Link do Wokwi

https://wokwi.com/projects/399717965700460545

README do Projeto

Sistema de Monitoramento Ambiental com Arduino

Descrição do Projeto

Este projeto utiliza um microcontrolador Arduino para criar um sistema de monitoramento ambiental que coleta dados de temperatura, umidade, distância e nível de óleo. Os dados são exibidos em um display LCD e podem ser controlados via um controle remoto infravermelho (IR). Este sistema é ideal para monitorar condições ambientais em diversos contextos, como aquários, sistemas de irrigação, monitoramento de reservatórios, entre outros.

Funcionalidades

- 1. Coleta de Dados Ambientais:
 - Temperatura e Umidade: Medição utilizando o sensor DHT22.
 - Distância: Medição utilizando um sensor ultrassônico.
 - Nível de Óleo: Simulação de nível de óleo utilizando um potenciômetro.
- 2. Exibição de Dados:
 - Display LCD para exibir os dados coletados.
 - Alternância automática entre os diferentes dados coletados a cada 3 segundos.
 - Controle manual via controle remoto IR para exibir dados específicos.

- 3. Controle Remoto IR:
 - Botão 1: Exibir Temperatura.
 - Botão 2: Exibir Umidade.
 - Botão 3: Exibir Distância.
 - Botão 4: Exibir Nível de Óleo.
 - Outros Botões: Exibir instruções de uso.
- 4. Lógica de Alternância:
- O sistema alterna ciclicamente entre as diferentes medições automaticamente, garantindo que todos os dados sejam exibidos.
- Quando um botão é pressionado, a exibição manual é ativada por 3 segundos antes de retornar ao modo automático.

Requisitos e Dependências

- Hardware

- Arduino (qualquer modelo com suporte a sensores mencionados)
- Sensor DHT22
- Sensor Ultrassônico HC-SR04
- Potenciômetro
- Display LCD 16x2
- Receptor IR
- Controle Remoto IR
- Protoboard e Jumpers

- Bibliotecas

- LiquidCrystal: Para controle do display LCD.
- DHT: Para leitura de dados do sensor DHT22.
- IRremote: Para recepção de comandos do controle remoto IR.

<u>Instruções de Uso</u>

- Montagem do Hardware

1. Conecte o sensor DHT22 ao Arduino:
- VCC -> 5V
- GND -> GND
- Data -> Pino 2
2. Conecte o sensor ultrassônico HC-SR04 ao Arduino:
- VCC -> 5V
- GND -> GND
- Trigger -> Pino 12
- Echo -> Pino 13
3. Conecte o potenciômetro ao Arduino:
- VCC -> 5V
- GND -> GND
- Sinal -> Pino A0
4. Conecte o display LCD 16x2 ao Arduino:
- VSS -> GND
- VDD -> 5V
- V0 -> Pino Central do Potenciômetro
- RS -> Pino 8
- RW -> GND
- E -> Pino 7
- D4 -> Pino 6
- D5 -> Pino 5
- D6 -> Pino 4

- D7 -> Pino 3
- A -> 5V (com resistor de 220Ω em série)
- K -> GND
- 5. Conecte o receptor IR ao Arduino:
 - VCC -> 5V
 - GND -> GND
 - Data -> Pino 11

Conclusão

Este projeto de monitoramento ambiental com Arduino é uma solução prática e eficaz para medir e exibir parâmetros ambientais essenciais. Ele pode ser utilizado em diversas aplicações, oferecendo dados importantes para manter a qualidade e segurança de diferentes ambientes. O uso de sensores variados e a integração com um controle remoto IR tornam este sistema flexível e fácil de operar.