f) were tested for biding to human IL-6R, and as a result, a reshaped human antibody comprising the L chain version (a) and the H chain version (f) exhibited an ability to bind to IL-6R at a same level as that of chimeric PM-1 (a) (Fig. 13) as described in detail in Example 11.

Modifications in the DNA sequences coding for the reshaped human PM-1 V regions to improve the levels of expression.

In reviewing the levels of reshaped human PM-1 antibodies being produced in <u>cos</u> cells, it became apparent that the levels of expression of the reshaped human H chains were always approximately 10-fold lower than the levels of expression of the reshaped human L chains or of the chimeric L or H chains. It appeared that there was a problem in DNA coding for the reshaped human H chain V region that caused low levels of expression. In order to identify whether the lower levels of protein expression were the result of lower levels of transcription, RNA was prepared from <u>cos</u> cells co-transfected with vectors expressing reshaped human PM-1 L and H chains. First-strand <u>cDNA</u> was synthesized as described for the PCR cloning of the mouse PM-1 V regions. Using PCR primers designed to flank the ends of DNA coding for the reshaped human L or H chain V region, PCR products were generated from the cDNAs that corresponded to reshaped human L chain V region or to reshaped human H chain V region.

For the reshaped human L chain V region, there were two PCR products, one 408 bp long, as expected, and a shorter PCR product 299 bp long. The correct size PCR product made up approximately 90% of the total yield of PCR product and the shorter PCR product made up approximately 10% of the total yield. For the reshaped human H chain V region, there were also two PCR products, one 444 bp long, as expected, and a shorter PCR product 370 bp long. In this case, however, the incorrect, shorter PCR product made up the majority of the total yield of PCR product, approximately 90%. The correct size PCR product made up only approximately 10% of the total yield of PCR product. These results indicated that some of the RNAs coding for the reshaped human V regions contained deletions.

In order to determine which sequences were being deleted, the shorter PCR products were cloned and sequenced. From the DNA sequences, it became clear that for both the L and H chain V regions specific

sections of DNA were being deleted. Examination of the DNA sequences flanking the deleted sequences revealed that these sequences corresponded to the consensus sequences for splice donor-acceptor sequences (Breathnach, R. et al., Ann. Rev. Biochem (1981) 50:349-383). The explanation for the low levels of expression of the reshaped human H chains was that the design of the reshaped human H chain V regions had inadvertently created a rather efficient set of splice donor-acceptor sites. It also appeared that the design of the reshaped human L chain V regions had inadvertently created a rather inefficient set of splice donor-acceptor sites. In order to remove the splice donor-acceptor sites, minor modifications in the DNA sequences coding for versions "a" and "f", respectively, of the reshaped human PM-1 L and H chain V regions were made using the PCR-mutagenesis methods described earlier.

Another possible cause of reduced levels of expression was thought to be the presence of introns in the leader sequences in both the reshaped human L and H chain V regions (SEQ ID NOs: 54 and 55). These introns were originally derived from a mouse mu H chain leader sequence (M.S. Neuberger et al., Nature 1985 314:268-270) that was used in the construction of reshaped human D1.3 and V regions (Verhoeyen et al., 1988). Since the reshaped human D1.3 was expressed in a mammalian cell vector that employed a mouse immunoglobulin promoter, the presence of the mouse leader intron was important. The leader intron contains sequences that are important for expression from immunoglobulin promoters but not from viral promoters like HCMV (M.S. Neuberger et al., Nucl. Acids Res. (1988) 16:6713-6724). Where the reshaped human PM-1 L and H chains were being expressed in vectors employing non-immunoglobulin promoters, the introns in the leader sequences were deleted by PCR cloning cDNAs coding for the reshaped human V regions (see Example 12).

Another possible cause of reduced levels of expression was thought to be the presence of a stretch of approximately 190 bp of non-functional DNA within the intron between the reshaped human PM-1 H chain V region and the human gamma-1 C region. The reshaped human PM-1 H chain V region was constructed from DNA sequences derived originally from reshaped human B1-8 H chain V region (P.T. Jones et al., Nature (1986) 321:522-525). This first reshaped human V region was constructed from the mouse NP H chain V region (M.S. Neuberger et al., Nature (1985); M.S. Neuberger et al., EMBO J. (1983) 2:1373-1378). This stretch of approximately 190 bp occurring in the intron between the reshaped human H chain V region and the BamHI site for joining of the reshaped human V regions to the expression vector was removed during the PCR cloning of cDNAs coding for the reshaped human V regions.

The DNA and amino acid sequences of the final versions of reshaped human PM-1 L and H chain V regions, as altered to improve expression levels, are shown in SEQ ID NOs: 57 and 56. These DNA sequences code for version "a" of the reshaped human PM-1 L chain V region as shown in Table 2 and version "f" of the reshaped human PM-1 H chain V region as shown in Table 3. When inserted into the HEF-1α expression vectors (Figure 15), these vectors transiently produce approximately 2 μg/ml of antibody in transfected cos cells. In order to stably produce larger amounts of reshaped human PM-1 antibody, a new HEF-1α expression vector incorporating the dhfr gene was constructed (see Example 10, Fig. 11). The "crippled" dhfr gene was introduced into the HEF-1α vector expressing human gamma-1 H chains as was described for the HCMV vector expressing human gamma-1 H chains. The HEF-1α vector expressing reshaped human PM-1 L chains and the HEF-1α-dhfr vector expressing reshaped human PM-1 H chains were co-transfected into CHO dhfr(-) cells. Stably transformed CHO cell lines were selected in Alpha-Minimum Essential Medium (α-MEM) without nucleosides and with 10% FCS and 500 μg/ml of G418. Prior to any gene amplification steps, CHO cell lines were observed that produced up to 10 μg/10⁶ cells/day of reshaped human PM-1 antibody.

Comparison of V regions from mouse monoclonal antibody AUK 12-20 to V regions from known human antibodies

The homology of FRs of xL chain V region of the mouse monoclonal antibody AUK 12-20 with FRs of human xL chain V region subgroup (HSG) I to IV, and the homology of FRs of H chain V region of the mouse monoclonal antibody AUK 12-20 will FRs of human H chain V regions subgroup (HSG) I to III are shown in Table 4.

Table 4

Percent identities between FRs from the mouse AUK 12-20 V regions and FRs from the consensus sequence for the different subgroups of human V regions

FRs in the L chain V regions

HSG1	HSG2	HSG3	HSG4
65 8	64.0	67.6	67.6°

FRs in the H chain V regions

HSGI	HSGII	HSGIII
58.6	53.6	49.1

As seen from Table 4, the xL chain V region of the mouse monoclonal, antibody AUK 12-20 is homologous in a similar extent (64 to 68%) with the human xL chain V region subgroups (HSG) I to IV. In a search of the Data base "LEEDS" for protein, L chain V region of human antibody Len (M. Schneider et al., Physiol. Chem. (1975) 366:507-557) belonging to the HSG-IV exhibits the highest homology 68%. On the other hand, the human antibody REI, used for construction of a reshaped human antibody from the mouse monoclonal antibody PM-1 belongs to the HSG I, exhibits a 62% homology with L chain V region of the mouse monoclonal antibody AUK 12-20. In addition, the CDRs in the AUK 12-20 antibody L chain V region particularly CDR2, corresponded better to canonical structures of the CDRs in REI rather than those in LEN.

Considering the above, it is not necessary to choose a human antibody used for humanization of the mouse monoclonal antibody AUK 12-20 L chain V region from those antibodies belonging to the HSG IV. Therefore, as in the case of the humanization of the mouse monoclonal antibody PM-1 L chain V region, the FRs of REI are used for humanization of the mouse monoclonal antibody AUK 12-20 L chain V region.

As shown in Table 4, H chain V region of the antibody AUK 12-20 exhibits the highest homology with the HSG I. Moreover, in a search of Data base "LEEDS", human antibody HAX (Stollar, B.O. et al., J. Immunol. (1987) 139:2496-2501) also belonging to the HSG I exhibits an about 66% homology with the AUK 12-20 antibody H chain V region. Accordingly, to design reshaped human AUK 12-20 antibody H chain V region, the FRs of the human antibody HAX belonging to the HSG I, and FRs of humanized 425 antibody H chain V region which has FRs consisting of HSGI consensus sequence (Ketteborough C.A. et al., Protein Engineering (1991) 4:773-783) are used. Note, the AUK 12-20 antibody H chain V region exhibits an about 64% homology with version "a" of the humanized 425 antibody H chain V region.

Design of reshaped human AUK 12-20 antibody L chain V regions

According to the above reason, reshaped human AUK 12-20 antibody L chain V regions is designed as shown in Table 5 using FRs of the REI.

5**0**

10

15

20

Table 5

5		FR1 1 2	CDR1
-		1 1234567890123456789012	3 45677778901234 ABCD
10	V _L AUK 12-20	DIVLTQSPASLGVSLGQRATIS	C RASKSVSTSGYSYM
	REI	DIQMTQSPSSLSASVGDRVTIT	c
	RV_L	DIQMTQSPSSLSASVGDRVTIT	C RASKSVSTSGYSYM
15			
		FR2	CDR2
20 .		567890123456789	0123456
	V _L AUK 12-20	WYQQKPGQTPKLLIY	ASNLES
	REI	WYQQTPGKAPKLLIY	
25	RV_L	WYQQKPGKAPKLLIY	ASNLES
		FR3	CDR3
30		6 7 789012345678901234567890	
	V _L AUK 12-20	GVPARFSGSGSGTDFTLNIHPVEE	EDAATYYC QHSRENPY
35	REI	GVPSRFSGSGSGTDYTFTISSLQF	•
	$\mathtt{RV_L}$	GVPSRFSGSGSGTD <u>F</u> TFTISSLQF	EDIATYYC QHSRENPY
40		FR4	
		10 8901234567	
	V _L AUK 12-20	FGGGTKLEIK	
45	REI	FGQGTKLQIT	•
	RV_L	FGQGTK <u>VE</u> I <u>K</u>	
	Note: 5 underli	ned nucleotides are those	e changed in the
50		CAMPATH-1H antibody (see	· ·

Design of reshaped human AUK 12-20 antibody H chain V regions

According to the above reason, reshaped human AUK 12-20 antibody H chain V regions are designed using FRs of the reshaped human VHa 425. It is found, however, that nucleotide sequence of DNA coding

for reshaped human AUK 12-20 antibody H chain V region thus designed has a sequence well conforming to a splicing donor sequence. Therefore, as in the case of reshaped human PM-1 antibody there is a possibility of an abnormal splicing in the reshaped human AUK 12-20 antibody. Therefore, the nucleotide sequence was partially modified to eliminate the splicing donor-like sequence. The modified sequence is designated as version "a".

In addition, version "b" to "d" of the reshaped human AUK 12-20 antibody H chain V region were designed. Amino acid sequences of the versions "a" to "d" are shown in Table 6.

Table 6

10

30

35

40

45

50

55

		FR1	CDR1
15		1 123456789012345678901234567890	12345
	V _B AUK 12-20	EIQLQQSGPELMKPGASVKISCKASGYSFT ZVQLVQSGAEVKKPGXSVXVSCKASGYTFS	SYYIH
20	SGI RV _B a	QVQLVQSGAEVKKPGASVKVSCKASGY <u>S</u> F <u>T</u>	SYYIH
	$RV_{E}b$		
25	RV_{E} C		
	$RV_{E}d$		

		FR2	CDR2
5		67890123456789	5 01223456789012345 A
	V _B AUK 12-20	WVKQSHGKSLEWIG	YIDPFNGGTSYNQKFKG
	SGI	WVRQAPGXGLEWVG	4 . – 3.0
10	$RV_{E}a$	WVRQAPGQGLEWVG	YIDPFNGGTSYNQKFKG
	$RV_{E}b$		
	$RV_{\mathtt{B}}\mathbf{c}$	I-	
15	RV_Hd	ī-,	
		FR 7 8 6789012345678901	.3 9 2222345678901234
20	•		ABC
	V _B AUK 12-20	KATLTVDKSSSTAYMH	LSSLTSEDSAVYYCAR
	SGI	RVTXTXDXSXNTAYME	LSSLRSEDTAVYYCAR
25	$RV_{\mathtt{H}}$ a	RVTMTLDTSTNTAYME	LSSLRSEDTAVYYCAR
	RV _B b	KV	
	RVac		
30	RV _E d	KV	
۵		CDR3 10	FR4 11
35		5678900012 AB	34567890123
	V _B AUK 12-20	GGN-RFAY	WGQGTLVTVSA
40	SGI		WGQGTLVTVSS
•••	RVBa	GGN-RFAY	WGQGTLVTVSS
	RV _E b		
	RV _B C		
45	RV _E d		

Note: The position where one common amino acid residue is not identified in the HSG I V_{E} regions (SGI) is shown as "X". Two under lined amino acid residues

are different from those in SGI consensus sequence. For RV_Bb , RV_Bc and RV_Bd , only amino acid residues different from those of RV_Ba are shown.

Moreover, version "a" to "d" of reshaped human AUK 12-20 antibody H chain V region are designed as shown in Table 7, using FRs of the human antibody HAX (J. Immunology (1987) 139:2496-2501; an antibody produced by hybridoma 21/28 cells derived from B cells of a SLE patient; its amino acid sequence is described in Fig. 6 and nucleotide sequence of DNA coding for the amino acid sequence is shown in Figs. 4 and 6, of this literature).

Table 7

		FR1	CDR1
20		1 2 3 123456789012345678901234567890	12345
	V _B AUK 12-20 SGI	EIQLQQSGPELMKPGASVKISCKASGYSFT QVQLVQSGAEVKKPGASVKVSCKASGYTFT	SYYIH
25	sle: 1220Ha	QVQLVQSGAEVKKPGASVKVSCKASGY <u>S</u> FT	SYYIH
	1220Hb	S	
30	1220Hc	S	
30	1220Hd	S	

		FR2	CDR2	
5		67890123456789	5 6 0122223456789012345 ABC	
	V _B AUK 12-20	WVKQSHGKSLEWIG	YIDPFNGGTSYNQKFKG	
	HAX	WVRQAPGQRLEWMG		
10	sle: 1220Ha	WVRQAPGQRLEWMG	YIDPFNGGTSYNQKFKG	
	1220нь	I-		
15	1220Нс			
.5	1220Hd	I-		
20		. 7 8	12222345678901234	
	V _B AUK 12-20	VAMI MUDYCCCMA YM	ABC	
25	HAX		HLSSLTSEDSAVYYCAR	
	sle: 1220Ha	RVTITRDTSASTAYMELSSLRSEDTAVYYCAR RVTIT <u>V</u> DTSASTAYMELSSLRSEDTAVYYCAR		
	1220НЪ	V		
30	1220Нс	KV		
	1220Hd	KV		
35		CDR3 10 5678900012	FR4 11 34567890123	
		. AB		
40	V _B AUK 12-20	GGN-RFAY	WGQGTLVTVSA	
	HAX		WGQGTLVTVSS	
	sle: 1220Ha	GGN-RFAY	WGQGTLVTVSS	
45	1220Hb			
	1220Hc			
	1220на			
50	Note:	The two underlin	ed residues in sle1220Ha	

are changes from the HAX FRs. sle1220Hb, sle1220Hc, and sle1220Hd, only the anino acids in the FRs that differ from those in the HAX FRs are shown.

For the production of the present chimeric or reshaped human antibodies to the human IL-6R, any 10 expression system, including eucaryotic cells, for example, animal cells, such as established mammalian cell lines, fungal cells, and yeast cells, as well as procaryotic cells, for example, bacterial cells such as E.coli cells, may be used. Preferably the present chimeric or reshaped human antibodies are expressed in mammalian cells such as cos cells or CHO cells.

In such cases, a conventional promoter useful for the expression in mammalian cells can be used. For 15 example, viral expression system such as human cytomegalovirus immediate early (HCMV) promoter is preferably used. Examples of the expression vector containing the HCMV promoter include HCMV-V_H-HC₇1, HCMV-V_L-HC_K, HCMV-12h-g₇1, HCMV-12k-gk and the like derived from pSV2neo, as shown in Fig. 1.

Another embodiment of promoter useful for the present invention is the human elongation factor 1α -(HEF-1α) promoter. Expression vectors containing this promotor include HEF-12h-g_γ1 and HEF-12h-g_x -(Figs. 8 and 9), as well as HEF-V_H-g_Y1 and HEF-V_L-g_X (Fig. 15).

For gene amplification dhfr in a host cell line, an expression vector may contain a dhfr gene. Expression vectors containing the dhfr gene, are for example, DHFR-ΔE-PMh-g_γ1 (Fig. 10), DHFR-ΔE-RVh-PM1-f (Fig. 11) and the like.

In summary, the present invention first provides an L chain V region and an H chain V region of a mouse monoclonal antibody to the human IL-6R, as well as DNA coding for the L chain V region and DNA coding for the H chain V region. These are useful for the construction of a human/mouse chimeric antibody and reshaped human antibody to the human IL-6R. The monoclonel antibodies are, for example, AUK12-20, PM-1, AUK64-7 and AUK146-15. The L chain V region has an amino acid sequence shown in, for example, SEQ ID NOs: 24, 26, 28 or 30; and the H chain V region has an amino acid sequence shown in SEQ ID NOs: 25, 27, 29, or 31. These amino acid sequences are encoded by nucleotide sequences, for example, shown in SEQ ID NOs: 24 to 31 respectively.

The present invention also relates to a chimeric antibody to the human IL-6R, comprising:

- (1) an L chain comprising a human L chain C region and a mouse L chain V region; and
- (2) an H chain comprising a human H chain C region and a mouse H chain V region. The mouse L chain V region and the mouse H chain V region and DNA encoding them are as described above. The human L chain C region may be any human L chain C region, and for example, is human C. The human H chain C region may be any human H chain C region, and for example human $C_{\gamma 1}$.

For the production of the chimeric antibody, two expression vectors, i.e., one comprising a DNA coding for a mouse L chain V region and a human L chain C region under the control of an expression control region such as an enhancer/promoter system, and another comprising a DNA coding for a mouse H chain V region and a human H chain C region under the expression control region such as an enhancer/promotor system, are constructed. Next, the expression vectors are co-transfected to host cells such as mammalian cells, and the transfected cells are cultured in vitro or in vivo to produce a chimeric antibody.

Alternatively, a DNA coding for a mouse L chain V region and a human L chain C region and a DNA coding for a mouse H chain V region and a human H chain C region are introduced into a single expression vector, and the vector is used to transfect host cells, which are then cultured in-vivo or in-vitro to produce a desired chimeric antibody.

The present invention further provides a reshaped antibody to the human IL-6R, comprising:

(A) an L chain comprising,

5

35

50

- (1) a human L chain C region, and
- (2) an L chain V region comprising a human L chain FRs, and L chain CDRs of a mouse monoclonal antibody to the human IL-6R; and
- (B) an H chain comprising,
 - (1) a human H chain C region, and
 - (2) an H chain V region comprising human H chain FRs, and H chain CDRs of a mouse monoclonal antibody to the IL-6R.

In a preferred embodiment, the L chain CDRs have amino acid sequences shown in any one of SEQ ID NOs: 24, 26, 28 and 30 wherein the stretches of the amino acid sequences are defined in Table 9; the L chain CDRs have amino acid sequences shown in any one of SEQ ID NOs: 25, 27, 29 and 31 wherein the stretches of the amino acid sequences are defined in Table 9; human L chain FRs are derived from the REI; and human H chain FRs are derived from the NEW or HAX.

In the preferred embodiment, the L chain V region has an amino acid sequence shown in Table 2 as RV_La ; and the H chain V region has an amino acid sequence shown in Table 3 as RV_Ha , RV_Hb , RV_Hc , RV_Hd , RV_He or RV_Hf . The amino acid sequence RV_Hf is most preferable.

For the production of the reshaped human antibody, two expression vectors, i.e., one comprising a DNA coding for the reshaped L chain as defined above under the control of an expression control region such as an enhancer/promoter system, and another comprising a DNA coding for the reshaped human H chain as defined above under the expression control region such as an enhancer/promoter system, are constructed. Next, the expression vectors are co-transfected to host cells such as mammalian cells, and the transfected cells are cultured in vitro or in-vivo to produce a reshaped human antibody.

Alternatively, a DNA coding for the reshaped human L chain and a DNA coding for the reshaped H chain are introduced into a single expression vector, and the vector is used to transfect host cells, which are then cultured in vivo or in vitro to produce a desired reshaped human antibody.

A chimeric antibody of a reshaped human antibody thus produced can be isolated and purified be a conventional processes such as Protein A affinity chromatography, ion exchange chromatography, gel filtration and the like.

The present chimeric L chain or reshaped human L chain can be combined with an H chain to construct a whole antibody. Similarly, the present chimeric H chain or reshaped human H chain can be combined with an L chain to construct a whole antibody.

The present mouse L chain V region, reshaped human L chain V region, mouse H chain V region and reshaped human H chain V region are intrinsically a region which binds to an antigen, human IL-6R, and therefore considered to be useful as such or as a fused protein with other protein, for preparing pharmacenticals or diagnostic agents.

Moreover, the present L chain V region CDRs and H chain V region CDRs are intrinsically regions which bind to an antigen, human IL-6R, and therefore considered to be useful as such or as a fused protein with other protein, for preparing pharmacenticals or diagnostic agents.

DNA coding for a mouse L chain V region of the present invention is useful for construction of a DNA coding for a chimeric L chain or a DNA coding for a reshaped human L chain.

Similarly, DNA coding for a mouse H chain V region of the present invention is useful for construction of a DNA coding for a chimeric H chain or a DNA coding for a reshaped human H chain. Moreover, DNA coding for L chain V region CDR of the present invention is useful for construction of a DNA coding for a reshaped human L chain V region and a DNA coding for a reshaped human L chain. Similarly, DNA coding for H chain V region CDR of the present invention is useful for construction of a DNA coding for a reshaped human H chain V region and a DNA coding for a reshaped human H chain.

40 EXAMPLES

The present invention will be further illustrated by, but is by no means limited to, the following Examples.

Example 1 Cloning of DNA coding for V region of mouse monoclonal antibody to human IL-6R (1)

A DNA coding for the V region of a mouse monoclonal antibody to a human IL-6R was cloned as follows.

50 1. Preparation of total RNA

Total RNA from hybridoma AUK12-20 was prepared according to a procedure described by Chirgwin et al., Biochemistry 18, 5294 (1979). Namely, 2.1×10^8 cells of the hybridoma AUK12-20 were completely homogenized in 20 ml of 4 M guanidine thiocyanate (Fulka). The homogenate was layered over a 5.3 M cesium chloride solution layer in a centrifuge tube, which was then centrifuged in a Beckman SW40 rotor at 31000 rpm at 20 °C for 24 hours to precipitate RNA. The RNA precipitate was washed with 80% ethanol and dissolved in 150 μ l of 10 mM Tris-HCl (pH 7.5) containing 1 mM EDTA and 0.5% SDS, and after adding Protenase (Boehringer) thereon to 0.5 mg/ml, incubated at 37 °C for 20 minutes. The mixture was

extracted with phenol and chloroform, and RNA was precipitated with ethanol. Next, the RNA precipitate was dissolved in 200 µl of 10 mM Tris-HCl (pH 7.5) containing 1 mM EDTA.

2. Synthesis of single stranded cDNA

5

15

20

30

40

To synthesize single stranded cDNA according to a procedure described by J.W. Larrick et al., Biotechnology, 7, 934 (1989), about 5 μg of the total RNA prepared as described above was dissolved in 10 μl of 50 mM Tris-HCl (pH 8.3) buffer solution containing 40 mM KCl, 6 mM MgCl₂, 10 mM dithiothreitol, 0.5 mM dATP, 0.5 mM dGTP, 0.5 mM dTTP, 35 μM oligo dT primer (Amersham), 48 units of RAV-2 reverse transcriptase (RAV-2: Rous associated virus 2; Amersham) and 25 units of human placenta ribonuclease inhibitor (Amersham), and the reaction mixture was incubated at 37 °C for 60 minutes and directly used for the subsequent polymerase chain reaction (PCR) method.

3. Amplification of cDNA coding for antibody V region by PCR method

The PCR method was carried out using a Thermal Cycler Model PHC-2 (Techne).

(1) Amplification of cDNA coding for mouse x light (x L) chain variable region

The primers used for the PCR method were MKV (Mouse Kappa Variable) primers represented in SEQ ID NO: 1 to 11, which hybridize with a mouse x L chain reader sequence (S.T. Jones et al., Biotechnology, 9, 88, 1991), and an MKC (Mouse Kappa Constant) primer represented in SEQ ID NO: 12, which hybridizes with a mouse x L chain C region (S.T. Jones et al., Biotechnology, 9, 88, 1991).

First, 100 µl of a PCR solution comprising 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 0.1 mM dATP, 0.1 mM dGTP, 0.1 mM dCTP, 0.1 mM dTTP, 1.5 mM MgCl, 2.5 units of DNA polymerase Ampli Taq (Perkin Elmer Cetus), 0.25 µM of each group of MKV primer, 3µM MKC primer and 1 µl of the reaction mixture of the single-stranded cDNA synthesis was heated at an initial temperature of 94 °C for 1.5 minutes, and then at 94 °C for 1 minute, 50 °C for 1 minute and 72 °C for 1 minute, in this order. After this temperature cycle was repeated 25 times, the reaction mixture was further incubated at 72 °C for 10 minutes.

(2) Amplification of cDNA coding for mouse H chain V region

As primers for the PCR, MHV (Mouse Heavy Variable) primers 1 to 10 represented in SEQ ID NO: 13 to 22 (S.T. Jones et al., Biotechnology, 9, 88, 1991), and an MHC (Mouse Heavy Constant) primer represented in SEQ ID NO: 23 (S.T. Jones et al., Biotechnology, 9, 88, 1991) were used. Amplification was carried out according to the same procedure as described for the amplification of the x L chain V region gene in section 3. (1).

4. Purification and Digestion of PCR Product

The DNA fragments amplified by the PCR as described above were purified using a QIAGEN PCR product purification kit (QIAGEN Inc. US), and digested with 10 units of restriction enzyme Sal I (GIBCO BRL) in 100 mM Tris-HCI (pH 7.6) containing 10 mM MgCl₂ and 150 mM NaCl, at 37 °C for three hours. The digestion mixture was extracted with phenol and chloroform, and the DNA was recovered by ethanol precipitation. Next, the DNA precipitate was digested with 10 units of restriction enzyme Xma I (New England Biolabs), at 37 °C for two hours, and resulting DNA fragments were separated by agarose gel electrophoresis using low melting agarose (FMC Bio Products USA).

An agarose piece containing DNA fragments of about 450 bp in length was excised and melted at 65 °C for 5 minutes, and an equal volume of 20 mM Tris-HCl (pH 7.5) containing 2 mM EDTA and 200 mM NaCl was added thereon. The mixture was extracted with phenol and chloroform, and the DNA fragment was recovered by ethanol precipitation and dissolved in 10 µl of 10 mM Tris-HCl (pH 7.5) containing 1 mM EDTA. In this manner, a DNA fragment comprising a gene coding for a mouse x L chain V region, and a DNA fragment comprising a gene coding for a mouse H chain V region were obtained. Both of the above DNA fragments had a Sal I cohesive end at the 5'-end thereof and an Xma I cohesive end at the 3'-end

5. Ligation and Transformation

About 0.3 μ g of the Sal I - Xma I DNA fragment comprising a gene coding for a mouse κ L chain V region, prepared as described above, was ligated with about 0.1 μ g of a pUC19 vector prepared by digesting plasmid pUC19 by Sal I and Xma I, in a reaction mixture comprising 50 mM Tris-HCl (pH 7.4), 10mM MgCl₂, 10 mM dithiothreitol, 1 mM spermidine, 1 mM dATP, 0.1 μ g/ml of bovine serum albumin and 2 units of T4 DNA ligase (New England Biolabs), at 16°C for 16 hours.

Next, 7 µl of the above ligation mixture was added to 200 µl of competent cells of E. coli DH5a, and the cells were incubated for 30 minutes on ice, for one minute at 42 °C, and again for one minute on ice. After adding 800 µl of SOC medium (Mecular Cloning: A Laboratory Manual, Sambrook et al., Cold Spring Habor Laboratory Press, 1989), the cell suspension was incubated at 37 °C for one hour, and inoculated onto an 2xYT agar plate (Mecular Cloning: A Laboratory Manual, Sambrook et al., Cold Spring Habor Laboratory Press, 1989), which was then incubated at 37 °C overnight to obtain an E.coli transformant. The transformant was cultured in 5 ml of 2xYT medium containing 50 µg/ml ampicillin, at 37 °C overnight, and a plasmid DNA was prepared from the culture according to an alkaline method (Mecular Cloning: A Laboratory Manual, Sambrook et al., Cold Spring Habor Laboratory Press, 1989). The thus-obtained plasmid containing a gene coding for a mouse x L chain V region derived from the hybridoma AUK12-20, was designated p12-k2.

According to the same procedure as described above, a plasmid containing a gene coding for a mouse H chain V region derived from the hybridoma AUK12-20 was constructed from the Sal! - Xma! DNA fragment, and designated p12-h2.

Example 2 Cloning of DNA coding for V region of mouse monoclonal antibody (2)

Substantially the same procedure as described in Example 1 was applied to the hybridoma PM1, AUK64-7, and AUK146-15, to obtain the following plasmids:

- a plasmid pPM-k3 containing a gene coding for a x L chain V region derived from the hybridoma PM1;
- a plasmid pPM-h1 containing a gene coding for an H chain V region derived from the hybridoma PM1:
- a plasmid p64-k4 containing a gene coding for a x L chain V region derived from the hybridoma AUK64-7;
- a plasmid p64-h2 containing a gene coding for an H chain V region derived from the hybridoma AUK64-7;
- a plasmid p146-k3 containing a gene coding for a \times L chain V region derived from the hybridoma AUK146-15; and
- a plasmid p146-h1 containing a gene coding for an H chain V region derived from the hybridoma AUK146-15.

Note E. coli strains containing the above-mentioned plasmid were deposited with the National Collections of Industrial and Marine Bacteria Limited under the Budapest Treaty on February 11, 1991, and were given the accession number shown in Table 8.

Table 8

Plasmid SEQ ID NO Accession No. p12 - k2 24 **NCIMB 40367** p12 - h2 25 **NCIMB 40363** pPM - k3 26 NCIMB 40366 pPM - h1 27 NCIMB 40362 p64 - k4 28 NCIMB 40368 p64 - h2 29 NCIMB 40364 p146 - k3 30 NCIMB 40369 p146 - h1 31 **NCIMB 40365**

Example 3 Sequencing of DNA

40

45

50

55

Nucleotide sequences of a cDNA coding region in the above-mentioned plasmids were determined using a kit, Sequenase^(TM) Version 2.0 (U.S. Biochemical Corp. USA).

First, about 3 µg of plasmid DNA obtained as described above was denatured with 0.2 N NaOH, annealed with a sequencing primer, and labeled with ³⁵S-dATP according to a protocol of the supplier. Next, the labeled DNA was applied to 6% polyacrylamide gel containing 8 M urea, and, after electrophoresis, the gel was fixed with 10% methanol and 10% acetic acid, dried, and subjected to autoradiography to determine the nucleotide sequence.

The nucleotide sequence of cDNA coding region in each plasmid is shown in SEQ ID NOs 24 to 31.

Example 4 Determination of CDRs

10

20

25

30

35

General structures of L chain and H chain V regions are similar each other, wherein 4 frame works (FRs) are linked through 3 super variable regions, i.e., complementarity determining regions (CDRs). While amino acid sequences in the FRs are relatively well conserved, amino acid sequences in CDRs are very highly variable (Kabat, E.A. et al., "Sequences of Proteins of Immunological Interest", US Dept. Heath and Human Services 1983).

On the basis of the above-determined amino acid sequences of V regions of mouse monoclonal antibodies to human IL-6R, and according to Kabat, E.A. et al., "Sequences of Proteins of Immunological Interest", US Dept. Health and Human Services 1983, CDRs of each V region of mouse monoclonal antibodies to the human IL-6R were determined as shown in Table 9.

Table 9

CDR(3) SEQ ID NO CDR(1) CDR(2) (Amino acid No.) plasmid 93-101 54-60 24-38 p12-K2 24 99-105 50-66 31-35 p12-h2 25 89-97 50-56 pPM-k3 26 24-34 99-108 51-66 pPM-h1 27 31-36 54-60 93-101 p64-k4 28 24-38 99-109 31-35 50-66 29 p64-h2 89-97 50-56 30 24-34 p146-k3 99-106 50-66 31-35 p146-h1 31

Example 5 Confirmation of expression of cloned cDNA(1) (Construction of Chimeric AUK12-20 antibody)

Construction of Expression Plasmid

A chimeric L chain/H chain was constructed from PCR-cloned cDNAs coding for V regions x L chain and H chain of AUK12-20. In order to easily join a cDNA coding for the mouse AUK12-20 V region to a DNA coding for a human C region in a mammalian expression vector containing an enhancer and promoter of human cytomegalovirus (HCMV) expression vector, it is necessary to introduce convenient restriction enzyme cleavage sites to the 5'- and 3'- termini of the mouse cDNA.

This modification of the 5'- and 3'- termini was carried out by PCR method. Two sets of primers were designed and synthesized. An L chain V region backward primer (SEQ ID NO: 32) and H chain V region backward primer (SEQ ID NO: 33) were designed so that the primers hybridize with a DNA coding for the beginning of the leader sequence, maintain a DNA sequence essential for efficient translation (Kozak, M., J. Mol. Biod. 196: 947-950, 1987) and form a HindIII site for cloning into the HCMV expression vector. An L chain V region forward primer (SEQ ID NO: 34) and an H chain V region forward primer (SEQ ID NO: 35) were designed so that the primers hybridize with a DNA coding for the terminal portion of the J region, maintain a DNA sequence essential for splicing into the C region and form a Bam HI site for joining to the human C region in the HCMV expression vector.

Following the amplification by the PCR, the PCR product was digested with Hind III and BamHI, cloned into the HCMV vector containing the human x and $\gamma 1$ chain C regions DNA and sequenced to confirm that errors were not introduced during the PCR amplification. The resulting expression vectors are designated as HCMV-12k-gk and HCMV-12h-gyl.

The structures of the HCMV expression plasmids are shown in Fig. 1. In the plasmid HCMV- V_L -HC_K, V_L region may be any mouse L chain V region. In this example, AUK12-20 $_{\chi}L$ chain V region was inserted to obtain the HCMV-12k. In the plasmid HCMV- V_H -HC $_{\gamma}I$, V_H region may be any mouse H chain V region. In

this example, AUK12-20 H chain V region was inserted to obtain HCMV-12h-gyl.

Transient expression in COS cells

To observe transient expression of a chimeric AUK12-20 antibody in COS cells, the expression vectors constructed as described above were tested in the COS cells. The vector DNAs were introduced into COS cells by electroporation using a Gene Pulsar apparatus (Bio Rad). Namely, COS cells were suspended in phosphate-buffered saline (PBS) to a cell concentration of 1 \times 10 7 cells / ml, and to 0.8 ml aliquot of the suspension was added 10 μ g (per each plasmid) of DNA. Pulses were applied at 1,900 V and 25 μ F.

After recovery period of 10 minutes at a room temperature, the electroporated cells were added to 8 ml of DMEM (GIBCO) containing 10% fetal bovine serum. After incubation for 72 hours, a culture supernatant is collected, centrifuged to eliminate cell debris, and aseptically stored for a short period at 4°C or for a long period at -20°C.

15 Quantification of chimeric antibody by ELISA

A culture supernatant of the transfected COS cells was assayed by ELISA to confirm the production of chimeric antibody. To detect the chimeric antibody, a plate was coated with goat anti-human $\lg G$ whole molecule (Sigma). The plate was blocked, and serially diluted supernatant from the COS cell culture was added to each well. After incubation and washing, alkaline phosphatase-linked goat anti-human $\lg G$ (γ -chain specific, Sigma) was added to each well. After incubation and washing, substrate buffer was added thereon. The reaction mixture was incubated, and after termination of the reaction, optical density at 405 mm was measured. As a standard, purified human $\lg G$ (Sigma) was used.

ELISA for confirmation of an ability to bind to human IL-6R

A culture supernatant of the transformed COS cells was assayed by ELISA to determine whether the produced antibody can bind to the antigen. To detect the binding to the antigen, a plate was coated with MT18 mouse monoclonal antibody (Reference Example 1), and after blocking with 1% bovine serum albumin (BSA) soluble recombinant human IL-6R (SR 344) was added thereon. After washing, a serially diluted culture supernatant from the COS cells was added to each well. After incubation and washing alkaline phosphatase-linked goat anti-human IgG was added. The reaction mixture was incubated, and after washing a substrate buffer was added. After incubation, the reaction was terminated, and optical density at 405 mm was measured.

A result is shown in Fig. 2. Transfection of gene coding for a chimeric antibody AUK12-20 into COS cells was twice repeated. Both the culture supernatant samples exhibited a strong binding to IL-6R, and optical density at 405 mm was changed in a sample dilution (monaclonal antibody concentration) - dependent manner as shown in Fig. 2 by open circles and closed circles revealing the presence of an antibody to IL-6R in the sample.

Determination of an ability to inhibit the binding to IL-6R with IL-6

To determine whether an antibody present in a medium inhibits the binding of IL-6R with IL-6, a plate was coated with MT18 monoclonal antibody (Reference Example 1). After blocking, soluble recombinant human IL-6R (SR 344) was added thereon. After washing, serially diluted sample from COS cell culture was added to each well with biotinated IL-6.

After washing, alkaline phosphatase-linked streptoavidin was added, and after incubation and washing, a substrate buffer was added. The reaction mixture was incubated, and after termination of the reaction, optical density at 405 mm was measured, purified mouse AUK12-20 monoclonal antibody was added as a positive control, and a culture medium from COS cells expressing a non-related antibody was used as a negative control.

A result is shown in Fig. 3. A culture supernatant of COS cells transfected with genes coding for chimeric antibody AUK 12-20 exhibited the binding of IL-6R with IL-6 at the highest and second highest concentrations. Namely, as shown by closed circles in Fig. 3, optical density at 405 mm changed in a sample dilution (antibody concentration) dependent manner, revealing the inhibition of the binding to IL-6R with IL-6 by an antibody in the sample. This is further confirmed by substantive conformity with antibody concentration dependent change of the positive control (open circles). Note, the negative control did not exhibit inhibition activity (open triangles).

Example 6 Confirmation of expression of cloned cDNA (2) (Construction of chimeric PM-1 antibody)

(Construction of expression vectors)

In order to construct vectors expressing chimeric PM-1 antibody, the cDNA clones pPM-k3 and pPM-h1, coding for the mouse PM-1 xL chain and the H chain V regions, respectively, were modified by a PCR technique, and then introduced into the HCMV expression vectors (see Figure 1). The backward primers pmk-s (SEQ NO: 38) for L chain V region and pmh-s (SEQ NO: 40) for H chain V region were designed to hybridize to the DNA sequences coding for the beginning of the leader sequences, and to have Kozak consensus sequence and a HindIII restriction site. The forward primers pmk-a (SEQ No: 36) for L chain V region and pmh-a (SEQ No: 39) for H chain V region were designed to hybridize to the DNA sequences coding for the ends of the J regions, and to have a splice donor sequence and a BamHI restriction site.

For the kappa L chain V region, two forward primers were synthesized. Although in most kappa L chains lysine at position 107 is conserved, in mouse PM-1 kappa L chain position 107 is an asparagine. In order to investigate the effect of this change on the antigen-binding activity of the chimeric PM-1 antibody, the forward primer pmk-b (SEQ NO: 37) was designed to mutate position 107 from an asparagine to a lysine. Following the PCR reaction, the PCR products were purified, digested with HindIII and BamHI, and subcloned into a pUC19 vector (Yanishe-Perron et al., Gene (1985) 33:103-109). After DNA sequencing, the HindIII-BamHI fragments were excised and cloned into the expression vector HCMV-V_H-HC_{γ1} to obtain HCMV-pmh-g_γI for the chimeric H chain, and into the expression vector HCMV-V_L-HC_k to obtain HCMV-pmka-gk and HCMV-pmkb-gk for the chimric L chain.

Transfection of cos cells

The vectors were tested in cos cells to look for transient expression of chimeric human PM-1 antibodies. The HCMV-pmh-g_γI, and either HCMV-pmka-gk or HCMV-pmkb-gk were co-transfected into the cos cells by electroporation using the Gene Pulsar apparatus (BioRad). DNA (10 µg of each plasmid) was added to a 0.8 ml aliquot of 1 × 10⁷ cells/ml in PBS. A pulse was delivered at 1,900 volts, 25 microfarads capacitance. After a 10 min recovery period at a room temperature, the electroporated cells were added to 20 ml of Dulbecco's Modified Eagle Medium (DMEM) (GIBCO) containing 10% gamma-globulin-free fetal calf serum. After 72 h incubation, the medium was collected, centrifuged to remove cellular debris, and stored under sterile conditions at 4 °C for short periods of time, or at -20 °C for longer periods.

Expression and analysis of the chimeric PM-1 antibodies

After 3 days of transient expression, medium from the cos cells was collected and tested for chimeric PM-1 antibody. The medium was first analyzed by ELISA to determine if human-like antibody was being produced by the transfected cos cells. By using known amounts of purified human IgG as a standard in this assay, it is also possible to estimate an amount of human-like antibody (in this case, chimeric PM-1 antibody) present in the medium from the cos cells. For the detection of human antibody, plates were coated with goat anti-human IgG (whole molecule, Sigma). Following blocking, the samples from cos cells were serially diluted and added to each well. After incubation and washing, alkaline phosphatase-conjugated goat anti-human IgG (gamma chain specific, Sigma) was added. After incubation and washing, substrate buffer was added. After incubation, the reaction was stopped and the optical density at 405 nm measured. Purified human IgG (Sigma) was used as a standard.

The medium from the <u>cos</u> cells transfected with the vectors carrying the chimeric PM-1 genes was positive for the expression of a human-like antibody and the approximate amounts were quantified as described.

Next, the same medium from the <u>cos</u> cells transfected with the vectors carrying the chimeric PM-1 genes was assayed for a an ability to bind to human IL-6R. For the detection of binding to the antigen, plates were coated with MT18 mouse monoclonal anithody (Reference Example 1), an antibody to the human IL-6R. Following blocking, soluble recombinant human IL-6R (SR344) was added. After washing, the samples were serially diluted and added to each well. After incubation and washing, alkaline phosphatase-conjugated goat anti-human IgG (gamma chain specific sigma) was added. After incubation and washing, substrate buffer was added. After incubation, the reaction was stopped and the optical density at 405 nm measured. There was no standard available for this assay.

Two samples were from transfection with genes coding for a chimeric antibody with V regions identical to those found in mouse PM-1 antibody (chimeric PM-1a antibody, Figure 4). One sample was from

transfection with genes coding for a chimeric antibody with a single amino acid change at position 107 in the L chain V region as described above (chimeric PM-1b antibody, Figure 4). All samples showed strong binding to IL-6R that decreased with dilution of the sample. Thus, the chimeric PM-1 antibody, as constructed, is functional and can bind well to its antigen. Most importantly, the demonstration of a functional chimeric PM-1 is direct evidence that the correct mouse PM-1 V regions have been cloned and sequenced. The chimeric PM-1 antibody, with either amino acid at position 107 in the L chain V region, bound well to its antigen, IL-6R. It appears that position 107 in the mouse PM-1 L chain V region is not very critical in antigen-binding and that either an asparagine or a lysine at this position will function satisfactorily. Since the mouse PM-1 antibody has an asparagine at this position in its L chain V region, all future work with chimeric PM-1 antibody was done with version a, the version that has V regions identical to those found in mouse PM-1 antibody.

In order to stably produce larger amounts of chimeric PM-1 antibody, a new HCMV expression vector incorporating the dhfr gene was constructed. The first step in achieving higher levels of expression of the chimeric PM-1 antibody was to modify the vector HCMV-V_H-HC_{γ1} (Figure 1) so that this vector contained a dhfr gene being expressed by a "crippled" SV40 promoter-enhancer. The SV40 enhancer elements were deleted from the pSV2-dhfr vector (S. Subramani et al., Mol. Cell. Biol. (1981) 1:854-864) and the dhfr gene being expressed by the "crippled" SV40 promoter was inserted into the HCMV-V_H-HC_{γ1} vector in place of the neo gene being expressed by the SV40 promoter-enhancer. The mouse PM-1 V region was then inserted into this new HCMV-V_H-HC_{γ1}-dhfr vector. Construction of the improved expression vector is described in Example 10 in detail.

CHO dhfr(-) cells (G. Urlaub et al., Proc. Natl. Acad. Sci. USA (1980) 77:4216-4220) were co-transfected with two plasmid DNAs, the HCMV-V_L-HC, vector for expressing chimeric PM-1a L chain (HCMV-pmka-gk) and the HCMV-V_H-HC, 1-dhfr vector for expressing chimeric PM-1 H chain (DHFR- Δ E PMh-gyl; Example 10). DNA (10 μ g/ml of each plasmid) was added to a 0.8 ml aliquot of 1 × 10⁷ cells/ml in PBS. A pulse was delivered at 1900 volts, 25 microfarads capacitance. After a 10 min recovery period at a room temperature, the electroporated cells were added to 10 ml of Alpha minimum essential medium (α -MEM) containing nucleosides and 10% FCS. After overnight incubation, the medium was changed to α -MEM without nucleosides and with 10% FCS and 500 μ g/ml of G418 (GIBCO) for the selection of dhfr⁺ and neo⁺ transformed cells. After selection, the selected clones were used for gene amplification. After one round of amplification in 2 × 10⁻⁸ M methotrexate (MTX), a cell line (PM1k3-7) was selected that produced approximately 3.9 μ g/10⁶ cells/day of chimeric PM-1a antibody.

ELISA assay for the ability of chimeric antibodies to inhibit IL-6 from binding to human IL-6R.

Antibodies produced in transfected cos cells or in stable CHO cell lines were assayed to determine whether the antibodies could compete with biotinylated IL-6 for binding to IL-6R. Plates were coated with MT18 mouse monoclonal antibody. Following blocking, soluble recombinant human IL-6R (SR344) was added. After washing, the samples from the cos cells were serially diluted and added together with biotinylated IL-6 to each well. After washing, alkaline phosphatase-conjugated streptavidin was added. After incubation and washing, substrate buffer was added. After incubation, the reaction was stopped and the optical density at 405 nm measured. The Results are shown in Fig. 5.

Example 7 Construction of reshaped human PM-1 antibodies

In order to achieve CDR-grafting more rapidly and efficiently, a method for sequential CDR-grafting by PCR was developed. This method is based on PCR-mutagenesis methods (Kamman et al., 1989).

In order to prepare the template DNAs containing the selected human FRs for CDR-grafting, it was necessary to reclone suitable reshaped human V regions into convenient vectors. Plasmid DNAs alys11 and F10 code for reshaped human D1.3 L and H chains and contain the FRs from human REI and NEW, respectively. An approximately 500 bp NcoI-BamHI fragment containing DNA sequence coding for the reshaped human D1.3 L chain V region was excised from alys11 and subcloned into HindIII-BamHI cleaved-pBR327 to obtain a vector V1-lys-pBR327. HindIII-BamHI fragment from the V1-lys-pBR327 was inserted into HindIII-BamHI cleaved pUC19 to obtain a vector V1-lys-pUC19. An approximately 700 bp NcoI-BamHI fragment containing DNA sequence coding for the reshaped human D1.3 H chain V region was excised from F10 and subcloned into the HindIII-BamHI site of pBR327 vector, using a HindIII-NcoI adaptor, yielding Vh-lys-pBR327. A HindIII-BamHI fragment was then excised from this vector and subcloned into HindIII-BamHI cleaved pUC19 vector yielding Vh-lys-pUC19.

Note the construction of the plasmid alysli and the DNA sequence coding for the reshaped human D1.3 L chain V region used in a template is described. The DNA sequence coding for the reshaped human D1.3 H chain V region in the plasmid F10 used as a template is described in V. Verhoey et al., Science 237:1534-1536 (1988) Fig. 2.

Figure 6 diagrams the primers and the PCR reactions used in the construction of the first version of reshaped human PM-1 H chain V region. A backward primer A (APCR1; SEQ NO: 41) and a forward primer E (APCR4; SEQ NO: 42) hybridize to DNA sequences on the vector. Although APCR1 and APCR4 were specifically designed for pUC19 vector, universal M13 sequence primers could be used.

The CDR1-grafting/mutagenic primer B (phv-1; SEQ NO: 43), CDR2-grafting primer C (phv-2; SEQ NO: 44) and CDR3-grafting primer D (phv-3; SEQ NO: 45) were 40-60 bp in length, consisting of DNA sequences coding for CDRs from the mouse PM-1 H chain V region and the human FRs in the template DNA that flank the CDR regions. In the first PCR reaction, the forward primer APCR4 and the backward primer D were used. The first PCR product, which contains the mouse PM-1 CDR3 sequence, was purified and used in the second PCR reaction as a forward primer with primer C as the backward primer. In the same manner, the second and third PCR products, which contain mouse PM-1 CDR2 and CDR3, and all three mouse PM-1 CDRs, respectively, were used as primers in the following PCR step. The fourth PCR product, which has the complete reshaped human PM-1 H chain V region, was purified, digested with HindIII and BamHI, and subcloned into a pUC19 vector for further analysis.

Three mutagenic primers phv-1, phv-2, and phv-3 were synthesized for the construction of reshaped human PM-1 H chain V region. They were purified on 12% polyacrylamide gels containing 8M urea. The mutagenic primer phv-1 was designed not only for mouse PM-1 CDR1-grafting but also for mutations at positions 27 and 30 in human FR1, Ser to Tyr and Ser to Thr, respectively. Each 100 µl PCR reaction typically contained 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 1.5 mM MgCl₂, 250 µM dNTPs, 50 ng of the template DNA (Vh-lys-pUC19), 2.5 u of AmpliTaq (Perkin Elmer Cetus) and the primers. The first PCR reaction containing 1 µM of each of the phv-3 and APCR4 primers was carried out, after an initial denaturation at 94 °C for 1.5 min, for 30 cycles of 94 °C for 1 min, 37 °C for 1 min and 72 °C for 1 min were repeated. The ramp time between the annealing and synthesis steps was set for 2.5 min. The completion of the last cycle was followed by a final extension at 72 °C for 10 min. A 523 bp PCR product was purified using a 1.6% low melting temperature agarose gel and then used as a primer in the second PCR reaction.

In the second PCR reaction approximately 1 µg of the purified first PCR product and 25 pmoles of the mutagenic primer phv-2 were used as primers. The PCR conditions were the same as described for the first PCR reaction. In the same manner, a 665 bp PCR product from the second PCR reaction and a 737 bp PCR product from the third reaction were used as primers in the third PCR reaction with the primer phv-1, and in the fourth PCR reaction with the primer APCR1, respectively. A 1.172 kb PCR product from the fourth PCR reaction was purified, digested with HindIII and BamHI, and then an approximately 700 bp fragment containing the reshaped human PM-1 H chain V region was subcloned into a pUC19 vector. Two of four clones sequenced had the DNA sequence coding for the correct amino acid sequence and were designated pUC-RVh-PM1a.

In order to construct other versions of reshaped PM-1 H chain V region, five mutagenic PCR primers were synthesized. Each PCR reaction was essentially carried out under the same condition as described above. For version "b", mutagenic primer phv-m4 (Val-71 to Arg-71; the number is according to Kabat et al; see Table 3) (SEQ ID NO: 46) and APCR4 were used in the first PCR reaction with template DNA, pUC-RVh-PM1a. The PCR product from this first PCR reaction was purified and was used as a forward primer in the second PCR reaction with the primer APCR1. The PCR product from the second PCR reaction was purified using a 1.6% low melting temperature agarose gel, digested with HindIII and BamHI, and subcloned into a pUC19 vector yielding pUC-RVh-PM1b. In the same manner, version "c" (pUC-RVh-PM1c) was obtained using a mutagenic primer phv-nm (Asp-1 to Gin-1) (SEQ ID NO: 47) and a template pUC-RVh-PM1b; version "d" (pUC-RVh-PM1d) was obtained using a mutagenic primer phv-m6 (IIe-48 to Met-48) (SEQ ID NO: 48) and a template pUC-RVh-PM1b; version "e" (pUC-RVh-PM1f) was obtained using the mutagenic primer phv-m6 and a template pVC-RVh-PM1c; and "version f" (pUC-RVh-PM1f) was obtained using a mutagenic primer phv-m7 (Thr-28 to Ser-28, and Phe-29 to IIe-29) (SEQ ID NO: 49) and a template pUC-RVh-PM1b. Amino acid sequence of the version "f" of the reshaped human H chain V region, and a nucleotide sequence codin therefor is shown in SEQ ID NO: 54.

Figure 7 diagrams the primers and the PCR reactions used in the construction of the first version of reshaped human PM-1 L chain V region. For the construction of the first version of reshaped human PM-1 L chain V region, CDR1-grafting primer pkv-1 (SEQ ID NO: 50), CDR2-grafting primer pkv-2 (SEQ ID NO: 51) and CDR3-grafting primer pkv-3 (SEQ ID NO: 52) were synthesized and purified on a 12% polyacrylamide gel containing 8M urea. PCR reactions were carried out as described above. The first PCR reaction

contained 1 μ M of each of the pkv-3 and APCR4 primers. A 350 bp PCR product from the first PCR reaction was purified using a 1.5% low melting temperature agarose gel and used as a forward primer in the second PCR reaction. The PCR product from the second PCR reaction was purified, digested with BamHI and HindIII, and the 500 bp fragment containing the CDR3-grafted DNA was subcloned into a pUC19 vector for DNA sequencing. A plasmid DNA having the correct sequence was identified and used as the template DNA in the following PCR reaction. In the third PCR reaction, 25 pmoles of mutagenic primers pkv-2 and APCR4 were used. The PCR product from the third PCR reaction was purified and used as a primer, with the primer pkv-1, in the fourth PCR reaction. In the same manner, the PCR product from the fourth PCR reaction was used as a primer, with the APCR1 primer, in the fifth PCR reaction.

A 972 bp PCR product from the fifth PCR reaction was purified, digested with BamHI and HindIII, and subcloned into a pUC19 vector for DNA sequencing. A problem was identified in the CDR2 region. Two additional PCR reactions were necessary. In the sixth and seventh PCR reactions, the PCR product from the fifth PCR reaction, as cloned into pUC19 vector, was used as template DNA. In the sixth PCR reaction, the primers were pkv-2 and APCR4. The PCR product from the sixth PCR reaction was purified and used as a primer, with the APCR1 primer, in the seventh PCR reaction. The PCR product of the seventh PCR reaction was purified, digested with BamHI and HindIII, and a 500 bp DNA fragment was subcloned into a pUC19 vector for DNA sequencing. Two of five clones sequenced had the correct DNA sequence. The clone was designated pUC-RV1-PM1a. The sequence is shown in SEQ ID NO: 55.

For the construction of the other version of reshaped human PM-1 L chain V region, a mutagenic primer pvk-m1 (SEQ ID NO: 53) was synthesized. The PCR reactions were essentially as described above. In the first PCR reaction, the mutagenic primer pkv-m1 (Phe-71 to Tyr-71) and the APCR4 primer were used with the template DNA pUC-RV1-PM1a. The PCR product of the first PCR reaction was purified and used as a primer, with the APCR1 primer, in the second PCR reaction. The PCR product of the second PCR reaction was purified, digested with BamHI and HindIII, and subcloned into a pUC19 vector for DNA sequencing. The clone was designated pUC-RV1-PM1b.

Example 8 Construction of vectors that employ the human cytomegalovirus immediate early (HCMV) promoter to express genetically-engineered antibodies in mammalian cells (Fig. 1).

The DNA fragments coding for the chimeric PM-1 L and H chain V regions were initially inserted into HCMV vectors (HCMV-V_L-HC_K and HCMV-V_H-HC_γ1) designed to express either human kappa L chains or human gamma-1 H chains in mammalian cells (see Figure 1). A detailed description of the construction of the HCMV expression vectors is published in Maeda et al., Human Antibodies and Hybridomas (1991) 2:124-134; C. A. Kettleborough et al., Protein Engeneering (1991) 4:773-783. Both vectors are based on pSV2neo (P.J. Southern et al., J. Mol. Appln. Genet. (1982) 1:327-341) and contain the human cytomegalovirus (HCMV) promoter and enhancer (M. Boshart et al., Cell (1985) 41:521-530) for high level transcription of the immunoglobulin L and H chains. The L chain expression vector contains genomic DNA coding for the human kappa C region (T. H. Rabbitts et al., Curr. Top. Microbiol. Immunol. (1984) 113:166-171) and the H chain expression vector contains genomic DNA coding for the human gamma-1 C region (N. Takahashi et al. Cell (1982) 29:671-679). The HCMV expression vectors are versatile and can be used for both transient and stable expression in a variety of mammalian cell types.

Example 9 Construction of vectors that employ the human elongation factor 1α (HEF- 1α) promoter to express genetically-engineered antibodies in mammalian cells (Fig. 8 and Fig. 9)

The human polypeptide chain elongation factor 1α (HEF- 1α) is one of the most abundant proteins. It is expressed in most cells. The transcriptional activity of the human EF- 1α promoter-enhancer is about 100-fold stronger than that of the SV40 early promoter-enhancer (D.W. Kim et al., Gene (1990) 91:217-223, and T. Uetsuki et al., J. Biol. Chem. (1989) 264:5791-5798). The 2.5 kb HEF- 1α promoter-enhancer region consists of approximately 1.5 kb of DNA flanking the 5'-end of the gene, 33 bp in the first exon, 943 bp in the first intron, and 10 bp of the first part of the 2nd exon. The approximately 2.5 kb HindIII-EcoRI fragment was excised from plasmid DNA pEF321-CAT (D.W. Kim et al., Gene (1990) 91:217-223, and T. Uetsuki et al., J. Biol. Chem. (1989) 264:5791-5798) and cloned into pdKCR vector DNA (M. Tsuchiya et al., EMBO J. (1987) 6:611-616) (K. O'Hare et al., Proc. Natl. Acod. Sci USA Vol. 78, No. 3, 1527-1531, 1981) to replace an approximately 300 bp HindIII-EcoRI fragment containing the SV40 early promoter-enhancer sequence thus yielding pTEF-1 was digested with EcoRI, filled-in with the Klenow polymerase, and ligated to HindIII linkers. An approximately 1.6 kb HindIII-Smal fragment was then excised from the modified pTEF-1 vector DNA.

Plasmid DNA HCMV-12h-g_γ1 (ΔE2) was constructed from the HCMV-12h-g_γ1 constructed in Example 5 by partially digesting HCMV-12h-g_γI with EcoRI, filling-in with klenow polymerase, and self-ligating.

The plasmid HCMV-12h- $g\gamma1$ (Δ E2) was digested with EcoRI, filled-in with Klenow polymerase, and digested with HindIII. The resulting approximately 7 kb fragment containing the DNA sequence coding for human gamma-1 C region was ligated to the above-prepared 1.6 kb HindIII-Smal fragment containing the HEF-1 α promoter-enhancer yielding HEF-12h- $g\gamma1$. The HEF-1 α promoter-enhancer region in this vector was the same as that in pTEF-1 except for 380 bp of DNA flanking the 5'-region. The H chain V region, present as a HindIII-BamHI fragment, was easily interchangeable with other H chain V regions.

Hindlil-BamHI DNA fragments containing the reshaped H chain V region were excised from the pUC-RVh-PM1a, pUC-RVh-PM1b, pUC-RVh-PM1c, pUC-RVh-PM1d, pUC-RVh-PM1e, and pUC-RVh-PM1f (Example 7), and inserted into the Hindlil-BamHi portion of the HEF-12h-gγ1 to obtain expression vectors RVh-PM1a, RVh-PM1b, RVh-PM1d, RVh-PM1e and RVh-PMhf, respectively. The expression vectors RVh-PM1a, RVh-PM1b, RVh-PM1c, RVh-PM1d, RVh-PM1e and RVh-PM1f, as well as HEF-PMh-gγ1 have the reshaped human PM-1 H chain V regions versions "a", "b", "c", "d", "e" and "f", as well as the mouse PM-1 H chain V region, respectively.

To construct the L chain expression vector, HEF-12k-gk, an approximately 3.0 kb Pvul-HindIII fragment containing the HEF-1 α promoter-enhancer region was excised from the HEF-12h-g γ 1 and ligated to an approximately 7.7 kb Pvul-HindIII fragment from the HCMV L chain expression vector HCMV-12k-gk constructed in Example 5 to obtain HEF-12k-gk. As for the H chain expression vector HEF-12h-g γ 1, the L chain V region in HEF-12k-gk, present as a HindIII-BamHI fragment, is easily interchangeable with other L chain V regions.

HindIII-BamHI DNA fragments containing the reshaped human L chain V region were excised from the pUC-RV1-PM1a and pUC-RV1-PM1b (Example 7), and inserted into the HindIII-BamHI portion of the HEF-12k-gk to obtain expression vectors RV1-PM1a and RV1-PM1b, respectively. The expression vectors RV1-PM1a, RV1-PM1b, and HEF-PMk-gk have the reshaped human L chain V regions "a", "b", and the mouse PM-1 L chain V region, respectively.

Example 10 Construction of vectors that employ the dihydrofolate reductase (dhfr) gene linked to a defective SV40 promoter-enhancer sequence to achieve high levels of expression of genetically-engineered antibodies in CHO cells (Fig. 10 and Fig. 11).

In order to remove the enhancer sequence from the SV40 early promoter, the plasmid DNA pSV2-dhfr (S.Subramani et al., Mol. Cell. Biol. (1981) 1: 854-864) (ATCC 33694) was digested with Sphl and Pvull, filled-in with Klenow polymerase, and self-ligated to yield pSV2-dhfr-ΔE (see Figure 10). An approximately 3.7 kb EcoRl fragment containing the HCMV promoter, the H chain V region, and the human gamma-1 C region was excised from HCMV-PMh-gγ1 by partially digesting with EcoRl. This fragment was ligated to EcoRl-digested pSV2-dhfr-ΔE to yield DHFR-ΔE-PMh-gγ1.

A similar vector was constructed based on the H chain expression vector that employs the HEF- 1α promoter-enhancer (see Figure 11). An approximately 3.7 kb EcoRI fragment derived from HCMV-12h- $g\gamma1$ was ligated with EcoRI-digested pSV2-dhfr- Δ E to yield DHFR- Δ E-12h- $g\gamma1$. The BamHI site following the dhfr cDNA sequence in DHFR- Δ E-12h- $g\gamma1$ was removed by partially digesting with BamHI, filling-in with Klenow polymerase, and self-ligating. An approximately 4 kb Pvul-BamHI fragment containing the dhfr cDNA was excised from the modified DHFR- Δ E-12h- $g\gamma1$ DNA and ligated to an approximately 3 kb Pvul-BamHI fragment from RVh-PM1f-4 (constructed in Example 12) to yield DHFR- Δ E-RVh-PM1f.

The improved expression plasmids as prepared above can be used for the production of the reshaped human PH-1 antibodies of the present invention.

Example 11 Expression and analysis of different versions of reshaped human PM-1 antibody

The HEF-1 α vectors expressing reshaped human PM-1 L and H chains were co-transfected into \cos cells. As a standard control, HEF-1 α vectors expressing chimeric PM-1 L and H chains were also cotransfected into \cos cells. After 3 days the medium from the transfected \cos cells was collected and analyzed by ELISA (1) for the amount of human IgG antibody present in the supernatant and (2) for the ability of that human IgG to bind to IL-6R. Later the same samples were also tested by ELISA for the ability of the antibody to inhibit human IL-6 from binding to human IL-6R.

Evaluation of the two versions of reshaped human PM-1 L chain V regions were conducted by cotransfecting cos cells with one of the two vectors expressing reshaped human PM-1 L chains (RV1-PM1a or RV1-PM1b) and the vector expressing chimeric PM-1 H chain (HCMV-PMh-g_Y1). Cells were also co-

transfected with vectors expressing chimeric PM-1 L and H chains (HCMV-PMka-gk and HCMV-PMh- g_{γ} 1). Data using unpurified \cos cell supernatants showed that version "a" of reshaped human PM-1 L chain was equivalent to chimeric \overline{PM} -1 L chain in assays for binding to IL-6R. Version "b" of reshaped human PM-1 L chain, however, virtually abolished binding to IL-6R (Figure 12). From these results, it was concluded that the change at position 71 in FR3 from phenylalanine (as present in the human REI as modified for CAMPATH-1H) to tyrosine (as present in natural human REI and in mouse PM-1) was very detrimental to the formation of a functional antigen-binding site.

Version "a" of the reshaped human PM-1 L chain V region was selected as the best version. In subsequent experiments evaluating the different versions of reshaped human PM-1 H chain V regions, version "a" of the reshaped human PM-1 L chain V region was always used.

Evaluation of the six versions of reshaped human PM-1 H chain V regions were conducted by cotransfecting cos cells with one of the six vectors expressing reshaped human PM-1 H chains (RVh-PM1a, RVh-PM1b, RVh-PM1c, RVh-PM1d, RVh-PM1e or RVh-PM1f) and the vector expressing version "a" of the reshaped human PM-1 L chain (RV1-PM1a). Cells were also co-transfected with vectors expressing chimeric PM-1 L and H chains (HEF-PMK-gk and HEF-PMh-gγ1). Preliminary data using unpurified cos cell supernatants showed that version "a" of reshaped human PM-1 L chain and version "f" of reshaped human PM-1 H chain were equivalent to chimeric PM-1 L and H chains in assays for binding to IL-6R.

To confirm this preliminary data, chimeric and reshaped human PM-1 antibodies were concentrated and purified from cos cell supernatants using Protein A. Namely the media from cos cells was concentrated using a 100 kd cut-off ultrafiltration device (Amicon). The concentrated media was purified using Protein A agarose (Affi-Gel Protein A MAPSII kit, BioRad). Briefly, the concentrated media was applied to a Protein A agarose column that was equilibrated with five bed volumes of binding buffer. The column was washed with 15 bed volumes of the binding buffer, followed by 5 bed volumes of the elution buffer. The eluate was concentrated and the buffer changed to PBS using a microconcentrator (Centricon 10, Amicon). The purified antibodies were used for further analysis.

The analysis of purified samples of chimeric PM-1 antibody, and reshaped human PM-1 antibodies with version "a" of the L chain V region and versions "a", "b", "c", "d", "e", and "f" of the reshaped human H chain V region was carried out. Version "a" of the L chain plus version "f" of the H chain is clearly the best reshaped human PM-1 antibody. It binds to IL-6R as well as chimeric PM-1 antibody does (Figure 13). It also inhibits human IL-6 from binding to the IL-6R as well as both the mouse and chimeric PM-1 antibodies do (Figure 14).

Example 12 Reconstruction of the reshaped human PM-1 V regions to improve the levels of expression.

In order to remove the introns within the DNA sequences coding for the leader sequences of the reshaped human PM-1 L and H chain V regions (see SEQ ID Nos: 54 and 55), the cDNAs coding for the V regions were recloned using the PCR primers. The L and H chain expression vectors RV1-PM1a and RVh-PM1f were co-transfected into cos cells. After 48 hrs, total RNA was prepared (Chirgwin et al., Biochemistry (1979) 18:5294-5299) and 5 µg of total RNA was used for the first strand cDNA synthesis as described for the PCR cloning of mouse antibody V regions. Three PCR primers were designed and synthesized. LEV-P1 (SEQ ID NO: 60) and HEV-P1 (SEQ ID NO: 58) contain the splice donor sequence and the BamHI site and were used as forward primers for the L and H chain V regions, respectively. HEV-P2 (SEQ ID BO: 59) contains the Kozak consensus sequence before the ATG initiation codon and the HindIII site and was used as a backward primer for both the L and H chain V regions. Each 100 µI PCR reaction contained 20 mM Tris-HCI (pH 8.8), 10 mM KCl, 10 mM (NH $_4$) $_2$ SO $_4$, 2 mM MgSO $_4$, 0.1% Triton X-100, 0.1 μg BSA, 250 μM dNTPs, 2.5 u of Vent DNA polymerase (Biolabs, U.K.), 50% of the first-strand cDNA synthesis reaction and 100 pmoles each of the forward and backward primers. Each PCR tube was overlayed with 50 µl of mineral oil and then cycled, after an initial melt at 94 °C for 1.5 min, at 94 °C for 1 min, 50 °C for 1 min, and 72 °C for 1 min, and then at 72 °C for 10 min. The 408 bp PCR product containing the L chain V region and the 444 bp PCR product containing the H chain V region were purified using 2.0% low melting temperature agarose gels, digested with BamHI and HindIII, and subcloned into a pUC19 vector to obtain pUC-RV1-PM1a-3 and pUC-RVh-PM1f-3 respectively.

It was revealed that the DNA sequences of the reshaped human PM-1 L and H chain V regions contain inappropriate splice donor and acceptor sites (see SEQ ID NOs: 54 and 55). The sites within the L chain V region are not frequently used (approximately 10% of the mRNA), but the sites within the H chain V region are used frequently (approximately 90% of the mRNA). This aberrant splicing resulted in low levels of expression of the reshaped human PM-1 antibody. In order to avoid aberrant splicing in the V regions, the splice donor sites were removed using a PCR-based method. For the H chain V region, the backward

primer NEW-SP1 (SEQ ID NO: 61) and the forward primer NEW-SP2 (SEQ ID NO: 62) were synthesized, changing the DNA sequence TGG GTG AGA to the DNA sequence TGG GTT CGC. The conditions for the PCR reactions were as described above for cDNA cloning except that the template DNA was 50 ng of pUC-RVh-PM1f-3 and the primers were either HEV-P2 and NEW-SP2, or HEV-P1 and NEW-SP1.

The PCR products from the two PCR reactions were purified using a 2.0% low melting temperature agarose gel and used in a PCR joining reaction. A 98 µl PCR reaction containing 0.5 µg of each of the first PCR products and 5 u of Vent DNA polymerase was incubated at 94 °C for 2 min, 50 °C for 2 min, and 72 °C for 5 min, and then 100 pmoles each of HEV-P1 and HEV-P2 primers were added. The PCR tube was overlayed with 30 µl of mineral oil and subjected to 25 cycles of PCR, at 94 °C for 1 min, 50 °C for 1 min, and 72 °C for 1 min, and then incubated at 72 °C for 10 min.

In the same manner, the splice donor site in the reshaped human PM-1 L chain V region was removed using PCR primers REI-SP1 (SEQ ID NO: 63) and REI-SP2 (SEQ ID NO: 64) that changed the DNA sequence CAG GTA AGG to the DNA sequence CAG GAA AGG (see). Both PCR products, a 408 bp DNA fragment for the L chain V region and a 444 bp DNA fragment for the H chain V region, were purified using a 2.0% low melting temperature agarose gel, digested with HindIII and BamHI, and subcloned into a pUC19 vector to yield pUC-RV1-PM1a-4 and pUC-RVh-RM1f-4, respectively.

RVh-PM1f-4 was constructed by replacing the HindIII-BamHI fragment of RVh-PM1f with the HindIII-BamHI fragment excised from pUC-RVh-PM1f-4. Sequence of reshaped human PM-1 antibody L chain V region version "a" wherein introns have been deleted is shown in SEQ ID NO: 57, and sequence of reshaped human PM-1 antibody H chain V region version "f" wherein have been deleted is shown in SEQ ID NO: 56.

Example 13 Construction of DNA coding for reshaped human AUK 12-20 antibody L chain V region

A process for construction of DNA coding for a reshaped human AUK 12-20 antibody L chain V region is shown in Fig. 16. A gene coding for a human antibody L chain V region is incorporated into pUC19 vector using restriction enzymes HindIII and BamHI. Eight PCR primers (A to H) are prepared, and in the first PCR 4 regions which form a gene coding for the V region are amplified. The primers A and H have homology to DNA sequences on the pUC19 vector. The primers B, C and D are primers of 40 to 60 bp length each having a gene sequence of CDR to be grafted, respectively. The primers E, F and G have homology to DNA sequence of 15 to 20 bp length of the 5'-terminus of the primers B, C and D, respectively. Four first PCR use pairs of primers A and E, B and F, C and G, as well as D and H, respectively.

The PCR product A-E encodes FR1, and the PCR product B-F encodes CDR1 and FR2. The 3'-terminal portion of the A-E fragment and the 5'-terminal portion of the B-F fragment have homology in their 15 to 20 bp length, allowing to join there fragments at latter stage. Similarly, the B-F fragment has a homology with the C-G fragment which encodes CDR2 and FR3. The C-G fragment further has a homology with the D-H fragment which encodes CDR3 and FR4. Thus, these 4 fragments can be joined by their mutual homology. After joining these 4 fragments in a PCR reaction mixture, primers A and H are added thereon in the second PCR to amplify a product formed by correct joining of the 4 fragment. The second PCR product thus obtained has three grafted CDRs, and after digestion with HindIII and BamHI, is subcloned into pUC19 vector.

More specifically, as a template, plasmid pUC-RV1-PM1a-4 constructed by inserting a DNA encoding reshaped human PM-1 antibody L chain V-region version "a" into plasmid pUC19 was used.

The above-mentioned primers A to H have the following sequences.

45

50

Backward Primer	SEQ ID NO.	Forward primer	SEQ ID NO.
A. REVERSE	83	1220-L16	66
B. 1220-L1	65	1220-L2b	68
C. 1220-L2	67	1220L3b	70
D. 1220-L3	69	UNIVERSAL	82

The backward primers 1220-L1, 1220-L2 and 1220L3 for CDR grafting were purified with 12% polyacrylamide gel containing 8M area prior to using them.

A 100 μI PCR reaction mixture contained 20 mM Tris-HCl (pH 8.8), 10 mM KCl, 10 mM (NH₄)₂SO₄, 2 mM MgSO₄, 0.1% Triton X-100, 1 μg BSA, 250 μm dNTPs, 5 units Vent DNA polymerase (BioLabs. U.K.), 50 ng pUC-RV1-PMla-4 DNA, and 100 p moles each of the forward and backward primers. Each PCR tube was overlaid with 50 μI of mineral oil, and after an initial denaturation at 94 °C for 1.5 minutes, 30 cycles of

reaction at 94°C for 1 minute, 50°C for 1 minute and 72°C for 1 minute was carried out, followed by an incubation at 72°C for 10 minutes.

Each of the PCR products, 252 bp (A-E), 96 bp (B-F), 130 bp (C-G) and 123 bp (D-H) was purified with a 2.0% low melting agarose (FMC, Bio. Products, USA). Namely, an agarose piece containing a DNA fragment was excised, melted at 65 °C for 5 minutes, and added to the same volume of 20 mM Tris-HCl (pH 7.5) containing 2 mM EDTA and 200 mM NaCl. The mixture was extracted with phenol and chloroform. The DNA fragment was recovered by an ethanol precipitation, dissolved in 10 mM Tris-HCl (pH 7.5) containing 1 mM EDTA, and used for PCR joining reaction.

Next, 98 μ I of a PCR reaction mixture containing 0.2 μ g each of the first PCR products and 5 units of Vent DNA polymerase was incubated at 94 °C for 2 minutes, 50 °C for 2 minutes and 72 °C for 5 minutes for a joining reaction. Next, 100 p moles each of the primers A (REVERSE) and H(UNIVERSAL) were added to the reaction mixture to make it to 100 μ I volume, and the reaction mixture was overlaid with 50 μ I of mineral oil and subjected to 30 cycles of a reaction at 94 °C for 1 minute, 50 °C for 1 minute and 72 °C for 1 minute, followed by an incubilation at 72 °C for 10 minutes.

The second PCR product of 558 bp length containing an L chain V region into which CDRs of the mouse monoclonal antibody AUK 12-20 L chain had been grafted was purified by a 2.0% low melting agarose gel, and after digestion with BamHI and HindIII, subcloned into a pUC19 vector to obtain pUC-RL₁-1220a, and sequenced. A resulting amino acid sequence of the L chain V region and a nucleotide sequence encoding the amino acid sequence is shown in SEQ ID NO: 71.

Next, for construction of an L chain expression vector, a HindIII-BamHI DNA fragment containing a reshaped human AUK 12-20 antibody L chain V region was excised from the above-mentioned plasmid pUC-RV_L-1220a, and inserted to HindIII-BamHI site of an L chain expression vector HEF-12k-gk to obtain an expression vector RV_L-1220a for reshaped human AUK 12-20 antibody L chain V region version "a".

25 Example 14. Expression and analysis of reshaped human AUK 12-20 antibody L chain

Transient expression in COS cells

The expression vector RV_L-1220a for reshaped human AUK 12-20 antibody L chain and the expression vector HEF-12h- $g_{\gamma}1$ for chimeric 12-20 antibody H chain (Example 5) were cotransfected into <u>COS</u> cells to evaluate the reshaped human AUK 1220 antibody L chain version "a". Namely, <u>COS</u> cells were suspended in a phosphate-buffeted saline (PBS) at a concentration of 1 x 10⁷ cells 1 ml, and to 0.8 ml of the suspension were added the plasmid DNAs (10 μ g for each plasmid). Pulses were applied to the suspension at an electric capacity of 1,900 V, 25 μ F using a Gene Pulser apparatus (Bio Rad).

After restoraction at a room temperature for 10 minutes, electroporated cells were added to 8 ml of DMEM medium (GIBCO) containing 10% bovine fetal serum. After incubation for 72 hours, supernatant was collected, centrifuged to eliminate cell debris, and stored in an aseptic condition at 4°C for short period or at -20°C for longer period.

Determination of human-like antibody by ELISA

50

A supernatant of the transfected <u>COS</u> cells was assaied by ELISA and the production of chimeric antibody was confirmed. To detect human-like antibody, a plate was coated with a goat anti-human IgG (whole molecule) (Sigma). After blocking, the supernatant from <u>COS</u> cells was sequentially diluted and added to each well.

The plate was incubated and washed, and an alkaline phosphatase-conjugated goat anti-human $\lg G$ (α -chain specific, Sigma) was added thereon. After incubation and washing, a substrate solution was added. After further incubation, the reaction was terminated and an optical density at 405 nm was measured. As a standard, purified $\lg G$ (Sigma) was used.

ELISA for confirmation of an ability to bing to human IL-6R

A supernatant from the transfected <u>COS</u> cells was assaied by ELISA to determine whether the produced human-like antibody can bind to the antigen, human IL-6R. A plate was coated with a mouse monoclonal antibody MT18 (Reference Example 1). After blocking with 1% BSA, soluble recombinant human IL-6R (SR 344) was added to the plate. After washing the plate, supernatant from <u>COS</u> cells was sequentially diluted and added to each well of the plate. After inclusion and washing, alkaline phosphatase-conjugated goat anti-human IgG was added to the wells, and after further incubation and washing, a

substrate solution was added thereon. After incubation, the reaction was terminated and optical density at 405 nm was measured.

A result is shown in Fig. 17. The human-like antibody comprising a combination of a reshaped human AUK 12-20 antibody L chain version "a" and a chimeric 12-20 antibody H chain exhibited a binding ability to IL-6R as strong as chimeric 12-20 antibody. Optical density at 405 nm changed in a dilution rate-dependent manner, confirming that the sample contains an antibody to IL-6R. In addition, this result shows that the reshaped human AUK 12-20 antibody L chain version "a" has an antigen binding ability as high as chimeric AUK 12-20 antibody L chain.

Example 15. Construction of gene coding for reshaped human AUK 12-20 antibody H chain using HSGI consensus sequence

According to the same procedure as described in Example 13. CDRs of AUK 12-20 antibody H chain V region were grafted into the reshaped human V_Ha425 containing HSG I consensus sequences as its FRs (Kettleborough et al., Protein Engineering (1991) 4:773-783). Fist, a HindIII-BamHI DNA fragment encoding the reshaped human V_Ha425 (Fig. 3 in the literature) was excised from a plasmid HCMV-RV_Ha-425-γ1 and subcloned at HindIII-BamHI sites in pUC 19 vector to obtain pUC-RV_H-425a, which was then used as a template. 8 PCR primers (A1 to H1) were synthesized. The primer 1220-H1 was designed to graft CDR1 and to induce a mutation from T-28 to S-28, and the primer 1220-H3 was designed to graft CDR3 and to induce a mutation from S-94 to R-94. The primers 1220-H1, 1220-H2 and 1220-H3 were purified using a 12% polyacrylamide gel containing 8 M urea prior to using them. Nucleotide sequence of each primer was as follow.

Backward primer	SEQ ID NO.	Forward primer	SEQ ID NO.
A1. REVERSE	83	E1. 1220-H1b	73
B1. 1220-H1	72	E1. 1220-H2b	75
C1. 1220-H2	74	G1. 1220-H3b	77
D1. 1220-H3	76	H1. UNIVERSAL	82

30

25

Condition of PCR was the same as that described in Example 13, except that the pUC-RV_H-425a was used as a template DNA and the above-mentioned primers were used for grafting H chain CDRs. Primer pairs of A1 and E1, B1 and F1, C1 and G1, as well as D1 and H1 were used to carry out first PCR reactions, and the respective first PCR products, 186 bp (A1-E1), 75 bp (B1-F1), 173 bp (C1-G1) and 105 bp (D1-H1) were purified with 2.0% low melting agarose gel, and used in subsequent second PCR joining reaction. According to the condition described in Example 13, 0.2 µg each of the first PCR products were used to carry out the second PCR reaction (including PCR joining reaction) to obtain a PCR product of 495 bp containing DNA coding for a human H chain V region into which mouse AUK 12-20 antibody H chain V region CDRs had been grafted, and the PCR product was purified using 2.5% low melting agarose gel. After digesting the PCR product with BamHl and HindIII, resulting BamHl-HindIII DNA fragment was subcloned into pUC19 and sequenced to obtain pUC-RV_H-1220a.

It was revealed that DNA sequence coding for reshaped human AUK 12-20 antibody H chain V region contains a sequence well conforming to a splicing donor sequence, which may cause an abnormal splicing which was troublesome in the production of the reshaped human PM-1 antibody. Therefore, this DNA sequence was modified by PCR. Mutagenetic primers, SGI-SP1 (SEQ ID NO: 97) and SGI-SP2 (SEQ ID NO: 98) were synthesized. These primers convert the DNA sequence AAG GTG AGC to the DNA sequence AAA GTC AGC. Condition of PCR reaction was same as described above, except that 50 ng of pUC-RV_H-1220a was used as a template DNA, and the SGI-SP1 and UNIVERSAL (SEQ ID NO: 82), or the SGI-SP2 and REVERS (SEQ ID NO: 83) were used as primers.

PCR products from two PCR reactions were purified by 2% low melting agarose gel and used in a PCR joining reaction. 98 μl of PCR reaction mixture containing 0.2 μg each of the first PCR products and 5 units of Vent DNA polymerase was incubated at 94 °C for 2 minutes, at 55 °C for 2 minutes and at 72 °C for 5 minutes for a joining reaction. Next, 100 pmoles each of UNIVERSAL and REVERSE primers were added to the reaction mixture, which was then overlaid with 50 μl of mineral oil and subjected to 30 cycles of second PCR reaction consisting of incubations at 94.°C for 1 minutes, at 50 °C for 1 minute and at 72 °C for 1 minute, followed by an incubations at 72 °C for 10 minutes. DNA fragment of 495 bp obtained in the second PCR was purified by a 2.0% low melting agarose gel, and subcloned into pUC19 vector and sequenced to obtain pUC-RV_H-1220a-2.

Next, HindIII-BamHI DNA fragment containing DNA coding for reshaped human AUK 12-20 antibody H chain V region was excised from the pUC-RV_H-1220a-2, and inserted at HindIII-BamHI sites of an H chain expression vector HEF-12h-g_Y1 to obtain an expression vector RV_H-1220a for the reshaped human AUK 12-20 antibody H chain version "a".

For construction of genes coding for reshaped human AUK 12-20 antibody H chain V region versions "b" to "d", two paires of mutagenic primers were synthesized. Each PCR reaction was carried out under substantially the same condition as described above. For construction of version "b", in two first PCR reactions, either UNIVERSAL primer (SEQ ID NO: 82) and mutagenic primer 120H-ml (SEQ ID NO: 78), or REVERSE primer (SEQ ID NO: 83) and mutagenic primer 1220H-mlb (SEQ ID NO: 79), as well as pUC-RV_H-1220a as a template were used. The first PCR products of 202 bp and 323 bp were purified by a 2.0% low melting agarose gel, and used in second PCR (including PCR joining reaction) under the same condition as described above to obtain a 495 bp product (version "b"). The product was digested with HindIII and BamHI, and subcloned into pUC19 vector to obtain pUC-RV_H-1220b.

Similarly, mutagenic primer 1220H-m2 (SEQ ID NO: 80), 1220H-m2b (SEQ ID NO: 81) and a template pUC-RV_H-1220a were used in a PCR to obtain a PCR product (version "c"). The product was digested with HindIII-BamHI and inserted at HindIII-BamHI sites of pUC19 vector to obtain pUC-RV_H-1220c. Moreover, mutagenic primers 1220H-mla (SEQ ID NO: 78), 1220H-mlb (SEQ ID NO: 79), and a template pUC-RV_H-1220c were used to obtain a PCR Product (version "d"), which was then digested with HindIII and BamHI and inserted into HindIII-BamHI sites of pUC19 vector to obtain pUC-RV_H-1220d.

Note, an amino acid sequence of the reshaped human AUK 12-20 antibody H chain V region version "b" and a nucleotide sequence coding therefor in the plasmid pUC-RV_H-1220b is shown in SEQ No. 84; and an amino acid sequence of the reshaped human AUK 12-20 antibody H chain V region version "d" and a nucleotide sequence coding therefor in the plasmid pUC-RV_H-1220d is shown in SEQ ID NO: 85.

Next, to construct the expression vectors, HindIII-BamHI fragments containing a reshaped human AUK 12-20 antibody H chain V region were excised from pUC-RV_H-1220b, pUC-RV_H-1220c and pUC-RV_H-1220d and inserted into HindIII-BamHI sites of H chain expression vector HEF-12h-g₇1 to obtain RV_H-1220b, RV_H-1220c and RV_H-1220d respectively.

Example 16. Expression and analysis of various versions of reshaped human AUK 12-20 antibody.

30

COS cells were cotransfected with one of 4 expression vectors for reshaped human AUK 12-20 antibody H chain (RV_H-1220a, RV_H-1220b, RV_H-1220c or RV_H-1220d) and an expression vector VR_L-1220a to evaluate 4 versions of the reshaped human AUK 12-20 antibody H chain V region. For reference, COS cells were cotransfected with expression vectors for chimeric 12-20 antibody L chain and H chain (HEF-12h-g_YI and FEF-12-gk). In an assay for binding to the human IL-6R, a reshaped human AUK 12-20 antibody consisting of reshaped human AUK 12-20 antibody L chain and reshaped human AUK 12-20 antibody Consisting of reshaped human AUK 12-20 antibody L chain and reshaped human AUK 12-20 antibody L chain and reshaped human AUK 12-20 antibody H chain version "d" shows good binding as well as chimeric 12-20 antibody. These results are shown in Figs. 18 and 19.

Example 17. Construction of gene coding for reshaped human sle 1220 antibody H chain using human antibody HAX

A human antibody having the highest homology with the mouse monoclonal antibody AUK 12-20 H chain V region is HAX (J. Immunology (1987) 139:2496-2501; an antibody produced by hybridoma 21/28 derived from B cells of an SLE patient; its amino acid sequence is shown in Fig. 6, and nucleotide sequence therefor is shown in Figs. 4 and 5 of this literature), according to a protein data base "Leeds". Reshaped human sle 1220H antibody H chain V region was constructed using FRs of the antibody HAX and CDRs of mouse monoclonal antibody AUK 12-20 H chain V region.

An entire DNA coding for a reshaped human sie 1220 H antibody H chain V region version "a" was chemically synthesized. DNA coding for sle 1220 H antibody H chain V region of an entire length 439 bp was designed by dividing the DNA into 6 oligonucleotides of 90 to 94 bp length overlapping each other by 21 bp (sle 1220 h 1 to 6; SEQ ID NOs: 86 to 91, respectively). In designing the oligonucleotides, secondary structure was tested and for sites having structural problems the third nucleotide in a codon was changed without change of amino acid encoded thereby. The relationship of these oligonucleotides and a process for construction of double-stranded synthetic DNA are shown in Fig. 20.

The reaction shown in Fig. 20 is carried out using PCR technique. Namely, 6 synthetic oligonucleotides were added to a single PCR reaction tube to carry out the first PCR reaction, thereby two oligonucleotides

are anealed and extended, and further 4 oligonucleotides or an entire oligonucleotide are obtained.

Next, terminal primers A (SEQ ID NO: 92) and B (SEQ ID NO: 93) are added to carry out the second PCR reaction, wherein only a correct oligonucleotide having an entire length can be amplified. The resulting product is digested with BamHI and HindIII, and subcloned into pUC19 vector, followed by sequencing.

More specifically, 98 μl of a reaction mixture containing 100 mM tris-HCl (pH 8.5), 50mM KCl, 0.1mM dATP, 0.1mM dGTP, 0.1mM dCTP, 0.1mM dTTP, 1.5mM MgCl₂ and 2.5 U of DNA polymerase AmpliTaq (Perkin Elmer Cetus) as well as 5 pmoles each of the oligonucleotides was denaturated at 94 °C for 1.5 minutes and subjected to 3 cycles of reaction by incubation at 92 °C for 3 minutes, 50 °C for 2 minutes and 72 °C for 5 minutes, followed by an incubation at 72 °C for 10 minutes. One μl each of 50 mM terminal primers A and B were added to the reaction mixture, which was then overlaid with 80 μl of mineral oil, and after denaturation of 94 °C for 1.5 minutes, subjected to 30 cycles of reaction by incubation at 94 °C for 1 minute, 50 °C for 1 minute and at 72 °C for 1 minute, followed by an incubation at 72 °C for 10 minutes. The PCR product of 439 bp was purified by a 1.5% low melting agarose gel, digested with restriction enzymes BamHl Hindlll, and subcloned into pUC19 vector, followed by confirmation of sequence. A clone thus obtained was designated pUC-RV_H-sle 1220Ha. An amino acid sequence of reshaped human sle 1220H antibody H chain V region version "a" and a nucleotide coding therefor in the plasmid pUC-RV_H-sle 1220Ha are shown in SEQ ID NO: 94.

Next, HindIII-BamHI DNA fragment containing a gene coding for reshaped human 12-20 (sle 1220H) antibody H chain V region was excised from the pUC-RV_H-sle 1220Ha and inserted at HindIII-BamHI sites of an H chain expression vector HEF-12h-g_YI to obtain RV_H-sle 1220Ha.

For construction of version "b" to "d" of reshaped human sie 1220H antibody H chain V region, two mutagenic primers sie 1220Hml (SEQ ID NO 95) and sie 1220Hm2 (SEQ ID NO: 96) were synthesized. In each PCR, Vent DNA polymerase and reaction mixture composition described in Example 13 were use. In each PCR reaction, a reaction mixture containing pUC-RV_H-sie 1220Ha as template, 50 pmoles of a mutagenic primer sie 1220Hml or sie 1220Hm2, and 50 pmoles of the terminal primer B was denaturated at 94 °C for 1.5 minutes, and subjected to 30 cycles of reaction by incubation at 94 °C for 1 minute, at 50 °C for 1 minute and at 72 °C for 1 minute, followed by an incubation at 72 °C for 10 minutes. The product of 235 bp or 178 bp was purified by a 1.5% low melting agarose gel to use as a primer in the second PCR reaction. Namely the second PCR reaction was carried out using 50 pmoles of the terminal primer A, 0.2 µg of the PCR product and pUC-RV_H-sie 1220Ha as a template, and resulting product of 439 bp was purified by a 1.5% low melting agarose gel, digested with BamHl and HindIll, and subcloned into pUC19 vector to obtain pUC-RV_H-sie 1220Hb or pUC-RV_H-sie 1220Hc, which encodes reshaped human sie 1220 antibody H chain V region version "b" or "c", respectivity.

A DNA coding for reshaped human sle 1220 H antibody H chain V region version "d" was constructed also follow. As a templete pUC-RVh-sle 1220Hb was used. 50 pmoles each of a mutagenic primer sle 1220Hm2 and the terminal primer B was used to carry out 30 cycles of the first PCR reaction. Resulting 176bp PCR product was purified on a 1.6% low melting agarose gel to use as a primer in the second PCR. This primer and 50p moles of the terminal primer A was used in the second PCR to obtain a 439 bp DNA fragment. The PCR product thus obtained was purified, digested with BamHI and HindIII, and subcloned into pUC 19 vector to obtain pUC-RV_H-sle 1220Hd.

Next, to construct expression vectors for various versions of reshaped human sle 1220H antibody H chain V region, BamHI-HindIII fragments containing a DNA encoding reshaped human sle 1220 antibody H chain V region were excised from pUC-RV_H-sle 1220Hb, pUC-RV_H-sle 122Hc and pUC-RV_H-sle 1220Hd, and inserted into HindIII-BamHI sites of the H chain expression vector HEF-12h-g_YI to obtain expression vectors RV_H-sle 1220Hb, RV_H-sle 1220Hc and RV_H-sle 1220Hd respectively.

Each of four vectors expressing reshaped human sle 1220H antibody H chain (RV_H-sle 1220Ha, RV_H-sle 1220Hb and RV_H-sle 1220Hc or RV_H-sle 1220Hd) and the vector RV_L-1220a expressing reshaped human AUK 12-20 antibody L chain were cotransfected to <u>COS</u> cells to evaluate the four versions of the reshaped human sle 1220H antibody H chain V region for an ability to inhibit the binding of IL-6 to IL-6R. Results is shown in Figs. 21 to 24. Note, these result were obtained after purifying the produced antibodies by protein A

As seen from the above, according to the present invention, in a chimeric L chain or a resahped human L chain, or a chimeric H chain or a reshaped human H chain, and especially in RF, one or more than one amino acid can be replaced with other amino acid maintaining an ability to bind to human IL-6R. Therefore, the present invention includes chimeric antibody and reshaped human antibody, chimeric L chain and reshaped human L chain, chimeric H chain and reshaped human H chain, reshaped L chain V region, and reshaped H chain V region, wehrein one or more than one amino acid is replaced with other as well as DNA coding therefor, as far as they maintain their native property.

· Starting hybridomas used in the present invention were constructed as follows.

Reference Example 1 Construction of Hybridoma MT18

To construct a hybridoma producing monoclonal antibody to human IL-6R, as an immunogen, a mouse T cell line expressing human IL-6R on the cell surface was constructed as follows. Namely, a plasmid pBSF2R.236 disclosed in Japanese Patent Application No. H1-9774 and pSV2neo was transfected into a mouse T cell line CTLL-2 (ATCC TIB214) according to a conventional procedure, and the resultant transformant was screened using G418 according to a conventional procedure to obtain a cell line expressing about 30,000 IL-6Rs per cell. This cell line was designated CTBC3.

The CTBC3 cells were cultured in RPMI 1640 according to a conventional procedure, the cultured cells were washed four times with PBS buffer, and 1×10^7 cells were intraperitoneally injected to C57BL/6 mice for immunization. The immunization was carried out once a week for 6 weeks.

Spleen cells were obtained from the immunized mice and fused with myeloma P3U1 cells using polyethylene glycol according to a conventional procedure, and the fused cells were screened as follows. The IL-6R negative human T cell line JURKAT (ATCC CRL 8163) was co-transfected with the plasmids pBSF2R.236 and pSV2neo, and transformed cells were screened to obtain a cell line expressing about 100,000 IL-6Rs per cell. The cell line was designated NJBC8. A hybridoma cell clone producing an antibody which recognized NP40-lysed NJBC8 but did not recognize NP40-lysed JURKAT was cloned and designated MT18. The hybridoma MT18 was deposited with the Fermentation Research Institute Agency of Industrial Science and Technology (FRI), under the Budapest Treaty, as FERM BP-2999 on July 10, 1990.

Reference Example 2 Construction of Hybridoma PM1

25

To construct a hybridoma producing monoclonal antibody to the IL-6R, as an antigen, human IL-6R was extracted as follows. 3 × 10⁹ human myeloma U266 cells (IL-6R-producing cells) were lysed in 1 ml of 1% digitonin, 10 mM triethanolamine buffer (pH 7.4), 0.15 M Nacl and 1 mM PMSF (phenylmethylsulfonyl fluoride; Wako Pure Chemicals). On the other hand, an MT18 antibody produced by the MT18 hybridoma prepared in Reference Example 1 was bonded to cyanogen bromide-activated Sepharose 4B (Pharmacia) according to a conventional procedure. This MT18 antibody-conjugated Sepharose 4B was mixed with the above-prepared cell lysate to bind the solubilized IL-6R to the MT18 antibody on Sepharose 4B. Substances non-specifically bonded to the Sepharose 4B were washed off, and the IL-6R bound to Sepharose 4B via the MT18 antibody was used as an immunogen.

BALB/c mice were intraperitoneally immunized with the above-prepared immunogen, once a week for 4 weeks. Next, spleen cells were obtained from the immunized mice, and fused with myeloma cells P3U1 using polyethylene glycol according to a conventional procedure. The fused cells were screened as follows. First, a culture supernatant and 0.01 ml of Protein G Sepharose (Pharmacia) were mixed to adsorb immunoglobulin in the supernatant to the Protein G Sepharose. On the other hand, 10⁷ U266 cells internally labeled with ³⁵ S-methionine were lysed, and the IL-6R was affinity-purified using the MT18-conjugated Sepharose 4B. Next, the ³⁵ S-methionine-labeled IL-6R was immunoprecipitated with the above-prepared Protein G Sepharose on which an immunoglobulin had been bonded, and the precipitate was analyzed by SDS/PAGE. As a result, one hybridoma clone producing antibody which specifically bound to the IL-6R was isolated, and designated PM1. The hybridoma PM1 was deposited with the FRI under the Budapest Treaty as FERM BP-2998, on July 10, 1990.

Reference Example 3 Construction of Hybridoma AUK12-20, AUK64-7 and AUK146-15

As an immunogen, a soluble IL-6R (SR 344) was prepared according to a procedure described by Yasukawa, K. et al., J. Biochem. 108, 673-676, 1990. Namely, a plasmid pECEdhfr 344 containing a cDNA coding for IL-6R wherein the 345th codon from the N-terminus had been replaced by a stop codon was transfected to CHO (5E27) cells, the transfected cells were cultured in a serum-free medium (SF-O medium, Sanko Junyaku), and a resulting supernatant was concentrated with an HF-Labl system (Tosoh), and purified by Blue-5PW column and Phenyl-5PW column. The purified soluble IL-6R showed a single band in an SDS-PAGE.

A female BALB/cAnNCrj mouse (Nippon CREA) was subcutaneously injected with 10 µg/mouse of the immunogen in Freund's complete adjuvant (Bacto Adjuvant Complete H 37 Ra, Difco), followed by the second and third injections of the same amount of the immunogen in Freund's incomplete adjuvant (Bacto Adjuvant Incomplete Freund, Difco) two and three weeks after the first injection, respectively. A final

immunization (the fourth injection) was carried out without adjuvant into a tail vein one week after the third injection. A serum sample was prepared from the immunized mice, serially diluted with a dilution buffer, and assayed by ELISA according to a procedure described by Goldsmith, P.K., Analytical Biochemistry, 117, 53-60, 1981. Namely, an SR344 (0.1 µ/ml)-coated plate was blocked with 1% BSA, and the diluted sample was added thereon. Mouse IgG bound to the SR344 was measured using goat anti-mouse IgG/alkaline phosphatase (A/P) (ZYMED) and a substrate for alkaline phosphatase (Sigma-104).

After confirming an increase of the anti-SR344 antibody in the serum, spleen cells were obtained from 5 BALB/c mice three days after the final immunization. The spleen cells and myeloma cells (P3U1) were mixed at a ratio of 25:1, fused using PEG1500, and cultured in 2000 wells at a cell concentration of 0.7 to 1.1×10^6 cells/well. Supernatants from the wells were screened for their ability to bind SR344 (the first screening designated as R344 recognition assay), and for their ability to inhibit a binding of SR344 with an interleukin-6 by a IL-6/sIL-6R binding inhibition assay (RBIA). The first screening provided 240 positive wells, and the second screening provided 36 positive wells.

The above-mentioned R344 recognition assay was carried out as follows: Goat anti-mouse Ig (Cappel) (1 μg/ml)-coated plate (MaxiSorp, Nunc) was blocked with 1% BSA, and 100 μl/well of hybridoma culture supernatant was added thereon, followed by an incubation at room temperature for one hour. After washing the plate, 20 μg/ml of SR344 was added to each well, and incubation was carried out at room temperature for one hour. The amount of SR344 captured by the immobilized antibody derived from the supernatant was determined by addition of rabbit anti-SR344 IgG (#2, 5 μg/ml), goat anti-rabbit IgG-alkaline phosphatase (A/P) (1:3000, Tago), and of a substrate (1 mg/ml, Sigma-104), followed by measurement of the optical dencity at 405-600 nm.

The above-mentioned RBIA was carried out as follows. MT18 antibody-coated plate was filled with 100 μ g/ml of SR344 (100 μ l/well), and incubation was carried out at a room temperature for one hour. After washing the plate, 50 μ l/well of hybridoma supernatant and 50 μ g/well of biotin-interleukin-6 conjugate (20 μ g/ml) were simultaneously added to each well, and the wells were incubated at room temperature for one hour. An amount of biotin-IL-6 bound to SR344 was measured by an addition of streptavidin-A/P (1 : 7000, PIERCE) and a corresponding substrate (Sigma-104), followed by a measurement of the optical density at 405-600 nm.

Finally, positive clones were purified by a twice-repeated limiting dilution method, and three hybridoma clones, i.e., AUK12-20, AUK145-15 and AUK64-7, which inhibit the binding of SR344 with the IL-6; and a hybridoma clone AUK181-6, which does not inhibit the binding of SR344 with the IL-6, were obtained.

Industrial Applicability

40

45

50

55

The present invention provides a reshaped human antibody to the human IL-6R, comprising a human antibody wherein the CDRs of the human V regions are replaced with the CDRs of a mouse monoclonal antibody to the human IL-6R. Since major portion of the reshaped human antibody is derived from a human antibody and the mouse CDRs which are less antigenic, the present reshaped human antibody is less immunogenic to human, and therefore is promised for therapeutic uses.

Reference to Deposited Microorganisms under Rule 13-2 of Budapest Treaty

Depository Authority: National Collections of Industrial and Marine Bacteria Limited Address: 23 St Macher Drive, Aberdeen AB2 IRY, UNITED KINGDOM

Identification of Microorganism	Deposition No.	Deposition Date
E. Coli DH5α, pPM-h1 E. Coli DH5α, p12-h2 E. Coli DH5α, p64-h2 E. Coli DH5α, p146-h1 E. Coli DH5α, pPM-k3 E. Coli DH5α, p12-k2 E. Coli DH5α, p64-k4 E. Coli DH5α, p146-k3	NCIMB 40362 NCIMB 40363 NCIMB 40364 NCIMB 40365 MCIMB 40366 NCIMB 40367 NCIMB 40368 NCIMB 40369	Feb. 12, 1991 Feb. 12, 1991 Feb. 12, 1991 Feb. 12, 1991 Feb. 12, 1991 Feb. 12, 1991 Feb. 12, 1991

Depository Authority: Address:

Fermentation Research Institute, Agency of industrial Science and Technology 103, Higashi 1-chome Tsukuba-shi Ibaraki Japan

Identification of Microorganism	Deposition No.	Deposition Date
MT 18	FERM BP-2999	July 10, 1990
PM 1	FERM BP-2998	July 10, 1990

Sequence Listing

SEQUENCE LENGTH : 40

SEQUENCE TYPE : Nucleic acid

STRANDEDNESS : Single

SEQ. ID NO : 1

TOPOLOGY : Linear

20 MOLECULE TYPE : Synthetic DNA

SEQUENCE

ACTAGTCGAC ATGAAGTTGC CTGTTAGGCT GTTGGTGCTG

40

25

10

15

SEQ. ID NO : 2

SEQUENCE LENGTH: 39

SEQUENCE TYPE : Nucleic acid

STRANDEDNESS : Single

35 TOPOLOGY: Linear

MOLECULE TYPE : Synthetic DNA

SEQUENCE

40 ACTAGTEGAC ATGGAGWEAG ACACAETECT GYTATGGGT

39

SEQ. ID NO : 3

SEQUENCE LENGTH: 40

SEQUENCE TYPE : Nucleic acid

50 STRANDEDNESS : Single

TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

55

SEQUENCE

ACTAGTEGAC ATGAGTGTGC TCACTCAGGT CCTGGSGTTG

	SEQ. ID NO : 4	
	SEQUENCE LENGTH: 43	
5	SEQUENCE TYPE : Nucleic acid	
	STRANDEDNESS : Single	
10	TOPOLOGY : Linear	
	MOLECULE TYPE : Synthetic DNA	
	SEQUENCE	
15 .	ACTAGTEGAC ATGAGGRECE CTGETCAGWT TYTTGGMWTC TTG	43
	·	
20	SEQ. ID NO : 5	
	SEQUENCE LENGTH: 40	
	SEQUENCE TYPE : Nucleic acid	
25	STRANDEDNESS : Single	
	TOPOLOGY: Linear	
30	MOLECULE TYPE : Synthetic DNA	
	SEQUENCE	
	ACTAGTCGAC ATGGATTTWC AGGTGCAGAT TWTCAGCTTC	40
35	•	
	SEQ. ID NO : 6	
40	SEQUENCE LENGTH: 37	
	SEQUENCE TYPE : Nucleic acid	
	STRANDEDNESS: Single	
45	TOPOLOGY: Linear	
	MOLECULE TYPE : Synthetic DNA	
50	SEQUENCE	
	ACTAGTCGAC ATGAGGTKCY YTGYTSAGYT YCTGRGG	37

	SEQ. ID NO: 7	٠
	SEQUENCE LENGTH: 41	
5	SEQUENCE TYPE : Nucleic acid	
	STRANDEDNESS : Single	
10	TOPOLOGY : Linear	
	MOLECULE TYPE : Synthetic DNA	
	SEQUENCE	
15	ACTAGTEGAC ATGGGCWTCA AGATGGAGTE ACAKWYYCWG G	4 1
20	SEQ. ID NO: 8	
	SEQUENCE LENGTH : 41	
	SEQUENCE TYPE : Nucleic acid	
25	STRANDEDNESS : Single	
	TOPOLOGY: Linear	
30	MOLECULE TYPE : Synthetic DNA	
	SEQUENCE	
	ACTAGTCGAC ATGTGGGGAY CTKTTTYCMM TTTTTCAATT G	41
35		
	SEQ. ID NO : 9	
40	SEQUENCE LENGTH: 35	
	SEQUENCE TYPE : Nucleic acid	
	STRANDEDNESS : Single	
45	TOPOLOGY: Linear	
	MOLECULE TYPE : Synthetic DNA	
50	SEQUENCE	
	ACTAGTEGAE ATGGTRTCCW CASCTEAGTT CETTG	35

	SEQ. ID NO: 10	
_	SEQUENCE LENGTH: 37	
5	SEQUENCE TYPE : Nucleic acid	
	STRANDEDNESS : Single	
10	TOPOLOGY : Linear	
	MOLECULE TYPE : Synthetic DNA	
	SEQUENCE	
15	ACTAGTEGAE ATGTATATAT GTTTGTTGTE TATTTET	37
20	SEQ. 1D NO : 11	
	SEQUENCE LENGTH: 38	
	SEQUENCE TYPE : Nucleic acid	
25	STRANDEDNESS : Single	
	TOPOLOGY : Linear	
30	MOLECULE TYPE : Synthetic DNA	
	SEQUENCE	
	ACTAGTEGAC ATGGAAGECE CAGETEAGET TETETTEE	38
35	•	
	SEQ. ID NO : 12	•
40	SEQUENCE LENGTH: 27	
	SEQUENCE TYPE : Nucleic acid	
	STRANDEDNESS : Single	
45	TOPOLOGY : Linear	
	MOLECULE TYPE : Synthetic DNA	
50	SEQUENCE	
	GGATCCCGGG TGGATGGTGG GAAGATG	27

	SEQ. ID NO : 13	
	SEQUENCE LENGTH : 37	
5	SEQUENCE TYPE : Nucleic acid	
	STRANDEDNESS : Single	
10	TOPOLOGY : Linear	
	MOLECULE TYPE : Synthetic DNA	
	SEQUENCE	
15	ACTAGTEGAC ATGAAATGCA GETGGGTEAT STTETTE	37
		•
20	SEQ. ID NO : 14	
	SEQUENCE LENGTH : 36	
	SEQUENCE TYPE : Nucleic acid	
25	STRANDEDNESS : Single	
	TOPOLOGY: Linear	
30	MOLECULE TYPE: Synthetic DNA	
	SEQUENCE	
	ACTAGTCGAC ATGGGATGGA GCTRTATCAT SYTCTT	36
35		
	SEQ. ID NO : 15	
40	SEQUENCE LENGTH : 37	
	SEQUENCE TYPE : Nucleic acid	
	STRANDEDNESS : Single	
45	TOPOLOGY: Linear	
	MOLECULE TYPE : Synthetic DNA	•
50	SEQUENCE	
	ACTAGTEGAC ATGAAGWTGT GGTTAAACTG GGTTTTT	37

	SEQ. ID NO: 16	
	SEQUENCE LENGTH: 35	
5	SEQUENCE TYPE : Nucleic acid	
	STRANDEDNESS : Single	
10	TOPOLOGY : Linear	
	MOLECULE TYPE : Synthetic DNA	
	SEQUENCE	
15	ACTAGTCGAC ATGRACTITG GGYTCAGCTT GRTTT	35
20	SEQ. ID NO : 17	·
	SEQUENCE LENGTH: 40	
	SEQUENCE TYPE : Nucleic acid	
25	STRANDEDNESS : Single	•
	TOPOLOGY : Linear	
	MOLECULE TYPE : Synthetic DNA	
30	SEQUENCE	
	ACTAGTEGAC ATGGACTECA GGETEAATTT AGTTTTEETT	40
35		
	SEQ. ID NO : 18	
	SEQUENCE LENGTH: 37	
40	SEQUENCE TYPE : Nucleic acid	
	STRANDEDNESS : Single	•
45	TOPOLOGY: Linear	,
	MOLECULE TYPE : Synthetic DNA	
	SEQUENCE	•
50	ACTAGTOGAC ATGGCTGTCY TRGSGCTRCT CTTCTGC	37

	ord. In un . 19	
	SEQUENCE LENGTH : 36	
5	SEQUENCE TYPE : Nucleic acid	
	STRANDEDNESS : Single	
10	TOPOLOGY: Linear	
	MOLECULE TYPE : Synthetic DNA	
	SEQUENCE	
15	ACTAGTCGAC ATGGRATGGA GCKGGRTCTT TMTCTT	3 8
20	SEQ. ID NO : 20	
	SEQUENCE LENGTH : 33	
	SEQUENCE TYPE : Nucleic acid	
25	STRANDEDNESS: Single	
	TOPOLOGY: Linear	
30	MOLECULE TYPE : Synthetic DNA	
	SEQUENCE	
	ACTAGTEGAE ATGAGAGTGE TGATTETTTT GTG	33
35		
	SEQ. ID NO : 21	
40	SEQUENCE LENGTH: 40	
	SEQUENCE TYPE : Nucleic acid	
	STRANDEDNESS : Single	
45	TOPOLOGY: Linear	
	MOLECULE TYPE : Synthetic DNA	
50	SEQUENCE	
	ACTAGTEGAC ATGGMTTGGG TGTGGAMCTT GCTATTCCTG	40

	SEQ. ID NO : 22		
	SEQUENCE LENGTH : 37		
5	SEQUENCE TYPE : Nucleic acid		
	STRANDEDNESS : Single		
10	TOPOLOGY : Linear		
	MOLECULE TYPE : Synthetic DNA		
	SEQUENCE		
15	ACTAGTEGAC ATGGGCAGAC TTACATTETE ATTECTG		37
20	SEQ. ID NO : 23		
	SEQUENCE LENGTH : 28		
	SEQUENCE TYPE : Nucleic acid		
25	STRANDEDNESS : Single		
	TOPOLOGY : Linear		
30	MOLECULE TYPE : Synthetic DNA		
	SEQUENCE		
	GGATCCCGGG CCAGTGGATA GACAGATG		28
35			
	SEQ. ID NO : 24 .	V	
40	SEQUENCE LENGTH : 393		
	SEQUENCE TYPE : Nucleic acid		
	STRANDNESS : Double		
45	TOPOLOGY : Linear	•	
	MOLECULE TYPE : cDNA .		
50	ORIGINAL SOURCE		
50	ORGANISM : Mouse		

	IMI	ADIA	TE SI	URCI	3												
5	(CLON	E : 1	12-F	(2										•		
3	FEA	TUR	E : 1	160) s	ig	ept	de									
			61	139	3 0	at p	ept	de									
10	SEQ	UENO	CE														
	ATG	GAC	C TC	GAC	ACA	СТС	сто	CTA	TGG	GTA	CTO	C-TG	СТО	TGC	GT1	CCA	48
15	Met	Gli	ser	Asp	Thr	Leu	Let	Leu	Trp	Val	Lei	Leu	Lei	Trp	Val	Pro	
75	-20)				-15	i				-10)				~5	
	CCT	тсс	ACT	GGT	GAC	ATT	GTG	CTG	ACA	CAG	тст	ССТ	GCT	тсс	TTA	GGT	96
20	Giy	Ser	Thr	Gly	Asp	I 1 e	Val	Leu	Thr	G 1 n	Ser	Pro	Ala	Ser	Leu	Gly	
					1				5		•			10			
25	GTA	TCT	CTG	GGG	CAG	AGG	GCC	ACC	ATC	TCA	TGC	A G G	GCC	AGC	AAA	AGT	144
23	Val	Ser	Leu	Gly	G I n	Arg	Ala	Thr	Ile	Ser	Суs	Arg	Ala	Ser	Lys	Ser	
			15					20					25				
30	GTC	AGT	ACA	TCT	GGC	TAT	AGT	TAT	ATG	CAC	TCG	TAC	CAA	CAG	AAA	CCA	192
	Val	Ser	Thr	Ser	Gly	Туr	Ser	Tyr	Иet	His	Trp	Tyr	Gln	Gln	Lys	Pro	
35		30					35					40					
55	GGA	CAG	ACA	CCC	AAA	CTC	CTC	ATC	TAT	CTT	GCA	TCC	AAC	CTA	GAA	TCT	240
	Gly	G 1 n	Thr	Pro	Lys	Leu	Leu	lle	Tyr	Leu	Ala	Ser	Asn	Leu	Glu	Ser	
40	45					5 0					55					60	
•				GCC													288
45	Gly	Val	P r _. o	Ala	Arg	Phe	Şer	Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	
70					65					70					75		
				CAT													336
50	Leu	Asn	Ile	His	Pro	Va 1	Glu	Glu	Glu	Ásp	Ala	Ala	Thr	Туг	Туг	Cys	

	CAG CAC AGT AGG GAG AAT CCG TAC ACG TTC GGA GGG GGG ACC AAG CTG	384
5	Gin His Ser Arg Glu Asn Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu	
5	95 100 105	
	GAA ATA AAA	393
10	Giu Ile Lys	
	110	
15		
,,,	SEQ. 1D NO : 25	
	SEQUENCE LENGTH: 405	
20	SEQUENCE TYPE : Nucleic acid	
	STRANDNESS : Double	
0.5	TOPOLOGY: Linear	
25	MOLECULE TYPE : cDNA	
	ORIGINAL SOURCE	
30	ORGANISM : Mouse	
	IMADIATE SOURCE	
25	CLONE: p12-h2	
35	FEATURE: 157 sig peptide	
	58405 mat peptide	
40	SEQUENCE ATG GGA TGG AGC GGG ATC TTT CTC TTC CTT CTG TCA GGA ACT GCA GGT	48
	Met Gly Trp Ser Gly Ile Phe Leu Phe Leu Leu Ser Gly Thr Ala Gly	
45		
45	-15 -10 -5 GTC CAC TCT GAG ATC CAG CTG CAG CAG TCT GGA CCT GAG CTG ATG AAG	96
	Val His Ser Glu Ile Gin Leu Gin Gin Ser Gly Pro Glu Leu Met Lys	
50	-1 5 10	

	CCT	GGG	GCT	TCA	GTG	AAG	ATA	тсс	TGC	AAG	GCT	TCT	GGT	TAC	TCA	TTC	144
	Pro	Gly	Ala	Ser	Val	Lys	Ile	Ser	Cys	Lys	Ala	Ser	Gly	Tyr	Ser	Phe	
.		15					20			·		25					
	ACT	AGC	TAT	TAC	ATA	CAC	TGG	GTG	AAG	CAG	AGC	CAT	GGA	AAG	AGC	CTT	192
10	Thr	Ser	Туг	Tyr	I 1 e	His	Trp	Va 1	Lys	Gln	Ser	His	Gly	Lys	Ser	Leu	
	30					35					40					45	
	GAG	TGG	ATT	GGA	TAT	ATT	GAT	CCT	TTC	AAT	GGT	GGT	λст	AGC	TAC	AAC	240
15	Glv	Tŗp	Пе	G 1 y	Tyr	Ile	Asp	Pro	Phe	Asn	Gly	Gly	Thr	Ser	Tyr	Asn	
					50					55					60		
20	CAG	AAA	TTC	AAG	GGC	AAG	GCC	ACA	TTG	ACT	GTT	GAC	AAA	TCT	TCC	AGC	288
20	Gln	Lys	Phe	Ĺуs	Cly	lys	Ala	Thr	Leu	Thr	Va i	Asp	Lys	Ser	Ser	Ser	
				. 65					70					75			
25	ACA	GCC	TAC	ATG	CAT	CTC	AGC	AGC	CTG	ACA	TCT	GAG	GAC	TCT	GCA	GTC	336
	Thr	Ala	Ťyr	Met	His	Leu	Ser	Ser	Lev	Thr	Ser	Ğlu	Аsр	Ser	Ala	Vai	
			80					85					90				
30	TAT	TAC	TGT	GCA	AGG	666	GGT	AAC	CGÇ	TTT	GCT	TAC	TGG	GGC	CAA	GGG	384
	Tyr	Tyr	Cys.	Ala	Arg	Gly	G 1 y	Asn	Arg	Phe	Ala	Tyr	Trp	Gly	GIn	Gly	
35		95					100					105					
	ACT	CTG	GTC	ACT	GTC	TCT	GCA										405
	Thr	Leu	Val	Thr	Val	Ser	Ala										
40	110					115											
45	SEQ.	I D	NO :	26				•									
45	SEQUENCE LENGTH : 381																
	SEQUI					eic a	a c i d										
50 .	STRAI	NDNE	SS :	Dou	ble												
	TOPOL	OGY	: L	lnear	г												

	MOLECULE	TYPE	: cD	N A											
	ORIGINAL	SOUR	CE												
5	ORGAN1	SM :	Mouse												
	IMADIATE	SOUR	CE												
10	CLONE	pPM	- k 3												
	FEATURE	: 1	60	sig pe	ptid	le									
		61	381	mat pe	eptid	le									
15	SEQUENCE														
	ATG GTG														48
20	Met Val	Ser S	Ser Al	a Gln	Phe	Leu	Gly	Leu	Leu	Leu	Leu	Cys	Phe	Gln	
20	-20			-15		•			-10					- 5	
	GGT ACC														. 96
25	Gly Thr	Arg (Cys As	sp Ile	Gln	Met	T ħ r	Gln	Thr	Thr	Ser	Ser	Lev	Ser	
				1			5					10			
	GCC TCT														144
30	Ala Ser	Leu (Gly As	sp Arg	Val	Thr	Ile	Ser	Cys	Arg	Ala	Ser	Gln	Asp	
		15				20					25		٠		
35	ATT AGC														192
	Ile Ser	Ser '	Tyr L	eu Asn	Trp	Tyr	Gln	G·1 n	Lys	Pro	Asp	G [1 y	Thr	Ile	
	30				35					40					
40	AAA CTC						•								240
	lys Leu	Leu	lle T	yr Tyr	Thr	Ser	Arg	leu 			Gly	Val	Pro		
45	45			50		•			55					60	000
	AGG TTC														288
	Arg Phe	Ser	Gly S	er Gly	Ser	Gly	Thr			Ser	Leu	Thr			
50				65				70					75		

	AAC CTG GAG CAA GAA GAC ATT GCC ACT TAC TTT TGC CAA CAG GGT AAC	336
5	Asn Leu Glu Gin Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gin Gly Asn	
	80 85 90	
	ACG CTT CCG TAC ACG TTC GGA GGG GGG ACC AAG CTG GAA ATA AAT	381
10	Thr Leu Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Asn	
	95 100 105	
15	SEQ. ID NO : 27	
	SEQUENCE LENGTH: 411	
20	SEQUENCE TYPE : Nucleic acid	
	STRANDEDNESS : Double	
	TOPOLOGY: Linear	
25	STRANDNESS : Double	
	MOLECULE TYPE : cDNA	
20	ORIGINAL SOURCE	
30	ORGANISM : Mouse	
	IMADIATE SOURCE	
35	CLONE : pPM-h1	
	FEATURE: 154 sig peptide	
	55411 mat peptide	
40	SEQUENCE	
	ATG AGA GTG CTG ATT CTT TTG TGG CTG TTC ACA GCC TTT CCT GGT ATC	48
45	Met Arg Val Leu Ile Leu Leu Trp Leu Phe Thr Ala Phe Pro Gly Ile	
	-15 -10 -5	
	CTG TCT GAT GTG CAG CTT CAG GAG TCG GGA CCT GTC CTG GTG AAG CCT	96
50	Leu Ser Asp Val Gin Leu Gin Glu Ser Gly Pro Val Leu Val Lys Pro	
	-1 5 10	

															ACC	
Ser	Gln	Ser	Leu	Ser	Leu	Thr	Cys	Thr	Val	Thr	Gly	Tyr	Ser	Ile	Thr	
15					20					25					30	
AGT	GAT	CAT	GCC	TGG	AGC	TGG	ATC	CGG	CAG	TTT	CCA	GCA	AAC	AAA	CTG	192
Ser	Asp	H i·s	Ala	Trp	Ser	Trp	Ile	Arg	Gln	Phe	Pro	G 1 y	Asn	Lys	Leu	
				35					40					·45		
GAG	TGG	ATG	GGC	TAC	ATA	AGT	TAC	AGT	GGT	ATC	ACT	ÄCC	TAC	AAC	CCA	240
Glu	Trp	Met	Gly	Tyr	I i e	Ser	Tyr	Ser	Gly	lle	Thr	Thr	Tyr	Asn	Pro	
			50					55					60			
TCT	стс	AAA	AGT	CGA	ATC	TCT	ATC	ACT	CGA	GAC	ACA	TCC	AAG	AAC	CAG	288
Ser	Leu	Lys	Ser	Árg	Ile	Ser	Ile	Thr	Arg	Asp	Thr	Ser	Lys	Asn	Gln	
		65					70					75				
TTC	TTC	CTA	CAG	TTG	AAT	TCT	GTG	ACT	ACT	GGG	GAC	ACG	TCC	ACA	TAT	336
Phe	Phe	Leu	Gln	Leu	Asn	Ser	Val	Thr	Thr	Gly	Asp	Thr	Ser	Thr	Tyr	
	80					85					90					
TAC	TGT	GCA	AGA	TCC	CTA	GCT	CGG	ACT	ACG	GCT	ATG	GAC	TAC	TGG	GGT	384
Туг	Суs	Ala	Arg	Ser	Leu	Ala	Arg	Thr	Thr	Ala	Met	Asp	Туг	Тгр	Gly	
95					100					105					110	
CAA	GGA	ACC	TCA	GTC	ACC	GTC	TCC	TCA								411
G 1 n	Gly	Thr	Ser	Val	Thr	Val	Ser	Ser								
				115												
							•									
SEQ	. ID	0 א	: 28	3												
SEC	UENC	E LE	NGTH	ı : 3	93										ŧ	
SEC	UENC	E TY	PE :	Nuc	leic	aci	d									
STF	I G M A S	RESS	: D c	uble	:											
	AGT Ser GAG GIU TCT Ser TTC Phe TAC Tyr 95 CAA GIn	AGT GAT Ser Asp GAG TGG GIU Trp TCT CTC Ser Leu TTC TTC Phe Phe 80 TAC TGT Tyr Cys 95 CAA GGA GIn Gly SEQUENC	AGT GAT CAT Ser Asp His GAG TGG ATG Glu Trp Met TCT CTC AAA Ser Leu Lys 65 TTC TTC CTA Phe Phe Leu 80 TAC TGT GCA Tyr Cys Ala 95 CAA GGA ACC Gln Gly Thr SEQ. ID NO SEQUENCE LE SEQUENCE TY	AGT GAT CAT GCC Ser Asp His Ala GAG TGG ATG GGC Glu Trp Met Gly 50 TCT CTC AAA AGT Ser Leu Lys Ser 65 TTC TTC CTA CAG Phe Phe Leu Gln 80 TAC TGT GCA AGA Tyr Cys Ala Are 95 CAA GGA ACC TCA Gln Gly Thr Ser SEQUENCE LENGTH SEQUENCE TYPE :	AGT GAT CAT GCC TGG Ser Asp His Ala Trp 35 GAG TGG ATG GGC TAC Glu Trp Met Gly Tyr 50 TCT CTC AAA AGT CGA Ser Leu Lys Ser Arg 65 TTC TTC CTA CAG TTG Phe Phe Leu Gln Leu 80 TAC TGT GCA AGA TCC Tyr Cys Ala Arg Ser 95 CAA GGA ACC TCA GTC Gln Gly Thr Ser Val 115 SEQUENCE LENGTH: 3 SEQUENCE TYPE: Nuc	AGT GAT CAT GCC TGG AGC Ser Asp His Ala Trp Ser 35 GAG TGG ATG GGC TAC ATA Glu Trp Met Gly Tyr Ile 50 TCT CTC AAA AGT CGA ATC Ser Leu Lys Ser Arg Ile 65 TTC TTC CTA CAG TTG AAT Phe Phe Leu Gln Leu Asn 80 TAC TGT GCA AGA TCC CTA Tyr Cys Ala Arg Ser Leu 95 100 CAA GGA ACC TCA GTC ACC Gln Gly Thr Ser Val Thr 115 SEQ. ID NO : 28 SEQUENCE LENGTH : 393	AGT GAT CAT GCC TGG AGC TGG Ser Asp His Ala Trp Ser Trp 35 GAG TGG ATG GGC TAC ATA AGT Glu Trp Met Gly Tyr Ile Ser 50 TCT CTC AAA AGT CGA ATC TCT Ser Leu Lys Ser Arg Ile Ser 65 TTC TTC CTA CAG TTG AAT TCT Phe Phe Leu Gln Leu Asn Ser 80 TAC TGT GCA AGA TCC CTA GCT Tyr Cys Ala Arg Ser Leu Ala 95 100 CAA GGA ACC TCA GTC ACC GTC Gln Gly Thr Ser Val Thr Val 115 SEQ. ID NO: 28 SEQUENCE LENGTH: 393 SEQUENCE TYPE: Nucleic aci	AGT GAT CAT GCC TGG AGC TGG ATC Ser Asp His Ala Trp Ser Trp Ile 35 GAG TGG ATG GGC TAC ATA AGT TAC Glu Trp Met Gly Tyr Ile Ser Tyr 50 TCT CTC AAA AGT CGA ATC TCT ATC Ser Leu Lys Ser Arg Ile Ser Ile 65 70 TTC TTC CTA CAG TTG AAT TCT GTG Phe Phe Leu Gln Leu Asn Ser Val 80 85 TAC TGT GCA AGA TCC CTA GCT CGG Tyr Cys Ala Arg Ser Leu Ala Arg 95 100 CAA GGA ACC TCA GTC ACC GTC TCC Gln Gly Thr Ser Val Thr Val Ser 115 SEQ. ID NO: 28 SEQUENCE LENGTH: 393 SEQUENCE TYPE: Nucleic acid	AGT GAT CAT GCC TGG AGC TGG ATC CGG Ser Asp His Ala Trp Ser Trp Ile Arg 35 GAG TGG ATG GGC TAC ATA AGT TAC AGT Glu Trp Met Gly Tyr Ile Ser Tyr Ser 50 TCT CTC AAA AGT CGA ATC TCT ATC ACT Ser Leu Lys Ser Arg Ile Ser Ile Thr 65 TOC TTC CTA CAG TTG AAT TCT GTG ACT Phe Phe Leu Gln Leu Asn Ser Val Thr 80 85 TAC TGT GCA AGA TCC CTA GCT CGG ACT Tyr Cys Ala Arg Ser Leu Ala Arg Thr 95 100 CAA GGA ACC TCA GTC ACC GTC TCC TCA Gln Gly Thr Ser Val Thr Val Ser Ser 115 SEQ. ID NO: 28 SEQUENCE LENGTH: 393 SEQUENCE TYPE: Nucleic acid	AGT GAT CAT GCC TGG AGC TGG ATC CGG CAG Ser Asp His Ala Trp Ser Trp IIe Arg Gin 35 40 GAG TGG ATG GGC TAC ATA AGT TAC AGT GGT GIU Trp Met GIY Tyr IIe Ser Tyr Ser GIY 50 55 TCT CTC AAA AGT CGA ATC TCT ATC ACT CGA Ser Leu Lys Ser Arg IIe Ser IIe Thr Arg 65 70 TTC TTC CTA CAG TTG AAT TCT GTG ACT ACT Phe Phe Leu Gin Leu Asn Ser Val Thr Thr 80 85 TAC TGT GCA AGA TCC CTA GCT CGG ACT ACG Tyr Cys Ala Arg Ser Leu Ala Arg Thr Thr 95 100 CAA GGA ACC TCA GTC ACC GTC TCC TCA Gin Gly Thr Ser Val Thr Val Ser Ser 115 SEQ. ID NO: 28 SEQUENCE LENGTH: 393 SEQUENCE TYPE: Nucleic acid	AGT GAT CAT GCC TGG AGC TGG ATC CGG CAG TTT Ser Asp His Ala Trp Ser Trp Ile Arg Gin Phe 35 40 GAG TGG ATG GGC TAC ATA AGT TAC AGT GGT ATC Glu Trp Met Gly Tyr Ile Ser Tyr Ser Gly Ile 50 55 TCT CTC AAA AGT CGA ATC TCT ATC ACT CGA GAC Ser Leu Lys Ser Arg Ile Ser Ile Thr Arg Asp 65 70 TTC TTC CTA CAG TTG AAT TCT GTG ACT ACT GGG Phe Phe Leu Gln Leu Asn Ser Val Thr Thr Gly 80 85 TAC TGT GCA AGA TCC CTA GCT CGG ACT ACG GCT Tyr Cys Ala Arg Ser Leu Ala Arg Thr Thr Ala 95 100 105 CAA GGA ACC TCA GTC ACC GTC TCC TCA Gln Gly Thr Ser Val Thr Val Ser Ser 115 SEQ. ID NO: 28 SEQUENCE LENGTH: 393 SEQUENCE TYPE: Nucleic acid	AGT GAT CAT GCC TGG AGC TGG ATC CGG CAG TTT CCA Ser Asp His Ala Trp Ser Trp Ile Arg Gln Phe Pro 35 40 GAG TGG ATG GGC TAC ATA AGT TAC AGT GGT ATC ACT Glu Trp Met Gly Tyr Ile Ser Tyr Ser Gly Ile Thr 50 55 TCT CTC AAA AGT CGA ATC TCT ATC ACT CGA GAC ACA Ser Leu Lys Ser Arg Ile Ser Ile Thr Arg Asp Thr 65 70 TTC TTC CTA CAG TTG AAT TCT GTG ACT ACT GGG GAC Phe Phe Leu Gln Leu Asn Ser Val Thr Thr Gly Asp 80 85 90 TAC TGT GCA AGA TCC CTA GCT CGG ACT ACG GCT ATG Tyr Cys Ala Arg Ser Leu Ala Arg Thr Thr Ala Met 95 100 105 CAA GGA ACC TCA GTC ACC GTC TCC TCA Gln Gly Thr Ser Val Thr Val Ser Ser 115 SEQ. ID NO: 28 SEQUENCE LENGTH: 393 SEQUENCE TYPE: Nucleic acid	AGT GAT CAT GCC TGG AGC TGG ATC CGG CAG TTT CCA GGA Ser Asp His Ala Trp Ser Trp Ile Arg Gin Phe Pro Gly 35 40 GAG TGG ATG GGC TAC ATA AGT TAC AGT GGT ATC ACT ACC GIU Trp Met Gly Tyr Ile Ser Tyr Ser Gly Ile Thr Thr 50 55 TCT CTC AAA AGT CGA ATC TCT ATC ACT CGA GAC ACA TCC Ser Leu Lys Ser Arg Ile Ser Ile Thr Arg Asp Thr Ser 65 70 75 TIC TTC CTA CAG TTG AAT TCT GTG ACT ACT GGG GAC ACG Phe Phe Leu Gin Leu Asn Ser Val Thr Thr Gly Asp Thr 80 85 90 TAC TGT GCA AGA TCC CTA GCT CGG ACT ACG GCT ATG GAC Tyr Cys Ala Arg Ser Leu Ala Arg Thr Thr Ala Met Asp 95 100 105 CAA GGA ACC TCA GTC ACC GTC TCC TCA Gln Gly Thr Ser Val Thr Val Ser Ser 115 SEQ ID NO: 28 SEQUENCE LENGTH: 393 SEQUENCE TYPE: Nucleic acid	AGT GAT CAT GCC TGG AGC TGG ATC CGG CAG TTT CCA GGA AAC Ser Asp His Ala Trp Ser Trp Ile Arg Gin Phe Pro Gly Asn 35 40 GAG TGG ATG GGC TAC ATA AGT TAC AGT GGT ATC ACT ACC TAC Glu Trp Met Gly Tyr Ile Ser Tyr Ser Gly Ile Thr Thr Tyr 50 55 60 TCT CTC AAA AGT CGA ATC TCT ATC ACT CGA GAC ACA TCC AAG Ser Leu Lys Ser Arg Ile Ser Ile Thr Arg Asp Thr Ser Lys 65 70 75 TTC TTC CTA CAG TTG AAT TCT GTG ACT ACT GGG GAC ACG TCC Phe Phe Leu Gin Leu Asn Ser Val Thr Thr Gly Asp Thr Ser 80 85 90 TAC TGT GCA AGA TCC CTA GCT CGG ACT ACG GCT ATG GAC TAC Tyr Cys Ala Arg Ser Leu Ala Arg Thr Thr Ala Met Asp Tyr 95 100 105 CAA GGA ACC TCA GTC ACC GTC TCC TCA Gln Gly Thr Ser Val Thr Val Ser Ser 115 SEQ. ID NO: 28 SEQUENCE LENGTH: 393 SEQUENCE TYPE: Nucleic acid	AGT GAT CAT GCC TGG AGC TGG ATC CGG CAG TTT CCA GGA AAC AAA Ser Asp His Ala Trp Ser Trp Ile Arg Gin Phe Pro Gly Asn Lys 35 40 45 GAG TGG ATG GGC TAC ATA AGT TAC AGT GGT ATC ACT ACC TAC AAC Glu Trp Met Gly Tyr Ile Ser Tyr Ser Gly Ile Thr Thr Tyr Asn 50 55 60 TCT CTC AAA AGT CGA ATC TCT ATC ACT CGA GAC ACA TCC AAG AAC Ser Leu Lys Ser Arg Ile Ser Ile Thr Arg Asp Thr Ser Lys Asn 65 70 75 TTC TTC CTA CAG TTG AAT TCT GTG ACT ACT GGG GAC ACG TCC ACA Phe Phe Leu Gin Leu Asn Ser Val Thr Thr Gly Asp Thr Ser Thr 80 85 90 TAC TGT GCA AGA TCC CTA GCT CGG ACT ACG GCT ATG GAC TAC TGG Tyr Cys Ala Arg Ser Leu Ala Arg Thr Thr Ala Met Asp Tyr Trp 95 100 105 CAA GGA ACC TCA GTC ACC GTC TCC TCA Gln Gly Thr Ser Val Thr Val Ser Ser 115 SEQUENCE LENGTH: 393 SEQUENCE TYPE: Nucleic acid	AGT GAT CAT GCC TGG AGC TGG ATC CGG CAG TTT CCA GGA AAC AAA CTG Ser Asp His Ala Trp Ser Trp Ile Arg Gin Phe Pro Gly Asn Lys Leu 35 40 45 GAG TGG ATG GGC TAC ATA AGT TAC AGT GGT ATC ACT ACC TAC AAC CCA Glu Trp Met Gly Tyr Ile Ser Tyr Ser Gly Ile Thr Thr Tyr Asn Pro 50 55 60 TCT CTC AAA AGT CGA ATC TCT ATC ACT CGA GAC ACA TCC AAG AAC CAG Ser Leu Lys Ser Arg Ile Ser Ile Thr Arg Asp Thr Ser Lys Asn Gin 65 70 75 TTC TTC CTA CAG TTG AAT TCT GTG ACT ACT GGG GAC ACG TCC ACA TAT Phe Phe Leu Gin Leu Asn Ser Val Thr Thr Gly Asp Thr Ser Thr Tyr 80 85 90 TAC TGT GCA AGA TCC CTA GCT CGG ACT ACG GCT ATG GAC TAC TGG GGT Tyr Cys Ala Arg Ser Leu Ala Arg Thr Thr Ala Met Asp Tyr Trp Gly 95 100 105 110 CAA GGA ACC TCA GTC ACC GTC TCC TCA Gin Gly Thr Ser Val Thr Val Ser Ser 115 SEQ. ID NO: 28 SEQUENCE LENGTH: 393 SEQUENCE TYPE: Nucleic acid

55

TOPOLOGY : Linear

	MO	LECU	ILE T	YPE	: cD	N A											
_	OR	IGIN	AL S	OURC	E												
5	. •	ORGA	NISM	: м	ouse												
	I M	ADIA	TE S	OURC	E												
10	(CLON	E : 1	p64-1	k 4			,									
	FE	A T U R	E : :	160	0 :	ig p	ept:	i d e									
			6	139	93 п	nat p	ept	de									
15	SEC	QUEN	CE)										
	ATO	GAI	G TC	A GAC	ACA	СТО	сто	СТА	TGG	GTO	СТО	CT	сто	TG(GTT	r cca	4 8
20	Met	Gli	u Ser	Asp	Thr	Leu	Leu	Lev	Trp	Val	Let	Lei	ı Lev	Tr	va!	Pro	
	-20)				-15					-10)				-5	
	CCT	TCC	ACA	CCT	GAC	ATT	GTG	TTG	ATC	CAA	тст	CCA	GCT	тст	TTG	GCT	96
25	Gly	Ser	Thr	Gly	Asp	Ile	Val	Leu	Ile	Gln	Ser	Pro	Ala	Ser	Leu	Ala	
				-1					5					10			
30	GTG	TCT	CTA	GGG	CAG	AGG	GCC	ACC	ATA	TCC	TGC	AGA	GCC	AGT	GAA	AGT	144
	Va 1	Ser	Leu	Gly	Gln	Arg	Ala	Thr	Ile	Ser	Суs	Arg	Ála	Ser	Glu	Ser	
			15	•				20					25				
35	GTT	GAT	AGT	TAT	ccic	AAT	AGT	TTT	ATG	CAC	TGG	TAC	CAG	CAG	AAA	CCA	192
	Val	Asp	Ser	Туг	Gly	Ásn	Ser	Phe	Met	Нis	Trp	Туr	Gln	G 1 n	Lys	Pro	
40		30					35			•		40					
40	GGA	CAG	CCA	CCC	AAA	CTC	CTC	ATC	TAT	CGT	GCA	TCC	AAC	CTA	GAA	TCT	240
	Gly	Gln	Pro	Pro	Lys	Leu	Leu	I l e	Tyr	Arg.	Ala	Ser	Asn	Leυ	G 1 u	Ser	
45	45					50					55					60	
	CCC	ATC	CCT	GCC	AGG	TTC	AGT	GGC	AGT	GGG	TCT	A C C	ACA	GAC	TTC	ACC	288
	Gly	I l e	Pro	Ala	Arg	Phe	Ser	Gly	Ser	Gly	Ser	Årg	Thr	Asp	Phe	Thr	
50					65					70					75		

	CTC ACC ATT	AAT CCT G	TG GAG GCT	GAT GAT GTT	GCA ACC TAT	TAC TUT 336
5	Leu Thr Ile	Asn Pro V	al Glu Ala	Asp Asp Val	Ala Thr Tyr	Tyr Cys
		80		85	90	
	CAG CAA AGT	AAT GAG G	AT CCT CCC	ACG TTC GGT	GCT GGG ACC	AAG CTG 384
10	Gin Gin Ser	Asn Glu A	Asp Pro Pro	Thr Phe Gly	Ala Gly Thr	Lys Leu
	95		100	١	105	
	GAG CTG AAA					393
15	Giu Leu Lys					
	110					
20						
	SEQ. ID NO	: 29				
	SEQUENCE LE	NGTH :, 41	7			
25	SEQUENCE TY	(PE : Nucl	eic acid			
	STRANDNESS	: Double				
30	TOPOLOGY :	Linear				
	MOLECULE TY	YPE : cDNA				
	ORIGINAL SC	OURCE				
35	ORGANISM	: Mouse				
	IMADIATE S					
40	CLONE :					
	FEATURE :					
		8417 ma	at peptide	****		
45	SEQUENCE		0 T 0 T T 1	·ሶ ቁጥድ ድሞድ ድግ		T GCA GGT 48
					TG TCA GTA AC	
50	Met Gly Tr		yas rue II	-10	eu Ser Val Th	-5
		-15		10		-

		-													
	GTC CA	C TCC	CAG GT	T CAA	TTG	CAG	CAG	TCT	CGA	GCT	GAG	TTO	TA C	G AAG	96
	Val Hi	s Ser	Gln Va	l Gin	Lev	Gln	Gln	Ser	Gly	Ala	GIu	Lei	и Ме	t Lys	
5		-1				. 5					10				
	CCT GG	c ccc	TCA GT	G AAG	ATC	TCC	TGC	AAG	GCT	ACT	GGC	TAC	ACA	A TTC	144
	Pro G1	y Ala	Ser Va	l Lys	Пе	Ser	C y.s	Lys	Ala	Thr	Gly	Tyr	The	Phe	
10	1	5			20					25					
	AGT AG	TAT	TGG AT	A GTG	TGG	ATA	AAG	CAG	AGG	ССТ	ÇCA	CAT	GGC	CTT	192
15	Ser Ser	Tyr	Trp Ile	e Val	Trp	I 1 e	Lys	G 1 n	Årg	Pro	Gly	His	Gly	Leu	
	30			35					40					45	
	GAG TG	TTA	GGA GÀG	TTA	TTA	CCT	GGA	ACC	GGT	AGT	ACT	AAC	TAC	AAT	240
20	Glu Trp	lle	Cly Clu	lle	Leu	Pro	Gly	Thr	Gly	Ser	Thr	Asn	Tyr	Asn	
			50					55					60		
25			AAG GGC												288
	Glu Lys	Phe !	lys Gly	Lys	Ala	Thr	Phe	Thr	Ala	Asp	Thr	Ser	Ser	Asn	
			65				70					75			
30	ACA GCC														336
	Thr Ala		det Gin	Lev	Ser	Ser 1	Leu 1	Thr :	Ser	Glu /	Asp :	Ser	Ala	Va 1	
25		80				85					90				
35	TAT TAC														384
	Tyr Tyr	Cys A	la Ser			Ser S	er C	ly 1	уг	Tyr A	la k	iet.	Asp	Туг	
40	95 TCC CCT		a.		100					105					
	TGG GGT						••.								417
	Trp Giy	OIN G			/ai T	hr V	al S								
45	110			115				1	20						

SEQ. ID NO : 30

SEQUENCE LENGTH: 381

	SEQUE	NUE	lir	c:	NUCI	610	a C 1 U										
	STRAN	DNE	ss :	Dou	b l e												
5	TOPOL	0 G Y	: L	inéa	r												
	MOLEC	ULE	TYP	E :	c D N A												
10	ORIGI	NAL	sou	RCE													•
	ORG	ANI	SM :	M o u	se												
	IMADI	ATE	sou	RCE													
15	CLO	NE	: p1	46-k	3												
	FEATU	JRE	: 1.	. 60	s i	g pe	ptic	i e									
20			61.	. 381		t pe	ptic	ie .						٠.			
	SEQUE																
	ATG C																48
25	Met \	/a i	Ser	Thr	Pro	Gln	Phe	Leu	Gly	Leu	Leu	Leu	lie	Cys	Phe	Gln	
	-20					-15					-10					-5	
30	GGT																96
	Gly 7	Thr	Arg	Cys	Asp	lle	Gln	Met	Thr	Gln	Thr	Thr	Ser		Leu	Ser	
				- 1					5	•				10			
35	GCC '																144
	Ala	Ser	Leu	G 1 y	Asp	Arg	Va I		lle	Ser	Cys	Arg		Ser	Gin	ASP	
40			15					20					25	661	407	C T T	100
	ATT																192
	He		Asn	Tyr	Lev	Asn		Tyr	Gin	GIN	Lys		ASP	ьту	Inr	Yaı	
45		30					35	-0.	1.0.1			40		C T C	CC 4	TC 1	240
	AAA																240
50	Lys	Leu	Leu	Ile	Tyr		Thr	ser	AFE	Leu	# 1 S	ser	UIY	V 2 1	LLO	60	
	45					50					23					30	

AGG TTC AGT GGC AGT GGG TCT GGA ACA GAT TAT TCT CTC ACC ATT AGC 288 Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Ser 5 65 70 75 AAC CTG GAG CAA GAA GAT ATT GCC AGT TAC TTT TGC CAA CAG GGT TAT 336 Asn Leu Giu Gin Giu Asp Ile Ala Ser Tyr Phe Cys Gin Gin Gly Tyr 10 80 85 90 ACG CCT CCG TGG ACG TTC GGT GGA GGC ACC AAG TTG GAA ATC AAA 381 15 Thr Pro Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 95 100 105 20 SEQ. ID NO : 31 SEQUENCE LENGTH: 402 SEQUENCE TYPE : Nucleic acid 25 STRANDNESS : Double TOPOLOGY : Linear 30 MOLECULE TYPE : cDNA ORIGINAL SOURCE . ORGANISM : Mouse 35 IMADIATE SOURCE CLONE : p146-h1 40 FEATURE: 1..51 sig peptide 52..402 mat peptide SEQUENCE 45 ATG GAG CTG GAT CTT TAT CTT ATT CTG TCA GTA ACT TCA GGT GTC TAC 48 Met Glu Leu Asp Leu Tyr Leu Ile Leu Ser Val Thr Ser Gly Val Tyr 50 -15 -10 ~ 5

														404	CCT	000	. 96
														AGA			. 50
	Ser	Gln	V a l	Gln	Leu	GIn	Gln	Ser	Gly	Ala	Glu	Leu	Ala	Arg	Pro	Gly	
5	-1					5					10					15	
	GCT	TCA	GTG	AAG	TTG	TCC	TGC	AAG	GCT	TCT	GGC	TAC	ACC	TTT	ACT	AAC	144
														Phe			
10			·		20					25					. 30		
	TAC	TCC	ото	CAG		GTA	AAA	CAG	AGG	CCT	GGA	CAG	рст	CTG	GAA	TGG	192
														leu			
15	Tyr	Trp	491		ILD	481	LJS	0111			· · · ·	•	•.,	45			
				35					40								2.42
	ATT	GGG	TCT	ATT	TAT	CCT	G G _. A	GAT	GGT	GAT	ACT	AGG	AAC	ACT	CAG	AAG	240
20	Ile	Gly	Ser	Ile	Туг	Pro	Gly	Asp	Gly	Asp	Thr	Arg	Asn	Thr	Gln	Lуs	
			50					55					60				
25	TTC	AAG	GGC	AAG	GCC	ACA	TTG	ACT	GCA	GAT	AAA	TCC	TCC	ATC	ACA	GCC	288
	Phe	. Lys	Gly	lys	Ala	Thr	Leu	Thr	Ala	Asp	lys	Ser	Ser	lle	Thr	Ala	
		65					70					75					
30	TAC			СТС	ACC	AGC	TTG	GCA	TCT	GAG	GAC	TCT	GCG	GTC	TAT	TAC	336
														Val			
			. 011	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						•	90				-	95	
35	80					85											
														CAA			384
	C y s	s Ala	Arg	Ser	Thr	Gly	Asn	His	Phe	Asp	Туг	Trp	Gly	Gln	Gly	Thr	
40					100)				105	;				110		
	AC:	г стс	ACA	GTC	тсс	TCA											402
	Th	r lei	ı Thi	Val	Ser	Ser											
45				115	i												

	SEQ. ID NO: 32	
	SEQUENCE LENGTH : 35	
5	SEQUENCE TYPE : Nucleic acid	
	STRANDNESS : Single	
10	TOPOLOGY: Linear	
	MOLECULE TYPE : Synthetic DNA	
	SEQUENCE	
15	ACAAAGCTTC CACCATGGAG TCAGACACAC TCCTG	35
20	SEQ. ID NO: 33	
	SEQUENCE LENGTH : 36	
	SEQUENCE TYPE : Nucleic acid	
25	STRANDNESS : Single	
	TOPOLOGY : Linear	
30	MOLECULE TYPE : Synthetic DNA	
	SEQUENCE	
	GGCTAAGCTT CCACCATGGG ATGGAGCGGG ATCTTT	36
35		
	SEQ. ID NO : 34	•
40	SEQUENCE LENGTH : 35	
	SEQUENCE TYPE : Nucleic acid	
	STRANDNESS : Single	
45	TOPOLOGY: Linear	
	MOLECULE TYPE : Synthetic DNA	
50	SEQUENCE	
	CTTGGATCCA CTCACGTTTT ATTTCCAGCT TGGTC	35

	SEQ. 1D NO: 35	
	SEQUENCE LENGTH: 36	
5	SEQUENCE TYPE: Nucleic acid	
	STRANDNESS : Single	
10	TOPOLOGY : Linear	
	MOLECULE TYPE : Synthetic DNA	
	SEQUENCE	
15	GTTGGATCCA CTCACCTGCA GAGACAGTTA CCAGAG	36
20	SEQ. ID NO : 36	
	SEQUENCE LENGTH: 35	
	SEQUENCE TYPE : Nucleic acid	
25	STRANDNESS : Single	
	TOPOLOGY : Linear	
30	MOLECULE TYPE : Synthetic DNA	
30	SEQUENCE ;	
	CTTGGATCCA CTCACGATTT ATTTCCAGCT TGGTC	35
35		
	SEQ. ID NO: 37	
	SEQUENCE LENGTH: 35	
40	SEQUENCE TYPE : Nucleic acid	
	STRANDNESS : Single	
45	TOPOLOGY : Linear	
	MOLECULE TYPE: Synthetic DNA	
	SEQUENCE	05
50	CTTGGATCGA CTCACGTTTT ATTTCCAGCT TGGTC	35

	SEQ. ID NO : 38	
	SEQUENCE LENGTH: 36	
5	SEQUENCE TYPE: Nucleic acid	
	STRANDNESS : Single	
10	TOPOLOGY: Linear	
,,,	MOLECULE TYPE : Synthetic DNA	•
	SEQUENCE .	
15	ACAAAGCTTC CACCATGGTG TCCTCAGCTC AGTTCC	38
20	SEQ. ID NO : 39	
20	SEQUENCE LENGTH: 39	
	SEQUENCE TYPE : Nucleic acid	
25	STRANDNESS : Single	
	TOPOLOGY: Linear	
30	MOLECULE TYPE : Synthetic DNA	
30	SEQUENCE	
	TGTTAGATCT ACTCACCTGA GGAGACAGTG ACTGAGGTT	39
35		
	SEQ. ID NO : 40	
40	SEQUENCE LENGTH : 36	
40	SEQUENCE TYPE : Nucleic acid	
	STRANDNESS : Single	
45	TOPOLOGY : Linear	
	MOLECULE TYPE : Synthetic DNA	
	SEQUENCE	
50	GTCTAAGCTT CCACCATGAG AGTGCTGATT CTTTTG	3.6

	SEQ. ID NO: 41	
	SEQUENCE LENGTH: 17	
5	SEQUENCE TYPE: Nucleic acid	
	STRANDNESS : Single	
10	TOPOLOGY: Linear	
	MOLECULE TYPE : Synthetic DNA	
	SEQUENCE	
15	TACGCAAACC GCCTCTC	17
20	SEQ. ID NO : 42	
	SEQUENCE LENGTH: 18	
	SEQUENCE TYPE : Nucleic acid	
25	STRANDNESS : Single	
	TOPOLOGY: Linear	
30	MOLECULE TYPE : Synthetic DNA	
	SEQUENCE	
	GAGTGCACCA TATGCGGT	. 18
35		
	SEQ. ID NO : 43	
40	SEQUENCE LENGTH: 55	
	SEQUENCE TYPE : Nucleic acid	
	STRANDNESS : Single	
45	TOPOLOGY: Linear	
	MOLECULE TYPE : Synthetic DNA	
50	SEQUENCE	•-
	ACCETETATE GETACACETT CACCAGEGAT CATGECTEGA GETEGETGAG ACAGE	5 5

	SEQ. ID NO : 44												
	SEQUENCE LENGTH : 63												
5	SEQUENCE TYPE : Nucleic acid												
	STRANDNESS: Single												
	TOPOLOGY : Linear												
10	MOLECULE TYPE : Synthetic DNA												
	SEQUENCE												
15	TGAGTGGATT GGATACATTA GTTATAGTGG AATCACAACC TATAATCCAT	50											
	CTCTCAAATC CAG	63											
20	SEQ. ID NO : 45												
	SEQUENCE LENGTH : 54												
	SEQUENCE TYPE : Nucleic acid												
25	STRANDNESS: Single												
	TOPOLOGY: Linear												
30	MOLECULE TYPE : Synthetic DNA												
	SEQUENCE												
	TATTATTGTG CAAGATCCCT AGCTCGGACT ACGGCTATGG ACTACTGGGG TCAA	54											
35													
	SEQ. 1D NO : 46												
	SEQUENCE LENGTH : 27												
40	SEQUENCE TYPE : Nucleic acid												
	STRANDNESS : Single												
15	TOPOLOGY: Linear												
	MOLECULE TYPE : Synthetic DNA												
	SEQUENCE												
0	GTGACAATGC TGAGAGACAC CAGCAAG	27											

	SEQ. ID NO: 47	
	SEQUENCE LENGTH: 24	
5	SEQUENCE TYPE : Nucleic acid	
	STRANDNESS : Single	
	TOPOLOGY: Linear	
10	MOLECULE TYPE : Synthetic DNA	·
	SEQUENCE	
15	GGTGTCCACT CCGATGTCCA ACTG	24
	SEQ. ID NO: 48	
20	SEQUENCE LENGTH : 27	
	SEQUENCE TYPE : Nucleic acid	
25	STRANDNESS : Single	
	TOPOLOGY : Linear	•
	MOLECULE TYPE : Synthetic DNA	
30	SEQUENCE	
	GGTCTTGAGT GGATGGGATA CATTAGT	_ 27
35		
	SEQ. ID NO : 49	
	SEQUENCE LENGTH: 29	
40	SEQUENCE TYPE : Nucleic acid	
	STRANDNESS : Single	
45	TOPOLOGY : Linear	
	MOLECULE TYPE : Synthetic DNA	
	SEQUENCE	29
5 0	GTGTCTGGCT ACTCAATTAC CAGCATCAT	29

	SEQ. ID NO : 50	
	SEQUENCE LENGTH: 48	
5	SEQUENCE TYPE : Nucleic acid	
	STRANDNESS : Single	
10	TOPOLOGY : Linear	
	MOLECULE TYPE : Synthetic DNA	
	SEQUENCE	
15	TGTAGAGCCA GCCAGGACAT CAGCAGTTAC CTGAACTGGT ACCAGCAG	48
20	SEQ. ID NO : 51	
	SEQUENCE LENGTH: 42	
	SEQUENCE TYPE: Nucleic acid	
25	STRANDNESS : Single	
	TOPOLOGY : Linear	
30	MOLECULE TYPE : Synthetic DNA	
	SEQUENCE	
	ATCTACTACA CCTCCAGACT GCACTCTGGT GTGCCAAGCA GA	42
35		
	SEQ. ID NO : 52	
40	SEQUENCE LENGTH: 50	
	SEQUENCE TYPE : Nucleic acid	
	STRANDNESS : Single	
15	TOPOLOGY: Linear	
	MOLECULE TYPE : Synthetic DNA	
60	SEQUENCE	
	ACCTACTACT GCCAACAGGG TAACACGCTT CCATACACGT TCGGCCAAGG	50

	SEQ. ID NO : 53												
	SEQUENCE LENGTH: 27												
5	SEQUENCE TYPE : Nucleic acid												
	STRANDNESS: Single												
10	TOPOLOGY : Linear												
	MOLECULE TYPE : Synthetic DNA												
	SEQUENCE												
15	AGCGGTACCG ACTACACCTT CACCATC	27											
	SEQ. ID NO: 54												
20	SEQUENCE LENGTH : 706												
	. SEQUENCE TYPE : Nucleic acid												
25	STRANDNESS : Double												
	TOPOLOGY : Linear												
	MOLECULE TYPE : Synthetic DNA												
30	ORIGINAL SOURCE												
	ORGANISM : Mouse and Human												
35	IMADIATE SOURCE :												
	CLONE : pUC-RVh-PMIf												
	FEATURE : gene coding for H chain V region version (f) of reshaped												
40	human PM-1 antibody to human IL-6R												
	amino acid -20 — -1: leader												
	amino acid 1 — 30 : FRI												
45	amino acid 31 — 36 : CDR1												
	amino acid 37 — 50 : FR2												
	amino acid 51 — 66 : CDR2												

55

amino acid 67 — 98 : FR3

	a	mino	aci	d 9	19 – 1	08:0	DR3										
_	a	mino	aci	d 10	9 – 1	19:F	R4										
5	· n	ucle	otid	e :	1 - 6	6	Hind	III	sit	е							
	n	ucle	otid	e 5	4 – 1	35	intr	оп									
10	n	ucle	o t i d	e 25	8 – 3	48	Intr	on/a	berr	an t	spli	cing	:				
	n	uc l e	otid	e 50	5 – 7	06	intr	on									
·15	n	ucle	otid	e 70	1 – 7	06	Bam	HI s	ite								
75	SEQ	UENC	E														
	A'A G	сттс	ATG	GGA	TGG	AGC	TGT	ATC	ATC	CTC	TTC	TTG	GTA	GCA	ACA	GCT	49
20			Met	Gly	Trp	Ser	Суs	I.1 e	Ile	Leu	Phe	Leu	Val	Ala	Thr	Ala	
							-15					-10				•	
25	ACA	G G	TAAG	GGGC	T CA	CAGT	AGCA	GGC	TTGA	GGT	CTGG	ACAT	AT A	TATE	GGTG	A	103
	Thr																
	- 5																
30	CAA	TGAC	ATC	CACT	TTGC	ст т	TCTC	TCCA	C AG	C T	GTC	CAC	TCC	CAG	GTC	CAA	155
										Gly	Val	His	Ser	Gln	Val.	Gln	
35														1			
	CTG	CAG	GAG	AGC	GGT	CCA	GGT	CTT	GTG	AGA	CCT	AGC	CAG	ACC	CTG	AGC	203
	Leu		Glu	Ser	Gly	Pro	Gly	Leu	Val	Arg	Pro	Ser	G I n	Thr	Lev	Ser	
40		5					10					15				•	
								TAC									-251
45		Thr	Cys	Thr	Val		Gly	Tyr	Ser	I.l.e		Ser	Asp	His	Ala		
	20					25					30					35	
								GGA									299
50	ser	110	vai	Arg		Pro	Pro	Gly	Arg		Leu	Glu	Trp	I I e		Tyr	
					40					45					50		

	ATT	AGT	TAT	AGT	CCA	ATC	ACA	ACC	TAT	AAT	CCA	TCT	стс	AAA	тсс	AGA	347
	Ile	Ser	Tyr	Ser	Gly	Ile	Thr	Thr	Tyr	Asn	Pro	Ser	Lev	Lys	Ser	Arg	
5				55					60					65			
	GTG	ACA	ATC	CTG	AGA	GAC	ACC	AGC	AAC	AAC	CAG	TTC	AGC	CTG	AGA	CTC	395
10	V a l	Thr	M e' t	Leu	Arg	Asp	Thr	Ser	Lys	Asn	G 1 n	Phe	Ser	.Leu	Arg	Leu	
			70					75					80		•		
	AGC	AGC	GTG	ACA	GCC	GCC	GAC	ACC	GCG	GTT	TAT	TAT	TGT	GCA	AGA	TCC	443
15	Ser	Ser	Val	Thr	Ala	Ala	Asp	Thr	Ala	Vai	Туг	Tyr	Cys	Ala	Arg	Ser	
		85					90										
20	CTA	GCT	CGG	ACT	ACG	GCT	ATG	GAC	TAC	TGG	GGT	CAA	CCC	AGC	CTC	GTC	491
	Leu	Ala	Arg	Thr	Thr	Ala	Met	Ąsp	Tyr	Trp	Gly	G 1 n	G 1 y	Ser	Leu	Val	
	100					105					110					115	
25	ACA	GTC	TCC	TCA	G G	TGAG	тсст	T AC	AACC	тстс	TCT	TCTA	TTC	AGCT	TAAAT	ΓΑ	544
	Thr	Val	Ser	Ser													
30	GATTTTACTG CATTTGTTGG GGGGGAAATG TGTGTATCTG AATTTCAGGT CATGAAGGAC													604			
30	TAGGGACACC TTGGGAGTCA GAAAGGGTCA TŢGGGAGCCC GGGCTGATGC AGACAGACAT												664				
	CCTCAGCTCC CAGACTTCAT GGCCAGAGAT TTATAGGGAT CC														706		
35																	
	SEQ	. I D	ОИ	: 55													
	SEQUENCE LENGTH : 506																
40	SEQUENCE TYPE : Nucleic acid																
	STR	ANDN	ESS	: Do	uble											•	
45	TOP	OLOG	Y :	Line	аг			•				•					
	MOL	ECUL	E TY	PE :	Syn	thet	ic D	NA									
	ORI	GINA	L SO	URCE	:												
50	0	RGAN	ISM	: Mc	use	a n d	Huma	n									

```
IMADIATE SOURCE
         CLONE : pUC-RVI-PM1a
       FEATURE: gene coding for L chain V region version (a) of reshaped
                 human PM-1 antibody to human IL-6R
         amino acid -20 -- 1: leader
         amino acid 1-23:FR1
         amino acid 24 - 34 : CDR1
         amino acid 35-49:FR2
         amino acid 50-56: CDR2
         amino acid 57-88: FR3
         amino acid 89 - 97 : CDR3
         amino acid 98-117:FR4
         nucleotide 1-6: Hind III site
25
         nucleotide 54-135: intron
         nucleotide 268-376: intron/aberrant splicing
30
         nucleotide 469 - 506: intron
        nucleotide 501 - 506: Bam HI site
       SEQUENCE
35
       AAGCTTC ATG GGA TGG AGC TGT ATC ATC CTC TTC TTG GTA GCA ACA GCT
                                                                      49
              Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala
                             -15
40
      ACA G GTAAGGGGCT CACAGTAGCA GGCTTGAGGT CTGGACATAT ATATGGGTGA
                                                                       103
      Thr
45
       -5
      CAATGACATC CACTTTGCCT TTCTCTCCAC AG GT GTC CAC TCC GAC ATC CAG
                                                                      155
                                       Gly Val His Ser Asp Ile Gin
```

	ATG	ACC	CAG	AGC	CCA	AGC	AGC	CTG	AGC	GCC.	AGC	GTG	GGT	GAC	AGA	GTG	203
	Met	Thr	G 1 n	Ser	Pro	Ser	Ser	Leu	Ser	Ala	Ser	V a i	Gly	Asp	Arg	Val	
5		5					10					15					
	ACC	ATC	ACC	TGT	A G A	GCC	AGC	CAG	GAC	ATC	AGC	AGT	TAC	CTG	AAT	TCG	251
10	Thr	lle	Thr	Суs	Arg	Ala	Ser	Gin	Asp	Ile	Ser	Ser	Tyr	Leu	Asn	Trp	
	20					25					30					35	
	TAC	CAG	ÇAG	AAG	CCA	GGT	AAG	GCT	CCA	AAG	CTG	CTG	ATC	TAC	TAC	ACC	299
15	Tyr	G 1 n	Gln	Lys	Pro	GIy	Lys	Ala	Pro	Lys	Leu	Leu	lle	Tyr	Tyr	Thr	
					40					45					50		
20	TCC	AGA	CTG	CAC	TCT	GGT	GTG	CCA	AGC	AGA	TTC	AGC	GGT	AGC	GGT	AGC	347
20	Ser	Arg	Leu	His	Ser	Gly	V a I	Pro	Ser	Arg	Phe	Ser	G 1 y	Ser	Gly	Ser	
				55					60					65			
25										AGC							395
	Gly	Thr	Asp	Phe	Thr	Phe	Thr	lle	Ser	Ser	Leu	Gln	Pro	Glu	Asp	lle	
			70					. 75					80				
30										ACG							443
	Ala	Thr	Tyr	Туг	Cys	Gln	Gln	Gly	Asn	Thr	Leu	Pro	Туг	Thr	Phe	Gly	
35		85			٠		90					95					
										TGAG	TAGA	A TT	TAAA	CTTT			488
	Gli	ı Gly	Thr	Lys	Val	Glu	Ile	lys									
40	100)				105											500
	GC.	TTCCT	CAG	TTGC	ATCC					*****							506
45																	
		••	O NO													•	
	-				{ : 4		ا مو	a									
50		<u>.</u>			. Nuc		(نا ۵	u									
	57	KANU	1655	: V	uble	i											

	TOPOLOGY: Linear	
5	MOLECULE TYPE : Synthetic DNA	
	ORIGINAL SOURCE	
	ORGANISM : Mouse and Human	
10	IMADIATE SOURCE	
	CLONE : pUC-RVh-PMIf-4	
15	FEATURE : gene. excluding introns. coding for H chain V region	
	version (f) of reshaped human PM-1 antibody to human IL-6	R
	amino acid -20 — -1: leader	
20	amino acid 1 — 30: FR1	
	amino acid 31 — 36 : CDR1	
25	amino acid 37 — 50 : FR2	
	amino acid 51 — 66 : CDR2	
30	amino acid 67 — 98: FR3	
33	amino acid 99 — 108:CDR3	
	amino acid 109 — 119:FR4	
35	nucleotide 1 — 6 : Hind III site nucleotide 432 — 438: Bam HI site	
	SEQUENCE .	
40	AAGCTTCCAC C ATG GGA TGG AGC TGT ATC ATC CTC TTC TTG GTA GCA ACA	50
	Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr	30
	-15 -10	
45	GCT ACA GGT GTC CAC TCC CAG GTC CAA CTG CAG GAG AGC GGT CCA GGT	98
	Ala Thr Gly Val His Ser Gln Val Gln Leu Gln Glu Ser Gly Pro Gly	•
50	-5 1 5 10	

	CTT	GTG	AGA	CCT	AGC	CAG	ACC	CTG	AGC	CTG	ACC	TGC	ACC	GTG	TCT	GGC	146
	Leu	V a l	Arg	Pro	Ser	Gln	Thr	Lev	Ser	Lev	Thr	Cys	Thr	V a l	Ser	Gly	
5	•				15					20					25		
	TAC	TCA	ATT	ACC	AGC	GAT	CAT	GCC	TGG	AGC	TGG	GTT	CCC	CAG	CCA	CCT	194
10	Tyr	Ser	Ιľe	Thr	Ser	Asp	His	Ala	Trp	Ser	Trp	Vai	Arg	Gin	Pro	Pro	
				30					35					40			
	GCA	CGA	CGT	CTT	GAG	TGG	ATT	GGA	TAC	ATT	AGT	TAT	AGT	GCA	ATC	ACA	242
15	Gly	Arg	Gly	Leu	Glu	Trp	Ιlε	G 1 y	Туг	I 1 e	Ser	Tyr	Ser	Gly	Ile	Thr	
			45					50					55				
	ACC	TAT	AAT	CCA	TCT	CTC	AAA	TCC	AGA	GTG	ACA	ATG	CTG	AGA	GAC	ACC	290
20	Thr	Туг	Asn	Pro	Ser	Leu	Lys	Ser	Arg	V a l	Thr	Met	Leu	Arg	Asp	Thr	
		60					65					70					
25	AGC	AAG	AAC	CAG	TTC	AGC	CTG	AGA	CTC	AGC	AGC	GTG	ACA	GCC	GCC	GAC	338
	Ser	l y s	Asn	Gln	Phe	Ser	Lev	Arg	Leu	.Ser	Ser	Val	Thr	Ala	Ala	Asp	
	75					80					. 85					90	
30	ACC	GCG	GTT	TAT	TAT	TGT	GCA	AGA	TCÇ	CTA	GCT	CGG	ACT	ACG	GCT	ATG	386
	Thr	Ala	V a l	Tyr	Tyr	Суs	Ala	Årg	Ser	Leu	Ala	Arg	Thr	Thr		Met	
35					95					100					105		
														G G	TGAG	TGGAT	436
	Asp	Tyr	Trp	Gly	Gln	Gly	Ser	Leu	Val	Thr	Val	Ser	Ser				
40				110					115								
	СС									•							438
45			·	: 57													
				NGTH			_										
50				PE :			aci	đ							•		
	STR	ANDN	ESS	: Do	nble												

	IUPULUUI : Lineai	
	MOLECULE TYPE : Synthetic DNA	
5	ORIGINAL SOURCE	
	ORGANISM : Mouse and Human	
10	IMADIATE SOURCE	
	CLONE : pUC-RVI-PM1a	
15	FEATURE: gene, excluding introns, coding for L chain V region	
	version (a) of reshaped human PM-1 antibody to human IL-6R	
	amino acid -119:leader	
20	amino acid 1 — 23: FR1	
	amino acid 24 - 34 : CDR1	
25	amino acid 35 — 49 : FR2	
	amino acid 50 — 56 : CDR2	
	amino acid 57 — 88 : FR3	
30	amino acid 89 — 97 : CDR3	
	amino acid 98 — 107:FR4	
35	nucleotide 1 - 6 : Hind III site	
	SEQUENCE	
40	1100770010 0 170 001 700 100 700	. ^
	Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr	0
	-15 -10	
45	COT 101 COT CTO 010 DOG 010 TO	8
	Ala Thr Gly Val His Ser Asp Ile Gin Met Thr Gin Ser Pro Ser Ser	,
50	-5 1 5 10	

	CTG	AGC	GCC	AGC	GTG	GGT	GAC	AGA	GTG	ACC	ATC	ACC	TGT	AGA	GCC	AGC	146	
	Leu	Ser	Ala	Ser	Va 1	Gly	Asp	Årg	Va 1	Thr	Ile	Thr	Cys	Arg	Ala	Ser		
5					15					20					25			;
	CAG	GAC	ATC	AGC	AGT	TAC	CTG	AAT	TGG	TAC	CAG	CAG	AAG	CCA	GCA	AAG	194	
10.	Gln	Asp	ΙÌε	Ser	Ser	Tyr	Leu	Asn	Trp	Туг	G 1 n	G 1 n	Lys	Pro	Gly	Lys		
				30					35					40	•			
	GCT	CCA	AAG	CTG	CTG	ATC	TAC	TAC	ACC	TCC	AGA	CTG	CAC	TCT	GGT	GTG	242	
15	Ala	Pro	L y s	Leu	Lev	I l.e	Tyr	Tyr	Thr	Ser	Arg	Leu	His	Ser	Gly	Val		
			45				•	50					55					
	CCA	AGC	AGA	TTC	AGC	GGT	AGC	GGT	AGC	GGT	ACC	GAC	TTC	ACC	TTC	ACC	290	
Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr A 60 65 ATC AGC AGC CTC CAG CCA GAG GAC ATC GCT ACC The Ser Ser Leu Gln Pro Glu Asp Ile Ala Thr	Ásp	Phe	Thr	Phe	Thr													
		60					65					70						4 2 2 6
25	ATC	AGC	AGC	CTC	CAG	CCA	CAG	GAC	ATC	GCT	ACC	TAC	TAC	TGC	CAA	CAG	338	
	Ile	Ser	Ser	leυ	Gln	Pro	Glu	Ásp	I i e	Ala	Thr	Tyr	Tyr	Cys	Gln	Gln		
	75				·	80					85					90		
30	GGT	AAC	ACG	CTT	CCA	TAC	ACG	TTC	GGC	CAA	CCC	ACC	AAG	GTG	GAA	ATC	386	
	Gly	Asn	Thr	Leu	Pro	Туг	Thr	Phe	Gly	Gin	Gly	Thr	Lys	Val	Glu	Ile		
25					95					100					105			
35	AAA	C G	TGAG	TGGA:	г сс												402	6
	Lys																	
40																		
	SEQ	. ID	סא	: 58														
	SEQ	UENC	E LE	NGTH	: 3	6												
45	SEQ	UENC	E TY	PE:	Nuc	lelc	aci	đ										
	STR	ANDN	ESS	: Si	ngle													
50		OLOG																
	MOL	ECUL	E TY	PE:	Ѕул	thet	ic D	N A										

	SEQUENCE	
	TAAGGATCCA CTCACCTGAG CAGACTGTGA CGAGGC	36
5		
	SEQ. ID NO : 59	
	SEQUENCE LENGTH : 32	
10	SEQUENCE TYPE : Nucleic acid	, ·
	STRANDNESS : Single	
15	TOPOLOGY : Linear	
	MOLECULE TYPE : Synthetic DNA	
	SEQUENCE	
20	ATCAAGCTTC CACCATGGGA TGGAGCTGTA TC	32
	SEQ. ID NO : 60	
25	SEQUENCE LENGTH : 30	
	SEQUENCE TYPE : Nucleic acid	
3 <i>0</i>	STRANDNESS : Single	
	TOPOLOGY : linear	
	MOLECULE TYPE : Synthetic DNA	
35	SEQUENCE	
	AATGGATCCA CTCACGTTTG ATTTCCACCT	30
40	SEQ. ID NO : 61	
	SEQUENCE LENGTH : 33	
45	SEQUENCE TYPE : Nucleic acid	
73	STRANDNESS : Single	
	TOPOLOGY: Linear	
50	MOLECULE TYPE : Synthetic DNA	

	SEQUENCE	
5	CATGCCTGGA GCTGGGTTCG CCAGCCACCT GGA	33
	SEQ. ID NO : 62	
10	SEQUENCE LENGTH: 33	
	SEQUENCE TYPE : Nucleic acid	
	STRANDNESS : Single	
15	TOPOLOGY : Linear	
	MOLECULE TYPE : Synthetic DNA	
	SEQUENCE	
20	TCCAGGTGGC TGGCGAACCC AGCTCCAGGC ATG	33
25	SEQ. ID NO : 63	•
	SEQUENCE LENGTH: 30	
	SEQUENCE TYPE : Nucleic acid	
30	STRANDNESS : Single	
	TOPOLOGY : Linear	
35	MOLECULE TYPE : Synthetic DNA	
35	SEQUENCE	
	CAGCAGAAGC CAGGAAAGGC TCCAAAGCTG	30
40		
	SEQ. ID NO: 64	
	SEQUENCE LENGTH : 30	
45	SEQUENCE TYPE : Nucleic acid	
	STRANDNESS : Single	
50	TOPOLOGY: Linear	
30	MOLECULE TYPE: Synthetic DNA	

	SEQUENCE		
	CAGCTTTGGA GCCTTTCCTG GCTTCTGCTG	;	3
5			
	SEQ. ID NO : 65		
10	SEQUENCE LENGTH: 66		
,,	SEQUENCE TYPE : Nucleic acid		
	STRANDNESS : Single		
15	TOPOLOGY : Linear		
	MOLECULE TYPE : Synthetic DNA		
	SEQUENCE		
20	ACCTGTAGAG CCAGCAAGAG TGTTAGTACA TCTGGCTATA GTTATATGCA	5	0
	CTGGTACCAG CAGAAG	6	6
25			
	SEQ. ID NO: 66		
	SEQUENCE LENGTH: 15		
30	SEQUENCE TYPE : Nucleic acid		
	STRANDNESS : Single		
35	TOPOLOGY : Linear		
	MOLECULE TYPE : Synthetic DNA		
	SEQUENCE		
40	GCTGGCTCTA CAGGT	. 15	
	••••		
	SEQ. ID NO : 67		
45	SEQUENCE LENGTH: 48		
	SEQUENCE TYPE : Nucleic acid		
50	STRANDNESS: Single		
	TOPOLOGY: Linear		

	MOLECULE TYPE : Synthetic DNA	
	SEQUENCE	
5	AAGCTGCTGA TCTACCTTCC ATCCACCCTG GAATCTGGTG TGCCAAGC	48
10	SEQ. ID NO : 68	
	SEQUENCE LENGTH: 15	
	SEQUENCE TYPE : Nucleic acid	
15	STRANDNESS: Single	
	TOPOLOGY : Linear	
20	MOLECULE TYPE : Synthetic DNA	
20	SEQUENCE	
	GTAGATCAGC AGCTT	15
25		
	SEQ. ID NO : 69	
	SEQUENCE LENGTH: 48	
30	SEQUENCE TYPE : Nucleic acid	
	STRANDNESS: Single	
35	TOPOLOGY: Linear	
	MOLECULE TYPE : Synthetic DNA	
	SEQUENCE	
40	GCTACCTACT ACTGCCAGCA CAGTAGGGAG ACCCCATACA CGTTCGGC	48
45	SEQ. 1D NO : 70	
45	SEQUENCE LENGTH: 15	
	SEQUENCE TYPE : Nucleic acid	
50	STRANDNESS: Single	
	TOPOLOGY : Linear	

MOLECULE TYPE : Synthetic DNA

SEQUENCE 5 CTGGCAGTAG GTAGC - 15 SEQ. ID NO: 71 10 SEQUENCE LENGTH: 414 SEQUENCE TYPE : Nucleic acid 15 STRANDNESS : Double TOPOLOGY : Linear MOLECULE TYPE : Synthetic DNA 20 ORIGINAL SOURCE ORGANISM : Mouse and Human 25 IMADIATE SOURCE CLONE : pUC-RV1-1220a FEATURE: gene, excluding introns, coding for L chain V region version (a) of reshaped human AUK12-20 antibody to human IL-6R amino acid -19 -- 1:leader amino acid 1-23:FR1amino acid 24 - 38 : CDR1 amino acid 39-53: FR2 amino acid 54 - 60 : CDR2 amino acid 61-92:FR3 amino acid 93-101:CDR3 45 amino acid 102-111:FR4 nucleotide 1-6: Hind III site nucleotide 408-414: Bam HI site

55

	SEQU	ENCE	;														
	AAGC	ттсс	AC C	ATG	GGA	TGG	AGC	TGT	ATC	ATC	CTC	TTC	TTG	GTA	GCA	ACA	50
5				Met	Gly	Trp	Ser	.Cys	Ile	Ile	Leu	Phe	Leu	Vai	Ala	Thr	
								-15					-10				
10	GCT	ACA	GGT	GTC	CAC	TCC	GAC	ATC	CAG	ATG	ACC	CAG	AGC	CCA	AGC	AGC	98
	Ala	Thr	Gly	Va 1	His	Ser	A s.p	I l <u>e</u>	Gln	Met	Thr	Gln	Ser	Pro	Ser	Ser	
		-5				-1	1				5					10	
15	CTG	AGC	GCC	AGC	GTG	GGT	GAC	AGA	GTG	ACC	ATC	ACC	TGT	A G A	GCC	AGC	146
	Lev	Ser	Ala	Ser	Va 1	Gly	Asp	Arg	Val	Thr	Ile	Thr	Cys	Årg	Ala	Ser	
20					15					20					25		
	AAG	AGT	GTT	AGT	ACA	TCT	GGC	TAT	AGT	TAT	ATG	CAC	TGG	TAC	CAG	CAG	194
	lуs	Ser	Val	Ser	Thr	Ser	Gly	Tyr	Ser	Туг	Met	His	Trp	Туг	Gin	Gln	
25				30					35					40			
	AAG	CCA	GGA	AAG	GCT	CCA	AAG	CTG	CTG	ATC	TAC	CTT	GCA	TCC	AAC	CTG	242
30	Lys	Pro	Gly	Lys	Ala	Pro	Lys	Leu	Lev	Ile	Tyr	Leu	Ala	Ser	Asn	Leu	
			45					50					55				
	GAA	TCT	GGT	GTG	CCA	AGC	AGA	TTC	AGC	GGT	AGC	GGT	AGC	GGT	ACC	GAC	290
35	Glu	Ser	Gly	Vai	Pro	Ser	Arg	Phe	Ser	Gly	Ser	Gly	Ser	Gly	Thr	Asp	
		60					65					70					
40	TTC	ACC	TTC	ACC	ATC	AGC	AGC	CTC	CAG	CCA	GAG	GAC	ATC	GCT	ACC	TAC	338
	Phe	Thr	Phe	Thr	Ile	Ser	Ser	Leu	Glņ	Pro	G 1.u	Asp	Ile	Ala	Thr	Tyr	
	75					80					85					90	

TAC TGC CAG CAC AGT AGG GAG AAC CCA TAC ACG TTC GGC CÂA GGG ACC

Tyr Cys Gin His Ser Arg Glu Asn Pro Tyr Thr Phe Gly Gin Gly Thr

	AAG GTG GAA ATC AAA CGTGAGTGGA TCC	414
	Lys Vai Glu Ile Lys	
5	110	
10	SEQ. ID NO : 72	
	SEQUENCE LENGTH: 45	<u>:</u>
	SEQUENCE TYPE : Nucleic acid	
15	STRANDNESS : Single	
	TOPOLOGY : Linear	
20	MOLECULE TYPE : Synthetic DNA	
-	SEQUENCE	
	GGTTATTCAT TCACTAGTTA TTACATACAC TGGGTTAGAC AGGCC	45
25		
	SEQ. ID NO : 73	•
	SEQUENCE LENGTH : 27	
30	SEQUENCE TYPE : Nucleic acid	
	STRANDNESS : Single	,
35	TOPOLOGY: Linear	•.
	MOLECULE TYPE : Synthetic DNA	- ,
	SEQUENCE	
40	AGTGAATGAA TAACCGCTAG CTTTACA	27
	·	
45	SEQ. ID NO : 74	
	SEQUENCE LENGTH : 69	
	SEQUENCE TYPE : Nucleic acid	
50	STRANDNESS : Single	
	TOPOLOGY : Linear	

	MOLECULE TYPE : Synthetic DNA	•
	SEQUENCE	
5	GAGTGGGTGG GCTATATTGA TCCTTTCAAT GGTGGTACTA GCTATAATCA	50
	GAAGTTCAAG GGCAGGGTT	69
10		
10	SEQ. ID NO : 75	
	SEQUENCE LENGTH : 15	
15	SEQUENCE TYPE : Nucleic acid	
	STRANDNESS : Single	
	TOPOLOGY : Linear	
20	MOLECULE TYPE : Synthetic DNA	
	SEQUENCE	
25	ATAGCCCACC CACTC	15
	\cdot	
	SEQ. ID NO: 76	
30	SEQUENCE LENGTH: 36	
	SEQUENCE TYPE : Nucleic acid	
35	STRANDNESS : Single	
33	TOPOLOGY: Linear	
	MOLECULE TYPE : Synthetic DNA	
40	SEQUENCE	••
	GGGGGTAACC GCTTTGCTTA CTGGGGACAG GGTACC	36
45	SEQ. ID NO : 77	
	SEQUENCE LENGTH : 36	
50	SEQUENCE TYPE : Nucleic acid	
	STRANDNESS : Single	

	TOPOLOGY : Linear	
	MOLECULE TYPE : Synthetic DNA	
5	SEQUENCE	•
	AGCAAAGCGG TTACCCCCTC TGGCGCAGTA GTAGAC	36
10		
	SEQ. ID NO : 78	•
	SEQUENCE LENGTH : 30	
15	SEQUENCE TYPE: Nucleic acid	
	STRANDNESS : Single	
20	TOPOLOGY : Linear	
20	MOLECULE TYPE : Synthetic DNA	
	SEQUENCE	
25	CAAGGTTACC ATGACCGTGG ACACCTCTAC	30
	•	
	SEQ. ID NO : 79	
30	SEQUENCE LENGTH: 30	
	SEQUENCE TYPE : Nucleic acid	
35	STRANDNESS : Single	
	TOPOLOGY: Linear	
	MOLECULE TYPE : Synthetic DNA	
40	SEQUENCE	
	CACGGTCATG GTAACCTTGC CCTTGAACTT	30
45	SEQ. ID NO : 80	
	SEQUENCE LENGTH : 30	
50	SEQUENCE TYPE : Nucleic acid	
	STRANDNESS : Single	

	TOPOLOGY: linear	
	MOLECULE TYPE : Synthetic DNA .	
5	SEQUENCE	
	GGGCTCGAAT GGATTGGCTA TATTGATCCT	30
10		
	SEQ. ID NO : 81	
	SEQUENCE LENGTH : 30	
15	SEQUENCE TYPE : Nucleic acid	
	STRANDNESS : Single	
	TOPOLOGY : Linear	
20	MOLECULE TYPE : Synthetic DNA	
	SEQUENCE	
25	AGGATCAATA TAGCCAATCC ATTCGAGCCC	30
	SEQ. ID NO : 82	
30	SEQUENCE LENGTH : 16	
	SEQUENCE TYPE : Nucleic acid	
35	STRANDNESS : Single	
•	TOPOLOGY : Linear	
	MOLECULE TYPE : Synthetic DNA	
40	SEQUENCE	
	GTAAAACGAG GCCAGT	16
45		
	SEQ. ID NO: 83	
	SEQUENCE LENGTH: 17	
50	SEQUENCE TYPE : Nucleic acid	
	CTDINDNECE . Cinclo	

TOPOLOGY : Linear

	MOLECULE TYPE : Synthetic DNA	
5	SEQUENCE	
	AACAGCTATG ACCATGA	17
10		
	SEQ. ID NO : 84	
	SEQUENCE LENGTH: 433	
15	SEQUENCE TYPE : Nucleic acid	
	STRANDNESS : Double	
	TOPOLOGY: Linear	
20	MOLECULE TYPE : Synthetic DNA	
	DRIGINAL SOURCE	
25	ORGANISM : Movse and Human	
	IMADIATE SOURCE	
	CLONE: pUC-RVh-1220b	
30	FEATURE : gene, excluding intron, coding for H chain V region version	n c
	(b) of reshaped human AUK12-20 antibody to human IL-6R	
	amino acid -191:leader	
35	amino acid 1 — 30 : FR1	
	amino acid 31—35: CDR1	
40	amino acid 36-49: FR2	
	amino acid 50—66: CDR2	
	amino acid 67 — 98 : FR3	
4 5	amino acid 99 — 105:CDR3	
•	amino acid 106 — 116:FR4	
50	nucleotide 1 — 6 : Hind III site	
	nucleotide 427 — 433: Bam HI site	

_	_	_		•	••	•	•
S	E	0	U	E	N	C	Ŀ

	AAGO	TTG	CG	CCACC	ATG	GÁC	TGG	ACC	TGG	CGC	GTG	TTT	TGC	CTG	CTC	GCC	51
5												Phe					
									-15					-10			
10	GTG	GCT	TÍJ	GGG	GCC	CAC	AĞC	CAG	GTG	CAA	CTA	GTG	CAG	TCC	GGC	GCC	99
	Val	Ala	Pro	Gly	Ala	His	Ser	G <u>i</u> n	V a l	Gln	Lev	Val	Gln	Ser	Gly	Ala	
			-5				-1	1				5					
15	GAA	GTG	AAG	AAA	ccc	GGT	GCT	TCC	GTG	AAA	GTC	AGC	TGT	AAA	GCT	AGC	147
	Glu	Val	lys	Lys	Pro	Gly	Ala	Ser	Va 1	Lys	Val	Ser	Суs	l y s	Ala	Ser	
20	10					15					20					25	
	CCT	TAT	TCA	TTC	ACT	AGT	TAT	TAC	ATA	CAC	TCG	GTT	AGA	CAG	GCC	CCA	195
	G 1 _, y	Tyr	Ser	Phe	Thr	Ser	Tyr	Туг	Île	His	Trp	V a l	Arg	Gin	Ala	Pro	
25					30					35					40		
	GGC	CAA	GGG	CTC	GAG	TGG	GTG	GGC	TAT	ATT	GAT	CCT	TTC	AAT	GGT	GGT	243
30	Gly	Gln	G 1 y	leu	Glu	Trp	Val	G 1 y	Tyr	I 1 e	Asp	Pro	Phe	Asn	Gly	Gly	
				45					5.0					55			
35	ACT	AGC	TAT	AAT	CAG	AAG	TTC	AAG	GGC	AAG	GTT	ACC	ATG	ACC	GTG	GAC	291
33	Thr	Ser	Tyr	Asn	Gln	Lys	Phe	Lys	Gly	Lys	V a I	Thr	Met	Thr	Val	Asp	
			60)				65					70				
40	ACC	TCT	A C A	AAC	ACC	GCC	TAC	ATG	GĄA	CTG	TCC	AGC	CTG	CGC	TCC	GAG	339
	Thr	Ser	Thr	Asn	Thr	Ala	Туг	Met	Glu	Leu	Ser	Ser	Leu	Arg	Ser	Glu	
45		75					80					85					
	GAC	ACT	GCA	GTC	TAC	TAC	TGC	GCC	AGA	GCG	GGT	AAC	CGC	TTT	GCT	TAC	387
	Asp	Thr	Ala	Val	Tyr	Tyr	Cys	Ala	Arg	Gly	Gly	Asn	Arg	Phe	Ala	Tyr	
50	90					95					100					105	

433

TGG GGA CAG GGT ACC CTT GTC ACC GTC AGT.TCA GGTGAGTGGA TCC

Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser 110 115 SEQ. 1D NO : 85 10 SEQUENCE LENGTH: 433 SEQUENCE TYPE : Nucleic acid 15 STRANDNESS : Double TOPOLOGY : Linear MOLECULE TYPE : Synthetic DNA 20 ORIGINAL SOURCE ORGANISM : Mouse and Human 25 IMADIATE SOURCE CLONE: pUC-RVh-1220d FEATURE: gene, excluding intron, coding for H chain V region version 30 (d) of reshaped human antibody AUK12-20 to human IL-6R amino acid -19 -- 1:leader 35 amino acid 1 — 30 : FR1 amino acid 31 - 35 : CDR1 amino acid 36-49: FR2 40 amino acid 50-66: CDR2 amino acid 67 - 98 : FR3 45 amino acid 99-105:CDR3 amino acid 106-116:FR4 nucleotide 1-6: Hind III site nucleotide 427 - 433: Bam HI site

SE	0	U	E	N	C	E
----	---	---	---	---	---	---

5	AAG	CTTG	cc (CCAC	CATO	GAC	TGO	G ACC	C TGC	CG	C GT	G TT	T TG	C CT	G CT	c GCC	51
· ·					Ме	. Ast	Tr	Thi	Tr	Arı	g Va	I Ph	е Су	s Le	u le	u Ala	
									-15	5				- 1	0		
10	GTG	GCT	CĊT	GGG	GCC	CAC	AGC	CAG	GTG	CAA	CTA	GTG	CAG	TCC	GGC	GCC	99
	Va l	Ala	Pro	Gly	Ala	Нis	Ser	G 1 n	Val	Gln	Leu	Val	G 1 n	Ser	Gly	Ala	
15			- 5				-1	1				5					
13	GAA	GTG	AAG	AAA	ccc	GGT	GCT	TCC	CTG	AAA	GTC	AGC	TGT	AAA	GCT	AGC	147
	Glu	V a l	Lуs	Lys	Pro	Gly	Ala	Ser	Va 1	Lys	V a 1	Ser	Cys	Lys	Ala	Ser	
20	· 10					15					20					25	
	GGT	TAT	TCA	TTC	ACT	AGT	TAT	TAC	ATA	CAC	TGG	GTT	AGA	CAG	CCC	CCA	195
25	Gly	Туг	Ser	P h e	Thr	Ser	Туг	Туг	Ile	His	Trp	Val	Arg	Gln	Ala	Pro	
					30					35					40		
	GGC	CAA	GGG	стс	GAA	TGG	ATT	GGC	TAT	ATT	GAT	CCT	TTC	AAT	CGT	GGT	243
30	G 1 y	G 1 n	G 1 y	Leu	G 1 u	Trp	Ile	G 1 y	Tyr	Ile	Asp	Pro	Phe	Asn	Gly	Gly	
				45					5.0					55			
35	ACT	AGC	TAT	AAT	CAG	AAG	TTC	AAG	GGC	AAG	GTT	ACC	ATG	ACC	GTG	GAC	291
	Thr	Ser	Tyr	Asn	G 1 n	Lys	Phe	Lys	Gly	Lys	V a 1	Thr	Met	Thr	V a 1	Asp	
			60					65					70				
40	ACC	TCT	ACA	AAC	ACC	CCC	TAC	ATG	GAA	CTG	TCC	AGC	CTG	CGC	TCC	GAG	339
	Thr	Ser	Thr	Asn	Thr	Ala	Туг	Met	Glu	Leu	Ser	Ser	Leu	Arg	Ser	Glu	
45	•	75					80		٠.			85					
	GAC	ACT	GCA	GTC	TAC	TAC	TGC	GCC	AGA	GGG	CCT	AAC	CGC	TTT	GCT	TAC	387
	Asp	Thr	Ala	V a l	Туг	Tyr	Cys	Ala	Arg	Gly	Gly	Asn	Arg	Phe	Ala	Туг	
50	90					95					100					105	

	TGG GGA CAG GGT ACC CTT GTC ACC GTC AGT TCA GGTGAGTGGA TCC	433											
5	Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser												
3	110 . 115												
10	SEQ. ID NO : 86												
	SEQUENCE LENGTH ·: 90												
	SEQUENCE TYPE: Nucleic acid												
15	STRANDNESS : Single												
	TOPOLOGY : Linear												
20	MOLECULE TYPE : Synthetic DNA	•											
	SEQUENCE												
	GATAAGETTG CCGCCACCAT GGACTGGACC TGGAGGGTCT TCTTCTTGCT	50											
25	GGCTGTAGCT CCAGGTGCTC ACTCCCAGGT GCAGCTTGTG	90											
20	SEQ. ID NO : 87												
30	SEQUENCE LENGTH : 90												
	SEQUENCE TYPE: Nucleic acid												
35	STRANDNESS : Single												
	TOPOLOGY: Linear												
	MOLECULE TYPE : Synthetic DNA												
40	SEQUENCE												
	CACTCCCAGG TGCAGCTTGT GCAGTCTGGA GCTGAGGTGA AGAAGCCTGG	50											
45	GGCCTCAGTG AAGGTTTCCT GCAAGGCTTC TGGATACTCA	90											
	·												
	SEQ. ID NO : 88												
50	SEQUENCE LENGTH: 90												
	SEQUENCE TYPE: Nucleic acid												

	STRANDNESS : Single	
	TOPOLOGY : Linear	
5	MOLECULE TYPE : Synthetic DNA	
	SEQUENCE	
10	TGCAAGGCTT CTGGATACTC ATTCACTAGT TATTACATAC ACTGGGTGCG	50
	CCAGGCCCCC GGACAAAGGC TTGAGTGGAT GGGATATATT	90
15	SEQ. ID NO : 89	
	SEQUENCE LENGTH: 90	
20 .	SEQUENCE TYPE : Nucleic acid	
	STRANDNESS : Single	
	TOPOLOGY: Linear	
25	MOLECULE TYPE : Synthetic DNA	
	SEQUENCE	
30	CTTGAGTGGA TGGGATATAT TGACCCTTTC AATGGTGGTA CTAGCTATAA	50
	TCAGAAGTTC AAGGGCAGAG TCACCATTAC CGTAGACACA	90
35	SEQ. ID NO : 90	
	SEQUENCE LENGTH : 90	
40	SEQUENCE TYPE : Nucleic acid	
	STRANDNESS : Single	
	TOPOLOGY: Linear	
45	MOLECULE TYPE : Synthetic DNA	
	SEQUENCE	5.0
50	GTCACCATTA CCGTAGACAC ATCCGCGAGC ACAGCCTACA TGGAGCTGAG	50 90
	CACCCTCACA TCTCAACACA CGGCTGTGTA TTACTGTGCG	90

	SEQ. ID NO : 91	
5	SEQUENCE LENGTH: 94	
J	SEQUENCE TYPE : Nucleic acid	
	STRANDNESS : Single	
10	TOPOLOGY: Linear	
	MOLECULE TYPE : Synthetic DNA	
	SEQUENCE	
15	ACGGCTGTGT ATTACTGTGC GAGAGGGGGT AACCGCTTTG CTTACTGGGG	50
	CCAGGGAACC CTGGTCACCG TCTCCTCAGG TGAGTGGATC CGAC	94
20		
	SEQ. ID NO : 92	
	SEQUENCE LENGTH: 15	
25	SEQUENCE TYPE : Nucleic acid	
	STRANDNESS : Single	
30	TOPOLOGY: Linear	
30	MOLECULE TYPE : Synthetic DNA ,	
	SEQUENCE	
35	GATAAGCTTG CCGCC"	15
	SEQ. ID NO : 93	
10	SEQUENCE LENGTH: 15	
	SEQUENCE TYPE : Nucleic acid	
! 5	STRANDNESS: Single	
	TOPOLOGY: Linear	
	MOLECULE TYPE : Synthetic DNA	
0	SEQUENCE	
	GTCGGATCCA CTCAC	15

SEQ. ID NO: 94 SEQUENCE LENGTH: 433 SEQUENCE TYPE : Nucleic acid STRANDNESS : Double TOPOLOGY : Linear 10 MOLECULE TYPE : Synthetic DNA ORIGINAL SOURCE 15 ORGANISM : Mouse and Human IMADIATE SOURCE CLONE : pUC-RVm -sle 1220Ha 20 FEATURE: gene, excluding intron. coding for H chain V region version "a" of reshaped human sleAUK1220 antibody to human IL-6R 25 amino acid -19--1:leader amino acid 1-30:FR1amino acid 31-35: CDR1 amino acid 36-49: FR2 amino acid 50-66: CDR2 amino acid 67 - 98 : FR3 35 amino acid 99-105:CDR3 amino acid 109-116:FR4 nucleotide 1-6: Hind III site nucleotide 427-433: Bam HI site SEQUENCE AAGCTTGCCG CCACC ATG GAC TGG ACC TGG AGG GTC TTC TTC TTG CTG GCT 51 Met Asp Trp Thr Trp Arg Val Phe Phe Leu Leu Ala -15 -10

94

	GTA	GCT	CCA	GGT	GCT	CAC	TCC	CAG	GTG	CAG	CTT	GTG	CAG	тст	GGA	GCT	99
	Vai	Ala	Pro	Gly	Ala	His	Ser	Gln	V a 1	G 1 n	Leu	Va 1	Gin	Ser	Gly	Ala	
5			-5				-1	1				5					
	GAG	GTG	AAG	AAG	CCT	GGG	GCC	TCA	GTG	AAG	GTT	TCC	TGC	AAG	CCT	TCT	147
10	G 1 u	Vai	Ĺýs	Lys	Pro	G 1 y	Ala	Ser	V a 1	lys	Val	Ser	Cys	Lys	Ala	Ser	
	10					15					20					25	
	GGA	TAC	TCA	TTC	ACT	AGT	TAT	TAC	ATA	CAC	TCC	GTG	CCC	CAG	GCC	ccc	195
15	Gly	Tyr	Ser	Phe	Thr	Ser	Туг	Tyr	Ile	His	Trp	Va l	Arg	Gln	Ala	Pro	
					30					35					40		
20	GGA	CAA	AGG	CTT	GAG	TGG	ATG	GGA	TAT	ATT	GAC	CCT	TTC	AAŢ	GGT	GGT	· 243
	Gly	Gln	Arg	Leu	Glu	Trp	Met	Gly	Tyr	Ile	Asp	Pro	Phe	Asn	Gly	Gly	
				45					50					55			
25 ,	ACT	AGC	TAT	AAT	CAG	AAG	TTC	AAG	GGC	AGA	GTC	ACC	ATT	ACC	GTA	GAC	291
	Thr	Ser	Tyr	Asn	Gln	Lys	Phe	Lys	C l y	Arg	Val	Thr	Ile	Thr	Va I	Asp	
			60					65					70				
30	ACA	TCC	GCG	AGC	ACA	GCC	TAC	ATG	GAG	CTG	AGC	AGT	CTG	AGA	TCT	GAA	339
	Thr	Ser	Ala	Ser	Thr	Ala	Туг	Met	GIu	Leu	Ser	Ser	Leu	Arg	Ser	G 1 u	
35		75			•		80					85					
										•				TTT			387
	Asp	Thr	Ala	V a l	Tyr	Туг	Cys	Ala	Агģ	Gly	Gly	Asn	Arg	Phe	Ala	Tyr	
40	90					95					100					105	
												GGTG	AGTG	GA T	C C		433
45	Trp	Gly	GIn	Gly		Геп	Va I	Thr	Y a l	Ser	Ser						
					110					115							
50	SEQ.	ID	NO:	95													

55

SEQUENCE LENGTH : 27

	SEQUENCE TYPE: Nucleic acid	
	STRANDNESS : Single	
5	TOPOLOGY : Linear	
	MOLECULE TYPE : Synthetic DNA	
10	SEQUENCE	
75	AGGCTTGAGT GGATTGGATA TATTGAC	27
15	SEQ. ID NO : 96	
	SEQUENCE LENGTH : 27	
	SEQUENCE TYPE : Nucleic acid	
20	STRANDNESS : Single	
	TOPOLOGY : Linear	
25	MOLECULE TYPE : Synthetic DNA	•
	SEQUENCE	
	AAGTTCAAGG GCAAGGTCAC CATTACC	27
30		
	SEQ. ID NO : 97	
35	SEQUENCE LENGTH: 30	
33	SEQUENCE TYPE : Nucleic acid	
	STRANDNESS : Single	
40	TOPOLOGY : Linear	
	MOLECULE TYPE : Synthetic DNA	
	SEQUENCE	
45 .	GGTGCTTCCG TGAAAGTCAG CTGTAAAGCT	30
50	SEQ. ID NO: 98	
	SEQUENCE LENGTH : 30	

SEQUENCE TYPE : Nucleic acid

STRANDNESS: Single

TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

10 SEQUENCE

AGCTTTACAG CTGACTTTCA CGGAAGCACC

30

15 Claims

20

25

30

- 1. A light chain (L chain) variable region (V region) of mouse monoclonal antibody to the human interleukin-6 receptor (IL-6R).
- An L chain V region according to claim 1, having an amino acid sequence shown in any one of SEQ ID NOs: 24, 26, 28 and 30.
- 3. A heavy chain (H chain) V region of a mouse monoclonal antibody to the human IL-6R.
- 4. An H chain V region according to claim 3, having an amino acid sequence shown in SEQ ID NOs: 25, 27, 29 and 31.
- 5. A chimeric antibody to the human IL-6R, comprising:
 - (1) an L chain comprising a human L chain constant region (C region) and an L chain V region of a mouse monoclonal antibody to the human IL-6R; and
 - (2) an H chain comprising a human H chain C region and an H chain V region of a mouse monoclonal antibody to the human IL-6R.
- 6. A chimeric antibody according to claim 5, wherein the mouse L chain V region has an amino acid sequence shown in any one of SEQ ID NOs: 24, 26, 28 and 30; and the mouse H chain V region has an amino acid sequence shown in any one of SEQ ID NOs: 25, 27, 29 and 31.
- 7. Complementarity determining regions (CDRs) of an L chain V region of a mouse monoclonal antibody to the human IL-6R.
 - CDR according to claim 7, having amino acid sequence shown in any one of SEQ ID NOs: 24, 26, 28 and 30 wherein the stretch of the amino acid sequence is defined in Table 9.
- 9. CDR of an H chain V region of a mouse monoclonal antibody to the human IL-6R.
 - 10. CDR according to claim 9, having amino acid sequence shown in any one of SEQ ID NOs: 25, 27, 29, and 31 wherein the stretch of the amino acid sequence is defined in Table 9.
- 50 11. A reshaped human L chain V region of an antibody to the human IL-6R, comprising:
 - (1) framework regions (FRs) of a human L chain V region, and
 - (2) CDRs of an L chain V region of a mouse monoclonal antibody to the human IL-6R.
- 12. A reshaped human L chain V region according to claim 11, wherein the CDRs have amino acid sequences shown in any one of SEQ ID Nos.: 24, 26, 28 and 30 wherein the stretches of the amino acid sequences are defined in Table 9.

- 13. A reshaped human L chain V region according to claim 11, wherein the FRs are derived from the human antibody REI.
- 14. A reshaped human L chain V region according to claim 11, having an amino acid sequence shown as RV₁a or RV₂b in Table 2.
 - 15. A reshaped human L chain V region according to claim 11, having an amino acid sequence shown as RV_L in Table 5.
- 10 16. A reshaped human H chain V region of an antibody to the human IL-6R, comprising:
 - (1) FRs of a human H chain V region, and
 - (2) CDRs of an H chain V region of a mouse monoclonal antibody to the human IL-6R.
- 17. A reshaped human H chain V region according to claim 16, wherein the CDRs have amino acid sequences shown in SEQ ID NOs: 25, 27, 29 and 31 wherein the stretches of the amino acid sequences are defined in Table 9.
 - 18. A reshaped human H chain V region according to claim 16, wherein the FRs are derived from the human antibody NEW or HAX.
 - A reshaped human H chain V region according to claim 16, having an amino acid sequence shown in Table 3 as RV_Ha, RV_Hb, RV_Hc, RV_Hd, RV_He or RV_Hf.
- 20. A reshaped human H chain V region according to claim 17, having an amino acid sequence shown as RV_Ha, RV_Hb, RV_Hc or RV_Hd in Table 7.
 - 21. An L chain of a reshaped human antibody to human IL-6R comprising:
 - (1) a human L chain C region; and

20

30

35

45

- (2) an L chain V region comprising human L chain FRs and L chain CDRs of mouse monoclonal antibody to human IL-6R.
- 22. A reshaped human antibody L chain according to claim 21, wherein the human L chain C region is a human γ-1C region, the human L chain FRs are derived from REI, and the L chain CDRs have amino acid sequences shown in SEQ ID Nos. 24, 26, 28 and 30 wherein the streches of the amino acid sequences are defined in Table 9.
- 23. A reshaped human antibody L chain according to claim 21, wehrein the L chain V region has an amino acid sequence shown as RV_La or RV_Lb in Table 2.
- 24. A reshaped human antibody L chain according to claim 21, wherein the L chain V region has an amino acid sequence shown as RV_L in Table 5.
 - 25. An H chain of a reshaped human antibody to human IL-6R comprising:
 - (1) a human H chain C region, and
 - (2) an H chain V region comprising human H chain FRs, and H chain CRDs of mouse monoclonal antibody to human IL-6.
- 26. A reshaped human antibody H chain according to claim 25, wherein the human H chain C region is human xc region, the human H chain FRs are derived from NEW or HAX, the H chain CDRs have amino acid sequences shown in SEQ ID NOs: 25, 27, 29 or 31 wherein the streckes of the amino acid sequences are defined in Table 9.
 - 27. A reshaped human antibody H chain according to claim 25, wherein the H chain V region has an amino acid sequence shown as RV_Ha, RV_Hb, RV_Hc or RV_Hd in Table 3.
 - 28. A reshaped human antibody H chain according claim 25, wherein the H chain V region has an amino acid sequence shown as RV_Ha, RV_Hb, RV_Hc or RV_Hd in Table 6, or RV_Ha, RV_Hb, RV_Hc or RV_Hc in Table 7.

- 29. A reshaped antibody to the human IL-6R, comprising:
 - (A) an L chain comprising,
 - (1) a human L chain C region, and
 - (2) an L chain V region comprising human L chain FRs, and L chain CDRs of a mouse monoclonal antibody to the human IL-6R; and
 - (B) an H chain comprising.

5

10

15

. 20

45

50

- (1) a human H chain C region, and
- (2) an H chain V region comprising human H chain FRs, and H chain CDRs of a mouse monoclonal antibody to the human IL-6R.
- 30. A reshaped human antibody according to claim 29, wherein the L chain CDRs have amino acid sequences shown in any one of SEQ ID NOs: 24, 26, 28 and 30 wherein the stretches of the amino acid sequences are defined in Table 9; the H chain CDRs have amino acid sequence shown in any one of SEQ ID NOs: 25, 27, 29 and 31 wherein the stretches of the amino acid sequences are defined in Table 9; the human L chain C region and human L chain FRs are derived from the REI; and the human H chain C region and human FRs are derived from the NEW or HAX.
- 31. A reshaped human antibody according to claim 29, wherein the L chain V region has an amino acid sequence shown as RVLa or RVLb in Table 2.
- 32. A reshaped human antibody according to claim 29, wherein the L chain V region has an amino acid sequence shown as RV_L in Table 5.
- 33. A reshaped human antibody according to claim 29, wherein the H chain V region has an amino acid sequence shown in Table 3 as RV_Ha, RV_Hb, RV_Hc, RV_Hd, RV_He or RV_Hf.
 - 34. A reshaped human antibody according to claim 29, wherein the H chain V region has an amino acid sequence shown as RV_Ha, RV_Hb, RV_Hc or RV_Hd in Table 6, or RV_Ha, RV_Hb, RV_Hd in Table 7.
- 35. A DNA coding for an L chain V region of a mouse monoclonal antibody to the human IL-6R.
 - 36. A DNA according to claim 35, wherein the L chain V region has an amino acid sequence shown in any one of SEQ ID NOs: 24, 26, 28 and 30.
- 35. A DNA coding for an H chain V region of a mouse monoclonal antibody to the human IL-6R.
 - 38. A DNA according to claim 37, wherein the H chain V region has an amino acid sequence shown in any one of SEQ ID NOs: 25, 27, 29 and 31.
- 40 39. A DNA coding for CDR of an L chain V region of a mouse monoclonal antibody to the human IL-6R.
 - 40. A DNA coding for CDR according to claim 39, wherein the CDR has an amino acid sequence in any one of SEQ ID NOs: 24, 26, 28 and 30 wherein the stretch of the amino acid sequence is defined in Table 9.
 - 41. A DNA coding for CDR of an H chain V region of a mouse monoclonal antibody to the human IL-6R.
 - 42. A DNA coding for CDR according to claim 41, wherein the CDR has an amino acid sequence shown in any one of SEQ ID NOs: 25, 27, 29 and 31 wherein the stretch of the amino acid sequence in defined in Table 9.
 - 43. A DNA coding for a reshaped human L chain V region of an antibody to the human IL-6R, wherein the reshaped human L chain V region comprises:
 - (1) FRs of a human L chain V region, and
 - (2) CDRs of a mouse L chain V region of a monoclonal antibody to the human IL-6R.
 - 44. A DNA coding for a reshaped human L chain V region according to claim 43, wherein the CDRs have amino acid sequences shown in any one of SEQ ID NOs: 24, 26, 28 and 30 wherein the stretches of

the amino acid sequences are defined in Table 9.

5

25

- 45. A DNA coding for a reshaped human L chain V region according to claim 43, wherein the FRs are derived from the REI.
- 46. A DNA according to claim 43, wherein the L chain V region has an amino acid sequence shown as RV aor RV b in Table 2.
- 47. A DNA according to claim 43, wehrein the L chain V region has an amino acid region shown as RV_L in Table 5.
 - 48. A DNA according to claim 43, having a nucleotide sequence shown in SEQ ID No: 57.
- 49. A DNA coding for a reshaped human H chain V region of an antibody to the human IL-6R, wherein the reshaped Human V region comprises:
 - (1) FRs of a human H chain V region, and
 - (2) CDRs of an H chain V region of a mouse monoclonal antibody to the human IL-6R.
- 50. A DNA coding for a reshaped human H chain V region according to claim 49, wherein the CDRs have amino acid sequences shown in SEQ ID NOs: 25, 27, 29 and 31 wherein the stretches of the amino acid sequences are defined in Table 9.
 - 51. A DNA coding for a reshaped human H chain V region according to claim 49, wherein the FRs are derived from the NEW or HAX.
 - 52. A DNA coding for a reshaped human H chain V region according to claim 49, wherein the H chain V region has an amino acid sequence shown as RV_Ha, RV_Hb, RV_Hc, RV_Hd, RV_He or RV_Hf in Table 3.
- 53. A DNA according to claim 49, wherein the H chain V region has an amino acid sequence shown as
 RV_La, RV_Hb, RV_Hc or RV_Hd in Table 6, or RV_Ha, RV_Hb, RV_Hc or RV_Hd in Table 7.
 - 54. A DNA according to claim 49, having a nucleotide sequence shown in SEQ ID NO: 56.
- 55. A DNA coding for a reshaped human L chain of an antibody to the human IL-6R, wherein the reshaped human L chain comprises:
 - (1) a human L chain C region; and
 - (2) an L chain V region comprising a human FRs, and CDRs of a mouse monoclonal antibody to the human IL-6R.
- 56. A DNA according to claim 55, wherein the L chain V region has the nucleotide sequence shown in SEQ ID NO: 57.
 - 57. A DNA coding for a reshaped human H chain of an antibody to the human IL-6R, wherein the reshaped human H chain comprises:
 - (1) a human H chain C region, and
 - (2) a H chain V region comprising human FRs, and CDRs of a mouse monoclonal antibody to the human IL-6R.
- 58. A DNA according to claim 57, wherein the H chain V region has the nucleotide sequence shown in SEQ ID NO: 56.
 - 59. A vector comprising a DNA according to any one of claims 35, 37, 39, 41, 43, 49, 55 and 57.
- 60. A host cell transformed or transfected with a vector comprising a DNA according to any one of claims 35, 37, 39, 41, 43, 49, 55 and 57.
 - 61. A DNA coding for a chimeric L chain of an antibody to the human IL-6R, wherein the chimeric L chain comprises:

- (1) a human L chain C region; and
- (2) an L chain V region of a mouse monoclonal antibody to the human IL-6R.
- 62. A DNA coding for a chimeric H chain of an antibody to the human IL-6R wherein the chimeric H chain comprises:
 - (1) a human H chain C region; and

. 5

.20

25

30

35

40

45

50

- (2) an H chain V region of a mouse monoclonal antibody to the human IL-6R.
- 63. A process for production of a chimeric antibody to the human IL-6R, comprising the steps of: culturing host cells cotransfected with an expression vector comprising a DNA according to claim 10 61 and with an expression vector comprising a DNA according to claim 62; and recovering a desired antibody.
- 64. A process for production of a reshaped human antibody to the human IL-6R, comprising the steps of: culturing host cells cotransfected with an expression vector comprising a DNA according to claim 15 55 and with an expression vector comprising a DNA according to claim 57; and recovering desired antibody.
 - 65. A DNA according to claim 49, having a nucleotide sequence shown in SEQ ID, NO: 85, 86 or 94.
 - 66. A DNA according to claim 44, having a nucleotide sequence shown in SEQ IN NO: 71.

Fig. 9

Fig. 10

Fig. 11

Fig.16

Fig.20

ASSEMBLY AND AMPLIFIING SYNTHETIC GENE AFTER ADDING TERMINAL PRIMERS A AND B (SECOND PCR)

Fig.21

Fig.22

Fig.23

Fig.24

INTERNATIONAL SEARCH REPORT

International Application No PCT/JP92/00544

international Application No FCI/UF/2/00344				
I. CLASSIFICATION OF SUBJECT MATTER (If several classification symbols apply, Indicate all) * According to International Patent Classification (IPC) or to both National Classification and IPC				
Int. Cl ⁵	C12P21/08, C07K15/28 (C12P21/08, C12R1:91	3, C12N15/13//C12P2: .)		
II. FIELDS SEARCH				
Minimum Documentation Searched ?				
Classification System		Classification Symbols		
IPC	IPC C12P21/00, 21/02, 21/08, C12N15/12, 15/13, C07K15/28			
	Documentation Searched other to the Extent that such Documents	than Minimum Documentation is a Fields Searched		
Biological Abstracts Data Base (BIOSIS)				
III. DOCUMENTS C	ONSIDERED TO BE RELEVANT			
Category • Citat	ion of Document, it with Indication, where app	ropriate, of the relevant passages 12	Relevant to Claim No. 13	
Y Jour (198	nal of Immunology, Vo 19), Y. Hirata et al. L-6 receptor expressi polyclonal antibodies	ol. 143, No. 9, "Characterization on by monoclonal	1-64	
Janu	A2, 409607 (Tadamitsu ary 23, 1991 (23. 01. 2, A, 3-139293 & CA, A	91),	1-64	
Deve Febr	A2, 413908 (Yeda Rese lopment Ltd.), uary 27, 1991 (27. 02 , A, 3-157400		1-64	
G. I	re, Vol. 312, (1984), Doulianne et al. duction of functional e/human antibody" p.	chimaeric	1-64	
Corp	A, 61-47500 (Research coration of Japan), th 7, 1986 (07. 03. 86 7, A2, 171496		1-64	
"Special categories of cited documents: " "A" document defining the general state of the art which is not considered to be of particular relevance acrier document but published on or after the international filling data [Illing data data document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filling date but later than the priority date and not in conflict with the application but cite understand the principle or theory underlying the invention can be considered on earlier the claimed invention can be considered to involve an inventive step when the document referring to an oral disclosure, use, exhibition or other means document published after the international filling date or in oral date of another considered to involve an inventive step when the documents, a combination being obvious to a person skilled in the art document published after the international filling date priority date and not in conflict with the application but cite understand the principle or theory underlying the invention can be considered in or particular relevance; the claimed invention can be considered to involve an inventive step when the document with one or more other such documents, a combined with one or more other such documents, a combined with one or more other such documents, a combined with one or more other such documents, a combined to involve an inventive step when the document with the application but cite understand the principle or theory underlying the invention can be considered to involve an inventive step.			h the application but crited to underlying the invention the claimed invention cannot e considered to involve an the claimed invention cannot tive attp when the document ther such documents, such areas skilled in the art.	
IV. CERTIFICATION Date of the Actual Completion of the International Search Date of Mailing of this international Search Report				
July 27, 1992 (27. 07. 92)		August 18, 1992		
International Searchin	g Authority	Signature of Authorized Officer		
Japanese Patent Office				

FURTHER	INFORMATION CONTINUED FROM THE SECOND SHEET	
Y	JP, A, 62-500352 (Celltech Ltd.), February 19, 1987 (19. 02. 87), & WO, A1, 86/1533 & EP, A1, 194276 & GB, A, 2177096	1-64
Y	JP, A, 62-296890 (Gregory Poel Winter), December 24, 1987 (24. 12. 87), & EP, A2, 239400 & GB, A, 2188638	7-34, 43-60 64
V. OBS	RVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE '	
This interna 1. Claim	tional search report has not been established in respect of certain claims under Article 17(2) (a) for numbers . because they relate to subject matter not required to be searched by this	the following reasons: Authority, namely:
3. Claim	numbers , because they relate to parts of the international application that do not comments to such an extent that no meaningful international search can be carried out, specifical search can be caused they are dependent claims and are not drafted in accordance with	elly:
	es of PC1 hule 6,4(3).	
	VATIONS WHERE UNITY OF INVENTION IS LACKING 2	
Mis Internati	onal Searching Authority found multiple inventions in this international application as follows	:
. As all re	quired additional search fees were timely paid by the applicant, this international search report fithe international application.	covers all searchable
. As only :	ome of the required additional search fees were timely paid by the applicant, this international sear irms of the international application for which fees were paid, specifically claims:	rch report covers only
No requi	ed additional search fees were timely paid by the applicant. Consequently, this international search tion first mentioned in the claims; it is covered by claim numbers:	report is restricted to
As all sea invite pa	rchable claims could be searched without effort justifying an additional fee, the International Search ment of any additional fee. lest	ing Authority did not
	ional search fees were accompanied by applicant's protest.	
	it accompanied the payment of additional search (ees.	