Project Part C: Classification


```
In [57]: analyst = "Khoa Nguyen" # Replace this with your name
```

```
In [58]: f = "setup.R"; for (i in 1:10) { if (file.exists(f)) break else f = paste0("../", f) }; source(f)
    options(repr.matrix.max.rows=674)
```

1 Introduction

1.1 Objective

Build, evaluate, and tune a classifier trained on a transformed dataset about public company fundamentals. Later, use the classifier along with additional analysis to recommend a portfolio of 12 company investments that maximizes 12-month return of an overall

1.2 Approach

Retrieve a dataset ready for predictive model construction.

Build a model to predict whether stock price will grow more than 30% over 12 months, given 12 months of past company fundamentals data, using a machine learning model construction method.

Evaluate and tune the model for optimal business performance.

2 Business Model & Business Parameters

The business model is ...

$$\mathsf{profit} = \left(\sum_{i \in \mathsf{portfolio}} (1 + \mathsf{growth}_i) \times \mathsf{allocation}_i\right) - \mathsf{budget}$$

$$budget = \sum_{i \in portfolio} allocation_i$$

Business parameters include ...

- budget is total investment to allocate across the companies in the portfolio
- portfolio size is number of companies in the portfolio
- · allocation is vector of amounts to allocate to specific companies in the portfolio, must sum to budget
- threshold is growth that qualifies as lowest attractive growth

```
In [59]: # Set the business parameters.

budget = 1000000
portfolio_size = 12
allocation = rep(budget/portfolio_size, portfolio_size)

fmtsx(fmt(budget), fmt(portfolio_size), fmt(allocation))
```

budget	portfolio_size	allocation
1,000,000	12	83,333
		83,333
		83,333
		83,333
		83,333
		83,333
		83,333
		83,333
		83,333
		83,333
		83,333
		83,333

Portfolio to be filled with companies predicted to have the highest probabilities of growing above 30%.

3 Data

```
In [60]: # Retrieve data.
# How many observations and variables?
# Present the first few observations.

data = read.csv("My Data.csv", header=TRUE, na.strings=c("NA", ""), stringsAsFactors=FALSE)
data$big_growth = factor(data$big_growth, levels=c("YES","NO"))

fmtx(size(data))
fmtx(data[1:6,], FFO)
```

size(data)

observations	variables
4,305	9

data (first few observations)

big_growth	growth	prccq	gvkey	tic	conm	PC1	PC2	PC3
NO	0.0507	43.69	1,004	AIR	AAR CORP	1.4098	0.2125	-0.1874
NO	-0.3829	32.11	1,045	AAL	AMERICAN AIRLINES GROUP INC	-2.8093	0.2246	1.4366
YES	0.3158	6.75	1,050	CECE	CECO ENVIRONMENTAL CORP	1.5247	0.4396	-0.1679
NO	-0.2165	8.66	1,062	ASA	ASA GOLD AND PRECIOUS METALS	1.5737	0.6384	0.0123
NO	-0.1185	15.25	1,072	AVX	AVX CORP	1.2813	0.4529	0.0929
NO	0.0002	85.20	1.075	PNW	PINNACLE WEST CAPITAL CORP	0.3698	-0.4861	-0.0128

4 Build Classification Model

```
In [61]: model = naiveBayes(big_growth ~ PC1 + PC2 + PC3, data)
         model
         Naive Bayes Classifier for Discrete Predictors
         Call:
         naiveBayes.default(x = X, y = Y, laplace = laplace)
         A-priori probabilities:
             YES
                      NO
         0.08362 0.91638
         Conditional probabilities:
              PC1
                 [,1] [,2]
           YES 1.129 1.332
           NO -0.103 5.674
              PC2
                   [,1] [,2]
           YES 0.24124 0.898
           NO -0.02201 4.793
              PC3
                    [,1] [,2]
           YES -0.014239 0.677
           NO 0.001299 3.653
```

5 Evaluate Classification Model (5-fold cross-validation)

```
In [62]: set.seed(0)
    fold = createFolds(data$big_growth, k=5)
    str(fold)

List of 5
    $ Fold1: int [1:861] 9 13 17 19 31 42 44 54 60 66 ...
    $ Fold2: int [1:861] 1 2 6 11 16 25 32 49 55 59 ...
    $ Fold3: int [1:861] 4 8 14 22 28 34 40 45 50 52 ...
    $ Fold4: int [1:861] 3 5 15 18 21 24 26 27 30 36 ...
    $ Fold5: int [1:861] 7 10 12 20 23 29 33 35 37 46 ...
```

```
In [63]: \# \ accuracy = c()
         fold performance = data.frame()
         for (i in 1:5)
           { data.test = data[fold[[i]],]
             data.train = data[setdiff(1:nrow(data), fold[[i]]),]
             model train = naiveBayes(big growth ~ PC1 + PC2 + PC3, data.train)
             prob = predict(model train, data.test, type="raw") # use predict arguments appropriate for your model
             class.predicted = as.class(prob, class="YES", cutoff=0.5)
             CM = confusionMatrix(class.predicted, data.test$big growth)$table
             cm = CM/sum(CM)
             accuracy = cm[1,1]+cm[2,2]
             data.test$class.predicted = class.predicted
             data.test$prob = prob[,1]
             data.test = data.test[data.test$class.predicted == "YES",]
             data.sorted = data.test[order(data.test$prob, decreasing=TRUE),]
             company.data.growth = data.sorted[1:12, "growth"]
             profit = sum((1 + company.data.growth)*allocation) - budget
            fold performance = rbind(fold performance,data.frame(fold=i,accuracy=accuracy,profit = profit))}
         fmtx(fold performance, "Fold Performance")
```

Fold Performance

fold	accuracy	profit
1	0.2323	-144,476
2	0.2230	-114,764
3	0.2334	-22,672
4	0.2033	4,896
5	0.2021	-119,455

```
In [64]: accuracy.cv = mean(fold_performance$accuracy)
    profit.cv = mean(fold_performance$profit)
    profit_rate.cv = profit.cv/budget
    fmtx(data.frame(accuracy.cv, profit_rate.cv), "5-Fold Cross-Validation Estimated Performance")
```

5-Fold Cross-Validation Estimated Performance

accuracy.c	v profit.cv	profit_rate.cv
0.218	8 -79,294	-0.0793

6 Tune Classification Model

```
In [65]: | tune = data.frame()
                        for (f in exhaustive(names(data[,c("PC1","PC2","PC3")]), keep="big_growth")) # try every combination of variation of varia
                        for (q in c(0.25, 0.33, 0.50)) # try several values for cutoff
                                  nfold = 5
                                  set.seed(0)
                                  fold = createFolds(data$big growth, k=nfold)
                                  accuracy = c()
                                  profit = c()
                                  for (i in 1:nfold) { data.train = data[setdiff(1:nrow(data), fold[[i]]),]
                                                                                         data.test = data[fold[[i]],]
                                                                                         model = naiveBayes(big growth ~ ., data.train[,f], laplace=TRUE)
                                                                                         prob = predict(model, data.test, type="raw")
                                                                                         class.predicted = as.class(prob, class="YES", cutoff=q)
                                                                                         CM = confusionMatrix(class.predicted, data.test$big growth)$table
                                                                                         cm = CM/sum(CM)
                                                                                         accuracy[i] = cm[1,1]+cm[2,2]
                                                                                       data.test$class.predicted = class.predicted
                                                                                       data.test$prob = prob[,1]
                                                                                       data.sorted = data.test[order(data.test$prob, decreasing=TRUE),]
                                                                                       company.data.growth = data.sorted[1:12, "growth"]
                                                                                       profit[i] = sum((1 + company.data.growth)*allocation) - budget }
                                  accuracy.cv = mean(accuracy)
                                   profit.cv = mean(profit)
                                   profit rate.cv = profit.cv/budget
                                  tune = rbind(tune, data.frame(method="naive bayes", variables=vector2string(f), cutoff = q,
                                                                                                                accuracy.cv, profit.cv, profit rate.cv))}
                        best = tune[which.max(tune$profit.cv),]
                        fmtx(best, "best model")
                        fmtx(tune, "search for best model")
```

best model

method	variables	cutoff	accuracy.cv	profit.cv	profit_rate.cv
naive bayes	PC3, big_growth	0.25	0.2049	47,492	0.0475

search for best model

method	variables	cutoff	accuracy.cv	profit.cv	profit_rate.cv
naive bayes	PC1, big_growth	0.25	0.2987	-85,297	-0.0853
naive bayes	PC1, big_growth	0.33	0.8035	-85,297	-0.0853
naive bayes	PC1, big_growth	0.50	0.9134	-85,297	-0.0853
naive bayes	PC2, big_growth	0.25	0.3554	-146,897	-0.1469
naive bayes	PC2, big_growth	0.33	0.7022	-146,897	-0.1469
naive bayes	PC2, big_growth	0.50	0.9157	-146,897	-0.1469
naive bayes	PC3, big_growth	0.25	0.2049	47,492	0.0475
naive bayes	PC3, big_growth	0.33	0.7823	47,492	0.0475
naive bayes	PC3, big_growth	0.50	0.9122	47,492	0.0475
naive bayes	PC1, PC2, big_growth	0.25	0.2197	-142,451	-0.1425
naive bayes	PC1, PC2, big_growth	0.33	0.2355	-142,451	-0.1425
naive bayes	PC1, PC2, big_growth	0.50	0.3954	-142,451	-0.1425
naive bayes	PC1, PC3, big_growth	0.25	0.2007	-116,848	-0.1168
naive bayes	PC1, PC3, big_growth	0.33	0.2107	-116,848	-0.1168
naive bayes	PC1, PC3, big_growth	0.50	0.2381	-116,848	-0.1168
naive bayes	PC2, PC3, big_growth	0.25	0.1823	-112,989	-0.1130
naive bayes	PC2, PC3, big_growth	0.33	0.1954	-112,989	-0.1130
naive bayes	PC2, PC3, big_growth	0.50	0.2383	-112,989	-0.1130
naive bayes	PC1, PC2, PC3, big_growth	0.25	0.1991	-79,294	-0.0793
naive bayes	PC1, PC2, PC3, big_growth	0.33	0.2046	-79,294	-0.0793
naive bayes	PC1, PC2, PC3, big_growth	0.50	0.2188	-79,294	-0.0793

Copyright (c) Huntsinger Associates, LLC

Document revised May 6, 2023