Lecture 3: Lexical Analysis Cont.

Xiaoyuan Xie 谢晓园 xxie@whu.edu.cn 计算机学院E301

Where We Are

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Formalisms of tokens

Regular Expression

Finite Automaton

Implementing Regular Expressions

- Regular expressions can be implemented using finite automata.
 - Regular expressions = specification
 - Finite automata = implementation
- There are two main kinds of finite automata:
 - NFAs (nondeterministic finite automata), which we'll see in a second, and
 - DFAs (deterministic finite automata), which we'll see later.

Finite Automatons

- A finite automaton is a 5-tuple (S,Σ,δ,s_0,F)
 - A set of states S --- nodes
 - An input alphabet Σ
 - A transition function $\delta(S_i, a) = S_j$
 - A start state S₀
 - A set of accepting states F ⊆ S

Finite Automatons

- Input: a string
- Output: accept if the scanning of input string reaches its EOF and the FA reaches an accepting state; reject otherwise

Strings accepted by an FA

- An FA accepts an input string x iff there is some path with edges labeled with symbols from x in sequence from the start state to some accepting state in the transition graph
- A state transition from one state to another on the path is called a move

A More Complex Automaton

"1010": accept

"101": reject

A More Complex Automaton

2018/9/15

A More Complex Automaton

1 2 . 3 7 5

2018/9/15

Strings accepted by an FA

 The language defined by an FA is the set of input strings it accepts, such as (a|b)*abb for the example NFA

Strings accepted by an FA

(a|b)*abb

aa*|bb*

Finite Automata

- Finite automata is a recognizer
- Given an input string, they simply say "yes" or "no" about each possible input string

- Definition: an NFA is a 5-tuple (S,Σ,δ,s_0,F) where
 - S is a finite set of states
 - $-\Sigma$ is a finite set of *input symbol alphabet*
 - $-\delta$ is a *mapping* from $S \times \Sigma \cup \{\epsilon\}$ to a set of states
 - $-S_0 \subseteq S$ is the set of *start states*
 - $-F \subseteq S$ is the set of accepting (or final) states

Transition Graph

Node: State

- Non-terminal state: (S_i)
- Terminal state: (S_k)
- Starting state: \longrightarrow (S_0)

Edge: state transition $f(S_i,a)=S_j$ (S_i) $a \rightarrow (S_j)$

Transition Graph

 An NFA can be diagrammatically represented by a labeled directed graph called a transition graph

Transit table

- Line: State
 - Starting state: in general, the first line, or label "+";
 - Terminal state: "*" or "-";
- Column: All symbols in Σ
- Cell: state transition mapping

Transition Table

• The mapping δ of an NFA can be represented in a *transition table*

$\delta(0, \mathbf{a}) = \{0, 1\}$	
$\delta(0,b) = \{0\}$	
$\delta(1,b) = \{2\}$	
$\delta(2,\mathbf{b}) = \{3\}$	

State	Input a	Input b
0	{0,1}	{0}
1		{2}
2		{3}

NFA Example 2

Transition Table

STATE	a	b	ε
0	{0,1}	{0}	Ø
1	Ø	{0} {2}	Ø
2	Ø	{3}	Ø
3	Ø	Ø	Ø

Acceptance of input strings

NFA Example 3

	a	Ъ	3
S0 ⁺	{S1,S3}		{S2}
S1 ⁺		{S1}	{S2}
S2			{S3}
S3-		{S3}	

- Definition: an DFA is a 5-tuple (S,Σ,δ,s_0,F) , is a special case of NFA
 - There are no moves on input ε , and
 - For each state s and input symbol a, there is exactly one edge out of s labeled a.

DFA M=({S0, S1, S2, S3}, {a,b}, f, S0, {S3}), :
 f (S0, a)=S1
 f (S2, a)=S1

f(S0, b)=S2 f(S2, b)=S3

f(S1, a) = S3 f(S3, a) = S3

f(S1, b) = S2 f(S3, b) = S3

• For example, DFA M=($\{0,1,2,3,4\},\{a,b\},\delta,\{0\},\{3\}$)

•
$$\delta(0, a) = 1$$
 $\delta(0, b) = 4$

$$\delta(1, a) = 4 \delta(1, b) = 2$$

$$\delta(2, a) = 3 \delta(2, b) = 4$$

$$\delta(3, a) = 3$$
 $\delta(3, b) = 3$

$$\delta$$
 (4, a) = 4 δ (4, b) = 4

	а	b
0+	1	4
1	4	2
2	3	4
3-	3	3
4	4	4

	а	b
0+	1	4
1	4	2
2	3	4
3-	3	3
4	4	4

	а	b
0+	1	1
1	1	2
2	3	Т
3-	3	3

 Σ : {a, b, c, d}

S: {S0, S1, S2, S3}

Start: S0

Terminal: {S3}

 $f: \{(S0,a) \rightarrow S1, (S0,c) \rightarrow S2,$

 $(S0,d)\rightarrow S3, (S1,b)\rightarrow S1,$

 $(S1,d)\rightarrow S2, (S2,a)\rightarrow S3,$

 $(S3, c) \rightarrow S3$

NFA v.s. DFA

NFA v.s. DFA

	DFA	NFA
Initial	Single starting state	A set of starting states
ε dege	Not allowed	Allowed
$\delta(S, a)$	S' or ⊥	{S1,, Sn} or ⊥
Implementation	Deterministic	Nondeterministic

- DFA accepts an input string with only one path
- NFA accepts an input string with possibly multiple paths

Construct DFA from NFA

- Construct DFA from NFA
 - For any NFA, there exists an equivalent DFA
 - Idea of construction: eliminate the uncertainty
 - Merge N states in NFA into one single state

Eliminate multiple mapping

Construct DFA from NFA

- INPUT: An NFA N.
- OUTPUT: A DFA D accepting the same language as N.
- METHOD: The algorithm constructs a transition table
 Dtran for D. Each state of D is a set of NFA states, and we
 construct Dtran so D will simulate "in parallel" all possible
 moves N can make on a given input string.

OPERATION	DESCRIPTION	
ϵ -closure(s)	Set of NFA states reachable from NFA state s on ϵ -transitions alone.	
ϵ -closure (T)	Set of NFA states reachable from some NFA state s in set T on ϵ -transitions alone; $= \bigcup_{s \text{ in } T} \epsilon$ -closure(s).	
move(T, a)	Set of NFA states to which there is a transition on input symbol a from some state s in T .	

ε-closure and move Examples

 ε -closure({0}) = {0,1,3,7} move({0,1,3,7},**a**) = {2,4,7} ε -closure({2,4,7}) = {2,4,7} move({2,4,7},**a**) = {7} ε -closure({7}) = {7} move({7},**b**) = {8} ε -closure({8}) = {8} move({8},**a**) = \emptyset

The Subset Construction Algorithm

- NFAs can be in many states at once, while DFAs can only be in a single state at a time.
- Key idea: Make the DFA simulate the NFA.
- Have the states of the DFA correspond to the sets of states of the NFA.
- Transitions between states of DFA correspond to transitions between sets of states in the NFA.

The Subset Construction Algorithm

```
initially, \epsilon-closure(s<sub>0</sub>) is the only state in Dstates, and it is unmarked; while ( there is an unmarked state T in Dstates ) { mark T; for ( each input symbol a ) { U = \epsilon-closure(move(T, a)); if ( U is not in Dstates ) add U as an unmarked state to Dstates; Dtran[T, a] = U; }
```

Subset Construction Example 1

First, Initial state of NFA is ϵ -closure(0), i.e. A={0, 1, 2, 4, 7}, $\Sigma = \{a,b\}$

Dtran[A,a]= ϵ -closure(move(A,a))= ϵ -closure({3,8})={1,2,3,4,6,7,8}, Let B=Dtran[A,a] Dtran[A,b]= ϵ -closure(move(A,b))= ϵ -closure({5})={1,2,4,6,7},

Let C=Dtran[A,b]

Subset Construction Example 1

Dtran[B,a]= ϵ -closure(move(B,a))= ϵ -

Dtran[C,a]= ϵ -closure(move(C,a))= ϵ -closure({3,8})={1,2,3,4,6,7,8}=B Dtran[C,b]= ϵ -closure(move(C,b))= ϵ -closure({5})={1,2,4,6,7}=C

Subset Construction Example 1

Dtran[E,a]= ϵ -closure(move(E,a))= ϵ -closure({3,8})={1,2,3,4,6,7,8}=B Dtran[E,b]= ϵ -closure(move(E,b))= ϵ -closure({5})={1,2,4,6,7}=C

Subset Construction Example 1

NFA STATE	DFA STATE	a	b
$\{0, 1, 2, 4, 7\}$	A	B	C
$\{1, 2, 3, 4, 6, 7, 8\}$	B	B	D
$\{1, 2, 4, 5, 6, 7\}$	C	B	C
$\{1, 2, 4, 5, 6, 7, 9\}$	D	B	E
$\{1, 2, 3, 5, 6, 7, 10\}$	\boldsymbol{E}	B	C

Subset Construction Example 2

Dstates

$$A = \{0,1,3,7\}$$

$$B = \{2,4,7\}$$

$$C = \{8\}$$

$$D = \{7\}$$

$$E = \{5,8\}$$

$$F = \{6,8\}$$

RE to NFA/DFA

Design of a Lexical Analyzer Generator

- Translate regular expressions to NFA
- Translate NFA to an efficient DFA

From Regular Expression to NFA (Thompson's Construction)

r1 = a, r2=b, we have NFA:

r3 = r1|r2, we have NFA:

r=(a|b)*abb

r5 = r3*, we have NFA:

r6 = a, we have NFA:

r=(a|b)*abb

r7 = r5r6, we have NFA:

r=(a|b)*abb

Simulating the NFA

Algorithm 3.22: Simulating an NFA.

INPUT: An input string x terminated by an end-of-file character **eof**. An NFA N with start state s_0 , accepting states F, and transition function move.

OUTPUT: Answer "yes" if M accepts x; "no" otherwise.

METHOD: The algorithm keeps a set of current states S, those that are reached from s_0 following a path labeled by the inputs read so far. If c is the next input character, read by the function nextChar(), then we first compute move(S,c) and then close that set using ϵ -closure(). The algorithm is sketched in Fig. 3.37.

```
    S = ε-closure(s<sub>0</sub>);
    c = nextChar();
    while (c!= eof) {
    S = ε-closure(move(S, c));
    c = nextChar();
    }
    if (S ∩ F!= ∅) return "yes";
    else return "no";
```

Figure 3.37: Simulating an NFA

Simulating a NFA Example 1

Simulating a NFA Example 2

From NFA to DFA

The Subset Construction Algorithm

```
initially, \epsilon-closure(s_0) is the only state in Dstates, and it is unmarked; while ( there is an unmarked state T in Dstates ) {

mark T;

for ( each input symbol a ) {

U = \epsilon-closure(move(T, a));

if ( U is not in Dstates )

add U as an unmarked state to Dstates;

Dtran[T, a] = U;
}
```

From NFA to DFA

NFA STATE	DFA STATE	a	b
$\{0, 1, 2, 4, 7\}$	A	В	C
$\{1, 2, 3, 4, 6, 7, 8\}$	B	B	D
$\{1, 2, 4, 5, 6, 7\}$	C	B	C
{1, 2, 4, 5, 6, 7, 9}	D	B	E
$\{1, 2, 3, 5, 6, 7, 10\}$	\boldsymbol{E}	B	C

Minimizing DFA

After conversion from NFA, the DFA may contain some equivalent states, which lead to low efficiency in the analysis

Minimizing DFA

- Lots of methods
- All involve finding equivalent states:
 - States that go to equivalent states under all inputs (sounds recursive)
- We will use the Partitioning Method

Minimizing DFA

- Step 1
 - Start with an initial partition II with two group: F and S-F (accepting and nonaccepting)
- Step 2
 - Split Procedure
- Step 3

```
- If (II_{new} = II)

II_{final} = II and continue step 4

else

II = II_{new} and go to step 2
```

- Step 4
 - Construct the minimum-state DFA by II_{final} group.
 - Delete the dead state

Split Procedure

```
initially, let \Pi_{\text{new}} = \Pi;

for ( each group G of \Pi ) {

partition G into subgroups such that two states s and t

are in the same subgroup if and only if for all

input symbols a, states s and t have transitions on a

to states in the same group of \Pi;

/* at worst, a state will be in a subgroup by itself */

replace G in \Pi_{\text{new}} by the set of all subgroups formed;
}
```

Example

- initially, two sets {1, 2, 3, 5, 6}, {4, 7}.
- {1, 2, 3, 5, 6} splits {1, 2, 5}, {3, 6} on c.
- {1, 2, 5} splits {1}, {2, 5} on b.

- Major operation: partition states into equivalent classes according to
 - final / non-final states
 - transition functions

	а	b			а	h
Α	В	C	(ABCDE)	10	200 00 <u>40</u> 310 00	10
В	В	ח		AC	В	AC
D	D	U	(ABCD)(E)	В	В	D
C	В	C	(ABC)(D)(E)	D	В	E
D	В	E		U	D	E .
	orane a gross		(AC)(B)(D)(E)		В	AC
	В	C			TANK NET Y	

■ DFA D=({0,1,2,3,4,5}, {a,b}, δ, 0, {0,1}),其中δ见表

states	а	b
0	1	2
1	1	4
2	1	3
3	3	2
4	0	5
5	5	4

States	parti tion	а	b
0	Α	1(A)	2(B)
1	Α	1(A)	4(B)
2	В	1(A)	3(B)
3	В	3(B)	2(B)
4	В	0(A)	5(B)
5	В	5(B)	4(B)

■ DFA D=($\{0,1,2,3,4,5\}$, $\{a,b\}$, δ , 0, $\{0,1\}$),

stat es	parti tion	а	b
0	Α	1(A)	2(B)
1	Α	1(A)	4(B)
2	В	1(A)	3(B)
3	В	3(B)	2(B)
4	В	0(A)	5(B)
5	В	5(B)	4(B)

Cannot be divided any more

stat es	partit ion	а	b
0	Α	1(A)	2(B)
1	Α	1(A)	4(B)
2	В	1(A)	3(C)
3	С	3(C)	2(B)
4	В	0(A)	5(C)
5	С	5(C)	4(B)

■ DFA D=($\{0,1,2,3,4,5\}$, $\{a,b\}$, δ , 0, $\{0,1\}$) is minimized to: DFA D'=($\{A,B,C\}$, $\{a,b\}$, δ , A, $\{A\}$), where δ is defined as follows

state	a	b
А	Α	В
В	Α	С
С	С	В

r=(a|b)*abb

{E} is not dividable, so we only consider {A, B, C, D}

Is {A,B,C,D} dividable?

r=(a|b)*abb

What happens when take in b under {A,B,C,D}? --- becomes {A,B,C}, {D}

r=(a|b)*abb

{A,C} is dividable?

RE v.s. NFA/DFA

■ RE, DFA(NFA), L(RE) are equivalent to each other

Exercise

Given an NFA N

(1) Simulate the NFA on input "aaabb"

(2) Convert the NFA N to its equivalent DFA M

(3) Minimize the DFA M

- (4) Describe what can this DFA/NFA accept in natural language
- (5) Write down the regular expression re, such that L(re) = L(N)

Homework-W3

2018/9/15

Homework – week 3

- pp. 125, Exercise 3.3.5 (c)(d)(f)(h)
- pp.152, Exercise 3.6.5
- pp. 166, Exercise 3.7.1 (b), Exercise 3.7.2 (b),
 Exercise 3.7.3 (d)
- pp. 172, Exercise 3.8.1
- pp.187, Exercise 3.9.4

Lexical Analyzer Implementation

2018/9/15

Overview

- Writing a compiler is difficult requiring lots of time and effort
- Construction of the scanner and parser is routine enough that the process may be automated

Overview

LEX

- Lex is a scanner generator
 - Input is description of patterns and actions
 - Output is a C program which contains a function yylex() which, when called, matches patterns and performs actions per input
 - Typically, the generated scanner performs lexical analysis and produces tokens for the (YACC-generated) parser

YACC

- What is YACC?
 - Tool which will produce a parser for a given grammar.
 - YACC (Yet Another Compiler Compiler) is a program designed to compile a LALR(1) grammar and to produce the source code of the syntactic analyzer of the language produced by this grammar
 - Input is a grammar (rules) and actions to take upon recognizing a rule
 - Output is a C program and optionally a header file of tokens

LEX and YACC: a team

Figure 2: Building a Compiler with Lex/Yacc

```
yacc -d bas.y # create y.tab.h, y.tab.c
lex bas.l # create lex.yy.c
cc lex.yy.c y.tab.c -obas.exe # compile/link
```

Availability

- lex, yacc on most UNIX systems
- bison: a yacc replacement from GNU
- flex: fast lexical analyzer
- BSD yacc
- Windows/MS-DOS versions exist

Lex

Create your lexical analyzer with Lex

Structure of Lex source file

```
%{ constant
                                                               %{ ID,NUM,IF,ADD
          Declaration
                                Regular definition
                                                               letter [A-Za-z]
          %%
                                                               digit [0-9]
                                                               id {letter}({letter}|{digit})*
                               | Pattern {Action}:
          Translation
                                • Pattern is a regular
                                                               num {digit}+
           rules
                                 expression or regular
          %%
                                 definition
                                                               if {return (IF);}
          Auxiliary

    Action is in C, describing

                                                               + {return(ADD);}
          functions
                                 the actions after matching
                                                               {id} {yylval = strcpy(yytext,
                                 the regular expression
                                                                   yylength); return(ID); }
                                                               {num} {yylval = Change();
Functions used in the action
                                                                      return(NUM);}
int Change()
{ /*Convert string into integer*/
                                         yylval: value of the token
                                         vytext: lexeme of the token
                                         yyleng: length of the lexeme
```

Example: LEX

```
왕{
#include <stdio.h>
#include "y.tab.h"
왕}
         [a-zA-Z][a-zA-Z0-9]*
id
      [ \t \n] +
wspc
      [;]
semi
        [,]
comma
응응
int
      { return INT; }
char
       { return CHAR; }
float { return FLOAT; }
                              /* Necessary? */
{comma} { return COMMA; }
{semi} { return SEMI; }
{id} { return ID;}
{wspc} {;}
```

Example: Definitions

```
%{
#include <stdio.h>
#include <stdlib.h>
%}
%start line
%token CHAR, COMMA, FLOAT, ID, INT, SEMI
%%
```

Example: Rules

```
/* This production is not part of the "official"
 * grammar. It's primary purpose is to recover from
 * parser errors, so it's probably best if you leave
 * it here. */
line: /* lambda */
     | line decl
     | line error {
       printf("Failure :-(\n");
       yyerrok;
       yyclearin;
```

Example: Rules

Example: Supplementary Code

```
extern FILE *yyin;
main()
    do {
        yyparse();
    } while(!feof(yyin));
yyerror(char *s)
   /* Don't have to do anything! */
```

Next Time

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

