Estudo dirigido sobre o capítulo 6 (parte 2) — redes sem fio e redes móveis

1. Resuma a arquitetura de rede celular2G.

1. Resuma a arquitetura de rede celular2G.

- O termo celular refere-se ao fato de que uma área geográfica é dividida em várias áreas de cobertura geográfica, conhecidas como células
- Cada célula contém uma estação-base de transceptor (BTS) que transmite e recebe sinais de estações móveis dentro de sua célula (BTS = antena)
- Embora a Figura mostre cada célula com uma estação-base de transceptor posicionada no seu meio, hoje, muitos sistemas posicionam a BTS em pontos de interseção de três células, de modo que uma única BTS com antenas direcionais possa atender a três células

2. Explique sistemas combinados FDM/TDM.

- O padrão GSM para sistemas celulares 2G utiliza FDM/TDM (rádio) combinados para a interface ar
- Nos sistemas combinados FDM/TDM, o canal é dividido em uma série de sub-bandas de frequência; dentro de cada subbanda, o tempo é dividido em quadros e intervalos
- Desse modo, para um sistema combinado FDM/TDM, se o canal for dividido em F sub-bandas e o tempo em T intervalos, então o canal poderá suportar F • T chamadas
 simultâneas

3. O que são BSC e BSS?

- Um controlador de estação-base (BSC) da rede GSM normalmente prestará serviço a dezenas de estações-base do transceptor
- O papel da BSC é alocar os canais de rádio da BTS a assinantes móveis, realizar paginação (encontrar a célula na qual reside um usuário móvel) e realizar transferência de usuários móveis
- O controlador de estação-base e suas estações-base de transceptor, coletivamente, constituem um sistema de estação-base (BSS) GSM

4. O que é MSC?

- A central de comutação móvel (MSC) desempenha o papel central na contabilidade e autorização do usuário (por exemplo, determinar se um aparelho móvel tem permissão para se conectar à rede celular), estabelecimento e interrupção de chamada, e transferências
- Em geral, uma única MSC conterá até cinco BSCs, resultando em cerca de 200K assinantes por MSC
- A rede de um provedor de celular terá diversas MSCs, com
 MSCs especiais conhecidas como roteadores de borda das MSCs, conectando a rede celular do provedor à rede telefônica pública mais ampla

- O núcleo da rede opera em conjunto com os componentes da rede celular de voz existente (particularmente, o MSC)
- Existem dois tipos de nós no núcleo da rede 3G: Servidor de Nó de Suporte GPRS (SGSN – Serving GPRS Support Nodes) e Roteador de borda de suporte GPRS (GGSN — Gateway GPRS Support Nodes)
- Um SGSN é responsável por entregar datagramas de e para os nós móveis na rede de acesso por rádio a qual o SGSN está ligado
- O SGSN interage com o MSC da rede celular de voz para essa área, oferecendo autorização do usuário e transferência, mantendo informações de local (célula) sobre nós móveis ativos e realizando repasse de datagramas entre os nós móveis na rede de acesso por rádio e um GGSN
- O GGSN atua como um roteador de borda (gateway), conectando vários SGSNs à Internet maior

- Um GGSN, portanto, é a última parte da infraestrutura 3G que um datagrama originado do nó móvel encontra antes de entrar na Internet
- A rede de acesso por rádio 3G é a rede do primeiro salto sem fio que vemos como usuários do 3G
- O controlador da rede de rádio (RNC) em geral controla várias estaçõesbase transceptoras da célula
- O enlace sem fio de cada célula opera entre os nós móveis e uma estaçãobase transceptora, assim como nas redes 2G.
- O RNC se conecta à rede de voz do celular por comutação de circuitos via um MSC, e à Internet por comutação de pacotes via um SGSN
 - Assim, embora os serviços de voz e dados por celular 3G utilizem núcleos de rede diferentes, eles compartilham uma rede comum de acesso por rádio do primeiro e último salto

- Uma mudança significativa no UMTS 3G em relação às redes 2G é que, em vez de usar o método FDMA/TDMA do GSM, o UMTS emprega uma técnica CDMA denominada *Direct* Sequence Wideband CDMA (CDMA banda larga de sequência direta) (DS-WCDMA) dentro de intervalos TDMA
 - estes, por sua vez, são acessíveis em frequências múltiplas — uma utilização interessante de todos os três métodos de compartilhamento de canal

6. Quais são as inovações do 4G LTE em relação aos sistemas 3G?

- Núcleo de pacote desenvolvido (EPC Evolved Packet Core) O EPC é uma rede de núcleo simplificado em IP, que unifica a rede celular de voz comutada por circuitos e a rede celular de dados comutada por pacotes
 - Esta é uma rede "toda em IP", pois voz e dados serão transportados em datagramas IP
- Rede de acesso por rádio LTE o padrão LTE usa uma combinação de multiplexação por divisão de frequência e multiplexação por divisão de tempo no canal descendente, conhecida como multiplexação por divisão de frequência ortogonal (OFDM)
 - No LTE, cada nó móvel ativo recebe um ou mais intervalos de tempo de 0,5 ms em uma ou mais das frequências do canal
 - Recebendo cada vez mais intervalos de tempo (seja na mesma frequência ou em frequências diferentes), um nó móvel pode alcançar velocidades de transmissão cada vez mais altas

6. Quais são as inovações do 4G LTE em relação aos sistemas 3G?

- Outra inovação na rede de rádio LTE é o uso de sofisticadas antenas de entrada múltipla, saída múltipla (MIMO)
- A taxa de dados máxima para um usuário LTE é 100 Mbits/s na direção descendente e 50 Mbits/s na direção ascendente, quando estiver usando 20 MHz do espectro sem fio

7. O que é o WiMAX?

 Outra tecnologia 4G sem fio — WiMAX (World Interoperability for Microwave Access) — é uma família de padrões IEEE 802.16 que diferem bastante do LTE

8. Explique os conceitos de rede nativa e relacionados.

- Em um ambiente de rede, a residência permanente de um nó móvel (tal como um smartphone) é conhecida como rede nativa (home network)
- A entidade dentro dessa rede que executa o gerenciamento de funções de mobilidade em nome do nó móvel é conhecida como agente nativo (home agent)
- A rede na qual o nó móvel está residindo é conhecida como rede externa (foreign network) ou rede visitada (visited network)
- A entidade dentro da rede externa que auxilia o nó móvel no gerenciamento das funções de mobilidade é conhecida como agente externo (foreign agent)
- Um correspondente é a entidade que quer se comunicar com o nó móvel

8. Explique os conceitos de rede nativa e relacionados.

9. Descreva o roteamento indireto para um nó móvel.

- Na abordagem de roteamento indireto o correspondente apenas endereça o datagrama ao endereço permanente do nó móvel e envia o datagrama para a rede
- A mobilidade é completamente transparente para o correspondente
- Esses datagramas são primeiro roteados, como sempre, para a rede local do nó móvel
- O agente nativo intercepta esses datagramas e então os repassa a um nó móvel por um processo de duas etapas
- Primeiro, o datagrama é repassado para o agente externo usando o COA (endereço aos cuidados) do nó móvel e, depois, do agente externo para o nó móvel

9. Descreva o roteamento indireto para um nó móvel.

- O agente nativo encapsula o datagrama original completo do correspondente dentro de um novo (e maior) datagrama
- Este é endereçado e entregue ao COA do nó móvel
- O agente externo "proprietário" do COA receberá e desencapsulará o datagrama — isto é, removerá o datagrama original do correspondente de dentro daquele datagrama maior de encapsulamento e repassará o datagrama original para o nó móvel

9. Descreva o roteamento indireto para um nó móvel.

10. Descreva o roteamento direto para um nó móvel.

- Na abordagem do roteamento direto, um agente correspondente na rede do correspondente primeiro aprende o COA do nó móvel
- Isso pode ser realizado fazendo o agente correspondente consultar o agente nativo
- O agente correspondente, então, executa um túnel para os datagramas diretamente até o COA do nó móvel

11. O que é o IP móvel?

- A arquitetura e os protocolos da Internet para suporte de mobilidade, conhecidos como IP móvel, estão definidos principalmente no RFC 5944
- O IP móvel é um protocolo flexível que suporta muitos modos de operação diferentes (por exemplo, operação com ou sem um agente externo), várias maneiras para agentes e nós móveis descobrirem uns aos outros, utilização de um único COA ou de vários COAs e diversas formas de encapsulamento
- Por isso, o IP móvel é um protocolo complexo
- A arquitetura do IP móvel contém muitos dos elementos já abordados, incluindo os conceitos de agentes nativos, agentes externos, endereços administrados e encapsulamento/desencapsulamento
- O padrão atual [RFC 5944] especifica a utilização de roteamento indireto para o nó móvel

12. Descreva sucintamente a abordagem de roteamento indireto do GSM.

- Do mesmo modo que o IP móvel, o GSM adota uma abordagem de roteamento indireto, primeiro roteando a chamada do correspondente para a rede nativa do nó móvel e daí para a rede visitada
- Em terminologia GSM, a rede nativa do nó móvel é denominada rede pública terrestre móvel nativa (PLMN nativa)
- A PLMN visitada, que denominaremos rede visitada, é a rede na qual o nó móvel estiver residindo
- A rede nativa mantém um banco de dados conhecido como registro nativo de localização (home location register — HLR), que contém o número permanente do telefone celular e as informações do perfil do assinante para cada assinante
- O importante é que o HLR também contém informações sobre as localizações atuais desses assinantes

12. Descreva sucintamente a abordagem de roteamento indireto do GSM.

- A rede visitada mantém um banco de dados conhecido como registro de localização de visitantes (visitor location register — VLR)
- O VLR contém um registro para cada usuário móvel que está atualmente na parte da rede atendida pelo VLR
- Um VLR normalmente está localizado juntamente com a central de comutação móvel (MSC) que coordena o estabelecimento de uma chamada de e para a rede visitada
- Na prática, a rede celular de uma operadora servirá como uma rede nativa para seus assinantes e como uma rede visitada para usuários móveis que são assinantes de outras operadoras de serviços celulares.
- A MSC nativa recebe a chamada e interroga o HLR para determinar a localização do usuário móvel

12. Descreva sucintamente a abordagem de roteamento indireto do GSM.

- No caso mais simples, o HLR retorna o número roaming da estação móvel (mobile station roaming number — MSRN), que denominaremos número de roaming
- O número de roaming é efêmero: é designado temporariamente a um usuário móvel quando ele entra em uma rede visitada

13. O que é uma transferência (handoff)?

- Uma transferência (handoff) ocorre quando uma estação móvel muda sua associação de uma estação-base para outra durante uma chamada
- Uma chamada de telefone móvel é roteada de início (antes da transferência) para o usuário móvel por meio de uma estação-base (a qual denominaremos antiga estação-base) e, após, por meio de outra estação-base (a qual denominaremos nova estação-base)
- Uma transferência entre estações-base resulta não apenas em transferência/recepção de/para um telefone móvel e uma nova estação-base, mas também no redirecionamento da chamada em curso de um ponto de comutação dentro da rede para a nova estação-base

14. Quais são as razões para ocorrer uma transferência?

- Há diversas razões possíveis para ocorrer transferência, incluindo
- (1) o sinal entre a estação-base corrente e o usuário móvel pode ter-se deteriorado a tal ponto que a chamada corre perigo de "cair" e
- (2) uma célula pode ter ficado sobrecarregada, manipulando grande número de chamadas
- Esse congestionamento pode ser aliviado transferindo usuários móveis para células próximas, menos congestionadas.

