- 2. Για τα παρακάτω σύνολα, να υπολογιστούν και να αποδειχθούν τα supremum και infimum.
 - i) A = (0, 2)

Απόδειξη. (Με Ορισμό) Έχουμε ότι $\sup A=2$ και $\inf A=0.$

- Θα δείξουμε ότι $\sup A=2$. Πράγματι: 2 α.φ. του A, γιατί a<2, $\forall a\in A$. Έστω M α.φ. του A, δηλ. $a\leq M$, $\forall a\in A$. Θ.δ.ο. $2\leq M$ (Με άτοπο). Πράγματι: Έστω M<2. Τότε $(M,2)\neq\emptyset\Rightarrow(M,2)\cap A\neq\emptyset$, άρα $\exists a\in (M,2)$. Δηλαδή $\exists a\in A$ με a>M. άτοπο, γιατί M α.φ. του A.
- Θα δείξουμε ότι inf A=0. Πράγματι: 0 κ.φ. του A, γιατί a>0, $\forall a\in A$. Έστω m κ.φ. του A, δηλ. $a\geq m$, $\forall a\in A$. Θ.δ.ο. $0\geq m$ (Με άτοπο). Πράγματι: Έστω m>0. Τότε $(0,m)\neq\emptyset\Rightarrow(0,m)\cap A\neq\emptyset$, άρα $\exists a\in(0,m)$. Δηλαδή $\exists a\in A$ με a< m, άτοπο, γιατί m κ.φ. του A.
- ii) $A = \{x \in \mathbb{R} : x < 0\}.$

 $A\pi \emph{\emph{o}}$ δειξη. (Με Ορισμό) Έχουμε ότι $\sup A=0$ και $\inf A=-\infty.$

- Θα δείξουμε ότι $\sup A = 0$. Πράγματι: 0 α.φ. του A, γιατί a < 0, $\forall a \in A$. Έστω M α.φ. του A, δηλ. $a \le M$, $\forall a \in A$. Θ.δ.ο. $0 \le M$ (Με άτοπο). Πράγματι: Έστω M < 0. Τότε $(M,0) \ne \emptyset$, άρα $\exists a \in (M,0)$. Δηλαδή $\exists a \in A$ με a > M, άτοπο, γιατί M α.φ. του A.
- Θα δείξουμε ότι $\inf A = -\infty$. Πράγματι: $A \neq \emptyset$ και A όχι κάτω φραγμένο. Άρα γράφουμε $\inf A = -\infty$.
- 3. Έστω A φραγμένο υποσύνολο του $\mathbb R$ τέτοιω ώστε $\sup A = \inf A$. Να δείξετε ότι το A είναι μονοσύνολο.

 $A\pi \delta \delta \epsilon$ ιξη. Έστω $c=\inf A=\sup A$. Τότε $\forall a\in A$ ισχύει $c\leq a\leq c$. Άρα $A=\{c\}.$

- 4. Έστω A,B μη-κενά υποσύνολα του $\mathbb R$ τέτοια ώστε $a\leq b,\ \forall a\in A$ και $\forall b\in B.$ Να δείξετε ότι:
 - i) $\sup A \leq b, \ \forall b \in B$
 - ii) $\sup A \leq \inf B$

Απόδειξη.

- i) Έστω $b\in B\Rightarrow a\leq b,\ \forall a\in A$. Άρα $b\in B$ α.φ. του $A,\ \forall b\in B$. Άρα $\sup A\leq b,\ \forall b\in B$.
- ii) Από το i) έχουμε ότι $\sup A \leq b, \ \forall b \in B.$ Άρα το $\sup A$ κ.φ. του B. Άρα $\sup A \leq \inf B.$
- 5. Έστω $A\subseteq\mathbb{R}$ μη-κενό, και κάτω φραγμένο και έστω B το σύνολο των κάτω φραγμάτων του A. Να δείξετε ότι:
 - i) $B \neq \emptyset$
 - ii) Β άνω φραγμένο.
 - iii) $\sup B = \inf A$

Απόδειξη.

i) A κάτω φραγμένο. Άρα $\exists x \in \mathbb{R}$ τ.ω. x κ.φ. του A, οπότε $x \in B \Rightarrow B \neq \emptyset$.

- ii) $A \neq \emptyset$, άρα $\exists x \in A$. Τότε $\forall y \in \mathbb{R}$ με y > x έχουμε ότι y όχι κ.φ. του A. Άρα $y \notin b$. Άρα το B είναι άνω φραγμένο.
- iii) $\begin{array}{l} B \neq \emptyset \\ B \text{ άνω φραγμένο} \end{array} \} \stackrel{\text{A.Π.}}{\Rightarrow} B \text{ έχει supremum, έστω } a = \\ \sup B. \text{ Τότε } a \geq x, \ \, \forall x \in B, \text{ άρα } a \geq x, \ \, \forall x \text{ όπου } x \text{ είναι κ.φ. του } A, \text{ άρα } a \geq \inf A. \text{ Οπότε αρκεί να δείξουμε ότι } \\ \inf A \geq a, \text{ δηλ. αρκεί να δείξουμε ότι } a \text{ κ.φ. του } A \text{ (Με άτοπο).} \\ \Pi \text{ Πράγματι:} \end{array}$

Έστω ότι a όχι κ.φ. του A. Άρα $\exists x \in A, \ x < a$. Όμως $a=\sup B$, οπότε από τη χαρ. ιδιοτ. του supremum έχουμε ότι $\exists y \in B, \ x < y < a$. Άτοπο, γιατί y κ.φ. του A. Άρα $\sup B=\inf A$.

6. Να αποδείξετε ότι το σύνολο $\mathbb Z$ δεν είναι φραγμένο.

Απόδειξη. (Με άτοπο) Έστω ότι το σύνολο $\mathbb Z$ είναι άνω φραγμένο. Είναι και μη κενό, άρα από το αξίωμα πληρότητας υπάρχει το $\sup \mathbb Z = s \in \mathbb R.$ Τότε το $s \in \mathbb Z$ ή $s \notin \mathbb Z$.

- Αν $s \in \mathbb{Z}$ τότε $s + 1 \in \mathbb{Z}$, άτοπο (γιατί s α.φ. του \mathbb{Z})
- Αν $s \notin \mathbb{Z}$, τότε από τη χαρακτηριστική ιδιότητα του sup, έχουμε ότι για $\varepsilon=1>0,\quad \exists z\in\mathbb{Z}: s-1< z\Rightarrow s< z+1,$ άτοπο, γιατί s α.φ. του \mathbb{Z} . Ομοίως αποδεικνύουμε ότι \mathbb{Z} δεν είναι κάτω φραγμένο.
- 7. Να αποδείξετε ότι το σύνολο $A=\{3k\ :\ k\in\mathbb{Z}\}$ δεν είναι άνω φραγμένο.

Απόδειξη. Πράγματι, έστω A άνω φραγμένο, και επειδή $A \neq \emptyset$ υπάρχει το supremum του A, έστω sup A=s. Τότε s-1 < s. Άρα από τη χαρ. ιδιοτ. του supremum, $\exists k \in \mathbb{Z}, \ 3k > s-1$. Άρα $3k+3>s-1+3 \Leftrightarrow 3(k+1)>s+2>s$. Όμως $3(k+1) \in \mathbb{Z},$ άτοπο, γιατί $s=\sup A$.

8. Να αποδείξετε με χρήση της Μαθηματικής Επαγωγής τους παρακάτω τύπους.

i)
$$1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}, \ \forall n \in \mathbb{N}$$

ii) $1^3 + 2^3 + \dots + n^3 = (1 + 2 + \dots + n)^2, \ \forall n \in \mathbb{N}$

Απόδειξη.

i) Για n=1, έχω: $1^2=\frac{1\cdot 2\cdot 3}{6}=1$, ισχύει. Έστω ότι ισχύει για n=k, δηλ, $1^2+\cdots+k^2=\frac{k(k+1)(2k+1)}{6}$ (1)

θ.δ.ο ισχύει και για n = k + 1. Πράγματι:

$$1^{2} + \dots + k^{2} + (k+1)^{2} \stackrel{\text{(1)}}{=} \frac{k(k+1)(2k+1)}{6} + (k+1)^{2}$$

$$= \frac{k(k+1)(2k+1) + 6(k+1)^{2}}{6}$$

$$= \frac{(k+1)[k(2k+1) + 6(k+1)]}{6}$$

$$= \frac{(k+1)(2k^{2} + 7k + 6)}{6}$$

$$= \frac{(k+1)2(k+2)(k+\frac{3}{2})}{6}$$

$$= \frac{(k+1)(k+2)(2k+3)}{6}$$

$$= \frac{(k+1)[((k+1) + 1)[2(k+1) + 6(k+1)]}{6}$$

ii) Για n = 1, έχω: $1^3 = 1^2$, ισχύει. Έστω ότι ισχύει για n=k, δηλ. $1^3+\cdots+k^3=(1+\cdots+k)^2$

Θ.δ.ο. ισχύει και για n = k + 1. Πράγματι:

$$[1 + \dots + k + (k+1)]^2 = (1 + \dots + k)^2$$

$$+ 2(1 + \dots + k)(k+1) + (k+1)^2 =$$

$$\stackrel{(2)}{=} 1^3 + \dots + k^3 + 2 \cdot \frac{k(k+1)}{2} \cdot (k+1) + (k+1)^2$$

$$= 1^3 + \dots + k^3 + (k+1)^2(k+1)$$

$$= 1^3 + \dots + k^3 + (k+1)^3$$

9. Βρείτε ένα κλειστό τύπο για τα παρακάτω αθροίσματα:

i)
$$\sum_{k=1}^{n} (2k-1) = 1+3+5+\cdots+(2n-1)$$

ii)
$$\sum_{k=1}^{n} (2k-1)^2 = 1^2 + 3^2 + 5^2 + \dots + (2n-1)^2$$

Απόδειξη.

i)

$$\sum_{k=1}^{n} (2k-1) = 1 + 3 + \dots + (2n-1)$$

$$= 1 + 2 + 3 + \dots + 2n - 2(1 + \dots + n)$$

$$= \frac{2n(2n+1)}{2} - 2 \cdot \frac{n(n+1)}{2}$$

$$= 2n^2 + \mathcal{H} - n^2 - \mathcal{H} = n^2$$

ii)

$$\sum_{k=1}^{n} (2k-1)^2 = 1^2 + 3^2 \dots + (2n-1)^2 =$$

$$= 1^2 + 2^2 + 3^2 + \dots + (2n)^2 - [2^2 + 4^2 + 6^2 + \dots + (2n)^2]$$

$$= \frac{2n(2n+1)(4n+1)}{6} - 4[1^2 + 2^2 + 3^2 + \dots + n^2]$$

$$= \frac{2n(2n+1)(4n+1)}{6} - 4 \cdot \frac{n(n+1)(2n+1)}{6}$$

$$= \frac{2n(2n+1)[(4n+1) - 2(n+1)]}{6}$$

$$= \frac{n(2n+1)(2n-1)}{3}$$

10. (Θέμα: 2018) Να αποδείξετε ότι $\sum_{n=2}^{N-2} \frac{1}{(n+1)(n+2)} = \frac{1}{3} - \frac{1}{N}$

Απόδειξη.

$$a_n = \frac{1}{(n+1)(n+2)} = \frac{A}{n+1} + \frac{B}{n+2} = \frac{A(n+2) + B(n+1)}{(n+1)(n+2)}$$

 $Aρα A(n+2) = B(n+1) = 1, \forall n \in \mathbb{N}$

Δηλ. $(A+B)n+2A+B=1, \ \forall n\in\mathbb{N},$ οπότε πρέπει:

$$\begin{vmatrix}
 A + B = 0 \\
 2A + B = 1
 \end{vmatrix} \Leftrightarrow \quad
 \begin{vmatrix}
 A = 1 \\
 B = -1
 \end{vmatrix}$$

Οπότε $a_n = \frac{1}{(n+1)(n+2)} = \frac{1}{n+1} - \frac{1}{n+2}$

Άρα

$$\sum_{n=2}^{N-2} \frac{1}{(n+1)(n+2)} = \sum_{n=2}^{N-2} \left(\frac{1}{n+1} - \frac{1}{n+2} \right) =$$

$$= \frac{1}{2+1} - \frac{1}{2+2} + \frac{1}{3+1} - \frac{1}{3+2} + \dots + \frac{1}{N-2+1} - \frac{1}{N-2+2}$$

$$= \frac{1}{3} - \frac{1}{N}$$

11. Να αποδείξετε ότι $n^5 - n$ είναι πολλαπλάσιο του 5, $\forall n \in \mathbb{N}$.

Aπόδειξη. Για n=1, έχω: 1-1=0, είναι πολ/σιο του 5, γιατί $0 = 0 \cdot 5$.

Έστω ότι ισχύει για n, δηλ. n^2-n είναι πολ/σιο του $5 \Leftrightarrow n^2-n=$ $5k, k \in \mathbb{Z}$ (3).

Θ.δ.ο. ισχύει και για (n+1). Πράγματι:

$$(n+1)^5 - (n+1) = n^5 + 5n^4 + 10n^3 + 10n^2 + 5n + 1 - n + 1$$

$$= n^5 - n + 5(n^4 + 2n^3 + 2n^2 + n)$$

$$\stackrel{(3)}{=} 5k + 5(n^4 + 2n^3 + 2n^2 + n)$$

$$= 5(k + n^4 + 2n^3 + 2n^2 + n)$$

12. Να αποδείξετε ότι $n! > 2^n, \forall n > 4$

Απόδειξη.

Για n = 4, έχω: $4! = 1 \cdot 2 \cdot 3 \cdot 4 = 24 > 16 = 2^4$

Έστω ότι ισχύει για n, δηλ $n! > 2^n$.

Θ.δ.ο. ισχύει και για n + 1. Πράγματι:

$$(n+1)! = 1 \cdot 2 \cdot \dots \cdot (n+1) = n!(n+1) > 2^n(n+1) \ge 2^n \cdot 2 = 2^n$$

13. Έστω $a \in \mathbb{R}$ και $n \in \mathbb{N}$. Να δείξετε με τη βοήθεια της μαθηματικής επαγωγής της παρακάτω ανισότητες.

i) Av
$$0 < a < \frac{1}{n}$$
 τότε $(1+a)^n < \frac{1}{1-na}$

i) Aν
$$0 < a < \frac{1}{n}$$
 τότε $(1+a)^n < \frac{1}{1-na}$
ii) Αν $0 \le a \le 1$ τότε $1-na \le (1-a)^n \le \frac{1}{1+na}$

Απόδειξη.

i) $\Gamma \iota \alpha n = 1$, $\dot{\epsilon} \chi \omega$: $1 + a < \frac{1}{1-a} \Leftrightarrow (1+a)(1-a) < 1 \Leftrightarrow$ $1 - a^2 < 1 \Leftrightarrow a^2 > 0$, ισχύει για 0 < a < 1.

Έστω ισχύει για n, δηλ. $(1+a)^n < \frac{1}{1-na}$, για $0 < a < \frac{1}{n}$. Θ.δ.ο. ισχύει για n + 1. Πράγματι:

$$(1+a)^{n+1} = (1+a)(1+a)^n < (1+a) \cdot \frac{1}{1-na}$$

$$= \frac{(1+a)(1-a)}{(1-na)(1-a)} = \frac{1-a^2}{(1-na)(1-a)}$$

$$= \frac{1-a^2}{1-na-a+na^2} = \frac{1-a^2}{1-a(n+1)+na^2}$$

$$< \frac{1-a^2}{1-a(n+1)} < \frac{1}{1-a(n+1)}$$

ii) Αποδεικνύουμε πρώτα ότι $(1-a)^n \leq \frac{1}{1+na}$, αν $0 \leq a \leq 1$. Για n=1, έχω: $1-a \le \frac{1}{1+a} \Leftrightarrow (1-a)(1+a) \le 1 \Leftrightarrow$ $1-a^2\leq 1\Leftrightarrow a^2\geq 0$, ισχύει για $0\leq a\leq 1$. Έστω ότι ισχύει για n, δηλ. $(1-a)^n\leq \frac{1}{1+na}$, αν $0\leq a\leq 1$. θ.δ.ο. ισχύει για n + 1. Πράγματι:

$$(1-a)^{n+1} = (1-a)^n (1-a)$$

$$\leq \frac{1}{1+na} \cdot (1-a)$$

$$= \frac{(1-a)(1+a)}{(1+na)(1+a)}$$

$$= \frac{1-a^2}{1+(n+1)a+na^2}$$

$$< \frac{1-a^2}{1+(n+1)a}$$

$$< \frac{1}{1+(n+1)a}$$

Αποδεικνύουμε, τώρα, ότι $1-na \leq (1-a)^n$, αν $0 \leq a \leq 1$.

Για n = 1, έχω: $1 - a \le 1 - a$, ισχύει.

Έστω ότι ισχύει για n, δηλ. $1 - na \le (1 - a)n$.

θ.δ.ο. ισχύει και για n+1. Πράγματι:

$$(1-a)^{n+1} = (1-a)^n \cdot (1-a)$$

$$\geq (1-na)(1-a)$$

$$= 1-a-na+na^2$$

$$= 1-(n+1)a+na^2$$

$$\geq 1-(n+1)a$$

14. Αν a>0 τότε να αποδείξετε ότι $(1+a)^n\geq 1+na+\frac{n(n-1)a^2}{2},\ \forall n\in\mathbb{N}$

Απόδειξη.

Για n=1, έχω: $1+a\geq 1+a$, ισχύει.

Έστω ότι ισχύει για n, δηλ. $(1+a)^n \ge 1 + na + \frac{n(n-1)a^2}{2}$.

θ.δ.ο. ισχύει και για n+1. Πράγματι:

$$(1+a)^{n+1} = (1+a)^n \cdot (1+a) \ge (1+na + \frac{n(n-1)a^2}{2})(1+a)$$

$$= 1+na + \frac{n(n-1)a^2}{2} + a + na^2 + \frac{n(n-1)a^3}{2}$$

$$= 1 + (n+1)a + \frac{n^2 - n + 2n}{2}a^2 + \frac{n(n-1)}{2}a^3$$

$$\stackrel{a>0}{>} 1 + (n+1)a + \frac{n(n+1)}{2}a^2$$

15. Να δείξετε ότι οι παρακάτω αριθμοί είναι άρρητοι.

- ii) $\sqrt[3]{2} \text{ kat } \sqrt[3]{3}$

Απόδειξη.

i) Έστω $\sqrt{2}+\sqrt{6}$ ρητός. Άρα $(\sqrt{2}+\sqrt{6})^2=2+2\sqrt{12}+6=8+4\sqrt{3}$ ρητός, που σημαίνει ότι $\sqrt{3}$ είναι ρητός (θυμάμαι ότι ρητός + άρρητος = άρρητος). Άτοπο, γιατί $\sqrt{3}$ άρρητος.

