C 07 C 45-16 C 07 C 49-06 C 07 C 47-02 C 07 C 47-20 B 01 J 23-86

Offenlegungsschrift 23 58 254

② Aktenzeichen:

P 23 58 254.9

Anmeldetag:

22. 11. 73

Offenlegungstag:

5. 6.75

30 Unionspriorität:

64)

@ 33 31

Bezeichnung: Verfahren zur Herstellung von Aldehyden oder Ketonen durch

katalytische Dehydrierung von Alkoholen

(7) Anmelder: Wacker-Chemie GmbH, 8000 München

© Erfinder: Sommer, Oswin, Dipl.-Ing. Dr.; Knörr, Fritz, Dipl.-Chem. Dr.;

8263 Burghausen

München, den 9. Nov. 1973 FE-PAT/Dr.Ks/Dg. 2358254

Wa 7311

Verfahren zur Herstellung von Aldehyden oder Ketonen durch katalytische Dehydrierung von Alkoholen

Die katalytische Dehydrierung von primären Alkoholen zu den entsprechenden Aldehyden ist bekanntlich deshalb schwierig, weil die für die Dehydrierung benötigten Katalysatoren neben ihrer dehydrierenden Wirkung in der Regel eine nicht unwesentliche dehydratisierende Wirkung auf die Alkohole ausüben, wodurch Olefine als Nebenprodukte entstehen und die Aldehyd-Ausbeute vermindert wird. Daneben können als ausbeutemindernde Nebenprodukte Säuren, Ester und Acetale und in manchen Fällen sogar durch Zersetzung der entstehenden Carbonylverbindungen Kohlenwasserstoffe und Kohlenmonoxyd, sowie Polymerisate auftreten.

Als Dehydrierungskatalysatoren sind eine Vielzahl von Metallen und deren Oxyde vorgeschlagen worden. Kupfer und Nickel, sowie deren Oxyde sind teilweise auch erfolgreich angewendet worden, aber zahlreiche Nachteile mußten mit dem Gebrauch derartiger Metalle in Kauf genommen werden; denn reduzierbare Oxyde bzw. deren Metalle sind meist gegen Vergiftungen anfällig. Schwerer reduzierbare Oxyde, wie z.B. Zinkoxyd, sind trotz Widerstandsfähigkeit gegen Vergiftung meist weniger aktiv und erfordern relativ hohe Temperaturen zu ihrer Aktivierung, wodurch die dehydratisierende Wirkung meist erhöht wird.

Aus der US-Patentschrift 2 178 761 ist die Verwendung eines Zinkchromit-Kontaktes, der mit Kupfer und Kadmiumoxyd dotiert ist, bekannt, wobei aber niedrige Umsätze bei hohem Anfall an Nebenprodukten erreicht werden.

Gegenstand dieser Erfindung ist ein Verfahren zur Herstellung von Aldebyden oder Ketonen durch katalytische Dehydrierung von primären oder sekundären Alkoholen und Alkenolen mit 5-15 C-Atomen in Gegenwart eines Zinkchromit-Katalysators, bei dem das molare Verhältnis

von Zinkoxyd zu Chrom-III-oxyd 0,8 bis 1,2:0,5 - 0,8 beträgt und der mit 2-10 Gew. % Kupferoxyd, vorzugsweise 3-5 Gew. % Kupfer-II-oxyd, sowie 0,5-5 Gew. % Kadmiumoxyd, vorzugsweise 1-1,5 Gew. % Kadmiumoxyd dotiert ist, bei erhöhter Temperatur. Das Verfahren ist dadurch gekennzeichnet, daß dem Zinkchromit-Katalysator 5-15 Gew. % Chrom-III-oxyd, bezogen auf den Katalysator zugesetzt werden, wobei das Chrom-III-oxyd in Form von Ammondichromat zugemischt und der Katalysator anschließend durch Tempern bei 300-450 °C in einen hochaktiven verteilten Zinkchromit-Katalysator übergeführt wird.

Gemäß einer vorteilhaften Ausführung des vorliegenden Verfahrens werden 8-10 Gew. % Chrom-III-oxyd, bezogen auf den Katalysator, zugesetzt.

Den hochaktiven fein verteilten Katalysator erhält man, indem die an sich in bekannter Weise durch Fällung gewonnene Kontaktzusammensetzung, die ein Metall-Ammonchromat darstellt, thermisch zersetzt, anschließend mit der entsprechenden Menge Ammondichromat vermischt und bei den genannten Temperaturen getempert wird.

Die angegebenen Prozentzahlen an Kupfer-II-oxyd und Kadmiumoxyd beziehen sich auf den fertiggestellten Rohkontakt, der durch thermische Zersetzung der Metall-Ammonchromat-Fällung erhalten wird.

Der Tempervorgang besteht darin, daß die erhaltene Kontaktmatrix für mehrere Stunden auf 300-400 °C erhitzt wird. Geeignete Zeiten für die Temperung sind 3-5 Stunden. Günstige Temperresultate werden bei einer 4stündigen Temperung mit 400 °C erzielt.

Der Katalysator kann durch die üblichen Methoden geformt oder aufgebracht auf einen inerten Träger, wie z.B. Bimstein, todgebranntes Aluminiumoxyd, Siliciumcarbid oder Kieselgur zum Einsatz kommen.

Weiterhin kann der Kontakt in Wirbelschicht, bevorzugt aber als Festbett, gemäß den bekannten Methoden verwendet werden. Günstige Verfahrensergebnisse werden erzielt, wenn die Dehydrierung bei Temperaturen von 270-450 °C, vorzugsweise bei 350-400 °C, und einem Druck von 0,01-2 ata, vorzugsweise 0,5-1 ata, durchgeführt wird.

Die Kontaktzeit hängt von der Arbeitstemperatur und dem gewünschten Umsetzungsgrad ab. Bei den genannten Temperaturen werden hohe Umsätze und wenig Nebenprodukte erhalten, wenn die Verweilzeit der Alkoholdämpfe, bezogen auf das leere Reaktorvolumen, bei 10-50 sek., vorzugsweise 25-35 sek., liegt.

Besonders günstige Umsatzwerte werden erreicht, wenn zusätzlich der Wassergehalt der eingesetzten Alkohole gering ist. Für das vorliegende Verfahren hat es sich als vorteilhaft erwiesen, wenn der Wassergehalt der zum Einsatz kommenden Alkohole 0,2 Gew. %, bezogen auf den eingesetzten Alkohol, nicht überschreitet.

Zur Herstellung von Aldehyden oder Ketonen geeignete Ausgangsverbindungen sind primäre oder sekundäre gesättigte Alkohole mit 5-15 C-Atomen, aber auch die entsprechenden ungesättigten Vertreter dieser Klasse, wie Alkenole. Bei all den genannten Verbindungen handelt es sich um Alkohole mit sowohl geradkettiger als auch verzweigter Kohlenstoffkette.

Es ist überraschend, daß der Katalysator durch den Zusatz des dreiwertigen Chromoxyds eine gesteigerte Aktivität aufweist, die auch über einen längeren Zeitraum erhalten bleibt. Vergiftungs- erscheinungen bzw. Desaktivierung können auch bei kontinuier- licher Belastung über einen längeren Zeitraum nicht festgestellt werden. So ist z. B. bei der Dehydrierung von 2-Äthylbutanol nach 12 monatiger ununterbrochener Betriebsdauer unter Verwendung des in Beispiel 1 beschriebenen Katalysators keine Abnahme des Umsatzes sowie der Selektivität festzustellen.

Die Selektivität ist sehr gut. Es treten fast keine Nebenprodukte auf. Eine dehydratisierende Wirkung wurde nicht beobachtet. Die Nebenprodukte liegen unter 1,5 Gew. % und setzen sich fast durchwegs aus Aldehyden bzw. Ketonen mit niederer C-Atomzahl zusammen,

die fast ausschließlich vor dem argestrebten Aldehyd, bzw. Keton sieden. Umsätze von 85-90 Gew. % werden ohne weiteres erreicht.

Bedingt durch den hohen Umformungswert, die extrem hohe Selektivität, geringen Prozentsatz an Nebenprodukten und die auffallend lange Lebensdauer des Katalysators, besteht die Möglichkeit, das aus dem Kontaktofen austretende Aldehyd-Alkoholgemisch bzw. Keton-Alkoholgemisch in einer nachgeschalteten Rektivizierkolonne zu trennen. Der Blasenablauf, der höher siedende, nicht umgesetzte Alkoholanteil wird in Umlauf gehalten und kontinuierlich dem Ausgangsprodukt zugefügt.

Wird das Spaltprodukt nach der katalytischen Dehydrierung kondensiert, so erfolgt fast durchwegs eine azeotrope Destillation zur Trennung des Aldehyds bzw. Ketons vom Alkohol mit Wasser als Schlepper. Der bei dieser Prozedur mit Wasser gesättigt anfallende Retouralkohol wird wegen der Wasserempfindlichkeit des Katalysators zweckmäßigerweise durch Durchleiten über ein Molekularsieb-Bett entwässert.

Die in nachstehenden Beispielen angegebenen Prozentzahlen für Katalysatoraktivität, Umsatz und Sclektivität verstehen sich als Gew. %.

Beispiel 1

Der erfindungsgemäße Katalysator wird durch Auflösen der Salze Zinknitrat 0,825 Mol, Kupfernitrat 0,4 Mol und Kadmiumnitræt 0,0488 Mol in Wasser bis zu einer gesättigten Lösung und anschließender Fällung mit 0,5 Mol Ammondichromat, ebenfalls in Wasser (400 ml) gelöst, durch tropfenweise Zugabe von 25 %iger Ammoniaklösung (60 ml) hergestellt. In die gemeinsame Lösung der Nitratsalze läßt man unter Rühren bei einer Temperatur von 50 °C die Ammondichromatlösung langsam zutropfen. Der sich abscheidende Niederschlag enthält das Zinkchromat-Addukt. Durch die weitere Neutralisation der Mutterlauge mit Ammoniak bis zum pH = 7 werden die Promotoren quantitativ als Addukte gefällt. Das gefällte Präzipität wird portionsweise mit venig Masser zur Entfernung der Nitrate gewaschen und bei 60 °C getrochart.

Das erhaltene Metall-Ammonchromat wird anschließend in einem Drehrohrofen thermisch zersetzt. Dies geschieht durch vorsichtiges Erhitzen des Rohadduktes bis zu Ofentemperaturen

zwischen 150-200 °C. Der erhaltene Rohkontakt ist schwarz und zeigt im Röntgendiagramm keine Interferenzen. Dieses Mehrstoff-komponentengemenge aus Oxyden des Zinks, Kupfers, Kadmiums und Chroms besitzt in dieser amorphen Beschaffenheit dehydrierende Wirkung. Die Aktivität ist noch gering, die Selektivität ebenso. Zur Erzielung hoher Aktivitäten, Umsätze und großer Selektivität der katalytischen Matrix wird dem Rohkontakt, der in einer Menge von 150 g vorliegt, 24,57 g Ammondichromat zugesetzt und anschließend diese Kontaktmatrix 4 Stunden bei 400 °C getempert. Der auf die Weise hergestellte Katalysator ist für Dehydrierungsreaktionen von Alkoholen in der Dampfphase sehr spezifisch und besitzt eine hohe Aktivität und Selektivität. Seine spez. Oberfläche beträgt 48 m²/g (BET-Verfahren, Messung N₂).

23 g des erhaltenen Katalysatorpulvers werden auf 75 g Bimstein aufgetragen. Dazu wird der Kontakt in Wasser aufgeschlämmt, anschließend Bimsteine zugefügt und durch langsames Abdampfen des Wassers unter rotierender Bewegung die Oberfläche der Bimsteine mit Kontakt überzogen. Diese werden in ein Glasrohr von 16 mm lichter Weite und 1 200 mm Länge eingefüllt. In der Achse des Rohres befindet sich ein in einem dünnen Glasrohr verschiebbar angeordnetes Thermoelement. Das Reaktionsrohr wird in einen elektrisch beheizten Ofen eingeführt und mit einem Alkoholverdempfer verbunden. Die aus dem Reaktionsrohr austretenden heißen Reaktionsgase werden in einem Wasserkühler kondensiert und der gebildete Wasserstoff gesondert abgeleitet. Bei einer stündlichen Belastung von 80 cem wasserfreiem 2- Äthylbutanol und einer Reaktionstemperatur von 375 °C bei Atmosphärendruck betrögt der Umsatz 85 %, die Selektivität liegt bei 99,8 %.

Mit dem gleichen Katalysator, jedoch umter anderen Bedingungen, werden die folgenden Ergebnisse bei der Verwendung des vorstehend genannten Alkohols erzielt:

2-Äthylbutanol Dosierung ccm/h	Reaktions- temperatur ^O C	Aktivität d. Katalysators %	Umsatz %	Selektivität v. 2-Äthylbutanal %
110	350	73	68	93
100	11	77	75	98,4
80	. 11	84	85	99,4
65	tī .	84,5	84	99,8
50	11	84	80	98,5
30	11	80	75	97,7
83 , 5	250	40,5	38	94,0
17	300	. 73,0	73	90
H .	• 350 ,	86,7	85	99,8
tt .	375	92,7	86	99,8

Vergleichsversuch A

Dieser Versuch wird mit einem Zinkchromit-Katalysator, der entsprechend der US-Patentschrift 2 178 761, Beispiel II, jedoch ohne Ammondichromat-Zusatz getempert wurde, durchgeführt. 23 g des Katalysators werden in der in Beispiel 1 aufgeführten Versuchsanordnung geprüft. Bei einer stündlichen Belastung von 80 ccm wasserfreiem 2-Äthylbutanol, einer Reaktionstemperatur von 375 °C und Atmosphärendruck wird folgendes Ergebnis erhalten:

Aktivität	dcs Katalysators	Umsatz	Selektivität butanal	von 2-Äthyl-
	78 %	67 %	87	6. 10

Beispiel 2

Mit dem gemäß Eeispiel 1 hergestellten Katalysator und der beschriebenen Verrichtung und unter den dort angegebenen Eedingungen werden 70 ccm/h wasserfreies n-Hexanol bei einer Temperatur von 375 °C über den Kontakt geleitet. Es wird folgendes Ergebnis erhalten:

Aktivität des Katolysators	Umsatz	Selektivität von Capron- aldehyd
85 \$	87 %	98,3 %

Beispiel 3

Über den in Beispiel 1 verwendeten Katalysator wird bei einer Temperatur von 375 °C in dort beschriebener Dehydrierungsapparatur unter gleichen Bedingungen 80 g/h wasserfreies Pentanol (3) geleitet. Dabei wird folgendes Ergebnis erhalten:

Aktivität des Katalysators Umsatz Selektivität v. Pentanon (3)
95 % 91 % 99,9 %

Beispiel 4

Das Verfahren nach Beispiel 1 wurde wiederholt. Der Wassergehalt von 2-Äthylbutanol betrug 0,20 Gew.% bezogen auf 2-Äthylbutanol. Unter diesen Bedingungen ergeben sich:

Aktivität des Katalysators Umsatz Selektivität von 2-Äthyl 84 % 60 % 95 % butanal

Beispiel 5

Unter Verwendung des in Beispiel 1 beschriebenen Katalysators und unter den dort angegebenen Bedingungen werden 80 ml/h Penten (4)ol (1) in den Dehydrierungsofen eingespeist. Dabeiwird folgendes Ergebnis erhalten:

Aktivität des Katalysators Umsatz Selektivität v. Penten(4) al
.
81 % 78 % 93 %

Beispiel 6

Der gemäß Beispiel 1 hergestellte Katalysator wird in der ebenfalls dort beschriebenen Versuchsapparatur verwendet. Stündlich werden 80 ccm Decanol (1) über den Katalysator geleitet. Bei einer Dehydrierungstemperatur von 400 °C und Atmosphärendruck

erhält man folgendes Ergebnis:

Aktivität des Katalysators Umsatz Selektivität v.Decanal(184 % 77 % 85 %

-8-

Patentansprüche

- Verfahren zur Herstellung von Aldehyden oder Ketonen durch katalytische Dehydrierung von primären oder sekundären Alkoholen mit 5-15 C-Atomen in Gegenwart eines Zinkchromit-Katalysators, bei dem das molare Verhältnis von Zinkoxyd zu Chrom-III-oxyd 0,8-1,2:0,5-0,8 beträgt und der mit 2-10 Gew.% Kupfer-II-oxyd sowie 0,5-5 Gew. % Kadmiumoxyd dotiert ist, bei erhöhter Temperatur dad urch gekennzeich net, daß dem Zinkchromit-Katalysator 5-15 Gew. % Chrom-III-oxyd, bez. auf den Katalysator, zugesetzt werden, wobei das Chrom-III-oxyd in Form von Ammondichromat zugemischt und durch Tempern bei 300-450 Cin einen hochaktiven verteilten Zinkchromit-Katalysator übergeführt wird.
- 2. Verfahren nach Anspruch 1 dadurch gekennzeichnet, daß 8-10 Gew. % Chrom-III-oxyd, bez. auf den Katalysator, zugesetzt werden.

DERWENT-ACC-NO: 1975-39483W

DERWENT-WEEK: 197802

COPYRIGHT 2008 DERWENT INFORMATION LTD

TITLE: Aldehyde or ketone prodn. by

alcohol dehydrogenation with a doped zinc chromite catalyst contg. extra chromium oxide

PATENT-ASSIGNEE: WACKER CHEM GMBH [WACK]

PRIORITY-DATA: 1973DE-2358254 (January 22, 1973)

PATENT-FAMILY:

PUB-NO	PUB-DATE	LANGUAGE
r ud-Mu	FUD-DAIL	

DE 2358254 A June 5, 1975 DE DE 2358254 B January 5, 1978 DE

APPLICATION-DATA:

PUB-NO	APPL-DESCRIPTOR	APPL-NO	APPL-DATE
DE	N/A	1973DE-	January
2358254A		2358254	22, 1973

ABSTRACTED-PUB-NO: DE 2358254 A

BASIC-ABSTRACT:

In a process for the prodn. of aldehydes or ketones by dehydrogenation of prim. or sec. 5-15C alcohols in the presence of a Zn chromite catalyst (ZnO:Cr2O3 molar ratio=0.8-1.2:0.5-0.8) doped with

2-10 wt.% CuO and 0.5-5 wt.% CdO, an additional 5-15 (pref. 8-10) wt.% Cr2O3 is incorporated in the catalyst by adding NH4 dichromate and heating at 300-450 degrees C. Addn. of Cr2O3 increases the activity selectivity and life of the catalyst; dehydration side reactions are totally eliminated and by-product formation (aldehydes or ketones with fewer C atoms) is limited to <1.5 wt.%; conversions of 85-90% can be achieved.

TITLE-TERMS: ALDEHYDE KETONE PRODUCE ALCOHOL

DEHYDROGENATE DOPE ZINC CHROMITE

CATALYST CONTAIN EXTRA CHROMIUM

OXIDE

DERWENT-CLASS: E19

CPI-CODES: E10-D01C; E10-F02B; E35-C; E35-P;

CHEMICAL-CODES: Chemical Indexing M3 *01*

Fragmentation Code J451 J471 J6
M210 M213 M214 M215 M216 M220
M221 M222 M223 M224 M225 M231
M232 M233 M260 M281 M313 M314
M315 M316 M320 M416 M510 M520
M530 M540 M620 M720 N050 N340

Chemical Indexing M3 *02*
Fragmentation Code A400 A424 A430
A940 A980 C108 C730 C801 C802
C803 C804 C805 C807 M411 M730
M760 N050 N340 O421

Chemical Indexing M3 *03*
Fragmentation Code J5 J581 M210
M211 M212 M213 M214 M215 M216
M220 M221 M222 M223 M224 M225
M231 M232 M233 M260 M282 M311

M312 M313 M314 M315 M316 M320 M416 M510 M520 M530 M540 M620 M720 N050 N340

Chemical Indexing M3 *04*
Fragmentation Code A400 A421 A424
A430 A940 A980 A990 C108 C730
C801 C802 C803 C804 C805 C807
M411 M730 M760 N050 N340 Q421