Regularización

Big Data y Machine Learning para Economía Aplicada

Ignacio Sarmiento-Barbieri

Universidad de los Andes

Agenda

- 1 Recap: Predicción y Overfit
- 2 Regularización
 - Recap: OLS Mechanics
 - Ridge
 - Lasso
 - \circ k > n
 - Ridge and Lasso: Pros and Cons
 - Familia de regresiones penalizadas
 - Elastic Net

Agenda

- 1 Recap: Predicción y Overfit
- Regularización
 - Recap: OLS Mechanics
 - Ridge
 - Lasso
 - k > n
 - Ridge and Lasso: Pros and Cons
 - Familia de regresiones penalizadas
 - Elastic Net

Overfit y Predicción fuera de Muestra

- ML nos interesa la predicción fuera de muestra
- Overfit: modelos complejos predicen bien dentro de muestra, pero tienden a hacer un mal trabajo fuera de muestra
- ► Hay que elegir el modelo que "mejor" prediga fuera de muestra, i.e., que tenga un menor error fuera de muestra
- ► Como estimamos el error fuera de muestra?
 - Penalización ex-post: AIC, BIC, etc
 - Métodos de Remuestreo: Enfoque del conjunto de validación, LOOCV, Validación cruzada en K-partes.

Agenda

- 1 Recap: Predicción y Overfit
- 2 Regularización
 - Recap: OLS Mechanics
 - Ridge
 - Lasso
 - \circ k > n
 - Ridge and Lasso: Pros and Cons
 - Familia de regresiones penalizadas
 - Elastic Net

Agenda

- 1 Recap: Predicción y Overfit
- 2 Regularización
 - Recap: OLS Mechanics
 - Ridge
 - Lasso
 - 0 k > n
 - Ridge and Lasso: Pros and Cons
 - Familia de regresiones penalizadas
 - Elastic Net

Regularización: Motivación

- Las técnicas econometricas estándar no están optimizadas para la predicción.
- ightharpoonup OLS minimiza el error "dentro de muestra", eligiendo β s de forma tal que

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - \beta_0 - x_{i1}\beta_1 - \dots - x_{ip}\beta_p)^2$$
 (1)

o en forma matricial

$$min_{\beta}E(\beta) = (y - X\beta)'(y - X\beta) \tag{2}$$

OLS 1 Dimension

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2$$
(3)

Intuición en 2 Dimensiones (OLS)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_{i1}\beta_1 - x_{i2}\beta_2)^2$$
(4)

Regularización: Motivación

- Las técnicas econometricas estándar no están optimizadas para la predicción.
- ightharpoonup OLS minimiza el error "dentro de muestra", eligiendo β s de forma tal que

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - \beta_0 - x_{i1}\beta_1 - \dots - x_{ip}\beta_p)^2$$
 (1)

o en forma matricial

$$min_{\beta}E(\beta) = (y - X\beta)'(y - X\beta) \tag{2}$$

▶ Predicción queremos hacer un buen trabajo fuera de muestra

Regularización

► Asegurar cero sesgo dentro de muestra crea problemas fuera de muestra: trade-off Sesgo-Varianza

Regularización

- ► Las técnicas de machine learning fueron desarrolladas para hacer este trade-off de forma empírica.
- ▶ Vamos a proponer modelos del estilo

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - \beta_0 - x_{i1}\beta_1 - \dots - x_{ip}\beta_p)^2 + \lambda \sum_{j=1}^{p} R(\beta_j)$$
 (5)

▶ donde *R* es un regularizador que penaliza funciones que crean varianza

Agenda

- 1 Recap: Predicción y Overfit
- 2 Regularización
 - Recap: OLS Mechanics
 - Ridge
 - Lasso
 - 0 k > n
 - Ridge and Lasso: Pros and Cons
 - Familia de regresiones penalizadas
 - Elastic Net

Ridge

Para un $\lambda \geq 0$ dado, consideremos ahora el siguiente problema de optimización

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - \beta_0 - x_{i1}\beta_1 - \dots - x_{ip}\beta_p)^2 + \lambda \sum_{j=1}^{p} (\beta_j)^2$$
 (6)

Ridge

Para un $\lambda \geq 0$ dado, consideremos ahora el siguiente problema de optimización

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - \beta_0 - x_{i1}\beta_1 - \dots - x_{ip}\beta_p)^2 + \lambda \sum_{j=1}^{p} (\beta_j)^2$$
 (6)

o en forma matricial

$$min_{\beta}E(\beta) = (y - X\beta)'(y - X\beta) + \lambda\beta'\beta$$
 (7)

Ridge: Intuición en 1 Dimension

- ▶ 1 predictor estandarizado
- ► El problema:

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda\beta^2$$
 (8)

► La solución?

► En 2 dim

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_{i1}\beta_1 - x_{i2}\beta_2)^2 + \lambda \left(\beta_1^2 + \beta_2^2\right)$$
 (9)

▶ el dual es

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_{i1}\beta_1 - x_{i2}\beta_2)^2$$
sujeto a
$$((\beta_1)^2 + (\beta_2)^2) < c$$
(10)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_{i1}\beta_1 - x_{i1}\beta_2)^2 \text{ s.a } ((\beta_1)^2 + (\beta_2)^2) \le c$$
 (11)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_{i1}\beta_1 - x_{i1}\beta_2)^2 \text{ s.a } ((\beta_1)^2 + (\beta_2)^2) \le c$$
 (12)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_{i1}\beta_1 - x_{i1}\beta_2)^2 \text{ s.a } ((\beta_1)^2 + (\beta_2)^2) \le c$$
 (13)

Términos generales

- ► En regresión multiple (X es una matriz $n \times k$)
- ▶ Regresión: $y = X\beta + u$
- ► OLS

$$\hat{\beta}_{ols} = (X'X)^{-1}X'y$$

► Ridge

$$\hat{\beta}_{ridge} = (X'X + \lambda I)^{-1}X'y$$

Ridge vs OLS

- ► Ridge es sesgado $E(\hat{\beta}_{ridge}) \neq \beta$
- ▶ Pero la varianza es menor que la de OLS
- ▶ Para ciertos valores del parámetro $\lambda \Rightarrow MSE_{OLS} > MSE_{ridge}$

Example

photo from https://www.dailydot.com/parsec/batman-1966-labels-tumblr-twitter-vine/

Agenda

- 1 Recap: Predicción y Overfit
- 2 Regularización
 - Recap: OLS Mechanics
 - Ridge
 - Lasso
 - 0 k > n
 - Ridge and Lasso: Pros and Cons
 - Familia de regresiones penalizadas
 - Elastic Net

Lasso

ightharpoonup Para un $\lambda \geq 0$ dado, consideremos el siguiente problema de optimización

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - \beta_0 - x_{i1}\beta_1 - \dots - x_{ip}\beta_p)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$
 (14)

o en forma matricial

$$min_{\beta}E(\beta) = (y - X\beta)'(y - X\beta) + \lambda||\beta||_{1}$$
(15)

Lasso Intuición en 1 Dimension

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda|\beta|$$
 (16)

- Un solo predictor, un solo coeficiente
- ightharpoonup Si $\lambda = 0$

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2$$
(17)

y la solución es

$$\hat{\beta}_{OLS}$$
 (18)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda|\beta|$$
(19)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda\beta$$
 (20)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda\beta$$
 (21)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda\beta$$
 (22)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda\beta$$
 (23)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda\beta$$
 (24)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda\beta$$
 (25)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda\beta$$
 (26)

Solución analitica

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda|\beta|$$
 (27)

Intuición en 2 Dimensiones (Lasso)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_{i1}\beta_1 - x_{i1}\beta_2)^2 \text{ s.a } (|\beta_1| + |\beta_2|) \le c$$
 (28)

Example

photo from https://www.dailydot.com/parsec/batman-1966-labels-tumblr-twitter-vine/

- 1 Recap: Predicción y Overfit
- 2 Regularización
 - Recap: OLS Mechanics
 - Ridge
 - Lasso
 - \bullet k > n
 - Ridge and Lasso: Pros and Cons
 - Familia de regresiones penalizadas
 - Elastic Net

More predictors than observations (k > n)

- ▶ What happens when we have more predictors than observations (k > n)?
 - ► OLS?
 - ► Ridge?
 - ► Lasso?

OLS when k > n

- ► Rank? Max number of rows or columns that are linearly independent
 - ▶ Implies $rank(X_{k \times n}) \le min(k, n)$
- ▶ MCO we need $rank(X_{k \times n}) = k \implies k \le n$
- ▶ If $rank(X_{k \times n}) = k$ then rank(X'X) = k
- ▶ If k > n, then $rank(X'X) \le n < k$ then (X'X) cannot be inverted
- ▶ Ridge and Lasso work when $k \ge n$

Sarmiento-Barbieri (Uniandes)

Ridge when k > n

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_{i1}\beta_1 - \dots - x_{ik}\beta_k)^2 + \lambda \sum_{j=1}^{k} (\beta_j)^2$$
 (29)

- ▶ Solution → data augmentation
- ► Intuition: Ridge "adds" *k* additional points.
- ▶ Allows us to "deal" with $k \ge n$

Sarmiento-Barbieri (Uniandes)

Ridge when k > n

Adding k additional points

Lasso when k > n

- ▶ In the k > n case, the lasso selects at most n variables before it saturates,
- ▶ This is because because of the nature of the convex optimization problem.

- 1 Recap: Predicción y Overfit
- 2 Regularización
 - Recap: OLS Mechanics
 - Ridge
 - Lasso
 - 0 k > n
 - Ridge and Lasso: Pros and Cons
 - Familia de regresiones penalizadas
 - Elastic Net

- ► Objective 1: Accuracy
 - lacktriangle Minimize prediction error (in one step) ightarrow Ridge, Lasso
- Objective 2: Dimensionality
 - ▶ Reduce the predictor space → Lasso's free lunch
- ightharpoonup More predictors than observations (k > n)
 - OLS fails
 - Ridge augments data
 - Lasso chooses at most *n* variables

- ▶ When we have a group of highly correlated variables,
 - Lasso chooses only one.

- ▶ When we have a group of highly correlated variables,
 - Lasso chooses only one. Makes it unstable for prediction.
 - ► Ridge shrinks the coefficients of correlated variables toward each other.
 - For usual n > k situations, if there are high correlations between predictors, it has been empirically observed that the prediction performance of the lasso is dominated by ridge regression (Tibshirani, 1996).

- 1 Recap: Predicción y Overfit
- 2 Regularización
 - Recap: OLS Mechanics
 - Ridge
 - Lasso
 - 0 k > n
 - Ridge and Lasso: Pros and Cons
 - Familia de regresiones penalizadas
 - Elastic Net

Family of penalized regressions

$$min_{\beta}R(\beta) = \sum_{i=1}^{n} (y_i - x_i'\beta)^2 + \lambda \sum_{s=2}^{p} |\beta_s|^q$$
(30)

FIGURE 3.12. Contours of constant value of $\sum_{j} |\beta_{j}|^{q}$ for given values of q.

- 1 Recap: Predicción y Overfit
- 2 Regularización
 - Recap: OLS Mechanics
 - Ridge
 - Lasso
 - 0 k > n
 - Ridge and Lasso: Pros and Cons
 - Familia de regresiones penalizadas
 - Elastic Net

Example

photo from https://www.dailydot.com/parsec/batman-1966-labels-tumblr-twitter-vine/