Строение максимальных идеалов в кольцах мер со сверткой

Ю. А. Шрейдер (Москва)

Предметом настоящей работы является изучение коммутативных нормированных колец, являющихся естественным обобщением кольца $V^{(b)}$ функций с ограниченным изменением на прямой, впервые рассматривавшегося И. М. Гельфандом (см. [2]). В работе решается вопрос о строении максимальных идеалов таких колец, в частности, впервые определяется структура максимальных идеалов кольца $V^{(b)}$. Последний результат был уже изложен в моей заметке [10].

- § 1 посвящен определению рассматриваемого класса колец и установлению некоторых простейших его свойств.
- В § 2 устанавливаются основные результаты, касающиеся строения максимальных идеалов в изучаемых кольцах.
- § 3 посвящен изучению кольца $V^{(b)}$. В нем дается некоторая конструкция максимальных идеалов этого кольца, с помощью которой можно установить существование максимальных идеалов, не укладывающихся в схему, указанную ранее Д. А. Райковым (см. [1], дополнение II).
- В § 4 изучаются некоторые вопросы, связанные с топологическими свойствами пространства максимальных идеалов кольца $V^{(b)}$. В качестве применения получается результат, высказанный в работе Винера (N. Wiener) и Питта (H. R. Pitt) [15] относительно преобразований Фурье-Стильтьеса функций с ограниченным изменением (теорема 8). Доказательство, данное в статье указанных авторов, очень громоздко и, повидимому, неверно.

§ 1. Введение

Пусть дана коммутативная топологическая группа $\mathfrak G$, удовлетворяющая второй аксиоме счетности. Мы рассмотрим совокупность комплексных вполне аддитивных функций $\sigma(E)$, определенных для всех борелевских множеств на группе $\mathfrak G$.

Такие функции множеств мы будем в дальнейшем называть мерами. Так как, очевидно, вещественная и мнимая части меры $\sigma(E)$ также являются вполне аддитивными мерами и имеют ограниченное изменение, то (см. [9], теорема 14.1) функция $\sigma(E)$ представима в виде:

$$\sigma(E) = \sigma_1(E) + i\sigma_2(E) - \sigma_3(E) - i\sigma_4(E), \tag{1}$$

где σ_1 , σ_2 , σ_3 , σ_4 — неотрицательные вполне аддитивные ϕ^v кции множеств; при этом σ_1 сингулярна к σ_3 , а σ_2 сингулярна к ϵ Измене-

нием меры σ на множестве E мы будем называть сумму изменений ее действительной и мнимой частей. Очевидно, что

$$\operatorname{var}_{E} \sigma = \sigma_{1}(E) + \sigma_{2}(E) + \sigma_{3}(E) + \sigma_{4}(E). \tag{2}$$

Мера σ называется абсолютно непрерывной относительно меры σ_0 или подчиненной к σ_0 , если для всякого множества E, на котором изменение σ_0 равно нулю, изменение σ также равно нулю.

Если мера $\varphi(E)$ — неотрицательная, то можно для любого множества $\mathscr{E} \subset \mathfrak{G}$ ввести понятие верхней и нижней меры относительно φ следующим образом:

$$\varphi(\mathscr{E}) = \inf \varphi(E), \quad E \supset \mathscr{E},$$
 (3)

$$\varphi(\mathcal{E}) = \sup \varphi(E), \qquad E \subset \mathcal{E}, \tag{3'}$$

где inf (sup) берется по всем борелевским множествам, содержащим \mathscr{E} (содержащимся в \mathscr{E}). Если $\overline{\varphi}(\mathscr{E}) = \varphi(\mathscr{E})$, то множество \mathscr{E} называется измеримым относительно φ . \overline{B} случае произвольной меры σ , множество \mathscr{E} называется измеримым относительно σ , если \mathscr{E} измеримо относительно каждой из мер σ_1 , σ_2 , σ_3 , σ_4 , участвующих в равенстве (1). Значение $\sigma(\mathscr{E})$ определяется естественным образом.

Совокупность мер на группе @ превращается в банахово пространство $\Re_{@}$, если в качестве нормы меры принять ее полную вариацию.

Мы укажем сейчас общий вид линейного функционала в пространстве $\Re_{\mathbb{G}}$. Для случая прямой это было сделано Ю. И. Гросбергом [16] и А. П. Артеменко [5], но и в этом случае указанный здесь вид линейного функционала, повидимому, удобнее для пользования.

Определение 1. Обобщенной функцией $f_{\sigma}(t)$ называется такая функция от точки $t \in \mathfrak{G}$ и меры σ , которая для каждой меры σ является измеримой относительно σ функцией от t, причем, если мера σ абсолютно непрерывна относительно меры σ_1 , то почти всюду по мере σ выполнено равенство $f_{\sigma}(t) = f_{\sigma_1}(t)$.

Tеорема 1. Всякий линейный функционал L $\{\sigma\}$ в пространстве $\Re_{\mathfrak{M}}$ задается формулой:

$$L\left\{ \sigma\right\} =\int f_{\sigma}\left(t\right) d_{t}\sigma,\tag{4}$$

где $f_{\sigma}(t)$ — некоторая обобщенная функция, удовлетворяющая условию:

$$\sup_{\sigma} \operatorname{vrai} \max_{t} |f_{\sigma}(t)| \equiv ||L|| < +\infty.$$
 (5)

Обратно, всякая обобщенная функция, удовлетворяющая условию (5), определяет функционал в \Re_{GS} .

Доказательство. Рассмотрим подпространство $\Re_{\sigma} \subset \Re_{\mathfrak{G}}$, состоящее из всех мер φ , подчиненных к некоторой положительной мере σ .

Согласно теореме Радона-Никодима [9], пространство \Re_{σ} изометрично пространству суммируемых функций относительно меры σ , в силу соотношений

$$\varphi(E) = \int_{E} g(t) d_{t} \sigma \tag{6}$$

И

$$\|\varphi\| = \int |g(t)| d_t \sigma. \tag{7}$$

Функционал L в пространстве $\Re_{\mathfrak{G}}$ порождает функционал L' в пространстве $\Re_{\mathfrak{G}}$. Но, как известно, всякий функционал в пространстве суммируемых функций по мере σ определяется измеримой по σ функцией σ имеющей конечный «истинный максимум», и норма функционала σ определяется как

$$||L'|| = \operatorname{vrai} \max_{t} |f_{\sigma}(t)|. \tag{8}$$

Функция $f_{\sigma}(t)$ определена, таким образом, для всех положительных мер σ .

Для произвольной меры о мы положим

$$f_{\sigma}(t) = f_{\widetilde{\sigma}}(t), \tag{9}$$

где для каждого множества E мера $\overset{\sim}{\sigma}(E)$ определена как полное изменение меры σ на множестве E. Согласно построению, $f_{\sigma}(t)$ есть обобщенная функция, и линейный функционал L $\{\sigma\}$ определен равенством (4). Нетрудно также проверить, что выполняется условие (5).

Банахово пространство $\mathfrak{R}_{\mathfrak{G}}$ превращается в коммутативное нормированное кольцо, если задать умножение (свертку) формулой:

$$\sigma * \psi(E) = \int \sigma(E - t) d_t \psi. \tag{10}$$

Эта формула имеет следующий смысл: мы рассматриваем меру сдвинутого множества $\sigma(E-t)$, как функцию точки t, и интегрируем помере ψ ; результат равен некоторой функции множества $\sigma * \psi(E)$.

Мы покажем, что интеграл (10) существует для всякого борелевского множества E и умножение, задаваемое формулой (10), коммутативно.

Благодаря соотношению (1), наше утверждение достаточно доказать лишь для неотрицательных мер σ и ψ .

Рассмотрим прямую сумму \mathfrak{F} группы \mathfrak{G} с собою и зададим там меру как произведение мер $\sigma \times \psi$ (см. [9]). Элементами группы \mathfrak{F} являются пары (t,s). Рассмотрим борелевское множество $E \subset \mathfrak{G}$. Множество $\mathcal{E} \subset \mathfrak{F}$, состоящее из пар (t,s), удовлетворяющих условию $t+s \in E$, является борелевским в \mathfrak{F} , а следовательно, измеримым по произведению мер $\sigma \times \psi$.

В самом деле, группа $\mathfrak F$ есть прямая сумма подгруппы $\mathfrak F_1$ пар вида (z,0) и подгруппы $\mathfrak F_2$ пар вида (-s,s). Множество $\mathfrak F$ состоит из всех

элементов (t,s)=(t+s,0)+(-s,s), для которых проекция на \mathfrak{F}_1 принадлежит множеству E, т. е. $t+s\in E$, а проекция на \mathfrak{F}_2 произвольна Таким образом при указанном разложении группы \mathfrak{F} на прямые слагаемые множество \mathfrak{F} оказывается прямой суммой двух борелевских множеств, т. е. борелевским множеством в \mathfrak{F} .

Вычислим теперь меру множества $\mathscr{E} \subset \mathfrak{F}$. Применяя теорему Фубини (см. [9], теорема (9.10)), мы получаем:

$$\iint_{\mathscr{E}} d_t \sigma d_s \psi = \int_{\mathfrak{G}} d_t \sigma \int_{E-t} d_s \psi = \int_{\mathfrak{G}} \psi (E-t) d_t \sigma; \tag{11}$$

таким образом, интеграл (10) имеет смысл. С другой стороны,

$$\iint_{\mathcal{E}} d_t \sigma d_s \psi = \int_{(s)} d_s \psi \int_{E-s} d_t \sigma = \int_{(s)} \sigma (E-s) d_s \psi, \qquad (12)$$

что доказывает коммутативность умножения в $\Re_{\mathfrak{S}}$.

Нетрудно убедиться, что пространство $\Re_{\mathfrak{G}}$ образует нормированное кольцо, т. е. выполняется обычное условие для нормы:

$$\|\sigma * \psi\| \leqslant \|\sigma\| \cdot \|\psi\|. \tag{13}$$

§ 2. Основные теоремы о строении максимальных идеалов

Мы займемся изучением максимальных идеалов в кольце $\Re_{\mathfrak{G}}$, введенном в предыдущем параграфе. В общей теории коммутативных нормированных колец (см. [1]) доказано, что фактор-кольцо такого кольца по максимальному идеалу есть тело комплексных чисел. Таким образом, наша задача сводится к изучению гомоморфизмов кольца $\Re_{\mathfrak{G}}$ в тело комплексных чисел.

Определение 2. Обобщенным характером называется обобщенная функция $\chi_{\sigma}(t)$, удовлетворяющая уравнению

$$\chi_{\sigma}(t)\chi_{\sigma}(s) = \chi_{\sigma}(t+s) \tag{14}$$

для всех пар, кроме, быть может, множества меры нуль относительно произведения мер $\sigma \times \sigma$, и условию:

$$\sup_{\sigma} \operatorname{vrai} \max_{t} |\chi_{\sigma}(t)| = 1. \tag{15}$$

Заметим, что из определения обобщенного характера отнюдь не следует существование такого множества $E \subset \mathfrak{G}$ полной меры по σ , чтобы равенство (14) имело место для всех точек t и s, принадлежащих множеству E.

Оказывается, всякому гомоморфизму M кольца $\Re_{\mathfrak{G}}$ в тело комплексных чисел соответствует обобщенный характер $\chi_{\sigma}(t)$, так что гомоморфизм M задается формулой:

$$M\left\{\sigma\right\} = \int \chi_{\sigma}\left(t\right) d_{t}\sigma. \tag{16}$$

В дальнейшем нам понадобятся две леммы, которые мы сейчас докажем.

Лемма 1. Пусть σ и ψ — две меры из кольца $\Re_{\mathfrak{G}}$, мера $\varphi = \sigma * \psi$ и $\alpha(t)$ — произвольная функция. Тогда имеет место равенство

$$\int \alpha(z) d_z \varphi = \int \int \alpha(t+s) d_t \sigma d_s \psi, \qquad (17)$$

причем существование интеграла в одной из частей равенства (17) влечет за собой существование интеграла в другой части этого равенства.

Доказательство. В силу формулы (1), достаточно рассматривать положительные меры σ и ψ . В этом случае их свертка ϕ также является положительной мерой.

Каждому множеству E на группе $\mathfrak G$ можно поставить в соответствие множество E' на прямой сумме $\mathfrak G+\mathfrak G$, состоящее из всех пар (t,s), для которых сумма $t+s\mathfrak E E$. В случае, когда множество E борелевское, множество E', как указывалось уже в конце предыдущего параграфа, также является борелевским, а следовательно, измеримым по произведению мер $\sigma \times \psi$. Мы сейчас покажем, что для любого измеримого относительно меры φ множества A на группе $\mathfrak G$ соответствующее множество A' на прямой сумме $\mathfrak G+\mathfrak G$ измеримо по произведению мер $\sigma \times \psi$.

Нам достаточно доказать равенство

$$\inf (\sigma \times \psi) (B_1) = \sup (\sigma \times \psi) (C_1), \tag{18}$$

где нижняя грань берется по всем борелевским множествам $B_1 \supset A'$, а верхняя— по всем борелевским множествам $C_1 \subset A'$.

Так как множество A измеримо относительно φ , то, по определению,

$$\varphi(A) = \inf \varphi(E) = \sup \varphi(F), \tag{19}$$

где нижняя грань берется по всем борелевским множествам $E \supset A$ а верхняя грань — по всем борелевским множествам $F \subset A$. Равенство (19) в сочетании с формулой (11) дает:

$$\inf (\sigma \times \psi) (E') = \sup (\sigma \times \psi) (F'), \tag{20}$$

с другой стороны, имеем очевидные неравенства:

$$\inf (\sigma \times \psi) (E') \geqslant \inf (\sigma \times \psi) (B_1),$$
 (21)

а также

$$\sup (\sigma \times \psi) (F') \leqslant \sup (\sigma \times \psi) (C_1). \tag{22}$$

Сопоставляя равенства (22), (20) и (21), мы получаем искомое равенство:

$$\inf (\sigma \times \psi) (B_1) = \sup (\sigma \times \psi) (C_1). \tag{23}$$

Таким образом, множество A', состоящее из пар (t,s), удовлетворяющих условию $t+s\in A$, измеримо относительно произведения мер 10 математический сборник, т. 27 (69), N 2

 $\sigma \times \psi$. Обратно, если множество C' пар (t,s), таких, что $t+s \in C$, измеримо относительно меры $\sigma \times \psi$, то множество C измеримо относительно меры $\sigma * \psi = \varphi$ и $\varphi(C) = (\sigma \times \psi)(C')$. Этот факт непосредственно усматривается из применения теоремы Фубини к интегралу

$$\iint_{C'} d_s \sigma \, d_t \psi = \int_{(\mathfrak{S})} d_s \sigma \int_{C-s} d_t \psi = \int_{\mathfrak{S}} \psi \, (C-s) \, d_s \sigma. \tag{24}$$

Таким образом, суммы Лебега

$$\sum_{l=-N}^{+N} a_l \varphi \left(E \left\{ a_l > \alpha \left(z \right) \geqslant a_{l-1} \right\} \right) \tag{25}$$

И

$$\sum_{l=-N}^{+N} a_l \left(\sigma \times \psi\right) \left(E'\left\{a_l > \alpha\left(t+s\right) \geqslant a_{l-1}\right\}\right),\tag{26}$$

определяющие оба интеграла в равенстве (17), совпадают, и, следовательно, пределы таких сумм существуют одновременно.

Лемма доказана.

 Π е м м а 2. Π усть σ_0 , ψ_0 , $\varphi_0 = \sigma_0 * \psi_0 -$ положительные функции множесть; пусть σ и ψ абсолютно непрерывны относительно σ_0 и, соответственно, ψ_0 . Tогда мера $\varphi = \sigma * \psi$ абсолютно непрерывна относительно φ_0 .

Доказательство. Будем говорить, что функция множества f(E) удовлетворяет относительно положительной функции множества $f_1(E)$ условию Липшица, если существует постоянная K такая, что для любого множества E, измеримого по f_1 , имеет место неравенство

$$|f(E)| \leqslant K f_1(E), \tag{27}$$

причем множество E измеримо по мере f.

Из теоремы Никодима [9] и полноты пространства \mathfrak{R}_{σ_1} легко можно вывести, что для того чтобы $\sigma(E)$ была абсолютно непрерывна относительно $\sigma_1(E)$, необходимо и достаточно, чтобы существовала последовательность функций множеств, удовлетворяющих условию Липшица относительно $\sigma_1(E)$, сходящаяся по норме к $\sigma(E)$. В силу условия леммы, существуют две последовательности $\{\sigma_n\}$ и $\{\psi_n\}$, сходящиеся одна к σ , а другая к ψ и такие, что для любого борелевского множества E

$$|\sigma_n(E)| < K_n\sigma_0(E)$$
 и $|\psi_n(E)| < K_n\psi_0(E)$;

тогда

$$|\sigma_n * \psi_n(E)| = \left| \int \sigma_n(E - t) d_t \psi_n \right| \le$$

$$\le \int |\sigma_n(E - t)| d_t \operatorname{var} \psi_n \le K_n^2 \int \sigma_0(E - t) d_t \psi_0.$$
(28)

Таким образом, для любого измеримого по φ_0 множества E

$$|\varphi_n(E)| = |\sigma_n * \psi_n(E)| \leqslant K_n^2 \varphi_0(E).$$
 (29)

Так как

$$\| \sigma_n * \psi_n - \varphi \| \leq \| \sigma_n * \psi_n - \sigma_n * \psi \| + \| \sigma_n * \psi - \sigma * \psi \| \leq$$

$$\leq \| \sigma_n \| \cdot \| \psi_n - \psi \| + \| \psi \| \cdot \| \sigma_n + \sigma \|,$$

то последовательность $\varphi_n = \sigma_n * \psi_n$ сходится по норме к φ ; согласно сказанному выше, это значит, что φ абсолютно непрерывна относительно меры φ_0 .

Лемма доказана.

Теорема 2. Пусть $M\{\sigma\}$ — произвольный гомоморфизм кольца $\Re_{\mathfrak{V}}$ в тело комплексных чисёл. Тогда существует обобщенный характер $\chi_{\sigma}(t)$, так что

$$M\{\sigma\} = \int \chi_{\sigma}(t) d_{t}\sigma. \tag{30}$$

Обратно, для всякого обобщенного характера $\chi_{\sigma}(t)$ формула (30) определяет некоторый гомоморфизм кольца $\mathfrak{X}_{\mathfrak{W}}$.

Доказательство. Согласно общей теории нормированных колец (см. [1] и [2]), гомоморфизм кольца $\Re_{\mathfrak{V}}$ в тело комплексных чисел является линейным функционалом с нормой, равной единице, и, следовательно, допускает представление вида:

$$M\{\sigma\} = \int \chi_{\sigma}(t) d_{t}\sigma. \tag{31}$$

Мы найдем сейчас необходимое и достаточное условие, которому надо подчинить обобщенную функцию $\chi_{\sigma}(t)$, чтобы эта формула определяла некоторой гомоморфизм кольца $\mathfrak{R}_{\mathfrak{S}}$.

Заметим прежде всего, что так как для каждой меры $\sigma(E)$ существует положительная мера $\widetilde{\sigma}(E)$ (например, полная вариация меры σ на множестве E), относительно которой σ абсолютно непрерывна, и так как почти всюду по σ $\chi_{\sigma}(t) = \chi_{\widetilde{\sigma}}(t)$, то достаточно искать условие, которому должна удовлетворять обобщенная функция $\chi_{\sigma}(t)$, считая меру σ положительной.

Пусть меры σ_0 и ψ_0 положительны, а σ и ψ , соответственно, абсолютно непрерывны относительно них. Согласно лемме 2, свертка $\sigma_*\psi=\phi$ абсолютно непрерывна относительно меры $\phi_0=\sigma_0*\psi_0$. По определению гомоморфизма имеем:

$$M\{\varphi\} = M\{\sigma\} M\{\psi\} \tag{32}$$

или, в развернутом виде,

$$\int \chi_{\varphi_0}(t) d_t \varphi = \int \chi_{\sigma_0}(s) d_s \sigma \cdot \int \chi_{\psi_0}(z) d_z \psi^*.$$
 (33)

^{*} Так как почти всюду $\chi_{\varphi_0}(t) = \chi_{\varphi}(t)$, $\chi_{\sigma_0}(s) = \chi_{\sigma}(s)$, $\chi_{\psi_0}(z) = \chi_{\psi}(z)$.

Применяя к правой части теорему Фубини, а к левой — лемму 1, получаем:

$$\iint \chi_{\varphi_{\mathbf{0}}}(t+s) d_{s} \, \sigma \, d_{t} \psi = \iint \chi_{\sigma_{\mathbf{0}}}(s) \, \chi_{\psi_{\mathbf{0}}}(t) \, d_{s} \, \sigma \, d_{t} \, \varphi. \tag{34}$$

Так как равенство (34) справедливо для любых σ и ψ , абсолютно непрерывных относительно σ_0 и ψ_0 , то почти всюду по произведению мер $\sigma_0 \times \psi_0$

$$\chi_{\varphi_{\mathbf{0}}}(s+t) = \chi_{\sigma_{\mathbf{0}}}(s) \chi_{\psi_{\mathbf{0}}}(t). \tag{35}$$

Рассмотрим теперь произвольную положительную меру σ_1 и определим меру $\mathfrak F$ равенством:

$$\mathfrak{F} = \exp \sigma_1 = e + \sigma_1 + \frac{1}{2!} \sigma_1 * \sigma_1 + \cdots, \tag{36}$$

где e — единица кольца $\mathfrak{R}_{\circlearrowleft}$. Ясно, что меры \mathfrak{F} и $\mathfrak{F}_*\mathfrak{F}$ абсолютно непрерывны друг относительно друга. Положим в равенстве (35) $\sigma_0 = \psi_0 = \mathfrak{F}$, тогда

$$\chi_{\mathfrak{F}}(t+s) = \chi_{\mathfrak{F}}(t) \chi_{\mathfrak{F}}(s). \tag{38}$$

Так так σ_1 абсолютно непрерывна относительно \mathfrak{F} , то для почти всех пар $(t,\ s)$

$$\chi_{\sigma_1}(t+s) = \chi_{\sigma_1}(t) \chi_{\sigma_1}(s). \tag{38}$$

Таким образом, мы пришли к нужному функциональному уравнению для обобщенного характера.

Обратно, всякий обобщенный характер порождает некоторый гомоморфизм кольца $\mathfrak{R}_{\mathfrak{G}}$. Действительно, нужно лишь проверить, что свертке мер соответствует произведение интегралов типа (31). Но из уравнения (14) для обобщенного характера легко вывести условие (35), а тогда, по лемме 1,

$$\int \chi_{\varphi_0}(z) d_z \varphi_0 = \iint \chi_{\varphi_0}(t+s) d_t \sigma_0 d_s \psi_0 = \iint \chi_{\sigma_0}(t) \chi_{\psi_0}(s) d_t \sigma_0 d_s \psi_0 =$$

$$= \int \chi_{\sigma_0}(t) d_t \sigma_0 \cdot \int \chi_{\psi_0}(s) d_s \psi_0. \tag{39}$$

Условие

$$\sup_{\sigma} \text{ vrai } \max_{t} |\chi_{\sigma}(t)| = 1$$

получается из того, что норма соответствующего функционала равна единице, как это следует из общей теории [1].

Теорема доказана.

Естественно было бы предположить, что утверждение теоремы можно усилить, например, следующим образом:

Для всякой меры σ найдется такой характер, т. е. функция $\chi(t)$, удовлетворяющая уравнению

$$\chi(t+s) = \chi(t)\chi(s), \tag{41}$$

что почти всюду по σ обобщенный характер $\chi_{\sigma}(t) = \chi(t)$,

Можно построить пример, показывающий, что это утверждение неверно.

Теорема 3. Пусть $\chi_{\sigma}(t)$ — обобщенный характер, тогда совокупность тех мер σ , для которых $\chi_{\sigma}(t)=0$ почти всюду по σ , образует идеал $I \subset \Re_{(\!\!\!| S\!\!|)}$, а те меры ψ , для которых $\chi_{\psi}(t)$ отличен от нуля почти всюду относительно ψ , образуют подкольцо \Re кольца $\Re_{(\!\!\!| S\!\!|)}$.

Доказательство. Ясно, что совокупность мер I, для которых обобщенный характер $\chi_{\sigma}(t)=0$ почти всюду по σ , образует подпространство кольца $\Re_{\mathfrak{G}}$. То же можно сказать про совокупность мер \Re , для которых $\chi_{\psi}(t)$ почти всюду по ψ отличен от нуля. Покажем, что I есть идеал в $\Re_{\mathfrak{G}}$.

Пусть $\varphi = \sigma_{,*}^{-}f;$ тогда для всякого можества E, согласно лемме 1 и теореме 2, имеем:

$$\int_{E} \chi_{\varphi}(z) d_{z} \varphi = \int_{t+s} \int_{E} \chi_{\varphi}(t+s) d_{t} \sigma d_{s} f = \int_{t+s} \int_{E} \chi_{\sigma}(t) \chi_{f}(s) d_{t} \sigma d_{s} f =
= \int_{E} d_{s} f \int_{E-s} \chi_{\sigma}(t) \chi_{f}(s) d_{t} \sigma = 0,$$
(42)

так как $\chi_{\sigma}(t) = 0$. Отсюда следует, что

$$\chi_{\varphi}(t) = 0$$
, τ . e. $\varphi \in I$.

Предположим, что почти всюду относительно меры ψ $\chi_{\psi}(t)$ отличен от нуля и почти всюду относительно меры ψ_1 $\chi_{\psi_1}(t) \neq 0$; тогда, если бы выполнялось равенство $\chi_f(t) = 0$ для всех точек множества E, имеющего ненулевую меру относительно $f = \psi * \psi_1$, то мы пришли бы к противоречию. В самом деле, будем считать меры ψ и ψ_1 положительными (иначе мы могли бы рассматривать их полные вариации, отчего значения обобщенного характера остались бы прежними). Тогда для любых мер φ_1 и φ , абсолютно непрерывных, соответственно, относительно ψ_1 и ψ , мы получаем, по лемме 2, что $f_1 = \varphi_1 * \varphi$ абсолютно непрерывна относительно меры f и, по сделанному предположению,

$$\int_{E} \chi_f(t) \, d_t f_1 = 0, \tag{43}$$

но из формулы (42) следует равенство

$$\iint_{t+s\in E} \chi_{\psi_1}(t) \chi_{\psi}(s) d_t \varphi_1 d_s \varphi = 0.$$
(44)

Таким образом, произведение $\chi_{\psi_1}(t) \chi_{\psi}(s) = 0$ на некотором множестве ненулевой меры по произведению мер $\psi_1 \times \psi$. Следовательно, хотя бы один из сомножителей (пусть, для определенности, это $\chi_{\psi}(s)$) равен нулю на множестве E_1 ненулевой меры по $\psi_1 \times \psi$. Отсюда следует, что $\chi_{\psi}(s) = 0$, когда $s \in E_1$, такому, что $\psi(E_1) \neq 0$.

Полученное противоречие доказывает теорему.

Установим ряд простых свойств построенных идеала и подкольца.

1) Идеал I и подкольцо \Re взаимно сингулярны. Это значит, что если $\sigma \in I$ и $\psi \in \Re$, то меры σ и ψ сингулярны, т. е. существует боре-

левское множество $E \subset \mathfrak{G}$, такое, что изменение σ на E равно нулю, а изменение ψ равно нулю на дополнении к E.

Действительно, в противном случае существовала бы отличная от нуля функция множеств σ_1 , абсолютно непрерывная как относительно σ , так и относительно σ . Тогда, с одной стороны, почти всюду $\sigma_1(t)=\sigma_2(t)=0$, а с другой стороны, $\sigma_3(t)=\sigma_4(t)$ почти всюду отличен от нуля. Это противоречие убеждает нас в справедливости первоначального утверждения.

2) Всякая вполне аддитивная функция множества однозначно представима в виде суммы $\sigma = \sigma_I + \sigma_{\mathfrak{M}}$, где $\sigma_I \in I$, $\sigma_{\mathfrak{M}} \in \mathfrak{N}$.

Для доказательства рассмотрим обобщенный характер $\chi_{\sigma}(t)$. Обозначим через E_I множество тех точек t, для которых $\chi_{\sigma}(t)=0$, а через E_{\Re} — дополнение к E_I . Обозначим, далее, через $\lambda_I(t)$ характеристическую функцию множества E_I . Ясно, что мера

$$\sigma_I(E) = \int_E \lambda_I(t) d_t \sigma$$

принадлежит идеалу I, а мера

$$\sigma_{\mathfrak{R}}(E) = \int_{E} [1 - \lambda_{I}(t)] d_{t} \sigma$$

принадлежит подкольцу Я. Кроме того,

$$\sigma_I + \sigma_{\Re} = \sigma.$$

Однозначность такого представления следует из доказанной сингулярности идеала и подкольца.

3) Мера, сосредоточенная в точке, лежит в подкольце %.

Обозначим через σ_t единичную меру, сосредоточенную в точке t, тогда $\sigma_{t*}\sigma_{-t}=\sigma_{0}$; но мера σ_{0} есть единица кольца, следовательно, элемент кольца σ_{t} имеет обратный в кольце $\Re_{\mathfrak{S}}$ и, значит, не может содержаться ни в каком идеале, отличном от всего кольца $\Re_{\mathfrak{S}}$. Так как идеал I заведомо не совпадает со всем кольцом $\Re_{\mathfrak{S}}$, то, стало быть, $\sigma_{t} \in I$. Положим $\sigma_{t}=\sigma_{I}+\sigma_{\mathfrak{R}}$; по доказанному выше, $\sigma_{\mathfrak{R}}\neq 0$, но так как $\sigma_{\mathfrak{R}}$ абсолютно непрерывна относительно σ_{t} , то $\sigma_{\mathfrak{R}}=\lambda\sigma_{t}$, а следовательно, мера $\sigma_{t}=\lambda^{-1}\sigma_{\mathfrak{R}}$ входит в подкольцо \Re .

4) Вместе с каждой мерой $\sigma(E)$ как в подкольцо \Re , так и в идеал I входят все «сдвинутые» меры $\sigma(E-t)$.

Это утверждение следует из только что доказанного свойства, так как

$$\sigma(E-t) = \sigma_t * \sigma(E), \tag{45}$$

где σ_t есть единичная мера, сосредоточенная в точке t.

§ 3. Новая конструкция максимальных идеалов для случая, когда группа ⁽⁵⁾ изоморфна прямой

В том случае, когда группа $\mathfrak G$ изоморфна обычной прямой, рассматриваемое нами кольцо совпадает с кольцом $V^{(b)}$, изучавшимся ранее И. М. Гельфандом [1] и Д. А. Райковым. Наиболее общий из-

вестный до сих пор класс максимальных идеалов кольца $V^{(b)}$ был указан Д. А. Райковым [1].

Мы покажем, что данная Д. А. Райковым конструкция не охватывает всех максимальных идеалов кольца $V^{(b)}$. Кроме того, мы покажем в этом параграфе, что кольцо $V^{(b)}$ несимметрично.

Напомним конструкцию гомоморфизмов кольца $V^{(b)}$, предложенную Д. А. Райковым.

Назовем систему \S борелевских множеств E_{α} регулярной, если:

- 1) вместе с каждым множеством E в $\mathfrak F$ входят все его подмножества типа F_{σ} ;
- 2) вместе с каждой счетной совокупностью множеств E_1, E_2, \dots в \mathfrak{F} входит теоретико-множественная сумма $\bigcup\limits_{i=1}^{\infty} E_i$ этих множеств;
- 3) вместе с любыми двумя множествами E_{α} и E_{β} в $\mathfrak F$ входит их арифметическая сумма $E_{\alpha}+E_{\beta}$;
 - 4) система в содержит все счетные множества.

Вполне аддитивная функция множества σ называется сосредоточенной на системе \mathfrak{F} , если в систему \mathfrak{F} входит множество E, имеющее полную меру относитемьно σ . Соответственно будем говорить, что вполне аддитивная функция множеств ψ сосредоточе на вне системы \mathfrak{F} , если для любого множества E, входящего в систему \mathfrak{F} , значение $\psi(E)=0$.

Всякая мера ϕ представима в виде $\phi = \phi_I + \phi_\Re$, где ϕ_\Re сосредоточена на системе \mathfrak{F} , а ϕ_I —вне ее. Назовем ϕ_\Re проекцией меры ϕ на систему \mathfrak{F} .

Д. А. Райков показал, что меры, сосредоточенные на системе \mathfrak{F} , образуют подкольцо $\mathfrak{N}_{\mathfrak{F}}$ кольца $V^{(b)}$, а меры, сосредоточенные вне системы \mathfrak{F} , образуют идеал $I_{\mathfrak{F}}$ кольца $V^{(b)}$.

На этом факте основывается следующая конструкция гомоморфизмов кольца $V^{(b)}$ в тело комплексных чисел. Пусть $\chi(t)$ — характер прямой, измеримый относительно всех мер, сосредоточенных на \mathfrak{F} . Формула

$$M\left\{\sigma\right\} = \int \chi\left(t\right) d_t \,\sigma_{\Re} \tag{46}$$

задает гомоморфизм кольца $V^{(b)}$.

Действительно, достаточно лишь проверить мультипликативность функционала (46). Для $\psi = \sigma * \varphi$ имеем:

$$\int \chi(t) d_t \sigma_{\Re} \cdot \int \chi(s) d_s \varphi_{\Re} = \int \int \chi(t+s) d_t \sigma_{\Re} d_s \varphi_{\Re} =
= \int \chi(z) d_z (\sigma_{\Re} * \varphi_{\Re}).$$
(47)

Но так как меры, сосредоточенные вне \mathfrak{F} , образуют идеал, то $\sigma_{\mathfrak{R}} * \phi_{\mathfrak{R}} = \psi_{\mathfrak{R}}$, следовательно,

$$\int \chi(t) d_t \sigma_{\Re} \cdot \int \chi(s) d_s \varphi_{\Re} = \int \chi(z) d_z \psi_{\Re}.$$
 (48)

Мы сейчас покажем, что существуют разбиения кольца $V^{(b)}$ в полупрямую сумму попарно сингулярных подкольца \Re и идеала I, не охватываемые вышеизложенной схемой Райкова.

Предлагаемая нами конструкция, которая, конечно, может быть перенесена на более общий класс групп, состоит в следующем.

Пусть дана совокупность H характеров прямой, т. е. функций $\chi(t)$, удовлетворяющих для всех t и s условиям

$$\chi(t+s) = \chi(t)\chi(s) \tag{49}$$

И

$$|\chi(t)| = 1. \tag{50}$$

Обозначим через \Re_H совокупность всех мер σ , по которым любой характер из H является измеримым. Пусть, далее, подпространство $I_H \subset V^{(b)}$ состоит из мер, сингулярных к любой мере, входящей в \Re_H . Тогда имеет место

Теорема 4. Совокупность мер \Re_H образует подкольцо кольца $V^{(b)}$, а совокупность I_H является идеалом в кольце $V^{(b)}$.

Доказательство. Легко видеть, что \Re_H образует линейное подпространство кольца $V^{(b)}$ и что \Re_H вместе с каждой мерой σ содержит все меры, абсолютно непрерывные относительно σ . Покажем, что вместе с мерами σ и ϕ в \Re_H входит их свертка $\psi = \sigma_* \phi$.

Пусть характер χ входит в H, в этом случае имеют смысл интегралы

$$\int \chi(t) d_t \sigma$$
 и $\int \chi(s) d_s \varphi$.

Но, по теореме Фубини,

$$\int \chi(t) d_t \sigma \int \chi(s) d_s \varphi = \int \int \chi(t+s) d_t \sigma d_s \varphi, \qquad (51)$$

а согласно лемме 1

$$\int \int \chi(t+s) d_t \sigma d_s \varphi = \int \chi(z) d_z \psi, \qquad (52)$$

и характер $\chi(z)$ измерим по мере ψ . Так как $\chi(z)$ — произвольный характер, лежащий в совокупности H, то наше рассуждение показывает, что $\psi \in \mathfrak{R}_H$, т. е. \mathfrak{R}_H является подкольцом кольца $V^{(b)}$.

Покажем, что сингулярное дополнение к \Re_H есть идеал. Рассмотрим произвольную меру $\sigma_0 \in I_H$. Для любой меры σ , абсолютно непрерывной по отношению к σ_0 , существует (вообще говоря, свой) характер $\chi \in H$, не измеримый по σ .

Докажем сначала что всякая мера $\sigma_0 \in I_H$ представима в виде счетной суммы попарно сингулярных мер: $\sigma_0 = \Sigma \, \sigma_j$, где для каждой меры σ_j существует характер $\chi_j^-(t) \in H$, не измеримый по всем мерам σ_j^α абсолютно непрерывным относительно σ_j . Это достаточно доказать для положительных мер. Воспользуемся теперь следующей леммой:

 Π емма 3. Пусть $\psi(E)$ — положительная мера, а f(t) — произвольная функция на прямой. Определим меру $\psi_f(E)$ следующим образом:

$$\psi_f(E) = \sup_{F \subset E} \psi(F),\tag{53}$$

где верхняя грань берется по всем замкнутым множествам, содержащимся в E, на которых функция f(t) непрерывна. Тогда функция f(t) измерима по мере ψ_f и не измерима относительно любой меры, подчиненной к $\psi - \psi_f = \widetilde{\psi}_f$.

Доказательство леммы. Из определения меры ψ_f следует, что для всякого $\epsilon > 0$ существует замкнутое множество F_ϵ , на котором функция f(t) непрерывна и для которого $\psi_f(F_\epsilon) \gg \|\psi_f\| - \epsilon$. Следовательно, по теореме Лузина (см. [9], стр. 112), функция f(t) измерима относительно меры ψ_f .

Рассмотрим положительную меру σ , подчиненную к $\widetilde{\psi}_f$. Если бы функция f(t) была измерима относительно σ , то для всякого $\varepsilon > 0$ существовало бы, согласно той же теореме Лузина, замкнутое множество F_1 , на котором f(t) непрерывна и для которого $\sigma(F_1) > \|\sigma\| - \varepsilon$. Выбрав $\varepsilon = \frac{1}{2} \|\sigma\|$, мы бы получили замкнутое множество положительной меры по σ , на котором функция f(t) непрерывна. Но, с другой стороны, для всякого такого множества $\widetilde{\psi}_f(F_1) = 0$, следовательно, и $\sigma(F_1) = 0$.

Следствие. Для того чтобы функция f(t) была измерима помере ψ , необходимо и достаточно, чтобы меры ψ и ψ_f совпадали.

Вернемся к доказательству теоремы 4. Мы будем проводить трансфинитную индукцию.

В силу условия $\sigma_0 \in I_H$, существует характер $\chi_1 \in H$, не измеримый относительно σ_0 . Согласно лемме 3, мера $\sigma_1 = (\widetilde{\sigma_0})_{\chi_1}$ отлична от нуля. Пусть меры σ_{ω} определены для всех трансфинитов $\omega < \omega_0$, где ω_0 фиксированный трансфинит. Меры σ_{ω} абсолютно непрерывны относительно σ_0 и попарно сингулярны. Положим $\psi_{\omega_0} = \sigma_0 - \sum \sigma_{\omega}$; ясно, что

 $\psi_{\omega_0} \in I_H$. По предположению, существует характер $\chi \in H$, не измеримый относительно ψ_{ω_0} . Мы обозначим через σ_{ω_0} разность $\psi_{\omega_0} - (\psi_{\omega_0})_{\chi} = \sigma_{\omega_0}$. Так как все меры σ_{ω_0} абсолютно непрерывны относительно σ и попарно сингулярны, то, начиная с некоторого счетного трансфинита, все σ_{ω_0} будут равны нулю, и мы получим:

$$\sigma_0 = \sum_{\omega \leq \omega} \sigma_{\omega} = \sum_{j=1}^{\infty} \sigma_{j}, \tag{54}$$

причем для каждой меры σ_{ω} существует характер $\chi_{\omega} \in \mathcal{H}$, не измеримый по любой мере σ_{ω}^{α} , абсолютно непрерывной относительно меры σ_{ω} .

Пусть ψ — любая положительная мера. Докажем, что свертка $\sigma_0 * \psi$ принадлежит подпространству I_H . Достаточно показать, что $\sigma_\omega * \psi \in I_H$ для всех мер σ_ω , определенных выше. Это мы докажем следующим образом. Пусть E — борелевское множество, на котором характер $\chi_\omega(t)$

непрерывен, тогда этот характер непрерывен и на всех сдвинутых множествах вида E-s. Из определения меры σ_{ω} имеем: σ_{ω} (E-s) = 0. Но тогда для свертки $\sigma_{\omega}*\psi$ получим:

$$\varphi(E) = \sigma_{\omega} * \psi(E) = \int \sigma_{\omega} (E - s) d_s \psi = 0.$$
 (55)

Таким образом, для всякого множества E, на котором характер $\psi_{\omega}\left(t\right)$ непрерывен, $\varphi\left(E\right)=0$. Следовательно, согласно доказанной лемме, характер χ_{ω} неизмерим относительно любой меры, подчиненной к свертке $\sigma_{\omega}*\psi$.

Мы доказали, таким образом, что $I_{\tilde{H}}$ является идеалом кольца $V^{(b)}$ Теорема доказана.

Замечание. Теорема 4 дает нам некоторую конструкцию гомоморфизмов кольца $V^{(b)}$ в тело комплексных чисел.

Действительно, пусть $\chi \in H$, тогда формула

$$M\{\sigma\} = \int \chi(t) d_t \sigma_{\Re}, \qquad (56)$$

где σ_{\Re} означает проекцию меры σ на подкольцо \Re_H , определяет гомоморфизм кольца $V^{(b)}$ в тело комплексных чисел.*

Лемма 4. ** Существует совершенное множество на прямой, каждая конечная совокупность точек которого является линейно независимой в поле рациональных чисел.

Теорема 5. Пусть σ — какая-то непрерывная *** мера, сосредо-точенная на совершенном множестве P с линейно независимыми точками и отличная от нуля. Обозначим через $H[\sigma]$ совокупность всех характеров, измеримых по этой мере. Рассмотрим, далее, соответствующее подкольцо \Re_H . Тогда, какова бы ни была регулярная система множеств \Im_H , совокупность мер, сосредоточенных на \Im_H , не совпадает с подкольцом \Im_H .

Доказательство. Будем рассуждать от противного. Пусть подкольцо \mathfrak{A}_H состоит из мер, сосредоточенных на некоторой регулярной системе \mathfrak{F} , а I_H состоит из мер, сосредоточенных вне этой системы. В таком случае существует борелевское множество $B \in \mathfrak{F}$ полной меры относительно σ . Так как в \mathfrak{F} входят все подмножества множества B типа F_{σ} , то в \mathfrak{R}_H входят все меры, сосредоточенные на множестве B. Покажем, что это ведет нас к противоречию.

Заметим сначала, что можно считать B содержащимся в множестве P. Действительно, пересечение PB имеет полную меру по σ , следовательно, внутри этого пересечения содержится множество B_1 типа F_{σ} , имеющее полную меру по σ . Так как $B_1 \subset B$, то множество B_1 принадлежит системе \mathfrak{F} . Ясно, что $B_1 \subset P$.

^{*} Доказательство аналогично проведенному на стр. 307.

^{**} Эта лемма доказана Нейманом (J. von Neumann) [17].

^{***} Мера σ называется непрерывной, если для всякого множества E, состоя-

Мы докажем, что никакая непрерывная мера ψ , сингулярная к σ и сосредоточенная на P, не может лежать в подкольце \Re_H . Для этого мы построим характер $\chi(t)$, измеримый по мере σ и, следовательно входящий в $H[\sigma]$, но не измеримый по мере ψ .

Разобьем множество P на сумму двух непересекающихся множеств P_{σ} и P_{ψ} , таких, что σ сосредоточена на P_{σ} , а ψ — на P_{ψ} . Это возможно в силу попарной сингулярности мер σ и ψ . Пусть \mathscr{E} — такое множество что ни оно само, ни его дополнение $C\mathscr{E}$ не содержит ни одного совершенного множества (см. [7]). Функция χ (t), определенная на множестве P условием:

$$\chi\left(t
ight) = \left\{egin{array}{ll} 1, \ ext{если} \ t \in P_{\phi}, \ 1, \ ext{если} \ t \in P_{\psi} \cap \mathscr{E}, \ -1, \ ext{если} \ t \in P_{\psi} \cap C\mathscr{E}, \end{array}
ight.$$

и продолженная на всю прямую так, чтобы удовлетворялось равенство (49), является, очевидно, измеримой по мере σ , но не измеримой по мере ψ . Следовательно, мера ψ не входит в подкольцо \Re_H . С другой стороны, в силу несчетности множества P, на нем заведомо сосредоточены меры, сингулярные по отношению к мере σ , и все они, по предположению, должны принадлежать подкольцу \Re_H .

Полученное противоречие показывает, что подкольцо \Re_H не совпадает с совокупностью мер, сосредоточенных на регулярной системе \Im .

Следствие. Существует гомоморфизм кольца $V^{(b)}$, который не может быть описан схемой Д. А. Райкова.

Действительно, в силу замечания к теореме 4, формула (56) определяет гомоморфизм кольца $V^{(b)}$, причем подкольцо мер σ , для которых соответствующий обобщенный характер почти всюду отличен от нуля (см. теорему 3), совпадает с подкольцом \Re_H . В случае гомоморфизма, задаваемого конструкцией Д. А. Райкова, совокупность мер, для которых обобщенный характер отличен от нуля, состоит из мер, сосредоточенных на некоторой регулярной системе \Im . Но теорема 5 как раз и дает конструкцию подкольца \Re_H , которое никогда не может совпадать с совокупностью мер, сосредоточенных на некоторой регулярной системе множеств.

Существование совершенного множества P с линейно независимыми точками позволит нам также показать, что кольцо $V^{(b)}$ несимметрично.

Нормированное кольцо называется симметричным (см. [4]), если каждому элементу кольца σ можно поставить в соответствие элемент σ^* так, что при всех гомоморфизмах кольца элементам σ и σ^* соответствуют сопряженные комплексные числа.

Из этого определения следует, что если бы кольцо $V^{(b)}$ являлось симметричным, то мера σ^* , соответствующая мере σ , определялась бы условием

$$\sigma^*(E) = \overline{\sigma(-E)}. \tag{59}$$

В самом деле, для гомоморфизмов, соответствующих основным* максимальным идеалам, мы имели бы:

$$\int e^{i\lambda t} d_t \, \sigma^* = \overline{\int e^{i\lambda t} d_t \, \sigma}. \tag{60}$$

Но значения элемента кольца σ на основных максимальных идеалах полностью определяют этот элемент. (Это вытекает из теоремы о том, что функция с ограниченным изменением определяется своим преобразованием Фурье-Стильтьеса.) Покажем теперь, что существует гомоморфизм кольца $V^{(b)}$ в тело комплексных чисел, переводящий некоторую меру σ в единицу, а соответствующую ей меру σ^* —в нуль.

Рассмотрим положительную меру σ с полным изменением, равным единице, сосредоточенную на совершенном множестве P с линейно независимыми точками. Обозначим через $\mathfrak F$ минимальную регулярную систему множеств, порожденную множеством P. Ясно, что $\sigma \in \mathfrak R_{\mathfrak F}$, а гомоморфизм, определенный формулой $M\{\psi\} = \int d\psi_{\mathfrak R}$, где $\psi_{\mathfrak R}$ есть проекция меры ψ на $\mathfrak R_{\mathfrak F}$, переводит меру σ в единицу. Покажем, что $\sigma^{\bullet}(E) = \sigma(-E)$ принадлежит идеалу $I_{\mathfrak F}$, а следовательно, при гомоморфизмах указанного вида мера σ^{\bullet} переходит в нуль.

Мера σ^* непрерывна и сосредоточена на множестве — P. Следовательно, нам достаточно показать, что множество — P пересекается со всяким множеством из системы $\mathfrak F$ не более, чем по счетному множеству точек.

Но для этого достаточно заметить, что множество — P пересекается со всяким множеством вида

$$P+P+\cdots+P+\{t\}=(n)P+\{t\}**$$
 (61)

не более, чем в n+1-й точке.

Последнее легко доказывается от противного. Пусть наше утверждение неверно, и мы имеем n+2 равенства:

$$\sum_{k=1}^{n} x_{k}^{j} + t = -x^{j} \qquad (j = 1, 2, ..., n+2),$$
(62)

где $x_k^j, \ x^j \in P, \ x^j \neq x^i$ при $j \neq i$. Отсюда следует совокупность равенств

$$\sum_{k=1}^{n} x_{k}^{j} + x^{j} = \sum_{k=1}^{n} x_{k}^{i} + x^{i}.$$
 (63)

Из каждого равенства (63), в силу линейной независимости точек множества P, вытекает, что $x^i=x^j_k$. Заставляя индекс i пробегать n+1 значение, мы будем при фиксированном значении j получать

^{*} Определение основного идеала см. на стр. 313.

^{**} Сумма $P + P + \cdots + \{t\}$ понимается как арифметическая сумма соответствующих множеств. Символ $\{t\}$ означает множество, состоящее из точки t.

различные точки x_k^j ; но всего точек x_k^j имеется n. Таким образом мы приходим к противоречию.

§ 4. Топологические свойства пространства максимальных идеалов

В общей теории нормированных колец устанавливается соответствие между элементами нормированного кольца и функциями на множестве максимальных идеалов этого кольца. Это соответствие задается по правилу:

$$\sigma \rightarrow \sigma(M)$$
. (64)

Значение, принимаемое функцией $\sigma(M)$, соответствующей элементу кольца σ , на максимальном идеале M равно комплексному числу, в которое переходит элемент кольца σ при гомоморфизме, ядром которого служит максимальный идеал M. В случае, когда в нормированном кольце отсутствует радикал, это соответствие является изоморфизмом.

Во множестве $\mathfrak M$ максимальных идеалов нормированного кольца можно так ввести бикомпактную топологию, что все функции $\sigma(M)$ оказываются непрерывными *.

Если обобщенный характер $\chi_{\sigma}(t) \equiv e^{i\lambda}$, то соответствующий максимальный идеал M мы будем называть основным.

Известно, что преобразование Фурье-Стильтьеса полностью определяет меру на прямой. (Для положительных мер это доказано в книге В. И. Гливенко [14].)

Указанное обстоятельство давало повод предположить, что совокупность основных максимальных идеалов является всюду плотной в пространстве всех максимальных идеалов кольца $V^{(b)}$. Ниже мы покажем, что эта гипотеза неверна.

Определим в кольце $V^{(b)}$ следующим образом операцию инволюции:

$$\sigma^*(E) = \overline{\sigma(-E)}. \tag{65}$$

В силу тождества

$$\overline{\int e^{i\lambda t} d_t \sigma} = \int e^{i\lambda t} d_t \sigma^*,$$
(66)

имеем для всякого основного максимального идеала М:

$$\overline{\sigma(M)} = \sigma^*(M). \tag{67}$$

Но, в силу непрерывности $\sigma(M)$, равенство (67) верно для всех максимальных идеалов, принадлежащих замыканию основных. Однако это равенство не может выполняться для всех максимальных идеалов, так как иначе кольцо $V^{(b)}$ было бы симметрично, что, как мы доказали в предыдущем параграфе, неверно. Следовательно, замыкание множества основных максимальных идеалов не совпадает с множеством всех максимальных идеалов кольца $V^{(b)}$.

^{*} По поводу всего сказанного выше см. [1].

Это позволяет получить результат, сформулированный, но не доказанный в работе Винера и Питта [15].

Теорема 6. Существует функция $f(\lambda)$, являющаяся преобразованием Фурье-Стильтьеса некоторой функции с ограниченным изменением и удовлетворяющая условию $|f(\lambda)| \gg c > 0$, но такая, что обратная к ней $[f(\lambda)]^{-1}$ не является преобразованием Фурье-Стильтьеса ни для какой функции с ограниченным изменением.

Доказательство. Мы сейчас построим функцию $f(\lambda)$, удовлетворяющую условиям теоремы.

Обозначим через σ (*E*) положительную меру, сосредоточенную на совершенном множестве с линейно независимыми точками и имеющую полное изменение, равное единице. Рассмотрим преобразование Фурье-Стильтьеса меры i (σ — σ *):

$$g(\lambda) = i \int e^{i\lambda t} d_t(\sigma - \sigma^*). \tag{68}$$

Положим

$$f(\lambda) = g(\lambda) - i. \tag{69}$$

Покажем, что функция $f(\lambda)$ удовлетворяет условиям теоремы.

В самом деле, эта функция является преобразованием Фурье-Стильтьеса меры i ($\sigma - \sigma^* - e$), где через e обозначена единичная мера, сосредоточенная в нуле (единица кольца). Так как функция g (λ) вещественна, то

$$|f(\lambda)| = \sqrt{1 + |g(\lambda)|^2} \geqslant 1 > 0. \tag{70}$$

Наконец, функция $[f(\lambda)]^{-1}$ не есть преобразование Фурье-Стильтьеса функции с ограниченным изменением, так как элемент $i(\sigma-\sigma^*-e)$ не имеет обратного в кольце $V^{(b)}$. Действительно, нами был построен в конце § 3 гомоморфизм M, для которого $\sigma(M)=1$, но $\sigma^*(M)=0$. Следовательно,

$$(\sigma - \sigma^* - e)(M) = 1 - 1 = 0, (71)$$

т. е. мера $\sigma - \sigma^* - e$ принадлежит этому максимальному идеалу, а следовательно, элемент $\sigma - \sigma^* - e$ не может иметь обратного в кольце.

Теорема доказана.

Следующая естественная гипотеза состоит в том, что в кольце $V^{(b)}$ основные максимальные идеалы образуют границу множества всех максимальных идеалов кольца $V^{(b)}$.

Напомним, что границей множества максимальных и деалов \mathfrak{M} некоторого нормированного кольца называется такое замкнутое множество $\mathfrak{F} \subset \mathfrak{M}$, что всякая функция $\sigma(M)$ из этого кольца достигает своего максимума модуля на множестве \mathfrak{F} и никакое его замкнутое истинное подмножество $\mathfrak{F}_1 \subset \mathfrak{F}$ уже не обладает этим свойством. Г. Е. Шилов, впервые введший это понятие, доказал (см. [1]), что во всяком нормированном кольце существует единственная граница (например, в случае кольца функций, аналитических внутри

единичного круга и непрерывных на его окружности, граница состоит из точек этой окружности).

Оказывается, что тем не менее замыкание основных максимальных идеалов не образует границы множества $\mathfrak M$ максимальных идеалов кольца $V^{(b)}$.

В дальнейшем мы рассматриваем симметричные совершенные множества, получаемые следующей конструкцией. Через Δ_0 мы обозначаем сегмент [0,1] и выкидываем из него расположенный симметрично относительно середины интервал так, что остаются два сегмента одинаковой длины: $[0,\,\xi] = \Delta_1^1$ и $[1-\xi,\,1] = \Delta_1^2$. Пусть уже построено 2^n сегментов равной длины Δ_n^j . Тогда в каждом из них выбросим по одинаковому интервалу, симметрично расположенному относительно середины соответствующего сегмента Δ_n^j ; таким образом, у насполучится 2^{n+1} конгруэнтных сегментов Δ_{n+1}^k . Пересечение $P = \bigcap_n (\bigcup_j \Delta_n^j)$ является, очевидно, совершенным множеством.

Лемма 5. Если отношение длин сегментов $\lambda_n = \frac{\max \Delta_{n+1}^J}{\max \Delta_n^k} \to 0$ при $n \to \infty$, то совершенное множество P не является базисом*.

Доказательство. Мы покажем, что m-кратная арифметическая сумма множества P с самим собой имеет нулевую меру Лебега, т. е. заведомо не содержит отрезка. Арифметическая сумма множеств $P+P+\cdots+P$ (m-кратно) содержится в m-кратной арифметической сумме множества $P_n=\bigcup_j \Delta_n^j$ с собою. Последняя арифметическая сумма есть теоретико-множественная сумма арифметических сумм $\Delta_n^{j_1}+\Delta_n^{j_2}+\cdots+\Delta_n^{j_m}$, когда j_1,j_2,\ldots,j_m независимо друг от друга пробегают все 2^n допустимых значений. Таких теоретико-множественных слагаемых имеется 2^{nm} . Следовательно, мера μ_n^m множества $P_n+P_n+\cdots+P_n$ (m раз) не превосходит

$$2^{nm}\max\left\{\operatorname{mes}\left(\Delta_n^{j_1}+\Delta_n^{j_2}+\cdots+\Delta_n^{j_m}\right)\right\} \leqslant 2^{nm}\,m\,\operatorname{mes}\Delta_n^{j_1}.\tag{72}$$

Из условий леммы следует, что

$$\operatorname{mes} \Delta_n^j = \frac{\operatorname{mes} \Delta_1^1 \cdot \operatorname{mes} \Delta_2^1 \cdots \operatorname{mes} \Delta_n^1}{\operatorname{mes} \Delta_0^1 \cdot \operatorname{mes} \Delta_1^1 \cdots \operatorname{mes} \Delta_{n-1}^1} = o\left(2^{-\beta n}\right) \tag{73}$$

при любом значении $\beta > 0$.

Согласно формуле (73), можно для всякого $\varepsilon > 0$ выбрать число n так, чтобы $\operatorname{mes} \Delta_n^i \leqslant \varepsilon 2^{-nm} m^{-1}$. Подставляя полученную оценку в неравенство (72), получаем, что для всякого целого m и числа $\varepsilon > 0$ существует такое n, что $\mu_n^m < \varepsilon$; следовательно, и мера множества $P + P + \cdots + P$ (m раз) меньше, чем ε , т. е., в силу произвола в выборе ε , эта мера равна нулю.

Лемма доказана.

^{*} Определение базиса см. у А. Зигмунда [12].

Tеорема 7. Замыкание множества основных максимальных идеалов кольца $V^{(b)}$ не образует границы пространства максимальных идеалов этого кольца.

Доказательство. Нам достаточно построить максимальный идеал $M_{\rm 0}$ и меру $\sigma_{\rm 0}$ так, чтобы выполнялись условия

$$\sigma_0\left(M_0\right) = 1\tag{74}$$

И

$$\left| \int e^{i\lambda t} \, d_t \sigma_0 \right| \leqslant \frac{1}{2} \tag{75}$$

для всех вещественных λ.

Салем (R. Salem) доказал [13], что существует симметричное совершенное множество P, такое, что отношение длины одного сегмента n+1-го ранга к длине сегмента n-го ранга стремится к нулю и на P сосредоточена некоторая мера σ , имеющая коэффициенты Фурье-Стильтьеса, стремящиеся к нулю. Так как, согласно доказанной лемме, множество P не является базисом, то существует регулярная система множеств (см. определение регулярной системы в § 3), содержащая множество P, но не содержащая множеств, имеющих положительную меру Лебега. (Такая регулярная система может быть получена следующим образом: берется множество P, потом его всевозможные сдвиги, затем присоединяются арифметические суммы полученных множеств и, наконец, все подмножества типа F_{σ} .) По этой регулярной системе можно построить максимальный идеал M_{σ} , содержащий все абсолютно непрерывные (в обычном смысле, т. е. относительно меры Лебега) меры и такой, что $\sigma(M_{\sigma}) = c \neq 0$.

Рассмотрим функцию

$$f(\lambda) = \frac{1}{c} \int e^{i\lambda t} d_t \sigma. \tag{76}$$

При $\lambda \to \infty$ эта функция стремится к нулю. Из общей теории нормированных колец можно получить, что всякая такая функция может быть равномерно приближена с любой степенью точности функцией, являющейся преобразованием Фурье некоторой суммируемой функции *:

$$|f(\lambda) - \int e^{i\lambda t} g(t) dt| < \varepsilon.$$
 (77)

$$g_1 * g_2(t) = \int g_1(t-s) g_2(s) ds,$$

с присоединенной единицей. Это кольцо симметрично, и его максимальные идеалы состоят из функций, для которых преобразование Фурье равно нулю в некоторой точке; кроме того, имеется максимальный идеал, состоящий из всех абсолютно интегрируемых функций. Функции $f(\lambda)$, имеющие предел при $\lambda \to \infty$, суть непрерывные функции на множестве максимальных идеалов кольца \mathfrak{L} , следовательно, они могут быть равномерно приближены функциями из кольца.

^{*} Этот факт можно доказать следующим образом:

Рассмотрим кольцо $\mathfrak L$ абсолютно интегрируемых функций с умножением, определенным как свертка

Выберем $\varepsilon = \frac{1}{2}$ и функцию g(t), удовлетворяющую неравенству (77)-Рассмотрим, далее, меру $\sigma_1(E) = \int_E g(t) \, dt$ и определим меру σ_0 как разность:

 $\sigma_0 = \frac{1}{c} \sigma - \sigma_1. \tag{78}$

Мера σ₀ удовлетворяет поставленным условиям.

В самом деле, так как идеал $M_{\rm 0}$ содержит все абсолютно непрерывные функции, то

$$\sigma_0(M_0) = \frac{1}{c} \, \sigma(M_0) = 1.$$
 (79)

С другой стороны, согласно соотношению (78), имеем:

$$\left| \int e^{i\lambda t} d_t \sigma_0 \right| = \left| f(\lambda) - \int e^{i\lambda t} g(t) dt \right| < \frac{1}{2}.$$
 (80)

Следовательно, и для всякого максимального идеала M, принадлежащего замыканию основных максимальных идеалов, имеем:

$$\mid \sigma_0(M) \mid \leqslant \frac{1}{2}. \tag{81}$$

Стало быть, максимум модуля функции $\sigma_0(M)$ не достигается на замыкании множества основных максимальных идеалов.

Заметим, что мы вдобавок получили еще одно доказательство того факта, что замыкание множества основных максимальных идеалов кольца $V^{(b)}$ не содержит всех максимальных идеалов этого кольца.

(Поступило в редакцию 29/VI 1948 г.)

Литература

- 1. И. М. Гельфанд, Д. А. Райков и Г. Е. Шилов, Коммутативные нормированные кольца, Успехи матем. наук, т. 1, в. 2 (12) (1946), 48 146.
- 2. И. М. Γ ельфанд, Нормированные кольца, Мат. сб., 9 (51) (1941), 3-23.
- 3. Д. А. Райков, Гармонический анализ на коммутативных группах с мерой Хаара и теория характеров, Труды Матем. ин-та АН СССР им. В. А. Стеклова, XIV (1945).
- Д. А. Райков, К теории нормированных колец с инволюцией, ДАН СССР, IV, № 5 (1946), 391 — 394.
- 5. А. П. Артеменко, Общий вид линейного функционала в пространстве функций ограниченной вариации, Мат. сб., 6 (48) (1938), 215 219.
- 6. Л. С. Понтрягин, Непрерывные группы, М.—Л., 1938.
- 7. Ф. Хаусдорф, Теория множеств, М.—Л., 1937.
- 8. А. Лебег, Интегрирование и отыскание примитивных, М.-Л., 1934.
- 9. С. Сакс, Теория интеграла, Москва, 1949.
- 11 Математический сборник, т. 27 (69), № 2

- 10. Ю. А. Шрейдер, Строение максимальных идеалов в кольцах вполне аддитивных мер, ДАН СССР, LXIII, № 4 (1948), 359 361.
- 11. M. Krein and D. Milman, On extreme points of regular convex sets, Studia Math., IX (I) (1940), 133 138.
- 12. А. Зигмунд, Тригонометрические ряды, М.—Л., 1939.
- 13. R. Salem, Sets of Uniqueness and Sets of Multiplicity, Trans. Amer. Math. Soc., 54 (1943), 215 228.
- 14. В. И. Гливенко, Курс теории вероятностей, М.-Л., 1939.
- 15. N. Wiener and H. Pitt, On absolutely convergent Fourier-Stieltjes transforms, Duke Math. Journ., 4 (1938), 420 430.
- 16. Ю. І. Гросберг, Про лінійні функціонали на просторі функцій обмеженої варіації, Наукові записки Кіївського педінституту, т. 1 (1939), 17—23.
- 17. J. v. Neumann, Ein System algebraisch unabhängiger Zahlen, Math. Ann., 99 (1928), 134 141.