

双路全桥式驱动器

概述

L298N 为双全桥式步进电机专用驱动芯片,内部包含 4 信道逻辑驱动电路,是一种二相和四相步进电机的专用驱动器,可同时驱动 2 个二相或者 1 个四相步进电机,内含两个 H 桥的高压、大电流双全桥式驱动器,接收标准 TTL 逻辑准位信号,可驱动 36V、2A 以下的步进电机,且可以直接通过电源来调节输出电压;此芯片可直接由单片机的 I/O端口来提供模拟时序信号。有两个使能输入端可分别控制两路 H 桥工作和截止,每个桥的下端晶体管的发射极相连,并且在外部接一个检测电阻。另一个逻辑电源输入使逻辑

电路可工作在较低的电压下。 L298N 采用 Multiwatt15 封装。

主要特点

- 工作电压可高达36V。
- 总直流电流可到4A。
- 饱和压降低。
- 内置高温保护。
- 逻辑 "0" 电位输入电压高达1.5V

主要应用领域

- 电动玩具
- 数币机

功能框图

管脚说明

L298N采用 Multiwatt15 封装。

管脚序号	管脚名称	I/O	描述
1	SENSING A	I	在该脚和地之间接一个检测电阻,来控制负载电流
2	OUTPUT 1	0	A 桥输出,输出电流由 1 脚来监控
3	OUTPUT 2	О	
4	VS	P	为输出供电,通过一个无感电容器接地
5	INPUT 1	I	A 桥的 TTL 兼容输入
6	ENABLE A	Ι	TTL 兼容使能输入,输入低电平使桥截止
7	INPUT 2	I	同 5
8	GND	P	地
9	VSS	P	逻辑单元供电电源,通过 100nF 电容接地
10	INPUT 3	I	B 桥的 TTL 兼容输入
11	ENABLE B	I	TTL 兼容使能输入,输入低电平使桥截止
12	INPUT 4	I	B 桥的 TTL 兼容输入
13	OUTPUT 3	0	B 桥输出,输出电流由 15 脚来监控
14	OUTPUT 4	0	
15	SENSING B	Ι	同 1

极限参数

参数	标识	值
电源电压(*Note1)	Vs	38V
逻辑电源电压	Vss	7V
输入和使能端电压	Vi, en	-3 to 7 V
封装输出电流 (每一通道)	Io	

不反复的(t=100us)		3A
反复的(80%on-20%Off, ton=10ms)		2.5A
DC 工作		2A
电源电压	Vsens	-1 to 2.3 V
逻辑电源电压	Ptot	25W

*Note1:最高电源电压需建立在电源及输出尖峰电压都小于此值的范围内。

电气特性

条件: (Vs=42V, Vss=5V, Tj=25℃)

参数	标识	测试条件	Min	典型值	Max	单位
电源电压 (Pin 4)	Vs	工作情况下(*note2)	VIH+2.5	_	36	V
逻辑电源电压 (Pin9)	Vss		4.5	5	7	V
		Ven=H; IL=O Vi=L		13	22	А
静态工作电流(Pin4)	Is	Vi=H		50	70	mA
		Ven=L Vi=X			4	mA
		Ven=H; IL=O Vi=L		27	36	Δ
Vss 端静态工作电(Pin9)	Iss	Vi=H		7	12	mA
		Ven=L Vi=X			6	mA
输入低电压(pin5,7,10,12)	ViL		-0.3		1.5	V
输入高电压(pin5,7,10,12)	ViH		2.3		Vss	V
低电压输入电流	1'1	77. 1			10	4
(pin5,7,10,12)	IiL	Vi=L			-10	uA
高电压输入电流	IiH Vi=	Vi=H ≤ Vss-0.6V		30	100	^
(pin5,7,10,12)	ПП	VI=⊓ ≤ VSS=0.0V		50	100	uA
使能端低电压 (pins 6,10)	Ven=L		-0.3		1.5	V
使能端高电压 (pins 6,10)	Ven=H		2.3		Vss	V
低压使能电流 (pins 6,10)	Ien=L	Ven=L			-10	uA
高压使能电流(pins 6,10)	Ien=H	Vi=H ≤ Vss-0.6V		30	100	uA
拉西次时 <i>加</i> 和丁胺	VCEsat(H)	IL=1A	0.95	1.35	1.7	V
拉电流时饱和压降		IL=2A		2	2.7	V
满由 法时 <i>地</i> 红	HOD (I)	IL=1A	0.85	1.2	1.6	V
灌电流时饱和压降	VCEsat (L)	IL=2A		1.7	2.3	V
<i>丛 加</i> 红 厂	WCE	IL=1A	1.8		3.2	V
总饱和压降	VCEsat	IL=2A			4.9	V
检测电压 (pins 1,15)	Vsense		-1		2	V

*Note2: 最高电源电压需建立在电源及输出尖峰电压都小于此值的范围内。

参数	标识	测试条件	Min	典型值	Max	单位
拉电流关断延迟时间	T1 (Vi)	0.5Vi to 0.9 IL		1.5		us
拉电流下降时间	T2 (Vi)	0.9 IL to 0.1 IL		0.2		us
拉电流开机延迟时间	T3 (Vi)	0.5Vi to 0.1 IL		2		us
拉电流上升时间	T4 (Vi)	0.1 IL to 0.9 IL		0.7		us
灌电流关断延迟时间	T5 (Vi)	0.5Vi to 0.9 IL		0.7		us
灌电流下降时间	T6 (Vi)	0.9 IL to 0.1 IL		0.25		us
灌电流开机延迟时间	T7 (Vi)	0.5Vi to 0.1 IL		1.6		us
灌电流上升时间	T8 (Vi)	0.1 IL to 0.9 IL		0.2		us
变换频率	fc (Vi)	IL=2A		25	40	KHz
拉电流关断延迟时间	T1 (Ven)	0.5Vi to 0.9 IL		3		us
拉电流下降时间	T2 (Ven)	0.9 IL to 0.1 IL		1		us
拉电流开机延迟时间	T3 (Ven)	0.5Vi to 0.1 IL		0.3		us
拉电流上升时间	T4 (Ven)	0.1 IL to 0.9 IL		0.4		us
灌电流关断延迟时间	T5 (Ven)	0.5Vi to 0.9 IL		2.2		us
灌电流下降时间	T6 (Ven)	0.9 IL to 0.1 IL		0.35		us
灌电流开机延迟时间	T7 (Ven)	0.5Vi to 0.1 IL		0.25		us
灌电流上升时间	T8 (Ven)	0.1 IL to 0.9 IL		0.1		us

典型应用1: 桥式直流电机控制

3	功能			
Ven=H	C=H;D=L	向右		
	C=L;D=H	向左		
	C=D	急停		
Ven=L	Ven=L C=X; D=C 自由			
L 为低电	平, Η 为高电平	Z, X 为任意		

典型应用 2: 并联可以增大驱动电流,注意 1 通道和 4 通道并联, 2 通道和 3 通道并联。

应用说明:

1.1 功率输出级

L298N集成了2路功率输出(outA、B),每路输出配置成H桥式驱动,根据不同输入状态,可以驱动感性负载。检测端senseA、B可以接检测电阻到地,用来检测通过电流。

1.2 输入级

一共有四个门输入 IN1, IN2, IN3, IN4 和两个使能端输入 ENA, ENB。所有输入兼容 TTL 电平。使能端 EN 为高时,输入可以决定 H 桥工作状态,当 EN 为低时,H 桥禁止工作。2.推荐

Vs 和 Vss 端常接一个无极性 100nf 电容到地,电容尽量靠近地。当电源端接一个大电容距离较远,则需要在接一个较小电容靠近芯片电源端。

检测电阻非绕线式, 电阻的接地端必须靠近芯片的地。

每个输入信号线需尽量短。

开启电源和关闭电源前, EN 端必须是确保是低电平。

3.桥式驱动应用驱动直流电机

如图, 电机旁需接 4个快速回复二极管进行保护, VF 选择需考虑最坏情况。

检测端输出电压可以通过打断输入电压,来控制电流,也可用来过流保护,使得 EN 端为低。

对 2A 的驱动电流电机进行快速制动 (停止), 可能无法克服。

- 4. 当峰值电流高于 2A, 可以选择并联接法。
- 5.对电感负载驱动时, 肖特基二极管是首选。
- 6.驱动双向步进电机, 当驱动电流达 2A 时, 保护二极管也应是 2A 快恢复型。

封装机械数据:

Multiwatt15

DIM.		mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α			5			0.197	
В			2.65			0.104	
С			1.6			0.063	
D		1			0.039		
Е	0.49		0.55	0.019		0.022	
F	0.66		0.75	0.026		0.030	
G	1.14	1.27	1.4	0.045	0.050	0.055	
G1	17.57	17.78	17.91	0.692	0.700	0.705	
H1	19.6			0.772			
H2			20.2			0.795	
L	22.1		22.6	0.870		0.890	
L1	22		22.5	0.866		0.886	
L2	17.65		18.1	0.695		0.713	
L3	17.25	17.5	17.75	0.679	0.689	0.699	
L4	10.3	10.7	10.9	0.406	0.421	0.429	
L7	2.65		2.9	0.104		0.114	
М	4.2	4.3	4.6	0.165	0.169	0.181	
M1	4.5	5.08	5.3	0.177	0.200	0.209	
S	1.9		2.6	0.075		0.102	
S1	1.9		2.6	0.075		0.102	
Dia1	3.65		3.85	0.144		0.152	

上海国芯集成电路设计有限公司 www.gcore.com.cn