Lineární algebra

Lineární podprostory

Matěj Dostál

ČVUT v Praze

9. října 2024

Uzavřenost množiny na operace

U následujících graficky zadaných podmnožin \mathbb{R}^2 (lineárního prostoru \mathbb{R}^2 nad tělesem \mathbb{R}) rozhodněte, zda

- 1. obsahují nulový vektor,
- 2. jsou uzavřené na sčítání vektorů,
- 3. jsou uzavřené na násobení skalárem.

Nejprve zapište dané podmnožiny v množinovém zápisu.

Lineární podprostory

Je daná množina lineárním podprostorem \mathbb{R}^3 nad \mathbb{R} ? Pokud to jde, přepište do tvaru využívajícího lineární obal. Jaký geometrický objekt popisuje, jaká je jeho dimense?

1.
$$\left\{ \begin{pmatrix} 2s+4t \\ s-2t \\ 3s \end{pmatrix} \in \mathbb{R}^3 \mid s, t \in \mathbb{R} \right\}, \ \left\{ \begin{pmatrix} 2+s \\ 2s+t \\ t \end{pmatrix} \in \mathbb{R}^3 \mid s, t \in \mathbb{R} \right\}$$
2.
$$\left\{ \begin{pmatrix} 2+s \\ 5+2s+t \\ t+1 \end{pmatrix} \in \mathbb{R}^3 \mid s, t \in \mathbb{R} \right\}$$

3.
$$\left\{ \begin{pmatrix} 1+2s-4t\\ 2+3s-6t\\ 3+4s-8t \end{pmatrix} \in \mathbb{R}^3 \mid s,t \in \mathbb{R} \right\}$$

4.
$$\left\{ \begin{pmatrix} s \\ t \\ \max(s,t) \end{pmatrix} \in \mathbb{R}^3 \mid s,t \in \mathbb{R} \right\}$$

Lineární závislost a nezávislost

Rozhodněte o pravdivosti následujících tvrzení:

- 1. Pokud je jeden z vektorů v seznamu $S = (\mathbf{v}_1, \dots, \mathbf{v}_r)$ nulový, pak je S lineárně závislý.
- 2. Pokud je seznam $S = (\mathbf{v}_1, \dots, \mathbf{v}_r)$ lineárně nezávislý a vektor \mathbf{v}_{r+1} není lineární kombinací vektorů z S, pak je i seznam $(\mathbf{v}_1, \dots, \mathbf{v}_r, \mathbf{v}_{r+1})$ lineárně nezávislý.
- 3. Pokud je **u** lineární kombinací vektorů ze seznamu $S = (\mathbf{v}_1, \dots, \mathbf{v}_r)$, a pokud je každý z vektorů v seznamu S lineární kombinací vektorů ze seznamu $T = (\mathbf{w}_1, \dots, \mathbf{w}_n)$, pak je i **u** lineární kombinací vektorů ze seznamu T.
- 4. Pokud je seznam $S = (\mathbf{v}_1, \dots, \mathbf{v}_r)$ lineárně nezávislý, pak žádný vektor \mathbf{v}_i z S není lineární kombinací ostatních vektorů z S.

Lineární závislost a nezávislost

- 5. Pokud v seznamu $S = (\mathbf{v}_1, \dots, \mathbf{v}_r)$ není žádný vektor \mathbf{v}_i lineární kombinací ostatních vektorů z S, pak je S lineárně nezávislý.
- 6. Pokud je seznam $S = (\mathbf{v}_1, \dots, \mathbf{v}_r)$ lineárně závislý, pak je libovolný vektor \mathbf{v}_i z S lineární kombinací ostatních vektorů z S.
- 7. Pokud **w** není lineární kombinací vektorů ze seznamu $S = (\mathbf{v}_1, \dots, \mathbf{v}_r)$, pak je seznam $(\mathbf{v}_1, \dots, \mathbf{v}_r, \mathbf{w})$ lineárně nezávislý.
- 8. Pokud jsou v seznamu $S=(\mathbf{v}_1,\ldots,\mathbf{v}_r)$ všechny podseznamy délky r-1 lineárně nezávislé, pak je i seznam S lineárně nezávislý.