${\bf Econ} {\bf 103-Quiz} {\bf 4}$	
Name:	
Instructions: This is closed-book, closed-notes quiz. Please write your answers in the blanks provided. Non-programmable calculators are permitted.	
1. (2 points) Suppose you have $X_1, X_n \sim iid N(\mu_x, \sigma_x^2)$ independently of $Y_1, Y_m \sim iid N(\mu_y, \sigma_y^2)$.	
What is the sampling distribution of the difference of sample means?	
a. Normal distribution	
b. t-Distribution	
c. χ^2 distribution	
d. F-distribution	
1	
2. (1 points) True or false? The central limit theorem says that sample means are approximately normally distributed if the sample size is large enough, even if the population is distributed chi-squared.	
2	
3. (1 points) True or false? The central limit theorem says that sample means are approximately normally distributed only when the sample size is very small.	
3	
4. (2 points) Suppose you have $W_1,W_{12} \sim iid N(2,\sigma_w^2)$ independently of $V_1,V_6 \sim iid N(1,\sigma_v^2)$.	
You don't know σ_w^2 and σ_v^2 . You can be sure that the random variable $\frac{\left(\bar{W}_{12} - \bar{V}_6 - (2-1)\right)}{\sqrt{\frac{S_w^2}{12} + \frac{S_v^2}{6}}}$ follows a:	
a. Normal distribution	
b. t-Distribution	
c. χ^2 distribution	
d. F-distribution	
4	
5. (2 points) Suppose you have $W_1,W_{12} \sim iid N(3,1)$ independently of $V_1,V_6 \sim iid N(2,1)$.	
The random variable $\frac{\left(\bar{W}_{12}-\bar{V}_6-(3-2)\right)}{\sqrt{\frac{1}{12}+\frac{1}{6}}}$ follows a:	
a. Standard Normal distribution	
b. Normal distribution $N(\mu = 1, \sigma^2 = 1)$	
c. χ^2 distribution	
d. F-distribution	

6.	(3 points) The results of a recent survey suggests that 25% of Americans are able to hold a conversation in a second language. For this survey 1,000 people were polled. Use the Central Limit Theorem to construct an approximate 95% confidence interval for the actual proportion of Americans that are able to hold a conversation in a second language.
	6.