

12th Material Subject: De-Moivre Laplace Theorem

Undergraduate of Telecommunication Engineering

MUH1F3 - PROBABILITY AND STATISTICS

Telkom University

Center of eLearning & Open Education Telkom University Jl. Telekomunikasi No.1, Bandung - Indonesia http://www.telkomuniversitv.ac.id

Lecturer: Nor Kumalasari Caecar Pratiwi, S.T., M.T. (caecarnkcp@telkomuniversity.ac.id)

السلام عليكم ورحمة الله وبركاته WELCOME

TABLE OF CONTENTS:

- 1. De-Moivre Laplace Theorem, Normal Approximation to the Binomial Distributions
- 2. Mean Sample Distribution

LEARNING OBJECTIVES:

After careful study of this chapter, student should be able to do the following:

1. Approximate probabilities for some binomial

We began our section on the normal distribution as an approximation to a random binomial probabilities for cases in which \mathbf{n} is large.

- Suppose **X** is a binomial random variable with \Rightarrow **BIN** (**n**, **p**), then $\mu_{\mathbf{X}} = \mathbf{np}$ dan $\sigma_{\mathbf{X}}^2 = \mathbf{npq}$.
- If it met the conditions which ${\sf n} o \infty$, such that ${\sf np} > {\sf 5}$ and ${\sf p} \le \frac{1}{2}$ or ketika ${\sf nq} > {\sf 5}$ and ${\sf p} > \frac{1}{2}$.
- If the binomial distribution meets the above conditions, then in 1973, a scientist named De-Moivre and Laplace presented a theorem to solve the problem with an approach to the Standard Normal distribution or known as DE MOIVRE LAPLACE THEOREM

Consequently, a modified interval is used to better compensate for the difference between the continuous normal distribution and the discrete binomial distribution. This modification is called a Continuity Correction.

Binomial Distribution	The Continuity Correction	Standard Normal Distribution
P(X=x)	$P([x - 0.5] \le X \le [x + 0.5])$	$P\left(\left[\frac{x-0.5-np}{\sqrt{npq}}\right] \le Z \le \left[\frac{x+0.5-np}{\sqrt{npq}}\right]\right)$
$P(X \le x)$	$P(X \le [x + 0.5])$	$P\left(X \le \left[\frac{x + 0.5 - np}{\sqrt{npq}}\right]\right)$
$P(X \ge x)$	$P(X \ge [x - 0.5])$	$P\left(X \ge \left[\frac{x - 0.5 - np}{\sqrt{npq}}\right]\right)$
$P(a \le X \le b)$	$P([a-0.5] \le X \le [b+0.5])$	$P\left(\left[\frac{a-0.5-np}{\sqrt{npq}}\right] \le Z \le \left[\frac{b+0.5-np}{\sqrt{npq}}\right]\right)$

Example: Suppose $X \Rightarrow BIN (100, 0.8)$, determine:

- a. $P(X \le 80)$
- b. $P(70 < X \le 90)$
- c. P(X = 80)
- d. $P(70 \le X)$

Answer:

$$\mu_{\rm X} = {\sf np} = {\sf 100 \cdot 0.8} = {\sf 80}$$

$$\sigma_{\rm x}^2 = {\sf npq} = {\sf 100} \cdot {\sf 0.8} \cdot {\sf 0.2} = {\sf 16}$$

 $\mathbf{a.} \ \mathbf{P}(\mathbf{X} \leq \mathbf{80})$

$$P(X_B \le 80) = P(X_N \le 80.5) = P\left(Z \le \frac{80.5 - 80}{4}\right)$$

 $P(Z \le 0.125) = \phi(0.125) = 0.54972$

b.
$$P(70 < X \le 90)$$

$$P(70 < X \le 90) = P(71 \le X_B \le 90)$$

$$P(70.5 \le X_N \le 90.5) = P\left(\frac{70.5 - 80}{4} \le Z \le \frac{90.5 - 80}{4}\right)$$

$$P(-2.375 \le Z \le 2.625) = P(Z \le 2.625) - P(Z \le -2.375)$$

$$\phi(2.625) - \phi(-2.375) = \dots \text{(see Standart Normal Table)}$$

c.
$$P(X = 80)$$

$$P(X_B = 80) = P(79.5 \le X_N \le 80.5)$$

$$P\left(\frac{79.5-80}{4} \le Z \le \frac{80.5-80}{4}\right) = P\left(-0.125 \le Z \le 0.125\right)$$

$$P(-0.125 \le Z \le 0.125) = \phi(0.125) - \phi(-0.125) =$$
(see Standart Normal Table)

d.
$$P(70 \le X)$$

$$P(70 \le X_B) = P(X_B \ge 70) = 1 - P(X_B \le 69)$$

$$1 - P(X_N \le 69.5) = 1 - P\left(Z \le \frac{69.5 - 80}{4}\right)$$

$$1 - \phi(-2.625) = \phi(2.625) = \dots$$
 (see Standart Normal Table)

8/8

Thank You

May 10, 2020

