FMI, Info, Anul I

Logică matematică și computațională

Seminar 6

(S6.1) Să se arate, folosind substituția, că formula

$$\chi := (((v_0 \to \neg (v_3 \to v_5)) \to v_6) \land (\neg (v_4 \to v_{10}) \to v_2)) \to ((v_0 \to \neg (v_3 \to v_5)) \to v_6)$$

este tautologie.

Demonstrație: Ştim că $v_0 \wedge v_1 \to v_0$ este tautologie. Aplicăm Propoziția 1.21.(ii) pentru $\varphi := (v_0 \wedge v_1) \to v_0, \ v := v_0 \ \text{şi} \ \chi := (v_0 \to \neg (v_3 \to v_5)) \to v_6$ pentru a obține că:

$$\psi := \varphi_v(\theta) = (((v_0 \to \neg(v_3 \to v_5)) \to v_6) \land v_1 \to ((v_0 \to \neg(v_3 \to v_5)) \to v_6)$$

este tautologie. Aplicăm încă o dată Propoziția 1.21.(ii) pentru $\varphi := \psi$, $v := v_1$ și $\chi := \neg(v_4 \to v_{10}) \to v_2$ pentru a obține că χ este tautologie.

(S6.2) Fie $\Gamma \cup \{\varphi, \psi\} \subseteq Form$. Să se demonstreze:

- (i) Dacă $\Gamma \vDash \varphi$ și $\Gamma \vDash \varphi \rightarrow \psi$, atunci $\Gamma \vDash \psi$.
- (ii) $\Gamma \cup \{\varphi\} \vDash \psi$ dacă și numai dacă $\Gamma \vDash \varphi \to \psi$.
- (iii) $\Gamma \vDash \varphi \wedge \psi$ dacă și numai dacă $\Gamma \vDash \varphi$ și $\Gamma \vDash \psi.$

Demonstrație:

- (i) Fie e un model al lui Γ . Vrem să arătăm că e este model al lui ψ . Cum $\Gamma \vDash \varphi$ şi $\Gamma \vDash \varphi \to \psi$, avem $e \vDash \varphi$ şi $e \vDash \varphi \to \psi$. Atunci $e^+(\varphi) = 1$ şi $e^+(\varphi \to \psi) = 1$. Deoarece $e^+(\varphi \to \psi) = e^+(\varphi) \to e^+(\psi) = 1 \to e^+(\psi) = e^+(\psi)$, rezultă că $e^+(\psi) = 1$, adică $e \vDash \psi$.
- (ii) " \Rightarrow " Fie e un model al lui Γ . Vrem să arătăm că e este model al lui $\varphi \to \psi$. Avem două cazuri:

- (a) $e^+(\varphi) = 0$. Atunci $e^+(\varphi \to \psi) = 0 \to e^+(\psi) = 1$, deci $e \vDash \varphi \to \psi$.
- (b) $e^+(\varphi) = 1$, deci $e \models \varphi$. Atunci $e \models \Gamma \cup \{\varphi\}$, şi prin urmare, $e \models \psi$, adică $e^+(\psi) = 1$. Rezultă că $e^+(\varphi \to \psi) = 1 \to 1 = 1$, deci $e \models \varphi \to \psi$.

"\(\infty\)" Fie e un model al lui $\Gamma \cup \{\varphi\}$. Atunci $e^+(\varphi) = 1$ şi $e \models \Gamma$, deci, din ipoteză, $e^+(\varphi \to \psi) = 1$. Obţinem atunci, ca la (i), că $e^+(\psi) = 1$, adică $e \models \psi$.

(iii) $\Gamma \vDash \varphi \land \psi \iff \text{pentru orice model } e \text{ al lui } \Gamma, \text{ avem } e^+(\varphi \land \psi) = 1 \iff \text{pentru orice model } e \text{ al lui } \Gamma, \text{ avem } e^+(\varphi) = e^+(\psi) = 1 \iff \text{pentru orice model } e \text{ al lui } \Gamma, \text{ avem } e \vDash \varphi \text{ si } e \vDash \psi \iff \Gamma \vDash \varphi \text{ si } \Gamma \vDash \psi.$

Notație. Pentru orice mulțime Γ de formule și orice formulă φ , notăm cu $\Gamma \vDash_{fin} \varphi$ faptul că există o submulțime finită Δ a lui Γ a.î. $\Delta \vDash \varphi$.

(S6.3) Să se arate că pentru orice mulțime de formule Γ și orice formulă φ avem că $\Gamma \vDash_{fin} \varphi$ dacă și numai dacă $\Gamma \cup \{\neg \varphi\}$ nu este finit satisfiabilă.

Demonstrație:

Avem întâi că $\Gamma \vDash_{fin} \varphi \iff \text{există } \Delta \subseteq \Gamma \text{ finită cu } \Delta \vDash \varphi \iff (\text{din Propoziția 1.30.(i)})$ există $\Delta \subseteq \Gamma \text{ finită cu } \Delta \cup \{\neg \varphi\} \text{ nesatisfiabilă (*).}$

Apoi, cum o mulţime finit satisfiabilă înseamnă o mulţime pentru care orice submulţime finită a sa e satisfiabilă, avem că $\Gamma \cup \{\neg \varphi\}$ nu e finit satisfiabilă \iff există $\Delta' \subseteq \Gamma \cup \{\neg \varphi\}$ finită astfel încât Δ' e nesatisfiabilă (**).

Noi vrem să arătăm că (*) este echivalent cu (**).

Pentru "(*) implică (**)", luăm $\Delta' := \Delta \cup \{\neg \varphi\}$, ce este, clar, o submulţime finită a lui $\Gamma \cup \{\neg \varphi\}$.

Pentru "(**) implică (*)", luăm $\Delta := \Delta' \cap \Gamma$. Clar, Δ este o submulţime finită a lui Γ . Rămâne de arătat că $\Delta \cup \{\neg \varphi\}$ e nesatisfiabilă. Cum $\Delta' \subseteq \Gamma \cup \{\neg \varphi\}$, avem:

$$\Delta' = \Delta' \cap (\Gamma \cup \{\neg \varphi\}) = (\Delta' \cap \Gamma) \cup (\Delta' \cap \{\neg \varphi\}) = \Delta \cup (\Delta' \cap \{\neg \varphi\}) \subseteq \Delta \cup \{\neg \varphi\}.$$

Cum Δ' e nesatisfiabilă, rezultă că și $\Delta \cup \{\neg \varphi\}$ e nesatisfiabilă.

(S6.4) Demonstrați că următoarele afirmații sunt echivalente:

- (V1) Pentru orice $\Gamma \subseteq Form$, Γ este satisfiabilă ddacă Γ este finit satisfiabilă.
- (V2) Pentru orice $\Gamma \subseteq Form$, Γ este nesatisfiabilă ddacă Γ nu este finit satisfiabilă.
- (V3) Pentru orice $\Gamma \subseteq Form$, $\varphi \in Form$, $\Gamma \vDash \varphi$ dacă și numai dacă $\Gamma \vDash_{fin} \varphi$.

Demonstrație:

Echivalența între (V1) și (V2) este evidentă.

```
Demonstrăm că (V2) \Rightarrow (V3):
\Gamma \vDash \varphi \iff \Gamma \cup \{\neg \varphi\} \text{ este nesatisfiabilă (conform Propoziției 1.30.(i))} \\ \iff \Gamma \cup \{\neg \varphi\} \text{ nu este finit satisfiabilă (conform (V2) pentru } \Gamma \cup \{\neg \varphi\}) \\ \iff \Gamma \vDash_{fin} \varphi \text{ (conform (S6.3))}.
\text{Demonstrăm că (V3)} \Rightarrow \text{(V2)}:
\Gamma \text{ este nesatisfiabilă} \iff \Gamma \vDash \bot \text{ (conform Propoziției 1.29)} \\ \iff \Gamma \vDash_{fin} \bot \text{ (conform (V3) pentru } \Gamma \text{ și } \bot) \\ \iff \text{ există o submulțime finită } \Delta \text{ a lui } \Gamma \text{ a.î. } \Delta \vDash \bot \\ \iff \text{ există o submulțime finită } \Delta \text{ a lui } \Gamma \text{ a.î. } \Delta \text{ este nesatisfiabilă (conform Propoziției 1.29)} \\ \iff \Gamma \text{ nu este finit satisfiabilă.}
```

3