Modularidade e Consequencias Evolutivas

'Modularidade: Conectando padrões e processos em evolução multivariada'

Monique N. Simon IB – USP monique.simon@usp.br

Why study variation in biology?

Where does variation comes from?

How is variation organized in populations?

What are the evolutionary consequences of a particular organization of variation?

Quantitative Genetics

Quantitative Genetics

Average effect of an allele

$$p(A1) = p$$
$$p(A2) = q$$

Populational mean

Average phenotypic value in offspring

Difference =

Average contribution of A to the phenotype

Avg effect: parent-offspring resemblance

Average effect of an allele

$$\alpha = a + d(q - p)$$

Aditive Genetic Variance

Estimating covariance P-matrix

$$Cov(X,Y) = \frac{\sum (X_i - \overline{X})(Y_j - \overline{Y})}{n}$$

G-matrix = heritable (co)variation

The Breeder's Equation

 $\mathbf{R} = \mathbf{h}^2 \mathbf{S}$

The Breeder's Equation

$$\mathbf{R} = \mathbf{h}^2 \mathbf{S}$$

Price equation: $S_x = cov(W,x) * Var(x)$

Multivariate Breeder's Equation

The Measurement of Selection on Correlated Characters Author(s): Russell Lande and Stevan J. Arnold Source: *Evolution*, Vol. 37, No. 6 (Nov., 1983), pp. 1210-1226

$$\nabla \ln \overline{W} = \mathbf{P}^{-1}\mathbf{S} = \mathbf{G}^{-1}\Delta \mathbf{z}$$

$$\Delta Z = G \beta$$

$$S = cov(W,x) * Var(x)$$

$$\Delta z = GP^{-1}S = G\beta$$
 Vector of partial regression coefficients

Russell Lande

Steve Arnold

Selection differential x Selection gradient

Selection differential x Selection gradient

$$\beta = P^{-1} S$$

Indirect selection

$$\beta \equiv P^{-1}s = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$$
 selection gradient

$$s = P\beta = \begin{bmatrix} P_{11} & P_{12} \\ P_{12} & P_{22} \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} P_{11}\beta_1 + P_{12}\beta_2 \\ P_{12}\beta_1 + P_{22}\beta_2 \end{bmatrix} = \begin{bmatrix} s_1 \\ s_2 \end{bmatrix}$$

selection differential

matrix multiplication!

$$s_1 = P_{11}\beta_1 + P_{12}\beta_2 + P_{13}\beta_3 + \dots + P_{1n}\beta_n = P_{11}\beta_1 + \sum_{i=2}^n P_{1i}\beta_i$$

Indirect selection comes from PHENOTYPIC covariances between the trait that suffered direct selection with other traits.

Indirect response

$$\Delta \mathbf{Z} = \mathbf{G} \qquad \mathbf{\beta}$$

$$\begin{bmatrix}
\Delta \bar{z}_1 \\
\Delta \bar{z}_2 \\
\vdots \\
\vdots \\
\Delta \bar{z}_p
\end{bmatrix} = \begin{bmatrix}
G_{11} & G_{12} & \dots & G_{1p} \\
G_{21} & G_{22} & \dots & G_{2p} \\
\vdots & \vdots & \ddots & \vdots \\
G_{p1} & G_{p2} & \dots & G_{pp}
\end{bmatrix} \begin{bmatrix}
\beta_1 \\
\beta_2 \\
\vdots \\
\vdots \\
\beta_p
\end{bmatrix}$$

$$\Delta \mathbf{Z}_1 = \mathbf{G}_{11}\boldsymbol{\beta}_1 + \mathbf{G}_{12}\boldsymbol{\beta}_2 + \dots + \mathbf{G}_{pp}\boldsymbol{\beta}_p$$

Indirect response comes from GENETIC covariances between the trait that suffered direct selection with other traits.

Indirect response to selection

Adaptive Radiation Along Genetic Lines of Least Resistance Author(s): Dolph Schluter

Source: Evolution, Vol. 50, No. 5 (Oct., 1996), pp. 1766-1774

Genetic Constraint

Schluter 1996; Walsh and Blows 2009; Futuyma 2010

Genetic Constraint: interaction between G and selection

Measuring and comparing evolvability and constraint in multivariate characters

T. F. HANSEN*† & D. HOULE†

$$e(\mathbf{\beta}) \equiv \frac{\mathbf{\beta}' \mathbf{G} \mathbf{\beta}}{\left|\mathbf{\beta}\right|^2}$$

What if I don't know the direction of selection??

Random selection and mean evolvability

$$mean(\beta'_i P \beta_i)$$

The Evolution of Modularity in the Mammalian Skull I: Morphological Integration Patterns and Magnitudes

Arthur Porto · Felipe B. de Oliveira · Leila T. Shirai · Valderes De Conto · Gabriel Marroig

Similar pattern but divergent magnitudes of integrations

The Evolution of Modularity in the Mammalian Skull II: Evolutionary Consequences

Gabriel Marroig · Leila T. Shirai · Arthur Porto · Felipe B. de Oliveira · Valderes De Conto

What if I know the direction of past selection??

Reconstructing net-selection

$$\boldsymbol{\beta} = \boldsymbol{W}^{-1} \boldsymbol{\Delta} \boldsymbol{z}$$

High evolutionary constraints limited adaptive responses to past climate changes in toad skulls

Monique Nouailhetas Simon, Fabio Andrade Machado and Gabriel Marroig

Measurements

0.6 - 0.8

0.4 - 0.6

0.0 - 0.2

vector correlations				
phylogeny branches	$\Delta z \times \beta$	$\Delta z imes PC1$	PC1 × β	
1. node 19–R. centralis	0.75	0.56	0.03	
2. node 19– <i>R. humboldti</i>	0.33	0.99	0.17	
3. node 18-node 19	0.40	0.95	0.12	
4. node 18– <i>R. merianae</i>	0.36	0.97	0.14	
5. node 20– <i>R. granulosa</i>	0.57	0.83	0.03	
6. node 20– <i>R. mirandaribeiroi</i>	0.88	0.45	0.01	
7. node 17-node 18	0.95	0.07	0.00	
8. node 17-node 20	0.68	0.74	0.03	
9. node 16-node 17	0.65	0.77	0.03	
10. node 16 – <i>R. major</i>	0.37	0.95	0.07	
11. node 15 – <i>R. azarai</i>	0.57	0.80	0.02	
12. node 15 <i>–R. bergi</i>	0.67	0.73	0.02	
13. node 14-node 15	0.33	0.98	0.13	
14. node 14-node 16	0.45	0.92	0.05	
15. node 13 – node 14	0.75	0.66	0.02	
16. node 13 – <i>R. pygmaea</i>	0.95	0.14	0.00	
17. node 12 – node 13	0.64	0.78	0.04	
18. node 12-node 21	0.64	0.78	0.04	
19. node 21 – R. fernandezae	0.34	0.97	0.12	
20. node 21 <i>—R. dorbignyi</i>	0.35	0.96	0.10	

Manipulations

- (egv1)/10
- (egv1)/2
- (egv1)/3
- (egv1)/4
- (egv1)/5
- (egv1)/6
- (egv1)/7
- (egv1)/8
- (egv1)/9
- egv1

Take-home messages

- ❖ The organization of variation, seen in G and P-matrices, interacts with the selection vector;
- ❖ Indirect selection occurs because of phenotypic covariances among traits;
- ❖ Indirect response occurs because of genetic covariances among traits;
- ❖ The higher the magnitude of integration, the higher is the probability of high constraint (depending on the direction of selection).

THE END!

