习题 2.4

6. 证明:记 $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$,由 $A^m = 0$ 知道,这个 A 是退化的。因此由第四题知道 ad - bc = 0. 再根据第五题知道,此时 $A^2 = (a + d)A$. 如果 a + d = 0,则 $A^2 = 0$,得证。如果 $a + d \neq 0$,则

$$A^{m} = (a+d)A^{m-1} = (a+d)^{2}A^{m-2} = \dots = (a+d)^{m-1}A,$$

此时 A 是零矩阵, 当然有 $A^2 = 0$.

7. 证明:设 A 是对称的矩阵,且可逆。对于恒等式 $AA^{-1}=E$,取转置,则 $^t(A^{-1})$ $^tA=E$,注意到 $^tA=A$. 因此 $^t(A^{-1})=A^{-1}$,即 A^{-1} 是对称的。对于斜对称的证明是类似的。

另外, 我希望你们把 2.4 的第一题的(5) 给同学们仔细算一下。