1. Поле комплексных чисел. Основные понятия.

Комплексным числом называется элемент z декартова произведения $\mathbb{R} \times \mathbb{R}$:

$$z = (a, b), a, b \in \mathbb{R}$$

 $a=Re\ z$ — действительная часть z, $b=Im\ z$ — мнимая часть z

снабженного двумя операциями, индуцированными из \mathbb{R} :

•
$$(a,b) + (c,d) = (a + c,b + d);$$

• $(a,b) \cdot (c,d) = (ac - bd,ad + bc);$

NtB Для **множества комплексных чисел** имеется специальное обозначение:

$$\mathbb{C} = \{(a,b): a,b \in \mathbb{R}\}.$$

NtB Для всех комплексных чисел выполняется свойство

$$z_1 = z_2 \Leftrightarrow a_1 = a_2, b_1 = b_2.$$

NtB Множество вещественных чисел $\mathbb R$ вложено в $\mathbb C$ ($\mathbb R \subset \mathbb C$).

Комплексное число вида (a, 0) $\in \mathbb{C}$ однозначно соответствует числу а $\in \mathbb{R}$.

$$(a,0)\mapsto a\in\mathbb{R}$$

Полем называется множество вместе с введенными на нем операциями, которые обладают свойствами: ассоциативности, коммутативности, наличия нейтрального и противоположного элементов, а также дистрибутивностью.

2. Свойства сложения комплексных чисел.

а) Ассоциативность сложения

$$((a,b) + (c,d)) + (e,f) = (a,b) + ((c,d) + (e,f))$$

 $z_1 + (z_2 + z_3) = (z_1 + z_2) + z_3$

$$\Box((a,b) + (c,d)) + (e,f) = (a,b) + ((c,d) + (e,f))$$

$$(a+c,b+d) + (e,f) = (a,b) + (c+e,d+f)$$

$$(a+c+e,b+d+f) = (a+c+e,b+d+f)$$

$$\begin{cases} a+c+e = a+c+e \\ b+d+f = b+d+f \end{cases}$$

б) Коммутативность сложения

$$(a,b) + (c,d) = (c,d) + (a,b)$$

 $z_1 + z_2 = z_2 + z_1$

$$a(a,b) + (c,d) = (c,d) + (a,b)$$
$$(a+c,b+d) = (c+a,d+b)$$

По свойству коммутативности в $\mathbb R$

$$(a+c,b+d) = (a+c,b+d) \blacksquare$$

2. Свойства сложения комплексных чисел.

в) Существование **нулевого элемента**, который не изменяет другой при операции сложения. В множестве комплексных чисел таковым является **(0, 0)**. Действительно, $\exists (0,0): (a,b) + (0,0) = (a,b)$

$$\Box \exists (\alpha, \beta) \in \mathbb{C}: (a, b) + (\alpha, \beta) = (a, b)$$

$$(a + \alpha, b + \beta) = (a, b)$$

$$\begin{cases} a + \alpha = a \\ b + \beta = b \end{cases} \Leftrightarrow \begin{cases} \alpha = 0 \\ \beta = 0 \end{cases}$$

2. Свойства сложения комплексных чисел.

г) Существование **противоположного элемента**. Противоположным элементом к элементу (a, b) называют такой элемент, который в сумме c (a, b) дает нулевой элемент. Противоположным элементом к (a, b) будем называть элемент (-a, -b). $\exists (-a, -b) : (a, b) + (-a, -b) = (0, 0)$

$$\Box \exists (\alpha, \beta) \in \mathbb{C}: (a, b) + (\alpha, \beta) = (0, 0)$$

$$(a + \alpha, b + \beta) = (0, 0)$$

$$\begin{cases} a + \alpha = 0 \\ b + \beta = 0 \end{cases} \Leftrightarrow \begin{cases} \alpha = -a \\ \beta = -b \end{cases}$$

Можно заметить, что он получается путем умножения комплексного числа (a, b) на число –1. Это позволяет определить операцию **разности** родственную сложению как

$$(a,b) - (c,d) = (a,b) + (-1,0) \cdot (c,d) = (a,b) + (-c,-d) = (a-c,b-d)$$

3. Свойства умножения комплексных чисел.

д) Ассоциативность умножения

$$((a,b) \cdot (c,d)) \cdot (e,f) = (a,b) \cdot ((c,d) \cdot (e,f))$$

 $z_1 \cdot (z_2 \cdot z_3) = (z_1 \cdot z_2) \cdot z_3$

$$\Box((a,b)\cdot(c,d))\cdot(e,f) = (a,b)\cdot((c,d)\cdot(e,f))$$
$$(ac-bd,ad+bc)\cdot(e,f) = (a,b)\cdot(ce-df,cf+de)$$

Правую часть преобразуем по коммутативности сложения в $\mathbb R$

$$(ace-bde-adf-bcf,acf-bdf+ade+bce) = (ace-bde-adf-bcf,acf-bdf+ade+bce) = (ace-bde-adf-bcf,acf-bcf,acf-bdf+ade+bce) = (ace-bde-adf-bcf,acf$$

е) Коммутативность умножения

$$(a,b) \cdot (c,d) = (c,d) \cdot (a,b)$$

$$z_1 \cdot z_2 = z_2 \cdot z_1$$

$$a(a,b) \cdot (c,d) = (c,d) \cdot (a,b)$$
$$(ac-bd,ad+bc) = (ca-db,cb+da)$$

По свойству коммутативности в $\mathbb R$

$$(ac - bd, ad + bc) = (ac - bd, ad + bc) \blacksquare$$

3. Свойства умножения комплексных чисел.

ж) **Существование единицы**. Единичным элементом, единицей, называют такой элемент, который не меняет комплексное число при умножении на него. Единичным элементом множества комплексных чисел является вещественная единица 1 \leftrightarrow (1, 0).

$$\exists (1,0): (a,b) \cdot (1,0) = (a,b)$$

□Воспользуемся определением произведения двух чисел.

$$(a,b) \cdot (\alpha,\beta) = (a\alpha - b\beta, a\beta + b\alpha) = (a,b)$$

Это равенство эквивалентно системе

$$\begin{cases} a\alpha - b\beta = a \\ a\beta + b\alpha = b \end{cases}$$

Эта система имеет единственное решение, если а и b ненулевые

$$\begin{cases} \alpha = 1 \\ \beta = 0 \end{cases}$$

$$(\alpha, \beta)=(1,0)$$

3. Свойства умножения комплексных чисел.

(з) Существование **обратного элемента**. Обратный элемент — это такой, который при умножении на исходное комплексное число дает единицу.

$$(\frac{a}{a^2+b^2}, \frac{-b}{a^2+b^2})$$

- 1) **Нельзя** вычислить обратный элемент **для нулевого**. Это следует напрямую из найденного способа нахождения обратного элемента.
- 2) Обратный элемент определяется единственным образом.
- Найдем обратный элемент.

$$(a,b) \cdot (\alpha,\beta) = (a\alpha - b\beta, a\beta + b\alpha) = (1,0)$$

$$\begin{cases} a\alpha - b\beta = 1 \\ a\beta + b\alpha = 0 \end{cases}$$

Домножим первое уравнение на a, a второе на b и сложим их.

$$a^2\alpha + b^2\beta = a$$

Следовательно, вещественная часть обратного комплексного числа равна

$$\alpha = \frac{a}{a^2 + b^2}$$

Подставляя его во второе равенство для мнимой части, получаем

$$\beta = \frac{-b}{a^2 + b^2} \blacksquare$$

4. Алгебраическая форма комплексных чисел. Комплексно сопряженное число.

Алгебраической формой комплексного числа z = (a, b) є C называется представление его в следующем виде:

$$z = a + ib$$
,

где символ і называется мнимой единицей и обладает свойством $i^2 = -1 \in \mathbb{R}$.

Пусть $z = a + ib \in \mathbb{C}$ - комплексное число, тогда

- $Re\ z\ riangleq\ a$ называется вещественной частью числа z;
- \cdot $Im~z~\triangleq~b$ называется мнимой частью числа z;
- $\cdot \bar{z} = a ib$ называется числом, **комплексно сопряженным** к z;
- $N(z) \triangleq z\bar{z} = a^2 + b^2$ называется нормой комплексного числа z;
- $|z| = \sqrt{N(z)} = \sqrt{a^2 + b^2}$ называется модулем комплексного числа.

$$z^{-1} = \frac{1}{|z|^2} \cdot \bar{z} \qquad |z|^2 = z \cdot \bar{z}$$

5. Тригонометрическая форма комплексных чисел. Формула Муавра.

Аргументом комплексного числа z (обозначается arg(z)) называется направленный угол от оси Re до луча Oz, откладываемый против часовой стрелки с величиной, берущейся по модулю 2πk.

Альтернативно паре (a, b) можно использовать пару (ρ , ψ), определяемую следующим образом:

$$a = \rho \cos \psi, \qquad b = \rho \sin \psi,$$

$$\rho = |z| = \sqrt{a^2 + b^2}, \qquad \cos \psi = \frac{a}{|z|}, \qquad \sin \psi = \frac{b}{|z|}.$$

Модуль комплексного числа $|z| = \sqrt{a^2 + b^2}$

Тригонометрической формой комплексного числа $z \in \mathbb{C}$ называется представление его в следующем виде:

$$z = (\rho \cos \psi, \rho \sin \psi) = \rho(\cos \psi, \sin \psi).$$

$$z = \rho(\cos(\psi) + i\sin(\psi))$$

5. Тригонометрическая форма комплексных чисел. Формула Муавра.

Лемма Имеют место свойства:

- $|z1 \cdot z2| = |z1| \cdot |z2|$
- $\arg(z1 \cdot z2) = \arg(z1) + \arg(z2)$. $z_1 \cdot z_2 = \rho_1 \cdot \rho_2 \cdot (\cos(\psi_1 + \psi_2) + i\sin(\psi_1 + \psi_2))$

Доказательство прямой проверкой

$$z_1 \cdot z_2 = \rho_1 \Big(\cos(\psi_1) + i \sin(\psi_1) \Big) \cdot \rho_2 \Big(\cos(\psi_2) + i \sin(\psi_2) \Big) =$$
 Раскрываем скобки
$$= \rho_1 \cdot \rho_2 \cdot \Big(\cos(\psi_1) \cos(\psi_2) + i \cos(\psi_1) \sin(\psi_2) + i \sin(\psi_1) \cos(\psi_2) + i^2 \sin(\psi_1) \sin(\psi_2) \Big) =$$
 Группируем $(i^2 = -1)$
$$= \rho_1 \cdot \rho_2 \cdot \Big(\Big(\cos(\psi_1) \cos(\psi_2) - \sin(\psi_1) \sin(\psi_2) \Big) + i (\sin(\psi_1) \cos(\psi_2) + \cos(\psi_1) \sin(\psi_2) \Big) =$$
 Соѕ и sin суммы

$$= \rho_1 \cdot \rho_2 \cdot (\cos(\psi_1 + \psi_2) + i\sin(\psi_1 + \psi_2)) \blacksquare$$

5. Тригонометрическая форма комплексных чисел. Формула Муавра.

Теорема (Φ ормула Муавра) Пусть $z \in C$ и $n \in N$, тогда

- $|z|^n = |z^n|$
- $\arg(z^n) = n \cdot \arg(z)$. $z^n = |z^n| \cdot (\cos(n * \psi) + i\sin(n * \psi))$

Доказательство проводится индукцией по n.

База индукции:
$$z = \rho(\cos(\psi) + i\sin(\psi))$$

 $z^2 = z \cdot z = \rho^2(\cos(2\psi) + i\sin(2\psi))$

Предположение, пусть n=k: $z^k = |z^k| \cdot (\cos(k * \psi) + i\sin(k * \psi))$

Переход индукции, пусть n=k+1:

(по Лемме $z_1 \cdot z_2$ произведения тригонометрических форм) $z^{k+1} = z^k \cdot z = |z^k| \cdot \left(\cos(k*\psi) + i\sin(k*\psi)\right) \cdot |z| \cdot \left(\cos(\psi) + i\sin(\psi)\right) = |z^k \cdot z| \cdot \left(\cos(k*\psi + \psi) + i\sin(k*\psi + \psi)\right) = |z^{k+1}| \cdot \left(\cos((k+1)*\psi) + i\sin((k+1)*\psi)\right)$

6. Внутренний закон композиции. Коммутативность и ассоциативность. Примеры.

Внутренним законом композиции на множестве M называется отображение $M \times M \to M$ декартова произведения $M \times M$ в M. Значение $(x,y) \mapsto z \in M$ называется композицией элементов x и y относительно этого закона.

Примеры:

- (a) Сложение '+' закон композиции на N;
- (б) Умножение 'х' закон композиции на ℤ;
- (в) Пересечение '∩' закон композиции на подмножествах М.

6. Внутренний закон композиции. Коммутативность и ассоциативность. Примеры.

Закон композиции называется **ассоциативным**, если для любых трех элементов $x,y,z\in M$ имеет место следующее свойство:

$$(x * y) * z = x * (y * z)$$

Пример без ассоциативности: x^y в $\mathbb N$

$$(x^y)^z \neq x^{(y^z)}$$

Закон композиции называется **коммутативным**, если для любой пары элементов $x,y \in M$ имеет место свойство

$$x * y = y * x$$

Пример: Композиция функций не является коммутативной операцией на множестве функций:

$$sin(x^2) \neq sin^2(x)$$

7. Нейтральный, поглощающий и обратный элементы относительно закона композиции. Примеры.

Нейтральным элементом относительно закона композиции x * y называется элемент $e \in M$, такой что:

$$e * x = x = x * e, \forall x \in M$$

Примеры. Нейтральным элементом относительно закона ∩ является само множество М.

Нейтральным элементом относительно умножения в $\mathbb R$ является $\mathbb I$.

Лемма Нейтральный элемент, если существует, является единственным нейтральным элементом в М.

Доказательство.

Пусть e' и e - два нейтральных элемента в М,

Причем $e' \neq e$

тогда e' = e * e' = e.

Противоречие. ■

7. Нейтральный, поглощающий и обратный элементы относительно закона композиции. Примеры.

Элемент y называется **обратным** к элементу x относительно внутреннего закона композиции с нейтральным элементом e, если

$$y * x = e = x * y$$

Пример. Обратным элементом к $x \in \mathbb{R}$ относительно сложения в \mathbb{R} является -x.

Лемма Обратный элемент к $x \in M$, если существует, является единственным.

Доказательство.

Действительно, пусть у и z - обратные элементы к x, тогда y=y*e=y*(x*z)=(y*x)*z=e*z=z.

Обратите внимание, что для доказательства единственности обратного элемента мы предположили наличие свойства <u>ассоциативности</u>. ■

7. Нейтральный, поглощающий и обратный элементы относительно закона композиции. Примеры.

Элемент $\theta \in M$ называется **поглощающим** относительно закона композиции x * y, если имеет место следующее свойство: $\forall x \in M, \quad x * \theta = \theta = \theta * x$

Примеры. Поглощающим элементом относительно закона \cap является пустое множество \emptyset .

Поглощающим элементом относительно умножения в $\mathbb R$ является $\mathbb O$.

8. Группа и другие алгебраические структуры с одной операцией. Примеры.

Алгебраическая структура - множество М с заданным на нем одним или несколькими законами композиции.

Магма (группоид) – множество, на котором введена бинарная операция, являющаяся внутренним законом композиции.

Пример. Магма, но не полугруппа: $x \circ y = \frac{x+y}{2}$ – не ассоциативна

Полугруппа – магма, в котором ВЗК – ассоциативный.

а) ассоциативность

Пример. Полугруппа, но не моноид: $(\mathbb{N}, +)$ – нет нейтрального 0

Моноид – полугруппа с нейтральным элементом.

- а) ассоциативность
- б) с нейтральным элементом

Пример. Моноид, но не группа: (\mathbb{Z} , \cdot) – нет обратного

***B3K** – внутренний закон композиции

8. Группа и другие алгебраические структуры с одной операцией. Примеры.

Группа – моноид с обратным элементом

$$(x * y) * z = x * (y * z)$$

$$e * x = x = x * e, \forall x \in M$$

$$x^{-1} * x = e = x * x^{-1}$$

Пример. Hекоммутативная группа: $(Mat_K(n,n), \cdot)$ - умножение квадратных матриц

Пример. Группа симметрий правильных n-угольников D_n . Это - группа преобразований, которые переводят правильный n-угольник в себя.

Пример. Группа перестановок некоторого множества из n элементов. Учитывая порядок этих элементов мы получаем последовательности чисел-индексов элементов вида (1, 2, . . . n). Множество операций по перестановке данных индексов образует, как нетрудно проверить, группу. Эта группа называется симметрической группой порядка n. Такую группу обозначают, как правило, Sn.

Абелева группа – группа с коммутативностью

$$x * y = y * x$$

Пример. Сложение (\mathbb{Z} , +), (\mathbb{R} , +), (\mathbb{C} , +)

9. Два закона композиции. Дистрибутивность.

Закон композиции \circ называется **дистрибутивным слева (справа)** *относительно* закона *, если для любых элементов $x,y,z\in M$ имеет место равенство

Слева:
$$x \circ (y * z) = (x \circ y) * (x \circ z)$$
.

Справа:
$$(y * z) \cdot x = (y \cdot x) * (z \cdot x)$$
.

Закон двояко дистрибутивный, если он дистрибутивен и слева и справа.

Пример-свойство. Если в М существует нейтральный элемент е относительно ∗ и ∘ двояко дистрибутивен относительно ∗, тогда элемент е является поглощающим относительно закона ∘:

$$x \circ y = x \circ (e * y) = (x \circ e) * (x \circ y) = e * (x \circ y).$$

9. Два закона композиции. Дистрибутивность.

Кольцо (см билет 10), поле (см билет 15) – структуры с двумя законами композиции.

Внутренний закон композиции (см. билет 6) $M \times M \to M$

Внешним законом композиции элементов множества Ω , называемых множеством операторов закона, и элементов множества М называется отображение множества $\Omega \times M$ в M. $\Omega \times M \to M$.

$$\alpha \in \Omega, x, y \in M, \qquad (\alpha, x) \to y$$
 где α — операция, Ω — множество операций

Пример. M – множество векторов, Ω – множество поворотов

10. Кольцо. Определение, примеры.

Кольцом $(R, +, \cdot)$ называется множество R замкнутое относительно двух согласованно заданных на нем бинарных операций, удовлетворяющих следующим требованиям:

- 1) R абелева группа относительно «+» (0 нейтральный элемент);
- 2) «·» внутренний закон композиции;
- 3) Законы + и · согласованы (« · » двояко дистрибутивен относительно "+").

Ассоциативное кольцо, если « · » - ассоциативный

Кольцо с единицей, если 3 нейтральный элемент относительно «·»

Коммутативное кольцо, если « · » - коммутативный

10. Кольцо. Определение, примеры.

Примеры колец (ассоциативное, коммутативное кольцо с единицей)

а) Тривиальное кольцо (нулевое кольцо)

$$(\{e\}, +, \cdot)$$
, где $e = 0 = 1$

Свойства: e + e = e, $e \cdot e = e$, e - нейтральный и обратный по + и \cdot

- б) (Z, +, ·) целые числа
- в) Пифагорово кольцо

$$\mathbb{Z}[\sqrt{2}] = \{x + \sqrt{2} \cdot y \colon x, y \in \mathbb{Z}\}\$$

Свойства:

Абелева группа по сложению (ВЗК ассоциативный, коммутативный, нейтральный элемент 0, обратный элемент $-x_1-\sqrt{2}y_1$)

$$(x_1 + \sqrt{2}y_1) + (x_2 + \sqrt{2}y_2) = (x_1 + x_2) + \sqrt{2}(y_1 + y_2)$$

ВЗК по сложению (ассоциативный, коммутативный, нейтральный элемент 1) $(x_1 + \sqrt{2}y_1) \cdot (x_2 + \sqrt{2}y_2) = x_1x_2 + \sqrt{2}x_2y_1 + \sqrt{2}x_1y_2 + 2y_1y_2 = (x_1x_2 + 2y_1y_2) + \sqrt{2}(x_2y_1 + x_1y_2)$

г) Кольцо Z_m вычетов по модулю $m \in Z$: (см билет 15) $x \equiv y \mod m, \quad y \in \{0,1,\ldots,m-1\}$

11. Кольцо многочленов. Операции в этом множестве и их свойства.

Многочленом (полиномом) от одной переменной с коэффициентами из кольца R называется формальная бесконечная сумма следующего вида:

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots,$$

где a_0, a_1, a_2, \ldots $\in \mathsf{R}$ – κ оэ ϕ ϕ ициенты (отличны от нуля только некоторые),

х – формальная переменная.

Кольцо многочленов - кольцо $(R[x], +, \cdot)$, где R[x] - множество многочленов.

Операции на множестве многочленов R[x] определяются стандартно и **индуцируют** на нем **структуру кольца**, при этом $\theta(x) = 0$, 1(x) = 1.

- а) Ассоциативность сложения
- б) Нейтральный по $\theta(x)=0$ по сложению
- в) Противоположный p(x) по сложению
- г) Коммутативность сложения
- д) Ассоциативность умножения
- е) Нейтральный элемент 1(x) = 1 по умножению
- ж) Коммутативность умножения

Абелева группа (R[x], +), коммутативный моноид (R[x], ·)

12. Делимость многочленов. Ассоциированность.

Говорят, что многочлен p(x) делится на многочлен q(x) (пишут p : q), если $\exists g(x) \in R[x]: p(x) = g(x) \cdot q(x)$.

Лемма Свойства делимости многочленов:

• если p(x) : q(x) и q(x) : r(x), тогда p(x) : r(x)

Доказательство:

Так как p(x) : q(x), то существует такой a(x), что p(x) = q(x)*a(x), а также так как q(x) : r(x), то существует такой b(x), что q(x) = r(x)*b(x), таким образом получаем что p(x) = (a(x)*b(x)) * r(x), т.е. p(x) : r(x) по определению.■

• пусть p(x), $q(x) \vdots g(x)$, тогда $\forall a(x), b(x) \in R[x]$ $(a(x)p(x) + b(x)q(x)) \vdots g(x)$

Доказательство:

Так как p(x) : g(x), то существует такой c(x), что p(x) = g(x)*c(x), а также так как q(x) : g(x), то существует такой d(x), что q(x) = g(x)*d(x), таким образом $\forall a(x), b(x) \in R[x]$:

(a(x)p(x) + b(x)q(x)) = (a(x)c(x)g(x) + b(x)d(x)g(x)) = g(x)(a(x)c(x) + b(x)d(x)), a это как не трудно заметить делится на <math>g(x)

12. Делимость многочленов. Ассоциированность.

Теорема о делении с остатком.

Пусть $f(x), g(x) \in R[x], g(x) \neq 0$. Тогда существует и при том единственные $\exists ! \ q(x), r(x) \in R[x] \colon f(x) = q(x) \cdot g(x) + r(x), \qquad \deg r(x) < \deg q(x)$

Доказательство.

Пусть
$$f = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$$
, $g = b_0 x^m + b_1 x^{m-1} + \dots + b_{m-1} x + b_m$, 1. Докажем \exists

Если $\deg f < \deg g$, то можно взять q = 0, r = f

Если $\deg f \geq \deg g$, то вспоминаем процедуру деления уголком: $a_0 \neq 0$, $b_0 \neq 0$

Рассмотрим $f_1 = f - \frac{a_0}{b_0} x^{n-m} g$, $\deg f_1 < \deg f$ (т.к. отнимается $\frac{a_0 b_0 x^m x^{n-m}}{b_0} = a_0 x^n$)

Если $\deg f_1 < \deg g$, то $q = \frac{a_0}{b_0} x^{n-m}$, $r = f_1$

В противном случае продолжается процесс для f_1 (как и для f)

В итоге получаем: $q = c_0 x^{n-m} + c_1 x^{n-m-1} + \dots + c_{n-m}$, $\deg(f - qg) < \deg g$

Тогда, q – неполное частное, r = f - qg – остаток.

12. Делимость многочленов. Ассоциированность.

2. Докажем единственность (!)

Пусть

$$f = q_1 g + r_1, deg r_1 < deg g$$

$$f = q_2 g + r_2, deg r_2 < deg g$$

$$r_1 - r_2 = (q_2 - q_1) \cdot g$$

Если $q_1 \neq q_2 \Rightarrow \deg(r_1-r_2) = \deg(q_2-q_1) + \deg g \geq \deg g$, что неверно $\Rightarrow q_1 = q_2$ и $r_1 = r_2$

Два многочлена p(x) и q(x) называются **ассоциированными** (пишут $p(x) \sim q(x)$), если $p(x) = \alpha \cdot q(x)$, где $\alpha \in R \setminus \{0\}$.

Лемма Пусть f(x) : g(x) и g(x) : f(x), тогда $f(x) \sim g(x)$.

$$\begin{array}{lll} & \mathcal{D}-\mathbf{60}! \\ & \mathcal{L}(x):g(x)=> \; \exists \; m(x): \; \; f(x)=g(x)\cdot m(x) \; \; \Big| => \; f(x)=f(x)\cdot h(x)\cdot m(x)=> \\ & \mathcal{G}(x): \; f(x)=> \; \exists \; n(x): \; \; g(x)=f(x)\cdot n(x) \; \; \Big| => \; f(x)=f(x)\cdot h(x)\cdot m(x)=> \\ & => \; n(x)\cdot m(x)=1 \; => \; \deg (=0 \; => \; \deg m(x)=\deg m(x)=0 \; => \; f(x)\sim g(x) \end{array}$$

13. Степень многочлена. Свойства степеней при выполнении операций с многочленами.

Степенью $\deg(p)$ **многочлена** $p \in R[t]$ называется максимальный номер его ненулевого коэффициента.

Если $\deg(p) = n \in \mathbb{N}_0$ то коэффициент a_n называется **старшим коэффициентом** многочлена p .

Для нулевого многочлена $\theta(t)$ положим $\deg(\theta) = -\infty$.

Лемма Пусть $p,q \in R[x]$, тогда имеют место следующие свойства: $\deg(p \cdot q) = \deg(p) + \deg(q), \qquad \deg(p + q) \leqslant \max\{\deg(p), \deg(q)\}$

Доказательство:

Пусть
$$f = a_0 + a_1 x + \ldots + a_n x^n$$
 $(a_n \neq 0)$, Тогда при перемножении максимальную $g = b_0 + b_1 x + \ldots + b_m x^m$ $(b_m \neq 0)$.

Степень будет иметь $a_n b_m x^{n+m}$ и так как в поле нет делителей нуля, то $a_n b_m \neq 0$, а значит $deg(p \cdot q) = deg(p) + deg(q)$

Второе свойство очевидно.

Лемма Свойства степени при делении многочленов:

14. Корень многочлена. Теорема Безу.

Корнем многочлена $p(x) \in R[x]$ кратности m называется число $x_0 \in R$ такое, что: $p(x) : (x - x_0)^m, p(x) \not | x - x_0)^{m+1}$

f g

Теорема (Безу) Остаток от деления $p(x) \in R[x]$ на $(x - x_0)$ равен $p(x_0)$.

$$p-be!$$
 по теорение о денении с остатком синеми: $f(x) = (x-a)g(x) + r(x)$ deg $r < deg(x-a) = 1 => r(x) = rek$ Влисто х подставние a $f(a) = (a-a)g(a) + r$ $f(a) = r$ steopena garajana $garajana$ $garajana$

15. Делимость в кольце. Поле.

Делителем нуля в кольце <R,+,*> называется всякий элемент x ≠ 0, такой что существует у ∈ R: x*y = 0

Кольцом вычетов по модулю $m \in Z$ называется такое кольцо $\langle Z_m, +, * \rangle$ что: $Z_m = \{0, 1,...,m-1\}$ – остатки от деления на m, а операции выполняются по модулю m.

2 * 3 mod 6 = 0 в кольце вычетов по модулю 6, т.е. 2 и 3 – делители нуля.

Областью целостности называется коммутативное кольцо с единицей в котором отсутствуют делители нуля.

Пример. $Z_p = \{0, 1, ..., p-1\}$ – область целостности, если р – простое.

Элемент $z \neq 0$ кольца <R,+,*> называется **нильпотентом**, если существует $n \in \mathbb{N}$: $z^n = 0$.

Лемма Нильпотент является делителем нуля.

9-80! Eyemb
$$2$$
 - Mullimomenum, 7.2 $2^{h}=0$, $2 \neq 0$ $2^{h}=0$, $2 \neq 0$ $2^{h}=2^{h-1}\cdot 2^{h}=0$ => $2^{h}=2^{h}=2^{h}=0$.

Обратимым элементом кольца <R,+,*> называется элемент $u \in R$ такой что существует $v \in R$: vu = 1

Полем называется ненулевое коммутативное кольцо с единицей, в котором каждый ненулевой элемент обратим.

16. Матрица. Определение, виды матриц.

Матрицей с коэффициентами из поля К называется прямоугольная таблица

следующего вида:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix},$$

где числа $a_{ij} \in K$ называются коэффициентами матрицы. Упорядоченную совокупность элементов с фиксированным первым индексом i_0 называют строкой матрицы с номером i_0 . Упорядоченную совокупность элементов с фиксированным вторым индексом j_0 называют столбцом матрицы с номером j_0 .

Таким образом, у представленной выше матрицы имеется m строк и n столбцов. Матрица называется **квадратной**, если число ее строк равно числу столбцов.

Матрица состоящая из одной строки называется **матрицей-строкой** или **строчной матрицей**.

Матрица состоящая из одного столбца называется матрицей-столбцом или столбцовой матрицей.

Квадратная матрица называется **диагональной** если все её элементы стоящие не на главной диагонали равны нулю.

Квадратная матрица называется **верхнетреугольной (нижнетреугольной)** если все её элементы ниже(выше) главной диагонали равны нулю.

17. Действия с матрицами: сложение и умножение на скаляр. Свойства операций.

Сложение: A + B = C, $c_{ij} = a_{ij} + b_{ij}$ Сложение матриц индуцирует свойства абелевой группы

Умножение на скаляр: $\lambda \cdot A = B$, $b_{ij} = \lambda \cdot a_{ij}$

Умножение матрицы на скаляр является

$$\lambda \cdot M = M B$$

Внешним законом композиции относительно множества $Mat_K(m,n)$ Свойства:

- 1) $(\mu + \lambda)A = \lambda A + \mu A, \forall \lambda, \mu \in K$.
- 2) $\lambda(A + B) = \lambda A + \lambda B$
- 3) $\mu(\lambda A) = (\lambda \mu)A$
- 4) $1 \cdot A = A, l \in K$

18. Действия с матрицами: умножение матриц. Свойства операции.

$$C = A \cdot B \Leftrightarrow c_{ij} = \sum_{k=1}^{p} a_{ik} + b_{kj}$$

Важно! Перемножать можно только матрицы у которых число столбцов первого сомножителя равно числу строк второго сомножителя.

Свойства операции:

1.
$$(AB)C = H(BC)$$

2. $A(B+C) = AB+AC$
3. $(A+B)C = AC+BC$
4. $(AA)B = A(AB) = A(AB)$, $A \in K$
5. $AE = EA = A$ $E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

В общем случае AB \neq BA, если AB = BA, то такие матрицы называют **коммутативными** Можем заметить, что $<Mat_K(n,n)$, +, *> - **кольцо**.

19. Действия с матрицами: транспонирование. Свойства операции.

Транспонированной к матрице A называется матрица A^T , полученная из A заменой всех столбцов на строки.

$$A = (a_{ij}), \ A^T = (a_{ji})$$

Свойства транспонирования:

1.
$$(A^{T})^{T} = A^{T} + b^{T} + b^{$$

20. Определитель матрицы. Нахождение определителя матриц до 3-го порядка (вкл.).

Определителем квадратной матрицы A называется число |A|, которое ставится ей в соответствие следующим образом:

- 1. Если $A_{1\times 1}=(a)$, тогда |A|=a;
- 2. Если $A_{2\times 2}=\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, тогда $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}=a_{11}a_{22}-a_{12}a_{21};$
- 3. Если $A_{3\times 3}=\begin{pmatrix} a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33} \end{pmatrix}$, тогда |A| можно получить разложением по первой строке:

$$\det(A) = \sum_{j=1}^n a_{kj} \cdot A_{kj} = \sum_{j=1}^n (-1)^{i+j} a_{kj} \cdot M_{kj}$$
 ,где $\mathsf{M}_{\mathsf{k}\mathsf{j}}$ – дополнительный минор, $\mathsf{A}_{\mathsf{i}\mathsf{j}}$ – алгебраическое дополнение

Общий вид разложения по строке (столбцу) k матрицы размером n * n

20. Определитель матрицы. Нахождение определителя матриц до 3-го порядка (вкл.).

Здесь можно поподробнее почитать про определители (За рамками курса по ЛинАлу)

20. Определитель матрицы. Нахождение определителя матриц до 3-го порядка (вкл.).

Свойства определителя, которые я ваще хуй знает в какой билет пихать поэтому будут тут:

- 1) Если все элементы какой-либо строки или столбца квадратной матрицы равны нулю, то ее определитель равен нулю.
- 2) Если квадратная матрица имеет две одинаковые строки (или два одинаковых столбца), то ее определитель равен нулю.
- 3) Определитель квадратной матрицы A n-го порядка не изменится, если к элементам одной его строки прибавить соответственные элементы другой строки, умноженные на одно и то же произвольное число. Аналогичное свойство имеет место для столбцов.

*21. Свойства определителя при транспонировании, умножении матриц. Линейность по строкам.

- 1) При транспонировании определитель матрицы не меняется.
- Другими словами, определитель транспонированной матрицы равен определителю исходной матрицы (Доказывается по определению детерминанта через перестановки)
- **2)** Определитель произведения матриц равен произведению определителей. (доказывается перемножением матриц под знаком определителя)
- **3) Линейность по строкам** Если все элементы k-й строки квадратной матрицы A n-го порядка представлены в виде суммы двух слагаемых:

 $a_{k1}=b_{k1}+c_{k1}, \quad a_{k2}=b_{k2}+c_{k2}, \quad ..., \quad a_{kn}=b_{kn}+c_{kn},$ то определитель матрицы A равен сумме определителей двух матриц, у которых все элементы, за исключением стоящих в k-й строке, те же, что у матрицы A, а элементами их k-х строк являются соответственно первые и вторые слагаемые в правых частях

равенств, то есть:
$$|a_{11} \quad a_{12} \quad \dots \quad a_{1n} \\ |A| = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ b_{k1} + c_{k1} & b_{k2} + c_{k2} & \dots & b_{kn} + c_{kn} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} =$$

$$= \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \dots & b_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & c_{k2} & \dots & c_{kn} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}.$$

Аналогичное свойство выполняется для столбцов

*22. Свойства определителя при вынесении множителя. Перестановка, равенство и пропорциональность строк.

- 1) Если в квадратной матрице поменять местами две строки (или два столбца), оставив остальные на своих местах, то определитель полученной матрицы будет равен определителю исходной матрицы с противоположным знаком. Короче: при перемене местами двух строк (или двух столбцов) определитель меняет знак.
- 2) Если все элементы какой-либо одной строки (или одного столбца) квадратной матрицы умножить на одно и то же число, то ее определитель также умножится на это число.
- 3) Если квадратная матрица А имеет две пропорциональные строки (или два пропорциональных столбца), то ее определитель равен нулю.
- 4) Умножение квадратной матрицы на число λ влечет умножение определителя на λ^n , где n порядок квадратной матрицы.

*23. Минор и алгебраическое дополнение. Определитель треугольной матрицы.

Минором М порядка k ≤ n называется определитель, полученный из исходной матрицы посредством вычеркивания одной или нескольких строк и столбцов. В общем случае индексы вычеркиваемых строк и столбцов могут не совпадать, но общее количество вычеркиваемых строк и столбцов совпадает всегда.

Дополнительным минором М_{іј} к элементу а_{іј} называется минор, полученный вычеркиванием і-ой строки и ј-го столбца.

Алгебраическим дополнением А_{іј} элемента а_{іј} матрицы n-го порядка называется ее дополнительный минор, взятый со знаком, определяемым по формуле:

$$A_{ij} = (-1)^{i+j} * M_{ij}$$

Понятие алгебраического дополнения позволяет обобщить формулу разложения по строке, приведенную в предыдущей лекции. Действительно, определитель матрицы n-го порядка равен произведению элементов произвольной k-ой строки, умноженных на соответствующие алгебраические дополнения.

$$\det(A) = \sum_{j=1}^{n} a_{kj} \cdot A_{kj} = \sum_{j=1}^{n} (-1)^{i+j} a_{kj} \cdot M_{kj}$$

Формулу разложения по строке, в силу свойства сохранения определителя при транспонировании, можно также перенести на разложение по **произвольному столбцу**.

*23. Минор и алгебраическое дополнение. Определитель треугольной матрицы.

Лемма. Определитель верхнетреугольной матрицы равен произведению диагональных элементов.

$$\det A = \begin{vmatrix} a_{11} & a_{21} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} = a_{11} \cdot \ldots \cdot a_{nn} = \prod_{i=1}^{n} a_{ii}$$

Доказательство:

Воспользуемся разложением по первому столбцу. Очевидно что все слагаемые кроме одного будут нулевыми.

$$\det A = a_{11} \begin{vmatrix} a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots \\ 0 & \cdots & a_{nn} \end{vmatrix}$$

Откуда, итеративно продолжая процесс приходим к тому, что определитель верхнетреугольной матрицы равен произведению диагональных элементов. **•**

Обратной матрицей В к матрице А того же порядка называется матрица, которая в произведении с матрицей А дает единичную.

$$AB = E = BA$$

Матрица, для которой существует обратная, называется **обратимой**. Обратная матрица обычно обозначается A⁻¹.

Теорема. Квадратная матрица имеет обратную матрицу, и при том единственную, тогда и только тогда, когда ее определитель не равен нулю. Причем обратную матрицу можно вычислить по формуле: $A^{-1} = \frac{1}{\det A} A^*$, где A^* - присоединенная матрица —

матрица, составленная из алгебраических дополнений соответствующих элементов транспонированной матрицы А.

Доказательство:

Для доказательства докажем вспомогательные леммы:

Достаточность:

Пемма 1. Дана матрица A и обратная ей A^{-1} . Тогда обе эти матрицы — квадратные, причём одинакового порядка n.

Доказательство. Всё просто. Пусть матрица $A=[m imes n],\,A^{-1}=[a imes b].$ Поскольку произведение $A\cdot A^{-1}=E$ по определению существует, матрицы A и A^{-1} согласованы в указанном порядке:

$$[m imes n] \cdot [a imes b] = [m imes b]$$

 $n = a$

Это прямое следствие из алгоритма перемножения матриц: коэффициенты n и a являются «транзитными» и должны быть равны.

Вместе с тем определено и обратное умножение: $A^{-1} \cdot A = E$, поэтому матрицы A^{-1} и A тоже согласованы в указанном порядке:

$$[a imes b] \cdot [m imes n] = [a imes n]$$

 $b = m$

Таким образом, без ограничения общности можем считать, что $A=[m\times n]$, $A^{-1}=[n\times m]$. Однако согласно определению $A\cdot A^{-1}=A^{-1}\cdot A$, поэтому размеры матриц строго совпадают:

$$[m imes n] = [n imes m]$$

 $m = n$

Вот и получается, что все три матрицы — A, A^{-1} и E — являются квадратными размером [n imes n]. Лемма доказана.

Единственность:

Лемма 2. Дана матрица A и обратная ей A^{-1} . Тогда эта обратная матрица — единственная.

Доказательство. Пойдём от противного: пусть у матрицы A есть хотя бы два экземпляра обратных —B и C. Тогда, согласно определению, верны следующие равенства:

$$A \cdot B = B \cdot A = E;$$

 $A \cdot C = C \cdot A = E.$

Из леммы 1 мы заключаем, что все четыре матрицы — A, B, C и E — являются квадратными одинакового порядка: $[n \times n]$. Следовательно, определено произведение:

$$B \cdot A \cdot C$$

Поскольку умножение матриц ассоциативно (но не коммутативно!), мы можем записать:

$$B \cdot A \cdot C = (B \cdot A) \cdot C = E \cdot C = C;$$

 $B \cdot A \cdot C = B \cdot (A \cdot C) = B \cdot E = B;$
 $B \cdot A \cdot C = C = B \Rightarrow B = C.$

Получили единственно возможный вариант: два экземпляра обратной матрицы равны. Лемма доказана.

Необходимость:

Лемма 3. Дана матрица A. Если обратная к ней матрица A^{-1} существует, то определитель исходной матрицы отличен от нуля:

$$|A| \neq 0$$

Доказательство. Мы уже знаем, что A и A^{-1} — квадратные матрицы размера $[n \times n]$. Следовательно, для каждой из них можно вычислить определитель: |A| и $|A^{-1}|$. Однако определитель произведения равен произведению определителей:

$$|A \cdot B| = |A| \cdot |B| \Rightarrow |A \cdot A^{-1}| = |A| \cdot |A^{-1}|$$

Но согласно определению $A\cdot A^{-1}=E$, а определитель E всегда равен 1, поэтому

$$A \cdot A^{-1} = E;$$

 $\left| A \cdot A^{-1} \right| = \left| E \right|;$
 $\left| A \right| \cdot \left| A^{-1} \right| = 1.$

Произведение двух чисел равно единице только в том случае, когда каждое из этих чисел отлично от нуля:

$$|A|
eq 0; \quad |A^{-1}|
eq 0.$$

Вот и получается, что |A|
eq 0. Лемма доказана.

Таким образом получаем что согласно Лемме 3 матрица обратима только тогда когда ее определитель не равен нулю, а согласно лемме 1 обратная матрица существует только если изначальная матрица квадратная. При этом согласно лемме 2 обратная матрица если существует, то единственна. Теорема доказана.

Метод Гаусса для вычисления обратной матрицы.

Теорема. Пусть матрица A обратима. Рассмотрим присоединённую матрицу $[A\,|E]$. Если с помощью элементарных преобразований строк привести её к виду $[E\,|B]$, т.е. путём умножения, вычитания и перестановки строк получить из A матрицу E справа, то полученная слева матрица B — это обратная к A:

$$[A \, | E]
ightarrow [E \, | B] \Rightarrow B = A^{-1}$$

25. СЛАУ. Метод Крамера.

Системой Линейных Алгебраических Уравнений называется система вида:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \dots & \dots & \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m. \end{cases}$$

где $\{a_{ij}\}$ – коэффициенты системы, $x_1, x_2, ..., x_n$ – неизвестные, $b_1, b_2, ..., b_m$ - свободные

члены.

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}, \quad X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \quad b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

СЛАУ записанная в матричном виде

Метод Крамера заключается в вычислении определителя матрицы A и определителей, полученных из матрицы A подстановкой столбца b в эту матрицу.

25. СЛАУ. Метод Крамера.

СЛАУ имеет единственный набор решений, который можно найти по формулам:

 $x_1 = \frac{\Delta_1}{\Delta}, x_2 = \frac{\Delta_2}{\Delta}, ..., x_n = \frac{\Delta_n}{\Delta}$, где Δ_i - определитель матрицы полученный заменой столбца і на столбец свободных членов в матрице СЛАУ, Δ - определитель изначальной матрицы СЛАУ.

Решение СЛАУ возможно найти при помощи метода Крамера при условии, что определитель матрицы коэффициентов не равен нулю, и система не вырождена.

25. СЛАУ. Метод Гаусса.

Системой Линейных Алгебраических Уравнений называется система вида:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \dots & \dots & \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m. \end{cases}$$

где $\{a_{ij}\}$ – коэффициенты системы, x_1 , x_2 , ..., x_n – неизвестные, b_1 , b_2 , ..., b_m - свободные

члены.

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}, \quad X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \quad b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

СЛАУ записанная в матричном виде

Метод Гаусса заключается в том, чтобы элементарными преобразованиями привести расширенную матрицу системы к верхнетреугольному виду и затем, используя метод подстановки найти решение. Метод Гаусса применим для решения СЛАУ если определитель матрицы коэффициентов не равен нулю и система не вырождена.

27. СЛАУ. Метод обратной матрицы.

Системой Линейных Алгебраических Уравнений называется система вида:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \dots & \dots & \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m. \end{cases}$$

где $\{a_{ij}\}$ – коэффициенты системы, x_1 , x_2 , ..., x_n – неизвестные, b_1 , b_2 , ..., b_m - свободные

члены.

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}, \quad X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \quad b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

СЛАУ записанная в матричном виде

Метод обратной матрицы, заключается в домножении обоих частей матричного уравнения АХ = В на матрицу обратную А:

$$A^{-1} * A * X = A^{-1} * B \Leftrightarrow E * X = A^{-1} * B \Leftrightarrow X = A^{-1} * B$$

Решение СЛАУ можно найти при помощи метода обратной матрицы только если определитель матрицы коэффициентов не равен нулю и система не вырождена.