VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

Typografie a publikování – 2. projekt Sazba dokumentů a matematických výrazů

Úvod

V této úloze si vyzkoušíme sazbu titulní strany, matematických vzorců, prostředí a dalších textových struktur obvyklých pro technicky zaměřené texty (například rovnice (2) nebo Definice 2 na straně 1). Pro vytvoření těchto odkazů používáme příkazy \label, \ref a \pageref.

Na titulní straně je využito sázení nadpisu podle optického středu s využitím zlatého řezu. Tento postup byl probírán na přednášce. Dále je na titulní straně použito odřádkování se zadanou relativní velikostí 0,4 em a 0,3 em.

1 Matematický text

Nejprve se podíváme na sázení matematických symbolů a výrazů v plynulém textu včetně sazby definic a vět s využitím balíku amsthm. Rovněž použijeme poznámku pod čarou s použitím příkazu \footnote. Někdy je vhodné použít konstrukci \${}\$ nebo \mbox{}, která říká, že (matematický) text nemá být zalomen.

Definice 1. Nedeterministický Turingův stroj (NTS) je šestice tvaru $M = (Q, \Sigma, \Gamma, \delta, q_0, q_F)$, kde:

- Q je konečná množina vnitřních (řídicích) stavů,
- Σ je konečná množina symbolů nazývaná vstupní abeceda, $\Delta \not\in \Sigma$,
- Γ je konečná množina symbolů, $\Sigma \subset \Gamma$, $\Delta \in \Gamma$, nazývaná pásková abeceda,
- $\delta: (Q \setminus \{q_F\}) \times \Gamma \to 2^{Q \times (\Gamma \cup \{L,R\})}$, kde $L, R \not\in \Gamma$, je parciální přechodová funkce, a
- $q_0 \in Q$ je počáteční stav $a q_F \in Q$ je koncový stav.

Symbol Δ značí tzv. *blank* (prázdný symbol), který se vyskytuje na místech pásky, která nebyla ještě použita.

Konfigurace pásky se skládá z nekonečného řetězce, který reprezentuje obsah pásky, a pozice hlavy na tomto řetězci. Jedná se o prvek množiny $\{\gamma\Delta^\omega\mid\gamma\in\Gamma^*\}\times\mathbb{N}^1.$ Konfiguraci pásky obvykle zapisujeme jako $\Delta xyz\underline{z}x\Delta\dots$ (podtržení značí pozici hlavy). Konfigurace stroje je pak dána stavem řízení a konfigurací pásky. Formálně se jedná o prvek množiny $Q\times\{\gamma\Delta^\omega\mid\gamma\in\Gamma^*\}\times\mathbb{N}.$

1.1 Podsekce obsahující definici a větu

Definice 2. Řetězec w nad abecedou Σ je přijat NTS M, jestliže M při aktivaci z počáteční konfigurace pásky $\Delta w \Delta \dots$ a počátečního stavu q_0 může zastavit přechodem

do koncového stavu q_F , tj. $(q_0, \Delta w \Delta^{\omega}, 0) \stackrel{*}{\underset{M}{\vdash}} (q_F, \gamma, n)$ pro nějaké $\gamma \in \Gamma^*$ a $n \in \mathbb{N}$.

Množinu $L(M) = \{w \mid w \text{ je přijat NTS } M\} \subseteq \Sigma^*$ nazýváme jazyk přijímaný NTS M.

Nyní si vyzkoušíme sazbu vět a důkazů opět s použitím balíku amsthm.

Věta 1. *Třída jazyků, které jsou přijímány NTS, odpovídá* rekurzivně vyčíslitelným jazykům.

2 Rovnice

Složitější matematické formulace sázíme mimo plynulý text. Lze umístit několik výrazů na jeden řádek, ale pak je třeba tyto vhodně oddělit, například příkazem \quad.

$$x^2 - \sqrt[4]{y_1 * y_2^3}$$
 $x > y_1 \ge y_2$ $z_{z_z} \ne \alpha_1^{\alpha_2^{\alpha_2}}$

V rovnici (1) jsou využity tři typy závorek s různou explicitně definovanou velikostí.

$$x = \left\{ a \oplus \left[b \cdot \left(c \ominus d \right) \right] \right\}^{4/2} \tag{1}$$

$$y = \lim_{\beta \to \infty} \frac{\tan^2 \beta - \sin^3 \beta}{\frac{1}{\log_{42} x} + \frac{1}{2}}$$
 (2)

V této větě vidíme, jak vypadá implicitní vysázení limity $\lim_{n \to \infty} f(n)$ v normálním odstavci textu. Podobně je to i s dalšími symboly jako $\bigcup_{N \in \mathcal{M}} N$ či $\sum_{j=0}^n x_j^2$. S vynucením méně úsporné sazby příkazem \limits budou vzorce vysázeny v podobě $\lim_{n \to \infty} f(n)$ a $\sum_{j=0}^n x_j^2$.

3 Matice

Pro sázení matic se velmi často používá prostředí array a závorky (\left, \right).

$$\mathbf{A} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{vmatrix} = \begin{vmatrix} t & u \\ v & w \end{vmatrix} = tw - uv$$

Prostředí array lze úspěšně využít i jinde.

$$\binom{n}{k} = \left\{ \begin{array}{ll} \frac{n!}{k!(n-k)!} & \text{pro } 0 \leq k \leq n \\ 0 & \text{pro } k > n \text{ nebo } k < 0 \end{array} \right.$$

 $^{^1}$ Pro libovolnou abecedu Σ je Σ^ω množina všech nekonečných řetězců nad $\Sigma,$ tj. nekonečných posloupností symbolů ze $\Sigma.$