Controller Area Network (CAN)

Kendell Calderón Láscarez, Kaleb Granados Acuña & Lorenzo Sancho Fallas

Instituto Tecnológico de Costa Rica MT8001 - Teoría de Comunicación y Procesamiento de Señales 24 de Octubre del 2024

¿ Qué es CAN?

Versiones

CAN 1.2/2.0A

CAN 1.2/2.0A

Diferencia CAN 1.2/ 2.0B

- Tamaño identificador
- Compatibilidad
- Arbitraje
- Estructura de las tramas

Diferencia CAN 1.2/2.0B

Capa Física:

- Codificación
- Sincronización
- Bit timing

MAC:

 Mayor cantidad componentes

LLC:

 Mismos componentes que 1.2.

LLC = Logical Link Control
MAC = Medium Access Control

Manejo de errores

Bit error:

- Los nodos deben leer su transmisión
- Ocurre una lectura diferente del valor transmitido

CAN node 1

Bit stuffing:

- Regla de los 5 bits consecutivos
- Ocurre si el 6 no es el complemento

Manejo de errores

Form error:

- SOF, EOF, ACK, CRC (delimitadores) tienen niveles establecidos
- Un nivel inválido de estos genera un error de formato

ACK error:

- Nodos receptores deben confirmar recibido poniendo ACK dominante
- Si un nodo no coloca el ACK en dominante, se produce el error

CRC error:

- Los transmisores envían el CRC asociado al mensaje
- Los receptores deben calcular su propio CRC
- Si la comparación de ambos difiere, se levanta un error de CRC

Puertos Físicos Utilizados

Puertos comunes:

- MiniDin, DB15 y DB9
- Complejidad en mantenimiento de sistemas.

CAN in Automation:

- CIA promociona y estandariza tecnologías basadas en CAN.
- CAnOpen gestiona las complejidades de CAN mediante un protocolo alto nivel.

Estandarización puerto D_sub de 9 pines:

Pin Nº	Descripción			
Pin 1	No conectado (Reservado)			
Pin 2	CAN_L (línea baja del bus CAN)			
Pin 3	CAN_GND (Tierra del bus CAN)			
Pin 4	No conectado (Reservado)			
Pin 5	CAN_SHLD (Pantalla del bus, opcional)			
Pin 6	GND (Tierra del dispositivo)			
Pin 7	CAN_H (línea alta del bus CAN)			
Pin 8	No conectado (Reservado)			
Pin 9	No conectado (Reservado)			

Puertos Físicos Utilizados

Comunicación diferencial:

- Cables CAN H y CAN L, para transmitir señales entre nodos.
- Diferencia entre SPI y I2C, una sola línea.

Ventajas:

- Robustez
- Menos susceptible a interferencias

CANH y CANL

- Lectura del diferencial
- Líneas trenzadas con resistencias de terminación
- Dominancia en 0 (2.5V), recesividad en 1 (0V)
- La dominancia relacionada al overwrite.

Topologías CAN

- Topologías nacen de CANOpen
- The General Architecture of CANOpen Network
- Resistencia de terminación

Topologías Comunes:

- Bus lineal
- Estrella
- De puente

Arquitecturas en CAN

- CANcentrate
- FlexCAN
- FTTCAN
- N-server CAN
- Clock sync CAN
- CAN-RT-TOP
- •

- ECU: UNO R4 MINIMA
- Transceptor: CAN SN65HVD230.

- Implementación con UNO R4 MINIMA
- Transceptores CAN SN65HVD230.

MCU + CAN Controller

- Implementación con UNO R4 MINIMA
- Transceptores CAN SN65HVD230.

CAN Transceiver

- Implementación con UNO R4 MINIMA
- Transceptores CAN SN65HVD230.

Resistencias Terminación

- Implementación con UNO R4 MINIMA
- Transceptores CAN SN65HVD230.

Líneas de transmisión CANH y CANL

Comprobación de comunicación

Transmisión Half-Duplex

Transmisión Simplex

Visualización del bus de datos: Resultados

- Scope con CANH y CANL en ambos canales
- Frame Fetch & Decode del mensaje enviado

Number of Data	Data Length Code			
Bytes	DLC3	DLC2	DLC1	DLC0
0	d	d	d	d
1	d	d	d	r
2	d	d	r	d
3	d	d	r	r
4	d	r	d	d
5	d	r	d	r
6	d	r	r	d
7	d	r	r	r
8	r	d	d	d

CAN como solución confiable

Prioridad de mensajes, multimaster, robustez

 Adaptabilidad mejor la interoperabilidad y simplicidad de dispositivos.

Relevancia continua del CAN.

¡Gracias!

¿Preguntas?

Referencias, documentación y demostración