

LÓGICA MATEMÁTICA

MSc. Fernanda Dias

Decimal	Binário	Octal	Hexadecimal
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

SOMA

1 e vai 1

SUBTRAÇÃO

1 e vai 1 <mark>emprestado</mark>

NOTA DE AULA

Resolva as seguintes operações

c)
$$1001 - 0101 =$$

d)
$$1011 - 10 =$$

DIVISÃO

DIVISÃO


```
1010'1 | 1111
-111
        11
00111
   111
   000
```


PORTAS E CIRCUITOS LÓGICOS

OPERADORES FUNDAMENTAIS

AND (E) Fals<mark>0</mark>

Operação entre duas ou mais variáveis somente apresenta resultado 1 se todas as variáveis estiverem no estado lógico 1.

Tabela Verdade

Α	В	Saída
0	0	0
0	1	0
1	0	0
1	1	1

Operação lógica OR entre duas ou mais variáveis apresenta resultado 1 se pelo menos uma das variáveis estiver no estado lógico 1.

Símbolo Lógico

Tabela Verdade

Α	В	Saída
0	0	0
0	1	1
1	0	1
1	1	1

EXEMPLO

EXEMPLO

Agora é com vocês!

$$A = 0$$
 $B = 1$ $C = 1$ $D = 1$

Agora é com vocês!

$$A = 0$$
 $B = 1$ $C = 1$ $D = 1$

Agora é com vocês!

$$A = 0$$
 $B = 1$ $C = 1$ $D = 1$

NOT

Negando o valor

Símbolo Lógico

Tabela Verdade

EXEMPLO

OPERADORES SECUNDÁRIOS

Negação do AND - falso

Α	В	Saída
0	0	0
0	1	0
1	0	0
1	1	1

Símbolo Lógico

Tabela Verdade

Α	В	Saída
0	0	1
0	1	1
1	0	1
1	1	0

Negação do OR – verdade1ro

Α	В	Saída
0	0	0
0	1	1
1	0	1
1	1	1

Símbolo Lógico

Tabela Verdade

Α	В	Saída
0	0	1
0	1	0
1	0	0
1	1	0

EXEMPLO

$$A + B$$
 $0 + 1 = 1$ negando 0

C.D
$$0.1 = 0$$
 negando $\frac{1}{2}$

XOR

Operação entre duas variáveis A e B apresenta resultado 1 <u>se apenas uma</u> das duas variáveis estiver no estado lógico 1

Iguais = 0 Diferentes 1

Símbolo Lógico

Tabela Verdade

В	Saída
0	0
1	1
0	1
1	0
	0

XNOR entre duas variáveis A e B apresenta resultado 1 <u>se e somente se</u> as duas variáveis estiverem no mesmo estado lógico.

Iguais = 1 Diferentes 0

Símbolo Lógico

Tabela Verdade

В	Saída
0	1
1	0
О	0
1	1
	0

EXEMPLO

EXPRESÕES LÓGICAS

Obter o circuito com base na expressão lógica

$$[(A \oplus B) + (A.B)] + (\overline{B + C})$$

$$[(A + B) + (A.B)] + (B + C)$$

NA PRÁTICA

https://academo.org/demos/logic-gate-simulator/

Add node

Full screen mode

PRATICANDO

$$A = 0$$
 $B = 1$ $C = 0$ $D = 1$

$$A = 0$$
 $B = 1$

RESPOSTAS

$$A = 0 B = 1$$

RESPOSTAS

$$A = 0$$
 $B = 1$ $C = 0$ $D = 1$

RESPOSTAS

$$A = 0 B = 1 C = 0$$

NOTA DE AULA

QUESTÃO 1

Obtenha a saída dos seguintes circuitos :

A= 0 B=1 C=1 D=0

QUESTÃO 2

Obtenha o circuito lógico das seguintes expressões e informe a resposta da saída lógica:

$$S = [\overline{A} \cdot (B + C) + C]$$

$$S = [\overline{(B \cdot C)} + (A \oplus C)]$$