

TA201A Manufacturing Processes

Week-4 30 Aug, 2022 2022-2023 Semester-I

Lecture 4

Eutectic Phase Diagram: Pb-Sn system

Solidification at Eutectic Composition

Solidification at Proeutectic Composition

•ISBN: 978-1544083803

Solidification at Proeutectic Composition with single phase region

•ISBN: 978-1544083803

Fe-Fe₃C phase Diagram Iron-Iron Carbide phase diagram

Fe-Fe₃C phase Diagram

•ISBN: 978-1544083803

Eutectoid Steel

Eutectoid reaction

$$\gamma \rightleftharpoons \alpha + Fe_3C$$

T=727°C Composition =0.76 wt.% C

Hypoeutectoid steel

•ISBN: 978-1544083803

 The microstructure of crystalline materials is defined by the type, structure, number, shape and topological arrangement of phases and/or lattice defects.

 Elements of microstructure: Point defects, point-defect clusters, dislocations, stacking faults, grain boundaries, interphase interfaces are important elements of the microstructure of most materials.

Classification of alloys

Role of C & Si in Fe

Fe-Fe₃C phase diagram: Revisited

Properties: Role of C in steel

Properties: Role of C in steel

Strength: Low C Vs High C

Courtesy: Google images

Low Alloy or Plain Carbon Steel

- Plain carbon steel
 - Principal alloying element C

Low alloy steel

- Iron carbon alloys that contain additional alloying elements in amounts totaling less than 5% (wt.%)
- Better mechanical properties than plain C steel
 - Strength
 - Hardness
 - Wear resistance
 - Toughness
- Heat treatment is often required
- Alloying elements usually added in combination

Stainless steels: Highly alloyed for high corrosion resistance

- High strength and ductility
- Cr > 15%

Cast iron

Cast iron: alloy containing C (2.1 - ~ 4%) and Si (1 - 3%)

Microstructures & Applications of cast iron

https://engineeringlearn.com/types-of-cast-iron-and-their-uses-with-composition-properties/

Cast Irons

- Gray Cast Iron (2.5-4% C, 1-3% Si)
 - Graphite flakes form throughout
 - Good vibration damping (engine and other machinery)
 - Good internal lubrication (machineable)
 - Low ductility
 - Application: automotive engine blocks
- Ductile iron (2.5-4% C, 1-3% Si)
 - Chemically treated before pouring so spheroids → ductile
 - Application: Machinery component requiring high strength and good wear resistance
- White Cast Iron (Lesser C and Si than gray CI)
 - Cooling of molten metal is much faster so C remains in the form of Fe₃C and does not precipitate out in form of flakes
 - Hard and brittle
 - Excellent wear resistance
 - · Good strength
 - Application: Railway brake shoes

Materials: Strategic & Critical applications

Ni based alloys

https://www.cam.ac.uk/research/news/super-superalloys-hotter-stronger-for-even-longer

Superalloys: γ-γ' microstructure

Superalloys: γ-γ' microstructure

https://www.youtube.com/watch?v=wYHch5QIWTQ