Группы перестановок

9 ноября • 8 класс

Разбор

Определение. Пусть n — натуральное число. За X обозначим множество $\{1,2,\ldots,n\}$. *Группа перестановок* или *симметрическая группа* S_n — множество всех биекций $\sigma\colon X\to X$, с операцией композиции.

Задача 1. Сколько элементов в S_n ?

Решение: n!, смотри листок 04.

Перестановку $\sigma \in S_n$ можно записывать следующим образом.

$$\begin{pmatrix} 1 & 2 & 3 & \dots & n-1 & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \dots & \sigma(n-1) & \sigma(n) \end{pmatrix}$$

Задача 2. Постройте таблицы умножения для S_1 и S_2 .

$$\frac{ \circ \| \begin{pmatrix} 1 \\ 1 \end{pmatrix} \| \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \| \begin{pmatrix} 1 \\ 1 \\ 2$$

Задача 3. Вычислите:

(a)
$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}^2 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

(c)
$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}^2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

(d)
$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}^3 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

(e)
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}^2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$$

(f)
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}^4 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}$$

(g)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 4 & 3 & 5 \end{pmatrix}$$
.

Задача 4. (а) Какие числа можно получить, применяя к числу x=3 несколько раз перестановку $\sigma=\left(\begin{smallmatrix} 1&2&3&4&5\\3&5&4&1&2 \end{smallmatrix} \right)$?

- (b) Тот же вопрос для x=2.
- (c) Тот же вопрос для x=1.

Определение. Множество чисел, которые можно получить, применяя несколько раз σ к x будем называть **орбитой** x **под действием** σ и обозначать $\langle \sigma \rangle x$.

Определение. Перестановка σ называется циклической, если она переставляет по циклу часть элементов и оставляет на месте все остальные.

Задача 5. Какие из следующих перестановок циклические?

(a)
$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$
; (b) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$; (c) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$; (d) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 4 & 1 & 5 \end{pmatrix}$.

Решение: (а) да; (b) да; (c) нет; (d) да. \square Задача 6. Как охарактеризовать циклические перестановки в терминах орбит? \square Решение: Перестановка является циклической, если и только если у неё не более одной нетривиальной (то есть из более, чем одного элемента) орбиты. \square Вы можете заметить, что способ записи как выше — довольно неэкономный, особенно для больших n. Поэтому для циклических перестановок есть и другое общепринятое обозначение: $(x_1 \ldots x_k)$. Например, перестановка из задачи n0 может быть обозначена

 $(1\ 3\ 4)$. Как обычно, тождественную перестановку $(rac{1}{1}\ rac{2}{2}\ rac{...}{n}\ n)\in S_n$ принято обозначать e_{S_n}

 $(S_n$ здесь — нижний индекс) или просто e, если понятно, о какой именно группе речь. **Задача 7.** Выпишите все элементы S_3 в циклической записи.

Решение: е, (1 2), (2 3), (1 3), (1 2 3), (1 3 2).

Задачи для самостоятельного решения

Задача 1. Запишите все элементы S_4 , как произведения циклических.

Задача 2. Выпишите все элементы S_5 , не являющиеся циклическими.

Задача 3. Вычислите:

- (a) (1 2 3 4)(4 3 2 1)
- **(b)** (1 2 3)(3 4)
- (c) $(1\ 2)(2\ 3)$
- (d) (2 3)(1 2)
- (e) (1 2 3 4)(3 2)
- (f) $(1\ 2\ 3\ 4)(2\ 5\ 4\ 6)$.

Задача 4 (за каждый пункт 0.5 балла). Опишите орбиты для результатов вычисления из предыдущей задачи.

Задача 5 (2 балла). Составьте таблицу умножения для S_3 . Знакома ли вам эта таблица? **Определение.** *Порядком* элемента группы $g \in G$ называется наименьшее натуральное число $d \in \mathbb{N}$, такое что $g^d = e$.

Задача 6. Найдите порядки всех элементов (а) S_3 ; (b, 2 балла) S_4 ; (c) $Sym(P_4)$ (группа симметрий квадрата, смотри предыдущий листок); (d, 3 балла) $Sym(P_{2n})$.