Dynamic Pricing using Xgboost and Dual Annealing

Abhinav Khare, Suirong Dong, Diala Gammoh, Amruth Sivelenka
University at Buffalo (SUNY)

<u>abhinavk@buffalo.edu, Suiron.Dong@golfchannel.com ,Diala.Gammoh@golfchannel.com edu, AmruthSivalenka@golfchannel.com</u>

Introduction

- Dynamic Pricing is a pricing strategy in which businesses set flexible prices of products and services based on market demands in order to maximize revenue.
- Dynamic Pricing was traditionally popular in airline and hotel businesses.
- However with advent of e-commerce a lot of digital businesses like retail & ridesharing apps do regular dynamic pricing.

Popular Brands that use Dynamic Pricing

Price

optimization problem

Popular Ride Sharing Services use Dynamic
Dynamic Pricing
Pricing

Illustration explaining how dynamic pricing leads to higher revenues

Marginal Revenue = $MR(t) = \delta r(t)/\delta d(t) = p(t) + \delta p(t)/\delta d(t) * d(t)/p(t) = p(t) (1 + 1/e)$ Price elasticity of demand = $e = \delta d(t)/\delta p(t) * p(t)/d(t)$

At Optimality Condition: Marginal Revenues are equal in all periods

Motivation & Objective

- Improve the methodology of pricing a digital product in the sports and recreation industry.
- Current method is a greedy allocation algorithm that allocates demands/ sets price such that the marginal revenue for each period is equal.
- The elasticity capturing the relationship between price, demand & marginal revenue is determined by analysis of historic data.
- Factors influencing elasticity like weather, season, market etc. are determined manually by experts analyzing data.
- We propose a machine learning method that captures the relationship between price, demand and other factors and eliminate explicit calculation of elasticity and factors affecting it.

A Two-Stage Methodology for Dynamic Pricing

Stage 1: Machine Learning Model

- Input: Price for given Location, Weather,
 Market Tier (factors affecting elasticity)
- Output: Demand/Revenue for Location,
 Weather, DaysOut, Tier etc.
- Function: Learn the mathematical function (complex demand curve) to map input to output from historical training data.

Stage 2 : Optimization Model

- Input: Range for price values, values of variable like weather, location, machine learning model
- Output: Optimal Price(maximizes revenue)
- **Function**: Searches the price demand curve stored in the machine learning model to find the optimal price.

Stage 1: Xgboost

Xgboost is a library that implements machine learning algorithms under the gradient boosting framework.

Features/Independent Variables

- Factors of time: WeekNumber, Month, Day, DayNameBucket, IsPlaydayWeekend
- Factors of Weather: WeatherPlayableDays, WeatherPlayableRound, MaxTemperatureDegF, WeatherRainDay
- Factors of Location: Latitude, Longitude
- Other Factors: Tier, DaysOut
- Price: Trade Price of each DaysOutGroup

Training Data: All Play Locations, All markets, Year 2018 (all months) 2019 (Jan-May)

Test Data: All Play Locations, All markets, 2019 (June-July)

Predicted Variable: Demand

Grouping Level: PlayLocationKey, Year, WeekNumber, DaysOut, DayNameBucket,

Frequency Distribution of Actual Demand

Result on Test Data RMSE on test data = 1.65, MAPE = 30 %

2	2019				Tier	Actual Demand	Demand
	2019	22	2	?Tue_Thu	1	1	1.4441173
4	2019	23	4	Sat_Sun	1	3	3.3126905
6	2019	23	0	Tue_Thu	1	13	13.655126
30	2019	25	0	Sat_Sun	2	5	4.5798197
26	2019	23	0)Mon_Fri	1	3	2.7931218
254	2019	28	1	.Sat_Sun	1	8	8.320353
	6 30 26 254	6 2019 30 2019 26 2019 254 2019	6 2019 23 30 2019 25 26 2019 23 254 2019 28	6 2019 23 0 30 2019 25 0 26 2019 23 0 254 2019 28 1	6 2019 23 OTue_Thu 30 2019 25 OSat_Sun 26 2019 23 OMon_Fri 254 2019 28 1Sat_Sun	6 2019 23 OTue_Thu 1 30 2019 25 OSat_Sun 2 26 2019 23 OMon_Fri 1 254 2019 28 1Sat_Sun 1	6 2019 23 0Tue_Thu 1 13 30 2019 25 0Sat_Sun 2 5 26 2019 23 0Mon_Fri 1 3

Best Model using Cross Validation

Predicted Variable: Revenue

Grouping Level: PlayLocationKey, Year, SeasonID, DayNameBucket,

DaysOutGroup

• **Result on Test Data :** RMSE = 56.26 , MAPE = 12.73 %

Table comparing actual revenue and predicted revenue

Market	Location						Actual	Predicted
Name	Key	Year	SeasonID	DayName	Tier	DaysOutGroup	Revenue	Revenue
Orlando	2161	2019	1	Thu	1	(120	120.024
Austin	2006	2019	2	Wed	2	2	224.4	763.4081
Chicago	11399	2019	2	Sun	2	(502.4	502.477
Houston	6541	2019	2	Sat	1	(358	358.0023

Stage 2 : Dual Annealing

Dual Annealing is a global optimization heuristic that combines the generalization of classical simulated annealing (CSA) with fast simulated annealing (FSA) coupled to a strategy to apply local search on accepted locations.

Results of optimization on all Locations in all markets, 2019 (June-July)

	Mean Absolute Percentage Change	Root Mean Squared of Change in
	in Price	Price
TradePrice for Days Out Group 0	29.94	9.14
TradePrice for Days Out Group 1	30.3	10.42
TradePrice for Days Out Group 2	29.89	11.6
TradePrice for Days Out Group 3	32.49	13.05
TradePrice for Days Out Group 4	30.68	14.06

Sample Results for Orlando

MarketName	LocationKey	Year	SeasonID	DayNameBucket	Tier	DaysOutGroup
Orlando	2161	2019	1	Sat Sun	1	

Optimal Trade Price Days

Optimal Trade Price Days	
Group 0	13.94971
Current Trade Price	10
LowerBound 0	5
UpperBound 0	15
Optimal	
Trade Price group 1	15.63965
Trade Price Days Out	
Group1	10.72222
LowerBound 1	5.361111
UpperBound 1	16.08333

Increase In Revenue estimated

With error adjusted

Group 2	19.2345
Current Trade Price	
DayOut Group2	10
LowerBound 2	:
UpperBound 2	24
Optimal Trade Price Days	
Group 3	21.684
Current Trade Price	
DayOut Group3	10
LowerBound3	;
UpperBound3	24

Group 4	23.84759
Trade Price Days Out	
Group4	18
LowerBound 4	9
UpperBound 4	27
Demand	31
Optimal Demand	36.61115
Revenue	326
Optimal Revenue	572.5855

Optimal Trade Price Days