ARTIFICIAL INTELLIGENCE AND BIG DATA - 101

THE SCIENCE NEWS CYCLE

Start Here

Your Research

Conclusion: A is correlated with B (ρ=0.56), given C, assuming D and under E conditions.

...is translated by...

YOUR GRANDMA

...eventually making it to...

WHAT YOU DON'T KNOW ABOUT "A"... CAN KILL YOU! MORE AT 11...

U

UNIVERSITY PR OFFICE (YES, YOU HAVE ONE)

FOR IMMEDIATE RELEASE: SCIENTISTS FIND POTENTIAL LINK BETWEEN A AND B (UNDER CERTAIN CONDITIONS).

...which is then picked up by...

...and caught

NEWS WIRE ORGANIZATIONS

A CAUSES B, SAY SCIENTISTS.

We saw it on a Blog! \
A causes B all the time

What will this mean for Obama?

BREAKING NEWS BREAKING NEWS BREA

...then noticed by...

Scientists out to kill us again.

POSTED BY RANDOM DUDG.

Comments (377)

OMG1 i kneeew ittll

MICRO

SEDAN

CUV

SUV

HATCHBACK

ROADSTER

PICKUP

VAN

COUPE

SUPERCAR

CAMPERVAN

MINI TRUCK

CABRIOLET

MINIVAN

TRUCK

BIG TRUCK

ANATOMY OF AN AUTOMOBILE rearview mirror trunk window frame seat tail light windshield wiper spare wheel sterring wheel windshield washer air filter wheel battery distributor radiator transmission alternator muffler line shaft oil body side disk filter brake moulding Learning English with easypacelearning.com

WHAT GOES INTO THE TYPE OF CAR YOU WANT?

BASIC FORMULA TO GOOD STORYTELLING

BASIC FORMULA TO GOOD STORYTELLING

Big Change

Turing test

During the Turing test, the human questioner asks a series of questions to both respondents. After the specified time, the questioner tries to decide which terminal is operated by the human respondent and which terminal is operated by the computer.

■ QUESTION TO RESPONDENTS ■ ANSWERS TO QUESTIONER HIIII Computer Human Human respondent questioner respondent GAME OF THRONES

YOU WIN OR YOU DIE

BASIC FORMULA TO GOOD STORYTELLING WITH DATA

Big Problem
Sell with toy example

BIG DATA VS ARTIFICIAL INTELLIGENCE

- Big Data Large Amounts of Data All About Efficient Computation
 - Computer Architecture
 - Networking
 - Distributed Systems
 - Virtual Machines
 - Operating Systems
 - Parallel Computing
- Artificial Intelligence Intelligent processing of data All About Smart Applied Math
 - Statistics
 - Optimization
 - Probability Reasoning
 - Logic Reasoning
 - Machine Learning

BIG DATA

- How big is big data?
 - If you can't process the data quickly on your PC, it is big data
- Why is that the benchmark?
 - Because you have to start being mindful of how to process and manage data.
 - Opens up another can of worms

HOW DO YOU PROCESS DATA FASTER?

- How to cut a lawn faster?
- How to cook more food?
- How to get to work faster?

Add more resources
Add better resources
Parallelization

BUILDING BLOCKS OF COMPUTATION

Computation Power (\$\$\$\$)

- CPU (Central Processing Unit) cores
 - More cores, more ability to parallel process
 - More CPUs more cores
 - Able to do general computation
- GPU (Graphic Processing Unit) cores
 - Has many more cores than a typical CPU (100 vs 8)
 - Only does specific computations matrix, vector, computation

Memory

- RAM (\$\$) Orders of Magnitude faster than reading from disk
- Hard Disk (pennies) Faster than hitting network for more resources
- Solid state drive (tens of pennies) Faster than hard drives, slower than RAM

Network (\$\$ - need people to manage) – distributed computing

- Ability to access more resources (SLOW, but relatively cheap money wise)
 - Computers with RAM, ROM, and CPU
 - Algorithms must be in place in order for these different computers to communicate

PARALLEL COMPUTATION (COMPUTER ARCHITECTURE AND OPERATING SYSTEM)

- Multi-t
- Multi-p
- Fork pr
- Semar
- Computer Scientist,
 Programmers, and Engineers
 SUCK at Parallel Computing
- Locking
- Mutex
- CPU PI

Big Data Technologies Make parallel Computation Easier for Everyone

https://en.wikipedia.org/wiki/Comporer_archinectore
https://en.wikipedia.org/wiki/Operating_system

GOOGLE STARTED MODERN BIG DATA MOVEMENT (FINANCIAL DECISION)

- Database companies would sell huge machines to process large amounts of data (Supercomputers)
 - CPU with 100 cores
 - 100GB of RAM
 - 10TB Hard drive
 - VERY EXPENSIVE

HOW DID BIG DATA GET STARTED

Lenovo 6241HDU System x3950 X6 Server

Manufacturer: Lenovo

UPC: 889488019632

SKU: 6241HDU

Condition: New

CHEAPER TO USE MANY SMALLER COMPUTERS IN TANDEM THAN ONE LARGE COMPUTER

DECEMBER 2, 2010 WEBLOG

US Air Force connects 1,760 PlayStation 3's to build supercomputer

by Lisa Zyga, Phys.org

The Condor Cluster consists of 1,760 Sony PlayStation 3's, and is the US Department of Defense's fastest inte...

(Phys.org)—About the 33rd largest supercomputer in the world right now is the US Air Force Research Laboratory's (AFRL) newest system, which has a core made of 1,760 Sony PlayStation 3 (PS3) consoles. In addition to its large capacity, the so-called "Condor Cluster" is

PUTTING LOTS OF SMALL COMPUTERS TOGETHER TO DO FAST COMPUTATION CAUSES PROBLEMS

WHAT KIND OF PROBLEMS?

- Server failures nodes not responding
- Connectivity network failures
- Disk failures loss of data
- Distribution of work/jobs how to distribute data
- Security
- Failur
 - Ava
 - Faul
 - E>
 - (
- Cloud Service Providers
 (GCP, AWS, Azure) Abstract
 this Complexity Away

Auto Scaling (on Demand processing)

ilure

MAPREDUCE – DISTRIBUTED PROGRAMMING MODEL

SPARK VS HADOOP

Parameters	Spark	Hadoop	
Fault Tolerance	Spark RDD guarantees fault tolerance	Uses replication for fault tolerance	
Speed	Faster due to in- memory computation	Relatively slower than Spark	
OS Support	Linux, Windows, macOS	Linux, Windows, macOS	
High Level Language	Python, Scala, Java, R, Spark SQL	Java, Python, Pig, Hive SQL	
Machine Learning	Has its own set of ML libraries	Requires interfacing with other libraries	

BIG DATA TECHNOLOGY

- Bound by Resources
 - How many servers?
 - How many CPUs?
 - How many cores per CPU?
 - How much RAM?
 - How much Disk?

ARTIFICIAL INTELLIGENCE

Artificial Intelligence

Machine Learning

Deep Learning

The subset of machine learning composed of algorithms that permit software to train itself to perform tasks, like speech and image recognition, by exposing multilayered neural networks to vast amounts of data.

A subset of AI that includes abstruse statistical techniques that enable machines to improve at tasks with experience. The category includes deep learning

Any technique that enables computers to mimic human intelligence, using logic, if-then rules, decision trees, and machine learning (including deep learning)

ARTIFICIAL INTELLIGENCE

- Logical Reasoning
 - If A-> B, B->C, then A->C
- Search
 - Shortest Path Problems
 - Constraint Satisfaction Problems
- Probabilistic Reasoning
 - Naïve Bayes Classification
 - MAP Decision
- Machine Learning
 - Unsupervised learning
 - Supervised Learning

UTILITY FUNCTION

- A **utility function** is able to represent those preferences if it is possible to assign a <u>real number</u> to each alternative, in such a way that alternative a is assigned a number greater than alternative b if, and only if, the individual prefers alternative a to alternative b.
- Mathematical function for determining the value of one option versus another.

UTILITY FUNCTIONS FOR DECISION MAKING

- Artificial intelligence and machine learning usually starts with defining a utility function that represents the desirability of an outcome.
- Determining the best utility function is subjective but you do need to define one that is "reasonable".
- Quantifying options is "human work".
 - Not always straightforward

CHESS

Standard valuations [edit]

The following table is the most common assignment of point values (Capablanca & de Firmian 2006:24–25), (Seirawan & Silman 1990:40), (Soltis 2004:6), (Silman 1998:340), (Polgar & Truong 2005:11).

Symbol	<u>A</u>	\Im		Ï	\\\\	
Piece	pawn	knight	bishop	rook	queen	
Value	1	3	3	5	9	

Value of non-passed pa	awn in the o	penina
------------------------	--------------	--------

Value of non-passed pawn in the endgame

Rank	a & h file	b & g file	c & f file	d & e file	Rank	a & h file	b & g file	c & f file	d & e file
2	0.90	0.95	1.05	1.10	2	1.20	1.05	0.95	0.90
3	0.90	0.95	1.05	1.15	3	1.20	1.05	0.95	0.90
4	0.90	0.95	1.10	1.20	4	1.25	1.10	1.00	0.95
5	0.97	1.03	1.17	1.27	5	1.33	1.17	1.07	1.00
6	1.06	1.12	1.25	1.40	6	1.45	1.29	1.16	1.05

ARTIFICIAL INTELLIGENCE IN CHESS

- Given all possible outcomes for the next few moves

 which move gives me the best chance of highest
 the highest value of my pieces (according to my utility function).
 - Solved Via Exhaustive search of All possibilities to see what works
 - Computers struggled for years because it couldn't represent the future well in memory (only next 2 moves vs next 1000 moves)
 - With supercomputers, these additional combinations can be stored and checked.

GENETIC ALGORITHMS

https://rednuht.org/genetic_cars_2/

OPTIMIZATION

- Trying to find best option (parameters) which maximizes or minimizes a utility function.
 - If you can't optimize intelligently, you do exhaustive search
 - **Exhaustive search** compares each possible option, computes the utility function, and select the option that maximizes/minimizes it (**Grid search**).
 - Why not use exhaustive search?
 - Usually too many options to check even with supercomputers
 - Alternatives Optimization algorithms (complex)

EXAMPLE

 How to determine a utility function for determining the best time to leave to go the airport?

EXAMPLE

- What Cuisine Should I Eat For Dinner Tonight?
- Table lookup Burgers = 1.00
- Pizza 1.00
- Mexican = 0.9
- Gyros = 0.6
- Yogurt = 0.2
- Argmax(Food) = Food_type Food_type(recent) + rand(n)

LOGICAL REASONING - KNOWLEDGE BASE

A knowledge-based system (KBS) is a computer program that reasons and uses a knowledge base to solve complex problems. The term is broad and refers to many different kinds of systems. The one common theme that unites all knowledge based systems is an attempt to represent knowledge explicitly and a reasoning system that allows it to derive new knowledge. Thus, a knowledge-based system has two distinguishing features: a knowledge base and an inference

Logical Reasoning - Validity and soundness

Argument terminology
Deductive arguments are evaluated in terms of their *validity* and *soundness*.

An argument is "valid" if it is impossible for its <u>premises</u> to be true while its conclusion is false. In other words, the conclusion must be true if the premises are true. An argument can be "valid" even if one or more of its premises are false.

An argument is "**sound**" if it is *valid* and the premises are true. It is possible to have a deductive argument that is logically *valid* but is not *sound*. Fallacious arguments often take that form.

The following is an example of an argument that is "valid", but not "sound":

- 1. Everyone who eats carrots is a quarterback.
- 2. John eats carrots.
- 3. Therefore, John is a quarterback.

IBM WATSON

IBM WATSON

- Watson was created as a <u>question answering</u> (QA) computing system that IBM built to apply advanced <u>natural language</u> <u>processing</u>, <u>information retrieval</u>, <u>knowledge</u> <u>representation</u>, <u>automated reasoning</u>, and <u>machine</u> <u>learning</u> technologies to the field of <u>open domain question</u> <u>answering</u>. [2]
- The key difference between QA technology and document search is that document search takes a keyword query and returns a list of documents, ranked in order of relevance to the query (often based on popularity and page ranking), while QA technology takes a question expressed in natural language, seeks to understand it in much greater detail, and returns a precise answer to the question.
- When created, IBM stated that, "more than 100 different techniques are used to analyze natural language, identify sources, find and generate hypotheses, find and score evidence, and merge and rank hypotheses.

SEARCH

What is shortest path from Node 5(A) to Node 3(B)?

SHORTEST PATH ALGORITHMS (LARGELY SOLVED)

Shortest path from A to B

SOME PROBLEMS ARE TOO HARD!

50.2 mi 9:42:04

Shortest path to travel every street on a map

5892

6,726 ft

ALGORITHMS FOR SHORTEST PATH PROBLEMS

SEARCH TECHNIQUES Search techniques Heuristic Blind Hill climbing **A*** Depth first **Breadth** first Search search Search Search (DFS) (BFS) **Best-First** Greedy Search Search

SHORTEST PATH (GOOGLE MAPS)

SHORTEST PATH (WITH CONSTRAINTS)

ALGORITHMS FOR SORTING

Name \$	Best ◆	Average \$	Worst ♦	Memory ♦	Stable ♦	Method ♦	Other notes
Quicksort	$n\log n$ variation is n	$n\log n$	n^2	$\log n$ on average, worst case space complexity is n ; Sedgewick variation is $\log n$ worst case.	Typical in- place sort is not stable; stable versions exist.	Partitioning	Quicksort is usually done in-place with $O(\log n)$ stack space. ^{[4][5]}
Merge sort	$n \log n$	$n\log n$	$n \log n$	n A hybrid block merge sort is O(1) mem.	Yes	Merging	Highly parallelizable (up to $O(\log n)$ using the Three Hungarians' Algorithm ^[6] or, more practically, Cole's parallel merge sort) for processing large amounts of data.
In-place merge sort	_	_	$n\log^2 n$ See above, for hybrid, that is $n\log n$	1	Yes	Merging	Can be implemented as a stable sort based on stable in-place merging. ^[7]
Heapsort	n If all keys are distinct, $n \log n$	$n\log n$	$n\log n$	1	No	Selection	
Insertion sort	n	n^2	n^2	1	Yes	Insertion	O(n + d), in the worst case over sequences that have <i>d</i> inversions.

SEARCH - CONSTRAINT SATISFACTION PROBLEMS

- Constraint satisfaction problems (CSPs) are mathematical questions defined as a set of objects whose <u>state</u> must satisfy a number of <u>constraints</u> or <u>limitations</u>.
- How to find options that work?
 - Exhaustive search

MAP COLORING

Color states on map where any adjacent state has different color.

Solution – Exhaustive Search

8 QUEENS PROBLEM

• Find configuration where 8 queens on a chess board do not attack each other (i.e., put each

other in check)

SUDOKU PUZZLE

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
8 4 7			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

REAL WORLD CONSTRAINT SATISFACTION PROBLEMS

- Scheduling for calendars (Holiday Schedules)
- Job Recruiting
- Housing buying

PROBABILISTIC REASONING

- Use probability to make decisions
- In a nutshell, there are many options, each with a probability of being the best, simply select the option with the highest probability.
- MAP Decision
 - Maximum A Posteriori (MAP) decision

AXIOMS OF PROBABILITY (REVIEW)

- First Axiom The probability of an event is a nonnegative real number
- Second Axiom The sum of all probabilities in the event space is 1
- Third Axiom Sum of the probability of disjoint sets is simply the sum of the disjoint sets.

satisfies

$$P\left(igcup_{i=1}^{\infty}E_i
ight)=\sum_{i=1}^{\infty}P(E_i).$$

https://en.wikipedia.org/wiki/Probability_axioms

NAÏVE BAYES CLASSIFICATION

$$P(c \mid X) = P(x_1 \mid c) \times P(x_2 \mid c) \times \cdots \times P(x_n \mid c) \times P(c)$$

NAÏVE BAYES DETAILS

- P(X | C) Likelihood probability distribution given class (Required)
 - histograms
- P(C) Prior Probability of the Class (usually based on Frequency) - (Optional)
 - Banana = 100 Prior Probability = 1/5
 - Apple = 300 Prior Probability = 3/5
 - Peach = 100 Prior Probability = 1/5
- P(X) Probability of the data ignore

Derivation of Naive Bayes rule

We want to find the class that is most likely given the document:

$$c_{\mathsf{map}} = \underset{c \in \mathbb{C}}{\mathsf{arg} \, \mathsf{max}} \, P(c|d)$$

Apply Bayes rule $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$:

$$c_{\mathsf{map}} = \underset{c \in \mathbb{C}}{\mathsf{arg\,max}} \frac{P(d|c)P(c)}{P(d)}$$

Drop denominator since P(d) is the same for all classes:

$$c_{\mathsf{map}} = \underset{c \in \mathbb{C}}{\mathsf{arg\,max}} P(d|c)P(c)$$

NAÏVE-BAYES HISTOGRAM-BASED EXAMPLE

MACHINE LEARNING TECHNIQUES

- Unsupervised
 - Clustering
- Supervised
 - Regression
 - Classification

COMPONENTS OF A MACHINE LEARNING TECHNIQUE

- Input Data Features (X) and Target Y (Optional)
- Objective to optimize
 - Parameters
 - Maximizing or minimizing something
 - Model Type Classification, Clustering, Regression
- Optimization Algorithm
- Validation
 - Metrics Accuracy, mean square error, Likelihood, F-score, Plots, Qualitative
 - Evaluation Methodology to use for supervised learning Cross validation

LINEAR REGRESSION

- Model Type Regression
- Objective Minimize mean square error
- Optimization algorithm Ordinary Least Squares, gradient descent

LOGISTIC REGRESSION

- Model Type Classification
- Objective Logit
- Optimization algorithm gradient descent, newton method

NEURAL NETWORKS

- Model Type Classification/Regression
- Objective Defined by User
- Optimization Algorithm Back Propagation