CS 334 - Homework 1 (Regular Languages) ←[0-indexed!] Due 2/23/2016

Let $M = (Q, \Sigma, \delta, q_1, F)$, where:

$$Q := \{q_1, q_2, q_3, q_4\},\$$

$$\Sigma := \{0, 1\},\$$

	0	1
q_1	q_2	q_3
q_2	q_4	q_3
q_3	q_2	q_4
q_4	q_4	q_4

and $F := \{q_1, q_2, q_3\}.$

- 1. Draw an automaton diagram equivalent to the formal description of the DFA given above.
- 2. State whether each of the following strings belongs to L(M).
 - a. 0110
 - b. 10101
 - c. 01010
 - d. 0
 - e. 1
 - f. 101
 - g. 1011
 - h. ε
- 3. Describe L(M), the language accepted by M.

Let $N = (P, \Sigma, \gamma, p_1, G)$, where:

$$P := \{p_1, p_2, p_3, p_4, p_5, p_6\},\$$

$$\Sigma := \{0, 1\},\$$

	0	1
p ₁	p ₂	p ₄
p ₂	p ₃	p ₄
p ₃	p ₆	p ₄
p ₄	p ₂	p ₅

p ₅	p ₂	p ₆
p_6	p ₆	p_6

and F:= $\{q_1, q_2, q_3, q_4, q_5\}$

- 1. Draw an NFA diagram which accepts $L(M) \cap L(N)$. Describe the language accepted by this automaton.
- 2. Draw an NFA diagram which accepts $L(M) \setminus L(N)$. Describe the language accepted by this automaton.
- 3. Draw an NFA diagram which accepts $L(M) \cup L(N)$. Describe the language accepted by this automaton.

Note: This diagram should be a "proper" NFA - it should not be a deterministic automaton.

- 4. Convert the NFA provided in (3) into a DFA.
- 5. Provide a regular expression which accepts the language $L(M) \cup L(N)$.

Given the alphabet Σ := {0, 1}, provide a DFA which accepts the language given by the regular expression "(0*1)U(01*0)".

Use the Pumping Lemma for Regular Languages to demonstrate that $\{ww^{-1} \mid w \in \Sigma\}$, where $\Sigma := \{0,1\}$ and $^{-1}$ indicates string-reversal, is not a regular language.