Surprisal: 언어 이해 예측을 위한 도구

강의 목표

- Surprisal의 특징 이해
- Surprisal을 이용한 언어 실험 진행 방법 이해

목차

- Information-theoretical Complexity Metrics
- 2. Surprisal이란?
- 3. 언어 연구와 언어 모델
- 4. 실습: 실험 설계 및 진행

Complexity Metric이란?

- "quantifies how difficult it is to perceive a linguistic expression." (Hale 2016)
 - Surprisal
 - Entropy Reduction

점증적(Incremental)

- 점증적(Incremental)
 - 각 단어의 인식이 얼마나 어려운지를 실시간으로(in time) 예측

점증적(Incremental)

선생님이 🖸 학교에서

선생님이 학교에서 🔼 학생들을

선생님이 학교에서 학생들을 🔃 가르친다

선생님이 학교에서 학생들을 가르친다

Surprisal의 일반적인 정의

$$C_{surprisal}(w_{i} | w_{1:i-1}) = \\ -log P(w_{i} | w_{1:i-1}) = \\ log \frac{1}{P(w_{i} | w_{1}, \dots, w_{i-1})}$$

Surprisal의 일반적인 정의

확률 문법(Probabilistic Grammar)

"지금까지 들은(말한) 단어들에 비추어 보아, **앞으로 어떤 구조의 단어 연쇄**가 가능할까?"

■ 특정한 단어의 연쇄에 이어, 어떤 단어가 등장 했을 때 **'얼마나 놀라운지'**를 수치화

확률 문법(Probabilistic Grammar)

선생님이 학교에서 학생들을 🔃 가르친다

VS.

선생님이 학교에서 학생들을 🔼 준다

언어 실험에서의 활용

- Eye-tracking 실험의 결과와 유의성 (Boston et al. 2008; Demberg and Keller 2008)
- Reading time과 높은 유사성(Levy et al. 2012)
- 읽기에 있어 N400의 경향 예측(Frank et al. 2013)
- 수용성 판단과 선형적인 관계(Meister et al. 2021)

딥러닝 언어 모델에서의 Surprisal

A. 언어 모델에서

B. Surprisal을 확인하고자 하는 항목의 softmax 값을 추출

C. 밑이 2인 음의 로그를 취함

딥러닝 언어 모델에서의 Surprisal

Surprisal 값의 해석

● 단어가 출현 확률 🕡, Surprisal 💟

- 수용성이 높은 표현 Surprisal 💟
 - 해당 구문을 적절히 학습

Surprisal 값의 해석

• 단, 특정한 구문의 적형성(well-formedness) 을 보장하는 **기준은 존재하지 않음**

IDX	SEN	ITEM	SURPRISAL
1	철수가 영희[MASK] 좋아한다.	0 11	9.349677
2	철수가 영희[MASK] 좋아한다.		0.01812660

호혜성

언어 모델의 언어 능력 🖸 언어 이론

언어 이론 🔼 언어 모델의 언어 능력

언어 모델의 언어 능력 💟 언어 이론

Wilcox, E. G., Futrell, R., & Levy, R. (2022). Using computational models to test syntactic learnability. *Linguistic Inquiry*, 1-88.

- Surprisal을 활용하여 딥러닝 언어 모델들이 filler-gap dependency, 섬 제약(island constraints) 등을 학습했는지 확인
- 확인 결과, "weakly biased models"(i.e., 딥러닝 언어 모델)들이 이러한 현상들을 잘 학습한 것을 확인
 - "Our results provide **empirical evidence against the Argument from the Poverty of the Stimulus** for this particular structure."

언어 이론 💟 언어 모델의 언어 능력(형태: 격표지 교체)

송상헌, 노강산, 박권식, 신운섭, 황동진. (2022). 적대적 사례에 기반한 언어 모형의 한국어 격 교체 이해 능력 평가. 언어학, 30(1), 45-72.

- 교체 가능(alterable)
 - 철수가 학교{에/를} 갔다.
- 교체 불가능(inalterable)
 - 액자가 왼쪽{으로/*을} 기울었다.
- ☑ 딥러닝 언어 모델이 이러한 한국어의 통사적 특성을 이미 잘 이해하고 있기 때문에, **인공지능 언어능력 평가를 위한 적대적 접근이 필요**

언어 이론 💟 언어 모델의 언어 능력(형태: 격표지 교체)

송상헌. (2022). 딥러닝 언어모델과 Surprisal을 활용한 언어분석. 인공지능인문학연구, 12(0), 9-39.

가설

 H_0 = 언어 모델(KR-BERT)은 한국어의 격교체 현상을 제대로 표상하지 못할 것이다.

 H_1 = 언어 모델(KR-BERT)은 한국어의 격교체 현상을 제대로 표상할 것이다.

요인설계

 2×2

요인1: 동사 논항의 격표지 교체 가능 여부

수준1: 교체 가능(alterable)

수준2: 교체 불가능(inalterable)

요인2: 격표지의 종류

수준1: 목적격(e.g., -을/-를)

수준2: 사격(e.g., -에게, -으로, ...)

예문 구성 시 주의점

- 최소대립쌍
- 토크나이저(Tokenizer)
- 인간 대상 실험과의 차이점

예문 구성 시 주의점: 최소대립쌍

- 컴퓨터의 입장에서 최소대립쌍이 맞는지 확인
 - 철수는 영희를 {좋아한다/좋아하지 않는다}.
 - 철수는 {영희를/수진을} 좋아한다.
 - 철수는 영희{를/을} 좋아한다.

예문 구성 시 주의점: 토크나이저

- Tokenization이 제대로 이루어졌는지 확인
 - 철수가 영희[MASK] 좋아한다.
 - ☑ ['[CLS]', '철수', '##가', '영', '##희', '[MASK]', '좋아', '##한다', '.', '[SEP]']
 - 철수가 영희[MASK] 흠모한다.
 - ['[CLS]', '철수', '##가', '영', '##희', '##를', '[MASK]', '흠', '##모', '##한다', '.', '[SEP]']

예문 구성 시 주의점: 토크나이저

- 사용하는 모델의 어휘 목록 확인
 - https://huggingface.co/snunlp/KR-BERT-char16424/tree/main

예문 구성 시 주의점: 토크나이저

• 많은 수의 예문 사용

표 3. 실험 예문 구성

	전체 예문	제외 예문	실험 예문
acc-obl (alterable)	1,014	158	856
non-acc (inalterable)	1,500	771	729

예문 구성 시 주의점: 인간 대상 실험과의 차이점

- 필러를 사용하지 않음
- 문장의 제시 순서가 상관 없음

예문 구성

	목적격(accusative)	사격(oblique)
교체 가능	철수가 학교를 갔다.	철수가 학교에 갔다.
교체 불가능	*액자가 왼쪽을 기울었다.	액자가 왼쪽으로 기울었다.

실험 및 분석

Colab + Excel을 활용하여 실험 및 분석 진행

결과

결과

참고문헌 및 참고자료

- 이규민, 김성태, 김현수, 박권식, 신운섭, 왕규현, 박명관 and 송상헌. (2021). DeepKLM 통사 실험을 위한 전산 언어모델 라이브러리 -. 언어사실과 관점, 52, 265-306.
- 송상헌, 노강산, 박권식, 신운섭, 황동진. (2022). 적대적 사례에 기반한 언어 모형의 한국어 격 교체 이해 능력 평가. 언어학, 30(1), 45-72.
- 송상헌. (2022). 딥러닝 언어모델과 Surprisal을 활용한 언어분석. 인공지능인문학연구, 12(0), 9-39.Frank, S. L., Otten, L. J., Galli, G., & Vigliocco, G. (2013). Word surprisal predicts N400 amplitude during reading.
- Horev, R. (2018, November 17). Bert explained: State of the art language model for NLP. Medium. Retrieved February 5, 2023, from https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
- Hale, J. (2016). Information-theoretical complexity metrics. *Language and Linguistics Compass*, 10(9), 397-412.
- Levy, R., Fedorenko, E., Breen, M., & Gibson, E. (2012). The processing of extraposed structures in English. *Cognition*, 122(1), 12-36.
- Meister, C., Pimentel, T., Haller, P., Jäger, L., Cotterell, R., & Levy, R. (2021). Revisiting the uniform information density hypothesis. *arXiv* preprint arXiv:2109.11635.
- Wilcox, E. G., Futrell, R., & Levy, R. (2022). Using computational models to test syntactic learnability. Linguistic Inquiry, 1-88.

코드 및 파이썬 모듈: https://github.com/gyulukeyi/DeepKLM