TD de Maths - Corps

I. Quaternions

Dans l'anneau $\mathcal{M}_{4}(\mathbb{R})$ des matrices 4×4 à coefficients réels, on considère les matrices suivantes :

$$I = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad E = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix} \quad F = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \quad \text{et} \quad G = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}$$

On notera que la famille (I, E, F, G) est libre et donc que $(aI + bE + cF + dG = 0) \Leftrightarrow (a = b = c = d = 0)$

Partie I

1. Vérifier que $E \cdot F = G$, $E^2 = -I$ et $F^2 = -I$ Calculer $F \cdot E$ et $G \cdot E$

Dans le reste de l'exercice, on ne fera plus aucun calcul de matrice, mais on utilisera les résultats du 1.

- 2. Démontrer que E.G = -F. Calculer de la même façon F.G, G.F et G^2
- 3. Soit $H = \{I, E, F, G, -I, -E, -F, -G\}$. En utilisant 1. et 2. compléter la table de multiplication : (d'abord les produits de I, E, F, G puis compléter en tenant compte des signes)

L						1		
7	I	Ε	F	G	-I	-E	-F	- G
I								
E								
F								
G								
-I								
-E								
-F								
-G								

- 4. Démonter que H est un groupe pour la multiplication (un sous-groupe du groupe des matrices inversibles).
- 5. Déterminer le sous-groupe de *H* engendré par *E*.
- 6. Combien H a-t-il de sous-groupes d'ordre 4? d'ordre 2? Combien de sous-groupes en tout?

Partie II

- 1. Calculer $(E+F)^2$, $(I+E)^2$, $(I+E)^3$.
- 2. Soit $K = \{aI + bE + cF + dG / (a, b, c, d) \in \mathbb{R}^4 \}$:

C'est l'ensemble des combinaisons linéaires des matrices I, E, F et G.

Montrer que $(K,+,\times)$ est un sous-anneau de l'anneau $(\mathcal{M}_{4}(\mathbb{R}),+,\times)$.

3. Soit Q = aI + bE + cF + dG un élément de K. On notera $Q^* = aI - bE - cF - dG$.

Soit V = bE + cF + dG.

Calculer V^2 puis $Q.Q^* = (aI + V)(aI - V)$.

En déduire que si $Q \neq 0$, alors $Q.Q^* \neq 0$ et Q est inversible. Noter que son inverse est élément de K.

 $(K,+,\times)$ est un corps non commutatif.

4. Combien y a-t-il d'éléments Q de K tels que $Q^2 = -I$? L'équation $X^2 + 1 = 0$ a donc plus que 2 racines!!!

II. Un corps à 4 éléments

Trouver un corps à 4 éléments.

III. Le groupe multiplicatif d'un corps fini. (On admet que tout corps fini est commutatif)

Soit $(\mathbb{K}, +, \times)$ un corps à q éléments. Soit $G = \mathbb{K} - \{0\}$ le groupe multiplicatif de \mathbb{K} .

Pour tout naturel d non nul, on définit :

$$E_d = \{x \in G/x^d = 1\}$$
 (c'est l'ensemble des racines dans \mathbb{K} du polynôme $X^d - 1$) et $F_d = \{x \in G \mid x \text{ est d'ordre } d\}$

- 1. Soit d tel que $F_d \neq \emptyset$ et $\alpha \in F_d$. On rappelle la notation $\langle \alpha \rangle = \{1, \alpha, \alpha^2, \dots, \alpha^{d-1}\}$.
 - a. Montrer que tout élément de $\langle \alpha \rangle$ appartient à E_d . En déduire, en étudiant les cardinaux des 2 ensembles, que $E_d = \langle \alpha \rangle$.
 - b. Soient $i \in \{0,1,...,d-1\}$ et $\beta = \alpha^i$. Montrer que β est d'ordre i si et seulement si i est premier avec d. En déduire que le cardinal de F_d est égal à $\varphi(d)$ (indicatrice d'Euler).
- 2. Un exemple : Soit $(\mathbb{K}, +, \times)$ un corps à 64 éléments. Soit $G = \mathbb{K} \{0\}$ le groupe multiplicatif de \mathbb{K} .
 - a. Soit α un élément de G. Quel peut être son ordre?
 - b. Pour chacune des valeurs d trouvées au a., calculer $\varphi(d)$. Noter (cf 1.) que $Card(F_d) = 0$ ou $\varphi(d)$ En déduire le cardinal de chacun des F_d . Noter que G est cyclique.
 - c. Soient α un élément d'ordre 9 et β un élément d'ordre 7. Montrer que $\alpha\beta$ ne peut être ni d'ordre 9 ni d'ordre 7 ni d'ordre 21. Conclusion ? Pour $i, i' \in \{0,1,...,8\}$ et $j, j' \in \{0,1,...,6\}$, à quelle condition a-t-on $\alpha^i \beta^j = 1$? à quelle condition a-t-on $\alpha^i \beta^j = \alpha^{i'} \beta^{j'}$?
- 3. Retour au cas général
 - a. Montrer que, si $F_d \neq \emptyset$, alors d divise q-1Montrer que l'ensemble des F_d , où d est un diviseur de q-1, est une partition de G.

 En déduire que $q-1=\sum_{d=1}^{\infty} \varphi(d)$ (la somme s'étend à tous les diviseurs de q-1)
 - b. En déduire avec le 1. que, pour tout diviseur d de q-1, le cardinal de F_d est égal à $\varphi(d)$.

On a montré que le groupe multiplicatif de tout corps (commutatif) fini d'ordre q est cyclique et qu'il a exactement $\varphi(q-1)$ générateurs.

Evariste Galois (1811-1832)

Credit image: Bettmann Archive/Bettmann