Threads and Concurrency

ECE 373

Threads of Execution

- Thread smallest unit of processing that can be scheduled by the OS
 - UNIX-like systems are typically process oriented
 - WinNT-like systems are thread oriented

- Single CPU core
 - single line of instructions at any one time
- Multiple CPU cores
 - multiple simultaneous threads of execution

Threads

Kernel threads

- Jobs the kernel itself is doing for internal [projects]
- All have access to the same kernel data

User context

- Threads running user jobs, might be running kernel code to service system calls from user code
- Collected into specific user processes, see only the individual process space data

Interrupts

- Not really full threads, but in the mix
- See ps -ef

Linux process tree

Thread simple

OS Scheduler

Chooses which to process/thread to run next on which

CPU

- Ready queue

- Wait queue
- Thread priority
- Time slice
- Preemption
- CPU core affinity
- Etc

Wait Queue Ready Queue Running Thread23 Thread689 CPU0 Thread3 Thread42 Thread578 Thread84 Thread33 Thread73 CPU1 Thread29

Scheduler

OS Scheduler

Chooses which to process/thread to run next on which

CPU

- Ready queue

- Wait queue
- Thread priority
- Time slice
- Preemption
- CPU core affinity
- Etc

Scheduler

Interrupts mess with scheduler plans

Thread, interrupted

Concurrency and conflict

Multiple threads could hit data at same time

Concurrency and conflict

Multiple CPU threads could hit data at same time

Order matters

Instance 1	Instance 2 Va	alue
<pre>read very_important_count add 5 + 1 = 6 write very_important_count</pre>	read very_important_count	5 6 6
	<pre>add 6 + 1 = 7 write very_important_count</pre>	t 7

Order matters

Instance 1	Instance 2 Va	lue
<pre>read very_important_count add 5 + 1 = 6 write very_important_count</pre>	road work important gount	5 6 6
	<pre>read very_important_count add 6 + 1 = 7 write very_important_count</pre>	7

Instance 1	Instance 2 V	alue
read very_important_count		5
add 5 + 1 = 6	read very_important_count	5 6
write very important count	add $5 + 1 = 6$	6 6
wire very_important_count	write very_important_coun	

Order matters

Instance 1	Instance 2	Value
<pre>read very_important_count add 5 + 1 = 6 write very_important_count</pre>	<pre>read very_important_ Add 6 + 1 = 7 write very_important_</pre>	7

Instance 1	Instance 2 Value
read very important count	5
- add 5 + 1 = 6	read very_important_count 5
	Add $5 + 1 = 6$
write very_important_count	write very_important_count 6

Concurrency and conflict

Multiple threads could hit data at same time

- Coordination needed
 - Completions
 - Semaphore
 - Atomic action increment decrement
 - Mutex
 - Spin lock
 - RCU

Reading Hints

• LDD3 – Chapter 5: Concurrency

- ELDD Chapter 2: Concurrency, pgs 39-48
- ELDD Chapter 3: Kernel Facilities

