1	1. A double diamond bicycle frame comprising:
2	a top tube;
3	a seat tube;
4	a down tube;
5	a head tube; and
6	a seat stay-chain stay structure which includes at least one differentially stiff
7	carbon fiber tube that is differentially stiff with regard to bending and twisting.
1	2. The double diamond bicycle frame set forth in claim 1 wherein:
2	the at least one differentially stiff carbon fiber tube is made using a lay-up which
3	gives greater stiffness with regard to bending than with regard to twisting.
1	3. The double diamond bicycle frame set forth in claim 1 wherein:
2	the seat stay-chain stay structure includes dual seat stays; and
3	both the dual seat stays and the chain stays are made of carbon fiber tubes that are
4	stiffer with regard to bending than with regard to twisting.
1	4. The double diamond bicycle frame set forth in claim 3 wherein:
2	the dual seat stays and the chain stays are made using lay-ups which give greater
3	stiffness with regard to bending than with regard to twisting.
1	5. The double diamond bicycle frame set forth in claim 1 wherein:
2	the seat stay-chain stay structure includes a wishbone seat stay;
3	and
4	the chain stays are carbon fiber tubes made using lay-ups which give greater
5	stiffness with regard to bending than with regard to twisting.
1	6. The double diamond bicycle frame set forth in claim 5 wherein:
2	the handle of the wishbone seat stay is a carbon fiber tube whose cross section is
3	greater in a horizontal direction than in a vertical direction.

1	7. A bicycle frame comprising:
2	a plurality of carbon fiber tubes joined at joints; and
3	one or more lugs on the joints, a lug being made by
4	making a lay-up of at least carbon fibers and a matrix material around the
5	joint,
6	applying a mold to the tubes and laid-up fibers and matrix material, and
7	curing the lug in the mold, the cure including expansion of an element
8	enclosed by the mold.
1	8. The bicycle frame set forth in claim 7 wherein:
2	the element is a component of the mold which expands to urge the lay-up against
3	the tubes.
1	9. The bicycle frame set forth in claim 7 wherein:
2	the element is a component of the lay-up which expands to urge the lay-up against
3	the tubes and the mold.
1	10. The bicycle frame set forth in claim 7 wherein:
2	the mold has a form such that the lugs taper towards the tubes as the distance from
3	the joint increases.
1	11. A seat stay-chain stay structure for a bicycle frame,
2	the structure being characterized in that:
3	the structure includes at least one differentially-stiff carbon fiber tube that is
4	differentially stiff with regard to bending and to twisting.
1	12. The seat stay-chain stay structure set forth in claim 11 wherein:
2	the at least one differentially stiff carbon fiber tube is made using a lay-up which
3	gives greater stiffness with regard to bending than with regard to twisting.

13. The seat stay-chain stay structure set forth in claim 11 wherein:

- 2 the seat stay-chain stay structure includes dual seat stays; and
- both the dual seat stays and the chain stays are made of carbon fiber tubes that are
- 4 stiffer with regard to bending than with regard to twisting.
- 1 14. The seat stay-chain stay structure set forth in claim 13 wherein:
- 2 the dual seat stays and the chain stays are made using lay-ups which give greater
- 3 stiffness with regard to bending than with regard to twisting.
- 1 15. The seat stay-chain stay structure set forth in claim 11 wherein:
- 2 the seat stay-chain stay structure includes a wishbone seat stay; and
- 3 the chain stays are carbon fiber tubes made using lay-ups which give greater
- 4 stiffness with regard to bending than with regard to twisting.
 - 16. The seat stay-chain stay structure set forth in claim 15 wherein:

the handle of the wishbone seat stay is a carbon fiber tube with a cross section which is greater in the horizontal direction than in the vertical direction.

- 1 17. A method of making lugs for joints in a bicycle frame made of carbon fiber tubes,
- 2 the method comprising the steps of:
- making a lay-up of at least carbon fibers and a matrix material around the joint,
- 4 applying a mold to the tubes and laid-up fibers and matrix material, and
- 5 curing the lug in the mold, the cure including expansion of an element enclosed
- 6 by the mold.

1

1

- 18. The method set forth in claim 17 wherein:
- 2 the mold is a captured silicon mold; and
- in the step of curing the lug in the mold, the cure includes expansion of the
- 4 captured silicon.
 - 19. The method set forth in claim 17 wherein:

- the step of making the lay-up includes the step of including a layer of expanding foam in the lay-up; and in the step of curing the lug in the mold, the cure includes expansion of the foam.
- 1 20. The method set forth in claim 17 wherein:
- 2 the step of making a lay-up includes the steps of:
- wrapping each tube in the joint with a first carbon fiber fabric that is impregnated with the matrix material, the ends of the fabric extending beyond the tube;
- wrapping the ends of the carbon fiber fabric that is wrapped around a given tube around the tube the given tube joins to;
- wrapping the entire joint in a second carbon fiber fabric whose fibers have an orientation different from that of the fibers in the first carbon fiber fabric.
- 1 21. The method set forth in claim 20 wherein:
- 2 the step of making a lay-up further includes the step of:
- 3 including a layer of expanding foam in the lay-up.
- 1 22. The method set forth in claim 21 wherein:
- the step of including a layer of expanding foam is performed before the step of wrapping the entire joint in a second carbon fiber fabric.
- 1 23. The method set forth in claim 20 wherein:
- 2 the step of wrapping the entire joint is done such that all seams in the second
- 3 carbon fiber fabric are at the top and bottom of the tubes and the second carbon fiber
- 4 fabric is overlapped at the seams.