CSP FAST TRACK

ARTURO

ABSTRACT. In this note

1. Introduction

Let R be a set of relation symbols. Let $\mathcal{A} = (A, P)$ be a relational structure over R. By the **constraint satisfaction problem** $\mathrm{CSP}(\mathcal{A})^1$ we mean the following decision problem: given a set X of variables and a set $\Sigma(X, R)$ of atomic formulas over R (and X), decide whether there is an assignment $(-)^{\mathcal{A}}: X \to A$ such that $\mathcal{A} \models \Sigma$; i.e. for all $r \in R_n$ and for all $x_1, \ldots, x_n \in X$

(1)
$$r(x_1, \dots, x_n) \in \Sigma \implies (x_1^{\mathcal{A}}, \dots, x_n^{\mathcal{A}}) \in r^{\mathcal{A}}$$

Starting point: consider the case when A is finite.

We shall say that CSP(A) is decidable if there is a uniform (unique) algorithm deciding CSP(A) for every X and Σ over R.

Let F be a set of function symbols. Let $\mathbf{A} = (A, \Phi)$ be an algebra over F. By the **constraint satisfaction problem** $\mathrm{CSP}(\mathbf{A})$ we mean the following decision problem: decide uniformly, that is by a unique algorithm, every $\mathrm{CSP}((A, P))$ such that $P \subseteq \mathrm{Inv}(\Phi)$.

Definition 1.1. Let F be a set of function symbols and \mathbf{A} be an algebra over F. We denote by $Clo(\mathbf{A})$ the smallest set containing

$$\{f^{\mathbf{A}}: f \in F\} \quad \text{ and } \quad \{\pi^n_i: A^n \to A, 1 \leq i \leq n, n \in \omega\}$$

and closed under composition.

Goal: prove

Theorem 1.2. Let **A** be a finite idempotent algebra. Then the following are equivalent:

- (1) CSP(**A**) is polynomial-time decidable;
- (2) $Clo(\mathbf{A})$ contains a weak near-unanimity operation;
- (3) for every $\mathbf{B} \in HS(\mathbf{A})$, $Clo(\mathbf{B}) \neq \{\pi_i^n : 1 \leq i \leq n, n \in \omega\}$.

Otherwise, $CSP(\mathbf{A})$ is NP-complete.

¹More often denoted by CSP(P).

ARTURO

2. Kinds of Operations

Definition 2.1. An operation $\varphi: A^n \to A$ is called

(1) **essentially unary** if there is a function $\psi: A \to A$ such that

$$\varphi(a_1,\ldots,a_n)=\psi(a_i)$$

for all $a_1, \ldots, a_n \in A$.

2

(2) **idempotent** if $\varphi(a, \ldots, a) = a$ for all $a \in A$.

3. Relational Clones

Definition 3.1. Let R be a set of relation symbols and A be a relational structure over R. We denote by Clo(A) the smallest set containing

$$\{r^{\mathcal{A}}: r \in R\}$$
 and $\{\Delta^{(n)}: n \in \omega\}$

and closed under intersection and truncation².

Remark 3.2. Observe that Clo(A) is given by all the relations ρ of A definable by a first-order primitive positive formula (that is, involving only conjunctions and existential quantifications). Recall that $\rho \subseteq A^n$ is definable if there is a formula $\varphi(x_1, \ldots, x_n)$ such that

$$\mathcal{A} \models \varphi(a_1, \dots, a_n) \iff (a_1, \dots, a_n) \in \rho$$

Theorem 3.3. Let G be a set and D be a finite set of relation symbols. For any $A = (A, \Gamma)$ over G and $B = (A, \Delta)$ over D with $\Delta \subseteq Clo(A)$, CSP(B) is polynomial-time reducible to CSP(A).

Proof. Let $\Sigma(X,D)$ be a set of equations. Let $d(x_1,\ldots,x_n)\in\Sigma$. For every $a_1,\ldots,a_n\in A$

(2)
$$\mathcal{B} \models d(a_1, \dots, a_n) \iff (a_1, \dots, a_n) \in \delta \iff \mathcal{A} \models \varphi(a_1, \dots, a_n)$$

for some $\varphi(x_1,\ldots,x_n)$ of the form

$$\exists y_1, \ldots, y_m \left(g_1(z_1^1, \ldots, z_{n_1}^1) \wedge \cdots \wedge g_k(z_1^k, \ldots, z_{n_k}^k) \right)$$

where $g_1, ..., g_k \in G$ and $z_i^i \in \{x_1, ..., x_n, y_1, ..., y_m\}$.

Now, for each $d(x_1,\ldots,x_n)\in\Sigma$ perfrom the following steps:

- (1) add $\{g_1(z_1^1,\ldots,z_{n_1}^1),\ldots,g_k(z_1^k,\ldots,z_{n_k}^k)\}$ to Σ ;
- (2) remove $d(x_1, \ldots, x_n)$ from Σ .

At the the end we obtain a set of equations T(X,G) over G. This is a polynomial-time reduction. (It's reasonable but for me this kind of stuff is like a leap of faith). By (2) it is clear that we can find an assignment $X \to A$ such that $\mathcal{B} \models \Sigma$ iff we can find an assignment such that $\mathcal{A} \models T$.

Corollary 3.4. Let A = (A, P) and B = (A, Clo(A)). Then

(1) CSP(A) is polynomial-time decidable iff CSP(B) is.

 $^{^2\}text{If }\rho\in \text{Clo}(\mathcal{A})\text{, then also }\{(a_1,\ldots,a_{n-1}):(a_1,\ldots,a_{n-1},a_n)\in \rho,\text{ for some }a_n\in A\}\in \text{Clo}\,\mathcal{A}.$

(2) CSP(A) is NP-complete iff CSP(B) is.

Theorem 3.5 ([1]). Let A be a relational structure. If Pol(A) contains essentially unary operations only, CSP(A) is NP-complete.

References

[1] Jeavons, P. (1998). On the algebraic structure of combinatorial problems, $Theoretical\ Computer\ Science\ 200,\ 185-204.$