多項式環

可換環 R と文字 x を用いた形式的な有限和

$$a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \qquad (a_i \in R)$$
 (1)

をR上の多項式という。

R上の多項式全体の集合を多項式環R[x]と書く。

既約

多項式環 R[x] において、 $f \in R[x]$ が可約であるとは、f = gh となる単元ではない $g,h \in R[x]$ が存在することをいう。

(単元とは逆元をもつ元のこと。)

f が可約でない時、既約であるという。

 $f \in \mathbb{R}[x]$ を次のように定める。f が $\mathbb{R}[x]$ において既約であるか否かを判定せよ。

1. $f = x + \sqrt{2}$

.....

ある $g,h \in \mathbb{R}[x]$ により f = gh とする。

 $\deg f = 1$ より $\deg gh = 1$ である。 $\deg g \ge 0$, $\deg h \ge 0$ であるので、 $\deg g = 1$, $\deg h = 0$ または $\deg g = 0$, $\deg h = 1$ である。

 $\deg h=0$ であれば、 $h\in\mathbb{R}$ である。 \mathbb{R} の元は全て逆元を持つので f=gh となる場合、一方は単元となる。よって、f は既約となる。

2. f = 2x + 4

.....

上記の問いと同様に $\deg f = 1$ より既約である。

f = 2(x+4)

3. $f = x^2 + 4x + 5$

.....

f が可約であるとする。可約であれば $\deg g \geq 1,\ \deg h \geq 1$ となる $g,h \in \mathbb{R}[x]$ が存在し、f=gh となる。

 $\deg f=2$ より、 $\deg g=\deg h=1$ である。1 次多項式は ax+b $(a,b\in\mathbb{R})$ の形をしているので、f(x)=(ax+b)(cx+d) $(a,b,c,d\in\mathbb{R})$ となる。この時、

 $x = -\frac{b}{a}, -\frac{d}{c}$ を f に代入すると f(x) = 0 となる。

しかし、 $f = x^2 + 4x + 5 = (x+2)^2 + 1 > 0$ であるので、f(x) = 0 となる実数は存在しない。

よって、f は既約多項式である。

4.
$$f = x^2 - 6x + 8$$

.....

f=(x-2)(x-4) であり、 $\deg{(x-2)}=\deg{(x-4)}=1$ である為、f は既約な 多項式の積で表せる。

よって、fは可約である。

5.
$$f = x^3 + 12x^2 - x + 1$$

......

 $f = x^2(x+12) - x + 1$ より次のように計算ができる。

$$f(-12) = (-12)^2(-12+12) - (-12) + 1 = 13 > 0$$
(2)

$$f(-13) = (-13)^2(-13+12) - (-13) + 1 = -(-13)^2 + 14 < 0$$
 (3)

これにより -12 と -13 の間に実数 a が存在し、f(a) = 0 となる。

代数学の基本定理により $\mathbb C$ において f は複素係数の 1 次多項式の積に分解できる。 この複素係数の 1 次式の一つは実数 a を用いて (x-a) である。

 $\deg f=3$ であるので、 $x-a,g\in\mathbb{R}[x]$ で $\deg(x-a)=1$ 、 $\deg g=2$ となる多項式により f=(x-a)g と分解される。

よって、fは可約である。

6.
$$f = x^4 + 12$$

......

 $\deg f=4$ であるので、f=gh と分解できるなら $\deg g=1, \deg h=3$ か $\deg g=\deg h=2$ である。

任意の実数に対して $f=x^4+12>0$ であるので、f(a)=0 を満たす $a\in\mathbb{R}$ は存在しない。つまり、 $\deg g=1, \deg h=3$ となる多項式の積に分けられない。

 $\deg g = \deg h = 2$ の場合を考える。

 $a_0, a_1, b_0, b_1 \in \mathbb{R}$ とし、 $g = x^2 + a_1 x + a_0, h = x^2 + b_1 x + b_0$ とする。

$$gh = (x^2 + a_1x + a_0)(x^2 + b_1x + b_0)$$
(4)

$$=x^4 + (a_1 + b_1)x^3 + (a_1b_1 + a_0 + b_0)x^2 + (a_1b_0 + a_0b_1)x + a_0b_0$$
 (5)

 $x^4+12=(x^2+a_1x+a_0)(x^2+b_1x+b_0)$ と分解できるとしたら次の式を満たす必要がある。

$$\begin{cases}
 a_1 + b_1 = 0 \\
 a_1 b_1 + a_0 + b_0 = 0 \\
 a_1 b_0 + a_0 b_1 = 0 \\
 a_0 b_0 = 12
\end{cases}$$
(6)

 $a_0b_0=12$ より $a_0\neq 0,\ b_0\neq 0$ に注意し b_0,b_1 を消すと

$$\begin{cases} a_1(-a_1) + a_0 + \frac{12}{a_0} = 0 \\ a_1 \frac{12}{a_0} + a_0(-a_1) = 0 \end{cases} \Rightarrow \begin{cases} -a_0 a_1^2 + a_0^2 + 12 = 0 \\ a_1(12 - a_0^2) = 0 \end{cases}$$
 (7)

 $a_1=0$ であれば、 $a_0^2+12=0$ であるので $a_0 \notin \mathbb{R}$ となる。

 $12 - a_0^2 = 0$ であれば $a_0 = \pm 2\sqrt{3}$ であるので、

$$-a_0 a_1^2 + a_0^2 + 12 = 0 \implies a_1^2 = \frac{a_0^2 + 12}{a_0} = \frac{24}{+2\sqrt{3}} = \pm 4\sqrt{3}$$
 (8)

となるが、 $a_0=-2\sqrt{3}$ であれば $a_1^2=-4\sqrt{3}$ であるから $a_1 \notin \mathbb{R}$ である。

つまり、 $a_0 = 2\sqrt{3}, \ a_1 = \pm 2\sqrt[4]{3}$ である。

 $a_0b_0=12$ より $b_0=2\sqrt{3}$ 、 $a_1+b_1=0$ より $b_1=\mp 2\sqrt[4]{3}$ が得られる。

これにより x^4+12 は \mathbb{R} 係数多項式 $\left(x^2+2\sqrt[4]{3}x+2\sqrt{3}\right), \left(x^2-2\sqrt[4]{3}x+2\sqrt{3}\right)$ に分解できる。

$$x^{4} + 12 = \left(x^{2} + 2\sqrt[4]{3}x + 2\sqrt{3}\right)\left(x^{2} - 2\sqrt[4]{3}x + 2\sqrt{3}\right) \tag{9}$$

よって、 $x^4 + 12$ は $\mathbb{R}[x]$ 上可約である。