Jett Tinik

Prof. Lu

PEP 336

22 March 2022

Lab 1 Report

"I pledge my honor that I have abided by the Stevens Honor System" - Jett Tinik

- 1. This lab aims to calculate the kinetic/potential energy of a specific binary star system. In this case, we are looking at the stars Sirius A and Sirius B. After entering the parameters of the mass of the parent star, semi-major axis, and orbital eccentricity, we are able to obtain data at specific timestamps. With this data, we can plot the relationship between reduced mass vs the parent star during the orbit.
 - a. This lab will help increase my understanding of data engineering
 - b. This lab will help increase my understanding of binary star systems and how they orbit

Trial Run of the Code

I	Elliptical O	Elliptical Orbit Data						
	a = 7	40.000 Msun 77.000 AU 24.279 yr						
		0.529						
t (yr)	r (AU)	theta (deg)	x (AU)	y (AU)				
0.000	365.967	0.000	365.967	0.000				
22.789	367.582	9.140	362.915	58.388				
45.578	372.360	18.125	353.883	115.840				
68.367	380.110	26.816	339.232	171.480				
91.156	390.544	35.104	319.508	224.586				
113.944	403.311	42.915	295.373	274.618				
136.733	418.042	50.212	267.527	321.229				
159.522	434.370	56.986	236.661	364.237				
182.311	451.960	63.252	203.410	403.599				
205.100	470.513	69.036	168.338	439.369				
227.889	489.773	74.373	131.929	471.670				
250.678	509.525	79.301	94.591	500.667				
273.467	529.590	83.858	56.661	526.550				
296.256	549.822	88.081	18.415	549.513				
319.045	570.103	92.003	-19.924	569.755				
341.833	590.338	95.655	-58.175	587.465				
364.622	610.450	99.066	-96.194	602.823				
387.411	630.378	102.260	-133.864	616.000				
410.200	650.072	105.260	-171.094	627.153				
432.989	669.496	108.083	-207.812	636.427				

Here is the output data formulated into my Notepad

	Elliptical Orbit Data						
	Mstar =	3.100 Msun					
	a =	20.000 AU					
	P =	50.796 yr					
	e =	0.592					
	/ * · · · ·		/ * · · · ·	4400			
t (yr)	r (AU)	theta (deg)	x (AU)	y (AU)			
0.000	0.160	0.000	0.160	0.000			
0.000 0.508	8.160	0.000	8.160	0.000			
	8.299	17.262	7.925	2.463			
1.016	8.697	33.491	7.253	4.799			
1.524	9.304	47.979	6.228	6.912			
2.032	10.059	60.502	4.953	8.755			
2.540	10.907	71.178	3.519	10.324			
3.048	11.809	80.265	1.997	11.639			
3.556	12.733	88.043	0.435	12.726			
4.064	13.662	94.761	-1.134	13.615			
4.572	14.582	100.624	-2.688	14.332			
5.080	15.486	105.793	-4.215	14.901			
5.588	16.368	110.396	-5.704	15.341			
6.096	17.225	114.533	-7.152	15.670			
6.604	18.055	118.281	-8.554	15.900			
7.111	18.858	121.704	-9.910	16.044			
7.619	19.632	124.850	-11.218	16.111			
8.127	20.378	127.762	-12.479	16.111			
8.635	21.097	130.470	-13.693	16.049			
9.143	21.788	133.002	-14.860	15.934			
9.651	22.451	135.381	-15.981	15.769			
10.159	23.088	137.626	-17.057	15.561			
10.667	23.699	139.752	-18.089	15.312			
11.175	24.284	141.773	-19.077	15.026			

Here is the command line interface

```
jettenemos@DESKTOP-DOHCLB3:/mnt/c/users/jtini/462Project1$ ./a.out
Enter file nameOfficialRun
Orbit computes the orbit of a small mass about a much larger mass.

Details of the code are described in:
An Introduction to Modern Astrophysics
Bradley W. Carroll and Dale A. Ostlie
Addison Wesley
copyright 2007

Enter the mass of the parent star (in solar masses): 3.1
Enter the semimajor axis of the orbit (in AU): 20
Enter the orbital eccentricity: 0.592

The period of this orbit is 50.796 yr

Please enter the number of time steps to be calculated and the frequency with which you want time steps printed.

Note that taking too large a time step during the calculation will produce inaccurate results.

Enter the number of time steps desired for the calculation: 1000

How often do you want time steps to be printed?

1 = every time step
2 = every second time step
3 = every third time step
etc.

Frequency: 10
testing
```

Here is the X and Y coordinate plot of the binary orbit

3.

Here is a screenshot of the equations for KE and PE that I added to the code provided

```
Calculate the distance from the principal focus using Eq. (2.3); Kepler's
r = a * (1 - e * e) / (1 + e * cos(theta));
double PE = 0;
double x = r * cos(theta);
double y = r * sin(theta);
double deltat = t - tprev;
  KE = 0;
  PE = -G * Mstar * mustar / r;
  cout << "testing" << endl;</pre>
PE = -G * Mstar * mustar / r;
double dfdx = x - prevx;
double dfdy = y - prevy;
double deltat = t-tprev;
double velo = sqrt(pow((dfdx / deltat), 2) + pow((dfdy / deltat), 2));
KE = (0.5) * mustar * pow(velo, 2);
cout << KE << endl;</pre>
tprev = t;
```

Here is the graph of Kinetic Energy and Potential Energy along the orbit path

