MATHEMATICAL METHODS - III (2017) TUTORIAL 1

Problem 1. Let $F(x) = \cos(x)$. Consider the sequence generated by the recipe,

$$x_0 = a$$
$$x_n = F(x_{n-1})$$

- (1) Write down the first few terms of this sequence for different initial values a.
- (2) Check whether the sequence satisfies any of the following properties.
 - (a) Bounded above

(c) Monotonically increasing

(b) Bounded below

(d) Monotonically decreasing

- (3) Use a program or an excel sheet to check whether this sequence converge to some value.
- (4) One the same axes plot y = F(x) and y = x and use this plot to graphically represent the sequence you generated.
- (5) When the sequence converge, to which value does it converge?

Problem 2. Let $F(x) = x^2 - 12$. Consider the sequence generated by the recipe,

$$x_0 = a$$

$$F\left(x_n\right)$$

$$x_n = x_{n-1} - \frac{F(x_{n-1})}{F'(x_{n-1})}$$

- (1) Write down the first few terms of this sequence for different initial values a.
- (2) Check whether the sequence satisfies any of the following properties.

(a) Bounded above

(c) Monotonically increasing

(b) Bounded below

(d) Monotonically decreasing

- (3) Use a program or an excel sheet to check whether this sequence converge to some value.
- (4) When the sequence converge, to which value does it converge?

Problem 3. Consider the sequence given by

$$x_1 = 1, \qquad x_{n+1} = 3 - \frac{1}{x_n}$$

- (1) Show that the sequence is both bounded above and bounded below.
- (2) Show, using induction, that the sequence is monotonically increasing.
- (3) Conclude that the sequence converge to some limit and find it.
- (4) Explain how you can use this sequence to approximate the value of $\sqrt{5}$.

Problem 4. Consider the sequence given by

$$x_1 = 1, \qquad x_{n+1} = 1 + \frac{1}{x_n}$$

- (1) Is the sequence monotonic (i.e. monotonically decreasing or increasing)?
- (2) Is the sequence bounded bellow and/or bounded above?

(3) Show that the sequence converge to some limit and find it. You may use the fact that every Monotonic bounded sequence converge to some limit.

Problem 5. Consider the sequence given by $x_1 = 1$ and $x_{n+1} = \frac{1}{2} \left(\frac{3}{x_n^2} + x_n \right)$.

- (1) Is the sequence monotonic (i.e. monotonically decreasing or increasing)?
- (2) Is the sequence bounded bellow and/or bounded above?
- (3) Show that the sequence converge to some limit and find it. You may use the fact that every Monotonic bounded sequence converge to some limit.

Problem 6. (1) Show that the sequence $\left(\frac{1}{n}\right)$ is a Cauchy sequence.

(2) Show that the sequence $((-1)^n)$ is **not** a Cauchy sequence.

Problem 7. Consider the following recepie to construct a sequence based in a function f and two points a and b. This is called the **Bisection Method**.

- Begin with two points, a and b, such that f(a) and f(b) have opposite signs.
- Consider the midpoint of a and b, $c = \frac{a+b}{2}$.
- Not all three have the same sign.
- Pick the two with the opposite signes.
- Repeat the process.
- In each step, you can take the mid-point of the chosen interval to be the next term in the sequence.

Let $f(x) = \sin(x) - x^3 + 2x + 2 = 0$, a = 0 and b = 3.

- (1) Find the first few terms of the sequence (x_n) generated by this recipe.
- (2) Show that $|x_n x_{n+1}| = \alpha^n$ for some α and explicitly mention the value of α .
- (3) Show that this sequence is Cauchy. There is no need to use the actual definition of f and the values of a and b to show this. Use the previous result.
- (4) To which value does the sequence converge?

Problem 8. Find the limit of the sequence $(x_n)_{n\in\mathbb{N}}$, where $x_1=1$ and $x_{n+1}=\frac{1}{2}\left(\frac{1}{ax_n}+x_n\right)$.

(1)
$$\frac{1}{\sqrt{a}}$$

$$(2)$$
 a

- (4) limit does not exist
- \sqrt{a} (5) none of the above

Problem 9. Consider the following sequences.

(i)
$$x_1 = 0$$
 and $x_{n+1} = x_n + 1$

(ii)
$$y_n = (-1)^n$$

(iii)
$$z_n = \frac{1}{n^2}$$

Which of the above sequence(s) is/are

 $(1)\ Monotonical y\ increasing?$

(4) Bounded below?

(2) Monotonically decreasing?

(5) Converge?

(3) Bounded above?

(6) Cauchy?