ORDINAL NUMBERS OF YEARS OF SOLAR CYCLES (1960–2022) AND GROSS WORLD PRODUCT WITH A LAG OF 1 YEAR (1961–2023): EVIDENCE OF VERY STRONG CORRELATIONS

Preprint	· October 2024		
DOI: 10.1314	0/RG.2.2.18377.76647/4		
CITATIONS		READS	
0		4,550	
1 author	Vladimir Belkin Chelyabinsk Branch of the Institute of Economics, Ural Bra 56 PUBLICATIONS 6 CITATIONS SEE PROFILE	anch of the Russian Academy of Sciences	

ORDINAL NUMBERS OF YEARS OF SOLAR CYCLES (1960-2022) AND GROSS WORLD PRODUCT WITH A LAG OF 1 YEAR (1961-2023): EVIDENCE OF VERY STRONG CORRELATIONS

V.A. Belkin

Annotation. Comparison of ordinal numbers of years of the average solar cycle (Wolf number cycle) for the period 1960-2022 and indices of gross world product with a lag of 1 year (1961-2023) allowed to reveal very strong correlations between them with correlation coefficients at different intervals in the range from 0.93 to 0.99. This allows us to predict the value of the gross world product indices. Namely, its value for 2024 is 2.108%, for 2025 1.593%, for 2026 2.449%, for 2027 3.672 (%).

Keywords: solar activity cycle, Wolf numbers, economic crises, gross world product, economic forecasting, economic cycle

The IMF in its January 9, 2020 World Economic Outlook Survey noted that "Global growth is projected to rise from 2.9 percent in 2019 to 3.3 percent in 2020..." [1]. This fact is a vivid illustration of the state of affairs with traditional economic theory and forecasting theory.

My article "Cosmic factors of economic cycles" was published in No. 2 of the journal "Socium and Power" for 2013. At the end of the article there is a forecast of financial and economic crises, namely 2014 and 2020 [2, P .73]. This forecast was highly justified because it was based on the forecast of extremes of the 24th solar activity (SA) cycle.

Great scientists - Frederick William Herschel, William Stanley Jevons and Alexander Leonidovich Chizhevsky in their works developed a methodological approach to the study of the relationship between solar and economic activity.

For example, in his article "Solar-Commercial Cycles", WS Jevons placed one under another graphs of S A cycles (cycles of Wolf numbers) and cycles of corn prices in Delhi for the period 1760-1810. [3, P.227].

Chizhevsky in his monograph "Cosmic Pulse of Life: Earth in the Embrace of the Sun" in Chapter 4 "The Sun and Epidemics" in fig. 33 built a diagram, which shows the average for a hundred years cycle of S A (cycle of Wolf numbers) and the average for the years of the solar cycle of the number of cholera diseases in Russia for the period 1823-1923 [4, P.11].

In another monograph "Earth's Echo of Solar Storms", he placed one under another graphs of grain yields in Russia and S A (Wolf numbers), which show a close direct relationship between them [5, P.106]. These graphs cover a long period of time.

In the present study, the years of the mean solar cycle are compared in order in one diagram, depending on the value of the mean annual Wolf numbers as well as the gross world product (hereinafter referred to as GWP) with a lag of 1 year.

The mean annual Wolf numbers, the main indicator of SA, were taken from the well-known astrophysical site on the determination, preservation, and distribution of the international sunspot number [6]. They are presented in column 2 of Table 1.

The order numbers of years in column 3 of Table 1 are determined in accordance with the numbering of years adopted in solar astrophysics. Namely, the first year of the beginning of its growth, ie, the growth of the Wolf number, is considered to be the first in the SA cycle. Then the years are numbered in order, and the last year in the cycle is considered to be the year of the Wolf number minimum. The years of minimums of SA in Table 1 are highlighted in blue, and the years of maximums are highlighted in red.

Values of GDP indices for the period 1961-2023 were taken from the World Bank website [7] and are presented in columns 4 and 5 of Table 1.

Table 1. Years, average annual Wolf numbers, ordinal numbers of years in SA cycles, and indices of gross world product

The years	Wolf	The serial	World GDP	World GDP
	numbers,	number of the	growth ,	growth with a lag
	1960-2022	year in the cycle	annual, %,	of 1 year, annual,
		of SA, 1960-	1961-2023	%, 1960-2022.
		2022		
1	2	3	4	5
1960	159	6	N.D.	3.969727787
1961	76.4	7	3.969727787	5.319004138
1962	53.4	8	5.319004138	5.01876407
1963	39.9	9	5.01876407	6.583204527
1964	15	10	6.583204527	5.595768086
1965	22	1	5.595768086	5.438370867
1966	66.8	2	5.438370867	3.735533243
1967	132.9	3	3.735533243	5.925679639
1968	150	4	5.925679639	5.978931918
1969	149.4	5	5.978931918	3.735703524
1970	148	6	3.735703524	4.307159041
1971	94.4	7	4.307159041	5.637430546
1972	97.6	8	5.637430546	6.408159763
1973	54.1	9	6.408159763	1.914298905
1974	49.2	10	1.914298905	0.526672164

1975 22.5 11 0.5266721 1976 18.4 12 5.2142618 1977 39.3 1 4.0184308 1978 131 2 4.0892140 1979 220.1 3 4.1823714 1980 218.9 4 1.8815591	802 4.018430856 856 4.089214088 088 4.182371471 171 1.881559196
1977 39.3 1 4.0184308 1978 131 2 4.0892140 1979 220.1 3 4.1823714	356 4.089214088 088 4.182371471 1.881559196
1978 131 2 4.0892140 1979 220.1 3 4.1823714	088 4.182371471 171 1.881559196
1979 220.1 3 4.1823714	1.881559196
1980 218.9 4 1.8815591	
	1.926416031
1981 198.9 5 1.9264160	0.296537497
1982 162.4 6 0.2965374	2.586198895
1983 91 7 2.5861988	395 4.674320819
1984 60.5 8 4.6743208	3.702804328
1985 20.6 9 3.7028043	328 3.351357503
1986 14.8 10 3.3513575	3724626509
1987 33.9 1 3.7246265	509 4.591726239
1988 123 2 4.5917262	239 3.71718416
1989 211.1 3 3.717184	16 2.764541122
1990 191.8 4 2.7645411	1.255826392
1991 203.3 5 1.2558263	392 2.019256604
1992 133 6 2.0192566	504 1.812976008
1993 76.1 7 1.8129760	008 3.323942443
1994 44.9 8 3.3239424	3.08461458
1995 25.1 9 3.084614	58 3.574686427
1996 11.6 10 3.5746864	3.929713861
1997 28.9 1 3.9297138	361 2.853925344
1998 88.3 2 2.8539253	3.549717353
1999 136.3 3 3.5497173	353 4.531094789
2000 173.9 4 4.5310947	789 2.025402869
2001 170.4 5 2.0254028	369 2.302836989
2002 163.6 6 2.3028369	3.104275673
2003 99.3 7 3.1042756	673 4.469258855
2004 65.3 8 4.4692588	4.00586591

2005	45.8	9	4.00586591	4.442792696
2006	24.7	10	4.442792696	4.37327669
2007	12.6	11	4.37327669	2.062495933
2008	4.2	12	2.062495933	-1.355782091
2009	4.8	1	-1.35578209	4.529545973
2010	24.9	2	4.529545973	3.327132697
2011	80.8	3	3.327132697	2.709115158
2012	84.5	4	2.709115158	2.868222143
2013	94	5	2.868222143	3.12386991
2014	113.3	6	3.12386991	3.126135588
2015	69.8	7	3.126135588	2.820557285
2016	39.8	8	2.820557285	3.460239118
2017	21.7	9	3.460239118	3.286612988
2018	7	10	3.286612988	2.642216435
2019	3.6	11	2.642216435	-2.932043344
2020	8.8	1	-2.93204334	6.259851284
2021	29.6	2	6.259851284	3.089607464
2022	83.1	3	3.089607464	2.719333366
2023		4	2.719333366	

Next, the statistical data of Table 1 were grouped by the serial numbers of the years of the SA cycles. The results of grouping the data of Table 1 without column 4 are presented in Table 2. The year of the maximum of the average solar activity cycle for the period 1961-2022 is highlighted in red in this table. It turned out to be year number 4. The years of SA minima are highlighted in blue. They turned out to be years with numbers 10, 11 and 12.

Table 2. Grouping of data from Table 1 without column 4 by ordinal numbers of years in SA cycles

Serial number of the year in	Number of years with this number for the period	Average arithmetic mean:			
the cycle of	1960-2022	Wolf	world GDP	Change in the	
SA		numbers	growth with a	gross world	
		(1960-2022)	lag of 1 year,	product index	
			annual, %,	with a lag of 1	
			1960-2022.	year from	
				previous year,	
			4	<u>%</u>	
1	2	3	4	5	
1	6	22.95	4.627105632	3.29578125	
2	6	77.2666666	3.600257731	-1.026847901	
3	6	144.066666	3.421887212	-0.17837052	
4	5	163.82	2.810959871	-0.610927341	
5	5	163.2	2.295640905	-0.515318966	
6	6	146.55	3.151078832	0.855437927	
7	6	84.5	4.374085681	1223006849	
8	6	60.25	4.280074628	-0.094011053	
9	6	34.5333333	3.858825508	-0.421249121	
10	6	20.3833333	3.465378958	-0.39344655	
11	3	12.9	1.44823813	-2.017140827	
12	2	11.3	1.331324383	-0.116913748	
Total:	63				
Correlation coefficient, columns 1-4					
lines 1-5			-0.979086		
lines 5-7			0.9948278		
lines 7-12			-0.930872		
Correlation coefficient, columns 3-4					
Lines 1-7			-0.8974329		
Lines 7-12			0.81231124		

Based on the data in columns 1 and 4 of Table 2, a diagram was constructed (see Fig. 1). It shows a very strong connection between the ordinal numbers of years of the mean solar cycle and the GDP with a lag of 1 year.

Fig. 1. Ordinal numbers of the average solar cycle and the index of gross world product with a lag of 1 year (1960-2022).

The identified strong relationships can be used to forecast the dynamics of the GDP index. In my published work "Economic and Geomagnetic Cycles" a forecast was developed for a decrease in the GDP index in 2022 to 3.8% [8, p. 45]. According to the results of 2022, it decreased to a greater extent to a value of 3.08% (see Table 1). In my previous preprint published on this research topic, there is a forecast of the GDP index value for 2023, namely, 2.98% [9, p. 1]. In fact, its value was 2.72%, that is, the value of the forecast error decreased.

The calculation of the forecast values of the GDP indices for 2024-2027 is presented in Table 3. Since these calculations are based on arithmetic averages of GDP indices, the low forecast value of the 2025 GDP index (1.593%) implies a high probability of a global economic crisis in 2025.

Table 3. Calculation of forecast values of indices of gross world product (2024-2027)

Year.	The serial	Actual value	Change to the	Projected value of the
	number of	of the gross	previous year	gross world product
	the year in	world	(See column 5 of	index, (%)
	the current	product	table 2), %,	
	25th SA	index	1960-2022	
	cycle.			
1	2	3	4	5
2023	4	2.719333366	-0.610927341	
2024	5		-0.515318966	2.108406025
2025	6		0.855437927	1.593087059
2026	7		1.223006849	2.448524987
2027	8			3.671531836

Thus, the bottom of the upcoming economic crisis will be reached in 2025. Based on columns 1, 3 and 4 of Table 2, the following diagram is constructed (see Fig. 2), which shows the graphs of the average Wolf numbers and the GDP indices with a lag of 1 year by the ordinal numbers of years of solar cycles for 1960-2022. The diagram shows that **the minimum values of the GDP index** are observed 2 years after the maximum of SA and the following year after the minimum of SA (the 10th, 11th and 12th years of the average SA cycle).

Based on columns 3 and 4 of Table 2, the following diagram is constructed (see Fig. 3), which shows that a significant decrease in the GDP index with a lag of 1 year occurs in the region of **maximum** and especially sharply in the region of **minimum** values of Wolf numbers, that is, in the region of extremes of Wolf numbers.

Table 2 presents the correlation coefficients between the arithmetic mean values of the Wolf and VMP numbers with a lag of 1 year. Their values for years 1-7 of the solar cycles are -0.8974329, and for years with numbers 7-12 they are 0.81231124, which means a strong connection between solar and economic activity.

Thus, up to and including year 7, there is a strong inverse relationship, and after year 7, there is a strong direct relationship between the Wolf numbers and the VMP with a lag of 1 year. This is shown in Fig. 2. The question arises as to why exactly year 7 is the year of the change in the direction of this relationship?

Fig. 2. Average Wolf numbers (1960-2022) and indices of gross world product with a lag of 1 year (1961-2023) by ordinal numbers of years in SA cycles

Fig. 3. Arithmetic mean values of Wolf numbers (1960-2022) and gross world product with a lag of 1 year, (1961-2023), 12 years of SA cycles.

In my opinion, this is because it is in the seventh year of the solar cycle the maximum of the average value of the index of the geomagnetic activity index Amp and completes the repolarization, i.e., the change of the polarity of the Sun's magnetic field. This is shown by the diagram in Fig. 4. The annual average daily values of this index (Apym) were taken from the site of the Helmholtz Center Potsdam [10].

Fig. 4. Arithmetic mean values of the geomagnetic index Apm and Wolf numbers, 12-year solar cycles for 1961-2023.

From the 1st to the 7th years of solar activity cycles, the Apm index mainly increases and a strong feedback is in effect between the average Wolf and GDP numbers with a lag of 1 year. From the 7th to the 12th years of solar activity cycles, the Apm index mainly decreases and a strong direct connection begins to operate between the average Wolf and GDP numbers with a lag of 1 year.

PhD Igor Nikulin, senior researcher at the Sternberg Astronomical Institute, notes in an interview with Rossiyskaya Gazeta that "over millions of years of evolution, all living beings have adapted **to the average values** of these factors [temperature, pressure, atmospheric composition, magnetic field – V.B.], and even small deviations in one direction or another have a negative impact on their vital functions" [11].

In his work "Physiological and pathophysiological aspects of the influence of solar activity on the human body", Doctor of Medical Sciences Yu. I. Gurfinkel presents the following results of scientific experiments at the Institute of Medical and Biological Problems within the framework of the Mars-500 program. "It is interesting," he notes, "that not only geomagnetic disturbances, but also periods of very calm geomagnetic conditions affect capillary blood flow, slowing it down . This is indicated by a recently completed study with isolation at the Institute of Medical and Biological Problems of the Russian Academy of Sciences in healthy volunteers within the framework of the MARS-500 program, during which the state of capillary blood flow on randomly selected days was studied using a digital capillaroscope. The program participants did not receive information about the geomagnetic situation during the experiment. On the days of geomagnetic disturbances, the capillary blood velocity was 389±167 µm/s, which was statistically significant (p<0.05) in comparison with the capillary blood velocity for a normal quiet geomagnetic environment. We divided the quiet geomagnetic environment into two parts: very quiet (Amsk 1-4) and simply quiet (Amsk 5-7), since our study revealed a statistically significant difference in the capillary blood velocity. While in a normal quiet environment the capillary blood velocity was on average 643 ± 178 µm/s, in a very quiet geomagnetic environment the capillary blood velocity was $435 \pm 223 \, \mu \text{m/s}$ (p<0.02). This phenomenon is possibly due to the influence of the increase in the intensity of galactic cosmic rays during the period of low solar wind speeds" [12, p.38].

"After a long search, when it seemed like all conceivable possibilities had been considered," says Doctor of Medical Sciences Mikhail Blank in his interview with Rossiyskaya Gazeta, "we came to an unexpected discovery: hemodepression (deterioration of blood composition - V.B.) intensifies under **extreme conditions** of the geomagnetic environment - **under magnetic storms and magnetic calm**. But the average values of the magnetic field do not affect the composition of the blood" [13]. The text in bold in the quotes above is mine.

These results of medical experiments explain the mechanism of the relationship between the gross world product with a lag of 1 year and the average Wolf numbers, shown in Fig. 3.

A significant decrease in the capillary blood flow velocity and deterioration of blood composition during periods of magnetic extremes (maximums and minimums of Wolf numbers) appears to lead to an increase in pessimistic sentiments in all markets and, accordingly, a tendency to save, which ultimately leads to a decrease in the GDP index with a lag of 1 year. This lag may be explained by the fact that during the current year, contracts concluded mainly last year are being fulfilled.

It does not follow from the conducted research that solar activity is the only factor determining economic cycles. Military and political events, sanctions, trade wars, abrupt changes in the economic policies of leading economic countries, administrative decisions in the economy lead to the fact that the value of the approximation coefficient in the diagram in Fig. 3 is equal to 0.7907. Otherwise, it

would be significantly higher. It seems that an increase in the observation period will lead to an increase in the value of the approximation coefficient in the diagram in this Fig.

References

- 1. International Monetary Fund. World Economic Outlook Update, January 2020: Tentative Stabilization, Sluggish Recovery? https://www.imf.org/en/Publications/WEO
- 2. Белкин В.А. Космические факторы экономических циклов // Социум и власть.- 2013, №2.- С.68-73.-С.73.
- 3. Jevons W. S. 1882. The solar-commercial cycles. Nature. July 6, pp. 226-228.
- 4. Чижевский А. Л. Космический пульс жизни: Земля в объятиях Солнца. М.: Мысль, 1995 767 с., с.11
- 5. Чижевский А. Л. Земное эхо солнечных бурь, М., издательство «Мысль», 1976, 367 с.
- 6. SILSO. Sunspot Index and Long-term Solar Observations. World Data Center for the production, preservation and dissemination of the international sunspot number. Sunspot Number. Yearly mean total sunspot number [1700–now]. [online] Available at: https://www.sidc.be/SILSO/datafiles
- 7. The World bank. GDP growth (annual%), available at: http://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG/countries/1W?display=graph
- 8. Белкин В.А. Экономические и геомагнитные циклы. в кн. Россия: Тенденции и перспективы развития. Ежегодник. Вып. 18: Материалы XXII Национальной научной конференции с международным участием «Модернизация России: приоритеты, проблемы, решения». Ч. 1 / РАН. ИНИОН. Отд. науч. сотрудничества; отв. ред. В.И. Герасимов. М., 2022. Ч. 1. 706 с., с.40-51. https://www.researchgate.net/publication/371449639_Ekonomiceskie_i_geomagnit nye_cikly_-
- _v_kn_Rossia_Tendencii_i_perspektivy_razvitia_Ezegodnik_Vyp_18_Materialy_XXII_Nacionalnoj_naucnoj_konferencii_s_mezdunarodnym_ucastiem_Moderniza cia_Rossii_prioritet
- 9. Белкин В.А. Порядковые номера лет солнечных циклов (1960-2021) и валовый мировой продукт с лагом в 1 год (1961-2022): доказательство очень сильных корреляционных связей. https://www.researchgate.net/publication/375462659_PORADKOVYE_NOMER A_LET_SOLNECNYH_CIKLOV_1960-
- 2021_I_VALOVOJ_MIROVOJ_PRODUKT_S_LAGOM_V_1_GOD_1961-2022_DOKAZATELSTVO_OCEN_SILNYH_KORRELACIONNYH_SVAZEJ_ ORDINAL_NUMBERS_OF_YEARS_OF_SOLAR_CYCLES_1960-
- $2021_?_sg\%5B0\%5D=Nzz1S2McKMJ_QksLh9gGYBAEtjIsVbm6kuHbTeL_iLh$

Pk7aOcYBD1X2EfwAkN9wHpFKjJCFc5xI6mmgVXW9Go0VPRzMUsUHkG8O8mUaT.2QR1AfjvXJAFyIvK-

6qzq_aciSs6RZx2q9TSQp4W5LYctqiiWwcrpyG7WeKs27cZGrInmKp5cL6xndIa 4xy5MQ&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InByb2ZpbGUiLCJwYWdIIjoicHJvZmlsZSIsInByZXZpb3VzUGFnZSI6InByb2ZpbGUiLCJwb3NpdGlvbiI 6InBhZ2VDb250ZW50In19

- 10. Потсдамский центр имени Гельмгольца. https://kp.gfz-potsdam.de/kpdata?startdate=1932-01-01&enddate=2022-12-11&format=avgap#kpdatadownload-143
- 11. Валентинов Альберт. Магнитный штиль не лучше бури? Российская газета. 28.01.2005.- https://rg.ru/2005/01/28/magnitnie-bury.html
- 12. Гурфинкель Ю.И. Физиологические и патофизиологические аспекты влияния солнечной активности на организм человека. Сборник тезисов докладов международной конференции «Влияние космической погоды на человека в космосе и на Земле» (Москва, июнь 2012 г.). http://swh2012.cosmos.ru/ru/content/sbornik-tezisov, С. 38-39, С.38.
- 13. Валентинов Альберт. Магнитные бури и штили вредны при облучении больных раком. Российская газета, 19.03.2004. https://rg.ru/2004/03/19/magnit.html