Annette J. Dobson

An Introduction to Generalized Linear Models

Solutions

by Konstantinos Kirillov

CHAPTER 1

Exercise 1.1:

Let Y_1 and Y_2 be independent random variables with $Y_1 \sim N(1,3)$ and $Y_2 \sim N(2,5)$. If $W_1 = Y_1 + 2Y_2$ and $W_2 = 4Y_1 - Y_2$ what is the joint distribution of W_1 and W_2 ? SOLUTION:

A reminder from the book:

1.4.1 Normal distributions:

1. If the random variable Υ has the Normal distribution with mean μ and variance σ^2 , its probability density function is:

$$f(y; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left[-\frac{1}{2}\left(\frac{y-\mu}{\sigma^2}\right)^2\right]$$

We denote this by $\Upsilon \sim N(\mu, \sigma^2)$.

- 2. The Normal distribution with $\mu = 0$ and $\sigma^2 = 1$, $Y \sim N(0, 1)$, is called the **standard** Normal distribution.
- 3. Let $Y_1, ..., Y_n$ denote Normally distributed random variables with $Y_i \sim N(\mu_i, \sigma_i^2)$ for i = 1, ..., n and let the covariance of Y_i and Y_i be denoted by:

$$cov(Y_i, Y_j) = \rho_{ij}\sigma_i\sigma_j$$

where ρ_{ij} is the correlation coefficient for Y_i and Y_j . Then the joint distribution of the Y_i 's is the **multivariate Normal distribution** with mean vector $\mu = [\mu_1, ..., \mu_n]^T$ and variance-covariance matrix V with diagonal elements σ_i^2 and non-diagonal elements $\rho_{ij}\sigma_i\sigma_j$ for $i \neq j$. We write this as:

$$\mathbf{y} \sim \mathbf{N}(\boldsymbol{\mu}, \mathbf{V})$$
, where $\mathbf{y} = [Y_1, ..., Y_n]^T$

4. Suppose the random variables $Y_1, ..., Y_n$ are independent and normally distributed with the distributions $Y_i \sim N(\mu_i, \sigma_i^2)$ for i = 1, ..., n. If

$$W = a_1 Y_1 + a_2 Y_2 + \dots + a_n Y_n$$

where the a_i 's are constants. Then W is also Normally distributed, so that:

$$W = \sum_{i=1}^{n} a_{i} Y_{i} \sim N \left(\sum_{i=1}^{n} a_{i} \mu_{i}, \sum_{i=1}^{n} a_{i}^{2} \sigma_{i}^{2} \right)$$

It seems that the joint distribution of two normally distributed variables is yet another normal distribution. In this exercise, in order to find the joint distribution of W_1 and W_2 , we first need to determine the mean, the variance and the covariance of W_1 and W_2 and then use those to derive the joint distribution.

Given that:

$$Y_1 \sim N(1,3)$$

$$Y_2 \sim N(2,5)$$

First, let us find the means of W_1 and W_2 :

$$E(W_1) = E(Y_1 + 2Y_2) = E(Y_1) + 2E(Y_2) = 1 + 2 \cdot 2 = 5 \implies E(W_1) = 5$$

$$E(W_2) = E(4Y_1 - Y_2) = 4E(Y_1) - E(Y_2) = 4 \cdot 1 - 2 = 2 \implies E(W_2) = 2$$

Next, let us calculate the variances of W_1 and W_2 :

$$Var(W_1) = Var(Y_1 + 2Y_2) = Var(Y_1) + 2^2 \cdot Var(Y_2) = 3 + 4 \cdot 5 = 23 \implies Var(W_1) = 23$$

$$Var(W_2) = Var(4Y_1 - Y_2) = 4^2 \cdot Var(Y_1) + Var(Y_2) = 16 \cdot 3 + 5 = 53 \implies Var(W_2) = 53$$

And finally, let us also compute the covariance between W_1 and W_2 :

$$Cov(W_1, W_2) = Cov(Y_1 + 2Y_2, 4Y_1 - Y_2) =$$

= $Cov(Y_1, 4Y_1) + Cov(Y_1, -Y_2) + Cov(2Y_2, 4Y_1) + Cov(2Y_2, -Y_2) =$
= $4Var(Y_1) - Cov(Y_1, Y_2) + 8Cov(Y_2, Y_1) - 2Var(Y_2) =$
= $4 \cdot 3 - 0 + 8 \cdot 0 - 2 \cdot 5 = 2 \Rightarrow$

$$\Rightarrow Cov(W_1, W_2) = 2$$

Therefore, the joint distribution will be:

$$\binom{W_1}{W_2} \sim N \begin{bmatrix} \binom{5}{2}, \binom{23}{2} & 2 \\ 2 & 53 \end{bmatrix}$$

The correlation coefficient between W_1 and W_2 in this case shall be:

$$\rho = \frac{Cov(W_1, W_2)}{\sigma_{W_1} \cdot \sigma_{W_2}} = \frac{Cov(W_1, W_2)}{\sqrt{Var(W_1)} \cdot \sqrt{Var(W_2)}} = \frac{2}{\sqrt{23} \cdot \sqrt{53}} \approx \frac{2}{4.8 \cdot 7.3} \approx 0.057 \implies \rho = \mathbf{0.057}$$

Therefore, another way to express the joint distribution, would be:

$$f(W_1, W_2) = \frac{1}{2 \cdot \pi \cdot \sigma_{W_1} \cdot \sigma_{W_2} \cdot \sqrt{1 - \rho^2}} exp \left[-\frac{Z_{W_1}^2 - 2 \cdot Z_{W_1} \cdot Z_{W_2} + Z_{W_2}^2}{2 \cdot \sqrt{1 - \rho^2}} \right] \Rightarrow$$

$$\Rightarrow f(W_1, W_2) = \frac{1}{2 \cdot \pi \cdot 4.8 \cdot 7.3 \cdot \sqrt{1 - 0.057^2}} exp \left[-\frac{Z_{W_1}^2 - 2 \cdot Z_{W_1} \cdot Z_{W_2} + Z_{W_2}^2}{2 \cdot \sqrt{1 - 0.057^2}} \right]$$

Where:

$$Z_{W_1} = \frac{W_1 - \mu_{W_1}}{\sigma_{W_1}}$$

$$Z_{W_2} = \frac{W_2 - \mu_{W_2}}{\sigma_{W_2}}$$

Exercise 1.2:

Let Y_1 and Y_2 be independent random variables with $Y_1 \sim N(0,1)$ and $Y_2 \sim N(3,4)$. a. What is the distribution of Y_1^2 ?

b. If $y = \begin{bmatrix} Y_1 \\ (Y_2 - 3)/2 \end{bmatrix}$, obtain an expression for $y^T y$. What is its distribution?

c. If $y = \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix}$ and its distribution is $y \sim N(\mu, V)$, obtain an expression for $y^T V^{-1} y$. What is its distribution?

SOLUTION:

A reminder from the book:

1.4.2 Chi-squared distribution:

1. The **central chi-squared distribution** with n degrees of freedom is defined as the sum of squares of n independent random variables Z_1, \ldots, Z_n each with the standard Normal distribution. It is denoted by:

$$X^2 = \sum_{i=1}^n Z_i^2 \sim \chi_n^2$$

In matrix notation, if $\mathbf{z} = [Z_1, ..., Z_n]^T$ then $\mathbf{z}^T \mathbf{z} = \sum_{i=1}^n Z_i^2$ so that $X^2 = \mathbf{z}^T \mathbf{z} \sim \chi_n^2$.

- 2. If X^2 has the distribution χ_n^2 , then its expected value is $E(X^2) = n$ and its variance is $Var(X^2) = 2n$.
- 3. If $Y_1, ..., Y_n$ are independent Normally distributed random variables each with the distribution $Y_i \sim N(\mu_i, \sigma_i^2)$ then:

$$X^{2} = \sum_{i=1}^{n} \left(\frac{Y_{i} - \mu_{i}}{\sigma_{i}} \right)^{2} \sim \chi_{n}^{2}$$

because each of the variables $Z_i = (Y_i - \mu_i)/\sigma_i$ has the standard Normal distribution N(0,1).

4. Let $Z_1, ..., Z_n$ be independent random variables each with the distribution N(0, 1) and let $Y_i = Z_i + \mu_i$, where at least one of the μ_i 's is non-zero. Then the distribution of:

$$\sum Y_i^2 = \sum (Z_i + \mu_i)^2 = \sum Z_i^2 + 2 \sum Z_i \mu_i + \sum \mu_i^2$$

has larger mean $n + \lambda$ and larger variance $2n + 4\lambda$ than χ_n^2 where $\lambda = \sum \mu_i^2$. This is called the **non-central chi-squared distribution** with n degrees of freedom and **non-centrality parameter** λ . It is denoted by $\chi_n^2(\lambda)$.

5. Suppose that the Y_i 's are not necessarily independent and the vector $\mathbf{y} = [Y_1, ..., Y_n]^T$ has the multivariate normal distribution $\mathbf{y} \sim N(\boldsymbol{\mu}, \mathbf{V})$ where the variance-covariance matrix \mathbf{V} is non-singular and its inverse is \mathbf{V}^{-1} . Then:

$$X^2 = (\mathbf{y} - \boldsymbol{\mu})^T \mathbf{V}^{-1} (\mathbf{y} - \boldsymbol{\mu}) \sim \chi_n^2$$

- 6. More generally if $\mathbf{y} \sim N(\mu, \mathbf{V})$ then the random variable $\mathbf{y}^T \mathbf{V}^{-1} \mathbf{y}$ has the non-central chi-squared distribution $\chi_n^2(\lambda)$ where $\lambda = \mu^T \mathbf{V}^{-1} \mu$.
- 7. If $X_1^2, ..., X_m^2$ are m independent random variables with the chi-squared distributions $X_i^2 \sim \chi_{n_i}^2(\lambda_i)$, which may or may not be central, then their sum also has a chi-squared distribution with $\sum n_i$ degrees of freedom and non-centrality parameter $\sum \lambda_i$, i.e.,

$$\sum_{i=1}^{m} X_i^2 \sim \chi_{\sum_{i=1}^{m} n_i}^2 \left(\sum_{i=1}^{m} \lambda_i \right)$$

This is called the reproductive property of the chi-squared distribution.

- 8. Let $y \sim N(\mu, V)$, where y has n elements but the Y_i 's are not independent so that V is singular with rank k < n and the inverse of V is not uniquely defined. Let V^- denote a generalized inverse of V. Then the random variable $y^T V^- y$ has the non-central chi-squared distribution with k degrees of freedom and non-centrality parameter $\lambda = \mu^T V^- \mu$.
- **a.** As property 1 from above would suggest, the chi-squared distribution with n degrees of freedom, χ_n^2 , is the distribution of the sum of the squares of n independent standard normal random variables. If Y_1 is a random variable following a normal distribution with mean $\mu = 0$ and variance $\sigma^2 = 1$ ($Y_1 \sim N(0, 1)$), then the distribution of Y_1^2 is a special case of the **chi-squared distribution** with one degree of freedom, χ_1^2 . Meaning that:

$$Y_1^2 \sim \chi_1^2$$

The chi-squared distribution with 1 degree of freedom is sometimes referred to as the exponential distribution with rate parameter $\lambda = 2$ (mean = $1/\lambda = 1/2$, variance = $1/\lambda^2 = 1/4$).

So, the distribution of Y_1^2 is χ_1^2 or equivalently, an exponential distribution with rate parameter $\lambda = 2$.

b. The expression $y^T y$ is the dot product of the vector y with itself. So:

$$y^{T}y = \left[Y_{1} \quad \frac{Y_{2} - 3}{2}\right] \left[\frac{Y_{1}}{Y_{2} - 3}\right] = Y_{1}^{2} + \left(\frac{Y_{2} - 3}{2}\right)^{2} \Rightarrow y^{T}y = Y_{1}^{2} + \frac{Y_{2}^{2} - 6 \cdot Y_{2} + 9}{4}$$

We know that $Y_1 \sim N(0,1)$ and $Y_2 \sim N(3,4)$, and that they are independent. We also know (form a) that Y_1^2 is a special case of the chi-squared distribution with one degree of freedom, χ_1^2 , or in other words: $Y_1^2 \sim \chi_1^2$.

Furthermore, we are given that: $Y_2 \sim N(3,4)$, thus:

$$Y_2 \sim N(3,4) \implies Y_2 - 3 \sim N(0,4) \implies \frac{Y_2 - 3}{2} \sim N(0,1) \implies \left(\frac{Y_2 - 3}{2}\right)^2 \sim \chi_1^2$$

Since both Y_1^2 and $\left(\frac{Y_2-3}{2}\right)^2$ are independent and follow a chi-squared distribution with 1 degree of freedom, then it follows that their sum will also follow the chi-squared distribution, but with two degrees of freedom, that are coming from the two terms combined. Therefore (and also according to property 3):

$$y^T y = Y_1^2 + \frac{Y_2^2 - 6 \cdot Y_2 + 9}{4} \sim \chi_2^2$$

c. We know that $Y_1 \sim N(0,1)$ and $Y_2 \sim N(3,4)$. Given that: $y = \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix}$ and its distribution is $y \sim N(\mu, V)$, we have that:

The mean vector $\boldsymbol{\mu}$ of \boldsymbol{y} , is:

$$\mu = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

While the Variance-Covariance matrix V, is a diagonal matrix, because Y_1 and Y_2 are independent and it is:

$$\boldsymbol{V} = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$$

Let us also compute the inverse of Variance-Covariance matrix V, V^{-1} as it will be used:

$$V^{-1} = \frac{1}{1 \cdot 4 - 0 \cdot 0} \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix} \Longrightarrow V^{-1} = \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1}/\mathbf{4} \end{bmatrix}$$

Now, an expression for $y^TV^{-1}y$, will be:

$$y^{T}V^{-1}y = \begin{bmatrix} Y_{1} & Y_{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1/4 \end{bmatrix} \begin{bmatrix} Y_{1} \\ Y_{2} \end{bmatrix} = \begin{bmatrix} Y_{1} & Y_{2}/4 \end{bmatrix} \begin{bmatrix} Y_{1} \\ Y_{2} \end{bmatrix} \Rightarrow y^{T}V^{-1}y = Y_{1}^{2} + \frac{Y_{2}^{2}}{4}$$

As it was already shown above (in a), $Y_1^2 \sim \chi_1^2$. Now, it was also shown (in b) that $\left(\frac{Y_2-3}{2}\right)^2 \sim \chi_1^2$, and thus $\frac{Y_2^2}{4} \sim \chi_1^2$, plus a non-centrality parameter λ , which from property 6, is the following:

$$\lambda = \mu^T V^{-1} \mu = \begin{bmatrix} 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1/4 \end{bmatrix} \begin{bmatrix} 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 & 3/4 \end{bmatrix} \begin{bmatrix} 0 \\ 3 \end{bmatrix} \Longrightarrow \lambda = \frac{9}{4}$$

And therefore, since we are adding two chi-squared distributed variables, with one degree of freedom each, it follows that (again from property 6):

$$y^T V^{-1} y = Y_1^2 + \frac{Y_2^2}{4} \sim \chi_2^2 \left(\frac{9}{4}\right)$$

Exercise 1.3:

Let the joint distribution of Y_1 and Y_2 be $N(\mu, V)$ with:

$$\mu = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
 and $V = \begin{bmatrix} 4 & 1 \\ 1 & 9 \end{bmatrix}$

- a. Obtain an expression for $(y \mu)^T V^{-1} (y \mu)$. What is its distribution?
- b. Obtain an expression for $y^TV^{-1}y$. What is its distribution?

SOLUTION: