Step	Algorithm: $y := Ax + y$	
1a	$\{y = \widehat{y}\}$	}
4	$A \to \left(A_L \middle A_R \right), x \to \left(\frac{x_T}{x_B} \right)$ where A_R has 0 columns, x_B has 0 rows	
2	$\{y = A_R x_B + \widehat{y}$	}
3	while $n(A_R) < n(A)$ do	
2,3	$\{ y = A_R x_B + \widehat{y} \wedge n(A_R) < n(A)$	}
5a	$\begin{pmatrix} A_L A_R \end{pmatrix} \to \begin{pmatrix} A_0 a_1 A_2 \end{pmatrix}, \begin{pmatrix} \frac{x_T}{x_B} \end{pmatrix} \to \begin{pmatrix} \frac{x_0}{\chi_1} \\ \frac{\chi_1}{\chi_2} \end{pmatrix}$ where a_1 has 1 column, χ_1 has 1 row	
6	$\{ y = A_2 x_2 + \widehat{y} $	}
8	$y := \chi_1 a_1 + y$	
7	$\{ \qquad y = \chi_1 a_1 + A_2 x_2 + \widehat{y}$	}
5b	$A \to \left(A_L \middle A_R \right) \leftarrow \left(A_0 \middle a_1 \middle A_2 \right), \left(\frac{x_T}{x_B} \right) \leftarrow \left(\frac{x_0}{\chi_1} \right)$	
2	$\{ \qquad y = A_R x_B + \widehat{y}$	}
	endwhile	
2,3	$\{y = A_R x_B + \widehat{y} \land \neg (n(A_R) < n(A))$	}
1b	$\{y = Ax + \widehat{y}$	}

Step	Algorithm: $y := Ax + y$
1a	{
4	
	where
2	{
3	while do
2,3	 {
5a	where
6	{
8	
7	{
5b	
2	{
	endwhile
2,3	{
1b	{

Step	Algorithm: $y := Ax + y$
1a	$\{y = \widehat{y}\}$
4	
	where
2	{
3	while do
2,3	 {
5a	where
6	{
8	
7	{
5b	
2	{
	endwhile
2,3	{
1b	$\{y = Ax + \widehat{y} $

Step	Algorithm: $y := Ax + y$
1a	$\{y = \widehat{y} $
4	where
2	$\{y = A_R x_B + \widehat{y} $
3	while do
2,3	$\{ y = A_R x_B + \widehat{y} \land $
5a	where
6	{
8	
7	{
5b	
2	$\{ \qquad y = A_R x_B + \widehat{y} $
	endwhile
2,3	$\{y = A_R x_B + \widehat{y} \land \neg () $
1b	$\{y = Ax + \widehat{y}\}$

Step	Algorithm: $y := Ax + y$
1a	$\{y = \widehat{y} \}$
4	where
2	$\{y = A_R x_B + \widehat{y} $
3	while $n(A_R) < n(A)$ do
2,3	$\{ y = A_R x_B + \widehat{y} \wedge n(A_R) < n(A) $ }
5a	where
6	{
8	
7	{
5b	
2	$\{ y = A_R x_B + \widehat{y} $ \rightarrow \rightarrow
	endwhile
2,3	$\{y = A_R x_B + \widehat{y} \land \neg (n(A_R) < n(A))\}$
1b	$\{y = Ax + \widehat{y} $ }

Step	Algorithm: $y := Ax + y$
1a	$\{y = \widehat{y} \}$
4	$A \to \left(A_L \middle A_R \right), x \to \left(\frac{x_T}{x_B} \right)$ where A_R has 0 columns, x_B has 0 rows
2	$\{y = A_R x_B + \widehat{y} $
3	while $n(A_R) < n(A)$ do
2,3	$\{ y = A_R x_B + \widehat{y} \wedge n(A_R) < n(A) $
5a	where
6	{
8	
7	{
5b	
2	$\{ y = A_R x_B + \widehat{y} $
	endwhile
2,3	$\{y = A_R x_B + \hat{y} \land \neg (n(A_R) < n(A))\}$
1b	$\{y = Ax + \widehat{y} $ }

Step	Algorithm: $y := Ax + y$	
1a	$\{y=\widehat{y}$	}
4	$A \to \left(A_L \middle A_R \right), x \to \left(\frac{x_T}{x_B} \right)$ where A_R has 0 columns, x_B has 0 rows	
2	$\{y = A_R x_B + \widehat{y}$	}
3	while $n(A_R) < n(A)$ do	
2,3	$\{ y = A_R x_B + \widehat{y} \wedge n(A_R) < n(A)$	}
5a	$\begin{pmatrix} A_L \mid A_R \end{pmatrix} \to \begin{pmatrix} A_0 \mid a_1 \mid A_2 \end{pmatrix}, \begin{pmatrix} \frac{x_T}{x_B} \end{pmatrix} \to \begin{pmatrix} \frac{x_0}{\chi_1} \\ \frac{\chi_1}{x_2} \end{pmatrix}$ where a_1 has 1 column, χ_1 has 1 row	
6	{	}
8		
7	{	}
5b	$A \to \left(A_L \middle A_R \right) \leftarrow \left(A_0 \middle a_1 \middle A_2 \right), \left(\frac{x_T}{x_B} \right) \leftarrow \left(\frac{x_0}{\chi_1} \right)$	
2	$\{ \qquad y = A_R x_B + \widehat{y}$	}
	endwhile	
2,3	$\{y = A_R x_B + \widehat{y} \land \neg (n(A_R) < n(A))$	}
1b	$\{y = Ax + \widehat{y}$	}

Step	Algorithm: $y := Ax + y$	
1a	$\{y=\widehat{y}$	}
4	$A \to \left(A_L \middle A_R \right), x \to \left(\frac{x_T}{x_B} \right)$ where A_R has 0 columns, x_B has 0 rows	
2	$\{y = A_R x_B + \widehat{y}$	}
3	while $n(A_R) < n(A)$ do	
2,3	$\{ y = A_R x_B + \widehat{y} \wedge n(A_R) < n(A) $	}
5a	$\begin{pmatrix} A_L \mid A_R \end{pmatrix} \to \begin{pmatrix} A_0 \mid a_1 \mid A_2 \end{pmatrix}, \begin{pmatrix} \frac{x_T}{x_B} \end{pmatrix} \to \begin{pmatrix} \frac{x_0}{\chi_1} \\ \frac{\chi_1}{x_2} \end{pmatrix}$ where a_1 has 1 column, χ_1 has 1 row	
6	$\{ y = A_2 x_2 + \widehat{y}$	}
8		
7	{	}
5b	$A \to \left(A_L \middle A_R \right) \leftarrow \left(A_0 \middle a_1 \middle A_2 \right), \left(\frac{x_T}{x_B} \right) \leftarrow \left(\frac{x_0}{\chi_1} \right)$	
2	$\{ \qquad y = A_R x_B + \widehat{y}$	}
	endwhile	
2,3	$\{y = A_R x_B + \widehat{y} \land \neg (n(A_R) < n(A))$	}
1b	$\{y = Ax + \widehat{y}$	}

Step	Algorithm: $y := Ax + y$	
1a	$\{y=\widehat{y}$	}
4	$A \to \left(A_L \middle A_R \right), x \to \left(\frac{x_T}{x_B} \right)$ where A_R has 0 columns, x_B has 0 rows	
2	$\{y = A_R x_B + \widehat{y}$	}
3	while $n(A_R) < n(A)$ do	
2,3	$\{ y = A_R x_B + \widehat{y} \wedge n(A_R) < n(A)$	}
5a	$\left(\begin{array}{c c} A_L & A_R \end{array}\right) \rightarrow \left(\begin{array}{c c} A_0 & a_1 & A_2 \end{array}\right), \left(\begin{array}{c} x_T \\ \hline x_B \end{array}\right) \rightarrow \left(\begin{array}{c} x_0 \\ \hline \chi_1 \\ \hline x_2 \end{array}\right)$	
6	where a_1 has 1 column, χ_1 has 1 row $\{ y = A_2 x_2 + \widehat{y} \}$	1
	$\{ \qquad y = A_2 x_2 + \widehat{y}$	}
8		
7	$\{ \qquad y = \chi_1 a_1 + A_2 x_2 + \widehat{y}$	}
5b	$A \to \left(A_L \middle A_R \right) \leftarrow \left(A_0 \middle a_1 \middle A_2 \right), \left(\frac{x_T}{x_B} \right) \leftarrow \left(\frac{x_0}{\chi_1} \right)$	
2	$\{ \qquad y = A_R x_B + \widehat{y}$	}
	endwhile	
2,3	$\{y = A_R x_B + \widehat{y} \land \neg (n(A_R) < n(A))$	}
1b	$\{y = Ax + \widehat{y}$	}

Step	Algorithm: $y := Ax + y$	
1a	$\{y=\widehat{y}$	}
4	$A \to \left(A_L \middle A_R \right), x \to \left(\frac{x_T}{x_B} \right)$ where A_R has 0 columns, x_B has 0 rows	
2	$\{y = A_R x_B + \widehat{y}$	}
3	while $n(A_R) < n(A)$ do	
2,3	$\{ y = A_R x_B + \widehat{y} \wedge n(A_R) < n(A)$	}
5a	$\begin{pmatrix} A_L \mid A_R \end{pmatrix} \to \begin{pmatrix} A_0 \mid a_1 \mid A_2 \end{pmatrix}, \begin{pmatrix} \frac{x_T}{x_B} \end{pmatrix} \to \begin{pmatrix} \frac{x_0}{\chi_1} \\ \frac{\chi_1}{x_2} \end{pmatrix}$ where a_1 has 1 column, χ_1 has 1 row	
6	$\{ y = A_2 x_2 + \widehat{y}$	}
8	$y := \chi_1 a_1 + y$,
7	$\{ \qquad y = \chi_1 a_1 + A_2 x_2 + \widehat{y}$	}
5b	$A \to \left(A_L \middle A_R \right) \leftarrow \left(A_0 \middle a_1 \middle A_2 \right), \left(\frac{x_T}{x_B} \right) \leftarrow \left(\frac{x_0}{\chi_1} \right)$	
2	$\{ \qquad y = A_R x_B + \widehat{y}$	}
	endwhile	
2,3	$\{y = A_R x_B + \widehat{y} \land \neg (n(A_R) < n(A))$	}
1b	$\{y = Ax + \widehat{y}$	}

Algorithm: $y := Ax + y$
$A \to \left(A_L \middle A_R \right), x \to \left(\frac{x_T}{x_B} \right)$ where A_R has 0 columns, x_B has 0 rows
where II, has a column, we have a lowe
while $n(A_R) < n(A)$ do
$(A_L A_R) \rightarrow (A_0 a_1 A_2), (\frac{x_T}{x_B}) \rightarrow (\frac{x_0}{\chi_1})$ where a_1 has 1 column, χ_1 has 1 row
$y := \chi_1 a_1 + y$
$A \to \left(A_L \middle A_R \right) \leftarrow \left(A_0 \middle a_1 \middle A_2 \right), \left(\frac{x_T}{x_B} \right) \leftarrow \left(\frac{x_0}{\chi_1} \right)$
endwhile

Algorithm: y := Ax + y

$$A \to \left(A_L \middle| A_R \right), x \to \left(\frac{x_T}{x_B} \right)$$

where A_R has 0 columns, x_B has 0 rows while $n(A_R) < n(A)$ do

$$\left(A_L \middle| A_R \right) \to \left(A_0 \middle| a_1 \middle| A_2 \right), \left(\frac{x_T}{x_B} \right) \to \left(\frac{x_0}{x_1} \right)$$

where a_1 has 1 column, χ_1 has 1 row

$$y := \chi_1 a_1 + y$$

$$A \to \left(A_L \middle| A_R \right) \leftarrow \left(A_0 \middle| a_1 \middle| A_2 \right), \left(\frac{x_T}{x_B} \right) \leftarrow \left(\frac{x_0}{\chi_1} \right)$$

endwhile