Chapter 3

Vector Spaces and Subspaces

3.1 Vector Spaces

3.1.1 Definitions of Vector Space and Subspace

1. Space

The space \mathbf{R}^n consists of all vectors \mathbf{v} with n components of real numbers. The space \mathbf{C}^n consists of all vectors \mathbf{v} with n components of complex numbers.

2. Subspace

A subspace of a vector space is a set of vectors (including $\mathbf{0}$) that satisfies two requirements: If \forall vectors \mathbf{v}_1 and \mathbf{v}_2 are in the subspace and \forall $k \in \mathbb{R}$, then

- (a) $\mathbf{v} + \mathbf{w}$ is in the subspace.
- (b) $k\mathbf{v}$ is in the subspace.

3.1.2 Properties of Vector Space and Subspace \Box

- 1. Every space and subspace contains the zero vector.
- 2. Lines through the origin are also subspaces.

3. Closure Property

If \forall vectors \mathbf{v}_1 and \mathbf{v}_2 are in a vector space or subspace and $\forall \alpha_1, \alpha_2 \in \mathbb{R}$, then the linear combination $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2$ must stay in this vector space or subspace.

3.1.3 Special Vector Spaces

1. **M**

The vector space of all real 2 by 2 matrices.

2. **F**

The vector space of all real functions f(x).

3. **P** or \mathbf{P}_n

The vector space that consists of all polynomials

$$a_0 + a_1 x + \dots + a_n x^n$$

of degree n.

4. **Z**

The vector space that consists only of a zero vector.

3.2 Four Subspaces of Matrices

 $\forall m \times n \text{ matrix } A \text{ where } m, n \in \mathbb{N}^+$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} - & \mathbf{r}_{1}^{\mathrm{T}} & - \\ - & \mathbf{r}_{2}^{\mathrm{T}} & - \\ \vdots & \vdots & \vdots \\ - & \mathbf{r}_{m}^{\mathrm{T}} & - \end{bmatrix} = \begin{bmatrix} | & | & \cdots & | \\ \mathbf{c}_{1} & \mathbf{c}_{2} & \cdots & \mathbf{c}_{n} \\ | & | & \cdots & | \end{bmatrix}$$

and its transpose

$$A^{\mathrm{T}} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} - & \mathbf{c}_{1}^{\mathrm{T}} & - \\ - & \mathbf{c}_{2}^{\mathrm{T}} & - \\ \vdots & \vdots & \vdots \\ - & \mathbf{c}_{n}^{\mathrm{T}} & - \end{bmatrix} = \begin{bmatrix} | & | & \cdots & | \\ \mathbf{r}_{1} & \mathbf{r}_{2} & \cdots & \mathbf{r}_{m} \\ | & | & \cdots & | \end{bmatrix}.$$

3.2.1 Definition of Four Subspaces of Matrices

1. Row Space

The column space of A consists of all linear combinations of $\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_m$, which is denoted by $C(A^T)$. It is a subspace of \mathbf{R}^n .

2. Column Space

The column space of A consists of all linear combinations of $\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_n$, which is denoted by C(A). It is a subspace of \mathbf{R}^m .

3. Nullspace

The nullspace of A consists of solutions to $A\mathbf{x} = \mathbf{0}$, which is denoted by $\mathbf{N}(A)$. It is a subspace of \mathbf{R}^n .

4. Left Nullspace

The nullspace of A consists of solutions to $A^{T}\mathbf{x} = \mathbf{0}$, which is denoted by $\mathbf{N}(A^{T})$. It is a subspace of \mathbf{R}^{m} .

3.3 Definitions and Properties about Vector Spaces

3.3.1 Definitions

1. Linear Independence

The sequence of vectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ is linearly independent if the only combination that gives the zero vector is

$$0\mathbf{v}_1 + 0\mathbf{v}_2 + \cdots + 0\mathbf{v}_n$$
.

2. Maximal Linearly Independent Subset

For a set of vectors $S = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\}$ where $n \in \mathbb{N}^+$, a subset $S' = \{\mathbf{v}_{k_1}, \mathbf{v}_{k_2}, \cdots, \mathbf{v}_{k_m}\}$ of S is a maximal linearly independent subset of S if and only if $\mathbf{v}_{k_1}, \mathbf{v}_{k_2}, \cdots, \mathbf{v}_{k_m}$ are linearly independent and every vector in S can be expressed as a linear combination of vectors in S', where $1 \leq m \leq n, 1 \leq k_1 \leq k_2 \leq \cdots \leq k_m \leq n$ and $m, k_1, k_2, \cdots, k_m \in \mathbb{N}^+$.

3. Rank

(1) The Rank of A Set of Vectors

For a set of vectors $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ where $n \in \mathbb{N}^+$, the rank of S is the number of vectors in its maximal linearly independent subset, which is denoted as r.

(2) The Rank of Matrices

 \forall matrix A, the rank of A is the number of pivots, which is denoted as r.

4. Span

A set of vectors spans a space if their linear combinations fill the space.

5. Basis

A basis for a vector space is a sequence of vectors with two properties:

- (1) The basis vectors are linearly independent;
- (2) The basis vectors span the space.

6. Dimension

The dimension of a space is the number of vectors in every basis.

3.3.2 Properties of Linear Independence \Box

1. Zero Vector

- (1) For vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ where $n \in \mathbb{N}^+$, if $\mathbf{v}_i = \mathbf{0}$ where $1 \leq i \leq n$ and $i \in \mathbb{N}^+$, then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are linearly dependent.
- (2) For vectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ where $n \in \mathbb{N}^+$, if $\mathbf{v}_i = \mathbf{v}_j$ where $1 \le i < j \le n$ and $i, j \in \mathbb{N}^+$, then $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ are linearly dependent.

2. Contraction and Extension

- (1) \forall linearly dependent vectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ and \forall vectors $\mathbf{v}_{n+1}, \mathbf{v}_{n+2}, \cdots, \mathbf{v}_m$ where m > n and $m, n \in \mathbb{N}^+$, the vectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n, \mathbf{v}_{n+1}, \mathbf{v}_{n+2}, \cdots, \mathbf{v}_m$ are linearly dependent.
 - \forall linearly independent vectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ where $n \in \mathbb{N}^+$, the vectors consisting of a subset are also linearly independent.
- (2) \forall linearly dependent vectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n \in \mathbf{R}^m$ where $m, n \in \mathbb{N}^+$, if every vector adds a component at the same place and they become a series of new vectors $\mathbf{v}'_1, \mathbf{v}'_2, \cdots, \mathbf{v}'_n \in \mathbf{R}^{m+1}$, then the new vectors are also linearly dependent.
 - \forall linearly independent vectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n \in \mathbf{R}^m$ where m > 1 and $m, n \in \mathbb{N}^+$, if every vector deletes a component at the same place and they become a series of new vectors $\mathbf{v}'_1, \mathbf{v}'_2, \cdots, \mathbf{v}'_n \in \mathbf{R}^{m-1}$, then the new vectors are also linearly independent.
- (3) \forall linearly independent vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$, if there exists a vector \mathbf{u} such that $\mathbf{u}, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are linearly dependent, then \mathbf{u} can be represented as a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ and the scalars are unique.

3. Core Property of Linear Independence

For two sets of vectors $S_1 = \{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_m\}$ and $S_2 = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\}$, where $m, n \in \mathbb{N}^+$, and both S_1 and S_2 are linearly independent.

- (1) If every vector in S_2 can be represented as a linear combination of the vectors in S_1 , then $m \geq n$.
- (2) If every vector in S_2 can be represented as a linear combination of the vectors in S_1 and every vector in S_1 can be represented as a linear combination of the vectors in S_2 , then m = n.

4. Maximal Linearly Independent Subset

- (1) There must exist a maximal linearly independent subset in every set of vectors.
- (2) For a set of vectors $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ where $n \in \mathbb{N}^+$, assume that a subset $S' = \{\mathbf{v}_{k_1}, \mathbf{v}_{k_2}, \dots, \mathbf{v}_{k_m}\}$ of S is a maximal linearly independent subset of S, where $1 \le m \le n, 1 \le k_1 \le k_2 \le \dots \le k_m \le n$ and $m, k_1, k_2, \dots, k_m \in \mathbb{N}^+$. \forall vector $\mathbf{v} \in S$, then $\mathbf{v}, \mathbf{v}_{k_1}, \mathbf{v}_{k_2}, \dots, \mathbf{v}_{k_m}$ are linearly dependent.
- (3) ∀ set of vectors, every maximal linearly independent subset of it has the same number of vectors.

5. Number Restriction and Rank

For two sets of vectors $S_1 = \{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_m\}$ and $S_2 = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\}$ such that every vector in S_2 can be represented as a linear combination of the vectors in S_1 , where $m, n \in \mathbb{N}^+$.

- If m < n, then the vectors in S_2 must be linearly dependent.
- If the vectors in S_2 are linearly independent, then $m \geq n$.
- Assume that the rank of S_1 is r_1 and the rank of S_2 is r_2 , then $r_1 \geq r_2$.

6. Basis and Dimension

- (1) Assume that $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is a basis for a vector space,
 - \forall vector **u** in this vector space can be represented as a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ and the scalars are unique.
 - \forall vector \mathbf{u} in this vector space such that $\mathbf{u} \neq \mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$, then $\mathbf{u}, \mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ are linearly dependent.
- (2) $\forall m, n \in \mathbb{N}^+$, if both $S_1 = \{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_m\}$ and $S_2 = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\}$ are bases for the same vector space, then m = n.

- (3) $\forall n \in \mathbb{N}^+$, the dimension of \mathbb{R}^n is n.
 - $\forall m, n \in \mathbb{N}^+$ such that $m < n, \forall$ vectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n \in \mathbf{R}^m$ must be linearly dependent.
 - $\forall n \in \mathbb{N}^+, \forall n$ independent vectors in \mathbb{R}^n must span \mathbb{R}^n , which means that they are a basis.
- (4) The row operations do not change the dimension of the row space of matrices.

3.3.3 Fundamental Theorem of Linear Algebra, Part 1 \square

 $\forall m \times n \text{ matrix } A \text{ where } m, n \in \mathbb{N}^+, \text{ suppose that the rank of } A \text{ is } r \ (1 \le r \le \min\{m, n\}).$ The column space C(A) and row space $C(A^T)$ both have dimension r. The nullspace N(A) has dimension n-r. The left nullspace $N(A^T)$ has dimension m-r.

3.3.4 Full Column Rank and Full Row Rank

- 1. Every $m \times n$ matrix A with full column rank (r = n) has all these properties:
 - (1) All columns of A are piovt columns;
 - (2) There are no free variables or special solutions;
 - (3) The nullspace N(A) contains only the zero vector $\mathbf{x} = \mathbf{0}$;
 - (4) If $A\mathbf{x} = \mathbf{b}$ has a solution, then it has only one solution.
- 2. Every $m \times n$ matrix A with full row rank (r = m) has all these properties:
 - (1) All rows of A are piovot rows, and R has no zero rows;
 - (2) The column space is the whole space \mathbb{R}^m ;
 - (3) The nullspace N(A) contains n r = n m special solutions;
 - (4) $A\mathbf{x} = \mathbf{b}$ has a solution for every right side \mathbf{b} .

3.4 Linear Equations and The Rank r

Size Relationship of r, m, n	A	The number of solutions	
		$A\mathbf{x} = 0$	$A\mathbf{x} = \mathbf{b}$
r = m = n	Square and invertible	1	1
r = m < n	Short and wide	∞	∞
r = n < m	Tall and thin	1	0 (R has 0 = b)
			1 (R has no 0 = b)
r < m = n	Square	∞	$0 (R \text{ has } 0 = b)$ $\infty (R \text{ has no } 0 = b)$
r < m < n	Short and wide		
r < n < m	Tall and thin		

For the matrix A, we move the pivots to the left side and move the free variables to the right side. Then we apply Gauss-Jordan Elimination to the matrix A to get its RREF (Reduced Row Echelon Form) R of the matrix A. The shapes of R related to the rank r are shown as follows:

1.
$$r = m = n$$

$$R = [I]$$
.

2.
$$r = m < n$$

$$R = \begin{bmatrix} I & F \end{bmatrix}$$
.

3.
$$r = n < m$$

$$R = \begin{bmatrix} I \\ \mathbf{0} \end{bmatrix}.$$

4.
$$r < m, r < n$$

$$R = \begin{bmatrix} I & F \\ \mathbf{0} & \mathbf{0} \end{bmatrix}.$$