CS 412

FEB 6TH – LOGISTIC REGRESSION / SVM HTF – CHAPTER 12

HW1 Review

Important takeaways from HW1

- cross_val_score()
- Unusual graphs?
- What values of k seemed best?
- Where there any mistakes in the reasoning of the process?

Feature Extraction

Rather than selecting a subset of features, we can procedurally generate new features

- What dimensions in the data are best at explaining?
- They'll often be combinations of features, and as usual, we want to offload the selection process as much as possible.

Principal Components Analysis

Find a low-dimensional space such that when *x* is projected there, information loss is minimized.

The projection of x on the direction of w is: $z = w^T x$

Find w such that Var(z) is maximized

$$\operatorname{Var}(z) = \operatorname{Var}(\boldsymbol{w}^T \boldsymbol{x}) = \operatorname{E}[(\boldsymbol{w}^T \boldsymbol{x} - \boldsymbol{w}^T \boldsymbol{\mu})^2]$$

$$= \operatorname{E}[(\boldsymbol{w}^T \boldsymbol{x} - \boldsymbol{w}^T \boldsymbol{\mu})(\boldsymbol{w}^T \boldsymbol{x} - \boldsymbol{w}^T \boldsymbol{\mu})]$$

$$= \operatorname{E}[\boldsymbol{w}^T (\boldsymbol{x} - \boldsymbol{\mu})(\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{w}]$$

$$= \boldsymbol{w}^T \operatorname{E}[(\boldsymbol{x} - \boldsymbol{\mu})(\boldsymbol{x} - \boldsymbol{\mu})^T] \boldsymbol{w} = \boldsymbol{w}^T \sum \boldsymbol{w}$$
where $\operatorname{Var}(\boldsymbol{x}) = \operatorname{E}[(\boldsymbol{x} - \boldsymbol{\mu})(\boldsymbol{x} - \boldsymbol{\mu})^T] = \sum$

Linear Discriminant Analysis

Find a low-dimensional space such that when *x* is projected, classes are well-separated.

Find *w* that maximizes the separation

Linear Discriminant Analysis

Find a low-dimensional space such that when is projected, classes are well-separated.

Find *w* that maximizes the separation

$$J(\mathbf{w}) = \frac{(m_1 - m_2)^2}{s_1^2 + s_2^2}$$

$$m_1 = \frac{\sum_t \mathbf{w}^T \mathbf{x}^t r^t}{\sum_t r^t} \quad s_1^2 = \sum_t (\mathbf{w}^T \mathbf{x}^t - m_1)^2 r^t$$

Linear Discriminant Analysis

Find a low-dimensional space such that when is projected, classes are well-separated.

Find *w* that maximizes the separation

PCA vs LDA

PCA vs LDA

PCA:

component axes that maximize the variance

LDA:

maximizing the component axes for class-separation

PCA vs LDA

Henritaly Jistributed

Discriminate analysis

Suppose that the data is randomly distributed in \mathbb{R}^p relative to some multivariate Gaussian distribution.

- Find the center of each distribution region and then separate the regions based on what minimizes the probability of overlap
- Assume that each of the regions shares the same distribution

Discriminate analysis

To minimize overlap, we want to discriminate between the classes along the axis that best discriminates the data

Unlike linear regression we want to divide the region into relevant spaces

Polynamial Carnel P(X) X, X2 X2 X1

Two Classes

choose
$$\begin{cases} C_1 & \text{if } g(\mathbf{x}) > 0 \\ C_2 & \text{otherwise} \end{cases}$$

$$C_2 & g'(\mathbf{x}) > 0$$

$$C_1 & g'(\mathbf{x}) > 0$$

$$C_2 & g'(\mathbf{x}) > 0$$

Quadratic discriminants

Here, we can see two different models

- $\circ X_1, X_2$
- $\circ \ X_{1}, X_{2}, X_{1}X_{2}, X_{1}^{2}, X_{2}^{2}$

For only two variables, it is easy to generate the interaction/polynomial terms

Sigmoid (Logistic) Function

Calculate $g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$ and choose C_1 if $g(\mathbf{x}) > 0$, or Calculate $y = \text{sigmoid}(\mathbf{w}^T \mathbf{x} + w_0)$ and choose C_1 if y > 0.5

= sigmoid(a), where
$$a = \mathbf{w}^T \mathbf{x} + w_0$$
 $\frac{dy}{da} = y(1-y)$

Gradient-Descent

 $E(w \mid X)$ is error with parameters w on sample X

$$w^* = \arg\min_w E(w \mid X)$$

Gradient

Gradient-descent:

Starts from random w and updates w iteratively in the negative direction of gradient

Gradient-Descent

Learning for logistic regression

Learning for logistic regression

$$\eta = 0.6$$

Logistic regression and overfitting

Overfitting

Overfitting

Occurs when very few instances and feature space is high dimensional

To avoid, a common approach is defining a prior on w

- Corresponds to Regularization
- Helps with avoiding large weights
- "Pushes" parameters to zero

Overfitting

Need to prevent complex hypotheses

Overfitting

Occurs when very few instances and feature space is high dimensional

Idea #1: Restrict the number of features considered

Cross-validation

Idea #2: Penalize complex hypotheses in the model search

Regularization!
$$g(x) = |0000 \times_1 - 1500 \times_1 + 1000$$

$$h(x) = |00 \times_1 - 15 \times_2 + 1$$

$$= 0.0001 \times_1 - 0.0001 \times_4 0.0000$$

Regularization

Sigmoid function

Recall the objective of logistic regression:

$$E(\mathbf{w}, \mathbf{w}_0 \mid \mathcal{X}) = -\sum_t r^t \log y^t + (1 - r^t) \log (1 - y^t)$$

L2 regularization

L1 regularization

argmin
$$E(\mathbf{w}, w_0|X) + \lambda \sum_i w_i^2$$

argmin
$$E(\mathbf{w}, w_0|X) + \lambda \sum_{i} |w_i|$$

 $\lambda > 0$ is a weight, chosen by, e.g., cross validation

) = regularization par-metr