MATH1401

Fall 2021

Lecture 8

Visualization - Part II

Class Checklist

- HW 2 Due Date : Tuesday: 9/14 9 PM
 - Graded Questions:1.1-1.3, 2.1-2.5, 3.1-3.5, 4.1-4.2, 6.1-6.7
- Lab 3 Due Date : Friday 9/17 9 PM
 - Graded Questions: 1.1,1.1.1, 3.1-3.2,4.1 4.3, all questions from section 2

Quiz 6 – Tuesday: 9/14 – Covers Chapter 7

Review

Lecture 7 - Review

- Identify Numerical Data
- Identify Categorical Data
- Plot numerical data with Line plot, Scatter Plot
- Plot categorical data with bar graphs

Plotting Two Numerical Variables

Line graph: plot

Scatter plot: scatter

When to use a line vs scatter plot?

- Use line plots for sequential data: if...
 - ...your x-axis has an order
 - ...sequential differences in y values are meaningful
 - Usually: x-axis is time or distance

- Use scatter plots for non-sequential data
 - When you're looking for associations

How Do You Generate This Chart?

Distributions!

Lecture 8 - Overview

- Distributions Numerical Vs. Categorical
- Bar Graph
 - display categorical distributions
 - lengths of the bars are the value for each category
- Histograms
 - display numerical distributions
 - heights of bars measure densities

Lecture 8 – Programming Checklist

- Table.group("Column") Count Frequency of each individual returns result as a table
- Table.barh('categorical','numerical') Create a bar graph with 'categorical' on x-axis and numerical on yaxis
- Table.barh('numerical',bins,unit) Create a histogram 'numerical1' on x-axis
- Table.bin('numerical',bins) Count frequency of each item in each bin

Terminology

- Individuals: those whose features are recorded
- Variable: an attribute
- A variable has different values
- Values can be numerical or categorical, and of many sub-types within these
- Each individual has exactly one value of the variable
- Distribution: For each different value of the variable, the frequency of individuals that have that value

(Demo)

Distributions of Categorical Variables

Visualization

- Bar charts are commonly used to visualize categorical distributions
- One axis is categorical, one numerical

(Demo)

Displaying a Categorical Distribution

- The distribution of a variable (a column, e.g. Studios) describes the frequencies of its different values
- The group method counts the number of rows for each value in the column (e.g. the number of top movies released by each studio)
- Bar charts can display the distribution of a categorical variable (e.g. studios):
 - One bar for each category
 - Length of bar is the count of individuals in that category
 - You can choose the order of the bars

Distributions of Numerical Variables

Binning Numerical Values

Binning is counting the number of numerical values that lie within ranges, called bins.

- Bins are defined by their lower bounds (inclusive)
- The upper bound is the lower bound of the next bin

Area Principle

Area Principle

Areas should be proportional to the values they represent.

For example

If you represent 20% of a population by

Then 40% can be represented by:

Put not by:

• But not by:

Drawing Histograms

Histogram

- Chart that displays the distribution of a numerical variable
- Uses bins; there is one bar corresponding to each bin
- Uses the area principle:
 - The area of each bar is the percent of individuals in the corresponding bin

(Demo)

Density

Histogram Axes

- By default, hist uses a scale (normed=True) that ensures the area of the chart sums to 100%
- The area of each bar is a percentage of the whole
- The horizontal axis is a number line (e.g., years), and the bins sizes don't have to be equal to each other
- The vertical axis is a rate (e.g., percent per year)

(Demo)

How to Calculate Height

The [40, 65) bin contains 51 out of 200 movies

- "52 out of 200" is 25.5%
- The bin is 65 40 = 25 years wide

```
25.5 percent

Height of bar = ------

25 years

= 1.02 percent per year
```

Height Measures Density

```
% in bin

Height = -----

width of bin
```

- The height measures the percent of data in the bin relative to the amount of space in the bin.
- Height measures crowdedness, or density.
- Units: percent per unit on the horizontal axis

Area Measures Percent

Area of bar = % in bin = Height x width of bin

- "How many individuals in the bin?" Use area.
- "How crowded is the bin?" Use height.

Bar Chart or Histogram?

To display a distribution:

Bar Chart

- Distribution of categorical variable
- Bars have arbitrary (but equal) widths and spacings
- height (or length) and area of bars proportional to the percent of individuals

Histogram

- Distribution of numerical variable
- Horizontal axis is numerical: to scale, no gaps, bins can be unequal
- Area of bars proportional to the percent of individuals;
 height measures density