

why not change the world?®

Embedded Neural Network

Ashton Ropp

4/17/25

Most Basic Neural Network Overview

- Prediction: is the 4x4 image all black or all white (trivial)
 - Easy to extend
- Four convolutional filters (3x3)
- ReLU activation
- Weights stored externally: system only responsible for evaluation and backpropagation

Signal Name	Туре	Description
input_image[4][4]	logic signed [15:0]	4×4 image of pixel values in Q8.8 fixed point
conv_weights[4][3][3]	logic signed [15:0]	4 convolution filters (each 3×3), for feature extraction
fc1_weights[8][16]	logic signed [15:0]	FC1 weights, 8 neurons × 16 flattened inputs
fc1_bias[8]	logic signed [15:0]	Biases for each of the 8 neurons in FC1
fc2_weights[8]	logic signed [15:0]	Final layer weights (maps 8 FC1 outputs to 1 output)
fc2_bias	logic signed [15:0]	Single bias value for FC2
label	logic signed [15:0]	Ground truth label (supervised training target)
learning_rate	logic signed [15:0]	Used to scale gradient updates
clk, rst, start	logic	Control signals

System Structure

Vivado Schematic


```
# === Epoch 14 ===
# Prediction: 220 (~= 0.86) | Label: 256 | Error: 35
# Prediction: 37 (~= 0.14) | Label: 0 | Error: 36
# === Epoch 15 ===
# Prediction: 238 (~= 0.93) | Label: 256 | Error: 37
# Prediction: 40 (~= 0.16) | Label: 0 | Error: 18
# === Epoch 16 ===
# Prediction: 256 (~= 1.00) | Label: 256 | Error: 40
# Prediction: 40 (~= 0.16) | Label: 0 | Error: 0
# === Epoch 17 ===
# Prediction: 256 (~= 1.00) | Label: 256 | Error: 40
# Prediction: 40 (~= 0.16) | Label: 0 | Error: 0
# === Epoch 18 ===
# Prediction: 256 (~= 1.00) | Label: 256 | Error: 40
# Prediction: 40 (~= 0.16) | Label: 0 | Error: 0
# === Epoch 19 ===
# Prediction: 256 (~= 1.00) | Label: 256 | Error: 40
# Prediction: 40 (~= 0.16) | Label: 0 | Error: 0
```


ModelSim

Optimizations Part A

- Convolution unit: shown below
 - Explicit unrolling avoids runtime logic for index
- MAC: adder tree (next slide)

```
int k;
                                                   genvar m, n;
always comb begin
                                                  generate
   k = 0;
                                                      for (m = 0; m < KERNEL_SIZE; m++) begin : FLATTEN M
   for (int m = 0; m < KERNEL SIZE; m++) begin
                                                           for (n = 0; n < KERNEL SIZE; n++) begin : FLATTEN N
       for (int n = 0; n < KERNEL SIZE; n++) begin
                                                               localparam int IDX = m * KERNEL SIZE + n;
           b flat[k] = kernel weights[m][n];
                                                               assign b flat[IDX] = kernel weights[m][n];
           k++;
                                                           end
       end
                                                      end
   end
                                                  endgenerate
end
```

Old

Results - Optimized Part A

Full chip and clock tree

Results - Optimized Part A (Misc)

Placement density and power density

Results - Comparison

Unoptimized Optimized

Part B Optimizations

- Loop unrolling: 16 cycle delay to 1 cycle delay
- Around a dozen of these exist on the chip

```
COMPUTE: begin
   weights out[idx] <= weights_in[idx] - update mul[idx][23:8];</pre>
                    <= backprop mul[idx][23:8];</pre>
   dL drelu[idx]
                                                                COMPUTE: begin
                                                                     for (int i = 0; i < INPUT DIM; i++) begin
   if (idx == INPUT DIM - 1) begin
                                                                         weights_out[i] <= weights_in[i] - update_mul[i][23:8];</pre>
       bias out <= bias in - bias update[23:8];
                                                                                           <= backprop_mul[i][23:8];</pre>
                                                                         dL drelu[i]
       state <= DONE;</pre>
                                                                     end
    end else begin
       idx  <= idx + 1;
                                                                     bias out <= bias in - bias update[23:8];
   end
                                                                     state
                                                                               <= DONE:
end
                                                                end
```

Old New

Further Optimizations

- Added parallel MAC units to compute all 3x3 filters on 4x4 image in one cycle (trade area, power for speed)
- Removed FSM from as many layers as possible
- Kept all previous optimizations

Results

- 10825 ns to 6000 ns to 2000 ns for full test
- 5 cycles for entire pipeline and backpropagation
- A: 4.5% area decrease, 35% power decrease, 44% time decrease
- B: 47% area increase, 10% power increase, 82% time decrease

Design	Area (um ²)	WNS	TNS	Power (W)	Time (ns)
Unoptimized	2370830	-2.52	-136.61	11.10	10825
Optimized A	2265345	0.17	0	7.22	6000
Optimized B	3489451	-1.07	-68.37	12.28	2000

OpenROAD Metrics

Future Work

- Figure out why power numbers are exponentially large
- Close timing issues
- More clock and PPA tuning
- KLayout
- Synopsis Design Compiler

Synopsis Design Compiler Results (Part A Optimizations)

Number of ports	86765	Number of ports:	86765
Number of ports:		·	
Number of nets:	550240	Number of nets:	595693
Number of cells:	398389	Number of cells:	438107
Number of combinational cells:	391140	Number of combinational cells	: 430814
Number of sequential cells:	6050	Number of sequential cells:	6050
Number of macros/black boxes:	Θ	Number of macros/black boxes:	0
Number of buf/inv:	110400	Number of buf/inv:	50329
Number of references:	30	Number of references:	41
Combinational area:	1217524.000000	Combinational area:	1426731.000000
Buf/Inv area:	110400.000000	Buf/Inv area:	63735.000000
Noncombinational area:	43506.000000	Noncombinational area:	43897.000000
Macro/Black Box area:	0.000000	Macro/Black Box area:	0.000000
Net Interconnect area: un	defined (No wire load specifi	ed) Net Interconnect area: u	ndefined (No wire load specified)
Total cell area:	1261030.000000	Total cell area:	1470628.000000

Unoptimized Part A

