CheggSolutions - Thegdp

Economics: Steady-State Level of Capital per Worker

Given Data and Introduction:

To find the steady-state level of capital per worker for Country Z, consider the provided information:

- Population growth rate (n) = 0 (since there's no population growth)
- Technological progress rate (g) = 0 (since there's no technological progress)
- Depreciation rate (δ) = 0.2 (20% depreciation)
- Savings rate (s) = 0.3 (30% savings)

Step 1: Setting up the Solow Model Equation

The standard Solow model equation is given by:

```
s \cdot f(k) = (\delta + n + g) \cdot k
```

Since n = 0 and g = 0, the equation simplifies to:

 $s \cdot f(k) = \delta \cdot k$

Explanation:

The equation equates the savings rate times the production function f(k) with the depreciation rate times capital.

Supporting Statement:

Setting up the Solow model equation in this simplified form helps in finding the steady-state level of capital per worker.

Step 2: Specifying the Production Function

Assume a standard Cobb-Douglas production function for f(k):

 $f(k) = k^{\alpha}$

Assume $\alpha = 1/3$ for simplicity (common in Solow model problems).

Explanation:

The Cobb-Douglas production function is commonly used in growth models due to its constant returns to scale properties.

Supporting Statement:

Using the Cobb-Douglas function helps in solving for k^* with known parameters

Step 3: Solve for Steady-State Capital k^*

Insert the Cobb-Douglas production function into the equation:

```
s \cdot k^{1/3} = \delta \cdot k
```

Rearrange the equation to isolate *k*:

 $s = \delta \cdot k^{2/3}$

Solve for k:

 $k = (s/\delta)^{3/2}$

Insert the given values s = 0.3 and $\delta = 0.2$:

 $k = (0.3/0.2)^{3/2}$

Explanation:

Rearranging the formula to isolate *k* and include the savings rate and depreciation rate helps in solving for the steady-state capital per worker.

Supporting Statement:

Solving for k by substituting the known values allows the calculation of the steady-state level of capital per worker.

Step 4: Calculation

Calculate the fraction inside the parentheses first:

(0.3/0.2) = 1.5

Next, raise 1.5 to the power of 3/2:

 $1.5^{3/2} = (1.5^{1/2})^3 = (sqrt(1.5))^3$

Calculate sqrt(1.5):

 $sqrt(1.5) \approx 1.2247$

Then cube this value: $(1.2247)^3 \approx 1.84$

Thus:

k≈ 1.84

Explanation:

The calculations are a step-by-step evaluation of the fraction and raising it to the required power.

Supporting Statement:

Properly carrying out mathematical operations leads to the accurate steady-state capital per worker value.

Final Solution:

The steady-state level of capital per worker for Country Z is approximately $\bf 1.84$. Thus, the correct answer among the provided options:

boxed{1.84}