Lab 2

- 1. Use the sample of a database shown below to work Problems 1.1 through 1.5. This database has 3 relations.
- **1.1[1]** For each of the tables in the database, identify super keys, candidate keys, primary key and the foreign keys. If a table does not have a foreign key, write NONE.

Ans :- Assume every student has a unique phone number

Relations	Super key	Candidate key	Primary key	Foreign key
Student	(STD_ID),(PHONE),(STD_ID,SF_NAME),	(STD_ID)	STD_ID	NONE
	(STD_ID,SLNAME)(STD_ID,PHONE)	(PHONE)		
	(STD_ID,MAJOR)			
Course	(C_CODE),(CRS_NAME)	(C_CODE)	C_CODE	NONE
	(C_CODE,CRDT)(CRS_NAME,CRDT)	(CRS_NAME)		
Grade	NONE	NONE	NONE	CRS_NAME

1.2 (1) Do the tables exhibit entity integrity? Answer Yes or No, then justify your answer.

ANS:

YES, because none of the primary key in the relations is null.

1.3(1) Do the tables exhibit referential integrity? Answer Yes or No, then justify your answer.

ANS:

YES, because every foreign key value match a tuple in their home relation.

1.4(1) Comment on each table. Can you propose a better organization of data? Justify your answer.

ANS:

- > Student Relation looks fine.
- Course Relation violates the Relation property that each cell should have one atomic value but the Qualified faculty column contains more than one value.

 a better solution would be to have separate column for each qualified faculty.
- ➤ Grade relation: would have been better if it had Course code and student id as the foreign keys.
- **1.5(1)** For each of the tables in the database, create two new rows such that first one violates entity integrity and the second one violates referential integrity. If such a row does not exist, write NONE.

ANS:

STUDENT

SDT_ID	SF_NAME	SLNAME	PHONE	MAJOR
935499	Jill	Meek	(345)345-5216	CSC
355869	Cathy	Liu	(356)467-7488	PHY
577885	James	Smith	(456)435-4658	СНМ
127345	Joy	Brown	(108)365-8976	CSC
456328	Lisa	Williams	(239)879-3723	ENG
732489	Cathy	Cheng	(213)895-4367	MUS
null	zelalem	zergaw	(706)689-6985	CSC
NONE				

COURSE

C_CODE	CRS_NAME	CRDT	QUALIFIED_FACULTY
PHY304	Relativity	3	Wolfe, Lathrope, Macy
CHM208	Organic Chemistry	4	Walker, Bosch
CHM209	Physical Chemistry	4	Walker, Shara
MUS338	Jazz Ensemble	3	Gross
CSC121	Programming	3	LeMack, Kurup, Naik
ENG345	Creative Writing	3	Hanna, Cooley
CSC122	Organization	3	LeMack, Kurup
CSC124	Architecture	3	Kurup, Naik, Ray
PHY207	Dynamics	4	Wolfe, Lathrope, Levy
null	Database	4	Walker, Shara
NONE			

GRADE

CRS_NAME	SL_NAME	GRADE	FACULTY
Creative Writing	Cheng	В	Cooley
Dynamics	Brown	С	Lathrope
Dynamics	Smith	D	Wolfe
Programming	Brown	С	Kurup
Relativity	Cheng	А	Wolfe
Relativity	Meek	В	Wolfe
Jazz Ensemble	Williams	А	Gross
Organic Chemistry	Williams	С	Walker
NONE			
Software engineering	Williams	А	Michael

2. (1) Find union, intersection and difference of the following two relations. Further, find $\prod A,C (\sigma(A=a2) \land (B=b2)(R))$.

c1

c2

R	Α	В	С
	a1	b1	c1
	a1	b1	c2

b2

b1

А	В	С
a1	b2	c2
a2	b2	c1
a1	b1	c2

S

ANS:

Union RUS

a2

a2

А	В	С
a1	b1	c1
a1	b1	c2
a2	b2	c1
a2	b1	c2
a1	b2	c2

Intersection $R \cap S$

Α	В	С
a1	b1	c2
a2	b2	c1

Difference R-S

Α	В	С
a1	b1	c1
a2	b1	c2

$\prod A$, C ($\sigma(A=a2) \land (B=b2)(R)$).

А	С
a2	c1

3.(1)Find equi-join, natural join, left outer join and right outer join.

R

А	В	С
a1	b1	c1
a2	b1	c2
a3	b2	c1
a4	b1	c3

S

D	С	E
d1	c1	e2
d2		e3
d3	c2	e2
d4	c2	e1

ANS:

R ⋈R.c=S.c S (equi-join)

А	В	R.C	D	S.C	Е
a1	b1	c1	d1	c1	e2
a2	b1	c2	d3	c2	e2
a2	b1	c2	d4	c2	e1
a3	b2	c1	d1	c1	e2

R ⋈ S (Natural-join)

Α	В	С	D	Е
a1	b1	c1	d1	e2
a2	b1	c2	d3	e2
a2	b1	c2	d4	e1
a3	b2	c1	d1	e2

$R \rtimes S$ (Left -outer join)

А	В	С	D	Е
a1	b1	c1	d1	e2
a2	b1	c2	d3	e2
a2	b1	c2	d4	e1
a3	b2	c1	d1	e2
a4	b1	c3	Null	null

R ⋉ S (right -outer join)

А	В	С	D	Е
a1	b1	c1	d1	e2
a2	b1	c2	d3	e2
a2	b1	c2	d4	e1
Null	Null		d2	e3

4.(1.5) A relational database contains details about journeys from Chicago to a variety of destinations and contains the following relations:

Operator (opCode, opName)

Journey (opCode, destCode, price)

Destination (destCode, destName, distance)

- ✓ Each operator is assigned a unique code (opCode) and the relation Operator records the association between this code and the Operator's name (opName).
- ✓ Each destination has a unique code (destCode) and the relation Destination records the association between this code and the destination name (destName), and the distance of the destination from Chicago.
- ✓ The relation Journey records the price of an adult fare from Chicago to the given destination by a specified operator; several operators may operate over the same route.

ANS:

1. Find the names of all destinations within 20 miles.

$$\Pi_{destName}$$
 ($\sigma_{distance} \le 20$ (Destination))

2.List the names of all operators with at least one journey priced at under \$5.

$$\Pi_{opName}$$
 (Operator \bowtie price<5 (Jorney))

3. List the names of all operators and prices of journeys to 'Boston'.

```
\Pi_{opName,price}(\sigma_{destName='Boston'}((Operator \bowtie_{operator.OpCode=Journey.opCode Journey)) \bowtie Journey.destCode=Destination.destCode (Destination)))
```

5.[1.5] Describe in English the relations that would be produced by the following relational algebra operations.

a. $\sigma_{Hotel.hotelNo} = Room.hotelNo$ (Hotel × Room)

List all Hotel Rooms with their Hotel information

b. $\Pi_{\text{hotelName}}$ (Hotel \bowtie Hotel.hotelNo = Room.hotelNo ($\sigma_{\text{price}} > 50$ (Room)))

List all hotel names which has rooms with price greater than \$50.

c. Guest \rtimes ($\sigma_{dateTo \geq '1-Jan-2016'}$ (Booking))

Select all Guests who booked before or at jan first of 2016.