

PANIMALAR ENGINEERING COLLEGE

An Autonomous Institution

[JAISAKTHI EDUCATIONAL TRUST]

Approved by AICTE | Affiliated to Anna University | Recognized by UGC All Eligible UG Programs are Accredited by NBA

Bangalore Trunk Road, Varadharajapuram, Poonamallee, Chennai- 600 123

TECHDIVATHON

Empower, Innovate, Elevate: Code the Future Together

Domain: E-VEHICLES

Problem Statements:

S. No	Title	Problem Statement	Description
1	Efficient Battery	Design advanced thermal	Uses innovative cooling techniques
	Cooling Systems	management systems to prevent	to maintain optimal temperatures,
		overheating in lithium-ion batteries	ensuring safety and extending
		in EVs.	battery life.
2	Lightweight	Develop a lightweight and durable	Reduces vehicle mass with materials
	Chassis for E-	chassis using composite materials	like carbon fiber, enhancing energy
2	Vehicles	to improve range and efficiency.	efficiency and crash resistance.
3	Wireless Charging	Build inductive charging pads for	Uses electromagnetic fields for
	Infrastructure	wireless EV recharging, improving	seamless energy transfer, eliminating
		convenience and reducing cables.	cable wear and enhancing charging
4	Advanced	Create regenerative braking	ease. Converts kinetic energy into
4	Regenerative	systems to maximize energy	electrical energy, enhancing
	Braking Systems	recovery without compromising	recovery and smooth braking
	Draking bystems	braking.	performance.
5	Real-Time Battery	Design sensors for continuous	Tracks parameters like temperature
	Health Monitoring	battery health monitoring and	and charge cycles for real-time
		proactive issue alerts.	maintenance, reducing failure risks.
6	Swappable Battery	Develop modular battery systems	Allows exchanging of depleted
	Modules	for quick swaps at service stations,	batteries with pre-charged ones,
		reducing downtime.	enhancing EV convenience and
			flexibility.
7	High-Efficiency	Create compact and energy-	Enhances power delivery and energy
	Electric Motors	efficient motors with improved	conversion efficiency, improving
		torque for better EV performance.	acceleration and driving dynamics.
8	Solar-Assisted EV	Design solar-powered chargers to	Harnesses renewable energy with
	Charging Stations	reduce grid dependency and	battery storage for continuous EV
	3414 4 1 5	emissions.	charging, even in low sunlight.
9	Multi-Axle Drive	Develop systems to support multi-	Distributes power effectively across
	Systems for Heavy-	axle electric drivetrains for trucks	axles, improving traction, stability,
10	Duty EVs Integrated Safety	and buses.	and performance under heavy loads.
10	Sensors for EVs	Build sensors to detect and prevent short circuits, fires, and	Enhances safety by monitoring critical parameters in real time,
	Sensors for EVS		<u> </u>
		overheating in EVs.	activating fail-safes as needed.

11	Energy	Develop AI-powered tools for	Uses ML to study behaviors and
	Optimization	analyzing driving patterns to	traffic patterns, adjusting energy use
	Algorithms	optimize energy consumption.	for efficiency and range.
12	EV Fleet	Create software for centralized	Provides insights to optimize
	Management	fleet monitoring, charging	operations, reducing downtime and
	Systems	schedules, and maintenance.	costs.
13	Battery Lifecycle	Build ML models to predict battery	Analyzes data to forecast
	Prediction Tools	performance and lifespan.	degradation trends, improving
			maintenance schedules and safety.
14	Autonomous	Design AI-powered software for	Uses sensors and cameras for
	Parking for EVs	self-parking in crowded spaces.	precise, autonomous parking,
			enhancing convenience and safety.
15	Smart Navigation	Develop tools to guide EV users to	Optimizes routes with real-time
	for EV Charging	nearby stations based on traffic and	station capacity and charging speed,
		availability.	reducing range anxiety.
16	Over-The-Air	Create secure platforms for remote	Enables continuous performance
-	Software Updates	EV firmware updates.	enhancements and bug fixes without
			physical intervention.
17	Predictive	Design IoT-based systems for early	Monitors vehicle components,
	Maintenance Alerts	failure detection and maintenance.	predicting wear or malfunctions to
			reduce unexpected breakdowns.
18	Load Balancing for	Develop algorithms for power load	Dynamically allocates energy during
10	Charging Networks	distribution across EV charging	peak hours, minimizing grid strain
		stations.	and optimizing efficiency.
19	Vehicle-to-Grid	Build tools for EV-grid	Allows EVs to act as decentralized
	Communication	communication, enabling dynamic	energy resources, supporting grid
	Systems	energy storage and supply.	stability during surges.
20	Eco-Driving	Create apps providing real-time	Monitors behaviors like acceleration
	Assistant	feedback to improve driving	and braking, offering actionable
		efficiency.	insights for better energy
			conservation.
21	Bidirectional	Enable EVs to act as energy	Supports energy storage solutions,
	Charging Systems	sources for homes or feeding back	reducing dependency on
		into the grid.	conventional power sources.
22	Smart Charging	Develop IoT-integrated chargers	Optimizes charging sessions based
	Stations with IoT	for real-time monitoring and	on demand and grid conditions,
		dynamic pricing.	enhancing user convenience.
23	Self-Adjusting	Build AI-driven suspension	Improves ride comfort and energy
	Suspension for EVs	systems for dynamic adjustments.	efficiency by adapting to road
	1	j j i i i i j i i i i i i i i i i i i i	conditions and vehicle load.
24	Dynamic Range	Design systems combining real-	Accounts for factors like terrain and
	Estimation Systems	time hardware and AI for accurate	weather, offering precise range
		range predictions.	estimates under varying conditions.
25	Renewable Energy-	Create solutions combining	Integrates solar or wind energy,
	Driven EV	renewable power generation with	maximizing clean energy use for EV
	Chargers	optimized charging schedules.	charging infrastructure.
		permisses emarging benedules.	

Reviewer's Digital Signature

Reviewer's Name:
Position :
Organization:
Date:
Digital Signature: