Babes-Bolyai University, Faculty of Mathematics and Computer Science Analysis for Computer Science

Year: 2015/2016

Exercise Set #5

- 1. Find the set of accumulation points for the following sets:
- a) $A = \{1, 2, 3\}$, b) $A = (1, 2) \cup (2, 3)$, c) $A = (-\infty, 1) \cup (2, \infty)$, d) $A = \mathbb{Q}$, e) $A = \mathbb{Z}$, f) $A = \{(-1)^n + \frac{1}{n} \mid n \in \mathbb{N}^*\}$.
- 2. Study the existence of the limit of Dirichlet's function $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} 1, & \text{if } x \in \mathbb{Q}, \\ 0, & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

at every accumulation point of its domain. Then consider the function $g: \mathbb{R} \to \mathbb{R}$,

$$g(x) = \begin{cases} x, & \text{if } x \in \mathbb{Q}, \\ 0, & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

- 3. Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x(1 + \sin x)$. Show that f has no limit at $+\infty$.
- 4. Find:

- a) $\lim_{x \to 4} x(5-x^2)$, b) $\lim_{x \to -\infty} (-x^3+2x)$, c) $\lim_{x \to 2} \frac{x^3-4}{x^2+1}$, d) $\lim_{x \to 1} \frac{x^2-1}{3x-3}$, e) $\lim_{x \to 1} \frac{\sqrt{x}-1}{x-1}$, f) $\lim_{x \to 0} \frac{\sqrt{1+2x}-\sqrt{1+x}}{x^2+2x}$, g) $\lim_{x \to \infty} \sqrt{x}(\sqrt{x+1}-\sqrt{x})$, h) $\lim_{x \to 0} \frac{\sqrt[3]{1+x}-1}{x}$, i) $\lim_{x \to 2} \frac{1}{2-x}$, j) $\lim_{x \to -3} \frac{x^2-9}{(x+3)^2}$, k) $\lim_{x \to 1} \left(\frac{1}{1-x}-\frac{1}{x^3-1}\right)$, l) $\lim_{x \to 0} \frac{x^2}{|x|}$, m) $\lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}}$, n) $\lim_{x \to -\infty} \frac{x}{\sqrt{x^2+1}}$,
- o) $\lim_{x \to -\infty} e^{\frac{|x|+1}{x-1}}$, p) $\lim_{x \to 0} \left(\frac{1+4x+x^2}{1+x} \right)^{\frac{1}{x}}$, r) $\lim_{x \to -\infty} \left(\frac{x^2+x+1}{x^2-x+1} \right)^{\sqrt{-x}}$.
- 5. Find $a, b \in \mathbb{R}$ such that $\lim_{x \to \infty} \left(\sqrt{x^2 x + 1} + ax + b \right) = 0$.
- 6. Find the one-sided limits of the function $f:D\to\mathbb{R}$ (with $D\subseteq\mathbb{R}$ the maximal domain of f) at 1, where
- a) $f(x) = e^{\frac{1}{x^2 1}}$, b) $f(x) = e^{\frac{x^2 2}{x 1}}$, c) $f(x) = e^{1 + \frac{2}{|x 1|}}$, d) $f(x) = \frac{|x| 1}{x 1}$.
- 7. Study the continuity of the following functions $(n \in \mathbb{N})$ and determine the type of their discon-
- a) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \lim_{n \to \infty} \frac{e^{nx}}{1 + e^{nx}}$, b) $g: \mathbb{R} \setminus \{-1\} \to \mathbb{R}$, $g(x) = \lim_{n \to \infty} \frac{x^n + x}{x^{2n} + 1}$,
- 8. Let $A \subseteq \mathbb{R}$. A function $f: A \to \mathbb{R}$ is called Lipschitz if $\exists L \geq 0$ such that

$$|f(x) - f(y)| \le L|x - y|, \quad \forall x, y \in A.$$

Prove that any Lipschitz function is continuous. Then prove that the function $f:[0,1]\to\mathbb{R}$, $f(x) = \sqrt{x}$ is not Lipschitz. Thus, there exist continuous functions that are not Lipschitz.

- 9. Find a function $f: \mathbb{R} \to \mathbb{R}$ that is discontinuous at every point in \mathbb{R} and |f| is continuous on \mathbb{R} .
- 10. Let $f,g:[0,1]\to\mathbb{R}$ be continuous such that $f(x)=g(x),\,\forall x\in[0,1]\cap\mathbb{Q}$. Prove that $f(x) = g(x), \forall x \in [0, 1].$

True or false: is it enough to assume that f and g are continuous on $[0,1] \setminus \{\alpha\}$ for some $\alpha \in [0,1] \cap (\mathbb{R} \setminus \mathbb{Q})$?

- 11. A function $f: \mathbb{R} \to \mathbb{R}$ is called additive if $f(x+y) = f(x) + f(y), \forall x, y \in \mathbb{R}$. Find all functions f that are continuous and additive on \mathbb{R} . Hint: Show first that $f(q) = q \cdot f(1), \forall q \in \mathbb{Q}$.
- 12. Show that the following functions $f: \mathbb{R} \to \mathbb{R}$ have at least one zero in the set A:
- a) $f(x) = (x^2 + 1)(x b) + (x^4 + 1)(x a)$, A = (a, b) $(a, b) \in \mathbb{R}$ with a < b, b) $f(x) = x \cos x$, $A = \mathbb{R}$, c) f = a polynomial function of odd degree, $A = \mathbb{R}$.
- 13. (Brouwer's Fixed Point Theorem) Let $a, b \in \mathbb{R}$ with a < b and $f : [a, b] \to [a, b]$ be a continuous function. Prove that f has at least one fixed point (that is, there exists $x_0 \in [a, b]$ such that $f(x_0) = x_0).$
- 14. Find all continuous functions $f: \mathbb{R} \to \mathbb{R}$ such that $f(\mathbb{R})$ is finite.
- 15. Find all continuous functions $f: \mathbb{N} \to \mathbb{R}$ and all continuous functions $f: \mathbb{R} \to \mathbb{N}$.

Additional exercises:

16. Study the continuity of Thomae's function $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} 1/n, & \text{if } x = m/n \in \mathbb{Q} \text{ where } m \text{ and } n > 0 \text{ are relatively prime,} \\ 0, & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Hint: One can easily show that f is discontinuous at every rational number. Moreover, f is continuous at every irrational number. To show this, note that having an irrational number, denominators of rational numbers that approach it get large.

17. Using the ε - δ characterization of limits, show that

(i)
$$\lim_{x \to 0} x \sin \frac{1}{x} = 0$$
, (ii) $\lim_{x \to 0} \frac{1}{x^2} = +\infty$, (iii) $\lim_{x \to \infty} \frac{x^2}{x^2 + 1} = 1$.