Question Number	Answer		Mark
16(a)	Either (1)	
	Use of $F = \frac{GMm}{r^2}$ with $F = m\omega^2 r$		
	$CSCOTW = \frac{1}{T}$		
	T = 5800 s		
	Or (1	$ \cdot $	
	Use of $F = \frac{GMm}{r^2}$ with $F = \frac{mv^2}{r}$		
	Use of $v = \frac{2\pi r}{T}$		2
	T = 5800 s		3
	Example of calculation		
	$\frac{GMm}{r^2} = m\omega^2 r$		
	$\therefore \omega = \sqrt{\frac{GM}{r^3}}$		
	$\omega = \sqrt{\frac{6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 6.0 \times 10^{24} \text{ kg}}{(6.4 \times 10^6 \text{ m} + 5.5 \times 10^5 \text{ m})^3}} = 1.09 \times 10^{-3} \text{ rad s}^{-1}$		
	$T = \frac{2\pi \text{ rad}}{1.09 \times 10^{-3} \text{ rad s}^{-1}} = 5755 \text{ s}$		
16(b)	Either		
	$(F = \frac{GMm}{r^2}$, so) the (gravitational) force is greater for a low Earth orbit (1)	1)	
	$F = m \left(\frac{2\pi}{T}\right)^2 r$		
	So if F increases when r decreases, then T must decrease		
	(MP3 dependent upon MP1 or MP2)	L)	
	Or		
	$\left(\frac{2\pi}{T} = \sqrt{\frac{GM}{r^3}}, \text{ so}\right) T^2 = \frac{4\pi^2 r^3}{GM}$		
	G and M are constant, so $T \propto \sqrt{r^3}$ (1)	l)	
		l)	
	So when r is smaller, T is smaller. (MP3 dependent upon MP1 or MP2)	l)	3
	(MP3 dependent upon MP1 or MP2) [Accept converse argument]		
	[Accept converse argument]		

16(c) Use of
$$V_{\text{grav}} = (-)\frac{GM}{r}$$
 (1)

Use of $\Delta E_k = GMm\left(\frac{1}{r_1} - \frac{1}{r_2}\right)$ (1)

$$\Delta E_k = 1.1 \times 10^9 \text{ J}$$
 (1)

(Do not credit use of $\Delta E_{\text{grav}} = mg\Delta h$, as g is not constant)

$$\underline{\text{Example of calculation}}$$

$$\Delta E_k = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 6.0 \times 10^{24} \text{ kg} \times 227 \text{ kg} \left(\frac{1}{6.4 \times 10^6 \text{ m}} \cdot \frac{1}{(6.4 \times 10^6 + 5.5 \times 10^5)\text{m}}\right)$$

$$\therefore \Delta E_k = 1.12 \times 10^9 \text{ J}$$

9

Total for question 16