COMP 446 / 546 ALGORITHM DESIGN AND ANALYSIS

LECTURE 9 GREEDY ALGORITHMS ALPTEKİN KÜPÇÜ

Based on slides of David Luebke, Jennifer Welch, and Cevdet Aykanat

GREEDY ALGORITHM PARADIGM

- Greedy algorithms:
 - Make a sequence of choices
 - Each choice is the one that seems to be the best at that point
 - Choice only depends on what has been done so far
 - No looking ahead
 - Choice produces a smaller problem to be solved
- In order for greedy algorithm to solve a problem optimally, the optimal solution to the problem must be made up of optimal solutions to sub-problems

DESIGNING A GREEDY ALGORITHM

- Cast the problem so that we make a greedy (locally optimal) choice and are left with one smaller sub-problem
- Prove there is always a (globally) optimal solution to the original problem that makes the greedy choice
- Show that the greedy choice together with an optimal solution to the sub-problem gives a (globally) optimal solution to the original problem

GREEDY ALGORITHMS

- A greedy algorithm always makes the choice that looks best at the moment
 - Some examples:
 - Walking to the cafeteria
 - Playing Halflife
 - The hope: a locally optimal choice will lead to a globally optimal solution

ACTIVITY SELECTION PROBLEM

- Problem: Get your money's worth out of a lunapark
 - You have a ticket that lets you play any game within the day
 - Lots of possible games, each starting and ending at different times
 - Goal: Join as many games as possible
- Any other similar examples?

ACTIVITY SELECTION PROBLEM

- Input: A set S = { 1,2,...,n } of n activities
 - s_i: Start time of activity i,
 - f_i: Finish time of activity i,
 - Activity i takes place in [s_i, f_i)
- Aim: Find max-size subset A of mutually compatible activities.
 - Max number of activities, not max time spent in activities.
- Activities i and j are compatible if intervals [s_i, f_i) and [s_j, f_j) do not overlap
 - One activity starts after the other finishes
 - Either $s_i \ge f_i$ or $s_i \ge f_i$

- S={ [1,4), [5,7), [2,8), [3,11), [8,15), [13,18) }
- Assume (w.l.o.g.) that $f_1 \le f_2 \le ... \le f_n$

OPTIMAL SUBSTRUCTURE

- Theorem: let k be the activity with the earliest finish time in an optimal solution A ⊆ S then,
- A $\{k\}$ is an optimal solution to sub-problem $S_k' = \{i \in S : s_i \ge f_k\}$
- Proof: (by contradiction)
 - Let B' be an optimal solution to S_k and $|B'| > |A \{k\}| = |A| 1$
 - Then, B = B' U {k} is compatible and |B| = |B'| + 1 > |A|
 - Contradiction to the optimality of A

REPEATED SUBPROBLEMS

 Consider a recursive algorithm that tries all possible compatible subsets to find a maximal set, and notice repeated sub-problems:

GREEDY CHOICE PROPERTY IN ACTIVITY SELECTION

- Theorem: There exists an optimal solution $A \subseteq S$ such that $1 \in A$ (Remember $f_1 \le f_2 \le \cdots \le f_n$)
- Proof: Let A = { k, l, m ... } be an optimal solution such that $f_k \le f_l \le f_m \le \cdots$

GREEDY CHOICE PROPERTY IN ACTIVITY SELECTION

- Theorem: There exists an optimal solution $A \subseteq S$ such that $1 \in A$ (Remember $f_1 \le f_2 \le \cdots \le f_n$)
- Proof: Let A = { k, l, m ... } be an optimal solution such that $f_k \le f_l \le f_m \le \cdots$
 - If k=1 then schedule A begins with the greedy choice, done.

GREEDY CHOICE PROPERTY IN ACTIVITY SELECTION

- Theorem: There exists an optimal solution $A \subseteq S$ such that $1 \in A$ (Remember $f_1 \le f_2 \le \cdots \le f_n$)
- Proof: Let A = { k, l, m ... } be an optimal solution such that $f_k \le f_l \le f_m \le \cdots$
 - If k = 1 then schedule A begins with the greedy choice, done.
 - If k > 1 then show that ∃ another optimal solution that begins with the greedy choice 1.
 - Let B = A $\{k\} \cup \{1\}$, since $f_1 \le f_k$ activity 1 is compatible with A $\{k\}$
 - Hence B is compatible
 - |B| = |A| 1 + 1 = |A|
 - Therefore B is optimal, and contains 1, done.

GREEDY ALGORITHM FOR ACTIVITY SELECTION

Simple algorithm:

- Sort the activities by finish time
- Schedule the first activity
- Then schedule the next activity in sorted list which starts after previous activity finishes (compatible)
- Repeat until no more activities can be added
- Intuition is even more simple:
 - Always pick the shortest game available at the time
- Pseudocode?
- Runtime?

$$S = \{ [1,4), [5,7), [2,8), [3,11), [8,15), [13,18) \}$$

 $f_{last} = 0$

$$S = \{ [1,4), [5,7), [2,8), [3,11), [8,15), [13,18) \}$$

 $f_{last} = 4$

S = { [1,4), [5,7), [2,8), [3,11), [8,15), [13,18) }
$$f_{last} = 7$$
 Activity 3 is incompatible

$$S = \{ [1,4), [5,7), [2,8), [3,11), [8,15), [13,18) \}$$

 $f_{last} = 7$
Activity 4 is incompatible

$$S = \{ [1,4), [5,7), [2,8), [3,11), [8,15), [13,18) \}$$

 $f_{last} = 7$

$$S = \{ [1,4), [5,7), [2,8), [3,11), [8,15), [13,18) \}$$

 $f_{last} = 15$
Activity 6 is incompatible

GREEDY ALGORITHM DESIGN

- 1. Cast the optimization problem as one in which we make a choice and are left with one sub-problem to solve.
- 2. Prove that there's always an optimal solution that makes the greedy choice, so that the greedy choice is always safe.
- 3. Demonstrate optimal substructure by showing that, combining an optimal solution to the remaining sub-problem with the greedy choice gives an optimal solution to the original problem.
- Greedy algorithm:
 - Make a choice at each step.
 - Make the choice before solving the sub-problems.
 - Solve top-down.

GREEDY ALGORITHM CORRECTNESS

- Two key ingredients to the optimality of greedy algorithms are
 - Greedy-choice property
 - Optimal substructure property
- Typically show the greedy-choice property by what we did for activity selection:
 - Look at an optimal solution.
 - If it includes the greedy choice, done.
 - Otherwise, modify the optimal solution to include the greedy choice, yielding another optimal solution (pareto-optimality).
- Can get efficiency gains from greedy-choice property.
 - Pre-process (sort) input to put it into greedy order.
 - If the data is dynamic, use a priority queue.

OPTIMAL ENCODING

• Input:

- Data file of characters
- Number of occurrences of each character

Output:

 A binary encoding of each character so that the data file can be represented as efficiently as possible ("optimal code").

Fixed-length encoding:

- *n* unique characters can be encoded with $m = \lceil \log n \rceil$ bits each
- Easy decoding: each m bits of encoded data identify a character

HUFFMAN CODE

 Idea: Use short codes for frequent characters and long codes for infrequent characters.

char	a	b	С	d	е	f	total
#	45	13	12	16	9	5	100 chars
fixed	000	001	010	011	100	101	300 bits
variable	0	101	100	111	1101	1100	224 bits

How can we decode?

PREFIX CODES

- Prefix codes: No codeword is also a prefix of some other codeword
- It can be shown that
 - Optimal data compression achievable by any character encoding can always be achieved with a prefix code
 - Prefix codes simplify encoding and decoding
- Encoding: Concatenate the codewords representing each character of the file

• Ex: "abc" encoded as 0||101||100= 0101100

PREFIX CODES

- Decoding: The codewords are unambigious since no codeword is a prefix of any other.
 - Identify the initial codeword
 - Translate it back to the original character
 - Remove it from the encoded file
 - Repeat the decoding process on the remainder of the encoded file

• Ex: 001011101 parses uniquely as 0||0||101||1101 decoded "aabe"

- The binary tree corresponding to our fixed-length code
 - Binary codeword for a character is the path from the root to that character in the binary tree
 - "0" means "go to the left child"
 - "1" means "go to the right child"
 - Leaves are the characters

27

- The binary tree corresponding to our optimal variable-length code
- An optimal code for a file is always represented by a full binary tree
 - has ICI leaves (external nodes)
 - One leaf for each letter of the alphabet C
- Lemma: A full binary tree (FBT) with ICI external nodes has exactly ICI – 1 internal nodes.

Alptekin Küpçü

- Consider an FBT T corresponding to a prefix code
- Compute B(T), the number of bits required to encode a file
 - the cost of the tree T
- f(c): frequency of character c in the input file
- $d_T(c)$: depth of the leaf for character c in the FBT T
 - d_T(c) also denotes length of the codeword for c
- $B(T) = \sum_{c \in C} f(c) d_T(c)$

- Let each internal node i be labeled with w(i), the sum of the weights of the leaves in its sub-tree
- Lemma: $B(T) = \sum_{c \in C} f(c) d_T(c) = \sum_{i \in I_T} w(i)$ where I_T denotes the set of internal nodes in T.
- Proof:
 - Consider a leaf node c with $f(c) \& d_T(c)$
 - f(c) appears in the weights w(i) of $d_T(c)$ internal nodes along the path from c to the root
 - Hence, f(c) appears $d_T(c)$ times in both summations

HUFFMAN CODE

- Huffman code is a greedy algorithm that constructs an optimal prefix code.
- Idea: Build an FBT corresponding to the optimal code in a bottomup manner
 - Begin with a set of ICI leaves
 - Performs a sequence of |C| 1 "merges" to create the final tree
- Algorithm:
 - Create a priority queue Q, keyed on frequency, to identify the two least-frequent objects to merge
 - The result of a merger of the two objects is a new object
 - Insert the new object into the priority queue according to the sum of the frequencies of the two objects merged
 - Repeat until Q is empty

HUFFMAN CODE

- Given: Set C of n chars, where c occurs f(c) times
- HUFFMAN-TREE()
 - Insert each c into priority queue Q using f(c) as key (via BUILDHEAP())
 - for i = 1 to n-1 do
 - x = extract-min(Q)
 - y = extract-min(Q)
 - make a new node z with left child x (and edge label 0), right child y (and edge label 1), and f(z) = f(x) + f(y)
 - insert z into Q according to f(z)
- Runtime?

(a) f: 5 e: 9 c: 12 b: 13 d: 16 a: 45

- We must show that the problem of determining an optimal prefix code exhibits
 - Greedy choice property
 - Optimal substructure property
- Lemma 1:
 - Let x & y be two characters in C having the lowest frequencies
 - Then, there exists an optimal prefix code for C in which the codewords for x & y have the same length and differ only in the last bit

Proof:

- Take tree T representing an arbitrary optimal code
- Modify T to make a tree T" representing another optimal code
 - Characters x & y appear as sibling leaves of max-depth in T"
- Assume that f(x) & f(y) are two lowest leaf frequencies with f(x) ≤ f(y)
- Let f(b) & f(c) are two arbitrary leaf frequencies with $f(b) \le f(c)$
- Then, $f(x) \le f(b) \& f(y) \le f(c)$

 $T \Rightarrow T'$: exchange the positions of the leaves b & x $T' \Rightarrow T''$: exchange the positions of the leaves c & y

- Proof of Lemma 1 (continued):
- The difference of the costs of T and T' is

•
$$B(T) - B(T') = \sum_{c \in C} f(c) d_T(c) - \sum_{c \in C} f(c) d_{T'}(c)$$

 $= f(x) d_T(x) + f(b) d_T(b) - f(x) d_{T'}(x) - f(b) d_{T'}(b)$
 $= f(x) d_T(x) + f(b) d_T(b) - f(x) d_T(b) - f(b) d_T(x)$
 $= f(b) (d_T(b) - d_T(x)) - f(x) (d_T(b) - d_T(x))$
 $= (f(b) - f(x)) (d_T(b) - d_T(x))$
 ≥ 0 since $f(x) \leq f(b) \& d_T(x) \leq d_T(b)$

- Therefore $B(T') \leq B(T)$
- Similarly we can show that $B(T') B(T'') \ge 0 \Rightarrow B(T'') \le B(T')$
- Together, they imply $B(T'') \leq B(T)$
- Since T is assumed to be optimal $\Rightarrow B(T'') = B(T) \Rightarrow T''$ is also optimal

· Lemma 2:

- Consider any two characters x & y that appear as sibling leaves in an optimal T and let z be their parent
- Consider z as a character with frequency f(z) = f(x) + f(y)
- Then the tree $T' = T \{x, y\}$ represents an optimal prefix code for the alphabet $C' = C \{x, y\} \cup \{z\}$

$$\begin{array}{c}
z \\
f[z] = f[x] + f[y] \\
T'
\end{array}$$

Proof:

- Express cost of T in terms of cost of T'
- For each $c \in C \{x, y\}$ we have $d_T(c) = d_{T'}(c)$

•
$$\Rightarrow f(\mathbf{c})d_T(\mathbf{c}) = f(\mathbf{c})d_{T'}(\mathbf{c})$$

•
$$B(T) = B(T') + f(x) (d_T(z) + 1) + f(y) (d_T(z) + 1) - f(z)d_T(z)$$

•
$$= B(T') + f(z) (d_T(z) + 1) - f(z)d_T(z)$$

• Since
$$f(z) = f(x) + f(y)$$

$$\bullet = B(T') + f(z)$$

$$\bullet = B(T') + f(x) + f(y)$$

- Proof of Lemma 2 (continued):
 - Assume T' represents a non-optimal prefix code for the alphabet C'
 - Then, \exists a tree T'' for C' such that B(T'') < B(T')
 - Since z is a character in C', it appears as a leaf in T"
 - If we add x and y as children of z in T"
 - Then we obtain a prefix code for original alphabet C with cost B(T'') + f(x) + f(y) < B(T') + f(x) + f(y) = B(T)
 - Contradicting the optimality of T

- Lemma 1 tells us that optimal tree begins by merging the two least-frequent characters. This is the greedychoice property used by Huffman's algorithm.
- Lemma 2 shows that the problem has optimal substructure property.
- Therefore, Huffman Encoding provides optimal encoding.
- What are Zip, Rar, 7z, etc. doing then?
- What about WinZip vs. gzip?
- What about binary files?

- \$4 12 kg 15 kg \$2 1 kg \$1 1 kg
- There are n different items in a store
- Item i weighs w_i kilograms and is worth
 \$b_i

- We can carry up to W kilograms in a knapsack
- An item must be taken as a whole or left behind.
- Problem: What should we take to maximize the total value?

•

0-1 VS. FRACTIONAL KNAPSACK

0-1 Knapsack Problem:

- Items cannot be divided
- We must take either the entire item or leave it behind

Fractional Knapsack Problem:

- We can take partial items
 - e.g., items are liquids or powders
- Solvable with a greedy algorithm since the problem has
 - Greedy-choice property
 - Optimal substructure property

OPTIMAL SUB-STRUCTURE

- Both knapsack flavors exhibit the optimal sub-structure property
- 0-1 Knapsack Problem (S,W):
 - Consider a most valuable load (optimal solution) L where W₁ ≤ W
 - If we remove item j from this optimal load L
 - The remaining load L_j' = L { I_j } must be a most valuable load weighing at most W_j' = W- w_j kilograms that we can take from the set of remaining items S_i' = S { I_j }
 - That is, L_j' should be an optimal solution to the 0-1 Knapsack Problem (S_i', W_j')

OPTIMAL SUBSTRUCTURE

- Fractional Knapsack Problem (S,W):
 - Consider a most valuable load L where W₁ ≤ W

4

OPTIMAL SUBSTRUCTURE

- Fractional Knapsack Problem (S,W):
 - Consider a most valuable load L where W₁ ≤ W
 - If we remove some item partially, i.e., a weight $0 \le w \le w_j$ of item j, from optimal load L
 - The remaining load L_j ' = $L \{ w \text{ kilograms of } I_j \}$ must be a most valuable load weighing at most W_j ' = W w kilograms that we can take from the set of remaining items S_j ' = $S \{ I_j \} \cup \{ w_j$ -w kilograms of $I_j \}$
 - That is L_j' should be an optimal solution to the Fractional Knapsack Problem (S_j', W_j')

FRACTIONAL KNAPSACK PROBLEM

- The optimal solution to the fractional knapsack problem can be found with a greedy algorithm
- Algorithm?
 - sort items in decreasing order of value per kilogram
 - while limit of W kilograms is not reached do
 - consider the next item in sorted list
 - take as much as possible (all there is or as much as will fit)
- Runtime?
 - O(n log n) running time (limiting factor is the sort)

0-1 KNAPSACK PROBLEM

 The optimal solution to the 0-1 knapsack problem cannot be found using this greedy strategy

51

0-1 KNAPSACK PROBLEM

\$60

Greedy Solution
Total worth = \$160

Optimal 0-1 Solution Total worth = \$220

Different problems, incomparable solutions

Optimal Fractional Solution using the greedy algorithm Total worth = \$240