Алгоритм проверки и оценивания задач на вычисление обратной матрицы

Вычисление обратной матрицы с помощью присоединенной матрицы

Класс задач-1. n = 3.

Генерирование невырожденной матрицы

- 1. Для n=3 рандомно генерируем $n\times n$ матрицу A с элементами $a_{ij}\in[-10,10],\ i,j=\overline{1,3}$
- 2. Вычислить det A
- 3. If det A = 0, переходим к шагу 1.

Далее будем использовать следующие обозначения:

	значение, введенное студентом	корректное значение
определитель матрицы A	Δ	det A
алгебраическое дополнение	$A_{ij}, \ i, j = \overline{1,3}$	$cof_{ij}, i, j = \overline{1,3}$
обратная матрица	A^{-1}	inv(A)

Постановка задачи. Дана матрица A:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

Найти обратную ей матрицу A^{-1} , если она существует, с помощью присоединенной матрицы.

Вопросы

- 1. Вычислите определитель Δ матрицы A и введите: [поле ввода с меткой Δ]
- 2. Матрица *А* является [раскрывающийся список, состоящий из [вырожденная, невырожденная]]
- 3. Для данной матрицы обратная матрица [раскрывающийся список, состоящий из [существует, *не* существует]] [Следующий вопрос появляется только в случае выбора студентом варианта «существует»]
- 4. Введите алгебраическое дополнение A_{1i} для рандомного $j = \overline{1,3}$
- 5. Введите алгебраическое дополнение A_{2i} для рандомного $j = \overline{1,3}$
- 6. Введите алгебраическое дополнение A_{3i} для рандомного $j = \overline{1,3}$

- 7. Введите X с номером j присоединенной матрицы [для рандомного $j=\overline{1,3}$, и значение X «строку» либо «столбец», тоже задается рандомно] [форма ввода 3x1, если X столбец, и форма ввода 1x3, если X строка]
- 8. Введите обратную матрицу A^{-1} [форма ввода 3х3 с меткой A^{-1} =]
- 9. Вычислите произведение P [значение P задается рандомно: $A^{-1}A$ либо AA^{-1}] введите: [форма ввода 3x3 с меткой $A^{-1}A = ($ либо $AA^{-1} =)$]

Проверка решения задач (класса 1) на вычисление обратной матрицы с помощью присоединенной матрицы

Ответ студента сравнивается с

- 1. значением detA [т.е. должно быть $\Delta = detA$]
- 2. значением «вырожденная», если det A = 0, значением «невырожденная», если $det A \neq 0$ [должно быть $det A \neq 0$ при правильном построении матрицы]
- 3. значением «*существует*», если $det A \neq 0$, значением «*не* существует», если det A = 0
- 4. значением cof_{1j} , где $cof_{1j}=(-1)^{1+j}M_{1j}$, здесь M_{1j} определитель матрицы, получающейся вычеркиванием 1-ой строки и j-столбца.
- 5. значением cof_{2j} , где $cof_{2j} = (-1)^{2+j} M_{2j}$,
- 6. значением cof_{3j} , где $cof_{3j} = (-1)^{3+j}M_{3j}$,
- 7. значениями $cof_{1j}, cof_{2j}, cof_{3j},$ если X строка значениями $cof_{j1}, cof_{j2}, cof_{j3},$ если X столбец
- 8. матрицей inv(A) [думаю, есть в python стандартная функция]
- 9. единичной матрицей 3х3.

После отправки своих ответов студент получает отчет (в конце) в виде

N	Вопрос	максимальный балл, %	баллы студента, %
1	определитель Δ	11	
2	невырожденность	11	
3	существование	11	

9	Итого баллов в %	100	
0	произведение A и A^{-1}	11	
8	обратная матрица	12	
7	присоединенная матрица	11	
6	A_{3j}	11	
5	A_{2j}	11	
4	A_{1j}	11	

Ваша итоговая оценка XX баллов (Х %) из тах.

Запись результатов

- 1. Название группы
- 2. Данные студента: ФИ, номер варианта, итоговая оценка в % и баллах
- 3. Максимальный балл
- 4. Постановка задачи: inv(A), $det A \neq 0$, n = 3.
- 5. Значения параметров: a_{ij} , $i, j = \overline{1,3}$ в виде

$$[a_{11} \ a_{12} \ a_{13}],$$

$$[a_{21} \ a_{22} \ a_{23}],$$

$$[a_{31} \ a_{32} \ a_{33}]$$

- 6. Значение det A, а также Δ , введенный студентом, и балл по вопросу
- 7. вырожденная/невырожденная, выборанное студентом, и балл по вопросу
- 8. существует/не существует, выбранное студентом, и балл по вопросу
- 9. Значения $cof_{j1}, cof_{j2}, cof_{j3},$ а также A_{1j}, A_{2j}, A_{3j} , введенные студентом, и баллы
- 10. Значения $cof_{1j}, cof_{2j}, cof_{3j},$ если X строка, а также $A_{1j}, A_{2j}, A_{3j},$ введенные студентом, и баллы,

значения $cof_{j1},\,cof_{j2},\,cof_{j3},\,$ если X - столбец, а также $A_{j1},\,A_{j2},\,A_{j3},\,$ введенные студентом, и

баллы

- $11.\,A^{-1}$, а также inv(A), введенная студентом, и баллы
- 12. Произведение A и A^{-1} , введенная студентом, и баллы.