System typów F_{ω}

Systemy Typów 2010/11 Prowadzący: dr Dariusz Biernacki

Piotr Polesiuk Małgorzata Jurkiewicz bassists@o2.pl gosia.jurkiewicz@gmail.com

Wrocław, dnia 12 lutego 2011 r.

1. Wstęp

No to na razie taki balagan

2. System F_{ω}

W rozdziale tym chcielibyśmy się skupić na systemie F_{ω} okrojonym do niezbędnego minimum. Przedstawimy, jak wyglądają termy, typy i wartości tego języka, a także pokażemy, jak przebiega typowanie, znajdowanie rodzaju, ewaluacja czy sprawdzanie równości typów. Postaramy się pisać jasno i pokażemy parę przykładów, aby nieobyty w temacie Czytelnik nie zgubił się. W następnych rozdziałach XXX-XXX do tak zdefiniowanego systemu będziemy wprowadzać rozszerzenia.

2.1. Termy i typy w F_{ω}

System F_{ω} to rachunek będący rozszerzeniem λ_{ω} oraz systemu F. Wszystkie trzy wywodzą się z rachunku lambda z typami prostymi. Termy oraz typy definiujemy w λ_{\rightarrow} następująco:

t ::=		termy
	X	zmienne
	$\lambda \mathtt{x}:\mathtt{T.t}$	abstrakcja
	tt	aplikacja
T ::=		typy
	Х	$zmienna\ typowa$
	$\mathtt{T}\to\mathtt{T}$	$typ\ funkcji$

2.1.1. System λ_{ω}

Główną cechą systemu λ_{ω} jest to, że oprócz termów zależnych od termów mamy typy zależne od typów, czyli możemy mówić o aplikacji i abstrakcji typowej, a tak powstałe 'typy' będziemy nazywać konstruktorami. By nam się nie pomyliło z abstrakcją na termach, zmienne konstruktorowe będziemy zaczynać dużą literą. Przykładowo Tb = $\lambda X.X \rightarrow Bool$ i $\lambda X.X$ są abstrakcjami konstruktowymi, ale $\lambda x.x$ jest abstrakcja na termach. Do konstruktora Tb możemy zaaplikować Bool i dostaniemy ($\lambda X.X \to Bool$)Bool równoważne Bool $\to Bool$. Jak widać, użyliśmy słowa równoważne. W rachunku lambda z typami prostymi sposób konstrukcji typów gwarantował nam, że dwa typy T₁ i T₂ na pewno są różne (zakładając, że typy bazowe były sobie różne). W λ_{ω} jest inaczej – konstruktory tego systemu możemy podzielić na klasy równoważności. Do klasy ${\tt Bool} \to {\tt Bool}$ należą również $({\tt Tb^n}){\tt Bool}$ dla nnaturalnego, a ${\tt T^n}$ oznacza aplikację n konstruktorów T. Zauważmy, że odpowiednikiem takiej relacji równoważności w λ_{\rightarrow} jest β -równoważność. W świecie typów nazwiemy taką relację \equiv^1 . Każdy konstruktor typu jest silnie normalizowalny i zachodzi własność Churcha-Rossera. Przez nf(T) oznaczamy postać normalną konstruktora rodzaju T. Dodatkowo wprowadzimy następującą regułę: $\frac{\Gamma \vdash t: \bar{S} \quad S \equiv T}{\Gamma \vdash t: T}$ mówiącą, że jeżeli S jest konstruktorem termu t, to dowolny konstruktor S równoważny z T również jest konstruktorem t.

¹formalnie zdefiniujemy ta relację w rozdziale XXX

Niestety, w tak zdefiniowanym systemie powstaje jeden problem. Nie chcielibyśmy, aby Bool Bool było dozwolone, tak samo, jak w świecie termów nie chcieliśmy, by true true było dozwolone. W świecie termów, by rozwiązać ten problem, wprowadziliśmy typy na termach, w świecie typów wprowadzimy rodzaje na konstruktorach. Piszemy, że T:: K, czyli konstruktor T jest rodzaju K. Wprowadzimy też jeden rodzaj bazowy *.

Wszystkie typy, jakie pojawiły się w λ_{\rightarrow} , są rodzaju *. Np. Bool :: *, Nat \rightarrow Nat, (Bool \rightarrow Nat) \rightarrow Nat :: *, itd. Rodzaj * \Rightarrow * będzie odpowiadał funkcjom z konstruktorów w konstruktory, np. $\lambda X.X \rightarrow$ Bool :: * \Rightarrow *. * \Rightarrow * \Rightarrow * bierze konstruktor i zwraca funkcję konstruktorową, np. $\lambda X.\lambda Y.X \rightarrow Y$:: * \Rightarrow * \Rightarrow *, itd.

Teraz możemy λ_{\rightarrow} rozszerzyć o następujące konstrukcje:

rodzaje

• abstrakcję i aplikację typową na typach

Powstaje pytanie, czy wszystkie konstruktory są typami? Otóż nie, typy to konstruktory rodzaju *.

2.1.2. System *F*

System F jest systemem, w którym dodatkowo, oprócz termów zależnych od termów, mamy termy zależne od typów. Wprowadzimy trzeci już rodzaj abstrakcji i aplikacji, poprzedni był w świecie typów, ten będzie w świecie termów. Znana jest nam funkcja identycznościowa $\lambda x.x.$, w λ_{\rightarrow} możemy ją napisać na wiele sposób: $\lambda x: Bool.x.$, $\lambda x: Nat.x.$, $\lambda x: Bool. \rightarrow Nat.x.$ W systemie F możemy wszystkie te funkcje zapisać jako: $\lambda X.\lambda x: X.x.$ Zauważmy, że ten term przyjmuje jako pierwszy argument typ, następnie term tego typu i zwraca term. Przykładem użycia takiego termu mogą być: $(\lambda X.\lambda x: X.x)$ [Bool] true, co daje true, albo $(\lambda X.\lambda x: X.x)$ [Nat] 1, co daje 1. W ten sposób powstała nam uniwersalna funkcja identycznościowa, której nadamy tzw. uniwersalny typ: $\lambda X.\lambda x: X.x: \forall X.X. \rightarrow X$. Dodatkowo, jako że dodaliśmy już do systemu rodzaje, napiszemy $\lambda X: : *.\lambda x: X.x: \forall X: : *.X. \rightarrow X: : *.$

Czy moglibyśmy napisać $\lambda \mathtt{X} :: * \Rightarrow *.\lambda \mathtt{x} : \mathtt{X}.\mathtt{x} : \forall \mathtt{X} :: * \Rightarrow *.\mathtt{X} \to \mathtt{X} :: * \Rightarrow *?$ Jak już mówiliśmy, tylko konstruktory rodzaju * są typami, więc powyższy term nie jest dobry.

Po tym krótkim wstępie możemy już zdefiniować odziedziczone z systemu F własności takie, jak:

• abstrakcję i aplikację typową na termach

```
egin{array}{lll} {\sf t} ::= & & termy \ \lambda {\tt X} :: {\tt K.t} & abstrakcja \ typowa \ & {\tt t}[{\tt T}] & aplikacja \ typowa \end{array}
```

typ uniwersalny

2.2. Typowanie

2.2.1. Kontekst

Kontekst typowania opisany jest następującą składnią abstrakcyjną:

Γ ::=		kontekst
	Ø	$pusty\ kontekst$
	$\Gamma, x: T$	$wiqzanie\ typu$
	$\Gamma, X :: K$	$wiqzanie\ rodzaju$

Konteksty typowania bedziemy często traktować jako skończone zbiory wiązań i będziemy używać teoriomnogościowych symboli na nich. Np. przynależność do kontekstu formalnie definiujemy jako:

$$\frac{B \in \Gamma}{B \in \Gamma, B} \qquad \frac{B \in \Gamma}{B \in \Gamma, B'}$$

Definicje pozostałych operacji teoriomnogościowych są na tyle naturalne, że zostawiamy je Czytelnikowi do uzupełnienia.

2.2.2. Podstawienia

Oprócz zwykłego podstawienia za zmienne, które pozostawiamy Czytelnikowi do uzupełnienia, powinniśmy zdefiniować podstawienie za zmienne konstruktorowe.

$$\bullet \ [\mathtt{Y} \mapsto \mathtt{T}]\mathtt{X} = \begin{cases} \mathtt{T} & Y = X \\ \mathtt{X} & \mathrm{w.p.p} \end{cases}$$

$$\bullet \ [Y \mapsto T](X_1 \ X_2) = [Y \mapsto T]X_1[Y \mapsto T]X_2$$

$$\bullet \ [\mathtt{Y} \mapsto \mathtt{T}](\mathtt{S}_1 \to \mathtt{S}_2) = [\mathtt{Y} \mapsto \mathtt{T}]\mathtt{S}_1 \to [\mathtt{Y} \mapsto \mathtt{T}]\mathtt{S}_2$$

$$\bullet \ [\mathbf{Y} \mapsto \mathbf{T}] \forall \mathbf{X}. \mathbf{S} = \begin{cases} \forall \mathbf{X}. \mathbf{S} & Y = X \text{ lub } Y \notin FV(S) \\ \forall \mathbf{X}. [\mathbf{Y} \mapsto \mathbf{T}] \mathbf{S} & X \notin FV(S) \text{ i } Y \in FV(S) \end{cases}$$

$$\bullet \ [\mathtt{Y} := \mathtt{T}] \lambda \mathtt{X.S} = \begin{cases} \lambda \mathtt{X.S} & Y = X \text{ lub } Y \notin FV(S) \\ \lambda \mathtt{X.} [\mathtt{Y} \mapsto \mathtt{T}] \mathtt{S} & X \notin FV(S) \text{ i } Y \in FV(S) \end{cases}$$

2.2.3. Relacja \equiv

Jak wspomnieliśmy w rozdziale XXX, definiujemy na typach relację równoważności. W poniższych wzorach S, S_1, S_2, T, T_1, T_2 to typy, K to rodzaj. Następujące trzy reguły:

$$\frac{{\tt S}\equiv {\tt T}}{{\tt T}\equiv {\tt T}} \qquad \frac{S\equiv U \quad U\equiv T}{S\equiv T}$$

gwarantują nam równoważność relacji ≡. Pozostałe reguły jak następuje:

$$\begin{split} \frac{S_1 \equiv T_1 \quad S_2 \equiv T_2}{S_1 \rightarrow S_2 \equiv T_1 \rightarrow T_2} & \frac{S_1 \equiv T_1 \quad S_2 \equiv T_2}{S_1 \ S_2 \equiv T_1 \ T_2} \\ \frac{S \equiv T}{\lambda \mathtt{X} :: \mathtt{K.S} \equiv \lambda \mathtt{X} :: \mathtt{K.T}} & (\lambda \mathtt{X} :: \mathtt{K.S}) \mathtt{T} \equiv [\mathtt{X} \mapsto \mathtt{T}] \mathtt{S} \end{split}$$

definiują równoważność funkcji typowych, aplikacji i abstrakcji konstruktorowych oraz typów uniwersalnych.

2.2.4. Reguly rodzajowania

W systemie F_{ω} każdemu poprawnie zbudowanemu typowi przyporządkowujemy rodzaj. Przyporządkowanie to określa relacja ($\cdot \vdash \cdot :: \cdot$) zdefiniowana następująco.

Jeżeli zachodzi $\Gamma \vdash T :: K$, to powiemy, że $typ\ T$ $jest\ rodzaju\ K\ w\ kontekście\ \Gamma$, gdzie relacja określenia rodzaju (. \vdash . :: .) $\subseteq \Gamma \times T \times K$ jest najmniejszą relacją zamkniętą na reguły:

$$\begin{array}{lll} \frac{\mathtt{X} :: \mathtt{K} \in \Gamma}{\Gamma \vdash \mathtt{X} :: \mathtt{K}} & \frac{\Gamma \vdash \mathtt{T}_1 :: \mathtt{K}_1 \Rightarrow \mathtt{K}_2 & \Gamma \vdash \mathtt{T}_2 :: \mathtt{K}_1}{\Gamma \vdash \mathtt{T}_1 \mathtt{T}_2 :: \mathtt{K}_2} \\ \\ \frac{\Gamma \vdash \mathtt{X} :: \mathtt{K}_1 & \Gamma \vdash \mathtt{T} :: \mathtt{K}_2}{\Gamma \vdash \lambda \mathtt{X} :: \mathtt{K}_1 .\mathtt{T} :: \mathtt{K}_1 \Rightarrow \mathtt{K}_2} & \frac{\Gamma \vdash \mathtt{X} :: \mathtt{K} & \Gamma \vdash \mathtt{T} :: *}{\Gamma \vdash \mathtt{T}_1 :* & \Gamma \vdash \mathtt{T}_2 :*} \\ \\ \frac{\Gamma \vdash \mathtt{T}_1 :* & \Gamma \vdash \mathtt{T}_2 :*}{\Gamma \vdash \mathtt{T}_1 \to \mathtt{T}_2 :*} \end{array}$$

2.2.5. Reguly typowania

Jesteśmy już gotowi przedstawić reguły typowania zdefiniowanego wyżej systemu F_{ω} . Każdemu poprawnie zbudowanemu termowi przyporządkowujemy typ. Przyporządkowanie to określa relacja (. \vdash . : .) zdefiniowana następująco.

$$\frac{\underline{x}: T \in \Gamma}{\Gamma \vdash x: T} \qquad \frac{\Gamma \vdash T_1 :: * \qquad \Gamma, x: T_1 \vdash t_2 : T_2}{\Gamma \vdash \lambda x: T_1.t_2 \ : \ T_1 \to T_2} \\ \frac{\Gamma \vdash t_1: T_1 \to T_2 \qquad \Gamma \vdash t_2 : T_1}{\Gamma \vdash t_1 \ t_2 : T_2} \qquad \frac{\Gamma \vdash t: S \qquad S \equiv T \qquad \Gamma \vdash T :: *}{\Gamma \vdash t: T}$$

2.3. Ewaluacja

Wartości w F_{ω} zdefiniujemy dokładnie jak w λ_{\rightarrow} .

$$oldsymbol{ t v} ::= egin{array}{ccc} wartości \ \lambda { t x}: { t T.t} & wartość abstrakcji \end{array}$$

Ewaluacja przebiega w sposób standardowy. W rozdziałach XXX-XXX skupimy się na rozszerzeniach minimalnej wersji F_{ω} i pojawią się tam nowe rzeczy. Teraz, dla czytelności, przetoczymy reguły ewaluacji dla wersji minimalnej $(\mathbf{t}_1, \mathbf{t}'_1, \mathbf{t}_2, \mathbf{t}'_2, \mathbf{t}$ to termy, v to wartość, x:T to zmienna x typu T):

$$\begin{array}{ccc} \frac{\mathtt{t}_1 \longrightarrow \mathtt{t}_1'}{\mathtt{t}_1 \ \mathtt{t}_2 \longrightarrow \mathtt{t}_1' \ \mathtt{t}_2} & \frac{\mathtt{t}_2 \longrightarrow \mathtt{t}_2'}{\mathtt{v}_1 \ \mathtt{t}_2 \longrightarrow \mathtt{v}_1 \ \mathtt{t}_2'} \\ & (\lambda \mathtt{x} : \mathtt{T}.\mathtt{t}) \mathtt{v} \longrightarrow [\mathtt{x} \mapsto \mathtt{v}] \mathtt{t} \end{array}$$

3. Rozszerzenia F_{ω}

Ważne!!! Zaoszczędza dużo pisania i pozwala w zasanie na przepisanie regułek z innych systemów ;)

Typowanie:

$$\frac{\Gamma \vdash \mathtt{t} : \mathtt{T} \quad \mathtt{S} \equiv \mathtt{T} \quad \Gamma \vdash \mathtt{S} :: *}{\Gamma \vdash \mathtt{t} : \mathtt{S}}$$

3.1. wyrażenia arytmetyczne i logiczne

t ::=		termy
	true	prawda
	false	falsz
	zero	zero
	succ t	nast epnik
	pred t	poprzednik
	iszero	test na zero
	if t then t else t	warunek
T ::=		typy
	Nat	$typ\ liczbowy$
	Bool	typ boolowski
		-
v ::=		typy
	true	wartość prawdy
	false	wartość fałszu
	nv	wartość liczbowa
nv ::=		wartość liczbowa
	zero	wartość zera
	succ nv	wartość następnika

Kinding:

$$\Gamma \vdash \texttt{Bool} :: * \qquad \Gamma \vdash \texttt{Nat} :: *$$

Typowanie:

$$\frac{\Gamma \vdash \mathsf{true} : \mathsf{Bool}}{\Gamma \vdash \mathsf{true} : \mathsf{Bool}} \quad \frac{\Gamma \vdash \mathsf{t}_1 : \mathsf{Bool}}{\Gamma \vdash \mathsf{true} : \mathsf{Bool}} \quad \frac{\Gamma \vdash \mathsf{t}_1 : \mathsf{Bool}}{\Gamma \vdash \mathsf{if} \; \mathsf{t}_1 \; \mathsf{then} \; \mathsf{t}_2 : \mathsf{T}} \quad \frac{\Gamma \vdash \mathsf{T} : : *}{\Gamma \vdash \mathsf{t} : \mathsf{Nat}} \\ \frac{\Gamma \vdash \mathsf{t} : \mathsf{Nat}}{\Gamma \vdash \mathsf{succ} \; \mathsf{t} : \mathsf{Nat}} \quad \frac{\Gamma \vdash \mathsf{t} : \mathsf{Nat}}{\Gamma \vdash \mathsf{pred} \; \mathsf{t} : \mathsf{Nat}} \quad \frac{\Gamma \vdash \mathsf{t} : \mathsf{Nat}}{\Gamma \vdash \mathsf{iszero} \; \mathsf{t} : \mathsf{Bool}}$$

Ewaluacja:

aaa

3.2. unit i sekwencje

W zasadzie unita można nie wprowadzać: unit = $\lambda X :: *.\lambda x : X.x$

 $\mathtt{Unit} = \forall \mathtt{X} :: \ast.\mathtt{X} \to \mathtt{X}$

Typowanie:

$$\overline{\Gamma \vdash \text{unit} : \text{Unit}}$$

$$\mathtt{t_1};\mathtt{t_2} = (\lambda \mathtt{x} : \mathtt{Unit}.\mathtt{t_2})\mathtt{t_1} \qquad \qquad \mathrm{gdzie} \ \mathtt{x} \notin \mathrm{FV}(t_2)$$

a to stare, może się przyda:

t ::=		termy
	unit	
T ::=		typy
	Unit	
v ::=		wartości
	unit	

Kinding:

$$\overline{\Gamma \vdash \mathtt{Unit} :: *}$$

Typowanie:

$$\overline{\Gamma \vdash \text{unit} : \text{Unit}}$$

$$t_1; t_2 = (\lambda x : Unit.t_2)t_1$$
 $gdzie x \notin FV(t_2)$

Ewaluacja:

aaa

Definicje lokalne 3.3.

$$\texttt{let} \; \texttt{x} = \texttt{t}_1 \; \texttt{in} \; \texttt{t}_2 \; \overset{\texttt{def}}{=} \; (\lambda \texttt{x} : \texttt{T}.\texttt{t}_2) \texttt{t}_1 \qquad \quad \texttt{gdzie} \; \texttt{t}_1 : \texttt{T}$$

3.4. Rekordy

$$\frac{\Gamma \vdash T_1 :: * \dots \Gamma \vdash T_n :: *}{\Gamma \vdash \{1_i : T_i \stackrel{i \in 1 \dots n}{}\} :: *}$$

Typowanie:

$$\frac{\Gamma \vdash t_1 : T_1 \ \dots \ \Gamma \vdash t_n : T_n \quad \Gamma \vdash \left\{ \textbf{l}_i : T_i^{\quad i \in 1..n} \right\} :: *}{\Gamma \vdash \left\{ \textbf{l}_i = t_i^{\quad i \in 1..n} \right\} : \left\{ \textbf{l}_i : T_i^{\quad i \in 1..n} \right\}} \qquad \frac{\Gamma \vdash t : \left\{ \textbf{l}_i : T_i^{\quad i \in 1..n} \right\} \quad \Gamma \vdash \left\{ \textbf{l}_i : T_i^{\quad i \in 1..n} \right\} :: *}{\Gamma \vdash t.i : T_i}$$

Ewaluacja:

$$\begin{split} \{\mathbf{l_i} = \mathbf{v_i}^{~i \in 1..n}\}.\mathbf{i} &\longrightarrow \mathbf{v_i} &\quad \frac{e \longrightarrow e'}{e.\mathbf{i} \longrightarrow e'.\mathbf{i}} \\ \\ &\quad \mathbf{t_i} \longrightarrow \mathbf{t_i'} \\ \hline \{\mathbf{l_1} = \mathbf{v_1}, \dots, \mathbf{l_{i-1}} = \mathbf{v_{i-1}}, \mathbf{l_i} = \mathbf{t_i}, \dots, \mathbf{l_n} = \mathbf{t_n}\} \longrightarrow \{\mathbf{l_1} = \mathbf{v_1}, \dots, \mathbf{l_{i-1}} = \mathbf{v_{i-1}}, \mathbf{l_i} = \mathbf{t_i'}, \dots, \mathbf{l_n} = \mathbf{t_n}\} \end{split}$$

3.5. Warianty

$$\begin{array}{|c|c|c|c|} \hline \textbf{t} ::= & \dots & termy \\ & < \textbf{l} = \textbf{t} > \textbf{as T} & tagowanie \\ & \text{case t of } < \textbf{l}_{\textbf{i}} = \textbf{x}_{\textbf{i}} > \Rightarrow \textbf{t}_{\textbf{i}} \ ^{\textbf{i} \in 1..n} & case \\ \hline \textbf{T} ::= & \dots & typy \\ & < \textbf{l}_{\textbf{i}} : \textbf{T}_{\textbf{i}} \ ^{\textbf{i} \in 1..n} > & typ \ wariantu \\ \hline \end{array}$$

Kinding:

$$\frac{\Gamma \vdash T_1 :: * \ \dots \ \Gamma \vdash T_n :: *}{\Gamma \vdash < \textbf{l}_{\textbf{i}} : T_{\textbf{i}} \overset{\textbf{i} \in 1..n}{} > :: *}$$

Typowanie:

$$\begin{split} \frac{\Gamma \vdash \mathbf{t}_0 : <\mathbf{l}_i : T_i \overset{i \in 1..n}{>} > \quad \Gamma, \mathbf{x}_1 : T_1 \vdash \mathbf{t}_1 : T \ \dots \ \Gamma, \mathbf{x}_n : T_n \vdash \mathbf{t}_n : T}{\Gamma \vdash \mathsf{case} \ \mathbf{t}_0 \ \mathsf{of} \ <\mathbf{l}_i = \mathbf{x}_i > \Rightarrow \mathbf{t}_i \overset{i \in 1..n}{:} : T} \\ & \frac{\Gamma \vdash \mathbf{t}_j : T_j \qquad \Gamma \vdash <\mathbf{l}_i : T_i \overset{i \in 1..n}{:} > :: *}{\Gamma \vdash <\mathbf{l}_j = \mathbf{t}_j > \mathsf{as} <\mathbf{l}_i : T_i \overset{i \in 1..n}{:} > : <\mathbf{l}_i : T_i \overset{i \in 1..n}{:} >} \end{split}$$

Ewaluacja:

aaa

3.6. Punkt stały

Typowanie

$$\frac{\Gamma, \mathbf{f} : \mathbf{T} \vdash \mathbf{v} : \mathbf{S} \qquad \Gamma \vdash \mathbf{T} :: * \qquad \Gamma \vdash \mathbf{S} :: * \qquad \mathbf{S} \equiv \mathbf{T}}{\Gamma \vdash \mathbf{fix} \ \mathbf{f.v} : \mathbf{T}}$$

Ewaluacja

$$\mathtt{fix}\;\mathtt{f.v}\longrightarrow[\mathtt{f}\mapsto\mathtt{fix}\;\mathtt{f.v}]\mathtt{v}$$

3.7. listy

```
t ::=
                                         termy
            . . .
           nil[T]
                                    lista pusta
        cons[T] t t
                              konstruktor listy
        isnil[T] t
                          test na pustość listy
        head[T] t t
                                    głowa listy
         tail[T] t
                                     ogon listy
T ::=
                                           typy
          List T
                                       typ listy
♥ ::=
                                           typy
          nil [T]
                          wartość pustej listy
        cons [T] v v
                      wartość listy niepustej
```

Kinding:

$$\frac{\Gamma \vdash T :: *}{\Gamma \vdash \text{List } T :: *}$$

Typowanie:

$$\begin{split} \frac{\Gamma \vdash \text{List } T :: *}{\Gamma \vdash \text{nil}[T] : \text{List } T} & \frac{\Gamma \vdash \textbf{t}_1 : T \quad \Gamma \vdash \textbf{t}_2 : \text{List } T}{\Gamma \vdash \text{List}[T] \; \textbf{t}_1 \; \textbf{t}_2 : \text{List } T} \\ \frac{\Gamma \vdash \textbf{t} : \text{List } T}{\Gamma \vdash \text{head}[T] \; \textbf{t} : T} & \frac{\Gamma \vdash \textbf{t} : \text{List } T}{\Gamma \vdash \text{tail}[T] \; \textbf{t} : \text{List } T} \end{split}$$

Ewaluacja:

aaa

3.8. Typy egzystencjalne

Teraz możemy sobie zdefiniować te operacje w F_{ω} :

$$\begin{cases} \$\texttt{X} :: \texttt{K}, \texttt{T} \} \stackrel{\texttt{def}}{=} \ \forall \texttt{Y} :: *.(\forall \texttt{X} :: \texttt{K}.\texttt{X} \to \texttt{Y}) \to \texttt{Y} \\ \{ *\texttt{U} :: \texttt{K}, \texttt{t} \} \ \texttt{as} \ \{ \$\texttt{X} :: \texttt{K}, \texttt{T} \} \stackrel{\texttt{def}}{=} \ \texttt{let} \ \texttt{x} = \texttt{t} \ \texttt{in} \ \lambda \texttt{Y} :: *.(\lambda \texttt{f} : \forall \texttt{X} :: \texttt{K}.\texttt{T} \to \texttt{Y}).\texttt{f} \ [\texttt{U}] \ \texttt{x} \\ \texttt{let} \ \{ \texttt{X} :: \texttt{K}, \texttt{x} \} = \texttt{t} \ \texttt{in} \ \texttt{t}' \stackrel{\texttt{def}}{=} \ \texttt{t} \ [\texttt{T}'] (\lambda \texttt{X} :: \texttt{K}.\lambda \texttt{x} : \texttt{T}.\texttt{t}') \qquad \qquad \texttt{gdzie} \ \texttt{t}' : \texttt{T}' \\ \end{cases}$$

Na pierwszy rzut oka termy te są niezrozumiałe. Ależ jak bardzo można się mylić – są miłe i przyjemne dla swych wielbicieli. Pokażemy, że zachodzą podstawowe własności pakowania i odpakowania.

```
Rozważmy term \{ ^*U :: K, t \} as \{ ^*X :: K, T \}. \{ ^*U :: K, t \} as \{ ^*X :: K, T \} = let x = t in \lambda Y :: *.\lambda f : (\forall X :: K.T \rightarrow Y).f[U]x = = (\lambda x : [X \lord U]T.\lambda Y :: *.\lambda f : (\dagge X :: K.T \rightarrow Y).f[U]x)t =
```

```
\overset{\mathbf{t}:[X\mapsto U]T}{=}\lambda Y::*.\lambda \mathbf{f}:(\forall X::K.T\to Y).\mathbf{f}[U](\mathbf{t}:[X\mapsto U]T)co jest typu \forall Y::*.(\forall X::K.T\to Y)\to Y, czyli z definicji \{\$X::K,T\}.
```

Rozważmy bardziej życiowy przykład. Oto typowanie w systemie F przykładowego termu t:

$$\frac{\Gamma \vdash \{a = \mathtt{zero}, f : \lambda \mathtt{x} : \mathtt{Nat}.\mathtt{succ} \ \mathtt{x}\} : [\mathtt{X} \mapsto \mathtt{Nat}] \{a : \mathtt{X}, f : \mathtt{X} \to \mathtt{Nat}\}}{\Gamma \{^*\mathtt{X}, \{a = \mathtt{zero}, f : \lambda \mathtt{x} : \mathtt{Nat}.\mathtt{succ} \ \mathtt{x}\}\} \ as \ \{\$\mathtt{X}, \{a : \mathtt{X}, f : \mathtt{X} \to \mathtt{Nat}\}\}}$$

Następnie wyprowadzimy ten term w F_{ω} :

```
 \begin{split} & \{ \mathtt{Nat} :: \mathtt{K}, \{ \mathtt{a} = \mathtt{zero}, \mathtt{f} : \lambda \mathtt{x} : \mathtt{Nat}. \mathtt{succ} \ \mathtt{x} \} \} \ \mathtt{as} \ \{ \mathtt{X} :: \mathtt{K}, \{ \mathtt{a} : \mathtt{X}, \mathtt{f} : \mathtt{X} \to \mathtt{Nat} \} \} = \\ & = \mathtt{let} \ \mathtt{x} = \{ \mathtt{a} = \mathtt{zero}, \mathtt{f} : \lambda \mathtt{x} : \mathtt{Nat}. \mathtt{succ} \ \mathtt{x} \} \ \mathtt{in} \ \lambda \mathtt{Y} :: \mathtt{*.\lambda} \mathtt{f} : (\forall \mathtt{X} :: \mathtt{K}. \{ \mathtt{a} : \mathtt{X}, \mathtt{f} : \mathtt{X} \to \mathtt{Nat} \} \to \mathtt{Y}). \mathtt{f} [\mathtt{Nat}] \mathtt{x} = \\ & = (\lambda \mathtt{x} : [\mathtt{X} \mapsto \mathtt{Nat}] \{ \mathtt{a} : \mathtt{X}, \mathtt{f} : \mathtt{X} \to \mathtt{Nat} \}. \lambda \mathtt{Y} :: \mathtt{*.\lambda} \mathtt{f} : (\forall \mathtt{X} :: \mathtt{K}. \{ \mathtt{a} : \mathtt{X}, \mathtt{f} : \mathtt{X} \to \mathtt{Nat} \} \to \mathtt{Y}). \mathtt{f} [\mathtt{Nat}] \mathtt{x}) \\ & \{ \mathtt{a} = \mathtt{zero}, \mathtt{f} : \lambda \mathtt{x} : \mathtt{Nat}. \mathtt{succ} \ \mathtt{x} \} \quad \{ \mathtt{a} = \mathtt{zero}, \mathtt{f} : \lambda \mathtt{x} : \mathtt{Nat}. \mathtt{succ} \ \mathtt{x} \} \quad \{ \mathtt{a} = \mathtt{zero}, \mathtt{f} : \lambda \mathtt{x} : \mathtt{Nat}. \mathtt{succ} \ \mathtt{x} \} \quad \{ \mathtt{a} = \mathtt{zero}, \mathtt{f} : \mathtt{X} \to \mathtt{Nat} \} \to \mathtt{Y}). \mathtt{f} [\mathtt{Nat}] \{ \mathtt{a} : \mathtt{X}, \mathtt{f} : \mathtt{X} \to \mathtt{Nat} \} \to \mathtt{Y}) . \mathtt{f} [\mathtt{Nat}] \{ \mathtt{a} = \mathtt{zero}, \mathtt{f} : \lambda \mathtt{x} : \mathtt{Nat}. \mathtt{succ} \ \mathtt{x} \} : [\mathtt{X} \to \mathtt{Nat}] \{ \mathtt{a} : \mathtt{X}, \mathtt{f} : \mathtt{X} \to \mathtt{Nat} \} \} \\ & \mathtt{co} \ \mathtt{jest} \ \mathtt{typu} \ \forall \mathtt{Y} :: \mathtt{k}. \{ \mathtt{a} : \mathtt{X}, \mathtt{f} : \mathtt{X} \to \mathtt{Nat} \} \to \mathtt{Y}) \to \mathtt{Y}, \mathtt{czyli} \ \mathtt{z} \ \mathtt{definicji} \ \{ \mathtt{X} : \mathtt{K}, \{ \mathtt{a} : \mathtt{X}, \mathtt{f} : \mathtt{X} \to \mathtt{Nat} \} \}. \end{split}
```

Uważne odpakowanie otrzymanego termu pozostawiamy Czytelnikowi jako ćwiczenie, my pozwolimy sobie przeprowadzać schemat wywodu (po dwie β -redukcje):

```
Let \{X, x\} = \lambda Y :: \lambda f : (\forall X :: K.\{a : X, f : X \to Nat\}) \to Y. f[Nat](\{a = zero, f : \lambda x : Nat.succ x\} : [X \mapsto Nat]\{a : X, f : X \to Nat\}) \to Y. f[Nat](\{a = zero, f : \lambda x : Nat.succ x\} : [X \mapsto Nat]\{a : X, f : X \to Nat\}) \to Y. f[Nat](\{a = zero, f : \lambda x : Nat.succ x\} : [X \mapsto Nat]\{a : X, f : X \to Nat\}))[T'](\lambda X :: K.\lambda x : T.(x.f x.a)) = ((\lambda X :: K.\lambda x : T.(x.f x.a))[Nat](\{a = zero, f : \lambda x : Nat.succ x\} : [X \mapsto Nat]\{a : X, f : X \to Nat\})) = (\{a = zero, f : \lambda x : Nat.succ x\} : f\{a = zero, f : \lambda x : Nat.succ x\} : g(X \mapsto Nat)\}) = (\lambda x : Nat.succ x)zero = succ zero
```

3.9. Typy rekurencyjne

Hmmm, no tu musze się zastanowić, to na dole dla zwykłej wersji.

t ::=		termy
	$\mathtt{fold}[\mathtt{T}]$ t	folding
	${\tt unfold}[{\tt T}]$ t	unfolding
_		,
T ::=	• • •	typy
	μ X.T	typ rekursywny
v ::=		wartości
'	c 1 1[m]	
	fold[T] v	folding

Kinding:

 $\Gamma \vdash \mu X.T :: *$

Typowanie:

$$\frac{\mathtt{U} = \mu \mathtt{X}.\mathtt{T} \qquad \Gamma \vdash \mathtt{t} : [\mathtt{X} \mapsto \mathtt{U}] \mathtt{U}}{\Gamma \vdash \mathtt{fold}[\mathtt{U}] \ \mathtt{t} \ : \mathtt{U}}$$

Ewaluacja:

- 3.10. dopasowanie wzorca
- 4. Sładnia abstrakcyjna języka
- 5. Semantyka i typowanie
- 6. Rekonstrukcja typów
- 7. Własności i dowody
- 7.1. Inne własności F_{ω}

Definicja 1. Reguły przepisywania typów w systemie F_{ω} w wersji Curry'ego standardowe, oprócz:

$$\frac{\Gamma \vdash M \colon \forall X \sigma}{\Gamma \vdash M \colon nf(\sigma[X \colon = \tau])}$$

Nierozstzygalne są problemy:

- sprawdzania typu: dane $\Gamma, M, \tau,$ Czy $\Gamma \vdash M : \tau$
- typowalność: dane M, Czy $\exists \Gamma \tau.\Gamma \vdash M: \tau$
- 7.2. pare słów o rozszerzeniach
- 8. Praktyczne zastosowanie
- 9. Podsumowanie

Literatura

[1] Pierce,