第三章 运算放大器的非线性应用

—— 3.2 & 3.3 & 3.4

李泳佳 东南大学电子系国家ASIC工程中心 yongjia.li@outlook.com

3. 运算放大器的非线性应用

本节内容

- 3.2 非正弦波产生电路
- 3.3 555集成定时器及应用
- 3.4 运放非线性应用实例

3.2 非正弦波产生电路

- ✓ 方波:
- ✓ 三角波:
- ✓ 锯齿波:

✓ 振荡器: 产生时钟

✓ 正向充电: U_o (+ U_z) $\rightarrow R_3 \rightarrow C \rightarrow 地$

✓ 反向放电: 地 \rightarrow $C \rightarrow R_3 \rightarrow u_o$ (- U_z)

$$\pm U_{\mathrm{T}} = \pm \frac{R_{\mathrm{l}}}{R_{\mathrm{l}} + R_{\mathrm{2}}} \cdot U_{\mathrm{Z}}$$

✓ 三个要素: 起始值, 终了值, 时间常数

- 如何手算瞬时电压变化?

$$u_{C}(0_{+}) = -U_{T}, \quad u_{C}(\infty) = +U_{Z}, \quad \tau = R_{T}C_{T}$$

$$u_{C}(t) = u_{C}(\infty) + \left[u_{C}(0_{+}) - u_{C}(\infty)\right]e^{-t/\tau}$$

$$u_C(\frac{T}{2}) = +U_T = \frac{R_1}{R_1 + R_2} \cdot U_Z$$

$$T = 2R_T C_T \cdot \ln(1 + \frac{2R_1}{R_2})$$

$$f = \frac{1}{T}$$

✓ 占空比可调:

- 什么是占空比? 怎么调?

占空比
$$\delta = \frac{T_1}{(T_1 + T_2)}$$

✓ 占空比可调:

- 什么是占空比? 怎么调?

占空比
$$\delta = \frac{T_1}{(T_1 + T_2)}$$

✓ 频率可调:

- 怎么调?

占空比
$$\delta = \frac{T_1}{(T_1 + T_2)}$$

✓ 频率可调:

- 怎么调?

占空比
$$\delta = \frac{T_1}{(T_1 + T_2)}$$

3.2.2 三角波产生电路

✓ 三角波产生条件:

- 固定电流对C充放电 (积分器)
- 比较阈值以及反馈回路 (比较器)

滞回比较器

积分器

3.2.2 三角波产生电路

✓ 定性分析: 跟矩形波充放电的区别在哪?

 $\begin{pmatrix} u_{\mathrm{N}} \\ u_{C} \end{pmatrix}$

3.2.2 三角波产生电路

✓ 定量分析:

- 线性叠加:

$$u_{+1} = \frac{R_1}{R_1 + R_2} u_{o1} + \frac{R_2}{R_1 + R_2} u_o$$

$$u_{+1} = u_{-1} = 0$$

$$u_{01} = \pm U_Z = 0$$

$$u_{+1} = u_{-1} = 0$$

$$U_{OH} = \frac{R_1}{R_2} U_Z, \quad U_{OL} = -\frac{R_1}{R_2} U_Z$$

- 周期: u+1=0上下翻转

$$T = 4t_1 = 4\frac{R_1R_3C}{R_2} \implies f = \frac{1}{T} = \frac{R_2}{4R_1R_3C}$$

滞回比较器

积分器

3.2.3 锯齿波产生电路

✓ 定性分析: 跟三角波的区别在哪?

3.3 555集成定时器

✓ 电路组成:

- 分压器, 比较器, RS触发器, 开集(漏)输出,

3.3.1 555集成定时器产生矩形波

✓ 定量分析:

- 充电

$$u_c(0_+) = \frac{1}{3}V_{cc}, \quad u_c(t_1) = \frac{2}{3}V_{cc}$$

$$u_{c}(\infty) = V_{cc}, \ \tau_{1} = (R_{1} + R_{2})C$$

$$u_c(t) = u_c(\infty) + [u_c(0_+) - u_c(\infty)]e^{-\frac{t}{\tau}}$$

$$t_1 = 0.69(R_1 + R_2)C$$

- 放电

$$u_c(0_+) = \frac{2}{3}V_{cc}, \quad u_c(t_2) = \frac{1}{3}V_{cc}$$

$$u_c(\infty) = 0, \ \tau_2 = R_2C \implies t_2 = 0.69R_2C$$

3.3.1 555集成定时器产生矩形波

✓ 定量分析:

- 充电: $t_1 = 0.69(R_1 + R_2)C$

- 放电: $t_2 = 0.69R_2C$

- 周期: $T = t_1 + t_2 = 0.69(R_1 + 2R_2)C$

- 占空比: Duty Cycle = $\frac{t_1}{t_1 + t_2} = \frac{R_1 + R_2}{R_1 + 2R_2}$

3.3.2 555集成定时器构成比较器

17

✓ 定量分析:

- u_i 从低到超过 $2/3V_{CC}$,RS触发器由高到低
- $-u_i$ 从高到低于 $1/3V_{CC}$,RS触发器由低到高

 V_{CC}

	$\overline{}$	
	. ↓	
	ÎΙ	
0	$\frac{1}{3}V_{\rm cc}$ $\frac{2}{3}V_{\rm cc}$	- v _i

3.3.3 555集成定时器构成单稳态触发器

✓ 定性分析:

- 只有稳态电平,另一个电平是暂态,暂态电平只维持一段时间
- 需要输入信号触发
- 用途: 定时, 延时, 波形整形

3.3.3 555集成定时器构成单稳态触发器

✓ 定性分析:

输入					输出	
R	TR−2	Ī	TH -6	$\overline{\mathbf{R}}$	VT	Q
0	X	X	X	X	导通	0
1	$< V_{cc}/3$	0	$< 2 V_{cc}/3$	1	截止	1
1	$> V_{cc}/3$	1	$> 2 V_{cc}/3$	0	导通	0
1	$> V_{cc}/3$	1	$< 2 V_{cc}/3$	1	不变	不变

3.4 运放非线性应用实例

✓ 电池电压显示:

- 获取输入信号
- 进行模数转换

输入信号

模数转换

