Lecture 29: Introducing the EM algorithm

Ciaran Evans

Plan for next week

- ► Monday: continue EM algorithm
- Wednesday and Friday: project work days
- Extra office hours on Tuesday, Wednesday, and Thursday

Motivation: penguins data

Data on 276 penguins (Adelie or Gentoo) on three different islands (Torgersen, Biscoe, Dream) near Antartica. Variables include

- species
- island
- characteristics like bill length, flipper length, etc.

Motivation: penguins data

Question: What do you notice about the distribution of flipper length? Why might this be the case?

Question: How could I model the distribution of flipper length in each group? What parameters would I estimate?

Length | (species = Adelie)
$$\sim N(\mu_1, \sigma_1^2)$$

Length | (species = Gentoo) $\sim N(\mu_2, \sigma_2^2)$
Want to estimate $\mu_1, \sigma_1^2, \mu_2, \sigma_2^2,$
 $P(Species = Adelie)$ (or $P(Species = Center)$)

Motivation: penguins data

Writing down a model

Time between Old Faithful geyser eruptions

Question: What do you notice about the distribution of waiting times? Why might this be the case?

Time between Old Faithful geyser eruptions

Question: It seems like there are two groups here, but we don't know what they are. What should we do to estimate both the groups and their distributions?

Time between Old Faithful geyser eruptions

Model:
$$X_i = time$$
 between eruptions

 $Z_i = grap$ (unobserved, i.e. latent)

 $X_i \mid (Z_i = 1) \sim N(M_1, \sigma_i^2)$
 $X_i \mid (Z_i = 2) \sim N(M_2, \sigma_i^2)$

Gaussian mixture model

- ightharpoonup Observe data $X_1, ..., X_n$
- Assume each observation i comes from one of k groups. Let $Z_i \in \{1, ..., k\}$ denote the group assignment
 - ► The group Z is an unobserved (latent) variable

$$P(Z_{i}=j) = \lambda_{j}$$
 (probability of belonging to grap j)

 $Z_{i} = 1$
 $X_{i} = 1$
 $X_{i} = 1$

Normal distribution for each grap

Marginal distribution of X is a mixture of the Normal distributions for each grap

Estimating model parameters: EM algorithm

(Expectation-Maximization)

The **EM** algorithm allows us to estimate both the unknown group assignments, and the parameters for each group's distribution (we will discuss the details later). In R:

```
library(mixtools)

ormalmixEM(geyser$waiting, lambda = c(0.5, 0.5), k=2)
```

- normalmixEM: function for estimating parameters in a mixture of normal distributions
- ▶ lambda: initial guess at the proportion of data in each group
- ▶ k: number of groups \(\lambda_i\) gresses

Estimating model parameters: EM algorithm

```
library(mixtools)
em_res <- normalmixEM(geyser$waiting, lambda = c(0.5, 0.5)</pre>
                        k=2
                                 a iterative estimation aggrithm
## number of iterations= 28
em_res$lambda \hat{\chi}, \hat{\chi}_1
## [1] 0.3075953 0.6924047
em res$mu
## [1] 54.20271 80.36036
em_res$sigma _
## [1] 4.952044 7.507597
```

Fitted parameters

- Estimated proportion of data in each group: 0.308, 0.692
- **E**stimated group means: $\hat{\mu}_1 = 54.203$, $\hat{\mu}_2 = 80.360$
- Estimated group sd: $\hat{\sigma}_1 = 4.951$, $\hat{\sigma}_2 = 7.508$

Your turn

Simulate data from a Gaussian mixture and explore parameter estimation:

https://sta379-s25.github.io/practice_questions/pq_29.html

- Start in class
- Welcome to work with a neighbor
- Solutions will be posted later on the course website