

УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники

ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА

Малышева Татьяна Алексеевна, к.т.н., доцент tamalysheva@itmo.ru

Санкт-Петербург, 2025

Постановка задачи

Пусть некоторая функция f(x) задана на отрезке $x \in [a,b]$ и определена рядом своих точек $(x_i,y_i),\ i=0,1,..n,\ a\leq x_i\leq b$ Основная задача uhmepnonsuuu — нахождение значения функции в тех точках внутри данного интервала, где она не задана, т.е. для промежуточных аргументов.

Определение 1. Точки $x_0, x_1, ... x_n$ называются **узлами интерполяции**. Точка, в которой нужно найти значение функции – **точкой интерполяции**.

Требуется построить интерполирующую функцию F(x), принимающую в узлах интерполяции те же значения, что и f(x), т.е. $F(x_0)=y_0$, $F(x_1)=y_1$, ... , $F(x_n)=y_n$.

Тогда, условие интерполяции: $F(x_i) = y_i$.

При этом предполагается, что среди значений x_i нет одинаковых.

Геометрическая интерпретация

Определение 2. Процесс вычисления значений функции F(x) в точках отличных от узлов интерполирования называется интерполированием функции f(x). При этом различают интерполирование в узком смысле, когда x принадлежит интервалу $[x_0, x_n]$, и экстраполирование, когда x находится за пределами отрезка.

Геометрически задача интерполирования функции означает построение кривой y = F(x) проходящей через заданные точки $(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$

Геометрическая интерпретация

Графическая интерпретация принципа построения интерполяционного полинома (а) и аппроксимирующего полинома (б) для точечно заданной функции

Основная задача *интерполяции* — нахождение значения функции в тех точках внутри данного интервала, где она не задана, т.е. для промежуточных аргументов.

Основная задача **аппроксимации** — построение эмпирической формулы, для которой $f(x_i) \approx \varphi(x_i)$.

Наиболее распространены следующие виды интерполяции:

- **линейная интерполяция**, при которой промежуточная точка, расположенная между двумя узловыми точками (x_i, y_i) и (x_{i+1}, y_{i+1}) , лежит на отрезке прямой, соединяющей две ближайшие узловые точки;
- **квадратичная интерполяция**, при которой промежуточная точка между узловыми точками $(x_{i-1}, y_{i-1}), (x_i, y_i)$ и (x_{i+1}, y_{i+1}) лежит на отрезке параболы, соединяющей эти узловые точки;
- **полиномиальная интерполяция**, при которой промежуточные точки вычисляются как значение некоторого многочлена $P_n(x)$, причем $P_n(x_i) = f(x_i)$;
- *сплайновая интерполяция*, при которой промежуточные точки находятся с помощью отрезков полиномов невысокой степени, проходящих через узловые точки и поддерживающие определенные условия стыковки в концевых точках;

Полином един для всей области интерполяции

Локальная (кусочная) интерполяция

Между различными узлами полиномы различны

Задача нахождения интерполяционной функции F(x) имеет бесконечное число решений, так как через заданные точки x_i, y_i можно провести бесконечно много кривых, каждая из которых будет графиком функции, для которой выполнены все условия интерполяции.

Однако эта задача становится однозначно разрешимой, если вместо произвольной функции F(x) искать полином $P_n(x)$ степени не выше n, удовлетворяющий условиям $P_n(x_i) = f(x_i)$:

$$F(x) = P_n(x_i) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \dots + a_n \cdot x^n, \quad i = 0, 1, \dots, n$$
 (1)

Определение 3. Алгебраический многочлен, удовлетворяющий условиям интерполяции, называется **интерполяционным многочленом**.

В случае использования в качестве интерполирующей функции многочлена ${m n}$ -й степени $F(x)=a_0+a_1\cdot x+a_2\cdot x^2+\cdots+a_n\cdot x^n$ (требующий ${m n}+{m 1}$ узел интерполяции) задача интерполяция табличной функции имеет единственное решение, т.е.

коэффициенты a_0, \ldots, a_n определяются единственным образом.

Можно составить систему из n+1 линейных уравнений относительно неизвестных коэффициентов a_0, \dots, a_n . Матрица коэффициентов этой СЛАУ называется матрицей **Вандермонда**. Ее определитель не равен нулю, поскольку все значения узлов интерполяции различны между собой и ни одна из строк не является линейной комбинацией других строк

$$i = 0$$

$$i = 1$$

$$a_0 + a_1 x_0 + \dots + a_n x_0^n = y_0$$

$$a_0 + a_1 x_1 + \dots + a_n x_1^n = y_1$$

$$\vdots$$

$$i = n$$

$$a_0 + a_1 x_n + \dots + a_n x_n^n = y_n$$

$$\det\begin{pmatrix} 1 & x_0 & . & x_0^n \\ 1 & x_1 & . & x_1^n \\ . & . & . & . \\ 1 & x_n & . & x_n^n \end{pmatrix} \neq 0$$

Примечание. Вычисление коэффициентов полинома посредством решения системы в вычислительной практике *реализуется крайне редко*.

Причиной этого является плохая обусловленность матрицы Вандермонда, приводящая к заметному росту погрешности при выполнении условий интерполирования уже при сравнительно невысоких порядках полинома.

Вычислительные затраты реализации метода пропорциональны n^3 .

Линейная интерполяция

Линейная интерполяция является простейшим и часто используемым видом локальной интерполяции . Она состоит в том, что заданные точки (x_i, y_i) , соединяются прямолинейными отрезками, и функция f(x) приближается к ломаной с вершинами в данных точках.

Уравнения каждого отрезка ломаной линии в общем случае разные. Поскольку имеется n интервалов (x_{i-1},x_i) то для каждого из них в качестве уравнения интерполяционного полинома используется уравнение прямой, проходящей через две точки. В частности, для i — го интервала можно написать уравнение прямой, проходящей через точки (x_{i-1},y_{i-1}) и (x_i,y_i) , в виде: $\frac{y-y_{i-1}}{y_i-y_{i-1}}=\frac{x-x_{i-1}}{x_i-x_{i-1}}$

$$y = a_i x + b_i$$
, $x_{i-1} \le x \le x_i$ (2)
 $a_i = \frac{y_i - y_{i-1}}{x_i - x_{i-1}}$
 $b_i = y_{i-1} - a_i x_{i-1}$

Следовательно, при использовании линейной интерполяции сначала нужно определить интервал, в который попадает значение аргумента *x*, а затем подставить его в формулу (2) и найти приближенное значение функций в этой точке.

Квадратичная интерполяция

В случае **квадратичной интерполяции** в качестве интерполяционной функции на отрезке $[x_{i-1}, x_{i+1}]$ принимается квадратный трехчлен.

$$y = a_i x^2 + b_i x + c_i x_{i-1} \le x \le x_{i+1} (3$$

Для определения неизвестных коэффициента a_i , b_i , c_i необходимы три уравнения. Ими служат условия прохождения параболы через три точки $(x_{i-1},y_{i-1}),(x_i,y_i),(x_{i+1},y_{i+1})$. Эти условия можно записать в виде:

$$a_{i}x_{i-1}^{2} + b_{i}x_{i-1} + c_{i} = y_{i-1}$$

$$a_{i}x_{i}^{2} + b_{i}x_{i} + c_{i} = y_{i}$$

$$a_{i}x_{i+1}^{2} + b_{i}x_{i+1} + c_{i} = y_{i+1}$$

Интерполяция для любой точки $x \in [x_0, x_n]$ проводится по трем ближайшим ней узлам.

Локальная интерполяция

Пример 1. Найти приближенное значение функции y = f(x) при x = 0.35 для заданной

таблицы:

x	0,1	0,2	0,3	0,4	0,5
у	1,25	2,38	3,79	5,44	7,14

1. Используем линейную интерполяцию. Значение x=0,35 находится между узлами

$$x_{i-1} = 0$$
,3 и $x_i = 0$,4. Тогда:

$$a_i = \frac{y_i - y_{i-1}}{x_i - x_{i-1}} = \frac{5,44 - 3,79}{0,4 - 0,3} = 16,5$$

$$b_i = y_{i-1} - a_i x_{i-1} = 3,79 - 16,5 \cdot 0,3 = -1,16$$

$$y \approx 16,5x-1,16 = 16,5\cdot 0,35-1,16 = 4,615$$

2. Используем квадратичную интерполяцию. Составим систему уравнений для ближайших узлов к точке x=0,35: $x_{i-1}=0.2$, $x_i=0.3$, $x_{i+1}=0.4$.

Соответственно $y_{i-1} = 2,38, y_i = 3,79, y_{i+1} = 5,44.$

$$0.2^2 a_i + 0.2 b_i + c_i = 2.38$$

$$0.3^2 a_i + 0.3 b_i + c_i = 3.79$$

$$0.4^2 a_i + 0.4 b_i + c_i = 5.44$$

В результате решения системы, получим: $a_i = 12$, $b_i = 8,1$, $c_i = 0,28$.

$$y \approx 12 \cdot 0,35^2 + 8,1 \cdot 0,35 + 0,28 = 4,585$$

Рассмотрим интерполяционный полином $L_n(x)$, степени не больше n и для которого выполнены условия $L_n(x_i) = y_i$ (4)

Лагранж предложил строить многочлен $L_n(x)$ в виде:

$$L_n(x) = l_0(x) + l_1(x) + \dots + l_n(x)$$
(5)

где $l_i(x)$ – полином степени n, который удовлетворяет условию:

$$l_i(x_j) = \begin{cases} 1, & \text{при } x = x_i \text{ (если } i = j) \\ 0, & \text{во всех других узлах (если } i \neq j) \end{cases}$$
 (6)

Это условие означает, что каждый многочлен обращается в ноль во всех узлах интерполяции, за исключением одного (i- го), где он должен равняться единице.

Т.е. $x_0, x_{1,}, \dots, x_{i-1}, x_{i+1}, \dots, x_n$ – корни этого многочлена. Требование (6) совместно с выражением (5) обеспечивает выполнение условий (4).

Полиномы $l_i(x)$ определяются следующим образом:

$$l_i(x) = c_i(x - x_0)(x - x_1) \dots (x - x_{i-1})(x - x_{i+1}) \dots (x - x_n)$$
(7)

Здесь в каждом полиноме $l_i(x)$ отсутствует скобка $(x-x_i)$, которой соответствует коэффициент c_i .

Найдем неизвестные коэффициенты c_i , $i=0,1,\ldots,n$, называемые коэффициентами Лагранжа, используя условие: $L_n(x_i)=y_i$

При
$$x=x_0$$
 $L_n(x_0)=y_0$ $L_n(x_0)=c_0(x_0-x_1)(x_0-x_2)\dots(x_0-x_n)=y_0$

Следовательно, коэффициент c_0 вычисляется по следующей формуле:

$$c_0 = \frac{y_0}{(x_0 - x_1)(x_0 - x_2) \dots (x_0 - x_n)}$$

При
$$x = x_1$$
 $L_n(x_1) = y_1$ $L_n(x_1) = c_1(x_1 - x_0)(x_1 - x_2) \dots (x_1 - x_n) = y_1$

Следовательно, коэффициент c_1 вычисляется по следующей формуле:

$$c_1 = \frac{y_1}{(x_1 - x_0)(x_1 - x_2) \dots (x_1 - x_n)}$$

Значения остальных коэффициентов вычисляются аналогично:

$$c_i = \frac{y_i}{(x_i - x_0)(x_i - x_1) \dots (x_i - x_{i-1})(x_i - x_{i+1}) \dots (x_i - x_n)}$$

Тогда:

$$l_0(x) = \frac{(x - x_1)(x - x_2) \dots (x - x_n)}{(x_0 - x_1)(x_0 - x_2) \dots (x_0 - x_n)}$$

$$l_1(x) = \frac{(x - x_0)(x - x_2) \dots (x - x_n)}{(x_1 - x_0)(x_1 - x_2) \dots (x_1 - x_n)}$$

$$l_2(x) = \frac{(x - x_0)(x - x_1)(x - x_3) \dots (x - x_n)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3) \dots (x_2 - x_n)}$$

$$l_3(x) = \frac{(x - x_0)(x - x_1)(x - x_2) \dots (x - x_n)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2) \dots (x_3 - x_n)} \dots$$

$$L_n(x) = \sum_{i=0}^n y_i \, l_i(x)$$

$$Ln(x) = \sum_{i=0}^{n} y_i \frac{(x-x_0)(x-x_1)...(x-x_{i-1})(x-x_{i+1})...(x-x_n)}{(x_i-x_0)(x_i-x_1)...(x_i-x_{i-1})(x_i-x_{i+1})...(x_i-x_n)}$$

$$L_n(x) = \sum_{i=0}^n y_i \prod_{\substack{j=0\\j \neq i}}^n \frac{x - x_j}{x_i - x_j}$$
 (8)

Полином Лагранжа имеет малую погрешность при небольших значениях $n\ (n < 20)$.

К недостаткам можно отнести то, что с изменением числа узлов приходится все *вычисления проводить заново*.

Линейная и квадратичная интерполяции являются частными случаями интерполяции многочленом Лагранжа.

При n=1 (два узла и первая степень многочлена):

$$L_1(x) = y_0 \frac{x - x_1}{x_1 - x_0} + y_1 \frac{x - x_0}{x_1 - x_0}$$

При n=2 (три узла и вторая степень многочлена):

$$L_2(x) = y_0 \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + y_1 \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + y_2 \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

Оценка погрешности

В точках, отличных от узлов, интерполяционный полином P(x) отличается от значения функции f(x) на величину **остаточного члена**:

$$R_n(x) = f(x) - P(x)$$

Погрешность при использовании многочлена Лагранжа определяется формулой:

$$R_n(x) \le \frac{M^{(n+1)}(x)}{(n+1)!} |(x - x_0)(x - x_1) \dots (x - x_n)|$$

$$M^{(n+1)}(x) = \max_{x \in [x_0; x_n]} f^{n+1}(x)$$

Применение этой формулы затрудняется необходимостью вычисления константы $M^{(n+1)}$, ведь о функции f(x) в общем случае неизвестно ничего, кроме таблицы. Для решения этой проблемы приходится привлекать дополнительные соображения, например, геометрические или физические, все, что известно о f(x) в каждом конкретном случае.

Например, получили $R_n(x) \approx 0,000017$, т.е. интерполяционный многочлен дает четыре верных знака после запятой. Однако нужно учитывать погрешности табличных данных и вычислений многочлена, поэтому верных знаков, скорее всего, будет меньше.

Пример 2. Найти приближенное значение функции y = f(x) при x=0,35 для заданной таблицы с помощью многочлена Лагранжа.

X	0,1	0,2	0,3	0,4	0,5
у	1,25	2,38	3,79	5,44	7,14

Решение:

$$l_0(x) = \frac{(x - x_1)(x - x_2)(x - x_3)(x - x_4)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)(x_0 - x_4)} = \frac{(0.35 - 0.2)(0.35 - 0.3)(0.35 - 0.4)(0.35 - 0.5)}{(0.1 - 0.2)(0.1 - 0.3)(0.1 - 0.4)(0.1 - 0.5)}$$

$$= 0.0234375 * y_0 = 0.0234375 * 1.25 = 0.029297$$

$$l_1(x) = \frac{(x - x_0)(x - x_2)(x - x_3)(x - x_4)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)(x_1 - x_4)} = \frac{(0.35 - 0.1)(0.35 - 0.3)(0.35 - 0.4)(0.35 - 0.5)}{(0.2 - 0.1)(0.2 - 0.3)(0.2 - 0.4)(0.2 - 0.5)}$$
$$= (-0.15625) * y_1 = (-0.15625) * 2.38 = -0.37187$$

$$l_2(x) = \frac{(x - x_0)(x - x_1)(x - x_3)(x - x_4)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)(x_2 - x_4)} = \frac{(0.35 - 0.1)(0.35 - 0.2)(0.35 - 0.4)(0.35 - 0.5)}{(0.3 - 0.1)(0.3 - 0.2)(0.3 - 0.4)(0.3 - 0.5)}$$
$$= 0.703125 * y_2 = 0.703125 * 3.79 = 2.66485$$

$$l_3(x) = \frac{(x - x_0)(x - x_1)(x - x_2)(x - x_4)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)(x_3 - x_4)} = \frac{(0.35 - 0.1)(0.35 - 0.2)(0.35 - 0.3)(0.35 - 0.5)}{(0.4 - 0.1)(0.4 - 0.2)(0.4 - 0.3)(0.4 - 0.5)}$$
$$= 0.46875 * y_3 = 0.46875 * 5.44 = 2.55$$

$$l_4(x) = \frac{(x - x_0)(x - x_1)(x - x_2)(x - x_3)}{(x_4 - x_0)(x_4 - x_1)(x_4 - x_2)(x_4 - x_3)} = \frac{(0.35 - 0.1)(0.35 - 0.2)(0.35 - 0.3)(0.35 - 0.4)}{(0.5 - 0.1)(0.5 - 0.2)(0.5 - 0.3)(0.5 - 0.4)}$$
$$= -0.0390625 * y_4 = -0.0390625 * 7.14 = -0.27891$$

$$L_4(0,35) = l_0(x) + l_1(x) + l_2(x) + l_3(x) + l_4(x) = 4,59336$$

Пример 3. Построить многочлен Лагранжа, если функция y = f(x) задана таблицей:

X	1	2	3	4
у	0	3	5	7

n=3

$$L_3(x) = 0 \cdot \frac{(x-2)(x-3)(x-4)}{(1-2)(1-3)(1-4)} + 3 \cdot \frac{(x-1)(x-3)(x-4)}{(2-1)(2-3)(2-4)} + 5 \cdot \frac{(x-1)(x-2)(x-4)}{(3-1)(3-2)(3-4)} + 7 \cdot \frac{(x-1)(x-2)(x-3)}{(4-1)(4-2)(4-3)} = \frac{x^3}{6} - \frac{9}{6}x^2 + \frac{38}{6}x - 5$$

Пример 4: Вычислить, пользуясь интерполяционной формулой Лагранжа, $\sqrt{105}$ и оценить погрешность.

Решение: Рассмотрим функцию $y=\sqrt{x}$

X	100	121	144
y	10	11	12

$$n=2$$

$$L_2(x) = 10 \cdot \frac{(105 - 121)(105 - 144)}{(100 - 121)(100 - 144)} + 11 \cdot \frac{(105 - 100)(105 - 144)}{(121 - 100)(121 - 144)} +$$

$$12 \cdot \frac{(105-100)(105-121)}{(144-100)(144-121)} = 10,245624$$

 $\sqrt{105}\approx 10,246951$

Оценим $R_2(x)$:

$$R_2(x) \le \frac{\max_{x \in [x_0; x_n]} f'''(x)}{(3)!} |(x - x_0)(x - x_1)(x - x_2)|$$

$$y' = \frac{1}{2\sqrt{x}}$$
 $y'' = \frac{1}{4\sqrt{x^3}}$ $y''' = \frac{3}{8\sqrt{x^5}}$

$$\max_{x \in [100;144]} y'''(x) = \left| \frac{3}{8\sqrt{100^5}} \right| = \frac{3}{8} 10^{-5}$$

$$R_2(x) < \frac{1}{3!} \cdot \frac{3}{8} \cdot 10^{-5} |(105 - 100)(105 - 121)(105 - 144)| \approx 1,95 \cdot 10^{-3}$$

Многочлен Ньютона

Интерполяционный многочлен Ньютона с разделенными разностями

При построении интерполяционного полинома в форме Ньютона используется понятие разделенной разности.

Разделенные разности применяются для функций, заданных на неравномерной сетке (**неравноотстоящие узлы**).

Разделенные разности (или разностные отношения) **нулевого порядка** совпадают со значениями функции в узлах: $f(x_i) = y_i$.

Определение. Разделенные разности первого порядка называют величины (определяются через разделенные разности нулевого порядка):

$$f(x_0, x_1) = \frac{f(x_1) - f(x_0)}{x_1 - x_0}, \quad f(x_1, x_2) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \quad f(x_i, x_{i+1}) = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}$$

Разделенные разности второго порядка называют величины (определяются через разделенные разности первого порядка):

$$f(x_0, x_1, x_2) = \frac{f(x_1, x_2) - f(x_0, x_1)}{x_2 - x_0}, \quad f(x_1, x_2, x_3) = \frac{f(x_2, x_3) - f(x_1, x_2)}{x_3 - x_1}$$

$$f(x_i, x_{i+1}, x_{i+2}) = \frac{f(x_{i+1}, x_{i+2}) - f(x_i, x_{i+1})}{x_{i+2} - x_i}$$

Многочлен Ньютона

<u>Разделенные разности k-го порядка</u> определяются через разделенные разности порядка k-1:

$$f(x_i, x_{i+1}, \dots, x_{i+k}) = \frac{f(x_{i+1}, \dots, x_{i+k}) - f(x_i, x_{i+k-1})}{x_{i+k} - x_i}$$

Они определяются рекуррентно, начиная с первого порядка.

Используя понятие разделенной разности интерполяционный многочлен Ньютона можно записать в следующем виде:

$$N_{n}(x) = f(x_{0}) + f(x_{0}, x_{1}) \cdot (x - x_{0}) + f(x_{0}, x_{1}, x_{2}) \cdot (x - x_{0}) \cdot (x - x_{1}) + \dots + f(x_{0}, x_{1}, \dots, x_{n}) \cdot (x - x_{0}) \cdot (x - x_{1}) \dots (x - x_{n-1})$$

$$N_{n}(x) = f(x_{0}) + \sum_{k=1}^{n} f(x_{0}, x_{1}, \dots, x_{k}) \prod_{j=0}^{k-1} (x - x_{j})$$

$$(9)$$

Отметим, что при добавлении новых узлов первые члены многочлена Ньютона остаются неизменными.

Для повышения точности интерполяции в сумму могут быть добавлены новые члены, что требует подключения дополнительных интерполяционных узлов. При этом безразлично, в каком порядке подключаются новые узлы. Этим формула Ньютона выгодно отличается от формулы Лагранжа.

университет итмо

<u>Пример 5.</u> Используя интерполяционную формулу Ньютона для неравноотстоящих узлов найти приближенное значение функции *для x=0,22*.

X	0,15	0,2	0,33	0,47
У	1,25	2,38	3,79	5,44

Решение: Вычисления произведем по формуле:

$$N_{3}(x) = f(x_{0}) + f(x_{0}, x_{1}) \cdot (x - x_{0}) + f(x_{0}, x_{1}, x_{2}) \cdot (x - x_{0}) \cdot (x - x_{1}) + f(x_{0}, x_{1}, x_{2}, x_{3}) \cdot (x - x_{0}) \cdot (x - x_{1}) + f(x_{0}, x_{1}, x_{2}, x_{3}) \cdot (x - x_{0}) \cdot (x - x_{1}) + f(x_{0}, x_{1}, x_{2}, x_{3}) \cdot (x - x_{0}) \cdot (x - x_{1}) + f(x_{0}, x_{1}, x_{2}, x_{3}) \cdot (x - x_{0}) \cdot (x - x_{1}) + f(x_{0}, x_{1}, x_{2}, x_{3}) \cdot (x - x_{0}) \cdot (x - x_{1}) + f(x_{0}, x_{1}, x_{2}, x_{3}) \cdot (x - x_{0}) \cdot (x - x_{1}) + f(x_{0}, x_{1}, x_{2}, x_{3}) \cdot (x - x_{0}) \cdot (x - x_{1}) + f(x_{0}, x_{1}, x_{2}, x_{3}) \cdot (x - x_{0}) \cdot (x - x_{1}) + f(x_{0}, x_{1}, x_{2}, x_{3}) \cdot (x - x_{0}) \cdot (x - x_{1}) + f(x_{0}, x_{1}, x_{2}, x_{3}) \cdot (x - x_{0}) \cdot (x - x_{1}) + f(x_{0}, x_{1}, x_{2}, x_{3}) \cdot (x - x_{0}) \cdot (x - x_{1}) + f(x_{0}, x_{1}, x_{2}, x_{3}) \cdot (x - x_{0}) \cdot (x - x_{1}) + f(x_{0}, x_{1}, x_{2}, x_{3}) \cdot (x - x_{0}) \cdot (x - x_{1}) + f(x_{0}, x_{1}, x_{2}, x_{3}) \cdot (x - x_{0}) \cdot (x - x_{1}) + f(x_{0}, x_{1}, x_{2}, x_{3}) \cdot (x - x_{0}) \cdot (x - x_{1}) + f(x_{0}, x_{1}, x_{2}, x_{3}) \cdot (x - x_{0}) \cdot (x - x_{1}) + f(x_{0}, x_{1}, x_{2}, x_{3}) \cdot (x - x_{0}) \cdot (x - x_{1}) \cdot (x - x_{0}) \cdot (x - x_{1}) + f(x_{0}, x_{1}, x_{2}, x_{3}) \cdot (x - x_{0}) \cdot (x - x_{1}) \cdot (x$$

Узлы интерполирования x_0, x_1, \dots, x_n называются равноотстоящими, если: $x_i - x_{i-1} = h = const$, где h - шаг интерполирования, $x_i = x_0 + ih$.

Конечные разности применяются для функций, заданных на равномерной сетке.

Конечные разности нулевого порядка совпадают со значениями функции в узлах: $f(x_i) = y_i$.

Конечными разностями первого порядка называют величины:

$$\Delta y_i = y_{i+1} - y_i, i = 0, 1, ..., n - 1$$

Конечными разностями второго порядка называют величины:

$$\Delta^2 y_i = \Delta y_{i+1} - \Delta y_i$$

Конечными разностями k-го порядка называют величины:

$$\Delta^k y_i = \Delta^{k-1} y_{i+1} - \Delta^{k-1} y_i$$

Перейдем к построению интерполяционного многочлена Ньютона.

Этот многочлен запишем в виде:

$$N_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0)(x - x_1) \dots (x - x_n)$$
 (*)

Условие интерполяции $N_n(x_i) = y_i$ используем для нахождения коэффициентов многочлена:

$$N_n(x_0) = a_0 = y_0$$

$$N_n(x_1) = a_0 + a_1(x_1 - x_0) = a_0 + a_1 h = y_1$$

$$N_n(x_2) = a_0 + a_1(x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1) = a_0 + 2a_1 h + 2a_1 h^2 = y_2$$

.....

Найдем отсюда коэффициенты a_0 , a_1 , a_2 :

$$a_0 = y_0$$
, $a_1 = \frac{y_1 - a_0}{h} = \frac{y_1 - y_0}{h} = \frac{\Delta y_0}{h}$, $a_2 = \frac{y_2 - a_0 - 2a_1h}{2h^2} = \frac{y_2 - y_0 - 2\Delta y_0}{2h^2} = \frac{\Delta^2 y_0}{2h^2}$

Общая формула имеет вид:

$$a_k = \frac{\Delta^k y_0}{k! h^k} k = 0, 1, \dots, n$$

Подставляя эти выражения в (*), получим:

$$N_n(x) = y_0 + \frac{\Delta y_0}{h}(x - x_0) + \frac{\Delta^2 y_0}{2! h^2}(x - x_0)(x - x_1) + \dots + \frac{\Delta^n y_0}{n! h^n}(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

Введем обозначение: $t = (x - x_0)/h$. Тогда получим формулу Ньютона, которая называется первой интерполяционной формулой Ньютона для интерполирования вперед:

$$N_n(x) = y_0 + t\Delta y_0 + \frac{t(t-1)}{2!}\Delta^2 y_0 + \dots + \frac{t(t-1)\dots(t-n+1)}{n!}\Delta^n y_0$$

Полученное выражение может аппроксимировать функцию на всем отрезке изменения аргумента $[x_0, x_n]$. Однако более целесообразно (с точки зрения повышения точности расчетов) использовать эту формулу для $x_0 \le x \le x_1$.

При этом за x_0 может приниматься любой узел интерполяции x_k .

Например, для $x_1 \le x \le x_2$, вместо x_0 надо взять значение x_1 . Тогда интерполяционный многочлен Ньютона:

$$N_n(x) = y_i + t\Delta y_i + \frac{t(t-1)}{2!}\Delta^2 y_i + \dots + \frac{t(t-1)\dots(t-n+1)}{n!}\Delta^n y_i \quad (*)$$

Интерполяционную формулу (*) обычно используют для вычислений значений функции в точках **левой половины отрезка**.

Для правой половины отрезка разности вычисляют справа налево: $t = (x - x_n)/h$. Тогда получим формулу Ньютона, которая называется второй интерполяционной формулой Ньютона для интерполирования назад:

$$N_n(x) = y_n + t\Delta y_{n-1} + \frac{t(t+1)}{2!}\Delta^2 y_{n-2} + \dots + \frac{t(t+1)\dots(t+n-1)}{n!}\Delta^n y_0$$

Экстраполирование функции

При **экстраполировании** для отыскания значений функции для $x < x_0$ используется первый интерполяционный многочлен Ньютона. В этом случае $t \le 0$ и говорят, что первая интерполяционная формула Ньютона применяется для **экстраполирования назад**.

При отыскании значений функции для $x>x_n$ используется второй интерполяционный многочлен Ньютона.

В этом случае $t \geq 0$ и говорят, что вторая интерполяционная формула Ньютона применяется для **экстраполирования вперед**.

Замечание. При экстраполировании получаются бо́льшие погрешности, чем при интерполировании. Поэтому пределы его применения ограничены. Тем не менее, экстраполирование можно проводить в узких пределах, например в пределах шага h.

В более далеких точках можно получить неверные значения у.

Формула Лагранжа применяется в обоих случаях.

Конечные разности функций удобно располагать в таблице (чтобы нагляднее понимать какие конечные разности надо вычислять):

x_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$	$\Delta^4 y_i$	$\Delta^5 y_i$	$\Delta^6 y_i$
x_0	y_0	Δy_0	$\Delta^2 y_0$	$\Delta^3 y_0$	$\Delta^4 y_0$	$\Delta^5 y_0$	$\Delta^6 y_0$
x_1	y_1	Δy_1	$\Delta^2 y_1$	$\Delta^3 y_1$	$\Delta^4 y_1$	$\Delta^5 y_1$	
x_2	y_2	Δy_2	$\Delta^2 y_2$	$\Delta^3 y_2$	$\Delta^4 y_2$		
x_3	y_3	Δy_3	$\Delta^2 y_3$	$\Delta^3 y_3$			
x_4	y_4	Δy_4	$\Delta^2 y_4$				
x_5	y_5	Δy_5					
x_6	y_6						

Если $x_0 \le x \le x_1$, то при использовании **первой интерполяционной формулой Ньютона для интерполирования вперед** необходимо вычислить (см. таблицу):

Δy_i ,	$\Delta^2 y_i$,	$\Delta^3 y_i$,	$\Delta^4 y_i$,	$\Delta^5 y_i$,	$\Delta^6 y_i$,
i=0,5	i=0,4	i = 0,3	i=0,2	i = 0, 1	i = 0

$$\Delta y_i = y_{i+1} - y_i; \quad \Delta^2 y_i = \Delta y_{i+1} - \Delta y_i;$$

$$\Delta^3 y_i = \Delta^2 y_{i+1} - \Delta^2 y_i; \quad \Delta^k y_i = \Delta^{k-1} y_{i+1} - \Delta^{k-1} y_i$$

$$t = (x - x_0)/h$$

$$\begin{split} N_6(x) &= \\ y_0 + t\Delta y_0 + \frac{t(t-1)}{2!}\Delta^2 y_0 + \frac{t(t-1)(t-2)}{3!}\Delta^3 y_0 + \frac{t(t-1)(t-2)(t-3)}{4!}\Delta^4 y_0 + \\ \frac{t(t-1)(t-2)(t-3)(t-4)}{5!}\Delta^5 y_0 + \frac{t(t-1)(t-2)(t-3)(t-4)(t-5)}{6!}\Delta^6 y_0 \end{split}$$

x_i	y_i	Δy_i	$\Delta^2 y_i$		$\Delta^n y_i$
<i>x</i> ₀	уo				
		Δy _o			
x_1	<i>y</i> ₁		$\Delta^2 y_0$		
		Δy_1		×	
x_2	<i>y</i> ₂				$\Delta^n y_0$
			:		
				N	
x_{n-1}	y_{n-1}		$\Delta^2 y_{n-1}$		
		Δy_{n-1}			
x_n	y_n				

Если $x_1 \le x \le x_2$, можно также использовать предыдущую формулу.

Но, для увеличения точности вычислений, рекомендуется взять вместо x_0 значение x_1 и тогда при использовании **первой интерполяционной формулой Ньютона для интерполирования вперед** необходимо вычислить (см. таблицу):

$$t = (x - x_1)/h$$

$$\Delta y_{i}, \qquad \Delta^{2}y_{i}, \qquad \Delta^{3}y_{i}, \qquad \Delta^{4}y_{i}, \qquad \Delta^{5}y_{i},$$

$$i = 1, ...5 \quad i = 1, ...4 \quad i = 1, ...3 \quad i = 1, 2 \quad i = 1$$

$$N_{5}(x) = y_{1} + t\Delta y_{1} + \frac{t(t-1)}{2!} \Delta^{2}y_{1} + \frac{t(t-1)(t-2)}{3!} \Delta^{3}y_{1} + \frac{t(t-1)(t-2)(t-3)}{4!} \Delta^{4}y_{1} + \frac{t(t-1)(t-2)(t-3)(t-4)}{5!} \Delta^{5}y_{1}$$

Количество слагаемых в этом случае уменьшается на единицу!

Для интерполирования назад все то же самое, только считаем с конца!!!!

$$N_{6}(x) = y_{6} + t\Delta y_{5} + \frac{t(t+1)}{2!} \Delta^{2} y_{4} + \frac{t(t+1)(t+2)}{3!} \Delta^{3} y_{3}$$

$$+ \frac{t(t+1)(t+2)(t+3)}{4!} \Delta^{4} y_{2}$$

$$+ \frac{t(t+1)(t+2)(t+3)(t+4)}{5!} \Delta^{5} y_{1}$$

$$+ \frac{t(t+1)(t+2)(t+3)(t+4)(t+5)}{6!} \Delta^{6} y_{0}$$

Пример 6. Используя первую или вторую интерполяционную формулу Ньютона найти приближенное значение функции для x=0,15, x=0,22 и x=0,47 по заданной таблице.

х	0,1	0,2	0,3	0,4	0,5
У	1,25	2,38	3,79	5,44	7,14

Решение:

Nº	x _i	y _i	$\Delta \mathbf{y_i}$	$\Delta^2 y_i$	$\Delta^3 \mathbf{y_i}$	$\Delta^{4}\mathbf{y_{i}}$
0	0, 1	1,25	$\Delta y_0 = 1, 13$	$\Delta^2 \mathbf{y_0} = 0$, 28	$\Delta^3 \mathbf{y_0} = -0, 04$	$\Delta^4 \mathbf{y_0} = -0, 15$
1	0, 2	2,38	$\Delta y_1 = 1,41$	$\Delta^2 \mathbf{y_1} = 0, 24$	$\Delta^3\mathbf{y_1}=-0,19$	
2	0,3	3,79	$\Delta \mathbf{y}_2 = 1, 65$	$\Delta^2\mathbf{y}_2=0,05$		
3	0,4	5,44	$\Delta y_3 = 1,7$			
4	0, 5	7, 14				

Воспользуемся формулой Ньютона для интерполирования вперед, т.к. x=0,15 x=0,22 лежат в левой половине отрезка.

Для x=0,15:
$$t = \frac{(x-x_0)}{h} = \frac{0,15-0,1}{0,1} = 0,5$$

$$N_4(x) = y_0 + t\Delta y_0 + \frac{t(t-1)}{2!}\Delta^2 y_0 + \frac{t(t-1)(t-2)}{3!}\Delta^3 y_0 + \frac{t(t-1)(t-2)(t-3)}{4!}\Delta^4 y_0$$

$$y(0,15) \approx 1,25 + 0,5 \cdot 1,13 + \frac{0,5(-0,5)}{2} \cdot 0,28 + \frac{0,5(-0,5)(-1,5)}{6} \cdot (-0,04) + \frac{0,5(-0,5)(-1,5)(-2,5)}{24} \cdot (-0,15) \approx 1,78336$$

Для
$$x$$
=0,22: $t = \frac{(x-x_1)}{h} = \frac{0,22-0,2}{0,1} = 0,2$
$$N_3(x) = y_1 + t\Delta y_1 + \frac{t(t-1)}{2!}\Delta^2 y_1 + \frac{t(t-1)(t-2)}{3!}\Delta^3 y_1$$

$$y(0,22) \approx 2,38 + 0,2 \cdot 1,41 + \frac{0,2(-0,8)}{2} \cdot 0,24 + \frac{0,2(-0,8)(-1,8)}{6} \cdot (-0,19) \approx 2,63368$$

Интерполяционные формулы Ньютона для равноотстоящих узлов

Воспользуемся формулой Ньютона для интерполирования назад, т.к. *x*=0,47 лежит в второй половине отрезка.

Для
$$x=0,47$$
: $t=\frac{(x-x_n)}{h}=\frac{0,47-0,5}{0,1}=-0,3$

$$N_4(x) = y_4 + t\Delta y_3 + \frac{t(t+1)}{2!} \Delta^2 y_2 + \frac{t(t+1)(t+2)}{3!} \Delta^3 y_1 + \frac{t(t+1)(t+2)(t+3)}{4!} \Delta^4 y_0$$

$$y(0,47) = 7,14 - 0,3 \cdot 1,7 + \frac{-0,3(-0,3+1)}{2!}0,05 + \frac{-0,3(-0,3+1)(-0,3+2)}{3!}(-0,19) + \frac{-0,3(-0,3+1)(-0,3+2)(-0,3+3)}{4!}(-0,15) \approx 6,64208$$

Интерполяционные формулы Ньютона для равноотстоящих узлов

Пример 7. Построить многочлен Ньютона, если функция y = f(x) задана таблицей:

X	1	2	3	4
У		3	5	7

x _i	y _i	$\Delta \mathbf{y_i}$	$\Delta^2 y_i$	$\Delta^3 \mathbf{y_i}$
1	0	3	-1	1
2	3	2	0	
3	5	2		
4	7			

$$N_3(x) = y_0 + \frac{\Delta y_0}{h}(x - x_0) + \frac{\Delta^2 y_0}{2! h^2}(x - x_0)(x - x_1) + \frac{\Delta^3 y_0}{3! h^3}(x - x_0)(x - x_1)(x - x_2) =$$

$$= 0 + 3(x - 1) + \frac{-1}{2}(x - 1)(x - 2) + \frac{1}{6}(x - 1)(x - 2)(x - 3) = \frac{x^3}{6} - \frac{9}{6}x^2 + \frac{38}{6}x - 5$$

Погрешность интерполяционного полинома Ньютона

Погрешность интерполяции по формуле Ньютона оценивается также, как и при использовании многочлена Лагранжа, т.е. по формуле:

$$R_n(x) \le \frac{M^{(n+1)}(x)}{(n+1)!} |(x - x_0)(x - x_1) \dots (x - x_n)|$$

$$M^{(n+1)}(x) = \max_{x \in [x_0; x_n]} f^{n+1}(x)$$

Однако, оценить производную высокого порядка часто бывает трудно, а порой и невозможно. Поэтому на практике пользуются следующим правилом: степень интерполяционного полинома должна совпадать с порядком практически постоянных конечных разностей.

Тогда оценка погрешности для первой интерполяционной формулы Ньютона находится по формуле:

$$R_n(x) \le \left| \frac{t(t-1)...(t-n)}{(n+1)!} \right| \Delta^{n+1} y_0 \qquad t = \frac{x-x_0}{h}$$

Оценка погрешности для второй интерполяционной формулы Ньютона находится по формуле:

$$R_n(x) \le \left| \frac{t(t+1)...(t+n)}{(n+1)!} \right| \Delta^{n+1} y_n \qquad t = \frac{x-x_n}{h}$$

Узлы располагаются слева и справа от центральной точки a. Пусть требуется найти приближенное значение функции f в точке x между a и a+h: a< x< a+h. Таким образом, поставлена задача интерполяции табличной функции в середине таблицы. Идея: выражают входящие в интерполяционный многочлен Ньютона (9) разделенные разности через

 $t = \frac{(x - x_0)}{h} = \frac{(x - a)}{h} \Rightarrow x = a + th$

конечные с заменой переменной:

i	x_i	y_i
n-1	$a + (-1)^n \left[\frac{n}{2}\right] h$	$y_{(-1)^n\left[\frac{n}{2}\right]}$
:	:	:
6	a-3h	y_{-3}
4	a-2h	y_{-2}
2	a-h	y_{-1}
0	a	${\cal Y}_0$
1	a + h	y_1
3	a + 2h	y_2
5	a + 3h	y_3
:	:	:
n	$a + (-1)^{n+1} \left[\frac{n+1}{2} \right] h$	$y_{(-1)^{n+1}\left[\frac{n+1}{2}\right]}$

Первая интерполяционная формула Гаусса (x>a)

$$\begin{split} P_n(x) &= y_0 + t\Delta y_0 + \frac{t(t-1)}{2!} \Delta^2 y_{-1} + \frac{(t+1)t(t-1)}{3!} \Delta^3 y_{-1} \\ &+ \frac{(t+1)t(t-1)(t-2)}{4!} \Delta^4 y_{-2} \\ &+ \frac{(t+2)(t+1)t(t-1)(t-2)}{5!} \Delta^5 y_{-2} \dots \\ &+ \frac{(t+n-1)\dots(t-n+1)}{(2n-1)!} \Delta^{2n-1} y_{-(n-1)} \\ &+ \frac{(t+n-1)\dots(t-n)}{(2n)!} \Delta^{2n} y_{-n} \end{split}$$

Интерполяционные многочлены Гаусса

Вторая интерполяционная формула Гаусса (x < a)

$$P_{n}(x) = y_{0} + t\Delta y_{-1} + \frac{t(t+1)}{2!} \Delta^{2} y_{-1} + \frac{(t+1)t(t-1)}{3!} \Delta^{3} y_{-2} + \frac{(t+2)(t+1)t(t-1)}{4!} \Delta^{4} y_{-2} + \cdots + \frac{(t+n-1)\dots(t-n+1)}{(2n-1)!} \Delta^{2n-1} y_{-n} + \frac{(t+n)(t+n-1)\dots(t-n+1)}{(2n)!} \Delta^{2n} y_{-n}$$

$$R_n(x) \approx \frac{\Delta^{2n+1} y_0}{(n+1)!} t(t-1) \dots (t-n)$$

1 формула

2 формула

x_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^{a}y_{i}$	$\Delta^4 y_i$	$\Delta^5 y_i$	$\Delta^6 y_i$	
x_3	y_3							
		Δy_3			•••	•••		
x_2	y ₋₂		$\Delta^2 y_{-3}$					
~	27	∆ <i>y</i> _{−2}		$\Delta^3 y_{-3}$	Δ ⁴ y ₋₃			
x_1	y ₋₁	Δy ₋₁	$\Delta^2 y_{-2}$	Δ ³ y ₋₂		Δ ⁵ y ₋₃		
<i>x</i> ₀	Уo		$\Delta^2 y_{-1}$		$\Delta^{4}y_{-2}$		$\Delta^{6}y_{-3}$	
<i>x</i> ₀	Уo	Δy _o	$\Delta^2 y_{-1}$	$\Delta^{3}y_{-1}$	$\Delta^{4}y_{-2}$	$\Delta^{5}y_{-2}$	$\Delta^{6}y_{-3}$	
<i>x</i> ₁	<i>y</i> ₁			, -	$\Delta^{4}y_{-1}$, -		
		Δy_1	$\Delta^2 y_0$	$\Delta^2 y_0$				
x ₂	<i>y</i> ₂		$\Delta^2 1$					
		Δy_2						
<i>x</i> ₃	yз							

Интерполяционные формулы Гаусса

Пример 8. Используя первую или вторую интерполяционную формулу Гаусса найти приближенное значение функции для x=0,32, x=0,28 по заданной таблице.

- 1 формула Гаусса (выделено желтым)
- 2 формула Гаусса (выделено зеленым)

$\mathbf{x_i}$	$\mathbf{y_i}$	$\Delta \mathbf{y_i}$	$\Delta^2 \mathbf{y_i}$	$\Delta^3 y_i$	$\Delta^4 y_i$
$x_{-2} = 0, 1$	$y_{-2} = 1,25$	$\Delta y_{-2} = 1, 13$	$\Delta^2 \mathbf{y}_{-2} = 0, 28$	$\Delta^3 y_{-2} = -0,04$	$\Delta^4 y_{-2} = -0, 15$
$x_{-1} = 0, 2$	$y_{-1} = 2,38$	$\Delta \mathbf{y_{-1}} = 1, 41$	$\Delta^2 \mathbf{y_{-1}} = 0, 24$	$\Delta^3 \mathbf{y}_{-1} = -0, 19$	
$x_0=0,3$	$y_0 = 3,79$	$\Delta y_0 = 1,65$	$\Delta^2 \mathbf{y_0} = 0, 05$		
$x_1=0,4$	$y_1 = 5,44$	$\Delta y_1 = 1, 7$			
$x_2=0,5$	$y_2 = 7,14$				

Интерполяционные многочлены Гаусса

1 формула Гаусса (выделено желтым):

$$t = \frac{(x-x_0)}{h} = \frac{0,32-0,3}{0,1} = 0,2$$

$$P_4(x) = y_0 + t\Delta y_0 + \frac{t(t-1)}{2!} \Delta^2 y_{-1} + \frac{t(t+1)(t-1)}{3!} \Delta^3 y_{-1} + \frac{t(t+1)(t-1)(t-2)}{4!} \Delta^4 y_{-2}$$

$$y(0,32) \approx 3,79 + 0,2 \cdot 1,65 + \frac{0,2 \cdot (-0,8)}{2} \cdot 0,24 + \frac{0,2 \cdot 1,2 \cdot (-0,8)}{6} \cdot (-0,19) + \frac{0,2 \cdot 1,2 \cdot (-0,8)(-1,8)}{24} \cdot (-0,15) \approx 4,10472$$

2 формула Гаусса (выделено зеленым):

$$t = \frac{(x-x_0)}{h} = \frac{0.28-0.3}{0.1} = -0.2$$

$$P_4(x) = y_0 + t\Delta y_{-1} + \frac{t(t+1)}{2!} \Delta^2 y_{-1} + \frac{t(t+1)(t-1)}{3!} \Delta^3 y_{-2} + \frac{t(t+1)(t-1)(t+2)}{4!} \Delta^4 y_{-2}$$

$$y(0.28) \approx 3.79 - 0.2 \cdot 1.41 + \frac{-0.2 \cdot 0.8}{2} \cdot 0.24 + \frac{-0.2 \cdot 0.8 \cdot (-1.2)}{6} \cdot (-0.04) + \frac{-0.2 \cdot 0.8 \cdot (-1.2) \cdot 1.8}{24} \cdot (-0.15) \approx 3.48536$$

Интерполяционный многочлен Стирлинга

Формула Стирлинга представляет собой среднее арифметическое первой и второй интерполяционных формул Гаусса. Применяется для интерполирования при значениях t, близких к 0. На практике ее используют при $|t| \leq 0,25$. Строится по нечетному числу узлов

$$\begin{split} P_n(x) &= y_0 + t \frac{\Delta y_{-1} + \Delta y_0}{2!} + \frac{t^2}{2} \Delta^2 y_{-1} + \frac{t(t^2 - 1^2)}{3!} \cdot \frac{\Delta^3 y_{-2} + \Delta^3 y_{-1}}{2} + \frac{t^2(t^2 - 1^2)}{4!} \Delta^4 y_{-2} \\ &+ \frac{t(t^2 - 1^2)(t^2 - 2^2)}{5!} \cdot \frac{\Delta^5 y_{-3} + \Delta^5 y_{-2}}{2} + \frac{t(t^2 - 1^2)(t^2 - 2^2)}{6!} \cdot \Delta^6 y_{-3} + \cdots \\ &+ \frac{t(t^2 - 1^2)(t^2 - 2^2) \dots (t^2 - (n - 1)^2)}{(2n - 1)!} \cdot \frac{\Delta^{2n - 1} y_{-n} + \Delta^{2n - 1} y_{-(n - 1)}}{2} + \\ &+ \frac{t^2(t^2 - 1^2)(t^2 - 2^2) \dots (t^2 - (n - 1)^2)}{(2n)!} \cdot \Delta^{2n} y_{-n} \end{split}$$

$$R_n(x) \approx h^{2n+1} \frac{\Delta^{2n+2} y_{-n-1} + \Delta^{2n+2} y_{-n}}{2(2n+1)!} t(t^2 - 1^2) \dots (t^2 - n^2)$$

Интерполяционный многочлен Бесселя

Формула Бесселя применяется для интерполирования при значениях t, близких к 0,5. На практике ее используют при $0,25 \le |t| \le 0,75$. Строится по четному числу узлов

$$\begin{split} P_n(x) &= \frac{y_0 + y_1}{2} + \left(t - \frac{1}{2}\right) \Delta y_0 + \frac{t(t-1)}{2!} \frac{\Delta^2 y_{-1} + \Delta^2 y_0}{2} + \frac{\left(t - \frac{1}{2}\right) t(t-1)}{3!} \Delta^3 y_{-1} \\ &+ \frac{t(t-1)(t+1)(t-2)}{4!} \frac{\Delta^4 y_{-2} + \Delta^4 y_{-1}}{2} + \frac{\left(t - \frac{1}{2}\right) t(t-1)(t+1)(t-2)}{5!} \Delta^5 y_{-2} \\ &+ \frac{t(t-1)(t+1)(t-2)(t+2)(t-3)}{6!} \frac{\Delta^6 y_{-3} + \Delta^6 y_{-2}}{2} + \cdots \\ &+ \frac{t(t-1)(t+1)(t-2)(t+2) \dots (t-n)(t+n-1)}{(2n)!} \cdot \frac{\Delta^{2n} y_{-n} + \Delta^{2n} y_{-(n-1)}}{2} \\ &+ \frac{\left(t - \frac{1}{2}\right) t(t-1)(t+1)(t-2)(t+2) \dots (t-n)(t+n-1)}{(2n+1)!} \Delta^{2n+1} y_{-n} \end{split}$$

$$R_n(x) \approx h^{2n+1} \frac{\Delta^{2n+2} y_{-n-1} + \Delta^{2n+2} y_{-n}}{2(2n+1)!} t(t^2 - 1^2) \dots (t^2 - n^2)(t - n - 1)$$

Интерполяционный многочлен Бесселя

Формула Бесселя при t = 0, 5 (формула интерполирования на середину):

$$P_n(x) = \frac{y_0 + y_{-1}}{2} + \frac{1}{8} \frac{\Delta^2 y_{-1} + \Delta^2 y_0}{2} + \frac{3}{128} \frac{\Delta^4 y_{-2} + \Delta^2 y_{-1}}{2} + \cdots + (-1)^n \frac{(1 \cdot 3 \cdot 5 \dots (2n-1))^2}{2^{2n} (2n)!} \frac{\Delta^{2n} y_{-n} + \Delta^{2n} y_{-(n-1)}}{2}$$

$$R_n(x) \approx (-1)^{n+1} h^{2n+2} \frac{(1 \cdot 3 \cdot 5 \dots (2n+1))^2}{2^{2n+2} (2n+2)!}$$

Глобальная интерполяция, когда интерполяционный полином строится сразу по всем узлам интерполяции, становится практически непригодна при n>10, поскольку:

- при вычислении многочлена высокой степени могут накапливаться ошибки округления
- интерполяционный многочлен может плохо приближать исходную функцию
- задача интерполяции может быть плохо обусловлена (проявление колебательных свойств многочлена)

Можно применить локальную интерполяцию.

Отрезок, на котором определена функция, можно разбить на участки, содержащие малое число экспериментальных точек, и для каждого из них построить интерполяционные полиномы. Обычно полиномиальную интерполяцию осуществляют максимум по 5-7 узлам.

Однако в этом случае аппроксимирующая функция будет иметь точки, где производная не является непрерывной, т. е. график функции будет содержать точки "излома" - точка х*.

Альтернатива глобальной интерполяции

Пусть на каждом отрезке $[x_{i-1}, x_i]$, i = 1, 2, ..., n функция P(x) является некоторым многочленом $S_i(x)$, причем для каждого отрезка эта функция своя.

В такой постановке задача имеет множество решений.

Единственность решения можно обеспечить, потребовав от функции P(x) некоторой гладкости в местах стыков функций $S_i(x)$, то есть в узлах интерполяции.

Кусочно-линейная интерполяция. На каждом отрезке функция аппроксимируется линейно. Дополнительных условий не требуется, условия гладкости на P(x) в данном случае не налагаются.

Наиболее широко применяемым является вариант, в котором между любыми двумя точками строится многочлен n-й степени.

$$S(x) = \sum_{k=0}^{n} a_{ik} x^k, \quad x_{i-1} \le x \le x_i$$

который в узлах интерполяции принимает значения интерполируемой функции и непрерывен вместе со своими (n-1) производными. Такой кусочно-непрерывный интерполяционный многочлен называется *сплайном*.

Сплайном степени n называется функция $S_n(x)$, обладающая следующими свойствами:

- 1. Функция $S_n(x)$ непрерывна на отрезке $[x_0; x_n]$ вместе со всеми своими производными: $S_n^{(1)}(x)\,S_n^{(2)}(x)\,...\,S_n^{(p)}(x)$ до некоторого порядка p;
- 2. На каждом частичном отрезке $[x_{i-1}; x_i]$ функция $S_{n,i}(x)$ является многочленом $P_{n,i}(x)$ степени n.

Характеристики сплайна:

- 1. Степень сплайна максимальная из степеней использованных полиномов.
- 2. Гладкость сплайна максимальный порядок непрерывной производной.
- 3. Дефект сплайна разность между степенью сплайна и его гладкостью.

Например, кусочно-линейный сплайн имеет степень 1, гладкость 0 и дефект 1 Гладкий кусочно-кубический сплайн имеет степень 3, гладкость 2 и дефект 1

Наибольшее распространение на практике получили сплайны $S_3(x)$ 3-й степени – кубические сплайны.

Кубическим интерполяционным сплайном называется функция S(x), удовлетворяющая следующим условиям:

- 1. на каждом интервале $[x_{i-1}; x_i]$, i = 1, 2, ..., n функция S(x) является полиномом третьей степени;
- 2. функция S(x), а также ее первая и вторая производные S'(x), S''(x) непрерывны на отрезке $[x_0; x_n]$ (гладкость = 2).

Кубический сплайн является многочленом третьей степени, который для *i*-го участка записывается так:

$$S_i(x) = a_i + b_i(x - x_{i-1}) + c_i(x - x_{i-1})^2 + d_i(x - x_{i-1})^3, \quad x_{i-1} \le x \le x_i$$

Такая форма записи соответствует ряду Тейлора для $S_i(x)$ в окрестности точки x_i . Поскольку $S_i(x)$ — кубический многочлен, его ряд Тейлора обрывается после кубического слагаемого. Из аналогии с рядом Тейлора заключаем, что:

$$a_i = S_i(x_i)$$
 $b_i = S'_i(x_i)$ $c_i = S''_i(x_i)$ $d_i = S'''_i(x_i)$

Для определения коэффициентов a_i , b_i , c_i , d_i на всех n элементарных отрезках необходимо получить 4n уравнений.

Часть из них вытекает из условий прохождения графика функции S(x) через заданные точки:

$$S(x_{i-1}) = y_{i-1}$$

$$S(x_i) = y_i$$

Часть дополняет условиями непрерывности сплайна и непрерывности первой и второй производных в узлах интерполяции:

$$S_{i}(x_{i-1}) = S_{i-1}(x_{i-1})$$

$$S'_{i}(x_{i-1}) = S'_{i-1}(x_{i-1})$$

$$S''_{i}(x_{i-1}) = S''_{i-1}(x_{i-1})$$

И добавляют граничные условия:

$$S''(x_0) = 0 \ S''(x_n) = 0$$

$$S'(x) = b_i + 2c_i(x - x_{i-1}) + 3d_i(x - x_{i-1})^2 = b_i + 2c_ih_i + 3d_ih_i^2$$

$$S''(x) = 2c_i + 6d_i(x - x_{i-1}) = c_i + 3d_ih_i$$

Выразим условия непрерывности и гладкости сплайна в терминах

коэффициентов a_i , b_i , c_i , d_i

$$h_i = (x - x_{i-1}), i = 1, 2, ..., n.$$

$$a_{i-1} = S_{i-1}(x_{i-1}) = S_i(x_{i-1}) =$$

$$a_i + b_i(x_{i-1} - x_i) + c_i(x_{i-1} - x_i)^2 + d_i(x_{i-1} - x_i)^3 = a_i - b_i h_i + c_i h_i^2 - d_i h_i^3$$

i = 2, 3, ..., n

Выразим условия непрерывности первой и второй производной:

$$b_{i-1} = S'_{i-1}(x_{i-1}) = S'_{i}(x_{i-1}) = b_i + 2c_i(x_{i-1} - x_i) + 3d_i(x_{i-1} - x_i)^2$$

= $b_i - 2c_ih_i + 3d_ih_i^2$

$$c_{i-1} = S''_{i-1}(x_{i-1}) = S''_{i}(x_{i-1}) = 2c_i + 6d_i(x_{i-1} - x_i) = c_i - 3d_ih_i \quad i = c_i -$$

2, 3, ..., n

Выразим условия интерполирования:

$$a_i = S_i(x_i) = y_i$$
 $i = 1, 2, ..., n$

Для x_0 имеем:

$$a_1 + b_1(x_0 - x_1) + c_1(x_0 - x_1)^2 + d_1(x_0 - x_1)^3$$

Для краевых условий:

$$c_1 - d_1 h_1 = S''_1(x_0) = 0$$

$$c_n = S''_n(x_n) = 0$$

Полученную систему линейных уравнений можно упростить до системы уравнений с трехдиагональной матрицей, которую решают методом прогонки (модификация метода Гаусса для частного случая разряженных систем). В результате серии упрощений получится система относительно только значений $c_{1,\ldots,}c_{n-1}$

$$\begin{bmatrix} 1 & 0 & & & & & \\ h_1 & \delta_1 & h_2 & & & & \\ h_2 & \delta_2 & h_3 & & & \\ & h_3 & \delta_3 & h_4 & & & \\ & & & h_{n-1} & \delta_{n-1} & h_n \\ & & & & 0 & 1 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \\ \dots \\ c_{n-1} \\ c_n \end{bmatrix} = \begin{bmatrix} 0 \\ \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \dots \\ \varepsilon_{n-1} \\ 0 \end{bmatrix}, \quad a_i = f_i, \\ b_i = \frac{a_i - a_{i-1}}{h_i} + \frac{2 \cdot c_i + c_{i-1}}{3} \cdot h_i.$$

где:
$$\delta_i = 2 \cdot (h_i + h_{i+1}), \ \varepsilon_i = 3 \cdot \left(\frac{f_{i+1} - f_i}{h_{i+1}} - \frac{f_i - f_{i-1}}{h_i}\right), \ i \in [1, n-1].$$