

AoPS Community 2017 USAJMO

USAJMO 2017

www.artofproblemsolving.com/community/c439885

by CantonMathGuy, skipiano, droid347, v_Enhance, rrusczyk

Day 1 April 19th

- Prove that there are infinitely many distinct pairs (a,b) of relatively prime integers a>1 and b>1 such that a^b+b^a is divisible by a+b.
- **2** Consider the equation

$$(3x^3 + xy^2)(x^2y + 3y^3) = (x - y)^7$$

- (a) Prove that there are infinitely many pairs (x, y) of positive integers satisfying the equation.
- (b) Describe all pairs (x, y) of positive integers satisfying the equation.
- Let ABC be an equilateral triangle, and point P on its circumcircle. Let PA and BC intersect at D, PB and AC intersect at E, and PC and AB intersect at E. Prove that the area of $\triangle DEF$ is twice the area of $\triangle ABC$.

Proposed by Titu Andreescu, Luis Gonzales, Cosmin Pohoata

Day 2 April 20th

- Are there any triples (a, b, c) of positive integers such that (a-2)(b-2)(c-2) + 12 is a prime number that properly divides the positive number $a^2 + b^2 + c^2 + abc 2017$?
- Let O and H be the circumcenter and the orthocenter of an acute triangle ABC. Points M and D lie on side BC such that BM = CM and $\angle BAD = \angle CAD$. Ray MO intersects the circumcircle of triangle BHC in point N. Prove that $\angle ADO = \angle HAN$.
- Let P_1, P_2, \ldots, P_{2n} be 2n distinct points on the unit circle $x^2 + y^2 = 1$, other than (1,0). Each point is colored either red or blue, with exactly n red points and n blue points. Let R_1, R_2, \ldots, R_n be any ordering of the red points. Let B_1 be the nearest blue point to R_1 traveling counterclockwise around the circle starting from R_1 . Then let R_2 be the nearest of the remaining blue points to R_2 travelling counterclockwise around the circle from R_2 , and so on, until we have labeled all of the blue points R_1, \ldots, R_n . Show that the number of counterclockwise arcs of the form $R_i \to R_i$ that contain the point (1,0) is independent of the way we chose the ordering R_1, \ldots, R_n of the red points.

These problems are copyright © Mathematical Association of America (http://maa.org).