离散数学作业(5.20)

中国人民大学 信息学院 崔冠宇 2018202147

P47, T1 作出集合 A 和 B 的一一对应, 并写出这个对应的解析表达式.

(1)
$$A = (-1, 1), B = (-\infty, +\infty);$$

(2)
$$A = (0, 1), B = (0, 2);$$

(3)
$$A = [0, 1), B = (\frac{1}{4}, \frac{1}{2}].$$

解: (1) $f: A \to B, f(x) = \tan(\frac{\pi}{2}x).$

(2)
$$g: A \to B, g(x) = 2x$$
.

(3)
$$h: A \to B, h(x) = -\frac{1}{4}x + \frac{1}{2}$$
.

容易验证,以上都是一一对应.

P47, **T2** 证明: (0,1) 和 [0,1) 等势.

证:
$$f:[0,1) \to (0,1), f(x) = \begin{cases} \frac{1}{2}, & x=0 \\ \frac{1}{i+1}, & x=\frac{1}{i}, i=2,3,\dots \\ x, & 其它. \end{cases}$$

容易验证, f 是一一对应, 故 $(0,1) \sim [0,1)$. \square

P47, **T3** 若 $A_1 \sim B_1$, $A_2 \sim B_2$, 且 $A_1 \cap A_2 = B_1 \cap B_2 = \emptyset$, 证明 $A_1 \cup A_2 \sim B_1 \cup B_2$.

证: 因为 $A_1 \sim B_1$, 所以存在 $f: A_1 \to B_1$ 是双射; 同理, 存在 $g: A_2 \to B_2$ 是双射. 又因为 $A_1 \cap A_2 = B_1 \cap B_2 = \emptyset$, 所以 $f \cup g$ 仍然是函数, 且为——对应. (因为 $\forall (x,y) \in f \cup g \subseteq (A_1 \cup A_2) \times (B_1 \cup B_2)$, 若 $x \in A_1$, 则 $\exists ! y \in B_1$ 使得 $(x,y) \in f \subseteq f \cup g$; 若 $x \in A_2$, 则 $\exists ! y \in B_2$ 使得 $(x,y) \in g \subseteq f \cup g$. 二者不可兼, 容易看出这是函数, 而且是双射.) 即 $f \cup g: (A_1 \cup A_2) \to (B_1 \cup B_2)$ 是双射, 所以 $A_1 \cup A_2 \sim B_1 \cup B_2$.

P49, T1 证明平面上坐标为有理数的点组成的集合是一个可列集.

证: 因为 \mathbb{Q} 可列, 所以可以排成 $\mathbb{Q} = \{q_1, q_2, \dots, q_n, \dots\}$. 将有理点坐标按类似矩阵的方式排成下图:

$$(q_1, q_1) \longrightarrow (q_1, q_2) \qquad (q_1, q_3) \longrightarrow \qquad \cdots \qquad (q_1, q_n) \qquad \cdots$$

$$(q_2, q_1) \qquad (q_2, q_2) \qquad (q_2, q_3) \qquad \cdots \qquad (q_2, q_n) \qquad \cdots$$

$$(q_3, q_1) \qquad (q_3, q_2) \qquad (q_3, q_3) \qquad \cdots \qquad (q_3, q_n) \qquad \cdots$$

$$\vdots \qquad \vdots$$

按照上图方式,可将平面上坐标为有理数的点组成的集合排成一列: $\mathbb{Q}^2 = \{(q_1,q_1),(q_1,q_2),(q_2,q_1),(q_3,q_1),(q_2,q_2),\dots\}$,所以可列. \square

P50, **T3** 证明: 如果 A_1 和 A_2 是两个可列集, 则 $A_1 \times A_2$ 也是可列集.

证: (证法类似上题.) 因为 A_1, A_2 可列, 所以可以排成 $A_1 = \{a_1, a_2, \ldots, a_n, \ldots\}, A_2 = \{b_1, b_2, \ldots, b_n, \ldots\}.$ 将 $A_1 \times A_2$ 中的元素按类似矩阵的方式排成下图:

$$< a_{1}, b_{1} > \longrightarrow < a_{1}, b_{2} > \qquad < a_{1}, b_{3} > \longrightarrow \qquad \cdots \qquad < a_{1}, b_{n} > \qquad \cdots$$
 $< a_{2}, b_{1} > \qquad < a_{2}, b_{2} > \qquad < a_{2}, b_{3} > \qquad \cdots \qquad < a_{2}, b_{n} > \qquad \cdots$
 $< a_{3}, b_{1} > \qquad < a_{3}, b_{2} > \qquad < a_{3}, b_{3} > \qquad \cdots \qquad < a_{3}, b_{n} > \qquad \cdots$
 \vdots

按照上图方式,可将 $A_1 \times A_2$ 排成一列: $A_1 \times A_2 = \{ \langle a_1, b_1 \rangle, \langle a_1, b_2 \rangle, \langle a_2, b_1 \rangle, \langle a_3, b_1 \rangle, \langle a_2, b_2 \rangle, \ldots \}$, 所以可列. \square

P50, T4 若 x_i 是有理数, i = 1, 2, ..., 证明 n 元组的集合 $\{\langle x_1, x_2, \cdots, x_n \rangle\}$ 是可列集.

证: 利用上题结论. 因为 \mathbb{Q} 可列, 令 $A_1 = A_2 = \mathbb{Q}$, 所以 $\mathbb{Q} \times \mathbb{Q} = \mathbb{Q}^2$ 可列. 再取 $A_1 = \mathbb{Q}^2$, $A_2 = \mathbb{Q}$, 可得 \mathbb{Q}^3 可列. 归纳地做下去, 可得有理数 n 元组的集合 \mathbb{Q}^n 可列. \square

P51, **T1** S 是所有无理数组成的集合, 证明 S 的基数是 \aleph .

证: 显然 S 是无限集, \mathbb{Q} 是可列集, 所以 $S \cup \mathbb{Q}$ 的基数与 S 的基数相同. 但是 $S \cup \mathbb{Q} = \mathbb{R}$, 所以 $\operatorname{Card}(S) = \operatorname{Card}(\mathbb{R}) = \aleph$. \square

P51, T2 证明定理 4.3.3 (对于任何数 a, b, 若 a < b, 则区间 (a, b), [a, b], (a, b], [a, b) 以及 $(0, \infty)$, $[0, \infty)$ 都具有连续基数 \aleph .).

证: ① 书上已经证明了: $(0,1) \sim [0,1]$, 在上面的习题中, 我们证明了 $(0,1) \sim [0,1)$, 下面先证明: $[0,1) \sim (0,1]$.

令 $f:[0,1)\to (0,1], f(x)=1-x$. 显然 f 是一一对应, 所以 $[0,1)\sim (0,1]$. 因为等势是等价关系, 所以我们有: (0,1),[0,1],[0,1) 以及 (0,1] 两两等势, 基数均为 \aleph .

② 下面通过证明 $(0,1) \sim (a,b), [0,1] \sim [a,b], [0,1) \sim [a,b)$ 以及 $(0,1] \sim (a,b]$ 说明 (a,b), [a,b], (a,b], [a,b) 的基数均为 \aleph .

令 f(x) = (b-a)x + a. 容易验证: f 是四组中的前面的集合到后面的集合的一一对应, 所以四组集合等势. 又因为①中证明了前四组集合((0,1), [0,1], [0,1) 以及 (0,1])等势, 基数均为 \aleph , 所以 (a,b), [a,b], (a,b), [a,b) 这四个集合的基数为 \aleph , 得证.

③ 下面证明: $(0,1) \sim (0,\infty)$ 以及 $[0,1) \sim [0,\infty)$.

取 $f(x) = \tan(\frac{\pi}{2}x)$. 容易验证: f 是这两组集合中前面的集合到后面的集合的一一对应, 所以两组集合等势, 再由 ①, 知上述所有区间都等势, 基数为 🛪. \square