Quatum Mechanics

- chapo. Operators
 - <u>Hermitian opertator</u>
 - o Commutator
 - canonical commutation relation
- chap1. Wave function
 - Schrödinger Equation
 - collapse
- chap2. Time-independent Schrödinger equation
 - o stationary state
 - o One-d infinite potential Well
 - Simple harmonic oscillator
 - Free particle
- chap3. Formalism
 - inner product
 - uncertainty principle
 - Energy-Time uncertainty principle
- QM in 3D
 - Angular Momentum L
 - o Spin
 - Spin 1/2
 - Pauli matrices
 - <u>Two-Electron System</u>

chapo. Operators

Hermitian opertator

Consider an operator \hat{A} and its **Hermitian conjugate** \hat{A}^{\dagger} satisfies

$$\langle \hat{A}f\ket{g} = \langle f\ket{\hat{A}^\dagger g}
angle$$

Particularly, operators whose Hemitian conjugates are themselves are called **Hermitian operators**

$$\hat{Q}=\hat{Q}^{\dagger}$$

Commutator

The commutator between two operators is defined as

$$[\hat{A},\hat{B}]=\hat{A}\hat{B}-\hat{B}\hat{A}$$

canonical commutation relation

We can easily dedude that $[\hat x,\hat p]\,\psi=i\hbar\psi$, where $\hat x=x$ and $\hat p=-i\hbarrac{\partial}{\partial x}$, thus

$$[\hat{x},\hat{p}]=i\hbar\,\mathbb{I}$$

where \mathbb{I} is the unit operator, sometimes it is 1. The operators whose commutator is not equal to zero is called the canonical commutation relation.

chap1. Wave function

Schrödinger Equation

$$i\hbarrac{\partial\Psi}{\partial t}=-rac{\hbar^2}{2m}
abla^2\Psi+V\Psi$$

With Hamiltonian $H=rac{p^2}{2m}+V$, correspondingly, Hamiltonian operator $\hat{H}=-rac{\hbar^2}{2m}
abla^2+V$ with $\hat{p}=-i\hbar
abla$, it goes

$$i\hbarrac{\partial}{\partial t}\Psi=\hat{H}\Psi$$

collapse

wave function—initially in a superposition of several eigenstates—reduces to a single eigenstate due to the **measurement**

When making a second measurement immediately after the first we will get the same result because of the collapsing. However the wave function spread out again soon.

chap2. Time-independent Schrödinger equation

stationary state

Q: Is there a difference with time-independent states and stationary states in the Schrodinger's equation?

A: If you talk about stationary currents, or stationary states, it means that it is actually moving, there is actually a time dependence (a transport), but you don't see it, because what is transported away is replaced again. So, a stationary current is a current; a time dependence, a charge transport but the current itself is time independent. What flows away flows back again.

The wave function, i.e., the state itself, is time-dependent, i.e. something flows away and is replaced at the other end, so that the overall probability of residence does not change. The probability that the particles can be found in location A is at any time the same in the sense it is stationary but the states themselves are time-dependent. Stationary states are time-dependent!

One-d infinite potential Well

consider the potential

$$V(x) = egin{cases} 0 & 0 < x < a \ \infty & ext{otherwise} \end{cases}$$

Simple harmonic oscillator

$$V(x)=rac{1}{2}kx^2=rac{1}{2}m\omega^2x^2$$

The time-independent Schrodinger equation (TISE) goes

$$rac{1}{2m}\left[\hat{p}^2+(m\omega x)^2
ight]\psi=E\psi$$

Ladder operators

$$\hat{a}_{\pm}\equivrac{1}{\sqrt{2m\hbar\omega}}(\mp i\hat{p}+m\omega x)$$

The \hat{a}_+ is called **raising operator**, while \hat{a}_- is **lowering operator**, and obviously they are the complex conjugates of each other. $i\hat{p}$ is actually a real operator, as $\hat{p}=-i\hbar\nabla$. However, they are the Hermitian conjugates of each other. \hat{a}_- is sometimes written as \hat{a} , and thus \hat{a}_+ can be written as \hat{a}^\dagger

$$\hat{a}_-\hat{a}_+=rac{1}{2m\hbar\omega}\left[\hat{p}^2+(m\omega x)^2
ight]-rac{i}{2\hbar}[\hat{x},\hat{p}]=rac{\hat{H}}{\hbar\omega}+rac{1}{2}$$

The second step is according to <u>canonical commutation relation</u> that suggest $[\hat{x},\hat{p}]=i\hbar$. And $\hat{a}_+\hat{a}_-=rac{\hat{H}}{\hbar\omega}-rac{1}{2}$, so their commutator can be calculated to be 1

$$[\hat{a}_{-},\hat{a}_{+}]=\hat{a}_{-}\hat{a}_{+}-\hat{a}_{+}\hat{a}_{-}=1$$

So we can rewrite the Hamiltonian by ladder operators

$$\hat{H}=\hbar\omega(\hat{a}_{-}\hat{a}_{+}-rac{1}{2}) \quad or \quad \hat{H}=\hbar\omega(\hat{a}_{+}\hat{a}_{-}+rac{1}{2})$$

With these two formulas, we are now going to prove that $\hat{a}_{-}\psi$ is a solution to the TISE with energy $E - \hbar \omega$, which is $\hat{H}(\hat{a}_{-}\psi) = (E - \hbar \omega)(\hat{a}_{-}\psi)$:

$$egin{aligned} \hat{H}\left(\hat{a}_-\psi
ight) &= \hbar\omega\left(\hat{a}_-\hat{a}_+ - rac{1}{2}
ight)\left(\hat{a}_-\psi
ight) = \hbar\omega\hat{a}_-\left(\hat{a}_+\hat{a}_- - rac{1}{2}
ight)\psi \ &= \hat{a}_-\left[\hbar\omega\left(\hat{a}_-\hat{a}_+ - 1 - rac{1}{2}
ight)\psi
ight] = \hat{a}_-(\hat{H} - \hbar\omega)\psi = \hat{a}_-(E - \hbar\omega)\psi \ &= (E - \hbar\omega)\left(\hat{a}_-\psi
ight) \end{aligned}$$

Similarly, $\hat{H}(\hat{a}_+\psi)=(E+\hbar\omega)(\hat{a}_+\psi)$ is also established, and those are why they are called *ladder operators*.

If we use lowering operator \hat{a}_{-} on ψ multiple times, we end up with TISE with energy 0 and cannot use it anymore, which is to say, $\exists \psi_{0}$ makes that there is no state whose wavefunction is $\hat{a}_{-}\psi_{0}$, as a result, its wavefunction can't be normalized for it is o everywhere, i.e.

$$\hat{a}_-\psi_0=0$$

Here ψ_0 is ground state, which can be obtained by solving the above equation, with $\hat{a}_- = \frac{1}{2m\hbar\omega}(i\hat{p}+m\omega x)$ and $\hat{p}=-i\hbar\frac{\partial}{\partial x}$, the equation goes

$$rac{1}{2m\hbar\omega}\left(\hbarrac{\partial}{\partial x}+m\omega x
ight)\psi_0=0$$

Solve the equation and introduce the normalization condition ($\int |\psi_0|^2 dx = 1$), we can get the ground state

$$\psi_0(x) = \left(rac{m\omega}{\pi\hbar}
ight)^{1/4} e^{-rac{m\omega}{2\hbar}x^2}$$

We simply apply the raising operator (repeatedly) to generate the excited states, increasing the energy by $\hbar\omega$ with each step

$$\psi_n = rac{1}{\sqrt{n!}} \left(\hat{a}_+
ight)^n \psi_0, \quad ext{with} \quad E_n = (n + rac{1}{2})\hbar \omega$$

Quantum harmonic oscillator

How we determinated coefficient:

$$\langle \hat{a}_+\psi|\hat{a}_+\psi
angle = \langle \psi|\hat{a}_-\hat{a}_+\psi
angle = \left(rac{E}{\hbar\omega}+rac{1}{2}
ight)\langle \psi|\psi
angle = (n+1)\,\langle \psi|\psi
angle$$

here we used $E=(n+1/2)\hbar\omega$ and $\langle\psi_n|\psi_n\rangle=\langle\psi_{n+1}|\psi_{n+1}\rangle=1$ (normalization). Similarly

$$\langle \hat{a}_-\psi|\hat{a}_-\psi
angle=n\,\langle\psi|\psi
angle$$

So, we get those two formulas:

$$\hat{a}_+\psi_n=\sqrt{n+1}\,\psi_{n+1}\quad \hat{a}_-\psi_n=\sqrt{n}\,\psi_{n-1}$$

Free particle

chap3. Formalism

inner product

• conjugate symmetric(共轭对称)

$$\langle f|g
angle = \langle g|f
angle^\dagger$$

• conjugate linear(共轭线性)

$$egin{cases} \langle af|g
angle = a^\dagger ra{f|g} & \langle f|bg
angle = bra{f|g} \ \langle af_1 + bf_2|g
angle = a^\dagger raket{f_1|g} + b^\dagger raket{f_2|g} \ \langle f|ag_1 + bg_2
angle = araket{f|g_1} + braket{f|g_2} \end{cases}$$

• The inner product of an element with itself is positive definite

$$\langle f|f
angle egin{array}{ll} >0 & x
eq 0 \ =0 & x=0 \end{array}$$

uncertainty principle

In QM, the **uncertainty** σ of a observable \hat{O} is its variance.

$$\sigma^2 = \langle (\hat{O} - \langle \hat{O} \rangle)^2 \rangle = \langle O^2 \rangle - \langle O \rangle^2$$

consider a wave function ψ satisfies $\langle \hat{x}
angle = 0, \langle \hat{p}
angle = 0,$ as a result,

$$egin{cases} \sigma_p^2 = \langle \hat{p}^2
angle - \langle \hat{p}
angle^2 = \langle \hat{p}^2
angle = \langle \psi | \hat{p}^2 \psi
angle \ \sigma_x^2 = \langle \hat{x}^2
angle - \langle \hat{x}
angle^2 = \langle \hat{x}^2
angle = \langle \psi | \hat{x}^2 \psi
angle \end{cases}$$

Next consider a one-parameter ($s \in \mathbb{R}$) family of states $\Psi_s = (\hat{p} - is\hat{x})\psi$. Because every wave function lives in **Hilbert space**, Ψ_s satisfies

$$\langle \Psi_s | \Psi_s
angle = \langle (\hat{p} - i s \hat{x}) \psi | (\hat{p} - i s \hat{x}) \psi
angle \geq 0$$

Obviously, $(\hat{p}-is\hat{x})^{\dagger}=(\hat{p}+is\hat{x})$, hence

$$\langle \Psi_s | \Psi_s
angle = \langle \psi | (\hat{p} + i s \hat{x}) (\hat{p} - i s \hat{x}) \psi
angle = \langle \psi | (\hat{p}^2 + i s [\hat{x}, \hat{p}] + s^2 \hat{x}^2) \psi
angle \geq 0$$

with $[\hat{x},\hat{p}]=i\hbar$, we get

$$\langle \psi | (\hat{p}^2 - s\hbar + s^2 \hat{x}^2) \psi
angle \geq 0
ightarrow \sigma_n^2 - s\hbar + s^2 \sigma_x^2 \geq 0$$

This is a quadratic equation for s, to greater than or equal to o, it satisfies

$$\hbar^2 - 4\sigma_x^2\sigma_p^2 \leq 0$$

After transposition and taking square root, it goes the form of **Heisenberg uncertainty relation**

$$\sigma_x\sigma_p\geq rac{\hbar}{2}$$

Energy-Time uncertainty principle

Generalized Ehrenfest theorem

$$rac{d}{dt}\langle Q
angle =rac{i}{\hbar}\langle [\hat{H},\hat{Q}]
angle +\left\langle rac{\partial\hat{Q}}{\partial t}
ight
angle$$

QM in 3D

Angular Momentum L

Commutation relations of angular momentum ${f L}$

$$[\hat{L}_i,\hat{L}_j]=i\hbar\epsilon_{ijk}\hat{L}_k$$

eigenvalues of opertators ($[L^2,L_z]=0$, where $L_z=-i\hbarrac{\partial}{\partial\phi}$)

$$H\psi=E\psi\quad L^2\psi=\hbar^2l(l+1)\psi\quad L_z\psi=\hbar m\psi$$

Spin

Commutation relations of instrinsic angular momentum S

$$[\hat{S}_i,\hat{S}_j]=i\hbar\epsilon_{ijk}\hat{S}_k$$

eigenvalues of opertators ($[S^2,S_z]=0$, where $S_z=$)

$$S^2\ket{s\ m}=\hbar^2 s(s+1)\ket{s\ m} \quad S_z\ket{s\ m}=\hbar m\ket{s\ m}$$

the spin s is a special and imutable number for any given particle.

$$s=0,rac{1}{2},1,rac{3}{2},\cdots; \quad m=-s,-s+1,\cdots,s-1,s$$

Spin 1/2

s=1/2 is the spin of the particles that make up ordinary matter (protons, neutrons, and electrons). When s=1/2, there are two cases, namely $m=\pm 1/2$

$$|rac{1}{2}\;rac{1}{2}
angle
ightarrow \mathcal{X}_{+} \quad |rac{1}{2}\;-rac{1}{2}
angle
ightarrow \mathcal{X}_{-}$$

Pauli matrices

$$egin{aligned} \sigma_x = egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix} & \sigma_y = egin{pmatrix} 0 & -i \ i & 0 \end{pmatrix} & \sigma_z = egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix} \ & [\sigma_i,\sigma_j] = 2i\epsilon_{ijk}\sigma_k \end{aligned}$$

Two-Electron System

consider two electrons that spin 1/2

• uncoupled representation(非耦合表象), using $\ket{s_1\,m_1\,s_2\,m_2}$

$$span\{\left|\uparrow\uparrow\right\rangle,\left|\downarrow\downarrow\right\rangle,\left|\uparrow\downarrow\right\rangle,\left|\downarrow\uparrow\right\rangle\}$$

ullet coupled representation $|S\,M\,s_1\,m_1
angle$

$$span\{\ket{11},\ket{1-1},\ket{10},\ket{10}\}$$

to transform:

$$\begin{cases} |1 \quad 1\rangle &= |\uparrow\uparrow\rangle \\ |1 - 1\rangle &= |\downarrow\downarrow\rangle \\ |1 \quad 0\rangle &= \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle) \\ |0 \quad 0\rangle &= \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \end{cases}$$