16. Solve the quadratic equation below. Then, choose the intervals that the solutions belong to, with $x_1 \leq x_2$ (if they exist).

$$14x^2 - 9x - 9 = 0$$

- A. $x_1 \in [-7.8, -7.4]$ and $x_2 \in [16.52, 17.25]$
- B. $x_1 \in [-3, -0.7]$ and $x_2 \in [0.52, 0.77]$
- C. $x_1 \in [-1, 1]$ and $x_2 \in [0.74, 1.48]$
- D. $x_1 \in [-25.7, -23.5]$ and $x_2 \in [24.06, 24.88]$
- E. There are no Real solutions.
- 17. Graph the equation below.

$$f(x) = -(x-2)^2 + 14$$

A.

C.

В.

- E. None of the above.
- 18. Solve the quadratic equation below. Then, choose the intervals that the solutions x_1 and x_2 belong to, with $x_1 \leq x_2$.

$$25x^2 - 15x - 54 = 0$$

- A. $x_1 \in [-1.23, -0.7]$ and $x_2 \in [1.34, 2.47]$
- B. $x_1 \in [-6.13, -5.67]$ and $x_2 \in [-0.94, 0.59]$
- C. $x_1 \in [-4.54, -2.89]$ and $x_2 \in [0.49, 0.72]$
- D. $x_1 \in [-0.65, 0.03]$ and $x_2 \in [3.06, 3.65]$
- E. $x_1 \in [-30.46, -29.75]$ and $x_2 \in [44.3, 45.62]$

19. Write the equation of the graph presented below in the form $f(x) = ax^2 + bx + c$, assuming a = 1 or a = -1. Then, choose the intervals that a, b, and c belong to.

A.
$$a \in [-2.5, -0.5], b \in [-5, -2], \text{ and } c \in [-11, -3]$$

B.
$$a \in [-2.5, -0.5], b \in [0, 5], \text{ and } c \in [-11, -3]$$

$$\text{C. } a \in [-2.5, -0.5], \quad b \in [-5, -2], \text{ and } \quad c \in [-5, -1]$$

D.
$$a \in [0.7, 1.2], b \in [-5, -2], \text{ and } c \in [0, 4]$$

E.
$$a \in [0.7, 1.2], b \in [0, 5], \text{ and } c \in [0, 4]$$

20. Factor the quadratic below. Then, choose the intervals that contain the constants in the form (ax + b)(cx + d); $b \le d$.

$$36x^2 - 53x + 10$$

A.
$$a \in [3.82, 5.11], b \in [-9, -4], c \in [6.97, 9.15], and $d \in [-6, -1]$$$

B.
$$a \in [11.6, 12.74], b \in [-9, -4], c \in [2.3, 4.02], and $d \in [-6, -1]$$$

C.
$$a \in [0.3, 1.11], \quad b \in [-50, -44], \quad c \in [0.41, 1.7], \text{ and } \quad d \in [-14, -5]$$

$$\text{D. } a \in [1.28, 3.51], \quad b \in [-9, -4], \quad c \in [17.25, 18.01], \text{ and } \quad d \in [-6, -1]$$

E. None of the above.