

复变函数与积分变换

张神星 (合肥工业大学)

办公室: 翡翠科教楼 B1810 东

Email: zhangshenxing@hfut.edu.cn

课件地址: https://zhangshenxing.github.io

第二章 解析函数

1 解析函数的概念

第一节 解析函数的概念

- ■可导函数
- ■可微函数
- 解析函数

由于 C 和 R 一样是域, 因此我们可以像一元实变函数一样去定义复变函数的导数和微分.

定义

- 设 w = f(z) 的定义域是区域 D, $z_0 \in D$.
- 若极限

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

存在, 则称 f(z) 在 z_0 可导. 这个极限值称为 f(z) 在 z_0 的导数, 记作 $f'(z_0)$.

• 若 f(z) 在区域 D 内处处可导, 称 f(z) 在 D 内可导.

例: 线性函数的不可导性

例

函数
$$f(z) = x + 2yi$$
 在哪些点处可导?

解答

由定义可知

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{(x + \Delta x) + 2(y + \Delta y)\mathbf{i} - (x + 2y\mathbf{i})}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{\Delta x + 2\Delta y\mathbf{i}}{\Delta x + \Delta y\mathbf{i}}.$$

当 $\Delta x=0, \Delta y\to 0$ 时, 上式 $\to 2$; 当 $\Delta y=0, \Delta x\to 0$ 时, 上式 $\to 1$. 因此该极限不存在, f(z) 处处不可导.

例: 复变函数的导数

练习

函数 $f(z) = \overline{z} = x - yi$ 在哪些点处可导?

答案

处处不可导.

例

求 $f(z) = z^2$ 的导数.

解答

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} = \lim_{\Delta z \to 0} \frac{(z + \Delta z)^2 - z^2}{\Delta z} = \lim_{\Delta z \to 0} (2z + \Delta z) = 2z.$$

事实上, 和单变量实函数情形类似, 复变函数也有如下求导法则.

定理

- (1) (c)' = 0, 其中 c 为复常数;
- (2) $(z^n)' = nz^{n-1}$, 其中 n 为整数;
- (3) $(f \pm g)' = f' \pm g'$, (cf)' = cf';
- (4) $(fg)' = f'g + fg', \quad \left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2};$
- (5) $(f(g(z)))' = f'[g(z)] \cdot g'(z);$
- (6) $g'(z) = \frac{1}{f'(w)}, g = f^{-1}, w = g(z).$

线性性质

莱布尼兹法则

复合函数求导

反函数求导

求导运算法则

• 由上述求导法则, 不难知道:

定理

- (1) 在 z_0 处可导的两个函数 f(z), g(z) 之和、差、积、商 $(g(z_0) \neq 0)$ 仍然在 z_0 处可导.
- (2) 若函数 g(z) 在 z_0 处可导, 函数 f(w) 在 $g(z_0)$ 处可导, 则 f(g(z)) 在 z_0 处可导.
- 由此可知,多项式函数处处可导,有理函数在其定义域内处处可导,且二者导数形式和单变量实函数情形类似。

利用求导运算法则计算导数

例

求
$$f(z) = \frac{z^2 + 3}{z + 1}$$
 的导数.

解答

• 由于

$$f(z) = z - 1 + \frac{4}{z+1},$$

• 因此

$$f'(z) = 1 - \frac{4}{(z-1)^2}.$$

可导蕴含连续

定理

若 f(z) 在 z_0 可导,则 f(z) 在 z_0 连续.

该定理的证明和单变量实函数情形完全相同.

证明

- $\psi \Delta w = f(z_0 + \Delta z) f(z_0),$
- 则

$$\lim_{\Delta z \to 0} \Delta w = \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z} \cdot \Delta z = \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z} \cdot \lim_{\Delta z \to 0} \Delta z = f'(z_0) \cdot 0 = 0,$$

• 从而 f(z) 在 z_0 处连续.

复变函数的微分

• 复变函数的微分也和单变量实函数情形类似.

定义

若存在常数 A 使得函数 w = f(z) 满足

$$\Delta w = f(z_0 + \Delta z) - f(z_0) = A\Delta z + o(\Delta z),$$

其中 $o(\Delta z)$ 表示 Δz 的高阶无穷小量, 则称 f(z) 在 z_0 处可微, 称 $A\Delta z$ 为 f(z) 在 z_0 的微分, 记作 $\mathrm{d} w = A\Delta z$.

- 和一元实变函数情形一样, 复变函数的可微和可导是等价的, 且 $\mathrm{d} w = f'(z_0)\Delta z$, $\mathrm{d} z = \Delta z$.
- 故

$$dw = f'(z_0) dz, f'(z_0) = \frac{dw}{dz}.$$

定义

- (1) 若函数 f(z) 在 z_0 的一个邻域内处处可导, 则称 f(z) 在 z_0 解析.
- (2) 若 f(z) 在区域 D 内处处解析,则称 f(z) 在 D 内解析,或称 f(z) 是 D 内的一个解析函数.
- (3) 若 f(z) 在 z_0 不解析, 则称 z_0 为 f(z) 的一个奇点.
- 在一点解析蕴含在这点可导, 反之未必. 无定义、不连续、不可导、可导但不解析, 都会导致奇点的产生. 不过, 若 z_0 是 f(z) 定义域的外点, 即存在 z_0 的邻域与 f(z) 定义域交集为空集, 这种情形不甚有趣, 因此我们不考虑这类奇点.
- 在区域 D 内解析和在 D 内可导是等价的. 这是因为任意 $z_0 \in D$ 均存在一个包含在 D 内的邻域.
- 由于一个点的邻域也是一个开集, 因此若 f(z) 在 z_0 处解析, 则 f(z) 在 z_0 的一个邻域内处处可导, 从而在该邻域内解析. 因此 f(z) 解析点全体是一个开集, 它是可导点集合的内点构成的集合.

解析函数

练习

函数 f(z) 在点 z_0 处解析是 f(z) 在该点可导的(A).

(A) 充分条件

(B) 必要条件

(C) 充要条件

(D) 既非充分也非必要条件

答案

解析要求在 20 的一个邻域内都可导才行.

例

研究函数 $f(z) = |z|^2$ 的解析性.

解答

注意到

$$\frac{f(z+\Delta z)-f(z)}{\Delta z} = \frac{(z+\Delta z)(\overline{z}+\overline{\Delta z})-z\overline{z}}{\Delta z} = \overline{z}+\overline{\Delta z}+z\frac{\Delta x-\Delta y\mathrm{i}}{\Delta x+\Delta y\mathrm{i}}.$$

- z = 0, 则当 $\Delta z \rightarrow 0$ 时该极限为 0.
- 若 $z \neq 0$, 则当 $\Delta y = 0$, $\Delta x \to 0$ 时该极限为 $\overline{z} + z$; 当 $\Delta x = 0$, $\Delta y \to 0$ 时该极限为 $\overline{z} z$. 因此此时极限不存在.

不难证明:

定理

- (1) 在 z_0 处解析的两个函数 f(z), g(z) 之和、差、积、商 $(g(z_0) \neq 0)$ 仍然在 z_0 处解析.
- (2) 若函数 g(z) 在 z_0 处解析, 函数 f(w) 在 $g(z_0)$ 处解析, 则 f(g(z)) 在 z_0 处解析.

• 由此可得:

定理

- (1) 在 D 内解析的两个函数 f(z), g(z) 之和、差、积、商仍然在 D (作商时需要去掉 g(z)=0 的点) 内解析.
- (2) 若函数 g(z) 在 D 内解析且像均落在 D' 中,函数 f(w) 在 D' 内解析,则 f(g(z)) 在 D 内解析.
- 由此可知,多项式函数处处解析.有理函数在其定义域内处处解析,分母的零点是它的奇点.