OPT: Oslo-Potsdam-Teesside Pipelining Rules, Rankers, and Classifier Ensembles for Shallow Discourse Parsing

Stephan Oepen¹, Jonathon Read², **Tatjana Scheffler**³, Uladzimir Sidarenka^{3,4}, Manfred Stede³, Erik Velldal¹, and Lilja Øvrelid¹

¹University of Oslo, Department of Informatics
 ²Teesside University, School of Computing
 ³University of Potsdam, FSP Cognitive Science
 ⁴Retresco GmbH

tatjana.scheffler@uni-potsdam.de August 12, 2016

In Short

- good results with classical pipeline
- explicit connectives and arguments: adapted approach from detection of speculation and negation (Velldal et al. 2012, Read et al. 2012)
- cross-validation on training set
- sense disambiguation: ensemble classifier
- $ightharpoonup F_1 = 27.77$ on English blind test set

Architecture

Figure: OPT system overview.

Explicit Connective Detection

- extends the work by Velldal et al. (2012) for identifying expressions of speculation and negation
- disambiguate closed class list of connectives (heads only)
- ▶ binary SVM^{light} classifier

Distribution of Explicit Connectives

```
\langle but \rangle (2652/3359 = 0.79) [0.79]
\langle and \rangle (2334/16391 = 0.14) [0.14]
\langle also \rangle (1410/1503 = 0.94) [0.94]
\langle if \rangle (884/1187 = 0.74) [0.87]
\langle \text{when} \rangle (769/1217 = 0.63) [0.66]
\langle \text{while} \rangle (628/693 = 0.91) [0.91]
\langle because \rangle (624/1062 = 0.59) [0.64]
\langle as \rangle (533/4552 = 0.12) [0.16]
\langle after \rangle (386/1083 = 0.36) [0.43]
\langle \text{however} \rangle (380/396 = 0.96) [0.96]
. . .
for \langle \text{example} \rangle (153/171 = 0.89) [0.03 0.74]
\langle \text{still} \rangle (150/598 = 0.25) [0.25]
\langle since \rangle (138/563 = 0.25) [0.27]
in \langle addition \rangle (129/194 = 0.66) [0.02 0.63]
```

Classifier Features

- surface features
 - \blacktriangleright token and POS n-grams around the candidate (up to ± 5)
- ▶ 'parent', 'sibling', 'path', etc. features over PTB-style parse trees
 - ▶ from Pitler & Nenkova (2009); Lin et al., (2014); Wang & Lan, (2015)
- feature tuning by ten-fold cross-validation on training set
- final model selection (among some thousand runs):
 - prefer smaller models with less variation across folds
 - test twelve candidate models against development set
- ▶ final model:
 - surface features up to 3 tokens before/after candidate
 - full feature conjunction for 'self' and 'parent' categories
 - limited conjunctions for siblings
 - no 'connected context'

Explicit Connective Identification: Results

- $ightharpoonup F_1 = 94.4$ on WSJ test set, $F_1 = 91.8$ on blind test set
- ► comparable to Wang & Lan (2015)
- ▶ but well below the best 2016 system (98.9/98.4; Zhongyi Li, Shanghai)

Explicit Connectives: Error Analysis (1/2)

- ► Ten-fold cross-validation on training data: 14722 explicit relations;
- 991 false positives and 664 false negatives;
- and by far most frequent in both categories:

182	and	120	and
134	as	70	as
132	when	51	when
93	if	50	still
55	also	31	but
45	after	30	if
39	but	24	after
38	since	22	then
32	then	18	before
28	while	13	so

Explicit Connectives: Error Analysis (2/2)

▶ With much weight on syntactic information, parse errors matter:

```
(S ("")
   (NP (PRP$ My) (NN God))
   (CC and)
   (S (NP (PRP I))
      (VP (VBP know)
          (SBAR (S (NP (PRP I))
                 (VP (VBP am)
                     (ADJP (JJ correct)
                           (CC and) (JJ innocent))))))
   (,,)
```

Non-Explicit Relation Detection

- ▶ Non-explicit relation between sentences A and B, iff (PDTB):
 - (i) A and B are adjacent,
 - (ii) A and B are in the same paragraph,
 - (iii) A and B are not linked by an explicit connective, and
 - (iv) no coherence relation or entity-based relation holds between them.

Method:

- traverse sentence bigrams (i), (ii)
- check for explicit connectives with Arg1 in PS (iii)
- ▶ NoRel (0.6% in PDTB) and AltLex (1.5%) are currently ignored (iv)

Non-Explicit Relation Detection: Results

- module evaluation on gold standard explicit connectives
- $F_1 = 93.2$ on WSJ test set; P = 89.9, R = 96.8

Arguments

- ▶ based on work on the scope of speculation and negation (Read et al., 2012)
- assumption: arguments basically correspond to phrases
- approach:
 - extract clausal constituents: S. SBAR, SQ
 - rank them
 - post-editing
- ► SVM^{light} classifiers; ten-fold cross-validation on training set

Argument Position

Arg2-Arg1	0 (SS)	1 (PS)	2	3	4+
explicit non-explicit	60.41% 2.56%	27.98% 95.28%			

Table: Position of Arg2 relative to Arg1.

Argument Position

Arg2-Arg1	0 (SS)	1 (PS)	2	3	4+
explicit non-explicit		27.98% 95.28%			

Table: Position of Arg2 relative to Arg1.

- ▶ non-explicit relations: Arg1 is in previous sentence (PS) from Arg2
- explicit relations: classifier for PS or same sentence (SS)
 - connective form
 - path from connective to root
 - connective position in sentence (tertiles)
 - ▶ POS bigram of connective and following token

Argument Candidate Ranking

- ordinal ranking of clausal constituents
- iteratively build a pool of feature types

	Exp. PS		Exp. SS		Non-Exp.	
	Arg1	Arg2	Arg1	Arg2	Arg1	Arg2
Connective Form			•			
Connective Category		•				
Connective Precedes				•		
Following Token				•		
Initial Token					•	
Path to Root		•	•		•	•
Path to Connective		•	•	•		
Path to Initial Token					•	•
Preceding Token		•	•		•	•
Production Rules	•	•			•	•
Size						•

Post-Editing Heuristics

	Exp	licit	Non-Explicit		
	Arg1 Arg2		Arg1	Arg2	
Alignment w/o edits	.483	.535	.870	.900	
Alignment with edits	.813	.840	.882	.900	

Table: Alignment of constituent yield with arguments (in SS or PS).

- initial alignment of full constituent yield with arguments is low
- post-editing rules
 - add conjunction (CC) preceding constituent (Arg1)
 - cut clause headed by connective (Arg1, explicit, SS)
 - cut constituent-final CC (Arg1)
 - cut constituent-final wh-determiner (Arg1)
 - cut constituent-initial CC (Arg2, explicit)
 - cut relative clause, i.e. SBAR initiated by WHNP/WHADVP
 - cut connective
 - cut initial and final punctuation

Argument Extraction: Results

	WSJ Test Set			Blind Set			
	Arg1	Arg2	Both	Arg1	Arg2	Both	
Explicit (SS)	.683	.817	.590	.647	.783	.519	
Explicit (PS)	.623	.663	.462	.611	.832	.505	
Explicit (All)	.572	.753	.474	.586	.782	.473	
Non-explicit (All)	.744	.743	.593	.640	.758	.539	
Overall	.668	.749	.536	.617	.769	.509	

Table: Argument extraction results, no error propagation.

Sense Classification

- separate ensemble classifiers for explicit and non-explicit relations:
- 1. Majority class
- 2. Wang & Lan (2015)_{LSVC}: LIBLINEAR SVM classifier
- 3. Wang & Lan $(2015)_{XGBoost}$: decision trees with gradient boosting, same features
 - final prediction label picked from sum of individual classifier probabilities

Distribution of Senses (1/2)

```
<> (522):
  (Expansion.Conjunction) (105)
  (Expansion.Restatement) (101)
  (Comparison.Contrast) (81)
  (Contingency.Cause.Reason) (70)
  (Contingency.Cause.Result) (49)
  (Expansion.Instantiation) (47)
  (Temporal.Asynchronous.Precedence) (23)
  (Expansion.Conjunction Temporal.Synchrony) (10)
  (Expansion) (6)
  (Comparison.Concession) (5)
  (Temporal.Synchrony) (3)
  (Expansion.Conjunction Comparison.Contrast) (3)
  (Temporal.Asynchronous.Succession) (3)
  (Temporal.Synchrony Comparison.Contrast) (3)
```

Distribution of Senses (2/2)

```
and (91):
  (Expansion.Conjunction) (80)
  (Expansion.Conjunction Contingency.Cause.Result) (4)
  (Expansion.Conjunction Comparison.Contrast) (2)
  (Contingency.Cause.Result) (2)
  (Expansion.Conjunction Temporal.Synchrony) (1)
  (Comparison.Contrast) (1)
  (Expansion.Conjunction Temporal.Asynchronous.Precedence) (1)
but (50):
  (Comparison.Contrast) (45)
  (Comparison) (4)
```

(Expansion.Alternative.Chosen alternative) (1)

Sense Classification: Results

		WSJ Test S	Set	Blind Set			
System	Exp	Non-Exp	All	Ехр	Non-Exp	All	
2015	90.79	34.45	61.27	76.44	36.29	54.76	
Majority	89.30	21.40	54.02	75.91	30.46	51.39	
W&L _{LSVC}	89.63	37.18	62.29	77.86	33.05	53.66	
W&L _{XGB}	89.41	34.12	60.64	76.27	34.42	53.62	
OPT	89.95	33.53	60.64	76.81	33.66	53.54	
LSTM*	89.90	33.76	60.78	77.63	33.69	53.29	
OPT*	90.01	41.12	64.70	77.06	37.20	55.55	

Table: Isolated results for sense classification (the bottom* model was not part of the submission).

Overall Results

- ► WSJ "test" set and blind test set
- compared to challenge in 2015 and 2016
- error propagation, automatic parses

	WSJ Test Set			Blind Test Set			
	2015					OPT	
	F_1	F_1	F_1	F_1	F_1	F_1	
Expl. Conn.	94.8	98.9	94.4	91.9	98.4	91.8	
Expl. Arg1	50.7	53.8	52.0	49.7	52.4	52.4	
Expl. Arg2	77.4	76.7	72.6	74.3	75.2	75.2	
Expl. Arg1Arg2	45.2	45.3	43.9	41.4	44.0	44.0	
Expl. Sense			39.4			34.5	
Non-Ex. Arg1	67.2	69.9	69.9	60.9	66.8	64.6	
Non-Ex. Arg2	68.4	71.5	71.5	74.6	79.1	76.4	
Non-Ex. Arg1Arg2	53.1	53.5	53.5	50.4	58.1	52.0	
Non-Ex. Sense			18.0			21.9	
All Arg1Arg2	49.4	49.6	48.9	46.4	50.6	48.2	
Overall Parser	29.7	30.7	28.2	24.0	27.8	27.8	

Table: Per-component breakdown of system performance.

overall, the end-to-end problem is anything but solved

- overall, the end-to-end problem is anything but solved
- ▶ adaptation of constituent ranking good fit for argument identification

- overall, the end-to-end problem is anything but solved
- adaptation of constituent ranking good fit for argument identification
- cross-validation has helped reduce over-fitting to WSJ data

- overall, the end-to-end problem is anything but solved
- adaptation of constituent ranking good fit for argument identification
- cross-validation has helped reduce over-fitting to WSJ data
- ► classifier ensemble improves sense prediction (post-submission results)

Thank you!

Selected References

Read, J., Velldal, E., Øvrelid, L., and Oepen, S. (2012). UiO1. Constituent-based discriminative ranking for negation resolution. In *Proceedings of the 1st Joint Conference* on Lexical and Computational Semantics (pp. 310–318). Montreal, Canada.

Velldal, E., Øvrelid, L., Read, J., and Oepen, S. (2012). Speculation and negation: Rules, rankers and the role of syntax. *Computational Linguistics*, 38(2), 369 – 410.