### Peta Karnaugh

- Terakhir kali kita melihat aplikasi logika Boolean untuk desain sirkuit.
  - Operasi dasar Boolean adalah AND, OR dan NOT.
  - Operasi ini dapat digabungkan untuk membentuk ekspresi kompleks, yang juga dapat langsung diterjemahkan ke dalam rangkaian perangkat keras.
  - Aljabar Boolean membantu kita menyederhanakan ekspresi dan sirkuit.
- Hari ini kita akan melihat teknik grafis untuk menyederhanakan ekspresi menjadi jumlah produk yang minimal (MSP) formulir:
  - Ada jumlah minimal istilah produk dalam ekspresi.
  - Setiap istilah memiliki jumlah literal minimal.
- Dari segi sirkuit, ini mengarah pada implementasi dua tingkat minimal.



# Menata ulang tabel kebenaran

 Fungsi dua variabel memiliki empat kemungkinan minterm. Kita dapat mengatur ulang minterm ini menjadi peta Karnaugh.

| X | У | minterm |            | >    | /   |
|---|---|---------|------------|------|-----|
| 0 | 0 | x'y'    |            | 0    | 1   |
| 0 | 1 | x'y     | [0]        | x'v' | x'y |
| 1 | 0 | xy'     | $X \mid 1$ | XY'  | XV  |
| 1 | 1 | ху      |            |      | 7   |

- Sekarang kita dapat dengan mudah melihat minterm mana yang mengandung literal umum.
  - Minterm di ruas kiri dan kanan masing-masing berisi y' dan y .
  - Minterms di baris atas dan bawah masing-masing berisi x' dan x .



|    | У'   | У   |
|----|------|-----|
| X' | x'y' | x'y |
| X  | xy'  | xy  |

# Penyederhanaan peta Karnaugh

Bayangkan jumlah minterm dua variabel:

$$x'y' + x'y$$

 Kedua minterm ini muncul di baris atas peta Karnaugh, yang berarti keduanya mengandung x' literal.



 Apa yang terjadi jika Anda menyederhanakan ekspresi ini menggunakan aljabar Boolean?

$$x'y' + x'y = x'(y' + y)$$
 [ Distributif ]  
=  $x' \cdot 1 [y + y' = 1]$   
=  $x' [x \cdot 1 = x]$ 

## Contoh dua variabel lainnya

- Contoh ekspresi lainnya adalah x'y + xy .
  - Kedua minterms muncul di sisi kanan, di mana y tidak dilengkapi.
  - Jadi, kita dapat mereduksi x'y + xy menjadi hanya y .



- Bagaimana dengan x'y' + x'y + xy?
  - Kami memiliki x'y' + x'y di baris atas, sesuai dengan x'.
  - Ada juga x'y + xy di sisi kanan, sesuai dengan y .
  - Seluruh ekspresi ini dapat direduksi menjadi x' + y .



# Peta Karnaugh tiga variabel

• Untuk ekspresi tiga variabel dengan input x, y, z, susunan minterm lebih rumit:



|          |   | ΥZ             |                       |                       |                       |  |
|----------|---|----------------|-----------------------|-----------------------|-----------------------|--|
|          |   | 00             | 01                    | 11                    | 10                    |  |
| <b>V</b> | 0 | $m_0$          | $m_1$                 | m <sub>3</sub>        | m <sub>2</sub>        |  |
| ^        | 1 | m <sub>4</sub> | <b>m</b> <sub>5</sub> | <b>m</b> <sub>7</sub> | <b>m</b> <sub>6</sub> |  |

 Cara lain untuk memberi label K-map (gunakan mana saja yang Anda suka):

|   |        |       | У    |       |
|---|--------|-------|------|-------|
|   | x'y'z' | x'y'z | x'yz | x'yz' |
| X | xy'z'  | xy'z  | xyz  | xyz'  |
|   |        | Z     | 7    |       |

|   |                |                       | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | /              |
|---|----------------|-----------------------|---------------------------------------|----------------|
|   | $m_0$          | $m_1$                 | m <sub>3</sub>                        | m <sub>2</sub> |
| X | m <sub>4</sub> | <b>m</b> <sub>5</sub> | <b>m</b> <sub>7</sub>                 | $m_6$          |
|   |                | Z                     |                                       |                |

### Kenapa urutannya lucu?

 Dengan pengurutan ini, setiap kelompok 2, 4 atau 8 kotak yang berdekatan pada peta berisi literal umum yang dapat difaktorkan.



"Kedekatan" termasuk membungkus sisi kiri dan kanan:

|   |        |       | •    | <b>y</b> |
|---|--------|-------|------|----------|
|   | x'y'z' | x'y'z | x'yz | x'yz'    |
| X | xy'z'  | xy'z  | xyz  | xyz'     |
|   |        | Z     | 7    |          |

• Kami akan menggunakan properti kotak yāng berdekatan ini untuk melakukan penyederhanaan kami.

# Contoh penyederhanaan K-map

- Mari kita pertimbangkan untuk menyederhanakan f(x,y,z) = xy + y'z + xz
- Pertama, Anda harus mengonversi ekspresi ke dalam bentuk penjumlahan minterms, jika belum.
  - Cara termudah untuk melakukannya adalah dengan membuat tabel kebenaran untuk fungsi tersebut, dan kemudian membacakan mintermnya.
  - Anda dapat menulis literal atau menggunakan singkatan minterm.
- Berikut adalah tabel kebenaran dan jumlah minterms untuk contoh kita:

| X | У | Z | f(x,y,z) |
|---|---|---|----------|
| 0 | 0 | 0 | 0        |
| 0 | 0 | 1 | 1        |
| 0 | 1 | 0 | 0        |
| 0 | 1 | 1 | 0        |
| 1 | 0 | 0 | 0        |
| 1 | 0 | 1 | 1        |
| 1 | 1 | 0 | 1        |
| 1 | 1 | 1 | 1        |

### Ekspresi yang tidak disederhanakan

- Anda juga dapat mengonversi ekspresi menjadi jumlah minterm dengan aljabar Boolean.
  - Terapkan hukum distributif secara terbalik untuk menambahkan variabel yang hilang.
  - Sangat sedikit orang yang benar-benar melakukan ini, tetapi kadangkadang berguna.

$$xy + y'z + xz = (xy \cdot 1) + (y'z \cdot 1) + (xz \cdot 1)$$
  
=  $(xy \cdot (z' + z)) + (y'z \cdot (x' + x)) + (xz \cdot (y' + y))$   
=  $(xyz' + xyz) + (x'y'z + xy'z) + (xy'z + xyz)$   
=  $xyz' + xyz + x'y'z + xy'z$ 

- Dalam kedua kasus, kami sebenarnya "menyederhanakan" ekspresi contoh kami.
  - Ekspresi yang dihasilkan lebih besar dari yang asli!
  - Tetapi memiliki semua minterm individual memudahkan untuk menggabungkannya dengan K-map.

#### Membuat contoh K-map

- Selanjutnya adalah menggambar dan mengisi K-map.
  - Letakkan 1 di peta untuk setiap minterm, dan 0 di kotak lainnya.
  - Anda dapat menggunakan produk minterm atau singkatan untuk menunjukkan di mana 1s dan 0s berada.
- Dalam contoh kita, kita dapat menulis f(x,y,z) dalam dua cara yang setara.

$$f(x,y,z) = x'y'z + xy'z + xyz' + xyz$$



|   |                |                       | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | /                     |
|---|----------------|-----------------------|---------------------------------------|-----------------------|
|   | $m_0$          | $m_1$                 | $m_3$                                 | $m_2$                 |
| X | m <sub>4</sub> | <b>m</b> <sub>5</sub> | <b>m</b> <sub>7</sub>                 | <b>m</b> <sub>6</sub> |
|   |                | Z                     |                                       |                       |

 Dalam kedua kasus tersebut, K-map yang dihasilkan ditunjukkan di bawah ini

bawah ini.

|   |   |   |   | 7 |
|---|---|---|---|---|
|   | 0 | 1 | 0 | 0 |
| X | 0 | 1 | 1 | 1 |
| · |   | Z | 7 |   |

Peta Karnaugh

#### K-maps dari tabel kebenaran

- Anda juga dapat mengisi K-map langsung dari tabel kebenaran.
  - Output pada baris i dari tabel masuk ke m i perseqi dari K-map.
  - Ingat bahwa kolom paling kanan dari K-map adalah "switched".



|    | ~Y~Z | ~YZ | YZ | Y~z |
|----|------|-----|----|-----|
| ~X |      |     |    |     |
| X  |      |     |    |     |

#### Mengelompokkan minterm bersama-sama

- Langkah paling sulit adalah mengelompokkan semua 1 di K-map.
  - Buat persegi panjang di sekitar kelompok satu, dua, empat atau delapan 1s.
  - Semua angka 1 di peta harus disertakan dalam setidaknya satu persegi panjang.
  - Jangan sertakan salah satu dari 0.

|   |   |   | , | У |
|---|---|---|---|---|
|   | 0 | 1 | 0 | 0 |
| X | 0 | 1 | 1 | 1 |
|   |   | 2 | 7 |   |

- Setiap kelompok sesuai dengan satu istilah produk. Untuk hasil paling sederhana:
  - Buat persegi panjang sesedikit mungkin, untuk meminimalkan jumlah produk dalam ekspresi akhir.
  - Buat setiap persegi panjang sebesar mungkin, untuk meminimalkan jumlah literal di setiap suku.
  - Tidak apa-apa jika persegi panjang tumpang tindih, jika itu membuatnya lebih besar.

    Peta Karnaugh

#### Membaca MSP dari K-map

- Akhirnya, Anda dapat menemukan MSP.
  - Setiap persegi panjang sesuai dengan satu istilah produk.
  - Produk ditentukan dengan menemukan literal umum dalam persegi panjang itu.



• Untuk contoh kami, kami menemukan bahwa xy + y'z + xz = y'z + xy. (Ini adalah salah satu hukum aljabar tambahan dari terakhir kali.)

# Latihan K-map 1

• Sederhanakan jumlah minterm m  $_1$  + m  $_3$  + m  $_5$  + m  $_6$ .



|   |       |                       | У                     |                |  |
|---|-------|-----------------------|-----------------------|----------------|--|
|   | $m_0$ | $m_1$                 | <b>m</b> <sub>3</sub> | m <sub>2</sub> |  |
| X | $m_4$ | <b>m</b> <sub>5</sub> | $m_7$                 | $m_6$          |  |
|   |       | Z                     |                       |                |  |
|   |       |                       |                       |                |  |

# Solusi untuk latihan K-map 1

- Berikut adalah K-map yang terisi, dengan semua grup ditampilkan.
  - Kelompok magenta dan hijau tumpang tindih, yang membuat masingmasing menjadi sebesar mungkin.
  - Minterm m 6 berada dalam satu grup dengan kesendiriannya.



MSP terakhir di sini adalah x'z + y'z + xyz'.

#### K-map empat variabel

- Kita juga bisa melakukan ekspresi empat variabel!
  - Minterm di kolom ketiga dan keempat, dan di baris ketiga dan keempat, dibalik.
  - Sekali lagi, ini memastikan bahwa kotak yang berdekatan memiliki literal yang sama.

|    |          |         | `        | У       |    |    |                        |                       |                       | /               |          |
|----|----------|---------|----------|---------|----|----|------------------------|-----------------------|-----------------------|-----------------|----------|
|    | w'x'y'z' | w'x'y'z | w'x'yz   | w'x'yz' |    |    | $m_0$                  | $m_1$                 | m <sub>3</sub>        | m <sub>2</sub>  | <u> </u> |
|    | w'xy'z'  | w'xy'z  | w'xyz    | w'xyz'  | _  |    | m <sub>4</sub>         | <b>m</b> <sub>5</sub> | <b>m</b> <sub>7</sub> | m <sub>6</sub>  | _        |
| W  | wxy'z'   | wxy'z   | wxyz     | wxyz'   | ^_ | W  | <b>m</b> <sub>12</sub> | m <sub>13</sub>       | m <sub>15</sub>       | m <sub>14</sub> |          |
| VV | wx'y'z'  | wx'y'z  | wx'yz    | wx'yz'  |    | VV | m <sub>8</sub>         | <b>m</b> 9            | m <sub>11</sub>       | m <sub>10</sub> |          |
|    |          | Z       | <u>-</u> |         |    |    |                        | 2                     | Z                     |                 |          |
|    |          |         |          |         |    |    |                        |                       |                       |                 |          |

- Pengelompokan minterm mirip dengan kasus tiga variabel, tetapi:
  - Anda dapat memiliki grup persegi panjang dengan 1, 2, 4, 8 atau 16 minterms.
  - Anda dapat membungkus keempat sisinya.

# Contoh: Sederhanakan m $_0$ +m $_2$ +m $_5$ +m $_8$ +m $_{10}$ +m $_{13}$

Ekspresi sudah merupakan jumlah minterms, jadi inilah K-mapnya:

|     |   |   | > | / |   |
|-----|---|---|---|---|---|
|     | 1 | 0 | 0 | 1 |   |
|     | 0 | 1 | 0 | 0 | _ |
| \\/ | 0 | 1 | 0 | 0 | X |
| W   | 1 | 0 | 0 | 1 |   |
|     |   | Z | 7 |   |   |

|     |                        |                        |                 | /                      | _ |
|-----|------------------------|------------------------|-----------------|------------------------|---|
|     | $m_0$                  | $m_1$                  | $m_3$           | m <sub>2</sub>         |   |
|     | $m_4$                  | <b>m</b> <sub>5</sub>  | $m_7$           | $m_6$                  |   |
| \4/ | <b>m</b> <sub>12</sub> | <b>m</b> <sub>13</sub> | m <sub>15</sub> | m <sub>14</sub>        | X |
| W   | m <sub>8</sub>         | <b>m</b> <sub>9</sub>  | m <sub>11</sub> | <b>m</b> <sub>10</sub> |   |
|     |                        | Z                      | 7               |                        |   |

Kita dapat membuat grup berikut, menghasilkan MSP x'z' + xy'z.



|      |          |         |        | Y       |  |
|------|----------|---------|--------|---------|--|
|      | w'x'y'z' | w'x'y'z | w'x'yz | w'x'yz' |  |
|      | w'xy'z'  | w'xy'z  | w'xyz  | w'xyz'  |  |
| W-   | wxy'z'   | wxy'z   | wxyz   | wxyz'   |  |
| VV - | wx'y'z'  | wx'y'z  | wx'yz  | wx'yz'  |  |
|      |          | Z       | 7      |         |  |

#### K-maps bisa rumit!

 Mungkin tidak selalu ada MSP yang unik . K-map di bawah ini menghasilkan dua MSP yang valid dan setara, karena ada dua kemungkinan cara untuk memasukkan minterm m 7 .



 Ingatlah bahwa grup yang tumpang tindih dimungkinkan, seperti yang ditunjukkan di atas.

### Implikator utama

- Tantangan dalam menggunakan K-maps adalah memilih grup yang tepat.
   Jika Anda tidak meminimalkan jumlah grup dan memaksimalkan ukuran setiap grup:
  - Ekspresi yang Anda hasilkan akan tetap sama dengan yang asli.
  - Tapi itu tidak akan menjadi jumlah *minimal* produk.
- Apa pendekatan yang baik untuk menemukan MSP yang sebenarnya?
- Pertama, temukan semua kemungkinan pengelompokan terbesar dari 1s.
  - Ini disebut implikan utama .
  - MSP terakhir akan berisi subset dari implikan utama ini.

Berikut adalah contoh peta Karnaugh dengan implikan prima yang

ditandai:

|     |   |     |   | / | _ |
|-----|---|-----|---|---|---|
|     | 1 | _1_ | 0 | 0 |   |
|     | 1 | 1   | 0 | 0 |   |
| \^/ | 0 | 1   | 1 | 0 |   |
| W   | 0 | 0   | 1 | 1 |   |
| ·   | Z |     |   |   |   |

# Implikator utama esensial



- Jika ada grup yang berisi minterm yang tidak juga dicakup oleh grup lain yang tumpang tindih, maka itu adalah implikan prima yang esensial.
- Implikator utama esensial harus muncul di MSP, karena mengandung minterm yang tidak termasuk dalam istilah lain.
- Contoh kita hanya memiliki dua implikan utama yang esensial:
  - merah ( w'y' ) sangat penting, karena  $m_0$  ,  $m_1$  dan  $m_4$  .
  - hijau ( wx'y ) sangat penting, karena m 10.

# Meliputi minterm lainnya



- Terakhir, pilih sesedikit mungkin implikan utama lainnya seperlunya untuk memastikan bahwa semua minterm tercakup.
- Setelah memilih persegi panjang merah dan hijau dalam contoh kita, hanya ada dua minterm yang tersisa untuk dibahas,  $m_{13}$  dan  $m_{15}$ .
  - Keduanya termasuk dalam implikan prima biru, wxz.
  - MSP yang dihasilkan adalah w'y' + wxz + wx'y.
- Kelompok hitam dan kuning tidak diperlukan, karena semua minterm tercakup oleh tiga kelompok lainnya.

# Latihan K-map 2

Sederhanakan untuk K-map berikut:

|     |   |   | > | / |   |
|-----|---|---|---|---|---|
|     | 0 | 0 | 1 | 0 |   |
|     | 1 | 0 | 1 | 1 | _ |
| \4/ | 1 | 1 | 1 | 1 | ^ |
| W   | 0 | 0 | 1 | 0 |   |
|     |   | Z | _ |   |   |

### Solusi untuk latihan K-map 2

Sederhanakan untuk K-map berikut:



Semua implikan prima dilingkari.

Implikator prima esensial adalah xz', wx dan yz.

# Saya tidak peduli!

- Anda tidak selalu membutuhkan semua 2 nkombinasi input dalam fungsi n-variabel.
  - Jika Anda dapat menjamin bahwa kombinasi input tertentu tidak pernah terjadi.
  - Jika beberapa keluaran tidak digunakan di rangkaian lainnya.

Kami menandai keluaran not-care dalam tabel kebenaran dan K-maps

dengan Xs.

| X | У | Z | f(x,y,z) |
|---|---|---|----------|
| 0 | 0 | 0 | 0        |
| 0 | 0 | 1 | 1        |
| 0 | 1 | 0 | X        |
| 0 | 1 | 1 | 0        |
| 1 | 0 | 0 | 0        |
| 1 | 0 | 1 | 1        |
| 1 | 1 | 0 | X        |
| 1 | 1 | 1 | 1        |

 Dalam K-map, setiap X dapat dianggap sebagai 0 atau 1. Anda harus memilih interpretasi yang paling memungkinkan penyederhanaan.

#### Latihan K-map 3

Temukan MSP untuk

$$f(w,x,y,z) = m(0,2,4,5,8,14,15), d(w,x,y,z) = m(7,10,13)$$

Notasi ini berarti bahwa kombinasi input wxyz = 0111, 1010 dan 1101 (sesuai dengan minterm m $_7$ , m $_{10}$  dan m $_{13}$ ) tidak digunakan.

|     |   |   | > | / |             |
|-----|---|---|---|---|-------------|
|     | 1 | 0 | 0 | 1 |             |
|     | 1 | 1 | X | 0 | <b>&gt;</b> |
| \\/ | 0 | X | 1 | 1 | ^           |
| W   | 1 | 0 | 0 | X |             |
|     |   | Z | 7 |   |             |

### Solusi untuk latihan K-map 3

#### Temukan MSP untuk:

$$f(w,x,y,z) = m(0,2,4,5,8,14,15), d(w,x,y,z) = m(7,10,13)$$



Semua implikan prima dilingkari. Kita dapat memperlakukan X sebagai 1 jika kita mau, jadi grup merah mencakup dua X, dan grup biru muda mencakup satu X.

Satu- satunya implikan prima yang esensial adalah x'z'. Kelompok merah tidak esensial karena minterm di dalamnya juga muncul di kelompok lain.

MSP adalah x'z' + wxy + w'xy' . Ternyata kelompok merah itu berlebihan; kita dapat mencakup semua minterms di peta tanpa itu.

# Ringkasan

- K-maps adalah alternatif aljabar untuk menyederhanakan ekspresi.
  - Hasilnya adalah jumlah produk minimal , yang mengarah ke sirkuit dua tingkat minimal.
  - Sangat mudah untuk menangani kondisi tidak peduli.
  - K-maps benar-benar hanya bagus untuk penyederhanaan manual dari ekspresi kecil... tapi itu cukup bagus untuk CS231!
- Hal-hal yang perlu diingat:
  - Ingat urutan minterm yang benar di K-map.
  - Saat mengelompokkan, Anda dapat membungkus semua sisi K-map, dan grup Anda dapat tumpang tindih.
  - Buat persegi panjang sesedikit mungkin, tetapi buatlah masingmasing sebesar mungkin. Ini mengarah pada istilah produk yang lebih sedikit, tetapi lebih sederhana.
  - Mungkin ada lebih dari satu solusi yang valid.

# Contoh: Tampilan Tujuh Segmen

Input: digit yang dikodekan sebagai 4 bit: ABCD

Meja untuk e

f / /b

Asumsi: Input mewakili digit legal (0-9)

| CD<br>AB | 00 | 01 | 11 | 10 |
|----------|----|----|----|----|
| 00       | 1  | 0  | 0  | 1  |
| 01       | 0  | 0  | 0  | 1  |
| 11       | X  | X  | X  | X  |
| 10       | 1  | 0  | X  | X  |

|                                 | Α | В | C | D | E                |
|---------------------------------|---|---|---|---|------------------|
| 0                               | 0 | 0 | 0 | 0 | 1                |
| 1                               | 0 | 0 | 0 | 1 | 0                |
| 2                               | 0 | 0 | 1 | 0 | 1                |
| 3                               | 0 | 0 | 1 | 1 | 0                |
| 4                               | 0 | 1 | 0 | 0 | 0                |
| 5                               | 0 | 1 | 0 | 1 | 0                |
| 1<br>2<br>3<br>4<br>5<br>6      | 0 | 1 | 1 | 0 | 1                |
| 7                               | 0 | 1 | 1 | 1 | 0                |
| 8                               | 1 | 0 | 0 | 0 | 1                |
| 9                               | 1 | 0 | 0 | 1 | 0                |
| X                               |   |   |   |   | X                |
| X                               |   |   |   |   | X                |
| X                               |   |   |   |   | X                |
| X                               |   |   |   |   | X                |
| 7<br>8<br>9<br>X<br>X<br>X<br>X |   |   |   |   | X<br>X<br>X<br>X |
| X                               |   |   |   |   | X                |

# Contoh: Tampilan Tujuh Segmen

$$f / \frac{a}{b}$$

$$e / \frac{g}{c}$$

#### Meja untuk

Asumsi: Input mewakili digit legal (0-9)

| CD<br>AB | 00 | 01 | 11 | 10  |
|----------|----|----|----|-----|
| 00       | 1  | 0  | 1  | 1   |
| 01       | 0  | 1  | 1  | 1   |
| 11       | X  | X  | X  | X   |
| 10       | 1  | 1  | Х  | (x) |

$$A + C + BD + B'D'$$

|                                      | Α | В | С | D | E                |
|--------------------------------------|---|---|---|---|------------------|
| 0                                    | 0 | 0 | 0 | 0 | 1                |
| 1                                    | 0 | 0 | 0 | 1 | 0                |
| 2                                    | 0 | 0 | 1 | 0 | 1                |
| 3                                    | 0 | 0 | 1 | 1 | 1                |
| 4                                    | 0 | 1 | 0 | 0 | 0                |
| 2<br>3<br>4<br>5                     | 0 | 1 | 0 | 1 | 1                |
| 6                                    | 0 | 1 | 1 | 0 | 1                |
| 7                                    | 0 | 1 | 1 | 1 | 1                |
| 8                                    | 1 | 0 | 0 | 0 | 1                |
| 9                                    | 1 | 0 | 0 | 1 | 1                |
| X                                    |   |   |   |   | X                |
| 6<br>7<br>8<br>9<br>X<br>X<br>X<br>X |   |   |   |   | X<br>X<br>X<br>X |
| X                                    |   |   |   |   | X                |
| X                                    |   |   |   |   | X                |
| X                                    |   |   |   |   | X                |
| X                                    |   |   |   |   | X                |