ఆధునిక భౌతిక శాస్త్రం

- + (ఫైంచ్ భౌతిక శాస్త్రవేత్త A.H. బెక్వెరెల్, 1896వ సంగులో రేడియోధార్మికతను ఆవిష్కరించాడు.
- + పరమాణసంఖ్య 83 కన్నా ఎక్కువ గల కొన్ని పరమాణువులు కేంద్రకాలు అస్థిరత్వం వల్ల వికిరణాలను ఉద్గారం చేస్తుస్వచ్చంద స్వయం విఘటనం చెందే దృగ్విషయంన్ని 'సహజరేడియో దార్మికత' అంటారు.
- + ఒక అస్థిర కేంద్రకం విష్పటనమ, ఫలితంగా మర కేంద్రాకాన్ని ఏర్పడటాన్ని రేడియో దార్మిక పరివర్తనం అంటారు.
- + α -కణం అనగా 4 Herr సూచిస్తారు.
- + ∞ విఘటనంలో పరమాణు ద్రవ్యరాశి 4 (ప్రమాణాలు, పరమాణు సంఖ్య 2 (ప్రమాణాలు తగ్గుతాయి.
- + β విఘటనంలో పరమాణు ద్రవ్యరాశి మారదు, పరమాణు సంఖ్య ప్రమాణాలు పెరుగుతుంది.
- + γ విఘటనంలో పరమాణు ద్రవ్యరాశి మారదు, పరమాణుసంఖ్యలలో ఎలాంటి మార్పు ఉండదా. కాని కేంద్రకం శక్తి తగ్గుతుంది.
- + స్థిరమైన మూలకంను భారయుత కణాలత తాటనం చెందించినపుడు రేడియో దార్మిక పదార్థంగా మారుతుంది.
- + ఈ పద్దతిని కృతిమ రేడియోదార్మికత అంటారు.
- + కృత్రిమ రేడియో దార్మికతను Irene. క్యూరి మరియు (ఫైదరిక్ జూలియట్ క్యూరి కనుగొన్నారు. వీరికి 1935లో నోబెల్ బహుమతి లభించింది.
- + 1939 వ సంవత్సరంలో జర్మన శాస్త్రవేత్త ఓట్టహన్, అతని ఇద్దరు అనుచరులు లిసేమొయిటినెర్, ప్రిట్జ్[స్టాస్ U235ల కేంద్రకాన్ని రెండు భాగాలు విడిగట్టితే సుమారు 200Mev విడుదలవుతుంది.
- + $\rightarrow U_{92}^{0^{n^1}} \rightarrow Ba_{56}^{141} + Kr_{36}^{92} + 3n_o^1 + 200mev$
- + దీనినే కేంద్రక విచ్చత్తి అంటారు. దీనిలో 3 న్యూటాన్లు విడుదలవుతాయి.
- + అణుబాంబులో కేంద్రక విచ్చిత్తి చర్య జరుగుతుంది.
- + నియంత్రతశృంఖల చర్య అనే నియమంపై ఆధారపడి న్యూక్లియర్ రివాక్టార్లు పనిచేస్తాయి.
- + న్యూక్లియర్ రియక్టరులో న్యూటన్ల వేగాన్ని తగ్గించే పదార్థాన్ని మితకారి అంటారు. సర్వసాదారణంగా ఉపయోగించే మితకారి నీరు లేదా డూటేరాన్లున్న భారజలం.
- + నియంత్రణ కడ్డీలను బొరాన్, కాడ్మియం వంటి మూలకాలతో చేస్తారు.
- + రెండు తేలిక కేంద్రాలును కలిపి, ఒక భారమైన కేంద్రకంగా చేసే ప్రక్రియను కేంద్రక సంలీనం అంటారు.
- + అత్యదిక ఉష్ణోగ్రత పీడనాల వద్ద ఈ చర్య జరగడంవలన "ఉష్ణకేంద్రక చర్యలు" అంటారు.
- + కేంద్రక సంలీన చర్యలను ప్రారంబించడానికి అల్పభార కేంద్రకాలకు 0.01 Mev ల గతిజశక్తి అవసరం.
- + ఉష్ణకేంద్రక చర్యలు నక్ష్మతాలు, సూర్యునిలో జరుగుతుంటాయి.
- + హైద్రోజన్ బాంబు. అనియాంత్రిక కేంద్రక సంలీన చర్యలు నియమంత తయారైంది.
- + బ్రోటాన్ –బ్రోటాన్ చక్రంలో కేంద్రకం సంవీనంలో విడుదలైన బ్రోటాన్లు, మరికొన్ని కేంద్రక సంవీన చర్యలలో పాల్గొంటాయి.

Sreedhar's CCE PHYSICS

1. సహజ రేడియోధార్మికత యందు వెలువడిన lpha,eta మరియు γ కిరణాలను బెకరల్ కిరణాలు అని కూడా అంటారు.

- 2. సహజ రేడియోధార్మికత అనునది ఆయా రేడియోధార్మికత పదార్ధాల స్వభావం పై ఆధారపడి ఉంటుంది. అంతేకాని బాహ్యకారకములయిన ఉష్ణోగ్ర, పీదనాలపై ఆధారపడదు.
- + α -(ఆల్ఫా) కణము :- ఈ కణం 2 యూనిట్ల ధనావేశంను మరియు 4 యూనిట్ల ద్రవ్యరాశిని కలిగి $_2^4He^{++}$ అను జదవాయు కేంద్రకమును పోలి ఉంటుంది. కాబట్టి ఒక రేడియోధార్మిక పదార్థం నుంది α -కణం విడుదలయిన దాని పరమాణు సంఖ్య 2 ప్రమాణాలు, ద్రవ్యరాశి 4 ప్రమాణాలు తగ్గను.
- + β -కిరణము : పరమాణు కేంద్రకం యందు ఒక న్యూటన్ విచ్ఛిన్నమైనపుడు ఒక బ్రోటాన్ మరియు ఒక ఎలక్ష్రాన్ నిడిపోతుంది. దీనిలో భారయుతమైన బ్రోటాన్ పరమాణు కేంద్రకం యందు ఉంటుంది. కాని తేలికగా ఉన్న ఎలక్ష్రాన్ బయటకు విడుదలవుతుంది. దీనిని β కిరణము అని అంటారు. పరమాణు కేంద్రం నుండి β కణం విడుదలయినట్ల ఆ పరమాణు యొక్క పరమాణు సంఖ్య '+1' గా పెరుగుతుంది. కాని ద్రవ్యరాశి యందు మార్పు ఉండదు.
- + γ (గామా) కిరణము : ఇది కేవలం శక్తిని కలిగి ఉన్న ఒక రకమయిన విద్యుదయస్కాంత తరంగము మాత్రమే. ఈ కిరణాలకు ద్రవ్యరాశి మరియు ఆవేశం ఉండదు. కాబట్టి ఈ కిరణము విడుదలయినపుడు పరమాణు కేంద్రకం యందు కొంత శక్తి మాత్రమే తగ్గుతుంది. అంతేకాని పరమాణుసంఖ్యలో, పరమాణు ద్రవ్యరాశిలో ఎటువంటి మార్పు ఉండదు.

వివిధ రేడియోధర్మిక కిరణాల ధర్మాలు

ధర్మం	ఆల్ఫా కణాలు	బీటా కిరణాలు	గామ కిరణాలు
1. విద్యుదావేశం	రెండు చ్రమాణాల ధన విద్యుదావేశం	(ప్రమాణ ఋణవిద్యుదావేశం	విద్యుదావేశ రహితం
	ఉంటుంది	ස්රභාරධ	
2. ద్రవ్యరాశి	ప్రోటాన్ ద్రవ్యరాశికి 4 రెట్లు	ఎలక్ట్రాస్ ద్రవ్యరాశికి	ద్రవ్యరాశిలేదు
	ఉంటుంది	సమానం	
3. స్వభావం	హీలియం కేంద్రకం	వేగవంతమైన ఎలక్ష్రాన్లలు	విద్యుదయాస్కాంత తరంగ
			జాతికి చెందినది
4. అయానీకరణ	తక్కువ	ఆల్ఫాలో వందవ వంతు	కనిష్టముగా ఉంటుంది
శక్తి			
5.చొచ్చుకుపోయే	ఎక్కువ	ఆల్ఫా కంటే 100 రెట్లెక్కువ	బీటా కంటే 100 రెట్లెక్కువ
శక్తి			
6.అయస్కాంత	ఆపవర్తనం చెందుతాయి	ఆపవర్తనం చెందుతాయి	అపవర్తనం చెందవు
విద్యుత్ క్షే[తాలలో			
7. ఫోటోగ్రాఫిక్ ప	ప్రభావితం చేస్తాయి	ద్రభావితం చేస్తాయి	ప్రభావితం చేస్తాయి
లకలపై (పభావం			
8. వేగము	1.6×10^{7} మీ/సె వీటివేగము మూలక	1.8×10 ⁸ నుండి 2.9 ×	3×10 ⁸ మీ∕సె
	స్వభావముపై ఆధారపడి ఉంటుంది	10 ⁸ మీ/సె	
9. (పతిదీప్తి	కలగజేస్తాయి	కలగజేస్తాయి	కలగజేస్తాయి