

D MAVT

Dr. Paolo Tiso

Ziele des Technische Mechanik

- 1. Verständnis des physicalischen Vorgänge
- 2. Verbindung zwischen Mathematischen Modell und Physicalishe Realität
- 3. Ingegneur Methodik Entwicklung (Systemabgrenzung)

Was ist ein Modell?

Mathematische Darstellung der Realität

Was wollen wir erfassen?

Genauigkeit vs. Einfachheit

ETH zürich

Materieller Punkt

Deformierbares Modell

System von materiellen Punkten

Mehr(starr)körperssystem

Warum Technische Mechanik?

Strukturanalyse von Umweltanlagen

Umweltsensoren

Fluidmechanik und Strömungsanalyse

Bodenerosion und Geotechnik

Umweltsimulationen und Modellierung:

II. Small droplets remain airborne (inertial)

III. Long time evolution (tracers)

I. Large droplets sediment (ballistic)

Warum Technische Mechanik?

Mikro/Nano Elektromechanische Systeme

Mechatronik

Schock- und Vibrationsfestigkeit

Roboter

Mathematische Werkzeuge

- 1. Trigonometrie
- 2. Vektoralgebra (Skalarprodukt, Vektorproduct, Summe und Subraktion von Vektoren)
- 3. (später) Differenzialgleichungen
- 4. Griechisches Alphabet

Gebiede der Mechanik

- 1. Kinematik (Wochen 1-3): Geometrie der Bewegung Wie kann mann eine Bewegung mathematisch beschreiben?
- 2. Statik (Wochen 4-10): Wirkung der Kräfte auf das Gleichgewicht des Systems Unter welche Bedigungen kann ein System im Ruhe bleiben?
- 3. Dinamik (Wochen 11-14): Wirkung der Kräfte am bewegten System Gegeben Kräfte und Momente, wie bewegt sich das System?
- 4. Kontinuummechanik: Wirkung der Kräfte am deformierbaren System