Вступ в теорію груп

Сергій Максименко

9 травня 2021 р.

Поняття групи 1

Задача 1.1. Описати множини всіх симетрій

1)		
13	правильного	трикутника:

6) прямокутника;

2) правильного квадрата;

- 7) ромба;
- 3) правильного п'ятикутника;
- 8) паралелограма;
- 4) правильного шестикутника (на лекції я сказав ось неправильне про шестикутник. Знайдіть помилку);
- 9) кола;

5) правильного п-кутника;

10) рівнобедреного трикутника

Задача 1.2. Описати симетрії букв українського та англійського алфавіту. Чи є букви у яких множини симетрій «схожі», якщо так, то чим?

Задача 1.3. Чим «схожі» чи «однакові» множини симетрій правильного трикутника, букви Y, символу «Мерседес»?

Задача 1.4. Які симетрії є у числової прямої?

Задача 1.5. Які з наступних функцій (можливо їх графіки) є «симетричними» і в якому сенсі? Якщо так, то опишіть множини симетрій цих функцій.

1

$$1) \ f(x) = \sin(x)$$

7)
$$f(x) = |x|$$

$$2) \ f(x) = \cos(x)$$

8)
$$f(x) = 2x + 4$$

$$3) \ f(x) = \operatorname{tg}(x)$$

9)
$$f(x) = x^2 + 5x + 6$$

$$4) \ f(x) = \operatorname{ctg}(x)$$

10)
$$f(x) = 2^x$$

$$5) \ f(x) = x^2$$

10)
$$f(x) = 2^{x}$$

6)
$$f(x) = x^3$$

11) періодична функція з періодом 5

Задача 1.6. Перевірити, що множина цілих чисел

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, \ldots\}$$

утворює групу відносно одерації додавання. Тобто відображення

$$\mu: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, \qquad \mu(x, y) = x + y,$$

задовольняє аксіоми групи. Що буде нейтральним елементом \mathbb{Z} ? Що є оберненим елементом для $x \in \mathbb{Z}$?

Задача 1.7. Чи утворює групу множина натуральних чисел $\mathbb{N} = \{1, 2, 3, \ldots\}$ відносно такої ж операції додавання:

$$\mu: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \qquad \mu(x, y) = x + y?$$

Задача 1.8. Встановити, які з операцій на множинах задовольняють аксіоми груп:

- 1. \mathbb{R} множина дійсних чисел з операцією додавання $\mu: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \, \mu(x,y) = x+y;$
- 2. \mathbb{R} множина дійсних чисел з операцією множення $\mu: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, $\mu(x,y) = xy$;
- 3. \mathbb{R} множина дійсних чисел з операцією віднімання $\mu: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \, \mu(x,y) = x y;$

2 Ізоморфізми груп

Нехай $f:A\to B$ – відображення між групами (A,*) та (B,*) з операціями * та * відповідно. Воно називається *ізоморфізмом груп*, якщо

- 1. f бієкція
- 2. для довільних $x, y \in A$ виконується співвідношеня: f(x * y) = f(x) * f(y).

Ізоморфізм $f: A \to A$ групи A на себе називається автоморфізмом групи. Множина всіх автоморфізмів групи на себе позначається через $\operatorname{Aut}(A)$.

Задача 2.1. Довести, що відображення $f: \mathbb{R} \to \mathbb{R}_+, f(x) = 3^x$, є ізоморфізмом групи \mathbb{R} з операцією додавання чисел на групу \mathbb{R}_+ з операцією множення.

Задача 2.2. Довести, що відображення $f: \mathbb{R}_+ \to \mathbb{R}, f(x) = \log_7 x$, є ізоморфізмом групи (\mathbb{R}_+, \cdot) на групу $(\mathbb{R}, +)$.

Задача 2.3. Нехай $f:A\to B$ – ізоморфізм груп A і B. Довести, що обернене відображення $f^{-1}:B\to A$ також ізоморфізм.

Задача 2.4. Нехай $f:A\to B,\ g:B\to C$ – ізоморфізми груп. Довести, що композиція $g\circ f:A\to C$ також ізоморфізм груп.

Задача 2.5. Позначимо через $\operatorname{Aut}(A)$ – множина всіх ізоморфізмів групи A на себе. Довести, що $\operatorname{Aut}(A)$ є групою відносно композиції ізоморфізмів як відображень.

Задача 2.6. Описати всі автоморфізми групи цілих чисел $(\mathbb{Z},+)$.

Задача 2.7. Описати всі підмножини в групі цілих чисел $\mathbb Z$ відносно додавання, які також є утворюють групи відносно додавання.

Задача 2.8. Нехай $4\mathbb{Z}$ і $7\mathbb{Z}$ множини цілих чисел кратних 4 та 7 вдповідно. Перевірити, що вони уворюють групи відносно операції додавання. Чи ізоморфні ці групи? Якщо так, побудувати всі можливі ізоморфізми між $(4\mathbb{Z}, +)$ і $(7\mathbb{Z}, +)$.