第1章 統計的多様体

1 双対構造

定義 1.1 (双対構造). M を多様体とする。M 上の Riemann 計量 g とアファイン接続 ∇ , ∇^* の組 (g,∇,∇^*) が M 上の**双対構造 (dualistic structure)** であるとは、すべての $X,Y,Z \in \mathfrak{X}(M)$ に対し

$$X(g(Y,Z)) = g(\nabla_X Y, Z) + g(Y, \nabla_X^* Z)$$
(1.1)

が成り立つことをいう。このとき、 ∇ , ∇ * はそれぞれ g に関する ∇ *, ∇ の**双対接続 (dual connection)** であるという。

さらに ∇ , ∇ * がいずれも M 上平坦であるとき、 (g,∇,∇^*) は**双対平坦 (dually flat)** であるという。双対平坦 な双対構造を**双対平坦構造 (dually flat structure)** という。

命題 1.2 (双対接続の存在と一意性). M を多様体、g を M 上の Riemann 計量、 ∇ を M 上のアファイン接続とする。このとき、g に関する ∇ の双対接続がただひとつ存在する。

証明 一意性は g の非退化性より明らか。以下、存在を示す。まず、 $X,Z \in \mathfrak{X}(TM)$ を固定すると写像 $\mathfrak{X}(TM) \to C^{\infty}(M)$, $Y \mapsto X(g(Y,Z)) - g(\nabla_X Y,Z)$ は $C^{\infty}(M)$ -線型だから $\Omega^1(M)$ に属する。これを g で添字を上げて得られるベクトル場を ∇_X^*Z と記すことにすれば、 ∇_X^*Z は目的の式をみたす。ここまでで、目的の式をみたす写像 $\nabla^* \colon \Gamma(TM) \to \operatorname{Map}(\Gamma(TM),\Gamma(TM))$ が得られた。 ∇^* の像が $\operatorname{Hom}_{C^{\infty}(M)}(\Gamma(TM),\Gamma(TM)) = \Gamma(T^{\vee}M \otimes TM)$ に属することは、各 $Z \in \mathfrak{X}(M)$ に対し ∇^*Z の $C^{\infty}(M)$ -線型性を確かめればよく、すぐにわかる。あとは ∇^* の \mathbb{R} -線型性と Leibniz 則を確かめればよいが、これらも ∇^* の定め方から明らか。よって存在が示された。

定義 1.3 (双対アファイン座標). (g, ∇, ∇^*) を M 上の双対構造とする。 ∇ -アファイン座標 $\theta = (\theta^1, \dots, \theta^n)$ と ∇^* -アファイン座標 $\eta = (\eta_1, \dots, \eta_n)$ の組 (θ, η) が (g, ∇, ∇^*) に関する**双対アファイン座標 (dual affine coordinate)** であるとは、

$$g(\partial_i, \partial^j) = \delta_i^j \qquad (\forall i, j) \tag{1.2}$$

が成り立つことをいう。ただし $\partial_i \coloneqq \frac{\partial}{\partial \theta^i}$, $\partial^i \coloneqq \frac{\partial}{\partial \eta_i}$ である。