Sheikh Hasina University, Netrokona

Course:

MATH-3105 (Multivariable Calculus & Geometry)

Textbook:

Calculus, Early Transcendentals
By Anton, Bivens, Davis (10th Edition)

Course Teacher:

Dr. Md. Tauhedul Azam

3rd Year 1st Semester

1

Partial Derivatives

MATH-3105

Dept. of CSE

2

Chapter 13.1

Functions of Two or More Variables

MATH-3105

Dept. of CSE

2

3

Function of Multiple Variables

A function f of two variables, x and y, is a rule that assigns a unique real number f(x, y) to each point (x, y) in some set D in the xy —plane.

A function f of three variables, x, y and z, is a rule that assigns a unique real number f(x,y,z) to each point (x,y,z) in some set D in three dimensional space.

MATH-3105

Dept. of CSE

4

Graphs of Function of Two Variables

If f is a function of two variables, we define the graph of f(x,y) in xyz —space to be the graph of the equation z = f(x,y). In general, such a graph will be a surface in 3-space.

5

Level Curves & Contour Plot

If the surface z = f(x,y) is cut by the horizontal plane z = k, then at all points on the intersection we have f(x,y) = k. The projection of this intersection onto the xy-plane is called the level curve of height k or the level curve with constant k (Figure). A set of level curves for z = f(x,y) is called a contour plot or contour map of f.

MATH-3105

Dept. of CSE

6

Level Curves & Contour Plot

Except in the simplest cases, contour plots can be difficult to produce without the help of a graphing utility.

MATH-3105

Dept. of CSE

0

9

Chapter 13.2

Limits and Continuity

MATH-3105

Dept. of CSE

10

For a function of one variable there are two one-sided limits at a point x_0 , namely,

$$\lim_{x \to x_0^+} f(x) \quad \text{ and } \quad \lim_{x \to x_0^-} f(x)$$

reflecting the fact that there are only two directions from which x can approach x_0 , the right or the left.

MATH-3105

Dept. of CSE

11

11

Limits along Curves

For functions of two or three variables the situation is more complicated because there are infinitely many different curves along which one point can approach another (Figure).

Our first objective in this section is to define the limit of f(x,y) as (x,y) approaches a point (x_0,y_0) along a curve C (and similarly for functions of three variables).

MATH-3105

Dept. of CSE

12

If ${\it C}$ is a smooth parametric curve in 2-space that is represented by the equations

$$x = x(t), \qquad y = y(t)$$

and if $x_0 = x(t_0)$, $y_0 = y(t_0)$ then the limits

$$\lim_{\substack{(x,y)\to(x_0,y_0)\\(\text{along C})}} f(x,y)$$

are defined by

$$\lim_{\substack{(x,y)\to(x_0,y_0)\\ \text{(along C)}}} f(x,y) = \lim_{t\to t_0} f(x(t),y(t))$$

13

Limits along Curves

Dept. of CSE

MATH-3105

Example 1 (p918)

Let

$$f(x,y) = -\frac{xy}{x^2 + y^2}$$

Find the limit of f(x, y) as (x, y) approacheds (0, 0) along

- (a) the x —axis
- (b) the γ –axis
- (c) the line y = x

- (d) the line y = -x (e) the parabola $y = x^2$

MATH-3105

Dept. of CSE

Solution (a)

The parametric equations of x —axis is x = t, y = 0.

And (x, y) = (0, 0) corresponding to t = 0, so

$$\lim_{\substack{(x,y)\to(0,0)\\(\text{along }y=0)}} f(x,y) = \lim_{t\to 0} f(t,0) = \lim_{t\to 0} \left(-\frac{t\cdot 0}{t^2+0^2} \right) = \lim_{t\to 0} 0 = 0$$

MATH-3105

Dept. of CSE

15

15

Limits along Curves

Solution (b)

The parametric equations of y —axis is x = 0, y = t.

And (x, y) = (0, 0) corresponding to t = 0, so

$$\lim_{\substack{(x,y)\to(0,0)\\(\text{along }x=0)}} f(x,y) = \lim_{t\to 0} f(0,t) = \lim_{t\to 0} \left(-\frac{0\cdot t}{0^2+t^2}\right) = \lim_{t\to 0} 0 = 0$$

MATH-3105

Dept. of CSE

Solution (c)

The parametric equations of the line y = x is x = t, y = t.

And (x, y) = (0, 0) corresponding to t = 0, so

$$\lim_{\substack{(x,y)\to(0,0)\\(\text{along }y=x)}} f(x,y) = \lim_{t\to 0} f(t,t) = \lim_{t\to 0} \left(-\frac{t\cdot t}{t^2+t^2} \right) = \lim_{t\to 0} \left(-\frac{t^2}{2t^2} \right)$$

$$= \lim_{t\to 0} \left(-\frac{1}{2} \right) = -\frac{1}{2}$$

MATH-3105 Dept. of CSE

17

Limits along Curves

Solution (d)

The parametric equations of the line y = -x is x = t, y = -t.

And (x, y) = (0, 0) corresponding to t = 0, so

$$\lim_{\substack{(x,y)\to(0,0)\\(\text{along }y=-x)}} f(x,y) = \lim_{t\to 0} f(t,-t) = \lim_{t\to 0} \left(-\frac{t\cdot (-t)}{t^2+(-t)^2} \right) = \lim_{t\to 0} \left(\frac{t^2}{2t^2} \right)$$

$$=\lim_{t\to 0}\left(\frac{1}{2}\right)=\frac{1}{2}$$

MATH-3105 Dept. of CSE 18

Solution (e)

The parametric equations of the parabola $y = x^2$ is x = t, $y = t^2$.

And (x, y) = (0, 0) corresponding to t = 0, so

$$\lim_{\substack{(x,y)\to(0,0)\\(\text{along }y=x^2)}} f(x,y) = \lim_{t\to 0} f(t,t^2) = \lim_{t\to 0} \left(-\frac{t\cdot t^2}{t^2 + (t^2)^2} \right) = \lim_{t\to 0} \left(\frac{t^3}{2t^2} \right)$$

$$=\lim_{t\to 0}\left(\frac{1}{2}\right)=\frac{1}{2}$$

MATH-3105 Dept. of CSE

19

19

Open & Closed Disks

Let \mathcal{C} be a circle in 2-space that is centered at (x_0,y_0) and has positive radius δ . The set of points that are enclosed by the circle, but do not lie on the circle, is called the open disk of radius δ centered at (x_0,y_0) , and the set of points that lie on the circle together with those enclosed by the circle is called the closed disk of radius δ centered at (x_0,y_0) .

A closed disk includes all of the points on its bounding circle.

An open disk contains none of the points on its bounding circle.

MATH-3105

Dept. of CSE

20

Open & Closed Balls

If S is a sphere in 3-space that is centered at (x_0, y_0, z_0) and has positive radius δ , then the set of points that are enclosed by the sphere, but do not lie on the sphere, is called the open ball of radius δ centered at (x_0, y_0, z_0) , and the set of points that lie on the sphere together with those enclosed by the sphere is called the closed ball of radius δ centered at (x_0, y_0, z_0) .

MATH-3105 Dept. of CSE 2:

21

Open & Closed Sets

If D is a set of points in 2-space, then a point (x_0, y_0) is called an interior point of D if there is some open disk centered at (x_0, y_0) that contains only points of D, and (x_0, y_0) is called a boundary point of D if every open disk centered at (x_0, y_0) contains both points in D and points not in D.

MATH-3105 Dept. of CSE 22

Open & Closed Sets

For a set D in either 2-space or 3-space, the set of all interior points is called the interior of D and the set of all boundary points is called the boundary of D. Moreover, just as for disks, we say that D is closed if it contains all of its boundary points and open if it contains none of its boundary points.

MATH-3105

Dept. of CSE

22

23

General Limits of Functions of 2-Variables

Definition 13.2.1

Let f be a function of two variables, and assume that f is defined at all points of some open disk centered at (x_0, y_0) , except possibly at (x_0, y_0) . We will write

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$$

if given any number $\varepsilon > 0$, we can find a number $\delta > 0$ such that f(x,y) satisfies

$$|f(x,y) - L| < \varepsilon$$

whenever the distance between (x, y) and (x_0, y_0) satisfies

$$0 < \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta$$

MATH-3105

Dept. of CSE

General Limits of Functions of 2-Variables

Example 2 (p921)

$$\lim_{(x,y)\to(1,4)} [5x^3y^2 - 9] = \lim_{(x,y)\to(1,4)} [5x^3y^2] - \lim_{(x,y)\to(1,4)} [9]$$
$$= 5 \cdot (1)^3 \cdot (4)^2 - 9$$
$$= 71$$

MATH-3105 Dept. of CSE

27

Relation between General Limits & Limits along Smooth Curve

Theorem 13.2.2

- (a) If $f(x,y) \to L$ as $(x,y) \to (x_0,y_0)$, then $f(x,y) \to L$ as $(x,y) \to (x_0,y_0)$ along any smooth curve.
- (b) If the limit of f(x,y) fails to exist as $(x,y) \to (x_0,y_0)$ along some smooth curve, or if f(x,y) has different limits as $(x,y) \to (x_0,y_0)$ along two different smooth curves, then the limit of f(x,y) does not exist as $(x,y) \to (x_0,y_0)$.

MATH-3105 Dept. of CSE 28

General Limits of Functions of 2-Variables

Example 3 (p922)

The limit

$$\lim_{(x,y)\to(0,0)} -\frac{xy}{x^2+y^2}$$

does not exist. Because,

$$\lim_{\substack{(x,y)\to(0,0)\\(\text{along } x=0)}} -\frac{xy}{x^2+y^2} = 0 \qquad \text{and} \qquad \lim_{\substack{(x,y)\to(0,0)\\(\text{along } y=x)}} -\frac{xy}{x^2+y^2} = -\frac{1}{2}$$

i.e., two different smooth curves along which this limit has different values.

MATH-3105 Dept. of CSE 29

29

Continuity

Definition 13.2.3

A function f(x,y) is said to be continuous at (x_0,y_0) if $f(x_0,y_0)$ is defined and if

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$$

In addition, if f is continuous at every point in an open set D, then we say that f is continuous on D, and if f is continuous at every point in the xy —plane, then we say that f is continuous everywhere.

MATH-3105 Dept. of CSE 30

Theorem 13.2.4

- (a) If g(x) is continuous at x_0 and h(y) is continuous at y_0 , then f(x,y)=g(x)h(y) is continuous at (x_0,y_0) .
- (b) If h(x,y) is continuous at (x_0,y_0) and g(u) is continuous at $u=h(x_0,y_0)$, then the composition $f(x,y)=g\big(h(x,y)\big)$ is continuous at (x_0,y_0) .
- (c) If f(x,y) is continuous at (x_0,y_0) , and if x(t) and y(t) are continuous at t_0 with $x(t_0)=x_0$ and $y(t_0)=y_0$, then the composition f(x(t),y(t)) is continuous at t_0 .

MATH-3105 Dept. of CSE

31

31

Continuity

Example 4 (p922)

Show that the functions $f(x,y)=3x^2y^5$ and $f_1(x,y)=\sin(3x^2y^5)$ are continuous everywhere.

Solution

The polynomials $g(x)=3x^2$ is continuous at every real number $x\in\mathbb{R}$ and $h(y)=y^5$ is continuous at every real number $y\in\mathbb{R}$.

Therefore, the function

$$f(x,y) = g(x)h(y) = 3x^2y^5$$

is continuous at every point $(x, y) \in \mathbb{R}^2$ in the xy -plane.

MATH-3105

Dept. of CSE

Solution

Since, $f(x,y) = 3x^2y^5$ is continuous at every point in the xy -plane and $g(u) = \sin u$ is continuous at every real number $u \in \mathbb{R}$.

It follows that the composition

$$f_1(x,y) = g_1(f(x,y)) = g_1(3x^2y^5) = \sin(3x^2y^5)$$

is continuous everywhere.

MATH-3105

Dept. of CSE

22

33

Continuity

Recognizing Continuous Functions

- A composition of continuous functions is continuous.
- A sum, difference, or product of continuous functions is continuous.
- A quotient of continuous functions is continuous, except where the denominator is zero.

MATH-3105

Dept. of CSE

Example 5 (p923)

Evaluate $\lim_{(x,y)\to(-1,2)} \frac{xy}{x^2+y^2}$

Solution

Since $f(x,y) = xy/(x^2 + y^2)$ is continuous at (-1,2). It follows from the definition of continuity

$$\lim_{(x,y)\to(-1,2)} f(x,y) = f(-1,2) = \frac{(-1)(2)}{(-1)^2 + (2)^2} = -\frac{2}{5}$$

MATH-3105 Dept. of CSE

35

Continuity

Example 6 (p923)

Determine the condition where the following function is continuous:

$$f(x,y) = \frac{x^3y^2}{1 - xy}$$

Solution

 x^3y^2 and 1-xy are continuous at every point $(x,y)\in\mathbb{R}^2$ in the xy-plane.

Therefore, f(x,y) is continuous except where 1-xy=0. Thus, f(x,y) is continuous everywhere except on the hyperbola xy=1.

MATH-3105 Dept. of CSE

Limits at Discontinuity

Example (p923)

$$\lim_{(x,y)\to(0,0)} \frac{1}{x^2 + y^2} = +\infty$$

 $z = \frac{1}{x^2 + y^2}$

MATH-3105

Dept. of CSE

27

37

Continuity

Example 7 (p923)

Find
$$\lim_{(x,y)\to(0,0)} (x^2 + y^2) \ln(x^2 + y^2)$$
.

Solution

Let, (r, θ) be polar coordinates of the point (x, y) with $r \ge 0$. Then we have

$$x = r \cos \theta$$
, $y = r \sin \theta$, $r^2 = x^2 + y^2$

Moreover, Since $r \ge 0$ we have $r = \sqrt{x^2 + y^2}$, so that $r \to 0^+$ if and only if $(x,y) \to (0,0)$.

MATH-3105

Dept. of CSE

Solution

Thus, we can rewrite the given limit as

$$\lim_{(x,y)\to(0,0)} (x^2 + y^2) \ln(x^2 + y^2) = \lim_{r\to 0^+} r^2 \ln r^2$$

$$= \lim_{r\to 0^+} \frac{2 \ln r}{1/r^2}$$

$$= \lim_{r\to 0^+} \frac{2/r}{-2/r^3}$$

$$= \lim_{r\to 0^+} (-r^2)$$

$$= 0$$

MATH-3105 Dept. of CSE

39

39

Chapter 13.2

Homework.

Exercise Set 13.2 (p925 - 926)

MATH-3105 Dept. of CSE 4

Chapter 13.3

Partial Derivatives

MATH-3105 Dept. of CSE

41

Partial Derivatives of Fns of Two Variables

Definition 13.3.1

If z=f(x,y) and (x_0,y_0) is a point in the domain of f, then the partial derivative of f with respect to x at (x_0,y_0) [also called the partial derivative of z with respect to x at (x_0,y_0)] is the derivative at x_0 of the function that results when $y=y_0$ is held fixed and x is allowed to vary. This partial derivative is denoted by $f_x(x_0,y_0)$ and is given by

$$f_x(x_0, y_0) = \frac{d}{dx} [f(x, y_0)]\Big|_{x=x_0} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$

MATH-3105 Dept. of CSE 4

Partial Derivatives of Fns of Two Variables

Definition 13.3.1

Similarly, the partial derivative of f with respect to y at (x_0, y_0) [also called the partial derivative of z with respect to y at (x_0, y_0)] is the derivative at y_0 of the function that results when $x = x_0$ is held fixed and y is allowed to vary. This partial derivative is denoted by $f_y(x_0, y_0)$ and is given by

$$f_y(x_0, y_0) = \frac{d}{dy} [f(x_0, y)] \Big|_{y=y_0} = \lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y}$$

MATH-3105 Dept. of CSE 43

43

Partial Derivatives of Fns of Two Variables

Definition 13.3.1

Geometrically, $f_x(x_0, y_0)$ is the slope of the surface in the x -direction at (x_0, y_0) and $f_y(x_0, y_0)$ the slope of the surface in the y -direction at (x_0, y_0) .

MATH-3105 Dept. of CSE 44

Partial Derivatives of Fns of Two Variables

Example 1 (p928)

Find $f_x(1,3)$ and $f_y(1,3)$ for the function $f(x,y) = 2x^3y^2 + 2y + 4x$.

MATH-3105

Dept. of CSE

4 E

45

Partial Derivatives of Fns of Two Variables

Solution

$$f_x(x,3) = \frac{d}{dx}[f(x,3)] = \frac{d}{dx}[18x^3 + 4x + 6] = 54x^2 + 4$$

$$\therefore f_x(1,3) = 54 \cdot (1)^2 + 4 = 58$$

And,

$$f_y(1,y) = \frac{d}{dy}[f(1,y)] = \frac{d}{dy}[2y^2 + 2y + 4] = 4y + 2$$

$$\therefore f_y(1,3) = 4 \cdot 3 + 2 = 14$$

MATH-3105

Dept. of CSE

Partial Derivative Functions

The partial derivatives as functions of the variables x and y are

$$f_x(x,y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

$$f_y(x,y) = \lim_{\Delta y \to 0} \frac{f(x,y + \Delta y) - f(x,y)}{\Delta y}$$

MATH-3105

Dept. of CSE

47

47

Partial Derivative Functions

Example 2 (p928)

Find $f_x(x,y)$ and $f_y(x,y)$ for the function $f(x,y) = 2x^3y^2 + 2y + 4x$ and use those partial derivatives to compute $f_x(1,3)$ and $f_y(1,3)$.

MATH-3105

Dept. of CSE

Partial Derivative Functions

Solution

Keeping y fixed and differentiating with respect to x yields

$$f_x(x,y) = \frac{\partial}{\partial x} [2x^3y^2 + 2y + 4x] = 6x^2y^2 + 4$$

Keeping x fixed and differentiating with respect to x yields

$$f_y(x,y) = \frac{\partial}{\partial y} [2x^3y^2 + 2y + 4x] = 4x^3y + 2$$

Thus,

$$f_x(1,3) = 6(1^2)(3^2) + 4 = 58$$
 and $f_y(1,3) = 4(1^3)((3) + 2 = 14$

MATH-3105

Dept. of CS

40

49

Partial Derivative Notation

If z = f(x, y), then the partial derivatives f_x and f_y are also denoted by the symbols

$$\frac{\partial f}{\partial x}$$
, $\frac{\partial z}{\partial x}$ and $\frac{\partial f}{\partial x}$, $\frac{\partial z}{\partial x}$

Some typical notations for the partial derivatives of z=f(x,y) at a point (x_0,y_0) are

$$\frac{\partial f}{\partial x}\Big|_{x=x_0,y=y_0}$$
, $\frac{\partial z}{\partial x}\Big|_{(x_0,y_0)}$, $\frac{\partial f}{\partial x}(x_0,y_0)$

MATH-3105

Dept. of CS

Example 3 (p929)

Find $\partial z/\partial x$ and $\partial z/\partial y$ if $z=x^4\sin(xy^3)$.

Solution

$$\frac{\partial z}{\partial x} = \frac{\partial}{\partial x} [x^4 \sin(xy^3)]$$

$$= x^4 \frac{\partial}{\partial x} [\sin(xy^3)] + \sin(xy^3) \frac{\partial}{\partial x} (x^4)$$

$$= x^4 \cos(xy^3) \cdot y^3 + \sin(xy^3) \cdot 4x^3$$

$$= x^4 y^3 \cos(xy^3) + 4x^3 \sin(xy^3)$$

MATH-3105 Dept. of CSE

51

51

Partial Derivative

Solution

$$\frac{\partial z}{\partial y} = \frac{\partial}{\partial y} [x^4 \sin(xy^3)]$$

$$= x^4 \frac{\partial}{\partial y} [\sin(xy^3)]$$

$$= x^4 \cos(xy^3) \cdot 3xy^2$$

$$= 3x^5 y^2 \cos(xy^3)$$

MATH-3105 Dept. of CSE

52

Example 4 (p929)

The wind chill temperature index is given by the formula

$$W = 35.74 + 0.6215T + (0.4275T - 35.75)v^{0.16}$$

Compute the partial derivative of W with respect to v at the point (T, v) = (25, 10) and interpret this partial derivative as a rate of change.

MATH-3105

Dept. of CSE

ED

53

Partial Derivative

Solution

Holding T fixed and differentiating with respect to $oldsymbol{v}$ yields

$$\frac{\partial W}{\partial v}(T, v) = 0 + 0 + (0.4275T - 35.75)(0.16)v^{0.16-1}$$
$$= (0.4275T - 35.75)(0.16)v^{0.16-1}$$

Substituting T=25 and u=10 gives

$$\frac{\partial W}{\partial v}(T, v) = (0.4275 \times 25 - 35.75)(0.16)(10)^{0.16 - 1}$$
$$\approx -0.58 \frac{^{\circ}F}{\text{mi/h}}$$

MATH-3105

Dept. of CSE

Solution

$$\frac{\partial W}{\partial v}(T, v) \approx -0.58 \frac{\text{°F}}{\text{mi/h}}$$

That is, the instantaneous rate of change of W with respect to v at (T,v)=(25,10) is about -0.58 °F/(mi/h).

We conclude that if the air temperature is a constant 25 °F and the wind speed changes by a small amount from an initial speed of 10 mi/h, then the ratio of the change in the wind chill index to the change in wind speed should be about -0.58 °F/(mi/h).

MATH-3105 Dep

Dept. of CSE

55

Partial Derivative

Example 5 (p931)

 $Let f(x,y) = x^2y + 5y^3.$

- (a) Find the slope of the surface z = f(x, y) in the x -direction at the point (1, -2).
- (b) Find the slope of the surface z = f(x, y) in the y -direction at the point (1, -2).

MATH-3105

Dept. of CSE

Solution

(a) Differentiating f with respect to x with y held fixed yields

$$f_{x}(x,y) = 2xy$$

Thus, the slope in the x-direction is $f_x(1,-2) = -4$; that is, z is decreasing at the rate of 4 units per unit increase in x.

(b) Differentiating f with respect to y with x held fixed yields

$$f_{\mathcal{V}}(x,y) = x^2 + 15y^2$$

Thus, the slope in the x-direction is $f_y(1,-2)=61$; that is, z is increasing at the rate of 61 units per unit increase in y.

MATH-3105

Dept. of CS

E 7

57

Implicit Partial Differentiation

Example 7 (p931)

Find the slope of the sphere $x^2 + y^2 + z^2 = 1$ in the y -direction at the points $\left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right)$ and $\left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right)$.

MATH-3105

Dept. of CSE

58

Implicit Partial Differentiation

Solution

The point $\left(\frac{2}{3},\frac{1}{3},\frac{2}{3}\right)$ lies on the upper hemisphere $z=\sqrt{1-x^2-y^2}$, and the point $\left(\frac{2}{3},\frac{1}{3},-\frac{2}{3}\right)$ lies on the lower hemisphere $z=-\sqrt{1-x^2-y^2}$. We could find the slopes by differentiating each expression for z separately with respect to y and then evaluating the derivatives at $x=\frac{2}{3}$ and $y=\frac{1}{3}$. However, it is more efficient to differentiate the

$$x^2 + y^2 + z^2 = 1$$

implicitly with respect to y, since this will give us both slopes with one differentiation.

MATH-3105

Dept. of CSE

ΕO

59

Implicit Partial Differentiation

Solution

To perform the implicit differentiation, we view z as a function of x and y and differentiate both sides with respect to y, taking x to be fixed. This follows that

$$\frac{\partial}{\partial y}[x^2 + y^2 + z^2] = \frac{\partial}{\partial y}[1]$$

$$\Rightarrow 0 + 2y + 2z\frac{\partial z}{\partial y} = 0$$

$$\Rightarrow \frac{\partial z}{\partial y} = -\frac{y}{z}$$

MATH-3105

Dept. of CS

Implicit Partial Differentiation

Solution

The slope at the point $\left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right)$

$$\frac{\partial z}{\partial y}\Big|_{(x,y,z)=\left(\frac{2}{3},\frac{1}{3},\frac{2}{3}\right)} = -\frac{1/3}{2/3} = -\frac{1}{2}$$

And the slope at the point $\left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right)$

$$\frac{\partial z}{\partial y}\Big|_{(x,y,z)=\left(\frac{2}{3},\frac{1}{3},-\frac{2}{3}\right)} = -\frac{1/3}{-2/3} = \frac{1}{2}$$

MATH-3105 Dept

Dept. of CSE

61

61

Implicit Partial Differentiation

Example 8 (p931)

Suppose that $D=\sqrt{x^2+y^2}$ is the length of the diagonal of a rectangle whose sides have lengths x and y that are allowed to vary. Find a formula for the rate of change of D with respect to x if x varies with y held constant, and use this formula to find the rate of change of D with respect to x at the point where x=3 and y=4.

MATH-3105

Dept. of CSE

Implicit Partial Differentiation

Solution

Differentiating both sides of the equation $D^2 = x^2 + y^2$ w. r. to x yields

$$2D\frac{\partial D}{\partial x} = 2x \Longrightarrow D\frac{\partial D}{\partial x} = x$$

At x=3 and y=4 we have $D=\sqrt{3^2+4^2}=5$, it follows that

$$5 \frac{\partial D}{\partial x} \Big|_{x=3,y=4} = 3 \Longrightarrow \frac{\partial D}{\partial x} \Big|_{x=3,y=4} = \frac{3}{5}$$

Thus, D is increasing at a rate of $\frac{3}{5}$ unit per unit increase in x at (3,4).

MATH-3105 Dept. of CSE 6

63

Partial Derivatives & Continuity

In contrast to the case of functions of a single variable, the existence of partial derivatives for a multivariable function does not guarantee the continuity of the function.

MATH-3105 Dept. of CSE

Functions with More that 2 Variables

For a function f(x, y, z) of three variables, there are three partial derivatives:

$$f_x(x, y, z),$$
 $f_y(x, y, z),$ $f_z(x, y, z)$

The partial derivative f_x is calculated by holding y and z constant and differentiating with respect to x. For f_y the variables x and z are held constant, and for f_z the variables x and y are held constant. If a dependent variable

$$w = f(x, y, z)$$

is used, then the three partial derivatives of f can be denoted by

$$\frac{\partial w}{\partial x}$$
, $\frac{\partial w}{\partial y}$, $\frac{\partial w}{\partial z}$

MATH-3105 Dept. of CSE

65

65

Partial Differentiation

Example 10 (p933)

If
$$f(x,y,z) = x^3y^2z^4 + 2xy + z$$
, then
$$f_x(x,y,z) = ?$$

$$f_y(x,y,z) = ?$$

$$f_z(x,y,z) = ?$$

$$f_z(-1,1,2) = ?$$

MATH-3105

Dept. of CSE

Partial Differentiation

Example 11 (p933)

If $f(\rho, \theta, \phi) = \rho^2 \cos \phi \sin \theta$, then

$$f_{\rho}(\rho,\theta,\phi) = ?$$

$$f_{\theta}(\rho, \theta, \phi) = ?$$

$$f_{\phi}(\rho,\theta,\phi) = ?$$

MATH-3105

Dept. of CSE

67

Second Order Partial Derivatives

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = f_{xx} \qquad \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = f_{yy}$$

Differentiate twice with respect to x.

Differentiate twice with respect to y.

MATH-3105

Dept. of CSE

Mixed Second Order Partial Derivatives

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = f_{xy} \qquad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = f_{yx}$$

Differentiate first with respect to x and then with respect to y.

Differentiate first with respect to y and then with respect to x.

This two cases are called the mixed second-order partial derivatives or the mixed second partials.

MATH-3105

Dept. of CSE

60

69

Mixed Second Order Partial Derivatives

Observe that the two notations for the mixed second partials have opposite conventions for the order of differentiation. In the " ∂ " notation the derivatives are taken right to left, and in the "subscript" notation they are taken left to right. The conventions are logical if you insert parentheses:

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$$
 Right to left.

$$f_{xy} = (f_x)_y$$

Left to right.

Differentiate inside the parenthesis first.

MATH-3105

Dept. of CSE

Higher Order Partial Derivatives

Third-order, Fourth-order, Higher Order Partial Derivative

$$\frac{\partial^{3} f}{\partial x^{3}} = \frac{\partial}{\partial x} \left(\frac{\partial^{2} f}{\partial x^{2}} \right) = f_{xxx}, \qquad \frac{\partial^{4} f}{\partial y^{4}} = \frac{\partial}{\partial y} \left(\frac{\partial^{3} f}{\partial y^{3}} \right) = f_{yyyy}$$

$$\frac{\partial^{3} f}{\partial y^{2} \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial^{2} f}{\partial y \partial x} \right) = f_{xyy}, \qquad \frac{\partial^{4} f}{\partial y^{2} \partial x^{2}} = \frac{\partial}{\partial y} \left(\frac{\partial^{3} f}{\partial y \partial x^{2}} \right) = f_{xxyy}$$

MATH-3105 Dept. of CSE

71

Higher Order Partial Derivatives

Example 12 (p934)

Find the second-order partial derivatives of $f(x,y) = x^2y^3 + x^4y$.

Solution

We have

$$\frac{\partial f}{\partial x} = 2xy^3 + 4x^3y$$
and
$$\frac{\partial f}{\partial y} = 3x^2y^2 + x^4$$

MATH-3105 Dept. of CSE 7

Higher Order Partial Derivatives

Solution

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} (2xy^3 + 4x^3y) = 2y^3 + 12x^2y$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} (3x^2y^2 + x^4) = 6x^2y$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial x} (3x^2y^2 + x^4) = 6xy^2 + 4x^3$$

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial y} (2xy^3 + 4x^3y) = 6xy^2 + 4x^3$$

73

Higher Order Partial Derivatives

Example 13 (p934)

Let
$$f(x,y) = y^2 e^x + y$$
. Find f_{xyy} .

Solution

$$f_{xyy} = \frac{\partial^3 f}{\partial y^2 \partial x} = \frac{\partial^2}{\partial y^2} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2}{\partial y^2} (y^2 e^x) = \frac{\partial}{\partial y} (2y e^x) = 2e^x$$

ЛАТН-3105 Dep

Equality of Mixed Partials

Theorem 13.3.2

Let f be a function of two variables. If f_{xy} and f_{yx} are continuous on some open disk, then $f_{xy}=f_{yx}$ on that disk.

MATH-3105

Dept. of CSE

75

75

Higher Order Partial Derivatives

Example 14 (p935)

Show that the function $u(x,t) = \sin(x-ct)$ is a solution of equation

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}.$$

Solution

$$\frac{\partial u}{\partial x} = \cos(x - ct)$$

$$\frac{\partial u}{\partial t} = -c\cos(x - ct)$$

MATH-3105

Dept. of CSE

Higher Order Partial Derivatives

Solution

LHS:

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial t} \left(\frac{\partial u}{\partial t} \right) = \frac{\partial}{\partial t} \left(-c \cos(x - ct) \right) = -c^2 \sin(x - ct)$$

RHS:

$$c^{2} \frac{\partial^{2} u}{\partial x^{2}} = c^{2} \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) = c^{2} \frac{\partial}{\partial x} (\cos(x - ct)) = -c^{2} \sin(x - ct)$$

Thus, u(x,t) satisfied the given equation.

MATH-3105

Dept. of CSE

77

77

Chapter 13.3

Homework

Exercise Set 13.3 (p936 -940)

MATH-3105

Dept. of CSE

78

Chapter 13.4

Differentiability, Differentials, and Local Linearity

MATH-3105

Dept. of CSE

70

79

Differentiability

For a function f(x,y), the symbol Δf , called the increment of f, denotes the change in the value of f(x,y) that results when (x,y) varies from some initial position (x_0,y_0) to some new position $(x_0+\Delta x,y_0+\Delta y)$; thus

$$\Delta f = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0).$$

Let us assume that both $f_x(x_0,y_0)$ and $f_y(x_0,y_0)$ exist and make the approximation

$$\Delta f \approx f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y$$

MATH-3105

Dept. of CSE

80

Differentiability

For Δx and Δy close to 0, we would like the error

$$\Delta f - f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y$$

in this approximation to be much smaller than the distance $\sqrt{(\Delta x)^2 + (\Delta y)^2}$ between (x_0, y_0) and $(x_0 + \Delta x, y_0 + \Delta y)$. We can guarantee this by requiring that

$$\lim_{(\Delta x, \Delta y) \to (0,0)} \frac{\Delta f - f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = 0$$

MATH-3105 Dept. of CSE

81

81

Differentiability

Definition 13.4.1

A function f of two variables is said to be differentiable at (x_0, y_0) provided $f_x(x_0, y_0)$ and $f_y(x_0, y_0)$ both exist and

$$\lim_{(\Delta x, \Delta y) \to (0,0)} \frac{\Delta f - f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = 0$$

MATH-3105

Dept. of CSE

Differentiability

Example 1 (p942)

Prove that the function $f(x,y) = x^2 + y^2$ is differentiable at (0,0).

Solution

The increment is

$$\Delta f = f(0 + \Delta x, 0 + \Delta y) - f(0, 0) = (\Delta x)^2 + (\Delta y)^2$$

Since $f_x(x, y) = 2x$ and $f_y(x, y) = 2y$,

we have $f_x(0,0) = 0$ and $f_y(0,0) = 0$.

MATH-3105 Dept. of CSE 88

83

Differentiability

Solution

and
$$\lim_{(\Delta x, \Delta y) \to (0,0)} \frac{\Delta f - f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y}{\sqrt{(\Delta x)^2 + (\Delta y)^2}}$$

$$= \lim_{(\Delta x, \Delta y) \to (0,0)} \frac{(\Delta x)^2 + (\Delta y)^2}{\sqrt{(\Delta x)^2 + (\Delta y)^2}}$$

$$= \lim_{(\Delta x, \Delta y) \to (0,0)} \sqrt{(\Delta x)^2 + (\Delta y)^2}$$

$$= 0$$

Therefore, f is differentiable at (0,0).

MATH-3105 Dept. of CSE 84

Differentiability

Definition 13.4.2

A function f of three variables is said to be differentiable at (x_0, y_0, z_0) provided $f_x(x_0, y_0, z_0)$, $f_y(x_0, y_0, z_0)$ and $f_z(x_0, y_0, z_0)$ exist and

$$\lim_{(\Delta x, \Delta y, \Delta z) \to (0,0,0)} \frac{\Delta f - f_x(x_0, y_0, z_0) \Delta x + f_y(x_0, y_0, z_0) \Delta y - f_z(x_0, y_0, z_0) \Delta z}{\sqrt{(\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2}} = 0$$

MATH-3105

Dept. of CSE

0 0

85

Differentiability and Continuity

Theorem 13.4.3

If a function is differentiable at a point, then it is continuous at that point.

Proof

Homework

MATH-3105

Dept. of CSE

86

Differentiability and Continuity

Theorem 13.4.4

If all first-order partial derivatives of f exist and are continuous at a point, then f is differentiable at that point.

MATH-3105

Dept. of CSE

07

87

Differentials

If z = f(x, y) is differentiable at a point (x_0, y_0) , we let

$$dz = f_x(x_0, y_0)dx + f_y(x_0, y_0)dy$$

denote a new function with dependent variable dz and independent variables dx and dy. We refer to this function (also denoted df) as the **total differential** of z at (x_0, y_0) or as the **total differential** of f at (x_0, y_0) . Similarly, for a function w = f(x, y, z) of three variables we have the total differential of f at f

$$dw = f_x(x_0, y_0, z_0)dx + f_y(x_0, y_0, z_0)dy + f_z(x_0, y_0, z_0)dz$$

which is also referred to as the **total differential** of f at (x_0, y_0, z_0) .

MATH-3105

Dept. of CSE

Differentials

Commonly the total differential for a function of two variable

$$dz = f_x(x, y)dx + f_y(x, y)dy$$

and for three variables

$$dw = f_x(x, y, z)dx + f_y(x, y, z)dy + f_z((x, y, z))dz.$$

MATH-3105

Dept. of CSE

90

89

Chapter 13.4

Homework _____

Exercise Set 13.4 (p947 –949)

MATH-3105

Dept. of CSE

90

Chapter 13.5

The Chain Rule

MATH-3105 Dept. of CSE

91

91

Chain Rules for Derivatives

Theorem 13.5.1

If x=x(t) and y=y(t) are differentiable at t, and if z=f(x,y) is differentiable at the point $(x,y)=\big(x(t),\ y(t)\big)$, then $z=f\big(x(t),y(t)\big)$ is differentiable at t and

$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$$

where the ordinary derivatives are evaluated at t and the partial derivatives are evaluated at (x, y).

MATH-3105 Dept. of CSE

92

Theorem 13.5.1

If each of the functions $x=x(t),\,y=y(t)$ and z=z(t) is differentiable at t, and if w=f(x,y,z) is differentiable at the point $(x,y,z)=\left(x(t),y(t),z(t)\right)$, then the function $w=f\left(x(t),y(t),z(t)\right)$ is differentiable at t and

$$\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt} + \frac{\partial w}{\partial z}\frac{dz}{dt}$$

where the ordinary derivatives are evaluated at t and the partial derivatives are evaluated at (x, y, z).

MATH-3105 Dept. of CSE 9

93

Chain Rules for Derivatives

Example 1 (p951)

Suppose that

$$z = x^2 y, \qquad x = t^2, \qquad y = t^3$$

Use the chain rule to find dz/dt, and check the result by expressing z as a function of t and differentiating directly.

MATH-3105 Dept. of CSE 94

Solution

Since z = z(x, y) and x = x(t), y = y(t) by the chain rule

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$$
$$= (2xy)(2t) + (x^2)(3t^2)$$
$$= (2t^5)(2t) + (t^4)(3t^2)$$
$$= 7t^6$$

MATH-3105

Dept. of CSE

95

95

Chain Rules for Derivatives

Alternative Solution

Alternatively, we can express z directly as a function of t,

$$z = x^2 y = (t^2)^2 (t^3) = t^7$$

$$\therefore \frac{dz}{dt} = 7t^6$$

MATH-3105

Dept. of CSE

Example 2 (p951)

Suppose that

$$w = \sqrt{x^2 + y^2 + z^2}$$
, $x = \cos \theta$, $y = \sin \theta$, $z = \tan \theta$

Use the chain rule to find $dw/d\theta$ when $\theta = \pi/4$.

MATH-3105 Dept. of CSE

97

Chain Rules for Derivatives

Solution

Since w = w(x, y, z) and x, y, z are function of θ by the chain rule

$$\frac{dw}{d\theta} = \frac{\partial w}{\partial x} \frac{dx}{d\theta} + \frac{\partial w}{\partial y} \frac{dy}{d\theta} + \frac{\partial w}{\partial z} \frac{dz}{d\theta}$$

$$= \frac{1}{2} (x^2 + y^2 + z^2)^{-1/2} (2x)(-\sin\theta) + \frac{1}{2} (x^2 + y^2 + z^2)^{-1/2} (2y)(\cos\theta)$$

$$+ \frac{1}{2} (x^2 + y^2 + z^2)^{-1/2} (2z)(\sec^2\theta)$$

$$= \frac{-x \sin\theta + y \cos\theta + z \sec^2\theta}{\sqrt{x^2 + y^2 + z^2}}$$

Dept. of CSE

Solution

When $\theta = \pi/4$, we have

$$x = \cos\frac{\pi}{4} = \frac{1}{\sqrt{2}}, \quad y = \sin\frac{\pi}{4} = \frac{1}{\sqrt{2}}, \quad z = \tan\frac{\pi}{4} = 1$$

Substituting these values in $\frac{dw}{d\theta}$ yield

$$\left. \frac{dw}{d\theta} \right|_{\theta = \pi/4} = \left[\frac{-x \sin \theta + y \cos \theta + z \sec^2 \theta}{\sqrt{x^2 + y^2 + z^2}} \right]_{\theta = \pi/4}$$

MATH-3105 Dept. of CSE

00

99

Chain Rules for Derivatives

Solution

Substituting this value in $\frac{dw}{d\theta}$ yields

$$\frac{dw}{d\theta}\bigg|_{\theta=\pi/4} = \left[\frac{-x\sin\theta + y\cos\theta + z\sec^2\theta}{\sqrt{x^2 + y^2 + z^2}}\right]_{\theta=\pi/4}$$
$$= \frac{-\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} + 1 \cdot 2}{\sqrt{2}}$$
$$= \sqrt{2}$$

MATH-3105

Dept. of CSE

100

Theorem 13.5.2

If x = x(u, v) and y = y(u, v) have first-order partial derivatives at the point (u, v), and if z = f(x, y) is differentiable at the point (x, y) = (x(u, v), y(u, v)), then z = f(x(u, v), y(u, v)) has first-order partial derivatives at the point (u, v) given by

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial u} \quad \text{and} \quad \frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial v}$$

MATH-3105 Dept. of CSE

101

101

Chain Rules for Partial Derivatives

Theorem 13.5.2

If each function x=x(u,v), y=y(u,v), and z=z(u,v) has first-order partial derivatives at the point (u,v), and if the function w=f(x,y,z) is differentiable at the point $(x,y,z)=\big(x(u,v),y(u,v),z(u,v)\big)$, then $w=f\big(x(u,v),y(u,v),z(u,v)\big)$ has first-order partial derivatives at the point (u,v) given by

$$\frac{\partial w}{\partial u} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial u} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial u} + \frac{\partial w}{\partial z}\frac{\partial z}{\partial u} \quad \text{and} \quad \frac{\partial w}{\partial v} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial v} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial v} + \frac{\partial w}{\partial z}\frac{\partial z}{\partial v}$$

MATH-3105 Dept. of CSE

102

Example 3 (p953)

Given that

$$z = e^{xy}$$
, $x = 2u + v$, $y = \frac{u}{v}$

find $\partial z/\partial u$ and $\partial z/\partial v$ using chain rule.

MATH-3105

Dept. of CSE

102

103

Chain Rules for Partial Derivatives

Solution

Since z = z(x, y) and x, y are function of u and v by the chain rule

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial u}$$

$$= (ye^{xy})(2) + (xe^{xy}) \left(\frac{1}{v}\right)$$

$$= \left[2y + \frac{x}{v}\right] e^{xy}$$

$$= \left[\frac{2u}{v} + \frac{2u + v}{v}\right] e^{(2u+v)(u/v)}$$

$$= \left[\frac{4u}{v} + 1\right] e^{(2u+v)(u/v)}$$

MATH-3105

Dept. of CSE

104

Solution

Similarly,

$$\frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial v}$$

$$= (ye^{xy})(1) + (xe^{xy}) \left(-\frac{u}{v^2} \right)$$

$$= \left[y - x \left(\frac{u}{v^2} \right) \right] e^{xy}$$

$$= \left[\frac{u}{v} - (2u + v) \left(\frac{u}{v^2} \right) \right] e^{(2u + v)(u/v)}$$

$$= -\frac{2u^2}{v^2} e^{(2u + v)(u/v)}$$

MATH-3105

Dept. of CSE

105

105

Chain Rules for Partial Derivatives

Example 4 (p953)

Given that

$$w = e^{xyz}$$
, $x = 3u + v$, $y = 3u - v$, $z = u^2v$

Use appropriate forms of the chain rule to find $\partial w/\partial u$ and $\partial w/\partial v$.

MATH-3105

Dept. of CSE

106

Solution

Since w = w(x, y, z) and x, y, z are function of u and v by the chain rule

$$\frac{\partial w}{\partial u} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial u} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial u} = e^{xyz} (3yz + 3xz + 2xyuv)$$

and

$$\frac{\partial w}{\partial v} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial v} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial v} = e^{xyz} (yz - xz + xyu^2)$$

MATH-3105

Dept. of CSE

107

107

Chain Rules for Partial Derivatives

Example 5 (p954)

Suppose that $w = x^2 + y^2 - z^2$ and

$$x = \rho \sin \phi \cos \theta$$
, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$

Use appropriate forms of the chain rule to find $\partial w/\partial \rho$ and $\partial w/\partial \theta$.

MATH-3105

Dept. of CSE

108

Solution

Since w=w(x,y,z) and $x=x(\rho,\phi,\theta),\ y=y(\rho,\phi,\theta),\ z=z(\rho,\phi)$ by the chain rule

$$\frac{\partial w}{\partial \rho} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial \rho} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial \rho} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial \rho} = ??$$

and

$$\frac{\partial w}{\partial \theta} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial \theta} = ??$$

MATH-3105 Dept. of CSE

109

109

Other Version of Chain Rule

The chain rule extends to functions $w=f(v_1,v_2,\ldots,v_n)$ of n variables. For example, if each v_i is a function of t, $i=1,2,\ldots,n$, the relevant formula is

$$\frac{dw}{dt} = \frac{\partial w}{\partial v_1} \frac{dv_1}{dt} + \frac{\partial w}{\partial v_2} \frac{dv_2}{dt} + \dots + \frac{\partial w}{\partial v_n} \frac{dv_n}{dt}$$

MATH-3105

Dept. of CSE

Example 6 (p954)

Suppose that

$$w = xy + yz$$
, $y = \sin x$, $z = e^x$

Use appropriate forms of the chain rule to find dw/dx.

MATH-3105 Dept. of CSE

111

Chain Rules for Partial Derivatives

Solution

Since w=w(x,y,z) and y=y(x), z=z(x) by the chain rule

$$\frac{dw}{dx} = \frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} \frac{dy}{dx} + \frac{\partial w}{\partial z} \frac{dz}{dx}$$
$$= y + (x + z)\cos x + ye^{x}$$
$$= \sin x + (x + e^{x})\cos x + e^{x}\sin x$$

MATH-3105 Dept. of CSE 112

Implicit Differentiation

Theorem 13.5.3

If the equation f(x,y)=c defines y implicitly as a differentiable function of x, and if $\partial f/\partial x \neq 0$, then

$$\frac{dy}{dx} = -\frac{\partial f/\partial x}{\partial f/\partial y}$$

MATH-3105

Dept. of CSE

112

113

Implicit Differentiation

Example 7 (p955)

Given that

$$x^3 + y^2 x - 3 = 0$$

Find dy/dx.

Solution

Let,
$$f(x, y) = x^3 + y^2x - 3$$
.

$$\therefore \frac{dy}{dx} = -\frac{\partial f/\partial x}{\partial f/\partial y} = -\frac{3x^2 + y^2}{2yx}$$

MATH-3105

Dept. of CSE

Implicit Differentiation

Alternative Solution

Implicit differentiation of $x^3 + y^3x - 3 = 0$ with respect to x yields

$$3x^2 + y^2 + x\left(2y\frac{dy}{dx}\right) - 0 = 0$$

$$\therefore \frac{dy}{dx} = -\frac{3x^2 + y^2}{2yx}$$

MATH-3105 Dept. of CSE 115

115

Implicit Differentiation

Theorem 13.5.4

If the equation f(x,y,z)=c defines z implicitly as a differentiable function of x and y, and if $\partial f/\partial z \neq 0$, then

$$\frac{\partial z}{\partial x} = -\frac{\partial f/\partial x}{\partial f/\partial z}$$
 and $\frac{\partial z}{\partial y} = -\frac{\partial f/\partial y}{\partial f/\partial z}$

MATH-3105 Dept. of CSE 116

Implicit Differentiation

Example 8 (p956)

Consider the sphere $x^2 + y^2 + z^2 = 1$. Find $\partial z/\partial x$ and $\partial z/\partial y$ at the point $\left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right)$.

MATH-3105

Dept. of CSE

117

117

Implicit Differentiation

Solution

Let,
$$f(x, y, z) = x^2 + y^2 + z^2$$
.

$$\therefore \frac{\partial z}{\partial x} = -\frac{\partial f/\partial x}{\partial f/\partial z} = -\frac{2x}{2z} = -\frac{x}{z}$$

$$\frac{\partial z}{\partial y} = -\frac{\partial f/\partial y}{\partial f/\partial z} = -\frac{2y}{2z} = -\frac{y}{z}$$

At the point $\left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right)$,

$$\frac{\partial z}{\partial x} = -1$$
 and $\frac{\partial z}{\partial y} = -\frac{1}{2}$

MATH-3105

Dept. of CSE

118

Chapter 13.5

Homework

Exercise Set 13.5 (p956 – 959)

MATH-3105 Dept. of CSE 1: