

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

РТУ МИРЭА

Институт информационных технологий (ИИТ) Кафедра цифровой трансформации (ЦТ)

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ № 2

по дисциплине «Разработка баз данных»

Студент группы	ИНБО-12-23. Албахтин И.В.	
		(подпись)
Ассистент	Брайловский А.В.	
		(подпись)

ПРАКТИЧЕСКАЯ РАБОТА №2. МНОГОТАБЛИЧНЫЕ ЗАПРОСЫ И ТЕОРЕТИКО- МНОЖЕСТВЕННЫЕ ОПЕРАЦИИ В POSTGRES PRO

Цель:

- Научиться извлекать и комбинировать данные из нескольких связанных таблиц с помощью соединений (JOIN) и теоретико-множественных операторов (UNION, INTERSECT, EXCEPT), а также освоить продвинутые паттерны, такие как «само-соединение» и «анти-соединение».
- Сформировать глубокое концептуальное понимание и практические навыки применения различных типов соединений таблиц (INNER, LEFT, RIGHT, FULLJOIN) для извлечения связанных данных из нескольких таблиц.
- Научиться применять теоретико-множественные операторы (UNION, UNIONALL, INTERSECT, EXCEPT) для комбинирования и сравнения результатов нескольких независимых запросов, соблюдая правила их использования.
- Развить аналитические навыки для декомпозиции сложных бизнесвопросов в последовательность логических шагов, реализуемых с помощью SQL-запросов.
- Понять принцип работы специфических паттернов SQL, таких как «анти-соединение» (anti-join) для поиска несоответствий и «само-соединение» (self-join) для работы с иерархическими данными в рамках одной таблицы.

Постановка задачи:

Задание 1: демонстрация различных типов соединений.

На основе индивидуальной схемы данных, составить и выполнить пять аналитических запросов, демонстрирующих различные типы соединений.

Каждый запрос должен решать осмысленную задачу в рамках вашей предметной области.

- 1. В начале отчёта должны быть приложены скриншоты всех используемых таблиц индивидуальной схемы данных.
- 2. Запрос с INNER JOIN: подсчитайте количество связанных записей между таблицами (например, «сколько лекарств у каждого производителя?»)
- 3. Запрос с LEFT JOIN: проанализируйте наличие или отсутствие связей (например, «сколько лекарств у каждого производителя, включая тех, у кого лекарств нет?»)
- 4. Запрос с RIGHT JOIN и WHERE... IS NULL (паттерн «антисоединение»): найдите и подсчитайте записи без связей (например, «сколько лекарств не имеют производителя в базе?»)
- 5. Запрос с FULL JOIN: получите общую статистику сколько всего связанных записей, и сколько записей без связей.
- 6. Запрос с CROSS JOIN: сформировать декартово произведение всех записей одной таблицы со всеми записями другой, создав тем самым все возможные комбинации строк между ними.

Задание 2: применение теоретико-множественных операторов.

На основе индивидуальной схемы данных составить и выполнить три запроса, демонстрирующих практическое применение операторов UNION, INTERSECT и EXCEPT.

- 1. UNION: составить единый список из данных двух разных таблиц (столбцы должны быть совместимы по типу).
- 2. INTERSECT: найти общие записи, которые удовлетворяют двум разным условиям или находятся в двух разных наборах данных.
- 3. EXCEPT: найти записи, которые присутствуют в одном наборе данных, но отсутствуют в другом.

ВЫПОЛНЕНИЕ ПРАКТИЧЕСКОЙ РАБОТЫ

Таблица 1. Таблица саг (автомобиль)

Название	#	Тип данных	Автоувеличение	Правило сортировки	Not Null	По умолчанию	Комментарий
123 car_id	1	int4			[v]		
123 client_id	2	int4			[]		
A-Z brand	3	varchar(30)		<u>default</u>	[]		
A-Z model	4	varchar(30)		<u>default</u>	[]		
123 year	5	int4			[]		
A-Z license_plate	6	varchar(17)		<u>default</u>	[]		

Таблица 2. Таблица client (клиент)

Название	#	Тип данных	Автоувеличение	Правило сортировки	Not Null	По умолчанию	Комментарий
123 client_id	1	int4			[v]		
A-Z name	2	varchar(15)		<u>default</u>	[]		
A-Z surname	3	varchar(15)		default	[]		
A-Z phone	4	varchar(15)		<u>default</u>	[]		
A-Z email	5	varchar(254)		default	[]		

Таблица 3. Таблица diagnosis (диагностика)

ļ	Название	#	Тип данных	Автоувеличение	Правило сортировки	Not Null	По умолчанию	Комментарий
1	123 diagnosis_id	1	serial4			[v]	nextval('diagnosis_diagnosis_id_seq'::regclass)	
	123 maintenance_id	2	int4			[]		
	A-Z result	3	text		default	[]		

Таблица 4. Таблица invoice (счёт за работы)

Название	#	Тип данных	Автоувеличение	Правило сортировки	Not Null	По умолчанию	Комментарий
123 invoice_id	1	serial4			[v]	nextval('invoice_invoice_id_seq'::regclass)	
123 maintenance_id	2	int4			[]		
123 total_amount	3	numeric			[]		
A-Z payment_status	4	varchar(20)		default	[]		

Таблица 5. Таблица maintenance (обслуживание)

Название	#	Тип данных	Автоувеличение	Правило сортировки	Not Null	По умолчанию	Комментарий
123 maintenance_id	1	serial4			[v]	nextval('maintenance_maintenance_id_seq'::regclass)	
123 car_id	2	int4			[]		
123 worker_id	3	int4			[]		
123 part_id	4	int4			[]		
	5	date			[]		
② end_date	6	date			[]		
A-Z status	7	varchar(20)		default	[]	'planned'::character varying	

Таблица 6. Таблица maintenance_work (соеденительная таблица между обслуживанием и типом работы)

Название	#	Тип данных	Автоувеличение	Правило сортировки	Not Null	По умолчанию	K
123 maintenance_work	1	serial4			[v]	nextval('maintenance_work_maintenance_work_seq'::regclass))
123 maintenance_id	2	int4			[]		
123 work_type_id	3	int4			[]		

Таблица 7. Таблица part (запчасти)

Название	#	Тип данных	Автоувеличение	Правило сортировки	Not Null	По умолчанию	Комментарий
123 part_id	1	int4			[v]		
A-Z name	2	varchar(100)		<u>default</u>	[]		
123 price	3	numeric			[]		
123 supplier_id	4	int4			[]		

Таблица 8. Таблица part_warehouse (соеденительная таблица между складом и запчастями)

Название	#	Тип данных	Автоувеличение	Правило сортировки	Not Null	По умолчанию	K
123 part_id	1	int4			[v]		
123 warehouse_id	2	int4			[]		
123 quantity	3	int4			[]		

Таблица 9. Таблица review (отзывы)

Название	#	Тип данных	Автоувеличение	Правило сортировки	Not Null	По умолчанию
123 review_id	1	serial4			[v]	nextval('review_review_id_seq'::regclass)
123 client_id	2	int4			[]	
A-Z text	3	varchar(1000)		<u>default</u>	[]	
123 rating	4	int4			[]	
	5	date			[]	

Таблица 10. Таблица supplier (поставщики)

Название	#	Тип данных	Автоувеличение	Правило сортировки	Not Null	По умолчанию
123 supplier_id	1	int4			[v]	
A-Z name	2	varchar(300)		<u>default</u>	[]	
A-Z phone	3	varchar(15)		<u>default</u>	[]	

Таблица 11. Таблица warehouse (склад)

Название	#	Тип данных	Автоувеличение	Правило сортировки	Not Null	По умолчанию
123 warehouse_id	1	int4			[v]	
A-Z address	2	varchar(100)		<u>default</u>	[]	

Таблица 12. Таблица warranty (гарантия)

Название	#	Тип данных	Автоувеличение	Правило сортировки	Not Null	По умолчанию	K
123 warranty_id	1	serial4			[v]	nextval('warranty_warranty_id_seq'::regclass)	
123 maintenance_id	2	int4			[]		
expiry_date	3	date			[]		

Таблица 13. Таблица work_type (тип работ)

Название	#	Тип данных	Автоувеличение	Правило сортировки	Not Null	По умс
123 work_type_id	1	int4			[v]	
A·Z name	2	varchar(500)		<u>default</u>	[]	
A-Z description	3	text		<u>default</u>	[]	

Таблица 14. Таблица worker (сотрудник)

Название	#	Тип данных	Автоувеличение	Правило сортировки	Not Null	По умолчанию
123 worker_id	1	int4			[v]	
A-Z name	2	varchar(15)		<u>default</u>	[]	
A-Z position	3	varchar(20)		<u>default</u>	[]	
A-Z phone	4	varchar(15)		<u>default</u>	[]	

Основы соединения таблиц (JOIN)

Рисунок 1 - Найти количество машин, закреплённых за каждым клиентом (INNER JOIN)

Рисунок 2 - Показать всех клиентов и их автомобили, даже если машины у клиента отсутствуют (LEFT JOIN)

Рисунок 3 - Найти автомобили, у которых нет владельцев (клиентов, RIGHT JOIN + IS NULL)

Рисунок 4 - Получить список клиентов и машин, включая тех клиентов без машин и машины без клиентов (FULL JOIN)

Рисунок 5 - Создать все возможные комбинации "машина – работник сервиса" (CROSS JOIN)

Продвинутые техники и паттерны соединений

Рисунок 6 - Составить общий список всех имён клиентов и работников (UNION)

Рисунок 7 - Найти имена, которые встречаются и среди клиентов, и среди работников (INTERSECT)

Рисунок 8 - Найти клиентов, которые не являются работниками сервиса (ЕХСЕРТ)

ВЫВОД

В ходе выполнения работы были изучены и реализованы различные виды соединений таблиц (INNER JOIN, LEFT JOIN, RIGHT JOIN, FULL JOIN, CROSS JOIN), а также операторы работы с множествами (UNION, INTERSECT, EXCEPT).

Было показано, что:

- INNER JOIN используется для выборки только связанных данных (например, клиенты, у которых есть машины).
- LEFT JOIN позволяет выявить объекты без связей (например, клиентов без автомобилей).
- **RIGHT JOIN + IS NULL** удобно применять как анти-соединение для поиска «осиротевших» данных (например, автомобилей без владельцев).
- **FULL JOIN** даёт полную картину, объединяя все записи обеих таблиц, даже если связь отсутствует.
- CROSS JOIN формирует все возможные комбинации строк и полезен для генерации тестовых данных.

Операторы UNION, INTERSECT и EXCEPT позволили объединять, сравнивать и различать наборы данных, что важно при аналитической обработке информации.