

Integration by Parts

$$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$$

$$\int [f(x)g'(x) + g(x)f'(x)] dx = f(x)g(x)$$

$$\int f(x)g'(x) dx + \int g(x)f'(x) dx = f(x)g(x)$$

$$\int f(x)g'(x) dx = f(x)g(x) - \int g(x)f'(x) dx$$

$$\int u\,dv = uv - \int v\,du$$

EXAMPLE 1 Find $\int x \sin x \, dx$.

$$u = x$$
 $dv = \sin x dx$
 $du = dx$ $v = -\cos x$

$$\int x \sin x \, dx = \int x \sin x \, dx = x \left(-\cos x \right) - \int (-\cos x) \, dx$$

$$= -x \cos x + \int \cos x \, dx$$

$$= -x \cos x + \sin x + C$$

V EXAMPLE 2 Evaluate $\int \ln x \, dx$.

$$u = \ln x$$
 $dv = dx$

$$du = \frac{1}{x} dx \qquad v = x$$

$$\int \ln x \, dx = x \ln x - \int x \frac{dx}{x}$$
$$= x \ln x - \int dx$$
$$= x \ln x - x + C$$

V EXAMPLE3 Find $\int t^2 e^t dt$.

$$u = t^2$$
 $dv = e^t dt$
 $du = 2t dt$ $v = e^t$

$$\int t^2 e^t dt = t^2 e^t - 2 \int t e^t dt$$

$$\int te^t dt = te^t - \int e^t dt$$
$$= te^t - e^t + C$$

$$\int t^{2}e^{t} dt = t^{2}e^{t} - 2 \int te^{t} dt$$

$$= t^{2}e^{t} - 2(te^{t} - e^{t} + C)$$

$$= t^{2}e^{t} - 2te^{t} + 2e^{t} + C_{1} \quad \text{where } C_{1} = -2C$$

EXAMPLE 4 Evaluate $\int e^x \sin x \, dx$.

SOLUTION Neither e^x nor sin x becomes simpler when differentiated, but we try choosing $u = e^x$ and $dv = \sin x \, dx$ anyway. Then $du = e^x \, dx$ and $v = -\cos x$, so integration by parts gives

$$\int e^x \sin x \, dx = -e^x \cos x + \int e^x \cos x \, dx$$

$$\int e^x \cos x \, dx = e^x \sin x - \int e^x \sin x \, dx$$

$$\int e^x \sin x \, dx = -e^x \cos x + e^x \sin x - \int e^x \sin x \, dx$$

$$2\int e^x \sin x \, dx = -e^x \cos x + e^x \sin x$$

$$\int e^x \sin x \, dx = \frac{1}{2} e^x (\sin x - \cos x) + C$$

Performing Integration By Parts

Integration By Parts
$$\int f(x)g'(x)dx = f(x)g(x) - \int g(x)f'(x)dx$$

$$f(x) = u$$
 $g(x) = v$
 $f'(x)dx = du$ $g'(x)dx = dv$

$$\int \mathbf{u} \, d\mathbf{v} = \mathbf{u} \mathbf{v} - \int \mathbf{v} \, d\mathbf{u}$$

EXAMPLE 6 Prove the reduction formula

$$\int \sin^{n} x \, dx = -\frac{1}{n} \cos x \sin^{n-1} x + \frac{n-1}{n} \int \sin^{n-2} x \, dx$$

. (a) Use the reduction formula in Example 6 to show that

$$\int \sin^2 x \, dx = \frac{x}{2} - \frac{\sin 2x}{4} + C$$

(b) Use part (a) and the reduction formula to evaluate $\int \sin^4 x \, dx$.

$$\int \frac{\ln x}{x^2} dx$$

$$\int (\ln x)^2 dx$$