Practica 1: Java

El objetivo de esta primera práctica es la toma de contacto con el *lenguaje Java*. Escribiremos 5 programas basados en consola, los compilaremos y ejecutaremos de forma que durante el proceso vayamos descubriendo la estructura de los programas en *Java* y cómo se trabaja con las clases de la *API* de *Java*.

Ejercicio 0:Hello Java

El clásico programa de inicio.

```
public class hello{
    public static void main(String[] args){
        System.out.println("Hello World!");
    }
}
```

Ejercicio 1: Pasando argumentos al programa

El siguiente programa tiene por objetivo mostrar la forma en que se pueden pasar parámetros a un programa en Java. En este caso, se le pasarán dos números, y el programa los comparara e indicara cuál es el mayor. Después de compilar el programa, se ejecutara por línea de comandos de la siguiente manera:

```
> java Ejer1 20 25
```

Al programa se le pasan los dos parámetros (los dos números que va a comparar, en este caso el 20 y el 25).

```
/* Obtener el mayor de 2 números, pasados como argumentos */
// Fichero Ejer1.java
public class Ejer1{
    public static void main(String args[]) {
        float x1=0, x2=0;
        if (args.length<2) {
            System.out.println("Faltan los dos numeros");
        } else {
            x1 = Float.parseFloat(args[0]);
            x2 = Float.parseFloat(args[1]);
            if (x1>x2) System.out.println("Mayor: " + x1);
            else if (x1<x2) System.out.println("Mayor: " + x2);</pre>
            else if (x1==x2) System.out.println("Iguales");
            System.out.println("Otra Forma:");
            System.out.println("El mayor es: " + Math.max(x1,x2));
    } // Fin de main()
} // Fin de clase Ejer1
```

Se han definido dos variables (**x1** y **x2**) de tipo *float*. Se utiliza la clase *Float* (envoltorio del tipo básico *float*), con uno de sus métodos, *parseFloat*, para convertir el "string" o cadena de caracteres en un número flotante, para así tratarlo luego como números en la comparación.

Ejercicio 2: Lectura de datos desde el Teclado

Este programa la forma de introducir datos al programa desde el teclado. Se definen dos variables (str1 y str2) del tipo *String* (realmente son objetos de la clase *String*) donde se almacenarán los caracteres dados por el teclado. Notese que al final del ejercicio que se utiliza el método o función *max()* de la clase *Math* para comparar el mayor de los números pasados como argumentos.

```
/* Lectura de datos desde el teclado */
// Fichero Ejer2.java
import java.io.*; //no olvidar poner esta línea
public class Ejer2 {
    public static void main(String args[]) throws IOException {
        float x1=0,x2=0;
       String str1,str2;
       BufferedReader InBuf =
            new BufferedReader(new InputStreamReader(System.in));
        System.out.println("Primer Numero: "); //Leer Primer número
        str1=InBuf.readLine();
       x1 = Float.parseFloat(str1);
       System.out.println("Segundo Numero: "); //Leer Segundo número
       str2=InBuf.readLine();
       x2 = Float.parseFloat(str2);
       //Obtener el mayor
       System.out.println("El mayor es: " + Math.max(x1,x2));
```

Se utilizan las clases **BufferedReader** e **InputStreamReader** que permiten acceder al teclado y capturar lo escrito por el usuario.

Ejercicio 3: Bucle For - Factorial de un número

A continuación se muestra un bucle con la sentencia *For* donde se utiliza el envoltorio del tipo básico int (la clase Integer) para convertir un string (con su método parseInt) en un número entero, del cual se calculara su factorial.

```
/* Bucle For: Factorial de un número */
// Fichero Ejer3.java
import java.io.*;
public class Ejer3 {
    public static void main(String args[]) throws IOException {
        int x1;
        long Fact;
        String str1;
        BufferedReader InBuf =
            new BufferedReader(new InputStreamReader(System.in));
        System.out.println("Factorial de un Numero\r");
        System.out.println("Dar el Numero: ");
        str1=InBuf.readLine();
        x1 = Integer.parseInt(str1); //convertimos a un número entero
        Fact=x1;
        for (int i=x1-1; i>0; i--) {
            Fact *= i;
        System.out.println("\rFactorial de "+x1+" es: "+Fact);
}
```

3b) Ahora, genera una nueva versión (class Ejer3b) donde el bucle For con variable descendente sea sustituido por un for con variable ascendente de la siguiente forma:

```
for (int i=1; i<=x1; i++) {
```

Por supuesto, el programa deberá seguir calculando el factorial del numero introducido.

Ejercicio 4: Bucle While - Generación aleatoria de números

Este programa generará una cantidad determinada (que el usuario dará por medio del teclado) de números reales de forma aleatoria, comprendidos entre dos límites.

```
// Fichero Ejer4.java
import java.io.*;
public class Ejer4 {
    public static void main(String args[]) throws IOException {
        int x1:
        char c;
        double val;
        String str1="";
        System.out.println("Generacion Aleatoria de Numeros\r");
        //Ahora no usaremos printl, sino print. Ya no saltará una línea
        System.out.print("Cuantos Numeros?: ");
        //Leeremos caracter por caracter del teclado, hasta presionar Enter
        //read() devuelve un byte y por eso hay que hacer un cast
        //read() detiene la ejecución del programa hasta que se pulsa Enter
        while ( (c=(char)System.in.read()) != '\r' ) {
            if (c>='0' && c<='9') {
                str1 = str1 + c; //Sólo tomamos los dígitos
        x1 = Integer.parseInt(str1);
        while ((x1--)>0) {
            val = Math.random();
            val *= 10.0;
            System.out.println("Numero: " + val);
        }
```

4b) Una vez terminado el programa, genera una versión Ejer4b donde los límites de generación de números se introduzcan por teclado (Por ejemplo, para generar números entre 10 y 40).

Ejercicio 5: Métodos (funciones) de clase y Variables de clase

Este ejercicio muestra la implementación de métodos (o funciones) de una clase. Así como la visibilidad de las variables (declaradas locales (dentro de un método) o "globales" (variables de la clase), y cómo éstas pueden ser accedidas.

```
/* Métodos de clase y Variables de clase */
// Observar también la visibilidad de las variables
// Fichero Ejer5.java
import java.io.*;
public class Ejer5 {
    double area; //Variable de la Clase
    public static void main(String args[]) throws IOException {
        double radio, area; //variables de la función main()
       Ejer5 ej = new Ejer5();
        if ( args.length < 1) {
           BufferedReader InBuf =
               new BufferedReader(new InputStreamReader(System.in));
           System.out.println("Introducir radio: "); //Leer Primer número
           radio = Double.parseDouble(InBuf.readLine());
        else
        ł
            radio = Double.parseDouble(args[0]);
        area = ej.Area(radio); //Acceder a función de Objeto creado
        System.out.println("Area del circulo r="+radio+" m. = " +area+" m2");
        area = ej.area;
        System.out.println("Area del circulo r="+radio+" m. = "+area+" Has.");
    //Función o método Area de la clase Ejer5
    public double Area (double rd ) {
        double area; //variable local de la funcion Area
        //usar la variable local
        area = Math.PI*Math.pow(rd,2.0);
        //acceder a la variable de la clase
        this.area = area/10000; //obtener el area en Has.
        return area; //devuelve el valor
```

Obsérvese que la variable **area**, declarada como **double**, ha sido definida tanto en la clase como dentro de los métodos **main()** y **Area()**. La variable **area** de la clase puede ser accedida por cualquier método (o función) de la clase, no así las variables declaradas dentro de cada método, ya que éstas son locales.

5b) Genere una versión Ejer5b donde no solo se calcule el área de una circunferencia sino también el de un triangulo para el cual se pidan la base y la altura.

Ejercicio 6: Clases abstractas, polimorfismo y patrones

Este ejercicio muestra el uso de polimorfismos para trabajar sobre objetos diferentes pertenecientes a una misma familia. Obsérvense la diferencia respecto al ejercicio anterior.

```
/* Métodos y clases abstractas */
// Fichero Ejer6.java
import java.io.*;
public class Ejer6 {
   public static void main(String args[]) throws IOException {
        double radio, base, altura; //variables de la función main()
        Figura[] figuras = new Figura[2];
        BufferedReader InBuf =
            new BufferedReader(new InputStreamReader(System.in));
        System.out.println("Introducir radio circulo: ");
        radio = Double.parseDouble(InBuf.readLine());
       figuras[0] = new Circulo("Circulo", radio);
        System.out.println("Introducir base triangulo: ");
       base = Double.parseDouble(InBuf.readLine());
       System.out.println("Introducir altura triangulo: ");
        altura = Double.parseDouble(InBuf.readLine());
        figuras[1] = new Triangulo("Triangulo", base, altura);
        for (int i=0; i<2; i++) {
            System.out.println("Area de " + figuras[i].nombre
                       + " m. = " +figuras[i].Area()+" m2");
abstract class Figura {
   public String nombre; //Variable de la Clase
    public Figura(String nombre) {
        this.nombre = nombre;
   public abstract double Area();
}
class Triangulo extends Figura {
    public double base, altura;
   public Triangulo (String nombre, double base, double altura)
       super(nombre);
        this.base = base;
        this.altura = altura;
   public double Area() {
       return base * altura / 2f;
}
```

```
class Circulo extends Figura{
   public double radio;

   public Circulo(String nombre, double radio) {
        super(nombre);
        this.radio = radio;
   }

   public double Area() {
        return (Math.PI * Math.pow(radio,2));
   }
}
```

6b) Genere una versión Ejer6b donde las figuras se generen utilizando una factoría (objeto que maneja la creación de objetos)