1 Definitions

1.1 Misc

Let
$$m = \left\lceil \left(\frac{N}{102}\right)^{\frac{1}{d}} \right\rceil$$
, base of the counter

MSR = most significant digit region

 $C_0 = \text{starting value of counter}$

$$d = \lceil \log_m C_0 \rceil = \left\lfloor \frac{k}{2} \right\rfloor$$
, number of digits per row

 $C_f = m^d$, final value of the counter

 $C_{\Delta} = C_f - C_0$, number of rows/ times to count

 $l = \lceil \log m \rceil + 2$, bits needed to encode each digit in binary, plus 2 for MSR and MSD

1.2 Determining the starting value

...therefore, let $d = \lfloor \frac{k}{2} \rfloor$, $m = \lceil \left(\frac{N}{102} \right)^{\frac{1}{d}} \rceil$, $l = \lceil \log m \rceil + 2$, $C_0 = m^d - \lfloor \frac{N-12l-76}{12l+90} \rfloor$, where d is the number of digits per row of the counter, m is the base of the counter, l is the number of bits needed to encode each digit in binary plus 2 for indicating whether a digit is in the MSR and is the MSD in that region, and C_0 is the start of the counter in decimal.

In general, the height of a digit region is 12l + 90. There are two cases when the height is different, namely in the first and last digit regions, where the height is 12l + 91 and 12l + 75, respectively. Let h be the height of the construction before any filler/roof tiles are added. If we define \mathcal{C}_{Δ} as the number of Counter unit rows, then $h = (\mathcal{C}_{\Delta} - 1)(12l + 90) + (12l + 91) + (12l + 75)$, simplifying to $\mathcal{C}_{\Delta}(12l + 90) + 12l + 76$. So then the maximum height of the counter is $m^d(12l + 90) + 12l + 76$. Since our goal is to end with a rectangle of height N, we need to pick a base such that the counter can increment so many times that when it stops, it is at least N.

Lemma 1. $N \leq m^d(12l + 90) + 12l + 76$.

Proof.

$$N = 102 \left(\frac{N}{102}\right) = 102 \left(\left(\frac{N}{102}\right)^{\frac{1}{d}}\right)^{d} \le 102 \left[\left(\frac{N}{102}\right)^{\frac{1}{d}}\right]^{d}$$
$$= 102m^{d} \le 12lm^{d} + 90m^{d} \le 12lm^{d} + 90m^{d} + 12l + 76$$
$$= m^{d}(12l + 90) + 12l + 76$$

1.3 Filling in the gaps

...this means that the number of Counter unit rows \mathcal{C}_{Δ} is $m^d - \mathcal{C}_0$, where we have defined \mathcal{C}_0 as the starting value of the counter. To choose the best starting value, we find the value for \mathcal{C}_{Δ} that gets h as close to N without exceeding N. It follows from the equation $h = \mathcal{C}_{\Delta}(12l + 90) + 12l + 76$, that $\mathcal{C}_{\Delta} = \left\lfloor \frac{N - 12l - 76}{12l + 90} \right\rfloor$.

Thus, $C_0 = m^d - \left\lfloor \frac{N-12l-76}{12l+90} \right\rfloor$. As a result of each digit requiring a width of 2 tiles, if k is odd, one additional tile column must be added. The number of filler tiles needed for the width is $k \mod 2$, and the number of filler tiles for the height is $N - 12l - 76 \mod 12l + 90$.

2 General counter

(a) A "clean" counter row, before any reading has (b) Read digit 1 in the current row, write digit 1 started. in the next row.

(c) Read digit 2 in the current row, write digit 2 (d) Read digit 3 in the current row, write digit 3 in the next row. $^{\circ}$ in the next row.

Figure 1: This illustrates how a counter reads and writes a digit region, in a general sense. The counter starts in the rightmost digit region by reading the bottommost digit within that region. After reading digit 1 in the current row, the corresponding digit region in the next row be started in the next row. The counter writes the first digit in the next row, and then returns to the second digit in the current digit region. Once all the digits in the current digit region are read and written into the next row, the counter can then do one of the following: continue reading digits by moving on to the next digit region, cross back all the way to the right of the rectangle and start reading the next row, or halt.

2.1 Digit region explanation (in progress)

Each logical row of the counter is made up of $\lceil \frac{d}{3} \rceil$ "digit regions". A digit region is a group of 1-3 digits, stacked vertically on top of one another. Within a digit region, the digits are sorted in order of significance, thus the top digit is the most significant digit, the middle digit is second most significant and the bottommost digit is the least significant.

The leftmost digit region is most significant and the rightmost is the least significant. The counter reads the least significant digit (1) in digit region 1, and continues in the current row until it detects the final digit, in the most significant digit region (MSR).

(a) Digits in a typical counter

(b) Digits in two digit regions, stacked vertically, minimizing the width.

Contrary to a typical counter, each counter row has an approximate height of 3 digits $\approx 12l$. The digits are stacked up to 3 before increasing the width.

2.2 Detecting the edges

The counter must detect if a digit is in the MSR and if it's in the MSR, whether or not it is the most significant digit. To do this, all digits are encoded with two additional bits on the least significant end. If bit 0 is 1, the reader tiles know they could be reading the most significant digit (MSD) or in case 2, the second most significant digit. If bit 1 is 1, the digit currently being read is the MSD, otherwise the digit is digit 1 in case 2.

bit_1	bit_0	Meaning
0	0	digit is not in MSR
0	1	digit is in the MSR but is not the MSD
1	0	
1	1	digit is in the MSR and is MSD

2.3 Tile set

When describing a special case, i.e. "digit x – case y", whatever follows will only apply to the MSR (due to each case only affecting the MSR.)

2.3.1 Line Gadgets

Figure 3: Line gadgets

We will use the notation NorthN_Line and SouthN_Line where N corresponds to the length of a specific line gadget.

2.3.2 Initial Value (updated to assemble right to left like the other gadgets)

We begin by encoding C_0 with the Seed unit. It has $\lceil \frac{d}{3} \rceil$ digit regions. Each digit region has three digits, except for the most significant digit region (MSR) which has $d \mod 3$ if $d \mod 3 \neq 0$, otherwise it has 3 digits.

Figure 4: These figures show an example construction of the initial value, with all the possible MSR to the left. Of the three possible MSRs, of course only one would occur in a real assemble.

Note that we use i as the index of a digit in C_0 and j as the index of a bit in a encoded digit.

• Create Seed(\(\text{Write}, 1, \text{seed}, 0, 0 \))

The idea here is to repeat these steps from i = 0 until i is the index of the first digit in the MSR. These steps build general non-MSR digit regions shown in Figure 4d.

- Start:
- Digit: for each j = 0, ..., l-1 and each b in $bin(C_0[i])[j]$:
 - if j=0: create Counter_Write($\langle \text{Write}, 1, \text{seed}, i, j \rangle$, $\langle \text{Write}, 1, \text{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 12a.
 - if j=1: create Counter_Write($\langle \mathtt{Write}, 1, \mathtt{seed}, i, j \rangle$, $\langle \mathtt{Write}, 1, \mathtt{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 12a.
 - if 1 < j < l-1: create Counter_Write($\langle \text{Write}, 1, \text{seed}, i, j \rangle, \langle \text{Write}, 1, \text{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 12a if b=0 or Figure 12b if b=1.
 - if j=l-1: create Counter_Write(\langle Write, 1, seed, i,j
 angle, \langle DigitTop, 1, seed, i
 angle) from the general gadget shown in Figure 12a if b=0 or Figure 12b if b=1.
- Digit_Top: the following statements create the gadget shown in Figure 14a.
 - Create North_Line5($\langle DigitTop, 1, seed, i \rangle$, $\langle DigitTopA, 1, seed, i \rangle$) from the micro-gadget shown in Figure 3a.
 - Create Topper($\langle DigitTopA, 1, seed, i \rangle$, $\langle DigitTopB, 1, seed, i \rangle$) from the micro-gadget shown in Figure 13a.
 - Create South_Line4 $l(\langle \texttt{DigitTopB}, 1, \texttt{seed}, i \rangle, \langle \texttt{ReturnPath}, 1, \texttt{seed}, i \rangle)$ from the micro-gadget shown in Figure 3b.
- Create Return_From_Digit($\langle \text{ReturnPath}, 1, \text{seed}, i \rangle$, $\langle \text{NextRead}, 1, \text{seed}, i \rangle$) (single-tile)
- $i \leftarrow i + 1$
- Create Next_Read($\langle \texttt{NextRead}, 1, \texttt{seed}, i-1 \rangle$, $\langle \texttt{SecondWarp}, 2, \texttt{seed}, i \rangle$) (single-tile)
- Create Second_Warp(\langle SecondWarp, 2, seed, $i\rangle$, \langle PostWarp, 2, seed, $i\rangle$)
- Create Post_Warp($\langle PostWarp, 2, seed, i \rangle$, $\langle Write, 2, seed, i, 0 \rangle$) from the general gadget show in Figure 11c.
- Digit: for each $j = 0, \ldots, l-1$ and each b in $bin(C_0[i])[j]$:
 - if j=0: create Counter_Write($\langle \mathtt{Write}, 2, \mathtt{seed}, i, j \rangle$, $\langle \mathtt{Write}, 2, \mathtt{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 12a.
 - if j=1: create Counter_Write($\langle \text{Write}, 2, \text{seed}, i, j \rangle, \langle \text{Write}, 2, \text{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 12a.
 - if 1 < j < l-1: create Counter_Write($\langle \text{Write}, 2, \text{seed}, i, j \rangle, \langle \text{Write}, 2, \text{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 12a if b=0 or Figure 12b if b=1.
 - if j=l-1: create Counter_Write(\langle Write, 2, seed, i,j
 angle, \langle DigitTop, 2, seed, i
 angle) from the general gadget shown in Figure 12a if b=0 or Figure 12b if b=1.
- Digit_Top: the following statements create the gadget shown in Figure 14a.

- Create North_Line5($\langle DigitTop, 2, seed, i \rangle$, $\langle DigitTopA, 2, seed, i \rangle$) from the micro-gadget shown in Figure 3a.
- Create Topper($\langle \text{DigitTopA}, 2, \text{seed}, i \rangle$, $\langle \text{DigitTopB}, 2, \text{seed}, i \rangle$) from the micro-gadget shown in Figure 13a.
- Create South_Line4l($\langle \texttt{DigitTopB}, 2, \texttt{seed}, i \rangle$, $\langle \texttt{ReturnPath}, 2, \texttt{seed}, i \rangle$) from the micro-gadget shown in Figure 3b.
- Create Return_From_Digit($\langle ReturnPath, 2, seed, i \rangle$, $\langle NextRead, 2, seed, i \rangle$) from the gadget in Figure 16a.
- $i \leftarrow i + 1$
- Create Next_Read($\langle NextRead, 2, seed, i-1 \rangle$, $\langle FirstWarp, 3, seed, i \rangle$) from the general gadget shown in Figure 18f.
- Create First_Warp($\langle FirstWarp, 3, seed, i \rangle, \langle WarpBridge, 3, seed, i \rangle$)
- Create Warp_Bridge($\langle WarpBridge, 3, seed, i \rangle$, $\langle SecondWarp, 3, seed, i \rangle$) from the general gadget shown in Figure 9a.
- Create Second_Warp(\langle SecondWarp, 3, seed, $i\rangle$, \langle PostWarp, 3, seed, $i\rangle$)
- Create Post_Warp($\langle PostWarp, 3, seed, i \rangle$, $\langle Write, 3, seed, i, 0 \rangle$) from the general gadget shown in Figure 11c.
- Digit: for each j = 0, ..., l-1 and each b in $bin(C_0[i])[j]$:
 - if j=0: create Counter_Write($\langle \text{Write}, 3, \text{seed}, i, j \rangle$, $\langle \text{Write}, 3, \text{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 12a.
 - if j=1: create Counter_Write($\langle \mathtt{Write}, 3, \mathtt{seed}, i, j \rangle$, $\langle \mathtt{Write}, 3, \mathtt{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 12a.
 - if 1 < j < l-1: create Counter_Write($\langle \text{Write}, 3, \text{seed}, i, j \rangle$, $\langle \text{Write}, 3, \text{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 12a if b=0 or Figure 12b if b=1.
 - if j = l 1: create Counter_Write(\(\text{Write}, 3, \text{seed}, i, j \), \(\text{DigitTop}, 3, \text{seed}, i \)) from the general gadget shown in Figure 12a if b = 0 or Figure 12b if b = 1.
- Digit_Top: the following statements create the gadget shown in Figure 14a.
 - Create North_Line5($\langle DigitTop, 3, seed, i \rangle$, $\langle DigitTopA, 3, seed, i \rangle$) from the micro-gadget shown in Figure 3a.
 - Create Topper($\langle \texttt{DigitTopA}, 3, \texttt{seed}, i \rangle$, $\langle \texttt{DigitTopB}, 3, \texttt{seed}, i \rangle$) from the micro-gadget shown in Figure 13a.
 - Create South_Line4l($\langle \texttt{DigitTopB}, 3, \texttt{seed}, i \rangle$, $\langle \texttt{ReturnPath}, 3, \texttt{seed}, i \rangle$) from the micro-gadget shown in Figure 3b.
- Create Return_From_Digit($\langle \text{ReturnPath}, 3, \text{seed}, i \rangle$, $\langle \text{NextRead}, 3, \text{seed}, i, \rangle$) from the gadget in Figure 17.
- $i \leftarrow i + 1$
- Create Next_Read($\langle \text{NextRead}, 3, \text{seed}, i-1 \rangle$, $\langle \text{Write}, 1, \text{seed}, i \rangle$) from the general gadget shown in Figure 18e.
- if i is not an index in the MSR, go to start, else go to MSR.

MSR.

Case 1 - if d - i = 1 to create the assembly shown in 4a.

- Digit: for each j = 0, ..., l-1 and each b in $bin(C_0[i])[j]$:
 - if j=0: create Counter_Write($\langle \text{Write}, 1, \text{seed}, i, j \rangle$, $\langle \text{Write}, 1, \text{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 12b.
 - if j=1: create Counter_Write($\langle \text{Write}, 1, \text{seed}, i, j \rangle$, $\langle \text{Write}, 1, \text{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 12b.
 - if $0 \le j \le l$: create Counter_Write(\langle Write, 1, seed, $i, j \rangle$, \langle Write, 1, seed, $i, j + 1 \rangle$) from the general gadget shown in Figure 12a if b = 0 or Figure 12b if b = 1.
 - if j = l 1: create Counter_Write(\langle Write, 1, seed, $i, j \rangle$, \langle DigitTop, 1, seed, $i \rangle$) from the general gadget shown in Figure 12a if b = 0 or Figure 12b if b = 1.
- Digit_Top: the following statements create the gadget shown in Figure 14d
 - Create North_Line4l($\langle \texttt{DigitTop}, 1, \texttt{seed}, i \rangle$, $\langle \texttt{DigitTopA}, 1, \texttt{seed}, i \rangle$) from the micro-gadget shown in Figure 3a.
 - Create North_Line4($\langle \texttt{DigitTopA}, 1, \texttt{seed}, i \rangle$, $\langle \texttt{DigitTopB}, 1, \texttt{seed}, i \rangle$) from the micro-gadget shown in Figure 3a.
 - Create Topper($\langle \texttt{DigitTopB}, 1, \texttt{seed}, i \rangle$, $\langle \texttt{DigitTopC}, 1, \texttt{seed}, i \rangle$) from the micro-gadget shown in Figure 13a.
 - Create South_Line4 $l(\langle \texttt{DigitTopC}, 1, \texttt{seed}, i \rangle, \langle \texttt{DigitTopD}, 1, \texttt{seed}, i \rangle)$ from the micro-gadget shown in Figure 3b.
 - Create South_Line30($\langle \text{DigitTopD}, 1, \text{seed}, i \rangle$, $\langle \text{DigitTopE}, 1, \text{seed}, i \rangle$) from the micro-gadget shown in Figure 3b.
 - Create South_Line4 $l(\langle DigitTopE, 1, seed, i \rangle, \langle DigitTopF, 1, seed, i \rangle)$ from the micro-gadget shown in Figure 3b.
 - Create South_Line14($\langle DigitTopF, 1, seed, i \rangle$, $\langle DigitTopG, 1, seed, i \rangle$) from the micro-gadget shown in Figure 3b.
 - Create South_Line17($\langle \text{DigitTopG}, 1, \text{seed}, i \rangle$, $\langle \text{ReturnPath}, 1, \text{seed}, i \rangle$) from the micro-gadget shown in Figure 3b.
- Create Return_From_Digit($\langle \text{ReturnPath}, 1, \text{seed}, i \rangle$, $\langle \text{NextRead}, 1, \text{seed}, i \rangle$) from the general gadget shown in Figure 16d
- Create Next_Read($\langle NextRead, 1, seed, i \rangle$, $\langle Cross_Next_Row, increment \rangle$) from the micro-gadget shown in Figure 18c.

Case 2 - if d - i = 2 to create the assembly shown in 4b.

- Digit: for each $j = 0, \ldots, l-1$ and each b in $bin(C_0[i])[j]$:
 - if j=0: create Counter_Write($\langle \text{Write}, 2, \text{seed}, i, j \rangle$, $\langle \text{Write}, 2, \text{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 12b.
 - if j=1: create Counter_Write($\langle \text{Write}, 2, \text{seed}, i, j \rangle$, $\langle \text{Write}, 2, \text{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 12a.
 - if 1 < j < l-1: create Counter_Write($\langle \text{Write}, 2, \text{seed}, i, j \rangle, \langle \text{Write}, 2, \text{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 12a if b=0 or Figure 12b if b=1.
 - if j = l 1: create Counter_Write(\langle Write, 2, seed, $i, j \rangle$, \langle DigitTop, 2, seed, $i \rangle$) from the general gadget shown in Figure 12a if b = 0 or Figure 12b if b = 1.

- Digit_Top: the following statements create the gadget shown in Figure 14b
 - Create Topper($\langle \text{DigitTop}, 1, \text{seed}, i \rangle, \langle \text{DigitTopA}, 1, \text{seed}, i \rangle$) from the micro-gadget shown in Figure 13b
 - Create South_Line4 $l(\langle \texttt{DigitTopA}, 1, op, \texttt{msr} \rangle, \langle \texttt{ReturnPath}, 1, op, \texttt{msr} \rangle)$ from the micro-gadget shown in Figure 3b
- Create Return_From_Digit($\langle ReturnPath, 1, seed, i \rangle$, $\langle NextRead, 1, seed, i \rangle$) (single tile)
- $i \leftarrow i + 1$
- Create Next_Read($\langle NextRead, 1, seed, i-1 \rangle$, $\langle SecondWarp, 2, seed, i \rangle$) (single tile)
- Create Second_Warp($\langle SecondWarp, 2, seed, i \rangle$, $\langle PostWarp, 2, seed, i \rangle$) (single tile)
- Create Post_Warp($\langle PostWarp, 2, seed, i \rangle$, $\langle Write, 2, seed, i, 0 \rangle$) from the general gadget show in Figure 11l.
- Digit: for each $j = 0, \ldots, l-1$ and each b in $bin(C_0[i])[j]$:
 - if j=0: create Counter_Write($\langle \text{Write}, 2, \text{seed}, i, j \rangle$, $\langle \text{Write}, 2, \text{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 12b.
 - if j=1: create Counter_Write($\langle \text{Write}, 2, \text{seed}, i, j \rangle$, $\langle \text{Write}, 2, \text{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 12b.
 - if 1 < j < l-1: create Counter_Write($\langle \text{Write}, 2, \text{seed}, i, j \rangle, \langle \text{Write}, 2, \text{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 12a if b=0 or Figure 12b if b=1.
 - if j=l-1: create Counter_Write(\langle Write, 2, seed, i,j
 angle, \langle DigitTop, 2, seed, i
 angle) from the general gadget shown in Figure 12a if b=0 or Figure 12b if b=1.
- Digit_Top: the following statements create the gadget shown in Figure 14c
 - Create North_Line4l($\langle \texttt{DigitTop}, 2, \texttt{seed}, i \rangle$, $\langle \texttt{DigitTopA}, 2, \texttt{seed}, i \rangle$) from the micro-gadget shown in Figure 3a.
 - Create Topper($\langle \text{DigitTopA}, 2, \text{seed}, i \rangle$, $\langle \text{DigitTopB}, 2, \text{seed}, i \rangle$) from the micro-gadget shown in Figure 13c.
 - Create South_Line4 $l(\langle DigitTopB, 2, seed, i \rangle, \langle DigitTopC, 2, seed, i \rangle)$ from the micro-gadget shown in Figure 3b.
 - Create South_Line30($\langle \texttt{DigitTopC}, 2, \texttt{seed}, i \rangle$, $\langle \texttt{ReturnPath}, 2, \texttt{seed}, i \rangle$) from the micro-gadget shown in Figure 3b.
- Create Return_From_Digit($\langle ReturnPath, 2, seed, i \rangle$, $\langle NextRead, 2, seed, i \rangle$) from the micro-gadget shown in Figure 16d.
- Create Next_Read(\(\text{NextRead}, 2, \text{seed} \) , \(\text{Cross_Next_Row}, \text{increment} \)) from the micro-gadget shown in Figure 18c.

Case 3 – if d - i = 3 to create the assembly shown in 4c.

- Digit: for each j = 0, ..., l-1 and each b in $bin(C_0[i])[j]$:
 - if j=0: create Counter_Write($\langle \text{Write}, 1, \text{seed}, i, j \rangle$, $\langle \text{Write}, 1, \text{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 12a.

- if j=1: create Counter_Write($\langle \text{Write}, 1, \text{seed}, i, j \rangle, \langle \text{Write}, 1, \text{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 12a.
- if 1 < j < l-1: create Counter_Write($\langle \text{Write}, 1, \text{seed}, i, j \rangle, \langle \text{Write}, 1, \text{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 12a if b=0 or Figure 12b if b=1.
- if j = l 1: create Counter_Write(\langle Write, 1, seed, $i, j \rangle$, \langle DigitTop, 1, seed, $i \rangle$) from the general gadget shown in Figure 12a if b = 0 or Figure 12b if b = 1.
- Digit_Top: the following statements create the gadget shown in Figure 14a.
 - Create North_Line5($\langle DigitTop, 1, seed, i \rangle$, $\langle DigitTopA, 1, seed, i \rangle$) from the micro-gadget shown in Figure 3a.
 - Create Topper($\langle \texttt{DigitTopA}, 1, \texttt{seed}, i \rangle$, $\langle \texttt{DigitTopB}, 1, \texttt{seed}, i \rangle$) from the micro-gadget shown in Figure 13a.
 - Create South_Line4 $l(\langle DigitTopB, 1, seed, i \rangle, \langle ReturnPath, 1, seed, i \rangle)$ from the micro-gadget shown in Figure 3b.
- $i \leftarrow i + 1$
- Create Return_From_Digit($\langle \text{ReturnPath}, 1, \text{seed}, i-1 \rangle$, $\langle \text{SecondWarp}, 2, \text{seed}, i \rangle$) (single tile)
- Create Second_Warp(\langle SecondWarp, 2, seed, $i\rangle$, \langle PostWarp, 2, seed, $i\rangle$)
- Create Post_Warp($\langle PostWarp, 2, seed, i \rangle$, $\langle Write, 2, seed, i, 0 \rangle$) from the general gadget show in Figure 11c.
- Digit: for each $j = 0, \ldots, l-1$ and each b in $bin(C_0[i])[j]$:
 - if j=0: create Counter_Write($\langle \text{Write}, 2, \text{seed}, i, j \rangle$, $\langle \text{Write}, 2, \text{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 12a.
 - if j=1: create Counter_Write($\langle \text{Write}, 2, \text{seed}, i, j \rangle$, $\langle \text{Write}, 2, \text{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 12a.
 - if 1 < j < l-1: create Counter_Write($\langle \text{Write}, 2, \text{seed}, i, j \rangle, \langle \text{Write}, 2, \text{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 12a if b=0 or Figure 12b if b=1.
 - if j = l 1: create Counter_Write(\langle Write, 2, seed, $i, j \rangle$, \langle DigitTop, 2, seed, $i \rangle$) from the general gadget shown in Figure 12a if b = 0 or Figure 12b if b = 1.
- Digit_Top: the following statements create the gadget shown in Figure 14a.
 - Create North_Line5($\langle DigitTop, 2, seed, i \rangle$, $\langle DigitTopA, 2, seed, i \rangle$) from the micro-gadget shown in Figure 3a.
 - Create Topper($\langle \texttt{DigitTopA}, 2, \texttt{seed}, i \rangle$, $\langle \texttt{DigitTopB}, 2, \texttt{seed}, i \rangle$) from the micro-gadget shown in Figure 13a.
 - Create South_Line4 $l(\langle \texttt{DigitTopB}, 2, \texttt{seed}, i \rangle, \langle \texttt{ReturnPath}, 2, \texttt{seed}, i \rangle)$ from the micro-gadget shown in Figure 3b.
- Create Return_From_Digit($\langle \text{ReturnPath}, 2, \text{seed}, i \rangle$, $\langle \text{NextRead}, 2, \text{seed}, i \rangle$) from the gadget in Figure 16a.
- $i \leftarrow i + 1$
- Create Next_Read($\langle NextRead, 2, seed, i-1 \rangle$, $\langle FirstWarp, 3, seed, i \rangle$) from the general gadget shown in Figure 18f.

- Create First_Warp($\langle FirstWarp, 3, seed, i \rangle, \langle WarpBridge, 3, seed, i \rangle$)
- Create Warp_Bridge($\langle WarpBridge, 3, seed, i \rangle$, $\langle SecondWarp, 3, seed, i \rangle$) from the general gadget shown in Figure 9a.
- Create Second_Warp($\langle SecondWarp, 3, seed, i \rangle, \langle PostWarp, 3, seed, i \rangle$)
- Create Post_Warp($\langle PostWarp, 3, seed, i \rangle$, $\langle Write, 3, seed, i, 0 \rangle$) from the general gadget shown in Figure 11c.
- Digit: for each j = 0, ..., l-1 and each b in $bin(C_0[i])[j]$:
 - if j=0: create Counter_Write($\langle \text{Write}, 3, \text{seed}, i, j \rangle$, $\langle \text{Write}, 3, \text{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 12b.
 - if j=1: create Counter_Write($\langle \text{Write}, 3, \text{seed}, i, j \rangle, \langle \text{Write}, 3, \text{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 12b.
 - if 1 < j < l-1: create Counter_Write($\langle \text{Write}, 3, \text{seed}, i, j \rangle, \langle \text{Write}, 3, \text{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 12a if b=0 or Figure 12b if b=1.
 - if j = l 1: create Counter_Write(\(\text{Write}, 3, \text{seed}, i, j \), \(\text{DigitTop}, 3, \text{seed}, i \) if from the general gadget shown in Figure 12a if b = 0 or Figure 12b if b = 1.
- Digit_Top: the following statements create the gadget shown in Figure 14a.
 - Create North_Line5($\langle DigitTop, 3, seed, i \rangle$, $\langle DigitTopA, 3, seed, i \rangle$) from the micro-gadget shown in Figure 3a.
 - Create Topper($\langle \text{DigitTopA}, 3, \text{seed}, i \rangle$, $\langle \text{DigitTopB}, 3, \text{seed}, i \rangle$) from the micro-gadget shown in Figure 13a.
 - Create South_Line4 $l(\langle DigitTopB, 3, seed, i \rangle, \langle ReturnPath, 3, seed, i \rangle)$ from the micro-gadget shown in Figure 3b.
- Create Return_From_Digit($\langle ReturnPath, 3, seed, i \rangle$, $\langle NextRead, 3, increment, msr, msd \rangle$) from the gadget in Figure 17.

Figure 5: These figures show a full example of an initial value, with both general regions and the MSRs together, instead of separated as shown above.

2.4 Counter Unit

2.4.1 Digit readers

- For each $i = 1, 2, 3, j = 0, ..., l 3, u \in \{0, 1\}^j$, and $op \in \{\text{increment}, \text{copy}\}:$
 - if j=0: create Counter_Read($\langle \text{Read}, i, \lambda, op \rangle$, $\langle \text{Read}, i, 0, op \rangle$, $\langle \text{Read}, i, 1, op \rangle$) from the general gadget in Figure 6.

- else: create Counter_Read($\langle \text{Read}, i, u, op \rangle$, $\langle \text{Read}, i, 0u, op \rangle$, $\langle \text{Read}, i, 1u, op \rangle$) from the general gadget in Figure 6.
- For each i = 1, 2, 3 and each $u \in \{0, 1\}^{l-2}$:
 - Create Counter_Read($\langle \text{Read}, i, u, \text{copy} \rangle$, $\langle \text{PreWarp}, i, 0u, \text{copy} \rangle$, $\langle \text{PreWarp}, i, 1u, \text{copy} \rangle$) from the general gadget in Figure 6.

Since the counter must only increment the current value if the result will be less than m, the Counter_Read gadgets that have both an increment signal and input size of l-2 must first right shift the bits 2 spots, and then for each possible value after reading one more bit, check whether that value is less than m-1. Basically, if the next bit read is a 0, we check if the current value +1 is less than m. If the next bit read is a 1, we check if current value +2m+1 is less than m. For both cases, if the counter can increment the current value, then the Counter_Read gadgets output the incremented value to the Pre_Warp gadgets and propagate a copy signal. Otherwise, if the counter is unable to increment the value, it outputs a digits with all zeroes and propagates the increment signal to the next digit.

```
• For each i=1,2,3 and each u \in \{0,1\}^{l-2}:

Let guess0 = 0u >> 2, guess1 = 1u >> 2

if dec(guess0) + 1 < m-1

then R0 = bin(dec(guess0) + 1) + u[1] + u[0], copy else R0 = \{0\}^l, increment

if dec(guess1) + 1 < m-1

then R1 = bin(dec(guess1) + 1) + u[1] + u[0], copy else R1 = \{0\}^l, increment
```

- Create Counter_Read($\langle \text{Read}, i, u, \text{increment} \rangle$, $\langle \text{PreWarp}, i, R0 \rangle$, $\langle \text{PreWarp}, i, R1 \rangle$) from the general gadget in Figure 6.

Figure 6: The Counter_Read gadgets

2.4.2 Warping

We now explain the Warp_Unit. A warp unit generally consists of the following 5 gadgets: Pre_Warp, First_Warp, Warp_Bridge, Second_Warp, Post_Warp. The job of these 5 gadgets is to transport the value read by the Counter_Read all the way to the digit region in the next row, so that the Counter_Write gadgets can write the next value in the correct locations. The First_Warp and Second_Warp gadgets are single tile gadgets that have north and south glues with identical labels. This allows the gadgets to continuously assemble until stopped by earlier parts of the assembly. These single tile gadgets also have one additional glue that will allow the next piece in the warp unit to assemble, however the assembly will also block this side of the tile all the way until the gadget can no longer continue assembling in the north direction.

• Pre_Warp: These gadgets use the bits read from the Counter_Read gadgets to translate them into a signal used to tell the counter whether to begin reading another digit in the current row, or cut across the rectangle and begin reading the first digit in the next row. This signal is used from the Pre_Warp gadgets through the Digit_Top gadgets are attached after writing the current digit.

For each $i = 1, 2, 3, u \in \{0, 1\}^l$, and each $op \in \{\text{increment}, \text{copy}\}:$

- if u ends with 00: create $Pre_Warp(\langle PreWarp, i, u, op \rangle, \langle FirstWarp, i, u, op \rangle)$ from the general gadget in Figure 7a.
- if u ends with 01: create $Pre_Warp(\langle PreWarp, i, u, op \rangle, \langle FirstWarp, i, u, op, msr \rangle)$ from the general gadget in Figure 7e.
- if u ends with 11 and dec(u >> 2) >= m: create $Pre_Warp(\langle PreWarp, i, u, op \rangle, \langle FirstWarp, i, u, op, halt, \rangle)$ from the general gadget in Figure 7g if i = 1 (case 1), or Figure 7i if i = 2 (case 2), or Figure 7a if i = 3 (case 3).
- if u ends with 11: create $Pre_Warp(\langle PreWarp, i, u, op \rangle, \langle FirstWarp, i, u, op, msr, msd \rangle)$ from the general gadget in Figure 7g if i = 1 (case 1), or Figure 7i if i = 2 (case 2), or Figure 7a if i = 3 (case 3).

Figure 7: The Pre_Warp gadgets.

• First_Warp: A First_Warp connects to a Warp_Bridge gadget in all cases except when it's assembling in the MSR and it is digit 1 in case 1 or 2, in which the First_Warp gadget attaches directly to a Post_Warp gadget.

```
For each u \in \{0,1\}^l, and each op \in \{\text{increment, copy}\}:

- For each i=1,2,3: create First_Warp(\langle \text{FirstWarp}, i, u, op \rangle, \langle \text{FirstWarp}, i, u, op \rangle, \langle \text{WarpBridge}, i, u, op \rangle)

- Create First_Warp(\langle \text{FirstWarp}, 1, u, op, \text{msr} \rangle, \langle \text{FirstWarp}, 1, u, op, \text{msr} \rangle, \langle \text{PostWarp}, 1, u, op, \text{msr}, \text{msd} \rangle, \langle \text{FirstWarp}, 1, u, op, \text{msr}, \text{msd} \rangle, \langle \text{FirstWarp}, 1, u, op, \text{msr}, \text{msd} \rangle, \langle \text{PostWarp}, 1, u, op, \text{msr}, \text{msd} \rangle, \langle \text{FirstWarp}, 2, u, op, \text{msr}, \text{msd} \rangle, \langle \text{FirstWarp}, 2, u, op, \text{msr}, \text{msd} \rangle, \langle \text{WarpBridge}, 2, u, op, \text{msr}, \text{msd} \rangle, \langle \text{FirstWarp}, 3, u, op, \text{msr}, \text{msd} \rangle, \langle \text{FirstWarp}, 3, u, op, \text{msr}, \text{msd} \rangle, \langle \text{WarpBridge}, 3, u, op, \text{msr}, \text{msd} \rangle, \langle \text{WarpBridge}, 3, u, op, \text{msr}, \text{msd} \rangle,
```


Figure 8: The First_Warp gadgets overviews.

- Warp_Bridge: a Warp_Bridge gadget binds the last tile of the First_Warp gadgets to the first tile of the Second_Warp gadgets. For digit 1 in cases 1 and 2, the Warp_Bridge is omitted from the Warp_Unit.
 For each u ∈ {0,1}^l, and each op ∈ {increment, copy}:
 - For each i=1,2,3: create Warp_Bridge($\langle WarpBridge, i, u, op \rangle$, $\langle SecondWarp, i, u, op \rangle$) from the general gadget in Figure 9a.
 - Create Warp_Bridge($\langle WarpBridge, 2, u, op, msr, msd \rangle$, $\langle SecondWarp, 2, u, op, msr, msd \rangle$) from the general gadget in Figure 9g.
 - Create Warp_Bridge($\langle WarpBridge, 3, u, op, msr, msd \rangle$, $\langle SecondWarp, 3, u, op, msr, msd \rangle$) from the general gadget in Figure 9a.

Figure 9: The $Warp_Bridge$ gadgets.

• Second_Warp:

Figure 10: The Second_Warp gadgets overviews.

• Post_Warp:

```
- For each i=1,2,3: create Post_Warp(\langle PostWarp,i,u,op \rangle, \langle Write,i,u,op \rangle) from the general gadget shown in Figure 11a if i=1, or Figure 11c if i=2 or i=3.
```

- Create Post_Warp($\langle PostWarp, 1, u, op, msr \rangle$, $\langle Write, 1, u, op, msr \rangle$) from the general gadget in Figure 11j.
- For each i=1,2,3: create Post_Warp($\langle PostWarp, i, u, op, msr, msd \rangle$, $\langle Write, i, u, op, msr, msd \rangle$) from the general gadget shown in Figure 11h if i=1, or Figure 11l if i=2, or Figure 11c if i=3.

2.4.3 Counter write

- For each $i = 1, 2, 3, j = l 1, ..., 1, u \in \{0, 1\}^j$, and each $op \in \{\text{increment}, \text{copy}\}:$
 - Create Counter_Write($\langle \text{Write}, i, u0, op \rangle$, $\langle \text{Write}, i, u, op \rangle$) from the general gadget in Figure 12a
 - Create Counter_Write($\langle \text{Write}, i, u1, op \rangle$, $\langle \text{Write}, i, u, op \rangle$) from the general gadget in Figure 12b
 - Create Counter_Write($\langle \text{Write}, 1, u0, op, \text{msr} \rangle$, $\langle \text{Write}, 1, u, op, \text{msr} \rangle$) from the general gadget in Figure 12a
 - Create Counter_Write($\langle Write, 1, u1, op, msr \rangle$, $\langle Write, 1, u, op, msr \rangle$) from the general gadget in Figure 12b
 - Create Counter_Write($\langle \text{Write}, i, u0, op, \text{msr}, \text{msd} \rangle$, $\langle \text{Write}, i, u, op, \text{msr}, \text{msd} \rangle$) from the general gadget in Figure 12a
 - Create Counter_Write($\langle write, i, u1, op, msr, msd \rangle$, $\langle write, i, u, op, msr, msd \rangle$) from the general gadget in Figure 12b
- For each i = 1, 2, 3 and each $op \in \{\text{increment}, \text{copy}\}:$
 - Create Counter_Write($\langle \text{Write}, i, 0, op \rangle$, $\langle \text{DigitTop}, i, op \rangle$) from the general gadget in Figure 12a
 - Create Counter_Write($\langle \text{Write}, i, 1, op \rangle$, $\langle \text{DigitTop}, i, op \rangle$) from the general gadget in Figure 12b
 - Create Counter_Write($\langle Write, 1, 0, op, msr \rangle$, $\langle DigitTop, 1, op, msr \rangle$) from the general gadget in Figure 12a
 - Create Counter_Write($\langle Write, 1, 1, op, msr \rangle$, $\langle DigitTop, 1, op, msr \rangle$) from the general gadget in Figure 12b
 - Create Counter_Write($\langle \text{Write}, i, 0, op, \text{msr}, \text{msd} \rangle$, $\langle \text{DigitTop}, i, op, \text{msr}, \text{msd} \rangle$) from the general gadget in Figure 12a
 - Create Counter_Write($\langle \mathtt{Write}, i, 1, op, \mathtt{msr}, \mathtt{msd} \rangle$, $\langle \mathtt{DigitTop}, i, op, \mathtt{msr}, \mathtt{msd} \rangle$) from the general gadget in Figure 12b

Figure 12: The Counter_Write gadgets

2.4.4 Digit tops

The Digit_Top gadgets have special geometry designed so that First_Warp and Second_Warp tiles are allowed to "wake up", and complete their warping journey. Each digit has some type of Digit_Top gadget, however, depending on the digit region and index of a specific digit, the exact digit top will differ.

Figure 13: Topper micro-gadgets

For each $op \in \{\text{increment}, \text{copy}\}$

- Digit 1 (general): the following statements create the gadget shown in Figure 14a
 - Create North_Line5($\langle DigitTop, 1, op \rangle$, $\langle DigitTopA, 1, op \rangle$) from the micro-gadget shown in Figure 3a.
 - Create Topper($\langle DigitTopA, 1, op \rangle$, $\langle DigitTopB, 1, op \rangle$) from the micro-gadget shown in Figure 13a.
 - Create South_Line4 $l(\langle \texttt{DigitTopB}, 1, op \rangle, \langle \texttt{ReturnPath}, 1, op \rangle)$ from the micro-gadget shown in Figure 3b.
- Digit 1 (MSR): the following statements create the gadget shown in Figure 14b
 - Create Topper($\langle DigitTop, 1, op, msr \rangle$, $\langle DigitTopA, 1, op, msr \rangle$) from the micro-gadget shown in Figure 13b.
 - Create South_Line4 $l(\langle \texttt{DigitTopA}, 1, op, \texttt{msr} \rangle, \langle \texttt{ReturnPath}, 1, op, \texttt{msr} \rangle)$ from the micro-gadget shown in Figure 3b.
- Digit 1 (MSD): the following statements create the gadget shown in Figure 14d
 - Create North_Line4 $l(\langle DigitTop, 1, op, msr, msd \rangle, \langle DigitTopA, 1, op, msr, msd \rangle)$ from the micro-gadget shown in Figure 3a.
 - Create North_Line4($\langle DigitTopA, 1, op, msr, msd \rangle$, $\langle DigitTopB, 1, op, msr, msd \rangle$) from the micro-gadget shown in Figure 3a.
 - Create Topper($\langle DigitTopB, 1, op, msr, msd \rangle$, $\langle DigitTopC, 1, op, msr, msd \rangle$) from the micro-gadget shown in Figure 13a.

- Create South_Line4 $l(\langle DigitTopC, 1, op, msr, msd \rangle, \langle DigitTopD, 1, op, msr, msd \rangle)$ from the micro-gadget shown in Figure 3b.
- Create South_Line30($\langle DigitTopD, 1, op, msr, msd \rangle$, $\langle DigitTopE, 1, op, msr, msd \rangle$) from the micro-gadget shown in Figure 3b.
- Create South_Line4 $l(\langle DigitTopE, 1, op, msr, msd \rangle, \langle DigitTopF, 1, op, msr, msd \rangle)$ from the micro-gadget shown in Figure 3b.
- Create South_Line14($\langle DigitTopF, 1, op, msr, msd \rangle$, $\langle DigitTopG, 1, op, msr, msd \rangle$) from the micro-gadget shown in Figure 3b.
- Create South_Line17($\langle DigitTopG, 1, op, msr, msd \rangle$, $\langle ReturnPath, 1, op, msr, msd \rangle$) from the micro-gadget shown in Figure 3b.
- Digit 2 (general): the following statements create the gadget shown in Figure 14a
 - Create North_Line5($\langle \text{DigitTop}, 2, op \rangle$, $\langle \text{DigitTopA}2, op \rangle$) from the micro-gadget shown in Figure 3a.
 - Create Topper($\langle \texttt{DigitTopA2}, op \rangle$, $\langle \texttt{DigitTopB2}, op \rangle$) from the micro-gadget shown in Figure 13a.
 - Create South_Line4 $l(\langle DigitTopB2, op \rangle, \langle ReturnPath, 2, op \rangle)$ from the micro-gadget shown in Figure 3b.
- Digit 2 (MSD): the following statements create the gadget shown in Figure 14c
 - Create North_Line4 $l(\langle DigitTop, 2, op, msr, msd \rangle, \langle DigitTopA, 2, op, msr, msd \rangle)$ from the micro-gadget shown in Figure 3a.
 - Create Topper($\langle DigitTopA, 2, op, msr, msd \rangle$, $\langle DigitTopB, 2, op, msr, msd \rangle$) from the micro-gadget shown in Figure 13c.
 - Create South_Line4 $l(\langle DigitTopB, 2, op, msr, msd \rangle, \langle DigitTopC, 2, op, msr, msd \rangle)$ from the micro-gadget shown in Figure 3b.
 - Create South_Line30($\langle DigitTopC, 2, op, msr, msd \rangle$, $\langle ReturnPath, 2, op, msr, msd \rangle$) from the micro-gadget shown in Figure 3b.
- Digit 3 (general): the following statements create the gadget from Figure 14a
 - Create North_Line5($\langle DigitTop, 3, op \rangle$, $\langle DigitTopA, 3, op \rangle$) from the micro-gadget shown in Figure 3a.
 - Create Topper($\langle \texttt{DigitTopA}, 3, op \rangle$, $\langle \texttt{DigitTopB}, 3, op \rangle$) from the micro-gadget shown in Figure 13a.
 - Create South_Line4 $l(\langle \texttt{DigitTopB}, 3, op \rangle, \langle \texttt{ReturnPath}, 3, op \rangle)$ from the micro-gadget shown in Figure 3b.

- Digit 3 (MSD): the following statements create the gadget from Figure 14a
 - Create North_Line5($\langle DigitTop, 3, op, msr, msd \rangle$, $\langle DigitTopA, 3, op, msr, msd \rangle$) from the micro-gadget shown in Figure 3a.
 - Create Topper($\langle DigitTopA, 3, op, msr, msd \rangle$, $\langle DigitTopB, 3, op, msr, msd \rangle$) from the micro-gadget shown in Figure 13a.
 - Create South_Line4 $l(\langle \texttt{DigitTopB}, 3, op, \texttt{msr}, \texttt{msd} \rangle, \langle \texttt{ReturnPath}, 3, op, \texttt{msr}, \texttt{msd} \rangle)$ from the micro-gadget shown in Figure 3b.

Figure 14: Digit_Top gadgets

(a) Crosser overview

2.4.5 Return paths

In this section, we explain the gadgets used after a digit and its <code>Digit_Top</code> gadget have assembled. These are the return paths, the purpose of these gadgets is to route the counter to the next place it needs to be, which could be the next digit, a new row, etc.

In general, a Return_Path gadget is comprised of two micro-gadgets, the first being a Return_From_Digit micro-gadget, and the second being a Next_Read micro-gadget.

- (a) General and initial value digit 2
- (b) General digit 1

Figure 16: The ${\tt Return_From_Digit}$ gadgets for digits 1 and 2

Figure 17: The Return_From_Digit gadget for digit 3.

The first part of the return paths is the Return_From_Digit micro-gadget. For each $op \in \{\text{increment}, \text{copy}\}:$

- Create Return_From_Digit($\langle \text{ReturnPath}, 1, op \rangle$, $\langle \text{NextRead}, 1, op \rangle$) from the micro-gadget shown in Figure 16b.
- Create Return_From_Digit($\langle \text{ReturnPath}, 1, op, \text{msr} \rangle$, $\langle \text{NextRead}, 1, op, \text{msr} \rangle$) from the micro-gadget shown in Figure 16c
- Create Return_From_Digit($\langle \text{ReturnPath}, 1, op, \text{msr}, \text{msd} \rangle$, $\langle \text{NextRead}, 1, op, \text{msr}, \text{msd} \rangle$) from the micro-gadget shown in Figure 16d.
- Create Return_From_Digit($\langle \texttt{ReturnPath}, 2, op \rangle$, $\langle \texttt{NextRead}, 2, op \rangle$) from the micro-gadget shown in Figure 16a.

- Create Return_From_Digit($\langle \text{ReturnPath}, 2, op, \text{msr}, \text{msd} \rangle$, $\langle \text{NextRead}, 2, op, \text{msr}, \text{msd} \rangle$) from the micro-gadget shown in Figure 16d.
- Create Return_From_Digit($\langle \texttt{ReturnPath}, 3, op \rangle$, $\langle \texttt{NextRead}, 3, op \rangle$) from the micro-gadget shown in Figure 17.
- Create Return_From_Digit($\langle \text{ReturnPath}, 3, op, \text{msr}, \text{msd} \rangle$, $\langle \text{NextRead}, 3, op, \text{msr}, \text{msd} \rangle$) from the micro-gadget shown in Figure 17.

The second part of the return gadgets is the Next_Read micro-gadget. These gadgets output a blank Counter_Write signal if the counter should read the preceding digit in the current row.

Figure 18: The Next_Read gadgets

For each $op \in \{\text{increment}, \text{copy}\}:$

- Create Next_Read($\langle NextRead, 1, op \rangle$, $\langle Read, 2, \lambda, op \rangle$) from the micro-gadget shown in Figure 18a.
- Create Next_Read($\langle NextRead, 1, op, msr \rangle$, $\langle Read, 2, \lambda, op \rangle$) from the micro-gadget shown in Figure 18b.
- Create Next_Read($\langle NextRead, 1, op, msr, msd \rangle$, $\langle Cross_Next_Row, op \rangle$) from the micro-gadget shown in Figure 18c.
- Create Next_Read($\langle NextRead, 2, op \rangle$, $\langle Read, 3, \lambda, op \rangle$) from the micro-gadget shown in Figure 18a.
- Create Next_Read($\langle \texttt{NextRead}, 2, op, \texttt{msr}, \texttt{msd} \rangle$, $\langle \texttt{Cross_Next_Row}, op \rangle$) from the micro-gadget shown in Figure 18c.
- Create Next_Read($\langle \text{NextRead}, 3, op \rangle$, $\langle \text{Read}, 1, \lambda, op \rangle$) from the micro-gadget shown in Figure 18g.
- Create Next_Read($\langle \texttt{NextRead}, 3, op, \texttt{msr}, \texttt{msd} \rangle$, $\langle \texttt{Cross_Next_Row}, op \rangle$) from the micro-gadget shown in Figure 18d.

2.4.6 Cross over gadget

The idea this gadget is to assemble after reading the MSD, and route the counter to back to the start of the next row, in position for the counter to begin reading the first digit. The number of tiles shaded in darker grey is $6 \cdot \left| \frac{d}{3} \right|$.

For each $op \in \{\text{increment}, \text{copy}\}:$

• Create Crosser($\langle Cross_Next_Row, op \rangle$, $\langle Read, 1, \lambda, op \rangle$) from the micro-gadget shown in Figure 19.

Figure 19: The Crosser gadget.

2.5 Overviews

