Effectiveness relations for heat exchangers: NTU = UA_s/C_{min} and $c = C_{min}/C_{max} = (\dot{m}C_p)_{min}/(\dot{m}C_p)_{max}$ (Kays and London, Ref. 5.)

$c = C_{\min}/C_{\max} = (\dot{m}C_p)_{\min}/(\dot{m}C_p)_{\max}$ (Kays and London, Ref. 5.)				
Heat exchanger type	Effectiveness relation			
1 <i>Double pipe:</i> Parallel-flow	$\varepsilon = \frac{1 - \exp\left[-NTU(1+c)\right]}{1+c}$			
Counter-flow	$\varepsilon = \frac{1 - \exp\left[-NTU(1-c)\right]}{1 - c \exp\left[-NTU(1-c)\right]}$			
2 Shell and tube: One-shell pass 2, 4, tube passes	$\varepsilon = 2 \bigg\{ 1 + c + \sqrt{1 + c^2} \frac{1 + \exp{\left[- \text{NTU} \sqrt{1 + c^2} \right]}}{1 - \exp{\left[- \text{NTU} \sqrt{1 + c^2} \right]}} \bigg\}$			
3 Cross-flow (single-pass)				
Both fluids unmixed	$\varepsilon = 1 - \exp\left\{\frac{NTU^{0.22}}{c}\left[\exp\left(-c\ NTU^{0.78}\right) - 1\right]\right\}$			
\mathcal{C}_{max} mixed, \mathcal{C}_{min} unmixed	$\varepsilon = \frac{1}{c}(1 - \exp\{1 - c[1 - \exp(-NTU)]\})$			
\mathcal{C}_{min} mixed, \mathcal{C}_{max} unmixed	$\varepsilon = 1 - \exp\left\{-\frac{1}{c}[1 - \exp(-c \text{ NTU})]\right\} \qquad \frac{\text{(init)}}{\text{(init)}}$			
4 All heat exchangers with c = 0	$\varepsilon = 1 - \exp(-NTU)$ Heat $\frac{1}{1}$			

Table 10.3

NTU relations for heat exchangers NTU = UA_s/C_{\min} and $c = C_{\min}/C_{\max} = (\dot{m}C_p)_{\min}/(\dot{m}C_p)_{\max}$ (Kays and London, Ref. 5.)

	Heat exchanger type		NTU relation
_	1	Double-pipe: Parallel-flow	$NTU = -\frac{ln\left[1 - \varepsilon(1+c)\right]}{1+c}$
		Counter-flow	$NTU = \frac{1}{c-1} In \left(\frac{\varepsilon - 1}{\varepsilon c - 1} \right)$
	2	Shell and tube: One-shell pass 2, 4, tube passes	NTU = $-\frac{1}{\sqrt{1+c^2}} \ln \left(\frac{2/\varepsilon - 1 - c - \sqrt{1+c^2}}{2/\varepsilon - 1 - c + \sqrt{1+c^2}} \right)$
	3	$Cross$ -flow (single-pass) C_{\max} mixed, C_{\min} unmixed	$NTU = -In\left[1 + \frac{In\left(1 - \varepsilon c\right)}{c}\right]$
	4	C_{\min} mixed, C_{\max} unmixed All heat exchangers with $c=0$	$NTU = -\frac{\ln \left[c \ln \left(1 - \epsilon\right) + 1\right]}{c}$ $NTU = -\ln(1 - \epsilon)$

Extracted from Y.A. Cengel, "Heat Transfer: A Practical Approach", 2nd Edition.