

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕ	ET	 		
КАФЕДРА _		 	 	

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ НА ТЕМУ:

<u>Поиск и выбор набора данных</u> <u>для построения моделей машинного обучения</u>						
СтудентИУ5-636		Рыбина А.Д				
(Группа)	(Подпись, дата)	(И.О.Фамилия)				
Руководитель		Гапанюк Ю.Е				
•	(Подпись, дата)	(И.О.Фамилия)				
Консультант						
•	(Подпись, дата)	(И.О.Фамилия)				

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

	УТВЕРЖДАЮ
	Заведующий кафедрой
	«» (И.О.Фамилия 20 г
ЗАДА	нив
на выполнение научно-и	сследовательской работы
по теме Поиск и выбор набора данных для	построения моделей машинного обучения
Студент группы <u>ИУ5-636</u>	
	на Даниловна
•	мя, отчество)
Направленность НИР (учебная, исследовательс	ская, практическая, производственная, др.)
Источник тематики (кафедра, предприятие, НИ	IP)
График выполнения НИР: 25% к нед., 50	0% к нед., 75% к нед., 100% к нед.
Техническое задание	
	ты:
Расчетно-пояснительная записка на лист Перечень графического (иллюстративного) маг	
	Γ.
Руководитель НИР	
•	(Подпись, дата) (И.О.Фамилия)

<u>Примечание</u>: Задание оформляется в двух экземплярах: один выдается студенту, второй хранится на кафедре.

(Подпись, дата)

(И.О.Фамилия)

Студент

Поиск и выбор набора данных для построения моделей машинного обучения. На основе выбранного набора данных студент должен построить модели машинного решения для решения или задачи по решению суда, или задачи по регрессии.

В качестве набора данных мы будем использовать набор данных по оценке фильмов на разных платформах.

Эта задача очень актуальна для подбора фильмов для просмотра.

Датасет составлен из трех файлов:

• moving.txt - обучающая выборка

Каждый файл разрешает колонки:

- ID универсальный индивидуальный идентификатор каждого фильма.
- Titile название фильма.
- Year год выпуска фильма.
- Rating возрастное ограничение фильма.
- IMBd оценка фильма на платформе IMBd.
- Rotten Tomatoes оценка фильма на платформе Rotten Tomatoes.
- Genre жанр фильма.
- Netflix наличие фильма на платформе Netflix.
- Amazon Prime Video наличие фильма на платформе Amazon Prime Video.

В рассматриваемом вопросе мы будем решать задачи - и рассмотрение, и рассмотрение регрессии:

- Для решения **задачи** решения в качестве целевого признака будем использовать "Netflix". Показать признаки содержит только значения 0 и 1, то это задача бинарной зашиты.
- Для решения **задачи регрессии** в качестве целевого признака будем использовать "Year"

Импорт библиотеки

Импортируем библиотеки с помощью команды import. Как правило, все команды импортируют в первые ячейки ноутбука.

```
import numpy as np
In [1]:
        import pandas as pd
        import seaborn as sns
        import matplotlib.pyplot as plt
        from sklearn.preprocessing import MinMaxScaler
        from sklearn.linear_model import LinearRegression, LogisticRegression
        from sklearn.model_selection import train_test_split
        from sklearn.neighbors import KNeighborsRegressor, KNeighborsClassifier
        from sklearn.metrics import accuracy_score, balanced_accuracy_score
        from sklearn.metrics import precision_score, recall_score, f1_score, classification_repo
        from sklearn.metrics import confusion_matrix
        from sklearn.metrics import plot_confusion_matrix
        from sklearn.model_selection import GridSearchCV
        from sklearn.metrics import mean_absolute_error, mean_squared_error, mean_squared_log_er
        from sklearn.metrics import roc_curve, roc_auc_score
        from sklearn.svm import SVC, NuSVC, LinearSVC, OneClassSVM, SVR, NuSVR, LinearSVR
        from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor, export_graphviz
        from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
        from sklearn.ensemble import ExtraTreesClassifier, ExtraTreesRegressor
        from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor
        %matplotlib inline
        sns.set(style="ticks")
        # Обучающая выборка
In [2]:
        original_train = pd.read_csv('movies.csv', sep=",")
In [3]: # Удалим дубликаты записей, если они присутствуют
        train = original_train.drop_duplicates()
```

Проведение разведочного анализа данных. Построение графиков, необходимых для понимания структуры данных. Анализ и заполнение пропусков в данных.

Основные характеристики датасетов

Первые 5 строк датасета

In [4]:

```
train.head()
Out[4]:
              Unnamed:
                                                                              Rotten
                                                                                                                     Amazon
                          ID
                                           Title
                                                 Year Rating IMDb
                                                                                              Genre Netflix
                                                                                                                 Prime Video
                                                                           Tomatoes
                                Terminator: Dark
                                                                                             Action &
           0
                       0
                                                 2019
                                                                   6.2
                                                                                                           0
                                                           18+
                                                                                  81
                                                                                                                            1
                                           Fate
                                                                                           Adventure
                                                                                            Action &
                                    Gemini Man
                                                 2019
                                                           13+
                                                                   5.7
                                                                                  74
                                                                                                                            1
                                                                                           Adventure
                                    Rambo: Last
                                                                                            Action &
           2
                                                 2019
                                                                                  72
                                                                                                           0
                                                           18+
                                                                   6.1
                                                                                                                            1
                                                                                           Adventure
                                          Blood
                                                                                            Action &
           3
                                                                                                           0
                                    The Courier
                                                 2019
                                                                   4.9
                                                                                  50
                                                                                                                            1
                                                                                           Adventure
                                                                                            Action &
                                          Crawl 2019
                                                           18+
                                                                   6.1
                                                                                  79
                                                                                                           0
                                                                                                                            1
                                                                                           Adventure
```

```
train.shape
         (24664, 10)
 Out[5]:
 In [6]: # Список колонок
          train.columns
         Index(['Unnamed: 0', 'ID', 'Title', 'Year', 'Rating', 'IMDb',
 Out[6]:
                 'Rotten Tomatoes', 'Genre', 'Netflix', 'Amazon Prime Video'],
                dtype='object')
 In [7]: # Список колонок с типами данных
          # убедимся что типы данных одинаковы в обучающей и тестовых выборках
          train.dtypes
         Unnamed: 0
                                  int64
 Out[7]:
         TD
                                 int64
         Title
                                object
         Year
                                 int64
         Rating
                                object
         IMDb
                                object
         Rotten Tomatoes
                                object
         Genre
                                object
         Netflix
                                 int64
         Amazon Prime Video
                                 int64
         dtype: object
 In [8]: # Проверим наличие пустых значений
          train.isnull().sum()
         Unnamed: 0
                                     0
 Out[8]:
         ID
                                     0
         Title
                                     0
         Year
                                     0
                                14635
         Rating
         IMDb
                                   420
         Rotten Tomatoes
                                     0
         Genre
                                     0
         Netflix
                                     0
         Amazon Prime Video
                                     0
         dtype: int64
In [9]:
         train=train.dropna()
In [10]:
          train.shape
         (9993, 10)
Out[10]:
In [11]:
         # Проверим наличие пустых значений
          train.isnull().sum()
         Unnamed: 0
                                0
Out[11]:
         ID
                                0
         Title
                                0
         Year
                                0
                                0
         Rating
         IMDb
                                0
         Rotten Tomatoes
                                0
         Genre
                                0
         Netflix
                                0
         Amazon Prime Video
                                0
         dtype: int64
```

Вывод. Представленный набор данных не содержит пропусков в обучающей выборке.

Построение графиков для понимания структуры данных

In [13]: sns.pairplot(train, hue="Netflix")

Out[13]: <seaborn.axisgrid.PairGrid at 0x7f288b5e04c0>


```
In [14]: # Убедимся, что целевой признак
# для задачи бинарной классификации содержит только 0 и 1
train['Netflix'].unique()
```

Out[14]: array([0, 1])

```
In [15]: # Оценим дисбаланс классов для Netflix
fig, ax = plt.subplots(figsize=(2,2))
plt.hist(train['Netflix'])
plt.show()
```



```
In [16]: train['Netflix'].value_counts()
```

Out[16]: 0 8036

```
# посчитаем дисбаланс классов
In [17]:
         total = train.shape[0]
         class_0, class_1 = train['Netflix'].value_counts()
         print('Класс 0 составляет {}%, а класс 1 составляет {}%.'
               .format(round(class_0 / total, 4)*100, round(class_1 / total, 4)*100))
        Класс 0 составляет 80.42%, а класс 1 составляет 19.580000000000002%.
        Вывод. Дисбаланс классов присутствует, но является приемлемым.
         train.columns
In [18]:
        Out[18]:
              dtype='object')
         # pandas понимает, что в итоге нужен float64
In [19]:
         train["IMDb"] = train['IMDb'].astype('float64')
         train["Rotten Tomatoes"] = train['Rotten Tomatoes'].astype('float64')
         train.dtypes
        Unnamed: 0
                               int64
Out[19]:
        ID
                                int64
        Title
                              object
        Year
                               int64
        Rating
                              object
        IMDb
                              float64
        Rotten Tomatoes
                              float64
        Genre
                              object
        Netflix
                                int64
        Amazon Prime Video
                               int64
        dtype: object
        # Скрипичные диаграммы для числовых колонок
In [21]:
         for col in ['Year', 'IMDb', 'Rotten Tomatoes']:
             sns.violinplot(x=train[col])
             plt.show()
```


1

1957

Name: Netflix, dtype: int64

Выбор признаков, подходящих для построения моделей. Кодирование категориальных признаков. Масштабирование данных. Формирование вспомогательных признаков, улучшающих качество моделей.

```
train.dtypes
In [31]:
         Unnamed: 0
                                   int64
Out[31]:
         ID
                                   int64
         Title
                                  object
         Year
                                   int64
                                  object
         Rating
         IMDb
                                 float64
         Rotten Tomatoes
                                float64
         Genre
                                 object
         Netflix
                                   int64
         Amazon Prime Video
                                   int64
         dtype: object
         # Создадим вспомогательные колонки,
In [32]:
          # чтобы наборы данных можно было разделить.
          train['dataset'] = 'TRAIN'
```

In [33]: # Колонки для объединения

```
join_cols = ['Year', 'IMDb', 'Rotten Tomatoes',
                        'Netflix', 'dataset']
          data_all = pd.concat([train[join_cols]])
In [34]:
          # Проверим корректность объединения
In [36]:
          assert data_all.shape[0] == train.shape[0]
          data_all.head()
In [37]:
Out[37]:
             Year IMDb Rotten Tomatoes Netflix dataset
          0 2019
                                  81.0
                                               TRAIN
                    6.2
                                           0
          1 2019
                    5.7
                                  74.0
                                               TRAIN
          2 2019
                                  72.0
                                               TRAIN
                    6.1
          3 2019
                    4.9
                                  50.0
                                               TRAIN
          4 2019
                    6.1
                                  79.0
                                           0
                                               TRAIN
          # Числовые колонки для масштабирования
In [381: |
          scale_cols = ['Year', 'IMDb', 'Rotten Tomatoes']
          sc1 = MinMaxScaler()
In [39]:
          sc1_data = sc1.fit_transform(data_all[scale_cols])
          # Добавим масштабированные данные в набор данных
In [40]:
          for i in range(len(scale_cols)):
              col = scale_cols[i]
              new_col_name = col + '_scaled'
              data_all[new_col_name] = sc1_data[:,i]
          data_all.head()
In [41]:
             Year IMDb Rotten Tomatoes Netflix dataset Year scaled IMDb scaled Rotten Tomatoes scaled
Out[41]:
          0 2019
                    6.2
                                  81.0
                                               TRAIN
                                                        0.981651
                                                                    0.634146
                                                                                          0.833333
          1 2019
                    5.7
                                  74.0
                                               TRAIN
                                                        0.981651
                                                                     0.573171
                                                                                          0.743590
          2 2019
                                  72.0
                                               TRAIN
                    6.1
                                           0
                                                        0.981651
                                                                    0.621951
                                                                                          0.717949
          3 2019
                    4.9
                                  50.0
                                               TRAIN
                                                        0.981651
                                                                    0.475610
                                                                                          0.435897
          4 2019
                    6.1
                                  79.0
                                           0
                                               TRAIN
                                                        0.981651
                                                                    0.621951
                                                                                          0.807692
          # Проверим, что масштабирование не повлияло на распределение данных
In [42]:
          for col in scale_cols:
              col_scaled = col + '_scaled'
              fig, ax = plt.subplots(1, 2, figsize=(8,3))
              ax[0].hist(data_all[col], 50)
              ax[1].hist(data_all[col_scaled], 50)
              ax[0].title.set_text(col)
              ax[1].title.set_text(col_scaled)
              plt.show()
```


Проведение корреляционного анализа данных. Формирование промежуточных выводов о возможности построения моделей машинного обучения.

```
In [43]: # Воспользуемся наличием тестовых выборок,
# включив их в корреляционную матрицу
corr_cols_1 = scale_cols + ['Netflix']
corr_cols_1

Out[43]: ['Year', 'IMDb', 'Rotten Tomatoes', 'Netflix']

In [44]: scale_cols_postfix = [x+'_scaled' for x in scale_cols]
corr_cols_2 = scale_cols_postfix + ['Netflix']
corr_cols_2

Out[44]: ['Year_scaled', 'IMDb_scaled', 'Rotten Tomatoes_scaled', 'Netflix']
```

In [45]: fig, ax = plt.subplots(figsize=(10,5))
 sns.heatmap(data_all[corr_cols_1].corr(), annot=True, fmt='.2f')
 ax.set_title('Исходные данные (до масштабирования)')
 plt.show()


```
In [46]: fig, ax = plt.subplots(figsize=(10,5))
    sns.heatmap(data_all[corr_cols_2].corr(), annot=True, fmt='.2f')
    ax.set_title('Масштабированные данные')
    plt.show()
```


На основе корреляционной матрицы можно сделать следующие выводы:

- Корреляционные матрицы для исходных и масштабированных данных совпадают.
- Целевой признак классификации "Netflix" наиболее сильно коррелирует с Year (0.28), IMBd (0.21) и Rotten Tomatoes (0.35). Эти признаки обязательно следует оставить в модели классификации.
- Целевой признак классификации "Year" наиболее сильно коррелирует с Netflix (0.28), IMBd (-0.01) и Rotten Tomatoes (0.10). Эти признаки обязательно следует оставить в модели классификации.
- Целевой признак классификации "IMBd" наиболее сильно коррелирует с Year (-0.01), Netflix (0.21) и Rotten Tomatoes (0.64). Эти признаки обязательно следует оставить в модели классификации.

- Целевой признак классификации "Rotten Tomatoes" наиболее сильно коррелирует с Year (0.10), IMBd (0.64) и Netflix (0.35). Эти признаки обязательно следует оставить в модели классификации.
- Большие по модулю значения коэффициентов корреляции свидетельствуют о значимой корреляции между исходными признаками и целевым признаком. На основании корреляционной матрицы можно сделать вывод о том, что данные позволяют построить модель машинного обучения.

Выбор метрик для последующей оценки качества моделей.

В качестве метрик для решения задачи классификации будем использовать:

Метрики, формируемые на основе матрицы ошибок: Meтрика precision:

precision=TPTP+FP

Доля верно предсказанных классификатором положительных объектов, из всех объектов, которые классификатор верно или неверно определил как положительные.

Используется функция precision score. Метрика recall (полнота):

recall=TPTP+FN

Доля верно предсказанных классификатором положительных объектов, из всех действительно положительных объектов.

Используется функция recall score. Метрика F1 -мера

Для того, чтобы объединить precision и recall в единую метрику используется Fβ

-мера, которая вычисляется как среднее гармоническое от precision и recall:

 $F\beta = (1+\beta 2) \cdot precision \cdot recall precision + recall$

где В

определяет вес точности в метрике.

На практике чаще всего используют вариант F1-меры (которую часто называют F-мерой) при β=1

F1=2·precision·recallprecision+recall

Для вычисления используется функция f1_score. Метрика ROC AUC

Основана на вычислении следующих характеристик:

TPR=TPTP+FN

• True Positive Rate, откладывается по оси ординат. Совпадает с recall.

FPR=FPFP+TN

• False Positive Rate, откладывается по оси абсцисс. Показывает какую долю из объектов отрицательного класса алгоритм предсказал неверно.

Идеальная ROC-кривая проходит через точки (0,0)-(0,1)-(1,1), то есть через верхний левый угол графика.

Чем сильнее отклоняется кривая от верхнего левого угла графика, тем хуже качество классификации.

В качестве количественной метрики используется площадь под кривой - ROC AUC (Area Under the Receiver Operating Characteristic Curve). Чем ниже проходит кривая тем меньше ее площадь и тем хуже качество классификатора.

Для получения ROC AUC используется функция roc_auc_score. В качестве метрик для решения задачи регрессии будем использовать: Mean absolute error - средняя абсолютная ошибка

 $MAE(y,y^{\prime})=1N\cdot\sum_{i=1}^{N}|y_i-y_i^{\prime}|$

где:

У

- истинное значение целевого признака у^
- предсказанное значение целевого признака N
 - размер тестовой выборки

Чем ближе значение к нулю, тем лучше качество регрессии.

Основная проблема метрики состоит в том, что она не нормирована.

Вычисляется с помощью функции mean_absolute_error. Mean squared error - средняя квадратичная ошибка

 $MSE(y,y^{\wedge})=1N\cdot\sum_{i=1}^{\infty}i=1N(yi-yi^{\wedge})2$

где:

У

- истинное значение целевого признака у^
- предсказанное значение целевого признака N
 - размер тестовой выборки

Вычисляется с помощью функции mean squared error. Метрика R2 или коэффициент детерминации

$$R2(y,y^{\wedge})=1-\sum_{i=1}^{\infty}i=1N(yi-yi^{\wedge})2\sum_{i=1}^{\infty}N(yi-yi^{\vee})2\sum_{i=1}^{\infty}N(yi-yi^{\vee})2\sum_{i=1}^{\infty}N(yi-yi^{\vee})2\sum_{i=1}^{\infty}N(yi-yi^{\vee})2\sum_{i=1}^{\infty}N(yi-yi^{\vee})2\sum_{i=1}^{\infty}N(yi-yi^{\vee})2\sum_{i=1}^{\infty}N(yi-yi^{\vee})2\sum_{i=1}^{\infty}N(yi-yi^{\vee})2\sum_{i=1}^{\infty}N(yi-yi^{\vee})2\sum_{i=1}^{\infty}N(yi-yi^{\vee})2\sum_{i=1}^{\infty}N(yi-yi^{\vee})2\sum_{i=1}^{\infty}$$

где:

- истинное значение целевого признака у^
- предсказанное значение целевого признака N
- размер тестовой выборки уі =1N·∑і=1Nуі

Вычисляется с помощью функции r2 score.

Сохранение и визуализация метрик

Разработаем класс, который позволит сохранять метрики качества построенных моделей и реализует визуализацию метрик качества.

```
In [47]: class MetricLogger:
             def __init__(self):
                 self.df = pd.DataFrame(
                     {'metric': pd.Series([], dtype='str'),
                      'alg': pd.Series([], dtype='str'),
                      'value': pd.Series([], dtype='float')})
             def add(self, metric, alg, value):
                 Добавление значения
                 # Удаление значения если оно уже было ранее добавлено
                 self.df.drop(self.df[(self.df['metric']==metric)&(self.df['alg']==alg)].index, i
                 # Добавление нового значения
                 temp = [{'metric':metric, 'alg':alg, 'value':value}]
                 self.df = self.df.append(temp, ignore_index=True)
             def get_data_for_metric(self, metric, ascending=True):
                 Формирование данных с фильтром по метрике
                 temp_data = self.df[self.df['metric']==metric]
                 temp_data_2 = temp_data.sort_values(by='value', ascending=ascending)
                 return temp_data_2['alg'].values, temp_data_2['value'].values
             def plot(self, str_header, metric, ascending=True, figsize=(5, 5)):
                 0.00\,0
                 Вывод графика
                 array_labels, array_metric = self.get_data_for_metric(metric, ascending)
                 fig, ax1 = plt.subplots(figsize=figsize)
                 pos = np.arange(len(array_metric))
                 rects = ax1.barh(pos, array_metric,
                                   align='center',
                                   height=0.5,
                                   tick_label=array_labels)
                 ax1.set_title(str_header)
                 for a,b in zip(pos, array_metric):
                     plt.text(0.5, a-0.05, str(round(b,3)), color='white')
                 plt.show()
```

Выбор наиболее подходящих моделей для решения задачи классификации или регрессии.

Для задачи классификации будем использовать следующие модели:

Логистическая регрессия Метод ближайших соседей Машина опорных векторов Решающее дерево Случайный лес Градиентный бустинг

Для задачи регрессии будем использовать следующие модели:

Линейная регрессия
Метод ближайших соседей
Машина опорных векторов
Решающее дерево
Случайный лес
Градиентный бустинг

Формирование обучающей выборки на основе исходного набора данных.

```
In [55]: # На основе масштабированных данных выделим
         # обучающую и тестовую выборки с помощью фильтра
         train_data_all = data_all[data_all['dataset']=='TRAIN']
         train_data_all.shape
Out[55]: (9993, 8)
In [56]: # Признаки для задачи классификации
         task_clas_cols = ['Year_scaled', 'IMDb_scaled', 'Rotten Tomatoes_scaled']
In [74]: # Выборки для задачи классификации
         clas_X_train = train_data_all[task_clas_cols]
         clas_X_test = train_data_all[task_clas_cols]
         clas_Y_train = train_data_all['Netflix']
         clas_Y_test = train_data_all['Netflix']
         clas_X_train.shape, clas_X_test.shape, clas_Y_train.shape, clas_Y_test.shape
         ((9993, 3), (9993, 3), (9993,), (9993,))
Out[74]:
In [75]: # Признаки для задачи регресии
         task_regr_cols = ['Netflix', 'IMDb_scaled', 'Rotten Tomatoes_scaled']
         regr_X_train = train_data_all[task_regr_cols]
In [87]:
          regr_X_test = train_data_all[task_regr_cols]
          regr_Y_train = train_data_all['Year_scaled']
          regr_Y_test = train_data_all['Year_scaled']
          regr_X_train.shape, regr_X_test.shape, regr_Y_train.shape, regr_Y_test.shape
         ((9993, 3), (9993, 3), (9993,), (9993,))
Out[87]:
```

Построение базового решения (baseline) для выбранных моделей без подбора гиперпараметров. Производится обучение моделей на основе обучающей выборки и

оценка качества моделей на основе тестовой выборки.

Решение задачи классификации

In [92]: for model_name, model in clas_models.items():

```
# Модели
In [88]:
         clas_models = {'LogR': LogisticRegression(),
                         'KNN_5':KNeighborsClassifier(n_neighbors=5),
                         'SVC':SVC(probability=True),
                         'Tree':DecisionTreeClassifier(),
                         'RF':RandomForestClassifier(),
                         'GB':GradientBoostingClassifier()}
In [89]:
         # Сохранение метрик
         clasMetricLogger = MetricLogger()
         # Отрисовка ROC-кривой
In [90]:
         def draw_roc_curve(y_true, y_score, ax, pos_label=1, average='micro'):
             fpr, tpr, thresholds = roc_curve(y_true, y_score,
                                               pos_label=pos_label)
             roc_auc_value = roc_auc_score(y_true, y_score, average=average)
             #plt.figure()
             lw = 2
             ax.plot(fpr, tpr, color='darkorange',
                       lw=lw, label='ROC curve (area = %0.2f)' % roc_auc_value)
             ax.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
             ax.set_xlim([0.0, 1.0])
             ax.set_xlim([0.0, 1.05])
             ax.set_xlabel('False Positive Rate')
             ax.set_ylabel('True Positive Rate')
             ax.set_title('Receiver operating characteristic')
             ax.legend(loc="lower right")
         def clas_train_model(model_name, model, clasMetricLogger):
In [91]:
             model.fit(clas_X_train, clas_Y_train)
             # Предсказание значений
             Y_pred = model.predict(clas_X_test)
             # Предсказание вероятности класса "1" для roc auc
             Y_pred_proba_temp = model.predict_proba(clas_X_test)
             Y_pred_proba = Y_pred_proba_temp[:,1]
             precision = precision_score(clas_Y_test.values, Y_pred)
             recall = recall_score(clas_Y_test.values, Y_pred)
             f1 = f1_score(clas_Y_test.values, Y_pred)
             roc_auc = roc_auc_score(clas_Y_test.values, Y_pred_proba)
             clasMetricLogger.add('precision', model_name, precision)
             clasMetricLogger.add('recall', model_name, recall)
             clasMetricLogger.add('f1', model_name, f1)
             clasMetricLogger.add('roc_auc', model_name, roc_auc)
             fig, ax = plt.subplots(ncols=2, figsize=(10,5))
             draw_roc_curve(clas_Y_test.values, Y_pred_proba, ax[0])
             plot_confusion_matrix(model, clas_X_test, clas_Y_test.values, ax=ax[1],
                                display_labels=['0','1'],
                                cmap=plt.cm.Blues, normalize='true')
             fig.suptitle(model_name)
             plt.show()
```

clas_train_model(model_name, model, clasMetricLogger)

/home/arinafish/.local/lib/python3.8/site-packages/sklearn/utils/deprecation.py:87: Futu reWarning: Function plot_confusion_matrix is deprecated; Function `plot_confusion_matrix ` is deprecated in 1.0 and will be removed in 1.2. Use one of the class methods: ConfusionMatrixDisplay.from_predictions or ConfusionMatrixDisplay.from_estimator. warnings.warn(msg, category=FutureWarning)

/home/arinafish/.local/lib/python3.8/site-packages/sklearn/utils/deprecation.py:87: Futu reWarning: Function plot_confusion_matrix is deprecated; Function `plot_confusion_matrix ` is deprecated in 1.0 and will be removed in 1.2. Use one of the class methods: ConfusionMatrixDisplay.from_predictions or ConfusionMatrixDisplay.from_estimator. warnings.warn(msg, category=FutureWarning)

/home/arinafish/.local/lib/python3.8/site-packages/sklearn/utils/deprecation.py:87: Futu reWarning: Function plot_confusion_matrix is deprecated; Function `plot_confusion_matrix ` is deprecated in 1.0 and will be removed in 1.2. Use one of the class methods: ConfusionMatrixDisplay.from_predictions or ConfusionMatrixDisplay.from_estimator. warnings.warn(msg, category=FutureWarning)

/home/arinafish/.local/lib/python3.8/site-packages/sklearn/utils/deprecation.py:87: Futu reWarning: Function plot_confusion_matrix is deprecated; Function `plot_confusion_matrix ` is deprecated in 1.0 and will be removed in 1.2. Use one of the class methods: ConfusionMatrixDisplay.from_predictions or ConfusionMatrixDisplay.from_estimator. warnings.warn(msg, category=FutureWarning)

/home/arinafish/.local/lib/python3.8/site-packages/sklearn/utils/deprecation.py:87: Futu reWarning: Function plot_confusion_matrix is deprecated; Function `plot_confusion_matrix ` is deprecated in 1.0 and will be removed in 1.2. Use one of the class methods: ConfusionMatrixDisplay.from_predictions or ConfusionMatrixDisplay.from_estimator. warnings.warn(msg, category=FutureWarning)

/home/arinafish/.local/lib/python3.8/site-packages/sklearn/utils/deprecation.py:87: Futu reWarning: Function plot_confusion_matrix is deprecated; Function `plot_confusion_matrix ` is deprecated in 1.0 and will be removed in 1.2. Use one of the class methods: ConfusionMatrixDisplay.from_predictions or ConfusionMatrixDisplay.from_estimator. warnings.warn(msg, category=FutureWarning)

Решение задачи регрессии

```
In [94]: # Сохранение метрик
regrMetricLogger = MetricLogger()
```

```
def regr_train_model(model_name, model, regrMetricLogger):
             model.fit(regr_X_train, regr_Y_train)
             Y_pred = model.predict(regr_X_test)
             mae = mean_absolute_error(regr_Y_test, Y_pred)
             mse = mean_squared_error(regr_Y_test, Y_pred)
             r2 = r2_score(regr_Y_test, Y_pred)
             regrMetricLogger.add('MAE', model_name, mae)
             regrMetricLogger.add('MSE', model_name, mse)
              regrMetricLogger.add('R2', model_name, r2)
             print('{} \t MAE={}, MSE={}, R2={}'.format(
                 model_name, round(mae, 3), round(mse, 3), round(r2, 3)))
In [96]:
         for model_name, model in regr_models.items():
             regr_train_model(model_name, model, regrMetricLogger)
                  MAE=0.108, MSE=0.02, R2=0.087
                  MAE=0.083, MSE=0.014, R2=0.351
         KNN_5
         SVR
                  MAE=0.107, MSE=0.02, R2=0.102
                  MAE=0.069, MSE=0.012, R2=0.476
         Tree
                  MAE=0.073, MSE=0.012, R2=0.467
                  MAE=0.102, MSE=0.019, R2=0.164
         GB
```

Подбор гиперпараметров для выбранных моделей. Рекомендуется использовать методы кросс-валидации. В зависимости от используемой библиотеки можно применять функцию GridSearchCV, использовать перебор параметров в цикле, или использовать другие методы.

Пример для задачи классификации

```
clas_X_train.shape
In [97]:
         (9993, 3)
Out[971:
In [98]: n_{range_list} = list(range(0, 1250, 50))
         n_range_list[0] = 1
In [99]:
         n_range = np.array(n_range_list)
         tuned_parameters = [{'n_neighbors': n_range}]
         tuned_parameters
         [{'n_neighbors': array([
                                          50,
                                               100,
                                                     150,
                                                            200,
                                                                  250,
                                                                        300,
                                                                              350,
                                                                                           450,
                                                                                                 50
Out[99]:
                   550, 600, 650, 700,
                                           750, 800, 850,
                                                              900, 950, 1000, 1050,
                   1100, 1150, 1200])}]
In [100...
         %%time
         clf_gs = GridSearchCV(KNeighborsClassifier(), tuned_parameters, cv=5, scoring='roc_auc')
         clf_gs.fit(clas_X_train, clas_Y_train)
```

```
GridSearchCV
Out[100]:
           ▶ estimator: KNeighborsClassifier
                  ▶ KNeighborsClassifier
          # Лучшая модель
In [101...
          clf_gs.best_estimator_
Out[101]:
                     KNeighborsClassifier
          KNeighborsClassifier(n_neighbors=100)
In [102... | # Лучшее значение параметров
          clf_gs.best_params_
           {'n_neighbors': 100}
Out[102]:
          clf_gs_best_params_txt = str(clf_gs.best_params_['n_neighbors'])
In [103...
          clf_gs_best_params_txt
           '100'
Out[103]:
         # Изменение качества на тестовой выборке в зависимости от К-соседей
In [104...
          plt.plot(n_range, clf_gs.cv_results_['mean_test_score'])
          [<matplotlib.lines.Line2D at 0x7f287fff9d30>]
Out[104]:
          0.84
          0.82
          0.80
          0.78
          0.76
                      200
                             400
                                    600
                                          800
                                                 1000
                                                        1200
```

CPU times: user 32.4 s, sys: 35.2 ms, total: 32.4 s

Wall time: 32.5 s

Пример для задачи регрессии

```
n_range = np.array(range(1, 2000, 100))
In [105...
         tuned_parameters = [{'n_neighbors': n_range}]
          tuned_parameters
          [{'n_neighbors': array([
                                     1, 101, 201, 301,
                                                            401,
                                                                  501,
                                                                        601,
                                                                               701,
                                                                                     801,
                                                                                           901, 100
Out[105]:
                   1101, 1201, 1301, 1401, 1501, 1601, 1701, 1801, 1901])}]
         %%time
In [106...
          regr_gs = GridSearchCV(KNeighborsRegressor(), tuned_parameters, cv=5, scoring='neg_mean_
          regr_gs.fit(regr_X_train, regr_Y_train)
```

```
CPU times: user 32.7 s, sys: 608 ms, total: 33.3 s
         Wall time: 33.4 s
                       GridSearchCV
Out[106]:
           ▶ estimator: KNeighborsRegressor
                 ▶ KNeighborsRegressor
In [107...
         # Лучшая модель
          regr_gs.best_estimator_
Out[107]:
                    KNeighborsRegressor
          KNeighborsRegressor(n_neighbors=101)
In [108... # Лучшее значение параметров
          regr_gs.best_params_
          {'n_neighbors': 101}
Out[108]:
In [109...
          regr_gs_best_params_txt = str(regr_gs.best_params_['n_neighbors'])
          regr_gs_best_params_txt
           '101'
Out[109]:
In [110... # Изменение качества на тестовой выборке в зависимости от К-соседей
          plt.plot(n_range, regr_gs.cv_results_['mean_test_score'])
          [<matplotlib.lines.Line2D at 0x7f287fef4760>]
Out[110]:
          -0.022
          -0.024
          -0.026
          -0.028
          -0.030
          -0.032
          -0.034
                            500
                                      1000 1250 1500 1750
                       250
                                 750
```

Повторение пункта 8 для найденных оптимальных значений гиперпараметров. Сравнение качества полученных моделей с качеством baseline-моделей.

Решение задачи классификации

for model_name, model in clas_models_grid.items():
 clas_train_model(model_name, model, clasMetricLogger)

/home/arinafish/.local/lib/python3.8/site-packages/sklearn/utils/deprecation.py:87: Futu reWarning: Function plot_confusion_matrix is deprecated; Function `plot_confusion_matrix ` is deprecated in 1.0 and will be removed in 1.2. Use one of the class methods: ConfusionMatrixDisplay.from_predictions or ConfusionMatrixDisplay.from_estimator. warnings.warn(msg, category=FutureWarning)

/home/arinafish/.local/lib/python3.8/site-packages/sklearn/utils/deprecation.py:87: Futu reWarning: Function plot_confusion_matrix is deprecated; Function `plot_confusion_matrix ` is deprecated in 1.0 and will be removed in 1.2. Use one of the class methods: ConfusionMatrixDisplay.from_predictions or ConfusionMatrixDisplay.from_estimator. warnings.warn(msg, category=FutureWarning)

Решение задачи регрессии

Формирование выводов о качестве построенных моделей на основе выбранных метрик. Результаты сравнения качества рекомендуется отобразить в виде графиков и сделать выводы в форме текстового описания. Рекомендуется построение графиков обучения и валидации, влияния значений гиперпарметров на качество моделей и т.д.

Решение задачи классификации

```
In [117... # Метрики качества модели
    clas_metrics = clasMetricLogger.df['metric'].unique()
    clas_metrics

Out[117]: array(['precision', 'recall', 'f1', 'roc_auc'], dtype=object)

In [118... # Построим графики метрик качества модели
    for metric in clas_metrics:
        clasMetricLogger.plot('Метрика: ' + metric, metric, figsize=(7, 6))
```


Вывод: на основании четырех используемых метрик лучшими оказались модели Tree и RF.

Решение задачи регрессии

```
In [119... # Метрики качества модели
regr_metrics = regrMetricLogger.df['metric'].unique()
regr_metrics = regrMetricLogger.df['metric'].unique()

In [122... regrMetricLogger.plot('Mетрика: ' + 'MAE', 'MAE', ascending=False, figsize=(7, 6))

In [125... regrMetricLogger.plot('Метрика: ' + 'MSE', 'MSE', ascending=False, figsize=(7, 6))

In [124... regrMetricLogger.plot('Метрика: ' + 'R2', 'R2', ascending=True, figsize=(7, 6))
```


Вывод: лучшей оказалась модель на основе решающего дерева