DM 25 : corrigé

Problème 1.

Ce problème est largement inspiré du sujet "Centrale 2001 PC".

Partie I

```
1°) D'après le cours, f est de classe C^{\infty}.
Pour tout n \in \mathbb{N}, notons R(n) l'assertion suivante :
pour tout x \in \mathbb{R}, f^{(n)}(x) = 2^n \cos(2x + n\frac{\pi}{2}).
On a clairement R(0).
Soit n \in \mathbb{N}. Supposons R(n).
On sait que, pour tout t \in \mathbb{R}, \frac{d}{dt}(\cos t) = \cos(t + \frac{\pi}{2}), donc en dérivant la relation R(n),
on obtient f^{(n+1)}(x) = 2^{n+1} \cos(2x + n\frac{\pi}{2} + \frac{\pi}{2}), ce qui prouve R(n+1).
D'après le principe de récurrence, pour tout n \in \mathbb{N} et x \in \mathbb{R}, f^{(n)}(x) = 2^n \cos(2x + n\frac{\pi}{2}).
Ainsi, pour tout i \in \mathbb{N}, f^{(i)} est bornée et M_i = 2^i.
2°)
\diamond Soit x \in \mathbb{R} et h \in \mathbb{R}_+^*.
En appliquant l'inégalité de Taylor-Lagrange à f entre x et x + h, on obtient
|f(x+h)-f(x)-hf'(x)| \leq \frac{h^2M_2}{2}, puis la même inégalité entre x et x-h donne
|f(x-h)-f(x)+hf'(x)| \leq \frac{h^2\overline{M_2}}{2}. Alors, par inégalité triangulaire, |f(x+h)-f(x-h)-2hf'(x)| = |f(x+h)-f(x)-hf'(x)|
                                                    -(f(x-h)-f(x)+hf'(x))
                                             \leq | f(x+h) - f(x) - hf'(x)| + |f(x-h) - f(x) + hf'(x)|
                                             < h^2 M_2.
♦ Alors, d'après le corollaire de l'inégalité triangulaire,
2|hf'(x)| - |f(x+h) - f(x-h)| \le h^2 M_2, donc
2|hf'(x)| \le h^2 M_2 + |f(x+h)| + |f(x-h)| \le h^2 M_2 + 2M_0.
On en déduit que f' est bornée et que,
pour tout x \in \mathbb{R}, |f'(x)| \le \frac{M_0}{h} + \frac{\dot{M}_2 h}{2}.
```

Ainsi, $\frac{M_0}{h} + \frac{M_2h}{2}$ est un majorant de $\{|f'(x)| / x \in \mathbb{R}\}$, donc il est plus grand que le plus petit des majorants. Ceci démontre que $M_1 \leq \frac{M_0}{h} + \frac{M_2h}{2}$. Par la suite, ce raisonnement sors apparents de la company de raisonnement sera appelé un passage à la borne supérieure

- 3°) On suppose que f est de classe C^2 et que f et f'' sont bornées sur \mathbb{R} . D'après la question précédente, M_1 est défini, et pour tout h > 0, $M_1 \le \frac{M_0}{h} + \frac{M_2 h}{2}$. \Leftrightarrow Si $M_2 = 0$, alors f'' = 0 donc il existe $C, D \in \mathbb{R}$ tels que $f = (x \mapsto Cx + D)$, mais
- f est bornée sur \mathbb{R} , donc C=0 puis f'=0. Ainsi $M_1=0$ et on a bien $M_1\leq \sqrt{2M_0M_2}$.
- \diamond Supposons maintenant que $M_2 > 0$, ce qui impose également $M_0 > 0$ (car si $M_0 = 0$) alors f = 0, donc f'' = 0).

La fonction définie sur \mathbb{R}_+^* par $v(h) = \frac{M_0}{h} + \frac{M_2 h}{2}$ a pour dérivée $v'(h) = \frac{M_2 h^2 - 2M_0}{2h^2}$

qui s'annule pour $h_0 = \sqrt{\frac{2M_0}{M_2}}$.

On calcule
$$v(h_0) = \sqrt{\frac{M_0 M_2}{2}} + \frac{\sqrt{2M_0 M_2}}{2} = \sqrt{M_0 M_2} \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}\right) = \sqrt{2M_0 M_2}.$$

Alors $M_1 \le v(h_0) = \sqrt{2M_0 M_2}.$

4°)

 \diamond Soit $h \in \mathbb{R}_+^*$. On applique de même l'inégalité de Taylor-Lagrange à l'ordre 3 entre x et x + h puis entre x et x - h:

$$|f(x+h) - f(x) - hf'(x) - \frac{h^2}{2}f''(x)| \le \frac{h^3M_3}{6}$$
 et

$$|f(x-h) - f(x) + hf'(x) - \frac{h^2}{2}f''(x)| \le \frac{h^3M_3}{6}$$

Si l'on pose
$$A = f(x+h) - f(x) - hf'(x) - \frac{h^2}{2}f''(x)$$

et
$$B = f(x-h) - f(x) + hf'(x) - \frac{h^2}{2}f''(x)$$
, alors $A - B = f(x+h) - f(x-h) - 2hf'(x)$,

or $|A-B| \leq |A| + |B| \leq \frac{h^3 M_3}{3}$, donc par le corollaire de l'inégalité triangulaire,

$$2h|f'(x)| - |f(x+h) - f(x-h)| \le \frac{h^3 M_3}{3}$$
, puis

$$2h|f'(x)| \le \frac{h^3 M_3}{3} + |f(x+h)| + |f(x-h)| \le \frac{h^3 M_3}{3} + 2M_0.$$

$$M_1 \le \frac{h^2 M_3}{6} + \frac{M_0}{h}$$
, pour tout $h > 0$.

$$2h|f'(x)| \leq \frac{h^2M_3}{3} + |f(x+h)| + |f(x-h)| \leq \frac{h^2M_3}{3} + 2M_0.$$
 Ainsi f' est bornée sur \mathbb{R} , donc M_1 est bien défini, et par passage au sup,
$$M_1 \leq \frac{h^2M_3}{6} + \frac{M_0}{h}, \text{ pour tout } h > 0.$$
 Supposons que $M_3 > 0$, ce qui impose également que $M_0 > 0$: La fonction définie par
$$v(h) = \frac{M_0}{h} + \frac{M_3h^2}{6} \text{ a pour dérivée } v'(h) = \frac{M_3h^3 - 3M_0}{3h^2} \text{ qui s'annule pour } h_0 = \left(\frac{3M_0}{M_3}\right)^{1/3}.$$
 On calcule

$$h_0 = \left(\frac{3M_0}{M_3}\right)^{1/3}$$
. On calcule

$$v(h_0) = \frac{M_0 M_3^{\frac{1}{3}}}{(3M_0)^{\frac{1}{3}}} + \frac{M_3 9^{\frac{1}{3}} M_0^{\frac{2}{3}}}{6M_3^{\frac{2}{3}}} = \frac{(M_0^2 M_3)^{\frac{1}{3}}}{3^{\frac{1}{3}}} + \frac{(M_3 M_0^2 9)^{\frac{1}{3}}}{6} = (9M_3 M_0^2)^{\frac{1}{3}} \left(\frac{1}{3} + \frac{1}{6}\right).$$

Ainsi, $M_1 \le v(h_0) = \frac{1}{2} (9M_0^2 M_3)^{1/3}$.

Si $M_3 = 0$, f''' = 0, donc f est un polynôme de degré inférieur à 2, de la forme $x \mapsto ax^2 + bx + c$. Si $a \neq 0$, alors au voisinage de $+\infty$, $|f(x)| \sim |a|x^2 \underset{x \to +\infty}{\longrightarrow} +\infty$, ce qui est faux car f est bornée. Ainsi, a = 0 puis de même, b = 0. Ainsi f est une fonction constante, donc f' = 0. Alors $M_1 = 0$ et l'inégalité précédente est encore valable. f' et $f^{(3)}$ étant bornées sur \mathbb{R} , la question 2 appliquée à f' montre que f'' est bornée sur \mathbb{R} .

Partie II

 $5^{\circ})$

♦ D'après la formule du binôme de Newton,

$$(e^x - 1)^m = \sum_{k=0}^m \binom{m}{k} (-1)^{m-k} e^{kx}$$
, or au voisinage de 0, on sait que $e^t = \sum_{j=0}^m \frac{t^j}{j!} + o(t^m)$,

donc pour tout $k \in \{0, \ldots, n\}$, comme $kx \xrightarrow[x \to 0]{} 0$, par composition,

$$e^{kx} = \sum_{j=0}^{m} \frac{k^j x^j}{j!} + o(x^m).$$

Ainsi, la première égalité devient

$$(e^{x} - 1)^{m} = \sum_{k=0}^{m} {m \choose k} (-1)^{m-k} \left(\sum_{j=0}^{m} \frac{k^{j} x^{j}}{j!}\right) + o(x^{m}),$$

puis en intervertissant les deux symboles de sommation,

$$(e^{x} - 1)^{m} = \sum_{j=0}^{m} \left(\sum_{k=0}^{m} {m \choose k} (-1)^{m-k} k^{j} \right) \frac{x^{j}}{j!} + o(x^{m}).$$

♦ Par ailleurs.

 $(e^x - 1)^m = (x + o(x))^m = [x(1 + o(1))]^m = x^m(1 + o(1)) = x^m + o(x^m)$, donc par unicité du développement limité, on obtient que, pour tout $j \in \{1, ..., m-1\}$,

$$\sum_{k=1}^{m} {m \choose k} (-1)^{m-k} k^j = \sum_{k=0}^{m} {m \choose k} (-1)^{m-k} k^j = 0,$$

et pour
$$j = m$$
, $\sum_{k=1}^{m} {m \choose k} (-1)^{m-k} k^j = \sum_{k=0}^{m} {m \choose k} (-1)^{m-k} k^j = m!$.

6°)

 \diamond Soit $x \in \mathbb{R}$ et $h \in \mathbb{R}_+^*$. Appliquons l'inégalité de Taylor-Lagrange entre x et x+h:

$$|f(x+h) - f(x) - \sum_{j=1}^{n-1} \frac{f^{(j)}(x)}{j!} h^j| \le \frac{M_n h^n}{n!}.$$

On en déduit que
$$\left| \sum_{j=1}^{n-1} \frac{f^{(j)}(x)}{j!} h^j \right| \le \frac{M_n h^n}{n!} + |f(x+h) - f(x)| \le \frac{M_n h^n}{n!} + 2M_0.$$

galité triangulaire, on déduit du point précédent que

$$\left| \sum_{h=1}^{n-1} (-1)^h \binom{n-1}{h} \sum_{j=1}^{n-1} \frac{f^{(j)}(x)}{j!} h^j \right| \le \sum_{h=1}^{n-1} \binom{n-1}{h} \left(\frac{M_n h^n}{n!} + 2M_0 \right).$$

En permutant les sommations sur
$$h$$
 et j et en utilisant la question 5 avec $m = n - 1$,
$$\sum_{h=1}^{n-1} (-1)^h \binom{n-1}{h} \sum_{j=1}^{n-1} \frac{f^{(j)}(x)}{j!} h^j = \sum_{j=1}^{n-1} \left(\sum_{h=1}^{n-1} (-1)^h \binom{n-1}{h} h^j\right) \frac{f^{(j)}(x)}{j!} = (-1)^{n-1} f^{(n-1)}(x),$$

donc l'inégalité précédente se met sous la forme :

 $|f^{(n-1)}(x)| \leq C_1 M_n + C_2 M_0$ où C_1 et C_2 sont des quantités indépendantes de x. Ceci prouve que $f^{(n-1)}$ est bornée sur \mathbb{R} .

- $\diamond~$ Soit $k \in \{2, \dots, n\}.$ Supposons que $f^{(k)}$ est bornée. On applique le résultat précédent en remplaçant n par k. Ainsi, $f^{(k-1)}$ est bornée. Or on a supposé que $f^{(n)}$ est bornée sur \mathbb{R} , donc par récurrence descendante, pour tout $k \in \{1, \ldots, n\}$, $f^{(k)}$ est bornée sur \mathbb{R} et M_k est bien défini. C'est aussi vrai pour k=0 par hypothèse.
- **7°)** Supposons que f n'est pas constante. Soit $k \in \{0, \ldots, n\}$. Supposons que $M_k = 0$. Alors $f^{(k)}$ est identiquement nulle, donc par intégrations successives, f est une fonction

polynomiale de la forme $x \longmapsto \sum_{i=1}^{N} a_h x^h$ avec $a_N \neq 0$ et $N \geq 1$ car f n'est pas constante.

Alors au voisinage de $+\infty$, $|f(x)| \sim |a_N| x^N \underset{x \to +\infty}{\longrightarrow} +\infty$, ce qui est faux car f est bornée sur \mathbb{R} . Ainsi, $M_k > 0$.

8°) $(s_1 \times \cdots \times s_k)^n = (s_1 \times \cdots \times s_k)^k (s_1 \times \cdots \times s_k)^{n-k} \le (s_1 \times \cdots \times s_k)^k s_k^{k(n-k)}, \text{ car}$ la suite (s_i) est croissante et car les s_i sont strictement positifs, donc, en utilisant à nouveau la croissance de (s_i) ,

$$(s_1 \times \dots \times s_k)^n \le (s_1 \times \dots \times s_k)^k (s_{k+1} \times \dots \times s_n)^k = (s_1 \times \dots \times s_n)^k.$$

 9°) Si f est constante, l'inégalité demandée est évidente. On suppose donc que f n'est pas constante. D'après la question précédente, pour tout

$$k \in \{0, \dots, n\}, M_k > 0$$
, donc on peut poser $s_k = 2^{k-1} \frac{M_k}{M_{k-1}}$ pour $k \in \mathbb{N}_n$.

Soit $k \in \{1, \dots, n-1\}$. $\frac{s_{k+1}}{s_k} = 2\frac{M_{k+1}M_{k-1}}{M_k^2} \ge 1$ d'après la question 3 appliquée à

 $f^{(k-1)}$, qui est bien de classe C^2 . Ainsi, la suite $(s_k)_{1 \le k \le n}$ est une suite croissante de réels strictement positifs, donc d'après la question précédente, $(s_1s_2...s_k)^n \leq (s_1s_2...s_n)^k$. Il s'agit de produits télescopiques. Ainsi

$$\left(\frac{M_k}{M_0} 2^{0+1+\ldots+(k-1)}\right)^n \leq \left(\frac{M_n}{M_0} 2^{1+\ldots+(n-1)}\right)^k \text{ d'où } M_k^n \leq M_n^k M_0^{n-k} 2^{\frac{kn(n-1)}{2} - \frac{nk(k-1)}{2}}$$
 d'où enfin $M_k \leq M_n^{\frac{k}{n}} M_0^{1-\frac{k}{n}} 2^{\frac{k(n-k)}{2}}.$

Problème 2

Ce problème est extrait du sujet "Centrale 1997 MP".

Partie I

1°) a) Soit $n \in \mathbb{N}$. Posons R(n) l'assertion : $s_n \geq 0$.

Par hypothèse, on a R(0) et R(1).

Pour $n \ge 1$, supposons R(n) et R(n-1).

Alors $s_{n+1} = s_n + a_{n-1}s_{n-1} \ge 0$, d'où R(n+1).

D'après le principe de récurrence, pour tout $n \in \mathbb{N}$, $s_n \geq 0$.

Alors, pour tout $n \geq 1$, $s_{n+1} = s_n + a_{n-1}s_{n-1} \geq s_n$, ce qui prouve que $(s_n)_{n\geq 1}$ est croissante.

b) Soit $n \geq 2$: $s_{n+1} = s_n + a_{n-1}s_{n-1} \leq s_n + a_{n-1}s_n$, car $n-1 \geq 1$ et $(s_k)_{k\geq 1}$ est

croissante. Ainsi, $s_{n+1} \leq s_n(1+a_{n-1})$, or pour tout $t \in \mathbb{R}$, $e^t = \sum_{n=0}^{+\infty} \frac{t^n}{n!} \geq 1+t$, donc

 $s_{n+1} \le s_n e^{a_{n-1}}.$

c) \diamond On suppose que la série $\sum a_n$ converge.

Par récurrence, on déduit de l'inégalité précédente que, pour tout $n \geq 2$,

$$s_n \le s_2 \exp(\sum_{k=1}^{n-2} a_k) \le s_2 \exp(\sum_{k=1}^{+\infty} a_k).$$

Ainsi la suite $(s_n)_{n\geq 2}$ est croissante et majorée, donc elle converge.

 \diamond On suppose maintenant que la suite (s_n) converge vers une limite $\ell \in \mathbb{R}$.

Pour tout $n \ge 1$, $s_n \ge s_1$, donc $\ell \ge s_1 > 0$. Pour $n \ge 2$, $s_{n-1} > 0$, donc $a_{n-1} = \frac{s_{n+1} - s_n}{s_{n-1}} \sim \frac{1}{\ell}(s_{n+1} - s_n)$. Ainsi $\sum a_n$ a même

nature que $\sum (s_{n+1} - s_n)$. Mais $\sum_{k=1}^{n} (s_{k+1} - s_k) = s_{n+1} - s_1 \underset{n \to +\infty}{\longrightarrow} \ell - s_1$,

donc $\sum (s_{n+1} - s_n)$ et $\sum a_n$ sont convergentes.

2°) \diamond Soit $n \in \mathbb{N}$. On note R(n) l'assertion : $|s_n| \leq v_n$.

Par hypothèse, on a R(0) et R(1).

Pour $n \ge 1$, supposons R(n) et R(n-1).

 $|s_{n+1}| = |s_n + a_{n-1}s_{n-1}| \le |s_n| + |a_{n-1}||s_{n-1}| \le v_n + |a_{n-1}|v_{n-1}|$, d'après l'hypothèse de récurrence. Ainsi, $|s_{n+1}| \le v_{n+1}$, ce qui prouve R(n+1).

La première partie de la question 1.c reste valable lorsque $s_1 = 0$ (l'hypothèse $s_1 \neq 0$ n'intervient pas), donc on peut l'appliquer en remplaçant la suite (s_n) par la suite (v_n) . Or $\sum |a_n|$ converge, donc (v_n) converge. Alors la série $\sum (v_{n+1} - v_n)$ converge, donc la série $\sum |s_{n+1} - s_n|$ est convergente.

 \diamond Ceci prouve que $\sum (s_{n+1} - s_n)$ est absolument convergente,

mais
$$\sum_{k=1}^{n} (s_{k+1} - s_k) = s_{n+1} - s_1$$
, donc la suite (s_n) est convergente.

- $\mathbf{3}^{\circ}$) L existe d'après la question 2, car la série géométrique $\sum a^n$ est convergente.
- \diamond $s_n \underset{n \to +\infty}{\longrightarrow} L \neq 0$, donc $s_n \sim L$, puis $s_{n+1} s_n = a_{n-1} s_{n-1} \sim a^{n-1} L$.
- \diamond La série $\sum a^{n-1}$ est convergente et positive, donc on peut appliquer le théorème de sommation des relations d'équivalence. Ainsi,

$$\sum_{k=n}^{+\infty} (s_{k+1} - s_k) \sim \sum_{k=n}^{+\infty} a^{k-1} L = La^{n-1} \frac{1}{1-a}.$$

D'autre part, pour
$$N \ge n$$
, $\sum_{k=n}^{N} (s_{k+1} - s_k) = s_{N+1} - s_n \xrightarrow[N \to +\infty]{} L - s_n$,

donc
$$L - s_n \sim \frac{La^{n-1}}{1-a}$$
.

4°) **a**) De même $s_{n+1} - s_n \sim La_{n-1} = \frac{L}{n(n+1)} = L\left(\frac{1}{n} - \frac{1}{n+1}\right)$, donc par sommation

des relations d'équivalence, $L - s_n \sim L \sum_{k=n}^{+\infty} (\frac{1}{k} - \frac{1}{k+1}) = \frac{L}{n}$.

b) Soit
$$n \ge 1$$
. Posons $\varepsilon_n = s_n - L + \frac{L}{n}$.

$$\varepsilon_{n+1} - \varepsilon_n = s_{n+1} - s_n - \frac{L}{n} + \frac{L}{n+1} = a_{n-1}s_{n-1} - L(\frac{1}{n} - \frac{1}{n+1}),$$

donc
$$\varepsilon_{n+1} - \varepsilon_n = \frac{1}{n(n+1)} (s_{n-1} - L) \sim \frac{1}{n(n+1)} (-\frac{L}{n-1}) \sim -\frac{L}{n^3}.$$

De plus,
$$\frac{1}{n^2} - \frac{1}{(n+1)^2} = \frac{1}{n^2} \left(1 - \frac{1}{(1+\frac{1}{n})^2}\right) = \frac{1}{n^2} \left(1 - \left(1 - \frac{2}{n} + o(\frac{1}{n})\right)\right),$$

donc
$$\frac{1}{n^2} - \frac{1}{(n+1)^2} = \frac{2}{n^3} + o(\frac{1}{n^3}) \sim \frac{2}{n^3}$$
.

Ainsi, d'après le théorème de sommation des relations d'équivalence,

$$\sum_{k=n}^{+\infty} (\varepsilon_{k+1} - \varepsilon_k) \sim \frac{L}{2} \sum_{k=n}^{+\infty} (\frac{1}{(k+1)^2} - \frac{1}{k^2}) = -\frac{L}{2n^2},$$

or
$$\varepsilon_n \xrightarrow[n \to +\infty]{} 0$$
, donc $\sum_{k=-\infty}^{+\infty} (\varepsilon_{k+1} - \varepsilon_k) = -\varepsilon_n$.

Finalement
$$\varepsilon_n \sim \frac{L}{2n^2}$$
 et $s_n = L - \frac{L}{n} + \frac{L}{2n^2} + o(\frac{1}{n^2})$.

Partie II

5°) L'application L est bien définie d'après la question 2. Fixons $(s_0, s_1, t_0, t_1) \in \mathbb{R}^4$ et $\alpha \in \mathbb{R}$.

Notons (s_n) et (t_n) les suites associées, vérifiant les relations : $s_{n+1} = s_n + a_{n-1}s_{n-1}$ et $t_{n+1} = t_n + a_{n-1}t_{n-1}$ pour tout $n \ge 1$.

Ainsi, $s_n \xrightarrow[n \to +\infty]{} L(s_0, s_1)$ et $t_n \xrightarrow[n \to +\infty]{} L(t_0, t_1)$.

Posons, pour tout $n \in \mathbb{N}$, $w_n = \alpha s_n + t_n$. Alors, pour tout $n \ge 1$,

 $w_{n+1} = \alpha(s_n + a_{n-1}s_{n-1}) + (t_n + a_{n-1}t_{n-1}) = w_n + a_{n-1}w_{n-1}$, donc la suite (w_n) satisfait la relation de récurrenc de l'énoncé. Ainsi, $w_n \underset{n \to +\infty}{\longrightarrow} L(w_0, w_1) = L(\alpha s_0 + t_0, \alpha s_1 + t_1)$.

Mais $w_n = \alpha s_n + t_n \underset{n \to +\infty}{\longrightarrow} \alpha L(s_0, s_1) + L(t_0, t_1)$. Ainsi, d'après l'unicité de la limite, $L(\alpha s_0 + t_0, \alpha s_1 + t_1) = \alpha L(s_0, s_1) + L(t_0, t_1)$: on a prouvé la linéarité de L.

6°) On suppose qu'il existe un indice $m \in \mathbb{N}$ tel que $s_m = 0$.

Supposons d'abord que $s_{m+1} = 0$. Alors si $m \ge 1$, $s_{m-1} = \frac{1}{a_{m-1}}(s_{m+1} - s_m) = 0$, puis par récurrence descendante on montre que, pour tout $i \in \{0, \ldots, m\}$, $s_i = s_{i+1} = 0$. En particulier, pour i = 0, $s_0 = s_1 = 0$, ce qui est faux par hypothèse. Ainsi $s_{m+1} \ne 0$.

Premier cas: Supposons que $s_{m+1} > 0$.

On pose $v_n = s_{m+n}$. Alors la suite (v_n) suit encore la relation de récurrence de l'énoncé. De plus, $v_0 = s_m = 0$ et $v_1 = s_{m+1} > 0$, donc d'après la question 1, la suite (v_n) est croissante. En particulier, $v_n \ge v_1$ pour $n \ge 1$. Mais (v_n) et (s_n) ont la même limite, égale à $L(s_0, s_1)$, donc $L(s_0, s_1) \ge v_1 > 0$. En particulier, $L(s_0, s_1) \ne 0$.

Second cas: Supposons que $s_{m+1} < 0$.

On pose $w_n = -s_n$. La suite (w_n) vérifie encore la relation de récurrence et (w_n) tend vers $-L(s_0, s_1)$. On peut appliquer le premier cas à (w_n) , donc on a encore $L(s_0, s_1) \neq 0$.

7°) D'après la question précédente, L(1,0) et L(0,1) sont des réels non nuls. Ainsi, L est non nulle donc $\operatorname{Ker}(L) \neq \mathbb{R}^2$.

Posons $\alpha = \frac{L(1,0)}{L(0,1)}$. Alors $L(1,0) = \alpha L(0,1)$, mais L est linéaire donc $L(1,-\alpha) = 0$. Or $(1,-\alpha) \neq 0$, donc $\operatorname{Ker}(L) \neq \{0\}$.

 8°) \diamond Supposons que la suite (s_n) n'est pas alternée.

Ainsi, il existe $m \in \mathbb{N}$ tel que $s_m s_{m+1} \geq 0$.

Si $s_m = 0$ ou $s_{m+1} = 0$, d'après la question 6, $(s_n) \notin \text{Ker}(L)$.

Sinon, $s_m s_{m+1} > 0$. Si s_m et s_{m+1} sont strictement positifs, on applique la question 1 à la suite $(v_n) = (s_{n+m})$ pour montrer comme en question 6 que $(s_n) \notin \text{Ker}(L)$. Si s_m et s_{m+1} sont strictement négatifs, on applique la phrase précédente à $(w_n) = (-s_n)$ et on a encore $(s_n) \notin \text{Ker}(L)$.

On a donc montré que si la suite n'est pas alternée, elle n'est pas dans Ker(L).

 \diamond Réciproquement, supposons que la suite (s_n) est alternée.

Pour tout $n \in \mathbb{N}$, $s_n s_{n+1} < 0$, donc en passant à la limite, $L(s_0, s_1).L(s_0, s_1) \leq 0$. Nécessairement $L(s_0, s_1) = 0$ et $(s_n) \in \text{Ker}(L)$.

9°) Ker(L) est une droite vectorielle, donc il existe $(a,b) \in \mathbb{R}^2 \setminus \{0\}$ tel que Ker(L) = Vect $\{(a,b)\} = \{(\lambda a, \lambda b) / \lambda \in \mathbb{R}\}.$

D'après la question précédente, ab < 0, donc $a \neq 0$, donc $(1, \frac{b}{a}) \in \text{Ker}(L)$.

Posons $r = -\frac{b}{a}$. Alors r > 0 et $(1, -r) \in \text{Ker}(L)$.

Supposons maintenant que $(s_0, s_1) \in \text{Ker}(L) \setminus \{0\}$. Ker(L) étant une droite vectorielle dirigée par (1, -r), il existe $\lambda \in \mathbb{R}^*$ tel que $(s_0, s_1) = \lambda(1, -r)$.

On sait que $s_0 s_1 < 0$, donc $s_0 \neq 0$. De plus $-\frac{s_1}{s_0} = -\frac{-\lambda r}{\lambda} = r$.

Ainsi le rapport $-\frac{s_1}{s_0}$ ne dépend pas de $(s_0, s_1) \in \text{Ker}(L) \setminus \{0\}$.

10°)
$$\diamond$$
 Soit $n \ge 1$. $r_n = -\frac{s_n + a_{n-1}s_{n-1}}{s_n} = -1 - a_{n-1} \left(\frac{s_n}{s_{n-1}}\right)^{-1}$, donc $r_n = -1 + \frac{a_{n-1}}{r_{n-1}}$.

La suite (s_n) est alterné, donc s_n et s_{n+1} sont non nuls et de signes opposés, donc $r_n > 0$.

Pour $n \ge 1$, $-1 + \frac{a_{n-1}}{r_{n-1}} = r_n > 0$, donc $\frac{a_{n-1}}{r_{n-1}} > 1$ puis $r_{n-1} < a_{n-1}$. Ainsi, pour tout $n \in \mathbb{N}, r_n < a_n$.

 $\diamond 0 \le r_n \le a_n$ et $\sum a_n$ converge, donc $\sum r_n$ converge également.

En particulier, $r_n \underset{n \to +\infty}{\longrightarrow} 0$, donc $\frac{|s_{n+1}|}{|s_n|} = r_n \underset{n \to +\infty}{\longrightarrow} 0$. Alors, d'après le critère de d'Alembert, $\sum |s_n|$ converge et $\sum s_n$ converge absolument.

11°)

 \diamond f_n est décroissante sur \mathbb{R}_+ , car $a_n > 0$ et elle est dérivable. Par composition, g_n est aussi dérivable et monotone. Elle est croissante si n est impair et décroissante si n est pair.

$$\Leftrightarrow g_{n+1} = g_n \circ f_{n+1}, \text{ donc pour } x \ge 0, g'_{n+1}(x) = f'_{n+1}(x)g'_n(f_{n+1}(x)),$$

avec
$$f'_{n+1}(x) = \frac{-a_{n+1}}{(1+x)^2}$$
, donc $|g'_{n+1}(x)| \le |a_{n+1}||g'_n(f_{n+1}(x))|$.

On en déduit par récurrence sur n que, pour tout $x \ge 0$, $|g'_n(x)| \le a_0 a_1 \cdots a_n$. En effet, pour n = 0, $|g'_0(x)| = \frac{a_0}{(1+x)^2} \le a_0$, donc l'initialisation de la récurrence est valide.

 \diamond Soit $n \geq 1$. $|p_n - p_{n-1}| = |g_{n-1}(f_n(0)) - g_{n-1}(0)| = |g'_{n-1}(a)||f_n(0)|$ où $a \in]0, f_n(0)[$ d'après l'égalité des accroissements finis, or $|f_n(0)| = a_n$, donc d'après l'inégalité précédente, $|p_n - p_{n-1}| \leq a_0 a_1 \cdots a_n$.

12°)
$$\diamond$$
 Soit $n \ge 1$. $r_n = -1 + \frac{a_{n-1}}{r_{n-1}}$ donc $r_{n-1} = \frac{a_{n-1}}{1 + r_n} = f_{n-1}(r_n)$.

On en déduit par récurrence que $r_0 = g_{n-1}(r_n)$.

Or $r_n \in]0, a_n[$ et g_{n-1} est strictement monotone, donc $r_0 = g_{n-1}(r_n) \in]g_{n-1}(0), g_{n-1}(a_n)[$. Mais $g_{n-1}(0) = p_{n-1}$ et $g_{n-1}(a_n) = g_{n-1}(f_n(0)) = g_n(0) = p_n$, donc $r_0 \in]p_{n-1}, p_n[$. $\Rightarrow \sum a_n$ converge, donc $a_n \xrightarrow[n \to +\infty]{} 0$, donc il existe $N \in \mathbb{N}^*$ tel que, pour tout $n \geq N$,

 $0 < a_n \le \frac{1}{2}$. Alors, d'après la question précédente, pour tout $n \ge N$,

$$|p_n - p_{n-1}| \le A(\frac{1}{2})^{n-N+1}$$
, où $A = \prod_{k=1}^{N-1} a_k$.

Ainsi, $p_n - p_{n-1} \underset{n \to +\infty}{\longrightarrow} 0$, or $|p_n - r_0| \le |p_n - p_{n-1}|$, donc $p_n \underset{n \to +\infty}{\longrightarrow} r_0$.