Linear Algebra for Machine Learning —Essential operations

—Multiplication

$$\label{eq:main_continuous} \begin{split} & \text{Multiplying } A \in \mathbb{R}^{n,k} \text{ by } B \in \mathbb{R}^{n,k} \text{ produces } C \in \mathbb{R}^{n,k}, \\ & AB = C \end{split}$$
 To compute C the elements in the rose of A are multiplied with the column elements of C and the products added, $& c_0 = \sum_{j=1}^n q_j \cdot b_j. \end{split}$

Define on the board:

- Dot product $\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n$ for two vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$.
- Row times column view [Str+09]:

 $I = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & & \\ & & & \ddots & \\ & & & & \end{pmatrix}$ (5)

☐The identity matrix

Demonstrate multiplication with the inverse by hand.

$$\begin{pmatrix} -1 & 0 & 0 \\ 1 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ -2 & -1 & -1 \\ -1 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
(6)

Linear Algebra for Machine Learning

Essential operations

└─Matrix inverse

The inverse Matrix \mathbf{A}^{-1} undoes the effects of \mathbf{A}_{c} or in

Matrix inverse

 $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}.$ The process of computing the inverse is called Gaussian

Example on the board:

$$\mathbf{A} = \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 2 & 0 & 1 & 0 \\ 1 & 3 & 0 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & \frac{1}{2} & 0 \\ 1 & 3 & 0 & 1 \end{pmatrix} \tag{8}$$

$$\rightsquigarrow \begin{pmatrix} 1 & 0 & \frac{1}{2} & 0 \\ 0 & 3 & -\frac{1}{2} & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & \frac{1}{2} & 0 \\ 0 & 1 & -\frac{1}{6} & \frac{1}{3} \end{pmatrix} \tag{9}$$

Test the result:

$$\begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 \\ -\frac{1}{6} & \frac{1}{3} \end{pmatrix} = \begin{pmatrix} 2 \cdot \frac{1}{2} + 0 \cdot -\frac{1}{6} & 2 \cdot 0 + 0 \cdot \frac{1}{3} \\ 1 \cdot \frac{1}{2} + 3 \cdot -\frac{1}{6} & 0 \cdot 0 + 3 \cdot \frac{1}{3} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
(10)

(7)

Linear Algebra for Machine Learning

—Essential operations

Computing determinants in two or three dimensions

Works for any row or column, as long as we respect the sign pattern. Example computation on the board:

$$\begin{vmatrix} -1 & 0 & 0 \\ 1 & -1 & 1 \\ 1 & 0 & -1 \end{vmatrix} = -1 \cdot \begin{vmatrix} -1 & 1 \\ 0 & -1 \end{vmatrix} - 1 \cdot \begin{vmatrix} 0 & 0 \\ 0 & -1 \end{vmatrix} + 1 \cdot \begin{vmatrix} 0 & 0 \\ -1 & 1 \end{vmatrix}$$
 (15)
$$= (-1) \cdot ((-1) \cdot (-1) - 0 \cdot 1)) -$$
 (16)
$$(0 \cdot (-1) - 0 \cdot 0) + 0 \cdot 1 - (-1) \cdot 0$$
 (17)
$$= -1$$
 (18)

Linear Algebra for Machine Learning

—Essential operations

Determinants in n-dimensions

Draw the sign pattern on the board:

$$\begin{vmatrix} + & - & + & \dots \\ - & + & - & \dots \\ + & - & + & \dots \\ \vdots & \vdots & \vdots & \ddots \end{vmatrix}$$
 (19)

The determinant can be expanded along any column as long as the sign pattern is respected.

Sometimes solving $\mathbf{A}\mathbf{x} + \mathbf{b} = 0$ is implossible. One the board, derive:

 $\min_{\mathbf{a}} \frac{1}{2} |\mathbf{A}\mathbf{x} - \mathbf{b}|^2$ (24)

At the optimum we expect,

$$0 = \nabla_{\mathbf{x}} \frac{1}{2} |\mathbf{A}\mathbf{x} - \mathbf{b}|^2$$
$$= \nabla_{\mathbf{x}} \frac{1}{2} (\mathbf{A}\mathbf{x} - \mathbf{b})^{\frac{1}{2}}$$

$$= \nabla_{\!\scriptscriptstyle X} \frac{1}{2} (\mathbf{A} \mathbf{x} - \mathbf{b})^{\mathsf{T}} (\mathbf{A} \mathbf{x} - \mathbf{b})$$

$$= \mathbf{A}^{T}(\mathbf{A}\mathbf{x} - \mathbf{b})$$

(29)

(30)

(31)

$$=$$
 A

$$\mathbf{A}^{T}\mathbf{b} = \mathbf{A}^{T}\mathbf{A}\mathbf{x}$$

 $(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{b} = \mathbf{x}$

$$= \mathbf{A}^{T} \mathbf{A} \mathbf{x} - \mathbf{B}^{T} \mathbf{b}$$
$$= \mathbf{A}^{T} \mathbf{A} \mathbf{x} - \mathbf{A}^{T} \mathbf{b}$$

Linear Algebra for Machine Learning Regularization

—Eigenvalues and Eigenvectors

On the board, compute the eigenvalues and vectors for the initial example.

$$\mathbf{A} = \begin{pmatrix} 1 & 4 \\ 0 & 2 \end{pmatrix} \rightarrow \begin{vmatrix} 1 - \lambda & 4 \\ 0 & 2 - \lambda \end{vmatrix} = (1 - \lambda) * (2 - \lambda) - 0 * 4 = 0 \quad (39)$$

$$\rightarrow \lambda_1 = 1, \lambda_2 = 2. \quad (40)$$

$$\begin{pmatrix} 1 - 1 & 4 \\ 0 & 2 - 1 \end{pmatrix} = \begin{pmatrix} 0 & 4 \\ 0 & 1 \end{pmatrix} \mathbf{x}_1 = 0 \rightarrow \mathbf{x}_1 = \begin{pmatrix} p \\ 0 \end{pmatrix} \text{ for } p \in \mathbb{R} \quad (41)$$

 $\begin{pmatrix} 1-2 & 4 \\ 0 & 2-2 \end{pmatrix} = \begin{pmatrix} -1 & 4 \\ 0 & 0 \end{pmatrix} \mathbf{x}_1 = 0 \to \mathbf{x}_2 = \begin{pmatrix} q \\ \frac{1}{4}q \end{pmatrix} \text{ for } q \in \mathbb{R} \quad (42)$

Determinant not useful numerically, software packages use QR-Method.