Chapitre 10 : Théorie des graphes

Table des matières

1	Introduction			2
	1.1	Les origines		2
		1.1.1	Le problème fondateur : les sept ponts de Königsberg	2
		1.1.2	Une solution formelle	2
		1.1.3	Remarque	2
	1.2	De no	mbreuses applications	2
		1.2.1	Compilation	2
		1.2.2	Transports	3
		1.2.3	Ordonnancement de tâches	3
		1.2.4	Construction d'un réseau électrique	3
2	Bas	ses des	graphes	3
	2.1	Vocab	ulaire	3
		2.1.1	Définition $(graphe)$	3
		2.1.2	Représentation graphique	4
		2.1.3	Boucles	4
		2.1.4	Degré	5
		2.1.5	Graphes étiquetés	6
		2.1.6	Graphes bipartis	6

1 Introduction

1.1 Les origines

1.1.1 Le problème fondateur : les sept ponts de Königsberg

 $\acute{E}nonc\acute{e}$: Peut-on effectuer une promenade à Königsberg passant exactement une fois par chacun des ponts?

Variante : peut-on le faire en revenant à son point de départ?

1.1.2 Une solution formelle

Présentée par EULER en 1735.

Trois étapes:

(1) Nommage des trois zones et représentation abstraite

- (2) Formalisation de la notion de chemin
- (3) Démonstration d'impossibilité : il n'existe pas de chemin / circuit eulérien dans ce graphe.

1.1.3 Remarque

Les points (1) et (2) sont les étapes fondatrices de la théorie des graphes vue comme une théorie mathématique. Cette théorie a pris une grande ampleur car elle permet de modéliser de nombreux phénomènes.

1.2 De nombreuses applications

1.2.1 Compilation

• Modélisation : on représente le graphe de dépendance entre fichiers.

• Problème : faisabilité : c'est un problème de détection de cycle.

Ordre de compilation : choisir un ordre, c'est effectuer un tri topologique du graphe.

1.2.2 Transports

- Modélisation : on représente un réseau de transports en commun en représentant les stations liées par les lignes qui y passent.
- Problème : recherche de chemin le plus court en terme de distance / de temps / nombre de stations.

1.2.3 Ordonnancement de tâches

- Problème : répartition d'un ensemble de tâches sur un nombre minimal d'unité de calcul.
- Modélisation : on utilise un graphe d'incompatibilité : on lie les tâches incompatibles entre elles. On veut attribuer une couleur (une unité de calcul) à chaque sommet de sorte qu'aucun sommet ne soit de la même couleur que l'un de ses voisins.

1.2.4 Construction d'un réseau électrique

- Problème : on veut raccorder un certain nombre de villes en utilisant le moins de cable possible.
- Modélisation : on utilise un graphe qui représente les villes liées par des axes annotés par leur longueur. On veut sélectionner des axes pour lier toutes les villes entre elles en utilisant le moins de longueur possible.

C'est la recherche d'un arbre couvrant de poids minimal.

2 Bases des graphes

2.1 Vocabulaire

2.1.1 Définition (graphe)

Un graphe est un couple G = (S, A) où :

- S est un ensemble fini de sommets ou de nœuds;
- \bullet A est un ensemble d'associations entre deux sommets, qui peut prendre plusieurs formes :
 - Si A est un ensemble de points de sommets, on dit que G est non orienté;

 $-\operatorname{Si} a = \{s, s'\} \in A$, on dit que a est une $ar\hat{e}te$ d'extrémités s et s', que a est incidente à s et s', et que s et s' sont adjacents ou voisins;

— Si A est un ensemble de couples de sommets, on dit que G est orienté. Si $a=(s,s')\in A$, on dit que a est un arc, que s' est un successeur de s, que a est un arc sortant pour s et entrant pour s'.

2.1.2 Représentation graphique

On place un point pour chaque sommet et on relie les extrémités d'une même arête (avec une flèche dans le cas orienté).

Exemple:

$$G = (\{A, B, C, D\}, \{\{A, B\}, \{B, C\}, \{C, A\}\})$$

est un graphe non orienté (GNO)

Autre exemple:

est la représentation du graphe orienté (GO):

$$G = (\{A, B, C, D\}, \{(A, B), (B, A), (B, C), (D, B), (A, D), (A, C), (C, D)\})$$

2.1.3 Boucles

- \bullet Définition (boucle) : Une boucle dans un graphe est une arête / un arc dont les extrémités sont égales.
- Remarque : la définition 2.1.1 (page 3) empêche la présence de boucles dans les GNO. On peut les autoriser en considérant non pas des paires de sommets, mais des multi-ensembles de cardinal 2.

On pourrait aussi utiliser les multi-ensembles pour autoriser les multi-arêtes (plusieurs arêtes entre 2 sommets donnés, comme ent 1.1.1, page 2, mais c'est H.P : A sera toujours un ensemble).

2.1.4 Degré

• Définition (degré): Soit G = (S, A) un GNO et $s \in S$. Le degré de s, noté d(s) est le nombre de voisins de s:

$$d(s) = \Big| \{ a \in A \mid s \in a \} \Big|$$

• Définition (degré entrant / sortant) : Soit G = (S, A) un GO et $s \in S$. Le degré entrant (resp. sortant) de s, noté $d_{-}(s)$ (resp. $d_{+}(s)$), est le nombre d'arcs entrants (resp. sortant) pour s :

$$d_{-}(s) = \Big| \{ a \in A \mid \exists s' \in S \mid a = (s', s) \}$$

$$d_{+}(s) = \left| \{ a \in A \mid \exists s' \in S \mid a = (s, s') \} \right|$$

- Proposition (formule de la somme des degrés) : Soit G = (S, A) un graphe.
 - (1) Si G est un GNO sans boucle,

$$\sum_{s \in S} d(s) = 2|A|$$

(2) Si G est un GO,

$$\sum_{s \in S} d_{-}(s) = \sum_{s \in S} d_{+}(s) = |A|$$

- \square Démonstration :
 - (1) On compte les extrémités d'arêtes :
 - Une arête compte pour deux extrémités car ce n'est pas une boucle, donc il y en a $2\left|A\right|$;
 - $\forall s \in S$, s est extrémité de d(s) arêtes, donc il y en a

$$\sum_{s \in S} d(s)$$

(2) Par récurrence sur |A|:

$$- \text{Si } |A| = 0, \ \forall s \in S, \ d_{+}(s) = d_{-}(s) = 0 \text{ Ok.}$$

- Héréditée : si
$$|A| > 0$$
, alors $\exists (s, s') \in A$.

On note $G' = (S, a \setminus \{(s, s')\}).$

Par hypothèse de récurrence :

$$|A| - 1 = |A \setminus \{(s, s')\}| = \sum_{v \in S \setminus \{s'\}} d_{-}(v) + \underbrace{d_{-}(s) - 1}_{\text{degré sortant de } s \text{ dans } G}$$

Donc
$$|A| = \sum_{v \in S} d_{-}(v)$$

De même pour les degrés entrants, en considérant s' plutôt que s

- \bullet Corollaire ($handshaking\ lemma$) : Tout GNO sans boucle possède un nombre pair de sommets de degré impair.
- \square Démonstration :

$$2\mathbb{N} \ni 2 \, |A| = \sum_{s \in S} d(s) = \sum_{\substack{s \in S \\ d(s) \in 2\mathbb{N} \\ \in 2\mathbb{N}}} d(s) + \sum_{\substack{s \in S \\ d(s) \in 2\mathbb{N} + 1 \\ \text{de la parité du nombre de sommets de degré impaire de sommets de sommets$$

Contre-exemple en cas de boucle :

2.1.5 Graphes étiquetés

• Définition (graphe étiqueté) : Soit G = (S, A) un graphe.

On dit que G est :

- étiqueté s'il est muni d'une fonction $f:A\longrightarrow V$ où V est un ensemble de valeurs appelées les étiquettes.
- $pond\acute{e}r\acute{e}$ s'il est étiquetté par des nombres (entiers / réels) : on parle de poids plutôt que d'étiquette.

Exemple: 1.2.2 (page 3), 1.2.4 (page 3),

2.1.6 Graphes bipartis

• Définition (graphes bipartis) : Soit G = (S, A) un graphe.

On dit que G est biparti s'il existe une partition de S (U,V) telle que pour toute arête a, une extrémité de a appartienne à U et l'autre à V.

Exemple (U, V):

Peut aussi se représenter :

Remarque : un graphe biparti est 2-colorable.

