Anotações da aula 2

Ciclos

Em um grafo não direcionado denomina-se um **ciclo** a sequência de vetores conectados entre si por pelo menos três arestas (v_0,v_1,\ldots,v_k) , o *caminho*, em que $v_0=v_k$. O ciclo é simples se todos os vértices do caminho são distintos entre si. No exemplo abaixo, nota-se que o caminho (0,1,2,0) é um ciclo:

Subgrafos

Para um dado grafo G=(V,A) o grafo G'=(V',A') é subgrafo deste se $V'\subseteq V$ e $A'\subseteq A$. No exemplo abaixo, o grafo à direita é subgrafo do grafo à esquerda:

Subgrafo próprio

Segue da definição de subgrafo que para qualquer grafo G, G é subgrafo de si próprio. Assim distingue-se o G' subgrafo de G tal que $G' \neq G$ denominando-o um **subgrafo próprio**.

Grafo conectado (ou conexo)

O grafo aquele onde qualquer par de vértices contidos neste encontra-se conectado por um caminho.

Por exemplo, o grafo G seguinte não é conectado:

Mas se considerarmos apenas os subgrafos $\{0,1,2\}$ e $\{4,5\}$, teremos que cada um destes é um grafo conectado. Estes são **componentes conectados** (ou conexos) de G. No mais, estes são componentes conexos **maximais** pois cada um destes compõe a maior cadeia conexa a incorporar os vértices que estes integram.

Componentes Fortemente Conectados

Um grafo **direcionado** é dito **fortemente conectado** se cada dois vértices quaisquer deste são alcançáveis a partir um do outro. Por extensão,

- ullet os componentes conexos maximais de um grafo direcionado G são também fortemente conectados.
- Um grafo direcionado fortemente conectado tem apenas um componente fortemente conectado

Por exemplo, no grafo

São os componentes fortemente conectados $\{0,1,2,3\}$, $\{4\}$ e $\{5\}$. $\{4,5\}$ não o é pois o vértice 5 não é alcançável a partir do vértice 4.

Grafos isomorfos

Grafos G=(V,A) e G'=(V',A') são isomorfos se existir uma bijeção $f:V\to V'$ tal que $(u,v)\in A$ se e somente se $(f(u),f(v))\in A'$.

Noutras palavras, é possível re-rotular os vértices de G para serem rótulos de G' mantendo as arestas correspondentes G e G':

Vizinhos e adjacentes

Em um grafo **direcionado**, um **vizinho** de um vértice é qualquer outro vértice que, na versão mão direcionada deste grafo estaria ligado a este por uma aresta. Por vez, um vértice adjacente é aquele que pode ser alcançado por um dado vértice meio de uma única aresta. Em gráficos não direcionados, não há distinção entre vértices vizinhos e adjacentes.

1 é adjacente a 3 ? Não 1 é vizinho de 3 ? Sim 3 é adjacente a 1 ? Sim 3 é vizinho de 1 ? Sim 1 é adjacente a 3 ? Sim 1 é vizinho de 3 ? Sim 3 é adjacente a 1 ? Sim 3 é vizinho de 1 ? Sim

Grafos completos

São os grafos não direcionados aqueles em que qualquer vértice encontra-se conectado por uma aresta a todos os demais.

• O número de arestas em um gráfico deste tipo é dado pela fórmula:

$$\frac{|V|(|V|-1)}{2}$$

Sendo $\left|V\right|$ o número de vértices.

ullet Enquanto o número total de grafos diferentes com |V| vértices é dado por:

$$|\mathcal{P}(G)|=2^{rac{|V|(|V|-1)}{2}}$$

Grafo ponderado

Possui pesos associados às arestas

Grafo transposto

O grafo G^\prime obtido a partir da inversão da direção das arestas de G .

Grafo Bipartido

Um grafo cujos vértices podem ser divididos em dois conjuntos disjuntos U e V tais que toda aresta conecta um vértice em U a um vértice em V;

Exemplo de um grafo bipartido

Equivalentemente, um grafo bipartido é um grafo que não contém qualquer ciclo de comprimento ímpar.

Encontrando uma bipartição usando paridade

Árvores

• **Árvore livre:** grafo não direcionado, acíclico e conectado. Comumente referido simplesmente enquanto "árvore" apenas.

• Floresta: grafo não direcionado acíclico o qual pode, ou não, estar conectado.

floresta

• Árvore/Floresta Geradora: o subgrafo G=(V,A) que contém a totalidade dos vértices de G que juntos compõem uma árvore/floresta.

Matriz de adjacências

Representação de um grafo contendo n vértices fazendo uso de uma matriz de dimensões $n \times n$.

(b)

(a)