1 Úvod

Definice 1.1 (Diferenciální rovnice)

Diferenciální rovnice je rovnice, která obsahuje derivaci.

Poznámka (Motivace)

Fyzika (např. pružina: $m \cdot \ddot{x} = -k \cdot x$), ekonomie (např. rovnice majetku?: $k' = \alpha \cdot k - c(t)$), biologie (např. model dravec-kořist: $d' = \alpha \cdot d \cdot k - \beta \cdot d \wedge k' = \gamma \cdot k - \delta \cdot d \cdot k$).

Poznámka (Co nás zajímá na DR)

Přesné řešení (často neumíme spočítat), existence a jednoznačnost řešení, jaké vlastnosti má řešení.

Poznámka (Předpoklady)

 $\Omega \subset \mathbb{R}^{n+1}$ otevřená, $(x,t) \in \Omega \subset \mathbb{R}^n \times I$, $f: \Omega \to \mathbb{R}^n$, x' = f(x,t). $I \subset \mathbb{R}$.

Definice 1.2 (Obyčená diferenciální rovnice, řešení)

Obyčejná diferenciální rovnice je rovnice x' = f(x,t) z předchozí poznámky.

Funkce $x:I\to\mathbb{R}^n$ je řešení DR, jestliže

- $\forall t \in I : (x(t), t) \in \Omega$,
- $\forall t \in I$ existuje vlastní derivace x'(t),
- $\forall t \in I$ platí x'(t) = f(x(t), t).

Poznámka

První dvě podmínky jsou jen existenční podmínky k rovnici ve třetím bodě.

Typicky má DR nekonečně mnoho řešení, přidáváme proto počáteční podmínku

$$(x_0, t_0) \in \Omega, \qquad t_0 \in I.$$

Lemma 1.1

Nechť $\Omega \subset \mathbb{R}^{n+1}$ otevřená, $f: \Omega \to \mathbb{R}^n$ spojitá a $x: I \to \mathbb{R}^n$ spojitou a takovou, že graf x $(\{(x(t),t)|t\in I\})$ leží v Ω . Pak následující tvrzení jsou ekvivalentní:

- x je řešení DR s počáteční podmínkou $x(t_0) = x_0$;
- $x(t) = x_0 + \int_{t_0}^t f(x(s), s) ds \ \forall t \in I.$

 $D\mathring{u}kaz$

" \Longrightarrow ": x a f je spojitá, tedy x' = f(x(t), t) je spojitá, tj. $x \in C^1(I) \implies \int_{t_0}^t x'(s) ds = x(t) - x(t_0)$.

" \Leftarrow ": jelikož f i x je spojitá, tak integral je diferencovatelný a x(t) je spojitá, tedy

$$x'(t) = 0 + f(x(t), t) \wedge x(t_0) = t_0 + 0.$$

Věta 1.2 (Peanova věta o lokální existenci)

Nechť $\Omega \subset \mathbb{R}^{n+1}$ otevřená, $f: \Omega \to \mathbb{R}^n$ spojitá a $(x_0, t_0) \in \Omega$. Potom $\exists \delta > 0$ a funkce $x: B(t_0, \delta) \to \mathbb{R}^n$ taková, která je řešení DR a splňuje počáteční podmínku. (Stačí spojitá f a kompaktní Ω .)

Tvrzení 1.3 (Pomocné tvrzení)

Pokud $\Omega = \mathbb{R}^{n+1}$ a f je omezená na Ω , pak $\forall T$ existuje řešení DR x na $[t_0 - T, t_0 + T]$ splňující $x(t) = x_0$ pro $x \in [t_0 - T, t_0]$ a $x(t) = x_0 + \int_{t_0}^t f(x(s - \lambda), s) ds$ jinak.

 $D\mathring{u}kaz$

Když x_{λ} je definována na $[t_0 - \lambda, t]$, pak pravá strana má smysl $\forall t \in [t_0, t_0 + \lambda]$ tím pádem pravá strana integrálního tvaru má smysl $\forall t \in [t_0, t + \lambda]$, tím pádem definujeme x_{λ} na $[t_0 - \lambda, t_0 + \lambda]$.

Nyní definujme $M:=\left\{x_n|_{[t_0,t_0+T]}\right\}_{n=1}^\infty$ a ověříme, že M splňuje podmínky Arzela-Ascoliho věty:

$$|x_{\lambda}(t)| \le |x_0| + \int_{t_0}^t |f(x_{\lambda}(s-\lambda))| ds \le |x_0| + ||f||_{\infty} \cdot |t-t_0| \le |x_0| + ||f||_a \cdot T,$$

$$|x_{\lambda}(t) - x_{\lambda}(\tau)| = \left| \int_{\tau}^{t} f(x_{\lambda}(s - \lambda), s) ds \right| \le ||f||_{\infty} \cdot |t - \tau|.$$

Podle AA věty tedy existuje podposloupnost M, která konverguje stejnoměrně. Limitu si označme x, podposloupnost x_{n_k} .

Chceme dokázat, že x je řešení DR:

$$\lambda_k := \frac{1}{n_k}, \quad x_{n_k}(t) = x_0 + \int_{t_0}^t f(x_{n_k}(s - \lambda_k), s) ds \to \int_{t_0}^t f(x(s), s) ds.$$

Pro $\overline{K_1} \subset K_2, \ \overline{K_2} \subset \Omega, \ (x_0,t_0) \in K, \ K_1$ a K_2 kompaktní definujeme

$$\varphi(x,t) = \begin{cases} 1, & (x,t) \in K_1, \\ 0, & (x,t) \in \Omega \setminus \overline{K_2}, \end{cases}$$

kterou spojitě dodefinujeme, a

$$\tilde{f}(x,t) = \begin{cases} f(x,t) \cdot \varphi(x,t), & (x,t) \in \Omega \\ 0, & (x,t) \in \mathbb{R}^{n+1} \backslash \Omega. \end{cases}$$

Dle prvního kroku (TODO?) $\exists \tilde{x}(t), t \in [t_0 - T, t_0 + T], \ \tilde{x}'(t) = \tilde{f}(\tilde{x}(t), t), \ \tilde{x}(t_0) = x_0.$ \tilde{x} je spojitá funkce $\Longrightarrow \exists \delta > 0$ tak, že graf funkce $\tilde{x}|_{[t_0 - \delta, t_0 + \delta]}$ leží v K_1 . Na K je $\tilde{f} = f$, tedy $\tilde{x}'(t) = f(\tilde{x}(t), t), \ t \in [t_0 - \delta, t_0 + \delta].$

 $D\mathring{u}kaz$ (Vzhledem k rozbitosti předchozího důkazu tu nanačím myšlenku:)

Definujeme si x_{λ} z pomocného tvrzení. Pak ověříme, že splňují podmínky AA, tedy z posloupnosti $x_{\frac{1}{n}}$ můžeme vybrat konvergující podposloupnost. O její limitě pak epsilon delta gymnastikou ověříme, že splňuje integrální formu DR.

1.1 Jednoznačnost řešení

Definice 1.3 (Lokální jednoznačnost, globální jednoznačnost)

Řekneme, že DR má vlastnost

• lokální jednoznačnosti, jestliže platí: Máme-li řešení (x,I), (y,J) a $t_0 \in I \cap J, x(t_0) = y(t_0)$ pak $\exists \delta > 0 \ \forall t \in (t_0 - \delta, t_0 + \delta), \ x(t) = y(t),$

• globální jednoznačnosti, jestliže platí: Máme-li řešení (x, I), (y, J) a $t_0 \in I \cap J, x(t_0) = y(t_0)$, pak $\forall t \in I \cap J : x(t) = y(t)$.

Tvrzení 1.4

Globální jednoznačnost je ekvivalentní lokální jednoznačnosti.

Důkaz

" \Longrightarrow " je triviální. " \Longleftrightarrow ": Pro spor předpokládejme $\exists t_1 \in I \cap J, \ x(t_1) \neq y(t_1)$. BÚNO $t_1 > t_0$. Definujme

$$M := \{ T \in I \cap J, t > t_0, x(t) \neq y(t) \} \neq \emptyset, \qquad t_2 = \inf M.$$

Víme $x(t_2) = \lim_{t \to t_2^-} x(t) = \lim_{t \to t_2^-} y(t) = y(t_2)$. Podíváme se lokální jednoznačností na bod t_2 . Tam existuje $\sigma > 0$ tak, že $\forall t \in (t_2 - \sigma, t_2 + \sigma) : x(t) = y(t)$. 4.

Definice 1.4 (Lokálně lipschitzovská)

Řekneme, že funkce f=(x,t) je lokálně lipschitzovská v Ω vzhledem k x, jestliže

$$\forall (x_0, t_0) \in \Omega \ \exists \delta > 0 \ \exists L > 0 \ \forall t \in \mathcal{U}_{\delta}(t_0) \ \forall x, y \in \mathcal{U}_{\delta}(x_0) : |f(x, t) - f(y, t)| \leqslant L \cdot |x - y|$$

Věta 1.5 (Peanova věta o jednoznačnosti)

Buď f $lokálně lipschitzovská v <math display="inline">\Omega$ vzhledem k x, pak DR má v Ω vlastnost lokální jednoznačnost.

 $D\mathring{u}kaz$

At x(t), y(t) jsou řešení. $x(t) = x_0 + \int_{t_0}^t f(x(s), s) ds$, $y(t) = y_0 + \int_{t_0}^t f(y(s), s) ds$. $x(t) - y(t) = \int_{t_0}^t (f(x(s), s) - f(y(s), s)) ds$. Vezmeme $\sigma > 0$. Grafy $x|_{[t-\sigma]}, y|_{[t-\delta, t+\delta]}$ leží v δ-okolí (x_0, t_0) .

$$\forall s \in [t - \sigma, t_0 + \sigma] : |f(x(s), s) - f(y(s), s)| \le L \cdot |x(s) - y(x)|.$$

$$|x(t) - y(t)| \le \int_{t_0}^t |f(x(s), s) - f(y(s), s)| ds \le \int_{t_0}^t L \cdot |x(s) - y(s)| ds, \qquad t \in [t_0 - \sigma, t_0 + \sigma]$$

$$\le L \max_{s \in [t - \sigma, t + \sigma]} |x(s) - y(s)| \cdot \sigma$$

Dusledek

Jestliže f je lokálně lipschitzovská v Ω vzhledem k x a $(x_0, t_0) \in \Omega$, pak

 $\exists \delta > 0 \ \exists ! x : (t_0 - \delta, t_0 + \delta) \to \mathbb{R}^n$ řešení DR s počáteční podmínkou $x(t_0) = x_0$.

Peanova věta o jednoznačnosti.

Tvrzení 1.6

 $Pokud \ \tfrac{\partial f}{\partial x_i} \ jsou \ spojit\'e \ v \ \Omega, \ j \in [n], \ pak \ f \ je \ lok\'aln\'e \ lipschitzovsk\'a \ v \ \Omega \ vzhledem \ k \ x.$

Důkaz

$$h(s) := f(x + s(y - x), t), s \in [0, 1], h(0) = f(x, t), h(1) = f(y, t).$$

$$h(1) - h(0) = \int_0^1 h'(s)ds = \int_0^1 \sum_{i=1}^n \frac{\partial f}{\partial x_i}(x + s(y - x), t) \cdot (y_j - x_j)ds$$

$$\forall (x_0, t_0) \in \Omega \ \exists \mathcal{U}(x_0) \ \exists \mathcal{U}(t_0) M = \overline{\mathcal{U}(x_0)} \times \overline{\mathcal{U}(t_0)} \subset \Omega,$$

M je kompaktní, tedy $\exists K > 0 \ \forall (x,t) \in M : \left| \frac{\partial f}{\partial x_i}(x) \right| \leqslant K$. Tedy

$$|h(1) - h(0)| \leqslant \int_0^1 \sum_{i=1}^n \left| \frac{\partial f}{\partial x_i} \right| \cdot |(x + s(y - x))| \cdot |y_i - x_i| ds \leqslant nK \cdot \max|y_i - x_i| \leqslant nK|x - y|.$$

2 Maximální řešení

Definice 2.1 (Prodloužení řešení, maximální řešení)

Řešení (\tilde{x}, \tilde{I}) je prodloužením řešení (x, I), jestliže $\tilde{I} \supset I$ a $\forall t \in I : x(t) - \tilde{x}()$.

Řešení je maximální, pokud neexistuje netriviální prodloužení.

Věta 2.1 (O maximálním prodloužení)

 $Každ\acute{e}$ řešení (x,I) má alespoň jedno maximální prodloužení.

 $D\mathring{u}kaz$

Ať M je množina všech prodloužení (x,I). Řekněme, že $(\tilde{x},\tilde{I}) \leqslant (\hat{x},\hat{I})$ právě tehdy, když (\hat{x},\hat{I}) je prodloužení (\tilde{x},\tilde{I}) .

At $N \subset M$ je řetězec (množina, na které je \leq lineární). Označme $I_0 = \bigcup_{(\tilde{x},\tilde{I}) \in N} \tilde{I}$ a definujme $x: I_0 \to \mathbb{R}^n$ z toho, že $t \in I_0 \Longrightarrow \exists (\tilde{x},\tilde{I}) \in N, t \in \tilde{I}$, jako $x(t) = \tilde{x}(t)$.

Z Zornova lemmatu pak vyplývá, že existuje maximální řešení.

Lemma 2.2

(x,I) řeší DR, I=(a,b), $b\in\mathbb{R}\cup\infty$. Pak řešení x lze prodloužit za bod b, když zároveň

- $b < \infty$:
- $\exists \lim_{t\to b} x(t) = x_0 \in \mathbb{R};$
- $(x_0, b \in \Omega)$.

$D\mathring{u}kaz$

" \Longrightarrow " zřejmě, " \Longleftrightarrow ": Uvažujme DR s počáteční podmínkou $x(b) = x_0$. Dle Peanovy věty $\exists \tilde{x} : (b - \delta, b + \delta) \to \mathbb{R}^n$. $x_1(t) = x(t)$, pokud $t \in (a, b)$, $\tilde{x}(t)$ jinak. x_1 tedy splňuje DR na (a, b) a $(b, b + \delta)$. Zbývá ověřit, že $x_1'(b) = f(x_1(b), b)$:

- x_1 je spojitá v b, neboť $\lim_{t\to b^-} x_1(t) = x_0 = \lim_{t\to b^+} x_1(t) = \tilde{x}(t)$.
- $\exists \lim_{t \to b^-} x_1'(t) = \lim_{t \to b^-} f(x(t), t) = f(x(b), b) = f(x_0, b).$
- $\exists \lim_{t \to b^+} x_1'(t) = \lim_{t \to b^+} f(\tilde{x}(t), t) = f(\tilde{x}(b), b) = f(x_0, b_0).$

П

Věta 2.3 (O opuštění kompaktu)

 $Bud'(x,I) \ maximální \ \check{r}e\check{s}ení \ DR. \ Nechť \ K \subset \Omega \ kompaktní \ a \ \exists t_0 : (x(t_0),t_0) \in K. \ Pak \\ \exists t_1 > t_0, \ t_1 \in I, \ \check{z}e \ (x(t_1),t_1) \in \Omega \backslash K. \ \exists t_2 \in I_2, \ t_2 < t_0, \ \check{z}e \ (x(t_2),t_2) \in \Omega \backslash K.$

Důkaz

Pro spor předpokládejme, že $\forall t_1 > t_0, t_1 \in I : (x(t_1), t_1) \in K$. Podle předchozí věty stačí dokázat $b < \infty$ (kdyby ne, tak K není kompakt), $\{t_k\}_{k=1}^{\infty} \nearrow b$, $\{(x(t_k), t_k)\}_{k=1}^{\infty} \subset K$ vybereme konvergentní podposloupnost $(x(t_{k_n}), t_{k_n}) \to (x_0, t_0)$. Následně ověříme BC podmínku: víme $x(s) - x(t) = x'(\xi)(s-t), \xi \in (s,t)$, tedy

$$|x(s) - x(t)| \le |x'(\xi)| \cdot |s - t| = |f(x(\xi), \xi)| \cdot |s - t| \le C \cdot |s - t|.$$

Zřejmě $(x_0, b) \in K \subset \Omega$, protože z kompaktu se nedá vykonvergovat.

3 Závislost řešení na počáteční podmínce

Definice 3.1

Buď f v Ω lokálně Lipschitzovská vzhledem k x_0 . Řešící funkcí (DR) nazveme funkci φ :

 $G \subset \mathbb{R}^{n+2} \to \mathbb{R}^n : (t,t_0,x_0) \mapsto x(t)$, kde x je maximální řešení odpovídající DR s počáteční podmínkou $x(t_0)=x_0$.

Věta 3.1 (Grönwallovo Lemma)

Necht $g, w : I \subset \mathbb{R} \to \mathbb{R}_+, \ g(t), w(t) \ge 0, \ \forall t \in I_0. \ Necht \ t_0 \in I, K \ge 0 \ a \ \forall t \in I : w(t) \le K + \left| \int_{t_0}^t w(s)g(s)ds \right|. \ Potom$

$$w(t) \leqslant K \cdot \exp\left(\left|\int_{t_0}^t g(s)ds\right|\right).$$

Důkaz

BÚNO $t > t_0$. Vezmeme $\varepsilon > 0$. Definujeme $\Phi(t) = K + \varepsilon + \int_{t_0}^t w(s)g(s)ds$. $\Phi'(t) = w(t) \cdot g(t)$.

$$\Phi'(t) \leqslant g(t) \left(K + \int_{t_0}^t w(s)g(s)ds \right) \leqslant g(t)\Phi(t), \qquad \forall t \in (t_0, \sup I).$$

$$\forall t \in (t_0, \sup I) : \Phi(t) \geqslant 0. \qquad \frac{\Phi'(t)}{\Phi(t)} \leqslant g(t), \qquad \int_{t_0}^t \frac{\Phi'(s)}{\Phi(s)} ds \leqslant \int_{t_0}^t g(s) ds.$$
$$\Phi(t_0) = K + \varepsilon, \qquad \frac{\Phi(t)}{K + \varepsilon} \leqslant \exp\left(\int_{t_0}^t g(s) ds\right),$$

$$\Phi(t) \leqslant (K + \varepsilon) \exp\left(\int_{t_0}^t g(s)ds\right) \qquad \forall \varepsilon > 0 \implies \Phi(t) \leqslant K \cdot \exp\left(\int_{t_0}^t g(s)ds\right).$$

Důsledek

Nechť f je globálně L-lipschitzovská v první souřadnici. Nechť x a y jsou řešení DR na intervalu I s počáteční podmínkou $x(t_0) = x_0$, $y(t_0) = y_0$. Potom

$$|x(t) - y(t)| \le |x_0 - y_0| \cdot e^{L \cdot |t - t_0|}$$
.

$$x'(t) = f(x(t), t), y'(t) = f(y(t), t).$$

$$x(t) = x_0 + \int_{t_0}^t f(x(s), s) ds, y(t) = y_0 + \int_{t_0}^t f(y(s), s) ds,$$

$$x(t) - y(t) = x_0 - y_0 + \int_{t_0}^t (f(x(t), t) - f(y(s), s)) ds,$$

$$|x(t) - y(t)| \le |x_0 - y_0| + \left| \int_{t_0}^t L \cdot (x(s) - y(s)) ds \right|,$$

Z Grönwallova lemmatu potom $|x(t) - y(t)| \leq |x_0 - y_0| \cdot \exp(L \cdot |t - t_0|)$.

Věta 3.2

Buď G množina z definice řešicí funkce, f lokálně lipschitzovská na G. Pak $G \subset \mathbb{R}^{n+2}$ otevřená a φ je spojitá v G.

 $D\mathring{u}kaz$

Vezmeme $(t, t_0, x_0) \in G$. Buď x maximální řešení DR s počáteční podmínkou $x(t_0) = x_0$. $\mathcal{D}_x \supset [t_0, t]$. BÚNO $t > t_0$.

$$K_{\delta} := \left\{ (y, s) \in \mathbb{R}^{n+1} | s \in [t_0 - \delta, t + \delta], |y - x(s)| \leqslant \delta \right\}.$$

Vezmeme $\varepsilon > 0$. Vezmeme $y_0 \in \mathbb{R}^n, s_0 \in \mathbb{R}, |y_0 - x_0| < \varepsilon, |t_0 - s_0| < \varepsilon$. Definujeme y maximální řešení splňující $y(s_0) = y_0$. Co znamená, že $(\tilde{t}, s_0, y_0) \in G$? $\mathcal{D}_y \supset [s_0, \tilde{t}]$. Potřebujeme dokázat, že y je definováno na K_{δ} . Odhadneme

$$|y(s_0) - x(s_0)| \le |y(s_0) - x(t_0)| + |x(t_0) - x(s_0)| = |y_0 - x_0| + |x(t_0) - x(s_0)| \le \varepsilon + x_0|t_0 - s_0| \le \varepsilon \cdot (1 + c_0)$$

$$s \ge t_0 : |x(s) - y(s)| \le |x(s_0) - y(s_0)|e^{L|s - s_0|} \le \varepsilon (1 + c_0)e^{L \cdot |s - s_0|}.$$

Máme, že $\forall s > t_0: |x(s) - y(s)| \leq \frac{\delta}{2}$, tedy y neopustí K_{δ} přes hranici $\implies y$ existuje až do času $t + \delta_0$, tj. G je otevřená.

Nyní " Φ je spojitá": $(t, t_0, x_0), (s, s_0, y_0) \in G$:

$$|\varphi(t, t_0, x_0) - \varphi(s, s_0, y_0)| = |x(t) - y(s)| \le |x(t) - x(s)| + |x(s) - y(s)| \le c_0|t - s| + |x(s_0) - y(s_0)|e^{L \cdot |s - s_0|} \le TODO$$

Věta 3.3 (Diferencovatelnost řešicí funkce)

 $Bud'f je \ t\check{r}idy \ C^1 \ vzhledem \ k \ x, \ \varphi \ je \ \check{r}e\check{s}ici \ funkce \ diferenciálni \ rovnice. \ Potom \ \forall (t,t_0,x_0) \in C^1 \ vzhledem \ k \ x, \ \varphi \ je \ \check{r}e\check{s}ici \ funkce \ diferenciálni \ rovnice.$

 $G \ a \ \forall \mathbf{w} \in \mathbb{R}^n, |w| = 1, \ existuje \ derivace \ \varphi \ podle \ x_0 \ ve \ směru \ w \ v \ bodě \ (t, t_0, x_0), \ tj.$

$$D_w \varphi(t, t_0, x_0) = \lim_{h \to 0} \frac{\varphi(t, t_0, x_0 + hw) - \varphi(t, t_0, x_0)}{h}.$$

Označíme-li pro pevné (t_0,x_0) : $x(t):=\varphi(t,t_0,x_0),\ u(t):=D_{\mathbf{w}}\varphi(t,t_0,x_0),\ pak\ platí$

$$u'(t) = [\nabla_x f(x(t), t)]u(t),$$
 (tzv. rovnice ve variacích)

$$u(t_0) = \mathbf{w}.$$

Vezmeme $(x_0, t_0) \in \Omega$. Definujeme $x(t) := \varphi(t, t_0, x_0), y_h(t) := \varphi(t, t_0, x_0 + h\mathbf{w})$. To znamená, že

$$\eta_h(x) = \frac{\varphi(t, t_0, x_0 + h\mathbf{w}) - \varphi(t, t_0, x_0)}{h} - u(t) = \frac{y_h(t) - x(t)}{h} - u(t).$$

$$x(t) = x_0 + \int_{t_0}^t f(x(s), s) ds, \qquad y_h(t) = x_0 + h \cdot \mathbf{w} + \int_{t_0}^t f(y_h(s), s) ds.$$

$$y_h(t) - x(t) = h \cdot \mathbf{w} + \int_{t_0}^t f(y_h(s), s) - f(x(s), s) ds.$$

Pro nějaké s,h $g(\vartheta)=f(x(s)+\vartheta(y_h(s)-x(s)),s),$ tedy $g(1)=f(y_h(s),s),$ g(0)=f(x(s),s),

$$y_h(t) - x(t) = h \cdot \mathbf{w} + \int_{t_0}^t g(1) - g(0)ds = h \cdot \mathbf{w} + \int_{t_0}^t \int_0^1 g'(\vartheta)d\vartheta ds =$$

$$= h \cdot \mathbf{w} + \int_{t_0}^t \int_0^1 \nabla_x f(x(u) + \vartheta(y_h(s) - x(s)), s) \cdot (y_h(s) - x(s))d\vartheta ds.$$

Buď u(t) maximální řešení $u'(t) = [\nabla_x f(x(t),t)]u(t), u(t_0) = \mathbf{w}$. Tj.

$$u(t) = \mathbf{w} + \int_{t_0}^t \nabla_x f(x(s), s) u(s) ds = \mathbf{w} + \int_{t_0}^t \int_0^1 \nabla_x f(x(s), s) u(s) d\vartheta ds.$$

Odečteme od předcházejícího a dostaneme

$$\begin{split} \eta_h(x) &= \int_{t_0}^t [\nabla_x f(x(s),s)] \eta_h(s) ds + \\ &+ \int_{t_0}^t \int_0^1 \left[\nabla_x f(x(s) + \vartheta(y_h(s) - x(s))) - \nabla_x f(x(s),s) \right] (y_h(s) - x(s)) d\vartheta ds. \\ |\eta_h(t)| &\leqslant \int_{t_0}^t C \cdot |\eta_h(s)| ds + \max_{\substack{s \in [t_0,t],\\ \vartheta \in [0,1]}} |\nabla_x f(x(s) + \vartheta(y_n(s) - x(s)),s) - \nabla_x f(x(s),s)| \cdot \int_{t_0}^t e^{L \cdot s - t_0} ds. \end{split}$$

Z důsledku předpředchozí věty

$$|y_h(s) - x(s)| \le |y_h(t_0) - x(t_0)|e^{L \cdot |s - t_0|} = |h\mathbf{w}|e^{L \cdot |s - t_0|} = |h|e^{L \cdot |s - t_0|}.$$

$$|\eta_h(t)| \le K_h \cdot C_2 + \int_{t_0}^t C \cdot (\eta_h(s))ds,$$

kde $K_h \to 0$. Z G. lemmatu pak plyne $|\eta_h(t) \leqslant K_n \cdot C_2 \cdot \exp[C \cdot |t - t_0|]| \implies \lim_{h \to 0} \eta_h(t) = 0$.

4 Lineární ODR

Definice 4.1 (Lineární ODR)

 $x' = A(t)x + b(t), A: (\alpha, \beta) \to \mathbb{R}^n \times \mathbb{R}^n = \mathbb{R}^{2n}, f: (\alpha, \beta) \to \mathbb{R}^n$ spojité funkce.

Věta 4.1

Nechť $t_0 \in (\alpha, \beta)$, $x_0 \in \mathbb{R}^n$. Pak existuje právě jedno maximální řešení x (LODR) s počáteční podmínkou $x(t_0) = x_0$. Funkce x je definovaná na (α, β) .

 $D\mathring{u}kaz$

Stačí dokázat, že x je definováno na celém (α, β) . Předpokládejme, že x je definované na (a, b), BÚNO $b < \beta$, $t_0 \in [a, b]$

$$x(t) = x_0 + \int_{t_0}^t [A(s)x(s) + f(s)] ds,$$

$$|x(t)| \le |x_0| + \max_{s \in [t_0, f]} |A(s)| \int_{t_0}^t |x(s)| ds + \max_{s \in [t_0, b]} |f(s)| \cdot |t - t_0|.$$

Z G. lemmatu plyne $|x(t)| \leq (|x_0| + \max_{s \in [t_0,b]} |f_s| \cdot |f - t_0|) e^{\max_{s \in [t_0,b]} |A(s)| \cdot |f - t_0|}$. Pak na intervalu (t_0,b) x neopustí nějaký kompakt.

Definice 4.2 (Homogenní rovnice)

LODR nazveme homogenní, pokud $b \equiv 0$, tedy $x'(t) = A(t) \cdot x(t)$.

Věta 4.2

Množina řešení H je vektorový prostor dimenze n.

 $D\mathring{u}kaz$

Součet řešení je řešení zřejmě. Stejně tak násobek. Dimenze n se dokazuje tak, že vezmeme bod a řešení, která mají každé v tomto bodě jednu funkci 1 a ostatní 0. To jsou zřejmě LN řešení a dá se z nich složit libovolné jiné, protože máme jednoznačnost řešení s konkrétní počáteční podmínkou. Takže další řešení poskládáme z těchto. $\ \Box$

Definice 4.3 (Fundamentální řešení)

Fundamentálním řešením homogenní LODR nazveme každou bázi prostoru řešení. Budeme jej značit

$$\Phi(t) = (\varphi(t), \dots, \varphi(t)).$$

Poznámka

Zřejmě $\Phi'(t) = A(t)\Phi(t)$.

Definice 4.4 (Wronského determinant (Wronskián))

$$W(t) = \det \Phi(t).$$

Věta 4.3 (Liouvilleova věta)

$$W(t) = W(t_0) \cdot \exp\left(\int_{t_0}^t \operatorname{tr} A(s) ds\right).$$

 $D\mathring{u}kaz$

Chceme dokázat, že $W'(t) = W(t) \cdot (\operatorname{tr} A(t))$. Rozepsáním.

Věta 4.4 (Variace konstant)

Nechť x' = A(t)x + b(t), $A: (\alpha, \beta) \to \mathbb{R}^{n \times n}$, $b: (\alpha, \beta) \to \mathbb{R}^n$ spojité, je LODR, $\Phi(t)$ fundamentální matice homogenní rovnice x' = A(t)x. Potom řešení LODR s počáteční podmínkou $x(t_0) = x_0$ ($t_0 \in (\alpha, \beta)$, $x_0 \in \mathbb{R}^n$) je dáno předpisem

$$x(t) = \Phi(t)\Phi^{-1}(t_0)x_0 + \Phi(t)\int_{t_0}^t \Phi^{-1}(s)b(s)ds.$$

Poznámka

Když budeme hledat řešení LODR ve tvaru $\Phi(t)\cdot C(t),$ dostaneme se k tomuto vzorci.

 $D\mathring{u}kaz$

Zderivujeme a s použitím $\Phi'(t) = A(t) \cdot \Phi(t)$:

$$x'(t) = \Phi(t) \cdot \Phi'(t_0) \cdot x_0 + \Phi'(t) \cdot \int_{t_0}^t \Phi^{-1}(s) \cdot b(s) ds + \Phi(t) \cdot \Phi^{-1}(t) \cdot b(t) =$$

$$= A(t) \left(\Phi(t) \Phi^{-1}(t) x_0 + \Phi(t) \int_{t_0}^t \Phi^{-1}(s) \cdot b(s) ds \right) + b(t) = A(t) x + b(t).$$

Navíc zjevně $x(t_0) = x_0$.

5 Lineární rovnice s konstantními koeficienty

Definice 5.1 (Lineární rovnice s konstantními koeficienty (LODRKK))

$$x' = Ax + b(t), \qquad A \in \mathbb{R}^{n \times n}, b : (\alpha, \beta) \to \mathbb{R}^n$$
 spojitá.

Poznámka

Ukážeme, že pro $n \in \mathbb{N}$ je řešení homogenní soustavy LODRKK se dá napsat ve tvaru $e^{At} = \sum_{k=0}^{\infty} \frac{1}{k!} A^k t^k$.

Definice 5.2 (Norma matice)

$$A \in \mathbb{R}^{n \times n}. ||A|| := \sup \{|Ax| \mid x \in \mathbb{R}^n, |x| \leqslant 1\}.$$

Věta 5.1

Nechť $A, B \in \mathbb{R}^{n \times n}$. Pak

- 1. $||A|| \ge 0$, $||A|| = 0 \Leftrightarrow A = 0$;
- 2. $||\lambda A|| = |\lambda| \cdot ||A||, \ \forall \lambda \in \mathbb{R};$
- $3. ||A + B|| \le ||A|| + ||B||;$
- 4. $||AB|| \le ||A|| \cdot ||B||$;
- 5. $|Av| \leq ||A|| \cdot |v|, v \in \mathbb{R}^n$;
- 6. $|Av| \geqslant \frac{|v|}{||A^{-1}||}$, $\forall v \in \mathbb{R}^n$, je-li A regulární.

$D\mathring{u}kaz$

1.–3. za domácí úkol. V 5. se pouze vezme norma, 2. a definice. Pro 4. dvakrát použijeme 5. Nakonec u 6. použijeme y=Av, tedy $v=A^{-1}y$, tím dostaneme samé tvrzení jako v 5..

Věta 5.2

Funkce $U(t) = \sum_{k=0}^{\infty} \frac{1}{k!} t^k A^k, t \in \mathbb{R}$ je fundamentální matice homogenního řešení LODRKK, $U(\mathbf{o}) = I_0$.

Za prvé řada konverguje, neboť

$$\left| \left| \frac{1}{k!} t^k A^k \right| \right| \leqslant \frac{|t|^k}{k!} ||A||^k \wedge \sum_{k=0}^{\infty} \frac{|t|^k}{k!} ||A^k|| K.$$

Za druhé $[U(t)]_{ij} = \sum_{k=0}^{\infty} \frac{1}{k!} t^k [A^k]_{ij}$ a poloměr konvergence je ∞ , můžeme tedy derivovat člen po členu:

$$\frac{d}{dt}[U(t)]_{ij} = \dots = A \cdot U(t).$$

Věta 5.3

Pro $A \in \mathbb{R}^{n \times n}$ definujeme $e^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k$. Potom platí:

- $e^{\lambda I} = e^{\lambda} \cdot I, \ \lambda \in \mathbb{R};$
- $pokud\ AB = BA,\ pak\ e^{A+B} = e^A \cdot e^B;$
- $e^{C^{-1}AC} = C^{-1}e^{A}C$, pokud je C regulární;
- $e^{-A} = (e^A)^{-1}$.

Důkaz TODO

Věta 5.4

 $A \in \mathbb{R}^{n \times m}$, Λ je její Jordanův kanonický tvar, $A = C\Lambda C^{-1}$, $a(\lambda_1, \ldots, \lambda_n)$ je diagonála Λ . Potom $e^{tA} = Ce^{t\Lambda}C^{-1}$, kde:

$$e^{t\Lambda} = \begin{pmatrix} e^{t\Lambda_1} & 0 & \dots \\ 0 & e^{t\Lambda_2} & 0 & \dots \\ 0 & 0 & e^{t\Lambda_3} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} = \operatorname{diag}(e^{t\lambda_1}, \dots, e^{t\lambda_n}) \cdot P(t), P_i(t) = \begin{pmatrix} 1 & t & \frac{t^2}{2} & \dots & \frac{t^{k-1}}{(k-1)!} \\ 0 & 1 & t & \dots & \dots \\ \vdots & \vdots & \vdots & \ddots & \vdots \end{pmatrix}.$$

Důkaz

Jednoduchý, byl na cvičení.

Důsledek

Buď $\overline{a}=\max\{\Re\lambda|\lambda\in eig(A)\},\ m$ je velikost Jordanovy buňky příslušná $\lambda:\Re\lambda=\overline{a}.$ Pak $\det(A-\lambda I)=0$:

$$\exists C>0: ||e^{tA}|| \leqslant C \cdot t^{n-1} \cdot e^{\overline{a}t}, \qquad \forall t \geqslant 0.$$

Obdobně když $\underline{a}=\min,$ pak

$$\exists C > 0 : ||e^{tA}|| \leqslant C \cdot |t|^{n-1} \cdot e^{\underline{a}t}, \quad \forall t \leqslant 0.$$

 $D\mathring{u}kaz$

Operátorová norma ||.|| je ekvivalentní normě $||A||_{\infty}$. Z toho a předchozí věty už to odhadneme...

Důsledek

Je-li $\Re \lambda < 0$, $\forall \lambda \in eig(A)$, pak $e^{At}x_0 \to 0$, $t \to +\infty$.

Definice 5.3 (Stabilní, nestabilní a centrální podprostor)

$$\sigma_{-}(A) = \{\lambda \in eig(A) | \Re \lambda < 0\}, V_{-} = Lin\{v \in \mathbb{R}^{n} | (A - \lambda I)^{k}v = 0, \lambda \in \sigma_{-}\}$$

$$\sigma_{+}(A) = \{\lambda \in eig(A) | \Re \lambda > 0\}, V_{+} = Lin\{v \in \mathbb{R}^{n} | (A - \lambda I)^{k}v = 0, \lambda \in \sigma_{+}\}$$

$$\sigma_0(A) = \{ \lambda \in eig(A) | \Re \lambda = 0 \}, V_0 = Lin \{ v \in \mathbb{R}^n | (A - \lambda I)^k v = 0, \lambda \in \sigma_0 \}.$$

Věta 5.5

$$\exists C > 0, \alpha > 0 \ \forall x_0 \in V_- : |e^{tA}x_0| \leqslant Ce^{-\alpha t}|x_0|, \qquad \forall t \geqslant 0.$$

$$\exists C > 0, \beta > 0 \ \forall x_0 \in V_+ : |e^{tA}x_0| \geqslant Ce^{\beta t}|x_0|, \qquad \forall t \geqslant 0.$$

$$\forall \varepsilon > 0 \ \exists C > 0 \ \forall x_0 \in V_0 : |e^{tA}x_0| \leqslant Ce^{\varepsilon t}|x_0|, \quad \forall t \geqslant 0.$$

6 Stabilita řešení

Definice 6.1 (Stabilní řešení, lokální atraktor, asymptotická stabilita)

DR x' = f(x,t). Buď $\Omega \subset \mathbb{R}^{n+1}$, $\tau \in \mathbb{R}$, $\{\mathbf{o}\} \times [\tau, +\infty) \subset \Omega$. Buď $f : \Omega \to \mathbb{R}^n$ spojitá a lokálně lipschitzovská vzhledem k x a f(0,t) = 0, $\forall t > \tau$. Značme $I = [\tau, +\infty)$. Nulové řešení DR se nazývá:

- stabilní, jestliže $\forall t_0 \in I \ \forall \varepsilon > 0 \exists \delta > 0 \\ \forall x_0 : |x_0| < \delta \implies |\varphi(t,t_0,x_0)| < \varepsilon \ \forall t \geqslant t_0;$
- lokální atraktor, pokud $\forall t_0 \in I \ \exists \eta > 0 \ \forall x_0 : |x_0| < \eta \implies \lim_{t \to +\infty} \varphi(t, t_0, x_0) = 0;$
- asymptoticky stabilní, pokud je stabilní a zároveň je lokálním atraktorem;
- uniformě stabilní, pokud

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall t_0 \in I : |x_0| < \delta \implies |\varphi(t, t_0, x_0)| < \varepsilon \ \forall t \geqslant t_0;$$

• uniformě asymptoticky stabilní, je-li uniformě stabilní a

$$\exists \eta > 0 \ \forall \varepsilon > 0 \ \exists \tau > 0 \ \forall t_0 \in I \ \forall x_0 : |x_0| < \eta \implies |\varphi(t, t_0, x_0)| < \varepsilon \ \forall t \geqslant t_0 + \tau.$$

Důkaz (Předchozí věty)

První bod:

$$e^{tA}x_0 = Ve^{tJ}V^{-1}x_0$$
$$x_0 \in X_-(A) \implies V^{-1}x_0 \in V^-(J)$$

TODO (další část jsem nechápal, pravděpodobně to byl důkaz implikace na předchozím řádku)

Z první rovnice:

$$|e^{tA}x_0| \leqslant ||V|| \cdot |e^{tJ}(V^{-1}x_0)| = ||V|| \cdot |e^{tJ}|_{X^{-}(J)} \cdot (V^{-1}x_0)| \leqslant ||V|| \cdot ||e^{tJ}|_{X^{-}(J)}|| \cdot |V^{-1}x_0| \leqslant$$
$$\leqslant ||V|| \cdot K \cdot e^{-\alpha t} \cdot ||V^{-1}|| \cdot |x_0| = C \cdot e^{-\alpha t} \cdot |x_0|.$$

Druhý bod: $x_0 \in X_+(A), e^{-At}y_0 = x_0. ||x_0|| = ||e^{-At}y_0|| \le e^{\beta t}C|y_0|$ podobně jako v prvním bodě. $y_0 = e^{At}x \in X_+(A), t \ge 0.$

Třetí bod: $||e^{tJ}|_{X_C(J)}|| \leq K \cdot t^m$, m je maximální velikost Jordanovy buňky odpovídající vlastním číslům z $\sigma_0(A)_0$.

Věta 6.1

Nulové řešení homogenní LODRKK x' = Ax, $A \in \mathbb{R}^{n \times n}$ je

- asymptoticky stabilní $\Leftrightarrow \forall \lambda \in \sigma(A) : \Re \lambda < 0$;
- $stabilni \Leftrightarrow \forall \lambda \in \sigma(A) : \Re \lambda \leqslant 0$ a Jordanovy buňky příslušné vlastním číslům s $\Re \lambda = 0$ mají velikost 0.

Definice 6.2

 x_0 je stabilní řešení $x' = f(x,t) \equiv 0$ je stabilní řešení $y' = g(y(t),t) = f(x_0(t)+y(t),t) - f(x_0(t),t)$. Obdobně pro další typy stability.

Lemma 6.2

Dána rovnice x' = Ax + g(x, t). Nechť $||e^{tA}|| \le Ke^{-\alpha t}$, $\forall t \ge 0$, g spojitá v \mathbb{R}^{n+1} , $|g(x, t)| \le \gamma \cdot |x|$, $kde \ \gamma < \frac{\alpha}{K}$. Pak nulové řešení je uniformě asymptoticky stabilní.

Buď x řešení, $x'(t) = A \cdot x(t) + g(x(t), t)$, což napíšeme jako x'(t) = Ax(t) + f(t). Použijeme variaci konstant:

$$x(t) = e^{A(t-t_0)}x_0 + \int_{t_0}^t e^{A(t-s)}f(s)ds.$$

Odhadneme: $t > t_0 : |x(t)| \le |e^{A(t-t_0)}x_0| + \int_{t_0}^t |e^{A(t-s)}f(s)|ds$,

$$|x(t)| \leqslant K \cdot e^{-\alpha(t-t_0)} \cdot |x_0| + K \cdot \int_{t_0}^t e^{-\alpha(t-s)} \cdot \gamma |x(s)| ds,$$

$$|e^{\alpha t}x(t)| \le K \cdot e^{\alpha t_0} \cdot |x_0| + K \cdot \int_{t_0}^t e^{\alpha s} \cdot \gamma |x(s)| ds.$$

Z G. lemmatu:

$$|e^{\alpha t}x(t)| \leqslant K \cdot e^{\alpha t_0} \cdot |x_0| \cdot e^{K\gamma(t-t_0)},$$

$$|x(t)| \leqslant K \cdot |x_0| \cdot e^{(K \cdot y - \alpha)(t-t_0)}, t \geqslant t_0.$$

Tudíž je uniformě asymptoticky stabilní.

Věta 6.3 (O linearizované stabilitě)

Dána rovnice (AR) x' = f(x), kde f je třídy C^1 v okolí bodu x_0 . Nechť $f(x_0) = 0$ a $A = \nabla f(x)$ splňuje $\Re \lambda < 0 \ \forall \lambda \in \sigma(A)$. Pak $x(t) \equiv x_0$ je uniformě asymptoticky stabilní.

Pokud A splňuje $\exists \lambda \in \sigma(A), \Re \lambda > 0, pak x(t) \equiv x_0 není stabilní.$

 $D\mathring{u}kaz$

Vize:

$$x' = f(x) = f(x_0) + \nabla f(x_0) \cdot (x - x_0) + o(x - x_0) = 0 + A \cdot (x - x_0) + o(x - x_0).$$

Búno
$$x_0 = 0$$
. $x' = A \cdot x + g(x)$, kde $g(x) = f(x) - Ax_0$.

$$\exists \alpha > 0 \ \forall \lambda \in \sigma(A) : \Re \lambda < -\alpha_0.$$

Pak $|e^{At}| \leq K \cdot e^{-\alpha t}$, $\forall t \geq 0$. Pro g platí, že $\lim_{x \to 0} \frac{g(x)}{|x|} = 0$, tedy $\exists \Delta > 0 : \forall x : |x| < \Delta \Longrightarrow \frac{|g(x)|}{|x|} < \gamma$, kde $\gamma < \frac{\alpha}{K}$. Máme, že $|g(x)| < \gamma \cdot |x|$, $|x| < \Delta$.

Definujeme (tzv. seřazovací funkci)

$$\eta(s) = \begin{cases} 1, & s < \frac{\Delta}{2}, \\ \eta(s) \text{ spojit\'a}, \, \check{\text{z}} \text{e} 0 < \eta(s) < 1, & s \in \left[\frac{\Delta}{2}, \Delta\right], \\ 0, s > \Delta. \end{cases}$$

Definujeme $h(x) := g(x) \cdot \eta(x)$. Platí, že $|h(x)| \leq \gamma \cdot |x|$, $\forall x \in \mathbb{R}^n$. Podívejme se na y' = Ay + h(y). To splňuje předpoklady předchozího lemmatu, tudíž nulové řešení je uniformě stabilní, tedy stabilní. Tj. existuje $\delta > 0 : |y(t_0)| < \delta \implies |y(t)| \leq \frac{\Delta}{2} \ \forall t \geq t_0$, tedy y splňuje x' = Ax + g(x). A podle předchozí věty je x uniformě asymptoticky stabilní.

7 První integrál

Definice 7.1 (AR)

 $x'=f(x), \qquad f$ spojitá lokálně lipschitzovská v otevřené množině $\Omega \subset \mathbb{R}^n$.

Definice 7.2 (První integrál)

Funkce $U:\Omega\to\mathbb{R}$ nazveme 1. integrálem AR, jestliže U není konstantní a funkce $t\mapsto U(x(t))$ je konstantní $\forall x$ řešení AR.

Věta 7.1

 $\Omega \subset \mathbb{R}^n$ otevřená, $f:\Omega \to \mathbb{R}^n$ spojitá, $U:\Omega \to \mathbb{R}$ třídy C^1 . Pak následující je ekvivalentní:

- U je první integrál AR.
- $\nabla U(\zeta) \cdot f(\zeta) = 0 \ \forall \zeta \in \Omega.$

"
$$\Leftarrow$$
 ": $x'(t) = f(x(t))$. Chceme dokázat, že $U(x(t))$ je konstantní.
$$\frac{d}{dt}U(x(t)) = \nabla U(x(t)) \cdot x'(t) = \nabla U(x(t)) \cdot f(x(t)) = 0.$$

" \Longrightarrow ": $\zeta\in\Omega$ pevné. Existuje řešení x(t), že $x(0)=\zeta.$ Tedy U(x(t))=U(x(0))a zderivováním

$$0 = \nabla U(x(t)) \cdot x'(t) = \nabla U(x(t)) \cdot f(x(t)) \quad \forall t$$

$$\implies t = 0 : \nabla U(x(0)) \cdot f(x(0)) = \nabla U(\zeta) \cdot f(\zeta) = 0.$$

Definice 7.3 (LN první integrály)

At U_1, \ldots, U_k jsou první integrály (AR). Řekneme, že jsou LN v bodě $x_0 \in \Omega$, pokud matice $\left(\frac{\partial U_j}{\partial x_i}\right)_{j \in [k], i \in [n]}$ má hodnost k.

Věta 7.2

Buďte U_1, \ldots, U_k první integrály (AR), LN v bodě x_0 . Pak řešení procházející bodem x_0 lze lokálně popsat soustavou n-k DR.

Věta 7.3

 $f(x_0) \neq 0 \implies \exists n-1 \ LN \ prvnich \ integrálů \ v \ x_0.$

 $D\mathring{u}kaz$

BÚNO $f_n(x_0) \neq 0$. $x_0 = (y, a)$. x'(t) = f(x(t)), $x_0 = x(0) = (y, a)$. Cheeme $\forall x \in O \exists ! t \exists ! z \in \mathbb{R}^{n-1} : \varphi(t, t_0 = 0, (z, a)) = x$.

Definujeme $\psi(t, z_1, \dots, z_n) = \varphi(t, 0, z_1, \dots, z_{n-1}, a)$.

TODO!!!

8 Stabilita a Ljapunovské funkce

Definice 8.1

Mějme DR $x' = f(x,t), f: \Omega \times [T,+\infty) \to \mathbb{R}^n, \Omega \subset \mathbb{R}^n$ otevřená, $f(0,t) = 0, \forall t \in I$.

Spojitou funkci $\omega:\Omega\to[0,+\infty)$ nazveme pozitivně definitní, je-li $\omega(0)=0$ a $\forall x\in\Omega\setminus\{\mathbf{o}\}:\omega(x)\neq0.$

Funkci $V(t,x): I \times \Omega \to [0,+\infty)$ nazveme ljapunovskou pro DR v Ω , je-li

- V spojitá, $\forall t \in I : V(t, 0) = 0$;
- funkce $t \mapsto V(t, x(t))$ je nerostoucí $\forall x$ řešení DR;
- existuje pozitivně definitní ω , že $V(t,x) \ge \omega(x) \ \forall x \in \mathbb{R} \ \forall t \in I$.

Věta 8.1

Nechť DR má ljapunovskou funkci. Potom nulové řešení je stabilní.

Věta 8.2

Nechť DR má v Ω ljapunovskou funkci V, která splňuje následující podmínky: \exists pozitivně definitní funkce ω, λ, η v Ω , že

- $\omega(\zeta) \leqslant V(t,\zeta) \leqslant \lambda(\zeta) \ \forall t \in I \ \forall \zeta \in \Omega;$
- $\frac{d}{dt}[V(t,x(t))] \leq -\eta(x(t)) \forall \ \check{r}e\check{s}en\acute{t} \ x \ v \ \Omega.$

Potom je řešení x = 0 asymptoticky stabilní.

Důkaz (Předpředchozí věty)

Chceme:

$$\varepsilon > 0 \; \exists \delta > 0 \; \forall x_0 : |x_0| < \delta \implies |x(t)| < \varepsilon \; \forall t \geqslant t_0.$$

To stačí dokázat pouze pro $\varepsilon > 0$, že $\overline{\mathcal{U}(0,\varepsilon)} \subset \Omega$. ω na $\{\zeta : |\zeta| = \varepsilon\}$ nabývá minima d, neboť je spojitá a to je kompaktní množina.

$$V(t_0,0) = 0$$
 a V je spojitá, tedy $\exists \delta > 0, \delta \leqslant \varepsilon \ \forall \zeta, |\zeta| < \delta : V(t_0,\zeta) < d$.

Pro spor nechť $\exists t_2 > t_0 : |x(t_2)| > \varepsilon$ a volíme $\forall x_0 : |x_0| < \delta : x(t_0) = x_0 \implies \exists t_1 : t_0 < t_1 < t_2 : |x(t_1)| = \varepsilon|$.

$$\alpha > V(t_0, x(t_0)) \geqslant V(t_1, x(t_1)) \geqslant \omega(x(t_1)) \geqslant \alpha, 4.$$

Lemma 8.3

Buď ω pozitivně definitní funkce na Ω . $\{x_n\}_{n=1}^{\infty} \subset \mathcal{U}(0,\varepsilon), \ \overline{U(0,\varepsilon)} \subset \Omega, \ \omega(x_n) \to 0.$ Pak $x_n \to 0.$

Důkaz

$$\forall \tilde{\varepsilon} < \varepsilon \; \exists N, x_n \subset U(0, \tilde{\varepsilon})$$

chceme. $K = \mathcal{U}(0,\varepsilon) \setminus \mathcal{U}(0,\tilde{\varepsilon})$ je kompakt, tedy funkce ω na něm nabývá minima, $\exists x_0 \in K : \omega(x) \geqslant \omega(x_0) > 0 \ \forall x \in K_0 \implies \exists N : \forall n > N : x_n \notin K \implies x_n \in U(0,\tilde{\varepsilon}).$

 $D\mathring{u}kaz$

$$\exists \varepsilon > 0 \ \overline{\mathcal{U}(0,\varepsilon)} \subset \Omega \ \exists \delta > 0, \delta < \varepsilon \ \forall x_0 : |x_0| < \delta \implies |x(t)| < \varepsilon \ \forall t \geqslant t_0.$$

Bereme $\forall x_0 : |x_0| < \delta_0$. Stačí dokázat " $x(t) \to 0$ ":

$$V(t, x(t)) \setminus C \geqslant 0 \implies \exists \lim_{t \to +\infty} V(t, x(t)) = a \geqslant 0.$$

$$\int_{t_0}^t \frac{d}{ds} V(s, x(s)) ds \leqslant -\int_{t_0}^t \eta(x(s)) ds, V(t, x(t)) + \int_{t_0}^t \eta(x(s)) ds \leqslant V(t_0, x(t_0)).$$

Tedy existuje $\int_{t_0}^{\infty} \eta(x(s))ds < \infty \implies \exists \{t_k\}_{k=1}^{\infty} \nearrow. \eta(x(t_k)) \to 0, |x(t_k)| < \varepsilon(sta?) \implies x(t_k) \to 0.$

$$3.V(t_k,x(t_k))\leqslant \lambda(x(t_k))\wedge x(t_k)\to 0 \implies \lambda(x(t_k))\to 0 \implies V(t_k,x(t_k))\to 0 \implies a=0.$$

4. $\omega(x(t)) \leq V(t, x(t)) \ \forall t \geq t_0$. Chceme důkaz, že $\lim_{t\to\infty} \omega(x(t)) = 0$. Berme libovolnou posloupnost $\mathcal{F}_k \nearrow +\infty$. $\omega(x(\tilde{t}_k)) \leq V(\tilde{t}_k, x(\tilde{t})k)) \to 9$.

$$\lim_{k \to \infty} \omega(x(\tilde{t}_k)) = 0 \land |x(\tilde{t}_k)| < \varepsilon \implies x(\tilde{t}_k) \to 0 \implies \exists \lim_{t \to \infty} x(t) = 0.$$

Poznámka (Zkouška)

Bude písemná část cca od devíti do půl jedenácté a pak bude od dvanácti.

Věta 8.4

 $At x' = Ax, A \in \mathbb{R}^{n \times m}$. Pak následující tvrzení jsou ekvivalentní

- 0 je uniformě asymptoticky stabilní;
- $\forall \lambda \in \sigma(A) : \Re \lambda < 0$:
- $\exists \alpha, c > 0 : ||e^{tA}|| \le ce^{-\alpha t} \ \forall t \ge 0;$

• \exists symetrická pozitivně definitní B, že $A^TB + BA = -I$.

Důkaz

Bez důkazu.

9 Šturnova srovnávací věta

Poznámka

$$a_0(t)x'' + a_1(t)x' + a_2(t)x = 0,$$

 $t \in I$, I interval, a_j spojité v I, $a_0(t) \neq 0$, $t \in I$.

Buď $t_0 \in I$, $\eta_0, \eta_1 \in \mathbb{R} \implies \exists ! x \text{ splňující předchozí rovnici, } x(t_0) = \eta_0, \ x'(t_0) = \eta_1.$

Problém: rozložení nulových bodů netriviálního řešení.

Lemma 9.1

x(t) netriviální řešení předchozí poznámky na I. Potom

- je- $li \ x(t_0) = 0$, $pak \ x'(t_0) \neq 0$;
- je- $li \ x(t_0) = 0$, $y(t_0) = 0$ ($y \ takt\'e\check{z} \ \check{r}\check{e}\check{s}en\'{i}$), $pak \ \exists \lambda : y(t) = \lambda x(t) \ \forall t \in I$;
- $N(x) = \{t \in I | x(t) = 0\}$ nemá v I hromadný bod.

"První bod": $x(t_0) = x'(t_0) = 0 \implies x(t) = 0 \ \forall t \in I.$

"Druhý bod":

$$y(t_0) = 0, x(t_0) = 0, x \not\equiv 0 \implies x'(t_0) \not= 0$$
$$z(t) = \frac{y'(t_0)}{x'(t_0)} \cdot x(t), t \in I_0.$$
$$z(t_0) = 0, z'(t_0) = \frac{y'(t_0)}{x'(t_0)} \cdot x'(t_0) = y'(t_0).$$

 $z(t_0) = y(t_0), z'(t_0) = y'(t_0) \implies z(t) = y(t) \ \forall t \in I_0.$

"Třetí bod": $\exists t_0 \in (a, b), \exists t_n \to t_0, x(t_n) = 0.$

$$x'(t_0) = \lim_{t \to t_0} \frac{x(t) - x(t_0)}{t - t_0}, \text{ Heine } x'(t_0) = \lim_{n \to \infty} \frac{x(t_n) - x(t_0)}{t_n - t_0} = 0.$$
$$x(t_n) = 0, x'(t_n) = 0 \implies x(t_0) = 0 \ \forall t \in I_0.$$

Poznámka

Každý kompakt má konečný průnik sN(x), tj. má smysl mluvit o sousedních nulových bodech.

Lemma 9.2

Rovnice z poznámky výše (kde $\exists b'$ spojitá) je převoditelná na tvar y''(t) + q(t)y(t) = 0, $q \in C(I)$.

 \Box $D\mathring{u}kaz$

$$x''(t) + b_1(t)x'(t) + b_2(t)x(t) = 0, b_j = \frac{a_j}{a_0(t)}.$$
$$x(t) = v(t) \cdot y(t) \implies$$

$$\implies v(t) \cdot y''(t) + y'(t)(2v'(t) + b_1(t)v(t)) + y(t)(v''(t) + b_1(t)v'(t) + b_0(t)v(t)) = 0.$$

Chceme vynulovat člen u y'(t), tedy hledáme v, aby

$$\frac{v'(t)}{v(t)} = -\frac{b_1(t)}{2}, \qquad v(t) = \exp(-\frac{1}{2}\int^t b_1(s)ds).$$

Lemma 9.3

Rovnici z poznámky výše lze převést na tvar $(p(t)x')' + q(t)x = 0, p \neq 0, p, q, p'$ spojité.

 $D\mathring{u}kaz$

$$p \cdot x'' + p'x' + qx = 0, \qquad x'' + \frac{p'}{p}x' + \frac{q}{p}x = 0,$$

$$\frac{p'}{p} = \frac{a_1(t)}{a_0(t)} =: b_1(t), \qquad p(t) = \exp\left(\int_{t_0}^t b_1(s)ds\right),$$

$$q(t) := p(t) \cdot \frac{a_2(t)}{a_0(t)}.$$

Věta 9.4

$$(p(t)x')' + q_1(t)x = 0,$$
 $(p(t)y')' + q_2(t)yt = 0$
 p, p', q_1, q_2 spojité $v I, p(t) > 0, q_2(t) \ge q_1(t)$ na I .

 $\textit{Bud} \ t_1, t_2 \in \textit{I} \ \textit{sousedn\'i nulov\'e body} \ x, \ t_1 < t_2, \ \textit{potom} \ \textit{bud'}$

$$\exists t_3 \in (t_1, t_2) : y(t_3) = 0,$$

nebo

$$q_1(t) = q_2(t) \ \forall t \in [t_1, t_2] \land \exists \lambda : y(t) = \lambda x(t).$$

 $D\mathring{u}kaz$

$$(p(t)x'(t))'y(t) - (p(t)y'(t))'x(t) = (q_2(t) - q_1(t))x(t)y(t)$$

$$\int_{t_1}^{t_2} [\dots] = \int_{t_1}^{t_2} (q_2(t) - q_1(t))x(t)y(t)dt \quad \text{per partes:}$$

$$[p(t)x'(t) \cdot y(t)]_{t_1}^{t_2} - [p(t) \cdot y'(t)x(t)]_{t_1}^{t_2} + \int_{t_1}^{t_2} 0dt = \int_{t_1}^{t_2} x(t)y(t)(q_2(t) \cdot q_1(t))dt$$

$$p(t_2) \cdot x'(t_2) \cdot y(t_2) - p(t_1)x'(t_1)y(t_1) = \int \dots$$

Pro spor předpokládejme $y \neq 0$ na (t_1,t_2) , potom BÚNO y>0 na (t_1,t_2) . BÚNO také tam x>0. $x'(t_1)>0$, $x'(t_2)<0$. Pak

$$p(t_2) \cdot x'(t_2)y(t_2) = 0 \implies y(t_2) = 0 \implies p(y_1)x'(y_1)y(t_1) = 0, q_2(t) = q_1(t) \ \forall t \in (t_1, t_2).$$

Věta 9.5 (Šturnova)

$$(p(t)x'(t))' + q(t)x(t) = 0,$$
 p, p', q spojité na $I, p \neq 0$ na I .

 $\{u(t), v(t)\}\ libovolný fundamentální systém funkcí této rovnice. Potom$

$$N(u) \cap N(v) = \emptyset;$$

$$\forall t_1, t_2 \in N(u) \ \exists t_3 \in (t_1, t_2) \cap N(v).$$

 $D\mathring{u}kaz$

1. vztah sporem: $\exists t_0 \in N(u) \cap N(v) \implies u(t_0) = v(t_0) = 0 \implies \exists \lambda \in \mathbb{R} : v(t) = \lambda u(t)$.

2. vztah: předchozí věta: $q_1=q_2,\ x=u,\ y=v.$ Pak $\forall t_1,t_2\in N(u)\ \exists t_3\in N(v):t_3\in (t_1,t_2).$

10 Flaquetova teorie

Lemma 10.1

$$A \in \mathbb{R}^{n \times n}$$
, $\det A \neq 0 \implies \exists B \in \mathbb{C}^{n \times n} : e^B = A$. $(B = \log A)$.

 $D\mathring{u}kaz$

$$\log(I+M) = \sum_{i=1}^{\infty} \frac{(-1)^n M^n}{n}.$$

Pokud je M horní trojúhelníková s nulami na diagonále, tak je tento součet konečný. Pro obecnou A můžeme A rozdělit na Jordanovu matici a matici přechodů:

$$A = VJV^{-1} = V \cdot D(I+M)V^{-1} \implies \log A := V(\log D + \log(I+M))V^{-1}$$

kde logaritmus je v komplexním oboru.

Poznámka

Řešíme rovnici (LRP) $x' = A(t)x + b(t), A \in C(\mathbb{R}, \mathbb{R}^{n \times n}), T > 0, A(t+T) = A(T), b(t) = b(t+T), \forall t \in \mathbb{R}.$

- $\forall x_0 \in \mathbb{R}^n : \exists !$ maximální řešení definované na celém \mathbb{R} .
- x(t) je řešení homogenní rovnice $\implies y(t) = x(t+T)$ je řešení homogenní rovnice.
- x je řešení homogenní rovnice, pak x je T-periodické $\Leftrightarrow x(0) = x(T)$.

• $\varphi(t)$ je fundamentální matice homogenní rovnice, $\varphi(0) = I$. x je řešení homogenní rovnice. Pak x je T-periodické $\Leftrightarrow \varphi(T)x_0 = x_0$.

Definice 10.1

 $C = \varphi(T)$ se nazývá maticí monotonie.

Věta 10.2

$$\varphi(t)=Q(t)e^{Bt},\;kde\;B\in\mathbb{C}^{n\times n},\;Q\in C(\mathbb{R},\mathbb{C}^{n\times n})\;T\text{-}periodick\acute{a}.$$

 $D\mathring{u}kaz$

$$\varphi(T) = C$$
 regulární, $\exists \tilde{B} : e^{\tilde{B}} = C = e^{TB}, \ B := \frac{1}{T}\tilde{B}_0. \ \psi(t) = \varphi(t+T)C^{-1},$

$$\psi'(t) = \varphi'(t+T)C^{-1} = A(t+T) \cdot \varphi'(t+T)C^{-1} = A(t) \cdot \psi(t).$$

$$\psi(0) = \varphi(T) \cdot C^{-1} = I$$
. Z toho $\psi(t) = \varphi(t)$.

$$\varphi(t + T) \cdot \varphi(T^{-1}) = \psi(t), \forall t, \varphi(t + T) = \varphi(t) \cdot \varphi(T).$$

Tvrzení 10.3

Pokud $\sigma(C) \subset \{z \in \mathbb{C} : |z| < 1\}$, pak 0 je asymptoticky stabilním řešením.

Důkaz

TODO?

Věta 10.4

Následující tvrzení jsou ekvivalentní:

- LRP má právě jedno T-periodické řešení.
- Homogenní rovnice má pouze triviální T-periodické řešení.
- $1 \notin \sigma(C)$.

$D\mathring{u}kaz$

"Z prvního do druhého bodu": Pro spor předpokládejme $y'=A(t)y,\,y\neq 0$. Pokud x je řešení LRP, pak x + y je jiné řešení LRP, které je též T-periodické.

"Z druhého do prvního bodu": Pro spor předpokládejme, že y_1, y_2 jsou T-periodická řešení LRP. Potom $y_1 - y_2$ je netriviální T-periodické řešení homogenní soustavy.

"Ze třetího do druhého bodu": Pokud x je nenulové řešení homogenní rovnice. x je T-periodické $\Leftrightarrow x(T) = x(0)$. $x(t) = \varphi(t)x_0$, $x_0 = x(T) = \varphi(T)x_0 = Cx_0$. Tedy x_0 je vlastní vektor příslušící vlastnímu číslu 1. 4.

"Z druhého do třetího bodu": Kdyby 1 byla vlastní číslo, pak existuje nenulový vlastní vektor matice C jemu příslušející, tedy existuje nenulové řešení.

Důsledek

Nulové řešení homogenní rovnice je stabilní (asymptoticky stabilní) ⇔ nulové řešení rovnice y' = By je stabilní (asymptoticky stabilní).

$$D\mathring{u}kaz$$

$$\mathcal{D}\tilde{u}kaz \\
, \longleftarrow \text{``}: x(t) = \varphi(t)x_0 = Q(t) \underbrace{e^{Bt}x_0}_{y(t)}. ||x(t)|| \leq ||Q(t)|| \cdot ||y(t)|| \leq \max_{t \in [0,T]} ||Q(t)|| \cdot ||y(t)|| \leq const|y(t)|.$$