ADAMAS UNIVERSITY PURSUE EXCELLENCE

ADAMAS UNIVERSITY

END SEMESTER EXAMINATION

UNIVERSITY PURSUE EXCELLENCE	(Academic Session: 2020 – 21)		
Name of the Program:	BCA	Semester:	II
Paper Title:	Programming & Data Structure	Paper Code:	CSE11404
Maximum Marks:	50	Time Duration:	3 Hrs
Total No. of Questions:	17	Total No of Pages:	2
(Any other information for the student may be mentioned here)	 At top sheet, clearly mention Name, Univ. Roll No., Enrolment No., Paper Name & Code, Date of Exam. All parts of a Question should be answered consecutively. Each Answer should start from a fresh page. Assumptions made if any, should be stated clearly at the beginning of your answer. 		

	Group A		
	Answer All the Questions $(5 \times 1 = 5)$		
1	Define Data Structure.	U	CO1
2	Give examples of Linear Data Structure.	U	CO2
3	Give examples of Non-Linear Data Structure	R	CO3
4	State the difference between Data Structure and Database.	Ap	CO4
5	State the difference between constant and variable in C	An	CO5
	language.		
	Group B		
	Answer All the Questions (5 x $2 = 10$)		
6 a)	i) Define Pre-processor Directive in C language.	Ap	CO1
	ii) Give examples of Pre-processor Directive in C language		
	(OR)		
6 b)	i) State the difference between array and pointer.	R	CO1
	ii) State the similarity between array and pointer.		
7 a)	Define Abstract Data Type (ADT).	U	CO2
	(OR)		
7 b)	Define Structure Array in C language.	R	CO2
8 a)	Define Structure Pointer in C language.	R	CO3
	(OR)		
8 b)	Mention the operations that are possible over integer array.	An	CO3
9 a)	Define Linear Search Algorithm	U	CO4
	(OR)		
9 b)	Define Binary Search Algorithm	U	CO4
10 a)	Define Last In First Out Algorithm.	R	CO5
	(OR)		
10 b)	Define First In First Out Algorithm.	R	CO5
	Group C		
	Answer All the Questions $(7 \times 5 = 35)$		
11 a)	i) Write a C program to implement Linear Search Algorithm	An	CO1
*	using integer array.		
	ii) State the drawback of Linear Search Algorithm.		
	(OR)		

11 b)	i) Write a C program to implement Binary Search Algorithm	An	CO1
	using integer array		
	ii) State the advantage of Binary Search Algorithm.		
12 a)	Define Circular Queue.	U	CO2
	(OR)		
12 b)	State the difference between Queue and Circular Queue.	An	CO2
13 a)	Write a C program to implement Circular Queue using integer	An	CO3
	array.		
	(OR)		
13 b)	Write a C program to implement Linked List using integer	An	CO3
	pointer.		
14 a)	Write a C program to implement Bubble Sort Algorithm over	An	CO4
	integer array		
	(OR)		
14 b)	Explain Dynamic Memory Allocation with suitable example.	U	CO4
15 a)	Explain the feature of <i>sizeof</i> operator	U	CO4
	(OR)		
15 b)	Explain the feature of <i>fflush(stdin)</i>	R	CO4
16 a)	Explain the feature of <i>fflush(stdout)</i>	R	CO5
	(OR)		
16 b)	State the difference between 0 (i.e. Zero) and NULL	Ap	CO5
17 a)	Explain Root node in tree data structure.	Ap	CO5
	(OR)		
17 b)	Explain Leaf node in tree data structure.	U	CO5

- Note: The Sample prepared by assuming 5 COs in a course, considering one CO for one Module.

 i) If the COs are higher in numbers that can be managed by equating sub-divisional questions ii) If the COs are lower in numbers, the questions can be increased by equating the number of \cos