

R1.06 - Mathématiques discrètes Contrôle Continu (45 minutes) Mercredi 5 octobre 2022 - A. Ridard

Exercice 1. $(55) \sim M/g$

Pour chaque question, indiquer la (les) bonne(s) réponse(s). Une case cochée justement rapporte 1 point, une case cochée injustement enlève 0.5 point, et une case non cochée ne rapporte ni n'enlève aucun point. Si le total des points est négatif, la note globale attribuée à l'exercice est 0.

1. Par quoi peut-on compléter les pointillés pour que l'assertion soit vraie?	$\Box \Leftarrow et \Rightarrow$		
$(\forall x \in \mathbb{R}, x \ge 2 \dots x^2 \ge 4)$ et $(\forall y \in \mathbb{R}, y \le 3 \dots 0 \le y \le 3)$	□ ← et ←		
$(\sqrt{x} \in \mathbb{N}, x \ge 2 \dots x \ge 4)$ et $(\sqrt{y} \in \mathbb{N}, y \le 3 \dots 0 \le y \le 3)$	$ \boxtimes \Rightarrow et \Leftarrow $		
	$\square \Longrightarrow \operatorname{et} \Longrightarrow$		
2. Quelles sont les assertions vraies?	$\square \ \forall x \in \mathbb{R}, \ x^2 - x \ge 0$		
	\bowtie $\forall n \in \mathbb{N}, n^2 - n \ge 0$		
	$\forall x \in \mathbb{R}, x^3 - x \ge 0$		
	\bowtie $\forall n \in \mathbb{N}, n > 2 \Longrightarrow n \ge 3$		
3. On considère P une assertion fausse, Q une assertion vraie et R une	□ Q et (P ou R)		
assertion fausse. Quelles sont les assertions vraies	□ P ou (Q et R)		
	■ non(P et Q et R)		
	☑ (P ou Q) et (Q ou R)		
4. A quoi est logiquement équivalent « P ⇒ Q »?	■ Q ou non(P)		
	\square non(P) ou non(Q)		
	■ non(P) ou Q		
	□ P et non(Q)		
5. Etant données P et Q deux assertions, quelles sont les assertions toujours	$(P \Longrightarrow Q)$ ou $(Q \Longrightarrow P)$		
vraies (que P et Q soient vraies ou fausses)?			
	$ ightharpoonup P$ ou $(P \Longrightarrow Q)$		
	\square (P \iff Q) ou non(P)		

NOM:

GROUPE:

Exercice 2.

Soit $f: \mathbb{R} \to \mathbb{R}$ une application. Écrire la négation des assertions suivantes.

1. $\forall x \in [0,1], f(x) \neq 0$

(1)
$$\exists x \in [0,1], f(x) = 0$$

2. \forall M < 0, \exists A > 0, \forall x \ge A, f(x) < M

3. $\forall x \in \mathbb{R}, f(x) > 0 \Longrightarrow x \le 0$

4. $\forall \epsilon > 0, \exists \eta > 0, \forall x \in \mathbb{R}, |x - 1| < \eta \Longrightarrow |f(x) - f(1)| < \epsilon$

Exercice 3.

Soit $f: \mathbb{R} \to \mathbb{R}$ une application. Écrire "mathématiquement" les assertions suivantes.

1. f est constante.

2. f s'annule.

(a)
$$\exists x \in \mathbb{R}, f(x) = 0$$

3. f ne peut s'annuler que sur [0,1].

Exercice 4.

6

On définit l'opérateur xor correspondant au ou exclusif de la manière suivante :

$$P \; xor \; Q \sim (P \vee Q) \wedge \neg (P \wedge Q)$$

1. A l'aide d'une table de vérité, montrer : P $xor Q \sim \neg (P \iff Q)$

P	Q	PVQ	PAQ	- (PAQ)	Pxor Q	P⇔Q	7 (Res Q)
V	V	V	V	F	F	V	F
V	F	V	F	V	V	F	V
F	٧	V	F	V	V	F	V
F	F	F	F	V	F	V	F

2. A l'aide de la double implication, montrer par le calcul: $\neg (P \iff Q) \sim (P \land \neg Q) \lor (\neg P \land Q)$ assertions son

(9) 3. A l'aide de la distributivité, montrer par le calcul : $(P \lor Q) \land \neg (P \land Q) \sim (P \land \neg Q) \lor (\neg P \land Q)$

(PVQ)
$$\Lambda \neg (P \land Q) \sim (P \lor Q) \wedge (\neg P \lor \neg Q)$$

$$\sim (P \lor Q) \wedge \neg P) \vee ((P \lor Q) \wedge \neg Q)$$

$$\sim (P \wedge \neg P) \vee (Q \wedge \neg P) \vee (P \wedge \neg Q) \vee (Q \wedge \neg Q) \vee$$

$$togour faux$$

$$\sim (P \wedge \neg Q) \vee (\neg P \wedge Q)$$

directement par double distributions