Project Proposal: Database Screening for Compatible Materials with Wireless Charging

MAY 22, 2019

PANDU WISESA

Current problem

Why do we use glass? - Titanium

Why do we use glass? - Titanium

Why do we use glass? - Glass

Why do we use glass? - Glass

Screening Process

Screening Process

Adding Elastic Properties – 13,321 materials

Adding Elastic Properties – 13,321 materials

Elastic properties do not correlate with band gap!

Dataset with dielectric properties – 4,724 materials

Dataset with dielectric properties – 4,724 materials

Index of refraction has inverse relationship with band gap!

Takeaways

- 1. To make wireless charging realize its potential, a resilient material that works with it is a must.
- 2. Metals in general are resilient, but reflect the charging waves.
- 3. Glass works, but is brittle.
- 4. Screening materials database will pre-screen materials for prototyping.
- 5. After adding mechanical properties to the original 13,321 data set, increasing the file size by a factor of 10, I found that mechanical properties do not correlate to band gap, this validates the chosen screening steps.
- 6. The existence of oxygen and hydrogen indicates band gap
- 7. On top of the recently found inverse relation to density, and screening 4,724 materials with dielectric properties found that index of refraction are also inversely proportional to band gap.