计算机组成原理

扫一扫二维码,加入群聊

花忠云

https://huazhongyun.github.io/
http://faculty.hitsz.edu.cn/huazhongyun

计算机科学与技术学院

第二章 计算机的运算方法

2.1 计算机中数的表示

- 2.2 定点运算
- 2.3 浮点运算

2.1 计算机中数的表示

- 计算机中数的表示
 - 无符号数和有符号数

机器数与真值;原码/补码/反码/移码表示法

- 定点表示和浮点表示
- IEEE 754标准
- 算数移位与逻辑移位

无符号数

• 以8位寄存器为例

寄存器的位数反映无符号数的表示范围

有符号数: 真值与机器数

真值: 带符号的数

+ 0.1011或0.1011

-0.1011

+ 1100或1100

-1100

机器数:符号数字化的数

注:以后非特殊说明,默认二进制数表示;

二进制数位数不是8的倍数,只是为了讲解方便。

有符号数: 真值与机器数

真值: 带符号的数

+0.1011

+1011

机器数: 符号数字化的数

- 小数和整数在计算机中的表示一模一样?
- 如何表示既有整数又有小数的数据,如+11.01?

原码表示法:整数

带符号的绝对值表示

$$x = +1110$$
 $[x]_{\mathbb{R}} = 0$, 1110 用逗号将符号位和数值部分隔开 $x = -1110$ $[x]_{\mathbb{R}} = 1$, 1110
$$[x]_{\mathbb{R}} = 2^4 + 1110 = 1$$
 , 1110
$$[x]_{\mathbb{R}} = \begin{cases} 0, x & 2^n > x \geq 0 \\ 2^n - x & 0 \geq x > -2^n \end{cases}$$

x是真值,n是数值位数

原码表示法: 小数

$$x = +0.1101$$
 $[x]_{\mathbb{R}} = 0$ 1101 用小数点将符号位和数值部分隔开 $x = -0.1101$ $[x]_{\mathbb{R}} = 1$ 1101 = 1 - (-0.1101) $x = +0.1000000$ $[x]_{\mathbb{R}} = 0$ 10000000 用小数点将符号位和数值部分隔开 $x = -0.10000000$ $[x]_{\mathbb{R}} = 1$ 10000000 = 1 - (-0.10000000) $[x]_{\mathbb{R}} = \begin{cases} x & 1 > x \geq 0 \\ 1 - x & 0 \geq x > -1 \end{cases}$ x 是真值

举例: 根据原码求真值

• 例1. 已知 $[x]_{\mbox{\@model{g}}} = 1.0011$,求 x解: 由小数原码定义得 $x = 1 - [x]_{\mbox{\@model{g}}} = 1.0011 = -0.0011$

• 例2.已知 $[x]_{原} = 1,1100$,求 x解:由整数原码定义得 $x = 2^4 - [x]_{原} = 10000 - 1,1100 = -1100$

举例

- 例4.求 x = 0 的原码

解: 设x = +0.0000则 [+0.0000]_原 = 0.0000 x = -0.0000则 [-0.0000]_原 = 1.0000

同理,对于整数 $[+0]_{\mbox{\ensuremath{\beta}}}=0,0000$ 假设整数的数值位是4位 $[-0]_{\mbox{\ensuremath{\beta}}}=1,0000$

 $\vdots \quad [+0]_{\mathbb{R}} \neq [-0]_{\mathbb{R}}$

注意: x = 0的原码要分成小数和整数分别讨论

原码的优缺点

• 优点: 简单、直观

• 缺点: 1) +0和-0原码不一样

2) 作加法运算时,会出现如下问题:

要求	数1	数2	实际操作	结果符号
加法	正	正	加法	正
加法	正	负	减法	可正可负
加法	负	正	减法	可正可负
加法	负	负	加法	负

实际运算时能否只作加法运算?

原码的缺点

原码运算不等于十进制运算?

补数表示法

- 例:将时钟从5点调到3点
- 补的概念: 时钟以12为模
 - 逆时针: 5-2 = 3
 - 顺时针: 5+10 = 3 + 12

- 可见 -2 可用 +10 代替
 - 称 +10 是 -2 (以 12 为模)的补数
 - 记作 $-2 \equiv +10 \pmod{12}$ 同理 $-4 \equiv +8 \pmod{12}$ $-5 \equiv +7 \pmod{12}$

减法 — 加法

补数——续

可见-1011 与 + 0101 作用等价

记作
$$-1011 \equiv +0101$$
 (mod 2^4)

同理
$$-011 \equiv +101$$
 (mod 2^3)

$$-0.1001 \equiv +1.0111 \pmod{2^1}$$

•结论(真值的绝对值小于模)

- •一个负数加上"模"即得该负数的补数
- •一个负数和一个正数互为补数时,绝对值之和即为模数

自然去掉

补数——续

正数的补数即为其本身

对于时钟:
$$3点、15点、27点都是3点 \longrightarrow 3 \equiv 15 \equiv 27 \pmod{12}$$
 $3 \equiv 3+12 \equiv 3+24 \equiv 3 \pmod{12}$

同理:
$$+0101 \equiv +0101 + 2^4 \equiv +0101 \pmod{2^4}$$

前面已证明:
$$-1011 \equiv -1011 + 2^4 \equiv +0101 \pmod{2^4}$$

$$2^{4+1} - 1011 = 1000000 - 1011 \over 1,0101 \pmod{2^{4+1}}$$

问题: + 0101 究竟是-1011 的补数还是+0101的补数呢?

补码表示法: 二进制整数

整数补码定义:

$$[x]_{\begin{subarray}{l} [x]_{\begin{subarray}{l} \{x\}_{\begin{subarray}{l} \{x\}_{\begin{subarr$$

$$x = +0101000$$
 $x = -1011000$
$$[x]_{N} = 0,0101000$$

$$[x]_{N} = 2^{7+1} + (-1011000)$$

$$= 100000000$$

$$- 1011000$$

$$1,0101000$$
 和数值部分隔开

补码表示法:二进制(纯)小数

小数补码定义:

$$[x]_{\nmid h} = \begin{cases} x & 1 > x \ge 0 \\ 2 + x & 0 > x \ge -1 \pmod{2} \end{cases}$$

$$x = +0.1110$$
 $x = -0.1100000$ $[x]_{\stackrel{}{\uparrow}} = 0.1110$ $[x]_{\stackrel{}{\uparrow}} = -0.1100000+2$ $= 10.0000000$ $= 0.1100000$ $= 1.0100000$ 和数值部分隔开

求补码的快捷方式

当<u>真</u>值为负时,补码可用原码除符号位外每位取反,末位加1求得

举例:已知小数补码求真值

已知 $[x]_{i} = 1.0001$,求x和 $[x]_{i}$ 。

根据真值x

[x]补除符号位外,按位取反

$$(x)_{\text{fi}} = 1.1111 = 1.1110 + 0.0001$$

结论: 当真值为负时,已知补码求原码的快捷方法:

- 补码除符号位外,每位取反,末位加1
- 补码除符号位外,末位减 1,再每位取反

练习:已知负数补码求真值

已知
$$[x]_{i}=1,1110$$
,求 x

解:由定义得
$$x = [x]_{in} - 2^{4+1}$$

= 1,1110 - 100000
= -0010

或:
$$[x]_{\stackrel{}{\wedge}} \longrightarrow [x]_{\stackrel{}{\otimes}} \longrightarrow x$$

根据快捷求法:
$$[x]_{\mathbb{R}} = 1,0001+1=1,0010$$

$$\therefore x = -0010$$

练习: 求下列真值的补码

真值 $[x]_{k}$ $[x]_{\mathbb{R}}$ x = -70 = -10001101, 0111010 1,1000110 1.0010 1.1110 x = -0.1110 $x = [+0.0000] [+0]_{\frac{1}{2}} = [-0]_{\frac{1}{2}} [0.0000]$ 0.0000 x = [-0.0000]0.0000 1.0000 x = -1.00001.0000 不能表示 由小数补码定义 $[x]_{\stackrel{}{\uparrow}} = \begin{cases} x & 1 > x \ge 0 \\ 2+x & 0 > x \ge -1 \pmod{2} \end{cases}$

$$[-1.0000]_{35} = 2 + x = 10.0000 - 1.0000 = 1.0000$$

反码表示法: 二进制整数

整数反码定义:

$$[x]_{\overline{\mathbb{D}}} = \begin{cases} 0, x & 2^{n} > x \geq 0 \\ (2^{n+l}-1) + x & 0 \geq x > -2^{n} \pmod{2^{n+l}-1} \end{cases}$$
 其中: x 为真值, n 为数值位数

$$x = +1101$$
 $x = -1101$ $[x]_{\overline{\wp}} = 0,1101$ $[x]_{\overline{\wp}} = (2^{4+1}-1)-1101$ $= 11111-1101$ $= 1,0010$ 数值位按位取反

反码表示法: 二进制小数

小数反码定义:

$$[x]_{\mathbb{Q}} = \begin{cases} x & 1 > x \ge 0 \\ (2-2^{-n}) + x & 0 \ge x > -1 \pmod{2-2^{-n}} \end{cases}$$

其中: x 为真值, n 为数值位数

$$x = -0.1010$$
 $[x]_{ar{eta}} = (2-2^{-4}) - 0.1010$ $= 1.1111 - 0.1010$ $= 1.0101$ 和数值部分隔开 $[x]_{ar{\Bbb G}} = 1.1010$ 数值位按位取反

例:已知反码求真值,0的反码

• 已知 $[x]_{\overline{\mathbb{Q}}} = 1,1110$,求 x 解: 由定义得 $x = [x]_{\overline{\mathbb{Q}}} - (2^{4+1} - 1)$ = 1,1110 - 11111 = -0001

• 求 0 的反码

解: 设
$$x = +0.0000$$
, $[+0.0000]_{\overline{\mathbb{Q}}} = 0.0000$ $x = -0.0000$, $[-0.0000]_{\overline{\mathbb{Q}}} = 1.1111$ 同理,对于整数 $[+0]_{\overline{\mathbb{Q}}} = 0,0000$, $[-0]_{\overline{\mathbb{Q}}} = 1,1111$ $[+0]_{\overline{\mathbb{Q}}} \neq [-0]_{\overline{\mathbb{Q}}}$

三种机器数的小结

- •最高位为符号位, 书写上用","(整数)或"."(小数)将数值部分和符号位隔开
- •对于正数,符号位为0,原码 = 补码 = 反码
- •对于负数,符号位为 1,其数值部分
 - 原码除符号位外每位取反(反码) 末位加 1 -> 补码
- 当真值为 负 时,已知补码求原码的方法:
 - 补码除符号位外,每位取反,末位加 1
 - 补码除符号位外, 末位减 1, 再每位取反

例: 机器数的真值

• 设机器数字长为8位(其中1位为符号位);对于整数,当其分别代表无符号数、原码、补码和反码时,对应的真值范围各为多少?

二进制代码	无符号数	原码对应	补码对应	反码对应
	对应的真值	的真值	的真值	的真值
00000000	0	+0	±0	+0
00000001	1	+1	+1	+1
00000010	2	+2	+2	+2
01111111	: 127	÷127	+127	÷127
10000000	128	-0	-128	-127
10000001	129	-1	-127	-126
:	: 253	:	:	:
11111101		-125	-3	-2
11111110	254	-126	-2	-1
11111111	255	-127	-1	-0

例: 已知 $[y]_{\lambda}$,求 $[-y]_{\lambda}$

例: 设
$$[y]_{\stackrel{}{\mathbb{A}}} = y_0, y_1, y_2, \dots, y_n,$$
 求 $[-y]_{\stackrel{}{\mathbb{A}}}$ 。

解:
$$\langle I \rangle$$
 $[y]_{\dagger} = 0. y_1 y_2 ... y_n$

$$y = 0. y_1 y_2 ... y_n$$

$$-y = -0. y_1 y_2 ... y_n$$

$$[-y]_{\nmid h} = 1.\overline{y_1} \overline{y_2} ... \overline{y_n} + 2^{-n}$$

$$< II > [y]_{k} = 1. y_1 y_2 \cdots y_n$$

$$[y]_{\mathbb{R}} = 1.\overline{y_1}\overline{y_2}\cdots\overline{y_n} + 2^{-n}$$

$$y = -(0, \overline{y_1}, \overline{y_2}, \cdots, \overline{y_n} + 2^{-n})$$

$$-y = 0.\overline{y_1}\overline{y_2}...\overline{y_n} + 2^{-n}$$

$$[-y]_{\nmid h} = 0.\overline{y_1}\overline{y_2}\cdots\overline{y_n} + 2^{-n}$$

[y]_补连同符号位在内, 每位取反,末位加1, 即得[-y]_补

移码表示法

• 补码表示很难直接判断其真值大小

如 十进制	二进制	补码	
x = +21	+10101	0,10101 1,01011 大	
x = -21	-10101	1,01011 大	
x = +31	+11111	0,11111	
x = -31	-11111	0,11111 1,00001 大	
以上 $x+2^5$	+10101 + 1	00000 = 110101 大	
	+10101 + 1000000 = 110101 大 -10101 + 1000000 = 001011 大 正确		
	+11111 + 10	00000 = 1111111 大	
	-11111 + 10	00000 = 1111111 大 00000 = 000001 大 正确	

移码表示法: 二进制整数

• 移码定义

$$[x]_{8} = 2^{n} + x (2^{n} > x \ge -2^{n})$$

其中: x 为真值, n 为 整数的位数

小数的移码定义呢?

• 移码在数轴上的表示

x = 10100

• 例:

$$[x]_8 = 2^5 + 10100 = 1,10100$$

 $x = -10100$ 用 逗号 将符号位
和数值位隔开

$$[x]_{8} = 2^5 - 10100 = 0.01100$$

移码和补码的比较

设
$$x = +1100100$$
 $[x]_{8} = 2^{7} + 1100100 = 1,1100100$ $[x]_{1} = 0,1100100$ 设 $x = -1100100$ $[x]_{1} = 2^{7} + (-1100100) = 0,0011100$ $[x]_{1} = 2^{7+1} - 1100100 = 1,0011100$ 补码与移码只差一个符号位

真值、补码和移码的对照表

真值 x (n=5)	[x] _补	[x] _移	[x] _移 对应的 十进制整数
-100000 - 11111 - 11110	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{array} $	0 1 2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	100010 : 111111 000000	000010 : 011111 100000	: 31 32
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	000000 00001 000010	$egin{array}{cccccccccccccccccccccccccccccccccccc$	33 34
: + 11110 + 11111	: 011110 011111	: 111110 11111	62 63

移码的特点

续前表,
$$n=5$$

$$[+0]_{8} = 2^{5} + 0 = 1,00000$$

$$[-0]_{8} = 2^{5} - 0 = 1,00000$$

$$[+0]_{8} = [-0]_{8}$$

最小真值 $-2^5 = -100000$ 对应的移码为 $2^5-100000 = 000000$ 最小真值的移码为全 0

可用移码思想表示浮点数的阶码,便于判断浮点数阶码大小

2.1 计算机中数的表示

• 计算机中数的表示

- 无符号数和有符号数
- 定点表示和浮点表示
- IEEE 754标准
- 算数移位与逻辑移位

定点表示

- 小数点按约定方式标出
- 定点表示

定点机 小数定点机 整数定点机 原码
$$-(1-2^{-n}) \sim +(1-2^{-n})$$
 $-(2^n-1) \sim +(2^n-1)$ 补码 $-1 \sim +(1-2^{-n})$ $-(2^n-1) \sim +(2^n-1)$ 反码 $-(1-2^{-n}) \sim +(1-2^{-n})$ $-(2^n-1) \sim +(2^n-1)$

浮点表示

```
N = S \times r^{j} 浮点数的一般形式
 S 尾数 i 阶码 r 基数 (基值)
 计算机中r取 2、4、8、16 等
                               二进制表示
 当 r=2 N=11.0101
            ✓= 0.110101×2<sup>10</sup> 规格化数
              = 1.10101 \times 2^{1}
              = 1101.01 \times 2^{-10}
            \checkmark = 0.00110101 \times 2^{100}
计算机中 S 小数、可正可负
          i 整数、可正可负
```

浮点数的表示形式

- $S_{\rm f}$ 代表浮点数的符号
- n 其位数反映浮点数的精度
- m 其位数反映浮点数的表示范围
- $j_{\rm f}$ 和 m 共同表示小数点的实际位置

浮点数的表示范围

练习

• 设机器数字长为 24 位, 欲表示±3万的十进制数, 试问 在保证数的最大精度的前提下, 除阶符、数符各 取1 位外, 阶码、尾数各取几位?

解:
$$2^{14} = 16384$$
 $2^{15} = 32768$

· 15 位二进制数可反映 ±3 万之间的十进制数

$$2^{15}$$
 × $0.$ × × × ··· × × × × $m = 4, 5, 6, \cdots$

满足 最大精度 可取 m = 4, n = 18

• 浮点数的规格化形式

r=2 尾数最高位为 1

r=4 尾数最高 2 位不全为 0 基数不同,浮点数的

r=8 尾数最高 3 位不全为 0 规格化形式不同

• 浮点数的规格化

r=2 左规 尾数左移 1 位,阶码减 1

右规 尾数右移1位,阶码加1

r=4 左规 尾数左移 2 位,阶码减 1

右规 尾数右移 2 位,阶码加 1

r=8 左规 尾数左移 3 位,阶码减 1

右规 尾数右移 3 位, 阶码加 1

基数r越大,可表示的浮点数的范围越大基数r越大,浮点数的精度降低

• 规格化数的定义

$$r=2 \qquad \frac{1}{2} \leq |S| < 1$$

• 规格化数的判断

$$S>0$$
 规格化形式 $S<0$ 规格化形式 真值 $0.1\times\times...\times$ 真值 $-0.1\times\times...\times$ 原码 $0.1\times\times...\times$ 原码 $1.1\times\times...\times$ 补码 $0.1\times\times...\times$ 及码 $1.0\times\times...\times$

原码 不论正数、负数,第一数位为1

补码和反码 符号位和第一数位不同

•特例

$$S = -\frac{1}{2} = -0.100 \cdots 0$$

$$[S]_{\mathbb{R}} = 1.100 \cdots 0$$

$$[S]_{\nmid h} = \boxed{1.1} 0 0 \cdots 0$$

: [- 1/2] 不是规格化的数

$$S = -1$$

$$[S]_{\nmid h} = 1.000 \cdots 0$$

∴ [-1] → 是规格化的数

• 例5.设 m = 4, n = 10, r = 2, 求尾数规格化后的浮点数表示范围(阶码与尾数都是原码表示)

•例6. 将 $+\frac{19}{128}$ 写成二进制定点数、浮点数及在定点机和浮点机中的机器数形式。其中数值部分均取 10 位,数符取 1 位,浮点数阶码取 5 位(含1位阶符)。

解: 设
$$x = + \frac{19}{128}$$

二进制形式 x = 0.0010011

定点表示 x = 0.0010011000

浮点规格化形式 $x = 0.1001100000 \times 2^{-10}$

定点机中 $[x]_{\mathbb{R}} = [x]_{\mathbb{A}} = [x]_{\mathbb{Q}} = 0.0010011000$

浮点机中 $[x]_{\mathbb{R}} = 1,0010; 0.1001100000$

 $[x]_{3} = 1, 1110; 0.1001100000$

 $[x]_{\mathbf{x}} = 1, 1101; 0.1001100000$

•例7. 将-58 表示成二进制定点数和浮点数,并写出它在定点机和浮点机中的三种机器数及阶码为移码、尾数为补码的形式(其他要求同上例)。

解: 设x = -58

二进制形式

x = -111010

定点表示

x = -0000111010

浮点规格化形式 $x = -(0.1110100000) \times 2^{110}$

定点机中

浮点机中

 $[x]_{\mathbb{R}} = 1,0000111010$

 $[x]_{\mathbb{R}} = 0,0110; 1.1110100000$

 $[x]_{36} = 1, 1111000110$

 $[x]_{\nmid k} = 0,0110; 1.0001100000$

 $[x]_{\overline{\aleph}} = 1, 1111000101$

 $[x]_{\overline{\bowtie}} = 0,0110; 1.0001011111$

 $[x]_{\text{max}} = 1,0110; 1.0001100000$

• 例8. 写出下列原码数轴所示的浮点数的**补码**形式。设 n = 10, m = 4, 阶符、数符各取1位。

解:

真值

10)

补码

最大正数 $2^{15} \times (1-2^{-10})$

最小正数 2⁻¹⁵× 2⁻¹⁰

最大负数 $-2^{-15} \times 2^{-10}$

最小负数 $-2^{15} \times (1-2^{-10})$

0,1111; 0.11111111111

1,0001; 0.000000001

1,0001; 1.1111111111

0,1111; 1.0000000001

溢出判断

设机器数为补码,尾数为 规格化形式,并假设阶符取 2 位,阶码取 7 位,数符取 2 位,尾数取 *n* 位,则 该 补码 在数轴上的表示为

机器零

- 当浮点数**尾数为 0** 时,不论其阶码为何值,按机器零处理
- 当浮点数阶码小于它所表示的最小数时,按机器零处理

如 m = 4 n = 10 当阶码和尾数都用补码表示时,机器零为 $\times, \times \times \times;$ $0.00 \cdots 0$ 或者阶码 <-16,按照机器零处理

当阶码用移码,尾数用补码表示时,机器零为 0,0000; 0.00 ··· 0

有利于机器中"判0"电路的实现

16位长的浮点数,其中阶码7位(含1位阶符),尾数9位(含1位数符),当浮点数采用原码表示时,表示的数的范围是[填空1],当浮点数采用补码表示时,数的表示的范围是[填空2]

- A. $-2^{64} \sim 2^{64} (1-2^{-8})$
- B. $-2^{63} \sim 2^{63} (1-2^{-8})$
- C. $-2^{63} \sim 2^{63} (1-2^{-9})$
- D. -2^{63} (1-2⁻⁸) ~ 2^{63} (1-2⁻⁸)

2.1 计算机中数的表示

• 计算机中数的表示

- 无符号数和有符号数
- 定点表示和浮点表示
- IEEE 754标准
- 算数移位与逻辑移位

IEEE 754 标准

尾数为规格化表示

非"0"的有效位最高位为"1"(隐含)

	符号位 S	阶码	尾数	总位数
短实数	1	8	23	32
长实数	1	11	52	64
临时实数	1	15	64	80

IEEE 754浮点数标准

• 单精度 (32-bit)

31	30	29	28	27	26	25	24	23	22 ~ 0
S		8	位指	数(:	无符 ⁻	号数)			23位尾数(无符号数)

• 双精度 (64-bit)

63	62	61	60	59	58	57	56	55	54	53	52	51~0
S		11位指数(无符号数)										52位尾数(无符号数)

IEEE 754浮点数: 单精度为例

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
S	s 8位指数(无符号数)									23位	I尾数	(无	符号	数)	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	23位尾数(无符号数)														

指数	尾数	表示对象	换算方法
0	0	0	规定 (符号位不同, 存在+0.0和-0.0)
0	非0	正负非规格化 数	正负非规格化数 = (-1) ^S * (尾数₂) * 2 ⁻¹²⁶ (S代表符号位, 1为负数, 0为正数)
[1: 254]	任意	正负浮点数	正负浮点数 = (-1) ^S * (1 + 尾数 ₂) * 2 ^(指数 - 127)
255	0	正负无穷 (inf)	规定
255	非零	NaN	规定

IEEE 754浮点数:正负浮点数

- 正负浮点数 = $(-1)^S \times (1 + 尾数_2) \times 2^{(指数 127)}$
- 尾数前加一?
 - 因为规格化的二进制数小数点后是1。为了打包更多的位到数中,就在二进制表示中把这个1移到小数点前面并省略了这个数。这个1称为**前导数。**
 - 有效位数: 隐含的1加上尾数共有多少位。对单精度来说,有效位数是 24 位(隐含的1和 23 位尾数);对双精度来说,是 53 位(1+52)。
 - 由于 0 (和非规格化数)没有前导数,所以被赋予特殊的指数 0,硬件不会给它附加 1

指数	尾数	表示对象	换算方法
0	0	0	规定
0	非0	正负非规格化 数	正负非规格化数 = (-1) ^S * (尾数₂) * 2 ⁻¹²⁶ (S代表符号位, 1为负数, 0为正数)
[1: 254]	任意	正负浮点数	正负浮点数 = (-1) ^S * (1 + 尾数 ₂) * 2 ^(指数 - 127)
255	0	正负无穷 (inf)	规定
255	非零	NaN	规定

IEEE 754浮点数:正负浮点数:

- 正负浮点数 = $(-1)^S \times (1 + 尾数_2) \times 2^{(指数 127)}$
- 指数 127?
 - 使用移码的思想。二进制表示中的指数部分是无符号数,可以直接进行大小比较。如果两个数的符号相同,那么具有更大二进制指数的数就更大。
 - 对于真值,实际"指数"范围: [1-127: 254-127] = [-126: 127]
 - 如果-128, 实际"指数"范围: [1-128: 254-128] = [-127: 126]
- •相邻两个单精度浮点数相差?

IEEE 754浮点数:正负非规格化数

- 正负非规格化数 = (-1)^S × (尾数₂) × 2⁻¹²⁶
- 什么是非规格化数?
 - 规格化数: 科学计数法中整数部分没有前导 0 的数称为规格化数;
 - 非规格化数:整数部分前导为 0 的数
- 非规格化数的绝对值比浮点数绝对值更小
 - 对于正负浮点数来说,若二进制指数部分为1,则真值指数部分为-126,和非规格化数相同。但浮点数尾数有前导1,导致浮点数绝对值更大。

指数	尾数	表示对象	换算方法
0	0	0	规定
0	非0	正负非规格化 数	正负非规格化数 = (-1) ^S * (尾数₂) * 2 ⁻¹²⁶ (S代表符号位,1为负数,0为正数)
[1: 254]	任意	正负浮点数	正负浮点数 = (-1) ^S * (1 + 尾数 ₂) * 2 ^(指数 - 127)
255	0	正负无穷 (inf)	规定
255	非零	NaN	规定

IEEE 754浮点数:正负非规格化数

- 正负浮点数 = $(-1)^S \times (1 + 尾数_2) \times 2^{(指数 127)}$ (指数: 1—254)
- 正负非规格化数 = $(-1)^S \times (尾数_2) \times 2^{(0-126)}$

最小正浮点数:
$$N_1 = (1 + 0_2) * 2^{(1-127)} = 2^{-126}$$

第二小正浮点数: $N_2 = (1 + 0.0...01_2) * 2^{(1-127)} = 2^{-126} + 2^{-149}$

最大非规格化数: $UN_x=0.1...11_2*2^{(0-126)}=(1-2^{-23})*2^{-126}=2^{-126}-2^{-149}$

•••••

最小正非规格化数: $UN_1=0.0...01_2*2^{(0-126)}=2^{-23}*2^{-126}=2^{-149}=0.0$

IEEE 754浮点数: 真值转二进制

- 例9
 - 将十进制 -0.75 转为单精度 IEEE 754格式二进制
- 解

根据十进制小数转二进制小数算法: $-0.75_{10} = -0.11_2$ 规格化: $-0.11 = -1.1 * 2^{-1}$,能够规格化,说明是正负浮点数表示 $-1.1 * 2^{-1} = (-1)^S \times (1 + \mathbf{E}\mathbf{X}_2) \times 2^{(\text{ff}\mathbf{X}_2 - 127)}$ $= (-1)^1 \times (1 + 0.1_2) \times 2^{(126 - 127)}$

符号位: 1; 指数部分: 126; 尾数部分: 0.12

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
1	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

IEEE754相关网址: https://www.h-schmidt.net/FloatConverter/IEEE754.html

IEEE 754浮点数:二进制转真值

- 例10
- 将二进制IEEE754浮点数表示转换为十进制浮点数(空白为0)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
1	1	0	0	0	0	0	0	1	0	1	0	0	0	0	0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

解

符号位为1,指数字段为129,尾数字段为2⁻² = 0.25。是浮点数
$$(-1)^S \times (1 + 尾数_2) \times 2^{(fl)} = (-1)^T \times (1 + 0.25) \times 2^{(129 - 127)} = -1 \times 1.25 * 2^2 = -5.0$$

IEEE 754浮点数转换工具

This page allows you to convert between the decimal representation of numbers (like "1.02") and the binary format used by all modern CPUs (IEEE 754 floating point).

	IEEE 754 Converter (JavaScript), V0.22									
	Sign	Exponent	Mantissa							
Value:	-1	2 ⁻¹²⁴	1.5000001192092896							
Encoded as:	1	3	4194305							
Binary:	Z									
Deci	mal repres	sentation -7.052966665								
Value	actually	stored in float: -7.052966665	45311077773924759282530738287844585273730187965							
Error	due to co	onversion:								
Binar	y Represe	entation 100000011100	100000011100000000000000000000000000000							
Hexa	decimal F	Representation 0x81c00001	0x81c00001							

2.1 计算机中数的表示

• 计算机中数的表示

- 无符号数和有符号数
- 定点表示和浮点表示
- IEEE 754标准
- 算数移位与逻辑移位

移位运算

• 移位的意义

15.m = 1500.cm 小数点右移 2 位

机器用语 15 相对于小数点 左移 2 位

(小数点不动)

左移 绝对值扩大

右移 绝对值缩小

• 在计算机中,移位与加减配合,能够实现乘除运算

算术移位规则

符号位不变

真值	码制	添补代码
正数	原码、补码、反码	0
	原 码	0
负数	补 码	左移添0
火致	イド 1 1寸	右移添1
	反 码	1

算术移位和逻辑移位的区别

算术移位 有符号数的移位

逻辑移位 无符号数的移位

逻辑左移 低位添 0, 高位移丢

高位添 0,低位移丢 0

例如 01010011

逻辑右移

10110010

逻辑左移 10100110

逻辑右移 01011001

算术左移 00100110

算术右移 110

11011001 (补码)

高位1移丢

•例11. 设机器数字长为 8 位(含1位符号位),写出 A = +26 时,三种机器数左、右移一位和两位后的表示形式及对应的真值,并分析结果的正确性。

解:
$$A = +26 = +11010$$
 则 $[A]_{\mathbb{R}} = [A]_{\mathbb{A}} = [A]_{\mathbb{R}} = 0,0011010$

移位操作	机器数 $[A]_{\mathbb{F}}=[A]_{\mathbb{F}}=[A]_{\mathbb{F}}$	对应的真值
移位前	0,0011010	+26
左移一位	0,0110100	+52
左移两位	0,1101000	+104
右移一位	0,0001101	+13
右移两位	0,0000110	+6

•例12. 设机器数字长为 8 位(含1位符号位),写出 A = -26时,三种机器数左、右移一位和两位后的表示形式及对应的真值,并分析结果的正确性。

解:
$$A = -26 = -11010$$

原码

移位操作	机器数	对应的真值
移位前	1,0011010	-26
左移一位	1,011010 <mark>0</mark>	- 52
左移两位	1,1101000	- 104
右移一位	1,0001101	- 13
右移两位	1,0000110	-6

补码

移位操作	机器数	对应的真值
移位前	1,1100110	-26
左移一位	1,1001100	- 52
左移两位	1,0011000	- 104
右移一位	1, <mark>1</mark> 110011	-13
右移两位	1,1111001	-7

反码

移位操作	机器数	对应的真值
移位前	1,1100101	- 26
左移一位	1,100101 <mark>1</mark>	- 52
左移两位	1,0010111	- 104
右移一位	1, <mark>1</mark> 110010	- 13
右移两位	1,1111001	-6

算术移位的硬件实现

计算机中数的表示

- 无符号数和有符号数
- 定点表示和浮点表示
- IEEE 754标准
- 算数移位与逻辑移位

第二章计算机的运算方法

- 2.1 计算机中数的表示
- 2.2 定点运算
 - 加减法运算
 - 一位乘法运算
 - Booth 算法
- 2.3 浮点运算

定点加减法运算(补码)

●加法

整数
$$[A]_{\nmid h} + [B]_{\nmid h} = [A+B]_{\nmid h}$$
 (mod 2^{n+1})
$$[x]_{\nmid h} = \begin{cases} 0, x & 2^n > x \ge 0 \\ 2^{n+1} + x & 0 > x \ge -2^n \pmod{2^{n+1}} \end{cases}$$
 小数 $[A]_{\nmid h} + [B]_{\nmid h} = [A+B]_{\nmid h}$ (mod 2)

●减法

$$A-B=A+(-B)$$

$$[x]_{n} = \begin{cases} x & 1 > x \ge 0 \\ 2 + x & 0 > x \ge -1 \pmod{2} \end{cases}$$

整数
$$[A-B]_{\stackrel{*}{\nmid}}=[A+(-B)]_{\stackrel{*}{\nmid}}=[A]_{\stackrel{*}{\nmid}}+[-B]_{\stackrel{*}{\nmid}}\pmod{2^{n+1}}$$

小数
$$[A - B]_{\stackrel{?}{\nmid h}} = [A + (-B)]_{\stackrel{?}{\nmid h}} = [A]_{\stackrel{?}{\nmid h}} + [-B]_{\stackrel{?}{\nmid h}} \pmod{2}$$

连同符号位一起相加,符号位产生的进位自然丢掉

例:用补码运算求A+B

•设A = 0.1011,B = -0.0101,用补码运算求A+B=?

解:
$$[A]_{\stackrel{}{\mathbb{A}}} = 0.1011$$

$$+[B]_{\stackrel{}{\mathbb{A}}} = 1.1011$$

$$[A]_{\stackrel{}{\mathbb{A}}} + [B]_{\stackrel{}{\mathbb{A}}} = 10.0110 = [A + B]_{\stackrel{}{\mathbb{A}}}$$

$$\therefore A + B = 0.0110$$

验证 0.1011 - 0.0101 0.0110

• 设A = -9,B = -5(设A和B数值位数为4),求A + B解: $[A]_{\lambda} = 1,0111$

$$[A]_{\dot{\uparrow}} = 1, 0111$$

$$+[B]_{\dot{\uparrow}} = 1, 1011$$

$$[A]_{\dot{\uparrow}} + [B]_{\dot{\uparrow}} = 1, 0010 = [A + B]_{\dot{\uparrow}}$$

$$\therefore A + B = -1110$$

$$-1001\\+-0101\\-1110$$

已知 $[X]_{i}$,以下哪个方法可以求出 $[-X]_{i}$?

- A 包括符号为在内按位取反
- 图 包括符号位在内,每位取反,末位加 1
- © 除符号位外,每位取反,末位加1
- **符号为取反,其他保持不变**

关于 $[X]_{i}$ 和 $[-X]_{i}$,哪个表述正确?

- $-[X]_{\dot{\uparrow}|}=[-X]_{\dot{\uparrow}|}$
- $[X]_{i}$ 和 $[-X]_{i}$ 没有任何关系

例:已知小数[y],求[-y]*

设 $[y]_{i} = y_0 \cdot y_1 y_2 \dots y_n$,根据符号位 y_0 为0或1分开讨论

$$\begin{aligned}
| \{y\}_{\stackrel{?}{\Rightarrow}} &= \mathbf{0}. \ y_{1} y_{2} \dots y_{n} \\
& [y]_{\stackrel{?}{\Rightarrow}} &= \mathbf{0}. \ y_{1} y_{2} \dots y_{n} \\
& -y &= -\mathbf{0}. \ y_{1} y_{2} \dots y_{n} \\
& [-y]_{\stackrel{?}{\Rightarrow}} &= \mathbf{1} + (\overline{y_{1}} \ \overline{y_{2}} \dots \overline{y_{n}} + 2^{-n}) \\
& [-y]_{\stackrel{?}{\Rightarrow}} &= \mathbf{1} - (\overline{y_{1}} \ \overline{y_{2}} \dots \overline{y_{n}} + 2^{-n}) \\
& [-y]_{\stackrel{?}{\Rightarrow}} &= \mathbf{1} - (\overline{y_{1}} \ \overline{y_{2}} \dots \overline{y_{n}} + 2^{-n}) \\
& [-y]_{\stackrel{?}{\Rightarrow}} &= \mathbf{0}. \ \overline{y_{1}} \ \overline{y_{2}} \dots \overline{y_{n}} + 2^{-n} \\
& [-y]_{\stackrel{?}{\Rightarrow}} &= \mathbf{0}. \ \overline{y_{1}} \ \overline{y_{2}} \dots \overline{y_{n}} + 2^{-n} \end{aligned}$$

 $[y]_{i}$ 连同符号位在内,每位取反,末位加 1,即得 $[-y]_{i}$

观察发现 $[-y]_{\stackrel{}{h}} + [y]_{\stackrel{}{h}} = 2 \longrightarrow 0 \pmod{2}$ $[-y]_{\stackrel{}{h}} = -[y]_{\stackrel{}{h}}$

*例:已知整数 $[X]_{i}$,求 $[-X]_{i}$

设 $[X]_{\uparrow} = X_n, X_{n-1} \cdots X_1 X_0$,根据符号位 X_n 为0或1分开讨论

$$<\mathbf{I}> \qquad \boxed{[X]_{\stackrel{?}{\Rightarrow}} = \mathbf{0}, X_{n-1}X_{n-2}...X_{1}X_{0}} <\mathbf{I}\mathbf{I}> \boxed{[X]_{\stackrel{?}{\Rightarrow}} = \mathbf{1}, X_{n-1}X_{n-2}...X_{1}X_{0}} \\ X_{\stackrel{\square}{\otimes}} = \mathbf{0}, X_{n-1}X_{n-2}...X_{1}X_{0} \qquad X_{\stackrel{\square}{\otimes}} = \mathbf{1}, (\overline{X_{n-1}}\overline{X_{n-2}}...\overline{X_{1}}\overline{X_{0}} + \mathbf{1}) \\ [-X]_{\stackrel{?}{\Rightarrow}} = \mathbf{1}, (\overline{X_{n-1}}\overline{X_{n-2}}...\overline{X_{1}}\overline{X_{0}} + \mathbf{1}) \\ \boxed{[-X]_{\stackrel{?}{\Rightarrow}} = \mathbf{0}, (\overline{X_{n-1}}\overline{X_{n-2}}...\overline{X_{1}}\overline{X_{0}} + \mathbf{1})} \\ \boxed{[-X]_{\stackrel{?}{\Rightarrow}} = \mathbf{0}, (\overline{X_{n-1}}\overline{X_{n-2}}...\overline{X_{1}}\overline{X_{0}} + \mathbf{1})}$$

 $[X]_{i}$ 连同符号位在内,每位取反,末位加 1,即得 $[-X]_{i}$

观察发现 $[-X]_{N}^{+} = [X]_{N}^{+} = 2^{n+1} -> 0 \pmod{2^{n+1}}$ $[-X]_{N}^{+} = -[X]_{N}^{+}$

例:用补码运算求A-B

设机器数字长为 8 位(含 1 位符号位)且 A=15, B=24,用补码求 A-B。

解:
$$A = 15 = 0001111$$
 $B = 24 = 0011000$
 $[A]_{?|} = 0,0001111$
 $[B]_{?|} = 0,0011000$
 $+[-B]_{?|} = 1,1101000$
 $[A]_{?|} + [-B]_{?|} = 1,1110111 = [A - B]_{?|}$
 $\therefore A - B = -1001 = -9$

设机器数字长为 8 位(含 1 位符号位)且A = -97,B = 41,用补码求A - B(8位补码表示)。 **(97**= **01100001** 41=**00101001**)

- A 11110110
- B 01110110
- 11001000
- 」 其他

例:用补码运算求A-B

- •设机器数字长为 8 位(含 1 位符号位)且A = -97,B = -97
- 41,用补码求A-B。 (97=01100001 41=00101001)

解:
$$A = -97 = -1100001$$
 [A]_补= 1,0011111 +[- B]_补= 1,1010111

一位符号位判溢出

- •参加加法运算的两个数(减法时+减数相反数的补码)
 - 如果符号不同,不会溢出。
 - •如果符号相同(同0或同1), 其结果的符号与原操作数的符号 不同, 即为溢出
- •最高有效位的进位⊕符号位的进位 = 1, 溢出
- •最高有效位的进位⊕符号位的进位 = 0, 无溢出
- 硬件实现——异或门

两位符号位判溢出

• 小数变形补码

$$[x]_{\nmid h'} = \begin{cases} x & 1 > x \ge 0 \\ 4 + x & 0 > x \ge -1 \end{cases} \pmod{4}$$

• 整数变形补码

$$[X]_{\nmid h'} = \begin{cases} X & 2^n > X \ge 0 \\ 2^{n+2} + X & 0 > x \ge -2^n \pmod{2^{n+2}} \end{cases}$$

- 最高符号位代表其真正的符号

双符号位判断补码运算溢出

•设机器数字长为 9 位(含 2 位符号位)且 A = -97, B =

解:
$$A = -97 = -11000001$$
 $B = 41 = 0101001$
 $[A]_{\stackrel{?}{\uparrow}} = 11,0011111$
 $+[-B]_{\stackrel{?}{\downarrow}} = 11,10101111$

$$[A]_{\ref{A}} + [-B]_{\ref{A}} = 110, 1110110 = [A - B]_{\ref{A}}$$

$$\therefore A - B = +118 \quad (溢出)$$

乘法运算——笔算乘法分析

$$A = -0.1101$$
 $B = 0.1011$
 $A \times B = -0.10001111$
 0.1101
 0.1101
 0.1101
 1101
 0.101
 0.101
 0.101
 0.101
 0.101
 0.101
 0.101

乘积的符号心算求得

- ✓ 符号位单独处理
- ✓ 乘数的某一位决定是否加被乘数
- ? 4位的积一起相加
- ✓ 乘积的位数扩大一倍

笔算乘法的改进

$$A \cdot B = A \cdot 0.1011$$

$$= 0.1A + 0.00A + 0.001A + 0.0001A$$

$$= 0.1A + 0.00A + 0.001(1 \cdot A + 0.1A)$$

$$= 0.1A + 0.01[0 \cdot A + 0.1(1 \cdot A + 0.1A)]$$

$$= 0.1\{1 \cdot A + 0.1[0 \cdot A + 0.1(1 \cdot A + 0.1A)]\}$$

$$= 2^{-1}\{1 \cdot A + 2^{-1}[0 \cdot A + 2^{-1}(1 \cdot A + 2^{-1}(1 \cdot A + 0))]\}$$
1 被乘数A + 0
2 右移一位,得新的部分积
3 部分积 + 被乘数
...
 右移一位,得结果

改进后的笔算乘法过程(竖式)

0.1101

 $\times 0.1011$

???..????

部分积(乘数暂存) 丢弃	说明
0.00001011	初态,部分积高位=0
+0.1101	乘数为 1, 加被乘数
$0 \cdot 1101 1 011$	→1 , (逻辑右移)
0.01101101	形成新的部分积
+0.1101	乘数为 1, 加被乘数
1.001111111111111111111111111111111111	→1 ,
0.1001 1110 11	形成新的部分积
+0.0000	乘数为 0 ,加 0
$0 \cdot 1001 110$	→1 ,
0.0100 111100	形成新的部分积
+0.1101	乘数为 1加 被乘数
1.0001111	→1 ,
0.100011111	无乘数位,结束

改进的笔算乘法小结

- •两个n位数乘法运算可用 加n次和移位n次 实现
- 由乘数的末位决定 被乘数是否与原部分积相加
- 乘数右移1位(末位舍弃),空出高位存放部分积的低位,同时部分积右移1位形成新的部分积。
- •被乘数只与部分积的高n位相加
- 硬件需求:移位寄存器,全加器

计算机的运算方法

- 2.2 定点运算
 - •加减法运算
 - 一位乘法
 - Booth 算法
 - 除法运算

原码一位乘运算规则

整数: 设[
$$X$$
]_原 = $X_n X_{n-1}$... $X_1 X_0$, [Y]_原 = $Y_n Y_{n-1}$... $Y_1 Y_0$ [$X \times Y$]_原 = $(X_n \oplus Y_n)(0X_{n-1}$... $X_1 X_0 \times 0Y_{n-1}$... $Y_1 Y_0$) = $(X_n \oplus Y_n)(|X| \times |Y|)$ 小数: 设[x]_原 = x_0 ... $x_1 x_2$... x_n , [y]_原 = y_0 ... $y_1 y_2$... y_n [$x \times y$]_原 = $(x_0 \oplus y_0)$... $(0 \cdot x_1 x_2 \dots x_n \times 0 \cdot y_1 y_2 \dots y_n)$ = $(x_0 \oplus y_0)$... $(|x| \times |y|)$

乘积的符号位单独处理,数值部分为绝对值相乘

小数原码一位乘递推公式

$$|x| \times |y| = |x|(\underline{0}.y_1y_2...y_n)$$

$$= |x| \times (y_1 \times 2^{-1} + y_2 \times 2^{-2} + ... + y_n \times 2^{-n})$$

$$= 2^{-1}(y_1 \times |x| + 2^{-1}y_2 \times |x| + ... + 2^{-n+1}y_n \times |x|)$$

$$= 2^{-1}(y_1 \times |x| + 2^{-1}(y_2 \times |x| + ... + 2^{-1}(y_n \times |x| + 0)...))$$

$$= \frac{z_1}{z_1}$$

$$z_{0} = 0$$

$$z_{1} = 2^{-1}(y_{n}|x|+z_{0})$$

$$z_{2} = 2^{-1}(y_{n-1}|x|+z_{1})$$

$$\vdots$$

$$z_{i} = 2^{-1}(y_{n+1-i}|x|+z_{i-1})$$

 $z_n = 2^{-1}(y_1|x|+z_{n-1})$

x = -0.1110, y = 0.1101, $\Re[x \times y]_{\mathbb{R}}$

数值部分的运算

部分积(乘数暂存) 丢弃	说明
0.00001101	部分积,初态 $z_0 = 0$
+0.1110	乘数为 1 , 加/x/
$0 \cdot 1110 1 0 1$	逻辑右移→1,
0.011104	得 z 1
+ 0.0000	乘数为 0 ,加 0
0.011100	逻辑右移→1,
0.0011 1011 <i>0</i> 1	得 z 2
+0.1110	乘数为 1 , 加/x/
$1 \cdot 0001 1011$	逻辑右移→1,
0.100011011	得 z ₃
+0.1110	
$\frac{1}{1} \cdot 0 \cdot 1 \cdot 1 \cdot 0 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1$	逻辑右移→1,
0.101101010	得 z₄ ,结束 ⁸⁹

整数原码一位乘递推公式

$$\begin{split} |X| \times |Y| &= |X| (\mathbf{0} Y_{n-1} \dots Y_1 Y_0) = 2^{n-1} Y_{n-1} |X| + 2^{n-2} Y_{n-2} |X| + \dots + 2^1 Y_1 |X| + 2^0 Y_0 |X| \\ &= 2^n * (2^{-1} Y_{n-1} |X| + 2^{-2} Y_{n-2} |X| + \dots + 2^{-n+1} Y_1 |X| + 2^{-n} Y_0 |X|) \\ &= 2^n * (2^{-1} * (Y_{n-1} |X| + 2^{-1} Y_{n-2} |X| + \dots + 2^{-n+2} Y_1 |X| + 2^{-n+1} Y_0 |X|)) \\ &= 2^n * (2^{-1} * (Y_{n-1} |X| + 2^{-1} (Y_{n-2} |X| + \dots + 2^{-n+3} Y_1 |X| + 2^{-n+2} Y_0 |X|))) \\ &= 2^n * (2^{-1} * (Y_{n-1} |X| + 2^{-1} (Y_{n-2} |X| + 2^{-1} (\dots + 2^{-1} (Y_1 |X| + 2^{-1} (Y_0 |X| + 0))) \dots)) \\ &= 2^n * (2^{-1} * (Y_0 |X| + 2^{-1} (Y_0 |X| + 2^{-1} (\dots + 2^{-1} (Y_0 |X| + 2^{1} (Y_0 |X| + 2^{-1} (Y_0 |X| + 2^{-1} (Y_0 |X| + 2^{-1} (Y_0 |X|$$

$$Z_2 = 2^{-1}(Y_1|X|+Z_1)$$
...
$$Z_n = 2^{-1}(Y_{n-1}|X|+Z_{n-1})$$

$X = -1110, Y = 1101, \Re[X \times Y]_{\mathbb{R}}$

数值部分的运算

部分积(乘数暂存) 丢	弃 说明
00001101.	高部分积置 $0(*2^n)$, $Z_0 = 0$
+ 1110	乘数为 1 ,加/X/
1110 1 0 1	逻辑右移→1,
011101	得 Z 1
+ 0000	乘数为0 ,加 0
0 1 1 1 0 1 1 0	逻辑右移→1,
0011 1011 01	得 Z 2
+ 1110	乘数为 1 ,加/X/
10001 1011	逻辑右移→1,
0 1 0 0 0 1 1 0 1 10	4 得 Z ₃
+ 0 1 1 1 0	乘数为 1, 加/X/
10110 1101	逻辑右移→1,
$0 \ \underline{1} \ 0 \ \underline{1} \ 1 \ \underline{0} \ \underline{1} \ \underline{0} \ $	— · · · · · ·

原码乘法小结

- ●乘积的符号位=被乘数的符号位 ⊕ 乘数的符号位
- ●数值部分按绝对值相乘

特点:

- 绝对值运算
- 用移位的次数判断乘法是否结束
- •逻辑移位

• 补码一位乘运算规则

以小数为例 设被乘数 $[x]_{i} = x_0 \cdot x_1 x_2 \cdot \dots \cdot x_n$ 乘数 $[y]_{i} = y_0 \cdot y_1 y_2 \cdot \dots \cdot y_n$

- ① 被乘数任意,乘数为正 同原码乘 但加和移位按补码规则运算 乘积的符号自然形成
- ② 被乘数任意,乘数为负 乘数[y]_补,去掉符号位,操作同① 最后加[-x]_补,校正

①被乘数任意,乘数为正

$$[x]_{\nmid h} \times [y]_{\nmid h} = [x]_{\nmid h} \times y = (2^{n+1} + x) \times y = 2^{n+1} \times y + x \times y$$

$$2^{n+1} \times y = 2 \sum_{i=1}^{n} y_i 2^{n-i}$$
 且 $\sum_{i=1}^{n} y_i 2^{n-i}$ 是一个大于等于 1的正数。

则
$$2^{n+1} \times y = 2 \pmod{2}$$

$$[x]_{\nmid h} \times [y]_{\nmid h} = 2^{n+1} \times y + x \times y = 2 + x \times y = [x \times y]_{\nmid h}$$

即
$$[x \times y]_{\stackrel{>}{\Rightarrow} h} = [x]_{\stackrel{>}{\Rightarrow} h} \times y$$

同原码乘 但加和移位按补码规则运算 乘积的符号自然形成

② 被乘数任意,乘数为负

$$[x]_{\nmid h} = x_0 \cdot x_1 x_2 \cdot \cdot \cdot \cdot x_n$$
$$[y]_{\nmid h} = y_0 \cdot y_1 y_2 \cdot \cdot \cdot \cdot y_n$$

$$[y]_{\nmid h} = 1. y_1 y_2 \dots y_n = 2 + y \pmod{2}$$

$$y = [y]_{\nmid h} - 2 = 1. y_1 y_2 ... y_n - 2 = 0. y_1 y_2 ... y_n - 1$$

$$x \times y = x \times (0, y_1y_2 \dots y_n - 1) = x \times (0, y_1y_2 \dots y_n) - x$$

$$+[-x]_{\not=}-[x]_{\not=}$$

$$[x \times y]_{\nmid h} = [x \times (0, y_1 y_2 \dots y_n)]_{\nmid h} + [-x]_{\nmid h}$$

$$[x \times (0, y_1y_2 \dots y_n)]_{\nmid k} = [x]_{\nmid k} \times (0, y_1y_2 \dots y_n) \ (51) \ \text{fig}$$

$$[x \times y]_{\nmid h} = [x]_{\nmid h} \times (0, y_1 y_2, \dots, y_n) + [-x]_{\nmid h}$$

乘数[y]和, 去掉符号位,操作同①

最后 $m[-x]_{i}$,校正

- 补码一位乘运算规则
 - ①被乘数任意,乘数为正

$$[x \times y]_{\nmid h} = [x]_{\nmid h} \times y$$

② 被乘数任意,乘数为负

$$[x \times y]_{k} = [x]_{k} \times (0, y_1 y_2 \dots y_n) + [-x]_{k}$$

统一算法

$$[x \times y]_{\nmid h} = [x]_{\nmid h} \times (0. y_1 y_2 \dots y_n) + [-x]_{\nmid h} \times y_0$$
$$= [x]_{\nmid h} \times (0. y_1 y_2 \dots y_n) - [x]_{\nmid h} \times y_0$$

$$[x]_{\nmid h} = x_0 \cdot x_1 x_2 \cdot \cdot \cdot \cdot x_n$$
$$[y]_{\nmid h} = y_0 \cdot y_1 y_2 \cdot \cdot \cdot \cdot y_n$$

$$+[-x]_{\nmid h} = -[x]_{\nmid h}$$

• 例. 已知 $[x]_{\stackrel{1}{N}} = 0.1101$, $[y]_{\stackrel{1}{N}} = 1.0101$, $\bar{x}[x \times y]_{\stackrel{1}{N}}$ 解: 00.0000 | 0101 初值 $[z_0]_{\uparrow}=0$ $[-x]_{k} = 1.0011$ $y_4 = 1, +[x]_{*}$ +00.1101 00.1101 补码右移 $\rightarrow 1$ 得 $[z_1]_*$ ~ 0.0110 $\rightarrow 1$ $y_3 = 0$, 直接右移得 $[z_2]_*$ 补码右移 > 00.001101 +00.1101 $y_2 = 1, +[x]_{*}$ 01.00000 1 补码右移 -0.0.1000001 $\rightarrow 1$ 得[z_3]_补 -1 $y_1 = 0$,直接右移,得 $[z_4]_*$ 补码右移 -00.01000001 $+[-x]_{\lambda}$ 进行校正 +11.0011 $\therefore [x \times y]_{k}$ 11.0111 | 0001得最后结果 =1.01110001

计算机的运算方法

- 2. 2定点运算
 - 加减法运算
 - 一位乘法
 - Booth算法

Booth 算法(被乘数、乘数符号任意)

Booth算法递推公式

$$[z_{0}]_{\dot{\uparrow}\dot{\uparrow}} = 0 \qquad y_{n+1} = 0$$

$$[z_{1}]_{\dot{\uparrow}\dot{\uparrow}} = 2^{-1} \{ (y_{n+1} - y_{n})[x]_{\dot{\uparrow}\dot{\uparrow}} + [z_{0}]_{\dot{\uparrow}\dot{\uparrow}} \}$$

$$[z_{2}]_{\dot{\uparrow}\dot{\uparrow}} = 2^{-1} \{ (y_{n} - y_{n-1})[x]_{\dot{\uparrow}\dot{\uparrow}} + [z_{1}]_{\dot{\uparrow}\dot{\uparrow}} \}$$
....

$y_i y_{i+1}$	y_{i+1} - y_i	操作
0 0	0	$[z_{n-i}]_{ eq h}$ $\longrightarrow 1$
0 1	1	$[z_{n-i}]_{\not= h} + [x]_{\not= h} \longrightarrow 1$
1 0	-1	$[z_{n-i}]_{\not= h} + [-x]_{\not= h} \longrightarrow 1$
1 1	0	$[z_{n-i}]_{ eqh}$ $\longrightarrow 1$

$$[z_i]_{\nmid h} = 2^{-1} \{ (y_{n+2-i} - y_{n+1-i})[x]_{\nmid h} + [z_{i-1}]_{\nmid h} \}$$

• • • • •

$$[z_n]_{\stackrel{}{\mathbb{A}}} = 2^{-1} \{ (y_2 - y_1)[x]_{\stackrel{}{\mathbb{A}}} + [z_{n-1}]_{\stackrel{}{\mathbb{A}}} \}$$
$$[x \times y]_{\stackrel{}{\mathbb{A}}} = (y_1 - y_0)[x]_{\stackrel{}{\mathbb{A}}} + [z_n]_{\stackrel{}{\mathbb{A}}} \qquad 最后一步不移位$$

已知 x = +0.0011, y = -0.1011, 求[$x \times y$]_补

0101	0	说明
!		$y_i y_{i+1} = 10$,加[- x] _补
<u>0101</u>		算术右移 →1
1010	1	
		$y_i y_{i+1} = 01$,加[x] _补
<u>1010</u>		算术右移→1
1101	0 <i>10</i>	
:		$y_i y_{i+1} = 10$,加[- x]
<u>1101</u>		算术右移 →1
1110	1 010	
; ;		$y_i y_{i+1} = 01$,加[x] _补
1110		算术右移 →1
<u>111</u> 1	0 <i>1010</i>	
		$y_i y_{i+1} = 10, \text{ m[-x]}_{?}$
111		结束(最后一步不移位)
	0101 1010 1101 1101 1110 1111	0 1 0 1 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

$$[x]_{\begin{subarray}{l} [x]_{\begin{subarray}{l} [x]_{\begin{subarra$$

$y_i y_{i+1}$	y_{i+1} - y_i	操作
0 0	0	$\rightarrow 1$
0 1	1	$+[x]_{\nmid h} \rightarrow 1$
1 0	-1	$+[-x]_{\nmid h} \rightarrow 1$
1 1	0	$\rightarrow 1$

$$\therefore [x \times y]_{\not \uparrow \downarrow}$$
=1.11011111

已知 x = +0.0011, y = -0.1011, 求 $[x \times y]_{*k}$ 说明 00.0000 1.01010 $y_i y_{i+1} = 10, \text{ m[-x]}_{*k}$ 11.1101 | 10101算术右移 →1 11.110 11010 1 +00.0011 $y_i y_{i+1} = 01$,加[x] 🗼 00.001 11010 算术右移→1 00.00011101040 +11.1101 $y_i y_{i+1} = 10, \text{ m[-x]}_{*k}$ 11.1101 11101 算术右移 →1 11. 110 11110 1000 +00.0011 $y_i y_{i+1} = 01$,加[x] 🗼 00.0001 11110 算术右移 →1 00.00011111001010 +11.1101 $y_i y_{i+1} = 10, \text{ m[-x]}_{*k}$

最后一步不移位

11.1101 1111

$$[x]_{\begin{subarray}{l} [x]_{\begin{subarray}{l} [x]_{\begin{subarra$$

$y_i y_{i+1}$	y_{i+1} - y_i	操作
0 0	0	$\rightarrow 1$
0 1	1	$+[x]_{\nmid h} \rightarrow 1$
1 0	-1	$+[-x]_{\nmid h} \rightarrow 1$
1 1	0	$\rightarrow 1$

$$\therefore [x \times y]_{\not \uparrow \downarrow}$$
=1.11011111

乘法小结

- 整数乘法与小数乘法基本相同
 - •用 逗号 代替小数点
 - 整数有整体移位操作, 部分积最开始保存在积的高位

•符号位:原码乘需要单独处理,补码乘 自然形成

• 原码乘去掉符号位运算, 即为无符号数乘法

• 不同的乘法运算需有不同的硬件支持

乘法器硬件示意图

- •被乘数寄存器128位
 - •被乘数64位,要左移一位64次。
- 浪费:被乘数寄存器、ALU
 - 多数时间只用64位

 $\begin{array}{r} 1101 \\ \times 1011 \\ \hline 1101 \\ 1101 \\ 0000 \\ \hline 1101 \\ \hline 10001111 \end{array}$

改良版乘法器硬件

- A. 积寄存器129位(初值为: 65个0 和 64位的乘数)
 - 最高位用于保存加法器的进位
- B. 若乘数最右端为1
 - •取积寄存器[127:64]
 - •取出的值加上被乘数;
 - •和写入积寄存器[128:64]
- C. 积寄存器整体右移一位
- *B和C循环64次
- *结果为积寄存器[127:0]
- *快速乘法: 黑书3.3.3

黑书图3-5

计算机的运算方法

- 2.2 定点运算
 - •加减法运算
 - 一位乘法
 - Booth 算法

例.
$$[x]_{\stackrel{}{\uparrow}}=0.1101$$
, $[y]_{\stackrel{}{\uparrow}}=0.1011$, 求 $[x\cdot y]_{\stackrel{}{\uparrow}}$

00.000	0.1 0 1 1	0	说明
$+ \overline{11.0011}$		 	$y_i y_{i+1} = 10$,加[- x] _补
$11.\underline{0011}$	01011	; 	算术右移 →1
11. <mark>1</mark> 001	10101	1	
11. <mark>1</mark> 100	11010	1 <i>1</i> 0	y _i y _{i+1} = 11, <mark>算术右移</mark> →1
$+ \overline{00.1101}$!	$y_i y_{i+1} = 01, \text{ m[x]}_{?}$
00. <u>1001</u>	11010	 - - -	算术右移→1
00. <mark>0</mark> 100	111 <u>0</u> 1	0 <i>110</i>	
$+\overline{11.1101}$		 - - - -	$y_i y_{i+1} = 10, \text{ minimum}$
11.0111	111 <u>0</u> 1	! !	算术右移 →1
11.1011	1111 <mark>0</mark>	1 0110	
$+$ $\overline{00.1101}$			$y_i y_{i+1} = 01, \text{m[x]}_{\gtrless h}$
00.1000	1111	 	最后一步不移位
		! !	
		<u>I</u>	

$$[x]_{\nmid h} = 00.1101$$

 $[y]_{\nmid h} = 00.1011$
 $[-x]_{\nmid h} = 11.0011$

$y_i y_{i+1}$	y_{i+1} - y_i	操作
0 0	0	→ 1
0 1	1	$+[x]_{\nmid \mid }\rightarrow 1$
1 0	-1	$+[-x]_{\nmid h} \rightarrow 1$
1 1	0	→ 1

$$\therefore [x \times y]_{\nmid h}$$

$$= 0.10001111$$

第二章 计算机的运算方法

- 2.1 计算机中数的表示
- 2.2 定点运算
- 2.3 浮点运算

浮点四则运算

•一、浮点加减运算

$$x = S_x \cdot 2^{j_x} \qquad y = S_y \cdot 2^{j_y}$$

1. 对阶: 使两个浮点数的阶码相同

(2) 对阶原则

小阶向大阶看齐

1. 对阶

① 求阶差
$$[\Delta j]_{\hat{i}} = [j_x]_{\hat{i}} - [j_y]_{\hat{i}} = 00,01$$

+ 11,01
11,10

阶差为负
$$(-2)$$
 $:S_x \longrightarrow 2$ j_x+2

- ② 对阶 $[x]_{\lambda k'} = 00, 11; 00.0011$
- 2. 尾数求和

$$[S_x]_{N'} = 00.0011$$
 对阶后的 $[S_x]_{N'}$ $+ [S_y]_{N} = 11.0110$ 11.1001 $\therefore [x+y]_{N} = 00, 11; 11.1001$

左规和右规

- •原码规格化判断方法:不论正数、负数,第一数位为1
- 补码规格化判断方法: 符号位和第一数位不同
- 补码左规:尾数每左移1位,阶码减1,直到数符与第一数位不同。

$$[x+y]_{\nmid h} = 00, 11; 11.1001$$

左规后
$$[x+y]_{\dot{\gamma}} = 00, 10; 11.0010$$

$$x + y = (-0.1110) \times 2^{10}$$

• 右规: 当尾数溢出(>1)时,需右规

例如:双符号位的尾数出现 $01. \times ... \times$ 或 $10. \times ... \times$ 时,

尾数每右移一位,阶码加1。

设 $x = 0.1101 \times 2^{10}$, $y = 0.1011 \times 2^{01}$, 求 x + y (除阶符2位、数符2位外,阶码取3位,尾数取6位)

解: $[x]_{\stackrel{?}{\Rightarrow}} = 00,010;00.110100$ $[y]_{\stackrel{?}{\Rightarrow}} = 00,001;00.101100$

① 对阶
$$[\Delta j]_{\dot{\uparrow}\dot{\uparrow}} = [j_x]_{\dot{\uparrow}\dot{\uparrow}} - [j_y]_{\dot{\uparrow}\dot{\uparrow}} = 00,010$$

$$+ 11,111$$

$$100,001$$

阶差为 +1 $:S_y \longrightarrow 1, j_y + 1$

 $\therefore [y]_{\nmid h'} = 00, 010; 00. 010110$

② 尾数求和: $[S_x]_{\stackrel{}{h}} = 00.110100$ $+[S_y]_{\stackrel{}{h'}} = 00.010110$ 对阶后的 $[S_y]_{\stackrel{}{h'}}$ 足数溢出需右规

③ 右规

$$[x + y]_{\dot{\uparrow}\dot{\uparrow}} = 00, 010; 01.001010$$

右规后
 $[x + y]_{\dot{\uparrow}\dot{\uparrow}} = 00, 011; 00.100101$
 $\therefore x + y = 0.100101 \times 2^{11}$

• 4. 舍入

- 在 对阶 和 右规 过程中,可能出现尾数末位丢失引起误差,需考虑舍入
 - (1)0 舍 1 入法
 - (2)恒置"1"法

例
$$x = (-\frac{5}{8}) \times 2^{-5}$$
, $y = (\frac{7}{8}) \times 2^{-4}$,求 $x - y$ (除阶符、数符外,阶码取 3 位,尾数取 6 位)

•例.
$$x = (-\frac{5}{8}) \times 2^{-5}$$
, $y = (\frac{7}{8}) \times 2^{-4}$, 求 $x - y$ (除阶符、数符外, 阶码取 3 位, 尾数取 6 位)

解:
$$x = (-0.101000) \times 2^{-101}$$
 $y = (0.111000) \times 2^{-100}$ $[x]_{\dag} = 11,011;11.011000$ $[y]_{\dag} = 11,100;00.111000$

① 对阶

$$[\Delta j]_{\nmid h} = [j_x]_{\nmid h} - [j_y]_{\nmid h} = 11,011$$

$$+ 00,100$$

$$11,111$$

阶差为
$$-1$$
 $:: S_x \longrightarrow 1$, j_x+1 $:: [x]_{*h'} = 11, 100; 11. 101100$

② 尾数求和

③右规

$$[x-y]_{\not=}=11, 100; 10. 110100$$

右规后

$$[x-y]_{\nmid h} = 11, 101; 11.011010$$

$$\therefore x - y = (-0.100110) \times 2^{-11}$$

$$= (-\frac{19}{32}) \times 2^{-3}$$

溢出判断

• 设机器数为补码,尾数为 规格化形式,并假设阶符取 2 位,阶码的数值部分取 7 位,数符取 2 位,尾数取 n 位,则该 补码在数轴上的表示为

计算机的运算方法

- 2.1 计算机中数的表示
- 2.2 定点运算
 - 加减法运算
 - 一位乘法运算
 - Booth 算法
- 2.3 浮点运算