COMPITO DI CONTROLLI AUTOMATICI

Corso di Laurea in Ingegneria dell'Informazione 15 Luglio 2013

Esercizio 1. [10 punti] Dato un sistema lineare e tempo-invariante, causale, descritto dalla funzione di trasferimento

$$G(s) = \frac{1 + \frac{s^2}{100}}{s(1 + s^2)},$$

- i) si determini il diagramma di Bode (modulo e fase) della risposta in frequenza del sistema;
- ii) si determini il diagramma di Nyquist di $G(j\omega)$ per $\omega \geq 0$ (il diagramma diventerebbe troppo confuso se disegnato anche per $\omega < 0$);
- iii) si studi, attraverso il criterio di Nyquist, la stabilità BIBO del sistema ottenuto per retroazione unitaria negativa da kG(s), con k parametro reale, e si determini l'eventuale numero di poli a parte reale positiva di W(s) al variare di $k \in \mathbb{R}$.

Soluzione. Il diagramma di Bode del modulo esibisce sia un picco di risonanza che uno di antirisonanza infinito. La fase asintotica e quella reale coincidono, e valgono -90° per $\omega < 1$ e per $\omega > 10$, mentre $+90^{\circ}$ per $1 < \omega < 10$, esibendo quindi una doppia discontinuità. Nel diagramma di Nyquist, l'asintoto è verticale e passante per s=0, l'intersezione con l'asse reale si ha solo in $\omega=1$ rad/s, dove il diagramma passa per l'origine. Il diagramma di Nyquist è interamente rettilineo e contenuto nell'asse immaginario: arriva dall'infinito dal basso, inverte la rotta e torna all'infinito in basso, rispunta all'infinito in alto, passa per l'origine e torna sul semiasse negativo, dove fa presto un'inversione di rotta per tornare asintoticamente a zero. In figura Bode e Nyquist

Completando il diagramma con i cerchi all'infinito orari (un quarto di cerchio per il polo nell'origine, trattandosi di mezzo diagramma di Nyquist, un semicerchio per il polo immaginario in i), si vede facilmente che se k>0 il semi-diagramma compie 1 giro orario attorno $-\frac{1}{k}$, quindi $N_G=-2$, mentre se k<0 mezzo giro orario, quindi $N_G=-1$. Essendo $n_{G_+}=0$, si ha $n_{W_+}=2$ se k>0 e $n_{W_+}=1$ se k<0. Non si ha quindi mai stabilità BIBO per W(s).

Esercizio 2. [10 punti] Dato lo schema di figura (con resistenze uguali, condensatori uguali, e RC = 1)

i) Si determini la funzione di trasferimento $W_{id}(s)$, nel caso di operazionale ideale;

- ii) si determini la funzione di trasferimento $W_r(s)$, nel caso di operazionale reale con $Y(s) = G(s)[V_+(s) V_-(s)]$ e $G(s) = \frac{k}{s+1}$, k > 0, verificando che $W_r(s)$ tende a $W_{id}(s)$ per $k \to +\infty$;
- iii) una volta espressa $W_r(s) = \frac{p(s)}{q(s)}$ in forma coprima, si esprima q(s) = d(s) + kn(s) con d(s), n(s) polinomi opportuni, di modo che i poli di $W_r(s)$ si possano dedurre dal luogo delle radici per $\tilde{G}(s) = \frac{n(s)}{d(s)}$;
- iv) si traccino i luoghi positivo e negativo di $\tilde{G}(s)$, deducendo per quali valori di $k \in \mathbb{R}$ $W_r(s)$ è stabile;

Soluzione. Da

$$V_{+}(s) = \frac{s}{s+1}U(s), \ V_{-}(s) = \frac{sY(s) + U(s)}{s+1}$$

si ricava immediatamente

$$W_{id}(s) = \frac{s-1}{s}, \qquad W_r(s) = \frac{k(s-1)}{s^2 + (2+k)s + 1} = \frac{s-1}{s + \frac{(s+1)^2}{k}}$$

che prova facilmente che $W_r(s)$ tende a $W_{id}(s)$. Si ha $q(s)=(s+1)^2+ks$, da cui $d(s)=(s+1)^2$, n(s)=s, e $\tilde{G}(s)=\frac{s}{(s+1)^2}$, i cui luoghi positivo e negativo sono in figura (punti doppi sono solo s=-1 (k=0) e s=+1 (k=-4), quest'ultimo nel luogo negativo), mentre le intersezioni con l'asse immaginario si hanno solo nel luogo negativo in $\pm i$ per k=-2. Si ha quindi stabilità BIBO per k>-2, come si vede facilmente anche applicando la regola dei segni di Cartesio a q(s). Quindi lo schema è sempre stabile, salvo invertendo i morsetti, nel qual caso dev'essere k<2.

Esercizio 3. [6 punti] Dato un sistema lineare e tempo-invariante, causale, descritto dalla funzione di trasferimento

 $G(s) = \frac{10}{(s+1)^2},$

- i) si progetti una rete anticipatrice stabilizzante $C_1(s)$ che attribuisca al risultante sistema retroazionato $e_{rp} \simeq 0.01$ (al gradino unitario), e alla funzione di trasferimento in catena aperta, $C_1(s)G(s)$, $\omega_a \simeq 10^3$ rad/s, $\psi_a \simeq 90^\circ$;
- ii) si progetti un PID stabilizzante $C_2(s)$ che ottenga gli stessi requisiti del punto precedente, dove però ora e_{rp} fa riferimento alla rampa lineare.

Soluzione. i) Occorre intanto C'(s) = 10. Margine di fase e ω_a sono sistemati alzando il diagramma di Bode delle ampiezze di 80db, il che si ottiene posizionando uno zero in $\omega = 0.1 \text{ rad/s}$, ed aggiungendo un polo in alta frequenza per rendere $C_1(s)$ proprio. Quindi

$$C_1(s) = 10 \cdot \frac{1+10s}{1+\tau s}, \qquad \tau \ll 10^{-3}.$$

ii) Per il PID occorre invece $C'(s)=\frac{10}{s}$. Inserendo uno zero in s=-1 per indurre una cancellazione zero-polo, occorre ancora alzare il diagramma di Bode delle ampiezze di 80db, il che si ottiene piazzando in s=-0.1 l'altro zero. Una possibile soluzione è quindi

$$C_2(s) = \frac{10}{s} \cdot (1+10s)(1+s) = \frac{10}{s} + 11 + 10s.$$

Il Criterio di Bode garantisce che entrambi i compensatori siano stabilizzanti. In figura i diagrammi di Bode di G(s), $C_1(s)G(s)$, $C_2(s)G(s)$ rispettivamente.

Teoria. [5 punti] Si definisca il concetto di sensitività alle variazioni parametriche (sia matematicamente, sia commentandone il significato). Si illustri quindi il legame tra la sensitività ad anello aperto e chiuso, giustificando il fatto che un'opportuna scelta del compensatore C(s) può ridurre a piacere la sensitività ad anello chiuso.