

Diffusion

Lecturer: Mengyuan Hua

Outline

- Applications
- Methods & Equipment
 - Predeposition
 - Drive-in
- Diffusion mathematics
 - The transport equation
 - The continuity equation
 - Field enhanced diffusion
- Diffusion in solids
- Linear Diffusion
 - Predeposition
 - Drive-in

- Masking
- Segregation
- Diffusion & point defects
 - High doping effects
 - Enhanced/retarded diffusion
- Non-linear diffusion
 - Predeposition
 - Drive-in
- Evaluation
 - Chemical & electrical conc.
 - Sheet resistance
 - Junction depth

Applications of Diffusion

- Diffusion of dopants
 pn-junctions; MOST; BJT; Resistors, piezoresistors
- Diffusion of contaminants
 Gettering

Category of Main Semiconductor Devices

Applications of Diffusion

•Diffusion of contaminants → Gettering

Doping of Semiconductors

Dopants in Silicon

- Donors (V): P, As, Sb
- Acceptors (III): B, Al, Ga, In

Doping a two step process:

1. <u>Predeposition</u> -

Introduce dopants

- Diffusion from gas-phase
- Diffusion from thin films
- Ion implantation
- Grown-in dopants

2. <u>Drive-in</u> -

Redistribute dopants

- Furnace Anneal
- Rapid Thermal Annealing

Predeposition: Gas Phase or Ion Implantation

Gas Phase / Doped Film:

Advantages

- Batch process
- No damage
- Low cost

Disadvantages

- Only SiO₂ masks
- Only moderate/high doses
- Only high surface conc.

$$C < C_{sol}$$

Ion Implantation:

Advantages

- All materials mask
- Precise Dose Control
- 10¹¹-10¹⁶/cm² Doses
- Buried profiles

Disadvantages

- High cost
- Damage causing:
 - Enhanced diffusion
 - Dislocations

Gas Phase Predeposition

A furnace process similar to thermal oxidation.

Dopant sources: (The real source is always the oxide)

•Gas: AsH₃, PH₃, B₂H₆

•Vaporised liquid: POCI₃, BBr₃,

•Vapours of a solid: B₂O₃, P₂O₅, As₂O₅

Vaporiser: Controlled temperature

Sheet Resistance

Homogenous sample:

$$R = \rho \frac{L}{Wh} = \frac{\rho}{h} \frac{L}{W} = \frac{L}{W} R_{\rm sh}$$

Sheet resistance: $R_{\rm sh} = \frac{\rho}{h}$

Inhomogenous:

Conductivity: $\sigma = q\mu_n n + q\mu_p p$

$$\frac{1}{R} = \frac{W}{L} \int_{0}^{h} \sigma(x) dx = \frac{W}{L} \frac{1}{R_{\rm sh}} \Longrightarrow$$

$$R_{\mathbf{sh}} = \frac{1}{\int_{0}^{h} \sigma(x) dx} \cong \frac{1}{\int_{0}^{h} q \mu_{n} n dx} \approx \frac{1}{q \overline{\mu_{n}} Q}$$

Resistivity of Doped Silicon

Dopants:

Donors: P, As, Sb

Acceptors: B, Al, Ga

$$\rho = \frac{1}{q\mu_n n + q\mu_p p}$$

$$\rho_n \approx \frac{1}{q\mu_n N_D}$$

$$\rho_p \approx \frac{1}{q\mu_p N_A}$$

Solid Solubility

Dopants are soluble in bulk silicon up to a maximum value before they precipitate into another phase

Purpose:

- 1. Change type
- 2. Change conductivity
- Concentration ≤ C_{sol}
- Electrically active Concentration:

$$C_{\text{elec}} \leq C_{\text{chem}}$$

Example: As-clustering

- As₄V
- $4As+V \leftrightarrow As_{\alpha}V$
- $C_{cluster} = KC_{As}^{4}C_{V}$
- Important at high doping
 - $C_{chem} < 2*10^{21}/cm^3$
 - $C_{elec} < 2*10^{20}/cm^3$

Diffusion of Point Defects

Interstitial diffusion Self interstitials Small foreign atoms Vacancy diffusion
Substitutional atoms
Dopants

Point Defect Assisted Diffusion

Diffusion of foreign atoms in Silicon can occur in several ways:

- 1. Direct Interstitial Diffusion: Small atoms, fast.
- 2. Vacancy assisted. Assumed for some dopants. Slow.
- 3. Interstitialcy interstitial assisted diffusion. Slow.
 - Many different modes suggested.
 - Assumed for some dopants.

Point Defect Assisted Diffusion

Linear Predeposition - Model

Purpose: a controlled dopant dose Q

- •Control surface concentration C_S
 - Obtain solid solubility $C_{\rm sol}$
- •Control temperature (D=D(T))
- •Control time t

1 D. Model, constant diffusivity:

Fick's 2. Law:
$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$$

Boundary conditions: $C(0,t) = C_s$, $C(\infty,t) = 0$

Initial conditions: C(x,0) = 0

Solution:
$$C(x,t) = C_S \operatorname{erfc}\left(\frac{x}{2\sqrt{Dt}}\right)$$

Dose:
$$Q(t) = \int_{0}^{\infty} C(x,t) dx = \frac{2}{\sqrt{\pi}} C_{S} \sqrt{Dt}$$

Fick's second law describes how the change in concentration in a volume element is determined by the fluxes in/out of the volume.

Junction depth:

Dose:
$$Q(t) = \int_{0}^{\infty} C(x, t) dx = \frac{2}{\sqrt{\pi}} C_{S} \sqrt{Dt}$$
 $C(x_{j}, t) = C_{B} \Rightarrow x_{j} = 2\sqrt{Dt} \operatorname{erfc}^{-1} \left(\frac{C_{B}}{C_{S}}\right)$

Error Functions

Definition:
$$\operatorname{erf}(x) \equiv \frac{2}{\sqrt{\pi}} \int_{0}^{x} \exp(-u^{2}) du$$
Definition: $\operatorname{erfc}(x) \equiv 1 - \operatorname{erf}(x)$
 $\operatorname{erf}(\pm \infty) = \pm 1, \quad \operatorname{erf}(0) = 0$
 $\operatorname{erfc}(\infty) = 0, \quad \operatorname{erfc}(0) = 1, \quad \operatorname{erfc}(-\infty) = 2$
 $\operatorname{erf}(x) \approx \frac{2}{\sqrt{\pi}} x, \text{ for } x << 1$
 $\operatorname{erfc}(x) \approx \frac{1}{\sqrt{\pi}} \frac{\exp(-x^{2})}{x}, \text{ for } x >> 1$
 $\frac{\partial \operatorname{erf}(x)}{\partial x} = \frac{2}{\sqrt{\pi}} \exp(-x^{2})$

$$\int_{0}^{x} \operatorname{erfc}(x') dx' = x \operatorname{erfc}(x) + \frac{1 - \exp(-x^{2})}{\sqrt{\pi}}$$

$$\int_{0}^{\infty} \operatorname{erfc}(x) dx = \frac{1}{\sqrt{\pi}}$$

Predeposition Profiles – constant C_s

Almost triangular profile:

Dose:
$$Q = \frac{2}{\sqrt{\pi}} C_S \sqrt{Dt} \approx C_S \sqrt{Dt}$$

Surface gradient:
$$\frac{\partial C(0,t)}{\partial x} = \frac{C_S}{\sqrt{\pi Dt}} \approx \frac{C_S}{2\sqrt{Dt}}$$

Gradient:
$$\frac{\partial C(0,t)}{\partial x} = \frac{C_S}{\sqrt{\pi Dt}} \exp\left(-\frac{x^2}{4Dt}\right)$$

Average Resistivity, Predep

Irvins Graphs

$$\overline{\sigma} = \frac{1}{\rho} = \frac{1}{x_j} \int_{0}^{x_j} \sigma \, dx \Rightarrow R_{\mathbf{sh}} = \frac{\overline{\rho}}{x_j} = \frac{1}{\overline{\sigma} x_j}$$

Linear Drive-in Model

Purpose: Redistribute a fixed dose Q

- Heat treatment with closed surface (oxide covered)
- •Control temperature T, (D=D(T))
- •Control time t

1 D. Model, constant diffusivity:

Fick's 2. Law:
$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$$

Boundary conditions:
$$\frac{\partial C(0,t)}{\partial x} = 0$$
, $C(\infty,t) = 0$

Initial conditions:
$$C(x,0) = C_{Predep}(x) \approx Q \delta(x)$$

Solution, a Gaussian:
$$C(x,t) = \frac{Q}{\sqrt{\pi Dt}} \exp\left(-\frac{x^2}{4Dt}\right)$$

Surface concentration:
$$C_{\rm S}(t) = \frac{Q}{\sqrt{\pi Dt}}$$

Junction depth:
$$C(x_j, t) = C_B \Rightarrow x_j = 2\sqrt{Dt} \sqrt{\ln\left(\frac{C_S(t)}{C_B}\right)}$$

Repeated Drive - in's
$$(Dt)_{\text{eff}} = \sum Dt = \int Ddt$$

Drive-in Profiles: constant Q_T

- •Zero gradient at the surface
- Time decaying surface concentration
- Rapidly decaying tail

Average Resistivity, Drive-in

Irvins Graphs

$$\frac{1}{\sigma} = \frac{1}{\rho} = \frac{1}{x_j} \int_{0}^{x_j} \sigma \, dx \Rightarrow R_{\mathbf{sh}} = \frac{\frac{1}{\rho}}{x_j} = \frac{1}{\sigma x_j}$$

Evaluation of Diffused Layers

Four Point Probe:

$$R_{\rm sh} = \frac{\pi}{\ln 2} \frac{V}{I} = 4.532 \frac{V}{I}$$

Simple low-tech measurements Four point probe a routine check. Groove & stain useful for large x_i .

2024/4/12

Mag = 1.60 K X

10µm

EHT = 5.00 kV WD = 10 mm Signal A = SE2 Photo No. = 4678

Date :11 Sep 2008 Time :19:33

Laser annealed USJ: Sheet resistance

- 2. Spatial laser power density varitions
- 3. Temporal laser power fluctuations

D. H. Petersen *et al.* JVST B **26**, 362 (2008). W. Vandervorst *et al.* MRS 2008 Spring meeting (2008).

Temperature Effect

Intrinsic diffusion coefficient increases as temperature increases

$$D = D_o \exp\left(-\frac{E_a}{kT}\right)$$

- E_a for interstitial diffusion is the energy required for dopants to move from one intersitial site to another (around 0.5 to 2 eV)
- E_a for vacancy diffusion is related to the energies of dopant motion and vacancy formation (around 3 to 5 eV)

	Si	В	In	As	Sb	Р	Units
D^0	560	1.0	1.2	9.17	4.58	4.70	cm² sec-1
E_A	4.76	3.5	3.5	3.99	3.88	3.68	eV

- Note that n_i is very large at process temperatures, so "intrinsic" actually applies under many conditions.
- Note the "slow" and "fast" diffusers. Solubility is also an issue in choosing a particular dopant.

Masking

- Required Mask Thickness in Predeposition?
- Dopant Profile after Predeposition & Drive-in? A 2D / 3D problem.

Dopant iso-concentration contours after a masked **Predeposition**. Lateral junction depth ~ 80% of vertical junction depth .

Required Mask Thickness

Constant surface concentration & Interface segregation Diffusion problem: Make $x_i=0$

Fick's 2. Law:
$$\frac{\partial C_i}{\partial t} = D_i \nabla^2 C_i$$

Initial : C(x,0) = 0

Boundary:
$$C(\infty, t) = 0$$
, $C(-x_{ox}, t) = C_0$

Interface segregation: $C_{Si}(0,t) = k_0 C_{ox}(0,t)$

Continuous flux: $D_{ox}\nabla C_{ox} = D_{Si}\nabla C_{Si}$

Approximate solution:

$$C_{Ox} \approx C_0 \left[\operatorname{erfc} \left(\frac{x_{ox} + x}{2\sqrt{D_{ox}t}} \right) - \frac{k_0 - \frac{D_{ox}}{D_{Si}}}{k_0 + \frac{D_{ox}}{D_{Si}}} \operatorname{erfc} \left(\frac{x_{ox} - x}{2\sqrt{D_{ox}t}} \right) \right]$$

$$C_{Si} \approx C_0 \frac{2k_0 \frac{D_{ox}}{D_{Si}}}{k_0 + \frac{D_{ox}}{D_{Si}}} \operatorname{erfc} \left(\frac{x_{ox}}{2\sqrt{D_{ox}t}} + \frac{x}{2\sqrt{D_{Si}t}} \right)$$

$$x_{ox} > 2\sqrt{D_{ox}t} \text{ argerfc} \left(\frac{C_B}{C_0} \frac{k_0 + \frac{D_{ox}}{D_{Si}}}{2k_0 \frac{D_{ox}}{D_{Si}}} \right)$$

Required Mask Thickness

Thick masks due to high diffusivity and $k_0=10$.

Thin masks due to low Diffusivity and k_0 =0.3. Note, most graphs are wrong!

Drive-in Profiles

Drive - in : Line source

Fick's 2. Law:
$$\frac{\partial C}{\partial t} = D\nabla^2 C = D\left(\frac{\partial^2 C}{\partial r^2} + \frac{\partial C}{r\partial r}\right)$$

Initial: $C(x, y, 0) = Q' \delta(x) \delta(y)$

Boundary:
$$C(r \to \infty, t) = 0$$
, $\frac{\partial C(0, y, t)}{\partial x} = 0$

Gaussian Solution:
$$C(r,t) = \frac{Q'}{2\pi Dt} \exp\left(-\frac{r^2}{4Dt}\right)$$

Drive-in: Half plane source

Fick's 2. Law:
$$\frac{\partial C}{\partial t} = D\nabla^2 C = D\left(\frac{\partial^2 C}{\partial x^2} + \frac{\partial^2 C}{\partial y^2}\right)$$

Initial: $C(x, y, 0) = Q\delta(x)h(y)$

Boundary:
$$C(x \to \infty, y, t) = 0$$
, $\frac{\partial C(0, y, t)}{\partial x} = 0$

Solution:
$$C(x, y, t) = \frac{Q}{\sqrt{\pi Dt}} \exp\left(-\frac{x^2}{4Dt}\right) \frac{\operatorname{erfc}\left(\frac{-y}{2\sqrt{Dt}}\right)}{2}$$

Masked Drive-in Diffusion

Masked Drive-in Diffusion

Dopant Segregation

- Solubility in oxide and silicon different, (2 Phases):
 - Equilibrium: $C_{Si} = k_0 C_{Ox}$
 - k₀: Segregation coefficient
 - B: $k_0 \approx 0.3$
 - P, As, Sb: $k_0 \approx 10$
- Diffusivity in oxide and silicon different
 - Mostly: D_{Si} >> D_{Ox}
 - Dopant redistribution during oxidation
 - Complicated moving boundary condition @ interface

Interfacial Dopant Pile Up

The surface is really a separate phase. A very different solubility might apply. Inactive dopant may accumulate ~ 0.5ML.

Experiment: Implanted annealed As Dopant loss during anneal ~30% Important for group V elements.

Electric Field Effects

Ionised Dopants, Dopant Gradients & Fast Electrons:

Built in electric field:
$$\overrightarrow{\mathbf{E}} = -\frac{kT}{q} \nabla \ln \frac{n}{n_i}$$
, from $\overrightarrow{J}_n = 0$

$$F = -D\nabla C + \frac{qD}{kT} \overrightarrow{\mathbf{E}}C = -D_{\text{eff}} \nabla C = \underline{-hD\nabla C}$$

Field enhancement factor:
$$h \cong 1 + \frac{C}{\sqrt{C^2 + 4n_i^2}}$$

Important at high doping: Criterion: $C > n_i \Rightarrow h \approx 2$ $C < n_i \Rightarrow h \approx 1$

Concentration Dependent Diffusivity

Constant-Surface-Concentration Diffusion

$$D = D_s \left(\frac{C}{C_s}\right)^{\gamma}$$

 D_s : diffusion coefficient at the surface C_s : the surface concentration

- for $\gamma > 0$ (B or As in Si, Zn in GaAs), the diffusion coefficient decreases as concentration drops
- due to sharp drop of the dopant concentration, abrupt junction is formed for $\gamma > 0$ with wide range of background doping (good for devices)
- for γ < 0 (Au and Pt), dopant can penetrate deep into substrate due to increased diffusion coefficient

Concentration Dependent Diffusivity

All point defect charge states are contributing:

$$D = D_{i0} + D_{i-} \left(\frac{n}{n_i}\right) + D_{i-} \left(\frac{n}{n_i}\right)^2 \text{ for N type dopants}$$

$$D = D_{i0} + D_{i+} \left(\frac{p}{n_i}\right) + D_{i++} \left(\frac{p}{n_i}\right)^2$$
 for P type dopants

$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left(D_A^{eff} \frac{\partial C}{\partial x} \right)$$

Assumed reaction schemes:

$$V^0+e^- \leftrightarrow V^- \qquad I^0+e^- \leftrightarrow I^-$$

$$V^0+2e^- \leftrightarrow V^= I^0+2e^- \leftrightarrow I^=$$

$$V^0+e^+ \leftrightarrow V^+ \qquad I^0+e^+ \leftrightarrow I^+$$

At low doping densities: $n = n_i$

$$D_{i} = D_{i0} + D_{i-} + D_{i=}$$

$$D = D.0 \exp\left(-\frac{D.E}{kT}\right)$$

Experimental Diffusivities

	Si	В	In	As	Sb	P
$\mathbf{D_{00}} [\mathrm{cm^2/s}]$	560	0.05	0.6	0.011	0.214	3.85
E _{A0} [eV]	4.76	3.5	3.5	3.44	3.65	3.66
\mathbf{D}_{0+} [cm ² /s]		0.95	0.6			
$\mathbf{E}_{\mathbf{A}^+}[\mathrm{eV}]$		3.5	3.5			
D_{0-} [cm ² /s]				31.0	15.0	4.44
E _{A-} [eV]				4.15	4.08	4.0
D_{0-} [cm ² /s]						44.2
E _A [eV]						4.37

HW

Calculate the effective diffusion coefficient at 1000 °C for two different box shaped arsenic profiles grown by silicon epitaxy, one doped 1×10^{18} cm⁻³, and the other doped at 1×10^{20} cm⁻³.