

경복대학교 소프트웨어융합과 배희호 교수

■ Program이 종료되면 만들어 둔 강아지는 모두 사라질 수 있 어요

■ 만들어둔 강아지의 이름을 적어 두어야 기억할 수 있어요

■ File이라는 저장공간

■ 책이 어디에 있건 읽거나 쓰는 방법은 똑같이 정해둘 수 있어 요

■ 실행 중이던 Program이 종료되면 ?

객체는 모두 메모리에 만들이지고 이것들은 모두 전원이 꺼지면 사라진다.

하드 디스크에 파일 형태로 저장하면 전원이 꺼지더라도 데이터가 보존된다. 데이터를 영구히 보관 하려면 파일에 저장해야 합니다. 스트림을 사용하면 됩니다.

- Program에서 변수 및 배열에 Data를 저장하는 것은 일시적임 (Memory 사용)
- 많은 양의 Data를 장기간 보존하기 위해서는 File을 사용
- Data를 사용하는 Program이 종료 된 후에도 보존됨
- 영구 Data Program 실행 기간 외에 존재 함
- 보조 저장 장치에 저장된 File

- Computer는 모든 Data 항목을 0과 1의 조합으로 처리
- Data Hierarchy(데이터 계층)
 - Computer에서 처리하는 Data 항목은 Data 계층을 형성 하여 Bit에서 File까지 더 커지고 복잡해 짐
 - Bit(비트)
 - ■Computer에서 가장 작은 Data 항목으로 0 또는 1 값을 가질 수 있음
 - Byte(바이트)
 - 8 Bit

- Characters(문자)
 - 큰 Data 항목
 - 10 진수, 문자 및 특수 기호로 구성
 - 문자 집합 Program을 작성하고 Data 항목을 나타내는 데 사용되는 모든 문자 집합
 - ■UNICODE 2 Byte로 구성된 문자
 - ASCII
- Field(필드)
 - 의미를 전달하는 문자 또는 Byte Group
- Record(레코드)
 - 관련 Field Group
- File(파일)
 - 관련 Record Group

- Record Key
 - Record를 특정 개인 또는 Entity를 식별할 수 있는 것
 - 특정 Record를 쉽게 검색하는 데 사용
- Sequential File(순차 파일)
 - Record가 Record Key Field에 의해 순서대로 저장되는 파일
- Database(데이터베이스)
 - 관련 File Group
- Database Management System
 - Database를 만들고 관리하도록 설계된 Program 모음

- Stream은 "Byte들의 연속적인 흐름"
- Stream이란 입출력 Data의 형식이나 길이가 정해지지 않고, 문자형 또는 Byte열의 Data가 일렬로 이동하는 것을 나타냄
- □ 입력 Stream은 Keyboard, File, Memory, Buffer등으로부터 입력되는 Data의 일관된 표현이고, 출력 Stream은 Monitor, File, Memory, Buffer등에 출력하는 Data의 일관된 표현 임
- Stream 상태의 Data 송수신은 Internet 환경에서의 Data 송수신 방식과 일치함

- JAVA는 모든 File을 순차적인 Byte Stream으로 봄
 - 즉, JAVA에서 Data는 자료를 생산해 내는 Source로부터 Data를 소비하는 Destination까지 Stream 상태로 이동하게 됨
- 운영 체제(OS)는 File의 끝을 결정하는 Mechanism을 제공
 - File의 끝 Marker(EOF: -1)
 - File의 총 Byte 수
 - Byte Stream을 처리하는 JAVA Program은 Program이 Stream의 끝 부분에 도달하면 운영 체제(OS)로부터 지시를 받음

n Byte의 File

- JAVA의 Stream
 - JAVA Stream은 입출력 장치와 JAVA 응용 Program 연결
 - 입출력 장치와 Program사이의 Data 흐름을 처리하는 Software Module
- JAVA Stream의 종류
 - 입력 Stream
 - ■입력 장치로부터 JAVA Program으로 Data를 전달하는 Software Module
 - 출력 Stream
 - ■JAVA Program에서 출력 장치로 Data를 보내는 Software Module
 - 입출력 Stream 기본 단위: 바이트(byte)

■ 한 곳에서 다른 곳으로 순서가 있는 일련의 Data를 보낼 수 있는 하나의 추상적 통로

- 전송되는 Data의 관점에서 보면 연속된 일련의 Byte
- C 언어를 만든 사람 중 한명인 Denis Ritchie가 UNIX 운영체 제를 만들면서 처음으로 제안
- Stream의 종류
 - File
 - Memory
 - 다른 Program의 내부
 - Network
- JAVA의 Stream은 Stream의 종류에 상관없이 자료 이동 방식은 동일
 - ■즉, File 입출력이든 Monitor, Printer, Internet 출력, Keyboard 입력 등 모든 입출력이 거의 유사한 방식으로 이뤄짐

- Data가 전송되는 통로
- 단방향 IO
 - 읽기 Stream은 읽기만, 쓰기 Stream은 쓰기만 가능

- JAVA 입출력 Stream
 - Stream은 입출력을 물의 흐름처럼 간주하는 것
- 흐름의 방향에 따른 분류

- ■JAVA 입출력 Stream 특징
 - 흐름 2진 Data의 흐름
 - ■입력 Stream: Keyboard와 같은 입력 장치
 - ■출력 Stream: Printer나 Monitor 등과 같은 출력 장치
 - FIFO(First Input First Output) 구조
 - 단 방향
 - Stream은 "순서가 있는 Data의 연속적인 흐름"
- 표준 입출력
 - 표준 입력(stdin), 표준 출력(stdout), 표준 에러(stderr) 를 기본으로 하여 물리적인 File을 Stream으로 읽고 쓸 수 있음
 - java.lang Package의 System 클래스에 정의된 변수 in, out, err를 이용하여 표준 입출력 및 Error를 출력

- 표준 Stream
 - 각 Stream을 redirection 할 수 있음
 - System.in
 - ■표준 입력 Stream 객체이며 setIn() 메소드로 redirection 될 수 있음
 - System.out
 - ■표준 출력 Stream 객체로 setOut() 메소드를 사용하여 redirection 할 수 있음
 - System.err
 - ■표준 에러 Stream 객체로 setErr() 메소드를 사용하여 redirection 될 수 있음

- 8 Bit Stream, 16 Bit Stream 2가지 제공
 - 8 Bit Stream (Byte 기반 Stream)
 - ■모든 Data를 읽고 쓸 수 있음
 - 16 Bit Stream (문자열 기반 Stream)
 - ■문자열 Data만 읽고 쓸 수 있음

- 순서가 있는 Data의 흐름을 Stream(스트림)이라고 함
 - File로 Data를 출력하려면 이 Data들이 순서를 가지고 내 보내 져야 함
 - File로부터 Data를 읽어 오려면 역시 File의 내용이 순서 대로 읽어와 져야 함

■ 보조 Stream이란 "Program에서" File을 읽기/쓰기 할 수 있 도록 해주며, 주 Stream은 "외부에서" File 읽기/쓰기를 수행

■ Stream을 쓰고 나면 꼭 닫아 주어야 함

- ■JAVA에서 입출력을 위한 Stream을 생성하고 다루는 클래스는 java.io Package에 포함되어 있으므로, JAVA Program의 첫 부분에 이 Package를 import하여야 함
- Stream의 종류
 - 입출력의 단위에 따라서 분류

- Byte Data를 담당하는 클래스의 이름은 모두 Stream으로 끝남
- 초기 버전의 JAVA에서도 지원됨

■ java.io Package의 클래스 계층 구조

Byte Stream 클래스	특징	Character Stream 클래스
InputStream	기본 입력 Stream 클래스	Reader
FileInputStream	File 입력 Stream 클래스	FileReader
FilterInputStream	다른 Filter 클래스의 최상위 클래스	FilteredReader
BufferedInputStream	Buffer 기능이 있어 편리	BufferedReader
DataInputStream	JAVA 기본형 Data를 읽는데 편리	版 음
OutputStream	기본 출력 Stream 클래스	Writer
FileOutputStream	File 출력 Stream 클래스	FileWriter
BufferedOutputStream	Buffer 기능이 있어서 편리	BufferedWriter
DataOutputStream	JAVA 기본형 Data를 출력할 때 유용	없음
PrintStream	표준 출력 System으로 나감	PrintWriter

■ 그외의 java.io 클래스

클래스	설 명
console	명령행에서 쉽게 입력을 받고, 정형화된 출력을 명령 행에 쉽게 출력할 수 있음
File	파일 객체를 생성
FileDescriptor	물리적 파일에 대한 현재의 연결을 나타내기 위한 클래스
FilePermission	파일 및 디렉토리에 액세스 접근 권한을 관리하는 클 래스
Randomaccassella	랜덤 액세스 파일로부터 읽기와 쓰기가 동시에 이루 어질 수 있음
SerializablePermission	직렬화 가능 액세스 권한을 위한 클래스
StreamTokenizer	입력 Stream을 인수에 취해, 그것을 [토큰]에 구문 분석 해, 한 번에 1개 토큰을 읽음

- ■I/O 클래스의 이름과 의미
 - Stream으로 끝나는 클래스
 - ■Byte 단위로 입출력을 수행하는 클래스
 - Reader / Writer로 끝나는 클래스
 - ■문자(Character) 단위로 입출력을 수행하는 클래스
 - File로 시작하는 클래스
 - ■HDD의 File을 사용하는 클래스
 - Data로 시작하는 클래스
 - ■JAVA의 원시 자료형을 출력하기 위한 클래스
 - Buffered로 시작하는 클래스
 - System Buffer를 사용하는 클래스

■ FileOutputStream 객체

■ 2개의 Stream을 연속해서 사용하기

■ Stream들은 연결될 수 있음 (별 모양의 쿠키를 굽는 Stream)

- 2차 Stream
 - 기존의 통로를 이용하여 새로운 기능을 더하는 클래스

■ 표준 입력 Sream System.in에 InputStreamReader Stream을 연결하는 사례

InputStreamReader rd = new InputStreamReader(System.in); int ch = rd.read(); // 키보드에서 문자 읽음

학습 정리

- java.io Package 개요
 - ■JAVA의 입출력은 Hardware와 독립적으로 설계되어 어 떠한 Computer에서나 일관된 입출력을 수행
 - JAVA의 입출력은 Stream을 사용
 - Stream은 순서가 있는 일련의 Data 흐름을 의미
- File과 Directory
 - JAVA는 File과 Directory를 다루기 위해 File 클래스 제공
 - 다양한 메소드를 이용하여 디렉터리와 파일에 관한 정보 를 얻을 수 있음
- Character Stream 과 Byte Stream
 - Stream에는 Character Stream과 Byte Stream 두 가지 형태가 있음
 - Character Stream은 16Bit 문자나 문자열들을 읽고 쓰기 위한 Stream이고, Byte Stream(또는 Binary Streram)은 8Bit의 Byte를 읽고 쓰기 위한 Stream

학습 정리

- Character Stream
 - Writer와 Reader 클래스는 Character Stream 입출력을 대표하는 추상 클래스로서 다양한 메소드를 가지고 있음
 - 이러한 추상 클래스는 하위 클래스에서 Overriding되어 사용
 - FileWriter 클래스와 FileReader 클래스는 File에 Character Stream을 입 출력하기 위해 사용하는 클래스

학습 정리

- Byte Stream
 - OutputStream 클래스와 InputStream 클래스는 Byte Stream 입출력을 대표하는 추상 클래스로서 다양한 메소 드를 가지고 있음
 - 이러한 추상 클래스는 하위 클래스에서 Overriding되어 사용
 - FileOutputStream 클래스와 FileInputStream 클래스는 File에 Byte Stream을 입 출력하기 위해 사용하는 클래스
 - DataOutputStream 클래스와 DataInputStream 클래스는 JAVA의 기본 자료형 Data를 Byte로 입 출력하기 위해 사용하는 클래스
 - OjbectOutputStream 클래스와 OjbectInputStream 클래 스는 객체를 입 출력하기 위한 클래스
 - 객체를 입 출력하기 위해 JAVA는 직렬화된 Data를 사용