EC504 ALGORITHMS AND DATA STRUCTURES FALL 2020 MONDAY & WEDNESDAY 2:30 PM - 4:15 PM

Prof: David Castañón, dac@bu.edu

GTF: Mert Toslali, toslali@bu.edu

Haoyang Wang: haoyangw@bu.edu

Christopher Liao: cliao25@bu.edu

Binomial Heaps

- Forest of binomial trees (Note: not binary!)
 - Each in heap order
 - Each of a different height
- Forest: a collection of trees
- A binomial tree B_k of height k consists two B_{k-1} binomial trees
- The root of one B_{k-1} tree is the child of the root of the other B_{k-1} tree

Foundations: Binary Arithmetic

• Given the binary representations of two numbers n and m, we can add those numbers in time $\Theta(\max\{\log m, \log n\})$

A Different View

- Represent n and m as a collection of "packets" whose sizes are powers of two
- Adding together n and m can then be thought of as combining the packets together, eliminating duplicates

Idea for Priority Queues for Easy Merge

- Store elements in the priority queue in "packets" whose sizes are powers of two
- Store packets in ascending size order
- We'll choose a representation of a packet so that two packets of the same size can easily be fused together.
- Adding together n and m can then be thought of as combining the packets together, eliminating duplicates

Right Packets: Binomial Trees

- A binomial tree of order k is a type of tree recursively defined as follows:
 - A binomial tree of order k is a single node whose children are binomial trees of order 0, 1, 2, ..., k-1
- Here are the first few binomial trees:

Binomial Trees

Binomial Trees

- Theorem: A binomial tree of order k has 2^k nodes
 - Proof by induction:

Nodes in
$$B_k$$
 = root + $\sum_{j=0}^{k-1} \#(B_j) = 1 + \sum_{j=0}^{k-1} 2^j = 1 + \frac{2^k - 1}{2 - 1} = 2^k$

Number of nodes in B_k at level d is $\binom{k}{d}$

 B_k has height k

Heap-Ordered Binomial Trees

- Heap-ordered binomial trees: Trees satisfy heap property
 - Key of parent is less than or equal to keys of children
- **Binomial heap**: A collection of heap-ordered binomial trees
- (5)

- Pointer to the tree with the min value
- No two binomial trees are of the same order
 - Boolean representation
- Children of any node are arranged in a doubly linked list (easy to link/unlink). Useful in delete...

Binomial Heaps

- Properties of Binomial heap with n nodes
 - The node containing the min element is a root of $B_k, B_{k-1}, ..., B_1, B_0$
 - It contains the binomial tree B_k iff $b_k = 1$, where $b_k b_{k-1} \cdots b_0$ is binary

representation of n.

- It has no more than
 log2 n | + 1 binomial trees.

Binomial Heap Basic Operation

- Linking two binomial trees of the same order
 - If you have two binomial trees with the same order k, (e.g. B_1, B_1'), you can merge them (like addition) into binomial tree of order k+1
 - Find one with the smaller root, hook up the other one as subtree as leftmost child
 - Can do recursively (boolean addition) until there is at most only one tree of each order

???

Binomial Heap: Merge 2 Heaps

- Heap 1: Trees $B_0^1, B_1^1, ..., B_k^1$
- Heap 2: Trees $B_0^2, B_1^2, ..., B_m^2$
- Step 1. Add all the trees to the same list
 - May be duplicates in size
- Step 2: Starting from the smallest size, 0, if there are two or three of them, merge two of them into a tree of a higher order
 - Leaves at most one of that size behind
 - Repeats for increasing order

???

Binomial Heap: Merge 2 Heaps

Binomial Heap: Insert

Binomial Heap: Insert

- Insert: create single element heap, merge it with existing binomial heap
- Step 1. Add all the trees to the same list
 - May be duplicates in size
- Step 2: Starting from the smallest size, 0, if there are two or three of them, merge two of them into a tree of a higher order
 - Leaves at most one of that size behind
 - Repeats for increasing order

???

Binomial Heap: Insert Complexity

- Lazy insert: just leave the single nodes alone, allow duplicates
 - Merge later when you do something else (e.g. delete minimum)
 - Insert is O(1)! Just add to linked list, update pointer to minimum
- Full insert: O(k), where k is number of trees in Binomial heap
 - Number of trees is O(log(n)), where n is number of entries in binomial heap
 - There are at least 2^k nodes in Binomial heap of order k (size of last tree!

Binomial Heap: Amortized Insert Complexity

- Illustration: Suppose we have integer n (represented in binary) and we want to add 1 to it (a binary counter).
 - What is the amortized complexity of this addition?
 - Algorithm: find the longest string of all 1's on the right of the binary expansion,
 flip all those bits to 0, flip the preceding 0 bit to 1.
 - Cost depends on specific value of n...

Binomial Heap: Amortized Insert Complexity

- Claim: amortized analysis of incrementing binary n is O(1)
 - Idea: Potential function $\Phi(n)$ is number of 1's in binary expansion
- Cost of incrementing n:
 - Actual cost: number of starting 1's (j) + 1
 - Change in potential: $\Phi(n+1) \Phi(n) = 1 j$

$$\Phi = 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$\Phi = 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1$$

- Amortized cost = $j + 1 + \Phi(n + 1) \Phi(n) = 2 -> O(1)$
- Catch: cannot decrement! Only increment!

Binomial Heap: Amortized Insert Complexity

- Analysis extends to Binomial Heaps
 - As long as we are doing inserts in a row, amortized cost is O(n)
- Compare with BuildHeap for binary heaps: If we are given array of n numbers, can build to binary heap in $\Theta(n)$ (must know n)
- For Binomial heaps, even if we don't know n, cost of inserting n elements into Binomial heal is $\Theta(n)$

Binomial Heap: Lazy Merge

- Binomial heap stores pointer to root of tree with smallest element
- Don't merge trees as long as there is no delete minimum
- Inserts are O(1), heap merges are O(1)
 - But, number of trees in heap may be O(n)

Binomial Heap: Delete Minimum

- Minimum is root of one of the Binomial Trees in the heap
 - We know which one
 - Delete it, and form another Binomial heap from the children
 - Merge the two Binomial heaps
- If we did not do lazy inserts: Complexity: O(log(n))
 - Maximum number of binomial trees is log(n)
- With lazy inserts, number of trees can be $\Theta(n)$! How would this work?
 - Amortize! Expensive operation is deleteMin
 - But, to create trees, we must do cheap operations: insert, merge

Amortized Analysis of Delete Minimum

- Potential method: $\Phi(\mathcal{H})$ is number of trees in Binomial heap \mathcal{H}
- **Lazy insertion**: adds a tree. Operations 1, change in potential +1 —> amortized cost O(1)
- **Join** two binomial heaps, with potentials $\Phi(\mathcal{H}_1)$, $\Phi(\mathcal{H}_2)$:
 - New heap $\mathcal H$ has potential $\Phi(\mathcal H_1) + \Phi(\mathcal H_2)$, and heaps $\mathcal H_1$, $\mathcal H_2$ have 0 potential
 - Net change in potential is 0: amortized cost is O(1)

Amortized Analysis of Delete Minimum

- Potential method: $\Phi(\mathcal{H})$ is number of trees in Binomial heap \mathcal{H}
- Delete Min: Find minimum element using pointer (O(1)), create new binomial trees from children of minimum element (O(log(n)) max children), and coalesce
 - If T current trees in \mathcal{H} , this is $\Theta(T)$
- If there are T current trees in \mathcal{H} , current potential $\Phi(\mathcal{H})$ is T
- After coalescing, potential $\Phi(\mathcal{H}) = \log(n)$
- Amortized cost: $O(\log(n)) + \Theta(T) O(1) T + O(\log(n)) = O(\log(n)) !!!$

Overall Analysis of Lazy Binomial Heaps

- The amortized costs of operations:
 - Insert: O(1)
 - Merge: O(1)
 - Find Min: O(1)
 - Delete Min: O(log(n))
- Any series of m inserts mixed with j extract-mins will take time
 O(m + j log m)
- What operations don't work well yet? Decrease key of a node, othrs
 - Must do upHeap in that binomial tree: describe how in next data structure

Hash Tables

- Hashing
 - o Technique supporting insertion, deletion and search in average-case constant time
 - o Operations requiring elements to be sorted (e.g., FindMin) are not efficiently supported
- o Generalizes an ordinary array,
 - o Key property: direct addressing
 - o An array is a direct-address table: Key value is position of data in array
- o Main idea: Transform key into index, compute the index, then use an array of size N
 - o Key k: data stored at h(k) (hashing)
- o Basic operation is in O(1)!

Hashing

- Hashing
 - o Technique supporting insertion, deletion and search in average-case constant time
 - o Operations requiring elements to be sorted (e.g., FindMin) are not efficiently supported
- o Generalizes an ordinary array,
 - o Key property: direct addressing
 - o An array is a direct-address table: Key value is position of data in array
- o Main idea: Transform key into index, compute the index, then use an array of size N
 - o Key k: data stored at h(k) (hashing)
- o Basic operation is in O(1)!

Hash Table

- o Hash table is a data structure that support
 - o Finds, insertions, deletions (deletions may be unnecessary in some applications)
- o The implementation of hash tables is called hashing
 - A technique which allows the executions of above operations in constant average time
- o Tree operations that requires any ordering information among elements are not supported
 - o findMin and findMax
 - o Successor and predecessor
 - o Report data within a given range
 - o List out the data in order

General Idea

- The ideal hash table data structure is an array of some fixed size, containing the items
- A search is performed based on key
- Each key is mapped into some position in the range 0 to TableSize-1
- The mapping is called hash function

john 25000
phil 31250
dave 27500
mary 28200

Hash Function

- Mapping from key to array index is called a hash function
 - o Typically, many-to-one mapping
 - o Different keys map to different indices
 - o Distributes keys evenly over table
- o Collision occurs when hash function maps two keys to the same array index

Unrealistic solution

- o Huge hash tables
 - Each position (slot) corresponds to a key in the universe of keys
 - T[k] corresponds to an element with key k
 - o If the set contains no element with key k, then

T[k]=NULL

- o WASTE!
- o e.g BU IDs

Applications

- Compilers use hash tables (symbol table) to keep track of declared variables.
- o On-line spell checkers. After prehashing the entire dictionary, one can check each word in constant time and print out the misspelled word in order of their appearance in the document.
- Useful in applications when the input keys come in sorted order. This is a bad case for binary search tree. B+-trees are harder to implement and they are not necessarily more efficient.

Hash Function

- o Simple hash
 - o h(Key) = Key mod TableSize, which is typically a prime number
 - Assumes integer keys
- o For random keys, h() distributes keys evenly over table
- o h(Key) is the hash value of key
- Element of key k is stored in slot h(k): T[h(k)]

Resolving Collisions

- o Problem: collision
 - o two keys may hash to the same slot
 - o can we ensure that any two distinct keys get different cells?
 - o No, if N>m, where m is the size of the hash table
- o Task 1: Design a good hash function
 - o fast to compute and
 - o can minimize the number of collisions
- Task 2: Design a method to resolve the collisions when they occur

Design Hash Function

- o A simple and reasonable strategy: h(k) = k mod m
 - o e.g. m=12, k=100, h(k)=4
 - o Requires only a single division operation (quite fast)
- Certain values of m should be avoided
 - o e.g. if $m=2^p$, then h(k) is just the p lowest-order bits of k; does not depend on all the bits
 - o if the keys are decimal numbers, should not set m to be a power of 10
- o It's a good practice to set the table size m to be a prime number
- Good values for m: primes not too close to exact powers of 2
 - o e.g. the hash table is to hold 2000 numbers, and we don't mind an average of 3 numbers being hashed to the same entry: choose m=701
- o For strings, map keys to ascii integers...

Collision Resolution

- o Chaining: Like 'equivalent classes' or clock numbers in math
 - o Instead of a hash table, we use a table of linked list
 - o keep a linked list of keys that hash to the same value
 - Problem: can get to be O(n) worst case
- Typical approach: if storing M keys, make hash number the next largest prime number

Collision Resolution - 2

- Open addressing
 - o If slot is busy, design sequence of other slots to be searched
 - o probe alternative cell $h_1(K), h_2(K), \dots$, until an empty cell is found.
 - o $h_i(K)$ = (hash(K) + f(i)) mod m, with f(0) = 0
 - o f: collision resolution strategy
- Several approaches
 - o Linear Probing: f(k) = k
 - o Quadratic Probing: $f(k) = k^2$
 - o Double Hashing: two hash functions
 - o Cuckoo Hashing: (more to come)

New Data Structure: Fibonacci Heaps

- Fredman-Tarjan 1986
 - CLRS Chapter 19