Topologische Räume und Mannigfaltigkeiten

21. Mai 2021

Euklidscher Räume

Innere, Äussere, Rand

Es sei ein Punkt $\underline{x} \in \mathbb{R}^n$ mit einer offenen ε -Umgebungen B_{ε} mit $\underline{x} \in B_{\varepsilon}$ und $\varepsilon > 0$ gegeben. Weiterhin sei eine Teilmenge $A \subset \mathbb{R}^n$ gegeben.

Dann muss für jeden Punkt \underline{x} einer der folgenden drei Fälle zutreffen

- 1. Es gibt ein B_{ε} mit $B_{\varepsilon} \subset A$ oder äquivalent $\exists B_{\varepsilon} \mid B_{\varepsilon} \subset A$
- 2. Es gibt ein B_{ε} mit $B_{\varepsilon} \subset \mathbb{R}^n A$ oder äquivalent $\exists B_{\varepsilon} \mid B_{\varepsilon} \subset \mathbb{R}^n A$.
- 3. B_{ε} enthält Punkte aus A und Punkte aus $\mathbb{R}^n A$ oder äquivalent $(\exists \underline{b} \in B_{\varepsilon} \mid \underline{b} \in A) \land (\exists \underline{b} \in B_{\varepsilon} \mid \underline{b} \in \mathbb{R}^n A)$.

D.h. die Punkte $\underline{x} \in \mathbb{R}^n$ werden relativ zur Teilmenge A in zueinander disjunkte Punktmengen zerlegt - ein Punkt \underline{x} liegt entweder

- 1. im Inneren von $A: \underline{x} \in int(A)$
- 2. im Komplement von $A: \underline{x} \in \mathbb{R}^n A$
- 3. auf dem Rand von $A: \underline{x} \in \partial A$.

Beispiel 1

Die Menge A besteht aus allen Punkten $A = \mathbb{R}^n$.

• $\forall \underline{x} \in A$ trifft Punkt 1 zu und somit gilt int(A) = A und $\partial A = \emptyset$.

Beispiel 2

Die Menge A besteht nur aus einem Punkt $A = \{\underline{a} \in \mathbb{R}^n\}.$

- $\forall \underline{x} \neq \underline{a}$: trifft Punkt 2 zu also gilt $int(A) = \emptyset$.
- $\underline{x} = \underline{a}$: trifft Punkt 3 zu und somit $\partial A = A$.

Dieses Ergebnis lässt sich auf die Menge abzählbar unendlich vieler voneinander isolierter Punkte verallgemeinern. Beweis durch vollständige Induktion fehlt noch!

Offenheit, Geschlossenheit, Abschluss

Definitionen

Für den Abschluss \overline{A} einer Punktmenge A gilt $\overline{A} = A \cup \partial A$.

Vermutungen

Die Beweise fehlen noch!

- Das Innere jeder Punktmenge ist offen.
- Das Äussere jeder Punktmenge ist offen.
- Die Vereinigung abzählbar vieler offener Punktmengen ist offen.
- Der Rand einer offenen Menge ist leer.
- Der Rand einer Punktmenge ist entweder leer oder geschlossen.
- Das Komplement einer geschlossenen Punktmenge ist offen. ???

Beispiel 1

Die Punktmengen A der Beispiele 1 und 2 sind vermutlich offen. Beweis fehlt noch!

Beispiel 2

Ich betrachte im \mathbb{R}^3 die folgende Teilmenge $M=K\cup L$ mit

$$\begin{split} K &=& \left\{\underline{x} \in \mathbb{R}^3 \mid \|\underline{x}\| = R\right\} \in \mathbb{R}^3 \\ L &=& \left\{\underline{x} \in \mathbb{R}^3 \mid \left(\begin{array}{cc} 0, & 0, & z \end{array}\right), -R \leq z \leq R\right\} \in \mathbb{R}^3. \end{split}$$

Dies ist also die Oberfläche der Kugel mit Radius R vereinigt mit dem offenen Teilintervall -R < z < R der z-Achse. Ich will M zu einem topologischen Raum ausbauen.

Die zugehörige Mannigfaltigkeit sollte dann die die Besonderheit haben, dass sie Karten der Dimension n=1 und n=2 besitzt. Fehlt noch!