Disposition til $\mathbf{Algebra}\ \mathbf{2}$

Malthe Munk Karbo '14

18. juni 2017

INDHOLD

1	Homomorfier, idealer og kvotientringe	2
2	Maksimalidealer og primidealer	4
3	Brøkringe	7
4	Den Kinesiske restklassesætning	9
5	Euklidiske ringe	12
6	Hovedidealområder (PID)	15
7	Faktorielle ringe (UFD)	17
8	Faktorisering i de Gaussiske heltal.	19
9	Faktorielle polynomiumsringe	22
10	Irreducibilitetskriterier i polynomiumsringe	26

HOMOMORFIER, IDEALER OG KVOTIENTRINGE

Taleplan

- 1. Ringhomomorfier, idealer og kvotientringe defineres,
- 2. Første isomorfisætning for ringe,
- 3. Fjerde isomorfisætning for ringe.

Beviser

Definition 1.1

En ringhomomorfi φ mellem to ringe R, S er en funktion $\varphi \colon R \to S$ som opfylder:

- 1. φ er en gruppehomomorfi,
- 2. φ bevarer multiplikation, i.e., for alle $a, b \in R$ gælder der $\varphi(ab) = \varphi(a)\varphi(b)$.

Definition 1.2

En delring $I \subseteq R$ er et (venstre- hhv. højre- hhv. tosidet-)ideal hvis $aI \subseteq I$ hhv. $Ia \subseteq I$ hhv. begge to for alle $a \in R$.

Definition 1.3

Lad R være en ring med ideal $I \subseteq R$, da defineres kvotientringen $til\ R/I := \{a + I | a \in R\}$. Dette er en ring under naturlige operatoner.

Proposition 1.4 (proposition 5 DF)

Hvis $\varphi \colon R \to S$ er en ring homomorfi er $\varphi(R)$ en delring af S og ker φ er et ideal i R.

Proposition 1.5 (1. isomorfisætning for ringe)

Hvis $\varphi \colon R \to S$ er en ringhomomorfi mellem ringe R og S så er $R/\ker(\varphi) \cong \varphi(R)$ via $\overline{r} \mapsto \varphi(r)$, $\overline{r} \in R/\ker(\varphi)$.

Ydermere, givet et ideal $I \subseteq R$, så er afbildningen $R \to R/I$, $r \mapsto [r]_I$ en surjektiv ringhomomorfi med ker = I. Altså er alle idealer lig kernen for en ring homomorfi.

Bevis.

Pr. første isomorfisætning for grupper gælder der at afbildningen $\overline{\varphi} \colon R/\ker(\varphi) \to$

 $\operatorname{Im}(\varphi), [r]_{\ker(\varphi)} \mapsto \varphi(r)$ er en veldefineret isomorfi af grupper. Så der mangler kun at vise at den bevarer multiplikation. Lad $[a]_{\ker(\varphi)}, [b]_{\ker(\varphi)} \in R/\ker(\varphi)$, da har vi

$$\overline{\varphi}([ab]_{\ker(\varphi)}) = \varphi(ab) = \varphi(a)\varphi(b) = \overline{\varphi}([b]_{\ker(\varphi)})\overline{\varphi}([b]_{\ker(\varphi)})$$

Givet et ideal $I \subseteq R$, så er afbildningen $\pi \colon r \mapsto [r]_I$ en surjektiv gruppehomomorfi $R \to R/I$ pr. første isomorfisætning for grupper. Og hvis $r, s \in R$ da er

$$\pi(rs) = [rs]_I = [r]_I[s]_I = \pi(r)\pi(s),$$

så π er en surjektiv ringhomomorfi med $\ker(\pi)=I.$

Proposition 1.6 (4. isomorfisætning for ringe)

For et ideal $I\subseteq R$, da giver tilordningen $A\mapsto A/I$ inklusionsbevarende bijektive korrespondancer:

$$\{Delringe\ af\ R\ som\ indeholder\ I\} \rightarrow \{Delringe\ af\ R/I\},$$

 $\{Idealer\ af\ R\ som\ indeholder\ I\} \rightarrow \{Idealer\ af\ R/I\}.$

Bevis.

Fjerde isomorfisætning for grupper giver, da (I, +) er en normal undergruppe af (R, +), en inklusionsbevarende bijektive korrespondancer mellem additive undergrupper af R som indeholder I og additive undergrupper af R/I, så lad A være en gruppe med $I \subseteq A$.

- 1. Lad $a, b \in A$. Da er $[a]_I[b]_I = [ab]_I \in A/I \iff ab \in A$, så A er en ring hvis og kun hvis A/I er en ring.
- 2. Lad $a \in A$ og $r \in R$. Da er $[r]_I[a]_I = [ra]_I \in A/I \iff ra \in A$, så A er et ideal hvis og kun hvis A/I er et ideal.

Example 1.7 1. Afbildningen $\varphi \colon \mathbb{Z}[x] \to \mathbb{Z}$, $p(x) \mapsto p(0)$ er en ring-homomorfi med $\ker \varphi = (x)$, og im $\varphi = \mathbb{Z}$ så sætningen ovenover giver $\mathbb{Z}[x]/(x) \cong \mathbb{Z}$.

- 2. $n\mathbb{Z}$ er et ideal i \mathbb{Z} .
- 3. $(x) \subseteq \mathbb{Z}[x]$ ideal.

MAKSIMALIDEALER OG PRIMIDEALER

Taleplan

- 1. Definering af maksimalidealer og primidealer.
- 2. Ethvert ægte ideal er indeholdt i et maksimalidealer.
- 3. R kommutativ ring, $M \subseteq R$ maksimalideal hvis og kun hvis R/M legeme.
- 4. R kommutativ ring, P primideal i R hvis og kun hvis R/P integritetsområde.

Beviser

Definition 2.1

For en ring R defineres $\mathcal{R} := \{I \subseteq R | I \text{ ideal } i R\}$. Dette er en partielt ordnet mængde ved inklusion.

Definition 2.2 (maksimal ideal)

Et ideal M i en ring R siges at være et maksimalideal hvis $M \neq R$ og M er maksimalt element i den partielt ordnede mængde \mathcal{R} (i.e. $M \subset I$ medfører I = M eller I = R).

Lemma 2.3 (zorns)

Hvis alle totalt ordnede delmængder i en partielt ordnet mængde (A, \leq) har en øvre grænse, så har A et maksimalt element.

Proposition 2.4

Ethvert ægte ideal I i en ring R med enhed er indeholdt i et maksimalt ideal.

Bevis.

Lad $I \subseteq R$ være et ægte ideal i en ring R med enhed, så $1 \in R \Rightarrow R \neq 0$.

Lad $S := \{S \in R \mid S \text{ ægte ideal med } I \subseteq S\}$. Da er S en ikke-tom (da $I \in S$) partielt ordnet mængde ved inklusion. Lad T være en totalt ordnet delmængde (kæde) af S, og definer

$$J := \bigcup_{T \in \mathcal{T}} T.$$

Da er J et ideal: $0 \in T$ for alle $T \in \mathcal{T}$ så $J \neq \emptyset$. Hvis $a, b \in J$, er der idealer $A, B \in \mathcal{T}$ med $a \in A$ og $b \in B$. Da \mathcal{T} totalt-ordnet antager vi $A \subseteq B$. Så er $a, b \in B$ og $a + b \in B$ så $a + b \in J$. For $r \in R$ har vi

$$rJ = \bigcup_{T \in \mathcal{T}} \underbrace{rT}_{\subseteq T} \subseteq \bigcup_{T \in \mathcal{T}} T = J,$$

og tilsvarende er $Jr \subseteq J$, så J er et ideal i R.

Vi mangler blot at vise, at $J \in \mathcal{S}$. Hvis ikke, så er $J = R \iff 1 \in J \iff 1 \in T$ for et $T \in \mathcal{T}$, men det er antaget umuligt. Så J er en øvre grænse for \mathcal{T} , så zorns lemma sikrer eksistensen af et maksimalideal $M \in \mathcal{S}$.

Proposition 2.5

Lad $I \subseteq R$ være et ideal i en ring R med $1 \neq 0$. Da gælder

- 1. I = R hvis og kun hvis I indeholder en enhed.
- 2. Hvis R er kommutativ, så er R er legeme hvis og kun hvis $\mathcal{R} = \{0, R\}$.

Bevis.

- (1): I = R medfører $1 \in I$. Antag $u \in I$ er en enhed, så er $1 = u^{-1}u \in I$ så for alle $r \in R$ har vi $r = r \cdot 1 \in I$.
- (2): R legeme hvis og kun hvis $R^{\times} = R \setminus \{0\}$. Lad $(0) \neq I$ være et ideal i R. Da er $I \cap R^{\times} \neq \emptyset$, så pr. (1) er I = R. Antag nu at de eneste idealer i R er 0 og R. Lad u være et vilkårligt element i $R \setminus \{0\}$. Per antagelse er (u) = R, så $1 \in (u)$, og derfor er der $u^{-1} \in R$ så $u^{-1}u = 1$.

Proposition 2.6 (R komm ideal max iff kvotient legeme)

Lad R være en unital kommutativ ring. Da er et ideal M i R maksimalt hvis og kun hvis kvotientringen R/M er et legeme.

Bevis.

Per fjerde isomorfisætning er der en bijektiv korrespondance mellem idealer A i R som indeholder M og idealer A/M i R/M. Så M er maksimal hvis og kun hvis de eneste idealer i R/M lig R/M og (0) og per ovenstående sker dette hvis og kun hvis R/M et legeme.

Definition 2.7

Et primideal P i en kommutativ ring R er et ægte ideal sådan at hvis $ab \in P$ så er $a \in P$ eller $b \in P$ for alle $a, b \in R$.

Proposition 2.8

Et ideal P i en kommutativ ring R er et primideal hvis og kun hvis R/P er et integritetsområde

Bevis.

For $a, b \in R$:

$$ab \in P \iff \overline{ab} = \overline{a}\overline{b} = 0$$

ses let nu.

Proposition 2.9

For R kommutativ gælder: $M \subseteq R$ maksimal ideal medfører M primideal

Bevis.

M maksimalt $\iff R/M$ legeme \implies at R/M integritetsområde $\iff M$ prim. \square

Modsatte gælder ikke: $(x) \in \mathbb{Z}[x]$ prim men ikke maks $(\mathbb{Z}[x]/(x) \cong \mathbb{Z}$ ikke legeme eller $(x) \subseteq (2, x) \subseteq \mathbb{Z}[x]$).

Example 2.10 1. $2\mathbb{Z}$ er maksimalt i \mathbb{Z} men $4\mathbb{Z} \subseteq 2\mathbb{Z}$ er ikke.

2. $(2,x)\subseteq \mathbb{Z}[x]$ er maksimalt ($\mathbb{Z}[x]/(2,x)\cong \mathbb{Z}/2\mathbb{Z}$ som er et legeme)

BRØKRINGE

Taleplan

- 1. Definering af en relation på $R \times D$ for kommutativ ring R og multiplikativt lukket mængde $D \subseteq R$.
- 2. Definition af brøkringen $D^{-1}R$.
- 3. Naturlig ring homomorfi $R \mapsto D^{-1}R$.
- 4. Brøkringens universalegenskab.

Beviser

Definition 3.1

En delmængde D af en kommutativ unital ring R siges at være multiplikativt lukket hvis $1 \in D$ og for all $d, d' \in D : dd' \in D$.

I det følgende er R en unital kommutativ ring, og $D \subseteq R$ er en multiplikativt lukket delmængde. (eks $R \setminus \mathfrak{P}$ hvor \mathfrak{P} er et primideal, R^{\times} mængden af enheder og lign.)

Definition 3.2

For multiplikativt lukket delmængde, $D \subseteq R$, defineres en relation $\sim på R \times D$ til

$$(r,d) \sim (r',d') \iff \exists u \in D : rd'u = r'du$$

Dette er en ækvivalensrelation (kan vises), og vi annoterer $[(r,d)]_{\sim} := \frac{r}{d}$

Definition 3.3 (Brøkringen)

For multiplikativt lukket delmængde, $D \subseteq R$, defineres delmængden af ækvivalensklasser R mht. D til

$$D^{-1}R := \left\{ \frac{r}{d} \mid r \in R, \ d \in D(\right\} \right\}$$

Dette kan vises at være en kommutativ unital ring med $0:=\frac{0}{1}$ og $1:=\frac{1}{1}$ og $(+,\cdot)$ defineret ved

$$\frac{r}{d} + \frac{s}{t} := \frac{rt + sd}{dt} \text{ og } \frac{r}{d} \frac{s}{t} := \frac{rs}{dt}.$$

Malthe Karbo 3. Brøkringe

(disse kan vises at være veldefinerede, i.e., uafhængige af valg af repræsentanter). I denne ring gælder de 'almindelige' regneregler for brøker fx forlængelse af brøker med elementer fra D.

Bemærk: hvis D ikke indeholder 0 eller nogen nuldivisorer, så er $\frac{r}{d} = 0 \iff r = 0$, og hvis $0 \in D$ så er $D^{-1}R = 0$ -ringen.

Definition 3.4

Afbildningen $\rho: R \to D^{-1}R$, $r \mapsto \frac{r}{1}$ er 'den kanoniske ringhomomorfi til brøkringen'. Det er let at vise at det er en ringhomomorfi med $\rho(1) = 1$.

Pr bemærkningen: hvis D ikke indeholder 0 eller nogen nuldivisorer, da er ρ injektiv (kernen er nul).

Theorem 3.5 (brøkringens universalegenskab)

Den kanoniske ringhomomorfi $\rho: R \to D^{-1}R$ har følgende universalegenskab: For alle kommutative unitale ringe S og alle ringhomomorfier $\varphi: R \to S$ så $\varphi(D) \subseteq S^{\times}$ eksisterer $\tilde{\varphi}: D^{-1}R \to S$ så følgende diagram kommuterer:

Og den er givet ved $\tilde{\varphi}(\frac{r}{d}) = \varphi(r)\varphi(d)^{-1}$ for $\frac{r}{d} \in D^{-1}R$, og φ injektiv medfører $\tilde{\varphi}$ injektiv.

Bevis.

Først vises **entydighed**: Hertil bemærkes at $\frac{r}{d} = \frac{r}{1}(\frac{d}{1})^{-1} = \rho(r)\rho(d)^{-1}$. Så hvis $\tilde{\varphi} \colon D^{-1}R \to S$ er en unital ringhomomorfi så diagrammet kommuterer, da gælder $\tilde{\varphi}(\frac{r}{d}) = \tilde{\varphi}(\rho(r)\rho(d)^{-1}) = \varphi(r)\varphi(d)^{-1}$, så denne afbildning må være på den form.

Eksistensen: Vi skal blot vise denne afbildning er veldefineret. Lad $\frac{r}{d}=\frac{r'}{d'}$, sådan at rd'u=r'du for et $u\in D$. Da $\varphi(D)\subseteq S^{\times}$, findes $\varphi(u)^{-1}\in S$, og har

$$\varphi(rd'u) = \varphi(r'du) \iff \varphi(r)\varphi(d)^{-1} = \varphi(r')\varphi(d')^{-1} \iff \tilde{\varphi}(\frac{r}{d}) = \tilde{\varphi}(\frac{r'}{d'}).$$

Det vises let at denne bevarer produkter og addition samt er unital.

Så vises **injektivitet**: Antag φ injektiv og at $\tilde{\varphi}(\frac{r}{d}) = 0 \iff \varphi(r)\varphi(d)^{-1} = 0$, så må r = 0 så $\frac{r}{d} = 0$, så $\ker(\tilde{\varphi}) = 0$.

Example 3.6 1. Hvis $D = R \setminus \{0\}$ kaldes brøkringen $D^{-1}R$ for brøklegemet over R. For \mathbb{Z} får vi \mathbb{Q} .

2. samme som ovenover: For R=Z[x] får viQ[x], for Q[x] får viQ[x] igen.

Kapitel 4

DEN KINESISKE RESTKLASSESÆTNING

Taleplan

- 1. Produktring og komaksimalitet
- 2. Den kinesiske restklassesætning (n = 2)
- 3. Den kinesiske restklassesætning $n \geq 2$
- 4. En anvendelse.

her

Beviser

For en familie af ringe $(R_{\alpha})_{\alpha \in A}$ kan man danne produktringen $\prod_{\alpha \in A} R_{\alpha}$ hvor addition og multiplikation sker indgangsvist. Fra nu af er R en kommutativ unital ring.

Definition 4.1

To idealer $I, J \subseteq R$ siges at være komaksimale hvis I + J = R, i.e., hvis der findes $x \in I$ og $y \in J$ så x + y = 1.

Eksempel: For $n, m \in \mathbb{Z}$ indbyrdesk primiske er $n\mathbb{Z} + m\mathbb{Z} = \mathbb{Z}$.

Proposition 4.2 (DKR n=2)

Givet idealer $I_1, I_2 \subseteq R$, da er afbildningen $\varphi \colon R \to R/I_1 \times R/I_2$ givet ved

$$r \mapsto ([r]_{I_1}, [r]_{I_2}), \quad r \in R$$

en ringhomomorfi med ker $\varphi = I_1 \cap I_2$. Hvis I_1 og I_2 er komaksimale er φ surjektiv og $I_1 \cap I_2 = I_1I_2$ og

$$R/(I_1I_2) \cong R/I_1 \times R/I_2$$
.

Bevis.

Det er oplagt en ringhomomorfi. Hvis $\varphi(r) = (0,0)$ så er $r \in I_1$ og $r \in I_2$, så ker $\varphi = I_1 \cap I_2$. Antag nu at I_1 og I_2 er komaksimale, og vælg $x \in I_1$ og $y \in I_2$ så 1 = x + y. Da er x = 1 - y og y = 1 - x så $\varphi(x) = (0,1)$ og $\varphi(y) = (1,0)$. Så for $([r_1]_{I_1}, [r_2]_{I_2}) \in R/I_1 \times R/I_2$ har vi

$$\varphi(r_1y+r_2x)=\varphi(r_1)(1,0)+\varphi(r_2)(0,1)=([r_1]_{I_1},0)+(0,[r_2]_{I_2})=[r_1]_{I_1},[r_2]_{I_2}).$$

Og der gælder generelt at $I_1I_2\subseteq I_1\cap I_2$. Den modsatte inklusion vises ved: lad $c\in I_1\cap I_2$, og lad $x\in I_1$ og $y\in I_2$ så x+y=1. Så er

$$c = c \cdot 1 = c(x+y) = \underbrace{cx}_{\in I_1 I_2} + \underbrace{cy}_{\in I_1 I_2} \in I_1 I_2.$$

Ved første isomorfisætning har vi

$$R/I_1 \times R/I_2 \cong R/(I_1 \cap I_2) = R/(I_1I_2).$$

I tilfældet med I_1, I_2, \dots, I_n idealer fås en generalisering

Proposition 4.3

Lad $I_1, I_2, \ldots, I_n \subseteq R$ være idealer. Da er afbildningen $\varphi \colon R \to R/I_1 \times \cdots \times R/I_n$ givet ved

$$r \mapsto ([r]_{I_j})_{1 \le j \le n}$$

en ringhomomorfi med $\ker \varphi = I_1 \cap I_2 \cap \cdots \cap I_n$. Ydermere, hvis I_1, I_2, \ldots, I_n er indbyrdes komaksimale er afbildningen surjektiv og $I_1 \cap I_2 \cap \cdots \cap I_n = I_1 I_2 \ldots I_n$ og der er en isomorfi

$$R/(I_1I_2...I_n) \cong R/I_1 \times R/I_2 \times \cdots \times R/I_n.$$

Bevis.

 φ er klart en veldefineret homomorfi og

$$r \in \ker \varphi \iff [r]_{I_i} = 0 \ \forall 1 \le j \le n \iff r \in I_1 \cap \cdots \cap I_n.$$

Resten af beviset følger direkte hvis vi kan vise at I_1 og $I_2I_3\ldots I_n$ er komaksimale. Dette gøres ved induktion: gælder for n=2 pr. ovenstående. Antag det gælder for n>2 og lad I_1,I_2,\ldots,I_{n+1} være indbyrdes komaksimale. For $2\geq i\geq n+1$ vælges $x_j\in I_1$ og $y_j\in I_j$ så $x_j+y_j=1$. Definer $J:=I_2I_3\cdots I_{n+1}$ Så er

$$1 = \prod_{2 \le j \le n+1} (x_j + y_j) \in I_1 + y_2 y_3 \cdots y_{n+1} \subseteq I_1 + J.$$

Så I_1 og $J=I_2I_3\cdots I_{n+1}$ er komaksimale, så tilfældet n=2 giver $I_1I_2\cdots I_{n+1}=I_1\cap I_2\cap\cdots\cap I_{n+1}$.

Vi mangler at vise at afbildningen $R \to R/I_1 \times R/I_2 \times \dots R/I_{n+1}$ er surjektiv. lad $[b_i]_{I_i} \in R/I_i$ for $i=1,2,\dots,n+1$. Pr. induktionsantagelsen findes $b \in R$ så $[b]_{I_i} = [b_i]_{I_i}$ for $i=2,3,\dots,n+1$. Pr. n=2 findes også $a \in R$ så $[a]_{I_1} = [b_1]_{I_1}$ og $[a]_J = [b]_J$. Da har vi $a-b_j = \underbrace{(a-b)}_{I_1} + (b-b_j) \in J + I_j \subseteq I_j$ for $j=2,3,\dots,n+1$.

Så
$$[a-b_j]_{I_j} = [0]_{I_j} \iff [a]_{I_j} = [b_j]_{I_j} \text{ for } j=2,3,\ldots,n+1.$$
 Så $a \mapsto ([a]_{I_1},[a]_{I_2},\ldots,[a]_{I_{n+1}}) = ([b_1]_{I_1},[b_2]_{I_2},\ldots,[b_{n+1}]_{I_{n+1}}).$

Example 4.4

For \mathbb{Z} : Hvis $n_1, \ldots, n_k \in \mathbb{Z}$ er parvist primiske og $a_1, \ldots, a_k \in \mathbb{Z}$, da findes $x \in \mathbb{Z}$ så $x \equiv a_i \mod n_i$ for $1 \le i \le k$. Eksempel: $n_1 = 3$ og $n_2 = 10$, da får vi $\mathbb{Z}/30\mathbb{Z} \cong \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/10\mathbb{Z}$, via $[n]_30 \mapsto ([n]_3, [n]_10 \mod \text{invers} ([a]_3, [b]_{10}) \mapsto [10a - 9b]_{30}$. Så hvis vi vil løse

$$x \cong 2 \mid 3$$
$$x \cong 6 \mid 10$$

har vi $x=10\cdot 2-9\cdot 6=-34,$ så alle løsningerne er lig-34 mod30,altså $x=\ldots,-94,-64,-34,-4,26,56,\ldots$

EUKLIDISKE RINGE

Taleplan

- 1. Definition af euklidiske ringe (og få eksempler)
- 2. Euklidisk \implies PID
- 3. Euklids algoritme samt GCD
- 4. GCD = rest fra euklids algoritme

Beviser

I det følgende antages R at være et integritetsområde (kommutativ uden nuldivisorere)

Definition 5.1

En funktion $N: R \to \mathbb{N}_0$ med N(0) = 0 kaldes en norm på integritetsområdet R. Hvis N(a) > 0 for $a \neq 0$ kaldes N en positiv norm.

Definition 5.2

Et integritetsområde R siges at være Euklidisk hvis der er en norm N på R så for alle $a,b \in R$ hvor $b \neq 0$ findes elementer $q,r \in R$ så

$$a = qb + r$$
 hvor $r = 0$ eller $N(r) < N(b)$.

Example 5.3

Følgende er eksempler på euklidiske ringe:

- 1. Ethvert legeme: N=0, har $a=ab^{-1}b$ for $b\neq 0$.
- 2. De hele tal \mathbb{Z} : $N = \|\cdot\|$: For $b \neq 0$, antag b > 0. Da $\mathbb{Z} = \bigcup_{n \in \mathbb{Z}} [nb, (n+1)b[$ findes der givet $a \in \mathbb{Z}$ et $k \in \mathbb{Z}$ så $a \in [kb, (k+1)b[$. Sættes $r := a kb \in [0, b[$ har vi a = kb + r = kb + a kb og |r| < |b|. For b < 0 er -b > 0.
- 3. De Gaussiske heltal $\mathbb{Z}[i] \mod N = ||\cdot||^2$ (skitse).

Definition 5.4 (Hovedidealområde (PID))

Et hovedidealområde (PID) er et integritetsområde R hvori de eneste ægte idealer er idealerne frembragt af enkelte elementer, i.e. $I \subseteq R$ ideal og $(0) \neq I \neq R \implies I = (a)$ for et $a \in R \setminus \{0\}$.

Proposition 5.5 (euklid => PID)

 $Hvis\ R\ er\ en\ euklidisk\ ring\ så\ er\ R\ et\ integritetsområde.$

Bevis.

Lad I være et ideal i R. Hvis I=(0) er vi færdige. Antag $I\neq (0)$. Lad $0\neq d\in I$ sådan at $N(d)\leq N(a)$ for alle $0\neq a\in I$. Da er $(d)\subseteq I$. Lad $a\in I$. Da er a=qd+r med N(r)< N(d). Da $N(d)\leq N(a)$ for $a\neq 0$ må r=0 så a=qd derfor er $a\in (d)$.

Theorem 5.6 (Euklids algoritme)

I en euklidiske ring R med norm N, så givet $a \in R$, $0 \neq b \in R$, da findes $q_0, \ldots, q_n, q_{n+1} \in R$ og $r_0, \ldots, r_n \in R$ så

$$a = q_0 b + r_0, r_0 \neq 0 \text{ og } N(r_0) < N(b)$$
 (0)

$$b = q_1 r_0 + r_1, r_1 \neq 0 \text{ og } N(r_1) < N(r_0)$$
(1)

$$r_0 = q_2 r_1 + r_2, \quad r_2 \neq 0 \text{ og } N(r_2) < N(r_1)$$
 (2)

:

$$r_{n-2} = q_n r_{n-1} + r_n, \quad r_n \neq 0 \text{ og } N(r_n) < N(r_{n-1})$$
 (n)

$$r_{n-1} = q_{n+1}r_n \tag{n+1}$$

Bevis.

For $(a, b) \in R \times R \setminus \{0\}$ findes $q, r \in R$ så

$$a = qt + r$$
 hvor $r = 0$ eller $N(r) < N(b)$.

successivt opnås følger q_0, q_1, \ldots og r_0, r_1, \ldots som opfylder $(0), (1), \ldots$, og sådan at følgen $N(r_i)$ aftager i \mathbb{N}_0 , derfor er følgen 0 fra et vist $n+1 \in \mathbb{N}$.

Example 5.7

Lad $R = \mathbb{Z}$ og a = 100, b = 6. Da har vi

$$a = 100 = 16 \cdot 6 + 4$$
$$4 = 4 \cdot 1 + 0.$$

så $r_0 = 4$, $q_0 = 16$ og $q_1 = 1$ og $r_1 = 0$.

Definition 5.8

For $a, b \in R$, hvor R er et integritetsområde siger vi at b går op i a ($b \mid a$) hvis der findes $x \in R$ så a = bx, eller ækvivalent, hvis (a) \subseteq (b).

Definition 5.9 (GCD)

For $a, b \in R$, så siges et element $d \in R$ at være største fælles divisor for a og b hvis:

1. $d \mid a \text{ og } d \mid b$, eller ækvivalent, $(a) \subseteq (d)$ og $(b) \subseteq (d)$.

2. $d' \mid a \text{ og } d' \mid b \text{ medfører } d' \mid d \text{ eller } \text{ækvivalent } (a) \subseteq (d) \text{ og } (b) \subseteq (d) \text{ medfører } (d) \subseteq (d').$

I dette tilfælde sættes d := gcd(a, b).

Proposition 5.10

For $a,b \in R$ vil (a,b) = (d) medføre, at d = gcd(a,b) og der findes $x,y \in R$ så d = ax + by.

Bevis.

da $d \in (a, b)$ findes der (pr. definition) $x, y \in R$ så d = ax + by. Vi har også $(a), (b) \subseteq (a, b) = (d)$ så pr. definition vil $d \mid a$ og $d \mid b$. Hvis der findes d' så $(a) \subseteq (d')$ og $(b) \subseteq (d')$ da vil $(d) = (a, b) \subseteq (d')$ så $d' \mid d$.

Nemt korollar

Corollary 5.11

R PID medfører at gcd(a,b) findes for alle $a,b \in R$.

Theorem 5.12

For en euklidisk ring R, med $a \in R$ og $b \in R \setminus \{0\}$, da vil slut elementet r_n af euklids algoritme

$$a = q_0 b + r_0, r_0 \neq 0 \text{ og } N(r_0) < N(b)$$
 (0)

$$b = q_1 r_0 + r_1, r_1 \neq 0 \text{ og } N(r_1) < N(r_0)$$
 (1)

$$r_0 = q_2 r_1 + r_2, \quad r_2 \neq 0 \text{ og } N(r_2) < N(r_1)$$
 (2)

:

$$r_{n-2} = q_n r_{n-1} + r_n, \quad r_n \neq 0 \text{ og } N(r_n) < N(r_{n-1})$$
 (n)

$$r_{n-1} = q_{n+1}r_n \tag{n+1}$$

være gcd(a,b), altså $(a,b) = (r_n)$.

Bevis.

Sæt $r_{-2} := a, r_{-1} := b$ og $r_{n+1} := 0$. Da er

$$r_{i-2} = q_i r_{i-1} + r_i$$
, for alle $i = 0, ..., n+1$

sådan at $(r_{i-2}, r_{i-1}) = (r_{i-1}, r_i)$ for alle i = 0, ..., n+1, sådan at

$$(a,b) = (r_{-2}, r_{-1}) = (r_{-1}, r_0) = \cdots = (r_{n-1}, r_n) = (r_n, r_{n+1}) = (r_n)$$

$$da r_{n+1} = 0.$$

HOVEDIDEALOMRÅDER (PID)

Taleplan

- 1. Definition af hovedidealområder (PID'er) samt nogle eksempler
- 2. I hovedidealområde findes gcd(a,b) for alle a,b og gcd(a,b) = ax + by
- 3. Ikke-nul primidealer i hovedidealområder er maksimalidealer
- 4. integritetsområde + D-H norm => hovedidealområde.

Beviser

 ${\cal R}$ integritetsområde.

Definition 6.1 (Hovedidealområde (PID))

Et hovedidealområde (PID) er et integritetsområde R hvori de eneste ægte idealer er idealerne frembragt af enkelte elementer (hovedidealer), i.e. $I \subseteq R$ ideal og $(0) \neq I \neq R \implies I = (a)$ for et $a \in R \setminus \{0\}$.

Definition 6.2 (GCD)

For $a, b \in R$, så siges et element $d \in R$ at være største fælles divisor for a og b hvis:

- 1. $d \mid a \text{ og } d \mid b$, eller ækvivalent, $(a) \subseteq (d) \text{ og } (b) \subseteq (d)$.
- 2. $d' \mid a \text{ og } d' \mid b \text{ medfører } d' \mid d \text{ eller } \text{ækvivalent } (a) \subseteq (d) \text{ og } (b) \subseteq (d) \text{ medfører } (d) \subseteq (d').$

I dette tilfælde sættes d := gcd(a, b).

Proposition 6.3

For $a,b \in R$ vil (a,b) = (d) medføre, at d = gcd(a,b) og der findes $x,y \in R$ så d = ax + by.

Bevis.

da $d \in (a, b)$ findes der (pr. definition) $x, y \in R$ så d = ax + by. Vi har også $(a), (b) \subseteq (a, b) = (d)$ så pr. definition vil $d \mid a$ o.g $d \mid b$. Hvis der findes d' så $(a) \subseteq (d')$ og $(b) \subseteq (d')$ da vil $(d) = (a, b) \subseteq (d')$ så $d' \mid d$.

Corollary 6.4

R PID medfører at gcd(a, b) findes for alle $a, b \in R$.

Proposition 6.5 (prim ideal er maksimalt i hovedidealområde)

Lad (p) være et ikke-nul primideal i et hovedidealområde R. Da er (p) maksimalt.

Bevis.

Antag (m) er et ideal som indeholder (p) med $(m) \neq R$. Da er $p \in (m)$, så der er $sr \in R$ så p = rm, så $rm = p \in (p)$. Da (p) er et primideal er $r \in (p)$ eller $m \in (p)$. Hvis $m \in (p)$ er (m) = (p) så antag at det er $r \in (p)$. Da er r = ps for et $s \in R$, og vi har

$$p = rm = psm \implies sm = 1,$$

så m er en enhed så (m) = R

Og den modsatte gælder altid: R kommutativ og M maksimaltideal i R medfører M primideal (R/M legeme => integritet iff prim).

Definition 6.6

En norm N er en Dedekind-Hasse norm hvis N er positiv og for alle ikke-nul $a, b \in R$ holder det at enten er $a \in (b)$ eller der er et ikke-nul element i $r \in (a,b)$ med N(r) < N(b) (altså enten $b \mid a$ eller $\exists s, t \in R$ så 0 < N(sa - tb) < N(b)).

Proposition 6.7

 $Et\ integritetsområde\ R\ med\ en\ D\text{-}H\ norm\ N\ er\ et\ hovedidealområde.$

Bevis.

Antag I er et ikke-nul ideal i R og $0 \neq b \in I$ med N(b) minimalt $(N(a) \geq N(b))$ for alle $0 \neq a \in I$). Lad $0 \neq a \in I$, da er $(a,b) \subseteq I$. Da vil $(a) \in (b)$, for ellers ville der være $sa - tb \in (a,b) \subseteq I$ så N(as - tb) < N(b), men N(b) er antaget mindst muligt, heraf får vi $I \subseteq (b)$, så I = (b).

Kapitel 7

FAKTORIELLE RINGE (UFD)

Taleplan

- 1. Definition af faktorielle ringe (UFD)
- 2. Eksempler
- 3. PID => faktoriel ring

Beviser

Lad R være et integritetsområde (kommutativt med enhed uden nul-divisorere).

Definition 7.1

R integritet som råde:

- 1. Lad $r \in R$ være en ikke-enhed og et ikke-nul element. Så er r irreducibel i R hvis r = ab, $a, b \in R$ medfører a eller b er enhed.
- 2. Et ikke nul-element $p \in R$ er et primelement hvis (p) er et prim ideal. (tænk $p \mid ab \mod p$ medfører $p \mid a$ eller $p \mid b$).
- 3. $a, b \in R$ associerer hvis a = bu for en enhed $u \in R$, skriver $a \stackrel{asc}{\sim} b$.
- 4. $p \in R$ prim \implies p irreducibel

I PID ring $R: r \in R \implies r$ primelement.

Definition 7.2 (faktorielle ringe (UFD))

Et faktoriel ring (UFD) et et integritetsområde R sådan at alle ikke-enheder $0 \neq r \in R \setminus R^{\times}$ opfylder følgende:

- 1. r kan skrives som et endeligt produkt af irreducerbare elementer $p_i \in R$, i.e., $r = p_1 p_2 \cdots p_n$.
- 2. Ovenstående dekomposition er entydig op til associerede: $r=q_1q_2\cdots q_m$ medfører n=m og man kan få $p_i\overset{asc}{\sim}q_i$ ved om-nummerering.

Example 7.3

Eksempler omfatter bl.a. \mathbb{Z} eller alle legemer F samt F[x] (dette følger af nedestående samt UFD iff polynomie ring UFD)

Proposition 7.4 (PID => faktoriel ring (UFD))

Alle hovedidealområder (PID) er faktorielle ringe (UFD).

Bevis.

Lad R være et hovedidealområde og $r \in R$ være ikke-nul og ikke-enhed. Hvis r er irreducibel er vi færdige. Antag for modstrid, at r er reducerbar, men r ikke er et produkt af endeligt mange irreducerbare. Da har vi for $k \geq 2$ at vi kan skrive $r = \prod_{i \geq 1}^k r_i^k$ med i hvert fald r_k^k en reducerbar ikke-enhed for $2 \leq k$, måske flere. Dette giver en følge hvis $r_1^1 := r$.

Antag for simpeltheds skyld at for $k > 2 \in \mathbb{N}$ er $r_i^k = r_i^{k-1}$ for $1 \le i < k-1$, så bogens eksempel genskabes, i.e.,

$$r = r_1^2 r_2^2 = r_1 r_2$$

$$r_1^3 r_2^3 r_3^3 = r_1 r_{21} r_{22}$$

$$r_1^4 r_2^4 r_3^4 r_4^4 = r_1 r_{21} r_{221} r_{222}$$

$$r_1^5 r_2^5 r_3^5 r_4^5 r_5 = r_1 r_{21} r_{221} r_{2221} r_{2222}$$

For hvert $k \geq 2$ vælg da $r_k := r_k^k \in (r_i^k)_{i=1}^k$ sådan at vi får en strengt-voksende følge af idealer i R, altså:

$$(r) \subset (r_2) \subset (r_3) \subset \cdots \subset R$$

Dette kan ikke ske! Givet en voksende kæde af idealer i R, I_1, I_2, \ldots vil der være $n \in \mathbb{N}$ så $I_k = I_n$ for $k \geq n$: Lad $I_1 \subset I_2 \subset \cdots \subset R$ være en voksende kæde af ægte idealer, og definer idealet $I := \bigcup_{i \geq 1} I_i$. Da R er PID er I = (a) for et $a \in I_n$ for et n. Men da har vi $I_n \subset I = (a) \subset I_n$. Så $I = I_n$, så $I_k = I_n$ for $k \geq n$. Derfor må processen ovenover terminerer, sådan at vi får en endelig dekomposition af r ved irreducible.

Nu vises entydighed af dekompositionen op til association: Lad n være antallet af irreducible faktorer i dekompositionen for r. Hvis n = 0 er r enhed. Antag $n \ge 1$ og at det er sandt for n - 1. Lad

$$r = p_1 p_2 \cdots p_n = q_1 q_2 \cdots q_m \quad m \ge n,$$

hvor q_i og p_j er irreducible. Her tillades $q_i = p_j$. Da p_1 er irreducible og R er PID er p_1 et primelement så $p_1 \mid q_1q_2\cdots q_m$, så $p_1 \mid q_1$ (ved omrokering af q_i 'erne). Så er $q_1 = p_1u$ for en enhed u, da q_1 er irreducible. Så har vi ved at fjerne p_1 fra begge sider

$$p_2p_3\cdots p_n=uq_2q_3\cdots q_m.$$

Pr. induktionsantagelsen er $p_i \stackrel{asc}{\sim} q_i$ for $2 \leq i \leq n$ ved passende omrokering. Hvis m > n, da findes en enhed u så, ved at fjerne venstre siden ovenover:

$$1 = uq_{n+1}q_{n+2}\cdots q_m$$

Altså er $q_{n+1}q_{n+2}\cdots q_m=u^{-1}$ hvorfor m=n.

FAKTORISERING I DE GAUSSISKE HELTAL.

Taleplan

- 1. Definition af Gaussiske Heltal og Field-norm.
- 2. Kriterie for irreducibel i $\mathbb{Z}[i]$
- 3. Et lemma om primtalsform
- 4. Sætning om primtal=sum af to kvadrater
- 5. De irreducible elementer i $\mathbb{Z}[i]$

Beviser

Definition 8.1

De Gaussiske heltal $\mathbb{Z}[i]$ er mængden $\{a+ib \mid a,b,\in\mathbb{Z}\}\subseteq\mathbb{C}$. De er udstyret med en **Field-norm**: $N\colon\mathbb{Z}[i]\to\mathbb{N}_0$, $a+ib\mapsto a^2+b^2=(a+ib)(a-ib)$. Enhederne er $\{\pm 1,\pm i\}$ (et element x er enhed hvis og kun hvis $N(x)=\pm 1$). Den er **Euklidisk** og derfor **PID** og derfor **UFD**.

Hvis $\alpha \in \mathbb{Z}[i]$ opfylder $N(\alpha) = \pm p$ hvor p er et primtal, da er α irreducibel: Lad $\alpha = by$ for $b, y \in \mathbb{Z}[i]$. Da field-normen N er multipliktiv får vi

$$\pm p = N(\alpha) = N(by) = N(b)N(y)$$

Hvorfor vi får

$$N(b) = \pm p \text{ og } N(y) = \pm 1 \text{ eller } N(y) = \pm p \text{ og } N(b) = \pm 1$$

Så enten b eller y er enhed, så α er reducibel.

Det følgende lemma kan bevises:

Lemma 8.2

Et primtal $p \in \mathbb{Z}$ deler et heltal $n^2 + 1$ hvis og kun hvis p = 2 eller $p \equiv 1 \mod 4$.

En kort bemærkning: Alle tal $n \in \mathbb{Z}$ opfylder $n^2 \equiv 0, 1 \mod 4$. Thi hvis n er lige er n = 2m for et $m \in \mathbb{Z}$ og så har vi $n^2 = 4m^2 \equiv 0 \mod 4$. Hvis n ulige er n = 2m + 1 for $m \in Z$ og så er $n^2 = (2m + 1)^2 = 4(m^2 + m) + 1 \equiv 1 \mod 4$.

Theorem 8.3 (Fermats sum of square theorem)

Et primtal p er summen af to kvadrater, $p = a^2 + b^2$ for $a, b \in \mathbb{Z}$ hvis og kun hvis p = 2 eller $p \equiv 1 \mod 4$. Og a, b er entydige op til fortegn og at bytte plads.

Bevis.

Hvis $a^2 + b^2 = p = c^2 + d^2$ i \mathbb{Z} er N(a+ib) = p = N(c+id) i $\mathbb{Z}[i]$. Da er N(a+ib) et primtal, så a+ib er irreducibel, samme gælder for a-ib og c+id og c-id. Ergo er

$$a+ib=\pm 1(c+id)=\pm c+(\pm d)i$$
 eller $a+ib=\pm i(c+id)=\mp d+(\pm c)i$ eller $a+ib=\pm 1(c-id)=\ldots$

Så entydigheden holder. Hvis p = 2 er $p = 1^2 + 1^2$ og vi er færdige.

 \implies : Antag p>2 og $p=a^2+b^2$ for $a,b\in\mathbb{Z}$. Da er $p\equiv 0,1,2$ mod 4 pr. bemærkningen ovenover $(b^2,a^2\equiv 0$ eller 1 mod 4). Da p er ulige må $p\equiv 1$ mod 4.

 \iff : Antag p > 2 og $p \equiv 1 \mod 4$. Da har vi pr. lemma'et tidligere at $p \mid n^2 + 1$ i $\mathbb Z$ for et $n \in \mathbb Z$. Så har vi

$$p \mid n^2 + 1 = (n+i)(n-i) \in \mathbb{Z}[i].$$

Hvis p er irreducibel (og derfor primelement) i $\mathbb{Z}[i]$, da vil $p \mid n+i$ eller $p \mid n-i$ i $\mathbb{Z}[i]$, hvilket det ikke kan. Derfor er p reducibel, så p = (a+ib)(c+id). Da $N(p) = p^2$ må N(c+id) = N(a+ib) = p, men så har vi $N(a+ib) = a^2 + b^2 = p$.

Theorem 8.4

Op til association er de irreducible elementer i $\mathbb{Z}[i]$:

- 1. 1 + i
- 2. primtal $p, p \equiv 3 \mod 4$
- 3. elementerne af formen $a \pm ib \mod a^2 + b^2 = p$, p primtal med $p \equiv 1 \mod 4$.

Bevis.

 $Først \implies :$

- (1): Vi har N(1+i)=2 så pr. tidligere argument er det irreducibelt.
- (2): Kontraposition: Lad p være et reducibelt primtal. Da har vi $p = \alpha \beta$, hvor $\alpha = \alpha_1 + i\alpha_2$ og $\beta = \beta_1 + i\beta_2$ og $N(p) = p^2$ medfører $N(\alpha) = p = N(\beta)$, så $p = \alpha_1^2 + \alpha_2^2$, men, igen pr. tidligere argument, er $p = \alpha_1^2 + \alpha_2^2 \not\equiv 3 \mod 4$.
- (3): Hvis a + ib opfylder $a^2 + b^2 = p$, hvor p er et primtal med $p \equiv 1 \mod 4$ har vi pr. tidligere argument at a + ib er irreducibelt i $\mathbb{Z}[i]$.

Så $\Leftarrow=: \operatorname{Lad} \pi \in \mathbb{Z}[i]$ være et irreducibelt (og derfor primelement). Da er $P:=Z\cap(\pi)$ prim ideal i \mathbb{Z} , som er et hovedidealområde, så P=(p) for et primelement i \mathbb{Z} . Da har vi $p\in(p)\subseteq(\pi)$ i $\mathbb{Z}[i]$ så $p=k\pi$ for $k\in\mathbb{Z}[i]$. Vi har nu tre tilfælde for p:

- 1. Hvis p=2 er $p=(1+i)(1-i)=(-i)(1+i)^2$, som er irreducibelt, altså er $\pi \overset{asc}{\sim} (1+i)^2$.
- 2. Hvis $p \equiv 3 \mod 4$ er p irreducibelt i $\mathbb{Z}[i]$ pr ovenstående. Så $\pi \stackrel{asc}{\sim} p$.
- 3. Hvis $p \equiv 1 \mod 4$ er, pr. fermats sum of square theorem, p = (a+ib)(a-ib), hvor både (a-ib), (a+ib) er irreducible, så $\pi \stackrel{asc}{\sim} a+ib$ eller a-ib.

FAKTORIELLE POLYNOMIUMSRINGE

Taleplan

- 1. Kort genopfriskning af polynomiumsringen R[x]
- 2. R integritetsområde $\implies R[x]$ integritetsområde og $R^{\times} = R[x]^{\times}$
- 3. Definition of primitiv
- 4. Lemmaer: 1.1 og Gauss om primelementer og primitive elemente i R[x].
- 5. Theorem: R UFD $\implies R[x]$ UFD.

Beviser

I det følgende er R et integritetsområde. Da har vi

- 1. R[x] er et integritetsområde
- 2. Polynomiumsringen R[x] har de samme enheder som R, altså $R[x]^{\times} = R^{\times}$
- 3. $\deg(f(x)g(x)) = \deg(f(x)) + \deg(g(x))$ for $f, g \neq 0$.
- 4. For et ideal $I \subseteq R$ har vi, hvis I[x] er idealet frembragt af I i R[x], at $R[x]/I[x] \cong (R/I)[x]$.
- 5. Hvis $p \in R$ er primelement da er $p \in R[x]$ også et primelement, i.e. $(p) \subseteq R$ primideal $\implies (p)[x] \subseteq R[x]$ primideal.

Note: For R UFD (faktoriel) så eksisterer GCD altid.

Definition 9.1 (primitive polynomier)

For R UFD ring, da siges et polynomium $f(x) = \sum_{i \geq 0} a_i x^i$ siges at være primitivt hvis $gcd(f(x)) := gcd(a_i) \in R^{\times}$, altså største fælles divisor for koefficienterne i f(x) er en enhed.

Note: For R UFD: $f(x) \in R[x]$ er ikke-primitivt hvis og kun hvis der er irreducibelt (eller prim) element $p \in R$ så $p \mid f(x)$ i R[x].

Følgende lemmaer gælder for R UFD:

Lemma 9.2 (Gauss)

For R UFD og $f(x), g(x) \in R[x]$ gælder:

f(x)g(x) primitivt $\iff f(x)$ og g(x) primitive.

Bevis.

skitse: For \implies : Antag $f(x) \in R[x]$ ikke primitivt, da findes irreducibel $p \in R$ så $p \mid f(x)$ så $p \mid f(x)g(x)$

For \Leftarrow : Antag f(x)g(x) ikke primitivt. Da findes irreducibel (primelement) $p \in R$ så $p \mid f(x)g(x)$ i R[x]. Da p også primelement i R[x] må $p \mid f(x)$ eller $p \mid g(x)$, altså er en af dem er ikke-primitiv.

Der gælder også følgende lemma:

Proposition 9.3

Hvis R UFD med brøklegeme F, og $c \in F$. Lad $f(x) \in R[x]$. Hvis $cf(x) \in R[x]$ og er primitivt, da er $c = \frac{1}{u}$ for $u \neq 0$ i R. Hvis f(x) selv er primitivt, da er u enhed og vi har $c = u^{-1} \in R$.

Bevis.

Skriv $c=\frac{r}{s}$ sådan at gcd(r,s)=1 og $s\neq 0$. Lad $f(x)=a_0+a_1x+\ldots$. Da er $cf(x)=\frac{ra_0}{s}+\frac{ra_1}{s}x+\ldots$, altså koefficienterne er $c_i:=\frac{a_ir}{s}$. Så $s\mid ra_i$, og gcd(r,s)=1 medfører $s\mid a_i$. Da $c_i=r\frac{a_i}{s}$ må $r\mid c_i$ i R. Antagelsen cf(x) er primitivt, så r må være en enhed, så $c=\frac{r}{s}=\frac{1}{sr^{-1}}$ hvor $sr^{-1}\in R$.

Da $cf(x) = \frac{1}{u}f(x) \in R[x]$ må $u \mid a_i$. Så hvis $gcd(a_1, a_2, \dots) = 1$ må u være en enhed, altså hvis f(x) primitivt er u enhed.

Vi har også sætning:

Theorem 9.4

For R UFD med brøklegeme F med $f(x) \in R[x]$ qælder:

- 1. For deg(f(x)) = 0: f(x) irreducibel i $R[x] \iff f(x)$ irreducibel i R.
- 2. For $\deg(f(x)) > 0$: f(x) irreducibel i $R[x] \iff f(x)$ primitiv i R[x] og irreducibel i F[x].

Vi har lemma:

Lemma 9.5

For R UFD: ethvert ikke-nul og ikke-enhed primitivt polynomium $f(x) \in R[x]$ med $\deg f(x) > 0$ har en irreducibel opløsning i R[x].

Bevis.

Vi gør det ved induktion over $n = \deg f(x)$:

For n = 1: Da $\deg f(x) = 1$ er f(x) irreducibel i F[x] (for f(x) = g(x)h(x) medfører $1 = \deg(f(x)) = \deg(g(x)) + \deg(h(x))$ så enten g(x) eller h(x) er konstante i F[x], og i legemet F er konstante polynomier enheder), og da f(x) ogs er antaget primitiv i er det derfor irreducibel i R[x] (ovenstående sætning (2)).

For n > 1: Hvis f(x) er irreducibelt i R[x] er vi færdige. Antag ikke og lad f(x) = g(x)h(x) være en faktorisering af irreducible $g(x), h(x) \in R[x]$. Da f(x) er primitiv har vi pr. gauss at g(x) og h(x) er primitive i R[x], og da de ikke er enheder må $\deg(h(x)), \deg(g(x)) > 0$. Da har vi

$$n = \deg(f(x)) = \deg(h(x)) + \deg(g(x)) \implies \deg(h(x)), \deg(g(x)) < n$$

Så pr. induktionsantagelsen har de begge en irreducibel opløsning i R[x], hvorfor deres produkt må være en irreducibel opløsning for f(x) i R[x].

Lemma 9.6

For integritetsområde R er primopløsninger entydige op til associering.

Proposition 9.7

R UFD medfører R[x] UFD

Bevis.

To dele: Eksistens og entydighed op til asociation.

Eksistens: Lad $f(x) \in R[x]$ være $\neq 0$ og ikke-enhed. Lad d = gcd(f(x)) så $f(x) = df_1(x)$ hvor $f_1(x)$ er et primitivt polynomium i R[x]. Hvis $d \in R$ er enhed, da er f(x) primitivt. Hvis d ikke er en enhed, så har d en faktorisering $d_1d_2 \cdots d_n$ af irreducible elementer i R, som også er irreducible i R[x]. Og da $f_1(x)$ er primitivt så har $f_1(x)$ pr. lemmaet ovenover en opløsning til irreducible. Så f(x) har kan faktoriseres til et produkt af irreducible i R[x].

Entydighed: Lad $f(x) = p \in R[x]$ være et konstant irreducibelt polynomium, da er p irreducibel i R og derfor også primelement (R UFD) og derfor også primelement i R[x] pr. tidligere lemma.

Antag nu $0 < \deg(f(x))$ for irreducibelt polynomium $f(x) \in R[x]$. Da er f(x) primitiv og irreducibel i F[x]. Da F[x] er UFD, er f(x) et primelement i F[x]. Antag $f(x) \mid g(x)h(x)$ i R[x], så $f(x) \mid h(x)g(x)$ i F[x], og derfor har vi enten $f(x) \mid h(x)$ eller $f(x) \mid g(x)$ i F[x]. Antag $f(x) \mid g(x)$, altså $g(x) = p(x)f(x) \in F[x]$ for et $p(x) \in F[x]$. Vælg $c \in F$ så $cp(x) \in R[x]$ og er primitivt (sæt koefficienter på fælles brøkstreg og gang med nævner og derefter med gcd for resten). Da har vi

$$g(x) = cp(x) \cdot f(x) \in R[x]$$

Og pr. Gauss sætning, da $cp(x)$ og $f(x)$ er primitive er $cg(x)$ også primitivt. Derfor
får vi pr. lemma (1.4) at $c = \frac{1}{u}$ for et $0 \neq u \in R$ så $uc = 1$. Da er $p(x) = ucp(x)$,
hvorfor $p(x)$ må tilhøre $R[x]$, og derfor har vi $g(x) = p(x)f(x) \in R[x]$, så $f(x) \mid g(x)$
i $R[x]$, så $f(x)$ er et primelement.

Da primopløsninger er entydige (op til association), er vi færdige. \Box

Kapitel 10

IRREDUCIBILITETSKRITERIER I POLYNOMIUMSRINGE

Taleplan

- 1. For legeme F er F[x] euklidisk m.m.
- 2. Sætning: om rødder i F[x] og faktorisering
- 3. Sætning: 2. eller 3. grad: $p(x) \in F[x]$ reducibel iff p(x) har rod i F.
- 4. Lemmaer: 1.1 og Gauss om primelementer og primitive elemente i R[x].
- 5. Theorem: R UFD $\implies R[x]$ UFD.

Beviser

For et legeme F har F[x] normen deg, som gør F[x] euklidisk. Da kan man udføre divison med rest. Specielt er F integritetsområde og $F^{\times} = F \setminus \{0\}$, derfor er $F[x]^{\times} = F \setminus \{0\}$.

Proposition 10.1

For $a \in F$, hvor F er et legeme. Hvis $p(x) \in F[x]$, da gælder

$$p(a) = 0 \iff (x - a) \mid p(x) \in F[x].$$

Bevis.

 \implies : Hvis p(a)=0, da giver division med rest $r(x), q(x) \in F[x]$ så p(x)=q(x)(x-a)+r(x), og enten er r(x)=0 eller $\deg r(x)<\deg (x-a)=1$. Da 0=p(a)=r(a) er r(x)=0 så $p(x)=q(x)(x-a)\iff (x-a)\mid p(x)\in F[x]$.

Proposition 10.2

Lad F være et legeme. Hvis $p(x) \in F[x]$ med $\deg p(x) = 2$ eller 3, da gælder

$$p(x)$$
 reducibel i $F[x] \iff p(x)$ har en rod i F .

Bevis.

 \implies : Lad p(x) = f(x)g(x) være en opløsning med f(x) og g(x) ikke enheder i F[x], så deg f(x), deg g(x) > 0. Hvis deg f(x) = n og deg g(x) = m har vi n + m = 2 eller

3, så enten n eller m er lig 1. Antag n, så $f(x) = a_0 + a_1 x$. Da er $-a_0 a_1^{-1}$ en rod, for $f(-a_0 a_1^{-1}) = a_0 - a_0 = 0$. derfor er $p(-a_0 a_1^{-1}) = 0$.

 \iff : Hvis $a \in F$ er en rod for p(x) da er p(x) = q(x)(x-a), og da $\deg p(x) = 2$ eller 3 må $\deg q(x) = 1$ eller 2, så både q(x) og (x-a) er ikke-enheder, ergo er p(x) reducibel i F[x].

Proposition 10.3

For R UFD med brøklegeme F gælder der: hvis $f(x) \in R[x]$ med deg f(x) = n > 0, så $f(x) = a_0 + a_1 x^1 + \dots + a_n x^n$ har en rod $\frac{r}{s} \in F$ med gcd(r,s) = 1, da gælder, at $r \mid a_0$ og $s \mid a_n$.

Bevis.

Pr. antagelse har vi

$$p\left(\frac{r}{s}\right) = 0 = a_0 + a_1 \frac{r}{s} + a_2 \left(\frac{r}{s}\right)^2 + \dots + a_n \left(\frac{r}{s}\right)^n$$

$$\iff 0 = a_0 s^n + a_1 r s^{n-1} + \dots + a_n r^n$$

Ved isolering får vi

$$a_n r^n = s(-a_{n-1}r^{n-1} - \dots - a_0s^{n-1}) \text{ og } a_0s^n = r(-a_1s^{n-1} - a_2s^{n-2}r - \dots - a_nr^{n-1})$$

Så $r \mid a_0s^n \text{ og } s \mid a_nr^n$, men $gcd(r,s) = 1$ så $r \mid a_0 \text{ og } s \mid a_n$.

Theorem 10.4 (Eisensteins' kriterium)

Lad $P \subseteq R$ være et primideal i integritetsområdet R, og lad $f(x) = a_0 + a_1x + \dots + a_{n-1}x^{n-1} + x^n$ være et monisk polynomium med $\deg f(x) = n > 0$. Hvis $a_i \in P$, for $0 \le i \le n-1$ og $a_0 \notin P^2$ da er f(x) irreducibel i R[x].

Bevis.

Antag for modstrid, at $f(x) \in R[x]$ er monisk og opfylder men er reducibel i R[x]. Da er f(x) = p(x)q(x) for ikke-enheder

$$p(x) = \sum_{0 \le i \le k} p_i x^i \text{ og } q(x) = \sum_{0 \le j \le m} q_j x^j$$

Og da n = k + m er $p_k, q_m \neq 0$. Da f(x) monisk er $p_k q_m = a_n = 1 \in R$, så p_k, q_m enheder i R. Da både p(x) og q(x) er ikke-enheder også, må deg p(x), deg q(x) > 0.

Da får vi, i
$$(R/P)[x]$$
, da $a_i \in P$ for $0 \le i \le n-1$ at $\overline{a_i} = 0$

$$\overline{p(x)q(x)} = \overline{f(x)} = \overline{a_0} + \overline{a_1}x + \overline{a_2}x^2 + \dots + x^n = x^n,$$

Ergo får vi $\overline{p(x)} = \overline{p_k} x^k$ og $\overline{q(x)} = \overline{q_m} x^m$, hvorfor $\overline{q_0} = 0 = \overline{p_0}$, så $q_0, p_0 \in P$ og derfor har vi $a_0 = p_0 q_0 \in P^2$, modstrid.

Example 10.5

Hvis $p \in \mathbb{Z}$ er et primtal, og $f(x) = a_0 + a_1 x + \dots + a_{k-1} x^{k-1} + x^k$ opfylder $a_i p \mathbb{Z}$ for alle $1 \le i \le k-1$, men $a_0 \notin p^2 \mathbb{Z}$, da er f(x) irreducibel i $\mathbb{Z}[x]$ og $\mathbb{Q}[x]$.