2020大数据 AI的最新技术实践

联邦学习与安全多方计算

洪澄 阿里安全 双子座实验室

- 联邦学习的发展变化
- 联邦学习面临的安全挑战
- 安全多方计算解决方案简介

2020大数据 AI的最新技术实践

- 联邦学习 (Federated learning , FL) 由Google于2016年提出
 - 初衷是用于解决多个移动设备的分布式建模问题

例:Google Gboard安卓输入法预测

- 为了智能预测下一个词,需要针对大量用 户的输入历史数据进行训练
- 设计目标:避免直接收集用户的输入历史, 尽量在端上训练

2020大数据 AI的最新技术实践

- 联邦学习用于多移动终端分布式建模
 - 设计优点:设备只上传传输梯度VW,并不直接上传本地输入历史

Step 1. 设备基于本地数据训练得到梯度∇W

Step 2. 设备将∇**W**发给Parameter server

Step 3. Parameter server更新全局模型W

Step 4. Parameter server把W发回给各个Client

重复迭 代N轮

2020大数据 AI的最新技术实践

• 2018年国内开始引入Federated learning概念,主要区别1:

Google FL:主要面向

海量(百万+)移动设备的合作

国内主要是cross silo FL: 少量(如2个)机构之间的合作

2020大数据 AI的最新技术实践

• 2018年国内开始引入Federated learning概念,主要区别2:

Google FL:主要面向数据的横向分割

国内FL:主要面向数据的纵向分割

- 联邦学习的发展历史
- 联邦学习面临的安全挑战
 - 联邦学习的共性问题
 - 联邦学习应用面临的新安全挑战
- 安全多方计算简介

- 梯度与原始数据的关系
 - 梯度VW的定义:本质上是一个函数

- 已知梯度,如何求原始数据?
 - 攻击方法1:对于简单的F(如Logistic regression),可以直接解方程组 (LHCH19)
 - 攻击方法2:对于复杂的F(如CNN),可以用ML方法求近似解(MSCS19, ZLH19)
 - ➤ MSCS19: Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. Exploiting unintended feature leakage in collaborative learning, S&P 2019
 - > ZLH19: Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients, NIPS 2019
 - ➤ LHCH19: Zhaorui Li, Zhicong Huang, Chaochao Chen and Cheng Hong. Quantification of the Leakage in Federated Learning, FL-NeurIPS 2019

阿里安全 ALIBABA SECURITY

- 如何防止从梯度反推原始数据
 - 方法1:加差分隐私,但是准确率会下降
 - 对于输入法这类产品来说或许可以接受
 - 但不适用于准确率是关键因素的产品

2020大数据 AI的最新技术实践

- 如何防止从梯度反推原始数据
 - 方法2: Secure Aggregation
 - · Server只能看到聚合之后的梯度,无法了解具体某个client的梯度

但是 Secure aggregation 只适用于Client数目较多的场景

- Secure aggregation的局限性
 - 如果参与方过少(例如2个), Secure aggregation并不能保护梯度
 - Client 1拿到新一轮的W,减去自己的梯度就可以推出Client 2的梯度了

- 联邦学习的发展历史
- 联邦学习面临的安全挑战
 - 联邦学习的共性问题
 - 联邦学习应用面临的新安全挑战
- 安全多方计算解决方案简介

阿里安全 ALIBABA SECURITY

2020大数据 AI的最新技术实践

- 参与方过少(例如两方合作)带来的问题 续
 - 半同态加密保护参数:只能实现单向保护

例:Alice拥有解密能力

- 纵向FL带来的问题-1
 - · 为了实现纵向FL,需要首先按id对齐数据
 - 对齐过程是否符合隐私政策?
 - 即使用PSI(隐私求交)技术,也只能保护"不在交集 内的用户身份",但是在交集内的用户身份必然泄露
 - 例: 商家A知道了 "用户1也在商家B那注册了"
 - 用户1未必同意这个信息被A知晓

2020大数据 AI的最新技术实践

- 纵向FL带来的问题-2
 - 纵向FL必然存在无标签方,而无标签方难以进 行特征工程
 - 如何让无标签方进行特征工程又能保护数据隐 私 ?
 - 已经脱离联邦学习的范畴
 - 需要定制化的安全解决方案

没有标签,怎 么做特征工程?

- 举例: 计算WOE (Weight of Evidence)
 - · WOE定义:某个特征箱体内的 ln(反例总占比/正例总占比)
 - · 若拥有"年龄"一方不拥有标签(样本是正还是负),则难以正常计算WOE

	正样本 数	负样本 数	反例总 占比	正例总 占比	WOE
0-18岁	100	50	10%	10%	0
18-40岁	500	100	50%	20%	0.92
40-60岁	300	150	30%	30%	0
>60岁	100	200	10%	40%	-1.39
总数	1000	500			

- 联邦学习的发展历史
- 联邦学习面临的安全挑战
- 安全多方计算解决方案简介

2020大数据 AI的最新技术实践

- 安全多方计算(Secure Multiparty Computation, MPC)
 - 可证明安全
 - 严格的安全定义:除最终的训练结果之外,不泄露任何数据内容
 - Semi-Honest model
 - Malicious model

除最终的计算结果之外, 一切中间结果都是加密状 态,永不解密

2020大数据 AI的最新技术实践

• 例:Alice和Bob分别拥有数据a,b,希望联合计算机器学习模型F(a,b)

2020大数据 AI的最新技术实践

• Step 1: 随机拆分

- Step 2:交换分量
 - 得到秘密分享状态的a和b
 - 单方视角下都是乱码,只有双方同意的情况下才能复原

- Step 2:秘密分享状态下进行计算
 - 加法:A和B各自本地将"密文"相加即可得到a+b的"加密"版本
 - 其他操作:乘法、比较、除法...
 - {+, -, *, ...} 构成整个机器学习算法

2020大数据 AI的最新技术实践

- 安全多方计算可以无泄露的计算WOE
 - 秘密共享状态下向量内积计算正负样本数
 - 秘密共享状态下计算除法得到WOE
 - 除WOE之外没有任何信息泄露

	正样本 数	负样本 数	反例总 占比	正例总 占比	WOE
0-18岁	100	50	10%	10%	0
18-40岁	500	100	50%	20%	0.92
40-60岁	300	150	30%	30%	0
>60岁	100	200	10%	40%	-1.39
总数	1000	500			

· 对比:使用半同态计算WOE的方案会泄露每个分箱的样本数目

- 安全多方计算不需要"对齐数据"就可以建模
 - 秘密共享状态下进行匹配,各机构不泄露自己的客户信息
 - 交集也是秘密共享状态,不泄露交集内的用户身份
- GDPR第5条(b)
 - 对个人数据的处理不应当违反最初收集该数据时的初始目的 (对齐数据过程是存在风险的)
 - 若为统计用途,则可以超出该初始目的(可以建模)

2020大数据 AI的最新技术实践

- · 在LR等模型方面,安全多方计算的性能完全可以满足业务需求
 - · 20000样本,100特征,LR建模耗时:秒级~分钟级

Team	Affiliation	tion Training time cost(s)		Accuracy(%)	
		BC-TCGA	GSE2034	BC-TCGA	
Gene X	University of Washington	130.985	1161.29	100	GSE2034 测试结果有误 76.087
V for Victory	Alibaba security	37.61 (11.631+25.979)	21.82 (5.814+16.006)	100	70.492
		6.183	8.897	100	66.102
Morse	Ant Financial Services Group	13.231	16.129	100	61.017
		69.112	81.713	100	64.407

注:组委会复议时发现 University of Washington 的准确率有误,实际不到68%

- 国内流行的FL方案与Google的经典FL方案存在很大不同
 - 技术角度:国内FL多为纵向, Google FL为横向; 国内FL多面向少量机构的合作, Google FL面向海量终端的合作
 - 风险角度:国内FL面临的安全挑战更多。
- 在设计FL解决方案时,安全性上必须慎之又慎
 - 必须详细说明对各参与方提供了何种安全保障,存在何种信息泄露,能抵抗何种攻击
- 安全多方计算(MPC)解决方案有其独到的安全优势
 - 有广阔的应用前景

2020大数据 AI的最新技术实践

THANKS

