Policy and Off-Policy Evaluation from Data

Mohammad Sadegh Talebi m.shahi@di.ku.dk Department of Computer Science

Motivation

We've studied planning in a known discounted MDP:

- Using VI, PI, and their variants
- Planning is a slang word for 'solving MDP'

What if the MDP is unknown but accessible only through collected data?

- RL deals with (near-)optimally solving an unknown MDP using offline/online data (experience).
- The first step is policy evaluation using offline/online data.

PE vs. OPE vs. OPO

Policy Evaluation (PE) from data: Estimate V^{π} using data sampled from π .

Two related problems:

- Off-Policy Evaluation (OPE): Estimate V^π using data collected according to some fixed policy $\pi_{\rm b} \neq \pi$
 - π_b is called the behavior (or logging policy) an exploratory policy.
 - $\pi \neq \pi_b$ is called the target policy (a.k.a. estimation policy).
- Off-Policy Optimization (OPO): Find an optimal policy using data collected according to some behavior policy π_b

OPE/OPO

Consider a company selling products according to some policy A.

- Interactions with the world can be modeled as an MDP.
- ullet The transition function (determined by, e.g., customer arrivals, market dynamics) is unknown, but the company has a rich dataset logged via A.
- \bullet The expected revenue under A can be found by computing V^A (Policy Evaluation, this lecture!).

Shall the company switch to a new policy B or not?

- Yes, if B yields a higher revenue, i.e., $V^B > V^A$
- One can find the unknown V^B via the dataset of A (via OPE methods).
- ullet Also OPE gives confidence sets on $V^B\Longrightarrow$ Better to switch to B only if

$$V^{B} \ge V^{A} + \text{margin}, \quad \text{with high probability}$$

Part 1: Policy Evaluation

Policy Evaluation

Policy Evaluation

Given: A dataset \mathcal{D} collected under some *fixed* policy π .

Mathematically,
$$\mathcal{D}=\left\{(s_t,a_t,r_t),1\leq t\leq n\right\}$$
 where
$$a_t\sim\pi(\cdot|s_t),\quad r_t\sim R(s_t,a_t),\quad s_{t+1}\sim P(\cdot|s_t,a_t)$$

Goal: Derive (point) estimate, and possibly confidence intervals, for V^{π} .

We study two algorithms:

- A model-based method, which we call MB-PE.
- A model-free method called Temporal Difference (TD) Learning.

MB-PE: A Model-Based Method

Known Model

Recall the definition of V^{π} , $\pi \in \Pi^{SR}$:

$$V^{\pi}(s) = \mathbb{E}^{\pi} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r_t \middle| s_1 = s \right]$$

and the Bellman equation:

$$V^{\pi}(s) = r_t + \gamma \mathbb{E}^{\pi} \left[\sum_{t=2}^{\infty} \gamma^{t-1} r_t \middle| s_1 = s \right] = r_t + \gamma \mathbb{E}^{\pi} \left[V^{\pi}(s_{t+1}) \middle| s_1 = s \right]$$

 π induces an MRP (P^{π}, r^{π}) with:

$$P_{s,s'}^{\pi} = \sum_{a} \pi(a|s) P(s'|s,a), \qquad r^{\pi}(s) = \sum_{a} \pi(a|s) r(s,a)$$

Then,
$$V^{\pi} = (I - \gamma P^{\pi})^{-1} r^{\pi}$$

MB-PE: Idea

Idea: Define empirical estimates for P^π and apply the certainty equivalence principle.

Smoothed Estimator for P^{π} :

$$\widehat{P}^{\pi}_{s,s'} = \frac{N(s,s') + \alpha}{N(s) + \alpha S}, \quad \text{with} \quad$$

$$N(s,s') = \sum_{t=1}^{n-1} \mathbb{I}\{s_t = s, s_{t+1} = s'\}$$
 and $N(s) = \sum_{s' \in S} N(s,s')$

- $\alpha \geq 0$ is an arbitrary choice controlling the level of smoothing.
- $\alpha = 0$ corresponds to Maximum Likelihood Estimator (unbiased).
- $\alpha=1/S$ corresponds to Laplace Smoothed Estimator (biased, but the bias vanishes as N(s) increases).

ullet Consistency: $\widehat{P}^\pi_{s,s'}$ converges to $P_{s,s'}$ as $N(s) \to \infty$ almost surely.

MB-PE: Idea

Idea: Define empirical estimates for P^π and apply the certainty equivalence principle.

Smoothed Estimator for r^{π} :

$$\widehat{r}^{\pi}(s) = \frac{\alpha + \sum_{t=1}^{n-1} r_t \mathbb{I}\{s_t = s\}}{\alpha + N(s)}$$

- Consistency: $\widehat{r}^{\pi}(s)$ converges to $r^{\pi}(s)$ as $N(s) \to \infty$ almost surely.
- Unbiased for $\alpha = 0$.

Then, the following is an estimate for V^{π} :

$$\widehat{V}^{\pi} = (I - \gamma \widehat{P}^{\pi})^{-1} \widehat{r}^{\pi}$$

MB-PE: Convergence

Theorem

If all states are visited infinitely often under π , then \widehat{V}^{π} converges to V^{π} almost surely:

$$\mathbb{P}\Big(\lim_{n\to\infty}\widehat{V}^{\pi} = V^{\pi}\Big) = 1$$

• In other words, if π is exploratory enough, \widehat{V}^π converges to V^π in the following sense:

$$\mathbb{P}\left(\exists \mathcal{D}, \exists s \in \mathcal{S} : \lim_{t \to \infty} \widehat{V}^{\pi}(s; \mathcal{D}) \neq V^{\pi}(s)\right) = 0$$

I.e., datasets for which $\widehat{V}^{\pi} \neq V^{\pi}$ will occur with probability 0.

- It follows from the a.s. convergence of \widehat{P}^{π} to P^{π} and of \widehat{r}^{π} and r^{π} .
- We can use concentration inequalities (e.g., Hoeffding's) to derive confidence interval(s) for V^π .

MB-PE: Pros and Cons

This is a model-based approach since it maintains an approximate model of MDP (or MRP) and then computes V^{π} for that.

Disadvantages of the model-based solution:

- It results in value estimates with a large variance in practice, which is undesirable.
- It maintains estimates of S^2+S elements of MRP, though we need to maintain S estimates to find V^π .
- Computational complexity is $O(S^3)$, and space complexity is $O(S^2)$.
- May not be easily converted into an incremental procedure.

- Temporal Difference Learning was popularized and extended by Richard Sutton in 1988.
- However, the earliest reported use dates back to Arthur Samuel (1959).

Application to Backgammon game by Gerald Tesauro (TD-Gammon), read more here.

source: Wikipedia

Assume \widehat{V} is some estimate for V^{π} — Hence, $\widehat{V}(s_t)$ is an estimate for $V^{\pi}(s_t)$.

Now consider $r_t + \gamma \widehat{V}(s_{t+1})$:

$$\mathbb{E}\left[r_t + \gamma \widehat{V}(s_{t+1}) \middle| s_t, \widehat{V}\right] = \mathbb{E}_{a \sim \pi(s_t)} \left[R(s_t, a) + \gamma \sum_{s'} P(s'|s_t, a) \widehat{V}(s') \middle| s_t, \widehat{V}\right]$$

Hence, $r_t + \gamma \hat{V}(s_{t+1})$ gives another estimate for $V^{\pi}(s_t)$.

Ideally we would like to have an estimate \widehat{V} so that:

$$\widehat{V}(s_t) \approx r_t + \gamma \widehat{V}(s_{t+1})$$

- Given $\widehat{V}(s_t)$, in view of Bellman's equation $r_t + \gamma \widehat{V}(s_{t+1})$ serves as a target estimate for $V^{\pi}(s_t)$.
- The temporal difference error is $\delta_t = r_t + \gamma \widehat{V}(s_{t+1}) \widehat{V}(s_t)$.

Hence, we may update $\widehat{V}(s_t)$ to reduce the error δ_t :

$$\underbrace{\widehat{V}(s_t)}_{\text{new value}} \longleftarrow \underbrace{\widehat{V}(s_t)}_{\text{old value}} + \alpha_t \underbrace{\left(r_t + \gamma \widehat{V}(s_{t+1}) - \widehat{V}(s_t)\right)}_{\text{estimation error}}$$

This method is called Temporal Difference (TD) learning — this is a form of bootstrapping, since we refined $\widehat{V}(s_t)$ using another estimate.

TD: Learning Rate

To guarantee convergence, learning rates $(\alpha_t)_{t\geq 1}$ must satisfy the *Robbins-Monro* conditions:

$$\alpha_t > 0, \qquad \sum_{t=1}^{\infty} \alpha_t = \infty, \qquad \sum_{t=1}^{\infty} \alpha_t^2 < \infty$$

(I.e., a positive sequence that is square-summable-but-not-summable.)

Examples:

- $\bullet \ \alpha_t = \frac{1}{t+1}$
- $\alpha_t = \frac{2}{\sqrt{t}\log(t+1)}$
- $\alpha_t = \frac{c}{t^a}$ for $a \in (\frac{1}{2}, 1]$ and c > 0

TD

- input: $\mathcal{D} = \{(s_t, r_t)\}_{1 \le t \le n}, (\alpha_t)_{t \ge 1}$
- initialization: Select V_1 arbitrarily
- for $t = 1, \ldots, n-1$ Update:

$$V_{t+1}(s) = \begin{cases} V_t(s) + \alpha_t \Big(r_t + \gamma V_t(s_{t+1}) - V_t(s) \Big) & s = s_t \\ V_t(s) & \text{else.} \end{cases}$$

ullet output: V_n

TD: Advantages

- TD is model-free: It does not require a model of the MDP, only relies on collected experience.
- TD can be incremental (unlike the model-based methods).
- \bullet Computational complexity (per-step) is O(1). Space complexity is S. Much cheaper than the model-based method.
- ullet TD results in estimates for V^{π} with low variance.

Is TD Gradient?

- TD update resembles Stochastic Gradient Descent (SGD).
- However, it can be shown that TD is not an SGD for *any objective function* (see Philip Thomas' Notes, p. 69).
- In fact, TD is a Stochastic Approximation (SA) algorithm and it inherits convergence guarantee from SA we briefly overview SA in next lecture.

TD: Convergence

Theorem

If all states are visited infinitely often under π and $(\alpha_t)_{t\geq 1}$ satisfies the Robbins-Monro conditions, then V_t converges to the true value function V^π almost surely:

$$\mathbb{P}\left(\forall s \in \mathcal{S}, \lim_{t \to \infty} V_t(s) = V^{\pi}(s)\right) = 1$$

In other words, if π is exploratory enough, V_t converges to V^π , in the following sense:

$$\mathbb{P}\left(\exists \mathcal{D}, \exists s \in \mathcal{S} : \lim_{t \to \infty} V_t(s; \mathcal{D}) \neq V^{\pi}(s)\right) = 0$$

I.e., datasets for which $V_{\infty} \neq V^{\pi}$ will occur with probability 0.

$TD(\lambda)$

TD only uses only r_t and $\widehat{V}(s_{t+1})$ to refine $\widehat{V}(s_t)$ — i.e., it looks *one-step into future*.

Why not looking into *ℓ*-step into future? using the target

$$\sum_{n=0}^{\ell} \gamma^{n} r_{t+n} + \gamma^{\ell+1} \widehat{V}(s_{t+\ell+1})$$

The temporal difference error when using ℓ -step lookahead is:

$$\delta_{t}^{\ell} = \sum_{n=0}^{\ell} \gamma^{n} r_{t+n} + \gamma^{\ell+1} \widehat{V}(s_{t+\ell+1}) - \widehat{V}(s_{t})$$
$$= \sum_{n=0}^{\ell} \gamma^{n} \left(r_{t+n} + \gamma \widehat{V}(s_{t+n+1}) - \widehat{V}(s_{t+n}) \right)$$

$TD(\lambda)$

Looking into *ℓ*-step into future:

Now let's update $\widehat{V}(s_t)$ using a mixture of ℓ -steps information each weighted with $(1-\lambda)\lambda^{\ell}$ for some $\lambda \in [0,1)$:

$$\widehat{V}(s_t) \longleftarrow \widehat{V}(s_t) + \alpha_t \sum_{\ell=0}^{\infty} (1 - \lambda) \lambda^{\ell} \delta_t^{\ell}$$

$$= \widehat{V}(s_t) + \alpha_t \sum_{n=0}^{\infty} \lambda^n \gamma^n \Big(r_{t+n} + \gamma \widehat{V}(s_{t+n+1}) - \widehat{V}(s_{t+n}) \Big)$$

This rule is called $TD(\lambda)$ learning

- $\lambda = 0$ recovers TD (or TD(0)).
- \bullet $\lambda \to 1$ recovers the Monte-Carlo method.

Part 2: Off-Policy Evaluation

OPE

Policy Evaluation

Given: A dataset \mathcal{D} of trajectories trajectories τ_1, \ldots, τ_n , sampled from behavior policy π_b :

$$\tau_{1} = (s_{1}^{(1)}, a_{1}^{(1)}, r_{1}^{(1)}, \dots, s_{T}^{(1)}, a_{T}^{(1)}, r_{T}^{(1)})$$

$$\vdots$$

$$\tau_{n} = (s_{1}^{(n)}, a_{1}^{(n)}, r_{1}^{(n)}, \dots, s_{T_{n}}^{(n)}, a_{T_{n}}^{(n)}, r_{T_{n}}^{(n)})$$

where

$$a_t^{(i)} \sim \pi_b(\cdot|s_t^{(i)}), \quad r_t^{(i)} \sim R(s_t^{(i)}, a_t^{(i)}), \quad s_{t+1}^{(i)} \sim P(\cdot|s_t^{(i)}, a_t^{(i)})$$

Goal: Derive (point) estimate, and possibly confidence intervals, for value of target policy π ($\neq \pi_b$).

Each trajectory could be even sampled from a different behavior policy.

OPE Assumptions

The main challenge of OPE is mismatch of distributions $\pi_{\rm b}$ and π

Coverage Assumption

For all $s \in \mathcal{S}$, if $\pi(a|s) > 0$ then $\pi_b(a|s) > 0$

Implication: π is absolutely continuous with respect to π_b (thus a.k.a. Absolute Continuity Assumption).

A Model-Based Method

Known Model

If MDP M known,

Then,
$$V^{\pi} = (I - \gamma P^{\pi})^{-1} r^{\pi}$$

for any $\pi \in \Pi^{SR}$.

Idea: Estimate P and R via \mathcal{D} and apply the certainty equivalence principle.

For simplicity, for now assume that \mathcal{D} contains only one trajectory:

$$\mathcal{D} = \{(s_t, a_t, r_t), t = 1, \dots, n\}$$

where:

$$a_t \sim \pi_b(\cdot|_t), \quad r_t \sim R(s_t, a_t), \quad s_{t+1} \sim P(\cdot|s_t, a_t)$$

A Model-Based Solution (I)

Idea: Estimate P and R via \mathcal{D} and apply the certainty equivalence principle.

Introduce counts: For all (s, a, s')

$$N(s,a,s') = \sum_{t=1}^{n-1} \mathbb{I}\{s_t = s, a_t = a, s_{t+1} = s'\} \quad \text{and} \quad N(s,a) = \sum_{s' \in \mathcal{S}} N(s,a,s')$$

Smoothed Estimator for P and R:

$$\widehat{P}(s'|s,a) = \frac{N(s,a,s') + \alpha}{N(s,a) + \alpha S}, \qquad \widehat{R}(s,a) = \frac{\alpha + \sum_{t=1}^{n-1} r_t \mathbb{I}\{s_t = s, a_t = a\}}{\alpha + N(s,a)}$$

with $\alpha > 0$ an arbitrary smoothing parameter.

For any (s, a), if $\pi_b(a|s) > 0$, then

A Model-Based Solution (II)

Smoothed Estimator for P and R:

$$\widehat{P}(s'|s,a) = \frac{N(s,a,s') + \alpha}{N(s,a) + \alpha S}, \qquad \widehat{R}(s,a) = \frac{\alpha + \sum_{t=1}^{n-1} r_t \mathbb{I}\{s_t = s, a_t = a\}}{\alpha + N(s,a)}$$

 \Longrightarrow Build the empirical MDP $\widehat{M}=(\mathcal{S},\mathcal{A},\widehat{P},\widehat{R},\gamma).$

Then, the following is an estimate for V^{π} :

$$\widehat{V}^{\pi} = (I - \gamma \widehat{P}^{\pi})^{-1} \widehat{r}^{\pi}$$

with

$$\widehat{P}^{\pi}_{s,s'} = \sum_{a \in A} \pi(a|s) \widehat{P}(s'|s,a) \qquad \text{and} \qquad \widehat{r}^{\pi}(s) = \sum_{a \in A} \pi(a|s) \widehat{R}(s,a)$$

A Model-Based Solution (III)

Theorem

Under the coverage assumption and that all states are visited infinitely often under π_b , \widehat{V}^π converges to V^π almost surely:

$$\mathbb{P}\Big(\lim_{n\to\infty}\widehat{V}^{\pi} = V^{\pi}\Big) = 1$$

- In other words, if $\pi_{\rm b}$ is exploratory enough and the coverage assumption holds, \widehat{V}^π converges to V^π .
- We can use concentration inequalities (e.g., Hoeffding's) to derive confidence interval(s) for V^{π} .

Model-Free Methods

Importance Sampling: Basic Facts

Consider two distributions P and Q defined on \mathcal{X} , with $P \ll Q$.

$$\mathbb{E}_{x \sim P}[f(x)] = \int_x f(x) P(x) \mathrm{d}x = \int_x f(x) Q(x) \underbrace{\frac{P(x)}{Q(x)}}_{\text{importance weight}} \mathrm{d}x = \mathbb{E}_{x \sim Q} \left[\frac{P(x)}{Q(x)} f(x) \right]$$

Note that importance weight $\frac{P(x)}{Q(x)}$ is well-defined due to $P \ll Q.$

Given are samples $X_i \sim Q, i = 1, \ldots, n$:

• Importance weight estimator of $\mathbb{E}_{x \sim P}[f(x)]$:

$$\widehat{f}_{\mathsf{IS}} = \frac{1}{n} \sum_{i=1}^{n} f(X_i) \frac{P(X_i)}{Q(X_i)}$$

• Importance weight estimator of $\mathbb{E}_{x \sim P}[f(x)]$:

$$\widehat{f}_{\text{wlS}} = \frac{1}{\sum_{i=1}^{n} \frac{P(X_i)}{O(X_i)}} \sum_{i=1}^{n} f(X_i) \frac{P(X_i)}{Q(X_i)}$$

Contrast these to $\widehat{f} = \frac{1}{n} \sum_{i=1}^{n} f(X_i)$ built using $X_i \sim P, i = 1, \dots, n$.

Importance Weight Estimators: Properties

Lemma

 \widehat{f}_{IS} is consistent and unbiased.

Proof. Consistency follows from the SLLN. Unbiased since

$$\mathbb{E}[\widehat{f}_{\mathsf{IS}}] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{Q}[f(X_i) \frac{P(X_i)}{Q(X_i)}] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{P}[f(X_i)] = \mathbb{E}_{P}[f(X)]$$

Lemma

 \hat{f}_{wlS} is consistent and biased.

Proof. To prove consistency, observe that by the SLLN, $\frac{1}{n}\sum_{i=1}^n\frac{P(X_i)}{Q(X_i)}$ converges to 1 w.p. 1 (since $X_i\sim Q$) and $\frac{1}{n}\sum_{i=1}^nf(X_i)\frac{P(X_i)}{Q(X_i)}$ converges to $\mathbb{E}_P[f(X)]$ w.p. 1. Showing biased via counter example: taking $X_1=\ldots=X_n$,

$$\widehat{f}_{\text{wlS}} = \frac{1}{\sum_{i=1}^{n} \frac{P(X_i)}{O(X_i)}} \sum_{i=1}^{n} f(X_i) \frac{P(X_i)}{Q(X_i)} = f(X_1)$$

Importance Sampling Estimator for OPE

Consider a trajectory $\tau = (s_1, a_1, r_1, \dots, s_T, a_T, r_T)$ (with $s_1 = s$) sampled under π_b .

Define t-step importance weight of τ as:

$$\rho_{1:t} = \prod_{t'=1}^{t} \frac{\pi(a_{t'}|s_{t'})}{\pi_{b}(a_{t'}|s_{t'})}$$

In fact, $\frac{\mathbb{P}(\tau|\pi)}{\mathbb{P}(\tau|\pi_k)} = \rho_{1:T}$.

Importance sampling estimator of $V^{\pi}(s)$ built using τ :

$$\widehat{V}_{\mathsf{IS}}^{\boldsymbol{\pi}}(s;\tau) = \frac{\mathbb{P}(\tau|\pi)}{\mathbb{P}(\tau|\pi_{\mathrm{b}})} \sum_{t=1}^{T} \gamma^{t-1} r_{t} = \boldsymbol{\rho}_{1:T} \sum_{t=1}^{T} \gamma^{t-1} r_{t}$$

Contrast it with $\widehat{V}^{\pi_b}(s) = \sum_{t=1}^T \gamma^{t-1} r_t$ built using τ .

Importance Sampling Estimator for OPE

Given a dataset \mathcal{D} of n trajectories τ_1, \ldots, τ_n :

$$\tau_{1} = (s_{1}^{(1)}, a_{1}^{(1)}, r_{1}^{(1)}, \dots, s_{T}^{(1)}, a_{T}^{(1)}, r_{T}^{(1)})$$

$$\vdots \qquad \vdots$$

$$\tau_{n} = (s_{1}^{(n)}, a_{1}^{(n)}, r_{1}^{(n)}, \dots, s_{T_{n}}^{(n)}, a_{T_{n}}^{(n)}, r_{T_{n}}^{(n)})$$

all staring in s (i.e., $s_1^{(1)} = \ldots = s_1^{(n)} = s$).

• Importance sampling estimator of $V^{\pi}(s)$ built using \mathcal{D} :

$$\widehat{V}_{\mathsf{IS}}^{\pi}(s;\mathcal{D}) = \frac{1}{n} \sum_{i=1}^{n} \widehat{V}_{\mathsf{IS}}^{\pi}(s;\tau_{i}) = \frac{1}{n} \sum_{i=1}^{n} \rho_{\mathbf{1}:T_{i}}^{(i)} \sum_{t=1}^{T} \gamma^{t-1} r_{t}^{i}$$

(unbiased, but typically with high variance)

• Weighted importance sampling estimator of $V^{\pi}(s)$ built using \mathcal{D} :

$$\widehat{V}_{\text{wlS}}^{\pi}(s;\mathcal{D}) = \frac{\sum_{i=1}^{n} \boldsymbol{\rho}_{1:T_i}^{(i)} \sum_{t=1}^{T} \boldsymbol{\gamma}^{t-1} r_t^i}{\sum_{i=1}^{n} \boldsymbol{\rho}_{1:T_i}^{(i)}}$$

(slightly biased, but with lower variance)

Next lecture: Further on OPE + algorithms for OPO!

