Function Approximation

VFA: Monte Carlo

Marius Lindauer

Winter Term 2021

Overview

► Represent a (state-action/state) value function with a parameterized function instead of a table

Which function approximator

Monte Carlo Value Function Approximation (VFA)

- lacktriangle Return G_t is an unbiased but noisy sample of the true expected return $V^\pi(s_t)$
- ▶ Therefore, we can reduce MC VFA to doing supervised learning on a set of (state, return) pairs; $\langle s_1,G_1\rangle,\langle s_2,G_2\rangle,\dots,\langle s_T,G_T\rangle$
 - \blacktriangleright Substitute G_t for the true $V^\pi(s)$ when fit function approximator
- Concretely when using linear VFA for policy evaluation

$$\begin{split} \Delta \vec{w} &= \alpha(G_t - \hat{V}(s_t; \vec{w})) \nabla_{\vec{w}\hat{V}(s_t; \vec{w})} \\ &= \alpha(G_t - \hat{V}(s_t; \vec{w})) \vec{x}(s_t) \\ &= \alpha(G_t - \vec{x}(s_t)^T \vec{w}) \vec{x}(s_t) \end{split}$$

- Note: G_t may be a very noisy estimate of true return
- \blacktriangleright Note(2): We dropped the factor 2 and see it as part of α

MC Linear Value Function Approximation for Policy Evaluation

Initialize
$$\vec{w}=\mathbf{0}$$
, $k=1$ Loop

- \blacktriangleright Sample k-th episode $s_{k,1},a_{k,1},r_{k,1},s_{k,2},a_{k,2},r_{k,2},\dots$
- $\blacktriangleright \ \, {\rm for} \,\, t=1,\ldots,L_k \,\, {\rm do}$
 - ▶ If First visit to $s_{k,t}$ in episode k then
 - $G_t(s) = \sum_{j=1}^{L_k} r_{k,j}$
 - \blacktriangleright Update weights by $\alpha(G_t \vec{x}(s_{k,t})^T \vec{w}) \vec{x}(s_{k,t})$
- k = k + 1

Evaluation: Preliminaries

- For infinite horizon, the Markov Chain defined by an MDP with a particular policy will eventually converge to a probability distribution over states d(s)
- $lackbox{ } d(s)$ is called the stationary distribution over states of π
- ightharpoonup d(s) satisfies the following balance equation:

$$d(s') = \sum_{s} \sum_{a} \pi(a \mid s) p(s' \mid s, a) d(s)$$

Convergence duarantees for Linear value runction Approximation for Folicy

Evaluation [Tsitsiklis and Van Roy. 1997]

Define the mean squared error of a linear value function approximation for a particular policy π relative to the true value as

$$\mathsf{MSVE}(\vec{w}) = \sum_{s \in S} d(s) (V^\pi(s) - \hat{V}^\pi(s; \vec{w}))^2$$

- where
 - ightharpoonup d(s): stationary distribution of π in the true decision process
 - $\hat{V}^{\pi}(s; \vec{w}) = \vec{x}(s)^T \vec{w}$, a linear value function approximation
- Monte Carlo policy evaluation with VFA converges to the weights \vec{w}_{MC} which has the minimum mean squared error possible:

$$\mathrm{MSVE}(\vec{w}_{MC}) = \min_{\vec{w}} \sum_{s \in S} d(s) (V^{\pi}(s) - \hat{V}^{\pi}(s; \vec{w}))^2$$