Cálculo Numérico I

Curso 2020-2021

Hoja de Problemas 5

1° DE MAT./2° DE D.G.

- 1. Demostrar que, si $\widehat{R}_{kk} > 0$ la factorización QR reducida es única.
- 2. Sea

$$A = \left[\begin{array}{ccc} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right]$$

Encontrar una descomposición A = QR por Gram-Schmidt.

- 3. Sea $U \in \mathbb{R}^{n \times n}$ una matriz ortogonal. Demostrar que $U^2 = I$ si y solo si U tiene la forma I 2P, donde P es una proyección ortogonal.
- 4. a) Sea

$$B = \left[\begin{array}{ccc} 2 & 1 & -1 \\ 0 & -1 & 1 \\ 0 & 1 & -1 \\ 2 & 1 & 1 \end{array} \right].$$

Hallar una factorización B = QR y explicar qué dos posibilidades hay para las dimensiones de los factores Q y R y cómo se relacionan esas dos opciones.

b) Sea ahora $B \in \mathbb{R}^{m \times n}$, con m > n y con rango n. Si quisiésemos resolver el problema

encontrar el
$$x$$
 tal que $||b - Bx||_2$ es mínimo (*)

se podría usar la descomposición QR de B para reducirlo a la resolución de un sistema lineal triangular ¿qué sistema? Justificar la respuesta.

c) Indicar el numero de operaciones (en orden de magnitud) que se realizan para resolver el problema (*) del apartado anterior.

Nota: al contar separar la parte de la descomposición QR de la correspondiente a la resolución del sistema triangular.

5. Se considera la matriz

$$A = \left[\begin{array}{rrr} 1 & 1 & 2 \\ 1 & 5 & 1 \\ 1 & 1 & 1 \\ 1 & 5 & 0 \end{array} \right].$$

- a) Calcular su factorización QR.
- b) Utilizarla para resolver, en el sentido de los mínimos cuadrados, los sistemas sobredeterminados

$$Ax = b_j,$$

donde

$$b_1 = \begin{pmatrix} 1 \\ 10 \\ 2 \\ 11 \end{pmatrix}, \quad b_2 = \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix}, \quad b_3 = \begin{pmatrix} 12 \\ 25 \\ 9 \\ 24 \end{pmatrix}.$$

c) Denotando por x_1 , x_2 , x_3 las respectivas soluciones, calcular los residuos $r_j = b_j - Ax_j$, j = 1, 2, 3. ¿A qué se debe la diferencia entre los tres resultados?

- d) Pensando en una matriz A y un dato b generales, ¿En qué caso (para una matriz A y un dato b generales) es nulo el residuo r = b Ax? ¿Puede suceder que $||r||_2 > ||b||_2$? ¿Puede suceder que r = b (es decir, Ax = 0)? ¿En qué casos ocurre que r = b/2?
- 6. Sea $b \in \mathbb{R}^m$ y sean A, T matrices de tamaños $m \times n$ y $n \times p$, respectivamente, tales que $\ker A = 0$, $\ker T = 0$. Ponemos $A_1 = AT$. Sean x, x_1 las soluciones de los sistemas lineales Ax = b y $A_1x_1 = b$ en el sentido de mínimos cuadrados.
 - a) Demostrar la siguiente desigualdad para los residuos: $||b Ax||_2 \le ||b A_1x_1||_2$.
 - b) Demostrar que, en el caso n = p, se tiene la igualdad de los residuos.
- 7. Demostrar que todas las proyecciones de \mathbb{C}^2 son de una de las siguientes formas

$$\left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right), \ \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), \ \left(\begin{array}{cc} 1 & \alpha \\ 0 & 0 \end{array}\right), \ \left(\begin{array}{cc} 0 & 0 \\ \beta & 1 \end{array}\right), \ \left(\begin{array}{cc} 1 - \alpha\beta & \alpha(1 - \alpha\beta) \\ \beta & \alpha\beta \end{array}\right)$$

para algún valor de $\alpha, \beta \in \mathbb{C}$.

(Recordar que una provección en \mathbb{C}^n es una matriz $P \in \mathbb{C}^{n \times n}$ tal que $P^2 = P$.)

8. Sean P,Q proyecciones ortogonales de \mathbb{C}^n . Demostrar que

$$PQ$$
 es una proyección ortogonal $\iff PQ = QP$

9. Sean Q_1, Q_2 matrices reales en $\mathbb{R}^{n \times n}$ tales que la matriz compleja $U = Q_1 + iQ_2$ es unitaria. Demostrar que la matriz $R \in \mathbb{R}^{2n \times 2n}$ dada por

$$R = \left(\begin{array}{cc} Q_1 & -Q_2 \\ Q_2 & Q_1 \end{array}\right)$$

es una matriz ortogonal