Compression of Propositional Resolution Proofs by Lowering Subproofs

Joseph Boudou¹ Bruno Woltzenlogel Paleo²

¹Université Paul Sabatier, Toulouse

²Vienna University of Technology

SMT Workshop, 2013

Overview

Introduction

Motivations

Proofs' representation

Redundancies and corresponding algorithms

Vertical redundancy

Horizontal redundancy

LowerUnivalents

Principles

Algorithm and implementation

Experiments

Conclusion

Why compressing propositional part of SMT proofs?

SMT solvers are embedded in other tools

- Sledgehammer's extension to SMT solver
- SMTCoq

Some tools need the proof to be

- checked;
- tranlated;
- analysed.

Proof as a tree

$$\frac{\overline{b}, c \quad \overline{a}, b}{\overline{a}, c} b \quad \frac{\overline{a}, b \quad \overline{a}, \overline{b}, \overline{c}}{\overline{a}, \overline{c}} \overline{b}$$

$$\frac{\overline{a}}{\overline{a}} \quad \overline{c} \quad a \quad a$$

Proof as a directed acyclic graph (DAG)

Definition (Proof)

A proof ψ is a directed acyclic graph

- having a root noted $\rho(\psi)$;
- with nodes labeled with clauses;
- with edges oriented from the resolvent to the premise;
- with edges labeled with the premise's literal removed in the resolvent;
- which is either an axiom or a resolution proof.

Definition (Axiom)

An axiom is a proof with only one node.

Given two proofs φ_L and φ_R with conclusion Γ_L and Γ_R and a literal ℓ s.t. $\bar{\ell} \in \Gamma_L$ and $\ell \in \Gamma_R$, the resolution proof ψ of φ_L and φ_R on ℓ , noted $\psi = \varphi_L \odot_\ell \varphi_R$, is such that:

- ψ 's nodes are the union of φ_L and φ_R nodes plus a new root node;
- there is an edge from $\rho(\psi)$ to $\rho(\varphi_L)$ labeled with $\bar{\ell}$;
- ▶ there is an edge from $\rho(\psi)$ to $\rho(\varphi_R)$ labeled with ℓ ;
- ψ 's conclusion is $(\Gamma_L \setminus \{\bar{\ell}\}) \cup (\Gamma_R \setminus \{\ell\})$.

Deletion of an edge

- ▶ The resolvent is replaced by the other premise.
- Some subsequent resolutions may have to be deleted too.

Deletion of a subproof φ

- ▶ Deletion of every edge coming to $\rho(\varphi)$.
- The operation is commutative and associative.

Notation

 $\psi \setminus (\varphi_1, ..., \varphi_n)$ denotes the deletions of subproofs $\varphi_1, ..., \varphi_n$ from the proof ψ .

Introduction

Redundancies and corresponding algorithms
Vertical redundancy
Horizontal redundancy

LowerUnivalents

Conclusion

Regular proof

Definition (Tseitin 1970)

A proof is regular iff on every path from its root to any of its axiom, any literal appears at most once as edge label.

Theorem (Goerdt 1990)

Given a set of axioms and a clause Γ , the smallest regular proof of Γ might be exponentially bigger than the smallest irregular proof of Γ .

RecyclePivotsWithIntersection (RPI)

Partial Regularization

▶ Delete an outgoing edge labeled with ℓ iff $\bar{\ell}$ appears on every path from the root to the node.

Definition (Safe literal)

A literal is safe for a node η if it can be added to η 's clause without changing proof's conclusion.

Two traversals

- Collect safe literals and mark edges to be deleted.
- ↓ Delete edges.

Original proof 5 resolutions

Compressed proof 4 resolutions

Definition

A node is an horizontal redundancy iff it has at least two incoming edges labeled with the same literal.

Reducing horizontal redundancy

postponing resolution until resolvents are resolved.

Example

LowerUnits (LU)

Definition (Unit)

A unit is a subproof with a conclusion clause having exactly one literal.

Theorem

A unit can always be lowered.

Two traversals

- 1 Collect units with more than one resolvent.
- ↓ Delete units and reintroduce them at the bottom of the proof.

$$a, \bar{b}, \bar{c}$$
 \bar{a} a, b

$$\bar{b}, \bar{c}$$
 b \bar{b}, c

$$\bar{c}$$
 c

Original proof

$$a, \bar{b}, \bar{c}$$
 \bar{a} a, b \bar{b}, \bar{c} \bar{b}, \bar{c} \bar{c} \bar{c} \bar{c}

Compressed proof

$$a, \bar{b}, \bar{c}$$
 \bar{a} a, b

$$\bar{b}, \bar{c}$$
 b \bar{b}, c

$$\bar{c}$$
 c

Original proof

$$a, \bar{b}, \bar{c}$$
 \bar{a} a, b \bar{b}, c \bar{b}

Original proof

Compressed proof

$$a, \bar{b}, \bar{c}$$
 \bar{a} a, b

$$\bar{b}, \bar{c}$$
 b \bar{b}, c

$$\bar{c}$$
 c

$$a, \bar{b}, \bar{c}$$
 \bar{b}, c

$$a, \bar{b}$$

$$a, b$$

$$\bar{a}$$

$$\bar{a}$$

Compressed proof

$$a, \overline{b}, \overline{c}$$
 \overline{a}
 a, b
 $\overline{b}, \overline{c}$
 b
 \overline{b}, c
 \overline{c}
 c
 \bot

Original proof 5 resolutions

Compressed proof 3 resolutions

Introduction

Redundancies and corresponding algorithms

LowerUnivalents
Principles
Algorithm and implementation
Experiments

Conclusion

Goals

- Lower more subproofs.
- Allow fast combination after RPI.

ldea

▶ If a unit with conclusion clause {a} is already marked for lowering, a subproof with conclusion clause $\{\bar{a}, b\}$ may be lowered too.

Definition (Valent literal)

In a proof ψ , a literal ℓ is valent for the subproof φ iff $\bar{\ell}$ belongs to the conclusion of $\psi \setminus (\varphi)$ but not to the conclusion of ψ .

Definition (Univalent subproof)

A subproof φ with conclusion Γ is univalent w.r.t. a set Δ of literals iff φ has exactly one valent literal ℓ , $\ell \notin \Delta$ and $\Gamma \subseteq \Delta \cup \{\ell\}$. ℓ is called the *univalent literal* of φ w.r.t. Δ .

Theorem

Given a proof ψ , if there is a sequence $U = (\varphi_1 \dots \varphi_n)$ of ψ 's subproofs and a sequence $(\ell_1 \dots \ell_n)$ of literals such that $\forall i \in [1...n], \ell_i$ is the univalent literal of φ_i w.r.t. $\Delta_{i-1} = \{\bar{\ell}_1 \dots \bar{\ell}_{i-1}\}\$, then the conclusion of

$$\psi' = \psi \setminus (U) \odot_{\ell_n} \varphi_n \ldots \odot_{\ell_1} \varphi_1$$

subsumes the conclusion of ψ .

```
Input: a proof \psi
Output: a compressed proof \psi'
Univalents \leftarrow \emptyset:
\Delta \leftarrow \emptyset:
for every subproof \varphi, in a top-down traversal do
     \psi' \leftarrow \varphi \setminus Univalents;
     if \psi' is univalent w.r.t. \Delta then
          let \ell be the univalent literal;
          push \bar{\ell} onto \Delta;
          push \psi' onto Univalents;
// At this point, \psi' = \psi \setminus \text{Univalents}
while Univalents ≠ Ø do
     \varphi \leftarrow pop from Univalents;
    \ell \leftarrow \mathsf{pop} \; \mathsf{from} \; \Delta;
     if \ell in the conclusion of \psi' then \psi' \leftarrow \varphi \odot_{\ell} \psi';
```

$$\Delta = \emptyset$$

Original proof

$$\Delta = \{\bar{a}\}$$

Original proof

$$\Delta = \{\bar{a}, \bar{b}\}$$

Original proof

ā,b

а

$$\Delta = \{\bar{a}, \bar{b}\}$$

Original proof

$$\Delta = \{\bar{a}, \bar{b}\}$$

Original proof 4 resolutions

Compressed proof 3 resolutions

Configuration

- Algorithms implemented in Scala for the Skeptik library.
- ▶ 5 000 SMT proofs produced by the VeriT solver.
- Experiments performed on the Vienna Scientific Cluster.

Results

Algorithm	Compression	Speed
LowerUnits	7.5 %	22.4 n/ms
LowerUnivalents	8.0 %	20.4 n/ms
LU composed after RPI	21.7 %	15.1 n/ms
LUniv combined after RPI	22.0 %	17.8 n/ms

Goals achieved

- LowerUnivalents compresses more than LowerUnits.
- LowerUnivalents combines efficiently after RPI.

Future works

- Combine LowerUnivalents after other algorithms.
- Get rid of order dependency.
- Lower subproofs to the middle of the proof.
- Explore other kinds of redundancies.

Thank you for your attention.

Any question?

Skeptik

► http://github.com/Paradoxika/Skeptik