COMUNE DI FONTE NUOVA

PROVINCIA DI ROMA

Lavori di adeguamento sismico ed efficientamento energetico dell'Istituto Comprensivo "E.De Filippo" di via Brennero.

PROGETTO ESECUTIVO

							I	
		PRI	MA STESURA					
NOME FILE:	DATA	5	STESURA N.			DISEGN.	CONTR.	APPROV.
SOSTITUISCE ELAB. N				Е	1315	SCALA:	varie	
SOSTITUITO DALL'ELA	AB. N° DEL			_	1010			
Progest Studio Professionale Associato Dott. Ing. Catia Bianchi Dott. Ing. Pierpaolo Spaziani Testa								
RELAZIO	RELAZIONE GEOTECNICA: BLOCCO C ALL_S_12							
COMMITTENTE PROGETTAZIONE E OPERE DI INGEGNERIA								
Comune di FON	TE NUOVA							
			1 1					

CALCOLO PORTANZA E CEDIMENTI DI FONDAZIONI SUPERFICIALI

NORMATIVE DI RIFERIMENTO

Norme tecniche per le Costruzioni 2008

Norme tecniche per le costruzioni D.M. 14 gennaio 2008.

Eurocodice 7

Progettazione geotecnica – Parte 1: Regole generali.

Eurocodice 8

Indicazioni progettuali per la resistenza sismica delle strutture - Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici.

CARICO LIMITE DI FONDAZIONI SU TERRENI

Il carico limite di una fondazione superficiale può essere definito con riferimento a quel valore massimo del carico per il quale in nessun punto del sottosuolo si raggiunge la condizione di rottura (metodo di Frolich), oppure con riferimento a quel valore del carico, maggiore del precedente, per il quale il fenomeno di rottura si è esteso ad un ampio volume del suolo (metodo di Prandtl e successivi).

Prandtl ha studiato il problema della rottura di un semispazio elastico per effetto di un carico applicato sulla sua superficie con riferimento all'acciaio, caratterizzando la resistenza a rottura con una legge del tipo:

 $\tau = c + \sigma \times tg \ \varphi$ valida anche per i terreni.

Le ipotesi e le condizioni introdotte dal Prandtl sono le seguenti:

- Materiale privo di peso e quindi γ=0
- Comportamento rigido plastico
- Resistenza a rottura del materiale esprimibile con la relazione $\tau = c + \sigma \times tg \varphi$
- Carico uniforme, verticale ed applicato su una striscia di lunghezza infinita e di larghezza 2b (stato di deformazione piana)
- Tensioni tangenziali nulle al contatto fra la striscia di carico e la superficie limite del semispazio.

All'atto della rottura si verifica la plasticizzazione del materiale racchiuso fra la superficie limite del semispazio e la

superficie GFBCD.

Nel triangolo *AEB* la rottura avviene secondo due famiglie di segmenti rettilinei ed inclinati di $45^{\circ}+\varphi/2$ rispetto all'orizzontale.

Nelle zone *ABF e EBC* la rottura si produce lungo due famiglie di linee, l'una costituita da segmenti rettilinei passanti rispettivamente per i punti *A* ed *E* e l'altra da archi di de famiglie di spirali logaritmiche.

I poli di queste sono i punti A ed E. Nei triangoli AFG e ECD la rottura avviene su segmenti inclinati di $\pm (45^{\circ} + \varphi/2)$ rispetto alla verticale.

Meccanismo di rottura di Prandtl

Individuato così il volume di terreno portato a rottura dal carico limite, questo può essere calcolato scrivendo la condizione di equilibrio fra le forze agenti su qualsiasi volume di terreno delimitato in basso da una qualunque delle superfici di scorrimento.

Si arriva quindi ad una equazione $q = B \times c$, dove il coefficiente B dipende soltanto dall'angolo di attrito φ del terreno.

$$B = \cot g \varphi \left[e^{\pi t g \varphi} t g^2 (45^\circ + \varphi/2) - 1 \right]$$

Per $\varphi = 0$ il coefficiente B risulta pari a 5.14, quindi $q = 5.14 \times c$.

Nell'altro caso particolare di terreno privo di coesione (c=0, $\gamma \neq 0$) risulta q=0, secondo la teoria di **Prandtl**, non sarebbe dunque possibile applicare nessun carico sulla superficie limite di un terreno incoerente.

Da questa teoria, anche se non applicabile praticamente, hanno preso le mosse tutte le ricerche ed i metodi di calcolo successivi.

Infatti *Caquot* si pose nelle stesse condizioni di Prandtl ad eccezione del fatto che la striscia di carico non è più applicata sulla superficie limite del semispazio, ma a una profondità h, con $h \le 2b$; il terreno compreso tra la superficie e la profondità h ha le seguenti caratteristiche: $\gamma \ne 0$, $\varphi = 0$, c = 0

e cioè sia un mezzo dotato di peso ma privo di resistenza.

Risolvendo le equazioni di equilibrio si arriva all'espressione:

$$q = A \times \gamma \gamma + B \times c$$

che è sicuramente è un passo avanti rispetto a Prandtl, ma che ancora non rispecchia la realtà.

Metodo di Terzaghi (1955)

Terzaghi, proseguendo lo studio di Caquot, ha apportato alcune modifiche per tenere conto delle effettive caratteristiche dell'insieme opera di fondazione-terreno.

Sotto l'azione del carico trasmesso dalla fondazione il terreno che si trova a contatto con la fondazione stessa tende a sfuggire lateralmente, ma ne è impedito dalle resistenze tangenziali che si sviluppano fra la fondazione ed il terreno. Ciò comporta una modifica dello stato tensionale nel terreno posto direttamente al di sotto della fondazione; per tenerne conto Terzaghi assegna ai lati AB ed EB del cuneo di Prandtl una inclinazione ψ rispetto all'orizzontale, scegliendo il valore di ψ in funzione delle caratteristiche meccaniche del terreno al contatto terreno-opera di fondazione.

L'ipotesi γ_2 =0 per il terreno sotto la fondazione viene così superata ammettendo che le superfici di rottura restino inalterate, l'espressione del carico limite è quindi:

$$q = A \times \gamma \times h + B \times c + C \times \gamma \times b$$

in cui C è un coefficiente che risulta funzione dell'angolo di attrito ϕ del terreno posto al di sotto del piano di posa e dell'angolo ϕ prima definito; b è la semilarghezza della striscia.

Inoltre, basandosi su dati sperimentali, *Terzaghi* passa dal problema piano al problema spaziale introducendo dei fattori di forma.

Un ulteriore contributo è stato apportato da *Terzaghi* sull' effettivo comportamento del terreno.

Nel metodo di Prandtl si ipotizza un comportamento del terreno rigido-plastico, *Terzaghi* invece ammette questo comportamento nei terreni molto compatti.

In essi, infatti, la curva carichi-cedimenti presenta un primo tratto rettilineo, seguito da un breve tratto curvilineo (comportamento elasto-plastico); la rottura è istantanea ed il valore del carico limite risulta chiaramente individuato (rottura generale).

In un terreno molto sciolto invece la relazione carichi-cedimenti presenta un tratto curvilineo accentuato fin dai carichi più bassi per effetto di una rottura progressiva del terreno (rottura locale); di conseguenza l'individuazione del carico limite non è così chiara ed evidente come nel caso dei terreni compatti.

Per i terreni molto sciolti, Terzaghi consiglia di prendere in considerazione il carico limite il valore che si calcola con la formula precedente introducendo però dei valori ridotti delle caratteristiche meccaniche del terreno e precisamente:

$$tg\varphi_{rid} = 2/3 \times tg\varphi e c_{rid} = 2/3 \times c$$

Esplicitando i coefficienti della formula precedente, la formula di Terzaghi può essere scritta:

$$q_{ult} = c \times N_c \times s_c + \gamma \times D \times N_q + 0.5 \times \gamma \times B \times N_\gamma \times s_\gamma$$

dove:

$$N_q = \frac{a^2}{2\cos^2(45 + \varphi/2)}$$

$$a = e^{(0.75\pi - \varphi/2)\tan\varphi}$$

$$N_c = (N_q - 1)\cot\varphi$$

$$N_{\gamma} = \frac{\tan \varphi}{2} \left(\frac{K_{p\gamma}}{\cos^2 \varphi} - 1 \right)$$

Formula di Meyerhof (1963)

Meyerhof propose una formula per il calcolo del carico limite simile a quella di *Terzaghi*.; le differenze consistono nell'introduzione di ulteriori coefficienti di forma.

Egli introdusse un coefficiente s_q che moltiplica il fattore N_q , fattori di profondità d_i e di pendenza i_i per il caso in cui il carico trasmesso alla fondazione è inclinato sulla verticale.

I valori dei coefficienti N furono ottenuti da Meyerhof ipotizzando vari archi di prova BF (v. meccanismo Prandtl), mentre il taglio lungo i piani AF aveva dei valori approssimati.

I fattori di forma tratti da Meyerhof sono di seguito riportati, insieme all'espressione della formula.

Carico verticale
$$q_{ult} = c \times N_c \times s_c \times d_c + \gamma \times D \times N_q \times s_q \times d_q + 0.5 \times \gamma \times B \times N_\gamma \times s_\gamma \times d_\gamma$$

Carico inclinato
$$q_{ul\ t} = c \times N_c \times i_c \times d_c + \gamma \times D \times N_q \times i_q \times d_q + 0.5 \times \gamma \times B \times N_\gamma \times i_\gamma \times d_\gamma$$

$$N_{q} = e^{\pi \tan \varphi} \tan^{2} \left(45 + \varphi/2\right)$$

$$N_{c} = (N_{q} - 1) \cot \varphi$$

$$N_{\gamma} = \left(N_{q} - 1\right) \tan\left(1.4\varphi\right)$$

fattore di forma:

$$s_C = 1 + 0.2k_p \frac{B}{L}$$
 $\text{per } \varphi > 10$
 $s_Q = s_{\gamma} = 1 + 0.1k_p \frac{B}{L}$ $\text{per } \varphi = 0$

fattore di profondità:

$$\begin{aligned} d_{c} &= 1 + 0.2 \sqrt{k_{p}} \, \frac{D}{B} \\ d_{q} &= d_{\gamma} = 1 + 0.1 \sqrt{k_{p}} \, \frac{D}{B} \\ d_{q} &= d_{\gamma} = 1 \end{aligned} \qquad \text{per } \varphi > 10 \\ d_{q} &= d_{\gamma} = 1 \qquad \text{per } \varphi = 0 \end{aligned}$$

inclinazione:

$$i_{c} = i_{\gamma} = \left(1 - \frac{\theta}{90}\right)^{2}$$

$$i_{\gamma} = \left(1 - \frac{\theta}{\varphi}\right)^{2} \qquad \text{per } \varphi > 0$$

$$i_{\gamma} = 0 \qquad \text{per } \varphi = 0$$

dove:

$$K_p = tan^2(45^\circ + \varphi/2)$$

 θ = Inclinazione della risultante sulla verticale.

Formula di Hansen (1970)

E' una ulteriore estensione della formula di *Meyerhof*; le estensioni consistono nell'introduzione di b_i che tiene conto della eventuale inclinazione sull'orizzontale del piano di posa e un fattore g_i per terreno in pendenza.

La formula di Hansen vale per qualsiasi rapporto *D/B*, quindi sia per fondazioni superficiali che profonde, ma lo stesso autore introdusse dei coefficienti per meglio interpretare il comportamento reale della fondazione, senza di essi, infatti, si avrebbe un aumento troppo forte del carico limite con la profondità.

Per valori di D/B <1

$$\begin{aligned} d_{c} &= 1 + 0.4 \frac{D}{B} \\ d_{q} &= 1 + 2 \tan \varphi (1 - \sin \varphi) \ \frac{D}{B} \end{aligned}$$

Per valori D/B>1:

$$\begin{aligned} d_c &= 1 + 0.4 \tan^{-1} \frac{D}{B} \\ d_q &= 1 + 2 \tan \varphi (1 - \sin \varphi) \tan^{-1} \frac{D}{B} \end{aligned}$$

Nel caso $\varphi = 0$

D/B0 1 1.1 2 10 20 100 d'_{c} 0.59 0 0.400.33 0.440.55 0.61 0.62

Nei fattori seguenti le espressioni con apici (') valgono quando \varphi=0.

Fattore di forma:

$$s_{C}^{'}=0.2\frac{B}{L}$$
 $s_{C}=1+\frac{N_{q}}{N_{C}}\frac{B}{L}$
 $s_{C}=1$ per fondazioni nastriformi
 $s_{q}=1+\frac{B}{L}\tan\varphi$
 $s_{\gamma}=1-0.4\frac{B}{L}$

Fattori di inclinazione del carico

$$\begin{split} &i_{c}^{'} = 0.5 - 0.5 \sqrt{1 - \frac{H}{A_{f} c_{a}}} \\ &i_{c} = i_{q} - \frac{1 - i_{q}}{N_{q} - 1} \\ &i_{q} = \left(1 - \frac{0.5H}{V + A_{f} c_{a} \cot \varphi}\right)^{5} \\ &i_{\gamma} = \left(1 - \frac{0.7H}{V + A_{f} c_{a} \cot \varphi}\right)^{5} \quad (\eta = 0) \\ &i_{\gamma} = \left(1 - \frac{(0.7 - \eta/450)H}{V + A_{f} c_{a} \cot \varphi}\right)^{5} \quad (\eta > 0) \end{split}$$

Fattori di inclinazione del terreno (fondazione su pendio):

$$g'_{c} = \frac{\beta}{147}$$

$$g_{c} = 1 - \frac{\beta}{147}$$

$$g_{q} = g_{\gamma} = (1 - 0.5 \tan \beta)^{5}$$

Fattori di inclinazione del piano di fondazione (base inclinata)

$$b_{C}^{'} = \frac{\eta^{\circ}}{147^{\circ}}$$

$$b_{C} = 1 - \frac{\eta^{\circ}}{147^{\circ}}$$

$$b_{Q} = \exp(-2\eta \tan \varphi)$$

Formula di Vesic (1975)

La formula di Vesic è analoga alla formula di Hansen, con Nq ed Nc come per la formula di Meyerhof ed $N\gamma$ come sotto riportato:

$$N\gamma = 2(Nq+1) x tan(\varphi)$$

I fattori di forma e di profondità che compaiono nelle formule del calcolo della capacità portante sono uguali a quelli proposti da Hansen; alcune differenze sono invece riportate nei fattori di inclinazione del carico, del terreno (fondazione su pendio) e del piano di fondazione (base inclinata).

Formula Brich-Hansen (EC 7 – EC 8)

Affinché una fondazione possa resistere il carico di progetto con sicurezza nei riguardi della rottura generale, per tutte le combinazioni di carico relative allo SLU (stato limite ultimo), deve essere soddisfatta la seguente disuguaglianza:

$$Vd \le Rd$$

Dove Vd è il carico di progetto allo SLU, normale alla base della fondazione, comprendente anche il peso della fondazione stessa; mentre Rd è il carico limite di progetto della fondazione nei confronti di carichi normali, tenendo conto anche dell'effetto di carichi inclinati o eccentrici.

Nella valutazione analitica del carico limite di progetto Rd si devono considerare le situazioni a breve e a lungo termine nei terreni a grana fine.

Il carico limite di progetto in condizioni non drenate si calcola come:

$$R/A' = (2 + \pi) c_u s_c i_c + q$$

Dove:

A' = B' L' area della fondazione efficace di progetto, intesa, in caso di carico eccentrico, come l'area ridotta al cui centro viene applicata la risultante del carico.

c₁₁ Coesione non drenata.

q pressione litostatica totale sul piano di posa.

s_c Fattore di forma

$$s_c = 1 + 0.2$$
 (B'/L') per fondazioni rettangolari $s_c = 1.2$ Per fondazioni quadrate o circolari.

i_c Fattore correttivo per l'inclinazione del carico dovuta ad un carico H.

$$i_c = 0.5(1 + \sqrt{1 - H/A'c_u})$$

Per le condizioni drenate il carico limite di progetto è calcolato come segue.

$$R/A' = c' \ N_c \ s_c \ i_c + q' \ N_q \ s_q \ i_q + 0.5 \ \gamma' \ B' \ N_\gamma \ s_\gamma \ i_\gamma$$

Dove:

$$\begin{split} N_{q} &= e^{\pi \tan \phi'} \tan^{2} \left(45 + \phi' / 2\right) \\ N_{c} &= \left(N_{q} - 1\right) \cot \phi' \\ N_{\gamma} &= 2 \cdot \left(N_{q} - 1\right) \tan \phi' \end{split}$$

Fattori di forma

$$s_q = 1 + (B' / L') \cdot sen\phi'$$
 per forma rettangolare

$$s_q = 1 + sen\phi'$$
 per forma quadrata o circolare

$$s_{\gamma}$$
 =1-0,3(B'/L') $_{per}$ forma rettangolare

$$s_{\gamma} = 0.7$$
 per forma quadrata o circolare

$$s_c = \! \left(\! s_q \cdot N_q - \! 1 \! \right) \! / \! \left(\! N_q - \! 1 \! \right) \; \text{per forma rettangolare, quadrata o circolare.}$$

Fattori inclinazione risultante dovuta ad un carico orizzontale H

$$\begin{split} i_{q} &= \left[1 - H / \left(V + A' \cdot c' \cdot \cot \phi'\right)\right]^{m} \\ i_{\gamma} &= \left[1 - H / \left(V + A' \cdot c' \cdot \cot \phi'\right)\right]^{m+1} \\ i_{c} &= \left(i_{a} \cdot N_{a} - 1\right) / \left(N_{a} - 1\right) \end{split}$$

Dove:

$$m = m_B = \frac{\left[2 + \left(\frac{B'}{L'}\right)\right]}{\left[1 + \left(\frac{B'}{L'}\right)\right]} \quad con \quad H/\!/B'$$

$$m = m_L = \frac{\left[2 + \left(\frac{L'}{B'}\right)\right]}{\left[1 + \left(\frac{L'}{B'}\right)\right]} \quad con \quad H/\!/L'$$

Se H forma un angolo θ con la direzione di L', l'esponente "m" viene calcolato con la seguente espressione:

$$m = m_{\theta} = m_L \cos^2 \theta + m_B \sin^2 \theta$$

Oltre ai fattori correttivi di cui sopra sono considerati quelli complementari della profondità del piano di posa e dell'inclinazione del piano di posa e del piano campagna (Hansen).

Metodo di Richards et. Al.

Richards, Helm e Budhu (1993) hanno sviluppato una procedura che consente, in condizioni sismiche, di valutare sia il carico limite sia i cedimenti indotti, e quindi di procedere alle verifiche di entrambi gli stati limite (ultimo e di danno). La valutazione del carico limite viene perseguita mediante una semplice estensione del problema del carico limite al caso della presenza di forze di inerzia nel terreno di fondazione dovute al sisma, mentre la stima dei cedimenti viene ottenuta mediante un approccio alla Newmark (cfr. Appendice H di "Aspetti geotecnici della progettazione in zona sismica" – Associazione Geotecnica Italiana). Gli autori hanno esteso la classica formula trinomia del carico limite:

$$q_L = N_a \cdot q + N_c \cdot c + 0.5 N_{\gamma} \cdot \gamma \cdot B$$

Dove i fattori di capacità portante vengono calcolati con le seguenti formule:

$$N_c = (N_q - 1) \cdot \cot(\phi)$$

$$N_q = \frac{K_{pE}}{K_{AE}}$$

$$N_{\gamma} = \left(\frac{K_{pE}}{K_{AE}} - 1\right) \cdot tan(\rho_{AE})$$

Esaminando con un approccio da equilibrio limite, un meccanismo alla Coulomb e portando in conto le forze d'inerzia agenti sul volume di terreno a rottura. In campo statico, il classico meccanismo di Prandtl può essere infatti approssimato come mostrato nella figura che segue, eliminando la zona di transizione (ventaglio di Prandtl) ridotta alla sola linea AC, che viene riguardata come una parete ideale in equilibrio sotto l'azione della spinta attiva e della spinta passiva che riceve dai cunei I e III:

Schema di calcolo del carico limite (qL)

Gli autori hanno ricavato le espressioni degli angoli ρ_A e ρ_P che definiscono le zone di spinta attiva e passiva, e dei coefficienti di spinta attiva e passiva K_A e K_P in funzione dell'angolo di attrito interno ϕ del terreno e dell'angolo di attrito δ terreno – parete ideale:

$$\begin{split} \rho_{A} &= \varphi + tan^{-1} \cdot \left\{ \frac{\sqrt{tan(\varphi) \cdot (tan(\varphi) \cdot cot(\varphi)) \cdot (1 + tan(\delta) \cdot cot(\varphi))} - tan(\varphi)}{1 + tan(\delta) \cdot (tan(\varphi) + cot(\varphi))} \right\} \\ \rho_{P} &= -\varphi + tan^{-1} \cdot \left\{ \frac{\sqrt{tan(\varphi) \cdot (tan(\varphi) \cdot cot(\varphi)) \cdot (1 + tan(\delta) \cdot cot(\varphi))} + tan(\varphi)}{1 + tan(\delta) \cdot (tan(\varphi) + cot(\varphi))} \right\} \\ K_{A} &= \frac{cos^{2}(\varphi)}{cos(\delta) \left\{ 1 + \sqrt{\frac{sin(\varphi + \delta) \cdot sin(\varphi)}{cos(\delta)}} \right\}^{2}} \\ K_{P} &= \frac{cos^{2}(\varphi)}{cos(\delta) \left\{ 1 - \sqrt{\frac{sin(\varphi + \delta) \cdot sin(\varphi)}{cos(\delta)}} \right\}^{2}} \end{split}$$

E' comunque da osservare che l'impiego delle precedenti formule assumendo ϕ =0.5 δ , conduce a valore dei coefficienti di carico limite molto prossimi a quelli basati su un analisi alla Prandtl. Richards et. Al. hanno quindi esteso l'applicazione del meccanismo di Coulomb al caso sismico, portando in conto le forze d'inerzia agenti sul volume di terreno a rottura. Tali forze di massa, dovute ad accelerazioni k_h g e k_v g, agenti rispettivamente in direzione orizzontale

e verticale, sono a loro volta pari a $k_h \gamma$ e $k_V \gamma$. Sono state così ottenute le estensioni delle espressioni di ρ a e ρp , nonché di K_A e K_P , rispettivamente indicate come ρ_{AE} e ρ_{PE} e come K_{AE} e K_{PE} per denotare le condizioni sismiche:

$$\begin{split} \rho_{AE} &= (\varphi - \vartheta) + tan^{-1} \cdot \left\{ \frac{\sqrt{\left(1 + tan^{2}(\varphi - \vartheta)\right) \cdot \left[1 + tan(\delta + \vartheta) \cdot \cot(\varphi - \vartheta)\right]} - tan(\varphi - \vartheta)}{1 + tan(\delta + \vartheta) \cdot \left(tan(\varphi - \vartheta) + \cot(\varphi - \vartheta)\right)} \right\} \\ \rho_{PE} &= -(\varphi - \vartheta) + tan^{-1} \cdot \left\{ \frac{\sqrt{\left(1 + tan^{2}(\varphi - \vartheta)\right) \cdot \left[1 + tan(\delta + \vartheta) \cdot \cot(\varphi - \vartheta)\right]} - tan(\varphi - \vartheta)}{1 + tan(\delta + \vartheta) \cdot \left(tan(\varphi - \vartheta) + \cot(\varphi - \vartheta)\right)} \right\} \\ K_{AE} &= \frac{\cos^{2}(\varphi - \vartheta)}{\cos(\vartheta) \cdot \cos(\delta + \vartheta) \left\{ 1 + \sqrt{\frac{\sin(\varphi + \delta) \cdot \sin(\varphi - \vartheta)}{\cos(\delta + \vartheta)}} \right\}^{2}} \\ K_{PE} &= \frac{\cos^{2}(\varphi - \vartheta)}{\cos(\vartheta) \cdot \cos(\delta + \vartheta) \left\{ 1 - \sqrt{\frac{\sin(\varphi + \delta) \cdot \sin(\varphi - \vartheta)}{\cos(\delta + \vartheta)}} \right\}^{2}} \end{split}$$

I valori di Nq e N γ sono determinabili ancora avvalendosi delle formule precedenti, impiegando naturalmente le espressioni degli angoli ρ_{AE} e ρ_{PE} e dei coefficienti K_{AE} e K_{PE} relative al caso sismico. In tali espressioni compare l'angolo θ definito come:

$$tan(\theta) = \frac{k_h}{1 - k_v}$$

Nella tabella che segue sono mostrati i fattori di capacità portante calcolati per i seguenti valori dei parametri:

$$\phi = 30^{\circ} \delta = 15^{\circ}$$

Per diversi valori dei coefficienti di spinta sismica:

$k_h/(1-k_V)$	N_q	Nγ	N _c
0	16.51037	23.75643	26.86476
0.087	13.11944	15.88906	20.9915
0.176	9.851541	9.465466	15.33132
0.268	7.297657	5.357472	10.90786
0.364	5.122904	2.604404	7.141079
0.466	3.216145	0.879102	3.838476
0.577	1.066982	1.103E-03	0.1160159

Tabella dei fattori di capacità portante per ϕ =30°

VERIFICA A SLITTAMENTO

In conformità con i criteri di progetto allo SLU, la stabilità di un plinto di fondazione deve essere verificata rispetto al collasso per slittamento oltre a quello per rottura generale. Rispetto al collasso per slittamento la resistenza viene valutata come somma di una componente dovuta all'adesione e una dovuta all'attrito fondazione-terreno; la resistenza laterale derivante dalla spinta passiva del terreno può essere messa in conto secondo una percentuale indicata dell'utente. La resistenza di calcolo per attrito ed adesione è valutata secondo l'espressione:

$$F_{Rd} = N_{sd} \tan \delta + c_a A'$$

Nella quale N_{sd} è il valore di calcolo della forza verticale, δ è l'angolo di resistenza a taglio alla base del plinto, c_a è l'adesione plinto-terreno e A' è l'area della fondazione efficace, intesa, in caso di carichi eccentrici, come area ridotta al centro della quale è applicata la risultante.

CARICO LIMITE DI FONDAZIONI SU ROCCIA

Per la valutazione della capacità portante ammissibile delle rocce si deve tener conto di di alcuni parametri significativi quali le caratteristiche geologiche, il tipo di roccia e la sua qualità, misurata con l'RQD. Nella capacità portante delle rocce si utilizzano normalmente fattori di sicurezza molto alti e legati in qualche modo al valore del coefficiente RQD: ad esempio, per una roccia con RQD pari al massimo a 0.75 il fattore di sicurezza varia tra 6 e 10. Per la determinazione della capacità portante di una roccia si possono usare le formule di Terzaghi, usando angolo d'attrito e coesione della roccia, o quelle proposte da **Stagg** e **Zienkiewicz** (1968) in cui i coefficienti della formula della capacità portante valgono:

$$N_{q} = \tan^{6} \left(45 + \frac{\phi}{2} \right)$$

$$N_{c} = 5 \tan^{4} \left(45 + \frac{\phi}{2} \right)$$

$$N_{\gamma} = N_{q} + 1$$

Con tali coefficienti vanno usati i fattori di forma impiegati nella formula di Terzaghi.

La capacità portante ultima calcolata è comunque funzione del coefficiente RQD secondo la seguente espressione:

$$q' = q_{ult} (RQD)^2$$

Se il carotaggio in roccia non fornisce pezzi intatti (RQD tende a 0), la roccia viene trattata come un terreno stimando al meglio i parametri c e ϕ .

FATTORI CORRETTIVI SISMICI: PAOLUCCI E PECKER

Per tener conto degli effetti inerziali indotti dal sisma sulla determinazione del q_{lim} vengono introdotti i fattori correttivi z:

$$z_{q} = \left(1 - \frac{k_{h}}{tg\phi}\right)^{0.35}$$

$$z_{c} = 1 - 0.32 \cdot k_{h}$$

$$z_{\gamma} = z_{q}$$

Dove kh è il coefficiente sismico orizzontale.

Calcolo coefficienti sismici

Le NTC 2008 calcolano i coefficienti k_h e k_V in dipendenza di vari fattori:

$$k_h = \beta \times (a_{max}/g)$$

$$k_v = \pm 0.5 \times Kh$$

β Coefficiente di riduzione accelerazione massima attesa al sito;

a_{max} Accelerazione orizzontale massima attesa al sito;

g Accelerazione di gravità;

Tutti i fattori presenti nelle precedenti formule dipendono dall'accelerazione massima attesa sul sito di riferimento rigido e dalle caratteristiche geomorfologiche del territorio.

$$a_{max} = S_S S_T a_g$$

 S_S (effetto di amplificazione stratigrafica): $0.90 \le S_S \le 1.80$; è funzione di F_0 (Fattore massimo di amplificazione dello spettro in accelerazione orizzontale) e della categoria di suolo (A, B, C, D, E).

ST (effetto di amplificazione topografica) per fondazioni in prossimità di pendi.

Il valore di ST varia con il variare delle quattro categorie topografiche introdotte:

T1
$$(S_T = 1.0)$$
 T2 $(S_T = 1.20)$ T3 $(S_T = 1.20)$ T4 $(S_T = 1.40)$.

Questi valori sono calcolati come funzione del punto in cui si trova il sito oggetto di analisi. Il parametro di entrata per il calcolo è il tempo di ritorno dell'evento sismico che è valutato come segue:

$$T_R = -V_R/ln(1-PVR)$$

Con V_R vita di riferimento della costruzione e PVR probabilità di superamento, nella vita di riferimento, associata allo stato limite considerato. La vita di riferimento dipende dalla vita nominale della costruzione e dalla classe d'uso della costruzione (in linea con quanto previsto al punto 2.4.3 delle NTC). In ogni caso V_R dovrà essere maggiore o uguale a 35 anni.

Per l'applicazione dell'**Eurocodice 8** (progettazione geotecnica in campo sismico) il coefficiente sismico orizzontale viene così definito:

$$k_h = a_{gR} \gamma_I S / (g)$$

agR: accelerazione di picco di riferimento su suolo rigido affiorante,

γ_I: fattore di importanza,

S: soil factor e dipende dal tipo di terreno (da A ad E).

$$a_g = a_{gR} \gamma_I$$

è la "design ground acceleration on type A ground".

Il coefficiente sismico verticale k_V è definito in funzione di k_h, e vale:

$$k_{v} = \pm 0.5 k_{h}$$

CEDIMENTI ELASTICI

I cedimenti di una fondazione rettangolare di dimensioni B×L posta sulla superficie di un semispazio elastico si possono calcolare in base aduna equazione basata sulla teoria dell'elasticità (Timoshenko e Goodier (1951)):

$$\Delta H = q_0 B' \frac{1 - \mu^2}{E_S} \left(I_1 + \frac{1 - 2\mu}{1 - \mu} I_2 \right) I_F \tag{1}$$

dove:

q₀ Intensità della pressione di contatto

B' Minima dimensione dell'area reagente,

E e μ Parametri elastici del terreno.

 I_i Coefficienti di influenza dipendenti da: L'/B', spessore dello strato H, coefficiente di Poisson μ , profondità del piano di posa D;

I coefficienti I_1 e I_2 si possono calcolare utilizzando le equazioni fornite da *Steinbrenner* (1934) (V. Bowles), in funzione del rapporto L'/B' ed H/B, utilizzando B'=B/2 e L'=L/2 per i coefficienti relativi al centro e B'=B e L'=L per i coefficienti relativi al bordo.

Il coefficiente di influenza I_F deriva dalle equazioni di *Fox* (1948), che indicano il cedimento si riduce con la profondità in funzione del coefficiente di *Poisson* e del rapporto *L/B*.

In modo da semplificare l'equazione (1) si introduce il coefficiente I_S:

$$I_S = I_1 + \frac{1 - 2\mu}{1 - \mu}I_2$$

Il cedimento dello strato di spessore H vale:

$$\Delta H = q_0 B' \frac{1 - \mu^2}{E_S} I_S I_F$$

Per meglio approssimare i cedimenti si suddivide la base di appoggio in modo che il punto si trovi in corrispondenza di uno spigolo esterno comune a più rettangoli. In pratica si moltiplica per un fattore pari a 4 per il calcolo dei cedimenti al centro e per un fattore pari a 1 per i cedimenti al bordo.

Nel calcolo dei cedimenti si considera una profondità del bulbo delle tensioni pari a 5B, se il substrato roccioso si trova ad una profondità maggiore.

A tal proposito viene considerato substrato roccioso lo strato che ha un valore di E pari a 10 volte dello strato

soprastante.

Il modulo elastico per terreni stratificati viene calcolato come media pesata dei moduli elastici degli strati interessati dal cedimento immediato.

CEDIMENTI EDOMETRICI

Il calcolo dei cedimenti con l'approccio edometrico consente di valutare un cedimento di consolidazione di tipo monodimensionale, prodotto dalle tensioni indotte da un carico applicato in condizioni di espansione laterale impedita. Pertanto la stima effettuata con questo metodo va considerata come empirica, piuttosto che teorica.

Tuttavia la semplicità d'uso e la facilità di controllare l'influenza dei vari parametri che intervengono nel calcolo, ne fanno un metodo molto diffuso.

L'approccio edometrico nel calcolo dei cedimenti passa essenzialmente attraverso due fasi:

- a) il calcolo delle tensioni verticali indotte alle varie profondità con l'applicazione della teoria dell'elasticità;
- b) la valutazione dei parametri di compressibilità attraverso la prova edometrica.

In riferimento ai risultati della prova edometrica, il cedimento è valutato come:

$$\Delta H = H_0 \cdot RR \cdot \log \frac{\sigma'_{v0} + \Delta \sigma_v}{\sigma'_{v0}}$$

se si tratta di un terreno sovraconsolidato (OCR>1), ossia se l'incremento di tensione dovuto all'applicazione del carico non fa superare la pressione di preconsolidazione $\sigma_p' (\sigma_{v0}' + \Delta \sigma_v < \sigma_p')$.

Se invece il terreno è normalconsolidato ($\sigma_{v0} = \sigma_p$) le deformazioni avvengono nel tratto di compressione e il cedimento è valutato come:

$$\Delta H = H_0 \cdot CR \cdot \log \frac{\sigma'_{v0} + \Delta \sigma_v}{\sigma'_{v0}}$$

dove:

RR Rapporto di ricompressione;

CR Rapporto di compressione;

H₀ Spessore iniziale dello strato;

 σ'_{v0} Tensione verticale efficace prima dell'applicazione del carico;

 $\Delta \sigma_{V}$ Incremento di tensione verticale dovuto all'applicazione del carico.

In alternativa ai parametri RR e CR si fa riferimento al modulo edometrico M; in tal caso però occorre scegliere opportunamente il valore del modulo da utilizzare, tenendo conto dell'intervallo tensionale ($\sigma_{\nu 0}^{'} + \Delta \sigma_{\nu}$) significativo per il problema in esame.

L'applicazione corretta di questo tipo di approccio richiede:

- la suddivisione degli strati compressibili in una serie di piccoli strati di modesto spessore (< 2.00 m);
- la stima del modulo edometrico nell'ambito di ciascuno strato;
- il calcolo del cedimento come somma dei contributi valutati per ogni piccolo strato in cui è stato suddiviso il banco compressibile.

Molti usano le espressioni sopra riportate per il calcolo del cedimento di consolidazione tanto per le argille quanto per le sabbie di granulometria da fina a media, perché il modulo di elasticità impiegato è ricavato direttamente da prove di consolidazione. Tuttavia, per terreni a grana più grossa le dimensioni dei provini edometrici sono poco significative del comportamento globale dello strato e, per le sabbie, risulta preferibile impiegare prove penetrometriche statiche e dinamiche.

Cedimento secondario

Il cedimento secondario è calcolato facendo riferimento alla relazione:

$$\Delta H_s = H_c \cdot C_\alpha \cdot \log \frac{T}{T_{100}}$$

in cui:

H_C E' l'altezza dello strato in fase di consolidazione;

 C_{α} E' il coefficiente di consolidazione secondaria come pendenza nel tratto secondario della curva *cedimento-logaritmo tempo*;

T Tempo in cui si vuole il cedimento secondario;

 T_{100} Tempo necessario all'esaurimento del processo di consolidazione primaria.

CEDIMENTI di Schmertmann

Un metodo alternativo per il calcolo dei cedimenti è quello proposto da Schmertmann (1970) il quale ha correlato la variazione del bulbo delle tensioni alla deformazione. Schmertmann ha quindi proposto di considerare un diagramma delle deformazioni di forma triangolare in cui la profondità alla quale si hanno deformazioni significative è assunta pari a 4B, nel caso di fondazioni nastriformi, e pari a 2B per fondazioni quadrate o circolari.

Secondo tale approccio il cedimento si esprime attraverso la seguente espressione:

$$w = C_1 \cdot C_2 \cdot \Delta q \cdot \sum \frac{I_z \cdot \Delta z}{E}$$

nella quale:

 Δq rappresenta il carico netto applicato alla fondazione;

I_z E' un fattore di deformazione il cui valore è nullo a profondità di **2B**, per fondazione circolare o quadrata, e a profondità **4B**, per fondazione nastriforme.

Il valore massimo di I_z si verifica a una profondità rispettivamente pari a:

B/2 per fondazione circolare o quadrata

B per fondazioni nastriformi

e vale

$$I_{zmax} = 0.5 + 0.1 \cdot \left(\frac{\Delta q}{\sigma_{vi}}\right)^{0.5}$$

dove σ'_{vi} rappresenta la tensione verticale efficace a profondità B/2 per fondazioni quadrate o circolari, e a profondità B per fondazioni nastriformi.

Ei rappresenta il modulo di deformabilità del terreno in corrispondenza dello strato i-esimo considerato nel calcolo;

 Δ_{zi} rappresenta lo spessore dello strato i-esimo;

 C_1 e C_2 sono due coefficienti correttivi.

Il modulo E viene assunto pari a $2.5~q_c$ per fondazioni circolari o quadrate e a $3.5~q_c$ per fondazioni nastriformi. Nei casi intermedi, si interpola in funzione del valore di L/B.

Il termine $\mathbf{q}_{\mathbf{c}}$ che interviene nella determinazione di \mathbf{E} rappresenta la resistenza alla punta fornita dalla prova CPT.

Le espressioni dei due coefficienti C_1 e C_2 sono:

$$C_1 = 1 - 0.5 \cdot \frac{\sigma'_{v0}}{\Delta q} > 0.5$$

che tiene conto della profondità del piano di posa.

$$C_2 = 1 + 0.2 \cdot \log \frac{t}{0.1}$$

che tiene conto delle deformazioni differite nel tempo per effetto secondario.

Nell'espressione **t** rappresenta il tempo, espresso in anni dopo il termine della costruzione, in corrispondenza del quale si calcola il cedimento.

CEDIMENTI DI BURLAND e BURBIDGE

Qualora si disponga di dati ottenuti da prove penetometriche dinamiche per il calcolo dei cedimenti è possibile fare affidamento al metodo di Burland e Burbidge (1985), nel quale viene correlato un indice di compressibilità *Ic* al risultato N della prova penetrometrica dinamica. L'espressione del cedimento proposta dai due autori è la seguente:

$$S = f_{S} \cdot f_{H} \cdot f_{t} \cdot \left[\sigma_{v0}^{'} \cdot B^{0.7} \cdot I_{C} / 3 + \left(q' - \sigma_{v0}^{'} \right) \cdot B^{0.7} \cdot I_{C} \right]$$

nella quale:

q' Pressione efficace lorda;

 σ'_{VO} $\;\;$ Tensione verticale efficace alla quota d'imposta della fondazione;

B Larghezza della fondazione;

Ic Indice di compressibilità;

f_s, f_H, f_t Fattori correttivi che tengono conto rispettivamente della forma, dello spessore dello strato compressibile e del tempo, per la componente viscosa.

L'indice di compressibilità Ic è legato al valore medio Nav di Nspt all'interno di una profondità significativa z:

$$I_C = \frac{1.706}{N_{AV}^{1.4}}$$

Per quanto riguarda i valori di Nspt da utilizzare nel calcolo del valore medio $N_{\rm AV}$ va precisato che i valori vanno corretti, per sabbie con componente limosa sotto falda e Nspt>15, secondo l'indicazione di Terzaghi e Peck (1948)

$$Nc = 15 + 0.5 \text{ (Nspt -15)}$$

dove Nc è il valore coretto da usare nei calcoli.

Per depositi ghiaiosi o sabbioso-ghiaiosi il valore corretto è pari a:

$$Nc = 1.25 \text{ Nspt}$$

Le espressioni dei fattori correttivi f_S , f_H ed f_t sono rispettivamente:

$$f_S = \left(\frac{1.25 \cdot L/B}{L/B + 0.25}\right)^2$$

$$f_H = \frac{H}{z_i} \left(2 - \frac{H}{z_i}\right)$$

$$f_t = \left(1 + R_3 + R \cdot \log \frac{t}{3}\right)$$

Con:

t = tempo in anni > 3;

R3 = costante pari a 0.3 per carichi statici e 0.7 per carichi dinamici;

R = 0.2 nel caso di carichi statici e 0.8 per carichi dinamici.

DATI GENERALI

Azione sismica NTC 2008

Larghezza fondazione 1,1 m

Lunghezza fondazione 26,0 m

Profondità piano di posa 1,6 m

Correzione parametri

SISMA

Accelerazione massima (ag/g) 0,175

Effetto sismico secondo NTC(C7.11.5.3.1)

Fattore di struttura [q] 2,76

Periodo fondamentale vibrazione [T] 0,406

Coefficiente intensità sismico terreno [Khk] 0,042

Coefficiente intensità sismico struttura [Khi] 0,161

Coefficienti sismici [N.T.C.]

Dati generali

Tipo opera: 2 - Opere ordinarie

Classe d'uso: Classe III

Vita nominale: 50,0 [anni]

Vita di riferimento: 75,0 [anni]

Parametri sismici su sito di riferimento

Categoria sottosuolo: B

Categoria topografica: T1

S.L.	TR	ag	F0	TC*

Stato limite	Tempo ritorno	[m/s²]	[-]	[sec]
	[anni]			
S.L.O.	45,0	0,55	2,51	0,27
S.L.D.	75,0	0,67	2,5	0,28
S.L.V.	712,0	1,43	2,54	0,32
S.L.C.	1462,0	1,75	2,57	0,33

Coefficienti sismici orizzontali e verticali

Opera: Stabilità dei pendii e Fondazioni

S.L.	amax	beta	kh	kv
Stato limite	[m/s²]	[-]	[-]	[sec]
S.L.O.	0,66	0,2	0,0135	0,0067
S.L.D.	0,804	0,2	0,0164	0,0082
S.L.V.	1,716	0,24	0,042	0,021
S.L.C.	2,1	0,24	0,0514	0,0257

STRATIGRAFIA TERRENO

Spessore	Peso	Peso	Angolo	Coesione	Coesione	Modulo	Modulo	Poisson	Coeff.	Coeff.	Descrizi
strato	unità di	unità di	di attrito	[1 N7 / 2]	non	Elastico	Edometri		consolid	consolid	one
[]	volume	volume	ro1	$[kN/m^2]$	drenata	[1-N]/2]	co		az.	azione	
[m]	Γ1 NY/27	saturo	[°]		[1 NI/2]	$[kN/m^2]$	[1 NI/2]		primaria	secondar	
	$[kN/m^3]$	[1 NT/ 2]			$[kN/m^2]$		$[kN/m^2]$		F / 3	ia	
		$[kN/m^3]$							[cmq/s]		
6,0	20,4	20,4	32,51	2,0	0,0	15250,0	5940,0	0,32	0,0	0,0	

Carichi di progetto agenti sulla fondazione

Nr.	Nome combinazion	Pressione normale di	N [kN]	Mx [kN·m]	My [kN·m]	Hx [kN]	Hy [kN]	Tipo
	e	progetto [kN/m²]						
1	A1+M1+R1	98,00	0,00	0,00	0,00	0,00	0,00	Progetto
2	A2+M2+R2	98,00	0,00	0,00	0,00	0,00	0,00	Progetto

3	Sisma	98,00	0,00	0,00	0,00	0,00	0,00	Progetto
4	S.L.E.	98,00	0,00	0,00	0,00	0,00	0,00	Servizio
5	S.L.D.	98,00	0,00	0,00	0,00	0,00	0,00	Servizio

Sisma + Coeff. parziali parametri geotecnici terreno + Resistenze

Nr	Correzione Sismica	Tangente angolo di resistenza al taglio	Coesione efficace	Coesione non drenata	Peso Unità volume in fondazione	Peso unità volume copertura	Coef. Rid. Capacità portante verticale	Coef.Rid.Ca pacità portante orizzontale
1	No	1	1	1	1	1	1	1
2	No	1,25	1,25	1,4	1	1	1,8	1,1
3	Si	1,25	1,25	1,4	1	1	1,8	1,1
4	No	1	1	1	1	1	1	1
5	No	1	1	1	1	1	1	1

CARICO LIMITE FONDAZIONE COMBINAZIONE...Sisma

Autore: TERZAGHI (1955)

Carico limite [Qult] 629,4 kN/m²

Resistenza di progetto[Rd] 349,66 kN/m²

Tensione [Ed] 98,0 kN/m²

Fattore sicurezza [Fs=Qult/Ed] 6,42

Condizione di verifica [Ed<=Rd] Verificata

COEFFICIENTE DI SOTTOFONDAZIONE BOWLES (1982)

Costante di Winkler 25175,82 kN/m³

A1+M1+R1

Autore: HANSEN (1970) (Condizione drenata)

Fattore [Nq] 24,61

Fattore [Nc] 37,05

Fattore [Ng] 22,57

Fattore forma [Sc]	1,0
Fattore profondità [Dc]	1,39
Fattore inclinazione carichi [Ic]	1,0
Fattore inclinazione pendio [Gc]	1,0
Fattore inclinazione base [Bc]	1,0
Fattore forma [Sq]	1,03
Fattore profondità [Dq]	1,26
Fattore inclinazione carichi [Iq]	1,0
Fattore inclinazione pendio [Gq]	1,0
Fattore inclinazione base [Bq]	1,0
Fattore forma [Sg]	0,98
Fattore profondità [Dg]	1,0
Fattore inclinazione carichi [Ig]	1,0
Fattore inclinazione pendio [Gg]	1,0
Fattore inclinazione base [Bg]	1,0
Fattore correzione sismico inerziale [zq]	1,0
Fattore correzione sismico inerziale [zg]	1,0
Fattore correzione sismico inerziale [zc]	1,0
Carico limite	1360,85 kN/m²
Resistenza di progetto	1360,85 kN/m²
Condizione di verifica [Ed<=Rd]	Verificata
Autore: TERZAGHI (1955) (Condizione	drenata)
Fattore [Nq]	30,35
Fattore [Nc]	46,05
Fattore [Ng]	29,73
Fattore forma [Sc]	1,0
Fattore forma [Sg]	1,0

Fattore correzione sismico inerziale [zq]	1,0
Fattore correzione sismico inerziale [zg]	1,0
Fattore correzione sismico inerziale [zc]	1,0
Carico limite	1385,76 kN/m²
Resistenza di progetto	1385,76 kN/m²
Condizione di verifica [Ed<=Rd]	Verificata
Autore: MEYERHOF (1963) (Condizione	drenata)
Fattore [Nq]	24,61
Fattore [Nc]	37,05
Fattore [Ng]	24,04
Fattore forma [Sc]	1,03
Fattore profondità [Dc]	1,53
Fattore inclinazione carichi [Ic]	1,0
Fattore forma [Sq]	1,01
Fattore profondità [Dq]	1,27
Fattore inclinazione carichi [Iq]	1,0
Fattore forma [Sg]	1,01
Fattore profondità [Dg]	1,27
Fattore inclinazione carichi [Ig]	1,0
Fattore correzione sismico inerziale [zq]	1,0
rattore corrections sisting institute [24]	
Fattore correzione sismico inerziale [zg]	1,0
_	1,0 1,0
Fattore correzione sismico inerziale [zg]	

Verificata

Condizione di verifica [Ed<=Rd]

Autore: VESIC (1975)	(Condizione drenata)	
----------------------	----------------------	--

=======================================	
Fattore [Nq]	24,61
Fattore [Nc]	37,05
Fattore [Ng]	32,65
Fattore forma [Sc]	1,0
Fattore profondità [Dc]	1,39
Fattore inclinazione carichi [Ic]	1,0
Fattore inclinazione pendio [Gc]	1,0
Fattore inclinazione base [Bc]	1,0
Fattore forma [Sq]	1,03
Fattore profondità [Dq]	1,26
Fattore inclinazione carichi [Iq]	1,0
Fattore inclinazione pendio [Gq]	1,0
Fattore inclinazione base [Bq]	1,0
Fattore forma [Sg]	0,98
Fattore profondità [Dg]	1,0
Fattore inclinazione carichi [Ig]	1,0
Fattore inclinazione pendio [Gg]	1,0
Fattore inclinazione base [Bg]	1,0
Fattore correzione sismico inerziale [zq]	1,0
Fattore correzione sismico inerziale [zg]	1,0
Fattore correzione sismico inerziale [zc]	1,0
Carico limite	1453,66 kN/m ²
Resistenza di progetto	1453,66 kN/m²
Condizione di verifica [Ed<=Rd]	Verificata

Autore: Brinch - Hansen 1970 (Condizione drenata)

Fattore [Nq]	24,61
Fattore [Nc]	37,05
Fattore [Ng]	30,1
Fattore forma [Sc]	1,02
Fattore profondità [Dc]	1,28
Fattore inclinazione carichi [Ic]	1,0
Fattore inclinazione pendio [Gc]	1,0
Fattore inclinazione base [Bc]	1,0
Fattore forma [Sq]	1,02
Fattore profondità [Dq]	1,26
Fattore inclinazione carichi [Iq]	1,0
Fattore inclinazione pendio [Gq]	1,0
Fattore inclinazione base [Bq]	1,0
Fattore forma [Sg]	0,99
Fattore profondità [Dg]	1,0
Fattore inclinazione carichi [Ig]	1,0
Fattore inclinazione pendio [Gg]	1,0
Fattore inclinazione base [Bg]	1,0
Fattore correzione sismico inerziale [zq]	1,0
Fattore correzione sismico inerziale [zg]	1,0
Fattore correzione sismico inerziale [zc]	1,0
Carico limite	======================================
Resistenza di progetto	1436,92 kN/m²
Condizione di verifica [Ed<=Rd]	Verificata

A2+M2+R2

Autore: HANSEN (1970)	(Condizione drenata)	
-----------------------	----------------------	--

Fattore [Nq]	13,22	
Fattore [Nc]	23,97	
Fattore [Ng]	9,35	
Fattore forma [Sc]	1,0	
Fattore profondità [Dc]	1,39	
Fattore inclinazione carichi [Ic]	1,0	
Fattore inclinazione pendio [Gc]	1,0	
Fattore inclinazione base [Bc]	1,0	
Fattore forma [Sq]	1,02	
Fattore profondità [Dq]	1,29	
Fattore inclinazione carichi [Iq]	1,0	
Fattore inclinazione pendio [Gq]	1,0	
Fattore inclinazione base [Bq]	1,0	
Fattore forma [Sg]	0,98	
Fattore profondità [Dg]	1,0	
Fattore inclinazione carichi [Ig]	1,0	
Fattore inclinazione pendio [Gg]	1,0	
Fattore inclinazione base [Bg]	1,0	
Fattore correzione sismico inerziale [zq]	1,0	
Fattore correzione sismico inerziale [zg]	1,0	
Fattore correzione sismico inerziale [zc]	1,0	
Carico limite	709,24 kN/m²	
Resistenza di progetto	394,02 kN/m²	
	Verificata	

Fattore [Nq]	15,92	
Fattore [Nc]	29,27	
Fattore [Ng]	13,19	
Fattore forma [Sc]	1,0	
Fattore forma [Sg]	1,0	
Fattore correzione sismico inerziale [zq]	1,0	
Fattore correzione sismico inerziale [zg]	1,0	
Fattore correzione sismico inerziale [zc]	1,0	
	=======================================	===
Carico limite	699,07 kN/m²	
Resistenza di progetto	388,37 kN/m²	
Condizione di verifica [Ed<=Rd]	Verificata	
		===
Autore: MEYERHOF (1963) (Condizione	drenata)	
Fattore [Nq]	13,22	
Fattore [Nc]	23.97	

Fattore [Nc] 23,97 Fattore [Ng] 9,49 Fattore forma [Sc] 1,02 Fattore profondità [Dc] 1,47 Fattore inclinazione carichi [Ic] 1,0 Fattore forma [Sq] 1,01 Fattore profondità [Dq] 1,24 Fattore inclinazione carichi [Iq] 1,0 Fattore forma [Sg] 1,01 1,24 Fattore profondità [Dg] Fattore inclinazione carichi [Ig] 1,0 1,0 Fattore correzione sismico inerziale [zq] Fattore correzione sismico inerziale [zg] 1,0 Fattore correzione sismico inerziale [zc] 1,0 _____

Carico limite 711,93 kN/m²

Resistenza di progetto 395,52 kN/m²

Condizione di verifica [Ed<=Rd] Verificata

Autore: VESIC (1975) (Condizione drenata)

Fattore [Nq]	13,22
Fattore [Nc]	23,97
Fattore [Ng]	14,5
Fattore forma [Sc]	1,0
Fattore profondità [Dc]	1,39
Fattore inclinazione carichi [Ic]	1,0
Fattore inclinazione pendio [Gc]	1,0
Fattore inclinazione base [Bc]	1,0
Fattore forma [Sq]	1,02
Fattore profondità [Dq]	1,29
Fattore inclinazione carichi [Iq]	1,0
Fattore inclinazione pendio [Gq]	1,0
Fattore inclinazione base [Bq]	1,0
Fattore forma [Sg]	0,98
Fattore profondità [Dg]	1,0
Fattore inclinazione carichi [Ig]	1,0
Fattore inclinazione pendio [Gg]	1,0
Fattore inclinazione base [Bg]	1,0
Fattore correzione sismico inerziale [zq]	1,0
Fattore correzione sismico inerziale [zg]	1,0
Fattore correzione sismico inerziale [zc]	1,0

Carico limite 766,09 kN/m²

Condizione di verifica [Ed<=Rd]	Verificata
---------------------------------	------------

	=======================================
Fattore [Nq]	13,22
Fattore [Nc]	23,97
Fattore [Ng]	12,46
Fattore forma [Sc]	1,02
Fattore profondità [Dc]	1,32
Fattore inclinazione carichi [Ic]	1,0
Fattore inclinazione pendio [Gc]	1,0
Fattore inclinazione base [Bc]	1,0
Fattore forma [Sq]	1,02
Fattore profondità [Dq]	1,29
Fattore inclinazione carichi [Iq]	1,0
Fattore inclinazione pendio [Gq]	1,0
Fattore inclinazione base [Bq]	1,0
Fattore forma [Sg]	0,99
Fattore profondità [Dg]	1,0
Fattore inclinazione carichi [Ig]	1,0
Fattore inclinazione pendio [Gg]	1,0
Fattore inclinazione base [Bg]	1,0
Fattore correzione sismico inerziale [zq]	1,0
Fattore correzione sismico inerziale [zg]	1,0
Fattore correzione sismico inerziale [zc]	1,0
Cariaa limita	741 9 lcN/m2

Carico limite 741,8 kN/m² Resistenza di progetto 412,11 kN/m²

Condizione di verifica [Ed<=Rd]	Verificata
---------------------------------	------------

Sisma

Autore: HANSEN (1970) (Condizione drenata)		
Fattore [Nq]	13,22	
Fattore [Nc]	23,97	
Fattore [Ng]	9,35	
Fattore forma [Sc]	1,0	
Fattore profondità [Dc]	1,39	
Fattore inclinazione carichi [Ic]	1,0	
Fattore inclinazione pendio [Gc]	1,0	
Fattore inclinazione base [Bc]	1,0	
Fattore forma [Sq]	1,02	
Fattore profondità [Dq]	1,29	
Fattore inclinazione carichi [Iq]	1,0	
Fattore inclinazione pendio [Gq]	1,0	
Fattore inclinazione base [Bq]	1,0	
Fattore forma [Sg]	0,98	
Fattore profondità [Dg]	1,0	
Fattore inclinazione carichi [Ig]	1,0	
Fattore inclinazione pendio [Gg]	1,0	
Fattore inclinazione base [Bg]	1,0	
Fattore correzione sismico inerziale [zq]	1,0	
Fattore correzione sismico inerziale [zg]	0,53	
Fattore correzione sismico inerziale [zc]	1,0	
Carico limite	660,7 kN/m²	
Resistenza di progetto	367,05 kN/m ²	

Autore: TERZAGHI (1955) (Condizione drenata)				
Fattore [Nq] 15,92				
Fattore [Nc] 29,27				
Fattore [Ng] 13,19				
Fattore forma [Sc] 1,0				
Fattore forma [Sg] 1,0				
Fattore correzione sismico inerziale [zq] 1,0				
Fattore correzione sismico inerziale [zg] 0,53				
Fattore correzione sismico inerziale [zc] 1,0				
Carico limite 629,4 kN/m ²				
Resistenza di progetto 349,66 kN/m²				
5 17,40 to 11.				
Condizione di verifica [Ed<=Rd] Verificata				
Condizione di verifica [Ed<=Rd] Verificata				
Condizione di verifica [Ed<=Rd] Verificata				
Condizione di verifica [Ed<=Rd] Verificata				
Condizione di verifica [Ed<=Rd] Verificata				
Condizione di verifica [Ed<=Rd] Verificata				
Condizione di verifica [Ed<=Rd] Verificata				
Condizione di verifica [Ed<=Rd] Verificata				
Condizione di verifica [Ed<=Rd] Verificata				
Condizione di verifica [Ed<=Rd] Verificata Autore: MEYERHOF (1963) (Condizione drenata) Fattore [Nq] 13,22 Fattore [Nc] 23,97 Fattore [Ng] 9,49 Fattore forma [Sc] 1,02 Fattore profondità [Dc] 1,47 Fattore inclinazione carichi [Ic] 1,0				
Condizione di verifica [Ed<=Rd] Verificata				

Fattore profondità [Dg]	1,24			
Fattore inclinazione carichi [Ig]	1,0			
Fattore correzione sismico inerziale [zq]	1,0			
Fattore correzione sismico inerziale [zg]	0,53			
Fattore correzione sismico inerziale [zc]	1,0			
Carico limite	649,21 kN/m²			
Resistenza di progetto	360,67 kN/m²			
Condizione di verifica [Ed<=Rd]	Verificata			
Autore: VESIC (1975) (Condizione drenata)				
Fattore [Nq]	13,22			
Fattore [Nc]	23,97			
Fattore [Ng]	14,5			
Fattore forma [Sc]	1,0			
Fattore profondità [Dc]	1,39			
Fattore inclinazione carichi [Ic]	1,0			
Fattore inclinazione pendio [Gc]	1,0			
Fattore inclinazione base [Bc]	1,0			
Fattore forma [Sq]				

1,29

1,0

1,0

1,0

0,98

1,0

1,0

1,0

1,0

Fattore profondità [Dq]

Fattore forma [Sg]

Fattore profondità [Dg]

Fattore inclinazione carichi [Iq]

Fattore inclinazione pendio [Gq]

Fattore inclinazione base [Bq]

Fattore inclinazione carichi [Ig]

Fattore inclinazione pendio [Gg]

Fattore inclinazione base [Bg]

32

Fattore correzione sismico inerziale [zq]	1,0
Fattore correzione sismico inerziale [zg]	0,53
Fattore correzione sismico inerziale [zc]	1,0
Carico limite	690,78 kN/m²
Resistenza di progetto	383,77 kN/m²
Condizione di verifica [Ed<=Rd]	Verificata
Autore: Brinch - Hansen 1970 (Condizion	ne drenata)
Fattore [Nq]	13,22
Fattore [Nq] Fattore [Nc]	13,22 23,97
_	
Fattore [Nc]	23,97
Fattore [Ng]	23,97 12,46
Fattore [Nc] Fattore [Ng] Fattore forma [Sc]	23,97 12,46 1,02
Fattore [Nc] Fattore [Ng] Fattore forma [Sc] Fattore profondità [Dc]	23,97 12,46 1,02 1,32
Fattore [Nc] Fattore [Ng] Fattore forma [Sc] Fattore profondità [Dc] Fattore inclinazione carichi [Ic]	23,97 12,46 1,02 1,32 1,0
Fattore [Nc] Fattore [Ng] Fattore forma [Sc] Fattore profondità [Dc] Fattore inclinazione carichi [Ic] Fattore inclinazione pendio [Gc]	23,97 12,46 1,02 1,32 1,0 1,0
Fattore [Nc] Fattore [Ng] Fattore forma [Sc] Fattore profondità [Dc] Fattore inclinazione carichi [Ic] Fattore inclinazione pendio [Gc] Fattore inclinazione base [Bc]	23,97 12,46 1,02 1,32 1,0 1,0 1,0
Fattore [Nc] Fattore [Ng] Fattore forma [Sc] Fattore profondità [Dc] Fattore inclinazione carichi [Ic] Fattore inclinazione pendio [Gc] Fattore inclinazione base [Bc] Fattore forma [Sq]	23,97 12,46 1,02 1,32 1,0 1,0 1,0 1,02

1,0

0,99

1,0

1,0

1,0

1,0

1,0

0,53

Fattore inclinazione base [Bq]

Fattore inclinazione carichi [Ig]

Fattore inclinazione pendio [Gg]

Fattore correzione sismico inerziale [zq]

Fattore correzione sismico inerziale [zg]

Fattore inclinazione base [Bg]

Fattore forma [Sg]

Fattore profondità [Dg]

Fattore correzione sismico inerziale [zc] 1,0

Carico limite 676,8 kN/m²

Resistenza di progetto 376,0 kN/m²

Condizione di verifica [Ed<=Rd] Verificata

CEDIMENTI PER OGNI STRATO

*Cedimento edometrico calcolato con: Metodo consolidazione monodimensionale di Terzaghi

Pressione normale di progetto 104,0 kN/m²

Cedimento dopo T anni 15,0

Cedimento totale 0,5 cm

Z: Profondità media dello strato; Dp: Incremento di tensione; Wc: Cedimento consolidazione; Ws:Cedimento secondario; Wt: Cedimento totale.

Strato	Z	Tensione	Dp	Metodo	Wc	Ws	Wt
	(m)	(kN/m^2)	(kN/m^2)		(cm)	(cm)	(cm)
1	3,8	77,52	6,762	Edometrico	0,5		0,5

CEDIMENTI ELASTICI

Pressione normale di progetto 98,0 kN/m²

Spessore strato 9,0 m

Profondità substrato roccioso 300,0 m

Modulo Elastico 15250,0 kN/m²

Coefficiente di Poisson 0,32

Coefficiente di influenza I1 0,91

Coefficiente di influenza I2	0,13
Coefficiente di influenza Is	0,98
Cedimento al centro della fondazione	6,46 mm
Coefficiente di influenza I1	0,68
Coefficiente di influenza I2	0,15
Coefficiente di influenza Is	0,76
Cedimento al bordo	2,49 mm

CEDIMENTI BURLAND E BURBIDGE

Pressione normale di progetto 98,0 kN/m² Tempo 15,0 Profondità significativa Zi (m) 1,495 Media dei valori di Nspt all'interno di Zi 16 Fattore di forma fs 1,53 Fattore strato compressibile fh 1 Fattore tempo ft 1,44 Indice di compressibilità 0,035 Cedimento 6,315 mm