A Survey on Multimodal Large Language Models for Anomaly Detection

CONTENTS

- **01** Introduction
 - LLM
 - NLP vs LLM
 - Multimodal LLM

03 References

- **02** Multimodal LLM
 - The timeline of MLLMs
 - Main approaches to building MLLMs
 - Multimodal LLMs

LLM

Language Model (LM)

• 텍스트라는 매개체를 통해 사람과 상호작용 할 수 있는 인공지능 모델

Auto-regressive

• T 시점까지 주어진 단어들을 기반으로 다음 T+1 단어를 예측하도록 학습

LLM

Large Language Model (LLM)

- Language Model의 발전된 형태로, 대규모 데이터 훈련과 복잡한 구조를 통해 다양한 작업을 수행
- LM의 auto-regressive 학습 방식을 그대로 따르지만, 규모의 차이

NLP vs LLM

Natural Language Processing (NLP)

• 컴퓨터가 사람의 언어를 이해하고 처리할 수 있도록 하는 연구 분야

Large Language Model (LLM)

• NLP의 한 부분으로, 대량의 텍스트 데이터를 기반으로 훈련된 언어 모델

Multimodal LLM

Multimodal LLM

- 텍스트를 넘어 이미지, 오디오 등 다른 modality 정보를 이해하고 상호작용 할 수 있는 LLM
- 다른 modality와 T 시점까지 주어진 단어들을 기반으로 다음 단어를 예측

The timeline of MLLMs

Main approaches to building MLLMs

Method A: Unified Embedding Decoder Architecture

Method B: Cross-Modality Attention Architecture

Unified Embedding Decoder Architecture

Typical LLM (text-only)

- Tokenizer를 통해 text를 tokenizing
- Embedding layer를 통과함으로써, token embedding vector를 얻음

Image encoder

• Text의 tokenization과 embedding과 유사하게, image encoder module을 통해 image embedding 생성

Unified Embedding Decoder Architecture

Image encoder

- 이미지를 처리하기 위해 이미지를 작은 패치들로 분할
- Transformer encoder와 호환되는 embedding size를 만들기 위해 Linear projection 통과
- 예시로 visual encoder를 vision transformer 사용

Unified Embedding Decoder Architecture

The role of the linear projection

- Linear projection은 fully connected layer로 구성
- Transformer encoder와 호환되는 embedding size를 만들기 위함
- 16x16 pixel patch라고 가정
- 256-dimensional vector를 768-dimensional vector로 up-projected

Unified Embedding Decoder Architecture

Projector

- Image encoder의 output 차원과 embedded text token의 차원을 같게 만들기 위함
- Linear projector, Q-Former, Resampler

same embedding dimension

Image patch embeddings == Text token embeddings

Unified Embedding Decoder Architecture

Projector

- Image encoder의 output 차원과 embedded text token의 차원을 같게 만들기 위함
- Linear projector, Q-Former, Resampler

same embedding dimension

Image patch embeddings == Text token embeddings

Unified Embedding Decoder Architecture

Figure 2: The general model architecture of MM-LLMs and the implementation choices for each component.

Cross-Modality Attention Architecture

- Cross-attention mechanism 활용
- Image patch embedding을 LLM의 Input이 아닌, multi-head attention layer에 연결
- Transformer architecture와 비슷한 구조를 가지고 있고, 동일한 아이디어 적용

Cross-Modality Attention Architecture

Self-Attention

- 동일한 입력 시퀀스 내에서 관계를 파악할 때 사용
- 각 요소가 다른 모든 요소와의 관계를 고려할 수 있음

Cross-Attention

- 2개의 서로 다른 입력 시퀀스 간의 관계를 고려
- 일반적으로 Q는 decoder에서 나오고, K와 V는 encoder에서 나옴
- Multimodal LLM 맥락에서, x_2 가 Image encoder의 output

A: Unified Embedding Decoder Architecture

- LLM architecture 자체를 수정할 필요가 없음
- 일반적으로 구현하기 쉬움

B: Cross-Modality Attention Architecture

- Image token을 input context에 추가하지 않기에, overload가 되지 않음
- Cross-attention layer에서 추가되기에, 계산적으로 효율적이라 여김
- LLM parameter가 훈련 중에 고정된 경우, 원래 LLM의 text-only 성능을 유지

Multimodal LLMs: Honeybee

Honeybee

- KAKAO에서 2024년 4월에 발표한 Multimodal LLM
- Projector는 encoder와 LLM에 비해 학습 파라미터가 매우 적다는 이유로 중요성이 과소평가 되었다고 판단
- Projector에 집중

Multimodal LLMs: Honeybee

Linear Projector

- Vision encoder를 통해 나온 visual feature를 하나 혹은 몇 개의 fully connected layer에 통과시킴
- 이를 통해 LLM의 입력 feature dimension과 동일해짐
- 직관적이고 구현이 쉽지만, 모든 visual feature를 LLM의 input으로 넣어야 하는 단점이 있음
- Locality를 보존할 수 있지만, flexibility가 부족

Multimodal LLMs : Honeybee

Resampler

- 모델을 학습할 때, 학습자가 지정한 learnable query를 사용
- Visual feature와 learnable query가 cross-attention 형태로 결합
- 아무리 큰 이미지가 오더라도 원하는 길이로 abstraction 된 visual feature를 얻을 수 있음

Multimodal LLMs: Honeybee

Resampler

- Cross-attention layer에서 visual feature와 learnable query 사이의 attention map을 계산
- Softmax 함수 특성상 특정 중요 feature의 attention이 강해지기 위해서는, 그 외 다른 feature들의 attention이 낮아져야 함
- Softmax 함수 특성으로 인해, 특정 중요 feature들만 부각된다는 한계가 생김
- 사용자가 attention 값이 낮은 지역의 정보를 알고 싶어 할 때, LLM이 정확한 답변을 주지 못할 가능성이 큼
- Visual projector는 최대한 많은 시각 정보들을 LLM에 넘겨주는 것이 핵심
- Flexibility가 있지만, Locality를 보존할 수 없음

Attention map

Multimodal LLMs: Honeybee

C-Abstractor (Convolutional Abstractor)

- Convolution-based
- Local context를 잘 포착하는 convolution 이용
- ResNet Block을 여러 개 사용하여 visual token을 추출

D-Abstractor (Deformable attention-based Abstractor)

- Deformable attention-based
- Locality-awareness 향상
- Abstraction 중에 flexibility 유지

Multimodal LLMs : Honeybee

								P	Projector	M	s/step	MME POS	SR	MMB OL		SEI SR	ED A	vg ^N								
						Ē	31 I	inear	144	-	Un	availa	ble du	e to in	ıflexibli	ity	-									
						F	32 F	Resampler	144	2.28	75.0	22.2	43.2	62.5	47.5	50.6 4	3.9	• 2	224x224 입력 이미지 Spatial relationship task로 성능 비교							
						F	33 C	C-Abstractor	144	2.23	135.0	24.4	54.3	66.7	49.0	58.8 5	3.5	• S								
							F	34 L	Linear	256	3.04	140.0	24.4	40.7	70.8	48.9	60.9 5	2.6		•		•				
									Resampler		3.12	73.3					51.8 4									
						F	36 C	C-Abstractor	256	3.07	136.7	26.7	55.6	75.0	52.7	59.3 5	6.3									
				Ţ																	7					
I	D	M	-1-1-	MME		MMB		S	EED	Avg	N					Duningto		1	l t	MME		MMB		SEI	ED	Avg ^N
	Projector		s/step	POS	SR	OL	PR	SR	R IL	Avg						Projector		M	s/ste	POS	SR	OL	PR	SR	IL	Avg
)	C Abstractor	144	2 22	125.0	24.4	512	667	40	0 500	52.4	=			F	B4	Linea		25	6 3.04	140.0	24.4	40.7	70.9	48.9	60.9	52.6
,	C-Abstractor	144	2.23	135.0	24.4	54.3		49.		53.5	_			H	-			_								
1	Linear	256	3.04	140.0	24.4	40.7	70.8	48.	9 60.9	52.6	5				B6	C-At	ostracto	or 25	6 3.07	136.7	26.7	55.6	75.0	52.7	59.3	56.3

Linear보다 visual feature(M) 수가 적지만 성능이 좋음

Linear와 visual feature(M) 수를 같게 했을 때 성능이 더 좋아짐

Multimodal LLMs : Honeybee

Anomaly detection 적용 가능성

• Honeybee에서 제안한 projector와 기존의 projector의 성능 비교

Multimodal LLMs: NVLM

NVLM

- NVIDIA에서 2024년 9월에 발표한 Multimodal LLM
- 앞서 설명한 방법 A(Unified Embedding Decoder Architecture)와 방법 B(Cross-Modality Attention Architecture)를 다룸
- Hybrid approach 방식을 제안하고 3가지 방법을 비교

NVLM: Open Frontier-Class Multimodal LLMs

Wenliang Dai* Nayeon Lee* Boxin Wang* Zhuolin Yang* Zihan Liu Jon Barker Tuomas Rintamaki Mohammad Shoeybi Bryan Catanzaro Wei Ping*, †

NVIDIA

* Equal contributions, ordered alphabetically {wdai, nayeonl, boxinw, zhuoliny, wping}@nvidia.com

† Leads the effort.

Abstract

We introduce NVLM 1.0, ¹ a family of frontier-class multimodal large language models (LLMs) that achieve state-of-the-art results on vision-language tasks, rivaling the leading proprietary models (e.g., GPT-40) and open-access models (e.g.,

Multimodal LLMs: NVLM

Image encoder

- 일반적인 CLIP 모델 대신 InternViT-6B를 사용
- InternViT-6B는 훈련 중에 frozen 상태를 유지

Projector

• Single linear layer가 아닌 multilayer perceptron

Multimodal LLMs: NVLM

References

- [1] Honeybee: Locality-enhanced Projector for Multimodal LLM
- [2] NVLM: Open Frontier-Class Multimodal LLMs
- [3] A Survey on Multimodal Large Language Models
- [4] MM-LLMs: Recent Advances in MultiModal Large Language Models
- [5] A Comprehensive Survey of Multimodal Large Language Models: Concept, Application and Safety
- [6] Can Multimodal Large Language Models be Guided to Improve Industrial Anomaly Detection?

감사합니다