

Predicting Bank Loan Default

Project Presentation – Data Mining & Machine Learning Nicolò Bacherotti

The problem

Loan default prediction is a crucial task for financial institutions.

Identifying in advance whether a client will default on a loan allows banks to reduce financial risk, optimize credit approval processes, and minimize losses.

This project aims to build a classification pipeline that can accurately predict loan default probability based on both numerical and categorical borrower information.

This type of analysis plays a central role in **risk management strategies**, making loan default prediction a key component of modern banking and financial analytics.

Dataset Overview

45,000 loan applications with **14** columns, providing detailed information on a large population of loan applicants. No missing, null, or NaN values.

Goal: Binary Classification for loan default prediction.

Features overview:

Personal Information:

person_age
person_gender
person_education
person_income
person_emp_exp
person_home_ownership

Loan Details:

loan_amnt loan_intent loan_int_rate loan_percent_income

Credit & Loan History:

cb_person_cred_hist_length credit_score previous_loan_defaults_on_file

Target:

loan_status (0 = repaid, 1 = default)

Imbalanced dataset

Dataset Overview

Weak correlations across numerical variables and limited correlation with the target variable

Low association among categorical variables

Feature Engineering & Pipeline Build

Feature Engineering:

- Person_age_bin
- Income to loan
- Emp_exp_x_age
- Loan over score
- Loan_int_rate_bin

Feature Deletion:

 previous_loan_defaults_ on_file

Applied Log-Transform for skewed features:

- Detects heavily skewed numeric features (|skew|> 1) on the train set
- Applies loglp(x) to reduce skewness.

In one case a pipeline without Smotenc as intermediary is used.

Initial Model Selection

Five models evaluated in two pipelines: Baseline vs with SMOTENC:

- Random Forest
- LightGBM
- Logistic Regression
- XGBoost
- CatBoost

XGBoost (0.859) and **CatBoost** (0.861) are the top performers.

Smotenc was retained in the pipeline of the subsequent evaluations, leading in small but consistent Fl_macro gains for the best models.

Grid Search Evauation

XGBoost params:

- n_estimators: [200, 400, 600],
 - max_depth: [3, 5, 7, 10]
- learning_rate: [0.01, 0.05, 0.1]
 - subsample: [0.6, 0.8, 1.0]

Best XGBoost params:

n_estimators: 600, max_depth: 5, learning_rate: 0.1, subsample: 0.8

CatBoost params:

- iterations: [200, 400, 600]
 - depth: [4, 6, 8, 10]
- learning_rate: [0.01, 0.05, 0.1]
 - I2_leaf_reg: [1, 3, 5, 7]

Best CatBoost params:

iterations: 600, depth: 6, learning_rate: 0.1, 12_leaf_reg: 1

Each model was then retrained with the optimal settings and assessed performance on the test set

Models Evaluation

	Accuracy	Precision	Recall	F1_score	F1_macro	ROC_AUC
XGBoost	0.916	0.886	0.713	0.790	0.869	0.935
CatBoost	0.914	0.899	0.690	0.781	0.863	0.933

Feature Importance

Comparison with the State of the Art

Following the reported studies, i decided to analyze my dataset also with pipelines containing

One-Hot Encoding and SMOTE.

The models tested in the cross-validation were:

- Random Forest (F1_macro=0.850)
- XGBoost (F1_macro=0.863)
- CatBoost (Fl_macro=0.864)

A grid search was carried out on the 2 best models:

Comparison with state of art

Models Evaluation

	Accuracy	Precision	Recall	F1_score	F1_macro	ROC_AUC
XGBoost	0.920	0.909	0.713	0.799	0.875	0.939
CatBoost	0.915	0.905	0.691	0.784	0.865	0.935

Comparison of the best model under the two configurations

XGBoost appears robust under both strategies; Configuration with SMOTE has slightly better performances in almost all the metrics.

User Interface

References

Dataset: https://www.kaggle.com/datasets/udaymalviya/bank-loan-data?select=loan_data.csv

Monje, L., Carrasco, R.A. & Sánchez-Montañés, M. Machine Learning XAI for Early Loan Default Prediction. *Comput Econ* (2025).

https://doi.org/10.1007/s10614-025-10962-9

Fekadu, R., Getachew, A., Tadele, Y., Ali, N., & Goytom, I. (2022). Machine Learning Models Evaluation and Feature Importance Analysis on NPL Dataset. arXiv:2209.09638.

https://arxiv.org/abs/2209.09638