Chapter 7 practice

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) The work done in pushing a TV	set a distance of 2 m	n with an average for	cce of 20 N is	1)
A) 2 J. B) 10 J.	C) 20 J.	D) 40 J.	E) 800 J.	
2) The work you do when pushing	a shopping cart twi	ice as far while apply	ving twice the force is	2)
A) half as much.	••	B) twice as much.		
C) four times as much.		D) the same amoun	nt.	
3) No work is done by gravity on a	bowling ball that re	olls along a bowling	alley because	3)
A) no force acts on the ball.	.1 1 11			
B) little distance is covered by C) the force on the ball is at ri		all'e motion		
D) the ball's speed remains co	0 0	in s motion.		
4) The unit kilowatt-hour is a unit of				4)
A) energy.	nomentum.	C) power.	D) time.	
F) \\ \f\ \f\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \				- \
5) Which task requires more work? A) lifting the 50-kg sack 2 me	otors	B) lifting the 25-ks	o sack 4 meters	5)
C) both require the same	et e l'action	D) need more infor		
				
6) The amount of work done on a h		Nellie across a room	n at a constant speed	6)
A) depends on the weight of				
B) depends on the distance w C) depends on both weight o		ice walked		
D) is none.	t the box and distar	ice wanca.		
E) none of the above				
7) If you do work on a skateboard loaded with friends in one–third the usual time, you expend				7)
A) one third as much power.C) three times the usual power.	er.	B) the usual power D) need more information		
e, and and all all all and and all all all all all all all all all al		2 / 110001 111010 111101		
8) The power required to exert 4-N	force over 3 meters	s in 2 seconds is		8)
A) 4 W.				
B) 6 W. C) 8 W.				
D) 12 W.				
E) none of the above				
9) An object has gravitational poter	ntial energy due to i	ts		9)
A) speed.B) acceleration.				
C) momentum.				
D) location.				
E) none of the above				

10) Relative to an initial height, an object	ct raised twice as high has a gravitational potential energy	10)
A) half as much	B) twice as much.	
C) four times as much.	D) need more information	
11) When a drawn bow of potential ene	ergy 40 J is fired, the arrow will <i>ideally</i> have a kinetic energy	11)
A) less than 40 J.	B) more than 40 J. C) of 40 J.	
, ,	1 meter vertically, or can roll them up a 2-meter-long ramp	12)
to the same elevation. With the ramp A) half as much.	p, the applied force required is about B) the same.	
C) twice as much.	D) four times as much.	
13) A <mark>2-kg</mark> ball is held <mark>4 m</mark> above the gr	ound. Relative to the ground its potential energy is	13)
A) 6 J.		
B) 8 J. C) 32 J.		
D) 80 J.		
E) more than 80 J.		
	f potential energy relative to the ground. Its height above the	14)
ground is A) 1 m.		
B) 2 m.		
C) 3 m.		
D) 4 m.		
E) none of the above		
15) An object that has kinetic energy mu	ast be	15)
A) moving.		
B) falling.		
C) at an elevated position.D) at rest.		
E) none of the above		
16) Two identical call carte many at diff	former arounds. The featon cout has twice the smooth and	16)
therefore has	ferent speeds. The faster cart has twice the speed and	16)
A) twice the kinetic energy.	B) four times the kinetic energy.	
C) eight times the kinetic energy.	D) none of the above	
~ ·	with 100 J of kinetic energy. If air resistance is negligible the	17)
melon will return to its initial level v		
A) less than 100 J.	B) more than 100 J.	
C) 100 J.	D) need more information	

18) Danny Diver weighs 500 N	and steps off a diving	g board 10 m above t	the water. Danny hits the	18)
water with kinetic energy of				
A) 10 J.				
B) 500 J.				
C) 510 J.				
D) 5000 J.				
E) more than 5000 J.				
19) Which has greater kinetic er	erov?			19)
A) a car traveling at 30 k	03			
B) a car of half the mass		r		
C) both the same	craveining at oo rant, in			
D) need more information	n			
20) Neglecting air resistance, Sa	mmy Smarts on a hig	rh ladder releases a l	hall that strikes the ground	20)
with 100 J of kinetic energy.				
reach the ground with a kin			y	
A) less than 100 J.	B) 100 J.		C) more than 100 J.	
21) If a Ping-Pong ball and a go	lf ball both move in t	he same direction w	rith the same amount of	21)
kinetic energy, the speed of	the Ping-Pong ball m	nust be		
A) less than the golf ball.		B) more than the	ne golf ball.	
C) both the same		D) need more i	nformation	
22) Two identical particles move	e toward each other, o	one twice as fast as t	he other. Just before they	22)
collide, one has a kinetic en	ergy of 25 J and the ot	ther 50 J. At this inst	ant their total kinetic	
energy is				
A) 25 J.				
B) 50 J.				
C) 75 J.				
D) none of the above				
E) need more information	n			
23) When Joshua brakes his spe	eding bicycle to a sto	p, kinetic energy is t	ransformed to	23)
A) potential energy.		B) energy of m	otion.	
C) energy of rest.		D) heat.		
24) A motorcycle moving at 50 l	cm/h skids 10 m with	h locked brakes. Ho	w far will it skid with	24)
locked brakes when travelir		il locked blanes. 110	Will will it state with	
A) 10 m	B) 30 m	C) 50 m	D) 90 m	
11, 10 111	2) 00 111	C) 55 III	2,30 111	
25) About 40 J is required to pu	sh a crate 4 m across a	a floor. If the push is	in the same direction as the	25)
motion of the crate, the force				
A) 4 N.	B) 10 N.	C) 40 N.	D) 160 N.	
,		·	·	
26) Which requires the most am	•	orakes of a car?		26)
A) slowing down from 1				
B) slowing down from 7				
C) equal amounts for bo	:h			

27) A ba	ll rolling down an incline has its maximum po	tential energy at	27)
A) the top.	B) a quarter of the way down.	
) halfway down.	D) the bottom.	
28) The l	oob of a simple pendulum has its maximum ki	inetic energy at the	28)
A) top of its swing.	B) bottom of its swing.	
C) midpoint between top and bottom.	D) at all points along its path of swing.	
are h A B C	th the aluminum ball and a heavy lead ball of the alfway down the incline, they will have identically being the control of the	· ·	29)
) inertias.		
30) Strict	tly speaking, more fuel is consumed by your ca	ar if the air conditioner headlights, or even a	30)
	is turned on. This statement is	ar is the air containoner, security of even a	
A) false.		
	t) true only if the car's engine is running. () true.		
31) A cir	cus diver drops from a high pole into water fa	r below. When he is halfway down	31)
) his potential energy is halved.	1. 1. 161	
D	 he has gained an amount of kinetic energy each his kinetic energy and potential energy are each all of the above none of the above 		
	bat Bart at the circus drops vertically onto the	-	32)
	distant from the fulcrum at the other end. Art i of Bart's dropping distance. Neglecting ineffici		
) the masses of Art and Bart are equal.) Art has half the mass of Bart.		
) need more information		
33) A 1-	kg ball dropped from 2 m rebounds only 1.5 m	n after hitting the ground. The amount of	33)
•	gy converted to heat is about		
) 0.5 J.		
	(1) 1.0 J.		
	C) 1.5 J.		
	2) 2.0 J. 3) more than 2.0 J.		
34) A by	draulic press, like an inclined plane, is capable	of increasing anargy	34)
) sometimes true	B) always false	J I)
	c) always true	D) sometimes false	

35) A hydraulic jack is used to lift objects such as automobiles. If the input force is 200 N over a				35)
distance of 1 meter, th	ne output force over a distar	nce of 0.1 meter is ideally	У	
A) 200 N.	•	•		
B) 500 N.				
C) 1000 N.				
D) 2000 N.				
E) none of the abo	N/O			
E) Horie of the abo	ve			
36) Phil applies 100 N to	a pulley system and raises a	load one touth of his d	lownward pull Ideally	36)
the weight of the load		i ioau one-tenui oi ins u	iowiiwaiu puii. ideaiiy,	JO)
A) 100 N.	1 15	B) 1000 N.		
· · · · · · · · · · · · · · · · · · ·			O N I	
C) 10,000 N.		D) more than 10,00	U IN	
27) A braducatio mass bos	ito immut mistom domusoso d	00 aantina atama vulaila tla	المحادية والمحادث المسادية	27)
-	s its input piston depressed	20 centimeters while the	e output piston is raised	37)
	vton input can lift a load of			
A) 1 N.				
B) 10 N.				
C) 15 N.				
D) 20 N.				
E) none of the abo	ve			
•	00 watts of power for every	1000 watts put into it. T	The efficiency of the	38)
machine is				
A) 10%.				
B) 50%.				
C) 90%.				
D) 110%.				
E) none of the abo	ove			
39) A jack system will inc	crease the potential energy o	of a heavy load by 1000]	with a work input of	39)
2000 J. The efficiency	of the jack system is			
A) 10%.				
B) 20%.				
C) 50%.				
D) 80%.				
E) need more info	rmation			
,				
40) Earth's primary energ	y source is			40)
A) the Sun.	B) fossil fuel.	C) electricity.	D) geothermal.	,
,	,	,	, 0	
41) Hydro and wind pow	ver are indirect forms of			41)
A) solar energy.		B) fossil fuels deep	down.	, <u> </u>
C) nuclear energy	in Earth's interior.	D) none of the above		
-,		,		
42) A machine that promises more energy output than input is				42)
A) a fantasy.	0,7 1	ı		
	n today's technology.			
C) a long-shot wo				
, 0	C			

43)	The most concentrated	form of energy is		43)
	A) wind.	B) fossil fuel.	C) geothermal. D) nuclear.	
44)	Γhe exhaust product fro	om a hydrogen fuel cell i	is	44)
	A) carbon dioxide.		B) methane.	
	C) pure water.		D) nitric acid.	
45) <i>I</i>		etween momentum and		45)
		icel; kinetic energy cann		
		n cancel; momenta cann		
		re depending on circums	stances	
	D) none of the above	9		
46) Impulse involves the time that a force acts, whereas work involves the				
	A) distance that a fo	rce acts.		
	B) time and distance	e that a force acts.		
	C) acceleration that	a force produces.		
47) /	A moving object has			47)
	A) speed.			
	B) velocity.			
	C) momentum.			
	D) energy.			
	E) all of these			
48) I	f the speed of a motor	scooter doubles, which o	of the following also doubles?	48)
	A) momentum		B) kinetic energy	
	C) acceleration		D) all of the above	
49) 🛚	ſwo 2-m∕s pool balls r	oll toward each other an	nd collide. Suppose after bouncing apart each	49)
1	noves at $4 \mathrm{m/s}$. This co	ollision violates the cons	ervation of	
	A) momentum.		B) energy.	
	C) both momentum	and energy.	D) none of the above	
50) A	A golf ball is thrown at	and bounces backward	from a massive bowling ball that is initially at	50)
1		1	ıll, the bowling ball has more	
	A) momentum, but l	less kinetic energy.	B) kinetic energy, but less momentum.	
	C) momentum and i	more kinetic energy	D) need more information	

Answer Key

Testname: CHAPTER 7 PRACTICE WITH KEY

- 1) D
- 2) C
- 3) C
- 4) A
- 5) C
- 6) D
- 7) C
- 8) B
- 9) D
- 10) B
- 11) C
- 12) A
- 13) D
- 14) B
- 15) A
- 16) B
- 17) C
- 18) D
- 19) B
- 20) B
- 21) B
- 22) C
- 23) D
- 24) D
- 25) B
- 26) A
- 27) A
- 28) B
- 29) E
- 30) C
- 31) D
- 32) B
- 33) E
- 34) B
- 35) D
- 36) B 37) D
- 38) A
- 50) 11
- 39) C 40) A
- 41) A
- 42) A
- 43) D
- 44) C
- 45) A
- 46) A
- 47) E
- 48) A 49) B

7

Answer Key
Testname: CHAPTER 7 PRACTICE WITH KEY

50) A