

EEC1509 - Machine Learning Lesson #5 - Linear Regression with Multiple Variables

Ivanovitch Silva September, 2018

Update repository

git clone https://github.com/ivanovitchm/EEC1509_MachineLearning.git

Ou

git pull

PREVIOUSLY ON...

lesson #4

Linear Regression - Housing Price

Lot Area (square feet)

Training Set (m instances)

	Lot Area	SalePrice	
x ⁽¹⁾	31770	215000	y ⁽¹⁾
$x^{(2)}$	11622	105000	y ⁽²⁾
$x^{(3)}$	14267	172000	y (3)
x ⁽⁴⁾	11160	244000	y ⁽⁴⁾
x ⁽⁵⁾	13830	189900	y ⁽⁵⁾

Cost Function

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left[h_{\theta}(x^{(i)}) - y^{(i)} \right]^2$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Gradient Descent

Stochastic Gradient Descent Mini-batch Gradient Descent

- We are going to start by covering linear regression
 - Multiple variables
- We discuss the application of linear regression to housing price prediction

Linear Regression with Multiple Variables

Notation:

- m number of training examples
- n number of features
- x⁽ⁱ⁾ input features of ith training example
- x_j⁽ⁱ⁾ value of feature j in ith training example
 y⁽ⁱ⁾ target value of ith training examples

$$x^{(2)} = \begin{bmatrix} 11622 \\ 5 \\ 1961 \\ 2010 \\ 105000 \end{bmatrix}$$

$$m = 5$$

X ₁	X ₂	X ₃	X_4	У
Lot Area	Overall Qual	Year Built	Yr Sold	SalePrice
31770	6	1960	2010	215000

n = 4

Lot Area	Overall Qual	Year Built	Yr Sold	SalePrice
31770	6	1960	2010	215000
11622	5	1961	2010	105000
14267	6	1958	2010	172000
11160	7	1968	2010	244000
13830	5	1997	2010	189900

Hypothesis (previously)

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multivariable case

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

For convenience of notation, define $x_0=1$. In other words: $x_0^{(i)}=1$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{n+1} \qquad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \in \mathbb{R}^{n+1}$$

$$h_{\theta}(x) = \begin{bmatrix} \theta_0 & \theta_1 & \theta_1 & \dots & \theta_n \end{bmatrix} \times \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \theta^T x$$

Gradient Descent (linear reg. multiple variables)

Hypothesis: $h_{\theta}(x) = \theta^{T} x = \theta_{0} x_{0} + \theta_{1} x_{1} + \theta_{2} x_{2} + ... + \theta_{n} x_{n}$

Parameters:
$$\theta_0, \theta_1, \theta_2, \dots, \theta_n$$

Cost function:

$$J(\theta_0, \theta_1, \theta_2, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent: repeat { $\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta_0, \dots, \theta_n)$

Gradient descent:

repeat until the convergence {

$$\theta_{j} = \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)} \qquad \text{for } j = 0, \dots, n$$

Gradient Descent: trick #1 - Feature Scaling

Gradient Descent: trick #1 - Feature Scaling

Z-Score or Standardization

$$z = \frac{x - \mu}{\sigma}$$

$$\mu$$
 - 0 σ - 1

Min-Max Scaling

$$X_{norm} = \frac{X - X_{min}}{X_{max} - X_{min}}$$

Gradient Descent: trick #2 - Debugging α

- 1. Make a plot with number of iterations on the x-axis.
- 2. Now plot the cost function, $J(\theta)$ over the number of iterations of gradient descent.
- 3. If $J(\theta)$ ever increases, then you probably need to decrease α .
- It has been proven that if learning rate α is sufficiently small, then J(θ) will decrease on every iteration.
- 5. Automatic convergence test

Gradient Descent: trick #2 - Debugging α

- If α is too small:
 - Slow convergence
- If α is too large:
 - \circ J(Θ) may not decrease on every iteration;
 - \circ J(Θ) may not converge.

```
To choice α: ..., 0.0001, ..., 0.01, ..., 0.1, ..., 1, ..., 10, ...
```


normal equation: method to
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{2}$

Normal Equation

Lot Area	Overall Qual	Year Built	Yr Sold	SalePrice
31770	6	1960	2010	215000
11622	5	1961	2010	105000
14267	6	1958	2010	172000
11160	7	1968	2010	244000
13830	5	1997	2010	189900

$$X\theta = y$$

$$X^{T}X\theta = X^{T}y$$

$$\theta = (X^{T}X)^{-1}X^{T}y$$

$$\begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \\ \theta_5 \end{bmatrix} = \begin{bmatrix} \theta_0 + 31770\theta_1 + 6\theta_2 + 1960\theta_3 + 2010\theta_4 \\ \theta_0 + 11622\theta_1 + 5\theta_2 + 1961\theta_3 + 2010\theta_4 \\ \theta_0 + 14267\theta_1 + 6\theta_2 + 1958\theta_3 + 2010\theta_4 \\ \theta_0 + 11160\theta_1 + 7\theta_2 + 1968\theta_3 + 2010\theta_4 \\ \theta_0 + 13830\theta_1 + 5\theta_2 + 1997\theta_3 + 2010\theta_4 \end{bmatrix}$$

There is **no need** to do feature scaling with the normal equation.

The following is a comparison of gradient descent and the normal equation:

Gradient Descent	Normal Equation
Need to choose alpha	No need to choose alpha
Needs many iterations	No need to iterate
O (kn^2)	O (n^3), need to calculate inverse of $X^T X$
Works well when n is large	Slow if n is very large

With the normal equation, computing the inversion has complexity $\mathcal{O}(n^3)$. So if we have a very large number of features, the normal equation will be slow. In practice, when n exceeds 10,000 it might be a good time to go from a normal solution to an iterative process.

If X^TX is **noninvertible**, the common causes might be having :

- Redundant features, where two features are very closely related (i.e. they are linearly dependent)
- Too many features (e.g. $m \le n$). In this case, delete some features or use "regularization" (to be explained in a later lesson).

Exercises

- Complete the notebook "Lesson 5 exercise.ipynb"
 - o plus++
 - Transform the Section 7 into a Scikit-Learn's Pipeline
 - Implement gradient descent for multiple variables
 - Implement normal equation

