

Ch. 8 - Communication Models Sec 2 - TCP/IP Model

COMPSCI 147
Internet-of-Things; Software and Systems

OSI: THE INTERNET THAT WASN'T

- 1960s: packet switching invented independently by Paul Baran (US) and Donald Davies (UK)
- 1969: US DARPA sponsored researchers created ARPANET, the first packet switching network, is created in the United States.
- Early 1970s: IBM+Europe telephonic monopolies hatched their own plans.
- 1972: Standardization is required: International Network Working Group (INWG) was formed.
- Researchers faced lots of battles with telecom engineers (dominating INWG).
- 1975: Researchers (e.g., Cerf) took offense (proposals got rejected), started joining ARPA.
- 1977: UK proposed new organization within ISO (not dominated by telecom companies).
- 1984: IBM still kept influencing. The uneasy alliance of computer and telecom engineers published the OSI reference model as an international standard in 1984.
- 1989: OSI advocate Brian Carpenter's talk "Is OSI too late?"
- Meanwhile, Internet flourished

1990s: Internet became the de-facto standard

- "On one side you have something that's free, available, you just have to load it.
- And on the other side, you have something which is much more architectured, much more complete, much more elaborate, but it is expensive.
- If you are a director of computation in a company, what do you choose?"
- -- Marc Levilion, an engineer for IBM France.

"Internet": a term adopted to refer to a network of networks that utilized ARPA's TCP/IP.

INTRODUCTION TO TCP/IP

- Evolved from the 4-layer DoD model
- The Internet protocol (IP) stack is another reference model with a set of communications protocols used in computer networks. It is based on the Transmission Control Protocol (TCP).
- Additional resources:
 - TCP / IP Protocol: The 4 Layer Model
 - https://www.youtube.com/watch?v=KEWe-5Bk3Q0
 - TCP vs. UDP
 - https://www.youtube.com/watch?v=uwoD5YsGACg
 - IPv4 and IPv6
 - https://www.youtube.com/watch?v=aor29pGhlFE
 - https://www.youtube.com/watch?v=k6nrH8JiTTU

TCP/IP VS OSI MODEL

The OSI Model

What about the missing application layers?

- Are the services provided by these layers unimportant?
- What if an application need some of these services?

- it's up to the application developer.
 - decide if a service is important, and if it is, it's up to the application developer to build that functionality into the application.

TCP/IP LAYER 1: APPLICATION LAYER

- Applications that send data over a network
 - Web browsers and internet services
- Specific protocols by application type
 - FTP, HTTP, IMAP,...
- May include functionalities of session and presentation layers in OSI.

Data gets sent to the transport layer.

Goal 1: Transfer data between two applications running on the same PC

Goal 1: Transfer data between two applications running on the same PC

- Solution: Inter-process communication
 - Identify the other process by PID (Process ID)
 - Use OS provided mechanisms:
 - Shared Memory
 - Message passing
- Next Challenge: How do I transfer some data between two processes running on two different computers but in the same network?

Goal 2: Transfer data between two applications running on different machines but on the same network

Goal 2: Transfer data between two applications running on different machines but on the same network

Q: Can you identify the other process by PID (Process ID)?

Q: Will existing OS provided mechanisms work?
Shared Memory
Message passing

Goal 2: Transfer data between two applications running on different machines but on the same network

PID may be same.

- Add one more level of indirection: Ports
- 16-bit unsigned integer (0 to 65535)

TCP/IP LAYER 2: TRANSPORT (TCP) LAYER

- Breaks down messages into segments.
- In the header, add port information and more bits depending on protocol.
- Most popular protocols:
 - User Datagram Protocol (UDP)
 - Connectionless, unreliable
 - Transmission Control Protocol (TCP)
 - Connection-oriented, reliable (ACK)
 - Stream Control Transmission Protocol (SCTP)
 - For supporting multimedia and VOIP
- Ensures process-to-process delivery across hosts
- Sends segments to the internet layer

Q: How to uniquely identify the other machine?

There is still a problem:

• Possibility: Should we use NIC (Network Interface Card's MAC address) that is unique to each machine?

Q: How to uniquely identify the other machine? Hypothetical situation of using MAC and a switch

Q: What is the problem of using MAC address:port directly for communication?

Q: How to uniquely identify the other machine? Hypothetical situation of using MAC directly

Q: What is the problem of using MAC address:port directly for communication?

Solution: A layer of abstraction: logical addresses!

IPv4 Address Format (Dotted Decimal Notation)

```
123894672
First Octet Second Octet Third Octet Fourth Octet
01111011.01011001.00101110.01001000

1 Byte=8 Bits
4 Bytes = 32 Bits
```


- Deals with incoming and outgoing packets via IP addresses.
- Most popular internet layer protocols are IPv4 and IPv6.
- The main TCP/IP Internet Layer (or Networking Layer in OSI) devices are routers.

- Deals with incoming and outgoing packets via IP addresses.
- Most popular internet layer protocols are IPv4 and IPv6.

 The main TCP/IP Internet Layer (or Networking Layer in OSI) devices are routers.

AUX Serial Port 0 **CPU** Port Flash CPU Serial Port n Console System Bus **VNRAM** Control Port (ASIC) **Ethernet Port 0 RAM** USB **Ethernet Port m** Port

Fig. 2.4 Router main components

Application Data

Payload

Segment

- Deals with incoming and outgoing packets via IP addresses.
- Most popular internet layer protocols are IPv4 and IPv6.
- The main TCP/IP Internet Layer (or Networking Layer in OSI)
 devices are routers.
- Two main functions of routers are
- Forwarding. When a packet arrives at a router's input link, the router must move the packet to the appropriate output link (in a single router).
- Routing: Path taken by packets as they flow from a sender to a receiver.

Routers as building blocks of the internet

- Routers create subnetworks.
- Internet = Network of Networks connected using TCP/IP protocol stack

TCP/IP LAYER 4: NETWORK (LINK) LAYER

- Set of protocols and mediums to send packets across the individual links that make up the end-to-end communication path.
 - Framing (append headers to datagrams/packets)
 - How to access a link shared by multiple hosts
 - Reliable delivery
 - Address resolution (Translate logical to physical: IP to MAC)
 - Reverse address resolution

TCP/IP MODEL -- ADDRESSING

- Four levels of addresses are used in the TCP/IP model:
 - Physical address: Ex. Ethernet address, machine address
 - Logical address: IP address
 - Port number
 - Specific:URL, Email address, domain name

PHYSICAL ADDRESSES

- The physical addresses will change from hop to hop,
- but the logical addresses usually remain the same.

IP (1,3)

IP (1,3)

TCP/IP EXAMPLE 2: THRU A ROUTER

TCP/IP WITH PORT ADDRESSES

SERVER IN TCP/IP

• Server Port Number – 0 to 1023 are reserved to well-known services (applications).

Protocol	Reserved Port #	Comments
FTP	21	File Transfer
telnet	23	remote login
SMTP	25	E-mail
DNS	53	Domain name system
HTTP	80	World Wide Web