Population	Sample Statistic	Population Variance is Known			Z vs. T Decision	
Parameter		Standard Deviation of the Sample Statistic (Standard Error)	Confidence Interval	Hypothesis Testing	Rules & Degrees of Freedom	
Mean μ	$ar{x}$	$SE = \frac{\sigma}{\sqrt{n}}$	$CI = \bar{x} \pm Z_{\left(\frac{1-C}{2}\right)} * SE$	$Z = \frac{\bar{x} - \mu_0}{SE}$	Use s as an estimate of σ when σ is unknown. Use T dist with n-1 DF or normal approx. if n is sufficiently large (~30)	
Difference in means $\mu_1 - \mu_2$	$ar{x}_1 - ar{x}_2$	Pooled Variances: $SE = \sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$ Unequal Variances: $SE = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	$CI = (\bar{x}_1 - \bar{x}_2) \pm Z_{(\frac{1-C}{2})} * SE$	$Z = \frac{(\bar{x}_1 - \bar{x}_2) - \mu_{diff}}{SE}$		
Proportion <i>p</i>	P	$SE = \sqrt{\frac{p(1-p)}{n}}$	$CI = P \pm Z_{\left(\frac{1-C}{2}\right)} * SE$	$Z = \frac{P - p_0}{SE}$	Use P as an estimate of p when p is unknown. Use Z if nP>10 & n(1-P)>10 or p is known, else use T with n-1 DF	
Difference in Proportions p_1-p_2	$P_1 - P_2$	Assume unknown p's: $SE = \sqrt{\frac{P_1(1-P_1)}{n_1} + \frac{P_2(1-P_2)}{n_2}}$	$CI = (P_1 - P_2) \pm Z_{(\frac{1-C}{2})} * SE$	$Z = \frac{(P_1 - P_2) - p_{diff}}{SE}$		