九十六學年度師大附中數學競賽決賽題目卷

- 一、填充題:(直接寫答案即可,每題 15 分)
- 1. 已知1+i與2+i是方程式 $10x^8-78x^7+273x^6-546x^5+676x^4-546x^3+273x^2-78x+10=0$ 的兩根,請寫出其他六根 _____。
- 2. 已知 $0 \le x < 2\pi$, $y = f(x) = \cos x \cdot \sin^2 x$,當x = a時,y有最大值b,求 $a = _______。$
- 3. 直線 y = 2x + m 和圓 $x^2 + y^2 = 1$ 交於 $A \times B$ 兩點,以 x 軸正方向為始邊, OA 為終邊的角為 $\alpha \times OB$ 為終邊的角為 β ,則 $\sin(\alpha + \beta) =$
- 二、計算證明題:(需列出合理過程)
- 5. 數列 $\{a_n\}$ 滿足 $a_1 = \frac{1}{7}, a_2 = \frac{1}{25}$,且當 $n \ge 3$ 時, $a_{n-1}a_{n-2} = 7a_na_{n-2} + 12a_na_{n-1}$ 。求 a_n 的一般式。(15分)
- 6. 有一個拋物線,與x+3y=4切於(4,0),且與5x+3y=-16切於(4,-12)。求此拋物線方程式。(15分)
- 7. 複數 z 滿足條件 z+4 的主幅角為 $\frac{\pi}{4}$,設 $u = \frac{1}{|z+6|+|z-3i|}$,當 z=z。 時, u 有最大值,求 z。 。 (15 分)
- 8. 在 $\triangle ABC$ 中, $\angle C = 2\angle B$;在 $\angle BAC$ 內部一點P,滿足PB = PC且AP = AC。試證: $\angle BAP = \frac{1}{3}\angle BAC$ 。
 (20分)
- 9. 已知 $\triangle ABC$ 中,內切圓 O, $\angle A$ 含的旁切圓為 O_a ,如右圖。
 - (1) 圓 $O \cdot O_a$ 半徑分別為 $2 \cdot 5$, $\overline{BC} = 4$,試求 ΔABC 的面 積。(10分)
 - (2) 若 $\angle B \cdot \angle C$ 含的旁切圓分別為 $O_b \cdot O_c \cdot$ 圓 $O \cdot O_a \cdot O_b \cdot$ O_c 的半徑分別為 $r \cdot r_a \cdot r_b \cdot r_c$ 試證: $\frac{1}{r} + \frac{1}{r_c} + \frac{1}{r_c} = \frac{1}{r_c}$ (15 分)

- 10. 以下 4 小題中,後小題可利用前小題的結果證明,前小題不能使用後小題結果
 - (1) 平面上 4 個點,兩兩連線,最長線段長 L,最短線段長 l,試證: $\frac{L}{l} \ge \sqrt{2}$ 。(8分)
 - (2) 平面上 6 個點,用 13 條線段連結,求證:必存在 4 個點,它們兩兩之間都有線段相連。(6分)
 - (3) 平面上 6 個點中,兩兩間最大距離為 2,求距離超過 $\sqrt{2}$ 的點對至多有幾對?並證明之。(10 分)
 - (4) 請說明如何作出 6 個點使符合(3)的對數。(6分)

九十六學年度師大附中數學競賽決賽答案卷

班級

座號 姓名

得分

一、填充題

題號	答案
1	$1-i, 2-i, \frac{1+i}{2}, \frac{1-i}{2}, \frac{2+i}{5}, \frac{2-i}{5}$
2	$a = \sin^{-1} \frac{\sqrt{6}}{3} \text{ or } 2\pi - \sin^{-1} \frac{\sqrt{6}}{3}$ $b = \frac{2\sqrt{3}}{9}$
3	$-\frac{4}{5}$
4	63

二、計算證明題

$$z_0 = -2 + 2i$$

0	
8	
略	
9	
(1) $\frac{40}{3}$ (2) 略	
$(1) \stackrel{70}{=}$	
3	
10	
10	
略	
m <u>D</u>	