1η Ομάδα Ελσκήσεων

1. (Η ένωση επιμερίζει την άπειρη τομή)
(O Bi). Αυτό σημαίνει ότι $(O Bi)$.
- AV XEA TOTE XEAUBI MA KADE BI, ODOTE XE ((AUBI))
-Aν χεΑ τότε χε Ω Βι που σημαίνει ότι χεΒί για κάθε Βί. Άροι χε ΑυΒί για κάθε Βί. Άροι χε ΑυΒί για κάθε Βί, δηλ. χε (Ω ΑυΒί)
Συνε η τὸς δείξαμε ότι $\left(\frac{1}{2} \right) \subseteq \left(\frac{\infty}{1} \right) \subseteq \left(\frac{\infty}{1} \right) \subseteq \left(\frac{\infty}{1} \right)$ (σχέση 1)
• Έστω τώρα χε (AUBi). Αυτό σημαίνει ότι χε (AUBi) χια κάθε Βί που με τη
σειρά του σημαίνει ότι κε Α ή χε Βί για κάθε Βί.
- AV YEA TOTE XE (AU (OBi))
- Αν χέΑ τότε χε Βί για κάθε Βί (διαφορετικά, αν υπήρχε κάποιο ί ζια το οποίο
$x \notin B_i$, θα είχαμε $x \notin (A \cup B_i)$ άρα $x \notin (\bigcap_{i=1}^{\infty} (A \cup B_i)) \sim \underline{\hat{\alpha}} \tau \circ n \circ)$
Apa xe no Bi ki Enopèvus xe (A U (n Bi))
Συνεπώς δείξαμε ότι Ω (AUBi) C (AU(Ω Bi)) (σχέση 2)
(a') D= ANB
$(6') = B' \cap A$
(8') F = ANBNC'
(8') G= (ANB') U (ANC) UA'
3. (Σταθερά και κινητά τηλέφωνα)
'Eστω nws με Σι συμβολίζεται το σταθερό ί, χια 1 ≤ i ≤ 400 (ieth)
και με Κί συμβολίζεται το κινητό i, χια 1 < i < 50 (ie N)
'Εστω ακόμη πως τα μη διατεταχμένα ζεύχη {Σί, Σί], {Σίκε], ξκί, κε}
(με 1<1, j<400 και 1 < k, l < 50) συμβολίζουν την επιλοχή δύο σταθερών, ενός
σταθερού και ενός κινητού και δύο κινητών τηλεφώνων, αντίστοιχα.
Αν συμβολίσουμε με Σ, ΣΚ και Κ τα ενδεχόμενα η επιλοχή να είναι. δύο σταθερά, ένα σταθερό και ένα κινητό και δύο κινητά αντίστοιχα, έχουμε:

 $\Sigma = \{ \{ \sum_{1}, \sum_{i} \} / 2 \le i \le 400 \} \cup \{ \{ \sum_{2}, \sum_{i} \} / 3 \le i \le 400 \} \cup \dots \cup \{ \sum_{399}, \sum_{i} \} / 400 \le i \le 4\infty \}$ {5, Ki}/1<i<50} U {50, Ki}/1<i<50} U ... U {{5400, Ki}/1<i<50} K = { {K1, Ki} /2 si <50} U { {K2, Ki} /3 si <50} U . . . U { {K49, Ki} /50 si <50} Άρα ο δειχματικός χώρος είναι Ω=(Σ)UEK)U(K) Όσον αφορά το ενδεχόμενο - Α αυτό ταυτίζεται ουσιαστικά με το ΣΚ (αφού η επιλοχή ενός κινητού και εγός σταθερού έχει κόστος 5+1=6 ευρώ) ZUVETIUS A = IK Για το ενδεχόμενο Β παρατηρούμε ότι δεν υπάρχουν επιλοχές με κόστος 11 ευρώ Apa B= Ø 4. (Το πρόβλημα των τριών φυλακισμένων) Μπρρούμε να θεωρήσουμε ότι οι φυλακισμένοι κατέχουν τις θέσεις Α, Β και 'Εστω ότι ηθέση Α έχει το φυλακισμένο στον οποίο θα απονεμειθεί χάρη Το πρώτο επίπεδο του παρακάτω δενδροδιαχράμματος απεικονίζει τιδ θέσεις των φυλακισμένων, το δεύτερο απεικονίζει την επιλοχή του δεσμοφύλακα ως προς τη θέση τού προς εκτέλεση φυλακισμένου που αποκαλύπτει σε εκείνον που τον ρώτησε (επιλέχεται μεταξύ των θέσεων Β,C) και το τελευταίο επίπεδο δείχνει την τελική επιλοχή του φυλακισμένου. 32: TERIKH ENIROM BEONS GURAKIOUEVOU 1º ENTHESO: αποκαλυ. AÈON QUZOKI-שח לבסטסσμένου Gύλακα δειχματικός χώρος που προκύπτει είναι: Ω= { ABA, ABC, ACA, ACB BCA, BCB, CBA, CBC

5. (Περιχραφή ενδεχομένων)	
(a') Bha'nc'	
(8') ANBNC'	
(8') AUBUC	
(8')(ANB) U(ANC) U(BNC)-	
(E') ANBNC	
(s') A'nB'nc'	
(J') ((An B) U(Anc) U(Bnc))	[το συμηλήρωμα του (δ')]
(m') (ANBAC) [το συμπλήρωμα	(E')]
6. (Μαρκα δόροι)	
(a') Eorw B1, B2 (~Blue) or 8	ούο μπλε μαρκαδόροι και R ₁ , R ₂ (~Red) οι
δυο κόκκινοι. Στο παρακάτω	δενδροδιάχραμμα τοι διαφορα επίπεδα απεικονίζου
το μαρκαδόρο που βλαίνει κάθε	φορά από το συρτάρι σε μια εκτέλεση
του πειράματος.	
B ₁	·
B ₂ B ₁	
$R_1 = \beta_2$	B ₁
R_2	-B ₂
Вд	. Ο δειχματικός χώρος που προκύπτει
β_2	-Ba Eival:
R	$\Omega = \{B_1, B_2, R_1B_1, R_1B_2, R_1R_2B_1, B_2, B_2, B_2, B_2, B_2, B_2, B_2, B_2$
	R1R2B2, R2B1, R2B2, R2R1B1, R2R1B
8') Έστω Β καθένας εκ των μπλε (μαρκαδόρων και R καθένας εκ των κόκκινων
•	και στο (α') έχουμε το ακόλουθο δενδροδιάχραμ
В	
В	
R	Οι δειχματικός χώρος είναι:
RB	

 $y_1 + y_2 + y_3 = 6$ $0 < y_1^{(8)} i \times i$ $C(6+2,3-1) = C(8,2) = 8! = 6! \cdot 7 \cdot 8 = 28$ 2!6! 2!6!

τριάδει πυσεων. Για να βρούμε πόσει είναι οι πύσεις της ① θα πρέπει να αφαιρέσουμε από το πλήθος λυσεων της ② εκείνες στις οποίες η; > 5 δηλ. η;=6. Εκείνες είναι 3 στο πλήθος (οι τριάδες 006, 060, 600). Άρα τελικά η ① έχει 28-3=25 λύσεις, δηλ. καταλήχουμε και πάλι στο συμπερασμα ότι A=25

Zuvenws P(A)= IAI= 25

(6') Όπως και στο (α') ερώτημα, χα το ενδεχόμενο Β έχουμε αναλυτικά B= { 136, 296, 316, 415, 514, 613, 145, 235, 325, 424, 523, 622, 154, 244, 334, 433, 532, 631.}

163, 253, 343, 442, 541 262, 352, 451,

361.

KI EMOJEVOS B=27

Πιο απλά, αναζητούμε το πλήθας των λύσεων της εξίσωσης $x_1 + x_2 + x_3 = 10$ $0 < x_1 < 6$ που μετασχηματίζεται σε y₁+1+ y₂+1+ y₃+1=10 ⇒ y₁+y₂+y₂= + 0 ≤ y; <5 3

H E { iowon $y_1 + y_2 + y_3 = 7$ $y_1 > 0^{4}$ èxe C(7+2,3-1) = C(9,2) = 9! = 1.8.9 = 36τριάδες πύσεων. Για να βρούμε το ππήθος των πύσεων της Θ θα πρέπει να αφαιρέσουμε από το πλήθος λυσεων της Φ εκείνες στις οποίες y; 75 δna. y;=6 ή y;=7. Η μη διατεταγμένη τριάδα με y;=6 που δίνει άθροισμα 7 είναι 610 και έχουμε 3! = 6 διατάζεις χάντην τη τριάδα. Επιπλέον έχουμε 3 τριάδες με μ;= ξ (τις ΟΟΣ, ΟΣΟ, ΣΟΟ). Άρα τελικά η 3 έχει 36-6-3 = 27 λύσεις, δηλ. καταλήζουμε και πάλι στο συμπέρασμα ότι [Β]=27 $\overline{\Sigma}$ υνεπώς P(B) = |B| = 27 $\overline{|\Omega|}$ 216

B. (Tpers ogaines)

• Με επανατοποθέτηση

χωρίς επανατοποθέτηση

Kai Enopevos

$$\Omega_2$$
= { RB, RG, GR, GB, BR, BG}

Εστω Αι= "εκλοχή μίας τουλάχιστον κόκ-

E OTW Az EKNOM PLAS TOUNOXIOTOV

κόκκινης σφαίραδ στιδ

E

κινης σφαίρας στις δύο δοκιμές"

$$P(A_1) = \underbrace{|A_1|}_{|\Omega_1|} = \underbrace{5}_{Q}$$

$$P(A_2) = |A_2| = 4 = 9$$
 $|\Omega| = 6 = 3$

De Morgan 9. (Ανισότητα Bonferroni)

Elvar P(AΠΒ) = 1 - P((AΠΒ)) = 1-P(A'UB') . Από το "φράχμα της ένωσης"

ELVAI P(A'UB') < P(A')+P(B') = 1-P(A)+1-P(B) = 2-(P(A)+P(B)). Onote exoupe

- P(A'UB') >-2+P(A)+P(B) >1-P(A'UB') > P(A)+P(B)-1 => P(ANB)>, P(A)+P(B)-1

TLO TH XEVIKEUON EXOUNE:

$$P(A_1 \cap A_2 \cap \dots \cap A_n) = 1 - P((A_1 \cap A_2 \cap \dots \cap A_n)') = 1 - P(A_1 \cup A_2' \cup \dots \cup A_n')^{2}$$

And to " φ pagua the Evwons" Eival $P(A_1'UA_2'U...UA_n') \leq P(A_1') + P(A_2') + ... + P(A_n')$

$$= (1 - P(A_1)) + (1 - P(A_2)) + \dots + (1 - P(A_n)) = 1 + 1 + \dots + 1 - (P(A_1) + P(A_2) + \dots + P(A_n))$$

$$= (1 - P(A_1)) + (1 - P(A_2)) + \dots + (1 - P(A_n)) = 1 + 1 + \dots + 1 - (P(A_1) + P(A_2) + \dots + P(A_n))$$

$$\Rightarrow 1 - P(A_1' \cup A_2' \cup ... \cup A_n') > 1 - n + P(A_1) + P(A_2) + ... + P(A_n) \stackrel{2}{\Rightarrow}$$

$$\Rightarrow P(A_1 \cap A_2 \cap ... \cap A_n) > P(A_1) + P(A_2) + ... + P(A_n) - (n-1)$$

Ο. (Αυστηρή Ανισότητα)	
Η ανισότητα δεν ισχύει. Τις	αρακάτω δίνεται ένα αντιπαράδειχμα.
E o two nws of èva tuxepo nai	ιχνίδι χυρνάμε έναν (άδικο) τροχό με 5 "Θέτες".
O beighazikos ximpos Elvai	Ω= { XPEOKONIA 50€ 100€ 500€ TZAK DOT?
Kai P(XPEOKONIA) - P(50E) -	P(100€) = P(500€) = 1 EVW P(TZAK nor) = 0
Chopoone ca evoexoneva:	· ·
A= {50€, 100€, 500€} kai	
B = { 50€, 100€, 500€, TZAK	nor}
όπου προφανώς ACB, αλλά	
P(A) = P({50€, 100€, 500€	E}) = P({50€}U{100€}U{500€})=P({50€})+
P({100€})+P({500€})=	1 + 1 + 1 = 3 4 4 4 4 4
P(B)= P(\$50€ 100€ 500€ T	ZAK NOT})=P({50€}U{100€}U{5∞€}U{TZAK N
= P(\$50€3) + P(\$400€3) + P([\$500€})+P({TZAK NOT}) = 1 + 1 + 0 = 3
(2003)	4 4 4 4
δna. P(A)=P(B).	
,	
	·