Ley de enfriamiento de Newton Práctica 3

Misael Iván Macías Márquez misaelmacias@ciencias.unam.mx

Facultad de Ciencias, UNAM

Martes 22 de Marzo de 2022 Semestre 2022-1

Resumen: Se comprobó que el enfriamiento de un cuerpo inmerso en un medio a menor temperatura cumple con la ley de enfriamiento de Newton es decir que la temperatura es proporcional a la exponencial del tiempo (ver ecuación 4), el ajusto por exponencial dio un coeficiente de correlación $R^2 = 0.97$ por lo que se concluye que la relación anterior se cumple.

Introducción

La ley del enfriamiento de Newton o enfriamiento newtoniano establece que la tasa de pérdida de calor de un cuerpo es proporcional a la diferencia de temperatura entre el cuerpo y sus alrededores. Cuando la diferencia de temperaturas entre un cuerpo y su medio ambiente no es demasiado grande, el calor transferido en la unidad de tiempo hacia el cuerpo o desde el cuerpo por conducción, convección y radiación es aproximadamente proporcional a la diferencia de temperatura entre el cuerpo y el medio externo[1].

Cuando la diferencia de temperaturas entre un cuerpo y su medio ambiente no es demasiado grande, el calor transferido en la unidad de tiempo hacia el cuerpo o desde el cuerpo por conducción, convección y radiación es aproximadamente proporcional a la diferencia de temperatura entre el cuerpo y el medio externo[2].

$$\frac{dQ}{dt} = -r(T - T_m) \tag{1}$$

donde T es la temperatura y T_m la temperatura ambiente. Si la temperatura T del cuerpo es mayor que la temperatura del medio ambiente Ta, el cuerpo pierde una cantidad de calor dQ en el intervalo de tiempo comprendido entre t y t+dt, disminuyendo su temperatura T en dT[2].

$$dQ = mcdT (2)$$

donde m es la masa y c el calor específico, entonces sustituyendo la ecuación 2 en la 1

$$\frac{mcdT}{dt} = -r(T - T_m)$$

$$\frac{dT}{dt} = -\frac{r}{mc}(T - T_m) = -k(T - T_m) \tag{3}$$

con k=r/mc, entonces integrando la ecuación 3 de la temperatura T_0 a T y del tiempo 0 a t

$$\int_{T_0}^T \frac{dT}{T - T_m} = -k \int_0^t dt$$

$$\ln\left(T - T_m\right) = -kt + \ln\left(T_0 - T_m\right)$$

y despejando ${\cal T}$

$$T - T_m = (T_0 - T_m)e^{-kt} (4)$$

Desarrollo experimental

Se llenó el recipiente de aluminio con agua de grifo para después colocarlo en la hornilla de la estufa antes de encender la ornílla, con el termómetro digital se determinó la temperatura ambiente T_m del cuarto, ya con la hormilla encendida se dejó calentar el agua por un par de minutos hasta alcanzar una temperatura inicial T_0 , posteriormente se vertió el agua calentada en el vaso de unicel para después con el termómetro y el cronometro medir la temperatura T del agua cada T_m 0 min.

Figura 1: Arreglo experimental:(1) Termómetro digital, (2) Vaso de unicel, (3) recipiente de aluminio, (4) hornilla de estufa

Las temperaturas medidas y sus respectivos tiempos se pueden encontrar en la figura 3 (ver anexos), la temperatura ambiente es:

$$T_m = 22.5^{\circ}C$$

entonces restando a la temperatura medida la temperatura ambiente para graficar la función mostrada en la ecuación 4 y ajustando por una exponencial tenemos que:

Figura 2: Gráfica del ajuste por exponencial para los datos de la figura 3 aplicando la ecuación 4

donde el coeficiente de correlación \mathbb{R}^2 es aproximadamente 0,97.

Conclusiones

Al tenerse un coeficiente de correlación \mathbb{R}^2 tan cercano al 1 se puede concluir que la relación dada por la ecuación 4 sí describe el comportamiento de un cuerpo enfriándose a temperatura T inmerso en un medio a temperatura T_m con $T > T_m$.

Referencias

- [1] "Ley Del Enfriamiento de Newton." 2020. Wikipedia. Marzo 18, 2020. https://es.wikipedia.org/wiki/Ley_del_enfriamiento de Newton.
- [2] "Ley Del Enfriamiento de Newton." n.d. Www.sc.ehu.es. http://www.sc.ehu.es/sbweb/fisica/estadistica/otros/enfriamiento/enfriamiento.htm.
- [3] Oda, Berta. Introducción al análisis gráfico de datos experimentales. 3a ed. Ciudad de México: las prensas de ciencias, 2017.

Apéndices

tiempo (t) ±1[s]	temperatura (T) ±2 [°C]
0	49.2
120	48
240	47.1
360	46.3
480	45.9
600	45.3
720	44
840	43.1
960	42.6
1080	42.3
1200	41.8
1320	40.3
1440	40.2
1560	39.9
1680	39.5
1800	38.6
1920	38.5
2040	38.3
2160	37.8
2280	37.3
2400	37.1
2520	36.6
2640	36.3
2760	36.1
2880	35.8
3000	35.4
3120	35.2
3240	35.2

tiempo (t) ±1[s]	temperatura (T) ±2 [°C]
3360	34.8
3480	34.5
3600	34.1
3720	34
3840	34
3960	33.9
4080	33.5
4200	32.9
4320	32.8
4440	32.6
4560	32.6
4680	32.3
4800	32.1
4920	31.9
5040	31.9
5160	31.8
5280	31.7
5400	31.6
5520	31.6
5640	31.3
5760	31.3
5880	31.1
6000	31.1
6120	31.1
6240	30.9
6360	30.9
6480	30.9

Figura 3: Tiempos y temperaturas medidas.