Lecture 9

- AC Power Calculation

Outline

- Instantaneous power
- Average power
- Apparent power
- Power Factor
- Complex power

AC Power in Time Domain: Instantaneous

Time Domain

$$v(t) = V_m \cos(\omega t + \theta_v) \quad i(t) = I_m \cos(\omega t + \theta_i)$$

Instantaneous power:

power at any instant of time.

$$p(t) = v(t)i(t) = V_m I_m \cos(\omega t + \theta_v) \cos(\omega t + \theta_i)$$

$$p(t) = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) + \frac{1}{2} V_m I_m \cos(2\omega t + \theta_v + \theta_i)$$

AC Power in Time Domain: Instantaneous

Average Power P (Capitalized)

$$v(t) = V_m \cos(\omega t + \theta_v)$$
 $i(t) = I_m \cos(\omega t + \theta_i)$

$$p(t) = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) + \frac{1}{2} V_m I_m \cos(2\omega t + \theta_v + \theta_i)$$

Average (or real) power (unit: watts)

The average power, in watts, is the average of the instantaneous power over one period.

$$P = \frac{1}{T} \int_{0}^{T} p(t) dt$$

Average Power P (time domain)

$$P = \frac{1}{T} \int_0^T \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) dt$$

$$+ \frac{1}{T} \int_0^T \frac{1}{2} V_m I_m \cos(2\omega t + \theta_v + \theta_i) dt$$

$$= \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) \frac{1}{T} \int_0^T dt$$

$$+ \frac{1}{2} V_m I_m \frac{1}{T} \int_0^T \cos(2\omega t + \theta_v + \theta_i) dt$$

$$P = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i)$$

Average Power P (phasor domain)

$$v(t) = V_m \cos(\omega t + \theta_v) \quad i(t) = I_m \cos(\omega t + \theta_i)$$

$$\mathbf{V} = V_m / \underline{\theta_v} \text{ and } \mathbf{I} = I_m / \underline{\theta_i},$$

$$\frac{1}{2}\mathbf{V}\mathbf{I}^* = \frac{1}{2}V_m I_m \underline{/\theta_v - \theta_i}$$

$$= \frac{1}{2}V_m I_m [\cos(\theta_v - \theta_i) + j\sin(\theta_v - \theta_i)]$$

$$P = \frac{1}{2} \text{Re}[\mathbf{V}\mathbf{I}^*] = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i)$$

Two special cases for average power P

For a purely resistive load R:

$$P = \frac{1}{2}V_m I_m = \frac{1}{2}I_m^2 R = \frac{1}{2}|\mathbf{I}|^2 R \quad \text{where } |\mathbf{I}|^2 = \mathbf{I} \times \mathbf{I}^*$$

For a purely reactive load:

$$P = \frac{1}{2} V_m I_m \cos 90^\circ = 0$$

A resistive load (R) absorbs power at all times, while a reactive load (L or C) absorbs zero average power.

Effective Value (RMS)

• For any periodic function x(t) in general, its rms value is

Example: RMS of a Sinusoidal

• The RMS value of $v(t) = V_m \cos(\omega t + \phi)$ is

$$V_{\text{rms}} = \sqrt{\frac{1}{T}} \int_{t_0}^{t_0+T} v^2(t) dt$$

$$= \sqrt{\frac{1}{T}} \int_{t_0}^{t_0+T} V_m^2 \cdot \cos^2(\omega t + \phi) dt$$

$$= \frac{V_m}{\sqrt{2}}$$

Average Power

$$P = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) = \frac{V_m}{\sqrt{2}} \frac{I_m}{\sqrt{2}} \cos(\theta_v - \theta_i)$$
$$= V_{\text{rms}} I_{\text{rms}} \cos(\theta_v - \theta_i)$$

Apparent Power

$$P = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) = \frac{V_m}{\sqrt{2}} \frac{I_m}{\sqrt{2}} \cos(\theta_v - \theta_i)$$
$$= V_{\text{rms}} I_{\text{rms}} \cos(\theta_v - \theta_i)$$

$$S = V_{rms}I_{rms}$$

Unit: volt-amp (VA)

It seems <u>apparent</u> that the power should be the voltage-current product, by analogy with dc resistive circuits.

Power Factor

$$P = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) = \frac{V_m}{\sqrt{2}} \frac{I_m}{\sqrt{2}} \cos(\theta_v - \theta_i)$$
$$= V_{\text{rms}} I_{\text{rms}} \cos(\theta_v - \theta_i)$$

The power factor

$$pf = \frac{P}{S} = \cos(\theta_v - \theta_i)$$

- $(\theta_v \theta_i)$ is called power factor angle.
 - >0 means a *lagging* pf (current lags voltage)
 - <0 means a *leading* pf (current leads voltage)
- pf ranges from 0 to 1.

Power Factor-2

$$P = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) = \frac{V_m}{\sqrt{2}} \frac{I_m}{\sqrt{2}} \cos(\theta_v - \theta_i)$$
$$= V_{\text{rms}} I_{\text{rms}} \cos(\theta_v - \theta_i)$$

The power factor

$$pf = \frac{P}{S} = \cos(\theta_v - \theta_i)$$

- $(\theta_v \theta_i)$ is called power factor angle.
- $(\theta_v \theta_i)$ is equal to the angle of the load impedance

$$\mathbf{Z} = \frac{\mathbf{V}}{\mathbf{I}} = \frac{V_m / \theta_v}{I_m / \theta_i} = \frac{V_m}{I_m} / \theta_v - \theta_i$$

Also
$$\mathbf{Z} = \frac{\mathbf{V}}{\mathbf{I}} = \frac{\mathbf{V}_{\text{rms}}}{\mathbf{I}_{\text{rms}}} = \frac{V_{\text{rms}}}{I_{\text{rms}}} / \frac{\theta_v - \theta_i}{I_{\text{rms}}}$$

Outline

- Instantaneous power
- Average power
- Apparent power
- Power Factor
- Complex power

Complex Power

$$v(t) = V_m \cos(\omega t + \theta_v) \Longrightarrow \mathbf{V} = V_m \angle \theta_v$$

$$i(t) = I_m \cos(\omega t + \theta_i) \Longrightarrow \mathbf{I} = I_m \angle \theta_i$$

We observe that:

$$\frac{1}{2}\mathbf{V}\mathbf{I}^* = \frac{1}{2}V_m I_m \angle (\theta_v - \theta_i)$$
$$= \frac{1}{2}V_m I_m \cos(\theta_v - \theta_i) + j\frac{1}{2}V_m I_m \sin(\theta_v - \theta_i)$$

Define a single power metric

$$\mathbf{S} = \frac{1}{2}\mathbf{V}\mathbf{I}^* = \mathbf{V}_{rms}\mathbf{I}_{rms}^* = V_{rms}I_{rms} \angle (\theta_v - \theta_i) = P + jQ$$

Unit: volt-amp (VA)

Complex power is important in power analysis because it contains *all* the information pertaining to the power absorbed by a given load.

Another Way to Calculate Complex Power

$$\mathbf{S} = I_{\text{rms}}^2 \mathbf{Z} = \frac{V_{\text{rms}}^2}{\mathbf{Z}^*} = \mathbf{V}_{\text{rms}} \mathbf{I}_{\text{rms}}^*$$

$$S = V_{rms}I_{rms}^{*}$$

$$= V_{rms} \left(\frac{V_{rms}}{Z}\right)^{*}$$

$$= \frac{|V_{rms}|^{2}}{Z^{*}}$$

$$\textbf{S} = \textbf{V}_{rms} \textbf{I}_{rms}^*$$

$$= \mathbf{I}_{rms} Z \mathbf{I}_{rms}^*$$

$$= |\mathbf{I}_{\rm rms}|^2 Z$$

$$= |\mathbf{I}_{rms}|^2 (R + jX)$$

$$= |\mathbf{I}_{rms}|^2 R + j |\mathbf{I}_{rms}|^2 X$$

$$= I_{rms}^2 R + j I_{rms}^2 X$$

$$P = \text{Re}(\mathbf{S}) = I_{\text{rms}}^2 R$$
 $Q = \text{Im}(\mathbf{S}) = I_{\text{rms}}^2 X$

$$\mathbf{V}_{\mathrm{rms}} = \mathbf{I}_{\mathrm{rms}} Z$$

$$\mathbf{S} = \frac{1}{2}\mathbf{V}\mathbf{I}^* = \mathbf{V}_{rms}\mathbf{I}_{rms}^* = V_{rms}I_{rms} \angle (\theta_v - \theta_i) = P + jQ$$

$$P = \text{Re}(\mathbf{S}) = I_{\text{rms}}^2 R$$
 $Q = \text{Im}(\mathbf{S}) = I_{\text{rms}}^2 X$

Average (or real) power

$$P = \operatorname{Re}\left[\frac{1}{2}\mathbf{V}\mathbf{I}^*\right]$$

Unit: Watts

Reactive power

$$Q = \operatorname{Im}\left[\frac{1}{2}\mathbf{V}\mathbf{I}^*\right]$$

Unit: Volt Amperes Reactive (VARs)

Apparent power

$$s = |\mathbf{S}| = \frac{1}{2} V_m I_m = V_{rms} I_{rms}$$

Unit: volt-amp (VA)

Complex Power =
$$\mathbf{S} = P + jQ = \mathbf{V}_{rms}(\mathbf{I}_{rms})^*$$

$$= |\mathbf{V}_{rms}| |\mathbf{I}_{rms}| / \theta_v - \theta_i$$
Apparent Power = $S = |\mathbf{S}| = |\mathbf{V}_{rms}| |\mathbf{I}_{rms}| = \sqrt{P^2 + Q^2}$
Real Power = $P = \text{Re}(\mathbf{S}) = S\cos(\theta_v - \theta_i)$
Reactive Power = $Q = \text{Im}(\mathbf{S}) = S\sin(\theta_v - \theta_i)$
Power Factor = $\frac{P}{S} = \cos(\theta_v - \theta_i)$

Reactive Power Q

Let us look at Instantaneous power again

$$p(t) = v(t)i(t)$$

$$p(t) = pR(t) + p_X(t)$$

$$p_R(t) =$$

$$p_X(t) =$$

Reactive Power Q: Peak Exchanged Power

 Definition: The <u>peak</u> instantaneous power associated with the <u>energy storage elements</u> contained in a general load.

$$Q = \begin{cases} 0 & \text{for a resistive } (\theta_v - \theta_i = 0^\circ) \\ \frac{1}{2} V_m I_m & \text{for inductive } (\theta_v - \theta_i = 90^\circ) \\ -\frac{1}{2} V_m I_m & \text{for capacitive } (\theta_v - \theta_i = -90^\circ) \end{cases}$$

- Reactive power is still of concern to power-system engineers
 - Transmission lines/transformers/fuses et al. must be capable of withstanding the current associated with reactive power.

Lecture 9 20

Example

• Find the average power and reactive power absorbed by an impedance $Z = 30 - j70\Omega$, when a voltage $\mathbf{V} = 120 \angle 0^{\circ}$ is applied across it.

$$I = \frac{V}{Z} = \frac{120\angle 0^{\circ}}{30 - j70} = \frac{120\angle 0^{\circ}}{76.16\angle - 66.8^{\circ}}$$
$$= 1.576\angle 66.8^{\circ} \text{ A}$$

$$P = \frac{1}{2}V_m I_m \cos(\theta_v - \theta_i) = 37.24$$
W

$$Q = \frac{1}{2}V_mI_m\sin(\theta_v - \theta_i) = -86.91\text{VAR}$$

Lecture 9 21

Power Triangle

Figure 11.21

(a) Power triangle, (b) impedance triangle.

Quantity	Units
Complex power	volt-amps
Average power	watts
Reactive power	var

Figure 11.22 Power triangle.

Lecture 9 22

Power Factor

Power factor leading and lagging relationships for a load $\mathbf{Z} = R + jX$.

Load Type	$\phi_{z} = \phi_{v} - \phi_{i}$	I-V Relationship	pf
Purely Resistive $(X = 0)$	$\phi_z = 0$	I in-phase with V	1
Inductive $(X > 0)$	$0 < \phi_z \le 90^{\circ}$	I lags V	lagging
Purely Inductive $(X > 0 \text{ and } R = 0)$	$\phi_z = 90^{\circ}$	I lags V by 90°	lagging
Capacitive $(X < 0)$	$-90^{\circ} \le \phi_{\mathcal{Z}} < 0$	I leads V	leading
Purely Capacitive $(X < 0 \text{ and } R = 0)$	$\phi_z = -90^{\circ}$	I leads V by 90°	leading

Lecture 9

Example

A series-connected load draws a current

$$i(t) = 4\cos(100\pi t + 10^{\circ})A$$

when the applied voltage is

$$v(t) = 120\cos(100\pi t - 20^{\circ})V$$

- Find the apparent power and the power factor of the load.
- Determine the values that form the series-connected load.

$$V_{\rm rms}I_{\rm rms} = 240 \,\rm VA$$

$$pf = cos(\theta_v - \theta_i) = 0.866$$
 (leading)

$$\mathbf{Z} = \frac{\mathbf{V}}{\mathbf{I}} = 25.98 - j15 \,\Omega$$

$$C = \frac{1}{15\omega} = \frac{1}{15 \times 100\pi} = 212.2 \,\mu\text{F}$$

Lecture 9

24

Exercise

- The voltage across a load is $v(t) = 60\cos(\omega t 10^\circ)V$, and the current through the load is $i(t) = 1.5\cos(\omega t + 50^\circ)$. Find
 - The complex and apparent powers.
 - The real and reactive powers.
 - The power factor and the load impedance.

$$\mathbf{S} = \mathbf{V}_{\text{rms}} \mathbf{I}_{\text{rms}}^* = 45 / \underline{-60^{\circ}} \text{ VA}$$

$$pf = 0.5$$
 (leading)

$$\mathbf{Z} = \frac{\mathbf{V}}{\mathbf{I}} = 40 / \underline{-60^{\circ}} \,\Omega$$

Quick Summary – Power Calculation

$$v(t) = V_m \cos(\omega t + \theta_v) \Longrightarrow \mathbf{V} = V_m \angle \theta_v$$
$$i(t) = I_m \cos(\omega t + \theta_i) \Longrightarrow \mathbf{I} = I_m \angle \theta_i$$

$$P = \frac{1}{2}V_m I_m \cos(\theta_v - \theta_i) = V_{rms} I_{rms} \cos(\theta_v - \theta_i)$$

$$Q = \frac{1}{2}V_m I_m \sin(\theta_v - \theta_i) = V_{rms} I_{rms} \sin(\theta_v - \theta_i)$$

$$S = \frac{1}{2} V_m I_m = V_{rms} I_{rms}$$

$$\mathbf{S} = S \angle (\theta_v - \theta_i) = P + jQ$$

Example

- Find V_L and I_L.
- Find the average and reactive power
 - Delivered to the load
 - Delivered to the line
 - Supplied by the source

$$I_{L} = \frac{250 \angle 0^{\circ}}{40 + j30} = 4 - j3$$

= $5\angle - 36.87^{\circ}$ (rms)

$$\mathbf{V}_{L} = \mathbf{I}_{L}(39 + j26)$$

= 234 - j13
= 234.36\(\neq - 3.18^\circ\)

Load:

$$V_L I_L^* = 975 + j650 \text{ VA}$$

Line:

$$P = (5)^{2}(1) = 25 \text{ W}$$

 $Q = (5)^{2}(4) = 100 \text{ VAR}$

Source:

$$250 \angle 0^{\circ} \mathbf{I_L^*} = 1000 + j750 \text{ VA}$$

Complex Power

Complex Power

$$\mathbf{S} = \frac{1}{2} \mathbf{V} \mathbf{I}^* = \mathbf{V}_{\text{rms}} \mathbf{I}_{\text{rms}}^* = P + jQ$$

Real Average Power

$$P = \Re [S]$$

$$= V_{\text{rms}} I_{\text{rms}} \cos(\phi_v - \phi_i)$$

$$= I_{\text{rms}}^2 R$$

Apparent Power

$$S = |S| = \sqrt{P^2 + Q^2}$$
$$= V_{\text{rms}} I_{\text{rms}}$$
$$= I_{\text{rms}}^2 |\mathbf{Z}|$$

$$S = Se^{j\phi_S}$$

$$\phi_S = \phi_V - \phi_i = \phi_Z$$

Reactive Power

$$Q = \mathfrak{Im} [S]$$

$$= V_{\text{rms}} I_{\text{rms}} \sin(\phi_v - \phi_i)$$

$$= I_{\text{rms}}^2 X$$

Power Factor

$$pf = \frac{P}{S}$$

$$= \cos(\phi_v - \phi_i)$$

$$= \cos\phi_z$$

Content for the Discussion Session

Power factor correction

Maximum power transfer

