Задача 1

Условие. В городе с населением в n+1 человек некто узнаёт новость. Он передаёт её первому встречному, тот — ещё одному и т.д. На каждом шагу впервые узнавший новость может сообщить её любому из n человек с одинаковыми вероятностями.

Найти вероятность того, что в продолжение r единиц времени

- 1. Новость не возвратится к человеку, который узнал её первым.
- 2. Новость не будет никем повторена.

Решить ту же задачу в предположении, что на каждом шагу новость сообщается группе из N случайно выбранных людей.

Решение. В первом случае задачи решение довольно просто, а для $N \neq 1$ решить я её не могу. В случае N = 1 новость в любой момент времени передаёт не более 1 человека (1, если он получил её в прошлый момент времени впервые, 0, если новость пришла к тому, кто её уже знал).

а. Посчитаем вероятность, что новость вернётся к первому человеку. В первый момент времени второй человек узнаёт новость. Потом он с вероятностью $\frac{1}{n}$ говорит её первому, на чём всё заканчивается. В противном случае он передаёт новость третьему... k-тый человек имеет вероятность $\frac{1}{n}$ передать её первому, $\frac{k-2}{n}$ — передать её не-первому человеку, который новость уже знает и $\frac{n-k+1}{n}$ — передать новость новому (k+1-му человеку). Итого вероятность того, что новость вернётся к первому, составляет

$$\frac{1}{n} + \frac{n-1}{n} \left(\frac{1}{n} + \frac{n-2}{n} \left(\frac{1}{n} + \frac{n-3}{n} \left(\frac{1}{n} + \dots + \frac{n-r+2}{n} \left(\frac{1}{n} \right) \dots \right) \right) \right)$$

Это можно упростить до:

$$\frac{1}{n} + \frac{n-1}{n} \frac{1}{n} + \frac{(n-1)(n-2)}{n^2} \frac{1}{n} + \dots + \frac{(n-1)(n-2)\cdots(n-r+2)}{n^{r-2}} \frac{1}{n}$$

Как это просуммировать, правда, я не знаю. Ответом является разность единицы и этой величины.

б. Не очень понятно, что имеется в виду под «повторена», если новость сообщает только впервые её услышавший. Вероятно, имеется в виду, что никто не услышит новость дважды. Тогда нам подходит ситуация, когда k-тый человек передаёт новость любому из n-k не слышавших её, то есть искомая вероятность равна

$$\frac{n-1}{n} \cdot \frac{n-2}{n} \cdot \dots \cdot \frac{n-r+1}{n}$$

Как это упростить, я всё ещё понятия не имею.

Задача 2.

Условие. Случайная точка A имеет равномерное распределение в правильном n-угольнике. Найти вероятность P_n , что точка A находится ближе к границе многоугольника, чем к его диагоналям. Найти числа C, α , что

$$P_n = Cn^{\alpha}(1 + o(1))$$

Решение. Пусть $A_1 \cdots A_n$ — искомый многоугольник. Нам нужно посчитать площадь той части, где точки ближе к сторонам, чем к диагоналям. Несложно заметить, что граница, разделяющая точки, которые ближе к одной прямой, чем к другой — биссектриса угла между ними. Т.е., если обратить внимание на рисунок выше, точки, которые ближе к A_2A_3 , чем к A_1A_3 находятся «ниже» биссектрисы угла $A_1A_3A_2$ (т.е. «ниже» прямой A_3C_{23}).

Несложно заметить, что в треугольнике $A_2C_{23}A_3$ находятся точки, которые ближе к A_2A_3 , чем к **любой** из диагоналей. И нигде в другом месте такие точки не находятся. То есть всё, что нам остаётся, — найти площадь этого треугольника, умножить её на n (потому что около каждой стороны есть такой) и поделить полученное на площадь многоугольника.

Пусть сторона многоугольника равна 1. Его площадь тогда равна

$$\frac{n}{4}\cot\frac{\pi}{n}$$

Теперь давайте посчитаем площадь треугольника $A_2C_{23}A_3$. Он, как несложно заметить, равнобедренный, а его основание — 1. Если посчитать углы, с площадью можно будет справиться.

Рассмотрим $\triangle A_1A_2A_3$. Он равнобедренный и в нём $\angle A_1A_2A_3=\frac{\pi(n-2)}{n}$, а значит $\angle A_2A_3A_1=\angle A_3A_1A_2=\frac{\pi}{n}$. Следовательно $\angle C_{23}A_3A_2=\frac{\pi}{2n}$, и аналогично $\angle C_{23}A_2A_3=\frac{\pi}{2n}$. А отсюда $\angle A_2C_{23}C_3=\frac{\pi(n-1)}{n}$. По формуле площади треугольника через три угла и сторону

$$S_{\triangle A_2 C_{23} A_3} = \frac{\left(\sin \frac{\pi}{2n}\right)^2}{2\sin \frac{\pi(n-1)}{n}}$$

Итого ответом к залаче является

$$\frac{n\frac{\left(\sin\frac{\pi}{2n}\right)^2}{2\sin\frac{\pi(n-1)}{n}}}{\frac{n}{4}\cot\frac{\pi}{n}} = \frac{2\left(\sin\frac{\pi}{2n}\right)^2}{\sin\frac{\pi(n-1)}{n}\cot\frac{\pi}{n}} = \frac{1-\cos\frac{\pi}{n}}{\sin\left(\pi-\frac{\pi}{n}\right)\cot\frac{\pi}{n}} = \frac{1-\cos\frac{\pi}{n}}{\cos\frac{\pi}{n}} = \frac{1}{\cos\frac{\pi}{n}} - 1$$

Осталось только оценить P_n :

$$\lim_{x \to \infty} \frac{\frac{1}{\cos \frac{\pi}{x}} - 1}{Cx^{\alpha}} = 1 \stackrel{\hat{\phi}}{\Leftrightarrow} \lim_{x \to \infty} \frac{-\frac{\pi \tan \frac{\pi}{x}}{x^2 \cos \frac{\pi}{x}}}{C\alpha x^{\alpha - 1}} = 1 \Leftrightarrow \lim_{x \to \infty} \frac{-\frac{\pi \tan \frac{\pi}{x}}{\cos \frac{\pi}{x}}}{C\alpha x^{\alpha + 1}} = 1 \stackrel{\hat{\phi}}{\Leftrightarrow}$$

$$\stackrel{\hat{\phi}}{\Leftrightarrow} \lim_{x \to \infty} \frac{\frac{\pi^2 \left(\tan^2 \frac{\pi}{x} + \frac{1}{\cos^2 \frac{\pi}{x}}\right)}{x^2 \cos \frac{\pi}{x}}}{C\alpha (\alpha + 1) x^{\alpha}} = 1 \Leftrightarrow \lim_{x \to \infty} \frac{\pi^2 \left(\tan^2 \frac{\pi}{x} + \frac{1}{\cos^2 \frac{\pi}{x}}\right)}{C\alpha (\alpha + 1) x^{\alpha + 2}} = 1 \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} \frac{\pi^2}{C\alpha (\alpha + 1)} = 1 \\ \alpha + 2 = 0 \end{cases} \Leftrightarrow \begin{cases} C = \frac{\pi^2}{2} \\ \alpha = -2 \end{cases}$$

Ответ: $P_n = \frac{\pi^2}{2} n^{-2} (1 + o(1)).$

Задача 3.

Условие. Введем события $A_i = \{X = i\}, \ B_i = \{Y = i\}, \ i \geqslant 0$. Известно, что для любых $i \geqslant 0$ и $j \geqslant 0$ события A_i и B_i независимы и

$$P(X = i) = e^{-\lambda} \frac{\lambda^i}{i!}$$
 $\lambda > 0$

$$P(Y=j) = e^{-\mu} \frac{\mu^i}{i!} \qquad \mu > 0$$

Найти $P(X = i \mid X + Y = j)$.

Трактовка условия. Для начала давайте поймём, что такое i и j, исходя из этого условия. На мой взгляд, это неотрицательное целое число т.к.

$$\sum_{i=0}^{\infty} P(X=i) = e^{-\lambda} \sum_{i=0}^{\infty} \frac{\lambda^i}{i!} = 1$$
 Ряд Тейлора e^{λ}

Решение. По определению условной вероятности

$$P(X = i \mid X + Y = j) = \frac{P(X + Y = j \land X = i)}{P(X + Y = j)} = \frac{P(Y = j - i \land X = i)}{P(X + Y = j)}$$

Отсюда сразу видно, что если j < i или i < 0, то искомая условная вероятность — ноль, а если j < 0, то не определена. Числитель этой дроби понятно какой, а вот знаменатель надо посчитать. Зная, что iи j, целые (и неотрицательные), разобьём $\{X+Y=j\}$ на следующие попарно несовместные события:

0.
$$\{X = 0 \land Y = j\}$$
.

1.
$$\{X = 1 \land Y = i - 1\}.$$

$$j \{ X = j \land Y = 0 \}.$$

Вероятности их соотвественно равны

0.

$$e^{-\lambda} \frac{\lambda^0}{0!} e^{-\mu} \frac{\mu^j}{j!}$$

$$e^{-\lambda} \frac{\lambda^1}{1!} e^{-\mu} \frac{\mu^{j-1}}{(j-1)!}$$

• • •

$$j$$
.

$$e^{-\lambda} \frac{\lambda^j}{j!} e^{-\mu} \frac{\mu^0}{0!}$$

Поскольку эти события несовместны, а их объединение равно $\{X+Y=j\}$, надо лишь сложить искомые вероятности.

$$\sum_{i=0}^{j} e^{-\lambda} \frac{\lambda^{i}}{i!} e^{-\mu} \frac{\mu^{j-i}}{(j-i)!} = \frac{e^{-\lambda-\mu}}{j!} \sum_{i=0}^{j} \frac{j!}{i!(j-i)!} \lambda^{i} \mu^{j-i} = \frac{(\lambda+\mu)^{j}}{j! \cdot e^{\lambda+\mu}}$$

Осталось лись поделить $P(X=i \wedge Y=j-i)$ на это.

Otbet:
$$\binom{j}{i} \frac{\lambda^i \mu^{j-i}}{(\lambda + \mu)^j}$$
.

Задача 4.

Условие. Рассмотрите схемы Бернулли при $n \in \{10, 100, 1000, 10000\}$ и $p \in \{0.001, 0.01, 0.1, 0.1, 0.25, 0.5\}$ и рассчитайте точные вероятности (где это возможно) $P\left(S_n \in \left[\frac{n}{2} - \sqrt{npq}; \frac{n}{2} + \sqrt{npq}\right]\right), S_n$ — количество успехов в n испытаниях, и приближенную с помощью одной из предельных теорем. Сравните точные и приближенные вероятности.

Объясните результаты.

Решение. Для начала, это очень просто оценить «с помощью одной из предельных теорем». Согласно интегральной теореме Муавра — Лапласа.

$$P\left(x_1\sqrt{npq} + np \leqslant S_n \leqslant x_2\sqrt{npq} + np\right) \approx \frac{1}{\sqrt{2\pi}} \int_{x_1}^{x_2} e^{-\frac{t^2}{2}} dt$$

Несложно вывести формулу

$$x_1 = -1 + \frac{(1-2p)\sqrt{npq}}{2p(1-p)}$$
 $x_2 = 1 + \frac{(1-2p)\sqrt{npq}}{2p(1-p)}$

n	p	x_1	x_2	$\frac{1}{\sqrt{2\pi}} \int_{x_1}^{x_2} e^{-\frac{t^2}{2}} \mathrm{d}t$
10	0.001	$-1 + \frac{499\sqrt{1110}}{333}$	$1 + \frac{499\sqrt{1110}}{333}$	5.48×10^{-523}
100	0.001	$-1 + \frac{4990\sqrt{111}}{333}$	$1 + \frac{4990\sqrt{111}}{333}$	8.99×10^{-5348}
1000	0.001	$-1 + \frac{4990\sqrt{1110}}{333}$	$1 + \frac{4990\sqrt{1110}}{333}$	1.27×10^{-53911}
10000	0.001	$-1 + \frac{49900\sqrt{111}}{333}$	$1 + \frac{49900\sqrt{111}}{333}$	2.48×10^{-540559}
10	0.01	$-1 + \frac{49\sqrt{110}}{33}$	$1 + \frac{49\sqrt{110}}{33}$	8.29×10^{-49}
100	0.01	$-1 + \frac{490\sqrt{11}}{33}$	$1 + \frac{490\sqrt{11}}{33}$	1.13×10^{-508}
1000	0.01	$-1 + \frac{490\sqrt{110}}{33}$	$1 + \frac{490\sqrt{110}}{33}$	1.15×10^{-5202}
10000	0.01	$-1 + \frac{4900\sqrt{11}}{33}$	$1 + \frac{4900\sqrt{11}}{33}$	3.02×10^{-52454}
10	0.1	$-1 + \frac{33}{4\sqrt{10}}$	$1 + \frac{4\sqrt{10}}{3}$	2.59×10^{-4}
100	0.1	$\frac{37}{3}$	$\frac{43}{3}$	1.2×10^{-35}
1000	0.1	$-1 + \frac{40\sqrt{10}}{3}$	$1 + \frac{40\sqrt{10}}{3}$	4.38×10^{-371}
10000	0.1	$\frac{397}{3}$	$\frac{403}{3}$	2.36×10^{-3806}
10	0.25	$-1 + \frac{\sqrt{30}}{3}$	$1 + \frac{\sqrt{30}}{3}$	8.1×10^{-2}
100	0.25	$-1 + \frac{10\sqrt{3}}{3}$	$1 + \frac{10\sqrt{3}}{3}$	3.61×10^{-7}
1000	0.25	$-1 + \frac{10\sqrt{30}}{3}$	$1 + \frac{10\sqrt{30}}{3}$	1.96×10^{-63}
10000	0.25	$-1 + \frac{100\sqrt{3}}{3}$	$1 + \frac{100\sqrt{3}}{3}$	3.02×10^{-702}
Сколько угодно	0.5	-1	1	2.7×10^{-1}

Для n=10 посчитаем искомые вероятности явно.

p	Подходящие исходы	Вероятность
0.001	{5}	$\binom{10}{5}0.001^50.999^5 = \frac{63}{250000} \approx 2.5 \times 10^{-4}$
0.01	{5}	$\binom{10}{5}0.01^50.99^5 =$ много цифр $\approx 2.4 \times 10^{-2}$
0.1	{5}	$\binom{10}{5}0.1^50.9^5 =$ много цифр $\approx 1.5 \times 10^{-3}$
0.25	{4;5;6}	$\binom{10}{4}0.25^40.75^6 + \binom{10}{5}0.25^50.75^5 + \binom{10}{6}0.25^60.75^4 = \frac{28917}{131072} \approx 2.2 \times 10^{-1}$
0.5	$\{4; 5; 6\}$	$\binom{10}{4}0.5^40.5^6 + \binom{10}{5}0.5^50.5^5 + \binom{10}{6}0.5^60.5^4 = \frac{21}{32} \approx 6.6 \times 10^{-1}$

Разумеется, для n=10 результаты сходятся с оценкой довольно плохо т.к. она нормально работает только при больших n.