Combinatorial Sequences

$$\rightarrow$$
 an = function of $n = (0), 1, 2, 3, ...$

n	dn	24 7	•		
0	1	16	Ċ		
1	1 2	8 -	.6		
3	6	9	1 1 1	1 1	
1		1	2 3 4	0 10 15	

This grows fuster than any

exponential: super exponential growth.

2) Example:
$$a_n = \binom{n}{2} = \frac{n(n-1)}{2} = \frac{1}{2}h^2 - \frac{1}{2}h$$

n	an	1
0	0	<i>E</i>
2	1	3 +
3	3	2 +
4	6	
5	10	0 ' 2 3 4
	2 3 4	n an 0 0 1 0 2 1 3 3 4 6 5 10

Quadratiz growth.

Combinatorial sequences count something!

Example:
Let an be the number of
non-negative integer solutions to
$\chi_1 + \chi_2 + \chi_3 = N$
with $x, \ge 4$
$\Rightarrow a_n = \binom{n-4+3-1}{3-1}$
$=\binom{n-2}{2}$
Ex: $n=5$ $a_5 = {3 \choose 2} = 3$ $\begin{cases} 4+1+0=5 \\ 4+0+1=5 \end{cases}$ $\begin{cases} 5+0+0=5 \end{cases}$
Or, alternative: Notice the fact that
when you have the same base, exponents are added: $x^4x' = x^5$.
Idea: as=3 is the coefficient of x5
in the expansion of
$f(x) = (x^{4} + x^{5} +)(x^{0} + x^{1} +)(x^{0} + x^{1} +)$
and the "" means keep going,
so an is the coeff. of x^n in $f(x)$.
$f(x) = (x^4 + x^5 + x^6 +) (1 + x + x^2 +) (1 + x + x^2 +)$
$= \chi^{4}(1+\chi+\chi^{2}+\cdots)(1+\chi+\chi^{2}+\cdots)(1+\chi+\chi^{2}+\cdots)$
The ordinary
generating function = $\chi^{4}\left(\frac{1}{1-\chi}\chi^{1}\right)$
of an (1-x /1-x /1-x)
$=\frac{\chi^4}{(1-\chi)^3}$
(1-x)3

1 /	le ordinary generating function, o.g.f, G.
	f(x) of an is the
Fund	tion where an is the coeff. of x".
	$f(x) = \sum_{n=0}^{\infty} a_n x^n$ as a MocLourin power series.
	gives us a new way to
Con	pare to Mac Laurin formula: $f(x) = \sum_{n=0}^{\infty} \frac{f(n)}{n!} x$
	$=$ $a_n = f^{(n)}(0)/n!$
Ēx:	find as where $f(x) = \frac{\chi^4}{(1-\chi)^3}$.
	1) Sth derivative $f^{(s)}(x)$ 2) plug in $x=0$
	3) divide by 5!
) wolf	ramalpha.com $d^{5}/dx^{5} ((x^{4})/((1-x)^{3}))$
) ;	$ z = 360 (2x^{2} + 4x + 1) / (x - 1)^{8} $ $ x = 0 \Rightarrow 360 $