This exam has 120 possible points (includes 20 points extra credit).

1. Draw a parse tree for the string a[a.a].a[a] using this context-free grammar: [10 points]

$$S \rightarrow a\,T$$

$$T \rightarrow [\,S\,]\,T \,\mid \, .a\,T \,\mid \, \epsilon$$

2. Write all strings with length exactly 4 that are accepted by this pushdown automaton: [10 points]

aace	acgc	adfe	adhc	bacf
bdff	dfgc	dgcf	dhac	dhdf

- 3. Let language $L_1 = \{a^m b^n \mid m \le 2n \text{ and } n \le 2m\}$.
 - a. Write a context-free grammar that generates language L₁. Ambiguity is permitted. [10 points]

$$S \rightarrow aSb \mid aaSb \mid aSbb \mid \epsilon$$

b. Draw a pushdown automaton that accepts language L₁ both by final state and by empty stack. Non-determinism is permitted. **[10 points]**

- 4. Let language $L_2 = \{a^m b^n c^p d^q \mid m \ge 1, n \ge 1, p \ge 1, q \ge 1, and m + n = p + q\}$. Examples: $a^3b^2c^4d^1 = aaabbccccd, a^2b^5c^3d^4 = aabbbbbcccdddd$.
 - a. Write an unambiguous context-free grammar that generates language L_2 . [10 points] (Half credit for an ambiguous grammar.)

$$S \rightarrow aTd$$
 $T \rightarrow aTd \mid aUc \mid bVd \mid bWc$
 $U \rightarrow aUc \mid bWc$
 $V \rightarrow bVd \mid bWc$
 $W \rightarrow bWc \mid \epsilon$

b. Draw a *deterministic* pushdown automaton that accepts language L_2 both by final state and by empty stack. [10 points] (Half credit for a non-deterministic machine.)

- 5. Let language L₃ contain strings of balanced left and right parentheses '(' and ')' with the additional provision that a right bracket ']' may be used to match all (one or more) preceding unmatched left parentheses. Examples: (()()), (((()), ((()), (()))).
 - a. Write an *unambiguous* context-free grammar that generates language L₃. **[10 points]** (Half credit for an ambiguous grammar.)

b. Draw a *deterministic* pushdown automaton that accepts language L₃ by final state, with only the bottom-of-stack symbol Z₀ remaining on the stack if the string is accepted. [10 points] (Half credit for a non-deterministic machine.)

6. Eliminate all useless symbols, ε -productions, and unit productions from this context-free grammar. Your grammar should be equivalent to the original grammar. Bonus if you convert the grammar to Chomsky normal form. [10 points + 4 points]

7. Let $L_4 = \{a^m b^n c^q \mid q = max(m,n)\}$. Examples: $a^2 b^4 c^4 = aabbbbcccc$, $a^4 b^2 c^4 = aaaabbcccc$, $a^3 b^3 c^3 = aaabbbccc$. Use the pumping theorem to show that L_4 is not context-free. **[16 points]**

First complete this statement of the pumping theorem for context-free languages: For every context-free language L, there exists some constant p such that for every string s with $s \in L$ and $|s| \ge p$, it is possible to write s = uvwxy such that $|vwx| \le p$, $|vx| \ge 1$, and for every integer $i \ge 0$, $uv^i wx^i y \in L$.

Next apply the pumping theorem to show that $L_4 = \{ a^m b^n c^q \mid q = max(m,n) \}$ is not context-free. Choose string $s = a^p b^p c^p$.

Determine the possible cases and show a contradiction in each case:

If either v or x contains two distinct symbols then $uv^2wx^2y \notin a^*b^*c^*$, hence $uv^2wx^2y \notin L_4$. So each of v and x must consist entirely of one symbol (either a's or b's or c's).

If neither v nor x contains c's then u v^2 w x^2 y has q = p < max(m,n), hence u v^2 w x^2 y $\notin L_4$.

Finally, if either v or x does contains c's then vx cannot also contain both a's and b's, so $u v^0 w x^0 y$ has $q , hence <math>u v^0 w x^0 y \notin L_4$.

8. Trace the CYK dynamic programming algorithm for input string "abcbab" using this Chomsky normal form grammar. Complete the table below. [10 points]

$$S \rightarrow XV \mid WU$$

 $T \rightarrow WX \mid VT$
 $U \rightarrow VW \mid XS$
 $V \rightarrow a \mid UX \mid XW$
 $W \rightarrow b \mid TW \mid WV$
 $X \rightarrow c \mid SV \mid VX$

	1	2	3	4	5	6
1	٧	U	T,V	U,W	U,W	S
2	_	W	Т	W	W	S
3	_	_	Х	V	V	U
4	_	_	_	W	W	S
5	_	_	_	_	V	U
6	ı	-	_	_	-	W