有机溶剂极性表

化合物名称	极性	粘度	沸点	吸收波 长
i-pentane(异戊烷)	0	_	30	_
n-pentane(正戊烷)	0	0.23	36	210
Petroleum ether(石油醚)	0.01	0.3	30~60	210
Hexane(己烷)_	0.06	0.33	69	210
Cyclohexane(环己烷)	0.1	1	81	210
Isooctane(异辛烷)	0.1	0.53	99	210
Trifluoroacetic acid(三氟乙酸)	0.1	_	72	_
Trimethylpentane(三甲基戊烷)	0.1	0.47	99	215
Cyclopentane(环戊烷)	0.2	0.47	49	210
n-heptane(庚烷)	0.2	0.41	98	200
Butyl chloride(丁基氯; 丁酰氯)	1	0.46	78	220
Trichloroethylene(三氯乙烯; 乙炔化三氯)	1	0.57	87	273
Carbon tetrachloride(四氯化碳)	1.6	0.97	77	265
Trichlorotrifluoroethane(三氯三氟代乙烷)	1.9	0.71	48	231
i-propyl ether(丙基醚; 丙醚)	2.4	0.37	68	220
Toluene(甲苯)	2.4	0.59	111	285
p-xylene(对二甲苯)	2.5	0.65	138	290
Chlorobenzene(氯苯)	2.7	0.8	132	_
o-dichlorobenzene(邻二氯苯)	2.7	1.33	180	295
Ethyl ether(二乙醚; 醚)	2.9	0.23	35	220
Benzene(苯)	3	0.65	80	280
Isobutyl alcohol(异丁醇)	3	4.7	108	220
Methylene chloride(二氯甲烷)_	3.4	0.44	40	245
Ethylene dichloride(二氯化乙烯)	3.5	0.78	84	228
n-butanol(正丁醇)	3.7	2.95	117	210
n-butyl acetate(醋酸丁酯;乙酸丁酯)	4	_	126	254
n-propanol(丙醇)	4	2.27	98	210
Methyl isobutyl ketone(甲基异丁酮)	4.2	-	119	330
Tetrahydrofuran(四氢呋喃)	4.2	0.55	66	220
Ethyl acetate (乙酸乙酯)	4.30	0.45	77	260
i-propanol(异丙醇)	4.3	2.37	82	210
Chloroform(氯仿)_	4.4	0.57	61	245
Methyl ethyl ketone(甲基乙基酮)	4.5	0.43	80	330
Dioxane(二恶烷;二氧六环;二氧杂环己	4.8	1.54	102	220

烷)

Pyridine(吡啶)	5.3	0.97	115	305
Acetone(丙酮)	5. 4	0.32	57	330
Nitromethane(硝基甲烷)	6	0.67	101	330
Acetic acid(乙酸)	6. 2	1.28	118	230
Acetonitrile(乙腈)	6. 2	0.37	82	210
Aniline(苯胺)	6.3	4.4	184	_
Dimethyl formamide(二甲基甲酰胺)	6.4	0.92	153	270
Methanol(甲醇)	6.6	0.6	65	210
Ethylene glycol(乙二醇)	6.9	19.9	197	210
Dimethyl sulfoxide(二甲亚砜 DMSO)	7. 2	2.24	189	268
Water (水)	10.2	1	100	268

下图是混合有机溶剂极性顺序(由小到大,括号内表示的是混合比例)

常用混合溶剂极性顺序→环己烷-乙酸乙酯(8+2)→氯仿-丙酮(95+5)→苯-丙酮(9+1)→苯-乙酸乙酯(8+2)→氯仿-乙醚(9+1)→苯-甲醇(95+5)→苯-乙醚(6+4)→环己烷-乙酸乙酯 (1+1)→氯仿-乙醚(8+2)→氯仿-甲醇(99+1)→苯-甲醇(9+1)→氯仿-丙酮(85+15)→苯-乙醚 (4+6)→苯-乙酸乙酯(1+1)→氯仿-甲醇(95+5)→氯仿-丙酮(7+3)→苯-乙酸乙酯(3+7)→苯-乙醚(1+9)→乙醚-甲醇(99+1)→乙酸乙酯-甲醇(99+1)→苯-丙酮(1+1)→氯仿-甲醇(9+1)

强极性溶剂:

甲醇〉乙醇〉异丙醇

中等极性溶剂:

乙氰〉乙酸乙酯〉氯仿〉二氯甲烷〉乙醚〉甲苯

非极性溶剂:

环己烷,石油醚,己烷,戊烷

常用混合溶剂:

乙酸乙酯/己烷:常用浓度 0~30%。但有时较难在旋转蒸发仪上完全除去溶剂。

乙醚/戊烷体系:浓度为0~40%的比较常用。在旋转蒸发器上非常容易除去。

乙醇/己烷或戊烷:对强极性化合物 5~30%比较合适。

二氯甲烷/己烷或戊烷: 5~30%, 当其他混合溶剂失败时可以考虑使用。

3)将 1~2mL 选定的溶剂体系倒入展开池中,在展开池中放置一大块滤纸。

4)将化合物在标记过的基线处进行点样。我们用的点样器是买来的,此外,点样器也可从加热过的 Pasteur 吸管上拔下(你可以参照 UROP)。在跟踪反应进行时,一定要点上起始反应物、反应混合物以及两者的混合物。

- 5)展开: 让溶剂向上展开约90%的薄板长度。
- 6)从展开池中取出薄板并且马上用铅笔标注出溶剂到达的前沿位置。根据这个算 Rf 的数值。
- 7)让薄板上的溶剂挥发掉。
- 8)用非破坏性技术观察薄板。最好的非破坏性方法就是用紫外灯进行观察。将薄板放在紫外灯下,用铅笔标出所有有紫外活性的点。尽管在 5.301 中不用这种方法,但我们将采用另一常用的无损方法--用碘染色法。(你可以参看 UROP)。9)用破坏性方式观测薄板。当化合物没有紫外活性的时候,只能采用这种方法。在 5.301 中,提供了很多非常有用的染色剂。使用染色剂时,将干燥的薄板用镊子夹起并放入染色剂中,确保从基线到溶剂前沿都被浸没。用纸巾擦干薄板的背面。将薄板放在加热板上观察斑点的变化。在斑点变得可见而且背景颜色未能遮盖住斑点之前,将薄板从加热板上取下。
- 10)根据初始薄层色谱结果修改溶剂体系的选择。如果想让 Rf 变得更大一些,可使溶剂体系极性更强些;如果想让 Rf 变小,就应该使溶剂体系的极性减小些。如果在薄板上点样变成了条纹状而不是一个圆圈状,那么你的样品浓度可能太高了。稀释样品后再进行一次薄板层析,如果还是不能奏效,就应该考虑换一种溶剂体系。