

Ankara Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü

Derin Öğrenme Kullanarak MR Görüntülerinden Beyin Tümörü Sınıflandırması

Derin Öğrenme

Doç. Dr. Mehmet Serdar Güzel Dersin Öğretim Üyesi 22822606 Oğuzhan Panatlı Doktora Öğrencisi

Aralık 2023

İçindekiler

- Giriş
 - Veri Setine Genel Bakış
 - Veri Setinin İncelenmesi
- Yöntem
 - Veri Ön İşleme
 - Derin Öğrenme Modelinin (CNN) Uygulanması
 - Performans Metrikleri
- Sonuçların Değerlendirmesi
 - CNN Modelinin Sonuçlarının Değerlendirilmesi ve Yorumlanması
- Sonuç

Veri Setine Genel Bakış

Veri Setine Genel Bakış

- Veri setinde dört sınıf bulunmaktadır: Normal, Pituitary, Glioma ve Meningioma.
 - Normal Herhangi bir tümör belirtisi göstermeyen beyin görüntüsü
 - Pituitary Hipofiz bezinde büyüyen bir tümör. Hipofiz tümörleri iyi huylu veya kötü huylu olabilir.
 - Glioma Glial hücrelerde büyüyen bir tümör.
 - Meningioma Beyni ve omuriliği çevreleyen zarlar olan meninkslerde büyüyen bir tümör.

Veri Setine Genel Bakış

- Veri seti 'Brain Tumor Classification (MRI)' kullanarak oluşturulmuştur.
- Veri Temizleme (Data Cleaning):
 - Tekrarlanan örneklerin kaldırılması (Removal of duplicate samples)
 - Yanlış etiketlenmiş görsellerin düzeltilmesi (Correction of mislabeled images)
 - Resim yeniden boyutlandırma (Image resizing): Tüm resimler (224,224) boyutuna boyutlandırılmıştır.
- Veri Artırma (Data Augmentation):
 - Tuz ve biber gürültüsü (Salt and pepper noise)
 - Histogram eşitleme (Histogram equalization) : Görüntülerdeki kontrastı ve ayrıntıları artırır.
 - Döndürme (Rotation)
 - Parlaklık ayarı (Brightness adjustment)
 - Yatay ve dikey çevirme (Horizontal and vertical flipping)

Veri Setininin İncelenmesi

• Veri Setindeki gözlem sayısı (sample): 21672

Normal: 3066

Glioma: 6307

Meningioma: 6391

Pituitary: 5908

Veri Setininin İncelenmesi

Normal Glioma

Veri Ön İşleme

- Veri setinin eğitim, validasyon ve test olarak ayrılması (train-test split)
 - Eğitim Veri seti ~ %64, Validasyon Veri Seti ~%16, Test Veri seti %20
- Sınıfların sayısal verilere dönüştürülmesi
 - Normal, Glioma, Meningioma, Pituitary
- Görüntünün gri tonlamaya dönüştürülmesi (gray scale)
- Yeninden boyutlandırılması ve normalize edilmesi
 - Görüntü boyutu: (150,150)

Derin Öğrenme Modelinin (CNN) Uygulanması

Convolutional Neural Network (CNN)

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Derin Öğrenme Modelinin (CNN) Uygulanması

Convolutional Neural Network (CNN)

```
# Training parameters
epochs = 20
batch_size = 150

print(f'Image shape: {image_shape}')
print(f'Epochs: {epochs}')
print(f'Batch size: {batch_size}')

Image shape: (150, 150, 1)
Epochs: 20
Batch size: 150
```

```
# Define the model architecture
model = models.Sequential()
# Convolutional layer 1
model.add(Conv2D(32, (4, 4), activation="relu", input_shape=image_shape))
model.add(MaxPooling2D(pool_size=(3, 3)))
# Convolutional layer 2
model.add(Conv2D(64, (3, 3), activation="relu"))
model.add(MaxPooling2D(pool_size=(3, 3)))
# Convolutional layer 3
model.add(Conv2D(128, (3, 3), activation="relu"))
model.add(MaxPooling2D(pool_size=(3, 3))) #
# Convolutional layer 4
model.add(Conv2D(128, (3, 3), activation="relu"))
model.add(Flatten())
# Full connect layers
model.add(Dense(512, activation="relu"))
model.add(Dropout(0.5, seed=10))
model.add(Dense(N_TYPES, activation="softmax"))
model.summary()
optimizer = legacy.Adam(learning_rate=0.001)
model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics= ['accuracy'])
```

Derin Öğrenme Modelinin (CNN) Uygulanması

Convolutional Neural Network (CNN)

Model: "sequential"		
Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 147, 147	, 32) 544
<pre>max_pooling2d (MaxPooling2 D)</pre>	(None, 49, 49,	32) 0
conv2d_1 (Conv2D)	(None, 47, 47,	18496
<pre>max_pooling2d_1 (MaxPoolin g2D)</pre>	(None, 15, 15,	64) 0
conv2d_2 (Conv2D)	(None, 13, 13,	128) 73856
<pre>max_pooling2d_2 (MaxPoolin g2D)</pre>	(None, 4, 4, 12	8) 0
conv2d_3 (Conv2D)	(None, 2, 2, 12	8) 147584
flatten (Flatten)	(None, 512)	0
dense (Dense)	(None, 512)	262656
dropout (Dropout)	(None, 512)	0
dense_1 (Dense)	(None, 4)	2052

Total params: 505188 (1.93 MB)
Trainable params: 505188 (1.93 MB)
Non-trainable params: 0 (0.00 Byte)

CNN Modelinin Sonuçlarının Değerlendirilmesi

Performans Metrikleri

- Model sonuçlarının değerlendirilmesinde kullanılan performans metrikleri
 - Accuracy
 - Precision
 - Recall (Sensitivity)
 - F1 Score

Predicted Class

13

CNN Modelinin Sonuçlarının Değerlendirilmesi

Classification Report:

	precision	recall	f1-score	support
Normal Glioma Meningioma Pituitary	0.95 0.95 0.94 0.98	0.96 0.93 0.95 0.98	0.96 0.94 0.95 0.98	645 1233 1292 1165
accuracy macro avg weighted avg	0.96 0.96	0.96 0.96	0.96 0.96 0.96	4335 4335 4335

Sonuç

- Bu veri setinde CNN modeli uygulanarak sınıflandırma yapılmıştır.
- Bu veri setinde model ~%96 test doğruluğuna ulaşılmıştır.
- Daha yüksek doğrulukta bir model elde edebilmek adına ileri çalışmalarda;
 - Veri sayısı artıralarak (gerçek veriler, Generative Adverserial Network (GAN)) tekrar CNN uygulanabilir.
 - Hiperparametre optimizasyonu yapılarak tekrar model oluşturabilir.
 - VGG16, Resnet152, Densenet201, InceptionV3, Xception gibi farklı modeller kullanılabilir.

DINLEDIĞINIZ İÇIN TEŞEKKÜRLER