A course in large sample theory

Winter 2022

Modes of convergence with their relationship

Lecturer: Peirong Xu

Bowen Zhou

1 Modes of convergence

We begin by studying four modes of convergence of a sequence of random vectors to a limit. For a random vector $\mathbf{X} = (X_1, \dots, X_d) \in \mathbb{R}^d$, the distribution function of \mathbf{X} for $\mathbf{x} = (x_1, \dots, x_d)$, is denoted by $F_{\mathbf{X}}(\mathbf{x}) = \mathbb{P}\{X_1 \leq x_1, \dots, X_d \leq x_d\}$. Let $\|\mathbf{x}\| = (x_1^2 + \dots + x_d^2)^{1/2}$.

Definition 1. X_n converges in distribution to X, $X_n \stackrel{d}{\to} X$, if $F_{X_n}(x) \to F_X(x)$, for all points x at which $F_X(x)$ is continuous.

Definition 2. X_n converges in probability to X, $X_n \stackrel{\mathbb{P}}{\to} X$, if for every $\varepsilon > 0$, $\mathbb{P}\{\|X_n - X\| > \varepsilon\} \to 0$.

Definition 3. For a real number r > 0, X_n converges in the r-th mean to X, $X_n \stackrel{r}{\to} X$, if $\mathbb{E}||X_n - X||^r \to 0$.

Definition 4. X_n converges almost surely to X, $X_n \stackrel{a.s.}{\to} X$, if $\mathbb{P}\{\lim_{n\to\infty} X_n = X\} = 1$.

Remark. When r=2, convergence in the 2-th mean is also called convergence in quadratic mean, and is written $X_n \stackrel{qm}{\to} X$.

The basic relationships of the above four modes of convergence are as follows.

Theorem 5. We have

- (a) $X_n \stackrel{a.s.}{\to} X \Rightarrow X_n \stackrel{\mathbb{P}}{\to} X$;
- (b) $X_n \xrightarrow{r} X$ for some $r > 0 \Rightarrow X_n \xrightarrow{\mathbb{P}} X$;
- (c) $X_n \stackrel{\mathbb{P}}{\to} X \Rightarrow X_n \stackrel{d}{\to} X$.

Proof.

(a) If $X_n \stackrel{a.s.}{\to} X$,

$$\mathbb{P}\bigg\{\bigcup_{n=1}^{+\infty}\bigcap_{k=n}^{+\infty}\|\boldsymbol{X}_k-\boldsymbol{X}\|\leq\varepsilon\bigg\}=1\quad\text{or}\quad\mathbb{P}\bigg\{\bigcap_{n=1}^{+\infty}\bigcup_{k=n}^{+\infty}\|\mathbf{X}_k-\mathbf{X}\|>\varepsilon\bigg\}=0$$

for all $\varepsilon > 0$. Hence

$$\lim_{n\to\infty} \mathbb{P}\{\|\boldsymbol{X}_n - \boldsymbol{X}\| > \varepsilon\} \leq \lim_{n\to\infty} \mathbb{P}\left\{\bigcup_{k=n}^{+\infty} \|\boldsymbol{X}_k - \boldsymbol{X}\| > \varepsilon\right\} = \mathbb{P}\left\{\bigcap_{n=1}^{+\infty} \bigcup_{k=n}^{+\infty} \|\boldsymbol{X}_k - \boldsymbol{X}\| > \varepsilon\right\} = 0.$$

1

(b) By Markov inequality, $\mathbb{P}\{\|\boldsymbol{X}_n - \boldsymbol{X}\| > \varepsilon\} \leq \mathbb{E}\|\boldsymbol{X}_n - \boldsymbol{X}\|^r / \varepsilon^r \to 0$.

(c) Let $\varepsilon > 0$, and $\mathbf{1}_d$ represent the vector with 1 in every component. Then

$$\begin{split} F_{\boldsymbol{X}_n}(\boldsymbol{x}) &= \mathbb{P}\{\boldsymbol{X}_n \leq \boldsymbol{x}\} \\ &= \mathbb{P}\{\boldsymbol{X}_n \leq \boldsymbol{x}, \boldsymbol{X} \leq \boldsymbol{x} + \varepsilon \mathbf{1}_d\} + \mathbb{P}\{\boldsymbol{X}_n \leq \boldsymbol{x}, \boldsymbol{X} > \boldsymbol{x} + \varepsilon \mathbf{1}_d\} \\ &\leq \mathbb{P}\{\boldsymbol{X} \leq \boldsymbol{x} + \varepsilon \mathbf{1}_d\} + \mathbb{P}\{\|\boldsymbol{X}_n - \boldsymbol{X}\| > \varepsilon\} \\ &= F_{\boldsymbol{X}}(\boldsymbol{x} + \varepsilon \mathbf{1}_d) + \mathbb{P}\{\|\boldsymbol{X}_n - \boldsymbol{X}\| > \varepsilon\}, \end{split}$$

as $n \to \infty$, we have $\limsup F_{X_n}(x) \le F_X(x + \varepsilon \mathbf{1}_d)$. Similarly,

$$egin{aligned} & \mathbb{P}\{oldsymbol{X} \leq oldsymbol{x} - arepsilon \mathbf{1}_d\} \ = & \mathbb{P}\{oldsymbol{X} \leq oldsymbol{x} - arepsilon \mathbf{1}_d, oldsymbol{X}_n \leq oldsymbol{x}\} + \mathbb{P}\{oldsymbol{X}_n \leq oldsymbol{x}\} + \mathbb{P}\{oldsymbol{X}_n - oldsymbol{X} \| > arepsilon \} \ = & F_{oldsymbol{X}_n}(oldsymbol{x}) + \mathbb{P}\{\|oldsymbol{X}_n - oldsymbol{X} \| > arepsilon \}, \end{aligned}$$

hence as $n \to \infty$, $\liminf F_{X_n}(x) \ge F_X(x - \varepsilon \mathbf{1}_d)$. Consequently,

$$F_{\mathbf{X}}(\mathbf{x} - \varepsilon \mathbf{1}_d) \leq \liminf F_{\mathbf{X}_n}(\mathbf{x}) \leq \limsup F_{\mathbf{X}_n}(\mathbf{x}) \leq F_{\mathbf{X}}(\mathbf{x} + \varepsilon \mathbf{1}_d).$$

If F_X is continuous at x, then $\varepsilon \to 0$ imply that $F_{X_n}(x) \to F_X(x)$.

Remark. The converses are not hold for all (a) - (c) in Theorem 5.

(a) Let $X_1, \dots, X_n, \dots, X \overset{i.i.d.}{\sim} \mathsf{N}(0,1)$, and denote $\Phi(x)$ as the distribution function of $\mathsf{N}(0,1)$. Then obviously $X_n \overset{d}{\to} X$, but

$$\mathbb{P}\{|X_n - X| > \varepsilon\} = \mathbb{P}\{X_n - X > \varepsilon\} + \mathbb{P}\{X_n - X < -\varepsilon\} = 2 - 2\Phi(\varepsilon/\sqrt{2})$$

does not converge to zero for small ε and hence $X_n \stackrel{\mathbb{P}}{\nrightarrow} X$.

- (b) Let $Z \sim \text{Unif}(0,1)$, and construct a sequence of random variables as follow: $X_1 = 1, X_2 = I_{[0,1/2)}(Z), X_3 = I_{[1/2,1)}(Z), X_4 = I_{[0,1/4)}(Z), X_5 = I_{[1/4,1/2)}(Z), \cdots, X = 0$. Obviously $X_n \stackrel{a.s.}{\nrightarrow} X$. For $n = 2^k + m, 0 \le m < 2^k$, $\mathbb{E}|X_n|^r = 1/k \to 0$ and $\mathbb{P}\{|X_n| > \varepsilon\} < 1/2^k$ as $n \to 0$, so $X_n \stackrel{r}{\to} 0$ and $X_n \stackrel{\mathbb{P}}{\to} 0$.
- (c) Let $X_n = 2^n I_{[0,1/n)}(Z)$ where $Z \sim \text{Unif}(0,1)$. Then $\mathbb{E}|X_n|^r = 2^{nr}/n \to \infty$ for any r > 0. Yet $X_n \stackrel{a.s.}{\to} 0$ and so $X_n \stackrel{\mathbb{P}}{\to} 0$.

The following are some useful tools of probability.

Lemma 6 (Fatou). $X_n, n = 1, 2, \cdots$ are positive random variables, then $\mathbb{E} \liminf X_n \leq \liminf \mathbb{E} X_n$.

Theorem 7 (Monotone convergence). If $0 \le X_1 \le X_2 \le \cdots$, and $X_n \stackrel{a.s.}{\to} X$, then $\mathbb{E}X_n \to \mathbb{E}X$.

Theorem 8 (Dominated convergence). If $X_n \stackrel{a.s.}{\to} X$ and $|X_n| \leq Y$ for some random variable Y with $\mathbb{E}Y < \infty$, then $\mathbb{E}X_n \to \mathbb{E}X$.

Proposition 9 (Hölder's inequality). For nonnegative random variables X and Y with finite means, $\mathbb{E}XY \leq (\mathbb{E}X^p)^{1/p}(\mathbb{E}Y^q)^{1/q}$ for all p,q > 0 with 1/p + 1/q = 1.

Lemma 10 (Borel Cantelli). $\{A_n\}$ is a sequence of events. If $\sum_{n=1}^{\infty} \mathbb{P}\{A_n\} < \infty$, then $\mathbb{P}\{A_n \ i.o.\} = 0$. Conversely, if $\{A_n\}$ are independent and $\sum_{n=1}^{\infty} \mathbb{P}\{A_n\} = \infty$, then $\mathbb{P}\{A_n \ i.o.\} = 1$.

Remark. $\mathbb{P}\{A_n \ i.o.\} = \mathbb{P}\{A_n \ \text{occur infinitely often}\} = \mathbb{P}\{\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k\}.$

2 Partial converses

As we will see, under certain additional conditions, some important partial converses of theorem 5 holds.

Theorem 11. X_n, X are random vectors.

- (a) If $c \in \mathbb{R}^d$, then $X_n \stackrel{d}{\to} c \Leftrightarrow X_n \stackrel{\mathbb{P}}{\to} c$.
- (b) If $X_n \stackrel{a.s.}{\to} X$ and $\|X_n\|^r \le Z$ for all n, some r > 0 and some random variable Z with $\mathbb{E}Z < \infty$, then $X_n \stackrel{r}{\to} X$.
- (c) If $X_n \stackrel{a.s.}{\to} X$, $X_n \ge 0$ and $\mathbb{E}X_n \to \mathbb{E}X < \infty$, then $\mathbb{E}\|X_n X\| \to 0$.
- (d) $X_n \stackrel{\mathbb{P}}{\to} X$ if and only if every subsequence of $\{X_n\}$ has a subsequence almost surely converge to X.

Proof.

- (a) With part (c) of Theorem 5, we need to show $X_n \stackrel{d}{\to} c \Rightarrow X_n \stackrel{\mathbb{P}}{\to} c$. First, in one dimension, $\mathbb{P}\{|X_n c| \leq \varepsilon\} = \mathbb{P}\{X_n \leq c + \varepsilon\} \mathbb{P}\{X_n \leq c \varepsilon\} \to 1$ for every $\varepsilon > 0$.
- (b) Note that $X_n \stackrel{a.s.}{\to} X$ and $\|X_n\|^r \le Z$ implies $\|X\|^r \le Z$ and $\|X_n X\| \to 0$ a.s., so $\|X_n X\|^r \le (\|X_n\| + \|X\|)^r \le 2^r Z$. Now apply the dominated convergence theorem to $\|X_n X\|^r$.
- (c) In one dimension, note that $\mathbb{E}|X_n X| = 2\mathbb{E}(X X_n)_+ \mathbb{E}(X X_n)$. The second term converges to zero because $\mathbb{E}X_n \to \mathbb{E}X$. $(X X_n)_+ \le X_+$ and $\mathbb{E}X_+ < \infty$ implies that the first term converges to zero by dominated convergence theorem.
- (d) Hint: using Lemma 10.

Remark. Part (b) and (c) of Theorem 11 gives a method of deducing convergence n the r-th mean from almost sure convergence. Additionally, it can be strengthened by replacing $X_n \stackrel{a.s.}{\longrightarrow} X$ with $X_n \stackrel{\mathbb{P}}{\longrightarrow} X$.

Remark. The following statement gives a simple sufficient condition for almost sure convergence.

- (a) If $\sum \mathbb{E}||X_n X||^2 < \infty$, then $X_n \stackrel{a.s.}{\to} X$ and $X_n \stackrel{qm}{\to} X$.
- (b) If $\sum \mathbb{E}||X_n X||^r < \infty$, then $X_n \stackrel{a.s.}{\to} X$ and $X_n \stackrel{r}{\to} X$.

Remark. Part (c) of Theorem 11 is usually stated in terms of densities, and can be strengthened in one dimension as follows:

- (a) If $X_n \stackrel{a.s.}{\to} X$ and $\mathbb{E}||X_n|| \to \mathbb{E}||X|| < \infty$, then $\mathbb{E}||X_n X|| \to 0$.
- (b) if $\boldsymbol{X}_{n} \overset{a.s.}{\to} \boldsymbol{X}$ and $\mathbb{E}\|\boldsymbol{X}_{n}\|^{2} \to \mathbb{E}\|\boldsymbol{X}\|^{2} < \infty$, then $\mathbb{E}\|\boldsymbol{X}_{n} \boldsymbol{X}\|^{2} \to 0$.