The Typical Code over a Large Alphabet

Alberto Ravagnani

Eindhoven University of Technology

UMI - MathCifris

joint work with Anina Gruica

MDS Codes

q a prime power, $n \ge 2$ an integer

Definition

A block code is a non-zero \mathbb{F}_q -subspace $C \leq \mathbb{F}_q^n$. Its minimum (Hamming) distance is

$$d^{\mathsf{H}}(C) = \min\{\omega^{\mathsf{H}}(x) \mid x \in C, x \neq 0\},\$$

where $\omega^{\mathsf{H}}(x) = \#\{i \mid x_i \neq 0\}$ is the **Hamming weight** of $x \in \mathbb{F}_q^n$.

MDS Codes

q a prime power, $n \ge 2$ an integer

Definition

A block code is a non-zero \mathbb{F}_q -subspace $C \leq \mathbb{F}_q^n$. Its minimum (Hamming) distance is

$$d^{\mathsf{H}}(C) = \min\{\omega^{\mathsf{H}}(x) \mid x \in C, x \neq 0\},\$$

where $\omega^{H}(x) = \#\{i \mid x_i \neq 0\}$ is the **Hamming weight** of $x \in \mathbb{F}_q^n$.

Theorem (Singleton Bound)

Let $C \leq \mathbb{F}_q^n$ be k-dimensional and MDS. Then $k \leq n - d^{\mathsf{H}}(C) + 1$.

Trade-off between large dimension and large minimum distance.

Definition

We say that C is MDS if the bound is attained with equality.

Theorem (Folklore)

Fix $1 \le k \le n$ and let $C \le \mathbb{F}_q^n$ be a uniformly random block code of dimension k. We have

$$\underset{q \to +\infty}{\lim} \mathbb{P} \left[\textit{C} \text{ is MDS} \right] \ = \ 1.$$

Theorem (Folklore)

Fix $1 \le k \le n$ and let $C \le \mathbb{F}_q^n$ be a uniformly random block code of dimension k. We have

$$\lim_{a \to +\infty} \mathbb{P} \left[C \text{ is MDS} \right] = 1.$$

One way to see this is to use the following observation:

Proposition

Let $G \in \mathbb{F}_a^{k \times n}$ be a matrix. The following are equivalent:

- the rows of G generate a k-dimensional MDS code;
- ② all the $k \times k$ minors of G are non-zero (in particular, pivots(G) = $\{1,...,k\}$).

Consider a matrix of the form $G = (I_k \mid Y)$, where Y is a $k \times (n-k)$ matrix of independent variables $(z_i \mid 1 \le i \le N)$ and N = k(n-k).

e.g.
$$\begin{pmatrix} 1 & 0 & z_1 & z_2 & z_3 & z_4 \\ 0 & 1 & z_5 & z_6 & z_7 & z_8 \end{pmatrix} \qquad N = 8$$

Consider a matrix of the form $G = (I_k \mid Y)$, where Y is a $k \times (n-k)$ matrix of independent variables $(z_i \mid 1 \le i \le N)$ and N = k(n-k).

e.g.
$$\begin{pmatrix} 1 & 0 & z_1 & z_2 & z_3 & z_4 \\ 0 & 1 & z_5 & z_6 & z_7 & z_8 \end{pmatrix} \qquad N = 8$$

Let $p_1,...,p_M\in\mathbb{F}_q[z_1,...,z_N]$ be the maximal minors of G, where $M=\binom{n}{k}$. The MDS codes correspond to the vectors $(\alpha_1,...,\alpha_N)\in\mathbb{F}_q^N$ with

$$(p_1p_2\cdots p_M)(\alpha_1,...,\alpha_N)\neq 0.$$

Consider a matrix of the form $G = (I_k \mid Y)$, where Y is a $k \times (n-k)$ matrix of independent variables $(z_i \mid 1 \le i \le N)$ and N = k(n-k).

e.g.
$$\begin{pmatrix} 1 & 0 & z_1 & z_2 & z_3 & z_4 \\ 0 & 1 & z_5 & z_6 & z_7 & z_8 \end{pmatrix}$$
 $N = 8$

Let $p_1,...,p_M \in \mathbb{F}_q[z_1,...,z_N]$ be the maximal minors of G, where $M = \binom{n}{k}$. The MDS codes correspond to the vectors $(\alpha_1,...,\alpha_N) \in \mathbb{F}_q^N$ with

$$(p_1p_2\cdots p_M)(\alpha_1,...,\alpha_N)\neq 0.$$

Claim

The k-dimensional MDS codes in \mathbb{F}_q^n correspond to the non-zeros $(\alpha_1,...,\alpha_N) \in \mathbb{F}_q^N$ of a nonzero polynomial $p := p_1 p_2 \cdots p_M \in \mathbb{F}_q[z_1,...,z_N]$.

Claim

The k-dimensional MDS codes in \mathbb{F}_q^n correspond to the non-zeros $(\alpha_1,...,\alpha_N) \in \mathbb{F}_q^N$ of a nonzero polynomial $p := p_1 p_2 \cdots p_M \in \mathbb{F}_q[z_1,...,z_N]$.

Note:
$$\deg(p) \le kM = k\binom{n}{k}$$

Claim

The *k*-dimensional MDS codes in \mathbb{F}_q^n correspond to the non-zeros $(\alpha_1,...,\alpha_N) \in \mathbb{F}_q^N$ of a nonzero polynomial $p := p_1 p_2 \cdots p_M \in \mathbb{F}_q[z_1,...,z_N]$.

Note:
$$deg(p) \le kM = k \binom{n}{k}$$

Using the Schwartz-Zippel Lemma: the number of such non-zeros is at least

$$q^{N}\left(1-q^{-1}kM\right) = q^{k(n-k)}\left(1-\frac{k}{q}\binom{n}{k}\right)$$

Claim

The *k*-dimensional MDS codes in \mathbb{F}_q^n correspond to the non-zeros $(\alpha_1,...,\alpha_N) \in \mathbb{F}_q^N$ of a nonzero polynomial $p := p_1 p_2 \cdots p_M \in \mathbb{F}_q[z_1,...,z_N]$.

Note:
$$deg(p) \le kM = k \binom{n}{k}$$

Using the Schwartz-Zippel Lemma: the number of such non-zeros is at least

$$q^{N}\left(1-q^{-1}kM\right) = q^{k(n-k)}\left(1-\frac{k}{q}\binom{n}{k}\right)$$

and therefore

$$\frac{\# \text{ of } k\text{-dim MDS codes in } \mathbb{F}_q^n}{\# \text{ of } k\text{-dim codes in } \mathbb{F}_q^n} \quad \geq \quad \frac{q^{k(n-k)} \left(1 - \frac{k}{q} \binom{n}{k}\right)}{\binom{n}{k}_q}$$

Claim

The *k*-dimensional MDS codes in \mathbb{F}_q^n correspond to the non-zeros $(\alpha_1,...,\alpha_N) \in \mathbb{F}_q^N$ of a nonzero polynomial $p := p_1 p_2 \cdots p_M \in \mathbb{F}_q[z_1,...,z_N]$.

Note:
$$deg(p) \le kM = k \binom{n}{k}$$

Using the Schwartz-Zippel Lemma: the number of such non-zeros is at least

$$q^{N}\left(1-q^{-1}kM\right) = q^{k(n-k)}\left(1-\frac{k}{q}\binom{n}{k}\right)$$

and therefore

$$\lim_{q \to +\infty} \frac{\# \text{ of } k\text{-dim MDS codes in } \mathbb{F}_q^n}{\# \text{ of } k\text{-dim codes in } \mathbb{F}_q^n} \qquad \geq \qquad \lim_{q \to +\infty} \frac{q^{k(n-k)} \left(1 - \frac{k}{q} \binom{n}{k}\right)}{\begin{bmatrix}n\\k\end{bmatrix}_q}$$

Claim

The *k*-dimensional MDS codes in \mathbb{F}_q^n correspond to the non-zeros $(\alpha_1,...,\alpha_N) \in \mathbb{F}_q^N$ of a nonzero polynomial $p := p_1 p_2 \cdots p_M \in \mathbb{F}_q[z_1,...,z_N]$.

Note:
$$deg(p) \le kM = k \binom{n}{k}$$

Using the Schwartz-Zippel Lemma: the number of such non-zeros is at least

$$q^{N}\left(1-q^{-1}kM\right) = q^{k(n-k)}\left(1-\frac{k}{q}\binom{n}{k}\right)$$

and therefore

$$\lim_{q \to +\infty} \frac{\# \text{ of } k\text{-dim MDS codes in } \mathbb{F}_q^n}{\# \text{ of } k\text{-dim codes in } \mathbb{F}_q^n} \qquad \geq \qquad \lim_{q \to +\infty} \frac{q^{k(n-k)} \left(1 - \frac{k}{q} \binom{n}{k}\right)}{\binom{n}{k}_q} = 1$$

Theorem (Folklore)

Fix $1 \le k \le n$. We have

$$\lim_{q\to +\infty} \ \frac{\# \text{ of } k\text{-dim MDS codes in } \mathbb{F}_q^n}{\# \text{ of } k\text{-dim block codes in } \mathbb{F}_q^n} = 1.$$

In words: MDS codes are **dense** within the set of k-dimensional block codes in \mathbb{F}_q^n .

Theorem (Folklore)

Fix $1 \le k \le n$. We have

$$\lim_{q\to +\infty} \ \frac{\# \text{ of } k\text{-dim MDS codes in } \mathbb{F}_q^n}{\# \text{ of } k\text{-dim block codes in } \mathbb{F}_q^n} = 1.$$

In words: MDS codes are **dense** within the set of k-dimensional block codes in \mathbb{F}_q^n .

In the rank-metric world, the analogues of MDS codes are MRD codes.

Rank-Metric Codes

q a prime power, $m \ge n \ge 2$ integers

Definition

A rank-metric code is a non-zero subspace $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$. Its minimum (rank) distance is

$$d^{\mathsf{rk}}(\mathscr{C}) = \min\{\mathsf{rk}(X) \mid X \in \mathscr{C}, X \neq 0\}.$$

Rank-metric codes were studied by Delsarte for combinatorial interest in 1978. They were rediscovered more than once:

- Gabidulin (1985)
- Cooperstein (1998)
- Silva, Koetter, Kschischang (2008)

Rank-Metric Codes

q a prime power, $m \ge n \ge 2$ integers

Definition

A rank-metric code is a non-zero subspace $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$. Its minimum (rank) distance is

$$d^{\mathsf{rk}}(\mathscr{C}) = \min\{\mathsf{rk}(X) \mid X \in \mathscr{C}, X \neq 0\}.$$

Rank-metric codes were studied by Delsarte for combinatorial interest in 1978. They were rediscovered more than once:

- Gabidulin (1985)
- Cooperstein (1998)
- Silva, Koetter, Kschischang (2008)

Theorem (Singleton-type Bound)

Let $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$ be a rank-metric code. We have $\dim(\mathscr{C}) \leq m(n - d^{rk}(\mathscr{C}) + 1)$.

Definition

We say that $\mathscr C$ is **MRD** if it attains the bound with equality.

Proportion of MRD Codes

Notation

For $1 \le d \le n$, let k = m(n-d+1) and

$$\delta_q(n \times m, d) = \frac{\#\{\mathscr{C} \le \mathbb{F}_q^{n \times m} \mid \dim(\mathscr{C}) = k, \mathscr{C} \text{ is MRD}\}}{\#\{\mathscr{C} \le \mathbb{F}_q^{n \times m} \mid \dim(\mathscr{C}) = k\}}$$

be the proportion of k-dimensional MRD codes within the k-dimensional rank-metric codes.

It would be natural to imitate what we did for MDS codes (with the Schwartz-Zippel lemma) and hopefully prove that

$$\lim_{q\to +\infty} \delta_q(n\times m,d)=1.$$

Proportion of MRD Codes

Notation

For $1 \le d \le n$, let k = m(n-d+1) and

$$\delta_q(n \times m, d) = \frac{\#\{\mathscr{C} \le \mathbb{F}_q^{n \times m} \mid \dim(\mathscr{C}) = k, \mathscr{C} \text{ is MRD}\}}{\#\{\mathscr{C} \le \mathbb{F}_q^{n \times m} \mid \dim(\mathscr{C}) = k\}}$$

be the proportion of k-dimensional MRD codes within the k-dimensional rank-metric codes.

It would be natural to imitate what we did for MDS codes (with the Schwartz-Zippel lemma) and hopefully prove that

$$\lim_{q\to +\infty} \delta_q(n\times m,d) = 1.$$

Unfortunately, this approach fails.

Proportion of MRD Codes

Notation

For $1 \le d \le n$, let k = m(n-d+1) and

$$\delta_q(n \times m, d) = \frac{\#\{\mathscr{C} \le \mathbb{F}_q^{n \times m} \mid \dim(\mathscr{C}) = k, \mathscr{C} \text{ is MRD}\}}{\#\{\mathscr{C} \le \mathbb{F}_q^{n \times m} \mid \dim(\mathscr{C}) = k\}}$$

be the proportion of k-dimensional MRD codes within the k-dimensional rank-metric codes.

It would be natural to imitate what we did for MDS codes (with the Schwartz-Zippel lemma) and hopefully prove that

$$\lim_{q\to +\infty} \delta_q(n\times m,d)=1.$$

Unfortunately, this approach fails.

<u>Note</u>: The argument can however be applied to a subclass of rank-metric codes, called "vector rank-metric codes", for $m \to +\infty$. This was done in:

A. Neri, A.-L. Horlemann-Trautmann, T. Randrianarisoa, J. Rosenthal, *On the Genericity of Maximum Rank Distance and Gabidulin Codes*

What this talk is about

Recall:

Notation

For $1 \le d \le n$, let k = m(n-d+1) and

$$\delta_q(n \times m, d) = \frac{\#\{\mathscr{C} \leq \mathbb{F}_q^{n \times m} \mid \dim(\mathscr{C}) = k, \mathscr{C} \text{ is MRD}\}}{\#\{\mathscr{C} \leq \mathbb{F}_q^{n \times m} \mid \dim(\mathscr{C}) = k\}}.$$

Problems

- lacktriangle Compute $\lim_{q \to +\infty} \delta_q(n \times m, d)$
- ② Compute $\lim_{m\to +\infty} \delta_q(n\times m,d)$
- **3** Find upper/lower bounds for $\delta_a(n \times m, d)$

The next part of the talk is about these questions and their (partial) solutions via four different approaches.

What this talk is about

Recall:

Notation

For $1 \le d \le n$, let k = m(n-d+1) and

$$\delta_q(n \times m, d) = \frac{\#\{\mathscr{C} \leq \mathbb{F}_q^{n \times m} \mid \dim(\mathscr{C}) = k, \mathscr{C} \text{ is MRD}\}}{\#\{\mathscr{C} \leq \mathbb{F}_q^{n \times m} \mid \dim(\mathscr{C}) = k\}}.$$

Problems

- Compute $\lim_{q \to +\infty} \delta_q(n \times m, d)$
- **③** Find upper/lower bounds for $\delta_q(n \times m, d)$

The next part of the talk is about these questions and their (partial) solutions via four different approaches. In particular:

Theorem (Gruica, R.)

MRD codes are "very" sparse as $q \to +\infty$, unless d=1 or n=d=2 (any $m \ge n$).

This is in strong contrast with the behaviour of MDS codes.

Approach 1: Spectrum-Free Matrices

J. Antrobus, H. Gluesing-Luerssen, *Maximal Ferrers Diagram Codes: Constructions and Genericity Considerations*.

Key observation: the *m* matrices

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ a_{11} & a_{12} & \cdots & a_{1m} \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & a_{2m} \end{pmatrix}, \quad \cdots, \quad \begin{pmatrix} 0 & 0 & \cdots & 1 \\ a_{m1} & a_{m2} & \cdots & a_{mm} \end{pmatrix} \in \mathbb{F}_q^{2 \times m}$$

generate an MRD code if and only if the matrix

$$(a_{ij}) \in \mathbb{F}_q^{m imes m}$$

is **spectrum-free**, i.e., it has no eigenvalues in \mathbb{F}_q .

Approach 1: Spectrum-Free Matrices

J. Antrobus, H. Gluesing-Luerssen, *Maximal Ferrers Diagram Codes: Constructions and Genericity Considerations*.

Key observation: the m matrices

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ a_{11} & a_{12} & \cdots & a_{1m} \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & a_{2m} \end{pmatrix}, \quad \cdots, \quad \begin{pmatrix} 0 & 0 & \cdots & 1 \\ a_{m1} & a_{m2} & \cdots & a_{mm} \end{pmatrix} \in \mathbb{F}_q^{2 \times m}$$

generate an MRD code if and only if the matrix

$$(a_{ij}) \in \mathbb{F}_q^{m \times m}$$

is spectrum-free, i.e., it has no eigenvalues in \mathbb{F}_q . Extending the theory of these matrices and studying their asymptotic properties:

Theorem (Antrobus, Gluesing-Luerssen)

We have

$$\lim_{q o +\infty} \delta_q(2 imes m,2) = \sum_{i=0}^m rac{(-1)^i}{i!}, \qquad \lim_{m o +\infty} \delta_q(2 imes m,2) = \prod_{i=1}^\infty \left(rac{q^i-1}{q^i}
ight)^{q(n-1)+1}.$$

These numbers are positive and strictly smaller than 1. Therefore these MRD codes are neither sparse, nor dense, both as $q \to +\infty$ and $m \to +\infty$.

Approach 1: Spectrum-Free Matrices

More generally,

Theorem (Antrobus, Gluesing-Luerssen)

For all $d \ge 2$,

$$\limsup_{q o +\infty} \delta_q(n imes m,d) \leq \left(\sum_{i=0}^m \frac{(-1)^i}{i!} \right)^{(d-1)(n-d+1)}.$$

The number on the RHS is always positive and smaller than 1. This shows that MRD codes for $d \ge 2$ are never dense for $q \to +\infty$.

Theorem (Antrobus, Gluesing-Luerssen)

For all $d \ge 2$,

$$\limsup_{m\to +\infty} \delta_q(n\times m,d) \leq \prod_{i=1}^{\infty} \left(\frac{q^i-1}{q^i}\right)^{q(d-1)(n-d+1)+1}.$$

Again, the number on the RHS is always positive and smaller than 1. This shows that MRD codes for $d \ge 2$ are never dense for $m \to +\infty$.

E. Byrne, A. R., *Partition-Balanced Families of Codes and Asymptotic Enumeration in Coding Theory.*

Machinery to study asymptotic enumeration problems in coding theory, in relation to:

- maximality,
- extremality with respect to bounds,
- covering radius,
- average parameters of codes,
- ...

E. Byrne, A. R., Partition-Balanced Families of Codes and Asymptotic Enumeration in Coding Theory.

Machinery to study asymptotic enumeration problems in coding theory, in relation to:

- maximality,
- extremality with respect to bounds,
- covering radius,
- average parameters of codes,
- ...

We apply this to estimate the number of MRD codes:

Theorem (Byrne, R.)

Let $2 \le d \le n$ and k = m(n-d+1). There are at least

$$q\left(\sum_{h=1}^{m(n-k)}\begin{bmatrix}t\\h\end{bmatrix}\sum_{s=h}^{m(n-k)}\begin{bmatrix}m(n-k)-h\\s-h\end{bmatrix}\begin{bmatrix}mn-s\\mn-k\end{bmatrix}(-1)^{s-h}q^{\binom{s-h}{2}}\right)\left(1-\frac{\left(q^k-1\right)\left(q^{mn-k}-1\right)}{2\left(q^{mn}-q^{mn-k}\right)}\right)$$

k-dimensional non-MRD codes in $\mathbb{F}_q^{n \times m}$.

The asymptotics of this formula can be explicitly computed.

Corollary (Byrne, R.)

Let $2 \le d \le n$. Then

$$\limsup_{q \to +\infty} \delta_q(n imes m, d) \leq rac{1}{2}.$$

This also shows that MRD codes are never dense for $q \to +\infty$ if $d \ge 2$.

Corollary (Byrne, R.)

Let $2 \le d \le n$. Then

$$\limsup_{m \to +\infty} \delta_q(n \times m, d) \leq \frac{(q-1)(q-2)+1}{2(q-1)^2}.$$

Same story: MRD codes are never dense for $m \to +\infty$ if $d \ge 2$.

Corollary (Byrne, R.)

Let $2 \le d \le n$. Then

$$\limsup_{q o +\infty} \delta_q(n imes m,d) \leq rac{1}{2}.$$

This also shows that MRD codes are never dense for $q \to +\infty$ if $d \ge 2$.

Corollary (Byrne, R.)

Let 2 < d < n. Then

$$\limsup_{m \to +\infty} \delta_q(n \times m, d) \leq \frac{(q-1)(q-2)+1}{2(q-1)^2}.$$

Same story: MRD codes are never dense for $m \to +\infty$ if $d \ge 2$.

Summary

- MRD codes are never dense, unless d=1, both for $q \to +\infty$ and $m \to +\infty$.
- For d = n = 2, MRD codes are neither sparse, nor dense (both for q and m large).

Approach 3: Theory of Semifields

H. Gluesing Luerssen, On the Sparseness of Certain MRD Codes

This paper builds a highly specialized weapon for the 3×3 full-rank MRD codes.

- Step 1: identify well-behaved bases for such MRD codes;
- Step 2: count such bases using enumerative results on semifields.

The argument is technical, but the final result is very clean:

Theorem (Gluesing-Luerssen)

$$\delta_q(3\times 3,3) = \frac{(q-1)(q^3-1)(q^3-q)^3(q^3-q^2)^2(q^3-q^2-q-1)}{3(q^7-1)(q^9-1)(q^9-q)}.$$

Since $\delta_q(3\times3,3)\sim \frac{1}{3}q^{-3}$ as $q\to+\infty$, the 3×3 full-rank MRD codes are <u>sparse</u> for q large.

Approach 3: Theory of Semifields

H. Gluesing Luerssen, On the Sparseness of Certain MRD Codes

This paper builds a highly specialized weapon for the 3×3 full-rank MRD codes.

- Step 1: identify well-behaved bases for such MRD codes;
- Step 2: count such bases using enumerative results on semifields.

The argument is technical, but the final result is very clean:

Theorem (Gluesing-Luerssen)

$$\delta_q(3\times 3,3) = \frac{(q-1)(q^3-1)(q^3-q)^3(q^3-q^2)^2(q^3-q^2-q-1)}{3(q^7-1)(q^9-1)(q^9-q)}.$$

Since $\delta_q(3\times 3,3)\sim \frac{1}{3}q^{-3}$ as $q\to +\infty$, the 3×3 full-rank MRD codes are <u>sparse</u> for q large.

Summary

- MRD codes are never dense, unless d=1, both for $q \to +\infty$ and $m \to +\infty$.
- For d = n = 2, MRD codes are neither sparse, nor dense.
- **New!** 3×3 full-rank MRD codes are sparse as $q \to +\infty$.
- Arguments don't reveal the difference between n = d = 2 and the other cases.

A. Gruica, A. R., Common Complements of Linear Subspaces and the Sparseness of MRD Codes.

Refining the methods described so far seems unfeasible ightarrow look for a different viewpoint.

A. Gruica, A. R., Common Complements of Linear Subspaces and the Sparseness of MRD Codes.

Refining the methods described so far seems unfeasible ightarrow look for a different viewpoint.

Recall: Let $\mathscr X$ be a linear space and let $\mathscr C,\mathscr D\leq\mathscr X$ be subspaces. Then $\mathscr D$ is a **complement** of $\mathscr C$ if $\mathscr C\cap\mathscr D=\{0\}$ and $\mathscr C+\mathscr D=\mathscr X$ (lattice theory).

Remark

• Let $\mathscr U$ be the set of subspaces $U \leq \mathbb F_q^n$ with $\dim(U) = d-1$. For $U \in \mathscr U$, denote by $\mathbb F_q^{n \times m}(U)$ the set of matrices $X \in \mathbb F_q^{n \times m}$ whose column space is contained in U. Note: $\mathbb F_q^{n \times m}(U)$ is a linear space of dimension m(d-1) for all $U \in \mathscr U$.

A. Gruica, A. R., Common Complements of Linear Subspaces and the Sparseness of MRD Codes.

Refining the methods described so far seems unfeasible ightarrow look for a different viewpoint.

Recall: Let $\mathscr X$ be a linear space and let $\mathscr C,\mathscr D\leq\mathscr X$ be subspaces. Then $\mathscr D$ is a **complement** of $\mathscr C$ if $\mathscr C\cap\mathscr D=\{0\}$ and $\mathscr C+\mathscr D=\mathscr X$ (lattice theory).

Remark

- Let $\mathscr U$ be the set of subspaces $U \leq \mathbb F_q^n$ with $\dim(U) = d-1$. For $U \in \mathscr U$, denote by $\mathbb F_q^{n \times m}(U)$ the set of matrices $X \in \mathbb F_q^{n \times m}$ whose column space is contained in U. Note: $\mathbb F_q^{n \times m}(U)$ is a linear space of dimension m(d-1) for all $U \in \mathscr U$.
- We let $\mathscr{A} = \{\mathbb{F}_q^{n \times m}(U) \mid U \in \mathscr{U}\}$. Then the common complements of the spaces in \mathscr{A} are exactly the MRD codes $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$ with $d^{\mathsf{rk}}(\mathscr{C}) = d$.

A. Gruica, A. R., Common Complements of Linear Subspaces and the Sparseness of MRD Codes.

Refining the methods described so far seems unfeasible ightarrow look for a different viewpoint.

Recall: Let $\mathscr X$ be a linear space and let $\mathscr C,\mathscr D\leq\mathscr X$ be subspaces. Then $\mathscr D$ is a **complement** of $\mathscr C$ if $\mathscr C\cap\mathscr D=\{0\}$ and $\mathscr C+\mathscr D=\mathscr X$ (lattice theory).

Remark

- Let $\mathscr U$ be the set of subspaces $U \leq \mathbb F_q^n$ with $\dim(U) = d-1$. For $U \in \mathscr U$, denote by $\mathbb F_q^{n \times m}(U)$ the set of matrices $X \in \mathbb F_q^{n \times m}$ whose column space is contained in U. Note: $\mathbb F_q^{n \times m}(U)$ is a linear space of dimension m(d-1) for all $U \in \mathscr U$.
- We let $\mathscr{A} = \{\mathbb{F}_q^{n \times m}(U) \mid U \in \mathscr{U}\}$. Then the common complements of the spaces in \mathscr{A} are exactly the MRD codes $\mathscr{C} \leq \mathbb{F}_q^{n \times m}$ with $d^{\mathsf{rk}}(\mathscr{C}) = d$.

$$ullet |\mathscr{A}| = |\mathscr{U}| = egin{bmatrix} n \ d-1 \end{bmatrix}_q \sim q^{(d-1)(n-d+1)} ext{ as } q o +\infty.$$

We investigate the following general question:

Problem

- Let $\mathscr X$ be a linear space over $\mathbb F_q$ of dimension $N \geq 3$.
- Fix 1 < k < N-1.
- Let \mathscr{A} be a collection of (n-k)-subspaces of \mathscr{X} .

Estimate the number of common complements of the spaces in \mathscr{A} , in terms of some properties of \mathscr{A} .

In this talk: applications to MRD codes

In our paper: the problem in general (and MRD codes as a special example)

We use a bit of graph theory.

Definition

A **bipartite graph** is a 3-tuple $\mathscr{B} = (\mathscr{V}, \mathscr{W}, \mathscr{E})$, where:

- \(\mathcal{V} \), \(\mathcal{W} \) are finite non-empty sets (vertices);
- $\bullet \ \mathscr{E} \subseteq \mathscr{V} \times \mathscr{W} \ (\mathsf{edges}).$

We say that:

- $W \in \mathcal{W}$ is **isolated** (or **in quarantine**) if there is no $V \in \mathcal{V}$ with $(V, W) \in \mathcal{E}$;
- \mathscr{B} is left-regular of degree ∂ if, for all $V \in \mathscr{V}$, $\partial = |\{W \in \mathscr{W} \mid (V, W) \in \mathscr{E}\}|$.

<u>Task</u>: say something about the isolated and non-isolated vertices.

We use a bit of graph theory.

Definition

A **bipartite graph** is a 3-tuple $\mathscr{B} = (\mathscr{V}, \mathscr{W}, \mathscr{E})$, where:

- \(\mathcal{V} \), \(\mathcal{W} \) are finite non-empty sets (vertices);
- $\mathscr{E} \subseteq \mathscr{V} \times \mathscr{W}$ (edges).

We say that:

- $W \in \mathcal{W}$ is **isolated** (or **in quarantine**) if there is no $V \in \mathcal{V}$ with $(V, W) \in \mathcal{E}$;
- \mathscr{B} is left-regular of degree ∂ if, for all $V \in \mathscr{V}$, $\partial = |\{W \in \mathscr{W} \mid (V, W) \in \mathscr{E}\}|$.

<u>Task</u>: say something about the isolated and non-isolated vertices.

Lemma

Let $\mathscr{B} = (\mathscr{V}, \mathscr{W}, \mathscr{E})$ be a bipartite and left-regular graph of degree $\partial > 0$. Let $\mathscr{F} \subseteq \mathscr{W}$ be the collection of non-isolated vertices of \mathscr{W} . We have

$$|\mathscr{F}| \leq |\mathscr{V}| \partial$$
.

This gives us an upper bound for the non-isolated vertices.

Definition

Let $\mathscr V$ be a finite non-empty set and let $r\geq 0$ be an integer. An **association** on $\mathscr V$ of **magnitude** r is a function $\alpha:\mathscr V\times\mathscr V\to\{0,...,r\}$ such that:

Definition

Let $\mathscr V$ be a finite non-empty set and let $r\geq 0$ be an integer. An **association** on $\mathscr V$ of **magnitude** r is a function $\alpha:\mathscr V\times\mathscr V\to\{0,...,r\}$ such that:

Let $\mathscr{B}=(\mathscr{V},\mathscr{W},\mathscr{E})$ be a finite bipartite graph and let α an association on \mathscr{V} . We say that \mathscr{B} is α -regular if for all $(V,V')\in\mathscr{V}\times\mathscr{V}$ the number

$$|\{W \in \mathcal{W} \mid (V, W), (V', W) \in \mathcal{E}\}|$$

only depends on $\alpha(V, V')$. We denote this number by $\mathcal{W}_{\ell}(\alpha)$, where $\ell = \alpha(V, V')$.

Definition

Let $\mathscr V$ be a finite non-empty set and let $r\geq 0$ be an integer. An **association** on $\mathscr V$ of **magnitude** r is a function $\alpha:\mathscr V\times\mathscr V\to\{0,...,r\}$ such that:

Let $\mathscr{B}=(\mathscr{V},\mathscr{W},\mathscr{E})$ be a finite bipartite graph and let α an association on \mathscr{V} . We say that \mathscr{B} is α -regular if for all $(V,V')\in\mathscr{V}\times\mathscr{V}$ the number

$$|\{W \in \mathcal{W} \mid (V, W), (V', W) \in \mathcal{E}\}|$$

only depends on $\alpha(V,V')$. We denote this number by $\mathscr{W}_{\ell}(\alpha)$, where $\ell=\alpha(V,V')$.

Lemma (Gruica, R.)

Let $\mathscr{B}=(\mathscr{V},\mathscr{W},\mathscr{E})$ be a finite bipartite α -regular graph, where α is an association on \mathscr{V} of magnitude r. Let $\mathscr{F}\subseteq\mathscr{W}$ be the collection of non-isolated vertices. If $\mathscr{W}_r(\alpha)>0$, then

$$|\mathscr{F}| \geq rac{\mathscr{W}_r(lpha)^2 |\mathscr{V}|^2}{\sum_{\ell=0}^r \mathscr{W}_\ell(lpha) |lpha^{-1}(\ell)|}.$$

We apply the machinery to our question:

Problem

- Let $\mathscr X$ be a linear space over $\mathbb F_q$ of dimension $N\geq 3$.
- Fix 1 < k < N-1.
- Let \mathscr{A} be a collection of (n-k)-subspaces of \mathscr{X} .

Estimate the number of common complements of the spaces in \mathscr{A} .

We apply the machinery to our question:

Problem

- Let $\mathscr X$ be a linear space over $\mathbb F_q$ of dimension $N \ge 3$.
- Fix 1 < k < N 1.
- Let \mathscr{A} be a collection of (n-k)-subspaces of \mathscr{X} .

Estimate the number of common complements of the spaces in \mathscr{A} .

- $\mathscr{B} = (\mathscr{A}, \mathscr{W}, \mathscr{E})$ is a bipartite graph where \mathscr{W} is the collection of k-subspaces of \mathscr{X} and $(A, W) \in \mathscr{E}$ if W intersects A nontrivially
- $\alpha(A,A') := \dim(A \cap A')$ for all $A,A' \in \mathscr{A}$ (association on \mathscr{A} of magnitude N-k)
- ullet $\mathscr B$ is lpha-regular
- $|\alpha^{-1}(\ell)| = |\{(A, A') \in \mathcal{A}^2 \mid \dim(A \cap A') = \ell\}|$

We apply the machinery to our question:

Problem

- Let $\mathscr X$ be a linear space over $\mathbb F_q$ of dimension $N\geq 3$.
- Fix $1 \le k \le N 1$.
- Let \mathscr{A} be a collection of (n-k)-subspaces of \mathscr{X} .

Estimate the number of common complements of the spaces in \mathscr{A} .

Theorem (Gruica, R.)

Let $\mathscr F$ be the family of k-spaces in $\mathscr X$ that are not common complements of the spaces in $\mathscr A$. Then

$$\frac{v_q(N,k,N-k)^2|\mathscr{A}|^2}{\sum_{\ell=0}^{N-k}v_q(N,k,\ell)\cdot|\{(A,A')\in\mathscr{A}^2\,|\,\dim(A\cap A')=\ell\}|}\leq |\mathscr{F}|\leq |\mathscr{A}|\,v_q(N,k,N-k),$$

where

$$v_q(N,k,\ell) = \begin{bmatrix} N \\ k \end{bmatrix}_q - 2q^{k(N-k)} + q^{(2k-N+\ell)(N-k)} \prod_{i=\ell}^{N-k-1} (q^{N-k} - q^i).$$

Other expressions for $v_q(N,k,\ell)$ can be found, but they are not friendly to estimate. We obtain this one passing through the theory of *critical problems* by Crapo and Rota.

Asymptotic analysis for $q \to +\infty$:

- N and k are fixed,
- ullet everything else is a sequence in q, i.e., \mathscr{X}_q , \mathscr{A}_q , \mathscr{F}_q .

Let

$$\delta_q := 1 - rac{|\mathscr{F}_q|}{\left[egin{array}{c} N \ k \end{array}
ight]_q}$$

be the proportion of the common complements of the spaces in \mathscr{A}_q .

Asymptotic analysis for $q \to +\infty$:

- N and k are fixed,
- everything else is a sequence in q, i.e., \mathscr{X}_q , \mathscr{A}_q , \mathscr{F}_q .

Let

$$\delta_q := 1 - rac{|\mathscr{F}_q|}{egin{bmatrix} N \ k \end{bmatrix}_q}$$

be the proportion of the common complements of the spaces in \mathscr{A}_q .

Theorem (Gruica, R.)

- $\textbf{0} \ \ \text{If} \ |\mathscr{A}_q| \in o(q) \ \text{as} \ q \to +\infty \text{, then } \lim_{q \to +\infty} \delta_q = 1 \ \text{and the common complements are dense}.$
- $\textbf{9} \ \ \text{If} \ \ q \in o(|\mathscr{A}_q|) \ \ \text{as} \ \ q \to +\infty, \ \text{then (under certain assumptions) } \ \lim_{q \to +\infty} \delta_q = 0 \ \ \text{and the common complements are sparse}.$

When studying the asymptotics for $q\to +\infty$, in most cases the decisive property for density/sparseness is whether or not the size of \mathscr{A}_q is negligible with respect to the field size q (there are few exceptions).

<u>Back to MRD codes</u>: Let $1 \le d \le n$ and k = m(n-d+1). Recall that we described the MRD codes in $\mathbb{F}_q^{n \times m}$ of dimension k as the common complements of

$$\begin{bmatrix} n \\ d-1 \end{bmatrix}_q$$

subspaces on $\mathbb{F}_q^{n \times m}$ of dimension m(d-1).

<u>Back to MRD codes</u>: Let $1 \le d \le n$ and k = m(n-d+1). Recall that we described the MRD codes in $\mathbb{F}_q^{n \times m}$ of dimension k as the common complements of

$$\begin{bmatrix} n \\ d-1 \end{bmatrix}_q$$

subspaces on $\mathbb{F}_q^{n\times m}$ of dimension m(d-1). We also have

$$egin{bmatrix} n \ d-1 \end{bmatrix}_q \sim q^{(d-1)(n-d+1)} \;\; ext{as } q o +\infty$$

and (d-1)(n-d+1) > 1 unless d = 1 or n = d = 2.

<u>Back to MRD codes</u>: Let $1 \le d \le n$ and k = m(n-d+1). Recall that we described the MRD codes in $\mathbb{F}_q^{n \times m}$ of dimension k as the common complements of

$$\begin{bmatrix} n \\ d-1 \end{bmatrix}_q$$

subspaces on $\mathbb{F}_q^{n\times m}$ of dimension m(d-1). We also have

$$egin{bmatrix} n \ d-1 \end{bmatrix}_q \sim q^{(d-1)(n-d+1)} \;\; ext{as } q o +\infty$$

and (d-1)(n-d+1) > 1 unless d=1 or n=d=2. Therefore:

Theorem (Gruica, R.)

MRD codes are sparse as $q \to +\infty$, unless d=1 or n=d=2.

For d=1 MRD codes are dense. For n=d=2 we know from Antrobus and Gluesing-Luerssen that MRD codes are neither sparse, nor dense. These are the only exceptions to the sparseness result, for $q\to +\infty$.

One can explain the divergence between MDS and MRD codes with:

Theorem (Gruica, R.)

- If $|\mathscr{A}_q|\in o(q)$ as $q\to +\infty$, then $\lim_{q\to +\infty}\delta_q=1$ and the common complements are dense.
- $\textbf{ If } q \in o(|\mathscr{A}_q|) \text{ as } q \to +\infty, \text{ then (under certain assumptions) } \lim_{q \to +\infty} \delta_q = 0 \text{ and the common complements are sparse}.$

For $S\subseteq\{1,...,n\}$, let $\mathbb{F}_q^n(S)\leq \mathbb{F}_q^n$ be the space of vectors $x\in \mathbb{F}_q^n$ with $x_i=0$ for all $i\notin S$.

One can explain the divergence between MDS and MRD codes with:

Theorem (Gruica, R.)

- If $|\mathscr{A}_q|\in o(q)$ as $q\to +\infty$, then $\lim_{q\to +\infty}\delta_q=1$ and the common complements are dense.
- $\textbf{ If } q \in o(|\mathscr{A}_q|) \text{ as } q \to +\infty, \text{ then (under certain assumptions) } \lim_{q \to +\infty} \delta_q = 0 \text{ and the common complements are sparse}.$

For $S\subseteq\{1,...,n\}$, let $\mathbb{F}_q^n(S)\leq \mathbb{F}_q^n$ be the space of vectors $x\in \mathbb{F}_q^n$ with $x_i=0$ for all $i\notin S$.

MDS codes of dimension k are the common complements of the spaces of the form $\mathbb{F}_q^n(S)$, where $S\subseteq\{1,...,n\}$ has size n-k. The number of such spaces is $\binom{n}{k}$, and we have $\binom{n}{k}\in o(q)$ as $q\to +\infty$.

One can explain the divergence between MDS and MRD codes with:

Theorem (Gruica, R.)

- If $|\mathscr{A}_q|\in o(q)$ as $q\to +\infty$, then $\lim_{q\to +\infty}\delta_q=1$ and the common complements are dense.
- $\textbf{9} \ \ \text{If} \ \ q \in o(|\mathscr{A}_q|) \ \ \text{as} \ \ q \to +\infty, \ \text{then (under certain assumptions)} \ \ \lim_{q \to +\infty} \delta_q = 0 \ \ \text{and the common complements are sparse}.$

For $S\subseteq\{1,...,n\}$, let $\mathbb{F}_q^n(S)\leq \mathbb{F}_q^n$ be the space of vectors $x\in \mathbb{F}_q^n$ with $x_i=0$ for all $i\notin S$.

MDS codes of dimension k are the common complements of the spaces of the form $\mathbb{F}_q^n(S)$, where $S\subseteq\{1,...,n\}$ has size n-k. The number of such spaces is $\binom{n}{k}$, and we have $\binom{n}{k}\in o(q)$ as $q\to +\infty$.

MDS vs MRD codes

MDS/MRD codes are the common complements of families of spaces whose cardinalities are negligible/preponderant with respect to the field size q. This is the decisive property for density/sparseness.

Theorem (Gruica, R.)

We have

$$\delta_q(n\times m,d)\in O\left(q^{-(d-1)(n-d+1)+1}\right)\quad\text{as }q\to+\infty.$$

Therefore, MRD codes are almost always very sparse.

Corollary (Antrobus, Gluesing-Luerssen, Gruica, R.)

$$\lim_{q \to +\infty} \delta_q(n \times m, d) = \begin{cases} 1 & \text{if } d = 1, \\ \sum_{i=0}^m \frac{(-1)^i}{i!} & \text{if } n = d = 2, \\ 0 & \text{otherwise.} \end{cases}$$

This computes the asymptotic density of MRD codes as $q \to +\infty$ for all parameters.

It is natural to ask if non-linear codes behave like their linear brothers.

Definition

A non-linear block code is a subset $C \subseteq \mathbb{F}_q^n$ with $|C| \ge 2$. Its minimum (Hamming) distance is

$$d^{\mathsf{H}}(C) = \min\{\omega^{\mathsf{H}}(x-y) \mid x,y \in C, x \neq y\}.$$

Note: "non-linear" means "not necessarily linear" here.

It is natural to ask if non-linear codes behave like their linear brothers.

Definition

A non-linear block code is a subset $C \subseteq \mathbb{F}_q^n$ with $|C| \ge 2$. Its minimum (Hamming) distance is

$$d^{\mathsf{H}}(C) = \min\{\omega^{\mathsf{H}}(x-y) \mid x,y \in C, x \neq y\}.$$

Note: "non-linear" means "not necessarily linear" here.

Theorem (Singleton Bound)

Let $C \subseteq \mathbb{F}_q^n$ be a non-linear code. Then $|C| \le q^{n-d+1}$, where $d = d^{\mathsf{H}}(C)$.

Definition

We say that C is **MDS** if the bound is attained with equality.

Question

Is the typical non-linear code of size q^{n-d+1} MDS?

Let

$$\delta_q(n,q^s,\geq d) = \frac{\#\{C\subseteq \mathbb{F}_q^n \,:\, |C|=q^s,\, d^\mathsf{H}(C)\geq d\}}{\binom{q^n}{q^s}}.$$

Then:

Theorem (Gruica, R.)

$$\lim_{q\to +\infty} \delta_q(n,q^s,\geq d) = \begin{cases} 1 & \text{if } s<(n-d+1)/2, \\ 0 & \text{if } s>(n-d+1)/2. \end{cases}$$

In particular, non-linear MDS codes are sparse.

Let

$$\delta_q(n,q^s,\geq d) = \frac{\#\{C\subseteq \mathbb{F}_q^n : |C|=q^s, d^{\mathsf{H}}(C)\geq d\}}{\binom{q^n}{q^s}}.$$

Then:

Theorem (Gruica, R.)

$$\lim_{q \to +\infty} \delta_q(n, q^s, \geq d) = \begin{cases} 1 & \text{if } s < (n-d+1)/2, \\ 0 & \text{if } s > (n-d+1)/2. \end{cases}$$

In particular, non-linear MDS codes are sparse.

Remark

Note that the "boundary cardinality" separating density/sparseness is the square root of the maximal cardinality that a code can attain for q large, i.e.,

$$\sqrt{q^{n-d+1}}$$

Partial Spreads

Definition

A collection $\mathscr S$ of k-dimensional subspaces of $\mathbb F_q^n$ is called a **partial spread** if $U\cap V=\{0\}$ for all $U,V\in\mathscr S$ with $U\neq V$.

If $n \ge 2k$, there is always a partial spread of size $\sim q^{n-k}$.

Question

Are large partial spreads rare objects?

Partial Spreads

Definition

A collection $\mathscr S$ of k-dimensional subspaces of $\mathbb F_q^n$ is called a **partial spread** if $U\cap V=\{0\}$ for all $U,V\in\mathscr S$ with $U\neq V$.

If $n \ge 2k$, there is always a partial spread of size $\sim q^{n-k}$.

Question

Are large partial spreads rare objects?

Denote by $\mathscr{G}_q(k,n)$ the collection of k-spaces in \mathbb{F}_q^n .

Theorem (Gruica, R.)

Let *n* and *k* be integers with $n \ge 2k \ge 2$. We have

$$\lim_{q \to +\infty} \frac{\# \text{ partial spreads of card. } \mathcal{S}_q \text{ in } \mathscr{G}_q(k,n)}{\# \text{ sets of card. } \mathcal{S}_q \text{ in } \mathscr{G}_q(k,n)} = \begin{cases} 1 & \text{if } S_q \ll \sqrt{q^{n-2k+1}}, \\ 0 & \text{if } S_q \gg \sqrt{q^{n-2k+1}}. \end{cases}$$

Typical Objects

We answered the following

Question

Is the largest object with good distance properties "typical"?

• Hamming metric, linear: YES (folklore)

• Rank metric, linear: NO

• Hamming metric, non-linear: NO

Rank-metric, non-linear: NO

• Subspace metric (partial spreads): NO

Typical Objects

We answered the following

Question

Is the largest object with good distance properties "typical"?

• Hamming metric, linear: YES (folklore)

• Rank metric, linear: NO

• Hamming metric, non-linear: NO

• Rank-metric, non-linear: NO

• Subspace metric (partial spreads): NO

Thank you very much!