Robot Dynamics Quiz 1

Prof. Marco Hutter Teaching Assistants: Jan Carius, Ruben Grandia, Jean Pierre Sleiman, Maria Vittoria Minniti

October 16, 2019

Duration: 1h 15min

Permitted Aids: The exam is open book, which means you can use the script, slides, exercises, etc; The use of internet (beside for licenses) is forbidden; no communication among students during the test.

1 Instructions

- 1. Download the ZIP file for quiz 1 from Piazza. Extract all contents of this file into a new folder and set MATLAB's¹ current path to this folder.
- 2. Run init_workspace in the Matlab command line
- 3. All problem files that you need to complete are located in the problems folder
- 4. Run evaluate_problems to check if your functions run. This script does not test for correctness. You will get 0 points if a function does not run (e.g., for syntax errors).
- 5. When the time is up, zip the entire folder and name it ETHStudentID_StudentName.zip
 Upload this zip-file through the following link
 https://www.dropbox.com/request/CkoAClzaACSfpzOR6MzV.
 You will receive a confirmation of receipt.
- 6. If the previous step did not succeed, you can email your file to robotdynamics@leggedrobotics.com from your ETH email address with the subject line [RobotDynamics] ETHStudentID - StudentName

¹Online version of MATLAB at https://matlab.mathworks.com/

Figure 1: Three degree of freedom robotic leg attached to a fixed base. All joints rotate around their local positive z axis. The z axis of the frames $\{1\}$, $\{2\}$, $\{3\}$ is parallel to the $_0z$ axis.

2 Questions

In this quiz, you will model the forward, differential, and inverse kinematics of the robotic leg shown in Fig. 1. It is a 3 degrees of freedom leg connected to a **fixed** base.

Let $\{0\}$ be the base frame, which is displaced by L from the inertial frame $\{I\}$ along the Iz axis. The leg is composed of three links and is displaced by l_0 and l_1 from the base frame $\{0\}$ along the $_0y$, and $_0z$ axis, respectively. The links' segments have lengths l_2 , l_3 , l_4 , l_5 .

The generalized coordinates are defined as

$$\boldsymbol{q} = \left[\begin{array}{ccc} q_1 & q_2 & q_3 \end{array} \right]^\top . \tag{1}$$

In the following questions, all required parameters are passed to your functions in a structure called params. You can access it as follows:

```
1 10 = params.10;

2 11 = params.11;

3 12 = params.12;

4 13 = params.13;

5 14 = params.14;

6 15 = params.15;

7 L = params.L;
```

Question 1. 6 P.

Let $\{F\}$ be the end-effector (foot) frame. Find the homogeneous transform between the inertial frame $\{I\}$ and the foot frame $\{F\}$, i.e., the matrix \mathbf{T}_{IF} as a function of the generalized coordinates q.

Hint: Try to find the transforms of subsequent frames first.

You should implement your solution in the function jointToEndeffectorPose.m

NOTE: Do NOT solve Question 1 using the transforms provided in the solutions folder. The provided solutions correspond to a choice of coordinate frames with a (secret) rotational offset from those shown in Fig. 1. Questions 2 to 4 MUST be solved using the homogeneous transforms provided in the solutions folder (T_IO_solution, T_O1_solution, etc.), do not use your own implementation from Question 1.

Question 2. 6 P.

Derive the geometric Jacobian ${}_{I}\mathbf{J}_{0} \in \mathbb{R}^{6\times 3}$ of the **knee**, at point **K**. This Jacobian should map the generalized velocities $\dot{\boldsymbol{q}}$ to linear and angular velocities of the knee in $\{I\}$ frame, i.e.,

$$\begin{pmatrix} {}_{I}\boldsymbol{v}_{K} \\ {}_{I}\boldsymbol{\omega}_{K} \end{pmatrix} = {}_{I}\mathbf{J}_{0} \; \dot{\boldsymbol{q}} \; . \tag{2}$$

Hints:

- 1. Use our provided functions for the transforms (Note: Although these transforms relate to a different choice of coordinate frames with respect to Fig. 1, the inertial frame and thus the rotation axis is the same).
- 2. The MATLAB function for cross product $a \times b$ is cross(a,b)

You should implement your solution in the function jointToKneeGeometricJacobian.m

Implement an inverse-kinematic motion control algorithm for the robot leg. Your implementation should return the joint angles q_{next} , which are the joint angles after one sampling time, t_s , i.e. $q_{\text{next}} = q(t + t_s)$. The returned angles should make the **foot** track a pre-defined reference trajectory.

We indicate with $_{I}\boldsymbol{p}\in\mathbb{R}^{3}$ and $_{I}\boldsymbol{w}\in\mathbb{R}^{3}$ the following vectors:

$${}_{I}\boldsymbol{p} = \begin{bmatrix} {}_{I}y_{F} \\ {}_{I}z_{F} \\ {}_{\alpha} \end{bmatrix}, \quad {}_{I}\boldsymbol{w} = \begin{bmatrix} {}_{I}\dot{y}_{F} \\ {}_{I}\dot{z}_{F} \\ {}_{\dot{\alpha}} \end{bmatrix}, \tag{3}$$

where the angle α is indicated in Fig. 1. It is the rotation angle around $_{I}x$ between the x-axis of the foot frame, $_{F}x$, and the drawn vertical axis (aligned with $_{I}z$). The desired vectors $_{I}\boldsymbol{p}_{\text{des}}$, $_{I}\boldsymbol{w}_{\text{des}}$ are passed as inputs to the matlab function.

For this question, we provide

- the current vector p, derived from the provided generalized coordinates.
- the analytical Jacobian $\mathbf{J}_A \in \mathbb{R}^{3 \times 3}$ that fulfills

$$\begin{pmatrix} i\dot{y}_F\\ i\dot{z}_F\\ \dot{\alpha} \end{pmatrix} = \mathbf{J}_A \ \dot{\boldsymbol{q}} \ . \tag{4}$$

You can call it with jointToEndeffectorAnalyticJacobian_solution(q, params)

• a function for calculating damped pseudo-inverses, as you have seen in the exercise: pseudoInverseMat_solution(J, lambda)

You should implement your solution in the function inverseKinematicControl.m

Your implementation is judged based on how well it tracks a predefined trajectory. Execute main_control_loop.m to see what the solution should look like. To visualize your implementation, set the variable use_solution to 0.

Question 4. 3 P.

Assume now that the base has an additional rotation described by the XYZ Euler parametrization. The rotation is expressed as three consecutive rotations; first around the x-axis of frame $\{0\}$ resulting in the frame $\{0'\}$, afterwards a rotation around the y-axis of frame $\{0''\}$, resulting in frame $\{0''\}$, and finally a rotation around the z-axis of frame $\{0''\}$ resulting in the frame $\{B\}$.

Find the orientation of the foot frame with respect to the inertial frame C_{IF} .

The transform from frame $\{B\}$ to frame $\{1\}$ is provided by T_B1_solution(q, params).

You should implement your solution in the function footFrameOrientationWithBaseRotation.m