

Welcome to MLH Localhost:

Building Scalable Apps featuring CockroachDB!

Welcome! My name is [INSERT YOUR NAME].

- I'm here to lead this session & help you learn something new today!
- 2 I'm a [LEVEL OF STUDY] at [SCHOOL].
- My favorite programming language / tool is [LANGUAGE OR TOOL].

1

Using your Web Browser, Open this URL & Fill out the Form:

http://mlhlocal.host/checkin

2

Afterwards, Check your Email to Find:

- Setup Instructions
- An Invite to the MLH Slack
- The Code Samples

- A Workshop FAQ
- These Workshop Slides
- More LearningResources

What will you learn today?

- What a database is & how the database you pick impacts your app's ability to scale.
- How to build a scalable web application using CockroachDB.
- How to test your application's ability to scale.

Why does this matter?

- Successful apps need to grow without breaking/slowing. This is called **scaling**.
- Scaling requires careful design of the stateful (data) part of your app.
- Planning for scale helps you make better decisions earlier.
- Employers want to hire engineers who can build for scale.

Our Mission is to Empower Hackers.

65,000+ HACKERS

12,000+
PROJECTS CREATED

3,000+ SCHOOLS

We hope you learn something awesome today! Find more resources: http://mlh.io/

Sign in using GitHub or Facebook.

Note:

Making an account is not required, but your code will expire after 5 days if you don't.

Create a new web page project and run it.

Show the output of the project

You should see something like this, but with a different URL

Table of Contents

- 1. Intro to Databases & CockroachDB
 - 2. Start your first CockroachDB Cluster
 - 3. Scale an App with CockroachDB
 - 4. Review & Quiz
 - **5.** Next Steps

Quiz!

WHEN DO YOU NEED A DATABASE?

Local user settings on phone app

1 Formatted text file (JSON, CSV)

2 Lightweight database (SQLite or NoSQL)

Local user settings on phone app

1 Formatted text file (JSON, CSV)

2 Lightweight database (SQLite or NoSQL)

Music player phone app searchable collection browser

1 Formatted text file (JSON, CSV)

2 Lightweight database (SQLite or NoSQL)

Music player phone app searchable collection browser

1 Formatted text file (JSON, CSV)

2 Lightweight database (SQLite or NoSQL)

Online forum (Tumblr, Discourse)

1 Formatted text file (JSON, CSV)

2 Lightweight database (SQLite or NoSQL)

Online forum (Tumblr, Discourse)

1 Formatted text file (JSON, CSV)

2 Lightweight database (SQLite or NoSQL)

Database Basics

A database is an organized collection of data.

- Data can be anything (numbers, text, files, etc.).
- Databases allow web applications to have preserved state.

Database Management System (DBMS)

A Database Management System (DBMS) is software that lets you manage database structure and data.

Key Responsibilities

1. Querying:

Processing commands to interact with the data.

2. Storage:

Managing how the data is stored in the database.

Group Activity

Brainstorm:

List out as many Database Management Systems as we can in 2 minutes.

Hint:

CockroachDB is one example!

Four Types of Database Management Systems:

Relational

- → Built for Consistency.
- → Structured in tables.

Example:

NoSQL

- → Built for Scale (eventually).
- → Unstructured.

Example:

Key/Value

- → Built for Speed.
- → Unstructured

Example:

NewSQL

- → Scale & Consistency.
- → Structured in Tables.

Example:

Generally, you get either Consistency, Scale, or Speed.

NewSQL combines both Consistency & Scale.

What are Relational Databases?

- Data is structured into Tables (rows & columns).
- Every row in a Table has the same columns.
- Use "SQL" to query data.

ID	Hackathon	Date
1	hackNY	2017-04-08
2	Hack Princeton	2017-03-31
3	HackBCA	2017-03-25
4	PearlHacks	2017-02-11

What are NoSQL Databases?

- Data is unstructured and is stored in Collections.
- Every entry could have different columns.
- Use "JSON" to query data.

```
Sample Collection:

{
    "Hackathon": "hackNY",
    "Date": 2017-04-08
},
{
    "Hackathon": "Hack Princeton",
    "Date": 2017-04-08,
    "Custom-Data": "Some Custom Data."
}
```

```
/> db.hackathons.find({ Hackathon: "hackNY" })

{
    "Hackathon": "hackNY",
    "Date": 2017-04-08
}
```


Both Relational & NoSQL DBs have Trade Offs.

Relational Database Issues

- 1. Single-Server Databases are a point of failure.
- 2. Multi-Server Databases are complex (sharding).

NoSQL Database Issues

- 1. Eventual Consistency is hard to deal with.
- 2. Databases can be out of sync and lose data.

Is there a way to get **both** scalability and consistency? **Yes, it's called NewSQL!**

Meet NewSQL & CockroachDB.

What is NewSQL?

- A new class of DBMS (started in 2011).
- Scales like NoSQL.
- Consistent like a Traditional Relational Database.

- Created by Cockroach Labs in 2014.
- Scalable SQL.
- Survivable.
- Consistent & Symmetric.

How does CockroachDB do this?

A CockroachDB deployment is

- Composed of many Nodes
 (single instances of the database software).
- Together they form a cluster (collection of nodes acting as a single database).

How does CockroachDB do this?

Under the hood, CockroachDB...

- Splits your data into ranges, which are distributed across nodes in your cluster.
- Replicates data across many nodes in your cluster in case one goes down.
- Uses a peer-to-peer Gossip
 Protocol to organize Nodes and
 the RAFT Consensus Algorithm
 for consistency.

Table of Contents

- 1. Intro to Databases & CockroachDB
- **2.** Start your first CockroachDB Cluster
 - 3. Scale an App with CockroachDB
 - 4. Review & Quiz
 - **5.** Next Steps

Try the Demo Application:

http://mlhlocal.host/cockroachdb-demo

Goal:

Display a random Star Trek quote every 5 seconds.

Technologies:

Node.js JavaScript HTML / CSS jQuery

Make a copy of the demo

Remix the finished project at

http://mlhlocal.host/cockroachdb-glitch

Scroll down past the preview.

Click Remix your own

Run your copy of the demo

Open the Project Console

Click Logs -> Console

This will open the console in a new tab.

File Browser vs. Console

Different views of the same thing

File Browser

- Click things to select files and navigate
- Type things into the files

Console

- Type commands to perform actions and navigate
- Needs to be synced with File Browser with refresh command

Keep both these tabs open at all times.

Install CockroachDB

Run a series of commands for installation saved inside install_cockroachdb.sh using the sh command

```
source install cockroachdb.sh
Installing CockroachDB
--2018-06-28 19:00:03--
https://binaries.cockroachdb.com/cockroach
-latest.linux-amd64.tgz
```


Make sure CockroachDB is working.

To test that your installation was successful, type the command below in your Terminal.

```
$ cockroach version
Build Tag: v2.0.3
Build Time: 2018/06/18 16:11:33
Distribution: CCL
            linux amd64 (x86 64-unknown-linux-gnu)
Platform:
Go Version: gol.10
C Compiler: gcc 6.3.0
Build SHA-1: 91715a9a95edbe716912173204fa4c0fc6724457
Build Type: release
```


Start your first instance of CockroachDB!

To launch your first Cluster with one Node, run the following command in the terminal. **DON'T CLOSE THE TERMINAL FROM NOW ON!**

```
$ cd ~/.data
$ cockroach start --insecure --host=localhost --background
 WARNING: RUNNING IN INSECURE MODE!
* - Your cluster is open for any client that can access localhost.
  - Any user, even root, can log in without providing a password.
 - Any user, connecting as root, can read or write any data in your cluster.
 - There is no network encryption nor authentication, and thus no confidentiality.
* Check out how to secure your cluster:
https://www.cockroachlabs.com/docs/stable/secure-a-cluster.html
CockroachDB node starting at 2017-11-02 18:06:21.541283 +0000 UTC (took 0.4s)
build:
            CCL v1.1.2 @ 2017/11/02 20:52:23 (go1.9.2)
admin:
            http://localhost:8080
sql:
postgresql://root@localhost:26257?application name=cockroach&sslmode=disable
            /Users/majorleaguehacking/cockroach-data/logs
logs:
```


Let's create the sample data.

Run the following command to create a database named startrek which contains quotes & episode tables.

```
$ cockroach gen example-data startrek | cockroach sql --insecure
CREATE DATABASE
Time: 505.928737ms
SET
Time: 1.582383ms
DROP TABLE
Time: 2.200558ms
CREATE TABLE
Time: 538.467864ms
INSERT 1
Time: 968.790375ms
TNSFRT 1
Time: 220.132547ms
INSERT 1
Time: 792.940707ms
```


Use the Command Line to see your Data.

When you run the command bellow, CockroachDB will place you in an program that responds to SQL Queries.

```
$ cockroach sql --insecure
# Welcome to the cockroach SQL interface.
# All statements must be terminated by a semicolon.
# To exit: CTRL + D.
root@:26257/>
```


List the available databases.

You can see a list of available databases using the SHOW DATABASES; Command.

```
root@:26257/> SHOW DATABASES;
       Database
  crdb_internal
  information_schema
 pg catalog
  startrek
  system
(5 rows)
root@:26257/>
```


What's inside the startrek database?

The Command we ran earlier created the **startrek** database. See what's inside with SHOW TABLES.

```
root@:26257/> SHOW TABLES FROM startrek;
   Table
  episodes
 quotes
(2 rows)
root@:26257/>
```


What's inside the startrek database?

The Command we ran earlier created the **startrek** database. See what's inside with SHOW TABLES.

```
root@:26257/> SELECT * FROM startrek.episodes;
                                           title
    | season | num |
                                                                             stardate
                      The Man Trap
                                                                               1531.1
                      Charlie X
                                                                               1533.6
                      Where No Man Has Gone Before
                                                                               1312.4
                  4 | The Naked Time
                                                                               1704.2
                  5 | The Enemy Within
                                                                               1672.1
                  6 Mudd's Women
                                                                               1329.8
                      What Are Little Girls Made Of?
                                                                               2712.4
                      Miri
                                                                               2713.5
                      Dagger of the Mind
                                                                               2715.1
                      The Corbomite Maneuver
                                                                               1512.2
(79 rows)
root@:26257/>
```


How would we get a random startrek quote?

This is what you would write in SQL:

Get a random startrek quote.

Let's get a random quote from the startrek quotes table using the query we just wrote.

```
root@:26257/> SELECT * FROM startrek.quotes ORDER BY RANDOM() LIMIT 1;
     You're dead, Jim. | McCoy | 3372.7 | 30
(1 rows)
root@:26257/>
```


How do you exit the SQL shell?

We're done with the SQL shell. Quit and return to your normal terminal by using \q.

```
root@:26257/> \q
```


Let's explore the application code!

In the file tree on the left side of the file browser tab, click **server.js.**

What does this application do?

Lines 5 - 17 and 31 - 37 cover the server boilerplate code. All this app does is serve static files (like HTML).

server.js

```
// load libraries
var express = require('express');
var db = require('./db');
var child process = require('child process')
// Use Express to serve files from the /public directory
// http://expressjs.com/en/starter/static-files.html
var app = express();
app.use(express.static('public'));
// http://expressjs.com/en/starter/basic-routing.html
app.get("/", function (request, response) {
  response.sendFile( dirname + '/views/index.html');
});
```


How do we return quotes?

Whenever someone visits the demo website, we run the following code to return a random quote.

```
server.js
11 // Call this function whenever someone requests the /quote path
12 app.get('/quote', function(req, res) {
13
     // Get a random quote and pass it to the browser.
     client.query('SELECT * FROM quotes ORDER BY RANDOM() LIMIT 1')
14
       .then(data => res.send(data.rows[0]))
15
       .catch(err => res.send({ error: "BRB! Connecting to CockroachDB" }))
16
17 })
```


Next, let's see how we connect to CockroachDB in db.js

Open db.js

```
db.js
01 // Connect to the startrek Database on a node in our CockroachDB cluster
02 var pg = require('pg');
03 var config = { user: 'root', database: 'startrek', port: 26257 };
04 var db = new pg.Pool(config);
05
06 // Log when we connect to the CockroachDB node
07 db.on('connect', function(client) { console.log("Connected to CockroachDB.") })
08
09 // Log any errors we encounter
10 db.on('error', function(e) { console.error("Err connecting to CockroachDB.") })
11
12 // Export the database connection so anyone can use it
13 module.exports = db;
```


Run the application.

Click the **Show** button in your Glitch file browser tab as before.

Table of Contents

- 1. Intro to Databases & CockroachDB
- 2. Start your first CockroachDB Cluster
- 3. Scale an App with CockroachDB
 - 4. Review & Quiz
 - **5.** Next Steps

Let's add a 2nd Node to our Cluster.

To add another node, we need to tell it which cluster to join and specify an open set of ports.

```
$ cockroach start --insecure --host=localhost --background --join=localhost:26257
 --store=mlh-node2 --port=26258 --http-port=8081
 WARNING: RUNNING IN INSECURE MODE!
// More Warnings
CockroachDB node starting at 2017-11-02 18:26:28.771325 +0000 UTC (took 1.2s)
            CCL v1.1.0 @ 2017/10/18 08:14:16 (go1.9.1)
build:
admin:
            http://localhost:8081
sql:
postgresql://root@localhost:26258?application name=cockroach&sslmode=disable
logs:
/Users/majorleaguehacking/Downloads/mlh-localhost-cockroachdb-master/mlh-node2/logs
. . .
```


And a 3rd Node.

Just change "node2" to "node3" and increment the ports by one. Make sure the cluster stays the same though.

```
$ cockroach start --insecure --host=localhost --background --join=localhost:26257
  --store=mlh-node3 --port=26259 --http-port=8082
 WARNING: RUNNING IN INSECURE MODE!
// More Warnings
CockroachDB node starting at 2017-11-02 18:28:15.597333 +0000 UTC (took 1.2s)
build:
            CCL v1.1.0 @ 2017/10/18 08:14:16 (go1.9.1)
admin:
            http://localhost:8082
sql:
postgresql://root@localhost:26259?application name=cockroach&sslmode=disable
logs:
/Users/majorleaguehacking/Downloads/mlh-localhost-cockroachdb-master/mlh-node3/logs
```


You should see 3 Nodes listed.

```
$ cockroach node ls --insecure
(3 rows)
$ cockroach node status --insecure
 id | address | build | updated_at | started_at | is_live |
    | localhost:26257 | v2.0.3 | 2018-06-19 16:39:33 | 2018-06-19 16:31:13 | true
     localhost:26258
                     | v2.0.3 | 2018-06-19 16:39:33 | 2018-06-19 16:35:43
                                                                         true
      localhost:26259 | v2.0.3 | 2018-06-19 16:39:31 | 2018-06-19 16:37:01 | true
```


What about Fault Tolerance?

Let's take one of our nodes offline, change some data while it's down, and see what happens!

```
$ cockroach quit --insecure --port=26258
ok
```


What do you see when the Node is down?

Notice anything?

What do you see when the Node is down?

The previous command took down Node 2.

Let's write some data to your Cluster.

This time, let's write to Node #3 by specifying a port. In the example, we're going to change some data.

```
$ cockroach sql --insecure --port=26259
# Welcome to the cockroach SQL interface.
# All statements must be terminated by a semicolon.
 To exit: CTRL + D.
# Server version: CockroachDB CCL v1.1.0 (darwin amd64, built 2017/10/18 08:14:16,
go1.9.1) (same version as client)
# Cluster ID: 41b2e624-ce49-40fa-8ef3-e573f4dda3bb
 Enter \? for a brief introduction.
root@:26259/> SET sql safe updates = false;
root@:26259/>
              UPDATE startrek.quotes SET characters = 'your name here';
UPDATE 200
root@:26259/> \q
```


To see if it worked, refresh your App.

Let's bring our Node back online.

We can just reuse the same command we used to start the node in the first place.

```
$ cockroach start --insecure --host=localhost --background --join=localhost:26257
  --store=mlh-node2 --port=26258 --http-port=8081
  WARNING: RUNNING IN INSECURE MODE!
// More Warnings
CockroachDB node starting at 2017-11-02 18:42:09.9441 +0000 UTC (took 2.2s)
build:
            CCL v1.1.0 @ 2017/10/18 08:14:16 (go1.9.1)
admin:
            http://localhost:8081
sql:
postgresql://root@localhost:26258?application name=cockroach&sslmode=disable
```


Let's connect & see what data it has...

Connect to the SQL console on the Node you just brought back online. What data does it have?

```
$ cockroach sql --insecure --port=26258
# Welcome to the cockroach SQL interface.
# All statements must be terminated by a semicolon.
# To exit: CTRL + D.
root@:26258/> SELECT * FROM startrek.quotes ORDER BY RANDOM() LIMIT 1;
                               | characters | stardate | episode
                quote
 We have phasers, I vote we blast 'em! | your_name_here | 1514.2 |
root@:26258/> \q
```


Let's connect & see what data it has...

Pay close attention below - we have changed the port from 26258 to 26257.

```
$ cockroach sql --insecure --port=26257
# Welcome to the cockroach SQL interface.
# All statements must be terminated by a semicolon.
# To exit: CTRL + D.
root@:26258/> SELECT * FROM startrek.quotes ORDER BY RANDOM() LIMIT 1;
                               | characters | stardate | episode
                 quote
 We have phasers, I vote we blast 'em! | your_name_here | 1514.2 | 10 |
root@:26258/> \q
```


Table of Contents

- 1. Intro to Databases & CockroachDB
- 2. Start your first CockroachDB Cluster
- 3. Scale an App with CockroachDB
- **4.** Review & Quiz
 - 5. Next Steps

Let's recap quickly...

- It was simple to connect CockroachDB to our application using an existing library.
- CockroachDB **split & replicated** our data across multiple Nodes in our Cluster.
- When a Node came back online, it worked with the other Nodes to **catch up** on what it missed.

What did you learn today?

We created a fun quiz to test your knowledge and see what you learned from this workshop.

http://mlhlocal.host/quiz

Table of Contents

- 1. Intro to Databases & CockroachDB
- 2. Start your first CockroachDB Cluster
- 3. Scale an App with CockroachDB
- 4. Review & Quiz
- **5.** Next Steps

Join the CockroachDB community today:

- Read the Documentation:
 http://mlhlocal.host/cockroach-docs
- Post Questions on StackOverflow: http://mlhlocal.host/cockroach-stackoverflow
- Use with CockroachDB in your favorite language: http://mlhlocal.host/cockroach-build

Keep Learning: Practice Problems for later.

#1: Advanced SQL

Challenge: Display the episode name next to the quote in your application.

Instructions: Perform a JOIN between the quotes and episodes tables to get the episode title.

#2: Deploy on AWS

Challenge: Deploy your application on AWS and use HAProxy to load balance.

Instructions: Make your application production ready by deploying on 4 AWS micro instances with HAProxy.

Learning shouldn't stop when the workshop ends...

Check your email for access to:

- These workshop slides
- Practice problems to keep learning
- Deeper dives into key topics
- Instructions to join the community
- More opportunities from MLH!

Sign up for the MLH Career Lab!

http://mlhlocal.host/career-lab

- Browse a curated list of hacker jobs.
- Apply for jobs and internships from companies that want to recruit directly from the MLH community.
- Receive updates and career advice from MLH!

