Credit Card Transactions or Fraud detection

Gowtham Gs Patil

Importing libraries

In [3]:

import time, psutil, os, gc import math import numpy as np import pandas as pd import matplotlib.pyplot as plt

import matplotlib.patches as mpatches

import seaborn as sns

sns.set_theme()

import plotly.express as px

import plotly.graph_objects as go

from plotly.subplots import make_subplots

from plotly.offline import init_notebook_mode, iplot

init_notebook_mode(connected=True)

from sklearn.model_selection import train_test_split

Runtime and memory usage

In [5]:

start = time.time() process = psutil.Process(os.getpid())

In [6]:

Loading the data

data = pd.read_csv('creditcard.csv')

data.head()

Out[6]:

0 0.0 1.359807 0.072781 2.536347 1.378155 0.338321 0.462388 0.239599 0.098698 0.363787 0.018307 0.27	7838 _{0.110474} 0.066928 0	0.1285
1 0.0 1.191857 0.266151 0.166480 0.448154 0.060018 0.082361 0.078803 0.085102 0.255425 ··· 0.225775 0.66	8672 0.101288 0.339846 0	0.1671
2 1.0 1.358354 1.340163 1.773209 0.379780 0.503198 1.800499 0.791461 0.247676 1.514654 0.247998 0.77	1679 0.909412 0.689281 0	0.3276
3 1.0 0.966272 0.185226 1.792993 0.863291 0.010309 1.247203 0.237609 0.377436 1.387024 ··· 0.108300 0.00	5274 0.190321 1.175575 ⁰	0.6473
4 2.0 1.158233 0.877737 1.548718 0.403034 0.407193 0.095921 0.592941 0.270533 0.817739 0.009431 0.79	8278 0.137458 0.141267 0	0.2060

5 rows × 31 columns

In [7]:

print(pd.Series({"Memory usage": "{:.2f} MB".format(data.memory_usage().sum()/(1024*1024)), "Dataset shape": "{}".format(data.shape)}).to_string()) data.head()

Memory usage 67.36 MB Dataset shape (284807, 31)

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	 V21	V22	V23	V24	١
0	0.0	1.359807	0.072781	2.536347	1.378155	0.338321	0.462388	0.239599	0.098698	0.363787	 0.018307	0.277838	0.110474	0.066928	0.128
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	0.082361	0.078803	0.085102	0.255425	 0.225775	0.638672	0.101288	0.339846	0.167
2	1.0	1.358354	1.340163	1.773209	0.379780	0.503198	1.800499	0.791461	0.247676	- 1.514654	 0.247998	0.771679	0.909412	0.689281	0.3276
3	1.0	0.966272	0.185226	1.792993	0.863291	0.010309	1.247203	0.237609	0.377436	1.387024	 0.108300	0.005274	0.190321	1.175575	0.6473
4	2.0	1.158233	0.877737	1.548718	0.403034	0.407193	0.095921	0.592941	0.270533	0.817739	 0.009431	0.798278	0.137458	0.141267	0.2060

Train-Validation-Test Split

In [9]:

```
data_0, data_1 = data[data['Class'] == 0], data[data['Class'] == 1]

X_0, y_0 = data_0.drop('Class', axis = 1), data_0['Class']
X_1, y_1 = data_1.drop('Class', axis = 1), data_1['Class']

X_train, X_test, y_train, y_test = train_test_split(X_0, y_0, test_size = 0.2, random_state = 40)
X_val, X_test, y_val, y_test = train_test_split(X_test, y_test, test_size = 0.5, random_state = 40)
data_val_1, data_test_1 = pd.concat([X_val, y_val], axis = 1), pd.concat([X_test, y_test], axis = 1)

X_val, X_test, y_val, y_test = train_test_split(X_1, y_1, test_size = 0.5, random_state = 40)
data_val_2, data_test_2 = pd.concat([X_val, y_val], axis = 1), pd.concat([X_test, y_test], axis = 1)

data_val, data_test = pd.concat([data_val_1, data_val_2], axis = 0), pd.concat([data_test_1, data_test_2], axis = 0)
X_val, y_val = data_val.drop('Class', axis = 1), data_val['Class']
X_test, y_test = data_test.drop('Class', axis = 1), data_test['Class']
```

In [10]:

In [11]:

bins_train = math.floor(len(X_train)**(1/3))

Feature Engineering

Time

In [14]:

```
for df in [X_train, X_val, X_test]:

df['Day'], temp = df['Time'] // (24*60*60), df['Time'] % (24*60*60)

df['Hour'], temp = temp // (60*60), temp % (60*60)

df['Minute'], df['Second'] = temp // 60, temp % 60

X_train[['Time', 'Day', 'Hour', 'Minute', 'Second']].head()
```

Out[14]:

	Time	Day	Hour	Minute	Second
19594	30401.0	0.0	8.0	26.0	41.0
124712	77397.0	0.0	21.0	29.0	57.0
167920	118964.0	1.0	9.0	2.0	44.0
47377	43191.0	0.0	11.0	59.0	51.0
41731	40804.0	0.0	11.0	20.0	4.0

In [15]:

```
fig, ax = plt.subplots(1, 2, figsize = (15, 6), sharey = False)
sns.histplot(data = X_train, x = 'Time', bins = bins_train, ax = ax[0])
sns.histplot(data = X_train, x = 'Hour', bins = 24, ax = ax[1])
ax[1].set_ylabel(" ")
plt.suptitle("Histograms of Time and Hour", size = 14)
plt.tight_layout()
plt.show()
```


Amount

In [17]:

```
 \begin{array}{l} \mbox{for df in } [X\_train, \ X\_val, \ X\_test] : \\ \mbox{df['Amount\_transformed']} = np.log10(df['Amount'] + 0.001) \end{array}
```

In [18]:

```
fig, ax = plt.subplots(1, 2, figsize = (15, 6), sharey = False)
sns.histplot(data = X_train, x = 'Amount', bins = bins_train, ax = ax[0])
sns.histplot(data = X_train, x = 'Amount_transformed', bins = bins_train, ax = ax[1])
ax[1].set_ylabel(" ")
plt.suptitle("Histograms of Amount and Amount_transformed", size = 14)
plt.tight_layout()
plt.show()
```

Histograms of Amount and Amount_transformed

In [19]:

```
for df in [X_train, X_val, X_test]:
    df.drop(['Time', 'Day', 'Minute', 'Second', 'Amount'], axis = 1, inplace = True)
```

Feature Selection

In [21]:

```
data_val = pd.concat([X_val, y_val], axis = 1)
data_val_0, data_val_1 = data_val[data_val['Class'] == 0], data_val[data_val['Class'] == 1]
cols, ncols = list(X_val.columns), 3
nrows = math.ceil(len(cols) / ncols)
fig, ax = plt.subplots(nrows, ncols, figsize = (4.5 * ncols, 4 * nrows))
for i in range(len(cols)):
    sns.kdeplot(data_val_0[cols[i]], ax = ax[i // ncols, i % ncols])
    sns.kdeplot(data_val_1[cols[i]], ax = ax[i // ncols, i % ncols])
    if i % ncols != 0:
        ax[i // ncols, i % ncols].set_ylabel(" ")
plt.tight_layout()
plt.show()
```


In [22]:

 $\begin{aligned} &\text{cols} = [\text{'V4'}, \text{'V11'}, \text{'V12'}, \text{'V14'}, \text{'V16'}, \text{'V17'}, \text{'V18'}, \text{'V19'}, \text{'Hour'}] \\ &\text{X_train_fs}, &\text{X_val_fs}, &\text{X_test_fs} = &\text{X_train[cols]}, &\text{X_val[cols]}, &\text{X_test[cols]} \\ &\text{X_train_fs.head()} \end{aligned}$

Out[22]:

	V4	V11	V12	V14	V16	V17	V18	V19	Hour
19594	-0.706232	2.027925	0.535822	0.250769	0.773615	0.449717	-1.963208	0.613481	8.0
124712	1.474933	-1.154523	0.263527	0.316174	-1.029415	1.030772	-0.438839	0.529080	21.0
167920	4.840766	-2.242431	0.034829	-0.546349	-0.070375	1.033695	0.531801	1.215045	9.0
47377	0.565273	-0.157045	-0.548790	0.419194	0.183518	-0.681323	0.911357	1.318132	11.0
41731	-0.428860	-0.580964	-0.609099	-0.187948	1.226723	0.104368	-0.995711	0.420557	11.0

Implementing Anomaly Detection

```
In [24]:
```

```
def normal_density(x, mu, sigma):
    assert sigma > 0, "Standard deviation must be positive"
    f = (1 / (sigma * np.sqrt(2 * np.pi))) * np.exp(- (1 / 2) * ((x - mu) / sigma)**2)
    return f
```

In [25]:

```
def normal_product(x_vec, mu_vec, sigma_vec):
    assert min(sigma_vec) > 0
    assert len(mu_vec) == len(x_vec)
    assert len(sigma_vec) == len(x_vec)

f = 1
    for i in range(len(x_vec)):
        f = f * normal_density(x_vec[i], mu_vec[i], sigma_vec[i])

return f
```

In [26]:

```
mu_train, sigma_train = X_train_fs.mean().values, X_train_fs.std().values
```

In [27]:

```
def model_normal(X, epsilon):
    y = []
    for i in X.index:
        prob_density = normal_product(X.loc[i].tolist(), mu_train, sigma_train)
        y.append((prob_density < epsilon).astype(int))
    return y</pre>
```

Threshold Tuning on Validation Set

In [29]:

```
def conf_mat(y_test, y_pred):
    y_test, y_pred = list(y_test), list(y_pred)
    count, labels, confusion_mat = len(y_test), [0, 1], np.zeros(shape = (2, 2), dtype = int)
    for i in range(2):
        for j in range(2):
            confusion_mat[i][j] = len([k for k in range(count) if y_test[k] == labels[i] and y_pred[k] == labels[j]])
    return confusion_mat
```

In [30]:

```
def conf_mat_heatmap(y_test, y_pred):
    confusion_mat = conf_mat(y_test, y_pred)
    labels, confusion_mat_df = [0, 1], pd.DataFrame(confusion_mat, range(2), range(2))
    plt.figure(figsize = (6, 4.75))
    sns.heatmap(confusion_mat_df, annot = True, annot_kws = {"size": 16}, fmt = 'd')
    plt.xticks([0.5, 1.5], labels, rotation = 'horizontal')
    plt.yticks([0.5, 1.5], labels, rotation = 'horizontal')
    plt.xlabel("Predicted label", fontsize = 14)
    plt.ylabel("True label", fontsize = 14)
    plt.title("Confusion Matrix", fontsize = 14)
    plt.grid(False)
    plt.show()
```

In [31]:

```
def f2_score(y_test, y_pred):
    confusion_mat = conf_mat(y_test, y_pred)
    tn, fp, fn, tp = confusion_mat[0, 0], confusion_mat[0, 1], confusion_mat[1, 0], confusion_mat[1, 1]
    f2 = (5 * tp) / ((5 * tp) + (4 * fn) + fp)
    return f2
```

In [32]:

```
import numpy as np
from sklearn.metrics import fbeta_score
alpha_list_f2_list_f2_max_alpha_opt_v_val_pred_opt = [1, [1, 0.0, 0.0], np.zeros(len(v_val))
```

```
for alpha in np.arange(0.001, 0.051, 0.001):
    y_val_pred = model_normal(X_val_fs, epsilon=alpha**X_val_fs.shape[1]) # Adjust as needed
    f2 = fbeta_score(y_val, y_val_pred, beta=2) # Using f2 score with beta=2

alpha_list.append(alpha)
    f2_list.append(f2)

if f2 > f2_max:
    alpha_opt = alpha
    y_val_pred_opt = y_val_pred
    f2_max = f2
```

In [33]:

```
plt.figure(figsize = (9, 6))
plt.plot(alpha_list, f2_list)
plt.xlabel("alpha", fontsize = 14)
plt.ylabel("F2-score", fontsize = 14)
plt.title("F2-score vs alpha", fontsize = 14)
plt.tight_layout()
plt.show()
```


In [34]:

```
print(pd.Series({
    "Optimal alpha": alpha_opt,
    "Optimal F2-score": f2_score(y_val, y_val_pred_opt)
}).to_string())
```

Optimal alpha 0.009000 Optimal F2-score 0.834671

In [35]:

```
conf\_mat\_heatmap(y\_val,\ y\_val\_pred\_opt)
```


Prediction and Evaluation on Test Set

In [37]:

```
def evaluation(y_test, y_pred):
    confusion_mat = conf_mat(y_test, y_pred)
    tn, fp, fn, tp = confusion_mat[0, 0], confusion_mat[0, 1], confusion_mat[1, 0], confusion_mat[1, 1]
    print(pd.Series({
        "Accuracy": (tp + tn) / (tn + fp + fn + tp),
        "Precision": tp / (tp + fp),
        "Recall": tp / (tp + fn),
        "F1-score": (2 * tp) / ((2 * tp) + fn + fp),
        "F2-score": (5 * tp) / ((5 * tp) + (4 * fn) + fp),
        "MCC": ((tp * tn) - (fp * fn)) / np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
}).to_string())
```

In [38]:

```
y_test_normal = model_normal(X_test_fs, epsilon = alpha_opt**X_test_fs.shape[1])
evaluation(y_test, y_test_normal)
```

Accuracy 0.996687
Precision 0.798419
Recall 0.821138
F1-score 0.809619
F2-score 0.816492
MCC 171.242437

 $C: \label{local-to-ca$

overflow encountered in scalar multiply

In [39]:

```
conf_mat_heatmap(y_test, y_test_normal)
```


Conclusion

In [41]:

Process runtime 342.84 seconds Process memory usage 601.33 MB