Alphabetical Code For Calculating Toxicity of Your Batch

By Craig Paardekooper

This system only applies to Pfizer, since we only have batch sizes (number of doses administered) for Pfizer.

All the Pfizer batch codes were ordered alphabetically. For each Pfizer batch the number of adverse reports in VAERS was divided by the size of the batch in doses, in order to get adverse reactions per dose.

Here are the results

code	adr	size	tox	ordinal
Eh9899	2069	810225	25.53612	1
Ej1685	1679	773175	21.71565	2
EJ1686	1587	620100	25.59265	3
EK4176	1213	322725	37.58618	4
Ek5730	2512	875550	28.69054	5
EK9231	3443	1089075	31.61398	6
EL0140	1235	726375	17.00224	7
EL0142	1790	632775	28.2881	8
EL1283	2262	1159275	19.5122	9
EL1284	2300	1010295	22.76563	10
El324?	1	1121250	0.008919	11
EL3246	2164	995475	21.73837	12
EL3247	2506	1077375	23.26024	13
EL3248	1930	993525	19.42578	14
EL3249	1987	1121250	17.72129	15
EL3302	1475	1083225	13.61675	16
EL8982	1917	1274325	15.04326	17
EL9261	1782	1210950	14.71572	18
EL9262	1929	1303575	14.79777	19
EL9263	666	568425	11.71659	20
EL9263*	2	568425	0.035185	21
EL9264	1423	1269450	11.20958	22
EL9265	1186	961350	12.33682	23
EL9266	1132	1219725	9.280781	24
EL9267	1104	992550	11.12287	25
EL9269	1438	1374750	10.46008	26
EM9809	1173	1101750	10.6467	27
EM9810	1110	1014975	10.93623	28
EN????	1	544050	0.018381	29
EN?208	1	3149640	0.003175	30
EN5318	2619	2644200	9.904697	31
EN6198	2253	2589210	8.701496	32
EN6199	2129	2696850	7.894395	33
EN6200	2337	2388555	9.784158	34
EN6201	2686	2620800	10.24878	35
EN6202	2279	2615145	8.714622	36
EN6203	2069	2218125	9.327698	37
EN6204	2057	2697240	7.626314	38
EN6205	2626	3224130	8.144833	39

EN6206	2224	2960100	7.51326	40
EN6207	2436	3334500	7.305443	41
EN6208	2537	3149640	8.054889	42
EN9581	702	544050	12.90323	43
EP6955	2460	3443310	7.144288	44
Ep7533	1996	2935530	6.799454	45
ep7534	2106	2930850	7.185629	46
ER????	1	2764710	0.003617	47
ER2613	3177	2764710	11.49126	48
ER8727	2153	2950740	7.296475	49
ER8729	2213	3216330	6.880513	50
ER8730	2023	2896920	6.983279	51
ER8731	1653	3140280	5.263862	52
er8732	2554	3180060	8.031295	53
ER8733	2562	3335670	7.680616	54
Er8733**	1	3335670	0.002998	55
ER8734	1964	3017430	6.50885	56
ER8735	1876	2877030	6.520613	57
ER8736	1519	3140280	4.837148	58
ER8737	1941	3081780	6.298308	59
EW0150	2322	3539250	6.560712	60
EW0151	2248	2606760	8.623732	61
ew0153	1783	2808000	6.349715	62
Ew0158	1724	2645370	6.517047	63
EW0161	1579	3100500	5.092727	64
EW0162	1832	3060720	5.98552	65
EW0164	1753	2638350	6.644304	66
EW0165	277	611910	4.526809	67
ew0167	1415	3079440	4.594991	68
EW0168	1222	2946060	4.147913	69
EW0169	1645	2652390	6.201954	70
EW0170	1403	2953080	4.750972	71
EW0171	1706	3545100	4.812276	72
EW0172	2019	3182400	6.344268	73
EW0173	1806	3140280	5.75108	74
EW0175	1357	2638350	5.143366	75
EW0176	1417	3022110	4.688777	76
EW0177	1486	3189420	4.659154	77
EW0178	1267	2822040	4.48966	78
EW0179	1692	3837600	4.409006	79
EW0180	1417	3078270	4.603235	80
EW0181	1327	2984670	4.446053	81
ew0182	1330	2885220	4.6097	82
EW0183	1243	2965950	4.1909	83
EW0185	1437	3492450	4.11459	84
EW0186	1311	3033810	4.321299	85
EW0187	1442	3065400	4.704117	86
ew0191	1380	3281850	4.204945	87
EW0196	1384	2922660	4.735412	88
EW0198	1181	2373930	4.974873	89
ew0202	257	650520	3.950686	90
,	_3,			50

EW0217	1271	2857140	4.448504	91
EY0584	374	413010	9.055471	92
FA6780	1437	3032550	4.738586	93
FA7484	883	2182500	4.045819	94
FA7485	1187	2993850	3.964794	95
FC3180	1195	3046950	3.921955	96
FC3181	1125	3129750	3.594536	97
FC3182	991	3254400	3.045108	98
FC3183	1191	3179250	3.746167	99
FC3184	1374	3209400	4.281174	100
FD0809	639	3357750	1.90306	101
FD0810	68	542400	1.253687	102
FD7218	180	2720250	0.661704	103
FD7220	1	10530	0.949668	104
FD8448	955	2771550	3.445725	105
FE3590	851	3309930	2.571051	106
FE3592	897	3085290	2.907344	107
FE3594	292	3548610	0.822857	108
FF2587	954	2889900	3.301152	109
FF2588	784	3015090	2.600254	110
FF2589	829	3045510	2.72204	111
ff2590	976	3213990	3.036724	112
FF2593	764	3338010	2.288789	113
FF8839	927	2783430	3.330423	114
FF8841	1230	2961270	4.153623	115
fg3527	654	3287700	1.989233	116
FH8020	1325	2868840	4.618591	117
FH8027	570	2992860	1.904533	118
FH8028	560	2944890	1.901599	119
fh8030	501	2996370	1.672023	120
fj1611	216	2757690	0.783264	121
FJ1614	1	2808000	0.003561	122
FJ1620	514	3252600	1.580274	123
FJ8757	342	3368430	1.01531	124
FJ8762	402	2989350	1.344774	125
FK5127	2006	10556600	1.900233	126
FK5618	1095	8891300	1.231541	127
FL0007	331	11777900	0.281035	128
fl3197	134	2928510	0.457571	129
fl3198	40	3086460	0.129598	130
fl3209	2	2812680	0.007111	131
FL8094	5	5447200	0.009179	132
FL8095	30	5468800	0.054857	133

This dataset was reduced to 127 records after removing records with batch codes containing \ast or ?

Remember, that this is simply an ordering by alphabet from A to Z for the first column.

So I then plotted the fourth column on a chart to see how the adverse reactions per dose varied. Here is the result –

The chart shows a very clear logarithmic reduction in toxicity over the entire series of batches listed opposite.

How to Use This Chart to calculate the Toxicity of Your Batch

This will give you an idea of the relative toxicity of your batch compared to others.

- 1. If your jab was a Pfizer jab, then look at the first two alphabet letters of the batch code. The higher up in the alphabet your code is $(A \rightarrow Z)$, the less toxic it is.
- 2. Find the code in the table printed above, and you can read off the adverse reactions per 10,000 doses.

Using Machine Learning to Get a Read-out on Toxicity

Random Forest Regression

Accuracy = 86.46% (tested against 127 random samples)

Dataset = 127 batches

Predicted Adverse Events per 10,000 Doses

```
Ordinal Position = 0
                                        Toxicity = 25.2 Adverse reactions per 10,000 Doses
                                        Toxicity = 25.2 Adverse reactions per 10,000 Doses
Ordinal Position = 1
                                    Toxicity = 23.67 Adverse reactions per 10,000 Doses
Ordinal Position = 2
Ordinal Position = 3 Toxicity = 25.6 Adverse reactions per 10,000 Doses
Ordinal Position = 4 Toxicity = 34.09 Adverse reactions per 10,000 Doses
Ordinal Position = 4

Ordinal Position = 4

Ordinal Position = 5

Ordinal Position = 5

Ordinal Position = 6

Ordinal Position = 6

Ordinal Position = 6

Ordinal Position = 7

Ordinal Position = 7

Ordinal Position = 8

Ordinal Position = 8

Ordinal Position = 9

Ordinal Position = 9

Ordinal Position = 10

Ordinal Position = 10

Ordinal Position = 11

Ordicity = 22.53

Ordinal Position = 11

Ordicity = 22.53

Ordinal Position = 11

Ordicity = 22.26

Ordinal Position = 12

Ordinal Position = 12

Ordinal Position = 13

Ordinal Position = 14

Ordinal Position = 15

Ordinal Position = 15

Ordinal Position = 16

Ordinal Position = 17

Ordinal Position = 16

Ordinal Position = 17

Ordinal Position = 16

Ordinal Position = 17

Ordinal Position = 17

Ordinal Position = 17

Ordinal Position = 18

Ordinal Position = 19

Ordinal Position = 20

Ordinal Position = 20

Ordinal Position = 21

Ordinal Position = 21

Ordinal Position = 22

Ordinal Position = 23

Ordinal Position = 24

Ordinal Position = 25

Ordinal Position = 27

Ordinal Position = 28

Ordinal Position = 29

Ordinal Position = 20

Ordinal Position = 20

Ordinal Position = 20

Ordinal Position = 21

Ordinal Position = 21

Ordicity = 10.00

Ordinal Position = 20

Ordinal Position = 21

Ordicity = 10.00

Ordicity = 10.0
Ordinal Position = 23 Toxicity = 10.02 Adverse reactions per 10,000 Doses
Ordinal Position = 24 Toxicity = 10.46 Adverse reactions per 10,000 Doses
Ordinal Position = 25 Toxicity = 10.61 Adverse reactions per 10,000 Doses
Ordinal Position = 26 Toxicity = 10.79 Adverse reactions per 10,000 Doses
Ordinal Position = 27 Toxicity = 10.14 Adverse reactions per 10,000 Doses
Ordinal Position = 28 Toxicity = 8.94 Adverse reactions per 10,000 Doses
Ordinal Position = 29 Toxicity = 8.33 Adverse reactions per 10,000 Doses
Ordinal Position = 30 Toxicity = 9.29 Adverse reactions per 10,000 Doses
Ordinal Position = 31 Toxicity = 9.85 Adverse reactions per 10,000 Doses
Ordinal Position = 32 Toxicity = 9.29 Adverse reactions per 10,000 Doses
Ordinal Position = 33 Toxicity = 9.21 Adverse reactions per 10,000 Doses
Ordinal Position = 34 Toxicity = 8.97 Adverse reactions per 10,000 Doses
Ordinal Position = 35 Toxicity = 8.06 Adverse reactions per 10,000 Doses
Ordinal Position = 36 Toxicity = 7.71 Adverse reactions per 10,000 Doses
Ordinal Position = 37 Toxicity = 7.59 Adverse reactions per 10,000 Doses
Ordinal Position = 38 Toxicity = 8.37 Adverse reactions per 10,000 Doses
Ordinal Position = 39 Toxicity = 11.16 Adverse reactions per 10,000 Doses
Ordinal Position = 40 Toxicity = 8.47 Adverse reactions per 10,000 Doses
Ordinal Position = 41 Toxicity = 7.53 Adverse reactions per 10,000 Doses
Ordinal Position = 42 Toxicity = 8.33 Adverse reactions per 10,000 Doses
Ordinal Position = 43 Toxicity = 10.02 Adverse reactions per 10,000 Doses
Ordinal Position = 44 Toxicity = 8.32 Adverse reactions per 10,000 Doses
Ordinal Position = 45 Toxicity = 7.57 Adverse reactions per 10,000 Doses
Ordinal Position = 46 Toxicity = 7.16 Adverse reactions per 10,000 Doses
Ordinal Position = 47 Toxicity = 7.75 Adverse reactions per 10,000 Doses
Ordinal Position = 48 Toxicity = 7.84 Adverse reactions per 10,000 Doses
Ordinal Position = 49 Toxicity = 7.67 Adverse reactions per 10,000 Doses
Ordinal Position = 50 Toxicity = 6.82 Adverse reactions per 10,000 Doses
Ordinal Position = 51 Toxicity = 6.4 Adverse reactions per 10,000 Doses
Ordinal Position = 52 Toxicity = 5.47 Adverse reactions per 10,000 Doses
Ordinal Position = 53 Toxicity = 6.03 Adverse reactions per 10,000 Doses
Ordinal Position = 54 Toxicity = 6.71 Adverse reactions per 10,000 Doses
Ordinal Position = 55 Toxicity = 7.73 Adverse reactions per 10,000 Doses
Ordinal Position = 56 Toxicity = 6.68 Adverse reactions per 10,000 Doses
Ordinal Position = 57 Toxicity = 6.1 Adverse reactions per 10,000 Doses
Ordinal Position = 58 Toxicity = 5.46 Adverse reactions per 10,000 Doses
Ordinal Position = 59 Toxicity = 5.71 Adverse reactions per 10,000 Doses
Ordinal Position = 60 Toxicity = 6.26 Adverse reactions per 10,000 Doses
Ordinal Position = 61 Toxicity = 5.07 Adverse reactions per 10,000 Doses
Ordinal Position = 62 Toxicity = 4.83 Adverse reactions per 10,000 Doses Ordinal Position = 63 Toxicity = 5.04 Adverse reactions per 10,000 Doses Ordinal Position = 64 Toxicity = 5.83 Adverse reactions per 10,000 Doses
```

```
Ordinal Position = 65 Toxicity = 5.14 Adverse reactions per 10,000 Doses
 Ordinal Position = 66 Toxicity = 5.02 Adverse reactions per 10,000 Doses
 Ordinal Position = 67 Toxicity = 5.88 Adverse reactions per 10,000 Doses
 Ordinal Position = 68 Toxicity = 5.82 Adverse reactions per 10,000 Doses
 Ordinal Position = 69 Toxicity = 5.25 Adverse reactions per 10,000 Doses
 Ordinal Position = 70 Toxicity = 4.91 Adverse reactions per 10,000 Doses
 Ordinal Position = 71 Toxicity = 4.84 Adverse reactions per 10,000 Doses
 Ordinal Position = 72 Toxicity = 4.56 Adverse reactions per 10,000 Doses
 Ordinal Position = 73 Toxicity = 4.52 Adverse reactions per 10,000 Doses
 Ordinal Position = 74 Toxicity = 4.54 Adverse reactions per 10,000 Doses
 Ordinal Position = 75 Toxicity = 4.56 Adverse reactions per 10,000 Doses
 Ordinal Position = 76 Toxicity = 4.49 Adverse reactions per 10,000 Doses
Ordinal Position = 77 Toxicity = 4.28 Adverse reactions per 10,000 Doses
Ordinal Position = 78 Toxicity = 4.19 Adverse reactions per 10,000 Doses
Ordinal Position = 79 Toxicity = 4.31 Adverse reactions per 10,000 Doses
Ordinal Position = 80 Toxicity = 4.51 Adverse reactions per 10,000 Doses
Ordinal Position = 81 Toxicity = 4.34 Adverse reactions per 10,000 Doses
Ordinal Position = 82 Toxicity = 4.57 Adverse reactions per 10,000 Doses
Ordinal Position = 83 Toxicity = 4.51 Adverse reactions per 10,000 Doses
Ordinal Position = 84 Toxicity = 4.23 Adverse reactions per 10,000 Doses
 Ordinal Position = 85 Toxicity = 4.39 Adverse reactions per 10,000 Doses
 Ordinal Position = 86 Toxicity = 4.46 Adverse reactions per 10,000 Doses
 Ordinal Position = 87 Toxicity = 4.48 Adverse reactions per 10,000 Doses
 Ordinal Position = 88 Toxicity = 4.18 Adverse reactions per 10,000 Doses
 Ordinal Position = 89 Toxicity = 3.98 Adverse reactions per 10,000 Doses
 Ordinal Position = 90 Toxicity = 3.91 Adverse reactions per 10,000 Doses
 Ordinal Position = 91 Toxicity = 3.63 Adverse reactions per 10,000 Doses
 Ordinal Position = 92 Toxicity = 3.3 Adverse reactions per 10,000 Doses
Ordinal Position = 93 Toxicity = 3.61 Adverse reactions per 10,000 Doses Ordinal Position = 94 Toxicity = 3.99 Adverse reactions per 10,000 Doses Ordinal Position = 95 Toxicity = 2.42 Adverse reactions per 10,000 Doses Ordinal Position = 96 Toxicity = 1.96 Adverse reactions per 10,000 Doses Ordinal Position = 97 Toxicity = 1.92 Adverse reactions per 10,000 Doses Ordinal Position = 98 Toxicity = 3.05 Adverse reactions per 10,000 Doses Ordinal Position = 99 Toxicity = 3.05 Adverse reactions per 10,000 Doses Ordinal Position = 100 Toxicity = 2.98 Adverse reactions per 10,000 Doses Ordinal Position = 101 Toxicity = 3.14 Adverse reactions per 10,000 Doses Ordinal Position = 102 Toxicity = 3.21 Adverse reactions per 10,000 Doses Ordinal Position = 103 Toxicity = 2.93 Adverse reactions per 10,000 Doses Ordinal Position = 104 Toxicity = 2.93 Adverse reactions per 10,000 Doses Ordinal Position = 105 Toxicity = 2.98 Adverse reactions per 10,000 Doses Ordinal Position = 105 Toxicity = 2.93 Adverse reactions per 10,000 Doses Ordinal Position = 105 Toxicity = 2.98 Adverse reactions per 10,000 Doses Ordinal Position = 105 Toxicity = 3.09 Adverse reactions per 10,000 Doses Ordinal Position = 107 Toxicity = 3.19 Adverse reactions per 10,000 Doses Ordinal Position = 108 Toxicity = 3.52 Adverse reactions per 10,000 Doses Ordinal Position = 109 Toxicity = 3.82 Adverse reactions per 10,000 Doses Ordinal Position = 110 Toxicity = 3.82 Adverse reactions per 10,000 Doses Ordinal Position = 110 Toxicity = 3.64 Adverse reactions per 10,000 Doses Ordinal Position = 111 Toxicity = 3.64 Adverse reactions per 10,000 Doses Ordinal Position = 111 Toxicity = 2.56 Adverse reactions per 10,000 Doses Ordinal Position = 112 Toxicity = 2.56 Adverse reactions per 10,000 Doses Ordinal Position = 112 Toxicity = 2.56 Adverse reactions per 10,000 Doses Ordinal Position = 112 Toxicity = 2.56 Adverse reactions per 10,000 Doses Ordinal Position = 112 Toxicity = 2.56 Adverse reactions per 10,000 Doses Ordinal Position = 110 Toxicity = 3.64 Adverse reaction
Ordinal Position = 93 Toxicity = 3.61 Adverse reactions per 10,000 Doses
Ordinal Position = 112 Toxicity = 2.56 Adverse reactions per 10,000 Doses
Ordinal Position = 113 Toxicity = 1.95 Adverse reactions per 10,000 Doses
Ordinal Position = 114 Toxicity = 1.64 Adverse reactions per 10,000 Doses
Ordinal Position = 115 Toxicity = 0.96 Adverse reactions per 10,000 Doses
 Ordinal Position = 116 Toxicity = 0.39 Adverse reactions per 10,000 Doses
 Ordinal Position = 117 Toxicity = 1.16 Adverse reactions per 10,000 Doses
 Ordinal Position = 118 Toxicity = 1.12 Adverse reactions per 10,000 Doses
 Ordinal Position = 119 Toxicity = 1.24 Adverse reactions per 10,000 Doses
 Ordinal Position = 120 Toxicity = 1.47 Adverse reactions per 10,000 Doses
 Ordinal Position = 121 Toxicity = 1.26 Adverse reactions per 10,000 Doses
 Ordinal Position = 122 Toxicity = 0.49 Adverse reactions per 10,000 Doses
 Ordinal Position = 123 Toxicity = 0.36 Adverse reactions per 10,000 Doses
 Ordinal Position = 124 Toxicity = 0.19 Adverse reactions per 10,000 Doses
 Ordinal Position = 125 Toxicity = 0.06 Adverse reactions per 10,000 Doses
 Ordinal Position = 126 Toxicity = 0.03 Adverse reactions per 10,000
```

Discussion

What Can Explain This?

The toxicities do not step down, but rather they appear to decline continuously over the whole of 2021. If this is what happened, then it would require the constant reformulation of every new batch in tiny incremental steps. However, this would be extremely expensive and laborious for the government to do. It also does not make any logical sense, because if reduction of toxicity was the aim, then I would expect them to drop the toxicity in abrupt, discrete steps which would require far less frequent adjustment of ingredients.

So, what is going on?

The curve looks very much like a decay curve – with a half-life.

It's possible that the graph depicts a continuous decay of an active ingredient. In other words, the contents of all batches were manufactured in 2020 and decayed continually from that time on. The batch codes merely indicate the dates when various portions of this stock were distributed. In this case the decay will have a half-life with which we should be able to predict the number of adverse reactions in 2022. The half-life may also help us identify the toxin being used.

Conclusion

As you can see from the results above, there is a steady and constant decline in toxicity. It is unlikely that the manufacturers adjusted the vaccine ingredients or dosage to produce each of these incremental changes. They would have had to change the ingredients or dosages 120 times during 2021?

Rather, it is more likely that all batches were manufactured in 2020, and that the ingredient responsible for adverse reactions progressively decayed over time.

Further Analysis Needed

I will have to repeat this for looking at SERIOUS reactions – those with an outcome of death, disability, ER, hospitalization.

I will also have to combine this chart with one for 2022 batches. Then people will be able to see the toxicity of every batch compared to the others.

If the decay is a function of time from a hypothetical "ground-zero" in 2020, then an even clearer graph should be obtained when Y is plotted against time of distribution.