robKalman — a package on Robust Kalman Filtering

Peter Ruckdeschel¹ Bernhard Spangl²

Fakultät für Mathematik und Physik

Peter.Ruckdeschel@uni-bayreuth.de
www.uni-bayreuth.de/departments/math/org/mathe7/RUCKDESCHEL

Universität für Bodenkultur. Wien

Bernhard.Spangl@boku.ac.at

www.rali.boku.ac.at/statedv.html

16.06.2006

Classical Setup: Linear State-Space-Models

State equation:

$$X_t = F_t X_{t-1} + v_t$$

Observation equation:

$$Y_t = Z_t X_t + \varepsilon_t$$

Ideal model assumption:

$$X_0 \sim \mathcal{N}_{\rho}(a_0, \Sigma_0), \quad v_t \sim \mathcal{N}_{\rho}(0, Q_t), \quad \varepsilon_t \sim \mathcal{N}_{q}(0, V_t),$$

all independent

• (preliminary?) simplification: Hyper parameters F_t, Z_t, V_t, Q_t constant in t

Problem and classical solution

- ▶ Problem: Reconststruction of X_t by means of Y_s , $s \le t$
- Criterium: MSE
- \rightsquigarrow general solution: $\mathrm{E}\,X_t|(Y_s)_{s\leq t}$
- Computational difficulties:
 - ⇒ restriction to **linear** procedures
 - / or: Gaussian assumptions
- classical Kalman Filter

Kalman filter

0. Initialization (t = 0):

$$X_{0|0} = a_0, \quad \Sigma_{0|0} = \Sigma_0$$

1. Prediction $(t \ge 1)$:

$$X_{t|t-1} = FX_{t-1|t-1}, \quad \text{Cov}(X_{t|t-1}) = \Sigma_{t|t-1} = F\Sigma_{t-1|t-1}F' + Q$$

2. Correction $(t \ge 1)$:

$$\begin{array}{rcl} X_{t|t} &=& X_{t|t-1} + \mathcal{K}_t(Y_t - ZX_{t|t-1}) \\ \mathcal{K}_t &=& \Sigma_{t|t-1} Z'(Z\Sigma_{t|t-1} Z')^-, & \text{(Kalman gain)} \\ \mathrm{Cov}(X_{t|t}) &=& \Sigma_{t|t} = \Sigma_{t|t-1} - \mathcal{K}_t Z\Sigma_{t|t-1} \end{array}$$

Types of outliers and robustification

- ▶ IOs (system intrinsic): state equation is distorted
 - not considered here
- ► AO/SOs (exogeneous): observations are distorted:
 - either error ε_t is affected (AO)
 - or observations Y_t are modified (SO)
- a robustifications as to AO/SOs is to
 - retain recursivity (three-step approach)
 - ▶ modify correction step \rightsquigarrow bound influence of Y_t
 - ightharpoonup retain init./pred.step but with modified filter past $X_{t-1|t-1}$

Considered approaches

Approximate conditional mean (ACM): [Martin(79)]

- ightharpoonup dim $Y_t = 1$
- particular model: $Y_t \sim AR(p)$
 - $\longrightarrow X_t = (Y_t, \ldots, Y_{t-p+1}),$
 - hyper parameters $Z=(1,0,\ldots,0),\ V^{\mathrm{id}}=0,\ F,\ Q$ unknown
- ▶ estimation of F, Q by means of GM-Estimators
- lacktriangle modified Corr.step: for suitable location influence curve ψ

$$X_{t|t} = X_{t|t-1} + \sum_{t|t-1} Z' \psi(Y_t - ZX_{t|t-1})$$

$$\sum_{t|t} = \sum_{t|t-1} - \sum_{t|t-1} Z' \psi'(Y_t - ZX_{t|t-1}) Z \sum_{t|t-1}$$

Considered approaches II

rLS filter: [P.R.(01)]

- ightharpoonup dim X_t , dim Y_t arbitrary, finite
- ightharpoonup assumes hyper parameters a_0 , Z, V^{id} , F, Q known
- modified Corr.step:

$$X_{t|t} = X_{t|t-1} + H_b(K_t(Y_t - ZX_{t|t-1}))$$

 $H_b(X) = X \min\{1, b/|X|\}$ for $|\cdot|$ Euclidean norm

optimality for SO's in some sense

Concept and strategy

Goal: package robKalman Contents

- ▶ Kalman filter: filter, Kalman gain, covariances
- ACM-filter: filter, GM-estimator
- rLS-filter: filter, calibration of clipping height
- further recursive filters?
 - → general interface recursiveFilter with Arguments:
 - state space model (hyper parameters)
 - functions for the init./pred./corr.step

Concept and strategy II

- Programming language
 - ▶ completely in S
 - perhaps some code in C (much) later
- Use existing infrastructure
 - package candidates
 - One dimensional: KalmanLike (package stats); time series classes: ts, its, irts, zoo, zoo.reg
 - Multivariate setting: dse bundle by Paul Gilbert; perhaps zoo?
 - use for: graphics, diagnostics, management of date/time
- Split user interface and "Kalman code"
 - internal functions: no S4-objects
 - user interface: S4-objects

Concept and strategy III

- Use of S4
 - Hierarchic Classes:
 - state space models (SSMs) (Hyper-Parameter, distributional assumptions, outlier types)
 - filter results (specific subclass of (multivariate) time series)
 - control structures for filters (tuning parameters)
 - Methods:
 - filters (for different types of SSMs)
 - accessor/replacement functions
 - simulate for SSMs
 - filter diagnostics: getClippings, conf.intervals ?
 - tests?
 - constructors/generating funtions

Implementation so far: interfaces

- preliminary, "S4-free" interfaces
 - Kalman filter (in our context) KalmanFilter
 - ▶ rLS (P.R.): rLSFilter
 - with routines for calibration at given
 - efficency in ideal model
 - contamination radius
 - ► ACM (B.S.) ACMfilt, ACMfilter
 - with function argM for AR-parameters by GM-estimates
 - lacktriangledown various ψ -functions are available: Hampel (ACM-filter), Huber, Tukey (both GM-estimators) —see ?.psi
 - all: wrappers to recursiveFilter

Implementation so far: package robKalman

- package robKalman
 - routines gathered in package robKalman, version 0.1
 - documentation
 - demos
- required packages all available from CRAN: methods, graphics, startupmsg, dse1, dse2, MASS, limma, robustbase
- availability: web-page setup under

```
http://www.uni-bayreuth.de/departments/
/math/org/mathe7/robKalman/
```

Next steps

- ▶ 00P
 - definition of S4 classes
 - - ▶ RCore,
 - Paul Gilbert,
 - possibly Gabor Grothendiek and Achim Zeileis (zoo)
 - casting/conversion functions for various time series classes
- User interface robfilter (?)
 - goal: four arguments: data, SSM, control-structure, filter type
 - should take various definitions of SSMs, data in various time series classes,
 - ▶ possibly simpler interfaces for ACM → ACMfilt-like
- Release Schedule
 - wait for results of discussion as to class definition
 - guess: end of 2006

Demonstration: ACMfilt

```
### generation of data from AO model:
set . seed (361)
\mathsf{Eps} \leftarrow \mathsf{as}.\mathsf{ts}(\mathsf{rnorm}(100))
ar2 \leftarrow arima.sim(list(ar = c(1, -0.9)),
         100, innov = Eps)
Binom \leftarrow rbinom(100, 1, 0.1)
Noise \leftarrow rnorm (100, sd = 10)
y \leftarrow ar2 + as.ts(Binom*Noise)
## determination of GM-estimates
y.arGM \leftarrow arGM(y, 3)
## ACM-filter
y.ACMfilt \leftarrow ACMfilt(y, y.arGM)
plot(y)
lines (y. ACMfilt $filt, col=2)
lines (ar2, col="green")
```


green: ideal time series, black: AO contam. time

series,

red: result ACM

Demonstration: rLSFilter

```
## specification of SSM: (p=2, q=1)
a0 \leftarrow c(1, 0); S0 \leftarrow matrix(0, 2, 2)
F \leftarrow matrix(c(.7, 0.5, 0.2, 0), 2, 2)
Q \leftarrow matrix(c(2, 0.5, 0.5, 1), 2, 2)
Z \leftarrow matrix(c(1, -0.5), 1, 2)
Vi ← 1:
## time horizon:
TT \leftarrow 50
## AO-contamination
mc \leftarrow -20; Vc \leftarrow 0.1; ract \leftarrow 0.1
## for calibration
r1 \leftarrow 0.1: eff1 \leftarrow 0.9
#Simulation::
X \leftarrow simulateState(a, S0, F, \mathbf{Q}, TT)
Yid \leftarrow simulateObs(X, Z, Vi, mc, Vc, r=0)
Yre \leftarrow simulateObs(X, Z, Vi, mc, Vc, ract)
```

Demonstration: rLSfilter II

```
### calibration b
#limiting S_{-}\{t \mid t-1\}
SS \leftarrow limitS(S, F, \mathbf{Q}, Z, Vi)
# by efficiency in the ideal model
(B1 \leftarrow rLScalibrateB(eff=eff1, S=SS, Z=Z, V=Vi))
# by contamination radius
(B2 \leftarrow rLScalibrateB(r=r1, S=SS, Z=Z, V=Vi))
### evaluation of rLS
rerg1.id \leftarrow rLSFilter(Yid, a, Ss, F, Q, Z, Vi, B1$b)
rerg1.re \leftarrow rLSFilter(Yre, a, Ss, F, Q, Z, Vi, B1$b)
rerg2.id \leftarrow rLSFilter(Yid, a, Ss, F, Q, Z, Vi, B2$b)
rerg2.re \leftarrow rLSFilter(Yre, a, Ss, F, Q, Z, Vi, B2$b)
```


Bibliography

Durbin, J. and Koopman, S. J.(2001):

Time Series Analysis by State Space Methods.

Oxford University Press.

Ruckdeschel, P. (2001):

Ansätze zur Robustifizierung des Kalman Filters.

Bayreuther Mathematische Schriften, Vol. 64.

R Development Core Team (2006):

R:A language and environment for statistical computing.

R Foundation for Statistical Computing, Vienna, Austria.

http://www.R-project.org

Gilbert, P. (2005):

Brief User's Guide: Dynamic Systems Estimation (DSE).

Available in the file doc/dse-guide.pdf distributed together with the R bundle dse, to be downloaded from http://cran.r-project.org

Martin, D. (1979):

Approximate conditional-mean type smoothers and interpolators.

In Smoothing techniques for curve estimation.

Proc. Workshop Heidelberg 1979. Lect. Notes Math. 757, p. 117-143