

INVESTIGACIÓN DE **OPERACIONES EN INGENIERÍA II**

MÉTODO DE PLANO DE CORTE

Ingeniería de Sistemas Ing. Néstor Muñoz

Logro de sesión

• Al culminar la sesión, el estudiante aplica el método de plano de corte en la solución de problemas de programación lineal entera.

Se tiene la siguiente programación lineal entero:

 $Maximizar z = 7x_1 + 10x_2$

sujeta a

$$-x_1 + 3x_2 \le 6$$

 $7x_1 + x_2 \le 35$
 $x_1, x_2 \ge 0$ y enteras

VACIONAL

El algoritmo del plano de corte modifica el espacio de soluciones agregando *cortes* que producen un punto extremo entero óptimo. La siguiente figura muestra un ejemplo de dos cortes de esos. Se parte del óptimo del programa lineal continuo, z = 661/2, x1 = 41/2, x2 = 31/2.

A continuación se agrega el corte I, que produce la solución lineal óptima continua z = 62, x1 = 44/7, x2 = 3. A continuación se agrega el corte II, que junto con el corte I y las restricciones originales, llega al óptimo del programa lineal z = 58, x1 = 4, x2 = 3. La última solución es entera, que era lo que se buscaba.

- Consiste en alterar gradualmente el espacio de direcciones incorporando restricciones adicionales que representan condiciones necesarias de integralidad.
- Si se tiene el problema de programación lineal entera como:

s.a.

Ax=b

x>=0 y enteras

Tomaremos a x* como el vector solución y a xi* del problema como fila i del mismo.

Separaremos este valor xi* como la suma de la parte entera y la parte fraccionaria:

$$xi*=[xi*]+fi$$

Seleccionaremos el elemento i cuya parte fraccionaria sea la mayor de todos los que pertenecen al vector solución del problema:

$$fi = max f_k$$

1≤k≤m

Luego separaremos esta expresión en sus partes enteras y en sus partes fraccionarias.

Siendo *f i* la parte fraccionaria de la solución y *f i j* la parte fraccionaria de los valores de las variables no básicas.

$$f_i - \sum_{j=m+1}^m f_{ij} x_j \le f_i < 1$$

$$f_i - \sum_{j=m+1}^n f_{ij} x_j \le f_i \le 0$$

$$f_i - \sum_{j=m+1}^n f_{ij} x_j \le 0$$

$$-\sum_{j=m+1}^{n} f_{ij} x_{j} \le -f_{i}$$

ALGORITMO DE PLANO DE CORTE

En resumen el algoritmo es el siguiente:

- Tomamos a P como el problema de programación lineal entera a resolver.
- VACIOY debemos repetir lo siguiente:
 - 1. Resolver P como un problema de programación lineal PL.
 - 2. Si la solución no es entera entonces debemos incorporar una restricción adicional.
 - 3. Debemos repetir esto hasta que encontremos una solución entera.

Ejercicio 1

$$Max Z = 3X_1 + 4X_2$$

 $s. a.$
 $2X_1 + X_2 \le 6$
 $2X_1 + 3X_2 \le 9$
 $X_1, X_2 \ge 0, enteras$

$$Min - Z = -3X_1 - 4X_2$$

Si es maximizar, convertimos Maz Z = Min –Z el tablero óptimo, multiplicando por -1 a los coeficientes objetivo y coeficientes básicos, por ende también a –Z.

- Para comenzar a iterar con el método de los planos de corte, partimos del tablero óptimo de la programación lineal y debemos fijarnos en el valor de nuestras variables y ver cuál es la que tiene la fracción mayor.
- Por lo tanto como $\frac{1}{2}$ es el mayor, la fila de X_2 es la escogida para poder realizar las operaciones y hacer ingreso de la restricción.

	Cj	- 3	- 4	O	O		
C_B	V_B	X_1	X_2	X_3	X_4	X_B	
- 3	X_1	1	O	3/4	-1/4	9/4	→ 2 ½
- 4	X_2	O	1	-1/2	1/2	3/2	→ 17
Z_j -	C_{j}	O	0	-1/4	-5/4	-12.75	

• La restricción queda de la siguiente manera, S_1 es la variable que hemos inventado. Todos los valores son las fracciones que hemos encontrado en la fila de X_2 :

$$S_1 - \frac{1}{2}X_3 - \frac{1}{2}X_4 = -\frac{1}{2}$$

	Cj	- 3	- 4	O	O	O	
C_B	V_B	X_1	X_2	X_3	X_4	S_1	X_B
-3	X_1	1	0	3/4	-1/4	0	9/4
-4	X_2	0	1	-1/2	1/2	0	3/2
0	S_1	0	0	-1/2	-1/2	1	-1/2
Z	_j - C _j	0	0	-1/4	-5/4	0	-12.75

• Hacemos ingreso de la restricción y la nueva variable a la tabla quedando de la siguiente forma S_1 ahora es una variable básica pero su valor es negativo, por lo tanto esta solución no puede ser aceptada y debemos decidir por qué variable de las no básicas va a ser reemplazada.

	Cj	-3	-4	0	0	0	
C_B	V_B	X_1	X_2	X_3	X_4	S_1	X_B
-3	X_1	1	0	3/4	-1/4	0	9/4
-4	X_2	0	1	-1/2	1/2	0	3/2
0	S_1	0	0	-1/2	-1/2	0	-1/2
Z_{j}	- C _j	0	0	-1/4	-5/4	1	-12.75

- En este caso las candidatas son X_3 y X_4 y para poder decidirlo realizamos la división de -1/4 entre -1/2 representando a X_3 y -5/4 entre -1/2 representando a X_4 .
- El menor valor de estas divisiones nos dirá qué variable es la que debe ingresar a la base. En esta ocasión es X_3 la que debe hacer ingreso, por lo tanto el cuadro con marca en negrita debe ser llevado a 1 mediante operaciones de fila y todos los valores que estén sobre él llevados a cero, así X_3 va a poder hacer el ingreso a la base.

 Al realizar todas estas operaciones, la tabla resultante es la siguiente, obteniendo comosolución:

	Cj	-3	-4	Ü	O	O	
C_B	V_B	X_1	X_2	X_3	X_4	S_1	X_B
-3	X_1	1	0	0	-1	3/2	3/2
-4	X_2	0	1	0	1	-1	2
0	χ_3	0	0	1	1	-2	1
Z_{j}	- C _j	0	0	0	-1	-1/2	-12.75

• Ahora solo nos queda X1 con valor no entero, así que debemos agregar una restricción que nos oblige a tomar el valor deseado:

• Al realizar todas estas operaciones, la tabla resultante es la siguiente, obteniendo comosolución:

	Cj	-3	-4	0	0	0	
C_B	V_B	X_1	X_2	X_3	X_4	S_1	X_B
-3						3/2	
-4	X_2	0	1	0	1	-1	2
0	χ_3	0	0	1	1	-2	1
Z_j	- C _j	0	0	0	-1	-1/2	-12.75

• La restricción queda de la siguiente manera:

$$S_2 - \frac{1}{2}S_1 = -\frac{1}{2}$$

• Hacemos ingreso de la nueva restricción quedando de la siguiente manera:

C_B	V_B	X_1	X_2	X_3	X_4	S_1	S ₂	X_B
-3	X_1	1	0	0	-1	3/2	0	3/2
-4	X_2	0	1	0	1	-1	0	2
0	X_3	0	0	1	1	-2	0	1
0	S_2	0	0	0	0	-1/2	1	-1/2
Z_{j}	- C _j	0	0	0	-1	-1/2	0	-12.75

• Y al igual que en el caso anterior S_2 tiene un valor negativo por lo tanto debe ser reemplazado por una variable no básica. En este caso la única candidata es S_1 dado que X_4 aparece con cero en la fila de S_2 . Hacemos ingreso de S_1 en la base.

• Encontramos finalmente una solución entera, $X_1=0$, $X_2=3$, Z=12.

$$C_{j}$$
 -3
 -4
 0
 0
 0
 0

 C_{B}
 V_{B}
 X_{1}
 X_{2}
 X_{3}
 X_{4}
 S_{1}
 S_{2}
 X_{B}

 -3
 X_{1}
 1
 0
 0
 -1
 0
 3
 0

 -4
 X_{2}
 0
 1
 0
 1
 0
 -2
 3

 0
 X_{3}
 0
 0
 1
 1
 0
 -4
 3

 0
 S_{1}
 0
 0
 0
 0
 1
 -2
 1

 Z_{j} - C_{j}
 0
 0
 0
 -1
 0
 -1
 -12

• Y de esta manera es como se utiliza el método de los planos de corte para problemas de programación lineal entera.

Ejemplo 2:

Dado:

			Disponibilidad
Maquina 1	3.2	2.4	16
Maquina 2	2	3	15
LHilidad	120	150	

X1: Cantidad de producto A

X2: Cantidad de producto B

	F.O: Max Z=130X1	+150x2
NACIONA	s.a. 3.2x1+2.4x2+s 2x1+3x2+s2=3	
	2	DE CA

	Cj		130	150	0	0
Cb	Xb	Bi	X1	X2	s1	s2
0	s1	16	3.2	2.4	1	0
0	s2	15	2	3	0	1
Zj 0			0	0	0	0
	Zj-Cj		-130	-150	0	0

Lado	
Derecho	
16	7
15	5

Resolvemos con el método simplex

	Cj		130	150	0	0
СЬ	ХЬ	Bi	X1	X2	s1	s2
0	s1	4	1.6	0	1	-0.8
150	х2	5	0.6667	1	0	0.333
Zį		750	100	150	0	50
	Zj-Cj		-30	0	0	50
	Cj		130	150	0	0
СЬ	ХЬ	Bi	X1	X2	s 1	s2
0	s1	4	1.6	0	1	-0.8
150	ж2	5	0.6667	1	0	0.333
		750	400	150	0	50
Zį		750	100	יונו		JU

1er CORTE

	Cj				150	0	0
СЬ	ХЬ	Bi	X1	X2		รไ	s2
130	х1	2.5	1		0	0.625	-0.5
150	х2	3.33	0		7	-0.4167	0.667
Zį		825	130		150	18.75	35
	Zj-Cj		0		0	18.75	35

1er corte

$$\times 1 + 0.63 \times 1 + (-1(0.5) \times 2 = 2.5)$$

5/8

$$x1 + \frac{5}{18}s1 + (-1 + \frac{1}{2})s2 = 2 + \frac{1}{2}$$

$$\frac{5}{18}s1 + \frac{1}{2}s2 = \frac{1}{2}$$
 $= \frac{1}{2} - \frac{5}{18}s1 - \frac{1}{2}s2$

$$-\frac{5}{18}s1 - \frac{1}{2}s2 + \frac{1}{2} \le 0$$
 $-\frac{5}{18}s1 - \frac{1}{2}s2 + 53 = -\frac{1}{2}$

Ingresamos nueva restricción y aplicamos el método simplex

	Cj		130	150	0	0	
СЬ	ХЬ	Bi	X1	X2	s1	s2	s3
130	я1	2.5	1	0	0.625	-0.5	0
150	я2	3.33	0	1	-0.4167	0.667	0
	s3	- 1/2	0	0	- 5/8	- 1/2	1
Zj 825			130	150	18.75	35	
	Zj-Cj		0	0	18.75	35	
		aplicamos	simplex o	lual	30	70	

	Cj		130	150	0	0	
СР	ХЬ	Bi	X1	X2	s1	s2	s3
130	x1	2.5	1	0	0.625	-0.5	0
150 x2		3.33	0	1	-0.4167	0.667	0
0 s3		- 1/2	0	0	- 5/8	- 1/2	1
Zį		825	130	150	18.75	35	
	Zj-Cj		0	0	18.75	35	0
					30	70	-

	Cj		130	150	0	0	0
СЬ	ХР	Bi	X1	X2	s1	s N	s3
130	я1	2	1	0	0	-1	1
150	к2	3 2/3	0	1	0	1	- 2/3
0 s1		0.80	0.00	0.00	1.00	0.80	-1.60
Zj 810			130	150	0	20	30
	Zj-Cj		0	0	0	20	30

2do CORTE

2do corte x2+1s2+(-1+1/3)s3=3.2/3

$$x2 + 1s2 + (-1 + \frac{1}{3})s3 = 3 + \frac{2}{3}$$

$$\frac{1}{3}s3 = \frac{2}{3}$$

$$=\frac{2}{3}-\frac{1}{3}s3$$

$$-\frac{1}{3}s3 + \frac{2}{3} < = 0$$

$$-\frac{1}{3}s3 + \frac{2}{3} = 0$$
 $-\frac{1}{3}s3 + s4 = -\frac{2}{3}$

9	ı
u	۹

	Cj		130	150	0	0	0	0	
СЬ	ХЬ	Bi	X1	X2	s1	s2	s3	s4	Lado Dorocho
130	x1	0	1	0	0	-1	0	3	0
150	ж2	5	0	1	0	1	0	-2	5.0
0	s1	4	0.00	0.00	1.00	0.80	0.00	-4.80	4.0
0	s 4	2	0	0	0	0	1	-3	2.0
Zj 750		750	130	150	0	20	0		
Zi-Ci			0	0	0	20	0	0	

Universidad Peruana"

(1	0
2	5
	750

