

Statistical Inference and Hypothesis Testing

Jose M Sallan jose.maria.sallan@upc.edu

Quantitative Research Methods

May 8, 2018

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Jose M Sallan (QRM) Hypothesis May 8, 2018 1 / 34

Outline

- Statistical inference
- 2 Hypothesis testing
- 3 Type I and type II errors
- Replication crisis

2 Hypothesis testing

- Type I and type II errors
- 4 Replication crisis

Jose M Sallan (QRM) Hypothesis May 8, 2018 3 / 34

Statistics is a branch of mathematics dealing with the collection, analysis, interpretation, presentation, and organization of data.

Descriptive statistics is solely concerned with properties of the observed data.

The aim of **inferential statistics** is to deduce properties about the probability distribution of a **population** analyzing data from a **sample**.

Source: https://ies.ed.gov/blogs/nces/2016/04/05/default

2 Hypothesis testing

- Type I and type II errors
- 4 Replication crisis

 Jose M Sallan (QRM)
 Hypothesis
 May 8, 2018
 5 / 34

Statistical hypothesis testing

Statistical hypothesis testing is an attempt to **detect an effect** on a **population** from data taken from a **sample**.

Detecting an effect (mean)

Change in blood pressure after taking experimental drug A in n = 50 participants:

Has the drug any effect? \Rightarrow Is the **population mean** of change of blood pressure **different from zero**?

Null and alternative hypohesis

The first step to hypothesis testing is to define null and alternative hypotesis:

- Null hypothesis: there is no effect in the population.
- Alternative hypothesis: there is effect in the population.

In this case, absence of effect means that the population mean μ of differences is equal to zero:

- $H_0: \mu = 0$
- $H_1: \mu \neq 0$

Then we need to know what is the **probability distribution of sample** variable if H_0 is true.

Probability distributions

Normal $N(\mu, \sigma)$ and the **chi-square** χ^2 .

Normal distribution

Chi-squared distribution

Any normal distribution can be transformed into the **standard normal distribution** N(0,1) by:

$$\bar{z} = \frac{x - \mu}{\sigma}$$

The central limit theorem

The **central limit theorem** for the sample mean establishes that the sample mean \bar{x} computed with n elements of a random variable x of mean μ and variance σ follows a normal distribution with mean μ and variance σ/\sqrt{n} .

The variable:

$$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$$

follows a N(0,1) distribution.

The Student's t distribution

Usually we don't know the population standard deviation σ , but the sample standard deviation s. The variable:

$$t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$$

Follows a Student's *t*-distribution of n-1 degrees of freedom.

Student's t-distribution

For large enough values of n, Student's t is similar to a normal distribution.

Null and alternative hypohesis

We have to test the null hypotesis:

- $H_0: \mu = 0$
- $H_1: \mu \neq 0$

Now we know that, **if** H_0 **is true**, the variable:

$$t = \frac{\bar{x}}{s/\sqrt{n}}$$

follows a Student's t-distribution of n-1=49 degrees of freedom.

Null and alternative hypohesis

For the sample of drug A, we know that:

$$\bar{x} = 0.5872$$
 $s = 2.762$

If H_0 is true, then $\mu=0$ so the standardized value is:

$$t = \frac{\bar{x} - \mu}{s / \sqrt{n}} = \frac{0.5872 - 0}{2.762 / \sqrt{50}} = 1.503$$

Is this a surprising value on a t_{49} distribution?

Introducing p-values

To rate the extent to an observed value of the probability distribution is surprising, we use p-values.

A **p-value** is the probability of getting the observed or a more extreme value, assuming that the null hypothesis is true.

The p-value for $t_{49} = 1.503$ is p = 0.1392.

We can observe a value of 1.503 or higher coming from a t_{49} distribution with a probability of 13.92%. Is this p-value high or low?

Thresholds of p-values

We can consider that we have found a significant effect when p < 0.05. This is an arbitrary value, arising from common practice.

Source: https://xkcd.com/1478/.

16 / 34

Thresholds of p-values

In a two-tailed test, we assume that values can be positive or negative, so the probability is split on both sides. This are the tails of a two-tailed test for p=0.05 (values ± 1.96):

Two-tails with alpha=0.05

Testing the null hypothesis

In the example of drug A we have that the p-value obtained is larger than 0.05, so we **cannot reject the null hypothesis**.

We can do it faster with ${\bf R}$ using the t.test function (values are stored in vector a):

```
One Sample t-test

data: a

t = 1.5032, df = 49, p-value = 0.1392
alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:
-0.1978011 1.3721480
sample estimates:
mean of x
0.5871735
```

> t.test(a)

Testing the null hypothesis

We have made another test with a drug B, obtaining the following values:

Change in blood pressure

Testing the null hypothesis

For this sample, we obtain that p < 0.01, therefore we can reject the null hypothesis:

```
One Sample t-test

data: b

t = -2.8835, df = 49, p-value = 0.005827

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

-2.449835 -0.437545

sample estimates:

mean of x

-1.44369
```

> t.test(b)

Means comparison

Two possible contexts for mean comparison:

- Paired data: comparison of two observations taken from the same sample (e.g., scores before and after taking a course).
- Non-paired data: comparison of means of two independent samples.

See details of implementation in ${f R}$ in:

https://www.statmethods.net/stats/ttest.html.

Correlation

The test H_0 : $\rho = 0$ for the population Pearson correlation let us know if a relationship exists between two variables.

If H_0 is true and r is the sample correlation taken from n observations, the value:

$$\frac{r}{\sqrt{1-r^2}}\sqrt{n-2}$$

follows a t_{n-2} distribution.

We can perform correlational analysis using functions of psych and corrplot packages.

2 Hypothesis testing

- 3 Type I and type II errors
- 4 Replication crisis

Jose M Sallan (QRM) Hypothesis May 8, 2018 23 / 34

Distribution of p-values when H_0 is true

Let's obtain 1,000 mean samples of n=50 from a variable with $\mu=0$, and let's compute the p-value of H_0 : $\mu=0$ for each:

We observe that:

- p-values are uniformly distributed, if the number of samples is large enough.
- There is a probability p = 0.05 of rejecting H_0 when it is true. This is a **Type I error**.

Distribution of p-values when H_0 is false

Let's obtain 1,000 mean samples of n=50 from a variable with $\mu=-1$, and let's compute the p-value of H_0 : $\mu=0$ for each:

Now most of the p-values are smaller than 0.05, but the 34.2 % are larger. In this cases we are accepting H_0 when it is false. This is a **Type II error**.

Distribution of p-values when H_0 is false

We can **reduce the Type II error** rate **increasing the sample size** (rate is 7.9% for n = 100 and 0% for n = 1000):

Type I and type II errors

	H_0 true	H_0 false
Accept H_0 :	Correct inference	Type II error β : false neg-
non-significant	$(1-\alpha)$: true nega-	ative.
finding.	tive.	
Reject H ₀ : sig-	Type I error α : false pos-	Correct inference
nificant finding.	itive.	$(1-\beta)$: true posi-
		tive.

- \bullet α is the Type I error rate. Can be controlled setting a p-value.
- ullet eta is the Type II error rate, and 1-eta the statistical power of the test.

Type I and type II errors

Let's consider that:

- There is a 50% probability that an effect really exists.
- We have fixed a Type I eror rate of $\alpha = 0.05$ and $1 \beta = 0.8$.

	<i>H</i> ₀ true 50%	<i>H</i> ₀ false 50%
Accept H_0 :	Correct inference: true	Type II error: false nega-
non-significant	negative. $0.5 * 0.95 =$	tive. $0.5 * 0.2 = 0.1$
finding.	0.475	
Reject H_0 : sig-	Type I error: false posi-	Correct inference: true
nificant finding.	tive. $0.5 * 0.05 = 0.025$	positive. $0.5 * 0.8 = 0.4$

... the most likely result is true negative.

Learn more at: http://rpsychologist.com/d3/NHST/

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 ♀ ○

Multiple tests

Performing an analysis with multiple tests may lead to **error inflation**. If we set a Type I error rate of α , the probability of having at least one Type I error when performing k tests is:

$$1-(1-\alpha)^k$$

Some values of errors:

k	error
1	0.05
2	0.0975
5	0.226
10	0.401

Multiple tests

Type I error inflation can be corrected being more exigent with α when multiple test are performed.

Bonferroni correction: set Type I error rate to α/k . It is considered too conservative, and can yield to higher Type II errors. Other methods can be found in:

https://en.wikipedia.org/wiki/Family-wise_error_rate.

2 Hypothesis testing

- 3 Type I and type II errors
- Replication crisis

Jose M Sallan (QRM) Hypothesis May 8, 2018 31 / 34

Replication crisis

Hypothesis testing is a powerful tool to make scientific discoveries through statistical inference.

A careless use of hypothesis testing may lead to misleading results, as unnoticed Type I or Type II error rates:

- p-hacking: making multiple (unreported) statistical tests until a "good" p-value appears (e.g., optional stopping).
- HARKing: hypothesizing after the results are known.
- Publication bias: journal editors discourage publication of non-significant results and replication studies.

https://en.wikipedia.org/wiki/Replication_crisis

Replication crisis

Source: https://xkcd.com/882/.

Replication crisis

Remedies for replication crisis:

- Larger samples, lower Type I error rates.
- Encourage replication studies.
- Tackling publication bias with pre-registration of studies.
- Sharing raw data in online repositories.