An Informal Proof of Deadlock Freedom

- 0 **Theorem** The 2-process 1-bit algorithm satisfies DeadlockFree
- 1. It suffices to assume that $T0 \vee T1$ is true at some time t_1 and $\neg Success$ is true at all times $t \geq t_1$, and to obtain a contradiction.

PROOF: By definition of deadlock freedom.

2. T0 is false at every time $t \geq t_1$.

. . .

- 3. T1 is false at time t_1 .
 - 3.1. It suffices to assume that T1 is true at time t_1 and obtain a contradiction. PROOF: Obvious.
 - 3.2. T1 is true at all times $t \geq t_1$.

PROOF: By the step 1 assumption, $\neg InCS(1)$ (which is implied by $\neg Success$)

this implies that T1 is true at all times $t \ge t_1$. 3.3. There is some time $t_2 \ge t_1$ such that $\neg x[0]$ is true for all times $t \ge t_2$.

is true for all times $t \geq t_1$. From the code and the step 3.1 assumption,

PROOF: By the code and fairness, step 2 implies that process 0 reaches ncs and remains there forever at some time $t_2 \geq t_1$,

- 3.4. $T_1 \wedge \neg x[0]$ is true for all times $t \geq t_2$ PROOF: By steps 3.2 and 3.3.
- 3.5. Q.E.D.

PROOF: Step 3.4, the code, and fairness imply that process 1 reaches e2 at some time $t_3 \geq t_2$, which by fairness and 3.4 implies that process 1 reaches its critical section at some time $t_4 > t_3$. Since $t_4 \geq t_1$, this contradicts the assumption from step 1 that $\neg Success$ is true for all $t \geq t_1$.

4. Q.E.D.

PROOF: Steps 2 and 3 and the step 1 assumption.

CLOSE