1 Введение в теорию представлений

Список литературы

[1] Ж.-П. Серр. Линейные представления конечных групп

Определение 1. Пусть X — множество, V — векторное пространство над K. Представлением множества X называется отображение $f\colon X\to L(V)$, где L(V) — множество линейных операторов в V.

В такой общности от этого определения мало толку: обычно предполагается некоторая структура на X и уважение со стороны f этой структуры.

Если есть два представления $f: X \to L(V)$ и $g: X \to L(V_1)$, то интересно получить обратимое линейное отображение $U: V \to V_1$, такое что

$$f(x) = Ug(x)U^{-1}.$$

Если такое отображение существует, то представления f и g называются эквивалентными.

Пример 1. $X = \{\star\}$. Тогда (для конечномерных V) задача сводится к описанию классов сопряжённости матриц.

Уже в случае $X = \{\star, \star\star\}$ сложно сказать что-то определённое.

Определение 2. Пусть V — конечномерное векторное пространство над K, G — группа, A — алгебра над K. Представление группы G это гомоморфизм групп $f\colon G\to \mathrm{GL}(V)$, представление алгебры A это гомоморфизм алгебр $g\colon A\to L(V)$.

Определение 3. Рассмотрим векторное пространство над K с базисом $\{e_g\}_{g\in G}$, где G — некоторая конечная группа. Групповой алгеброй группы G называется алгебра

$$K[G] = \{ \sum_{i=1}^{n} x_i g_i \mid x_i \in K \},$$

с естественным умножением таких конечных сумм.

В последнем определении можно снять требование конечности G, рассматривая в K[G] только конечные суммы соответствующего вида. Тогда в случае $G=\mathbb{Z}$, например, получится алгебра полиномов Лорана.

1.1 Задача классификации представлений

Определение 4. Пусть A — линейный оператор в V. Подпространство $U \subset V$ называется инвариантным для оператора A, если $AU \subset U$.

Если $\{e_i\}_{i=1}^n$ — базис в V, а $\{e_i\}_{i=1}^k$ — базис U — инвариантного подпространства для оператора A, то в матрице оператора в базисе $\{e_i\}$ будет нулевой угол.

Определение 5. Представление $\rho: G \to \mathrm{GL}(V)$ называется *неприводимым*, если у операторов $\{\rho(g)\}$ нет нетривиальных общих инвариантных подпространств.

Напомним

Определение 6. Левый модуль M над кольцом с единицей R это абелева группа, для которой задано отображение $R \times M \to M$, такое что:

- (1) em = m;
- (2) $\lambda(\mu m) = (\lambda \mu)m;$
- (3) $\lambda(m_1 + m_2) = \lambda m_1 + \lambda m_2$;
- (4) $(\lambda_1 + \lambda_2)m = \lambda_1 m + \lambda_2 m$.

Пространство прибытия представления группы G является левым K[G]-модулем. Более того, от любого K[G]-модуля можно перейти к некоторому представлению.

Иногда представления записывают в терминах матричных элементов: представление $R: G \to \mathrm{GL}(n,K)$ можно мыслить как набор отображений: $\{r_{ij}: G \to K\}$.

Пример 2. Пусть X — конечное множество, а $S(X) = S_n$ — группа биекций X (группа перестановок из n элементов, если |X| = n). Пусть G — подгруппа S_n , а V — линейное пространство функций $\{v: X \to V\}$. Тогда $\rho: G \to V$, действующее по формуле

$$(\rho(g)f)(x) = f(g^{-1}x),$$

является представлением G в V.

Определение 7. Представление $\rho: G \to \mathrm{GL}(V)$ называется вполне приводимым, если

$$V = V_1 \oplus V_2$$
,

где V_1, V_2 — инвариантные подпространства $\{\rho(g)\}$ и $V_i \neq \{0\}, V$.

В общем случае непонятно, является ли приводимое представление вполне приводимым. Однако это верно для любой конечной группы и для любой компактной группы.

Пусть $(V,(\cdot,\cdot))$ — конечномерное векторное пространство над K с некоторым скалярным произведением. Для представления ρ конечной группы G построим инвариантное скалярное произведение:

$$\langle x, y \rangle = \langle \rho(g)x, \rho(g)y \rangle.$$

Таковым является скалярное произведение, определённое по формуле:

$$\langle x, y \rangle = \frac{1}{|G|} \sum_{g \in G} (\rho(g)x, \rho(g)y).$$

Упражнение 1. Проверить предыдущее утверждение.

Упражнение 2. Доказать, что из приводимости конечной группы следует полная приводимость. (*Указание*: воспользоваться конструкцией скалярного произведения $\langle \cdot, \cdot \rangle$).

2 Представления симметрической группы

Список литературы

[1] *А. М. Вершик*, *А. Ю. Окуньков*, Новый подход к теории представлений симметрических групп. II. [mathnet.ru]

Определение 1. Рассмотрим цепочку групп

$$\{1\} = G(0) \subset G(1) \subset \ldots \subset G(n) \subset \ldots$$

Обозначим $G(n)^*$ — множество классов эквивалентности неприводимых комплексных представлений группы G(n).

 Γ раф ветвления цепочки групп $\{G(i)\}$ это следующий граф:

- вершины графа: $\bigcup_{n \leq 0} G(n)^*$;
- вершина $\lambda \in G(n)^*$ соединяется с вершиной $\mu \in G(n-1)^*$ k рёбрами, где $k = \dim \operatorname{Hom}_{G(n-1)}(V^{\mu}, V^{\lambda}).$

Имеет место разложение

$$V^{\lambda} = \bigoplus_{\mu \in G(n-1)^*} V^{\mu}.$$

Каждый V^{μ} можно разложить аналогичным образом. Продолжая этот процесс, дойдём до разложения:

$$V^{\lambda} = \bigoplus_{T} V_{T},$$

где V_T это одномерное комплексное пространство, T пробегает все возможные пути в графе ветвления от V^{λ} к «одномерным листьям». В каждом пространстве V_T выделяется базисный вектор v_T .

Определение 2. Нормированный относительно G(n)-инвариантного скалярного произведения базис $\{v_T\}$ в V^{λ} называется базисом Гельфанда—Цетлина.

Обозначим Z(n) центр групповой алгебры $\mathbb{C}[G(n)]$. Подалгебра, порождённая линейными комбинациями элементов $Z(1),\ldots,\,Z(n)$, называется алгеброй Гельфанда—Цетлина.

Утверждение 1. Имеет место фундаментальный изоморфизм:

$$\mathbb{C}[G(n)] = \bigoplus_{\lambda} \operatorname{End}(V^{\lambda}).$$

Утверждение 2. GZ(n) имеет следующие характеризации:

(1) GZ(n) — это алгебра всех операторов, диагонализируемых в базисе Г—Ц.

(2) GZ(n) — это максимальная коммутативная подалгебра $\mathbb{C}[G(n)]$.

Замечание. Любой вектор из базиса Γ —Ц в любом неприводимом представлении группы G(n) однозначно определяется набором его собственных значений.

Пусть $M-\mathbb{C}$ -алгебра, N- её подалгебра. Обозначим Z(M,N) множество всех элементов M, коммутирующих со всеми элементами N.

Утверждение 3. Следующие утверждения эквивалентны.

- (1) Ограничение конечномерных неприводимых представлений M на её подалгебру N имеет простую кратность (0 или 1).
- (2) Z(M,N) коммутативна.

2.1 Элементы Юнга—Юциса—Мёрфи

Далее полагаем $G(n) = S_n$.

Определение 3. Элементом Юнга—Юциса—Мёрфи групповой алгебры $\mathbb{C}[S_n]$ называется элемент

$$X_i = (1i) + (2i) + \dots (i-1i), \qquad 1 \le i \le n.$$

Заметим, что

 $X_i = \{\text{сумма всех транспозиций в } S_i\} - \{\text{сумма всех транспозиций в } S_{i-1}\},$

уменьшаемое в этой разности принадлежит Z(i), а вычитаемое — Z(i-1), а значит, $X_i \in GZ(n)$ для $1 \le i \le n$.

Утверждение 4.

$$(A =) \sum_{\tau \in S_i} \tau \in Z(i),$$

где τ пробегает все транспозиции в S_i .

Доказательство. Пусть $g \in S_i$.

$$gAg^{-1} = \sum g\tau g^{-1} = \sum \tau = A,$$

так как (1) сопряжение сохраняет цикловый тип перестановки, в частности, переводит транспозиции в транспозиции, (2) сопряжение является автоморфизмом, то есть действуя на разные перестановки, получаем разные перестановки.

Теорема 1.

$$Z(n) \subset \langle Z(n-1), X_n \rangle.$$

Доказательство.

$$X_i = \sum_{i=1}^{n-1} (i, n) = \sum_{i \neq j; i, j=1}^{n} (i, j) - \sum_{i \neq j; i, j=1}^{n-1} (i, j).$$

$$X_n^2 = \sum_{i \neq j; i,j=1}^n (i,j,n) + (n-1) id,$$

а значит, $A = \sum_{i \neq j; i,j=1}^n (i,j,n) \in \langle Z(n-1), X_n \rangle$. Кроме того $B = \sum_{i \neq j \neq k; i,j,k=1}^n (i,j,k) \in Z(n-1)$, и

$$C = \sum_{i \neq j \neq k; i, j, k=1}^{n} (i, j, k) = A + B \Longrightarrow C \in \langle Z(n-1), X_n \rangle.$$

Аналогично можно рассмотреть $X_n \sum (i_1, \dots, i_{k-1}, n)$.

3 Деформации алгебр

Определение 1. Пусть A — ассоциативная алгебра. Деформацией алгебры A называется алгебра $\Lambda_{\hbar} = A[\hbar]/(\hbar^2) = \{a+b\hbar\}$ с умножением, заданным следующим образом:

$$a * b = ab + f(a, b)\hbar + O(\hbar^2),$$

при этом (чтобы полученная алгебра также была ассоциативной) от f требуется:

$$f(ab, c) + f(a, b)x - f(a, bc) - af(b, c) = 0.$$

Замечание. Функция f является элементом когомологии Хохшильда.