PSY792F SEM

Week 2 – Path Analysis

Mark A. Prince, PhD, MS

Baseline Exam Results

- Research area and types of data/analyses
 - A lot of variability
 - Some mentions of nested data, latent variables, longitudinal data, mediation/moderation, mixture models
 - · Overall, I think we have the right topics on the syllabus

Regression assumptions

- · A few people knew this, but we have to review
- · Non-normal data
 - Very few people knew anything about this.
 - I am not going to cover it properly because there were only a few people that reported needing it
 - · I'm willing help those interested learn how to model count or censored data.

Factor Analysis

- · Surprisingly you all knew this better than regression.
- · We will review key gaps in knowledge in the second unit.

- At least two variables of ratio or interval scale
- Linear relationship (expected value of residuals at every point is 0)
 - · Relationship between the independent and dependent variables expected to be linear
 - Check with scatter plots
 - Model comparisons with quadratic and other non-linear models
 - No Outliers this will influence linearity
 - If violated you will be more likely to make a type II error

- Multivariate normality
 - The dependent variable needs to be normally distributed
 - Check with a histogram and a fitted normal curve, a Q-Q-Plot, or the Kolmogorov-Smirnof test.
 - When the data is not normally distributed a non-linear transformation, e.g., log-transformation, **might** fix this issue
 - · Consider other distributions (e.g., negative binomial, Poisson, gamma)
 - If violated you will be more likely to make a type II error

- No or little multicollinearity
 - Multicollinearity occurs when the independent variables are not independent from each other.
 - Check with correlation matrix: r > .79 is considered multicollinear
 - · Consider factor analysis or using total score vs. subscale scores or a latent variable
 - · If violated you will be more likely to make a type II error
- Independence of observations (expected correlation between residuals of any two observations is 0)
 - No auto-correlation
 - · Each participant should be independent
 - No nested data
 - Need multi-level modeling to address this
 - · If violated can cause numerous problems
 - · The underling math assumes that events are "disjoint"
 - P(A and B) = P(A)P(B)
 - · If independence is violated you need to use "conditional probability"
 - P(B | A) = P(A and B)/P(A)

- Homoscedasticity
- The scatter plot is good way to check for homoscedasticity
 - That is the error terms along the regression are equal
 - Violation can result in Type I or Type II error – essentially violation gives too much weight to cases with extreme values
 - · Really it means your model is misspecified

Testing Assumptions

- See SPSS file with simulated data, syntax, and output
- There are also pdfs of the output and syntax

When to use Path Analysis

- Extension of multiple regression
 - Multiple Dependent Variables
- Use Path Analysis when:
 - · All variables are observed
 - You have more than one dependent variable
 - · Without Path Analysis you would run many regression analyses separately
 - With Path Analysis you can run them all at the same time
 - You can specify the relationships among dependent variables
 - Are dependent variables expected to be related to each other?
 - Are independent variables expected to be related to each other?
 - Any mediators or moderators of the relationship?
 - Covariates?
 - · (what does this mean in a path model?)

Why use Path Analysis

- Reduce Type I error inflation
 - Simultaneous estimation
- Test more complex models
 - Flexibility
 - Direct and indirect effects
 - Mediation/moderation
 - Multi-group analysis

Theoretical Overview

- For Path Analysis all the same assumptions of multiple regression hold
- Still uses OLS regression and Maximum Likelihood estimation
 - Does everyone know what these are?
- Describe model with a Path Diagram (see slides to follow)
- Exogenous and endogenous variables:
 - Exogenous (think of them as predictors or IVs)
 - · Variables where no arrows pointing towards them, except the measurement error term.
 - · If exogenous variables are correlated to each other, then a double headed arrow will connect those variables.
 - Endogenous (think of them as outcomes or DVs)
 - · Variables may have both the incoming and outgoing arrows.
- Terms:
 - Path coefficient (just a regression coefficient)
 - Disturbance (just a residual)
 - Direct effect single arrow from X to Y
 - Indirect effect X predicts Y via M (X-M-Y)
 - Total effect = direct + indirect effects

Introduction to Terms/Notation

Indicator

Observed variable, items in a measure

Latent variable

Unobserved variables or factors

Error

Measurement error

———

Direct effect, regression coefficient

Covariance

Simple Path Diagram

More complex path diagram

Data considerations for Path Analysis

- Wide format
 - Each participant gets a single row
 - Contrast with tall or long format where each participant gets many rows
 - Needed for MSEM
- Data considerations
 - Regression assumptions apply here
 - DVs Continuous normal? Count? Censored? Binary?
 - Missing data?
 - Multi-group?
 - Bootstrapping?
- Start with a picture

Simple Path Model

Hostility: continuous

Rumination: continuous

Substance Use: continuous

History of Bullying: continuous

Depression: continuous Anxiety: continuous

How to write the code

- Mplus users guide
- Basic commands:
 - In mplus, there are three basic commands
 - **On**: this is a regression command. Y on x; means to regress y onto x.
 - With: this is a correlation. Y with x; means correlate the two.
 - By: this is to create a factor. Y by x; means that y is a factor and x is the first indicator.
 - The second important point is instituting constraints
 - Y with x (1); the (1) means to impose a constraint. Anything that has the (1) following it will all be constrained to equality. You can only have one (#) on a line.
 - The last important point is variances / means
 - Just listing the variable name = variance or residual variance
 - Listing variable name in [] = mean or intercept.
 - Dep1@0 says to fix the variance of dep1 to 0
 - [dep1@0] says to fix the mean of dep1 to 0

How to write the code

- Model statement
 - Use picture as a guide
 - Depression on hostility;
 - Depression on rumination;
 - Depression on substance use;
 - Anxiety on hostility;
 - Anxiety on rumination;
 - Anxiety on substance use;
 - Anxiety on history of bullying;
 - Depression with anxiety;

TITLE: Path Analysis All Continuous Variables

DATA:

FILE IS ex3.11.dat;

VARIABLE:

NAMES ARE

depression anxiety HoB Host rumination Sub;

USEVARIABLES ARE

depression anxiety HoB Host rumination sub;

MODEL:

depression on host; depression on rumination; depression on sub;

anxiety on host; anxiety on rumination; anxiety on sub; Anxiety on HOB;

depression with anxiety;

Output: sampstat stdyx cinterval;

How to read the results

- See output file
- Sample statistics
- Model fit
 - Chi-square
 - RMSEA
 - CFI/TLI
 - SRMR
- Model results
 - Parameter estimates
 - Unstandardized regression coefficients/correlations
 - Means, intercepts, variances, residual variances
 - Standardized regression coefficients/correlations
 - R-square
 - · Confidence Intervals (un)standardized

How to write up the results

- Analysis plan
 - Data decisions
 - e.g., transformed variables, how variables were coded or re-coded, used summary scores vs. subscale scores, how the data were collected (e.g., number of time points)
 - Model choice
 - Based on hypotheses
 - Model fit
 - · Overall
 - · Criteria used, citations
 - Comparative
 - Criteria used, citations
 - Sequence of models testing, citations or rationale
 - Model building considerations, citations or rationale

Comparing multiple models

- If you don't specify all the paths in your model a priori (e.g., some exploratory hypotheses) you can compare multiple models
- Modindices
 - An output statement that will suggest paths to add
 - May not make sense, so add them thoughtfully
- · Run a series of models and compare model fit
 - · Select the most parsimonious model with the best fit that makes theoretical sense

How to write up the results part 2

- Results Section
 - Parameter estimates that relate to your hypotheses
 - Factor loadings
 - Regression coefficients
 - Correlations
 - No interpretation of results, but explain effect
 - High values of X associated with high values of Y
 - Use "such that"

How to interpret the results

- Discussion
 - Summary of results
 - Longitudinal vs. cross-sectional?
 - What does it mean?
 - Strengths?
 - Limitations?

Now you try...

- Pick a dataset
 - Test the assumptions
 - Pull the data into mplus
 - Run a couple path models