1125作业详解

1125复习要点

- \rightarrow 重点掌握如何利用幅频二次方函数 $|H(\omega)|^2$ 到系统函数H(s)
 - ✓掌握H(s)H(-s)的零极点计算
 - ✓掌握最小相位型滤波器H(s)所需的极点(左半平面)和零点 (左半平面和jω轴)
- 重点掌握巴特沃思低通滤波器的设计
 - ✓牢记巴特沃思低通滤波器的幅度二次方函数
 - \checkmark 利用四个技术指标求得阶数n和截止频率 ω_c

$$\left| H(\omega) \right|^2 = \frac{1}{1 + \left(\frac{\omega}{\omega_c}\right)^{2n}}$$

✓掌握用一般方法和求表4-1法(需要再做反归一化)求系统函数H(s)

$$H\left(s\right) = \frac{\omega_{c}^{n}}{\prod_{k=1}^{n} \left(s - s_{k}\right)}$$

✓理解H(s)H(-s)的极点分布和巴特沃斯圆

$$n \ge \frac{\lg \sqrt{10^{0.1\alpha_s} - 1}}{\lg \left(\frac{\omega_s}{\omega_c}\right)}$$

1125复习要点

▶掌握I型切比雪夫低通滤波器的设计

✓牢记切比雪夫低通滤波器的幅度二次方函数

$$\left| H(\omega) \right|^2 = \frac{1}{1 + \epsilon^2 T_n^2 \left(\frac{\omega}{\omega_c} \right)}$$

- \checkmark 利用四个技术指标求得阶数n、波动系数 ϵ 、截止频率 ω_c
- ✓掌握用查表法(表4-3)或一般方法求系统函数H(s)
- ✓理解切比雪夫滤波器极点分布图和特点(椭圆)
- ✓深入理解切比雪夫低通滤波器和巴特沃斯低通滤波器的幅频特点

$$\varepsilon = \sqrt{10^{\frac{\alpha_{\text{max}}}{10}} - 1}$$

$$n = \frac{\cos h^{-1} \left[\sqrt{\left(10^{0.1\alpha_{\min}} - 1\right) / \left(10^{0.1\alpha_{\max}} - 1\right)} \right]}{\cos h^{-1} \left(\frac{\omega_s}{\omega_c}\right)}$$

1125课后作业

- 第四章习题 P318-320
- 1、 4、6(1)
- 21、用查表4-1设计一个归一化频率的巴特沃思低通滤波器,其频域指标满足:通带截止频率为600Hz,衰减不大于3dB;阻带截止频率为1800Hz,衰减不小于30dB
- 例 给定滤波特性的幅度平方函数

$$\left|H(\omega)\right|^2 = \frac{1+\omega^4}{\omega^4 + 10\omega^2 + 9}$$

求具有最小相位特性的滤波器系统函数

8. (2) 若给定 $f_p = 1.5MHz$, $\alpha_p \le 3dB$, $f_s = 1.7MHz$, $\alpha_s \ge 60dB$,分别求巴特沃斯 低通滤波器和切比雪夫低通滤波器的最低阶数n

1. 已知幅度二次方函数

$$|H(s)|^2 = \frac{9(s^2+1)^2}{s^4-5s^2+4}$$

试求物理可实现的系统的系统函数 H(s)。

给定滤波特性的幅度平方函数

$$|H(\omega)|^2 = \frac{1+\omega^4}{\omega^4 + 10\omega^2 + 9}$$

求具有最小相位特性的滤波器系统函数

$$H(s)H(-s) = \frac{1+s^4}{s^4-10s^2+9}$$

型点在5万半面或了W细

$$H(S) = \frac{(S-e^{2\pi i})(S-e^{2\pi i})}{(S+1)(S+3)} = \frac{S^{2}\sqrt{2}S+1}{S^{2}+4S+1}$$

$$5^{4} = -1$$
 $5^{4} = -1$
 $5^{4} = 1$
 $40 = ztukz$
 $ztukz$
 $z = 1e^{-1}$
 $k = 0, 1, 2, 3$

巴特沃思(Butterwoth)低通滤波器

巴特沃思滤波器设计步骤 (一般情况)

一般已知通带截止频率 ω_p 、阻带截止频率 ω_s 通带衰减 α_p 和阻带衰减 α_s

步骤1: 截止频率 ω_c

步骤2: 根据 $n \ge \frac{\lg \sqrt{10^{0.1\alpha_s} - 1}}{\lg \left(\frac{\omega_s}{\omega_c}\right)}$ 计算滤波器阶数 n (向上取整) 步骤3: 得到幅频二次方函数 $\frac{|H(\omega)|^2 = \frac{1}{1 + \left(\frac{\omega}{\omega_s}\right)^{2n}}}{1 + \left(\frac{\omega}{\omega_s}\right)^{2n}}$

步骤4: 令 $s^2 = -\omega^2$ 得到H(s) H(-s), 得到零极点分布

步骤5: 取s左半平面所有极点,得到 $H(s) = \frac{\omega_c^u}{\prod_{n} (s - s_k)}$

巴特沃思(Butterwoth)低通滤波器

巴特沃思滤波器设计步骤(查表法)

一般已知通带截止频率 ω_p 、阻带截止频率 ω_s 通带衰减 α_p 和阻带衰减 α_s

步骤1: 截止频率 ω_c

步骤2: 做归一化处理,根据 $n \ge \frac{lg\sqrt{10^{0.1}\alpha_s}-1}{lg\omega_s}$ 计算阶数 n (向上取整)

步骤3: 根据 表4-1查取巴特沃思多项式

步骤4:写出归一化巴特沃思滤波器传递函数 $H(\bar{s})$

步骤5: \diamondsuit $s = \frac{s}{w}$ 反归一化得到滤波器传递函数H(s)

8. (2) 若给定 $f_p = 1.5 MHz$, $\alpha_p \le 3 dB$, $f_s = 1.7 MHz$, $\alpha_s \ge 60 dB$, 分别求巴特沃斯 低通滤波器和切比雪夫低通滤波器的最低阶数n

解 极格条件 所
$$wc = Wp = 22fp = 32 \times 10^6 \text{ rad/s}$$

$$173 \frac{9 \sqrt{10^6 - 1}}{19 \left(\frac{ws}{wc}\right)} = \frac{9 \sqrt{10^6 - 1}}{19 \left(\frac{342 \times 10^6}{320 \times 10^6}\right)} = 55.182$$

$$ws = 22fs = 3.42 \times 10^6 \text{ rad/s}$$
in 取 56

4. 巴特沃思低通滤波器的频域指标为: 当 $ω_1$ = 1000 rad/s 时, 衰减不大于 3dB, 当 $ω_2$ = 5000 rad/s 时,

衰减至少为 20dB, 求此滤波器的系统传递函数 H(s)。

今 S= jw 即 s2=-w2、可得 H(s) H(-s) = 10004 54 +10004 AS=Peil 根点 S,=(one型, S=(one型, S=(one型) $S^{4} + (000^{4} = 0)$ $S_{4} = (000^{4})$ $S_{4} = (000^{4})$ $S_{5} = (000^{4})$ $S_{7} = (000^{4})$ $S_{7} = (000^{4})$ $S_{8} = (000^{4})$ 四特沃思图 K=0, 1, 2, 3 助此得 ASF系统函数 $H(S) = \frac{Wc^2}{(S-S_2)(S-S_3)}$ = (0002 (6-1000 etzi) (5-1000 etzi) n=2 归级解的 C 特 保息 LBP = $\frac{1000^2}{5^2+1000[25+1000^2]}$ 或可用重复4一运 5= S = S :实际山户系统函数为 $H(S) = \frac{1000}{(1000)^2 + \sqrt{2} \cdot \frac{S}{1000} + 1} = \frac{1000^2}{S^2 + 1000\sqrt{2}S + 1000^2}$

21、用查表4-1设计一个归一化频率的巴特沃思低通滤波器,其频域指标满足:通带截止频率为600Hz,衰减不大于3dB;阻带截止频率为1800Hz,衰减不小于30dB

解: 已知 通带截止频率
$$f_{p} = 600 \text{ Hz}$$
 . $\alpha_{p} \leq 30 \text{ B}$ 图 图 图 $\beta_{s} = 1800 \text{ Hz}$. $\alpha_{s} \geq 30 \text{ dB}$ 所以 然截止频率 $\omega_{c} = \omega_{p} = 22 f_{p} = 1200 20$ $\omega_{s} = 22 f_{s} = 3600 20$ $\omega_{s} = 3.14$ $\omega_{s} = \frac{1}{1200} = \frac{1}{1200} = 3.14$ $\omega_{s} = \frac{1}{1200} = \frac{1}{1200$

切比雪夫低通滤波器

切比雪夫滤波器设计步骤(查表法)

一般已知通带截止频率 ω_c 、阻带截止频率 ω_s

通带衰减 α_{max} 和阻带衰减 α_{min}

 $\alpha_{\rm max}$ 步骤1: 截止频率 ω_c ,波动系数 $\varepsilon = \sqrt{10^{-10}} - 1$

步骤2: 根据 $n = \frac{\cos h^{-1} \left[\sqrt{(10^{0.1\alpha_{\min}} - 1)/(10^{0.1\alpha_{\max}} - 1)} \right]}{(n-1)}$ 计算阶数 n (向上取整)

步骤3: 做归一化处理, 并根据 表4-3查取归一化滤波器系统函数系数

步骤4:写出归一化切比雪夫低通滤波器传递函数 $H(\bar{s})$

步骤5: 令 $\overline{S} = S/\omega_c$ 反归一化得到滤波器传递函数H(s)

切比雪夫低通滤波器

切比雪夫滤波器设计步骤 (一般情况)

一般已知通带截止频率 ω_c 、阻带截止频率 ω_s

通带衰减 α_{max} 和阻带衰减 α_{min}

步骤1: 截止频率 $\omega_{\rm c}$, 波动系数 $\varepsilon = \sqrt{10^{\frac{\alpha_{\rm max}}{10}}} - 1$

$$\mathcal{E} = \sqrt{10^{\frac{\alpha_{\text{max}}}{10}} - 1}$$

步骤2:根据

计算阶数 n (向上取整)

步骤3: 得到幅频二次方函数

$$\left| H(\omega) \right|^2 = \frac{1}{1 + \varepsilon^2 T_n^2 \left(\frac{\omega}{\omega_c} \right)}$$

步骤4: 令 $s^2 = -\omega^2$ 得到H(s) H(-s), 得到零极点分布

步骤5: 取s左半平面所有极点,得到

$$H(s) = \frac{K}{(s - s_{p1})(s - s_{p2}) \cdots (s - s_{pn})}$$

8. (2) 若给定 $f_p = 1.5 MHz$, $\alpha_p \le 3 dB$, $f_s = 1.7 MHz$, $\alpha_s \ge 60 dB$, 分别求巴特沃斯 低通滤波器和切比雪夫低通滤波器的最低阶数n

解
$$N = \frac{\cos h^{-1} \left(\sqrt{\log_{2} - 1} \right) / (\log_{2} - 1)}{\cos h^{-1} \left(\frac{\log_{2} - 1}{\log_{2} - 1} \right)}$$
 (大) $w_{c} = w_{p} = 2\pi / p = 3\pi M Hz$ $w_{s} = 2\pi / p = 3\pi / M Hz$ $w_{s} = 2\pi / p = 3\pi / M Hz$ $\cos h^{-1} (x) = \ln(x + \sqrt{2 - 1})$ 代入(大) 式 可得 $N = 14 \cdot 8843$ 向见取整 、 $N = 15$

6. 设计两个切比雪夫低通滤波器,它们的技术指标分别为

(1)
$$f_c = 10 \text{kHz}$$
, $\alpha_p = 1 \text{dB}$, $f_s = 100 \text{kHz}$, $\alpha_s \ge 140 \text{dB}$

開:
$$Wc = 2\pi fc = 10 \times 10^3 \cdot 2\pi = 2\pi \times 10^4 \text{ roadk}$$
, $Wc = 2\pi fs = 2\pi \times 10^5 \text{ road}$ $2\pi \cos c = 2\pi c = 10 \times 10^3 \cdot 2\pi c = 140 \text{ dB}$ $2\pi \cos c = 140$

②查麦43,得到旧的功比雪天上叶的什么)

日(3) =
$$\frac{\overline{\xi}}{5^6 + \delta_1 928 \times 5^5 + 1908 \times 5^4 + 1/20214 \times 5^3 + 0.999 \times 5^2 + 0.306}$$
 $N = 6$ 有偶数 $\frac{\overline{\xi}}{K} = \frac{(-1)^n Sp_1 Sp_2 \cdots Sp_6}{\sqrt{1 + \varepsilon^2}} = \frac{-Sp_1 Sp_2 Sp_2 Sp_4 Sp_5 Sp_6}{\sqrt{1 + \varepsilon^2}}$ $\frac{-Sp_1 Sp_2 Sp_2 Sp_4 Sp_5 Sp_6}{\sqrt{1 + \varepsilon^2}}$ $\frac{\overline{\xi}}{K} = \frac{(-1)^n Sp_1 Sp_2 \cdots Sp_6}{\sqrt{1 + \varepsilon^2}} = \frac{-Sp_1 Sp_2 Sp_2 Sp_4 Sp_5 Sp_6}{\sqrt{1 + \varepsilon^2}} = 0.06142$

$$\bar{S} = \frac{S}{\omega_{c}} (\chi) H(\bar{s}), \quad | \frac{1}{4} | \frac{1}{4}$$

其中Wc=22×/04 rad/s