Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/US04/011988

International filing date: 15 April 2004 (15.04.2004)

Document type: Certified copy of priority document

Document details: Country/Office: US

Number: 60/486,694

Filing date: 11 July 2003 (11.07.2003)

Date of receipt at the International Bureau: 13 September 2004 (13.09.2004)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

(NIONOCHNOS)) EN WANDEN() DWNNOODS (BC (W

TO ALL TO VIIION THE SECURISENIES SHALL CONTRE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office

September 02, 2004

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE.

APPLICATION NUMBER: 60/533,103
FILING DATE: December 29, 2003
RELATED POT APPLICATION NUMBER.

RELATED PCT APPLICATION NUMBER: PCT/US04/11988

Certified by

J. W. John

Jon W Dudas

Acting Under Secretary of Commerce for Intellectual Property and Acting Director of the U.S. Patent and Trademark Office

PTO/SB/16 (08-03)

Approved for use through 07/31/2006. OMB 0851-0032

Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

PROVISIONAL APPLICATION FOR PATENT COVER SHEET

his is a required to respond to a collection of information unless it displays a valid OMB control number.

PROVISIONAL APPLICATION FOR PATENT COVER SHEET

This is a requist for ming	a PROVISIO		NTOR(S)	PAIENT UNG F	37 CFR 1.53	(c).			
Given Name (first and mid			<u> </u>	Residence [5]					
		me or Surname	(Oity and e	(City and either State or Foreign Country)					
Ashlee V.		loses		Portland, Oregon					
Additional inventors an		on the <u>1</u> separa			reto				
METHODS OF TREATS						***************************************			
METHODS OF TREATM		RELATE	D DISEASE		CY VIRUS (HIV) AND HIV-			
Direct all correspondence to:	CORRES	SPONDENCE	ADDRESS						
Customer Number	L	22504							
OR	Type	Customer Nun	nber here						
Firm or Individual Name	 					···			
Address	-	·							
Address					- -				
City	- 		State	-	ZIP				
Country			Telephone		Fax				
D Casaifaction Numb			_	eck all that apply)	1				
Specification Numb	•	68		CD(s), Number					
Drawing(s) Number of Sheets 6 Other (specify) Fee Transmittal (+ co									
Sequence Listing, paper and CF Sequence Statement, Postcard indicating receipt									
METHOD OF PAYMENT OF	FILING FEES F	OR THIS PRO	VISIONAL AP	PLICATION FOR P	ATENT				
Applicant claims smal									
A check or money ord				ng					
The Commissioner is fees to Deposit Accou		zed to charge	e filing	04-0258					
The Commissioner is or credit any overpays	hereby authori				_				
Payment by credit car					_				
The invention was made the United States Govern	by an agency of			nment or under a	contract wit	h an agency of			
No.	mon.								
Yes, the name of the U.S	Covernment an	ency and the C	Poverment co	atract aumhar am	MINAID 4	D44 AINSE240 N4			
	. Covernment ag	//	30Verillian &	Hillace Humber are.	ו טואואואוט ו	K41 Aluauz 10-0 1			
Respectfully submitted,	1/2	7//-		- 0 1					
SIGNATURE	Sungo	/NW~	DATE		703	· · ·			
TYPED or PRINTED NAME	Barry L. Davis	son, Ph.D., J.		TRATION NO. ropriate)	47,309				
TELEPHONE	206-628-7621		DOCK	ET NUMBER:	49321-106				

EXPRESS MAIL NO. EL852794736US

Complete if Known

PTO/SB/17 (10-03)
Approved for use through 07/31/2006, OMB 0651-0032
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995,no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Application Number Filing Date

FEE TRANSMITTAL

for EV 2004	iling Date		_					
for FY 2004	First Named Inventor			Moses				
	Examiner N	aminer Name						
Applicant claims small entity status. See 37 CFR 1.27	Art Unit							
TOTAL AMOUNT OF PAYMENT (\$) 80	Attorney Do	ttorney Docket No. 49321-106			06			
METHOD OF PAYMENT (check all that apply)	FEE CALCULATION (continued)							
Check Credit card Money Order None	3. ADDITIONAL FEES Large Entity Small							
Deposit Account:	Fee	Fee	Fee	<u>su</u> Fee	Pag BasadaNas	Fee		
Deposit	Code		Code	(\$)	_	Paid		
Account 04-0258 Number	1051 1052	130 50	2051 2052	65 25	Surcharge - late filing fee or oath Surcharge - late provisional filing fee	i		
Deposit			_		or cover sheet.			
Account Name Davis Wright Tremaine LLP	1053	130	1053	130	Non-English specification For filing a request for ex parte			
The Commissioner is authorized to: (check all that apply)	1812	2,520	1812	2,520	reexamination			
Credit any overpayments	1804	920*	1804	920°	Requesting publication of SIR prior to Examiner action			
Charge any additional fee(s) during the pendency of this application	1805	1,840*	1805	1,840*	Requesting publication of SIR after Examiner action			
Charge fee(s) indicated below, except for the filing fee	1251	110	2251	55	Extension for reply within first month			
Charge any deficiencies	1252	420	2252	210	Extension for reply within second	_		
to the above-identified deposit account.	1253	950	2253	475	month Extension for reply within third month			
FEE CALCULATION	1254	1,480	2254	740	Extension for reply within fourth			
1. BASIC FILING FEE	1255	2,010	2255	1005	month Extension for reply within fifth month			
Large Entity Small Entity	1401	330	2401	165	<u>-</u>			
Fee	1402	330	2402	165				
1001 770 2001 385 Utility filing fee	1403	290	2403	145				
1002 340 2002 170 Design filing fee	1451	1,510	1451	1,510	Petition to institute a public use proceeding			
1003 530 2003 265 Plant filing fee 1004 770 2004 385 Reissue filing fee	1452	110	2452	55	·			
1005 160 2005 80 Provisional filing	1453	1,330	2453	665	-			
fee 80	1501 1502	1,330 480	2501 2502	665				
SUBTOTAL (1) (\$)80	1502	640	2502	240 320	¥			
2. EXTRA CLAIM FEES	1460	130	1460	130				
Fee Extra from Fee	1807	50-	1807	50	Petitions related to provisional			
Claims below Paid	4000	400	****		applications Submission of Information Disclosure			
Total Claims - 20** = x =	1806	180	1808	180	Stmt			
Independent	8021	40	8021	40	Recording each patent assignment per property (times number of			
Claims x =	1809	770	2809	385	properties)			
Multiple Dependent				303	(37 ČFR § 1.129(a))			
Large Entity Small Entity	1810	770	2810	385	For each additional invention to be examined (37 CFR § 1.129(b))			
Fee Fee Fee Fee Fee Peerletter	1801	770	2801	385	Request for Continued Examination			
Code (\$) Code Fee (\$) Fee Description	1802	900	1802	900	(RCE) Request for expedited examination of a			
1202					design application			
1203 290 2203 145 Multiple dependent claim, if not paid	Other fe	e (specif	/)	•	L			
1204 86 2204 43 ** Reissue Independent claims over original patent	*Reduced by Basic Filing Fee Paid SUBTOTAL (3)							
1205 18 2205 9 ** Reissue claims in excess of 20 and over original patent				91.001	(\$)0			
SUBTOTAL (2) (\$)0 **or number previously paid, if greater; For Reissues, see above								
	_							
SUBMITTED BY					(Complete (if applicable	e))		
Name (Print Type) Barry L. Davison, Ph.D., J.D.		ation No ey/Agent		47	,309 Telephone 206-628-7			
Signature 2 / 100	_		-		Date 29 Bec. C			

PROVISIONAL APPLICATION COVER SHEET Additional Page

PTO/SB/16 (05-03)

Approved for use through 10/31/2002. OMB 0651-0032

Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Type a plus sign (+) 49321-106 inside this box -INVENTOR(S)/APPLICANT(S) Residence Given Name (first and middle [if any]) (City and either State or Foreign Country) Family or Surname Jay Nelson Tualatin, Oregon Klaus Früh Portland, Oregon King Jeff Portland, Oregon Laura Jelinek Tigard, Oregon

Number 2 of 2

WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038.

MAILING CERTIFICATE

I hereby certify that this correspondence is being deposited with the United States Postal Service with sufficient postage as Express Mail Label No. EL852794736 US in an envelope addressed to: Commissioner for Patents, P.O.

Box 1450, Alexandria, VA 22313-1450 on Bulen Kay Bulen
Date Signature (print name)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants:

Moses et al.

Filed:

December 29, 2003

Serial No.:

to be assigned

For:

METHODS OF TREATMENT AND DIAGNOSIS OF HUMAN

IMMUNODEFICIENCY VIRUS (HIV) AND HIV-RELATED DISEASES

Docket No.:

49321-106

Date:

December 26, 2003

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

STATEMENT UNDER 37 C.F.R. §1.821(f)

Sir:

I hereby state that the content of the paper and computer-readable copies of the Sequence Listing, submitted in accordance with 37 C.F.R. §1.821, are the same.

Respectfully submitted,

Barry L. Davison, Ph.D., J.D.

Attorney for Applicants Registration No. 47,309

Davis Wright Tremaine LLP 2600 Century Square 1501 Fourth Avenue Seattle, WA 98101-1688 Tel 206-628-7621 Fax 206-628-7699 Docket Number: 49321-106

Express Mail Number: EL852794736US

METHODS OF TREATMENT AND DIAGNOSIS OF HUMAN IMMUNODEFICIENCY

VIRUS (HIV) AND HIV-RELATED DISEASES

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

This work was partially funded by NIH/NIAID grant number 1R41 AIo55218-01, and the

United States government has, therefore, certain rights to the present invention.

FIELD OF THE INVENTION

The present invention relates to the identification and use, including therapeutic use, of

modulators of human immunodeficiency virus (HIV)-induced cellular gene expression.

Preferred modulators are inhibitors capable of reducing the expression of HIV-induced genes,

reducing or preventing the expression of mRNA from HIV-induced genes, or reducing the

biological activity of corresponding HIV-induced cellular gene products. The invention provides

therapeutic methods, diagnostic methods and compositions useful for the treatment of HIV-

related disorders and disease. Particular embodiments also provide drug candidate screening

assays. The present invention uses nucleic acid microarrays and gene expression profiling, along

with antisense oligonucleotide and RNA interference (siRNA) methods to identify and validate.

respectively, therapeutically useful gene targets that are regulated upon HIV infection and

replication.

20

25

15

5

10

BACKGROUND

The AIDS epidemic continues to spread, and urgent efforts are required to stem this

global health crisis. While modern antiretroviral drugs have enabled many HIV-positive

individuals to live longer and delay progression to AIDS, these drugs do not ultimately cure

infection, and long term use is associated with toxicity and the emergence of drug resistant

strains. Cost and delivery issues also make such therapies prohibitive in much of the developing

world, and the development of an effective vaccine has, at least to date, proved elusive.

-1-

Significantly, the high mutation rate of HIV enables immune escape, as well establishment of eradication-resistant latent reservoirs, favoring persistence of the virus despite immunization or antiretroviral therapy. Another reason for the success of HIV as an intracellular pathogen is its remarkable ability to exploit the molecular machinery of the host cell to facilitate persistence, replication and spread of the virus. The virus has likely evolved mechanisms to modulate expression levels of these cellular co-factors to promote its life cycle.

5

10

15

20

25

Therefore, there is a strong need in the art to disrupt key interactions between HIV and the host cell facilitators of infection and viral replication by counteracting the viral modulation of those genes. Central to the success of this approach however is the initial *identification* of these cellular co-factors and clarification, and further, *validation*, of their role in the virus life cycle.

Limited prior art identification. A recent paper describes the identification of an anti-HIV cellular factor that is thought to be the human cell target of the HIV-vif protein (Sheehy et al. Nature 418:646-650, 2002). This protein, named CEM15, possesses significant amino acid similarity to the mRNA-editing cytidine deaminase apobec-1. Although wild type levels of vif are sufficient to overcome the action of CEM15, this factor renders vif-defective virions non-infectious, and thus expression of a vif-resistant form of this protein may be of therapeutic interest. Significantly, however, the studies of Sheehy et al were limited by their utilization of a PCR-based cDNA subtraction strategy to identify CEM15. Additionally, there is a need for further validation of such potential therapeutic targets.

There is a need in the art for additional methods and studies to distinguish, from among those HIV-regulated cellular gene sequences, those actually required for HIV-induced proliferative and phenotypic/developmental changes and which could therefore provide *validated* intervention targets for the inhibition of HIV-induced cellular phenomena and the treatment of HIV-related diseases and hyperproliferative disorders such as cancer. There is a need in the art for compositions and methods to affect such validated targets, and for screening a diagnositic assays premised on such validated HIV-relevant targets.

SUMMARY OF THE INVENTION

Nucleic acid microarray techniques were used in combination with HIV-infected myeloid (e.g., THP-1) and T cell (e.g., MT-2) lines to identify and validate cellular genes and pathways useful in modulating virus during the complete replication cycle of Human immunodeficiency virus (HIV-1; e.g., the dual-tropic (X4/R5) isolate 89.6). The present EXAMPLES 1-4 show that modulators of the expression of particular novel validated HIV-induced cellular gene targets are suitable agents for treating HIV and HIV-related cancer and hyperplastic/neoplastic conditions.

5

10

15

20

25

The present invention provides modulators of HIV-induced cellular gene expression including, but are not limited to antisense molecules, siRNA agents, ribozymes, antibodies or antibody fragments, proteins or polypeptides as well as small molecules. The inventive modulators are useful for reducing the expression of HIV-induced genes, reducing or preventing the expression of mRNA from HIV-induced genes, or reducing the biological activity of corresponding HIV-induced cellular gene products. Preferably, the inventive modulators are directed to one or more validated HIV-induced gene targets, the expression of which is required, at least to some extent, for HIV infection, replication, and HIV-mediated cellular effects, conditions and diseases.

Particular embodiments of the present invention provide therapeutic methods and compositions for modulation of HIV infection and/or replication comprising use of inventive modulators for inhibition of the expression of HIV-induced cellular genes, reducing or preventing the expression of mRNA from such HIV-induced genes, or reducing the biological activity of corresponding HIV-induced cellular gene products.

Preferred inventive modulators are oligonucleotides, such as antisense molecules or ribozymes, RNA interference (siRNA) methods and agents, for targeting and/or modulating the expression of polynucleotides (e.g., mRNA) comprising HIV-induced gene sequences.

Preferred antisense molecules or the complements thereof comprise at least 10, 15, 17, 20 or 25 consecutive complementary nucleotides of, or hybridize under stringent or highly stringent conditions to at least one of the nucleic acid sequences from the group consisting of SEQ ID

NOS:1, 3, 5, 6, and 8, and complements thereof. Preferably, such antisense molecules are PMO (phosphorodiamidate morpholino oligomers) antisense molecules.

Preferred compositions comprise one or more of such modulators or preferred modulators, along with a pharmaceutically acceptable carrier or diluent.

Additional embodiments provide screening assays for compounds useful to modulate HIV infection.

5

10

Further embodiments provide a method for inhibiting HIV infection and/or replication comprising administration of an *src* family kinase inhibitor selected from the group consisting of *src* family kinase-specific antisense RNA, *src* family kinase-specific siRNA, and a small molecule inhibitor of a *src* family kinase.

Preferably, the *src* family kinase is c-yes kinase. Preferably, the inhibitor is compound having the structure of Formula I, or Formula II, or salts thereof:

Preferably, for Formula 1, R₁ is halogen, and R₂, R₃ and R₄ are independently a C1-C3 straight or branched alkyl. Preferably, for Formula II, R₁ is -SO₂N(CH₃)₂, or -SO₂NH₂. Preferably, the inhibitor is 4-Amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2). Preferably, the inhibitor is 2-oxo-3-(4,5,6,7-tetrahydro-1*H*-indol-2-ylmethylene)-2,3-dihydro-1*H*-indole-5-sulfonic acid dimethylamide (SU6656).

Further embodiments provide diagnostic or prognostic assays for HIV infection and/or replication and related conditions and disorders.

5

10

15

20

25

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1A shows the potency of concentrated HIV virus (89.6) stocks using MAGI cells infected with 1 μ l, or 0.1 μ l of concentrated virus (leftmost panel, and center panel, respectively), as compared to 1 μ l of unconcentrated virus (rightmost panel). MAGI cells are Hela CD4 cells stably transfected with the β -galactosidase gene under the control of the HIV LTR. When MAGI cells are productively infected with HIV, β -galactosidase expression is induced by tat-transactivation and the number of blue cells revealed by staining is a measure of virus titer as can be seen in the left and right panels (MAGI cells infected with 0.1 μ l of unconcentrated HIV 89.6 exhibited no sign of infection).

Figure 2A shows, by fluorescence microscopy (left panel), MT-2 cells (human T cell leukemia cell line) efficiently loaded with a FITC-tagged phosphorodiamidate morpholino oligomer (PMO).

Figure 2B shows extensive HIV-induced syncytia in MT-2 cells at 48 hrs PI (post-infection).

Figure 3A shows inhibition curves of HIV replication in HIV-infected THP-1 cells (human myeloid (monocyte/macrophage) cell line derived from an acute monocytic leukemia) by PMOs specific for particular HIV-induced cellular genes as follows: upper filled diamonds correspond to no PMO control; triangles correspond to TNIP; lower filled diamonds correspond to c-YES; dark "X"s correspond to HRH1; light "X"s correspond to NP; filled squares

correspond to HMG20; and vertical lines correspond to AZT control. The HIV-1 P24 ELISA assay monitors HIV p24 gag production (in pg/ml along the y-axis) by PMO-treated HIV-infected THP-1 cells. The x-axis shows time. PMOs corresponding to HMG20, HRH-1, NP and c-YES were particularly effective at reproducibly inhibiting HIV replication.

Figure 3B shows inhibition curves of HIV replication in HIV-infected MT-2 cells (human T cell leukemia cell line) by PMOs specific for particular HIV-induced cellular genes as follows: upper curve filled diamonds correspond to EPEI (ethoxylated polyethylenimine); open squares correspond to HIV only; open triangles correspond to ARF; filled triangles correspond to NP; lower curve filled diamonds correspond to HMG20; "X"s correspond to c-YES; filled squares correspond to HRH-1; and vertical lines correspond to HIV plus AZT control. The HIV-1 P24 ELISA assay monitors HIV p24 gag production (in pg/ml along the y-axis) by PMO-treated HIV-infected MT-2 cells. The x-axis shows time. As in the case of HIV-infected THP-1 cells (Figure 3A), PMOs corresponding to HMG20, HRH-1, NP and c-YES were particularly effective at reproducibly inhibiting HIV replication.

Figure 4 shows inhibition of HIV p24 production in MT-2 cells infected with HIV 89.6 in the continued presence (10 μM) of the src family kinase inhibitor PP2 [4-Amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine]. PP3, and DMSO correspond to inactive analog, and carrier control, respectively. AZT inhibition is also included as a positive control. Time 0 is immediately post-infection, whereas times 1, 2 and 3 correspond to 24, 48, and 72 hrs PI, respectively. The curves are as follows: upper closed diamonds correspond to HIV alone; lower curve closed diamonds correspond to PP2; filled squares correspond to PP3; filled triangles correspond to DMSO; and "X"s correspond to AZT. The HIV-1 P24 ELISA assay monitors HIV p24 gag production by the various treated HIV-infected MT-2 cells.

25

20

5

10

15

DETAILED DESCRIPTION OF THE INVENTION

IDENTIFICATION OF HIV-REGULATED GENES AND PATHWAYS, VALIDATION OF SAME AS THERAPEUTIC TARGETS, AND PROVISION OF THERAPEUTIC MODULATORS

Overview

5

10

15

20

25

The present invention provides new classes of drugs to combat human immunodeficiency virus (HIV) infection through the identification of novel target cellular genes essential for HIV replication in human cells. Cellular drug targets were identified through gene expression profiling of HIV-infected cells, and validated using target-specific gene silencing techniques with HIV replication assays as the readout.

Recent advances in microarray technology have made possible the analysis of global gene expression patterns in cells in response to viral infection, including HIV infection. However, many of these studies utilized gene expression profiling to examine the consequences of expressing only certain HIV proteins (e.g., Tat and Nef), individually in target cells, and are not as relevant for evaluating the more complex consequences of a dynamic HIV infection.

Significantly, a comprehensive analysis utilizing cell lines to examine the effects of HIV on cellular gene expression has yet to be performed. Only two studies published to date have analyzed acute infection by replication competent HIV (Geiss, G. K. et al., *Virology* 266:8-16, 2000; and Corbeil, J. et al., *Genome Res* 11:1198-204, 2001). Both studies utilized the CEM T cell line and a single strain of HIV, HIV_{LAI}. The study by Geiss *et al* (*supra*) analyzed only 2 time points at 48 and 72 hours post infection and the potential number of genes of interest was constrained by the use of a gene array representing only 1500 genes (a cDNA microarray). The study by Corbeil *et al* (*supra*) was more extensive, examining 6800 genes at 8 time points over a 72-hour period.

The present invention uses high-throughput gene expression profiling on an extensive platform, and gene silencing methods to identify and provide a plurality of 'validated' HIV-induced cellular gene sequences and pathways useful as targets for modulation of HIV-mediated effects and phenotype associated with HIV. Validated gene targets correspond to those HIV-

induced gene sequences the expression of which is required, at least to some extent, for HIV infection and/or replication, or HIV-mediated cellular effects, conditions, diseases and phenotypes. Inventive modulators of validated targets are agents that act by inhibiting the expression of such validated HIV-induced cellular genes, by reducing or preventing the expression of mRNA from such validated HIV-induced genes, or by reducing the biological activity of corresponding HIV-induced cellular gene products. Inventive modulators of HIV-induced cellular gene expression include, but are not limited to antisense molecules, siRNA agents, ribozymes, antibodies or antibody fragments, proteins or polypeptides as well as small molecules.

Applicants have previously used gene expression profiling, and gene silencing methods involving a KSHV-DMVEC model to identify and provide a plurality of 'validated' KSHV (Kaposi's Sarcoma)-induced cellular gene sequences and pathways useful as targets for modulation of KSHV-mediated effects and phenotype associated with KSHV (see Moses, A. V. et al., Ann. N.Y. Acad. Sci 975:1-12, 2002, incorporated herein by reference).

DEFINITIONS

5

10

15

20

25

The term "HIV" refers to the human immunodeficiency virus.

The term "89.6" or "HIV 89.6" refers to isolate 89.6 of HIV.

The term "siRNA" or "RNAi" refers to small interfering RNA as is known in the art (see e.g.: U.S. Patent 6,506,559; Milhavet et al., *Pharmacological Reviews* 55:629-648, 2003; and Gitlin et al., *J. Virol.* 77:7159-7165, 2003; incorporated herein by reference).

The term "MT-2 cells" refers cells of the art-recognized human T cell leukemia cell line MT-2.

The term "THP-1 cells" refers cells of the art-recognized human human myeloid (monocyte/macrophage) cell line derived from an acute monocytic leukemia.

The term "PP2" (see formula below) refers to 4-Amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (e.g., Calbiochem; catalog no. 529573), and physiologically acceptable salts thereof:

5

10

The term "PP3" refers to 4-amino-7-phenylpyrazol[3,4-D]pyrimidine (PP3) (Calbiochem), a negative control for PP2, and salts thereof:

The term "SU6656" refers to (2-oxo-3-(4,5,6,7-tetrahydro-1*H*-indol-2-ylmethylene)-2,3-dihydro-1*H*-indole-5-sulfonic acid dimethylamide) (*see* Blake et al., *Mol. Cell. Biol.* 20:9018-9027, Dec. 2000), and physiologically acceptable salts thereof.

The term "SU6657" refers to (2-oxo-3-(4,5,6,7-tetrahydro-1*H*-indol-2-ylmethylene)-2,3-dihydro-1*H*-indole-5-sulfonic acid amide) (*Id*), and salts thereof.

The term "HMG20B" is used in reference to the gene, cDNA, mRNA or corresponding protein sequences of *homo sapiens* high-mobility group 20B (accession number NM_006339, and known variants) (see SEQ ID NOS:1 and 2).

5

10

15

20

The term "HRH1" is used in reference to the gene, cDNA, mRNA or corresponding protein sequences of *homo sapiens* histamine receptor H1 (accession numbers NM_00861 and BC060802, and known variants of both of these) (see SEQ ID NOS:3, 4 and 5).

The term "NP" is used in reference to the gene, cDNA, mRNA or corresponding protein sequences of *homo sapiens* nucleoside phosphorylase (accession number NM_000270, and known variants) (see SEQ ID NOS:6 and 7).

The term "YES" or "c-YES" or "YES1" is used in reference to the gene, cDNA, mRNA or corresponding protein sequences of *homo sapiens* v-yes-1 Yamaguchi sarcoma viral oncogene homolog 1 (accession number NM 005433, and known variants) (see SEQ ID NOS:8 and 9).

The phrase "HIV-mediated cellular effects, conditions and diseases" or "HIV-related (or mediated) conditions or diseases" refers to those illnesses and conditions included in, but not necessarily limited to the CDC 1993 AIDS surveillance case definition, as follows: Bacillary angiomatosis; Candidiasis of bronchi, trachea, or lungs; Candidiasis, esophageal; Candidiasis, oropharyngeal (thrush); Candidiasis, vulvovaginal; persistent, frequent, or poorly responsive to therapy; Cervical dysplasia (moderate or severe)/cervical carcinoma in situ; Cervical cancer, invasive *; Coccidioidomycosis, disseminated or extrapulmonary; Constitutional symptoms, such as fever (38.5 C) or diarrhea lasting greater than 1 month; Cryptococcosis, extrapulmonary; Cryptosporidiosis, chronic intestinal (greater than 1 month's duration); Cytomegalovirus disease (other than liver, spleen, or nodes); Cytomegalovirus retinitis (with loss of vision);

Encephalopathy, HIV-related; Herpes simplex: chronic ulcer(s) (greater than 1 month's duration); or bronchitis, pneumonitis, or esophagitis; Hairy leukoplakia, oral; Herpes zoster (shingles), involving at least two distinct episodes or more than one dermatome; Histoplasmosis,

disseminated or extrapulmonary; Idiopathic thrombocytopenic purpura; Isosporiasis, chronic intestinal (greater than I month's duration); Kaposi's sarcoma; Listeriosis; Lymphoma, Burkitt's (or equivalent term); Lymphoma, immunoblastic (or equivalent term); Lymphoma, primary, of brain; Mycobacterium avium complex or M. kansasii, disseminated or extrapulmonary; Mycobacterium tuberculosis, any site (pulmonary or extrapulmonary); Mycobacterium, other species or unidentified species, disseminated or extrapulmonary; Peripheral neuropathy; Pelvic inflammatory disease, particularly if complicated by tubo-ovarian abscess; Pneumocystis carinii pneumonia; Pneumonia, recurrent; Progressive multifocal leukoencephalopathy; Salmonella septicemia, recurrent; Toxoplasmosis of brain; and Wasting syndrome due to HIV. The underlying premise for the use of these phrases in the present inventive context is that the CD4+ T-lymphocyte is the primary target for HIV infection because of the affinity of the virus for the CD4 surface marker. The CD4+ T-lymphocyte coordinates a number of important immunologic functions, and a loss of these functions results in progressive impairment of the immune response. Studies of the natural history of HIV infection have documented a wide spectrum of disease manifestations, ranging from asymptomatic infection to life-threatening conditions characterized by severe immunodeficiency, serious opportunistic infections, and cancers. Other studies have shown a strong association between the development of life-threatening opportunistic illnesses and the absolute number (per microliter of blood) or percentage of CD4+ T- lymphocytes. As the number of CD4+ T-lymphocytes decreases, the risk and severity of opportunistic illnesses increase. Accordingly, treatment of HIV infection and/or replication

5

10

15

20

25

Myeloid cell line model system for in vivo HIV-related effects. Inventive HIV-related therapeutic targets were identified by the use of the monocyte/macrophage cell line "THP-1". This is a human myeloid cell line derived from an acute monocytic leukemia. The cells grow in suspension and exhibit many features of monocytes, including but not limited to the ability to differentiate into macrophage-like cells following phorbol ester treatment. They express CD4

address many related conditions and illnesses according to the present invention.

and HIV co-receptors, and are susceptible to HIV infection. THP-1 were chosen for this study because they more closely represent native monocyte/macrophages than other available human myeloid cell lines (e.g., HL60, U937, KG-1 or HEL cells) (for review see Auwerx, J. Experimentia 47:22-31, 1991, entitled "The human leukemia cell line, THP-1: a multi-facetted model for the study of monocyte-macrophage differentiation"). THP-1 cells are available through the ATCC.

5

10

15

20

25

Additionally, the T cell line "MT-2" was employed in the present model system. This is a human T cell line leukemia cell line. The cells grow in suspension and are very susceptible to acute infection with HIV. The cells can be efficiently loaded with antisense oligonucleotides. In addition, they have been shown by other investigators to provide a sensitive and reproducible system to test antiviral agents (see, e.g., Haertle et al, J. Biol. Chem. 263:5870-5875, 1988). MT-2 cells are available through the NIH AIDS Research and Reference Reagent Program.

Finally, the HIV-1 strain used in the model system was the 89.6 strain. This is a dual tropic (X4/R5) HIV strain, meaning that it can infect cells utilizing CD4 and either the CXCR4 or the CCR5 co-receptor. Thus, both T cells (e.g., MT-2) and macrophages (e.g., THP-1) are susceptible to infection by the same virus strain. HIV-1 89.6 was originally provided by the investigator who isolated and characterized it, Dr Ronald Collman (Collman et al, J. Virology 66:7517, 1992). Applicant's expanded the virus by culture in PBMC, and concentrated it for use in the inventive system as described in EXAMPLE 2, herein below.

Identification of HIV-induced cellular genes using microarrays. Cellular genes involved in HIV replication cycle were identified by using DNA microarrays to examine the differential gene expression profiles of THP1 monocytes before and after HIV-infection. Such microarray technology is well known in the art (see, e.g., Moses et al., J. Virol. 76:8383-8399, 2002; WO 02/10339 A2, published 07 February 2002; Salunga et al., In M. Schena (ed.), DNA microarrays, A practical approach; Oxford Press, Oxford, United Kingdom, 1999; and see Simmen et al., Proc. Natl. Acad. Sci. USA 98:7140-7145, 2001; all of which are incorporated by reference herein), and can be performed using commercially available arrays (e.g., Affymetrix U133A,

U133B and U95A GeneChip® arrays) (Affymetrix, Santa Clara, CA). The Human Genome U133 (HG-U133) set, consists of two GeneChip® arrays, and contains almost 45,000 probe sets representing more than 39,000 transcripts derived from approximately 33,000 well-substantiated human genes (Affymetrix technical information). The set design uses sequences selected from GenBank®, dbEST, and RefSeq (Id).

5

10

15

20

25

Specifically, as described in detail under EXAMPLE 2 herein, nucleic acid microarray technology was used for gene expression profiling of HIV-infected (synchronized) THP1 cells, relative to non-infected control cells, to identify cellular genes whose expression is regulated by HIV. Each of the TPH1 cell infected/uninfected sample comparisons resulted in multiple probe sets with increased expression, with most showing increased expression in duplicate infections. Approximately 20 genes with increased transcription in at least two adjacent time points across two infections were selected (EXAMPLE 2) for validation as described in EXAMPLE 3, herein below.

Validation of therapeutic targets by gene silencing using gene-specific PMO antisense compounds. Particular HIV-regulated or HIV-induced gene sequences were identified as validated therapeutic targets by specific gene silencing using PMO (phosphorodiamidate morpholino Oligomers) antisense oligonucleotide inhibition in combination with measuring the effects of such gene silencing using MT-2-, or THP1-HIV replication assays (EXAMPLE 3, below). Silencing of particular target genes precluded progression of HIV replication, as measured by decreased production of HIV-1 gag protein p24, thus validating such genes as therapeutic intervention targets.

Therapeutic utility. According to the present invention, PMO-mediated gene silencing using the THP1 and MT-2 system with HIV 89.6 (or HIV MN) not only provides validation of therapeutically-significant targets, but also provides gene-specific modulators of HIV-induced cellular gene expression that have therapeutic utility. PMOs (see, e.g., Summerton, et al., Antisense Nucleic Acid Drug Dev. 7:63-70, 1997; and Summerton & Weller, Antisense Nucleic Acid Drug Dev. 7:187-95, 1997) represent a class of art-recognized antisense drugs for treating

various diseases, including cancer. For example, Arora et al. (*J. Pharmaceutical Sciences* 91:1009-1018, 2002) demonstrated that oral administration of *c-myc*-specific and CYP3A2-specific PMOs inhibited *c-myc* and CYP3A2 gene expression, respectively, in rat liver by an antisense mechanism of action. Likewise, Devi G.R. (*Current Opinion in Molecular Therapeutics* 4:138-148, 2002) discusses treatment of prostate cancer with various PMO therapeutic agents).

5

10

15

20

25

Likewise, siRNA" or "RNAi" agents are emerging as a new class of art-recognized drugs (see e.g.: U.S. Patent 6,506,559; Milhavet et al., *Pharmacological Reviews* 55:629-648, 2003; and Gitlin et al., *J. Virol.* 77:7159-7165, 2003; incorporated herein by reference).

Accordingly, the present invention provides therapeutic compositions, and methods for modulation of HIV infection and/or replication, comprising inhibition of HIV-induced celllar gene expression (e.g., inhibition of the expression of validated HIV-induced genes, reducing or preventing the expression of mRNA from validated HIV-induced genes, or reducing the biological activity of corresponding HIV-induced cellular gene products).

Additional embodiments provide screening assays for compounds useful to modulate HIV infection and/or replication.

Further embodiments provide diagnostic or prognostic assays for HIV infection and/or replication.

Preferred Inventive Modulators, Compositions, Utilities and Expression Vectors

Modulators of HIV-induced gene expression. Particular embodiments provide modulators of HIV-induced cellular gene expression. Preferably, inventive modulators are directed to one or more validated HIV-induced cellular gene targets, the expression of which is required, at least to some extent, for HIV-mediated effects on cellular proliferation and phenotype.

Inventive modulators include, but are not limited to, antisense molecules, siRNA, ribozymes, antibodies or antibody fragments, proteins or polypeptides as well as small molecules. Particular HIV-induced gene expression modulators, such as gene-specific antisense,

siRNA, and ribozyme molecules, and antibodies and epitope-binding fragments thereof, are *inhibitors* of HIV-induced gene expression, or of the biological activity of proteins encoded thereby.

Preferably, inventive antisense molecules are oligonucleotides of about 10 to 35 nucleotides in length that are targeted to a nucleic acid molecule corresponding to a HIV-induced gene sequence, wherein the antisense molecule inhibits the expression of at least one HIV-induced gene sequence. Antisense compounds useful to practice the invention include oligonucleotides containing art-recognized modified backbones or non-natural internucleoside linkages, modified sugar moieties, or modified nucleobases.

5

10

15

20

25

30

Preferred antisense molecules or the complements thereof comprise at least 10, at least 15, at least 17, at least 20 or at least 25, and preferably less than about 35 consecutive complementary nucleotides of, or hybridize under stringent or highly stringent conditions to at least one of the nucleic acid sequences from the group consisting of: SEQ ID NO:1 (cDNA/mRNA for HMG20B; homo sapiens high-mobility group 20B; accession number NM_006339, and known variants); SEQ ID NO:3 and SEQ ID NO:5 (cDNA/mRNA for HRH1; homo sapiens histamine receptor H1; accession numbers NM_00861 and BC060802, and known variants of both of these); SEQ ID NO:6 (cDNA/mRNA for NP; homo sapiens nucleoside phosphorylase; accession number NM_000270, and known variants); and SEQ ID NO:8 (cDNA/mRNA for YES1; homo sapiens v-yes-1 Yamaguchi sarcoma viral oncogene homolog 1; accession number NM_005433, and known variants); or to the complements thereof. Preferably, such antisense molecules are PMO (phosphorodiamidate morpholino Oligomers) antisense molecules.

Thus, the present invention includes nucleic acids that hybridize under stringent hybridization conditions, as defined below, to all or a portion of the validated HIV-induced cellular gene sequences represented by the cDNA sequences of SEQ ID NOS:1, 3, 5, 6 and 8, or the complements thereof. The hybridizing portion of the hybridizing nucleic acids is typically at least 10, 15, 17, 20, 25, 30 or 35 nucleotides in length. Preferably, the hybridizing portion of the hybridizing nucleic acid is at least 80%, at least 95%, or at least 98% identical to the sequence of a portion or all of the cDNA sequences of SEQ ID NOs:1, 3, 5, 6 and 8, or to the complements thereof.

Hybridizing nucleic acids of the type described herein can be used, for example, as an inventive therapeutic modulator of HIV-induced gene expression, a cloning probe, a primer (e.g., a PCR primer), or a diagnostic and/or prognostic probe or primer. Preferably, hybridization of the oligonucleotide probe to a nucleic acid sample is performed under stringent conditions. Nucleic acid duplex or hybrid stability is expressed as the melting temperature or Tm, which is the temperature at which a probe dissociates from a target DNA. This melting temperature is used to define the required stringency conditions.

For sequences that are related and substantially identical to the probe, rather than identical, it is useful to first establish the lowest temperature at which only homologous hybridization occurs with a particular concentration of salt (e.g., SSC or SSPE). Then, assuming that 1% mismatching results in a 1°C decrease in the Tm, the temperature of the final wash in the hybridization reaction is reduced accordingly (for example, if sequences having > 95% identity with the probe are sought, the final wash temperature is decreased by 5°C). In practice, the change in Tm can be between 0.5°C and 1.5°C per 1% mismatch.

10

15

20

25

Stringent conditions, as defined herein, involve hybridizing at 68°C in 5x SSC/5x Denhardt's solution/1.0% SDS, and washing in 0.2x SSC/0.1% SDS at room temperature, or involve the art-recognized equivalent thereof. Moderately stringent conditions, as defined herein, involve including washing in 3x SSC at 42°C, or the art-recognized equivalent thereof. The parameters of salt concentration and temperature can be varied to achieve the optimal level of identity between the probe and the target nucleic acid. Guidance regarding such conditions is available in the art, for example, by Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, N.Y.; and Ausubel et al. (eds.), 1995, Current Protocols in Molecular Biology, (John Wiley & Sons, N.Y.) at Unit 2.10.

Antisense molecules preferably comprise at least 17 or at least 20, or at least 25, and preferably less than about 35 consecutive complementary nucleotides of, or hybridize under stringent conditions to at least one of the nucleic acid sequences from the group consisting of SEQ ID NOS:1, 3, 5, 6 and 8, and complements thereof. Preferably, such antisense molecules are PMO antisense molecules. Preferred representative antisense molecules are provided herein as:

SEQ ID NO:10 (HMG20) 5'-cgcccagcatcttggtgatctcggg-3'; SEQ ID NO:11 (HRH1) 5'-gcgaaagagcagccgccagttatgg-3';

SEQ ID NO:12 (NP) 5'-cttcataggtgtatccgttctccat-3';
SEQ ID NO:13 (c-YES) 5'-tttctttacttttaatgcagcccat-3'; and
SEQ ID NO:14 (ARF1) 5'-atgcttgtggacaggtggaaggaca-3'.

Preferably, these antisense molecules are PMO antisense molecules.

5

10

15

20

25

30

Even more preferably, representative antisense molecules are provided herein as SEQ ID NOS:10, 11, 12, and 13, and these antisense molecules are preferably PMO antisense molecules.

The invention further provides a ribozyme capable of specifically cleaving at least one RNA specific to HMG20, HRH1, NP, and c-YES, and a pharmaceutical composition comprising the ribozyme.

The invention also provides small molecule modulators of HIV-induced gene expression, wherein particular modulators are inhibitors capable of reducing the expression of at least one HIV-induced gene, reducing or preventing the expression of mRNA from at least one HIV-induced gene, or reducing the biological activity of at least one HIV-induced gene product. Preferably, the HIV-induced gene is selected from the group consisting of HMG20, HRH1, NP, and c-YES.

Compositions. Further embodiments provide compositions that comprise one or more modulators of HIV-induced gene expression (or modulators of biological activity of HIV-induced gene products) in a pharmaceutically acceptable carrier or diluent.

Particular embodiments provide a pharmaceutical composition for inhibiting HIVinduced gene expression, comprising an antisense oligonucleotide according to the invention in a mixture with a pharmaceutically acceptable carrier or diluent.

Further provided is a composition comprising a therapeutically effective amount of an inhibitor of a HIV-induced gene product (e.g., protein) in a pharmaceutically acceptable carrier. In certain embodiments, the composition comprises two or more HIV-induced gene product inhibitors. Preferably, the HIV-induced gene product is selected from: the nucleic acid group consisting of SEQ ID NOS:1, 3, 5, 6 and 8, and combinations thereof, corresponding to HMG20, HRH1, NP, and c-YES, and combinations thereof, respectively; or from the protein group consisting of SEQ ID NOS:2, 4, 7 and 9, and combinations thereof, corresponding to HMG20, HRH1, NP, and c-YES, respectively.

In particular composition embodiments, the HIV-induced gene inhibitor is an antisense molecule, and in specific embodiments the antisense molecule or the complement thereof comprises at least 10, 15, 17, 20 or 25 consecutive nucleic acids of, or hybridizes under stringent conditions to at least one of the nucleic acid sequences from the group consisting of SEQ ID NOS:1, 3, 5, 6, and 8, and complements thereof. Preferably, such antisense molecules are PMO antisense molecules. Preferably, the antisense molecules comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOS:10-13.

5

10

15

20

25

30

Methods and uses. Particular embodiments of the present invention provide methods of modulating HIV-induced gene expression or biological activity of HIV-induced gene products in HIV-infected cells.

The invention provides a method of inhibiting the expression of HIV-induced cellular genes in human cells or tissues comprising contacting the cells or tissues in vivo (also ex vivo, or in vitro) with an antisense compound or a ribozyme of 10 to 35 nucleotides in length targeted to a nucleic acid molecule encoding a HIV-induced gene product so that expression of the human HIV-induced gene product is inhibited. Preferably, the HIV-induced gene is selected from the group consisting of: HMG20B (homo sapiens high-mobility group 20B, accession number NM_006339, and known variants); HRH1 (homo sapiens histamine receptor H1, accession numbers NM_00861 and BC060802, and known variants of both of these); NP (homo sapiens nucleoside phosphorylase, accession number NM_000270, and known variants); and YES1(homo sapiens v-yes-1 Yamaguchi sarcoma viral oncogene homolog 1, accession number NM_005433, and known variants); or combinations thereof. Preferably, the antisense compounds are PMOs.

The invention additionally provides a method of modulating HIV replication in cells comprising contacting the cells *in vivo* (also *ex vivo*, or *in vitro*) with an inventive antisense compound or ribozyme of 10 to 35 nucleotides in length targeted to a nucleic acid molecule encoding a HIV-induced gene product so that expression of the human HIV-induced gene product is inhibited and HIV replication is inhibited.

The invention provides for the use of a modulator of HIV-induced gene expression according to the invention to prepare a medicament for modulating HIV replication, HIV-mediated cell proliferation and/or HIV-mediated cellular phenotype.

Additional embodiments provide a method of inhibiting HIV-induced gene expression or encoded biological activity in a mammalian cell, comprising administering to the cell an inhibitor of HIV-induced gene expression (or of encoded biological activity), and in a specific

embodiment of the method, the inhibitor is a target gene-specific antisense molecule. Preferably, the antisense molecule is a PMO antisense molecule. Preferably, the antisense molecules comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOS:10-13.

The invention also provides a method of inhibiting HIV-induced gene expression in a subject, comprising administering to said subject, in a pharmaceutically effective vehicle, an amount of an antisense oligonucleotide which is effective to specifically hybridize to all or part of a selected target nucleic acid sequence derived from said HIV-induced gene. In preferred embodiments of this method, the target-specific antisense oligonucleotide is selected from the group consisting of SEQ ID NOS:10, 11, 12 and 13. Preferably the antisense oligonucleotides are PMO antisense compounds.

5

10

15

20

25

30

The invention further provides a method of treating HIV-related conditions or disease, comprising administering to a mammalian cell a modulator of HIV-induced gene expression such that the neoplastic condition or disease is reduced in severity.

As discussed herein below in EXAMPLES 1-4 (particularly, EXAMPLE 4) additional embodiments provide screening assays for identification of compounds useful to modulate HIV infection, comprising: contacting HIV-infected cells with a test agent; measuring, using a suitable assay, expression of at least one validated HIV-induced cellular gene sequence; and determining whether the test agent inhibits said validated gene expression relative to control cells not contacted with the test agent, whereby agents that inhibit said validated gene expression are identified as compounds useful to modulate HIV infection.

Preferably, expression of at least one validated HIV-induced cellular gene sequence is expression of respective mRNA, or expression of the protein encoded thereby.

Preferably, the at least one validated HIV-induced cellular gene sequence is selected from the cDNA and protein sequence group consisting of HMG20, HRH1, NP, and c-YES, and combinations thereof (i.e., consisting of SEQ ID NOS:1-9, and combinations thereof).

Preferably, agents that inhibit said validated gene expression are further tested for the ability to modulate HIV infection and/or replication, HIV-mediated cellular proliferation and/or HIV-mediated cellular phenotype, conditions or diseases.

Further embodiments provide diagnostic or prognostic assays for HIV infection and/or replication comprising: obtaining a cell sample from a subject suspected of having HIV; measuring expression of at least one validated HIV-inducible cellular gene sequence; and

determining whether expression of the at least one validated gene is induced relative to non-HIV-infected control cells, whereby a diagnosis is, at least in part, afforded.

Preferably, the at least one validated HIV-inducible cellular gene is selected from the cDNA and protein sequence group consisting of HMG20, HRH1, NP, and c-YES, and combinations thereof (i.e., consisting of SEQ ID NOS:1-9, and combinations thereof).

Preferably, measuring said expression is of two or more validated HIV-inducible cellular gene sequences. Preferably, measurement of said expression is by use of high-throughput microarray methods.

Polynucleotides and expression vectors. Particular embodiments provide an isolated polynucleotide with a sequence comprising a transcriptional initiation region and a sequence encoding a HIV-induced gene-specific antisense oligonucleotide at least 10, 15, 17, 20 or 25 nucleotides in length, and a recombinant vector comprising this polynucleotide (e.g., expression vector). Preferably, the antisense oligonucleotide of said polynucleotide comprises a sequence selected from the group consisting of SEQ ID NOS:10-13. Preferably, the transcriptional initiation region is a strong constitutively expressed mammalian pol III-or pol II-specific promoter, or a viral promoter.

Additional and Preferred Oligonucleotide Modulators

5

10

15

20

25

30

Included within the scope of the invention are oligonucleotides capable of hybridizing with HIV-induced gene DNA or RNA, referred to herein as the 'target' polynucleotide. An oligonucleotide need not be 100% complementary to the target polynucleotide, as long as specific hybridization is achieved. The degree of hybridization to be achieved is that which interferes with the normal function of the target polynucleotide, be it transcription, translation, pairing with a complementary sequence, or binding with another biological component such as a protein. An antisense oligonucleotide, including a preferred PMO antisense oligonucleotide, can interfere with DNA replication and transcription, and it can interfere with RNA translocation, translation, splicing, and catalytic activity.

The invention includes within its scope any oligonucleotide of about 10 to about 35 nucleotides in length, including variations as described herein, wherein the oligonucleotide hybridizes to a HIV-induced target sequence, including DNA or mRNA, such that an effect on the normal function of the polynucleotide is achieved. The oligonucleotide can be, for example,

10, 15, 17, 20, 22, 23, 25, 30 or 35 nucleotides in length. Oligonucleotides larger than 35 nucleotides are also contemplated within the scope of the present invention, and may for example, correspond in length to a complete target cDNA (i.e., mRNA) sequence, or to a significant or substantial portion thereof.

5

10

15

20

25

30

Antisense oligonucleotides. As described above, preferred antisense molecules are represented by SEQ ID NOS:10-13, and combinations thereof.

Examples of representative preferred antisense compounds useful in the invention are based on SEQ ID NOS:1, 3, 5, 6, 8 and 10-13, and include oligonucleotides containing modified backbones or non-natural internucleoside linkages. Oligonucleotides having modified backbones include those retaining a phosphorus atom in the backbone, and those that do not have a phosphorus atom in the backbone.

Preferred modified oligonucleotide backbones include phosphorothioates phosphorodithioate, chiral phosphorothioates, phosphotriesters and alkyl phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including methylphosphonates, 3'-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoroamidates or phosphordiamidates, including 3'-amino phosphoroamidate and aminoalkylphosphoroamidates, and phosphorodiamidate morpholino oligomers (PMOs), thiophosphoroamidates, phosphoramidothioates, thioalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates having normal 3'-5' linkages, 2'-5' linked analogs of these, and those having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3'-5' to 5'-3' or 2'-5' to 5'-2'. Various salts, mixed salts and free acid forms are also included.

The antisense oligonucleotide may also comprise at least one modified sugar moiety selected from the group including, but not limited to arabinose, 2-fluoroarabinose, xylulose, hexose and 2'-O-methyl sugar moieties.

The antisense oligonucleotide may comprise at least one modified base moiety which is selected from the group including, but not limited to 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-

methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5methylcytosine, 5-methylaminomethyluracil, N6-adenine, 7-methylguanine, 5methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil. 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine (see also U.S. 5,958,773 and patents disclosed therein).

Examples of inventive antisense oligonucleotides of length X (in nucleotides), as indicated by polynucleotide positions with reference to, e.g., SEQ ID NO:1, include those corresponding to sets of consecutively overlapping oligonucleotides of length X, where the oligonucleotides within each consecutively overlapping set (corresponding to a given X value) are defined as the finite set of Z oligonucleotides from nucleotide positions:

n to (n + (X-1)); where n=1, 2, 3, ...(Y-(X-1));

where Y equals the length (nucleotides or base pairs) of SEQ ID NO:1 (1,232);

where X equals the common length (in nucleotides) of each oligonucleotide in the set (e.g., X=20 for a set of consecutively overlapping 20-mers); and

where the number (Z) of consecutively overlapping oligomers of length X for a given SEQ ID NO of length Y is equal to Y-(X-1). For example Z=1,232-19=1,213 for SEQ ID NO:1, where X=20.

Examples of inventive 20-mer oligonucleotides include the following set of 1,213 oligomers, indicated by polynucleotide positions with reference to SEQ ID NO:1 (HMG20B cDNA):

1-20, 2-21, 3-22, 4-23, 5-24,1211-1230, 1212-1231 and 1213-1232.

Likewise, examples of 25-mer oligonucleotides include the following set of 1,208 oligomers, indicated by polynucleotide positions with reference to SEQ ID NO:1:

1-25, 2-26, 3-27, 4-28, 5-29,1206-1230, 1207-1231 and 1208-1232.

30

5

10

15

20

25

The present invention encompasses, for each validated target sequence (e.g., for SEQ ID NOS:1, 3, 5, 6, and 8, and the complements thereof), multiple consecutively overlapping sets of oligonucleotides or modified oligonucleotides of length X, where, e.g., X=10, 17, 20, 22, 23, 25, 30 or 35 nucleotides.

Preferred sets of such oligonucleotides or modified oligonucleotides of length X are those consecutively overlapping sets of oligomers corresponding to SEQ ID NOS:1, 3, 5, 6, and 8, and to the complements thereof. Included in these preferred sets are the preferred oligomers corresponding to SEQ ID NOS:10-13.

5

10

15

20

25

30

The antisense oligonucleotides of the invention can also be modified by chemically linking the oligonucleotide to one or more moieties or conjugates to enhance the activity, cellular distribution, or cellular uptake of the antisense oligonucleotide. Such moieties or conjugates include lipids such as cholesterol, cholic acid, thioether, aliphatic chains, phospholipids, polyamines, polyethylene glycol (PEG), palmityl moieties, and others as disclosed in, for example, United States Patent Numbers 5,514,758, 5,565,552, 5,567,810, 5,574,142, 5,585,481, 5,587,371, 5,597,696 and 5,958,773. Thus, the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating or modulating transport across the cell membrane (Letsinger et al., Proc. Natl. Acad. Sci. USA 86:6553-6556, 1989; Lemaitre et al., Proc. Natl. Acad. Sci. USA 84:648-652, 1987; PCT WO88/09810, published Dec. 15, 1988) or the blood-brain barrier (PCT WO89/10134, published Apr. 25, 1988), or the nuclear membrane, and may include hybridization-triggered cleavage agents (Krol et al., BioTechniques 6:958-976, 1988) or intercalating agents (Zon, Pharm. Res. 5:539-549, 1988). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, hybridization-triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.

Chimeric antisense oligonucleotides are also within the scope of the invention, and can be prepared from the present inventive oligonucleotides using the methods described in, for example, United States Patent Numbers 5,013,830, 5,149,797, 5,403,711, 5,491,133, 5,565,350, 5,652,355, 5,700,922 and 5,958,773.

Preferred antisense oligonucleotides in addition to those of SEQ ID NOS:10-14 are selected by routine experimentation using, for example, assays described in the present Examples. Although the inventors are not bound by a particular mechanism of action, it is

believed that the antisense oligonucleotides achieve an inhibitory effect by binding to a complementary region of the target polynucleotide within the cell using Watson-Crick base pairing. Where the target polynucleotide is RNA, experimental evidence indicates that the RNA component of the hybrid is cleaved by RNase H (Giles, R.V. et al., *Nuc. Acids Res.* (1995) 23:954-961; U.S. Patent No. 6,001,653). Generally, a hybrid containing 10 base pairs is of sufficient length to serve as a substrate for RNase H. However, to achieve specificity of binding, it is preferable to use an antisense molecule of at least 17 nucleotides, as a sequence of this length is likely to be unique among human genes.

5

10

15

20

25

30

Antisense approaches comprise the design of oligonucleotides (either DNA or RNA) that are complementary to the target gene sequence (e.g., mRNA). The antisense oligonucleotides bind to the complementary mRNA transcripts and prevent translation. Absolute complementarily, although preferred, is not required. A sequence "complementary" to a portion or region of the target mRNA, as referred to herein, means a sequence having sufficient complementarity to be able to hybridize with the RNA, forming a stable duplex; in the case of double-stranded antisense nucleic acids, a single strand of the duplex DNA may thus be tested, or triplex formation may be assayed. The ability to hybridize depends on both the degree of complementarity and the length of the antisense nucleic acid. Generally, the longer the hybridizing nucleic acid, the more base mismatches with an RNA are accommodated without compromising stable duplex (or triplex, as the case may be) formation. One skilled in the art ascertains a tolerable degree of mismatch by use of standard procedures to determine the melting point of the hybridized complex.

As disclosed in U.S. Patent No. 5,998,383, incorporated herein by reference, the oligonucleotide is selected such that the sequence exhibits suitable energy related characteristics important for oligonucleotide duplex formation with their complementary targets, and shows a low potential for self-dimerization or self-complementation (Anazodo et al., *Biochem. Biophys. Res. Commun.* (1996) 229:305-309). The computer program OLIGO (Primer Analysis Software, Version 3.4), is used to determined antisense sequence melting temperature, free energy properties, and to estimate potential self-dimer formation and self-complementarity properties. The program allows the determination of a qualitative estimation of these two parameters (potential self-dimer formation and self-complementary) and provides an indication of "no potential" or "some potential" or "essentially complete potential." Preferably, segments of

validated HIV-induced gene sequences are selected that have estimates of no potential in these parameters. However, segments that have "some potential" in one of the categories nonetheless can have utility, and a balance of the parameters is routinely used in the selection.

5

10

15

20

25

30

While antisense nucleotides complementary to the coding region sequence of a mRNA are used in accordance with the invention, those complementary to the transcribed, untranslated region, or translational initiation site region are sometimes preferred. Oligonucleotides that are complementary to the 5' end of the message, e.g., the 5'-untranslated sequence (up to and including the AUG initiation codon), frequently work most efficiently at inhibiting translation. However, sequences complementary to the 3'-untranslated sequences, or other regions of mRNAs are also effective at inhibiting translation of mRNAs (see e.g., Wagner, Nature 372:333-335, 1994). In the antisense art a certain degree of routine experimentation is required to select optimal antisense molecules for particular targets. To be effective, the antisense molecule preferably is targeted to an accessible, or exposed, portion of the target RNA molecules, the current approach to inhibition using antisense is via experimentation.

Such experimentation can be performed routinely by transfecting or loading cells with an antisense oligonucleotide, followed by measurement of messenger RNA (mRNA) levels in the treated and control cells by reverse transcription of the mRNA and assaying of respective cDNA levels. Measuring the specificity of antisense activity by assaying and analyzing cDNA levels is an art-recognized method of validating antisense results. Routinely, RNA from treated and control cells is reverse-transcribed and the resulting cDNA populations are analyzed (Branch, A. D., T.I.B.S. (1998) 23:45-50).

According to the present invention, antisense efficacy can be alternately determined by measuring the biological effects on cell growth, phenotype or viability as is known in the art, and as shown in the present Examples. According to the present invention, cultures of HIV-infected TPH1 cells or MT-2 cells were loaded with inventive oligonucleotides designed to target HIV-induced gene sequences. Preferred representative antisense oligonucleotides correspond to SEQ ID NOS:10-14. The effects of such loading on HIV replication were measured. Specifically, SEQ ID NOS:10-13 caused dramatic decreases in HIV replication, as measured by decreases in HIV gag 24 protein, a hallmark of *in vivo* HIV-related replication.

Ribozymes. Modulators of HIV-induced gene expression may be ribozymes. A ribozyme is an RNA molecule that specifically cleaves RNA substrates, such as mRNA, resulting in specific inhibition or interference with cellular gene expression. As used herein, the term ribozymes includes RNA molecules that contain antisense sequences for specific recognition, and an RNA-cleaving enzymatic activity. The catalytic strand cleaves a specific site in a target RNA at greater than stoichiometric concentration. Preferably the ribozyme is engineered so that the cleavage recognition site is located near the 5' end of the target mRNA (i.e., to increase efficiency and minimize the intracellular accumulation of non-functional mRNA transcripts).

A wide variety of ribozymes may be utilized within the context of the present invention, including for example, the hammerhead ribozyme (for example, as described by Forster and Symons, Cell (1987) 48:211-220; Haseloff and Gerlach, Nature (1988) 328:596-600; Walbot and Bruening, Nature (1988) 334:196; Haseloff and Gerlach, Nature (1988) 334:585); the hairpin ribozyme (for example, as described by Haseloff et al., U.S. Patent No. 5,254,678, issued October 19, 1993 and Hempel et al., European Patent Publication No. 0 360 257, published March 26, 1990); and Tetrahymena ribosomal RNA-based ribozymes (see Cech et al., U.S. Patent No. 4,987,071). The Cech-type ribozymes have an eight-base pair active site that hybridizes to a target RNA sequence whereafter cleavage of the target RNA takes place. Ribozymes of the present invention typically consist of RNA, but may also be composed of DNA, nucleic acid analogs (e.g., phosphorothioates), or chimerics thereof (e.g., DNA/RNA/RNA).

Ribozymes can be targeted to any RNA transcript and can catalytically cleave such transcripts (see, e.g., U.S. Patent No. 5,272,262; U.S. Patent No. 5,144,019; and U.S. Patent Nos. 5,168,053, 5,180,818, 5,116,742 and 5,093,246 to Cech et al.). According to certain embodiments of the invention, any such HIV-induced gene sequence-specific ribozyme, or a nucleic acid encoding such a ribozyme, may be delivered to a host cell to effect inhibition of HIV-induced gene expression. Ribozymes and the like may therefore be delivered to the host cells by DNA encoding the ribozyme linked to a eukaryotic promoter (e.g., a strong constitutively expressed pol III- or pol II-specific promoter), or a eukaryotic viral promoter, such that upon introduction into the nucleus, the ribozyme will be directly transcribed.

25

5

10

15

20

Triple-helix formation. Alternatively, validated HIV-induced gene expression can be reduced by targeting deoxyribonucleotide sequences complementary to the regulatory region of the target gene (e.g., respective promoter and/or enhancers) to form triple helical structures that prevent transcription of the target gene (see, e.g., Helen, Anticancer Drug Des., 6:569-84, 1991; Helene et al., Ann, N.Y. Acad. Sci., 660:27-36, 1992; and Maher, Bioassays 14:807-15, 1992).

5

10

15

20

25

siRNA. The invention, in particular aspects, contemplates introduction of RNA with partial or fully double-stranded character into the cell or into the extracellular environment. According to the present invention, inhibition is specific to the particular validated HIV-induced cellular gene expression product in that a nucleotide sequence from a portion of the validated sequence is chosen to produce inhibitory RNA. This process is effective in producing inhibition (partial or complete), and is validated gene-specific. In particular embodiments, the target cell containing the validate gene may be a human cell subject to infection by HIV (or cell-lines derived therefrom). Methods of preparing and using siRNA are generally disclosed in U.S. Patent 6,506,559, incorporated herein by reference (see also reviews by Milhavet et al., Pharmacological Reviews 55:629-648, 2003; and Gitlin et al., J. Virol. 77:7159-7165, 2003; incorporated herein by reference).

The siRNA may comprise one or more strands of polymerized ribonucleotide, and may include modifications to either the phosphate-sugar backbone or the nucleoside. For example, the phosphodiester linkages of natural RNA may be modified to include at least one of a nitrogen or sulfur heteroatom. Modifications in RNA structure may be tailored to allow specific genetic inhibition while avoiding a general panic response in some organisms which is generated by dsRNA. Likewise, bases may be modified to block the activity of adenosine deaminase. RNA may be produced enzymatically or by partial/total organic synthesis, any modified ribonucleotide can be introduced by *in vitro* enzymatic or organic synthesis.

The double-stranded structure may be formed by a single self-complementary RNA strand or two complementary RNA strands. RNA duplex formation may be initiated either inside

or outside the cell. The RNA may be introduced in an amount which allows delivery of at least one copy per cell. Higher doses of double-stranded material may yield more effective inhibition. Inhibition is sequence-specific in that nucleotide sequences corresponding to the duplex region of the RNA are targeted for genetic inhibition. Nucleic acid containing a nucleotide sequence identical to a portion of the validated gene sequence is preferred for inhibition. RNA sequences with insertions, deletions, and single point mutations relative to the target sequence have also been found to be effective for inhibition. Sequence identity may be optimized by alignment algorithms known in the art and calculating the percent difference between the nucleotide sequences. Alternatively, the duplex region of the RNA may be defined functionally as a nucleotide sequence that is capable of hybridizing with a portion of the target gene transcript.

RNA may be synthesized either *in vivo* or *in vitro*. Endogenous RNA polymerase of the cell may mediate transcription *in vivo*, or cloned RNA polymerase can be used for transcription *in vivo* or *in vitro*. For transcription from a transgene *in vivo* or an expression construct, a regulatory region may be used to transcribe the RNA strand (or strands).

10

15

20

25

For siRNA (RNAi), the RNA may be directly introduced into the cell (i.e., intracellularly); or introduced extracellularly into a cavity, interstitial space, into the circulation of an organism, introduced orally, or may be introduced by bathing an organism in a solution containing RNA. Methods for oral introduction include direct mixing of RNA with food of the organism, as well as engineered approaches in which a species that is used as food is engineered to express a RNA, then fed to the organism to be affected. Physical methods of introducing nucleic acids include injection directly into the cell or extracellular injection into the organism of an RNA solution.

Inhibition of gene expression refers to the absence (or observable decrease) in the level of protein and/or mRNA product from a validated gene target. Specificity refers to the ability to inhibit the target gene without manifest effects on other genes of the cell. The consequences of inhibition can be confirmed by examination of the outward properties of the cell or organism or by biochemical techniques such as RNA solution hybridization, nuclease protection, Northern

hybridization, reverse transcription, gene expression monitoring with a microarray, antibody binding, enzyme linked immunosorbent assay (ELISA), Western blotting, radioimmunoassay (RIA), other immunoassays, fluorescence activated cell analysis (FACS), and HIV viral infection and/or replication as described herein. For RNA-mediated inhibition in a cell line or whole organism, gene expression is conveniently assayed by use of a reporter or drug resistance gene whose protein product is easily assayed. Many such reporter genes are known in the art.

5

10

15

20

25

The phosphodiester linkages of natural RNA may be modified to include at least one of a nitrogen or sulfur heteroatom. Modifications in RNA structure may be tailored to allow specific genetic inhibition while avoiding a general panic response in some organisms which is generated by dsRNA. Likewise, bases may be modified to block the activity of adenosine dearninase. RNA may be produced enzymatically or by partial/total organic synthesis, any modified ribonucleotide can be introduced by *in vitro* enzymatic or organic synthesis.

RNA containing a nucleotide sequences identical to a portion of a particular validated gene sequence are preferred for inhibition. RNA sequences with insertions, deletions, and single point mutations relative to the target sequence may be effective for inhibition. Sequence identity may optimized by sequence comparison and alignment algorithms known in the art (see Gribskov and Devereux, Sequence Analysis Primer, Stockton Press, 1991, and references cited therein) and calculating the percent difference between the nucleotide sequences by, for example, the Smith-Waterman algorithm as implemented in the BESTFIT software program using default parameters (e.g., University of Wisconsin Genetic Computing Group). Greater than 90% sequence identity, or even 100% sequence identity, between the inhibitory RNA and the portion of particular validated gene sequence is preferred. Alternatively, the duplex region of the RNA may be defined functionally as a nucleotide sequence that is capable of hybridizing with a portion of the particular validated gene transcript (e.g., 400 mM NaCl, 40 mM PIPES pH 6.4, 1 mM EDTA, 50°C. or 70°C. hybridization for 12-16 hours; followed by washing). The length of the identical nucleotide sequences may be at least 20, 25, 50, 100, 200, 300 or 400 bases.

A 100% sequence identity between the RNA and a particular validated gene sequence is not required to practice the present invention. Thus the methods have the advantage of being able to tolerate sequence variations that might be expected due to genetic mutation, strain polymorphism, or evolutionary divergence.

5

10

15

20

25

Particular validated gene sequence siRNA may be synthesized by art-recognized methods either in vivo or in vitro. Endogenous RNA polymerase of the cell may mediate transcription in vivo, or cloned RNA polymerase can be used for transcription in vivo or in vitro. For transcription from a transgene in vivo or an expression construct, a regulatory region (e.g., promoter, enhancer, silencer, splice donor and acceptor, polyadenylation) may be used to transcribe the RNA strand (or strands). Inhibition may be targeted by specific transcription in an organ, tissue, or cell type; stimulation of an environmental condition (e.g., infection, stress, temperature, chemical inducers); and/or engineering transcription at a developmental stage or age. The RNA strands may or may not be polyadenylated; the RNA strands may or may not be capable of being translated into a polypeptide by a cell's translational apparatus.

RNA may be chemically or enzymatically synthesized by manual or automated reactions. The RNA may be synthesized by a cellular RNA polymerase or a bacteriophage RNA polymerase (e.g., T3, T7, SP6). The use and production of an expression construct are known in the art (e.g., WO 97/32016; U.S. Pat. Nos: 5,593,874, 5,698,425, 5,712,135, 5,789,214, and 5,804,693; and the references cited therein). If synthesized chemically or by in vitro enzymatic synthesis, the RNA may be purified prior to introduction into the cell. For example, RNA can be purified from a mixture by extraction with a solvent or resin, precipitation, electrophoresis, chromatography, or a combination thereof. Alternatively, the RNA may be used with no or a minimum of purification to avoid losses due to sample processing. The RNA may be dried for storage or dissolved in an aqueous solution. The solution may contain buffers or salts to promote annealing, and/or stabilization of the duplex strands.

siRNA may be directly introduced into the cell (i.e., intracellularly); or introduced extracellularly into a cavity, interstitial space, into the circulation of an organism, introduced

orally, or may be introduced by bathing an organism in a solution containing the RNA. Methods for oral introduction include direct mixing of the RNA with food of the organism, as well as engineered approaches in which a species that is used as food is engineered to express the RNA, then fed to the organism to be affected. For example, the RNA may be sprayed onto a plant or a plant may be genetically engineered to express the RNA in an amount sufficient to kill some or all of a pathogen known to infect the plant. Physical methods of introducing nucleic acids, for example, injection directly into the cell or extracellular injection into the organism, may also be used. Vascular or extravascular circulation, the blood or lymph system, and the cerebrospinal fluid are sites where the RNA may be introduced. A transgenic organism that expresses RNA from a recombinant construct may be produced by introducing the construct into a zygote, an embryonic stem cell, or another multipotent cell derived from the appropriate organism.

5

10

15

20

25

Physical methods of introducing nucleic acids include injection of a solution containing the RNA, bombardment by particles covered by the RNA, soaking the cell or organism in a solution of the RNA, or electroporation of cell membranes in the presence of the RNA. A viral construct packaged into a viral particle would accomplish both efficient introduction of an expression construct into the cell and transcription of RNA encoded by the expression construct. Other methods known in the art for introducing nucleic acids to cells may be used, such as lipid-mediated carrier transport, chemical-mediated transport, such as calcium phosphate, and the like. Thus the RNA may be introduced along with components that perform one or more of the following activities: enhance RNA uptake by the cell, promote annealing of the duplex strands, stabilize the annealed strands, or other-wise increase inhibition of the target gene.

The siRNA may be used alone or as a component of a kit having at least one of the reagents necessary to carry out the *in vitro* or *in vivo* introduction of RNA to test samples or subjects. Preferred components are the dsRNA and a vehicle that promotes introduction of the dsRNA. Such a kit may also include instructions to allow a user of the kit to practice the invention.

Suitable injection mixes are constructed so animals receive an average of 0.5 x 10⁶ to 1.0 x 10⁶ molecules of RNA. For comparisons of sense, antisense, and dsRNA activities, injections are compared with equal masses of RNA (*i.e.*, dsRNA at half the molar concentration of the single strands). Numbers of molecules injected per adult are given as rough approximations based on concentration of RNA in the injected material (estimated from ethidium bromide staining) and injection volume (estimated from visible displacement at the site of injection). A variability of several-fold in injection volume between individual animals is possible.

Proteins and Polypeptides

5

10

15

20

25

In addition to the antisense molecules, siRNA and ribozymes disclosed herein, inventive modulators of HIV-induced gene expression also include proteins or polypeptides that are effective in either reducing validated HIV-induced cellular gene expression or in decreasing one or more of the respective biological activities encoded thereby. A variety of art-recognized methods are used by the skilled artisan, through routine experimentation, to rapidly identify such modulators of HIV-induced gene expression. The present invention is not limited by the following exemplary methodologies.

Inhibitors of HIV-induced biological activities encompass those proteins and/or polypeptides that interfere with said biological activities. Such interference may occur through direct interaction with active domains of the proteins of validated gene targets, or indirectly through non- or un-competitive inhibition such as via binding to an allosteric site. Accordingly, available methods for identifying proteins and/or polypeptides that bind to proteins of validated gene targets may be employed to identify lead compounds that may, through the methodology disclosed herein, be characterized for their inhibitory activity.

Methods for detecting and analyzing protein-protein interactions are described in the art, and are thus available to skilled artisans (reviewed in Phizicky, E.M. et al., Microbiological Reviews (1995) 59:94-123 incorporated herein by reference. Such methods include, but are not limited to physical methods such as, e.g., protein affinity chromatography, affinity blotting,

immunoprecipitation and cross-linking as well as library-based methods such as, e.g., protein probing, phage display and two-hybrid screening. Other methods that may be employed to identify protein-protein interactions include genetic methods such as use of extragenic suppressors, synthetic lethal effects and unlinked noncomplementation. Exemplary methods are described in further detail below.

5

10

15

20

25

Inventive inhibitors of proteins of validated gene targets (validated proteins) may be identified through biological screening assays that rely on the direct interaction between the a validated protein (e.g., SEQ ID NOS:2, 4, 7, and 9) and a panel or library of potential inhibitor proteins. Biological screening methodologies, including the various "n-hybrid technologies," are described in, for example, Vidal, M. et al., Nucl. Acids Res. (1999) 27(4):919-929; Frederickson, R.M., Curr. Opin. Biotechnol. (1998) 9(1):90-6; Brachmann, R.K. et al., Curr. Opin. Biotechnol. (1997) 8(5):561-568; and White, M.A., Proc. Natl. Acad. Sci. U.S.A. (1996) 93:10001-10003 each of which is incorporated herein by reference.

The two-hybrid screening methodology may be employed to search new or existing target cDNA libraries for inhibitory proteins. The two-hybrid system is a genetic method that detects protein-protein interactions by virtue of increases in transcription of reporter genes. The system relies on the fact that site-specific transcriptional activators have a DNA-binding domain and a transcriptional activation domain. The DNA-binding domain targets the activation domain to the specific genes to be expressed. Because of the modular nature of transcriptional activators, the DNA-binding domain may be severed from the otherwise covalently linked transcriptional activation domain without loss of activity of either domain. Furthermore, these two domains may be brought into juxtaposition by protein-protein contacts between two proteins unrelated to the transcriptional machinery. Thus, two hybrids are constructed to create a functional system. The first hybrid, *i.e.*, the bait, consists of a transcriptional activator DNA-binding domain fused to a protein of interest (*e.g.*, SEQ ID NOS:2, 4, 7, and 9, or fragments thereof). The second hybrid, the target, is created by the fusion of a transcriptional activation domain with a library of proteins or polypeptides. Interaction between the bait protein and a member of the target library

results in the juxtaposition of the DNA-binding domain and the transcriptional activation domain and the consequent up-regulation of reporter gene expression.

A variety of two-hybrid based systems are available to the skilled artisan that most commonly employ either the yeast Gal4 or *E. coli* LexA DNA-binding domain (BD) and the yeast Gal4 or herpes simplex virus VP16 transcriptional activation domain. Chien, C.-T. et al., *Proc. Natl. Acad. Sci. U.S.A.* (1991) 88:9578-9582; Dalton, S. et al., *Cell* (1992) 68:597-612; Durfee, T.K. et al., *Genes Dev.* (1993) 7:555-569; Vojtek, A.B. et al., *Cell* (1993) 74:205-214; and Zervos, A.S. et al., *Cell* (1993) 72:223-232. Commonly used reporter genes include the *E. coli lacZ* gene as well as selectable yeast genes such as *HIS3* and *LEU2*. Fields, S. et al., *Nature* (*London*) (1989) 340:245-246; Durfee, T.K., *supra*; and Zervos, A.S., *supra*. A wide variety of activation domain libraries is readily available in the art such that the screening for interacting proteins may be performed through routine experimentation.

5

10

15

20

25

Suitable bait proteins for the identification of inhibitors of validated proteins are designed based on the validated sequences presented herein as SEQ ID NO:2, 4, 7 and 9. Such bait proteins include either the full-length validated protein, or fragments thereof.

Plasmid vectors, such as, e.g., pBTM116 and pAS2-1, for preparing validated protein bait constructs and target libraries are readily available to the artisan and may be obtained from such commercial sources as, e.g., Clontech (Palo Alto, CA), Invitrogen (Carlsbad, CA) and Stratagene (La Jolla, CA). These plasmid vectors permit the in-frame fusion of cDNAs with the DNA-binding domains as LexA or Gal4BD, respectively.

Validated protein inhibitors of the present invention may alternatively be identified through one of the physical or biochemical methods available in the art for detecting protein-protein interactions.

For example, affinity chromatography may be used to identify potential inhibitors of validated proteins, by virtue of specific retention of such potential inhibitors to validated proteins, or to fragments thereof covalently or non-covalently coupled to a solid matrix such as, e.g., Sepharose beads. The preparation of protein affinity columns is described in, for example,

Beeckmans, S. et al., Eur. J. Biochem. (1981) 117:527-535 and Formosa, T. et al., Methods Enzymol. (1991) 208:24-45. Cell lysates containing the full complement of cellular proteins may be passed through a validated protein affinity column. Proteins having a high affinity for the validated protein will be specifically retained under low-salt conditions while the majority of cellular proteins will pass through the column. Such high affinity proteins may be eluted from the immobilized validated protein, or fragment thereof under conditions of high-salt, with chaotropic solvents or with sodium dodecyl sulfate (SDS). In some embodiments, it may be preferred to radiolabel the cells prior to preparing the lysate as an aid in identifying the validated protein-specific binding proteins. Methods for radiolabeling mammalian cells are well known in the art and are provided, e.g., in Sopta, M. et al., J. Biol. Chem. (1985) 260:10353-10360.

5

10

15

20

25

Suitable validated proteins for affinity chromatography may be fused to a protein or polypeptide to permit rapid purification on an appropriate affinity resin. For example, a validated protein cDNA may be fused to the coding region for glutathione S-transferase (GST) which facilitates the adsorption of fusion proteins to glutathione-agarose columns. Smith et al., *Gene* (1988) 67:31-40. Alternatively, fusion proteins may include protein A, which can be purified on columns bearing immunoglobulin G; oligohistidine-containing peptides, which can be purified on columns bearing Ni²⁺; the maltose-binding protein, which can be purified on resins containing amylose; and dihydrofolate reductase, which can be purified on methotrexate columns. One such tag suitable for the preparation of validate protein fusion proteins is the epitope for the influenza virus hemagglutinin (HA) against which monoclonal antibodies are readily available and from which antibodies an affinity column may be prepared.

Proteins that are specifically retained on a validated protein affinity column may be identified after subjecting to SDS polyacrylamide gel electrophoresis (SDS-PAGE). Thus, where cells are radiolabeled prior to the preparation of cell lysates and passage through the validated protein affinity column, proteins having high affinity for the particular validate protein may be detected by autoradiography. The identity of particular validated protein-specific binding proteins may be determined by protein sequencing techniques that are readily available to the

skilled artisan, such as those described by Mathews, C.K. et al., *Biochemistry*, The Benjamin/Cummings Publishing Company, Inc. pp. 166-170 (1990).

Antibodies or Antibody Fragments

5

10

15

20

25

Inhibitors of HIV-induced gene expression of the present invention include antibodies and/or antibody fragments that are effective in reducing HIV-induced gene expression and/or reducing the biological activity encoded thereby. Suitable antibodies may be monoclonal, polyclonal or humanized monoclonal antibodies. Antibodies may be derived by conventional hybridoma based methodology, from antisera isolated from validated protein inoculated animals or through recombinant DNA technology. Alternatively, inventive antibodies or antibody fragments may be identified *in vitro* by use of one or more of the readily available phage display libraries. Exemplary methods are disclosed herein.

In one embodiment of the present invention, validated protein inhibitors are monoclonal antibodies that may be produced as follows. Validated proteins (e.g., SEQ ID NOS:2, 4, 7 and 9) may be produced, for example, by expression of the respective cDNAs (e.g., SEQ ID NOS:1, 3, 5, 6, and 8, respectively) in a baculovirus based system. By this method, validated protein cDNAs (SEQ ID NOS:1, 3, 5, 6, and 8) or epitope-bearing fragments thereof are ligated into a suitable plasmid vector that is subsequently used to transfect Sf9 cells to facilitate protein production. In addition, it may be advantageous to incorporate an epitope tag or other moiety to facilitate affinity purification of the validated protein. Clones of Sf9 cells expressing a particular validated protein are identified, e.g., by enzyme-linked immunosorbant assay (ELISA), lysates are prepared and the validated protein purified by affinity chromatography. The purified validated protein is, for example, injected intraperitoneally, into BALB/c mice to induce antibody production. It may be advantageous to add an adjuvant, such as Freund's adjuvant, to increase the resulting immune response.

Serum is tested for the production of specific antibodies, and spleen cells from animals having a positive specific antibody titer are used for cell fusions with myeloma cells to generate

hybridoma clones. Supernatants derived from hybridoma clones are tested for the presence of monoclonal antibodies having specificity against a particular validated protein (e.g., SEQ ID NO:2, 4, 7, and 9, or fragments thereof). For a general description of monoclonal antibody methodology, See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory (1988).

5

10

15

20

25

In addition to the baculovirus expression system, other suitable bacterial or yeast expression systems may be employed for the expression of a particular validated protein or polypeptides thereof. As with the baculovirus system, it may be advantageous to utilize one of the commercially available affinity tags to facilitate purification prior to inoculation of the animals. Thus, the a validated protein cDNA or fragment thereof may be isolated by, e.g., agarose gel purification and ligated in frame with a suitable tag protein such as 6-His, glutathione-S-transferase (GST) or other such readily available affinity tag. See, e.g., Molecular Biotechnology: Principles and Applications of Recombinant DNA, ASM Press pp. 160-161 (ed. Glick, B.R. and Pasternak, J.J. 1998).

In other embodiments of the present invention, inhibitors of validated proteins are humanized anti-validated protein monoclonal antibodies. The phrase "humanized antibody" refers to an antibody derived from a non-human antibody—typically a mouse monoclonal antibody. Alternatively, a humanized antibody may be derived from a chimeric antibody that retains or substantially retains the antigen-binding properties of the parental, non-human, antibody but which exhibits diminished immunogenicity as compared to the parental antibody when administered to humans. The phrase "chimeric antibody," as used herein, refers to an antibody containing sequence derived from two different antibodies (see, e.g., U.S. Patent No. 4,816,567) which typically originate from different species. Most typically, chimeric antibodies comprise human and murine antibody fragments, generally human constant and mouse variable regions.

Because humanized antibodies are far less immunogenic in humans than the parental mouse monoclonal antibodies, they can be used for the treatment of humans with far less risk of

anaphylaxis. Thus, these antibodies may be preferred in therapeutic applications that involve in vivo administration to a human such as, e.g., use as radiation sensitizers for the treatment of neoplastic disease or use in methods to reduce the side effects of, e.g., cancer therapy.

5

10

15

20

25

Humanized antibodies may be achieved by a variety of methods including, for example: (1) grafting the non-human complementarity determining regions (CDRs) onto a human framework and constant region (a process referred to in the art as "humanizing"), or, alternatively, (2) transplanting the entire non-human variable domains, but "cloaking" them with a human-like surface by replacement of surface residues (a process referred to in the art as "veneering"). In the present invention, humanized antibodies will include both "humanized" and "veneered" antibodies. These methods are disclosed in, e.g., Jones et al., Nature (1986) 321:522-525; Morrison et al., Proc. Natl. Acad. Sci., U.S.A., (1984) 81:6851-6855; Morrison and Oi, Adv. Immunol. (1988) 44:65-92; Verhoeyer et al., Science (1988) 239:1534-1536; Padlan, Molec. Immunol. (1991) 28:489-498; Padlan, Molec. Immunol. (1994) 31(3):169-217; and Kettleborough, C.A. et al., Protein Eng. (1991) 4:773-83 each of which is incorporated herein by reference.

The phrase "complementarity determining region" refers to amino acid sequences which together define the binding affinity and specificity of the natural Fv region of a native immunoglobulin binding site. See, e.g., Chothia et al., J. Mol. Biol. (1987) 196:901-917; Kabat et al., U.S. Dept. of Health and Human Services NIH Publication No. 91-3242 (1991). The phrase "constant region" refers to the portion of the antibody molecule that confers effector functions. In the present invention, mouse constant regions are substituted by human constant regions. The constant regions of the subject humanized antibodies are derived from human immunoglobulins. The heavy chain constant region can be selected from any of the five isotypes: alpha, delta, epsilon, gamma or mu.

One method of humanizing antibodies comprises aligning the non-human heavy and light chain sequences to human heavy and light chain sequences, selecting and replacing the nonhuman framework with a human framework based on such alignment, molecular modeling to predict the conformation of the humanized sequence and comparing to the conformation of the parent antibody. This process is followed by repeated back mutation of residues in the CDR region which disturb the structure of the CDRs until the predicted conformation of the humanized sequence model closely approximates the conformation of the non-human CDRs of the parent non-human antibody. Such humanized antibodies may be further derivatized to facilitate uptake and clearance, e.g., via Ashwell receptors (see, e.g., U.S. Patent Nos. 5,530,101 and 5,585,089, both incorporated herein by reference.

5

10

15

20

25

Humanized antibodies to a particular validated protein can also be produced using transgenic animals that are engineered to contain human immunoglobulin loci. For example, WO 98/24893 discloses transgenic animals having a human Ig locus wherein the animals do not produce functional endogenous immunoglobulins due to the inactivation of endogenous heavy and light chain loci. WO 91/10741 also discloses transgenic non-primate mammalian hosts capable of mounting an immune response to an immunogen, wherein the antibodies have primate constant and/or variable regions, and wherein the endogenous immunoglobulin-encoding loci are substituted or inactivated. WO 96/30498 discloses the use of the Cre/Lox system to modify the immunoglobulin locus in a mammal, such as to replace all or a portion of the constant or variable region to form a modified antibody molecule. WO 94/02602 discloses non-human mammalian hosts having inactivated endogenous Ig loci and functional human Ig loci. U.S. Patent No. 5,939,598 discloses methods of making transgenic mice in which the mice lack endogenous heavy claims, and express an exogenous immunoglobulin locus comprising one or more xenogeneic constant regions.

Using a transgenic animal described above, an immune response can be produced to a selected antigenic molecule (e.g., validated protein or fragment thereof), and antibody-producing cells can be removed from the animal and used to produce hybridomas that secrete human monoclonal antibodies. Immunization protocols, adjuvants, and the like are known in the art, and are used in immunization of, for example, a transgenic mouse as described in WO 96/33735. This publication discloses monoclonal antibodies against a variety of antigenic molecules including IL-6, IL-8, TNFα, human CD4, L-selectin, gp39, and tetanus toxin. The monoclonal

antibodies can be tested for the ability to inhibit or neutralize the biological activity or physiological effect of the corresponding protein. WO 96/33735 discloses that monoclonal antibodies against IL-8, derived from immune cells of transgenic mice immunized with IL-8, blocked IL-8-induced functions of neutrophils. Human monoclonal antibodies with specificity for the antigen used to immunize transgenic animals are also disclosed in WO 96/34096.

5

10

15

20

25

For purposes of the present invention, validated polypeptides and variants thereof are used to immunize a transgenic animal as described above. Monoclonal antibodies are made using methods known in the art, and the specificity of the antibodies is tested using isolated validated polypeptides. The suitability of the antibodies for clinical use is tested by, for example, exposing HIV-infected THP1 or MT-2 cells to the antibodies and measuring cell growth and/or phenotypic changes. According to the invention, inhibition of HIV-induced gene sequence expression using antisense oligonucleotides specific for validated HIV-induced polynucleotides causes an inhibition of HIV replication in THP1 and MT-2 cells. Human monoclonal antibodies specific for a particular validated protein, or for a variant or fragment thereof can be tested for their ability to inhibit HIV replication. Such antibodies would be suitable for pre-clinical and clinical trials as pharmaceutical agents for preventing or controlling HIV-mediated effects, conditions or diseases.

It will be appreciated that alternative validated protein inhibitor antibodies may be readily obtained by other methods commonly known in the art. One exemplary methodology for identifying antibodies having a high specificity for a particular validated protein is the phage display technology.

Phage display libraries for the production of high-affinity antibodies are described in, for example, Hoogenboom, H.R. et al., *Immunotechnology* (1998) 4(1):1-20; Hoogenboom, H.R., *Trends Biotechnol.* (1997) 15:62-70 and McGuinness, B. et al., *Nature Bio. Technol.* (1996) 14:1149-1154 each of which is incorporated herein by reference. Among the advantages of the phage display technology is the ability to isolate antibodies of human origin that cannot

otherwise be easily isolated by conventional hybridoma technology. Furthermore, phage display antibodies may be isolated *in vitro* without relying on an animal's immune system.

Antibody phage display libraries may be accomplished, for example, by the method of McCafferty et al., *Nature* (1990) 348:552-554 which is incorporated herein by reference. In short, the coding sequence of the antibody variable region is fused to the amino terminus of a phage minor coat protein (pIII). Expression of the antibody variable region-pIII fusion construct results in the antibody's "display" on the phage surface with the corresponding genetic material encompassed within the phage particle.

5

10

15

20

25

A validated protein, or fragment thereof suitable for screening a phage library may be obtained by, for example, expression in baculovirus Sf9 cells as described, *supra*. Alternatively, the validated protein coding region may be PCR amplified using primers specific to the desired region of the validated protein. As discussed above, the validated protein may be expressed in *E. coli* or yeast as a fusion with one of the commercially available affinity tags.

The resulting fusion protein may then be adsorbed to a solid matrix, e.g., a tissue culture plate or bead. Phage expressing antibodies having the desired anti-validated protein binding properties may subsequently be isolated by successive panning, in the case of a solid matrix, or by affinity adsorption to a validated protein antigen column. Phage having the desired validated protein inhibitory activities may be reintroduced into bacteria by infection and propagated by standard methods known to those skilled in the art. See Hoogenboom, H.R., Trends Biotechnol., supra for a review of methods for screening for positive antibody-plII phage.

Small Molecules and High-throughput Screening (HTS) Assays

The present invention also provides small molecule modulators of HIV infection and/or replication (or of HIV-related effects) that may be readily identified through routine application of high-throughput screening (HTS) methodologies. *Reviewed by* Persidis, A., *Nature Biotechnology* (1998) 16:488-489. HTS methods generally permit the rapid screening of test compounds, such as small molecules, for therapeutic potential. HTS methodology employs

robotic handling of test materials, detection of positive signals and interpretation of data. Such methodologies include, e.g., robotic screening technology using soluble molecules as well as cell-based systems such as the two-hybrid system described in detail above.

A variety of cell line-based HTS methods are available that benefit from their ease of manipulation and clinical relevance of interactions that occur within a cellular context as opposed to in solution. Test compounds are be identified via incorporation of radioactivity or through optical assays that rely on absorbance, fluorescence or luminescence as read-outs. See, e.g., Gonzalez, J.E. et al., Curr. Opin. Biotechnol. (1998) 9(6):624-631 incorporated herein by reference.

5

10

15

20

25

HTS methodology is employed, e.g., to screen for test compounds that modulate or block one of the biological activities of a validated protein (i.e., a protein encoded by validated HIV-induced cellular gene expression). For example, a validated protein may be immunoprecipitated from cells expressing the protein and applied to wells on an assay plate suitable for robotic screening. Individual test compounds are contacted with the immunoprecipitated protein and the effect of each test compound on an activity of the validated protein is assessed. For example, if the particular validated protein has kinase activity, the effect of a particular test compound on the kinase is assessed by, e.g., incubating the corresponding immunopreciped protein in contact with the particular test compound in the presence of γ -32P-ATP in a suitable buffer system, and measuring the incorporation of ³²P.

Both small molecule agonists and antagonists of particular validated proteins (SEQ ID NOS:2, 4, 7, and 9) are encompassed within the scope of the present invention.

Particular embodiments provide a method for inhibiting HIV infection and/or replication comprising administration of an *src* family kinase inhibitor selected from the group consisting of *src* family kinase-specific antisense RNA, *src* family kinase-specific siRNA, and a small molecule inhibitor of a *src* family kinase.

Preferably, the *src* family kinase is c-yes kinase (SEQ ID NOS:8 and 9). Preferably, the inhibitor is compound having the structure of Formula I, or Formula II, or salts thereof:

Preferably, for Formula 1, R₁ is halogen, and R₂, R₃ and R₄ are independently a C1-C3 straight or branched alkyl. Preferably, for Formula II, R₁ is -SO₂N(CH₃)₂, or -SO₂NH₂. Preferably, the inhibitor is 4-Amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2). Preferably, the inhibitor is 2-oxo-3-(4,5,6,7-tetrahydro-1*H*-indol-2-ylmethylene)-2,3-dihydro-1*H*-indole-5-sulfonic acid dimethylamide (SU6656).

5

10

Preferably, HIV-infected THP1 or MT-2 cells are used in inventive screening assays for therapeutic compounds (see EXAMPLE 4, herein below).

Methods for Assessing the Efficacy of Modulators of either HIV-induced Gene Expression or of Biological Activity Encoded thereby

Inventive modulators or compounds, whether antisense molecules, siRNA, or ribozymes, proteins and/or peptides, antibodies and/or antibody fragments or small molecules, that are identified either by one of the methods described herein or via techniques that are otherwise available in the art, may be further characterized in a variety of *in vitro*, *ex vivo* and *in vivo* animal model assay systems for their ability to modulate or inhibit HIV-induced gene expression or biological activity. As discussed in further detail in the EXAMPLES 1-4 provided below, particular inventive modulators of HIV-induced gene expression are antisense inhibitors effective in reducing HIV-induced cellular gene expression levels. Thus, the present invention describes, teaches and supports methods that permit the skilled artisan to assess the effect of candidate modulators and inhibitors.

5

10

15

20

25

For example, candidate modulators or inhibitors of SIV-induced gene expression are tested by administration of such candidate modulators to cells that express HIV-induced genes and gene products, such as HIV-infected THP1 or MT-2 cells in the inventive HIV replication assay system. HIV-infected mammalian cells may also be engineered to express a given HIV-induced gene or recombinant reporter molecule introduced into such cells with a recombinant HIV-inducible gene plasmid construct.

Effective modulators of HIV-induced gene expression that are inhibitors will be effective in reducing the levels of HIV-induced gene mRNA as determined, e.g., by Northern blot or RT-PCR analysis. For a general description of these procedures, see, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual Cold Spring Harbor Press (1989) and Molecular Biotechnology: Principles and Applications of Recombinant DNA, ASM Press (ed. Glick, B.R. and Pasternak, J.J. 1998) incorporated herein by reference. The effectiveness of a given candidate antisense molecule may be assessed by comparison with a control 'antisense' molecule (e.g., a reverse complement control oligonucleotide, corresponding in orientation and size to the coding sequence complementary to the candidate antisense molecule) known to have no substantial effect on HIV-induced gene expression when administered to a mammalian cell. Exemplary control molecules include HIV-inducible gene sequence-specific reverse complement

oligonucleotides corresponding to one of the inventive antisense molecules described herein above, or to preferred representative thereof (e.g., reverse complement control oligonucleotides for SEQ ID NOS:10-14).

In alternate embodiments of the present invention, the effect of modulators and inhibitors of HIV-induced gene expression on the rate of DNA synthesis after challenge with a radiation or chemotherapeutic agent may be assessed by, e.g., the method of Young and Painter. Hum. Genet. (1989) 82:113-117. Briefly, culture cells may be incubated in the presence of ¹⁴C-thymidine prior to exposure to, e.g., X-rays. Immediately after irradiation, cells are incubated for a short period prior to addition of ³H-thymidine. Cells are washed, treated with perchloric acid and filtered (Whatman GF/C). The filters are rinsed with perchloric acid, 70% alcohol and then 100% ethanol; radioactivity is measured and the resulting ³H/¹⁴C ratios used to determine the rates of DNA synthesis.

Modulators or inhibitors of HIV-induced gene expression effective in modulating or reducing HIV-induced cellular gene expression by one or more of the methods discussed above are further characterized *in vivo* for efficacy one or more available art-recognized animal model systems (e.g., SIV model). Various animal model systems for study of cancer and genetic instability associated genes are disclosed in, for example, Donehower, L.A. Cancer Surveys (1997) 29:329-352 incorporated herein by reference. In particular, various art-recognized animal model systems for testing PMO antisense oligonucleotide agents, including xenograft murine models are discussed Devi, Current Opinion in Molecular Therapeutics, 4:138-148, 2002, incorporated by reference herein.\

Pharmaceutical Compositions

5

10

15

20

25

The antisense oligonucleotides and ribozymes of the present invention are synthesized by any method known in the art for ribonucleic or deoxyribonucleic nucleotides. For example, the oligonucleotides are prepared using solid-phase synthesis such as in an Applied Biosystems 380B DNA synthesizer. Final purity of the oligonucleotides is determined as is known in the art.

The antisense oligonucleotides identified using the methods of the invention modulate cancer cell proliferation, including anchorage-independent proliferation, and also modulate HIV-mediated phenotypic changes, including spindle formation.

Therefore, pharmaceutical compositions and methods are provided for interfering with HIV infection and/or replication, or for HIV-related conditions or diseases, comprising contacting tissues or cells with one or more of antisense oligonucleotides or siRNA identified using the methods of the invention. Preferably, an antisense oligonucleotide having one of SEQ ID NOS:10-14, or preferably SEQ ID NOS:10-13, is administered. Preferably, the antisense oligonucleotide is a PMO antisense oligomer (PMO).

5

10

15

20

25

30

The methods and compositions may also be used to treat other HIV-associated conditions and disorders known in the art.

The invention provides pharmaceutical compositions of antisense oligonucleotides, siRNA and ribozymes complementary to validated HIV-induced cellular gene mRNA gene sequences, corresponding to SEQ ID NOS:1, 3, 5, 6, and 8, and complements thereof as active ingredients for therapeutic application. These compositions can also be used in the methods of the present invention. Where required the compounds are nuclease resistant. In general the pharmaceutical composition for modulating HIV-mediated cellular proliferation or phenotype in a mammal includes an effective amount of at least one antisense oligonucleotide (or siRNA agent, etc) as described above needed for the practice of the invention, or a fragment thereof shown to have the same effect, and a pharmaceutically physiologically acceptable carrier or diluent.

Particular embodiments provide a method for reducing HIV infection and/or replication in a subject comprising administering an amount of an antisense oligonucleotide (or siRNA agent) of the invention effective to reduce said HIV infection and/or replication Preferably the antisense oligomer (siRNA) is based on one of SEQ ID NOS:1, 3, 5, 6, and 8. More preferably the antisense oligonucleotide is one of SEQ ID NOS:10-13.

The pharmaceutical composition for inhibiting HIV infection and/or replication in cells in a mammal consists of an effective amount of at least one active ingredient selected from siRNA agents, or antisense oligonucleotides complementary to the HIV-induced cellular gene mRNA, including the entire HIV-induced gene mRNA or having shorter sequences as set forth in SEQ ID

NOS:15-21, and a pharmaceutically acceptable carrier or diluent. Combinations of the active ingredients are contemplated and encompassed within the scope of the invention.

The compositions can be administered orally, subcutaneously or parenterally including intravenous, intraarterial, intramuscular, intraperitoneally, and intranasal administration as well as intrathecal and infusion techniques as required by the cells being treated. For delivery within the CNS, intrathecal delivery can be used with for example an Ommaya reservoir or other methods known in the art. The pharmaceutically acceptable carriers, diluents, adjuvants and vehicles as well as implant carriers generally refer to inert, non-toxic solid or liquid fillers, diluents or encapsulating material not reacting with the active ingredients of the invention. Cationic lipids may also be included in the composition to facilitate oligonucleotide uptake. Implants of the compounds are also useful. In general, the pharmaceutical compositions are sterile.

5

10

15

20

25

In the method of the present invention, HIV-related cells are contacted with an efficacious amount of the bioactive antisense oligonucleotide (or siRNA agent) for the HIV-induced cellular gene mRNA or a fragment thereof shown to have substantially the same effect. In an embodiment, the mammal to be treated is human but other mammalian species can be treated in veterinary applications.

Bioactivity, relating to a particular oligonucleotide modulator, refers to biological activity in the cell when the oligonucleotide modulator is delivered directly to the cell and/or is expressed by an appropriate promotor and active when delivered to the cell in a vector as described below. Nuclease resistance of particular modulators is provided by any method known in the art that does not substantially interfere with biological activity as described herein.

Significantly, PMO chemistry is not RNase H competent (discussed in Devi, Current Opinion in Molecular Therapeutics, 4:138-148, 2002).

"Contacting the cell" refers to methods of exposing, delivery to, or 'loading' of a cell of antisense oligonucleotides whether directly or by viral or non-viral vectors, and where the antisense oligonucleotide is bioactive upon delivery. The method of delivery will be chosen for the particular cell type being treated. Parameters that affect delivery can include the cell type affected and its location as is known in the medical art.

The treatment generally has a length proportional to the length of the disease process and drug effectiveness and the patient species being treated. It is noted that humans are treated generally longer than the Examples exemplified herein, which treatment has a length proportional to the length of the disease process and drug effectiveness. The doses may be single doses or multiple doses as determined by the medical practitioners and treatment courses will be repeated as necessary until diminution of the disease is achieved. Optimal dosing schedules may be calculated using measurements of drug accumulation in the body. Practitioners of ordinary skill in the art can readily determine optimum dosages, dosing methodologies, and repetition rates. Optimum dosages may vary depending on the relative potency of the antisense oligonucleotide (or siRNA agent), and can generally be determined based on values in *in vitro* and *in vivo* animal studies and clinical trials. Variations in the embodiments used may also be utilized. The amount must be effective to achieve improvement including but not limited to decreased infection, viral replication, or to improved survival rate or length or decreased drug resistance or other indicators as are selected as appropriate measures by those skilled in the art.

5

10

15

20

25

Although particular inventive antisense oligonucleotides (or siRNA agents) may not completely abolish HIV infection and/or replication, or other HIV-induced effects in vitro, as exemplified herein, these antisense compounds and agents are nonetheless clinically useful where they inhibit HIV-related infection, and/or replication, etc., enough to allow complementary treatments, such as chemotherapy, radiation therapy, or other drug therapies to be effective or more effective. The pharmaceutical compositions of the present invention therefore are administered singly or in combination with other drugs, such as HIV inhibitory agents (AZT, etc.), cytotoxic agents, immunotoxins, alkylating agents, anti-metabolites, antitumor antibiotics and other anti-cancer drugs and treatment modalities that are known in the art.

Cocktails of antisense inhibitors directed against several HIV-induced gene sequences are contemplated and within the scope of the present invention.

The composition is administered and dosed in accordance with good medical practice taking into account the clinical condition of the individual patient, the site and method of administration, scheduling of administration, and other factors known to medical practitioners. The "effective amount" for HIV inhibition is thus determined by such considerations as are

known in the art. The pharmaceutical composition may contain more than one embodiment or modulator of the present invention.

The nucleotide sequences of the present invention can be delivered either directly or with viral or non-viral vectors. When delivered directly the sequences are generally rendered nuclease resistant. Alternatively, the sequences can be incorporated into expression cassettes or constructs such that the sequence is expressed in the cell. Generally, the construct contains the proper regulatory sequence or promoter to allow the sequence to be expressed in the targeted cell.

5

10

15

20

25

30

Once the oligonucleotide sequences are ready for delivery, they can be introduced into cells as is known in the art (see, e.g., Devi, Current Opinion in Molecular Therapeutics, 4:138-148, 2002). Transfection, electroporation, fusion, liposomes, colloidal polymeric particles and viral vectors as well as other means known in the art may be used to deliver the oligonucleotide sequences to the cell. The method selected will depend at least on the cells to be treated and the location of the cells and will be known to those skilled in the art. Localization can be achieved by liposomes, having specific markers on the surface for directing the liposome, by having injection directly into the tissue containing the target cells, by having depot associated in spatial proximity with the target cells, specific receptor mediated uptake, viral vectors, or the like.

Administration and clinical dosing of PMO antisense therapeutic agents is discussed, for example, in Devi, *supra*, and in Arora et al. *Journal of Pharmaceutical Sciences*, 91:1009-1018, 2001, both incorporated by reference herein.

The present invention provides vectors comprising an expression control sequence operatively linked to the oligonucleotide sequences of the invention. The present invention further provides host cells, selected from suitable eukaryotic and prokaryotic cells, which are transformed with these vectors as necessary. Such transformed cells allow the study of the function and the regulation of malignancy and the treatment therapy of the present invention.

Vectors are known or can be constructed by those skilled in the art and should contain all expression elements necessary to achieve the desired transcription of the sequences. Other beneficial characteristics can also be contained within the vectors such as mechanisms for recovery of the oligonucleotides in a different form. Phagemids are a specific example of such beneficial vectors because they can be used either as plasmids or as bacteriophage vectors.

Examples of other vectors include viruses such as bacteriophages, baculoviruses and retroviruses, DNA viruses, liposomes and other recombination vectors. The vectors can also contain elements for use in either prokaryotic or eukaryotic host systems. One of ordinary skill in the art will know which host systems are compatible with a particular vector.

5

10

15

20

25

30

The vectors can be introduced into cells or tissues by any one of a variety of known methods within the art. Such methods can be found generally described in Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Springs Harbor Laboratory, New York (1989, 1992), in Ausubel et al., Current Protocols in Molecular Biology, John Wiley and Sons, Baltimore, Md. (1989), Chang et al., Somatic Gene Therapy, CRC Press, Ann Arbor, Mich. (1995), Vega et al., Gene Targeting, CRC Press, Ann Arbor, Mich. (1995), Vectors: A Survey of Molecular Cloning Vectors and Their Uses, Butterworths, Boston Mass. (1988) and Gilboa et al., BioTechniques (1986) 4:504-512 and include, for example, stable or transient transfection, lipofection, electroporation and infection with recombinant viral vectors.

Recombinant methods known in the art can also be used to achieve the antisense inhibition (or siRNA mediated inhibition) of a validated target nucleic acid. For example, vectors containing antisense nucleic acids can be employed to express an antisense message to reduce the expression of the validated target nucleic acid and therefore its activity.

The present invention also provides a method of evaluating if a compound inhibits transcription or translation of an HIV-induced cellular gene sequence, and thereby modulates (i.e., reduces) viral infection, replication, cell proliferation or phenotypic differentiation, comprising transfecting a cell with an expression vector comprising a nucleic acid sequence encoding a HIV-induced cellular gene sequence, the necessary elements for the transcription or translation of the nucleic acid; administering a test compound; and comparing the level of expression of the HIV-induced cellular gene sequence with the level obtained with a control in the absence of the test compound. Alternatively, as is shown in the Examples herein, such an expression vector is not required, and test compounds are administered to HIV-infected cells, such as HIV-infected THP1 or MT-2 cells.

The present invention provides detectably labeled oligonucleotides for imaging HIV-induced cellular gene sequences (polynucleotides) within a cell. Such oligonucleotides are useful for determining if gene amplification has occurred, for assaying the expression levels in a

cell or tissue using, for example, in situ hybridization as is known in the art, and for diagnostic and/or prognostic purposes.

Diagnostic and/or Prognostic Assays for HIV and HIV-related conditions or diseases

5

10

15

20

25

30

The present invention provides for diagnostic and/or prognostic cancer assays based on differential measurement of validated HIV-induced gene expression. Preferred validated HIV-induced gene sequences are represented herein by SEQ ID NOS:1, 3, 5, 6, and 8, and complements thereof, along with the corresponding gene products SEQ ID NOS:2, 4, 7 and 9, and combinations thereof.

Typically, such assays involve obtaining a tissue sample from a test tissue, performing an assay to measure expression of at least one validated HIV-induced gene product (e.g., mRNA or protein encoded thereby) derived from the tissue sample, relative to a control sample, and making a diagnosis or prognosis based, at least in part, thereon.

In particular embodiments the present inventive oligomers, such as those based on validated SEQ ID NOS:1, 3, 5, 6, and 8, and complements thereof, or preferably SEQ ID NOS:10-13, or arrays comprising any of the preceding validated sequences or gene products, as well as a kit based thereon are useful for the diagnosis and/or prognosis of HIV infection and/or replication, or other HIV-related cell disorders, conditions or diseases.

The present invention moreover relates to a method for manufacturing a diagnostic agent and/or therapeutic agent for HIV diagnosis and/or therapy of HIV-related conditions or diseases, the diagnostic agent and/or therapeutic agent being characterized in that at least one inventive validated modulator of HIV-induced gene expression is used for manufacturing it, possibly together with suitable additives and ancillary agents.

Diagnostic kits are also contemplated, comprising at least one primer and/or probe specific for a validated HIV-induced cellular gene sequence according to the present invention, possibly together with suitable additives and ancillary agents.

While the present invention has been described with specificity in accordance with certain of its preferred embodiments, the following examples serve only to illustrate the invention and are not intended to limit the invention.

EXAMPLE 1

(HIV-infected THP1 and MT-2 cells are a valid in vivo model system for HIV replication)

5

10

15

20

25

The HIV-1 strain used in the model system was the 89.6 strain. This is a dual tropic (X4/R5) HIV strain, meaning that it can infect cells utilizing CD4 and either the CXCR4 or the CCR5 co-receptor. Thus, both T cells (e.g., MT-2) and macrophages (e.g., THP-1) are susceptible to infection by the same virus strain. HIV-1 89.6 was originally provided by the investigator who isolated and characterized it, Dr Ronald Collman (Collman et al, J. Virology 66:7517, 1992). Applicant's expanded the virus by culture in PBMC, and concentrated it for use in the inventive system as described in EXAMPLE 2, herein below.

HIV-infected THP-1 and MT-2 cells. The cell lines selected for use herein include the monocyte line THP-1 and the T cell leukemia cell line MT-2.

The THP-1 cell line is CD4+, highly permissive for HIV infection, and has been used by numerous investigators for studying various aspects of HIV biology, either prior to or in concert with examination of primary cells. Reference to the HIV literature over the past 6 months reveals several studies of HIV biology and therapeutics that underscore this point: Briquet & Vaquero, *Virology* 292:177-84, 2002 (Immunolocalization studies of an antisense protein in HIV-1-infected cells and viral particles); Branch, D. R. et al.. *Aids* 16:309-19, 2002 (VPAC1 is a cellular neuroendocrine receptor expressed on T cells that actively facilitates productive HIV-1 infection); Nguyen & Taub,. *J Immunol* 168:4121-6 (CXCR4 function requires membrane cholesterol: implications for HIV infection); Ho, W. Z., et al., *Faseb J* 16:616-8, 2002 (HIV enhances substance P expression in human immune cells); Hayes, M. M., et al., *J Biol Chem* 277:16913-9, 2002 (Peroxisome proliferator-activated receptor gamma agonists inhibit HIV-1 replication in macrophages by transcriptional and post-transcriptional effects); Lenardo, M. J. et al. *J Virol* 76:5082-93, 2002 (Cytopathic killing of peripheral blood CD4(+) T lymphocytes by human immunodeficiency virus type 1 appears necrotic rather than apoptotic and does not require env.); Bolton, D. L. et al.. *J Virol* 76:5094-107, 2002 (Death of CD4(+) T-cell lines

caused by human immunodeficiency virus type 1 does not depend on caspases or apoptosis); Alfano, M., et al., *Proc Natl Acad Sci U S A* 99:8862-7, 2002 (Urokinase-urokinase receptor interaction mediates an inhibitory signal for HIV-1 replication); Wu, L., Martin, et al., *J Virol* 76:5905-14, 2002 (Functional evaluation of DC-SIGN monoclonal antibodies reveals DC-SIGN interactions with ICAM-3 do not promote human immunodeficiency virus type 1 transmission); Mautino & Morgan, *Hum Gene Ther* 13:1027-37, 2002 (Enhanced inhibition of human immunodeficiency virus type 1 replication by novel lentiviral vectors expressing human immunodeficiency virus type 1 envelope antisense RNA).

5

10

15

20

25

Reduced biological noise and the capacity to infect the majority of cells in culture are both important details for a relevant array-based analysis of the effect of HIV infection, and both of these parameters have been achieved by the use of this CD4+ cell line. THP-1 cells were obtained from the American Type Culture Collection (Manassas, VA). They are currently available for our use as multiple age- and passage-matched cryopreserved aliquots. All cell lines are maintained as suspension cultures in vented T75 tissue culture flasks at densities of 5×10^6 to 5×10^7 cells/ml in RPMI supplemented with 2mM glutamine, penicillin/streptomycin and 10% FBS. Following treatment with TPA, THP-1 cells differentiate into adherent macrophage-like cells and are cultured in 60mm tissue culture-treated dishes.

Additionally, the T cell line "MT-2" was used. MT-2 is a human T cell leukemia cell line that can be grown in suspension and, like THP-1 cells, are very susceptible to acute infection with HIV. The cells can be efficiently loaded with antisense oligonucleotides. In addition, they have been shown by other investigators to provide a sensitive and reproducible system to test antiviral agents (see, e.g., Haertle et al, J. Biol. Chem. 263:5870-5875, 1988). MT-2 cells are available through the NIH AIDS Research and Reference Reagent Program.

HIV-infected THP-1 cells. HIV-infected THP-1 cells were used as an *in vitro* model for examining cellular gene expression during the HIV replication cycle. The HIV-1 89.6 was initially grown in PBMC, and concentrated using Amicon membranes prior to use for infection of THP-1 cells. Briefly, as the goal of the present studies was to profile cellular gene expression

over the course of a complete viral replication cycle, the protocol called for synchronous infection of the majority of cells in culture, with multiple samplings over the first 48 hours post-infection (PI). Since the number of target cells required to yield sufficient RNA for gene profiling at multiple times PI is high (> 10^8), synchronous infection of such cell numbers requires high titer virus stocks. However, virus titers derived from PBMC supernatants are typically only in the region of 1×10^5 to 1×10^6 pfu/ml. Additionally, such supernatants may also contain cellular growth factors with the capacity to influence gene expression independent of virus-induced effects.

5

10

15

20

25

To circumvent these obstacles, PBMC-derived stocks of HIV-1 89.6 were concentrated 20-fold using Amicon Ultra-15 centrifugal filter devices (Millipore, Bedford MA). This procedure yielded high titer virus ($\pm 1 \times 10^7$ pfu/ml) that could be resuspended in medium free from host-cell derived factors.

The potency of concentrated virus stocks is exemplified in FIGURE 1 which illustrates MAGI cells (HeLa-CD4⁺-HIV LTR-β-gal) infected with 1 μl or 0.1 μl of concentrated virus as compared to 1μl of unconcentrated virus. MAGI cells infected with 0.1μl of unconcentrated 89.6 exhibited no sign of infection. MAGI cells are Hela CD4 cells stably transfected with the β-galactosidase gene under the control of the HIV LTR. When MAGI cells are productively infected with HIV, β-galactosidase expression is induced by tat-transactivation and the number of blue cells revealed by staining is a measure of virus titer.

The left and center panels of FIGURE 1 show the number of blue-staining cells increasing in a dose responsive manner with the use of concentrated HIV-1 89.6 stocks.

EXAMPLE 2

(Nucleic acid microarray technology was used for gene expression profiling of HIV-infected THP-1 cells to identify cellular genes whose expression is regulated by HIV)

Nucleic Acid Microarray Data Analysis. Cellular genes involved in HIV-1 replication were identified by using DNA microarrays to examine the differential gene expression profiles of THP-1 cells before and after HIV-infection.

For RNA isolation and fluorescent labeling, two RNA probe samples from THP-1 cells, independently infected with KSHV, and two independent uninfected RNA probe samples were prepared. Briefly, THP1 monocytes infected with HIV isolate MN or with 89.6 were harvested at 2, 4, 6, 8, 10, and 12 hours post infection (PI). Uninfected cells were harvested in parallel.

5

10

15

20

25

Generally, RNA was isolated using the RNeasy™ RNA isolation kit (QIAGEN Inc., Valencia, CA). After DNase treatment and another round of RNeasy purification, labeled cDNA was prepared as described previously (see Salunga et al., In M. Schena (ed.), DNA microarrays. A practical approach; Oxford Press, Oxford, United Kingdom, 1999; and see Simmen et al., Proc. Natl. Acad. Sci. USA 98:7140-7145, 2001). Briefly, double-stranded cDNA was selectively synthesized from the RNA samples. Biotin-labeled cRNA was produced from the cDNA by in vitro transcription (IVT) using methods well known in the art.

For expression profile screening, the biotin-labled cRNA probe preparations were fragmented and hybridized to Affymetrix (Santa Clara, CA) U133A and U133B arrays or to U95A arrays (Affymetrix U133A, U133B and U95A GeneChip® arrays). The Human Genome U133 (HG-U133) set, consists of two GeneChip® arrays, and contains almost 45,000 probe sets representing more than 39,000 transcripts derived from approximately 33,000 well-substantiated human genes (Affymetrix technical information). The set design uses sequences selected from GenBank®, dbEST, and RefSeq (Id).

The Affymetrix GeneChip® platform was chosen for these studies as it is the industry leader in terms of array content, platform stability and data quality. Images of the arrays were analyzed using the Affymetrix microarray analysis suite software, MAS. This software package is used for converting images to raw numerical data, and direct comparisons between control and experimental samples. When making such comparisons, MAS provides robust statistical algorithms for determining changes in expression between the two samples, along with p-values

and confidence limits on such changes. For each probe set, MAS records whether there was no change, increased expression or decreased expression. To determine if the number of gene expression changes in common between two or more experiments is significant, we routinely compared the number of genes in such lists to the number expected if the experiments were independent.

5

10

15

20

Each of the THP-1 infected/uninfected sample comparisons resulted in multiple probe sets with increased expression, with some sets showing increased expression in both infections. Increased or decreased expression was based on 'calls' from MAS software which typically corresponds to about a two-fold change.

Genes with increased transcription in at least two adjacent time points across the two infections were considered for possible validation studies using PMOs. Genes with evidence of induction due to interferon, in separate experiments conducted in endothelial cells were excluded from consideration. Annotation from the Gene Ontology consortium was compiled for the remaining genes. Those without informative annotation were dropped from further consideration.

Approximately 20 genes were selected from the remaining list for testing as potential anti-viral targets with PMO-AS.

Representative microarray expression data. TABLE 1 (see herein, next page) shows expression data obtained according to the present invention for the HMG20B, HRH1, NP, YES and ARF1 gene sequences using Affymetrix U133 arrays as indicated. Expression is presented as "fold-increase" in signal for two to four independent infected/mock infected comparisons, as described herein above.

Docket Number: 49321-106 Express Mail Number: EL852794736US

TABLE 1. U133 microarray expression data for particular KSHV-induced gene sequences.

		Τ-					- -		_		 1	
FC_T89610 x FC_T89612 x 067TMK 10 067TMK 12	-1.74		1.87	1.87	1.52	1.52	,	7	1.32	1.07	1.07	
FC_T89610 x 067TMK 10	1.50	70:1	1.52	1.52	2.3	2.3	5,	70.1	1.74	1.07	1.07	
Fold Increase T89608 x 067TMK 8hrs	90 9	0.00	1.74	1.74	3.03	3.03		1.15	-1.07	90.9	90.9	
Fold Increase T89606 x 067TMK 6hrs		4.23	2	2	2.64	2.64	10.4	1.32	-1.07	2.46	2.46	
Fold Increase T89604 x 067TMK 4hrs		3.03	2.64	2.64	2 14	77.0	2.14	1.41	1.15	4	4	
Affymetrix Fold Increase Probe Set T89602 x 067TMK 2hrs		11.31	2.64	2.64	1 87	5.0	1.8/	1	1.07	90 9	908	20.0
GENE ARRAY Probe Set		HMG20B UI33A 209113 s at	UI33A 205579 at	1133A 205579 at	TIT23 A 20160E 5 2#	201033 S au	J133A 201695 s at	U133A 202932_at	U133A 202933_s_at	11133A 208750 c at	11133 A 2087EO c 2t	2001 30 S at
ARRAY		UI33A	UI33A	TITTA	TIT22A	ACCIO	UISSA	U133A	U133A	11133A	111224	4
GENE		HMG20B	HRH1	нвн1	OLZ.	LY.	Ž	YES	YES			

Docket Number: 49321-106

5

10

15

20

25

Express Mail Number: EL852794736US

EXAMPLE 3

(Target validation; genes necessary for virally-induced morphological changes in HIV-infected THP-1 and MT-2 cells were identified using antisense PMOs)

Antisense Phosphorodiamidate Morpholino Oligomers (PMOs). PMOs (see, e.g., Summerton, et al., Antisense Nucleic Acid Drug Dev. 7:63-70, 1997; and Summerton & Weller, Antisense Nucleic Acid Drug Dev. 7:187-95, 1997) are a class of antisense drugs developed for treating various diseases, including cancer. For example, Arora et al. (J. Pharmaceutical Sciences 91:1009-1018, 2002) demonstrated that oral administration of c-myc-specific and CYP3A2-specific PMOs inhibited c-myc and CYP3A2 gene expression, respectively, in rat liver by an antisense mechanism of action. Likewise, Devi G.R. (Current Opinion in Molecular Therapeutics 4:138-148, 2002) discusses treatment of prostate cancer with various PMO therapeutic agents). See also recent reviews by Milhavet et al., and by Gitlin et al (Milhavet et al Pharmacological Reviews 55:629-648, 2003; and Gitlin et al., J. Virol. 77:7159-7165, 2003; incorporated herein by reference).

PMOs were designed and used, according to the present invention to silence genes identified as being consistently up-regulated in HIV-infected THP-1 and MT-2 cells. PMO-AS (PMO antisense) are about 15-18 base pair oligonucleotides complementary to a specific mRNA start codon that prevent message translation through steric hindrance at the ribosome binding site (Ghosh, et al. *Methods in Enzymology* 313:135-143, 2000). PMOs do not activate RNAse H, (*Id*). Typically, it is preferable and sufficient to target the region of the start codon to block translation, but, as discussed herein above, other mRNA regions, both coding and non-coding can be effectively targeted according to the present invention.

Antisense Gene Silencing using PMOs. Genes identified as being consistently upregulated in HIV-infected THP-1 cells in the above described nucleic acid microarray/gene expression profiling experiments were further analyzed to identify those necessary for viral replication. Silencing of such genes substantially reduced HIV replication relative to controls, as measured by p24 gag ELISA assays (see TABLE 2 below), and validated these cellular gene targets for respective therapeutic methods and compositions for blocking HIV replication, and thus HIV-related conditions and diseases.

Introduction of antisense PMO into HIV-infected THP-1 or MT-2 cells. Antisense PMO molecules, for delivery purposes, are typically converted to a paired duplex together with a partially complementary cDNA oligonucleotide in the weakly basic delivery reagent ethoxylated polyethylenimine (EPEI) (Summerton, supra). The anionic complex binds to the cell surface, is taken up by endocytosis and eventually released into the cytosol. A protocol for optimum uptake of antisense PMO in THP-1 and MT-2 cells was developed using a modification of the EPEI method. PMO-AS were obtained from GeneTools (Genetools, LLC, One Summerton Way, Philomath, OR 97370).

5

10

15

20

25

Briefly, loading into target cells was accomplished by complexing the PMO with a proprietary loading reagent, Ethoxylated Polyethylenimine (EPEI). Target cells (MT-2 or THP-1) were introduced into snap cap conical tubes (5x10⁵ cells/tube) in 900 µl serum free RPMI and the EPEI-PMO complex was added for 4 hours at 37°C in a 7% CO₂ atmosphere. The PMO-EPEI complex was prepared by diluting 5 µl PMO in 40 µl sterile RNase-free water, adding 5 µl EPEI, vortexing and incubating the sample for 20 minutes at room temperature. The sample was then mixed with 50 µl serum-free RPMI and added to the target cells to yield a final volume of 1ml. At the end of the loading period, cells were gently pelleted and the PMO solution was removed by aspiration. After a further wash, cells were incubated in complete RPMI for 12 hrs prior to HIV infection to allow for recovery and initiation of PMO action.

HIV-1 Infection. PMO-treated THP-1 or MT-2 cells were infected with 50 μl of concentrated HIV-1 89.6 diluted to 1 ml in serum-free RPMI. The following control cultures were identically infected: (i) to control for any non-specific effect of the loading protocol, cells exposed to EPEI alone during the loading procedure; (ii) as a positive control for normal HIV infection, cells that were not exposed to either EPEI or EPEI-PMO; (iii) as a control for HIV inhibition, cells infected with HIV in the presence of 2 μM AZT and maintained in AZT throughout.

Cells were exposed to HIV for 4 hours. The inoculum was removed by 3 cycles of pelleting and rinsing. The cells were resuspended in 1.5 ml of complete RPMI and 0.5 ml immediately removed at Time 0 to leave a final volume of 1 ml. The Time 0 sample served as a measure of residual virus. At each harvest time (T1 through T4), 0.5 ml of supernatant was removed and replaced with an equal volume of complete RPMI. Samples were stored at -80°C until evaluation using a p24 ELISA assay (described below). Each experimental variable and control was performed in duplicate. T1 through T4 typically corresponded to 16, 24, 40 and 48 hrs PI, respectively.

5

10

15

20

25

Cellular distribution of introduced FITC-labeled POM antisense molecules. To ensure the success of PMO loading and HIV infection for each assay, cells cultured in 35mm tissue culture plates were loaded with a FITC tagged PMO, or infected with HIV, and monitored microscopically. Figure 2a (left panel) illustrates a representative fluorescent image of FITC-labeled PMO antisense uptake by MT-2 cells; that is, successful delivery of a FITC-tagged PMO to MT-2 cells. The right panel show results with the EPEI only control. Therefore, the introduced PMO antisense oligomers were readily taken up by MT-2 cells, distributed within the cytosol, and determined to be stable over the relevant time periods in MT-2 cells.

Figure 2B illustrates a typical HIV control (no PMO AS) where extensive HIV-induced syncytia are seen in HIV infected MT-2 at 48 hrs PI.

Validation of KSHV-induced gene sequences; HIV-1 p24 antigen ELISA. To monitor the effect of PMO-targeting of cellular proteins on HIV replication, supernatants harvested from PMO-treated and control THP and MT-2 cells were assayed using an HIV p24 antigen ELISA. The rationale behind this assay is described in the following paragraph.

The HIV-1 gag protein p24 is the major internal structural component of the virion core. The Coulter p24 assay is an enzyme-liked immunosorbent assay (ELISA) performed using a commercially available kit (Beckman Coulter). It was developed specifically for the detection and quantitation of HIV-1 p24 in plasma or serum, for clinical purposes, or in tissue culture

supernatants, to monitor virus replication. Each kit contains a 96-well microtiter tray pre-coated with a monoclonal antibody to p24. A specimen of plasma, serum or tissue culture supernatant is added to each well along with a viral lysis buffer and incubated to allow any p24 antigen present to bind to the coated well. Following a wash, biotinylated human anti-HIV IgG is added and incubated to allow complexing to any bound p24. Following another wash, strepatavidin-HRP is added to complex with any bound biotinylated complexes. A substrate reagent is added to form a blue color upon reaction with HRP, the reaction is stopped with acid, and the absorbance measured spectrophotometrically. The intensity of color development is directly proportional to the amount of p24 present in the test sample. For each assay, a series of wells are devoted to running a standard curve that utilizies known amounts of purified p24 antigen. The standard curve is used to monitor assay performance and to qualitatively determine the amount of p24 (in pg/ml) in the test sample.

5

10

15

20

25

The levels of p24 measured in supernatants from PMO-treated and control THP-1 and MT-2 cells were plotted graphically as p24 production (y-axis) versus time PI (x-axis). Typical results for THP-1 cells and MT-2 cells are graphically depicted in Figure 3 A and B respectively.

Figure 3A shows inhibition curves of HIV replication in HIV-infected THP-1 cells (human myeloid (monocyte/macrophage) cell line derived from an acute monocytic leukemia) by PMOs specific for particular HIV-induced cellular genes as follows: upper filled diamonds correspond to no PMO control; triangles correspond to TNIP; lower filled diamonds correspond to c-YES; dark "X"s correspond to HRH1; light "X"s correspond to NP; filled squares correspond to HMG20; and vertical lines correspond to AZT control. The HIV-1 P24 ELISA assay monitors HIV p24 gag production (in pg/ml along the y-axis) by PMO-treated HIV-infected THP-1 cells. The x-axis shows time ("T1-T4" typically correspond to 16, 24, 40 and 48 hrs PI). PMOs corresponding to HMG20, HRH-1, NP and c-YES were particularly effective at reproducibly inhibiting HIV replication.

Figure 3B shows inhibition curves of HIV replication in HIV-infected MT-2 cells (human T cell leukemia cell line) by PMOs specific for particular HIV-induced cellular genes as follows:

upper curve filled diamonds correspond to EPEI (ethoxylated polyethylenimine); open squares correspond to HIV only; open triangles correspond to ARF; filled triangles correspond to NP; lower curve filled diamonds correspond to HMG20; "X"s correspond to c-YES; filled squares correspond to HRH-1; and vertical lines correspond to HIV plus AZT control. The HIV-1 P24 ELISA assay monitors HIV p24 gag production (in pg/ml along the y-axis) by PMO-treated HIV-infected MT-2 cells. The x-axis shows time ("T1-T4" typically correspond to 16, 24, 40 and 48 hrs PI). As in the case of HIV-infected THP-1 cells (Figure 3A), PMOs corresponding to HMG20, HRH-1, NP and c-YES were particularly effective at reproducibly inhibiting HIV replication.

Systematic testing of PMOs in this system led to the identification of 4 PMOs that reproducibly inhibited HIV replication in both the monocyte and the T cell line. These PMOs were designed to inhibit expression of the following cellular proteins: HMG20, HRH-1, NP and c-Yes.

TABLE 2 shows the validation results for five induced genes identified in the experiments of EXAMPLE 2 herein above. For four of the induced genes, suppression by sequence-specific PMO antisense oligonucleotides led to substantial inhibitory effects (either full or intermediate inhibition) on HIV replication, as measured by p24 gag production: HMG20B (homo sapiens high-mobility group 20B, accession number NM_006339, and known variants); HRH1 (homo sapiens histamine receptor H1, accession numbers NM_00861 and BC060802, and known variants); NP (homo sapiens nucleoside phosphorylase, accession number NM_000270, and known variants); and YES1 (homo sapiens v-yes-1 Yamaguchi sarcoma viral oncogene homolog 1, accession number NM_005433, and known variants). The specific PMO antisense oligomers used in these experiments for silencing the HIV-induced gene sequences are also shown in TABLE 2, along with corresponding SEQ ID NOS.

10

15

20

TABLE 2. Validated Gene Targets; suppression (silencing) of particular HIV-1 89.6-induced genes substantially inhibited HIV replication as measured by gag 24 production.

GENE	PMO Antisense Sequence (5' to 3')	Extent of PMO- induced Inhibition of HIV replication		
HMG20B	CGCCCAGCATCTTGGTGATCTCGGG	positive		
HRH1	GCGAAAGAGCAGCCGCCAGTTATGG	positive		
NP	CTTCATAGGTGTATCCGTTCTCCAT	positive		
YES	TTTCTTTACTTTTAATGCAGCCCAT	positive		
ARF1	ATGCTTGTGGACAGGTGGAAGGACA	(negative)		

TABLE 3 summarizes GenBank mRNA and EST accession numbers for particular HIVinduced genes, including for the four validated gene sequences listed in TABLE 2. Gene names,
Unigene clusters, and GenBank accession numbers are as assigned by the National Center for
Biotechnology Information (NCBI), and are incorporated by reference herein, including splice
and allelic variants of mRNA sequences.

TABLE 3. GenBank accession numbers for particular HIV-induced genes, including for the HMG20B, HRH1, NP, and YES1 gene sequences validated herein.

GENE	Unigene Cluster	Accession Numbers; mRNAs	Accession Numbers; ESTs			
HMG20B	Hs.406534	AF072836.1, NM_006339.1, AL355709.1, AL355691.1, AL355703.1, AF146223.1, AF072165.1, AF288679.1, BC003505.1, BC002552.1, AF331191.1, BC004408.1, BC021585.1, AK090733.1, AF318366.1, AL355698.1, AL355702.1	BE379548.1, BG768730.1, BG768163.1, BG768132.1, BG767749.1, BE387852.1, BE387970.1, BE388514.1, BE388977.1, BG767740.1			
HRH1	Hs.1570	NM_000861.2, D28481.1, AY136743.1, Z34897.1, AF026261.1	CB960117.1, BI333356.1, AI925675.1, AI565677.1, AI952059.1, AI889049.1, AI926322.1, AA613545.1, AA582697.1, AI954670.1			
NP	Hs.75514	NM_000270.1, AK098544.1, AF116670.1, X00737.1	BG032220.1,BG177426.1, BG429168.1, BG500365.1, BG527082.1, BG831409.1, BI087530.1, BI225123.1, BI225577.1, BI197180.1			
YES	Hs.194148	BC048960.1, NM_005433.2, BC031080.1, M15990.1	BQ932574.1, BI861691.1, BI560649.1, BI548150.1, AI799358.1, AI367561.1, AA604737.1, AI445609.1, R28423.1, R25397.1			

HIV-induced genes excluded as therapeutic targets by PMO antisense validation protocol. The above Examples show that with respect to particular identified HIV-induced genes (e.g., ARF1), treatment of HIV-infected MT-2 with the respective antisense PMO oligonucleotides had little or no affect on HIV replication (p24 gag production) despite effectiveness of such antisense agents in mediating silencing of the respective gene sequences. This was not unexpected, because HIV-related modulation of some cellular genes would reasonably be expected to be either ancillary to, or downstream from the regulatory cascades involved in HIV replication.

5

10

15

20

25

30

Significantly, the identification of HIV-induced gene sequences which, upon silencing, have no effect on HIV replication provides internal confirmation (apart from the use of particular control PMO antisense molecules, etc.) that the inventive gene-silencing mediated inhibition of HIV replication is not mediated through ancillary or non-sequence-specific secondary effects of the respective PMO antisense molecules.

Therefore, data presented herein describes, teaches and supports the use of sequence-specific PMO antisense oligomers, *inter alia*, for (i) validation of therapeutic 'targets'; that is, for identification of HIV-induced cellular gene products *required* for HIV-induced cellular phenomena (e.g. replication, etc.), and (ii) as effective, non-toxic inhibitors of such validated therapeutic targets for modulation of HIV infection and treatment of HIV-related disorders and diseases. This utility is especially valuable where the particular gene products otherwise lack suitable art-recognized small molecule inhibitors.

Additionally, in view of deficiencies in the prior art teachings, these data emphasize the significance of *functional validation* of HIV-induced gene sequences, according to the present invention to provide targets, compositions and methods having utility for blocking HIV infection and replication, and for treating HIV-related conditions and diseases.

EXAMPLE 4

(The src family kinase inhibitor PP2 inhibits HIV replication in MT-2 cells)

As discussed herein, particular embodiments of the present invention provide screening assays for identification of compounds useful to modulate HIV infection, comprising: contacting

HIV-infected cells with a test agent; measuring, using a suitable assay, expression of at least one validated HIV-induced cellular gene sequence; and determining whether the test agent inhibits said validated gene expression relative to control cells not contacted with the test agent, whereby agents that inhibit said validated gene expression are identified as compounds useful to modulate HIV infection and/or replication.

5

10

15

20

25

Preferably, the at least one validated HIV-induced cellular gene sequence is selected from the cDNA and protein sequence group consisting of HMG20B, HRH1, NP and c-YES, and combinations thereof (i.e., consisting of SEQ ID NOS:1-9). Preferably, expression of at least one validated HIV-induced cellular gene sequence is expression of mRNA, or expression of the protein encoded thereby. Preferably, agents that inhibit said validated gene expression are further tested for the ability to modulate HIV-mediated effects on cellular proliferation and/or phenotype.

As shown in FIGURE 4, addition of the *src* family kinase inhibitor PP2 to HIV-infected MT-2 cells resulted in substantial decrease in HIV p24 production. Specifically, FIGURE 4 shows inhibition of HIV p24 production in MT-2 cells infected with HIV 89.6 in the continued presence (10 μM) of the src family kinase inhibitor PP2 (4-Amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine; *e.g.*, Calbiochem; catalog no. 529573). PP3, and DMSO correspond to inactive analog, and carrier control, respectively. AZT inhibition is also included as a positive control. Time 0 is immediately post-infection, whereas times 1, 2 and 3 correspond to 24, 48, and 72 hrs PI, respectively. The curves are as follows: upper closed diamonds correspond to HIV alone; lower curve closed diamonds correspond to PP2; filled squares correspond to PP3; filled triangles correspond to DMSO; and "X"s correspond to AZT. The HIV-1 P24 ELISA assay monitors HIV p24 gag production by the various treated HIV-infected MT-2 cells.

The ability to substantially reduce HIV replication through specific inhibition of src family kinase c-YES activity further demonstrates a critical role for src family kinase signaling

in HIV replication in MT-2 and THP-1 cells and further supports a role for upregulation of c-YES as a factor in HIV replication and related events.

Likewise, other modulators of HIV replication are identified by the inventive screening assays.

5

CLAIMS

ABSTRACT OF THE DISCLOSURE

The present invention uses gene expression profiling, and gene silencing methods to identify and provide a plurality of 'validated' HIV-induced cellular gene sequences (e.g., HMG20B, HRH1, NP and c-YES) and pathways useful as targets for modulation of HIV-mediated cellular effects. Particular embodiments provide therapeutic compositions, and methods for modulation of HIV infection, replication, or other HIV-related conditions or diseases, comprising inhibition of HIV-induced gene sequences. Additional embodiments provide screening assays for compounds useful to modulate HIV infection, replication, or HIV-related conditions or diseases. Further embodiments provide diagnostic and/or prognostic assays for HIV infection and/or replication.

Document7

This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Figure 3A

Figure 3B

Figure 4

EXPRESS MAIL NO.: EL852794736US

APPLICATION DATA SHEET

Application Information

Application number::

Filing Date::

Application Type:: Provisional

Subject Matter:: Utility

Suggested classification::

Suggested Group Art Unit::

CD-ROM or CD-R?::

Number of CD disks::

Number of copies of CDs::

Sequence submission?:: Yes

Computer Readable Form (CRF)?:: Yes

Number of copies of CRF:: Yes

Title :: METHODS OF TREATMENT AND DIAGNOSIS

OF HUMAN IMMUNODEFICIENCY VIRUS

(HIV) AND HIV-RELATED DISEASES

Attorney Docket Number:: 49321-106

Request for Early Publication?:: No

Request for Non-Publication?:: No

Suggested Drawing Figure:: 1

Total Drawing Sheets::

Small Entity?:: Yes

Petition included?::

Petition Type::

Licensed U.S. Gov't Agency:: Yes

Contract or Grant No:: NIH/NIAID 1R41 AI055218-01

Secrecy Order in Parent Appl.?::

No

First Applicant Information

Applicant Authority Type:: Inventor

Primary Citizenship Country:: South Africa

Status:: **Full Capacity**

Given Name:: Ashlee

Middle Name:: V.

Family Name:: Moses

Name Suffix::

City of Residence:: **Portland**

State or Province of Residence:: Oregon

Country of Residence:: US

2525 SW 1st Ave., Suite 120 Street of mailing address::

City of mailing address:: Portland

State or Province of mailing address:: OR

Country of mailing address:: US

Postal or Zip Code of mailing address:: 97201-4753

Second Applicant Information

Applicant Authority Type:: Inventor

Primary Citizenship Country:: US

Status:: **Full Capacity**

Given Name:: Jay

Middle Name::

Family Name:: Nelson

Name Suffix::

City of Residence:: Tualatin

3

State or Province of Residence:: OR Country of Residence:: US

Street of mailing address:: 2525 SW 1st Ave., Suite 120

City of mailing address:: Portland

State or Province of mailing address:: OR

Country of mailing address:: US

Postal or Zip Code of mailing address::

97201-4753

Third Applicant Information

Applicant Authority Type:: Inventor

Primary Citizenship Country:: Germany

Status:: Full Capacity

Given Name:: Klaus

Middle Name::

Family Name:: Früh

Name Suffix::

City of Residence:: Portland

State or Province of Residence:: OR

Country of Residence:: US

Street of mailing address:: 2525 SW 1st Ave., Suite 120

City of mailing address:: Portland

State or Province of mailing address:: OR

Country of mailing address::

Postal or Zip Code of mailing address:: 97201-4753

Fourth Applicant Information

Applicant Authority Type:: Inventor

Primary Citizenship Country:: US

Status:: Full Capacity

Given Name:: Jeff

Middle Name::

Family Name:: King

Name Suffix::

City of Residence:: Portland

State or Province of Residence:: OR

Country of Residence:: US

Street of mailing address:: 2525 SW 1st Ave., Suite 120

City of mailing address:: Portland

State or Province of mailing address:: OR

Country of mailing address:: US

Postal or Zip Code of mailing address:: 97201-4753

Fifth Applicant Information

Applicant Authority Type:: Inventor

Primary Citizenship Country:: US

Status:: Full Capacity

Given Name:: Laura

Middle Name::

Family Name:: Jelinek

Name Suffix::

City of Residence:: Tigard

State or Province of Residence:: OR

Country of Residence	ce::	US									
Street of mailing ad	dress::	2525 SW 1st Ave., Suit	e 120								
City of mailing addre	ess::	Portland									
State or Province of	f mailing address::	OR									
Country of mailing a	address::	US									
Postal or Zip Code	of mailing address::	97201-4753									
Correspondence I	nformation										
Correspondence C	ustomer Number::	22504									
Street of mailing ac	ddress::										
City of mailing add	ress::										
State or Province of	of mailing address::										
Country of mailing	address::										
Postal or Zip Code	of mailing address::										
Phone number::		206-628-7621									
Fax Number:		206-628-7699									
E-Mail address::		barrydavison@dwt.com									
Representative In	nformation										
Representative C	ustomer Number::		22504								
Domestic Priority	/ Information										
Application ::	Continuity Type::	Parent Application::	Parent Filing Date::								
			,								

Foreign Priority Information

Country::	Application number::	Filing Date::	Priority Claimed::

Assignee Information

Assignee name::	
Street of mailing address::	
City of mailing address::	
State or Province of mailing address::	
Country of mailing address::	·
Postal or Zip Code of mailing address::	

49321-106.ST25.txt SEQUENCE LISTING

<110>	N F K	oses, elson ruh, ing, eline	n, Ja Klau Jeff	ıy ıs	a.											
<120>		ETHOI IRUS									ними	AN II	MUM	ODEF:	ICIENCY	
<130>	• 4	9321	-106													
<160>	• 1	.4														
<170>	• F	aten	tIn v	vers	ion :	3.2										
<210 > <211 > <212 > <212 > <213 >	> 1 > [232 NA	sapi	ens												
<220: <221: <222:	> (>		. (10	44)												
<400:		l aga t	cacc					gcc Ala								51
acg o	gaa Glu	aag Lys	cag Gln 15	cgg Arg	tac Tyr	ctg Leu	gat Asp	gag Glu 20	gcc Ala	gag Glu	aga Arg	gag Glu	aag Lys 25	cag Gln	cag Gln	99
tac a																147
tgc (195
tct Ser 60	GJÀ 333	ctc Leu	atg Met	aac Asn	act Thr 65	ctc Leu	ctg Leu	aat Asn	gga Gly	cac His 70	aag Lys	ggt Gly	ggg Gly	gac Asp	tgc Cys 75	243
gat Asp																291
gac Asp	caa Gln	aac Asn	aaa Lys 95	gcg Ala	cgt Arg	gag Glu	gcg Ala	gag Glu 100	ctt Leu	cgg Arg	cgc Arg	ttg Leu	cgg Arg 105	aag Lys	atg Met	339
aat Asn	gtg Val	gcc Ala 110	ttc Phe	gag Glu	gag Glu	cag Gln	aac Asn 115	gcg Ala	gta Val	ctg Leu	cag Gln	agg Arg 120	caa Gln	aac Asn	gca Ala	387

gag Glu	cat His 125	gag Glu	cag Gln	cgc Arg	gcg Ala	cga Arg 130	gcg Ala	tct Ser	gga Gly	gca Ala	gga Gly 135	gct Ala	ggc Gly	gct Ala	gga Gly	435
gga Gly 140	gcg Ala	gag Glu	gac Asp	gct Ala	ggc Gly 145	gct Ala	gca Ala	gca Ala	gca Ala	gct Ala 150	cca Pro	ggc Gly	cgt Arg	gcg Ala	cca Pro 155	483
ggc Gly	gct Ala	cac His	cgc Arg	cag Gln 160	ctt Leu	cgc Arg	ctc Leu	act Thr	gcc Ala 165	ggt Gly	gcc Ala	Gly ggg	cac His	ggg Gly 170	cga Arg	531
aac Asn	gcc Ala	cac His	gct Ala 175	ggg Gly	cac His	tct Ser	gga Gly	ctt Leu 180	cta Leu	cat His	ggc Gly	ccg Pro	gct Ala 185	tca Ser	cgg Arg	579
agc Ser	cat His	cga Arg 190	gcg Ala	cga Arg	ccc Pro	cgc Arg	cca Pro 195	gca Ala	cga Arg	gaa Glu	gct Ala	cat His 200	cgt Arg	ccg Pro	cat His	627
caa Gln	gga Gly 205	aat Asn	cct Pro	ggc Gly	cca Pro	ggt Gly 210	cgc Arg	cag Gln	cga Arg	gca Ala	cct Pro 215	gtg Val	agg Arg	agt Ser	gly aaa	675
cgg Arg 220	Ala	cac His	gat Asp	gca Ala	gag Glu 225	gag Glu	aag Lys	ctg Leu	tgg Trp	gcg Ala 230	Arg	ccc Pro	tgc Cys	cac His	acc Thr 235	723
cca Pro	ccc Pro	cgt Arg	gga Gly	cga Arg 240	Glu	gct Ala	Gly	ggt Gly	cca Pro 245	Pro	ttt Phe	Gly	gcc Ala	tgg Trp 250	Ser	771
cat His	cct Pro	gca Ala	cct Pro 255	Leu	ggg Gly	gct Ala	cca Pro	gcc Ala 260	Pro	cta Leu	aaa Lys	tta Leu	aat Asn 265	Phe	tgc Cys	819
ago Ser	atc Ile	Pro 270	Leu	gct Ala	ttc Phe	aat Asn	cto Leu 275	Pro	ago Ser	cco Pro	ctg Lev	aac Asn 280	Pro	gaa Glu	aaa Lys	867
gca Ala	ctc Leu 285	Ala	gcg Ala	cga Arg	tac Tyr	acc Thr 290	Glr	aag Lys	aac Asn	cto Lev	aca Thr	: Ala	gag Glu	ggt Gly	gcc Ala	915
Pro 300	Pro	cgc Arc	g agg g Arg	aca Thr	gcc Ala 305	Thr	cgc Arg	tac Tyi	act Thr	ggd Gly 310	, Sei	cce Pro	g ggc Gly	cac His	ccc Pro 315	963
caç Glr	gac Asp	aca Thi	a ggg	g cag Glr 320	1 Thr	aaa Lys	cco Pro	aco Thi	2 ccc 2 Pro 325	Sei	e aca	a cgg	g cag g Glr	g gad n Asp 330	c ccc Pro	1011
				: Le	a cgg				l Pro		g gc	cacao	cagg	aago	etgeett	1064
gtg	ggga	ctt	acci	ggg	gtg t	ccc	cgc	at g	cctg	tacc	c ca	gatg	ggtg	9999	gccggct	1124

ttgcccatcc tgctctcctc cagccgaggg accctggtgg gggtggctcc ttctcactgc 118

tggatccgga ctttttaaat aaaaacaagt aaaatttgtg ttttaaaa 1232

<210> 2

<211> 341

<212> PRT

<213> Homo sapiens

<400> 2

Met Leu Gly Ala Glu Trp Ser Lys Leu Gln Pro Thr Glu Lys Gln Arg
1 5 10 15

Tyr Leu Asp Glu Ala Glu Arg Glu Lys Gln Gln Tyr Met Lys Glu Leu 20 25 30

Arg Ala Tyr Gln Gln Ser Glu Ala Tyr Lys Met Cys Thr Glu Lys Ile 35 40 45

Gln Glu Lys Lys Ile Lys Lys Glu Asp Ser Ser Gly Leu Met Asn 50 55

Thr Leu Leu Asn Gly His Lys Gly Gly Asp Cys Asp Gly Phe Ser Thr 65 70 75 80

Phe Asp Val Pro Ile Phe Thr Glu Glu Phe Leu Asp Gln Asn Lys Ala 85 90 95

Arg Glu Ala Glu Leu Arg Arg Leu Arg Lys Met Asn Val Ala Phe Glu 100 105 110

Glu Gln Asn Ala Val Leu Gln Arg Gln Asn Ala Glu His Glu Gln Arg 115 120 125

Ala Arg Ala Ser Gly Ala Gly Ala Gly Ala Gly Ala Glu Asp Ala 130 135 140

Gly Ala Ala Ala Ala Pro Gly Arg Ala Pro Gly Ala His Arg Gln 145 150 155 160

Leu Arg Leu Thr Ala Gly Ala Gly His Gly Arg Asn Ala His Ala Gly
165 170 175

His Ser Gly Leu Leu His Gly Pro Ala Ser Arg Ser His Arg Ala Arg 180 185 190

Pro Arg Pro Ala Arg Glu Ala His Arg Pro His Gln Gly Asn Pro Gly 195 200 205

Pro Gly Arg Gl 210	ln Arg Ala Pro Va 215		Arg Ala His Asp 220	Ala
Glu Glu Lys Le 225	eu Trp Ala Arg Pr 230	co Cys His Thr 235	Pro Pro Arg Gly	Arg 240
Glu Ala Gly Gl	ly Pro Pro Phe Gl 245	ly Ala Trp Ser 250	His Pro Ala Pro 255	Leu
	la Pro Leu Lys Le 60	eu Asn Phe Cys 265	Ser Ile Pro Leu 270	Ala
Phe Asn Leu Pr 275	ro Ser Pro Leu As 28	sn Pro Glu Lys 80	Ala Leu Ala Ala 285	Arg
Tyr Thr Gln Ly 290	ys Asn Leu Thr A 295	la Glu Gly Ala	Pro Pro Arg Arg	Thr
Ala Thr Arg Ty 305	Tyr Thr Gly Ser P: 310	ro Gly His Pro 315	Gln Asp Thr Gly	Gln 320
Thr Lys Pro Ti	Thr Pro Ser Thr A 325	rg Gln Asp Pro 330	Pro Asn Tyr Ser	
Arg Gly Ala V	Val Pro 140			
<210 > 3 <211 > 3870 <212 > DNA <213 > Homo s	sapiens			
<220> <221> CDS <222> (179).	(1642)			
<400> 3 cagggagaca ta	acaggattt aagaagc	cca tcatggagaa	gaccttcaat tac	agagata 60
aaaagttttt ct	ttgtggaac aagttaa	acac tagatggcag	ataacagact gag	gagtgag 120
ctgcttctga ct	tcgattaaa aagggag	gtga gccataactg	gcggctgctc ttt	cgcca 178
atg agc ctc c	ccc aat tcc tcc t	egc ctc tta gaa Page		t gag 226

49321-106.ST25.txt Met Ser Leu Pro Asn Ser Ser Cys Leu Leu Glu Asp Lys Met Cys Glu

ggc aac aag acc act atg gcc agc ccc cag ctg atg ccc ctg gtg gtg Gly Asn Lys Thr Thr Met Ala Ser Pro Gln Leu Met Pro Leu Val Val 20 gtc ctg agc act atc tgc ttg gtc aca gta ggg ctc aac ctg ctg gtg Val Leu Ser Thr Ile Cys Leu Val Thr Val Gly Leu Asn Leu Leu Val 35 ctg tat gcc gta cgg agt gag cgg aag ctc cac act gtg ggg aac ctg Leu Tyr Ala Val Arg Ser Glu Arg Lys Leu His Thr Val Gly Asn Leu 50 ctac atc gtc agc ctc teg gtg gcg gac ttg atc gtg ggt gcc gtc gtc Tyr Ile Val Ser Leu Ser Val Ala Asp Leu Ile Val Gly Ala Val Val 65 atc atc gtc agc act ctc ac ctg ctc atg gtc agt ggt gcc gtc gtc Tyr Ile Val Ser Leu Ser Val Ala Asp Leu Ile Val Gly Ala Val Val 65 atg ct atg aac atc ctc tac ctg ctc atg tcc aag tgg tca ctg ggc Met Pro Met Asn Ile Leu Tyr Leu Leu Met Ser Lys Trp Ser Leu Gly 85 cgt cct ctc tcg ctc ttt tgg ctt tcc atg gac tat gtg gcc agc aca Arg Pro Leu Cys Leu Phe Trp Leu Ser Met Asp Tyr Val Ala Ser Thr 100 gcg tcc att ttc agt gtc ttc atc ctg tgc att gat cgc tac cgc tct Ala Ser Ile Phe Ser Val Phe Ile Leu Cys Ile Asp Arg Tyr Arg Ser 115 120 gtc cag cag cac ctc agg tac ctt aag tat cgt acc aga acc cga gcc Val Gln Gln Pro Leu Arg Tyr Leu Lys Tyr Arg Thr Lys Thr Arg Ala 130 tcg gcc acc att ctg ggg gcc tgg ttt ctc tct ttt ctg tgg gtt att Ser Ala Thr Ile Leu Gly Ala Trp Phe Leu Ser Phe Leu Trp Val Ile 145 150 ccc att cta ggc tgg at cac ttc atg cag cac tcg gtg cgc Pro Ile Leu Gly Trp Asn His Phe Met Gln Gln Thr Ser Val Arg Arg 165 atg agc aca gat gt gas aca gac ttc tat gat gac ctc gtg cgc cga Pro Ile Leu Gly Trp Asn His Phe Met Gln Gln Thr Trp Phe Lys Val 180 atg act gcc atc atc acc acc ttc acc ctg ccc acc ttg ctc atg ctc cg Met Thr Ala Ile Ile Asn Phe Tyr Leu Pro Thr Leu Leu Met Leu Trp 200 ttc tat gcc aag atc tac aac ttc acc ctg ccc acc ttg ctc atg ctc tgg Phe Tyr Ala Lys Ile Tyr Lys Ala Val Arg Gln His Cys Gln His Arg 210 gag ctc atc aat aat gg cc ctc ctc ctc tcc ttc ttc tca cas aat aag ctg agg Glu Leu Ile Asn Arg Ser Leu Pro Ser Phe Ser Glu Ile Lys Leu Arg 225 230 8898	1	JCI	Deu	FIO	5	Der		Cys		10	GIU	ASD	пуз	Met	15	Giu	
Val Leu Ser Thr Ile Cys Leu Val Thr Val Ĝly Leu Asn Leu Leu Val 45 Ctg tat gcc gta cgg agt gag cgg aag ctc cac act gtg ggg aac ctg Leu Tyr Ala Val Arg Ser Glu Arg Lys Leu His Thr Val Gly Asn Leu 50 tac atc gtc agc ctc tcg gtg gcg gac ttg atc gtg ggt gcc gtc gtc Tyr Ile Val Ser Leu Ser Val Ala Asp Leu Ile Val Gly Ala Val Val 65 atg cct atg aac atc ctc tac ctg ctc atg tcc aag tgg tca ctg ggc Met Pro Met Asn Ile Leu Tyr Leu Leu Met Ser Lys Trp Ser Leu Gly 85 cgt cct ctc tgc ctc ttt tgg ctt tcc atg gac tat gtg gcc acc aca Arg Pro Leu Cys Leu Phe Trp Leu Ser Met Asp Tyr Val Ala Ser Thr 100 gcg tcc att ttc agt gtc ttc atc ctg tgc att gat cgc tac cgc tct Ala Ser Ile Phe Ser Val Phe Ile Leu Cys Ile Asp Arg Tyr Arg Ser 115 gtc cag cag ccc ctc agg tac ctt aag tat cgt acc aag acc cga gcc Val Gln Gln Pro Leu Arg Tyr Leu Lys Tyr Arg Thr Lys Thr Arg Ala 130 tcg gcc acc att ctg ggg gcc tgg ttt ctc tttt ttg tgg gtt att Ser Ala Thr Ile Leu Gly Ala Trp Phe Leu Ser Phe Leu Trp Val Ile 145 ccc att cta ggc tgg aat cac ttc atg cag cag acc tcg gtg cgc cga Pro Ile Leu Gly Trp Asn His Phe Met Gln Gln Thr Ser Val Arg Arg 165 gag gac aag tgg aga cag gac ttc tat gat gtc acc tgg tc cag Glu Asp Lys Cys Glu Thr Asp Phe Tyr Asp Val Thr Trp Phe Lys Val 180 atg act gcc atc atc aac ttc ac ctg ccc acc ttg ctc tag Met Thr Ala Ile Ile Asn Phe Tyr Leu Pro Thr Leu Leu Met Leu Trp 195 200 ttc tat gcc aag atc tac aag gcc gta cga cac cac ttg ctc tag Phe Tyr Ala Lys Ile Tyr Lys Ala Val Arg Gln His Arg 210 gag ctc atc atc aat aag tcc ctc ctc ttc ttc ttc aga att aag ctg cac gag ctc atc atc aat aag tcc ctc ctc tcc ttc tca gaa att aag ctg ag Gu Leu Ile Asn Arg Ser Leu Pro Ser Fle Ser Glu Ile Lys Leu Arg				Thr					Pro					Leu			274
Leu Tyr Ala Val Arg Ser Glu Arg Lys Leu His Thr Val Gly Asn Leu 50 60 418 tac atc gtc agc ctc tcg gtg gcg gac ttg atc gtg ggt gcc gtc gtc Tyr Ile Val Ser Leu Ser Val Ala Asp Leu Ile Val Gly Ala Val Val 65 70 80 466 atg cct atg aac atc ctc tac ctg ctc atg tcc aag ttg tca ctg ggc Met Pro Met Asn Ile Leu Tyr Leu Leu Met Ser Lys Trp Ser Leu Gly 85 90 95 cgt cct ctc tgc ctc ttt tgg ctt tcc atg gac tat gtg gcc agc aca Arg Pro Leu Cys Leu Phe Trp Leu Ser Met Asp Tyr Val Ala Ser Thr 100 105 110 gcg tcc att ttc agt gtc ttc atc ctg tgc att gat cgc tac cgc tct Ala Ser Ile Phe Ser Val Phe Ile Leu Cys Ile Asp Arg Tyr Arg Ser 115 120 125 gtc cag cag ccc ctc agg tac ctt aag tat cgt acc aag acc cga gcc Val Gln Gln Pro Leu Arg Tyr Leu Lys Tyr Arg Thr Lys Thr Arg Ala 130 135 140 tcg gcc acc att ctg ggg gcc ttg ttt ctc tct ttt ctg ttg gtt att Ser Ala Thr Ile Leu Gly Ala Trp Phe Leu Ser Phe Leu Trp Val Ile 155 ccc att cta ggc ttg aat cac ttc atg cag cag acc tcg gtc cgc cga Pro Ile Leu Gly Trp Asn His Phe Met Gln Gln Thr Ser Val Arg Arg Arg 165 170 gag gac aag tgt gag aca gac ttc tat gat gtc acc ttg tc aag gtc Glu Asp Lys Cys Glu Thr Asp Phe Tyr Asp Val Thr Trp Phe Lys Val 180 atg act gcc atc atc acc acc ttc tac ctg ccc acc ttg ctc atg ctc tg Glu Asp Lys Cys Glu Thr Asp Phe Tyr Leu Pro Thr Leu Leu Met Leu Trp 195 atg act gcc aca at acc acc ttc acc ctg cca cac ctg ctg cga Phe Tyr Ala Lys Ile Tyr Lys Ala Val Arg Gln His Cys Gln His Arg 215 ccc att cta gcc aag atc tac aag gcc gta cga cac acc ctg cag cac cgg Phe Tyr Ala Lys Ile Tyr Lys Ala Val Arg Gln His Cys Gln His Arg 215 gag ctc atc atc aat agg tcc ctc cct tcc ttc tcc tcc tcc tcc t	gtc Val	ctg Leu	Ser	act Thr	atc Ile	tgc Cys	ttg Leu	Val	aca Thr	gta Val	ggg ggg	ctc Leu	Asn	ctg Leu	ctg Leu	gtg Val	322
Tyr Ile Val Ser Leu Ser Val Ala Asp Leu Ile Val Gly Ala Val Val 65 70 80 atg cct atg aac atc ctc tac ctg ctc atg tcc aag tgg tca ctg ggc Met Pro Met Asn Ile Leu Tyr Leu Leu Met Ser Lys Trp Ser Leu Gly 85 90 95 cgt cct ctc tgc ctc ttt tgg ctt tcc atg gac tat gtg gcc agc aca Arg Pro Leu Cys Leu Phe Trp Leu Ser Met Asp Tyr Val Ala Ser Thr 100 105 110 gcg tcc att ttc agt gtc ttc atc ctg tgc att gat cgc tac cgc tct Ala Ser Ile Phe Ser Val Phe Ile Leu Cys Ile Asp Arg Tyr Arg Ser 115 120 125 gtc cag cag ccc ctc agg tac ctt aag tat cgt acc aag acc cga gcc Val Gln Gln Pro Leu Arg Tyr Leu Lys Tyr Arg Thr Lys Thr Arg Ala 130 135 140 tcg gcc acc att ctg ggg gcc tgg ttt ctc tct ttt ctg tgg gtt att Ser Ala Thr Ile Leu Gly Ala Trp Phe Leu Ser Phe Leu Trp Val Ile 145 150 155 160 ccc att cta ggc tgg aat cac ttc atg cag cag acc tcg gtg cgc cga Pro Ile Leu Gly Trp Asn His Phe Met Gln Gln Thr Ser Val Arg Arg 165 170 gag gac aag tgt gag aca gac ttc tat gat gtc acc tgg ttc aag gtc Glu Asp Lys Cys Glu Thr Asp Phe Tyr Asp Val Thr Trp Phe Lys Val 185 180 atg act gcc atc atc aac ttc tac ctg ccc acc ttg ctc atg ctc tgg Met Thr Ala Ile Ile Asn Phe Tyr Leu Pro Thr Leu Leu Met Leu Trp 195 200 ttc tat gcc aag atc tac aag gcc gta cga caa cac tgc cag cac cgg Phe Tyr Ala Lys Ile Tyr Lys Ala Val Arg Gln His Cys Gln His Arg 210 gag ctc atc atc aat agg tcc ctc ctt ttc ttc ttc ttc tca gaa att aag ctg agg Glu Leu Ile Asn Arg Ser Leu Pro Ser Phe Ser Glu Ile Lys Leu Arg		Tyr					Glu					Thr					370
Met Pro Met Asn Ile Leu Tyr Leu Leu Met Ser Lys Trp Ser Leu Gly 95 cgt cct ctc tgc ctc ttt tgg ctt tcc atg gac tat gtg gcc agc aca 3514 Arg Pro Leu Cys Leu Phe Trp Leu Ser Met Asp Tyr Val Ala Ser Thr 100 105 110 gcg tcc att ttc agt gtc ttc atc ctg tgc att gat cgc tac cgc tct Ala Ser Ile Phe Ser Val Phe Ile Leu Cys Ile Asp Arg Tyr Arg Ser 115 120 gtc cag cag ccc ctc agg tac ctt aag tat cgt acc aag acc cga gcc 610 Val Gln Gln Pro Leu Arg Tyr Leu Lys Tyr Arg Thr Lys Thr Arg Ala 130 135 135 140 tcg gcc acc att ctg ggg gcc tgg ttt ctc tct ttt ctg tgg gtt att 658 Ser Ala Thr Ile Leu Gly Ala Trp Phe Leu Ser Phe Leu Trp Val Ile 145 150 155 160 ccc att cta ggc tgg aat cac ttc atg cag cag acc tcg gtg cgc cga 706 Pro Ile Leu Gly Trp Asn His Phe Met Gln Gln Thr Ser Val Arg Arg 175 gag gac aag tgt gag aca gac ttc tat gat gtc acc tgg ttc aag gtc 754 Glu Asp Lys Cys Glu Thr Asp Phe Tyr Asp Val Thr Trp Phe Lys Val 180 185 190 atg act gcc atc atc atc aac ttc tac ctg ccc acc ttg ctc atg ctc tgg Met Thr Ala Ile Ile Asn Phe Tyr Leu Pro Thr Leu Leu Met Leu Trp 200 ttc tat gcc aag atc tac aag gcc gta cga cac ctg cag cac cgg Phe Tyr Ala Lys Ile Tyr Lys Ala Val Arg Gln His Cys Gln His Arg 210 215 gag ctc atc atc aat agg tcc ctc cct tcc ttc ttc tac aga att aag ctg agg 610 Leu Ile Asn Arg Ser Leu Pro Ser Phe Ser Glu Ile Lys Leu Arg 898 Glu Leu Ile Asn Arg Ser Leu Pro Ser Phe Ser Glu Ile Lys Leu Arg	Tyr	atc Ile	gtc Val	agc Ser	ctc Leu	Ser	gtg Val	gcg Ala	gac Asp	ttg Leu	Ile	gtg Val	ggt Gly	gcc Ala	gtc Val	Val	418
Arg Pro Leu Cys Leu Phe Trp Leu Ser Met Asp Tyr Val Ala Ser Thr 110 gcg tcc att ttc agt gtc ttc atc ctg tgc att gat cgc tac cgc tct Ala Ser Ile Phe Ser Val Phe Ile Leu Cys Ile Asp Arg Tyr Arg Ser 115 gtc cag cag ccc ctc agg tac ctt aag tat cgt acc aag acc cga gcc 610 Val Gln Gln Pro Leu Arg Tyr Leu Lys Tyr Arg Thr Lys Thr Arg Ala 130 tcg gcc acc att ctg ggg gcc tgg ttt ctc tct ttt ctg tgg gtt att Ser Ala Thr Ile Leu Gly Ala Trp Phe Leu Ser Phe Leu Trp Val Ile 150 ccc att cta ggc tgg aat cac ttc atg cag cag acc tcg gtg cgc cga 706 Pro Ile Leu Gly Trp Asn His Phe Met Gln Gln Thr Ser Val Arg Arg 175 gag gac aag tgt gag aca gac ttc tat gat gtc acc tgg ttc aag gtc Glu Asp Lys Cys Glu Thr Asp Phe Tyr Asp Val Thr Trp Phe Lys Val 180 atg act gcc atc atc acc acc ttc acc ctg ccc acc ttg ctc atg ctc tgg Met Thr Ala Ile Ile Asn Phe Tyr Leu Pro Thr Leu Leu Met Leu Trp 195 ttc tat gcc aag atc tac aag gcc gta cga caa cac tcg cag cac cag Rhe Tyr Ala Lys Ile Tyr Lys Ala Val Arg Gln His Cys Gln His Arg 210 gag ctc atc atc aat agg tcc ctc cct tcc ttc ttc tca gaa att aag ctg agg Glu Leu Ile Asn Arg Ser Leu Pro Ser Phe Ser Glu Ile Lys Leu Arg 898	atg Met	cct Pro	atg Met	aac Asn	Ile	ctc Leu	tac Tyr	ctg Leu	ctc Leu	Met	tcc Ser	aag Lys	tgg Trp	tca Ser	Leu	ggc Gly	466
Ala Ser Ile Phe Ser Val Phe Ile Leu Cys Ile Asp Arg Tyr Arg Ser 115 gtc cag cag ccc ctc agg tac ctt aag tat cgt acc aag acc cga gcc 610 Val Gln Gln Pro Leu Arg Tyr Leu Lys Tyr Arg Thr Lys Thr Arg Ala 130 tcg gcc acc att ctg ggg gcc tgg ttt ctc tct ttt ctg tgg gtt att 658 Ser Ala Thr Ile Leu Gly Ala Trp Phe Leu Ser Phe Leu Trp Val Ile 150 ccc att cta ggc tgg aat cac ttc atg cag cag acc tcg gtg cgc cga 706 Pro Ile Leu Gly Trp Asn His Phe Met Gln Gln Thr Ser Val Arg Arg 175 gag gac aag tgt gag aca gac ttc tat gat gtc acc tgg ttc aag gtc Glu Asp Lys Cys Glu Thr Asp Phe Tyr Asp Val Thr Trp Phe Lys Val 180 atg act gcc atc atc aac ttc tac ctg ccc acc ttg ctc atg ctc tgg Met Thr Ala Ile Ile Asn Phe Tyr Leu Pro Thr Leu Leu Met Leu Trp 200 ttc tat gcc aag atc tac aag gcc gta cga caa cac tgc cag cac cgg Phe Tyr Ala Lys Ile Tyr Lys Ala Val Arg Gln His Cys Gln His Arg 210 gag ctc atc atc aat agg tcc ctc cct tcc ttc tca gaa att aag ctg agg Glu Leu Ile Asn Arg Ser Leu Pro Ser Phe Ser Glu Ile Lys Leu Arg	cgt Arg	cct Pro	ctc Leu	Cys	ctc Leu	ttt Phe	tgg Trp	ctt Leu	Ser	atg Met	gac Asp	tat Tyr	gtg Val	Ala	Ser	aca Thr	514
Val Gln Gln Pro Leu Arg Tyr Leu Lys Tyr Arg Thr Lys Thr Arg Ala 130 tcg gcc acc att ctg ggg gcc tgg ttt ctc tct ttt ctg tgg gtt att Ser Ala Thr Ile Leu Gly Ala Trp Phe Leu Ser Phe Leu Trp Val Ile 145 ccc att cta ggc tgg aat cac ttc atg cag cag acc tcg gtg cgc cga 706 Pro Ile Leu Gly Trp Asn His Phe Met Gln Gln Thr Ser Val Arg Arg 165 gag gac aag tgt gag aca gac ttc tat gat gtc acc tgg ttc aag gtc 754 Glu Asp Lys Cys Glu Thr Asp Phe Tyr Asp Val Thr Trp Phe Lys Val 180 atg act gcc atc atc aac ttc tac ctg ccc acc ttg ctc atg ctc tgg Met Thr Ala Ile Ile Asn Phe Tyr Leu Pro Thr Leu Leu Met Leu Trp 205 ttc tat gcc aag atc tac aag gcc gta cga caa cac tgc cag cac cgg Phe Tyr Ala Lys Ile Tyr Lys Ala Val Arg Gln His Cys Gln His Arg 210 gag ctc atc aat agg tcc ctc ctc tcc ttc tca gaa att aag ctg agg 898 Glu Leu Ile Asn Arg Ser Leu Pro Ser Phe Ser Glu Ile Lys Leu Arg	gcg Ala	tcc Ser	Ile	Phe	agt Ser	gtc Val	ttc Phe	Ile	Leu	tgc Cys	att Ile	gat Asp	Arg	Tyr	cgc	tct Ser	562
Ser Ala Thr Ile Leu Gly Ala Trp Phe Leu Ser Phe Leu Trp Val Ile 150 ccc att cta ggc tgg aat cac ttc atg cag cag acc tcg gtg cgc cga 706 Pro Ile Leu Gly Trp Asn His Phe Met Gln Gln Thr Ser Val Arg Arg 165 gag gac aag tgt gag aca gac ttc tat gat gtc acc tgg ttc aag gtc 754 Glu Asp Lys Cys Glu Thr Asp Phe Tyr Asp Val Thr Trp Phe Lys Val 180 atg act gcc atc atc aac ttc tac ctg ccc acc ttg ctc atg ctc tgg Met Thr Ala Ile Ile Asn Phe Tyr Leu Pro Thr Leu Leu Met Leu Trp 205 ttc tat gcc aag atc tac aag gcc gta cga caa cac tgc cag cac cgg 850 ttc tat gcc aag atc tac aag gcc gta cga caa cac tgc cag cac cgg 850 ttc tat gcc aag atc tac aag gcc gta cga caa cac tgc cag cac cgg 850 Phe Tyr Ala Lys Ile Tyr Lys Ala Val Arg Gln His Cys Gln His Arg 210 gag ctc atc aat agg tcc ctc cct tcc ttc tca gaa att aag ctg agg 898 Glu Leu Ile Asn Arg Ser Leu Pro Ser Phe Ser Glu Ile Lys Leu Arg	gtc Val	Gln	Gln	Pro	ctc Leu	agg Arg	Tyr	ctt Leu	aag Lys	tat Tyr	cgt Arg	Thr	Lys	acc Thr	Cga	gcc Ala	610
Pro Ile Leu Gly Trp Asn His Phe Met Gln Gln Thr Ser Val Arg Arg 165 gag gac aag tgt gag aca gac ttc tat gat gtc acc tgg ttc aag gtc 754 Glu Asp Lys Cys Glu Thr Asp Phe Tyr Asp Val Thr Trp Phe Lys Val 180 atg act gcc atc atc aac ttc tac ctg ccc acc ttg ctc atg ctc tgg Met Thr Ala Ile Ile Asn Phe Tyr Leu Pro Thr Leu Leu Met Leu Trp 195 ttc tat gcc aag atc tac aag gcc gta cga caa cac tgc cag cac cgg Phe Tyr Ala Lys Ile Tyr Lys Ala Val Arg Gln His Cys Gln His Arg 210 gag ctc atc aat agg tcc ctc cct tcc ttc tca gaa att aag ctg agg Glu Leu Ile Asn Arg Ser Leu Pro Ser Phe Ser Glu Ile Lys Leu Arg	Ser	Ala	acc Thr	att	ctg Leu	. Gly	Ala	tgg Trp	ttt Phe	ctc Leu	Ser	Phe	ctg Leu	tgg Trp	gtt Val	Ile	658
Glu Asp Lys Cys Glu Thr Asp Phe Tyr Asp Val Thr Trp Phe Lys Val 180 atg act gcc atc atc aac ttc tac ctg ccc acc ttg ctc atg ctc tgg Met Thr Ala Ile Ile Asn Phe Tyr Leu Pro Thr Leu Leu Met Leu Trp 195 ttc tat gcc aag atc tac aag gcc gta cga caa cac tgc cag cac cgg Phe Tyr Ala Lys Ile Tyr Lys Ala Val Arg Gln His Cys Gln His Arg 210 gag ctc atc aat agg tcc ctc cct tcc ttc tca gaa att aag ctg agg Glu Leu Ile Asn Arg Ser Leu Pro Ser Phe Ser Glu Ile Lys Leu Arg					' Trp	Asn				Gln	Glr				Arg	Arg	706
Met Thr Ala Ile Ile Asn Phe Tyr Leu Pro Thr Leu Leu Met Leu Trp 195 ttc tat gcc aag atc tac aag gcc gta cga caa cac tgc cag cac cgg Phe Tyr Ala Lys Ile Tyr Lys Ala Val Arg Gln His Cys Gln His Arg 210 gag ctc atc aat agg tcc ctc cct tcc ttc tca gaa att aag ctg agg Glu Leu Ile Asn Arg Ser Leu Pro Ser Phe Ser Glu Ile Lys Leu Arg	gag Glu	gac Asp	aag Lys	Cys	s Glu	g aca	gac Asp	tto Phe	туг	Asp	gto Val	acc l Thr	tgg Tr	Phe	Ly:	g gtc s Val	754
Phe Tyr Ala Lys Ile Tyr Lys Ala Val Arg Gln His Cys Gln His Arg 210 220 gag ctc atc aat agg tcc ctc cct tcc ttc tca gaa att aag ctg agg Glu Leu Ile Asn Arg Ser Leu Pro Ser Phe Ser Glu Ile Lys Leu Arg	atg Met	act Thi	: Ala	ılle	ato	aac Asr	tto 1 Phe	ту:	Lei	g cco	aco Thi	c ttg r Lei	ı Lev	ı Met	g cto Le	c tgg u Trp	802
Glu Leu Ile Asn Arg Ser Leu Pro Ser Phe Ser Glu Ile Lys Leu Arg		Ty:	: Ala				r Lys	ala a				n His	з Су				850
	Glı	ı Leı				g Se	r Lei				e Se	r Gl				u Arg	898

49321-106.ST25.txt cca gag aac ccc aag ggg gat gcc aag aaa cca ggg aag gag tct ccc 946 Pro Glu Asn Pro Lys Gly Asp Ala Lys Lys Pro Gly Lys Glu Ser Pro 245 tgg gag gtt ctg aaa agg aag cca aaa gat gct ggt gga tct gtc 994 Trp Glu Val Leu Lys Arg Lys Pro Lys Asp Ala Gly Gly Gly Ser Val ttg aag tca cca tcc caa acc ccc aag gag atg aaa tcc cca gtt gtc 1042 Leu Lys Ser Pro Ser Gln Thr Pro Lys Glu Met Lys Ser Pro Val Val 280 ttc agc caa gag gat gat aga gaa gta gac aaa ctc tac tgc ttt cca 1090 Phe Ser Gln Glu Asp Asp Arg Glu Val Asp Lys Leu Tyr Cys Phe Pro 290 ctt gat att gtg cac atg cag gct gcg gca gag ggg agt agc agg gac 1138 Leu Asp Ile Val His Met Gln Ala Ala Ala Glu Gly Ser Ser Arg Asp 305 tat gta gcc gtc aac cgg agc cat ggc cag ctc aag aca gat gag cag 1186 Tyr Val Ala Val Asn Arg Ser His Gly Gln Leu Lys Thr Asp Glu Gln 325 ggc ctg aac aca cat ggg gcc agc gag ata tca gag gat cag atg tta 1234 Gly Leu Asn Thr His Gly Ala Ser Glu Ile Ser Glu Asp Gln Met Leu 340 345 ggt gat agc caa tcc ttc tct cga acg gac tca gat acc acc aca gag 1282 Gly Asp Ser Gln Ser Phe Ser Arg Thr Asp Ser Asp Thr Thr Thr Glu 355 aca gca cca ggc aaa ggc aaa ttg agg agt ggg tct aac aca ggc ctg 1330 Thr Ala Pro Gly Lys Gly Lys Leu Arg Ser Gly Ser Asn Thr Gly Leu 370 gat tac atc aag ttt act tgg aag agg ctc cgc tcg cat tca aga cag 1378 Asp Tyr Ile Lys Phe Thr Trp Lys Arg Leu Arg Ser His Ser Arg Gln 390 tat gta tct ggg ttg cac atg aac cgc gaa agg aag gcc gcc aaa cag 1426 Tyr Val Ser Gly Leu His Met Asn Arg Glu Arg Lys Ala Ala Lys Gln 405 410 ttg ggt ttt atc atg gca gcc ttc atc ctc tgc tgg atc cct tat ttc 1474 Leu Gly Phe Ile Met Ala Ala Phe Ile Leu Cys Trp Ile Pro Tyr Phe 420 425 ate tte tte atg gte att gee tte tge aag aac tgt tge aat gaa cat 1522 Ile Phe Phe Met Val Ile Ala Phe Cys Lys Asn Cys Cys Asn Glu His 435 ttg cac atg ttc acc atc tgg ctg ggc tac atc aac tcc aca ctg aac 1570 Leu His Met Phe Thr Ile Trp Leu Gly Tyr Ile Asn Ser Thr Leu Asn 455 ecc etc atc tac ecc ttg tgc aat gag aac ttc aag aag aca ttc aag 1618 Pro Leu Ile Tyr Pro Leu Cys Asn Glu Asn Phe Lys Lys Thr Phe Lys 470 475

aga att ctg cat att cgc tcc taa gggaggctct gaggggatgc aacaaaatga Arg Ile Leu His Ile Arg Ser 485	1672 ·
tccttatgat gtccaacaag gaaatagagg acgaaggcct gtgtgttgcc aggcaggcac	1732
ctgggctttc tggaatccaa accacagtct taggggcttg gtagtttgga aagttcttag	1792
gcaccataga agaacagcag atggcggtga tcagcagaga gattgaactt tgaggaggaa	1852
gcagaatett tgcaagaaag teagaeetgt ttettgtaae tgggtteaaa aagaaaaaaa	1912
taataaaaat aaaagagaga gagaatcaga cctgggtgga actctcctgc tcctcaggaa	1972
ctatgggage etcagaetca ttgtaattea agettteega gteaagtgat tgacaaetga	2032
agagacacgt ggctagggtt ccactggaga attgaaaagg actcttgagc cctcctggaa	2092
tggagctgta taactgtgca gagactttat ccatgccaat agttgctgtc cccttccagg	2152
ggtcacettg agaggcatga cagetgttee acaggggeta teeettetea gaaaaettet	2212
cttctgagcc tctttaacag ctttctccag aaccagtgtc tgaaccaccc tggaaattct	2272
gccttattat ttcttactca aacatgttta gagtggatag aaaattatgc agcttgcaca	2332
cccatcatct ttaaccccaa atttcctttg gctattaaaa aagtggtggc aaaaggcatc	2392
ctcaaaagaa agagaaatga aatatttttg aatggttgca cgttaaaaat taaaagaagg	2452
aatgggggca gaatgccata tttttgaggg ctgtactagg tttatctcat ttaagcccca	2512
caacacccca caggagggta attttctaac tctagtttgc agaggagcaa attgaggttc	2572
agcaaggtga gagaggtacc caaggtcaca tagctagtta tgtgagaaag ttagagtaca	2632
gatcctctgg ggtttcagct tattgtagca tattttctcc gaaaggcaaa aatgtgccct	2692
tttggccggg catggtagct caagcctata atcccagcat gttgagaggc tgaggtgggc	2752
agatcatttg aggccaggag ttcaagacca gtctggccaa tatggagaaa ccttgtctct	2812
actaaaaaca caaaaattat ctgggcatgg tggggcatgc ctgtagtccc acttacttgg	2872
gaggccgagg cacgagaatc gcttgaaccc gggaggtgga ggttgccgtg agccaagatc	2932
acgccactgc actccagcct gggcaacaga gcaagactct gtctcaaaaa aaaaaataca	2992
atattttaac aatgtgccct cttaagtgtg cacagataca catacacggt attcccaaga	3052
gtggtggcag ctcaaaatga tatgtttgag tagacgaaca gctgacatgg agttcccgtg	3112
cacctacgga aggggacgct ttgaaggaac caagtgcatt tttatctgtg agttctgttg	3172
tgtttgtcaa aaagtcattg taatctttca tagccatacc tggtaagcaa aaactagtaa	3232
agacatagga acatgtagtt ttacttggtg tttatgttgc aatctggttg tgatttatat	3292

49321-106.ST25.txt tttaaagctt ggtgctaaac cacaatatgt atagcacatg gagtgcctgt acaagctgat gttttgtatt ttgtgttcct ctttgcatga tctgtcaaag tgagatattt ttacctgcct aaaatatgat gtttaaaagc atactctatg tgatttattt atttctacct ttctgagtct cttggactaa gaagatgttt tgaaatgtac catcaaatgt taacagagtt tgatatgggc tttctctttg gtttctcatc acatttgtaa atgtcttttc aaaaggattt actttttgta aaaagcttca ttctcactct gctttgcatc ccccaaactt cttgttcaaa acgggggag tttaggagac tttaatcccg gtttcagaag ctgcagctgg tctgtttcca ggtcagaaac cattgttcag aagacctccc tgtgagagag ttgctcctca gggtccctca ggaccaaaga acactcgaaa agagcacttc acacagacaa gtggctaagt gtccattatt taccttgaac aatcaaggca actagtggag agaactgatt gtgagctc <210> <211> 487 <212> PRT <213> Homo sapiens <400> 4 Met Ser Leu Pro Asn Ser Ser Cys Leu Leu Glu Asp Lys Met Cys Glu Gly Asn Lys Thr Thr Met Ala Ser Pro Gln Leu Met Pro Leu Val Val Val Leu Ser Thr Ile Cys Leu Val Thr Val Gly Leu Asn Leu Leu Val 40 Leu Tyr Ala Val Arg Ser Glu Arg Lys Leu His Thr Val Gly Asn Leu Tyr Ile Val Ser Leu Ser Val Ala Asp Leu Ile Val Gly Ala Val Val 70 Met Pro Met Asn Ile Leu Tyr Leu Leu Met Ser Lys Trp Ser Leu Gly 85 Arg Pro Leu Cys Leu Phe Trp Leu Ser Met Asp Tyr Val Ala Ser Thr 100 110 Ala Ser Ile Phe Ser Val Phe Ile Leu Cys Ile Asp Arg Tyr Arg Ser 115 120

3352

3412

3472

3532

3592

3652

3712

3772

3832

3870

Val	Gln 130	Gln	Pro	Leu	Arg	Tyr 135	Leu	Lys	Tyr	Arg	Thr 140	Lys	Thr	Arg	Ala
Ser 145	Ala	Thr	Ile	Leu	Gly 150	Ala	Trp	Phe	Leu	Ser 155	Phe	Leu	Trp	Val	Ile 160
Pro	Ile	Leu	Gly	Trp 165	Asn	His	Phe	Met	Gln 170	Gln	Thr	Ser	Val	Arg 175	Arg
Glu	Asp	Lys	Cys 180	Glu	Thr	Asp	Phe	Tyr 185	Asp	Val	Thr	Trp	Phe 190	Lys	Val
Met	Thr	Ala 195	Ile	Ile	Asn	Phe	Tyr 200	Leu	Pro	Thr	Leu	Leu 205	Met	Leu	Trp
Phe	Tyr 210	Ala	Lys	Ile	Tyr	Lys 215	Ala	Val	Arg	Gln	His 220	Суѕ	Gln	His	Arg
Glu 225	Leu	Ile	Asn	Arg	Ser 230	Leu	Pro	Ser	Phe	Ser 235		Ile	Ļys	Leu	Arg 240
Pro	Glu	Asn	Pro	Lys 245	Gly	Asp	Ala	Lys	Lys 250		Gly	Lys	Glu	Ser 255	Pro
Trp	Glu	Val	Leu 260		Arg	Lys	Pro	Lys 265	Asp	Ala	Gly	Gly	Gly 270		Val
Leu	Lys	Ser 275		Ser	Gln	Thr	Pro 280	Lys	Glu	Met	: Lys	Ser 285		Val	Val
Phe	Ser 290		Glu	Asp	Asp	Arg 295		Val	Asp	Lys	300	_	Cys	B Phe	Pro
Leu 305		Ile	Val	His	Met 310		Ala	Ala	Ala	319	_	/ Ser	Sei	Arg	Asp 320
Tyr	· Val	Ala	Val	. Asn 325		Ser	His	Gly	Glr 330		ı Lys	Thr	As _l	Glu 335	ı Gln
Gly	/ Leu	ı Asr	Thr 340		Gly	Ala	. Ser	Glu 345		e Se:	r Glu	ı Asp	Gl:		Leu

Gly Asp Ser Gln Ser Phe Ser Arg Thr Asp Ser Asp Thr Thr Thr Glu 355 360 365

Thr	Ala 370	Pro	Gly	Lys	Gly	Lys 375	Leu	Arg	Ser	Gly	Ser 380	Asn	Thr	Gly	Leu	
Asp 385	Tyr	Ile	Lys	Phe	Thr 390	Trp	Lys	Arg	Leu	Arg 395	Ser	His	Ser	Arg	Gln 400	
Tyr	Val	Ser	Gly	Leu 405	His	Met	Asn	Arg	Glu 410	Arg	Lys	Ala	Ala	Lys 415	Gln	
Leu	Gly	Phe	Ile 420	Met	Ala	Ala	Phe	Ile 425	Leu	Сув	Trp	Ile	Pro 430	Туг	Phe	
Ile	Phe	Phe 435	Met	Val	Ile	Ala	Phe 440	Суз	Lys	Asn	Cys	Cys 445	Asn	Glu	His	
Leu	His 450		Phe	Thr	Ile	Trp 455	Leu	Gly	Tyr	Ile	Asn 460		Thr	Leu	Asn	
Pro 465		Ile	Tyr	Pro	Leu 470		Asn	Glu	Asn	Phe 475	_	Lys	Thr	Phe	Lys 480	
Arg	Ile	Leu	His	Ile 485		Ser										
<21 <21 <21 <21	1> 2>	5 3465 DNA Homo	sap	oiens	ı											
<40	0>	5														
agt	attg	gag	tgtt	acag	199 a	gaca	taca	ig ga	ttta	agaa	gco	cato	atg	gaga	agacct	60
tca	atta	cag	agat	aaaa	ag t	tttt	cttg	jt ga	acaa	gtta	cac	taga	tgg	aaga	taacag	120
															cggctg	180
															gtgagg	240
															igcacta	300
tct	gctt	ggt	caca	agtag	3 99 (ctcaa	ecto	gc to	gtg	etgta	a tgo	ccgta	acgg	agto	jagcgga	360
															atcgtgg	420
															etgggcc	480
															attttca	540
gtg	gtctt	cat	cct	gtgc	att 🤈	gatc	gctad	cc g	ctct	gtcc	a gc	agcc	cctc	agg	tacctta	600

agtatcgtac caagac	ccga gcctcggcca	ccattctggg	ggcctggttt	ctctctttc	660
tgtgggttat tcccat	tcta ggctggaatc	acttcatgca	gcagacctcg	gtgcgccgag	720
aggacaagtg tgagad	agac ttctatgatg	tcacctggtt	caaggtcatg	actgccatca	780
tcaacttcta cctgcc	cacc ttgctcatgc	tctggttcta	tgccaagatc	tacaaggccg	840
tacgacaaca ctgcca	agcac cgggagctca	tcaataggtc	cctcccttcc	ttctcagaaa	900
ttaagctgag gccaga	agaac cccaaggggg	atgccaagaa	accagggaag	gagtctccct	960
gggaggttct gaaaa	ggaag ccaaaagatg	ctggtggtgg	atctgtcttg	aagtcaccat	1020
cccaaacccc caagga	agatg aaatccccag	ttgtcttcag	ccaagaggat	gatagagaag	1080
tagacaaact ctacto	gcttt ccacttgata	ttgagcacat	gcaggctgcg	gcagagggga	1140
gtagcaggga ctatg	tagcc gtcaaccgga	gccatggcca	gctcaagaca	gatgagcagg	1200
gcctgaacac acatg	gggcc agcgagatat	cagaggatca	gatgttaggt	gatagccaat	1260
ccttctctcg aacgg	actca gataccacca	cagagacagc	accaggcaaa	ggcaaattga	1320
ggagtgggtc taaca	caggc ctggattaca	tcaagtttac	ttggaagagg	ctccgctcgc	1380
attcaagaca gtatg	tatct gggttgcaca	tgaaccgcga	aaggaaggcc	gccaaacagt	1440
tgggttttat catgg	cagee tteatectet	gctggatccc	ttatttcatc	ttcttcatgg	1500
tcattgcctt ctgca	agaac tgttgcaat	, aacatttgca	catgttcacc	atctggctgg	1560
gctacatcaa ctcca	cactg aaccccctca	a tctacccctt	gtgcaatgag	aacttcaaga	1620
agacattcaa gagaa	ttctg catattcgc	cctaagggag	gctctgaggg	gatgcaacaa	1680
aatgatcctt atgat	gtcca acaaggaaa	agaggacgaa	ggcctgtgtg	ttgccaggca	1740
ggcacctggg ctttc	tggaa tccaaacca	c agtcttaggg	gcttggtagt	ttggaaagtt	1800
cttaggcacc ataga	agaac agcagatgg	c ggtgatcago	agagagattg	aactttgagg	1860
aggaagcaga atctt	tgcaa gaaagtcag	a cctgtttctt	gtaactgggt	tcaaaaagaa	1920
aaaaataata aaaat	aaaag agagagaga	a tcagacctgg	gtggaactet	cctgctcctc	1980
aggaactatg ggago	cctcag actcattgt	a attcaagctt	tccgagtcaa	gtgattgaca	2040
actgaagaga cacgt	ggcta gggttccac	t ggagaattga	a aaaggactct	tgagccctcc	2100
tggaatggag ctgta	ataact gtgcagaga	c tttatccato	g ccaatagtto	ctgtcccctt	2160
ccaggggtca cctto	gagagg catgacagc	t gttccacag	g ggctatccct	tctcagaaaa	2220
cttctcttct gaged	ctcttt aacagcttt	c tccagaacca	a gtgtctgaac	caccctggaa	2280
attctgcctt attat	tttctt actcaaaca	t gtttagagt	g gatagaaaat	tatgcagctt	2340

49321-106.ST25.txt gcacacccat cgtctttaac cccaaatttc ctttggctat taaaaaagtg gtggcaaaag	2400
gcatcctcaa aagaaagaga aatgaaatat ttttgaatgg ttgcacgtta aaaattaaaa	2460
gaaggaatgg gggcagaatg ccatattttt gagggctgta ctaggtttat ctcatttaag	2520
ccccacaaca ccccacagga gggtaatttt ctaactctag tttgcagagg agcaaattga	2580
ggttcagcaa ggtgagagag gtacccaagg tcacatagct agttatgtga gaaagttaga	2640
gtacagatcc tctggggttt tcagcttatt gtagcatatt ttctccgaaa ggcaaaaatg	2700
tgcccttttg gccgggcatg gtagctcaag cctataatcc cagcatgttg agaggctgag	2760
gtgggcagat catttgaggc caggagttca agaccagtct ggccaatatg gagaaacctt	2820
gtctctacta aaaacacaaa aattatctgg gcatggtggg gcatgcctgt agtcccactt	2880
acttgggagg ccgaggcacg agaatcgctt gaacccggga ggtggaggtt gccgtgagcc	2940
aagatcacgc cactgcactc cagcctgggc aacagagcaa gactctgtct caaaaaaaa	3000
aaatacaata ttttaacaat gtgccctctt aagtgtgcac agatacacat acacggtatt	3060
cccaagagtg gtggcagctc aaaatgatat gtttgagtag acgaacagcc gacatggagt	3120.
tecegtgeae etaeggaagg ggaegetttg aaggaaceaa gtgeattttt atetgtgagt	3180
tctgttgtgt ttgtcaaaaa gtcattgtaa tctttcatag ccatacctgg taagcaaaaa	3240
ctagtaaaga cataggaaca tgcagtttta cttggtgttt atgttgcaat ctggttgtga	3300
tttatatttt aaagettggt getaaaceae aatatgtata geacatggag tgeetgtaea	3360
agctgatgtt ttgtattttg tgttcctctt tgcatgatct gtcaaagtga gatattttta	3420
cctgcctaaa atatgatgtt taaaagcata aaaaaaaaaa	3465
<210> 6 <211> 1418 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (110)(979)	
<400> 6 aactgtgcga accagacccg gcagccttgc tcagttcagc atagcggagc ggatccgatc	60
ggatcggagc acaccggagc aggctcatcg agaaggcgtc tgcgagacc atg gag aac Met Glu Asn 1	118
gga tac acc tat gaa gat tat aag aac act gca gaa tgg ctt ctg tct Gly Tyr Thr Tyr Glu Asp Tyr Lys Asn Thr Ala Glu Trp Leu Leu Ser 5 10 15	166

cat His 20	act Thr	aag Lys	cac His	cga Arg	cct Pro 25	caa Gln	gtt Val	gca Ala	ata Ile	atc Ile 30	tgt Cys	ggt Gly	tct Ser	gga Gly	tta Leu 35	214
gga Gly	ggt Gly	ctg Leu	act Thr	gat Asp 40	aaa Lys	tta Leu	act Thr	cag Gln	gcc Ala 45	cag Gln	atc Ile	ttt Phe	gac Asp	tac Tyr 50	agt Ser	262
gaa Glu	atc Ile	ccc Pro	aac Asn 55	ttt Phe	cct Pro	cga Arg	agt Ser	aca Thr 60	gtg Val	cca Pro	ggt Gly	cat His	gct Ala 65	ggc Gly	cga Arg	310
ctg Leu	gtg Val	ttt Phe 70	ggg Gly	ttc Phe	ctg Leu	aat Asn	ggc Gly 75	agg Arg	gcc Ala	tgt Cys	gtg Val	atg Met 80	atg Met	cag Gln	ggc Gly	358
agg Arg	ttc Phe 85	cac His	atg Met	tat Tyr	gaa Glu	90 Gly 999	tac Tyr	cca Pro	ctc Leu	tgg Trp	aag Lys 95	gtg Val	aca Thr	ttc Phe	cca Pro	406
gtg Val 100	agg Arg	gtt Val	ttc Phe	cac His	ctt Leu 105	ctg Leu	ggt Gly	gtg Val	gac Asp	acc Thr 110	ctg Leu	gta Val	gtc Val	acc Thr	aat Asn 115	454
gca Ala	gca Ala	gga Gly	ggg ggg	ctg Leu 120	aac Asn	ccc Pro	aag Lys	ttt Phe	gag Glu 125	gtt Val	gga Gly	gat Asp	atc Ile	atg Met 130	ctg Leu	502
atc Ile	cgt Arg	gac Asp	cat His 135	Ile	aac Asn	cta Leu	cct Pro	ggt Gly 140	ttc Phe	agt Ser	ggt Gly	cag Gln	aac Asn 145	cct Pro	ctc Leu	550
aga Arg	ggg	ccc Pro 150	Asn	gat Asp	gaa Glu	agg Arg	ttt Phe 155	gga Gly	gat Asp	cgt Arg	ttc Phe	cct Pro 160	Ala	atg Met	tct Ser	598
gat Asp	gcc Ala 165	Tyr	gac Asp	cgg Arg	act Thr	atg Met 170	Arg	cag Gln	agg Arg	gct Ala	ctc Leu 175	Ser	acc Thr	tgg Trp	aaa Lys	646
caa Gln 180	Met	Gly	gag Glu	caa Gln	cgt Arg 185	Glu	cta Leu	cag Gln	gaa Glu	ggc Gly 190	Thr	tat Tyr	gtg Val	atg Met	gtg Val 195	694
gca	ggc	ccc Pro	ago Ser	Phe 200	Glu	act Thr	gtg Val	g gca l Ala	gaa Glu 205	Cys	cgt Arg	gtg Val	r ctg . Leu	Glr Glr 210	g aag Lys	742
ctg Lev	gga Gly	gca Ala	gac Asp 215) Ala	gtt Val	ggc Gly	ato Met	g agt Ser 220	Thr	gta Val	cca Pro	gaa Glu	gtt Val 225	. Ile	gtt Val	790
gca Ala	cgg Arg	cac His 230	з Суя	gga Gly	ctt Leu	cga Arg	y Val	l Phe	ggc Gly	tto Phe	tca Sei	Lei 240	ı Ile	act Thi	aac Asn	838
aag Lys	gto Val	ato Ille	atg Met	g gat : Asp	tat Tyr	gaa Glu	a ago 1 Sei	c cto r Lei	ı Glı	g aag 1 Lys Page	s Ala	c aad a Ası	cat n His	gaa Glu	a gaa 1 Glu	886

245 250 255	
gtc tta gca gct ggc aaa caa gct gca cag aaa ttg gaa cag ttt gtc Val Leu Ala Ala Gly Lys Gln Ala Ala Gln Lys Leu Glu Gln Phe Val 260 265 270 275	934
tcc att ctt atg gcc agc att cca ctc cct gac aaa gcc agt tga Ser Ile Leu Met Ala Ser Ile Pro Leu Pro Asp Lys Ala Ser 280 285	979
cctgccttgg agtcgtctgg catctcccac acaagaccca agtagctgct accttctttg	1039
gccccttgct ggagtcatgt gcctctgtcc ttaggttgta gcagaaagga aaagattcct	1099
gtccttcacc tttcccactt tcttctacca gacccttctg gtgccagatc ctcttctcaa	1159
agctgggatt acaggtgtga gcatagtgag accttggcgc tacaaaataa agctgttctc	1219
attectgtte tttettacae aagagetgga geeegtgeee taccacacat etgtggagat	1279
gcccaggatt tgactcgggc cttagaactt tgcatagcag ctgctactag ctctttgaga	1339
taatacattc cgaggggctc agttctgcct tatctaaatc accagagacc aaacaaggac	1399
taatccaata cctcttgga	1418
<210> 7 <211> 289 <212> PRT	
<pre><213> Homo sapiens <400> 7 Met Glu Asn Gly Tyr Thr Tyr Glu Asp Tyr Lys Asn Thr Ala Glu Trp 1</pre>	
<pre><400> 7 Met Glu Asn Gly Tyr Thr Tyr Glu Asp Tyr Lys Asn Thr Ala Glu Trp</pre>	
<pre><400> 7 Met Glu Asn Gly Tyr Thr Tyr Glu Asp Tyr Lys Asn Thr Ala Glu Trp</pre>	
<pre><400> 7 Met Glu Asn Gly Tyr Thr Tyr Glu Asp Tyr Lys Asn Thr Ala Glu Trp 1</pre>	
<pre> <400> 7 Met Glu Asn Gly Tyr Thr Tyr Glu Asp Tyr Lys Asn Thr Ala Glu Trp 1</pre>	

Thr Phe Pro Val Arg Val Phe His Leu Leu Gly Val Asp Thr Leu Val Page 14

Met Gln Gly Arg Phe His Met Tyr Glu Gly Tyr Pro Leu Trp Lys Val

90

95

100 105 110

Val Thr Asn Ala Ala Gly Gly Leu Asn Pro Lys Phe Glu Val Gly Asp 115 120 125

Ile Met Leu Ile Arg Asp His Ile Asn Leu Pro Gly Phe Ser Gly Gln
130 140

Asn Pro Leu Arg Gly Pro Asn Asp Glu Arg Phe Gly Asp Arg Phe Pro 145 150 155 160

Ala Met Ser Asp Ala Tyr Asp Arg Thr Met Arg Gln Arg Ala Leu Ser 165 170 175

Thr Trp Lys Gln Met Gly Glu Gln Arg Glu Leu Gln Glu Gly Thr Tyr 180 185 190

Val Met Val Ala Gly Pro Ser Phe Glu Thr Val Ala Glu Cys Arg Val 195 200 205

Leu Gln Lys Leu Gly Ala Asp Ala Val Gly Met Ser Thr Val Pro Glu 210 215 220

Val Ile Val Ala Arg His Cys Gly Leu Arg Val Phe Gly Phe Ser Leu 225 230 235 240

Ile Thr Asn Lys Val Ile Met Asp Tyr Glu Ser Leu Glu Lys Ala Asn 245 250 255

His Glu Glu Val Leu Ala Ala Gly Lys Gln Ala Ala Gln Lys Leu Glu 260 265 270

Gln Phe Val Ser Ile Leu Met Ala Ser Ile Pro Leu Pro Asp Lys Ala 275 280 285

Ser

<210> 8

<211> 4343

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (11)..(1642)

<400> 8 agatttgata atg ggc tgc att aaa agt aaa gaa aac aaa agt cca gcc 49 Met Gly Cys Ile Lys Ser Lys Glu Asn Lys Ser Pro Ala att aaa tac aga cct gaa aat act cca gag cct gtc agt aca agt gtq 97 Ile Lys Tyr Arg Pro Glu Asn Thr Pro Glu Pro Val Ser Thr Ser Val 20 ago cat tat gga gca gaa coo act aca gtg toa coa tgt cog toa tot 145 Ser His Tyr Gly Ala Glu Pro Thr Thr Val Ser Pro Cys Pro Ser Ser tca gca aag gga aca gca gtt aat ttc agc agt ctt tcc atg aca cca 193 Ser Ala Lys Gly Thr Ala Val Asn Phe Ser Ser Leu Ser Met Thr Pro ttt gga gga tcc tca ggg gta acg cct ttt gga ggt gca tct tcc tca 241 Phe Gly Gly Ser Ser Gly Val Thr Pro Phe Gly Gly Ala Ser Ser Ser ttt tca gtg gtg cca agt tca tat cct gct ggt tta aca ggt ggt gtt 289 Phe Ser Val Val Pro Ser Ser Tyr Pro Ala Gly Leu Thr Gly Gly Val នុទ act ata ttt gtg gcc tta tat gat tat gaa gct aga act aca gaa gac 337 Thr Ile Phe Val Ala Leu Tyr Asp Tyr Glu Ala Arg Thr Thr Glu Asp 100 ctt tca ttt aag aag ggt gaa aga ttt caa ata att aac aat acg gaa 385 Leu Ser Phe Lys Lys Gly Glu Arg Phe Gln Ile Ile Asn Asn Thr Glu 115 gga gat tgg tgg gaa gca aga tca atc gct aca gga aag aat ggt tat 433 Gly Asp Trp Trp Glu Ala Arg Ser Ile Ala Thr Gly Lys Asn Gly Tyr 130 135 atc ccg agc aat tat gta gcg cct gca gat tcc att cag gca gaa gaa 481 Ile Pro Ser Asn Tyr Val Ala Pro Ala Asp Ser Ile Gln Ala Glu Glu 145 150 tgg tat ttt ggc aaa atg ggg aga aaa gat gct gaa aga tta ctt ttg 529 Trp Tyr Phe Gly Lys Met Gly Arg Lys Asp Ala Glu Arg Leu Leu Leu aat cct gga aat caa cga ggt att ttc tta gta aga gag agt gaa aca 577 Asn Pro Gly Asn Gln Arg Gly Ile Phe Leu Val Arg Glu Ser Glu Thr 175 180 act aaa ggt gct tat tcc ctt tct att cgt gat tgg gat gag ata agg 625 Thr Lys Gly Ala Tyr Ser Leu Ser Ile Arg Asp Trp Asp Glu Ile Arg 190 ggt gac aat gtg aaa cac tac aaa att agg aaa ctt gac aat ggt gga 673 Gly Asp Asn Val Lys His Tyr Lys Ile Arg Lys Leu Asp Asn Gly Gly

49321-106.ST25.txt tac tat atc aca acc aga gca caa ttt gat act ctg cag aaa ttg gtg 721 Tyr Tyr Ile Thr Thr Arg Ala Gln Phe Asp Thr Leu Gln Lys Leu Val aaa cac tac aca gaa cat gct gat ggt tta tgc cac aag ttg aca act 769 Lys His Tyr Thr Glu His Ala Asp Gly Leu Cys His Lys Leu Thr Thr 240 245 9tg tgt cca act gtg aaa cct cag act caa ggt cta gca aaa gat gct 817 Val Cys Pro Thr Val Lys Pro Gln Thr Gln Gly Leu Ala Lys Asp Ala tgg gaa atc cct cga gaa tct ttg cga cta gag gtt aaa cta gga caa 865 Trp Glu Ile Pro Arg Glu Ser Leu Arg Leu Glu Val Lys Leu Gly Gln 275 913 gga tgt ttc ggc gaa gtg tgg atg gga aca tgg aat gga acc acg aaa Gly Cys Phe Gly Glu Val Trp Met Gly Thr Trp Asn Gly Thr Thr Lys 290 gta gca atc aaa aca cta aaa cca ggt aca atg atg cca gaa gct ttc 961 Val Ala Ile Lys Thr Leu Lys Pro Gly Thr Met Met Pro Glu Ala Phe 305 310 ctt caa gaa gct cag ata atg aaa aaa tta aga cat gat aaa ctt gtt 1009 Leu Gln Glu Ala Gln Ile Met Lys Lys Leu Arg His Asp Lys Leu Val 320 325 330 cca cta tat gct gtt gtt tct gaa gaa cca att tac att gtc act gaa 1057 Pro Leu Tyr Ala Val Val Ser Glu Glu Pro Ile Tyr Ile Val Thr Glu 335 340 ttt atg tca aaa gga agc tta tta gat ttc ctt aag gaa gga gat gga 1105 Phe Met Ser Lys Gly Ser Leu Leu Asp Phe Leu Lys Glu Gly Asp Gly 350 355 aag tat ttg aag ctt cca cag ctg gtt gat atg gct gct cag att gct 1153 Lys Tyr Leu Lys Leu Pro Gln Leu Val Asp Met Ala Ala Gln Ile Ala 370 gat ggt atg gca tat att gaa aga atg aac tat att cac cga gat ctt. 1201 Asp Gly Met Ala Tyr Ile Glu Arg Met Asn Tyr Ile His Arg Asp Leu 385 cgg gct gct aat att ctt gta gga gaa aat ctt gtg tgc aaa ata gca 1249 Arg Ala Ala Asn Ile Leu Val Gly Glu Asn Leu Val Cys Lys Ile Ala gac tit ggt tia gca agg tia att gaa gac aat gaa tac aca gca aga 1297 Asp Phe Gly Leu Ala Arg Leu Ile Glu Asp Asn Glu Tyr Thr Ala Arg 420 caa ggt gca aaa ttt cca atc aaa tgg aca gct cct gaa gct gca ctg 1345 Gln Gly Ala Lys Phe Pro Ile Lys Trp Thr Ala Pro Glu Ala Ala Leu tat ggt cgg ttt aca ata aag tct gat gtc tgg tca ttt gga att ctg 1393 Tyr Gly Arg Phe Thr Ile Lys Ser Asp Val Trp Ser Phe Gly Ile Leu 450 455

Caa Gl:	a aca n Thr	gaa Glu	cta Leu 465	gta Val	aca Thr	aag Lys	ggc Gly	cga Arg 470	gtg Val	cca Pro	tat Tyr	cca Pro	ggt Gly 475	atg Met	gtg Val	1441
aa As:	c cgt n Arg	gaa Glu 480	gta Val	cta Leu	gaa Glu	caa Gln	gtg Val 485	gag Glu	cga Arg	gga Gly	tac Tyr	agg Arg 490	atg Met	ccg Pro	tgc Cys	1489
cc Pr	t cag o Gln 495	ggc Gly	tgt Cys	cca Pro	gaa Glu	tcc Ser 500	ctc Leu	cat His	gaa Glu	ttg Leu	atg Met 505	aat Asn	ctg Leu	tgt Cys	tgg Trp	1537
	g aag s Lys 0					Arg										1585
tt Le	g gaa u Glu	gac Asp	tac Tyr	ttc Phe 530	act Thr	gct Ala	aca Thr	gag Glu	cca Pro 535	Gln	tac Tyr	cag Gln	cca Pro	gga Gly 540	Glu	1633
	t tta n Leu		ttc	aagt	agc	ctat	ttta	ta t	gcac	aaat	c tg	ccaa	aata			1682
ta	aagaa	ctt	gtgt	agat	tt t	ctac	agga	a to	aaaa	gaag	aaa	atct	tct	ttac	tctgca	1742
tg	ttttt	aat	ggta	aact	gg a	atco	caga	t at	ggtt	gcac	aaa	acca	ctt	ttt	ttcccc	1802
aa	gtatt	aaa	ctct	aatg	ta c	caat	gatg	a at	ttat	cago	gta	tttc	agg	gtcc	aaacaa	1862
aa	tagag	cta	agat	actg	at g	gacag	jtgtg	ıg gt	gaca	gcat	ggt	aatg	gaag	gaca	gtgagg	1922
ct	cctgc	tta	ttta	taaa	tc a	attto	cttt	c tt	tttt	tccc	caa	agto	caga	atto	jctcaaa	1982
ga	aaatt	att	tatt	gtta	ca g	gataa	aact	t ga	agaga	ataaa	aaç	ctat	cacc	ataa	taaaat	2042
ct	aaaat	taa	ggaa	tato	at g	ggad	caaa	it aa	attco	catto	caç	jttt	tta	aagt	ttcttg	2102
Cá	atttat	tat	tcto	caaaa	ıgt 1	tttt	ctaa	g ti	taaad	cagto	agt	atg	caat	ctta	atatat	2162
g	etttet	ttt	gcat	ggad	at q	gggc	caggt	t t	ttcaa	aaagg	aat	ata	aaca	ggat	ctcaaa	2222
C	ttgatt	aaa	tgtt	agad	cca (caga	agtg	ga a	tttga	aaagt	ata	aatg	cagt	acai	taatat	2282
t	catgtt	cat	ggaa	actga	aaa 🤉	gaat	aagaa	ac t	tttt	cactt	cag	gtcc	tttt	ctg	aagagtt	2342
t	gactta	agaa	taat	tgaag	ggt	aact	agaa	ag t	gagt	taato	tte	gtat	gagg	ttg	cattgat	2402
t	ttttaa	aggc	aata	atata	aat	tgaa	acta	ct g	tcca	atcaa	a ag	ggga	aatg	ttt	tgatctt	2462
t	agata	gcat	gca	aagt	aag	accc	agca	tt t	taaa	agcc	c tt	ttta	aaaa	cta	gacttcg	2522
t	actgt	gagt	att	gctt	ata	tgtc	ctta	tg g	ggat	gggt	g cc	acaa	atag	aaa	atatgac	2582
С	agato	aggg	act	tgaa	tgc	actt	ttgc	tc a	tggt	gaat	a ta	gatg	aaca	gag	aggaaaa	2642
t	gtatt	taaa	aga	aata	cga	gaaa	agaa	aa t	gtga	aagt	t tt	acaa	gtta	gag	ggatgga	2702

49321-106.ST25.txt aggtaatgtt taatgttgat gtcatggagt gacagaatgg ctttgctggc actcagagct 2762 cctcacttag ctatattctg agactttgaa gagttataaa gtataactat aaaactaatt 2822 tttcttacac actaaatggg tatttgttca aaataatgaa gttatggctt cacattcatt 2882 gcagtgggat atggttttta tgtaaaacat ttttagaact ccagttttca aatcatgttt 2942 gaatctacat teactititt tigittiett titigagaeg gagteteget eigeegeeea 3002 99ctggagtg cagtggcgcg atctcggctc actgcaagct ctgcctccca ggttcacacc 3062 attetectge etcageetee egagtagetg ggaetacagg tgeceaceae caegeetgge 3122 tagttttttg tatttttagt agagacgcag tttcaccgtg ttagccagga tggtctcgat 3182 ctcctgacct tgtgatctgc ccgcctcggc ctcccaaagt gctgggatta caggcgtgag 3242 ccaccgcgcc cagcctacat tcacttctaa agtctatgta atggtggtca ttttttccct 3302 tttagaatac attaaatggt tgatttgggg aggaaaactt attctgaata ttaacggtgg 3362 tgaaaagggg acagttttta ccctaaagtg caaaagtgaa acatacaaaa taagactaat 3422 ttttaagagt aactcagtaa tttcaaaata cagatttgaa tagcagcatt agtggtttga 3482 gtgtctagca aaggaaaaat tgatgaataa aatgaaggtc tggtgtatat gttttaaaat 3542 acteteatat agteacaett taaattaage ettatattag geceetetat ttteaggata 3602 taattettaa etateattat ttaeetgatt ttaateatea gattegaaat tetgtgeeat 3662 ggcgtatatg ttcaaattca aaccattttt aaaatgtgaa gatggacttc atgcaagttg 3722 gcagtggttc tggtactaaa aattgtggtt gtttttctg tttacgtaac ctgcttagta 3782 ttgacactct ctaccaagag ggtcttccta agaagagtgc tgtcattatt tcctcttatc 3842 aacaacttgt gacatgagat tttttaaggg ctttatgtga actatgatat tgtaattttt 3902 ctaagcatat tcaaaagggt gacaaaatta cgtttatgta ctaaatctaa tcaggaaagt 3962 aaggcaggaa aagttgatgg tattcattag gttttaactg aatggagcag ttccttatat 4022 aataacaatt gtatagtagg gataaaacac taacttaatg tgtattcatt ttaaattgtt 4082 ctgtattttt aaattgccaa gaaaaacaac tttgtaaatt tggagatatt ttccaacagc 4142 ttttcgtctt cagtgtctta atgtggaagt taacccttac caaaaaagga agttggcaaa 4202 aacagcette tagcacactt ttttaaatga ataatggtag cetaaactta atatttttat 4262

<210> 9 <211> 543

attaaaaaaa aaaaaaaaa a

4322

4343

aaagtattgt aatattgttt tgtggataat tgaaataaaa agttctcatt gaatgcacct

<212> PRT

<213> Homo sapiens

<400> 9

Met Gly Cys Ile Lys Ser Lys Glu Asn Lys Ser Pro Ala Ile Lys Tyr

1 10 15

Arg Pro Glu Asn Thr Pro Glu Pro Val Ser Thr Ser Val Ser His Tyr 20 25 30

Gly Ala Glu Pro Thr Thr Val Ser Pro Cys Pro Ser Ser Ser Ala Lys 35 40 45

Gly Thr Ala Val Asn Phe Ser Ser Leu Ser Met Thr Pro Phe Gly Gly 50 55 60

Ser Ser Gly Val Thr Pro Phe Gly Gly Ala Ser Ser Ser Phe Ser Val 65 70 75 80

Val Pro Ser Ser Tyr Pro Ala Gly Leu Thr Gly Gly Val Thr Ile Phe 85 90 95

Val Ala Leu Tyr Asp Tyr Glu Ala Arg Thr Thr Glu Asp Leu Ser Phe 100 105 110

Lys Lys Gly Glu Arg Phe Gln Ile Ile Asn Asn Thr Glu Gly Asp Trp 115 120 125

Trp Glu Ala Arg Ser Ile Ala Thr Gly Lys Asn Gly Tyr Ile Pro Ser 130 135 140

Asn Tyr Val Ala Pro Ala Asp Ser Ile Gln Ala Glu Glu Trp Tyr Phe 145 150 155 160

Gly Lys Met Gly Arg Lys Asp Ala Glu Arg Leu Leu Asn Pro Gly 165 170 175

Asn Gln Arg Gly Ile Phe Leu Val Arg Glu Ser Glu Thr Thr Lys Gly 180 185 190

Ala Tyr Ser Leu Ser Ile Arg Asp Trp Asp Glu Ile Arg Gly Asp Asn 195 200 205

Val Lys His Tyr Lys Ile Arg Lys Leu Asp Asn Gly Gly Tyr Tyr Ile 210 215 220

Thr 225	Thr	Arg	Ala	Gln	Phe 230	Asp	Thr	Leu	Gln	Lys 235	Leu	Val	Lys	His	Tyr 240
Thr	Glu	His	Ala	Asp 245	Gly	Leu	Сув	His	Lys 250	Leu	Thr	Thr	Val	Cys 255	Pro
Thr	Val	Lys	Pro 260	Gln	Thr	Gln	Gly	Leu 265	Ala	Lys	Asp	Ala	Trp 270	Glu	Ile
Pro	Arg	Glu 275	Ser	Leu	Arg	Leu	Glu 280	Val	Lys	Leu	Gly	Gln 285	Gly	Cys	Phe
Gly	Glu 290	Val	Trp	Met	Gly	Thr 295	Trp	Asn	Gly	Thr	Thr 300	Lys	Val	Ala	Ile
Lys 305	Thr	Leu	Lys	Pro	Gly 310	Thr	Met	Met	Pro	Glu 315	Ala	Phe	Leu	Gln	Glu 320
Ala	Gln	Ile	Met	Lys 325	Lys	Leu	Arg	His	Asp 330	-	Leu	Val	Pro	Leu 335	Tyr
Ala	Val	Val	Ser 340	Glu	Glu	Pro	Ile	Tyr 345	Ile	Val	Thr	Glu	Phe 350		Ser
Lys	Gly	Ser 355		Leu	Asp	Phe	Leu 360	-	Glu	Gly	Asp	Gly 365	_	Tyr	Leu
Lys	Leu 370		Gln	Leu	Val	Asp 375		Ala	Ala	Gln	380		Asp	Gly	Met
Ala 385		Ile	Glu	Arg	Met 390		Tyr	Ile	His	395	_	Leu	Arg	Ala	Ala 400
Asn	Ile	e Leu	ı Val	Gly 405		Asn	Leu	Val	Cys 410		: Ile	Ala	Asp	Phe 415	Gly
Leu	Ala	a Arg	J Let 420		: Glu	Asp	Asn	Glu 425	-	Thi	Ala	Arg	g Glr 43(Ala
Lys	s Phe	Pro 435		e Lys	Trp	Thr	Ala 440		Glu	ı Ala	a Ala	445	_	Gly	Arg

Phe Thr Ile Lys Ser Asp Val Trp Ser Phe Gly Ile Leu Gln Thr Glu

Page 21

450		455	321-106.ST25. 460	txt					
Leu Val 465	Thr Lys Gly Arg 470	Val Pro Tyr	Pro Gly Met 475	Val Asn Arg	Glu 480				
Val Leu	Glu Gln Val Glu 485	Arg Gly Tyr	Arg Met Pro 490	Cys Pro Gln 495	Gly				
Cys Pro	Glu Ser Leu His 500	Glu Leu Met 505	Asn Leu Cys	Trp Lys Lys 510	Asp				
Pro Asp	Glu Arg Pro Thr 515	Phe Glu Tyr 520	Ile Gln Ser	Phe Leu Glu 525	Asp				
Tyr Phe	Thr Ala Thr Glu	Pro Gln Tyr 535	Gln Pro Gly 540	Glu Asn Leu					
<210><211><212><213>		ence							
<220> <223>	HMG20B PMO antis	sense oligome	er						
	10 gcat cttggtgatc t	ceggg			25				
<211> <212>	<210> 11 <211> 25 <212> DNA <213> artificial sequence								
<220> <223>	HRH1-specific P	MO antisense	oligo						
<400> gcgaaa	11 gagc agccgccagt	tatgg			25				
<210><211><212><213>	DNA	ence							
<220> <223>	NP-specific PMO	antisense o	ligo						
	12 aggt gtatccgttc	tccat			25				

	49321-106.ST25.txt	
<210>	13	
<211>	25	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	YES-specific PMO antisense oligo	
<400>	13	
tttcttt	tact tttaatgcag cccat	25
<210>	14	
<211>	25	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	ARF1-specific PMO antisense oligo	
<400>	14	
atgctt	gtgg acaggtggaa ggaca	25