Machine Problem 2

- Applying the Naïve Gaussian Bayes classifier on MNIST.
 - Use two solutions (MLE/MAP) to estimate prior distribution P(Y)
 - Estimate the independent Gaussian density for each dimension of feature vector
 - Report error rates with three test protocol, you need to tune α_d for d=0,...,9
 - Test/training
 - Test/validation/training
 - 5-fold/10-fold cross-validation
 - Tune α_d = 1%, 2%, 4%, 8%, 16% of training examples.
 - Compare your result with KNN, which is better? Why?
 - KNN lost correlations between different features (pixels in MNIST case)?
 - Do you observe over fitting? Do $\{\alpha_d\}$ help to reduce over fitting?

Machine Problem 2

- Due in three weeks (11:59am, before Thursday's class, Sep 18)
- Submit to cap5610ucf@gmail.com.
- Report, and source code