#### **Exploiting Search Space Structure** Masataro Asai, Graduate School of Arts and Sciences, in Classical Planning: Analyses and Algorithms The University of Tokyo 2 yrs remaining

### 0. Prior Work:

- -1st, 2nd paper: macro
- -3rd paper: A\*, tiebreaking, plateau
- →Weak connections of topics; Requires a unified story

(macro ∩ plateau analysis) == search space

# 1. Effective search space (ESS)

- The portion of the search space evaluated
- -Search algorithm affects the ESS
- Heuristic function, tiebreaking, macro operators

#### Random-Depth Tiebreaking (3rd paper)

·Search the plateau more uniformly







#### Macro operators (1st, 2nd papers)

- Creates shortcuts in the search space
- Useful when it guides the search
- Increases the branching factor in the search space
- Increases the branching factor in the ESS  $\rightarrow$  ?



# 2. Framework for Analysing ESS



## 3. Percolation Theory (graph connectivity)

A node (edge) is occupied/unoccupied





Occupied node(edge): black Unoccupied node(edge): white

Occupation ratio *r* 

= #(occupied) / # (total)

A non-percolated graph: Connectivity Obviously disconnected non-trivial everywhere



Cluster \*\*



r = 0.1



A percolated graph: Obviously connected everywhere

#### (cont.) Percolation = Phase Transition

Around r=r<sub>c</sub>, graph connectivity becomes increasingly difficult to answer (Similar to the phase transition in satisfiability)

Probability *p* of any two nodes having a path



Preliminary results: Junk macros



- · Randomly generated junk macros
- Conventionally considered harmful
- Actually reduces evaluations in some domains

#### Open Questions / new methods

- How existing macros change ESS?
- •rc of each planning domain? (e.g. Logistics=0.XX)
- When each algorithm finds a soltion? (e.g. r=0.YY)
  - e.g. Local search, lookaheads, type-GBFS
- Random restarts with randomly ignoring edges
  - -Shifts r. Multiple incomplete runs
    - → Probabilistically complete algorithm

# 4. Analyze ESS as Fractals

### Measuring the Fractal dimension of a graph







- e.g. Radius method Change the radius
- Count the nodes

### Some fractals are defined by generative rules









A model for a cell culture

Nodes are randomly generated on the surface = ESS with random selection from the OPEN list

### **Fractal Models** Eden

# ⇔ Search Algorithm

Fractal?

Random Order Random Depth

Ballistic Aggregation ↔ DLA (dim = 1.71)  $\leftrightarrow$ 

New algorithm? New algorithm?

### 5. Thesis Abstract

- 1. Propose the framework
- 2. Propose paper 1,2,3
- 3. Analyze the ESS of paper 1,2,3 using the framework
  - → A deeper insight into why paper 1,2,3 is successful