Uniwersytet Warszawski

Wydział Matematyki, Informatyki i Mechaniki

Filip Binkiewicz

Nr albumu: 332069

Własność A dla kompleksów kostkowych CAT(0)

Praca licencjacka na kierunku MATEMATYKA

> Praca wykonana pod kierunkiem prof. dr hab. Sławomira Nowaka Instytut Matematyki

Czerwiec 2015

Oświadczenie kierującego pracą

Potwierdzam, że niniejsza praca została przygotowana pod moim kierunkiem i kwalifikuje się do przedstawienia jej w postępowaniu o nadanie tytułu zawodowego.

Data

Podpis kierującego pracą

Oświadczenie autora (autorów) pracy

Świadom odpowiedzialności prawnej oświadczam, że niniejsza praca dyplomowa została napisana przeze mnie samodzielnie i nie zawiera treści uzyskanych w sposób niezgodny z obowiązującymi przepisami.

Oświadczam również, że przedstawiona praca nie była wcześniej przedmiotem procedur związanych z uzyskaniem tytułu zawodowego w wyższej uczelni.

Oświadczam ponadto, że niniejsza wersja pracy jest identyczna z załączoną wersją elektroniczną.

Data

Podpis autora (autorów) pracy

Streszczenie

Praca ta skupia się na dowodzie, iż kompleksy kostkowe CAT(0) mają własność A.

Słowa kluczowe

Kompleks kostkowy CAT(0), własność A

Dziedzina pracy (kody wg programu Socrates-Erasmus)

- 11.0 Matematyka, Informatyka:
- 11.1 Matematyka

Klasyfikacja tematyczna

14 Algebraic Geometry

Tytuł pracy w języku angielskim

Property A for CAT(0) cube complexes

Spis treści

M	Iotywacja	5
1.	Wprowadzenie	7
	1.1. Przestrzenie CAT(0)	7
	1.2. Kompleksy kostkowe CAT(0)	8
	1.3 Własność A	9

Motywacja

Motywacja bpeaasdgdagafg

Rozdział 1

Wprowadzenie

Pierwszy rozdział tej pracy poświęcę przypomnieniu podstawowych definicji, twierdzeń i przykładów dotyczących jej tematu. Aby zachować ciągłość pracy, postaram się uniknąć przytaczania rozległych dowodów. Dla zainteresowanych w odpowiednich miejscach znajdą się odsyłacze do literatury.

1.1. Przestrzenie CAT(0)

Niech (X,d) będzie przestrzenią metryczną. Odcinkiem geodezyjnym nazywamy przekształcenie izometryczne $\mathbb{R} \supset I \xrightarrow{\rho} X$, gdzie I = [a,b] jest odcinkiem. Przestrzeń X nazwiemy (jednoznacznie) geodezyjną, jeśli każde dwa punkty można połączyć (jednoznacznie wyznaczonym) odcinkiem geodezyjnym.

Przykład 1.1.1. Każda przestrzeń euklidesowa \mathbb{R}^n jest jednoznacznie geodezyjna, jak również każdy jej wypukły podzbiór. Sfera S^2 jest geodezyjna, ale nie jednoznacznie - dwa bieguny można połączyć ścieżką geodezyjną na nieskończenie wiele sposobów. Każdy spójny graf metryczny jest przestrzenią geodezyjną.

Dalej będziemy rozważać przestrzenie geodezyjne. Dla wygody przez [x, y] będziemy oznaczać (dowolny) odcinek geodezyjny łączący $x \in X$ z $y \in X$ (a dokładniej obraz tego odcinka).

Zwróćmy uwagę, że jeśli X jest przestrzenią geodezyjną, to dla każdej trójki $(x,y,z) \in X^3$ istnieje trójka $(\overline{x},\overline{y},\overline{z}) \in (\mathbb{R}^2)^3$ taka, że $d(x,y) = d_{\mathbb{R}^2}(\overline{x},\overline{y}), \ d(x,z) = d_{\mathbb{R}^2}(\overline{x},\overline{z}), \ d(y,z) = d_{\mathbb{R}^2}(\overline{y},\overline{z}).$ Innymi słowy, każdemu trójkątowi z X można przypisać trójkąt z przestrzeni euklidesowej \mathbb{R}^2 o bokach takiej samej długości. Taki trójkąt jest wyznaczony jednoznacznie z dokładnością do izometrii przestrzeni \mathbb{R}^2 i nazwiemy go trójkątem porównania (x,y,z).

Definicja 1.1.1. Powiemy, że przestrzeń geodezyjna X jest CAT(0), jeśli dla każdej trójki $(x, y, z) \in X^3$ oraz punktu $p \in [y, z]$ oraz odpowiadającym im trójkątowi porównania $(\overline{x}, \overline{y}, \overline{z}) \in (\mathbb{R}^2)^3$ i punktowi $\overline{p} \in [\overline{y}, \overline{z}]$ zachodzi nierówność:

$$d(x,p) \leqslant d_{\mathbb{R}^2}(\overline{x},\overline{p})$$

Innymi słowy, w przestrzeniach CAT(0) trójkąty są "szczuplejsze" niż w przestrzeni euklidesowej. O takich przestrzeniach powiemy, że mają niedodatnią krzywizne.

Przykład 1.1.2. Nietrudno jest o kilka przykładów takich przestrzeni:

• Każda przestrzeń euklidesowa \mathbb{R}^n jest CAT(0). Wówczas wymieniona nierówność jest po prostu równościa.

• Graf metryczny jest przestrzenią CAT(0) wtedy i tylko wtedy, gdy jest drzewem.

Uwaga 1.1.1. Każda przestrzeń CAT(0) jest jednoznacznie geodezyjna.

Dowód. Przypuśćmy przeciwnie i niech $x,y \in X$ łączą dwa różne odcinki geodezyjne, powiedzmy $[x,y], \overline{[x,y]}$. Wówczas istnieją $[x,y] \ni p \neq \overline{p} \in \overline{[x,y]}$ takie, że $d(x,p) = d(x,\overline{p})$ oraz $d(y,p) = d(y,\overline{p})$. Wówczas trójkątowi (x,y,\overline{p}) w \mathbb{R}^2 odpowiada trójkąt zdegenerowany, zaś $d(p,\overline{p}) > 0$, co przeczy nierówności CAT(0)

Wniosek 1.1.1. Sfera S^2 nie jest przestrzenią CAT(0). Płaszczyzna \mathbb{R}^2 wyposażona w metrykę pochodzącą od normy ℓ_1 nie jest przestrzenią CAT(0)

1.2. Kompleksy kostkowe CAT(0)

Niech $K = [0, 1]^n$ będzie n-wymiarową kostką. Będzie to podstawowy "budulec" interesujących nas przestrzeni. Przez ścianę o kowymiarze równym 1 będziemy rozumieć zbiór

$$F_{i,\varepsilon} = \{x \in K : x_i = \varepsilon\}, \text{ dla } i = 1 \dots n \text{ oraz } \varepsilon \in \{0,1\}$$

Wszystkie ściany o niższym kowymiarze (o wyższym wymiarze) można otrzymać jako przecięcie ścian o wyższym kowymiarze.

Definicja 1.2.1. Niech K, K' będą dwiema kostkami oraz $F \subset K$, $F' \subset K'$ będą ich ścianami. **Sklejeniem** (lub **przyłączeniem**) K z K' nazwiemy izometrię $\varphi : F \to F'$.

Definicja 1.2.2. Przypuśćmy, że \mathcal{K} jest zbiorem kostek (dla każdego $K \in \mathcal{K}$ istnieje $n(K) \in \mathbb{N}$ takie, że $K \simeq [0,1]^{n(K)}$), zaś \mathcal{S} - zbiorem sklejeń elementów \mathcal{K} (każdemu $\varphi \in \mathcal{S}$ odpowiadają kostki $K = K(\varphi), K' = K'(\varphi) \in \mathcal{K}$ oraz ściany $F \subset K, F' \subset K'$. Załóżmy wreszcie, że taka para $(\mathcal{K}, \mathcal{S})$ spełnia następujące warunki:

- 1. Žadna kostka nie jest sklejona sama ze sobą.
- 2. Dla każdych dwóch kostek $K \neq K'$ istnieje co najwyżej jedno sklejenie $K \times K'$.

Wówczas w następujący sposób można zdefiniować kompleks kostkowy:

$$X = \left(\bigsqcup_{K \in \mathcal{K}} C \right) /_{\sim}$$

gdzie \sim dla każdego $\varphi \in \mathcal{S}$ utożsamia dziedzinę φ z jego obrazem, to znaczy:

$$\{x \sim \varphi(x) \mid \varphi \in \mathcal{S}, \ x \in \text{dom}(\varphi)\}\$$

Uwaga 1.2.1. W ten sposób zdefiniowany kompleks kostkowy jest przestrzenią metryczną, przy czym metryka długości¹ indukowana jest z metryki euklidesowej na $[0,1]^n \subset \mathbb{R}^n$. Odległość punktów x,y mierzona w metryce długości jest to infinum długości krzywych $\gamma:[a,b]\to X$ łączących x z y. Długość krzywej definiujemy następująco:

$$l(\gamma) = \sup_{a=t_0 \leqslant \dots \leqslant t_n = b} \sum_{i=0}^{n-1} d(\gamma(t_i), \gamma(t_{i+1}))$$

¹length metric

Stwierdzenie 1.2.1. Z powyższej definicji łatwo wynikają następujące fakty:

- Obcięcie rzutowania $p: \bigsqcup_{K \in \mathcal{K}} \to X$ do jednej kostki $K \in \mathcal{K}$
- Niepuste przecięcie dwóch kostek jest ścianą obydwu.

Przykład 1.2.1. Łatwo o kilka prostych przykładów:

- Rozważmy graf metryczny bez wierzchołków izolowanych, w którym każda krawędź ma długość 1. Każda krawędź jest izometryczna z [0, 1], zaś sklejenia to po prostu izometrie punktów. Jest to prosty przykład kompleksu kostkowego.
- Torus można interpretować jako kompleks kostkowy. Rozważmy zbiór $[0,3] \times [0,3] \subset \mathbb{R}^2$, w którym można wprowadzić podział na dziewięć części izometrycznych z $[0,1]^2$. Wtedy odpowiednie izometrie prowadzą do konstrukcji torusa (rysunek).

1.3. Własność A

Własność A jest pewnym przeniesieniem pojęcia średniowalności dla przestrzeni metrycznych. Przed właściwym wprowadzeniem tego pojęcia przypomne kilka podstawowych definicji dotyczących geometrii zgrubnej.

Przez X, Y będziemy oznaczać przestrzenie metryczne, d będzie oznaczać metrykę pochodzącą z przestrzeni, z której pochodzą jej argumenty. Jeśli będzie to konieczne, przez d_X, d_Y bedziemy dla ścisłości oznaczać metryki pochodzące odpowiednio z X i Y.

Definicja 1.3.1. Powiemy, że funkcja $\varphi:X\to Y$ jest **zgrubna**, jeśli spełnia następujące dwa warunki:

• (Bornologiczność) Dla każdego R > 0 istnieje S > 0 takie, że

$$d(x_1, x_2) < R \Rightarrow d(\varphi(x_1), \varphi(x_2)) < S$$

• (Właściwość) Dla każdego S>0 istnieje R>0 takie, że

$$d(\varphi(x_1), \varphi(x_2)) < S \Rightarrow d(x_1, x_2) < R$$

Przykład 1.3.1. Zanurzenie $\mathbb{Z} \hookrightarrow \mathbb{R}$ jest zgrubne. Każde przekształcenie liniowe $\mathbb{Z} \to \mathbb{Z}$, $n \to an+b$ jest zgrubne. Przekształcenie $\mathbb{Z} \ni n \to n^2 \in \mathbb{Z}$ nie jest zgrubne, bo nie jest bornologiczne $(d(n, n+1) = 1, \text{ a } d(n^2, n^2 + 2n + 1) = |2n+1|$ jest dowolnie duże).

Powiemy, że dwa przekształcenia $f_1, f_2: X \to Y$ są blisko, jeśli istnieje C>0 takie, że

$$d(f_1(x), f_2(x)) < C$$
 dla każdego $x \in X$

Zbiór $A \subset X$ jest r-gęsty, jeśli dla każdego $x \in X$ istnieje element $a \in A$ taki, że d(x, a) < r. Zbiór A jest zgrubnie gęsty, jeśli jest r-gęsty dla pewnego r > 0.

Definicja 1.3.2. Powiemy, że przestrzenie X,Y są **zgrubnie równoważne**, jeśli istnieją przekształcenia zgrubne $\varphi: X \to Y, \ \psi: Y \to X$ takie, że $\varphi \circ \psi$ jest blisko id $_{X}$, zaś $\psi \circ \varphi$ jest blisko id $_{X}$. Przestrzenie X,Y są zgrubnie równoważne wtedy i tylko wtedy, gdy istnieje $\varphi: X \to Y$ takie, że $\varphi(X) \subset Y$ jest podzbiorem zgrubnie gęstym.

Uwaga 1.3.1. Każda przestrzeń metryczna X zawiera dyskretny podzbiór zgrubnie gesty.

Dowód. Ustalmy $\varepsilon > 0$. Niech $\mathcal{D} = \{D \subset X : \forall_{x_1,x_2 \in D, x_1 \neq x_2} d(x_1,x_2) > \varepsilon\}$. Rodzina \mathcal{D} jest niepusta oraz każdy łańcuch jest ograniczony z góry przez swoją sumę. Wobec lematu Kuratowskiego- Zorna istnieje więc maksymalny element $D_0 \in \mathcal{D}$. Jest on ε - gęstym podzbiorem X. Istotnie, załóżmy przeciwnie - istnieje $x \in X$ taki, że $d(x,D_0) > \varepsilon$. Wtedy zbiór $D_0 \cup \{x\}$ należy do rodziny \mathcal{D} i zawiera w sobie D_0 , co przeczy maksymalności $D_0 \cup \{x\}$

Definicja 1.3.3.