Fundamentals of Unconstrained Optimization

WQD7011 Numerical Optimization

Introduction

- Remember the general form of optimization?
 - It can be classified according to:
 - Nature of objective function and constraints (linear, nonlinear, convex)
 - Number of variables (large or small)
 - Smoothness of the functions (differentiable or nondifferentiable)
 - IMPORTANT: Problems that have constraints on variables and those that do not.

Constrained and Unconstrained Optimization

- Unconstrained optimization
 - no restrictions on the values of the variables
- Constrained optimization:
 - Constraints play an essential role
 - Simple bound such as 0 <= x_1 <= 100</p>

Unconstrained Optimization

Minimize an objective function that depends on real variables, with no restrictions at all on the values of these variables.

$$\min_{x} f(x)$$

where $x \in \mathbb{R}^n$ is a real vector with $n \ge 1$ components and $f : \mathbb{R}^n \to \mathbb{R}$ is a smooth function.

- Local solution
 - A point at which the objective function is smaller than at all other feasible nearby points
- Global solution
 - The point with lowest function value among ALL feasible points.
 - Difficult to recognize and locate

- Global minimizer of f, a point where the function attains its least value.
- Formal definition:
 - A point x^* is a global minimizer if $f(x^*) \le f(x)$ for all x
 - where x ranges over all of \mathbb{R}^n (or at least over the domain of interest to the modeler)
- Global minimizer can be difficult to find:
 - lacktriangle One possible reason: our knowledge of f is usually only local

- Most algorithms are able to find only local minimizer, which is a point that achieves the smallest values of f in its neighborhood.
- Formal definition:
 - A point x^* is a local minimizer if there is a neighborhood N of x^* such that $f(x^*) \le f(x)$ for all $x \in \mathbb{N}$.
 - A neighborhood of x^* is simply an open set that contains x^* .
 - If a point satisfies this definition => weak local minimizer.

- Strict local minimizer, which is the outright winner in its neighborhood, is defined as:
 - A point x^* is a strict local minimizer (also called as strong local minimizer) if there is a neighborhood N of x^* such that $f(x^*) < f(x)$ for all $x \in \mathbb{N}$ with $x \neq x^*$
- Example:
 - Constant function f(x) = 2, every point x is a weak local minimizer, while the function $f(x) = (x 2)^4$ has a strict local minimizer at x = 2.

- Isolated local minimizer exotic type of local minimizer.
- Formal definition:
 - A point x^* is an isolated local minimizer if there is a neighborhood N of x^* such that x^* is the only local minimizer in N.
- Some strict local minimizers are not isolated but all isolated local minimizers are strict.

Fig. 2.2: a function with many local minimizer. In some optimization problems, can goes up to millions of local minima.

Figure 2.2 A difficult case for global minimization.

Recognizing a local minimum

- Only way to find out whether a point x^* is a local minimum is to examine all the points in its immediate vicinity, to make sure that non of them has a smaller function value.
- When function f is smooth, however, there are more efficient and practical ways to identify local minima.
- If f is twice continuously differentiable, we may be able to tell that x^* is a local minimizer (and possible strict one) by examining just the gradient $\nabla f(x^*)$ and the Hessian $\nabla^2 f(x^*)$.
- Mathematical tool used to study minimizer of smooth functions is Taylor's theorem.

Recognizing a local minimum

- Assumption on the function considered:
 - $x \in \mathbb{R}$
 - f(x) is smooth
 - f(x) is convex

Convex

- Convex applied to both sets and function
- A set $S \in \mathbb{R}^n$ is a convex set if the straight line segment connecting any two points in S lies entirely inside S.
- For any two points $x \in S$ and $y \in S$, we have $\alpha x + (1 \alpha)y \in S$ for all $\alpha \in [0, 1]$.
- Function f is a convex function if its domain S is convex set and if for any two points x and y in S, the following property is satisfied:

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$
 for all $\alpha \in [0, 1]$

Taylor's Approximation around Local Minimum

Refers to lecture demonstration.

Strategies for Optimization

- lacktriangle Generally, all algorithms start at an initial point x_0 .
 - Either selected by experienced user or by algorithm (either systematically or arbitrary manner).
- Optimization algorithms generate a sequence of iterates $\{x_k\}_{k=0}^{\infty}$ that terminate when either no more progress can be made or when it seems that a solution point has been approximated with sufficient accuracy.
- How to move from one iterate to the next?
 - Algorithm use information about function f at x_k and possibly also information from earlier iterates.
 - Use this information to find a new iterate x_{k+1} with a lower function value than x_k .

Strategies for Optimization

- Two fundamental strategies :
 - Line search
 - Trust region

General Idea on Line Search Strategy

- Algorithm chooses a direction p_k and searches along this direction from the current iterate x_k for a new iterate with a lower function value/
- Distance to move along p_k can be found by approximately solving the following one dimensional minimization problem to find a step length α :

$$\min_{\alpha > 0} f\left(x_k + \alpha p_k\right)$$

- By solving the aforementioned problem, can derive the max benefit from direction p_k .
- Line search algorithm generates a limited number of trial step lengths until it finds one that loosely approximately the minimum of the problem.
- At new point, new search direction and step length are computed, and process repeated.

General Idea on Trust Region

- Information gathered about f is used to construct a model function m_k whose behavior near the current point x_k is similar to that of the actual objective function f.
- Because the model m_k may not posses a good approximation when it is far away from x_k , TRM restricts the search for a minimizer for m_k to some region around x_k .
- In other words, we find the candidate step p by approximately solving the following sub-problem:
- $\longrightarrow \min_{p} m_k(x_k + p)$, where $x_k + p$ lies inside the trust region.

ONLINE EXERCISES