Akademia Górniczo-Hutnicza im. S. Staszica w Krakowie Katedra Automatyki i Inżynierii Biomedycznej LABORATORIUM Aparatury Automatyzacji

~		sterowania			-
('TTTT 0 TT 0 TO T 0		CHOKOMIO		closoc=n:/	<i>-</i>
LAWING AND A	IIKTAII	STATOWANIA	<i>*</i>)	STONETTING	

Wydz. EAIiIB kier. AiR rok II Wt			orek 11:00	Zespół 1		
Lp.	Imię i nazwisko			Ocena		Data zaliczenia
1.	1. Adrian Jałoszewski					
2.	Tomasz Kotowski					
Data wykonania ćwiczenia:		17.05.2016	5	Podpis	•	

1 Cel ćwiczenia

Celem ćwiczenia jest zapoznanie się z przykładowym oprogramowaniem pozwalającym na realizację sterowania cyfrowego w oparciu o komputer klasy PC oraz zapoznanie się z przykładem interfejsu procesowego dla komputera klasy PC.

2 Budowa stanowiska

Stanowisko składa się z modelowegu układu śledzenia pozycji słońca pozwalającego na niezależny obrót baterii słonecznych wokół osi pionowej (azymut) i poziomej (elewacja). Układ posiada czujnik oświetlenia pozwalający na zmierzenie poziomu oświetlenia padającego z danego kierunku oraz czujniki krańcowe, które informują o osiągnięciu przez ogniwo maksymalnego odchylenia. Czujniki krańcowe współdziałają z wyłącznikami ruchu zabezpieczając układ przed uszkodzeniem.

Rysunek 1: Stanowisko

Silniki używane do poruszania ogniwem zasilane są prądem stałym o napięciu 12 V. Sterowanie nimi odbywa się przy pomocy modułu przekaźnikowego ADAM4060. Napięciowe sygnały analogowe są podawane na wejścia modułu ADAM4018, a dyskretne sygnały z wyłączników krańcowych odbiera moduł ADAM4050. Wszystkie moguły są połączone magistralą RS486, a następnie za pośrednictwem modemu radiowego z komputerem.

3 Wprowadzenie

Ze względu na ograniczenia narzucone przez moduł ADAM4060 – posiada dwa wyjścia typu A oraz dwa wyjścia typu C – sterowanie musi być zrealizowane jak jest pokazane na schemacie. Nie jest to jednak optymalnie zbudowany układ, gdyż nie pozwala on na wykonanie ruchu po jednej z przekątnych. Jednak taki układ silników jest wystarczający dla paneli słonecznych ze względu na tempo w jakim mają nadążać za słońcem. Sygnalizacja na wyjściach w module ADAM4060 w logice odwrotnej:

Ruch\Przekaźnik	R1(bit 0)	R2(bit 1)	R3(bit 2)	R4(bit 3)			
Do góry	0	1	0	1			
Na dół	0	1	1	0			
W lewo	1	0	1	0			
W prawo	1	0	0	1			
Dół–lewo	1	1	1	0			
Dół–prawo	1	1	0	1			
Góra–lewo	Niemożliwe						
Dół–prawo	Niemożliwe						

Ponieważ ruch panelu jest ograniczony przez czujniki krańcowe, wyłączniki ruchu i inne rozwiązania sprzętowe nie jest konieczna implementacja ograniczeń ruchowych w strategii.

4 Przeprowadzenie ćwiczenia

Poniższy schemat przedstawia zaimplementowaną przez nas strategię. Wykorzystaliśmy w niej bloczki alternatywy logicznej, tagi, wyjścia dyskretne sterujące pracą silników, wejścia cyfrowe pokazujące stan czujników krańcowych, dwa wejścia analogowe od czujników azymutu oraz elewacji oraz cztery wejścia analogowe połączone z czujnikami mierzącymi poziom oświetlenia.

Rysunek 2: Strategia

Wyjścia cyfrowe są połączone numeracją tak samo jak przełączniki w tabelce (DOx jest połączony z Rx) Poszczególne tagi są połączone z przyciskami Display'a:

- BBTN1 left
- BBTN2 right
- BBTN3 down
- BBTN4 up

Przypadki niemożliwe takie jak próba poruszania się w przeciwnych kierunkach lub po niemożliwej osi oraz funkcjonalność klawisza "stop" została przez nas zrealizowana poprzez wybijanie przycisków odpowiedzialnych za sterowanie. Sterowanie jest możliwe przy pomocy klawiszy z klawiatury.

Rysunek 3: Display

Wyświetlacz "horizontal" wyświetla azymut, a "vertical" elewację. Kontrolki odpowiadające za wskazywanie stanu czujników krańcowych zmieniają kolor w chwili osiągnięcia maksymalnego kąta obrotu przez silniki. Wyświetlacze znajdujące się na przedłużeniach klawiszy sterujących wskazują odpowiednie poziomy naświetlenia.

5 Wnioski i obserwacje

Ćwiczenie zostało zakończone powodzeniem. Udało się zrealizować układ sterowania ogniwami słonecznymi, reagujący na wciśnięcie klawiszy z wykluczeniem sytuacji niemożliwych wynikających z ograniczeń fizycznych obiektu.

Dużym ograniczeniem tego układu sterowania jest brak możliwości równoczesnego poruszania się ogniwa do góry i w lewo oraz w dół i w prawo. Istnieje jednak możliwość ominięcia tego dzięki zastosowaniu czterech wyjść przełacznikowych.

Dzięki takiemu rozwiązaniu obydwa silniki mogą kręcić się niezależnie w obydwie strony, co eliminuje problem niemożności ruchu po jednej z przekątnych.

Zapoznaliśmy się z działaniem czujników krańcowych oraz ich budową. Wraz z wyłącznikami tworzą dobry system zabezpieczający układ przed uszkodzeniami wynikającymi ze zbyt dużych kątów wychylenia.

Dowiedzieliśmy się o kolejnych funkcjonalnościach oprogramowania VisiDAQ/GeniDAQ oraz wiemy jak je wykorzystać do zrealizowania sterowania. Zamiast komplikować strategię w naszym programie postanowiliśmy skorzystać z funkcji wybijania klawiszy oferowanej przez ustawienie typu klawisza na "Radio Button".