LECTURE 8: SUPPORT VECTOR MACHINES

Ehsan Aryafar earyafar@pdx.edu

http://web.cecs.pdx.edu/~aryafare/ML.html

Recall: Gradient Defined

- Consider scalar-valued function f(w)
- Vector input w. Then gradient is:

$$\nabla_{w} f(\mathbf{w}) = \begin{bmatrix} \partial f(\mathbf{w}) / \partial w_{1} \\ \vdots \\ \partial f(\mathbf{w}) / \partial w_{N} \end{bmatrix}$$

• Matrix input W, size $M \times N$. Then gradient is:

$$\nabla_{W} f(\mathbf{W}) = \begin{bmatrix} \partial f(\mathbf{W})/\partial W_{11} & \cdots & \partial f(\mathbf{W})/\partial W_{1N} \\ \vdots & \vdots & \vdots \\ \partial f(\mathbf{W})/\partial W_{M1} & \cdots & \partial f(\mathbf{W})/\partial W_{MN} \end{bmatrix}$$

Gradient is same size as the argument!

Recall: Gradient Descent Illustrated

•
$$M = 1$$

•
$$M = 2$$

Recall: Convex Sets

• Definition: A set X is convex if for any $x, y \in X$,

$$tx + (1 - t)y \in X \text{ for all } t \in [0,1]$$

- Any line between two points remains in the set.
- Examples:
 - Square, circle, ellipse
 - $\{x \mid Ax \leq b\}$ for any matrix A and vector b

Recall: Convex Set Visualized

Convex

Not convex

Recall: Convex Functions

- A real-valued function f(x) is convex if:
 - Its domain is a convex set, and
 - For all x, y and $t \in [0,1]$:

$$f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y)$$

Recall: Global Minima and Convex Function

- Theorem: If f(w) is convex and w is a local minima, then w is a global minima
- Implication for optimization:
 - Gradient descent only converges to local minima
 - In general, cannot guarantee optimality
 - Depends on initial condition
 - But, for convex functions can always obtain optimal

Learning Objectives

- Interpret weights in linear classification of images
- Describe why linear classification for images does not work
- Define the margin in linear classification
- Describe the SVM classification problem.
- Describe a kernel SVM problem for non-linear classification
- Implement SVM classifiers in python
- Select SVM parameters from cross-validation

Outline

- Motivating example: Recognizing handwritten digits
 - Why logistic regression doesn't work well.
- Maximum margin classifiers
- Support vector machines
- Kernel trick

MNIST Digit Classification

HANDWRITING SAMPLE FORM

From Patrick J. Grother, NIST Special Database, 1995

- Problem: Recognize hand-written digits
- Original problem:
 - Census forms
 - Automated processing
- Classic machine learning problem
- Benchmark

A Widely-Used Benchmark

Classifiers [edit]

This is a table of some of the machine learning methods used on the database and their error rates, by type of classifier:

Type	Classifier +	Distortion +	Preprocessing +	Error rate (%) \$
Linear classifier	Pairwise linear classifier	None	Deskewing	7.6 ^[9]
K-Nearest Neighbors	K-NN with non-linear deformation (P2DHMDM)	None	Shiftable edges	0.52 ^[14]
Boosted Stumps	Product of stumps on Haar features	None	Haar features	0.87 ^[15]
Non-Linear Classifier	40 PCA + quadratic classifier	None	None	3.3 ^[9]
Support vector machine	Virtual SVM, deg-9 poly, 2-pixel jittered	None	Deskewing	0.56 ^[16]
Neural network	2-layer 784-800-10	None	None	1.6 ^[17]
Neural network	2-layer 784-800-10	elastic distortions	None	0.7 ^[17]
Deep neural network	6-layer 784-2500-2000-1500-1000-500-10	elastic distortions	None	0.35 ^[18]
Convolutional neural network	Committee of 35 conv. net, 1-20-P-40-P-150-10	elastic distortions	Width normalizations	0.23[8]

- We will look at SVM today
- Not the best algorithm
- But quite good
- ...and illustrates
 the main points

Downloading MNIST

```
import tensorflow as tf

(Xtr,ytr),(Xts,yts) = tf.keras.datasets.mnist.load_data()

print('Xtr shape: %s' % str(Xtr.shape))

print('Xts shape: %s' % str(Xts.shape))

ntr = Xtr.shape[0]

nts = Xts.shape[0]

nrow = Xtr.shape[1]

ncol = Xtr.shape[2]
```

Xtr shape: (60000, 28, 28) Xts shape: (10000, 28, 28)

- MNIST data is available in many sources
 - Note: It has been removed from sklearn
- Tensorflow version:
 - 60000 training samples
 - 10000 test samples
- Each sample is a 28 x 28 image
- Grayscale: Pixel values ∈ {0,1,...,255}
 - 0 = Black and
 - 255 = White

Matrix and Vector Representation

- For this demo, we reshape data from $N \times 28 \times 28$ to $N \times 784$
- But, you can easily go back and forth
- Also, scale the pixel values from -1 to 1

$$S = Mat(x) = \begin{bmatrix} s_{11} & \cdots & s_{1,28} \\ \vdots & \vdots & \vdots \\ s_{28,1} & \cdots & s_{28,28} \end{bmatrix}$$

$$x = \text{vec}(S) = \begin{bmatrix} x_1 & \cdots & x_{784} \end{bmatrix}$$

Displaying Images in Python

4 random images in the dataset

We want to classify each digit

A human can classify these easily

Getting a computer to do is harder

```
def plt digit(x):
    nrow = 28
    ncol = 28
    xsq = x.reshape((nrow,ncol))
    plt.imshow(xsq, cmap='Greys_r') 	←
    plt.xticks([])
    plt.yticks([])
# Convert data to a matrix
X = mnist.data
v = mnist.target
# Select random digits
nplt = 4
nsamp = X.shape[0]
Iperm = np.random.permutation(nsamp) 
# Plot the images using the subplot command
for i in range(nplt):
    ind = Iperm[i]
    plt.subplot(1,nplt,i+1)
    plt digit(X[ind,:])
```

Key command

Sample permutation is necessary for this dataset, as the original data is ordered by digits

Try a Logistic Classifier

```
ntr1 = 5000
Xtr1 = Xtr[Iperm[:ntr1],:]
ytr1 = ytr[Iperm[:ntr1]]
```

- Train on 5000 samples
 - To reduce training time.
 - In practice want to train with ~40k
- Select correct solver (sag)
 - Others can be very slow. Even this will take minutes

Performance

- Accuracy = 89%. Very bad
- Some of the errors seem like they should have been easy to spot
- What went wrong?

```
nts1 = 5000
Iperm_ts = np.random.permutation(nts)
Xts1 = Xts[Iperm_ts[:nts1],:]
yts1 = yts[Iperm_ts[:nts1]]
yhat = logreg.predict(Xts1)
acc = np.mean(yhat == yts1)
print('Accuaracy = {0:f}'.format(acc))
```


Accuaracy = 0.891000

Recap: Logistic Classifier

- Each logit $z_k = \mathbf{w}_k^T \mathbf{x}$ = inner product with weight \mathbf{w}_k with digit $\mathbf{x}, k = 0, ..., 9$
- Will select $\hat{y} = \arg \max_{k} P(y = k | x) = \arg \max_{k} z_k$
 - Output z_k which is largest
- When is z_k large?

Interpreting the Logistic Classifier Weights

- A logit $z_k = \mathbf{w}_k^T \mathbf{x}$ is high when there is high overlap between \mathbf{w}_k with digit \mathbf{x}
 - Visualize each weight as an image
 - Suppose pixels are 0 or 1
 - $z_k = \mathbf{w}_k^T \mathbf{x} = \sum_i w_{ki} x_i$ = number of pixels that overlap with \mathbf{w}_k and \mathbf{x}
- Conclusion: Small variations in digits can cause low overlap

Example with Actual Digits

- Take weight w from a random digit "2"
- Inner products $z = w^T x$ are only slightly higher for other digits "2"
- Cannot tell which digit is correct from the inner product $z = \mathbf{w}^T \mathbf{x}$

Visualizing the Weights

- Optimized weights of the classifier
- Blurry versions of image to try to capture rotations, translations, ...

Problems with Logistic Classifier

- Linear weighting cannot capture many deformities in image
 - Rotations
 - Translations (movement)
 - Variations in relative size of digit components
- Can be improved with preprocessing
 - E.g. deskewing, contrast normalization, many methods
- Is there a better classifier?

Outline

- Motivating example: Recognizing handwritten digits
 - Why logistic regression doesn't work well.
- Maximum margin classifiers
- Support vector machines
- Kernel trick

Non-Uniqueness of Separating Plane

- Linearly separable data:
 - Can find a separating hyper-plane as a linear classifier.
- Separating hyper-plane is not unique
 - Fig. on right: Many separating planes

Which one is optimal?

Hyperplane Basics

- Linear function: $f(x) = w^T x + b, x \in \mathbb{R}^d$
- Hyperplane in d-dimensional: f(x) = 0
- Parameters:
 - Weight w and bias b
 - Unique up to scaling:
 - (b, w) and $(\alpha b, \alpha w)$ define the same plane.
 - For unique definition, we can require ||w||=1.

- d = f(x)/||w||, where $f(x) = b + w^T x$.
- See ESL Sec. 4.5.
- ESL: Hastie, Tibshirani, Friedman, "The Elements of Statistical Learning". 2nd Ed. Springer.

Linear Separability and Margin

- Given training data (x_i, y_i) , i = 1, ..., N
 - Binary class label: $y_i = \pm 1$
- Suppose it is separable with parameters (w, b)
- There must exist a $\gamma > 0$ s.t.:
 - $b + w_1 x_{i1} + \cdots w_d x_{id} > \gamma$ when $y_i = 1$
 - $b + w_1 x_{i1} + \cdots w_d x_{id} < -\gamma$ when $y_i = -1$
- Single equation form:

$$y_i(b + w_1x_{i1} + \cdots w_dx_{id}) > \gamma$$
 for all $i = 1, ..., N$

- Margin: $\mathbf{m} = \frac{\gamma}{\|\mathbf{w}\|}$: minimal distance of a sample to the plane
 - γ is the minimum value satisfying the above constraints

Which separating plane is better?

From Fig. 9.2 and Fig. 9.3 in ISL.

Maximum Margin Classifier

- For the classifier to be more robust to noise, we want to maximize the margin!
- Define maximum margin classifier optimization problem

```
\max_{w,\gamma} \gamma
• Such that y_i(b+w^Tx) \geq \gamma for all i
• \sum_{j=1}^d w_j^2 \leq 1
• Scaling on weights
```

- Called a constrained optimization problem
 - Objective function and constraints
 - More on this later.
- See closed form solution in Sec. 4.5.2 in ESL. Note notation difference.

Visualizing Maximum Margin Classifier

- Fig. 9.3 of ISL
- Margin determined by closest points to the line
 - The maximal margin hyperplane represents the midline of the widest "slab" that we can insert between two classes
- In this figure, there are 3 points at the margin

ISL: James, Witten, Hastie, Tibshirani, An Introduction to Statistical Learning, Springer. 2013.

Problems with MM classifier

- Data is often not perfectly separable
 - You cannot talk about margin
 - Only want to correctly separate most points
- MM classifier is not robust
 - A single sample can radically change line
 - Suggests generalization errors may not be good

Fig. 9.5

Outline

- Motivating example: Recognizing handwritten digits
 - Why logistic regression doesn't work well.
- Maximum margin classifiers
- Support vector machines
- Kernel trick

Support Vector Machine

- Support Vector Machine (SVM)
 - Vladimir Vapnik, 1963
 - But became widely-used with kernel trick, 1993
 - More on this later
- Got best results on character recognition
- Key idea: Allow "slack" in the classification
 - Support vector classifier (SVC): Directly use raw features. Good when the original feature space is roughly linearly separable
 - Support vector machine (SVM): Map the raw features to some other domain through a kernel function

Hinge Loss

- Fix $\gamma = 1$
- Want ideally: $y_i(\mathbf{w}^T \mathbf{x} + b) \ge 1$ for all samples i
 - Equivalently, $y_i z_i \ge 1$, $z_i = b + \mathbf{w}^T \mathbf{x}$
 - Note that y_i is + or one
- But perfect separation may not be possible
- Define hinge loss or soft margin:
 - $L_i(\mathbf{w}, b) = \max(0, 1 y_i z_i)$
- Starts to increase as sample is misclassified:
 - $y_i z_i \ge 1 \Rightarrow$ Sample meets margin target, $L_i(w) = 0$
 - $y_i z_i \in [0,1) \Rightarrow$ Sample margin too small, small loss
 - $y_i z_i \le 0 \Rightarrow$ Sample misclassified, large loss

SVM Optimization

- Given data (x_i, y_i)
- Optimization $\min_{w,b} J(w,b)$

$$J(\mathbf{w}, b) = C \sum_{i=1}^{N} \max(0, 1 - y_i(\mathbf{w}^T \mathbf{x}_i + b)) + \frac{1}{2} ||\mathbf{w}||^2$$

C controls final margin

Hinge loss term Attempts to reduce Misclassifications

margin=1/||w||

- Constant C > 0 will be discussed below
- Note: ISL book uses different naming conventions.
 - We have followed convention in sklearn

Alternate Form of SVM Optimization (Constrained Optimization Format)

Equivalent optimization:

$$\min J_1(\boldsymbol{w}, b, \boldsymbol{\epsilon}), \qquad J_1(\boldsymbol{w}, b, \boldsymbol{\epsilon}) = C \sum_{i=1}^N \epsilon_i + \frac{1}{2} \|\boldsymbol{w}\|^2$$

Subject to constraints:

$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \epsilon_i$$
 for all $i = 1, ..., N$

- ϵ_i = amount sample *i* misses margin target
- Sometimes written as $J_1(w, b, \epsilon) = C \|\epsilon\|_1 + \frac{1}{2} \|w\|^2$
 - $\|\epsilon\|_1 = \sum_{i=1}^N \epsilon_i$ called the "one-norm"
 - Generally one-norm would have absolute sign over ϵ_i .
 - But in this case, when the constraint is met, $\epsilon_i >= 0$.

Interpreting Parameters

- Margin is 1/||w||
- Parameter ϵ_i called the slack variable
 - $\epsilon_i = 0 \Rightarrow$ Sample on correct side of margin
 - $0 \le \epsilon_i < 1 \Rightarrow$ Sample violates the margin (are inside the margin)
 - $\epsilon_i \ge 1 \Rightarrow$ Sample misclassified (wrong side of hyperplane)
- Parameter C (Discussed Soon):
 - Balance between first term (violations) and second term (inverse of margin)
 - C large: Forces minimum number of violations, but small margin.
 - Highly fit to data. Low bias, higher variance
 - C small: Enables more samples violations, but large margin.
 - Higher bias, lower variance
 - Found by cross-validation

Support Vectors

- Support vectors: Samples that either:
 - Are exactly on margin: $y_i(\mathbf{w}^T \mathbf{x}_i + b) = 1$
 - Or, on wrong side of margin: $y_i(\mathbf{w}^T \mathbf{x}_i + b) \le 1$
- Changing samples that are not SVs
 - Does not change solution
 - Provides robustness

Illustrating Effect of C

- Fig. 9.7 of ISL
 - Note: C has opposite meaning in ISL than python
 - Here, we use python meaning
- Low *C*:
 - Leads to large margin
 - But allow many violations of margin.
 - Many more SVs
 - Reduces variance or increases bias by using more samples
- Large C:
 - Leads to small margin
 - Reduce number of violations, and fewer SVs.
 - Highly fit to data. Low bias, higher variance
 - More chance to overfit

Relation to Logistic Regression

Logistic regression also minimizes a loss function:

$$J(w,b) = \sum_{i=1}^{N} L_i(w,b),$$

$$L_i(w,b) = \ln P(y_i|x_i) = -\ln(1 + e^{-y_i z_i})$$

Outline

- Motivating example: Recognizing handwritten digits
 - Why logistic regression doesn't work well.
- Maximum margin classifiers
- Support vector machines
- Kernel trick

The Kernel Function

Kernel function:

- Function $K(x_i, x)$
- Key function for SVMs and kernel classifiers
- Measures "similarity" between new sample x and training sample x_i

Typical property

- $x_i, x \text{ close} \Rightarrow K(x_i, x) \text{ maximum value}$
- $x_i, x \text{ far } \Rightarrow K(x_i, x) \approx 0$

Common Kernels

- Linear SVM:
 - $K(x_i, x) = x_i^T x = ||x_i|| ||x|| \cos \theta$
 - Maximum when angle between vectors is small
- Radial basis function:

$$K(x_i, x) = \exp[-\gamma ||x - x_i||^2]$$

- $1/\gamma$ indicates width of kernel
- Polynomial kernel: $K(x_i, x) = |x_i^T x|^d$
 - · Inner product to the power of d!
 - Typically d=2

RBF Kernel Examples

- RBF kernel: $K(x_0, x) = \exp[-\gamma ||x x_0||^2]$
 - Peak value of 1 at $x = x_0$
 - Decay with a rate of $\frac{1}{\gamma}$
 - Width $\propto \frac{1}{\gamma}$

RBFs in 1D

Kernel Classifier

- Given:
 - Training data (x_i, y_i) with binary labels $y_i = \pm 1$
 - Kernel $K(x_i, x)$
- To classify a new point x:
 - Decision function: $z = \sum_{i=1}^{n} y_i K(x_i, x)$
 - Classify: $\hat{y} = sign(z)$
- Idea:
 - z is large positive when x is close to samples x_i with $y_i = 1$
 - z is large negative when x is close to samples x_i with $y_i = -1$
- Kernel classifiers are a subject on their own
 - We just mention them here to explain connection to SVMs

Example in 1D

- Example data with 6 points (x_i, y_i)
 - RBF kernel: $K(x_i, x) = e^{-\gamma(x_i x)^2}$, $\gamma = 1$

i	1	2	3	4	5	6
x_i	-1	0	1	2	3	5
y_i	-1	-1	1	-1	1	1

- Decision function:
 - $z = \sum_{i=1}^{n} y_i K(x_i, x)$
 - Sum of bell curves
 - Positive when near positive samples
 - Negative when near negative samples
- Classification:
 - $\hat{y} = sign(z)$

Effect of Gamma

- Same data as before
- RBF kernel: $K(x_i, x) = e^{-\gamma(x_i x)^2}$
- As γ increases:
 - Decision function $z \approx y_i$ when $x = x_i$
 - Classifier fits training data better
 - Classification region more complex
- As a classifier, higher γ results in:
 - Lower bias error (fits training data)
 - But, higher variance error
 - Overfitting

SVMs with Non-Linear Transformations

- Non-linear transformation:
 - Replace x with $\phi(x)$
 - Enables more rich, non-linear classifie
 - Examples: polynomial classification

$$\phi(x) = [1, x, x^2, ..., x^{d-1}]$$

- Tries to find separation in a feature space (e.g., classification in the picture)
 - You can do this with any classifier (we have already done this)
- Kernel trick in SVMs:
 - Makes applying non-linear transformations easy

SVM with the Transformation

- Consider SVM model with x replaced by $\phi(x)$
- Minimize SVM cost function as before (i.e. Hinge loss + inverse margin)
- Theorem: The optimal weight is of the form (linear):

$$w = \sum_{i=1}^{N} \alpha_i y_i \phi(x_i)$$

- $\alpha_i \ge 0$ for all i
- $\alpha_i > 0$ if and only if sample i is a support vector
- Will show this fact later using results in constrained optimization
- Consequence: The linear discriminant on any other sample x is:

$$z = b + \mathbf{w}^T \phi(\mathbf{x}) = b + \sum_{i=1}^N \alpha_i y_i \boxed{\phi(\mathbf{x}_i)^T \phi(\mathbf{x})}$$

•

Kernel Form of the SVM Classifier

• SVM classifier can be written with the kernel $K(x_i, x)$ and values $\alpha_i \ge 0$:

$$z = b + \sum_{i=1}^{N} \alpha_i y_i K(x_i, x),$$

$$\hat{y} = \text{sign}(z) = \begin{cases} 1 & \text{if } z > 0 \\ -1 & \text{if } z < 0 \end{cases}$$
Classification decision

- Key point: SVM classifier is approximately Kernel classifier
- But there are two differences:
 - introduction of weights $\alpha_i \ge 0$ on the samples (the weights are only non-zero on the SVs)
 - A bias term b (can be positive or negative)

"Kernel Trick" and Dual Parameterization

Kernel form of SVM classifier (previous slide):

$$z = b + \sum_{i=1}^{N} \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}),$$

$$\hat{y} = \operatorname{sign}(z)$$

- Dual parameters: $\alpha_i \ge 0, i = 1, ..., N$
 - Problem based on α_i parameters
 - Called the dual parameters due to constrained optimization see next section
- Kernel trick:
 - Directly solve the parameters α instead of the weights w
 - Can show that the optimization only needs the kernel $K(x_i, x)$
 - Does not need to explicitly use $\phi(x)$

SVM Example in 1D

i	1	2	3	4	5	6
x_i	-1	0	1	2	3	5
y_i	-1	-1	1	-1	1	1

- Same data as in the Kernel classifier example
- Fit SVM with RBF with different γ
- Similar trends as kernel classifier: As γ increases
 - z "fits" data (x_i, y_i) closer
 - Leads to more complex decision regions.
 - Enables nonlinear decision regions

Example in 2D

- Example:
 - 10 data points with binary labels
 - Fit SVM with C = 1 and RBF
 - $\gamma = 0.3$, 3 and 10
- Plot:
 - z= linear discriminant
 - $\hat{y} = sign(z) =$ classification decision
- Observe: As γ increases
 - Fits training data better
 - More complex decision region

Parameter Selection

- For SVMs with RBFs we need to select:
 - Parameter C > 0 in the loss function
 - Kernel width $\gamma > 0$
- Higher C or γ
 - Fewer SVs
 - Classifiers averages over smaller set
 - Lower bias, but higher variance
- Typically select via cross-validation
 - Try out different (C, γ) pairs
 - Find which one provides highest accuracy on test set
- Python can automatically do grid search

http://peekaboo-vision.blogspot.com/2010/09/mnist-for-ever.html

mnist_train_10000_-1_1.svm

Multi-Class SVMs

- Suppose there are K classes
- One-vs-one:
 - Train $\binom{K}{2}$ SVMs for each pair of classes
 - Test sample assigned to class that wins "majority of votes"
 - Best results but very slow
- One-vs-rest:
 - Train K SVMs: train each class k against all other classes
 - Pick class with highest z_k
- Sklearn has both options

MNIST Results

- Run classifier
- Very slow
 - Several minutes for 40,000 samples
 - Slow in training and test
 - Major drawback of SVM
- Accuracy ≈ 0.984
 - Much better than logistic regression
- Can get better with:
 - pre-processing
 - More training data
 - Optimal parameter selection

```
# Create a classifier: a support vector classifier
svc = svm.SVC(probability=False, kernel="rbf", C=2.8, gamma=.0073,verbose=10)

svc.fit(Xtr,ytr)

[LibSVM]

SVC(C=2.8, cache_size=200, class_weight=None, coef0=0.0,
    decision_function_shape=None, degree=3, gamma=0.0073, kernel='rbf',
    max_iter=-1, probability=False, random_state=None, shrinking=True,
    tol=0.001, verbose=10)
```

from sklearn import svm

Accuaracy = 0.984000

print('Accuaracy = {0:f}'.format(acc))

vhat1 = svc.predict(Xts)

acc = np.mean(yhat1 == yts)

MNIST Errors

Some of the error are hard even for a human

What you should know

- Interpret weights in linear classification of images (logistic regression): Match filters
- Understand the margin in linear classification and maximum margin classifier
- SVM classifier: Allow violation of margin by introducing slack variables (More robust than linear classifier)
- Extend to nonlinear classifier by feature transformation:
 SVM with nonlinear kernels
- Select SVM parameters from cross-validation