Open Source Geospatial Analysis in Python: GDAL/OGR Basics

GDAL/OGR

Originally developed by Frank Warmerdam

Geospatial Data Abstraction Library (GDAL)

- A set of tools for working with raster data, mainly for **translation**, **projecting and some processing**. The extent of spatial analysis tools is limited, but the building blocks are there.
- GDAL **Utilities** include Projecting,
 Mosaicing, Polyongize/rasterize, Proximity,
 among others.

OpenGIS Simple Features Library (OGR)

- A set of tools for **reading and writing** vector formats.
- Large amount of **vector geometry tools**, such as: buffer, intersect, union, convexHull, project, simplify, among others.

These tools were designed for the command line interface. Since then a number of API's have been developed for **Python**, Perl, Ruby, Java, C++, and others. Working with the API is not the native environment, so some functionality is not available or harder to use.

GDAL/OGR Command Line Examples

```
gdalinfo --help
gdalinfo myFile.tif
```

gdalwarp -t_srs 'EPSG:4326' input.tif output.tif

```
ogrinfo --help
ogrinfo --so myFile.shp myFile
ogr2ogr -f 'Mapinfo File' output.tab input.shp
```

Software that uses GDAL/OGR

Several software programs use the GDAL/OGR libraries to allow them to read and write multiple GIS formats. Such programs include:

<u>ArcGIS</u> – Uses GDAL for reading/writing raster formats.

<u>Biosphere3D</u> – Open source landscape scenery globe.

<u>FWTools</u> – A cross-platform open source GIS software bundle compiled by Frank Warmerdam.

<u>gdaltokmz</u> – A Python module translating from GDAL-supported raster graphics formats to the <u>Google Earth</u> KMZ format.

Google Earth – A virtual globe and world imaging program.

GRASS GIS

gvSIG

<u>JMap</u>

MapServer

World Wind Java – NASA's open source virtual globe and world imaging technology.

OSSIM – Libraries and applications used to process imagery, maps, terrain, and vector data.

<u>OpenEV</u> – Geospatial toolkit and a frontend to that toolkit; to display <u>georeferenced</u> images and <u>elevation</u> data.

<u>Orfeo toolbox</u> – A satellite image processing library.

Quantum GIS

<u>R</u> – An open source statistical software with extensions for spatial data analysis.

<u>SAGA GIS</u> – A cross-platform open source GIS software.

<u>TopoQuest</u> – Internet topographic map viewer.

Rolta Geomatica software

Where to get started:

- http://wiki.osgeo.org/wiki/OSGeo Python Library The OSGeo wiki for Python. Doesn't contain a lot of updated resources.
- http://trac.osgeo.org/gdal/wiki/GdalOgrInPython The GDAL/OGR wiki for Python. Useful links and installation information.
- http://www.gdal.org/gdal_tutorial.html GDAL API tutorial. Has good documentation for a limited number of tasks in C, C++ and Python
- http://www.gis.usu.edu/~chrisg/python/ Chris Gerard of the RS/GIS Lab at Utah State University has taught a few classes on Open Source RS/GIS and provided these resources to the public. This is a great place to get started with GDAL/OGR. Two of her lectures are on the Z drive in the readings.
- http://pcjericks.github.io/py-gdalogr-cookbook/ Recently a GDAL/OGR Cookbook has been put together. This is the best resource at the moment, in my opinion.
- http://gdal.org/python/ This is very useful reference resource once you grasp the basics.
- http://trac.osgeo.org/gdal/wiki/PythonGotchas Discusses many common pitfalls and known issues.

OGR Vector Formats

Format Name	Code	Creation	Georeferencing	Compiled by default
Aeronav FAA files	AeronavFAA	No	Yes	Yes
ESRI ArcObjects	ArcObjects	No	Yes	No, needs ESRI ArcObjects
Arc/Info Binary Coverage	AVCBin	No	Yes	Yes
Arc/Info .E00 (ASCII) Coverage	AVCE00	No	Yes	Yes
Arc/Info Generate	ARCGEN	No	No	Yes
Atlas BNA	BNA	Yes	No	Yes
AutoCAD DWG	DWG	No	No	No
AutoCAD DXF	DXF	Yes	No	Yes
Comma Separated Value (.csv)	CSV	Yes	No	Yes
CouchDB / GeoCouch	CouchDB	Yes	Yes	No, needs libcurl
DODS/OPENDA P	DODS	No	Yes	No, needs libdap
<u>EDIGEO</u>	EDIGEO	No	Yes	Yes
ElasticSearch	ElasticSearch	Yes (write-only)	-	No, needs libcurl
ESRI FileGDB	FileGDB	Yes	Yes	No, needs FileGDB API library
ESRI Personal GeoDatabase	PGeo	No	Yes	No, needs ODBC library
ESRI ArcSDE	SDE	No	Yes	No, needs ESRI SDE
ESRI Shapefile	ESRI Shapefile	Yes	Yes	Yes
FMEObjects Gateway	FMEObjects Gateway	No	Yes	No, needs FME

Format Name	Code	Creation	Georeferencin g	Compiled by default
<u>Géoconcept</u> <u>Export</u>	Geoconcept	Yes	Yes	Yes
Geomedia .mdb	Geomedia	No	No	No, needs ODBC library
GeoRSS	GeoRSS	Yes	Yes	Yes (read support needs libexpat)
Google Fusion Tables	GFT	Yes	Yes	No, needs libcurl
<u>GML</u>	GML	Yes	Yes	Yes (read support needs Xerces or libexpat)
<u>GMT</u>	GMT	Yes	Yes	Yes Yes (needs
<u>GPSBabel</u>	GPSBabel	Yes	Yes	GPSBabel and GPX driver)
<u>GPX</u>	GPX	Yes	Yes	Yes (read support needs libexpat)
<u>GRASS</u>	GRASS	No	Yes	No, needs libgrass
GPSTrackMaker (.gtm, .gtz)	GPSTrackMaker	Yes	Yes	Yes
Hydrographic Transfer Format	HTF	No	Yes	Yes
Idrisi Vector (.VCT)	Idrisi	No	Yes	Yes
<u>Informix</u> <u>DataBlade</u>	IDB	Yes	Yes	No, needs Informix DataBlade
<u>INTERLIS</u>	"Interlis 1" and "Interlis 2"	Yes	Yes	No, needs Xerces (INTERLIS model reading needs ili2c.jar)
<u>INGRES</u>	INGRES	Yes	No	No, needs INGRESS
<u>KML</u>	KML	Yes	Yes	Yes (read support needs libexpat)

The list goes on.....

OGR Classes

GDAL/OGR are object oriented libraries. You have to work with multiple objects to complete a task, just like with arcpy.

Example:

```
1#open the feature class with ogr
2 ds = ogr.Open(sName)
3 #get layer object
4 lyr = ds.GetLayer()
5 #get feature object, index the row you want
6 feat = lyr[0]
7 #get geometry object
8 geom = feat.GetGeometryRef()
9 #get array, this is like getPart(), 0 for single part feature classes
10 array = geom.GetGeometryRef(0)
11 #get points, indexed
12 array.GetPoint(0)
```

This accesses the hierarchy of vector geometry encoding.

OGR Geometry Types

Well known binary (wkb) geometry types

wkbUnknown unknown type, non-standard

wkbPoint 0-dimensional geometric object, standard

WKB

wkbLineString
1-dimensional geometric object with linear

interpolation between Points, standard WKB

wkbPolygon planar 2-dimensional geometric object

defined by 1 exterior boundary and 0 or more

interior boundaries, standard WKB

wkbMultiPoint GeometryCollection of Points, standard WKB

wkbMultiLineString GeometryCollection of LineStrings, standard

WKB

wkbMultiPolygon GeometryCollection of Polygons, standard

WKB

wkbGeometryCollection geometric object that is a collection of 1 or

more geometric objects, standard WKB non-standard, for pure attribute records non-standard, just for createGeometry()

wkbPoint25D2.5D extension as per 99-402wkbLineString25D2.5D extension as per 99-402

wkbNone

wkbLinearRing

wkbPolygon25D2.5D extension as per 99-402wkbMultiPoint25D2.5D extension as per 99-402wkbMultiLineString25D2.5D extension as per 99-402

wkbMultiPolygon25D 2.5D extension as per 99-402

wkbGeometryCollection25D 2.5D extension as per 99-402

GDAL Raster Formats

Raster data format name	Code
Arc/Info ASCII Grid [1]	AAIGrid
ADRG/ARC Digitalized Raster Graphics (.gen/.thf) [2]	ADRG
Magellan BLX Topo (.blx, .xlb) [3]	BLX
Microsoft Windows Device Independent Bitmap (.bmp) [4]	BMP
VTP Binary Terrain Format (.bt) [5]	ВТ
Military Elevation Data (.dt0, .dt1, .dt2) [6]	DTED
ESRI .hdr Labelled [7]	EHdr
NASA ELAS [8]	ELAS
ENVI .hdr Labelled Raster [9]	ENVI
ERMapper (.ers) [10]	ERS
GeoTiff	GTiff
NOAA .gtx vertical datum shift	GTX
HF2/HFZ heightfield raster [11]	HF2
Erdas Imagine (.img) [12]	HFA
Image Display and Analysis (WinDisp) [13]	IDA
ILWIS Raster Map (.mpr,.mpl) [14]	ILWIS
Intergraph Raster [15]	INGR
USGS Astrogeology <u>Isis</u> cube (Version 2) [16]	ISIS2
KMLSUPEROVERLAY	KMLSUPEROVERLAY
In Memory Raster [17]	MEM
Vexcel MFF [18]	MFF
Vexcel MFF2 [19]	MFF2 (HKV)
NITF [20]	NITF
NTv2 Datum Grid Shift	NTv2
PCI Geomatics Database File [21]	PCIDSK
Raster Matrix Format (*.rsw, .mtw) [22]	RMF
<u>Idrisi</u> Raster [23]	RST
SAGA GIS Binary format [24]	SAGA
SGI Image Format [25]	SGI
SRTM HGT Format [26]	SRTMHGT
USGS ASCII DEM / CDED (.dem) [27]	USGSDEM
GDAL Virtual (.vrt) [28]	VRT
ASCII Gridded XYZ [29]	XYZ

GDAL Classes

GDAL allows for multiple bands. Excellent interface with numpy is provided. Example:

```
14 #open the raster file with gdal
15 g = gdal.Open(15)
16 #get the projection object
17 prj = g.GetProjection()
18 #get properites from the gdal object
19 cols = g.RasterXSize
20 rows = g.RasterYSize
21 #get the band object from the gdal object
22 bnd = g.GetRasterBand(1)
23 #use the band object to create a numpy array
24 npArray = bnd.ReadAsArray()
```

Should look familiar, working with arcpy raster objects is similar

GDAL Data Types (GDT)

```
GDT Data Type and Reference #
GDT Unknown = 0,
GDT Byte = 1,
GDT UInt16 = 2,
GDT Int16 = 3,
GDT UInt32 = 4,
GDT Int32 = 5,
GDT Float32 = 6,
GDT Float64 = 7,
GDT CInt16 = 8,
GDT CInt32 = 9,
GDT CFloat32 = 10,
GDT CFloat64 = 11,
GDT TypeCount = 12
```