Codici di Correzione degli Errori Architettura degli elaboratori

Laurea in Informatica

Docente: Nicolò Navarin

ECC – Error Correction Code

- Implementato nella memoria RAM di server e workstation
- Implementato in Cache in molte CPU (e.g. AMD ZEN, intel Xeon/Core)
- Single-Error-Correcting (SEC) code
 - Hamming Error Correcting Code
- SEC-DED: Single-Error-Correcting, Double Error Detecting

Codice di Hamming

a) 4 bit originali da salvare

0

0

b) Bit di controllo
per la correzione
errori
Parity bit: la somma
degli elementi di
ogni insieme deve
essere pari

c) Quando i bit
vengono letti, può
capitare un errore
(switch da 0 a 1 o
vice-versa) sia nei bit
del messaggio
originale che nei bit
di controllo

Figure 5.8 Hamming Error-Correcting Code

c) Algoritmo di correzione errori permette di individuare quale bit è affetto da errore e correggerlo

Codice di Hamming

- Permette di correggere errori di un singolo bit
- Quanti bit di controllo servono per un input di M bit?
 Chiamiamo tale numero K
- Idea:
 - Ognuno degli M+K bit (dati o di controllo) totale possono essere affetti da errore
 - per la correzione, ho bisogno di poter indicare quale degli
 M+k bit è affetto da errore, + il caso in cui non ci sono errori
 - Totale: M+K+1 combinazioni
- Ci serve il minimo K tale che $2^K \ge M + K + 1$

Codice di Hamming

- Ci serve il minimo K tale che $2^K \ge M + K + 1$
- Ad esempio, per M=8
 - Servono K=4 bit, infatti $2^4 \ge 8 + 4 + 1$

Codice di Hamming: come posizionare I bit di controllo?

 Sindrome: XOR (bit a bit) tra i bit di controllo di un messsaggio letti dalla RAM e quelli calcolati a partire dal corpo del messaggio

Desiderata:

- se la sindrome contiene tutti 0, non ci sono stati errori
- Se contiene un singolo bit a 1, l'errore è in un bit di controllo, quindi il messaggio rimane corretto
- Se contiene più bit a 1, indicano la posizione del bit con errore (di cui deve essere eseguito lo switch)
- Soluzione: bit di controllo in posizioni potenza di 2

Codice di Hamming: come posizionare I bit di controllo?

Bit position	12	11	10	9	8	7	6	5	4	3	2	1
Position number	1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001
Data bit	D8	D7	D6	D5			D 3			DÌ		
Check bit					C8				C4		CZ	C1
Word stored as	0	0	1	1	0	1	0	0	1	1	1	1
Word fetched as	0	0	1	1	0	1	1	0	1	1	1	1
Position number	1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001
Check bit					0				0		0	1

- Figure 5.10 Check Bit Calculation
- Ogni bit di controllo calcola la parità (corrispondente allo XOR) tra i bit il cui position number contiene un 1 nella stessa posizione del bit di controllo.
- Esempio: store e fetch della parola, c'è un errore al bit 6

ESERCIZIO 1 Codice di correzione di Hamming

Si supponga che una parola di dati da 8 bit memorizzata sia

11001010

Adottando l'algoritmo di **Hamming**, determinare quanti e quali bit di controllo verrebbero immagazzinati in memoria insieme alla parola di dati, ed in quale posizione.

ESERCIZIO 2 Codice di correzione di Hamming

Per la parola

00111001

i bit di controllo memorizzati sono 0111.

Si supponga che, quando la parola viene letta dalla memoria, i bit di controllo siano calcolati per essere 1101.

Quale parola di dati è letta dalla memoria?

ESERCIZIO 3 Codice di correzione di Hamming

Quanti bit di controllo sono necessari se il codice a correzione di errore di Hamming viene usato per rilevare errori di bit singoli in una parola di dati a 1024 bit?

ESERCIZIO 4 Codice di correzione di Hamming

Sviluppare un codice SEC per una parola di dati a 16 bit. Generate il codice per la parola dati

0101000000111001