They was less with self

and the to some who wast' it's

TCH-101

B. TECH. (FIRST SEMESTER) MID SEMESTER EXAMINATION, 2019

(ALL BRANCHES)

ENGINEERING CHEMISTRY

Time: 1:30 Hours

Maximum Marks: 50

- Note: (i) This question paper contains two Sections.
 - (ii) Both Sections are compulsory.

Section-A

- 1. Fill in the blanks/True-False: (1×5=5 Marks)
 - (a) The bond order of NO molecule is
 - (b) XeF₄ molecule has hybridization.
 - (c) O₂ molecule is diamagnetic in nature.

(True-False)

(d) The H₂O molecule has tetrahedral shape.

(True-False)

(e) AlCl₃ is nucleophile. (True-False)

,

- 2. Attempt any five parts: (3×5=15 Marks)
 - (a) Define Nucleophiles. Give examples.
 - (b) Draw the shape of NH3 molecule.
 - (c) Write a short note on Carbocations.
 - (d) Explain, why H₂O is liquid while H₁S is gas?
 - (e) Write a short note on Inductive Effect.
 - (f) Write a short note on Bond Order.

Section-B

- Attempt any nwo parts of choice from (a), (b) and (c). (5×2=10 Marks)
 - (a) Write a short note on hydrogen bonding with its significances.
 - (b) Draw the MOT diagram of HF molecule with its bond order and magnetic nature.
 - (c) Differentiate between (BMO and ABMO) bonding and anti-bonding molecular orbitals.
- 4. Attempt any two parts of choice from (a), (b) and (c). (5×2=10 Marks)
 - (a) Write a short note on Free radicals. Also write about its structure and stability.
 - (b) Differentiate between the mechanisms of S_N¹ & S_N² reactions.

- (c) Explain aromatic electrophilic substitution reaction with the mechanism of nitration.
- 5. Attempt any two parts of choice from (a), (b) and (c). (5×2=10 Marks)
 - (a) Write the main postulates of VSEPR theory with the example of shape of H₂O molecule.
 - (b) Explain Metallic bonding with the help of Electron sea theory.
 - (c) Explain, why p-nitrophenol and o-nitrophenol has different solubility in water.