

AD-A101 233

ACKENHEIL AND ASSOCIATES INC PITTSBURGH PA

NATIONAL DAM INSPECTION PROGRAM, MINE NO. 60-POND 6 (INDI NUMBER--ETC(U))
MAY 81

F/G 13/13

DACW31-81-C-0027

NL

UNCLASSIFIED

100
400 250

END
DATE
FILED
7-8-81
DTIC

ADA101233

LEVEL 1
OHIO RIVER BASIN,
TRIBUTARY TO CENTER BRANCH - PIGEON CREEK,
WASHINGTON COUNTY

PENNSYLVANIA.

NDI No. PA 01145

PENN DER No. 63-89

⑥ National Dam Inspection Program.

MINE NO. 60 - POND 6 (NDI IAT number
PA 01145) PENN DER Number 63-89

REEDERS MINE COMPANY

REEDERS MINE COMPANY

PHASE I INSPECTION REPORT.

NATIONAL DAM INSPECTION PROGRAM

⑯ PACW 31-81-C-0027

JUL 10 1981

11 May 81

12 98

PREPARED FOR

DEPARTMENT OF THE ARMY
BALTIMORE DISTRICT, CORPS OF ENGINEERS
BALTIMORE, MARYLAND 21203

BY

ACKENHEIL & ASSOCIATES GEO SYSTEMS, INC.
CONSULTING ENGINEERS
1000 BANKSVILLE ROAD
PITTSBURGH, PENNSYLVANIA 15216

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

MAY 1981

411785
817 10 016

fb

(1)

OHIO RIVER BASIN

MINE NO. 60-POND 6
WASHINGTON COUNTY, COMMONWEALTH OF PENNSYLVANIA
NDI NO. PA 01145
PennDER NO. 63-89

BETHLEHEM MINES CORPORATION
ELLSWORTH-BUTLER DIVISION

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

JUL 10 1981

Prepared for: DEPARTMENT OF THE ARMY
Baltimore District, Corps of Engineers
Baltimore, Maryland 21203

Prepared by: ACKENHEIL & ASSOCIATES GEO SYSTEMS, INC.
Consulting Engineers
1000 Banksburg Road
Pittsburgh, Pennsylvania 15216

Date: May 1981

DISSEMINATION STATEMENT A
Approved for public release; Distribution Unlimited

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams for Phase I investigations. Copies of these guidelines may be obtained from the Department of the Army, Office of Chief of Engineers, Washington, D.C. 20314.

The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon visual observations and review of available data. Detailed investigations and analyses involving topographic mapping, subsurface investigations, materials testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify the need for such studies which should be performed by the owner.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of the dam depends on numerous and constantly changing internal and external factors which are evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some time in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I investigations are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the spillway design flood is based on the estimated "Probable Maximum Flood" (PMF) for the region (greatest reasonably possible storm runoff), or fractions thereof. The spillway design flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition, and the downstream damage potential.

Accession For	✓	000
THIS CRATE		
THIS TAB		
TRANSMITTER		
RECEIVER		
TRANSMITTER RECEIVER		
<u>Power Source</u>		
By _____	district	Amesbury Center
Date _____	1962	1962
First	Serial	Initial

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

SYNOPSIS OF ASSESSMENT AND RECOMMENDATIONS

NAME OF DAM: Mine No. 60-Pond 6
STATE LOCATION: Pennsylvania
COUNTY LOCATION: Washington
STREAM: Unnamed tributary to Center Branch
of Pigeon Creek.
DATE OF INSPECTIONS: 18 March and 26 March 1981
COORDINATES: Lat. 40°08'56"
Long. 80°03'30"

ASSESSMENT

Based on a review of available information and visual observations of conditions as they existed on the date of the field inspections, the general condition of the Mine No. 60-Pond 6 is considered to be good.

This assessment is based primarily on visual observations of the embankment and appurtenances and hydrologic/hydraulic analyses of reservoir/spillway capacity.

The structure is classified as an "intermediate" size, "high" hazard dam. Corps of Engineers guidelines recommend the Probable Maximum Flood (PMF) as the Spillway Design Flood for an "intermediate" size, "high" hazard dam. Mine No. 60-Pond 6's Spillway Design Flood is the Probable Maximum Flood. Spillway capacity is "adequate" because the non-overtopping flood discharge was found, by using the HEC-1 computer program, to be in excess of 100 percent of the PMF.

The Phase I investigation revealed deficiencies which should be corrected or improved through implementation of the following recommended remedial, monitoring and/or improvement efforts.

RECOMMENDATIONS

1. Outlet Works: Install the proposed outlet works as soon as possible, to provide a means for draining the impoundment zone.
2. Emergency Operation and Warning Plan: The owner should develop an Emergency Operation and Warning Plan including:

SYNOPSIS OF ASSESSMENT AND RECOMMENDATIONS (CONT'D)
Mine No. 60-Pond 6

- a. Guidelines for evaluating inflow during periods of heavy precipitation or runoff.
 - b. Procedures for around the clock surveillance during periods of heavy precipitation or runoff.
 - c. Procedures for drawdown of the reservoir under emergency conditions.
 - d. Procedures for notifying downstream residents and public officials, in case evacuation of downstream areas is necessary.
3. Remedial Work: The visual inspection of Mine No. 60-Pond 6 disclosed several minor deficiencies which should be corrected or monitored. These include:
- a. Improvements to downstream bench drainage to eliminate wet zones and embankment erosion conditions.
 - b. Completing the embankment crest to design elevation. The crest should be graded to promote proper drainage and should be surfaced to prevent wheel rutting by vehicles that may traverse the crest.
 - c. Implementation of a regularly scheduled monitoring program to observe the seepage at the downstream toe of the embankment for changes in water quality and/or quantity.
4. Follow-Up Remedial Work: Following the establishment of a vegetal cover on the embankment, spillway and adjacent slopes, backfill all erosional gullies and repair all surface slough zones and revegetate to achieve uniform, stable slopes.

SYNOPSIS OF ASSESSMENT AND RECOMMENDATIONS (CONT'D)
Mine No. 60-Pond 6

Samuel G. Mazzella, P.E., 1981
Samuel G. Mazzella
Project Engineer

James P. Hannan, 8 May 1981
James P. Hannan
Project Engineer

James E. Barrick, 8 May 1981
James E. Barrick, P.E.
PA Registration No. 022639-E

Approved by:

James W. Peck
James W. Peck
Colonel, Corps of Engineers
District Engineer

22 MAY 81
Date

MINE No. 60 - POND 6

OVERVIEW

TABLE OF CONTENTS

	<u>Page</u>
PREFACE	i
SYNOPSIS OF ASSESSMENT AND RECOMMENDATIONS	ii
OVERVIEW PHOTOGRAPH	v
SECTION 1 - PROJECT INFORMATION	
1.1 General	1
1.2 Description of Project	1
1.3 Pertinent Data	3
SECTION 2 - ENGINEERING DATA	
2.1 Design	5
2.2 Construction	5
2.3 Operation	5
2.4 Evaluation	5
SECTION 3 - VISUAL INSPECTION	
3.1 Findings	7
3.2 Evaluation	10
SECTION 4 - OPERATIONAL FEATURES	
4.1 Procedure	11
4.2 Maintenance of Dam	11
4.3 Inspection of Dam	11
4.4 Warning Procedure	11
4.5 Evaluation	11
SECTION 5 - HYDROLOGY AND HYDRAULICS	
5.1 Evaluation of Features	12
SECTION 6 - STRUCTURAL STABILITY	
6.1 Available Information	14
6.2 Evaluation	15
SECTION 7 - ASSESSMENT AND RECOMMENDATIONS	
7.1 Assessment	16
7.2 Recommendations	16

TABLE OF CONTENTS (cont'd)

	<u>Page</u>
APPENDIX A - VISUAL INSPECTION CHECKLIST	
Visual Observations Checklist I	A1
Field Sketch	A9
Field Section A-A	A10
Field Section B-A	A11
APPENDIX B - ENGINEERING DATA CHECKLIST	
APPENDIX C - PHOTOGRAPHS	
Photo Key Map	C1
Photos 1 through 16	C2
Photo Descriptions	C6
APPENDIX D - HYDROLOGY AND HYDRAULICS ANALYSES	
Methodology	D1
Engineering Data	D3
HEC-1 Data Base	D4
Loss Rate and Base Flow Parameters	D5
Elevation-Area-Capacity Relationships	D5
Overtop Parameters	D6
Spillway Parameters	D6
Program Schedule	D6
HEC-1 Computer Analysis	D7
Hydrologic Performance Plot	D10
APPENDIX E - PLATES	
List of Plates	E1
Plates I through XI	E2
APPENDIX F - GEOLOGY	
Geomorphology	F1
Structure	F1
Stratigraphy	F1
Mining Activity	F1
Geologic Map	F2
Geologic Column	F3

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM
MINE NO. 60-POND 6
NATIONAL I. D. NO. PA 01145
PennDER No. 63-89

SECTION 1
PROJECT INFORMATION

1.1 GENERAL

a. Authority: The Phase I investigation was performed pursuant to authority granted by Public Law 92-367 (National Dam Inspection Act) to the Secretary of the Army, through the Corps of Engineers, to conduct inspections of dams throughout the United States.

b. Purpose: The purpose of the investigation is to make a determination on whether or not the dam constitutes a hazard to human life or property.

1.2 DESCRIPTION OF PROJECT

a. Dam and Appurtenances:

(1) Embankment: The Mine No. 60-Pond 6 was designed and constructed as a earthfill structure. The embankment is 845 feet long, with a toe to crest height of 68.2 feet and a crest width of about 20 feet. The embankment's upstream slope was observed to be 2H:1V above the waterline; the downstream slope was observed to be 2H:1V above the bench and 2.1H:1V below the bench.

(2) Principal (and Emergency) Spillway: The spillway for the Mine No. 60-Pond 6 consists of a 20 foot wide trapezoidal open channel in the left abutment.

(3) Outlet Works: An outlet works consisting of a submerged pump and pipeline is to be located near the rear of the impoundment. Water is to be returned to the Mine No. 60 Preparation Plant for reuse in the coal cleaning process. The outlet works was not installed at the time of the inspection.

(4) Freeboard Conditions: Freeboard between the the spillway crest and the reservoir pool level was 38.8 feet at the time of inspection.

(5) Downstream Conditions: The unnamed creek below the Mine No. 60-Pond 6 flows through an inhabited valley for about 1.5 miles to a confluence with the Center Branch of Pigeon Creek. Pigeon Creek flows into the Monongahela River near Monongahela, Pennsylvania. In the first 5 miles below the Mine No. 60-Pond 6, at least 5 inhabited dwellings, several major secondary roads, a railyard and a reservoir lie within the limits of the affected floodplain.

(6) Reservoir: The Mine No. 60-Pond 6 is about 1450 feet long at the spillway crest elevation and has a surface area of 21.1 acres. When the pool is at the (design) crest of the dam, the reservoir length increases to 1500 feet and the surface area is about 24.7 acres.

(7) Watershed: The watershed contributing to the Mine No. 60-Pond 6 is woodland and brushland. The watershed, 102 acres, is completely owned by the Bethlehem Mines Corporation.

b. Location: The Mine No. 60-Pond 6 is located at the headwaters of an unnamed tributary to the Center Branch of Pigeon Creek in Somerset Township, Washington County, Pennsylvania, approximately 3 miles north of Ellsworth, Pennsylvania.

c. Size Classification: The dam has a maximum storage capacity of 616 acre-feet and a toe to crest height of 68.2 feet. Based on the Corps of Engineers guidelines, this dam is classified as an "intermediate" size structure.

d. Hazard Classification: The Mine No. 60-Pond 6 is classified as a "high" hazard dam. In the event of a dam failure, at least 5 inhabited dwellings, several roads, a railyard and a reservoir could be subjected to damage, and the loss of more than a few lives could result.

e. Ownership: The Mine No. 60-Pond 6 is owned by the Bethlehem Mines Corporation. Correspondence can be addressed to:

Bethlehem Mines Corporation
Ellsworth-Butler Division
P. O. Box 143
Eighty-Four, Pennsylvania 15330
Attention: Mr. D. F. Patterson, Chief Engineer
(412) 228-5500

f. Purpose of Dam: The Mine No. 60-Pond 6 was constructed to serve as a holding and settling impoundment for fine coal refuse slurry from the Mine No. 60 Coal Preparation Plant.

g. Design and Construction History: The dam was designed by Michael Baker, Jr., Inc. of Beaver, Pennsylvania, in 1980 and was constructed by Mack Equipment Corporation of Eighty-Four, Pennsylvania, from September through December 1980.

h. Normal Operating Procedures: The Mine No. 60-Pond 6 was designed to operate as an uncontrolled structure. Under normal operating conditions, the pool level (operating pool level) is maintained by the outlet works. The spillway defines the maximum operating pool elevation of about 1165.4. Inflow to the Mine No. 60-Pond 6 includes runoff from the watershed above and fine coal refuse slurry from the Mine No. 60 Preparation Plant.

1.3 PERTINENT DATA

a.	<u>Drainage Area</u>	0.16 sq. mi.
b.	<u>Discharge</u>	
	Maximum flood at Dam Facility	Unknown
	Spillway Capacity at Current Top of Dam	513 cfs
c.	<u>Elevation (feet above MSL)</u>	
	Design Top of Dam	1172.0*
	Current Top of Dam (low point)	1169.5
	Principal (and Emergency) Spillway	
	Overflow Crest	1165.4
	Operating Pool	Varies
	Operating Pool on Date of Inspection	1126.6
	Toe of Embankment	1101.3
d.	<u>Reservoir Length</u>	
	Length of Maximum Pool	1500 feet
	Length of Maximum Operating Pool	1450 feet
	Length of Operating Pool	Varies
e.	<u>Reservoir Storage</u>	
	Design Top of Dam	676 acre-feet
	Current Top of Dam	616 acre-feet
	Spillway Crest	525 acre-feet
f.	<u>Reservoir Surface</u>	
	Design Top of Dam	24.7 acres
	Current Top of Dam	23.3 acres
	Spillway Crest	21.1 acres
g.	<u>Embankment</u>	
	Type	Earth
	Length	845 feet
	Height	68.2 feet
	Crest Width	20 feet
	Slopes	
	Downstream	2.0H:1V and 2.1 H:1V
	Upstream	2.0 H:1V
	Impervious Core	No*
	Cutoff Provisions	Yes*
	Grout Curtain	None reported

h. Principal (and Emergency) Spillway

Type	Trapezoidal Open Channel
Location	Left Abutment
Overflow Crest Length	20 feet
Crest Elevation	1165.4 feet

i. Outlet Works**

Type	Submerged Pump*
Location	Right Side of Impoundment*

* Taken or derived from available engineering drawings or reports.

** Not installed at the time of the inspection.

SECTION 2
ENGINEERING DATA

2.1 DESIGN

a. Data Available: The data available from the files of the Commonwealth of Pennsylvania, Department of Environmental Resources (PennDER), included a set of 17 construction drawings which are listed in Appendix B. Additional information was obtained from representatives of Bethlehem Mines Corporation.

b. Design History: Mine No. 60-Pond 6 was designed in 1980 by Michael Baker, Jr., Inc. of Beaver, Pennsylvania. A portion of the engineering was subcontracted to L. Robert Kimball and Associates of Ebensburg, Pennsylvania.

2.2 CONSTRUCTION

a. Construction: The dam was constructed between September and December 1980 by Mack Equipment Corporation of Eight-Four, Pennsylvania. Completion of the work is anticipated in 1981.

b. Modifications: There were no reported modifications to the dam design during construction.

2.3 OPERATION

The dam was designed to operate without a dam tender. The principal (and emergency) spillway is a 20 foot wide trapezoidal open channel in the left abutment.

The outlet works (to be installed) consists of an electric motor driven pump to return water to the Mine No. 60 Preparation Plant. At the time of the inspection there were no facilities to draw down the impoundment in the case of an emergency.

2.4 EVALUATION

a. Availability: Available design information and drawings were obtained from the Pennsylvania Department of Environmental Resources and were supplemented by conversations with company representatives.

b. Adequacy: The available engineering information was supplemented by field inspections and supporting engineering analyses and is considered adequate for the purpose of this Phase I Inspection Report.

c. Validity: Based on the review of the available information, there appears to be no reason to question the validity of the available engineering data.

SECTION 3 VISUAL INSPECTION

3.1 FINDINGS

a. General: The field inspection of Mine No. 60-Pond 6 was performed on 18 March 1981 and 26 March 1981 and consisted of:

- (1) Visual observations of the embankment crest and slopes, groins and abutments;
- (2) Visual observations of the principal (and emergency) spillway including approach channel, overflow section, and discharge channel;
- (3) Visual observations of the embankment's downstream toe area including drainage channels and surficial conditions;
- (4) Visual observations of downstream conditions and evaluation of the downstream hazard potential;
- (5) Visual observations of the reservoir shoreline and watershed;
- (6) Transit stadia surveys of relative elevations along the embankment crest centerline, spillway, and across the embankment slopes.

The visual observations were made during a period when the reservoir pool was well below the normal operating level. The tailwater was at normal operating level during inspection.

The visual observations checklist, field sketch and sections containing the observations and comments of the field inspection team are contained in Appendix A. Specific observations are illustrated on photographs in Appendix C. Detailed findings of the field inspection are presented in the following sections.

b. Embankment:

(1) Crest: The crest of the embankment was straight throughout its length. No offsets or indications of misalignment were observed that would indicate anomalous movement of the embankment.

The crest was uneven vertically. The center and right portions of the crest appeared to be approximately at design elevation. The left end of the embankment was approximately 1 to 2 feet lower.

The embankment crest was barren earth and contained numerous vehicle ruts and considerable local unevenness.

(2) Upstream Slope: The upstream slope was generally even and uniform from top to bottom and abutment to abutment. Some minor surficial sloughing and erosion were noted as a result of a lack of vegetal cover. The sloughing appeared to be restricted to topsoil and seed bed mulch materials that covered the slope.

(3) Downstream Slope: The downstream slope was generally even and uniform from top to bottom and abutment to abutment. Like the upstream slope, the downstream slope contained a covering of topsoil and seed bed mulch, but had suffered considerably less erosion and sloughing distress.

The downstream slope contains a bench at approximately mid-height which is sloped to drain from the center toward each abutment. Ponded water was observed on the bench at the junctions with both abutments. Some erosion of the embankment slope has occurred below the ponded areas.

The groins (junction of embankment and abutment) contain a riprap erosion protection blanket that extends from the toe up both groins to within approximately 300 feet of the crest. No erosion of riprap or other distress was observed and the stone appeared to be durable material.

c. Drains: Two six inch diameter perforated CMP drain pipes were observed at the downstream toe of the embankment. No water was flowing from either pipe.

d. Abutments: The abutments below the embankment appeared to be in good condition. There were no signs of significant slope instability and only minor sloughing and minor erosion were noted. A small wet spot was observed on the slope along the toe drain channel approximately 200 feet below the dam, but no flowing water was observed.

e. Seepage: A flow of water estimated at 1 to 2 gallons per minute was observed in the toe drain channel. The origin of water appeared to be from below the groin riprap at the toe of the embankment. No sedimentation or movement of fine soil materials was observed.

f. Principal (and Emergency) Spillway:

(1) Approach Channel: The spillway approach channel was clear of obstructions that might reduce the capacity of the spillway.

(2) Overflow Crest: The spillway overflow crest is a level section in the channel at the centerline of the dam. The overflow crest was riprap covered and appeared to be in good condition on the date of inspection.

(3) Discharge Channel: The spillway discharge channel was riprapped for a distance of approximately 700 feet below the overflow crest. Below the riprap, the channel is an earth cut in original ground. The channel contained an erosional gully caused by surface runoff from above and beyond the dam. The depth of erosion ranged from 6 to 12 inches.

(4) Channel Side Slopes: The spillway channel side slopes contained some minor sloughing and considerable minor erosion as a result of surface runoff. The lack of vegetal cover appeared to be the main reason for the surface distress. There was no indication of more significant landslide activity that might reduce the capacity of the spillway channel.

f. Outlet Works: No outlet works was observed.

g. Reservoir:

(1) Slopes: The slopes of the reservoir ranged from mild to moderately steep and were generally barren. Some minor erosion of the unvegetated slopes has occurred. There were no indications of significant instability or erosion problems.

(2) Inlet Stream: Because of the location of the reservoir at the upper end of the watershed, there was no defined inlet stream to Pond 6.

(3) Sedimentation: None observed.

(4) Watershed: The watershed contributing to Pond 6 is entirely undeveloped and consists primarily of woods and brushland. There was no construction activity noted in the watershed on the date of inspection.

h. Downstream Conditions:

(1) Channel: The downstream channel for Pond 6 flows through an undeveloped valley for a distance of approximately 1.4 miles. In this reach, it passes beneath three township roads and a Conrail railyard at Mine No. 60. The channel joins the Center Branch of Pigeon Creek approximately 1.5 miles below the dam.

(2) Floodplain Conditions: In the first five miles below Pond 6 at least five inhabited dwellings lie on the floodplain at elevations low enough to possibly be affected by high flows.

3.2 EVALUATION

The following evaluations are based on the results of the visual inspections performed on 18 March and 26 March 1981.

a. Embankment: The condition of Mine No. 60-Pond 6 was good. Only minor deficiencies were observed which included:

(1) Water ponding and slope erosion near the ends of the bench in the downstream slope.

(2) An uneven profile and considerable wheel rutting and local unevenness of the crest.

(3) Minor erosion and sloughing of both the upstream and downstream slopes.

(4) Seepage at the downstream toe of the embankment.

b. Principal (and Emergency) Spillway: The spillway was in good condition. Only minor deficiencies were observed which included:

(1) An erosional gully in the lower discharge channel.

(2) Minor erosion and sloughing of spillway side slopes.

c. Outlet Works: No outlet works was observed. This is considered to be a deficiency.

d. Hazard Potential: Based on the observed downstream floodplain conditions, Mine No. 60-Pond 6 was assigned a "high" hazard potential rating.

SECTION 4
OPERATIONAL FEATURES

4.1 PROCEDURE

Reservoir pool level is not currently maintained except by the overflow crest of the principal (and emergency) spillway.

The outlet works will reportedly consist of a submerged pump which will draw off pond water and return it to the Mine No. 60 Coal Preparation Plant. At the time of the inspection, the outlet works had not been installed.

Fine coal refuse slurry will be pumped to the facility for discharge to the pond across the right abutment near the embankment.

There are no pipelines through the embankment and there is no facility to drain the pond in case of an emergency.

Normal operating procedure does not require a dam tender.

4.2 MAINTENANCE OF DAM

The embankment and appurtenances are maintained by the Bethlehem Mines Corporation. Maintenance reportedly will consist of periodically repairing eroded areas and making miscellaneous repairs as necessary.

4.3 INSPECTION OF DAM

The Bethlehem Mines Corporation is required by the State of Pennsylvania to inspect the dam annually and make needed repairs.

The Bethlehem Mines Corporation is required by the Mine Safety and Health Administration (MSHA) to inspect the dam at least once every seven days and to make an annual report and certification of the dam.

4.4 WARNING SYSTEM

There is no warning system and no formal emergency procedure to alert or evacuate downstream residents upon threat of a dam failure.

4.5 EVALUATION

Lack of a facility to drain the reservoir in the case of an emergency is considered to be a deficiency.

There are no written operation, maintenance or inspection procedures, nor is there a warning system or formal emergency procedure for this dam. These procedures should be developed in the form of checklists and step by step instructions, and should be implemented as necessary.

SECTION 5
HYDROLOGY AND HYDRAULICS

5.1 EVALUATION OF FEATURES

a. Design Data: Mine No. 60-Pond 6 has a watershed of 102 acres which is vegetated primarily by woodland and brushland. The watershed is about 2200 feet long and 1280 feet wide and has a maximum elevation of 1260 feet (MSL). At maximum normal pool, the dam impounds a reservoir with a surface area of 21.1 acres and a storage volume of 525 acre-feet. Maximum normal pool level is maintained at Elevation 1165.4 by the overflow crest of the principal (and emergency) spillway.

There were no calculations available concerning the spillway design capacity requirements at the time of design. Mine No. 60-Pond 6's actual spillway capacity, for the observed cross-section and existing freeboard conditions, was computed to be 513 cfs.

No additional hydrologic calculations were found relating reservoir/spillway performance to the Probable Maximum Flood or fractions thereof.

b. Experience Data: Records are not kept of reservoir level or rainfall amounts. There is no record or report of the embankment ever being overtopped.

c. Visual Observations: On the date of the field inspection, no serious deficiencies were observed that would prevent the principal (and emergency) spillway from functioning. The water level at the time of the field inspection was observed to be 38.8 feet below the spillway crest.

d. Overtopping Potential: Overtopping potential was investigated through the development of the Probable Maximum Flood (PMF) for the watershed and the subsequent routing of the PMF and fractions of the PMF through the reservoir and spillway. The Corps of Engineers guidelines recommends the Probable Maximum Flood for "intermediate" size, "high" hazard dams. Based on the observed size and existing downstream conditions, Mine No. 60-Pond 6 was assigned a Spillway Design Flood (SDF) of one PMF.

Hydrometeorological Report No. 33 indicates the adjusted 24 hour Probable Maximum Precipitation (PMP) for the subject site is 19.4 inches. No calculations exist that relate the reservoir/spillway system to a PMP type precipitation event. Consequently, an evaluation of the system was performed to determine whether or not the dam's spillway capacity is adequate under current Corps of Engineers' guidelines.

The Corps of Engineers, Baltimore District, has directed that the HEC-1 Dam Safety Version computer program be utilized. The program was prepared by the Hydrologic Engineering Center (HEC), U.S. Army Corps of Engineers, Davis, California, July 1978. The major methodologies and key input data for this program are discussed briefly in Appendix D.

The peak inflow to Mine No. 60-Pond 6 was determined by HEC-1 to be 650 cfs for the PMF (and SDF).

An initial pool elevation of 1165.4 was assumed prior to commencement of the storm.

e. Spillway Adequacy: The capacity of the combined reservoir and spillway system was determined to be in excess of the PMF by HEC-1. According to Corps of Engineers' guidelines, Mine No. 60-Pond 6's spillway is "adequate."

SECTION 6
STRUCTURAL STABILITY

6.1 AVAILABLE INFORMATION

a. Design and Construction Data: All available design documentation, calculations and other data received from the Pennsylvania Department of Environmental Resources were reviewed. This data is discussed in Section 2 and a detailed listing is included in Appendix B. PennDER provided the drawings that are presented in Appendix E.

b. Operating Records: There are no written operating records or procedures for this dam.

c. Visual Observations:

(1) Embankment: Visual observations made during the field inspection did not indicate evidence of a high ground water level in the embankment. There was no pronounced "line of seepage" and no significant surface sloughs were observed.

The upstream slope was generally even and uniform. Some minor surficial sloughing and erosion were noted, apparently as a result of a lack of vegetal over. The sloughing appeared to be restricted to topsoil and seed bed mulch materials that covered the slope.

The downstream slope was generally even and uniform and showed less erosion and sloughing than the upstream slope. Ponded water was observed standing in the bench on the downstream slope.

Some seepage was noted in the toe drain channel at the immediate downstream toe of the embankment. Origin of the water could not be determined. Embankment and foundation drains located immediately behind and 1.5 feet above the seepage area were dry on the dates of the inspection.

The stadia survey revealed a moderate downstream slope at about 2.2H:1V including downstream bench.

(2) Outlet Facilities: The outlet facilities were not installed at the time of the inspection.

(3) Principal (and Emergency) Spillway: The spillway discharge channel contained an erosional gully caused by surface runoff from above and beyond the dam. The channel side slopes contained some minor sloughing and considerable minor erosional distress as a result of surface runoff.

6.2 EVALUATION

a. Design, Construction, and Monitoring Information: The design documentation was, by itself, considered inadequate to evaluate the structure.

Stability analyses by Michael Baker, Jr., Inc., calculated safety factors against sliding for several embankment conditions. The results of these analyses are presented on Plate X in Appendix E.

b. Embankment: On the date of the field inspection, the embankment appeared to have an adequate margin of safety against sliding. This is based on observations of embankment slopes, materials, and seepage conditions.

c. Principal (and Emergency) Spillway: The principal (and emergency) spillway appeared to be functional. There was no indication of significant landslide activity that might imperil the capacity of the spillway channel.

d. Active Outlet Works: The outlet works was not installed at the time of inspection.

f. Seismic Stability: According to the Seismic Risk Map of the United States, Mine No. 60-Pond 6 dam is located in Zone 1 where damage due to earthquakes would most likely be minor.

A dam located in Seismic Zone 1 may be assumed to present no hazard from an earthquake provided static stability conditions are satisfactory and conventional safety margins exist. No calculations were developed to verify this assessment, however.

SECTION 7
ASSESSMENT AND RECOMMENDATIONS

7.1 ASSESSMENT

a. Evaluation:

(1) Embankment: Mine No. 60-Pond 6's embankment is considered to be in good condition. This is based on visual observations that revealed only minor deficiencies.

(2) Principal (and Emergency) Spillway: The spillway is considered to be in good condition. This is based on visual observations that revealed only minor deficiencies and a HEC-1 analysis that indicated an "adequate" capacity rating under current Corps of Engineers guidelines.

The Spillway Design Flood for Mine 60-Pond 6 was the Probable Maximum Flood. The combined reservoir/spillway capacity was determined by HEC-1 to be in excess of 100% of the PMF.

(3) Outlet Works: Lack of an outlet works or facility for draining the pond is considered to be a deficiency.

(4) Seepage: Seepage at the downstream toe of the embankment represents a potential threat to the impoundment. However, on the date of inspection, there was no indication of excessive flow or movement of embankment or foundation soil materials.

(5) Emergency Plans: The lack of a documented emergency operation and warning plan is considered to be a deficiency.

b. Adequacy of Information: The information available on design, construction, operation and performance history in combination with visual observations and hydrology and hydraulic calculations was sufficient to evaluate the embankment and appurtenant structures in accordance with the Phase I investigation guidelines.

c. Urgency: The recommendations presented in Section 7.2a, 7.2b and 7.2c should be implemented immediately.

d. Necessity for Additional Studies: None.

7.2 RECOMMENDATIONS

a. Install Outlet Works: Install the proposed outlet works as soon as possible, to provide a means for draining the impoundment zone.

b. Emergency Operation and Warning Plan: The owner should develop an Emergency Operation and Warning Plan including:

(1) Guidelines for evaluating inflow during periods of heavy precipitation or runoff.

(2) Procedures for around the clock surveillance during periods of heavy precipitation or runoff.

(3) Procedures for drawdown of the reservoir under emergency conditions.

(4) Procedures for notifying downstream residents and public officials, in case evacuation of downstream areas is necessary.

c. Remedial Work: The visual inspection disclosed several minor deficiencies which should be corrected or monitored. These include:

(1) Improvements to downstream bench drainage to eliminate wet zones and embankment erosion conditions.

(2) Completing the embankment crest to design elevation. The crest should be graded to promote proper drainage and should be surfaced to prevent wheel rutting by vehicles that may traverse the crest.

(3) Implementation of a regularly scheduled monitoring program to observe the seepage at the downstream toe of the embankment for changes in water quality and/or quantity.

d. Follow-Up Remedial Work: Following the establishment of a vegetal cover on the embankment, spillway and adjacent slopes, backfill all erosional gullies and repair all surface slough zones and revegetate to achieve uniform, stable slopes.

APPENDIX A
VISUAL INSPECTION CHECKLIST

VISUAL OBSERVATIONS CHECKLIST I
 (NON-MASONRY IMPOUNDING STRUCTURE)

Name of Dam	Mine No.	60-Pond 6	County	Washington	State	Pennsylvania	National ID #	PA 01145
Type of Dam	Earth				Hazard Category	High		
Dates of Inspection	18 March 1981		Weather	Partly cloudy, cool	Temperature	<u>35°F</u>		
	26 March 1981			Clear, mild		<u>45°F</u>		
Pool Elevation at Time of Inspection	± 1126.6		(MSL)					
Tailwater at Time of Inspection	± 1101.3		(MSL)					
Inspection Personnel:	18 March 1981		Ackenheil & Associates, Geotechnical Engineer					
	J. P. Hannan	S. G. Mazzella	Ackenheil & Associates, Civil Engineer					
26 March 1981								
J. E. Barrick, P.E.			Ackenheil & Associates, Project Manager					
			and Hydrologist					
			Bethlehem Mines Corporation Representative					
Recorder	J. E. Barrick							

A1

GEO Project G80138-G
 PennDER I.D. No. 63-89

EMBANKMENT

<u>VISUAL EXAMINATION OF</u>	<u>OBSERVATIONS</u>	<u>REMARKS OR RECOMMENDATIONS</u>
SURFACE CRACKS	Randomly oriented drying cracks observed on downstream bench. No other cracks observed.	
UNUSUAL MOVEMENT OR CRACKING AT OR BEYOND THE TOE	None observed.	
SLoughing or erosion of embankment and abutment slopes	No significant sloughing or erosion of embankment slopes was observed. Some minor sloughing of seed bed mulch and topsoil was noted. Vegetal cover has not yet been established. Some minor erosion also observed.	
	No significant sloughing or erosion of abutment slopes was observed. As with the embankment, some minor topsoil and mulch sloughing and erosion were noted due to a lack of an established vegetal cover.	
VERTICAL AND HORIZONTAL ALIGNMENT OF THE CREST	The horizontal alignment of the crest appeared to be straight.	The vertical alignment of the crest was uneven. The center and right portions of the crest were reasonably level and appeared to be at the required elevation. The left portion of the crest was 1 to 2 feet lower than the center and right. The company representative indicated that completion of the crest to design elevation would take place as soon as the current labor uncertainty was resolved.

EMBANKMENT (CONTINUED)

<u>VISUAL EXAMINATION OF</u>	<u>OBSERVATIONS</u>	<u>REMARKS OR RECOMMENDATIONS</u>
RIPRAP FAILURES	None observed.	
SETTLEMENT	None observed.	
JUNCTION OF EMBANKMENT AND ABUTMENT	The left upstream groin (junction of embankment and abutment) contains minor erosion due to channeling of surface runoff. The remaining three groins appeared to be in good condition with no indications of erosion or instability.	
JUNCTION OF EMBANKMENT AND SPILLWAY	No junction observed.	
ANY NOTICEABLE SEEPAGE	The toe drain channel below the embankment contained flowing water estimated at approximately 1 to 2 gallons per minute. Most, if not all, of the flowing water appeared to originate at the riprap groin protection at the downstream toe of the dam. There was no indication of discoloration or deposition of fine soil materials at or below the origin of the seepage.	
A3	A wet spot was noted on the toe drain channel left slope approximately 30 feet below the toe of the dam. The cause of the wet spot could not be determined.	
STAFF GAUGE AND RECORDER	None observed.	

EMBANKMENT (CONTINUED)

<u>VISUAL EXAMINATION OF</u>	<u>OBSERVATIONS</u>	<u>REMARKS OR RECOMMENDATIONS</u>
DRAINS	Two six inch diameter perforated CMP drain pipes exit the downstream slope and discharge to the riprap groin protection at the toe of the dam. No flows were observed on the date of inspection.	
SURFICIAL CONDITIONS	The embankment crest was barren earth on the date of inspection. It contained numerous vehicle ruts and was locally irregular and uneven.	

PRINCIPAL (AND EMERGENCY) SPILLWAY

<u>VISUAL EXAMINATION OF</u>	<u>OBSERVATIONS</u>	<u>REMARKS OR RECOMMENDATIONS</u>
APPROACH CHANNEL	The spillway approach channel was clear of major obstructions that would reduce its capacity during periods of high flow.	
OVERFLOW SECTION	The spillway overflow section occurs at the intersection of the dam centerline and consists of a riprap lined level stretch in the spillway channel. The overflow section was clear of obstructions and appeared to be capable of maintaining design flows.	
DISCHARGE CHANNEL	The spillway discharge channel was unobstructed through its entire length between the overflow section and its confluence with the toe drain channel below the dam. Like the overflow section, the discharge channel was riprap lined for approximately 700 feet beyond the dam centerline.	
SIDE SLOPES	The spillway side slopes from the approach channel through discharge channel have suffered some minor erosion and minor topsoil and mulch sloughing.	

INSTRUMENTATION

<u>VISUAL EXAMINATION OF</u>	<u>OBSERVATIONS</u>	<u>REMARKS OR RECOMMENDATIONS</u>
MONUMENTATION/SURVEYS	None observed.	
WEIRS	None observed.	
PIEZOMETERS	None observed.	
OBSERVATION WELLS	None observed.	

RESERVOIR

<u>VISUAL EXAMINATION OF</u>	<u>OBSERVATIONS</u>	<u>REMARKS OR RECOMMENDATIONS</u>
SLOPES	The slopes of the reservoir ranged from gentle to moderately steep and generally consisted of barren earth. Some minor erosion was noted in all areas without vegetation. There were no indications of reservoir slope instability.	
SEDIMENTATION	None observed.	
INLET STREAM	Pond 6 is located near the top of the watershed and has no defined inlet stream.	
WATERSHED	The watershed above Pond 6 is undeveloped and generally tree and brush covered. On the date of inspection there were no signs of construction activity in the contributing watershed.	

DOWNSTREAM CONDITIONS

<u>VISUAL EXAMINATION OF</u>	<u>OBSERVATIONS</u>	<u>REMARKS OR RECOMMENDATIONS</u>
CHANNEL (OBSTRUCTIONS, DEBRIS, ETC.)	The spillway discharge channel joins the toe drain channel approximately 700 feet below the dam in an area that was formerly the impoundment zone of Lake Calydon. Lake Calydon was removed prior to construction of Pond 6. Lake Calydon Dam was located approximately 400 feet below the toe of the Pond 6 embankment. Below this, the downstream channel passes through an uninhabited brush and tree-lined valley for approximately 1.3 miles where it joins the Center Branch of Pigeon Creek. In this reach, the Creek passes beneath three township roads and a Conrail railyard below the Mine No. 60 complex.	
APPROXIMATE NUMBER OF HOMES AND POPULATION	Approximately three miles below the dam, Center Branch joins Pigeon Creek. At 3.6 miles, Pigeon Creek enters a reservoir above the Ellsworth Mine No. 51 complex on the outskirts of Ellsworth, Pennsylvania.	In the first five miles below Pond 6 there are at least five inhabited dwellings that lie on the flood plain at elevations low enough to possibly be affected by high flows.

NOTE: See Dwg. 80138G-2 and 3
For Sections A-A and B-B

DATE:	MAY 1981
SCALE:	NONE
DR: JF	CK: JEB
DWG. NO.	80138G-1

MINE No. 60 - POND 6
NATIONAL DAM INSPECTION PROGRAM

ACKENHEIL & ASSOCIATES CONSULTING
GEO SYSTEMS, INC. ENGINEERS
1000 BANKSVILLE RD./PITTSBURGH PA. 15216

FIELD SKETCH

APPENDIX B
ENGINEERING DATA CHECKLIST

CHECK LIST
 ENGINEERING DATA
 DESIGN, CONSTRUCTION, OPERATION
 PHASE I

NAME OF DAM Mine No. 60-Pond 6
 NDI No. PA 01145

ITEM	REMARKS
Design Drawings*	<p>Set of drawings entitled "Construction Drawings for Slurry Impoundment for Mine 60" prepared by Michael Baker, Jr. Inc. of Beaver, Pennsylvania, dated 1980, including:</p> <ul style="list-style-type: none"> 1 of 17 General Plan. ** 2 of 17 General Plan, Test Pit and Test Boring Locations. ** 3 of 17 General Plan, Test Pit and Test Boring Locations. ** 4 of 17 Profile of Dam Base Line "D". ** 5 of 17 Emergency Spillway. ** 6 of 17 Exit Channel and Details. 7 of 17 Existing Dam and Details. 8 of 17 Geologic Sections. ** 9 of 17 Cutoff Trench and Toe Drain Profile. ** 10 of 17 Drainage Details. ** 11 of 17 Test Pit and Boring Records. ** 12 of 17 Stability Analyses and Triaxial Shear Results. 13 of 17 Laboratory Soil Test and Filter Gradations. ** 14 of 17 Construction Specifications. 15 of 17 Cross Sections Base Line "A". 16 of 17 Cross Sections Base Line "A". 17 of 17 Cross Sections Base Line "A".
As-Built Drawings	None available.

<u>ITEM</u>	<u>REMARKS</u>
Regional Vicinity Map	U.S.G.S. 7-1/2 minute Hacket, Pennsylvania Quadrangle Map.
Construction History***	Built September through December 1980; to be completed 1981. Construction by Mack Equipment Corporation, Eighty-Four, Pennsylvania.
Typical Sections of Dam*	See Design Drawings above.
Outlets-Plan Details Constraints Discharge Ratings	None available.
Rainfall/Reservoir Records	None available.
Design Reports	None available.
Geology Reports*	See Design Drawings above.
Design Computations	None available.
Hydrology and Hydraulics	None available.
Dam Stability*	See Design Drawings above.

ITEM	REMARKS
Seepage Studies	None available.
Materials Investigations, * Boring Records, Laboratory, Field	See Design Drawings above.
Post-Construction Surveys of Dam	None available.
Borrow Sources**	On site.
Monitoring Systems	None available.
Modifications	None reported.
High Pool Records	None reported.
Post-Construction Engineering Studies and Reports	None available.
Maintenance, Operation, Records	None available.
Spillway - Plan* Sections Details	See Design Drawings above.

<u>ITEM</u>	<u>REMARKS</u>
Operating Equipment Plans and Details	None available.
Specifications*	See Design Drawings above.
Miscellaneous	No additional information available.
Prior Accidents or Failure of Dam, Description Reports	None reported.

*Drawings obtained from the Pennsylvania Department of Environmental Resources.

**Reduced size reproductions contained in Appendix E.

***Information obtained from Bethlehem Mines Corporation, Ellsworth-Butler Division.

APPENDIX C
PHOTOGRAPHS

DATE: MAY 1981
SCALE: NONE
DR: JF CK: JEB
DWG. NO. 80138G

MINE No. 60 - POND 6
NATIONAL DAM INSPECTION PROGRAM
ACKENHEIL & ASSOCIATES CONSULTING
ENGINEERS
GEO SYSTEMS, INC.
1900 BANKSVILLE RD / PITTSBURGH PA 15216

PHOTO KEY MAP

MINE NO 60 - POND 6

MINE NO 60 - POND 6

c3

MINE NO. 60 - POND 6

C4

MINE NO 60 - POND 6

PHOTO DESCRIPTIONS

- Photo 1 Embankment Crest Overview.
- Photo 2 Upstream Slope showing erosion in foreground.
- Photo 3 Downstream Slope showing bench and toe area.
- Photo 4 Overview of Downstream Channel.
- Photo 5 Overview of Principal (and Emergency) Spillway Approach Channel on opposite shore.
- Photo 6 Overview of Principal (and Emergency) Spillway Channel.
- Photo 7 Principal (and Emergency) Spillway Entrance looking upstream.
- Photo 8 Spillway Channel Erosion Protection Blanket.
- Photo 9 Overview of Bench on Downstream Slope showing wet zones.
- Photo 10 Close Up of Bench.
- Photo 11 Riprapped Left Groin.
- Photo 12 Foundation Drain Outlets at Toe of Embankment.
- Photo 13 Principal (and Emergency) Spillway Channel, beginning of riprap blanket.
- Photo 14 Principal (and Emergency) Spillway Channel, end of riprap blanket.
- Photo 15 Spillway Discharge Channel.
- Photo 16 Intersection of Spillway Discharge Channel and Toe Drain Channel.

APPENDIX D
HYDROLOGY AND HYDRAULICS
ANALYSES

APPENDIX D
HYDROLOGY AND HYDRAULICS
ANALYSES

Methodology: The dam overtopping analysis was accomplished using the systemized computer program HEC-1 (Dam Safety Version), July 1978, prepared by the Hydrologic Engineering Center, U.S. Army Corps of Engineers, Davis, California. A brief description of the methodology used in the analysis is presented below.

1. Precipitation: The Probable Maximum Precipitation (PMP) is derived and determined from regional charts prepared from past rainfall records including "Hydrometeorological Report No. 33" prepared by the U.S. Weather Bureau.

The index rainfall is reduced from 10% to 20% depending on watershed size by utilization of what is termed the HOP Brook adjustment factor. Distribution of the total rainfall is made by the computer program using distribution methods developed by the Corps.

2. Inflow Hydrograph: The hydrologic analysis used in development of the overtopping potential is based on applying a hypothetical storm to a unit hydrograph to obtain the inflow hydrograph for reservoir routing.

The unit hydrograph is developed using the Snyder method. This method requires calculation of several key parameters. The following list gives these parameters, their definition and how they were obtained for these analyses.

<u>Parameter</u>	<u>Definition</u>	<u>Where Obtained</u>
Ct	Coefficient representing variations of watershed	From Corps of Engineers*
L'	Length from centroid of watershed to spillway	From U.S.G.S. 7.5 minute topographic map
Cp	Peaking coefficient	From Corps of Engineers*
A	Watershed size	From U.S.G.S. 7.5 minute topographic map

3. Routing: Reservoir routing is accomplished by using Modified Puls routing techniques where the flood hydrograph is routed through reservoir storage. Hydraulic capacities of the outlet works, spillways and the crest of the dam are used as outlet controls in the routing.

The hydraulic capacity of the outlet works can either be calculated and input or sufficient dimensions input and the program will calculate an elevation-discharge relationship.

Storage in the pool area is defined by an area-elevation relationship from which the computer calculates storage. Surface areas are either planimetered from available mapping or U.S.G.S. 7.5 minute series topographic maps or taken from reasonably accurate design data.

4. Dam Overtopping: Using given percentages of the PMF the computer program will calculate the percentage of the PMF which can be controlled by the reservoir and spillway without the dam overtopping.

*Developed by the Corps of Engineers on a regional basis for Pennsylvania.

HYDROLOGIC AND HYDRAULIC
ENGINEERING DATA

DRAINAGE AREA CHARACTERISTICS: Predominately woods and brushland. No major development noted.

ELEVATION-TOP NORMAL POOL (STORAGE CAPACITY): Varies (varies) Maximum 1165.4 (525 acre-feet)

ELEVATION-TOP FLOOD CONTROL POOL (STORAGE CAPACITY): 1165.4 (525 acre-feet)

ELEVATION-MAXIMUM DESIGN POOL: 1172.0

ELEVATION-TOP DAM: 1169.5 (on inspection date)

OVERFLOW SECTION

- a. Elevation Varies from 1164.7 to 1165.4
- b. Type Broad crested weir in trapezoidal open channel
- c. Width 30 feet
- d. Length 20 feet
- e. Location Spillover Left Abutment
- f. Number and Type of Gates None

OUTLET WORKS AND DRAWDOWN FACILITY

- a. Type Not installed at time of inspection
- b. Location Right reservoir slope
- c. Entrance Invert N/A
- d. Exit Inverts N/A
- e. Emergency Drawdown Facilities None

HYDROMETEOROLOGICAL GAGES

- a. Type None
- b. Location N/A
- c. Records None

MAXIMUM REPORTED NON-DAMAGING
DISCHARGE None reported

HEC-1 DAM SAFETY VERSION
HYDROLOGY AND HYDRAULIC ANALYSIS
DATA BASE

NAME OF DAM:	Mine No. 60-Pond 6	NDI NO.	PA 01145
Probable Maximum Precipitation (PMP)			24.2*
Drainage Area			0.16 sq. mi.
Reduction of PMP Rainfall for Data Fit Reduce by 20%, therefore PMP rainfall			0.8 (24.2) =19.4 inches
Adjustments of PMF for Drainage Area (Zone 7)			
6 hrs.			102%
12 hrs.			120%
24 hrs.			130%
48 hrs.			140%
Snyder Unit Hydrograph Parameters (Pond Full Condition)			
Zone			29**
C _p			0.5
C _t			1.6
L'			0.19 mile
t _p = C _t (L') ^{0.6} =			0.59 hours
Loss Rates			
Initial Loss			1.0 inch
Constant Loss Rate			0.05 inch/hour
Base Flow Generation Parameters			
Flow at Start of Storm			1.5 cfs/sq.mi=0.24 cfs
Base Flow Cutoff			0.05 x Q _{peak}
Recession Ratio			2.0
Overflow Section Data			
Crest Length			20 feet
Crest Elevation			1165.4
Freeboard (Pond Full Condition, Current Embankment Crest Elevation)			4.1 feet
Discharge Coefficient			3.09
Exponent			1.5
Discharge Capacity			513 cfs

* Hydrometeorological Report 33

**Hydrological zone defined by Corps of Engineers, Baltimore District, for determining Snyder's Coefficients (C_p and C_t).

ACKENHEIL & ASSOCIATES
GEO Systems, Inc.
1000 Banksville Road
PITTSBURGH, PA 15216
(412) 531-7111

Job MINEGO POND 6

JOB NO 80385

Subject DATA INPUT

Mode BY JPF Date 4/1/81 Checked JEB Date 4/20/81

LOSS RATE AND Base Flow Parameters

AS RECOMMENDED BY CORPS OF ENGINEERS, BALTIMORE DISTRICT

STRTL = 1 INCH

CNSTL = 0.05 IN/HR

STRTQ = 1.5 CFS/MI²

QRCSEN = 0.05 (5% of PEAK FLOW)

RTIOR = 2.0

Elevation - AREA - Capacity Relationships

FROM USGS 7.5 MINUTE QUAD, OWNERS INFORMATION, AND
FIELD INSPECTION DATA

AT ELEVATION 1165.4 AREA = 21.1 ACRES

Storage = 525 ACRE-FT.

AT ELEVATION 1180 AREA = 29.4 ACRES

From the CONIC METHOD of Reservoir Volume
Flood Hydrograph Package (CHEC-1)
Dam Safety Division (Users Manual)

$$H = 3V/A = \frac{3(525)}{21.1} = 74.6 \text{ feet}$$

Elevation where AREA Equals zero

$$1165.4 - 74.6 = 1090.8$$

AREA Elevation	\$A \$E	0. 1090.8	21.1 1165.4	29.4 1180.0
-------------------	------------	--------------	----------------	----------------

ACKENHEIL & ASSOCIATES
GEO Systems, Inc.
1000 Banksville Road
PITTSBURGH, PA 15216
(412) 531-7111

Job MINEGO POND 6 Job No 801380
Subject DATA INPUT
Mode By JPA Date 4/1/81 Checked JBB Date 4/2/81

OVERTOP Parameters

Top of Dam Elevation (minimum)	1169.5
Length of Dam	845. feet
Coefficient of Discharge	3.09

SPILLWAY PARAMETERS

CREST ELEVATION	1165.4
CREST Length	20.0feet
Coefficient of Discharge	3.09
SIDE Slopes	Assumed Rectangular

Program Schedule

JOB 7936

FLOOD HYDROGRAPH PACKAGE (HEC-1)
DAM SAFETY VERSION JULY 1978
LAST MODIFICATION 26 FEB 79

NATIONAL PROGRAM FOR THE INSPECTION OF NON FEDERAL DAMS
HYDROLOGIC AND HYDRAULIC ANALYSIS OF SLURRY IMPOUNDMENT #6
PROBABLE MAXIMUM FLOOD PMF/UNIT HYDROGRAPH BY SNYDER'S METHOD

B 300 0 10 0 0 0 0 0 -4 0
B1 5
J 1 2 1
J1 1. .5
K 0 1 1
K1 INFLOW HYDROGRAPH FOR SLURRY IMPOUNDMENT #6, MINE 60
M 1 1 0.16 0.16 1
P 24.2 102 120 130 140
T 1.0 .05
W 0.59 0.5
X -1.5 -0.05 2.0
K 1 2 1
K1 ROUTING AT SLURRY IMPOUNDMENT #6, MINE 60
Y 1 1 525.
Y1 1
SA 0. 21.1 29.4
SE1090.8 1165.4 1180.
\$1165.4 20.0 3.09 1.5
\$D1169.5 3.09 1.5 845.
K 99
A
A
A
A
A

PREVIEW OF SEQUENCE OF STREAM NETWORK CALCULATIONS

RUNOFF HYDROGRAPH AT 1
ROUTE HYDROGRAPH TO 2
END OF NETWORK

FLOOD HYDROGRAPH PACKAGE (HEC-1)
DAM SAFETY VERSION JULY 1978
LAST MODIFICATION 26 FEB 79

RUN DATE: 27 MAR 81
RUN TIME: 14.43.22

NATIONAL PROGRAM FOR THE INSPECTION OF NON FEDERAL DAMS
HYDROLOGIC AND HYDRAULIC ANALYSIS OF SLURRY IMPOUNDMENT #6
PROBABLE MAXIMUM FLOOD PMF/UNIT HYDROGRAPH BY SNYDER'S METHOD

JOB SPECIFICATION										
NQ	NHR	NMIN	IDAY	IHR	IMIN	METRC	IPLT	IPRT	NSTAN	
300	0	10	0	0	0	0	0	0	-4	0
			JOPER	NWT	LROPT	TRACE				
			5	0	0	0				

MULTI-PLAN ANALYSES TO BE PERFORMED
NPLAN= 1 NRTIO= 2 LRTIO= 1
RTIOS= 1.00 0.50

D7

SUB-AREA RUNOFF COMPUTATION

INFLOW HYDROGRAPH FOR SLURRY IMPOUNDMENT #6, MINE 60

ISTAQ	ICOMP	IECON	ITAPE	JPLT	JPRT	I NAME	I STAGE	IAUTO
1	0	0	0	0	0	1	0	0

HYDROGRAPH DATA									
IHYDG	IUNG	TAREA	SNAP	TRSDA	TRSPC	RATIO	ISNOW	ISAME	LOCAL
1	1	0.16	0.0	0.16	0.0	0.0	0	1	0

PRECIP DATA									
SPFE	PMS	R6	R12	R24	R48	R72	R96		
0.0	24.20	102.00	120.00	130.00	140.00	0.0	0.0		

TRSPC COMPUTED BY THE PROGRAM IS 0.800

LOSS DATA										
LROPT	STRKR	DLTKR	RTIOL	ERAIN	STRKS	RTICK	STRIL	CNSTL	ALSMX	RTIMP
0	0.0	0.0	1.00	0.0	0.0	1.00	1.00	0.05	0.0	0.0

UNIT HYDROGRAPH DATA									
TP=	0.59	CP=0.50	NTA=	0					

RECEDITION DATA									
STPTQ=	-1.50	QRCSN=	-0.05	RTIOR=	2.00				

UNIT HYDROGRAPH 28 END-OF-PERIOD ORDINATES, LAG= 0.59 HOURS, CP= 0.50 VOL= 1.00

11.	41.	72.	85.	76.	62.	50.	41.	33.	27.
22.	18.	15.	12.	10.	8.	7.	5.	4.	4.
3.	2.	2.	2.	1.	1.	1.	1.	1.	

END-OF-PERIOD FLOW													
MD.DA	HR.MN	PERIOD	RAIN	EXCS	LOSS	COMP Q	MD.DA	HR.MN	PERIOD	RAIN	EXCS	LOSS	COMP Q
0													

SUM	27.10	24.68	2.42	15282.
(688.)	(627.)	(61.)	(432.74)	

*****	*****	*****	*****	*****
-------	-------	-------	-------	-------

HYDROGRAPH ROUTING

ROUTING AT SLURRY IMPOUNDMENT #6, MINE 60

ISTAQ	ICOMP	IECON	ITAPE	JPLT	JPRT	I NAME	I STAGE	IAUTO
2	1	0	0	0	0	1	0	0

ROUTING DATA									
GLOSS	CLOSS	Avg	IRES	ISAME	IOPT	IPMP	LSTR		
0.0	0.0	0.0	1	1	0	0	0		

NSTPS	NSTDL	LAG	AMSKK	X	TSK	STORA	ISPRAT
1	0	0	0.0	0.0	0.0	525.	0

SURFACE AREA= 0. 21. 29.

CAPACITY= 0. 525. 892.

ELEVATION= 1091. 1165. 1180.

CREL	SPWID	COQW	EXPW	ELEV	COQL	CAREA	EXPL
1165.4	20.0	3.1	1.5	0.0	0.0	0.0	0.0

DAM DATA			
TOPEL	COQD	EXPD	DAMWID
1169.5	3.1	1.5	845.

PEAK OUTFLOW IS 376. AT TIME 41.33 HOURS

PEAK OUTFLOW IS 170. AT TIME 41.50 HOURS

*****	*****	*****	*****	*****
-------	-------	-------	-------	-------

D8

PEAK FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS
 FLOWS IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND)
 AREA IN SQUARE MILES (SQUARE KILOMETERS)

OPERATION	STATION	AREA	PLAN	RATIOS APPLIED TO FLOWS	
				RATIO 1 1.00	RATIO 2 0.50
HYDROGRAPH AT	1 ()	0.16 (0.41)	1 ()	652. 18.47)(326. 9.24)(
ROUTED TO	2 ()	0.16 (0.41)	1 ()	376. 10.63)(170. 4.81)(

SUMMARY OF DAM SAFETY ANALYSIS

PLAN 1	ELEVATION	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM			
		1165.41	1165.40	1169.50			
	STORAGE	525.	525.	616.			
	OUTFLOW	0.	0.	513.			
RATIO OF PMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
1.00	1168.73	0.0	598.	376.	0.0	41.33	0.0
0.50	1167.36	0.0	567.	170.	0.0	41.50	0.0

ACKENHEIL & ASSOCIATES
GEO Systems, Inc.
1000 Banksville Road
PITTSBURGH, PA 15216
(412) 531-7111

Job MINEGO Pond 6

Job No 501380

Subject HYDROLOGIC PERFORMANCE PLOT

Made By JDH Date 4/1/81 Checked JEB Date 4/2/81

APPENDIX E

PLATES

LIST OF PLATES

- Plate I Regional Vicinity Map.
- Plate II Sheet 2 of 17, General Plan, Test Pit and Test Boring Locations.
- Plate III Sheet 3 of 17, General Plan, Test Pit and Test Boring Locations.
- Plate IV Sheet 4 of 17, Slurry Impoundment, Profile of Dam Base Line "D".
- Plate V Sheet 5 of 17, Spillway Impoundment, Emergency Spillway.
- Plate VI Sheet 6 of 17, Slurry Impoundment, Exit Channel and Details.
- Plate VII Sheet 9 of 17, Slurry Impoundment, Cutoff Trench and Toe Drain Profile.
- Plate VIII Sheet 10 of 17, Slurry Impoundment, Drainage Details.
- Plate IX Sheet 11 of 17, Test Pit and Boring Records.
- Plate X Sheet 12 of 17, Stability Analyses and Triaxial Shear Results.
- Plate XI Sheet 14 of 17, Construction Specifications.

HACKETT U.S.G.S. 7 1/2 min. QUADRANGLE

DATE: MAY 1981	MINE NO. 60 - POND 6
SCALE: 1' = 2000'	NATIONAL DAM INSPECTION PROGRAM
DR: JF CK:	ACKENHEIL & ASSOCIATES CONSULTING GEO SYSTEMS, INC. ENGINEERS
PLATE I	1000 BANKSVILLE RD/PITTSBURGH PA 15216

10 0549 CRYSTALENE ABB SMITH CO PGM PA LT1342-1278

FLOATING PUMP DECANT
SYSTEM PROVIDED BY
BETHLEHEM MINES CORP

TH-5

APPROXIMATE LOCATION OF
MOVEABLE SLURRY DISCHARGE
SYSTEM, 850 GPM, PROVIDED
BY BETHLEHEM MINES
CORPORATION

-WEST PENN POWER CO
POWER LINE TO BE ELEVATED
BY WEST PENN POWER CO

STA. 10+05 @ "A"
INTERSECTS @ "C"
N13,567
W11,280
(SCALED)

TOPSOIL STORAGE AREA

NOTE: TOPOGRAPHY BY L. ROBERT KIMBALL FROM
AERIAL PHOTOGRAPHS DATED 04/27/78
DRAWN 12/20/79
COORDINATES BASED ON BETHLEHEM MINES
COORDINATE SYSTEM
ELEVATION BENCH MARKS, CONTROL POINTS,
AND BASE LINES TO BE PROVIDED BY
BETHLEHEM MINES CORPORATION

-TOE DRAIN TRENCH
(SEE DETAIL SHEET 10)

END

EXT

@ "C" ACCESS ROAD
TO BE BLADE CUT IN
FIELD SEE TYPICAL
SECTION SHEET 6

TH-1

REVISIONS	DESIGNED	NORTH	BE
	DRAWN ALB/KNH CHECKED <i>[initials]</i> RELEIVED 12-19-79		
	15709-O-ARA		CONSUM

LEGEND

+ NORM. GRADE CONTOUR
BASE LINE
COORDINATE POINT (SCALED)

TH SERIES - DRIVE AND CURE BORINGS
PERFORMED BY L. ROBERT KIMBALL &
ASSOCIATES (DECEMBER 1979 AND
JANUARY 1980)

TP SERIES - TEST PITS BY MICHAEL
BAKER, JR., INC. (FEBRUARY, 1980)

NOTE

THE TH SERIES BORINGS ARE FIELD
SURVEYED LOCATIONS. THE TP SERIES
ARE APPROXIMATE LOCATIONS ONLY.

EMERGENCY SPILLWAY @ "B"
SEE SHEET 5

NOTE
@ "B" EMERGENCY SPILLWAY
STA 0+00 TO STA 5+40
MUST BE LOCATED AS SHOWN

PUMP DECANT
PROVIDED BY
BETHLEHEM MINES CORP

BETHLEHEM MINES CORPORATION

MINE NO 60
SLURRY IMPOUNDMENT

MICHAEL BAKER, JR., INC.
CONSULTING ENGINEERS

HEAVIER PENNSYLVANIA

GENERAL PLAN

TEST PIT & TEST BORING LOCATIONS

2

17

PLATE II

MATCH LINE

ABANDONED

"C" ACCESS ROAD
TO BE BLADE CUT
IN FIELD.
SEE TYPICAL
SECTION SHEET 6

EQUITABLE GAS CO
3" GAS LINE

WARP ACCESS ROAD DRA
SWALE TO MESH WITH
EXISTING SWALE

NOTE TOPOGRAPHY BY L ROBERT KIMBALL FROM
AERIAL PHOTOGRAPHS DATED 04/27/78
DRAWN 12/05/79

COORDINATES BASED ON BETHLEHEM MINES
COORDINATE SYSTEM

ELEVATION BENCH MARKS, COORDINATE
CONTROL POINTS, AND BASE LINES TO
BE PROVIDED BY BETHLEHEM MINES
CORPORATION

LEGEND

- 1140 — FINISHED GRADE CONTOUR
- Q "A" BASE LINE
- N 13, 627 COORDINATE POINT (SCALED)
- W 10, 430
- TH SERIES - DRIVE AND CORE BORINGS
PLANEIMED BY L ROBERT KIMBALL &
ASSOCIATES (DECEMBER 1979 AND
JANUARY 1980)
- TP SERIES - TEST PITS BY MICHAEL
BAKER, JR., INC (FEBRUARY, 1980)

TEMPORARY ST
HAY BALE ERO
SEE SHEET 4

NOTE
THE TH SERIES BORINGS ARE FIELD
SURVEYED LOCATIONS. THE TP SERIES
ARE APPROXIMATE LOCATIONS ONLY

DE. OWNED
BROWN ALB. HEE
BY W.H.
RECORDED
3779 ST. CLARA

NUMBER
1

BE1

CONSUL

LINE TO SHEET NO 2

STA. 10+44 E "B"
STA. 3+28 E "E"
N 13, 108
W 10, 844
(SCALED)

LAKE CALYDON

ABANDONED

N 6° 45' W
TH-4

DAM BREACH
SEE DETAILS
SHEETS 6 & 7

EMERGENCY SPILLWAY
E "B"

APPROXIMATE LOCATION OF
BASE LINES, FINAL LOCATION
TO BE SET IN FIELD

STA. 4 + 05 E "E"
STA. 1 + 61 E "F"
N 13, 035
W 10, 820
(SCALED)

EXIT CHANNEL
E "E"

E "F" EXISTING DAM

TH-8

WEST PENN POWER CO
POWER LINE TO BE
RELOCATED BY
WEST PENN POWER CO

WASTE AREA FOR BREACH
OF EXISTING DAM

STRAW OR HAY BAILE BARRIER
60' LONG x 4 BALES WIDE x 4
BALES HIGH (SEE SHEET 7 FOR
DETAIL)

ABANDONED

NO DRAINAGE
WITH

ABANDONED

STRAW OR
EROSION CONTROL
T 4

BETHLEHEM MINES CORPORATION
MINE NO 60
SLURRY IMPOUNDMENT

MICHAEL BAKER, JR., INC.
CONSULTING ENGINEERS
BEAVER, PENNSYLVANIA

GENERAL PLAN
TEST PIT & TEST BORING LOCATIONS

DATE 1-25

1 MAY 1982

3

17

PLATE III

1

2

PROFILE OF DAM

TEMPORARY STRAW OR HAY BALE EROSION CONTROL

EMBEDDING DETAIL

REVISIONS			BETHLEHEM MINES CORPORATION MINE NO. 60	
NO.	DATE	NAME	SHEET 4 OF 17	S.O. 13709-01-ARA
			SCALE AS SHOWN	DATE MAY, 1980
MICHAEL BAKER, JR. INC. <small>Consulting Engineers</small> BEAVER PENNSYLVANIA			DESIGNED DRAWN / TRACED CHECKED FILE	

PLATE IV

EMERGENCY SPILLWAY CONTROL SECTION STA 2-65 TO 30
SCALE 1'-0" H 1'-10" V

TABLE "A"

STATION	DEPTH OF TRENCH	TYPE OF SPILLWAY	SIZE OF SPILLWAY	HEIGHT
0.0	2.0'	2.0 IN RAPID	1' FT	2.0 FT
3.0	2' FT	10' IN HOLE	2' FT	2.0 FT
4.0	3' FT	4/4	1/4	4' FT
5.0	2' FT	4/4	1/4	4' FT

EXISTING GROUND

EXIT CHANNEL BOTTOM

100' scope

PROFILE E

SCM

NO. 111 VEGETATED

EXISTING GROUND

NO. 112 VEGETATED
NO. 113 DRY SALT
MARSH

OFFICIAL EXIT CHANNEL 0.75'
SCALE 1" = 20' N 1" = 10' V

TYPE C-1 EMERGENCY CHANNEL 0.75'
SCALE 1" = 20' N 1" = 10' V

EXISTING DRAWS

LINE OF EXISTING CHANNELS

300

100

FILE EXIT CHANNEL B/E'

SCALE 1:20,000

DETERMINED DEPTH
FROM SURVEY POINTS
AND ANGLED INDICES

SLURRY ACCESS ROAD B/E
ONE 1/2" X 10' V

REVISIONS			BETHLEHEM MINES CORPORATION MINE NO. 60
NO.	DATE	NAME	SLURRY IMPOUNDMENT EXIT CHANNEL AND DETAILS
			SHEET 8 OF 17 S.O. 13709-01-ARA
			SCALE AS SHOWN DATE MAY, 1980
			MICHAEL BAKER, JR., INC. Consulting Engineers BEAVER, PENNSYLVANIA
			DESIGNED L.A.T. DRAWN/TRADED AND CHECKED <i>[initials]</i> Z.G. FILE

PLATE VI

2

PROFILE A (LOOKING E)

SCALE 1"-50' H 1"-10' V

DETAIL TOE DRAIN TRENCH
SCALE 1"-2"

SECTION A-A
SCALE 1"-2"

DETAIL TOE DRAIN PIPE
SCALE 1"-2"

WORKING DOWNSTREAM)

REVISIONS			BETHLEHEM MINES CORPORATION MINE NO. 60	
NO.	DATE	NAME	SLURRY IMPOUNDMENT CUT-OFF TRENCH AND TOE DRAIN PROFILE	
1	May 1980	164/ARA	SHEET 9 OF 17	
			S.O. 13709-01-ARA	
			SCALE AS SHOWN	
			DATE MAY, 1980	
			MICHAEL BAKER, JR., INC. Consulting Engineers BEAVER, PENNSYLVANIA	
			DESIGNED J.G.B. DRAWN/TRADED OFF CHECKED <i>[initials]</i> FILE <i>[initials]</i>	

PLATE VII

DRAINAGE DETAIL PLAN VIEW

SCALE 1"-50'

TYPICAL DRAINAGE GUTTER

SCALE 1"-5"

DETAIL: TOE DRAIN
RELOCATED STREET
SCALE

3100 2100 8' 8"

TOE DRAIN TRENCH (SEE DETAIL SHEET 9)

GUTTER 3' WIDE (SEE DETAIL BELOW)

EXIT PIPE

BELLS,

(SEE DETAIL BELOW)

DETAIL SMALL ANIMAL GUARD
SCALE 1" : 1/2"

REVISIONS			BETHLEHEM MINES CORPORATION MINE NO. 60	
NO.	DATE	NAME	SHEET 10 OF 17	S.O. 13709-01-ARA
			SCALE AS SHOWN	DATE MAY, 1980
			MICHAEL BAKER, JR., INC. Consulting Engineers BEAVER, PENNSYLVANIA	DESIGNED J.G.U. DRAWN / TRACED AND CHECKED J.D. FILE
				PLATE VIII

2

REVISIONS

DESIGNED

DRAWN

CHECKED

REVIEWED 11-1-1956
SO 13709-02-ARA

NOBTM

RF

See Sheet No 8 for Logs of TH-1, TH-2, and TH-3

TH-4, Elev. 1119.12
Logged by: John Cuban, L. Robert Kimball and Associates
Date: December 27, 1979
Drilling Equipment: Acker AD 11

MICHAEL BAKER, JR., INC.

TEST BORING LEGEND

SOIL ATTRIBUTES		DRAINAGE IDENTIFICATION	
ITEM	DESCRIPTION	CODE	DESCRIPTION
1. % OF GRAVEL	0-10% GRAVEL	G1	10-20% GRAVEL
2. % OF SAND	0-10% SAND	S1	10-20% SAND
3. % OF SILT	0-10% SILT	S2	10-20% SILT
4. % OF CLAY	0-10% CLAY	C1	10-20% CLAY
5. ORGANIC MATERIAL	ORGANIC MATERIAL	O1	NO ORGANIC MATERIAL
AGGREGATE FORM		RELATIVE DENSITY	
ITEM	DESCRIPTION	CODE	DESCRIPTION
1. 10	WELL SORTED	WS	GRAPHIC SOILS: Sand & Gravel
2.	WELL SORTED	WS	WELL SORTED
3.	POORLY SORTED	PS	POORLY SORTED
4.	POORLY SORTED	PS	POORLY SORTED
5.	POORLY SORTED	PS	POORLY SORTED
6.	POORLY SORTED	PS	POORLY SORTED
7.	POORLY SORTED	PS	POORLY SORTED
8.	POORLY SORTED	PS	POORLY SORTED
9.	POORLY SORTED	PS	POORLY SORTED
10.	POORLY SORTED	PS	POORLY SORTED
CONSISTENCY		CONSISTENCY	
ITEM	DESCRIPTION	CODE	DESCRIPTION
1.	WET SOIL	WS	WET SOIL
2.	WET SOIL	WS	WET SOIL
3.	WET SOIL	WS	WET SOIL
4.	WET SOIL	WS	WET SOIL
5.	WET SOIL	WS	WET SOIL
6.	WET SOIL	WS	WET SOIL
7.	WET SOIL	WS	WET SOIL
8.	WET SOIL	WS	WET SOIL
9.	WET SOIL	WS	WET SOIL
10.	WET SOIL	WS	WET SOIL

Digitized by srujanika@gmail.com

SOIL STRENGTH (Kilometers)	
TEST	UNCOMPRESSED STRENGTH
TEST 1001	1.1 - 1.2 KIP
TEST 1002	1.1 - 1.2 KIP
TEST 1003	1.1 - 1.2 KIP
TEST 1004	1.1 - 1.2 KIP
TEST 1005	1.1 - 1.2 KIP
TEST 1006	1.1 - 1.2 KIP
TEST 1007	1.1 - 1.2 KIP
TEST 1008	1.1 - 1.2 KIP
TEST 1009	1.1 - 1.2 KIP
TEST 1010	1.1 - 1.2 KIP

TH-7, Elev. 1150.33
Logged by: Ron Anthony, L. Robert Kimball and Associates
Date: December 15, 1979

Drilling Equipment: Acker AD I

Hole Depth		Description of Materials	No.	Type	From Ft.	To Ft.	SAMPLES
From To Ft. Ft.							
0.0	1.0	TOPSOIL	1	Bag	0.0	4.0	
1.0	7.0	CLAY, silty, with small black seam, brown, moist, soft	2	Bag	4.0	10.0	
7.0	17.0	CLAY, silty with sand and shale fragments, light brown, dry, stiff	3	Bag	17.0	20.0	
17.0	20.0	SHALE, decomposed, brown, dry, soft	4	Bag	20.0	20.0	
20.0		bottom of hole, dry					

TH-6, Elev. 1166.84
Logged by: O. T. McConnell, L. Robert Kimball and Associates
Date: December 17, 1979

Drilling Equipment: Acker A-11

Hole Depth From To	Fe. Ft.	Description of Materials	No.	Type	Fe. Ft.	SAMPLES From To
0.0	0.7	TOPSOIL	1	bag	0	7
0.7	1.0	CLAY, silty, brown, wet	-	bag	-	1.0
1.0	8.0	SAND, silty, with weathered shale fragments, brown, moist	-	bag	-	8.0
8.0	15.0	SILT, sandy, brown, moist	-	bag	-	15.0
15.0		Bottom of hole	-	bag	-	

BETHLEHEM MINES CORPORATION
MINE NO. 60
SLURRY IMPOUNDMENT

MICHAEL BAKER, JR., INC.
CONSULTING ENGINEERS **BEAVER PENNSYLVANIA**

TEST PIT AND BORING RECORDS

SHEET NO

11

or 17

PLATE D

REVISED EDITION

**STEADY STATE SEEPAGE AND RAPID DRAWDOWN
SOIL PARAMETERS**

SOIL	TOTAL UNIT WEIGHT γ_T (PCF)	EFFECTIVE STRESS - STRENGTH PARAMETERS	
		c (PSF)	ϕ (DEGREES)
1	145	3000	40
2	135	360	37.5
3	130	1152	31
4	135	0	38
5	130	1152	31

AXIS OF DAM

RAPID DRAWDOWN
RADIUS = 106.3'
FS = 1.67

EMERGENCY SPILLWAY CREST EL. 65.0

ASSUMED SATURATED SOIL
FOR RAPID DRAWDOWN

MENT
31

TRENCH FOUNDATION
SOIL 21

STA 6+50

2

BETHLEHEM MINES CORPORATION
MINE NO 60
SLURRY IMPOUNDMENT

MICHAEL BAKER, JR., INC.
CONSULTING ENGINEERS

BEAVER, PENNSYLVANIA

**STABILITY ANALYSES AND
TRIAXIAL SHEAR TEST RESULTS**

SCALE 1 - 4-20 HORIZ VERT

DATE MAY, 1980

PLATE X

12

of 17

CONSTRUCTION SPECIFICATIONS

SITE PREPARATION

In preparing the site, all borrow areas and all areas under the embankment and any structural works shall be cleared, grubbed, and stripped of topsoil, trees, vegetation, rock or other objectionable material. In order to facilitate cleanout and re-toration, the entire work area will be cleared of all brush, trees, and debris and topsoil will be stockpiled at the designated location to be used for revegetation of the project area.

CUT-OFF TRENCH

A cut-off trench shall be excavated along the centerline of the embankment. The depths of the cut-off trench on the drawings are approximate. Actual depths will be determined by the Owner's Representative after examination of materials encountered. The bottom of the excavation shall meet the requirements discussed under "Foundation Preparation." Side slopes shall be no steeper than 1H:IV. The trench shall be kept dewatered during the excavation and backfilling-compacting operations. The fill material for the cut-off trench shall consist primarily of clay (CL) material, obtained from the Borrow Area, and shall meet the requirements of the embankment material.

EMBANKMENT

Material Classification

All excavation and embankment shall be un-classified. All material encountered regardless of hardness, type, durability and size shall be removed to the lines and grades as indicated on the Contract Drawings.

Suitability of Fill

Fill material shall be taken from approved borrow areas. Excavated material from the emergency spillway, cut-off trench excavation, and drainage trench excavation may be used for the embankment if approved by the Owner's Representative and placed in accordance with the specifications for the embankment. All fill material shall be clean soil, free of topsoil, roots, vegetation, stones or rock greater than 8 inches in diameter, frozen material or other objectionable material considered unsuitable by the Owner's Representative for use in embankment construction. In no case shall unburned coal processing waste be used. All borrow areas shall be adequately drained to provide a dry working area and the required moisture content of the embankment material.

Foundation Preparation

Immediately prior to placing the first layer of fill, all surfaces to receive fill shall be cleaned of all vegetation, debris, topsoil and other objectionable material. All roots shall be grubbed. All rock foundations shall be free of loose rock fragments and thoroughly cleaned to solid bed and sidewall to the satisfaction of the Owner's Representative. All rock foundations shall not have overhanging portions under which embankment material cannot be satisfactorily placed. After the necessary stripping and excavation has been completed, all earth foundations shall be moisture conditioned (sprinkled or scarified and dried) and compacted. The first lift of the embankment, except for the area of the drainage blanket, shall then be placed to a maximum thickness of 6 inches and thoroughly disced prior to compaction to provide a satisfactory bond between the first layer of fill and the earth foundation.

In the area of the former Lake Calydon where embankment is to be placed, the lake sediment deposits shall be totally removed. Final depth of stripping in this area shall be inspected by the Owner's Representative and approved prior to placement of the embankment. It is anticipated that this stripping will average approximately 3 feet deep.

Placement and Compaction

The combined borrow excavation and embankment placing operations shall be handled such that the materials when compacted in the embankment will be blended sufficiently to secure the best practicable degree of compaction, permeability, and stability. The distribution and gradation of materials throughout the embankment shall be handled such that the embankment will be free of coarse granular streaks or layers of material differing materially in texture or gradation from the surrounding material. The material shall be handled in the embankment in such a manner that segregation during placement is avoided. Coarse material with a greater rock content shall be placed in the lower areas of the embankment. All fill material shall be placed in

uniform horizontal layers of not more than 8 inches loose depth for the full width of the cross section. Fill material shall not be placed on surfaces that are muddy, frozen, or contain frost or ice. Each layer for its full width shall be compacted to not less than 95 percent of the maximum dry density at a moisture content not exceeding two percentage points above the optimum moisture content and not more than two percentage points below optimum. If necessary, each layer shall be moistened or saturated before compaction to provide the required moisture content of the soil material. The maximum dry density and optimum moisture content shall be determined in accordance with ASTM D-1557-78 (Modified Proctor Test).

CREST PROTECTION

The crest of the embankment shall be protected with a coarse aggregate as shown in the construction drawings. The coarse aggregate shall be compacted to a depth of 5 inches and shall meet the requirements of PennDOT Form 408 Type 2A Aggregate.

Field Quality Control

The subgrade and fill layers shall be inspected and approved by the Owner's Representative before further construction work may be performed thereon. To determine that the moisture content and dry density requirements of the compacted fill have been met, field and laboratory tests shall be made at frequent intervals by the Owner's Representative.

Prior to the earthwork operations, at least one laboratory compaction test will be performed in accordance with ASTM D-1557-78 for typical materials. During the earthwork operations, at least one additional laboratory compaction test will be performed for every material change or for every twenty (20) field tests. Compaction equipment is subject to the approval of the Owner's Representative. If fill compaction does not achieve specified densities due to existing compaction equipment, it shall be replaced with more effective equipment.

Field density tests will be performed for every 4,000 cubic yards of typical soil material in accordance with ASTM D1556-64 (1974), "Density of Soil In-Place by the Sand-Cone Method." A minimum of one field density test shall be performed for each day embankment fill is placed. Additional tests shall be performed where moisture is determined to vary substantially. Field determinations of the moisture content of soils will be in accordance with AASHTO T 217-67, "Determination of Moisture in Soils by Means of a Calcium Carbide Gas Pressure Moisture Tester."

Materials not meeting the specified moisture content and dry density requirements, as determined by these tests, shall be reworked until approved results are obtained. Material that cannot be dried to the specified moisture content before the next lift of fill is placed, shall be removed before continuing subsequent fill placement.

DRAINAGE

Filter Fabric

The filter fabric shall be Type[®] Fabric No. 3601 or equivalent. Approval of alternate filter fabric is subject to prior notification of the Owner's Representative and approval by the Owner's Representative.

Type 1 Filter Material

Type 1 filter material shall meet the gradation requirements of PennDOT CC sand Type A as defined in Section 703.1 of the PennDOT Form 408 and shall be obtained from an approved source. It is the intent that this material will be placed adjacent to the existing site soils to act as a filter of the soil fines. The materials shall be reasonably uniform in physical properties and composed of hard, tough, durable, uncoated particles, thoroughly cleaned by washing, free from harmful amounts of clay, silt, vegetation, or other substances determined to be undesirable. The Type 1 filter material shall be natural sand resulting from glacial or water action. Limestone or slag fine aggregate is unacceptable.

Type 2 Filter Material

Type 2 filter material shall meet the gradation requirements of the PennDOT Form 408 Section 703.3 for Coarse Aggregate 1B and shall be obtained from an approved source. It is the intent that this material will be placed adjacent to the pipe perforations to prevent migration of material into the pipe. The materials shall be reasonably uniform in their physical properties and shall be composed of hard, tough, durable, uncoated particles, free of harmful amounts of

REVISIONS	DESIGNED	NORTH
DRAWN		
CHECKED		
REVIEWED	AD (JAN)	

the full
line that
shall
be at a
distance
necessary,
inside the
city and
1557-78

gate as
related to
Type 2A

Owner's
name. To
of the
date at

on test
aterials
action
Field
Owner's
due to
active
ads of
of Soil
will be
all be
said
with
limestone
density
covered
ature
before

several
Owner's

CC
ll be
lines.
and of
free
lined
ting
de.

NOT
he an
to
The
ll be
e of

clay, silt, vegetation, or other substances determined to be undesirable. The Type 2 filter material shall be rounded, natural "pea" gravel resulting from glacial or water action. The crushed limestone aggregate, if used, shall be resistant to abrasion and water solutioning, and shall be free of fine material resulting from handling, in addition to the other requirements previously mentioned in this paragraph. Slag aggregate is unacceptable.

Drainage Trench

The drainage trench shall be installed to the lines and grades as shown on the drawings except where field conditions require that the trench be installed deeper when approved by the Owner's Representative. The trench shall be kept dewatered during the excavation, backfilling, and compacting operations.

Toe Drain Pipe

The 6-inch-diameter drain pipe shall be bituminous coated corrugated metal pipe, 16 gauge, perforated with 1/4" size perforations and shall meet the requirements of AASHTO Designation M 190-78, "Bituminous Coated Corrugated Metal Culvert Pipe and Pipe Arches." The pipe shall be fully coated. The size of the perforations shall be 1/4 inch. The pipe to carry the flow from the toe drain to the outlet channel shall be of the same gauge, size and requirement as specified above, but shall not be perforated. The upgrade ends of the drains shall be closed with commercially manufactured galvanized end caps. The discharge end of the pipe shall be suitably protected with an animal guard, either commercially available or as detailed on the drawings.

Drainage Blanket

The drainage blanket material, Type I Filter Material, shall meet the gradation requirements of PennDOT CC Sand Type A as defined in Section '03 1 of the PennDOT Form 408 and shall be obtained from an approved source. It is the intent that this material will provide adequate drainage of the downstream prism of the embankment and to act as a filter of the soil fines. The materials shall be reasonably uniform in physical properties and composed of hard, tough, durable, uncoated particles, thoroughly cleaned by washing, free from harmful amounts of clay, silt, vegetation, or other substances determined to be undesirable. The drainage blanket material shall be natural sand resulting from glacial or water action. Limestone or slag fine aggregate is unacceptable.

Prior to placing the first layer of the drainage blanket fill, the area shall be prepared in accordance with the requirements discussed under "Foundation Preparation," except that the first layer of drainage blanket fill shall not be disced and mixed with the foundation soil after initial compaction. The drainage blanket fill shall be placed in uniform horizontal layers of not more than 8 inches loose depth for the full width of the drainage blanket. Care shall be exercised by the Contractor to prevent contamination of the drainage blanket with other soils. If such contamination occurs it will be removed and replaced at the Contractor's expense. Drainage blanket fill shall not be placed on surfaces that are muddy, frozen, or contain frost or ice. Each layer for its full width shall be compacted to not less than 95% of the maximum dry density. The maximum dry density shall be determined in accordance with ASTM D-1557-78 (Modified Proctor Test).

Revegetation

The following seed mixture shall be used in revegetating the embankment, the entrance channel of the emergency spillway, and other areas disturbed during construction:

Mixture	Seeding Rate - lbs./acre
Perennial Ryegrass	20
Kentucky 31 Fescue	25
Crownvetch with inoculant	20

If the embankments are hydroseeded, the legume inoculant shall be added to the slurry just prior to seeding at 4 times the rate recommended on the package. Lime, fertilizer and hydromulch shall be applied with the seed application. Lime shall be applied at a rate of 2 tons per acre. Liming materials shall be agricultural ground limestone of sufficient fineness so that 98% will pass a 20-mesh sieve and 40% will pass a 100-mesh sieve. TSP (calcium carbonate equivalent) shall be 90 or higher. Six hundred pounds of 10-20-20 fertilizer shall be applied per acre at the time of seeding.

The embankments shall be mulched with hay mulch, blown onto seeded areas at a rate of 2.5 tons per acre. Mulch shall be anchored with asphalt spray applied at a rate of 80 gallons per acre.

ACCESS ROAD

The access road shall be blade cut in the field as shown in the construction drawings. The road surface shall be a coarse aggregate compacted to a depth of 5 inches and shall meet the requirements of PennDOT Form 408 Type 2A Aggregate.

RIPRAP

Surroundability of Material

Riprap shall consist of well graded limestone or sandstone aggregate obtained from an approved source. Riprap stone shall be dense, sound, resistant to abrasion, free of elongated and/or slabby stones, and free of cracks, seams, and other defects that would tend to increase unduly their destruction by water and frost actions. In no case shall coal-processing waste be used.

Placement

Riprap shall be placed to the lines and grades as shown on the construction plans and as directed for the protection of slopes, structures, gutters and channels. All riprap shall be placed in a manner to insure that the larger stones are uniformly distributed and the smaller stones serve to fill the spaces between the larger stones in such a manner as will result in well-keyed, densely placed mass of the specified thickness.

Bedding

In all areas, bedding, 6 inches in depth, shall be placed between the riprap and earth fill embankment or subgrade, to prevent water from removing fine material through voids in the stone. Bedding material shall be Type I filter material.

Gradation

Rock riprap sizes listed in the construction details are mean outside dimensions required and fifty percent of the stones shall be equal to or larger than the tabulated outside dimensions. All riprap shall meet the following gradation requirements:

Rock Riprap Size of Stone Required	Maximum weight	Minimum and maximum range in weight of stones	Weight range of 5% of stones
10 in	75 lbs	25-75 lbs	40-75 lbs
19 in	500 lbs	25-500 lbs	150-500 lbs

EROSION CONTROL

Construction operations shall be performed such that erosion and water pollution shall be minimized. The minimization shall take place by constructing a straw or hay bale barrier as shown on the Slurry Impoundment General Plan and construction drawings prior to construction. This barrier shall remain in place until revegetation of the embankment slopes and other disturbed areas has occurred. When sediment behind the barrier exceeds 10 foot in depth, the contractor shall remove the sediment and it shall be placed at a location upstream of the barrier in such a manner that it will not erode from the site.

MAINTENANCE

Revegetated areas will be inspected and limed and fertilized as required.

FIELD SURVEY INFORMATION

Elevation bench marks, coordinate control points, and project base lines shall be provided by Bethlehem Mines Corporation.

PROTECTION OF PERSONS AND PROPERTY

(a) The Contractor shall be responsible for initiating, maintaining and supervising all safety precautions and programs in connection with the work. The Contractor shall take all reasonable precautions for the safety of, and shall provide all reasonable protection to prevent damage, injury or loss to (i) employees, (ii) all other persons who may be affected, (iii) the work and all materials and equipment to be incorporated, (iv) other property at the site or in the vicinity thereof.

(b) The Contractor shall comply with all applicable laws, ordinances, rules, regulations, and orders of any public authority and Bethlehem Mines Corporation having jurisdiction for the safety of persons or property or to protect them from damage, injury or loss. He shall erect and maintain, as required by existing conditions and progress of the work, all reasonable safeguards for safety and protection including posting danger signs and other warnings against hazards, promulgating safety regulations and notifying owners and users of adjacent utilities.

BETHLEHEM MINES CORPORATION

MINE NO. 60

SLURRY IMPOUNDMENT

MICHAEL BAKER, JR., INC.

CONSULTING ENGINEERS

BEAVER, PENNSYLVANIA

CONSTRUCTION SPECIFICATIONS

SCALE: NONE

DATE: MAY, 1980

SHEET NO.

14

or 17

PLATE XI

APPENDIX F
GEOLOGY

GEOLOGY

Geomorphology

The Mine No. 60-Pond 6 Dam is located within the Pittsburgh Plateau section of the Appalachian Physiographic Province. This area is characterized by gently folded sedimentary rocks which have been incised by streams to form steep sided valleys. The site is located at the head of an unnamed tributary to the Center Branch of Pigeon Creek. The valley bottom of the unnamed tributary is about 200 feet below the adjacent hilltops. These rounded hilltops are at Elevation 1200 to 1300 feet, and in a regional sense are part of a broad, undulating plateau.

Structure

The site lies on the eastern flank of the Amity Anticline, the axis of which plunges to the southwest. Strata in the immediate vicinity of the dam dip to the south at an average rate of about 0.3° . Faulting has not been documented in the area of the dam and no observations were made that would indicate faulting in the rocks outcropping around the dam.

Stratigraphy

Rocks outcropping in the immediate vicinity of the site belong to the Pennsylvanian Age, Casselman and Monongahela Formations and the Permian Age, Waynesburg and Washington Formations. The major rock types in all these formations are cyclic sequences of shale, limestone, sandstone, and coal.

Mining Activity

The Pittsburgh Coal Seam, the lowermost unit of the Monongahela Formation, lies about 300 feet below the dam and has been extensively deep mined. The Waynesburg Coal Seam, which is the lowermost unit of the Waynesburg Formation, lies beneath the dam and has been unaffected by deep mining.

HACKETT QUADRANGLE, WASHINGTON COUNTY, PENNSYLVANIA

SCALE: 0 $\frac{1}{2}$ MILE 1:24000

CONTOUR INTERVAL 20 FT. DATUM IS MEAN SEA LEVEL
FORMATION CONTACT

DATA OBTAINED FROM PENNSYLVANIA TOPOGRAPHIC AND GEOLOGIC SURVEY GREATER PITTSBURGH REGION GEOLOGIC MAP AND CROSS SECTIONS, 1975 and GREATER PITTSBURGH REGION STRUCTURE CONTOUR MAP, 1975

DATE: MAY 1981	SCALE: 1" = 2000'	MINE No. 60 - POND 6 NATIONAL DAM INSPECTION PROGRAM	GEOLOGIC MAP
DR: JF	CK:	ACKENHEIL & ASSOCIATES CONSULTING GEO SYSTEMS, INC. ENGINEERS 1000 BANKSVILLE RD/PITTSBURGH, PA 15216	

DATE: MAY 1981
 SCALE: 1"=360
 DR: JF CK: JEB
 801306

MINE No. 60 - POND 6
 NATIONAL DAM INSPECTION PROGRAM
ACKENHEIL & ASSOCIATES CONSULTING
 GEO SYSTEMS, INC. ENGINEERS
 1000 BANKSVILLE RD/PITTSBURGH PA 15216

GEOLOGIC
COLUMN

FILME

