BME Gépészmérnöki Kar	BMEGEMMBXVE	Név:
Műszaki Mechanikai Tanszék	Végeselem módszer alapjai	NEPTUN-kód:
Félév: 2022/23/02	Szorgalmi 2. házi feladat	Aláírás:

	ÁBRA	KÓD2	KÓD3	KÓD4
Feladatkód:				

A feladat ábrája egy sík lemez geometriáját, terhelését és kényszerezését szemlélteti. A görgős támaszok a falra merőlegesen mindkét irányban gátolják az elmozdulást. A lemez terhelése felületen megoszló p erőrendszer. A lemez anyagának rugalmassági modulusza 180 GPa, Poisson-tényezője 0, 4. A feladatkódtól függően a lemez sík-feszültségi állapotban (SF), vagy sík-alakváltozási állapotban (SA) van. A lemez vastagsága t.

A lemez deformációjának számításához három darab négycsomópontos lineáris négyszögelemet használunk 2×2-es Gausskvadratúra alkalmazásával!. Az elemek és csomópontok számozását az ábra mutatja, ettől a számozástól ne térjen el!

- 1. Készítsen méretarányos ábrát a lemezről a terhelések és a kényszerek feltüntetésével.
- **2.** Határozza meg a csomóponti *eredő* elmozdulásokat $(\Delta_1, \Delta_2, \Delta_3, \Delta_4, \Delta_5, \Delta_6, \Delta_7, \Delta_8)!$
- 3. Ábrázolja a deformált alakot a csomóponti elmozdulások 50×-os felnagyításával!
- 4. Számítsa ki a csomóponti terhelések vektorát!
- 5. Adja meg az 1-es elemben felhalmozódó rugalmas alakváltozási energia nagyságát $(U^{(1)})!$
- 6. Adja meg a 2-es elem súlypontjában a feszültségek értékét $(\sigma_x^{S2},\ \sigma_y^{S2},\ \tau_{xy}^{S2})!$

ADATOK

	Feladatkód	KÓD2		KÓD3		KÓD4	
A		állapot	a	p	b	t	c
D			[mm]	[MPa]	[mm]	[mm]	[mm]
A	1	SF	30	450	80	8	130
T	2	SA	25	350	75	6	120
О	3	SF	20	250	70	4	100
K	4	SA	35	550	85	10	140

EREDMÉNYEK

$\Delta_1 \ [\mu \mathrm{m}]$	$\Delta_2 \ [\mu \mathrm{m}]$	$\Delta_3 \ [\mu \mathrm{m}]$	$\Delta_4 \ [\mu \mathrm{m}]$	$\Delta_5 \ [\mu \mathrm{m}]$	$\Delta_6 \ [\mu \mathrm{m}]$	$\Delta_7 \ [\mu \mathrm{m}]$	$\Delta_8 \ [\mu \mathrm{m}]$
F_{1x} [kN]	F_{2x} [kN]	F_{3x} [kN]	F_{4x} [kN]	F_{5x} [kN]	F_{6x} [kN]	F_{7x} [kN]	F_{8x} [kN]
F_{1y} [kN]	F_{2y} [kN]	F_{3y} [kN]	F_{4y} [kN]	F_{5y} [kN]	F_{6y} [kN]	F_{7y} [kN]	F_{8y} [kN]
$\sigma_x^{S2} \text{ [MPa]}$		$\sigma_y^{S2} [\text{MPa}]$		$ au_{xy}^{S2} [ext{MPa}]$		$U^{(1)}$ [J]	