- ► The topic of **Finite State Machines (FSMs)** has very formal underpinnings in automata theory ...
- ▶ ... basically they are a model of **computation**:
 - ▶ A FSM is a machine that can be in a finite set of states.
 - ► The machine consumes input symbols from an alphabet one at a time; symbols make the machine transition from one state to another according to a transition function.
 - When the input is exhausted, the machine halts; depending on the state it halts in, the machine is said to accept or reject the input.
 - ► The set of inputs accepted by the machine is termed the language accepted; this can be used to classify the machine itself.

Dan Page (page0cs.bris.ac.uk) © 2014-5 Computer Architecture (new format)

Slide 1 of 23

Notes:

Notes:

"Automata Theory in 10 minutes" (1)

Question

Design an FSM that decides whether a binary sequence *X* has an even or odd number of 0 elements in it.

Algorithm (tabular)

	δ)
Q	Ç)′
	$X_i = 0$	$X_i = 1$
S_{even}	S_{odd}	S_{even}
S_{odd}	S_{even}	S_{odd}

Algorithm (diagram)

- ► Note that:
 - 1. For the input $X = \langle 1, 0, 1, 1 \rangle$ the transitions are

$$\rightarrow S_{even} \stackrel{X_0=1}{\leadsto} S_{even} \stackrel{X_1=0}{\leadsto} S_{odd} \stackrel{X_2=1}{\leadsto} S_{odd} \stackrel{X_3=1}{\leadsto} S_{odd}$$

so the input is rejected, and has an odd number of 0 elements.

2. For the input $X = \langle 1, 0, 1, 0 \rangle$ the transitions are

$$\sim S_{even} \stackrel{X_0=1}{\leadsto} S_{even} \stackrel{X_1=0}{\leadsto} S_{odd} \stackrel{X_2=1}{\leadsto} S_{odd} \stackrel{X_3=0}{\leadsto} S_{even}$$

so the input is accepted, and has an even number of 0 elements.

University of

an Page (page@cs.bris.ac.uk) © 2014-5 Computer Architecture (new format) "Automata Theory in 10 minutes" (2)

Based on the fact that

- 1. entry actions happen when entering a given state,
- 2. exit actions happen when exiting a given state,
- 3. input actions happen based on the state and any input received, and
- 4. transition actions happen when a given transition between states is performed

we can categorise an FSM based on output behaviour ...

- 1. a Moore FSM only uses entry actions, i.e., the output depends on the state only, while
- 2. a **Mealy** FSM only uses input actions, i.e., the output depends on the state and the input
- ... or on transition behaviour, where an FSM is deemed
- 1. **deterministic** if for each state there is always one transition for each possible input (i.e., we always know what the next state should be), or
- 2. **non-deterministic** if for each state there might be zero, one or more transitions for each possible input (i.e., we only know what the next state could be).

Dan Page (page@cs.bris.ac.uk) © 2014-5

Slide 3 of 23

"Automata Theory in 10 minutes" (3)

Definition

A Finite State Machine (FSM) is defined by the following:

- 1. *S*, a finite set of **states** and a distinguished **start state** $s \in S$.
- 2. $A \subseteq S$, a finite set of accepting states.
- 3. An input alphabet Σ and output alphabet Γ .
- 4. A transition function

 $\delta: S \times \Sigma \to S$.

5. An output function

 $\omega: S \to \Gamma$

in the case of a Moore FSM, or

 $\omega: S \times \Sigma \to \Gamma$

in the case of a Mealy FSM.

▶ Note that:

- The FSM itself might be enough to solve a given problem, but it is common to control an associated data-path using the outputs.
- A special "empty" input denoted ϵ allows a transition that can *always* occur.
- It's common to allow δ to be a **partial function**, so it needn't be defined for all inputs.
- If the FSM is non-deterministic, δ might instead give a *set* of possibilities that is randomly sampled from.

	Notes:
L	
	Notes:
1	

FSMs in Hardware (1)

Note that

- 1. δ and ω are simply combinatorial logic,
- 2. the state is retained in a register (i.e., a group of latches or flip-flops), 3. within the current clock cycle
- - 3.1 ω computes the output from the current state and input, and
 - 3.2 δ computes the next state from the current state and input,
- 4. the next state is latched by an appropriate feature (i.e., level or edge) in the clock

i.e., this is a framework for a *computer* we can build!

FSMs in Hardware (2)

Algorithm Flip-flop based Clock register(s) → Output

Note that

- 1. δ and ω are simply combinatorial logic,
- 2. the state is retained in a register (i.e., a group of latches or flip-flops),
- 3. within the current clock cycle
 - 3.1 ω computes the output from the current state and input, and
 - 3.2 δ computes the next state from the current state and input,
- 4. the next state is latched by an appropriate feature (i.e., level or edge) in the clock

i.e., this is a framework for a *computer* we can build!

University of BRISTOL

Notes:	

FSMs in Hardware (3)

FSMs in Hardware (4)

Notes:			

University of BRISTOL

FSMs in Hardware (5)

► To use the framework to solve a concrete problem, we follow a (fairly) standard sequence of steps:

Algorithm

- 1. Count the number of states required, and give each state an abstract label.
- 2. Describe the state transition and output functions using a tabular or diagrammatic approach.
- 3. Decide how the states will be represented, i.e., assign concrete values to the abstract labels, and allocate a large enough register to hold the state.
- 4. Express the functions δ and ω as (optimised) Boolean expressions, i.e., combinatorial logic.
- 5. Place the registers and combinatorial logic into the framework.
- ▶ Note that:
 - ► In hardware, it isn't common to have accepting states since we can't "halt"; we might include idle or error states to cope.
 - The framework doesn't show it, but in hardware it is common to have a **reset** input that (re)initialises the FSM into the start state.

Dan Page (page@cs.bris.ac.uk) © 2014-5 Computer Architecture (new format)

Slide 9 of 23

FSMs in Hardware (6) – a "modulo 6 ascending counter"

Question

Design an FSM that acts as a cyclic counter modulo n (rather than 2^n as before). If n = 6 for example, we want a component whose output r steps through values

with the modular reduction representing control behaviour (versus the uncontrolled counter that was cyclic by default).

Notes:			
Notes:			

Algorithm (tabular)	Algorithm (diagram)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	S_0 C
	ϵ $\begin{cases} $

FSMs in Hardware (8) – a "modulo 6 ascending counter"

- ▶ There are 6 states representing the integers 0, 1, ..., 5; we've given them the abstract labels $S_0, S_1, ..., S_5$.
- ► Since $2^3 = 8 > 6$, we can assign a concrete 3-bit value

$$S_0 \mapsto \langle 0, 0, 0 \rangle$$

University of BRISTOL

University of BRISTOL

$$S_1 \mapsto \langle 1, 0, 0 \rangle$$

$$S_2 \mapsto \langle 0, 1, 0 \rangle$$

$$S_3 \mapsto \langle 1, 1, 0 \rangle$$

$$S_4 \mapsto \langle 0, 0, 1 \rangle$$

$$S_5 \mapsto \langle 1, 0, 1 \rangle$$

to each abstract label; this basically means we can talk about

- 1. $Q = \langle Q_0, Q_1, Q_2 \rangle$ as being the current state, and
- 2. $Q' = \langle Q'_0, Q'_1, Q'_2 \rangle$ as being the next state.

Notes:	

Dan Page (page@cs.bris.ac.uk) © 2014-5 Computer Architecture (new format)

FSMs in Hardware (9) – a "modulo 6 ascending counter"

Algorithm (truth table)

Rewriting the abstract labels yields the following concrete truth table:

				δ			ω	
Q_2	Q_1	Q_0	Q_2'	Q_1'	Q'_0	r_2	r_1	r_0
0	0	0	0	0	1	0	0	0
0	0	1	0	1	0	0	0	1
0	1	0	0	1	1	0	1	0
0	1	1	1	0	0	0	1	1
1	0	0	1	0	1	1	0	0
1	0	1	0	0	0	1	0	1
1	1	0	?	?	?	?	?	?
1	1	1	?	?	?	?	?	?

Note that our state assignment means r = Q, so ω is basically just the identity function for that output.

Dan Page (pa) © 2014-5
Computor	Architecture (new	format)

Slide 13 of 23

University of BRISTOL

FSMs in Hardware (10) – a "modulo 6 ascending counter"

Circuit (δ)

Translating the truth table into a set of Karnaugh maps

yields the following Boolean expressions:

$$\begin{aligned} &Q_2' = (& & Q_1 & \wedge & Q_0 &) \vee \\ &(& Q_2 & \wedge & & \neg Q_0 &) \end{aligned}$$

$$Q_1' = (& \neg Q_2 & \wedge & \neg Q_1 & \wedge & Q_0 &) \vee \\ &(& & Q_1 & \wedge & \neg Q_0 &) \end{aligned}$$

$$Q_0' = (& & \neg Q_0 &)$$

Notes:

Notes:

An Aside: An alternative, "one-hot" encoding

- ► The fact we do state assignment late on in the process is intentional; it allows us to optimise the representation based on what we do with it.
- 1. A **binary encoding** represents the *i*-th of *n* states as a ($\lceil \log_2(n) \rceil$)-bit unsigned integer *i*.
- 2. A **one-hot encoding** is where for state i, a valid code word X has $X_i = 1$ and $X_j = 0$ for $j \neq i$, e.g., for n = 6

 $\begin{array}{cccc} S_0 & \mapsto & \langle 1,0,0,0,0,0,0 \rangle \\ S_1 & \mapsto & \langle 0,1,0,0,0,0,0 \rangle \\ S_2 & \mapsto & \langle 0,0,1,0,0,0 \rangle \\ S_3 & \mapsto & \langle 0,0,0,1,0,0 \rangle \\ S_4 & \mapsto & \langle 0,0,0,0,1,0 \rangle \\ S_5 & \mapsto & \langle 0,0,0,0,0,1,1 \rangle \end{array}$

noting that

- we have a larger state (i.e., n bits instead of $\lceil \log_2(n) \rceil$), but
- transition between states is easier, and
- switching behaviour (and hence power consumption) is reduced.

Dan Page (page@cs.bris.ac.uk) © 2014-5

Slide 15 of 23

University of BRISTOL

FSMs in Hardware (12) – a "modulo 6 ascending/descending counter with alert"

Question

Design an FSM that acts as a cyclic counter modulo n, but whose direction can also be controlled. If n=6 for example, we want a component whose output r steps through values

0, 1, 2, 3, 4, 5, 0, 1, . . .

or

depending on some input d, plus has an output f to signal when the cycle occurs (i.e., when the current value is last or first in the sequence, depending on d).

Notes:		
Notes:		

FSMs in Hardware (13) – a "modulo 6 ascending/descending counter with alert"

Algorithm (tabular)

	i	5		ω			
Q	Ç	<u>)</u> ′	r	f	r .		
	d = 0	d = 1		d = 0	d=1		
S_0	S_1	S_5	0	0	1		
S_1	S_2	S_0	1	0	0		
S_2	S_3	S_1	2	0	0		
S_3	S_4	S_2	3	0	0		
S_0 S_1 S_2 S_3 S_4 S_5	S_2 S_3 S_4 S_5 S_0	S_1 S_2 S_3	4	0	0		
S_5	S_0	S_4	5	1	0		

Algorithm (diagram)

Dan Page (page@cs.bris.ac.uk) © 2014-5

Slide 17 of 23

University of BRISTOL

University of BRISTOL

FSMs in Hardware (14) – a "modulo 6 ascending/descending counter with alert"

Algorithm (truth table)

Rewriting the abstract labels yields the following concrete truth table:

					δ			а	,	
d	Q_2	Q_1	Q_0	Q_2'	Q'_1	Q'_0	r_2	r_1	r_0	f
0	0	0	0	0	0	1	0	0	0	0
0	0	0	1	0	1	0	0	0	1	0
0	0	1	0	0	1	1	0	1	0	0
0	0	1	1	1	0	0	0	1	1	0
0	1	0	0	1	0	1	1	0	0	0
0	1	0	1	0	0	0	1	0	1	1
0	1	1	0	?	?	?	?	?	?	?
0	1	1	1	?	?	?	?	?	?	?
1	0	0	0	1	0	1	0	0	0	1
1	0	0	1	0	0	0	0	0	1	0
1	0	1	0	0	0	1	0	1	0	0
1	0	1	1	0	1	0	0	1	1	0
1	1	0	0	0	1	1	1	0	0	0
1	1	0	1	1	0	0	1	0	1	0
1	1	1	0	?	?	?	?	?	?	?
1	1	1	1	?	?	?	?	?	?	?

Note that our state assignment means r = Q, so ω is basically just the identity function for that output.

Notes:		

Notes:

FSMs in Hardware (15) – a "modulo 6 ascending/descending counter with alert"

Circuit (δ)

Translating the truth table into a set of Karnaugh maps

yields the following Boolean expressions:

Dan Page (page@cs.bris.ac.uk) © 2014-Computer Architecture (new format)

Slide 19 of 23

University of BRISTOL

FSMs in Hardware (16) – a "modulo 6 ascending/descending counter with alert"

Circuit (ω)

Translating the truth table into a set of Karnaugh maps

yields the following Boolean expressions:

Notes:

Notes:		

Conclusions

- ► Take away points:
- 1. We've linked together theory and practice: FSMs are abstract computational models, but we've used them to solve concrete problems.
- 2. We've *only* used concepts in digital logic that we know how to construct right from the transistor-level; there is no "magic" going on behind the scenes.
- 3. Clearly the examples are limited, but a fundamentally similar framework can be used for more complex computational machines.

Dan Page (page0cs.bris.ac.uk) © 2014-5 Computer Architecture (new format)

Slide 21 of 23

References and Further Reading

- [1] Wikipedia: Clock signal. http://en.wikipedia.org/wiki/Clock_signal.
- [2] Wikipedia: Finite State machine (FSM). http://en.wikipedia.org/wiki/Finite-state_machine.
- [3] Wikipedia: Flip-flop. http://en.wikipedia.org/wiki/Flip-flop_(electronics).
- [4] Wikipedia: Latch. http://en.wikipedia.org/wiki/Latch_(electronics).
- [5] D. Page.
 Chapter 2: Basics of digital logic.
 In A Practical Introduction to Computer Architecture. Springer-Verlag, 1st edition, 2009.
- [6] W. Stallings.
 Chapter 11: Digital logic.
 In Computer Organisation and Architecture. Prentice-Hall, 9th edition, 2013.
- [7] A.S. Tanenbaum.Section 3.1: Gates and Boolean algebra.In Structured Computer Organisation [9].

References and Further Reading

- [8] A.S. Tanenbaum. Section 3.2: Basic digital logic circuits. In Structured Computer Organisation [9].
- [9] A.S. Tanenbaum. Structured Computer Organisation. Prentice-Hall, 6th edition, 2012.

Dan Page (page@cs.	.bris.ac.uk) © 2014
Computer Archit	actura (now format)

Notes:		