

考试科目: 线性代数 考试时长: 120 分钟

开课单位: 数学系 命題教师: 线性代数教学团队

題	号	1	2	3	4	5	6	7
分	值	15 分	25 分	10 分	20 分	10 分	10 分	10 分

本试卷共 (7) 大题, 满分 (100) 分. 请将所有答案写在答题本上.

This exam includes 7 questions and the score is 100 in total. Write all your answers on the examination book.

(15 points, 3 points each) Multiple Choice. Only one choice is correct.

(共 15 分, 每小题 3 分) 选择题. 每题只有一个选项是正确的.

(1) Which of the following statements can guarantee that the following homogeneous system of linear equations

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \end{cases}$$

has a nonzero solution?

- (A) $m \le n$.
- (B) m = n.
- (C) m > n.
- (D) The rank of the coefficient matrix is less than n.

当条件()满足时,下面的齐次线性方程组一定有非零解.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \end{cases}$$

- (A) m ≤ n.
- (B) m = n.
- (C) m > n.
- (D) 系数矩阵的秩小于 n.
- (2) Which of the following matrices can be written as a product of elementary matrices? ()

(A)
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 2 \end{bmatrix}$$
.

(B)
$$\begin{bmatrix} 1 & 2 & 0 \\ 0 & -1 & 3 \\ 0 & 0 & 2 \end{bmatrix}.$$
(C)
$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$
(D)
$$\begin{bmatrix} -3 & 2 & 7 \\ -1 & 2 & 3 \\ 0 & -2 & -1 \end{bmatrix}.$$

下列矩阵中可以化为有限个初等矩阵之积的矩阵是 ()

(A)
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 2 \end{bmatrix}$$
(B)
$$\begin{bmatrix} 1 & 2 & 0 \\ 0 & -1 & 3 \\ 0 & 0 & 2 \end{bmatrix}$$
(C)
$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
(D)
$$\begin{bmatrix} -3 & 2 & 7 \\ -1 & 2 & 3 \\ 0 & -2 & -1 \end{bmatrix}$$

- (3) Let β₁, β₂,β₃ be a basis of the null space N(A) of some matrix A. Another basis of N(A) is ()
 - (A) $\beta_1 + \beta_2$, $\beta_2 + \beta_3$, $\beta_3 + \beta_1$.
 - (B) $\beta_1 + \beta_2$, $\beta_2 + \beta_3$, $\beta_3 \beta_1$.
 - (C) $\beta_1 \beta_2$, $\beta_2 \beta_3$, $\beta_3 \beta_1$.
 - (D) $\beta_1 + 2\beta_2$, $2\beta_2 + 3\beta_3$, $3\beta_3 \beta_1$.

设 β_1 , β_2 , β_3 为某矩阵 A 的零空间 N(A) 的一组基. 则 N(A) 的另一组基是 ()

- (A) $\beta_1 + \beta_2$, $\beta_2 + \beta_3$, $\beta_3 + \beta_1$.
- (B) $\beta_1 + \beta_2$, $\beta_2 + \beta_3$, $\beta_3 \beta_1$.
- (C) $\beta_1 \beta_2$, $\beta_2 \beta_3$, $\beta_3 \beta_1$.
- (D) $\beta_1 + 2\beta_2$, $2\beta_2 + 3\beta_3$, $3\beta_3 \beta_1$.
- (4) Let $a, b \in \mathbb{R}$. The set

$$V = \{(x, y, z, w) : x + 2y + 3z + 4w = a + b + 1, x - 2y + 4z - w = a - 2b - 5\}$$

is a subspace of R4 if

- (A) a = -1, b = 1.
- (B) a = -2, b = 1.

- (C) a = 1, b = -2.
- (D) a = 1, b = -1.

设 a, b∈ R. 集合

$$V = \{(x, y, z, w) : x + 2y + 3z + 4w = a + b + 1, x - 2y + 4z - w = a - 2b - 5\}$$

在()成立时是 184 的子空间.

- (A) a = -1, b = 1.
- (B) a = -2, b = 1.
- (C) a = 1, b = -2.
- (D) a = 1, b = -1.
- (5) Let u and v be unit vectors in R³. If the vectors u + 2v and 5u 4v are orthogonal, then the angle α between u and v is ()
 - (A) $\alpha = \frac{\pi}{6}$.
 - (B) $\alpha = \frac{\pi}{4}$.
 - (C) $\alpha = \frac{\pi}{3}$.
 - (D) $\alpha = \frac{3\pi}{4}$.

设 u 和 v 均为 \mathbb{R}^3 中的单位向量. 若向量 u+2v 和 5u-4v 正交, 则 u 和 v 之间的夹角 α 为 ()

- (A) $\alpha = \frac{\pi}{6}$.
- (B) $\alpha = \frac{\pi}{4}$.
- (C) $\alpha = \frac{\pi}{3}$.
- (D) $\alpha = \frac{3\pi}{4}$.
- 2. (25 points, 5 points each) Fill in the blanks. (共 25 分, 每小题 5 分) 填空题.
 - (1) Let A be a 5 × 8 real matrix. If dim N(A) = 3, then dim(N(A^T)) = _____.
 设 A 为 5 × 8 实矩阵. 若 dim N(A) = 3, 则 dim(N(A^T)) = _____.
 - (2) All the 2×2 matrices that commute with $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ can be written in the form ______.

所有和矩阵 $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ 乘法可交换的 2×2 矩阵均可写成 ________ 的形式.

(3) Let
$$A = \begin{bmatrix} 1 & 2 & -2 \\ 2 & -1 & \lambda \\ 3 & 1 & -1 \end{bmatrix}$$
. If $AB = 0$ for some nonzero matrix B , then $\lambda = \underline{\hspace{1cm}}$.

设 $A = \begin{bmatrix} 1 & 2 & -2 \\ 2 & -1 & \lambda \\ 3 & 1 & -1 \end{bmatrix}$. 如果 AB = 0 对某个非零矩阵 B 成立, 则 $\lambda =$ ______.

(4) An LU-factorization of
$$A=\begin{bmatrix} 2 & 1 \\ 3 & 7 \end{bmatrix}$$
 is $L=$ ______, $U=$ ______.

(5) Suppose b is a nonzero column vector. If η₁, η₂ are solutions to the system of linear equations Ax = b, and λ₁η₁ + λ₂η₂ is another solution to Ax = b, then λ₁, λ₂ must satisfy ______.

假设 b 为非零列向量. 已知 η_1 , η_2 均是线性方程组 Ax=b 的解, 若 $\lambda_1\eta_1+\lambda_2\eta_2$ 也是 Ax=b 的解, 则 λ_1 , λ_2 应满足______

3. (10 points) An audio processing company develops technology for mobile devices and is proud of the capacity of their products to filter surrounding noise. Here is a simplified model (a single-layer neural network) showing how it works. Let s₁, s₂ be the volumes of a pair of speakers and n denote that of noise. Use 3 microphones to receive signals with recorded volumes m₁, m₂, and m₃. All values are in decibels and shown in the following diagram, where the linear factor h_{ij} indicates the rate of decay along each channel. (When a sound of 100 dB is transmitted along a channel with rate of decay h, the volume received is 100h dB.)

Suppose we are given the matrix $[h_{ij}] = \begin{bmatrix} 0.875 & 0.5 & 0.75 \\ 0.25 & 0.5 & 0.5 \\ 0.625 & 0.375 & 0.5 \end{bmatrix}$. Estimate the volume of the

unknown source speaker by solving a linear system for s_2 .

 $(10\ f)$ 某音频处理公司从事移动设备技术研发,以其产品的过滤环境噪声能力而著称. 这里以一个简化模型 (单层神经网络) 来说明其技术原理. 设 s_1, s_2 为两个发声器 发出的音量, n 为噪音音量. 使用 3 个麦克风接收信号时得到的音量分别为 m_1, m_2 和 m_3 . 这些值均以分贝为单位计算,展示于下面的图表之中. 其中 h_{ij} 这些线性因子用于标示沿各个声道传输声音的衰减率. (当 100 分贝的声音经由衰减率为 h 的声道传输时,接收到的音量为 100h 分贝.)

Speakers
$$\bigcirc$$
 $s_1 = 20 \text{ dB}$
 h_{21}
 h_{22}
 h_{23}
 h_{32}
 h_{33}

Noise \triangle n

Microphones \bigcirc $m_1 = 35 \text{ dB}$
 \bigcirc $m_2 = 20 \text{ dB}$
 \bigcirc $m_3 = 25 \text{ dB}$

假设我们得到的矩阵 $[h_{ij}]=egin{bmatrix} 0.875 & 0.5 & 0.75 \\ 0.25 & 0.5 & 0.5 \\ 0.625 & 0.375 & 0.5 \end{bmatrix}$. 请通过求解一个线性方程组求出未知发声器发出的音量 s_2 .

(20 points) Let T be a linear transformation from R³ to R³ such that

$$T(\alpha_1) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ T(\alpha_2) = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \ T(\alpha_3) = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \text{ where } \alpha_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \ \alpha_2 = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}, \ \alpha_1 = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}.$$

- (a) Show that α₁, α₂, α₃ is a basis of R³.
- (b) Find the representation matrix A of T (in the standard basis e₁, e₂, e₃ of R³).
- (c) Is the matrix A invertible? Why?
- (20 分) 设 T 是 R3 到 R3 的线性变换, 它满足

$$T(\alpha_1) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ T(\alpha_2) = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \ T(\alpha_3) = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \not \exists \Leftrightarrow \alpha_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \ \alpha_2 = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}, \ \alpha_1 = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}.$$

- (a) 证明 α1, α2, α3 是 R3 的一组基.
- (b) 求 T (在 ℝ3 的标准基 e1, e2, e3 下) 的矩阵 A.
- (c) 矩阵 A 是否可逆? 为什么?
- 5. (10 points) Let L be the line of intersection of $x_1 + x_2 + x_3 = 0$ and $2x_1 x_2 2x_3 = 0$ in \mathbb{R}^3 .

Find the orthogonal projection of $b = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ onto L.

(10 分) 设
$$L$$
 是 $x_1 + x_2 + x_3 = 0$ 和 $2x_1 - x_2 - 2x_3 = 0$ 在 \mathbb{R}^3 中的交线. 求 $b = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ 到 L 上的正交投影.

- 6. (10 points) Let u, v be nonzero column vectors in \mathbb{R}^n and $A = uv^T$.
 - (a) Prove that the rank of A is 1.
 - (b) What are the possible values of the rank of the matrix $\begin{bmatrix} u^Tv & 0 \\ 0 & vu^T \end{bmatrix}$? Justify your answer.
 - (10 分) 设 u, v 为 \mathbb{R}^n 中非零列向量, $A = uv^T$.
 - (a) 证明 A 的秩为 1.
 - (b) 矩阵 $\begin{bmatrix} u^Tv & 0 \\ 0 & vu^T \end{bmatrix}$ 的秩可能取到哪些值?请解释理由.

(10 points) Let α₁, · · · , α_n be column vectors in Rⁿ. Suppose that the system α₁, α₂, · · · , α_{n-1} is linearly dependent, and that the system α₂, α₃, · · · , α_n is linearly independent.

Let
$$A = (\alpha_1, \alpha_2, \dots, \alpha_n)$$
 and $\beta = \alpha_1 + \alpha_2 + \dots + \alpha_n$.

- (a) Show that α_1 can be written as a linear combination of $\alpha_2, \alpha_3, \dots, \alpha_n$, i.e., there exist constants k_2, k_3, \dots, k_n so that $\alpha_1 = k_2\alpha_2 + k_3\alpha_3 + \dots + k_n\alpha_n$.
- (b) Show that the linear system $Ax = \beta$ has infinitely many solutions.
- (c) Prove that if n > 2, then $A^2 \neq O$. Here O denotes the zero matrix of order n.
- $(10\ \mathcal{O})$ 设 α_1,\cdots,α_n 为 \mathbb{R}^n 中的列向量. 假设向量组 $\alpha_1,\alpha_2,\cdots,\alpha_{n-1}$ 线性相关, 而向量组 $\alpha_2,\alpha_3,\cdots,\alpha_n$ 线性无关.

$$\diamondsuit A = (\alpha_1, \alpha_2, \cdots, \alpha_n)$$
 以及 $\beta = \alpha_1 + \alpha_2 + \cdots + \alpha_n$.

- (a) 证明 α_1 可由 $\alpha_2, \alpha_3, \cdots, \alpha_n$ 线性表出,即,存在常数 k_2, k_3, \cdots, k_n 使得 $\alpha_1 = k_2\alpha_2 + k_3\alpha_3 + \cdots + k_n\alpha_n$.
- (b) 证明线性方程组 $Ax = \beta$ 有无穷多个解.
- (c) 证明: 若 n > 2, 则 $A^2 \neq O$. 这里 O 表示 n 阶零矩阵.