

รายงาน

แชทบอท แนะนำวิธีการเลิกสุรา

เสนอ

อาจารย์ ผศ.ดร.อรวรรณ อื่มสมบัติ

จัดทำโดย

1.นายเจตนิพัทธ์ แดงใส รหัสนิสิต 6530200061

2.นายธนธรณ์ จิตศาสน์สวรรค์ รหัสนิสิต 6530200207

3.นายรติพงษ์ วันวิเสส รหัสนิสิต 6530200398

4.นายจักรภพ ศิวะกุลรังสรรค์ รหัสนิสิต 6530200584

5.นางสาวสุภาวดี ม่วงประเสริฐ รหัสนิสิต 6530200860

รายงานนี้เป็นส่วนหนึ่งของวิชา Selected Topic in Computer Science 01418496-65
คณะวิทยาศาสตร์ ศรีราชา สาขาวิทยาการคอมพิวเตอร์
มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตศรรีาชา

ที่มาและความสำคัญ

เหล้า-เบียร์ หรือเครื่องดื่มแอลกอฮอล์ เป็นสิ่งที่ทุกคนทราบกันดีอยู่แล้วว่าเป็นเครื่องดื่มที่ไม่ก่อให้เกิด ผลดีต่อสุขภาพ และยิ่งหากดื่มในปริมาณที่มากอย่างต่อเนื่องทุกวัน จนเกินเลยไปถึงขั้นกลายเป็น "ผู้ติดเหล้า" นอกจากจะเกิดปัญหาที่ส่งผลต่อสุขภาพร่างกายและจิตใจของบุคคลแล้ว ยังส่งผลกระทบต่อครอบครัวและสังคม อีกด้วย เพราะผู้ที่ติดเหล้ามักจะพบปัญหาทางสุขภาพที่ร้ายแรง และนำไปสู่การมีพฤติกรรมที่ไม่เหมาะสมตามมา

หลายคนร่างกายและสมองติดแอลกอฮอลล์จนต้องหามาดื่มทุกวัน แต่อีกมุมหนึ่งก็อยากจะอยากเลิก แทบขาดใจ... แต่ก็ไม่สามารถเลิกได้อย่างถาวรสักที เพราะสารเคมีในสมองผิดเพี้ยนไปแล้ว บางคนตัดใจเลิกแบบ หักดิบ กลายเป็นว่าต้องเผชิญกับความทรมานกับ "อาการลงแดง" จนแทบคลั่ง ทำให้ผู้ที่ต้องการหลุดพ้นจาก วงจรความทุกข์นี้ไม่สามารถหลุดพ้นได้สักที ทั้งขาดกำลังใจ แรงจูงใจ และที่ปรึกษาที่พร้อมอยู่เคียงข้างให้ สามารถเลิกเหล้าได้สำเร็จอย่างถูกวิธี

กลุ่มเราจึงอยากช่วยเหลือผู้ติดเหล้าให้ได้ในทุกมิติ โดยคิดนวัตกรรมแชทบอทช่วยเหลือผู้ต้องการเลิก เหล้า เหมาะสำหรับคนไม่กล้าโทร ไม่กล้าคุย แต่ชอบแชทผ่านมือถือในยุคสมัยนี้ ที่แค่ "แอดไลน์" เป็นเพื่อน

วัตถุประสงค์

- 1. ช่วยในการลดการบริโภคสุรา: แชทบอทเลิกเหล้าสามารถเป็นตัวช่วยในการส่งเสริมการลดการบริโภคเหล้าของ บุคคล โดยให้ข้อมูลเกี่ยวกับผลกระทบของการดื่มเหล้าต่อสุขภาพ และแนะนำวิธีการเลิกเหล้าที่มีประสิทธิภาพ
- 2. ให้ข้อมูลเกี่ยวกับการเลิกเหล้า: แชทบอทเลิกเหล้าสามารถให้ข้อมูลเกี่ยวกับสาเหตุและผลกระทบทางสุขภาพ ของการดื่มเหล้ามากเกินไป และวิธีการเลิกเหล้าอย่างปลอดภัย ซึ่งอาจช่วยเพิ่มความเข้าใจและสามารถกระตุ้น ให้บุคคลเริ่มพิจารณาการเลิกดื่มเหล้า
- 3. การสนับสนุนผู้ที่ต้องการเลิกเหล้า: แชทบอทเลิกเหล้าสามารถเป็นแหล่งสนับสนุนที่มีอยู่ตลอดเวลาสำหรับผู้ที่ ต้องการเลิกดื่มเหล้า ผ่านการให้ข้อมูลที่แน่นอน การสนับสนุนทางจิตใจ และการแนะนำสถานที่หรือแหล่ง ช่วยเหลือที่เหมาะสม

Dataset

• Link Dataset

https://docs.google.com/spreadsheets/d/1sPdWSGAgfqC80xUJGCEYbYIHOvgvcjBN6B 6xdC3tc48/edit?usp=sharing

• จำนวน class มี 6 คือ

0 : การทักทาย	จำนวน 26
1 : วิธีการเลิกเหล้า	จำนวน 71
2 : วิธีการพบแพทย์สำหรับเลิกเหล้า	จำนวน 31
3 : ผลเสียของการดื่มเหล้า	จำนวน 30
4 : การปรึกษาบำบัด	จำนวน 30
5 : อาการลงแดงระหว่างเลิกเหล้า	จำนวน 30

Pre-procressing

คำสั่งการติดตั้ง package เพื่อเตรียมสำหรับเรียกใช้คำสั่งและจัดเตรียมไฟล์ dataset

0 สวัสดีครับ

สวัสดีค่ะ

หวัดดี

ดีครับ

2

3

4

พึ่งชั่นการคลื่นและการตัดคำภาษาไทย

```
# cleantext

def cleanText(text):
    text = str(text)
    stop_word = list(thai_stopwords())
    sentence = word_tokenize(text)
    result = [word for word in sentence if word not in stop_word and " " not in word]
    return ",".join(result)

def tokenize(d):
    result = d.split(",")
    result = list(filter(None, result))
    return result

new_newmm = []
    for txt in data['inanxi']:
        new_newmm.append(cleanText(txt))

data['new_newmm'] = new_newmm
    data
```

```
[] tokenizer = Tokenizer()
tokenizer.fit_on_texts(data['new_newmm'])
totalWords = len(tokenizer.word_index) + 1
print(f'Total unique words: {totalWords}')

Total unique words: 151
```

คำสั่งคัด class ในแต่ละแถวของหัวข้อคำถาม

```
from tensorflow.keras.utils import to_categorical print("Unique labels =", set(data['หัวข้อคำถาม']))
y = to_categorical([int(i) for i in data['หัวข้อคำถาม']])
print(y)
```

คำสั่งเปลี่ยนคำให้เป็นตัวเลขและนำเลขที่ได้มามาเรียงให้เป็นประโยค
 พร้อมเตรียม train test split

```
from keras.utils import pad_sequences

tts = tokenizer.texts_to_sequences(data['new_newmm'])

print("Raw Texts to Sequence:")

print(tts)

maxlen = max([len(s) for s in tts])

print("max sentence's length =", maxlen)

x = pad_sequences(tts, maxlen=maxlen, padding="post")

print("Sequence Padding at maxlen words, post padding:\n", x)

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_state=64)
```

• Model deep learning, accuracy & confusion matrix graph

```
model_DL = Sequential()
model_DL.add(Embedding(input_dim=len(tokenizer.word_index) + 1, output_dim=64 , input_length=maxlen))
model_DL.add(Flatten())
model_DL.add(Dense(6, activation='sigmoid')) # Assuming binary classification
model_DL.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model_DL.summary()
# Train the model

model_DL.fit(x_train, y_train, epochs=40, validation_split=0.2)

#Predict with the model
y_predict = model_DL.predict(x)
y_t=[ np.argmax(i) for i in y]
y_p=[ np.argmax(i) for i in y_predict]
cm=confusion_matrix(y_t, y_p)
plot_confusion_matrix(cm=cm, classes=['0','1','2','3','4','5'], normalize=True)
```


• Model LSTM , accuracy & confusion matrix graph

```
model = Sequential()
     model.add(Embedding(len(tokenizer.word_index) + 1, 128, input_length=maxlen))
     model.add(LSTM(128)) # LSTM layer
     model.add(Dense(6, activation='softmax'))
     model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
     #Fit the model
     model.fit(x_train, y_train, epochs=20)
     #Predict with the model
     y_predict = model.predict(x)
     y_t=[ np.argmax(i) for i in y]
     y_p=[ np.argmax(i) for i in y_predict[
     cm=confusion_matrix(y_t, y_p)
     plot_confusion_matrix(cm=cm, classes=['0','1','2','3','4','5'], normalize=True)
[] loss, accuracy, = model.evaluate(x_test, y_test)
    print(f"Test Loss : {loss*100:.2f}")
    print(f"Test Accuracy : {accuracy*100:.2f}")
    Test Loss: 69.31
    Test Accuracy: 89.29
```


Model BI-LSTM , accuracy & confusion matrix graph

```
model = Sequential()
model.add(Embedding(input_dim=len(tokenizer.word_index) + 1, output_dim=100, input_length=maxlen))
model.add(Bidirectional(LSTM(64, return_sequences=True)))
model.add(GlobalMaxPooling1D())
model.add(Dense(6, activation='softmax'))

model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

model.fit(x_train, y_train, epochs=20)

y_predict = model.predict(x)
y_t = [np.argmax(i) for i in y]
y_p = [np.argmax(i) for i in y_predict]
cm = confusion_matrix(y_t, y_p)
plot_confusion_matrix(cm=cm, classes=['0','1','2','3','4','5'], normalize=True)
```


คำสั่งที่ไว้ใช้ทดลอง predict

```
text_to_predict = ["อาการของคนติดสุรา"]
tokenized_text = [word_tokenize(text, keep_whitespace=False) for text in text_to_predict]
text_sequences = tokenizer.texts_to_sequences(tokenized_text)
max_sequence_length = maxlen
padded_sequence = pad_sequences(text_sequences, maxlen=max_sequence_length, padding="post")
predicted_class = model.predict(padded_sequence)
predicted_class_index = np.argmax(predicted_class)
class_labels = ['0', '1', '2', '3', '4', '5']
predicted_label = class_labels[predicted_class_index]
for text, prediction in zip(text_to_predict, predicted_label):
    print(f"Text: {text} => Predicted Class: {prediction}")
```

ซึ่งเราเลือกใช้ model BI-LSTM ที่มีค่า accuracy น้อยกว่า LSTM เนื่องจากเราได้มีการทดลอง predict ด้วยโมเดลดังกล่าวแล้ว แต่ผลลัพธ์ไม่ค่อยออกมาอย่างที่ต้องการเท่า BI-LSTM

Link dataset

https://docs.google.com/spreadsheets/d/1sPdWSGAgfqC80xUJGCEYbYIH OvgvcjBN6B6xdC3tc48/edit?usp=sharing

link colab

https://colab.research.google.com/drive/1l8ZlirQ90qKd9cZ_AAwcX-BQy1_1CNiE?usp=sharing

อยากเลิกเล้าให้น้องฤกษ์เล่า ช่วยนะครับ

สแกนที่นี่!!