Tópicos de Álgebra Linear - Prova 1

22 de Janeiro de 2015

Nome:

(a) 1.0 Verifique que $V = W \oplus U$.

Solution: Note que W=[(1,0,1)] e U=[(1,1,1),(-1,0,1)]. Seja $v\in W\cap U$. Então, existem $x,y,z\in\mathbb{R}$ tais que

$$\alpha(1,0,1) = \beta(1,1,1) + \gamma(-1,0,1).$$

Daí,

$$\begin{cases} \alpha - \beta + \gamma = 0 \\ - \beta = 0 \\ \alpha - \beta - \gamma = 0. \end{cases}$$

É fácil ver que $\alpha = \beta = \gamma = 0$, então v = (0,0,0). Como $\dim(W) = 1$ e $\dim(U) = 2$, temos

$$\dim(W + U) = \dim(W) + \dim(U) - \dim(W \cap U) = 2 + 1 - 0 = 3 = \dim(V).$$

Então W+U gera V, de modo que $V=W\oplus U$.

(b) 1.0 Determine $T \in \mathcal{L}(V)$ tal que Nu(T) = W e Im(T) = U.

Solution: Como Nu(T) = W, devemos ter T(1,0,1) = 0. Para que Im(T) = U, escolhemos dois vetores de V, linearmente independentes com (1,0,1) para definir uma base, e fazemos com que a imagem desses dois vetores sejam os elementos (1,1,1) e (-1,0,1). É fácil ver que os elementos $\beta = \{(1,0,1),(0,1,0),(0,0,1)\}$ é base de \mathbb{R}^3 . Então determinaremos T que satisfaz

$$T(1,0,1) = (0,0,0),$$

 $T(0,1,0) = (1,1,1),$
 $T(0,0,1) = (-1,0,1).$

Precisamos escrever (x, y, z) como combinação dos elementos de β . Então, sejam a, b, c tais que

$$(x, y, z) = a(1, 0, 1) + b(0, 1, 0) + c(0, 0, 1).$$

Daí, $a=x,\,b=y$ e c=z-x. Daí,

$$T(x, y, z) = T(x(1, 0, 1) + y(0, 1, 0) + (z - x)(0, 0, 1))$$

$$= xT(1, 0, 1) + yT(0, 1, 0) + (z - x)T(0, 0, 1)$$

$$= x(0, 0, 0) + y(1, 1, 1) + (z - x)(-1, 0, 1)$$

$$= (x + y - z, y, -x + y + z).$$

Considere o espaço vetorial V no corpo \mathbb{K} , com base $\beta = \{v_1, v_2, \dots, v_n\}$. Seja $\gamma = \{v_1 + v_n, v_2 + v_n, \dots, v_{n-1} + v_n, v_n\}$.

(a) 1.0 Mostre que γ é base de V.

Solution: Sejam $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ tais que

$$\alpha_1(v_1 + v_n) + \alpha_2(v_2 + v_n) + \dots + \alpha_n v_n = 0.$$

Daí,

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + (\alpha_1 + \alpha_2 + \dots + \alpha_n) v_n = 0.$$

Logo, $\alpha_1 = \cdots = \alpha_{n-1} = \alpha_1 + \cdots + \alpha_n = 0$, pois v_1, \ldots, v_n são linearmente indepentendes. Isso se reduz a $v_i = 0, i = 1, \ldots, n$. Como γ tem n elementos, então γ é base de V.

(b) 1.0 Encontre a matriz de mudança de base de β para γ , $[I]_{\gamma}^{\beta}$.

Solution: Considere a matriz de mudança de base de γ para β como B. Devemos ter

$$w_j = \sum_{i=1}^n B_{ij} v_i,$$

onde w_i é o i-ésimo elemento da base γ . Note que $w_i = v_i + v_n$, se $i = 1, \ldots, n-1$ e $w_n = v_n$. Daí, para $j = 1, \ldots, n-1$,

$$v_j + v_n = \sum_{i=1}^n B_{ij} v_i,$$

de modo que $B_{jj}=B_{nj}=1$ e $B_{ij}=0$, para $i\neq j$ ou $i\neq n$. Também vemos facilmente que $B_{nn}=1$ e $B_{in}=0$, para $i\neq n$. Daí, a matriz de mudança de base de γ para β é

$$[I]_{\beta}^{\gamma} = B = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & \ddots & \\ 1 & 1 & 1 & \cdots & 1 \end{bmatrix}.$$

A matriz $[I]^{\beta}_{\gamma}$ é a inversa dessa matriz, que podemos ver que é

$$[I]_{\gamma}^{\beta} = B^{-1} = \begin{bmatrix} 1 & & & & \\ & 1 & & & \\ & & 1 & & \\ & & & 1 & & \\ & & & \ddots & \\ -1 & -1 & -1 & \cdots & 1 \end{bmatrix}.$$

Seja V o espaço dos polinômios reais de grau menor ou igual a 2. Seja $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ uma

aplicação dada por

$$\langle p, q \rangle = p(-1)q(-1) + p(0)q(0) + p(1)q(1).$$

(a) $\boxed{1.0}$ Mostre que $\langle \cdot, \cdot \rangle$ é um produto interno.

Solution: Temos $\langle p,p\rangle=p(-1)^2+p(0)^2+p(1)^2\geq 0$. $\langle p,p\rangle=0$ quer dizer que p se anula em 3 pontos. Mas p é não nulo, então p é constante, ou uma função afim, ou uma função quadrática. Nenhuma das três pode se anular em 3 pontos distintos, portanto p é nulo. Que $\langle q,p\rangle=\langle p,q\rangle,\ \langle \alpha p,q\rangle=\alpha\ \langle p,q\rangle$ e $\langle p+q,r\rangle=\langle p,r\rangle+\langle q,r\rangle$ é trivial.

(b) 1.0 Encontre uma base ortogonal para V a partir da base $\{1, x, x^2\}$.

Solution: Chamaremos de $p_1(x)=1$, $p_2(x)=x$ e $p_3(x)=x^2$. O primeiro vetor é $q_1=p_1$. O segundo vetor é $q_2=p_2-\alpha_{12}q_1$, onde

$$\alpha_{12} = \frac{\langle p_2, q_1 \rangle}{\langle q_1, q_1 \rangle} = \frac{0}{3} = 0.$$

Então $q_2=p_2$. O terceiro vetor é $q_3=p_3-\alpha_{13}q_1-\alpha_{23}q_2$, onde

$$\alpha_{13} = \frac{\langle p_3, q_1 \rangle}{\langle q_1, q_1 \rangle} = \frac{2}{3} = 0.$$

$$\alpha_{23} = \frac{\langle p_3, q_2 \rangle}{\langle q_2, q_2 \rangle} = \frac{0}{2} = 0.$$

Então $q_3 = p_3 - 2q_1/3$, ou seja $\{1, x, x^2 - 2/3\}$ é base ortogonal.

Seja V espaço vetorial. Mostre ou dê um contra-exemplo para as seguintes afirmações:

(a) $\boxed{0.5}$ Sejam $S, R \subset V, S \cap R \neq \emptyset$. Então $[S \cap R] = [S] \cap [R]$.

Solution: Seja $S = \{(1,0),(1,1)\}$ e $R = \{(0,1),(1,1)\}$. Então $[S \cap R] = [(1,1)]$. Mas $[S] = [R] = \mathbb{R}^2$.

(b) $\boxed{0.5}$ Se $T \in \mathcal{L}(V)$ é tal que $T^k = 0$, então $\mathrm{Im}(T^{k-1}) \subset \mathrm{Nu}(T)$.

Solution: Seja $v \in \text{Im}(T^{k-1})$. Daí, existe $w \in V$ tal que $v = T^{k-1}w$. Logo, $Tv = T^kw = 0w = 0$. Logo, $v \in \text{Nu}(T)$.

(c) 0.5 Um conjunto linearmente independente deve ser finito.

Solution: Seja V o espaço vetorial dos polinômios. O conjunto $\{1, t, t^2, \dots, t^n, \dots\}$ é infinito, e linearmente independente.

(d) $\boxed{0.5}$ A norma-1 do \mathbb{R}^n , definida por $\|x\|_1 = |x_1| + \cdots + |x_n|$ é induzida por algum produto interno.

Solution: Para ser norma induzida, deve valer a Lei do Paralelograma:

$$||v + w|| + ||v - w|| = 2(||v|| + ||w||).$$

Mas para quaisquer dois vetores canônicos distintos $v = e_i$ e $w = e_j$, temos

$$||v + w||^2 + ||v - w||^2 - 2(||v||^2 + ||v||^2) = (|1| + |1|)^2 + (|1| + |-1|)^2 - 2(|1|^2 + |1|^2)$$
$$= 4 + 4 - 2(1 + 1) = 4 \neq 0.$$

Portanto, essa norma não é induzida por um produto interno.

(a) 1.0 Mostre que existe um isomorfismo $T: V \to V^*$, definido por $Tv = f_v$, tal que $f_v(v) = \langle v, v \rangle$.

Solution: Seja $\beta = \{v_1, \ldots, v_n\}$ base ortonormal de V, e $\beta' = \{f_1, \ldots, f_n\}$ base dual de V. Para todo $v \in V$, existem $\alpha_1, \ldots, \alpha_n$ unicamente determinados tais que $v = \alpha_1 v_1 + \cdots + \alpha_n v_n$. Defina $Tv = f_v = \overline{\alpha_1} f_1 + \cdots + \overline{\alpha_n} f_n$. Como os α_i são únicos, T está bem definido. Segue que

$$f_v(v) = \sum_{i=1}^n \overline{\alpha_i} f_i(v)$$

$$= \sum_{i=1}^n \overline{\alpha_i} \sum_{j=1}^n \alpha_j f_i(v_j)$$

$$= \sum_{i=1}^n \overline{\alpha_i} \alpha_i$$

$$= \sum_{i=1}^n |\alpha_i|^2.$$

Note que se $v \in \text{Nu}(T)$, $Tv = f_v = 0$. Daí, $f_v(v) = \langle v, v \rangle = 0$, de modo que v = 0. Logo, T é injetora, e como $\dim(V) = \dim(V^*) < \infty$, então T é isomorfismo.

(b) 1.0 Dado $v \in V$ não-nulo, defina $S: V \to V$ por

$$Sw = \frac{f_v(w)}{\langle v, v \rangle} v,$$

onde $f_v = Tv$, com T definida na questão anterior. Mostre que S é uma projeção ortogonal, calcule Nu(S) e Im(S), e interprete a transformação I-2S.

Solution: Calculando o núcleo e a imagem antes, fica mais fácil de visualizar onde T projeta. A imagem é trivialmente [v], pois $Tw = \alpha v$. O núcleo é todo w tal que Tw = 0. Mas $Tw = 0 \iff f_v(w) = 0$. Como $f_v = \overline{\alpha_1}f_1 + \cdots + \overline{\alpha_n}f_n$, se

 $w = \beta_1 v_1 + \dots + \beta_n v_n$, temos

$$f_v(w) = \sum_{i=1}^n \beta_i \overline{\alpha_i} = \langle w, v \rangle.$$

Então, $f_v(w) = 0$ implica que w é ortogonal a v. Logo, $\operatorname{Nu}(T) = [v]^{\perp}$. Se T é projeção ortogonal, w - Tw deve ser ortogonal a imagem de T. Veja que

$$\langle w - Tw, v \rangle = \langle w, v \rangle - \left\langle \frac{f_v(w)v}{\langle v, v \rangle}, v \right\rangle$$
$$= \langle w, v \rangle - f_v(w)$$
$$= \langle w, v \rangle - \langle w, v \rangle = 0.$$

Se $w = \alpha v + u$, com $\alpha \in \mathbb{K}$ e $u \perp v$, então

$$(I - 2T)w = w - 2\alpha Tv - 2Tu = w - 2\alpha v = u - \alpha v.$$

Então I-2T é a reflexão através do hiperplano $[v]^{\perp}$.