

 L_{1}^{+} : 367 L_{1}^{-} : 123 235 356 357 167 127 127 137 127 137 127 137 145Conj (Muller-Speyer 177) n= quasi-coincide: 1) $\forall f \in Aa$ frozen var., $\exists p$ Laurent mon. In frozens with $y^-(f) = y^+(p)$ and $\forall x \in Aa$ clust var. $\exists x'$ clust var., $\Rightarrow f$ Laurent in frozens: $y^-(x) = y^+(x'g)$ F= {I, veF = 20} TIP = {VETT : DI(V) + O VIEF }
open positroid variety 2) x -> x' permutation of closel. very reguling competibility, metation. 3) technical balancing condition on monomials z, q. Δ_{Q} = cluster alg. associated to (Q,F), inertible prozen var. Thm (Galashin-Lam) Two isomorphisms Than (P 23+) The conjecture is true. $\eta^{\pm}: A_{\mathbf{Q}} \xrightarrow{\sim} C[\widetilde{\Pi}_{S}^{\circ}], \quad \eta^{\pm}(\mathbf{x}_{v}) = \Delta(\mathbf{I}_{v}^{\pm})$ Rem 1) Both conjecture and theorem apply also to disconnected case.

Z) Independent proof by Casals-Le-Shernon-Bernett-Weny, using methods from symplectic yeometry. Upshot Two chuter algebra structures on C[Tip].

127 137 + 135 - 345

Rem Special case $\mathcal{F} = \binom{n}{h} \Longrightarrow \prod_{\mathcal{F}} = Gr_{h,n}$.

In (orb) this case, cluster structures not agree (Scott 'Ob).

Then $\Psi^{-}(X) = \Psi^{+}(X) \frac{\Psi^{+}(P)}{\Psi^{+}(Q)} \in \mathbb{C} \left[\widehat{\mathcal{H}}_{P} \right].$