Filtros Convolucionales

Resumen Problemas de Clasificación

Hasta ahora...

- Regresor Logístico (Lineal): 1 capa de salida
- Redes Neuronales (no lineal): al menos una capa oculta + 1 capa de salida
- Siempre tantas neuronas de salida como clases a clasificar.
- Tipos de problemas:
 - o 1 o 2 Features: podemos graficar los datos y las fronteras de decisión.
 - o Imágenes: es un caso particular de N-features donde podemos interpretar los datos visualmente.
- Métricas
 - o Train set: para entrenar. Test set: para validar el modelo con nuevos datos.
 - o Accuracy: nos dice como funciona el modelo de forma global.
 - o **Precision/Recall**: lo usamos para clasificación binaria. Explica mejor cómo detecta los True Positives.

Filtros Convolucionales

 También llamada salida o feature (característica)

Convolución

- Operación sobre dos funciones f y g, que produce una tercera función que puede ser interpretada como una versión "filtrada" de f.
- En funciones unidimensionales se utiliza para realizar diferentes filtros en señales o modelar estímulos en simulaciones.
- Si bien la convolución se define en forma continua, a nosotros nos interesa la versión discreta.

$$f[x] * g[x] = \sum_{k=-\infty}^{\infty} f[k] \cdot g[x-k]$$

Filtro discreto

- Es un vector o matriz de valores
- Pesa los valores de la imagen para producir la salida
- También llamado Kernel, Núcleo, Filter
- Tamaño del kernel = Kernel size = Cantidad de valores = K
 - Ejemplo con K = 3

Siguiendo la misma idea, podemos extender el concepto de convolución sobre matrices. Es decir, una convolución en 2 dimensiones.

Esto nos sirve para imágenes en escala de grises.

$$f[x,y] * g[x,y] = \sum_{n_1=-\infty}^{\infty} \sum_{n_2=-\infty}^{\infty} f[n_1,n_2] \cdot g[x-n_1,y-n_2]$$

1x1	1x0	1x1	0	0
0x0	1x1	1x0	1	0
0 x 1	0x0	1x1	1	1
0	0	1	1	0
0	1	1	0	0

4	

99	101	106	104	99	
101	98	104	102	100	
103	99	103	101	102	7
105	102	100	97	96	

1/ 1	N A - 4 !
Kernei	Matrix

0	-1	0
-1	5	-1
0	-1	0

Kernel size= 3
Stride =1

Image Matrix

$$105 * 0 + 102 * -1 + 100 * 0$$

$$+103 * -1 + 99 * 5 + 103 * -1$$

$$+101 * 0 + 98 * -1 + 104 * 0 = 89$$

Output Matrix

					7
104	104	104	100	98	
99	101	106	104	99	
101	98	104	102	100	
103	99	103	101	102	
105	102	100	97	96	

12 1	
Kernel	Matrix
INCLLIC	IVIGLIA

0	-1	0
-1	5	-1
0	-1	0

Kernel size= 3
Stride =1

Image Matrix

$$102 * 0 + 100 * -1 + 97 * 0$$

$$+99 * -1 + 103 * 5 + 101 * -1$$

$$+98 * 0 + 104 * -1 + 102 * 0 = 111$$

Output Matrix

Tamaños de Kernel (y stride/padding)

- Entrada 1D de tamaño N
 - Kernel de tamaño K
 - Ejemplo:
 - Vector de 5 elementos, K de 3 elementos
- Entrada 2D de tamaño HxW
 - Kernel de tamaño K_hxK_w
 - EjemploImagen de 7v0
 - Imagen de 7x9, Kernel de tamaño 3x4
 - El Kernel suele ser Cuadrado
 - Kernel de tamaño K significa que K_h=K_w = K
 Idem para Padding/Stride (más adelante)
 - K suele ser impar (1, 3, 5, 7)
 - Simplifica cálculos

Veamos ahora cuál es el efecto de aplicar algunos kernels clásicos.

Filtro gaussiano (filtro de pasa baja)

Detección de bordes (filtro de pasa alta)

Bordes horizontales

Bordes verticales

Kernel Gaussiano + Kernel Bordes

Tamaño del Kernel (suavizado)

Tamaño del Kernel

Tamaño del Kernel (líneas)

Tamaño del Kernel y múltiples filtrados

2 veces

3 veces

4 veces

Tamaño de la salida vs tamaño kernel K

• Kernel KxK \rightarrow Input HxW \rightarrow Output H'xW' \rightarrow H' = H - (K-1) y W'=W- (K-1)

Kernel y Cantidad de parámetros

Kernel de KxK → KxK parámetros. Ejemplo, Kernel de 5x5 → 25 parámetros.

Convolución 1D con Padding

Aplicar el filtro de forma discreta ocasiona dos problemas:

- Pérdida de información en los bordes.
- Reducción del tamaño final del vector.
 - Padding con ceros

Kernel size =3, stride = 1, padding = 1

Convolución 2D con padding

Convolución 2D con padding

- Puede usarse para que
 - o tamaño de entrada = tamaño salida

Tamaño de la salida vs padding P

Kernel KxK → Input HxW → Output H'xW' →

$H' = H + 2P - (K-1) \vee W' = W + 2P - (K-1)$

Salida vs Padding vs Kernel

- Kernel KxK → Input HxW → Output H'xW'
 - \circ H' = H + 2P (K-1)
 - \circ W'=W + 2P (K-1)
- Ejemplo 1
 - o Entrada: 10x10
 - K = 5
 - O P = 1
 - Salida
 - \blacksquare H' = 10 + 2***1 4** = 8
 - W' = 10 + 2*1 4 = 8

• Ejemplo 2

- o Entrada: 10x10
- K = 5
- \circ P = 2
- Salida

$$\blacksquare$$
 H' = 10 + 2*2 - 4 = 10

$$\mathbf{W}' = 10 + 2^*\mathbf{2} - \mathbf{4} = 10$$

Stride o paso en la convolución

Parámetros:

Kernel_Size: Es el tamaño del filtro utilizado. En este caso = 3

Stride: Es el número de saltos que da el filtro cada vez que se aplica. En este caso = 1.

Stride o paso en la convolución

- Kernel Size =3, Stride = 2
 - Disminuye el tamaño de la salida
 - Representación de menor dimensionalidad

Convolución 2D con Stride =2

Convolución 2D con Stride

Convolución 2D con Stride o Padding

Entrada: 5x5 Filtro: 3x3 Stride = 1 Padding = 0 Salida = 3x3 Entrada: 5x5 Filtro: 3x3 Stride = 1 Padding = 1 Salida = 5x5

Entrada: 5x5 Filtro: 3x3 Stride = 2 Padding = 0 Salida = 2x2

Convolución 2D con Stride y Padding

Entrada: 5x5

Filtro: 3x3

Stride = 3

Padding = 2

Salida = 3x3

Entrada: 5x5 Filtro: 3x3 Stride = 2 Padding = 3 Salida = 5x5

Cantidad de parámetros con padding y stride

- Padding y Stride afectan cómo se calcula la salida
 - Pero no el tamaño del kernel
 - Kernel de KxK → KxK parámetros.
 - Ejemplo, Kernel de 5x5 → 25 parámetros

Visualizador de convoluciones

https://ezvang.github.io/convolution-visualizer/index.html

- Imagen escala de grises
 - Tamaño HxW
 - Tamaño HxWx1
- Imagen RGB
 - Tamaño HxWx3
- Imagen multicanal
 - Tamaño HxWxC
- HyW
 - Dimensiones espaciales
- (
- Dimensión de canales o features

- Se realiza sobre los C canales a la vez
- Convierte una imagen HxWxC en una imagen HxWx1
 - Kernel_Size= KxKxC
- Ejemplo con C=3 (imágenes RGB)

- Se realiza sobre los C canales a la vez
- Convierte una imagen HxWxC en una imagen HxWx1
 - Kernel_Size= KxKxC
- Ejemplo con C=4 y K=3
 - → 4 filtros de 3x3-1 filtro de 3x3x4

- Se realiza sobre los C canales a la vez
- Convierte una imagen HxWxC en una imagen HxWx1
 - Kernel_Size= KxKxC
- Ejemplo con C=4 y K=3
 - Pixel de salida depende de todos los canales

- Dados kernels W1 y W2
 - o 2 kernels
 - 2 Convoluciones
- W1 genera feature 1
- W2 genera **feature** 2
- Entrada
 - Feature map con3 canales
- Salida
 - Feature map con2 canales

