Table 1: Dataset $p_{t,1}$ compares with state-of-the-art tuners on 300 budget/30 runs. X_p and X_r denotes tuning with and without target performance requirement, respectively. X denotes failed to complete in a reasonable time. The format follows Table II.

d%	System						$p_{t,1}$					
		CoTune	${\tt HEBO}_p$	HEBO _r	${\tt Flash}_p$	${\tt Flash}_r$	\mathtt{SMAC}_p	SMAC _r	${\tt TurBO}_p$	$TurBO_r$	\mathtt{Bounce}_p	Bouncer
0.10%	7z	.28±.34 (1)	.00±.00 (2)	$.00\pm.00$ (2)	$.00\pm.00(2)$	$.00\pm.00(2)$	$.00\pm.00(2)$		$.00\pm.02$ (1)		$.00\pm.00$ (2)	
	Kanzi	$.00\pm.00(1)$	$.00\pm.00(1)$.00±.00 (1)	X	X		$.00\pm.00(1)$				
	ExaStencils	$.69\pm.46$ (1)	.00±.00 (2)	$.00\pm.00(2)$.00±.00 (2)				
	Apache	$.00\pm.01\ (1)$.00±.00 (2)	$.00\pm.00(2)$.00±.00 (2)		.00±.00 (2)				
		$.00\pm.01$ (1)	.00±.00 (2)	.00±.00 (2)	X	X		.00±.00 (2)				
	DConvert	$.00\pm.00(1)$.00±.00(1)	$.00\pm.00$ (1)				.00±.00(1)				
	DeepArch	.66±.44 (1)	.11±.21 (2)	.00±.00 (4)				.00±.00 (4)				
	Jump3r	.00±.00(1)	.00±.00(1)	.00±.00 (1)	X	X		.00±.00 (1)				
	HSMGP	.92±.23 (1)	.00±.00 (2)	.00±.00 (2)	.00±.00 (2)	.00±.00 (2)	.00±.00 (2)	.00±.00 (2)	.00±.00 (2)	.00±.00 (2)	.00±.00 (2)	.00±.00 (2)
	7z	.54±.39 (1)	.02±.07 (3)	.02±.07 (3)	.02±.07 (3)						.02±.13 (3)	
	Kanzi	.10±.28 (1)	.03±.13 (2)	.03±.13 (2)	X	X		.03±.13 (2)				
	ExaStencils Apache	1.00±.00 (1) .03±.12 (3)	.26±.27 (1)	.30±.34 (2) .15±.30 (2)		.03±.12 (4) .02±.08 (3)		.03±.12 (4)	.00±.02 (5)			
1%	SQLite	.20±.28 (1)	.05±.15 (2)	.05±.15 (2)	X (3)	X (3)		.05±.15 (2)				
170	DConvert	.41±.14 (1)	.03±.13 (2)	.03±.13 (2)				.03±.13 (2)				.00±.00 (3)
	DeepArch	.91±.21 (1)	.67±.35 (2)	.28±.16 (4)		.00±.00 (7)			.00±.00 (7)		.08±.22 (5)	
	Jump3r	.08±.20 (1)	.02±.11 (2)	.02±.11 (2)	X	X	.02±.11 (2)					
	HSMGP	.96±.18 (1)	.08±.21 (2)	.06±.19 (2)				.06±.19 (2)				
	7z	.72±.20 (1)	.21±.25 (3)	.21±.25 (3)	.21+.25 (3)	.20+.25 (3)	.34+.26 (2)	.20±.25 (3)	.24+.30 (3)	.21+.25 (3)	.02+.13 (5)	.05±.11 (4)
	Kanzi	.24±.32 (1)	.20±.27 (1)	.20±.27 (1)	X	X	.19±.28 (1)				.06±.12 (2)	
	ExaStencils	.95±.14(1)	.22±.20 (2)	.21±.25 (2)		.06±.15 (4)					.01±.07 (5)	
	Apache	.13±.06 (5)	.37±.26 (1)	.22±.27 (3)		.04±.10 (6)					.34±.21 (1)	
5%	SQLite	.21±.22 (1)	.08±.11 (2)	.07±.11 (2)	X	X	.08±.11(2)		.08±.11(2)		.00±.00(3)	
	DConvert	.75±.21 (1)	.22±.29 (2)	.21±.30 (2)	.21±.30(2)	.21±.30(2)		.21±.30 (2)				
	DeepArch	.99±.01(1)	.99±.01 (2)	.97±.01 (3)				.16±.36 (6)				
	Jump3r	.15±.31 (1)	.06±.21 (2)	.06±.21 (2)	X	X	.06±.21(2)	.06±.21 (2)	.06±.21(2)	.06±.21(2)	.03±.13(2)	.03±.13 (2)
	HSMGP	1.00±.00 (1)	.28±.35 (2)	.23±.32 (3)	.21±.32 (3)	$.21\pm.32$ (3)	.29±.34 (2)	.21±.32 (3)	.21±.32 (3)	.21±.32 (3)	.17±.30 (4)	.13±.26 (4)
	7z	.91±.16(1)	.28±.34 (4)	.35±.34 (3)	.35±.34 (3)	.33±.35 (3)	.39±.34 (2)	.33±.35 (3)				.12±.19 (6)
	Kanzi	.72±.29 (1)	.67±.33 (1)	.68±.33 (1)	X	X	$.68\pm.33$ (1)		$.69\pm.33(1)$			
	ExaStencils	$.98\pm.05(1)$.68±.17 (3)	.81±.17 (2)	.25±.24 (6)	$.23\pm.24$ (6)	$.29\pm.24$ (5)	.23±.24 (6)	$.35\pm.25$ (4)	.28±.27 (5)	.07±.15 (7)	$.03\pm.08$ (8)
	Apache	$.67\pm.08(3)$.71±.15 (2)	$.59\pm.13$ (4)				$.34\pm.26$ (6)				
20%	SQLite	$.74\pm.26$ (1)	.45±.27 (2)	$.45\pm.27$ (2)	X	X	$.44\pm.28$ (2)				$.08\pm.14$ (3)	
	DConvert	$.91\pm.03(1)$	$.35\pm.24$ (2)	.31±.19 (3)				$.29\pm.20$ (3)				
	DeepArch		1.00±.00 (2)	$1.00\pm.00(2)$				$.55\pm.30$ (4)				
	Jump3r	$.27\pm.40(1)$.08±.22 (2)	$.08\pm.22$ (2)	X	X	$.08\pm.22$ (2)				$.03\pm.16$ (3)	
	HSMGP	$1.00\pm.00(1)$.81±.25 (2)	.73±.35 (3)	.62±.40 (4)	.61±.41 (4)	.70±.34 (3)	.62±.40 (4)	.59±.41 (4)	.67±.37 (3)	.58±.39 (4)	.54±.39 (4)
	7z	1.00±.00 (1)		.92±.12 (2)				.92±.12 (2)				
	Kanzi	.64±.14 (1)	.57±.17 (2)	.56±.17 (2)	X	X		.53±.18 (3)				
	ExaStencils	.99±.04 (1)	.70±.25 (3)	.82±.13 (2)				.28±.26 (5)				
	Apache	.70±.03 (3)	.72±.13 (2)	.66±.07 (4)		.54±.14 (6)					.80±.13 (1)	
50%	SQLite	.74±.16 (1)	.51±.17 (2)	.50±.17 (2)	X	X	.51±.17 (2)				.24±.13 (3)	
	DConvert	.89±.04 (1)	.66±.23 (2)	.57±.21 (3)	.56±.21 (3)	.56±.22 (3) .85±.11 (4)	.56±.21 (3)		.57±.20 (3)			
	DeepArch Jump3r	.45±.33 (1)	1.00±.00 (2)	1.00±.00 (3)	.86±.09 (4)	.85±.11 (4)		.85±.11 (4) .23±.20 (2)			.85±.06 (4)	
	HSMGP	1.00±.00 (1)	.23±.20 (2) .86±.16 (2)	.23±.20 (2) .84±.16 (2)				.76±.22 (4)				
	7z	.77±.31 (1)	.36±.26 (2)	.35±.26 (2)				.35±.26 (2)				
	Kanzi	.46±.19 (1)	.41±.22 (2)	.41±.23 (2)	X	X X		.40±.23 (2)			.23±.21 (3)	
	ExaStencils	1.00±.02 (1)		.86±.08 (2)	.63±.17 (5)		.60±.20 (5)					.32±.14 (6)
90%	Apache	.99±.00 (3)	.99±.00 (4)	1.00±.01 (1)					.98±.01 (5)			
	SQLite	.63±.18 (1)	.50±.17 (2)	.51±.17 (2)	X	X		.51±.17 (2)				
	DConvert	.88±.04 (1)	.58±.27 (2)	.52±.22 (3)			.52±.22 (3)					
	DeepArch		1.00±.00 (2)									
	Jump3r	.32±.17 (1)		.26±.19 (2)	X	X		.27±.19 (2)				
	HSMGP	1.00±.00 (1)		.81±.24 (2)				.68±.34 (4)				
Avorage	e p _t score/rank	69 /1 15	.39/1.96	.38/2.11	.32/3.17	.31/3.17	.33/2.39	.29/2.72	.32/2.57	.29/2.87	.24/3.22	.22/3.41

Table 2: Dataset $p_{t,2}$ compares with state-of-the-art tuners on 300 budget/30 runs. X_p and X_r denotes tuning with and without target performance requirement, respectively. \times denotes failed to complete in a reasonable time. The format follows Table II.

d%	System						$p_{t,2}$					
		CoTune	HEBO _p	HEBO _r	${\tt Flash}_p$	Flashr	\mathtt{SMAC}_p	SMAC _r	$TurBO_p$	TurBO _r	\mathtt{Bounce}_p	Bouncer
	7z	$.35\pm.39(1)$.00±.00 (2)	$.00\pm.00(2)$.00±.00 (2)				
	Kanzi	$.01\pm.05$ (1)	.00±.00 (2)	$.00\pm.00(2)$	X	X	$.00\pm.00(2)$.00±.00 (2)		
	ExaStencils	.69±.46 (1)	.00±.00 (2)	$.00\pm.00$ (2)				$.00\pm.00$ (2)				
	Apache	$.00\pm.00(1)$	$.00\pm.00(1)$	$.00\pm.00(1)$			$.00\pm.00(1)$.00±.00 (1)	.00±.00(1)	.00±.00(1)	.00±.00(1)	.00±.00 (1
0.10%	SQLite	.03±.18 (1)	.00±.00 (2)	$.00\pm.00$ (2)	X	X		$.00\pm.00(2)$				
	DConvert	$.00\pm.00(1)$.00±.00(1)	$.00\pm.00(1)$.00±.00 (1)				
	DeepArch	$.73\pm.40(1)$.10±.23 (2)	$.00\pm.00(3)$.00±.00 (3)				
	Jump3r	$.00\pm.00(1)$.00±.00 (2)	$.00\pm.00$ (2)	X	X		.00±.00 (2)				
	HSMGP	$.75\pm.40(1)$.00±.00 (2)	.00±.00 (2)	.00±.00 (2)	.00±.00 (2)	.01±.03 (1)	.00±.00 (2)	.00±.00 (2)	.00±.00 (2)	.00±.00 (2)	.00±.00 (2
	7z	.16±.18 (1)	.00±.01 (3)	.00±.01 (3)				.00±.01(3)				
	Kanzi	$.05\pm.18(1)$	$.04\pm.16$ (1)	$.04\pm.16$ (1)	X	X		.04±.16 (1)				
	ExaStencils	$.80\pm.26$ (1)	.07±.13 (3)	$.29\pm.32$ (2)				.02±.08 (4)				
	Apache	$.01\pm.06$ (5)	$.28\pm.35$ (2)	.47±.41 (1)				$.05\pm.18$ (4)				
1%	SQLite	$.19\pm.30(1)$	$.03\pm.10$ (3)	$.05\pm.16$ (2)	X	X		$.05\pm.16$ (2)				
	DConvert	$.25\pm.14$ (1)	.02±.05 (2)	$.02\pm.05$ (2)				.02±.05 (2)				
	DeepArch	.93±.13 (1)	.51±.28 (3)	.30±.03 (4)				.00±.00 (7)				
	Jump3r	.08±.21 (1)	$.02\pm.13$ (2)	$.02\pm.13$ (2)	X	X	$.02\pm.13$ (2)	$.02\pm.13$ (2)				.00±.00 (3
	HSMGP	$1.00\pm.01$ (1)	.07±.21 (2)	.07±.21 (2)	.07±.21 (2)	.07±.21 (2)	.07±.21 (2)	.07±.21 (2)	.07±.21 (2)	.07±.21 (2)	.03±.17 (2)	.00±.00 (3
	7z	.62±.41 (1)	.19±.32 (4)	.19±.32 (4)			.35±.38 (2)	.18±.32 (4)	$.26 \pm .38$ (3)	$.19\pm .32$ (4)	.03±.16 (5)	.02±.04 (5)
	Kanzi	.14±.25 (2)	.22±.31 (1)	$.25\pm.32$ (1)	X	X		.23±.32 (1)				
	ExaStencils	$.95\pm.07(1)$.29±.23 (3)	.38±.39 (2)				.07±.18 (6)				
	Apache	$.34\pm.16$ (3)	$.53\pm.23$ (1)	.30±.29 (3)		$.08\pm.17$ (4)				$.09\pm.18$ (4)		
5%	SQLite	.42±.39 (1)	.18±.29 (2)	$.19\pm.30$ (2)	X	X	$.21\pm.30$ (2)		.21±.30 (2)		$.00\pm.00(3)$	
	DConvert	$.77\pm.16(1)$.23±.32 (2)	$.21\pm.30(2)$.22±.30 (2)				$.09\pm.21$ (3
	DeepArch	$.99\pm.01$ (1)	.82±.06 (2)	$.80\pm.08$ (3)				.12±.26 (6)				
	Jump3r	$.18\pm .34$ (1)	.06±.22 (2)	$.06\pm.22$ (2)	X	X		$.06\pm.22$ (2)				
	HSMGP	1.00±.00 (1)	.30±.34 (2)	.24±.34 (3)	.22±.34 (3)	.19±.31 (4)	.31±.35 (2)	.19±.31 (4)	.22±.34 (3)	.22±.34 (3)	.19±.32 (4)	.14±.29 (4)
	7z	.70±.15 (1)	.27±.25 (4)	$.34 \pm .24$ (3)				$.34 \pm .24$ (3)				
	Kanzi	$.64\pm.23$ (1)	.52±.26 (2)	$.51\pm.26$ (2)	X	X	$.52\pm.27$ (2)				.28±.29 (3)	
	ExaStencils	$.99\pm.04(1)$.58±.15 (3)	.65±.19 (2)				.21±.21 (6)				
	Apache	$.14\pm.02$ (3)	.23±.22 (2)	$.12\pm.07$ (4)				$.09\pm.13(5)$				
20%	SQLite	$.64\pm.19(1)$.52±.20 (2)	$.52\pm.20$ (2)	X	X	.51±.22 (2)			.52±.21 (2)		
	DConvert	$.95\pm.02(1)$.61±.29 (2)	$.41\pm .24$ (3)				$.39\pm.25$ (3)				
	DeepArch		$1.00\pm.00(3)$	$1.00\pm.00$ (2)				.61±.30 (5)				
	Jump3r	$.15\pm.32$ (1)	.08±.24 (2)	$.08\pm.24$ (2)	X	X	$.08\pm .24$ (2)		$.08\pm.24$ (2)			
	HSMGP	.98±.13 (1)	.83±.30 (2)	.74±.38 (3)	.65±.42 (4)	.62±.43 (4)	.74±.36 (3)	.63±.42 (4)	.62±.43 (4)	.71±.37 (3)	.61±.40 (4)	.58±.41 (4)
	7z	.64±.28 (1)	.29±.19 (3)	$.30\pm.20$ (3)				$.30\pm.20$ (3)				
	Kanzi	$.64\pm.22$ (1)	.59±.19 (2)	$.60\pm.19$ (2)	X	X	$.59\pm.19$ (2)			$.59\pm.19$ (2)		
	ExaStencils	.88±.15 (1)	.12±.07 (2)	.11±.08 (2)				$.06\pm.04$ (4)				
	Apache	$.34\pm.17$ (3)	$.39\pm.30$ (2)	$.42\pm.21$ (2)		$.19\pm.16$ (4)				.20±.16 (4)		
50%	SQLite	.68±.19 (1)	.53±.11 (2)	$.53\pm.11$ (2)	X	X	$.53\pm.11$ (2)			$.53\pm.11$ (2)		$.37\pm.14$ (3)
	DConvert	.94±.02 (1)	.49±.28 (2)	$.38\pm.26$ (3)		$.38\pm.26$ (3)				$.40\pm.25$ (3)		
	DeepArch		$1.00\pm.00(3)$	$1.00\pm.00(2)$				$.91\pm.10$ (4)				
	Jump3r	$.42\pm.25$ (1)	.32±.19 (2)	.33±.18 (2)	X	X		.33±.18 (2)				
	HSMGP	$1.00\pm.00(1)$.92±.14 (2)	.87±.20 (3)	.79±.24 (4)	.79±.24 (4)	.89±.15 (3)	.80±.23 (4)	.83±.22 (4)	.79±.24 (4)	.76±.23 (5)	.76±.23 (5)
	7z	.81±.26 (1)	.42±.28 (2)	.42±.28 (2)				.42±.28 (2)				
	Kanzi	$.30\pm.22$ (1)	$.33\pm.24$ (1)	$.33\pm.24$ (1)	X	X		$.32\pm.23$ (1)				
90%	ExaStencils	$.91\pm.14(1)$.28±.19 (3)	$.32\pm.15$ (2)				$.12\pm.10$ (4)				
	Apache	$.80\pm.00$ (4)	$.81\pm.04$ (3)	.87±.10 (1)				$.80\pm.04$ (3)				
	SQLite	$.68\pm.17$ (1)	$.53\pm.11$ (2)	$.53\pm.11$ (2)	X	X		$.53\pm.11$ (2)				
	DConvert	.94±.03 (1)	.51±.31 (2)	$.51\pm.32$ (2)				.51±.32 (2)				
	DeepArch			$1.00\pm.00(2)$								
	Jump3r	.27±.38 (1)	.10±.23 (2)	.11±.23 (2)	X	X		.11±.23 (2)				
	HSMGP	$1.00\pm.00$ (1)	.82±.31 (2)	.82±.29 (2)	.70±.38 (4)	.67±.39 (4)	.70±.38 (4)	.68±.38 (4)	.76±.34 (3)	.76±.34 (3)	.61±.39 (5)	.61±.38 (5)
			.34/2.00	.33/2.09	.27/3.11	.26/3.11	.30/2.35	.25/2.65		.26/2.83	.21/3.26	.19/3.46

Table 3: Dataset $p_{t,3}$ compares with state-of-the-art tuners on 300 budget/30 runs. X_p and X_r denotes tuning with and without target performance requirement, respectively. X denotes failed to complete in a reasonable time. The format follows Table II.

Faz Satisfied	d%	System						$p_{t,3}$					
Exastencils 6.2±.40 (1) 0.0±.00 (2) 0.0±.0			CoTune	${\tt HEBO}_p$	HEBO _r	${\tt Flash}_p$	${\tt Flash}_r$	\mathtt{SMAC}_p	$SMAC_r$	${\tt TurBO}_p$	$TurBO_r$	\mathtt{Bounce}_p	Bouncer
Kanzi SexStencils SexSte	0.10%	Kanzi ExaStencils Apache SQLite DConvert DeepArch Jump3r	.00±.00 (1) .62±.49 (1) .00±.00 (1) .01±.03 (1) .03±.18 (1) .72±.42 (1) .00±.00 (1)	.00±.00 (1) .00±.00 (2) .00±.00 (1) .00±.00 (2) .00±.00 (2) .09±.26 (2) .00±.00 (2)	.00±.00 (1) .00±.00 (2) .00±.00 (1) .00±.00 (2) .00±.00 (2) .00±.00 (4) .00±.00 (2)	X .00±.00 (2) .00±.00 (1) X .00±.00 (2) .00±.00 (4)	X .00±.00 (2) .00±.00 (1) X .00±.00 (2) .00±.00 (4)	.00±.00 (1) .00±.00 (2) .00±.00 (1) .00±.00 (2) .00±.00 (2) .06±.15 (2) .00±.00 (2)	.00±.00 (1) .00±.00 (2) .00±.00 (1) .00±.00 (2) .00±.00 (2) .00±.00 (4) .00±.00 (2)	.00±.00 (1) .00±.00 (2) .00±.00 (1) .00±.00 (2) .00±.00 (2) .00±.00 (4) .00±.00 (2)	.00±.00 (1) .00±.00 (2) .00±.00 (1) .00±.00 (2) .00±.00 (2) .00±.00 (4) .00±.00 (2)	.00±.00 (1) .00±.00 (2) .00±.00 (1) .00±.00 (2) .00±.00 (2) .00±.02 (3) .00±.00 (2)	.00±.00 (1) .00±.00 (2) .00±.00 (1) .00±.00 (2) .00±.00 (2) .00±.00 (4) .00±.00 (2)
Kanzi	1%	Kanzi ExaStencils Apache SQLite DConvert DeepArch Jump3r	.06±.21 (1) .92±.07 (1) .01±.07 (5) .11±.23 (1) .24±.12 (1) .84±.26 (1) .04±.13 (1)	.03±.12 (2) .06±.19 (4) .45±.44 (1) .04±.14 (2) .03±.07 (2) .53±.37 (2) .02±.11 (1)	.03±.12 (2) .21±.33 (2) .53±.46 (1) .04±.14 (2) .03±.07 (2) .08±.01 (4) .02±.11 (1)	X .03±.14 (4) .05±.13 (4) X .03±.07 (2) .00±.00 (6)	,03±.14 (4) .03±.11 (5) ,03±.07 (2) .00±.00 (6)	.03±.12 (2) .14±.27 (3) .13±.28 (3) .04±.14 (2) .03±.07 (2) .44±.42 (3) .02±.11 (1)	.03±.12 (2) .03±.14 (4) .06±.21 (4) .04±.14 (2) .03±.07 (2) .00±.00 (6) .02±.11 (1)	.03±.12 (2) .01±.03 (5) .33±.39 (2) .04±.14 (2) .03±.07 (2) .00±.00 (6) .02±.11 (1)	.03±.12 (2) .05±.15 (4) .03±.11 (5) .04±.14 (2) .03±.07 (2) .00±.00 (6) .02±.11 (1)	.00±.00 (3) .00±.03 (6) .35±.39 (2) .00±.00 (3) .02±.06 (2) .06±.20 (4)	.00±.00 (3) .00±.00 (7) .29±.38 (2) .00±.00 (3) .02±.06 (2) .00±.01 (5) .00±.00 (2)
Kanzi	5%	Kanzi ExaStencils Apache SQLite DConvert DeepArch Jump3r	.29±.32 (1) .91±.12 (1) .22±.13 (3) .23±.27 (1) .48±.08 (1) .99±.01 (1) .08±.20 (1)	.19±.27 (2) .27±.25 (3) .53±.31 (1) .13±.19 (2) .12±.19 (2) .98±.01 (2) .06±.19 (1)	.19±.27 (2) .39±.43 (2) .25±.22 (3) .11±.18 (2) .10±.15 (2) .98±.01 (3) .06±.19 (1)	X .06±.17 (6) .06±.14 (5) X .10±.15 (2) .17±.36 (6)	X .06±.17 (6) .06±.14 (5) X .10±.15 (2) .17±.36 (6)	.20±.28 (2) .18±.27 (4) .19±.20 (4) .13±.19 (2) .10±.15 (2) .81±.36 (4) .06±.19 (1)	.19±.28 (2) .06±.17 (6) .08±.20 (5) .13±.19 (2) .10±.15 (2) .17±.36 (6) .05±.19 (1)	.20±.28 (2) .10±.13 (5) .44±.26 (2) .13±.19 (2) .10±.15 (2) .17±.36 (6) .06±.19 (1)	.20±.28 (2) .08±.18 (5) .06±.14 (5) .13±.18 (2) .09±.15 (2) .17±.37 (6) .06±.19 (1)	.10±.18 (3) .02±.07 (7) .41±.25 (2) .00±.00 (3) .04±.11 (3) .35±.45 (5)	.10±.18 (3) .00±.01 (8) .41±.25 (2) .00±.00 (3) .04±.11 (3) .05±.19 (7) .02±.12 (2)
Kanzi Sot. 15 (1) 44±.12 (2) 40±.12 (2) x x x 40±.12 (2) 40±.12 (20%	Kanzi ExaStencils Apache SQLite DConvert DeepArch Jump3r	.37±.19 (1) .96±.07 (1) .14±.07 (3) .24±.16 (1) .89±.05 (1) 1.00±.00 (1) .10±.23 (1)	.37±.16 (1) .58±.16 (3) .22±.19 (2) .15±.08 (2) .51±.38 (2) .99±.01 (2) .07±.20 (1)	.36±.17 (1) .63±.17 (2) .11±.08 (4) .15±.08 (2) .26±.27 (3) .99±.00 (3) .07±.20 (1)	.27±.20 (6) .07±.09 (5) x .29±.25 (3) .48±.27 (6)	X .26±.20 (6) .07±.09 (5) X .25±.26 (3) .48±.27 (6)	.35±.17 (1) .34±.19 (5) .09±.10 (5) .15±.08 (2) .29±.25 (3) .60±.23 (4) .08±.20 (1)	.36±.17 (1) .23±.19 (6) .09±.14 (5) .15±.08 (2) .25±.26 (3) .48±.27 (6) .08±.20 (1)	.36±.17 (1) .39±.19 (4) .32±.20 (1) .15±.08 (2) .27±.26 (3) .54±.29 (5) .08±.20 (1)	.36±.17 (1) .31±.22 (5) .08±.09 (5) .15±.08 (2) .26±.27 (3) .47±.28 (6) .05±.13 (2)	.20±.19 (2) .09±.14 (7) .30±.19 (1) .03±.06 (3) .13±.18 (4) .52±.27 (5) .03±.13 (2)	.20±.19 (2) .03±.08 (8) .30±.18 (1) .03±.06 (3) .11±.19 (4) .29±.25 (7) .03±.13 (2)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50%	Kanzi ExaStencils Apache SQLite DConvert DeepArch Jump3r	.50±.15 (1) .99±.02 (1) .69±.07 (2) .80±.21 (1) .93±.03 (1) 1.00±.00 (1) .35±.24 (1)	.41±.12 (2) .79±.11 (3) .65±.15 (3) .54±.22 (3) .41±.32 (2) .99±.00 (2) .27±.15 (2)	.40±.12 (2) .82±.11 (2) .69±.17 (2) .54±.22 (3) .28±.24 (3) .99±.00 (2) .27±.15 (2)	X .52±.19 (5) .43±.16 (4) X .30±.24 (3) .73±.15 (3)	X .53±.17 (5) .44±.16 (4) X .29±.24 (3) .73±.15 (3)	.40±.12 (2) .52±.19 (5) .46±.18 (4) .53±.22 (3) .30±.24 (3) .73±.15 (3) .27±.15 (2)	.40±.12 (2) .51±.20 (5) .44±.17 (4) .54±.22 (3) .29±.24 (3) .74±.13 (3) .27±.15 (2)	.40±.12 (2) .60±.16 (4) .74±.09 (1) .52±.21 (3) .31±.23 (3) .73±.14 (3) .27±.15 (2)	.41±.12 (2) .57±.22 (4) .44±.16 (4) .57±.22 (2) .27±.23 (3) .73±.15 (3) .27±.15 (2)	.29±.12 (3) .27±.15 (6) .75±.09 (1) .20±.15 (4) .22±.17 (4) .69±.10 (4) .22±.11 (3)	.30±.12 (3) .23±.15 (7) .74±.09 (1) .20±.15 (4) .21±.17 (4) .64±.14 (5) .22±.11 (3)
HSMGP 98±.13 (1) .05±.20 (1) .	90%	Kanzi ExaStencils Apache SQLite DConvert DeepArch Jump3r	.30±.28 (1) .98±.04 (1) .98±.00 (3) .78±.22 (1) .88±.13 (1) 1.00±.00 (1) .09±.20 (1)	.15±.11 (2) .61±.20 (2) .98±.01 (3) .54±.21 (2) .55±.28 (2) .99±.00 (2) .08±.20 (1)	.14±.11 (2) .56±.17 (3) .99±.01 (1) .53±.21 (2) .54±.28 (2) .99±.00 (3) .08±.20 (1)	X .30±.15 (5) .97±.01 (4) X .54±.28 (2) .73±.15 (4)	X .30±.14 (5) .97±.01 (4) X .54±.28 (2) .73±.15 (4)	.15±.11 (2) .30±.15 (5) .97±.01 (4) .55±.21 (2) .54±.28 (2) .73±.15 (4) .08±.20 (1)	.14±.11 (2) .29±.15 (5) .98±.01 (4) .54±.21 (2) .54±.28 (2) .73±.15 (4) .08±.20 (1)	.14±.11 (2) .35±.12 (4) .98±.01 (4) .55±.21 (2) .55±.28 (2) .73±.15 (4) .08±.20 (1)	.14±.11 (2) .33±.15 (4) .98±.01 (4) .55±.21 (2) .55±.28 (2) .73±.15 (4) .08±.20 (1)	.07±.06 (3) .18±.12 (6) .98±.00 (2) .26±.11 (3) .36±.26 (3) .67±.11 (5) .04±.13 (2)	.07±.06 (3) .15±.06 (7) .98±.00 (2) .26±.11 (3) .36±.26 (3) .64±.14 (6) .04±.13 (2)