

Mašinsko učenje 2024

Sadržaj

* Podsetnik - praktičan deo

* Zadatak 1

*

*

SciPy Stack

Uputstva i saveti

- Praktičan deo predmeta nosi najviše 60* bodova.
- Sastoji se od:
 - 5 domaćih zadataka
 - Predmetnog projekta.
- Akcenat na timskom radu:
 - Svaki član tima mora dati svoj doprinos
 - Bodovi dodeljeni članovima istog tima mogu da se razlikuju.

^{*} u posebnim slučajevima 60 bodova donosi i dodatnih 40.

Opcije:

- Samo projekat = najviše 25 bodova
- 2 domaća zadatka (najviše 25) + projekat (najviše 25) = najviše 50 bodova
- 4+ domaćih zadataka (najviše 35) + projekat (najviše 25) = najviše 60 bodova
- Nagrada za najuspešnije = najviše 60 bodova.
- Najuspešniji od najuspešnijih = 100 bodova.

- Kriterijumi:
 - Ostvareni rezultati i kako se do njih došlo:
 - Pristup problemima
 - Korišćeni algoritmi
 - Određivanje (hiper)parametara algoritama
 - Rad sa trening skupom podataka.
 - Propratni izveštaji:
 - Sadržaj propratnih izveštaja
 - Usklađenost izveštaja i izvornih kodova rešenja.
 - Diskusija:
 - Prezentovanje rešenja i odgovori na pitanja prilikom prezentovanja.

- Raspored domaćih zadataka:
 - 04.03. 19.03. Jednostruka linearna regresija
 - 25.03. 16.04. Višestruka regresija
 - o 22.04. 08.05. Klasifikacija
 - o 13.05. 22.05. Ansambl klasifikatora
 - o 27.05. 02.06. Klasterovanje

- Jednostruka linearna regresija:
 - Upotrebom jednostruke linearne regresije prediktovati Y na osnovu X.
 - Zadatak je uspešno urađen ukoliko se na testnom skupu podataka dobije RMSE (Root Mean Square Error) manji od 180.
 - Algoritmi mašinskog učenja se samostalno implementiraju zabranjena upotreba algoritama iz biblioteka.
 - Rok za izradu zadatka je 19.03.2024. u 23:59h.
 - Instalirane biblioteke za Zadatak 1:
 - NumPy
 - Pandas.
 - Sledeći termin vežbi (odbrana Zadatka 1 i predstavljanje Zadatka 2) je u nedelji
 25.03. 05.04.2024.

- Koncepti vezani za Zadatak 1 (podsetiti se gradiva sa predavanja i ranijih predmeta):
 - Gradient Descent (Batch vs Stochastic)
 - Normal Equation
 - Normalizacija
 - Outlier-i
 - Rad sa skupom podataka
 - Pravilno računanje metrike

- Normalizacija:
 - o *min-max* normalizacija:
 - \blacksquare normalized_data = (data np.min(data)) / (np.max(data) np.min(data))
 - z-score normalizacija:
 - normalized_data = (data np.mean(data)) / np.std(data)
 - Koeficijenti se računaju isključivo na trening skupu podataka, a koriste se za normalizaciju i trening i testnog skupa podataka

- Outlier-i:
 - Podaci koji se značajno razlikuju od ostalih opažanja:
 - Greške u merenju, greške u unosu podataka, neobični opaženi fenomeni,...
 - Mogu imati veliki uticaj na rezultujući model
 - Neke od strategija za rad sa outlier-ima:
 - Ignorisanje
 - Ako imaju minimalan uticaj na performanse modela
 - Uklanjanje
 - Ručno
 - Korišćenjem neke od statističkih metoda:
 - z-score: udaljenost opservacije od srednje vrednosti izražena u broju standardnih devijacija
 - Na ovom kursu je dozvoljeno uklanjanje podataka (redova i kolona) samo iz trening skupa

- Outlier-i:
 - Neke od strategija za rad sa outlier-ima:
 - Transformacija podataka
 - Npr.: logaritamska transformacija
 - transformed_data = np.log(data)
 - Korišćenje robusnih metoda:
 - Koristiti algoritme koji su prirodno otporni(ji) na outlier-e.

• Rad sa skupom podataka:

• Rad sa skupom podataka:

Pravilno računanje metrike:

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (Predicted_i - Actual_i)^2}{N}}$$

- Pravilno računanje metrike:
 - Ako su podaci prethodno bili transformisani, potrebno ih je vratiti u originalan oblik pre računanja metrike
 - Na primer, ako su podaci normalizovani, pre računanja metrike ih je potrebno denormalizovati:
 - min-max denormalizacija:
 - data = normalized_data * (np.max(data) np.min(data)) + np.min(data)
 - *z-score* denormalizacija:
 - data = normalized_data * np.std(data) + np.mean(data)

SciPy Stack

- Za izradu zadataka koristiti Python 3.10.x.
- Preporuka da se prilikom izrade zadataka oslonac bude SciPy Stack i njegove biblioteke:
 - NumPy
 - SciPy
 - Matplotlib
 - Jupyter
 - o Pandas.

- Za Zadatak 1 na platformi su instalirane biblioteke (verzije date u Uputstvu):
 - O NumPy:
 - <u>Docs</u>
 - Stanford Tutorial
 - Pandas:
 - Docs
 - Tutorial
 - 10 Minutes to Pandas.
- Za potrebe vizualizacije podataka i pisanja propratnog izveštaja od pomoći može biti biblioteka Matplotlib:
 - o <u>Docs</u>
 - Tutorial.

Uputstva i saveti

- Uputstvo za rad sa platformom i pisanje propratnog izveštaja se nalazi u:
 - Files/Vežbe/Uputstvo.pdf.
- Saveti za rešavanje zadataka:
 - Podsetiti se gradiva sa predavanja
 - Detaljno pročitati uputstvo za rad sa platformom i pisanje propratnog izveštaja
 - Vizualizacija podataka
 - Isprobati više pristupa podeliti zaduženja tako da svaki član tima implementira jedan pristup. Nakon toga, zajedno analizirati implementirano i odabrati najbolji pristup koji će se evaluirati na platformi.
 - Ako se radi normalizacija podataka, obratiti pažnju kako će se računati RMSE metrika.

- Savet za implementaciju:
 - Metoda fit(x, y) za "fitovanje" trening podataka
 - Metoda predict(x) za predikciju vrednosti testnog skupa
 - Metoda calculate_rmse(y_true, y_predict) za računanje RMSE na osnovu date formule.