Projet 7 Développez une preuve de concept

Sommaire

- Présentation du projet
- État de l'art de la détection d'objets
- Modèle de référence
- Algorithme YOLOv5
- Algorithme YOLOR
- Synthèse

presentation

- Comment améliorer le projet P6 ?
- Actuellement : classification
- Ajout : localisation
- Pistes d'améliorations :
 - Data augmentation
 - traitement images différents(résolution,,)
 - Test de différentes configuration sur des petits datasets

Méthodologie

- Dataset: (standforddogs, road signs, whiteblood)
- Localisation : récupération/conversion ou création
- Modèles de référence xception avec transfert learning
- Algorithme de détection Yolor et Yolov5

État de l'art de la détection d'obiets

- Détection d'objets = classification + localisation
- Transformation des images : encadrer les cibles
- Localisation = prédire un rectangle d'encadrement

→ coordonnées centre rectangle + hauteur + largeur

État de l'art de la détection d'objets

- Algorithmes développés :
 CNN (R CNN) et yoloV5 et Yolor
- Métriques :
- Classification → précision / recall /
- Localisation → mAP@0.X

Modèles de référence

Dataset :

- -stanforddogs (120 classes)
- -road signs (4 classes)
- -bloodcells (6 classes)
- Performances

XCEPTION	StandfordDogs	Roadsigns	Whitebloods
Loss	0.3741	0.1204	0.1576
Accuracy	0.89	0.76	0.94

Yolov5

Rectangle d'encadrement

0 0.398 0.569 0.257 0.542

Yolo configuration:

Utilisation du Transfer Learning , fine tuning, grâce aux fichiers de configuration

Yolov5

- Anchor boxes pour chaque images
- Préparation des données → yolov5.yaml :
- Nombre de classes
- Noms des classes
- path des images pour chaque jeu de données
- cherche automatiquement path labels
 - → remplace « images/ » par « labels/ » dans path pour images
- Data augmentation +Fine-tuning

Yolov5 performances

 $\textbf{Resultats:} \ {\tt https://wandb.ai/ismail-azdad/YOLOR/reports/yolor-blood_cells-dataset-report---VmlldzoxOTQwNzM2}$

YOLOV5	StandfordDogs	Roadsigns	Whitebloods
Loss	0.00999	0.002799	0.00153
Accuracy	0.812	0.98	0.991

Yolov5

Yolor

Anchor boxes pour chaque image (Yolov5)

- Préparation des données → fichier_conf.yaml + names :
- Nombre de classes
- Noms des classes
- path des images pour chaque jeu de données
- cherche automatiquement path labels
- remplace « images/ » par « labels/ » dans path pour images
- Utilisation du Transfer Learning
- Modèles avec et sans couches gelées
- Data augmentation + fine tuning

Yolor performances

 $\textbf{Resultats:} \ {\tt https://wandb.ai/ismail-azdad/YOLOR/reports/yolor-blood_cells-dataset-report---VmlldzoxOTQwNzM2}$

YOLOR	Roadsigns	Whitebloods
Loss	0.01113	0.003741
Accuracy	0.85	0.96

Yolor

Matrice de confusion yolov5 roadsigns

Matrice de confusion yolov5 whitecells

synthèse

- État de l'art des architecture existantes
- Modèles références pour classification
 - Xception avec Transfer Learning
- Algorithme YOLOv5 :
- Ajout data augmentation
- Création rectangles d'encadrement
- Entraînement chronophage du modèle
- Meilleure classification des trois
- Algorithme YOLOr :
- Ajout data augmentation
- Entraînement plus rapide que YOLOv5
- Meilleure classification que CNN sans pré-entraînement
- Meilleure détection que Xception

Thank you!