Exercises

- 1. Let X be a topological space; let A be a subset of X. Suppose that for each $x \in A$ there is an open set U containing x such that $U \subset A$. Show that A is open in X
- 2. Consider the nine topologies on the set $X = \{a, b, c\}$ indicated in Example 1 of §12. Compare them; that is, for each pair of topologies, determine whether they are comparable, and if so, which is the finer.
- 3. Show that the collection \mathcal{T}_c given in Example 4 of §12 is a topology on the set X. Is the collection

$$\mathcal{T}_{\infty} = \{U \mid X - U \text{ is infinite or empty or all of } X\}$$

a topology on X?

- **4.** (a) If $\{\mathcal{T}_{\alpha}\}$ is a family of topologies on X, show that $\bigcap \mathcal{T}_{\alpha}$ is a topology on X. Is $\bigcup \mathcal{T}_{\alpha}$ a topology on X?
 - (b) Let $\{\mathcal{T}_{\alpha}\}$ be a family of topologies on X. Show that there is a unique smallest topology on X containing all the collections \mathcal{T}_{α} , and a unique largest topology contained in all \mathcal{T}_{α} .
 - (c) If $X = \{a, b, c\}$, let

$$\mathcal{T}_1 = \{\emptyset, X, \{a\}, \{a, b\}\}\$$
 and $\mathcal{T}_2 = \{\emptyset, X, \{a\}, \{b, c\}\}\$.

Find the smallest topology containing \mathcal{T}_1 and \mathcal{T}_2 , and the largest topology contained in \mathcal{T}_1 and \mathcal{T}_2 .

- 5. Show that if A is a basis for a topology on X, then the topology generated by A equals the intersection of all topologies on X that contain A. Prove the same if A is a subbasis.
- **6.** Show that the topologies of \mathbb{R}_{ℓ} and \mathbb{R}_{K} are not comparable.
- 7. Consider the following topologies on \mathbb{R} :

 \mathcal{T}_1 = the standard topology,

 \mathcal{T}_2 = the topology of \mathbb{R}_K ,

 \mathcal{T}_3 = the finite complement topology,

 \mathcal{T}_4 = the upper limit topology, having all sets (a, b) as basis,

 \mathcal{T}_5 = the topology having all sets $(-\infty, a) = \{x \mid x < a\}$ as basis.

Determine, for each of these topologies, which of the others it contains.

8. (a) Apply Lemma 13.2 to show that the countable collection

$$\mathcal{B} = \{(a, b) \mid a < b, a \text{ and } b \text{ rational}\}\$$

is a basis that generates the standard topology on R.

(b) Show that the collection

$$C = \{(a, b) \mid a < b, a \text{ and } b \text{ rational}\}\$$

is a basis that generates a topology different from the lower limit topology on \mathbb{R} .

1. Show that if Y is a subspace of X, and A is a subset of Y, then the topology A

92 Topological Spaces and Continuous Functions

Ch. 2

inherits as a subspace of Y is the same as the topology it inherits as a subspace of X.

- 2. If \mathcal{T} and \mathcal{T}' are topologies on X and \mathcal{T}' is strictly finer than \mathcal{T} , what can you say about the corresponding subspace topologies on the subset Y of X?
- 3. Consider the set Y = [-1, 1] as a subspace of \mathbb{R} . Which of the following sets are open in Y? Which are open in \mathbb{R} ?

$$A = \{x \mid \frac{1}{2} < |x| < 1\},\$$

$$B = \{x \mid \frac{1}{2} < |x| \le 1\},\$$

$$C = \{x \mid \frac{1}{2} \le |x| < 1\},\$$

$$D = \{x \mid \frac{1}{2} \le |x| \le 1\},\$$

$$E = \{x \mid 0 < |x| < 1 \text{ and } 1/x \notin \mathbb{Z}_+\}.$$

- **4.** A map $f: X \to Y$ is said to be an *open map* if for every open set U of X, the set f(U) is open in Y. Show that $\pi_1: X \times Y \to X$ and $\pi_2: X \times Y \to Y$ are open maps.
- 5. Let X and X' denote a single set in the topologies \mathcal{T} and \mathcal{T}' , respectively; let Y and Y' denote a single set in the topologies \mathcal{U} and \mathcal{U}' , respectively. Assume these sets are nonempty.
 - (a) Show that if $\mathcal{T}' \supset \mathcal{T}$ and $\mathcal{U}' \supset \mathcal{U}$, then the product topology on $X' \times Y'$ is finer than the product topology on $X \times Y$.
 - (b) Does the converse of (a) hold? Justify your answer.
- 6. Show that the countable collection

$$\{(a,b)\times(c,d)\mid a< b \text{ and } c< d, \text{ and } a,b,c,d \text{ are rational}\}$$

is a basis for \mathbb{R}^2 .

- 7. Let X be an ordered set. If Y is a proper subset of X that is convex in X, does it follow that Y is an interval or a ray in X?
- 8. If L is a straight line in the plane, describe the topology L inherits as a subspace of $\mathbb{R}_{\ell} \times \mathbb{R}$ and as a subspace of $\mathbb{R}_{\ell} \times \mathbb{R}_{\ell}$. In each case it is a familiar topology.
- 9. Show that the dictionary order topology on the set $\mathbb{R} \times \mathbb{R}$ is the same as the product topology $\mathbb{R}_d \times \mathbb{R}$, where \mathbb{R}_d denotes \mathbb{R} in the discrete topology. Compare this topology with the standard topology on \mathbb{R}^2 .
- 10. Let I = [0, 1]. Compare the product topology on $I \times I$, the dictionary order topology on $I \times I$ and the topology $I \times I$ inherits as a subspace of $\mathbb{R} \times \mathbb{R}$ in the

Exercises

1. Let \mathcal{C} be a collection of subsets of the set X. Suppose that \emptyset and X are in \emptyset and that finite unions and arbitrary intersections of elements of \mathcal{C} are in \mathcal{C} . Sho that the collection

$$\mathcal{T} = \{X - C \mid C \in \mathcal{C}\}$$

is a topology on X.

- 2. Show that if A is closed in Y and Y is closed in X, then A is closed in X.
- 3. Show that if A is closed in X and B is closed in Y, then $A \times B$ is closed in $X \times A$
- Show that if U is open in X and A is closed in X, then U − A is open in X, ar
 A − U is closed in X.
- 5. Let X be an ordered set in the order topology. Show that $(a, b) \subset [a, b]$. Und what conditions does equality hold?

- 6. Let A, B, and A_{α} denote subsets of a space X. Prove the following:
 - (a) If $A \subset B$, then $\tilde{A} \subset \tilde{B}$.
 - (b) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
 - (c) $\bigcup A_{\alpha} \supset \bigcup A_{\alpha}$; give an example where equality fails.
- 7. Criticize the following "proof" that $\overline{\bigcup A_{\alpha}} \subset \bigcup \bar{A_{\alpha}}$: if $\{A_{\alpha}\}$ is a collection of sets in X and if $x \in \overline{\bigcup A_{\alpha}}$, then every neighborhood U of x intersects $\bigcup A_{\alpha}$. Thus U must intersect some A_{α} , so that x must belong to the closure of some A_{α} . Therefore, $x \in \bigcup \bar{A_{\alpha}}$.
- 8. Let A, B, and A_{α} denote subsets of a space X. Determine whether the following equations hold; if an equality fails, determine whether one of the inclusions \supset or \subset holds.
 - (a) $\overline{A \cap B} = \overline{A} \cap \overline{B}$.
 - (b) $\overline{\bigcap A_{\alpha}} = \bigcap \bar{A}_{\alpha}$.
 - (c) $\overline{A-B} = \overline{A} \overline{B}$.
- **9.** Let $A \subset X$ and $B \subset Y$. Show that in the space $X \times Y$,

$$\overline{A \times B} = \overline{A} \times \overline{B}$$
.

- Show that every order topology is Hausdorff.
- 11. Show that the product of two Hausdorff spaces is Hausdorff.
- 12. Show that a subspace of a Hausdorff space is Hausdorff.
- 13. Show that X is Hausdorff if and only if the *diagonal* $\Delta = \{x \times x \mid x \in X\}$ is closed in $X \times X$.
- 14. In the finite complement topology on \mathbb{R} , to what point or points does the sequence $x_n = 1/n$ converge?
- 15. Show the T₁ axiom is equivalent to the condition that for each pair of points of X, each has a neighborhood not containing the other.
- Consider the five topologies on R given in Exercise 7 of §13.
 - (a) Determine the closure of the set $K = \{1/n \mid n \in \mathbb{Z}_+\}$ under each of these topologies.
 - (b) Which of these topologies satisfy the Hausdorff axiom? the T_1 axiom?
- 17. Consider the lower limit topology on \mathbb{R} and the topology given by the basis C of Exercise 8 of §13. Determine the closures of the intervals $A = (0, \sqrt{2})$ and $B = (\sqrt{2}, 3)$ in these two topologies.
- 18. Determine the closures of the following subsets of the ordered square:

$$A = \{(1/n) \times 0 \mid n \in \mathbb{Z}_+\},\$$

$$B = \{(1 - 1/n) \times \frac{1}{2} \mid n \in \mathbb{Z}_+\},\$$

$$C = \{x \times 0 \mid 0 < x < 1\},\$$

$$D = \{x \times \frac{1}{2} \mid 0 < x < 1\},\$$

$$E = \{\frac{1}{2} \times y \mid 0 < y < 1\}.$$

19. If $A \subset X$, we define the **boundary** of A by the equation

$$\operatorname{Bd} A = \overline{A} \cap (\overline{X - A}).$$

- (a) Show that Int A and Bd A are disjoint, and $\bar{A} = \text{Int } A \cup \text{Bd } A$.
- (b) Show that Bd $A = \emptyset \Leftrightarrow A$ is both open and closed.
- (c) Show that U is open \Leftrightarrow Bd $U = \overline{U} U$.
- (d) If U is open, is it true that $U = Int(\bar{U})$? Justify your answer.
- 20. Find the boundary and the interior of each of the following subsets of \mathbb{R}^2 .
 - (a) $A = \{x \times y \mid y = 0\}$
 - (b) $B = \{x \times y \mid x > 0 \text{ and } y \neq 0\}$
 - (c) $C = A \cup B$
 - (d) $D = \{x \times y \mid x \text{ is rational}\}\$
 - (e) $E = \{x \times y \mid 0 < x^2 y^2 \le 1\}$
 - (f) $F = \{x \times y \mid x \neq 0 \text{ and } y \leq 1/x\}$
- *21. (Kuratowski) Consider the collection of all subsets A of the topological space X. The operations of closure A → Ā and complementation A → X A are functions from this collection to itself.
 - (a) Show that starting with a given set A, one can form no more than 14 distinct sets by applying these two operations successively.
 - (b) Find a subset A of R (in its usual topology) for which the maximum of 14 is obtained

Exercises

- 1. Prove that for functions $f: \mathbb{R} \to \mathbb{R}$, the ϵ - δ definition of continuity implies the open set definition.
- 2. Suppose that $f: X \to Y$ is continuous. If x is a limit point of the subset A of X, is it necessarily true that f(x) is a limit point of f(A)?
- 3. Let X and X' denote a single set in the two topologies \mathcal{T} and \mathcal{T}' , respectively. Let $i: X' \to X$ be the identity function.
 - (a) Show that i is continuous $\Leftrightarrow \mathcal{T}'$ is finer than \mathcal{T} .
 - (b) Show that i is a homeomorphism $\Leftrightarrow \mathcal{T}' = \mathcal{T}$.
- **4.** Given $x_0 \in X$ and $y_0 \in Y$, show that the maps $f: X \to X \times Y$ and $g: Y \to X \times Y$ defined by

$$f(x) = x \times y_0$$
 and $g(y) = x_0 \times y$

are imbeddings.

- 5. Show that the subspace (a, b) of \mathbb{R} is homeomorphic with (0, 1) and the subspace [a, b] of \mathbb{R} is homeomorphic with [0, 1]
- **6.** Find a function $f: \mathbb{R} \to \mathbb{R}$ that is continuous at precisely one point.
- 7. (a) Suppose that $f : \mathbb{R} \to \mathbb{R}$ is "continuous from the right," that is,

$$\lim_{x \to a^+} f(x) = f(a),$$

for each $a \in \mathbb{R}$. Show that f is continuous when considered as a function from \mathbb{R}_{ℓ} to \mathbb{R} .

- (b) Can you conjecture what functions $f \cdot \mathbb{R} \to \mathbb{R}$ are continuous when considered as maps from \mathbb{R} to \mathbb{R}_{ℓ} ? As maps from \mathbb{R}_{ℓ} to \mathbb{R}_{ℓ} ? We shall return to this question in Chapter 3.
- **8.** Let Y be an ordered set in the order topology. Let $f, g: X \to Y$ be continuous.
 - (a) Show that the set $\{x \mid f(x) \leq g(x)\}\$ is closed in X

(b) Let $h: X \to Y$ be the function

$$h(x) = \min\{f(x), g(x)\}.$$

Show that h is continuous [Hint: Use the pasting lemma.]

- 9. Let $\{A_{\alpha}\}$ be a collection of subsets of X; let $X = \bigcup_{\alpha} A_{\alpha}$. Let $f: X \to Y$; suppose that $f|A_{\alpha}$, is continuous for each α .
 - (a) Show that if the collection $\{A_{\alpha}\}$ is finite and each set A_{α} is closed, then f is continuous.
 - (b) Find an example where the collection $\{A_{\alpha}\}$ is countable and each A_{α} is closed, but f is not continuous.
 - (c) An indexed family of sets $\{A_{\alpha}\}$ is said to be *locally finite* if each point x of X has a neighborhood that intersects A_{α} for only finitely many values of α . Show that if the family $\{A_{\alpha}\}$ is locally finite and each A_{α} is closed, then f is continuous.
- 10. Let $f : A \to B$ and $g : C \to D$ be continuous functions. Let us define a map $f \times g : A \times C \to B \times D$ by the equation

$$(f \times g)(a \times c) = f(a) \times g(c).$$

Show that $f \times g$ is continuous.

- 11. Let $F: X \times Y \to Z$. We say that F is continuous in each variable separately if for each y_0 in Y, the map $h: X \to Z$ defined by $h(x) = F(x \times y_0)$ is continuous, and for each x_0 in X, the map $k \cdot Y \to Z$ defined by $k(y) = F(x_0 \times y)$ is continuous. Show that if F is continuous, then F is continuous in each variable separately.
- 12. Let $F : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be defined by the equation

$$F(x \times y) = \begin{cases} xy/(x^2 + y^2) & \text{if } x \times y \neq 0 \times 0. \\ 0 & \text{if } x \times y = 0 \times 0 \end{cases}$$

- (a) Show that F is continuous in each variable separately.
- (b) Compute the function $g: \mathbb{R} \to \mathbb{R}$ defined by $g(x) = F(x \times x)$.
- (c) Show that F is not continuous
- 13. Let $A \subset X$; let $f: A \to Y$ be continuous; let Y be Hausdorff. Show that if f may be extended to a continuous function $g: \bar{A} \to Y$, then g is uniquely determined by f