Solutions to homework 1:

1. Your solution to question 1.

Proof. Prove that if $a \in \mathbb{Z}$, then $4 \nmid (a^2 + 1)$.

- Let's assume that $a \in \mathbb{Z}$.
- By euclidean division $a = 4k, a = 4\ell + 1, a = 4\ell + 2, a = 4m + 3$ when $\ell, k, m, n \in \mathbb{Z}$.
- Case 1: $a = 4k(k \in \mathbb{Z})$. Then, $a^2 + 1 = 4(4k^2) + 1$.
- Notice that when $k \in \mathbb{Z}$, then $4k^2 \in \mathbb{Z}$ thus we can conclude $4 \nmid (a^2 + 1)$.
- Case 2: $a = 4\ell + 1(\ell \in \mathbb{Z})$. Then, $a^2 + 1 = 4(4\ell^2 + 2\ell) + 2$.
- As $(4\ell^2 + 2\ell) \in \mathbb{Z}$, then $4 \nmid (a^2 + 1)$.
- Case 3: $a = 4m + 2(m \in \mathbb{Z})$. Then, $a^2 + 1 = 4(4m^2 + 4m) + 4$.
- We can conclude that $(4m^2 + 4m) \in \mathbb{Z}$, so $4 \nmid (a^2 + 1)$.
- Case 4: $a = 4n + 3(n \in \mathbb{Z})$. Then, $a^2 + 1 = 4(4n^2 + 6n + 2) + 1$.
- We can conclude that $4 \nmid (a^2 + 1)$ as we know that $(4n^2 + 6n + 2)$.
- 2. Your solution to question 2.

Proof. Let x be a positive number. Prove that if $2x - \frac{1}{x} > 1$, then x > 1.

- Let's assume $x > 0, 2x \frac{1}{x} > 1$ when $x \in \mathbb{R}$.
- $2x \frac{1}{x} 1 = \frac{1}{x}(2x^2 x 1)$ for $x \neq 0$.
- And $\frac{1}{x} 1 = \frac{1}{x}(2x^2 x 1) = \frac{1}{x}(2x + 1)(x 1)$.
- When x > 0, $\frac{1}{x} > 0$ and (2x + 1) > 0.
- Therefore, we can conclude that in order to satisfy $\frac{1}{x}(2x+1)(x-1) > 0$. (x-1) > 0 needs to be satisfied.
- To conclude, x > 1.
- 3. Your solution to question 3.

Proof. Prove that if $k \in \mathbb{Z}$ then $3 \mid (k(2k+1)(4k+1))$.

4. Your solution to question 4.

Proof. \Box

5. Your solution to question 5.

Proof.

6. Your solution to question 6.

Proof. Let $x \in \mathbb{R}$. Then, prove that $x^2 + |x - 6| > 5$.

- Let's assume that $x \in \mathbb{R}$.
- Case 1: When $x \ge 6$, then

$$x^2 + |x - 6| - 5$$
 bott (41)

•