DISCIPLINE SPECIFIC CORE COURSE – 11

Credit distribution, Eligibility and Pre-requisites of the Course

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course
		Lecture	Tutorial	Practical/ Practice		(if any)
Animal Physiology (BS-DSC- 402)	4	2		2	Class XII pass with Biology and chemistry	None

Learning Objectives

The Learning Objectives of this course are as follows:

- Seeks to understand what the physiological adaptations are that enable animals to thrive across virtually any environment on earth, and
- How some of these adaptations can reveal the general principles that govern life functions
- Provides an understanding of fundamental principles of animal physiology and how these principles are incorporated into adaptations of different animal groups.
- Emphasizes on integrating the knowledge of how systems within diverse organisms' function and respond to changes in their environment
- Serves as a comprehensive guide to understand the complexity of an organ system and to cover the comparative aspects of system in different animal groups.
- The course is based on the "Krogh's principle", which proposes the use of specific organisms convenient to study specific questions and to address the central concept based on evolutionary adaptations.

Learning outcomes

Upon completion of the course, the students will be able to:

- Students will know how animals obtain energy from their environment.
- Students will understand the unique role of various organs and organ systems inperforming various vital functions.
- Students will understand the role of physiology in adapting to various environments.
- Students will appreciate the importance of homeostasis in different animals.
- Students will learn to apply critical thinking and integrate scientific knowledge to understand the basic physiological principles which led to diverse evolutionary adaptations.

SYLLABUS OF DSC-11

Theory

TOTAL HOURS: 30 CREDITS: 2

Unit 1: Production of Energy

Feeding patterns found in different animals; Intracellular and extracellular digestion, cellulose digestion in animals: invertebrates, ruminants, non-ruminants and coprophagy.

Unit 2: Gas Exchange in Organisms

No. of hours: 5

No. of hours: 6

No. of hours: 10

No. of hours: 5

No. of hours: 4

Physiology of aquatic and terrestrial breathing; Respiratory organs in aquatic and terrestrial organisms: respiration in insects: terrestrial, aquatic and cyclic respiration, respiration in fishes: ventilation, water pumping and counter current flow, respiration in birds: air sacs, lung function and crosscurrent flow

Unit 3: Bulk Transport

General plan of circulatory system in invertebrates and vertebrates: closed and open system of circulation, single circulation and double circulation: circulation patterns of cockroach, bony fishes and amphibians. Physiology of vertebrate heart: cardiac output, regulation of heartbeat- Starling's law of the heart.

Unit 4: Regulatory Physiology

Homeostasis in animals: regulation of water and solutes in aquatic and terrestrial animals; osmoconformers and osmoregulators; physiology of osmoregulation in marine invertebrates, elasmobranchs and bony fishes (freshwater and marine); water balance in terrestrial animals: kangaroo rat.

Patterns of thermoregulation: heat exchange with the environment. Ectotherms: tolerance to high temperature (lethal temperature), tolerance to cold and freezing temperature (freeze tolerant and intolerant animals). Endotherms: thermogenesis and regulation of body temperature. Structural and functional adaptations to temperature stress (taking examples of arctic fox, penguins, and camels)

Unit 5: Integrative Physiology

An overview of neuronal structure and function; general principles of sensory physiology-chemoreceptors (gustatory and olfactory); mechanoreceptors (statocyst in invertebrates and lateral line system of fishes); sonar system in bats; electroreceptors (electric organs in fishes); thermoreceptors.

PRACTICALS

TOTAL HOURS: 60 CREDITS: 2

- 1. Effect of isotonic, hypotonic and hypertonic saline solutions on erythrocytes
- 2. Study of mouth parts and digestive system of *Periplaneta**
- 3. Preparation of temporary mounts: nerve cells and blood smear
- 4. Enumeration of Differential Leucocyte Count (D.L.C)
- 5. Effect of temperature on action of salivary amylase.

6. Study of permanent slides of nephridia of earthworm and mammalian oesophagus, stomach, ileum, rectum, liver, trachea, lung, kidney, spinal cord (*Subject to UGC guidelines)

Essential Readings

- 1. Moyes, C. D., & Schulte, P. M. (2008). Principles of Animal Physiology. San Francisco, CA: Pearson/Benjamin Cummings.
 - 2. Randall, D. C., Burggren, W. W., & French, K. (2002). Eckert Animal Physiology. New York: W. H. Freeman.
- 3. Schmidt-Nielsen, K. (2010). Animal Physiology: Adaptation and Environment. Cambridge: Cambridge University Press.

Suggested readings.

- 2. Prakash, G. (2012). Lab Manual on Blood Analysis and Medical Diagnostics. S. Chand and Co. Ltd.
- 3. Reece, J. B., & Campbell, N. A. (2011). Campbell Biology. Boston: Benjamin Cummings /Pearson.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.