Date: Sep 25th 2017 Monday

Equation of Change ABE 307

Associated Readings : Chapter 3 Introduction, Section 3.1 and 3.2 $\,$

Generalized Equations to Start Fluid Flow problem. Applicable on any type of fluid flow.

Equation of Continuity: General mags balance equation

Equation of Motion: General momentum balance equation

1. Equation of Continuity:

Consider a differential elementy size DXDYDZ

rate of = Srate of y mass increase mass in _ Srate of y mass out y

 $(\Delta \times \Delta y \Delta z) \frac{\partial f}{\partial t} = \{ \int vx |_{X} - \int vx |_{X + \Delta x} \} \Delta y \Delta z$ $+ \{ \int vy |_{Y} - \int vy |_{Y + \Delta y} \} \Delta x \Delta z$ $+ \{ \int vz |_{Z} - \int vz |_{Z + \Delta z} \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \int vz |_{Z + \Delta z} \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \int vz |_{Z + \Delta z} \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \int vz |_{Z + \Delta z} \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \int vz |_{Z + \Delta z} \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \int vz |_{Z + \Delta z} \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \int vz |_{Z + \Delta z} \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \int vz |_{Z + \Delta z} \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \int vz |_{Z + \Delta z} \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \int vz |_{Z + \Delta z} \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \int vz |_{Z + \Delta z} \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \int vz |_{Z + \Delta z} \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \int vz |_{Z + \Delta z} \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \int vz |_{Z + \Delta z} \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \int vz |_{Z + \Delta z} \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \int vz |_{Z + \Delta z} \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \int vz |_{Z + \Delta z} \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \int vz |_{Z + \Delta z} \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \int vz |_{Z + \Delta z} \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \int vz |_{Z + \Delta z} \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \int vz |_{Z + \Delta z} \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \int vz |_{Z + \Delta z} \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \int vz |_{Z + \Delta z} \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \int vz |_{Z + \Delta z} \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \int vz |_{Z} + \Delta z \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \int vz |_{Z} + \Delta z \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \int vz |_{Z} + \Delta z \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \int vz |_{Z} + \Delta z \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \int vz |_{Z} + \Delta z \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \int vz |_{Z} + \Delta z \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \int vz |_{Z} + \Delta z \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \int vz |_{Z} + \Delta z \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \Delta z \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \Delta z \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \Delta z \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \Delta z \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \Delta z \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \Delta z \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \Delta z \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \Delta z \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \Delta z \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \Delta z \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \Delta z \} \Delta x \Delta y$ $+ \{ \int vz |_{Z} - \Delta z \} \Delta x \Delta y$ $+ \{ \int vz |_{$

Date : _____

$$\frac{\partial f}{\partial L} = -\left(\frac{\partial}{\partial x} \left(\frac{f}{y}\right) + \frac{\partial}{\partial y} \left(\frac{f}{y}\right)\right) + \frac{\partial}{\partial z} \left(\frac{f}{y}\right)$$

7. (gv) > divergence of gv

Applying the momentum balance in a very general situation.

rate of

increase of

momentum

= {rate of momentum}

- {rate of momentum}

+ {Body forces}

X-momentum transfer equation.

 $\frac{\partial}{\partial t} (S \vee x) (D \times \Delta y \Delta z) = \int \varphi_{xx} |_{x} - \varphi_{xx}|_{x+\Delta x} \int \Delta y \Delta z$ $+ \int \varphi_{yx} |_{y} - \varphi_{yx}|_{y+\Delta y} \int \Delta y \Delta z$ $+ \int \varphi_{zx} |_{z} - \varphi_{zx}|_{z+\Delta z} \int \Delta y \Delta x$ $+ \int \varphi_{zx} |_{z} - \varphi_{zx}|_{z+\Delta z} \int \Delta y \Delta x$ $+ \int \varphi_{zx} |_{z} - \varphi_{zx}|_{z+\Delta z} \int \Delta y \Delta x$

		Date :
<u></u>	Divide by (0x limits ΔX , ΔY ,	$\Delta Z \rightarrow 0$
	Je (PK) =	$-\frac{\partial}{\partial x}\left(\varphi_{xx}\right)$ $-\frac{\partial}{\partial y}\left(\varphi_{xx}\right)$ $-\frac{\partial}{\partial y}\left(\varphi_{xx}\right)$ $=\frac{\partial}{\partial y}\left(\varphi_{xx}\right)$
		$\frac{1}{(4 \times 4)} = \frac{1}{24} (4 \times 4)$
y_n	nomentum balance	- 2 (Pzy)+ SJY
Z	a (gvz) = -2	(1, 1)
		2

hare i= x,y,Z 3 (Jvi) = - [- [-] + J Ji $\frac{\partial}{\partial t} (g\vec{v}) = - [\vec{v}, \phi] + g\vec{g}$ General Equation of motion. Now, introduce all the components for momentum transport Ate of manage m rate of changeof momentum transport due to convective mechanism. per unit volume

Equation I is the most general momentum balance Equation or auchy momentum equation called as cauchy momentum balance.