Synthèse multi-objectifs dans les processus décisionnels de Markov

Florent Delgrange

UMONS

Faculté des Sciences

Mab2 Science Informatique

SP-G SSP-WE SSP-PQ G-SR Référence

Table des matières

- 1. SP-G
 - 1.1 Motivations
 - 1.2 Définition
 - 1.3 Algorithme
 - 1.4 Exemple
- SSP-WE
 - 2.1 Motivations
 - 2.2 Définition
 - 2.3 Algorithme
 - 2.4 Exemple
- 3. SSP-PQ

3.1 MDP

nultidimensionnels

- 3.2 Motivations
- 3.3 Définition
- 3.4 Algorithme
- 4 G-SR
 - 4.1 Définition
 - 4.2 Préliminaires
 - 4.3 MOLP
 - 4.4 Stratégie
 - 4.5 Exemple dans storm

•000000000000000

SP-G

Borne supérieure stricte dans un MDP

Soit $\mathcal{M} = (S, A, \Delta, w)$, un MDP, $S \in S$, un état de \mathcal{M} et $T \subseteq S$, un sous-ensemble d'états cibles

On va définir une stratégie σ qui garantit d'atteindre T depuis S avec un coût inférieur à un seuil I:

$$\forall \pi \in Paths^{\sigma}(s), TS^{T}(\pi) \leq l$$

$$\equiv \mathbb{P}^{\sigma}_{s}(\lozenge_{\leq l}T) = 1$$

On veut donc assurer une borne supérieure stricte lors de l'accessibilité à T.

SP-G

Borne supérieure stricte dans un MDP

Remarque

- $\forall \pi \in Paths^{\sigma}(s), TS^{T}(\pi) \leq l$
- $\mathbb{P}^{\sigma}_{s}(\lozenge_{\leq l}T)=1$

 $W: A \to \mathbb{N}_0 \implies$ Ces deux propositions sont équivalentes!

En effet, le problème SSP-P induit un dépliage de \mathcal{M} , dont le graphe sous-jacent est un DAG (si on ne considère pas les états terminaux).

SP-G

Problème du plus court chemin dans un jeu

Assurer une borne supérieure stricte lors de l'accessibilité à T Problème SP-G (Shortest path game problem) À chaque étape.

- Joueur 1 : choisit l'action par stratégie
- Joueur 2 : choisit le successeur S', i.e., l'état qui mène au pire cas en terme de somme tronquée

•000000000000

SP-G

Problème du plus court chemin dans un jeu

Definition (SP-G)

Soient $\mathcal{M} = (S, A, \Delta, w)$ un MDP, $S \in S$, un état de $\mathcal{M}, T \subseteq S$, un sous-ensemble d'états cibles et un seuil $I \in \mathbb{N}$.

Le problème SP-G consiste à décider s'il existe une stratégie σ pour laquelle

$$\forall \pi \in Paths^{\sigma}(s), \ TS^{T}(\pi) \leq I$$

$$\equiv \mathbb{P}_{s}^{\sigma}(\Diamond_{\leq I}T) = 1$$

- peut être décidé en temps polynomial
- stratégie sans mémoire

Problème du plus court chemin dans un jeu Hypothèses

$$w: A \rightarrow \mathbb{N}_0$$

- Les coûts sont strictement positifs
- La stratégie ne choisit pas d'action qui pourrait mener à un cycle pendant la minimisation de TS^T
 - pas d'intérêt car poids strictement positifs
- $TS^T = \infty$ si les cycles ne peuvent pas être évités

SP-G

SP-G: Programmation dynamique

Algorithme

 $\mathbb{C}(s,i)$ est le plus court chemin jusque T depuis s, après i étapes, $\forall 0 \leq i \leq n, \ n = |S|$ (pas de cycle).

Initialisation:

- $\forall t \in T$, $\mathbb{C}(t,0) = 0$
- $\forall s \in S \setminus T$, $\mathbb{C}(s, 0) = \infty$

Soit $k \in \mathbb{N}$ tel que 0 < k < n. Supposons que $\mathbb{C}(s, k-1)$ a déià été calculé pour tout $s \in S$. Alors, pour tout $s \in S$,

$$\mathbb{C}(s,k) = \min\{\mathbb{C}(s,k-1), \min_{\alpha \in A(s)} \max_{s' \in Succ(s,\alpha)} w(\alpha) + \mathbb{C}(s',k-1)\}$$

SP-G: Programmation dynamique

Algorithme

$$\mathbb{C}(s,k) = \min\{\mathbb{C}(s,k-1), \min_{\alpha \in A(s)} \max_{s' \in Succ(s,\alpha)} w(\alpha) + \mathbb{C}(s',k-1)\}$$

SP-G: Programmation dynamique Algorithme

La stratégie σ existe s'il est possible d'atteindre T depuis s_0 avec une longueur de chemin d'au plus l:

$$\mathbb{C}(s_0,n) \leq I \iff \exists \sigma, \; \mathbb{P}^{\sigma}_{s_0}(\lozenge_{\leq I}T) = 1$$

Algorithme

SP-G: Programmation dynamique *Algorithme*

Résumé:

- $\mathbb{C}(s, k)$ correspond au plus court chemin de $s \in S$ à T après au plus k étapes, i.e., après avoir traversé au plus k états.
- À chaque étape, le plus court chemin résulte du choix des actions minimisant, à chaque étape, le coût de la transition menant au *pire* successeur (i.e., celui dont le chemin pour atteindre *T* est le plus long) est choisit.
- Cycle depuis un état \implies on ne peut pas atteindre T
- $\forall k \in \mathbb{N}$, $\mathbb{C}(s, k-1) \ge \mathbb{C}(s, k)$ pour tout $s \in S$
- $\mathbb{C}(s, n) = \min_{k} \mathbb{C}(s, k)$ pour tout $s \in S$

SP-G

Construction de la stratégie

Soit $s \in S$. Par le fait que

- $\forall k \in \mathbb{N}$, $\mathbb{C}(s, k-1) \ge \mathbb{C}(s, k)$ pour tout $s \in S$
- $\mathbb{C}(s, n) = \min_k \mathbb{C}(s, k)$ pour tout $s \in S$

On peut construire une stratégie sans mémoire en se basant sur les résultats de $\mathbb{C}(s, n)$ de chaque $s \in S$:

$$\sigma: S \to A$$
, $s \mapsto \arg\min_{\alpha \in A(s)} \max_{s' \in Succ(s,\alpha)} w(\alpha) + \mathbb{C}(s',n)$

SP-G

Construction de la stratégie : intuition

Soient $k \in \mathbb{N}$, $s \in S \setminus T$. Supposons que $\mathbb{C}(s, n) \neq \infty$.

- $\exists k \le n \text{ tel que } \mathbb{C}(s,n) = \mathbb{C}(s,k) < \mathbb{C}(s,k-i) \quad \forall i \in \{0,\ldots,k\}$ $\Rightarrow s \text{ atteint } T \text{ en } k \text{ étapes.}$
- $\exists s' \in Succ(s)$ et $\exists \alpha \in A(s)$ tels que $\mathbb{C}(s,k) = \mathbb{C}(s',k-1) + w(\alpha) = \mathbb{C}(s',n) + w(\alpha)$ $\Rightarrow s$ accède à T via s', qui atteint T en k-1 étapes.

SP-G

Note

- poids négatifs : possible de résoudre en temps pseudo-polynomial
- multi-dimensionnel + poids négatifs : indécidable

Exemple

Exemple

- Un mur sépare n₀ et n₂
- Communication directe $n_0 \rightarrow n_2$
 - --- plus rapide que de passer par un noeud intermédiaire
 - nécessite plus d'énergie
 - risque de corruption des paquets envoyés (bruit)
- Communication indirecte : $n_0 \rightarrow n_1 \rightarrow n_2$
 - plus lent (n_1 doit attendre la confirmation de réception du paquet par n_2 et n_0 doit attendre la confirmation de n_1)
 - --- consommation d'énergie normale
 - · risque de perte de paquet négligeable

Exemple

Exemple

Exemple

Communication entre noeuds dans un réseau de capteurs

Dutty cycle: $12ms \rightsquigarrow \exists \sigma, \mathbb{P}^{\sigma}_{s_0}(\lozenge_{\leq 12} \text{ sommeil}) = 1$?

$$k = 0 - \mathbb{C}(s_0, 0) = \mathbb{C}(s_1, 0) = \\ \mathbb{C}(s_2, 0) = \infty \\ - \mathbb{C}(s_3, 0) = 0$$

$$k = 1 - \mathbb{C}(s_0, 1) = \infty \\ - \mathbb{C}(s_1, 1) = 6 + 0 = 6 \\ - \mathbb{C}(s_2, 1) = 2 + \infty = \infty$$

$$k = 2 - \mathbb{C}(s_0, 2) = 2 + 6 = 8$$

k=3 - $\mathbb{C}(s_2,3)=2+8=10$

SP-G **SSP-WE** SSP-PQ G-SR Référence:

Table des matières

- SP-G
 - 1.1 Motivations
 - 1.2 Définition
 - 1.3 Algorithme
 - 1.4 Exemple
- 2. SSP-WE
 - 2.1 Motivations
 - 2.2 Définition
 - 2.3 Algorithme
 - 2.4 Exemple
- 3. SSP-PQ

- 3.1 MDP
- nultidimensionnels
 - 3.2 Motivations
 - 3.3 Définition
 - 3.4 Algorithme
- 4. G-SR
 - 4.1 Définition
 - 4.2 Préliminaires
 - 4.3 MOLP
 - 4.4 Stratégie
 - 4.5 Exemple dans storm

Motivations

Au delà du pire cas...

 On souhaite assurer simultanément un seuil de pire cas et une bonne espérance

Quelle est l'espérence optimale du temps d'envoi d'informations au senseur n_2 qui assure de respecter le *dutty cycle* du senseur n_0 (12ms)?

Espérance sous un pire cas

Definition (SSP-WE)

Soient $\mathcal{M} = (S, A, \Delta, w)$, un MDP à une dimension (i.e., tel que $w: A \to \mathbb{N}_0$), un état initial $s \in S$, un sous-ensemble d'états cibles $T \subseteq S$ et deux seuils $l_1, l_2 \in \mathbb{N}$. Le problème consiste à décider s'il existe une stratégie σ pour laquelle

- $\forall \pi \in Paths^{\sigma}(s), TS^{T}(\pi) \leq l_{1} \equiv \mathbb{P}^{\sigma}_{s}(\Diamond_{\leq l_{1}}T) = 1$
- $\mathbb{E}_s^{\sigma}(\lozenge T) \leq I_2$
- décidé en temps pseudo-polynomial
- NP-hard
- mémoire pseudo-polynomiale lors de la construction de la stratégie

SSP-WF

Algorithme

- 1. Construire \mathcal{M}_{l_1} , le MDP \mathcal{M} déplié jusque l_1
- 2. Calculer, \mathbb{A} , l'ensemble des actions possibles de l'attracteur de $T' = \{(t, v) \in S_{l_1} \mid t \in T \text{ et } v \leq l_1\}$
 - pour chaque état $(s, v) \in S_{l_1}$, $\mathbb{A}(s, v)$ est l'ensemble des actions $\alpha \in A(s)$ qui assurent à (s, v) d'atteindre T' dans \mathcal{M}_{l_1} , quelle que soit l'issue de l'évolution du système par l'adversaire (i.e., l'incertitude lié aux probabilités).
- 3. Construire $\mathcal{M}_{l_1}^{\mathbb{A}}$, le MDP déplié limité à l'attracteur de T'
 - ••• on supprime les états (s, v) de \mathcal{M}_{l_1} tels que $\mathbb{A}(s, v) = \emptyset$
- 4. Résoudre le problème SSP-E sur $\mathcal{M}_{I_1}^{\mathbb{A}}$

SSP-WE

Algorithme

A(s, v) peut être calculé récursivement :

- Idée : $A_i(S, V)$ correspond à l'ensemble des actions garantissant au système d'évoluer vers un état sûr (i.e., non-terminal) après i étapes.
- $A_0(s, v) = A(s)$ si $v \le l$ $A_0(s, v) = \emptyset$ si $v = \bot$
- Soit $i \in \mathbb{N}$. On suppose que $A_i(s, v)$ a été calculé pour tout $(s, v) \in S_{l_1}$. Alors.

$$\mathbb{A}_{i+1}(s,v) = \{\alpha \in \mathbb{A}_i(s,v) \mid \forall (s',v') \in Succ((s,v),\alpha), \ \mathbb{A}_i(s',v') \neq \emptyset\}$$

SSP-WE

Algorithme

- La taille de l'ensemble A_i est croissante en i, i.e., $|A_i| \ge |A_{i+1}| \quad \forall i \in \mathbb{N}$ par construction de A
- Le dépliage du MDP résulte en un DAG
 - → pas de cycle!
 - \implies le nombre d'itérations i est donc borné par V (= pire cas \rightarrow toutes les actions ont un coût de 1)
 - \implies le temps de construction de \mathbb{A} est donc polynomial en la taille du MDP déplié $\mathcal{M}_{I_1} \rightsquigarrow \mathcal{O}(v \times |S_{I_1}|)$

SSP-WE

Construction de la stratégie

 σ est la stratégie à mémoire finie résultante de la résolution du problème SSP-E sur le MDP $\mathcal{M}_{l_1}^{\mathbb{A}}$ (σ est sans mémoire sur $\mathcal{M}_{l_1}^{\mathbb{A}}$).

- --- complexité pseudo-polynomiale
- → NP-difficile (pas de temps polynomial à moins que P = NP)

SSP-WE

Exemple

$$\stackrel{?}{\exists} \sigma \, \mathbb{E}^{\sigma}_{s_0}(\lozenge \, \text{sommeil}) \leq I \wedge \mathbb{P}^{\sigma}_{s_0}(\lozenge_{\leq 12} \, \text{sommeil}) = 1$$

Avec I, l'espérance minimale pour laquelle le noeud n_0 est assuré d'envoyer les données au noeud n_2 en moins de 12ms (afin d'assurer un dutty cycle de 12ms).

SSP-WE

Exemple

 $\stackrel{?}{\exists} \sigma \, \mathbb{E}^{\sigma}_{s_0}(\lozenge \, \text{sommeil}) \leq I \wedge \mathbb{P}^{\sigma}_{s_0}(\lozenge_{\leq 12} \, \text{sommeil}) = 1$

SSP-WE

Exemple

 $\stackrel{?}{\exists} \sigma \, \mathbb{E}^{\sigma}_{s_0}(\lozenge \, \text{sommeil}) \leq I \wedge \mathbb{P}^{\sigma}_{s_0}(\lozenge_{\leq 12} \, \text{sommeil}) = 1$

SSP-WE

Exemple

SSP-WE

Exemple

$$\Longrightarrow \mathbb{E}_{s}^{\min}(\lozenge\{(s_{3}, v) \mid v \leq 12\}) = \frac{7}{8} \cdot 4 + \frac{1}{8} \cdot 12 = 5$$

$$\downarrow s_{3}, 0 \qquad \downarrow s_{3}$$

SSP-WE

Exemple

$$\mathbb{E}^{\sigma}_{s_0}(\lozenge \text{ sommeil}) \leq 5 \, \wedge \, \mathbb{P}^{\sigma}_{s_0}(\lozenge_{\leq 12} \text{ sommeil}) = 1$$

• Stratégie optimale σ : tester une fois un envoi direct et passer par le noeud n_1 si l'envoi direct est un échec.

SSP-WE

Exemple dans Storm

```
mdp
     module sensors transmission
     s: [0..3] init 0:
     [alpha0] s=0 -> 1 : (s'=1);
     [alpha1] s=0 \rightarrow 1 : (s'=2);
     [alpha2] s=1 -> 1 : (s'=3);
     [alpha3] s=2 \rightarrow 0.125 : (s'=0) + 0.875 : (s'=3);
10
     [alpha4] s=3 \rightarrow 1 : (s'=0);
11
12
13
     endmodule
14
     label "active" = s=0;
15
16
     label "sleep" = s=3:
     label "waiting" = s=1 | s=2:
17
     label "intermediate" = s=1:
18
     label "direct" = s=2;
19
20
     rewards "time"
21
22
       [alpha01 true : 2:
23
       [alphall true : 2:
24
       [alpha2] true : 6:
       [alpha3] true : 2;
25
```


SSP-WF 0000000000000

Exemple

SSP-WF

Storm 1 2 A

States: 4

Choices: 5

Result (for initial states): true Time for model checking: 0.038s.

Exemple dans Storm

$$? \\ \exists \sigma \, \mathbb{E}^{\sigma}_{S_0}(\lozenge \, \text{sommeil}) \leq 5 \, \land \, \mathbb{P}^{\sigma}_{S_0}(\lozenge_{\leq 12} \, \text{sommeil}) = 1 \\ = \underset{\mathsf{PRCTL}}{?} \, \mathcal{S}_0 \, = \, multi(\mathcal{E}^{\mathsf{min}}_{\leq 5}(\lozenge \, \text{sommeil}), \, \mathcal{P}^{\mathsf{max}}_{=1}(\lozenge_{\leq 12} \, \text{sommeil})) \\ \text{storm --prism resources/sensors.prism --prop "multi(Rmin<=5 [F \"sleep\"], \, Pmax>=1 [F{\`time\"}<=12 \"sleep\"])" \\ \text{Storm 1.2.0} \\ \text{Command line arguments: --prism resources/sensors.prism --prop multi(Rmin<=5 [F \"sleep"], \, Pmax>=1 [F{\"time\"}<=12 \"sleep\"])" \\ \text{Time for model construction: 0.305s.} \\ \\ \text{Model type: MDP (sparse)} \\ \text{States: 4} \\ \text{Transitions: 6} \\ \text{Choices: 5} \\ \text{Reward Models: time} \\ \text{State Labels: 3 labels} \\ \text{deadlock --0 0 item(s)} \\ \text{init: -3 litem(s)} \\ \text{sinit: -3 litem(s)} \\ \text{sinit: -3 litem(s)} \\ \text{some litem(s)} \\ \text{som$$

Model checking property multi(R[exp]min<=5 [F "sleep"], Pmax>=1 [true Urew{"time"}<=12 "sleep"]) ...

Exemple

SSP-WE

Time for model checking: 0.035s.

Exemple dans Storm (requête)

$$\min_{\sigma \mid \mathbb{P}_{s_0}^{\sigma}(\lozenge_{s12} \text{ sommeil})=1} \mathbb{E}_{s_0}^{\sigma}(\lozenge \text{ sommeil})$$

$$\equiv_{\mathsf{PRCTL}} s_0 \models \mathsf{multi}(\mathcal{E}_{=?}^{\mathsf{min}}(\lozenge \text{ sommeil}), \, \mathcal{P}_{=1}^{\mathsf{max}}(\lozenge_{\leq 12} \text{ sommeil}))$$

$$\mathsf{storm} \cdot \mathsf{-prism} \text{ resources/sensors.prism} \cdot \mathsf{-prop} \text{ "multi}(\mathsf{Rmin=?} \{\mathsf{F} \ \text{`sleep}\ ^{\!\!-}\}, \, \mathsf{Pmax>=1} \{\mathsf{F} \ \text{`time}\ ^{\!\!-}\} < -12 \ \text{`sleep}\ ^{\!\!-}\})^{\mathsf{''}}$$

$$\mathsf{Storm} \ 1.2.0$$

$$\mathsf{Command} \text{ line arguments: } \cdot \mathsf{-prism} \text{ resources/sensors.prism } \cdot \mathsf{-prop} \text{ multi}(\mathsf{Rmin=?} \{\mathsf{F} \ \text{`sleep}\ ^{\!\!-}\}, \, \mathsf{Pmax>=1} \{\mathsf{F} \ \text{`time}\ ^{\!\!-}\} < -12 \ \text{`sleep}\ ^{\!\!-}\})^{\mathsf{''}}$$

$$\mathsf{Time} \text{ for model construction: } 0.348s.$$

$$\mathsf{Model type: MDP} \text{ (sparse)}$$

$$\mathsf{States: } 4$$

$$\mathsf{Transitions: } 6$$

$$\mathsf{Choice: } 5$$

$$\mathsf{Reward} \text{ Models: } \text{ time}$$

$$\mathsf{State Labels: } 3 \text{ labels}$$

$$\mathsf{``dealtock } \cdot \ni 0 \text{ time}(s)$$

$$\mathsf{``init } \cdot \ni 1 \text{ time}(s$$

SP-G SSP-WE **SSP-PQ** G-SR Référence:

Table des matières

- SP-G
 - 1.1 Motivations
 - 1.2 Définition
 - 1.3 Algorithme
 - 1.4 Exemple
- SSP-WE
 - 2.1 Motivations
 - 2.2 Définition
 - 2.3 Algorithme
 - 2.4 Exemple
- 3. SSP-PQ

3.1 MDP

multidimensionnels

- 3.2 Motivations
- 3.3 Définition
- 3.4 Algorithme
- 4. G-SR
 - 4.1 Définition
 - 4.2 Préliminaires
 - 4.3 MOLP
 - 4.4 Stratégie
 - 4.5 Exemple dans storm

MDP multidimensionnels

Definition (MDP multidimensionnel)

Un MDP à $d \in \mathbb{N}_0$ dimensions est un tuple $\mathcal{M} = (S, A, \Delta, w)$ tel que

- *S*, *A*, Δ sont définis de la même façon que pour un MDP classique
- w: A → N₀^d est une fonction de coût, associant chaque action
 à un coût (strictment positif) par dimension du MDP.

MDP multidimensionnels

MDP multidimensionnel

Exemple

On ajoute le coût en énergie de l'envoi d'un message de n_0 à n_2

Motivation:

 satisfaire plusieurs requêtes d'accessibilité limité par un coût dans un MDP multidimensionnel.

•
$$Q_1 := \mathbb{P}^{\sigma_1}_{s_0}(\lozenge_{1:\leq 4} \text{ sommeil}) \geq 0.8$$

•
$$Q_2 := \mathbb{P}_{s_0}^{\sigma_2}(\lozenge_{2:\leq 700} \text{ sommeil}) \geq 0.9$$

 $\rightarrow \sigma_1$: envoi direct

$$\implies \mathbb{P}_{s_0}^{\sigma_1}(\lozenge_{1:\leq 4} \text{ sommeil}) = 0.875$$

 \rightarrow σ_2 : envoi par un noeud intermédiaire

$$\implies \mathbb{P}_{s_0}^{\sigma_2}(\lozenge_{2:\leq 700} \text{ sommeil}) = 1$$

Motivation:

 satisfaire plusieurs requêtes d'accessibilité limité par un coût dans un MDP multidimensionnel.

•
$$Q_1 := \mathbb{P}_{s_0}^{\sigma_1}(\lozenge_{1:\leq 4} \text{ sommeil}) \geq 0.8$$

•
$$Q_2 := \mathbb{P}_{s_0}^{\sigma_2}(\Diamond_{2:\leq 700} \text{ sommeil}) \geq 0.9$$

$$\leadsto$$
 σ_1 : envoi direct

$$\implies$$
 ne satisfait pas Q_2

$$\sigma_2$$
: envoi par un noeud intermédiaire

$$\implies$$
 ne satisfait pas Q_1

Motivation:

 satisfaire plusieurs requêtes d'accessibilité limité par un coût dans un MDP multidimensionnel.

- $Q_1 := \mathbb{P}_{s_0}^{\sigma_1}(\lozenge_{1:\leq 4} \text{ sommeil}) \geq 0.8$
- $Q_2 := \mathbb{P}^{\sigma_2}_{s_0}(\lozenge_{2:\leq 700} \text{ sommeil}) \geq 0.9$

Résoudre un tel problème requiert une stratégie à mémoire finie

 $\sigma_{1 \wedge 2}$:= essayer une fois un envoi direct et passer ensuite par n_1 si l'envoi direct a échoué

- $Q_1 := \mathbb{P}_{s_0}^{\sigma_{1 \wedge 2}}(\lozenge_{1 : \leq 4} \text{ sommeil}) \geq 0.8$
- $Q_2 := \mathbb{P}_{s_0}^{\sigma_{1,^2}}(\Diamond_{2:\leq 700} \text{ sommeil}) \geq 0.9$
- $\mathbb{P}_{s_0}^{\sigma_{1 \wedge 2}}(\lozenge_{1 : \leq 4} \text{ sommeil}) = 0.875 \models Q_1$
- $\mathbb{P}_{s_0}^{\sigma_{1 \wedge 2}}(\lozenge_{2: \leq 700} \text{ sommeil}) = 1 \models Q_2$
 - $394 ≤ TS^{{s_3}}(π) ≤ 690$ $∀π ∈ Paths^{\sigma_1 ∧ 2}(s_0)$

Définition

SSP-PQ

Definition (SSP-PQ)

Soient $\mathcal{M} = (S, A, \Delta, w)$, un MDP multidimensionnel tel que $w : A \to \mathbb{N}_0^d$, $s \in S$, un état de \mathcal{M} et $g \in \mathbb{N}$ contraintes percentiles.

Ces contraintes percentiles sont décrites par les ensembles d'états cibles $T_i \subseteq S$, les dimensions $k_i \in \{1, ..., d\}$, les seuils de longueur $l_i \in \mathbb{N}$ et les seuils de probabilité $\alpha_i \in [0, 1] \cap \mathbb{Q}$, pour tout $i \in \{1, ..., q\}$.

Le problème SSP-PQ consiste à décider s'il existe une stratégie σ pour laquelle la requête suivante est satisfaite :

$$Q := \bigwedge_{i \in \{1, ..., q\}} \mathbb{P}_{s}^{\sigma}(\Diamond_{k_{i}: \leq l_{i}} T_{i}) \geq \alpha_{i}$$

où $\Diamond_{k_i:< l_i} T_i$ dénote l'ensemble des chemins satisfaisant $\Diamond_{< l_i} T_i$ sur la dimension k_i

- peut être décidé en temps exponentiel
- PSPACE-difficile 38/62

SSP-PQ

Algorithme

- 1. Construire \mathcal{M}_I , le MDP déplié de \mathcal{M} , de la même façon que pour le problème SSP-P, mais tel que $I = \max_i I_i$.
 - S_l ∈ S × $({0,...,l} \cup {\bot})^d$
 - un chemin n'est écarté que lorsque le coût du chemin courant, pour chacune de ses dimensions j, excède $\max_i I_i$, avec $i \in \{1, \ldots, q \mid \mathcal{Q}_i := \mathbb{P}^{\sigma}_s(\Diamond_{k_i} : \leq I_i T_i) \geq \alpha_i \land k_i = j\}$
 - certains chemins peuvent dépasser le seuil de longueur d'une requête tout en restant intéressants pour la stratégie
 - en effet, on ne cherche pas forcément à atteindre un état qui satisfait toutes les contraintes de coûts à la fois!
 - → notion de compromis

SSP-PQ Algorithme

- 1. Construire \mathcal{M}_l , le MDP déplié de \mathcal{M} , de la même façon que pour le problème SSP-P, mais tel que $l = \max_i l_i$.
- 2. Pour chaque requête $i \in \{1, ..., q\}$, on calcule un ensemble d'états cibles R_i dans M_i pour lequel tous les états contenus dans cet ensemble satisfont la contrainte liée au coût de cette requête.
- 3. Résoudre le *problème d'accessibilité multiple* aux différent ensembles R_i , pour chaque requête $i \in \{1, ..., q\}$. On recherche donc une stratégie σ_i qui assure au système d'atteindre les ensembles R_i depuis (s, 0, ..., 0) avec une probabilité α_i
 - → peut être répondu en temps polynomial en |M_I| ...
 - \longrightarrow ... mais exponentiel en $|R_i|$, i.e., q

SSP-PQ

Algorithme: exemple

- $Q_1 := \mathbb{P}^{\sigma}_{s_0}(\lozenge_{1 : \leq 4} \text{ sommeil}) \geq 0.8$
- $Q_2 := \mathbb{P}^{\sigma}_{s_0}(\lozenge_{2:\leq 700} \text{ sommeil}) \geq 0.9$

Idée clé : il est nécessaire qu'il y ait une possibilité pour que les labels q_1 et q_2 apparaissent au moins une fois dans le futur dans \mathcal{M}^{σ}

SSP-PQ: stratégies

Definition (Stratégie aléatoire)

Une stratégie aléatoire sans mémoire est une stratégie σ telle que

$$\sigma: S \to \mathcal{D}(A)$$

où $\mathcal D$ est une distribution de probabilité sur A. Les stratégies aléatoires à mémoire sont définies d'une façon similaire.

Théorème

Les stratégies qui résolvent le problème SSP-PQ ont besoin à la fois de mémoire (sans mémoire dans \mathcal{M}_I) et d'aléatoire (pour résoudre le problème d'accessibilité multiple dans \mathcal{M}_I)

SSP-PQ: stratégies

- La construction d'une stratégie requiert de résoudre le problème d'accessibilité multiple G-SR dans le MDP déplié jusque I, i.e., MI
- Le problème d'accessibilité multiple est une généralisation du problème SR dans les MDP.
- Comment construire une telle stratégie?

SP-G SSP-WE SSP-PQ **G-SR** Référence:

Table des matières

- SP-G
 - 1.1 Motivations
 - 1.2 Définition
 - 1.3 Algorithme
 - 1.4 Exemple
- SSP-WE
 - 2.1 Motivations
 - 2.2 Définition
 - 2.3 Algorithme
 - 2.4 Exemple
- 3. SSP-PQ

- 3.1 MDP
- nultidimensionnels
 - 3.2 Motivations
 - 3.3 Définition
 - 3.4 Algorithme
- 4. G-SR
 - 4.1 Définition
 - 4.2 Préliminaires
 - 4.3 MOLP
 - 4.4 Stratégie
 - 4.5 Exemple dans storm

Problème d'accessibilité multiple

Definition (G-SR)

Soient $\mathcal{M} = (S, A, \Delta)$, un MDP, $s \in S$, un état de \mathcal{M} et $q \in \mathbb{N}$ contraintes.

Ces contraintes sont décrites par les ensembles d'états cibles $T_i \subseteq S$ et les seuils de probabilité $\alpha_i \in [0,1] \cap \mathbb{Q}$, pour tout $i \in \{1,\ldots,q\}$. Le problème G-SR est une généralisation du problème SR qui consiste à

décider s'il existe une stratégie σ pour laquelle la requête suivante est satisfaite :

$$Q := \bigwedge_{i \in \{1, \dots, q\}} \mathbb{P}_s^{\sigma}(\lozenge T_i) \ge \alpha_i$$

Nettoyer un MDP

Soient $\mathcal{M}=(S,A,\Delta)$, un MDP et $q\in\mathbb{N}$ contraintes d'accessibilité. On défini l'ensemble T comme étant l'ensemble des états cibles qui décrivent les q contraintes, i.e., $T=\bigcup_{i\in\{1,\ldots,q\}}T_i$. Nettoyer \mathcal{M} consiste à créer un nouveau MDP $\mathcal{M}_T=(S_T,A_T,\Delta_T)$ tel que

- $A_T = A \cup \{\alpha_T, \alpha_{dead}\}$
- Les états de T sont absorbants, i.e., $\forall t \in T$, $\Delta_T(t, \alpha_T, t) = 1$ et $A_T(t) = \{\alpha_T\}$
- $S_T = (S \setminus S_0) \cup \{s_{dead}\}$, avec $S_0 = \{s \in S \mid \forall \sigma, \mathbb{P}_s^{\sigma}(\lozenge T) = 0\}$
 - Pour chaque état $s ∈ S \setminus T$, on peut facilement vérifier si ∃σ tel que $\mathbb{P}_s^σ(◊T) > 0$ (si il existe un chemin de s à T dans le graphe sous-jacent de \mathcal{M})
- On a retiré les mauvais états de S, i.e., on crée un état Sdead invisible absorbant
 - $\implies \forall s \in S, \sum_{\alpha \in A(s)} \Delta_T(s, \alpha, s') \leq 1$
 - Transition invisible: $\Delta_T(s, \alpha, s_{dead}) = 1 \sum_{s' \in Succ(s, \alpha)} \Delta_T(s, \alpha, s')$

Préliminaires

Nettoyer un MDP

Exemple

Courbe de Pareto

- Ensemble des vecteurs p de points p_1, \ldots, p_q réalisables qui satisfont les contraintes de probabilités α_i , i.e., $p \ge \alpha$ tel qu'il n'existe pas de vecteur p' qui domine p, i.e., tel que $\neg \exists p'$, $p \leq p'$
- $U_{\mathcal{O}} = \{ p \in [0, 1]^q \cap \mathbb{Q} \mid \exists \sigma, t^{\sigma} \geq p \land p \geq \alpha \}$, avec $t^{\sigma} = \mathbb{P}^{\sigma}_{s}(\lozenge T_{i})$
 - Trop coûteux à calculer!
 - → Notion de courbe de Pareto
- $\mathcal{P} \subseteq U_{\mathcal{O}}$, la courbe de Pareto de $U_{\mathcal{O}}$, contient tous les vecteurs \mathcal{P} Pareto optimaux \approx courbe des compromis.
- $p \in U_{\mathcal{O}}$ est Pareto-optimal ssi $\neg \exists p'(p' \in U_{\mathcal{O}} \land p \leq p' \land p \neq p')$
- La courbe de Pareto est en général une surface polyhèdrale de taille superpolynomiale

Programme Linéaire multi-objectif

On résout le problème G-SR via un programme linéaire à objectifs multiples.

- Un programme linéaire à objectifs multiples (MOLP) se définit de la même façon qu'un LP classique à l'exception du fait qu'on cherche à satistfaire simultanément plusieurs fonctions objectifs.
- Si les objectifs sont non-triviaux, il n'existe pas de solution unique qui optimise tous les objectifs simultanément
 - --- compromis
 - --- pas de solution optimale
- Une solution acceptable d'un MOLP est une solution non-dominante
 - aucune fonction objectif ne peut être optimisée sans dégrader la valeur d'une autre fonction objectif.
- Soit V, l'ensemble des solutions qui satisfont toutes les contraintes du MOLP.
 L'ensemble des solutions acceptables du MOLP est la courbe de pareto
 P ⊆ V

Préliminaires

Courbe de Pareto

Figure – MDP avec deux objectifs, $\Diamond P_1$ et $\Diamond P_2$, ainsi que la courbe de Pareto associée [1]

G-SR

Programme Linéaire multi-objectif

Supposons que le MDP est nettoyé. Le MOLP se définit comme suit :

Objectifs
$$i \in \{1, ..., q\}$$
: $\max \sum_{t \in T_i} y_t$

sous les contraintes

$$\sum_{s' \in Pred(t) \setminus T} \sum_{\alpha' \in A(s')} \Delta(s', \alpha', t) \cdot y_{s', \alpha'} = y_t \qquad \forall t \in T$$

$$\mathbb{I}(s) + \sum_{s' \in Pred(s)} \sum_{\alpha' \in A(s')} \Delta(s', \alpha', s) \cdot y_{s', \alpha'} = \sum_{\alpha \in A(s)} y_{s, \alpha} \quad \forall s \in S \setminus T$$

$$y_t \ge 0 \qquad \forall t \in T_i$$

$$y_{s, \alpha} \ge 0 \qquad \forall s \in S \setminus T \text{ et } \alpha \in A(s)$$

- $\mathbb{1}(s) = 1$ ssi $s \in S$ est l'état pour lequel on cherche à satisfaire $\bigwedge_{i \in \{1, \dots, \sigma\}} \mathbb{P}_s^{\sigma}(\lozenge T_i) \ge \alpha_i$
- Ce MOLP est dérivé du LP dual de celui du problème SR pour lequel la solution optimale est $x_c^* = \max_{\sigma} \mathbb{P}_c^{\sigma}(\lozenge T)$

G-SR

MOLP

$$\mathbb{I}(s) + \sum_{s' \in Pred(s)} \sum_{\alpha' \in A(s')} \Delta(s', \alpha', s) \cdot y_{s', \alpha'} = \sum_{\alpha \in A(s)} y_{s, \alpha} \quad \forall s \in S \setminus T$$

 $y_{s,\alpha} = \text{espérance du nombre de fois que la transition } s \xrightarrow{\alpha} \text{est empreintée}$ $\sum_{\alpha \in A(s)} y_{s,\alpha} = \text{espérance du nombre de fois que l'état } s \text{ est visité}$

G-SR

MOLP

$$y_t = \sum_{s' \in Pred(t) \setminus T} \sum_{\alpha' \in A(s')} \Delta(s', \alpha', t) \cdot y_{s', \alpha'} \quad \forall t \in T$$

 y_t = espérance du nombre de fois qu'une transition atteint t pour la première fois

→ il s'agit d'une autre façon de formuler la probabilité d'atteindre éventuellement *t*

G-SR MOLP

$$\sum_{t \in T_i} y_t$$

correspond donc à la probabilité d'atteindre T_i Si une solution acceptable du MOLP y' existe, alors il reste à vérifier que

$$\sum_{t \in T_i} y_t' \ge \alpha_i \quad \forall i \in \{1, \dots, q\}$$

00000000000000000

MOLP

G-SR

Théorème

Soient $\mathcal{M}=(S,A,\Delta)$, un MDP nettoyé, $s\in S$, un état de \mathcal{M} et $q\in \mathbb{N}$ contraintes décrites par les ensembles d'états cibles $T_i\subseteq S$ et les seuils de probabilités $\alpha_i\in [0,1]\cap \mathbb{Q}$, pour tout $i\in \{1,\ldots,q\}$. Les propositions suivantes sont équivalentes :

(1.) Il existe une stratégie aléatoire sans mémoire telle que

$$\bigwedge_{i=1}^{q} \mathbb{P}_{s}^{\sigma}(\lozenge T_{i}) \geq \alpha_{i}$$

(2.) Il existe une solution acceptable y' au MOLP telle que

$$\bigwedge_{i=1}^{q} \sum_{t \in T_i} y_t' \ge \alpha_i$$

Stratégie

G-SR

Construction de la stratégie

Supposons que y' est une solution acceptable du MOLP tel que

$$\sum_{t \in T_i} y_t' \ge \alpha_i > 0 \quad \forall i \in \{1, \dots, q\}$$
 (1)

56/62

Soit $V = \{ s \in S \setminus T \mid \sum_{\alpha \in A(s)y'_{s,\alpha}} y'_{s,\alpha} > 0 \}$, les états par lesquels on passe afin de satisfaire (1), alors $\forall s_v \in V$, $\alpha \in A(s_v)$

$$\sigma(s_{v})(\alpha) := \frac{y'_{s_{v},\alpha}}{\sum_{\alpha' \in A(s_{v})} y'_{s_{v},\alpha'}}$$

$$:= \frac{\mathbb{E}_{s}(\# \text{ transition } s_{v} \xrightarrow{\alpha} \text{ est empreint\'ee})}{\mathbb{E}_{s}(\# \text{ visite de l'\'etat } s_{v})}$$

Note: Vu que $\sum_{\alpha \in A(S_V)} y'_{S_V,\alpha} > 0$, $\sigma(S_V)$ est une distribution de probabilité sur $A(S_V)$,i.e., $\mathcal{D}(A(S_V))$. Pour les autres états $S' \notin V$, $\sigma(S')$ est une distribution de probabilité aléatoire sur A(S'), i.e., $\mathcal{D}(A(S'))$

SSP-WE SSP-PQ G-SR Références

Stratégie

G-SR

Stratégie et problème de flots

Lemme

La stratégie σ , construite de cette manière, satisfait $\bigwedge_{i=1}^q \mathbb{P}^\sigma_{\mathcal{S}}(\lozenge T_i) \geq \alpha_i$

Idée : y', une solution acceptable du MOLP, défini un flot stochastique dont la source est s et dont les puits sont les états de T.

- Par conservation de flots, les états de $S \in S \setminus T$ qui ont un nombre de flots sortants positifs $(\#_{\alpha \in A(S)}S \xrightarrow{\alpha})$ et donc un nombre de flots entrants positifs
 - doivent être tous accessibles depuis la source
 - doivent tous atteindre T
 - ne peuvent pas accéder aux états avec un flot nul

Stratégie

G-SR

Stratégie et problème de flots

- σ est obtenue en normalisant les flots sortant de chaque action vers les états avec un nombre de flots sortants positif.
- En utilisant σ définie de cette façon, l'espérance du nombre de fois que α ∈ A(s) est choisie alors que le système se trouve en l'état s est donné par y'_{s α}.
- Par conséquent, vu que les transitions vers un état $t \in T$ depuis un état de $S \setminus T$ sont employées pour atteindre t une **unique fois**, alors, les contraintes définissant y'_t induisent $y'_t = \mathbb{P}^{\sigma}_{s}(\lozenge\{t\})$

Exemple dans storm

SSP-PQ et GSR Exemple dans Storm

```
mdp
      module sensors transmission
      s: [0..3] init 0;
      [alpha0] s=0 -> 1 : (s'=1);
      [alpha1] s=0 -> 1 : (s'=2);
      [alpha2] s=1 -> 1 : (s'=3);
      [alpha3] s=2 \rightarrow 0.125 : (s'=0) + 0.875 : (s'=3);
      [alpha4] s=3 \rightarrow 1 : (s'=0);
12
      endmodule
13
14
      label "sleep" = s=3:
17
      rewards "time"
        [alpha0] true : 2:
        [alpha1] true : 2;
20
        [alpha2] true : 6:
        [alpha3] true : 2;
21
22
        [alpha4] true : 10;
23
      endrewards
24
      rewards "energy"
25
26
        [alpha0] true : 196:
        [alpha1] true : 294;
27
28
        [alpha2] true : 100:
29
        [alpha3] true : 100:
        [alpha4] true : 20;
30
      endrewards
```


Exemple dans storm

SSP-PQ et GSR

Exemple dans Storm

?
$$\exists \sigma, \ \mathbb{P}^{\sigma}_{s_0}(\lozenge_{1:\leq 4} \text{ sommeil}) \geq 0.8 \ \land \ \mathbb{P}^{\sigma}_{s_0}(\lozenge_{2:\leq 700} \text{ sommeil}) \geq 0.9$$

$$\equiv_{\mathsf{PRCTL}} s_0 \models \mathsf{multi}(\mathcal{P}^{\mathsf{max}}_{\geq 0.8}(\lozenge_{1:\leq 4} \text{ sommeil}), \ \mathcal{P}^{\mathsf{max}}_{\geq 0.9}(\lozenge_{2:\leq 700} \text{ sommeil}))$$

$$\mathsf{storm} \ \cdot\text{-prism} \ \cdot\text{-/-./models/sensors.prism} \ \cdot\text{-prop} \ \mathsf{"multi}(\mathsf{Pmax}) = 0.8 \ \mathsf{[F{''time''}} = 4 \ \mathsf{''sleep'']}, \ \mathsf{Pmax} = 0.9 \ \mathsf{[F{''energy''}} = 700 \ \mathsf{''sleep'']})$$

$$\mathsf{Storm} \ \mathsf{1.2.0}$$

$$\mathsf{Command} \ \mathsf{line} \ \mathsf{arguments} : \ \mathsf{-prism} \ \cdot\text{-/-/models/sensors.prism} \ \mathsf{--prop} \ \mathsf{multi}(\mathsf{Pmax}) = 0.8 \ \mathsf{[F{''time''}} = 4 \ \mathsf{''sleep'']}, \ \mathsf{Pmax} = 0.9 \ \mathsf{[F{''energy''}} = 700 \ \mathsf{''sleep'']})$$

Model checking property multi(Pmax>=4/5 [true Urew{"time"}<=4 "sleep"], Pmax>=9/10 [true Urew{"energy"}<=700 "sleep"]) ... Result (for initial states): true

Time for model checking: 0.003s.

Time for model construction: A 3A2s

Exemple dans storm

SSP-PQ et GSR

Exemple dans Storm

```
\equiv_{\mathsf{PRCTL}} s_0 \models \mathsf{multi}(\mathcal{P}_{-2}^{\mathsf{max}}(\lozenge_{1:\leq 4} \mathsf{sommeil}), \mathcal{P}_{-2}^{\mathsf{max}}(\lozenge_{2:\leq 700} \mathsf{sommeil}))
storm --prism ../../models/sensors.prism --prop "multi(Pmax=? [F{\"time\"}<=4 \"sleep\"], Pmax=? [F{\"energy\"}<=700 \"sleep\"])"
Storm 1.2.0
Command line arguments: --prism ../../models/sensors.prism
                          --prop multi(Pmax=? [F{"time"}<=4 "sleep"], Pmax=? [F{"energy"}<=700 "sleep"])
Time for model construction: 0.452s.
Model checking property multi(Pmax=? [true Urew{"time"}<=4 "sleep"], Pmax=? [true Urew{"energy"}<=700 "sleep"]) ...
Result (for initial states):
Underapproximation of achievable values: Polytope with 2 Halfspaces:
                           0) * x <= 0.875
              Θ.
                         1) * x <= 1
Overapproximation of achievable values: Polytope with 2 Halfspaces:
                           0) * x <= 0.875
              1.
                         1) * x <= 1
1 pareto optimal points found
(Note that these points are safe, i.e., contained in the underapproximation, but there is no quarantee for optimality):
         0.875.
                           1)
```

 $\max_{\sigma} (\mathbb{P}^{\sigma}_{s_0}(\lozenge_{1:\leq 4} \text{ sommeil}), \mathbb{P}^{\sigma}_{s_0}(\lozenge_{2:\leq 700} \text{ sommeil}))$

Time for model checking: 0.040s.

P-G SSP-WE SSP-PQ G-SR **Références**

Références I

- [1] Kousha Etessami et al. "Multi-Objective Model Checking of Markov Decision Processes". In: Logical Methods in Computer Science 4.4 (2008). doi: 10.2168/LMCS-4(4:8)2008.
- [2] Mickael Randour, Jean-François Raskin et Ocan Sankur. "Variations on the Stochastic Shortest Path Problem". In: Verification, Model Checking, and Abstract Interpretation 16th International Conference, VMCAI 2015, Mumbai, India, January 12-14, 2015. Proceedings. 2015, p. 1–18. doi: 10.1007/978-3-662-46081-8_1.