CSC 212 Homework # 1 - Solution to Selected Problems Performance Analysis

Problem 1

1. Show that $5n^2 + 2n + 1$ is $O(n^2)$

Answer $5n^2 + 2n + 1$ is $O(n^2)$ if $5n^2 + 2n + 1 \le cn^2$ for c > 0 and $n \ge n_0$, where $n_0 \ge 0$. $5n^2 + 2n + 1 \le cn^2$ then $5 + \frac{2}{n} + \frac{1}{n^2} \le c$.

We can take c = 10 and $n_0 = 1$.

2. What is the Big oh of $n^2 + n \log(n)$? prove your answer.

Answer $n^2 + n \log(n)$ is $O(n^2)$.

 $n^2 + n \log(n)$ is $O(n^2)$ if $n^2 + n \log(n) \le cn^2$ for c > 0 and $n \ge n_0$, where $n_0 \ge 0$.

 $n^2 + n \log(n) \le cn^2$ then $1 + \frac{1}{n} \log(n) \le c$.

We can take c = 2 and $n_0 = 2$.

3. Show that $2n^3 \notin O(n^2)$.

Answer if $2n^3$ is $O(n^2)$ then $2n^3 \le cn^2$.

We obtain then $2n \leq c$.

Whatever the positive value that we choose for c, we can always find a value for n_0 such that the inequality above is not valid for $n \ge n_0$.

4. Assume that the expression below gives the processing time f(n) spent by an algorithm for solving a problem of size n.

$$10n + 0.1n^2$$

- (a) Select the dominant term(s) having the steepest increase in n. **Answer**: n^2
- (b) Specify the lowest Big-Oh complexity of the algorithm. Answer: $O(n^2)$
- 5. Determine whether each statement is *true* or *false* and correct the expression in the latter case:
 - (a) $100n^3 + 8n^2 + 5n$ is $O(n^4)$. True: $O(n^3)$ is also $O(n^4)$.
 - (b) $100n^3 + 8n^2 + 5n$ is $O(n^2 \log n)$. False: $O(n^3)$.

Remark: If you are asked to provide the big O notation, always choose the smallest class of functions. Example: $100n^3 + 8n^2 + 5n$ is $O(n^3)$ (we do not use $O(n^4)$ even though $O(n^3)$ is also $O(n^4)$).

6. Show that $\log_a(n) \in O(\log_b(n))$ for all a, b > 0.

Answer if $\log_a(n) \in O(\log_b(n))$ for all a, b > 0 then $\log_a(n) \le c \log_b(n)$.

$$\log_a(n) \le c \log_b(n) \Leftrightarrow \frac{\log(n)}{\log(a)} \le c \frac{\log(n)}{\log(b)}$$

If we take $c = \frac{\log(b)}{\log(a)}$, the inequality above remains valid for any value of n > 0.

7. Show that $a^n \notin O(b^n)$ if a > b > 0.

Answer if $a^n \in O(b^n)$ for a > b > 0 then $a^n \le cb^n$.

We obtain then $\frac{a^n}{b^n} \leq c \Leftrightarrow \left(\frac{a}{b}\right)^n \leq c$.

Since $\frac{a}{b} > 1$, whatever the positive value that we choose for c, we can always find a value for n_0 such that the inequality above is not valid for $n \ge n_0$.

.

Problem 2

Analyze the following code excerpts:

Line	Frequency
1	1
2	n+1
3	$n^2 + 2n$
4	$n^2 + n$
5	1
$\overline{\text{Big } O}$	n^2

Line	Frequency
1	$n^3 + 1$
2	n^3
3	$n^4 - n^3$
4	$n^4 - 2n^3$
5	1
Big O	n^4

CSC 212 Homework # 1

Line	Frequency
1	1
2	n+1
3	101n
4	100n
5	100n
Big O	n

Problem 3

1. Given an n-element array X, Algorithm B chooses $\log n$ elements in X at random and executes an O(n)-time calculation for each. What is the worst-case running time of Algorithm B? (Question R-4.30 page 184 of the textbook).

Answer: $O(n \log n)$

2. Given an n-element array X of integers, Algorithm C executes an O(n)-time computation for each even number in X, and an $O(\log n)$ -time computation for each odd number in X. What are the best-case and worst-case running times of Algorithm C? (Question R-4.31 page 184 of the textbook).

Answer: Best case: all elements are odd, the running time is $O(n \log n)$. Worst case: all elements are even, the running time is $O(n^2)$.

- 3. Give in asymptotic notation the running time for the following algorithms:
 - (a) Vector-vector addition (the vectors are of size n). Answer: O(n)
 - (b) Dot product of two vectors (the vectors are of size n). **Answer:** O(n)
 - (c) Matrix-vector multiplication (the matrix is of size $m \times n$, the vector is of size n). Answer: O(nm)
 - (d) Matrix addition (the two matrices are of size $m \times n$). Answer: O(nm)
 - (e) Matrix-Matrix multiplication (the two matrices are of size $m \times k$ and $k \times n$ respectively). **Answer:** O(nmk)

.

 $CSC\ 212$ Homework # 1