SUSTech Machine-learning

Fall 2020

Homework 3

刘禹熙

2020年10月17日

3.1. Consider a data set in which each data point t_n is associated with a weighting factor $r_n > 9$, so that the sum-of-squares error function becomes

$$E_D(w) = \frac{1}{2} \sum_{n=1}^{N} r_n \{t_n - w^T \phi(x_n)\}^2$$

Find an expression for the solution w^* that minimizes this error function. Give two alternative interpretations of the weighted sum-of-squares error function in terms of (i) data dependent noise variance and (ii) replicated data points.

Solution. 内容...

3.2. We saw in Section 2.3.6 that the conjugate prior for a Gauussian distribution with unknown mean and unknown precision (inverse variance) is a normal-gamma distribution. This property also holds for the case of the conditional Gaussian distribution $p(t|x, w, \beta)$ of the linear regression model. If we consider the likelihood function,

$$p(t|X, w, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n|w^T \phi(X_n), \beta^{-1})$$

then the conjugate prior for w and β is given by

$$p(w, \beta) = \mathcal{N}(w|m_0, \beta^{-1}S_0)Gam(\beta|a_0, b_0)$$

Show that the correspondint posterior distribution takes the same functional form, so that

$$p(w,\beta|t) = \mathcal{N}(w|m_N,\beta^{-1}S_N)Gam(\beta|a_N,b_N)$$

and find expressions for the posterior parameters m_N , S_N , a_N , and b_N .

Machine-learning Sustech

3.3. Show that the integration over w in the Bayesian linear regression model gives the result

$$\int \exp\{-E(w)\}dw = \exp\{E(m_N)\}(2\pi)^{M/2}|A|^{-1/2}$$

Hence show that the log marginal likelihood is given by

$$\ln p(t|\alpha,\beta) = \frac{M}{2} + \frac{N}{2} \ln \beta - E(m_N) - \frac{1}{2} \ln |A| - \frac{N}{2} (2\pi)$$

3.4. Consider real-valued variables X and Y. The Y variable is generated, conditional on X, from the following process:

$$\varepsilon \sim N(0, \sigma^2)$$

$$Y = aX + \varepsilon$$

where every ε is an independent variable, called a noise term, which is drawn from a Gaussian distribution with mean 0, and standard deviation σ . This is a one-feature linear regression model, where a is the only weight parameter. The conditional probability of Y has distribution $p(Y|X,a) \sim N(aX,\sigma^2)$, so it can be written as

$$p(Y|X,a) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{1}{2\sigma^2}(Y - aX)^2)$$

Assume we have a training dataset of n pairs (X_i, Y_i) for i = 1...n, and σ is known. Derive the maximum likelihood estimate of the parameter a in terms of the training example $X_i^{'}s$ and $Y_i^{'}s$. We recommend you start with the simplest form of the problem:

$$F(a) = \frac{1}{2} \sum_{i} (Y_i - aX_i)^2$$

3.5. If a data point y follows the Posson distribution with rate parameter θ , then the probability of a single observation y is

$$p(y|\theta) = \frac{\theta^y e^{-\theta}}{y!}, for \ y = 0, 1, 2, \dots$$

You are given data points $y_1, ..., y_n$ independently drawn from a Poisson distribution with parameter θ . Write down the log-likelihood of the data as a function of θ .

3.6. Suppose you are given n obserbations, $X_1, ... X_n$, independent and identically distributed with a Gamma(α, λ) distribution. The following information might be useful for the problem.

MACHINE-LEARNING SUSTech

- (a) If $X \sim \text{Gamma}(\alpha, \lambda)$, then $\mathbb{E}[X] = \frac{\alpha}{\lambda}$ and $\mathbb{E}[X^2] = \frac{\alpha(\alpha+1)}{\lambda^2}$
- (b) The probability density function of $X \sim \text{Gamma}(\alpha, \lambda)$ is $f_X(x) = \frac{1}{\Gamma(\alpha)} \lambda^{\alpha} x^{\alpha-1} e^{-\lambda x}$ where the function Γ is only dependent on α and not λ .

Suppose, we are given a known, fixed value for α . Compute the maximum likelihood estimator for λ .