Probability Density/Distribution Function

- For a continuous random variable 'y', the probability behavior is described by a function called 'probability density function' (PDF) = f(y)
- What are the properties of such PDF?

$$f(y) \ge 0$$

$$\int_{-\infty}^{\infty} f(y) dy = 1$$

Probability
$$(a \le y \le b) = \int_a^b f(y) dy$$

ullet Cumulative distribution function (CDF) for a continuous random variable x with pdf f(X)

$$F(y) = Probability(Y \le y) = \int_{-\infty}^{y} f(Y)dY$$
 Note: $f(y) = \frac{dF(y)}{dy}$

Probability Density Function

• Given f(y), how would you find the true arithmetic mean (μ) value of 'y'?

$$\mu = \int_{-\infty}^{\infty} y + (y) dy$$

• What about *true variance* (σ^2) ?

$$\sigma^2 = \int_{-\infty}^{\infty} (y - \mu)^2 f(y) dy$$

The expectation of a function g(y) of a random variable 'y' with pdf 'f(y)' is defined as,

$$\mathbf{E}(g(y)) = \int_{-\infty}^{\infty} g(y) \underline{f(y)} dy$$

$$E(y) = \mu$$

$$E(y-\mu)^2 = 6^2$$

Rules for Expectation

Mean (Population)

$$\mu = E(y) = \begin{cases} \int_{-\infty}^{\infty} yf(y) \, dy & y \text{ continuous} \\ \sum_{\text{all } y} yp(y) & y \text{ discrete} \end{cases}$$

Variance (Population)

$$V(y) = E[(y - \mu)^2] = \sigma^2 = \begin{cases} \int_{-\infty}^{\infty} (y - \mu)^2 f(y) \, dy & y \text{ continuous} \\ \sum_{\text{all } y} (y - \mu)^2 p(y) & y \text{ discrete} \end{cases}$$

Identities

1.
$$E(c) = c$$

2.
$$E(y) = \mu$$

3.
$$E(cy) = cE(y) = c\mu$$

4.
$$V(c) = 0$$

5.
$$V(y) = \sigma^2$$

6.
$$V(cy) = c^2 V(y) = c^2 \sigma^2$$

7.
$$E(y_1 + y_2) = E(y_1) + E(y_2) = \mu_1 + \mu_2$$

8.
$$V(y_1 + y_2) = V(y_1) + V(y_2) + 2 \operatorname{Cov}(y_1, y_2)$$

 $\operatorname{Cov}(y_1, y_2) = E[(y_1 - \mu_1)(y_2 - \mu_2)]$

11.
$$E(y_1 \cdot y_2) = E(y_1) \cdot E(y_2) = \mu_1 \cdot \mu_2$$

However, note that, in general

12.
$$E\left(\frac{y_1}{y_2}\right) \neq \frac{E(y_1)}{E(y_2)}$$

NOTE: You do NOT have permission to share this file or any of its contents with anyone else, and/or upload it on regardless of whether or not y_1 and y_2 are independent.

Uniform or Rectangular PDF

• What is mean and variance?

$$\mu = E(y) = \int_{-\infty}^{\infty} y f(y) dy$$

• What is median and mode?

$$median = \left(\frac{a+b}{2}\right)$$

What is mean and variance?
$$\mu = \pm (y) = \int_{-\infty}^{b} y f(y) dy = \int_{0}^{b} y \left(\frac{1}{b-a}\right) dy$$

Uniform PDF Example

Suppose a cricket ball manufacturer is making cricket balls of a specified diameter of 2.83 inches.

BUT due to **inaccuracies/variations** in the making process, the actual diameter of the balls made is **uniformly distributed over the range** of 2.75 inches to 2.90 inches.

Now, the balls with diameters between **2.80-2.86 inches are still acceptable** to BCCI and can be sold for a **profit of 100 Rs/ball**.

If the ball is **oversized** (D > 2.86), it can be sold, but at a **smaller profit of 10 Rs/ball**.

If the ball is undersized (D < 2.80), it needs to be discarded, and there is a loss of 50 Rs/ball.

Question: What is the expected profit (Rs/ball)?

Uniform PDF Example

Exponential PDF

$$f(y) = \lambda e^{-\lambda y},$$

$$y \ge 0$$

$$f(y)=0,$$

Find mean, std. deviation, median and mode

Mean =
$$\mu = \frac{1}{\lambda}$$

Std. Dev =
$$\sigma = \frac{1}{\lambda}$$

$$Median = \frac{\ln(2)}{\lambda}$$

$$Mode = 0$$

Normal or Gaussian PDF

$$f(y) = \frac{1}{a\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{y-b}{a}\right)^2\right) \quad y \in [-\infty, \infty]$$

• What is mean?

$$\mu = 0$$

• What is variance and std. deviation?

$$5^2 = a^2$$
 , $5 = 0$

• What are median and mode?

NOTE: You do NOT have permission to share this file or any of its contents with anyone else, and/or upload it on internet or any of the platforms where it can be accessed by others.

DIY

Normal PDF

- The 'Normal' distribution, does an excellent job of approximating the relative frequencies of many natural and "man-made" phenomena, e.g. dimension of machined parts, the strength of steel samples, etc.
- It is a bell-shaped curve, symmetric about the objects, which fell off quite rapidly beyond a distance of about one standard deviation from the mean.

NOTE: Although the PDF is defined from $-\infty$ to $+\infty$, most of the density is distributed over a narrow range near the mean (μ)

- ullet 68.26% of the observations fall between $\mu-\sigma$ and $\mu+\sigma$
- ullet 95.46% of the observations fall between $\mu-2\sigma$ and $\mu+2\sigma$
- 99.73% of the observations fall between $\mu-3\sigma$ and $\mu+3\sigma$

Normal PDF Example

The heat shield plates for the space shuttle must have a closely measured thickness in order to withstand the rigors of heat from re-entry.

After testing 400 of them, the engineer found the thickness was normally distributed with a mean of 22.5 mm. It was also found that 382 plates were within 22.5 ± 2.50 mm.

If the defective plates deviate more than 1.80 mm from the mean, find the number of plates to be rejected during the testing

Normal PDF Example

The heat shield plates for the space shuttle must have a closely measured thickness in order to withstand the rigors of heat from re-entry.

After testing 400 of them, the engineer found the thickness was normally distributed with a mean of 22.5 mm. It was also found that 382 plates were within 22.5 ± 2.50 mm.

If the defective plates deviate more than 1.80 mm from the mean, find the number of plates to be rejected during the testing

Recap

- What is a **variable** (say, y)?
- What is the **probability density function** 'f(y)' of the variable 'y'?
- What is the **function g(y)** defined over the variable 'y'?
- What is 'sample' vs 'population' of 'y'?
- What is the 'expected value' or expectation E[]? Say E[y] or E[g(y)]?

• Given the PDF of a variable 'y', how do we figure out mean, median, mode, variance, ...

Standard Normal PDF

'General Form'

$$f(y) = \frac{1}{a\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{y-b}{a}\right)^2\right), \quad -\infty \le y \le \infty$$

Substitute,
$$z = \frac{y-\mu}{\sigma}$$

$$f(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right), \quad -\infty \le z \le \infty$$

$$\mu = 0$$
, $\sigma = 1$

Standard Normal Probabilities

Table entry for z is the area under the standard normal curve to the left of z.

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
8.0	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177