BUNDESREPUBLIK DEUTSCHLAND

EPOY 19387

REC'D 2 4 SEP 2004

PCT

WIPO

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 44 073.9

Anmeldetag:

23. September 2003

Anmelder/Inhaber:

DaimlerChrysler AG, 70567 Stuttgart/DE

Bezeichnung:

Kurbelwelle mit kombiniertem Antriebszahnrad

sowie Verfahren zu ihrer Herstellung und

deren Verwendung

IPC:

03/00

B 22 D, C 22 C, F 16 H

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 4. Juni 2004

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Well

wenner.

BEST AVAILABLE COPY

25

DaimlerChrysler AG

Stückrad 18.09.2003

Kurbelwelle mit kombiniertem Antriebszahnrad sowie Verfahren zu ihrer Herstellung und deren Verwendung

- Die Erfindung betrifft eine Kurbelwelle mit kombiniertem Antriebszahnrad sowie ein Verfahren zu ihrer Herstellung und deren Verwendung. Derartige Kurbelwellen sind bereits aus der DE19517506Al bekannt.
- Motoren mit hohen leistungsdichten und Zünddrücken, zum Beispiel Dieselmotoren, benötigen Kurbelwellen mit kombiniertem
 Antriebszahnrad, die insbesondere in ihrem Verbindungsbereich
 hohen Belastungen gewachsen sind. Daher werden in der Regel
 geschmiedete Stahl-Kurbelwellen verwendet, an die gehärtete
 Zahnräder mittels Stoff- (Schweissen), Form- (Schrauben) oder
 Reibschlüssigen (Passungen) Verbindungsverfahren gefügt werden.
- So wird beispielsweise gemäß der DE19517506Al das Zahnrad an die Kurbelwelle angeschraubt.
 - Erhöhte Belastbarkeit von Kurbelwellen kann gemäß der JP59129730A auch durch Austempern der Welle und weitere Bearbeitungsschritte erzielt werden.
 - Die Zahl der Verfahrensschritte zur Herstellung einer Kurbelwelle mit kombiniertem Antriebszahnrad bedingt vergleichswei-

se lange Herstellungszeiten und verursacht entsprechend hohe Kosten.

Die Aufgabe der vorliegenden Erfindung besteht daher darin, ein Verfahren mit weniger Verfahrensschritten zur Herstellung einer Kurbelwelle mit kombiniertem Antriebszahnrad sowie die daraus resultierende Kurbelwelle anzugeben.

5

10

15

20

25

30

Die Erfindung ist in Bezug auf die zu schaffende Kurbelwelle durch die Merkmale des Patentanspruchs 1 wiedergegeben. Die Erfindung ist in Bezug auf das zu schaffende Verfahren durch die Merkmale des Patentanspruchs 3 wiedergegeben. Patentanspruch 5 gibt eine bevorzugte Verwendung an. Die weiteren Ansprüche enthalten vorteilhafte Ausgestaltungen und Weiterbildungen der erfindungsgemäßen Kurbelwelle und des erfindungsgemäßen Verfahrens (Patentansprüche 2 und 4).

Die Aufgabe wird bezüglich der zu schaffenden Kurbelwelle erfindungsgemäß dadurch gelöst, dass die Kurbelwelle mit kombiniertem Antriebszahnrad in einem Stück gegossen sind.

Der Vorteil dieser Ausgestaltung besteht in den niedrigeren Herstellungskosten infolge des Wegfalls des Fügeschritts sowie der im Vergleich zum Schmieden kurzen Gusszeit. Darüber hinaus besteht beim Gießen eine erhöhte Designfreiheit.

Besonders vorteilhaft ist es, wenn die Kurbelwelle mit kombiniertem Antriebszahnrad aus austempered ductile iron (ADI) - besteht. Dabei handelt es sich um ein Gusseisen mit Kugelgraphit, das durch gezielte Wärmebehandlung (Austempern) u.a. verbesserte Verschleißeigenschafen aufweist.

Vorteilhaft ist hier einerseits das verringerte Gewicht - ADI hat ein um circa 10 Prozent geringeres Gewicht als der übli-

cherweise verwendete Stahl. Andererseits weist ADI hervorragende thermische und mechanische Kennwerte auf, insbesondere hohe Festigkeit bis zu 1600 N/mm².

5 Durch diese positiven Eigenschaften des Werkstoffs ADI kann auf die üblicherweise erforderliche Härtung des Zahnrades komplett verzichtet werden.

In einer besonders vorteilhaften Ausgestaltung weist der Bereich des Zahnrades eine erhöhte Härte gegenüber dem restlichen Gußteil auf. Dies ist durch geeignete unterschiedlich gesteuerte Temperaturführung während der Wärmebehandlung der verschiedenen Gußteilbereiche erreichbar. Eine additive oder alternative Erhöhung der Härte ist durch eine Kaltverfestigung (sog. Festigkeitsstrahlen) möglich.

Eine weitere additive oder alternative Möglichkeit zur lokalen Erhöhung der Härte des Gußteils, z.B. der Zähne, besteht darin, lokal Carbide in die Schmelze einzubringen. Dies kann über carbidhaltige Schlichten erfolgen. Man erhält eine ADI-Mikrostruktur mit zusätzlich eingebrachten Carbiden (sog. carbidic ADI = CADI). So gehärtete Bereiche weisen eine erhöhte Verschleißbeständigkeit auf.

25

20

10

15

Die Aufgabe wird bezüglich des zu schaffenden Verfahrens zur Herstellung einer Kurbelwelle erfindungsgemäß dadurch gelöst, dass die Kurbelwelle mit kombiniertem Antriebszahnrad in einem Stück gegossen werden.

30

Besonders vorteilhaft ist es, zum Gießen Basislegierungen zu verwenden, die zum austempern geeignet sind. Dadurch kann die Kurbelwelle mit kombiniertem Antriebszahnrad zunächst formvollendet hergestellt werden und danach getempert (wärme-

behandelt) werden, wobei sich die vorteilhaften mechanischen und thermischen Eigenschaften des ADI (austempered ductile i-ron) ausbilden. Alternativ kann die Wärmebehandlung auch direkt nach dem Gießen erfolgen und sich daran eine evtl. anwendungsspezifisch erforderliche Endbearbeitung anschließen.

Vorteilhaft ist auch die Härtung von Teilbereichen des Gußteils, z.B. der Zähne. Sie kann durch lokal unterschiedliche
Steuerung der Wärmebehandlung und/oder lokale Kaltverfestigung, z.B. durch Festigkeitsstrahlen, und/oder lokales Einbringen carbidhaltiger Schlichten in die Gießform erfolgen.

Besonders vorteilhaft lässt sich das erfindungsgemäße Verfahren beim Kokillengießen (Dauerformen) einsetzen. Dbei lassen sich einerseits die Zahnradbereiche besonders formgenau giessen und andererseits ist bereits eine zumindest teilweise Wärmebehandlung in der Gussform möglich.

20 Besonders vorteilhaft ist die Verwendung einer erfindungsgemäßen Kurbelwelle mit kombiniertem Antriebszahnrad in einem Diesel-Kraftfahrzeug, da dessen Motoren besonders hohen Belastungen unterworfen sind.

25

30

5

10

15

Die erfindungsgemäße Kurbelwelle mit kombiniertem Antriebszahnrad erweist sich als besonders geeignet für die Anwendung
in Automobilen. Sie kann aber auch in anderen Bereichen, in
denen sie hohen Belastungen ausgesetzt ist, besonders vorteilhaft verwendet werden. Beispielhaft seien der Schiffsund Flugzeugbau genannt, aber auch stationäre Anwendungen,
z.B. Generatoren.

· ·

DaimlerChrysler AG

Stückrad 18.09.2003

Patentansprüche

- 5 1. Kurbelwelle mit kombiniertem Antriebszahnrad, dadurch gekennzeichnet, dass beide in einem Stück gegossen sind.
- Kurbelwelle nach Anspruch 1,
 d a d u r c h g e k e n n z e i c h n e t ,
 dass sie aus austempered ductile iron (adi) hergestellt ist.
- Kurbelwelle nach Anspruch 2,
 dadurch gekennzeichnet,
 dass Kurbelwelle und Zahnrad unterschiedliche Härte aufweisen.
- 4. Verfahren zur Herstellung einer Kurbelwelle mit kombi20 niertem Antriebszahnrad,
 dadurch gekennzeichnet,
 dass beide in einem Stück gegossen werden.
- 5. Verfahren nach Anspruch 4,

 da durch gekennzeichnet,

 dass eine für austempered ductile iron (adi) geeignete

 Basislegierung als Gussmaterial verwendet und wärmebehandelt wird.

- 6. Verfahren nach Anspruch 5,
 d a d u r c h g e k e n n z e i c h n e t ,
 dass die Wärmebehandlung lokal unterschiedlich gesteuert
 wird.
- 7. Verfahren nach einem der Ansprüche 4 bis 6,
 d a d u r c h g e k e n n z e i c h n e t ,
 dass lokal die Dauerfestigkeit durch Festigkeitsstrahlen
 und/oder lokal die Verschleißbeständigkeit durch Einbringen carbidhaltiger Schlichten erhöht werden.
- 8. Verfahren nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, dass es beim Kokillengießen eingesetzt wird.
 - Verwendung einer Kurbelwelle nach einem der Ansprüche 1 bis 3 für ein Diesel-Kraftfahrzeug.

15

5

10

5

10

15

DaimlerChrysler AG

Stückrad 18.09.2003

Zusammenfassung

Kurbelwelle mit kombiniertem Antriebszahnrad sowie Verfahren zu ihrer Herstellung und deren Verwendung

Motoren mit hohen leistungsdichten und Zünddrücken, zum Beispiel Dieselmotoren, benötigen Kurbelwellen mit kombiniertem
Antriebszahnrad, die insbesondere in ihrem Verbindungsbereich
hohen Belastungen gewachsen sind. Daher werden in der Regel
geschmiedete Stahl-Kurbelwellen verwendet, an die gehärtete
Zahnräder mittels Schrauben oder Schweißen gefügt werden.

Die Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren mit weniger Verfahrensschritten zur Herstellung einer Kurbelwelle mit kombiniertem Antriebszahnrad sowie die daraus resultierende Kurbelwelle anzugeben.

Die Aufgabe wird dadurch gelöst, dass die Kurbelwelle mit kombiniertem Antriebszahnrad in einem Stück gegossen wird.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.