Proposition 3.5.

- (i) For any integer $m \neq 0$, m is not divisible by 0.
- (ii) For any $n \in \mathbb{N}$, $n^3 + 2n$ is divisible by 3.4
- (iii) For any $n \in \mathbb{N}$, $n^3 + 5n$ is divisible by 6.

Proof of (i) and (iii). (i) Suppose, by way of contradiction, that the integer $m \neq 0$ is divisible by 0, i.e., there exists $k \in \mathbb{Z}$ such that $m = k \cdot 0$. But then Proposition 2.5 implies m = 0, which is a contradiction to $m \neq 0$. So our assumption must be false, that is, m is not divisible by 0.

(iii) We use induction on n. For n=1, $1^3+5\cdot 1=6=6\cdot 1$ is divisible by 6. For the induction step, assume that n^3+5n is divisible by 6, i.e., there exists $k\in\mathbb{Z}$ such that $n^3+5n=6k$. Below we prove a lemma that says that 2 divides n^2+n , i.e., there exists $m\in\mathbb{Z}$ such that $n^2+n=2m$. Hence

$$(n+1)^3 + 5(n+1) = n^3 + 3n^2 + 8n + 6 = 6k + 3n^2 + 3n + 6 = 6k + 6m + 6 = 6(k+m+1).$$

So we found an integer, namely k+m+1, such that $(n+1)^3+5(n+1)$ equals 6 times that integer, so by definition, 6 divides $(n+1)^3+5(n+1)$, and our induction is complete.

Lemma. For any $n \in \mathbb{N}$, 2 divides $n^2 + n$.

Proof. We proceed by induction on n. For $n=1,\,1^2+1=2=2\cdot 1$. For the induction step, assume that 2 divides n^2+n , i.e., there exists $m\in\mathbb{Z}$ such that $n^2+n=2m$. Then

$$(n+1)^2 + n + 1 = n^2 + 3n + 2 = 2m + 2n + 2 = 2(m+n+1)$$
.

So we found an integer, namely m+n+1, such that $(n+1)^2+n+1$ equals 2 times that integer, so by definition, 2 divides $(n+1)^2+n+1$, and our induction is complete.

⁴By n^3 we mean $n \cdot n \cdot n$.