FMEA Analysis Report circuit

Failure Mode and Effects Analysis for Electronic Circuit Board

Report Date: 2025-08-06

Prepared by: Circuit-Synth FMEA Analyzer

Standard: AIAG-VDA FMEA / IPC-A-610

Classification: Quality Assurance Document

Executive Summary

This FMEA analysis evaluates the circuit circuit design to identify potential failure modes and assess associated risks. The analysis examined 16 components across 0 subsystems.

Key Findings

Metric	Value	Status
Total Failure Modes Analyzed	57	✓ Good
Critical Risk Modes (RPN ≥ 300)	3	■ Attention
High Risk Modes (125 ≤ RPN < 300)	34	■ Attention
Average RPN Score	177.4	■ Attention

System Overview

Circuit analysis of circuit.json

Subsystems

FMEA Analysis Table

#	Component	Failure Mode		0	D	RPN	Risk
1	J1 - USB_C_Receptacle_ USB2.0_16P	Solder joint failure		7	7	441	Critical
2	J2 - Conn_02x03_Odd_Even	Solder joint failure		7	7	441	Critical
3	U1 - AMS1117-3.3	Thermal shutdown	8	7	6	336	Critical
4	U2 - ESP32-C6-MINI-1	ESD damage	9	4	8	288	High
5	U1 - AMS1117-3.3	Input overvoltage failure	9	4	7	252	High
6	C1 - C	ESR increase		6	7	252	High
7	C2 - C	ESR increase		6	7	252	High
8	C3 - C	ESR increase		6	7	252	High
9	C4 - C	ESR increase		6	7	252	High
10	U1 - AMS1117-3.3	Output voltage drift		5	7	245	High
11	C1 - C	Capacitance degradation		7	7	245	High
12	C2 - C	Capacitance degradation		7	7	245	High
13	C3 - C	Capacitance degradation		7	7	245	High
14	C4 - C	Capacitance degradation		7	7	245	High
15	U1 - AMS1117-3.3	Dropout voltage increase	6	5	8	240	High

Detailed Failure Analysis

Component	Failure Mode	Root Cause	Effect	Recommendation
J1 - USB_C_Receptacle_ USB2.0_16P	Solder joint failure	Thermal cycling, mechanical stress	Complete loss of connection, system failure	CRITICAL: Add mechanical support, use thicker copper pours, implement strain relief
J2 - Conn_02x03_Odd_Even	Solder joint failure	Thermal cycling, mechanical stress	Complete loss of connection, system failure	CRITICAL: Add mechanical support, use thicker copper pours, implement strain relief

U1 - AMS1117-3.3	Thermal shutdown	Overcurrent, poor heatsinking System power loss, unexpected reset		CRITICAL: Improve heatsinking, add thermal vias, consider higher-rated component	
U2 - ESP32-C6-MINI-1	ESD damage	Handling, environmental discharge	Complete MCU failure, system inoperable	CRITICAL: Add TVS diodes, implement ESD protection circuits, use guard rings	
U1 - AMS1117-3.3	Input overvoltage failure	Transient spikes	Cascading component damage	CRITICAL: Review design and implement appropriate mitigation	
C1 - C	ESR increase	Electrolyte drying	Power supply instability, heating	Important: Review design and implement appropriate mitigation	
C2 - C	ESR increase	Electrolyte drying	Power supply instability, heating	Important: Review design and implement appropriate mitigation	
C3 - C	ESR increase	Electrolyte drying	Power supply instability, heating	Important: Review design and implement appropriate mitigation	
C4 - C	ESR increase	Electrolyte drying	Power supply instability, heating	Important: Review design and implement appropriate mitigation	
U1 - AMS1117-3.3	Output voltage drift	Component aging, temperature	Component malfunction, reduced reliability	Important: Review design and implement appropriate mitigation	

Risk Assessment Matrix

Risk Level	RPN Range	Count	Action Required
Critical	≥ 300	3	Immediate action required
High	125-299	34	Action required before production
Medium	50-124	19	Monitor and improve if feasible
Low	< 50	1	Acceptable risk level

Recommendations

Priority Actions

- J1 USB_C_Receptacle_USB2.0_16P Solder joint failure: CRITICAL: Add mechanical support, use thicker copper pours, implement strain relief
- J2 Conn_02x03_Odd_Even Solder joint failure: CRITICAL: Add mechanical support, use thicker copper pours, implement strain relief
- U1 AMS1117-3.3 Thermal shutdown: CRITICAL: Improve heatsinking, add thermal vias, consider higher-rated component
- U2 ESP32-C6-MINI-1 ESD damage: CRITICAL: Add TVS diodes, implement ESD protection circuits, use guard rings
- U1 AMS1117-3.3 Input overvoltage failure: CRITICAL: Review design and implement appropriate mitigation

General Recommendations

- Implement design review process with focus on high-RPN items
- Establish component derating guidelines (50-80% of maximum ratings)
- Add test points for critical signals to improve detection capability
- Implement thermal analysis and management for power components
- Establish incoming inspection procedures for critical components
- Document lessons learned and update FMEA regularly