Булевы функции

Булева функция от n переменных есть произвольное отображение вида

$$f: \{0,1\}^n \to \{0,1\}$$
.

$$y = f(x_1, ..., x_n)$$

Используются такие обозначения:

 $P_{\scriptscriptstyle 2}$ - множество всех булевых функций,

 $P_{\scriptscriptstyle 2}^{\scriptscriptstyle (n)}$ - множество всех булевых функций от n переменных.

Очевидно, что
$$P_2 = \bigcup_{n=0}^{\infty} P_2^{(n)}$$
 .

При n=0 получаем две булевы константы: 0 и 1. В силу определения булеву функцию от n переменных можно рассматривать как n -арную операцию на множестве $\{0, 1\}$.

Число всех булевых функций от n переменных равно 2^{2^n} .

Это следует из известной формулы подсчета числа всех отображений одного конечного множества в другое:

$$|B^A|=|B|^{|A|}$$
.

В данном случае $A = \{0,1\}^n$ - n-мерный булев куб, число элементов в котором (число булевых векторов размерности n) равно 2^n , а $B = \{0,1\}$.

Табличное представление

Таблицы:

$$n=1$$

X	f_1	f_2	f_3	f_4
0	0	1	0	1
1	0	1	1	0

4-я функция называется отрицанием: $f_4(x) \rightleftharpoons \overline{x}$.

$$n = 2$$

x_1	x_2	V	$\wedge(\cdot,\&)$	\rightarrow (\supset)	~	\oplus	1	\downarrow
0	0	0	0	1	1	0	1	1
0	1	1	0	1	0	1	1	0
1	0	1	0	0	0	1	1	0
1	1	1	1	1	1	0	0	0

- 1)Дизъюнкция
- 2) Конъюнкция
- 3) Импликация
- 4) Эквивалентность
- 5) Сумма по модулю 2 (строгая дизъюнкция)
- 6) Штрих Шеффера
- 7) Стрелка Пирса

Если равенство функций понимать как совпадение таблиц, то можно заметить следующее:

$$1) \ x_1 \rightarrow x_2 = \overline{x}_1 \lor x_2$$

2)
$$x_1 \sim x_2 = (x_1 \to x_2) \cdot (x_2 \to x_1) = \overline{x_1 \oplus x_2}$$

$$3) \ x_1 \oplus x_2 = x_1 \overline{x}_2 \vee \overline{x}_1 x_2$$

4)
$$x_1 \mid x_2 = \overline{x_1 x_2} = \overline{x_1} \vee \overline{x_2}$$

5)
$$x_1 \downarrow x_2 = \overline{x_1 \lor x_2} = \overline{x_1} \cdot \overline{x_2}$$

Общий формат таблицы булевой функции:

	x_1		\mathcal{X}_n	$f(x_1,,x_n)$
0	0	•••	0	f(0,,0)
K	n-разрядный	Двоичный код	Числа k	f()
$2^{n}-1$	1		1	f(1,,1)

Пример:

	x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

Задание вектором значений: $f = (0001\ 0111)$

Задание путем перечисления номеров конституент 1: $f = \{3,5,6,7\}$.

Равенство булевых функций. Фиктивные переменные

Две булевы функции $f,g\in P_2^{(n)}$ считаются равными, если

$$(\forall \overline{\tilde{\alpha}} \in \{0,1\}^n) (f(\overline{\tilde{\alpha}}) = g(\overline{\tilde{\alpha}}))$$
.

Это и есть формальное определение совпадения таблиц.

Следующий пример показывает, что функции могут быть равны, хотя формально определены как функции от разного числа переменных.

$$f(x_{1}, x_{2}) = x_{1} \vee x_{2},$$

$$g(x_{1}, x_{2}, x_{3}) = x_{1}x_{3} \vee x_{1}\overline{x}_{3} \vee x_{2}x_{3} \vee x_{2}\overline{x}_{3},$$

$$h(x_{1}, x_{2}, x_{3}, x_{4}) = x_{1}x_{3}x_{4} \vee x_{1}\overline{x}_{3}x_{4} \vee x_{2}x_{3}x_{4} \vee x_{2}\overline{x}_{3}x_{4} \vee x_{1}\overline{x}_{3}\overline{x}_{4} \vee x_{1}\overline{x}_{3}\overline{x}_{4} \vee x_{2}\overline{x}_{3}\overline{x}_{4}$$

Легко видеть, что при использовании тождеств булевой алгебры вторая функция преобразуется к первой:

$$g(x_1, x_2, x_3) = x_1 x_3 \lor x_1 \overline{x_3} \lor x_2 x_3 \lor x_2 \overline{x_3} = x_1 (x_3 \lor \overline{x_3}) \lor x_2 (x_3 \lor \overline{x_3}) = x_1 \lor x_2.$$

Аналогично третья функция преобразуется ко второй.

Чтобы дать общее определение равных булевых функций, нам понадобиться понятие фиктивной переменной.

Переменная x_i называется фиктивной переменной функции $f(x_1,...,x_i,...,x_n)$, если для любых двух наборов (векторов) значений переменных

$$\tilde{\alpha} = (\alpha_1, ..., \alpha_{i-1}, 0, \alpha_{i+1}, ..., \alpha_n)$$

И

$$\tilde{\beta} = (\alpha_1, ..., \alpha_{i-1}, 1, \alpha_{i+1}, ..., \alpha_n)$$

$$f(\tilde{\alpha}) = f(\tilde{\beta}).$$

Другими словами, изменение значения фиктивной переменной при фиксированных значениях остальных переменных не влияет на значение функции.

Тогда дается такое определение равенства булевых функций: булевы функции считаются равными, если они отличаются друг от друга, может быть, только фиктивными переменными.

В приведенном выше примере все три функции равны, и у второй функции фиктивной переменной является x_3 , а у третьей x_3 и x_4 . У первой функции (дизъюнкции) фиктивных переменных нет.

Переменная булевой функции, не являющаяся фиктивной, называется существенной, и говорят, что функция существенно зависит от нее.

Данное выше определение равных функций можно переформулировать так: булевы функции равны, если они существенно зависят от одних и тех же переменных и на каждом наборе значений этих переменных принимают одинаковые значения.

Здесь важно понимать следующее. Пусть фиксировано какое-то множество переменных $X = \{x_1, ..., x_n\}$. Тогда равные булевы функции существенно зависят именно *от одних тех же переменных* этого множества, но не только от одного и того же *числа* существенных переменных.

Это можно пояснить на примере функций, называемых проекцирующими или селекторами.

Функция $pr_i(x_1,...,x_i,...,x_n)=x_i$ называется i -й проекцирующей функцией, или i - селектором. Ясно, что она существенно зависит только от i -й переменной, хотя формально может быть определена как функция от любого числа переменных (в нетривиальном случае не меньшем двух).

Тогда приведем сводную таблицу двух селекторов от двух переменных:

x_1	x_2	pr_1	pr_2
0	0	0	0

0	1	0	1
1	0	1	0
1	1	1	1

Как видно, разные селекторы не равны, хотя существенно зависят от одной переменной, но не от одной и той же переменной.

Если дана некая функция $y = f(x_1,...,x_n)$, то к множеству ее переменных может быть добавлена новая переменная x_{n+1} согласно формуле

$$\tilde{y} = (x_{n+1} \vee \overline{x}_{n+1}) f(x_1, ..., x_n)$$
.

Ясно, что новая переменная фиктивная и функции равны между собой.

Возможность добавления к множеству переменных функции новой фиктивной переменной позволяет без ограничения общности считать, что любые две функции (даже любое конечное множество функций) заданы как функции от одного и того же числа переменных. Само число переменных булевой функции не является тем самым существенным параметром.

Суперпозиции и формулы

Пусть функция $f \in P_2^{(n)}$, а все функции $g_1,...,g_n \in P_2^{(m)}$.

Тогда может быть определена новая функция $f(g_1,...,g_n)$ так, что для любого вектора (набора) значений переменных $\tilde{\alpha}=(\alpha_1,...,\alpha_m)\in\{0,1\}^m$

$$f(g_1,...,g_n)(\tilde{\alpha}) = f(g_1(\tilde{\alpha}),...,g_n(\tilde{\alpha})).$$

Эта функция называется *суперпозицией* функций $f \in P_2^{(n)}$ и $g_1,...,g_n \in P_2^{(m)}$.

Тем самым строится некая алгебра булевых функций. Выражения в этой алгебре называются формулами.

А именно, пусть дано некоторое множество F булевых функций, разбитое на подмножества функций (операций) различной арности:

$$F = F^{(0)} \cup F^{(1)} \cup ... \cup F^{(n)} \cup ...$$
 , где $F^{(n)} \subseteq P_2^{(n)}, F^{(0)} \subseteq \{0,1\}$,

а также дано некоторое множество $X = \{x_1, x_2, ..., x_n, ...\}$ булевых переменных.

Тогда по индукции определяется понятие формулы над базисом F :

- 1) любая переменная из множества X и любая константа из множества $F^{(0)}$, если оно не пусто, есть формула над базисом F;
- 2) если $\Phi_1,...,\Phi_n$ формулы над базисом F , а $f^{(n)} \in F^{(n)}$, то выражение $f^{(n)}(\Phi_1,...,\Phi_n)$ есть формула над базисом F ;
- 3) других формул над базисом F не существует.

Замечание. Строго говоря, исходное множество F в этом определении следует рассматривать не как множество булевых функций, а как множество их обозначений, имен, называемых функциональными символами (той или иной арности). Но в определенных рамках, с учетом взаимно однозначного соответствия между символами и обозначаемыми ими функциями, эти объекты можно отождествить.

Каждая формула представляет некоторую булеву функцию, а именно:

- 1) переменная x_i представляет селектор $pr_i(x_1,...,x_i,...,x_n) = x_i$ (для любого n);
- 2) каждая константа (0 или 1) представляет саму себя (что тоже есть некоторая вольность);
- 3) если формулы $\Phi_1,...,\Phi_n$ представляют функции $g_1,...,g_n$ соответственно, то формула $f^{(n)}(\Phi_1,...,\Phi_n)$ представляет суперпозицию $f^{(n)}(g_1,...,g_n), f^{(n)} \in F^{(n)}$;
- 4) никаких других функций, представляемых формулами над базисом ${\cal F}$, не существует.

При этом, конечно, используется инфиксная запись бинарных функциональных символов,

то есть, например, пишем $f \vee g$, а не $\ \lor (f,g)$.

Формулы называются тождественными, если они представляют одну и ту же функцию.

Основой тождественных преобразований в алгебрах булевых функций являются тождества булевой алгебры.

1)
$$x \lor (y \lor z) = (x \lor y) \lor z$$
; $x(yz) = (xy)z$

2)
$$x \lor y = y \lor x$$
; $xy = yx$

3)
$$x \lor x = x \cdot x = x$$

4)
$$x \lor 0 = x \cdot 1 = x$$
; $x \cdot 0 = 0$, $x \lor 1 = 1$

5)
$$x(y \lor z) = xy \lor xz$$
; $x \lor yz = (x \lor y)(x \lor z)$

6)
$$x \vee \overline{x} = 1; x \cdot \overline{x} = 0$$

7)
$$x \lor xy = x(x \lor y) = x$$

8)
$$\overline{x \vee y} = \overline{x} \cdot \overline{y}; \ \overline{x \cdot y} = \overline{x} \vee \overline{y}$$
 (законы де Моргана)

Замыканием множества F булевых функций называется множество всех функций, представляемых формулами над базисом F . Обозначение - [F].

Множество F называется замкнутым, если [F] = F , и полным, если $[F] = P_2$, то есть, если любая булева функция может быть представлена некоторой формулой над базисом F .

Мы докажем далее, что *стандартный базис* $F_0 = \{\lor, \cdot, ^-\}$ и *базис Жегалкина* $F_1 = \{\oplus, \cdot, 1\}$ являются полными множествами.

Можно заметить, что стандартный базис является сигнатурой булевой алгебры булевых функций.

Дизъюнктивная и конъюнктивная нормальные формы (ДНФ и КНФ)

Теорема. 1) Любая булева функция, отличная от константы 0, может быть представлена в виде ДНФ.

2) Любая булева функция, отличная от константы 1, может быть представлена в виде КНФ.

Доказательство. 1) Пусть функция $f \in P_2^{(n)}$. Так как она не равна тождественно 0, найдется вектор $\tilde{\alpha} = (\alpha_1,...,\alpha_n)$, для которого $f(\tilde{\alpha}) = 1$. Каждый такой вектор (набор значений переменных), на котором функция принимает значение 1, называется конституентой единицы функции f . Множество всех конституент единицы функции f обозначим C_f^1 . То есть

$$C_f^1 = \{ \tilde{\alpha} : f(\tilde{\alpha}) = 1 \}.$$

По условию это множество не пусто.

Определим для каждого такого набора $\ \tilde{lpha}=(lpha_1,...,lpha_n)$ элементарную конъюнкцию $K_{\tilde{lpha}}=x_1^{lpha_1}...x_n^{lpha_n}$.

Очевидно, что $K_{\tilde{\alpha}}(\tilde{eta}) = 1 \Leftrightarrow \tilde{eta} = \tilde{lpha}$.

Тогда нетрудно доказать, что $\,f = \displaystyle \bigvee_{\tilde{lpha} \in C_f^1} \!\! K_{\tilde{lpha}} \,.$

Действительно, если для некоторого $\tilde{\alpha}=(\alpha_1,...,\alpha_n)$ $f(\tilde{\alpha})=1$, то $\tilde{\alpha}\in C_f^1$, и $K_{\tilde{\alpha}}=x_1^{\alpha_1}...x_n^{\alpha_n}=1$, то есть записанная выше ДНФ равна 1.

Наоборот, если эта ДНФ на каком-то наборе обращается в единицу, то по крайней мере одна из указанных выше элементарных конъюнкций обращается в единицу на данном наборе, а он есть конституента единицы функции f, и, следовательно, она также на данном наборе равна 1.

2) Это утверждение можно считать верным в силу принципа двойственности, но можно отметить следующее.

Вводится множество конституент нуля функции f:

$$C_f^0 = {\{\tilde{\alpha}: f(\tilde{\alpha}) = 0\}.}$$

Для функции, отличной от константы 1, это множество не пусто.

Каждой конституенте нуля сопоставляется элементарная дизъюнкция

$$D_{\tilde{\alpha}} = x_1^{\bar{\alpha}_1} \vee \ldots \vee x_n^{\bar{\alpha}_n}.$$

Понятно, что $D_{\tilde{\alpha}}(\tilde{\beta})=0 \Leftrightarrow \tilde{\beta}=\tilde{\alpha}$, и тогда КНФ, представляющая исходную функцию, имеет вид:

$$f = \underset{\tilde{\alpha} \in C_f^0}{\bigwedge} D_{\tilde{\alpha}} .$$

Теорема доказана.

КНФ для константы 0: $0 = x_1 \cdot \overline{x}_1$ (это КНФ от одной переменной!).

ДНФ для константы 1: $1=x_1 \vee \overline{x}_1$ (а это ДНФ от одной переменной).

Представление мажоритарной функции:

ДНФ -
$$f(x_1, x_2, x_3) = \overline{x}_1 x_2 x_3 \lor x_1 \overline{x}_2 x_3 \lor x_1 x_2 \overline{x}_3 \lor x_1 x_2 x_3$$
,

$$\mathsf{KH\Phi} - f(x_1, x_2, x_3) = (x_1 \vee x_2 \vee x_3)(\overline{x_1} \vee x_2 \vee x_3)(x_1 \vee \overline{x_2} \vee x_3)(x_1 \vee x_2 \vee \overline{x_3}).$$

Следствие. Стандартный базис есть полное множество булевых функций.

Поскольку элементы стандартного базиса представляются формулами над базисом Жегалкина, а именно,

$$x_1 \lor x_2 = x_1 x_2 \oplus x_1 \oplus x_2,$$

 $\overline{x} = x \oplus 1,$

то и базис Жегалкина также является полным множеством булевых функций.

Полиномы Жегалкина

Метод неопределенных коэффициентов

$$a_0 = f(0,0,...,0)$$

$$a_{i_1 i_2 \dots i_k} \oplus \sum_{\{j_1, j_2, \dots j_l\} \subset \{i_1, i_2, \dots, i_k\}} a_{j_1 j_2 \dots j_l} = f(\tilde{lpha})$$
 , где

$$\alpha_{i_1} = \alpha_{i_2} = \dots = \alpha_{i_k} = 1, \alpha_p = 0, p \notin \{i_1, i_2, \dots, i_k\},$$

$$1 \le k \le n.$$

Или (вынося слагаемое a_0):

$$a_{i_1 i_2 \dots i_k} \oplus \sum_{\varnothing \neq \{j_1, j_2, \dots, j_l\} \subset \{i_1, i_2, \dots, i_k\}} a_{j_1 j_2 \dots j_l} = f(\tilde{\alpha}) \oplus a_0.$$

Эта система линейных уравнений в поле вычетов по модулю 2 имеет единственное решение, так как из известных коэффициентов $a_{j_1...j_l}$ для всех непустых подмножеств $\{j_1,...,j_l\}\subset\{i_1,...,i_k\}$ однозначно определяется коэффициент $a_{i_1i_2...i_k}$. Каждый коэффициент a_i , i=1,...,n, линейной части полинома находится из простейшего соотношения $a_i\oplus a_0=f(0,...,1,...,0)$. Таким образом, можно считать, что рассматриваемая система задана сразу в верхнетреугольной форме.

Классы Поста

Функции, сохраняющие константу:

$$T_0 = \{ f : f(0,...,0) = 0 \},\$$

 $T_1 = \{ f : f(1,...,1) = 1 \}$

Самодвойственные функции:

$$S = \{ f : (\forall \tilde{\alpha}) f(\overline{\tilde{\alpha}}) = \overline{f}(\tilde{\alpha}) \}$$

Замечание. Для любой булевой функции f может быть определена

двойственная функция f^* так, что $(\forall \tilde{\alpha})(f^*(\tilde{\alpha}) = \overline{f}(\overline{\tilde{\alpha}}))$. Взаимно двойственными будут дизъюнкция и конъюнкция, штрих Шеффера и стрелка Пирса, сумма по модулю 2 и эквивалентность. Тогда самодвойственная функция может определена как совпадающая с двойственной к ней.

Монотонные функции:

$$f \in M \Leftrightarrow (\forall \tilde{\alpha}, \tilde{\beta})(\tilde{\alpha} \leq \tilde{\beta} \Rightarrow f(\tilde{\alpha}) \leq f(\tilde{\beta}))$$

Можно заметить, что $\bar{M}\supseteq \bar{T}_0 \cap \bar{T}_1$, то есть, если функция не сохраняет обе константы, то она не монотонна.

Линейные функции:

$$f = \sum_{i=1}^{n} (\text{mod } 2) a_i x_i \oplus a_0$$

Теорема. Каждый класс Поста замкнут. #

Существуют функции, принадлежащие всем классам Поста: это будут все селекторы (которые мы отождествили с переменными).

Но существуют функции, не принадлежащие ни одному классу Поста. Это штрих Шеффера и стрелка Пирса. Это легко усматривается из их векторов значений:

$$=(1110), \downarrow=(1000)$$
.

Лемма о несамодвойственной функции

Обе константы (0 и 1) могут быть представлены формулами над базисом $\{f_S, \ ^-\}$, где f_S - несамодвойственная функция.

Доказательство. Так как f_S - несамодвойственная функция, то найдется набор $\tilde{\alpha}=(\alpha_1,...,\alpha_n)\in\{0,1\}^n$ (для некоторого n), что $f(\tilde{\alpha})=f(\overline{\tilde{\alpha}})$. Введем функцию $h(x)=f_S(x^{\alpha_1},...,x^{\alpha_n})$. Нетрудно понять, что $h(1)=f_S(\tilde{\alpha})=f_S(\overline{\tilde{\alpha}})=h(0)$. Это значит, что функция h(x) равна тождественно одной из констант. Вторую константу получим, используя отрицание.

Лемма (2-я) о немонотонной функции

Отрицание может быть представлено формулой над базисом $\{f_{M},0,1\}$, где f_{M} - немонотонная функция.

Доказательство. Согласно первой лемме о немонотонной функции (см. *Учебник, теорема 6.6, с. 438*) существуют наборы

$$\tilde{\alpha} = (\alpha_1, ..., \alpha_{i-1}, 0, \alpha_{i+1}, ..., \alpha_n),$$

$$\tilde{\beta} = (\alpha_1, ..., \alpha_{i-1}, 1, \alpha_{i+1}, ..., \alpha_n)$$

(отличающиеся друг от друга в точности одной компонентой) такие, что $f_{_M}(\tilde{\alpha})=1, f_{_M}(\tilde{\beta})=0. \qquad \text{Тогда} \qquad \text{имеем} \qquad \text{формулу} \qquad \text{для} \qquad \text{отрицания:} \\ \bar{x}=f_{_M}(\alpha_1,...,\alpha_{_{i-1}},x,\alpha_{_{i+1}},...,\alpha_{_n}).$

Лемма о нелинейной функции

Конъюнкция может быть представлена формулой над базисом $\{f_L,0,\ ^-\}$, где f_L - нелинейная функция.

Доказательство. Так как f_L нелинейная функция, в ее полиноме Жегалкина есть по крайней мере одно нелинейное слагаемое. Выберем самое короткое; пусть это будет $x_{i_1}...x_{i_k}, k \geq 2$. Все переменные, не вошедшие в это нелинейное слагаемое, заменим константой 0. Получим «редуцированный» полином Жегалкина:

$$f_{L}^{'}=f_{L}\mid_{(\forall j\neq\{i_{1},\ldots,i_{k}\})(x_{i}=0)}=x_{i_{1}}\ldots x_{i_{k}}\oplus a_{i_{1}}x_{i_{1}}\oplus\ldots\oplus a_{i_{k}}x_{i_{k}}\oplus a_{0}\,.$$

Переменные выбранного нелинейного слагаемого разобьем произвольно на две части, все переменные 1-й части отождествим и обозначим через x, а все переменные 2-й части также отождествим и обозначим через y. Получим функцию двух переменных

$$\chi(x, y) = xy \oplus ax \oplus by \oplus c$$
,

где a - сумма (по модулю 2) всех коэффициентов линейной части записанного выше полинома при переменных первой части, а b - такая же сумма при переменных 2-й части; $c=a_{\rm o}$.

Утверждается, что $xy = \chi(x \oplus b, y \oplus a) \oplus ab \oplus c$

(Заметим, что в этой формуле нет использования суммы по модулю 2, так как прибавление константы по модулю 2 означает возможное отрицание, и можно было бы написать так: $xy = \tilde{\chi}(\tilde{x}, \tilde{y})$.)

Действительно,

$$\chi(x \oplus b, y \oplus a) \oplus ab \oplus c = (x \oplus b)(y \oplus a) \oplus a(x \oplus b) \oplus b(y \oplus a) \oplus c \oplus ab \oplus c =$$
$$= xy \oplus ax \oplus by \oplus ab \oplus ax \oplus ab \oplus by \oplus ab \oplus c \oplus ab \oplus c = xy$$

с учетом того, что сумма по модулю 2 любого четного числа одинаковых слагаемых равна нулю.

Лемма доказана.

Пример.

Пусть
$$f_L = x_1 x_2 x_3 x_4 x_5 \oplus x_2 x_3 x_4 x_5 \oplus x_1 x_2 x_4 \oplus x_3 x_4 x_5 \oplus x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5 \oplus 1$$

Для построения конъюнкции выберем 4-е слагаемое, и тогда

$$f_L^{'} = f_L(0,0,x_3,x_4,x_5) = x_3x_4x_5 \oplus x_3 \oplus x_4 \oplus x_5 \oplus 1.$$

Теперь пусть $x_3 = x_4 = x, x_5 = y$, то есть

$$\chi(x, y) = f_1(0, 0, x, x, y) = xy \oplus x \oplus x \oplus y \oplus 1 = xy \oplus y \oplus 1$$
.

Значит, $a = 0, b = c = 1, ab \oplus c = 1$.

В итоге имеем формулу для конъюнкции:

$$xy = \overline{f}_L(0, 0, \overline{x}, \overline{x}, y)$$
.

Внешнее отрицание появилось из-за того, что $ab \oplus c = 1$.

Так как дизъюнкция есть отрицание конъюнкции отрицаний, сразу получаем формулу для дизъюнкции:

$$x \lor y = f_L(0,0,x,x,\overline{y})$$
.

Обе формулы являются формулами над базисом, состоящем из нелинейной функции, константы 0 и отрицания.

Теорема Поста

Теорема. Множество булевых функций полно тогда и только тогда, когда оно не содержится (целиком) ни в одном из классов Поста.

Доказательство. *Необходимость*. Полагая, что множество булевых функций содержится в каком-то классе Поста, получим, в силу замкнутости каждого класса Поста, что формулами над этим множеством могут быть представлены только функции этого класса, а, стало быть, не может быть представлена ни одна функция, не содержащаяся ни в одном из классов Поста, например, штрих Шеффера. Значит, такое множество не может быть полным.

Достаточно показать, что формулами над множеством F, удовлетворяющем условию теоремы, могут быть представлены функции какого-то уже известного полного множества. В качестве такового можно взять множество, состоящее из конъюнкции и отрицания.

Так как множество $\{ullet, \ \ \}$ является полным, достаточно указать способ построения формул для конъюнкции и отрицания над базисом F, который удовлетворяет условию теоремы Поста, т.е. не содержится ни в одном из классов Поста, что можно выразить следующим образом:

$$(\forall C \in \{T_0, T_1, S, M, L\})(\exists f_C \in F \setminus C),$$

т.е. для всякого класса Поста найдется функция из ${\it F}$, не принадлежащая этому классу.

Взяв нелинейную функцию $f_L \in F \setminus L$ и используя константу 0 и отрицание, построим формулу для конъюнкции согласно лемме о нелинейной функции.

Теперь необходимо построить формулы для констант и отрицания.

Здесь могут представиться два случая.

1 случай. Существует функция $f_0 \in F \setminus T_0$, сохраняющая константу 1, или существует функция $f_1 \in F \setminus T_1$, сохраняющая константу 0.

Рассмотрим первую альтернативу. Тогда получаем формулу для константы 1:

$$1 = f_0(x, ..., x)$$
,

а константу 0 представим с использованием какой-нибудь функции $g_1 \in F \setminus T_1$:

$$0 = g_1(1,...,1) = g_1(f_0(x,...,x),...,f_0(x,...,x)).$$

Вторая альтернатива в рамках первого случая рассматривается аналогично.

Имея формулы для обеих констант, отрицание представим формулой, используя немонотонную функцию множества F (согласно второй лемме о немонотонной функции).

2 случай. Всякая функция $f_0 \in F \setminus T_0$ не сохраняет и константу 1, а всякая функция $f_1 \in F \setminus T_1$ не сохраняет и константу 0.

В этом случае сразу получаем формулу для отрицания:

$$\overline{x} = f_0(x,...,x)$$
,

а константы представляем формулами согласно лемме о несамодвойственной функции.