Notatki - Matematyka

Adrian Startek

Studia I stopnia

Spis treści

Ι	Semestr I										
1	Elementy logiki i teorii mnogości										
	1.1	Podstawowe definicje i oznaczenia	3								
		1.1.1 Zbiory liczbowe	3								
		1.1.2 Kwantyfikatory	4								
	1.2	Rachunek zdań logicznych	4								
		1.2.1 Ważniejsze operacje na zdaniach	4								
		1.2.2 Ważniejsze tautologie	6								
	1.3	Rachunek zbiorów	6								
		1.3.1 Operacje i zależności	6								
		1.3.2 Relacje	7								
2	Alg	ebra liniowa	9								
	2.1	Działanie, grupa, ciało	9								
			10								
	2.2		13								
3	Ana	liza matematyczna	17								
\mathbf{A}	\mathbf{Prz}	egląd ważniejszych funckji	19								
	A.1	Funkcje trygonometryczne	19								

Część I

Semestr I

Rozdział 1

Elementy logiki i teorii mnogości

1.1 Podstawowe definicje i oznaczenia

Definicja 1.1.1. Zdanie logiczne: zdanie, któremu można przyporządkować wartość logiczną "prawda"(1) lub "falsz"(0).

Definicja 1.1.2. Tautologia: zdanie logiczne, które zawsze jest prawdziwe.

Definicja 1.1.3. Funkcja zdaniowa $\phi(x)$: wyrażenie, które po podstawieniu konkretnej wartości x staje się zdaniem logicznym.

Definicja 1.1.4. Para uporządkowana (x,y): zbiór $\{\{x\}, \{x,y\}\}$. Elementem pierwszym w parze jest ten, który jest elementem obu zbiorów, co jednoznacznie określa kolejność.

1.1.1 Zbiory liczbowe

 $\mathbb N$ - zbiór liczb naturalnych

 $\mathbb Z$ - zbiór liczb całkowitych

 \mathbb{Q} - zbiór liczb wymiernych

 $\mathbb R$ - zbiór liczb rzeczwistych

Fakt należenia elementu x do zbioru A oznacza się przez $x \in A$. Analogicznie, "x nie należy do zbioru A" ocznacza się $x \notin A$.

Zbiór można definiować podając jego elementy wprost: $A = \{a, b, c\}$ lub zadając warunek na przynależność elementów do zbioru: $A = \{x \in X : \phi(x)\}$.

1.1.2 Kwantyfikatory

Kwantyfikator ogólny. Wyrażenie "dla każdego x należącego do X zachodzi $\phi(x)$ " oznacza się: $\forall_{x \in X} \phi(x)$

Kwantyfikator szczególny. Wyrażenie "istnieje x należący do X, dla którego zachodzi $\phi(x)$ " oznacza się: $\exists_{x \in X} \phi(x)$

Zaprzeczenia kwantyfikatorów. Zachodzi:

$$\neg [\,\forall_{x \in \mathbb{R}} \, \phi(x)\,] \Leftrightarrow \exists_{x \in \mathbb{R}} \, \neg \phi(x)$$

$$\neg [\,\exists_{x \in \mathbb{R}} \, \phi(x)\,] \Leftrightarrow \forall_{x \in \mathbb{R}} \, \neg \phi(x)$$

$$\neg [\, \forall_{x \in \mathbb{R}} \, \phi(x) \lor \psi(x) \,] \Leftrightarrow \exists_{x \in \mathbb{R}} \, \neg \phi(x) \land \neg \psi(x)$$

$$\neg [\exists_{x \in \mathbb{R}} \phi(x) \land \psi(x)] \Leftrightarrow \forall_{x \in \mathbb{R}} \neg \phi(x) \lor \neg \psi(x)$$

1.2 Rachunek zdań logicznych

1.2.1 Ważniejsze operacje na zdaniach

Negacja Wartością negacji zdania logicznego jest wartość odwrotna do wartości tego zdania (tabela 1.1).

Tabela 1.1: Negacja

$$\begin{array}{c|c} p & \neg p \\ \hline 0 & 1 \\ 1 & 0 \end{array}$$

Alternatywa Alternatywa przyjmuje wartość "prawda", jeśli co najmniej jedno ze zdań jest prawdziwe (tabela 1.2).

Tabela 1.2: Alternatywa

p	q	$p \vee q$
0	0	0
0	1	1
1	0	1
1	1	1

Tabela 1.3: Koniunkcja

p	q	$p \wedge q$
0	0	0
0	1	0
1	0	0
1	1	1

Koniunkcja Koniunkcja przyjmuje wartość "prawda", tylko jeśli oba zdania są prawdziwe (tabela 1.3).

Implikacja Implikacja $(p \Longrightarrow q)$ jest prawdziwa, jeśli zarówno poprzednik (p) jak i następnik (q) są prawdziwe lub **poprzednik jest fałszywy (z fałszu wynika wszystko)**. (tabela 1.4)

Tabela 1.4: Implikacja

p	q	$p \Longrightarrow q$
0	0	1
0	1	1
1	0	0
1	1	1

Równoważność Równoważność przyjmuje wartość "prawda" jeśli oba zdania mają tą samą wartość (tabela 1.5).

Tabela 1.5: Równoważność

p	q	$p \Leftrightarrow q$
0	0	1
0	1	0
1	0	0
1	1	1

Kreska Sheffera (NAND) Zaprzeczenie koniunkcji (tabela 1.6).

NOR Zaprzeczenie alternatywy (tabela 1.7).

Twierdzenie 1.2.1. Za pomocą NAND lub NOR można wyrazić wszystkie inne funktory.

Tabela 1.6: NAND

p	q	$p \mid q$
0	0	1
0	1	1
1	0	1
1	1	0

Tabela 1.7: NOR

p	q	$p \downarrow q$
0	0	1
0	1	0
1	0	0
1	1	0

1.2.2 Ważniejsze tautologie

$p \Longrightarrow p$	(prawo tożsamości)
$p \Longrightarrow (q \Longrightarrow p)$	(prawo symplifikacji)
$p \Leftrightarrow \neg(\neg p)$	(prawo podwójnej negacji)
$p \lor \lnot p$	(prawo wyłączonego środka)
$(\neg p \Longrightarrow p) \Longrightarrow p$	
$\neg p \Longrightarrow (p \Longrightarrow q)$	(prawo Dunsa Szkota)
$\neg(p \lor q) \Leftrightarrow (\neg p) \land (\neg q)$	(prawo De Morgana)
$\neg(p \land q) \Leftrightarrow (\neg p) \lor (\neg q)$	(prawo De Morgana)
$\neg(p \Longrightarrow q) \Leftrightarrow p \land (\neg q)$	
$\neg(p \Leftrightarrow q) \Leftrightarrow (p \land \neg q) \lor (\neg p \land q)$	

1.3 Rachunek zbiorów

1.3.1 Operacje i zależności

Zawieranie. Zbiór A zawiera się w zbiorze B (A jest podzbiorem B), ozn. $A \subset B$, jeśli każdy element zbioru A jest również elementem zbioru B:

$$A \subset B \Leftrightarrow \forall_{x \in A} \, x \in B$$

Równość. Zbiory A i B są równe, jeśli są one nawzajem swoimi podzbiorami:

$$A = B \Leftrightarrow A \subset B \land B \subset A$$

Działania na zbiorach. Definiuje się działania:

$$A \cup B = \{ x : x \in A \lor x \in B \}$$
 (Suma zbiorów)
$$A \cap B = \{ x : x \in A \land x \in B \}$$
 (Iloczyn zbiorów)
$$A \setminus B = \{ x : x \in A \land x \notin B \}$$
 (Różnica zbiorów)
$$A \times B = \{ (a,b) : a \in A, b \in B \}$$
 (Iloczyn kartezjański)

Dopełnienie zbioru.

Definicja 1.3.1. Dopelnieniem zbioru $A \subset C$ do zbioru C nazywa się zbiór wszystkich elementów należących do C, które nie należą do A:

Własności dopełnienia. Niech $A \subset X$, $B \subset X$. Wtedy:

$$\langle (A \cup B) = (\backslash A) \cap (\backslash B)$$
$$\langle (A \cap B) = (\backslash A) \cup (\backslash B)$$
$$\langle (\backslash A) = A$$

1.3.2 Relacje

Definicja 1.3.2. Relacją nazywa się dowolny podzbiór iloczynu kartezjańskiego skończonej liczby zbiorów.

Niech R będzie relacją zadaną na $X \times X$ (tj. R jest relacją dwuargumentową, która przyjmuje za argumenty elementy X). Dodatkowo, niech xRy oznacza wyrażenie "pomiędzy x a y zachodzi relacja R". Wtedy:

R jest relacją zwrotną $\Leftrightarrow \forall_{x \in X} x R x$

R jest relacją przeciwzwrotną $\Leftrightarrow \forall_{x \in X} \neg (xRx)$

R jest relacją symetryczną $\Leftrightarrow \forall_{x,y \in X} (xRy \Longrightarrow yRx)$

R jest relacją słabo antysymetryczną $\Leftrightarrow \forall_{x,y \in X} (xRy \land yRx \Longrightarrow x = y)$

R jest relacją antysymetryczną $\Leftrightarrow \forall_{x,y \in X} (xRy \Longrightarrow \neg (yRx))$

R jest relacją przechodnią $\Leftrightarrow \forall_{x,y,z\in X} (xRy \land yRz \Longrightarrow xRz)$

R jest relacją spójną $\Leftrightarrow \forall_{x,y \in X} (xRy \lor yRx \lor y = x)$

Rozdział 2

Algebra liniowa

2.1 Działanie, grupa, ciało

Definicja 2.1.1. Niech G będzie dowolnym zbiorem. **Działaniem** (dwuargumentowym) w zbiorze G nazywamy dowolne odwzorowanie $f: G \times G \to G$.

Definicja 2.1.2. Zbiór G z określonym działaniem \circ - parę (G, \circ) nazwiemy grupą, jeśli spełnione są następujące warunki:

1. $Działanie \circ jest lączne$:

$$\forall_{a,b,c \in G} \left[\left(\, a \circ b \, \right) \circ c = a \circ \left(\, b \circ c \, \right) \, \right]$$

2. Istnieje element neutralny e:

$$\exists_{e \in G} \, \forall_{a \in G} \, (\, a \circ e = e \circ a = a \,)$$

3. Dla każdego elementu a istnieje element odwrotny a^{-1} :

$$\forall_{a \in G} \exists_{a^{-1} \in G} (a \circ a^{-1} = a^{-1} \circ a = e)$$

Jeżeli działanie \circ jest dodatkowo przemienne, to (G, \circ) nazwiemy **grupą przemienną** lub **Abelową** (Niels Henrik Abel - matematyk norweski). Opuszczając natomiast warunek 3 (istnienie elementu odwrotnego) otrzymamy definicję struktury ogólniejszej, zwanej **półgrupą**.

Twierdzenie 2.1.1. *Jeśli* (G, \circ) *jest grupą, to isteniej dokładnie 1 element neutralny.*

Dowód. Załóżmy, że $e, e' \in G$ są elementami neutralnymi. Wtedy:

$$e = e \circ e' = e' \circ e = e'$$

Co prowadzi do sprzeczności.

Twierdzenie 2.1.2. *Jeśli g i h są elementami grupy spełniającymi g* \circ *h* = e, to są one wzajemnie odwrotne.

Twierdzenie 2.1.3. Jeśli (G, \circ) jest grupą oraz $a \in G$ to istnieje dokładnie jeden element odwrotny a^{-1} .

Definicja 2.1.3. Zbiór G z określonymi działaniami "mnożenia" \odot i "dodawania" \oplus - trójke (G, \odot, \oplus) - nazywamy ciałem, jeżeli spełnione są warunki:

1. Oba działania są przemienne:

$$\forall_{a,b\in G} (a\oplus b=b\oplus a)$$

$$\forall_{a,b\in G} (a\odot b = b\odot a)$$

2. Oba działania są łączne:

$$\forall_{a,b,c \in G} [(a \oplus b) \oplus c = a \oplus (b \oplus c)]$$

$$\forall_{a,b,c \in G} [(a \odot b) \odot c = a \odot (b \odot c)]$$

- 3. Istnieje element neutralny dodawania ("zero" O) oraz element neutralny mnożenia ("jeden" 1)
- 4. Dla każdego elementu zbioru G istnieje element odwrotny względem dodawania:

$$\forall_{a \in G} (a \oplus a^{-1} = a^{-1} \oplus a = \mathbb{O})$$

Dla każdego elementu, poza elementem neutralnym dodawania, istnieje element odwrotny względem mnożenia:

$$\forall_{a \in G, a \neq 0} (a \odot a^{-1} = a^{-1} \odot a = 1)$$

5. Zachodzi rozdzielność mnożenia względem dodawania:

$$\forall_{a,b,c \in G} [a \odot (b \oplus c) = (a \odot b) \oplus (a \odot c)]$$

6. Elementy neutralne działań są od siebie różne:

$$\mathbb{O} \neq \mathbb{1}$$

2.1.1 Liczby zespolone

Definicja 2.1.4. Niech $\mathbb{C} := \mathbb{R} \times \mathbb{R}$. Określmy działania \oplus, \odot :

$$\oplus$$
 : $(a,b) \oplus (c,d) = (a+c,b+d)$

$$\odot : (a, b) \odot (c, d) = (ac - bd, ad + bc)$$

Trójkę (G, \oplus, \odot) nazywamy ciałem liczb zespolonych.

Rysunek 2.1: Liczba zespolona jako punkt na płaszczyźnie

Postać kartezjańska. Liczby zespolone posiadają naturalną interpretację geometryczną. Są one parami (uporządkowanymi) liczb rzeczywistych, więc można im przypisać punkty na płaszczyźnie. Liczbie $z=(a,b), z\in\mathbb{C}$ odpowiada punkt o odciętej a i rzędnej b (rysunek 2.1). Płaszczyznę, na której w ten sposób przedstawiamy liczby zespolone nazywamy **płaszczyzną Gaussa**.

Postać kanoniczna. Podzbiór ciała $\mathbb C$ złożony z liczb postaci $(x,0), x \in \mathbb R$, również jest ciałem. Odwzorowanie $x \to (x,0)$ z $\mathbb R$ w rozważany podzbiór $\mathbb C$ zadaje izomorfizm ciał. Pozwala to na wprowadzenie utożsamienia $(x,0) \equiv x$. Wprowadźmy oznaczenie i := (0,1) i nazwijmy ten element **jednostką urojoną.** Łatwo sprawdzić, że:

$$i^2 = (-1, 0) \equiv -1$$

Dowolną liczbę zespoloną z = (a, b) można przedstawić w postaci:

$$z = (a, b) = (a, 0) + (b, 0)(0, 1) \equiv a + bi$$

Zapis liczby zespolonej z w postaci z=a+bi nazywamy **postacią kanoniczną**. Liczbę $a\in\mathbb{R}$ nazywamy **częścią rzeczywistą** liczby zespolonej i oznaczamy $\Re z$ (lub Re(z)). Analogicznie, liczbę $b\in\mathbb{R}$ nazywamy **częścią urojoną** i oznaczamy $\Im z$ (lub Im(z)).

Definicja 2.1.5. Liczbq sprzeżonq do liczby z = a + bi nazywamy liczbe

$$\bar{z} = a - bi$$

W interpretacji geometrycznej liczba sprzężona \bar{z} jest odbiciem liczby z względem osi odciętych (rysunek 2.2).

Rysunek 2.2: Interpretacja geometryczna liczby sprzężonej

Rysunek 2.3: Moduł liczby zespolonej

Postać trygonometryczna. Niech z=a+bi będzie liczbą zespoloną.

Definicja 2.1.6. Modułem liczby zespolonej z nazywamy liczbę

$$r=|z|=\sqrt{z\bar{z}}=\sqrt{a^2+b^2}$$

Moduł można interpretować jako długość odcinka pomiędzy początkiem układu współrzędnych a punktem reprezentującym liczbę zespoloną (rysunek 2.3). Niech φ będzie kątem pomiędzy dodatnią półosią rzeczywistą a odcinkiem łączącym początek układu współrzędnych a punktem reprezentującym liczbę

zezpoloną. Zachodzi wtedy:

$$\begin{split} r &= |z| \\ sin\varphi &= \frac{b}{|z|} \Longrightarrow b = |z| sin\varphi \\ cos\varphi &= \frac{a}{|z|} \Longrightarrow a = |z| cos\varphi \end{split}$$

Wynika z tego możliwość przedstawienia liczby zespolonej z = a + bi w postaci:

$$z=a+bi=|z|cos\varphi+i|z|sin\varphi=|z|(cos\varphi+isin\varphi)$$

Twierdzenie 2.1.4. Niech $z \in \mathbb{C}$, $z = |z|(\cos\varphi + i\sin\varphi)$. Zachodzi:

$$\forall_{n \in \mathbb{N}} z^n = |z|^n (\cos(n\varphi) + i\sin(n\varphi))$$

Twierdzenie 2.1.5. Niech $z \in \mathbb{C}$, $z \neq (0,0)$, $z = |z|(\cos\varphi + i\sin\varphi)$. Istnieje dokładnie n pierwiastków n-tego stopnia z liczby z. k-ty pierwiastek dany jest wzorem:

$$w_k = \sqrt[n]{|z|} \left(\cos \frac{\varphi + 2k\pi}{n} + i \sin \frac{\varphi + 2k\pi}{n} \right), k \in \langle 0; n-1 \rangle, k \in \mathbb{N}$$

 $Dow \acute{o}d.$ Niech $w=|w|(cos\alpha+i sin\alpha)$ będzie pierwiastkiem n-tegostopnia z liczby z. Zatem:

$$w^{n} = z$$

$$w^{n} = |w|^{n} (\cos n\alpha + i \sin n\alpha) = |z|(\cos \varphi + i \sin \varphi)$$

$$|w|^{n} = |z| \Longrightarrow |w| = \sqrt[n]{|z|}$$

$$n\alpha = \varphi + 2k\pi \Longrightarrow \alpha = \frac{\varphi + 2k\pi}{n}$$

2.2 Przestrzenie liniowe

Definicja 2.2.1. Niech będzie dane ciało K oraz niepusty zbiór V z określonymi dwoma działaniami:

$$\oplus: V \times V \ni (x, y) \to x \oplus y \in V \tag{dodawanie}$$

$$\odot: K \times V \ni (\lambda, x) \to \lambda \odot x \in V$$
 (mnożenie przez element ciała)

Strukturę (V, K, \oplus, \odot) nazwiemy **przestrzenią wektorową** (lub **liniową**) nad ciałem K, jeśli spełnione są warunki:

1. (V, \oplus) jest grupą abelową

 $2. \ \forall_{x \in V}$:

$$1 \odot x = x$$

 $\beta. \ \forall_{x \in V} \ \forall_{\alpha,\beta \in K}$:

$$\alpha\odot(\beta\odot x)=(\alpha\beta)\odot x \qquad \qquad \text{(prawo łączności)}$$

4. $\forall_{x,y\in V} \forall_{\alpha,\beta\in K}$:

$$(\alpha+\beta)\odot x=\alpha\odot x\oplus\beta\odot x$$
 (rozdzielność dodawania względem mnożenia)

5. $\forall_{x,y\in V} \, \forall_{\alpha\in K}$:

$$\alpha\odot(x\oplus y)=\alpha\odot x\oplus\alpha\odot y \ \ ({\rm rozdzielność\ mnożenia\ względem\ dodawania})$$

Elementy zbioru V nazywamy wektorami, a ciała K skalarami.

Twierdzenie 2.2.1. Jeśli V jest przestrzenią liniową nad K, to dla każdego $v \in V$, $\alpha \in K$ zachodzi:

1.
$$0 \odot v = 0$$

2.
$$\alpha \odot \mathbb{O} = \mathbb{O}$$

3.
$$\alpha \odot v = \mathbb{O} \Longrightarrow \alpha = 0 \lor v = \mathbb{O}$$

Dowód. Kolejno:

1.

$$\begin{split} 1\odot v &= (1+0)\odot v = 1\odot v \oplus 0\odot v \\ 1\odot v &- 1\odot v = (1\odot v - 1\odot v) \oplus 0\odot v \\ \mathbb{O} &= 0\odot v \end{split}$$

2.

$$\alpha \odot 0 = \alpha(0 \oplus 0) = \alpha \odot 0 \oplus \alpha \odot 0$$
$$\alpha \odot 0 - \alpha \odot 0 = (\alpha \odot 0 - \alpha \odot 0) \oplus \alpha \odot 0$$
$$0 = \alpha \odot 0$$

3.

$$\alpha\odot v=\mathbb{O}$$

Wystarczy pokazać, że jeśli $\alpha \neq 0$, to $v = \mathbb{O}$

$$\exists_{\alpha^{-1} \in K} \alpha \alpha^{-1} = 1$$

$$\alpha \odot v = 0$$

$$\alpha \alpha^{-1} \odot v = \alpha^{-1} \odot 0$$

$$1 \odot v = 0$$

$$v = 0$$

Definicja 2.2.2. Niech V będzie przestrzenią liniową nad ciałem K. Podzbiór $W \subset V$ nazywamy **podprzestrzenią liniową** przestrzeni V, jeśli W również jest przestrzenią liniową nad ciałem K.

Twierdzenie 2.2.2. Podzbiór $W \subset V$ jest podprzestrzenią, wtedy i tylko wtedy, gdy zachodzi:

$$\forall_{v_1,v_2\in W} v_1\oplus v_2\in W$$

$$\forall_{\alpha \in K, v \in W} \ \alpha \odot v \in W$$

Twierdzenie 2.2.3. Niech V będzie przestrzenią liniową nad ciałem K, oraz niech $\{W_s\}$ będzie rodziną podprzestrzeni V. Wtedy:

$$W = \bigcap_{s} W_{s}$$

jest podprzestrzenią liniową V.

Dowód. Niech $v_1, v_2 \in W$

$$v_1, v_2 \in W \Longrightarrow v_1, v_2 \in \bigcap_s W_s \Longrightarrow \forall_s v_1, v_2 \in W_s \Longrightarrow \forall_s v_1 \oplus v_2 \in W_s$$

$$\Longrightarrow v_1 \oplus v_2 \in \bigcap_s W_s \Leftrightarrow v_1 \oplus v_2 \in W$$

Niech $v \in W, \alpha \in K$

$$v \in W \Longrightarrow \forall_s v \in W_s \Longrightarrow \forall_s \alpha \odot v \in W_s \Longrightarrow \alpha \odot v \in W$$

Definicja 2.2.3. Niech V będzie przestrzenią liniową nad ciałem K. Weźmy układ wektorów $\{v_1, \ldots, v_n\} \subset V$. Wektor

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n$$

nazywamy kombinacją liniową wektorów v_1, \ldots, v_n .

Definicja 2.2.4. Powłoką liniową podzbioru $M \subset V$ (gdzie V jest przestrzenią liniową) nazywamy zbiór wszystkich kombinacji liniowych wektorów z M i oznaczamy L(M).

Twierdzenie 2.2.4. Niech V będzie przestrzenią liniową nad ciałem K i $M \subset V$ będzie podprzestrzenią. Powłoka liniowa L(M) jest podprzestrzenią liniową V.

Dowód.

$$v_1, v_2 \in L(M) \Longrightarrow$$

$$v_1 = \alpha_1 w_1 + \ldots + \alpha_n w_n, \ w_i \in M$$

$$v_2 = \beta_1 u_1 + \ldots + \beta_n u_n, \ u_i \in M$$

$$v_1 + v_2 = \alpha_1 w_1 + \ldots + \alpha_n w_n + \beta_1 u_1 \ldots \beta_n u_n$$

zatem v_1+v_2 jest kombinacją liniową wektorów $w_1,\ldots,w_n,u_1,\ldots,u_n\in M,$ czyli $v_1+v_2\in M.$

Niech $\alpha \in K, v \in L(M), v = \alpha_1 v_1 + \ldots + \alpha_n v_n$

$$\alpha v = \alpha(\alpha_1 v_1 + \ldots + \alpha_n v_n) = \alpha \alpha_1 v_1 + \ldots + \alpha \alpha_n v_n \in L(M)$$

Twierdzenie 2.2.5. L(M) jest najmniejszą (w sensie zawierania zbiorów) podprzestrzenią V zawierającą M (jeżeli $W \subset V$ jest podprzestrzenią liniową V, taką że $M \subset W$, to $L(M) \subset W$).

Dowód. Weźmy zbiór wszystkich podprzestrzeni liniowych zawierających M:

$$\{W_s:s\in S\}$$

Niech

$$\overline{W} = \bigcap_s W_s$$

Z twierdzenia 2.2.3 \overline{W} jest podprzestrzenią. Zauważmy: $\forall_s \overline{W} \subset W_s$. Pokażmy, że $\overline{W} = L(M)$, czyli $\overline{W} \subset L(M) \wedge L(M) \subset \overline{W}$.

1. $\overline{W} \subset L(M)$. Skoro $\{W_s\}$ zawiera wszystkie podprzestrzenie zawierające M, to:

$$\exists_{s_0 \in S} W_{s_0} = L(M)$$

2. $L(M) \subset \overline{W}$. Niech $v \in L(M)$, wtedy:

$$v = \alpha_1 v_1 + \ldots + \alpha_n v_n, \, v_i \in M$$

$$\forall_s \, \alpha_1 v_1 + \ldots + \alpha_n v_n \in W_s \Longrightarrow \forall_s \, \alpha_1 v_1 + \ldots + \alpha_n v_n \in \bigcap_s W_s \Longrightarrow v \in \overline{W}$$

Rozdział 3

Analiza matematyczna

Dodatek A

Przegląd ważniejszych funckji

A.1 Funkcje trygonometryczne

Tabela A.1: Własności funkcji trygonometrycznych $(k \in \mathbb{Z})$

Funckja	sin arphi	$cos \varphi$	$tg\varphi$	$ctg \varphi$
Dziedzina	\mathbb{R}	\mathbb{R}	$\mathbb{R}\setminus\{\tfrac{\pi}{2}+k\pi\}$	$\mathbb{R}\setminus\{k\pi\}$
Przeciwdziedzina	[-1;1]	[-1; 1]	${\mathbb R}$	\mathbb{R}
Ekstrema	$1: \left\{ \frac{\pi}{2} + 2k\pi \right\}$	1: $\{2k\pi\}$	-	-
	-1: $\{-\frac{\pi}{2} + 2k\pi\}$	-1: $\{\pi + 2k\pi\}$		
Miejsca zerowe	$\{k\pi\}$	$\left\{\frac{\pi}{2} + 2k\pi\right\}$	$\{k\pi\}$	$\left\{\frac{\pi}{2} + 2k\pi\right\}$
Parzystość	nieparzysta	parzysta	nieparzysta	nieparzysta
Ciągłość	\mathbb{R}	${\mathbb R}$	$\mathbb{R}\setminus\{\tfrac{\pi}{2}+k\pi\}$	$\mathbb{R}\setminus\{k\pi\}$

Rysunek A.1: Wykres $sin\varphi$

Rysunek A.2: Wykres $\cos\varphi$

Tabela A.2: Wzory redukcyjne funkcji trygonometrycznych

	I ćwiartka	í ćwiartka II ćwiartka		III ćwiartka		III ćwiartka	
φ	$90^{\circ} - \alpha$	$90^{\circ} + \alpha$	$180^{\circ} - \alpha$	$180^{\circ} + \alpha$	$270^{\circ} - \alpha$	$270^{\circ} + \alpha$	$360^{\circ} - \alpha$
Ψ	$\frac{\pi}{2} - \alpha$	$\frac{\pi}{2} + \alpha$	$\pi - \alpha$	$\pi + \alpha$	$\frac{3}{2}\pi - \alpha$	$\frac{3}{2}\pi + \alpha$	$2\pi - \alpha$
$sin \varphi$	$cos \alpha$	$cos\alpha$	$sin \alpha$	$-sin\alpha$	$-cos\alpha$	$-cos\alpha$	$-sin\alpha$
$cos\varphi$	$sin \alpha$	$-sin\alpha$	$-cos\alpha$	$-cos\alpha$	$-sin\alpha$	$cos\alpha$	$sin \alpha$
$tg\varphi$	$ctg\alpha$	$-ctg\alpha$	$-tg\alpha$	$tg\alpha$	$ctg\alpha$	$-ctg\alpha$	$-tg\alpha$
$ctg\varphi$	$tg\alpha$	$-tg\alpha$	$-ctg\alpha$	$ctg\alpha$	$tg\alpha$	$-tg\alpha$	$-ctg\alpha$

Rysunek A.3: Wykres $tg\varphi$

Rysunek A.4: Wykres $ctg\varphi$

Tabela A.3: Wartości funkcji trygonometrycznych ważniejszych kątów

arphi		$sin\varphi$	$cos\varphi$	$tg\varphi$	$ctg\varphi$	
deg	\deg rad		- του φ	ν9Ψ	$c_{i}g\varphi$	
0°	0	0	1	0	-	
15°	$\frac{\pi}{12}$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$\frac{\sqrt{6}+\sqrt{2}}{4}$	$2-\sqrt{3}$	$2+\sqrt{3}$	
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1	
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	
75°	$\frac{5\pi}{12}$	$\frac{\sqrt{6}+\sqrt{2}}{4}$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$2+\sqrt{3}$	$2-\sqrt{3}$	
90°	$\frac{\pi}{2}$	1	0	-	0	
180°	π	0	-1	0	-	
270°	$\frac{3\pi}{2}$	-1	0	1	0	
360°	2π	0	1	0	-	

Skorowidz

```
funckcja zdaniowa, 3 para uporządkowana, 3 tautologia, 3 zdanie logiczne, 3
```