A PROJECT REPORT ON

IMPEMENTING VOLTE MOBILE TERMINATION, HOME PROCEDURE

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE AWARD OF THE DEGREE OF

BACHELOR OF TECHNOLOGY

IN

COMPUTER SCIENCE AND ENGINEERING

Submitted By

P.LOKESH REDDY Reg. No. 13071A0545 P.RAHUL Reg. No. 13071A0547 CH.BHARGAVI Reg. No. 13071A0509

Under the Supervision of

Mrs. L.V.RAJANI KUMARI ASSISTANT PROFESSOR

VNRVJIET

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

VALLURUPALLI NAGESWARA RAO VIGNANA JYOTHI INSTITUTE OF ENGINEERING & TECHNOLOGY

AN AUTONOMOUS INSTITUTE

(Approved by AICTE - New Delhi, Govt. of T.S. and Affiliated to JNTUH)

Accredited by NBA and NAAC with "A" Grade

Vignana Jyothi Nagar, Bachupally, Nizampet (S.O.), Hyderabad-500 090. Telangana,

India.
April, 2017

VALLURUPALLI NAGESWARA RAO VIGNANA JYOTHI INSTITUTE OF ENGINEERING & TECHNOLOGY

AN AUTONOMOUS INSTITUTE

(Approved by AICTE - New Delhi, Govt. of T.S. and Affiliated to JNTUH)
Accredited by NBA and NAAC with "A" Grade

Vignana Jyothi Nagar, Bachupally, Nizampet (S.O.), Hyderabad-500 090. Telangana, India.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CERTIFICATE

This is to certify that the project report entitled **IMPLEMENTING VOLTE MOBILE TERMINATION, HOME PROCEDURE** that is being submitted by Mr. P.Lokesh Reddy (13071A0545), Mr. P.Rahul (13071A0547) and Ms. CH.Bhargavi (13071A0509) in partial fulfillment for the award of Degree of **Bachelor of Technology** in **Computer Science and Engineering** of VNR VJIET, Hyderabad during the academic year 2016-2017 is a record of bonafide work carried out by them under our guidance and supervision. The results embodied in this thesis have not been submitted to any other university or institute for the award of any degree or diploma.

PROJECT GUIDE

Mrs. L.V. Rajani Kumari Assistant Professor Department of ECE

VNR VJIET

HEAD OF DEPARTMENT

Mrs. B.V. Kiranmayee Associate Professor & Head Department of CSE VNR VJIET

DECLARATION

We do declare that the thesis work entitled IMPLEMENTING VOLTE MOBILE TERMINATION, HOME PROCEDURE submitted in the department of Computer Science and Engineering, Vallurupalli Nageswara Rao Vignana Jyothi Institute of Engineering and Technology, Hyderabad in partial fulfillment of the requirement for the award of the degree of Bachelor of Technology in Computer Science and Engineering is a bonafide record of our own work carried out under the supervision of Mrs. L.V.Rajani Kumari, department of Electronics and Communication Engineering, Vallurupalli Nageswara Rao Vignana Jyothi Institute of Engineering and Technology.

To the best of our knowledge, this has not been submitted in full or in any part for the award of any degree/diploma of any other institution or university previously.

P.Lokesh Reddy P.Rahul CH.Bhargavi
13071A0545 13071A0547 13071A0509
B.Tech CSE IV/II B.Tech CSE IV/II B.Tech CSE IV/II
VNR VJIET VNR VJIET VNR VJIET

ACKNOWLEDGEMENT

We are thankful to Dr. C.D. NAIDU, principal, VNRVJIET, Hyderabad for giving us

permission to carry out this project.

Our sincere thanks to Mrs. B.V. KIRANMAYEE, Associate professor, Head of the

Department, CSE, VNRVJIET for her esteemed guidance and encouragement

provided during the course of our project.

Our sincere thanks also goes to Mr. KOTARU KIRAN, Associate Consultant, Tata

Consultancy Services who gave us an opportunity to widen our skills and also for

provision of expertise and technical support of expertise and technical support in the

implementation of the project.

We would like to express our sincere thanks to Mrs. L.V. RAJANI KUMARI,

Assistant Professor, VNRVJIET for her precious guidance and kind co-operation at

every step of this project work.

Our sincere thanks to all the staff members of CSE department, VNRVJIET for

helping us during this project.

We are thankful to all the project committee members of the CSE department,

VNRVJIET for helping me during this project.

Finally, we are thankful to my faculty members and my friends for their great moral

support.

P.LOKESH REDDY Reg. No. 13071A0545

P.RAHUL Reg. No. 13071A0547

CH.BHARGAVI Reg. No. 13071A0509

iv

ABSTRACT

Wireless operators throughout the world are getting ready to retire their older 2G voice networks and replace them with service that runs over the new 4G LTE networks they've built during the past couple of years. The VoLTE, service enables wireless operators to use the data network to transmit voice services in the same way they transmit data by which the companies are able to offer high-quality voice calls. The benefit to wireless operators is that it provides more-efficient use of their network resources, which will result in lower operational costs and these carriers can free up spectrum that had been used for the traditional voice service and put it to use to allocate more bandwidth for more lucrative data services. The consumers will also see some benefits as operators make this transition like High-definition voice, Rich Communications Services or RCS, Faster call setup times.

The aim of the project is to implement "Mobile Termination, home" procedure in IMS (IP Multimedia Subsystem) network. This termination procedure applies to users in their home service area. The session termination procedures specify the signalling path between the Serving-CSCF assigned to perform the session termination service and the UE. This signalling path is determined at the time of UE registration, and remains fixed for the life of the registration. A UE always has a proxy (P-CSCF) associated with it. As a result of the registration procedure, the P-CSCF knows the address of the UE. The assigned S-CSCF, knows the address of the P-CSCF depending on the location of S-CSCF and P-CSCF. We have implemented the procedure in client server model using socket programming. By running the program we can see the messages getting transferred between UE, S-CSCF & P-CSCF. VoLTE is the future of voice communications on all wireless networks. Once wireless operators get more experience in real-world deployments, they will refine the technology.

INDEX

Contents	Page. No
List of Figures	
Fig 1.1 Mobile wireless generations	4
Fig 1.2 1G devices	4
Fig 1.3 AMPS Architecture.	5
Fig 1.4 .2G device	6
Fig 1.5 GSM Architecture	7
Fig 1.6 3G device.	8
Fig 1.7 UMTS Architecture	9
Fig 1.8 4G device	10
Fig 1.9 LTE Architecture.	11
Fig 2.1 IMS with the LTE evolved packet core	14
Fig 2.2 The IMS capable UE.	14
Fig 2.3 Interaction between the CSCF, HSS & other elements	18
Fig 2.4 Mobile origination Home Procedure	23
Fig 2.5 Client- Server Model.	25
Fig 3.1 Mobile termination home procedure	30
Fig 4.1 Client Server communication	32
Fig 4.2 Client server interaction.	37
Fig 5.1 Class Diagram.	49
Fig 5.2 Sequence Diagram.	50
Fig 5.3 Use Case Diagram.	51
Fig 5.4 Activity Diagram	52
Fig 6.4 Call flow output	68

ABBREVATIONS:

29. WCDMA

1. LTE Long Term Evolution 2. VolTE Voice over Long Term Evolution 3. RCS **Rich Communication Services** 4. IMS IP Multimedia Subsystem 5. S-CSCF Serving Call Session Control Function 6. P-CSCF **Proxy Call Session Control Function** 7. I-CSCF **Interrogating Call State Control Function** 8 UE User Equipment 9. SMS Short Message Service 10. MMS Multimedia Messaging Service 11 AMPS Advanced Mobile Phone Service 12. MTSO Mobile Telephone Switching Office **13. PSTN** Public Switched Telephone Network 14. CSDN Circuit Switched Data Network 15. BTS Base Transceiver Station 16. GSM Global System for Mobile 17. TDMA Time Division Multiple Access 18. CDMA Code Division Multiple Access 19. GPRS General Packet Radio Service 20. BSC Base Station Controller 21. MSC Mobile Switching Centre 22. HLR Home Location Register 23. VLR Visitor Location Register 24. EIR **Equipment Identity Register 25. ISDN Integrated Services Digital Network** Packet Switched Public Data Network 26. PSPDN 27. CSPDN Circuit Switched Public Data Network 28. UMTS Universal Mobile Telecommunications Service

Wideband Code Division Multiple Access

30. E-UTRA	Evolved UMTS Terrestrial Radio Access
	Network
31. PDN	Public Data Network
32. EDGE	Enhanced Data rates for GSM Evolution
33. QoS	Quality of Service
34. EPC	Evolved Packet Core
35. MME	Mobility Management Entity
36. HSS	Home Subscribe Server
37. SGW	Serving Gateway
38. PCRF	Policy and Charging Rules Function
39. UICC	Universal Integrated Circuit Card
40. SIM	Subscriber Identity Module
41. USIM	UMTS Subscriber Identity Module
42. CSIM	CDMA Subscriber Identity Module
43. ISIM	IP Multimedia Services Identity Module
44. IMPI	IP Multimedia Private Identity
45. SIP	Session Initiation Protocol

CHAPTER 1

1	I	T	'R	\mathbf{O}	DΙ	1	$\neg \gamma$	T	\cap	N	I

1.1 Introduction
1.2 Wireless Technology
1.3 Cellular Mobile Communication
1.4 Existing System
1.4.1 1G4
1.4.2 2G6
1.4.3 3G8
1.4.4 4G9
1.4.5 Drawbacks of existing system Systems
1.5 Proposed System
1.5.1 VoLTE
1.5.2 VoLTE Advantages
CHAPTER 2
2 LITERATURE SURVEY
2 LITERATURE SURVEY
2 LITERATURE SURVEY 2.1 IMS architecture
2 LITERATURE SURVEY 2.1 IMS architecture
2 LITERATURE SURVEY 2.1 IMS architecture
2 LITERATURE SURVEY 2.1 IMS architecture
2 LITERATURE SURVEY 2.1 IMS architecture

Contents	Page. No
2.4 Client-Server communication	29
CHAPTER 3	
3. ALGORITHM DESCRIPTION	
3.1 Algorithm	27
3.2 Algorithm Workflow	
CHAPTER 4	
4. SYSTEM ANALYSIS	
4.1 System Specifications	31
4.1.1 Hardware Requirements	31
4.1.2 Software Requirements	31
4.2 Types of Users	31
4.3 Socket Programming	32
4.3.1 Client server comunication	32
4.3.2 Socket types	
4.3.3 Hosts identification and server ports	34
4.3.4 Architecture	35
4.3.5 Client server interaction	37
4.3.6 Structures	38
4.3.7 Ports and services.	40
4.3.8 Network byte orders	41

CHAPTER 5

5. SYSTEM DESIGN	
5.1 UML Diagrams	48
5.1.1 Introduction	48
5.2 Class Diagram	48
5.3 Sequence Diagram	49
5.4 Use Case Diagram	50
5.5 Activity Diagram	51
CHAPTER 6	
6. CODING	
6.1 Code for Client1	53
6.2 Code for Server	58
6.3 Code for Client2	63
6.4 Output Screens	68
CHAPTER 7	
7. TESTING	
7.1 Testing Fundamentals	70
7.2 White-Box Testing	70
7.3 Black-Box Testing	70
7.4 Testing Phases	70
7.4.1 Uniting Testing	70
7.4.2 Integration testing.	71
7.4.3 System Testing	71
7.5 Test Cases.	71

Contents Page. No

CHAPTER 8

8. CONCLUSION	
8.1 Present Work	74
8.2 Future Enhancements	74
BIBILOGRAPHY	
Text Books.	76
References	76