[03-60-231] Assignment 4

Stephen Nusko 103693282

November 11, 2013

1 Question 5.3

1.1 Part a

Prove or disprove If R and S are asymmetric, then (i) $R \cup S$ is a symmetric relation; (ii) $R \cap S$ is a symmetric relation

We must prove or disprove R and S are asymmetric $\Rightarrow R \cup S$ is a symmetric relation,

as well as R and S are asymmetric $\Rightarrow R \cap S$ is a symmetric relation

We will disprove both statements, first R and S are asymmetric $\Rightarrow R \cup S$ is a symmetric relation

Let $R = \{(a, b)\}$

Let $S = \{(a, b), (c, d)\}$

Then both R and S are asymmetric

first we disprove R and S are asymmetric $\Rightarrow R \cup S$ is a symmetric relation.

and $R \cup S = \{(a, b), (c, d)\}$

By inspection $R \cup S$ is not symmetric

 \therefore If R and S are asymmetric $\Rightarrow R \cup S$ is a symmetric relation is false

Now we disprove R and S are asymmetric $\Rightarrow R \cap S$ is a symmetric relation

$$R \cap S = \{(a,b)\}$$

By inspection $R \cap S$ is not symmetric.

 \therefore If R and S are asymmetric $\Rightarrow R \cap S$ is a symmetric relation is false

2 Question 5.9

Let \mathbb{N} be the set of all positive integers and R is a relation in \mathbb{N} such that

 $R = \{(a, b) \in \mathbb{N} \times \mathbb{N} \mid \text{the sum of the decimal digits in } a = \text{the sum of the decimal digits in } b\}.$

 $\forall a, b \in \mathbb{N} \text{ let } n, m \in \mathbb{B}$ be the number of digits in a, b respectively, and let $i, j \in \mathbb{B}$ be the individual digits at the respective indexes.

Then
$$R = \{(a, b) \in \mathbb{N} \times \mathbb{B} \mid \sum_{i=1}^{n} a = \sum_{j=1}^{m} b\}$$

Prove that R is an equivalence relation.

To prove the R is an equivalence relation we must prove that R is reflexive, symmetric, and transitive.

First we will prove that R is reflexive, ie $(\forall x \in \mathbb{N})(x,x) \in R$

Proof: (direct)

1. Let $x \in \mathbb{N}$

2.
$$\sum_{i=1}^{n} x = \sum_{i=1}^{n} x$$
 high school algebra

3.
$$\sum_{i=1}^{n} x = \sum_{j=1}^{m} x$$
 change of variable

4.
$$(x, x) \in R$$
 definition of R

 $\therefore (\forall x \in \mathbb{N})(x, x) \in R$

 $\therefore R$ is reflexive

Next we prove that R is symmetric, ie if $(x,y) \in R \Rightarrow (y,x) \in R$

Proof: (direct)

1. Let $(x,y) \in R$ Hypothesis

2.
$$\sum_{i=1}^{n} x = \sum_{j=1}^{m} y$$
 definition of R

3.
$$\sum_{i=1}^{n} x = \sum_{i=1}^{n} x$$

4.
$$\sum_{j=1}^{m} y = \sum_{i=1}^{n} x$$
 2, sub=

5.
$$(y,x) \in R$$
 definition of R

$$\therefore (x,y) \in R \Rightarrow (y,x) \in R$$

 $\therefore R$ is symmetric

Finally we prove that R is transitive, ie if $(x,y) \in R \land (y,z) \in R \Rightarrow (x,z) \in R$ Proof: (direct)

1. Let
$$(x,y) \in R \land (y,z) \in R$$
 Hypothesis

2.
$$(x,y) \in R$$
 and $(y,z) \in R$ 1, I2, E9, I2

3.
$$\sum_{i=1}^{n} x = \sum_{j=1}^{m} y$$
 and $\sum_{j=1}^{m} y = \sum_{k=1}^{o} z$ definition of R twice

4.
$$\sum_{i=1}^{n} x = \sum_{k=1}^{o} z$$
 3, sub=

5.
$$(x,z) \in R$$
 definition of R

$$\therefore (x,y) \in R \land (y,z) \in R \Rightarrow (x,z) \in R$$

 $\therefore R$ is transitive

 $\therefore R$ is reflexive, symmetric, and transitive.

 $\therefore R$ is an equivalence relation.

The equivalence class of 98 are all positive integers such that the sum of their digits is equal to 17 for valus from in [0, 50] that belong to the equivalence class $[98]/R = \emptyset$

3 Question 5.12

Let R be a reflexive and transitive relation in X.

Let S be a relation in X such that $(x,y) \in S \Leftrightarrow (x,y) \in R \land (y,x) \in R$

Part a 3.1

Prove that S is an equivalence relation.

To prove that S is an equivalence relation we must prove that S is reflexive, symmetric, and transitive. First we will prove that S is reflexive, ie $(\forall x \in X)(x,x) \in S$ Proof: (direct)

1. Let
$$x \in X$$
 hypothesis

2.
$$(x,x) \in R$$

3. $(x,x) \in R \land (x,x) \in R$

2, E3

4. $(x, x) \in S$

definition of S

 $\therefore (\forall x \in X)(x,x) \in S$

 $\therefore S$ is reflexive

Next we prove that S is symmetric, ie if $(x, y) \in S \Rightarrow (y, x) \in S$

Proof: (direct)

1. Let $(x,y) \in S$

hypothesis

 $2. \ (x,y) \in R \wedge (y,x) \in R$

definition of S

3. $(y,x) \in R \land (x,y) \in R$

2, E9

 $4.\ (y,x)\in S$

definition of S

 $\therefore (x,y) \in S \Rightarrow (y,x) \in S$

 $\therefore S$ is symmetric

Finally we prove that S is transitive, ie if $(x,y) \in S \land (y,z) \in S \Rightarrow (x,z) \in S$

Proof: (direct)

1. Let $(x,y) \in S \land (y,z) \in S$

Hypothesis

2. $(x,y) \in S$ and $(y,z) \in S$

 $1,\,\mathrm{I2},\,\mathrm{E9},\,\mathrm{I2}$

3. $(x,y) \in R \land (y,x) \in R$ and $(y,z) \in R \land (z,y) \in R$

definition of S twice

4. $(x,y) \in R$ and $(y,x) \in R$ and $(y,z) \in R$ and $(z,y) \in R$

(3, I2, E9, I2) twice

5. $(x,y) \in R \land (y,z) \in R$ and $(z,y) \in R \land (y,x) \in R$

4, I6 twice

6. $(x, z) \in R$ and $(z, x) \in R$

5, R is transitive twice

7. $(x,z) \in R \land (z,x) \in R$

6, I6

8. $(x, z) \in S$

definition of S

 $\therefore (x,y) \in S \land (y,z) \in S \Rightarrow (x,z) \in S$

 $\therefore S$ is transitive.

 $\therefore S$ is reflexive, symmetric, and transitive.

 $\therefore S$ is an equivalence relation.

3.2 Lemma equivalence

Before proving part b we will first prove a helpful lemma equivalence, if $(x, y) \in S \Rightarrow [x]/S = [y]/S$ We need to show that $(\forall a)(a \in [x]/S \Rightarrow a \in [y]/S) \land (\forall a)(a \in [y]/S \Rightarrow a \in [x]/S)$

Proof: (direct)

Assume $(x, y) \in S$

First we prove that $(\forall a)(a \in [x]/S \Rightarrow a \in [y]/S)$

1. $(x, y) \in S$

Hypothesis

2. Let $a \in [x]/S$

Hypothesis

 $3. \ (x,a) \in S$

definition of [x]/S

4. $(a, x) \in S$

S is symmetric

5. $(a, x) \in S \land (x, y) \in S$

4, 1, I6

6. $(a, y) \in S$

S is transitive

7. $(y,a) \in S$ S is symmetric definition of [y]/S

 $\therefore (\forall a)(a \in [x]/S \Rightarrow a \in [y]/S)$

Now we prove that $(\forall a)(a \in [y]/S \Rightarrow a \in [x]/S)$

1. $(x,y) \in S$ Hypothesis

2. $(y,x) \in S$ S is symmetric

3. Let $a \in [y]/S$ Hypothesis

4. $(y,a) \in S$ definition of [y]/S

5. $(a, y) \in S$

6. $(a, y) \in S \land (y, x) \in S$ 5, 2, I6

7. $(a,x) \in S$

8. $(x,a) \in S$ is symmetric

9. $a \in [x]/S$ definition of [x]/S

 $\therefore (\forall a)(a \in [y]/S \Rightarrow a \in [x]/S)$

 $\therefore (\forall a)(a \in [x]/S) \Rightarrow a \in [y]/S) \land (\forall a)(a \in [y]/S) \Rightarrow a \in [x]/S)$

 \therefore If $(x, y) \in S$, then [x]/S = [y]/S

3.3 Part b

Let \widetilde{R} be a relation in [X]/S such that $\widetilde{R} = \{([x]/S, [y]/S) \mid (x,y) \in R\}$. Prove that \widetilde{R} is a partial order. To prove that \widetilde{R} is a partial order, we must prove that \widetilde{R} is reflexive, antisymmetric, and transitive. First we will prove that \widetilde{R} is reflexive, ie $(Y \in [X]/S)(Y,Y) \in \widetilde{R}$

1. Let $Y \in [X]/S$ Hypothesis

2. $(\exists v)(v \in X \land Y = [v]/S)$ 1, definition of [X]/S

3. $v \in X \land Y = [v]/S$

4. $v \in X$ and Y = [v]/S 3, I2, E9, I2

5. $(v,v) \in R$

6. $([v]/S, [v]/S) \in \widetilde{R}$ definition of \widetilde{R}

7. $(Y,Y) \in \widetilde{R}$ 6, sub=

 $\therefore \widetilde{R}$ is reflexive.

Next we will prove that \widetilde{R} is antisymmetric, ie if $(A,B) \in \widetilde{R} \wedge (B,A) \in \widetilde{R} \Rightarrow A = B$ Saying $(A,B) \in \widetilde{R} \equiv (\exists a,b \in X)(((a,b) \in R \wedge A = [a]/S \wedge B = [b]/S)$, by definition of \widetilde{R} Proof: (direct)

1. Let $(A, B) \in \widetilde{R} \wedge (B, A) \in \widetilde{R}$ Hypothesis

2. $(A, B) \in \widetilde{R}$ and $(B, A) \in \widetilde{R}$ 1, I2

3. $(a,b) \in R \land A = [a]/S \land B = [b]/S$ and $(b,a) \in R \land B = [b]/S \land A = [a]/S$ definition of \widetilde{R} twice

4. $(a,b) \in R$ and A = [a]/S and B = [b]/S and $(b,a) \in R$ 3, I2, E9

5. $(a,b) \in R \land (b,a) \in R$

4, 4, I6

6. $(a, b) \in S$

5, definition of S

7. [a]/S = [b]/S

6, Lemma equivalence

8. A = B

7, sub= twice

 $\therefore \widetilde{R}$ is antisymmetric

Finally we will prove \widetilde{R} is transitive, ie if $(A, B) \in \widetilde{R} \wedge (B, C) \in \widetilde{R} \Rightarrow (A, C) \in \widetilde{R}$ Proof: (direct)

1. $(A,B) \in \widetilde{R} \wedge (B,C) \in \widetilde{R}$

Hypothesis

2. $(A, B) \in \widetilde{R}$ and $(B, C) \in \widetilde{R}$

1, I2, E9, I2

3. $(a,b) \in R \land A = [a]/S \land B = [b]/S$ and $(b,c) \in R \land B = [b]/S \land C = [c]/S$

2, I2, E9, I2

4. $(a,b) \in R$ and A = [a]/S and B = [b]/S and $(b,c) \in R$ and C = [c]/S

3, I2, E9

5. $(a,b) \in R \land (b,c) \in R$

4, 4, I6

6. $(a, c) \in R$

R is transitive

7. $([a]/S, [c]/S) \in \widetilde{R}$

definition of \widetilde{R}

8. $(A, C) \in \widetilde{R}$

 $\mathrm{sub}_{=}$

 \widetilde{R} is transitive.

 \widetilde{R} is reflexive, antisymmetric, and transitive.

 $\therefore R$ is a partial order

4 Question 5.18

4.1 Part c

Let R be a relation in X. Prove that R is symmetric iff $R = R^{-1}$

We are to prove that R is symmetric $\Leftrightarrow R = R^{-1}$

This is the same as proving that R is symmetric $\Rightarrow R = R^{-1} \land R = R^{-1} \Rightarrow R$ is symmetric

First we will prove R is symmetric $\Rightarrow R = R^{-1}$

Proof: (direct)

Assume R is symmetric.

We are to prove that $R = R^{-1}$

This is the same as proving $(x,y) \in R \Rightarrow (x,y) \in R^{-1} \land (x,y) \in R^{-1} \Rightarrow (x,y) \in R$

First we will prove $(x,y) \in R \Rightarrow (x,y) \in R^{-1}$

Proof: (direct)

1. Let $(x,y) \in R$

Hyposthesis

2. $(y, x) \in R$

1, R is symmetric

3. $(x,y) \in R^{-1}$

2, definition of R^{-1}

 $\therefore (x,y) \in R \Rightarrow (x,y) \in R^{-1}$

Now we prove $(x,y) \in R^{-1} \Rightarrow (x,y) \in R$

Proof: (direct)

1. Let $(x, y) \in R^{-1}$

Hypothesis

2. $(y, x) \in R$

1, definition of R^{-1}

 $3. \ (x,y) \in R$

2, R is symmetric

 $\therefore (x,y) \in R^{-1} \Rightarrow (x,y) \in R$

 $\therefore (x,y) \in R \Rightarrow (x,y) \in R^{-1} \land (x,y) \in R^{-1} \Rightarrow (x,y) \in R$

I6 E20

 $\therefore (x,y) \in R \Leftrightarrow (x,y) \in R^{-1}$ $\therefore R = R^{-1}$

principle of extension

R is symmetric $\Rightarrow R = R^{-1}$

Next we prove that $R = R^{-1} \Rightarrow R$ is symmetric.

Proof: (direct)

Assume $R = R^{-1}$

1. Let $(x,y) \in R$

Hypothesis

2. $(y,x) \in R^{-1}$

1, definition of R^{-1}

3. $(y, x) \in R$

2, sub=

 $\therefore (x,y) \in R \Rightarrow (y,x) \in R$

 $\therefore R$ is symmetric.

 $\therefore R = R^{-1} \Rightarrow R$ is symmetric.

 $\therefore R$ is symmetric $\Rightarrow R = R^{-1} \land R = R^{-1} \Rightarrow R$ is symmetric.

 $\therefore R$ is symmetric $\Leftrightarrow R = R^{-1}$

E20

Hence, R is symmetric iff $R = R^{-1}$

5 Question 6.2

Let $\mathbb N$ be the set of all positive integers. Let $g:\mathbb N\times\mathbb N\to\mathbb N$ such that $g((i,j))=2^i3^j$

Prove that g is a one-to-one function, Is it onto? First we will prove that g is a one-to-one function, ie that if g((a,b)) = g((c,d)), then (a,b) = (c,d) Proof: (direct)

1. Let g((a,b)) = g((c,d))

Hypothesis

 $2. \ 2^a 3^b = 2^c 3^d$

definition of g twice

 $3. \ \frac{2^a 3^b}{2^c 3^d} = 1$

Highschool algebra

4. $2^{a-c}3^{b-d}=1$

Highschool algebra

5. $\forall n \in \mathbb{Z}2^n > 0 \text{ and } \forall m \in \mathbb{Z}3^m > 0$

Highschool algebra

6. $\therefore 2^{a-c} > 0$ and $3^{b-d} > 0$

5, UI

7. : 2,3 are both primes : $2^{a-c} = 1$, and $3^{b-d} = 1$

6, Highschool algebra

8. $2^{a-c} = 1 \Rightarrow a - c = 0$

Highschool algebra

9. a - c = 0

7, 8, I3

10. a = c

highschool algebra

11. $3^{b-d} = 1 \Rightarrow b - d = 0$

Highschool algebra

12. b - d = 013. b = d

12, Highschool algebra

14. $a = c \wedge b = d$

10, 13 I6

7, 11, I3

15. (a,b) = (c,d)

definition

 $\begin{array}{llll} \therefore g \text{ is a one-to-one function. Next we will show that } g \text{ is not onto.} \\ \text{Proof: (counterexample)} \\ 2 \in \mathbb{N} \\ 0 \notin \mathbb{N}, \\ 2^{1}3^{0} = 2 \\ \text{however } \neg (\exists i,j \in \mathbb{N}) g((i,j)) = 2, \text{ because j would have to be equal to } 0, \text{ and } 0 \notin \mathbb{N} \therefore g((i,j)) \text{ is not onto.} \\ \end{array}$

6 Question 6.5

6.1 Part b

Prove that if $I_X\subseteq f$, then $f=I_X$ Proof: (direct) Assume $I_X\subseteq f$ We are to prove that $f=I_X$, ie that $f\subseteq I_X\wedge I_X\subseteq f$ We already have the second by our assumption so we must prove that $f\subseteq I_X$ Proof: (direct)

1. Let $(x,y) \in f$ Hypothesis

2. $I_X \subseteq f$ Hypothesis

3. $(\exists z \in X)(x,z) \in I_X$ Domain(f) = Domain(I) = X

 $4. (x,z) \in I_X$

5. $(x,z) \in f$ 2, 4, definition of \subseteq

6. $(x, z) \in f \land (x, y) \in f$ 1, 5, I6

7. z = y definition of function

8. $(x,y) \in I_X$ 4, sub_

 $\therefore f \subseteq I_X$ $\therefore f \subseteq I_X \land I_X \subseteq f$

 $\therefore f = I_X$