

Map Reduce Algorithm and Code

演算法根據老師第七章 p.34

- 1) For each point, place it in the cluster whose current centroid it is nearest
- 2) After all points are assigned, update the locations of centroids of the k clusters
- 3) Reassign all points to their closest centroid
 - Sometimes moves points between clusters
- Repeat 2 and 3 until convergence

因為題目要求使用不同的距離量測方式,所以在距離 計算上面會寫成不同的 function

a. Map

此 Mapper 的功能為做計算各 node 到各 centroid 的距離,並 assign 各 node 到各 centroid,為題目要求使用不同的距離量測方式所以,會有兩種 mapper

程式碼

```
def Mapper_Euclidean(data):
    # calculate_Euclidean_distance
    input_data = data.map(calculate_Euclidean_distance)

# Assign to new centroid
    key_value = Assign2new_centroid(input_data)
    return key_value

def Mapper_Manhattan(data):
    # calculate_Euclidean_distance
    input_data = data.map(calculate_Manhattan_distance)

# Assign to new centroid
    key_value = Assign2new_centroid(input_data)
    return key_value
```

所呼叫的副程式程式碼

```
def Assign2new_centroid(input_data):
    # find the minimum distance to each centroid
    # Assign to new cluster
    # (cluster, node)
    # value, key, then reduce by key & average, you will get new centroid
    key_value = input_data.map(lambda x : (x[0][1].index(min(x[0][1])), x[0][0]) )
    return key_value
```

b. Reduce

此 Reducer 的功能為計算新的 centroid, 因為找 centroid 跟距離量 測方式無關,所以只需一個 Reducer

程式碼

```
def Reducer(key_value):
    global countsByKey, centroid
    # find_new_centroid
    # find the number of value for each key
    countsByKey = key_value.countByKey()
    # accumulate same key value from same cluster
    key_value = key_value.reduceByKey(lambda x,y : add(x,y))
    key_value = key_value.map(find_new_centroid)
    #update centroid
    centroid = key_value.collect()
```

Homework 回答

以 Euclidean distance 做 K-means

1. Performance 比較

2. After 10 iterations, about centroid distance

2.1 探討進步程度

Using Euclidean with c1 as initial centroid improves 0.26 % Using Euclidean with c2 as initial centroid improves 0.75 %

2.2 c1, c2 performance 比較

c2 在整體 performance 上不管是改善 cost,或者 cost 的大小上都比 c1 來的更好,因為 kmeans 的初始化很重要,所以隨機的初始化的結果很可能比較差

2.3 Centroid 距離比較表格

使用 c1 下用 Euclidean distance

使用 c1 下用 Manhattan distance

使用 c2 下用 Euclidean distance

使用 c2 下用 Manhattan distance

以 Manhattan distance 做 K-means

1. Performance 比較

2. After 10 iterations, about centroid distance

2.1 探討進步程度

Using Manhattan with c1 as initial centroid improves 0.17 % Using Manhattan with c2 as initial centroid improves 0.50 %

2.2 c1, c2 performance 比較

c1 performance 上(cost)表現比 c2 佳,進步上比 c2 差因為 kmeans 的初始化很重要,所以隨機的初始化的結果很可能使進步程度比較差,但是因為 Manhattan 距離量測方法的考量為各維度的點差 距和,所以 cost 結果可能跟 Euclidean 不同

2.3 centroid 距離比較表格

使用 c1 下用 Euclidean distance

使用 c1 下用 Manhattan distance

使用 c2 下用 Euclidean distance

使用 c2 下用 Manhattan distance

