Nombres aléatoires

Azzouz Dermoune

24 janvier 2017

Table des matières

1	Nor	mbres aléatoires uniformément distribués	2
	1.1	Nombres uniformément distribués sur $\{1,\ldots,M\}$	2
		1.1.1 Nombres distribués selon la loi de Bernoulli de para-	
		mètre p	4
	1.2	Nombres 2-uniformément distribués sur $\{1,\ldots,M\}$	5
	1.3	Nombres d -uniformément distribués sur $\{1,\ldots,M\}$	6
		1.3.1 La loi binomiale de paramètre (N, p)	6
	1.4	Nombre aléatoire uniformément distribué sur $\{1,\ldots,M\}$	7
	1.5	Nombres (m,d) -uniformément distribués sur $\{1,\ldots,M\}$	8
		1.5.1 Loi géométrique de paramètre p	8
		1.5.2 Loi de Poisson de paramètre λ	9
2	Cor	struction physique des nombres aléatoires	10
	2.1		10
	2.2	Construction des nombres aléatoires à l'aide d'un dé	11
3	Lan	gage probabiliste, variable aléatoire discrète	12
	3.1	Variable aléatoire	12
	3.2	Événements	12
		3.2.1 Probabilité d'un événement	13
	3.3		10
	0.0	Movenne, espérance mathématique	13
	0.0	Moyenne, espérance mathématique	
	3.4	3.3.1 Variable centrée	13 13 13

Chapitre 1

Nombres aléatoires uniformément distribués

Soit un entier $M \geq 2$ et $\{1, \ldots, M\}$ l'ensemble des nombres entiers $1, \ldots, M$.

1.1 Nombres uniformément distribués sur $\{1, \dots, M\}$

Définition. Une suite (x_0, \ldots, x_{n-1}) d'entiers ayant n termes est uniformément distribuée sur $\{1, \ldots, M\}$ si pour chaque $m \in \{1, \ldots, M\}$

$$card\{0 \le i \le n-1: x_i = 1\} = \dots = card\{0 \le i \le n-1: x_i = m\} = \dots$$

= $card\{0 \le i \le n-1: x_i = M\} := q_n$.

Conséquence. Si la suite (x_0, \ldots, x_{n-1}) est uniformément distribuée sur $\{1, \ldots, M\}$ alors forcément

$$card\{0 \le i \le n-1: x_i = m\} = \frac{n}{M} = q_n$$

et alors M divise n. La suite (x_0, \ldots, x_{n-1}) visite q_n chaque entier $m \in \{1, \ldots, M\}$. C'est-à-dire le pourcentage

$$\frac{\sum_{i=0}^{n-1} \mathbf{1}_{[x_i=m]}}{n} = \frac{1}{M}, \quad \forall m \in \{1, \dots, M\}.$$

Définition. Une suite $(x_i: i=0,...)$ d'entiers ayant un nombre infini de termes est uniformément distribuée sur $\{1,...,M\}$ si

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[x_i = m]}}{n} \to \frac{1}{M}, \quad \forall m = 1, \dots, M.$$
 (1.1.1)

Exercice 1. a) On suppose que la suite a seulement n termes x_0, \ldots, x_{n-1} et qu'elle est uniformément distribuée sur $\{1, \ldots, M\}$. Dans ce cas

$$\frac{\sum_{i=0}^{n-1} \mathbf{1}_{[x_i = m]}}{n} = \frac{1}{M}, \quad \forall \, m = 1, \dots, M.$$

Donner un exemple avec n = 6 et M = 3.

b) On suppose que x_0 , x_1 , ... est une suite ayant un nombre infini de termes et 1-uniformément distribuée sur $\{1, \ldots, M\}$. i) Montrer que, pour chaque $1 \le m \le M$,

$$\nu^n(m) = q_n + o(n),$$

où o(n) est un entier qui peut dépendre de m et il vérifie $\frac{o(n)}{n} \to 0$ lorsque $n \to +\infty$.

ii) On définit pour chaque $1 \leq m \leq M$ l'ensemble $\{i \in \mathbb{N}: x_i = m\}$. Montrer que $\{i \in \mathbb{N}: x_i = m\}$ est infini et que les égalités suivantes ont lieu:

$$\{i \in \mathbb{N}: \quad x_i \le m\} = \bigcup_{k=1}^m \{i \in \mathbb{N}: \quad x_i = k\},$$
$$\{i \in \mathbb{N}: \quad x_i > m\} = \bigcup_{k=m+1}^M \{i \in \mathbb{N}: \quad x_i = k\}.$$

Définition : Loi uniforme. Une suite (x_i) est uniformément distribuée sur une ensemble E, ayant un nombre fini M d'éléments, si

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[x_i = e]}}{n} = \frac{1}{M}, \quad \forall e \in E.$$

Le pour centage $\frac{1}{M}$ s'interprète comme la probabilité de tirer au has ard l'élément e dans l'ensemble E.

La somme des pourcentages $(\frac{1}{M}, \dots, \frac{1}{M})$ est égale à 1. La suite $(\frac{1}{M}, \dots, \frac{1}{M})$ s'appelle la distribution de probabilités uniforme (ou simplement loi uniforme) sur E.

Exemple : La loi de Bernoulli de paramètre $\frac{1}{2}$. $E = \{0, 1\}$ et sa loi uniforme $(\frac{1}{2}, \frac{1}{2})$.

Exercice 2. a) Transformation linéaire de la loi uniforme. Soit (x_i) une suite uniformément distribuée sur $\{1, \ldots, M\}$. Soient a, b deux nombres réels avec $a \neq 0$. Montrer que la suite $y_0 = ax_0 + b$, $y_1 = ax_1 + b$, ... est 1-uniformément distribuée sur l'ensemble $E = \{a + b, 2a + b, \ldots, Ma + b\}$.

b) Transformation non linéaire de la loi uniforme. Soit (x_i) une suite 1-uniformément distribuée sur $\{1, \ldots, 6\}$. On définit la suite

$$y_i = |x_i - 3|, \quad i = 0, 1, \dots$$

Calculer pour chaque entier m = 0, 1, 2, 3 la limite

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[y_i = m]}}{n} = p_m.$$

Montrer que (p_0, p_1, p_2, p_3) est une distribution de probabilités sur l'ensemble $\{0, 1, 2, 3\}$. Cette distribution est-elle uniforme?

1.1.1 Nombres distribués selon la loi de Bernoulli de paramètre p

Soit (x_i) une suite uniformément distribuée sur $\{1, \ldots, M\}$. On fixe $1 \le k < M$. On définit la suite

$$y_i = \mathbf{1}_{[1 \le x_i \le k]}, \quad i = 0, 1, \dots$$

Montrer l'égalité

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[y_i=1]}}{n} = \frac{k}{M}.$$

Les nombres (y_i) sont les nombres de Bernoulli de paramètre $p = \frac{k}{M}$. Le couple (1-p,p) est la distribution de probabilités de Bernoulli de paramètre p sur $\{0,1\}$.

Définition. Soit $p \in]0,1[$ fixé. Une suite (y_i) de nombres 0 ou bien 1 est dite 1-distribuée selon la loi de Bernoulli de paramètre p si

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[y_i=1]}}{n} = p.$$

Interprétation. Soit (y_i) une suite de Bernoulli de paramètre p. Le coût pour envoyer tous les termes qui vérifient $y_i = 0$ est égal à

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[y_i=0]}}{n} = 1 - p.$$

Le coût pour envoyer tous les termes qui vérifient $y_i = 1$ est égal à

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[y_i=0]}}{n} = p.$$

Si on veut envoyer tous les termes, alors le coût est

$$(1-p) + p = 1.$$

Exercice 3. Soit (y_i) une suite distribuée selon la loi de Bernoulli de paramètre p. Calculer les limites

$$\lim_{\substack{n \to +\infty}} \frac{\sum_{i=0}^{n-1} y_i}{n} = moyenne,$$

$$\lim_{\substack{n \to +\infty}} \left\{ \frac{\sum_{i=0}^{n-1} y_i^2}{n} - \left(\frac{\sum_{i=0}^{n-1} y_i}{n}\right)^2 \right\} = variance.$$

1.2 Nombres 2-uniformément distribués sur $\{1, \dots, M\}$

Exercice 4. Soit (x_i) une suite 1-uniformément distribuée sur $\{1, \ldots, 6\}$. On définit la suite

$$y_i = x_i + x_{i+1}, \quad i = 0, 1, \dots$$

Soit $2 \le m \le 12$. Expliquer pourquoi on ne peut pas calculer la limite

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[y_i = m]}}{n}.$$

Définition. Une suite (x_i) de nombres entiers est 2-uniformément distribuée sur $\{1, \ldots, M\}$ si

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[x_i = m_0, x_{i+1} = m_1]}}{n} = \frac{1}{M^2}, \quad \forall m_0, m_1 = 1, \dots, M. \tag{1.2.1}$$

Le pourcentage $p(m_0, m_1) = \frac{1}{M^2}$ est la probabilité de tirer au hasard le couple (m_0, m_1) . La suite $(p(m_0, m_1): m_0, m_1 = 1, ..., M)$ est la distribution de probabilités uniforme sur l'ensemble des couples $\{1, ..., M\}^2$.

Exercice 3. Soient (x_i) des nombres entiers 2-uniformément distribués sur $\{1, \ldots, 6\}$. On considère la nouvelle suite

$$y_i = x_i + x_{i+1}, \quad i = 0, 1, \dots$$

- a) Quels sont les valeurs possibles pour le terme général y_i .
- b) Calculer pour chaque entier $2 \le m \le 12$ la limite

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[y_i = m]}}{n} = p_m.$$

- c) Montrer que la suite (p_2, \ldots, p_{12}) est une distribution de probabilités sur $\{2, \ldots, 12\}$.
- c) Soit (x_i) une suite 2-uniformément distribuée sur $\{0,1\}$. On définit la suite

$$y_i = x_i + x_{i+1} + x_{i+2}, \quad i = 0, 1, \dots$$

Soit $0 \le m \le 3$. Expliquer pourquoi on ne peut pas calculer la limite

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[y_i = m]}}{n}.$$

1.3 Nombres d-uniformément distribués sur $\{1, \ldots, M\}$

Définition. Soit (x_i) une suite dont le terme général appartient à $\{1,\ldots,M\}$. Soient $d \geq 1$ un entier et $(m_0,\ldots,m_{d-1}) \in \{1,\ldots,M\}^d$. L'effectif des vecteurs $(x_0,\ldots,x_{d-1}),(x_1,\ldots,x_d),\ldots,(x_{n-1},\ldots,x_{n-1+d-1})$ qui visite le vecteur (m_0,\ldots,m_{d-1}) est égal à

$$\nu^{n}(m_0,\ldots,m_{d-1}) = \sum_{i=0}^{n-1} \mathbf{1}_{[x_i=m_0,\ldots,x_{i+d-1}=m_{d-1}]}.$$

Les nombres entiers (x_i) sont d-uniformément distribués, si

$$\lim_{n \to +\infty} \frac{\nu^n(m_0, \dots, m_{d-1})}{n} = \frac{1}{M^d}, \quad \forall 1 \le m_0, \dots, m_{d-1} \le M. \tag{1.3.1}$$

Notation. La fonction indicatrice

$$\mathbf{1}_{[x_i=m_0,\dots,x_{i+d-1}=m_{d-1}]}=1, \quad \text{si} \quad x_i=m_0,\dots,x_{i+d-1}=m_{d-1}, \\ \mathbf{1}_{[x_i=m_0,\dots,x_{i+d-1}=m_{d-1}]}=0, \quad \text{si pour au moins un indice } k \quad x_k \neq m_k.$$

1.3.1 La loi binomiale de paramètre (N, p)

Proposition. Soit $0 \le m \le N$ un entier. Le nombre des vecteurs $(i_1, \ldots, i_N) \in \{0, 1\}^N$ tels que

$$\sum_{k=1}^{N} i_k = m$$

est égal à

$$\binom{N}{m} = \frac{N!}{m!(N-m)!}.$$

Exercice 4 : La loi binomiale de paramètre $(N, \frac{1}{2})$. Soit $d \ge N \ge 1$ deux entiers fixés et (x_i) une suite d-uniformément distribuée sur $\{0,1\}$. On définit la suite

$$y_i = x_i + \ldots + x_{i+N-1}, \quad i = 0, 1, \ldots$$

a) Calculer pour chaque entier $0 \le m \le N$ la limite

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n} \mathbf{1}_{[y_i = m]}}{n} = p_m.$$

b) Montrer que la suite (p_0, \ldots, p_N) est une distribution de probabilités sur $\{0, \ldots, N\}$. Le pourcentage p_m est la probabilité d'obtenir m piles dans N lancers d'une pièce de monnaie équilibrée.

Exercice 5 : La loi binomiale de paramètre (N, p). Soit $d \ge N \ge 1$ deux entiers fixés et (x_i) une suite d-uniformément distribuée sur $\{0, 1\}$. On fixe $1 \le k < M$ et on pose $p = \frac{k}{M}$.

On définit la suite

$$y_i = \mathbf{1}_{[1 \le x_i \le k]} + \ldots + \mathbf{1}_{[1 \le x_{i+N-1} \le k]}, \quad i = 0, 1, \ldots$$

a) Montrer l'égalité

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n} \mathbf{1}_{[y_i = m]}}{n} = \binom{N}{m} p^m (1-p)^{N-m} := p_m.$$

- b) Montrer que la suite (p_0, \ldots, p_N) est une distribution de probabilités sur $\{0, \ldots, N\}$. Le pourcentage p_m est la probabilité d'obtenir m piles dans N lancers d'une pièce de monnaie équilibrée.
 - c) Calculer la moyenne et la variance.

1.4 Nombre aléatoire uniformément distribué sur $\{1, \ldots, M\}$

Définition. La suite de nombres entiers (x_i) dont le terme générale appartient à $\{1, \ldots, M\}$ est aléatoire et uniformément distribuée sur $\{1, \ldots, M\}$ si elle est d-uniformément distribué sur $\{1, \ldots, M\}$.

Question. Si les nombres $(x_0, x_1, ...)$ sont aléatoires et uniformément distribués sur $\{1, ..., M\}$, les nombres $(x_0, x_2, x_4, ...)$ sont ils aléatoires et uniformément distribués sur $\{1, ..., M\}$?

La réponse est donnée dans la section suivante.

1.5 Nombres (m, d)-uniformément distribués sur $\{1, \ldots, M\}$

Soit $(x_0, x_1, ...)$ une suite de nombres d'entiers qui prennent des valeurs entre 1 et M. Soit $d, m \ge 1$ un couple de nombres entiers et $0 \le j \le m - 1$.

L'effectif des vecteurs $(x_{km+j}, \ldots, x_{km+j+d-1}), k = 0, \ldots, n-1$ qui coïncident avec (m_0, \ldots, m_{d-1}) est égal à

$$\nu_j^n(m_0,\ldots,m_{d-1}) = \sum_{k=0}^{n-1} \mathbf{1}_{[x_{km+j}=m_0,\ldots,x_{km+j+d-1}=m_{d-1}]}.$$

Les nombres entiers x_0, x_1, \ldots sont (m, d)-uniformément distribués, si

$$\lim_{n \to +\infty} \frac{\nu_j^n(m_0, \dots, m_{d-1})}{n} = \frac{1}{M^d},$$
(1.5.1)

pour tout vecteur $(m_0, \ldots, m_{d-1}) \in \{1, \ldots, M\}^d$ et pour tout entier $j = 0, \ldots, m-1$.

Le résultat suivant a été démontré par Ivan Niven, H.S. Zuckerman, Donald E. Knuth.

Theorem 1.5.1. Les nombres aléatoires uniformément distribués sur $\{1, \ldots, M\}$ sont (m, d)-uniformément distribués pour tous les couples d'entiers $m, d \geq 1$.

Exercice 6. Soit (x_i) des nombres aléatoires et uniformément distribués. Montrer que les nombres suivants sont aussi aléatoires et uniformément distribués : a) (x_{2i}) , b) (x_{2i+1}) , c) (x_{3i}) , d) (x_{3i+1}) , e) (x_{3i+2}) .

1.5.1 Loi géométrique de paramètre p

Soit (x_i) des nombres aléatoires et uniformément distribués sur $\{1, \ldots, M\}$. On fixe $1 \le k < M$ et on pose $p = \frac{k}{M}$. On définit $y_i = \mathbf{1}_{[1 \le x_i \le k]}$ et

$$z_i = \min\{k: y_{i+k} = 1\}, i = 0, 1, \dots$$

Exercice. 1) Montrer les égalités

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[z_i = 0]}}{n} = p,$$

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[z_i = m]}}{n} = (1 - p)^{m-1} p, \quad \forall m \ge 1.$$

Montrer que la suite $(p, (1-p)p, (1-p)^2p, \ldots)$ est une distribution de probabilités sur \mathbb{N} . Si on lance une infinité de fois une pièce de monnaie de paramètre de succès p, la probabilité d'obtenir pile pour la première fois au lancer numéro m est égale à p_m .

2) Calculer la moyenne et la variance.

1.5.2 Loi de Poisson de paramètre λ

Soit (x_i) des nombres aléatoires et uniformément distribués sur $\{1,\ldots,M\}$. On fixe $1 \leq k < M, \ N \geq 1$ et on pose $p = \frac{k}{M}$. On définit la suite

$$y_i = \mathbf{1}_{[1 \le x_i \le k]} + \ldots + \mathbf{1}_{[1 \le x_{i+N-1} \le k]}, \quad i = 0, 1, \ldots$$

a) On suppose que $Np \to \lambda$ lorsque $N, M \to +\infty$. Montrer que pour chaque entier $m=0,1,\ldots,$

$$\lim_{N \to +\infty} \binom{N}{m} p^m (1-p)^{N-m} = \exp(-\lambda) \frac{\lambda^m}{m!} := p_m.$$

- b) Montrer que la suite $(p_m: m=0,1,\ldots)$ est une distribution de probabilités sur \mathbb{N} .
 - c) Calculer la moyenne et la variance.

Chapitre 2

Construction physique des nombres aléatoires

2.1 Nombres aléatoires binaires : les lancers d'une pièce de monnaie

Si on lance une infinité de fois une pièce de monnaie, alors on obtient une suite $x_0, x_1, \ldots \in \{0, 1\}$. La valeur $x_i = 0$ signifie que le *i*-ème lancer est face. La valeur $x_i = 1$ signifie que le *i*-ème lancer est pile. Le lancer initial est noté x_0 . Les chiffres 0 et 1 sont appelés en anglais binary digit (bit).

Le vecteur (b_0, \ldots, b_{d-1}) , où b_i est un bit, est appelé un mot de d bits. L'ensemble des mots à d bits est égal à $\{0,1\}^d$. Il y a 2^d mots à d bits.

Si la pièce est parfaite, alors on admet que les nombres x_0, x_1, \ldots sont aléatoires et uniformément distribués sur $\{0, 1\}$.

Exercice. On rappelle que chaque entier $m \leq 2^d - 1$ a une unique représentation (appelée la représentation en base 2) de la forme

$$m = a_0(m)2^0 + a_12 + \ldots + a_{d-1}(m)2^{d-1},$$

où $a_0(m), \ldots, a_{d-1}(m) \in \{0,1\}$. Le vecteur $(a_0(m), \ldots, a_{d-1}(m)) \in \{0,1\}^d$ est la représentation binaire de l'entier m.

Soit (x_i) des nombres aléatoires binaires uniformément distribués. Montrer que les nombres entiers

$$y_n = x_n 2^0 + \ldots + x_{n+d-1} 2^{d-1}, \quad n = 0, 1, \ldots,$$

 $sont \ 1\text{-}uniform\'ement \ distribu\'es \ sur \ \{0,\dots,2^d-1\}.$

2.2 Construction des nombres aléatoires à l'aide d'un dé

Si on lance une infinité de fois un dé, alors on obtient une suite $x_0, x_1, \ldots \in \{1, \ldots, 6\}$. La valeur $x_i = j$ signifie que le i-ème lancer est la face j. Le vecteur $(x_0, \ldots, x_{d-1}) \in \{1, \ldots, 6\}^d$ peut prendre 6^d possibilités. Si le dé est parfait, alors on admet que les nombres x_0, x_1, \ldots sont aléatoires et uniformément distribués sur $\{1, \ldots, 6\}$.

Chapitre 3

Langage probabiliste, variable aléatoire discrète

3.1 Variable aléatoire

Soit (p_1, \ldots, p_M) une distribution de probabilités sur $\{1, \ldots, M\}$, c'est-à-dire

$$0 < p_m < 1, \quad p_1 + \ldots + p_M = 1.$$

Une suite (x_i) de nombres entiers appartenant à $\{1, \ldots, M\}$ est 1-distribuée selon la distribution de probabilités (p_m) si

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[x_i = m]}}{n} = p_m, \quad m = 1, \dots, M.$$

Un terme de la suite (x_i) pris au hasard sera noté par la variable X. Ainsi $X=x_0$, ou bien $X=x_1$, ou bien $U=x_2,\ldots$ La variable X est une application

$$X: i \in \mathbb{N} \to x_i$$
.

Elle appelée variable aléatoire dont la loi est égale à (p_m) .

3.2 Événements

Pour chaque partie $A \subset \{1, \dots, M\}$, l'ensemble

$$\{i \in \mathbb{N}: x_i \in A\} := [X \in A]$$

est appelé événement $X \in A$. L'événement contraire de $X \in A$ est égal à

$$\{i \in \mathbb{N}: x_i \notin A\} := \{i \in \mathbb{N}: x_i \in \{1, \dots, M\} \setminus A\}$$

= $[X \notin A] = [X \in \{1, \dots, M\} \setminus A].$

3.2.1 Probabilité d'un événement

Si $A \subset \{1, \ldots, M\}$, alors

$$\mathbf{P}(X \in A) = \lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_A(x_i)}{n} = \sum_{a \in A} p_a.$$

3.3 Moyenne, espérance mathématique

Soit $(p_m: m=1,\ldots,M)$ une distribution de probabilités sur l'ensemble $\{1,\ldots,M\}$, et (x_i) de nombres entiers appartenant à $\{1,\ldots,M\}$ 1-distribuée selon la distribution de probabilités (p_m) .

Définition. Moyenne, espérance mathématique :

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} x_i}{n} = p_1 + 2p_2 + \ldots + Mp_M = \mathbf{E}[X].$$

Si $M = +\infty$, alors la somme devient une série et elle peut diverger.

Exercice. Moyenne d'une variable de Bernoulli de paramètre p. Moyenne d'une variable binomiale de paramètre (N,p). Moyenne d'une variable géométrique de paramètre p. Moyenne d'une variable de Poisson de paramètre λ .

3.3.1 Variable centrée

La moyenne E(X) est un paramètre statistique de la loi (p_m) . La nouvelle variable X - E(X): $i \in \mathbb{N} \to x_i - E(X)$ est centrée. Sa moyenne

$$E(X - E(X)) = \sum_{k=1}^{M} (k - E(X))p_k = 0.$$

3.4 Variance

Définition. Moment d'ordre deux :

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} x_i^2}{n} = p_1 + 2^2 p_2 + \ldots + M^2 p_M = \mathbf{E}[X^2].$$

Si $M = +\infty$, alors la somme devient une série et elle peut diverger. **Définition. Variance :**

$$Var(X) = \lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} (x_i - E(X))^2}{n} = (1 - E(X))^2 p_1 + \dots + (M - E(X))^2 p_M.$$

Exercice. 1) La variance Var(X) = 0 si et seulement si il existe un seul terme $p_m = 1$ et les autres $p_k = 0$ pour $j \neq m$. Le pourcentage des termes $x_i \neq m$ est nul. Le pourcentage des termes $x_i = m$ est égale à $p_m = 1$.

2) Inégalité de Tchebechev : Pour tout entier l non nul

$$P(|X - E(X)| \ge \sqrt{lVar(X)}) = \lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[|x_i - E(X)| \ge \sqrt{lVar(X)}]}}{n} \le \frac{1}{l}.$$

3.4.1 Variable centrée réduite

La nouvelle variable

$$\frac{X - E(X)}{\sqrt{Var(X)}}$$

a pour moyenne nulle et de variance égale à 1. Il est toujours préférable de centrer et de réduire.