Nonlinear Methods

Dr. Du, Lan

Faculty of Information Technology, Monash University, Australia

FIT5149 week 7

Outline

- Simple Nonlinear Extension of Linear Models
- Regression Splines
- Smooth Splines
- Local Regression
- Generalised Additive Model
- Summary

Polynomial Regression: the basics

A polynomial function

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \dots + \beta_d x_i^d + \epsilon_i$$
$$= \sum_{j=0}^d \beta_j x_i^j$$

where d is the order (or degree) of the polynomial.

- ightharpoonup Constant polynomial: β_0
- linear polynomial: $\beta_0 + \beta_1 x_i$
- ightharpoonup quadratics: $\beta_0 + \beta_1 x_i + \beta_2 x_i^2$
- cubics: $\beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3$
- Curve fitting: minimise the following error function

$$E(\boldsymbol{\beta}) = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2 = \frac{1}{2} \sum_{i=1}^{N} (\sum_{i=0}^{d} \beta_i x_i^j - y_i)^2$$

Polynomial Regression: fit data generated with sin()

Polynomial Regression: predict Wage with Age

Polynomial function :

$$\hat{f}(x_0) = \hat{\beta}_0 + \hat{\beta}_1 x_0 + \hat{\beta}_2 x_0^2 + \hat{\beta}_3 x_0^3 + \hat{\beta}_4 x_0^4$$

- $\hat{f}(x_0)$ is a linear function of the $\hat{\beta}_l$
- Pointwise-variance $Var[\hat{f}(x_0)]$ at any value x_0 . The two plots show $\hat{f}(x_0) \pm 2 \cdot se[\hat{f}(x_0)]$ (approximately 95% confidence interval).

Polynomial Regression: predict Wage with Age

Logistic regression

$$Pr(y_i > 250 \mid x_i) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 x_0 + \hat{\beta}_2 x_0^2 + \hat{\beta}_3 x_0^3 + \hat{\beta}_4 x_0^4}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 x_0 + \hat{\beta}_2 x_0^2 + \hat{\beta}_3 x_0^3 + \hat{\beta}_4 x_0^4}}$$

 The confidence interval is fairly wide due to that there are only 79 high earners.

- Another way of creating transformations of a variable cut the variable into distinct regions and avoid impose a global structure.
 - Create cut-points $c_1, c_2, c_3, \ldots, c_K$, and K + 1 variables

$$C_{0}(X) = I(X < c_{1}),$$

$$C_{1}(X) = I(c_{1} \le X < c_{2}),$$

$$C_{2}(X) = I(c_{2} \le X < c_{3}),$$

$$\vdots$$

$$C_{K-1}(X) = I(c_{2}K - 1 \le X < c_{K}),$$

$$C_{K}(X) = I(c_{K} \le X),$$

Fit a linear model using those variables

$$y_i = \beta_0 + \beta_1 C_1(x_i) + \beta_2 C_2(x_i) + \beta_3 C_3(x_i) + \cdots + \beta_K C_K(x_i) + \epsilon_i$$

• Easy to create a series of dummy variables representing each group

$$C_1(X) = I(X < 35)$$
 $C_2(X) = I(35 \le X < 50)$ $C_3(X) = I(50 \le X < 65),...$

• Useful way of creating interactions that are easy to interpret. For example, interaction effect of Year and Age:

$$I(Year < 2005) \cdot Age \quad I(Year \ge 2005) \cdot Age$$

would allow for different linear functions in each age category.

• Choice of cut-points or knots can be problematic. For creating nonlinearities, smoother alternatives such as splines are available.

Basic Functions

$$y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \beta_3 b_3(x_i) + \dots + \beta_K b_K(x_i) + \epsilon_i$$

- $b_k(X)$: a function or transformation that can be applied to variable X.
- What is $b_k(x_i)$ for the polynomial regression?
- What is $b_k(X_i)$ for the piecewise constant functions?

Basic Functions

$$y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \beta_3 b_3(x_i) + \dots + \beta_K b_K(x_i) + \epsilon_i$$

- $b_k(X)$: a function or transformation that can be applied to variable X.
- What is $b_k(x_i)$ for the polynomial regression?

$$b_k(x_i) = x_i^k$$

• What is $b_k(X_i)$ for the piecewise constant functions?

$$b_k(x_i) = I(c_k \le x_i^k \le c_{k+1})$$

Outline

- Simple Nonlinear Extension of Linear Models
- Regression Splines
- Smooth Splines
- 4 Local Regression
- Generalised Additive Model
- Summary

Piecewise Polynomials

 Instead of a single polynomial in X over its whole domain, we can rather use different polynomials in regions defined by knots. For example, a piecewise cubic polynomials over different region of X:

$$y_{i} = \begin{cases} \beta_{01} + \beta_{11}x_{i} + \beta_{21}x_{i}^{2} + \beta_{31}x_{i}^{3} + \epsilon_{i} & \text{if } x_{i} < c; \\ \beta_{02} + \beta_{12}x_{i} + \beta_{22}x_{i}^{2} + \beta_{32}x_{i}^{3} + \epsilon_{i} & \text{if } x_{i} \ge c; \end{cases}$$

- Using more knots leads to a more flexible piecewise polynomial.
 - \blacktriangleright K different knots \rightarrow K + 1 different cubic polynomials

- Continuity
- Continuity of the first derivative. what is the geometry of the first derivative?
 - if $\frac{df}{dx}(p) > 0$, then f(x) is an increasing function at x = p.
 - ▶ if $\frac{\partial f}{\partial \omega}(p) < 0$, then f(x) is an decreasing function at x = p.
 - if $\frac{\partial f}{\partial x}(p) = 0$, then x = p is called a critical point of f(x), and we do not know anything new about the behaviour of f(x) at x = p.
- Continuity of the second derivative.

 - ▶ if $\frac{d^2f}{dx^2}(p) > 0$ at x = p, then f(x) is concave up at x = p. ▶ if $\frac{d^2f}{dx^2}(p) < 0$ at x = p, then f(x) is concave down at x = p.
 - if $\frac{d^2 f}{dx^2}(p) = 0$ at x = p, we do not know anything new about the behaviour of f(x) at x = p.

DF for fitting the model: top_left \rightarrow 8; bottom_left \rightarrow 5

DF for fitting the model with K knots: 4 + K

Linear Splines

• A linear spline with knots at ξ_k , $k=1,\ldots K$ is a piecewise linear polynomial continuous at each knot

$$y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \dots + \beta_{K+1} b_{K+1}(x_i) + \epsilon_i$$

where the b_k are basis functions

$$b_1(x_i) = x_i$$

 $b_{k+1}(x_i) = (x_i - \xi_k)_+, \quad k = 1, ..., K$

and

$$(x_i - \xi_k)_+ = \begin{cases} x_i - \xi_k & \text{if } x_i > \xi_k \\ 0 & \text{otherwise} \end{cases}$$

Linear Splines

Cubic Splines

• A cubic spline with knots at ξ_k , k = 1, ..., K is a piecewise cubic polynomial with continuous derivatives up to order 2 at each knot.

$$y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \cdots + \beta_{K+3} b_{K+3}(x_i) + \epsilon_i$$

where

$$b_{1}(x_{i}) = x_{i}$$

$$b_{2}(x_{i}) = x_{i}^{2}$$

$$b_{3}(x_{i}) = x_{i}^{3}$$

$$b_{k+1}(x_{i}) = (x_{i} - \xi_{k})^{3}, \quad k = 1, ..., K$$

and

$$(x_i - \xi_k)^3 = \begin{cases} (x_i - \xi_k)^3 & \text{if } x_i > \xi_k \\ 0 & \text{otherwise} \end{cases}$$

Cubic Splines

Natural Cubic Splines

- A natural cubic spline extrapolates linearly beyond the boundary knots.
 - Add extra constraints to the end, i.e., the second derivatives at the two outer knots are zero.

#Knots and Knot placement

 One strategy is to decide K, and then place them at appreciate quantiles of the observed X
 Natural Cubic Spline

Figure: 3 knots are chosen automatically as the 25th, 50th and 75th percentiles. (3 knots correspond to 4 DF for fitting the natural cubic splines.)

#Knots and Knot placement

- A cubic spline with K knots has K + 4 parameters or degrees of freedom.
- A natural spline with K knots has K degrees of freedom.

(Monash) FIT5149 18/32

#Knots and Knot placement

Figure: A degree-15 Polynomial vs a natural cubic spline with 15 degrees of freedom.

- Polynomial uses a high degree to produce flexible fit.
- Splines introduce flexibility by increasing *K* but keeping the degree fixed.
- Splines allow us to place more knots, and hence flexibility, over regions where the function f seems to be changing rapidly.

Outline

- Simple Nonlinear Extension of Linear Models
- Regression Splines
- Smooth Splines
- 4 Local Regression
- Generalised Additive Model
- Summary

Smooth Splines: overview

- Regression splines:
 - specify a set of knots,
 - produce a sequence of basis functions, and
 - use least squares in fitting

$$RSS = \sum_{i=1}^{n} (y_i - g(x_i))^2$$

- Problem: If we don't have any constraints on $g(x_i)$, we can always make RSS zero simply by choosing g such that it interpolates all of y_i .
- What we want
 - Small RSS, and
 - Smooth fitted function

Smooth Splines: target function

Smoothing spline

minimize
$$\sum_{i=1}^{n} (y_i - g(x_i))^2 + \lambda \int g''(t)^2 dt$$

- ▶ The first term is RSS, and tries to make g(x) match the data at each x_i
- ▶ The second terms is a roughness penalty and controls how wiggly g(x) is.
- ▶ Tuning parameter $\lambda \ge 0$:
 - The smaller λ , the more wiggly the function, eventually interpolating y_i when $\lambda = 0$.
 - As $\lambda \to \infty$, the function g(x) becomes linear.
- Note on derivatives
 - -g'(t): measures the slope of a function at t
 - g''(t): measures the amount by which the slope is changing. If it is large in absolute value if g(t) is very wiggly near t; it is close to zero otherwise.
- ▶ $\int g''(t)^2 dt$: a measure of the total change in the function g'(t).
 - If g(t) is smooth, $\int g''(t)^2 dt$ will take on a small value.
 - If g(t) is jumpy and variable, $\int g''(t)^2 dt$ will take on a large value.

Smooth Splines: target function

Smoothing spline

$$\underset{g \in \mathcal{S}}{\text{minimize}} \sum_{i=1}^{n} (y_i - g(x_i))^2 + \lambda \int g''(t)^2 dt$$

- ▶ The first term is RSS, and tries to make g(x) match the data at each x_i
- The second terms is a roughness penalty and controls how wiggly g(x) is.
- ▶ Tuning parameter $\lambda \ge 0$:
 - The smaller λ , the more wiggly the function, eventually interpolating y_i when $\lambda = 0$.
 - As $\lambda \to \infty$, the function g(x) becomes linear.
- \triangleright A natural cubic spline with a knot at every unique value of x_i
- Some details
 - Smoothing splines avoid the knot-selection issue
 - Cross-validate (LOOCV) a single parameter λ

Outline

- Simple Nonlinear Extension of Linear Models
- Regression Splines
- Smooth Splines
- 4 Local Regression
- Generalised Additive Model
- Summary

Local Regression

Algorithm 7.1 Local Regression At $X = x_0$

- 1. Gather the fraction s = k/n of training points whose x_i are closest to x_0 .
- 2. Assign a weight $K_{i0} = K(x_i, x_0)$ to each point in this neighborhood, so that the point furthest from x_0 has weight zero, and the closest has the highest weight. All but these k nearest neighbors get weight zero.
- 3. Fit a weighted least squares regression of the y_i on the x_i using the aforementioned weights, by finding $\hat{\beta}_0$ and $\hat{\beta}_1$ that minimize

$$\sum_{i=1}^{n} K_{i0} (y_i - \beta_0 - \beta_1 x_i)^2. \tag{7.14}$$

4. The fitted value at x_0 is given by $\hat{f}(x_0) = \hat{\beta}_0 + \hat{\beta}_1 x_0$.

(Monash) FIT5149 24 / 32

Local Regression

Local Regression

• With a sliding weight function, we fit separate linear fits over the range of X by weighted least squares.

Local Regression

Local Linear Regression

- Smaller value of s, the more local and wiggly will be our fit.
- A very large value of s will lead to a global and smooth fit.

Outline

- Simple Nonlinear Extension of Linear Models
- Regression Splines
- Smooth Splines
- 4 Local Regression
- Generalised Additive Model
- Summary

Generalised Additive Models: regression

- GAM: a general framework for extending a standard linear model by allowing non-linear functions of each of the variables, while maintaining additivity.
 - The multiple linear regression model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + \epsilon_i$$

Generalised additive model

$$y_{i} = \beta_{0} + \sum_{j=1}^{p} f_{j}(x_{i,j}) + \epsilon_{i}$$

$$= \beta_{0} + f_{1}(x_{i1}) + f_{2}(x_{i2}) + \dots + f_{p}(x_{ip}) + \epsilon_{i}$$

Generalised Additive Models: regression

Fit the following model

wage =
$$\beta_0 + f_1(year) + f_2(age) + f_3(education) + \epsilon$$

Then, fit f_1 and f_2 using natural splines, and f_3 using a step function.

$$Im(wage \sim ns(year, 4) + ns(age, 5) + education, data = Wage)$$

Generalised Additive Models: classification

The logistic regression model

$$log(\frac{P(X)}{1 - P(X)}) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

GAM extension

$$log(\frac{P(X)}{1-P(X)}) = \beta_0 + f_1(X_1) + f_2(X_2) + \dots + f_p(X_p)$$

Generalised Additive Models: classification

Fit the following model

$$log(\frac{P(X)}{1 - P(X)}) = \beta_0 + f_1(year) + f_2(age) + f_3(education)$$

where

$$P(X) = P(wage > 250 | year, age, education)$$

Generalised Additive Models: classification

Fit the following model

$$log(\frac{P(X)}{1 - P(X)}) = \beta_0 + f_1(year) + f_2(age) + f_3(education)$$

where

$$P(X) = P(wage > 250 | year, age, education)$$

Summary

- Simple extensions of linear models, e,g, polynomial regression, step functions, etc.
- Splines: Regression splines & Smooth splines
- Local regression
- Generalised additive models
- Reading materials:
 - "Moving Beyond Linearity", Chapter 7 of "Introduction to Statistical Learning", 6th edition
 - Skip section 7.5.2
- Acknowledgement:
 - ▶ Figures in this presentation were taken from "An Introduction to Statistical Learning, with applications in R" (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani
 - Some of the slides are reproduced based on the slides from T. Hastie and R. Tibshirani
 - Figures on the slide 4 are from Christopher Bishop's website.