Глава 2. Симплекс-метод

§1. Опорные решения ЗЛП в каноническом виде.

Рассмотрим ЗЛП, приведенную к каноническому виду

$$Z(X) = c_1 x_1 + \dots + c_n x_n \rightarrow max;$$

$$\begin{cases} a_{i1}x_1 + \dots + a_{in}x_n = b_i & i = 1, \dots, m \\ x_j \ge 0 & j = 1, \dots, n \end{cases}$$

$$b_i \ge 0$$

или в матричном виде

$$Z(X) = CX \rightarrow max$$

$$(*)\begin{cases} AX = B \\ X \ge "\theta" \\ B \ge "\theta" \end{cases}$$

где " θ " - нулевой *п*-мерный вектор. Будем считать, что

- 1) ранг матрицы r(A) = m (иначе приведем ее к такому виду); ранг матрицы количество строк в эквивалентной ей разрешенной матрице.
- 2) m < n, иначе система AX = B имеет единственное решение, и оно либо и есть оптимальное решение (*), либо нет (если содержит отрицательные координаты).

Тогда система AX = B имеет бесчисленное множество решений, но общих решений с различным набором m базисных (разрешенных) переменных — конечное число. Каждому такому общему решению соответствует свое частное базисное решение, у которого m базисных переменных и n-m свободных переменных (нулевых).

Определение 1. Опорным решением системы AX = B называется ее базисное решение с неотрицательными координатами, то есть базисное решение системы (*). Очевидно, что в опорном решении может быть не более m положительных координат.

<u>Определение 2.</u> Опорное решение называется **невырожденным**, если число его положительных координат равно m; в противном случае оно называется **вырожденным**.

Теорема. Любое опорное решение системы AX = B является угловой точкой ОДР и наоборот.

<u>Следствие:</u> для нахождения оптимального решения ЗЛП с ограниченной ОДР достаточно сравнить значения целевой функции во всех опорных решениях системы AX = B.

Симплексный метод решения $3Л\Pi$ — это метод целенаправленного перебора опорных решений системы AX = B. За конечное число шагов можно либо найти оптимальное решение, либо доказать, что его нет.

§2. Переход к новому опорному решению

Пусть в системе уравнений $AX = B_0$

$$r(A) = m; B_0 = (b_{01}, ..., b_{0m}); b_{0i} \ge 0, i = 1, ..., m$$

 x_1, \dots, x_m —разрешенные (базисные) переменные; x_{m+1}, \dots, x_n — свободные переменные.

Тогда $(b_{01},...,b_{0m},0,...,0)=BFS_1$ – опорное решение $AX=B_0$.

Найдем новое базисное решение системы $AX = B_0$, при котором переменная

 $x_k \quad (m+1 \leq k \leq n)$ становится базисной вместо переменной $x_l \quad (1 \leq l \leq m)$. Для этого надо разрешить систему относительно нового разрешающего элемента a_{lk} . Чтобы это новое решение было опорным (с неотрицательными координатами), l надо выбрать из условия

$$heta_{lk}=\underbrace{\min_{1\leq i\leq m}} heta_{ik}$$
 , где $heta_{ik}=rac{b_{0i}}{a_{ik}}$ и $a_{ik}>0$ (Правило $oldot$)

 $\underbrace{\textit{3амечаниe}}_{1 \leq i \leq m}$. Если $\underbrace{\textit{min}}_{1 \leq i \leq m} \theta_{ik}$ достигается при нескольких значениях i, то в качестве l можно взять

любое из этих значений.

Пример 1. Найти все опорные решения системы

Опорное

$$\begin{cases} 2x + 3y + t &= 8 \\ 7x + 6y + u = 19 \\ x, y, t, u \ge 0 \end{cases}$$

Разрешенные

ОБР Базисное БΠ (базисные) min Решение переменные Новый Отрицательный разрешающий элемент элемент! БΠ ОБР θ_{v} Х t u 2 2 2/3 \leftarrow 1 0 8 t (8:3=8/3)0 3 1/6 $OEP_1(0; 0; 8; 19)$ m.O 7 6 1 19 (19:6=19/6) \downarrow θ_{x} 2/3 1/3 0 2 2/3 4 1 -2 \leftarrow 0 1 1 $OFP_2(0; 8/3; 0; 3)$ m. A \downarrow Θ+ - 2/9 $O5P_3(1; 2; 0; 0)$ \leftarrow 0 1 7/9 2 12/9 m. B - 2/3 1/3 1 0 1 X θ_{v} θ_{u} Ο_ΕΡ₄(19/7; 0; 18/7; 0) T. C 0 1 2/7 - 2/7 2 4/7 1 2 1 6/7 0 1/7 25/7 3 1/6 19

> Остальные базисные решения не являются опорными

(4; 0; 0; -9) т. E; (0; 19/6; -3/2; 0) т. D

$$2x + 3y \le 8$$
 $+ s_1$ $2x + 3y + s_1 = 8$
 $7x + 6y \le 19$ $+ s_2$ (**) $7x + 6y + s_2 = 19$
 $x, y \ge 0$ $x, y, s_1, s_2 \ge 0$

Дополнительные S_1, S_2 - переменные

§3. Преобразование целевой функции при переходе к новому опорному решению

Рассмотрим ЗЛП, приведенную к каноническому виду

$$Z(X) = CX \rightarrow max$$

$$(*) \begin{cases} AX = B \\ X \ge "\theta" \\ B \ge "\theta" \end{cases}$$

Пусть r(A)=m, а $x_1,...,x_m$ — разрешенные (базисные) переменные; $x_{m+1},...,x_n$ — свободные переменные.

<u>Определение.</u> Оценкой переменной x_k по набору базисных переменных x_1, \dots, x_m называется величина

$$\Delta_k = c_1 a_{1k} + \dots + c_m a_{mk} - c_k$$

<u>Замечание</u>. Для базисных переменных $\Delta_{\pmb{k}} = 0$

<u>Теорема 1.</u> Обозначим ΔZ_k приращение целевой функции при переходе от одного опорного решения к другому (свободная переменная x_k становится базисной вместо x_l , выбранной по Правилу Θ). Тогда

$$\Delta \mathbf{Z}_{k} = -\theta_{lk} \cdot \Delta_{k}$$

<u>Теорема 2.</u> (Об улучшении опорного решения.) Если хотя бы одна из оценок Δ_k опорного решения отрицательна, то оно может быть улучшено переходом к новому опорному решению введением в базис новой переменной x_k вместо x_l , выбранной по Правилу Θ , при этом

$$\Delta \mathbf{Z}_{k} = -\theta_{lk} \cdot \Delta_{k}$$

<u>Следствие 1:</u> (признак оптимальности решения) Опорное решение ЗЛП является оптимальным, если

$$\Delta_{i} \geq 0$$
 для всех $j = 1, ..., n$

<u>Следствие 2:</u> (признак единственности оптимального решения) Если $\Delta_k > 0$ для всех x_k , не входящих в базис, то оптимальное решение ЗЛП является единственным.

Следствие 3: (признак существования бесконечного множества оптимальных решений)

Если $\Delta_{\pmb{k}} = 0$ для некоторого $x_{\pmb{k}}$, не входящего в базис, то ЗЛП имеет бесконечное множество оптимальных решений.

<u>Следствие 4:</u> (признак отсутствия оптимального решения ввиду неограниченности целевой функции)

Если для некоторого x_k $\Delta_k < 0$, а все $a_{ik} \leq 0$ $(i=1,\ldots,m)$, то целевая функция неограниченно возрастает.

<u>Замечание</u>. Вычисление Δ_k в симплексных таблицах, начиная со второй, может производиться аналогично вычислению коэффициентов матрицы A (методом Жордана-Гаусса).

Пример 0.

$$Z(x) = 1 * x_1 - 1 * x_2 + 3 * \underline{x_3} - 1 * \underline{x_4} \rightarrow max$$

$$-1 * x_1 + 2 * x_2 + 1 * \underline{x_3}$$
 = 2

$$3 * x_1 - 2 * x_2 + 1 * \underline{x_4} = 6$$

$$x_j \geq 0$$
 $j = 1,...,4$

		1	-1	3	-1		
БК	БП	X ₁	X ₂	<u>X</u> 3	<u>X</u> 4	ОБР	Θ_1
3	<u>X</u> 3	-1	2	1	0	2	-
-1	<u>x</u> 4	<u>3</u>	- 2	0	1	6	6 :3 = 2
							min
		3 * (-1)+(-1) * 3	3- 3 * 2+(-1) * (-2)	-		Z=3 * 2 +(- 1) * 6=	
	Δ_{j}	- 1 =	- (-1)=	0	0	= 0	
		= <u>-7</u>	= 9				
3	X 3	0	4/3	1	1/3	<u>4</u>	
1	X ₁	1	-2/3	0	1/3	<u>2</u>	
						_	
	Δ_{j}	0	13/3	0	7/3	Z = <u>14</u>	

$$X^* = X_{max} = (2; 0; 4; 0)$$

$$X^* = X_{max} = (2; 0; 4; 0)$$
 $Z^* = Z_{max} = Z(X^*) = 2+3*4 = 14$