Correction

Partie I

- 1. Le triangle (MNH) est rectangle en H donc $MN^2 = MH^2 + HN^2 \ge MH^2$ avec égalité ssi $HN^2 = 0$. Ainsi $MN \ge MH$ avec égalité ssi N = H.
- 2. $\|\overrightarrow{AM} \wedge \overrightarrow{u}\| = \|\overrightarrow{AH} \wedge \overrightarrow{u} + \overrightarrow{HM} \wedge \overrightarrow{u}\|$ or $\overrightarrow{AH} \wedge \overrightarrow{u} = \overrightarrow{o}$ par produit vectoriel de vecteurs colinéaires et $\|\overrightarrow{HM} \wedge \overrightarrow{u}\| = \|\overrightarrow{HM}\| \|\overrightarrow{u}\|$ car les vecteurs \overrightarrow{HM} et \overrightarrow{u} sont orthogonaux. Par suite $\|\overrightarrow{AM} \wedge \overrightarrow{u}\| = HM \|\overrightarrow{u}\|$ et donc $d(M, \mathcal{D}) = HM = \frac{\|\overrightarrow{AM} \wedge \overrightarrow{u}\|}{\|\overrightarrow{u}\|}$.
- 3. La droite \mathcal{D} passe par $A \begin{vmatrix} 0 \\ 0 \\ 1 \end{vmatrix}$ et est dirigée par $\vec{u} \begin{vmatrix} 0 \\ 1 \\ -1 \end{vmatrix}$ (vecteur colinéaire à celui obtenu par $\vec{n} \begin{vmatrix} 1 \\ 1 \land \vec{m} \end{vmatrix} = 1$). $\overrightarrow{AM} \land \vec{u} \begin{vmatrix} -4 \\ 1 \end{vmatrix} \text{ donc } d(M, \mathcal{D}) = \frac{\sqrt{16+1+1}}{\sqrt{2}} = 3.$

Partie II

- 1.a $\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 + 2\|\vec{u}\|\|\vec{v}\|\cos\theta = 2 + 2\cos\theta = 4\cos^2\frac{\theta}{2} \text{ donc } \|\vec{u} + \vec{v}\| = 2\cos\frac{\theta}{2}.$ $\|\vec{u} \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 2\|\vec{u}\|\|\vec{v}\|\cos\theta = 2 2\cos\theta = 4\sin^2\frac{\theta}{2} \text{ donc } \|\vec{u} \vec{v}\| = 2\sin\frac{\theta}{2}.$
- $1. \text{b} \qquad \text{Posons} \ \ \vec{i} \cdot \vec{j} = \frac{\vec{u} + \vec{v}}{\|\vec{u} + \vec{v}\|} \cdot \frac{\vec{u} \vec{v}}{\|\vec{u} \vec{v}\|} \ \text{or} \ (\vec{u} + \vec{v}) \cdot (\vec{u} \vec{v}) = \left\|\vec{u}\right\|^2 \left\|\vec{v}\right\|^2 = 0 \ \ \text{donc} \ \ \vec{i} \cdot \vec{j} = 0 \ .$

Les vecteur \vec{i} et \vec{j} sont orthogonaux donc $(O; \vec{i}, \vec{j}, \vec{k})$ est un repère orthonormé direct car $\vec{k} = \vec{i} \wedge \vec{j}$.

- 1.c $\vec{u} = \frac{1}{2} ((\vec{u} + \vec{v}) + (\vec{u} \vec{v})) = \frac{1}{2} (2\cos\frac{\theta}{2}\vec{i} + 2\sin\frac{\theta}{2}\vec{j}) = \cos\frac{\theta}{2}\vec{i} + \sin\frac{\theta}{2}\vec{j}$ $\vec{v} = \frac{1}{2} ((\vec{u} + \vec{v}) - (\vec{u} - \vec{v})) = \frac{1}{2} (2\cos\frac{\theta}{2}\vec{i} - 2\sin\frac{\theta}{2}\vec{j}) = \cos\frac{\theta}{2}\vec{i} - \sin\frac{\theta}{2}\vec{j}$.
- 1.d \overrightarrow{OH} est orthogonal à \vec{u} et \vec{v} donc à $\vec{u}+\vec{v}$ et $\vec{u}-\vec{v}$ et donc \overrightarrow{OH} est orthogonal à \vec{i} et \vec{j} . Par suite $\overrightarrow{OH}=a\vec{k}$ avec $a\in\mathbb{R}$.

Puisque que $O=m\big[HH'\big]$, on a $\overrightarrow{OH'}=-\overrightarrow{OH}=a\vec{k}$.

Enfin $a \neq 0$ car $H \neq H'$ puisque \mathcal{D} et \mathcal{D}' ne sont pas sécantes.

- 2.a $d(M, \mathcal{D}) = \left\| \overrightarrow{HM} \wedge \overrightarrow{u} \right\| = \sqrt{(z-a)^2 + \left(y \cos \frac{\theta}{2} x \sin \frac{\theta}{2} \right)^2}.$ $d(M, \mathcal{D}') = \left\| \overrightarrow{H'M} \wedge \overrightarrow{v} \right\| = \sqrt{(z+a)^2 + \left(y \cos \frac{\theta}{2} + x \sin \frac{\theta}{2} \right)^2}.$
- 2.b $M \in \Sigma \Leftrightarrow d(M, \mathcal{D})^2 = d(M, \mathcal{D}')^2 \Leftrightarrow xy \sin \theta + 2az = 0$. Donc $\Sigma : xy \sin \theta + 2az = 0$.
- 3.a Si M a pour coordonnées x,y dans Π_h , ses coordonnées dans l'espace sont x,y,h.

 Un tel point appartient à Σ ssi $xy=\lambda$ avec $\lambda=-\frac{2ah}{\sin\theta}$.

- 3.b Si h=0 alors $\Sigma\cap\Pi_h$ est la réunion des axes (Ox) et (Oy). Si $ah\neq 0$ alors $\Sigma\cap\Pi_h$ est une hyperbole du plan Π_h graphe de la fonction $x\mapsto \frac{\lambda}{x}$.
- 4.a Si M a pour coordonnées t,z dans Π_{φ} , ses coordonnées dans l'espace sont $x=t\cos\varphi, y=t\sin\varphi, h$. Un tel point appartient à Σ ssi $t^2\cos\varphi\sin\varphi\sin\theta+2az=0$.
- 4.b Si $\cos\varphi\sin\varphi=0$ (i.e. $\varphi=0$ $\left[\pi/2\right]$) alors $\Sigma\cap\Pi_{\varphi}$ est la droite intersection de Π_{φ} et du plan (xOy). Si $\cos\varphi\sin\varphi\neq0$ alors une équation de $\Sigma\cap\Pi_{\varphi}$ est $t^2=pz$ avec $p=-2a\cos\varphi\sin\varphi\sin\theta$. Il s'agit d'une parabole d'axe focal vertical.

