# Отказоустойчивые ВС



**Майданов Юрий Сергеевич**к.т.н., доцент Кафедры ВС

### Методы дешифрации синдрома BC

$$S_k = (s_1, s_2, ..., s_m)$$
 — синдром ВС

Метод дешифрации — механизм определения технического состояния системы по фактически полученному синдрому S

#### МЕТОДЫ:

- Табличные
- Аналитические
- Графовые

## Табличный метод



| N₂ | Состояния |   |   |   | Синдромы |   |   |   |
|----|-----------|---|---|---|----------|---|---|---|
|    | 1         | 2 | 3 | 4 | 1        | 2 | 3 | 4 |
| 1  | И         | И | И | И | 0        | 0 | 0 | 0 |
| 2  | Н         | И | И | И | 1        | 0 | 0 | 1 |
| 3  | И         | Η | И | Η | 1        | 1 | 0 | 0 |
| 4  | И         | И | Η | И | 0        | 1 | 1 | 0 |
| 5  | И         | И | И | Н | 0        | 0 | 1 | 1 |

#### Оценка памяти

$$b = C_n^{\ 0} + C_n^{\ 1} + C_n^{\ 2} + \dots + C_n^{\ t}$$
 строк, где  $C_n^{\ k} = \frac{n!}{k!(n-k)!}$ 
 $b * (c * m + d * n) = (C_n^{\ 1} + C_n^{\ 2} + \dots + C_n^{\ t}) * (2 * m + n)$ 
 $C_1 = \sum_{i=n_{\min}}^{n_{\max}} ((i + 2 * m_i) * \sum_{j=1}^{t_i} C_i^j)$ 

Для моделей (0, 1, 1, 0), (0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 1, 1):

$$C_2 = \sum_{i=n_{\min}}^{n_{\max}} ((i + m_i) * \sum_{j=1}^{t_i} C_i^j)$$

#### Аналитический метод

#### Состояние всей ВС:

$$b_1^{\alpha_1} \wedge b_2^{\alpha_2} \wedge \dots \wedge b_n^{\alpha_n}$$

Где каждая переменная задается функцией:

$$b_i^{lpha_i} = egin{cases} b_i, ext{ если } lpha_i = 1, \ \overline{b_i}, ext{ если } lpha_i = 0. \end{cases}$$

Тогда результат  $s^{(k)}=s_{ij}$  элементарной проверки между машинами  $u_i,u_j$   $\in$  U

$$G_k(b_i, b_j) = (s_{ij} = 0) \wedge b_i \wedge b_j \vee (s_{ij} = 1) \wedge b_i \wedge \overline{b_j} \vee \overline{b_i} \wedge \overline{b_j} \vee \overline{b_i} \wedge \overline{b_j} \vee \overline{b_i} \wedge \overline{b_j}$$

$$G_k(b_i, b_j)$$
 = 1 для любых  $b_i$  и  $b_j$ 

#### Аналитический метод

Итоговое предположение:

$$F(b_1, b_2, ..., b_n) = G_1 \, G_2 \, G_2 \, G_n$$

При любом значении аргументов:

$$F(b_1, b_2, ..., b_n) = 1$$

Среди полученных вариантов решения выбирается такой, который не противоречит предположению о t-диагностируемости ВС

#### Графовые методы

Сводятся к решению известных задач на графах

По трудоемкости NP-полные и не пригодны для использования в системах реального времени

#### Спасибо за внимание!