Développement 21. Étude du système proie-prédateur de Lotka-Volterra

Soient a,b,c,d>0 quatre réels strictement positifs. Le système proie-prédateur de Lotka-Volterra est le système différentiel

$$\begin{cases} x' = ax - bxy, \\ y' = -cy + dxy. \end{cases}$$
 (1)

associée à une condition initiale $(x(0), y(0)) = (x_0, y_0)$ avec $x_0, y_0 > 0$.

Proposition 1. La solution maximale $X : t \in I \longmapsto (x(t), y(t)) \in \mathbf{R}^2$ du système (1) est à valeurs dans le quadrant $(\mathbf{R}^*_{\perp})^2$ et elle est définie sur \mathbf{R} .

Preuve Montrons que les fonctions x et y sont strictement positives. Pour la première, raisonnons par l'absurde et supposons que la fonction x prenne une valeur négative. Comme $x(0) = x_0 > 0$, le théorème des valeurs intermédiaire nous fournit un réel $t_1 \in I$ vérifiant $x(t_1) = 0$. Mais le problème (1) avec la condition $(\tilde{x}(t_1), \tilde{y}(t_1)) = (0, y(t_1))$ admet la solution (\tilde{x}, \tilde{y}) sur I définie par les relations

$$\tilde{x}(t) = 0$$
 et $\tilde{y}(t) = y(t_1)e^{-c(t-t_1)}, \quad t \in I.$

Avec le théorème de Cauchy-Lipschitz, le problème (1) admet une unique solution avec la condition initiale $(\tilde{x}(t_1), \tilde{y}(t_1)) = (0, y(t_1))$, donc la fonction x est nulle sur I ce qui n'est pas compatible avec la condition x(0) > 0. De même, la fonction y est strictement positive.

Montrons que $I = \mathbf{R}$. Considérons la fonction

$$H : \begin{vmatrix} \mathbf{R}_{+}^{*} \times \mathbf{R}_{+}^{*} \longrightarrow \mathbf{R}, \\ (x,y) \longmapsto dx + by - c \ln x - a \ln y. \end{vmatrix}$$

Pour tout réel $t \in I$, un simple calcul permet d'écrire

$$\frac{d}{dt}[H(x(t), y(t))] = dx'(t) + by'(t) - c\frac{x'(t)}{x(t)} - a\frac{y'(t)}{y(t)}$$

$$= d[ax(t) - bx(t)y(t)] + b[-cy(t) + dx(t)y(t)]$$

$$- c[a - by(t)] - a[-c + dx(t)] = 0.$$

Donc la fonction ${\cal H}$ est constante sur les trajectoires. Considérons les fonctions

$$f \colon \begin{vmatrix} \mathbf{R}_{+}^* \longrightarrow \mathbf{R}, \\ x \longmapsto dx - c \ln x \end{vmatrix}$$
 et $g \colon \begin{vmatrix} \mathbf{R}_{+}^* \longrightarrow \mathbf{R}, \\ y \longmapsto by - a \ln y. \end{vmatrix}$

En les dérivant et en étudiant leurs variations, elles admettent respectivement les minima m := f(c/d) et m' := g(a/b). Par ailleurs, on remarque que

$$\forall x, y > 0,$$
 $H(x, y) = f(x) + g(y)$

de telle sorte qu'il existe une constante $c \in \mathbf{R}$ telle que

$$\forall t \in I, \qquad f(x(t)) + g(y(t)) = c.$$

Ceci permet d'écrire

$$\forall t \in I, \qquad f(x(t)) = c - g(y(t)) \leqslant c - m'.$$

Comme la fonction f tend vers $+\infty$ en 0 et $+\infty$, la fonction x ne peut qu'être bornée sur I. Par le même argument, la fonction y est aussi bornée sur I. D'après le théorème de bouts, la solution X qui est bornée est alors maximale.

 \parallel **Théorème 2.** Les fonctions x et y sont périodiques.

Preuve Séparons le quadrant $(\mathbf{R}_{+}^{*})^{2}$ en les quatre ensembles

$$\mathscr{A} :=]0, c/d] \times]0, a/b], \qquad \mathscr{B} :=]c/d, +\infty[\times]0, a/b],$$

$$\mathscr{C} := [c/d, +\infty[\times [a/b, +\infty[, \mathcal{D}]]), \qquad \mathscr{D} := [0, c/d] \times [a/b, +\infty[, \mathcal{D}])$$

Le cas $(x_0, y_0) = (c/d, a/b)$ est trivial puisqu'alors les fonctions x et y sont constantes et donc périodiques. On suppose désormais que $(x_0, y_0) \neq (c/d, a/b)$.

On suppose que $(x_0, y_0) \in \mathscr{A}$. Montrons que la trajectoire va quitter la zone \mathscr{A} . Raisonnons par l'absurde et supposons qu'elle y reste. Pour tout réel $t \in \mathbf{R}$, avec le système (1) et la proposition, on obtient

$$x'(t) = x(t)[a - by(t)] \ge 0$$
 et $y'(t) = y(t)[dx(t) - c] \le 0$,

donc les fonctions x et y sont respectivement croissante et décroissante. Comme elles sont bornées, elles admettant des limites respectives $\ell, \ell' \geqslant 0$ en $+\infty$. D'après le système (1), lorsque $t \longrightarrow +\infty$, on peut alors écrire

$$x'(t) \longrightarrow a\ell - b\ell\ell'$$
 et $y'(t) \longrightarrow -c\ell' + d\ell\ell'$.

Si ces dernières limites n'étaient pas nulles, alors les fonctions x et y ne seraient pas bornées ce qui est impossible. On en déduit que $a\ell - b\ell\ell' = 0$. Mais la fonction x est croissante avec x(0) > 0, donc elle ne peut tendre vers zéro, c'est-à-dire $\ell \neq 0$. De la dernière égalité, on obtient $\ell' = a/b$. Comme la fonction y est décroissante, on ne peut avoir $y_0 < a/b = \ell'$. On doit donc avoir $y_0 = a/b$ si bien que la fonction y est constante, c'est-à-dire y' = 0. Avec le système (1), cela implique que la fonction x est constante égale au réel $\ell = c/d$ ce qui est exclut. Ainsi la trajectoire quitte la zone \mathscr{A} .

Notons $t_1 := \inf\{t > 0 \mid X(t) \notin \mathcal{A}\}$. Par continuité, on a

$$x(t_1) = c/d$$
 et $y(t_1) < a/b$. (2)

où l'inégalité est stricte puisque $(x_0, y_0) \neq (c/d, a/b)$. Avec le système (1), on obtient alors

$$y'(t_1) = -cy(t_1) + cy(t_1) = 0$$
 et $x'(t_1) = x(t_1)[a - by(t_1)] > 0.$ (3)

Avec ces deux dernières relations (2) et (3), il existe un réel $\eta > 0$ tel qu'on ait

$$x > c/d \qquad \text{et} \qquad y < a/b \qquad \text{sur }]t_1, t_1 + \eta[, \tag{4})$$

c'est-à-dire la trajectoire se situe dans la zone \mathcal{B} . Montrons que la trajectoire va quitter la zone \mathcal{B} . Raisonnons par l'absurde et supposons qu'elle y reste. Comme précédemment, on obtient

$$x'(t) = x(t)[a - by(t)] \ge 0$$
 et $y'(t) = y(t)[dx(t) - c] \ge 0$,

donc les fonctions x et y sont croissantes sur l'intervalle $]t_1, +\infty[$. Comme les fonctions x et y sont aussi bornées, elles admettent donc des limites $\ell, \ell' \geqslant 0$. Comme précédemment, on obtient $\ell' = a/b$ puis $\ell = c/d$ puisque $a\ell - b\ell\ell' = 0$ et $-c\ell' + d\ell\ell' = 0$. Mais comme la fonction x est croissante, on doit donc avoir $x(t_1 + \eta/2) \leqslant \ell = c/d$ ce qui contredit la relation (4). Par conséquent, la trajectoire quitte la zone $\mathscr B$ et, par croissance de la fonction y, il existe un temps $t_2 > t_1$ tel que $y(t_2) = a/b$.

De même, on montre qu'on entre ensuite dans la zone $\mathscr C$ puis $\mathscr D$ et on finit par revenir dans la zone $\mathscr A$.

Montrons que la trajectoire est périodique. Comme la trajectoire tourne d'après ce qui précède, il existe une suite strictement croissante $(t_n)_{n\geqslant 1}$ de temps telle que

$$x(t_n) = c/d$$
 et $y(t_n) \geqslant a/b$, $n \geqslant 1$.

Montrons que la suite $(y(t_n))_{n\geqslant 1}$ est constante. Raisonnons par l'absurde et supposons qu'il existe deux entiers $n,m\in \mathbb{N}$ tels que $y(t_n)\neq y(t_m)$. Quitte à les échanger, on peut supposer que $y(t_n)< y(t_m)$. Comme la fonction H est constante le long des trajectoires et la fonction $H(c/d,\cdot)$ est strictement croissante sur l'intervalle $[a/b,+\infty[$, on obtient

$$H(x(t_n, y(t_n))) = H(c/b, y(t_n)) < H(c/b, y(t_m)) = H(x(t_n), y(t_n)).$$

ce qui est impossible. En particulier, il existe deux temps $t_1, t_2 > 0$ avec $t_1 > t_2$ tels que $x(t_1) = x(t_2) = c/d$ et $y(t_1) = y(t_2)$. On conclut maintenant que la fonction X est T-périodique avec $T := t_2 - t_1$. La fonction $X_1 := X(\cdot + T)$ est encore une solution du système (1) avec $X_1(t_1) = (x(t_2), y(t_2)) = (x(t_1), y(t_1)) = X(t_1)$. Le théorème de Cauchy-Lipschitz nous donne alors $X_1 = X$ ce qui conclut la T-périodicité de la fonction X.

Serge Francinou, Hervé Gianella et Serge Nicolas. Exercices de mathématiques. Oraux X-ENS. Analyse
 Cassini, 2012.