Sampling and Monte-Carlo Integration

Sampling and Monte-Carlo Integration

Last Time

- Pixels are samples
- · Sampling theorem
- Convolution & multiplication
- Aliasing: spectrum replication
- · Ideal filter
 - And its problems
- Reconstruction
- Texture prefiltering, mipmaps

MIT EECS 6.837

Quiz solution: Homogeneous sum

- $(x_1, y_1, z_1, 1) + (x_2, y_2, z_2, 1)$ = $(x_1+x_2, y_1+y_2, z_1+z_2, 2)$ $\approx ((x_1+x_2)/2, (y_1+y_2)/2, (z_1+z_2)/2)$
- This is the average of the two points
- General case: consider the homogeneous version of (x_1, y_1, z_1) and (x_2, y_2, z_2) with w coordinates w_1 and w_2
- $(x_1 w_1, y_1 w_1, z_1 w_1, w_1) + (x_2 w_2, y_2 w_2, z_2 w_2, w_2)$ = $(x_1 w_1 + x_2 w_2, y_1 w_1 + y_2 w_2, z_1 w_1 + z_2 w_2, w_1 + w_2)$ $\approx ((x_1 w_1 + x_2 w_2)/(w_1 + w_2), (y_1 w_1 + y_2 w_2)/(w_1 + w_2),$ $(z_1 w_1 + z_2 w_2)/(w_1 + w_2))$
- This is the weighted average of the two geometric points

MIT EECS 6.837

Today's lecture

- Antialiasing in graphics
- · Sampling patterns
- Monte-Carlo Integration
- · Probabilities and variance
- Analysis of Monte-Carlo Integration

MIT EECS 6.837

Ideal sampling/reconstruction

- Pre-filter with a perfect low-pass filter
 - Box in frequency
 - Sinc in time
- Sample at Nyquist limit
 - Twice the frequency cutoff
- Reconstruct with perfect filter
 - Box in frequency, sinc in time
- And everything is great!

Difficulties with perfect sampling

- · Hard to prefilter
- · Perfect filter has infinite support
 - Fourier analysis assumes infinite signal and complete knowledge
 - Not enough focus on local effects
- And negative lobes
 - Emphasizes the two problems above
 - Negative light is bad
 - Ringing artifacts if prefiltering or supports are not perfect

MIT EECS 6.837

At the end of the day

- Fourier analysis is great to understand aliasing
- But practical problems kick in
- As a result there is no perfect solution
- Compromises between
 - Finite support
 - Avoid negative lobes
 - Avoid high-frequency leakage
 - Avoid low-frequency attenuation

- Gaussian, tent, Mitchell bicubic

MIT EECS 6 837

The special case of edges

- An edge is poorly captured by Fourier analysis
 - It is a local feature
 - It combines all frequencies (sinc)
- Practical issues with edge aliasing lie more in the jaggies (tilted lines) than in actual spectrum replication

Jagged boundaries

Anisotropy of the sampling grid

- More vertical and horizontal bandwidth
 - E.g. $\sqrt{2}$ less bandwidth in diagonal

- · A hexagonal grid would be better
 - Max anisotropy

$$\cos 30^{\circ} = \sqrt{3/4} = 0.86$$

But less practical

MIT EECS 6.837

Anisotropy of the sampling grid

- More vertical and horizontal bandwidth.
- A hexagonal grid would be better
 - But less practical
- Practical effect: vertical and horizontal direction show when doing bicubic upsampling

Philosophy about mathematics

- Mathematics are great tools to model (i.e. describe) your problems
- They afford incredible power, formalism, generalization
- However it is equally important to understand the practical problem and how much the mathematical model fits

Questions?

MIT EECS 6 837

Today's lecture

- Antialiasing in graphics
- Sampling patterns
- Monte-Carlo Integration
- · Probabilities and variance
- Analysis of Monte-Carlo Integration

MIT EECS 6.837

Supersampling in graphics

- · Pre-filtering is hard
 - Requires analytical visibility
 - Then difficult to integrate analytically with filter
- Possible for lines, or if visibility is ignored
- usually, fall back to supersampling

MIT FECS 6 837

Uniform supersampling

- Compute image at resolution k*width, k*height
- Downsample using low-pass filter (e.g. Gaussian, sinc, bicubic)

MIT EECS 6.837

Uniform supersampling

- Advantage:
 - The first (super)sampling captures more high frequencies that are not aliased
 - Downsampling can use a good filter
- Issues
 - Frequencies above the (super)sampling limit are still aliased
- Works well for edges, since spectrum replication is less an issue
- Not as well for repetitive textures
 - But mipmapping can help

MIT EECS 6.837

Multisampling vs. supersampling

- Observation:
 - Edge aliasing mostly comes from visibility/rasterization issues
 - Texture aliasing can be prevented using prefiltering
- Multisampling idea:
 - Sample rasterization/visibility at a higher rate than shading/texture
- In practice, same as **super**sampling, except that all the subpixel get the same color if visible

Uniform supersampling

- Problem: supersampling only pushes the problem further: The signal is still not bandlimited
- Aliasing happens

MIT EECS 6.837

Jittering

- Uniform sample + random perturbation
- Sampling is now non-uniform
- Signal processing gets more complex
- In practice, adds noise to image
- But noise is better than aliasing Moiré patterns

Jittering

- Displaced by a vector a fraction of the size of the subpixel distance
- Low-frequency Moire (aliasing) pattern replaced by noise
- Extremely effective
- Patented by Pixar!
- When jittering amount is 1, equivalent to stratified sampling (cf. later)

Poisson disk sampling and blue noise

- Essentially random points that are not allowed to be closer than some radius r
- Dart-throwing algorithm:

Initialize sampling pattern as empty

Get random point P

If P is farther than r from all samples
Add P to sampling pattern

From Hiller et al.

Until unable to add samples for a long time

MIT EECS 6 837

Poisson disk sampling and blue noise

- Essentially random points that are not allowed to be closer than some radius r
- The spectrum of the Poisson disk pattern is called blue noise:
- No low frequency
- Other criterion: Isotropy (frequency content must be the same for all direction)

Anisotropy (power spectrum per direction)

MIT EECS 6.837

Recap

- Uniform supersampling
 - Not so great
- Jittering
 - Great, replaces aliasing by noise

- Equally good, but harder to generate
- Blue noise and good (lack of) anisotropy

MIT EECS 6.837

Adaptive supersampling

• Use more sub-pixel samples around edges

MIT EECS 6.837

Adaptive supersampling

• Use more sub-pixel samples around edges

Compute color at small number of sample

If their variance is high

Compute larger number of samples

MIT EECS 6.837

Adaptive supersampling

• Use more sub-pixel samples around edges

Compute color at small number of sample

If variance with neighbor pixels is high

Compute larger number of samples

Problem with non-uniform distribution

• Reconstruction can be complicated

80% of the samples are black Yet the pixel should be light grey

MIT EECS 6.837

Problem with non-uniform distribution

- Reconstruction can be complicated
- Solution: do a multi-level reconstruction
 - Reconstruct uniform sub-pixels
 - Filter those uniform sub-pixels

Recap

- Uniform supersampling
 - Not so great
- Jittering
 - Great, replaces aliasing by noise
- · Poisson disk sampling
 - Equally good, but harder to generate
 - Blue noise and good (lack of) anisotropy
- · Adaptive sampling
 - Focus computation where needed
 - Beware of false negative
 - Complex reconstruction

MIT EECS 6.837

MIT EECS 6.837

Today's lecture

- Antialiasing in graphics
- Sampling patterns
- Monte-Carlo Integration
- Probabilities and variance
- Analysis of Monte-Carlo Integration

MIT EECS 6.837

Shift of perspective

- So far, Antialiasing as signal processing
- Now, Antialiasing as integration
- Complementary yet not always the same

Why integration?

- Simple version: compute pixel coverage
- More advanced:
 Filtering (convolution)
 is an integral
 pixel = ∫ filter * color

• And integration is useful in tons of places in graphics

MIT EECS 6.837

Monte-Carlo computation of π

- Take a square
- Take a random point (x,y) in the square
- Test if it is inside the $\frac{1}{4}$ disc ($x^2+y^2<1$)
- The probability is $\pi/4$

MIT EECS 6.837

Monte-Carlo computation of π

- The probability is $\pi/4$
- Count the inside ratio n = # inside / total # trials
- $\pi \approx n * 4$
- The error depends on the number or trials

MIT EECS 6.837

Why not use Simpson integration?

- Yeah, to compute π,
 Monte Carlo is not very efficient
- But convergence is independent of dimension
- Better to integrate high-dimensional functions
- $\bullet\,$ For d dimensions, Simpson requires N^d domains

MIT EECS 6.837

Dumbest Monte-Carlo integration

- Compute 0.5 by flipping a coin
- 1 flip: 0 or 1=> average error =0.5
- 2 flips: 0, 0.5, 0.5 or 1 =>average error=0. 25
- 4 flips: 0 (*1),0.25 (*4), 0.5 (*6), 0.75(*4), 1(*1) => average error =0.1875
- Does not converge very fast
- Doubling the number of samples does not double accuracy

MIT EECS 6.837

Questions?

Today's lecture

- Antialiasing in graphics
- · Sampling patterns
- Monte-Carlo Integration
- Probabilities and variance
- Analysis of Monte-Carlo Integration

MIT EECS 6 837

Review of probability (discrete)

- Random variable can take discrete values x_i
- Probability p_i for each x_i

$$0 \leq p_i \leq 1$$

If the events are mutually exclusive, $\sum p_i = 1$

Expected value

$$E(x) = \sum_{i=1}^{n} p_i x_i$$

- · Expected value of function of random variable
 - f(x_i) is also a random variable

$$E[f(x)] = \sum_{i=1}^{n} p_i f(x_i)$$

Ex: fair dice

$$E(x_{dice}) = \sum_{i=1}^{6} p_i x_i$$

$$= \sum_{i=1}^{6} \frac{1}{6} x_i$$

$$= \frac{1}{6} (1 + 2 + 3 + 4 + 5 + 6)$$

$$= 3.5$$

MIT FECS 6 837

Variance & standard deviation

- Variance σ^2 : Measure of deviation from expected value
- Expected value of square difference (MSE)
 - $\sigma^2 = E[(x E[x])^2] = \sum_i (x_i E[x])^2 p_i$

$$\sigma^2 = E[x^2] - (E[x])^2$$

• Standard deviation σ: square root of variance (notion of error, RMS)

MIT EECS 6.837

Questions?

MIT EECS 6.837

Continuous random variables

- Real-valued random variable x
- Probability density function (PDF) p(x)
 - Probability of a value between x and x+dx is p(x) dx
- Cumulative Density Function (CDF) P(y):
 - Probability to get a value lower than y

$$P(y) = Pr(x \le y) = \int_{-\infty}^{y} p(x)dx$$

Properties

• $p(x) \ge 0$ but can be greater than 1 !!!!

$$\int_{-\infty}^{\infty} p(x) dx =$$

$$p(x) =$$

$$Pr(a \le x \le b) =$$

• P is positive and non-decreasing

MIT EECS 6.837

Properties

• $p(x) \ge 0$ but can be greater than 1 !!!!

$$\int_{-\infty}^{\infty} p(x)dx = 1$$

$$p(x) = \frac{dP(x)}{dx}$$

$$Pr(a \le x \le b) = P(b) - P(a) = \int_a^b p(z)dz$$

• P is positive and non-decreasing

MIT EECS 6.837

Example

- Uniform distribution between a and b
- Dirac distribution

MIT EECS 6.837

Expected value

$$E[x] = \int_{-\infty}^{\infty} x p(x) dx$$

$$E[f(x)] = \int_{-\infty}^{\infty} f(x)p(x)dx$$

• Expected value is linear

$$E[f_1(x) + a f_2(x)] = E[f_1(x)] + a E[f_2(x)]$$

MIT EECS 6.837

Variance

$$\sigma^2 = E[(x - E[x])^2] = \int_{-\infty}^{\infty} (x - E[x])^2 p(x) dx$$

- Variance is not linear !!!!
- $\sigma^2[x+y] = \sigma^2[x] + \sigma^2[y] + 2 \text{ Cov}[x,y]$
- Where Cov is the covariance
 - $-\operatorname{Cov}[x,y] = \operatorname{E}[xy] \operatorname{E}[x] \operatorname{E}[y]$
 - Tells how much they are big at the same time
 - Null if variables are independent
- But $\sigma^2[ax] = a^2 \sigma^2[x]$