The problem involves using Linear Regression analysis since the variables involved are continuous. Also since multiple variables are involved, it requires **Multivariate Linear Regression** to forecast sales.

```
FILENAME REFFILE '/home/gowthamharshabh0/Project 04_Retail Analysis_Dataset.xlsx';
```

```
/* The following code imports dataset into SAS*/
PROC IMPORT DATAFILE=REFFILE

DBMS=XLSX

OUT=SASPROJ.Retail_Analysis;

GETNAMES=YES;
RUN;
```

PROC CONTENTS DATA=SASPROJ.Retail_Analysis; RUN;

	Alp	habetic	List of	Variables and	d Attributes	
#	Variable	Туре	Len	Format	Informat	Label
5	Discount	Num	8	BEST.		Discount
1	Order_ID	Num	8	BEST.		Order_ID
2	Products	Char	8	\$8.	\$8.	Products
6	Profit	Num	8	NLMNY15.1		Profit
4	Quantity	Num	8	BEST.		Quantity
3	Sales	Num	8	NLMNY15.1		Sales
7	Shipping_Cost	Num	8	NLMNY15.1		Shipping_Cos

/* Since it is been observed that the dataset has individual price of product
but no record measuring the total sales of each product, a new variable
Total_Sales = Sales*Quantity is being created*/

/* Following code gets descriptive statics on the modified dataset */
Proc Means data=sasproj.retail_analysis_modified;
run;

Variable	Label	N	Mean	Std Dev	Minimum	Maximum
Order_ID	Order_ID	30	110015.50	8.8034084	110001.00	110030.00
Sales	Sales	30	152.9666667	63.1759903	33.0000000	250.0000000
Quantity	Quantity	30	3.1666667	1.2340942	1.0000000	5.0000000
Discount	Discount	30	0.0256667	0.0154659	0.0100000	0.0500000
Profit	Profit	30	72.1063333	44.6008984	3.2500000	135.6000000
Shipping Cost	Shipping_Cost	30	7.2106333	4.4600898	0.3250000	13.5600000
Total_Sales		30	491.1000000	265.3040351	33.0000000	1100.00

It can be seen that hypothesis testing shows positive correlation with 42% predictability. Implies Quantity is a significant variable.

 var Total_Sales; Run;

The t-test data shows that there is no significant correlation with this variable to the value of Dependant variable. The p-value of 0.84 is way above 0.05. R-Square data shows no predictability too with a poor value of .0014%. Hence Discount is **not** a suitable variable for regression analysis.

It can be seen that hypothesis testing shows positive correlation with 30% predictability. Even though Pr value is slightly higher, the alpha value condition (<0.05) is still satisfied to negate the null hypothesis. Implies Profit is a significant variable with linear relation with Total_Sales. Also needs to be noticed is the Coefficient of Variance which is higher at 45%.

```
/*Checking the suitability of variable Shipping_Cost.

Marketing cost is assumed as Shipping _Cost*/
proc reg data=sasproj.retail_analysis_modified;
    model Total_Sales = Shipping_Cost;
    var Total_Sales;
    Run;
```


This variable shows statistical similarity to the variable Profit. Individually this variable needs to be tested along with Profit through multivariate analysis.

```
/*Now performing Multivariate Regression Analysis*/
proc reg data=sasproj.retail_analysis_modified;
    model Total_Sales = Quantity Profit Shipping_Cost;
    var Total_Sales;
    Run;
```


The assumption for performing regression analysis is violated here as the variables tested against are not independent of each other. Shipping cost and Profit have a direct discernible relation here hence any one would suffice in predicting the variability with Total_Sales. Rest of the variables are showing good positive correlation with R^2 value boosted to over 88%.

Now performing the regression by removing the insignificant variable of Shipping_Cost.

- The R^2 value still holds good at 88% while we got rid of one dependent variable. This means approximately 88% of the variation of Total_Sales is explained by the independent variables.
- Based on t-test, the Pr-values for Quantity and Profit are less than 0.05 indicating sufficient evidence for predicting the Total_Sales. They predict positive high correlation and corroboration of our hypothesis.
- The resultant equation derived from the model thus would be as follows:

Total_Sales = 166.88*Quantity + 4.1*Profit -333.04

This shows that increase in 1 quantity of product would raise the total sales by around \$166 and increase in profit by \$1 would have meant sales would go up by \$4.1.

The histogram and quantile plots show a healthy model. However looking at the fitness check of the model, the residual plot data seems to be showing a conical trend raising doubts over violation of assumptions. Performing BoxCox test to validate our model →

The test shows that the values are following a normal distribution not requiring any transformation (as lambda = 0.75) for Dependent variable here. Also corroborate the validity of the model.

_	Recommended Transformation	Equation	Lambda
	Square	Y ²	1.5 to 2.5
	None	Υ	0.75 to 1.5
	Square-root	Y ^{1/2}	0.25 to 0.75
	Natural log	Ln(Y)	-0.25 to 0.25
	Inverse square-root	1/Y ^{1/2}	-0.75 to -0.25
	Reciprocal	1/Y	-1.5 to -0.75
_	Inverse square	1/Y ²	-2.5 to -1.5
			("D

("Box-Cox Method")