Zmenkarije

V vodoravni vrsti leži N gora, oštevilčenih od 0 do N-1 z leve proti desni. Višina gore i je H_i ($0 \le i \le N-1$). Natanko ena oseba živi na vrhu vsake gore.

Organizirati moraš Q zmenkov, oštevilčenih od 0 do Q-1. Zmenka j ($0 \le j \le Q-1$) se bodo udeležili vsi gorjanci, živeči na gorah od L_j do vključno R_j ($0 \le L_j \le R_j \le N-1$). Za zmenek moraš izbrati goro x, ki bo prizorišče srečanja ($L_j \le x \le R_j$). Cena vsakega zmenka se glede na tvojo izbiro izračuna na naslednji način:

- Cena udeleženca z gore y ($L_j \leq y \leq R_j$) je največja višina gore med gorami od x do vključno y. Cena udeleženca z gore x je potemtakem kar H_x (višina gore x).
- Cena zmenka je vsota cen vseh udeležencev.

Za vsak zmenek želiš najti najnižjo možno ceno organizacije.

Opomba: Po zaključku posameznega zmenka se vsi gorjanci vrnejo na svoje rodne grude; cena zmenka je neodvisna od preteklih zmenkov.

Podrobnosti implementacije

Implementiraj naslednjo funkcijo:

```
int64[] minimum_costs(int[] H, int[] L, int[] R)
```

- H: polje dolžine N, ki podaja višine gora.
- ullet L in R: polji dolžine Q, ki podajata razpon gorjancev, ki se bodo udeležili zmenka.
- Ta funkcija naj vrne polje C dolžine Q. Vrednost C_j ($0 \le j \le Q 1$) mora biti najnižja možna cena organizacije zmenka j.
- ullet Opomba: Vrednosti N in Q sta dolžini polj, ki se ju pridobi na način, opisan v implementacijskih opombah.

Primer

Naj bo
$$N=4$$
, $H=[2,4,3,5]$, $Q=2$, $L=[0,1]$ in $R=[2,3]$.

Ocenjevalnik pokliče minimum costs([2, 4, 3, 5], [0, 1], [2, 3]).

Za zmenek j=0 velja $L_j=0$ in $R_j=2$, torej se ga bodo udeležili gorjanci z gora 0, 1 in 2. Če izberemo goro 0 za prizorišče zmenka, se cena organizacije zmenka 0 izračuna na naslednji način:

- Cena gorjanca z gore 0 je $\max\{H_0\}=2$.
- Cena gorjanca z gore 1 je $\max\{H_0, H_1\} = 4$.
- Cena gorjanca z gore 2 je $\max\{H_0, H_1, H_2\} = 4$.
- Zatorej je cena zmenka 0 enaka 2+4+4=10.

Zmenka 0 ni moč organizirati po nižji ceni, zato je najmanjša cena zmenka 0 enaka 10.

Za zmenek j=1 velja $L_j=1$ in $R_j=3$, torej se ga bodo udeležili gorjanci z gora 1, 2 in 3. Če izberemo goro 2 za prizorišče zmenka, se cena organizacije zmenka 1 izračuna na naslednji način:

- Cena gorjanca z gore 1 je $\max\{H_1, H_2\} = 4$.
- Cena gorjanca z gore 2 je $\max\{H_2\} = 3$.
- Cena gorjanca z gore 3 je $\max\{H_2, H_3\} = 5$.
- Zatorej je cena zmenka 1 enaka 4+3+5=12.

Zmenka 1 ni moč organizirati po nižji ceni, zato je najmanjša cena zmenka 1 enaka 12.

Datoteki sample-01-in.txt in sample-01-out.txt v priponki zip ustrezata temu primeru. Drugi primeri vhoda in izhoda so tudi na voljo v priponki.

Omejitve

- $1 \le N \le 750000$
- 1 < Q < 750000
- $1 \le H_i \le 1\,000\,000\,000\,(0 \le i \le N-1)$
- $0 \le L_j \le R_j \le N 1 \ (0 \le j \le Q 1)$
- $(L_j, R_j)
 eq (L_k, R_k)$ $(0 \le j < k \le Q-1)$

Podnaloge

```
1. (4 točke) N \leq 3\,000, Q \leq 10
```

2. (15 točk)
$$N \leq 5\,000$$
, $Q \leq 5\,000$

3. (17 točk)
$$N \leq 100\,000$$
, $Q \leq 100\,000$, $H_i \leq 2$ ($0 \leq i \leq N-1$)

4. (24 točk)
$$N \leq 100\,000$$
, $Q \leq 100\,000$, $H_i \leq 20$ ($0 \leq i \leq N-1$)

5. (40 točk) Brez dodatnih omejitev.

Vzorčni ocenjevalnik

Vzorčni ocenjevalnik bere vhod naslednjega formata:

- ullet vrstica 1: N Q
- vrstica 2: $H_0 H_1 \cdots H_{N-1}$
- ullet vrstica 3+j ($0\leq j\leq Q-1$): L_j R_j

Vzorčni ocenjevalnik izpiše odgovor minimum_costs na naslednji način:

• vrstica 1+j ($0 \le j \le Q-1$): C_j