Toys Profit Problem (Relatório)

Nome: Martim Aires de Sousa

Data: 07/01/2024

Descrição do Problema e da Solução

Estamos perante um problema que incide sobre o número e os tipos de brinquedos que uma dada empresa pode produzir, cada um com o respetivo lucro e limite de produção. Existem também pacotes de três brinquedos diferentes que oferecem um maior lucro do que a venda individual. Para além disso, há um limite máximo diário para a produção de brinquedos. A resolução para este problema é feita com o recurso a programação linear, que nos permite encontrar a solução ótima para o lucro máximo possível de ser atingido diariamente pela fábrica.

Tem-se, portanto, as seguintes variáveis:

- t1, t2, ...: representam a quantidade de cada brinquedo.
- p1, p2, ...: representam a quantidade de cada pacote especial.

Especificação do programa linear

- · Função objetivo:
 - Maximizar Z = t1*t1_profit + t2*t2_profit + ... + p1*p1_profit + p2*p2 profit + ...
 - Z é o lucro total.
 - ti profit é o lucro associado ao bringuedo i.
 - pi profit é o lucro associado ao pacote especial i.
- Restrições:
 - Todas as quantidades são não negativas:

$$t1, t2, ..., p1, p2, ... >= 0$$

 As quantidades para cada brinquedo não ultrapassam o seu limite (pj, pk, ... representam os pacotes que incluem o brinquedo ti):

 A quantidade total de brinquedos produzidos não ultrapassa o máximo diário:

$$t1 + t2 + ... + 3*p1 + 3*p2 + ... \le max per day$$

Análise Teórica

Temos portanto a seguinte complexidade de codificação (que depende dos parâmetros do problema – número de brinquedos diferentes n e número de pacotes especiais diferentes p):

- O número de variáveis do programa linear é O(p + n).
- O número de restrições do programa linear é O(n).

Toys Profit Problem (Relatório)

Nome: Martim Aires de Sousa

Data: 07/01/2024

Avaliação Experimental dos Resultados

Foi feita uma otimização no código de forma a reduzir as restrições: apenas os brinquedos que estão contidos em, pelo menos, um pacote especial têm restrição. Os que não estão contidos num pacote especial têm apenas um limite à variável (upBound). Assim, foram criados dois pares de instâncias com valores de N + P iguais, em que uma delas tem P = 0 e a outra P = N. Tal como seria de esperar, a instância com P = 0 tem um menor tempo de execução, visto que o valor de Var + Res é menor.

Para testar a complexidade foram geradas 15 instâncias de tamanho incremental (como representadas nas tabelas do lado esquerdo do gráfico correspondente).

O primeiro gráfico coloca o tempo em função do tamanho do programa linear codificado (número de variáveis + número de restrições):

Var	Res	Var + Res	Time (s)
200	100	300	0,124
2000	1000	3000	0,309
4000	2000	6000	0,61
6000	3000	9000	1,119
10000	1	10001	0,75
8000	4000	12000	1,851
10000	5000	15000	2,637
12000	6000	18000	3,599
20000	1	20001	2,233
14000	7000	21000	5,06
16000	8000	24000	6,456
18000	9000	27000	7,724
20000	10000	30000	9,698
40000	20000	60000	11,708
80000	40000	120000	14,584

O segundo gráfico coloca o tempo em função dos parâmetros do problema (número de brinquedos, N, e número de pacotes, P):

N	Р	N+P	Time (s)
100	100	200	0,124
1000	1000	2000	0,309
2000	2000	4000	0,61
3000	3000	6000	1,119
4000	4000	8000	1,851
5000	5000	10000	2,637
10000	0	10000	0,75
6000	6000	12000	3,599
7000	7000	14000	5,06
8000	8000	16000	6,456
9000	9000	18000	7,724
10000	10000	20000	9,698
20000	0	20000	2,233
20000	20000	40000	11,708
40000	40000	80000	14,584

Verifica-se, portanto, uma relação linear tanto no tamanho do programa linear como nos parâmetros do problema em relação ao tempo de execução.