# School on Univalent Mathematics Univalent foundations

Paige Randall North (adapted from slides of Benedikt Ahrens)

## Outline

- 1 Interpreting type theory in spaces
- 2 Contractible types, equivalences, function extensionality
- 3 Logic in univalent type theory
- 4 Homotopy levels

# Moving from classical foundations to univalent foundations

- Mathematics is the study of structures on sets and their higher analogs.
- Set-theoretic mathematics constitutes a subset of the mathematics that can be expressed in univalent foundations.
- Classical mathematics is a subset of univalent mathematics consisting of the results that require LEM and/or AC among their assumptions.

see Voevodsky, Talk at HLF, Sept 2016

## Outline

- 1 Interpreting type theory in spaces
- 2 Contractible types, equivalences, function extensionality
- 3 Logic in univalent type theory
- 4 Homotopy levels

# Interpretation of identities as paths

## Inhabitants of Id(a, a') behave like classical equality

- reflexivity, symmetry, transitivity
- transport<sup>B</sup> :  $B(x) \times Id(x,y) \rightarrow B(y)$

## Inhabitants of Id(a, a') behave **un**like classical equality

- There can be two identities p, q : Id(x, y).
- There can be identities of identities

$$\alpha: \mathsf{Id}_{\mathsf{Id}(x,y)}(p,q), \tag{*}$$

• but there don't always have to be.

We interpret terms of  $Id_X(x,y)$  as **paths from** x **to** y **in** X and sometimes write

$$x \leadsto_X y$$
.

# Identities interpreted as paths in a space



Reflexivity (refl) is interpreted as the constant path on a point x.

•  $p: x \leadsto y$ 



- $p: x \leadsto y$
- $\operatorname{sym}(p): y \leadsto x$



- $p:x \leadsto y$
- $\operatorname{sym}(p): y \leadsto x$
- r:y --> z



- $p:x \leadsto y$
- $\operatorname{sym}(p): y \leadsto x$
- $r: y \leadsto z$
- trans $(p,r): x \leadsto z$



# Transport in pictures

 $\mathsf{transport}^B: x \leadsto y \to B(x) \to B(y)$ 



# Functions map paths, not just points







#### Exercise

Given  $f: A \rightarrow B$ , construct a term of type

$$\prod_{x,y:A} x \leadsto_A y \to f(x) \leadsto_B f(y)$$

# Paths between paths

What is a path

 $h:p\leadsto_{x\leadsto y}q$ 

between paths?



# Paths between paths

What is a path

$$h: p \leadsto_{x \leadsto y} q$$

## between paths?

Intuition: continuous deformation of the first into the second path, called a **homotopy** 



# Laws satisfied by path concatenation

## Can construct homotopies

• 
$$(p \cdot q) \cdot r \leadsto p \cdot (q \cdot r)$$

• 
$$p \cdot 1_v \rightsquigarrow p$$

• 
$$1_x \cdot p \leadsto p$$

• 
$$p \cdot p^{-1} \rightsquigarrow 1_x$$

• 
$$p^{-1} \cdot p \rightsquigarrow 1_{v}$$

• ...

### Theorem (Garner, van den Berg)

$$(A, \leadsto_A, \leadsto_{\leadsto_A}, \ldots)$$

forms ∞-groupoid, i.e., groupoid laws hold up to "higher" paths

# Interpreting types as topological spaces?

We have not mentioned yet what a "space" or  $\infty$ -groupoid is.

## Types as topological spaces?

It seems difficult (impossible?) to give a formal interpretation of type theory in the category of topological spaces.

## Types as Kan complexes

Vladimir Voevodsky has given an interpretation of type theory in the category of Kan complexes.

There is a 'Quillen equivalence' between that category and the category of topological spaces, justifying the intuition of 'types as (topological) spaces'.

# Interpreting types as simplicial sets

| Syntax                                           | Simpl. set interpretation                        |
|--------------------------------------------------|--------------------------------------------------|
| $(A, \leadsto_A, \leadsto_{\leadsto_A}, \ldots)$ | Kan complex A                                    |
| a : A                                            | $a \in A_{o}$                                    |
| $A \times B$                                     | binary product                                   |
| $A \rightarrow B$                                | space of maps                                    |
| A + B                                            | binary coproduct                                 |
| $x:A \vdash B(x)$                                | fibration $B \rightarrow A$ with fibers $B(x)$   |
| $\sum_{x:A} B(x)$                                | total space of fibration $B \rightarrow A$       |
| $\prod_{x:A} B(x)$                               | space of sections of fibration $B \rightarrow A$ |

## Outline

- Interpreting type theory in spaces
- 2 Contractible types, equivalences, function extensionality
- 3 Logic in univalent type theory
- 4 Homotopy levels

## Contractible types

#### Definition

The type *A* is **contractible** if we can construct a term of type

$$isContr(A) := \sum_{x:A} \prod_{y:A} y \rightsquigarrow x$$

A contractible type...

- is also called **singleton** type.
- has a point and a path from any point to that point.

By path inversion and concatenation, there is a path between any two points of a contractible type.

## **Equivalences**

#### Definition

A map  $f: A \rightarrow B$  is an **equivalence** if it has contractible fibers, i.e.,

$$isequiv(f) := \prod_{b:B} isContr\left(\sum_{a:A} f(a) \leadsto b\right)$$

The type of equivalences:

$$A \simeq B :\equiv \sum_{f:A \to B} isequiv(f)$$

Exercise: Given an equivalence  $f : A \simeq B$ , define a function  $g : B \to A$ . Construct paths  $f(g(y)) \leadsto y$  and  $g(f(x)) \leadsto x$ .

### **Exercises**

- Show that 1 is contractible.
- Let *A* be a contractible type. Construct an equivalence  $A \simeq 1$ .
- Given types A and B, let  $f: A \to B$  and  $g: B \to A$ . Suppose having families of paths  $\eta_x: g(f(x)) \leadsto x$  and  $\epsilon_y: f(g(y)) \leadsto y$ . Show that f is an equivalence.

# Path types of pairs

#### Exercise: construct equivalences

• for  $(a,b), (a',b'): A \times B$ ,

$$\Big((a,b)\leadsto (a',b')\Big) \simeq \Big((a\leadsto a')\times (b\leadsto b')\Big)$$

• for  $(a,b),(a',b'): \sum_{a:A} B(a),$ 

$$((a,b) \leadsto (a',b')) \simeq \sum_{p:a \leadsto a'} \mathsf{transport}^B(p,b) \leadsto b'$$

# Path types of function spaces

For  $f, g : A \rightarrow B$  cannot show

$$(f \leadsto g) \simeq \left( \prod_{a : A} f(a) \leadsto g(a) \right)$$

Exercise: Define

toPointwisePath : 
$$\prod_{f,g:A\to B} (f\leadsto g) \to \left(\prod_{a:A} f(a) \leadsto g(a)\right)$$

## Axiom (function extensionality)

toPointwisePath
$$(f,g): (f \leadsto g) \to (\prod_{a \in A} f(a) \leadsto g(a))$$

is an equivalence for any f, g.

Exercise: define to Pointwise Path for  $\Pi$ -types.

# Path types of identity types

We cannot show the following:

## Axiom (uniqueness of identity proofs)

$$\prod_{a,b:A} \prod_{p,q:a \leadsto b} p \leadsto q$$

# Path types of the universe

Exercise: Define

idtoequiv : 
$$\prod_{A,B: \mathsf{Type}} (A \leadsto B) \to (A \simeq B)$$

We cannot show the following:

## Axiom (univalence)

$$idtoequiv(A, B) : (A \leadsto B) \to (A \simeq B)$$

is an equivalence.

# Characterization of path types

- Σ-types: provable characterization
- Π-types: axiom of function extensionality
- Id-types: axiom of uniqueness of identity proofs
- Type: axiom of univalence
- FE is consistent with both UIP and U. (Actually  $U \rightarrow FE$ .)
- UIP and U are inconsistent.
- Type theory + UIP + FE has a logical interpretation and a set interpretation.
- Type theory + U has a space interpretation.

We choose type theory + U (univalent foundations), and recover logic and set theory from certain types that we call *propositions* and *sets*.

## Outline

- 1 Interpreting type theory in spaces
- 2 Contractible types, equivalences, function extensionality
- 3 Logic in univalent type theory
- 4 Homotopy levels

## Some types are propositions

## **Curry-Howard**

- Types are propositions.
- Terms are proofs.

## Univalent logic

- Some types are propositions.
- Terms of those types are proofs.

## Definition (Propositions in univalent type theory)

Type A is a **proposition** if

$$isProp(A) := \prod_{x,y:A} x \leadsto y$$

is inhabited.

# Examples of propositions

#### Exercise: show that

- 1 is a proposition.
- any contractible type is a proposition.
- 0 is a proposition.
- if A and B are propositions, then  $A \times B$  is a proposition.
- if *B* is a proposition, then  $A \rightarrow B$  is a proposition.

# Connectives in univalent logic

#### Definition

$$\mathsf{Prop} \; :\equiv \; \sum_{X:\mathsf{Type}} \mathsf{isProp}(X)$$

We want logical connectives

(binding a variable)

# Univalent logic

• 1 and 0 are propositions. Hence

$$\top :\equiv 1 \perp :\equiv 0$$

• If A and B are propositions, so is  $A \times B$ . Hence

$$A \wedge B :\equiv A \times B$$

• If B is a proposition, so is  $A \rightarrow B$ . Hence

$$A \Rightarrow B :\equiv A \rightarrow B$$

• 0 is a proposition, hence  $A \rightarrow 0$  is. Hence

$$\neg A :\equiv A \rightarrow 0$$

• If B(a) (for any a) are propositions, so is  $\prod_{a:A} B(a)$ . Hence

$$\forall (a:A), B(a) :\equiv \prod_{a \in A} B(a)$$

# ∨ and ∃ in univalent logic

• Exercise: Find a type T that is a proposition such that T + T is not a proposition.

Conclusion: can not set

$$A \lor B :\equiv A + B$$

•  $\Sigma_{n:Nat}$  is Even(n) is the type of all even natural numbers. It is not a proposition.

Conclusion: can not set

$$\exists (a:A), B(a) :\equiv \Sigma_{a:A}B(a)$$

Solution: introduce a type former that makes propositions.

# Propositional truncation

Formation If A is a type, then ||A|| is a type

Introduction If a : A, then  $\overline{a} : ||A||$ 

$$p(A): \prod_{x,y:||A||} x \leadsto y$$

Elimination If  $f: A \to B$  and B is a proposition, then  $\overline{f}: ||A|| \to B$ 

Computation 
$$\bar{f}(\bar{a}) \equiv f(a)$$

- p(A) turns ||A|| into a proposition.
- Intuitively, ||A|| is empty if A is, and contractible if A has at least one element.

# ∨ and ∃ in univalent logic

•

$$A \vee B :\equiv ||A + B||$$

•

$$\exists (a:A), B(a) :\equiv ||\Sigma_{a:A}B(a)||$$

For example:

$$\mathsf{isSurjective}(f) :\equiv \prod_{b,p} ||\Sigma_{a:A} f(a) \leadsto b||$$

# Propositional extensionality

We would like to consider two propositions to be equal if they are logically equivalent:

$$\prod_{P,Q:\mathsf{Prop}} (P \leadsto Q) \simeq (P \longleftrightarrow Q)$$

# Propositional extensionality

We would like to consider two propositions to be equal if they are logically equivalent:

$$\prod_{P,Q:\mathsf{Prop}} (P \leadsto Q) \simeq (P \longleftrightarrow Q)$$

## Axiom: propositional extensionality

Exercise: state the axiom of propositional extensionality, e.g., analogously to function extensionality.

#### Exercise

Given  $f: A \rightarrow B$ , show that isequiv(f) is a proposition.

#### Exercise

Show that propositional extensionality follows from univalence.

## Outline

- Interpreting type theory in spaces
- 2 Contractible types, equivalences, function extensionality
- 3 Logic in univalent type theory
- 4 Homotopy levels

## Contractible types, propositions and sets

• *A* is **contractible** if we can construct a term of type

$$isContr(A) := \sum_{x:A} \prod_{y:A} y \leadsto x$$

• A is a **proposition** if  $\prod_{x,y;A} x \rightsquigarrow y$  is inhabited

$$isProp(A) := \prod_{x,y:A} x \leadsto y$$

• A is a **set** if, for any x, y : A, the type  $x \rightsquigarrow y$  is a proposition

$$isSet(A) :\equiv \prod_{x,y:A} isProp(x \leadsto y)$$

## Contractible types, propositions and sets

• *A* is **contractible** if we can construct a term of type

$$isContr(A) := \sum_{x:A} \prod_{y:A} y \leadsto x$$

• A is a **proposition** if  $\prod_{x,y:A}$  is Contr( $x \leadsto y$ ) is inhabited

$$isProp(A) := \prod_{x,y:A} isContr(x \leadsto y)$$

• A is a **set** if, for any x, y : A, the type  $x \rightsquigarrow y$  is a proposition

$$isSet(A) :\equiv \prod_{x,y,A} isProp(x \leadsto y)$$

#### **Exercises**

- For a type A, show that  $\prod_{x,y:A}$  is  $Contr(x \leadsto y) \longleftrightarrow \prod_{x,y:A} x \leadsto y$ .
- Show that Bool is a set. Is it contractible? Is it a proposition?
- Show that Nat is a set. Is it contractible? Is it a proposition?

# Homotopy level of a type

#### **Definition**

```
isofhlevel: Nat \rightarrow Type \rightarrow Type
isofhlevel(o)(X):\equiv isContr(X)
isofhlevel(S(n))(X):\equiv \prod_{x,y\in X} isofhlevel(n)(x \leadsto y)
```

# Homotopy level of a type

#### **Definition**

```
isofhlevel: Nat \to Type \to Prop
isofhlevel(o)(X):\equiv isContr(X)
isofhlevel(S(n))(X):\equiv \prod_{X,Y'} isofhlevel(n)(x \leadsto y)
```

Exercise: Show that isofhlevel(n)(X) is a proposition.

### Preservation of levels

## ... by type constructors

- If A and B are of level n, then so is  $A \times B$ .
- If *B* is of level *n*, then so is  $A \rightarrow B$ .
- If *A* and B(a) (for any a:A) are of level n, then so is  $\sum_{a:A} B(a)$ .
- If B(a) (for any a:A) are of level n, then so is  $\prod_{a:A} B(a)$ .

## ... under equivalence of types

If *A* is of level *n* and  $A \simeq B$  then *B* is of level *n*.

## Cumulativity

If type A is of h-level n, then it is also of h-level S(n).

## Set extensionality

We would like to consider two sets to be equal if they are in bijection:

$$\prod_{S,T:\mathsf{Set}} (S \leadsto T) \simeq (S \cong T)$$

## Set extensionality

We would like to consider two sets to be equal if they are in bijection:

$$\prod_{S,T:\mathsf{Set}} (S \leadsto T) \simeq (S \cong T)$$

## Axiom: set extensionality

Exercise: state the axiom of set extensionality, e.g., analogously to propositional extensionality.

#### Exercise

Show that set extensionality follows from univalence.

# Summary: Univalent Foundations

 Univalent type theory with an interpretation in spaces (precisely: Kan complexes)

| Type theory                       | Interpretation                           |
|-----------------------------------|------------------------------------------|
| A type                            | space A                                  |
| a:A (term $a$ of type $A$ )       | point $a$ in space $A$                   |
| $f:A\to B$                        | map from A to B                          |
| $p:a\leadsto b$                   | path (1-morphism) from $a$ to $b$ in $A$ |
| $\alpha:p\leadsto_{a\leadsto b}q$ | homotopy from $p$ to $q$ in $A$          |

- "World" of **logic** (propositions and proofs) given by Prop
- "World" of **sets** given by Set