Proyecto 1 - Diseño Lógico — Cronograma de Tareas

Día	Actividades principales	Entregables	Bitácora física
1 – Organización y planificación	- Crear repositorio GitHub con estructura Preparar bitácoras individuales (numeradas y fechadas) Dividir subsistemas entre integrantes Hacer diagrama de bloques general del sistema Hamming.	- Repositorio inicial en GitHub Diagrama general en /docs.	- Registro de planificación del proyecto Roles de equipo Boceto a mano del diagrama general.
2 – Diseño de subsistemas Hamming	- Cada integrante diseña su subsistema (codificación, decodificación, verificación, corrección, despliegues) Diagramas a mano y digitales Definir ecuaciones booleanas principales.	- Diagramas digitales en /docs Primeras ecuaciones booleanas en GitHub.	- Diagramas a mano de cada subsistema Ejemplos de simplificación booleana.
3 – Implementación en HDL	- Programar en SystemVerilog los subsistemas Crear testbenches básicos Simular en RTL (pre-síntesis).	- Código HDL en /src Capturas de simulación en /sim.	- Notas de simulaciones Resultados de primeras pruebas.
4 – Integración y simulación completa	- Integrar todos los módulos Simular en RTL y post- síntesis Corregir errores y simplificar ecuaciones Seleccionar un ejemplo de simplificación para el informe.	- Diseño integrado en GitHub Capturas de simulación completas.	- Registro de errores detectados y soluciones Simplificación booleana anotada a mano.
5 – Ejercicio 2: Oscilador en anillo	- Construir oscilador con 74LS04 Medir período de oscilación (5 inversores y luego 3) Probar con cable largo y un inversor con capacitor Guardar imágenes USB del osciloscopio.	- Imágenes del osciloscopio en /docs Cálculos de retardo en GitHub/informe.	- Mediciones de períodos Observaciones de cambios en la señal Explicaciones a mano de resultados.
6 – Implementación física en FPGA	- Conectar switches, LEDs y displays en protoboard Probar casos: sin error, 1 error corregible, 2 errores detectables Documentar conexiones con fotos y esquemas.	- Fotos y esquemas en /docs Código final en /src.	- Registro de conexiones Resultados de pruebas reales Comparación con simulaciones.
7 – Informe final y entrega	- Completar README.md (informe grupal) Revisar bitácoras individuales Subir última versión a GitHub Preparar presentación de FPGA + oscilador en anillo.	- Informe completo en README.md Repositorio final listo FPGA funcionando.	- Resumen de la semana Problemas enfrentados y soluciones Reflexión final del aprendizaje.