

Artificial Neural Networks

[2500WETANN]

José Oramas

Course Overview

[Some organization aspects and policies]

José Oramas

Course Overview

[... or what we will be talking about during the coming weeks]

Overview of the course

Theory Lectures

- Wednesdays 10h45 12h45, Room G 005, CMI.
- Prof. José Oramas (Jose.Oramas@UAntwerpen.be)

- Also teaching:
 - Operating Systems (1500WETOPS),
 - Distributed Systems (1500WETDIS),

Why follow this course? Your Thoughts

Why follow this course?
My Thoughts

The Two Popular Roles of A.I.

The Two Popular Roles of A.I.

The Two Popular Roles of A.I.

Course Goals & Context

Course Goals & Context

Understand [Deep] Neural Networks and relevant architectures

- Principles & nomenclature (what?)
- Challenges and desirable properties (why difficult?)
- Algorithms, important assumptions and design approaches (how?)

Course Goals & Context

Understand [Deep] Neural Networks and relevant architectures

- Principles & nomenclature (what?)
- Challenges and desirable properties (why difficult?)
- Algorithms, important assumptions and design approaches (how?)

Course context

Theory Lectures

- Session 1 Introduction & Perceptron Learning
- Session 2 Shallow-Deep Neural Networks
- Session 3 Convolutional Neural Networks Foundations
- Session 4 ConvNets Advanced Architectures
- Session 5 Learning & Optimization
- Session 6 Modeling Sequences with Neural Networks
- Session 7 Transfer Learning
- Session 8 Deep Generative Models
- Session 9 Interpretation & Explanation Algorithms
- Session 10 Guest Lecture

Supporting Content

Reference Textbooks

- Dive into Deep Learning, Zhang, Zachary, Li & Smola, 2020.
- **Deep Learning**, Goodfellow, Bengio & Courville. An MIT Press book. 2016

Scientific Articles (Journals/Conferences)

- IEEE Transactions on Pattern Recognition and Machine Intelligence (TPAMI)
- Journal of Machine Learning Research (JMLR)
- IEEE Transactions on Neural Networks and Learning Systems (TNNLS)
- International Conference on Learning Representations (ICLR)
- Neural Information Processing Systems (NeurIPS)
- International Conference on Machine Learning (ICML)
- Computer Vision and Pattern Recognition (CVPR)
- ArXiv is your friend but be critical

Practical/Coding Sessions

Arian Sabaghi
arian.sabaghikhameneh
@uantwerpen.be

Benjamin Vandersmissen benjamin.vandersmissen @uantwerpen.be

fabian Denoodt
fabian.denoodt
@uantwerpen.be

Thomas Dooms
thomas.dooms
@uantwerpen.be

About:

- Mondays 10h45 12h45, Room G 025, CMI
- Practical implementation of theoretical concepts (Python + Pytorch)
- Introduction to complementary concepts

Evaluation

[The annoying part]

Evaluation

- Theory Exam (60%)
 - Content discussed in the lectures
 - Written close book / No oral presentation
- Practical Assignments (25%) individual
 - Two assignments on standard neural network architectures and algorithms.
- Research Paper Assignment (15%) in groups
 - Presentation of a scientific paper.

Evaluation

- Theory Exam (60%)
 - Content discussed in the lectures
 - Written close book / No oral presentation
- Practical Assignments (25%) individual
 - Two assignments on standard neural network architectures and algorithms.
- Research Paper Assignment (15%) in groups
 - Presentation of a scientific paper.

Important:

- To pass the course you **need a grade of at least 10/20** on each exam.
- You need to succeed on all these parts in order to pass the course.
- Partial exceptions are possible, but only within the same academic year.

Communication

Blackboard

- Announcements
- Course material
- Projects and other assignments
- Questions via the Forums

What if I cannot come to the class?

Lecture recordings will be made available via Blackboard

- Default: Made available at random
- Possible release under request (exceptional circumstances)
- Recordings mostly from 2021-2023
- Material is not always perfect
- Note this is mostly for backup purposes.

Break

See you in few minutes

Course Overview

[Some organization aspects and policies]

José Oramas

