

What is CUDA?

- CUDA Architecture
 - Expose GPU parallelism for general-purpose computing
 - Retain performance
- CUDA C/C++
 - Based on industry-standard C/C++
 - Small set of extensions to enable heterogeneous programming
 - Straightforward APIs to manage devices, memory etc.
- This session introduces CUDA C/C++

Introduction to CUDA C/C++

- What will you learn in this session?
 - Start from "Hello World!"
 - Write and launch CUDA C/C++ kernels
 - Manage GPU memory
 - Manage communication and synchronization

Prerequisites

- You (probably) need experience with C or C++
- You don't need GPU experience
- You don't need parallel programming experience
- You don't need graphics experience

CONCEPTS

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

HELLO WORLD!

Heterogeneous Computing

- Terminology:
 - Host The CPU and its memory (host memory)
 - Device The GPU and its memory (device memory)

Device

Heterogeneous Computing


```
#define N 1024
#define RADIUS 3
#define BLOCK_SIZE 16
__global__ void stencil_1d(int *in, int *out) {
          shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
       int gindex = threadIdx.x + blockIdx.x * blockDim.x;
       int lindex = threadIdx.x + RADIUS;
       // Read input elements into shared memory
       temp[lindex] = in[gindex];
               temp[lindex - RADIUS] = in[gindex - RADIUS]:
               temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
       // Synchronize (ensure all the data is available)
       syncthreads():
       for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
               result += temp[lindex + offset];
       out[gindex] = result;
void fill_ints(int *x, int n) {
       fill_n(x, n, 1);
int main(void) {
                         // host copies of a, b, c
       int *d in, *d out: // device copies of a, b, c
       int size = (N + 2*RADIUS) * sizeof(int);
       // Alloc space for host copies and setup values
       in = (int *)malloc(size); fill_ints(in, N + 2*RADIUS);
       out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);
       // Alloc space for device copies
       cudaMalloc((void **)&d in. size):
       cudaMalloc((void **)&d_out, size);
       cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
       cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);
       stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS, d_out + RADIUS);
       // Copy result back to host
       cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);
       free(in); free(out);
       cudaFree(d_in); cudaFree(d_out);
```


Simple Processing Flow

Simple Processing Flow

Simple Processing Flow

Hello World!


```
int main(void) {
    printf("Hello World!\n");
    return 0;
}
```

Standard C that runs on the host

NVIDIA compiler (nvcc) can be used to compile programs with no device code

Output:

```
$ nvcc
hello_world.cu
$ a.out
Hello World!
$
```



```
global void mykernel(void) {
      printf("Hello World from device!\n");
int main(void) {
      mykernel<<<1,1>>>();
      cudaDeviceSynchronize();
      printf("Hello World from host!\n");
      return 0;
```

Two new syntactic elements...


```
__global__ void mykernel(void) {
    printf("Hello world from device!\n");
}
```

- CUDA C/C++ keyword __global_ indicates a function that:
 - Runs on the device
 - Is called from host code
- nvcc separates source code into host and device components
 - Device functions (e.g. mykernel()) processed by NVIDIA compiler
 - Host functions (e.g. main()) processed by standard host compiler
 - gcc, cl.exe


```
mykernel<<<1,1>>>();
```

- Triple angle brackets mark a call from host code to device code
 - Also called a "kernel launch"
 - We'll return to the parameters (1,1) in a moment
- That's all that is required to execute a function on the GPU!

Hello world

- Login to your AWS instance
- Each coding project in a separate folder in the following dir
 - gpu-edu-workshops/exercises/
- cd gpu-edu-workshops/exercises/cuda/hello_world
- All dirs have Makefiles for you
- Try building/running the code
 - make
 - ./x.hello_world

Screenshot


```
global void mykernel(void) {
     printf("Hello from device!\n");
                                       Output:
int main(void) {
                                       $ nvcc hello.cu
     mykernel<<<1,1>>>();
                                       $ a.out
     printf("Hello from Host!\n");
                                       Hello from
     return 0;
                                       device!
                                       Hello from
                                       Host!
```

mykernel() does nothing interesting, somewhat anticlimactic!

Parallel Programming in CUDA C/C++

- But wait... GPU computing is about massive parallelism!
- We need a more interesting example...
- We'll start by adding two integers and build up to vector addition

Addition on the Device

A simple kernel to add two integers

```
__global__ void add(int *a, int *b, int *c) {
    *c = *a + *b;
}
```

- As before __global__ is a CUDA C/C++ keyword meaning
 - add() will execute on the device
 - add() will be called from the host

Addition on the Device

Note that we use pointers for the variables

```
__global__ void add(int *a, int *b, int *c) {
    *c = *a + *b;
}
```

- add() runs on the device, so a, b and c must point to device memory
- We need to allocate memory on the GPU

Memory Management

- Host and device memory are separate entities
 - Device pointers point to GPU memory
 May be passed to/from host code
 May not be dereferenced in host code
 - Host pointers point to CPU memory
 May be passed to/from device code
 May not be dereferenced in device code

- Simple CUDA API for handling device memory
 - cudaMalloc(), cudaFree(), cudaMemcpy()
 - Similar to the C equivalents malloc(), free(), memcpy()

Error checking

- Kernels
 - kernel<<<>>>(...)
 - checkKERNEL()
- All other CUDA calls
 - checkCUDA(cuda...())
- Add -DDEBUG to your compile line in Makefile

Addition on the Device: add()

Returning to our add() kernel

```
__global__ void add(int *a, int *b, int *c) {
    *c = *a + *b;
}
```

- Let's take a look at main()...
- Open exercises/cuda/simple_add/kernel.cu
- Fill-in missing code as indicated.
 - Need to replace "FIXME" with code. Comments should help.
 - If something isn't clear, PLEASE ASK! ©
 - PASS/FAIL will be printed to the screen

Addition on the Device: main()


```
int main(void) {
                       // host copies of a, b, c
      int a, b, c;
      int *d a, *d b, *d c;  // device copies of a, b, c
      int size = sizeof(int);
      // Allocate space for device copies of a, b, c
      cudaMalloc((void **)&d a, size);
      cudaMalloc((void **)&d b, size);
      cudaMalloc((void **)&d c, size);
      // Setup input values
      a = 2;
      b = 7;
```

Addition on the Device: main()


```
// Copy inputs to device
cudaMemcpy(d a, &a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d b, &b, size, cudaMemcpyHostToDevice);
// Launch add() kernel on GPU
add<<<1,1>>> (d a, d b, d c);
// Copy result back to host
cudaMemcpy(&c, d c, size, cudaMemcpyDeviceToHost);
// Cleanup
cudaFree(d a); cudaFree(d b); cudaFree(d c);
return 0;
```


CONCEPTS

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

RUNNING IN PARALLEL

Moving to Parallel

- GPU computing is about massive parallelism
 - So how do we run code in parallel on the device?

```
add<<< 1, 1 >>>();

add<<< N, 1 >>>();
```

Instead of executing add() once, execute N times in parallel

Vector Addition on the Device

- With add() running in parallel we can do vector addition
- Terminology: each parallel invocation of add() is referred to as a block
 - The set of blocks is referred to as a grid
 - Each invocation can refer to its block index using blockIdx.x

```
__global__ void add(int *a, int *b, int *c) {
    c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}
```

By using blockIdx.x to index into the array, each block handles a different index

Vector Addition on the Device


```
__global__ void add(int *a, int *b, int *c) {
    c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}
```

On the device, each block can execute in parallel:

```
Block 0 Block 1 Block 2 Block 3  c[0] = a[0] + b[0]; c[1] = a[1] + b[1]; c[2] = a[2] + b[2]; c[3] = a[3] + b[3];
```

Vector Addition on the Device: add()

Returning to our parallelized add() kernel

```
__global__ void add(int *a, int *b, int *c) {
    c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}
```

- Let's take a look at main()...
- Open exercises/cuda/simple_add_blocks/kernel.cu
- Fill-in missing code as indicated.
 - Should be clear from comments where you need to add some code
 - Need to replace "FIXME" with the proper piece of code.

Vector Addition on the Device: main()


```
#define N 512
int main(void) {
  int *a, *b, *c; // host copies of a, b, c
  int *d a, *d b, *d c;  // device copies of a, b, c
  int size = N * sizeof(int);
  // Alloc space for device copies of a, b, c
  cudaMalloc((void **)&d a, size);
  cudaMalloc((void **)&d b, size);
  cudaMalloc((void **)&d c, size);
  // Alloc space for host copies of a, b, c and setup input values
  a = (int *)malloc(size); random_ints(a, N);
  b = (int *)malloc(size); random ints(b, N);
  c = (int *)malloc(size);
```

Vector Addition on the Device: main()


```
// Copy inputs to device
cudaMemcpy(d a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d b, b, size, cudaMemcpyHostToDevice);
// Launch add() kernel on GPU with N blocks
add<<<n,1>>>(d_a, d_b, d_c);
// Copy result back to host
cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);
// Cleanup
free(a); free(b); free(c);
cudaFree(d a); cudaFree(d b); cudaFree(d c);
return 0;
```

Review (1 of 2)

- Difference between host and device
 - Host CPU
 - Device GPU
- Using global to declare a function as device code
 - Executes on the device
 - Called from the host
- Passing parameters from host code to a device function

Review (2 of 2)

- Basic device memory management
 - cudaMalloc()
 - cudaMemcpy()
 - cudaFree()
- Launching parallel kernels
 - Launch N copies of add() with add<<<N,1>>>>(...);
 - Use blockIdx.x to access block index

CONCEPTS

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

INTRODUCING THREADS

CUDA Threads

- Terminology: a block can be split into parallel threads
- Let's change add() to use parallel threads instead of parallel blocks

```
__global__ void add(int *a, int *b, int *c) {
    c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];
}
```

- We use threadIdx.x instead of blockIdx.x
- Need to make one change in main()...
- Open exercises/cuda/simple_add_threads/kernel.cu

Vector Addition Using Threads: main()


```
#define N 512
int main(void) {
   int *a, *b, *c;
                             // host copies of a, b, c
                            // device copies of a, b, c
   int *d a, *d b, *d c;
   int size = N * sizeof(int);
    // Alloc space for device copies of a, b, c
    cudaMalloc((void **)&d a, size);
    cudaMalloc((void **)&d b, size);
    cudaMalloc((void **)&d c, size);
    // Alloc space for host copies of a, b, c and setup input values
   a = (int *)malloc(size); random ints(a, N);
   b = (int *)malloc(size); random ints(b, N);
   c = (int *)malloc(size);
```

Vector Addition Using Threads: main()


```
// Copy inputs to device
cudaMemcpy(d a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d b, b, size, cudaMemcpyHostToDevice);
// Launch add() kernel on GPU with N threads
add <<<1,N>>> (d a, d b, d c);
// Copy result back to host
cudaMemcpy(c, d c, size, cudaMemcpyDeviceToHost);
// Cleanup
free(a); free(b); free(c);
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
return 0;
```


CONCEPTS

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

COMBINING THREADS AND BLOCKS

Combining Blocks and Threads

- We've seen parallel vector addition using:
 - Many blocks with one thread each
 - One block with many threads
- Let's adapt vector addition to use both blocks and threads
- Why? We'll come to that...
- First let's discuss data indexing...

Indexing Arrays with Blocks and Threads

- No longer as simple as using blockIdx.x and threadIdx.x
 - Consider indexing an array with one element per thread (8 threads/block)

With M threads/block a unique index for each thread is given by:

```
int index = threadIdx.x + blockIdx.x * M;
```

Indexing Arrays: Example

Which thread will operate on the red element?


```
int index = threadIdx.x + blockIdx.x * M;
= 5 + 2 * 8;
= 21;
```

Vector Addition with Blocks and Threads

Use the built-in variable blockDim.x for threads per block
int index = threadIdx.x + blockIdx.x * blockDim.x;

 Combined version of add() to use parallel threads and parallel blocks

```
__global__ void add(int *a, int *b, int *c) {
    int index = threadIdx.x + blockIdx.x * blockDim.x;
    c[index] = a[index] + b[index];
}
```

- What changes need to be made in main()?
- Open exercises/cuda/simple_add_blocks_threads/kernel.cu

Addition with Blocks and Threads: main()


```
#define N (2048*2048)
#define THREADS PER BLOCK 512
int main(void) {
                                    // host copies of a, b, c
   int *a, *b, *c;
   int *d a, *d b, *d c;
                            // device copies of a, b, c
   int size = N * sizeof(int);
    // Alloc space for device copies of a, b, c
    cudaMalloc((void **)&d a, size);
    cudaMalloc((void **)&d b, size);
    cudaMalloc((void **)&d c, size);
    // Alloc space for host copies of a, b, c and setup input values
   a = (int *)malloc(size); random ints(a, N);
   b = (int *)malloc(size); random ints(b, N);
    c = (int *)malloc(size);
```

Addition with Blocks and Threads: main()


```
// Copy inputs to device
cudaMemcpy(d a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);
// Launch add() kernel on GPU
add<<<N/THREADS PER BLOCK, THREADS PER BLOCK>>>(d a, d b, d c);
// Copy result back to host
cudaMemcpy(c, d c, size, cudaMemcpyDeviceToHost);
// Cleanup
free(a); free(b); free(c);
cudaFree(d a); cudaFree(d b); cudaFree(d c);
return 0;
```

Handling Arbitrary Vector Sizes

- Typical problems are not friendly multiples of blockDim.x
- Avoid accessing beyond the end of the arrays:

```
__global__ void add(int *a, int *b, int *c, int n) {
   int index = threadIdx.x + blockIdx.x * blockDim.x;
   if (index < n)
      c[index] = a[index] + b[index];
}</pre>
```

Update the kernel launch:

```
add <<<(N / M) + 1, M>>>(d_a, d_b, d_c, N);
```

Why Bother with Threads?

- Threads seem unnecessary
 - They add a level of complexity
 - What do we gain?
- Unlike parallel blocks, threads have mechanisms to:
 - Communicate
 - Synchronize
- To look closer, we need a new example...

Review

- Launching parallel kernels
 - Launch и copies of add() with add<<<и/м,м>>> (...);
 - Use blockIdx.x to access block index
 - Use threadIdx.x to access thread index within block

Allocate elements to threads:

```
int index = threadIdx.x + blockIdx.x * blockDim.x;
```


CONCEPTS

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

COOPERATING THREADS

1D Stencil

- Consider applying a 1D stencil to a 1D array of elements
 - Each output element is the sum of input elements within a radius
- If radius is 3, then each output element is the sum of 7 input elements:

Implementing Within a Block

- Each thread processes one output element
 - blockDim.x elements per block
- Input elements are read several times
 - With radius 3, each input element is read seven times

dim3 datatype

- 3-dimensional vector type
- Used for setting threadblock and grid dimensions

```
dim3 threads( THREADS_PER_BLOCK, 1, 1 );
dim3 blocks( N / threads.x, 1, 1);
kernel_call<<< blocks, threads >>>( args... );
```

- Equivalent to:
- kernel_call<<< N / THREADS_PER_BLOCK,
 THREADS_PER_BLOCK >>> (args...);

Simple Stencil in 1d

- Open exercises/cuda/simple_stencil/kernel.cu
- Finish the kernel and the kernel launch
 - Each thread calculates one stencil value
 - Reads 2*RADIUS + 1 values
 - dim3 type: CUDA 3 dimensional struct used for grid/block sizes
- Inserted GPU timers into code to time the execution of the kernel

- Try various sizes of N, RADIUS, BLOCK
- Time a large (2048*2048) value of N with a RADIUS of 7

Can we do better?

- Input elements are read multiple times
 - With RADIUS=3, each input element is read seven times!
 - Neighbouring threads read most of the same elements.
 - Thread 7 reads elements 4 through 10
 - Thread 8 reads elements 5 through 11

Can we avoid redundant reading of data?

Sharing Data Between Threads

- Terminology: within a block, threads share data via shared memory
- Extremely fast on-chip memory, user-managed
- Declare using __shared__, allocated per block
- Data is not visible to threads in other blocks

Implementing With Shared Memory

- Cache data in shared memory (user managed scratch-pad)
 - Read (blockDim.x + 2 * radius) input elements from global memory to shared memory
 - Compute blockDim.x output elements
 - Write blockDim.x output elements to global memory
- Each block needs a halo of radius elements at each boundary

Stencil Kernel


```
global void stencil 1d(int *in, int *out) {
 shared int temp[BLOCK SIZE + 2 * RADIUS];
int gindex = threadIdx.x + blockIdx.x * blockDim.x;
int lindex = threadIdx.x + RADIUS;
// Read input elements into shared memory
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {</pre>
  temp[lindex - RADIUS] = in[gindex - RADIUS];
  temp[lindex + BLOCK SIZE] =
    in[gindex + BLOCK SIZE];
```

Stencil Kernel


```
// Apply the stencil
int result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
  result += temp[lindex + offset];

// Store the result
out[gindex] = result;</pre>
```

Simple Stencil 1d with shared memory

- cd exercises/cuda/simple_stencil_smem/
- Run the code. It should build/run without modification.
 - If Errors occur, first offending element will be printed to the screen
 - FAIL will be printed to the screen
- What is the result with N=(1024*1024) and THREADS_PER_BLOCK=32?
- What is the result with N=(1024*1024) and THREADS_PER_BLOCK=64?
 - Why?

Data Race!

- The stencil example will not work...
- Suppose thread 15 reads the halo before thread 0 has fetched it...

__syncthreads()


```
void syncthreads();
```

- Synchronizes all threads within a block
 - Used to prevent RAW / WAR / WAW hazards
- All threads must reach the barrier
 - In conditional code, the condition must be uniform across the block
- Insert __syncthreads() into the kernel in the proper location
- Compare timing of previous simple stencil with the current shared memory implementation for same (large N) and BLOCK=512

Stencil Kernel


```
global void stencil 1d(int *in, int *out) {
    shared int temp[BLOCK SIZE + 2 * RADIUS];
  int gindex = threadIdx.x + blockIdx.x * blockDim.x;
  int lindex = threadIdx.x + radius;
  // Read input elements into shared memory
  temp[lindex] = in[gindex];
  if (threadIdx.x < RADIUS) {</pre>
      temp[lindex - RADIUS] = in[gindex - RADIUS];
      temp[lindex + BLOCK SIZE] = in[gindex + BLOCK SIZE];
  // Synchronize (ensure all the data is available)
    syncthreads();
```

Stencil Kernel


```
// Apply the stencil
int result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
    result += temp[lindex + offset];

// Store the result
out[gindex] = result;</pre>
```

Review (1 of 2)

- Launching parallel threads
 - Launch и blocks with м threads per block with kernel<<<и,м>>> (...);
 - Use blockIdx.x to access block index within grid
 - Use threadIdx.x to access thread index within block

Allocate elements to threads:

```
int index = threadIdx.x + blockIdx.x * blockDim.x;
```

Review (2 of 2)

- Use __shared__ to declare a variable/array in shared memory
 - Data is shared between threads in a block
 - Not visible to threads in other blocks
 - Using large shared mem size impacts number of blocks that can be scheduled on an SM (48K total smem size)
- Use syncthreads() as a barrier
 - Use to prevent data hazards

Memory Hierarchy Review

- Local storage
 - Each thread has own local storage
 - Mostly registers (managed by the compiler)
- Shared memory / L1
 - Program configurable: 16KB shared / 48 KB L1 OR 48KB shared / 16KB L1
 - Shared memory is accessible by the threads in the same threadblock
 - Very low latency
 - Very high throughput: 1+ TB/s aggregate
- L2
 - All accesses to global memory go through L2, including copies to/from CPU host
- Global memory
 - Accessible by all threads as well as host (CPU)
 - High latency (400-800 cycles)
 - Throughput: up to 177 GB/s

GPU Memory Hierarchy Review

Load Operation

- Memory operations are issued per warp (32 threads)
 - Just like all other instructions
- Operation:
 - Threads in a warp provide memory addresses
 - Determine which lines/segments are needed
 - Request the needed lines/segments

Caching Load--coalesced

- Warp requests 32 aligned, consecutive 4-byte words
- Addresses fall within 1 cache-line
 - Warp needs 128 bytes
 - 128 bytes move across the bus on a miss
 - Bus utilization: 100%

Caching Load--uncoalesced

- Warp requests 32 scattered 4-byte words
- Addresses fall within N cache-lines
 - Warp needs 128 bytes
 - N*128 bytes move across the bus on a miss
 - Bus utilization: 128 / (N*128)

GMEM OPTIMIZATION GUIDELINES

- Strive for perfect coalescing!!!
- Have enough concurrent accesses to saturate the bus
 - Process several elements per thread
 - Multiple loads get pipelined
 - Indexing calculations can often be reused
 - Launch enough threads to maximize throughput
 - Latency is hidden by switching threads (warps)

Shared Memory

SHARED MEMORY

Uses:

- Inter-thread communication within a block
- Cache data to reduce redundant global memory accesses
- Use it to improve global memory access patterns
- Organization:
 - 32 banks, 4-byte wide banks
 - Successive 4-byte words belong to different banks
- If you use shared memory in a kernel, you should almost always use syncthreads() to avoid race conditions!!!

Bank Addressing Examples

Bank Addressing Examples

Shared memory: Banks and Conflicts

- Consider 4x4 SMEM array
- Consecutive threads access consecutive elements in a row
 - PERFECT ACCESS!
- Consecutive threads access consecutive elements in a column
 - 4-way bank conflict because 4 threads try to access same bank.

Shared memory: Avoiding bank conflicts

- Consider 4x5 SMEM array
 - Padded the column dimension
- Consecutive threads access consecutive elements in a row
 - PERFECT ACCESS!
- Consecutive threads access consecutive elements in a column
 - PERFECT ACCESS!

Matrix Transpose

- Open exercises/cuda/naive_transpose/kernel.cu
 - Defined INDX(row,col,ld) to translate 2d coordinates to 1d index
- Column-major double precision elems
 - Out-of-place transpose
- Naïve implementation:
 - Square threadblocks
 - Each thread:
 - Computes its global x and y coordinates
 - Reads from (x,y), writes to (y,x)

thread X

thread (X+1)

naive_transpose/kernel.cu

- Use INDX(row,col,ld) to translate 2d coordinates to 1d index
 - Defined as MACRO at top of source code
- Finish the kernel and kernel launch parameters
 - Each thread transposes one element from A to C, out-of-place
- Kernel is compared to a CPU-side transpose
 - Both performance and answers are compared
- Once you get correct answers in your kernel:
 - Measure performance of kernel with N=1024 and N=4096

NVIDIA Visual Profiler

- o nvvp &
- Choose File->New Session
- Choose exercises/cuda/naïve_transpose/x.transpose
- Select proper "naïve_transpose" for working directory
- Then click "Next"
- Choose timeout = 60 seconds.
- Uncheck "Run Analysis" then click "Finish"
- Click "Analyze All"
 - Profiler will execute the code multiple times to record all performance counters
- In the timeline window, click on the kernel of interest

Profiler results?

What does the profiler output show us?

Why are load and store performance so divergent?

Ideas for potential improvement?

Cause and Remedy

Cause:

- Due to nature of operation, one of the accesses (read or write) will be at large strides, i.e., uncoalesced!
 - 32 doubles (256 bytes) in this case (on a warp basis)
 - Thus, bandwidth will be wasted as only a portion of a transaction is used by the application

Remedy

- Stage accesses through shared memory
- A threadblock:
 - Reads a tile from GMEM to SMEM
 - Transposes the tile in SMEM
 - Write a tile, in a coalesced way, from SMEM to GMEM

smem_transpose/kernel.cu

- Finish the kernel code
 - Particularly the index calculations for the transpose.
- One thread block cooperatively operates on a block of the matrix
 - Index calculations need to know which block I am in the full matrix
- HINT: You are using shared memory. What should you include when using smem?
- Once you get correct answers in your kernel:
 - Measure performance of kernel with N=1024 and N=4096

Visual Profiler

- Run the profiler
- What are the results?

- What is happening?
- How to fix it?
 - Hint: requires adding only 2 characters to the kernel source!

SMEM bank conflicts

- Recall that smem has 32 banks of 4 bytes each
- When multiple threads IN THE SAME WARP access the same bank, a conflict occurs and performance is affected negatively
- © Consider __shared__ double s[16][16]
 - Read/write s[tidx][tidy] (each read/write requires two 4byte banks)
 - tidx are consecutive threads
 - They are accessing the s[][] array with stride of 16 doubles
 - 16 doubles == 128 bytes == 32 banks * 4 bytes.
 - s[0][tidy] accesses banks 0,1 to grab its 8 byte double
 - s[1][tidy] accesses banks 0,1 to grab its 8 byte double
 - 16 threads are all accessing banks 0,1 in the same transaction!!!

SMEM bank conflicts cont'd

- tidx from 0 to 16 all access banks 0,1
 - 16 way bank conflict! VERY BAD for performance
- How to remedy?
 - Pad shared memory.
- __shared__ double s[16][17]
 - Now the stride between success tidx is 17 doubles,
 - i.e., 17 * 8bytes = 136 bytes
 - More importantly, 136 byte stride will be 32 + 2 banks
 - s[0][tidy] accesses banks 0,1 to grab its 8 byte double
 - s[1][tidy] accesses banks 2,3 to grab its 8 byte double
 - 16 threads are all accessing different banks!!!

Still in smem_transpose/kernel.cu

- Remedy the smem bank conflicts
- Once you get correct answers in your kernel:
 - Measure performance of kernel with N=1024 and N=4096

- Run with the profiler again.
 - Verify the bank conflicts have gone away

Review

- SMEM often used to alleviate poor GMEM accesses
 - Uncoalesced loads/stores were solved using SMEM
- SMEM almost always requires __syncthreads()
- SMEM often requires an analysis to minimize bank conflicts.
- Use NVIDIA Visual Profiler to identify performance bottlenecks

CUDA STREAMS (slides adapted from Justin Luitjens, NVIDIA)

Simple Processing Flow

CONCURRENCY THROUGH PIPELINING

CONCURRENCY THROUGH PIPELINING

Serial (1x)

 cudaMemcpyAsync(H2D)
 Kernel <<< >>>
 cudaMemcpyAsync(D2H)

2-way concurrency (up to 2x)

4-way concurrency (3x+)

■ 3-way concurrency (up to 3x)

4+ way concurrency

EXAMPLE - TILED DGEMM

- CPU (dual 6 core SandyBridge E5-2667 @2.9 Ghz, MKL)
 - 222 Gflop/s
- GPU (K20X)
 - Serial: 519 Gflop/s (2.3x)
 - 2-way: 663 Gflop/s (3x)
 - 3-way: 990 Gflop/s (4x)
- GPU + CPU
 - 4-way con.: 1180 Gflop/s (5.3x)

DGEMM: m=n=16384, k=1408

Nvidia Visual Profiler (nvvp)

- Obtain maximum performance by leveraging concurrency
- All PCI-E traffic is hidden
 - Effectively removes device memory size limitations!

SYNCHRONICITY IN CUDA

- All CUDA calls are either synchronous or asynchronous w.r.t the host
 - Synchronous: enqueue work and wait for completion
 - Asynchronous: enqueue work and return immediately
- Kernel Launches are asynchronous Automatic overlap with host

CUDA STREAMS

- A stream is a queue of device work
 - The host places work in the queue and continues on immediately
 - Device schedules work from streams when resources are free
- CUDA operations are placed within a stream
 - e.g. Kernel launches, memory copies
- Operations within the same stream are ordered (FIFO) and cannot overlap
- Operations in different streams are unordered and can overlap

MANAGING STREAMS

- cudaStream t stream;
 - Declares a stream handle
- cudaStreamCreate(&stream);
 - Allocates a stream
- cudaStreamDestroy(stream);
 - Deallocates a stream
 - Synchronizes host until work in stream has completed

PLACING WORK INTO A STREAM

- Stream is the 4th launch parameter
 - kernel<<< blocks , threads, smem, stream>>>();
- Stream is passed into some API calls
 - cudaMemcpyAsync(dst, src, size, dir, stream);

DEFAULT STREAM

- Unless otherwise specified all calls are placed into a default stream
 - Often referred to as "Stream 0"
- Stream 0 has special synchronization rules
 - Synchronous with all streams
 - Operations in stream 0 cannot overlap other streams
- Exception: Streams with non-blocking flag set
 - cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking)
 - Use to get concurrency with libraries out of your control (e.g. MPI)

KERNEL CONCURRENCY

- Assume foo only utilizes 50% of the GPU
- Default stream

```
foo<<<blooks, threads>>>();
foo<<<blooks, threads>>>();
Stream 0
```

Default & user streams

KERNEL CONCURRENCY

- Assume foo only utilizes 50% of the GPU
- Default & user streams

```
cudaStream_t stream1;
cudaStreamCreateWithFlags(&stream1,cudaStreamNonBlocking);
foo<<<blocks,threads>>>();
foo<<<blocks,threads,0,stream1>>>();
cudaStreamDestroy(stream1);
```

CPU
Stream 0
Stream 1

KERNEL CONCURRENCY

 Assume foo only utilizes 50% of the GPU User streams

```
cudaStream_t stream1, stream2;
cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);
foo<<<blocks, threads, 0, stream1>>>();
foo<<<blocks, threads, 0, stream2>>>();
cudaStreamDestroy(stream1);
cudaStreamDestroy(stream2);
```

REVIEW

- The host is automatically asynchronous with kernel launches
- Use streams to control asynchronous behavior
 - Ordered within a stream (FIFO)
 - Unordered with other streams
 - Default stream is synchronous with all streams.

CONCURRENT MEMORY COPIES

First we must review CUDA memory

THREE TYPES OF MEMORY

- Device Memory
 - Allocated using cudaMalloc
 - Cannot be paged
- Pageable Host Memory
 - Default allocation (e.g. malloc, calloc, new, etc)
 - Can be paged in and out by the OS
- Pinned (Page-Locked) Host Memory
 - Allocated using special allocators
 - Cannot be paged out by the OS

ALLOCATING PINNED MEMORY

- cudaMallocHost(...) / cudaHostAlloc(...)
 - Allocate/Free pinned memory on the host
 - Replaces malloc/free/new
- cudaFreeHost(...)
 - Frees memory allocated by cudaMallocHost or cudaHostAlloc
- cudaHostRegister(...) / cudaHostUnregister(...)
 - Pins/Unpins pagable memory (making it pinned memory)
 - Slow so don't do often
- Why pin memory?
 - Pagable memory is transferred using the host CPU
 - Pinned memory is transferred using the DMA engines
 - Frees the CPU for asynchronous execution
 - Achieves a higher percent of peak bandwidth

CONCURRENT MEMORY COPIES

- cudaMemcpy(...)
 - Places transfer into default stream
 - Synchronous: Must complete prior to returning
- cudaMemcpyAsync(..., &stream)
 - Places transfer into stream and returns immediately
- To achieve concurrency
 - Transfers must be in a non-default stream
 - Must use async copies
 - 1 transfer per direction at a time
 - Memory on the host must be pinned

PAGED MEMORY EXAMPLE

```
int *h ptr, *d ptr;
h ptr=malloc(bytes);
cudaMalloc(&d ptr,bytes);
cudaMemcpy(d ptr,h ptr,bytes,cudaMemcpyHostToDevice);
free (h_ptr);
cudaFree(d ptr);
```

PINNED MEMORY: EXAMPLE 1

```
int *h ptr, *d ptr;
cudaMallocHost(&h ptr,bytes);
cudaMalloc(&d ptr,bytes);
cudaMemcpy(d ptr,h ptr,bytes,cudaMemcpyHostToDevice);
cudaFreeHost(h ptr);
cudaFree(d ptr);
```

PINNED MEMORY: EXAMPLE 2

```
int *h ptr, *d ptr;
h ptr=malloc(bytes);
cudaHostRegister(h ptr,bytes,0);
cudaMalloc(&d ptr,bytes);
cudaMemcpy(d ptr,h ptr,bytes,cudaMemcpyHostToDevice);
cudaHostUnregister(h ptr);
free(h ptr);
cudaFree(d ptr);
```

CONCURRENCY EXAMPLES

Synchronous

```
cudaMemcpy(...);
                                        CPU
    foo<<<...>>>();
                                     Stream 0
Asynchronous Same Stream
                                        CPU
    cudaMemcpyAsync(...,stream1);
                                    Stream 1
    foo<<<...,stream1>>>();
                                        CPU
Asynchronous Different Streams
                                    Stream 1
    cudaMemcpyAsync(...,stream1);
                                    Stream 2
    foo<<<..., stream2>>>();
```

REVIEW

- Memory copies can execute concurrently if (and only if)
 - The memory copy is in a different non-default stream
 - The copy uses pinned memory on the host
 - The asynchronous API is called
 - There isn't another memory copy occurring in the same direction at the same time.

TILED MATRIX MULTIPLY

- Handle arbitrarily large data
 - Full matrix never on the device

- GPU running at full capacity
 - Communication cost is hidden due to overlap

ALGORITHM OUTLINE

- Copy tiles of A/B/C into pinned memory buffers
- Loop over tiles of C
 - Copy tile of C to device
 - loop over K
 - Copy tiles of A and B to device
 - Call cublasDgemm and accumulate to tile of C
 - Copy C back to host

matmul_streams/kernel.cu

- Finish the kernel by inserting appropriate streams/cublas API calls
 - Use cheatsheet and/or docs.nvidia.com for syntax
- Answers (and perf) compared against single call of cublas
- Once you get correct answers try to find best combo of TILESIZE, SIZE and NUM_STREAMS
 - How much better perf is the streams code?
- If time permits, profile the app to ensure overlap
- CUDA_LAUNCH_BLOCKING=1 to enforce synchronous behavior

NVVP PROFILE

- > K20X/CUDA6.5
 - ► N=8192
 - ► TILE=2048
 - ▶ Streams=3
 - ▶ 1061 GF
- Single dgemm
 - ▶ 548 GF

Synchronization