Teoréma de Pitagoras

$$a^2 + b^2 = c^2$$

- Fallecimiento de Heinrich Hertz: 1/1
- Fallecimiento de Erwin Schrödinger: 4/1
- Fallecimiento de Max Born: 5/1
- Fallecimiento de Nikola Tesla: 7/1
- Fallecimiento de Galileo Galilei: 8/1
- √x Natalicio de David Hilbert: 23/1

D	L	M	M	J	V	S
						813
2	3	4	5	6	7 3	8
9	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25	26	27	28	29
30	31					

Diciembre

D L M M J V S
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

Febrero

D L M M J V S
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28

Derivada

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- Fallecimiento de Werner Heisenberg: 1/2
- √ Fallecimiento de David Hilbert: 14/2
- Fallecimiento de Richard Feynman: 15/2
- Natalicio de Galileo Galilei: 15/2
- Natalicio de Alessandro Volta: 18/2
- Natalicio de Heinrich Hertz: 22/2
- **√** Fallecimiento de Carl Friedrich Gauss: 23/2

D	L	M	M	J	V	S
		1 3	2	3	4	5
6	7	8	9	10	11	12
13	14	15	16	17	18	19
20	21	22	23	24	25	26
27	28					

Febrero 202

Derivative

Enero

	D	L	M	M	J	٧	S
							1
	2	3	4	5	6	7	8
	9	10	11	12	13	14	15
1	6	17	18	19	20	21	22
2	23	24	25	26	27	28	29
3	30	31					

Marzo

D L M M J V S
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31

Atractor de Lorenz

$$\dot{x} = \alpha(y - x)$$

$$\dot{y} = x(\beta - z) - y$$

$$\dot{z} = xy - \gamma z$$

Fallecimiento de Alessandro Volta: 5/3
Natalicio de Albert Einstein: 14/3
Fallecimiento de Arthur Compton: 15/3
Fallecimiento de Isaac Newton: 20/3
√x Natalicio de Joseph Fourier: 21/3
√x Natalicio de Emmy Noether: 23/3

27

28

29

D	L	M	M	J	V	S
		1	2	3	4	5
6	7	8	9	10	11	12
13	14	15	16	17	18	19
20	21	22	23	24	25	26

30

31

Marzo 202

D L M M J V S 1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24 25 26

Abril
D L M M J V S

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30

1 2

27 28

Teoría de Sturm-Liouville

$$-\frac{d}{dx} \left[p(x) \frac{dy}{dx} \right] + q(x)y$$
$$= \lambda w(x)y$$

$$\alpha_1 y(a) + \alpha_2 y'(a) = 0$$
 $\alpha_1^2 + \alpha_2^2 > 0$
 $\beta_1 y(b) + \beta_2 y'(b) = 0$ $\beta_1^2 + \beta_2^2 > 0$

$$\langle y_n, y_m \rangle = \int_a^b y_n(x) y_m(x) w(x) dx = \delta_{mn}$$

- √x Fallecimiento de Emmy Noether: 14/4
- √x Natalicio de Leonhard Euler: 15/4
- Fallecimiento de Albert Einstein: 18/4
- Natalicio de Max Planck: 23/4
- Natalicio de Guglielmo Marconi: 25/4
- √x Fallecimiento de Srinivasa Ramanujan: 26/4
- √x Natalicio de Carl Friedrich Gauss: 30/4

D	L	M	M	J	V	S
					1	2
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30

Marzo

D L M M J V S
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31

Mayo

D L M M J V S
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31

Transformada de Fourier

$$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-i\omega x} dx$$

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \hat{f}(\omega) e^{i\omega x} d\omega$$

D	L	M	M	J	V	S
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31				

Mayo 2022

Abril
D L M M J V S

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Junio
D L M M J V S

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 2 3 4

Ecuación de onda

Natalicio de James Clerk Maxwell: 13/6
 Fallecimiento de James Chadwick: 24/6

$\partial^2 u(x,t)$	$-c^2\frac{\partial^2 u(x,t)}{\partial x^2}$
$-\partial t^2$	$-c$ $-\partial x^2$

	_			•	•	
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30		

M

Mayo

D L M M J V S
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31

S

Julio

D L M M J V S
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31

Junio 2022

Ecuaciones de Maxwell

$$\oint_{s} \vec{E} \cdot d\vec{s} = \frac{q}{\varepsilon_{0}}$$

$$\oint_{s} \vec{B} \cdot d\vec{s} = 0$$

$$\oint_{s} \vec{E} \cdot d\vec{\ell} = -\frac{d}{dt} \int_{s} \vec{B} \cdot d\vec{s}$$

$$\oint_{s} \vec{B} \cdot d\vec{\ell} = \mu_{0} \int_{s} \vec{J} \cdot d\vec{s}$$

$$+ \mu_{0} \varepsilon_{0} \frac{d}{dt} \int_{s} \vec{E} \cdot d\vec{s}$$

Fallecimiento de Marie Curie: 4/7
Natalicio de Nikola Tesla: 10/7

Fallecimiento de Guglielmo Marconi: 20/7

√ Fallecimiento de Bernhard Riemann: 20/7

D	L	M	M	J	V	S
					1	2
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30
31						

Junio D L M M J V S

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Agosto

D L M M J V S
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27

28 29 30 31

1 2 3 4

Función zeta de Riemann

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ primo}} \frac{1}{1 - p^{-s}}$$

$$\zeta(s) = 2^{s} \pi^{s-1} \sin\left(\frac{s\pi}{2}\right) \Gamma(1-s) \zeta(1-s)$$

Natalicio de Paul Dirac: 8/8

Natalicio de Erwin Schrödinger: 12/8

Fallecimiento de Michael Faraday: 25/8

Natalicio de Ernest Rutherford: 30/8

Fallecimiento de J.J. Thomson: 30/8

Julio DLMMJVS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Septiembre D L M M J V S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

31

25 26 27 28 29 30

Riemann zeta function

Ecuación de Dirac

Natalicio de Arthur Compton: 10/9

√ Natalicio de Bernhard Riemann: 17/9

√ Fallecimiento de Leonhard Euler: 18/9

Natalicio de Michael Faraday: 22/9

Natalicio de Enrico Fermi: 29/9

$$i\hbar\gamma^{\mu}\partial_{\mu}\psi - mc\psi = 0$$

D	L	M	M	J	V	S
				1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18:	19	20	21	22	23	24
25	26	27	28	29	30	

Agosto

D L M M J V S
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31

Octubre

D L M M J V S
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31

Diagrama de Feynman

$$A + B \rightarrow C + D$$

	Fallecimiento de Max Planck: 4/10
	Natalicio de Niels Bohr: 7/10
	Fallecimiento de Ernest Rutherford: 19/10
	Natalicio de James Chadwick: 20/10
	Fallecimiento de Paul Dirac: 20/10

D	L	M	M	J	V	S
						1
2	3	4	5	6	3	8
9	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25	26	27	28	29

30

31

Septiembre D L M M J V S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Noviembre D L M M J V S

1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24 25 26

27 28 29 30

Modelo estándar

- Fallecimiento de James Clerk Maxwell: 5/11
- Natalicio de C.V. Raman: 7/11
- Natalicio de Marie Curie: 7/11
- Fallecimiento de Niels Bohr: 18/11
- Fallecimiento de C.V. Raman: 21/11
- Fallecimiento de Enrico Fermi: 28/11

D	L	M	M	J	V	S
		1	2	3	4	5
6	7	8	9	10	11	12
13	14	15	16	17	18	19
20	21	22	23	24	25	26
27	28	29	30			

D L M M J V S 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Diciembre								
D	L	M	M	J	٧	S		
				1	2	3		
4	5	6	7	8	9	10		
11	12	13	14	15	16	17		
18	19	20	21	22	23	24		

25 26 27 28 29 30 31

30 31

Octubre

Relatividad general

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

$$G_{\mu\nu} \equiv R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu}$$

General relativity

- Natalicio de Werner Heisenberg: 5/12
- Natalicio de Max Born: 11/12
- inicio de la Teoría Cuántica: 14/12
- Natalicio de J.J. Thomson: 18/12
- √x Natalicio de Srinivasa Ramanujan: 22/12
- Natalicio de Isaac Newton: 25/12

D	L	M	M	J	V	S
				1	2	3
4	5	6	7	8	9	10
Û	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	31

Noviembre

D	L	${\mathbb M}$	${\mathbb M}$	J	V	S
		1	2	3	4	5
6	7	8	9	10	11	12
13	14	15	16	17	18	19
20	21	22	23	24	25	26
27	28	29	30			

Enero

D	L	M	M	J	V	S
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	5 16	17	18	19	20	21
22	2 23	24	25	26	27	28
29	30	31				