Writing with NAO

Adrien Bardes, Marius Dufraisse, Pierre Guetschel, Mengda Li January 22, 2019

Goal of our project

• We want to make our robot NAO write!

-]

Methodology

Inverse kinematics

Approching the goal trajectory

We approach this goal trajectory by solving a sequence of optimization problems: minimizing the errors between the goal trajectory and the real trajectory.

[2]

An example of trajectory

and its interpolation

Modeling the coordinate system i

The robot's arm is a 6-joint system.

We find the position of endeffector (the pen) by composing a sequence of *change of coordinates* matrix.

Modeling the coordinate system ii

[4]

Finding the next "angles step" by computing Jacobian i

Inverse Kinematics - Jacobian

The *Jacobian* is the matrix relating the two: describing how each coordinate changes with respect to each joint angle in our system

Finding the next "angles step" by computing the jacobian ii

Inverse Kinematics - Jacobian

Finding the next "angles step" by computing the jacobian iii

Finding the next "angles step" by computing the jacobian iv

Algorithm 1 Numerical Inverse Kinematics

1:	$\mathbf{q} \leftarrow \mathbf{q}^0$	⊳ Start configuration
2:	while $\ \boldsymbol{\chi}_{e}^{*}-\boldsymbol{\chi}_{e}\left(\mathbf{q}\right)\ >tol$ do	b While the solution is not reached
3:	$\mathbf{J}_{eA} \leftarrow \mathbf{J}_{eA}\left(\mathbf{q}\right) = \frac{\partial \mathbf{\chi}_e}{\partial \mathbf{q}}\left(\mathbf{q}\right)$	
4:	$\mathbf{J}_{eA}^+ \leftarrow (\mathbf{J}_{eA})^+$	
5:	$\Delta \chi_e \leftarrow \chi_e^* - \chi_e\left(\mathbf{q}\right)$	⊳ Find the end-effector configuration error vector
6:	$\mathbf{q} \leftarrow \mathbf{q} + \mathbf{J}_{eA}^{+} \Delta \boldsymbol{\chi}_{e}$	Update the generalized coordinates
7: end while [6]		

Our results

• With the previous trajectory.

Influence of λ

• With the previous trajectory.

Bibliography i

- NAO robot illustrating a TechCrunch article.
 - https://www.robotlab.com/blog/ nao-robot-illustrating-a-techcrunch-article
- Planification et suivi de trajectoires. http://cas.ensmp.fr/~petit/smai/
- Interfacing of Kinect Motion Sensor and NAO Humanoid
 Robot for Imitation Learning.
 https://www.youngscientistjournal.org/article/
 interfacing-of-kinect-motion-sensor-and-nao-humanoid-ro
- Formal Kinematic Analysis of a General 6R Manipulator Using the Screw Theory

Bibliography ii

- Matt Boggus. Character Animation Forward and Inverse
 Kinematics. https://slideplayer.com/slide/12902351/
- Marco Hutter, Roland Siegwart, and Thomas Stastny. Lecture «Robot Dynamics»: Summary. https:

```
//www.ethz.ch/content/dam/ethz/special-interest/
mavt/robotics-n-intelligent-systems/rsl-dam/
documents/RobotDynamics2017/14-summary.pdf
```