Probabilités conditionnelles, cours, terminale STMG

1 Rappels sur les intersections et les réunions

Définition:

Soient A et B deux événements.

- L'événement $A \cap B$ (lire "A B") est l'ensemble des issues qui réalisent à la fois A B.
- \bullet Lorsqu'aucune issue ne réalise A et B, c'est à dire $A\cap B=\dots$, on dit que A et B sont \dots ou \dots
- L'événement $A \cup B$ (lire "A B") est l'ensemble des issues qui réalisent A B, c'est à dire des deux événements.

Propriété:

Soit P une loi de probabilité sur un ensemble E.

 \bullet Pour tous les événements A et B, on a :

.....

- En particulier, si A et B sont des événements incompatibles, alors $P(A \cup B) = P(A) + P(B)$.
- Pour tout événement A,

.....

2 Notion de probabilité conditionnelle

Définition:

Exemple:

Lors d'un sondage, 50% personnes des interrogées déclarent pratiquer un sport régulièrement et 75% des personnes interrogées déclarent aller au cinéma régulièrement. De plus, 40% des personnes déclarent faire du sport et aller au cinéma régulièrement. On interroge à nouveau une de ces personnes au hasard et on considère les événements « la personne interrogée pratique un sport régulièrement » et « la personne interrogée va au cinéma régulièrement » que l'on notent S et C respectivement. On cherche à calculer la probabilité que la personne pratique un sport régulièrement sachant qu'elle va régulièrement au cinéma.

Propriété:

Soient A et B deux événements non impossibles d'un univers donné. La connaissance de la probabilité d'un événement B et de la probabilité conditionnelle d'un événements A sachant B permet de retrouver la probabilité $P(A\cap B)$ de l'intersection de A et B avec la formule

.....

Propriétés :

Pour tous les événements A et B tels que $P(A) \neq 0$:

- $P_A(A) = \dots$;
- $\bullet \ P_A(\bar{B}) = \dots;$
- Si A et B sont des événements incompatibles (c'est à dire ne pouvant pas se réaliser simultanément ou encore tels que $A \cap B = \dots$) alors $P_A(B) = \dots$

3 Arbre pondérés

Définition:

Propriété:

Dans un arbre pondéré ou arbre à probabilités comme ci-dessus,

- La somme des probabilités portées sur les branches issues d'un même noeud est égale à 1 (par exemple, $P_A(B) + P_A(\bar{B}) =$);
- la probabilité d'un chemin est le produit des probabilités portées par ses branches (par exemple, $P(A \cap B) = \dots$);

4 Partitions et formule des probabilités totale

Définition:

Soient $A_1, A_2, ..., A_n$ pour $n \ge 1$ des parties non vides d'un ensemble E. On dit que $A_1, A_2, ..., A_n$ forment une partition de E si les deux conditions suivantes sont vérifiées

- $A_1 \cup A_2 \cup ... \cup A_n =$;
- pout tout $i \in \{1, 2, ..., n\}$ et tout $j \in \{1, 2, ..., n\}$ avec $i \neq j$, on a $A_i \cap A_j = ...$

Formule des probabilités totale :

Remarque:

Sur l'arbre pondéré du paragraphe précédent, la probabilité d'un événement est la somme des probabilités des chemins qui le compose (par exemple, $P(B) = \dots$).

5 Indépendance d'événements

Définition:

Propriété:

Si $P(A) \neq 0$ et $P(B) \neq 0$ alors A et B sont indépendants; si et seulement si $P_A(B) = \dots$ si et seulement si $P_B(A) = \dots$, ce qui signifie que la probabilité que l'un des deux événements se réalise...... de la probabilité que l'autre se réalise.

Exemple	
LACITIPIC	•

On tire au hasard une carte d'un jeu de 32 cartes. On appelle A l'événement « on tire un as », T l'évé-
nement « on tire un trèfle » et N l'événement « on tire une carte noire ». On a $P(A) = \dots$
$P(T) = \dots$
et $P(N) =$
D'une part $A\cap T$ est l'événement « on tire l'as de trèfle » et $P(A)P(T)=$
qui est bien égal à
ce qui montre que A et T sont indépendants.
D'autre part, $T \cap N$ est l'événement « on tire un trèfle et une carte noire » dont la probabilité est
Mais on a $P(T)P(N) = \dots$
ce qui confirme que les événements T et N indépendants.
Propriété :
Si A et B sont deux événements indépendants, alors \bar{A} et B sont

..... et \bar{A} et \bar{B} sont