TRINETRA DETAILS

1. siameese.py (Training a Siamese Neural Network for Face Recognition)

Overview

This script trains a **Siamese Neural Network** to recognize faces by learning a similarity function. It uses **contrastive loss** to distinguish between similar and dissimilar faces.

Code Breakdown

import utils import numpy as np from keras.layers import Input, Lambda from keras.models import Model

- utils: A helper module that contains utility functions like loading data, defining the network, and computing the loss.
- numpy: Used for numerical operations.
- Input, Lambda: Keras layers to define input tensors and apply custom functions (like Euclidean distance).
- Model: Keras model class used to create the Siamese network.

faces_dir = 'dataset/'

Defines the dataset directory where face images are stored.

(X_train, Y_train), (X_test, Y_test) = utils.get_data(faces_dir) num_classes = len(np.unique(Y_train))

- Calls utils.get_data(faces_dir) to load the training and testing data.
- X_train: Training images.
- Y_train: Training labels (person identity).
- Y train = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, ...]#ylabel possibly look like this
- X_test, Y_test: Testing data.
- num_classes: Number of unique people in the dataset.

```
input_shape = X_train.shape[1:]
shared_network = utils.create_shared_network(input_shape)
```

- Defines the input shape based on training data.
- Calls utils.create_shared_network(input_shape), which builds the Siamese network's shared feature extractor.

```
input_top = Input(shape=input_shape)
input_bottom = Input(shape=input_shape)
```

• Creates **two input layers** for the two face images being compared.

```
output_top = shared_network(input_top)
output_bottom = shared_network(input_bottom)
```

• Both inputs are **processed by the shared network**, generating embeddings.

```
distance = Lambda(utils.euclidean distance, output shape=(1,))([output top, output bottom])
```

Computes the Euclidean distance between the embeddings of the two face images.

```
model = Model(inputs=[input_top, input_bottom], outputs=distance)
```

Defines the Siamese model with two inputs and a single output (distance score).

training_pairs, training_labels = utils.create_pairs(X_train, Y_train, num_classes=num_classes)

 Calls utils.create_pairs to generate pairs of similar and dissimilar images for training.

model.compile(loss=utils.contrastive_loss, optimizer='adam', metrics=[utils.accuracy])

- Uses contrastive loss (from utils.contrastive_loss) to minimize distance for similar images and maximize it for different images.
- Uses Adam optimizer.

model.fit([training_pairs[:, 0], training_pairs[:, 1]], training_labels, batch_size=128, epochs=10)

• Trains the model on the paired face images for 10 epochs.

model.save('siamese_nn.h5')

• Saves the trained model.

2. recogggg1.py (Face Recognition with Multiple Cameras & Email Alerts)

Overview

This script:

- Captures live video from 4 cameras.
- Uses the Siamese network to recognize a specific person.
- Sends an **email alert** if the person is recognized.

Code Breakdown

import os import cv2 import utils import numpy as np import face_detection import time import threading import subprocess

- os, cv2, numpy: Standard libraries for image processing.
- face_detection: Detects faces in camera frames.
- threading: Handles real-time processing.
- subprocess: Calls face_verify.py for secondary verification.

from keras.models import load_model

• Loads the trained Siamese network model.

model = load_model('siamese_nn.h5', custom_objects={'contrastive_loss': utils.contrastive_loss, 'euclidean_distance': utils.euclidean_distance})

• Loads the **pretrained model** with custom loss functions.

```
THRESHOLD = 0.6

RECOGNITION_INTERVAL = 2 # Run every 2 sec last recognition times = [0] * 4
```

- Threshold determines whether a face matches.
- Ensures recognition runs every 2 seconds per camera.

cameras = [cv2.VideoCapture(i) for i in range(4)]

• Opens 4 camera feeds.

```
def update_camera_feed():
    for i, cam in enumerate(cameras):
        ret, frame = cam.read()
        if ret:
            process_frame(frame, i)
```

Continuously processes frames from each camera.

```
def process_frame(frame, cam_number):
    small_frame, faces, face_coords_list = face_detection.detect_faces(frame)
```

• **Detects faces** in the camera feed.

```
similarity = 1 - model.predict([true_img, face_gray])[0][0]
```

Computes similarity between the detected face and the reference image.

```
if highest_similarity >= THRESHOLD:
    recognized_image_path = f"recognized_faces/face_{int(time.time())}.jpg"
    cv2.imwrite(recognized_image_path, face_crop)
    face_queue.put((recognized_image_path, cam_number))
```

• If the similarity is high, saves the recognized face and sends it for verification.

```
def secondary_face_verification(image_path):
    result = subprocess.run(["python", "face_verify.py", image_path, "true_img.png"],
    capture_output=True, text=True)
    return int(result.stdout.strip()) if result.stdout.strip().isdigit() else -1
```

• Calls face_verify.py to confirm face match.

def send_email(recognized_image_path, cam_number, recipient=r):

Sends an email notification with the recognized face image.

face_verify.py (Face Matching using HOG & OpenCV)

Overview

This script:

- Loads two images.
- Detects faces using HOG and OpenCV Haarcascade.
- Encodes faces using face_recognition.
- Computes similarity.

Code Breakdown

import face_recognition as fr import cv2 import numpy as np import sys

• Uses face_recognition for encoding and comparison.

```
def enhance_image(image):
    gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
    equalized = cv2.equalizeHist(gray)
    return cv2.cvtColor(equalized, cv2.COLOR_GRAY2RGB)
```

• Enhances contrast for better face detection.

```
def detect_faces_with_opencv(image_path):
    face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades +
"haarcascade_frontalface_default.xml")
    faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5)
```

• Uses OpenCV Haarcascade as a backup if HOG fails.

```
faceLocOne = fr.face_locations(RgbFaceOne, model="hog") faceLocTwo = fr.face_locations(RgbFaceTwo, model="hog")
```

Detects faces using HOG.

```
encodingsOne = fr.face_encodings(RgbFaceOne, [faceLocOne])
encodingsTwo = fr.face_encodings(RgbFaceTwo, [faceLocTwo])
```

Encodes detected faces.

face_distance = fr.face_distance([faceOneEnco], faceTwoEnco)[0] threshold = 0.5 MatchResult = int(face_distance < threshold) print(MatchResult)

- Computes distance between face encodings.
- Threshold = 0.5 (lower means a closer match).

Final Thoughts

- siameese.py \rightarrow Trains the model.
- recogggg1.py → Runs live recognition with multiple cameras & emails.
- face_verify.py → Performs secondary verification using facial embeddings.

This util.py script contains helper functions for training and using a Siamese neural network for face recognition. It includes functions for computing Euclidean distance, contrastive loss, accuracy calculation, dataset processing, and model architecture creation.

4.UTILS.py

Importing Required Libraries

import numpy as np
import random
import os
import cv2
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Flatten, Dense, Conv2D, MaxPooling2D
from tensorflow.keras.preprocessing.image import img_to_array

from tensorflow.keras.backend import sum as K_sum, square as K_square, sqrt as K_sqrt, maximum as K_maximum, epsilon as K_epsilon, mean as K_mean, equal as K_equal, cast as K_cast

Explanation

- numpy → Used for numerical operations (arrays, matrix computations).
- random → Helps in generating random negative samples when creating pairs.
- os → Used for file operations like accessing dataset directories.
- cv2 (OpenCV) → Handles image processing (resizing, grayscale conversion).
- tensorflow.keras → Used for defining the neural network.
- Keras backend (tensorflow.keras.backend) → Used for tensor computations required for loss and accuracy functions.

Computing Euclidean Distance

```
def euclidean_distance(vectors):
    vector1, vector2 = vectors
    sum_square = K_sum(K_square(vector1 - vector2), axis=1, keepdims=True)
    return K_sqrt(K_maximum(sum_square, K_epsilon()))
```

Explanation

- Computes **Euclidean distance** between two feature vectors: $d=\sum(A-B)2d = \sqrt{A-B}$ where:
 - AA and BB are feature vectors of two images.
- K_square(vector1 vector2): Computes squared difference.
- K_sum(..., axis=1, keepdims=True): Sums over feature dimensions.
- K_sqrt(...): Computes square root.
- K_maximum(sum_square, K_epsilon()): Ensures numerical stability.

Contrastive Loss Function

```
def contrastive_loss(Y_true, D):
    margin = 1
```

```
return K_mean(Y_true * K_square(D) + (1 - Y_true) * K_maximum((margin - D), 0))
```

Explanation

- Purpose: Helps the Siamese network differentiate between similar and dissimilar pairs.
- Equation: L=(1-Y)12D2+(Y)12max(0,m-D)2L = (1-Y) \frac{1}{2} D^2 + (Y) \frac{1}{2} \max(0, m-D)^2
 - o If images are the same (Y_true=1), it minimizes distance.
 - If images are different (Y_true=0), it increases distance up to a margin (m=1).

Accuracy Metric

```
def accuracy(y_true, y_pred):
    return K_mean(K_equal(y_true, K_cast(y_pred < 0.5, y_true.dtype)))</pre>
```

Explanation

- Compares y_pred (predicted distance) with threshold = 0.5.
- If distance < 0.5, the model classifies as the same person.
- Uses K_equal and K_cast to compare predictions with true labels.
- Computes mean accuracy across the dataset.

Creating Pairs for Training

```
def create_pairs(X, Y, num_classes):
    X = np.array(X) # Ensure X is a NumPy array
    Y = np.array(Y) # Ensure Y is a NumPy array
    pairs, labels = [], []
    class_idx = [np.where(Y == i)[0] for i in range(num_classes)]
    min_images = min(len(class_idx[i]) for i in range(num_classes)) - 1

for c in range(num_classes):
    for n in range(min_images):
        # Positive pair
        pairs.append((X[class_idx[c][n]], X[class_idx[c][n + 1]]))
```

```
labels.append(1)

# Negative pair
neg_list = list(range(num_classes))
neg_list.remove(c)
neg_c = random.choice(neg_list)
pairs.append((X[class_idx[c][n]], X[class_idx[neg_c][n]]))
labels.append(0)

return np.array(pairs), np.array(labels)
```

Explanation

- Purpose: Creates pairs of similar (label=1) and dissimilar (label=0) face images.
- Process:
 - 1. Groups all images by class/identity.
 - 2. Creates positive pairs (same person).
 - 3. Selects **negative pairs** by randomly picking a different class.
 - 4. Returns pairs as NumPy arrays for training.

Creating the Shared Convolutional Network

```
def create_shared_network(input_shape):
    model = Sequential(name='Shared_Conv_Network')
    model.add(Conv2D(64, (3, 3), activation='relu', input_shape=input_shape))
    model.add(MaxPooling2D())
    model.add(Conv2D(64, (3, 3), activation='relu'))
    model.add(Flatten())
    model.add(Dense(128, activation='sigmoid'))
    return model
```

Explanation

- Purpose: Creates a feature extractor (CNN) for face embeddings.
- Architecture:
 - 1. **64 filters**, **3×3 Conv**, **ReLU** → Extracts patterns from images.
 - 2. **MaxPooling** → Reduces size to retain important features.
 - 3. Another Conv layer → Refines feature extraction.

4. Flatten + Dense (128, sigmoid) → Outputs a 128-dimensional embedding.

Loading and Processing Dataset

```
def get_data(dir, img_size=(100, 100)):
  X train, Y train = [], []
  X_test, Y_test = [], []
  subfolders = sorted([file.path for file in os.scandir(dir) if file.is dir()])
  for idx, folder in enumerate(subfolders):
     for file in sorted(os.listdir(folder)):
       img_path = os.path.join(folder, file)
       img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE) # Read as
grayscale
       if img is None:
          print(f"Warning: Unable to load {img_path}")
          continue
       img = cv2.resize(img, img_size) # Resize to fixed size
       img = img.astype('float32') / 255.0 # Normalize
       img = np.expand_dims(img, axis=-1) # Add channel dimension
       if idx < 35:
          X_train.append(img)
          Y train.append(idx)
       else:
          X_test.append(img)
          Y test.append(idx - 35)
  X_{train} = np.array(X_{train}, dtype=np.float32)
  X test = np.array(X test, dtype=np.float32)
  Y_train = np.array(Y_train, dtype=np.int32)
  Y_test = np.array(Y_test, dtype=np.int32)
  return (X_train, Y_train), (X_test, Y_test)
```

Explanation

- Loads face images from the dataset folder.
- Converts images to grayscale for simplicity.

- Normalizes pixel values (0-1 range).
- Splits into training (<35 identities) and testing (>35 identities) sets.

Writing Text on Video Frame

```
def write_on_frame(frame, text, text_x, text_y):
    (text_width, text_height), _ = cv2.getTextSize(text,
cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, thickness=2)
    box_coords = ((text_x, text_y), (text_x + text_width + 20, text_y - text_height -
20))
    cv2.rectangle(frame, box_coords[0], box_coords[1], (255, 255, 255),
cv2.FILLED)
    cv2.putText(frame, text, (text_x, text_y - 10), cv2.FONT_HERSHEY_SIMPLEX,
fontScale=1, color=(0, 0, 0), thickness=2)
    return frame
```

Explanation

- Draws a rectangle & text overlay on a video frame.
- Useful for displaying face recognition results in real-time.

Final Summary

- util.py provides essential functions for:
 - Computing distances (euclidean_distance).
 - Loss function (contrastive_loss).
 - Generating face pairs (create_pairs).
 - Defining the CNN feature extractor (create_shared_network).
 - Loading and preprocessing images (get_data).

Would you like a more detailed explanation on any specific function? **

ECULEDIAN DISTANCE AND CONTRASTIVE LOSS

Let's break it down with a **real-world example** to make it more intuitive.

Example Scenario: Identifying Faces Using Siamese Network

Imagine you are building a face recognition system using a **Siamese Neural Network**. The goal is to compare two face images and determine if they belong to the same person or not.

Step 1: Extracting Feature Vectors

You have two images:

- Image A: A picture of "John"
- **Image B**: A second picture that may be of "John" or a different person.

Both images go through the **same** neural network (shared weights), which extracts a feature vector for each image.

Step 2: Compute Euclidean Distance

The **Euclidean distance** between the feature vectors of Image A & Image B is calculated.

- If both images are of the same person (John & John) → Feature vectors should be very similar, meaning the Euclidean distance should be small (close to 0).
- If the images are of different people (John & David) → Feature vectors should be very different, meaning the Euclidean distance should be large.

Step 3: Apply Contrastive Loss

The **contrastive loss function** ensures the network learns the correct distances.

Scenario	E	Contrastive Loss Action
	X	
	р	
	е	
	ct	
	е	
	d	
	Di	
	st	

	a n c e	
Same person (John & John)	S m al l (c lo s e to 0)	If distance is large , penalize it! (reduce the distance)
Different persons (John & David)	L ar g e (h ig h v al u e)	If distance is small , penalize it! (increase the distance)

How Contrastive Loss Works in Training

Now, let's consider actual numbers:

Case 1: Same Person (John & John)

- Suppose the network computes a Euclidean distance of **1.5** (it should be closer to 0).
- Contrastive loss will penalize this!
 - → It tells the model: "Make the distance smaller when faces are the same."
 - \rightarrow On the next training iteration, the network adjusts its weights to **reduce the distance** for matching images.

Case 2: Different People (John & David)

- Suppose the network computes a Euclidean distance of **0.8** (it should be higher).
- Contrastive loss will penalize this!
 - → It tells the model: "Increase the distance for different faces."

→ The network updates its weights so that next time, the distance between non-matching faces is **larger**.

Intuition Behind Contrastive Loss

Contrastive loss teaches the network what "similar" and "different" look like:

- If two images belong to the **same person**, the model should **pull** them closer in feature space (reduce distance).
- If two images belong to **different people**, the model should **push** them further apart (increase distance).

Over time, the network learns a proper embedding space where: Same people have small distances

X Different people have large distances

Key Takeaway

Contrastive loss does **not directly measure similarity**. Instead, it **teaches** the model to **adjust the similarity** correctly by penalizing wrong distances.