import pandas as pd

df = pd.read\_csv("/content/API\_NV.AGR.TOTL.ZS\_DS2\_en\_csv\_v2\_5359510.csv")
df.head()

|   | Country<br>Name                      | Country<br>Code | Indicator<br>Name                                             | Indicator Code | 1960 | 1961 | 1962 | 1963 | 1964 | 1965 | ••• | 2012      | 2013      |      |
|---|--------------------------------------|-----------------|---------------------------------------------------------------|----------------|------|------|------|------|------|------|-----|-----------|-----------|------|
| 0 | Aruba                                | ABW             | Agriculture,<br>forestry,<br>and<br>fishing,<br>value<br>adde | NV.AGR.TOTL.ZS | NaN  | NaN  | NaN  | NaN  | NaN  | NaN  |     | 0.021470  | 0.017817  | 0.0  |
| 1 | Africa<br>Eastern<br>and<br>Southern | AFE             | Agriculture,<br>forestry,<br>and<br>fishing,<br>value<br>adde | NV.AGR.TOTL.ZS | NaN  | NaN  | NaN  | NaN  | NaN  | NaN  |     | 11.440935 | 11.602275 | 12.5 |
| 2 | Afghanistan                          | AFG             | Agriculture,<br>forestry,<br>and<br>fishing,<br>value<br>adde | NV.AGR.TOTL.ZS | NaN  | NaN  | NaN  | NaN  | NaN  | NaN  |     | 24.390874 | 22.810663 | 22.1 |
| 3 | Africa<br>Western<br>and Central     | AFW             | Agriculture,<br>forestry,<br>and<br>fishing,<br>value<br>adde | NV.AGR.TOTL.ZS | NaN  | NaN  | NaN  | NaN  | NaN  | NaN  |     | 21.089395 | 20.135340 | 19.6 |
| 4 | Angola                               | AGO             | Agriculture,<br>forestry,<br>and<br>fishing,                  | NV.AGR.TOTL.ZS | NaN  | NaN  | NaN  | NaN  | NaN  | NaN  |     | 6.069630  | 6.507492  | 7.5  |

5 rows × 66 columns

Ingest and manipulate the data using pandas dataframes. Your program should include a function which takes a filename as argument, reads a dataframe in World- bank format and returns two dataframes: one with years as columns and one with countries as columns. Do not forget to clean the transposed dataframe.

```
def convert to columns(df):
    id vars = ['Country Name', 'Country Code', 'Indicator Name', 'Indicator Code']
    value_vars = df.columns.difference(id_vars).tolist()
    df = pd.melt(df, id_vars=id_vars, value_vars=value_vars, var_name='Year', value_name='Value')
    df['Year'] = pd.to datetime(df['Year'], format='%Y')
    return df['Year']
def convert_2_df(df):
 Year = convert_to_columns(df)
  return df['Country Name'] , Year
path = "/content/API_NV.AGR.TOTL.ZS_DS2_en_csv_v2_5359510.csv"
df = pd.read_csv(path)
Country_Name, Year = convert_2_df(df)
print(Country_Name)
print(Year)
     0
                                  Aruba
     1
            Africa Eastern and Southern
     2
                            Afghanistan
```

```
3
        Africa Western and Central
4
                            Angola
                  . . .
261
                            Kosovo
262
                       Yemen, Rep.
                      South Africa
263
264
                            Zambia
265
                          Zimbabwe
Name: Country Name, Length: 266, dtype: object
        1960-01-01
0
       1960-01-01
1
2
        1960-01-01
3
        1960-01-01
4
        1960-01-01
           . . .
        2021-01-01
16487
16488
        2021-01-01
16489
        2021-01-01
16490
        2021-01-01
16491
        2021-01-01
Name: Year, Length: 16492, dtype: datetime64[ns]
```

import pandas as pd

df = pd.read\_csv("/content/API\_AG.LND.AGRI.ZS\_DS2\_en\_csv\_v2\_5359417.csv")
df.head()

|   | Country<br>Name                      | Country<br>Code | Indicator<br>Name                        | Indicator Code | 1960 | 1961      | 1962      | 1963      | 1964      | 1965      | ••• |    |
|---|--------------------------------------|-----------------|------------------------------------------|----------------|------|-----------|-----------|-----------|-----------|-----------|-----|----|
| 0 | Aruba                                | ABW             | Agricultural<br>land (% of<br>land area) | AG.LND.AGRI.ZS | NaN  | 11.111111 | 11.111111 | 11.111111 | 11.111111 | 11.111111 |     | 1  |
| 1 | Africa<br>Eastern<br>and<br>Southern | AFE             | Agricultural<br>land (% of<br>land area) | AG.LND.AGRI.ZS | NaN  | 42.345505 | 42.329995 | 42.366298 | 42.348112 | 42.330887 |     | 43 |
|   |                                      |                 | Agricultural                             |                |      |           |           |           |           |           |     |    |

| 2 | Afghanistan                      | AFG | land (% of<br>land area)                 | AG.LND.AGRI.ZS | NaN | 57.801696 | 57.893688 | 57.970348 | 58.066940 | 58.070006 | <br>58 |
|---|----------------------------------|-----|------------------------------------------|----------------|-----|-----------|-----------|-----------|-----------|-----------|--------|
| 3 | Africa<br>Western<br>and Central | AFW | Agricultural<br>land (% of<br>land area) | AG.LND.AGRI.ZS | NaN | 32.945755 | 33.061986 | 33.318095 | 33.446227 | 33.712301 | <br>39 |
| 4 | Angola                           | AGO | Agricultural<br>land (% of<br>land area) | AG.LND.AGRI.ZS | NaN | 36.237443 | 36.261506 | 36.277549 | 36.301612 | 36.317655 | <br>43 |

5 rows × 66 columns

Explore the statistical properties of a few indicators, that are of interest to you, and cross-compare between individual countries and/or the whole world (you do not have to do all the countries, just a few will do) and produce appropriate summary statistics. You can also use aggregated data for regions and other categories. You are expected to use the .describe() method to explore your data and two other statistical methods.

```
'2014', '2015', '2016', '2017', '2018', '2019', '2020', '2021'],
           dtype='object')
# Select countries of interest
countries = ['USA', 'CHN', 'IND', 'BRA', 'NGA', 'MYS']
# Subset the data for these countries
subset = df[df["Country Code"].isin(countries)]
# Set the index to be the country names
subset.set_index("Country Code", inplace=True)
# Select columns of interest
cols = ['1960', '1970', '1980', '1990', '2000', '2010', '2020']
subset = subset[cols]
# Plot the data
subset.T.plot(kind='line', figsize=(10,6))
plt.title('Agriculture, forestry, and fishing value added (% of GDP) for selected countries')
plt.xlabel('Year')
plt.ylabel('Value added (% of GDP)')
plt.show()
```





## # Calculate summary statistics print(df.describe())

|       | 1960      | 1961      | 1962      | 1963      | 1964      | 1965      | ١ |
|-------|-----------|-----------|-----------|-----------|-----------|-----------|---|
| count | 54.000000 | 56.000000 | 57.000000 | 59.000000 | 60.000000 | 77.000000 |   |
| mean  | 33.793093 | 36.023655 | 35.669858 | 35.094079 | 33.919521 | 31.734547 |   |
| std   | 16.782940 | 16.803391 | 16.195255 | 15.834106 | 15.563133 | 15.623335 |   |
| min   | 3.703532  | 3.511770  | 3.589926  | 3.250267  | 3.331872  | 3.070117  |   |
| 25%   | 23.583461 | 25.625323 | 25.561306 | 24.462283 | 24.366708 | 21.572414 |   |
| 50%   | 31.817478 | 35.236467 | 35.885466 | 35.909091 | 33.879780 | 31.006638 |   |
| 75%   | 43.496911 | 43.705884 | 44.577496 | 43.876230 | 42.557157 | 40.505692 |   |
| max   | 88.184615 | 89.414510 | 88.184950 | 83.781250 | 81.714286 | 79.286224 |   |
|       |           |           |           |           |           |           |   |
|       | 1966      | 1967      | 1968      | 1969      |           | 2012 \    |   |
| count | 81.000000 | 82.000000 | 86.000000 | 88.000000 | 247.0     | 00000     |   |
| mean  | 30.085780 | 29.788355 | 28.052406 | 26.757199 | 10.8      | 26265     |   |
| std   | 15.344324 | 14.899784 | 15.094999 | 14.987981 | 10.8      | 16051     |   |
| min   | 3.271362  | 3.044935  | 3.049675  | 2.812272  | 0.0       | 21470     |   |
| 25%   | 19.188192 | 19.980371 | 16.758127 | 14.893201 | 2.3       | 14655     |   |
| 50%   | 29.072682 | 28.824657 | 27.475818 | 26.340493 | 7.4       | 52451     |   |
| 75%   | 38.686634 | 39.879895 | 38.500800 | 36.566742 | 16.5      | 09710     |   |
|       |           |           |           |           | _         |           |   |

```
2018 \
                  2013
                              2014
                                           2015
                                                       2016
                                                                   2017
            248.000000
                        248.000000
                                     248.000000
                                                 247.000000
                                                             247.000000
                                                                         245.000000
     count
             10.589988
                         10.445776
                                      10.460951
                                                  10.399972
                                                              10.336806
                                                                          10.005378
     mean
                                                  10.025877
     std
             10.190368
                         10.014368
                                      10.083252
                                                              10.209039
                                                                           9.715445
              0.017817
                                      0.012519
                                                   0.013624
                                                                           0.016407
     min
                          0.014812
                                                               0.020479
     25%
              2.403452
                          2.409663
                                      2.265721
                                                   2.276497
                                                               2.350324
                                                                           2.257980
     50%
              7.506450
                          7.425026
                                      7.227268
                                                   6.895281
                                                               6.740532
                                                                           6.732238
     75%
             15.828326
                         16.013640
                                      16.712851
                                                  16.755595
                                                              16.467515
                                                                          16.123452
             50.045192
                         51.792529
                                      58.651894
                                                  58.208741
                                                              60.611090
                                                                          58.934410
     max
                  2019
                              2020
                                           2021
     count 242.000000
                        236.000000
                                     220.000000
     mean
              9.966795
                         10.727796
                                      10.156117
     std
              9.680188
                         10.019991
                                      9.770121
     min
              0.015277
                          0.014101
                                      0.033580
     25%
              2.189406
                          2.536589
                                      2.310256
     50%
              6.649629
                          7.700576
                                      6.946766
     75%
             16.467252
                         17.730685
                                      15.630350
     max
             58.154472
                         59.487396
                                     57.448791
     [8 rows x 62 columns]
import pandas as pd
import seaborn as sns
import matplotlib.pvplot as plt
# Read the data
df = pd.read csv('/content/API NV.AGR.TOTL.ZS DS2 en csv v2 5359510.csv')
# Plot boxplot for value added in agriculture, forestry, and fishing
sns.boxplot(x='Indicator Name', y='2019', data=df)
plt.title('Boxplot for Agriculture, Forestry, and Fishing Value Added (% of GDP)')
```

plt.xticks(rotation=90)

plt.show()

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

# Read the data
df = pd.read_csv('/content/API_AG.LND.AGRI.ZS_DS2_en_csv_v2_5359417.csv')

# Plot boxplot for value added in agriculture, forestry, and fishing
sns.boxplot(x='Indicator Name', y='2019', data=df)
plt.title('Boxplot for Agricultural land (% of land area')
plt.xticks(rotation=90)
plt.show()
```

```
cols = ['1960', '1970', '1980', '1990', '2000', '2010', '2020']
subset = subset[cols]

# Plot the data
subset.T.plot(kind='line', figsize=(10,6))
plt.title('Agricultural land (% of land area'))
plt.xlabel('Year')
plt.ylabel('Yalue added (% of GDP)')
plt.show()
```

Explore and understand any correlations (or lack of) between indicators. Does this vary between country, have any correlations or trends changed with time?

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

# Read the data
df = pd.read_csv('/content/API_NV.AGR.TOTL.ZS_DS2_en_csv_v2_5359510.csv')

# Calculate correlation matrix
corr_matrix = df.corr()

# Plot correlation matrix using heatmap
sns.heatmap(corr_matrix, cmap='coolwarm', annot=True, fmt='.2f')
plt.title('Correlation Matrix')
plt.show()
```

You are expected to use your initiative and "tell a story" with the data. You should use appropriate visualisation (hint: time series could be useful) and provide a text narrative to communicate and explain your findings. Your boss wants to see results and interpretation. What are the key findings?

"""After exploring the dataset on Agriculture, forestry, and fishing, value added (% of GDP), I found some interesting ins
Firstly, I found that in the last six decades, the agriculture, forestry, and fishing sectors have been declining globally
Secondly, I found that there is a significant variation in the contribution of agriculture, forestry, and fishing sectors
Thirdly, I found that there is a negative correlation between the contribution of agriculture, forestry, and fishing sector
Finally, I found that there is a significant variation in the contribution of agriculture, forestry, and fishing sectors t
Overall, the findings suggest that the contribution of agriculture, forestry, and fishing sectors to GDP has been declining

