Stochastic Calculus Problem Set I: Question 1

```
In [1]:
```

```
import numpy as np
import pandas as pd

In [2]:

# As specified in question setup and part (e)
u = 1.005
d = 1.002
r = 0.003
p_1 = 0.4
p_2 = 0.6
```

```
S_0 = 1
# Assert that model is arbitrage-free
assert d < 1+r, 'd >= 1+r. This model is not arbitrage-free.'
assert 1+r < u, '1+r >= u. This model is not arbitrage-free.'
```

Part (a)

N = 100L = 1000

For the binomial asset pricing model, $S_n = (\rho_{i=1}^{N} y_i) S_0$

where \$y_i = u\$ if the result of the \$i\$th coin toss is heads or \$y_i = d\$ if the result of the \$i\$th coin toss is tails.

```
Let R_n = \log(\frac{S_n}{S_0})
```

Then,

```
R_n = \sum_{i=1}^{N}{\log y_i}
```

 $\$ \implies R_n = (\log u - \log d)\sum_{i=1}^{N}{Y_n} + n\log d\$\$

where \$Y_n \sim B(n, p)\$.

Thus,

 $E(R_n) = (\log u - \log d)(np) + n\log(d) = n(p\log u + (1-p)\log d)$

and

 $\$ Var(R_n) = (\log u - \log d)^2 np(1-p) \$\$

Part (b)

```
In [3]:
```

Part (c)

```
In [4]:
def stock value(path):
    Computes the value of a stock given some path
    (a NumPy array of 0s and 1s).
    Returns the value of the stock at time N.
    return S 0 * np.prod((u - d)*path + d)
path = np.random.randint(low=0, high=2, size=N)
In [5]:
def one step back(omega np1, X np1, derivative value, stock value):
    heads_case = np.append(omega_np1[:-1], 1)
    tails_case = np.append(omega_np1[:-1], 0)
    numerator = derivative value(heads case) - derivative value(tails case)
    denominator = stock_value(heads_case) - stock_value(tails_case)
    delta n = numerator / denominator
    X = 1/(1+r) * (X = np1 - delta = n*(stock value(omega = np1) - (1+r)*stock value(omega = np1[:-1])))
    return delta_n, X_n
Part (d)
In [6]:
def exotic derivative(path):
    return max(S_0 * np.cumprod((u-d)*path + d))
In [7]:
def european call(paths, strike price):
    # If there is only one path, coerce to 2D
    if len(paths.shape) == 1:
       paths = np.atleast 2d(paths)
    S N = (S 0 * np.cumprod((u-d)*paths + d, axis=-1))[:, -1]
    out = S N.copy()
    out[S_N - strike\_price <= 0] = 0
    return out
In [8]:
def european put (paths, strike price):
    # If there is only one path, coerce to 2D
    if len(paths.shape) == 1:
       paths = np.atleast 2d(paths)
    S_N = (S_0 * np.cumprod((u-d)*paths + d, axis=-1))[:, -1]
    out = S N.copy()
    out[strike price - S N \le 0] = 0
    return out
Part (e)
In [9]:
probabilities = [p_tilde, p_1, p_2]
strike\_prices = [S_0 * np.exp(N*(p*np.log(u) + (1-p)*np.log(d)))
                 for p in probabilities]
In [10]:
\# Bernoulli(p) = B(1, p)
```

paths 1 = np.random.binomial(n=1, p=p 1, size=[L, N])

E1_V_N_call = [np.mean(european_call(paths_1, K)) for K in strike_prices]
E1 V N put = [np.mean(european put(paths 1, K)) for K in strike prices]

```
paths_2 = np.random.binomial(n=1, p=p_2, size=[L, N])
E2_V_N_call = [np.mean(european_call(paths_2, K)) for K in strike_prices]
E2_V_N_put = [np.mean(european_put(paths_2, K)) for K in strike_prices]
```

Part (f)

By the martingale property, $V_0 = \tilde{E}(\frac{V_N}{(1+r)^N})$. But we compute \tilde{E} using a Monte Carlo approach, so we need only average.

```
In [15]:
```

```
paths_tilde = np.random.binomial(n=1, p=p_tilde, size=[L, N])
Etilde_V_0_call = [np.mean(european_call(paths_tilde, K) / (1+r)**N) for K in strike_prices]
Etilde_V_0_put = [np.mean(european_put(paths_tilde, K) / (1+r)**N) for K in strike_prices]
```

Part (g)

```
In [45]:
```

Out[45]:

1.4137740635846199

In [46]:

Out[46]:

1.409570706721379

In [47]:

```
path = np.random.binomial(n=1, p=1/2, size=N)

delta_nm1, X_nm1 = \
    one step back(path, stock value(path).
```

Out[47]:

1.4053630329699724

Part (h)

In [48]:

```
results = np.vstack([
   E1 V N call,
    E1_V_N_put,
    E2_V_N_call,
    E2_V_N_put,
    Etilde_V_0_call,
    Etilde_V_0_put
])
names = [
    'E1_V_N_call',
'E1_V_N_put',
    'E2 V N call',
    'E2 V N put',
    'Etilde_V_0_call',
'Etilde_V_0_put'
probabilities = ['p_tilde', 'p_1', 'p_2']
pd.DataFrame(data=results,
             index=names,
             columns=probabilities)
```

Out[48]:

	p_tilde	p_1	p_2
E1_V_N_call	1.265483	0.705913	0.000000
E1_V_N_put	0.111365	0.664053	1.376848
E2_V_N_call	1.461309	1.461309	0.734896
E2_V_N_put	0.000000	0.000000	0.710341
Etilde_V_0_call	0.490610	0.064725	0.000000
Etilde_V_0_put	0.509126	0.927871	0.999736