Algorithms and Data Structures Homework 2, Problem 3

First name and last name: Göksenin Cakir

Proof of transitivity

f@g means feO(g)

claim: f(n) = E O(g(n)) and g(n) E O(h(n)) => f(n) E O(h(n))

Proof:

 $f(n) \in O(g(n))$ means: there are constants n_{170} and q_{170} Such that $0 \le f(n) \le c_{11} g(n)$ for n_{17}, n_{11}

g(n) EO(h(n)) means: there are constants no 70 and c270 such that OSg(n) & c2h(n) for n7,02.

We obtain 05 fln) 5 cagla) 5 cacz hla) for nz, max(n,,n2).

Since C=C1C2 and no = max (ng, n2) are positive constants, f(n) &O(hh))

follows by the -O definition.

Proof of reflexivity

We want to show $f(n) \in O(f(n))$, which means: there are constants $n_0 > 0$, c > 0 such that $O \leq c f(n) \leq f(n)$ for $n > n_0$.

This is true, because $1.f(n) \le f(n)$ for all natural numbers, and f(n) is assumed to be asymptotically nonnegative.

More precisely, c=1 and some large enough no satisfy the definition, so $f(n) \in O(f(n))$