Soluzione tema d'esame 20a. Esercizio1.

Il problema richiede di minimizzare i costi di trasporto delle materie prime e dei semilavorati, poiché questi costi sono legati al fornitore e all'impianto, abbiamo quindi come variabili la quantità di materie prime x(i,k) acquistate da ogni fornitore i per ogni impianto k e le quantità y(j,k) di semilavorati di tipo j prodotti da ogni impianto k per il corrispondente acquirente j. Sia le variabili x che y sono continue e non-negative.

La funzione obiettivo risulta quindi la seguente:

$$\min \quad \sum_{ik} m_{ik} x_{ik} + \sum_{ik} s_{jk} y_{jk}$$

con m(i,k) e s(j,k) costi per il trasporto dei semilavorati e delle materie prime. Sostituendo i pesi con i valori che ci vengono dati nel testo del problema numero tabella otteniamo la funzione di Lindo:

```
min 10 x11 + 21 x12 + 25 x13 +12 x21 + 20 x22 + 21 x23 +15 x31 + 15 x32 + 14 x33 +20 x41 +14 x42 + 7 x43 +12 y11 +10 y12 +8 y13 +6 y14 +3 y15 + 7 y21 +9 y22 +8 y23 +7 y24 +6 y25 +4 y31 +6 y32 +7 y33 +8 y34 +13 y35
```

I vincoli del problema impongono i limiti massimi sulle quantità di materie prime acquistabili (o_i rappresenta la quantità massima di materiale acquistabile da un fornitore i, ricavabile dal testo):

$$\sum_{k} x_{ik} \le o_i \quad \forall i$$

! Vincoli sulla fornitura di materie prime [ton/mese];

```
mat1) x11 + x12 + x13 \le 1200

mat2) x21 + x22 + x23 \le 650

mat3) x31 + x32 + x33 \le 150

mat4) x41 + x42 + x43 \le 2200
```

e sulle minime quantità da produrre (d_j come sopra è dato nella consegna, ed il minimo da produrre per ogni acquirente j):

$$\sum_{k} y_{jk} \ge d_{j} \quad \forall j$$

! Vincoli sulla produzione minima di semilavorati [pezzi/mese];

```
Semilav1) y11 + y21 + y31 >= 28

Semilav2) y12 + y22 + y32 >= 35

Semilav3) y13 + y23 + y33 >= 30

Semilav4) y14 + y24 + y34 >= 41

Semilav5) y15 + y25 + y35 >= 12
```

Essendo noto che nei diversi impianti vengono utilizzate diverse quantità di materie prime per produrre la stessa quantità di semilavorato devo legare le prime ai secondi utilizzando come coefficienti i valori che mi vengono forniti.

Impongo perciò il seguente legame tra le variabili x (materie prime) e y (semilavorati) secondo i coefficienti a(i,j,k) che regolano la produzione in ogni impianto:

$$\sum_{j} y_{jk} a_{ijk} \leq x_{ik} \quad \forall i, k$$

!Vincoli sulla produzione dovuti alla quantità diversa di materie

```
! prime usate in ogni impianto [ton/mese];
! Impianto 1
Mp1Imp1) 12 y11 + 2 y12 + 10 y13 + 8 y14 + 7 y15 <= x11
Mp2Imp1) 5 y11 + 1 y12 + 5 y13 + 4 y14 + 3 y15 <= x21
Mp3Imp1) 1 y11 + 1 y12 + 1 y13 + 2 y14 + 1 y15 <= x31
Mp4Imp1) 20 y11 + 3 y12 + 18 y13 + 15 y14 + 20 y15 <= x41
! Impianto 2
Mp1Imp2) 10 y21 + 1 y22 + 8 y23 + 12 y24 + 17 y25 <= x12
Mp2Imp2) 3 y21 + 1 y22 + 5 y23 + 7 y24 + 5 y25 <= x22
Mp3Imp2) 2 y21 + 1 y22 + 1 y23 + 1 y24 + 1 y25 <= x32
Mp4Imp2) 25 y21 + 6 y22 + 22 y23 + 12 y24 + 15 y25 <= x42
! Impianto 3
Mp1Imp3) 16 y31 + 4 y32 + 15 y33 + 2 y34 + 5 y35 <= x13
Mp2Imp3) 8 y31 + 3 y32 + 7 y33 + 3 y34 + 1 y35 <= x23
Mp3Imp3) 1 y31 + 1 y32 + 1 y33 + 2 y34 + 2 y35 <= x33
Mp4Imp3) 8 y31 + 2 y32 + 11 y33 + 2 y34 + 2 y35 <= x33
Mp4Imp3) 8 y31 + 2 y32 + 11 y33 + 2 y34 + 20 y35 <= x43</pre>
```

 $\mbox{\sc NB}$: in lindo le variabili a dx del <= devono essere portate a sx con segno quindi negativo.

La soluzione ottima calcolata vale (OBJECTIVE FUNCTION VALUE): 67311.00 Keuro/mese.

Risposte

1) Facendo l'analisi parametrica sul termine noto del vincolo relativo alla quantità di materia prima disponibile presso il terzo fornitore, si osserva che il prezzo ombra (dual price) della materia prima è superiore ai 200 KEuro/tonnellata e quindi conveniente.

ROW	SLACK OR SURPLUS	DUAL PRICES
MAT3)	0.00000	629.000000

2) Il valore ottimale del termine noto è quindi di 37 tonnellate al mese in più di quanto stabilito (187 invece di 150), ed il miglioramento della funzione obiettivo è di 13089 KEuro/mese (53222 invece di 67311).Questi valori sono ricavati dall'analisi parametrica variando mat3, come visibile dal file di output di Lindo in formato testo.

DICHMIANDCIDE DADAMEMDICC DEDODE EOD DOW. MARC

RIGHTHANDSIDE PARAMETRICS REPORT FOR ROW: MATS								
VAR OUT	-	AR N	PIVOT ROW	RHS VAL	DUAL PRICE BEFORE PIVOT	OBJ VAL		
				150.000	629.000	67311.0		
Y23	SLK	2	6	154.200	629.000	64669.2		
X12		Y23	18	187.000	349.000	53222.0		
Y24		Y35	16	187.000	265.000	53222.0		
Y15		Y21	10	199.000	197.000	50858.0		
X42		X12	8	199.000	20.0000	50858.0		
Y23	SLK	4	18	199.000	13.6364	50858.0		
				250.000	0.00000E+00	50858.0		

3) I collegamenti restano gli stessi finché la base non cambia. Infatti le variabili nulle restano tali e quelle non-nulle restano in base. L'unico caso in cui un aumento del 5% nel termine noto di uno dei vincoli sulle quantità da produrre non provoca nessun cambio di base è quello relativo al quinto

vincolo. Perciò soddisfare la richiesta del quinto produttore consente di continuare a produrre in modo ottimo senza bisogno di modificare i contratti di trasporto.

RIGHTHAND SIDE RANGES

	ALLOWABLE	CURRENT	ROW
	INCREASE	RHS	
5%=1,4	0.818182	28.000000	SEMILAV1
5%=1,75	1.500000	35.000000	SEMILAV2
5%=1,5	1.000000	30.000000	SEMILAV3
5%=2,5	0.818182	41.000000	SEMILAV4
5%=0,6	1.058824	12.000000	SEMILAV5