Richtiges Runden

 $x = 1.2736 \text{ m}; \qquad \alpha_x = 0.25034 \text{ m}$

a) (1.274 ± 0.250) m X Nur eine signifikante Stelle im Fehler

b) (1.3 ± 0.3) X Keine Einheiten!

c) $1273 \pm 250 \text{ mm}$ X Nur eine signifikante Stelle im Fehler

d) 1.3(3) m

e) 1.3(25) m X Nur eine signifikante Stelle im Fehler

f) $(1.3 \pm 0.25034) \text{ m}$ X Nur eine signifikante Stelle im Fehler

Fehlerfortpflanzung

 $x = (17.4 \pm 0.3) \text{ V}; \quad y = (9.3 \pm 0.7) \text{ V}$

a) z = x - y = 8.1(8) V

b) z = 12x + 3y = 237(4) V

c) $z = 5xy = 8.1(6) \cdot 10^2 \text{ V}^2$

d) $z = \frac{y^3}{x^2} = 2.7(6) \text{ V}$

e) $z = x^2 + 3y^2 = 5.6(4) \cdot 10^2 \text{ V}^2$

f) $z = \arcsin(\frac{y}{r}) = 0.56(5)$

g) $z = \sqrt{3xy} = 22.0(9) \text{ V}$

h)
$$z = \ln(\frac{y}{x}) = -0.63(8)$$

i)
$$z = \frac{x}{v^2} + \frac{y}{x^2} = 0.23(3) \text{ 1/V}$$

j)
$$z = 2\sqrt{\frac{y}{x}} = 1.46(6)$$

Beispiel: Bestimmung der Fallbeschleunigung g

$$x_1 = 5.000(1) \text{ m};$$
 $x_2 = 17.000(1) \text{ m};$ $t_x = 77283.5(1) \text{ } \mu\text{s}$ $t_z = 0 \text{ } m;$ $t_z = 129335.3(1) \text{ } \mu\text{s}$

a)
$$v = \frac{x_2 - x_1}{t_x} = 155.27(2) \text{ m/s}$$

b)
$$x(t) = x_0 + v_0 t + \frac{1}{2} a_0 t^2$$

 $x(t_z) - x(0) = (z_2 - z_1) + v t_z + \frac{1}{2} g t_z^2$
 $g = 2 \frac{(z_2 - z_1) - v t_z}{t_z^2} = -9.8(3) \text{ m/s}^2$

c) Das Experiment misst die Erdbeschleunigung g zwar etwas ungenau, das Ergebnis verträgt sich aber gut mit dem Literaturwert. Um die Unsicherheit in g zu vermindern, müsste man in genauere Distanzmessungen investieren, da die Unsicherheiten in x_1 und x_2 über 99% des Gesamtfehlers in v und ungefähr 85% in g ausmachen. Die Zeit hingegen trägt bei beiden Ergebnissen weniger als 1 Prozent bei und ist daher verhältnismäßig sehr genau.

Indem man das Objekt fallen lässt, kann man den Fehler in v eliminieren, und so einen genaueren Wert für die Erdbeschleunigung ermitteln.

Plotten von Daten mit linearem Fit

$$\chi^{2} = \sum_{i}^{N} \frac{(y_{i} - y(x_{i}))^{2}}{\sigma_{i}^{2}} = \sum_{i}^{N} \frac{(y_{i} - ax_{i} - b)^{2}}{\sigma_{i}^{2}}$$

a)

$$\frac{\partial \chi^2}{\partial a} = \sum_{i}^{N} x_i \frac{(y_i - ax_i - b)^2}{\sigma_i^2} = 0$$
$$\frac{\partial \chi^2}{\partial b} = \sum_{i}^{N} \frac{(y_i - ax_i - b)^2}{\sigma_i^2} = 0$$

$$a = \frac{N \sum_{i} x_{i} y_{i} - \sum_{i} x_{i} \sum_{i} y_{i}}{N \sum_{i} x_{i}^{2} - (\sum_{i} x_{i})^{2}}; \quad b = \frac{\sum_{i} x_{i}^{2} \sum_{i} y_{i} - \sum_{i} x_{i} \sum_{i} x_{i} y_{i}}{N \sum_{i} x_{i}^{2} - (\sum_{i} x_{i})^{2}}$$
(1)

b)

 $a \approx 0.034$

 $b \approx 0.086$

c)

Abbildung 1: Die Spannung an verschiedenen Orten gemessen. Die Fehlerbalken stellen einen 1σ Standardfehler dar. Zudem wurde eine Gerade angepasst.

Die von SciPy berechnete Fitparameter stimmen den manuell berechneten überein, was andeutet, dass das Fitprogramm die gleiche Formel verwendet.

d) $\delta a := a - \bar{a}$; $\delta b := b - \bar{b}$

$$\Delta \chi^2 = \sum_{i}^{N} \frac{(y_i - ax_i - b)^2}{\sigma_i^2} - \sum_{i}^{N} \frac{(y_i - \bar{a}x_i - \bar{b})^2}{\sigma_i^2} = \frac{\delta a^2}{\alpha_a^2} + \frac{\delta b^2}{\alpha_b^2} = 1$$

 $\delta a \approx 0.00049; \quad \delta b \approx 0.015$

Fixiere a/b auf $\bar{a}/\bar{b} \Rightarrow \delta a/\delta b = 0$

$$\alpha_a = \delta a \approx 0.00049$$

$$\alpha_b = \delta b \approx 0.015$$

e)

$$\alpha_a \approx 0.0011$$

$$\alpha_b \approx 0.034$$

Die Fehler stimmen nicht überein (circa um den Faktor 2 zu klein). Das lässt sich dadurch erklären, dass der Ansatz über das $\Delta\chi^2$ und der Fehlerellipse so nur dann gilt, wenn die Parameter unkorreliert sind. Das sind sie aber nicht ($r\approx-0.89$). Das Fitprogramm erkennt die Korrelation und berechnet die Fehler dementsprechend korrekt.

f) Man könnte die Fitparameter a, b für $x = \bar{x} - \alpha_x$, $x = \bar{x}$ und $x = \bar{x} + \alpha_x$ mit Gleichungen 1 berechnen und so Werte für $\bar{a}, \bar{b}, \alpha_a, \alpha_b$ ermitteln.

Alternativ könnte man bootstrapping verwenden, also aus dem Datensatz viele synthetische Datensätze (ohne Fehler) durch "ziehen mit zurücklegen" generieren (wobei jeder gezogene Wert zufällig im Intervall $\pm \sigma_x$ und $\pm \sigma_y$ variiert wird) und auf diese die bekannten Formeln anwenden. Unter Annahme einer Normalverteilung kann man dann Mittelwert und Standardabweichung für die Fitparameter berechnen.

Korrelierte Variablen

$$y = ax + b;$$
 $\bar{a} = 3.77;$ $\bar{b} = 1.58;$ $\sigma = \begin{pmatrix} 0.033 & 0.019 \\ 0.019 & 0.009 \end{pmatrix};$ $r = \frac{\sigma_{ab}}{\sqrt{\sigma_{aa}\sigma_{bb}}} \approx 1.1$

$$y = ax + b = 0$$

$$\bar{x} = -\frac{\bar{b}}{\bar{a}}$$

$$\sigma_x = \sqrt{\left(\frac{\sigma_b}{a}\right)^2 + \left(\frac{\sigma_a b}{a^2}\right)^2 + 2r\left(\frac{\sigma_b}{a}\right)\left(\frac{\sigma_a b}{a^2}\right)}$$

$$x = -0.42(5)$$