Trigonometria

Erik Perillo

Sumário

1	O que é trigonometria?	3
2	Triângulos2.1 Tipos de triângulo2.2 Triângulos Retângulos	3 3
3	O teorema de Pitágoras	4
4	Senos, cossenos e tangentes	5
5	Exercícios	6
6	Respostas aos Exercícios	8

1 O que é trigonometria?

Trigonometria é a área da matemática que estuda as relações existentes em triângulos. Isso se mostrará muito útil em várias áreas da engenharia. Embora simples, a trigonometria é extremamente poderosa e já possibilitou à humanidade, por exemplo, calcular o raio da Terra.

2 Triângulos

Os triângulos têm uma propriedade muito interessante: A soma dos ângulos internos de um triângulo é sempre 180 graus. Não é possível você fazer um triângulo que não segue essa regra.

2.1 Tipos de triângulo

Triângulos podem ser classificados de diversas maneiras, mas aqui vamos nos importar com apenas algumas delas. Vamos olhar os ângulos internos do triângulo para dar a eles rótulos. Os tipos que consideraremos são:

- Triângulo acutângulo: Os ângulos internos são todos **menores** que 90 graus.
- Triângulo retângulo: Um dos ângulos tem 90 graus.
- Triângulo obtusângulo: Um dos ângulos tem mais de 90 graus.

Abaixo temos uma ilustração bonitinha que mostra as diferenças.

2.2 Triângulos Retângulos

Dentre os tipos que vimos, o tipo mais importante é o triângulo retângulo. Ele tem propriedades muito interessantes que vamos aprender a seguir.

- O Triângulo retângulo tem nomes especiais para suas partes:
- Catetos: os lados do triângulo que tocam o ângulo reto.

• Hipotenusa: o lado do triângulo que **não** toca o ângulo reto.

Figura 1: Nomes dos lados do triângulo

A partezinha quadrada com um ponto indica que este é um ângulo reto, ou seja, de 90 graus.

3 O teorema de Pitágoras

Os ângulos retângulos (e apenas esses) têm uma propriedade muito legal: A soma dos quadrados dos catetos é igual ao quadrado da hipotenusa. Olhando para a figura a seguir, damos os nomes de a, b, e c para os lados do triângulo retângulo:

Seguindo a regra que acabamos de dar, então, é verdade que:

$$b^2 + c^2 = a^2$$

Vamos fazer um exemplo? Faça no papel, com a ajuda de uma régua, um triângulo retângulo de catetos de 3 e 4 cm. Segundo o teorema de pitágoras, qual o tamanho da hipotenusa? Oras, tem que ser:

$$h^2 = 3^2 + 4^2 \implies h^2 = 9 + 16 \implies h^2 = 25 \implies h = 5$$

Desenhe agora a hipotenusa. Pode checar com a régua, deu exatamente 5cm!

4 Senos, cossenos e tangentes

Senos e cossenos são muito importantes. Todo seno está associado a um ângulo. Considere a figura a seguir:

Então temos as seguintes relações:

- $sen(\theta)$ (seno de θ) = cateto oposto sobre a hipotenusa = $\frac{b}{a}$
- $cos(\theta)=$ cateto adjacente sobre a hipotenusa $=\frac{c}{a}$
- $tan(\theta) = {f cateto}$ oposto sobre o adjacente = ${b\over c}$

5 Exercícios

1. Determine o valor de x para os triângulos a seguir:

(a) -

(b) -

(c) -

2. O senhor Parker precisa fazer uma teia até a ponta de seu prédio Favorito, como ilustrado abaixo.

Supondo que o prédio tem 50 metros de altura e a distância do Parker até o prédio é de 120 metros, quantos metros tem que ter a sua teia?

3. Considere a imagem a seguir:

Qual é o valor de:

- Seno de α ?
- Cosseno de α ?
- Tangente de α ?

6 Respostas aos Exercícios

1. (a) A soma dos ângulos dos triângulos é sempre 180 graus.

$$40 + 70 + x = 180 \implies x = 180 - 40 - 70 = 70$$

(b)
$$(x+10) + x + (180 - 110) = 180$$

$$2x + 80 = 180 \implies 2x = 100 \implies x = 50$$

(c)
$$4x + 3x + 2x = 180 \implies x * (4 + 3 + 2) = 180$$
 $9x = 180 \implies x = 180/9 = 20$

2. Notando que a algura do prédio é um cateto (vamos chamar de b) e a distância do homem aranha até o prédio é um cateto também (vamos chamar de c), então temos que a hipotenusa (chamando de h) é:

$$h^{2} = b^{2} + c^{2}$$

$$h^{2} = (50)^{2} + (120)^{2} = 16900$$

$$h = \sqrt{16900} = 130$$

- 3.
- 4. $sen(\alpha) = \frac{3}{5}$
- 5. $cos(\alpha) = \frac{4}{5}$
- 6. $tan(\alpha) = \frac{3}{4}$