COSC 3337 : Data Science I

N. Rizk

College of Natural and Applied Sciences
Department of Computer Science
University of Houston

Review PCA

Principal component analysis (PCA) is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components.

The number of principal components is less than or equal to the number of original variables.

Goals

- The main goal of a PCA analysis is to identify patterns in data
- PCA aims to detect the correlation between variables.
- It attempts to reduce the dimensionality.

Dimensionality Reduction

It reduces the dimensions of a d-dimensional dataset by projecting it onto a (k)-dimensional subspace (where k<d) in order to increase the computational efficiency while retaining most of the information.

Transformation

This transformation is defined in such a way that the first principal component has the largest possible variance and each succeeding component in turn has the next highest possible variance.

PCA Approach

- Standardize the data.
- Perform Singular Vector Decomposition to get the Eigenvectors and Eigenvalues.
- Sort eigenvalues in descending order and choose the keigenvectors
- Construct the projection matrix from the selected k-eigenvectors.
- Transform the original dataset via projection matrix to obtain a k-dimensional feature subspace.

Limitation of PCA

The results of PCA depend on the scaling of the variables.

A scale-invariant form of PCA has been developed.

Fisher Linear Discriminant Analysis

- In a two-class classification problem, given n samples in a d-dimensional feature space. n1 in class 1 and n2 in class 2.
- Goal: to find a vector w, and project the n samples on the axis y=w'x, so that the projected samples are well separated.

PCA:

component axes that maximize the variance

LDA:

maximizing the component axes for class-separation

LDA vs PCA

- Both are linear transformation techniques that are commonly used for dimensionality reduction.
- PCA can be described as an "unsupervised" algorithm(it "ignores" class labels)
- PCA goal is to find the directions (the so-called principal components) that maximize the variance in a dataset.
- LDA is "supervised" and computes the directions ("linear discriminants") that will represent the axes that that maximize the separation between multiple classes.

Find the axes that reduce dimensionality and preserve as much class discriminatory (distinction) information as possible

A projection with nonideal separation

A projection with ideal separation

Purpose

 Discriminant Analysis classifies objects in two or more groups according to *linear combination* of features

Feature selection

- ➤ Which set of features can best determine group membership of the object?
- dimension reduction

Classification

➤ What is the classification *rule* or *model* to best separate those groups?

Visually

Method

- Maximize the between-class scatter
 - Difference of mean values (m1-m2)
- Minimize the within-class scatter
 - Covariance

LDA Approach

- 1.Compute the within class and between class scatter matrices
- 2. Compute the eigenvectors and corresponding eigenvalues for the scatter matrices
- 3. Sort the eigenvalues and select the top **k**
- 4.Create a new matrix containing eigenvectors that map to the *k* eigenvalues
- 5. Obtain the new features (i.e. LDA components) by taking the dot product of the data and the matrix from step 4

15

Example: Wine data set

```
from sklearn.datasets import load_wine
import pandas as pd
import numpy as np
np.set_printoptions(precision=4)
from matplotlib import pyplot as plt
import seaborn as sns
sns.set()
from sklearn.preprocessing import LabelEncoder
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
```

```
wine = load_wine()
X = pd.DataFrame(wine.data, columns=wine.feature_names)
y = pd.Categorical.from_codes(wine.target, wine.target_names)
```

X.shape

(178, 13)

	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflavanoid_phenois	proanthocyanins	color_intensity	hue	od280/c
0	14.23	1.71	2.43	15.6	127.0	2.80	3.06	0.28	2.29	5.64	1.04	
1	13.20	1.78	2.14	11.2	100.0	2.65	2.76	0.26	1.28	4.38	1.05	
2	13.16	2.36	2.67	18.6	101.0	2.80	3.24	0.30	2.81	5.68	1.03	
3	14.37	1.95	2.50	16.8	113.0	3,85	3.49	0.24	2.18	7.80	0.86	
4	13.24	2.59	2.87	21.0	118.0	2.80	2.69	0.39	1.82	4.32	1.04	
4										M .		- >

1.Scatter Matrix

$$S_W = \sum_{i=1}^{c} S_i$$
 Sorange Mean Corange

S Blue Mean Blue

#Compute the within class and between class scatter matrices
class_feature_means = pd.DataFrame(columns=wine.target_names)
for c, rows in df.groupby('class'):
 class_feature_means[c] = rows.mean()
class_feature_means

class_2	class_1	class_0	
13.153750	12.278732	13.744746	alcohol
3.333750	1.932676	2.010678	malic_acid
2.437083	2.244789	2.455593	ash
21.416667	20.238028	17.037288	alcalinity_of_ash
99.312500	94.549296	106.338983	magnesium
1.678750	2.258873	2.840169	total_phenols
0.781458	2.080845	2.982373	flavanoids
0.447500	0.363662	0.290000	nonflavanoid_phenols
1.153542	1.630282	1.899322	proanthocyanins
7 396250	3 086620	5 528305	color intensity

 $(n_i)^T$

1.Scatter Matrix...cont


```
# mean vectors (mi) into the equation from before in order to obtain the within class scatter matrix
within_class_scatter_matrix = np.zeros((13,13))
for c, rows in df.groupby('class'):
    rows = rows.drop(['class'], axis=1)
    s = np.zeros((13,13))
for index, row in rows.iterrows():
    x, mc = row.values.reshape(13,1), class_feature_means[c].values.reshape(13,1)
    s += (x - mc).dot((x - mc).T)
    within_class_scatter_matrix += s
```

within class scatter matrix

```
array([[ 2.9229e+02, 6.2033e+01, 1.4718e+01, 1.9552e+02, -6.7906e+02, 3.0044e+01, 3.9477e+00, 1.1577e+00, 7.3445e+01, 4.5908e+02, -5.8483e+00, 4.0079e+01, -1.3837e+04],
[ 6.2033e+01, 1.5010e+03, 1.4554e+01, 5.0418e+02, -3.8950e+03, -7.4734e+01, -1.3327e+02, 3.6566e+01, -9.6153e+01, -3.2497e+02, 9.7079e+00, 2.0324e+01, -9.8806e+03],
[ 1.4718e+01, 1.4554e+01, 3.8050e+01, 3.5658e+02, 4.2941e+02, 2.8423e+01, 1.1072e+01, 9.1072e-01, 8.6140e+00, 4.7579e+01,
```

1.Scatter Matrix...cont

between_class_scatter_matrix = np.zeros((13,13))

n = len(df.loc[df['class'] == c].index)


```
Min
                                                                                             Blue
                                                                                             Mean
                                                                                            Blue
mc, m = class_feature_means[c].values.reshape(13,1), feature_means.values.reshape(13,1)
```

between_class_scatter_matrix

between class scatter matrix

for c in class_feature_means:

feature_means = df.mean()

```
array([[ 7.0795e+01, 1.3723e+01, 1.0668e+01, -1.3186e+02, 5.5262e+02,
        2.1257e+01, 3.0029e+01, -2.6178e+00, 8.3076e+00, 1.3888e+02,
       -2.4933e+00, 8.2530e+00, 2.6987e+04],
      [ 1.3723e+01, 6.5578e+01, 5.1556e+00, 1.1793e+02, 1.5062e+00,
       -3.8943e+01, -7.9531e+01, 5.4292e+00, -2.7994e+01, 1.5941e+02,
       -1.7995e+01, -5.9906e+01, -6.1709e+03],
      [ 1.0668e+01, 5.1556e+00, 1.7592e+00, -1.2829e+01, 7.8095e+01,
        1.0900e+00, 3.3671e-01, -1.0316e-01, -2.0087e-01, 2.7430e+01,
       -1.2351e+00, -1.7747e+00, 3.5073e+03],
```

between class scatter matrix += n * (mc - m).dot((mc - m).T)

COSC 3337:DS 1 <u>LDA</u>

2.Compute eigen values & vectors

$$S_B = \sum_{i=1}^c N_i (\boldsymbol{m}_i - \boldsymbol{m}) (\boldsymbol{m}_i - \boldsymbol{m})^T$$

eigen_values, eigen_vectors =
np.linalg.eig(np.linalg.inv(within_class_scatter_matrix).dot(between_class_scatter_matrix))

$$S_W^{-1}S_B$$

2. Compute the eigenvectors and eigenvalues


```
eigen_values, eigen_vectors = np.linalg.eig(np.linalg.inv(within_class_scatter_matrix).dot(between_class_scatter_matrix))
pairs = [(np.abs(eigen_values[i]), eigen_vectors[:,i]) for i in range(len(eigen_values))]
pairs = sorted(pairs, key=lambda x: x[0], reverse=True)
for pair in pairs:
                                                                 Explained Variance
   print(pair[0])
                                                                 Eigenvector 0: 0.7729604269322252
9.884546449232964
                                                                 Eigenvector 1: 0.2270395730677747
2.903361061716055
                                                                 Eigenvector 2: 6.51298760749777e-17
8.328748314463861e-16
8.328748314463861e-16
                                                                 Eigenvector 3: 6.51298760749777e-17
4.886713002064387e-16
                                                                 Eigenvector 4: 3.821354664850663e-17
4.489875014453336e-16
                                                                 Eigenvector 5: 3.511031817057716e-17
3.4635722681863882e-16
                                                                 Eigenvector 6: 2.7084746001023813e-17
3.4635722681863882e-16
1.0056538289828519e-16
                                                                 Eigenvector 7: 2.7084746001023813e-17
7.842049664151311e-17
                                                                 Eigenvector 8: 7.864099956320532e-18
7.842049664151311e-17
                                                                 Eigenvector 9: 6.132394731066783e-18
5.900795033178523e-17
0.0
                                                                 Eigenvector 10: 6.132394731066783e-18
                                                                 Eigenvector 11: 4.614355419857593e-18
eigen_value_sums = sum(eigen_values)
                                                                 Eigenvector 12: 0.0
print('Explained Variance')
for i, pair in enumerate(pairs):
   print('Eigenvector {}: {}'.format(i, (pair[0]/eigen_value_sums).real))
```

3. Sort the eigenvalues and select the top **k**


```
#Create a matrix W with the first two eigenvectors.
w_matrix = np.hstack((pairs[0][1].reshape(13,1), pairs[1][1].reshape(13,1))).real
```

```
# dot product of X and W into a new matrix Y . Y= X.W
X lda = np.array(X.dot(w matrix))
X_lda
       [-3.4 , 4.1143],
       [-3.0367, 3.5544],
      [-2.8555, 3.8611],
      [-3.049 , 3.5449],
      [-3.1342, 3.2478],
      [-3.455, 3.5023],
      [-2.7984, 3.6056],
      [-3.0704, 3.6012],
      [-3.7015, 3.5086],
      [-3.6974, 3.7308],
      [-2.9534, 3.8804],
      [-3.0524, 3.9394],
      [-3.166, 3.7823],
      [-3.8682, 4.2839],
      [-2.8555, 3.2937],
      [-2.9092, 2.9224],
       [-2.5376, 2.7191],
      [-3.1722, 3.03],
      [-2.7119, 3.0313],
       [-2.8484, 2.8515],
le = LabelEncoder()
y = le.fit_transform(df['class'])
```

4.Create a new matrix containing eigenvectors that map to the **k** eigenvalues

$$Y = X . W$$

k<n) dimensions.

X is a n×d matrix with n samples and d dimensions
Y is a n×k matrix with n samples and k (

- → Y is composed of the LDA components
- → It is the new feature space.

5. Obtain the new features (i.e. LDA components)


```
plt.xlabel('LD1')
plt.ylabel('LD2')
plt.scatter(
    X_lda[:,0],
    X_lda[:,1],
    c=y,
    cmap='rainbow',
    alpha=0.7,
    edgecolors='b'
)
```

<matplotlib.collections.PathCollection at 0x14e33a5eac8>


```
from sklearn.decomposition import PCA
pca = PCA(n components=2)
X_pca = pca.fit_transform(X, y)
pca.explained_variance_ratio_
array([0.9981, 0.0017])
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.scatter(
   X_pca[:,0],
   X_pca[:,1],
    c=y,
    cmap='rainbow',
    alpha=0.7,
    edgecolors='b')
```

<matplotlib.collections.PathCollection at 0x14e33c17148>


```
#using sklearn
from sklearn.discriminant analysis import LinearDiscriminantAnalysis
lda = LinearDiscriminantAnalysis()
X lda = lda.fit transform(X, y)
lda.explained variance ratio
array([0.6875, 0.3125])
plt.xlabel('LD1')
plt.ylabel('LD2')
plt.scatter(
    X_lda[:,0],
    X_lda[:,1],
    c=y,
    cmap='rainbow',
    alpha=0.7,
    edgecolors='b'
```

<matplotlib.collections.PathCollection at 0x14e33a5ea88>

Accuracy scores LDA, PCA, none


```
def run randomForest(X train, X test, y train, y test):
       clf=RandomForestClassifier(n_estimators=100, random_state=0,n_jobs=-1)
      clf.fit(X train,y train)
      y pred = clf.predict(X test)
      print('Accuracy on test set: ')
      print(accuracy score(y test,y pred))
N %%time
                                                                   %%time
  from sklearn.metrics import accuracy score
                                                                   from sklearn.metrics import accuracy_score
  run randomForest(X train lda,X test lda,y train,y test)
                                                                   run randomForest(X train pca, X test pca, y train, y test)
  Accuracy on test set:
                                                                   Accuracy on test set:
  0.93725
                                                                   0.9565
  Wall time: 795 ms
                                                                   Wall time: 749 ms
M %%time
  run randomForest(X train, X test, y train, y test)
  Accuracy on test set:
  0.9585
  Wall time: 1.79 s
```