Cracking the Vigenère Cipher in Haskell

A Lightning Talk for BayHac 2015

David Banas <u>capn.freako@gmail.com</u>
June 14, 2015

The Caesar Cipher

Mono-alphabetic rotation cipher
 (Shift of 3 shown, but can be anything in [1, 25]:

- Easily cracked, using frequency analysis.
 - Find the most frequently occurring letter in the ciphertext.
 - Assume that letter represents 'e'; now, you know the shift.

The Vigenère Cipher

Poly-alphabetic rotation cipher:

keyword	а	b	С	d	е	f	g	h	i	j
С	С	d	е	f	g	h	i	j	k	l
0	0	p	q	r	S	t	u	V	W	х
d	d	е	f	g	h	i	j	k	1	m
e	e	f	g	h	i	j	k	1	m	n

Foils frequency based cryptanalysis.

Vigenère Cipher Example

The ciphertext:

j yt up esaf tm bg byjk bt iaaiaa! k rchlnz jvvg scliph wvu blj aibil ape g wkth ahcu ul fjd ahkt kvrg odaep tfhn pnal c ychr. g lqpk motxapk vp flatjne anm roe uajrs zos hcwe wrgqapld bnb dktcszskog ahgn uptj ymb cu jlniuh, upuij ma hchd ceepnu tm sopkc. uhgz kt y wqodcyfwm eyowq mm rfonse, ajpvg wgah drchtkwirf, bcalpvbnal, bnb cqnmsuivz qwitjt, ape g cqvnr matejm xfrw hprrbncue ao ce h rbrr oh ir. k'm h njtrse keysowt mm vie iaaqienigt klevvp, wjjcf iu ajsoyfd ao dolcepf gu c rchlnz lpcg lgukgeil epndlrgocc rqpm hnf iq sgsvck fjnllr. hmd ebn de her owsscsvgt y cqspmyavf qwoptopzhkq jpkg tfht? i diui g cqvlb ahgopk vie juv il scmapf jt dowmd yesvipl, jn vrffr ao her sqnemue uo oitf kl vp bv jbsilln ppvfgtsgvncmlw. cmaq, oz ipdu apl vpo keobnbpni. khydf ymtgs pltkseklnv. p jppc yqv ysl iatl c wmudgsfss yfeilnf ar bczhyj!

Vigenère Cipher Example (cont'd.)

Result of attempting frequency based cryptanalysis:

j yt up esaf tm bg byjk bt iaaiaa! k rchlnz jvvg scliph wvu blj aibil ape g wkth ahcu ul fjd ahkt kvrg odaep tfhn pnal c ychr. g lqpk motxapk vp flatjne anm roe uajrs zos hcwe wrgqapld bnb dktcszskog ahgn uptj ymb cu jlniuh, upuij ma hchd ceepnu tm sopkc. uhgz kt y wqodcyfwm eyowq mm rfonse, ajpvg wgah drchtkwirf, bcalpvbnal, bnb cqnmsuivz qwitjt, ape g cqvnr matejm xfrw hprrbncue ao ce h rbrr oh ir. k'm h njtrse keysowt mm vie iaaqienigt klevvp, wjjcf iu ajsoyfd ao dolcepf gu c rchlnz lpcg lgukgeil epndlrgocc rqpm hnf iq sgsvck fjnllr. hmd ebn de her owsscsvgt y cqspmyavf qwoptopzhkq jpkg tfht? i diui g cqvlb ahgopk vie juv il scmapf jt dowmd yesvipl, jn vrffr ao her sqnemue uo oitf kl vp bv jbsilln ppvfgtsgvncmlw. cmaq, oz ipdu apl vpo keobnbpni. khydf ymtgs pltkseklnv. p jppc yqv ysl iatl c wmudgsfss yfeilnf ar bczhyj!

Held for 3 centuries!

Charles Babbage's Approach

• Find the spacing between several pairs of identical "words" in the ciphertext:

j yt up esaf tm bg byjk bt iaaiaa! k**rchlnz** jvvg scliph wvu blj aibil ape g wkth ahcu ul fjd ahkt kvrg odaep tfhn pnal c ychr. g lqpk motxapk vp flatjne anm roe uajrs zos hcwe wrgqapld bnb dktcszskog ahgn uptj ymb cu jlniuh, upuij ma hchd ceepnu tm sopkc. uhgz kt y wqodcyfwm eyowq mm rfonse, ajpvg wgah drchtkwirf, bcalpvbnal, bnb cqnmsuivz qwitjt, ape g cqvnr matejm xfrw hprrbncue ao ce h rbrr oh ir. k'm h njtrse keysowt mm vie iaaqienigt klevvp, wjjcf iu ajsoyfd ao dolcepf gu c **rchlnz** lpcg lgukgeil epndlrgocc rqpm hnf iq sgsvck fjnllr. hmd ebn de her owsscsvgt y cqspmyavf qwoptopzhkq jpkg tfht? i diui g cqvlb ahgopk vie juv il scmapf jt dowmd yesvipl, jn vrffr ao her sqnemue uo oitf kl vp bv jbsilln ppvfgtsgvncmlw. cmaq, oz ipdu apl vpo keobnbpni. khydf ymtgs pltkseklnv. p jppc yqv ysl iatl c wmudgsfss yfeilnf ar bczhyj!

Charles Babbage's Approach (cont'd.)

• Find several sets of these pairs, at different spacings, and factor the spacings:

	Factors									
Spacings	2	3	4	5	6	7	8	9	10	11
35				х		Х				
95				х						
120	Х	Х	х	х	Х		х		х	
130	Х			х					х	

 Find the single common factor; that is the keyword length.

Charles Babbage's Approach (cont'd.)

- De-interleave the ciphertext, by taking every n^{th} letter, where n is the keyword length, and doing this n times, starting at positions 0 thru (n 1).
- You now have n subsets of the original ciphertext, which have all been enciphered, using a simple Caesar cipher.
- Crack them, individually, using frequency analysis, and re-interleave the results to form the final answer.

Charles Babbage's Approach (cont'd.)

j yt up esaf tm bg byjk bt iaaiaa!

```
jemja! {0, 5, 10, ...}
Ysbka {1, 6, 11, ...}
Teagbi {2, 7, 12, ...}
Ufbta {3, 8, 13, ...}
Ptyia {4, 9, 14, ...}
```

vigeneres_crack.hs

vigeneres_crack.hs (cont'd.)

```
commonFactors :: [Int] -> [Int]
commonFactors xs =
  foldl intersect (head xss) (tail xss)
  where xss = [factors x | x <- xs]</pre>
```

vigeneres_crack.hs (cont'd.)

Result

i am so glad to be back at bayhac! i really love seeing you all again and i wish that we did this more often than once a year. i look forward to hearing all the talks you have prepared and discussing them with you at length, until my head begins to smoke. this is a wonderful group of people, alive with creativity, acceptance, and community spirit, and i count myself very fortunate to be a part of it. i'm a little jealous of the baypiggies meetup, which is allowed to convene in a really nice linkedin conference room and is served dinner. how can we get ourselves a corporate sponsorship like that? i wish i could afford the cut in salary it would require, in order to get someone to hire me to do haskell professionally, alas, my kids are too demanding. maybe after retirement. i hope you all have a wonderful weekend at bayhac!