7 arlight

ИСТОЧНИКИ НАПРЯЖЕНИЯ СЕРИЯ HTS

В металлическом кожухе

- **7** Стандартные
- **7** С вентилятором

HTS-350M-5 HTS-350-12 HTS-350-24 HTS-350-36 HTS-350-48

1. ОСНОВНЫЕ СВЕДЕНИЯ ОБ ИЗДЕЛИИ

- 1.1. Источник питания HTS предназначен для преобразования переменного напряжения электрической сети в постоянное стабилизированное напряжение.
- 1.2. Предназначен для эксплуатации внутри помещений.
- 1.3. Высокая стабильность выходного напряжения и высокий КПД.
- 1.4. Встроенный фильтр электромагнитных помех.
- 1.5. Защита от перегрузки и короткого замыкания.
- Сеточный металлический корпус и встроенный вентилятор обеспечивают эффективное охлаждение.
- 1.8. Проверка 100% изделий на заводе в условиях максимальной температуры и при максимальной нагрузке.

2 OCHOBHЫF TEXHUYECKUF XAPAKTEPUCTUKU

Артикул	015560	008836	008895	015096	011215
Модель	HTS-350M-5	HTS-350-12	HTS-350-24	HTS-350-36	HTS-350-48
Выходное напряжение	DC 5 B ±5%	DC 12 B ±5%	DC 24 B ±5%	DC 36 B ±5%	DC 48 B ± 5%
Выходной ток (макс.)	60 A	29 A	14,6 A	9,7 A	7,3 A
Выходная мощность (макс.)	300 Вт	350 Вт	350 Вт	350 Вт	350 Вт
Входное напряжение			AC 176-264 B		
Частота питающей сети	50 / 60 Гц				
Макс. потребляемый от сети ток	4 A / 230 B				
Ток холодного старта			50 A		
Амплитуда пульсаций на вых.	100 мВ	100 мВ	150 мВ	150 мВ	200 мВ
Нестабильность Ивых.	1%	0,5%	0,5%	0,5%	0,5%
кпд	74%	75%	82%	83%	84%
Температура окруж. среды	0+50°C				
Степень пылевлагозащиты			IP20		
Габаритные размеры	227х115х50 мм			215х115х50 мм	

3. УСТАНОВКА И ПОДКЛЮЧЕНИЕ

ВНИМАНИЕ! Во избежание поражения электрическим током перед началом работ отключите электропитание. Все работы должны проводиться только квалифицированным специалистом.

- 3.1. Извлеките источник питания из упаковки и убедитесь в отсутствии механических повреждений.
- 3.2. Убедитесь, что выходное напряжение и мощность источника соответствуют подключаемой нагрузке.
- 3.3. Закрепите источник питания в месте установки.
- 3.4. Подключите нагрузку к выходным клеммам, обозначенным символами «V+», «V-», строго соблюдая полярность. Равномерно распределяйте нагрузку между выходными клеммами.
- 3.5. Подключите к входным клеммам, обозначенным символами «L» и «N», провода электросети, соблюдая маркировку.
- 3.6. Подключите к клемме (🛨) провод защитного заземления.

↑ ВНИМАНИЕ! Проверьте правильность подключения всех проводов. Подача напряжения сети ~230 В на выходные клеммы источника напряжения неминуемо приводит к выходу его из строя.

- 3.7. Включите электропитание. Допустима небольшая задержка включения источника (до 2 сек.), что является особенностью работы электронной схемы управления и не является дефектом.
- 3.8. Дайте поработать источнику 20 минут с подключенной нагрузкой, которую Вы предполагаете использовать. Источник питания должен находиться в тех же условиях, как и при последующей эксплуатации.
- 3.9. Проверьте температуру корпуса источника питания. Максимальная температура корпуса источника в установившемся режиме не должна превышать +70 °C. Если температура корпуса выше, необходимо уменьшить нагрузку, обеспечить лучшую вентиляцию или использовать более мошный источник питания.
- 3.10. Отключите источник от сети после проверки.

4. ОБЯЗАТЕЛЬНЫЕ ТРЕБОВАНИЯ И РЕКОМЕНДАЦИИ ПО ЭКСПЛУАТАЦИИ

→ ВНИМАНИЕ! Не допускается использовать источник питания совместно с диммерами (регуляторами освещения)!

- 4.1. Соблюдайте условия эксплуатации оборудования:
 - Эксплуатация только внутри помещений;
 - → Температура окружающего воздуха от 0 до +50 °C;

 - Отсутствие в воздухе паров и примесей агрессивных веществ (кислот, щелочей и пр.).
- 4.2. Для естественной вентиляции обеспечьте свободное пространство вокруг источника питания не менее 20 см, как изображено на Рис. 1. При невозможности обеспечить свободное пространство используйте принудительную вентиляцию.
- 4.3. Не нагружайте источник питания более 80% от его максимальной мощности. Учитывайте, что с повышением температуры окружающей среды, максимальная мощность источника питания снижается, см. график зависимости на Рис. 2.
- 4.4. Не закрывайте вентиляционные отверстия источника.
- 4.5. Не устанавливайте источник питания вблизи нагревательных приборов или горячих поверхностей.
- 4.6. При использовании в системе нескольких источников питания не устанавливайте их вплотную друг к другу.
- 4.7. Не располагайте источник питания вплотную к нагрузке или на ней.
- 4.8. Не допускайте попадания воды, грязи и мелких предметов внутрь источника, а также образования конденсата.
- 4.9. Не соединяйте параллельно выходы двух и более источников питания.

Рис. 1. Свободное пространство вокруг источника.

Температура окружающей среды (ta), °С

Рис. 2. Максимальная допустимая нагрузка, % от мощности источника.

- 4.10.При выборе места установки источника предусмотрите возможность обслуживания. Не устанавливайте источник в местах, доступ к которым будет впоследствии невозможен.
- 4.11. Периодически производите профилактическую чистку и смазку вращающихся частей вентилятора. Периодичность профилактического обслуживания зависит от степени загрязнения воздуха. В условиях проведения строительно-отделочных работ может потребоваться еженедельная профилактика.

ВНИМАНИЕ! Остановка вентилятора из-за несвоевременного профилактического обслуживания приводит к отказу источника питания.