Air Force Cadet-Career Problem Optimization Model Formulation

Griffen Laird

October 2023

Primary Sets and Indices

$i \in \mathcal{I}$	the set of all cadets
$j\in \mathcal{J}$	the set of all AFSCs
$k \in \mathcal{K}$	the set of all AFSC objectives
$l \in \mathcal{L}_{jk}$	the set of all break points for objective k 's function for AFSC j

Subsets and Indices

Subsets and I	ndices
$\mathcal{K}^D\subseteq\mathcal{K}$	the set of AFSC objectives that seek some proportion of cadets with certain demographics. The objectives to balance the "USAFA Proportion", the AFOCD tiers, etc. are contained here.
$\mathcal{I}^{\mathrm{C}}\subseteq\mathcal{I}$	the set of cadets with constrained minimum values
$\mathcal{I}_j^E \subseteq \mathcal{I}$	the set of cadets that are eligible for AFSC j
$\mathcal{I}^D_{jk} \subseteq \mathcal{I}^E_j$	the set of cadets with the demographic that corresponds to objective $k \in \mathcal{K}^D$ and are eligible for AFSC j . Depending on the value of k , this could be the set of USAFA, male, or minority cadets that are eligible for AFSC j or the set of cadets with specific AFOCD tier degrees for AFSC j
$\mathcal{J}^{ ext{C}} \subseteq \mathcal{J}$	the set of AFSCs with constrained minimum values
$\mathcal{J}_i^E\subseteq\mathcal{J}$	the set of AFSCs for which cadet i is eligible
$\mathcal{K}_j^A\subseteq\mathcal{K}$	the set of objectives that apply to AFSC j
$\mathcal{K}_j^{ ext{C}} \subseteq \mathcal{K}_j^A$	the set of objectives with constrained minimum values for AFSC j
$\mathcal{I}^R\subseteq\mathcal{I}$	the set of all rated-eligible cadets by source of commissioning (SOC)
$\mathcal{J}^R\subseteq\mathcal{J}$	the set of all rated AFSCs
$\mathcal{I}^{SF}\subseteq\mathcal{I}$	the set of all cadets that MUST be classified to the Space Force
$\mathcal{J}^{SF}\subseteq\mathcal{J}$	the set of all Space Force AFSCs (SFSCs)
$\mathcal{I}^{Reserved} \subseteq \mathcal{I}$	the set of cadets with reserved AFSCs (See Algorithm 1)
$\mathcal{J}_i^{Reserved} \subseteq \mathcal{J}$	the set of AFSCs that cadet i MUST be assigned to (See Algorithm 1)
$\mathcal{I}^{U1}\subseteq\mathcal{I}$	the set of all USAFA Cadets
$\mathcal{I}^{R2}\subseteq\mathcal{I}$	the set of all ROTC Cadets
$\mathcal{I}_j^{Alt} \subseteq \mathcal{I}_j^E$	the set of all cadets on AFSC j 's alternate list
$\mathcal{I}_{ji}^{Pref} \subseteq \mathcal{I}_{j}^{E}$	the set of all cadets that are more preferred by AFSC j than cadet i
$\mathcal{J}_{ji}^{Pref}\subseteq\mathcal{J}_{i}^{E}$	the set of all AFSCs that are more preferred by cadet i than AFSC j

Fixed Parameters

$merit_i$	percentile of cadet i
$cadet_utility_{ij}$	utility that cadet i has assigned for AFSC j
$afsc_utility_{ij}$	utility that AFSC j has assigned for cadet i
$quota_j$	the minimum number of cadets to be assigned to AFSC j
$quota_i^e$	the estimated number of cadets to be assigned to AFSC j

VFT Value Function Parameters

$f_{jk}(\cdot)$	value function chosen by AFSC j for objective k
r_{jk}	number of breakpoints for objective k 's function for AFSC j
a_{jkl}	measure at breakpoint l for objective k 's function for AFSC j
\hat{f}_{jkl}	value at breakpoint l for objective k 's function for AFSC j

VFT Weight Parameters

$objective_weight_{jk}$	the weight on objective k for AFSC j
$afsc_weight_j$	the weight on AFSC j relative to the other AFSCs
$cadet_weight_i$	the weight on cadet i relative to the other cadets
$afscs_overall_weight$	the weight on the AFSCs as a whole relative to the cadets
$cadets_overall_weight$	the weight on the cadets as a whole relative to the AFSCs

VFT/GUO Shared Value Parameters

$objective_min_{jk}$	the minimum measure of objective k for AFSC j
$objective_max_{jk}$	the maximum measure of objective k for AFSC j
$cadet_value_min_i$	the minimum value for cadet i
$global_utility_{ij}$	combined afsc/cadet utility on AFSC j for cadet i
	$cadets_overall_weight \cdot cadet_utility_{ij}$
	$+\ afscs_overall_weight \cdot afsc_utility_{ij}$

Space Force and AF Rated Parameters

sf_merit_up	upper bound on average OM for the Space Force
sf_merit_lo	lower bound on average OM for the Space Force
$sf_quota_up^{U1}$	upper bound on number of USAFA cadets entering SFSCs
$sf_quota_lo^{U1}$	lower bound on number of USAFA cadets entering SFSCs
$sf_quota_up^{R2}$	upper bound on number of ROTC cadets entering SFSCs
$sf_quota_lo^{R2}$	lower bound on number of ROTC cadets entering SFSCs

Decision Variables

 $oldsymbol{x}_{ij}$

 $rotc_count_i$

1 if cadet i is assigned to AFSC j, and 0 otherwise

AFSC Objective Auxiliary Variables

number of cadets assigned to AFSC j, $count_i$ number of USAFA cadets assigned to AFSC j, $usafa_count_i$ $\sum_{i \in \mathcal{ID}} \boldsymbol{x}_{ij}$ where k = "USAFA Proportion"

number of ROTC cadets assigned to AFSC j,

 $count_j - usafa_count_j$

 $measure_{ik}$ real measure of objective k for AFSC j,

Fasure of odjective $\sum_{i \in \mathcal{I}_{jk}^{E}} \boldsymbol{x}_{ij}$ $\sum_{i \in \mathcal{I}_{jk}^{E}} \boldsymbol{x}_{ij}$ $\sum_{i \in \mathcal{I}_{j}^{E}} \boldsymbol{merit}_{i} \cdot \boldsymbol{x}_{ij}$ $\sum_{i \in \mathcal{I}_{j}^{E}} \boldsymbol{count}_{j}, \quad \text{if } k = \text{``Balance Merit''}$ $\sum_{i \in \mathcal{I}_{j}^{E}} \boldsymbol{count}_{j}, \quad \text{if } k = \text{``Maximize Utility''}$ $\boldsymbol{count}_{j}, \quad \text{if } k = \text{``Meet Combined Quota''}$ $\boldsymbol{usafa_count}_{j}, \quad \text{if } k = \text{``Meet USAFA Quota''}$ $\boldsymbol{rotc_count}_{j}, \quad \text{if } k = \text{``Meet ROTC Quota''}$

 $value_{jk}$

value of objective k for AFSC j obtained through value function $f_{ik}(\cdot)$, $f_{jk}(measure_{jk})$

AFSC Objective Value Function Variables

 λ_{jkl} percentage of the line segment between breakpoints l and l+1 that $measure_{jk}$ has yet to travel along the piece-wise function 1 if $measure_{jk}$ is on the line segment between breakpoints l and l + 1; $oldsymbol{y}_{jkl}$ 0 otherwise

VFT Additional Auxiliary Variables

the weighted sum of all objective values for AFSC j, $afsc_value_{j}$ $\sum_{k \in \mathcal{K}_{j}^{A}} objective_weight_{jk} \cdot \boldsymbol{value}_{jk}$ the utility obtained for cadet i, $cadet_value_i$ $\sum_{j \in \mathcal{J}_i^E} cadet_utility_{ij} \cdot oldsymbol{x}_{ij}$ the weighted sum of all AFSC values, $afscs_overall_value$ $\sum_{j \in \mathcal{J}} afsc_weight_j \cdot \mathbf{afsc_value}_j$ $cadets_overall_value$ the weighted sum of all cadet utilities, $\sum_{i \in \mathcal{I}} cadet_weight_i \cdot \boldsymbol{cadet_value}_i$

Objective Function Variables

 Z^{VFT} VFT Model objective value, $afscs_overall_weight \cdot afscs_overall_value +$ $cadets_overall_weight \cdot cadets_overall_value$ $oldsymbol{Z}^{GUO}$ GUO Model objective value, $\sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}_{i}^{E}} global_utility_{ij} \cdot oldsymbol{x}_{ij}$

Basic Formulation

maximize
$$\mathbf{Z}^{VFT}$$
 or \mathbf{Z}^{GUO} (1a)
subject to $\sum_{j \in \mathcal{J}_i^E} \mathbf{x}_{ij} = 1 \quad \forall i \in \mathcal{I}$ (1b)
 $\mathbf{measure}_{jk} \geq objective_min_{jk} \quad \forall j \in \mathcal{J}, \ k \in \mathcal{K}_j^{\mathbf{C}}$ (1c)
 $\mathbf{measure}_{jk} \leq objective_max_{jk} \quad \forall j \in \mathcal{J}, \ k \in \mathcal{K}_j^{\mathbf{C}}$ (1d)
 $\mathbf{cadet_value}_i \geq cadet_value_min_i \quad \forall i \in \mathcal{I}^{\mathbf{C}}$ (1e)
 $\mathbf{x}_{ij} \in \{0,1\} \quad \forall i \in \mathcal{I}, \ j \in \mathcal{J}_i^{\mathbf{E}}$ (1f)

Value Function Constraints (Strictly VFT)

$$measure_{jk} = \sum_{l \in \mathcal{L}_{jk}} a_{jkl} \cdot \lambda_{jkl} \quad \forall j \in \mathcal{J}, \ k \in \mathcal{K}_j^A$$
 (2a)

$$value_{jk} = \sum_{l \in \mathcal{L}_{jk}} \hat{f}_{jkl} \cdot \boldsymbol{\lambda}_{jkl} \quad \forall j \in \mathcal{J}, \ k \in \mathcal{K}_j^A$$
 (2b)

$$\lambda_{jk1} \leq y_{jk1} \quad \forall j \in \mathcal{J}, \ k \in \mathcal{K}_i^A$$
 (2c)

$$\lambda_{jkl} \leq y_{jk(l-1)} + y_{jkl} \quad \forall j \in \mathcal{J}, \ k \in \mathcal{K}_j^A, \ l \in \{2, ..., r_{jk} - 1\}$$
 (2d)

$$\lambda_{jkr_{jk}} \leq y_{jk(r_{jk}-1)} \quad \forall j \in \mathcal{J}, \ k \in \mathcal{K}_j^A$$
 (2e)

$$\sum_{l=1}^{r_{jk}-1} \boldsymbol{y}_{jkl} = 1 \quad \forall j \in \mathcal{J}, \ k \in \mathcal{K}_j^A$$
 (2f)

$$\sum_{l \in \mathcal{L}_{jk}} \lambda_{jkl} = 1 \quad \forall j \in \mathcal{J}, \ k \in \mathcal{K}_j^A$$
 (2g)

$$0 \le \lambda_{ikl} \le 1 \quad \forall j \in \mathcal{J}, \ k \in \mathcal{K}_i^A, \ l \in \mathcal{L}_{ik}$$
 (2h)

$$\mathbf{y}_{jkl} \in \{0,1\} \quad \forall j \in \mathcal{J}, \ k \in \mathcal{K}_{j}^{A}, \ l \in \{1,...,r_{jk}-1\}$$
 (2i)

Space Force Constraints

$$\sum_{j \in \mathcal{J}^{SF}} \sum_{i \in \mathcal{I}_{j}^{E}} \operatorname{merit}_{i} \cdot \boldsymbol{x}_{ij} \leq sf \operatorname{-merit-up} \cdot \sum_{j \in \mathcal{J}^{SF}} \sum_{i \in \mathcal{I}_{j}^{E}} \boldsymbol{x}_{ij}$$
(3a)

$$\sum_{j \in \mathcal{J}^{SF}} \sum_{i \in \mathcal{I}_{j}^{E}} \operatorname{merit}_{i} \cdot \boldsymbol{x}_{ij} \ge sf \operatorname{-merit} \operatorname{-lo} \cdot \sum_{j \in \mathcal{J}^{SF}} \sum_{i \in \mathcal{I}_{j}^{E}} \boldsymbol{x}_{ij}$$
(3b)

$$sf_quota_lo^{U1} \le \sum_{j \in \mathcal{J}^{SF}} \sum_{i \in \mathcal{I}_{i}^{E} \cap \mathcal{I}^{U1}} \boldsymbol{x}_{ij} \le sf_quota_up^{U1}$$
 (3c)

$$sf_quota_lo^{R2} \le \sum_{j \in \mathcal{J}^{SF}} \sum_{i \in \mathcal{I}_{:}^{E} \cap \mathcal{I}^{R2}} \boldsymbol{x}_{ij} \le sf_quota_up^{R2}$$
 (3d)

$$\sum_{j \in \mathcal{J}^{SF} \cap \mathcal{J}_i^E} \boldsymbol{x}_{ij} = 1 \quad \forall i \in \mathcal{I}^{SF}$$
 (3e)

Rated Reserved/Alternate List Constraints

$$\sum_{j \in \mathcal{J}_i^{Reserved}} x_{ij} = 1 \quad \forall i \in \mathcal{I}^{Reserved}$$
 (4a)

$$quota_{j}^{U1} \cdot (1 - \sum_{j' \in \mathcal{J}_{ji}^{Pref}} \boldsymbol{x}_{ij'}) \leq \sum_{i' \in \mathcal{I}_{ji}^{Pref}} \boldsymbol{x}_{i'j} \quad \forall j \in \mathcal{J}^{R}, \ i \in \mathcal{I}_{j}^{Alt} \cap \mathcal{I}^{U1}$$

$$\tag{4b}$$

$$quota_{j}^{R2} \cdot (1 - \sum_{j' \in \mathcal{J}_{ii}^{Pref}} \boldsymbol{x}_{ij'}) \leq \sum_{i' \in \mathcal{I}_{ii}^{Pref}} \boldsymbol{x}_{i'j} \quad \forall j \in \mathcal{J}^{R}, \ i \in \mathcal{I}_{j}^{Alt} \cap \mathcal{I}^{R2}$$

$$(4c)$$

Algorithm 1 Source of Commissioning (SOC) Rated Board Algorithm

```
1: Initialize:
         M^R \leftarrow \emptyset (empty set: rated cadet/AFSC matched pair)
         E^R \leftarrow \emptyset (empty set: cadets that have exhausted all preferences and cannot be matched)
 4: Input:
         \mathcal{I}^R all rated eligible cadets from this SOC and their preferences
         \mathcal{J}^R all rated AFSCs and their preferences
 7:
         \mathcal{J}^{Fixed} cadet-AFSC fixed pairs
         \mathcal{J}^{Reserved} AFSCs that cadets are reserved for
 9:
         \mathcal{I}^{Reserved} cadets that have reserved AFSCs
10:
    while |M^R| + |E^R| < |\mathcal{I}^R| do
11:
         M^R \leftarrow \emptyset (reset matches)
12:
         for AFSC j \in \mathcal{J}^R do
13:
              count \leftarrow 0 (number of matches this iteration)
14:
             for cadet i \in \mathcal{I}_i^E \cap \mathcal{I}^R \setminus E^R (in order of AFSC j's preference) do
15:
                  j' \leftarrow \text{cadet } i's most preferred, non-rejected AFSC
16:
                  if j' = j and count < quota_j then
17:
                      M^R \leftarrow M^R \cup \{(i,j)\}
18:
                       count \leftarrow count + 1
19:
                  else if j' = j and count = quota_i then
20:
                       AFSC j reject cadet i
21:
                      {\bf if} cadet i rejected by all preferred rated AFSCs {\bf then}
22:
                           E^R \leftarrow E^R \cup \{(i)\}
23:
24: for cadet, AFSC (i, j) \in M^R do
         if AFSC j is cadet i's true most preferred AFSC then
25:
              \mathcal{J}_{i}^{Fixed} \leftarrow j, (\boldsymbol{x}_{ij} \text{ is fixed at 1 in VFT/GUO models})
26:
27:
             \mathcal{I}^{Reserved} \leftarrow \mathcal{I}^{Reserved} \cup \{(i)\}
28:
              \mathcal{J}_i^{Reserved} \leftarrow \text{set of cadet } i's more preferred AFSCs up to and including AFSC j
29:
```

Algorithm 2 Source of Commissioning (SOC) Rated Alternates Algorithm

```
\mathcal{I}^R all rated eligible cadets from this SOC and their preferences
            \mathcal{J}^R~ all rated AFSCs and their preferences
            \mathcal{I}_{i}^{Res} cadets currently reserved to each rated AFSC
            \mathcal{I}_{i}^{Match} cadets currently matched to each rated AFSC
 6: Output:
            \mathcal{I}_{j}^{Alt} cadets on each rated AFSC j's alternate list
           \mathcal{I}_{ji}^{Pref} cadets that are more preferred by AFSC j than cadet i \mathcal{I}_{ji}^{Pref} AFSCs that are more preferred by cadet i than AFSC j
10: iterating = True
      while iterating do
           for AFSC j \in \mathcal{J}^R do Obtain \mathcal{I}_j^{Res} and \mathcal{I}_j^{Match} n^A = |\mathcal{I}_j^{Res}| (number of alternates is based on number of reserved slots)
12:
14:
                 \mathcal{I}_{i}^{Alt} \leftarrow \mathring{\emptyset} (start with empty set of cadets on this iteration)
                  for cadet i \in \mathcal{I}_i^E \cap \mathcal{I}^R \setminus I^{Fixed} (in order of AFSC j's preference) do
16:
                        if cadet not reserved for j or something better then
                             if |\mathcal{I}_i^{Alt}| < n^A (under alternate slot capacity) then
18:
                                   \mathcal{I}_{i}^{Alt} \leftarrow \mathcal{I}_{i}^{Alt} \cup \{(i)\}
            for AFSC j \in \mathcal{J}^R do
20:
                 for cadet i \in \mathcal{I}_{j}^{Res} (in order of AFSC j's preference) do

if i must be matched to j (it's an inevitable match) then
\mathcal{I}_{j}^{Res} \leftarrow \mathcal{I}_{j}^{Res} \setminus \{(i)\}
\mathcal{I}_{j}^{Match} \leftarrow \mathcal{I}_{j}^{Match} \cup \{(i)\}
22:
24:
            if \mathcal{I}_i^{Alt} stops changing between iterations then
                  iterating = False
26:
```

Base/Training Sets and Indices

$b \in \mathcal{B}$	the set of all bases
$c \in \mathcal{C}_j$	the set of all training courses for AFSC j
$d \in \mathcal{D}_i$	the set of all AFSC outcome states that cadet i has designated
$\mathcal{J}_{id}^{State} \subseteq \mathcal{J}_{i}^{E}$	the set of AFSCs that, if assigned, would put cadet i into state d
$\mathcal{J}^B\subseteq\mathcal{J}$	the set of AFSCs that have bases that need to be assigned
$\mathcal{B}_{j}^{A}\subseteq\mathcal{B}$	the set of bases that AFSC j may assign cadets to
$\mathcal{B}_i^E\subseteq\mathcal{B}$	the set of bases that cadet i may be assigned to (based on \mathcal{J}_i^E)
$\mathcal{B}_{id}^{State} \subseteq \mathcal{B}_i^E$	the set of all bases that cadet i can be assigned to in state d based on its set of AFSCs $(\mathcal{J}_{id}^{State})$
$\mathcal{C}^E_{ij} \subseteq \mathcal{C}_j$	the set of courses that cadet i is available to take with AFSC j
$\mathcal{I}_{ic}^{A}\subseteq\mathcal{I}_{i}^{E}$	the set of cadets that are available to take course c with AFSC j

Base/Training Parameters

$base_utility_{ib}$	the utility value that cadet i has placed on base b
$course_utility_{ijc}$	the utility value that cadet i has for AFSC j 's course c (calculated)
w_{id}^A	the weight that cadet i has on AFSCs in state d
w_{id}^B	the weight that cadet i has on bases in state d
w^C_{id}	the weight that cadet i has on courses in state d
u_{id}^S	the maximum utility that cadet i receives from state d
M	sufficiently large number (big M)
lo_{jb}^B,hi_{jb}^B	the minimum and maximum number of cadets, respectfully, that are to be assigned to base b for AFSC j
lo_{jc}^C, hi_{jc}^C	the minimum and maximum number of cadets, respectfully, that are to be assigned to course c for AFSC j

Base/Training Decision Variables

$oldsymbol{v}_{ib}$	1 if cadet i is assigned to base b , and 0 otherwise
$oldsymbol{q}_{ijc}$	1 if cadet i is assigned to AFSC j 's course c , and 0 otherwise
${m cadet_value}_i$	the value that cadet i receives from their assignment outcome (revised variable for use in VFT/GUO models)

Base/Training Auxiliary Variables

$oldsymbol{u}_{id}^{A}$	the utility that cadet i receives from their assigned AFSC in state d
	$\frac{1}{u_{id}^S} \cdot \sum_{j \in \mathcal{J}_{id}^{State}} cadet_utility_{ij} \cdot \boldsymbol{x}_{ij}$
$oldsymbol{u}_{id}^B$	the utility that cadet i receives from their assigned base in state d
	$\sum_{b \in \mathcal{B}^{State}_{id}} base_utility_{ib} \cdot oldsymbol{v}_{ib}$
$oldsymbol{u}_{id}^C$	the utility that cadet i receives from their assigned course in state d
	$\sum_{j \in \mathcal{J}_{id}^{State}} \sum_{c \in \mathcal{C}_{ij}^E} course_utility_{ijc} \cdot oldsymbol{q}_{ijc}$

Base/Training Objective Function Revision

$$oldsymbol{Z}^{GUO}$$

revised objective function variable for the GUO model $cadets_overall_weight \cdot \sum_{i \in \mathcal{I}} cadet_weight_i \cdot \boldsymbol{cadet}_value_i + \\ \frac{1}{N} \cdot afscs_overall_weight \cdot \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}_i^E} afsc_utility_{ij} \cdot \boldsymbol{x}_{ij}$

Base/Training Constraints

$$cadet_value_i \leq u_{id}^S(w_{id}^A u_{id}^A + w_{id}^B u_{id}^B + w_{id}^C u_{id}^C) + M(1 - \sum_{j \in \mathcal{J}_{id}^{State}} x_{ij}) \quad \forall i \in \mathcal{I}, \ d \in \mathcal{D}_i$$
 (5a)

$$\sum_{b \in \mathcal{B}_i^E} v_{ib} = \sum_{j \in \mathcal{J}^B \cap \mathcal{J}_i^E} x_{ij} \quad \forall i \in \mathcal{I}$$
 (5b)

$$\mathbf{x}_{ij} \leq \sum_{b \in \mathcal{B}_i^A} \mathbf{v}_{ib} \quad \forall i \in \mathcal{I}, \ j \in \mathcal{J}^B \cap \mathcal{J}_i^E$$
 (5c)

$$\boldsymbol{x}_{ij} = \sum_{c \in \mathcal{C}_{ij}^E} \boldsymbol{q}_{ijc} \quad \forall i \in \mathcal{I}, \ j \in \mathcal{J}_i^E$$
 (5d)

$$lo_{jb}^{B} \leq \sum_{i \in \mathcal{I}_{i}^{E}} \mathbf{v}_{ib} \leq hi_{jb}^{B} \quad \forall j \in \mathcal{J}^{B}, \ b \in \mathcal{B}_{j}^{A}$$
 (5e)

$$lo_{jc}^{C} \leq \sum_{i \in \mathcal{I}_{ic}^{A}} q_{ijc} \leq hi_{jc}^{C} \quad \forall j \in \mathcal{J}, \ c \in \mathcal{C}_{j}$$
 (5f)

$$0 \leq cadet_value_i \leq 1 \quad \forall i \in \mathcal{I}$$
 (5g)

$$\mathbf{v}_{ib} \in \{0,1\} \quad \forall i \in \mathcal{I}, \ b \in \mathcal{B}_i^E$$
 (5h)

$$\mathbf{q}_{ijc} \in \{0,1\} \quad \forall i \in \mathcal{I}, \ j \in \mathcal{J}_i^E, \ c \in \mathcal{C}_{ij}^E$$
 (5i)