HW#7 Solution (week8 HW)

Due 10/31/2019

HW 21.5 Auditor training.

```
HW21<- read.table(url("https://raw.githubusercontent.com/npmldabook/Stat3119/master/Week8/CH21PR05.txt"
head(HW21,6)
    V1 V2 V3
## 1 73 1 1
## 2 81 1 2
## 3 92 1 3
## 4 76 2 1
## 5 78 2 2
## 6 89 2 3
names(HW21) = c("Response", "Block", "Training")
HW21$Block = as.factor(HW21$Block)
HW21$Training = as.factor(HW21$Training)
str(HW21)
## 'data.frame':
                   30 obs. of 3 variables:
## $ Response: num 73 81 92 76 78 89 75 76 87 74 ...
## $ Block : Factor w/ 10 levels "1","2","3","4",..: 1 1 1 2 2 2 3 3 3 4 ...
## $ Training: Factor w/ 3 levels "1","2","3": 1 2 3 1 2 3 1 2 3 1 ...
a.
Answer: To group the subjects with similar responses into blocks and reduce the experimental errors.
b.
fit = aov(Response~ Block + Training, data= HW21 )
#summary(fit)
Resid = fit$residuals
matrix(Resid, nrow=10, ncol=3, byrow=T)
##
               [,1]
                          [,2]
                                     [,3]
  [1,] -2.5000000 1.5000000 1.0000000
## [2,] 1.5000000 -0.5000000 -1.0000000
## [3,] 2.1666667 -0.8333333 -1.3333333
## [4,] 0.1666667 -0.8333333 0.6666667
## [5,] 4.1666667 -4.8333333 0.6666667
## [6,] 1.5000000 -0.5000000 -1.0000000
## [7,] -1.5000000 -1.5000000 3.0000000
## [8,] -2.8333333 3.1666667 -0.3333333
## [9,] -1.5000000 2.5000000 -1.0000000
## [10,] -1.1666667 1.8333333 -0.6666667
```


plot(fit,2)

Answer: The Assumptions (1) constant variances and (2) normal errors seem to be reasonable. There are no big departure from these assumptions by residual analysis.

c. group by block plots

```
# A basic plot can be done from interaction.plot()
# with(HW21, interaction.plot(x.factor = Training, trace.factor = Block, response = Response))
# Or use ggplot
library(ggplot2)
ggplot(HW21, aes(x = Training, y = Response)) +
    geom_point( aes(group = Block, color = Block))+
    geom_line( aes(group = Block, color = Block)) +
    theme_bw() +
    labs( title = "Auditor Training",
        x = "Methods",
        y = "Proficiency measure"
)
```


Answer: This plot suggest about the no-interaction assumption seems appropriate since the treatment means are mostly parallel across blocks , after accounting for some measurment errors.

d. Tukey test, alpha=0.1

```
library(additivityTests)
## make the data into matrix A*B Form (dim a * b)
(HW21m = matrix( HW21$Response, nrow=10, ncol=3, byrow=T ))
##
          [,1] [,2] [,3]
##
    [1,]
           73
                 81
                      92
##
    [2,]
           76
                 78
                      89
##
    [3,]
           75
                 76
                      87
    [4,]
##
           74
                 77
                      90
    [5,]
           76
                 71
##
                      88
##
    [6,]
           73
                 75
                      86
                 72
                      88
##
    [7,]
           68
##
    [8,]
           64
                 74
                      82
                 73
##
    [9,]
           65
                      81
## [10,]
           62
                 69
                      78
tukey.test( HW21m, alpha = 0.01)
```

##

```
## Tukey test on 1% alpha-level:
##
## Test statistic: 0.01918
## Critival value: 8.4
## The additivity hypothesis cannot be rejected.

# compute P-value
(Pv= 1-pf(0.01918, df1=1, df2= 17 ))
```

Answer: We don't reject the additivity hypothes at tje leel of 0.01. The P-value of the test P(F > F*) = P(F > 0.01918) = 0.89, where F is the random variable with F(df1=1, df=17) distribution.

HW 21.6

a. ANOVA table

[1] 0.891479

```
summary(fit)
```

```
## Df Sum Sq Mean Sq F value Pr(>F)

## Block 9 433.4 48.2 7.716 0.000132 ***

## Training 2 1295.0 647.5 103.754 1.32e-10 ***

## Residuals 18 112.3 6.2

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

b. treatment means

```
library(emmeans)
fit.emm <- emmeans(fit, ~ Training)

# Extract means from emmeans output
Mean<- confint(fit.emm)[,2] # extract mean

# Or mean can be obtained from
# Mean= as.numeric(with(HW21, by (Response, Training, mean)))
names(Mean) <- paste("Training", 1:3)
barplot(Mean, ylim=c(0,100)); box()</pre>
```


 $\mathbf{c}.$

```
# find the critical value
qf(.95, 2,18)
```

[1] 3.554557

Answer:

- 1) Alternative hypothesis: The mean proficiency is not the same for the three training methods.
- 2) Decision rule: We reject null if the F-statistic >= 3.554557.

-4.0 1.12 18 -3.580 0.0058

-15.5 1.12 18 -13.874 <.0001 -11.5 1.12 18 -10.294 <.0001

3) Results: For training effect, F-statistic= 103.75 with p-value <0.0001, highly significant.

d. Pairwise comparison,

1 - 2

1 - 3

```
(pairtest= pairs(fit.emm, adjust = "Tukey"))
## contrast estimate SE df t.ratio p.value
```

```
##
## Results are averaged over the levels of: Block
## P value adjustment: tukey method for comparing a family of 3 estimates
```

```
SE df lower.CL upper.CL
    contrast estimate
##
                 -4.0 1.12 18
                                  -6.45
                                           -1.55
   1 - 3
                                 -17.95
##
                -15.5 1.12 18
                                          -13.05
##
    2 - 3
                -11.5 1.12 18
                                -13.95
                                           -9.05
##
## Results are averaged over the levels of: Block
## Confidence level used: 0.9
```

Conf-level adjustment: tukey method for comparing a family of 3 estimates

Answer: With a 90 percent family confidence coefficient, the responses were different beteen any pairs of two methods. The subject by method 3 had higher mean response values compared to those by the method 2; and the subject by method 2 had higher mean response values compared to those by the method 1. The estimated and CI of the parwise difference can be found in the above output.

e. block effect

confint(pairtest, level = .90)

```
# find the critical value
qf(.95, 9,18)
```

[1] 2.456281

Answer:

- 1) Alternative hypothesis: there are some block effects.
- 2) Decision rule: We reject null if the corresponding F-statistic >= 2.45628
- 3) Results: For block effect, F-statistic= 7.716 with p-value= 0.000132, highly significant. We reject the null hypothesis of no block effect.

HW 21.14: power of the test.

We consider the block as the number of replications with the same treatment level.

```
mu <- c(70, 73, 76)
sigma2 <- 2.5^2
power.anova.test(groups = length(mu), n = 10, between.var = var(mu), within.var = sigma2)

##
## Balanced one-way analysis of variance power calculation
##
## groups = 3
## n = 10
## between.var = 9</pre>
```

```
## within.var = 6.25
## sig.level = 0.05
## power = 0.9970791
##
## NOTE: n is number in each group
Answer: Power is > .99.
```

HW 21.16: Sample size

Problems: make all pairwise treatment comparisons with precision ± 1.5 with; a 99 percent family confidence coefficien; sigma (SD)

Write a function for pairwise CI with Tukey

```
# write a function for pairwise CI with Tukey
CIwidth <- function(nb) {
r=3
newdf= (nb-1)*(r-1)
sigma= 2.5
alpha=0.01

# Tukey mutiple
T =1/sqrt(2)* qtukey(1-alpha, nm=r, newdf)

# SE(L)
SE.L= sqrt(2/nb)*sigma
# CI width
unlist(list(T=T, SE.L= SE.L, CIwidth= T*SE.L))
}</pre>
```

Try with several sample size to get half CI width <=1.5

Answer: Nb=50 blocks are needed.

```
CIwidth(nb=40)

##    T     SE.L    CIwidth
## 3.000894 0.559017 1.677550

CIwidth(nb=49)

##    T     SE.L    CIwidth
## 2.9841738 0.5050763 1.5072354

CIwidth(nb=50)

##    T     SE.L    CIwidth
## 2.982703 0.500000 1.491351
```

HW 21.18: relative efficiency

I think the (21.13) is actually referring to the formula (21.14)

```
nb=10
MSBL= 48.2
r=3
MSBL.TR=6.2

(ReEff= ((nb-1)*MSBL + nb*(r-1)* MSBL.TR)/((nb*r-1)*MSBL.TR) )
## [1] 3.102336
```

Answer: relative efficiency = 3.1, suggesting we would have required more than 3 times as many replications per training level with a completely randomized design to achieve the same variance of any estimated contrast as is obtained with blocking.