常微分方程式

Contents

1. 導	入	. 1
1.1	. 微分方程式とは?	. 1
	. この授業の目標	
	. 注意	
	1.3.1. ノートにおける囲いの意味	
	一回講義(2024-04-09)	
2.1	. 常微分方程式	. 3
2.2	. 初期値問題	. 3
2.3	. 変数分離形	. 4

1. 導入

1.1. 微分方程式とは?

・ これまでに習った微分方程式の例(不定積分) $\int f(x)\,\mathrm{d}x \longrightarrow \text{微分して}f(x)$ になる関数F(x)を求めている. つまり, F'(x)=f(x)という微分方程式を解いている.

1.2. この授業の目標

扱いやすいいくつかの微分方程式(変数分離系,定数係数線微分方程式)に対して手計算での解き方を学ぶ.

1.3. 注意

この授業では、x,y はたいていの場合、独立変数を持つ(未知)関数を表す.

Example: $x' = \sin(x)$ $(x(t) = \cos(t) + C)$

また, $x^{(n)}$ で x の n 階微分を表す.

1.3.1. ノートにおける囲いの意味

Def. 1.1: 定義

数学の概念の意味や内容を定めたもの.

Th. 1.1: 定理

正しいことが確かめられた数学の主張のうち重要なもの.

Prop. 1.1: 命題

定理よりも軽い(重要度が低い)主張のこと.

Cor. 1.1.1: 系

定理の結論から直ちに得られる主張.

Example: 例

Proof: 証明 □

2. 第一回講義(2024-04-09)

2.1. 常微分方程式

Def. 2.1: x = x(t) を未知関数とする.

$$F(t, x, x', ..., x^{(n)}) = 0$$
 $(F: n+2$ 変数関数)

という形の方程式を常微分方程式という.

Example:

1.
$$x'(t) = \cos(t) \iff x(t) = \int \cos(t) dt$$

 $F(a, b, c) = -\cos(a) + C$

2.
$$x'' + 2tx' + x = e^t$$

$$F(a, b, c, d) = -e^a + b + 2ac + d \quad (a = t, b = x, c = x', d = x'')$$

3.
$$\begin{cases} {x_1}' = 2x_1 - 3x_2 \\ {x_2}' = x_1 - 2x_2 \end{cases}$$
 (連立微分方程式)

Def. 2.2: 常微分方程式が n 階の導関数を含み、それ以上の高階の項を含まないとき、 n 階の微分方程式という.

2.2. 初期値問題

Def. 2.3: n 階の方程式 $F(t,x,x',...,x^{(n)})=0$ の解であって, $x(t_0)=a_0,x'(t_0)=a_1,...,x^{(n)}(t_0)=a_n$ (t_0,a_i は定数)を満たすものを求めることを(初期条件に対する)初期値問題を解くという.

Th. 2.1: (解の存在と一意性)

初期值問題

$$F\big(t,x,x',...,x^{(n)}\big)=0,\ x(t_0)=a_0,x'(t_0)=a_1,...,x^{(n)}(t_0)=a_n$$

3

の解は (F がリプシッツ条件を満たすなら, t_0 の近傍で) ただ一つに定まる.

2.3. 変数分離形

Def. 2.4:

$$x' = f(t)g(x)$$
 $(f, g: 関数)$

の形の方程式を変数分離形という.

Example: $x' = 2t \cdot e^x$ $(f(a) = 2a, g(a) = e^a)$

Prop. 2.1: g は 0 を値に持たないとする.

$$x' = f(t)g(x)$$

に対し、 $h(x) = \frac{1}{g(x)}$ とし、H(x) を h(x) の原始関数、F(x) を f(x) の原始関数とする.

$$x' = f(t)g(x) \Longleftrightarrow H(x(t)) = F(t) + C$$
 (C:任意定数)

Proof:

まず, $x'=f(t)g(x) \implies H(x(t))=F(t)+C$ を示す. x'=f(t)g(x) かつ $g\neq 0$ より, $\frac{1}{g(x(t))}x'(t)=f(t)$

$$\begin{split} &\int \frac{1}{g(x(t))} x'(t) \, \mathrm{d}t = \int f(t) \, \mathrm{d}t \\ &\longrightarrow \int \frac{1}{g(x)} \, \mathrm{d}x = F(t) + C_1 \\ &\longrightarrow H(t) + C_2 = F(t) + C_1 \\ &\longrightarrow H(t) = F(t) + C \end{split}$$

よって, $x' = f(t)g(x) \implies H(x(t)) = F(t) + C$ が示された. 次に、 $x' = f(t)g(x) \iff H(x(t)) = F(t) + C$ だが、H(x(t)) = F(t) + C の両辺

次に, x'=f(t)g(x) \iff H(x(t))=F(t)+C だが, H(x(t))=F(t)+C の両辺を t で微分すれば示される.

Prop. 2.2: y は常に正,もしくは常に負の値をとる連続関数とする.このとき, $h(x)=\frac{1}{g(x)}$ の原始 関数 H(x) には逆関数が存在する.そして,方程式 x'=f(t)g(x) の解は, $x(t)=H^{-1}(F(t)+C)$ と表される.