Lecture 1 – The Security Mindset

University of Illinois ECE 422/CS 461

Logistics

- Create your GitHub repository (link on website).
 - You must complete this step before TA can push
 MP1 to your repository next Tuesday
- First quiz goes out today, due next Friday
- Prof Bates' online 461 now available to both graduate and undergraduate students
- Slides will be uploaded to Canvas before class
 - Poll: How do you use slides if available before class?

Goal of this Lecture

- By the end of this lecture you should:
 - Be able to define security
 - Begin to think like an attacker
 - Begin to think like a defender

Course Objectives

 Common attacks and defenses in various computer systems (software, hardware, OS, web, network, etc.)

- The security mindset, a form of critical thinking
 - How to think like an attacker
 - How to reason about threats and risks
 - How to balance defense costs and benefits
 - Learn to be a security-conscious citizen

The Security Mindset

Suppose Apple introduces Face ID today.
 What is your reaction?

- A: I can't wait to try it!
- B: I wonder if it can be broken by doing X/Y/Z?

 A collection of properties that hold in a system in the presence of an adversary under a set of constraints

 A collection of properties that hold in a <u>system</u> in the presence of an adversary under a set of constraints

- PC, phones, web servers, data centers, network, IoT devices, smart home, cars, ...
- Hardware, software, data

 A collection of <u>properties</u> that hold in a system in the presence of an adversary under a set of constraints

- CIA triad (mostly)
 - Confidentiality
 - Integrity
 - Availability
 - (Variants: Authenticity, Accountability, Privacy)

What's the difference?

Tacoma Narrows Bridge (1940)

New York's World Trade Towers (2001)

Meet the Adversary

- Computer security studies how systems behave in the presence of an <u>adversary</u>
 - a.k.a. the attacker
 - a.k.a. the bad guy

* An intelligent agent that actively tries to cause the system to misbehave.

 A collection of properties that hold in a system in the presence of an adversary under a set of constraints

 Assumptions on the system's & users' behaviors, and adversary's capabilities

"Know your enemy."

Motives?

Capabilities?

• Degrees of access?

Knowledge?

故曰:知彼知己,百戰不殆;不知彼而知己,一勝一負;不知彼,不知己,每戰必殆。

Think like an Attacker

Look for weakest links – easiest to attack

 Think outside the box: not constrained by the system designer's worldview & assumptions

Think like an Attacker

Look for weakest links – easiest to attack

 Think outside the box: not constrained by the system designer's worldview & assumptions

 Practice: For every system you interact with, think about what it means for it to be secure, and how it could be broken by an attacker.

Exercise

Exercise

Is Face ID secure?

Spoofing

Think as a Defender

- Security policy (goals)
 - What <u>properties</u> are we trying to enforce?

- Threat model (constraints)
 - Assumptions on systems, users, environment, and attackers?

Countermeasures

Security Policy

- What <u>properties</u> are we trying to enforce?
 - Confidentiality?
 - Integrity?
 - Availability?
 - Authenticity? Accountability? Privacy?

– All of these, or a subset of them?

Threat Models

Who are the attackers? Motives? Capabilities?
 Degree of access? Knowledge?
 (Know your enemy!)

Threat Models

Who are the attackers? Motives? Capabilities?
 Degree of access? Knowledge?
 (Know your enemy!)

What kinds of attacks do we need to prevent?

What kinds of attacks should we ignore?

Risk Assessment

- What would security breaches cost us?
 - Direct costs: Money, property, safety, ...
 - Indirect costs: Reputation, future business, ...

- How likely are the breaches?
 - Probability of attacks?
 - Probability of attack success?

Rational Paranoia

Countermeasures

- No security mechanism is perfectly secure
 - What assumptions are we relying on?
 - Terminology: trusted vs. trustworthy component

- No security mechanism is free
 - Direct costs: implementation, performance, ...
 - Indirect costs: lost productivity/convenience,
 added complexity, ...

Countermeasures

No security mechanism is perfectly secure

No security mechanism is free

- No system is ever completely secure.
 Challenge is to rationally weigh costs vs. risks.
 - Human psychology makes reasoning about high cost/low probability events hard

Defense: Two Factor Authentication

Defense: Automatic Updates

The App Store keeps OS X and apps from the App Store up to date.

- Automatically check for updates
 - Download newly available updates in the background You will be notified when the updates are ready to be installed
 - ✓ Install app updates
 - Install OS X updates
 - ✓ Install system data files and security updates
- Automatically download apps purchased on other Macs
 Can't determine if automatic downloads are enabled due to a network problem

Last check was Thursday, December 1, 2016

Check Now

Defense: Backups

Defense: Disk Encryption, Physical Security

Defense: HTTPS, Safe Browsing

Summary: Computer Security

 A collection of properties that hold in a system in the presence of an adversary under a set of constraints

Summary: Security Mindset

- Think like an attacker
 - Look for ways to break a system

- Think like a defender
 - Know what you're defending, against whom
 - Assess risks and set reasonable threat model
 - Weigh benefits vs. costs of countermeasures

To Learn More ...

- The Security Mindset.
 https://www.schneier.com/blog/archives/2008/03/t
 he_security_mi_1.html
- https://freedom-to-tinker.com/blog/felten/securitymindset-and-harmless-failures/
- https://cubist.cs.washington.edu/Security/2007/11/ 22/why-a-computer-security-course-blog/