CS610: Programming for Performance Assignment 2

Wadkar Srujan Nitin 221212

Solution 1

Setup

Input is blocked by taking an element from the block and updating its contribution to all the output cells to which it can contribute, by multiplying the appropriate cell of the kernel with it. To run the code, you first need to compile and then execute:

make

./bin/problem1.out blockHeight blockWidth blockDepth

The code was run on csews9 for input size $(1 \ll 9) \times (1 \ll 9) \times (1 \ll 9)$ with different block parameters, and the results are shown below.

вн	BW	BD		Naive		Blocked Input				
	DW		L1 DCM	L2 DCM	Time (us)	L1 DCM	L2 DCM	Time (us)		
1	1	1	3.32e8	1.50e8	1.23e6	1.65e8	1.51e8	3.96e6		
1	1	2	3.37e8	1.51e8	1.24e6	1.63e8	1.54e8	3.44e6		
1	1	4	3.40e8	1.55e8	1.23e6	1.59e8	1.52e8	3.21e6		
1	1	32	3.38e8	1.53e8	1.24e6	1.52e8	1.50e8	3.01e6		
1	1	64	3.42e8	1.51e8	1.23e6	1.52e8	1.51e8	2.98e6		
1	1	128	3.36e8	1.51e8	1.25e6	1.52e8	1.52e8	2.99e6		
1	1	512	3.41e8	1.53e8	1.22e6	1.51e8	1.50e8	2.97e6		
1	2	2	3.37e8	1.52e8	1.22e6	2.41e8	1.48e8	3.29e6		
2	2	2	3.36e8	1.52e8	1.23e6	2.41e8	1.48e8	3.27e6		
4	4	4	3.37e8	1.53e8	1.23e6	2.04e8	1.49e8	3.02e6		
8	8	8	3.40e8	1.52e8	1.23e6	1.61e8	1.52e8	2.97e6		
16	16	16	3.38e8	1.53e8	1.23e6	1.52e8	1.50e8	2.93e6		
32	32	32	3.36e8	1.52e8	1.24e6	1.52e8	1.50e8	2.91e6		

Table 1: Performance metrics (BH = Block Height, BW = Block Width, BD = Block Depth).

The data shows that we get a saturation in the improvement of L1 cache misses after block size $1 \times 1 \times 32$, and the different block parameters do not provide much improvement compared to $1 \times 1 \times 32$. However, the L2 cache misses remain almost the same, suggesting that the block already fits in L1.

The time, however, is worsened. The possible reasons for this could be the fact that the naive version in effect behaves like the output has been blocked, as it computes the entire value of a cell at once and then writes the data to it. Also, when adding the contribution to different output values, consider the case when we need to evict some values to accommodate the next block. Thus, if the values in the cache lines are not computed and the cache is write-back, we are sending unnecessary write-back messages to the higher-level cache.

Whereas in the naive version, this is not the case: we bring the cache line with only read permission, and even if there are evictions, we do not need to do any write-backs and thus reducing on the time taken by the program.

Solution 2

Setup

The program was run with 10 threads on csews9, each working on a separate file. Each file contains 10⁶ lines, and each line has 4 words. To run the code, you first need to compile and then execute:

```
make
perf c2c record -F 30000 -u -- ./bin/problem2.out 10 ./prob2-test2/input
perf c2c report -NN --stdio -i perf.data
```

Initial Profiling

We first examine the perf output of the given program to identify performance bottlenecks.

#				Cacheline										Tot				
#	I	nde	ex					Ac	ldi	ess	١	lode	e	PA	cnt	H:	itm	
#		• • •					٠.	•									• • •	
π			Θ			0x557	45	554	12a	13c0		6	Э	17	5991	69.	33%	
			1			0x557	45	554	12a	280		(Э	3'	7246	16.0	50%	
			2			0x557	45	554	12a	1380		•	Э	30	9266		95%	
8	0	19410	103816	4776	8	0x55745542a3c0												
	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	3.99% 3.66% 15.72% 0.95% 8.03% 7.99% 3.83% 3.43% 8.25% 0.00% 0.00% 0.44% 2.26% 0.56% 0.56%	1.99% 1.98% 0.60% 0.90% 0.00% 24.90% 3.92% 45.40% 0.39% 0.18% 18.26% 0.00% 0.00% 0.00%	19.05% 18.30% 38.94% 2.11% 9.00% 9.00% 9.00% 11.00% 9.23% 9.42% 9.23% 9.00% 9.00% 9.00%	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	9x0 9x8 9x18 9x18 9x20 9x20 9x20 9x20 9x28 9x28 9x20 9x20 9x30 9x30 9x30 9x30 9x30 9x30 9x30	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		8x55 8x55 8x75 8x7b 8x7b 8x7b 8x7b 8x7b 8x7b 8x7b 8x7b	74554264d1 74554264d1 74554264d2 74554264d4 3360291294 3360297449 3360297443 336029743 336029753 336029753 336029759 336029764 336029764 336029764 336029764 336029764 336029764 336029964	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	133 139 127 135 158 369 325 378 135 0 0 137 138 125 149 149 145	113 113 107 107 174 284 172 153 184 0 0 188 91 187 114 93	4284 4151 6859 12924 2794 45394 12534 66748 11669 1985 412 11771 29369 13376 13389 11278	12 [.] thread. 12 [.] thread. 12 [.] thread. 12 [.]GI	runner(void+) runner(void+) runner(void+) runner(void+) Ill.lock.mait Ill.lock.mait Ill.lock.mait Ill.lock.mait Ill.lock.mait Inutex.lock@60.1BCmutex.lock@60.1BC_	problem2.out problem2.out problem2.out problem2.out problem2.out libc.50.6 libc.50.6 libc.50.6 libc.50.6 libc.50.6 libc.50.6 libc.50.6 libc.50.6 libc.50.6 libc.50.6 libc.50.6 libc.50.6 libc.50.6 libc.50.6	thre thre

Figure 1: Initial perf output showing contention.

From the first report, we observe that contention for cache line 0 is significant. A more detailed report about the cache line shows that the major bottleneck is due to the use of locks.

First Optimization: Reducing True Sharing

The first optimization targets decreasing the use of locks (i.e., reducing true sharing overhead). Instead of updating the shared structure directly, each thread maintains a local count of processed words and processed lines. These local counts are added to the shared structure only once, after the thread finishes processing its file.

Profiling After First Optimization

When we run perf again, some cache line contention still remains:

Figure 2: perf output after optimisation

The contention is now primarily due to the word_count array being accessed by multiple threads, leading to false sharing.

Second Optimization: Reducing False Sharing

To eliminate false sharing, we use the local word counts that were already computed by each thread. These are written into the shared structure only after the thread completes processing its file. This ensures that different threads do not update adjacent elements of the shared array simultaneously.

Final Profiling

After applying this optimization, we run perf once more. No cache line contention is observed, indicating that both true and false sharing issues have been eliminated.

Performance Results

 \bullet Unoptimized version: ~ 5 seconds

• After removing true sharing: ~ 0.65 seconds

 \bullet After removing false sharing: ~ 0.2 seconds

Solution 3

Setup

To run the code, you first need to compile and then execute:

make
./bin/problem3.out

The number of threads can be changed by changing the $\tt NUM_THREADS$ variable and the $\tt MAX_NUM_THREADS$ variable

Lock Type	1	2	4	8	16	32
Pthread mutex	25	355	1469	1959	10103	64796
Filter lock	8	612	4348	110702	978110	17693672
Bakery lock	24	492	6944	47129	318102	1703055
Spin lock	24	48	2816	15866	126066	1148529
Ticket lock	14	22	6438	32218	165726	530633
Array Q lock	20	177	2880	35259	353130	703587

Figure 1: Execution time of different locks vs number of threads (in microseconds)

Observations and Results

The code was executed on image1.cse.iitk.ac.in, which is a machine with around 40 cores. The column corresponding to 64 threads was skipped, as the process did not finish within an acceptable time limit.

A similar issue was observed when running the code with 16 threads on the csews systems, which have only 12 cores. This suggests that the exceptionally large execution time could be caused by insufficient core availability rather than inefficiency in the implementation itself.

Filter Lock Behavior

From the results, we observe that the **Filter lock** consistently takes significantly larger time compared to other locks. A possible explanation comes from the algorithm itself: in the Filter lock, a thread must progress through MAX_NUM_THREADS levels, and at each level it must busy-wait by checking the state of all other threads before proceeding to the next level. This introduces substantial overhead compared to other locks, particularly those based on hardware primitives that do not require checking the state of every other thread. Hence, the Filter lock exhibits the worst performance.

Other Custom Locks vs Pthread Mutex

The other custom locks (Bakery, Spin, Ticket, and Array Q lock) show somewhat comparable performance in terms of runtime. However, as the number of threads increases, the **pthread_mutex** implementation consistently outperforms all custom locks.