rna-seq-analysis

Victoria Latynina

2023-03-18

RNA-seq analysis

Pipeline steps:

Combine counts into count matrix

Run VST for PCA, run PCA

Run differential expression

Find pathways for DE

##

ENSMUSG00000102693.1

```
library(ggplot2)
library(DESeq2)
library(apeglm)
library(ggrepe1)
library(dplyr)
library(org.Mm.eg.db)
library(PCAtools)
```

Combine counts into count matrix

```
countFiles <- list.files("~/Code/sys_bio/Part_2/materials/GSE137888_RAW", full.names = T)
countFiles

## [1] "/Users/victoria_latynina/Code/sys_bio/Part_2/materials/GSE137888_RAW/SRR10166256_Control.fc.txt
## [2] "/Users/victoria_latynina/Code/sys_bio/Part_2/materials/GSE137888_RAW/SRR10166257_Control.fc.txt
## [3] "/Users/victoria_latynina/Code/sys_bio/Part_2/materials/GSE137888_RAW/SRR10166258_Control.fc.txt
## [4] "/Users/victoria_latynina/Code/sys_bio/Part_2/materials/GSE137888_RAW/SRR10166259_Prdm16.fc.txt"
## [5] "/Users/victoria_latynina/Code/sys_bio/Part_2/materials/GSE137888_RAW/SRR10166260_Prdm16.fc.txt"
## [6] "/Users/victoria_latynina/Code/sys_bio/Part_2/materials/GSE137888_RAW/SRR10166261_Prdm16.fc.txt"

counts <- lapply(countFiles, function(countsFile) {
    read.table(countsFile, sep="\t", header=1, skip = 1, row.names = 1, stringsAsFactors = F, comment.cha
})
head(counts[[1]])</pre>
```

Chr

chr1

```
## ENSMUSG00000064842.1
                                                        chr1
## ENSMUSG00000051951.5 chr1; chr1; chr1; chr1; chr1; chr1; chr1
## ENSMUSG00000102851.1
## ENSMUSG00000103377.1
                                                        chr1
## ENSMUSG00000104017.1
                                                        chr1
##
                                                                             Start
## ENSMUSG00000102693.1
                                                                           3073253
## ENSMUSG00000064842.1
                                                                           3102016
## ENSMUSG00000051951.5 3205901;3206523;3213439;3213609;3214482;3421702;3670552
## ENSMUSG00000102851.1
                                                                           3252757
## ENSMUSG00000103377.1
                                                                           3365731
## ENSMUSG00000104017.1
                                                                           3375556
                                                                               End
## ENSMUSG00000102693.1
                                                                           3074322
## ENSMUSG00000064842.1
                                                                           3102125
## ENSMUSG00000051951.5 3207317;3207317;3215632;3216344;3216968;3421901;3671498
## ENSMUSG00000102851.1
                                                                           3253236
## ENSMUSG00000103377.1
                                                                           3368549
## ENSMUSG00000104017.1
                                                                           3377788
                                Strand Length Count
## ENSMUSG00000102693.1
                                     +
                                         1070
                                                   Ω
## ENSMUSG00000064842.1
                                          110
## ENSMUSG00000051951.5 -;-;-;-;-
                                         6094
                                                   0
## ENSMUSG00000102851.1
## ENSMUSG00000103377.1
                                         2819
                                                   0
## ENSMUSG00000104017.1
                                         2233
counts <- lapply(counts, function(countsTable) countsTable[, "Count", drop=F])</pre>
counts <- do.call(cbind, counts)</pre>
colnames(counts) <- gsub(".*(SRR\\d+).*", "\\1", countFiles)</pre>
head(counts)
                         SRR10166256 SRR10166257 SRR10166258 SRR10166259
##
## ENSMUSG00000102693.1
                                   0
                                                0
                                                            0
## ENSMUSG00000064842.1
                                   0
                                                0
                                                            0
                                                                         0
## ENSMUSG00000051951.5
                                   0
                                                            0
                                                                         1
                                                1
## ENSMUSG00000102851.1
                                   Λ
                                                0
                                                            0
                                                                         0
## ENSMUSG00000103377.1
                                                            0
                                                                         0
## ENSMUSG00000104017.1
                                   0
                                                0
                                                            Ω
                                                                         0
##
                         SRR10166260 SRR10166261
## ENSMUSG00000102693.1
                                   0
                                                0
## ENSMUSG00000064842.1
                                   0
                                                0
## ENSMUSG00000051951.5
                                                0
## ENSMUSG00000102851.1
                                   0
                                                0
## ENSMUSG00000103377.1
                                   0
                                                0
## ENSMUSG00000104017.1
coldata <- data.frame(</pre>
 srr=gsub(".*(SRR\\d+).*", "\\1", countFiles),
 condition=gsub(".*(SRR\\d+)_(Control|Prdm16).*", "\\2", countFiles),
 row.names =gsub(".*(SRR\\d+).*", "\\1", countFiles)
)
```

```
write.table (coldata, file="~/Code/sys_bio/Part_2/materials/GSE137888\_coldata.tsv", sep="\t", quote=F, coldata to the coldat
```

```
## SRR10166256 SRR10166256 Control
## SRR10166257 SRR10166257 Control
## SRR10166258 SRR10166258 Control
## SRR10166259 SRR10166259 Prdm16
## SRR10166260 SRR10166260 Prdm16
## SRR10166261 SRR10166261 Prdm16
```

Run differential expression

write.table(assay(rlog), file="~/Code/sys_bio/Part_2/materials/GSE137888_rlog.tsv", sep="\t", quote=F,

Run VST for PCA, run PCA

```
vst <- varianceStabilizingTransformation(dds)
# plotPCA(vst, intgroup=c("condition"), ntop=nrow(vst)) + theme_bw()
pcaData <- pca(assay(vst), metadata=coldata)
biplot(pcaData, colby="condition", legendPosition = "right")</pre>
```


plotloadings(pcaData) + theme_bw(base_size=8)

head(results(dds))

```
## log2 fold change (MLE): condition Prdm16 vs Control
## Wald test p-value: condition Prdm16 vs Control
## DataFrame with 6 rows and 6 columns
##
                           baseMean log2FoldChange
                                                        lfcSE
                                                                            pvalue
##
                          <numeric>
                                          <numeric> <numeric>
                                                               <numeric> <numeric>
## ENSMUSG00000103147.1
                            2.05487
                                         -1.2346017
                                                     1.664859 -0.7415654
                                                                          0.458351
  ENSMUSG00000098104.1
                           18.91484
                                         -0.2730375
                                                     0.482898 -0.5654148
                                                                          0.571792
## ENSMUSG00000103922.1
                           15.18818
                                         -0.6780091
                                                     0.571090 -1.1872201
                                                                          0.235141
                                         -0.0216442
## ENSMUSG00000033845.13
                          445.20248
                                                     0.213024 -0.1016049
                                                                          0.919070
  ENSMUSG00000102275.1
                                         -0.1135539
                                                     1.145577 -0.0991238
                            3.11991
                                                                          0.921040
                                         0.0785121 0.165100 0.4755418 0.634401
## ENSMUSG00000025903.14 1500.43596
##
                              padj
##
                         <numeric>
## ENSMUSG00000103147.1
                                NA
## ENSMUSG00000098104.1
                          0.972583
## ENSMUSG00000103922.1
                          0.835081
## ENSMUSG00000033845.13
                          0.997337
## ENSMUSG00000102275.1
                                NΑ
## ENSMUSG00000025903.14 0.979834
```

Get volcano plots

```
res <- lfcShrink(dds, coef="condition_Prdm16_vs_Control", type="apeglm")
head(res)
## log2 fold change (MAP): condition Prdm16 vs Control
## Wald test p-value: condition Prdm16 vs Control
## DataFrame with 6 rows and 5 columns
                           baseMean log2FoldChange
##
                                                      lfcSE
                                                               pvalue
                                                                            padj
##
                          <numeric>
                                        <numeric> <numeric> <numeric> <numeric>
## ENSMUSG00000103147.1
                            2.05487 -0.01156381 0.161490 0.458351
                          18.91484 -0.02776637 0.156325 0.571792 0.972583
## ENSMUSG00000098104.1
                          15.18818
                                      -0.05241754 0.167191 0.235141 0.835081
## ENSMUSG00000103922.1
## ENSMUSG00000033845.13 445.20248 -0.00776160 0.128871 0.919070 0.997337
## ENSMUSG0000102275.1
                            3.11991
                                      -0.00217361 0.160042 0.921040
## ENSMUSG00000025903.14 1500.43596
                                      0.03956795 0.118090 0.634401 0.979834
# keytypes(org.Mm.eq.db)
res$Gene.symbol <- mapIds(org.Mm.eg.db, gsub("\\.\\d+", "", rownames(res)), column="SYMBOL", keytype="E
resDF <- as.data.frame(res)</pre>
volcanoPlot <- ggplot(resDF, aes(x=log2FoldChange, y=-log10(padj), color=padj < 0.05)) +</pre>
  geom_point() + theme_bw() + scale_color_manual(values=c("black", "red"))
volcanoPlot <- volcanoPlot +</pre>
 geom_text_repel(data=resDF %>% dplyr::filter(padj < 1e-14), aes(label=Gene.symbol), color="black")</pre>
volcanoPlot <- volcanoPlot +</pre>
 xlim(c(-6, 6)) +
                  Log2FC Control") +
 xlab("Prdm16
  geom_vline(xintercept = 0, lty=2) +
  theme(aspect.ratio = 1)
volcanoPlot
```


Pathway analysis

Pathway	Gene ranks	NES	pval	padj
Herpes simplex infection – Mus musculus (mouse)	THE CHARLES AND ADDRESS OF THE PARTY OF THE	2.31	$1.9 \cdot 10^{-12}$ 1	_
Human papillomavirus infection – Mus musculus (mouse)	1 100111001 11100 11100 11100 11101		$2.4 \cdot 10^{-11}$ 1	
Measles - Mus musculus (mouse)	Income and the second of the 		$6.3 \cdot 10^{-10}$ 2	
Hepatitis C – Mus musculus (mouse)	1.	2.24	5.3·10 ⁻⁹ 1	.5·10 ⁻⁷
iposi's sarcoma-associated herpesvirus infection – Mus musculus (mouse)			$3.9 \cdot 10^{-8}$ 9	
Proteasome – Mus musculus (mouse)	Hamman or or or or		$1.2 \cdot 10^{-7}$ 2	
Viral carcinogenesis – Mus musculus (mouse)	10 mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm		$1.4 \cdot 10^{-7}$ 2	
Influenza A – Mus musculus (mouse)	ha mama 1111	2.06	$1.4 \cdot 10^{-7}$ 2	2.6·10 ⁻⁶
Fatty acid degradation – Mus musculus (mouse)	The area or community	₁ –2.39	$3.9 \cdot 10^{-7}$ 6	3.8·10 ^{−6}
Metabolism of xenobiotics by cytochrome P450 – Mus musculus (mouse)		₁ –2.48	$7.6 \cdot 10^{-9}$ 2	2.0·10 ⁻⁷
Valine, leucine and isoleucine degradation – Mus musculus (mouse)	The second of th	-2.50	5.3·10 ⁻⁹ 1	.5·10 ⁻⁷
Chemical carcinogenesis – Mus musculus (mouse)		-2.48	3.2·10 ⁻⁹ 1	.1·10 ⁻⁷
Retinol metabolism – Mus musculus (mouse)	Harman Carlos and Carl	-2.60	$1.2 \cdot 10^{-10}$ 5	5.4·10 ⁻⁹
Oxidative phosphorylation – Mus musculus (mouse)	111 1 1111 1111 1111 1111 111 111 111	-2.56	$5.0 \cdot 10^{-13} 4$.7·10 ⁻¹¹
Peroxisome – Mus musculus (mouse)	II i ii	_2.70	$2.5 \cdot 10^{-13} 3$.5·10 ⁻¹¹
Drug metabolism – cytochrome P450 – Mus musculus (mouse)	1 0 00 1 00 00 00 00 110 1 100	₁ –2.80	$1.7 \cdot 10^{-13} 3$.5·10 ⁻¹¹
	0 4000 8000 12000 160	00		