2nd Sessional Syllabus (Semester-VII)

ML Syllabus

- 1) EM
- 2) HMM (Hidden Markov Model)
- 3) SVM (Support Vector Machine)
- 1) Introduction to Clustering
- 2) Terminology and Partition based Clustering, K-mean, Introduction to K-medoid
- 3) K-median, K-Mode need and introduction to PAM algorithm
- 4) PAM(k-medoid) algorithm with Example, Limitation of Distance based clustering
- 5) Density based Algo :DBSCAN
- 6) Density based Algo: DBSCAN Example and Grid based clustering

AI Syllabus

- PROLOG programs using cut and fail
- Fuzzy Rule based Inference and Examples
- Game playing introduction, Mini max algorithm-examples, Alpha beta pruning algorithm-examples
- Genetic algorithm concepts and examples

CC Syllabus

Dominator, back edge and natural loop for control flow graph

Introduction to runtime support environment

Parameter passing methods

Static storage allocation

Dynamic storage allocation

Activation record structure details

Allocation of nested procedure (static-dynamic link)

Display stack

static and dynamic scope

Deep vs. shallow access

Heap storage allocation

Bin based

Boundary tagging

Top-Down Parsing

Predictive Parsing

FIRST, FOLLOW and Parsing Table Construction

Error Recovery in Top-Down Parsing

Bottom-Up Parsing

Shift-Reduce Approach

Operator Precedence Parsing

Sr.	BDA Syllabus
1	Replication Strategies in Cassandra - SimpleStrategy, NetworkTopologyStrategy Demonstration - Adding a node to cassandra cluster, Create and Drop Keyspaces, Create and Drop Tables
	Primary keys in table - Partining key and Clustering columns, Creating table sorted on one column/two columns
	Imbalance partitions, Two Partitioning keys, Read Consistency levels, Write consistency levels
	Checking and setting consistency levels, Inset operation, Select Operation, Update Operation
	TTL - Time to Live, Collections - Set, List, Map, Secondary Index
	UUID - Universally Unique Identifier, Time UUID
	Counters, Importing and exporting data to/from CSV file
	Materialized views, Cassandra Python Driver
	Cassandra - Snitch, Gossip Protocol,
	Batch v/s Real-time big data analytics, Limitations of Hadoop, Spark Advantages, Spark
	Use Cases
	Tracing example with distributed solution, MapReduce Solution and Spark solution
	Result Comparison, Why Spark
	Spark with Hadoop - Spark + HDFS, Spark + MapReduce, Spark + Hadoop YARN
	Spark Features, Overview of Spark Ecosystem
	Overview of Spark Streaming, Spark SQL, MLlib, GraphX, SparkR
	Spark Solar Syastem, Why Spark replaced all other Big Data Analytics Technologies
	Spark Cluster Processing, HDFS Block v/s Spark Partition
	Partitions in Spark, SparkDynamicExedcutionAllocation,
	Spark RDD Fundamentals, RDD Features
2	Hive Introduction Hive Architecture, Data Model - Database, table, partition and bucket Pig/Hive with Apache Tez Vs Pig/Hive MapReduce Managed Vs External Type of tables Data Types and File Formats with Hive
	SerDe - Serialization protocol Sequential fiel type for grouping smaller sized data files

Installation steps of hive from GettingReady Hive url

DDL

DML

Use of local, external, partition, clustered, skewed like keywords

Fundamentals of Distributes Systems: architecture, inherent limitation, Distributed File System.

Design - Loosely coupled hardware and tightly coupled software with middleware services on top of Network OS

Distributed Systems Design Issues

Distributed Mutual Exclusion - Cars and Bridge problem statement with message passing enabled

Lamport's DME Algo

Corum based Maekawa's DME algo

Token in a DME - A data structure to hold info. Challenges involved in maintaing uniqueness of token.

Lamport's algo for Distibuted Mutual Exclusion - uses logical clock

Example of Lamport with space time diagram

Correctness proof by contradiction

Maekawa's DME using quoram based approach

Handling deadlock using messages INQUIRE, YIELD, FAIL and GRANT

Token as a data structure

Token based algorithm - Suzuki Kasami's Broadcast algo

The purpose of sequencer

IP Syllabus

Chapter 4: All the Topics which were NOT part of sessional 1

For example,

Sampling and the Fourier Transform of Sampled Functions, Sampling theorem, Signal recovery, Anti aliasing, Illustration of aliasing, Function Recovery from sampled Data, 2-D impulse train, 2-D sampling and sampling theorem, Sampling, Over sampling & under sampling in frequency domain, Aliasing in image, Anti-aliasing in images, Interpolation and re-sampling, Moirè Patterns, DFT, 2-D Discrete transform pair, Properties of Fourier transform, 2-D circular convolution, 2-D convolution theorem, 1-D convolution and wrap around error, Basics of filtering in frequency domain, Visual analysis of DFT, Filtering in Frequency domain: Low pass filters, High pass filters, Laplacian filter, Unsharp Masking, High boost Filtering and HighFrequency-Emphasis Filtering, Homomorphic filtering, bandpass filters, band reject filters, Notch pass filters, Notch reject filters etc.

Chapter: 10 Image segmentation

(10.1 to 10.4 of Textbook- Digital Image Processing by Gonzalez and Woods)

Fundamentals, Point, Line and Edge Detection, Thresholding, Region based segmentation.