GRUPOS CÍCLICOS.

Subgrupos generados y grupos cíclicos.

Def. Sea G un grupo y S un subconjunto de G. Se define el subgrupo de G
generado por S, denotado por S> como:

Proposición:

Sea Gungrupo y S = G. Entonces:

i) (S) es un subgrupo de G.

i) S < (s)

Si Kes un subgrupo de 6 tal que S < K, entonces (S) < K.

 $(v) \langle \phi \rangle = \{e\} = \langle \{e\} \rangle$

v) Si H es un subgropo de G (H)=H.

Dem:

De (i):

Sean a, be (S), entonces a, be HKG, SCH, luego a, be H, VH < G, SCH. Como HKG, entonces ab'eH, VHKG, SCH, luego ab'eKS).

Portanto, (S) es subgrupo de G.

De (ii):

Veamos que:

luego, Sc(S)

De (iii):

Sea ac (S), entonces acH, VH(G talque SCH, luego ack, pues K(Gy SCK,

portanto, <s><K

De (iv):

Como YHG, ØCH, entonces

 $\langle \phi \rangle = \bigcap_{H < G, \phi < H} H = \bigcap_{H < G, \phi < H} H$ además $\{e\} \subset H, \forall H < G, \psi \in H, \text{ por lo tunto:}$ $\langle \phi \rangle = \{e\}$

pero, también $\forall H < G$, $\{e\} \subset H$ pues $e \in H$. Pon tanto: $\{\{e\}\}\} = \bigcap_{H < G} H = \bigcap_{H < G} H = \{e\}$ $\therefore \langle \phi \rangle = \{e\} = \langle \{e\} \rangle$

De (v):

Como H<6 y H<H, entonces <H>CH. Como H<<H>, entonces <H>=H.

g.e.d.

Seu G un grupo y S un subconjunto de G. Al construir $\langle S \rangle$, podemos ya suponer que S es no vacio (por (iv)), y se dice ser que S es un conjunto de generadores del subgrupo $\langle S \rangle$. Por lo que hemos notado, puede suceder que $\exists T \subset G$ tal que $\langle S \rangle = \langle T \rangle$ y $S \neq T$. S_i S es tinito, constituido por $x_i, x_2, ..., x_n$, en ntonces escribimos $\langle x_i, ..., x_n \rangle$ en luyar de $\langle \{x_i, ..., x_n\} \rangle$, y decimos que $\langle x_i, ..., x_n \rangle$ son los generadores del subgrupo $\langle S \rangle$. Algo similar sucede cuando S se expresa como $S = \{x \in G \mid x \text{ cumple } P\}$, as: escribimos $\langle x \in G \mid x \text{ cumple } P\rangle$.

Proposición.

Sea S un subconjunto no vacto de un grupo G. Entonces

<s>=\x,^m:..xnn | x;∈S y m;∈Z, para cada i∈[1,n]; n∈|N}

Dem:

Sea H = {x, m, x, m, | x, eSym; eZ, para cada; e[1, n]; nEIN]. Entonces, si

 $x,y \in H$, con $x = x_1^{m_1} \dots x_n^{m_n} y = y_1^{\lambda_1} \dots y_k^{\lambda_K}$ tenemos que $x_1^{-1} = x_1^{m_1} \dots x_n^{m_n} \cdot y_K^{-1} \dots y_1^{N} \in H$

por como se definió H, luego H<G. Ademas SCH, pues V x ES, x=x EH, de esta forma, <S>CH.

Sea ahora $x \in H$, con $x = x_1^{m_1} \dots x_n^{m_n}$. Como $x_1, \dots x_n \in S \subset \langle S \rangle$ y $\langle S \rangle \langle G \rangle$, entonces $x_1^{m_1} \dots x_n^{m_n} \in \langle S \rangle$, as; $H \subset \langle S \rangle$. Por lotanto, $H = \langle S \rangle$.

9.e.d.

Corolario.

Sea Sun subconjunto no vacto de G. Entonces

 $\langle S \rangle = \{ \chi_1^{\epsilon_1} : \chi_n^{\epsilon_n} \mid \chi_i \in S \ y \in \{-1,1\} \text{ para cada in } [1,n]; n \in \mathbb{N} \}$

Dem:

Sea $K=\{x_{1}^{E_{1}}...x_{n}^{E_{n}}|x_{i}\in S$ y $E_{i}\in \{-1,1\}$ para cada $i\in [1,n]$; $n\in [N]$. Por la proposición anterior, K<G tul que $S\subset K$, us; $(S)\subset K$, donde cada elemento de K está en S, luego K=(S).

9.e.d.

Corolario.

Sea x & G arbitrario. Entonces

$$\langle \chi \rangle = \{ \chi^m \mid m \in \mathbb{Z} \}$$

Det Sea H<G.

i) Hes finitamente generado, si $\exists x, ..., x \in H$ tales que $H = \langle x, ..., x \rangle$. ii) Hes cíclico si $\exists x \in G$ tal que $H = \langle x \rangle$.

Proposición.

Existen grupos ciclicos finitos e infinitos. Más precisamente, seax un elemento de un grupo G i) Si $o(x) < \infty$, o(x) = n (con $n \in \mathbb{N}$), entonces $\langle x \rangle = \{e, x, ..., x^{n-1}\}$

donde $|\langle \chi \rangle| = n$

Si x un elemento de un grupo G de orden intinito, entonces $\langle \chi \rangle = \{\chi^m | m \in \mathbb{Z} \} = \{\dots, \chi^2, \chi', e, \chi, \chi^2, \dots \}$ Jonde $\chi^m \neq \chi^n \forall m, n \in \mathbb{Z}, m \neq n$.

Dem:

De (i):

Sea H= {e,x,...,xⁿ⁻¹}. Probaremos que H= $\langle x \rangle$. Claramente H $\langle x \rangle$. Sea $u \in \langle x \rangle$, entonces $\exists m \in \mathbb{Z}$ ful que $u = x^m$. Por el algoritmo de la división $\exists y, r \in \mathbb{Z}$ fules que

m=ny+r, donde 0 < r < n

Lveyo

$$\chi^{m} = \chi^{nq+r} = (\chi^{n})^{q} \chi^{n} = e^{q} \chi^{r} = e\chi^{r} = \chi^{r} \in H$$

portanto, $\langle x \rangle \subset H$. As- $H = \langle x \rangle$. Probaremos ahora que $|\langle x \rangle| = n$. Sean $m, l \in \mathbb{Z}$ tales que $0 \leq m < l < n$, probaremos que $x^m \neq x^n$.

Suponya que $x^m = x^{\lambda}$, entonces $x^{1-m} = e$, donde $0 < 1-m < n \not > c$, pues o(x) = n.

por tanto, $x^m \neq x^{\lambda}$. As: $|\langle x \rangle| = n$.

De (ii):

Basta prohar que $x^m \neq x^n \ \forall \ m, n \in \mathbb{Z}$, $m \neq n$. Suponga que $\exists \ m, n \in \mathbb{Z}$, $m < n \neq n$. ales que $x^m = x^n$, entonces $x^{n-m} = e$, luego $o(x) = n - m \not x_c$, pues x es de orden infinito. Por funto, $x^m \neq x^n \ \forall m, n \in \mathbb{Z}$ $m \neq n$.

q.e.d.

EJEMPLOS.

1) El conjunto de raices n-ésimas de la unidad en C* es un grapo ciclico infinito de

orden n generado por las raíces n-ésimas primitivas de la unidad.

- 2) El grupo aditivo Z de los números enteros es un grupo ciclico infinito generado por 1. También es generado por -1.
- 3) Podemos utilizar el símbolo () para describir grupos de manera abstructa, pero con propiedades específicas para saber cómo es este. Por ejemplo, cuando expresamos G= (x | x = e), queremos establecer que G es un grupo cíclico generado por x de orden finito n, del cual nos permitió saber cómo son sus elementos de manera precisa.

En general, la manera de expresar los grupos <S | R > deberá de sertal que S es un conjunto no vació y R será un conjunto de relaciones sobre los elementos de S. En el estudio de grupos libres se justifica esta notación.

4) De aquien adelante, los elementos σ y η de S_3 Siempre estarán dados por $\sigma := \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ y $\tilde{\eta} := \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$

Entonces tenemos que

$$S_3 = \langle \pi, \sigma | \sigma^2 = e, \pi = e \ \forall \pi \sigma = \sigma \tau^2 \rangle = \{ e, \sigma, \pi, \pi^2, \sigma \pi, \sigma \pi^2 \}$$

5) Seu n un entero positivo con n>1. Se define el grupo diédrico de grado n, denotado por Dn, como aquel grupo que satistaga que

$$\mathcal{D}_{\eta} := \langle \chi, y | \chi^2 = e, y = e, y = \chi y^{n-1} \rangle$$

Setiene que Dn tiene 2n elementos, a saber

$$D_{n} = \{ e, \chi, \gamma, \dots, \gamma^{n-1}, \chi \gamma, \chi \gamma^{2}, \dots, \chi \gamma^{n-1} \}$$

en particular, tenemos que $S_3 = D_3$.

Proposición.

Sea Gungrupo cíclico. Entonces, todo subgrupo de Ges cíclico y abeliano.

Dem:

Suponga que G es generado por x, y Sea H (G Con H # (e) (pues ental caso, H Seria Cíclico generado por e) Sea ahora heH, con h # e, como H (G, ento nces] meZm h=xm. Como H (G, entonces h, h eH, os: xm, x meH donde m # O. Sea

 $V = \{ n \in \mathbb{N} \mid x^n \in \mathbb{H} \}$

Claremente $V \neq \emptyset$ pues me V, además como $V \subseteq N$, se sigue del principio del buenor de que V tiene elemento mínimo, digumos mo, sea $a = x^{mo} \in H$. Afirmumos que $H = \langle a \rangle$. En esecto, como $a \in H$, entonces $\langle a \rangle \subset H$. Sea $z \in H$, entonces $\exists K \in \mathbb{Z}$ $\exists R \in \mathbb{Z}$

 $K = q m_0 + r, 0 \leqslant r < m_0$ $GS; \chi^{K} = \chi^{m_0 + r} = (\chi^{m_0})^4 \cdot \chi^r => \chi^r = \chi^{K} \cdot (\chi^{m_0})^{-4} \in H, \text{ pues } \chi^{K}, (\chi^{m_0})^{-4} \in H, \text{ as:}$ $Como r < m_0, \text{ debe suceder que } r = 0. \text{ Por tanto:}$

$$K = q m_o$$

$$= > \chi K = (\chi^{m_o})^{4}$$

$$= > \chi K_{\epsilon} < \alpha >$$

Por lotanto, H = <u>> Claramente Hes abel:uno.

9.e.d.

Proposición.

Para cada elemento XEG, con Gungrupo finito, se compleque 12/16/

Dem:

Sea G un grupo finito y xe G arbitrario. Sea H = (x) entonces |x|=|H|

pues H es finito, luego por el teorema de Layrange |x|=|H| |161

G.e.d

Corolario

Para Cada xeG, G grupo finito, Se cumple que x 161 = e.

Dem:

Por la proposición anterior, $|\chi| |G|$, $|uegos: |\chi| = m y |G| = n$, entonces $m|n \Rightarrow \exists K \in \mathbb{Z} m \quad n = mK$, as: $\chi^{|G|} = \chi^n = \chi^{mK} = (\chi^m)^K = e^K = e$.

9.0.0

Corolario

Sea Gungrupo finito de orden p número primo. Entonces Ges grupo cíclico; en particular, todo elemento de Gdistinto de la identidad, es de orden

Dem:

Sea $x \in G$, $x \neq e$, entonces como |x|||G|, entonces $|x||p \Rightarrow |x|=1$ o |x|=p. S: |x|=1, entonces $x=e_{\#C}$, as: |x|=p. Por lo tanto $G=\langle x \rangle$ g.e.d.

La Junción de Euler

Proposición.

Todo grupo cíclico intinito tiene exactamente dos generadores, a saber, si x es un generador, el otro es \hat{x}' .

Dem:

Sea G un grupo ciclico intinito Con generador x. (la rumente $6 = \langle x \rangle = \langle x^{-1} \rangle$. Sea ahora $y \in G$ un generador de G, entonces \exists m, $n \in \mathbb{Z}$ m $y = x^m y x = y^n$. Asi $x = (x^m)^n = x^{mn} = x^m = x$ x = 0 Como G es de orden intinito, x = 0 es. Asi x = 0 x =

g.e.d.

Def Se define la función de Euler $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ Como sigue: para cada $n \in \mathbb{N}$ $\forall (n) := |\{m \in \mathbb{N} \mid 1 \le m \le n, (m, n) = 1\}|$

notemos que s: n>2, entonces

 $P(n) = |\{m \in |N| | 1 \le m \le n, (m,n) = 1\}| = |\{m \in |N| | 1 \le m \le n - 1, (m,n) = 1\}|$ Además:

$$\forall (n) = |(\mathbb{Z}/n\mathbb{Z})^*|$$

para Cada ne IN.

Teorema:

La Junción de Euler cumple las siguientes propiedades:
(i) Para cada p número primo y para cada me IN

$$Q(p^{m}) = p^{m} \left(1 - \frac{1}{p}\right) = p^{m} - p^{m-1}$$

(ii) S: $m, n \in \mathbb{N}$ con (m, n) = 1, entonces $\ell(mn) = \ell(m) \cdot \ell(n)$

(iii) Si nes unenteropositivo y p.,..., p. son exactumente los distintos números primos que dividen a n, entonces

$$Q(u) = u \left(1 - \frac{1}{b}\right) \cdots \left(1 - \frac{1}{b^{2}}\right)$$

Dem:

De (i): Seq pell un número primo arbitrario y mell. Sea Kell tal que $1 \le K \le p^m$. Entonces $(p^m, K) \ne 1 \iff p \mid K$, i.e. $\exists q \in \mathbb{Z}$ in K = qp, donde $1 \le q \le p^{m-1}$. De aqui que

$$|\{K | 1 \leq K \leq p^{m}, (K, p^{m}) \neq 1\}| = p^{m-1}$$

por lotanto:

$$\psi(p^{m}) = |\{K \mid 1 \le K \le p^{m}, (K, p^{m}) = 1\}| \\
= |[1, p^{m}] \setminus \{K \mid 1 \le K \le p^{m}, (K, p^{m}) \neq 1\}| \\
= p^{m} - p^{m-1} = p^{m} (1 - \frac{1}{p})$$

probaremos que f está bien definida. Sea [a]_{mn} ∈ ($\mathbb{Z}/mn\mathbb{Z}$)*, entonces (a,mn) = 1. Luego (a,m)=(o,n)=1. Por tanto, [a]_m ∈ ($\mathbb{Z}/m\mathbb{Z}$)*, y [a]_n ∈ ($\mathbb{Z}/n\mathbb{Z}$)*. Sea a'∈ [a]_{mn}, entonces mn|a-a' => m|a-a' y n|a-a' => a'∈ (a)_m, a'∈ (a)_n, luego ([a]_m, [a]_n)=([a']_m, [a']_n). Por tanto (a)_{mn}=(a')_{mn} => f([a]_{mn})=f([a']_{mn}).

Probaremos que fes biyección.

1) Jesinyectiva.

Sean $[a]_{mn}$, $[b]_{mn} \in (\mathbb{Z}/mn\mathbb{Z})^*$ $[n] \{ [a]_{mn} \} = \{ (b)_{mn} \}$, entonces $b \in [a]_{mn} \neq b \in [a]_{mn} = \{ (a)_{mn} \} = \{ (a$

2) f es suprayectiva

Seu ([a]m,[b]n) $\in (\mathbb{Z}/m\mathbb{Z})^* \times (\mathbb{Z}/n\mathbb{Z})^*$, probaremos que \exists [c]mn $\in (\mathbb{Z}/mn\mathbb{Z})^*$ $\sqcap f([c]_{mn}) = ([a]_m,[b]_n)$, en efecto, tome $C = mrb + nsa \in \mathbb{Z}$. Veamos que (c, mn) = 1. En efecto:

Si (c,mn) = 1, entonces] pell primo tal que plc y plmn, lo cual implica que pl

Cyplmoplcypln.

S: plc y plm, entonces plmrb+nsu y plm => plnsa. S: pls, entonces plmr+ns=1%c. S: pla, como plm, entonces (a,ml>1%c. Por tunto, pln, luego como plm, entonces (m, n)>1%c. (S: plc y pln, tenemos un caso análogo). Por lo tunto, (c,mn)=1, as: $[c]_{mn} \in (\mathbb{Z}/mn\mathbb{Z})^*$.

Veumos ahora que

$$C-u = mrb+nsa - mra-nsa = m(rb-ra)$$

$$=>m|C-a => [c]_m = [a]_m, y$$

$$C-b = mrb+nsa - mrb-nsb = n(sa-sb)$$

$$=>n|C-b => [c]_n = [a]_n$$

$$Portunto, f([c]_{mn}) = ([c]_m, [c]_n) = ([u]_m, [b]_n).$$

Por 1) y 2), fes biyeccón, lueyo
$$|(\mathbb{Z}/mn\mathbb{Z})^*| = |(\mathbb{Z}/m\mathbb{Z})^*| \cdot |(\mathbb{Z}/n\mathbb{Z})^*|$$

$$=> \varphi(mn) = \varphi(m) \cdot \varphi(n)$$

De (iii): Expresamos: $n = p_1^{K_1} p_2^{K_2} \dots p_3^{K_3}$, $K_i \in \mathbb{N}, \forall i \in \mathbb{J}_3$. Como $(p_i^{K_i}, p_j^{K_j}) = 1, \forall i \in \mathbb{J}_3$, if j, entonces:

$$\begin{aligned}
\Psi(n) &= \Psi(p_{1}^{j_{1}}, p_{2}^{j_{2}}, ..., p_{j}^{k_{j}}) \\
&= \Psi(p_{1}^{j_{1}}, ..., p_{j}^{k_{j}}, ..., p_{j}^{k_{j}}, (1 - \frac{1}{p_{1}}) \\
&= ... = p_{1}^{K_{1}}, p_{2}^{K_{2}}, ..., p_{j}^{k_{j}}, (1 - \frac{1}{p_{1}}) \cdot (1 - \frac{1}{p_{2}}) \cdot ..., (1 - \frac{1}{p_{j}}) \\
&= n \left(1 - \frac{1}{p_{1}}\right) \cdot ..., (1 - \frac{1}{p_{j}})
\end{aligned}$$

g.e.d.

Proposición

Sea G un grupo cíclico finito de orden n. Entonces G tiene Q(n) generador-es, más precisumente, Sea a \in G \cap G = $\langle a \rangle$, entonces para a \in Z Con $1 \leq$ m \leq n-1 α ^mes generador de G \Leftrightarrow (m,n)=1.

Dem:

S: n=1, entonces $G=\langle e \rangle$, y la contidud de generadores de G es $I=\{(1)=\{(n)\}$

Suponemos que $n \ge 2$, lueyo $a^o = e$ no es generador de G, entonces tomamos $m \in IN \ m \le n-1$.

EJEMPLOS:

1) Sea $n \in \mathbb{N}$ y $n \ge 2$. Desinimos el número complejo $w = e^{\frac{2\pi i}{n}} = \cos(\frac{2\pi}{n}) + i$ $sen(\frac{2\pi}{n})$, la cual es una vaiz $n - \acute{e}$ sima de la unidad, i.e es solución al polinomio $x^n - 1 = 0$

El conjunto de raices n-ésimas de la unidad, con el producto de complejos, es un grupo multiplicativo cíclico finito de n elementos, generado por w, i.e (w) = {1, w, w, ..., w, ...}

Teorema (de Euler).

Sea a \(\mathbb{Z} \) y n \(\extrm{IN} \) tal que (a,n) = 1. Entonces a \(\alpha^{(n)} = 1 \) mod n.

Dem:

Cons: deremos el grupo multiplicutivo ($\mathbb{Z}/n\mathbb{Z}$)*, el cual tiene $\mathfrak{l}(n)$ elementos, como [a] $\in (\mathbb{Z}/n\mathbb{Z})^*$, pues $(\mathfrak{a},\mathfrak{n})=1$, entonces $(\mathfrak{a}^{(n)})=(\mathfrak{a})^{\mathfrak{l}(n)}=(\mathfrak{a})^{\mathfrak{l}(n)}=(\mathfrak{a})^{\mathfrak{l}(n)}=(\mathfrak{a})^{\mathfrak{l}(n)}=(\mathfrak{a})^{\mathfrak{l}(n)}$

por lo tunto, $a^{\varphi(n)} \in [1] \Rightarrow a^{\varphi(n)} \equiv 1 \mod n$

9.e.d.

Teorema (pequeño) de Fermut

Sean $m \in \mathbb{Z}$, $p \in \mathbb{N}$ primo. Entonces, $m^P = m \mod p$. En particular, s: $p \nmid m$, entonces $m^{P-1} = 1 \mod p$.

Dem:

S: plm, entonces $plm^p y$ plm, luego $plm^p - m$, por tunto $m^p = m \mod p$. S: ptm (cuso particular), como (p,m) = 1, entonces $[m] \in (\mathbb{Z}/p\mathbb{Z})^*$, luego $(\mathbb{Z}/p\mathbb{Z})^* = \ell(p) = p-1$, entonces

 $\Rightarrow m^{P-1} \equiv 1 \mod p.$ $por tunto [m]^{P-1} = [1] \Rightarrow [m^{P}] = [m]^{P} = [m] \Rightarrow m^{P} = m \mod p.$

4.e.d.