6.

Zeitbereichsdarstellung kontinuierlicher linearer Systeme

Zeitfunktionen eines linearen Übertragungssystems

作为激励信号特别重要的有:

- · δ脉冲, 其响应为冲激响应 h(t)
- 阶跃函数, 其响应为阶跃响应 ho(t)
- 正弦输入信号

Verhalten eines linearen Systems wird im Zeitbereich durch seine Antwort y(t) auf eine Anregung u(t) beschrieben

Von besonderer Bedeutung sind als Anregungssignale:

- <u>Deltaimpuls</u>, der als Antwort die Impulsantwort h(t) liefert
- Sprungfunktion, die als Antwort die Sprungantwort h $\sigma(t)$ liefert.
- Sinusförmige Eingangssignale

Zeitfunktionen eines linearen Übertragungssystems

业(t)

Lineares System

lineares System

lineares System

lineares System

h(t)

如果知道了冲激响应或阶跃响应,可以计算出对于任何输入信号 u(t) 的输出信号 y(t)。

通过傅立叶或拉普拉斯积分,线性且时不变传输系统的时域和频域行为相互关联。

<u>Eingangssignal</u> u(t) kann im Prinzip eine Spannung, ein Strom, aber auch eine akustische oder optische Größe sein.

Bei Kenntnis der <u>Impuls- oder Sprungantwort</u> kann das Ausgangssignal y(t) für jedes Eingangssignal u(t) berechnet werden.

Über das <u>Fourier- bzw. Laplaceintegral</u> sind das Zeit- und das Frequenzverhalten linearer und zeitinvarianter Übertragungssysteme miteinander verbunden.

Systemanalysen im Zeit- oder im Frequenzbereich

系统分析可以在时间域或频率域进行。

Übertragungssysteme werden durch eine eindeutige Zuordnung eines Ausgangssignals y(t) zu einem beliebigen Eingangssignal u(t) definiert:

$$y(t) = \mathbf{A}\{u(t)\}$$

Operator A{...} ist eine Vorschrift, die einer gegebenen Funktion eine (i.allg. andere) Funktion zuordnet (die Funktion 操作符 A{..} 是一种规则,将给定的函数映射到另一个函数上(通常是不同的 wird transformiert), (该承数被转换)

Lineare, zeitinvariante Systeme (LTI) (linear time invariant)

Linearität

Ein System ist linear, wenn eine gewichtete Überlagerung von Eingangssignalen im Ausgangssignal zu einer gewichteten Überlagerung der Einzelantworten führt ^{线性、时不变系统(LTI, linear time invariant)}

z.B. bei zwei Signalen zu

当输入信号的加权叠加在输出信号中导致单个响应的加权叠加时,系统是线性的,例如,在两个信号中时。

$$\mathbf{A}\{a_1 \times u_1(t) + a_2 \times u_2(t)\} = a_1 \times \mathbf{A}\{u_1(t)\} + a_2 \mathbf{A}\{u_2(t)\}$$

线性性质

Zeitinvarianz

Die Signalform der Systemantwort hängt bei zeitinvarianten Systemen nicht von dem Zeitpunkt des Anlegens eines Eingangssignals u(t) ab:

$$A\{u(t-\tau)\} = y(t-\tau)$$
 für beliebige u(t) und τ

时不变性

在时不变系统中,系统响应的信号形式不取决于施加输入信号 u(t) 的时间点:

Frage:

Weshalb müssen im Fall der Zeitinvarianz alle Energiespeicher beim Anlegen des Eingangssignals Null sein?

6.4.2. Impuls- und Sprungantwort

系统对于单位冲激函数 δ(t) 的响应被称为冲激响应 h(t)。

在控制工程中,通常用 g(t) 表示。

Impulsantwort

Die Antwort des Systems auf den Deltaimpuls $\delta(t)$ ist die Stoß- oder Impulsantwort h(t).

$$\mathbf{A}\{\delta(t)\} := h(t)$$

In der Regelungstechnik wird sie i. allg. mit g(t) bezeichnet.

6.4.2. Impuls- und Sprungantwort

Sprungantwort

Die Antwort h $\sigma(t)$ des Systems auf eine Sprungfunktion $\sigma(t)$ wird als Sprungantwort bezeichnet:

$$\mathbf{A}\{\sigma(t)\} := \mathbf{h}_{\sigma}(t)$$

6.4.2. Impuls- und Sprungantwort

Da die Deltafunktion $\delta(t)$ die Derivierte der Sprungfunktion $\sigma(t)$ ist, gilt damit auch:

$$h(t) = \mathbf{A} \left\{ \delta(t) \right\} = \mathbf{A} \left\{ \frac{d \, \sigma(t)}{dt} \right\} = \frac{d \, h_{\sigma}(t)}{dt}$$
und
$$h_{\sigma}(t) = \int_{-\infty}^{t} h(\tau) \, d\tau$$
(6.25)

die beiden Operatoren A und d/dt wurden vertauscht!!!

Meßtechnische Erfassung

Meßtechnisch kann die Deltafunktion $\delta(t)$ als schmaler Rechteckimpuls der Länge T approximiert werden um so die Impulsantwort des Systems zu bestimmen.

Wird das System mit $u(t) = \sigma(t)$ angeregt, so kann aus der berechneten oder gemessenen Sprungantwort h $\sigma(t)$ die Impulsantwort h(t) berechnet werden.

测量技术的获取

在测量技术中,可以将单位脉冲函数 δ(t) 近似为长度为 T 的窄矩形脉冲,以确定系统的冲激响应。

如果系统被激励为 $u(t) = \delta(t)$,那么可以从计算或测量得到的阶跃响应 ho(t) 推导出冲激响应 h(t)。

冲激响应也可以通过在频率域进行测量/计算间接获得!

$$h(t) = \mathbf{A} \left\{ \delta(t) \right\} = \mathbf{A} \left\{ \frac{d \sigma(t)}{dt} \right\} = \frac{d h_{\sigma}(t)}{dt}$$

Die Impulsantwort kann auch indirekt über eine Messung/Berechnung im Frequenzbereich gewonnen werden!!!

Beispiel: Unbelasteter RC-Tiefpaß

Für einen unbelasteten RC-Tiefpaß wurde die Sprungantwort bereits im Abschnitt 5.2 aus der Differentialgleichung berechnet. Mit τ = RC ergab sich 对于未负载的 RC 低通滤波器,阶跃响应已经

$$h\sigma(t) = (1 - e^{-t/\tau}) \cdot \sigma(t)$$

对于未负载的 RC 低通滤波器,阶跃响应已经在 5.2 节从微分方程中计算得出。当 t = RC 时,结果如下:

通过求导得到冲激响应。

Durch eine <u>Differentiation</u> folgt die Impulsantwort

$$h(t) = (1_{/\tau})e^{-t/\tau} \cdot \sigma(t)$$

Impulsantwort eines unbelasteten RC-Tiefpasses

 $g_0(t)$ $s_0(t)$ T_0 T_0 $g_0(t)$ $s_0(t)$ $g_0(t)$ $s_0(t)$ T_0 h(t)δ (t)

6.5. Die Faltung

6.5.1 Das Faltungsintegral

通过卷积积分,可以将任意输入信号 u(t) 的输出 y(t) 表示为 u(t) 和冲激响应 h(t) 的卷积:

Mit dem Faltungsintegral kann y(t) für beliebige Eingangssignale u(t) als Faltung von u(t) und der Impulsantwort h(t) angegeben werden:

$$y(t) = u(t) * h(t) = \int_{-\infty}^{\infty} u(\tau) h(t - \tau) d\tau$$
 (6.31)

u(t)
Lineares System
h(t)

$$y(t) = u(t) * h(t) = \int_{-\infty}^{\infty} u(\tau) h(t - \tau) d\tau$$

6.5.1 Das Faltungsintegral

Nachweis:

$$y(t) = u(t) * h(t) = \int_{-\infty}^{\infty} u(\tau) h(t - \tau) d\tau$$

u(t) kann als eine unendlich dichte Folge von gewichteten Dirac-Impulsen dargestellt werden, daher:

由于 u(t) 可以表示为无限密度的加权 Dirac 脉冲序列, 因此:

<mark>我们利用</mark>了线性性和时不变性的特性(并进行了对无限密度的 Dirac 脉冲的 极限过渡)!!!

$$u(t) = \int_{-\infty}^{\infty} u(\tau) \, \delta(t - \tau) \, d\tau$$

$$\begin{aligned} y(t) &= \mathbf{A} \Big\{ u(t) \Big\} = \int\limits_{-\infty}^{\infty} u(\tau) \; \mathbf{A} \Big\{ \delta(t - \tau) \Big\} \; d\tau \\ &= \int\limits_{-\infty}^{\infty} u(\tau) \; h(t - \tau) \; d\tau = u(t) * h(t) \end{aligned}$$

Wir haben die Eigenschaften der Linearität und Zeitinvarianz ausgenutzt (und einen Grenzübergang zu unendlich dichten Dirac-Impulsen durchgeführt)!!!.

6.5.1 Das Faltungsintegral

$$y(t) = u(t) * h(t) = \int_{-\infty}^{\infty} u(\tau) h(t - \tau) d\tau$$

Diese Faltungsoperation ist kommutativ

d.h. es gilt auch y(t) = h(t) * u(t)denn durch eine Variablensubstitution $t - \tau = \epsilon$ und $\epsilon = \tau$ erhalten wir

$$y(t) = \mathbf{A} \{ \mathbf{u}(t) \} = \int_{-\infty}^{\infty} \mathbf{h}(\tau) \ \mathbf{u}(t - \tau) \ d\tau = \mathbf{h}(t) * \mathbf{u}(t)$$

Hinweis:

Es ist leicht zu zeigen, daß für Faltungsoperationen auch das *Distributivgesetz*, d.h.

$$a(t) * [b(t) + c(t)] = a(t) * b(t) + a(t) * c(t)$$
 (6.35)

und das Assoziativgesetz,

$$a(t) * [b(t) * c(t)] = [a(t) * b(t)] * c(t)$$
 (6.36)

gelten.

Frage: Welche Systemantwort ergibt sich für $u(t) = \delta(t)$?

[A.:
$$y(t) = h(t)$$
]

Aufgabe: Sprungantwort

Die Sprungantwort eines linearen Systems ist

$$h_{\sigma}(t) = A\{\sigma(t)\} = \sigma(t) * h(t) = \int_{-\infty}^{t} h(\tau) d\tau$$

Leite ab!

6.4.3. Kausalität und Stabilität

Kausalität

因果性

一个系统是因果的,当且仅当传输系统的响应不会在激励之前发生。 为了满足这一条件,其冲激响应必须在负时间时刻为零,也就是说,它必须是右侧函数: h(t) ② 0 对于所有 t < 0 实际系统始终是因果的。

Ein System ist kausal, wenn die Antwort des Übertragungssystems nicht vor der Anregung erfolgt.

Dazu muss seine Impulsantwort für negative Zeiten verschwinden, also eine rechtsseitige Funktion sein:

$$h(t) \equiv 0$$
 für alle $t < 0$

Reale Systeme sind immer kausal.

 $h(t) \equiv 0$ für alle t < 0

Stabilität

一个系统被称为稳定,当且仅当它对于任何有界的输入信号都会产生有界的输出信号时。 [BIBO稳定性: 有界输入 -> 有界输出]。

为了保持稳定,冲激响应必须是绝对可积的(因此其傅里叶变换必须存在)。

如果对于所有 t,输入信号 u(t) 的幅值都小于一个有限常数 a,则称输入信号 u(t) 是有界的。

Ein System wird <u>stabil</u> genannt, wenn es auf jedes beschränkte Eingangssignal mit einem beschränkten Ausgangssignal antwortet

[BIBO-Stabilität: bounded input \rightarrow bounded output].

Ein Eingangssignal u(t) ist <u>beschränkt</u>, wenn der Betrag des Signals für alle t kleiner als eine endliche Konstante a ist: (für alle t). $|u(t)| \le a < \infty$

Beweis: Stabilität

Wir hatten als Stabilitätsbedingung Gl. (6.30) angegeben.

Für eine beschränkte Eingangsfunktion
$$\left| u(t) \right| \le a < \infty$$

$$\left| y(t) \right| = \left| \int_{-\infty}^{\infty} u(\tau) \ h(t - \tau) \ d\tau \right| \le \int_{-\infty}^{\infty} \left| u(\tau) \ h(t - \tau) \right| d\tau \le a \cdot \int_{-\infty}^{\infty} \left| h(t - \tau) \right| d\tau$$

Bei beschränktem Eingangssignal (bounded input) $|u(t)| = < a < \infty$ ergibt sich also bei absolut integrabler Impulsantwort ein beschränktes Ausgangssignal (bounded output) $|y(t)| = \langle a \cdot b \langle \infty \rangle$.

$$\int_{-\infty}^{\infty} \left| h(t-\tau) \right| d\tau \le b < \infty$$

6.5.2. Interpretation der Faltung

Jedes Eingangssignal u(t) kann näherungsweise als gewichtete Folge schmaler Rechteckimpulse Π_T (t-kT) dargestellt werden:

 $u(t) \approx \sum_{k=-\infty}^{k=+\infty} u(kT) \cdot \prod_{T} (t - kT)$

aufgrund der vorausgesetzten Linearität und Zeitinvarianz

$$y(t) \approx \sum_{k=-\infty}^{k=+\infty} u(kT) \cdot A\{\Pi_T(t-kT)\}$$

由于假设系统是线性和时间不变的,输出y(t)可以表示为输入的加权矩形脉冲的叠加的响应:

gewichtete Überlagerung von gegeneinander versetzten Systemantworten

6.5.2. Interpretation der Faltung

Faltung bei näherungsweiser Darstellung der Eingangsfunktion durch eine Folge von Treppenfunktionen

$$y(t) \approx \sum_{k=-\infty}^{k=+\infty} u(kT) \cdot A\{\Pi_T(t-kT)\}$$

$$y(t) \approx \sum_{k=-\infty}^{k=+\infty} u(kT) \cdot A\{\Pi_T(t-kT)\}$$

系统对一个窄的矩形脉冲的响应在 T ② 0 时越来越少地依赖于其持续时间,而更多地依赖于系统的传输特性!

Die Antwort des Systems auf einen schmalen Rechteckimpuls für $T \rightarrow 0$ hängt immer weniger von dessen Dauer, als vielmehr von den Übertragungseigenschaften des Systems ab!!!

$$F\ddot{u}r T \rightarrow 0 :$$

$$y(t) = u(t) * h(t) = \int_{-\infty}^{\infty} u(\tau) h(t - \tau) d\tau$$

Denn:

$$\frac{\lim_{T\to 0} A\{\frac{1}{T}\Pi_T(t-\tau)\} = h(t-\tau)$$
Antw

Antwort des Systems auf den Impuls $\delta(t-\tau)$

Graphische Interpretation der Faltung

$$y(t) = u(t) * h(t) = \int_{-\infty}^{\infty} u(\tau) h(t - \tau) d\tau$$

$$y(t) = \mathbf{A} \{ \mathbf{u}(t) \} = \int_{-\infty}^{\infty} \mathbf{h}(\tau) \ \mathbf{u}(t - \tau) \ d\tau = \mathbf{h}(t) * \mathbf{u}(t)$$

$$u(t-\tau)=u(-(\tau-t))$$

(f)

例子: 保持元件

因果性保持元件由脉冲响应定义。

Halteglied **Beispiel:**

因此,Δ脉冲导致输出值在一段时间T内保持不变。保持元件是一 个求平均值的滤波器(积分器),因为卷积y(t) = u(t) * h(t)产生

Ein kausales Halteglied ist durch die Impulsantwort

$$h(t) = \frac{1}{T} \Pi_T(t - T/2)$$

definiert.

Deltaimpuls führt damit Halten Ein einem eines zu Ausgangswertes für eine Zeit T.

Das Halteglied ist ein mittelwertbildendes Filter (Integrierer), denn die Faltung y(t) = u(t) * h(t) liefert

$$y(t) = \frac{1}{T} \int_{0}^{T} u(t - \tau) d\tau = \frac{1}{T} \int_{t-T}^{t} u(\tau) d\tau$$
 (6.43)

$$y(t) = \frac{1}{T} \int_{0}^{T} u(t - \tau) d\tau = \frac{1}{T} \int_{t-T}^{t} u(\tau) d\tau$$

Beispiel: Digitalrechnersimulation einer Faltungsoperation

Gegeben sei ein Rechtecksignal u(t) als Eingangssignal eines linearen Systems mit einer Impulsantwort h(t), die einen sin(x)/x-Verlauf hat.

卷积的特殊情况

Sonderfall der Faltung

输入信号是双向无限延伸的(复数)指数信号

Eingangssignal ist ein beidseitig unendlich ausgedehntes (komplexes) Exponentialsignal

$$u(t) = Ue^{j\omega_1 t}$$
 mit $U = \hat{u}e^{j\phi_u}$, \hat{u} reell

$$\begin{split} y(t) &= u(t)*h(t) = \int\limits_{-\infty}^{\infty} h(\tau) u(t-\tau) d\tau = \int\limits_{-\infty}^{\infty} h(\tau) U e^{j\omega_1 t} e^{-j\omega_1 \tau} d\tau \\ &= \left[\int\limits_{-\infty}^{\infty} h(\tau) e^{-j\omega_1 \tau} d\tau \right] \cdot U e^{j\omega_1 t} \end{split}$$

$$\begin{split} y(t) &= u(t) * h(t) = \int\limits_{-\infty}^{\infty} h(\tau) u(t-\tau) d\tau = \int\limits_{-\infty}^{\infty} h(\tau) U e^{j\omega_1 t} e^{-j\omega_1 \tau} d\tau \\ &= \left[\int\limits_{-\infty}^{\infty} h(\tau) e^{-j\omega_1 \tau} d\tau \right] \cdot U e^{j\omega_1 t} \end{split}$$

Fouriertransformierte $H(j\omega)$ der Impulsantwort an der Stelle $\omega = \omega_1$

$$y(t) = H(j\omega_1) \cdot Ue^{j\omega_1 t} = H(j\omega_1) \cdot u(t)$$

Exponentialsignale als Eingangssignal liefern also Exponentialsignale als Ausgangssignal.

$$y(t) = H(j\omega_1) \cdot Ue^{j\omega_1 t} = H(j\omega_1) \cdot u(t)$$

Ein äquivalentes Ergebnis würde sich auch ergeben haben, wenn wir ein Signal $u(t) = U e^{st}$ verwendet und die Laplacetransformation eingesetzt hätten:

$$y(t) = H(s) Ue^{st}$$
.

Es gilt:

$$y(t) = Ye^{j\omega_1 t}$$
 mit $Y = \hat{y}(\omega_1)e^{j\phi_y(\omega_1)}$, \hat{y} reell

$$u(t) = Ue^{j\omega_1 t}$$

$$y(t) = H(j\omega_1) \cdot Ue^{j\omega_1 t}$$

y(t)

u(t)

Lineares System

h(t)

$$u(t) = U \cdot [\cos(\omega_1 t) + j \sin(\omega_1 t)]$$

$$H(j\omega_1) = \frac{Y}{U} = \frac{\hat{y}}{\hat{u}} e^{j[\phi_y(\omega_1) - \phi_u(\omega_1)]}$$

$$u(t) = \frac{U}{2} \left[e^{j\omega_{l}t} + e^{-j\omega_{l}t} \right]$$

$$u(t) = \frac{U}{2} \left[e^{j\omega_1 t} + e^{-j\omega_1 t} \right] \qquad y(t) = H(j\omega_1) \cdot \frac{U}{2} \left[e^{j\omega_1 t} + e^{-j\omega_1 t} \right]$$

u(t)

Lineares System

h(t)

$$u(t) = U \cdot \cos(\omega_1 t)$$

$$y(t) = H(j\omega_1) \cdot U \cdot \cos(\omega_1 t)$$

y(t)

Sinussignale als Eingangssignal liefern also Sinussignale als Ausgangssignal.

Für den Amplituden- und Phasengang des linearen Systems ergeben sich damit die Werte

$$A_h(\omega_1) = \frac{\hat{y}(\omega_1)}{\hat{u}}$$

$$\varphi_h(\omega_1) = \varphi_y(\omega_1) - \varphi_u(\omega_1)$$

Gilt jedoch nur für den Fall beidseitig unendlich ausgedehnter Exponentialsignale!!!