IE510 Applied Nonlinear Programming

Lecture 5: Optimal First Order Method

Ruoyu Sun

Feb 20, 2018

Side: Recent Q&A

Reddit: The Future (and Present) of Artificial Intelligence AMA (2018/02/18)

Question: What are some crucial skills/ knowledge I should possess in order to succeed in this field (AI)? (from a physics PhD)

Yann LeCun: Crucial skills:

- good skills/intuition in continuous mathematics (linear algebra, multivariate calculus, probability and statistics, optimization...).
- Good programming skills.
- · Good scientific methodology.
- Above all: creativity and intuition

Review of Momentum

Last algorithm we learned (last last week): GD with momentum, a.k.a. heavy ball method.

Main result: achieve faster rate of $1 - 1/\sqrt{\kappa}$ for quadratic problems

How about non-quadratic problems, like logistic regression?

- · For many problems, momentum seems to help
- But in theory, NO!
 e.g. [Lessard et al. 2016] 1-dim counter-example

Today

- Today: Optimal first order method, Nesterov's accelerated method
- After today's course, you will be able to
 - Draw figures to illustrate the difference of Nesterov's method and HB
 - Tell the difference of Nesterov's method and HB in theory
 - Describe in what sense Nesterov's accelerated method is "optimal"
- Advanced goals (optional):
 - Appreciate the beauty of analyzing "optimal" optimization method
 - Analogy: Shannon information theory 1948; NP-hardness 1960's.1970's
 - Identify possible ways to go beyond "optimal method"

Outline

1 Nesterov momentum: Intuitive Understanding

2 Formal Definition and Main Results

3 Optimal First Order Method

Nesterov's accelerated gradient method (Nesterov momentum)

Previous view: slip and shift together (update velocity)

Another View: Slip then Shift

New view: let the car slip for a while, then stop and move

Discretization View

Best way: continuously changing direction (gradient step) + moving along momentum along the path.

$$x(t+\delta t)=x(t)-\alpha\nabla f(x(t))+\beta(x(t)-x(t-\delta t))$$
Graph:

At time t, you're at $\chi(t)$.

After the St, you are at $\chi(t+\delta t)$.

After the St, you are at $\chi(t+\delta t)$.

$$\chi(t)-\varphi(x(t))$$
After time 2St, you are at $\chi(t+2St)$.

$$\xi_t=0.1s, \qquad =\chi(t+st)-\chi(t+st)$$

$$\xi_t=0.1s, \qquad =\chi(t+st)-\chi(t+st)$$
St=0.01s, --

Equivalently: StepSu $\chi \to 0$.

Recomposition

It seems changing direction continuously is "foster" when driving?

Answer. Take more computation time: either in broin or computer.

> Remark: Discretization is nontrivial; see course SE420, and Su et al.-2014, A differential equation for modeling Nesterov?s accelerated gradient method: Theory and insights.

Wilson et al.-2016: A Lyapunov Analysis of Momentum Methods in Optimization

Continuously changing direction. $\chi(+1)$ $\chi(t) = \chi^r$. Xr+1 Assume St = 1/1000. Use information. $\chi(t)$, $\chi(t+st)$, $\chi(t+2st)$, ..., $\chi(t+999st)$, $\chi(t+1)$, gradient. $\nabla f(\chi(t))$, $\chi f(\chi(t+st))$, $\chi f(\chi(t+2st))$, ..., $\chi(t+999st)$, $\chi f(\chi(t+999st))$.

The momentum $\chi(t) - \chi(t-st)$, $\chi(t+st) - \chi(t)$, ..., $\chi(t+999st)$ Goal: Approximate the final point $\chi(t+1)$ of the path $(\chi(t), \chi(t+st), \dots, \chi(t+1))$ by χ^{r+1} , from few pieces of information from above. HB: Just pick XIt)-X(t-1) and of(X(t)). Nesterov: Pick x(t)-x(t-1) and Stxt(i) of(x(t)+momentum)

Two Discretization Views

View 1: simultaneous discretization

- HB: Pick the gradient at the starting point \boldsymbol{x} to approximate gradients along the way
- Nesterov: Pick the gradient at the look-ahead position (a "middle" point) to approximate the gradients along the way

View 2: decomposed discretization

- HB: move along momentum first, then move along $-\nabla f(x)$
- Nesterov: move along momentum first to $x_{\rm ahead}$, then move along $-\nabla f(x_{\rm ahead})$

Can you write down the four update equations, 2 for HB and 2 for Nesterov's method?

Summary of Two Views

Outline

1 Nesterov momentum: Intuitive Understanding

2 Formal Definition and Main Results

3 Optimal First Order Method

Nesterov's Momentum

Now we define a simple version of Nesterov's accelerated gradient method (1983).

$$\begin{cases} y^r = x^r + \beta_r(x^r - x^{r-1}), & \text{slip due to momentum} \\ x^{r+1} = y^r - \alpha \nabla f(y^r). & \text{move along gradient} \end{cases} \tag{1}$$

$$\alpha = 1/L, \quad \beta_r = \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}.$$
 constant parameters $= 1 - \frac{2}{(k+1)}$

Simplest stepsize (for convex case):

$$\alpha = 1/L, \quad \beta_r = \frac{r-1}{r+3}. \quad \text{time-dependent parameters}$$

$$= 1 - \frac{1}{r+3} \quad \approx 1 - 0(\frac{1}{r})$$
(3)

Nesterov's Momentum: Results

Theorem 5.1 For strongly convex problems, Nesterov's method (4) with the stepsize choice in (2) satisfies

Assurption:
$$\mu I \in \mathbb{V}^2$$
 f(x) $\leq LI$ $f(x^r) - f^* \leq L(1 - \frac{1}{\sqrt{\kappa}})^{2r} ||x^0 - x^*||^2$. $\Rightarrow r \approx \pi \log \frac{1}{2}$

For convex problems, Nesterov's method (4) with the stepsize choice in (3) satisfies

Assumption:
$$\nabla^2 f(x) \leq L I$$
.
$$f(x^r) - f^* \leq \frac{2L}{(r+1)^2} \|x^0 - x^*\|^2. \qquad \mathcal{O}(\frac{1}{r^2}) = \mathcal{E}$$
 $\Rightarrow \# \text{ of the } r = \frac{1}{\sqrt{2}}$

- For strongly convex case, iteration complexity $O(\sqrt{\kappa \log 1/\epsilon})$, faster than $O(\kappa \log 1/\epsilon)$ of GD.

See Nesterov "Introductory lectures on convex optimization" for details. A shorter introduction in Donoghue, Candes "Adaptive Restart for Accelerated Gradient Schemes".

General Stepsize Rule

The original stepsize rule by Nesterov is rather general:

$$\begin{cases} y^r = x^r + \beta_r (x^r - x^{r-1}), \\ x^{r+1} = y^r - \alpha_r \nabla f(y^r). \end{cases}$$
 (4)

 $\alpha_r \leq 1/L,$ and one general choice of β_r is:

General Rule 1:
$$q \in [0,1], \theta_{r+1}^2 = (1-\theta_{r+1})\theta_r^2 + q.$$

$$\beta_{r+1} = \frac{\theta_r(1-\theta_r)}{\theta_r^2 + \theta_{r+1}}.$$
 Freedom: 9 & to

Consider $\theta_0=1$ in this page. Plug with above, $|^2=(1-1)\cdot|+1$ holds. Let q=1: then $\theta_r=1$, $\beta_r=0$. Recover GD.

When convex, let q=0: then $\theta_{r+1}=\frac{\theta_r(\sqrt{\theta_r^2+4}-\theta_r)}{2}$, then

$$f(x^r) - f^* \le \frac{4L}{(r+2)^2} ||x^0 - x^*||^2.$$

When strongly convex, let $q = 1/\kappa = \mu/L$, linear convergence:

$$f(x^r) - f^* \le L \left(1 - \frac{1}{\sqrt{\kappa}}\right)^r \|x_0^0 - x_0^*\|_{2^{-\kappa}}^2 = 2^{-\kappa}$$

Derive Two Simplest Stepsize Rules

Let the initial point of the auxiliary sequence and the parameter be

$$\theta_0 = 1/\sqrt{\kappa}, q = 1/\kappa.$$

Then we obtain

constant
$$\beta_r = \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1},$$

which recovers (2).

Another general stepsize rule different from Rule 2 (for convex case):

General Rule 2:
$$a_0 \in [0,1], a_{r+1} = (1+\sqrt{4a_{r-1}^2+1})/2.$$

$$\beta_r = \frac{a_r-1}{a_{r+1}}.$$

Let $a_0 = 0$, then $a_r = \frac{r+1}{2}$, and

$$\beta_r = 1 - \frac{4}{r+3},$$

which recovers (3).

Lots of Interpretations

People found Nesterov's original proof HARD to understand.

```
Lots of interpretations: (many are obtained in the past 5 years)
```

- Chebychev polynomial (related); approximation theory
- Hardt blog: "Zen of Gradient Descent", but does not recover Nesterov's method
 - · HB method equivalent to Chebychev iteration method
 - ODE interpretation (2nd order ODE, Hamiltonian system; not simple)
 - geometric idea (related to ellipsoid method; different method)
 - · game in primal-dual method
 - upper/lower bound estimate (still magical)
 -

Outline

1 Nesterov momentum: Intuitive Understanding

2 Formal Definition and Main Results

3 Optimal First Order Method

Further Improvement of Momentum?

- : Question: can we do better than momentum methods?
 - · "Better" can mean many things...
 - What Nesterov's method does: extend $\sqrt{\kappa}$ result from quadratic to convex/strongly convex
- **Question**: Can we improve the bound $\tilde{O}(\sqrt{\kappa})$, even just for quadratic case?
- More history info: can we use three or four terms in history, to get $\tilde{O}(\kappa^{1/3})$ or even better bound? [Polyok' (974) mertioned: this is unclear.
- Better momentum: can we "discretize" better, to obtain a faster
 - algorithm than Nesterov's method?

Optimal Methods

- Surprisingly, the answer is NO, in a certain sense.
- · We will see:
 - Nesterov's method is (order) optimal for convex/strongly convex problems, in a certain sense. (not just quadratic!)
 - For strongly convex quadratic problems, both HB and Nesterov's method are (order) optimal in that sense.
- In what sense? We will discuss later.
- · Why should you care?

Why Should You Care About Optimal Methods

Engineers should care since:

- If your boss pushes you to find faster algorithms, you tell him/her: no way! My algorithm is "optimal".
- Save your time. In an ideal world, for any problem, just find the "optimal" algorithm, then no need to worry.
- "Why momentum really matters" says: this result should be taken "spiritually", not literally.
- Theoreticians should care since:
 - Don't waste your time to look for a faster algorithm (in theory)
 - unless you really understand the lower bound, and avoid those algorithms that will definitely fail to improve

Why Should You Care About Optimal Methods

- Engineers should care since:
 - If your boss pushes you to find faster algorithms, you tell him/her: no way! My algorithm is "optimal".
 - Save your time. In an ideal world, for any problem, just find the "optimal" algorithm, then no need to worry.
- "Why momentum really matters" says: this result should be taken "spiritually", not literally.
- Theoreticians should care since:
 - Don't waste your time to look for a faster algorithm (in theory) unless...
 - unless you really understand the lower bound, and avoid those algorithms that will definitely fail to improve

Oracle Model

- Oracle model Ω for the first order algorithms:
 - given any x^r , the oracle returns $\nabla f(x)$.
 - at iteration r, the algorithm generates x^{r+1} in $\operatorname{span}(x^0, x^1, \dots, x^r, \nabla f(x^0), \dots, \nabla f(x^r))$.

In short, the only allowable information is _\frac{1\formation}{2} and _\frac{1\formation}{2}

• **Definition**: The (iteration) complexity of algorithm $A \in \Omega$, for a function f, is

$$C_{\epsilon}(\mathcal{A}; f) = \min\{r \mid f(x^r) - f(x^*) \le \epsilon\}.$$

number of iterations to achieve error ϵ $0(\frac{1}{\epsilon})$ for ϵ

• **Definition**: The complexity of algorithm $A \in \Omega$, for a function class F, is

$$C_{\epsilon}(\mathcal{A}; F) = \sup_{f \in F} \min\{r \mid f(x^r) - f(x^*) \le \epsilon\}.$$

What Algorithm is Covered?

What is covered by Ω ?

- · GD with constant stepsize;
- GD with diminishing stepsize, or any line search rule.
- · HB method;
- Nesterov's method

What is NOT covered by Ω ?

- Newton method
- Using $-D\nabla f(x^r)$ as direction, where D is positive definite
- · Many others, e.g., AdaGrad, BFGS, etc.

Lower Bound

 Let P(D, L) be the class of smooth unconstrained convex optimization problems with

$$||x^{\circ}-x^{*}|| \leq D,$$

• Let $S(D,L,\mu)$ be the class of smooth unconstrained convex optimization problems, which satisfies the conditions of P(D,L) and additionally

for some
$$\mu > 0$$
, $\mu I \prec \mathcal{O}f(x)$, $\forall x$

Remodk. For subplicity, we use ▽f(x): ∠I, ∀x. It also works for

119f(x)- of coll ELZ, they

• Result: For convex class P(D,L) dimension of χ No matter what algorithm in Ω you pick, there always exists a problem such that $\inf_{A \in \Omega} C_{\epsilon}(A) \geq O(1) \min\{n, \frac{D\sqrt{L}}{\sqrt{\epsilon}}\}$ the iteration complexity is at least xxx. $A \in \Omega$

For strongly convex class $S(D, L, \mu)$

$$\inf_{\mathcal{A} \in \Omega} C_{\epsilon}(\mathcal{A}) \ge O(1) \min\{n, \sqrt{\kappa \log(1/2\epsilon)}\}$$

Limitation of Lower Bound

Is that the end?

Two big issues:

- Only about # of iterations; per-iteration time ignored
- Bound of n on number of iterations

Active area of research!

Conclusion of Today

Can you summarize yourself?

- Nesterov's method is "optimal" for convex/strongly convex problems, under certain assumptions
 - only among 1st order methods
 - · number of iterations upper bounded
- Save your time on trying different momentum!! More history does not help (too much).

Conclusion of Today

Can you summarize yourself?

- Nesterov's method is "optimal" for convex/strongly convex problems, under certain assumptions
 - only among 1st order methods
 - number of iterations upper bounded by n.

For engineers:

 Save your time on trying different momentum!! More history does not help (too much).