PENGQUIN:

PErsoNal Genome QUery IN healthcare and clinical practice

Elias Crum

FWO Strategic Basic PhD Fellowship Interview September 5th, 2024 Pannel: SBWT5B

Personal Genome Data Usage?

My Journey

Medicine + Bioinformatics

Genomics

How can we increase **genomics** use in **medicine**?

Genomics + Healthcare

A Example: Pharmacogenomics

Genomics + Healthcare

A Example: Pharmacogenomics

B Genomics market is growing RAPIDLY

https://www.novaoneadvisor.com/report/genomics-market

Genomics + Healthcare

A Example: Pharmacogenomics

B Genomics market is growing RAPIDLY

https://www.novaoneadvisor.com/report/genomics-market

C

Problem:

Low Efficiency + High Costs

Personal Genome Sequence Data Challenges

Size considerations:

Variant Call Format (**VCF**) file = \sim 200 MB Represents ~3 million mutations Formatted as a flat (.txt) file

Other considerations:

Governance

♦ Formatting

Privacy

Storage

PENGQUIN Goals

Improve genomic data USAGE and SCALABILITY

Improve genomic data store accessibility (while maintaining privacy)

Represent genomic data semantically as Linked Data

Query genomic data and linkages

Connect to existing initiatives / applications

Proof-of-concept

Develop a framework and web application

Primary Research Challenges

WP1. Linking Genomic data to clinically-relevant data

Genomic data to RDF?

Automation of Linkages?

Primary Research Challenges

WP1. Linking Genomic data to clinically-relevant data

Genomic data to RDF?

Automation of Linkages?

WP3. Efficiently finding data through querying

Genome Pods

MANY, LARGE sources?

PENGQUIN

Semantic, Linked Data

 $^{^{1}}$ = VITO NV

² = Ghent University

Supplemental Slides

Envisioned Product Evolution

PhD Deliverable Start-up / Product
development
+
Hospital implementation

Integrate with EHR
+
Increase application
domains

Increase 3rd party application support +
Scale to Europe and beyond

Why this Panel?

PErsoNal Genome QUery IN healthcare and clinical practice

Genome Sequencing in Health Care

Sequence Generation Costs

Wetterstrand KA. Accessed 12/04/24

Currently getting close to \$100 per genome⁴

Per-base cost of sequencing has been dropping by half every ~5 months

Per-base cost of sequence data storage is dropping by half every ~14 months

Use-cases

10.31887/DCNS.2016.18.3/jkrier

Examples include:

- Medication prescription (pharmacogenomics)
- Genetic disease screening
- Cancer diagnosis & treatment

Personal Genome Sequence Data

Human genome data is big...

~3.2 BILLION base pairs ----> ~1 GB

Sequencing output file ----> ~200 GB

Variant Call Format (VCF) file ----> ~200 MB

- ➤ Individual humans exhibit ~3 million mutations
- VCF file records only those differences
- Flat file

VCF file semantic representation

- > ~>27 MILLION Triples when represented as RDF
- > Ontology for conversion
- Header Dictionary Triples (for compression)

Sequencing File Sizes

Sequence Data Formats

FASTQ

FASTA

SAM/BAM

VCF

Raw Sequencing Outputs

Contiguous DNA sequence FASTQ reads aligned to a FASTA reference Areas in SAM where sample and reference differ

```
>gi|568336023|gb|CM000663.2| Homo sapiens chromosome 1, GRCh38 reference primary assembly
 ACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCT
 TAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCT
 CTAACCCTAACCCTAACCCTAACCCTAAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCAACCCTAACCCTAACCCTAACCCTAACCCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCCTAACCCTAACCCTAACCCTAACCCTAACC
  CAACCCCAACCCCAACCCCAACCCCAACCCCAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAA
  CCTAACCCTAACCCTAACCCTAACCCTAACCCCTAACCCCTAACCCTAACCCTAACCCTAACCCTAACCC
  TCTGACCTGAGGAGAACTGTGCTCCGCCTTCAGAGTACCACCGAAATCTGTGCAGAGGACAACGCAGCTC
 CGCCCTCGCGGTGCTCTCCGGGTCTGTGCTGAGGAGAACGCAACTCCGCCGTTGCAAAGGCGCGCCGCGC
 CGCGCCGGCGCAGGCGCAGACACATGCTAGCGCGTCGGGGTGGAGGCGTGGCGCAGGCGCAGAGAGGCGC
 GCCGCGCCGGCGCAGGCGCAGAGACACATGCTACCGCGTCCAGGGGTGGAGGCGTGGCGCAGGCGCAGAG
 AGGCGCACCGCGCGCGCAGGCGCAGAGACACATGCTAGCGCGTCCAGGGGTGGAGGCGTGGCGCAGGC
 GCAGAGACGCAAGCCTACGGGCGGGGTTTGGGGGGGGCGTGTTGTTGCAGGAGCAAAGTCGCACGGCGCCGG
 GCTGGGGCGGGGGGGGGGGCGCCGTGCACGCGCAGAAACTCACGTCACGGTGGCGCGGCGCAGAGACG
 GCTTGCTCACGGTGCTGTGCCAGGGCGCCCCCTGCTGGCGACTAGGGCAACTGCAGGGCTCTCTTGCTTA
  GAGTGGTGGCCAGCGCCCCCTGCTGGCGCCCGGGGCACTGCAGGGCCCTCTTGCTTACTGTATAGTGGTGG
```

```
##fileformat=VCFv4.3
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##INFO=<ID=NS.Number=1.Type=Integer.Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency">
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129": ##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
##FILTER=<ID=q10,Description="Quality below 10">
##FILTER=<ID=s50.Description="Less than 50% of samples have data">
 ##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">
##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality">
#CHROM POS ID REF ALT QUAL FILTER INFO
                                              29 PASS NS=3;DP=14;AF=0.5;DB;H2
3 q10 NS=3;DP=11;AF=0.017
                                                                                                      GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:
GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3 0/0:41:3
                 rs6054257 G
                                 G,T
                                                     PASS NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2 2/2:35:4
                                                     PASS NS=3:DP=13:AA=T
                                                                                                      GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2
                                     G,GTCT 50 PASS NS=3;DP=9;AA=G
                                                                                                      GT:GQ:DP 0/1:35:4
```

```
VN:1.0 SO:coordinate
     SN:chr20
                 LN:64444167
                 VN:2.0.14
                             CL:/srv/dna tools/tophat/tophat -N 3 --read-edit-dist 5 --read-rea
lign-edit-dist 2 -i 50 -I 5000 --max-coverage-intron 5000 -M -o out /data/user446/mapping tophat/index/chr
20 /data/user446/mapping tophat/L6 18 GTGAAA L007 R1 001.fastq
HWI-ST1145:74:C101DACXX:7:1102:4284:73714
                                  16 chr20 190930 3
     XM:i:3 X0:i:0 XG:i:0 MD:Z:55C20C13A9 NM:i:3 NH:i:2 CC:Z:= CP:i:55352714 HI:i:0
HWI-ST1145:74:C101DACXX:7:1114:2759:41961 16 chr20 193953 50 100M * 0
     TGCTGGATCATCTGGTTAGTGGCTTCTGACTCAGAGGACCTTCGTCCCCTGGGGCAGTGGACCTTCCAGTGATTCCCCTGACATAAGGGGCATGGACGA
   DCDDDDEDDDDDDCDDDDDDCCCDDDCDDDDDEEC>DFFFEJJJJJIGJJJJIHGBHHGJIJJJJJJGJJJJIHJJJJJJJJHHHHHFFFFFCCC
              XM:i:3 X0:i:0 XG:i:0 MD:Z:60G16T18T3 NM:i:3 NH:i:1
HWI-ST1145:74:C101DACXX:7:1204:14760:4030 16 chr20 270877 50
                                                          100M
     DDDDDDDDDCCDDDDDDDDEEEEEEFFFFFFFGHHHHFGDJJHJJIJJJJIIIIGGFJJIHIIIIJJJJJJJIGHFAHGFHJHFGGHFFFDD@BB
              XM:i:2 X0:i:0 XG:i:0 MD:Z:0A85G13 NM:i:2 NH:i:1
HWI-ST1145:74:C101DACXX:7:1210:11167:8699
                                 0
                                        chr20 271218 50
          GTGGCTCTTCCACAGGAATGTTGAGGATGACATCCATGTCTGGGGTGCACTTGGGTCTCCGAAGCAGAACATCCTCAAATATGACCTCTCG
```

Sequencing Storage

The human genome

= ~3.2 billion base pairs

• 3 billion letters -- ~700 megabytes

Representative of a single strand of the whole human genome sequence

E.g.: ...ATGCCGTAAACAGATGTCA ...

Format: TXT file

• Raw human whole genome sequence -- ~200 gigabytes

Whole genome sequences typically have >=30x coverage at each base position. (i.e. each base of the genome is represented in the sequence file a >=30 times)

Format: FASTQ file

• Aligned human whole genome sequence -- ~210 gigabytes // ~100 gigabytes // ~15 gigabytes

Whole genome sequence is mapped to a reference human genome and can be stored in various formats. Recent advances have allowed for improved compression.

Format: SAM file // BAM file // CRAM file

Human genome variant file (list of mutations) -- ~125 megabytes

Individual humans only exhibit ~0.1% variation comparatively (~3 million mutations). Variant file records those differences in one individual's genome compared to the "normal" reference genome.

Format: VCF file

Variant Call Format (VCF)

- tab delimited .txt file
- Rows represent individual mutations in a sequence (when compared to reference)
- Columns store information about that mutation

Experimental VCF Data

Primary dataset from publicly available repositories (>100 genomes)

- Personal Genome Project (https://my.pgp-hms.org/public genetic data)
- NIST's Genome in a Bottle public dataset (https://data.nist.gov/od/id/mds2-2336)
- Illumina Platinum Genomes repository (https://emea.illumina.com/platinumgenomes.html)

If more are needed (>1000 [research grade] genomes):

- 1000 genomes project (https://www.internationalgenome.org/)
- NCBI's ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/)

Solid Technology

- ➤ Does not solve ALL problems, but offers an environment where improvements are possible
 - ✓ Easier sharing (web-facilitated)
 - ✓ Granular privacy controls
 - ✓ Direct patient data access
 - ✓ Data representation flexibility (RDF)
 - ✓ Possibility of data-linking and querying

15

Genome Data in RDF

VCF genomic data can be represented as RDF.

VCF to RDF Vocabularies exist ---> SPHN Semantic Interoperability Framework⁴ + FHIR HL7 Format⁵

VCF genomic data can be Linked to other data.

How to automate this? What vocabularies could be used for the linkages?

Querying Genome Pods

RDF genomic data pods can be queried.

Query Engine ———

Custom Comunica implementation/engine⁶

Querying Genome Pods (possibilities)

Single Pod Query

Utilizes an intra-pod index

Many Pod Query

First, utilizes an extra-pod aggregator Then, utilizes the intra-pod indexes

Beacon API for Researcher Queries

Query is translated from Beacon API to Comunica Then, the **Many Pod** query approach is followed

Implementation Specifics

Solid pod instances — Community Solid Server¹

Genomic Data

Publicly available VCF data²

RDF Conversion — Aim to use SPHN RDF vocabulary⁴

Data-linking — Actively exploring ontologies / methodologies