Residual Connection (Skip Connection):

A Residual connection means: instead op only passing the transpourmed output of a layer, we also add the briginal input back to it.

Dutput = F(x) + x

Where,

Frx) = output of the dayer (after transportation)

Klhy?

- 1. Herps gradients prow -> reduces Vanishing gradient problem.
- 2. keeps original inpormation -> Model doesn't porget the input.
- 3. Fasier training -> Model can learn "adjustments"

 (residuals) instead of the whole

 mapping.

the Base Model:

Example:

If input = 00 = 5

and the dayer computes F(x) = 2

Residual output = F(x) + x = 2 + 5 = 7.

In Transpormers: Every Attention and Feedporward block has a residual Connection around it, pollowed by Layer Norm.

Normalization in Transpormers

- # Keeps activations stable -> avoids Exploding / Vanishing gradients.
- # Balances peatures so no token dominates.
- # Works with residual connections to Stabilize Sums.
- # Uses Layer Norm (not Batch Norm) -> hetter por
- 1 goquence data.

In Short: Mormalization = Stability + Smooth training + better covergence.

Batch Normalization (1/8) layer Mormalization

1. Batch Normalization:

- => Where it normalizes: Across the batch dimension (Escample in the mini-batch).
- =) How its Work: For each poature (dimension of the hidden layer), it computes mean and Variance across all Example in the batch.

$$M_{i} = \frac{1}{m} \sum_{i=1}^{m} \alpha_{i,i}, \quad \sigma_{i}^{2} = \frac{1}{m} \sum_{i=1}^{m} (\alpha_{i,i} - M_{i})^{2}$$

$$= \frac{1}{m} \sum_{i=1}^{m} \alpha_{i,i}, \quad \sigma_{i}^{2} = \frac{1}{m} \sum_{i=1}^{m} (\alpha_{i,i} - M_{i})^{2}$$

The Mormalize Each poature:

Intuition: Make each peature dimension have

mean o and Variance 1 across the batch.

Best for: computer Vision (CNINIS), where batches
are large and peartures behave consistently.

Example:

$$X = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

Mormalize across the batch dimension (nows),
per peature (column).

column 1 (poatures àcross samples) : [1,4]

$$\Rightarrow$$
 Variance = $((1-2.5)^2 + (4-2.5)^2)/2$

=> How its Wask :

er Variance =

$$\Rightarrow$$
 31d = $\sqrt{2.25}$ = 1.5

Column 2 (feature 8 across samples): [2,5]

Mean = 3.5, Variance = 2.25, Std = 1.5

Mamalited = [(2-3.5)/1.5, (5-3.5)/1.5]

Column 3 (peatures across samples): [8,6]

Mean = 4.5, Variance = 2.25, 3td = 1.5 Normalized = [(3-4.5)/1.5, (6-4.5)/1.5] = [-1.0, 1.0]

BN Result :-

Layer Mormalisation :-

- => Inthere it normalizes: Across the peatures (hidden dimensions) of a single Escample.
- => How it works :

For each sample, compute mean and Variance across all hidden units in that layer.

$$\mu_{i} = \frac{1}{H} \sum_{j=1}^{H} \frac{1}{\alpha_{i,j}}, \quad q^{2} = \frac{1}{H} \sum_{j=1}^{H} (\alpha_{i,j} - \mu_{i})^{2}$$

Then noumalize:

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_i}{\sqrt{\sigma_i^2 + \epsilon}}$$

- # Intuition: Each token's hidden Vector is normali-Zed independently, across its poatures.
- # Best par: NEP models (Transpormers, BERT, GPT) where batch gizes can Vary and soquence longth matters more than batch Statistics.

$$X = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

Normalize across poatures (columns). for each sample (now).

Row 1 (poatures = [1,2,3]):

Moon = (1+2+3)/3 = 2

Variance = $((1-2)^2 + (2-2)^2 + (8-2)^2)/3$ = (1+0+1)/3 = 0.67

31d ≈ 0.82

Normalized = ((1-2)/0.82, (2-2)/0.82, (3-2)/0.82 $\approx [-1.22, 0, 1.22]$

(Row 2 (foature = (4,5,67)):

Meon = (4+5+6) +/3 = 5H

Vauiance = $((4-5)^2 + (5-5)^2 + (6-5)^2)/3$ = (1+0+1)/3 = 0.67

3td = 0.82

Normalized = (4-5)/0.82.(5-5)/0.82.(6-5)/0.82. $\approx (-1.22,0.1.22)$

LN Result :

 $\begin{bmatrix} -1.22 & 0 & 1.22 \\ -1.22 & 0 & 1.22 \end{bmatrix}$

Why Transpormers uses layer Mormalization (and not Batch Moumalization)

Batch Moumatization:

- =) looks at all Samples in a batch and normalizes them together.
- a block great in images (large batches, pixels are independent
- =) Publism in NIP/ Transpormers -> batch site can be Small and Sentence lengths Vary -> unstable

Layer Mormalization:

- -> Looks at one token (Word) at a time and normalizes across its features.
- => Doesn't care about batch size.
- -> Perpect por text -> Keaps each word's hidden State Stable.

Simple Analogy:

Batch Norm: "class average" -> depends on how many students are in the class.

" your own score normalized against your subjects " -> doesn't care about Layer Morm ! Class size, always consistent.

Inshort: Transpormers use LayerNorm because:

- 1. Works even with Small batches.
- 2. Works with Variable longth gentences.
- 3. Same behavior in training & testing.

Food-Forward Network (FNN) in Franspormers: # The FNN is a Small relual network inside each Transpormer block. It processes each token's Morton individually (no interaction with other tokens) FFN in Deep learning (NO) FNINI in Transpormers: FAIN in Transpormers Frint in DC Aspect Repines Goch Tokon's Maps input - output pupose depresentation apter (classification, attention. negression, etc) a layer stamolitate Inhole databet one total Vector at a Input peatures (Eg: image time (Eg: 512 -d Voctos) pixels, tabular data, would embeddings) Applied independently Applied once to Application to every token Entire input (Same weight Stared) Same: 2 linear layers Fully connected Structure + activation (usually layers + activation RELU / GELU) (Eg: Relu, GELU) cisually 4 x layer than Depends on task Hidden model dimension (user - depined) 3ize (Eg: 512 -> 2048 -> 512) Adds non-linearity + End-to-End learnes Expressive power inside por tasks

12/hole system brain Analogy (thinking & deciding)

Role

Transpormer block Individual token's pillet thought apter group discussion (attention).

Masked Multi-Head Attention

a used in decoder's past attention layer.

Publish it Solves:

While generating a soquence (Eg: a translation), the model must not peok at puture words.

Example : ip we're predicting the 3rd world, the model should only look at words 1 and 2, not 4 and 5,...

How it works:

Normal Jelp-attention lets each token aftend to all tokens.

Masking = block pierue tokens by setting their attention 3 coses to -0.

Apter Softmax -> probabilities por those perture tokens become b.

Selp-attention store:

Masked Version:

Since
$$(\alpha, \kappa)$$
 - $\begin{cases} \frac{\alpha \kappa^{\dagger}}{\sqrt{d\kappa}}, & j \leq i \\ -\infty, & j > i \end{cases}$

Where.

i - sument token position 3 = putine position

Why whe must not peak at perfue woulds ?

1. Casuality in language:

If it "peaked ahead", it would be cheating it wouldn't be true generation.

2. During Inperence (generation):

At test time, the model doesn't know the purice (borause it hasn't generated it yet).

30 training must mimic this Londition that is why we apparase enforce masking during training training.

3. Analogy

If you secretly saw the whole sontence beposehand, you'd ace it - but you wouldn't have learned how to predict.

Masking ensures the model loains to predict

Score (18, 7 K

Cross - Attention :

used in decoder apter masked selp-attention.

Public it Solves

Derocles needs to use encodes's knowledge I the input sentence) while generating output.

How It works:

Query (a) = decodes hidden states (farget tokens) Key (K) & Values (V) = encoder outputs (input contesct)

This allows each decoder token to look at the entire encoded input.

Math:

But here;

a = decoder states

K.V = encoder outputs

This way, decoder woods "align" with relevant Source words

Transpormer Architecture: Encoder à Decoder

Transpormers have two main posts:

Encoder -> understands the input

Decoder -> Generates the output

This Design is mainly used in sequence to sequence tasks (like translation).

Encoder:

Input: Sequence op tokens (Eg: Sentance in English)

Steps inside Each Encoder block:

1. Embedding of Positional Encoding

- 2. Multi-Head Attention
- 3. Residual + Layer Moim
- 4. Feed-Forward Network (FMM)
- 5. Residual + Layer Mosm (again)

This block repeated N times (Eg: 6 to 12 layers)
output: Conteact - rich token Embeddings.

Decooler :

Input: previously generated tokens (Eg: partial translated Sentence)

Goal: Generate the neoct token.

Steps inside each decoder block!

- 1. Embedding + Positional Encoding.
 - 2. Masked Multi-Head Selp-Attention
 - 2. Residual + Layer Mosm
 - 4. Cross Attention (Key Difference from Encoder)
 - 5. Residual + LayerNorm
- 6. Feed-Forward Nietwork (FNINI)
- 7. Reap sidual + Layer Norm.

Repeated NI times.

Final Layer: Linear + Soptmax ->

predicts probability of next word.

