

Everything Evolves in Personalized PageRank

Zihao Li * (UIUC)

Dongqi Fu * (UIUC)

Jingrui He (UIUC)

Contact: {zihaoli5, dongqif2, jingrui}@illinois.edu GitHub: https://github.com/DongqiFu/EvePPR

Motivation

- Proposed EvePPR Method
- Experiments
- Conclusion

Personalized PageRank

- Methodology
 - Obtains broader attention within the trend of deep learning
 - E.g., PageRank-based Graph Representation Learning [1] and Graph Neural Networks [2]
- Applications [3]
 - Search Engine
 - Social Network Analysis
 - Recommender System
 - Bioinformatics
 - Many more

^[2] Klicpera, et al. Predict then Propagate: Graph Neural Networks meet Personalized PageRank. ICLR 2019

^[3] David F. Gleich. PageRank Beyond the Web. SIAM Rev. 2015

PageRank in the Dynamic Setting

- Static Solution [1]
 - $\mathbf{v} = \alpha \mathbf{P} \mathbf{v} + (1 \alpha) \mathbf{h}$
 - $oldsymbol{v}$ is personalized PageRank vector
 - **P** is the transition matrix
 - **h** is the stochastic vector (e.g., personal interest)
- Dynamic Solution
 - Previous dynamic PPR works focus on modeling the evolving graph structure $P^{(t)}$, e.g.,
 - Gauss-Southwell [1]
 - Local Push [2]
 - Offset Score Propagation [3]

^[2] Ohsaka et al. Efficient PageRank Tracking in Evolving Networks. KDD 2015

^[3] Zhang et al. Approximate Personalized PageRank on Dynamic Graphs. KDD 2016

PageRank in the Fully Dynamic Setting

- What if h is also evolving with time, like $h^{(t)}$?
- E.g., web structure $m{P}^{(t)}$ can evolve, as well as user interest $m{h}^{(t)}$

• Then, how to solve $\boldsymbol{v}^{(t)} = \alpha \boldsymbol{P}^{(t)} \boldsymbol{v}^{(t)} + (1 - \alpha) \boldsymbol{h}^{(t)}$?

- Motivation
- Proposed EvePPR Method
- Experiments
- Conclusion

Problem Setting and Theoretical Contribution

- Input: Evolving graph structures $\{P^{(1)}, P^{(2)}, ..., P^{(t)}\}$ and evolving stochastic vectors $\{h^{(1)}, h^{(2)}, ..., h^{(t)}\}$
- Output: We aim to solve $\{v^{(1)}, v^{(2)}, ..., v^{(t)}\}$ effectively and efficiently.
- Targeting this setting, we provide the solution EvePPR with theoretical time complexity and error bound.
- Also, we provide the fast and accuracy-comparable version,
 EvePPR-APP with theoretical analysis.

EvePPR

- Core Idea
 - When interests vary, i.e., $\Delta h = h^{(t)} h^{(t-1)}$, decompose Δh into multiple single-source interests.
 - For each $\Delta h(i) \neq 0$, execute a single-source tracking v_{mid}
 - Then, combine multiple $oldsymbol{v}_{mid}$ to get $oldsymbol{v}^{(t)}$
- Theoretical Analysis
 - At each timestamp t, EvePPR can get exact $v^{(t)}$ satisfying $v^{(t)} = \alpha P^{(t)} v^{(t)} + (1 \alpha) h^{(t)}$
 - The time complexity is $O(m(l+1)log_{\alpha}\varepsilon)$
 - m and l is num. of non-zero entries of $m{P}^{(t)}$ and $m{h}^{(t)}$, resp.
 - ε is the tolerance to terminate the tracking

EvePPR-APP

- Core Idea
 - Trade off the tracking accuracy to tracking efficiency
 - Instead of decomposing Δh in EvePPR, use OSP [1] to get v_{mid} and refine v_{mid} through Gauss-Southwell [2] to get $v^{(t)}$
- Theoretical Analysis
 - The time complexity is $O\left(mlog_{\alpha}\varepsilon + n\left(\frac{(1+\alpha)\alpha}{(1+\alpha)^2}\right) + \frac{||\Delta h||_1}{\varepsilon}\right)$
 - m is num. of non-zero entries of ${m P}^{(t)}$
 - ε is the tolerance to terminate the tracking
 - The tracking error (i.e., L_1 norm) is bounded by $\frac{n\varepsilon}{1-\alpha}$

- Motivation
- Proposed EvePPR Method
- Experiments
- Conclusion

PageRank Tracking Experiment

Our method is fast and has less tracking errors

Tracking Error and Running Time of Different PageRank Algorithms in MathOverflow Network (24,818 nodes and 506,550 edges)

Application Experiment – Graph Alignment

- Node similarity retrieval across graphs [1]
- Can be rewritten in the form of PPR

$$s = \alpha \widetilde{W} s + (1 - \alpha) h$$

 W encodes graph topology, node feature, edge feature of two graphs, and h encodes the prior aligning knowledge

- $\mathbf{s} \in \mathbb{R}^{n_1 \times n_2}$ encodes node-pair similarity
- Our EvePPR in the fully dynamic setting allows graph topology, node feature, edge feature, and prior aligning knowledge from two graphs co-evolve, i.e., $\widetilde{\pmb{W}}^{(t)}$ and $\pmb{h}^{(t)}$

Application Experiment – Graph Alignment

Real-World Datasets

Extracted Subgraphs	Format	V	E
MovieLens-1M	Bipartite	90	375
Bitcoin Alpha	Unipartite	100	423
WikiLens	Bipartite	150	553

Graphs	Format	V	E	Time Span
MovieLens-1M	Bipartite	9,746	1,000,209	35 months
Bitcoin Alpha	Unipartite	3,783	24,186	64 months
WikiLens	Bipartite	5,437	26,937	46 months

Application Experiment – Graph Alignment

Our method achieves highest alignment accuracy

Alignment Accuracy of Different Graph Alignment Algorithms in Different Networks

- Motivation
- Proposed EvePPR Method
- Experiments
- Conclusion

Conclusion

- Problem
 - Tracking PPR solution in the fully dynamic setting
- Algorithm: EvePPR
 - Bounded accuracy
 - Bounded time complexity
 - Approximation solution

Evaluation

- Effectiveness in PPR tracking
- Efficiency in PPR tracking
- Knowledge graph alignment
- Ablation studies

Thanks!

Zihao Li * (UIUC)

Dongqi Fu * (UIUC)

Jingrui He (UIUC)

Contact: {zihaoli5, dongqif2, jingrui}@illinois.edu GitHub: https://github.com/DongqiFu/EvePPR

