Javna komutirana telefonska mreža

- javna komutirana telefonska mreža (PSTN)
 - omogućava prijenos govora i podataka
 - uspostavljanje poziva i usmjeravanje poziva kroz mrežu su izvedeni korištenjem standardiziranog brojevnog plana
 - za vrijeme trajanja poziva uspostavlja se veza između dva kompatibilna korisnička uređaja (telefona, modema ili telefaksa) preko komutacijskih čvorova, tj. telefonskih centrala (CO, Central Office)
 - rabi komutaciju kanala
 - u svakom komutacijskom čvoru dolazni govorni kanali se komutiraju u odlazne govorne kanale (privremene veze)
 - za vrijeme trajanja poziva mrežni resursi koji se rabe za taj poziv ne mogu se rabiti u druge svrhe
 - rabi FDM i TDM
 - FDM se rabi u prijenosu analognog govornog signala

TDM se rabi u prijenosu digitalnog govornog signala Komunikacijski sustavi

- dijelovi telekomunikacijske mreže
 - korisnički uređaj(i)
 - pristupna mreža (access network)
 - infrastruktura preko koje se korisnici priključuju na mrežu
 - jezgrena mreža (core network)
 - povezuje sustave u pristupnoj mreži i omogućava komunikaciju s drugim mrežama

- telefonska mreža je hijerarhijska mreža
 - korisnički uređaj povezuje se s lokalnom telefonskom centralom (local central office), a lokalne centrale vežu se na čvorove više razine
 - veza između telefona i centrale naziva se lokalna linija ili lokalna petlja (*local loop*)
 - kada pretplatnik povezan na određenu lokalnu centralu poziva drugog pretplatnika povezanog na istu centralu, u centrali se uspostavlja izravna električna veza između dvije lokalne linije
 - između lokalnih centrala i čvorova više razine rabi se jedna ili više razina centrala više razine

• uspostavljanje veze između dvije lokalne linije

- broj hijerarhijskih razina i topologija mreže varira od države do države
 - ovisi o veličini države i gustoći naseljenosti stanovništva
- ITU-T je definirao 6-razinsku hijerarhiju komutacijskih čvorova (centrala)
 - ovakva se hijerarhija uglavnom koristi u velikim zemljama
 - nekoliko razina tranzitnih čvorova između lokalne razine i međunarodne razine ima zadatak posredovanja između razina

ITU-T hijerarhija komutacijskih čvorova

- tranzitna centrala je centrala s kojom se povezuju
 - lokalne centrale određenog tranzitnog područja
 - druge tranzitne centrale
 - međunarodne centrale
- tek na razini tranzitnih centrala previđeno je međusobno povezivanje centrala iste razine
- izgradnjom mreža s manje hijerarhijskih razina, operatori nastoje održati svoje mreže jednostavnim i lako upravljivim

- danas su uobičajene mreže s četiri ili tri razine
- razine u mreži s četiri razine
 - lokalne centrale
 - regionalne tranzitne centrale
 - nacionalne tranzitne centrale
 - međunarodne centrale
- razine u mreži s tri razine
 - lokalne centrale
 - tranzitne centrale
 - međunarodne centrale

- u mreži s četiri razine od svake lokalne centrale vodi više linija do centrala više razine - regionalnih tranzitnih centrala (toll office)
 - prijenosni medij: koaksijalni kabel, radijski prijenos u mikrovalnom frekvencijskom području, optički kabel
- veze između lokalne i regionalne tranzitne centrale nazivaju se regionalni vodovi (toll connecting trunks)
- regionalne tranzitne centrale su međusobno povezane međuregionalnim ili magistralnim vodovima (intertoll trunks, interoffice trunks)
- regionalne tranzitne centrale su povezane s nacionalnom tranzitnom/međunarodnom centralom magistralnim vodovima
- od međunarodnih centrala vode međunarodni vodovi

- napretkom tehnologije optičkih komunikacija, digitalne elektronike i računala, sva komutacijska čvorišta i vodovi u PSTN mreži, osim onih u pristupnoj mreži, su postali digitalni
- analogno-digitalna pretvorba govornih signala se provodi postupkom impulsno-kodne modulacije (PCM, *Pulse Code Modulation*)

PCM

- impulsno-kodna modulacija
 - telefonski signal: analogni signal u frekvencijskom području 300 –
 3400 Hz
 - ograničenje frekvencijske širine pojasa telefonskog signala provodi se na ulazu u lokalnu telefonsku centralu uz pomoć filtra koji guši frekvencije ispod 300 Hz i iznad 3400 Hz
 - zbog konačne strmine filtra, uzimanje uzorka provodi se frekvencijom uzorkovanja 8 kHz, tj. svakih 125 μs
 - kodiranje uzoraka provodi se s 8 bit/uzorku
 - brzina prijenosa govornog kanala: 8 kHz x 8 bit/uzorku = 64 kbit/s

Multipleksiranje govornih kanala

- vremensko multipleksiranje (TDM) govornih kanala
 - digitalnim signalima u uređajima komunikacijskog sustava upravljaju generatori taktnih impulsa
 - u općem slučaju, vremensko multipleksiranje digitalnih signala koji dolaze iz različitih izvornih čvorova može biti
 - asinkrono
 - taktni impulsi su asinkroni, ali odstupanja taktnih impulsa od nominalne frekvencije ne smiju biti veća od definiranog iznosa Δf
 - mreža u kojoj se rabi takav odnos taktnih impulsa naziva se pleziokronom
 - sinkrono
 - svi taktni impulsi su iste frekvencije ili se sinkroniziraju na istu frekvenciju
 - mreža u kojoj se rabi takav odnos taktnih impulsa naziva se sinkronom

- pleziokrona digitalna hijerarhija
 (PDH, Plesiochronous Digital Hierachy)
 - prvi sustav projektiram za prijenos digitalnog govora
 - omogućava bolje iskorištenje prijenosnih kapaciteta i višu kvalitetu prijenosa
 - rabi se za vremensko multipleksiranje govornih kanala "bit po bit" radi zajedničkog prijenosa
 - omogućava prijenos digitalnih signala bez obzira na način njihova nastanka, tako da se može smatrati prvom mrežom integriranih usluga
 - istom prijenosnom linijom prenose se govorni signali i podaci
 - propisuje različite razine prijenosa, brzine prijenosa podataka za svaku razinu i broj govornih kanala po razini
 - niže razine su namijenjene za spajanje korisničke opreme na mrežu
 - više razine su namijenjene prijenosu podataka unutar mreže

- razine prijenosa u PDH
 - hijerarhija za pleziokrono vremensko multipleksiranje digitalnih govornih signala i podataka definirana je preporukom ITU-T G.702
 - hijerarhije se razlikuju u odnosu na primarnu brzinu prijenosa (*Primary Bit Rate*)
 - u SAD, Kanadi i Japanu primarna brzina prijenosa je 1,544 Mbit/s
 - u Europi primarna brzina prijenosa je 2,048 Mbit/s

- primarna brzina prijenosa u europskoj PDH hijerarhiji
 - označava se kao E1, a sadrži 30 govornih kanala i dva kanala za signalizaciju i upravljačke informacije (32 kanala)

- druga razina multipleksiranja (E2) u europskoj PDH hijerarhiji
 - multipleksiraju se četiri E1 kanala
 - brzina prijenosa je 8,448 Mbit/s
 - brzina prijenosa nije 4 x 2,048 Mbit/s = 8,192 Mbit/s
- treća razina multipleksiranja (E3)
 - multipleksiraju se četiri E2 kanala
 - brzina prijenosa je 34,368 Mbit/s
- četvrta razina multipleksiranja (E4)
 - multipleksiraju se četiri E3 kanala
 - brzina prijenosa je 139,264 Mbit/s

- primarna brzina prijenosa u američkoj PDH hijerarhiji
 - označava se kao T1
 - ukupan broj bita po okviru iznosi: (24x8)=192 bita + 1 bit =193 bit/okviru
 - primarna brzina prijenosa je: 193 bit/125µs = 1,544 Mbit/s

- druga razina multipleksiranja (T2)
 - multipleksiraju se četiri T1 kanala
 - brzina prijenosa nije 4x1,544 Mbit/s = 6,176 Mbit/s
 - brzina prijenosa je: 6,312 Mbit/s
- treća razina multipleksiranja (T3)
 - multipleksira se sedam T2 kanala
 - brzina prijenosa je 44,736 Mbit/s
- četvrta razina multipleksiranja (T4)
 - multipleksira se šest T3 kanala
 - brzina prijenosa je 274,176 Mbit/s

nedostaci PDH

- kada se povezuju sustavi u kojima se rabe različite hijerarhije postojanje različitih hijerarhija zahtijeva složene postupke pretvorbe jedne hijerarhije u drugu
- brzina prijenosa više razine je oko 1% viša od sume ulaznih tokova podataka zbog prijenosa dodatnih upravljačkih podataka
- strukture okvira se razlikuju na svakoj prijenosnoj razini
- multipleksiranje/demultipleksiranje je moguće samo između susjednih razina prijenosa
- ukoliko se želi promijeniti sadržaj multipleksa, tj. u postojeći multipleks dodati kanale ili ih izdvojiti, potrebno je provesti postupak demultipleksiranja i ponovnog multipleksiranja sljedeći hijerarhiju (korak po korak) bez mogućnosti preskakanja razina
- razvoj pleziokrone hijerarhije završio je s brzinom prijenosa 139,264
 Mbit/s (više razine nisu normirane)

- sinkrona digitalna hijerarhija
 (SDH, Synchronous Digital Hierarchy)
 - nova hijerarhija koja je naslijedila PDH i ispravila njezine nedostatke
 - postavke za razvoj nove norme
 - svjetska norma koja se može rabiti posvuda u svijetu bez potrebne za pretvorbama iz jedne norme u drugu
 - uvažavanje postignuća PDH i uspostavljanje veze između postojećih PDH hijerarhija
 - izravno sinkrono multipleksiranje
 - omogućavanje prijenosa visokim brzinama i time učinkovita uporaba svjetlovoda kao prijenosnog medija (na 2,5 Gbit/s svjetlovod ima kapacitet 30 720 govornih kanala)
 - omogućavanje uvođenja širokopojasnih usluga (prijenos videosignala, videokonferencije, itd.)
 - normirana sučelja kako bi proizvođači opreme mogli ponuditi uređaje po nižim cijenama zbog postojanja svjetskog tržišta

- prva sinkrona optička mreža (SONET, Synchronous Optical Network) uvedena je 1985. godine u SAD
 - najniža razina razina 1, imala je brzinu prijenosa 51,840 Mbit/s
 - nazvana je: sinkroni transportni signal razine 1 (STS-1, Synchronous Transport Signal Level 1)
 - sljedeća razina je razina 3 s brzinom prijenosa 155,52 Mbit/s (STS-3)
 - multipleksiranje se provodi u električnom području, a prijenos u optičkom
- brzina prijenosa 155,52 Mbit/s usvojena je u Europi kao prva razina SDH
 - nazvana je: sinkroni transportni modul razine 1 (STM-1, Synchronous Transport Module Level 1)

razine multipleksiranja

SONET		SDH	Brzina prijenosa (Mbit/s)	
Električko	Optičko	Optičko	Ukupna	Korisna
STS-1	OC-1	STM-0	51,84	50,112
STS-3	OC-3	STM-1	155,52	150,336
STS-9	OC-9	STM-3	466,56	451,008
STS-12	OC-12	STM-4	622,08	601,344
STS-18	OC-18	STM-6	933,12	902,016
STS-24	OC-24	STM-8	1244,16	1202,688
STS-36	OC-36	STM-12	1866,24	1804,032
STS-48	OC-48	STM-16	2488,32	2405,376
STS-96	OC-96	STM-32	4876,64	4810,752
STS-192	OC-192	STM-64	9953,28	9621,504

- kapacitet STM-1
 - brzina prijenosa STM-1 je:
 - 2430 simbola/okviru x 8 bit/simbol x 8000 okvir/s = 155,52 Mbit/s

- komponente SDH sustava
 - terminalni multipleksori (TM, Terminal Multiplexer)
 - krajnji čvorovi koji provode multipleksiranje/demultipleksiranje ulaznih spremnika (PDH ili SDH) na odgovarajući razinu STM-N
 - AD multipleksori (ADM, Add-Drop Multiplexer)
 - dodaju ili izuzimaju pojedine dijelove nižih brzina prijenosa iz digitalnog slijeda više brzine prijenosa (npr. izuzimaju jedan STM-1 iz STM-4) bez potrebe za demultipleksiranjem
 - digitalni prospojnici (DXC, Digital Cross-Connect)
 - prospaja tj. komutira pojedine virtualne spremnike ili njihove skupine
 - virtualni spremnici koji se u čvoru trebaju prospojiti ostaju nepromijenjeni, a u STM-u mijenja se samo zaglavlje sekcije (SOH)
 - regeneratori
 - obnavljaju signal

Telefonske modemske veze

- napretkom i sve većom uporabom računala pojavila se potreba za povezivanjem računala putem telefonske mreže
- modem (modulator+demodulator)
 - uređaj za pretvorbu digitalnih podatka, nastalih u računalu, u analogni oblik pogodan za slanje telefonskom linijom i obrnuto

 radi povećanja brzine prijenosa u modemima se rabe hibridni modulacijski postupci, a u novijim modemima i kompresija (sažimanje) podataka prije prijenosa

- primjeri modema
 - V.21 300 bit/s
 - rabi BFSK modulaciju uz 300 Bd (1 simbol = 1 bit)
 - V.22 1200 bit/s
 - rabi QPSK modulaciju uz 600 Bd (1 simbol = 2 bita)
 - V.22 bis 2400 bit/s
 - rabi 16-QAM modulaciju uz 600 Bd (1 simbol = 4 bita)
 - V.23 1200 bit/s
 - rabi BFSK modulaciju uz 1200 Bd (1 simbol = 1 bit)

- V.32 9600 bit/s
- V.32 terbo 19200 bit/s
- V.32 bis 14400 bit/s
- V.34 28800 bit/s
- V.34 bis 33600 bit/s
 - brzina prijenosa od 33,6 kbit/s je maksimalna brzina prijenosa između dva kućna korisnika s modemima i analognim linijama

- brzina prijenosa od 35 kbit/s predstavlja teorijsku granicu najveće brzine prijenosa modema, a određena je prosječnom duljinom i kvalitetom telefonskih linija u lokalnoj petlji
- povećanje brzine prijenosa postiže se digitalnim prijenosom u lokalnoj petlji
 - ISP se povezuje digitalnom linijom s najbližom telefonskom centralom
 - teorijska granica najveće brzine prijenosa modema je tada 70 kbit/s

- nove vrste modema
 - V.90 56 kbit/s/33,6 kbit/s
 - V.92 56/48 bit/s
- efektivna brzina prijenosa koju opaža korisnik može biti manja, jednaka ili veća od nominalne brzine prijenosa modema
 - modem prije odašiljanja podataka provjerava liniju i ako utvrdi da je kvaliteta prijenosa niska, smanjuje brzinu prijenosa

- tehnologije digitalne pretplatničke linije (DSL, Digital Subscriber Line)
 - povećavaju brzinu prijenosa u pristupnoj telefonskoj mreži iznad 56 kbit/s (gdje su modemske veze završile svoj razvoj)
 - omogućavaju istodobni prijenos govora i podataka
 - rabe napredne modulacijske postupke radi omogućavanja prijenosa podataka visokim brzinama
 - rabe postojeće upletene parice u širem frekvencijskom području od onoga koji se rabi za prijenos govora (300 – 3400 Hz)
 - rabe postojeću mrežnu infrastrukturu uz male potrebne nadogradnje
 - jednostavne su za implementaciju na strani korisnika (korisniku se dodjeljuje DSL pristupni uređaj)

- pregled DSL tehnologija
 - digitalna mreža integriranih usluga (ISDN, Integrated Services Digital Network)
 - brzina prijenosa za osnovni korisnički pristup je 160 kbit/s
 - prijenos govora i podataka
 - HDSL (High Bit Rate DSL)
 - HDSL modemi rabe dvije ili tri telefonske parice
 - brzina prijenosa: 1,544 Mbit/s ili 2,048 Mbit/s (T1/E1)
 - T1 s dvije parice brzina prijenosa po parici 784 bit/s
 - E1 s dvije parice brzina prijenosa po parici 1168 bit/s
 - E1 s tri parice brzina prijenosa po parici 784 bit/s
 - prijenosna udaljenost: 2,7 3,6 km (parice promjera 0,4 0,5 mm)
 - povezivanje korporacijskih mreža, interna komunikacija unutar mreže pojedinog operatora (npr. povezivanje baznih postaja mobilne mreže s telefonskom centralom)

- HDSL2

- povećanje brzine prijenos u odnosu na HDSL
- dvosmjerni prijenos po jednoj parici uz brzinu prijenosa od 2,048 Mbit/s uz domet 4 km
- prijenos s dvije parice uz ukupnu brzinu prijenosa 4 Mbit/s i domet 4 km
- simetrične usluge s jednakim kapacitetom za odlazni i dolazni smjer
- rabi modulacijski postupak QAM s potisnutim nosiocem (CAP, Carrierless Amplitude and Phase)
- MSDSL (Multirate Symmetric DSL)
 - simetrična digitalna pretplatnička linija s više brzina prijenosa
 - · rabi jednu paricu
 - brzina prijenosa može se mijenjati u ovisnosti o potrebama korisnika od 272 kbit/s do 2320 kbit/s (time se mijenja i domet)
 - podržava istodobno korištenje govorne usluge i prijenos podataka
 - rabi modulacijski postupak CAP

- ADSL (Asymmetric DSL)
 - brzina prijenosa u dolaznom smjeru prema korisniku (*downstream*) veća je od brzine u odlaznom smjeru (*upstream*) od korisnika prema centrali
 - dolazni smjer prema korisniku: 1,5 9 Mbit/s
 - odlazni smjer od korisnika:
 16 640 kbit/s
 - rabi modulacijski postupak OFDM (DMT)
 - omogućava širokopojasne usluge kao što su video na zahtjev, pristup Internetu, pristup LAN mrežama, prijenos televizijskog signala
- VDSL (Very High Bit Rate DSL)
 - veće brzine prijenosa, ali kraće udaljenosti nego kod ADSL
 - dolazni smjer prema korisniku: 13 55 Mbit/s
 - odlazni smjer od korisnika: 1,5 2,3 Mbit/s
 - VDSL se rabi u mrežama gdje je optički kabel doveden blizu korisnika
 - prijenosne udaljenosti po upletenoj parici: 300 1500 m
 - omogućava širokopojasne usluge

ISDN

- integracija usluga prijenosa govora i podataka
- zahtijeva digitalizaciju lokalne petlje
- dvije vrste sučelja prema ISDN mreži
 - sučelje s osnovnom brzinom prijenosa (BRI, Basic Rate Interface) za male korisnike (kućanstva)
 - sučelje s primarnom brzinom prijenosa (PRI, *Primary Rate Interface*) za poslovne korisnike
- ISDN kanali
 - kanal B 64 kbit/s
 - osnovni korisnički kanal za prijenos govora i podataka
 - kanal D 16 ili 64 kbit/s
 - prenosi signalizacijsku informaciju za uspostavljanje veze
 - kanal H 384 kbit/s (H0), 1536 kbit/s (H11) i 1920 kbit/s (H12)
 - prijenos korisničke informacije veće brzine

- PRI

- spajanje digitalnih kućnih centrala na ISDN mrežu (prijenos od točke do točke)
- od digitalne centrale zvjezdasto se šire vodovi do pojedinih uređaja
- tipična konfiguracija za PRI
 - primarna brzina prijenosa (2,048 Mbit/s ili 1,544 Mbit/s)
 - » 23B ili 30B kanala (23 za SAD i Japan, a 30 za Europu)
 - » jedan D kanal brzine prijenosa 64 kbit/s
 - » jedan kanal brzine 64 kbit/s za sinkronizaciju

- BRI

- spajanje najviše osam korisničkih uređaja
- rabi se osnovna brzina prijenosa od 160 kbit/s
 - dva B kanala (B, Bearer Channel) za prijenos korisne informacije brzine prijenosa 64 kbit/s
 - jedan D kanal (D, Data Channel) za signalizaciju brzine prijenosa 16 kbit/s
 - jedan kanal brzine prijenosa 16 kbit/s za zaglavlje

- prednosti ISDN u odnosu na modeme u govornom području
 - povećanje brzine prijenosa s 33,6 kbit/s i 56 kbit/s na 160 kbit/s
 - istodobni prijenos govora i podataka
 - potpuna digitalizacija prijenosnog puta do korisnika
- nedostaci ISDN u odnosu na ostale DSL tehnologije
 - brzine prijenosa preniske za multimedijske usluge
 - kvaliteta prijamnog signala ovisi o stanju parice, njezinoj duljini i izvedenim spojevima na njoj

ADSL

- prijenos informacija provodi se preko jedne parice
- zbog nedostatka upletene parice kao prijenosnog medija, prijenosne udaljenosti su ograničene na 5 km

ADSL sustav

- na korisničkoj strani razdvajanje govora i podataka provodi se u razdjelniku (splitter)
 - razdjelnik je niskopropusni analogni filtar koji razdvaja frekvencijsko područje 0 – 4 kHz, koje se rabi za govornu uslugu, od podataka
 - na razdjelnik se spaja ADSL modem i telefon
 - podaci se obrađuju u DSL pristupnom multipleksoru (DSLAM, DSL Access Muliplexer), a govorni signal u klasičnoj telefonskoj centrali

- odabir frekvencijskog područja za dolazni i odlazni smjer
 - signal u odlaznom smjeru od korisnika prema telefonskoj centrali je manje snage od signala u dolaznom smjeru i stoga podložniji šumu
 - odlaznom smjeru se dodjeljuje niže frekvencijsko područje zbog manjeg gušenja signala pri prijenosu upletenom paricom na nižim frekvencijama
- za privatne korisnike pogodno je da kapacitet u dolaznom smjeru bude veći od kapaciteta u odlaznom smjeru
 - odlaznom smjeru se dodjeljuje znatno manja širina pojasa nego dolaznom smjeru (asimetrični promet)
- zbog ograničenih brzina prijenosa u odlaznom smjeru, ADSL usluga nije atraktivna poslovnim korisnicima

- norme za ADSL
 - postoje dvije temeljne norme za ADSL
 - ITU-T G.992.1 koja se naziva G.DMT
 - ITU-T G.992.2 koja se naziva G.Lite
 - obje norme se temelje na primjeni OFDM (DMT) postupka modulacije, ali se razlikuju po širini frekvencijskog pojasa
 - temeljna razlika je u tome što G.Lite ne rabi razdjelnik između telefona i G.Lite ADSL modema

G.DMT ADSL

- koristi dva odvojena frekvencijska područja za dolazni smjer prema korisniku i odlazni smjer od korisnika prema centrali
 - 25,875 kHz 138 kHz za odlazni smjer
 - 138 kHz 1104 kHz za dolazni smjer

0 4kHz 25,875 kHz 138 kHz 1104 kHz

- davatelj usluge može odrediti koliko potkanala će se rabiti za prijenos prema centrali, a koliko prema korisniku
- unutar svakog potkanala rabi se modulacijski postupak QAM s 0 – 15 bit/simbol, brzina 4000 Bd
 - stvarna najveća brzina u dolaznom smjeru je oko 8 Mbit/s

- G.Lite ADSL
 - širina frekvencijskog pojasa smanjena je u odnosu na G.DMT
 - 25,875 kHz 138 kHz za odlazni smjer
 - 138 kHz 578 kHz za dolazni smjer

0 4kHz 25,875 kHz 138 kHz 578 kHz

Odlazni smjer Dolazni smjer

- brzina prijenosa prema korisniku iznosi 1,5 Mbit/s, a od korisnika
 512 kbit/s
- G.Lite modem detektira aktivnost uređaja koji rade u govornom području na zajedničkoj liniji i smanjuje brzinu prijenosa kako bi se smanjilo preslušavanje između G.Lite modema i ostalih korisničkih uređaja
- donja granica brzine prijenosa nije definirana tako da nije preporučljivo govoriti o zajamčenoj brzini prijenosa G.Lite modema
- kada detektira da je neki uređaj (telefon, faks) aktivan, G.Lite modem prekida slanje podataka na nekoliko sekundi da bi smanjio brzinu prijenosa
- to može izazvati poteškoće protokolima viših slojeva

- daljnji razvoj ADSL normi
 - ADSL2
 - veća djelotvornost modulacijskog postupka
 - brzina prijenosa u odlaznom smjeru od korisnika prema centrali povećana je na 1 Mbit/s
 - brzina prijenosa u dolaznom smjeru povećana je na 12 Mbit/s
 - RE ADSL2 (RE, Reach Extended)
 - svrha: povećanje dometa u odnosu na ADSL2
 - povećanje snage signala i smanjenje širine pojasa
 - dolazni smjer: 552 kHz
 - u dolaznom smjeru omogućava prijenos brzinom od 768 kbit/s na udaljenosti 5,7 km
 - odlazni smjer: 78 kHz ili 35 kHz (povećanje spektralne gustoće snage signala od 1,6 dB ili 5,1 dB u odnosu na ADSL2)
 - ADSL2+
 - rabi širinu frekvencijskog područja od 2,2 MHz (umjesto 1,1 MHz u ADSL)
 - brzina prijenosa u dolaznom smjeru je povećana na 20 Mbit/s za linije duljine 1,5 km
 - brzina prijenosa u odlaznom smjeru od korisnika prema centrali ostaje ista kao kod ADSL2

VDSL

- rabi se u pristupnim mrežama gdje je optički kabel doveden u lokalnu petlju (FITL, Fiber in the Loop)
- omogućava prijenos signala upletenom paricom vrlo visokim brzinama (do 55 Mbit/s) na kratkim udaljenostima (do 300 m)
- za veće prijenosne udaljenosti brzina prijenosa se smanjuje
- optička mrežna jedinica (ONU, Optical Network Unit) je mjesto u mreži gdje se provodi optoelektrička i elektrooptička pretvorba
 - od ONU u smjeru prema korisniku prenosi se električki signal
 - od ONU u smjeru prema mreži prenosi se optički signal

- FTTx tehnologije
 - optički kabel do ormarića udaljenog 300 1500 m od korisnika (FTTCab/FTTN, FTT Cabinet/FTT Node)
 - optički kabel se dovodi do skupine korisnika (do 300) gdje se nalazi ONU
 - signali se nakon ONU distribuiraju do korisnika putem VDSL modema i upletene parice
 - optički kabel do ormarića udaljenog manje od 300 m od korisnika (FTTC, FTT Curb)
 - optički kabel se dovodi do skupine korisnika (do 100) gdje se nalazi ONU
 - optički kabel do većeg stambenog objekta (FTTB, FTT Building)
 - inačica FTTC gdje je ONU smješten u stambenom objektu s više korisnika
 - optički kabel do doma korisnika (FTTH, FTT *Home*)
 - krajnja faza sveoptičke pristupne mreže
 - svjetlovod se dovodi do pojedinih korisnika i nema potrebe za telefonskom paricom
- za VDSL rabe se tehnologije u kojima optički kabel dolazi do lokalne centrale (FTTEx, FTT *Exchange*), FTTCab i FTTC

VDSL

- podržava simetrični i asimetrični prijenos u frekvencijskom području od 200 kHz do 30 MHz
- VDSL podržava različite širine raspoloživog frekvencijskog područja kako bi se omogućila prilagodba različitim uslugama i strukturama mreže
- VDSL2- druga generacija VDSL sustava
 - podržava brzine prijenosa do 100 Mbit/s istodobno u dolaznom i odlaznom smjeru na udaljenostima do 300 m
 - povećanjem prijenosne udaljenosti značajke prijenosa su degradirane
 - na udaljenosti 500 m brzina prijenosa je 50 Mbit/s u svakom smjeru
 - na udaljenosti 1 km brzina prijenosa je 25 Mbit/s u svakom smjeru
 - na udaljenostima većim od 1,5 km značajke se približavaju značajkama ADSL2+ sustava

Lokalne mreže

Lokalne mreže - temeljne osobine

- lokalne mreže (LAN, Local Area Network)
 - mreže koje pokrivaju relativno malo područje, a služe za međusobno povezivanje radnih postaja, osobnih računala, pisača, poslužitelja, telefona, periferne opreme, osjetila i drugih sličnih uređaja na određenoj lokaciji
 - mreža je u vlasništvu jedne organizacije
 - obilježja LAN: visoke brzine prijenosa, malo kašnjenje, mali BER

Lokalne mreže - temeljne osobine

- način prijenosa podataka u LAN mrežama
 - jednosmjerni prijenos (*unicast*)
 - pojedini paket se šalje od izvorišnog do odredišnog čvora u mreži
 - istodobni prijenos do skupine mrežnih čvorova (*multicast*)
 - paket se šalje u mrežu koja ga kopira u potreban broj primjeraka i po jednu kopiju šalje u svaki čvor koji je sastavni dio adrese
 - istodobni prijenos do svih mrežnih čvorova (broadcast)
 - paket se šalje u mrežu koja ga kopira i šalje po jednu kopiju svakom

Lokalne mreže - temeljne osobine

- prijenosni mediji u LAN mrežama
 - tanki i debeli koaksijalni kabeli, upletene parice ili optički kabeli
 - različite vrste prijenosnog medija unose različito gušenje signala
 - vrsta prijenosnog medija (uz brzinu prijenosa) određuje veličinu mreže
- osnovne topologije LAN mreža
 - sabirnica (bus), prsten (ring), zvijezda (star) i stablo (tree)
- normiranje LAN mreža provedeno je IEEE 802 normama (IEEE, Institute of Electrical and Electronics Engineers)

Norme za lokalne mreže

- norme IEEE 802 odnose se na mreže u kojima se prenose okviri promjenjive veličine
- usluge i protokoli sadržani u normama IEEE 802 zauzimaju prva dva sloja ISO/OSI modela
 - fizički sloj
 - sloj podatkovne veze
- nisu potrebne funkcije komutiranja i usmjeravanja paketa
 - podaci se prenose adresiranim okvirima po jednom prijenosnom mediju
- sloj podatkovne veze podijeljen je na dva podsloja
 - podsloj za upravljanje pristupom prijenosnom mediju (MAC, Medium Access Control)
 - provodi dodjelu prijenosnog medija mrežnoj postaji radi odašiljanja podataka
 - podloj za upravljanje logičkom vezom (LLC, Logical Link Control)
 - omogućava razmjenu jedinica podataka između dvije mrežne postaje

Norme za lokalne mreže

norme IEEE 802 u odnosu na referentni model OSI

Pristup prijenosnom mediju

- više mrežnih postaja ne može istodobno komunicirati putem mreže
- postupci upravljanja pristupom prijenosnom mediju rješavaju probleme koji se pojavljuju kada dvije ili više mrežnih postaja trebaju odašiljati podatke u isto vrijeme
- u LAN mrežama rabe se dva načina upravljanja pristupom prijenosnom mediju
 - višestruki pristup osluškivanjem nosioca i detekcijom sudara (CSMA/CD, Carrier Sense Multiple Access/Collision Detect);
 - upravljanje pristupom prijenosnom mediju prosljeđivanjem pristupne riječi (token passing)

Pristup prijenosnom mediju

CSMA/CD

- mrežna postaja koja želi odašiljati podatke "osluškuje" da li neka druga postaja odašilje podatke i da li je medij zauzet
- ako je prijenosni medij slobodan, mrežna postaja započinje odašiljati
 - do sudara dolazi kada više postaja istodobno utvrdi da je medij slobodan i započne odašiljanje okvira
- za vrijeme odašiljanja okvira, mrežna postaja "osluškuje" medij, kako bi otkrila da li je došlo do sudara
 - rani sudar sudar koji postaja detektira za vrijeme dok odašilje okvire
 - mrežna postaja prekida emitiranje okvira i čeka slučajno odabrano vrijeme prije nego započne ponovno odašiljanje
 - u najvećem broju slučajeva istodobno odašiljanje podataka dvaju mrežnih postaja neće se ponoviti
 - kasni sudar sudar do koga dolazi nakon što je postaja prestala sa slanjem okvira
 - postaja ne može detektirati kasni sudar

Pristup prijenosnom mediju

- upravljanje pristupom prijenosnom mediju prosljeđivanjem pristupne riječi
 - poseban mrežni paket nazvan pristupna riječ (token) kruži mrežom od jedne mrežne postaje do druge
 - preduvjet za ovaj način upravljanja je da mrežne postaje formiraju logički prsten

- kada pojedina mrežna postaja treba odašiljati podatke, mora čekati dok pristupna riječ ne dođe do nje i tada može započeti proces odašiljanja podataka
- ako mrežna postaja do koje je pristigla pristupna riječ nema podatke za odašiljanje, prosljeđuje pristupnu riječ sljedećoj mrežnoj postaji

- Ethernet
 - definiran IEEE 802.3 normom
 - glavna LAN tehnologija
 - više od 85% računala koja su povezana u lokalne mreže rabe Ethernet
 - fizički sloj u Ethernetu sačinjavaju
 - zajednički medij na koji su spojene sve mrežne postaje
 - mrežni uređaji
 - fizički sloj je specifičan za određenu vrstu prijenosnog medija i područje brzina prijenosa podataka

- mrežni uređaji se dijele u dvije klase
 - mrežne postaje ili podatkovni krajnji uređaji (DTE, Data Terminal Equipment)
 - uređaji koji su izvor ili odredište paketa podataka
 - DTE su uređaji, kao npr. osobna računala, radne postaje, poslužitelji za rad s datotekama, poslužitelji za printere i slični uređaji
 - uređaji za prijenos podataka (DCE, Data Communication Equipment)
 - međuuređaji koji primaju i prosljeđuju pakete podataka kroz mrežu
 - DCE mogu biti samostalni uređaji, kao što su npr. obnavljači (repeaters), komutatori (switches) i usmjerivači (routers), ili komunikacijska sučelja kao što su mrežne kartice ili modemi

- označavanje inačica Etherneta
 - 1XXXBYYYYZ
 - 1XXX brzina prijenosa podataka
 - 1 Mbit/s, 10 Mbit/s, 100 Mbit/s, 1000 Mbit/s
 - BYYYY način prijenosa signala prijenosnim medijem
 - BASE prijenos u osnovnom pojasu
 - BROAD širokopojasni prijenos
 - Z najveća dopuštena duljina segmenta izražena u jedinicama 100 m (2, 5 ili 36)

ili

- oznaka prijenosnog medija
 - T (twisted pair) upletena parica
 - F (fiber) optički kabel
 - L (long) optički kabel, veće valne duljine
 - S (short) optički kabel, kraće valne duljine
 - X tehnologije za gigabitne Ethernet mreže

- inačice Etherneta
 - brzina prijenosa 10 Mbit/s
 - 10BASE5 debeli koaksijalni kabel, topologija sabirnica
 - 10BASE-T upletena parica (UTP), topologija sabirnica
 - 10BASE-F optički kabel, topologija zvijezda
 - brzina prijenosa 100 Mbit/s
 - 100BASE-T Fast Ethernet, u letena arica, to olo i a zvi ezda
 - brzina prijenosa 1000 Mbit/s
 - 1000BASE-X Gigabit Ethernet, topologija zvijezda
 - 1000BASE-LX jednomodni svjetlovod, udaljenost: do 2 km
 - 1000BASE-ZX jednomodni svjetlovod (1550 nm), udaljenost: do 70 km

- podsloj MAC
 - specifično rješenje za svaku vrstu lokalnih mreža
 - u Ethernet mreži rabi se IEEE 802.3 MAC
 - izvodi se na mrežnoj kartici krajnjeg uređaja ili na priključku mrežnog uređaja
 - obavlja sljedeće funkcije:
 - upravljanje pristupom prijenosnom mediju uporabom CSMA/CD
 - formiranje okvira s adresnim poljem i poljem za upravljanje pogreškama prije odašiljanja
 - rasformiranje okvira, prepoznavanje adrese i detekcija pogrešaka tijekom i nakon prijama

- inačice struktura okvira
 - Ethernet II okvir
 - Ethernet II okvir (*Ethernet II frame* ili *Ethernet Version 2* ili *DIX frame*)
 - najčešće korišteni oblik okvira koji se često koristi izravno od strane protokola IP
 - IEEE 802.3 okvir
 - uvažava postignuća DIX, ali unosi promjene u strukturu Ethernet II okvira radi prilagodbe drugim normama za lokalne mreže

Ethernet II okvir

	Preambula (8 okteta)	MAC adresa odredišta (6 okteta)	MAC adresa izvora (6 okteta)	Vrsta (2 okteta)	Podaci (46 do 1500 okteta)	FCS (4 okteta)	
--	-------------------------	------------------------------------	---------------------------------	---------------------	-------------------------------	-------------------	--

IEEE 802.3 okvir

Preambula SoF MAC adresa MAC adresa izvora Duljina LLC podaci FCS (7 okteta) (1) odredišta (6 okteta) (6 okteta) (2 okteta) (46 do 1500 okteta) (4 okteta)
--

- MAC adresa odredišta (48 bita od 0 do 47)
 - najviši bit (47. bit) "0" adresa krajnjeg uređaja
 - najviši bit (47. bit) "1" adresa skupine krajnjih uređaja (multicast address)
 - 46. bit jednak "0" globalne adrese
 - 46. bit jednak "1" lokalne adrese
 - svi biti jednaki "1" sveodredišna adresa (broadcast address) kada su svi krajnji uređaji odredišta

- kompatibilnost okvira Ethernet II i IEEE 802.3
 - ukoliko je vrijednost polja, koje se u Ethernet II okviru naziva "vrsta", a u IEEE 802.3 okviru "duljina", manja od 1500 to polje se interpretira kao "duljina"
 - ukoliko je vrijednost polja, koje se u Ethernet II okviru naziva "vrsta", a u IEEE 802.3 okviru "duljina", jednaka ili veća od 1536 interpretira se kao "vrsta"
 - na taj način programska podrška može odrediti o kojoj vrsti okvira se radi
 - obje vrste okvira mogu koegzistirati na istom prijenosnom mediju

- podsloj LLC
 - definiran IEEE 802.2 normom
 - jednako definiran za sve vrste lokalnih mreža
 - funkcije ovog sloja su neovisne o načinu upravljanja pristupom prijenosnom mediju i o samome mediju
 - sučelje između Ethernet MAC podsloja i mrežnog sloja u OSI referentnom modelu
 - LLC omogućava protokolima mrežnog sloja da dijele podatkovnu vezu
 - LLC je izveden programski kao upravljački program ili programski modul mrežnog uređaja
 - usluge
 - nespojna usluga bez potvrde primitka okvira
 - spojna usluga

- adresiranje krajnjih uređaja u lokalnoj mreži
 - odbor IEEE 802 odredio je oblik MAC adrese za krajnje uređaje, koji se odnosi na sve vrste lokalnih mreža
 - svaki krajnji uređaj ima svoju sklopovsku MAC adresu duljine 48 bita (broj mogućih adresa je 2⁴⁸=281 474 976 710 656)
 - dugačka adresa je potrebna kako bi svaki krajnji uređaj (mrežna kartica, priključak na uređaju) imao jedinstvenu MAC adresu u cijelom svijetu
 - time se onemogućuje da dva krajnja uređaja na istoj lokalnoj mreži imaju istu MAC adresu, što bi onemogućilo ispravan rad mreže
 - proizvođač mrežne opreme ugrađuje MAC adresu u ugrađeni softver (firmware) mrežnog uređaja

mrežni uređaji

- repetitor ili obnavljač (repeater)
- koncentrator ili parični obnavljač (hub)
- LAN komutator (switch)
- most (bridge)
- usmjerivač (*router*)

obnavljač

- mrežni uređaj koji se rabi za povezivanje dva ili više mrežnih segmenata
- rabi se u topologiji sabirnice koja se izvodi koaksijalnim kabelom
- prima sve signale jednog mrežnog segmenta, pojačava ih, obnavlja izvorni oblik signala i odašilje ih u drugi mrežni segment
- radi na fizičkom sloju

- parični obnavljač
 - radi na fizičkom sloju, a rabi se u topologiji zvijezde s upletenom paricom kao prijenosnim medijem
 - povezuje mrežne postaje u lokalnu mrežu
 - pojačava primljeni signal, obnavlja izvorni oblik signala, obnavlja preambulu primljenog signala i šalje signal na sve ostale priključke
 - otkriva sudare i nepravilnosti u radu mreže

- most
 - MAC most
 - most koji služi za povezivanje istovrsnih lokalnih mreža (npr. dva ili više Ethernet LAN-a)
 - radi na podsloju MAC sloja podatkovne veze
 - mješoviti most (*mixed bridge*, *link bridge*)
 - most pune funkcionalnosti koji rabi oba podsloja podatkovne veze (MAC i LLC)
 - omogućava povezivanje istovrsnih i raznovrsnih lokalnih mreža

Ethernet

- funkcije mosta
 - djeluje kao selektivni obnavljač koji prenosi okvire iz jedne mreže u drugu samo ako su okviri ispravno oblikovani
 - most pohranjuje okvir, provjeri njegovu ispravnost i ukoliko je ispravan šalje ga na neki od priključaka
 - kašnjenje je veće nego kašnjenje u obnavljačima
 - može raditi s mrežama u kojima se rabe različite brzine prijenosa
 - okviri se prosljeđuju iz jednog LAN-a u drugi brzinom koja je jednaka brzini prijenosa u drugom LAN-u
 - razdvaja domene sudara
 - sudari i pogrešni okviri su izolirani i ne prenose se dalje
 - most tijekom rada formira dinamičku tablicu u koju upisuje MAC adrese mrežnih postaja u svakoj mreži
 - most uči kakva je topologija mreže na temelju MAC adresa izvora koje su upisane u primljene okvire

Ethernet

- LAN komutator (komutator drugog sloja)
 - obavlja iste funkcije kao most s većim brojem priključaka
 - razlika u odnosu na most je što su funkcije prosljeđivanja okvira implementirane hardverski što povećava brzinu rada uređaja
 - danas sve vrste lokalnih mreža rabe LAN komutatore
 - radi na sloju podatkovne veze
 - razdvaja domene sudara
 - svaki krajnji uređaj povezuje se s komutatorom s dvije parice (svaka za jedan smjer prijenosa)
 - komutator kao i most, uči topologiju mreže

Ethernet

- usmjerivač
 - rabi se za povezivanje više LAN mreža u cjelinu ili za povezivanje LAN mreža s WAN mrežom
 - usmjerivač predstavlja kraj lokalne mreže iza kojeg započinje pristup WAN mreži ili drugoj lokalnoj mreži koja na mrežnom sloju predstavlja zasebnu mrežu
 - usmjerivač radi na mrežnom sloju ako mreže koje se povezuju koriste iste protokole drugog sloja
 - ako mreže koje se povezuju koriste različite protokole drugog sloja usmjerivač mora djelovati i na drugom sloju (pretvorba formata MAC okvira)
 - usmjerivač može biti i prolaz (gateway)
 - spaja mreže koje rabe različite protokole
 - provodi pretvaranje jednog mrežnog protokola u drugi

Povezivanje lokalnih mreža

- zakupljeni kanali zajedno s mrežnim uređajima CSU/DSU (Control Service Unit/Data Service Unit) sačinjavaju privatnu ili javnu WAN mrežu
 - na svaku lokalnu mrežu usmjerivač predstavlja kraj lokalne mreže
 - ukoliko se povezuje više LAN mreža, za svaku fizičku vezu na kojoj se koriste zakupljeni kanali treba instalirati par CSU/DSU uređaja
 - ukoliko se u mreži želi postići malo kašnjenje u prijenosu informacija s kraja na kraj mreže, svaki usmjerivač je potrebno povezati sa svakim (topologija *full mesh*)
- nedostaci uporabe zakupljenih kanala
 - troškovi izgradnje i uporabe mreže su visoki
 - način uporabe kapaciteta zakupljenih kanala je nedjelotvoran
 - nije moguća dinamička promjena načina povezivanja uređaja u slučaju kvarova i preopterećenja

Povezivanje lokalnih mreža

povezivanje LAN mreža zakupljenim kanalima

- radijske lokalne mreže (WLAN, Wireless Local Area Network)
 - vrsta lokalnih mreža koje za prijenos informacije između mrežnih čvorova rabe elektromagnetske valove u radijskom ili infracrvenom frekvencijskom području
 - mreže WLAN rabe se kao proširenje fiksne lokalne mreže ili njezina alternativa na ograničenom manjem području

- u WLAN-u koriste se dva osnovna prijenosna medija
 - prijenos u infracrvenom (IR, *Infared*) dijelu spektra
 - područje valnih duljina 850 950 nm
 - radijski prijenos
 - nelicencirani frekvencijski pojasevi radijskog spektra (ISM, Industrial, Scientific and Medical), za koje ne treba plaćati naknadu za uporabu frekvencije
 - noviji WLAN sistemi rabe i licencirane frekvencijske pojaseve za koje je potrebno pribaviti dozvolu za uporabu RF spektra
- razlike koje treba unijeti u WLAN u odnosu na fiksni Ethernet
 - promijeniti tehniku pristupa prijenosnom mediju
 - detekcija nosioca u CSMA postupku u WLAN-u je otežana
 - sudare nije moguće detektirati jer prijamnik može primiti isti signal više puta zbog refleksije elektromagnetskog vala od prepreka
 - provesti potrebne prilagodbe zbog pokretljivosti računala

- nelicencirana ili ISM frekvencijska područja
 - 2400 2483,5 MHz
 - mreže u ovom pojasu neke administracije označuju kao RLAN
 - 5725 5925 MHz
 - rijetko se koristi za WLAN u Europi
- licencirana frekvencijska područja za WLAN
 - 5150 5350 MHz
 - 5470 5725 MHz
 - 17,1 17,3 GHz

okvirna podjela frekvencijskih područja za WLAN u svijetu

- dvije temeljne skupine normi za WLAN
 - norme IEEE 802.11
 - predviđene za rad u nelicenciranom području frekvencija od 2,4 GHz i u licenciranom području oko 5 GHz
 - radijski Ethernet je pojam koji se rabi kao sinonim za WLAN po IEEE 802.11 normi
 - HiperLAN (High Performance Radio Local Area Network) norme
 - norme Europskog instituta za telekomunikacijske norme (ETSI, European Telecommunications Standards Institute)
 - predviđene za rad u licenciranom frekvencijskom području oko 5 GHz

- krajnji korisnici pristupaju WLAN mreži preko WLAN mrežnih kartica (NIC, Network Interface Card), koje su sastavni dio osobnih računala, te pristupnih točaka (AP, Access Point)
- WLAN mrežne kartice
 - radijsko mrežno sučelje
- pristupne točke
 - služe za povezivanje radijske i fiksne LAN mreže na fiksnoj lokaciji koristeći standardni Ethernet kabel

- funkcije pristupne točke
 - služi za povezivanje WLAN mreže s fiksnom mrežom
 - prima, pohranjuje i odašilje podatke između radijske i fiksne mrežne infrastrukture
 - jednom kada je povezana na mrežu, djeluje u načelu kao most: na jednoj strani je radijska mreža, a na drugoj npr. Ethernet
 - uspostavlja komunikaciju s mrežnim postajama koje su joj u dometu pokrivanja radijskim valovima
 - jedna pristupna točka podržava malu skupinu korisnika i funkcionira unutar raspona od tridesetak metara do preko stotinu metara
- dvije temeljne arhitekture WLAN-a
 - WLAN bez pristupne točke (neovisni WLAN)
 - WLAN s pristupnom točkom (infrastrukturni WLAN)

- WLAN bez pristupne točke
 - nastaje proizvoljnim (ad hoc) povezivanjem neovisnih radijskih mrežnih postaja koje ravnopravno komuniciraju (peer-to-peer)
 - dva ili više računala opremljena WLAN mrežnim karticama mogu uspostaviti izravnu međusobnu vezu ukoliko su jedno drugom u dometu pokrivanja radijskim valovima
 - ovakav način povezivanja se u IEEE 802.11 normi naziva neovisni skup osnovne usluge (IBSS, Independent Basic Service Set)
 - mreža je fleksibilna i jeftina jer ne zahtijeva upravljanje

- WLAN s pristupnom točkom
 - korištenjem barem jedne pristupne točke u WLAN mreži dobiva se tzv. infrastrukturna topologija u kojoj pristupna točka provodi sinkronizaciju i koordinaciju, prosljeđuje okvire i povezuje WLAN mrežu s fiksnom LAN mrežom
 - način povezivanja u kome se rabi jedna pristupna točka se u IEEE 802.11 normi naziva infrastrukturni skup osnovne usluge (BSS, *Basic Service Set*)

- za pokrivanje većih područja rabi se više pristupnih točaka
 - pristupne točke ne služe samo za povezivanje WLAN mreže s fiksnom mrežom već i kao posrednici za prijenos podataka između segmenata mreže u neposrednom susjedstvu
 - ovakav način povezivanja se u IEEE 802.11 normi naziva skup proširene usluge (ESS, *Extended Service Set*)
 - ESS nastaje kada se više
 pristupnih točaka povezuje
 u jedan zajednički distribucijski
 sustav (DS, *Distribution System*)

- pokretljivost korisnika
 - mrežne postaje mogu se kretati za vrijeme dok su povezane na mrežu i tijekom kretanja mogu odašiljati podatke
 - tri su moguće vrste prijelaza u mreži ili između mreža
 - kretanje bez prijelaza, tj. zadržavanje u okviru jednog BSS
 - prijelazi između BSS segmenta ESS mreže
 - prijelazi između različitih ESS mreža
 - ukoliko se mrežna postaje kreće i prelazi iz područja pokrivanja jedne pristupne točke u područje pokrivanja druge pristupne točke, kontinuirana komunikacija će mu biti omogućena samo ako se područja pokrivanja susjednih pristupnih točaka preklapaju

 primjeri prijelaza između BSS segmenta ESS mreže i između dvije ESS mreže

Komunikacijski sustavi

IEEE 802.11

- IEEE 802.11 definira uporabu pet vrsta fizičkog sloja
 - mrežne postaje moraju rabiti isti fizički sloj ako žele komunicirati
 - svaka vrsta fizičkog sloja popraćena je vlastitim MAC podslojem
 - LLC podsloj je je zajednički za sve vrste IEEE 802 mreža
- 1997. godine usvojena je prva, tzv. izvorna verzija norme IEEE 802.11
 - propisane su tri tehnike prijenosa u fizičkom sloju
 - prijenos u infracrvenom području
 - prijenos uz proširenje pojasa izravnim slijedom (DSSS, *Direct Sequence Spread Spectrum*)
 - prijenos uz proširenje pojasa skakanjem frekvencije (FHSS, *Frequency Hopping Spread Spectrum*)
 - FHSS i DSSS
 - rad u ISM području oko 2,4 GHz uz brzine prijenosa do 2 Mbit/s

IEEE 802.11

- 1999. godine uvedena su dva dodatka normi IEEE 802.11
 - IEEE 802.11a
 - rad u frekvencijskom području od 5 GHz
 - brzine prijenosa do 54 Mbit/s
 - prijenos na fizičkom sloju primjenom OFDM tehnike
 - IEEE 802.11b
 - rad u ISM frekvencijskom području od 2,4 GHz
 - brzine prijenosa do 11 Mbit/s
 - prijenos na fizičkom sloju primjenom prijenosa uz proširenje pojasa izravnim slijedom visoke brzine (HR-DSSS, High Rate Direct Sequence Spread Spectrum)

IEEE 802.11

- 2001. godine uveden je novi dodatak normi IEEE 802.11
 - IEEE 802.11g
 - rad u ISM frekvencijskom području od 2,4 GHz
 - zadržao je sva obilježja tehnologije iz 802.11a, a koristi frekvencijsko područje rada 802.11b (2,4 GHz)
 - potpuno je povratno kompatibilan s 802.11b
 - brzine prijenosa do 11 Mbit/s uz primjenu HR-DSSS te do 54 Mbit/s uz primjenu OFDM

IEEE 802.11 fizički sloj

skup protokola u mreži IEEE 802.11

802.11

IEEE 802.11 fizički sloj

- prijenos u infracrvenom području
 - neusmjeren prijenos u području valnih duljina 850 950 nm
 - brzine prijenosa su 1 Mbit/s i 2 Mbit/s
 - infracrveno zračenje ne prolazi kroz zidove
 - zbog malih brzina prijenosa i jakih smetnji od djelovanja sunčeve svjetlosti ili fluorescentnih svjetiljki ovaj način prijenosa nije raširen

IEEE 802.11 fizički sloj

- prijenos uz proširenje pojasa
 - temeljna prednost u odnosu na ostale tehnike prijenosa je mogućnost održavanja veze u uvjetima slabog prijamnog signala (niski S/N) te uz prisutnost uskopojasnih ili širokopojasnih smetajućih signala
 - širina pojasa obično je mnogo veća od minimalno potrebne širine pojasa za prijenos informacije određene kvalitete
 - za određeni kapacitet kanala povećanje širine frekvencijskog pojasa dopušta da vrijednost *S/N* smije biti smanjena (Shannonova formula)

Fizički sloj - DSSS

- IEEE 802.11 DSSS fizički sloj
 - DBPSK za prijenos podataka brzinama 1 Mbit/s
 - DQPSK za prijenos podataka brzinama 2 Mbit/s
 - frekvencija podimpulsa: 11 Mchip/s (Barkerov kod od 11 podimpulsa)

Fizički sloj - DSSS

- pojas širine 83,5 MHz (2400-2483 MHz) podijeljen je u Europi na 13 kanala širine 22 MHz (u SAD raspoloživo je prvih 11 kanala)
- kanali se međusobno preklapaju, a razmak između kanala je 5 MHz

Fizički sloj - DSSS

- pristupna točka na odabranoj lokaciji mora dobro pokrivati željeni prostor, a područja pokrivanja (ćelije) susjednih pristupnih točaka trebaju se preklapati
- smanjenjem snage i uporabom više pristupnih točaka bolje se pokriva željeni prostor

Fizički sloj - FHSS

FHSS

 radna frekvencija (frekvencija nosioca) skokovito se mijenja unutar određenoga frekvencijskog područja koje može biti za red veličine šire od onoga u DSSS

 za moduliranje nosioca skokovite promjene frekvencije najčešće se koristi postupak *M*-FSK

Fizički sloj - FHSS

- IEEE 802.11 FHSS fizički sloj
 - koristi Gaussovu diskretnu modulaciju frekvencije (GFSK)
 - 2-GFSK za prijenos podataka brzinama 1 Mbit/s
 - 4-GFSK za prijenos podataka brzinama 2 Mbit/s
 - brzina prijenosa simbola je u oba slučaja R_S = 1 MBd
 - frekvencijsko područje podijeljeno je na 79 kanala širine 1 MHz
 - redoslijed skakanja određen je na temelju pseudoslučajnog koda
 - najmanji razmak frekvencija između kojih se skače je 6 kanala (6 MHz)

Usporedba FHSS i DSSS

- usporedba IEEE 802.11 DSSS i FHSS fizičkog sloja
 - FHSS je manje osjetljiv na smetnje i višestazno prostiranje
 - kvaliteta FHSS se postepeno kvari, dok kod DSSS pogoršanje nastupa naglo
 - uz FHSS na određenom prostoru može koegzistirati 10 do 15 mreža, dok su uz DSSS moguće samo 3 mreže

Tehnologija na fizičkom sloju	Frekvencijsko područje, MHz	Modulacijski postupak	Brzina prijenosa Mbit/s
DSSS	2400 – 2483,5	DBPSK	1
		DQPSK	2
FHSS		2-GFSK	1
		4-GFSK	2

IEEE 802.11b

- norma IEEE 802.11b
 - poznata kao Wi-Fi (Wireless Fidelity)
 - u početku se oznaka Wi-Fi odnosila samo na IEEE 802.11b normu, ali kasnije se termin proširio na bilo koju vrstu IEEE 802.11 mreže
 - povratno je kompatibilna s ranijim proizvodima rađenim na temelju izvorne IEEE 802.11 DSSS norme
 - proširena norma 802.11b u 2,4 GHz području omogućava brzine
 - 1 Mbit/s i 2 Mbit/s kao i izvorna IEEE 802.11 norma
 - 5,5 Mbit/s i 11 Mbit/s kao dodatne mogućnosti

IEEE 802.11b

pregled mogućih načina rada IEEE 802.11b sustava

Brzina prijenosa Mbit/s	Broj podimpulsa	Modulacijski postupak	Brzina signaliziranja MBd	Bit/simbol
1 Mbit/s	11 (Barker kod)	BPSK	1	1
2 Mbit/s	11 (Barker kod)	QPSK	1	2
5,5 Mbit/s	8 (CCK)	(D)QPSK	1,375	4
11 Mbit/s	8 (CCK)	(D)QPSK	1,375	8

IEEE 802.11a

- sustavi po normi IEEE 802.11a rade u području 5 GHz
- na fizičkom se sloju koristi OFDM-postupak

Temeljni parametri OFDM-a u WLAN-u

Parametar	Vrijednost
Brzina prijenosa	6; 9; 12; 18; 24; 36; 48; 54 Mbit/s
Modulacijski postupak	BPSK; QPSK; 16-QAM; 64-QAM
Korisnost koda (FEC)	1/2; 2/3; 3/4
Broj podkanala	52
Broj pilotskih kanala	4
Broj informacijskih kanala	48
Trajanje OFDM-simbola	4 µs
Zaštitni interval – trajanje	800 ns
Razmak podnosilaca	312,5 kHz
-3 dB širina pojasa	16,56 MHz
Širina OFDM-kanala	20 MHz

IEEE 802.11g

- norma je zadržala sva obilježja tehnologije iz 802.11a, a koristi frekvencijsko područje rada 802.11b (2,4 GHz)
- 802.11g potpuno je povratno kompatibilan s 802.11b
 - za brzine: 1, 2, 5,5 i 11 Mbit/s koristi se DSSS tehnologija i CCK te QPSK/BPSK modulacijska shema (potpuno jednako kao i kod 802.11b)
 - za brzine: 6; 9; 12; 18; 24; 36; 48 i 54 Mbit/s koristi se OFDM tehnologija i modulacijska shema ovisna o brzini prijenos
- omogućen je prijelaz iz mreže, koja zahtijeva veliku širinu prijenosnog pojasa i visoku brzinu prijenosa, u mrežu u kojoj se rabe niže brzine prijenosa, bez prekidanja usluge
 - korisnici opremljeni 802.11b uređajima mogu se kretati i koristiti usluge pristupnih točaka "g" mreže (uz brzinu od 11 Mbit/s) kao da su u području s pristupnom "b" točkom

IEEE 802.11g

• brzine prijenosa, tehnologija i modulacijske sheme

Brzina prijenosa [Mbit/s]	Tehnologija na PHY sloju	Modulacijski postupak
54	OFDM	64 QAM
48	OFDM	64 QAM
36	OFDM	16 QAM
24	OFDM	16 QAM
18	OFDM	QPSK
12	OFDM	QPSK
11	DSSS	CCK
9	OFDM	BPSK
6	OFDM	BPSK
5,5	DSSS	CCK
2	DSSS	QPSK
1	DSSS	BPSK

IEEE 802.11g

- prednosti mreže po normi 802.11g
 - zadržana brzina prijenosa kao u 802.11a
 - moguć je neprimjetni prijelaz (roaming) između 802.11g i 802.11b
 - postojeći korisnici sustava po normi 802.11b mogu koristiti pristupne točke mreže 802.11g
 - korisnici 802.11g mreže mogu se vezati na pristupne točke 802.11b mreže (najviše uz brzinu od 11 Mbit/s)
 - bolje je pokrivanje nego kod 802.11a uz istu brzinu podataka
 - koristi se u cijelom svijetu
- nedostaci mreže po normi 802.11g
 - isti su izvori smetnji kao i kod 802.11b (ISM pojas)
 - povećana je potrošnja snage
 - visoka su početna ulaganja

- u Europi su razvijene norme pod nazivom lokalne radijske mreže visokih performansi (*High Performance Radio Local Area Network*) tzv. HiperLAN/1 i HiperLAN/2 norme
- HiperLAN norme nisu kompatibilne s IEEE 802.11a normom
- HiperLAN/1 nije u komercijalnoj primjeni

- HiperLAN/2 služi za pristup ATM- (Asynchronous Transfer Mode), IP- (Internet Protocol) i UMTS-mrežama (Universal Mobile Telecommunications System)
- HiperLAN/2 namijenjen je i za fleksibilnu aplikaciju unutar poslovnih prostora i mjesta stanovanja osiguravajući pri tome multimedijski prijenos do 54 Mbit/s

- norme HiperLAN/2 i IEEE 802.11a su na fizičkom sloju gotovo jednake
 - obje koriste OFDM tehnologiju i jednake brzine prijenosa
 - razlika je u višim slojevima mreže koji su u normi IEEE 802.11a
 prilagođeni Ethernet mrežama, a u normi HiperLAN/2 ATM mrežama,
 UMTS-u i dr.
- frekvencijska područja predviđena za rad HiperLAN sustava su: 5150 – 5350 MHz i 5470 – 5725 MHz

- parametri OFDM-a
 - broj podnosilaca je 52, od kojih se 48 koristi za podatke, a ostali za pilotske signale
 - zaštitni interval je trajanja 800 ns za 16 vremenskih uzoraka (može biti i 400 ns kao dodatna mogućnost)
 - modulacija podnosilaca: BPSK, QPSK, 16QAM i kao dodatna mogućnost 64 QAM
 - brzine prijenosa: 6, 9, 12, 18, 27, 36, 54 Mbit/s
 - ispreplitanje na razini jednog OFDM simbola

- MAC podlsoj
 - u HiperLAN/2 normi protokol MAC podsloja je dinamički TDMA/TDD (Time Division Multiple Access / Time Division Duplex)
 - svakome mrežnom čvoru koji koristi isti RF kanal dodjeljuje se određeni vremenski odsječak i čvor odašilje samo u dodijeljenom vremenskom odsječku u specificiranom RF kanalu
 - TDMA je posebno prikladan za
 - interaktivne govorne ili osobne komunikacije kao što su: govor, telefaks, podaci, SMS i sl. te za aplikacije koje zahtijevaju veće širine pojasa npr: multimedija i videokonferencije
 - omogućeno je upravljanje parametrima kvalitete usluge (QoS) kao što su: brzina, BER, vrijeme čekanja, treperenje faze (jitter)

Usporedba normi za WLAN

	WLAN norma			
	802.11	802.11b	802.11a	HiperLAN/2
Područje frekvencija, GHz	2,4	2,4	5	5
Razmak kanala, MHz	22 za DSSS 1 za FHSS	22	20	20
Najveća brzina na PHY, Mbit/s	2	11	54	54
Vrsta nosioca	FHSS ili DSSS	DSSS	OFDM	OFDM
Modulacijski postupak	GFSK (FHSS), DBPSK ili DQPSK (DSSS)	CCK	BPSK i QPSK, 16-QAM ili 64-QAM	BPSK i QPSK, 16-QAM ili 64-QAM
Broj nosilaca po kanalu		1 (DSSS)	48 podaci i 4 pilot	48 podaci i 4 pilot
MAC		CSMA/CA	CSMA/CA	TDMA/TDD
Podrška za fiksnu mrežu		Ethernet	Ethernet	Ethernet, IP, ATM, UMTS, FireWire
Upravljanje kvalitetom veze		Ne	Ne	Adaptacija veze

TCP/IP model

Emil Dumić

Mrežni sloj

- zadaci mrežnog sloja:
 - osiguravanje usluge za prijenosni sloj (*transport*)
 - poznavanje organizacije podmreže
 - usmjeravanje paketa: algoritmi za usmjeravanje su dio softvera mrežnog nivoa i odgovorni su za donošenje odluke po kojoj će se izlaznoj liniji paketi prenositi
 - upravljanje zakrčivanjem podmreže: biranje optimalnih puteva kako neki ne bi bili preopterećeni, a drugi bez prometa
 - povezivanje mreža izvorišna i odredišna stanica su u različitim mrežama, pa je potrebano usmjeravanje kroz međumreže, a sve te mreže mogu koristiti različite protokole (treba vršiti pretvaranje paketa koji prelaze iz mreže u mrežu)

Mrežni sloj – IP protokol

- IP protokol: 2 verzije protokola, IPv4 koja je danas u upotrebi i IPv6
- IP adresa (v4): 32 bita, sastoji se od 4 dijela tj. 4x po 8 bita:
 - npr. 161.54.19.201
 - općenito se sastoji od 2 dijela prvi koji opisuje vrstu i adresu mreže (Network ID) i drugi koji opisuje adresu samog računala (Host ID)
 - adresu mreže dobijemo pomoću adrese računala i mrežne maske koja u biti opisuje veličinu mreže
 - A, B, C, D i E klase adresa:
 - A: prvih 8 bita adresa mreže (maksimalno 2²⁴-2 računala u mreži)
 - 1.0.0.1 do 126.255.255.254
 - B: prvih 16 bita adresa mreže (maksimalno 2¹⁶-2 računala u mreži)
 - 128.1.0.1 do 191.255.255.254
 - C: prva 24 bita adresa mreže (maksimalno 28-2 računala u mreži)
 - 192.0.1.1 do 223.255.254.254
 - D: multicast slanje tj. višeodredišna adresa; 224.0.0.0 do 239.255.255.255
 - E: rezervirano; 240.0.0.0 to 254.255.255.254

Mrežni sloj – IP protokol

- privatne mreže:
 - -10.0.0.0/8
 - znači prvih 8 bitova je network ID; max. broj računala u mreži 2²⁴-2
 - mrežna maska 255.0.0.0 (tj. prvih 8 bitova je 1, ostali 0)
 - -172.16.0.0/12
 - **192.168.0.0/16**
- rezervirane adrese:
- npr. adresa računala je 192.168.1.100; mrežna maska (subnet mask)
 255.255.255.0
 - da dobijemo adresu mreže moramo računati logički "I" između adrese računala i maske: 192.168.1.100 & 255.255.255.0 je 192.168.1.0 i to je adresa mreže
 - u ovoj mreži može biti maksimalno 254 računala (jer 192.168.1.0 je rezervirano za adresu mreže, a 192.168.1.255 je također rezervirano, jer se odnosi na sva računala u toj mreži)

Mrežni sloj – IP protokol

- IP protokol:
 - nespojni protokol
 - informacije se prenose kroz mrežu svaka zasebno, paketima

IP zaglavlje

Mrežni sloj – IPv6 protokol

- Razlike IPv6 u odnosu na IPv4:
 - veći adresni prostor od IPv4 (2^128 adresa u odnosu na 2^32 kod IPv4)
 - npr. 2001:db8::1428:57ab
 - bespojna autokonfiguracija IP adrese (ili ako nije pogodna za aplikaciju, može se koristiti DHCPv6)
 - pojednostavljeno procesiranje zaglavlja, kako bi slanje paketa bilo efikasnije
 - sigurnost i autentifikacija u osnovnoj specifikaciji (IPsec, IP security); u IPv4
 je opcija
 - višeodredišno odašiljanje (multicast) u osnovnoj specifikaciji; u IPv4 je opcija
 - raspodjela prometa (load balancing) ovisno o opterećenju linkova

Mrežni sloj – primjeri

- primjer 4: ipconfig (ili ipconfig /all za detaljniji opis)
 - Microsoft Windows [Version 6.0.6002]
 - Copyright (c) 2006 Microsoft Corporation. All rights reserved.
 - C:\Users\Administrator>ipconfig
 - Windows IP Configuration
 - Ethernet adapter Local Area Connection:
 - Connection-specific DNS Suffix . :
 - Link-local IPv6 Address : fe80::5963:3892:4b7e:4bbb%8
 - IPv4 Address. : 161.53.16.171
 - Subnet Mask : 255.255.255.128
 - Default Gateway : 161.53.16.129
 - Tunnel adapter Local Area Connection* 6:
 - Media State Media disconnected
 - Connection-specific DNS Suffix . :
 - Tunnel adapter Local Area Connection* 7:
 - Connection-specific DNS Suffix . :
 - Link-local IPv6 Address : fe80::8f1:1bd7:5eca:ef54%9
 - Default Gateway :
 - Tunnel adapter Local Area Connection* 9:
 - Media State Media disconnected
 - Connection-specific DNS Suffix . :
 - Tunnel adapter Local Area Connection* 16:
 - Connection-specific DNS Suffix . :
 - IPv6 Address. : 2002:a135:10ab::a135:10ab
 - Default Gateway : 2002:c058:6301::c058:6301

Ostali protokoli

- ARP (Address Resolution Protocol)
 - služi za dobivanje MAC adrese iz IP adrese
 - broadcast upit za sva računala
 - odredišna MAC adresa je FF-FF-FF-FF-FF
 - svako računalo prima ovakav okvir i kad raspakira IP paket provjeri da li je njegova IP adresa odredište te ukoliko je, vraća svoju MAC adresu
 - ovaj protokol spada u sloj pristupa mreži jer djeluje unutar 1 LAN-a; iako, treba definicije mrežnih adresa iz mrežnog sloja
- RARP (Reverse Address Resolution Protocol)
- DHCP (Dynamic Host Configuration Protocol)
 - zamijenjuje i RARP koji je danas zastario
 - aplikacijski sloj
 - DHCP server (npr. router) sam dodijeljuje IP adrese računalima (tj. DHCP klijentima) koja ih traže

- pc 1.1 želi poslati pc-u 1.3 koji se nalazi u istoj mreži; mora znati njegovu MAC adresu
- pc 1.1 šalje Ethernet okvir na hub, kojeg on šalje svima
- pc 1.2 odbacuje okvir jer nema odredišnu MAC adresu
- pc 1.3 prima okvir
- za ovakav tip komunikacije ne treba IP protokol jer su svi u istoj mreži

- pc 1.1 želi poslati pc-u 2.3 koji se nalazi u drugoj mreži; mora znati njegovu IP adresu i MAC adresu routera
- pc 1.1 šalje ethernet okvir (odredišna MAC adresa routera 1, izvorišna od pc 1.1) na hub, kojeg on šalje svima
- pc 1.2 i 1.3 odbacuje okvir jer nema odredišnu MAC adresu
- router prima i obrađuje okvir IP protokolom

- router ima 2 mrežna sučelja 1.0 i 2.0 i zna čija IP adresa pripada čijoj mreži
- router slaže novi Ethernet okvir koji ima odredišnu MAC adresu računala pc 2.3 te izvorišnu MAC adresu routera 1, a IP paket ostaje nepromijenjen (dakle izvorišna IP adresa je 1.1 a odredišna 2.3)
- router 1 zna MAC adresu pc 2.3 putem ARP protokola
- ukoliko se odredišna IP adresa ne nalazi ni na jednom njegovom mrežnom sučelju, koristi tablicu usmjeravanja i šalje Ethernet okvir npr. routeru 2

- NAT (Network Address Translation)
 - povezivanje privatne i javne mreže
 - više računala u privatnoj mreži dobiva istu, jedinstvenu ip adresu u javnoj

Mobilne komunikacije

Mobilne komunikacije

- korisnici usluga prilikom komunikacije s dugim korisnicima mogu mijenjati svoj položaj unutar područja pokrivanja pojedinog operatora (davatelja usluga)
- promjena položaja podrazumijeva da je pristup sustavu ostvaren preko tzv. radijskog sučelja (bežično)
 - mobilni korisnik sa svojim korisničkim uređajem mobilnom postajom,
 predstavlja jedan kraj, a bazna postaja drugi kraj radijskog kanala

- javni mobilnih komunikacijski sustavi su ćelijske vrste
 - bazna postaja (BS, Base Station) sadrži odašiljačku/prijamnu opremu za odašiljanje/prijam signala do/od korisničke opreme te uređaje koji omogućavaju povezivanje sustava na jezgrenu mrežu
 - ćelija je područje koje bazna postaja pokriva radijskim signalom
 - oblik i veličina ćelije ovise o frekvencijskom području, dijagramu zračenja antenskog sustava i izračenoj snazi bazne postaje
 - oblik ćelije aproksimira se krugom ili češće šesterokutom
 - domet radijskog signala približno je jednak u svim smjerovima oko bazne postaje (100 m do 30 km) ako nema zemljopisnih prepreka
 - tipični domet u mobilnim komunikacijskim sustavima iznosi nekoliko km

- za pokrivanje većih područja rabi se više baznih postaja
- rubna se područja susjednih ćelija preklapaju
 - omogućeno je prekapčanje veze (*handover*) i kontinuirana komunikacija pri prijelazu mobilne postaje (MS, *Mobile Station*) iz jedne ćelije u drugu

- ograničenje u planiranju ćelijskog sustava je istokanalna smetnja (interferencija)
 - javlja se između ćelija koje rabe istu frekvenciju (kanal)
 - korisni signal iz jedne ćelije, u drugoj ćeliji djeluje kao smetajući signal
 - ćelije koje rade na istom kanalu ne smiju biti prostorno smještene jedna blizu druge
- radi povećanja kapaciteta sustava ograničava se snaga baznih postaja (ćelije postaju manje)
 - dopušteno je ponavljanje frekvencija (kanala) u prostorno udaljenim ćelijama bez opasnosti od pojave istokanalnih smetnji
- skup ćelija kod kojeg su jednom iskorišteni svi raspoloživi kanali naziva se grozd ćelija (cell cluster)

- zadatak ćelijskog planiranja
 - dodijeliti kanale ćelijama u grozdu te grozdovima pokriti određeno područje pazeći da razmak istokanalnih ćelija bude dovoljno velik kako bi istokanalna interferencija ostala u prihvatljivim granicama

Dvosmjerni (dupleksni) prijenos

- omogućava kontinuiranu i istodobnu komunikaciju u silaznoj vezi (DL, down-link), od bazne postaje prema korisničkim mobilnim uređajima i uzlaznoj vezi (UL, up-link), od korisničkog uređaja prema baznoj postaji (full duplex)
 - bazna postaja i mobilni uređaji moraju imati i odašiljač i prijamnik
- u realizaciji dupleksnog prijenosa mogu se rabiti dva pristupa
 - frekvencijski dupleks (FDD, Frequency Division Duplex)
 - silazna i uzlazna veza odvojene su frekvencijski
 - uzlazna veza je uvijek na nižoj frekvenciji od silazne veze
 - vremenski dupleks (TDD, *Time Division Duplex*)
 - uzlazna i silazna veza odijeljene su u vremenu

- zajednički prijenos signala koji dolaze iz različitih izvora u dodijeljenom bloku frekvencija uz mogućnost njihova razdvajanja na odredištu
 - u silaznom smjeru bazna postaja odašilje signal do svih korisničkih uređaja unutar sektora ili ćelije
 - u uzlaznom smjeru rabe se tehnike višestrukog pristupa (*multiple* access) kako bi se izbjegle smetnje između signala koji dolaze od različitih korisničkih uređaja do iste bazne postaje
- tri temeljna postupka za višestruki pristup
 - višestruki pristup s frekvencijskom raspodjelom (FDMA, Frequency Division Multiple Access)
 - višestruki pristup s vremenskom raspodjelom (TDMA, *Time Division Multiple Access*)
 - višestruki pristup s kodnom raspodjelom (CDMA, Code Division Multiple Access)

FDMA

- svakom korisniku dodjeljuje se dio frekvencijskog područja
- za odašiljanje signala u silaznoj vezi rabe se frekvencije f_1^* , f_2^* , f_3^* i f_4^* koje su u paru s frekvencijama u uzlaznoj vezi f_1 , f_2 , f_3 i f_4
- korisnički uređaj izdvaja frekvenciju koja mu je unaprijed dodijeljena

TDMA

- raspoloživi frekvencijski spektar podijeljen je na uske frekvencijske pojaseve ili kanale
- pojedini kanal se dijeli na određeni broj vremenskih odsječaka (slot)
- korisniku se dodjeljuje vremenski odsječak za pristup kanalu

CDMA

- korisnik ima svoj određeni kod, a skup kodova, koji se koristi u CDMA sustavu, sadrži međusobno ortogonalne kodove
- u uzlaznom smjeru digitalna informacija, koja dolazi od pojedinog korisnika, modulirana je uz uporabu jedinstvenog koda za proširenje (SC, Spreading Code)
 - signali različitih korisnika zajedno se prenose u istom frekvencijskom području i pri tome zauzimaju cijelo frekvencijsko područje koje je dodijeljeno za rad CDMA sustava
 - na prijamnoj strani signal se rekonstruira uz uporabu slijeda za sažimanje postupkom koji je inverzan postupku za raspršenje (despreading process)
- u silaznom smjeru također se rabe kodovi za proširenje, a korisnički uređaj određenog korisnika prepoznaje i izdvaja samo informacije namijenjene tom korisniku

CDMA

- kodovi za raspršenje SC1, SC2, SC3 i SC4 se dodjeljuju korisnicima u trenutku uspostavljanja veze
- u silaznom smjeru informacije korisnicima se proširuju uz uporabu skupa kodova za proširenje SC*1, SC*2, SC*3 i SC*4 koji je različit od skupa kodova za proširenje u uzlaznom smjeru

- prva generacija mobilnih komunikacijskih sustava (1G)
 - ćelijski sustavi namijenjen prijenosu analognih govornih signala
 - rabili su modulaciju frekvencije (FM) za prijenos govornih signala
 - osnivali su se na FDMA tehnologiji
- druga generacija mobilnih komunikacijskih sustava (2G)
 - globalni sustav mobilnih komunikacija (GSM, Global System for Mobile Communications)
 - osobni digitalni ćelijski sustav (PDC, Personal Digital Cellular System)

Pregled mreža u području 900 MHz

Sustav	GSM	IS-54	PDC	IS-95
Područje	Europa/Azija	SAD	Japan	SAD/Azija
Pristup	TDMA/FDD	TDMA/FDD	TDMA/FDD	CDMA/FDD
Modulacija	GMSK	π/4-DQPSK	π/4-DQPSK	QPSK
Frekvencija, MHz (DL)	935 – 960	869 – 894	810 – 826	869 – 894
(UL)	890 – 915	824 – 849	940 – 956	824 – 849
Razmak kanala, kHz	200	30	25	1250
Fizički kanal/nosilac	8	3	3	promjenljivo
Brzina prijenosa, kbit/s	270,833	48,6	42	1228,8
Kodiranje govora, kbit/s	13	8	8	1 – 8 promjenljivo
Trajanje okvira, ms	4,615	40	20	20

- treća generacija mobilnih komunikacijskih sustava (3G)
 - svrha: objedinjavanje postojećih različitih mobilnih sustava za prijenos govora i podataka u jedinstvenu mrežu te povećanje kapaciteta mreže, kvalitete usluge i brzine prijenosa
 - GSM, kao sustav druge generacije, ima svoj razvojni put prema sustavu UMTS kao sustavu treće generacije (2,5G)
 - prijenos podataka visokim brzinama uz komutaciju kanala (HSCSD, *High Speed Circuit Switched Data*)
 - opća usluga paketskog radijskog prijenosa (GPRS, General Packet Radio Service)
 - poboljšane brzine prijenosa za razvoj GSM-a (EDGE, Enhanced Data Rate for the GSM Evolution)

 razvoj prema trećoj generaciji mobilnih komunikacijskih sustava

- GSM osigurava jednoliku brzinu prijenosa podataka od približno 10 kbit/s bez obzira na pokrivanje i mobilnost
- GPRS osigurava brzinu prijenosa informacije reda veličine 144 kbit/s neovisno o pokrivanju i mobilnosti
- kod sustava EDGE se kod niske mobilnosti mogu očekivati brzine prijenosa informacije reda veličine 384 kbit/s, a kako se mobilnost i pokrivanje povećavaju brzina opada
- treća generacija osigurava brzine do 2 Mbit/s kod niskog stupnja mobilnosti (kvazistacionarni sustavi) dok brzina opada porastom mobilnosti i područja pokrivanja

GSM

- rabi se za komunikaciju između mobilnih telefona
 - fiksna širina pojasa za govornu komunikaciju između dvaju korisnika (13 kbit/s)
 - prijenos podataka (300 9600 kbit/s) i telefaksa
 - komunikacija kratkim porukama (SMS, Short Message Service)
- inačice GSM sustava
 - GSM900
 - radi u frekvencijskom području oko 900 MHz
 - E-GSM (Extended GSM)
 - GSM900 koji radi u proširenom dijelu frekv. područja na 900 MHz
 - GSM/DCS1800 (DCS, Digital Cellular System)
 - radi u frekvencijskom području oko 1800 MHz
 - PCS1900 (PCS, Personal Communications Service)
 - istovjetan DCS1800, ali radi u frekvencijskom području oko 1900 MHz

GSM

- radne frekvencije RF kanala u silaznoj vezi
 - GSM900 ⇔ 125 kanala (kanali: 0 124)
 - radna frekvencija n-tog kanala: $F_D(n)$ = 935 MHz + (0,2 MHz) · n, $0 \le n \le 124$
 - E-GSM ⇔ 50 kanala (kanali: 974 1023)
 - radna frekvencija n-tog kanala: $F_{\rm D}(n) = 935~{\rm MHz} + (0.2~{\rm MHz}) \cdot (n-1024), \qquad 974 \le n \le 1023$
 - GSM/DCS1800 ⇔ 374 kanala (kanali: 512 885)
 - radna frekvencija n-tog kanala: $F_D(n)$ = 1805 MHz + (0,2 MHz) · (n – 511), 512 ≤ n ≤ 885
- radne frekvencije RF kanala u uzlaznoj vezi
 - određuju se dodavanjem dupleksnog razmaka na $F_D(n)$
 - dupleksni razmak je razlika između početnih frekvencija silazne i uzlazne veze (GSM900: 45 MHz, GSM/DCS1800: 95 MHz)

GSM

- GSM koristi FDMA/TDMA pristup gdje je svakoj frekvenciji pridružen vremenski okvir (frame) koji se sastoji od 8 vremenskih odsječaka
 - nastala matrica frekvencija/vrijeme daje sveukupno 124 x 8 = 992 moguća korisnika (jedan kanal se rabi kao zaštitni pojas)

GSM ćelijski koncept

- svakoj baznoj postaji dodjeljuje se određeni broj raspoloživih prijenosnih frekvencija, a unutar grozda iskorištene su sve raspoložive frekvencije
- u GSM sustavu koriste se grozdovi od N = 3, 7 ili 12 ćelija
 - u GSM900 raspoložive su 124 prijenosne frekvencije
 - podjelom raspoloživih frekvencija u 12 ćelija, svaka ćelija bi mogla koristiti 10 prijenosnih frekvencija
 - na svakoj prijenosnoj frekvenciji možemo imati 8 TDMA kanala što daje kapacitet od 80 istodobnih poziva unutar ćelije
 - ako u sustavu radi više operatora, npr. 3, svaka ćelija bi mogla koristiti tri prijenosne frekvencije (24 istodobna poziva unutar ćelije)
- uz definirani broj frekvencija po ćeliji, ukupni kapacitet sustava na određenom području može se povećati smanjenjem ćelija

GSM ćelijski koncept

pokrivanje istog područja različitim brojem ćelija

1 ćelija, 10 frekvencija 10x8x1=80 istodobnih poziva

19 ćelija, svaka ćelija po 3 frekvencije (ukupno 10 različitih frekvencija)

3x8x19=456 istodobnih poziva

manje ćelije → povećanje kapaciteta

Veliki broj ćelija, svaka ćelija po 3 frekvencije (ukupno 10 različitih frekvencija)

Broj istodobnih poziva određen je brojem ćelija,

npr. broj ćelija = 126 3x8x126=3024 istodobna poziva

GSM ćelijski koncept

stvarni oblik ćelija ovisi o konfiguraciji terena

Raspodjela GSM spektra u Hrvatskoj

	Frekvencijski pojasevi [MHz]	Blokovi radijskih frekvencija	Način pristupa	
GSM 900	925 - 960/ 880 - 915	925,3 - 930,3/880,3 - 885,3 MHz Tele 2 d.o.o.		
		930,3 - 932,7/885,3 - 887,7 MHz T-Mobile Hrvatska d.o.o.		
		941,1 - 953,1/896,1 - 908,1 MHz T-Mobile Hrvatska d.o.o.	TDMA/ FDD	
		932,7 - 940,9/887,7 - 895,9 MHz VIP NET d.o.o.		
		953,3 - 959,5/908,3 - 914,5 MHz VIP NET d.o.o.		
GSM/ DCS-1800	1805 - 1880/ 1710 - 1785	1805,1 - 1817,1/1710,1 - 1722,1 MHz Tele 2 d.o.o.	TDMA/ FDD	
		1835,1 - 1843,5/1740,1 - 1748,5 MHz T-Mobile Hrvatska d.o.o.		

Raspodjela GSM spektra u Hrvatskoj

Osobine UMTS tehnologije

- UMTS sustav temelji se na WCDMA pristupu i FDD ili TDD
- širina kanala iznosi 5 MHz bez obzira na vrstu dupleksa

 u sustavima s WCDMA pristupom svi korisnici dijele isti pojas frekvencija i iste vremenske odsječke

Osobine UMTS tehnologije

Frekvencijski plan za UMTS

UTRA (UMTS Terrestrial Radio Access)

- frekvencijsko područje od 1900 do 1920 MHz se koristi za rad s vremenskim dupleksom TDD (tzv. neupareni frekvencijski pojas)
- frekvencije od 1920 do 1980 MHz koriste se za za uzlazni dio veze, a od 2110 do 2170 MHz se za silazni dio veze (tzv. upareni frekvencijski pojasevi (FDD s dupleksnim razmakom 190 MHz)

Raspodjela spektra za UMTS u Hrvatskoj

	Frekvencijski pojasevi [MHz]	Blokovi radijskih frekvencija	Način pristupa	
UMTS	1900-1920	1900 - 1905 MHz T-Mobile Hrvatska d.o.o.	CDMA / TDD	
		1905 - 1910 MHz Tele 2 d.o.o.		
		1910 - 1915 MHz VIP NET d.o.o.		
	2110 - 2170/ 1920 - 1980	2110 - 2125/1920 - 1935 MHz T-Mobile Hrvatska d.o.o.	CDMA / FDD	
		2125 - 2140/1935 - 1950 MHz Tele 2 d.o.o.		
		2140 - 2155/1950 - 1965 MHz VIP NET d.o.o.		

frekvencija (silazna/uzlazna)

širina (MHz)

