H09T1A1

Für die Differentialgleichung $u'(x) = \sqrt{1-u(x)^2}$ bestimme jeweils alle Lösungen $u_{\mathbb{I}}0,\infty[\to\mathbb{R}$ zu den Anfangswerten

- a) u(0) = 1b) u(0) = -1

Lösung

 $u \in [-1, 1]$ damit $\sqrt{1 - u^2}$ eine reellwertige Funktion definiert.

$$F: [-1,1] \to \mathbb{R}, \ u \mapsto \sqrt{1-u^2}, \quad f:]-1,1[\to \mathbb{R}, \ u \mapsto \sqrt{1-u^2} \quad \in C^1(]-1,1[,\mathbb{R})$$

 $\Rightarrow u' = f(u), u(\tau) = \xi, (\tau, \xi) \in \mathbb{R} \times]-1,1[$ hat eine maximal Lösung. Auf u' = F(u), $u(\tau) = \xi$ ist der Existenz- und Eindeutigkeitssatz anwendbar. Jede Lösung $\lambda: I \to \mathbb{R}$ von u' = F(u) nimmt nur Werte $\lambda(t) \in [-1, 1]$ an. Da $\lambda'(t) = F(\lambda(t)) = \sqrt{1 - (\lambda(t))^2} \ge 0$ ist λ monoton steigend (mit $(\lambda(t))^2 \in [0, 1]$).

Zu a):

Mit $\lambda(0) = 1$, λ monoton steigend, $\lambda(t) \in [-1,1]$ bleibt auf dem Lösungsintervall $I = [0, \infty[$ nur $\lambda : [0, \infty[\to \mathbb{R}, t \mapsto 1 \text{ als L\"osung zu } u' = \sqrt{1 - u^2}, u(0) = 1.$

(Bild 1)

Zu b):

 $\mu: \mathbb{R} \to \mathbb{R}, t \mapsto -1 \text{ löst } u' = \sqrt{1 - u^2}, u(0) = -1$ Sei $\tau > 0$ und $\xi \in]-1,1[$ und $\lambda_{(\tau,\xi)}:I_{(\tau,\xi)}\to \mathbb{R}$ ist eine maximale Lösung zu $u' = f(u), u(\tau) = \xi$ Trennen der Variablen:

$$\int_{\xi}^{\lambda(t)} \frac{du}{\sqrt{1 - u^2}} = \int_{\tau}^{t} ds = \arcsin(u) \Big|_{\xi}^{\lambda(t)}, \quad \arcsin(\lambda(t)) = t - \tau + \arcsin(\xi)$$

$$\lambda(t) = \sin(t - \tau + \arcsin(\xi))$$

Test: $\lambda'(t) = \dots$

(Bild 2)

Maximales Lösungsintervall $I_{(\tau,\xi)}=]u(\tau,\xi),u(\tau,\xi)+\pi[$ so zu wählen, dass $\sin(t-\tau+\arcsin(\xi))=-1$ und $\tau\in I_{(\tau,\xi)}$

Dies lässt sich nur durch Anstückeln zu einer Lösung von u' = F(u), u(0) = -1 auf $[0, \infty[$ fortsetzen; somit sind dies alle derartige Lösungen (da jede Lösung $\not\equiv -1$ dann lokal auch u' = f(u), $u(\tau) = \xi$ mit $\xi \in]-1,1[$ löst!).

(Bild 3)