A syntactical analysis of non-size-increasing polynomial time computation

Klaus Aehlig*

Helmut Schwichtenberg

Mathematisches Institut Ludwig-Maximilians-Universität München

E-mail: {aehlig|schwicht}@rz.mathematik.uni-muenchen.de

Abstract

A syntactical proof is given that all functions definable in a certain affine linear typed λ -calculus with iteration in all types are polynomial time computable. The proof also gives explicit polynomial bounds that can easily be calculated.

1 Summary

In [7] Hofmann presented a linear type system for non-size-increasing polynomial time computation allowing unrestricted recursion for inductive datatypes. The proof that all definable functions of type $N \multimap N$ are polynomial time computable essentially used semantic concepts, such as the set-theoretic interpretation of terms.

We present a different proof of the same result for a slightly modified version of the term system, which uses syntactical arguments only. However, this paper is more than a new proof of an already known result, as the method choosen has several benefits:

- A reduction relation is defined on the term system in such a way that subject reduction holds. Therefore calculations can be done *within* the system. This is in contrast to [7], where no reduction rules are given; instead, the result is obtained via a set theoretic interpretation.
- It is not only shown that every function is polytime, but explicit polynomial bounds for the number of reduction steps are given that can be determined easily for any given term. An example (for insertion sort) is provided in 5.12.
- The semantical size measure "minimal upper bound of growth" (the size function in [7, §3.2]) for terms

of higher type is replaced by the much simpler, computable, syntactical measure: "number of free variables".

- - there are no closed terms of type ⋄,
 - the successor functions have type $\diamondsuit \multimap \mathbf{N} \multimap \mathbf{N}$,
 - we have a linear typing discipline

together ensure that ground terms that are large in the usual size measure are also large in this new size measure.

2 Introduction and related work

Recent research [1, 2, 6] has provided many characterizations of Ptime (the class of all functions computable in polynomial time) by means of appropriate restrictions of the terms in Gödel's T [4]. Consider for example the following functions on unary coded natural numbers¹, which lead to exponential growth:

$$\begin{aligned} \texttt{double}(0) &= 0 \\ \texttt{double}(Sx) &= SS\texttt{double}(x) \\ &= \exp(0) &= S0 \\ &= \exp(Sx) &= \texttt{double}(\exp(x)) \end{aligned}$$

^{*}supported by the "Graduiertenkolleg Logik in der Informatik" of the "Deutsche Forschungsgemeinschaft"

¹ Of course, no-one actually uses unary coded numbers when dealing with questions of complexity. However, examples with unary coded numbers are very general ones, as many data structures can be seen as extensions of unary coded numbers: binary numerals are unary ones, if we don't distinguish the two successor functions; lists can be seen as unary coded numbers if we don't care about their elements.

In other words, as unary numbers can be embedded into many commonly used data structures, counterexamples with unary numbers also work with almost any of the interesting data structures.

Approaches based on "predicative recursion" [1, 9] argue that this is due to the way double is called: the previous value of an outer recursion (i.e. $\exp(x)$) is used as recursive argument of an inner recursion (i.e. is used as argument for double).

However, although all *functions* computable in polynomial time can be defined in such a restricted term system, many natural *algorithms* are excluded, particularly if they involve nested recursions. Standard examples are sorting algorithms like insertion sort, which has the same recursive structure as exp:

$$\begin{split} \mathtt{insert}(a,[\;]) = & [a] \\ \mathtt{insert}(a,[\;b\;|\;\ell]) = & [\;b'\;|\;\mathsf{insert}(a',\ell)\;] \\ & a',b'\;\mathsf{a}\;\mathsf{permutation}\;\mathsf{of}\;a,b \\ & \mathsf{with}\;b' \leq a' \\ \\ \mathsf{sort}([\;]) = & [\;] \\ \mathsf{sort}([\;a\;|\;\ell\;]) = & \mathsf{insert}(a,\mathsf{sort}(\ell)) \end{split}$$

Caseiro [3] observed this fact and studied many related examples; her work resulted in some (partially semantic) criteria for algorithms which ensure that they run in polynomial time. In the example of insertion sort the reason why this recursion does not lead to exponential growth is that insert does not increase the size of its input. Hofmann [7] took up this line of research and formulated a new term system with a special type \diamondsuit of "coins", which only allows to define non-size-increasing Ptime functions, but can also accomodate nested recursions. The basic idea is that whenever a function increases the size of its argument (like a binary successor function), then one has to "pay" for it by inputting a coin (i.e. by providing a term of type \diamondsuit).

The present note can be seen as a straightening of Hofmann's [7]. We present a new proof of his main result, which apart from being simpler provides more insight into what actually is going on, and in particular provides an explicit construction of the polynomials.

3 Types and terms

Types are built from the base types N (to be interpreted as binary coded natural numbers), bool, and a special type \diamondsuit . This type may be interpreted as a pointer to free memory, as in [5]. From a more technical point of view, lemma 5.3 will show that there are no closed terms of this type. Therefore this type can be used to ensure that terms contain free variables. For example the type $\diamondsuit \multimap \mathbf{N} \multimap \mathbf{N}$ of the successor functions together with the linear typing discipline will make sure that the usual length measure for natural numbers, i.e. the number of digits and the more technical measure "number of free variables" will coincide. As the term

system is based on the intuition that length is expressed by the number of free variables, the interesting terms are not only closed terms, but more importantly "almost closed" terms, i.e. terms with free variables of type \diamondsuit only.

Definition 3.1 (Finite linear types). The set of linear types is defined inductively as

$$\tau, \rho ::= \Diamond \mid \mathbf{N} \mid \text{bool} \mid \tau \multimap \rho \mid \tau \otimes \rho \mid \tau \times \rho \mid \mathbf{L}(\tau)$$

 $\mathbf{L}(\tau)$ denotes the list type. $\tau\otimes\rho$ and $\tau\times\rho$ can both be interpreted as ordered pairs; however, the meaning of linearity for those types is different: from a tensor-product $\tau\otimes\rho$ both components can be used once, whereas in the case of an ordinary pair, the pair itself can be used only once, i.e. one has to choose which component of the pair is to be used. As can be seen from 4.3, \otimes corresponds to \multimap , whereas \times corresponds to bool. Terms are built from variables x,y,z,\ldots and constructor symbols c. Each variable has a type, and it is assumed that there are infinitely many variables of each type. The notation x^{τ} should express that the variable x has type τ .

Definition 3.2 (Terms). The set of terms is inductively defined by

$$t, s := x^{\tau} \mid c \mid \lambda x^{\tau} t \mid \langle t, s \rangle \mid ts \mid \{t\} \mid \{t, s\}$$

These terms should be seen as our "raw syntax"; only correctly typed terms (in the sense of definition 3.4) represent meaningful functions.

The idea for the $\{\cdot\}$ and $\{\cdot,\cdot\}$ term constructs is taken from [8]. Terms of this form appear only as arguments in an $\mathbf N$ or $\mathbf L(\tau)$ elimination. This explicit marking of the step terms in iteration constructs is not only technically convenient but also allows one to see the time complexity of a term at first glance: the degree of the polynomial bound is the nesting depth of braces and the symbols within n braces contribute to the coefficient of X^n . See definition 5.6 for details.

The notations $t\vec{t}$ and $\lambda \vec{x}^{\tau}.t$ are defined as usual, so $\lambda x^{\tau}, y^{\rho}.t$ is an abbreviation for $\lambda x^{\tau}.(\lambda y^{\rho}.t)$. Terms that only differ in the naming of bound variables are identified.

Definition 3.3 (Constructor symbols). The constructor symbols and their types are

```
 \begin{array}{lll} \mathbf{t} & \operatorname{bool} \\ \mathbf{f} & \operatorname{bool} \\ \mathbf{1} & \mathbf{N} \\ \mathbf{S}_0 & \diamondsuit \multimap \mathbf{N} \multimap \mathbf{N} \\ \mathbf{S}_1 & \diamondsuit \multimap \mathbf{N} \multimap \mathbf{N} \\ \mathbf{nil}_{\tau} & \mathbf{L}(\tau) \\ \mathbf{cons}_{\tau} & \diamondsuit \multimap \tau \multimap \mathbf{L}(\tau) \multimap \mathbf{L}(\tau) \\ \otimes_{\tau,\rho} & \tau \multimap \rho \multimap \tau \otimes \rho \end{array}
```

1 is to be interpreted as the natural number one and the successor functions S_i as the usual binary successor functions, i.e. $x \mapsto 2 \cdot x + i$.

A *context* is a set of variables. For two contexts Γ_1 and Γ_2 the notation Γ_1, Γ_2 stands for the union, expressing that Γ_1 and Γ_2 are disjoint. For contexts consisting of one element we also write x^{τ} instead of $\{x^{\tau}\}$.

The next definition states which terms of our raw syntax are correctly typed. $\Gamma \vdash t^{\tau}$ is to be read as "t is a typed term of type τ with free variables in Γ ".

The typing system is based on elimination rules. Therefore for every type different to \diamond there is a rule describing how to use terms of this type; in all these rules the elimination is written as application². For the right hand side of such an application a notation is chosen that expresses best the computational behaviour of the terms used for the elimination. This avoids duplication of syntax, e.g. with the pair $\langle t,s\rangle$ we have a notation expressing that exactly one of the terms t and s will be needed. Using this syntax also for "if ... then ... else ..." avoids introducing another notation with exactly the same computational meaning.

"Data types", i.e. types where it is possible to retrieve all the stored information by a single use of an object of this type, are introduced by constants. Only "abstractions" have special introduction rules. (In the system we have two forms of abstraction: the λ -abstraction and the pair.) This way of introduction allows the relatively simple definition 4.4 of the term closure of reductions expressing that we may reduce within data, but not under abstractions.

Definition 3.4 ($\Gamma \vdash t^{\tau}$). The relation $\Gamma \vdash t^{\tau}$ is inductively defined as follows:

$$\Gamma, x^{\tau} \vdash x^{\tau} \tag{Var}$$

$$\frac{c \text{ of type } \tau}{\Gamma \vdash c^{\tau}} \tag{const}$$

$$\frac{\Gamma \cup \{x^{\tau}\} \vdash t^{\rho}}{\Gamma \vdash (\lambda x^{\tau} t)^{\tau \multimap \rho}} \tag{-0^+}$$

$$\frac{\Gamma_1 \vdash t^{\tau \multimap \rho} \qquad \Gamma_2 \vdash s^{\tau}}{\Gamma_1, \Gamma_2 \vdash (ts)^{\rho}} \qquad (\multimap^-)$$

$$\frac{\Gamma \vdash t^{\tau} \quad \Gamma \vdash s^{\rho}}{\Gamma \vdash \langle t, s \rangle^{\tau \times \rho}} \tag{\times^{+}})$$

$$\frac{\Gamma \vdash t^{\tau \times \rho}}{\Gamma \vdash (t\mathbf{t})^{\tau}} \tag{\times}_{1}^{-}$$

$$\frac{\Gamma \vdash t^{\tau \times \rho}}{\Gamma \vdash (t\mathbf{f})^{\rho}} \tag{\times_0^-}$$

$$\frac{\Gamma_1 \vdash t^{\text{bool}} \quad \Gamma_2 \vdash s^{\tau} \quad \Gamma_2 \vdash r^{\tau}}{\Gamma_1, \Gamma_2 \vdash (t \langle s, r \rangle)^{\tau}}$$
 (bool⁻)

$$\frac{\Gamma_1 \vdash t^{\tau \otimes \rho} \quad \Gamma_2, x^{\tau}, y^{\rho} \vdash s^{\sigma}}{\Gamma_1, \Gamma_2 \vdash (t(\lambda x^{\tau}, y^{\rho} s))^{\sigma}} \tag{\otimes^-}$$

$$\frac{\Gamma \vdash t^{\mathbf{N}} \quad \emptyset \vdash s_i^{\diamond - \circ \tau - \circ \tau}}{\Gamma \vdash (t \{s_0, s_1\})^{\tau - \circ \tau}}$$
 (N⁻)

$$\frac{\Gamma \vdash t^{\mathbf{L}(\tau)} \quad \emptyset \vdash s^{\diamond \multimap \tau \multimap \rho \multimap \rho}}{\Gamma \vdash (t\{s\})^{\rho \multimap \rho}} \quad (\mathbf{L}(\tau)^{-})$$

It is crucial that we require the step terms in (N^-) and $(L(\tau)^-)$ to be closed. Otherwise it would not be possible to define reduction rules in such a way that typed terms reduce to typed terms ("subject reduction", lemma 4.6), since free variables in the step terms would be duplicated.

Immediately obvious from the definition is

Proposition 3.5 (Weakening). $\Gamma \vdash t^{\tau}$; $\Gamma \subset \Gamma' \Longrightarrow \Gamma' \vdash t^{\tau}$.

The notation t^{τ} should express that there is a Γ such that $\Gamma \vdash t^{\tau}$. The smallest such Γ is called the set of free variables. This is a meaningful definition; more precisely, by induction on the definition of $\Gamma \vdash t^{\tau}$, one easily verifies

Lemma 3.6. For each term t there is at most one type τ such that t^{τ} . In this case there is a smallest Γ with $\Gamma \vdash t^{\tau}$.

The fact that all eliminations are written as applications ensures that all typed terms have a uniform appearance. As can easily be verified by induction on the definition of the $\cdot \vdash \cdot$ relation, we have

Lemma 3.7 (Head form). Assume $\Gamma \vdash t^{\tau}$. Then t is of the form $x\vec{t}$, $c\vec{t}$, $(\lambda x^{\rho}.s)\vec{t}$ or $\langle s,r \rangle \vec{t}$.

4 Reductions

We now define reduction rules on the terms. They are all correct with respect to the set-theoretic semantics. In order to be able to control the effects of recursion we allow reduction only if the argument is already calculated, i.e. if the argument is a numeral.

 $^{^2}$ It should be noted that the same syntax would appear in the standard implementation in the untyped λ -calculus. For example one should think of \otimes as beeing $\lambda x, y, z.zxy$.

Definition 4.1 (Numerals, lists). Terms of the form $\mathbf{S}_{i_1}d_1^{\diamondsuit}(\dots(\mathbf{S}_{i_n}d_n^{\diamondsuit}\mathbf{1}))$ are called *numerals* (with n digits). Lists (with n entries) are terms of the form $\mathbf{cons}_{\tau}d_1^{\diamondsuit}a_1^{\intercal}(\dots(\mathbf{cons}_{\tau}d_n^{\diamondsuit}a_n^{\intercal}\mathbf{nil}_{\tau}))$. (Here the d denote arbitrary terms of type \diamondsuit .)

Remark 4.2. It should be noted that we could have also required the \vec{d} to be variables and get the same results. However, this definition allows more reductions (see definition 4.3) and therefore is slightly more flexible when dealing with terms that are not almost closed, i.e. contain free variables of other types than \diamondsuit .

Definition 4.3 (Conversions). \mapsto is defined as:

$$\begin{array}{l} (\lambda x^{\tau} \ t)s \mapsto t[s/x] \\ \langle t,s \rangle \ \mathbf{t} \mapsto t \\ \langle t,s \rangle \ \mathbf{f} \mapsto s \\ \ \mathbf{t} \ \langle t,s \rangle \mapsto s \\ \otimes_{\tau,\rho} ts(\lambda x^{\tau},y^{\rho} \ r) \mapsto r[t,s/x,y] \\ \mathbf{1} \ \{t_0,t_1\} \ s \mapsto s \\ \mathbf{S}_i d^{\diamond} \nu \ \{t_0,t_1\} \ s \mapsto t_i d^{\diamond} (\nu \ \{t_0,t_1\} \ s) \quad \nu \ \text{a numeral nil}_{\tau} \ \{t\} \ s \mapsto s \\ \mathbf{cons}_{\tau} d^{\diamond} a\ell \ \{t\} \ s \mapsto t d^{\diamond} a(\ell \ \{t\} \ s) \quad \ell \ \text{a list} \end{array}$$

Definition 4.4 $(t \to t')$. The term closure $t \to t'$ is inductively defined as follows:

Next we have to show that the term system is closed under reduction, i.e. that the reduct of a typed term is also typed with at most the same free variables.

Lemma 4.5.
$$\Gamma_1 \cup \{x^{\rho}\} \vdash t^{\tau}; \Gamma_2 \vdash s^{\rho}; \Gamma_1, \Gamma_2 \text{ disjoint} \Longrightarrow \Gamma_1, \Gamma_2 \vdash t[s/x^{\rho}]^{\tau}$$

Proof. Induction on t exploiting the fact that whenever t_1t_2 is a typed term, then either t_2 is closed or there are disjoint Γ_{11}, Γ_{12} with $\Gamma_{11} \vdash {t_1}^{\tau'}$ and $\Gamma_{12} \vdash {t_2}^{\tau''}$.

Lemma 4.6 (Subject reduction).
$$\Gamma \vdash t^{\tau}; t \rightarrow t' \Longrightarrow \Gamma \vdash t^{\prime^{\tau}}$$

Proof. Induction on t shows that only conversions have to be considered. The only non-trivial case is handled in Lemma 4.5.

The next step is to show is that we have sufficiently many reduction rules, i.e. that normal forms have the expected form. As the size of a term is represented by its number of free variables, we also have to consider non-closed terms. As, however, \diamondsuit is the only base type without closed terms, we can restrict ourselves to "almost closed" terms, i.e. to terms with free variables of type \diamondsuit only.

Proposition 4.7. Every normal, almost closed term of type \mathbf{N} is a numeral. Every normal, almost closed term of type $\mathbf{L}(\tau)$ is a list. Every normal, almost closed term of type bool is \mathbf{t} or \mathbf{f} . Every normal, almost closed term of type \diamond is a variable.

Proof. Induction on t and case distinction, according to Lemma 3.7.

5 Length of reduction chains

Before continuing we give a sketch of the main idea of the proof in order to motivate the following definitions. Since the system is linear, β -reduction reduces the number of symbols (since the λ disappears). The same is true for the reductions due to projections and the "if ... then ... else". So the only case where the number of symbols is increased is the case of iteration. However, if we unfold an iteration completely, i.e. if we reduce $\mathbf{cons}_{\tau}d_{1}^{\diamondsuit}r_{1}^{\tau}(\dots(\mathbf{cons}_{\tau}d_{n}^{\diamondsuit}r_{n}^{\tau}\mathbf{nil}_{\tau}))\{h\}t \text{ in } n+1 \text{ steps to }$ $hd_1^{\diamond}r_1^{\tau}(\dots(hd_n^{\diamond}r_n^{\tau}t))$ then the $\{\cdot\}$'s disappear! So by making them "sufficiently heavy" the total weight of the term reduces. As however the weight necessary for the $\{\cdot\}$ construct depends not only on the term within the braces, but also on the length n of the numeral we iterate on, we cannot assign this term a fixed number; instead we assign a polynomial(ly bound function) in definition 5.6. But what to plug in? Noting that we have n terms $d_1^\diamondsuit, \dots, d_n^\diamondsuit$ of type \diamondsuit and remembering the idea that terms of type \diamondsuit should contain free variables (as will be proved in proposition 5.3) we find that the number of free variables is just the right upper bound for the length n (since the dare applied to one another, their free variables have to be disjoint). This would lead to a proof that every reduction strategy that always unfolds iterations completely is polynomially bounded. In order to get results for every reduction strategy we notice that within the subterm $\mathbf{cons}_{\tau}d_{1}^{\diamond}r_{1}^{\tau}(\dots(\mathbf{cons}_{\tau}d_{n}^{\diamond}r_{n}^{\tau}\mathbf{nil}_{\tau}))\left\{ h\right\} t$ the iteration unfolds at most n times, even if the actual number of free variables in the whole term is larger³. Using this information we can limit the assigned polynomial(ly bounded function)

 $^{^3}$ This subterm might not unfold at all if it is positioned under a $\lambda-$ abstraction that remains in the normal form. We do not allow to reduce under $\lambda-$ abstractions (see definition 4.4) since the number of free variables under a $\lambda-$ abstraction is potentially higher and therefore numerals and lists are potentially longer. This restriction corresponds to not allowing the use of a "potential resource", i.e. a resource that is not yet present.

to get a measure that actually decreases in every step (Theorem 5.9).

So we use three different measures for terms: the number of free variables, which corresponds to the "size function" in [7]; the length, which is the number of symbols of a term that can be accessed (using the interpretation that you can only access one component of an ordinary pair) and the polynomial which is the upper bound for the complexity of a function.

Definition 5.1 (Length). The length |t| of a term t is defined by induction on t as follows:

$$\begin{aligned} |c| &= |x| = 1 \\ |ts| &= |t| + |s| \\ |\lambda x^{\tau} \, s| &= |s| + 1 \\ |\langle t, s \rangle| &= \max \big\{ |t| \, , |s| \big\} + 1 \\ |\{t\}| &= |\{t_1, t_2\}| = 0 \end{aligned}$$

Lemma 5.2.
$$\Gamma_1 \vdash t^{\tau}$$
, $\Gamma_2 \vdash s^{\rho}$; Γ_1, Γ_2 disjoint $\Longrightarrow |t[s/x]| \leq |t| + |s|$

In particular, $|(\lambda x^{\tau} t)s| > |t[s/x]|$.

Proof. Induction on t, using the fact that t is typed and therefore in the case of an application only one of the terms can contain the variable x free.

Lemma 5.3.
$$\Gamma \vdash t^{\diamondsuit} \Longrightarrow \Gamma \neq \emptyset$$

Proof. Induction on |t|. Case distinction according to lemma 3.7. For $\otimes_{\tau,\rho} \vec{t}$ and $(\lambda x \, s) \vec{t}$ use lemma 5.2. For $\mathbf{S}_0 \vec{t}$, $\mathbf{S}_1 \vec{t}$ and $\mathbf{cons}_{\tau} \vec{t}$ use induction hypothesis for t_1 . For $1\vec{t}$ and $\mathbf{nil}_{\tau} \vec{t}$ use induction hypothesis for $t_2 \dots t_n$. The remaining cases are trivial.

The following corollary is formulated for type one functions only. However, if one accepts the number of free variables as a reasonable size measure for definable functions for higher types as well, then the corollary trivially remains valid for *every* definable function.

Corollary 5.4 (Non-size-increasing property). *Every function of type* $\mathbb{N} - \mathbb{N}$ *definable by a closed term has the property that the output is not longer than the input.*

Proof. Lemma 5.3 shows that the usual length (i.e. the number of digits) for ground types and the number of free variables coincide (due to the typing $\diamondsuit \multimap \mathbf{N} \multimap \mathbf{N}$ of the successor functions). The number of free variables trivially does not increase when reducing the term to normal form.

Let $\mathbb N$ be the set of natural numbers and $\mathbb N^{\mathrm{poly}}$ be the set of all functions from $\mathbb N$ to $\mathbb N$ that are (pointwise) bound by some polynomial. We write X for the identity on the natural numbers, f+g and fg for the pointwise sum and product in $\mathbb N^{\mathrm{poly}}$ and X_n for the minimum of the identity and n, i.e. $X_n(m) = \min\{n,m\}$. $\mathbb N$ is trated as a subset of $\mathbb N^{\mathrm{poly}}$ by identifying a natural number with the corresponding constant function. Let \preccurlyeq be the pointwise order on $\mathbb N^{\mathrm{poly}}$. Then there exist finite suprema (the pointwise maxima) in $\mathbb N^{\mathrm{poly}}$ with respect to \preccurlyeq , denoted by $\sup_{\preccurlyeq} \{\cdot\}$.

Remark 5.5. It seems that by considering functions we leave the realm of syntax. But as we will only use functions that are explicitly defined by pointwise sum, product, maximum and minimum from the identity and constants we could as well restrict ourselfs to these functions only. It should be obvious how these functions can be encoded by some finite (syntactical) object.

Definition 5.6 (Polynomial bound $\vartheta(\cdot)$ **of a term).** For each (not neccessarily typed) term t we define a polynomial $\vartheta(t) \in \mathbb{N}^{\text{poly}}$ by induction on t.

$$\vartheta\left(x\right) = \vartheta\left(c\right) = 0$$

$$\begin{cases} X_n\vartheta\left(h\right) \\ +X_n\left|h\right| \\ +\vartheta\left(t\right) & \text{if t is a list} \\ & \text{with n entries} \\ & \text{and s is of} \\ & \text{the form } \{h\} \end{cases}$$

$$\vartheta\left(ts\right) = \begin{cases} X_n\sup_{\preceq}\left\{\vartheta\left(h_0\right),\vartheta\left(h_1\right)\right\} \\ +X_n\max\left\{\left|h_0\right|,\left|h_1\right|\right\} \\ & +\vartheta\left(t\right) & \text{if t is a numeral with n digits} \\ & \text{and s is of the} \\ & \text{form } \{h_0,h_1\} \end{cases}$$

$$\vartheta\left(t\right) + \vartheta\left(s\right) & \text{otherwise} \end{cases}$$

$$\vartheta\left(\lambda x^\tau t\right) = \vartheta\left(t\right)$$

$$\vartheta\left(\langle t,s\rangle\right) = \sup_{\preceq}\left\{\vartheta\left(t\right),\vartheta\left(s\right)\right\}$$

$$\vartheta\left(\{t\}\right) = X \cdot \vartheta\left(t\right) + X \cdot \left|t\right|$$

$$\vartheta\left(\{t,s\}\right) = X \cdot \sup_{\preceq}\left\{\vartheta\left(t\right),\vartheta\left(s\right)\right\} + X \cdot \max\left\{\left|t\right|,\left|s\right|\right\}$$

$$\text{Moreover } \vartheta\left(\vec{t}\right) \text{ is short for } \sum_{i=1}^n\vartheta\left(t_i\right).$$

Immedeately from the definition (since $X_n \leq X$) we get

Proposition 5.7. $\vartheta\left(ts\right) \preccurlyeq \vartheta\left(t\right) + \vartheta\left(s\right)$

Lemma 5.8.
$$\Gamma_1 \vdash t^{\tau}, \Gamma_2 \vdash s^{\rho}; \Gamma_1, \Gamma_2 \text{ disjoint} \Longrightarrow \vartheta(t[s/x]) \preccurlyeq \vartheta(t) + \vartheta(s)$$

Proof. We prove this by induction on t. The only non-trivial case is when t is an application (note that the cases $\{h\}$ and

 $\{h_0, h_1\}$ do not occur since t is typed). So let t be of the form rr'. We distinguish whether r is a numeral, a list or not.

If r is a numeral with n digits (the case r a list is handled similarly) then, from the fact that t is typed, we know that r' must be of the form $r' = \{h_0, h_1\}$ and therefore closed. Moreover, r[s/x] is also a numeral with n digits. Therefore we get $\vartheta\left((rr')[s/x]\right) = \vartheta\left(r[s/x]r'\right) = X_n\sup_{\preccurlyeq}\{\vartheta\left(h_0\right),\vartheta\left(h_1\right)\} + X_n\max\left\{|h_0|,|h_1|\right\} + \vartheta\left(r[s/x]\right) \leqslant X_n\sup_{\preccurlyeq}\{\vartheta\left(h_0\right),\vartheta\left(h_1\right)\} + X_n\max\left\{|h_0|,|h_1|\right\} + \vartheta\left(r\right) + \vartheta\left(s\right) = \vartheta\left(rr'\right) + \vartheta\left(s\right).$

If r is neither a numeral nor a list, then from the fact that t is typed we know that at most one of the terms r and r' contains the variable x free. In the case $x \in \mathrm{FV}(r)$ (the other case is handled similarly) we have $\vartheta\left((rr')[s/x]\right) = \vartheta\left(r[s/x]r'\right) \stackrel{5.7}{\preccurlyeq} \vartheta\left(r[s/x]\right) + \vartheta\left(r'\right) \not\preccurlyeq \vartheta\left(r\right) + \vartheta\left(s\right) + \vartheta\left(r'\right) = \vartheta\left(rr'\right) + \vartheta\left(s\right).$

Theorem 5.9. Assume $\Gamma \vdash t^{\tau}$ and $N \geq |FV(t)|$ for some $N \in \mathbb{N}$. If $t \to t'$, then

$$\vartheta(t)(N) + |t| > \vartheta(t')(N) + |t'|$$

Proof. We prove this by induction on the definition of the relation $t \to t'$.

Case $rs \to r's$ thanks to $r \to r'$. Subcase r is a numeral with n digits (the subcase r is a list is handled similarly). Then by typing restrictions and from lemma 5.3 we know that $n \leq |\mathrm{FV}(t)| \leq N$. Also from typing restrictions we know that s is of the form $s = \{h_0, h_1\}$. Moreover r' is also a numeral with n digits. We have $\vartheta(rs)(N) + |rs| = n\sup_{\preccurlyeq} \{\vartheta(h_0), \vartheta(h_1)\}(N) + n\max\{|h_0|, |h_1|\} + \vartheta(r)(N) + |r| + |s| > n\sup_{\preccurlyeq} \{\vartheta(h_0), \vartheta(h_1)\}(N) + n\max\{|h_0|, |h_1|\} + \vartheta(r')(N) + |r'| + |s| = \vartheta(r's)(N) + |r's|$. Subcase r is neither a list nor a numeral. Then $\vartheta(rs)(N) + |rs| = \vartheta(r)(N) + \vartheta(s)(N) + |r| + |s| > \vartheta(r')(N) + \vartheta(s)(N) + |r'| + |s| \geq \vartheta(r's)(N) + |r'| + |s|$.

Case $rs \to rs'$ thanks to $s \to s'$. Then r is neither a numeral nor a list, since otherwise, by typing, s must be of the form $\{\cdot\}$ of $\{\cdot,\cdot\}$ and we must not reduce under braces. Therefore this case can be handled as the last subcase above.

Case $t\mapsto t'$. We only treat the non-trivial subcases. Subcase $(\lambda x\,t)s\mapsto t[s/x]$. We have $\vartheta\left((\lambda x\,t)s\right)(N)+$ $|(\lambda x\,t)s|=\vartheta\left(t\right)(N)+\vartheta\left(s\right)(N)+|t|+1+|s|\stackrel{5.8}{\geq}\vartheta\left(t[s/x]\right)(N)+|t|+1+|s|\stackrel{5.2}{\geq}\vartheta\left(t[s/x]\right)(N)+|t[s/x]|+1.$ Subcase $\mathbf{S}_id^\diamond\nu\left\{t_0,t_1\right\}s\mapsto t_id^\diamond(\nu\left\{t_0,t_1\right\}s)$ with ν a numeral with n digits (and similar for the corresponding rule for lists). Then by lemma 5.3 and the linear typing we know that $n+1\leq |\mathrm{FV}\left(t\right)|\leq N$. Therefore we

have $\vartheta\left(\mathbf{S}_{i}d^{\diamond}\nu\left\{t_{0},t_{1}\right\}s\right)(N) + |\mathbf{S}_{i}d^{\diamond}\nu\left\{t_{0},t_{1}\right\}s| = \vartheta\left(s\right)(N) + (n+1)\sup_{\prec}\left\{\vartheta\left(t_{0}\right),\vartheta\left(t_{1}\right)\right\}(N) + (n+1)\max\left\{\left|t_{0}\right|,\left|t_{1}\right|\right\} + \vartheta\left(d\right)(N) + \vartheta\left(\nu\right)(N) + \left|s\right| + \left|\nu\right| + \left|d\right| + 1$ and on the other hand $\vartheta\left(t_{i}d^{\diamond}\left(\nu\left\{t_{0},t_{1}\right\}s\right)\right)(N) + \left|t_{i}d^{\diamond}\left(\nu\left\{t_{0},t_{1}\right\}s\right)\right| = \vartheta\left(s\right)(N) + \vartheta\left(t_{i}\right)(N) + \vartheta\left(d\right)(N) + n\sup_{\prec}\left\{\vartheta\left(t_{0}\right),\vartheta\left(t_{1}\right)\right\}(N) + n\max\left\{\left|t_{0}\right|,\left|t_{1}\right|\right\} + \vartheta\left(\nu\right)(N) + \left|t_{i}\right| + \left|d\right| + \left|\nu\right| + \left|s\right|, \text{ which obviously is strictly less.}$

Corollary 5.10. Every reduction sequence starting with t terminates after at most $\vartheta(t)(|FV(t)|) + |t|$ steps.

Corollary 5.11 (Hofmann, 1999). *If* $\emptyset \vdash t^{\vec{\mathbf{N}} \multimap \mathbf{N}}$, then t denotes a function computable in polynomial many steps.

Proof. Let \vec{v} be almost closed normal numerals. Then $\vartheta(t\vec{v}) = \vartheta(t)$, as $\vartheta(\vec{v}) = 0$. Therefore an upper bound for the number of steps is $\vartheta(t)(|\text{FV}(\vec{v})|) + |t| + |\vec{v}|$, which is polynomial in the length of the input \vec{v} .

Example 5.12 (Insertion sort). Let τ be a type equipped with a linear ordering. Assume that this ordering is represented by the term \lhd_{τ} of type $\tau \multimap \tau \multimap \operatorname{bool} \otimes (\tau \otimes \tau)$, i.e. $\lhd_{\tau} ts \multimap^* \otimes_{\operatorname{bool},\tau \otimes \tau} \mathbf{t}(\otimes_{\tau,\tau} ts)$, if t is "smaller" than s, and $\lhd_{\tau} ts \multimap^* \otimes_{\operatorname{bool},\tau \otimes \tau} \mathbf{f}(\otimes_{\tau,\tau} ts)$ otherwise.

Using this function, we can define a sort function of type $\tau \multimap \tau \multimap \tau \otimes \tau$ for two elements, i.e. a function taking two arguments and returning them in the correct order:

Now we can immediately define a function of type $\mathbf{L}(\tau) \multimap \diamondsuit \multimap \tau \multimap \mathbf{L}(\tau)$ inserting an element at the correct position in a given sorted list. At each step we compare the given element with the first element of the list, take the "smaller" element at the beginning of the list and insert the "larger" one in the rest of the list.

$$\begin{split} \texttt{insert} &= \lambda l. \quad l\{\lambda x_1^{\diamondsuit}, y_1^{\tau}, p^{\diamondsuit - \circ \tau - \circ \mathbf{L}(\tau)}, x_2^{\diamondsuit}, y_2^{\tau}. \\ &\lhd_{\tau}' y_1 y_2 (\lambda z_1^{\tau}, z_2^{\tau} \mathbf{cons}_{\tau} x_1 z_1 (p x_2 z_2))\} \\ &\qquad \qquad (\lambda x^{\diamondsuit}, y^{\tau}. \mathbf{cons}_{\tau} x y \mathbf{nil}_{\tau}) \end{split}$$

Then insertion-sort is defined as usual:

$$\mathtt{sort} = \lambda l^{\tau}.\,l\left\{\lambda x^{\diamondsuit}, y^{\tau}, l^{\mathbf{L}(\tau)}.\,\mathtt{insert} lxy\right\}\mathbf{nil}_{\tau}$$

Counting braces, we get $\vartheta (\mathtt{sort}) = X \cdot \vartheta (\mathtt{insert}) + O(X) = X^2 \cdot \vartheta (\lhd_\tau') + O(X^2) = X^2 \cdot \vartheta (\lhd_\tau) + O(X^2)$, as $\vartheta (\lhd_\tau') = \vartheta (\lhd_\tau)$. This reflects the well known fact that insertion sort is quadratic in the number of comparison operations.

Remark 5.13. By simple modifications of (the proof of) [7, §4.3] we may conclude that many "natural orderings", e.g. the normal ordering on binary coded natural numbers, *can* be defined in the given term system.

However, it should be noted that it is *not necessary* that every interesting ordering is definable in the given system. It would also be possible to just add a new symbol \lhd_{τ} with the conversion rules $\lhd_{\tau}ts\mapsto \otimes_{\mathrm{bool},\tau\otimes\tau}\mathbf{t}(\otimes_{\tau,\tau}ts)$, if t is "smaller" than s, and $\lhd_{\tau}ts\mapsto \otimes_{\mathrm{bool},\tau\otimes\tau}\mathbf{f}(\otimes_{\tau,\tau}ts)$ otherwise. With the definition $|\lhd_{\tau}|=4$ the above theory remains valid and shows that there are at most X^2 of the newly introduced conversions in the normalizing sequence. Therefore this theory can be used to calculate the number of calls to a "subroutine", even if the subroutine itself is not definable in the given system, or not even polynomial time computable.

6 Extending the system to full Ptime

Of course the system as presented so far cannot be complete for Ptime, since it allows one to define non-size-increasing functions only (Corollary 5.4). The reason for this restriction was to avoid explosion of growth by iterating over increased data-structures. If we, however, remember the definition of Ptime, we notice that the only large data-structure of a Turing machine is its tape. More over, a Turing machine does not iterate over its tape but instead modifies it locally sufficiently often.

Having understood that the non-size-increasing property is just a question of free variables, it is obvious how to extend the system by a data-structure suitable for the tape of a Turing machine: just add a type ι of binary words that can be formed without free variables (and therefore has to be without elimination rules) and add appropriate constants for local manipulation.

Taking the idea from [7, §4.3], one first shows that definable functions can be iterated polynomially often (Proposition 6.3). Than the only remaining task is to show that the one-step function of a Turing machine is definable. As this function is nothing but a (large) case-distinction this is more or less trivial.

A similar data structure was used by Leivant and Marion. In [10] they use "tiers" in the form of different forms of data representation. Their "Church-like abstraction terms" correspond to our type ${\bf N}$, and their "words" to the new type

Definition 6.1 (Extended term system). The term system is extended by

• adding a new ground type ι

 adding the following constants with their respective types:

• Extending \mapsto by

$$egin{aligned} \mathbf{p} & \mapsto \circ \\ \mathbf{p}(\mathbf{s}_i t^\iota) & \mapsto t^\iota \\ \mathbf{iszero} & \mapsto \otimes_{\mathrm{bool},\iota} \mathbf{t} \circ \\ \mathbf{iszero}(\mathbf{s}_i t^\iota) & \mapsto \otimes_{\mathrm{bool},\iota} \mathbf{f}(\mathbf{s}_i t^\iota) \\ \mathbf{head} & \circ \mapsto \otimes_{\mathrm{bool},\iota} \mathbf{f} \circ \\ \mathbf{head}(\mathbf{s}_0 t^\iota) & \mapsto \otimes_{\mathrm{bool},\iota} \mathbf{f}(\mathbf{s}_0 t^\iota) \\ \mathbf{head}(\mathbf{s}_1 t^\iota) & \mapsto \otimes_{\mathrm{bool},\iota} \mathbf{t}(\mathbf{s}_1 t^\iota) \end{aligned}$$

The definitions of the relations $\Gamma \vdash t^{\tau}$ and $t \to t'$ remain unchanged. With almost identical proofs it can be shown that proposition 3.5, and Lemmata 3.6, 3.7, 4.5 and 4.6 remain vaild.

We call terms of the form $\mathfrak{s}_{i_1}(\dots(\mathfrak{s}_{i_n}\circ))$ short numerals. Then proposition 4.7 remains valid (with the proof extended in the obvious way); moreover, every normal, almost closed term of type ι is a short numeral (and therefore closed).

The definition of the term length |t| had the property that for all reductions different to induction the length decreased. To make this property remain valid we define

$$|\mathbf{iszero}| = |\mathbf{head}| = 3$$

and keep the rest of definition 5.1. (In particular, every constant different to **iszero** and **head** still has length 1.) Then Lemmata 5.2 and 5.3 remain valid; for the latter ($\Gamma \vdash t^{\diamond} \implies \Gamma \neq \emptyset$) the following cases have to be added to the proof:

- Cases $\circ \vec{t}$, $\mathfrak{s}_i \vec{t}$ and $\mathbf{p} \vec{t}$: terms of this form *never* have type \diamondsuit , as there are *no* elimination rules for type ι .
- Cases **iszero** \vec{t} and **head** \vec{t} : as t has type \diamondsuit it follows that $\vec{t} = t1, \ldots, t_n$ for some $n \geq 2$. Therefore the induction hypothesis can be applied to the *shorter* term $\bigotimes_{\text{bool}, t} \mathbf{t} \circ t_2 \ldots t_n$.

The definition of ϑ (t) remains unchanged. Then (with identical proof) lemma 5.8 remains valid and also the main theorem 5.9. In particular, the extended system still consists of Ptime functions only.

Lemma 6.2. If $\mathfrak{f}: \tau \otimes \mathbf{L}(\rho) \multimap \tau \otimes \mathbf{L}(\rho)$ is definable by a closed term, then so is a function $\mathfrak{f}^{\sharp}: \tau \otimes \mathbf{L}(\rho) \multimap \tau \otimes \mathbf{L}(\rho)$ with

$$\mathfrak{f}^{\sharp}(a\otimes\ell)=\mathfrak{f}^n(a\otimes\ell),$$

where n is the number of entries of ℓ .

Proof. First, by $(\mathbf{L}(\rho)^-)$ define a function $\mathfrak{g}\colon \mathbf{L}(\rho) \multimap \mathbf{L}(\rho) \multimap \tau \multimap \tau \otimes \mathbf{L}(\rho)$ with

$$\mathfrak{g}(\mathbf{nil}_{\rho})(\ell')(b) = b \otimes \ell'$$

$$\mathfrak{g}(\mathbf{cons}_{\rho} d^{\Diamond} a \ell) \ell' b = \mathfrak{f}(\mathfrak{g}(\ell)(\mathbf{app}(\ell')(\mathbf{cons}_{\rho} d^{\Diamond} a \mathbf{nil}_{\rho}))b)$$

with app being the append function for lists of type $\mathbf{L}(\rho) \multimap \mathbf{L}(\rho) \multimap \mathbf{L}(\rho)$, which obviously can be defined in the given system, e.g. by $\lambda l, l'$. $l \{\lambda x^{\diamond}, z^{\tau}, l''. \mathbf{cons}_{\tau} xzl''\} l'$.

By induction on ℓ we note that $\mathfrak{g}\ell\ell'b = \mathfrak{f}^n(b\otimes(\operatorname{app}\ell'\ell))$ where n is the number of entries of ℓ . So we can define $\mathfrak{f}^{\sharp}(a\otimes\ell) = \mathfrak{g}\ell\operatorname{nil}_{\varrho}a$.

Proposition 6.3. If $\mathfrak{f}: \tau \multimap \tau$ is definable by a closed term and $k \in \mathbb{N}$, then $\mathfrak{g}: \tau \otimes \mathbf{L}(\rho) \multimap \tau \otimes \mathbf{L}(\rho)$ is also definable by a closed term with $\mathfrak{g}(a \otimes \ell) = \mathfrak{f}^{n^k}(a) \otimes \ell$, where n is the length of ℓ .

Proof. First define $\tilde{\mathfrak{f}}$: $\tau \otimes \mathbf{L}(\rho) \longrightarrow \tau \otimes \mathbf{L}(\rho)$ with $\tilde{\mathfrak{f}}(a \otimes \ell) = \mathfrak{f}(a) \otimes \ell$. By induction on k, one verifies that

$$\widetilde{\mathfrak{f}}^{\sharp} \cdots {\sharp} (a \otimes \ell) = \mathfrak{f}^{n^k}(a) \otimes \ell,$$

where n is the length of ℓ .

Theorem 6.4 (completeness for Ptime). *Every* Ptime function can be denoted by a closed term of type $N \rightarrow \iota$.

Proof. Let $\mathfrak f$ be a Ptime function. Then there is a Turing machine computing $\mathfrak f$ in polynomial many steps. We may assume that this machine works over the alphabet $\{0,1\}$ and has N states $\{S_0,\ldots,S_{N-1}\}$. Let n be the least natural number with $2^n\geq N$.

A configuration of the machine with the symbols $i_0 \dots i_k$ before and including the head and the symbols $j_0 \dots j_{k'}$ followed by the non-visited positions after the head and the machine in state S_m is coded by

$$\begin{array}{l} \otimes(\mathfrak{s}_{i_k}(\dots(\mathfrak{s}_{i_0}\circ))) \\ (\otimes(\mathfrak{s}_{j_0}(\dots(\mathfrak{s}_{j_k'}\circ))) \\ (\otimes t_1(\otimes \dots(\otimes t_{n-1}t_n)))) \end{array}$$

with each of the \vec{t} being \mathbf{t} or \mathbf{f} such that this is the binary coding of m. So configurations are coded by *closed* terms of type $\tau = \iota \otimes \iota \otimes \operatorname{bool} \otimes \ldots \otimes \operatorname{bool}$.

By (\mathbf{N}^-) with result type $\iota \otimes \mathbf{N}$ a term can be defined returning both, its input and a copy of the input as short numeral. This is possible as the successor of type ι can be built without requiring free variables. Using this term, we can define a closed term of type $\mathbf{N} \multimap \mathbf{N} \otimes \tau$ returning its input and creating the initial configuration of the Turing machine.

The one-step transition function can also be defined by a closed term: via (\otimes^-) the coding of the state is split into its components; using the *constants* **iszero** and **head** followed by more applications of (\otimes^-) , we get additional variables of type bool indicating whether the symbol currently read is at the beginning or the "end" of the tape. Complete case distinctions via $(bool^-)$ reduce the problem to the construction of the new state from the two parts of the tape. This can be done easily using the constants \mathfrak{s}_0 , \mathfrak{s}_1 , \mathfrak{p} , \otimes , \mathfrak{t} and \mathfrak{f} .

Iterating the one-step transition function via proposition 6.3 completes the proof.

References

- [1] S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the polytime functions. *Computational complexity*, 2:97–110, 1992.
- [2] S. Bellantoni, K.-H. Niggl, and H. Schwichtenberg. Higher type recursion, ramification and polynomial time. *Annals of Pure and Applied Logic*, 104:17–30, 2000.
- [3] V.-H. Caseiro. Equations for Defining Poly-time Functions. PhD thesis, University of Oslo, Feb. 1997. ftp.ifi.uio.no/pub/vuokko/0adm.ps.
- [4] K. Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten Standpunkts. *Dialectica*, 12:280–287, 1958.
- Hofmann. In-place update with linto compile functional ear types or how pro-C. malloc()-free Preprint, gramms into www.dcs.ed.ac.uk/~mxh/malloc.ps.gz.
- [6] M. Hofmann. Typed lambda calculi for polynomial-time computation. Habilitation thesis, TU Darmstadt, Germany. See www.dcs.ed.ac.uk/home/mxh/habil.ps.gz, 1998.
- [7] M. Hofmann. Linear types and non-size-increasing polynomial time computation. In *Proceedings 14'th Symposium* on Logic in Computer Science (LICS'99), pages 464–473, 1999.
- [8] F. Joachimski and R. Matthes. Short Proofs of Normalization for the simply-typed λ -calculus, permutative conversions and Gödel's T. to appear: Archive for Mathematical Logic, www.tcs.informatik.uni-muenchen.de/ \sim matthes/papers/sn.html, 1998.
- [9] D. Leivant. Ramified recurrence and computational complexity I: Word recurrence and poly–time. In P. Clote and J. Remmel, editors, *Feasible Mathematics II*, pages 320–343. Birkhäuser, Boston, 1995.

[10] D. Leivant and J.-Y. Marion. Lambda calculus characterization of poly–time. In M. Bezem and J. Groote, editors, *Typed Lambda Calculi and Applications*, pages 274–288. Springer Lecture Notes in Computer Science Vol. 664, 1993.