# Линейная алгебра

Леонид Альжанов, Вячеслав Чепелин и другие

# Оглавление

| 1 | Ана | алитич                                            | леская геометрия                                                                  |  |  |  |  |  |
|---|-----|---------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|--|--|
|   | 1.1 | Элеме                                             | енты векторной алгебры                                                            |  |  |  |  |  |
|   |     | 1.1.1                                             | Основные определения                                                              |  |  |  |  |  |
|   |     | 1.1.2                                             | Система координат на плоскости и в пространстве                                   |  |  |  |  |  |
|   |     | 1.1.3                                             | Преобразования в ДСК                                                              |  |  |  |  |  |
|   |     | 1.1.4                                             | Скалярное произведение векторов                                                   |  |  |  |  |  |
|   |     | 1.1.5                                             | Векторное произведение векторов                                                   |  |  |  |  |  |
|   |     | 1.1.6                                             | Смешанное произведение векторов                                                   |  |  |  |  |  |
|   | 1.2 | Пряма                                             | ая на плоскости, плоскость и прямая в пространстве                                |  |  |  |  |  |
|   |     | 1.2.1                                             | Линейное уравнение                                                                |  |  |  |  |  |
|   |     | 1.2.2                                             | Способы задания                                                                   |  |  |  |  |  |
|   |     | 1.2.3                                             | Проекция точки на плоскость и прямую                                              |  |  |  |  |  |
|   | 1.3 | Криві                                             | ые второго порядка (КВП)                                                          |  |  |  |  |  |
|   |     | 1.3.1                                             | Канонические уравнения КВП                                                        |  |  |  |  |  |
|   |     | 1.3.2                                             | Приведение КВП к каноническому виду                                               |  |  |  |  |  |
| 2 | Пи  | пейная                                            | г алгебра 45                                                                      |  |  |  |  |  |
| _ | 2.1 |                                                   | вные алгебраические структуры                                                     |  |  |  |  |  |
|   | 2.1 | 2.1.1                                             | Операции, группа, кольцо, поле                                                    |  |  |  |  |  |
|   |     | 2.1.1 $2.1.2$                                     | Линейное пространство, алгебра, свойства                                          |  |  |  |  |  |
|   |     | 2.1.2 $2.1.3$                                     | Нормированные линейные пространства и алгебры                                     |  |  |  |  |  |
|   |     | 2.1.3 $2.1.4$                                     | Отношение эквивалентности, фактор-структуры                                       |  |  |  |  |  |
|   | 9 9 | 2.1.4 Отношение эквивалентности, фактор-структуры |                                                                                   |  |  |  |  |  |
|   | 2.2 | линеи<br>2.2.1                                    | іное пространство комплексных чисел                                               |  |  |  |  |  |
|   |     | $\frac{2.2.1}{2.2.2}$                             | Комплексные = алгебра с нормой                                                    |  |  |  |  |  |
|   |     | $\frac{2.2.2}{2.2.3}$                             | Основные действия с комплексными числами                                          |  |  |  |  |  |
|   |     | 2.2.3 $2.2.4$                                     | Экспоненциальная форма и её свойства. Формулы Эйлера и Муавра 50                  |  |  |  |  |  |
|   |     | 2.2.4 $2.2.5$                                     | Некоторые функции комплексной переменной                                          |  |  |  |  |  |
|   | 2.3 |                                                   | пекоторые функции комплексной переменной                                          |  |  |  |  |  |
|   | 2.3 | 2.3.1                                             |                                                                                   |  |  |  |  |  |
|   |     | $\frac{2.3.1}{2.3.2}$                             |                                                                                   |  |  |  |  |  |
|   |     | 2.3.2                                             | Порождающая (полная) система векторов. Базис и размерность линейного пространства |  |  |  |  |  |
|   |     | 0 9 9                                             |                                                                                   |  |  |  |  |  |
|   |     | $\frac{2.3.3}{2.2.4}$                             | Координаты вектора. Изоморфизм линейного пространства                             |  |  |  |  |  |
|   |     | 2.3.4                                             | Линейное подпространство. Ранг системы векторов                                   |  |  |  |  |  |
|   |     | 2.3.5                                             | $L_1+L_2, L_1\cap L_2$ , формула Грассмана, $L_1\oplus L_2$ (прямая сумма)        |  |  |  |  |  |
|   |     | 2.3.6                                             | Фактор пространство лин. пространства                                             |  |  |  |  |  |

OГЛAВЛEНИЕ

|   | 2.4 | Матрі | ицы                                                                    | 68  |
|---|-----|-------|------------------------------------------------------------------------|-----|
|   |     | 2.4.1 | Основные понятия                                                       | 68  |
|   |     | 2.4.2 | Основные операции с матрицами                                          | 69  |
|   |     | 2.4.3 | Операция транспонирования                                              | 70  |
|   |     | 2.4.4 | Обратная матрица                                                       | 71  |
|   |     | 2.4.5 | Ранг матрицы                                                           | 71  |
|   | 2.5 | Систе | мы линейных алгебраических уравнений (СЛАУ)                            | 74  |
|   |     | 2.5.1 | Основные определения и понятия, теорема Кронекера-Капелли.             | 74  |
|   |     | 2.5.2 | Структура общего решения СЛОУ и СЛНУ. ФСР. Альтернатива Фред-          |     |
|   |     |       | гольма                                                                 | 75  |
|   |     | 2.5.3 | Метод Гаусса решения СЛНУ                                              | 77  |
|   |     | 2.5.4 | Нахождение обратной матрицы методом Гаусса.                            | 78  |
|   |     | 2.5.5 | Геометрическая интерпретация СЛАУ                                      |     |
|   |     | 2.5.6 | Матрица перехода от старого базиса к новому. Связь координат вектора в |     |
|   | 0.0 |       | разных базисах                                                         |     |
|   | 2.6 |       | целители.                                                              | 82  |
|   |     | 2.6.1 | Антисимметричные полилинейные формы. Определитель системы векто-       | 0.0 |
|   |     | 2.6.2 | ров произвольного лин. пр-ва.                                          |     |
|   |     | 2.6.2 | Определитель матрицы. Две формулы                                      |     |
|   |     | 2.6.3 | Свойства определителя                                                  |     |
|   |     | 2.6.4 | Формула для обратной матрицы. Теорема Крамера                          |     |
|   |     | 2.6.5 | Теорема Лапласа                                                        |     |
|   |     | 2.6.6 | Второе определение ранга матрицы.                                      |     |
|   |     | 2.6.7 | Определитель $n$ -ого порядка                                          | 92  |
| 3 | Инс | рорма | ция о курсе.                                                           | 95  |

# Глава 1

# Аналитическая геометрия

## 1.1 Элементы векторной алгебры

### 1.1.1 Основные определения

V — пространство геометрических векторов.

Геометрический (свободный) вектор  $\vec{a}$  — направленный отрезок в пространстве.

Длина (модуль) вектора  $|\vec{a}|=|\overrightarrow{AB}|=AB$  — длина отрезка, на котором строится вектор.

Нулевой вектор  $\vec{0}$  — имеет длину ноль, начало совпадает с концом.

Вектор независим от точки приложения (его начала)

 $\vec{a} \parallel \vec{b} \stackrel{def}{\Longleftrightarrow}$  они лежат на одной или параллельных прямых  $\stackrel{def}{\Longleftrightarrow} \vec{a}, \vec{b}$  коллинеарны.

$$\forall \vec{a} : \vec{0} \parallel \vec{a}$$

 $\uparrow\uparrow$  и  $\uparrow\downarrow$  — обозначение сонаправленности и разнонаправленности векторов.

$$\vec{a} = \vec{b} \iff \begin{cases} \vec{a} \uparrow \uparrow \vec{b} \\ |\vec{a}| = |\vec{b}| \end{cases}$$

 $ec{a}, ec{b}, ec{c}$  - компланарны  $\stackrel{def}{\Longleftrightarrow}$  лежат или параллельны одной плоскости.

$$ec{a}_0$$
 — орт вектор вектора  $ec{a} \overset{def}{\Longleftrightarrow} egin{cases} ec{a}_0 & \uparrow ec{a} \\ |ec{a}_0| = 1 \end{cases}$ 

Вектора можно складывать:  $\vec{a} + \vec{b} = \vec{c}$ . Строится по правилу треугольника или параллелограмма.

Вектора можно умножать на скаляр:  $\vec{c} = \vec{a} \cdot \lambda, \lambda \in \mathbb{R}$ .

$$|\vec{c}| = |\vec{a}| \cdot |\lambda|$$

$$\lambda > 0 : \vec{a} \uparrow \uparrow \vec{c}$$

$$\lambda < 0 : \vec{a} \uparrow \downarrow \vec{c}$$

$$\lambda = 0 : \vec{c} = \vec{0}$$

Вектора можно вычитать:  $\vec{a} - \vec{b} = \vec{a} + (-1) \cdot \vec{b} = \vec{c}$ .

 $V(V, "+", "\cdot \lambda")$  есть свойства:

1. 
$$\forall \vec{a}, \vec{b} : \vec{a} + \vec{b} = \vec{b} + \vec{a}$$

2. 
$$\forall \vec{a}, \vec{b}, \vec{c} : (\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$$

3. 
$$\exists \vec{0} : \forall \vec{a} : \vec{a} + \vec{0} = \vec{a}$$

4. 
$$\forall \vec{a} : \exists (-\vec{a}) : \vec{a} + (-\vec{a}) = \vec{0}$$

5. 
$$\forall \lambda \in \mathbb{R} : \forall \vec{a}, \vec{b} : \lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$$

6. 
$$\forall \lambda, \mu \in \mathbb{R} : \forall \vec{a} : (\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$$

7. 
$$\forall \lambda, \mu \in \mathbb{R} : \forall \vec{a} : (\lambda \mu) \vec{a} = \mu(\lambda \vec{a}) = \lambda(\mu \vec{a})$$

8. 
$$\forall \vec{a} : 1 \cdot \vec{a} = \vec{a}$$

Всё это доказывается из школьной геометрии. Эти свойства (аксиомы) линейного пространства  $\Rightarrow (V, "+", "\cdot \lambda")$  — линейное пространство.

 $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n \in V, \lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{R} \Rightarrow \sum_{i=1}^n \lambda_i \vec{v}_i = \vec{v}$  — линейная комбинация векторов  $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ , или  $\vec{v}$  разложен по векторам  $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ .

 $\sum\limits_{i=1}^{n}\lambda_{i}\vec{v_{i}}=\vec{0}$  — нулевая линейная комбинация.

Линейная комбинация — тривиальная  $\stackrel{def}{\Longleftrightarrow} \forall i \in \{1,\dots,n\}: \lambda_i = 0$ 

Система векторов  $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$  — линейно независимая  $\stackrel{def}{\Longleftrightarrow}$  все её нулевые линейные комбинации — тривиальные. То есть система векторов  $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$  — линейно независимая  $\stackrel{def}{\Longleftrightarrow}$   $\sum_{i=1}^n \lambda_i \vec{v}_i = \vec{0} \Leftrightarrow \forall i \in \{1, \dots, n\}: \lambda_i = 0$ . Пример:  $\forall a, b: a \not \mid b \Leftrightarrow \vec{a}, \vec{b}$  - линейно-независимы

Система векторов  $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$  — линейно зависимая  $\stackrel{def}{\Longleftrightarrow}$  существует её нулевая нетривиальная линейная комбинация. То есть система векторов  $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$  — линейно зависимая  $\stackrel{def}{\Longleftrightarrow} \exists \lambda_i \neq 0$ :  $\sum_{i=1}^n \lambda_i \vec{v}_i = \vec{0}$ . Пример:  $\forall a, b: a \parallel b \Leftrightarrow \vec{a}, \vec{b}$  - линейно-зависимы

Свойства линейной зависимости:

 $1.\ \vec{0} \in \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\} \Rightarrow \vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ — линейно зависимая система.

Пусть 
$$\vec{v}_k = \vec{0}$$
. Возьмём  $\lambda_k = 1$ , а  $\forall i \neq k : \lambda_i = 0$ . Значит  $\sum_{i=1}^n \lambda_i \vec{v}_i = 0 \vec{v}_1 + 0 \vec{v}_2 + \dots + 1 \vec{v}_k + \dots + 0 \vec{v}_n = 1 \cdot \vec{0} = \vec{0}$   $Q.E.D$ 

 $2.\ \vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$  — линейно зависимая система  $\Rightarrow \vec{v}_1, \vec{v}_2, \dots, \vec{v}_n, \vec{v}_{n+1}, \vec{v}_{n+2}, \dots \vec{v}_{n+m}$  — линейно зависимая система.

Возьмём  $\lambda_1, \lambda_2, \dots, \lambda_n$ , создающие нулевую нетривиальную линейную комбинацию, а  $\forall i \in \{n+1, n+2, \dots, n+m\}$  возьмём  $\lambda_i = 0$ . Тогда  $\sum_{i=1}^{n+m} \lambda_i \vec{v}_i = \sum_{i=1}^n \lambda_i \vec{v}_i = 0 \vec{v}_{n+1} + 0 \vec{v}_{n+2} + \dots + 0 \vec{v}_{n+m} = \vec{0} + \vec{0} = \vec{0}$  Q.E.D

3. В линейно зависимой системе  $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$  есть вектор, который можно выразить линейной комбинацией других, то есть  $\exists \vec{v}_k : v_k = \sum_{i=1}^n \mu_i \vec{v}_i$ .

Возьмём  $\lambda_1, \lambda_2, \dots, \lambda_n$ , создающие нулевую нетривиальную линейную комбинацию  $\Rightarrow \exists \lambda_k \neq 0 \Rightarrow \lambda_k \vec{v}_k = \sum_{i=1, i \neq k}^n \lambda_i \vec{v}_i \Rightarrow$  возьмём  $\mu_i = \frac{\lambda_i}{\lambda_k} \Rightarrow v_k = \sum_{i=1, i \neq k}^n \mu_i \vec{v}_i \quad Q.E.D$ 

Базис прямой — любой ненулевой вектор на этой прямой.

<u>def:</u> Базис плоскости — любая упорядоченная пара неколлинеарных векторов в данной плоскости. Базис пространства — любая упорядоченная тройка некомпланарных векторов в этом пространстве.

 $\vec{e}_1, \vec{e}_2, \vec{e}_3$  — базис пространства.

<u>def:</u>  $\vec{x} = \sum_{i=1}^{3} \vec{e_i} x_i, x_i \in \mathbb{R} \Rightarrow (x_1, x_2, x_3)$  — координаты  $\vec{x}$  относительно базиса  $\vec{e_1}, \vec{e_2}, \vec{e_3}$ . Аналогично для плоскости и прямой.

1.  $\forall \vec{x} \parallel L \; \exists ! x_1 \in \mathbb{R} : \vec{x} = x_1 \vec{e_1},$ где  $\vec{e_1}$  — базис прямой L.

Пусть  $O \in L$ . Приложим к O начала векторов  $\vec{x}$  и  $\vec{e_1}$ .  $\vec{x_1} \parallel \vec{e_1} \Leftrightarrow \exists! x \in \mathbb{R} : \vec{x} = x_1 \vec{e_1} \ Q.E.D$ .

$$\vec{e}_1 \uparrow \uparrow \vec{x} : x_1 > 0$$
  
 $\vec{e}_1 \uparrow \downarrow \vec{x} : x_1 < 0$ 

$$\vec{x} = \vec{0} : x_1 = 0$$

2.  $\forall \vec{x} \parallel \alpha \ \exists ! x_1, x_2 \in \mathbb{R} : \vec{x} = x_1 \vec{e}_1 + x_2 \vec{e}_2$ , где  $\vec{e}_1, \vec{e}_2$  — базис плоскости  $\alpha$ .

Аналогично, пусть  $O \in \alpha$ . Приложим к O начала векторов  $\vec{x}, \vec{e_1}$  и  $\vec{e_2}$ .

(a) 
$$\vec{x} = \vec{0} : \vec{x} = 0\vec{e}_1 + 0\vec{e}_2$$
.

(b)  $\vec{x} \neq \vec{0}$ : пусть B — конец  $\vec{x}$ . Проведём  $L_2 \parallel \vec{e}_2, B \in L_2$ .

Проведём  $L_1 \parallel \vec{e_1}, O \in L_1$ .  $A = L_1 \cap L_2$ .  $\vec{x} = \overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB}$ .

$$\overrightarrow{OA} \parallel \vec{e_1} \Rightarrow (\text{по пункту 1}) \Rightarrow \exists ! x_1 \in \mathbb{R} : \overrightarrow{OA} = x_1 \vec{e_1} \\ \overrightarrow{AB} \parallel \vec{e_2} \Rightarrow (\text{по пункту 1}) \Rightarrow \exists ! x_2 \in \mathbb{R} : \overrightarrow{AB} = x_2 \vec{e_2} \\ \end{Bmatrix} \Rightarrow \vec{x} = x_1 \vec{e_1} + x_2 \vec{e_2} \ Q.E.D.$$

3.  $\forall \vec{x} \in V \; \exists ! x_1, x_2, x_3 \in \mathbb{R} : \vec{x} = x_1 \vec{e_1} + x_2 \vec{e_2} + x_3 \vec{e_3}, \; \text{где} \; \vec{e_1}, \vec{e_2}, \vec{e_3} - \text{базис} \; V.$ 

Пусть  $O \in V$ . Приложим к O начала векторов  $\vec{x}, \vec{e}_1, \vec{e}_2$  и  $\vec{e}_3$ .  $\alpha(O, \vec{e}_1, \vec{e}_2)$ .

(a) 
$$\vec{x} = \vec{0} : \vec{x} = 0\vec{e_1} + 0\vec{e_2} + 0\vec{e_3}$$
.

(b)  $\vec{x} \neq \vec{0}$ : пусть B — конец  $\vec{x}$ . Проведём  $L \parallel \vec{e_3}, B \in L$ .  $A = L \cap \alpha$ .  $\vec{x} = \overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB}$ .

$$\overrightarrow{OA} \parallel \vec{\alpha} \Rightarrow (\text{по пункту 2}) \Rightarrow \exists ! x_1, x_2 \in \mathbb{R} : \overrightarrow{OA} = x_1 \vec{e}_1 + x_2 \vec{e}_2$$

$$\overrightarrow{AB} \parallel \vec{e}_3 \Rightarrow (\text{по пункту 1}) \Rightarrow \exists ! x_3 \in \mathbb{R} : \overrightarrow{AB} = x_3 \vec{e}_3$$

$$\Rightarrow \vec{x} = x_1 \vec{e}_1 + x_2 \vec{e}_2 + x_3 \vec{e}_3$$
Q.E.D

То есть, любой вектор может быть разложен по базису, и единственным образом.

Следствия:

1. 
$$\vec{a} = \sum_{i=1}^{3} a_i \vec{e_i}, \vec{b} = \sum_{i=1}^{3} b_i \vec{e_i} : \vec{a} = \vec{b} \Leftrightarrow \forall i \in \{1, 2, 3\} : a_i = b_i$$

2. 
$$\vec{a} + \vec{b} = \vec{c} = \sum_{i=1}^{3} c_i \vec{e_i} \Leftrightarrow \forall i \in \{1, 2, 3\} : c_i = a_i + b_i$$

$$\vec{c} = \vec{a} + \vec{b} = \sum_{i=1}^{3} a_i \vec{e_i} + \sum_{i=1}^{3} b_i \vec{e_i} = \sum_{i=1}^{3} (a_i + b_i) \vec{e_i} = \sum_{i=1}^{3} c_i \vec{e_i} \Leftrightarrow \forall i \in \{1, 2, 3\} : c_i = a_i + b_i \ Q.E.D.$$

3. 
$$\lambda \vec{a} = \vec{c} = \sum_{i=1}^{3} c_i \vec{e_i} \Leftrightarrow \forall i \in \{1, 2, 3\} : c_i = \lambda a_i$$

$$\vec{c} = \lambda \vec{a} = \lambda \sum_{i=1}^{3} a_i \vec{e}_i = \sum_{i=1}^{3} (\lambda a_i) \vec{e}_i = \sum_{i=1}^{3} c_i \vec{e}_i \Leftrightarrow \forall i \in \{1, 2, 3\} : c_i = \lambda a_i$$

Q.E.D

$$\vec{a} \parallel \vec{b} \Leftrightarrow \exists \lambda \in \mathbb{R} : \begin{bmatrix} \vec{a} = \lambda \vec{b} \\ \vec{b} = \lambda \vec{a} \end{bmatrix} \Leftrightarrow \forall i \in \{1, 2, 3\} : \begin{bmatrix} a_i = \lambda b_i \\ b_i = \lambda a_i \end{bmatrix} \Leftrightarrow \frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3} = \lambda$$
 — коэффициент пропорциональности.

 $\vec{v}_1, \vec{v}_2, \vec{v}_3, \dots, \vec{v}_n$  — коллинеарны  $\Rightarrow$  они линейно зависимы в пространстве.

### 1.1.2 Система координат на плоскости и в пространстве

Говорят, что в пространстве введена декартова система координат (ДСК), если зафиксирована  $(\cdot)O($ начало координат) и базис  $\vec{e_1}, \vec{e_2}, \vec{e_3}$ 

Оси координат — прямые, содержащие базисные вектора, приложенные к точке О.

Ox - абсцисс, Oy - ординат, Oz - аппликат



Координатами точки M в ДСК  $(O, \vec{e_1}, \vec{e_2}, \vec{e_3})$  называются координаты вектора  $\overrightarrow{OM}$  в базисе  $(\vec{e_1}, \vec{e_2}, \vec{e_3})$ .

Если вам даны 2 точки:  $A(a_1,a_2,a_3), B(b_1,b_2,b_3)$ , то  $\overrightarrow{AB} = (b_1-a_1,b_2-a_2,b_3-a_3)$ , т.к.  $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$ 

Задача: Даны 2 точки:  $A(a_1,a_2,a_3), B(b_1,b_2,b_3)$  и точка  $M=(m_1,m_2,m_3),$  делящая отрезок AB в отношении  $\frac{AM}{MB}=\lambda>0.$  Найти координаты точки M через  $A,B,\lambda$ .

$$AM = \lambda MB \Leftrightarrow |\overrightarrow{AM}| = \lambda |\overrightarrow{MB}| \Rightarrow \overrightarrow{AM} = \lambda \overrightarrow{MB}$$

$$\forall i = 1, 2, 3: m_i - a_i = \lambda(b_i - m_i) \Leftrightarrow m_i = \frac{\lambda b_i + a_i}{1 + \lambda}$$

Откуда координаты точки M найдены и задача решена.

В дальнейшем будем работать с ортогональной д.с.к., где  $\vec{e_1}, \vec{e_2}, \vec{e_3}$  попарно ортоганальны и нормированы ( $|e_i|=1$ ).

Длина вектора в ортонормированной декартовой системе координат равна квадратному корню суммы квадратов координат:

$$|\vec{a}| = \sqrt{\sum_{i=1}^3 a_i^2}$$

 $ec{a} = \sum_{i=1}^3 a_i ec{e}_i$  - разложение по координатам.

$$\overrightarrow{a_0} = \frac{\overrightarrow{a}}{|\overrightarrow{a}|}$$
 - называется ортом, причем  $\overrightarrow{a_0} = (\cos \alpha, \cos \beta, \cos \gamma)$ .

Такие косинусы называются направляющими.



Причем  $a_1=|a|\cdot\cos\alpha,\, a_2=|a|\cdot\cos\beta,\, a_3=|a|\cdot\cos\gamma$ 

В трёхмерном пространстве сумма квадратов косинусов углов между радиус-вектором точки и осями координат равна единице:

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$

Полярная система координат на плоскости — это точка (начало системы координат O) и луч, исходящий из неё, на плоскости. При этом координатами точки до какой-либо точки M являются длина  $r = |\overrightarrow{OM}|$  и угол, который составляет вектор  $\overrightarrow{OM}$  с выбранным лучом, равный  $\varphi$ . У точки ноль нет полярных координат, считают, что у нее r = 0.



При этом выбор диапозона угла  $\varphi$  неоднозначен.

Связь между декартовыми и полярными координатами: Обычно ДСК связывают с ПСК так: центр общий, а полярный луч — положительное направление Ox. Тогда:

$$x = r\cos\varphi, y = r\sin\varphi$$

Обратно:

$$r=\sqrt{x^2+y^2}, \varphi=\arctan\frac{y}{x}+\pi k$$

(при этом выбор k неоднозначен - зависит от диапазона и в какой четверти лежит точка)

Пример: Лемниската Бернулли

 $(x^2 + y^2)^2 = x^2 - y^2$ . Но приведя в п.с.к:  $r^4 = r^2(\cos^2 x - \sin^2 x) \leftrightarrow r = \sqrt{\cos(2x)}$ . В такой форме можно нарисовать эскиз графика:



### 1.1.3 Преобразования в ДСК

а) Параллельный перенос



Введем новую ДСК с центром в  $O'=(x_0,y_0,z_0)$ . Заметим, что  $\overrightarrow{OM}=\overrightarrow{OO'}+\overrightarrow{O'M}$ . Тогда: M=(x,y,z)(в старой) =(x',y',z')(в новой)  $=(x_0+x',y_0+y',z_0+z')$ (в старой)

- b) Поворот
  - На плоскости:



Введем новую ДСК, повёрнутую на  $\alpha.$   $(r,\varphi)$  п.с.к в Ox'y'

$$M = (x, y) = (r\cos(\varphi + \alpha), r\sin(\varphi + \alpha)) = (x'\cos\alpha - y'\sin\alpha, x'\sin\alpha + y'\cos\alpha)$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}$$
 — Матрица поворота.

#### • В пространстве:



Создадим новую ДСК, повёрнутую в пространстве. Базис  $\vec{i}, \vec{j}, \vec{k} \to \vec{e}_1, \vec{e}_2, \vec{e}_3$ . Оси  $x, y, z \to x', y', z'$ . Оба базиса попарно ортогональны и нормированы.

 $m=1,2,3: \vec{e}_m=(\cos \alpha_m,\cos \beta_m,\cos \gamma_m)$  - направляющие косинусы.

$$\begin{split} M &= (x,y,z) = x\vec{i} + y\vec{j} + z\vec{k} = \\ &= x'(\cos\alpha_1\vec{i} + \cos\beta_1\vec{j} + \cos\gamma_1\vec{k}) + \\ &+ y'(\cos\alpha_2\vec{i} + \cos\beta_2\vec{j} + \cos\gamma_2\vec{k}) + \\ &+ z'(\cos\alpha_3\vec{i} + \cos\beta_3\vec{j} + \cos\gamma_3\vec{k}) = \\ &= \vec{i}(x'\cos\alpha_1 + y'\cos\alpha_2 + z'\cos\alpha_3) + \\ &+ \vec{j}(x'\cos\beta_1 + y'\cos\beta_2 + z'\cos\beta_3) + \\ &+ \vec{k}(x'\cos\gamma_1 + y'\cos\gamma_2 + z'\cos\gamma_3) \end{split}$$

Т.к. координаты точки задаются единственным способом, то:

$$\begin{cases} x = x' \cos \alpha_1 + y' \cos \alpha_2 + z' \cos \alpha_3 \\ y = x' \cos \beta_1 + y' \cos \beta_2 + z' \cos \beta_3 \\ z = x' \cos \gamma_1 + y' \cos \gamma_2 + z' \cos \gamma_3 \end{cases}$$
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \cos \alpha_1 & \cos \alpha_2 & \cos \alpha_3 \\ \cos \beta_1 & \cos \beta_2 & \cos \beta_3 \\ \cos \gamma_1 & \cos \gamma_2 & \cos \gamma_3 \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$$

Столбцы в этой матрице - координаты  $\vec{e}_1, \vec{e}_2, \vec{e}_3.$ 

### 1.1.4 Скалярное произведение векторов

$$\label{eq:constraints} \begin{split} & `` \cdot `` : V_3 \times V_3 \to \mathbb{R} \\ & \vec{a}, \vec{b} \in V_3 \to (\vec{a}, \vec{b}) = \vec{a} \cdot \vec{b} \in \mathbb{R} \\ & \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \varphi; \ \varphi = \angle (\vec{a}, \vec{b}) \end{split}$$



Свойства:  $(\forall \vec{a}, \vec{b} \in V_3)$ 

- 1. Симметричность:  $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$  Очевидно
- 2. Аддитивность по 1-му аргументу:  $\forall \vec{a}_1, \vec{a}_2 \in V_3 : (\vec{a}_1 + \vec{a}_2) \cdot \vec{b} = \vec{a}_1 \cdot \vec{b} + \vec{a}_2 \cdot \vec{b}$  рго $j_{\vec{b}}\vec{a}$  Проекция  $\vec{a}$  на направление  $\vec{b}$ . рго $j_{\vec{b}}\vec{a} = |\vec{a}|\cos\varphi; \varphi = \angle(\vec{a},\vec{b}) \in [0,\pi]$   $\vec{a} = (a_x, a_y, a_z) \Rightarrow a_x = |\vec{a}|\cos\alpha; \ \alpha = \angle(\vec{a},\vec{i})$



$$a_x = \operatorname{proj}_{\vec{i}} \vec{a} = \vec{i} \cdot \vec{a}, \ a_y = \operatorname{proj}_{\vec{j}} \vec{a} = \vec{j} \cdot \vec{a}, \ a_z = \operatorname{proj}_{\vec{k}} \vec{a} = \vec{k} \cdot \vec{a}$$

Выберем ДСК таким образом, что  $\vec{i} = \frac{\vec{b}}{|\vec{b}|}$  — орт вектора  $\vec{b}$ 



$$\begin{split} \vec{a} &= \vec{a}_1 + \vec{a}_2 \\ (\vec{a})_x &= \operatorname{proj}_{\vec{i}} \vec{a} = \vec{a} \cdot \vec{i} = (\vec{a}_1 + \vec{a}_2) \cdot \frac{\vec{b}}{|\vec{b}|} = \frac{1}{|\vec{b}|} ((\vec{a}_1 + \vec{a}_2) \cdot \vec{b}) \\ m &= 1, 2 : (\vec{a}_m)_x = \operatorname{proj}_{\vec{i}} \vec{a}_m = \vec{a}_m \cdot i = \vec{a}_m \cdot \frac{\vec{b}}{|\vec{b}|} = \frac{1}{|\vec{b}|} (\vec{a}_m \cdot \vec{b}) \\ \vec{a} &= \frac{1}{|\vec{b}|} ((\vec{a}_1 + \vec{a}_2) \cdot \vec{b}) \\ \vec{a} &= \vec{a}_1 + \vec{a}_2 = \frac{1}{|\vec{b}|} (\vec{a}_1 \cdot \vec{b}) + \frac{1}{|\vec{b}|} (\vec{a}_2 \cdot \vec{b}) \\ \Rightarrow (\vec{a}_1 + \vec{a}_2) \cdot \vec{b} = \vec{a}_1 \cdot \vec{b} + \vec{a}_2 \cdot \vec{b} \quad Q.E.D \end{split}$$

3. Однородность по 1-му аргументу:  $\forall \lambda \in \mathbb{R} : (\lambda \vec{a}) \cdot \vec{b} = \lambda (\vec{a} \cdot \vec{b})$ 



$$|\lambda \vec{a}| = |\lambda| |\vec{a}|$$

$$\lambda > 0: (\lambda \vec{a}) \cdot \vec{b} = |\lambda \vec{a}| |\vec{b}| \cos \varphi_1 = \lambda (|\vec{a}| |\vec{b}| \cos \varphi_1) = \lambda (\vec{a} \cdot \vec{b})$$

$$\lambda < 0: (\lambda \vec{a}) \cdot \vec{b} = |\lambda \vec{a}| |\vec{b}| \cos \varphi_2 = -\lambda (|\vec{a}| |\vec{b}| \cos \varphi_2) = \lambda (|\vec{a}| |\vec{b}| \cos (\pi - \varphi_2)) = \lambda (\vec{a} \cdot \vec{b})$$

$$\lambda = 0: (\lambda \vec{a}) \cdot \vec{b} = \vec{0} \cdot \vec{b} = 0 = 0 (\vec{a} \cdot \vec{b}) = \lambda (\vec{a} \cdot \vec{b})$$
 Q.E.D.

4. 
$$\vec{a} \cdot \vec{a} \ge 0$$
.  $\vec{a} \cdot \vec{a} = 0 \Leftrightarrow \vec{a} = \vec{0}$ 

Очевидно

- 2. 3. ⇒ Скалярное произведение линейно по 1-му аргументу.
- 2. ⇒ Скалярное произведение линейно по 2-му аргументу. ⇒ Скалярное произведение линейно по всем своим аргументам.

Координатное представление:

$$\vec{a} = (a_1, a_2, a_3), \vec{b} = (b_1, b_2, b_3)$$
 
$$\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$$
 
$$\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$$
 
$$\vec{a} \cdot \vec{b} = (a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}) \cdot (b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}) = (\text{пользуясь } 1. - 4.) =$$
 
$$= a_1 b_1 (\vec{i} \cdot \vec{i}) + a_1 b_2 (\vec{i} \cdot \vec{j}) + a_1 b_3 (\vec{i} \cdot \vec{k}) +$$
 
$$+ a_2 b_1 (\vec{j} \cdot \vec{i}) + a_2 b_2 (\vec{j} \cdot \vec{j}) + a_2 b_3 (\vec{j} \cdot \vec{k}) +$$
 
$$+ a_3 b_1 (\vec{k} \cdot \vec{i}) + a_3 b_2 (\vec{k} \cdot \vec{j}) + a_3 b_3 (\vec{k} \cdot \vec{k}) =$$
 
$$= (\text{все слагаемые кроме диагональных} - \text{нули}) =$$
 
$$= a_1 b_1 (\vec{i} \cdot \vec{i}) + a_2 b_2 (\vec{j} \cdot \vec{j}) + a_3 b_3 (\vec{k} \cdot \vec{k}) = a_1 b_1 + a_2 b_2 + a_3 b_3$$

### 1.1.5 Векторное произведение векторов

" × " : 
$$V_3 \times V_3 \rightarrow V_3$$
  
 $\vec{a}, \vec{b} \in V_3 \rightarrow \vec{c} = [\vec{a}, \vec{b}] = \vec{a} \times \vec{b} \in V_3$ 

$$ec{a} imes ec{b} = ec{c} \overset{def}{\Longleftrightarrow} egin{cases} ec{c} \perp ec{a}, ec{b} \ ($$
плоскости, в которой лежат  $ec{a}, ec{b}) \ ec{d}, ec{b}, ec{c} -$  правая тройка (определяется по правилу правой руки)  $|ec{c}| = |ec{a}| |ec{b}| \sin arphi; \ arphi = \angle (ec{a}, ec{b})$ 



$$\vec{a} \not\parallel \vec{b}$$
. Если  $\vec{a} \parallel \vec{b}$ , то  $\vec{a} \times \vec{b} = \vec{0}$ 

Свойства:  $(\forall \vec{a}, \vec{b} \in V_3)$ 

- 1. Антисимметричность:  $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$ Очевидно
- 2. Аддитивность по 1-му аргументу:  $\forall \vec{a}_1, \vec{a}_2 \in V_3: (\vec{a}_1 + \vec{a}_2) \times \vec{b} = \vec{a}_1 \times \vec{b} + \vec{a}_2 \times \vec{b}$  Доказательство см. в 1.6
- 3. Однородность по 1-му аргументу:  $\forall \lambda \in \mathbb{R}: (\lambda \vec{a}) \times \vec{b} = \lambda (\vec{a} \times \vec{b})$  Очевидно
- 4.  $|\vec{a} \times \vec{b}| = S$  (параллелограмм, построенный на  $\vec{a}, \vec{b}$ ) Очевидно

$$\left. \begin{array}{l} 2. \\ 3. \end{array} \right\} \Rightarrow$$
 Векторное произведение линейно по 1-му аргументу.

Координатное представление:

$$\vec{a} = (a_1, a_2, a_3) = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$$

$$\vec{b} = (b_1, b_2, b_3) = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$$

$$\vec{c} = (c_1, c_2, c_3) = c_1 \vec{i} + c_2 \vec{j} + c_3 \vec{k}$$

$$\vec{a} \times \vec{b} = (a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}) \times (b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}) = (\text{пользуясь } 1. - 4.) =$$

$$= a_1 b_1 (\vec{i} \times \vec{i}) + a_1 b_2 (\vec{i} \times \vec{j}) + a_1 b_3 (\vec{i} \times \vec{k}) +$$

$$+ a_2 b_1 (\vec{j} \times \vec{i}) + a_2 b_2 (\vec{j} \times \vec{j}) + a_2 b_3 (\vec{j} \times \vec{k}) +$$

$$+ a_3 b_1 (\vec{k} \times \vec{i}) + a_3 b_2 (\vec{k} \times \vec{j}) + a_3 b_3 (\vec{k} \times \vec{k}) =$$

$$= (\vec{i} \times \vec{i} = \vec{j} \times \vec{j} = \vec{k} \times \vec{k} = \vec{0};$$

$$\vec{i} \times \vec{j} = -(\vec{j} \times \vec{i}) = \vec{k};$$

$$\vec{k} \times \vec{i} = -(\vec{i} \times \vec{k}) = \vec{j};$$

$$\vec{j} \times \vec{k} = -(\vec{k} \times \vec{j}) = \vec{i}) =$$

$$= (a_2 b_3 - a_3 b_2) \vec{i} + (a_3 b_1 - a_1 b_3) \vec{j} + (a_1 b_2 - a_2 b_1) \vec{k} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \vec{i} A_{11} + \vec{j} A_{12} + \vec{k} A_{13} =$$

$$= \begin{pmatrix} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix}, - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix}, \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \end{pmatrix} = (a_2 b_3 - a_3 b_2, a_3 b_1 - a_1 b_3, a_1 b_2 - a_2 b_1)$$

### 1.1.6 Смешанное произведение векторов

$$V_3 \times V_3 \times V_3 \to \mathbb{R}$$

Обозначения нет, вектора ставятся друг к другу без дополнительных знаков.

$$\vec{a}, \vec{b}, \vec{c} \in V_3 \to \vec{a}\vec{b}\vec{c} \in \mathbb{R}$$

$$\vec{a}\vec{b}\vec{c} \stackrel{\text{def}}{=\!\!\!=\!\!\!=} (\vec{a} \times \vec{b}) \cdot \vec{c}$$

Свойства:

1.  $|\vec{a}\vec{b}\vec{c}| = V$  (параллелепипед, построенный на  $\vec{a}, \vec{b}, \vec{c}$ ), причём  $\vec{a}\vec{b}\vec{c} > 0 \Leftrightarrow \vec{a}, \vec{b}, \vec{c}$  — правая тройка,  $\vec{a}\vec{b}\vec{c} < 0 \Leftrightarrow \vec{a}, \vec{b}, \vec{c}$  — левая тройка.



 $\vec{a}\vec{b}\vec{c}=(\vec{a}\times\vec{b})\cdot\vec{c}$ , пусть  $\vec{a}\neq\vec{0},\ \vec{b}\neq\vec{0},\ \vec{c}\neq\vec{0}$  (Если какой-либо вектор — нулевой, то и произведение, и объём — тоже нулевые)

Пусть  $\vec{a} \not\parallel \vec{b}$  (Иначе и произведение, и объём равны нулю)

Построим  $\vec{a} \times \vec{b}$ 

- $\vec{a}, \vec{b}, \vec{c}$  правая тройка  $\Leftrightarrow \varphi = \angle (\vec{a} \times \vec{b}, \vec{c}) < 90^\circ \Leftrightarrow \cos \varphi > 0 \Leftrightarrow \vec{a}\vec{b}\vec{c} > 0$
- $\vec{a}, \vec{b}, \vec{c}$  левая тройка  $\Leftrightarrow \varphi = \angle (\vec{a} \times \vec{b}, \vec{c}) > 90^\circ \Leftrightarrow \cos \varphi < 0 \Leftrightarrow \vec{a}\vec{b}\vec{c} < 0$

V := V(параллелепипед, построенный на  $\vec{a}, \vec{b}, \vec{c}$ ) =

= S(параллелограмм, построенный на  $\vec{a}, \vec{b}) \cdot h$ , где h - высота параллелограмма.

$$h = |\operatorname{proj}_{\vec{a} \times \vec{b}} \vec{c}| = ||\vec{c}| \cos \varphi|$$

S(параллелограмм, построенный на  $\vec{a}, \vec{b}) = |\vec{a} \times \vec{b}|$ 

$$V = |\vec{a} \times \vec{b}| \cdot ||\vec{c}| \cos \varphi| = |(\vec{a} \times \vec{b}) \cdot \vec{c}| = |\vec{a}\vec{b}\vec{c}| \ Q.E.D.$$

2. 
$$\vec{a}\vec{b}\vec{c} = \vec{b}\vec{c}\vec{a} = \vec{c}\vec{a}\vec{b} = -\vec{c}\vec{b}\vec{a} = -\vec{b}\vec{a}\vec{c} = -\vec{a}\vec{c}\vec{b}$$

 $\vec{a}, \vec{b}, \vec{c}$  — правая тройка  $\Leftrightarrow \vec{a}\vec{b}\vec{c} = V$  (параллелепипед, построенный на  $\vec{a}, \vec{b}, \vec{c}$ ), а объём не зависит от того, какой вектор выбрать первым, значит:

$$V = \vec{a}\vec{b}\vec{c} = \vec{b}\vec{c}\vec{a} = \vec{c}\vec{a}\vec{b}$$

То же самое, если  $\vec{a}, \vec{b}, \vec{c}$  — левая тройка, но со знаком минус.

3. Аддитивность по первому (с 2., по любому) аргументу:  $(\vec{a}_1 + \vec{a}_2)\vec{b}\vec{c} = \vec{a}_1\vec{b}\vec{c} + \vec{a}_2\vec{b}\vec{c}$ 

$$(\vec{a}_1 + \vec{a}_2)\vec{b}\vec{c} = (\text{mo } 2.) = \vec{b}\vec{c}(\vec{a}_1 + \vec{a}_2) = (\vec{b} \times \vec{c}) \cdot (\vec{a}_1 + \vec{a}_2) = (\vec{b} \times \vec{c}) \cdot \vec{a}_1 + (\vec{b} \times \vec{c}) \cdot \vec{a}_2 = \vec{b}\vec{c}\vec{a}_2 + \vec{b}\vec{c}\vec{a}_1 = (\text{mo } 2.) = \vec{a}_1\vec{b}\vec{c} + \vec{a}_2\vec{b}\vec{c} \ Q.E.D.$$

4. Однородность по первому (с 2., по любому) аргументу:  $(\lambda \vec{a})\vec{b}\vec{c} = \lambda(\vec{a}\vec{b}\vec{c})$ 

$$(\lambda \vec{a})\vec{b}\vec{c} = (\text{по } 2.) = \vec{b}\vec{c}(\lambda \vec{a}) = (\vec{b} \times \vec{c}) \cdot (\lambda \vec{a}) = \lambda ((\vec{b} \times \vec{c}) \cdot \vec{a}) = \lambda (\vec{b}\vec{c}\vec{a}) = (\text{по } 2.) = \lambda (\vec{a}\vec{b}\vec{c}) \ Q.E.D.$$

Координатное представление:

$$\vec{a}\vec{b}\vec{c} = (\vec{a} \times \vec{b}) \cdot \vec{c} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} \cdot \vec{c} = \begin{vmatrix} c_1 & c_2 & c_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

по свойству определителя и скалярного произведения.

Доказательство аддитивности векторного произведения:

$$\forall \vec{a}_1, \vec{a}_2, \vec{b} \in V_3$$

$$(\vec{a}_1 + \vec{a}_2)\vec{b}\vec{c} = ((\vec{a}_1 + \vec{a}_2) \times \vec{b}) \cdot \vec{c} = \vec{a}_1\vec{b}\vec{c} + \vec{a}_2\vec{b}\vec{c}$$

Пусть 
$$\vec{c} = \vec{i}$$
. Тогда:  $(\vec{a}_1 + \vec{a}_2)\vec{b}\vec{c} = ((\vec{a}_1 + \vec{a}_2) \times \vec{b}) \cdot \vec{i} = ((\vec{a}_1 + \vec{a}_2) \times \vec{b})_x$ 

$$m = 1, 2: (\vec{a}_m \times \vec{b}) \cdot \vec{c} = (\vec{a}_m \times \vec{b}) \cdot \vec{i} = (\vec{a}_m \times \vec{b})_x$$

$$(\vec{a}_1 + \vec{a}_2)\vec{b}\vec{c} = \vec{a}_1\vec{b}\vec{c} + \vec{a}_2\vec{b}\vec{c} \Leftrightarrow ((\vec{a}_1 + \vec{a}_2) \times \vec{b})_x = (\vec{a}_1 \times \vec{b})_x + (\vec{a}_2 \times \vec{b})_x$$

Повторим то же самое, но с  $\vec{c} = \vec{j}$  и  $\vec{c} = \vec{k}$ .

$$\begin{aligned} &((\vec{a}_1 + \vec{a}_2) \times \vec{b})_x = (\vec{a}_1 \times \vec{b})_x + (\vec{a}_2 \times \vec{b})_x \\ &((\vec{a}_1 + \vec{a}_2) \times \vec{b})_y = (\vec{a}_1 \times \vec{b})_y + (\vec{a}_2 \times \vec{b})_y \\ &((\vec{a}_1 + \vec{a}_2) \times \vec{b})_z = (\vec{a}_1 \times \vec{b})_z + (\vec{a}_2 \times \vec{b})_z \end{aligned} \\ \Leftrightarrow &(\vec{a}_1 + \vec{a}_2) \times \vec{b} = (\vec{a}_1 \times \vec{b}) + (\vec{a}_2 \times \vec{b}) \ Q.E.D.$$

Двойное векторное произведение («бац минус цаб»)

$$\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b}(\vec{a} \cdot \vec{c}) - \vec{c}(\vec{a} \cdot \vec{b})$$

•  $\vec{b} \not\parallel \vec{c}$ :



Проведём плоскость  $\alpha(\vec{b}, \vec{c}) \Rightarrow \vec{b} \times \vec{c} \perp \alpha$ 

$$\vec{a} \times (\vec{b} \times \vec{c}) \perp \vec{b} \times \vec{c} \Rightarrow \vec{a} \times (\vec{b} \times \vec{c}) \in \alpha$$

Введём ДСК, где  $\vec{i}=\frac{\vec{b}}{|\vec{b}|},\,\vec{j}\in\alpha,\,\vec{k}\perp\alpha.$  Тогда:

$$\vec{b} = (b_1, 0, 0); \ \vec{c} = (c_1, c_2, 0); \ \vec{a} = (a_1, a_2, a_3)$$

$$\vec{b} \times \vec{c} = (b_1, 0, 0) \times (c_1, c_2, 0) = (0, 0, b_1 c_2)$$

$$\vec{a} \times (\vec{b} \times \vec{c}) = (a_1, a_2, a_3) \times (0, 0, b_1 c_2) = (a_2 b_1 c_2, -a_1 b_1 c_2, 0)$$

$$\vec{b}(\vec{a}\cdot\vec{c}) - \vec{c}(\vec{a}\cdot\vec{b}) = \vec{b}a_1c_1 + \vec{b}a_2c_2 - \vec{c}a_1b_1 = (b_1(a_1c_1 + a_2c_2) - c_1a_1b_1, -c_2a_1b_1, 0) = (a_2b_1c_2, -a_1b_1c_2, 0) = \vec{a} \times (\vec{b} \times \vec{c}) \ Q.E.D.$$

•  $\vec{b} \parallel \vec{c}$ :

$$\vec{b}\times\vec{c}=\vec{0}$$

$$\exists \lambda \in \mathbb{R} : \vec{b} = \lambda \vec{c}$$

$$\begin{vmatrix} \vec{b}(\vec{a}\cdot\vec{c}) = \lambda\vec{c}(\vec{a}\cdot\vec{c}) \\ \vec{c}(\vec{a}\cdot\vec{b}) = \vec{c}(\vec{a}\cdot\lambda\vec{c}) = \lambda\vec{c}(\vec{a}\cdot\vec{c}) \end{vmatrix} \Rightarrow \vec{b}(\vec{a}\cdot\vec{c}) - \vec{c}(\vec{a}\cdot\vec{b}) = \vec{0} = \vec{b}\times\vec{c}\ Q.E.D.$$

## 1.2 Прямая на плоскости, плоскость и прямая в пространстве

### 1.2.1 Линейное уравнение

На плоскости (в пространстве) в ДСК Oxy~(Oxyz) уравнение  $Ax+By+C=0,~A^2+B^2\neq 0$  ( $Ax+By+Cz+D=0,~A^2+B^2+C^2\neq 0$ ) — алгебраическое уравнение первого порядка или линейное уравнение.

Любое линейное уравнение на плоскости (в пространстве) определяет прямую (плоскость), и наоборот, любая прямая (плоскость) на плоскости (в пространстве) может быть описана линейным уравнением.

Доказывать будем для прямой в плоскости. Доказательство для прямой в пространстве полностью аналогично.

#### 1. Уравнение $\rightarrow$ прямая:



Ax + By + C = 0,  $A^2 + B^2 \neq 0$  Не умаляя общности, пусть  $B \neq 0$ . Тогда  $M_0(x_0, y_0) = (0, \frac{-C}{B})$  - удовлетворяет уравнению.

Пусть  $M(x,y) \neq M_0$  - тоже удовлетворяет уравнению. Тогда  $A(x-x_0) + B(y-y_0) = 0$ .

$$\overrightarrow{M_0M} = (x - x_0, y - y_0)$$

$$\vec{N} := (A, B) \neq 0$$

$$M_0(x_0,y_0)=(0,\frac{-C}{B})\Leftrightarrow \overrightarrow{M_0M}\cdot \vec{N}=0\Leftrightarrow \vec{N}\perp \overrightarrow{M_0M}\Rightarrow \Rightarrow \forall M(x,y),$$
 удовлетворяющих  $A(x-x_0)+B(y-y_0)=0: M\in L\perp \vec{N}, M_0\in L$ 

И наоборот, если  $M \in L$ , то  $\overrightarrow{M_0M} \perp \overrightarrow{N} \Rightarrow M$  удовлетворяет  $A(x-x_0) + B(y-y_0) = 0$ 

Ax + By + C = 0 Определяет прямую L и никакую другую, т.к. Если  $M \notin L$ , то  $\overrightarrow{M_0M} \not\perp \overrightarrow{N} \Rightarrow M$  не удовлетворяет  $A(x-x_0) + B(y-y_0) = 0$  Q.E.D.

#### 2. Прямая $\rightarrow$ уравнение:



Пусть L — прямая на плоскости.

Введём ДСК так, чтобы L совпадала с Ox. Тогда очевидно, что линейное уравнение y=0 содержит все точки L.

Если есть ДСК, в которой L задаётся линейным уравнением, то в любой другой ДСК L будет задаваться линейным уравнением. Любые две ДСК связаны поворотом и сдвигом, значит нужно доказать, что при повороте и сдвиге линейное уравнение остаётся линейным уравнением.

#### • Сдвиг:



$$x=x'+x_0$$
  $y=y'+y_0$   $A(x'+x_0)+B(y'+y_0)+C=0\Rightarrow Ax'+By'+(Ax_0+By_0+C)=0$   $C':=(Ax_0+By_0+C)$   $Ax+By+C'=0$  - тоже линейное уравнение.

### • Поворот:



$$x=x'\cos\alpha-y'\sin\alpha$$
 
$$y=x'\sin\alpha+y'\cos\alpha$$
 
$$A(x'\cos\alpha-y'\sin\alpha)+B(x'\sin\alpha+y'\cos\alpha)+C=0\Rightarrow (A\cos\alpha+B\sin\alpha)x'+(B\cos\alpha-A\sin\alpha)y'+C=0$$
 
$$A':=A\cos\alpha+B\sin\alpha$$
 
$$B':=B\cos\alpha-A\sin\alpha$$
 
$$B':=B\cos\alpha-A\sin\alpha$$
 
$$A'^2+B'^2=A^2+B^2\neq 0,$$
 значит  $A'x+B'y+C=0$  - тоже линейное уравнение.

Значит если прямая задаётся линейным уравнением в ДСК, то в любой другой ДСК эта прямая будет задаваться линейным уравнением Q.E.D.

 $Ax+By+C=0,\,A^2+B^2\neq 0$  — Общее уравнение прямой на плоскости,  $\vec{N}=(A,B)$  — Вектор нормали.

Ax + By + Cz + D = 0,  $A^2 + B^2 + C^2 \neq 0$  — Общее уравнение плоскости в пространстве,  $\vec{N} = (A, B, C)$  — Вектор нормали.

### 1.2.2 Способы задания

| Прямая в плоскости | Плоскость в пространстве | Прямая в пространстве |
|--------------------|--------------------------|-----------------------|
|--------------------|--------------------------|-----------------------|

Общее уравнение:



$$\begin{bmatrix} Ax + By + C = 0 \\ A^2 + B^2 \neq 0 \\ \vec{N} = (A, B) - \text{нормаль. } \vec{N} \perp L.$$

$$C=0 \Leftrightarrow 0 \in L$$

Уравнение в отрезках:



$$(0,0) \notin L$$

$$\boxed{\frac{x}{a} + \frac{y}{b} = 1}$$

$$a^2 + b^2 \neq 0$$

Общее уравнение:



$$\begin{bmatrix} Ax+By+Cz+D=0 \end{bmatrix}$$
 
$$A^2+B^2+C^2\neq 0$$
 
$$\vec{N} \ = \ (A,B,C) \ - \ \text{нормаль}.$$
 
$$\vec{N} \perp \alpha.$$
 
$$C=0 \Leftrightarrow 0 \in \alpha$$

Уравнение в отрезках:



$$(0,0,0) \notin \alpha$$

$$\boxed{\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1}$$

$$a^2 + b^2 + c^2 \neq 0$$

Пересечение плоскостей:



$$L = \alpha_1 \cap \alpha_2$$

$$L : \begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$$

$$A_i^2 + B_i^2 + C_i^2 \neq 0$$

$$\vec{N}_1 \not \mid \vec{N}_2$$

Пересечение плоскостей  $\rightarrow$  каноническое уравнение:



$$\vec{s} \perp \vec{N_1}, \vec{s} \perp \vec{N_2}$$
  
 $\vec{s} = \vec{N_1} \times \vec{N_2}$   
Пусть  $M_0 = (x_0, y_0, 0) = L \cap$   
 $Oy$   
Тогда решим систему:

$$L: \begin{cases} A_1 x_0 + B_1 y_0 + D_1 = 0 \\ A_2 x_0 + B_2 y_0 + D_2 = 0 \end{cases}$$

Если не получилось, то  $M_0 = (x_0, 0, z_0) = L \cap Oz$ Снова не получилось:  $M_0 =$ 

 $(0, y_0, z_0) = L \cap Oz$ 

Уравнение через нормаль и точку:



$$M_{0}(x_{0}, y_{0}) \in L$$

$$\vec{N}(A, B) \perp L$$

$$M(x, y) \in L$$

$$\vec{r_{0}} = \overrightarrow{OM_{0}} = (x_{0}, y_{0})$$

$$\vec{r} = \overrightarrow{OM} = (x, y)$$

$$\overrightarrow{M_{0}M} = \vec{r} - \vec{r_{0}} \perp \vec{N} \Leftrightarrow$$

$$\Leftrightarrow \boxed{(\vec{r} - \vec{r_{0}}) \cdot \vec{N} = 0} \Leftrightarrow$$

$$\Leftrightarrow A(x - x_{0}) + B(y - y_{0}) = 0$$

Уравнение через нормаль и точку:



 $M_{0}(x_{0}, y_{0}, z_{0}) \in \alpha$   $\vec{N}(A, B, C) \perp \alpha$   $M(x, y, z) \in \alpha$   $\vec{r}_{0} = \overrightarrow{OM_{0}} = (x_{0}, y_{0}, z_{0})$   $\vec{r} = \overrightarrow{OM} = (x, y, z)$   $M_{0}\vec{M} = \vec{r} - \vec{r}_{0} \perp \vec{N} \Leftrightarrow$   $\Leftrightarrow (\vec{r} - \vec{r}_{0}) \cdot \vec{N} = 0 \Leftrightarrow$   $\Leftrightarrow A(x - x_{0}) + B(y - y_{0}) + C(z - z_{0}) = 0$ 

Каноническое уравнение → пересечение плоскостей:

$$L:\begin{cases} m(x-x_0)-l(y-y_0)=0\\ n(x-x_0)-l(z-z_0)=0 \end{cases}$$
 Где  $(l,m,n)=\vec{s}$  - направляющий вектор прямой  $L,$   $(x_0,y_0,z_0)=M_0\in L$ 

Каноническое / параметрическое уравнение:



$$M_{0}(x_{0}, y_{0}) \in L$$

$$\vec{s}(l, m) \parallel L$$

$$M(x, y) \in L$$

$$\vec{r}_{0} = \overrightarrow{OM_{0}} = (x_{0}, y_{0})$$

$$\vec{r} = \overrightarrow{OM} = (x, y)$$

$$M_{0}\vec{M} = \vec{r} - \vec{r}_{0} \parallel \vec{s} \Leftrightarrow$$

$$\Leftrightarrow \exists t \in \mathbb{R} : \vec{r} - \vec{r}_{0} = t\vec{s} \Leftrightarrow$$

$$\Leftrightarrow \frac{x - x_{0}}{l} = \frac{y - y_{0}}{m} = t$$

$$\vec{r} = \vec{r}_{0} + t\vec{s}$$

$$\begin{cases} x = x_{0} + tl \\ y = y_{0} + tm \end{cases}$$

Условие принадлежности четырёх точек плоскости:



$$M, M_1, M_2, M_3 \in \alpha:$$

$$MM_1 MM_2 MM_3 = 0$$

Каноническое / параметрическое уравнение:



$$M_{0}(x_{0}, y_{0}, z_{0}) \in L$$

$$\vec{s}(l, m, n) \parallel L$$

$$M(x, y, z) \in L$$

$$\vec{r}_{0} = \overrightarrow{OM}_{0} = (x_{0}, y_{0}, z_{0})$$

$$\vec{r} = \overrightarrow{OM} = (x, y, z)$$

$$\overrightarrow{M_{0}M} = \vec{r} - \vec{r}_{0} \parallel \vec{s} \Leftrightarrow$$

$$\Leftrightarrow \boxed{\frac{x - x_{0}}{l} = \frac{y - y_{0}}{m} = \frac{z - z_{0}}{n} = t \in \mathbb{R}}$$

$$\vec{r} = \vec{r}_{0} + t\vec{s}$$

$$\begin{cases} x = x_{0} + tl \\ y = y_{0} + tm \\ z = z_{0} + tn \end{cases}$$





 $O(0,0) \notin L$  p = dist(O,L) > 0  $\vec{n}_0 \perp L, |\vec{n}_0| = 1$   $\vec{n}_0$  направлен в сторону L если его приложить к O  $\vec{n}_0 = (\cos \alpha, \sin \alpha)$   $M(x,y) \in L$   $p = \text{proj}_{\vec{n}_0} \vec{r} \Leftrightarrow$   $\Leftrightarrow |\vec{r} \cdot \vec{n}_0 - p = 0|$   $x \cos \alpha + y \sin \alpha - p = 0$   $L : Ax + By + C = 0, A^2 + B^2 \neq 0$   $\vec{N} = (A,B) \perp L \Rightarrow$   $\Rightarrow \vec{n}_0 = \frac{\pm \vec{N}}{|\vec{N}|} =$   $= \pm \left(\frac{A}{\sqrt{A^2 + B^2}}, \frac{B}{\sqrt{A^2 + B^2}}\right)$  C > 0 : " - " C < 0 : " + "  $\cos \alpha = \frac{\pm A}{\sqrt{A^2 + B^2}}$   $\sin \alpha = \frac{L}{\sqrt{A^2 + B^2}}$   $\sin \alpha = \frac{|C|}{|C|}$ 

Нормальное уравнение:



 $\begin{array}{c} O(0,0,0) \notin L \\ p = dist(O,\alpha) > 0 \\ \vec{n}_0 \perp \alpha, \, |\vec{n}_0| = 1 \\ \vec{n}_0 \text{ направлен в сторону } \alpha \text{ ес-} \\ \text{ли его приложить к } O \\ \vec{n}_0 = (\cos\alpha, \cos\beta, \cos\gamma) \\ M(x,y,z) \in \alpha \\ p = \operatorname{proj}_{\vec{n}_0} \vec{r} \Leftrightarrow \\ \Leftrightarrow \boxed{\vec{r} \cdot \vec{n}_0 - p = 0} \\ \hline{x \cos\alpha + y \cos\beta + z \cos\gamma - p = 0} \\ \alpha : Ax + By + Cz + D = 0, \\ A^2 + B^2 + C^2 \neq 0 \\ \vec{N} = (A,B,C) \perp L \Rightarrow \\ \Rightarrow \vec{n}_0 = \frac{\pm \vec{N}}{|\vec{N}|} \\ D > 0 : "-" \\ D < 0 : "+" \\ \cos\alpha = \frac{\pm A}{\sqrt{A^2 + B^2 + C^2}} \\ \cos\beta = \frac{\pm B}{\sqrt{A^2 + B^2 + C^2}} \\ \cos\gamma = \frac{|D|}{\sqrt{A^2 + B^2 + C^2}} \\ p = \frac{|D|}{\sqrt{A^2 + B^2 + C^2}} \end{array}$ 

Расстояние от точки до прямой:



$$M(x',y')$$
 $\vec{r'} = \overrightarrow{OM'} = (x',y')$ 
 $L$  задана нормальным уравнением рго $\vec{j}_{\vec{n}_0}$   $\vec{r'} - p = \delta$  — отклонение  $\delta > 0$ , если  $M'$  и  $O$  лежат по разные стороны от  $L$   $\delta < 0$ , если  $M'$  и  $O$  лежат по одну сторону от  $L$   $d = dist(M', L) = |\delta| = |\vec{r'} \cdot \vec{n}_0 - p| = |x' \cos \alpha + y' \sin \alpha - p| = L : Ax + By + C = 0$ 

Работает даже если  $O \in L$ 

Расстояние от точки до плоскости:



$$M(x',y',z')$$
 $\vec{r'} = \overrightarrow{OM'} = (x',y',z')$ 
 $\alpha$  задана нормальным уравнением рго $\vec{j}_{\vec{n}_0}$   $\vec{r'} - p = \delta$  — отклонение  $\delta > 0$ , если  $M'$  и  $O$  лежат по разные стороны от  $\alpha$   $\delta < 0$ , если  $M'$  и  $O$  лежат по одну сторону от  $\alpha$   $d = dist(M', \alpha) = |\delta| = |\vec{r'} \cdot \vec{n}_0 - p| = |\vec{r'} \cdot \vec{n}_0 - p| = \alpha : Ax + By + Cz + D = 0$ 

$$d = \frac{|Ax' + By' + Cz' + D|}{\sqrt{A^2 + B^2 + C^2}}$$
Работает даже если  $O \in \alpha$ 

Расстояние от точки до прямой:



d=dist(M',L)= =h(параллелограмма, построенного на  $\vec{s}$  и  $\overrightarrow{M_0M'})=$   $=\left[ \begin{array}{c|c} |\vec{s} \times \overrightarrow{M_0M'}| \\ |\vec{s}| \end{array} \right]$  где  $M_0 \in L$ — точка на прямой

#### Полярное уравнение:



 $O(0,0) \notin L$ (Если  $O \in L$ , то L распадается на 2 луча и точку O)  $M(x,y) \in L$ 

$$(x, y) \leftrightarrow (\varphi, r)$$
:  

$$\begin{cases} x = r \cos \varphi \\ y = r \sin \varphi \end{cases}$$

L задана нормальным уравнением:

 $x\cos\alpha + y\sin\alpha - p = 0 \Leftrightarrow$  $\Leftrightarrow r\cos\varphi\cos\alpha - r\sin\varphi\sin\alpha - p = 0 \Leftrightarrow$ 

$$\Leftrightarrow r\cos(\varphi - \alpha) - p = 0 \Leftrightarrow$$

$$r = \frac{p}{\cos(\varphi - \alpha)}$$

$$r > 0$$

$$p > 0$$

 $\cos(\varphi - \alpha) > 0$ 

Взаимное расположение прямой и плоскости в пространстве:

$$\alpha: Ax + By + Cz + D = 0, A^{2} + B^{2} + C^{2} \neq 0$$

$$L: \vec{s} = (l, m, n), M_{0}(x_{0}, y_{0}, z_{0})$$

$$\bullet \begin{bmatrix} L \parallel \alpha \\ L \subset \alpha \\ \end{cases} \Leftrightarrow \vec{s} \perp \vec{N} \Leftrightarrow \vec{s} \cdot \vec{N} = 0 \Leftrightarrow$$

$$\bullet L \subset \alpha \Leftrightarrow \begin{cases} \vec{s} \cdot \vec{N} = 0 \\ M_0 \in \alpha \end{cases} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} Al + Bm + Cn = 0 \\ Ax_0 + By_0 + Cz_0 + D = 0 \end{cases}$$

$$\Leftrightarrow Al + Bm + Cn = 0$$

$$\bullet L \subset \alpha \Leftrightarrow \begin{cases} \vec{s} \cdot \vec{N} = 0 \\ M_0 \in \alpha \end{cases} \Leftrightarrow \begin{cases} Al + Bm + Cn = 0 \\ Ax_0 + By_0 + Cz_0 + D = 0 \end{cases}$$

$$\bullet \begin{cases} L \parallel \alpha \\ L \not\subset \alpha \end{cases} \Leftrightarrow \begin{cases} Al + Bm + Cn = 0 \\ Ax_0 + By_0 + Cz_0 + D \neq 0 \end{cases}$$

$$\bullet L \cap \alpha = Q$$



$$Q(x_Q, y_Q, z_Q) \in L \Leftrightarrow \begin{cases} x_Q = x_0 + lt_Q \\ y_Q = y_0 + mt_Q \\ z_Q = z_0 + nt_Q \end{cases}$$

$$Q \in \alpha \Leftrightarrow A(x_0 + lt_Q) + B(y_0 + mt_Q) + C(z_0 + nt_Q) + D = 0$$

$$\Leftrightarrow t_Q = -\frac{Ax_0 + By_0 + Cz_0 + D}{Al + Bm + Cn}$$

$$\sin \angle (L, \alpha) = \cos(90^\circ - \angle (L, \alpha)) = \cos \angle (\vec{N}, \vec{s}) = \vec{N} \cdot \vec{s}$$

Взаимное расположение прямых на плоскости:  $\bullet L_1 \parallel L_2$ :



$$L_1 \parallel L_2 \Leftrightarrow \Leftrightarrow \vec{N}_1 \parallel \vec{N}_2 \Leftrightarrow \Leftrightarrow \vec{S}_1 \parallel \vec{S}_2 \Leftrightarrow \Leftrightarrow \frac{A_1}{A_2} = \frac{B_1}{B_2} \Leftrightarrow \frac{m_1}{m_2} = \frac{n_1}{n_2}$$
 $d = dist(L_1, L_2)$  (парам. ур.)=
 $= h$  (параллелограмма, построенного на  $\vec{s}_2$  и  $\overrightarrow{M}_2\overrightarrow{M}_1$ ) =
 $= \frac{|\vec{s}_2 \times \overrightarrow{M}_2\overrightarrow{M}_1|}{|\vec{s}_2|} =$ 

$$= \overline{dist(M_1, L_2)}$$

$$\bullet L_1 = L_2 \Leftrightarrow$$

$$\Leftrightarrow \overline{\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}}$$



$$L_1 \cap L_2 \Leftrightarrow \frac{A_1}{A_2} \neq \frac{B_1}{B_2}$$

$$Q : \begin{cases} A_1x + B_1y + C_1 = 0 \\ A_2x + B_2y + C_2 = 0 \end{cases}$$

$$\Delta = \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix} =$$

$$= A_1B_2 - A_2B_1 \neq 0 \Leftrightarrow$$

$$\Leftrightarrow \exists ! \ Q$$

Взаимное расположение плоскостей в пространстве:

 $\bullet \alpha_1 \parallel \alpha_2$ :



$$lpha_1 \parallel lpha_2 \Leftrightarrow \vec{N}_1 \parallel \vec{N}_2 \Leftrightarrow \\ \Leftrightarrow \boxed{\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}} \\ d = dist(lpha_1, lpha_2) \\ M_1 \in lpha_1 \Rightarrow d = dist(M_1, lpha_2) \\ lpha_1, lpha_2 \quad \text{заданы нормальным}$$
 уравнением: 
$$d = \begin{cases} |P_1 - P_2|, \vec{n}_{0_1} = \vec{n}_{0_2} \\ P_1 + P_2, \vec{n}_{0_1} = -\vec{n}_{0_2} \end{cases}$$
•  $lpha_1 = lpha_2$ :



$$L: \begin{cases} A_1 x + B_1 y + C_1 z + D_1 = 0 \\ A_2 x + B_2 y + C_2 z + D_2 = 0 \end{cases}$$

$$\Rightarrow \begin{bmatrix} \frac{A_1}{A_2} \neq \frac{B_1}{B_2} \\ \frac{B_1}{B_2} \neq \frac{C_1}{C_2} \\ \frac{A_1}{A_2} \neq \frac{C_1}{C_2} \\ \theta = \angle(\alpha_1, \alpha_2) \\ |\cos \theta| = \frac{|\vec{N}_1 \cdot \vec{N}_2|}{|\vec{N}_1||\vec{N}_2|} \end{cases}$$

Взаимное расположение прямых в пространстве:

$$\bullet \begin{bmatrix} L_1 \parallel L_2 \\ L_1 = L_2 \end{bmatrix} \Leftrightarrow \vec{s}_1 \parallel \vec{s}_2 \Leftrightarrow \\
\Leftrightarrow \boxed{\frac{l_1}{l_2} = \frac{m_1}{m_2} = \frac{n_1}{n_2}} \\
\bullet L_1 = L_2 \Leftrightarrow \begin{cases} \vec{s}_1 \parallel \vec{s}_2 \\ M_1 \in L_2 \end{cases} \Leftrightarrow \\
\Leftrightarrow \vec{s}_1 \parallel \vec{s}_2 \Leftrightarrow \vec{s}_1 \parallel \vec{s}_2 \Leftrightarrow \vec{s}_2 \Leftrightarrow \vec{s}_3 \parallel \vec{s}_3 \Leftrightarrow \vec{s}_4 \parallel \vec{s}_4 \parallel \vec{s}_4 \Leftrightarrow \vec{s}_4 \parallel \vec{s}_4 \parallel \vec{s}_4 \Leftrightarrow \vec{s}_4 \parallel \vec{s}_4 \Leftrightarrow \vec{s}_4 \parallel \vec{s}_4 \parallel \vec{s}_4 \Leftrightarrow \vec{s}$$

$$\Leftrightarrow \vec{s}_1 \parallel \vec{s}_2 \parallel \overrightarrow{M_1 M_2} \Leftrightarrow \begin{bmatrix} \frac{l_1}{l_2} = \frac{m_1}{m_2} = \frac{n_1}{n_2} \\ l_1 & -\frac{m_1}{m_2} = -\frac{n_1}{n_2} \end{bmatrix}$$

$$\bullet \begin{cases}
L_1 \parallel L_2 \\
L_1 \neq L_2
\end{cases} \Leftrightarrow \begin{cases}
\vec{s}_1 \parallel \vec{s}_2 \\
M_1 \notin L_2
\end{cases} \Leftrightarrow \begin{cases}
\vec{s}_1 \parallel \vec{s}_2 \\
\vec{s}_1 \parallel \vec{s}_2
\end{cases} \Leftrightarrow dist(L_1, L_2)$$

$$d = dist(L_1, L_2)$$

$$dist(M_1, L_2) = \frac{|\vec{s} \times \overline{M_1 M_2}|}{|\vec{s}|}$$

$$\bullet L_1 \cap L_2 = Q \Leftrightarrow \begin{cases}
\vec{s}_1 \not \mid \vec{s}_2 \\
\vec{s}_1 \vec{s}_2 & M_1 M_2 = 0
\end{cases}$$

$$\cos \angle (L_1, L_2) = \frac{\vec{s}_1 \cdot \vec{s}_2}{|\vec{s}_1||\vec{s}_2|}$$

$$\cos \angle (L_1, L_2) = \frac{\vec{s}_1 \cdot \vec{s}_2}{|\vec{s}_1||\vec{s}_2|}$$

 $\bullet L_1, L_2$  скрещиваются:



$$|\vec{s}_1 \vec{s}_2 \overrightarrow{M_1 M_2} \neq 0 \Rightarrow$$

$$\Rightarrow \exists \alpha_1, \alpha_2 : \begin{cases} \alpha_1 \parallel \alpha_2 \\ L_1 \subset \alpha_1 \\ L_2 \subset \alpha_2 \end{cases}$$



### 1.2.3 Проекция точки на плоскость и прямую



$$PQ \perp \alpha, Q \in \alpha$$
  
  $\alpha : Ax + By + Cz + D = 0, \vec{N} = (A, B, C)$ 

$$P(P_1, P_2, P_3)$$

$$L(P, \vec{N}): \begin{cases} x = P_1 + tA \\ y = P_2 + tB \\ z = P_3 + tC \end{cases} \Rightarrow Q = L \cap \alpha \Rightarrow$$

$$\Rightarrow A(P_1 + t_Q A) + B(P_2 + t_Q B) + C(P_3 + t_Q C) + D = 0 \Rightarrow t_Q = -\frac{AP_1 + BP_2 + CP_3 + D}{A^2 + B^2 + C^2}$$

P' — отражение P относительно  $\alpha \Rightarrow P' = 2Q - P$ 



$$PQ \perp L(M_0, \vec{s} = (l, m, n)), Q \in L$$
  
 $P = (P_1, P_2, P_3)$ 

$$\alpha(P, \vec{s}) : l(x - P_1) + m(y - P_2) + n(z - P_3) = 0 L : \begin{cases} x = x_0 + tl \\ y = y_0 + tm \\ z = z_0 + tn \end{cases}$$

$$Q = \alpha \cap L \Rightarrow l((x_0 + t_Q l) - P_1) + m((y_0 + t_Q m) - P_2) + n((z_0 + t_Q n) - P_3) = 0$$

Находим из этого  $t_Q$  и подставляем в уравнение L.

P' — отражение P относительно  $L \Rightarrow P' = 2Q - P$ 

# 1.3 Кривые второго порядка (КВП)

### 1.3.1 Канонические уравнения КВП

Кривая второго порядка — множество точек на плоскости, декартовы координаты которых удовлетворяет алгебраическому уравнению 2-го порядка:

$$a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_1x + 2a_2y + a_0 = 0, (a_{11}^2 + a_{12}^2 + a_{22}^2 \neq 0)$$

КВП делятся на 2 вида:

- 1. Невырожденные:
  - Эллипс
  - Парабола
  - Гипербола
- 2. Вырожденные:
  - Пара пересекающихся прямых
  - Пара параллельных прямых
  - Пара совпадающих прямых
  - Точка
  - Пустое множество

|        | Эллипс                            | Гипербола                                   | Парабола              |
|--------|-----------------------------------|---------------------------------------------|-----------------------|
| Опр. 1 | ГМТ на плоскости, та-             | ГМТ на плоскости,                           | ГМТ на плоскости,     |
|        | ких, что сумма рассто-            | таких, что модуль раз-                      | таких, что расстояние |
|        | яний до двух фикси-               | ности расстояний до                         | до фиксированной      |
|        | рованных точек плоско-            | двух фиксированных                          | точки плоскости равно |
|        | сти — величина посто-             | точек плоскости —                           | расстоянию до фикси-  |
|        | янная и равная $2a$ .             | величина постоянная и                       | рованной прямой.      |
|        | $r_1 + r_2 = 2a = \mathbf{const}$ | равная $2a$ . $ r_1-r_2 =2a=\mathbf{const}$ | r=d                   |

| V                              |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                              | <del> </del>                                                                                                               |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Уравнение в<br>ДСК             | y <sup>†</sup>                                                                                                                                                                                  | y <sup>†</sup>                                                                                                                                                                                                                                               | D y                                                                                                                        |
|                                | F <sub>1</sub> 0 F <sub>2</sub>                                                                                                                                                                 | r,                                                                                                                                                                                                                                                           | 0 F                                                                                                                        |
|                                | $F_{1,2}-$ фокусы $F_{1}(-c,0),F_{2}(c,0)$ $\boxed{\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1}$ $a^{2}=b^{2}+c^{2},a>c$ $r_{1},r_{2}-$ фокальные радиусы $a-$ большая полуось $b-$ малая полуось | $F_{1,2}$ — фокусы $F_{1}(-c,0), F_{2}(c,0)$ $\boxed{\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1}$ $c^{2} = a^{2} + b^{2}, a < c$ $r_{1}, r_{2}$ — фокальные радиусы $a$ — действительная полуось $b$ — мнимая полуось Имеет асимптоты — $y = \frac{b}{a}$ | $F-$ фокус, $D-$ директриса $F\left(\frac{p}{2},0\right),D:x=-\frac{p}{2}$ $y^2=2px$ $p=dist(F,D)$ $p-$ фокальный параметр |
| $\varepsilon$ — Эксцентриситет | $\varepsilon = \frac{c}{a} < 1$                                                                                                                                                                 | $\varepsilon = \frac{c}{a} > 1$                                                                                                                                                                                                                              | $\varepsilon = 1$                                                                                                          |
|                                | $r_{1,2} = a \pm \varepsilon x$ $M(x,y) \in $ эллипсу                                                                                                                                           | Правая ветвь: $r_{1,2} = \varepsilon x \pm a$ Левая ветвь: $r_{1,2} = -\varepsilon x \mp a$ $M(x,y) \in$ гиперболе                                                                                                                                           | $r = x + \frac{p}{2}$                                                                                                      |
| Директрисы                     | $D_{1,2}: x=\mprac{a}{arepsilon} \ rac{r_1}{d_1}=rac{r_2}{d_2}=arepsilon=rac{r}{d}$                                                                                                         | $D_{1,2}: x=\mprac{a}{arepsilon} \ rac{r_1}{d_1}=rac{r_2}{d_2}=arepsilon=rac{r}{d}$                                                                                                                                                                      | $\frac{r}{d} = 1 = \varepsilon$                                                                                            |

| Опр. 2 | ГМТ на плоскости, та-                            | ГМТ на плоскости, та-                            | ГМТ на плоскости, та-                            |
|--------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
|        | ких, что отношение рас-                          | ких, что отношение рас-                          | ких, что отношение рас-                          |
|        | стояния до фиксиро-                              | стояния до фиксиро-                              | стояния до фиксиро-                              |
|        | ванной точки плоскости                           | ванной точки плоскости                           | ванной точки плоскости                           |
|        | к расстоянию до пря-                             | к расстоянию до пря-                             | к расстоянию до пря-                             |
|        | мой — величина посто-                            | мой — величина посто-                            | мой — величина посто-                            |
|        | янная и меньшая еди-                             | янная и большая едини-                           | янная и равная едини-                            |
|        | ницы.                                            | цы.                                              | цe.                                              |
|        | $\varepsilon = \mathbf{const} = \frac{r}{d} < 1$ | $\varepsilon = \mathbf{const} = \frac{r}{d} > 1$ | $\varepsilon = \mathbf{const} = \frac{r}{d} = 1$ |
|        | $\Box$                                           | $\begin{bmatrix} a \\ D_1 \end{bmatrix}$         |                                                  |
|        |                                                  |                                                  |                                                  |
|        |                                                  |                                                  |                                                  |
|        |                                                  |                                                  |                                                  |
|        |                                                  | d <sub>1</sub>                                   |                                                  |
|        | d. M                                             | 100                                              | d M                                              |
|        |                                                  |                                                  |                                                  |
|        | r <sub>1</sub>                                   | r <sub>1</sub>                                   |                                                  |
|        |                                                  |                                                  | F                                                |
|        | [                                                | F <sub>1</sub>                                   |                                                  |

## Полярное уравнение



Начало ПСК в одном из фокусов, ось направлена в сторону соответствующей директрисы.

$$r = \frac{p}{1 + \varepsilon \cos \varphi}$$
 
$$p - \phi$$
 метр.

$$p=arepsilon\cdot q=rac{b^2}{a}$$
  $q=dist(F,D)=rac{a}{arepsilon}-c$   $p-$ Длина перпендикуляра от  $F$  до эллипса Директрисы:

$$r = \frac{\pm \frac{a}{\varepsilon} - c}{\cos \varphi}$$

Если ось направлена в противоположную сторону, то заменяем все вхождения  $\cos \varepsilon$  на  $-\cos \varepsilon$ .



Начало ПСК в одном из фокусов, ось направлена в сторону соответствующей директрисы.

$$r=rac{\pm p}{1\pm arepsilon\cosarphi}$$
 Ветвь, соответствующая фокусу: "+" Ветвь, не соответствующая фокусу: "-"  $p$  — фокальный параметр.

$$p=arepsilon\cdot q=rac{b^2}{a}$$
  $q=dist(F,D)=c-rac{a}{arepsilon}$   $p$  — Длина перпендикуляра от  $F$  до гиперболы.

Директрисы:

$$r = \frac{\pm \frac{a}{\varepsilon} + c}{\cos \varphi}$$

Если ось направлена в противоположную сторону, то заменяем все вхождения  $\cos \varphi$  на  $-\cos \varphi$ .



Начало ПСК в фокусе, ось направлена в сторону директрисы.

$$r = rac{p}{1 + arepsilon \cos arphi} = rac{p}{1 + \cos arphi} = rac{p}{1 + \cos arphi}$$
 р — Длина перпе

p — Длина перпендикуляра от F до параболы Если ось направлена в противоположную сторону, то заменяем все вхождения  $\cos \varphi$  на —  $\cos \varphi$ .



Доказательство свойств (на примере гиперболы, эллипс доказывается полностью аналогично):

• Каноническое уравнение

По определению:  $|r_1 - r_2| = 2a$ 

$$F_1(-c,0), F_2(c,0), c > a$$
  
 $r_1 = \sqrt{(x+c)^2 + y^2}, r_2 = \sqrt{(x-c)^2 + y^2}$ 

Пусть 
$$r_1 > r_2$$
 (правая ветвь)  $\Rightarrow r_1 = 2a + r_2 \Rightarrow r_1^2 = 4a^2 + 4ar_2 + r_2^2 \Rightarrow$ 

$$\Rightarrow (x+c)^2 + y^2 = 4a^2 + 4ar_2 + (x-c)^2 + y^2 \Rightarrow xc = a^2 + ar_2 \Rightarrow r_2 = \frac{xc}{a} - a$$

$$\varepsilon = \frac{c}{a} \Rightarrow \boxed{r_2 = x \varepsilon - a}$$
 — зависимость фокального радиуса от  $x$ 

$$r_2^2 = (x - c)^2 + y^2 \Rightarrow (x - c)^2 + y^2 = \frac{x^2 c^2}{a^2} - 2xc + a^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^2 - c^2 \Rightarrow x^2 \left(1 - \frac{c^2}{a^2}\right) + y^2 = a^$$

$$\Rightarrow \frac{x^2(a^2-c^2)}{a^2} + y^2 = a^2 - c^2 \Rightarrow \frac{x^2}{a^2} - \frac{y^2}{c^2-a^2} = 1 \Rightarrow \boxed{\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1} \ Q.E.D.$$

Из  $r_1=2a+r_2$  аналогично получаем  $r_1=x\varepsilon+a$ . Значит  $r_{1,2}=x\varepsilon\pm a$ 

Если 
$$r_1 < r_2$$
 (левая ветвь):  $r_{1,2} = -x\varepsilon \mp a$ 

#### • Директрисы:

$$D_2: x = \pm \frac{a}{\varepsilon}, d_2 = dist(M, D_2) = \left| x - \frac{a}{\varepsilon} \right|$$

Правая ветвь: 
$$r_2 = x\varepsilon - a \Rightarrow \frac{r_2}{d_2} = \frac{x\varepsilon - a}{x - \frac{a}{\varepsilon}} = \varepsilon \frac{x - \frac{a}{\varepsilon}}{x - \frac{a}{\varepsilon}} = \varepsilon$$

Левая ветвь: 
$$r_2 = -x\varepsilon + a \Rightarrow \frac{r_2}{d_2} = \frac{-x\varepsilon + a}{-x + \frac{a}{\varepsilon}} = \varepsilon \frac{-x + \frac{a}{\varepsilon}}{-x + \frac{a}{\varepsilon}} = \varepsilon$$

$$\frac{r_2}{d_2} = \varepsilon \Rightarrow D_2$$
 — директриса  $Q.E.D.$ 

Для  $r_1$  и  $D_1$  заменить x на -x

#### • Определение 2:

Пусть известно 
$$q = dist(F, D)$$
 и  $\varepsilon = \frac{r}{d} > 1$ 

Проведём ДСК, в которой  $D \parallel Oy$ . Давайте найдём параметры канонического уравнения, считая, что  $D: x = \frac{a}{\varepsilon}$ , а F = (c,0).

$$\begin{vmatrix} c - \frac{a}{\varepsilon} = q \\ \frac{c}{a} = \varepsilon \end{vmatrix} \Rightarrow c = q + \frac{a}{\varepsilon} \Rightarrow a\varepsilon = q + \frac{a}{\varepsilon} \Rightarrow a\left(\varepsilon - \frac{1}{\varepsilon}\right) = q \Rightarrow \boxed{a = \frac{\varepsilon q}{\varepsilon^2 - 1}} \Rightarrow$$

$$\Rightarrow \boxed{c = \frac{\varepsilon^2 q}{\varepsilon^2 - 1}}$$

Мы узнали чему равны a и c из известных нам  $\varepsilon$  и q, значит точки, удовлетворяющие 2-му определению, удовлетворяют  $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ , а D — очевидно директриса гиперболы. Q.E.D.

#### • Асимптоты:

Найдём y(x) для I координатной четверти:  $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1 \Rightarrow y=b\sqrt{\frac{x^2}{a^2}-1}$ 

Найдём угловой коэффициент асимптоты  $k = \lim_{x \to +\infty} \frac{y(x)}{x}$ :

$$k = \lim_{x \to +\infty} \frac{b\sqrt{\frac{x^2}{a^2} - 1}}{x} = \lim_{x \to +\infty} \frac{bx\sqrt{\frac{1}{a^2} - \frac{1}{x^2}}}{x} = \frac{b}{a}$$

Найдём ординату пересечения асимптоты и оси ординат  $m = \lim_{x \to +\infty} (y(x) - kx)$ :

$$\lim_{x \to +\infty} \left( b \sqrt{\frac{x^2}{a^2} - 1} - \frac{b}{a} x \right) = b \lim_{x \to +\infty} \left( \sqrt{\frac{x^2}{a^2} - 1} - \frac{x}{a} \right) =$$

$$= b \lim_{x \to +\infty} \left( \frac{\frac{x^2}{a^2} - 1 - \frac{x^2}{a^2}}{\sqrt{\frac{x^2}{a^2} - 1 + \frac{x}{a}}} \right) = b \lim_{x \to +\infty} \left( \frac{-1}{\sqrt{\frac{x^2}{a^2} - 1 + \frac{x}{a}}} \right) = 0$$

Значит асимптота:  $y = \frac{b}{a}x$  — в первой координатной четверти

По симметрии получаем  $y = \pm \frac{b}{a}x \ Q.E.D.$ 

#### • Полярное уравнение:

Зададим  $\Pi \text{CK}(r,\varphi)$ , у которой полюс  $O'=F_2=(c,0)$ , а ось направлена в сторону, противоположную направлению координатной оси Ox.

$$x = c - r\cos\varphi$$

Правая ветвь:  $r = r_2 = x\varepsilon - a$ 

$$r = \varepsilon(c - r\cos\varphi) - a = \varepsilon c - \varepsilon r\cos\varphi - a \Rightarrow r(1 + \varepsilon\cos\varphi) = \varepsilon c - a = \varepsilon\left(c - \frac{a}{\varepsilon}\right) = \varepsilon q = p \Rightarrow$$
$$\Rightarrow r = \frac{p}{1 + \varepsilon\cos\varphi}$$

Левая ветвь:  $r = r_2 = -x\varepsilon + a$ 

$$r = -\varepsilon(c - r\cos\varphi) + a = -\varepsilon c + \varepsilon r\cos\varphi + a \Rightarrow r(1 - \varepsilon\cos\varphi) = a - \varepsilon c = \varepsilon\left(\frac{a}{\varepsilon} - c\right) = \varepsilon\left(-q\right) = -p \Rightarrow$$

$$\Rightarrow r = \frac{-p}{1 - \varepsilon\cos\varphi}$$

Если ось направлена в противоположную сторону, то  $\cos(\pi - \varphi) = -\cos\varphi$ , и  $\cos\varphi$  в формулы записывается со знаком минус.

Аналогично, если у ПСК полюс в  $F_1$ .

#### • Касательные

Формула касательной к функции в точке 
$$M_0(x_0, y_0)$$
:  $y = f'(x_0)(x - x_0) + y_0$ 

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \Rightarrow \frac{x^2}{a^2} - \frac{f(x)^2}{b^2} = 1 \Rightarrow (Возьмём производную обеих сторон) \Rightarrow$$

$$\Rightarrow \frac{2x}{a^2} - \frac{2f(x)f'(x)}{b^2} = 0 \Rightarrow \frac{2f(x)f'(x)}{b^2} = \frac{2x}{a^2}$$

Подставим 
$$x_0$$
:  $\frac{2f(x_0)f'(x_0)}{b^2} = \frac{2x_0}{a^2} \Rightarrow \frac{y_0f'(x_0)}{b^2} = \frac{x_0}{a^2} \Rightarrow f'(x_0) = \frac{x_0b^2}{y_0a^2}$ 

Подставим в формулу для касательной:  $y = \frac{x_0 b^2}{y_0 a^2} (x - x_0) + y_0 =$ 

$$= \frac{x_0 b^2 (x - x_0) + y_0^2 a^2}{y_0 a^2} \Rightarrow$$

$$\Rightarrow yy_0a^2 = xx_0b^2 - x_0^2b^2 + y_0^2a^2 \Rightarrow \frac{xx_0}{a^2} - \frac{yy_0}{b^2} = \frac{x_0^2}{a^2} - \frac{y_0^2}{b^2} = 1 \ Q.E.D.$$

#### • Оптические свойства

Пусть  $M_0(x_0, y_0)$  лежит на гиперболе. Тогда:

$$\vec{r}_1 = \overrightarrow{F_1 M_0} = (x_0 + c, y_0), \ \vec{r}_2 = \overrightarrow{F_2 M_0} = (x_0 - c, y_0)$$

Проверим, что вектор биссектрисы угла между  $\vec{r}_1$  и  $\vec{r}_2$  параллелен касательной в точке  $M_0$ , то есть перпендикулярен нормали касательной  $\vec{N} = \left(\frac{x_0}{a^2}, -\frac{y_0}{b^2}\right)$ .

Вектор биссектрисы угла между  $\vec{r_1}$  и  $\vec{r_2}$ :  $|\vec{r_1}|\vec{r_2}+|\vec{r_2}|\vec{r_1}=(\varepsilon x_0+a)\vec{r_2}+(\varepsilon x_0-a)\vec{r_1}=$ 

$$= ((x_0 - c)(\varepsilon x_0 + a) + (\varepsilon x_0 - a)(x_0 + c), y_0(\varepsilon x_0 + a) + y_0(\varepsilon x_0 - a)) =$$

$$= (2\varepsilon x_0^2 - 2ac, 2\varepsilon x_0 y_0) \sim \left(x_0^2 - \frac{ac}{\varepsilon}, x_0 y_0\right)$$

Скалярно перемножим с  $\vec{N}$ :  $\left(x_0^2 - \frac{ac}{\varepsilon}\right) \frac{x_0}{a^2} - x_0 y_0 \frac{y_0}{b^2} = \frac{x_0^3}{a^2} - \frac{x_0 c}{\varepsilon a} - \frac{x_0 y_0^2}{b^2} = \frac{x_0^2}{b^2}$ 

$$=x_0\left(\frac{x_0^2}{a^2}-\frac{y_0^2}{b^2}\right)-x_0=x_0-x_0=0 \Rightarrow N\perp$$
 биссектрисе  $Q.E.D.$ 

## 1.3.2 Приведение КВП к каноническому виду

$$a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_{11}x + 2a_{22}y + a_0 = 0, \ a_{11}^2 + a_{12}^2 + a_{22}^2 \neq 0$$

Очевидно, что уравнение KBП не меняет своего типа при повороте и сдвиге декартовой системы координат.

1. Если  $a_{12} \neq 0$ , подберём такой угол поворота  $\alpha$ , чтобы в новом уравнении  $a'_{12} = 0$ .

Выразим старые координаты через новые:

$$x = x' \cos \alpha - y' \sin \alpha, \ y = x' \sin \alpha + y' \cos \alpha, \ \alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \setminus \{0\}$$

Выразим  $a'_{12}$  через старые коэффициенты,  $\sin \alpha = S_{\alpha}$  и  $\cos \alpha = C_{\alpha}$  и приравняем к 0:

$$a'_{12} = -2a_{11}C_{\alpha}S_{\alpha} + 2a_{12}(C_{\alpha}^2 - S_{\alpha}^2) + 2a_{22}C_{\alpha}S_{\alpha} = 0$$

$$(a_{22} - a_{11}) \tan \alpha + a_{12}(1 - \tan^2 \alpha) = 0$$

 $\tan^2 \alpha - \frac{a_{22} - a_{11}}{a_{12}} \tan \alpha - 1 = 0$  — квадратное уравнение относительно  $\tan \alpha$ 

Дискриминант 
$$D = \left(\frac{a_{22}-a_{11}}{a_{12}}\right)^2 + 4 > 0 - 2$$
 решения

По теореме Виета  $\tan\alpha_1\cdot\tan\alpha_2=-1\Rightarrow\alpha_1\in\left(0,\frac{\pi}{2}\right),\,\alpha_2\in\left(-\frac{\pi}{2},0\right),\,\alpha_1-\alpha_2=90^\circ$ 

$$\alpha_{1,2} = \arctan\left(\frac{\frac{a_{22} - a_{11}}{a_{12}} \pm \sqrt{\left(\frac{a_{22} - a_{11}}{a_{12}}\right)^2 + 4}}{2}\right)$$

Начало координат O' = O

2.  $a'_{11}x'^2 + a'_{22}y'^2 + 2a'_1x' + 2a'_2y' + a_0 = 0$  Есть два случая:

(a) 
$$\begin{cases} a'_{11} \neq 0 \\ a'_{22} \neq 0 \end{cases}$$

$$a'_{11}x'^2 + 2a'_1x' = a'_{11}\left(x'^2 + 2\frac{a'_1}{a'_{11}}x'\right) = a'_{11}\left(x' + \frac{a'_1}{a'_{11}}\right)^2 - \frac{a'^2_1}{a'_{11}} = a'_{11}x''^2 - \frac{a'^2_1}{a'_{11}}$$

Сделаем сдвиг ДСК:

$$x'' = x' + \frac{a_1'}{a_{11}'}$$

$$y'' = y' + \frac{a_2'}{a_{22}'}$$

Начало координат 
$$O''\left(-\frac{a_1'}{a_{11}'},-\frac{a_2'}{a_{22}'}\right)$$

Получим 
$$a'_{11}x''^2 + a'_{22}y''^2 + a'_0 = 0 \Leftrightarrow a'_{11}x''^2 + a'_{22}y''^2 = -a'_0$$

Есть два случая:

i. 
$$a_0' \neq 0$$

$$\alpha = \frac{a'_{11}}{-a'_{0}}, \, \beta = \frac{a'_{22}}{-a'_{0}}$$

$$\alpha x''^2 + \beta y''^2 = 1$$

Есть три случая:

А. 
$$\alpha > 0$$
,  $\beta > 0$  — Эллипс

В. 
$$\alpha < 0$$
,  $\beta < 0$  — Пустое множество

С. 
$$\alpha\beta < 0$$
 — Гипербола

ii. 
$$a'_0 = 0$$

$$\alpha x''^2 = y''^2, \ \alpha \neq 0$$

Есть два случая:

А. 
$$\alpha > 0 \Rightarrow y'' = \pm \sqrt{\alpha} x'' - \Pi$$
ара пересекающихся прямых

B. 
$$\alpha < 0 \Rightarrow y'' = x'' = 0$$
 — Точка

(b) Не умаляя общности  $a'_{22} = 0$ 

$$a_{11}'x'^2 + 2a_1'x' + 2a_2'y' + a_0 = 0$$

Есть два случая:

i. 
$$a_2' \neq 0$$

Сделаем сдвиг ДСК:

$$x'' = x' + \frac{a_1'}{a_{11}'}$$

$$y'' = y' + \frac{a_0 - \frac{{a'_1}^2}{{a'_{11}}}}{2a'_2}$$

Начало координат 
$$O''\left(-\frac{a_1'}{a_{11}'},-\frac{a_0-\frac{{a_1'}^2}{a_{11}'}}{2a_2'}\right)$$

Получим  $a'_{11}x''^2 + 2a'_2y''^2 = 0 \Leftrightarrow x''^2 = \alpha y'', \ \alpha \neq 0 \ -$  Парабола

ii. 
$$a_2' = 0$$
,  $x'' = x' + \frac{a_1'}{a_{11}'}$ 

$$a'_{11}x''^2 + a'_0 = 0 \Rightarrow x''^2 = \alpha$$

Есть три случая:

А. 
$$\alpha>0\Rightarrow x''=\pm\sqrt{\alpha}$$
 — Пара параллельных прямых

В. 
$$\alpha = 0 \Rightarrow x''^2 = 0 \Leftrightarrow x'' = 0$$
 — Прямая

С. 
$$\alpha < 0$$
 — Пустое множество

## Глава 2

# Линейная алгебра

## 2.1 Основные алгебраические структуры

## 2.1.1 Операции, группа, кольцо, поле

Законы композиции.

 $f: A \times B \to C$  - функция, отображение.

 $\forall (a,b): a \in A, b \in B: \exists ! c \in C$  — закон внешней композиции.

 $f: A \times A \to A - {\tt \underline{3akoh\ Bhytpehheй\ komпoзиции}}$  или алгебраическая операция, бинарная операция.

Ассоциативность, коммутативность алгебраических операций.

Возьмем операцию  $*: A \times A \rightarrow A$ :

a\*b=b\*a- коммутативность.

a\*(b\*c)=(a\*b)\*c- ассоциативность.

Алгебраическая структура, группа, кольцо, поле. Свойства.

## **Группа** (A, {\*}):

- \* групповая операция, чаще всего обозначается как "·" умножение, или как "+" сложение.
- "·" мультипликативная запись, где e единица, а -a обратный.
- "+" аддитивная запись, где e заменяется на 0 нулевой, а -a противоположный.
  - 1. a \* (b \* c) = (a \* b) \* c ассоциативность.
  - 2.  $\exists e: \forall a: a*e=e*a=a$  существование нейтрального элемента e.

3.  $\forall a : \exists (-a) : a + (-a) = e$  — существование обратного элемента (-a).

Если группа обладает еще и коммутативностью, то такая группа — <u>абелева</u>:

4. 
$$a * b = b * a$$

## Кольцо $(A, \{+, \cdot\})$ :

- 1–4. Абелева групппа по сложению.
  - 5.  $a \cdot (b+c) = a \cdot b + a \cdot c$  левая дистрибутивность.
  - 6.  $(b+c) \cdot a = b \cdot a + c \cdot a$  правая дистрибутивность.

Поле (A, 
$$\{+, \cdot\}$$
):

- 1-5. Кольцо по сложению.
- 6-9. Абелева группа по умножению для ненулевых элементов.

Поле — это ассоциативное коммутативное кольцо с единицей, то есть для  $\forall$  ненулевого элемента  $\exists$  обратный, а вот у нуля обратного нет и это нормально.

Свойства кольца:

- 1.  $0 \cdot a = 0$
- 2.  $a + x = a + y \rightarrow x = y$
- 3. a+x=b имеет единственное решение x=-a+b
- 4. 0 единственен.
- 5. 1— единственна в кольце с единицей.

## 2.1.2 Линейное пространство, алгебра, свойства.

K— поле, V - множество.  $+: V \times V \to V$ ,  $\cdot: K \times V \to V$ . Если все, что сказано ниже выполнено  $\forall \phi, \lambda \in K, a,b \in V$ .

- 1–4. Абелева группа по сложению.
  - 5.  $\phi(\lambda(a)) = \lambda(\phi(a))$ .
  - 6.  $\lambda(a+b) = \lambda a + \lambda b$ .
  - 7.  $a(\phi + \lambda) = a\phi + a\lambda$ .
  - 8.  $\exists 1 : a \cdot 1 = a$ .

То тогда такую систему называют **линейным пространством** над полем K.

Если добавить еще одну операцию  $\times: V \times V \to V$ .

9. 
$$(a+b) \times c = a \times c + b \times c$$
  
 $c \times (a+b) = c \times a + c \times b$ 

10. 
$$\lambda(a \times b) = (\lambda a) \times b = a \times (\lambda b)$$

То такую структуру называют алгеброй.

- 11. добавим коммутативность × коммутативная алгебра.
- 12. добавим ассоциативность  $\times$  ассоциативная алгебра.

- 13. добавим единицу унитальная алгебра.
- 14. добавим обратное (для ненулевых элементов) алгебра с делением.

## 2.1.3 Нормированные линейные пространства и алгебры.

**Нормированное пространство** — линейное пространство над  $\mathbb{R}(\mathbb{C})$  с нормой.

**Норма**  $||\cdot||:V\to\mathbb{R}(\mathbb{C})$ , удовлетворящее:

- 1.  $\forall x, y \in V : ||x|| + ||y|| \ge ||x + y||$ .
- 2.  $\forall x \in V : ||x|| > 0$ , причем  $||x|| = 0 \Leftrightarrow x = 0$ .
- 3.  $\forall x \in V : \forall \alpha \in \mathbb{R}(\mathbb{C}) : ||\alpha x|| = |\alpha|||x||.$

Алгебра называется **нормированной**, если существует норма согласованная с умножением:  $||ab|| \leq ||a|| \cdot ||b||$ .

## 2.1.4 Отношение эквивалентности, фактор-структуры.

**Бинарное отношение**  $\sim$  на множестве X- отношение эквивалентности, если оно

- Рефлексивно:  $\forall x \in X \ x \sim x$ .
- Симметрично:  $\forall x, y \in X \ x \sim y \leftrightarrow y \sim x$ .
- Транзитивно:  $\forall x, y, z \in X \ x \sim y \land y \sim z \rightarrow x \sim z$ .

Если  $\sim$  — бинарное отношение на X, то множества  $M_a = \{x \in X \mid x \sim a\}$  называются классами эквивалентности , а множество  $X/\sim = \{M_a \mid a \in X\}$  — фактормножеством (или факторпространством) X по  $\sim$ .

#### Свойства классов эквивалентности.

- 1.  $\forall a \in X \ M_a \neq \emptyset$ .
- 2.  $\forall a,b \in X$  выполнено либо  $M_a = M_b$ , либо  $M_a \cap M_b = \varnothing$ .
- $3. \bigcup_{a \in X} M_a = X.$

Если у нас есть множество X, а M — какое-то множество, состоящее из непустых взаимно непересекающихся подмножеств X, в объединении дающих X. Тогда M называется **разбиением** X.

Любое разбиение X является факторпространством X по некоторому отношению эквивалентности. Доказательство этого тривиально, если вы представите отношения как ребра в графе, а классы эквивалентности - компоненты

# 2.2 Линейное пространство комплексных чисел

## 2.2.1 Основные определения

<u>Множество комплексных чисел</u> - линейное пространство  $\mathbb{R}^2$  с евклидовой нормой.(мы его так вводим). Получаем первый вариант записи комплексных чисел - Декартову форму записи:

$$(x;y) = z \in \mathbb{C}; x, y \in \mathbb{R}$$

Евклидову норму  $|z|=||(x;y)||_2=\sqrt{x^2+y^2}$  называют модулем комплексного числа.

Представив комплексные числа таким образом, мы видим их геометрическую интерпретацию, как радиус-векторов на плоскости (модуль числа - длина радиус-вектора). В качестве базиса будем использовать вектора (1;0) - вещественную единицу и (0;1) - мнимую единицу, обозначаемую i.

Алгебраическая форма записи - ещё один вариант записи комплексных чисел:

$$z = (x; y) = x + iy$$

При этом x = Re z - вещественная часть числа, а y = Im zч - мнимая часть.

При x = 0 число становится чисто мнимым.

При y = 0 число можно отождествлять с вещественным числом x.

Теперь можем ввести полярную систему координат с центром, совпадающим с центром декартовой системы координат и осью вдоль оси  $Re\ z$ . Тогда для каждого ненулевого комплексного числа получим r и  $\varphi$ . Для  $z=x+iy\neq 0$  модуль числа  $r=\sqrt{x^2+y^2}$ , а  $\varphi$  - аргумент - такой угол, что  $\tan\varphi=y/x$ 

Функция аргумента —  $\varphi = Arg(x+iy)$  — многозначная, то есть её результат — множество всех подходящих значений, а формат  $\arg_k$  означает использование k-ого значения. Нулевой аргумент (результат  $\arg_0$  или просто  $\arg$ ) называется главным аргументом и лежит в  $[-\pi;\pi)$  или в  $[0;2\pi)$ , в зависимости от выбранного диапазона.



Заметим, что тогда  $x = r\cos\varphi$ , а  $y = r\sin\varphi$ . Тогда получим третий вариант записи комплексного числа - Тригонометрическую форму записи:

$$z = x + iy = r(\cos \varphi + i \sin \varphi)$$

## 2.2.2 Комплексные = алгебра с нормой.

То, что это линейное пространство и так понятно (очевидно, что все 8 аксиом выполнены, тк мы до этого доказывали, что  $R^2$  — линейное пространство). Давайте докажем, что комплексные числа - это **нормированная алгебра**.

Значит, мы хотим создать такую операцию умножения, что она будет согласованно с нормой. Посмотрим, тогда чему должно быть равно  $i \cdot i = i^2$ .

Тогда давайте предположим, что сейчас  $i \cdot i = \lambda + \phi i$ .

Посмотрим, чему у нас будет равна вот такая норма:

$$\forall x \in \mathbb{R} : ||i^2 + ix|| = ||i(i+x)|| \le ||i||||i+x|| = \sqrt{1+x^2}$$

Должно выполняться последнее, если мы хотим, чтобы норма была согласованна с умножением. Но мы знаем что  $i \cdot i = \lambda + \phi i!$  Подставим:

$$||i^{2} + ix|| = ||\lambda + \phi i + ix|| = \sqrt{\lambda^{2} + (\phi + x)^{2}} \le \sqrt{1 + x^{2}}$$
$$\lambda^{2} + \phi^{2} + 2\phi x + x^{2} \le 1 + x^{2}$$
$$\lambda^{2} + \phi^{2} + 2\phi x < 1$$

Заметим, что, если  $\phi \neq 0$ , тогда слева многочлен от x — прямая, с углом наклона не 0. Откуда в какой-то момент она пересечет 1 и будет принимать значения больше 1.

Откуда получаем, что  $\phi = 0$ . Откуда  $i^2 = \lambda \in \mathbb{R}$ .

Посмотрим на 
$$2 \le \sqrt{(\lambda+1)^2+4} = ||\lambda+2i+1|| = ||(i+1)^2|| \le \sqrt{2}^2 = 2.$$

$$\lambda^2 + 2\lambda + 1 + 4 = 4$$
, откуда  $\lambda^2 + 2\lambda + 1 = 0$ , откуда  $\lambda = -1$ .

Мы только что доказали, что  $i^2 = -1!!!$ 

Теперь тогда покажем, как будет происходить умножение ниже:

## 2.2.3 Основные действия с комплексными числами

Немного действий, определённых для С:

1. Сложение/вычитание – аналогично сложению/вычитанию векторов

$$(x_1 + iy_1) + (x_2 + iy_2) = (x_1 + x_2) + i(y_1 + y_2)$$
  
$$(x_1 + iy_1) - (x_2 + iy_2) = (x_1 - x_2) + i(y_1 - y_2)$$

2. Умножение – например, как умножение алгебраических форм записи

$$(x_1 + iy_1) * (x_2 + iy_2) = (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1)$$

Оно так задается из-за того, что мы хотим диструбтивность для того, чтобы комплексные числа были алгеброй с нормой. Распишем в тригонометрической форме перемножение двух комплексных чисел:

$$r_1(\cos\varphi_1 + i\sin\varphi_1) * r_2(\cos\varphi_2 + i\sin\varphi_2) =$$

$$= r_1 r_2((\cos\varphi_1\cos\varphi_2 - \sin\varphi_1\sin\varphi_2) + i(\cos\varphi_1\sin\varphi_2 + \sin\varphi_1\cos\varphi_2) =$$

$$= r_1 r_2(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2))$$

Видим, что при умножении комплексных чисел их аргументы складываются, а модули перемножаются.

- 3. Сопряжение для всех комплексных чисел z = x + iy существует комплексно сопряжённое ему  $\overline{z} = x iy$ . Несколько весьма простых, но полезных фактов с сопряжёнными числами:
  - $\bullet$   $\overline{\overline{z}} = z$
  - $z = \overline{z} \Leftrightarrow (x + iy) = (x iy) \Leftrightarrow y = 0 \Leftrightarrow z \in \mathbb{R}$
  - $z\overline{z} = (x + iy)(x iy) = (x^2 + y^2) = |z|^2$
  - $z + \overline{z} = (x + iy) + (x iy) = 2x = 2 \cdot Re z$
  - $z \overline{z} = (x + iy) (x iy) = 2iy = 2i \cdot Im z$
- 4. Обратное зная свойства сопряжения можно получить формулу для числа обратного комплексному z это будет  $z^{-1} = \frac{\bar{z}}{|z|^2}$ . Несложно убедиться, что  $z*z^{-1} = 1$ , что и требовалось от обратного элемента.
- 5. \*Деление имея обратное число деление построить несложно:

$$\frac{z_1}{z_2} = z_1 \cdot z_2^{-1}$$

Такое деление будет весьма неудобным, хоть и рабочим, упростит его экспоненциальная форма записи комплексных чисел.

## 2.2.4 Экспоненциальная форма и её свойства. Формулы Эйлера и Муавра

Сделаем заявление, в которое поверим и в дальнейшем будем активно использовать:

$$e^{i\varphi}=\cos\varphi+i\sin\varphi;\varphi\in\mathbb{R}$$

Свойства:

- 1.  $e^{i*2\pi k} = 1; k \in \mathbb{Z}$
- 2.  $e^{i(\varphi+2\pi k)} = e^{i\varphi}; k \in \mathbb{Z}$
- $3 e^{i(\varphi_1+\varphi_2)} = e^{i\varphi_1} \cdot e^{i\varphi_2}$
- 4.  $e^{-i\varphi} = \frac{1}{e^{i\varphi}} = \overline{e^{i\varphi}}$
- 5.  $|e^{i\varphi}| = 1$
- 6.  $e^{i\varphi \cdot n} = (e^{i\varphi})^n; n \in \mathbb{Z}$
- 7. Формулы Эйлера:

$$\frac{e^{i\varphi} + e^{-i\varphi}}{2} = \cos\varphi$$
$$\frac{e^{i\varphi} - e^{-i\varphi}}{2i} = \sin\varphi$$

Введём ещё одну новую форму записи комплексного числа - Экспоненциальную:

$$z = r(\cos\varphi + i\sin\varphi) = re^{i\varphi}$$

Формула Муавра:

$$z^n = r^n(\cos n\varphi + i\sin n\varphi) = r^n e^{i\varphi \cdot n}; n \in \mathbb{N}$$

$$|z^n| = |z|^n = r^n$$

$$arg z^n = n \cdot arg z$$

Раз мы научились возводить комплексное число в целую степень, то хочется научиться находить и корень целой степени. Пусть  $w=\sqrt[n]{z} \Leftrightarrow w^n=z=re^{i\varphi}$ 

$$w \in \mathbb{C} \Leftrightarrow w = |w|e^{i \cdot arg \, w}$$

$$w^n = |w|^n e^{i n \cdot arg \, w} = re^{i \varphi} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} |w| = \sqrt[n]{r} \\ arg \, w = \frac{\varphi + 2\pi k}{n} \quad k \in \mathbb{Z} \end{cases}$$

Получили, что  $arg\ w=rac{\varphi+2\pi k}{n}=rac{\varphi}{n}+rac{2\pi}{n}k$  а значит, что корень целой степени п даёт п различных решений, которые лежат на плоскости на одной окружности, через равные углы  $rac{2\pi}{n}$ , и никаких других, так как алгебраическое уравнение  $w^n=r$  имеет ровно n корней.

## 2.2.5 Некоторые функции комплексной переменной

#### Комплексная экспонента

$$\exp z = e^z = e^x \cdot e^{iy} = e^x (\cos y + i \sin y); \ z = x + iy; \ x, y \in \mathbb{R}$$

Свойства:

- 1.  $e^{z+2\pi ki} = e^z 2\pi i$  периодичность
- 2.  $|e^z| = e^x = e^{Rez}$
- 3.  $e^{z_1+z_2} = e^{z_1} \cdot e^{z_2}$
- 4.  $e^{-z} = \frac{1}{e^z}$
- 5. Аналогично формулам Эйлера введём sin и соз комплексной переменной:

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

Аналогично вещественным тригонометрическим можем ввести  $tg\ z, ctg\ z,$  обратные тригонометрические и гиперболические функции комплексного переменного. Например:

$$ch z = \frac{e^z + e^{-z}}{2}$$

$$sh z = \frac{e^z - e^{-z}}{2}$$

Пусть  $Re\ z \in [a_1; a_2]$ , а  $Im\ z \in [b_1; b_2]$ , то есть z лежит внутри некого прямоугольника на комплексной плоскости. В какой области будет лежать  $\exp\ z$ ? Заметим, что модули итоговых чисел ограничены  $[e_1; e_2]$ , а аргументы  $[b_1; b_2]$ . Получается, что  $\exp\ z$  лежит в неком угловом секторе.

#### Логарифм комплексного числа

Пусть  $\ln z = w = x + iy$ , тогда

$$z = |z|e^{i(\arg z + 2\pi k)} = re^{i\varphi}$$
$$z = e^w = e^x e^{iy}$$

Получим, что  $|z| = e^x \in \mathbb{R}$ , то есть  $x = \ln |z|$ . А  $y = \arg z + 2\pi k$ .

Видим, что в формуле присутствует  $2\pi k$ , что говорит нам о многозначности логарифма комплексного числа. Приведём общую формулу:

$$\ln_k z = w = \ln|z| + i(\arg_0 z + 2\pi k) = \ln|z| + i \cdot \arg_k z; \ k \in \mathbb{Z}$$

Из этой формулы можем получить несколько небольших формул:

$$\ln_0 z = \ln|z| + i \cdot \arg_0 z$$

$$\ln_k z = \ln_0 z + 2\pi ki$$

 $\ln_0 z$  – главное значение логарифма

Из-за многозначности логарифма есть большая опасность неправильно воспользоваться им, например может быть, что  $\ln z_1 z_2 \neq \ln z_1 + \ln z_2$  или  $\ln z^k \neq k \ln z$ . Приведём пример подобной ошибки: Пусть  $\arg z \in [0; 2\pi), z_1 = -1, z_2 = -i, k = 0$ 

$$\ln_0 z_1 = \ln|-1| + i\arg_0{(-1)} = \ln 1 + \pi i$$
 (тут функция  $\ln 1$  — вещественная  $\Rightarrow$  равна нулю)

$$\ln_0 z_2 = \ln|-i| + i \arg_0 (-i) = \ln 1 + \frac{3\pi}{2}i$$

В сумме получилось  $\frac{5\pi}{2}i$ 

$$\ln_0 z_1 z_2 = \ln_0 i = \ln|i| + i \arg_0 i = \ln 1 + \frac{\pi}{2}i$$

## Комплексное число в натуральной степени

Пусть  $w=z^n=r^ne^{in\varphi}$ , где  $n\in\mathbb{N}$  Рассмотрим, во что перейдёт z, лежащий в угловом секторе при возведении в степень. Модуль числа будет возведён в степень n, а аргумент умножится на n. Если изначальный сектор был ограничен окружностями с радиусами  $a_1$  и  $a_2$ , а так же лучами с полярными углами  $b_1$  и  $b_2$ , то он перейдёт в другой угловой сектор, ограниченный окружностями с радиусами  $a_1^n$  и  $a_2^n$ , а так же лучами с полярными углами  $nb_1$  и  $nb_2$ .

#### Комплексное число в комплексной степени

Пусть  $k \in \mathbb{Z}$ ,  $b \in \mathbb{C}$  – константа

 $w=z^b=e^{b\ln_k z}$  — обобщённая степенная функция

 $w=b^z=e^{z\ln_k b}$  – обобщённая показательная функция

Заметим, что стандартные свойства натурального логарифма **не выполняются**. Например  $b^{z_1+z_2} \neq b^{z_1}b^{z_2}$ .

## 2.3 Линейные пространства.

## 2.3.1 Основные определения.

В этом разделе мы будем рассматривать линейные пространства над  $\mathbb C$  и иногда  $\mathbb R$ . Обозначать над чем мы будем K.

## Линейная оболочка, линейная независимость векторов.

Говорят, что вектор u является <u>линейной комбинацией</u> векторов  $(v_1; v_2; \dots; v_n)$ , если  $\exists \lambda_1; \lambda_2; \dots; \lambda_n \in K$ :

$$u = \sum_{i=1}^{n} \lambda_i \cdot v_i$$

Если все  $\lambda_k=0$ , то линейная комбинация называется **тривиальной** 

Система векторов  $v_1, \dots, v_m \in V$  называется <u>линейной независимой</u>, если любая нулевая линейная комбинация тривиальна  $\stackrel{def}{\Longleftrightarrow} \sum_{k=1}^m \lambda_k v_k = 0 \Leftrightarrow \forall k \in \{1, \dots, m\} : \lambda_k = 0$ 

В противном случае, система векторов называется <u>линейно зависимой</u>, т.е.  $\exists$  набор  $\lambda_1, \dots, \lambda_m$  не все нули таких, что  $\sum_{k=1}^m \lambda_k v_k = 0$ .

 $\mathrm{span}(v_1, v_2, \dots, v_n)$  это <u>линейная оболочка</u> векторов — множество всевозможных векторов, представимых через  $v_1, v_2, \dots, v_n$ .

## Теорема о линейно независимых системах векторов

## Теорема

- 1.  $v_1, \dots, v_m$  -линейно зависима  $\Leftrightarrow$  по крайней мере один из векторов это линейная комбинация остальных
- 2. Если некоторая подсистема системы векторов  $v_1, \ldots, v_m$  линейно зависима, то система векторов  $v_1, \ldots, v_m$  линейно зависима
- 3.  $v_1,\dots,v_m$  линейно независима  $v_1,\dots,v_{m+1}$  линейно зависима  $v_1,\dots,v_{m+1}$  линейно зависима  $v_1,\dots,v_m$

## Доказательство

1.  $\Longrightarrow v_1,\dots,v_m$  — линейно зависима, т.е.  $\exists$  нетривиальный набор  $\lambda_1,\dots,\lambda_m$  такой, что  $\sum\limits_{k=1}^m \lambda_k v_k = 0$ 

н.у.о. пусть 
$$\lambda_m \neq 0$$
, тогда  $\lambda_m v_m = -\sum\limits_{k=1}^{m-1} \lambda_k v_k$ 

$$v_m = \sum\limits_{k=1}^{m-1} \left(-rac{\lambda_k}{\lambda_m}
ight) v_k = \sum\limits_{k=1}^{m-1} \lambda_k' v_k \stackrel{def}{\Longleftrightarrow} v_m$$
 — линейная комбинация  $v_1,\dots,v_m$ 

$$\sqsubseteq$$
 н.у.о. пусть  $v_m = \sum\limits_{k=1}^{m-1} \lambda_k v_k$ , тогда  $\sum\limits_{k=1}^{m-1} \lambda_k v_k - v_m = 0$ 

$$\exists \lambda_1,\dots,\lambda_{m-1},\lambda_m \neq 0$$
 такой, что  $\sum\limits_{k=1}^m \lambda_k v_k = 0 \stackrel{def}{\Longleftrightarrow} v_1,\dots,v_m$  — линейно зависима — Q.E.D.

2. н.у.о. пусть  $v_1, \ldots, v_{m'}$  — линейно зависима m' < m, тогда

$$\exists$$
 нетривиальный набор  $\lambda_1,\dots,\lambda_{m'}:\sum\limits_{k=1}^{m'}\lambda_k v_k=0$ 

При  $\lambda_{m'+1}=0,\ldots,\lambda_m=0$ : набор  $\lambda_1,\ldots,\lambda_m$  — нетривиален

$$\Rightarrow \sum_{k=1}^{m} \lambda_k v_k = 0 \iff v_1, \dots, v_m$$
 — линейно зависима Q.E.D.

3.  $v_1, \ldots, v_m, v_{m+1}$  — линейно зависима  $\Rightarrow \exists$  нетривиальный набор  $\lambda_1, \ldots, \lambda_{m+1} : \sum_{k=1}^m \lambda_k v_k + \lambda_{m+1} v_{m+1} = 0$ 

Если  $\lambda_{m+1}=0$ , тогда набор  $\lambda_1,\ldots,\lambda_m$  — нетривиален и  $\sum\limits_{k=1}^m \lambda_k v_k=0 \iff v_1,\ldots,v_m$  — линейно зависима. Противоречие.

Иначе  $v_{m+1} = \sum\limits_{k=1}^m \left(-\frac{\lambda_k}{\lambda_{m+1}}\right) v_k = \sum\limits_{k=1}^m \lambda_k' v_k \iff v_{m+1}$  — линейная комбинация  $v_1,\dots,v_m$  Q.E.D.

#### Следствия:

- 1. Если система линейно независима, то любая подсистема линейно независима.
- 2. Если система содержит 0 вектор, либо пару пропорциональных векторов, то система линейно зависима.

#### Теорема о «прополке».

Любую систему векторов  $v_1, \ldots, v_m$ , в которой хотя бы один из векторов ненулевой, можно заменить на линейно независимую систему векторов  $v_{j_1}, \ldots, v_{j_k}$  с сохранением линейной оболочки.  $\operatorname{span}(v_1, \ldots, v_m) = \operatorname{span}(v_{j_1}, \ldots, v_{j_k})$ 

#### Доказательство:

$$\overline{\Pi \text{усть } s_0 = 0, s_1} = \text{span}(v_1), \dots, s_m = \text{span}(v_1, \dots, v_m)$$

Тогда 
$$s_0 \subset s_1 \subset \ldots \subset s_m \subset V$$
.

Идём от j=m до j=2.

Если  $s_{j-1} = s_j$ , то  $v_j$  удаляем. При этом  $\mathrm{span}(v_1, \ldots, v_j) = \mathrm{span}(v_1, \ldots, v_{j-1})$  сохраняется.

Если  $s_{j-1}\subset s_j$ , то  $v_j\notin s_{j-1}$ , т.е.  $v_j$  — не является линейной комбинацией  $v_1,\ldots,v_{j-1}$ .

Продолжая так делать, получим, что никакой вектор из полученных не является линейной комбинацией других, то есть итоговое подмножество линейно независимо. В результате получается цепочка строго вложенных подмножеств  $s_0 \subset s_{j_1} \subset \ldots \subset s_{j_k} \subset s_m \subset V$ 

$$\Rightarrow s_m = \operatorname{span}(v_{i_1}, \dots, v_{i_k})$$
 Q.E.D.

# 2.3.2 Порождающая (полная) система векторов. Базис и размерность линейного пространства

Система векторов  $v_1, \ldots, v_m \in V$  называется порождающей (полной), если любой вектор линейного пространства V раскладывается по этим векторам, т.е. является линейной комбинацией  $v_1, \ldots, v_m$ .  $V = \operatorname{span}(v_1, \ldots, v_m)$ 

Если число  $v_1, \ldots, v_m$  конечно, то линейное пространство называется конечномерным.

#### Теорема

Следующие утверждения равносильны:

- 1.  $v_1, \ldots, v_n \in V$  линейно независимая и порождающаяся система
- 2.  $v_1, \ldots, v_n \in V$  линейно независимая система и максимальная по числу элементов
- 3.  $v_1, \ldots, v_n \in V$  порождающая система и минимальная по числу элементов

#### Доказательство

 $\boxed{1\Rightarrow 2}\;v_1,\ldots,v_n$  — линейно независимая и порождающая система

Пусть  $u_1, \ldots, u_m$  — линейно независима

Тогда  $\forall u \in V : v_1, \dots v_n, u$  — линейно зависима, т.к.  $v_1, \dots, v_n$  — порождающая система, то u — линейная комбинация  $v_1, \dots, v_n$ , или  $\mathrm{span}(v_1, \dots, v_n, u) = V$ 

$$\underbrace{u_m,v_1,\ldots,v_n}_{\text{линейно зависима}} \xrightarrow{\text{прополка}} \underbrace{u_m,v_1,\ldots}_{\text{линейно независима}} \times \underbrace{u_m,v_1,\ldots}_{\text{линейно независима}} \times \underbrace{v_m,v_1,\ldots}_{\text{линейно независима}} \times$$

$$\underbrace{u_1,\ldots,u_m,v_1,\ldots}_{\leq n}$$
—линейно независима  $\Rightarrow m \leq n$ 

 $\boxed{2\Rightarrow 1}$   $v_1,\ldots,v_m$  — линейно независимая система и максимальная по числу элементов

$$\forall v \in V: egin{aligned} v_1, \dots, v_n - \text{линейно независима} \\ v_1, \dots, v_n, v - \text{линейно зависима} \end{aligned} \Rightarrow v = \sum_{k=1}^n \lambda_k v_k \Rightarrow v_1, \dots, v_n - \text{порождающая}$$

 $\boxed{1\Rightarrow 3}$   $v_1,\ldots,v_n\in V$  — линейно независимая и порождающаяся система

Пусть  $u_1, \ldots, u_m$  – порождающая система

$$\mathrm{span}(u_1,\ldots,u_m)=V$$

 $\forall v \in V : u_1, \dots, u_m, v$  — линейно зависима

$$v_n, u_1, \dots, u_m$$
 линейно зависима  $v_n, u_1, \dots$  линейно независима  $v_n, u_1, \dots = V$   $v_n, u_1, \dots$   $v_n, u_1, \dots$   $v_n, u_1, \dots$   $v_n, u_1, \dots$  линейно зависима  $v_n, u_1, \dots$  линейно независима  $v_n, u_1, \dots$  линейно независима  $v_n, u_1, \dots$  линейно независима  $v_n, u_1, \dots$   $v_n, u$ 

$$\underbrace{v_1,\ldots,v_n,u,\ldots}_{n\leq m}$$
—линейно независима  $\Rightarrow n\leq m$ 

 $3 \Rightarrow 1$ 

 $v_1,\ldots,v_n$  — порождающая система и минимальная по числу элементов

Пусть  $v_1, \ldots, v_n$  — линейно зависима

Тогда  $\exists v$  — линейная комбинация остальных  $\Rightarrow$  можно сделать прополку

 $v_1, \dots, v_n \xrightarrow{\text{прополка}} v_{j_1}, \dots, v_{j_k}$  — порождающую систему с меньшим числом элементов (при прополке хотя бы один вектор уйдёт)

Но это противоречит тому, что  $v_1, \ldots, v_n$  — минимальная по числу элементов  $\Rightarrow v_1, \ldots, v_n$  — линейно независимая

Q.E.D.

Если система  $v_1, \ldots, v_n \in V$  удовлетворяет условиям теоремы, то она называется <u>базисом</u> пространства V.

Количество векторов  $n = \dim V = \underline{\text{размерность линейного пространства}} = \max$  возможное число линейно независимых векторов =  $\min$  число в порождающей системе векторов

#### Теорема

- $1. \ \forall$  линейно независимую систему векторов в V можно дополнить до базиса пространства V
- 2. из любой порождающей системы пространства V можно выделить базис пространства V

#### Доказательство

1. Пусть  $v_1, \ldots, v_m$  — линейно независимая система

Если 
$$\operatorname{span}(v_1,\ldots,v_m)=V$$
, то  $v_1,\ldots,v_m$  — базис

Если 
$$\operatorname{span}(v_1,\ldots,v_m)\subset V$$
, то  $\exists v_{m+1}\neq 0\in V$  и  $v_{m+1}\notin \operatorname{span}(v_1,\ldots,v_m)$ 

- $\Rightarrow v_{m+1}$  не линейная комбинация остальных векторов
- $\Rightarrow v_1, \dots, v_{m+1}$  линейно независимая система

Повторяем рассуждения для  $v_1, \ldots, v_{m+1}$ 

В итоге получаем  $v_1, \ldots, v_n$  — линейно независимая система максимальная по числу элементов  $\Rightarrow v_1, \ldots, v_n$  — базис

2.  $\operatorname{span}(v_1,\ldots,v_m)=V$ , где  $v_1,\ldots,v_m$  — порождающая система

Если  $v_1,\dots,v_m$  — линейно независимая система  $\Rightarrow v_1,\dots,v_m$  — базис

Если  $v_1, \ldots, v_m$  — линейно зависимая система, то

$$v_1,\dots,v_m \xrightarrow{\text{прополка}} v_{j_1},\dots,v_{j_n}$$
 линейно независимая система порождающая система 
$$\underset{\text{span}(v_{j_1},\dots,v_{j_n})=V}{n \leq m}$$

$$\Rightarrow v_{j_1}, \dots, v_{j_n}$$
 - базис

Q.E.D.

## 2.3.3 Координаты вектора. Изоморфизм линейного пространства

V — линейное пространство над полем  $K(\mathbb{R},\mathbb{C})$ . dim V=n

$$\forall x \in V : x = \sum_{i=1}^{n} \mathbf{x}_{i} e_{i}$$
, где  $e = (e_{1}, \dots, e_{n})$  — базис в  $V$  (порождающая система)

 $\mathbf{x}_i \in K$  — координаты вектора x относительно базиса e

$$x\in V\longrightarrow \mathbf{x}=egin{pmatrix}\mathbf{x}_1\ dots\ \mathbf{x}_n\end{pmatrix}\in K^n$$
, где  $egin{pmatrix}\mathbf{x}_1\ dots\ \mathbf{x}_n\end{pmatrix}$  — координатный столбец

## Утверждение

 $\forall x \in V$  координаты относительно базиса e определяются единственным образом

#### Доказательство

e базис  $\Leftrightarrow$  порождающая линейно независимая система.

 $e_1,\dots,e_n\Rightarrow$  порождающая система, т.е. x раскладывается на координаты

Пусть 
$$x = \sum_{i=1}^{n} \mathbf{x}_i e_i = \sum \mathbf{x}'_i e_i$$

 $\sum\limits_{i=1}^n (\mathbf{x}_i - \mathbf{x}_i') e_i = 0$  — нулевая линейная комбинация линейно независимых векторов  $\Leftrightarrow \forall i=1\dots n: \mathbf{x}_i - \mathbf{x}_i' = 0$ 

Q.E.D.

$$x \in V \stackrel{e}{\longleftrightarrow} \mathbf{x} \in K^n$$

взаимно однозначное соответствие (биекция)

 $V_1, V_2$  — линейные пространства над одним и тем же полем K называются изоморфными ( $V_1 \cong V_2$ ), если между  $V_1$  и  $V_2$  существует биекция и сохраняется линейность, т.е.

$$x \in V_1 \longleftrightarrow x' \in V_2$$
$$y \in V_1 \longleftrightarrow y' \in V_2$$
$$\forall \lambda \in K : x + \lambda y \in V_1 \longleftrightarrow x' + \lambda y' \in V_2$$

#### Свойства изоморфизма

1.  $0 \in V \longrightarrow 0' \in V'$ 

#### Доказательство:

$$\forall \lambda \in K : \lambda x \longleftrightarrow \lambda x'$$

Пусть 
$$\lambda = 0$$
, тогда  $0 = 0 \cdot x \longleftrightarrow 0 \cdot x' = 0'$  Q.E.D.

 $2. \ \forall x \in V \longleftrightarrow x' \in V'$ 

 $-x \in V$  — противоположный элемент к x

 $-x' \in V$  — противоположный элемент к x'

$$\Rightarrow -x \longleftrightarrow -x'$$

#### Доказательство:

$$\forall \lambda \in K : \lambda x \longleftrightarrow \lambda x'$$

Пусть 
$$\lambda = -1$$
, тогда  $-x = -1 \cdot x \longleftrightarrow -1 \cdot x' = -x'$  Q.E.D.

3.  $x_1, \ldots, x_m \in V; x'_1 \ldots x'_m \in V'$ 

$$\forall k = 1 \dots m : x_k \longleftrightarrow x'_k$$

$$\Rightarrow \sum_{k=1}^{m} \alpha_k x_k \in V \longleftrightarrow \sum_{k=1}^{m} \alpha_k x_k' \in V'$$

#### Доказательство:

По методу математической индукции

Q.E.D.

4. 
$$x_1, \dots, x_m \in V \longleftrightarrow x'_1, \dots, x'_m \in V'$$
 линейно независимы

#### Доказательство:

$$\alpha_k \in K$$

$$\sum_{k=1}^{m} \alpha_k x_k = 0 \longleftrightarrow \sum_{k=1}^{m} \alpha_k x_k' = 0'$$

т.к. 
$$\sum_{k=1}^{m} \alpha_k x_k \longleftrightarrow \sum_{k=1}^{m} \alpha_k x_k'$$
 (3 свойство) и  $0 \in V \longleftrightarrow 0' \in V'$  (1 свойство)

$$\underbrace{x_1,\ldots,x_m}_{\text{линейно независимы}} \in V \Leftrightarrow \forall k=1\ldots m: \alpha_k=0 \Leftrightarrow \underbrace{x_1',\ldots,x_m'}_{\text{линейно независимы}} \in V'$$
 Q.E.D.

5. 
$$x_1, \dots, x_m \in V \longleftrightarrow x'_1, \dots, x'_m \in V'$$
 порождающая система

$$x_1,\dots,x_m\in V$$
 — порождающая система  $\Leftrightarrow \forall x\in V: x=\sum\limits_{k=1}^m \alpha_k x_k$ 

$$\forall x \in V : x = \sum_{k=1}^{m} \alpha_k x_k \longleftrightarrow \forall x' \in V' : x' = \sum_{k=1}^{m} \alpha_k x'_k$$

т.к. 
$$\sum\limits_{k=1}^m \alpha_k x_k \longleftrightarrow \sum\limits_{k=1}^m \alpha_k x_k'$$
 (3 свойство) и  $x \longleftrightarrow x'$ 

$$\forall x' \in V' : x' = \sum_{k=1}^{m} \alpha_k x_k' \Leftrightarrow x_1', \dots, x_m'$$
 — порождающая система Q.E.D.

6. 
$$e_1, \dots, e_n \longleftrightarrow e'_1, \dots, e'_n$$

#### Доказательство:

Из свойств 4 и 5 мы знаем, что если система векторов линейно независима и порождающая, то есть это базис. Q.E.D.

#### Теорема

 $V_1, V_2$  — линейные пространства над полем K

$$V_1 \cong V_2 \Leftrightarrow \dim V_1 = \dim V_2$$

#### Доказательство

$$otin U_1 = \dim V_2 \Rightarrow e_1, \dots, e_n -$$
базис в  $V_1$  и  $e'_1, \dots, e'_n -$ базис в  $V_2$ 

Построим изоморфизм из  $V_1$  в  $V_2$ 

$$x = \sum_{i=1}^{n} \mathbf{x}_{i} e_{i} \in V_{1} \longleftrightarrow \mathbf{x} = \begin{pmatrix} \mathbf{x}_{1} \\ \vdots \\ \mathbf{x}_{n} \end{pmatrix} \in K^{n} \longleftrightarrow x' = \sum_{i=1}^{n} \mathbf{x}_{i} e'_{i} \in V_{2}$$

$$x \in V_1 \overset{\text{координатный}}{\longleftrightarrow} \mathbf{x} \in K^n \overset{\text{координатный}}{\longleftrightarrow} x' \in V_2$$

Проверим линейность  $\forall \lambda \in K$ 

$$x + \lambda y \longleftrightarrow \sum_{i=1}^{n} \mathbf{x}_{i} e_{i} + \lambda \sum_{i=1}^{n} \mathbf{y}_{i} e_{i} = \sum_{i=1}^{n} (\mathbf{x}_{i} + \lambda \mathbf{y}_{i}) e_{i} \longleftrightarrow \begin{pmatrix} \mathbf{x}_{1} + \lambda \mathbf{y}_{1} \\ \vdots \\ \mathbf{x}_{n} + \lambda \mathbf{y}_{n} \end{pmatrix} \longleftrightarrow \sum_{i=1}^{n} (\mathbf{x}_{i} + \lambda \mathbf{y}_{i}) e'_{i} = \sum_{i=1}^{n} \mathbf{x}_{i} e'_{i} + \lambda \sum_{i=1}^{n} \mathbf{y}_{i} e'_{i} = e'_{i} \longleftrightarrow x' + \lambda y'$$

$$x + \lambda y \longleftrightarrow x' + \lambda y'$$

Биекция сохраняет свойство линейности ⇔ изоморфизм

 $\Longrightarrow$  Если  $V_1\cong V_2$ , то из 6 свойства изоморфизма мы знаем, что существует биекция между базисами этих систем  $\Rightarrow$  dim  $V_1=\dim V_2$ 

Q.E.D.

#### Следствие

Изоморфизм конечномерных пространств — отношение эквивалентности на множестве линейных конечномерных пространств

$$V_1 \sim V_2 \Leftrightarrow V_1 \cong V_2$$

#### Доказательство

1. рефлексивность

$$V_1 \sim V_1$$
, т.к.  $id_{V_1}$  — изоморфизм

2. симметричность

$$V_1 \sim V_2 \Rightarrow V_2 \sim V_1$$
, т.к.  $\dim V_1 = \dim V_2$  по теореме выше

3. транзитивность

$$\begin{cases} V_1 \sim V_2 \\ V_2 \sim V_3 \end{cases} \Rightarrow V_1 \sim V_3$$

по теореме выше

$$\dim V_1 = \dim V_2 \atop \dim V_2 = \dim V_3$$
  $\Rightarrow$   $\dim V_1 = \dim V_3$ 

Q.E.D.

## 2.3.4 Линейное подпространство. Ранг системы векторов

 $L \subset V$  (подмножество), если L удовлетворяет 1-8 аксиомам линейного пространства над полем K относительно  $+, \cdot \lambda$ , то L называется линейным подпространством пространства V.

Теорема (критерий линейного подпространства)

L — линейное подпространство  $V \Leftrightarrow \forall x,y \in L \subset V \ \forall \lambda \in K : x + \lambda y \in L$ 

(L замкнуто относительно  $+, \cdot \lambda$ )

#### Доказательство

 $\implies$  т.к.  $L \subset V$  и выполняются 1-8 аксиомы

 $\leftarrow$  т.к.  $L \subset V$  выполнены все аксиомы кроме 3 и 4

Пусть  $x \in L \subset V$ , тогда  $x + (-1) \cdot x \in L \Rightarrow o \in L \Rightarrow \exists$  нейтральный элемент в L

Пусть  $x=0\in L, y\in L\Rightarrow 0+(-1)\cdot y=-y\in L\Rightarrow \exists$  противоположный элемент

 $\Rightarrow$  для L выполнены 1-8 аксиомы линейного пространства

Q.E.D.

#### Замечания

- 1.  $L \subset V \Rightarrow 0 \in L$
- 2.  $\dim L \leq \dim V$

Ранг системы векторов  $\stackrel{def}{\Longleftrightarrow} \dim(\operatorname{span}(v_1,\ldots,v_m)) = r = \operatorname{rg}(v_1,\ldots,v_m)$ 

r — число тах линейно независимых векторов в  $L = \mathrm{span}(v_1, \dots, v_m)$ 

по теореме о «прополке»:  $\mathrm{span}(v_1,\dots,v_m)=\mathrm{span}(v_{j_1},\dots,v_{j_r})$  — линейно независимы

 $v_{j_1},\dots,v_{j_r}$  базис  $\mathrm{span}(v_1,\dots,v_m)$  — база системы векторов  $v_1,\dots,v_m$ 

## Элементарные преобразования системы векторов:

- 1. удаление/добавление нулевого вектора
- 2. изменение порядка векторов
- 3. замена любого векторов на него же, умноженный на скаляр  $(\lambda \in K, \lambda \neq 0 : v_i \to \lambda v_i)$
- 4. замена любого из векторов на его сумму с любым другим вектором системы  $(v_i \to v_i + v_k)$

#### Теорема

 $\operatorname{rg}(v_1,\ldots,v_m)$  не меняется при элементарных преобразованиях

#### Доказательство:

- 1. Заметим, что добавление/удаление нулевого вектора никак не влияет на span, то есть на ранг.
- 2. Заметим, что при перестановке у нас просто меняется порядок в разложении через эти вектора.

- 3. Возьмем и умножим соответствующее  $\alpha_i$  в разложении вектора на  $\frac{1}{\lambda}$ . Заметим, что «новых» векторов в span не добавится, и старые вектора все останутся
- 4. . . .  $+a_jv_j+\ldots+a_kv_k+\ldots=\ldots+a_j(v_j+v_k)+\ldots+(a_k-a_j)v_k+\ldots$  Аналогично рассуждениям из прошлого пункта получим требуемое

Q.E.D.

## **2.3.5** $L_1 + L_2, L_1 \cap L_2$ , формула Грассмана, $L_1 \oplus L_2$ (прямая сумма)

 $L_1, L_2 \in V$  — линейные подпространства пространства V

$$L_1 + L_2 = \{x_1 + x_2 \in V : x_1 \in L_1, x_2 \in L_2\}$$

$$L_1 \cap L_2 = \{x \in V : x \in L_1, x \in L_2\}$$

#### Лемма:

Сумма и пересечение тоже линейные подпространства.

#### Доказательство:

См. критерий линейного подпространства.

Q.E.D.

#### Теорема (формула Грассмана)

 $L_1, L_2 \in V$  — линейные подпространства пространства V

$$\dim(L_1 + L_2) = \dim(L_1) + \dim(L_2) - \dim(L_1 \cap L_2)$$

#### Доказательство:

1.  $\dim(L_1 \cap L_2) = 0$ 

 $L_1 \cap L_2 = \{0\}$ . А что это значит? Что мы должны доказать немного другую формулу:  $\dim(L_1 + L_2) = \dim(L_1) + \dim(L_2)$ 

Возьмём  $v_1, \ldots, v_n$  — базис  $L_1$ .

Возьмём  $f_1, \ldots, f_m$  — базис  $L_2$ .

Докажем, что  $v_1,\ldots,v_n,f_1,\ldots,f_m$  — базис для  $L_1+L_2$ .

• Докажем линейную независимость. От противного. Пусть лин. зависимо, тогда напишем нетривиальную линейную комбинацию:

$$\sum_{i=1}^{n} \alpha_i v_i + \sum_{i=1}^{m} \alpha_{i+m} f_i = 0 \Rightarrow \sum_{i=1}^{n} \alpha_i v_i = \sum_{i=1}^{m} -\alpha_{i+m} f_i, \quad L_1 \cap L_2 = \{0\} \Rightarrow \sum_{i=1}^{n} \alpha_i v_i + \sum_{i=1}^{m} \alpha_i v_i = \sum_{i=1}^{m} -\alpha_{i+m} f_i, \quad L_1 \cap L_2 = \{0\} \Rightarrow \sum_{i=1}^{m} \alpha_i v_i = \sum_{i=1}^{m} -\alpha_{i+m} f_i$$

$$\Rightarrow \sum_{i=1}^{n} \alpha_{i} \underbrace{v_{i}}_{\text{basis}} = 0 = \sum_{i=1}^{n} -\alpha_{i+m} \underbrace{f_{i}}_{\text{basis}} \Leftrightarrow \forall i : \alpha_{i} = 0$$

• Докажем порождаемость. Любой элемент суммы раскладывается (по определению) на элемент из  $L_1$  и элемент из  $L_2$ . Откуда получили то, что нам надо.

Формула доказана!

2.  $\dim(L_1 \cap L_2) \neq 0$  Откуда возьмём базис пересечения:  $e_1, \ldots e_k$ .

По теореме о дополнении до базиса, т.к.  $e_1, \dots e_k$  лежит в  $L_1$  и линейно независимо, то можно дополнить до базиса  $L_1$ , получим:  $e_1, \dots e_k, v_1, \dots v_{n-k}$  — базис  $L_1$ .

Аналогично сделаем со вторым пространством и получим: $e_1, \ldots e_k, f_1, \ldots f_{m-k}$  — базис  $L_2$ .

Теперь докажем, что  $e_1, \ldots, e_k, v_1, \ldots, v_{n-k}, f_1, \ldots, f_{m-k}$  — базис суммы.

• Докажем линейную независимость. От противного. Пусть лин. зависимо, тогда напишем нетривиальную линейную комбинацию:

$$\sum_{i=1}^{n-k} \alpha_i v_i + \sum_{i=1}^k \alpha_{n-k+i} e_i + \sum_{i=1}^{m-k} \alpha_{n+i} f_i = 0$$

$$\sum_{i=1}^{n-k} \alpha_i v_i + \sum_{i=1}^k \alpha_{n-k+i} e_i = -\sum_{i=1}^{m-k} \alpha_{n+i} f_i \Rightarrow \in L_1 \cap L_2$$

Перенесем в другую сторону и получим, что с одной стороны у нас есть v из  $L_1$ , с другой стороны он у нас из  $L_2$ . Откуда левая сумма раскладывается по векторам из  $e_1$  (так как он лежит в пересечении).

$$\sum_{i=1}^{n-k} \alpha_i v_i + \sum_{i=1}^{k} \alpha_{n-k+i} e_i = \sum_{i=1}^{k} \beta_i e_i$$

Перенесу налево, должна получиться линейная комбинация равная нулю, а такая из-за линейной независимости может быть только тривиальной, откуда  $\alpha_j$  при  $v_j$  равны 0, следовательно  $\alpha_j$  при всех  $f_j$  и  $e_k$ , т.к. это базис  $L_2$ :

$$\sum_{i=1}^{m-k} \alpha_{n+i} f_i + \sum_{i=1}^{k} \alpha_{n-k+i} e_i = 0$$

Откуда линейно независима.

• Докажем порождаемость. Любой элемент суммы раскладывается (по определению) на элемент из  $L_1$  и элемент из  $L_2$ . Откуда разложим на базисы  $L_1, L_2$  (которые указаны выше). Сложим их и получили, что данный элемент это линейная комбинация. Откуда порождаема.

Тогда  $\dim(L_1 + L_2) = n + m - k$ .

Q.E.D.

 $L_1,\ldots,L_m\subset V$  называются дизъюнктными, если  $x_1+\cdots+x_n=0$ , где  $x_i\in L_i, i=1\ldots m\Leftrightarrow \forall i=1\ldots m: x_i=0$ 

 $L_1+\cdots+L_m$  называется прямой суммой, если  $L_1,\ldots,L_m$  — дизъюнктны.

 $L_1 \oplus L_2 \oplus \ldots \oplus L_m$  — прямая сумма линейных подпространств.

#### Теорема

$$L = L_1 + \dots + L_m = \sum_{k=1}^m L_k, L_k \subset V$$

$$L = \bigoplus_{k=1}^m L_k \Leftrightarrow$$
 выполнению любого из 3-х утверждений

- 1.  $\forall j = 1 \dots m : L_j \cap \sum_{k \neq j} L_k = \{0\}$
- 2. базис L = объединение базисов  $L_k$
- 3.  $\forall x \in L : \exists ! x_k \in L_k : x = \sum x_k$  (единственность представления элемента суммы)

## Доказательство:

- 1. Давайте сначала докажем из определения дизъюнктности первый пункт.
- $\Longrightarrow$  Мы знаем, что  $v_1+v_2+\cdots+v_m=0$  возможно только если каждый из векторов 0. Рассмотрим  $v \in L_i \cap \sum_{j=1}^m L_j$ . Он, как несложно заметить, лежит в  $L_i$ , поэтому может быть

записан как  $v_i$ . С другой стороны,  $v\in\sum\limits_{\substack{j=1\\j\neq i}}^mL_j$ , что значит, что его можно записать как сумму  $\sum\limits_{\substack{j=1\\j\neq i}}^mv_j$ . А это значит, что  $-v_i+\sum\limits_{\substack{j=1\\j\neq i}}^mv_j=\emptyset$ . По причине дизъюнктности, все слагаемые тут —  $\sum\limits_{\substack{j=1\\j\neq i}}^mv_j$ 

 $\mathbb{O}$ . А значит  $-v_i=\mathbb{O} \Rightarrow v=\mathbb{O}$ . То есть любой  $v\in L_i\cap\sum_{\substack{j=1\\i\neq i}}^m L_j$  является  $\mathbb{O}$ , что и требовалось доказать.

Мы знаем, что  $\forall i \in [1:m]$   $L_1 \cap \sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j = \{\emptyset\}$ . Хочется доказать, что  $v_1 + v_2 + \cdots + v_m = \emptyset \Leftrightarrow \forall i \in [1:m]$   $v_i = \emptyset$ . Заметим, что  $v_1 + v_2 + \cdots + v_m = \emptyset \Leftrightarrow \sum\limits_{\substack{j=1 \\ j \neq i}}^m v_j = -v_i$ . Правая часть лежит в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $L_i$ . Это значит, что обе части лежат в их пересечении, а там  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}^m L_j$ , а левая — в  $\sum\limits_{\substack{j=1 \\ j \neq i}}$ 

лежит только  $\emptyset$ . Значит  $v_i=\emptyset$ . То же самое можно провести для любого i, получив, что все  $v_i$  — нули. Что и требовалось доказать.

2. Теперь давайте докажем из определения дизъюнктности второй пункт.

Мы знаем, что  $v_1, \ldots, v_m = 0$  возможно только если каждый из векторов — 0. Рассмотрим базисы  $L_i$ . Возьмем все эти базисы. Очевидно они будут порождать нашу сумму. Теперь докажем линейную независимость.

Рассмотрим нулевую линейную комбинацию объединения базисов  $L_i$ :

$$\sum \beta_j e_i^i + \ldots + \sum \beta_{f_k} e_{j_k}^k$$

где 
$$v_j = \sum \beta_j e_i^j \in L_j$$
.

Дизъюнктны  $\Leftrightarrow \forall j: v_j = \emptyset \Leftrightarrow \forall j: \beta_{i_j} = 0$  т.к.  $e_{i_j}^j$  базис  $L_j \Leftrightarrow$  объединение базисов линейно независимо.

3.  $\exists x_k$ , очевидно. Докажем единственность. Пусть  $x = \sum x_k = \sum x_k' \Rightarrow \sum (x_k - x_k') = \emptyset$   $\Longrightarrow$   $\forall k: x_k - x_k' = \emptyset$ 

Q.E.D.

#### Следствие

$$L = L_1 \oplus \ldots \oplus L_m \Leftrightarrow \dim L = \sum_{i=1}^m \dim L_i$$

#### Доказательство

Из п. 2.

Q.E.D.

$$V = \bigoplus_{i=1}^{m} L_i \Rightarrow \forall x \in V : \exists ! x_i \in L_i : x = \sum_{i=1}^{m} x_i$$

 $x_i$  — проекция элемента x на подпространство  $L_i$  параллельно  $\sum_{j\neq i} L_j$ .

Если  $V = L_1 \oplus L_2$ ,  $L_1$  — прямое дополнение  $L_2$  и наоборот.

Если  $L \subset V$ , то всегда  $\exists L' \subset V : V = L \oplus L'$  (L' выбирается неоднозначно).

<u>Линейным</u> (аффинным) многообразием называется множество точек пространства  $V: P = \{x \in V: x = x_0 + l, l \in L\}$ , где  $L \subset V, x_0 \in V$  (сдвинутое линейное подпространство). Обозначается как  $P = x_0 + L$ .

Размерность линейного многообразия  $\stackrel{def}{\Longleftrightarrow} \dim P = \dim L$ 

#### Теорема

 $P_1 = x_1 + L_1; P_2 = x_2 + L_2,$  где  $L_1, L_2 \subset V$  — линейные подпространства,  $x_1, x_2 \in V$ 

$$P_1 = P_2 \Leftrightarrow \begin{cases} L_1 = L_2 = L \\ x_1 - x_2 \in L \end{cases}$$

Доказательство:

Так как  $x_1-x_2\in L=L_2, l_1\in L=L_2$ . Откуда  $P_1\subset P_2$ . Аналогично  $P_2\subset P_1$ , откуда получили искомое  $\Longrightarrow$  Посмотрим на  $x_1+0$ . Он лежит в  $P_1$ , откуда есть ему эквивалентный  $x_2+l_2$ из  $P_2$ , исходя из того, что  $P_1=P_2$ . Тогда  $x_1-x_2$  лежит в  $L_2$ .

Посмотрим на  $x_2 + 0$ . Он лежит в  $P_2$ , откуда есть ему эквивалентный  $x_1 + l_1$ из  $P_1$ , исходя из того, что  $P_1 = P_2$ . Тогда  $x_1 - x_2$  лежит в  $L_1$ . Откуда он лежит в пересечении.

Теперь рассмотрим любое  $l_2 \in L_2$ . Ему соответсвует элемент, как  $x_2 + l_2$ , с другой стороны это  $x_1 + l_1$ . Тогда  $x_1 - x_2 + l_1 = l_2$ . Откуда любой  $l_2$  содержится в  $l_1$ . То есть  $L_2 \subset L_1$ . Аналогично,  $L_1 \subset L_2$ , откуда получили то, что нам надо.

Q.E.D.

#### Следствие

$$P = x_0 + L$$

$$\forall x \in P \Rightarrow P_x = x + L = P$$

#### Доказательство

- 1. L = L
- 2.  $x x_0 \in L$

Q.E.D.

## 2.3.6 Фактор пространство лин. пространства

Пусть у нас есть линейное подпространство L. Тогда отношение  $x \sim y \Leftrightarrow x - y \in L$  является отношением эквивалентности, для любых векторов из V.

**Факториространство** пространства V по модулю линейного подпространства  $L \ V|_L -$  это факториножество V по отношению эквивалентности  $\sim$  из предыдущего утверждения.

**Теорема**  $V|_L$  состоит из линейных многообразий на L.

#### Доказательство:

Если  $x-y \in L$ , то линейные многообразия x+L и y+L по одной из теорем ранее совпадают. То есть эквивалентные элементы порождают одинаковые многообразия.

Q.E.D.

## Теорема

$$\dim V\big|_L = \dim V - \dim L.$$

#### Доказательство:

Пусть  $\{e_1;e_2;\dots;e_m\}$  — базис L. Дополним его до базиса V векторами  $\{f_1;f_2;\dots;f_{n-m}\}$ . Хочется доказать, что  $\{f_1+L;f_2+L;\dots;f_{n-m}+L\}$  — базис  $V\big|_L$ . Докажем, что эта система порождающая. Нужно породить v+L. v раскладывается по базису  $\{e_1;e_2;\dots;e_m;f_1;f_2;\dots;f_{n-m}\}$  как  $v=\sum_{i=1}^m\alpha_ie_i+\sum_{i=1}^{n-m}\beta_if_i$ . Первая сумма лежит в L, то есть её можно выкинуть, многообразие останется таким же. А значит v+L можно представить как  $\sum_{i=1}^{n-m}\beta_i(f_i+L)$ , ведь по определению суммы многообразий это  $\binom{n-m}{i=1}\beta_if_i+L$ . Теперь докажем линейную независимость. Рассмотрим нулевую линейную комбинацию  $\sum_{i=1}^{n-m}\beta_i(f_i+L)$ . Она, как мы уже знаем, равна  $\binom{n-m}{i=1}\beta_if_i+L$ . Это должно быть равно нейтральному элементу (то есть L). Когда эти линейные многообразия равны? Когда  $\sum_{i=1}^{n-m}\beta_if_i\in L$ . То есть  $\sum_{i=1}^{n-m}\beta_if_i-\sum_{i=1}^m\alpha_ie_i=0$ . Но это же линейная комбинация векторов

подсистемы  $\{e_1; e_2; \dots; e_m; f_1; f_2; \dots; f_{n-m}\}$ , а значит она линейно независима. А значит  $\forall i \in [1:n-m]$   $\beta_i = 0$ , что значит, что линейная комбинация  $\sum_{i=1}^{n-m} \beta_i(f_i + L)$  тривиальна.

Q.E.D.

## 2.4 Матрицы

#### 2.4.1 Основные понятия

<u>def:</u> Матрица — множество некоторых объектов (элементов), записанных в виде таблицы (не обязательно числа).

$$A = (a_{ij})_{m \times n} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$

m — число строк n — число столбцов "Матрица размерности m на n".

Матрица, где  $\forall i, j \ a_{ij} \in \mathbb{R}(\mathbb{C})$  — числовая (вещественная/комплексная).

$$A=ig(A_1 \ \dots \ A_mig)$$
— столбцовый вид записи.  $A_j$ — столбец матрицы.  $A_j=egin{pmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{pmatrix}\in\mathbb{R}^m(\mathbb{C}^m)$ 

$$A=egin{pmatrix} S_1 \ dots \ S_m \end{pmatrix}$$
 — строчный вид записи.  $S_i$  — строка матрицы.  $S_i=ig(a_{i1} \ \ldots \ a_{in}ig)\in \mathbb{R}_n(\mathbb{C}_n)$ 

$$span(A_1,\ldots,A_n) \subset \mathbb{R}^m(\mathbb{C}^m)$$

Если m = n, матрица называется **квадратной**.

$$A = \begin{pmatrix} a_{11} & * & * \\ * & \ddots & * \\ * & * & a_{nn} \end{pmatrix}$$
 — главная диагональ.

$$A = \begin{pmatrix} * & * & a_{1n} \\ * & \ddots & * \\ a_{n1} & * & * \end{pmatrix}$$
 — побочная диагональ.

$$\forall i \neq j \quad a_{ij} = 0$$
  $\begin{pmatrix} a_{11} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & a_{nn} \end{pmatrix} = \begin{pmatrix} \alpha_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \alpha_n \end{pmatrix} = diag(\alpha_1, \dots \alpha_n) - \underline{\mathbf{g}}$  матри-

 $E=diag(lpha_1,\dotslpha_n), orall i\ lpha_i=1$  — единичная матрица.

$$\mathbb{O} = diag(0, \dots, 0) -$$
**нулевая** матрица.

$$\forall A_{n \times n} \quad tr(A) = \sum_{i=1}^{n} a_{ii} -$$
след матрицы (от англ. trace)

$$\begin{pmatrix} a_{11} & * & * \\ 0 & \ddots & * \\ 0 & 0 & a_{nn} \end{pmatrix}$$
 — верхнетреугольная матрица.

2.4. МАТРИЦЫ 69

$$\begin{pmatrix} a_{11} & 0 & 0 \\ * & \ddots & 0 \\ * & * & a_{nn} \end{pmatrix}$$
 — нижнетреугольная матрица.

## 2.4.2 Основные операции с матрицами

 $a_{ij} \in \mathbb{K}$ 

 $A_{m \times n}, B_{m \times n}$ 

 $\underline{\mathbf{def:}}\ C = A + B = (c_{ij}) \quad \forall i, j\ c_{ij} = a_{ij} + b_{ij}$ 

'+' — сложение матриц (одной размерности)

 $\mathbb{O}$  — нейтральный элемент относительно сложения

 $\lambda \in \mathbb{K}$ 

 $C = \lambda A = (\lambda a_{ij})$ 

 $\lambda \times$  — умножение на скаляр.

-1A — противоположная A матрица (не путать с обратной)

#### Свойства:

1. 
$$A + B = B + A$$

2. 
$$(A+B)+C=A+(B+C)$$

 $3. \exists 0$ 

$$4. \exists -A$$

5. 
$$\alpha(A+B) = \alpha A + \alpha B$$

6. 
$$(\alpha + \beta)A = \alpha A + \beta A$$

7. 
$$(\alpha \beta)A = \alpha(\beta A) = \beta(\alpha A)$$

8. 
$$1A = A$$

=> Линейное пространство (8 аксиом выполнены)  $M_{m imes n}$ 

$$E_{ij} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & \ddots & \vdots & \ddots & 0 \\ 0 & \dots & a_{ij} = 1 & \dots & 0 \\ 0 & \ddots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} - \text{ канонический базис пространства } M_{m \times n} \ A = \sum_{i=1}^m \sum_{j=1}^n a_{ij} E_{ij} = (\alpha_{ij})_{m \times n} = \emptyset_{m \times n} \Leftrightarrow a_{ij} = 0 \ \forall i,j$$

$$A \leftrightarrow \begin{pmatrix} a_{11} \\ \vdots \\ a_{1n} \\ a_{21} \\ \vdots \\ a_{2n} \\ a_{m1} \\ \vdots \\ a_{mn} \end{pmatrix} \in \mathbb{R}(\mathbb{C})^{mn} \quad \Leftrightarrow \quad A \cong \mathbb{K}^{mn} \quad \Leftrightarrow \quad \dim(M_{m \times n}) = mn$$

<u>def:</u> Матрицы A и B согласованы, если число столбцов A совпадает с числом строк B.

Если А и В согласованы, то  $A_{m \times k}, B_{k \times n}$ 

$$C = A \times B = AB = (C_{ij})_{m \times n}$$
  $C_{ij} = \sum_{r=1}^{k} a_{ir} b_{rj} - " \times "$ умножение матриц.

 $\underline{\mathbf{def:}}$  Матрицы A и B перестановочны, если AB = BA (очевидно, должны быть квадратными).

 $A,\,B,\,C$  — квадратные матрицы  $n \times n$   $\forall \lambda \in \mathbb{K}$ 

9. 
$$A(B+C) = AB + AC$$
  
 $(A+B)C = AC + BC$ 

=> кольцо

10. 
$$\lambda(AB) = (\lambda A)B = A(\lambda B)$$

=> алгебра  $(M_{n\times n})$ 

12. 
$$A(BC) = (AB)C$$

=> ассоциативная алгебра

13. 
$$\exists E \quad EA = AE = A$$

=> унитальная алгебра

Обратный элемент может не существовать, так что не выполняется 14. И ещё нет коммутативности, так что не выполняется 11.

Доказательства: упражнение на дом :) Но, вообще, там несложно, просто глина.

## 2.4.3 Операция транспонирования

<u>def:</u> Операция транспонирования заменяет матрицу  $A_{m \times n}$  на  $A_{n \times m}^T$ , где строки новой матрицы - столбцы исходной (для квадратной матрицы это попросту отражение относительно главной диагонали).

$$B = A^T = (b_{ij}) = (a_{ji})$$

Свойства:

1. 
$$(A^T)^T = A$$

2.4. МАТРИЦЫ 71

- 2.  $(A + \lambda B)^T = A^T + \lambda B^T$
- 3. А и В согласованы  $(AB)^T = B^T A^T$

 $\underline{\mathbf{def:}}\ A_{m\times n}$  называется симметричной, если  $A=A^T$ 

<u>**def:**</u>  $A_{m \times n}$  называется кососимметричной, если  $A = -A^T$  (у кососимметричной все диагональные элементы — нули).

## 2.4.4 Обратная матрица

 $\operatorname{def:} A_{n \times n}$ 

Матрица  $A^{-1}$  называется обратной к A, а A называется обратимой, если  $A^{-1}A = AA^{-1} = E$ 

Пока мы не знаем условий существования (в лекциях позже)

#### Свойства:

- 1.  $A^{-1}$  единственная (док-во очевидное через ассоциативность)
- 2.  $(A^{-1})^{-1} = A$  (из определения)
- 3.  $\forall \lambda, \lambda \in \mathbb{K}, \lambda \neq 0 \quad (\lambda A)^{-1} = \frac{1}{\lambda} A^{-1}$
- 4.  $E^{-1} = E$
- 5.  $(A^T)^{-1} = (A^{-1})^T$
- 6.  $\exists B^{-1} \Rightarrow \exists (AB)^{-1} = B^{-1}A^{-1}$

## 2.4.5 Ранг матрицы

<u>def:</u>  $rg_{line}(A) = rg(S_1, \dots S_m)$  — строчный ранг матрицы A (берем строки как вектора, находим ранг системы векторов)  $1 \le rg_{line}(A) \le n \ (A \ne \emptyset)$ 

<u>def:</u>  $rg_{col}(A) = rg(A_1, \dots A_n)$  — столбцовый ранг матрицы A (берем строки как вектора, находим ранг системы векторов)  $1 \le rg_{col}(A) \le m \ (A \ne \emptyset)$ 

$$A_j$$
  $1 \leq i_1 < \ldots < i_k \leq n$   $\widetilde{A}_j = \begin{pmatrix} a_{i_1j} \\ a_{i_2j} \\ \vdots \\ a_{i_kj} \end{pmatrix}$  — отрезок длины k столбца  $A_j$ 

$$S_i$$
  $1 \leq j_1 < \ldots < j_k \leq m$   $\widetilde{S}_i = \begin{pmatrix} a_{ij_1} & a_{ij_2} & \ldots & a_{ij_k} \end{pmatrix}$  — отрезок длины k строки  $S_i$ 

**Утверждение 1:**  $A_1, A_2, \dots A_n$  линейно зависимы => любые отрезки длины  $k \ \widetilde{A}_1 \dots \widetilde{A}_n$  линейно зависимы.

#### Доказательство:

Есть нетривиальная линейная комбинация столбцов  $A_1, A_2, \ldots A_n$ , равная нулю, и если мы удалим часть строк, линейная комбинация всё так же будет давать 0, при этом получим нетривиальную линейную комбинацию отрезков  $A_1, \ldots A_n \Rightarrow$  линейно зависимы.

<u>Следствие:</u> Отрезки длины k  $\widetilde{A}_1 \dots \widetilde{A}_n$  линейно независимы  $=>A_1,A_2,\dots A_n$  линейно независимы.

**Утверждение 2:**  $rg_{line}(A) = k$   $S_{i_1} \dots S_{i_k}$  — база строк. Тогда, если  $\widetilde{A}_1 \dots \widetilde{A}_n$  отрезки, отвечающие  $S_{i_1} \dots S_{i_k}$ , линейно зависимы, то и  $A_1, A_2, \dots A_n$  линейно зависимы.

#### Доказательство:

 $\overline{\text{н.у.o.}}\ i_1,\ldots,i_k=1,2,\ldots,k.$  Значит все оставшиеся - линейно комбинация. Значит любую строку можно записать, как линейную комбинацию наших строк:

$$s_{k+l} = \sum_{r=1}^{k} \alpha_{rl} s_r$$
.  $a_{k+l_j} = \sum_{r=1}^{k} \alpha_{rl} a_{r_j}$ ,  $l = 1, ..., m-k$ :

 $\widetilde{A}_1 \dots \widetilde{A}_n$  отрезки, отвечающие  $S_1 \dots S_k$ , линейно зависимы  $\Leftrightarrow \exists \beta_j \in K$  не все нули.

$$\sum_{j=1}^n b_j \widetilde{A}_j = 0 \Leftrightarrow \sum_{j=1}^n \beta_j a_{rj} = 0, \forall r=1,\ldots,k.$$
 Докажем, что с этими же  $\beta_j$ 

 $\sum_{j=1}^{n} b_{j} A_{j} = 0$ . Первые k - нули. Докажем, что и оставшиеся нули.

Посмотрим на 
$$k+1$$
 координату: 
$$\sum_{j=1}^n \beta_j a_{k+1_j} = \sum_{j=1}^n \beta_j \sum_{r=1}^k \alpha_{r1} a_{r_j} = \sum_{r=1}^k \alpha_{r1} \sum_{j=1}^n \beta_j a_{r_j} = 0$$

Далее будем смотреть на следующую k+l координату, и дальнейшее доказательство будет аналогично.

Q.E.D.

**Замечание**: Утверждение 2 справедливо для любой подсистемы отрезков столбцов  $A_{j_1},\ldots,A_{j_r}.$ 

Теорема (о ранге матрицы)

$$rg_{line}(A) = rg_{col}(A) = rg(A)$$

Доказательство:

$$\overline{\operatorname{rg} A = k : 1 \le k} \le n, m$$

н.у.о. Пусть первые k строк — база строк матрицы.

Рассмотрим отрезки столбцов, соответствующие этим элементам.

$$r = \operatorname{rg}(\widetilde{A}_1 \dots \widetilde{A}_n) \le k$$

Пусть  $\widetilde{A}_{j_1} \dots \widetilde{A}_{j_r}$  — база отрезков.

Тогда по следствию к утверждению 1:  $\widetilde{A}_{j_1}\dots\widetilde{A}_{j_r}$  — линейно независимые столбцы. При этом, по утверждению 2 (и замечанию) любая система из r+1 столбца будет зависима, т.к. будут зависимы их отрезки  $\Rightarrow rg_{col}=r$ 

Откуда получаем, что ранг столбцов меньше ранга строк. Заметим, что то же самое будет верно и для строк.

Q.E.D.

## Свойства ранга:

1. 
$$rg(A^T) = rg(A)$$

2.4. МАТРИЦЫ 73

- 2.  $rg(\lambda A) = rg(A), \forall \lambda \in \mathbb{R}, \lambda \neq 0$
- 3.  $rg(A+B) \le rg(A) + rg(B)$  (лайт версия т. Грассмана)
- 4. А и В согласованы,  $rg(AB) \leq \min(rg(A), rg(B))$

#### Доказательство:

- 1. Заметим, что у транспонированной столбцы и строки просто местами поменяются.
- 2. тут даже говорить нечего...
- 3.  $rg(A+B) \le \dim(L_1+L_2) \le \dim(L_1) + \dim(L_2)$
- 4. Зафиксируйте A. Тогда столбцы, полученные умножением матрицы A поочерёдно на столбцы матрицы B будут лин. комбинацией столбцов матрицы A, откуда  $\operatorname{rg}(AB) \leq \operatorname{rg} A$ . Транспонируйте произведение и повторите, получите  $\operatorname{rg}(AB) \leq \operatorname{rg}(B)^T = \operatorname{rg}(B)$

<u>def:</u> Элементарными преобразованиями над строками (столбцами) матрицы А называются элементарные преобразования 1-4, которые производятся с ними, как с векторами пространства  $K^n$  и  $K^m$  соответственно.

5. rg(A) не меняется при элементарных преобразованиях над её строками/столбцами

#### **Теорема:** $A_{m \times n}$

$$rq(A) = k$$

$$1 \le k \le min(n, m)$$

∀А может быть элементарными преобразованиями строк и перестановкой столбцов приведена к трапециевидной форме. Причем, число строк в трапециевидной форме равно k (соответственно, если число столбцов равно k, можно привести к треугольной форме)

Матрица трапециевидной формы (н.у.о. n <= m):

$$\begin{pmatrix} a_{11} & * & * & * & * \\ 0 & \ddots & * & * & * \\ 0 & 0 & a_{nn} & * & * \end{pmatrix}$$

## 2.5 Системы линейных алгебраических уравнений (СЛАУ)

## 2.5.1 Основные определения и понятия, теорема Кронекера-Капелли.

Обычно система записывается так:  $\begin{cases} a_{11}x_1+a_{12}+\cdots+a_{1n}x_n=b_1\\ a_{21}x_1+a_{22}+\cdots+a_{2n}x_n=b_2\\ \vdots\\ a_{m1}x_1+a_{m2}+\cdots+a_{mn}x_n=b_m \end{cases}$ 

**Матричная форма записи** — Ax = b, где

$$A = (a_{ij})_{m \times n} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}, x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

Ax = b, где  $A = (A_1, \ldots, A_n)$  - столбики — матричная запись.

Ax=b- система однородных линейных уравнений (СЛОУ) (однородная система), если  $b=\mathbb{O}$ .

Ax = b — система неоднородных линейных уравнений (СЛНУ) (неоднородная система), если  $b \neq \emptyset$ .

Система Ax = b — **совместная (разрешенная)**, если  $\exists x$ , то есть существует решение.

Система Ax = b — **несовместная** (**неразрешенная**), если  $\not\exists x$ , то есть решения не существует.

**Замечание**: СЛОУ всегда совместна, т.к. x = 0 всегда является решением.

Система Ax = b — **определенная**, если есть единственное решение.

Система Ax = b — **неопределенная**, если есть более одного решения.

Система Ax = 0 — **тривиальная**, если она определённая, то есть единственное решение x = 0.

**Общее решение системы**  $Ax = b - \{ \forall x | Ax = b \}$ , то есть множество всех его решений.

**Частное решением системы** Ax = b — какое-то конкретное решение x, рассматриваемое в данном контексте.

Расширенная матрица системы 
$$-\left(A|b\right)=\begin{pmatrix}a_{11}&\ldots&a_{1n}&b_1\\ \vdots&\ddots&\vdots&\vdots\\ a_{m1}&\ldots&a_{mn}&b_m\end{pmatrix}$$

**Теорема Кронекера-Капелли**: Ax=b совместна  $\Leftrightarrow \operatorname{rg}(A)=\operatorname{rg}(A|b)$ 

Доказательство:

$$Ax = b \Leftrightarrow \sum_{i=1}^n x_i A_i = b$$
 — линейная комбинация столбцов  $\Leftrightarrow b \in \operatorname{span}(A_1, \dots, A_n) \Leftrightarrow \operatorname{span}(A_1, \dots, A_n) = \operatorname{span}(A_1, \dots, A_n)$ 

$$\operatorname{rg}(A) = \dim(\operatorname{span}(A_1, \dots, A_n)) = \dim(\operatorname{span}(A_1, \dots, A_n, b)) = \operatorname{rg}(A|b) \ Q.E.D.$$

## 2.5.2 Структура общего решения СЛОУ и СЛНУ. ФСР. Альтернатива Фредгольма.

**Теорема**:  $Ax = \emptyset$ ,  $u, v \in K^n$  — решения СЛОУ  $\Rightarrow \forall \lambda \in K : \lambda u + v$  — тоже решение СЛОУ.

$$u, v$$
 — решения  $\Rightarrow Au = 0, Av = 0$ 

$$A(\lambda u + v) = \lambda Au + Av = \lambda \mathbb{O} + \mathbb{O} = \mathbb{O} \Rightarrow \lambda u + v$$
 — тоже решение СЛОУ  $Q.E.D.$ 

**Следствие**: общее решение СЛОУ — линейное подпространство  $L\subseteq K^n$ 

Смотри критерии линейного подпространства.

**Теорема (размерность общего решения СЛОУ)**: Ax = 0, rg(A) = k, L — общее решение СЛОУ  $\Rightarrow \dim(L) = n - k = n - rg(A)$ , где n — число неизвестных.

• k = 0:

$$A = 0 \ \forall x \in K^n : Ax = 0 \Rightarrow \dim(L) = \dim(K^n) = n - 0 = n - k$$

•  $1 \le k < n$ :

Тогда  $\operatorname{rg}(A) = k = \operatorname{rg}_{col}(A) = \operatorname{rg}(A_1, \ldots, A_n)$  — база столбцов из k элементов. Не умаляя общности переставим столбцы чтобы базисом были столбцы  $A_1, \ldots, A_k$ , а все остальные столбцы будут их линейными комбинациями.

 $A_{k+j} = \sum_{i=1}^k \alpha_i^j A_j$ , где  $\alpha_i^j \in K$ . (j-тоже индекс, просто для удобства записанный сверху)

$$\sum_{i=1}^{k} \alpha_i^j A_i - A_{k+j} = \emptyset \Leftrightarrow u_1 = \begin{pmatrix} \alpha_1^1 \\ \alpha_2^1 \\ \vdots \\ \alpha_k^1 \\ -1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, u_2 = \begin{pmatrix} \alpha_1^2 \\ \alpha_2^2 \\ \vdots \\ \alpha_k^2 \\ 0 \\ -1 \\ \vdots \\ 0 \end{pmatrix}, \dots, u_{n-k} = \begin{pmatrix} \alpha_1^{n-k} \\ \alpha_2^{n-k} \\ \vdots \\ \alpha_k^{n-k} \\ 0 \\ 0 \\ \vdots \\ -1 \end{pmatrix}$$

 $u_1, \ldots, u_{n-k}$  — решения Ax = 0, причём линейно независимые из-за нулевых координат в нижней части векторов.

Покажем, что  $u_1, \ldots, u_{n-k}$  — порождающая система. Пусть u — решение  $Ax = \emptyset$ .

$$u = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \\ \beta_{k+1} \\ \vdots \\ \beta_n \end{pmatrix} \Rightarrow v = u + \sum_{i=1}^{n-k} \beta_{k+j} u_j =$$

$$= \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \\ \beta_{k+1} \\ \beta_{k+2} \\ \vdots \\ \beta_n \end{pmatrix} + \begin{pmatrix} \beta_{k+1}\alpha_1^1 \\ \beta_{k+1}\alpha_2^1 \\ \vdots \\ \beta_{k+1}\alpha_k^1 \\ -\beta_{k+1} \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \begin{pmatrix} \beta_{k+2}\alpha_1^2 \\ \beta_{k+2}\alpha_2^2 \\ \vdots \\ \beta_{k+2}\alpha_k^2 \\ 0 \\ -\beta_{k+2} \\ \vdots \\ 0 \end{pmatrix} + \dots + \begin{pmatrix} \beta_n\alpha_1^{n-k} \\ \beta_n\alpha_2^{n-k} \\ \vdots \\ \beta_n\alpha_k^{n-k} \\ 0 \\ 0 \\ \vdots \\ -\beta_n \end{pmatrix} = \begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \vdots \\ \gamma_k \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

v — тоже решение Ax = 0, так как является суммой других решений Ax = 0, домноженных на некоторые коэффициенты.

$$Av=\gamma_1A_1+\cdots+\gamma_kA_k=\mathbb{O}$$
 — нулевая линейная комбинация линейно независимых векторов  $\Rightarrow \forall \gamma_j=0 \Rightarrow u+\sum\limits_{i=1}^{n-k}\beta_{k+j}u_j=\mathbb{O} \Rightarrow u=\sum\limits_{i=1}^{n-k}(-\beta_{k+j})u_j \Rightarrow$ 

$$\Rightarrow u_1, \dots, u_{n-k}$$
 — порождающая система  $\Rightarrow u_1, \dots, u_{n-k}$  — базис  $L \Rightarrow$ 

$$\Rightarrow \dim L = n - k$$

 $\bullet$  k=n:

 $A_1,\ldots,A_n$  — линейно независимы

$$Ax=0\Leftrightarrow \sum\limits_{i=1}^n x_iA_i=0\Leftrightarrow \forall i=1,\ldots,n: x_i=0\Leftrightarrow x=\mathbb{O}$$
 — единственное решение  $\Leftrightarrow \dim L=0$ 

**Следствие**: Ax = 0, n — число переменных.

- $0 \le rg(A) < n \Rightarrow$  система неопределенная, имеет бесконечно много решений, образующие линейное подпространство.
- $\bullet$  rg $(A)=n\Rightarrow$  система определенная, имеет единственный корень равный нулю, то есть система тривиальная.

**Фундаментальная система решения** — базис линейного подпространства решений СЛОУ.

**Теорема (о структуре решения СЛНУ)**: Пусть Ax = b совместна,  $x_0$  — частное решение СЛНУ: x — решение СЛНУ  $\Leftrightarrow x = x_0 + u$ , где u — некоторое решение  $Ax = \emptyset$ 

 $\bullet \Rightarrow$ :

$$Ax = b, Ax_0 = b \Rightarrow A(x - x_0) = 0 \Rightarrow u = x - x_0$$
 — решение  $Ax = 0$ 

• ⇐:

$$x=x_0+u,\,Au=\mathbb{O},\,Ax_0=b\Rightarrow Ax=A(x_0+u)=b+\mathbb{O}=b\Rightarrow x$$
 — решение  $Ax=b$ 

#### Следствия:

- 1. Общее решение Ax = b линейное многообразие  $P = L + x_0$ , где  $x_0$  частное решение СЛНУ,  $L = \operatorname{span}(u_1, \dots, u_{n-k})$  общее решение  $Ax = \emptyset$  dim $(P) = \dim(L)$  размерность общего решения СЛНУ.
- $2. \quad \bullet \ 0 \leq \operatorname{rg}(A) < n \Rightarrow Ax = b$ имеет бесконечно много решений,  $\dim(P) = n \operatorname{rg}(A)$

•  $\operatorname{rg}(A) = n \Rightarrow Ax = b$  имеет единственное решение,  $\dim(P) = 0$ 

**Теорема (Альтернатива Фредгольма)**: Пусть  $A_{m \times n} \neq \emptyset$ ,  $x \in K^n$ ,  $y \in K^m$ : Либо  $\forall b \in K^m$ : Ax = b имеет решение, либо  $A^Ty = \emptyset$  нетривиальна.

То есть,  $\forall b \in K^m$ , существует решение  $Ax = b \Leftrightarrow A^Ty = 0$  тривиальна.

• ⇒

$$\forall b \in K^m A x = b \text{ совместно} \Leftrightarrow b = \sum_{i=1}^n x_i A_i \Rightarrow b \in span(A_1, \dots, A_n)$$

Пусть 
$$b=E_j=\begin{pmatrix}0\\\vdots\\a_j\\\vdots\\0\end{pmatrix}$$
, где  $a_j=1$  - элемент j-ой строки  $\vdots$ 

$$E_i \in \operatorname{span}(A_1, \dots, A_n)$$

Заметим, что  $K^m \subset span(A_1, \dots A_m) \subset K^m$ , потому что любой базисный вектор содержится в нашей оболочке. Откуда:

 $span(A_1, \dots A_n) = K^m \Rightarrow rgA = m = rgA^T \Rightarrow A^Ty = 0$  будем иметь одно решение, по ранее сказанной теореме.

•  $\Leftarrow$ : Заметим, что все переходы сверху работают в обе стороны.

## 2.5.3 Метод Гаусса решения СЛНУ

Ax = b.

#### Элементарным преобразованием системы будем называть:

- 1. добавление / удаление уравнения с нулевыми коэффициентами и нулевым свободным членом.
- 2. изменение нумераций уравнений.
- 3. умножение  $\forall$  уравнения на  $\forall \lambda \in K, \lambda \neq 0$ .
- 4. замена ∀ уравнения на его сумму с другим уравнением.
- 5. изменение нумерации переменных.

#### Замечание:

- 1. все элементарные преобразования приводят к эквивалентной системе.
- 2. все элементарные преобразования эквиваленты элементарным преобразованиям A|b и перестановкой в ней столбцов (пункт 5).

#### Теорема (прямой ход метода Гаусса)

$$\forall Ax = b$$

Элементарными преобразованиями системы исходная система может быть замена на эквивалентную систему, матрица которой будет иметь трапециевидную форму.

- Находим в необработанной части матрицы самую левую верхнюю ненулевую ячейку. Переставляем её в самый левый верхний угол необработанной части матрицы.
- Отнимаем от всех строчек, ниже первой необработанной, первую необработанную, домноженную на нужный коэффициент, чтобы первый столбец необработанной части оказался заполненным нулями, кроме первой ячейки.
- Отмечаем верхнюю необработанную строчку и левый необработанный столбец, как обработанные.

#### Метод Гаусса решения СЛАУ:

#### 1. Прямой ход

См. теорему о приведении матрицы к трапециевидной форме. Проводить её мы будем с расширенной матрицей системы. Один лишь нюанс в том, что переставлять столбец B ни с чем нельзя, то есть на нём мы заканчиваем алгоритм.

#### 2. Обратный ход

(а) Вид матрицы треугольный

Обнулим последний столбец при помощи последней строки:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ 0 & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{nn} & b_n \end{pmatrix} \sim \begin{pmatrix} a_{11} & a_{12} & \cdots & 0 & b_1 - b_n \frac{a_{2n}}{a_{nn}} \\ 0 & a_{22} & \cdots & 0 & b_2 - b_n \frac{a_{2n}}{a_{nn}} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{nn} & b_n \end{pmatrix}$$

Повторим для предпоследней строки и столбца и так далее. В конце концов придём к виду:

$$\begin{pmatrix} 1 & 0 & \cdots & 0 & b_1' \\ 0 & 1 & \cdots & 0 & b_2' \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & b_n' \end{pmatrix}$$

Значит 
$$\begin{pmatrix} b_1' \\ b_2' \\ \vdots \\ b_n' \end{pmatrix}$$
 — решение СЛАУ.

(b) Вид матрицы не треугольный

Возьму из матрицы треугольник, а остальные переменные временно занулим. Так найдем одно решение.

## 2.5.4 Нахождение обратной матрицы методом Гаусса.

$$|A_{n\times n}|.$$
 Найти  $A_{n\times n}^{-1},$  такую, что  $A\times A^{-1}=E$ 

$$A^{-1}$$
 -  $n$  неизвестных столбцов.  $A^{-1}=(X_1,\ldots,X_n)=X$  
$$\begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{pmatrix}$$

Заметим, что 
$$A^{-1}$$
 - решение уравнения  $AX=E\Leftrightarrow \begin{cases} AX_1=E_1\\ AX_2=E_2\\ \vdots\\ AX_n=E_n \end{cases}$ 

В процессе нахождения неизвестных столбцов мы делаем с левой частью матрицы одни и те же преобразования. Давайте решать n систем одновременно:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & 1 & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & a_{2n} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & 0 & 0 & \cdots & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & \cdots & 0 & x_{11} & x_{12} & \cdots & x_{1n} \\ 0 & 1 & \cdots & 0 & x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & x_{n1} & x_{n2} & \cdots & x_{nn} \end{pmatrix}$$

#### Теорема. (о существовании обратной матрицы)

Дано: матрица  $A_{n\times n}$ 

$$\exists A^{-1} \ (A \ \text{обратима}) \Leftrightarrow rgA = n$$

Причем  $A^{-1}$  может быть найден методом Гаусса.

#### Доказательство:

Такая  $A^{-1}$  если есть решения  $AX_i = E_i$ , это значит, что  $\operatorname{rg}(A|E_i) = \operatorname{rg} A$ , откуда каждый  $E_i$  в спане. Откуда, rgA = n.

**Следствие**. Дано  $A_{n\times n}, Ax = b$ . A обратимо  $\Leftrightarrow$  существует единственное решение СЛНУ. Причем,  $x = A^{-1}b$ 

A обратима  $\Leftrightarrow rgA = n \Leftrightarrow$  существует единственное решение СЛНУ  $\Leftrightarrow A^{-1}$ .

$$Ax = b \Leftrightarrow A(A^{-1}b) = b \Leftrightarrow b = b \text{ Q.E.D}$$

Теорема (о ранге произведения матрицы и обратимой матрицы)

$$A_{n\times n}$$
, A - обратима,  $B_{m\times n} \Rightarrow \begin{cases} \operatorname{rg}(AB) = \operatorname{rg} B \\ \operatorname{rg}(BA) = \operatorname{rg} B \end{cases}$ 

Доказательство:

$$\overline{\operatorname{rg}(AB) \le (\operatorname{rg} A, \operatorname{rg} B)} \le \operatorname{rg} B.$$

$$\operatorname{rg} B = \operatorname{rg} EB = \operatorname{rg}(A^{-1}AB) \leq rg(AB) \leq \operatorname{rg} B$$

## 2.5.5 Геометрическая интерпретация СЛАУ

$$V, \dim V = n$$

$$e_1, e_2, \ldots, e_n$$
 - базис

Множество точек пр-ва V, координаты которых удовлетворяют алгебраическому уравнению 1-ой степени( линейному) наз-ся **гиперплоскостью** в пр-ве V.

 $\forall x \in V \leftrightarrow x \in \mathbb{R}^n(\mathbb{C}^n)$  — координатный изоморфизм

 $lpha_1,\dots,lpha_m$  - гиперплоскости

Что будет в пересечении  $\alpha_1 \cap \alpha_2 \cap \ldots \cap \alpha_m$ ?

$$\begin{pmatrix} a'_{11} & a'_{12} & a'_{13} & b'_{1} \\ a'_{21} & a'_{22} & a'_{23} & b'_{2} \\ 0 & 0 & 0 & b'_{3} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & b'_{k} \end{pmatrix}$$

1.

2.

3.  $\operatorname{rg} A = 3 = \operatorname{rg} A | B$ , это значит, что есть 3 линейно независимые строки, а остальные - их лин. комбинация.

То есть существуют 3 некомпланарные нормали  $\vec{N}_1, \vec{N}_2, \vec{N}_3$ .

Прямые лежащие в попарном пересечении плоскостей с этими нормалями будут не параллельными, то есть т.к. система совместна, то существует точка, принадлежащая каждой из прямых, т.е. все 3 прямые пересекаются в 1-ой точке.

# 2.5.6 Матрица перехода от старого базиса к новому. Связь координат вектора в разных базисах.

 $V, e_1, e_2, \dots, e_n$  - старый базис - E.

 $e_1', e_2', \dots e_n'$  - новый базис - E'.

$$x \in V \leftrightarrow x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in K^n$$
 - координаты в базисе  $E$ .

$$x\in V\leftrightarrow x=egin{pmatrix} x_1'\\x_2'\\\vdots\\x_n' \end{pmatrix}\in K^n$$
 - координаты в базисе  $E'.$ 

$$x = \sum_{i=1}^{n} x_i e_i = \sum_{i=1}^{n} x'_i e'_i.$$

Давайте представим  $e'_j$  через старый базис:  $T_j = \begin{pmatrix} t_{1j} \\ \vdots \\ t_{nj} \end{pmatrix}$  - координаты в базисе e.

$$T = T_{e \rightarrow e'} = (T_1, T_2, \dots, T_n)$$

$$(e'_1,\ldots,e'_n)=(e_1,\ldots,e_n)T_{e\to e'}$$

#### Свойства Т:

- 1.  $\operatorname{rg} T = n$  (Т обратима)
- 2.  $T^{-1}$  матрица перехода из  $e_1'$  в $e_1$ .

Пусть В - матрица перехода от е' к е.

(
$$e_1,\ldots,e_n$$
) =  $(e'_1,\ldots,e'_n)B$  =  $((e_1,\ldots,e_n)T)B$  =  $(e_1,\ldots,e_n)(BT)$ , откуда  $BT$  = 1, откуда  $B=T^{-1}$ 

3. связь координат вектора в разных базисах:

 $x \leftrightarrow X$  в старом базисе

 $x \leftrightarrow X'$  в новом базисе

$$x = \sum_{i=1}^{n} x_i e_i = \sum_{j=1}^{n} = x'_j e'_j = \sum_{j=1}^{n} x'_j \sum_{i=1}^{n} t_{ij} e_j = \sum_{i=1}^{n} (\sum_{j=1}^{n} t_{ij} e_i)$$

т.е координаты определяются единственный образом

$$\forall i = 1 \dots n : x_i = \sum_{j=1}^n t_{ij} x'_j = (TX')_i$$

$$X' = T^{-1}X$$

## 2.6 Определители.

# 2.6.1 Антисимметричные полилинейные формы. Определитель системы векторов произвольного лин. пр-ва.

 $\dim V = n$  - лин. пространство над полем К

 $f: V \times V \times \ldots \times V \to K$  (р штук) - называется **полилинейной** формой (функцией), если выполнено:

$$f(\xi_1,\ldots,\xi_p)=$$
 число в К.

$$\forall \lambda \in K, \forall \psi, \mu \in V : f(\dots, \psi + \lambda \mu, \dots) = f(\dots, \psi, \dots) + \lambda f(\dots, \mu, \dots)$$

Правило/Соглашение Эйнштейна:  $x^ie_i = \sum\limits_{i=1}^n xe_i$  - меняем обозначение

решил выделить это в лемму

#### Лемма:

$$\xi_1, \ldots, \xi_p \in V$$
.

$$\xi_j = \xi_j^i e_i \leftrightarrow \begin{pmatrix} \xi_j^1 \\ \vdots \\ \xi_j^n \end{pmatrix} \in K^n$$

Тогда: 
$$f(\xi_1,\ldots,\xi_p)=f(\xi_1^{i_1}e_{i_1},\xi_2^{i_2}e_{i_2},\ldots,\xi_{i_p}e_{i_p})=\xi_1^{i_1}\xi_2^{i_2}\ldots\xi_p^{i_p}f(e_{i_1},\ldots,e_{i_p})$$

#### Доказательство:

Разложите каждую скобочку по линейности. Ой, получили, что надо :0

 $f:V^p\to K$  - полилинейная форма. если f=0 при любых двух равных элементах, то f наз-ся антисимметричной.

**Утв.** f антисимметрична  $\Leftrightarrow \forall (i,j): f(\ldots,\xi_i,\ldots,\xi_j,\ldots) = -f(\ldots,\xi_j,\ldots,\xi_i,\ldots).$ 

#### Доказательство:

$$f(\ldots,\xi_i+\xi_j,\ldots,\xi_i+\xi_j,\ldots)=0$$

Разложим через линейность:

$$f(\ldots,\xi_i,\ldots,\xi_j,\ldots)+f(\ldots,\xi_i,\ldots,\xi_j,\ldots)=0$$
. Откуда уже следует искомое.

В обратную сторону  $f(\ldots,\xi,\ldots,\xi_i,\ldots) = -f(\ldots,\xi,\ldots,\xi_i,\ldots)$ , откуда уже следует искомое. Q.E.D

Антисимметричные полилинейные формы будем называть р - формами.

Следствие: f - p-форма  $\Leftrightarrow \forall (k,m): \alpha_{i_1...i_k...i_m,...,i_p} = -\alpha_{i_1...i_m...i_k,...,i_p} \Leftrightarrow$ 

$$\Leftrightarrow \forall (k,m) \alpha_{i_1 \dots i_k \dots i_m, \dots, i_p} = 0,$$
 если  $i_k = i_m.$ 

Откуда можно из суммы убрать все не перестановки (они занулятся) и формула получится такой:

$$f(\xi_1,\ldots,\xi_n)=\sum_{\sigma\in S_n}\xi_1^{i_1}\ldots\xi_n^{i_n}f(e_{i_1},\ldots,e_{i_n})$$
, где  $i_1,\ldots,i_n$  это текущая перестановка индексов

#### Подстановки и перестановки

 $\varphi:(1,\ldots,n)\to(1,\ldots,n)$  подстановка. Удобнее всего показывать стрелочками. Перестановка - образ.

 $\varphi, \psi$  - 2 подстановки. Произведением перестановок назовем образ композиции отображений.

Произведение ассоциативно, но не коммутативно.

Если  $\varphi$  - подстановка, то  $\varphi^{-1}$  - взаимно однозначная и взаимообратная.

**Транспозиция** элементов перестановки  $\sigma$  называется подстановка меняющая местами 2 элемента перестановки:

$$(i_1, \ldots, i_a, \ldots, i_b, \ldots, i_n)$$
 перейдет в  $(i_1, \ldots, i_b, \ldots, i_a, \ldots, i_n)$ 

Любую перестановку можно привести к тривиальной транспозициями, так как можно найти единицу, поменять местами с первым элементом, затем найти двойку, поменять местами со вторым, и так далее.

Перестановка называется **четной** или **нечетной**, если она приводится к тривиальной за четное или соответственно нечетное количество транспозиций (именно тем алгоритмом который сверху)

$$arepsilon(\sigma) = egin{cases} 0, \sigma - ext{четная} \ 1, \sigma - ext{нечетная} \end{cases}$$

Заметим, что сумму из формы теперь можно привести к другой, если применить транспозиции показанные выше к  $(e_{i_1}, \ldots, e_{i_n})$ :

$$f(\xi_1, \dots, \xi_n) = \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} f(e_{i_1}, \dots, e_{i_n}) = \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} f(e_{i_1}, \dots, e_{i_n}) \cdot (-1)^{\varepsilon(\sigma)} = \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} f(e_{i_1}, \dots, e_{i_n}) = \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} f(e_{i_1}, \dots, e_{i_n}) = \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} f(e_{i_1}, \dots, e_{i_n}) = \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} f(e_{i_1}, \dots, e_{i_n}) = \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} f(e_{i_1}, \dots, e_{i_n}) = \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} f(e_{i_1}, \dots, e_{i_n}) = \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} f(e_{i_1}, \dots, e_{i_n}) = \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} f(e_{i_1}, \dots, e_{i_n}) = \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} f(e_{i_1}, \dots, e_{i_n}) = \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} f(e_{i_1}, \dots, e_{i_n}) = \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} f(e_{i_1}, \dots, e_{i_n}) = \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} f(e_{i_1}, \dots, e_{i_n}) = \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} f(e_{i_1}, \dots, e_{i_n}) = \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} f(e_{i_1}, \dots, e_{i_n}) = \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} f(e_{i_1}, \dots, e_{i_n}) = \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} f(e_{i_1}, \dots, e_{i_n}) = \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} f(e_{i_1}, \dots, e_{i_n}) = \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} f(e_{i_1}, \dots, e_{i_n}) = \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} f(e_{i_1}, \dots, e_{i_n}) = \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} f(e_{i_1}, \dots, e_{i_n}) = \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} f(e_{i_1}, \dots, e_{i_n}) = \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} f(e_{i_1}, \dots, e_{i_n}) = \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} f(e_{i_1}, \dots, e_{i_n}) = \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} f(e_{i_1}, \dots, e_{i_n}) = \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} f(e_{i_1}, \dots, e_{i_n}) = \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} f(e_{i_1}, \dots, e_{i_n}) = \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} f(e_{i_1}, \dots, e_{i_n}) = \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} f(e_{i_1}, \dots, e_{i_n}) = \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} f(e_{i_1}, \dots, e_{i_n}) = \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} f(e_{i_1}, \dots, e_{i_n}) = \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} f(e_{i_1}, \dots, e_{i_n}) = \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} f(e_{i_1}, \dots, e_{i_n}) = \sum_{\sigma \in$$

$$= \operatorname{const} \cdot \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} (-1)^{\varepsilon(\sigma)}$$
, где  $\operatorname{const} = f(e_1, \dots, e_n)$ .

n-форму, у которой значение на упорядоченном наборе базиса векторов  $e_1, \ldots, e_n$ . равно 1 назовем D.

$$D$$
 -  $n$ -форма, т.к  $D(e_1,\ldots,e_n)=1: \forall \xi_1\ldots\xi_n: D(\xi_1,\ldots,\xi_n)=\sum_{\sigma\in S_n}\xi_1^{i_1}\ldots\xi_n^{i_n}(-1)^{\varepsilon(\sigma)}=\det(\xi_1,\ldots,\xi_n)$  — определитель системы векторов.

#### Замечания:

- 1.  $\forall f$  n-форма  $f = \alpha D$ , где  $\alpha = f(e_1, \dots, e_n)$ .
- $2. \Phi$ орма D существует единственная.
- 3. Определение D-формы зависит от базиса, т.к. чтобы её определить, должен быть зафиксирован базис.

## 2.6.2 Определитель матрицы. Две формулы

Есть матрица  $A_{n\times n}, a_{ij} \in \mathbb{R}(\mathbb{C})$ 

$$A = (A_1, \dots, A_n), A_i, \in K_n$$

$$E_j = egin{pmatrix} 0 \\ dots \\ E_{jj} = 1 \\ dots \\ 0 \end{pmatrix} -$$
 канонический базис

$$A_j = \sum_{i=1}^n a_{ij} E_i$$

$$A_j = egin{pmatrix} a_{1j} \ dots \ a_{nj} \end{pmatrix}$$
 — координаты в базисе  $E_1, \ldots, E_n$ 

$$D$$
 -  $n$ -форма  $D(E_1, ..., E_n) = 1$ 

$$\forall A_1, \dots A_n \in K^n$$

$$D(A_1, \dots, A_n) = \sum_{\sigma \in S_n} (-1)^{\varepsilon(\sigma)} a_{i_1 1} \dots a_{i_n n} = \det A$$

#### Замечания:

1. 
$$D(E_1, \ldots, E_n) = 1 = \det E$$

2. 
$$f-n$$
-форма на  $K^n$ 

$$f(A_1, \dots, A_n) = \alpha D(A_1, \dots, A_n)$$
  

$$\alpha = f(E_1, \dots, E_n)$$

<u>Инверсией</u> называется пара элементов  $(i_{\alpha}, i_{\beta})$  перестановки  $\sigma$  такие, что  $i_{\alpha} > i_{\beta}$  и  $\alpha < \beta$ .

 $\mathrm{inv}(\sigma)=$  число инверсий в перестановке

#### Теорема:

- 1.  $\varepsilon(\sigma) = \varepsilon(\sigma^{-1})$
- 2. Любая транспозиция элементов может быть получена за нечётное число транспозиций соседних элементов
- 3. транспозиция любых двух соседних элементов меняет число инверсий на 1
- 4.  $(-1)^{\varepsilon(\sigma)} = (-1)^{\operatorname{inv}(\sigma)}$

#### Доказательство:

- 1. Применим алгоритм из определения  $\varepsilon$  одновременно для  $\sigma$  и  $\sigma^{-1}$ . На каждом шаге алгоритма перестановкми, полученные из  $\sigma$  и  $\sigma^{-1}$  остаются обратными друг-другу, значит добираются до тривиальной за одинаковое количество транспозиций. Значит, их чётности равны.
- 2. Поменяем местами  $i_{\alpha}$  и  $i_{\beta}$ . приблизим  $i_{\beta}$  к  $i_{\alpha}$  k транспозициями соседних элементов. Поменяем  $i_{\alpha}$  и  $i_{\beta}$  местами. Отодвинем  $i_{\alpha}$  от  $i_{\beta}$  k транспозициями. Всего 2k+1 транспозиций.

- 3. Пусть перестановка имеет вид  $A, i_{\alpha}, i_{\beta}, B$ , где A и B части перестановки.  $i_{\alpha}$  образует m инверсий с  $A, i_{\beta}$  образует k инверсий с B. Транспозиция  $i_{\alpha}$  и  $i_{\beta}$  или создаст или уничтожит их инверсию и не изменит m или k.
- 4. Пусть  $\sigma$  четная  $\Rightarrow$  четное число транспозиций приводят к тривиальной  $\Rightarrow$  четное число соседних транспозиций приводят к тривиальной перестановке, т.е. число инверсий изменилось на четное число. Число инверсий в конце 0, чётное число, а значит изначально inv  $\sigma$  четное число. Пусть  $\sigma$  нечетная  $\Rightarrow$  нечетное число транспозиций приводят к тривиальной  $\Rightarrow$  нечетное число соседних транспозиций приводят к тривиальной перестановке, т.е. число инверсий изменилось на нечетное число. Число инверсий в конце 0, чётное число, а значит изначально inv  $\sigma$  нечетное число.

Вторая формула для определителя:

$$\det A = \sum_{\sigma \in S_n} (-1)^{\operatorname{inv}(\sigma)} a_{i_1 1}, \ldots, a_{i_n n}$$
, где  $\sigma = (i_1, \ldots, i_n)$ 

## 2.6.3 Свойства определителя

1.  $\det A^T = \det A$ 

$$A^T = \begin{pmatrix} A_1^T \\ \vdots \\ A_n^T \end{pmatrix}$$

$$\det A^T = \sum_{\sigma \in S_N} \sigma \in S_n(-1)^{\varepsilon(\sigma)} a_{i_1 1}, \dots, a_{i_n n}, \ \sigma = (i_1, \dots, i_n) = (\varphi(1), \dots, \varphi(n)) = \varphi(1, \dots, n) \Leftrightarrow (\det A^T = \sum_{\sigma \in S_N} (-1)^{\varepsilon(\sigma) a_{j+1}}$$

Следствие: 
$$det A = \sum_{\sigma \in S_n} (-1)^{\operatorname{inv}(\sigma)a_{1i_1} \dots a_{ni_n}}$$
, для  $\sigma = (i_1 \dots i_n)$ 

Замечание: все свойства, сформулированные для столбцов, верны и для строк.

2.  $\det(\ldots, \lambda A_i, \ldots) = \lambda \det(\ldots, A_i, \ldots), \ \lambda \in K$ 

$$\det(\ldots, A_i + A_j, \ldots, A_k, \ldots) = \det(\ldots, A_i, \ldots, A_k, \ldots) + \det(\ldots, A_j, \ldots, A_k, \ldots)$$

Доказательство:

 $\det A = D(A_1,\ldots,A_n)$  - полилинейная n - форма, откуда все и следует

- 3.  $\det(\dots 0 \dots) = 0$  частный случай  $\lambda = 0$ .
- 4.  $\det(\ldots, A_i, \ldots, A_j, \ldots) = -\det(\ldots, A_j, \ldots, A_i, \ldots)$

$$\det(\ldots, A_i, \ldots, A_i, \ldots) = 0$$

Доказательство: det — антисимметричная

5.  $\det(\ldots A_i \ldots A_j \ldots) = \det(\ldots A_i + \lambda A_j \ldots A_j \ldots)$ 

Доказательство:

$$\det(\dots A_i + \lambda A_j \dots A_j \dots) = \det(\dots A_i + \dots A_j \dots) + \det(\dots \lambda A_j \dots A_j \dots) = \det(\dots A_i + \dots A_j \dots) + \lambda \cdot 0 \text{ Q.E.D}$$

6. Определитель ступенчатой (блочно-диагональной) матрицы:

$$\det \begin{pmatrix} A^1 & 0 & \dots & 0 \\ * & A^2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ * & * & \dots & A^m \end{pmatrix} = \prod_{k=1}^m \det A^k$$

$$A^k = (a_{i_i}^k)$$

Доказательство:

• База m=2:  $det\begin{pmatrix} A_1 & 0 \\ * & A_2 \end{pmatrix}$ 

Решим простой случай  $A_1 = 1, A_2 = 1$ :

$$\det \begin{pmatrix} E_1 & 0 \\ * & E_2 \end{pmatrix} = \det \begin{pmatrix} E_1 & 0 \\ 0 & E_2 \end{pmatrix} = \det E = 1$$

Усложним. Пусть у нас теперь только одна из двух матриц единичная  $(E_{k_2}$  - единичная матрица размера  $k \times k$ ):

$$\det \begin{pmatrix} B & 0 \\ * & E_{k_2} \end{pmatrix} = \det \begin{pmatrix} B & 0 \\ 0 & E_{k_2} \end{pmatrix} = f(B_1, \dots, B_{k_1}) = f(E_1, \dots, E_{k_1}) \det B = \det B$$

 $f-k_1$ -форма, значит полилинейная и антисимметричная. (f - функция, которая для заданной B находит определитель матрицы)

$$f = \alpha D, \ \alpha = f(e_1, \dots, e_{k_1})$$

$$f(E_1, \dots, E_{k_1}) = \det \begin{pmatrix} E_{k_1} & 0 \\ * & E_{k_2} \end{pmatrix} = 1$$

Усложним ещё раз:

$$\det \begin{pmatrix} B & 0 \\ * & C \end{pmatrix} = g(C_1, \dots, C_{k_2}) = g(E_1, \dots, E_{k_2}) \cdot \det C = \det B \det C$$
, что следует из того, что  $g$  - полилинейная форма и из прошлого

• Индукционный переход Пусть верно для m-1, тогда докажем, что верно для m:

$$\det\begin{pmatrix} A^1 & 0 & \dots & 0 \\ * & A^2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ * & * & \dots & A^m \end{pmatrix} = \begin{pmatrix} A & 0 \\ * & A^m \end{pmatrix} = \det A^m \cdot \det A = \prod_{k=1}^m \det A^k,$$

где 
$$A = \begin{pmatrix} A^1 & 0 & \dots & 0 \\ * & A^2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ * & * & \dots & A^{m-1} \end{pmatrix}$$

Следствия:

(a) 
$$\det \begin{pmatrix} a_{11} & 0 \\ * & a_{nn} \end{pmatrix} = a_{11} \cdot \ldots \cdot a_{nn}$$

(b) 
$$\operatorname{rg} A = n \Rightarrow \det A \neq 0$$

Просто преобразуем A методом Гаусса и получим трапециевидную.  $\operatorname{rg} A = n \Rightarrow$  после преобразований она будет треугольной, значит на диагонали нет нулей, значит их произведение не 0.

Замечание: в силу свойства 1, всё сказанное верно и для верхнетреугольных матриц.

7. 
$$\det A = \sum_{i=1}^{n} a_{ij} A_{ij} =$$
, для какого-то столбца j.

$$A_{ij} = (-1)^{i+j} \cdot M_{ij}$$
, где  $M_{ij}$  - минор.

$$A = \begin{pmatrix} I \dots & a_{1j} & II \\ a_{1n} \dots & a_{ij} & \dots a_{in} \\ III & a_{mj} & IV \end{pmatrix}$$
, тогда  $M_{ij} = \det \begin{pmatrix} I & II \\ III & IV \end{pmatrix}$ 

Докажем сначала для 1 столбца:

$$\det A = \sum_{i=1}^{n} (-1)^{i+1} A_{i1}$$

$$\det A = \begin{vmatrix} a_{11} & * & \dots & * \\ a_{12} & * & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & * & \dots & * \end{vmatrix} = \begin{vmatrix} a_{11} & * & \dots & * \\ 0 & * & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & * & \dots & * \end{vmatrix} + \begin{vmatrix} 0 & * & \dots & * \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & * & \dots & * \end{vmatrix} + \dots +$$

$$+\begin{vmatrix} 0 & * & \dots & * \\ 0 & * & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = a_{11}M_{11} - a_{21}M_{21} + a_{31}M_{31} - \dots + (-1)^{n-1}a_{n1}M_{n1} =$$

$$=\sum_{i=1}^{n}(-1)^{i+1}M_{i1}a_{i1}$$

Докажем для произвольного ј-ого столбца

$$\det A = \det(\dots A_j \dots) = (-1)^{j-1} \det(A_j A_1 \dots A_n) = \sum_{i=1}^n (-1)^{j-1} (-1)^{i+1} a_{ij} M_{ij}$$

8.  $\sum_{i=1}^{n} a_{ij} A_{ik}$  (j — фиксированный номер столбца, k — фиксированный номер другого столбца.) =  $0 = \sum_{j=1}^{n} a_{ij} A_{kj}$  (i — фиксированный номер строки, k — фиксированный номер другой строки)

Доказательство:

$$\sum_{i=1}^{n} a_{ij} A_{ik} = \det(A_1 \dots A_i \dots A_j \dots A_n)$$

$$\det A = \sum_{i=1}^{n} a_{ik} A_{ik} = \det(A_1 \dots A_k \dots A_j \dots A_n)$$

9.  $\det(A \cdot B) = \det A \cdot \det B$ 

$$AB = (AB_1, \dots, AB_n), B = (B_1, \dots, B_n)$$

 $\det(A\cdot B)=f(B_1,\dots,B_n)$  (полилинейная, антисимметричная n - форма,  $f=\alpha D)=f(E_1,\dots,E_n)\cdot\det B=\det(A\cdot E)\cdot\det B=\det a\cdot\det B$ 

### 2.6.4 Формула для обратной матрицы. Теорема Крамера.

Матрица  $A_{n\times n}$  — **невырожденная**, если  $\det A \neq 0$ 

Теорема: (об обратной матрице)

Дано  $A_{n\times n}$ . А обратима  $\Leftrightarrow$  А невырожденна.

Причем, 
$$A^{-1}=\frac{1}{\det A}\begin{pmatrix}A_{11}&\ldots&A_{1n}\\ \vdots&\ddots&\vdots\\ A_{n1}&\ldots&A_{nn}\end{pmatrix}^T$$
,  $A_{ij}$  — алгебраическое дополнение элемента  $a_{ij}$ 

Матрица в формуле называется союзной, взаимной, или присоединяемой.

Доказательство:

•  $\Rightarrow$  A обратима  $\Rightarrow \exists A^{-1}.\ A\cdot A^{-1}=A^{-1}\cdot A=E$   $\Rightarrow \det(A^{-1}A)=\det E=\det A^{-1}\cdot \det A,$  откуда уже следует искомое.

• =

A - невырожденная.  $\det A \neq 0$ . Покажем, что матрица  $B = \frac{1}{\det A} (A_{ij})^T$ 

$$A \cdot B = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \cdot \frac{1}{\det A} \cdot \begin{pmatrix} A_{11} & \dots & A_{n1} \\ A_{12} & \dots & A_{n2} \\ \vdots & \ddots & \vdots \\ A_{1n} & \dots & A_{nn} \end{pmatrix} =$$

$$= \frac{1}{\det A} \cdot \begin{pmatrix} \sum_{j=1}^{n} a_{1j} A_{1j} & \dots & \sum_{j=1}^{n} a_{1j} A_{nj} \\ \sum_{j=1}^{n} a_{2j} A_{1j} & \dots & \sum_{j=1}^{n} a_{2j} A_{nj} \\ \vdots & \ddots & \vdots \\ \sum_{j=1}^{n} a_{nj} A_{nj} & \dots & \sum_{j=1}^{n} a_{nj} A_{nj} \end{pmatrix} =$$

(Все не диагональные ячейки по 8 свойству — нули, а все диагональные по 7 свойству —  $\det A) = E \Rightarrow B = A^{-1}$ 

Следствия:

1. A обратима  $\Leftrightarrow \operatorname{rg} A = n \Leftrightarrow \det A \neq 0$ 

2. 
$$det A^{-1} = \frac{1}{\det A}$$

3. Теорема Крамера

$$Ax = b, A_{n \times n}$$

 $\exists !$  решение  $\Leftrightarrow A$  невырожденная.

Причём, 
$$x_i = \frac{\Delta_i}{\Delta}$$
, где  $\Delta = \det A$ ,  $\Delta_i = \det(A_1, \dots, b, \dots, A_n)$  ( $b$  занимает  $i$ -й столбец)

Доказательство:

 $\exists !$  решение  $\Leftrightarrow \operatorname{rg} A = n \Leftrightarrow \det A \neq 0$ , то есть A - невырожденная

$$x = \frac{1}{\det A} \begin{pmatrix} A_{11} & \dots & A_{n1} \\ A_{12} & \dots & A_{n2} \\ \vdots & \ddots & \vdots \\ A_{1n} & \dots & A_{nn} \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = \frac{1}{\det A} \begin{pmatrix} \sum_{i=1}^n A_{i1}b_1 \\ \sum_{i=1}^n A_{i2}b_2 \\ \vdots \\ \sum_{i=1}^n A_{i1}b_n \end{pmatrix} =$$

$$= \frac{1}{\det A} \begin{pmatrix} \det(b, A_2 \dots A_n) \\ \det(A_1, b \dots A_n) \\ \vdots \\ \det(A_1, A_2 \dots b) \end{pmatrix} = \begin{pmatrix} \frac{\Delta_1}{\Delta} \\ \frac{\Delta_2}{\Delta} \\ \vdots \\ \frac{\Delta_n}{\Delta} \end{pmatrix}$$

## 2.6.5 Теорема Лапласа

$$A = (a_{ij})_{n \times n}$$

$$1 \le k \le n$$
:  $i_1 < i_2 < \ldots < i_k, j_1 < j_2 < \ldots < j_k$ 

$$i_s \in (1,\ldots,n), j_t \in (1,\ldots,n)$$

Составим из элементов матрицы А новую матрицу, состоящую из элементов, находящихся на пересечении к выбранных строк и к выбранных столбцов

Минор 
$$k$$
-того порядка  $M^{j_1,\dots,j_k}_{i_1,\dots,i_k} = \begin{vmatrix} a_{i_1j_1} & \dots & a_{i_nj_1} \\ \vdots & \ddots & \vdots \\ a_{i_1j_n} & \dots & a_{i_nj_n} \end{vmatrix}$ 

$$\overline{M}_{i_1,\dots,i_k}^{j_1,\dots,j_k} = M_{s_1,\dots,s_m}^{t_1,\dots,t_m}$$
 — называется **дополнительным минором**, где  $t_i \neq j_j, \ s_i \neq i_j.$ 

**Алгебраическим дополнением** называется дополнительный минор, домноженный на единицу в степени суммы номеров строк и столбцов.

### Теорема Лапласа

 $A_{n \times n}$ , зафиксируем какие-то k строчек  $i_1, \dots, i_k$ 

$$\det A = \sum_{j_1 < \dots < j_k} \overline{M}_{j_1 \dots j_k}^{i_1 \dots i_k} A_{j_1 \dots j_k}^{i_1 \dots i_k}$$

Доказательство:

Пускай к выбрано от 1 до n и фиксирован набор строк. Тогда хотим доказать:

$$\sum_{j_1 < \ldots < j_k} (-1)^{i_1+i_2+\cdots+i_k+j_1+j_2+\ldots j_k} \overline{M}_{j_1\ldots j_k}^{i_1\ldots i_k} M_{j_1\ldots j_k}^{i_1\ldots i_k} = \det A$$

#### • База индукции:

Свойство 7: 
$$\sum_{j} (-1)^{i+j} \overline{M}_{j}^{i} M_{j}^{i} = \det A$$

#### • Индукционное предположение:

Пусть формула верна для первых k-1 строчек  $(i_1, \ldots, i_{k-1})$ :

$$\det A = \sum_{j_1 < j_2 < \dots < j_{k-1}} (-1)^{i_1 + \dots + i_{k-1} + j_1 + \dots + j_{k-1}} \overline{M}_{j_1, \dots, j_{k-1}}^{i_1, \dots, i_{k-1}} M_{j_1, \dots, j_{k-1}}^{i_1, \dots, i_{k-1}}$$

#### • Индукционный переход:

Заметим, что в дополнительный минор входит  $i_k$  строчка:

$$\overline{M}_{j_1,\dots,j_{k-1}}^{i_1,\dots,i_{k-1}} = M_{\dots}^{\dots,i_k,\dots}$$

Давайте разложим данный минор, по данной строчке. Получим:

$$\sum_{j \in (1,\dots,n) \setminus (j_1,\dots,j_{k-1})} a_{i_k j} (-1)^{\# i_k + \# j} \overline{M}_{j_1,\dots,j_{k-1},j}^{i_1,\dots,i_{k-1},i_k}$$

где  $\#i_k$  и  $\#j_k$  - номер строчки в матрице без этих k-1 столбцов и без этих k-1 строчек.

Не трудно заметить, что  $\#i_k = i_k - (k-1)$ . Теперь давайте подставим в формулу наш получившийся минор.

$$\sum_{j_1 < j_2 < \ldots < j_{k-1}} (-1)^{i_1 + \cdots + i_{k-1} + j_1 + \cdots + j_{k-1}} M_{j_1, \ldots, j_{k-1}}^{i_1, \ldots, i_{k-1}} \sum_{j \in (1, \ldots, n) \backslash (j_1, \ldots, j_{k-1})} a_{i_k j} (-1)^{\# i_k + \# j} \overline{M}_{j_1, \ldots, j_{k-1}, j}^{i_1, \ldots, i_{k-1}, i_k}$$

Получится вот такая крайне прелестная формула. Перепишем:

$$\sum_{j_1 < j_2 < \ldots < j_{k-1}} \sum_{j \in (1,\ldots,n) \backslash (j_1,\ldots,j_{k-1})} a_{i_k j} (-1)^{\#i_k + \#j} \overline{M}_{j_1,\ldots,j_{k-1},j}^{i_1,\ldots,i_{k-1},i_k} (-1)^{i_1 + \cdots + i_{k-1} + j_1 + \cdots + j_{k-1}} M_{j_1,\ldots,j_{k-1}}^{i_1,\ldots,i_{k-1}}$$

И что мы делаем в этой формуле, выбираем сначала k-1 столбик, а потом еще один. Давайте делать это по-другому. Выберем k столбиков и 1, который выкидываем. Получится вот такая формула:

$$\sum_{j_1 < \ldots < j_k} \sum_{s \in \{1, \ldots, k\}} (-1)^{i_k - (k-1) + \# j_s} a_{i_k j_s} \overline{M}_{j_1, \ldots, j_k}^{i_1, \ldots i_k} M^{i_1, \ldots i_{k-1}}_{\{j_1, \ldots, j_{k-1}, j_k\} \backslash \{j_s\}} \cdot (-1)^{i_1 + \ldots + i_{k-1} + j_1 + \cdots + j_k - j_s}$$

Найдем  $\#j_s = j_s - (s-1)$ :

$$\sum_{j_1 < \dots < j_k} \sum_{s \in \{1, \dots, k\}} (-1)^{i_k - (k-1) + j_s - (s-1)} a_{i_k j_s} \overline{M}_{j_1, \dots, j_k}^{i_1, \dots i_k} M_{\{j_1, \dots, j_{k-1}, j_k\} \setminus \{j_s\}}^{i_1, \dots i_{k-1}} \cdot (-1)^{i_1 + \dots + i_{k-1} + j_1 + \dots + j_k - j_s}$$

В итоге:

$$\sum_{j_1 < \ldots < j_k} (-1)^{i_1 + \ldots + i_k + j_1 + \cdots + j_k} \overline{M}_{j_1, \ldots, j_k}^{i_1, \ldots i_k} \sum_{s \in \{1, \ldots, k\}} (-1)^{-(k-1) + -(s-1)} a_{i_k j_s} M_{\{j_1, \ldots, j_{k-1}, j_k\} \backslash \{j_s\}}^{i_1, \ldots i_{k-1}}$$

А это будет разложением по k -ой строчке, откуда получаем искомое. Q.E.D.

Кажется, вам тяжело! Единый общероссийский телефон доверия:

Позвонить 8-800-2000-122

### 2.6.6 Второе определение ранга матрицы.

 $\operatorname{rg} A$  называется наибольший порядок минора отличного от нуля, то есть  $\operatorname{rg} A = k$ , если существует минор не равный нулю, а любой минор большего порядка равен 0. Такой минор является базисным, а строки и столбцы, входящие в этот минор — базисными.

Базисный минор не определён единственным образом.

**Замечание.** Если все миноры k+1 порядка 0, то все миноры порядка больше k+1 тоже 0.(очевидно из разложения по строчке или столбцу)

Теорема (об эквивалентности двух определений ранга)

$$\operatorname{rg} A_{\operatorname{def} 1} = \operatorname{rg} A_{\operatorname{def} 2}$$

#### Доказательство:

Давайте докажем, что  $\operatorname{rg} A_{\operatorname{def} 1} \leq \operatorname{rg} A_{\operatorname{def} 2}$ .

Возьму минор, состоящий из строк базы столбцов и базы строк, из их линейной независимости следует, что определитель данного минора не 0.

Давайте докажем, что  $\operatorname{rg} A_{\operatorname{def} 1} \geq \operatorname{rg} A_{\operatorname{def} 2}$ 

Возьму минор k+1 порядка. Если бы столбцы были линейно независимы, то по первому утверждению (из раздела про ранг матрицы) получу, что столбики линейно независимы, откуда  $\operatorname{rg} A > k$ . А такого не может быть. Откуда столбцы линейно зависимы, а уже отсюда следует, что определитель получившегося минора равен нулю.

## Метод окаймляющих миноров.

$$A \neq 0$$

Алгоритм:

Берем смотрим на минор k-ого порядка:

- 1. Если все его (окаймляющие прошлого этапа) миноры 0, то  $\operatorname{rg} A = k$ .
- 2. Если существует минор не равный 0, тогда k++ и повторить алгоритм

Окаймляющие миноры - миноры, в разложениях по строкам и столбцов которых присутствует данный минор

Пусть  $M^{i_1,\dots,i_k}_{j_1,\dots,j_k} \neq 0$ , а все его окаймляющие его равны 0 г<br/>gA=k

$$\forall i \forall j \notin (j_1, \dots, j_k) : \begin{vmatrix} a_{i_1 j_1} & \dots & a_{i_1 j_k} & a_{i_1 j} \\ a_{i_2 j_1} & \dots & a_{i_2 j_k} & a_{i_2 j} \\ \vdots & \ddots & \vdots & \vdots \\ a_{i_k j_1} & \dots & a_{i_k j_k} & a_{i_k j} \\ a_{i j_1} & \dots & a_{i j_k} & a_{i j} \end{vmatrix} = 0$$

Если i совпадает с каким-либо индексом из  $i_1, \ldots, i_k$ , то это определитель с равными строками, значит нулевой. Если i не совпадает ни с одним индексом из  $i_1,\dots,i_k$ , то тогда это окаймляющий минор (k+1)-го порядка, который нулевой по условию.

Распишем определитель по последней строке.

$$0 = \sum_{s=1}^{k} a_{ij_s} A_{ij_s} + a_{ij} (-1)^{k+1+k+1} M_{j_1 \dots j_k}^{i_1 \dots i_k}$$

$$\forall i: a_{ij} = 0 \sum_{s=1}^{k} a_{ij_s} A_{i,j_s} = \sum_{s=1}^{k} a_{ij_s} \lambda_s \Leftrightarrow A_j = \sum_{s=1}^{k} A_{j_s} \lambda_s$$

мы показали, что для  $\forall j \in \{j_1, \dots, j_k\}$  — линейная комбинация соответствующих столбцов.

#### 2.6.7Определитель n-ого порядка.

Приведение к треугольному виду.

$$\Delta_{n} \begin{pmatrix} a_{1} & x & x & \dots & x \\ x & a_{2} & x & \dots & x \\ x & x & a_{3} & \dots & x \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x & x & x & \dots & a_{n} \end{pmatrix} = \begin{pmatrix} a_{1} & x & x & x & \dots & x \\ x - a_{1} & a_{2} - x & 0 & \dots & 0 \\ x - a_{1} & 0 & a_{3} - x & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x - a_{1} & 0 & 0 & \dots & a_{n} - x \end{pmatrix} =$$

$$= \prod_{k=1}^{n} (a_k - x) \begin{vmatrix} a_1 & x & x & x & \dots & x \\ \overline{a_1 - x} & \overline{a_2 - x} & \overline{a_3 - x} & \dots & \overline{a_n - x} \\ -1 & 1 & 0 & \dots & 0 \\ -1 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -1 & 0 & 0 & \dots & 1 \end{vmatrix} =$$

$$=\prod_{k=1}^n(a_k-x)\begin{vmatrix} \sum & \frac{x}{a_2-x} & \frac{x}{a_3-x} & \dots & \frac{x}{a_n-x}\\ 0 & 1 & 0 & \dots & 0\\ 0 & 0 & 1 & \dots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & 0 & \dots & 1 \end{vmatrix}$$
 Откуда уже можно легко посчитать определитель.

тель.

Метод выделения линейных множителей

$$\Delta_n = \begin{vmatrix} 1 & x_1 & x_1^2 & \dots & x_1^n \\ 1 & x_2 & x_2^2 & \dots & x_2^n \\ 1 & x_3 & x_3^2 & \dots & x_3^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{vmatrix} = p(x_i)$$
 Заметим, что когда  $x_i = x_j$  определитель равен 0. Тогда полу-

чаем, что определитель должен делиться на каждый из корней (раскладывается в произведение корней)

$$\Delta_{n} = \begin{vmatrix} 1 & x_{1} & x_{1}^{2} & \dots & x_{1}^{n} \\ 1 & x_{2} & x_{2}^{2} & \dots & x_{2}^{n} \\ 1 & x_{3} & x_{3}^{2} & \dots & x_{3}^{n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n} & x_{n}^{2} & \dots & x_{n}^{n} \end{vmatrix} = p(x_{i}) = (x_{1} - x_{2}) \cdot (x_{1} - x_{3}) \cdot \dots \cdot (x_{1} - x_{n}) \cdot (x_{2} - x_{3}) \cdot \dots \cdot (x_{n-1} - x_{n}) C$$

$$\Delta_{n} = (x_{n} - x_{1})(x_{n} - x_{2}) \cdot \dots \cdot (x_{n} - x_{n-1})c' = \Delta_{n-1}x_{n}^{n-1} + \dots$$

$$c' = \Delta_{n-1}$$

$$\Delta_{n} = (x_{n} - x_{1})(x_{n} - x_{2}) \cdot \dots \cdot (x_{n} - x_{n-1})(x_{n-1} - x_{n}) \cdot \dots \cdot (x_{n-1} - x_{n-2})\Delta_{n-2} = \prod_{i > j} (x_{i} - x_{j})$$

#### Метод рекуррентных соотношений

Возвратная последовательность. Пример.  $x_2=2, x_1=4$ . Рекуррентная последовательность задается выражением  $x_n=x_{n-1}+2x_{n-2}$ . И ее решая можно получить корень

Пример решения. 
$$x_1 = 3, x_2 = 9, x_n = 3x_{n-1} - \frac{9}{4}x_{n-2}, n > 2.$$

Подставим вместо  $x_n = \lambda^n$  (не спрашивайте почему, там огромный кусок теорий и объяснений)

$$\lambda^n=3\lambda^{n-1}+rac{9}{4}\lambda^{n-2}$$
. Переведем в квадратное, решим, найдем корни. Получим  $\lambda_{1,2}=rac{3}{2}$ 

Тк лямбды совпали, то второй корень умножаем на n:

$$x_n = c_1 \left(\frac{3}{2}\right)^n + c_2 n \left(\frac{3}{2}\right)^n$$
$$x_1 = c_1 \left(\frac{3}{2}\right) + c_2 \left(\frac{3}{2}\right) x_2 = c_1 \left(\frac{3}{2}\right)^2 + c_2 2 \left(\frac{3}{2}\right)^2$$

Найдя  $c_1$  и  $c_2$ , можно найти общую рекурренту и её решить.

## Глава 3

## Информация о курсе.

Преподаватель – Кучерук Екатерина Аркадьевна

Конспект писался Чепелиным Вячеславом и Альжановым Леонидом.

По редакцией Е.А. Кучерук.

Огромное спасибо за большое количество правок:

- 1. Бородулину Фёдору
- 2. Солянику Егору
- 3. Свешникову Борису