Princípios de Linhas de Produtos de Software

Prof. Alberto Costa Neto

alberto@ufs.br

Surgimento das Linhas de Produtos

- Inicialmente produtos eram feitos artesanalmente
- Mas... Nº de pessoas que poderiam comprálos aumentou!

Como atender a esta demanda?

Henry Ford

- No área automotiva,
 Henry Ford inventou a linha de produtos
 - Produção em massa
 - Preço mais baixo que produtos artesanais
- O primeiro automóvel produzido desta forma foi o Ford T (1908)

Customização x Custo de Produção

- Até 1914, o Ford T era produzido em várias cores (ao gosto do consumidor)
- Mas a partir daí, para cortar custos, passou a ser produzido somente na cor preta, o que durou até 1926.
 - "O carro é disponível em qualquer cor, contanto que seja preto." [Henry Ford]

Software individual x Software padrão

- Software individuais são muito caros
 - Produzidos para satisfazer requisitos específicos do comprador
- Software padrões são mais baratos
 - Sofrem de falta de diversificação para atender os vários clientes

Motivação para Customização

- Pessoas têm necessidades diferentes
 - Carro simples para 5 pessoas
 - Carro completo para 7 pessoas
 - Carro com capacidade de carga e para 2 pessoas
 - Carro com tração 4x4
- Algumas podem pagar a mais por certas características do produto
- Outras querem mostrar que podem pagar a mais por produtos diferenciados

Customização de veículos

Customização de telefones celulares

Customização em Massa

 "Customização em massa é a produção em larga escala de bens voltados às necessidades individuais dos consumidores."
 [Davis 1987]

Mas como lidar com o custo elevado da customização?

O que estes carros têm em comum?

Plataforma

 "Uma plataforma é qualquer base de tecnologias sobre a qual outras tecnologias ou processos são construídos."
 [TechTarget 2004]

Fonte: http://www.1302super.com

Software Product Line Engineering

Plataforma comum para o des. de software

Customização em massa

Engenharia de Linha de Produtos de Software

Desenvolvimento de Produtos Customizados

- Combinar plataforma e customização em massa traz implicações sobre:
 - Processo de desenvolvimento
 - Desenvolver a plataforma e depois as aplicações (ao invés de cada aplicação independentemente)
 - "Commonality first, differences later"
 - Organização da empresa
 - Desenvolvimento e manutenção da plataforma pode requerer um grupo especial
 - Produtos individuais podem ser responsabilidade de outros grupos

Flexibilidade é um fator chave

- Um componente deveria ser adaptável para vários produtos
- Componentes devem poder interagir com componentes diferentes
- Exemplo: retrovisores de veículos
 - □ Citroën C3/Picasso e Peugeot 206/307
 - Renault Logan
- No contexto de LPS, flexibilidade é chamada de Variabilidade

Compartilhamento de Plataformas

- É possível compartilhar Plataformas entre Linhas de Produtos
 - Quebra a relação direta entre Plataforma e LP
- Necessidade de manter um rastreamento entre uma plataforma e os produtos gerados por ela

Compartilhamento de Plataformas entre LP

Plataforma GM4200

Opel Corsa A 1983

Opel Corsa B 1994

Chevrolet Corsa 1994

Chevrolet Agile 2009

Chevrolet Corsa 2002

Plataforma GM4300

Chevrolet Meriva 2002

Motivações para LPS

- Redução do custo de desenvolvimento
- Redução do "time to market"
- Melhoria de qualidade
- Outras motivações:
 - Redução do esforço de manutenção
 - Facilidade para lidar com evolução
 - Capacidade de lidar com complexidade
 - Melhoria nas estimativas de custo
 - Benefícios para os consumidores

Redução do custo de desenvolvimento

Redução do "Time to Market"

Demanda pela Engenharia de LPS

- Aumento da quantidade de dispositivos com software embarcado
- Variabilidade no Software também tem crescido muito
- É preciso tratar estas variabilidades "antes" no processo de desenvolvimento (não deixar para a implementação)

"Engenharia de LPS é um **paradigma** de desenvolvimento de aplicações usando **plataformas** e **customização em massa**"

Controle de Variabilidade

- Desenvolver aplicações usando plataformas significa:
 - Planejar proativamente para reuso
 - Construir partes reusáveis
 - Reusar o que foi construído para reuso
- Desenvolver aplicações para customização em massa significa:
 - Empregar o conceito de Controle de Variabilidade
 - Commonalities e diferenças nas aplicações da LPS têm que ser modeladas rotineiramente
 - Requisitos, arquitetura, componentes, e artefatos de teste

Restrição sobre adaptações

- Há várias formas de adaptar um software
 - Fácil de mudar e adaptar, mas...
 - Pode corromper sua estrutura, comprometendo aspectos de qualidade:
 - Facilidade de entendimento
 - Manutenibilidade
- Em LPS, é preciso que as adaptações:
 - Possam ser reproduzidas de forma controlada
 - Ocorram em lugares que façam sentido

Plataforma de Computador Clássica

- Definição: Sistema de computador básico no qual aplicações podem rodar
 - Pode ser o hardware (ex: processador)
 - Ou mais comumente: hardware + software
- Exemplos:
 - Symbian + processadores ARM da Nokia (Nokia, Motorola e Siemens)
 - Android (Smartphones e Tablets)
 - Microsoft Windows Phone

Plataformas na Arquitetura de Software

- A arquitetura de um software normalmente consiste de múltiplas camadas
- Do ponto de vista de uma camada, sua camada base é chamada de plataforma
- Exemplos:
 - □ Java(ME, SE, J2EE) e .NET
 - Eclipse
 - iWorkplace (Infonet)
 - WebIntegrator (Infox)

Por que a demora de LPS?

- Parnas já falava disso em 1975!
- Motivo: faltavam alguns pré-requisitos, como:
 - Suporte tecnológico para implementar os princípios de LP
 - Processos de desenvolvimento adequados para lidar com LP
 - Conhecimento e experiência no domínio da aplicação para projetar a LP

Mas aí surgiram algumas tecnologias...

- POO
- Desenvolvimento baseado em Componentes
- Vinculação Tardia
- Middleware
- Gerenciamento de Configuração

E amadurecimento dos processos...

- CMM
- Engenharia de requisitos para lidar com:
 - Commonality
 - Variabilidade
- Técnicas de Modelagem (UML) e Ferramentas de suporte
- RUP

E a experiência no Domínio...

- Foi aumentando e sendo documentada através dos processos e modelos criados
- Mesmo assim, é preciso:
 - Conhecer bem o domínio
 - Sua falta pode levar a introduzir variações desnecessárias e não incluir as necessárias
 - O domínio precisa ser estável
 - Ao mudar muito, o investimento na linha pode ser perdido

Referências

- Software Product Line Engineering (Klaus Pohl) – Capítulo 1
- Henry Ford (Wikipedia)
- Plataformas GM (Wikipedia)
- iWorkplace
- WebIntegrator
- On the Design and Development of Program Families (Parnas 75)