Probability Cheatsheet

Compiled by Eigen- π (https://www.linkedin.com/in/islamibr29/). Licensed under CC BY-NC-SA 4.0. Please share comments, suggestions, and errors at http://github.com/islamibr/today_i_learned.

Last Updated January 13, 2024

Prerequisites

• Binomial Expansion

$$\sum_{n=0}^{\infty} a^n = 1 + a + a^2 + a^3 + \dots = \frac{1}{1-a}$$

$$\sum_{n=1}^{\infty} a^n = a(1 + a + a^2 + a^3 + a^4 + \dots) = \frac{a}{1 - a}$$

$$\sum_{n=0}^{\infty} (n+1)a^n = 1 + 2a + 3a^2 + 4a^3 + \dots = \frac{1}{(1-a)^2}$$

• Taylor Expansion

$$(1+x)^k = \sum_{n=0}^{\infty} {n \choose n} x^n$$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

• Trig Identities

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$
$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$
$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$
$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

$$\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$$

$$\cos \alpha \sin \beta = \frac{1}{2} [\sin(\alpha + \beta) - \sin(\alpha - \beta)]$$

$$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)]$$

$$\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)]$$

$$cos(\alpha + \pi) = -cos(\alpha)$$
$$cos(\alpha + 2\pi) = cos(\alpha)$$

• Fourier Transform

g(t)	G(f)
$A \operatorname{rect}\left(\frac{t}{T}\right)$	$AT\operatorname{sinc}(fT)$
$e^{-at}u(t), a > 0$	$\frac{1}{a+j2\pi f}$
$e^{-a t }, a > 0$	$\frac{2a}{a^2 + (2\pi f)^2}$
$e^{-\pi t^2}$	$e^{-\pi f^2}$
$\delta(t)$	1
1	$\delta(\mathrm{f})$
$\delta \left(t-t_{0} ight)$	$e^{-j2\pi t_0 f}$
$e^{j2\pi f_C t}$	$\delta \left(f-f_{c} ight)$
$\cos\left(2\pi f_c t\right)$	$\left[\delta\left(f-f_c\right)+\delta\left(f+f_c\right)\right]/2$
$\sin\left(2\pi f_c t\right)$	$\left[\delta \left(f - f_c \right) - \delta \left(f + f_c \right) \right] / 2j$

Axioms of Probability

• Non negativity: ensures that probability is never negative.

$$\mathbb{P}[A] \geq 0$$

• Normalization: ensures that probability is never greater than 1.

$$\mathbb{P}[\Omega] = 1$$

 Additivity: allows us to add probabilities when two events do not overlap.

$$\mathbb{P}\left[\bigcup_{i=1}^{\infty} A_i\right] = \sum_{i=1}^{\infty} \mathbb{P}\left[A_i\right]$$

Contional probability

$$\mathbb{P}[A|B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}$$

• Independence : Two events A and B are independent if :

$$\mathbb{P}[A|B] = \mathbb{P}[A]$$
 or
$$\mathbb{P}[A \cap B] = \mathbb{P}[A]\mathbb{P}[B]$$

• Note:

Disjoint ⇔ Independent

• Unions of Two Non-Disjoint Sets

$$\mathbb{P}[A \cup B] = \mathbb{P}[A] + \mathbb{P}[B] - \mathbb{P}[A \cap B]$$

• Unions of Two Non-Disjoint Sets in Independent case

$$\mathbb{P}[A \cup B] = 1 - \mathbb{P}[A^c \cap B^c]$$

If A and B are disjoint, then $A\cap B=\phi.$ This only implies that $\mathbb{P}[A\cap B]=0.$

• Law of Total Probability:

$$\mathbb{P}[A] = \sum_{i=1}^{n} \mathbb{P}[A|B_i]\mathbb{P}[B_i]$$

• Bayes' rule

$$\mathbb{P}[A|B] = \frac{\mathbb{P}[B|A]\mathbb{P}[A]}{\mathbb{P}[B]}$$

Series and Parallel Circuits

Series devices:

 $\mathbb{P}[\text{Circuit operates}] = \mathbb{P}[\text{device 1 operates}]$

 $\times \mathbb{P}[\text{device 2 operates}]$

 $\times \cdots \times \mathbb{P}[\text{device n operates}]$

• Parallel devices:

 $\mathbb{P}[\text{Circuit fails}] = \mathbb{P}[\text{device 1 fails}] \times \mathbb{P}[\text{device 2 fails}]$

 $\times \cdots \mathbb{P}[\text{device n fails}]$

Remember:

 $\mathbb{P}[\text{failure}] = 1 - \mathbb{P}[\text{success}]$

Techniques of Counting

 \bullet Arranging n items in n places: number of ways

n!

• Permutations:

$$k = \frac{n!}{(n-k)!}$$

• Combinations :

$$k = \frac{n!}{k! (n-k)!}$$

	order	no order
replacement	n^r	$^{n-r+1}C_r$
no replacement	$^{n}P_{r}$	$^{n}C_{r}$

Discrete Random Variables

- What are random variables? Random variables are mappings from events to numbers.
- probability mass function (PMF) of a random variable X is a function which specifies the probability of obtaining a number

$$p_X(x) = \mathbb{P}[X = x]$$

• Note that a PMF should satisfy the following condition

$$\sum_{x \in X(\Omega)} p_X(x) = 1$$

• Cumulative distribution function CDF :

$$F_X(x_k) = [X \le x_k] = \sum_{l=-\infty}^k p_X(l)$$

• What is expectation? Expectation = Mean = Average computed from a PMF.

$$\mathbb{E}[X] = \mu = \sum_{x \in X(\Omega)} x p_X(x)$$

• Properties:

$$\mathbb{E}[g(X)] = \sum_{x \in X(\Omega)} g(X) p_X(x)$$

$$\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$$

• What is variance?

It is a measure of the deviation of the random variable \boldsymbol{X} relative to its mean.

$$Var[X] = \sigma^2 = \mathbb{E}[(X - \mu)^2]$$
$$= \mathbb{E}[X^2] - \mathbb{E}[X]^2$$
$$= \mathbb{E}[X^2] - \mu^2$$

• Properties:

$$Var[aX + b] = a^2 Var[X]$$

• Coefficient of variance = $\frac{\sigma}{\mu}$

Special Discrete Random Variables

Bernoulli

(a coin-flip random variable)

- [sucess] = p, [failure] = 1 p = q
- PMF :

$$p_X(0) = 1 - p$$
 $p_X(1) = p$

• Expectation:

$$\mathbb{E}[X] = p$$

• Variance:

$$Var[X] = p(1 - p)$$
$$= pq$$

Bionomial

(n times coin-flips random variable)

- [sucess] = p, [failure] = 1 p = q
- PMF :

$$p_X(k) = kp^k q^{n-k}$$

• Expectation:

$$\mathbb{E}[X] = np$$

• Variance:

$$Var[X] = np(1 - p)$$
$$= npq$$

• Show that the binomial PMF sums to 1.: Use the binomial theorem:

$$\sum_{k=0}^{n} p_X(k) = \sum_{k=0}^{n} k p^k q^{n-k}$$
$$= (p + (1-p))^n$$
$$= 1$$

Geometric

(Trying a binary experiment until we succeed random variable)

- [sucess] = p, [failure] = 1 p = q
- PMF :

$$p_X(k) = \underbrace{(1-p)^{k-1}}_{k-1 \text{ failures final success}} p$$

• CDF:

$$1-q^x$$

• Expectation:

$$\mathbb{E}[X] = \frac{1}{n}$$

• Variance:

$$Var[X] = \frac{1-p}{p^2}$$
$$= \frac{q}{p^2}$$

Poisson

(For small p and large n where $\lambda = np$)

- λ = the rate of the arrival
- PMF :

$$p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

• Expectation:

$$\mathbb{E}[X] = \lambda$$

• Variance:

$$Var[X] = \lambda$$

• Show that the Poisson PMF sums to 1.: Use the exponential series:

$$\sum_{k=0}^{\infty} p_X(k) = \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!}$$
$$= e^{-\lambda} \underbrace{\sum_{k=0}^{\infty} \frac{\lambda^k}{k!}}_{=e^{\lambda}}$$
$$= 1$$

Continuous Random Variables

• probability density function (PDF) is a continuous version of a PMF, we integrate PDF to compute the probability

$$[a \le X \le b] = \int_a^b f_X(x) \, dx$$

• Note that a PMF should satisfy the following condition

$$\int_{\Omega} f_X(x) \, dx = 1$$

• Note:

$$[X = certian point] = 0$$

• Cumulative distribution function CDF :

$$F_X(x_k) = [X \le x] = \int_{-\infty}^x f_X(t)dt$$

• Note:

$$CDF = \int PDF$$

$$PDF = \frac{d}{dx}PDF$$

• Expectation (Mean):

$$\mathbb{E}[X] = \mu = \int_{\Omega} x \, f_X(x) dx$$

• Properties:

$$\mathbb{E}[g(X)] = \mu = \int_{\Omega} g(X) f_X(x) dx$$

$$\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$$

 Mode: the peak of the PDF How to find the mode from PDF:

- Find a point c such that $f_X(c)$ is maximized by differentiation (and test the edges of the interval).

How to find the mode from CDF:

- Continuous: Find a point c such that $F_X(c)$ has the steepest slope.
- Discrete: Find a point c such that $F_X(c)$ has the biggest gap in a jump.
- Median: (a point c that separates the PDF into two equal areas)

$$[x < c] = [x > c] = 0.5$$

 $F_X(c) = 0.5$

- Note: Symmetric distribution is a distribution in which Median = Mean
- Percentiles: To get the α percentile, find the value c at which

$$F_X(c) = \alpha$$

• Variance:

$$Var[X] = \sigma^2 = \mathbb{E}[(X - \mu)^2]$$

$$= \int_{\Omega} (x - \mu)^2 f_X(x) dx$$

$$= \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

$$= \mathbb{E}[X^2] - \mu^2$$

• Properties:

$$Var[aX + b] = a^2 Var[X]$$

Special Continuous Random Variables

Uniform

• PDF :

$$f_X(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b\\ 0 & \text{otherwise} \end{cases}$$

• CDF :

$$F\frac{x-a}{b}$$

• Expectation:

$$\mathbb{E}[X] = \frac{a+b}{2}$$

• Variance:

$$Var[X] = \frac{(a-b)^2}{12}$$

Exponential

- What is the origin of exponential random variables?
 - An exponential random variable is the interarrival time between two consecutive Poisson events.
- PDF :

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

• CDF:

$$F_X(x) = \begin{cases} 0 & x < 0 \\ 1 - e^{-\lambda x} & x > 0 \end{cases}$$

• Expectation:

$$\mathbb{E}[X] = \frac{1}{\lambda}$$

• Variance:

$$Var[X] = \frac{1}{\lambda^2}$$

• Memorylessness property:

$$[T < t + m | T > t] = [T < m] = F_X(m)$$

• Starting from poisson distribution, derive an expression of PDF of exponential random variable

We assume that N is Poisson with a parameter λt or any duration t:

$$[N = n] = e^{-\lambda t} \frac{(\lambda t)^n}{n!}$$

Let T be the interarrival time between two events $[T>t]=[{\rm interarrival~time}>t]=[{\rm no~arrival~in~t}]$

$$= [N = 0] = e^{-\lambda t} \frac{(\lambda t)^0}{0!} = e^{-\lambda t}$$

since,
$$[T > t] = 1 - F_T(t)$$

$$\therefore F_T(t) = 1 - e^{-\lambda t}$$

$$f_T(t) = \frac{d}{dt} F_T(t) = \lambda e^{-\lambda t}$$

Erlange-k

(A generalization of the exponential distribution is the length until ${\bf r}$ counts occur in a Poisson process.)

• PDF :

$$f_X(x) = \frac{\lambda^k e^{-\lambda x} x^{k-1}}{(k-1)!}$$

• CDF :

$$\int_{-\infty}^{X'} \frac{\lambda^k e^{-\lambda x} x^{k-1}}{(k-1)!} dx$$

• Expectation:

$$\mathbb{E}[X] = \frac{k}{\lambda}$$

• Variance:

$$Var[X] = \frac{k}{\lambda^2}$$

Gamma

• PDF:

$$f_X(x) = \frac{1}{\beta^r \Gamma(\alpha)} x^{\alpha - 1} e^{-x/\beta}$$

 α : Shape parameter

 β : Scale parameter

• Expectation:

$$\mathbb{E}[X] = \alpha \beta$$

• Variance:

$$Var[X] = \alpha \beta^2$$

• Starting from gamma distribution, derive an expression of PDF for erlang-k random variable

$$f_X(x) = \frac{1}{\beta^r \Gamma(\alpha)} x^{\alpha - 1} e^{-x/\beta}$$

Substitute $\alpha = k$ and $\beta = \frac{1}{\lambda}$

$$f_X(x) = \frac{\lambda^k e^{-\lambda x} x^{k-1}}{\Gamma(k)}$$

If k is an integer, X has an Erlang distribution.

$$f_X(x) = \frac{\lambda^k e^{-\lambda x} x^{k-1}}{(k-1)!}$$

• Exponential distribution is a special case of Gamma distribution with $\alpha=1$ and $\beta=\frac{1}{\lambda}$

• Chi-Squared distribution χ^2 is a special case of Gamma distribution with $\alpha=v/2$ and $\beta=2$ it is a important distribution in statistics, also called as number of degrees of freedom

Gaussian

• We write

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

• PDF:

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$$

• Expectation:

$$\mathbb{E}[X] = \mu$$

• Variance:

$$Var[X] = \sigma^2$$

Standard Gaussian

• We write

$$Z \sim \mathcal{N}(0, 1)$$

• Conversion from Gaussian to Standard Gaussian

$$Z = \frac{X - \mu}{\sigma}$$

• PDF :

$$f_Z(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$$

• CDF:

$$\Phi(z) = [Z < z]$$
$$[Z > z] = 1 - \Phi(z)$$
$$\Phi(-z) = 1 - \Phi(z)$$

• Expectation:

$$\mathbb{E}[X] = \mu = 0$$

• Variance:

$$Var[X] = \sigma^2 = 1$$

Moment generating function

• MGF:

$$M_X(t) = \mathbb{E}[e^{tX}]$$

• rth moment:

$$\mathbb{E}[X^r] = \left. \frac{d^r}{dt^r} M_X(t) \right|_{t=0}$$

Joint Discrete Probability

 $f_{XY}(x, y) = [X = x, Y = y]$

f(x, y) = [A = x]

• Properties :

$$\sum_{X} \sum_{Y} f_{XY}(x, y) = 1$$

• Marginal PMF :

$$f_X(x) = \sum_Y f_{XY}(x, y)$$

$$f_Y(x) = \sum_X f_{XY}(x, y)$$

 $\bullet \;$ Independence : X and Y are independent if

$$\underbrace{f_{XY}(x,y) = f_X(x) \times f_Y(y)}_{\text{for all values of x and y}}$$

also if:

$$f_{X|Y} = f_X$$
$$f_{Y|X} = f_Y$$

• Conditional probability:

$$f_{Y|X} = \frac{f_{XY}(x, y)}{f_X(x)}$$
$$f_{X|Y} = \frac{f_{XY}(x, y)}{f_Y(y)}$$

Joint Continuous Probability

$$[\Lambda] = \iint_{\Lambda} f_{XY} \ dx \ dy$$

for any event $\Lambda \subseteq \Omega_X \times \Omega_Y$

Properties:

$$\iint_A f_{XY}(x, y) \ dA = 1$$

Marginal PMF:

$$f_X(x) = \int_Y f_{XY}(x, y) \ dy$$

$$f_Y(x) = \int_X f_{XY}(x, y) \ dx$$

Independence: X and Y are independent if

$$f_{XY}(x,y) = f_X(x) \times f_Y(y)$$

also if:

$$f_{X|Y} = f_X$$
$$f_{Y|X} = f_Y$$

Conditional probability:

$$f_{Y|X} = \frac{f_{XY}(x, y)}{f_{X}(x)}$$
$$f_{XY}(x, y)$$

$$f_{X|Y} = \frac{f_{XY}(x, y)}{f_{Y}(y)}$$

Expectation, Covariance and Correlation

• Discrete:

$$\mathbb{E}[g(x, y)] = \sum_{X} \sum_{Y} g(x, y) f_{XY}(x, y)$$

• Continuous:

$$\mathbb{E}[g(x, y)] = \int_{X} \int_{Y} g(x, y) f_{XY}(x, y) dx dy$$

• Properties:

$$\mathbb{E}[x+y] = \mathbb{E}[x] + \mathbb{E}[y]$$

• if x and y are independent:

$$\mathbb{E}[xy] = \mathbb{E}[x]\mathbb{E}[y]$$

• Covariance:

$$Cov(X, Y) = \sigma_{XY} = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$$
$$= \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

• Variance:

$$\mathbb{V}[X+Y] = \mathbb{V}[X] + \mathbb{V}[Y] + 2\mathrm{Cov}(X, Y)$$

• if x and y are independent:

$$\mathbb{V}[X+Y] = \mathbb{V}[X] + \mathbb{V}[Y]$$

• Correlation Coefficient:

$$\rho_{X,Y} = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y}$$

CLT and Rayleigh Distribution

 \mathbf{CLT}

$$\lim_{n \to \infty} P\left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} < x\right) = \Phi(x)$$

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim \text{Normal}\left(\mu; \frac{\sigma^2}{n}\right)$$

Rayleigh

$$R = \sqrt{X^2 + Y^2}$$

$$f_R(r) = \frac{r}{\sigma^2} e^{-r^2/2\sigma^2}, \quad r > 0$$

$$F_R(r) = 1 - e^{-r^2/2\sigma^2}, \quad r \ge 0$$

$$E(R) = \mu_R = \sqrt{\frac{\pi}{2}} \sigma$$

$$V(R) = \frac{4 - \pi}{2} \sigma^2$$

$$E\left(R^2\right) = 2\sigma^2$$

Random Processes

Strict Stationary, not depends on time but on difference τ

• Expectation:

$$\mu_X(t) = \mathbb{E}[X(t, A)] = \sum_A X(t, A) f_A(a)$$

$$\mu_X(t) = \mathbb{E}[X(t,A)] = \int_A X(t,A) f_A(a) \, dA$$

• Auto-correlation function:

$$R_{XX}(t, t + \tau) = \mathbb{E}[X(t)X(t + \tau)]$$

• Auto-covariance function:

$$Cov_{XX}(t, t + \tau) = R_{XX}(t, t + \tau) - \mu_X(t)\mu_X(t + \tau)$$
$$= \mathbb{E}[X(t)X(t + \tau)] - \mathbb{E}[X(t)]\mathbb{E}[X(t + \tau)]$$

• Auto-correlation Coefficient Function:

$$\rho_{XX}(t, t+\tau) = \frac{\operatorname{Cov}_{XX}(t, t+\tau)}{\sigma_X(t)\sigma_X(t+\tau)}$$

 $\bullet~$ Wide Sense Stationary Process WSSP:

Expectation = Constant, Not depend on time

$$R_{XX}(t, t+\tau) = \mathbb{E}[X(t)X(t+\tau)] = R_{XX}(\tau)$$

depend on time difference only

• Average power for WSSP:

$$R_{XX}(\tau = 0) = \mathbb{E}[X(t)X(t+0)] = \mathbb{E}[X^{2}(t)]$$

- Properties of WSSP:
 - Power Spectral Density $S_{XX}(f) = \mathcal{F} \{R_{XX}(\tau)\}$
 - Average Power = $R_{XX}(0) = \int_{-\infty}^{\infty} S_{XX}(f) df$
 - $R_{XX}(\tau) = R_{XX}(-\tau)$ (Even function)
 - $R_{XX}(\tau)$ is maximum at the origin.
- Properties of Strict Stationary Process SSP:

$$- \mu_X = 0$$

$$- R_{XX}(t, t + \tau) = R_{XX}(\tau)$$

$$-\rho_{XX}(t,t+\tau) = \frac{\text{Cov}_{XX}(\tau)}{\text{Cov}_{XX}(0)}$$

$$-\operatorname{Cov}_{XX}(\tau) = R_{XX}(\tau) - \mu_X^2$$

- IID = Independent Identical distributions
- Properties of White Noise:

$$-R_{XX}(\tau) = N_0\delta(\tau)$$

$$-S_{XX}(f) = N_0$$

- For the zero-mean signals $N_0 = \sigma_X^2$
- Cross-Correlation Function:

$$- R_{XY}(t, t + \tau) = E(X(t)Y(t + \tau))$$

$$- R_{XY}(t, t+\tau) \neq R_{YX}(t, t+\tau)$$

- If
$$R_{XY}(t, t + \tau) = 0$$
 the X and Y are orthogonal.

- If X and Y are independent, then
$$R_{XY}(t, t + \tau) = C$$

• Cross-Covariance Function:

$$-\operatorname{Cov}_{XY}(t, t + \tau) = R_{XY}(t, t + \tau) - \mu_X(t)\mu_Y(t + \tau)$$

- If
$$Cov_{XY}(t, t + \tau) = 0$$
 the X and Y are Uncorrelated.

• The time-averaged mean:

$$\langle X(t) \rangle = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} X(t) dt$$

• The time-averaged auto-correlation function:

$$\langle X(t)X(t+\tau)\rangle = \lim_{T\to\infty} \frac{1}{2T} \int_{-T}^{T} X(t)X(t+\tau)dt$$

• The WSS Signal is Called "Ergodic in its mean" if:

$$E(X(t)) = \langle X(t) \rangle$$

• The WSS Signal is Called "Ergodic in its auto-correlation function" if:

$$R_{XX}(\tau) = \langle X(t)X(t+\tau)\rangle$$

Fast-View: Table of Distributions

Distribution	PMF/PDF and Support	Expected Value	Variance	\mathbf{MGF}
Bernoulli $Bern(p)$	P(X = 1) = p $P(X = 0) = q = 1 - p$	p	pq	$q + pe^t$
Binomial $Bin(n, p)$	$P(X = k) = \binom{n}{k} p^k q^{n-k}$ $k \in \{0, 1, 2, \dots n\}$	np	npq	$(q+pe^t)^n$
$\begin{array}{c} \text{Geometric} \\ \text{Geo}(p) \end{array}$	$P(X = k) = q^{k-1}p$ $k \in \{1, 2, \dots\}$	1/p	q/p^2	$\frac{pe^t}{1-qe^t}, qe^t < 1$
Poisson $Pois(\lambda)$	$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$ $k \in \{0, 1, 2, \dots\}$	λ	λ	$e^{\lambda(e^t-1)}$
Uniform Unif (a,b)	$f(x) = \frac{1}{b-a}$ $x \in (a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{tb} - e^{ta}}{t(b-a)}$
Normal $\mathcal{N}(\mu, \sigma^2)$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/(2\sigma^2)}$ $x \in (-\infty, \infty)$	μ	σ^2	$e^{t\mu + \frac{\sigma^2 t^2}{2}}$
Exponential $\operatorname{Expo}(\lambda)$	$f(x) = \lambda e^{-\lambda x}$ $x \in (0, \infty)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{\lambda}{\lambda - t}, t < \lambda$
Erlang-k Erlang (λ, k)	$f(x) = \frac{\lambda^x x^{k-1} e^{-\lambda x}}{(k-1)!}$ $x \in (0, \infty)$	$rac{k}{\lambda}$	$\frac{k}{\lambda^2}$	$\left(\frac{\lambda}{\lambda+t}\right)^k$, $t<\lambda$
$\begin{array}{c} \operatorname{Gamma} \\ \operatorname{Gamma}(a,\lambda) \end{array}$	$f(x) = \frac{1}{\Gamma(a)} (\lambda x)^a e^{-\lambda x} \frac{1}{x}$ $x \in (0, \infty)$	$rac{a}{\lambda}$	$\frac{a}{\lambda^2}$	$\left(\frac{\lambda}{\lambda - t}\right)^a, t < \lambda$
Chi-Square χ_n^2	$\frac{1}{2^{n/2}\Gamma(n/2)}x^{n/2-1}e^{-x/2} x \in (0, \infty)$	n	2n	$(1-2t)^{-n/2}, t < 1/2$
Rayleigh $R(r)$	$\frac{r}{\sigma^2}e^{-r^2/2\sigma^2}$ $r \in (0, \infty)$	$\sqrt{rac{\pi}{2}}\sigma$	$V(R) = \frac{4-\pi}{2}\sigma^2$	-