WHAT IS CLAIMED IS:

1. An aluminum alloy structural plate excelling in strength and corrosion resistance, comprising 4.8-7% (mass%, hereinafter the same) Zn, 1-3% Mg, 1-2.5% Cu, and 0.05-0.25% Zr, with the remaining portion consisting of Al and impurities, wherein the aluminum alloy structural plate has a structure containing 25% or more of grain boundaries with misorientations of $3-10^{\circ}$ at the plate surface.

10

2. The aluminum alloy structural plate excelling in strength and corrosion resistance, wherein the average grain size is 10 μm or less at the plate surface.

15

20

3. A method of manufacturing an aluminum alloy structural plate excelling in strength and corrosion resistance, comprising: homogenizing an ingot of an aluminum alloy having the composition according to claim 1; hot rolling the ingot; repeatedly rolling the hot-rolled product at 400-150°C so that the degree of working is 70% or more to produce a plate material with a specific thickness; subjecting the plate material to a solution heat treatment at 450-490°C for five minutes or more; and cooling the resulting plate material at a cooling rate of 10°C/second or more.

25

4. A method of manufacturing an aluminum alloy structural plate excelling in strength and corrosion resistance,

comprising: homogenizing an ingot of an aluminum alloy having the above composition; hot rolling the ingot; repeatedly rolling the hot-rolled product at 400-150°C in a state in which rolls for hot rolling are heated at 40°C or more so that the degree of working is 70% or more to produce a plate material with a specific thickness; subjecting the plate material to a solution heat treatment at 450-500°C for five minutes or more; and cooling the resulting plate material at a cooling rate of 10°C/second or more.