

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE INGENIERÍA INGENIERÍA EN COMPUTACIÓN

Bases de Datos grupo: 01

Proyecto final

Alumnos:

- •
- López Aniceto Saúl Isaac
- López González Kevin
- •
- Ponce Soriano Armando

Profesor:

ING. Fernando Arreola Franco

24 de noviembre de 2021

ÍNDICE

1

Índice

1.	Introducción	2					
2.	Plan de trabajo						
	2.1. Descripción	2					
	2.2. Plan de actividades	2					
	2.3. Cronograma	4					
	2.4. Aportaciones	5					
3.	Diseño	5					
	3.1. Análisis de requerimientos	5					
	3.2. Modelo conceptual	5					
	3.2.1. Modelo Entidad-Relación	6					
	3.3. Modelo lógico	6					
	3.3.1. Representación Intermedia	6					
	3.3.2. Transformación de MER a MR	7					
	3.3.3. Modelo Relacional	7					
	3.3.4. Normalización	7					
4.	Implementación	7					
	4.1. Modelo físico	7					
	4.1.1. IaaS	7					
	4.2. Códigos	7					
	4.3. DDL	7					
5.	Presentación	7					
	5.1. Django	7					
	5.1.1. Mapeo Relacional de Objetos	7					
	5.1.2. Ejecutar SQL personalizado directamente	8					
	5.2. Diseño	8					
6.	Conclusiones	8					

1 INTRODUCCIÓN 2

- 1. Introducción
- 2. Plan de trabajo
- 2.1. Descripción
- 2.2. Plan de actividades

2.3. Cronograma

3 DISEÑO 5

2.4. Aportaciones

	Diseño	Implementación	Presentación	Acoplamiento	Documentación
Kevin López	√		✓	✓	√

3. Diseño

3.1. Análisis de requerimientos

3.2. Modelo conceptual

Entidades

- PROVEEDOR: { <u>id_Proveedor</u>, razón social, domicilio (estado, código postal, colonia, calle y número), nombre, teléfonos }
- CLIENTE: {<u>RFC</u>, nomre (nombre, ap_Paterno, ap_Materno), domicilio (estado, código postal, colonia, calle y número), emails }
- INVENTARIO: {<u>id_Inventario</u>, precio_compra, fecha_compra, cantidad_ejemplares }
- PRODUCTO: {código_Barras, marca, descripción, precio, categoria}
- VENTA : {num_venta, fecha_venta, pago_Total, cantidad_articulo, pago_total_Articulo }

Relaciones

- Un proveedor surte a muchos inventarios.
- Un inventario es surtido por muchos proveedores.
- Un inventario almacena muchos productos.
- Un producto es almacenado por un inventario.
- Una venta contiene muchos productos.
- Un producto es contenido es muchas ventas.
- Un cliente concreta muchas ventas.
- Una venta es concretada por un cliente.

3 DISEÑO 6

3.2.1. Modelo Entidad-Relación

Figura 1: Modelo Entidad-Relación.

3.3. Modelo lógico

3.3.1. Representación Intermedia

- PROVEEDOR: { id_proveedor smallint (PK), nombre varchar 50, razón social varchar 50, estado varchar 50, colonia varchar 50, numero smallint, cp smallint, calle varchar 50}
- TELEFONO: {teléfono bigint(PK), id_proveedor smallint (FK)}
- INVENTARIO: {id_Inventario smallint (PK), precio_compra decimal (10,2), stock smallint, fecha_compra date }
- SURTE: {[id_Provedor smaillint (FK), id_Inventario smallint (FK)] (PK)}
- PRODUCTO: {cod_barras integer PK, id_categoria smallint FK, precio smallint NOT NULL, marca varchar(20) NOT NULL, descripcion varchar(50), id_inventario smallint (FK)}
- CATEGORÍA: { id_categoria smallint PK, tipo varchar(20) NOT NULL}

4 IMPLEMENTACIÓN

7

- CLIENTE: {RFC varchar(13) (PK), nombre varchar(20), ap_paterno varchar (20), ap_materno varchar (20) (N), cp smallint, numero smallint, estado varchar (32), calle varchar (32), colonia varchar (32)}
- EMAIL: {RFC varchar(13) (FK), email varchar (64) (PK)}
- VENTA: {id_venta int(PK), fecha_venta date, pago_final decimal(7,2), RFC varchar(13)(FK)}
- CONTIENE: { [cod_barras int , id_venta int](PK)(FK), precioTotalArt decimal(7,2), cantidad articulo int}
- 3.3.2. Transformación de MER a MR
- 3.3.3. Modelo Relacional
- 3.3.4. Normalización

4. Implementación

- 4.1. Modelo físico
- 4.1.1. IaaS
- 4.2. Códigos
- 4.3. DDL

5. Presentación

Una interfaz gráfica es un programa que nos permite manipular información a través de objetos gráficos que proporcionen un entorno visual, con el fin facilitar la interacción del usuario con la computadora.

En este caso, se optó por desarrollar una página web como interfaz gráfica que permita la manipulación de información de nuestra base de datos.

5.1. Django

Django es un framework de Python de alto nivel que permite diseñar aplicaciones web de una forma rápida, limpia y pragmática. Además, ayuda a los desarrolladores a evitar muchos errores de seguridad comunes, como la inyección de SQL, las secuencias de comandos entre sitios, la falsificación de solicitudes entre sitios y el secuestro de clics.

5.1.1. Mapeo Relacional de Objetos

El Mapeo Relacional de Objetos o ORM (Object Relational Mapping), es una tecnología que soluciona el desajuste entre las bases de datos relacionales y orientadas a objetos.

Por lo general, asigna una clase a una tabla uno a uno. Cada instancia de la clase corresponde a un registro en la tabla y cada atributo de la clase corresponde a cada campo en la tabla. ORM

6 CONCLUSIONES 8

proporciona una asignación a la base de datos, en lugar de escribir código SQL directamente, solo es necesario manipular los datos de la base de datos como un objeto operativo.

Si bien, el ORM es una herrmienta muy util, no se utilizará en este proyecto, ya que preferimos escribir directamente la sentencia SQL para comunicarnos con la base de datos.

5.1.2. Ejecutar SQL personalizado directamente

El objeto **django.db.connection** representa la conexión por defecto entre django y la base de datos. Las funciones que utilizamos para la comunicación con la base de datos son las siguientes:

connection.cursor()

Para obtener un objeto cursor.

cursor.execute(sql, [params])

Para ejecutar sentencias SQL.

cursor.fetchall()

Para devolver las filas resultantes de la consulta.

5.2. Diseño

6. Conclusiones

 López González Kevin Bla bla bla