บทที่ 4 รูปแบบการเชื่อมต่อเครือข่าย

รูปแบบการเชื่อมต่อเครือข่ายหรือมักเรียกสั้นๆ ว่า โทโพโลยี (Topologies) เป็นลักษณะทั่วไปที่กล่าวถึงการเชื่อมต่อคอมพิวเตอร์ทาง กายภาพว่า มีรูปแบบหน้าตาเป็นอย่างไร เพื่อให้สามารถสื่อสารร่วมกันได้และด้วยเทคโนโลยีเครือข่ายท้องถิ่น จะมีรูปแบบของโทโพโลยีหลายแบบ ด้วยกัน ดังนั้น จึงเป็นสิ่งสำคัญที่จะต้องเรียนรู้และทำความเข้าใจแต่ละโทโพโลยีว่ามีความคล้ายคลึง หรือแตกต่างกันอย่างไร รวมถึงข้อดีและ ข้อเสียของแต่ละโทโพโลยี และโทโพโลยีที่ใช้กันบนเครือข่ายท้องถิ่นมีอยู่ 5 ชนิด คือ

- 1) โทโพโลยีแบบบัส (bus)
- 2) โทโพโลยีแบบดาว (star)
- 3) โทโพโลยีแบบวงแหวน (ring)
- 4) โทโพโลยีแบบต้นไม้ (tree)
- 5) โทโพโลยีแบบเมช (mesh)

แต่ที่นิยมใช้จะมีอยู่สามชนิดด้วยกัน คือ โทโพโลยีแบบดาว (star)

1.โทโพโลยีแบบบัส เป็นรูปแบบการเชื่อมต่อเครือข่ายที่ใช้ช่องทางการสื่อสารร่วมกัน ซึ่งประกอบด้วยคอมพิวเตอร์ต่างๆ ที่เชื่อมต่อบน บัส หรือสายเคเบิลที่ทำหน้าที่เหมือนกับกระดูกสันหลัง แบบบัส (BUS Topology) เป็นการเชื่อมต่อคอมพิวเตอร์ทุกเครื่องบนสายสัญญาณหลัก เส้นเดียว (backbone) ที่เรียกว่า BUS เพราะปลายทั้งสองด้านปิดด้วยอุปกรณ์ที่เรียกว่า Terminator ไม่มีคอมพิวเตอร์เครื่องใดเครื่องหนึ่งเป็น ศูนย์กลางในการเชื่อมต่อ คอมพิวเตอร์เครื่องใดหยุดทำงาน ก็ไม่มีผลกับคอมพิวเตอร์เครื่องอื่นๆ ในเครือข่าย

ข้อดี-ข้อเสีย โทโพโลยีแบบบัส

ข้อดี	ข้อเสีย
มีรูปแบบโครงสร้างไม่ซับซ้อน ติดตั้งง่าย	หากสายแกนหลักเกิดขาด เครือข่ายทั้งระบบจะหยุดการทำงาน
การเพิ่มโหนดสามารถเพิ่มต่อเข้ากับสายแกนหลักได้ทันที	กรณีเครือข่ายหยุดการทำงาน ตรวจสอบจุดเสียค่อนข้างยาก
ประหยัดสายส่งข้อมูล เนื่องจากทุกโหนดสามารถเชื่อมต่อเข้ากับสาย	แต่ละโหนดที่เชื่อมต่อบนเครือข่ายจะต้องอยู่ห่างกันตามข้อกำหนด
แกนหลักได้ทันที	

2 แบบดาว (Star topology) เป็นการเชื่อมต่อสถานีหรือจุดต่างๆ ออกจากคอมพิวเตอร์ศูนย์กลางหรือคอมพิวเตอร์แม่ข่ายที่เรียกว่า Server แต่ละสถานีจะมีสายสัญญาณเชื่อมต่อกับศูนย์กลาง ไม่มีการใช้สายสัญญาณร่วมกัน เมื่อสถานีใดเกิดความเสียหายจะไม่มีผลกระทบกับ สถานีอื่นๆ ปัจจุบันนิยมใช้อุปกรณ์ SWITCH เป็นตัวเชื่อมต่อจากคอมพิวเตอร์แม่ข่ายหรือคอมพิวเตอร์ศูนย์กลาง

ข้อดี-ข้อเสีย โทโพโลยีแบบดาว

ข้อดี	ข้อเสีย
มีความคงทนสูงกว่าแบบบัส โดยหากสายเคเบิล	สิ้นเปลืองสายเคเบิล เนื่องจากทุกๆ โหนดต้องมีสายเคเบิลเชื่อมโยงเข้ากับ Hub
บางโหนดเสียหาย จะไม่กระทบต่อโหนดอื่นๆ	หรือ SWITCH
การวิเคราะห์จุดเสียบนเครือข่ายทำได้ง่ายกว่า	พอร์ตเชื่อมต่อบน Hub หรือ SWITCH มีจำนวนจำกัด แต่ถ้าหากใช้งานจนเต็ม
เนื่องจากมี Hub หรือ SWITCH เป็นศูนย์กลาง	ก็สามารถเชื่อมโยงHub หรือ SWITCH ตัวที่สองได้
	หาก อุปกรณ์.Hub หรือ SWITCH เสียหายเครือข่ายจะหยุดการทำงานทันที

3 แบบวงแหวน (Ring Topology) เป็นการเชื่อมต่อเครือข่ายเป็นรูปวงแหวนหรือแบบวนรอบ โดยสถานีแรกเชื่อมต่อกับสถานสุดท้าย การรับส่งข้อมูลในเครือข่ายจะต้องผ่านทุกสถานีโดยมีตัวนำสารวิ่งไปบนสายสัญญาณของแต่ละสถานี ต้องคอยตรวจสอบข้อมูลที่ส่งมา ถ้าไม่ใช่ของ ตนเองต้องส่งผ่านไปยังสถานีอื่นต่อไป

ข้อดี-ข้อเสีย โทโพโลยีแบบวงแหวน

ข้อดี	ข้อเสีย
สิทธิในการส่งข้อมูลของแต่ละโหนดภายในเครือข่ายมีความ	สายเคเบิลที่ใช้เป็นวงแหวน หากเกิดชำรุดเสียหายเครือข่ายจะหยุดการทำงาน
เท่าเทียมกัน	ลง
ประหยัดสายเคเบิล	หากมีบางโหนดบนเครือข่ายเกิดขัดข้อง จะยากต่อการตรวจสอบและค้นหา
	โหนดที่เสีย
การติดตั้งไม่ยุ่งยาก รวมถึงการเพิ่มหรือลดโหนดทำได้ง่าย	ประสิทธิภาพต่ำกว่าแบบอื่น เนื่องจากต้องผ่านอุปกรณ์หลายตัว ถ้าอุปกรณ์บาง
ขึ้น	ตัวหรือสายเคเบิ้ลชำรุด จะทำให้เครือข่ายทั้งหมดไม่สามารถใช้การได้ (ในกรณี
	Ringทางเดียว)

4 แบบต้นไม้ (Tree Topology) เป็นการผสมผสานกันระหว่างการต่อแบบ Bus และ Star หรือเป็นการต่อ Star ซ้อนกันหลายชั้น

ข้อดี-ข้อเสีย โทโพโลยีแบบต้นไม้

ข้อดี	ข้อเสีย
ในแต่ละส่วนย่อยๆ จะต่อถึงกันแบบ Star ทำได้รับข้อดีของการต่อ	ระยะทางในแต่ละส่วนย่อยๆ จะถูกจำกัดโดยชนิดของสาย ถ้าสาย
แบบ Star มาด้วย	หลัก Hub หรือ SWITCH ตัวกลางหลักเสีย ระบบเครือข่ายทั้งหมดจะ
	ไม่สามารถใช้การได้

5 แบบเมช (Mesh Topology) อุปกรณ์ต่างๆ ทุกๆ ตัวมีสายหรือส่งข้อมูลต่อเฉพาะระหว่างแต่ละตัว ทำให้มองดูเหมือนว่าอุปกรณ์ สองตัวมีถนนที่ใช้เฉพาะสองอุปกรณ์นั้นๆ ดังนั้นหากมีอุปกรณ์ n ตัว แต่ละตัวจะมีช่องทาง (channel).เท่ากับ n-1 ช่อง และมีช่องทางทั้งหมดใน เครือข่ายเท่ากับ สูตรนี้ n(n-1)/2

ข้อดี-ข้อเสีย โทโพโลยีแบบเมช

ข้อดี	ข้อเสีย
ตรวจหาจุดที่เสียหายได้ง่าย มีความปลอดภัยทนทาน รับส่งข้อมูลได้	ใช้สายเป็นจำนวนมาก ตรวจสอบแก้ไขระบบทำได้ยาก ไม่นิยมเพราะ
ปริมาณมากและไม่มีปัญหาเรื่องการจัดการจราจร	สินเปลืองค่าใช้จ่าย

2. ประเภทของเครือข่าย

เครือข่ายคอมพิวเตอร์ สามารถจำแนกตามระยะทางของการเชื่อมต่อระหว่างอปกรณ์การสื่อสารได้เป็นสี่ประเภทดังนี้

2.1 เครือข่ายท้องถิ่น (Local Area Network หรือ LAN) เป็นเครือข่ายส่วนบุคคลที่มีการเชื่อมต่อและครอบคลุมภายใต้พื้นที่และ ระยะทางที่จำกัด ตัวอย่างเช่น ภายในอาคารเดียวกัน ภายในสำนักงาน หรือภายในมหาวิทยาลัย ระบบนี้เป็นระบบแลนอย่างง่ายสามารถทำการ เชื่อมต่อเครื่องพืชีตั้งแต่สองตัวขึ้นไปให้สามารถใช้งานร่วมกันได้ นั้นหมายรวมถึงการใช้เครื่องพิมพ์ร่วมกันด้วย ดังนั้นระบบนี้จึงเหมาะสำหรับการ เชื่อมต่อเครื่องพืชีหลายๆ เครื่องเพื่อให้สามารถใช้ทรัพยากรร่วมกันได้ แต่เนื่องจากระบบถูกจำกัดด้วยขนาดระยะทางการเชื่อมต่อจึงทำได้ระมาณ ไม่เกิน 10 กิโลเมตร มีความเร็วในการแลกเปลี่ยนข้อมูลสูง ประมาณ10/100/1000 Mbps สื่อที่ใช้มักจะเป็นสื่อแบบสายสัญญาณ ส่วนใหญ่จะใช้ ในองค์การ สำนักงาน เช่น เครือข่ายภายในมหาวิทยาลัยหรือ เครือข่าย ภายในบริษัท แต่หากมีการยืดระยะทางไกลออกไป จำเป็นต้องใช้อุปกรณ์ ในการทวนสัญญาณ (Repeater) แต่ในการยืดระยะทางออกไปต้องคำนึงถึงข้อจำกัดในระยะทางบวกกับจำนวนอุปกรณ์ทวนสัญญาณที่นำมาใช้ งานในเครือข่ายด้วย ดังภาพ

- 2.2 เครือข่ายระดับเมือง (Metropolitan Area Network หรือ MAN) เป็นเครือข่ายคอมพิวเตอร์ขนาดใหญ่ที่มีการเชื่อมต่อ เครือข่ายแลนหลายๆ วงเข้าด้วยกัน ซึ่งอาจครอบคลุมพื้นที่ทั้งตำบลหรือทั้งอำเภอ แต่จะเล็กกว่า WAN โดยเครือข่ายนี้จำเป็นต้องมีแบ็กโบน (Backbone) ที่ทำหน้าที่เป็นสายแกนหลักในการเชื่อมต่อเครือข่ายในกลุ่มเข้าด้วยกัน เครือข่ายคอมพิวเตอร์ชนิดนี้เกิดจากการเชื่อมต่อของ เครือข่ายคอมพิวเตอร์แบบท้องถิ่นหลายๆ เครือข่ายเข้าด้วยกัน ยกตัวอย่างเช่น การบริการเคเบิลทีวีตามจังหวัดต่างๆ โดยเครือข่าย MAN มี รูปแบบดังภาพ
- 2.3 เครือข่ายระดับประเทศ (Wide Area Network หรือ WAN) เป็นเครือข่ายคอมพิวเตอร์ ขนาดใหญ่มาก ภายในเครือข่าย ประกอบไปด้วย เครือข่ายแบบ LAN และ MAN พื้นที่ของเครือข่ายแบบ WAN สามารถครอบคลุมได้ทั้งประเทศ หรือทั่วโลก เครือข่าย อินเทอร์เน็ตที่ให้บริการครอบคลุมทั่วโลกก็เป็นเครือข่ายแบบ WAN เครือข่ายหนึ่งเช่นกัน ดังภาพ โดยที่เครือข่ายประเภทนี้มีการใช้ช่องทางการ สื่อสารหลายรูปแบบด้วยกัน ยกตัวอย่างเช่น ใช้รูปแบบการเชื่อมต่อโดยใช้สายโทรศัพท์ สายเคเบิล และดาวเทียม เป็นต้น