Analys Problem 2

Robin Boregrim

October 15, 2017

Innehållsförteckning

1	Uppgiften					
2	Lösning					
	2.1	Omskrivning		. 2		
	2.2	Derivataräkning		. :		
	2.3	Svar		. 4		

1 Uppgiften

För vilka värden på a > 0 har ekvationen $a^x = x$ lösningar?

2 Lösning

2.1 Omskrivning

För att kunna lösa ut a så skriver vi om ekvationen $a^x = x$ så att a blir en funktion av x.

$$a^x = x \Rightarrow \tag{1}$$

Om vi antar att $x \neq 0$

$$(a^x)^{\frac{1}{x}} = x^{\frac{1}{x}}, x \neq 0 \Leftrightarrow$$

$$a = x^{\frac{1}{x}}, x \neq 0$$
(2)

Ekvation (2) inte är definerad för x = 0, detta skulle vara ett problem om (1) hade lösningar för x = 0 men eftersom

$$a^0 = 1, \forall a \in \mathbb{R}$$

så a^0 kommer aldrig vara lika med 0. x=0 är därför aldrig en lösning på (1).

En annan sak värd att notera är att eftersom a^x kommer vara positivt för alla x kommer ekvationen $a^x = x$ inte ha några lösningar för negativa x. Vänsterledet a^x skulle vara positivt och högerledet x skulle vara negativt för alla negativa x dvs

$$a^x > 0, \forall x \in \mathbb{R} < 0$$

$$x < 0, \forall x \in \mathbb{R} < 0$$

$$a^x \neq x, \forall x \in \mathbb{R} < 0.$$

Vi vet därför att definitionsmängden på x är

$$D_f = \{x > 0\}.$$

2.2 Derivataräkning

Nu vet vi att a beskrivs av funktionen $a = x^{\frac{1}{x}}$ så vi räknar ut derviatan av den funktionen för att sen ta reda på eventuella extrempunkter.

$$a' = \frac{d}{dx} (x^{\frac{1}{x}})$$

$$= \frac{d}{dx} (e^{\ln(x^{\frac{1}{x}})})$$

$$= \frac{d}{dx} (e^{\frac{1}{x}\ln(x)})$$

$$= \frac{d}{dx} (\frac{\ln x}{x}) \cdot e^{\frac{1}{x}\ln x}$$

$$= (\frac{\ln x}{x})' \cdot x^{\frac{1}{x}}$$

$$= \frac{x \cdot \frac{d}{dx} (\ln x) - \ln x \cdot \frac{d}{dx} (x)}{x^2} \cdot x^{\frac{1}{x}}$$

$$= \frac{x \cdot \frac{1}{x} - \ln x \cdot 1}{x^2} \cdot x^{\frac{1}{x}}$$

$$a' = \frac{1 - \ln x}{x^2} \cdot x^{\frac{1}{x}}$$
(3)

Nu behöver vi räkna ut för vilka x som a'=0 för att hitta eventuella extrempunkter. Varken $x^{\frac{1}{x}}$ eller $\frac{1}{x^2}$ kan bli 0, vilket betyder att om (3)= 0 måste

$$1 - \ln x = 0$$

$$1 = \ln x$$

$$e^{1} = e^{\ln x}$$

$$e^{1} = e^{\ln x}$$

$$x = e$$

Nu när vi vet att a' endast har en rot som är e vill vi veta om roten är en maximi-, mini- eller terrasspunkt.

Både $x^{\frac{1}{x}}$ och $\frac{1}{x^2}$ är alltid possitiva för $\forall x \in \mathbb{R} \cup D_f$. Detta betyder att a' är positivt eller negativt beroende på om $1 - \ln x$ är positivt eller negativt. Eftersom funktionen $\ln x$ är strängt växande och $\ln e = 1$ är $\ln x < 1$ om

 $x < e \text{ och } \ln x > 1 \text{ om } x > e.$

Vilket i sin tur betyder att a' är positiv för x < e och negativ för x > e.

Roten x=e är därför en global maximipunkt för (2). Av detta följer då att $a \leq e^{\frac{1}{e}}$. Eftersom a var större än noll per definition

$$0 < a \le e^{\frac{1}{e}}.$$

2.3Svar

Ekvationen $a^x = x$ har lösningar i internvallet

$$0 < a \le e^{\frac{1}{e}}.$$