d) $\frac{dw}{dt} = \Gamma^2 R = \frac{BLW^2}{R}R = \frac{B^2L^2V_0^2}{R}e^{-2t/7}$ Total energy delivered $W = \frac{B^2L^2V_0^2}{R}\left(\frac{e^{-2t/7}}{e^{-2t/7}}\right) = \frac{1}{2}mv_0^2$

$$2.$$
 (a) $\Gamma = \Gamma_0 \cos(\omega t)$

In quasistatic approximation

$$B_{\phi}(s) = \begin{cases} \frac{\mu_0 T}{2\pi s} & s < a \\ 0 & s > a \end{cases}$$
 B is circumferential.

$$\nabla X \vec{B} = p \cdot \vec{J}$$
 analogous to $\nabla X \vec{E} = \vec{0} - \frac{\partial \vec{B}}{\partial \vec{E}}$
 $\nabla \cdot \vec{B} = 0$ analogous to $\nabla \cdot \vec{E} = 0$

here B = current in a solenoid

b) By symmetry E depends only on "s"

=)
$$\vec{E} = E(\vec{s}) \hat{z}$$
 for $\vec{s} < \vec{a}$

= 0 for $\vec{s} > \vec{a}$

$$\oint \vec{E} \cdot \vec{dl} = -\frac{d\phi}{dt} = 0$$

$$\vec{E}(\vec{s_i}) = \vec{E}(\vec{s_i}) = \vec{E}(\vec{s_i}) = \vec{E}(\vec{s_i}) = \vec{E}(\vec{s_i})$$

$$\vec{E}(\vec{s_i}) = \vec{E}(\vec{s_i}) = \vec{E}(\vec{s_i}) = \vec{E}(\vec{s_i})$$

Consider the Amperian loop as shown. $\oint \vec{E} \cdot d\vec{l} = -\frac{d}{dt} = -\frac{d}{dt} \int \vec{B} \cdot d\vec{a} = -\frac{d}{dt} \int \frac{\mu_0 f}{2\pi s'} (1 ds')$ s'=s

$$= -\frac{d}{dt} \left[\frac{\mu_0 \Gamma}{2\pi} \ln(als) \right] = -\frac{\mu_0 L}{2\pi} \ln(als) \frac{d\Gamma}{dt}$$