

EOSC 350 : Environmental, Geotechnical and Exploration Geophysics I

September – December, 2017

Students

- Geologists?
- Geologic engineers?
- Other EOAS programs?
- P. Geo. or P. Eng.?
- Other?

Instructors

- Dikun Yang
 - Postdoctoral fellow
 - Applied geophysics (PhD, UBC, 2014)
 - ESB 4037, <u>yangdikun@gmail.com</u>
- Sarah Devriese
 - Postdoctoral fellow
 - Applied geophysics (PhD, UBC, 2016)
 - ESB 4033C, <u>sdevries@eoas.ubc.ca</u>
- Devin Cowan
 - Research Scientist
 - Applied geophysics (MSc, UBC, 2016)
 - ESB 4021, <u>devinccowan@gmail.com</u>

Teaching assistants

- Michael Mitchell
 - PhD student in geophysics
 - mmitchel@eoas.ubc.ca
- Gabriela Racz
 - PhD student in glaciology
 - gracz@eoas.ubc.ca
- Vahid Dehghanniri
 - PhD student in volcanology
 - vdehghan@eoas.ubc.ca

Other contributors

- Doug Oldenburg (Director of Geophysical Inversion Facility)
- Thibaut Astic
- Dom Fournier
- Lindsey Heagy
- Seogi Kang
- GIF alumni...
- Community
 - GPG: Geophysics for Practicing Geoscientists
 - gpgLabs: A library of interactive apps for learning geophysics

First some problems of relevance

Finding Resources

Minerals

Ground Water

Hydrocarbons

Geothermal Energy

Natural Hazards

Volcanoes

Tsunami

Geotechnical engineering

Tunnels

Slope stability

In-mine safety

Environmental

Water contamination

http://www.centennialofflight.gov

Salt water intrusion

Unexploded Ordnance (UXO)

Surface or Underground Storage

CO2 sequestration

Industrial Waste Disposal

Aquifer Storage and Recover

What do all these problems have in common?

- They all require ways to see into the earth without direct sampling.
- Geophysics is the only discipline that is devoted to this goal.

Broad overview

- Who uses geophysics?
- How does geophysics work?
- What can geophysics tell us?

Broad overview

What this course is:

Introduction to applied geophysics, focus on what information geophysics can provide and how to approach solving problems with geophysics

What the course is not:

A rigorous theoretical treatment of geophysical methods

Goal is to help you understand how to use and apply geophysics in your professional careers, not turn you into a geophysicist!

Your expectations for this course?

- 1. New knowledge?
 - □ "Geophysics 101"
 - Some physics, a little math
 - Application-oriented
- 2. New skills?
 - Using geophysical information to make decisions
- 3. Attitudes?
 - Geophysics is not intellectually scary
 - It is fun!

Outline of topics

1. Foundations:

- Physical properties Dikun
- □ A 7-step framework for applying geophysics Dikun

2. Geophysical surveys (modules):

- Magnetic (magnetic susceptibility) Dikun
- Seismic (density, elastic parameters) Sarah
- Ground penetrating radar (electrical permittivity) Devin
- DC resistivity (electrical conductivity/resistivity) Devin
- Electromagnetic (electrical conductivity/resistivity) Dikun

3. Emphasis throughout:

- Understand the basics of the surveys.
- Have reasonable expectations for when and a survey should be used and information provided.

Teaching and learning activities

Lecture:

Presentations by the instructors

Demos/hands-on practice using interactive apps

Team-based learning (TBL) case history:

A publication on the use of a geophysical method to solve a practical problem

Read the paper and answer individual TBL questions as homework; submit your answers online before the team discussion

Answer team TBL questions as a team and submit worksheets in class

Teaching and learning activities

Quiz:

Ten multiple choice questions at the end of each topic are answered individually.

Same questions are discussed as part of TBL and submitted as a team

Lab:

Mostly computer-based exercises using interactive apps

Use the department's computers (get user account from the main office) or your own devices

Instructed by TA's

Turn in worksheets before deadlines (assignment)

Contribution to final grade

Final 40%
Midterm 10%
Labs 20%
Individual quizzes10%
Individual TBL 10%
Team quizzes* 5%
Team TBL* 5%

^{*} Zero grade for missed team activities

Marking

- Individual TBL: multiple choice questions; online form submission
- Individual quiz: multiple choice questions; paper-based bubble sheet
- Team TBL and labs: short-answer questions; paper-based worksheet; word-grade evaluation; no specific comment will be made on papers; answers will be available after the worksheets have been evaluated
 - □ **AWE-INSPIRING** = 95% (you did all the work very well and very clearly understand the material)
 - BRILLIANT = 80% (you did the work and understand all of the concepts)
 - COMPETENT = 65% (you did the work and understand most of the concepts)
 - DECENT = 50% (you did the work but don't quite understand all the concepts)
 - □ **FALL-SHORT** = 0% (you didn't do the work, or only some of it)

Important web links

- Course website
 - http://eosc350.geosci.xyz/en/latest/index.html
- "Textbook"
 - GPG: Geophysics for Practicing Geoscientists
 - http://gpg.geosci.xyz/
- Interactive apps
 - GPG labs
 - https://github.com/geoscixyz/gpgLabs
 - Follow online instructions or ask TA's to setup

Rules

- Electronic devices are used only for courserelated teaching and learning purposes.
- If you feel it is absolutely necessary, please get out of the classroom to use them for other purposes.
- Quizzes, midterm and final exams can be rescheduled individually for medical or emergency reasons.
- Flexibility in attending one of the three lab sessions – contact the TA

Other logistics

- Your 350 ID number
 - First four digits of your student ID/username
 - ID for online submission/announcement
- Team
 - 7 people per team
 - Checkout the 350 website for teams
- Advanced learning opportunities
 - Prep for honors/grad school
 - Want to be a geophysicist
 - Have specific geoscientific problems

A few more examples

Examples

Profile of measured electrical conductivity over an aquifer

Outcome: physical property values.

Examples

Examples

Seismic data: Echoes of sound energy

Model: locations of interfaces.

Exploration: Magnetics - Raglan deposit, Qué. (Flaconbridge)

Geological question: Are outcrops connected at depth?

Upcoming activities

- Fri. Sept. 8
 - Lecture on physical properties
- Mon. Sept. 11
 - Lecture on the framework of applied geophysics
- Wed. Sept. 13
 - Quiz: foundations
 - TBL: "A geophysical journey around Ireland"
- Labs on Sept. 11, 12, 13
 - Physical properties of rocks
 - Not a computer lab