

AOD2544

150V N-Channel AlphaMOS

General Description

- Latest Trench Power AlphaMOS (αMOS MV) technology
- Very Low R_{DS(ON)}
- Low Gate Charge
 Optimized for fast-switching applications
- RoHS and Halogen-Free Compliant

Application

- Synchronus Rectification in DC/DC and AC/DC Converters
- Isolated DC/DC Converters in Telecom and Industrial

Product Summary

150V I_D (at V_{GS}=10V) 23A $R_{DS(ON)}$ (at V_{GS} =10V) < 54mΩ $R_{DS(ON)}$ (at V_{GS} =4.5V) < 66mΩ

100% UIS Tested 100% Rg Tested

Orderable Part Number	Package Type	Form	Minimum Order Quantity			
AOD2544	TO-252	Tape & Reel	2500			
Absolute Maximum Ratings T₄=25°C unless otherwise noted						

Absolute Maximum Ratings T _A =25°C unless otherwise noted						
Parameter		Symbol	Maximum	Units		
Drain-Source Voltage		V _{DS}	150	V		
Gate-Source Voltage		V _{GS}	±20	V		
Continuous Drain	T _C =25°C		23			
Current	T _C =100°C	I _D	16	A		
Pulsed Drain Current ^C		I _{DM}	45			
Continuous Drain	T _A =25°C		6.5	Δ.		
Current	T _A =70°C	IDSM	5.0	A		
Avalanche Current ^C		I _{AS}	15	A		
Avalanche energy L=0.3mH ^C		E _{AS}	34	mJ		
V _{DS} Spike	10µs	V _{SPIKE}	180	V		
	T _C =25°C	Р	75	W		
Power Dissipation ^B	T _C =100°C	P _D	37.5	VV		
	T _A =25°C	В	6.2	W		
Power Dissipation A T _A =70°C		— P _{DSM}	4.0	VV		
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 175	°C		

Thermal Characteristics						
Parameter		Symbol Typ		Max	Units	
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{\theta JA}$	15	20	°C/W	
Maximum Junction-to-Ambient AD	Steady-State	ГХ⊕ЈА	40	50	°C/W	
Maximum Junction-to-Case	Steady-State	$R_{\theta JC}$	1.6	2.0	°C/W	

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Conditions		Тур	Max	Units
STATIC I	PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$		150			V
	Zero Gate Voltage Drain Current	V _{DS} =150V, V _{GS} =0V				1	μA
I _{DSS}	Zero Gate Voltage Drain Gurrent		T _J =55°C			5	μΛ
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V				±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$		1.7	2.15	2.7	V
		V_{GS} =10V, I_D =5A			45	54	mΩ
$R_{DS(ON)}$	Static Drain-Source On-Resistance		T _J =125°C		89	107	
		V_{GS} =4.5V, I_D =2A			52.5	66	mΩ
g _{FS}	Forward Transconductance	$V_{DS}=5V$, $I_{D}=5A$	V_{DS} =5V, I_{D} =5A		17		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.72	1	V
Is	Maximum Body-Diode Continuous Cur	num Body-Diode Continuous Current				23	Α
DYNAMI	CPARAMETERS		•				
C _{iss}	Input Capacitance				675		рF
Coss	Output Capacitance	V _{GS} =0V, V _{DS} =75V, f=1MHz			78		pF
C_{rss}	Reverse Transfer Capacitance		1 1		4		рF
R_g	Gate resistance	f=1MHz		1.4	2.9	4.4	Ω
SWITCH	NG PARAMETERS						
Q _g (10V)	Total Gate Charge				11.5	20	nC
Q _g (4.5V)	Total Gate Charge	\/ _10\/ \/ _75\/	V _{GS} =10V, V _{DS} =75V, I _D =5A		5.5	10	nC
Q_{gs}	Gate Source Charge	V _{GS} =10V, V _{DS} =73V, 1			2		nC
Q_{gd}	Gate Drain Charge				2.5		nC
$t_{D(on)}$	Turn-On DelayTime				6		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =75V, R_L =15 Ω , R_{GEN} =3 Ω			3		ns
t _{D(off)}	Turn-Off DelayTime				20		ns
t _f	Turn-Off Fall Time				5		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =5A, dI/dt=500A/μs	I _F =5A, dI/dt=500A/μs		37		ns
Q_{rr}	Body Diode Reverse Recovery Charge	_e I _F =5A, dI/dt=500A/μs			210		nC

A. The value of R_{BJA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_{A} =25° C. The Power dissipation P_{DSM} is based on R_{BJA} t≤ 10s and the maximum allowed junction temperature of 150° C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175° C may be used if the PCB allows it.

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms_and_conditions_of_sale

Rev.1.1: September 2023 www.aosmd.com Page 2 of 6

B. The power dissipation P_D is based on $T_{J(MAX)}=175^\circ$ C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Single pulse width limited by junction temperature $T_{J(MAX)}$ =175° C.

D. The R_{0JA} is the sum of the thermal impedance from junction to case R_{0JC} and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_{J(MAX)}=175° C. The SOA curve provides a single pulse rating.

G. The maximum current rating is package limited.

H. These tests are performed with the device mounted on 1 in FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

V_{DS} (Volts)
Figure 1: On-Region Characteristics (Note E)

 $\label{eq:local_potential} \mathbf{I_{D}}\left(\mathbf{A}\right)$ Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

V_{GS} (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

V_{GS}(Volts)
Figure 2: Transfer Characteristics (Note E)

Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
(Note E)

V_{SD} (Volts) Figure 6: Body-Diode Characteristics (Note E)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

T_{CASE} (° C) Figure 12: Power De-rating (Note F)

T_{CASE} (° C)
Figure 13: Current De-rating (Note F)

Pulse Width (s)
Figure 14: Single Pulse Power Rating Junction-to-Ambient (Note H)

Pulse Width (s)
Figure 15: Normalized Maximum Transient Thermal Impedance (Note H)

www.aosmd.com Page 5 of 6 Rev.1.1: September 2023

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

