June 7, 2016

1 Dynamic Programming

- form subproblems
- get recursive formula to explore all choices at each step
- evaluate formula bottom-up using a table works when total # subproblems is not too big

Ex 1: Evaluate C(n,k) = C(n-1,k-1) + C(n-1,k) (or 1 iff k=0 or k=n) that is the binomial theorem.

Naive is $O(2^n)$. Can optimize to $O(n^2)$ if we cache values since there are at most $O(n^2)$ (n,k) combos.

1.1 Coin Changing

Given coin values c_i , target W, find minimum # of coins that sum exactly to W.

1.1.1 First Solution

Define C(i,j) be min # of coins from $\{c_1...c_i\}$ that sum to j. Note the set is ordered.

Then $C(i, j) = \min\{C(i - 1, j), C(i, j - c_i) + 1\}$ (what'd happen if the last coin we took is c_i).

Of course, we need to test the bounds to ensure $i - 1 \ge 0$ and $j - c_i \ge 0$.

Base cases: C(i, 0) = 0, $C(0, j) = \infty$.

Runtime: O(nW). Space can be reduced to O(W) if we only store last 2 rows. It is also trivial to store "back-pointers" to recover how we got to C(i,j) using O(nW) space.

1.1.2 Second Solution

Define C(i) to be min # of coins to make i sum. $C(i) = \min\{C(i - c_j) + 1 | \forall c_j\}$. C(0) = 0. This is still O(nW) since for each 1...W, for each $c_1...c_n$, we do a constant operation.

1.2 0/1 Knapsack

Given total weight W, values $v_i > 0$, weights $w_i > 0$, find a subset $S \subseteq \{1...n\}$ s.t. $\sum_{i \in S} v_i$ is maximized, $\sum w_i \leq W$.

Naive is $O(2^n)$ (try every possible combination of the values).

Solution: let f(i, j) be the maximal value possible if we're given total weight j and objects 1...i.

Then $f(i,j) = \max\{f(i-1,j), f(i-1,j-w_i) + v_i\}$. Overall O(nW) time complexity.

Base cases: $f(0, _) = 0$ (nothing to take), $f(_, 0) = 0$ (no space to take anything).

1.3 Longest Common Subsequence (LCS)

Def: Given sequences a_i and b_i , find the longest subsequence, indexed at c_i , s.t. $a_{c_i} = b_{c_i}$ (we want to maximize length of c_i).

Naive is something like $O((m+n)2^{m+n})$.

Let f(i,j) be length of longest subsequence for sequences ending at a_i and b_j . Then $f(i,j) = \max\{f(i-1,j-1)+(1 \text{ iff } a_i=b_j \text{ else } 0), f(i-1,j), f(i,j-1)\}$. Evidently, $f(0,_)=0, f(_,0)=0$. Runtime is O(mn).

1.4 Sequence Alignment

Given 2 sequences a and b, find an alignment (c_i, d_i) s.t. $c_{i-1} < c_i$, $d_{i-1} < d_i$, minimizing cost $\sum_{i=1}^k \alpha(a_{c_i}, b_{d_i}) + (m-k)\delta + (n-k)\delta$. Inputs are the α table and δ parameter.

[Needleman-Wunsch '70] Let f(i,j) equals the minimum cost of an alignment that uses the first i values of a, and first j of b. $f(i,0) = i\delta$, $f(0,j) = j\delta$. Then let $f(i,j) = \min\{f(i-1,j) + \delta, f(i,j-1) + \delta, f(i-1,j-1) + \alpha(i,j)\}$.