

# 2023 应电科协招新题 (硬件)

——调幅收音机

### 1. 题目描述

由 TA7642 AM 调频中频处理器、运算放大器、功率晶体管和扬声器组成调幅收音机,从频率为 5MHz 的载波中解调 50Hz~20kHz 的正弦信号

### 2. 评分细则及要求

### 2.1. 基本要求

按照电路图能够坚持下来并且可以完整的焊出电路板,可以基本实现调幅收音机的功能,没有大的电路错误。(60)

### 2.2. 发挥要求

- 1. 在基本要求的基础上,电路的焊接比较整齐,且跳线的使用数量少于 5 处。(10)
- 2. 该电路使用 5V 直流供电,请使用 6F22 9V 电池配合 7805 三端稳压 芯片为电路提供 5V 直流电源。注意,在该电路使用外接电源供电时, 应当保证于电池不被充电导致危险发生!(10)
  - 3. 电压放大级增益可调。(10)
- 4. 有恒心坚持下去,一定要不懂就问,拉住任何一个学长学姐都可以打破砂锅问到底,不要觉得不好意思就不了了之了,当时我也是小白(当然现在也是),但是有兴趣,能坚持,就一定行。(10)

### 2.3. 拓展要求

通过立创 EDA 或 Altium Designer 绘制 PCB 电路板并投板焊接完成

题目 要求(公布参考设计工程,生搬硬套、直接投板将酌情扣分)。(20分)

# 3. 提示

# 3.1. 电路原理图



# 3.2. 元器件清单

| 元件                                  | 数量            |
|-------------------------------------|---------------|
| TA7642 AM 调频中频处理器                   | 1             |
| LM358 运算放大器                         | 1             |
| TIP41C 功率晶体管                        | 1             |
| 8Ω 0.25W 扬声器                        | 1             |
| 铝电解电容 47uF                          | 1             |
| 0805 贴片电容 100nF                     | 4             |
| 0805 贴片电阻 1kΩ、2kΩ、3kΩ、4.7 kΩ、100 kΩ | 1, 2, 4, 2, 1 |
| 2W 8.2Ω 金属膜电阻 (色环电阻)                | 1             |
| 3296 电位器 100 kΩ (滑动变阻器)             | 1             |
| SMA 插头                              | 1             |



| 排针(用于外接5伏电源和地) | 若干(请自取) |
|----------------|---------|
| M3 螺丝          | 1       |
| 散热片            | 1       |

表一 元器件清单

# 3.3. 原理图分解

#### 1. 解调电路



注意:输入偏置电压在720毫伏左右时,失真较低。而要使用固定电阻不易精确控制电压,需要自己调整电位器实现。

### 2. 电压放大级



图三 电压放大级



#### 3. 功率输出级



图四 功率输出级

注意: 此扬声器与实际扬声器不同,没有正负极之分!

### 4. 预备知识

### 4.1. 所需元件介绍

### 4.1.1. 电阻(0805 贴片、金属膜电阻、3296 电位器)

#### 1. 0805 电阻

常见的 0805 贴片电阻有 5%精度和 1%精度之分。其中 5%的电阻用 3 位数字表示电阻阻值, 1%的电阻用 4 位数字表示电阻阻值。

若没有 R,两种表示方式的最后一位都表示 0 的数量,将最后一位换成对应数量的 0 即可得到电阻值。若有 R,则将 R 换成小数点,小数点前无 0 补 0,有 0 照旧,即得到电阻值。

例如 1001,最后一位表示有 1 个 0,电阻阻值是  $1000\Omega$ ,即  $1k\Omega$ . 又如 R500,R 表示小数点,在其前加 0,电阻阻值是  $0.5\Omega$ .

如果不想换算,就直接"查表得"吧!注意毫欧和兆欧的单位,一个



小写,一个大写,别搞混了。

| 000=0Ω     | R22=22m Ω  | R33=33m Ω  | R47=47m Ω  |
|------------|------------|------------|------------|
| R68=68m Ω  | R82=82m Ω  | 1R0=1 Ω    | 1R1=1.1 Ω  |
| 1R2=1.2 Ω  | 1R3=1.3 Ω  | 1R5=1.5 Ω  | 1R6=1.6 Ω  |
| 1R7=1.7 Ω  | 1R8=1.8 Ω  | 1R9=1.9 Ω  | 2R0=2 Ω    |
| 2R2=2.2 Ω  | 2R4=2.4 Ω  | 2R7=2.7 Ω  | 3R0=3 Ω    |
| 3R3=3.3 Ω  | 3R6=3.6 Ω  | 3R9=3.3 Ω  | 4R3=4.3 Ω  |
| 4R7=4.7 Ω  | 5R1=5.1 Ω  | 5R6=5.6 Ω  | 6R2=6.2 Ω  |
| 6R8=6.8 Ω  | 7R5=7.5 Ω  | 8R2=8.2 Ω  | 9R1=9.1 Ω  |
| 100=10 Ω   | 110=11 Ω   | 120=12 Ω   | 130=13 Ω   |
| 150=15 Ω   | 160=16 Ω   | 180=18 Ω   | 200=20 Ω   |
| 220=22 Ω   | 240=24 Ω   | 270=27 Ω   | 300=30 Ω   |
| 360=36 Ω   | 390=39 Ω   | 430=43 Ω   | 470=47 Ω   |
| 510=51 Ω   | 560=56 Ω   | 620=62 Ω   | 680=68 Ω   |
| 750=75 Ω   | 820=82 Ω   | 910=91 Ω   | 101=100 Ω  |
| 111=110 Ω  | 121=120 Ω  | 131=130 Ω  | 151=150 Ω  |
| 161=160 Ω  | 181=180 Ω  | 201=200 Ω  | 221=220 Ω  |
| 241=240 Ω  | 271=270 Ω  | 301=300 Ω  | 331=330 Ω  |
| 361=360 Ω  | 391=390 Ω  | 431=430 Ω  | 471=470 Ω  |
| 511=510 Ω  | 561=560 Ω  | 621=620 Ω  | 681=680 Ω  |
| 751=750 Ω  | 821=820 Ω  | 911=910 Ω  | 102=1k Ω   |
| 112=1.1k Ω | 122=1.2k Ω | 132=1.3k Ω | 152=1.5k Ω |
| 162=1.6k Ω | 182=1.8k Ω | 202=2k Ω   | 222=2.2k Ω |
| 242=2.4k Ω | 272=2.7k Ω | 302=3k Ω   | 332=3.3k Ω |
| 362=3.6k Ω | 392=3.9k Ω | 432=4.3k Ω | 472=4.7k Ω |
| 512=5.1k Ω | 562=5.6k Ω | 622=6.2k Ω | 682=6.8k Ω |
| 752=7.5k Ω | 822=8.2k Ω | 912=9.1k Ω | 103=10k Ω  |
| 113=11k Ω  | 123=12k Ω  | 133=13k Ω  | 153=15k Ω  |
|            |            |            |            |



| 243=24k Ω  | 273=27k Ω                                    | 303=30k Ω   | 333=33k Ω  |  |
|------------|----------------------------------------------|-------------|------------|--|
| 363=36k Ω  | 393=39k Ω                                    | 433=43k Ω   | 473=47k Ω  |  |
| 513=51k Ω  | 563=56k Ω $623=62k$ Ω                        |             | 683=68k Ω  |  |
| 753=75k Ω  | $ \Omega $ 823=82k $\Omega$ 913=91k $\Omega$ |             | 104=100k Ω |  |
| 114=110k Ω | 124=120k Ω                                   | 134=130k Ω  | 154=150k Ω |  |
| 164=160k Ω | 184=180k Ω                                   | 204=200k Ω  | 224=220k Ω |  |
| 274=270k Ω | 304=300k Ω                                   | 334=330k Ω  | 364=360k Ω |  |
| 394=390k Ω | 434=430k Ω                                   | 474=470k Ω  | 514=510k Ω |  |
| 564=560k Ω | 624=620k Ω                                   | 684=680k Ω  | 754=750k Ω |  |
| 824=820k Ω | 914=910k Ω                                   | 105=1M Ω    | 115=1.1M Ω |  |
| 125=1.2M Ω | 135=1.3M Ω                                   | 155=1.5M Ω  | 165=1.6M Ω |  |
| 185=1.8M Ω | 205=2M Ω                                     | 225=2.2M Ω  | 245=2.4M Ω |  |
| 275=2.7M Ω | 305=3M Ω                                     | 335=3.3 M Ω | 365=3.6M Ω |  |
| 395=3.9M Ω | 435=4.3M Ω                                   | 475=4.7M Ω  | 515=5.1M Ω |  |
| 565=5.6M Ω | 625=6.2M Ω                                   | 685=6.8M Ω  | 755=7.5M Ω |  |
| 825=8.2M Ω | 915=9.1M Ω                                   | 106=10M Ω   | 107=100M Ω |  |

### 表二 1%精度电阻丝印-阻值对照表(从左到右,从上到下阻值递增)

| 000=0 Ω     | R001=1m Ω  | R002=2m Ω                                 | R003=3m Ω   |
|-------------|------------|-------------------------------------------|-------------|
| R005=5m Ω   | R006=6m Ω  | R008=8m Ω                                 | R010=10m Ω  |
| R020=20m Ω  | R022=22m Ω | R030=30m Ω R033=33n                       |             |
| R040=40m Ω  | R047=47m Ω | $R050=50$ m $\Omega$ $R060=60$ m $\Omega$ |             |
| R068=68m Ω  | R082=82m Ω | R090=90m Ω                                | R100=100m Ω |
| R110=110m Ω | R220=22m Ω | R330=33m Ω                                | R470=47m Ω  |
| R680=68m Ω  | R820=82m Ω | 1R00=1 Ω                                  | 1R10=1.1 Ω  |
| 1R20=1.2 Ω  | 1R30=1.3 Ω | 1R50=1.5 Ω                                | 1R60=1.6 Ω  |
| 1R70=1.7 Ω  | 1R80=1.8 Ω | 1R90=1.9 Ω                                | 2R00=2 Ω    |
| 2R20=2.2 Ω  | 2R40=2.4 Ω | 2R70=2.7 Ω                                | 3R00=3 Ω    |
| 3R30=3.3 Ω  | 3R60=3.6 Ω | 3R90=3.3 Ω                                | 4R30=4.3 Ω  |
| 4R70=4.7 Ω  | 5R10=5.1 Ω | 5R60=5.6 Ω                                | 6R20=6.2 Ω  |



| 6R80=6.8 Ω  | 7R50=7.5 Ω  | 8R20=8.2 Ω  | 9R10=9.1 Ω  |
|-------------|-------------|-------------|-------------|
| 10R0=10 Ω   | 11R0=11 Ω   | 12R0=12 Ω   | 13R0=13 Ω   |
| 15R0=15 Ω   | 16R0=16 Ω   | 18R0=18 Ω   | 20R0=20 Ω   |
| 22R0=22 Ω   | 24R0=24 Ω   | 27R0=27 Ω   | 30R0=30 Ω   |
| 36R0=36 Ω   | 39R0=39 Ω   | 43R0=43 Ω   | 47R0=47 Ω   |
| 51R0=51 Ω   | 56R0=56 Ω   | 62R0=62 Ω   | 68R0=68 Ω   |
| 75R0=75 Ω   | 82R0=82 Ω   | 91R0=91 Ω   | 1000=100 Ω  |
| 1100=110 Ω  | 1200=120 Ω  | 1300=130 Ω  | 1500=150 Ω  |
| 1600=160 Ω  | 1800=180 Ω  | 2000=200 Ω  | 2200=220 Ω  |
| 2400=240 Ω  | 2700=270 Ω  | 3000=300 Ω  | 3300=330 Ω  |
| 3600=360 Ω  | 3900=390 Ω  | 4300=430 Ω  | 4700=470 Ω  |
| 5100=510 Ω  | 5600=560 Ω  | 6200=620 Ω  | 6800=680 Ω  |
| 7500=750 Ω  | 8200=820 Ω  | 9100=910 Ω  | 1001=1k Ω   |
| 1101=1.1k Ω | 1201=1.2k Ω | 1301=1.3k Ω | 1501=1.5k Ω |
| 1601=1.6k Ω | 1801=1.8k Ω | 2001=2k Ω   | 2201=2.2k Ω |
| 2401=2.4k Ω | 2701=2.7k Ω | 3001=3k Ω   | 3301=3.3k Ω |
| 3601=3.6k Ω | 3901=3.9k Ω | 4301=4.3k Ω | 4701=4.7k Ω |
| 5101=5.1k Ω | 5601=5.6k Ω | 6201=6.2k Ω | 6801=6.8k Ω |
| 7501=7.5k Ω | 8201=8.2k Ω | 9101=9.1k Ω | 1002=10k Ω  |
| 1102=11k Ω  | 1202=12k Ω  | 1302=13k Ω  | 1502=15k Ω  |
| 1602=16k Ω  | 1802=18k Ω  | 2002=20k Ω  | 2202=22k Ω  |
| 2402=24k Ω  | 2702=27k Ω  | 303=30k Ω   | 333=33k Ω   |
| 363=36k Ω   | 393=39k Ω   | 4302=43k Ω  | 4702=47k Ω  |
| 5102=51k Ω  | 5602=56k Ω  | 6202=62k Ω  | 6802=68k Ω  |
| 7502=75k Ω  | 8202=82k Ω  | 9102=91k Ω  | 1003=100k Ω |
| 1103=110k Ω | 1203=120k Ω | 1303=130k Ω | 1503=150k Ω |
| 1603=160k Ω | 1803=180k Ω | 2003=200k Ω | 2203=220k Ω |
| 2703=270k Ω | 3003=300k Ω | 3303=330k Ω | 3603=360k Ω |
| 3903=390k Ω | 4303=430k Ω | 4703=470k Ω | 5103=510k Ω |

| 5603=560k Ω | 6203=620k Ω | 6803=680k Ω | 7503=750k Ω |
|-------------|-------------|-------------|-------------|
| 8203=820k Ω | 9103=910k Ω | 1004=1M Ω   | 1104=1.1M Ω |
| 1204=1.2M Ω | 1304=1.3M Ω | 1504=1.5M Ω | 1604=1.6M Ω |
| 1804=1.8M Ω | 2004=2M Ω   | 2204=2.2M Ω | 2404=2.4M Ω |
| 2704=2.7M Ω | 3004=3M Ω   | 3304=3.3M Ω | 3604=3.6M Ω |
| 3904=3.9M Ω | 4304=4.3M Ω | 4704=4.7M Ω | 5104=5.1M Ω |
| 5604=5.6M Ω | 6204=6.2M Ω | 6804=6.8M Ω | 7504=7.5M Ω |
| 8204=8.2M Ω | 9104=9.1M Ω | 1005=10M Ω  | 1006=100M Ω |

表二 5%精度电阻丝印-阻值对照表(从左到右,从上到下阻值递增)

注意:此表中的 0 Ω 电阻既不是镥氮氢,也不是 LK-99,是正儿八经只有几毫欧的金属导体!电流流过也会发热的!

显然,后一张表相比于前一张,多了些阻值。这一方面是因为多了一位,精度高了,能造出更精准的小电阻了。另一方面是因为不论 3 位还是 4 位,有 R 时末位都不再是 0 的数量,使得其能够表示的小数的位数直接 由 3 位或 4 位决定,而不能像没有 R 时那样疯狂补 0.

但是为什么我把其中一些电阻阻值标**红色**了呢?因为这些标红了的电阻经常被用到(尤其是 10k Ω 的那款!!),消耗巨大。别想着把它们从电阻本里面薅出来,除非能得心应手的焊接 0402 封装的电阻!将来成为硬件人的时候,也最好自己备上点(勤拿少取,避免浪费)。

相应的,标**黑色**的电阻在常见的 170 种电阻本里面也很难找到,1 欧以下的毫欧级别的电阻更是经常被作为电流采样电阻而难以见到,制作时大概率要单独购买(什么?不出 BOM 配单一次要买 100 只!剩下的怎么处理?)。设计时也要权衡利弊

标**绿色**的电阻就是比较常见,但用量不特别大的那种,可以放心食用。

#### 2. 金属膜电阻(色环电阻)

这种老掉牙的,几乎只能在实验室里看到的元件,为什么现在还在用?因为他毕竟体积大,引脚长,能承受更大的功率。这种电阻,即使通电让它消耗 2W 的功率也不会过热损坏。相比之下,一些碳膜电阻能承受0.25W,而0805 封装的电阻仅能承受0.125W。今后选择元件时,无论是

下面这张图就是色环电阻的识别方法。

| <b>內环环数</b> | 第一环           | 第二环           | 第三环           | 乘数                   | 误差率  |
|-------------|---------------|---------------|---------------|----------------------|------|
| 黑           | 0             | 0             | 0             | 1                    | FE   |
| 棕           | 1             | 1             | 1             | 10                   | ±1%  |
| 红           | 2             | 2             | 2             | 100                  | ±2%  |
| 橙           | 3             | 3             | 3             | 1k                   | ±3%  |
| 黄           | 4             | 4             | 4             | 10k                  | ±4%  |
| 绿           | 5             | 5             | 5             | 100k                 |      |
| 蓝           | 6             | 6             | 6             | 1M                   |      |
| 紫           | 7             | 7             | 7             | 10M                  |      |
| 灰           | 8             | 8             | 8             | 100M                 |      |
| 白           | 9             | 9             | 9             | 1000M                |      |
| 金           | -1            | -1            | -1            | 0.1                  | ±5%  |
| 银           | -2            | -2            | -2            | 0.01                 | ±10% |
| 无色          |               |               |               |                      | ±20% |
| 5环环数        | 第一环           | 第二环           | 第三环           | 乘数                   | 误差率  |
|             | 9<br>-1<br>-2 | 9<br>-1<br>-2 | 9<br>-1<br>-2 | 1000M<br>0.1<br>0.01 | ±10  |

图五 色环电阻识别方法

但是为了防止光线不正、颜料老化等问题带来的读数不准,还是尽快把设计中占地又多,焊接又不能自动化的插件电阻换成贴片电阻吧!换个大封装的 2512 电阻或者用锰铜丝电阻。再大点想上几十瓦的,就直接用TO 封装吧……



如果还是看不懂怎么办?上万用表!要选择较大且接近的档位!如果万用表都没电了怎么办(呃······这有点常见)?这里有个挺好用的工具网站在线换算器 | DigiKey Electronics。

记住这家公司的名字!正是因为它的制裁,我们今年的光电设计竞赛,都不能从它们那里买到合适的 LED 灯!!!

#### 3. 3296 电位器 (滑动变阻器)

它的引脚排列清楚的印在了外壳上,只要擦亮双眼,就能知道引脚功能。阻值印在顶盖上,跟 3 位数的电阻读数一样。要注意,里面的螺杆没有限位,拧到底了之后手感不会变化,只有测量电阻才能知道。而且时漂不小。打个比方今天拧到一个位置,测量 2、3 脚的阻值后放在那里不动,明天再来测量 2、3 脚的阻值,很可能就不是昨天的数了。电赛测评之前的30 分钟,恐怕就是给同学们调这玩意的。



图六 3296 电位器

### 4.1.2. 电容(0805 贴片、插件铝电解电容)

#### 1. 0805 贴片电容

0805 贴片电容从买到手上开始,就要把他放到标有数值的密封袋/元件册中,且轻易不要从编带中取下(除非手头上全是同一种规格的电容)。它的多层陶瓷的结构决定了上面不能印刷丝印。仅从外观几乎无法辨别不同容值的电容!所以一旦混淆,将无法分辨!



图六 两个电解电容

你猜,上面那两只小小的电容,哪个是 100nF 的,哪个是 1nF 的?? 如果仅仅是不知道一个编带上的电容是多大的值,可以拆一个用数字

**电桥**测量(很遗憾,万用表的测电容功能仅仅是个美妙的传说……),但是如果一袋子散装的电容都被搞混了,那还是扔掉为妙。

#### 2. 铝电解电容

哦?这不是"环保无纸"电子鞭炮里面的炮仗吗?好在我们只要搞清楚它的正负极和耐压,他就既不是炮仗,也不是"家失器"的出气筒,而是容量巨大的能隔直通交、储存能量、滤除杂波的······电容。



图七 电解电容

如图,热缩膜上单位是电压的那个数据是电容的耐压值,电容正极与 负极的电压差不能超过这个值。较长的引脚是正极,较短的引脚是负极。 热缩膜上的白线对应的引脚也是负极,电容正极的电压必须大于负极的电 压。

#### 4.1.3. TA7612 AM 调频中频处理器

解调,顾名思义,就是把信号从变化的载波中"还原"出来。在这里就是把输入信号的幅度变化检测出来,并且输出。



图八 TA7612 内部电路

我们并不需要知道他为什么能解调, 只要知道让他解调要给它接成共

射放大电路的样子,给它合适的静态工作点。接成共射放大电路的样子,就是晶体管的发射极接到地,也就是电源负极上。这个条件只要按照给出的电路图连接就可以。合适的静态工作点则是输入的电压/电流除了正弦量,而且还要有一个合适大小的直流量。

为什么要有那个直流量呢?上图是内部电路,输入是一个晶体管, NPN 的结构,无异于是两个背靠背的二极管。



图九 两个背靠背的二极管

想想我们高中学过的二极管,如果发生那种事,VIN 小于地,两个二极管都打不开。这时候信号都输不进去,还放大什么?更何况二极管还有开启电压,硅管只有在正向电压大于 0.7 伏左右才能打开。要放大,至少要让信号输入进去。要让信号输入进去,就要让 3 和 1 之间,就是 T1 的箭头打开,就要让信号最小的时候也能保证打开晶体管。给信号加上直流量,相位就算超过 180 度也不会关断输入,信号就可以一直放大了! 这样就导致在这个电路里,我们需要调整那个电位器。

这块小芯片详细的参数还是看下页的数据手册吧!

# TA7642 AM调频中频处理器芯片

#### TA7642 Radio IC

The TA7642 is an AM radio IC in a TO92 package which requires very few external components to make a complete pocket radio.

#### Features:

- low operating voltage down to 1.3V
- low quiescent current 0.2mA
- very few external components required

#### Maximum ratings:

| Parameters      | Min. | Max. | Unit |
|-----------------|------|------|------|
| Supply voltage  |      | 6    | V    |
| Operating temp. | -10  | 60   | °C   |
| Storage temp.   | -55  | 150  | °C   |



Output

#### **Electrical Characteristics:**

| Parameters              | Symbol         | Test conditions       | Min. | Тур. | Max. | Unit |
|-------------------------|----------------|-----------------------|------|------|------|------|
| Supply voltage          | Vcc            |                       | 1.2  | 1.3  | 1.6  | V    |
| Quiescent current       | Icca           | V <sub>1</sub> = 0    | 0.14 | 0.20 | 0.30 | mA   |
| Input resistance        | Ri             | 26                    |      | 3    | -    | ΜΩ   |
| Maximum sensitivity     | S <sub>M</sub> | V <sub>00</sub> = 3mV |      | 600  | -    | V    |
| Detector output voltage | Von            | V <sub>1</sub> = 10mV | 5    | 15   | 30   | mV   |
| AGC Range               | A              |                       |      | 30   | -    | dB   |

#### Example circuit:



The coil needs approximately 55 turns of 0.315 (30 SWG) of enamelled copper wire on a 100 x 10mm ferrite rod. A process of trial and error will help you achieve the optimum number of windings.



### 4.1.4. LM358 运算放大器

引脚图如下:



图十一 引脚分布

运放在电路分析课会学,这里还是 b 站大学提前学吧。

识别引脚的时候,芯片要正面朝上,此时他顶部有个凹槽,凹槽左边的引脚就是第一脚,那里也可能有一个圆点。

### 5. 温馨提示

电路在焊接的时候建议尽量使用刀头烙铁。电路图可能看起来挺复杂的,都一样,不用担心,如果还是心里没底,可以自己提前画个电路草图,方便焊接的时候看,电源用排针代替焊接,正极一排,负极一排,最后用学生电源供电。有几个提醒的地方,一个是三极管的不同引脚分辨好,电路图中的引脚对应好,还有电解电容和扬声器的正负极也分辨好。郑重强调:电解电容别焊反,会炸,会炸!还没过年,别整几个炮仗出来。

最后,祝学妹学弟们,焊接成功,每个人都坚持下来,会有意想不到 的收获,希望每个人都是满分!!!