## YELP BUSINESS REVIEWS

SENTIMENT ANALYSIS FOR THE PREDICTION OF STAR RATINGS

**GROUP G-9** 

- Sanket Mhaiskar
- Pratish Merchant
- Akshay Kamath





### **OBJECTIVES**

- To identify ratings from reviews.
- •Identify the most positive and negative words in the set.
- Perform sentiment analysis task to predict positive or negative emotions.











- Yelp data set review as a part of data set challenge.
- Data set consists of the following data fields:
  - Business
  - Check in
  - Reviews
  - Tip
  - Users
- For the scope of this project we mainly focus on user reviews and Business.
- Roughly 25000 reviews are used to perform classification tasks.
- Additionally, we have performed data pre-processing tasks as per our requirements.















#### **APPROACH**



- Initial Approach: Classified reviews into positive and negative and applied classification techniques.
- We have mainly used the following machine learning techniques.
  - Bernoulli's Naive Bayes.
  - Support Vector Machines.
- For each classification technique, we have prepared a data set that maps a review to a sentiment positive or negative as follows: Sentiment | Review Text.
- E.g. Positive | We were very pleased with the service!!









# SENTIMENT ANALYSIS RESULTS BERNOULLI NAIVE BAYES

| Accuracy | Majority Classifier |
|----------|---------------------|
| 80.10%   | 79%                 |

|              | Precision | Recall | F1-Score | Support |
|--------------|-----------|--------|----------|---------|
| Negative     | 0.50      | 0.43   | 0.46     | 1487    |
| Positive     | 0.86      | 0.89   | 0.88     | 6014    |
| Avg. / Total | 0.79      | 0.80   | 0.80     | 7501    |











# SENTIMENT ANALYSIS RESULTS SVM

| Accuracy | Majority Classifier |
|----------|---------------------|
| 90.79%   | 79%                 |

|              | Precision | Recall | F1-Score | Support |
|--------------|-----------|--------|----------|---------|
| Negative     | 0.89      | 0.61   | 0.72     | 1487    |
| Positive     | 0.91      | 0.98   | 0.94     | 6014    |
| Avg. / Total | 0.91      | 0.91   | 0.90     | 7501    |









#### REVIEW PREDICTION

- For Review Prediction, we have mainly used the following machine learning techniques, as before.
  - Bernoulli's Naive Bayes.
  - Support Vector Machines.
- For each classification technique, we have prepared a data set that maps a review to a rating as follows: Review Star | Review Text.
- E.g. 5 | We were very pleased with the service!!
- We then classify each text into bag of words and provide input to the classification algorithms as Unigrams, Bigrams and Trigrams.







Naïve Bayes: Unigrams + Bigrams.

Data Distribution: 80% Training, 20 % Test

| Accuracy | Majority Classifier |
|----------|---------------------|
| 43.93%   | 32%                 |

|              | Precision | Recall | F1-Score | Support |
|--------------|-----------|--------|----------|---------|
| 1            | 0.55      | 0.32   | 0.40     | 706     |
| 2            | 0.28      | 0.13   | 0.17     | 781     |
| 3            | 0.34      | 0.17   | 0.22     | 1343    |
| 4            | 0.43      | 0.49   | 0.46     | 2465    |
| 5            | 0.47      | 0.70   | 0.56     | 2206    |
| Avg. / Total | 0.42      | 0.44   | 0.41     | 7501    |



#### REVIEW PREDICTION RESULT: SVM

Support Vector Machines: Unigrams + Bigrams.
Data Distribution: 80% Training, 20 % Test

| Accuracy     |           | Majority Classifier |  |          |         |
|--------------|-----------|---------------------|--|----------|---------|
| 56.86%       |           | 32%                 |  |          |         |
|              | Precision | Recall              |  | F1-Score | Support |
| 1            | 0.75      | 0.66                |  | 0.70     | 250     |
| 2            | 0.50      | 0.27                |  | 0.35     | 249     |
| 3            | 0.53      | 0.35                |  | 0.42     | 469     |
| 4            | 0.49      | 0.69                |  | 0.57     | 786     |
| 5            | 0.67      | 0.65                |  | 0.66     | 747     |
| Avg. / Total | 0.58      | 0.57                |  | 0.56     | 2501    |





#### N-GRAM RESULT SUMMARY

|                  | Bernoulli NB Accuracy<br>Score | SVM Accuracy Score |
|------------------|--------------------------------|--------------------|
| Unigram          | 42.61%                         | 55.31%             |
| Bigram           | 41.35%                         | 53.57%             |
| Trigram          | 33.73 %                        | 41.75%             |
| Unigram + Bigram | 43.93%                         | 56.85%             |

- As we can see, we have considered our baseline to be the majority classifier, which comes to 32%
- All classification techniques have performed better than our baseline.
- Using a combination of unigram + bigram has performed better than just unigrams, bigrams or trigrams.



social media













#### MOST POSITIVE AND NEGATIVE WORDS

- Used a Dictionary of word score using Senti-Word list.
   Scores are between +1 and -1.
- Distribute review into sentences and tokenize into words.Rank words using above dictionary.
- Additionally we can rank entire sentence.
- Output is word, frequency and score.
- Created a word cloud of output using Kumo library.









wayslovefirsto > free a bett



### TOOLS



- Scikit-Learn
- Natural Language Toolkit
- Senti Word Net
- Kumo Word Cloud











- We Performed sentiment analysis to classify positive and negative words and got a 10% improvement over baseline using SVM.
- SVM performs better than Naïve Bayes.
- Combination of bi-grams and unigrams gives best results.
- The accuracy is affected with the increase in the number of categories.
- The accuracy increases with increase in data.







## QUESTIONS ????????





