Computing Galois groups of Fano problems

Thomas Yahl thomas jyahl@tamu.edu

arXiv:

Texas A&M University
June 2022

The problem of lines on a cubic surface

- Cayley and Salmon showed there are 27 distinct lines that lie on a smooth cubic surface.
- Schläfli determined these lines lie in a "remarkable configuration"
- This is an instance of a Fano problem.

Fano problems

- For fixed degrees $d_{\bullet} = (d_1, \dots, d_s)$ choose homogeneous polynomials in n+1 variables, $F = (f_1, \dots, f_s)$.
- Enumerate the *r*-planes that lie on the zero set $X = V(F) \subseteq \mathbb{P}^n$.

When there are finitely many such r-planes for general polynomials $F = (f_1, \ldots, f_s)$, this is a Fano problem determined by (r, n, d_{\bullet}) .

Fano problems

- For fixed degrees $d_{\bullet} = (d_1, \dots, d_s)$ choose homogeneous polynomials in n+1 variables, $F = (f_1, \dots, f_s)$.
- Enumerate the *r*-planes that lie on the zero set $X = V(F) \subseteq \mathbb{P}^n$.

When there are finitely many such r-planes for general polynomials $F = (f_1, \ldots, f_s)$, this is a Fano problem determined by (r, n, d_{\bullet}) .

• The set of r-planes on X = V(F), written $V_r(F)$, is a subvariety of the Grassmanian $\mathbb{G}(r, \mathbb{P}^n)$.

Fano problems

- For fixed degrees $d_{\bullet} = (d_1, \dots, d_s)$ choose homogeneous polynomials in n+1 variables, $F = (f_1, \dots, f_s)$.
- Enumerate the *r*-planes that lie on the zero set $X = V(F) \subseteq \mathbb{P}^n$.

When there are finitely many such r-planes for general polynomials $F = (f_1, \ldots, f_s)$, this is a Fano problem determined by (r, n, d_{\bullet}) .

- The set of r-planes on X = V(F), written $V_r(F)$, is a subvariety of the Grassmanian $\mathbb{G}(r, \mathbb{P}^n)$.
- The combinatorial data (r, n, d_{\bullet}) determines a Fano problem when n s 2r > 0 and

$$(r+1)(n-r) = \sum_{i=1}^{s} {\binom{d_i+r}{r}}.$$

Examples

Debarre and Manivel determined the number of solutions to the Fano problem determined by the data (r, n, d_{\bullet}) by intersection theoretic means.

By exhaustion, we enumerate Fano problems of small size.

r	n	d•	# of solutions	Galois group
1	4	(2, 2)	16	D_5
1	3	(3)	27	E ₆
2	6	(2, 2)	64	D ₇
3	8	(2, 2)	256	D_9
1	7	(2, 2, 2, 2)	512	S ₅₁₂
1	6	(2, 2, 3)	720	S ₇₂₀

Incidence correspondence

Write $\mathbb{C}^{(r,n,d_{\bullet})}$ for the parameter space of homogeneous forms (f_1,\ldots,f_s) in n+1 variables of degrees $d_{\bullet}=(d_1,\ldots,d_s)$.

Fix (r, n, d_{\bullet}) . There is an incidence correspondence

- $\Gamma_{(r,n,d_{\bullet})}$ is irreducible.
- The fiber over $F \in \mathbb{C}^{(r,n,d_{\bullet})}$ is the set of *r*-planes $V_r(F)$.
- π restricts to a covering space over a Zariski open set $U_{(r,n,d_{\bullet})} \subseteq \mathbb{C}^{(r,n,d_{\bullet})}$.

Galois groups of Fano problems

- The Galois group, $\mathcal{G}_{(r,n,d_{\bullet})}$, of the Fano problem determined by (r,n,d_{\bullet}) is the monodromy group of $\pi_{(r,n,d_{\bullet})}$.
- Jordan showed $\mathcal{G}_{(1,3,(3))} \subseteq E_6$.
- Harris showed $\mathcal{G}_{(1,3,(3))} = E_6$ and $\mathcal{G}_{(1,n,(2n-3))}$ is symmetric.
- Hashimoto and Kadets showed $\mathcal{G}_{(r,2r+2,(2,2))} = D_{2r+3}$ and $\mathcal{G}_{(r,n,d_{\bullet})}$ contains the alternating group for remaining Fano problems.

<u>Goal:</u> use numerics <u>prove</u> remaining Galois groups are symmetric.

Harris' method of proof

To show $\mathcal{G}_{(1,n,(2n-3))}$ is contains a simple transposition, Harris showed the existence of $p \in U_{(1,n,(2n-3))}$ satisfying the following.

Lemma (Harris)

Let $\pi: Y \mapsto X$ be a smooth map of degree n between irreducible varieties. If there exists a point $p \in X$ such that the fiber $\pi^{-1}(p)$ consists of exactly n-2 simple points and one double point then the monodromy group of π contains a simple transposition.

Harris' method of proof

To show $\mathcal{G}_{(1,n,(2n-3))}$ is contains a simple transposition, Harris showed the existence of $p \in U_{(1,n,(2n-3))}$ satisfying the following.

Lemma (Harris)

Let $\pi: Y \mapsto X$ be a smooth map of degree n between irreducible varieties. If there exists a point $p \in X$ such that the fiber $\pi^{-1}(p)$ consists of exactly n-2 simple points and one double point then the monodromy group of π contains a simple transposition.

• For remaining Fano problems of moderate size, we construct $p \in U_{(r,n,d_{\bullet})}$ satisfying the above.

Harris' method of proof

To show $\mathcal{G}_{(1,n,(2n-3))}$ is contains a simple transposition, Harris showed the existence of $p \in U_{(1,n,(2n-3))}$ satisfying the following.

Lemma (Harris)

Let $\pi: Y \mapsto X$ be a smooth map of degree n between irreducible varieties. If there exists a point $p \in X$ such that the fiber $\pi^{-1}(p)$ consists of exactly n-2 simple points and one double point then the monodromy group of π contains a simple transposition.

- For remaining Fano problems of moderate size, we construct $p \in U_{(r,n,d_{\bullet})}$ satisfying the above.
- To prove the constructed systems satisfy the above, we make use of numerical certification.

Numerical certification

- $\bullet \ \ \mathsf{Smale's} \ \alpha\text{-theory}$
- Interval arithmetic

Example

Results and timings

Moving forward

References