Reference material 1

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出類公開番号 特開2003-3024 (P2003-3024A)

(43)公開日 平成15年1月8日(2003.1.8)

審査請求 未請求 請求項の数5 OL (全 9 頁)

(21) 州駅部号 特額201 - 185582(P2001 - 185582) (71) 出副人 000183233 住文ゴム工業株式会社 「大工会社 工業株式会社 「大工会社 工業株式会社 「大工会社 「大工会社

最終頁に続く

(54) [発明の名称] 高比重EPDM組成物

(57)【要約】

【課題】 高比重 B P D M 組成物において、比重が高く 飲らかい上に、ブルーミングを抑制し、強度、耐候性、 耐熱耐加器特性の向上を図る。 【解決手段】 B P D M を主成分とするゴム組成物に て、ゴム100 体積%に対して、解粉えあるいは酸化第 1 前端末を30 体積%以上150 体積%以下の割合で含 有させ、比重が3、0以上60 0以下とする。 戦期は64重報以上66重電%以下とする。エチレン 電を上記範囲としているのは、58重性朱末満の FPD Mではより強度が低くなるため、網別未あるいは機化第 1解的なを分散させた後に、シートとして成形する場合 に、その成形性が低下することに因る。一方、80重量 %よりも大きい FPDMでは、より硬くなるために開粉 未あるいは酸化粧 1 網粉末の男一な指会分散がより甕し くなり、薄いシート等に広野さ場合に、その成形が 低下しやすくなるとともに、成形後の高比重材料はより 硬くなりスポーツ用品等としての使用物に人体への当た 10 りがきつくなりあいたかである。

【0022】EPDMの125℃におけるムーニー粘 度: M L ... (125℃) は50以上170以下の節 囲とし、好ましくは100以上170以下、さらに好ま しくは150以上165以下とする。なお、ここで、ム ーニー粘度とは、JIS K6300に規定された方法 によって測定され、粘度を表す指標として用いられる。 MLiii において、MはムーニーのM、Lはローター 形状のし、(1+4)は予熱時間の1分とローターの回 転時間の4分を意味している。上記範囲としているの は、125℃でのムーニー粘度が50未満であるEPD Mでは、強度がより小さくなるために組紛末あるいは酸 化第1 飼粉末を分散させた後の成形性が低下し易くなる からである。 一方、125℃でのムーニー粘度が170 よりも大きいEPDMでは、より硬くなるために銅粉末 あるいは酸化第Ⅰ銅粉末の均一な混合分散がより難しく なり薄いシート状に成形する際の成形性が低下しやすく なるとともに、成形後の高比重材料はより硬くなり人体 への当たりがきつくなり易いことに因る。 EPDMの分 子量の大きさは、ムーニー粘度の大きさである程度判断 可能であり、上記ムーニー粘度が大きいほど、分子量は 大きくなり、上記ムーニー粘度が50の場合、分子量は 30万~40万、上記ムーニー粘度が170の場合、分 子量は約60万となる。

【0023】上記ゴム100重量部に対して、軟化剤を 150重量部以下、好ましくは50重量部以上100重 量部以下の割合で添加している

このように、軟化剤を配合することにより、柔軟性を向上することができ、人体と接触する可能性のある製品等に使用される場合に、特に有用である。上記範囲として 40 いるのは、ゴム100重量がよりして、軟化剤が150重量がより少ないと、加工がしにくくなる場合があるためである。一方、軟化剤が150重量がよりも多くなると、影像性試験等においてブルーミングが生じ易いためである。

[0024] 上版版化劇として川いるオイルは特定勘定 したか坊、EPDMと指摘性の高いパラフィン系オイル やナフテン系オイルが好ましい。特にパラフィン系オイ ルは得定性が小さいため助り扱いやすく定量した機を確 実に添加することができる。ご好ましい。その他、例、5の または添しましまと様できる。

ば芳香族系等の監物油や炭化水素系オリゴマーからなる それ自体公知の合成油、またはプロセスオイルを用いる ととができる。合成油としては、別スは、α - オレフィ ンとのオリゴマー、ブテンのオリゴマー、エチレンと α - オレフィンとの非品質オリゴマーが好ましい。

【0025】 EPDMとは、ゴム成分のみからなる非油 版タイプのEPDMと、ゴム成分と共にオイルを含む油 最タイプのEPDMとが存在するが、いずれのタイプの ものも使用可能である。ただし、油展タイプのEPDM 中のオイルの溶加重量は、軟化剤の溶加重量(オイル 湯)として過る。

【0026】また、未発明の高比重 F P D M組成物において、J I S K − 6253 (記錄機デュロメータタイ 入り に規定された方法によって測定された上記高比重 E P D M組成物の加酸線の表面原度は 9 5以下であるの が穿ましい。上記度度が 9 5よりも大きいと、硬すぎ て、他の離社との一体成形が難しくなるためである。な 表 他の要求特性を満たせば、上記度度の値は小さいほ / とし、

20 【0027】さらに、木が明の高比重FPDM担成物において、その可強強度は1、5MPa以上とするのが望ましい。これは、引援機関が1、5MPa以上とりよりよいと、成形時や使用時にひび割れや破壊が生じ易くなるためである。なお、他の要求発性を満たせば1、5MPa以上で本おけまりまり手の。

【0028】EPDMは主鉄が蛇和炭化水素からなり、 主類に二重結合を含まないため、高濃度オンン雰囲気、 光線照射等の環境下に長時間悪されても、分子頭切断 が起こりにくく、耐候性を高めることができる。なお、 30 EPDMには、ジエン成分の相類等が異なるものがある。

が、種類は特に限定されるものではない。 (0020)本時の高近電 PDM組成物中のゴム成 分は、上配したように耐候性の点より、EPDM100 %であることが好ましいが、EPDM以外に、他のゴム 成分を1種以上2個以上前空は今ることも可能へある。EPDMと他のゴム成分とをブレンドする場合、高 比重EPDMと他のゴム成分とをブレンドする場合、高 比重EPDM組成時中、全工人成分に占めるEPDMの 財職は、80単析以上、さらには90重保以上であ

ることが好ましい。なお、EPDMには、ジエン成分 0 (第3成分)の種類等が異なるものがあるが、種類は特 に限定されるものではない。

Reference material 2

エチレンプロビレンゴム(EPM・EPDM)の特性一覧と用途

內部

本社 〒111-0041 東京都台東区元浅草3-14-2 TEL: 03-5828-7341 FAX: 03-5828-7346 MAIL: info@sk-co-ltd.co

置シ

身の

シリニ

シリニ

シリニ

四ゴ.

コンこ

トラン

押出.

射出. 注型.

HOME

会社情報

シリコーン

製品製内

お問い合わせ

■ゴムの主な材質 EPDM

エチレン・プロピレンゴム(EPM・EPDM)

主な特徴

耐老化、耐オゾン性、極性液体に対する抵抗性、電気的性質 が良い。

主な用途

窓わくゴム、スチームホース、自動車用部品、電線 ケーブル、ゴムの引布など

耐油性に乏しい

弱点があります。

 EPM・EPDMゴムの特性一見と用途
 エチレン・プロピレンゴム(EPM・EPDM)

 イムの種類(ASTMICよる略称)
 エチレン・プロピレン・共産合体(三元共産合体)

 上生な特数
 原老化性、耐オリン性、極性液体に対する抵抗性、電気的性質が良い

 ルニー、粘度ML・1+4 (1007c)
 40~100

	主な特徴		耐老化性、耐オソン性、極性液体に対す る抵抗性、電気的性質が良い	
	純ゴムの性質	比重	0.86~0.87	
		ムーニー粘度ML1+4 (100℃)	40~100	
		可能なJIS硬き範囲	30~90	_
		引張強さ(kgf/cm²)	50~200	
		伸び(%)	800~100	
		反発弾性	0	
		引裂き強さ	Δ	
		耐摩耗性	0	
		退屈曲き裂性	0	
		使用可能温度範囲 (°C)	~60~150	
		耐老化性	◎	
		耐光性	0	
		耐オゾン性	o	
		耐炎性	×	
		電気絶縁性(Ω·cm)体 積固有抵抗	10 ¹² ~10 ¹⁶	

ACIV IR(え SBR ゴム) BR(CSIV U(ウ T(多 (主要 [Reference material 1]

(A)

A value of the molecular weight of EPDM can be estimated from a value of Mooney viscosity. As the Mooney viscosity increases, the molecular weight increases. If Mooney viscosity is 50, then the molecular weight becomes 300,000-400,000. If the Mooney viscosity are 170, then the molecular weight becomes about 600,000.

(B)

On the other hand, in EPDM whose Mooney viscosity at 125 degree C is higher than 170, homogeneous mixture dispersion of the copper powder or copper (I) oxide powder becomes more difficult, and the formability tends to decrease when forming to a thin sheet and a high specific gravity material tends to become harder as well, therefore becomes tight to a human body due to hardness of the EPDM.

[Reference material 2]

Characteristic list and usage of rubber

Type of rubb	er (abbreviation by	ethylene-propylene rubber (EPM, EPDM)
Chemical str	ucture	ethylene propylene and copolymer (terpolymer)
Main feature		aging resistance, ozone resistance, resistance to polar liquid and excellent electrical property
Character of pure rubber	Specific gravity	0.86-0.87
	Mooney viscosity ML ₁₊₄ (100 degree C)	40-100