TENT COOPERATION TRE Y

rom the	INTERNATIONAL	BUREAU

PCT

NOTIFICATION OF ELECTION

(PCT Rule 61.2)

To:

Assistant Commissioner for Patents United States Patent and Trademark Office Box PCT Washington, D.C.20231 ÉTATS-UNIS D'AMÉRIQUE

Date of mailing (day/month/year)

21 February 2000 (21.02.00)

in its capacity as elected Office

21 February 2000 (21.02.00 International application No.

PCT/DK99/00340
International filing date (day/month/year)

21 June 1999 (21.06.99)

Applicant's or agent's file reference P 269 WO

Priority date (day/month/year)
23 June 1998 (23.06.98)

Applicant

LINNEBERG, Christian et al

1.	The designated Office is hereby notified of its election made:
	X in the demand filed with the International Preliminary Examining Authority on:
	18 January 2000 (18.01.00)
	in a notice effecting later election filed with the International Bureau on:
	The election
2.	The election X was was not
	made before the expiration of 19 months from the priority date or, where Rule 32 applies, within the time limit under Rule 32.2(b).

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland

Authorized officer

F. Baechler

Telephone No.: (41-22) 338.83.38

Facsimile No.: (41-22) 740.14.35

TENT COOPERATION TRE.

From the INTERNATIONAL BUREAU

PCT

NOTIFICATION CONCERNING SUBMISSION OR TRANSMITTAL OF PRIORITY DOCUMENT

(PCT Administrative Instructions, Section 411)

HØIBERG APS Nørre Farimagsgade 37 DK-1364 Copenhagen K **DANEMARK**

Date of mailing (day/month/year) 28 January 2000 (28.01.00)	
Applicant's or agent's file reference P 269 WO	IMPORTANT NOTIFICATION
International application No. PCT/DK99/00340	International filing date (day/month/year) 21 June 1999 (21.06.99)
International publication date (day/month/year) 29 December 1999 (29.12.99)	Priority date (day/month/year) 23 June 1998 (23.06.98)
Applicant	
RISØ et al	

- The applicant is hereby notified of the date of receipt (except where the letters "NR" appear in the right-hand column) by the International Bureau of the priority document(s) relating to the earlier application(s) indicated below. Unless otherwise indicated by an asterisk appearing next to a date of receipt, or by the letters "NR", in the right-hand column, the priority document concerned was submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b).
- This updates and replaces any previously issued notification concerning submission or transmittal of priority documents.
- 3. An asterisk(*) appearing next to a date of receipt, in the right-hand column, denotes a priority document submitted or transmitted to the International Bureau but not in compliance with Rule 17.1(a) or (b). In such a case, the attention of the applicant is directed to Rule 17.1(c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.
- The letters "NR" appearing in the right-hand column denote a priority document which was not received by the International Bureau or which the applicant did not request the receiving Office to prepare and transmit to the International Bureau, as provided by Rule 17.1(a) or (b), respectively. In such a case, the attention of the applicant is directed to Rule 17.1(c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.

Country or regional Office Date of receipt Priority application No. **Priority date** of priority document or PCT receiving Office 23 Dece 1999 (23.12.99) DK 23 June 1998 (23.06.98) PA 1998 00883

The International Bureau of WIPO
34, chemin des Colombettes
1211 Geneva 20, Switzerland

Authorized officer

Philippe Bécamel

Telephone No. (41-22) 338.83.38

Facsimile No. (41-22) 740.14.35

TENT COOPERATION TRE. Y

	From the INTERNATIONAL BUREAU			
PCT	То:			

NOTIFICATION CONCERNING DOCUMENT TRANSMITTED

Assistant Commissioner for Patents United States Patent and Trademark Office Box PCT Washington, D.C.20231 ÉTATS-UNIS D'AMÉRIQUE

Date of mailing (day/month/year)
28 January 2000 (28.01.00)

in its capacity as designated Office

International application No. PCT/DK99/00340

International filing date (day/month/year) 21 June 1999 (21.06.99)

Applicant

RISØ et al

The International Bureau transmits herewith the following documents and number thereof:

cop(ies) of priority document(s) (Rule 17.2(a))

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland Authorized officer

Philippe Bécamel

Telephone No.: (41-22) 338.83.38

Facsimile No.: (41-22) 740.14.35

TENT COOPERATION TRE

	From the INTERNATIONAL BUREAU			
PCT	To:			
NOTIFICATION OF THE RECORDING OF A CHANGE (PCT Rule 92bis.1 and Administrative Instructions, Section 422)	HØIBERG APS Nørre Farimagsgade 37 DK-1364 Copenhagen K DANEMARK			
Date of mailing (day/month/year) 21 February 2000 (21.02.00)				
Applicant's or agent's file reference P 269 WO		IMPORTANT NOT	IFICATION	
International application No. PCT/DK99/00340		nal filing date (day/month/y une 1999 (21.06.99)	ear)	
The following indications appeared on record concerning: X the applicant the inventor	the agent	t the comm	on representative	
Name and Address		State of Nationality DK	State of Residence DK	
RISØ Frederiksborgvej 399 DK-4000 Roskilde Denmark		Telephone No.		
Delititati	Facsimile No.			
		Teleprinter No.		
The International Bureau hereby notifies the applicant that to the person		change has been recorded the nationality	concerning: the residence	
Name and Address INTELLIX A/S		State of Nationality DK	State of Residence DK	
H.C. Ørstedsvej 4 DK-1879 Frederiksberg C Denmark		Telephone No.		
	Facsimile No.			
		Teleprinter No.		
Further observations, if necessary: Please note that Risø has assigned all is rights to the new applicant Intellix A/S as indicated at	for all des oove.	ignated States except	for US	
4. A copy of this notification has been sent to:				
X the receiving Office		the designated Offices concerned X the elected Offices concerned		
the International Searching Authority X the International Preliminary Examining Authority		other:	oncernou	
	Authorize	d officer		
The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland	F. Baechler			
Facsimile No.: (41-22) 740.14.35	Telephone No.: (41-22) 338.83.38			

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:

G06N 3/08, G06F 15/80 // G06K 9/64

(11) International

(11) International Publication Number:

WO 99/67694

(43) International Publication Date:

29 December 1999 (29.12.99)

(21) International Application Number:

PCT/DK99/00340

A3

(22) International Filing Date:

21 June 1999 (21.06.99)

(30) Priority Data:

PA 1998 00883

23 June 1998 (23.06.98)

DK

(71) Applicant (for all designated States except US): RISØ [DK/DK]; Frederiksborgvej 399, DK-4000 Roskilde (DK).

(72) Inventors; and

(75) Inventors'Applicants (for US only): LINNEBERG, Christian [DK/DK]; Ægirsgade 56, 4.th, DK-2200 Copenhagen N (DK). JØRGENSEN, Thomas, Martini [DK/DK]; Kildegårdsvej 29, DK-3650 Ølstykke (DK).

(74) Agent: HØIBERG APS; Nørre Farimagsgade 37, DK-1364 Copenhagen K (DK).

.__•

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report (10.02.00)

(54) Title: N-TUPLE OR RAM BASED NEURAL NETWORK CLASSIFICATION SYSTEM AND METHOD

(57) Abstract

The invention relates to n-tuple or RAM based neural network classification methods and systems and, more particularly, to n-tuple or RAM based classification systems where the decision criteria applied to obtain the output sources and compare these output sources to obtain a classification are determined during a training process. Accordingly, the invention relates to a system and a method of training a computer classification system which can be defined by a network comprising a number of n-tuples or Look Up Tables (LUTs), with each n-tuple or LUT comprising a number of rows corresponding to at least a subset of possible classes and comprising columns being addressed by signals or elements of sampled training input data examples.

INTERNATIONAL APPLICATION PUBLISH	HED U	JNDER THE PATENT COOPERATION TREATY (PCT)
(51) International Patent Classification 6:		(11) International Publication Number: WO 99/67694
G06F	A2	(43) International Publication Date: 29 December 1999 (29.12.99)
(21) International Application Number: PCT/DK9 (22) International Filing Date: 21 June 1999 (2) (30) Priority Data: PA 1998 00883 23 June 1998 (23.06.98) (71) Applicant (for all designated States except US): [DK/DK]; Frederiksborgvej 399, DK-4000 Roskild (72) Inventors; and (75) Inventors/Applicants (for US only): LINNEBERG, [DK/DK]; Ægirsgade 56, 4.th, DK-2200 Colon (DK). JØRGENSEN, Thomas, Martini [English M	21.06.9 RIS de (DK Christi penhag DK/DK	BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPL patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). Published Without international search report and to be republished upon receipt of that report.

(54) Title: N-TUPLE OR RAM BASED NEURAL NETWORK CLASSIFICATION SYSTEM AND METHOD

(57) Abstract

The invention relates to n-tuple or RAM based neural network classification methods and systems and, more particularly, to n-tuple or RAM based classification systems where the decision criteria applied to obtain the output sources and compare these output sources to obtain a classification are determined during a training process. Accordingly, the invention relates to a system and a method of training a computer classification system which can be defined by a network comprising a number of n-tuples or Look Up Tables (LUTs), with each n-tuple or LUT comprising a number of rows corresponding to at least a subset of possible classes and comprising columns being addressed by signals or elements of sampled training input data examples.

))

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Ītaly	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

10

15

20

25

30

N-TUPLE OR RAM BASED NEURAL NETWORK CLASSIFICATION SYSTEM AND METHOD

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to n-tuple or RAM based neural network classification systems and, more particularly, to n-tuple or RAM based classification systems where the decision criteria applied to obtain the output scores and compare these output scores to obtain a classification are determined during a training process.

2. Description of the Prior Art

A known way of classifying objects or patterns represented by electric signals or binary codes and, more precisely, by vectors of signals applied to the inputs of neural network classification systems lies in the implementation of a so-called learning or training phase. This phase generally consists of the configuration of a classification network that fulfils a function of performing the envisaged classification as efficiently as possible by using one or more sets of signals, called learning or training sets, where the membership of each of these signals in one of the classes in which it is desired to classify them is known. This method is known as supervised learning or learning with a teacher.

A subclass of classification networks using supervised learning are networks using memory-based learning. Here, one of the oldest memory-based networks is the "n-tuple network" proposed by Bledsoe and Browning (Bledsoe, W.W. and Browning, I, 1959, "Pattern recognition and reading by machine", Proceedings of the Eastern Joint Computer Conference, pp. 225-232) and more recently described by Morciniec and Rohwer (Morciniec, M. and Rohwer, R.,1996, "A theoretical and experimental account of n-tuple classifier performance", Neural Comp., pp. 629-642).

One of the benefits of such a memory-based system is a very fast computation time, both during the learning phase and during classification. For the known types of n-tuple networks, which is also known as "RAM networks" or "weightless neural networks",

learning may be accomplished by recording features of patterns in a random-access memory (RAM), which requires just one presentation of the training set(s) to the system.

The training procedure for a conventional RAM based neural network is described by Jørgensen (co-inventor of this invention) et al. in a contribution to a recent book on RAM based neural networks (T.M. Jørgensen, S.S. Christensen, and C. Liisberg, "Crossvalidation and information measures for RAM based neural networks," RAM-based neural networks, J. Austin, ed., World Scientific, London, pp. 78-88, 1998). The contribution describes how the RAM based neural network may be considered as comprising a number of Look Up Tables (LUTs). Each LUT may probe a subset of a binary input data vector. In the conventional scheme the bits to be used are selected at random. The sampled bit sequence is used to construct an address. This address corresponds to a specific entry (column) in the LUT. The number of rows in the LUT corresponds to the number of possible classes. For each class the output can take on the values 0 or 1. A value of 1 corresponds to a vote on that specific class. When performing a classification, an input vector is sampled, the output vectors from all LUTs are added, and subsequently a winner takes all decision is made to classify the input vector. In order to perform a simple training of the network, the output values may initially be set to 0. For each example in the training set, the following steps should then be carried out:

20

5

10

15

Present the input vector and the target class to the network, for all LUTs calculate their corresponding column entries, and set the output value of the target class to 1 in all the "active" columns.

By use of such a training strategy it may be guaranteed that each training pattern always obtains the maximum number of votes on the true class. As a result such a network makes no misclassification on the training set, but ambiguous decisions may occur. Here, the generalisation capability of the network is directly related to the number of input bits for each LUT. If a LUT samples all input bits then it will act as a pure memory device and no generalisation will be provided. As the number of input bits is reduced the generalisation is increased at an expense of an increasing number of ambiguous decisions. Furthermore, the classification and generalisation performances of a LUT are highly dependent on the actual subset of input bits probed. The purpose of an "intelli-

gent" training procedure is thus to select the most appropriate subsets of input data.

10

15

20

25

30

Jørgensen et al. further describes what is named a "leave-one-out cross-validation test" which suggests a method for selecting an optimal number of input connections to use per LUT in order to obtain a low classification error rate with a short overall computation time. In order to perform such a cross-validation test it is necessary to obtain a knowledge of the actual number of training examples that have visited or addressed the cell or element corresponding to the addressed column and class. It is therefore suggested that these numbers are stored in the LUTs. It is also suggested by Jørgensen et al. how the LUTs in the network can be selected in a more optimum way by successively training new sets of LUTs and performing cross validation test on each LUT. Thus, it is known to have a RAM network in which the LUTs are selected by presenting the training set to the system several times.

The output vector from the RAM network contains a number of output scores, one for each possible class. As mentioned above a decision is normally made by classifying an example in to the class having the largest output score. This simple winner-takes-all (WTA) scheme assures that the true class of a training examples cannot lose to one of the other classes. One problem with the RAM net classification scheme is that it often behaves poorly when trained on a training set where the distribution of examples between the training classes are highly skewed. Accordingly there is a need for understanding the influence of the composition of the training material on the behaviour of the RAM classification system as well as a general understanding of the influence of specific parameters of the architecture on the performance. From such an understanding it could be possible to modify the classification scheme to improve its performance and competitiveness with other schemes. Such improvements of the RAM based classification systems is provided according to the present invention.

SUMMARY OF THE INVENTION

Recently Thomas Martini Jørgensen and Christian Linneberg (inventors of this invention) have provided a statistical framework that have made it possible to make a theoretical analysis that relates the expected output scores of the n-tuple net to the stochastic parameters of the example distributions, the number of available training examples, and the number of address lines n used for each LUT or n-tuple. From the obtained

10

15

20

25

30

expressions, they have been able to study the behaviour of the architecture in different scenarios. Furthermore, they have based on the theoretical results come up with proposals for modifying the n-tuple classification scheme in order to make it operate as a close approximation to the maximum á posteriori or maximum likelihood estimator. The resulting modified decision criteria can for example deal with the so-called skewed class prior problem causing the n-tuple net to often behave poorly when trained on a training set where the distribution of examples between the training classes are highly skewed. Accordingly the proposed changes of the classification scheme provides an essential improvement of the architecture. The suggested changes in decision criteria are not only applicable to the original n-tuple architecture based on random memorisation. It also applies to extended n-tuple schemes, some of which use a more optimal selection of the address lines and some of which apply an extended weight scheme.

According to a first aspect of the present invention there is provided a method for training a computer classification system which can be defined by a network comprising a number of n-tuples or Look Up Tables (LUTs), with each n-tuple or LUT comprising a number of rows corresponding to at least a subset of possible classes and further comprising a number of columns being addressed by signals or elements of sampled training input data examples, each column being defined by a vector having cells with values, said method comprising determining the column vector cell values based on one or more training sets of input data examples for different classes so that at least part of the cells comprise or point to information based on the number of times the corresponding cell address is sampled from one or more sets of training input examples. The method further comprises determining one or more output score functions for evaluation of at least one output score value per class, and/or determining one or more decision rules to be used in combination with at least part of the obtained output score values to determine a winning class.

It is preferred that the output score values are evaluated or determined based on the information of at least part of the determined column vector cell values.

According to the present invention it is preferred that the output score functions and/or the decision rules are determined based on the information of at least part of the determined column vector cell values.

10

15

20

25

30

It is also preferred to determine the output score functions from a family of output score functions determined by a set of parameter values. Thus, the output score functions may be determined either from the set of parameter values, from the information of at least part of the determined column vector cell values or from both the set of parameter values and the information of at least part of the determined column vector cell values.

It should be understood that the training procedure of the present invention may be considered a two step training procedure. The first step may comprise determining the column vector cell values, while the second step may comprise determining the output score functions and/or the decision rules.

As already mentioned, the column vector cells are determined based on one or more training sets of input data examples of known classes, but the output score functions and/or the decision rules may be determined based on a validation set of input data examples of known classes. Here the validation set may be equal to or part of the training set(s), but the validation set may also be a set of examples not included in the training set(s).

According to the present invention the training and/or validation input data examples may preferably be presented to the network as input signal vectors.

It is preferred that determination of the output score functions is performed so as to allow different ways of using the contents of the column vector cells in calculating the output scores used to find the winning class amongst two or more classes. The way the contents of the column vector cells are used to obtain the score of one class might depend on which class(es) it is compared with.

It is also preferred that the decision rules used when comparing two or more classes in the output space are allowed to deviate from the decision rules corresponding to a WTA decision. Changing the decision rules for choosing two or more classes is equivalent to allowing individual transformation of the class output scores and keeping a WTA comparison. These corresponding transformations might depend on which class(es) a given class is compared with.

10

15

20

The determination of how the output score functions may be calculated from the column vector cell values, as well as the determination of how many output score functions to use and/or the determination of the decision rules to be applied on the output score values may comprise the initialisation of one or more sets of output score functions and/or decision rules.

Furthermore it is preferred to adjust at least part of the output score functions and/or the decision rules based on an information measure evaluating the performance on the validation example set. If the validation set equals the training set or part of the training set it is preferred to use a leave-one-out cross-validation evaluation or extensions of this concept.

In order to determine or adjust the output score functions and the decision rules according to the present invention, the column cell values should be determined. Here, it is preferred that at least part of the column cell values are determined as a function of the number of times the corresponding cell address is sampled from the set(s) of training input examples. Alternatively, the information of the column cells may be determined so that the maximum column cell value is 1, but at least part of the cells have an associated value being a function of the number of times the corresponding cell address is sampled from the training set(s) of input examples. Preferably, the column vector cell values are determined and stored in storing means before the determination or adjustment of the output score functions and/or the decision rules.

According to the present invention, a preferred way of determining the column vector cell values may comprise the training steps of

- a) applying a training input data example of a known class to the classification network, thereby addressing one or more column vectors,
- b) incrementing, preferably by one, the value or vote of the cells of the ad-30 dressed column vector(s) corresponding to the row(s) of the known class, and
 - c) repeating steps (a)-(b) until all training examples have been applied to the network.

10

15

20

25

30

However, it should be understood that the present invention also covers embodiments where the information of the column cells is determined by alternative functions of the number of times the cell has been addressed by the input training set(s). Thus, the cell information does not need to comprise a count of all the times the cell has been addressed, but may for example comprise an indication of when the cell has been visited zero times, once, more than once, and/or twice and more than twice and so on.

In order to determine the output score functions and/or the decision rules, it is preferred to adjust these output score functions and/or decision rules, which adjustment process may comprise one or more iteration steps. The adjustment of the output score functions and/or the decision rules may comprise the steps of determining a global quality value based on at least part of the column vector cell values, determining if the global quality value fulfils a required quality criterion, and adjusting at least part of output score functions and/or part of the decision rules until the global quality criterion is fulfilled.

The adjustment process may also include determination of a local quality value for each sampled validation input example, with one or more adjustments being performed if the local quality value does not fulfil a specified or required local quality criterion for the selected input example. As an example the adjustment of the output score functions and/or the decision rules may comprise the steps of

- a) selecting an input example from the validation set(s),
- b) determining a local quality value corresponding to the sampled validation input example, the local quality value being a function of at least part of the addressed column cell values,
- c) determining if the local quality value fulfils a required local quality criterion, if not, adjusting one or more of the output score functions and/or decision rules if the local quality criterion is not fulfilled,
- d) selecting a new input example from a predetermined number of examples of the validation set(s),
- e) repeating the local quality test steps (b)-(d) for all the predetermined validation input examples,
- f) determining a global quality value based on at least part of the column vectors being addressed during the local quality test,

- g) determining if the global quality value fulfils a required global quality criterion, and,
- h) repeating steps (a)-(g) until the global quality criterion is fulfilled.
- Preferably, steps (b)-(d) of the above mentioned adjustment process may be carried out for all examples of the validation set(s).

The local and/or global quality value may be defined as functions of at least part of the column cells.

10

It should be understood that when adjusting the output score functions and/or decision rules by use of one or more quality values each with a corresponding quality criterion, it may be preferred to stop the adjustment iteration process if a quality criterion is not fulfilled after a given number of iterations.

15

20

It should also be understood that during the adjustment process the adjusted output score functions and/or decision rules are preferably stored after each adjustment, and when the adjustment process includes the determination of a global quality value, the step of determination of the global quality value may further be followed by separately storing the hereby obtained output score functions and/or decision rules or classification system configuration values if the determined global quality value is closer to fulfil the global quality criterion than the global quality value corresponding to previously separately stored output score functions and/or decision rules or configuration values.

25

A main reason for training a classification system according to an embodiment of the present invention is to obtain a high confidence in a subsequent classification process of an input example of an unknown class.

30

Thus, according to a further aspect of the present invention, there is also provided a method of classifying input data examples into at least one of a plurality of classes using a computer classification system configured according to any of the above described methods of the present invention, whereby column cell values for each n-tuple or LUT and output score functions and/or decision rules are determined using on one or more training or validation sets of input data examples, said method comprising

a) applying an input data example to be classified to the configured classification network thereby addressing column vectors in the set of n-tuples or LUTs,

9

- b) selecting a set of classes which are to be compared using a given set of output score functions and decision rules thereby addressing specific rows in the set of n-tuples or LUTs,
- determining output score values as a function of the column vector cells and using the determined output score functions,
- d) comparing the calculated output values using the determined decision rules, and
- e) selecting the class or classes that win(s) according to the decision rules.

10

15

20

25

5

The present invention also provides training and classification systems according to the above described methods of training and classification.

Thus, according to the present invention there is provided a system for training a computer classification system which can be defined by a network comprising a stored number of n-tuples or Look Up Tables (LUTs), with each n-tuple or LUT comprising a number of rows corresponding to at least a subset of possible classes and further comprising a number of columns being addressed by signals or elements of sampled training input data examples, each column being defined by a vector having cells with values, said system comprising

- input means for receiving training input data examples of known classes,
- means for sampling the received input data examples and addressing column vectors in the stored set of n-tuples or LUTs,
- means for addressing specific rows in the set of n-tuples or LUTs, said rows corresponding to a known class,
- storage means for storing determined n-tuples or LUTs,
- means for determining column vector cell values so as to comprise or point to information based on the number of times the corresponding cell address is sampled from the training set(s) of input examples, and
- means for determining one or more output score functions and/or one or more decision rules.

20

25

30

Here, it is preferred that the means for determining the output score functions and/or decision rules is adapted to determine these functions and/or rules based on the information of at least part of the determined column vector cell values.

10

The means for determining the output score functions may be adapted to determine such functions from a family of output score functions determined by a set of parameter values. Thus, the means for determining the output score functions may be adapted to determine such functions either from the set of parameter values, from the information of at least part of the determined column vector cell values or from both the set of parameter values and the information of at least part of the determined column vector cell values.

According to the present invention the means for determining the output score functions and/or the decision rules may be adapted to determine such functions and/or rules based on a validation set of input data examples of known classes. Here the validation set may be equal to or part of the training set(s) used for determining the column cell values, but the validation set may also be a set of examples not included in the training set(s).

In order to determine the output score functions and decision rules according to a preferred embodiment of the present invention, the means for determining the output score functions and decision rules may comprise

means for initialising one or more sets output score functions and/or decision rules, and

means for adjusting output score functions and decision rules by use of at least part of the validation set of input examples.

As already discussed above the column cell values should be determined in order to determine the output score functions and decision rules. Here, it is preferred that the means for determining the column vector cell values is adapted to determine these values as a function of the number of times the corresponding cell address is sampled from the set(s) of training input examples. Alternatively, the means for determining the column vector cell values may be adapted to determine these cell values so that the maximum value is 1, but at least part of the cells have an associated value being a

function of the number of times the corresponding cell address is sampled from the training set(s) of input examples.

According to an embodiment of the present invention it is preferred that when a training input data example belonging to a known class is applied to the classification network thereby addressing one or more column vectors, the means for determining the column vector cell values is adapted to increment the value or vote of the cells of the addressed column vector(s) corresponding to the row(s) of the known class, said value preferably being incremented by one.

10

15

5

For the adjustment process of the output score functions and decision rules it is preferred that the means for adjusting output score functions and/or decision rules is adapted to

determine a global quality value based on at least part of column vector cell values,

determine if the global quality value fulfils a required global quality criterion, and

adjust at least part of the output score functions and/or decision rules until the global quality criterion is fulfilled.

20

25

30

As an example of a preferred embodiment according to the present invention, the means for adjusting output score functions and decision rules may be adapted to

- a) determine a local quality value corresponding to a sampled validation input example, the local quality value being a function of at least part of the addressed vector cell values,
- b) determine if the local quality value fulfils a required local quality criterion,
- c) adjust one or more of the output score functions and/or decision rules if the local quality criterion is not fulfilled,
- d) repeat the local quality test for a predetermined number of training input examples,
- e) determine a global quality value based on at least part of the column vectors being addressed during the local quality test,
- determine if the global quality value fulfils a required global quality criterion, and,

10

15

20

25

30

g) repeat the local and the global quality test until the global quality criterion is fulfilled.

12

The means for adjusting the output score functions and decision rules may further be adapted to stop the iteration process if the global quality criterion is not fulfilled after a given number of iterations. In a preferred embodiment, the means for storing n-tuples or LUTs comprises means for storing adjusted output score functions and decision rules and separate means for storing best so far output score functions and decision rules or best so far classification system configuration values. Here, the means for adjusting the output score functions and decision rules may further be adapted to replace previously separately stored best so far output score functions and decision rules if the determined global quality value is closer to fulfil the global quality criterion than the global quality value corresponding to previously separately stored best so far output score functions and decision rules. Thus, even if the system should not be able to fulfil the global quality criterion within a given number of iterations, the system may always comprise the "best so far" system configuration.

According to a further aspect of the present invention there is also provided a system for classifying input data examples of unknown classes into at least one of a plurality of classes, said system comprising:

storage means for storing a number or set of n-tuples or Look Up Tables (LUTs) with each n-tuple or LUT comprising a number of rows corresponding to at least a subset of the number of possible classes and further comprising a number of column vectors, each column vector being addressed by signals or elements of a sampled input data example, and each column vector having cell values being determined during a training process based on one or more sets of training input data examples,

storage means for storing one ore more output score functions and/or one or more decision rules, each output score function and/or decision rule being determined during a training or validation process based on one or more sets of validation input data examples, said system further comprising: input means for receiving an input data example to be classified,

10

25

30

means for sampling the received input data example and addressing column vectors in the stored set of n-tuples or LUTs,

13

means for addressing specific rows in the set of n-tuples or LUTs, said rows corresponding to a specific class,

means for determining output score values using the stored output score functions and at least part of the stored column vector values, and means for determining a winning class or classes based on the output score values and stored decision rules.

It should be understood that it is preferred that the cell values of the column vectors and the output score functions and/or decision rules of the classification system according to the present invention are determined by use of a training system according to any of the above described systems. Accordingly, the column vector cell values and the output score functions and/or decision rules may be determined during a training process according to any of the above described methods. 15

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the present invention and in order to show how the same may be carried into effect, reference will now be made by way of example to the ac-20 companying drawings in which:

Fig. 1 shows a block diagram of a RAM classification network with Look Up Tables (LUTs),

Fig. 2 shows a detailed block diagram of a single Look Up Table (LUT) according to an embodiment of the present invention,

Fig. 3 shows a block diagram of a computer classification system according to the present invention,

Fig. 4 shows a flow chart of a learning process for LUT column cells according to an embodiment of the present invention,

Fig. 5 shows a flow chart of a learning process according to a embodiment of the present invention,

Fig. 6 shows a flow chart of a classification process according to the present invention.

5

10

DETAILED DESCRIPTION OF THE INVENTION

In the following a more detailed description of the architecture and concept of a classification system according to the present invention will be given including an example of a training process of the column cells of the architecture and an example of a classification process. Furthermore, different examples of learning processes for the output score functions and the decision rules according to embodiments of the present invention are described.

Notation

 Ω :

30

15

The notation used in the following description and examples is as follows:

X: The training set.

 \bar{x} : An example from the training set.

20 N_X : Number of examples in the training set X.

 \bar{x}_i : The j'th example from a given ordering of the training set X.

 \overline{y} : A specific example (possible outside the training set).

C: Class label.

 $C(\bar{x})$: Class label corresponding to example \bar{x} (the true class).

25 C_{w} : Winner Class obtained by classification.

 C_T : True class obtained by classification.

 N_c : Number of training classes corresponding to the maximum number of

rows in a LUT.

Set of LUTs (each LUT may contain only a subset of all possible address

columns, and the different columns may register only subsets of the ex-

isting classes).

 N_{LUT} : Number of LUTs.

 N_{COL} : Number of different columns that can be addressed in a specific LUT

(LUT dependent).

 X_C : The set of training examples labelled class C.

 v_{iC} : Entry counter for the cell addressed by the i'th column and the C'th class.

5 $a_i(\overline{y})$: Index of the column in the i'th LUT being addressed by example \overline{y} .

 \overline{v} : Vector containing all v_{iC} elements of the LUT network.

 Q_L : Local quality function.

 Q_G : Global quality function.

 \mathbf{B}^{c_i,c_j} : Decision rule matrix

10 M_{c_i,c_j} : Cost matrix

 $S \cdot :$ Score function

Γ·: Leave-one-out cross-validation score function

P: Path matrix

 $\bar{\beta}$: Parameter vector

15 E: Set of decision rules

 d_c : Score value on class c

D(·): Decision function

Description of architecture and concept

In the following references are made to Fig. 1, which shows a block diagram of a RAM classification network with Look Up Tables (LUTs), and Fig. 2, which shows a detailed block diagram of a single Look Up Table (LUT) according to an embodiment of the present invention.

A RAM-net or LUT-net consists of a number of Look Up Tables (LUTs) (1.3). Let the number of LUTs be denoted N_{LUT} . An example of an input data vector \overline{y} to be classified may be presented to an input module (1.1) of the LUT network. Each LUT may sample a part of the input data, where different numbers of input signals may be sampled for different LUTs (1.2) (in principle it is also possible to have one LUT sampling the whole input space). The outputs of the LUTs may be fed (1.4) to an output module (1.5) of the RAM classification network.

10

20

25

30

In Fig. 2 it is shown that for each LUT the sampled input data (2.1) of the example presented to the LUT-net may be fed into an address selecting module (2.2). The address selecting module (2.2) may from the input data calculate the address of one or more specific columns (2.3) in the LUT. As an example, let the index of the column in the i'th LUT being addressed by an input example \bar{y} be calculated as $a_i(\bar{y})$. The number of addressable columns in a specific LUT may be denoted N_{col} , and varies in general from one LUT to another. The information stored in a specific row of a LUT may correspond to a specific class C (2.4). The maximum number of rows may then correspond to the number of classes, N_C . The number of cells within a column corresponds to the number of rows within the LUT. The column vector cells may correspond to class specific entry counters of the column in question. The entry counter value for the cell addressed by the i'th column and class C is denoted v_{iC} (2.5).

The v_{iC} -values of the activated LUT columns (2.6) may be fed (1.4) to the output module (1.5), where one or more output scores may be calculated for each class and where these output scores in combinations with a number of decision rules determine the winning class.

Let $\overline{x} \in X$ denote an input data example used for training and let \overline{y} denote an input data example not belonging to the training set. Let $C(\overline{x})$ denote the class to which \overline{x} belongs. The class assignment given to the example \overline{y} is then obtained by calculating one or more output scores for each class. The output scores obtained for class C is calculated as functions of the v_{iC} numbers addressed by the example \overline{y} but will in general also depend on a number of parameters $\overline{\beta}$. Let the m^{th} output score of class C be denoted $S_{C,m}(v_{iC},\overline{\beta})$. A classification is obtained by combining the obtained output scores from all classes with a number of decision rules. The effect of the decision rules is to define regions in the output score space that must be addressed by the output score values to obtain a given winner class. The set of decision rules is denoted Ξ and corresponds to a set of decision borders.

10

15

20

Figure 3 shows an example of a block diagram of a computer classification system according to the present invention. Here a source such as a video camera or a database provides an input data signal or signals (3.0) describing the example to be classified. These data are fed to a pre-processing module (3.1) of a type which can extract features, reduce, and transform the input data in a predetermined manner. An example of such a pre-processing module is a FFT-board (Fast Fourier Transform). The transformed data are then fed to a classification unit (3.2) comprising a RAM network according to the present invention. The classification unit (3.2) outputs a ranked classification list which might have associated confidences. The classification unit can be implemented by using software to programme a standard Personal Computer or programming a hardware device, e.g. using programmable gate arrays combined with RAM circuits and a digital signal processor. These data can be interpreted in a post-processing device (3.3), which could be a computer module combining the obtained classifications with other relevant information. Finally the result of this interpretation is fed to an output device (3.4) such as an actuator.

Initial training of the architecture

The flow chart of Fig. 4 illustrates a one pass learning scheme or process for the determination of the column vector entry counter or cell distribution, v_{iC} -distribution (4.0), according to an embodiment of the present invention, which may be described as follows:

- 1. Initialise all entry counters or column vector cells by setting the cell values, \bar{v} , to zero (4.1).
- 25 2. Present the first training input example, \bar{x}_1 from the training set X to the network (4.2, 4.3).
 - 3. Calculate the columns addressed for the first LUT (4.4, 4.5).
 - 4. Add 1 to the entry counters in the rows of the addressed columns that correspond to the class label of \bar{x} (increment $v_{a,(\bar{x}),C(\bar{x})}$ in all LUTs) (4.6).
- 30 5. Repeat step 4 for the remaining LUTs (4.7, 4.8).
 - 6. Repeat steps 3-5 for the remaining training input examples (4.9, 4.10). The number of training examples is denoted $N_{\rm v}$.

20

25

Initialisation of output score functions and decision rules

Before the trained network can be used for classification the output score functions and the decision rules must be initialised.

18

5 Classification of an unknown input example

When the RAM network of the present invention has been trained to thereby determine values for the column cells whereby the LUTs may be defined, the network may be used for classifying an unknown input data example.

In a preferred example according to the present invention, the classification is performed by using the decision rules Ξ and the output scores obtained from the output score functions. Let the decision function invoking Ξ and the output scores be denoted D(·). The winning class can then be written as:

Winner Class = D(
$$\Xi$$
, $S_{1,1}$, $S_{1,2}$,... $S_{1,i}$... $S_{2,1}$,.... $S_{2,k}$,... $S_{l,m}$)

Figure 6 shows a block diagram of the operation of a computer classification system in which a classification process (6.0) is performed. The system acquires one or more input signals (6.1) using e.g. an optical sensor system. The obtained input data are preprocessed (6.2) in a pre-processing module, e.g. a low-pass filter, and presented to a classification module (6.3) which according to an embodiment of the invention may be a LUT-network. The output data from the classification module is then post-processed in a post-processing module (6.4), e.g. a CRC algorithm calculating a cyclic redundancy check sum, and the result is forwarded to an output device (6.5), which could be a monitor screen.

Adjustment of output score function parameter $\bar{\beta}$ and adjustment of decision rules Ξ

Usually the initially determined values of $\bar{\beta}$ and the initial set of rules Ξ will not present the optimal choices. Thus, according to a preferred embodiment of the present invention, an optimisation or adjustment of the $\bar{\beta}$ values and the Ξ rules should be performed.

10

25

In order to select or adjust the parameters $\overline{\beta}$ and the rules Ξ to improve the performance of the classification system, it is suggested according to an embodiment of the invention to define proper quality functions for measuring the performance of the $\overline{\beta}$ -values and the Ξ - rules. Thus, a local quality function $Q_L(\overline{v},\overline{x},X,\overline{\beta},\Xi)$ may be defined, where \overline{v} denotes a vector containing all v_{iC} elements of the LUT network. The local quality function may give a confidence measure of the output classification of a specific example \overline{x} . If the quality value does not satisfy a given criterion the $\overline{\beta}$ values and the Ξ rules are adjusted to make the quality value satisfy or closer to satisfying the criterion (if possible).

Furthermore a global quality function: $Q_{\sigma}(\overline{v}, X, \overline{\beta}, \Xi)$ may be defined. The global quality function may measure the performance of the input training set as a whole.

Fig. 5 shows a flow chart for adjustment or learning of the β values and the Ξ rules according to the present invention.

Example 1

This example illustrates an optimisation procedure for adjusting the decision rules Ξ .

We consider N_c training classes. The class label c is an integer running from 1 to N_c .

For each class c we define a single output score function:

$$S_c\left(v_{\mathsf{a}_1(\bar{x}),c},\overline{\beta}\right) = \sum_{i \in \Omega} \beta_i \Theta_k\left(v_{\mathsf{a}_1(\bar{x}),c}\right), \ \overline{\beta} = (\beta_1,\beta_2,\ldots)$$

where $\delta_{i,j}$ is Kroneckers delta ($\delta_{i,j}=1$ if i=j and 0 otherwise), and

$$\Theta_k(z) = \begin{cases} 1 & \text{if } z \ge k \\ 0 & \text{if } z < k \end{cases}.$$

WO 99/67694

5

10

20

25

30

The expression for the output score function illustrates a possible family of functions determined by a parameter vector $\overline{\beta}$. This example, however, will only illustrate a procedure for adjusting the decision rules Ξ , and not $\overline{\beta}$. For simplicity of notation we therefore initialise all values in $\overline{\beta}$ to one. We then have:

$$S_c(v_{\mathbf{a}_i(x),c}) = \sum_{i \in \Omega} \Theta_k(v_{\mathbf{a}_i(x),c}).$$

With this choice of $\overline{\beta}$ the possible output values for S_c are the integers from 0 to N_{LUT} (both inclusive).

The leave-one-out cross-validation score or vote-count on a given class c is:

15
$$\Gamma_{\mathbf{c}}(\bar{x}) = \sum_{i \in \Omega} \Theta_{k+\delta_{\mathbf{C}_{\tau(x),c}}} (\nu_{\mathbf{a}_{i}(\bar{x}),c}),$$

where $C_T(\bar{x})$ denotes the true class of example \bar{x} .

For all possible inter-class combinations (c_1, c_2) , $(c_1 \in \{1, 2, ..., N_c\}, c_2 \in \{1, 2, ..., N_c\}) \land (c_1 \neq c_2)$ we wish to determine a suitable decision border in the score space spanned by the two classes. The matrix \mathbf{B}^{c_1, c_2} is defined to contain the decisions corresponding to a given set of decision rules applied to the two corresponding output score values; i.e whether class c_1 or class c_2 wins. The row and column dimensions are given by the allowed ranges of the two output score values, i.e. the matrix dimension is $(N_{LUT} + 1) \times (N_{LUT} + 1)$. Accordingly, the row and column indexes run from 0 to N_{LUT} .

Each matrix element contains one of the following three values: c_1, c_2 and k_{AMB} , where k_{AMB} is a constant different from c_1 and c_2 . Here we use $k_{AMB} = 0$. The two output score values S_1 and S_2 obtained for class c_1 and class c_2 , respectively, are used to address the element $b_{S_1,S_2}^{c_1,c_2}$ in the matrix B^{c_1,c_2} . If the addressed element contains the value c_1 it means that class c_1 wins over class c_2 . If the addressed element contains the value c_2 it

15

20

means that class c_2 wins over class c_1 . Finally, if the addressed element contains the value k_{AMB} , it means the decision is ambiguous.

The decision rules are initialised to correspond to a WTA decision. This corresponds to having a decision border along the diagonal in the matrix \mathbf{B}^{c_1,c_2} . Along the diagonal the elements are initialised to take on the value k_{AMB} . Above and respectively below the diagonal the elements are labelled with opposite class values.

A strategy for adjusting the initialised decision border according to an information measure that uses the $v_{a_i(\bar{x}),c}$ values is outlined below.

Create the cost matrix \mathbf{M}^{c_1,c_2} with elements given as:

$$\begin{split} m_{i,j} &= \alpha_{c_1,c_2} \sum_{\bar{x} \in \mathcal{N}_{c_1}} \Bigl(\Gamma_{c_1} \bigl(\overline{x} \bigr) \leq i \wedge \Gamma_{c_2} \bigl(\overline{x} \bigr) \geq j \Bigr) + \\ \alpha_{c_2,c_1} &\sum_{\bar{x} \in \mathcal{N}_{c_2}} \Bigl(\Gamma_{c_1} \bigl(\overline{x} \bigr) \geq i \wedge \Gamma_{c_2} \bigl(\overline{x} \bigr) \leq j \Bigr) \end{split}$$

 α_{c_1,c_2} denotes the cost associated with classifying an example from class c_1 in to class c_2 and α_{c_2,c_1} denotes the cost associated with the opposite error. It is here assumed that a logical true evaluates to one and a logical false evaluates to zero.

A minimal-cost path from $m_{0,0}$ to $m_{N_{LUT},N_{LUT}}$ can be calculated using e.g. a dynamic programming approach as shown by the following pseudo-code: (the code uses a path matrix \mathbf{P}^{c_1,c_2} with the same dimensions as \mathbf{B}^{c_1,c_2})

// Loop through all entries in the cost matrix in reverse order:

```
for i := Nιστ to 0 step -1

{
    for j := Nιστ to 0 step -1
    {
        if ((i <> Νιστ) and (j <> Νιστ))
        {
        // For each entry, calculate the lowest
```

```
22
                        // associated total-costs given as
                        m_{i,j} := m_{i,j} + min(m_{i+1,j}, m_{i+1,j+1}, m_{i,j+1});
                        // (Indexes outside the matrix are considered
                        // as addressing the value of infinity)
 5
                        if (\min(m_{i+1,j}, m_{i+1,j+1}, m_{i,j+1}) = = m_{i+1,j}) p_{i,j} := 1;
                        if (\min(m_{i+1,j}, m_{i+1,j+1}, m_{i,j+1}) = \min(m_{i+1,j+1}) p_{i,j} := 2;
                        if (min(m_{i+1,j}, m_{i+1,j+1}, m_{i,j+1}) = m_{i,j+1}) p_{i,j} := 3;
                      }
10
                    }
                 }
                 //According to the dynamic programming approach the path
15
                 //with the smallest associated total-cost is now obtained
                 //by traversing the P-matrix in the following manner to obtain
                 //the decision border in the score space spanned by the
                 //classes in question.
                 i := 0;
20
                 i := 0;
                  repeat
                  {
25
                       b_{i,i}^{c_1,c_2} := 0;
                       for a := i + 1 to Nour step 1
                           b_{a,j}^{c_1,c_2} := c_1;
30
                       for a := j + 1 to Neur step 1
                       {
                           b_{i,a}^{c_1,c_2} := c_2;
                       }
```

The dynamic programming approach can be extended with regularisation terms, which constraint the shape of the border.

An alternative method for determining the decision border could be to fit a *B-spline* with two control points in such a way that the associated cost is minimised.

Using the decision borders determined from the strategy outlined above an example can now be classified in the following manner:

- Present the example to the network in order to obtain the score values or vote numbers $S_c(\vec{x}) = \sum_{i \in \Omega} \Theta_k(v_{a_i(x),c})$
- Define a new set of score values d_c for all classes and initialise the scores to zero: $d_c = 0$, $1 \le c \le N_c$.
- Loop through all possible inter-class combinations, (c_1,c_2) , and update the vote-values: $d_{b_{S_1(\vec{t}),S_2(\vec{t})}}:=d_{b_{S_1(\vec{t}),S_2(\vec{t})}}+1$
 - The example is now classified as belonging to the class with the label found from $\underset{c}{\operatorname{argmax}}(d_c)$.
- A leave-one-out cross-validation test using the decision borders determined from the strategy outlined above is obtained in the following manner:
 - Present the example to the network in order to obtain the leave-one-out score values or vote numbers $\Gamma_{c}(\bar{x}) = \sum_{i \in O} \Theta_{k+\delta_{C_{T}(i),c}}(v_{a_{i}(\bar{x}),c})$
- Define a new set of score values d_c for all classes and initialise the scores to zero:
 d_c = 0, 1 ≤ c ≤ N_c.

- Loop through all possible inter-class combinations, (c_1, c_2) , and update the vote-values: $d_{b_{\Gamma_0(\vec{x}),\Gamma_0(\vec{x})}^{G,F,F}} := d_{b_{\Gamma_0(\vec{x}),\Gamma_0(\vec{x})}^{G,F,F,F}} + 1$
- The example is now classified as belonging to the class with the label found from $argmax(d_c)$.

10

With reference to Figure 5 the above adjustment procedure for the decision rules (borders) Ξ may be described as

- Initialise the system by setting all values of $\bar{\beta}$ to one, selecting a WTA scheme on a two by two basis and by training the n-tuple classifier according to the flow chart in Fig. 4. (5.0)
- Batch mode optimisation is chosen. (5.1)
- Test all examples by performing a leave-one-out classification as outline above (5.12) and calculate the obtained leave-one-out cross-validation error rate and use it as the Q_G -measure. (5.13)
- Store the values of $\bar{\beta}$ and the corresponding Q_G -value as well as the Ξ -rules (the \mathbf{B}^{c_1,c_2} matrices). (5.14)
 - If the Q_G -value does not satisfy a given criterion or another stop criterion is met then adjust the Ξ -rules according to the dynamic programming approach outline above. (5.16, 5.15)
- If the Q_G -value is satisfied or another stop criterion is met then select the combination with the lowest total error-rate. (5.17)

In the above case one would as alternative stop criterion use a criterion that only allows two loops through the adjustment scheme.

25

Example 2

This example illustrates an optimisation procedure for adjusting $\overline{\beta}$.

For each class we again define a single output score

30

$$S_c(v_{\mathbf{a}_r(x),c},\overline{\beta}) = \sum_{c \in \Omega} \Theta_{k_c}(v_{\mathbf{a}_r(x),c}).$$

With these score values the example is now classified as belonging to the class with the label found from $argmax(S_c)$.

- In this example we use $\overline{\beta} = (k_1, k_2, ..., k_{N_c})$. We also initialise the Ξ rules to describe a WTA decision when comparing the output scores from the different classes.
 - Initialise the system by setting all k_c -values to one, selecting a WTA scheme and by training the n-tuple classifier according to the flow chart in Fig. 4. (5.0)
- Batch mode optimisation is chosen. (5.1)
 - Test all examples using a leave-one-out cross-validation test (5.12) and calculate the obtained leave-one-out cross-validation error rate used as Q_G . (5.13)
 - Store the values of $\bar{\beta}$ and the corresponding Q_G value. (5.14)
 - Loop through all possible combinations of k_{c_1}, k_{c_2}, K , $k_{c_{N_c}}$ where $k_j \in \{1, 2, 3, ..., k_{MAX}\}$. (5.16, 5.15)
 - Select the combination with the lowest total error-rate. (5.17)

For practical use, the $k_{\it MAX}$ -value will depend upon the skewness of the class priors and the number of address-lines used in the RAM net system.

20

15

Example 3

This example also illustrates an optimisation procedure for adjusting $\overline{\beta}$ but with the use of a local quality function Q_L .

25 For each class we now define as many output scores as there are competing classes, i.e. $N_c - 1$ output scores:

$$S_{c_j,c_k}\left(v_{\mathsf{a}_i(\vec{x}),c_j},\overline{\beta}\right) = \sum_{i \in \Omega} \Theta_{k_{c_j,c_k}}\left(v_{\mathsf{a}_i(\vec{x}),c_j}\right), \ \forall k \neq j\,.$$

30 With these score values a decision is made in the following manner

- Define a new set of score values d_c for all classes and initialise the scores to zero: $d_c = 0$, $1 \le c \le N_c$.
- Loop through all possible inter-class combinations, (c_1, c_2) , and update the vote-values:

If
$$S_{c_1,c_2} > S_{c_2,c_1}$$
 then $d_{c_1} := d_{c_1} + 1$ else $d_{c_2} := d_{c_2} + 1$.

• The example is now classified as belonging to the class with the label found from $\underset{c}{\operatorname{argmax}}(d_c)$.

10

25

In this example we use

$$\overline{\beta} = (k_{c_1,c_2}, k_{c_1,c_3}, \dots, k_{c_1,c_{N_{c-1}}}, k_{c_2,c_1}, \dots, k_{c_{N_c},c_{N_{c-1}}}).$$

- We also initialise the Ξ rules to describe a WTA decision when comparing the output scores from the different classes.
 - Initialise the system by setting all k_{c_1,c_2} -values to say two, selecting a WTA scheme and by training the n-tuple classifier according to the flow chart in Fig. 4. (5.0)
 - On line mode as opposed to batch mode optimisation is chosen. (5.1)
- For all examples in the training set (5.2, 5.7, and 5.8) do:
 - Test each example to obtain the winner class $C_{y'}$ in a leave-one-crossvalidation. Let the Q_L measure compare $C_{y'}$ with the true class C_T . (5.3,5.4)
 - If $C_{W'} \neq C_{T}$ a leave-one-out error is made so the values of $k_{c_{W'},c_{T}}$ and $k_{c_{T'},c_{W'}}$ are adjusted by incrementing $k_{c_{W'},c_{T'}}$ with a small value, say 0.1, and by decrementing $k_{c_{T'},c_{W'}}$ with a small value, say 0.05. If the adjustment will bring the values below one, no adjustment is performed. (5.5,5.6)
- When all examples have been processed the global information measure Q_G (e.g. the leave-one-out-error-rate) is calculated and the values of $\bar{\beta}$ and Q_G are stored. (5.9,5,10)

- 27
- If Q_G or another stop criterion is not fulfilled the above loop is repeated. (5.11)
- If Q_G is satisfied or another stop criterion is fulfilled the best value of the stored Q_G values are chosen together with the corresponding parameter values $\overline{\beta}$ and decision rules Ξ . (5.17,5.18)

10

The foregoing description of preferred exemplary embodiments of the invention has been presented for the purpose of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and obviously many modifications and variations are possible in light of the present invention to those skilled in the art. All such modifications which retain the basic underlying principles disclosed and claimed herein are within the scope of this invention.

15

CLAIMS

5

10

15

1. A method of training a computer classification system which can be defined by a network comprising a number of n-tuples or Look Up Tables (LUTs), with each n-tuple or LUT comprising a number of rows corresponding to at least a subset of possible classes and further comprising a number of columns being addressed by signals or elements of sampled training input data examples, each column being defined by a vector having cells with values, said method comprising

determining the column vector cell values based on one or more training sets of input data examples for different classes so that at least part of the cells comprise or point to information based on the number of times the corresponding cell address is sampled from one or more sets of training input examples, and

determining one or more output score functions for evaluation of at least one output score value per class, and/or

determining one or more decision rules to be used in combination with at least part of the obtained output scores to determine a winning class,

said output score functions and/or decision rules being determined based on the information of at least part of the determined column vector cell values.

- 20 2. A method according to claim 1, wherein the output score functions and/or the decision rules are determined based on a validation set of input data examples.
- 3. A method according to claim 2, wherein the validation set comprises at25 least part of the training set(s) of input data examples.
 - 4. A method according to any of the claims 1-3, wherein the output score functions are determined by a set of parameter values.
- 30 5. A method according to any of the claims 1-4, wherein determination of the output score functions and/or the decision rules is based on an information measure evaluating the performance on the validation example set, said evaluating measure preferably being a leave-one-out cross validation test.

6. A method according to any of the claims 1-5, wherein an output score space is given by the output score variable containing the output score values, and the decision rules define regions in the output score space to be addressed by obtained output score values to obtain a winning class.

5

15

- 7. A method according to any of the claims 1-6, wherein determination of the output score functions and/or the decision rules comprises initialising the output score functions and/or the decision rules.
- 10 8. A method according to claim 7, wherein the initialisation of the output score functions comprises determining a number of set-up parameters.
 - 9. A method according to claims 7 or 8, wherein the initialisation of the output score functions comprises setting all output score functions to a pre-determined mapping function.
 - 10. A method according to any of the claims 7-9, wherein the initialisation of the decision rules comprises setting the rules to a pre-determined decision scheme.
- 20 11. A method according to any of the claims 1-10, further comprising adjusting the output score functions and/or the decision rules, said adjustment preferably being based on an information measure evaluation.
- 12. A method according to claim 11, wherein said information measure evaluation is a leave-one-out cross validation test.
 - 13. A method according to claim 8 and any of the claims 11-12, wherein the adjustment comprises changing the values of the set-up parameters.
- 30 14. A method according to any of the claims 1-13, wherein the determination of the column vector cell values comprises the training steps of
 - a) applying a training input data example of a known class to the classification network, thereby addressing one or more column vectors,

network.

5

10

20

30

- 30
 b) incrementing, preferably by one, the value or vote of the cells of the addressed column vector(s) corresponding to the row(s) of the known class, and
 c) repeating steps (a)-(b) until all training examples have been applied to the
- 15. A method according to any of the claims 11-14, wherein the adjustment process comprises the steps of

determining a global quality value based on at least part of the column vector cell values,

determining if the global quality value fulfils a required quality criterion, and adjusting at least part of output score functions and/or part of the decision rules until the global quality criterion is fulfilled.

- 15 16. A method according to claim any of the claims 11-15, wherein the adjustment process comprises the steps of
 - a) selecting an input example from the validation set(s),
 - b) determining a local quality value corresponding to the sampled validation input example, the local quality value being a function of at least part of the addressed column cell values,
 - c) determining if the local quality value fulfils a required local quality criterion, if not, adjusting one or more of the output score functions and/or decision rules if the local quality criterion is not fulfilled,
- 25 d) selecting a new input example from a predetermined number of examples of the validation set(s),
 - e) repeating the local quality test steps (b)-(d) for all the predetermined validation input examples,
 - f) determining a global quality value based on at least part of the column vectors being addressed during the local quality test,
 - g) determining if the global quality value fulfils a required global quality criterion, and,
 - h) repeating steps (a)-(g) until the global quality criterion is fulfilled.

10

- 17. A method according to claim 16, wherein steps (b)-(d) are carried out for all examples of the validation set(s).
- 18. A method according to any of the claims 15-17, wherein the local and/or global quality value is defined as functions of at least part of the column cells.
 - 19. A method according to any of the claims 15-18, wherein the adjustment iteration process is stopped if the quality criterion is not fulfilled after a given number of iterations.

20. A method of classifying input data examples into at least one of a plurality of classes using a computer classification system configured according to any of the claims 1-19, whereby column cell values for each n-tuple or LUT and output score functions and/or decision rules are determined using on one or more training or valida-

- 15 tion sets of input data examples, said method comprising
 - a) applying an input data example to be classified to the configured classification network thereby addressing column vectors in the set of n-tuples or LUTs,
 - b) selecting a set of classes which are to be compared using a given set of output score functions and decision rules thereby addressing specific rows in the set of n-tuples or LUTs,
 - c) determining output score values as a function of the column vector cells and using the determined output score functions,
 - d) comparing the calculated output values using the determined decision rules, and
 - e) selecting the class or classes that win(s) according to the decision rules.

25

30

- 21. A system for training a computer classification system which can be defined by a network comprising a stored number of n-tuples or Look Up Tables (LUTs), with each n-tuple or LUT comprising a number of rows corresponding to at least a subset of possible classes and further comprising a number of columns being addressed by signals or elements of sampled training input data examples, each column being defined by a vector having cells with values, said system comprising
- a) input means for receiving training input data examples of known classes,
- b) means for sampling the received input data examples and addressing column vectors in the stored set of n-tuples or LUTs,

10

15

20

25

- c) means for addressing specific rows in the set of n-tuples or LUTs, said rows corresponding to a known class,
- d) storage means for storing determined n-tuples or LUTs,
- e) means for determining column vector cell values so as to comprise or point to information based on the number of times the corresponding cell address is sampled from the training set(s) of input examples, and
- f) means for determining one or more output score functions and/or one or more decision rules, said output score functions and/or decision rules determining means being adapted to determine said functions and/or rules based on the information of at least part of the determined column vector cell values.
- 22. A system according to claim 21, wherein the means for determining the output score functions is adapted to determine such functions from a family of output score functions determined by a set of parameter values.
- 23. A system according to claim 21 or 22, wherein the means for determining the output score functions and/or the decision rules is adapted to determine such functions and/or rules based on a validation set of input data examples of known classes, said validation set preferably comprising at least part of the training set(s) used for determining the column cell values.
- 24. A system according to any of the claims 21-23, wherein the means for determining the output score functions and decision rules comprises means for initialising one or more sets output score functions and/or decision rules, and means for adjusting output score functions and decision rules by use of at least part of the validation set of input examples.
- 25. A system according to any of the claims 21-24, wherein the means for determining the column vector cell values is adapted to determine these values as a function of the number of times the corresponding cell address is sampled from the set(s) of training input examples.
- 26. A system according to any of the claims 21-25, wherein, when a training input data example belonging to a known class is applied to the classification network

thereby addressing one or more column vectors, the means for determining the column vector cell values is adapted to increment the value or vote of the cells of the addressed column vector(s) corresponding to the row(s) of the known class, said value preferably being incremented by one.

- 27. A system according to any of the claims 24-26, wherein the means for adjusting output score functions and/or decision rules is adapted to
 - determine a global quality value based on at least part of column vector cell values,
- determine if the global quality value fulfils a required global quality criterion, and
 - adjust at least part of the output score functions and/or decision rules until the global quality criterion is fulfilled.
- 15 28. A system according to any of the claims 24-27, wherein the means for adjusting output score functions and decision rules is adapted to
 - determine a local quality value corresponding to a sampled validation input example, the local quality value being a function of at least part of the addressed vector cell values,
- 20 b) determine if the local quality value fulfils a required local quality criterion,
 - c) adjust one or more of the output score functions and/or decision rules if the local quality criterion is not fulfilled,
 - d) repeat the local quality test for a predetermined number of training input examples,
- e) determine a global quality value based on at least part of the column vectors being addressed during the local quality test,
 - determine if the global quality value fulfils a required global quality criterion,
 and,
- g) repeat the local and the global quality test until the global quality criterion is fulfilled.
 - 29. A system according to any of the claims 27 or 28, wherein the means for adjusting the output score functions and decision rules is further adapted to stop the

iteration process if the global quality criterion is not fulfilled after a given number of iterations.

34

- 30. A system according to any of the claims 21-29, wherein the means for storing n-tuples or LUTs comprises means for storing adjusted output score functions and decision rules and separate means for storing best so far output score functions and decision rules or best so far classification system configuration values.
- 31. A system according to claim 30, wherein the means for adjusting the output score functions and decision rules is further adapted to replace previously separately stored best so far output score functions and decision rules with obtained adjusted output score functions and decision rules if the determined global quality value is closer to fulfil the global quality criterion than the global quality value corresponding to previously separately stored best so far output score functions and decision rules.

32. A system for classifying input data examples of unknown classes into at least one of a plurality of classes, said system comprising:

storage means for storing a number or set of n-tuples or Look Up Tables (LUTs) with each n-tuple or LUT comprising a number of rows corresponding to at least a subset of the number of possible classes and further comprising a number of column vectors, each column vector being addressed by signals or elements of a sampled input data example, and each column vector having cell values being determined during a training process based on one or more sets of training input data examples,

storage means for storing one ore more output score functions and/or one or more decision rules, each output score function and/or decision rule being determined during a training or validation process based on one or more sets of validation input data examples, said system further comprising: input means for receiving an input data example to be classified, means for sampling the received input data example and addressing column

vectors in the stored set of n-tuples or LUTs, means for addressing specific rows in the set of n-tuples or LUTs, said rows corresponding to a specific class,

25

20

15

35
means for determining output score values using the stored output score func-
tions and at least part of the stored column vector values, and
means for determining a winning class or classes based on the output score val-
ues and stored decision rules

- 33. A system according to claim 32, wherein the cell values of the column vectors and the output score functions and/or decision rules of the classification system are determined by use of a training system according to any of the claims 21-31.
- 10 34. A system according to claim 32, wherein the column vector cell values and the output score functions and/or decision rules are determined during a training process according to any of the claims 1-19.

15

Figure 2

Figure 3

Figure 4

Figure 6

PATENT COOPERATION TREATY

PCT

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

(PCT Article 36 and Rule 70)

Applicant's or agent's file reference P 269 WO	FOR FURTHER ACTION See Notification of Transmittal of International Preliminary Examination Report (Form PCT/IPEA/416)			
International application No.	International filing date (day/month	n/year) Priority date (day/month/year)		
PCT/DK99/00340	21/06/1999	23/06/1998		
International Patent Classification (IPC) or r G06N3/08	 ational classification and IPC			
Applicant				
INTELLIX A/S et al.				
This international preliminary example and is transmitted to the applicant		d by this International Preliminary Examining Authority		
2. This REPORT consists of a total of 7 sheets, including this cover sheet.				
This report is also accompanied by ANNEXES, i.e. sheets of the description, claims and/or drawings which have been amended and are the basis for this report and/or sheets containing rectifications made before this Authority (see Rule 70.16 and Section 607 of the Administrative Instructions under the PCT).				
These annexes consist of a total of 11 sheets.				
3. This report contains indications relating to the following items:				
Ⅰ ⊠ Basis of the report		•		
II Priority		•		
III Non-establishment of	opinion with regard to novelty, in	ventive step and industrial applicability		
IV 🔲 Lack of unity of invent	ion			
	under Article 35(2) with regard to ions suporting such statement	novelty, inventive step or industrial applicability;		
VI 🗆 Certain documents c	ted			
VII 🖾 Certain defects in the	international application			
VIII 🖾 Certain observations	on the international application			
Date of submission of the demand	Date of	completion of this report		
18/01/2000		2 7. 09. 00		
Name and mailing address of the internation	nal Authoriz	zed officer		
preliminary examining authority:				
European Patent Office D-80298 Munich Casteller, M				
Tel. +49 89 2399 - 0 Tx: 5236 Fax: +49 89 2399 - 4465	· •	one No. +49.89.2399.2666		

Form PCT/IPEA/409 (cover sheet) (January 1994)

1. Basis of the report

This report has been drawn on the basis of (substitute sheets which have been furnished to the receiving Office in response to an invitation under Article 14 are referred to in this report as "originally filed" and are not annexed to the report since they do not contain amendments.):
 Description, pages:
 1-27 as originally filed

Claims, No.: 14/07/2000 17/07/2000 with letter of as received on 1-42 Drawings, sheets: as originally filed 1/6-6/6 2. The amendments have resulted in the cancellation of: the description. pages: ☐ the claims. Nos.: sheets: ☐ the drawings. 3.
This report has been established as if (some of) the amendments had not been made, since they have been considered to go beyond the disclosure as filed (Rule 70.2(c)):

4. Additional observations, if necessary:

V. Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement

1. Statement

Novelty (N)

Yes:

Claims 1-42

No:

Claims

Inventive step (IS)

Yes:

Claims 1-42

No:

Yes:

Claims Claims 1-42

No:

Claims

2. Citations and explanations

Industrial applicability (IA)

see separate sheet

VII. Certain defects in the international application

The following defects in the form or contents of the international application have been noted:

see separate sheet

VIII. Certain observations on the international application

The following observations on the clarity of the claims, description, and drawings or on the question whether the claims are fully supported by the description, are made:

see separate sheet

Re Item V

Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement

- Reference is made to the following document: 1.
 - D1: T. MARTINI JØRGENSEN: "Classification of handwritten digits using a neural net architecture", INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, vol. 8, no. 1, February 1997
- Independent claims 1 and 26 relate to a method and system for training a computer 2. classification system e.g. for pattern recognition.
- The following features of the application, and particularly of the preambles of claims 3. 1 and 26, are known from the prior art.
- 3.1 Lines 1 to 6 of both claims 1 and 26 recite a (RAM-based neural) network including a number of LUTs (Look Up Tables), said LUTs being addressed by (digitized) input signals (or parts thereof) and storing data collectively forming a large matrix whose columns are addressed by said input signal (or part thereof) and whose rows correspond to at least a subset of possible classes (in which the input signals can be classified, e.g. for pattern recognition purposes). Such a network of LUTs is completely anticipated by D1, cf. figure 1 thereof. Like in the present application an address selector uses at least some of the (digital) signals of an input vector to be classified to address one column of the matrix distributively stored in the LUTs (cf. D1, page 19, right column, line 2), whilst the matrix rows correspond to different object classes (cf. D1, page 18, left column, par. 2).
- 3.2 The claims further recite (claim 1, lines 7-10; claim 26, lines 7-16) that during a training phase one or more training sets of input signals are fed to the network so that each time an input signal (of which the corresponding class is known a priori) selects a matrix column, the column cells corresponding to the one or more classes are "sampled"; thus, at least part of the matrix cells of a so trained network "comprise" or point to information relating to the number of times a given cell has been "sampled" (i.e. addressed) during training.

Such a training of the network of LUTs is however described in D1 as a "simple one pass learning scheme", cf. D1, page 19, left column, last two lines, and right column, lines 1-5. In such scheme, the general idea is storing the numbers of training inputs (or examples) visiting a matrix cell, cf. D1, page 20, right column, lines 16-17.

4. The invention is characterised over the prior art by the features recited in the characterising portion of claims 1 and 26, according to which the output score functions and/or the decision rules are determined based on the information of at least part of the determined column vector cells, and that the output score functions and/or decision rules are adjusted based on an information measure evaluation. The problem is to find suitable score functions and/or decision rules. The present invention describes a solution to finding such scores and rules. The numbers kept in the column vector cells are the key information that is used in determining either adequate score functions to be used with a given set of decision rules or in determining adequate decision rules to be used in combination with a given set of score functions or as a final possibility for finding at the same time adequate decision rules and score functions.

As illustrated by the three examples in the description of the present application the normal strategy will be to start up with an initial set of score functions and an initial choice of decision rules. Using a validation set of examples one can for each of these examples read out the addressed column vector values, which are then used to evaluate an information measure measuring the performance of the present choice of score functions and decision rules. In case the obtained performance does not satisfy a given performance constraint one can then adjust the score functions and/or the decision rules and evaluate once again the performance.

If a performance satisfying a given constraint is achieved, the corresponding score functions and decision rules are kept. Otherwise, after a given set of iterations, the set of score functions and decision rules that gives the best performance will normally be chosen. The adjustment simply involves changing the score functions and/or the decision rules.

5. Independent claims 25 and 40 relate to a method and system for using the thus trained computer classification system wherein the plurality of determined and possibly adjusted output score functions and decision rules provided as defined in claims 1 and 26 are used as opposed to the conventional approach of using one

predetermined output score function and one predetermined decision rule only.

- Consequently, the subject-matter set out in the present claims, and particularly in 6. claims 1 and 26, and in claims 25 and 40 is considered to be novel and non-obvious with respect to the disclosures of the available prior art. It is also evident that the invention is industrially applicable.
 - The requirements of paragraphs (1) to (4) of Article 33 PCT are thus met.

Re Item VII

Certain defects in the international application

- The opening part of the description should have been modified to bring it into 7. agreement with any amended independent claim, Rule 5.1 (a) (iii) PCT.
 - All claims should have included, whenever possible, reference signs relating to the technical features referred to therein, Rule 6.2 (b) PCT.
 - Contrary to the requirements of Rule 5.1(a)(ii) PCT, the relevant background art disclosed in document D1 is not mentioned in the description, nor is this document identified therein.
 - At line 4 of claim 25, "using on one" should read "using one".

Re Item VIII

Certain observations on the international application

- Although the overall invention can be understood from the application and its claims, 8. present independent claim 26 is in part worded in a confusing manner, so that the requirements of Article 6 PCT are not completely met.
 - Independent method claim 25 is not rendered dependent by the reference to claims 1-24, as it is aimed at a method for using (i.e. "classifying input data examples") the network trained as set out in the preceding claims (the same would have been true for claim 40 if it contained such a reference).
 - The claim does not make sufficiently clear, however, that the "given set of output score functions and decision rules" recited at lines 8-9 are those in fact those determined and possibly adjusted during training as set out in said preceding claims

1-24.

Claim 25 could have been clarified, for instance, by deleting "configured" at line 2 (claims 1-24 set out a method for training a computer classification system), shifting "according to any of the claims 1-24" after "examples", line 5, and replacing: "determined using on one" (line 4) with "determined and possibly adjusted using one", as well as "a given set of" (line 8), and "the determined" (lines 12 and 13) with "said".

To some extent, similar amendments could have been made to independent apparatus claim 40.

22 DEC 2000

1

CLAIMS

5

10

15

20

25

1. A method of training a computer classification system which can be defined by a network comprising a number of n-tuples or Look Up Tables (LUTs), with each n-tuple or LUT comprising a number of rows corresponding to at least a subset of possible classes and further comprising a number of columns being addressed by signals or elements of sampled training input data examples, each column being defined by a vector having cells with values, wherein

the column vector cell values are determined based on one or more training sets of input data examples for different classes so that at least part of the cells comprise or point to information based on the number of times the corresponding cell address is sampled from one or more sets of training input examples, said method being characterised in that

one or more output score functions are determined for evaluation of at least one output score value per class, and

one or more decision rules are determined to be used in combination with at least part of the obtained output scores to determine a winning class, wherein said determination of the output score functions and decision rules comprises

determining output score functions based on the information of at least part of the determined column vector cell values, and adjusting at least part of the output score functions based on an information measure evaluation, and/or

determining decision rules based on the information of at least part of the determined column vector cell values, and adjusting at least part of the decision rules based on an information measure evaluation.

- 2. A method according to claim 1, wherein the output score functions are determined based on a validation set of input data examples.
- 3. A method according to claim 1 or 2, wherein the decision rules are determined based on a validation set of input data examples.
- 4. A method according to any of the claims 1-3, wherein determination of the output score functions is based on an information measure evaluating the performance on the validation example set.

35

- 5. A method according to any of the claims 1-4, wherein determination of the decision rules is based on an information measure evaluating the performance on the validation example set.
- 6. A method according to any of the claims 3-5, wherein the validation example set equals at least part of the training set and the information measure is based on a leave-one-out cross validation evaluation.
- 7. A method according to any of the claims 3-6, wherein the validation set comprises at least part of the training set(s) of input data examples.
 - 8. A method according to any of the claims 1-7, wherein the output score functions are determined by a set of parameter values.
- 15 9. A method according to any of the claims 1-8, wherein determination of the output score functions comprises initialising the output score functions.
 - 10. A method according to claim 9, wherein the initialisation of the output score functions comprises determining a number of set-up parameters.
 - 11. A method according to claims 9 or 10, wherein the initialisation of the output score functions comprises setting all output score functions to a predetermined mapping function.
- 25 12. A method according to any of the claims 1-11, wherein determination of the decision rules comprises initialising the decision rules.
 - 13. A method according to claim 12, wherein the initialisation of the decision rules comprises setting the rules to a pre-determined decision scheme.
 - 14. A method according to any of the claims 10-13, wherein the adjustment comprises changing the values of the set-up parameters.
- 15. A method according to any of the claims 1-14, wherein the determination of the column vector cell values comprises the training steps of

determining if the global quality value fulfils a required quality criterion, and adjusting at least part of the output score functions and part of the decision rules until the global quality criterion is fulfilled.

5

10

15

- A method according to any of the claims 1-15 or 20, wherein the ad-21. justment process comprises the steps of
- selecting an input example from the validation set(s), a)
- determining a local quality value corresponding to the sampled validation b) input example, the local quality value being a function of at least part of the addressed column cell values,
 - determining if the local quality value fulfils a required local quality criterion, if c) not, adjusting one or more of the output score functions and the decision rules if the local quality criterion is not fulfilled,
 - selecting a new input example from a predetermined number of examples of d) the validation set(s),
 - repeating the local quality test steps (b)-(d) for all the predetermined validae) tion input examples,
- determining a global quality value based on at least part of the column vec-20 f) tors being addressed during the local quality test,
 - determining if the global quality value fulfils a required global quality criterion, g) and,
 - repeating steps (a)-(g) until the global quality criterion is fulfilled. h)

25

- A method according to claim 17, 19 or 21, wherein steps (b)-(d) are 22. carried out for all examples of the validation set(s).
- A method according to any of the claims 16-22, wherein the local 30 23. and/or global quality value is defined as functions of at least part of the column cells.
 - A method according to any of the claims 16-23, wherein the adjust-24. ment iteration process is stopped if the quality criterion is not fulfilled after a given number of iterations.

10

15

20

25

- 25. A method of classifying input data examples into at least one of a plurality of classes using a computer classification system configured according to any of the claims 1-24, whereby column cell values for each n-tuple or LUT and output score functions and/or decision rules are determined using on one or more training or validation sets of input data examples, said method comprising
- applying an input data example to be classified to the configured classification network thereby addressing column vectors in the set of n-tuples or LUTs,
- selecting a set of classes which are to be compared using a given set of output score functions and decision rules thereby addressing specific rows in the set of n-tuples or LUTs,
 - determining output score values as a function of the column vector cells and using the determined output score functions,
 - d) comparing the calculated output values using the determined decision rules, and
 - e) selecting the class or classes that win(s) according to the decision rules.
- 26. A system for training a computer classification system which can be defined by a network comprising a stored number of n-tuples or Look Up Tables (LUTs), with each n-tuple or LUT comprising a number of rows corresponding to at least a subset of possible classes and further comprising a number of columns being addressed by signals or elements of sampled training input data examples, each column being defined by a vector having cells with values, said system comprising
- a) input means for receiving training input data examples of known classes,
 - means for sampling the received input data examples and addressing column vectors in the stored set of n-tuples or LUTs,
- c) means for addressing specific rows in the set of n-tuples or LUTs, said rows corresponding to a known class,
- 30 d) storage means for storing determined n-tuples or LUTs,
 - e) means for determining column vector cell values so as to comprise or point to information based on the number of times the corresponding cell address is sampled from the training set(s) of input examples, characterised in that said system further comprises

AMENDED SHEFT

- means for determining one or more output score functions and one or more f) decision rules, wherein said output score functions and decision rules determining means is adapted for determining said output score functions based on the information of at least part of the determined column vector cell values and a validation set of input 5 data examples of known classes, and determining said decision rules based on the information of at least part of the determined column vector cell values and a validation set of input data examples of known classes, and wherein the means for determining the output score functions and decision rules comprises 10 means for initialising one or more sets of output score functions and/or decision rules, and means for adjusting output score functions and decision rules by use of at least part of the validation set of input examples.
 - 27. A system according to claim 26, wherein the means for determining the output score functions is adapted to determine such functions from a family of output score functions determined by a set of parameter values.
 - 28. A system according to claim 26 or 27, wherein said validation set comprises at least part of the training set(s) used for determining the column cell values.
 - 29. A system according to any of the claims 26-28, wherein the means for determining the column vector cell values is adapted to determine these values as a function of the number of times the corresponding cell address is sampled from the set(s) of training input examples.
 - 30. A system according to any of the claims 26-29, wherein, when a training input data example belonging to a known class is applied to the classification network thereby addressing one or more column vectors, the means for determining the column vector cell values is adapted to increment the value or vote of the cells of the addressed column vector(s) corresponding to the row(s) of the known class, said value preferably being incremented by one.

20

25

	31.	A system according to any of the claims 20-30, wherein the means for		
	adjus	sting output score functions is adapted to		
		determine a global quality value based on at least part of column vector cell		
		values,		
5		determine if the global quality value fulfils a required global quality criterion,		
		and		
		adjust at least part of the output score functions until the global quality crite-		
		rion is fulfilled.		
10	32.	A system according to any of the claims 26-31, wherein the means for		
	adjus	sting output score functions and decision rules is adapted to		
	a)	determine a local quality value corresponding to a sampled validation input		
		example, the local quality value being a function of at least part of the ad-		
		dressed vector cell values,		
15	b)	determine if the local quality value fulfils a required local quality criterion,		
	c)	adjust one or more of the output score functions if the local quality criterion is		
		not fulfilled,		
	d)	repeat the local quality test for a predetermined number of training input ex-		
		amples,		
20	e)	determine a global quality value based on at least part of the column vectors		
e		being addressed during the local quality test,		
	f)	determine if the global quality value fulfils a required global quality criterion,		
		and,		
	g)	repeat the local and the global quality test until the global quality criterion is		
25		fulfilled.		
	33.	A system according to any of the claims 26-32, wherein the means for		
	adjus	adjusting decision rules is adapted to		
		determine a global quality value based on at least part of column vector cell		
30		values,		
		determine if the global quality value fulfils a required global quality criterion,		
		and		
		adjust at least part of the decision rules until the global quality criterion is ful-		

filled.

- A system according to any of the claims 26-33, wherein the means for 34. adjusting output score functions and decision rules is adapted to determine a local quality value corresponding to a sampled validation input example, the local quality value being a function of at least part of the addressed vector cell values, 5 determine if the local quality value fulfils a required local quality criterion, b) adjust one or more of the decision rules if the local quality criterion is not c) fulfilled, repeat the local quality test for a predetermined number of training input exd) amples, 10 determine a global quality value based on at least part of the column vectors e) being addressed during the local quality test, determine if the global quality value fulfils a required global quality criterion, f) and, repeat the local and the global quality test until the global quality criterion is 15 g) fulfilled. A system according to any of the claims 26-30, wherein the means for 35. adjusting decision rules is adapted to determine a global quality value based on at least part of column vector cell 20 values, determine if the global quality value fulfils a required global quality criterion, and adjust least part of the output score functions and decision rules until the global quality criterion is fulfilled. 25 A system according to any of the claims 26-30 or 35, wherein the 36. means for adjusting output score functions and decision rules is adapted to
 - b) determine if the local quality value fulfils a required local quality criterion,

dressed vector cell values,

determine a local quality value corresponding to a sampled validation input

example, the local quality value being a function of at least part of the ad-

c) adjust one or more of the output score functions and decision rules if the local quality criterion is not fulfilled,

a)

- d) repeat the local quality test for a predetermined number of training input examples.
- e) determine a global quality value based on at least part of the column vectors being addressed during the local quality test,
- 5 f) determine if the global quality value fulfils a required global quality criterion, and,
 - g) repeat the local and the global quality test until the global quality criterion is fulfilled.
- 10 37. A system according to any of the claims 31-36, wherein the means for adjusting the output score functions and decision rules is further adapted to stop the iteration process if the global quality criterion is not fulfilled after a given number of iterations.
- 15 38. A system according to any of the claims 26-37, wherein the means for storing n-tuples or LUTs comprises means for storing adjusted output score functions and decision rules and separate means for storing best so far output score functions and decision rules or best so far classification system configuration values.
- 20 39. A system according to claim 38, wherein the means for adjusting the output score functions and decision rules is further adapted to replace previously separately stored best so far output score functions and decision rules with obtained adjusted output score functions and decision rules if the determined global quality value is closer to fulfil the global quality criterion than the global quality value corresponding to previously separately stored best so far output score functions and decision rules.
 - 40. A system for classifying input data examples of unknown classes into at least one of a plurality of classes, said system comprising:
 - storage means for storing a number or set of n-tuples or Look Up Tables

 (LUTs) with each n-tuple or LUT comprising a number of rows corresponding
 to at least a subset of the number of possible classes and further comprising
 a number of column vectors, each column vector being addressed by signals
 or elements of a sampled input data example, and each column vector hav-

ing cell values being determined during a training process based on one or more sets of training input data examples,

storage means for storing one ore more output score functions and/or one or more decision rules, each output score function and/or decision rule being determined during a training or validation process based on one or more sets of validation input data examples, said system further comprising:

input means for receiving an input data example to be classified, means for sampling the received input data example and addressing column vectors in the stored set of n-tuples or LUTs, means for addressing specific rows in the set of n-tuples or LUTs, said rows corresponding to a specific class, means for determining output score values using the stored output score functions and at least part of the stored column vector values, and means for determining a winning class or classes based on the output score values and stored decision rules.

- A system according to claim 40, wherein the cell values of the column vectors and the output score functions and/or decision rules of the classification system are determined by use of a training system according to any of the claims 26-39.
- A system according to claim 40, wherein the column vector cell values and the output score functions and/or decision rules are determined during a training process according to any of the claims 1-24.

25

5

10

15

CLAIMS

5

10

15

1. A method of training a computer classification system which can be defined by a network comprising a number of n-tuples or Look Up Tables (LUTs), with each n-tuple or LUT comprising a number of rows corresponding to at least a subset of possible classes and further comprising a number of columns being addressed by signals or elements of sampled training input data examples, each column being defined by a vector having cells with values, said method comprising

determining the column vector cell values based on one or more training sets of input data examples for different classes so that at least part of the cells comprise or point to information based on the number of times the corresponding cell address is sampled from one or more sets of training input examples, and

determining one or more output score functions for evaluation of at least one output score value per class, and/or

determining one or more decision rules to be used in combination with at least part of the obtained output scores to determine a winning class,

said output score functions and/or decision rules being determined based on the information of at least part of the determined column vector cell values.

- 20 2. A method according to claim 1, wherein the output score functions and/or the decision rules are determined based on a validation set of input data examples.
- 3. A method according to claim 2, wherein the validation set comprises at least part of the training set(s) of input data examples.
 - 4. A method according to any of the claims 1-3, wherein the output score functions are determined by a set of parameter values.
- 30 5. A method according to any of the claims 1-4, wherein determination of the output score functions and/or the decision rules is based on an information measure evaluating the performance on the validation example set, said evaluating measure preferably being a leave-one-out cross validation test.

6. A method according to any of the claims 1-5, wherein an output score space is given by the output score variable containing the output score values, and the decision rules define regions in the output score space to be addressed by obtained output score values to obtain a winning class.

5

- 7. A method according to any of the claims 1-6, wherein determination of the output score functions and/or the decision rules comprises initialising the output score functions and/or the decision rules.
- 10 8. A method according to claim 7, wherein the initialisation of the output score functions comprises determining a number of set-up parameters.
 - 9. A method according to claims 7 or 8, wherein the initialisation of the output score functions comprises setting all output score functions to a pre-determined mapping function.
 - 10. A method according to any of the claims 7-9, wherein the initialisation of the decision rules comprises setting the rules to a pre-determined decision scheme.
- 20 11. A method according to any of the claims 1-10, further comprising adjusting the output score functions and/or the decision rules, said adjustment preferably being based on an information measure evaluation.
- 12. A method according to claim 11, wherein said information measureevaluation is a leave-one-out cross validation test.
 - 13. A method according to claim 8 and any of the claims 11-12, wherein the adjustment comprises changing the values of the set-up parameters.
- 30 14. A method according to any of the claims 1-13, wherein the determination of the column vector cell values comprises the training steps of
 - a) applying a training input data example of a known class to the classification network, thereby addressing one or more column vectors,

incrementing, preferably by one, the value or vote of the cells of the adb) dressed column vector(s) corresponding to the row(s) of the known class, and repeating steps (a)-(b) until all training examples have been applied to the c) 5 network. 15. A method according to any of the claims 11-14, wherein the adjustment process comprises the steps of determining a global quality value based on at least part of the column vector 10 cell values, determining if the global quality value fulfils a required quality criterion, and adjusting at least part of output score functions and/or part of the decision rules until the global quality criterion is fulfilled. 15 16. A method according to claim any of the claims 11-15, wherein the adjustment process comprises the steps of selecting an input example from the validation set(s), a) determining a local quality value corresponding to the sampled validation input b) example, the local quality value being a function of at least part of the ad-20 dressed column cell values, c) determining if the local quality value fulfils a required local quality criterion, if not, adjusting one or more of the output score functions and/or decision rules if the local quality criterion is not fulfilled, selecting a new input example from a predetermined number of examples of 25 d) the validation set(s), e) repeating the local quality test steps (b)-(d) for all the predetermined validation input examples, f) determining a global quality value based on at least part of the column vectors 30 being addressed during the local quality test, determining if the global quality value fulfils a required global quality criterion, g) and, repeating steps (a)-(g) until the global quality criterion is fulfilled. h)

- 17. A method according to claim 16, wherein steps (b)-(d) are carried out for all examples of the validation set(s).
- 18. A method according to any of the claims 15-17, wherein the local and/orglobal quality value is defined as functions of at least part of the column cells.
 - 19. A method according to any of the claims 15-18, wherein the adjustment iteration process is stopped if the quality criterion is not fulfilled after a given number of iterations.

15

- 20. A method of classifying input data examples into at least one of a plurality of classes using a computer classification system configured according to any of the claims 1-19, whereby column cell values for each n-tuple or LUT and output score functions and/or decision rules are determined using on one or more training or validation sets of input data examples, said method comprising
- a) applying an input data example to be classified to the configured classification network thereby addressing column vectors in the set of n-tuples or LUTs,
- b) selecting a set of classes which are to be compared using a given set of output score functions and decision rules thereby addressing specific rows in the set of n-tuples or LUTs,
- c) determining output score values as a function of the column vector cells and using the determined output score functions,
- d) comparing the calculated output values using the determined decision rules, and
- e) selecting the class or classes that win(s) according to the decision rules.

25

30

- 21. A system for training a computer classification system which can be defined by a network comprising a stored number of n-tuples or Look Up Tables (LUTs), with each n-tuple or LUT comprising a number of rows corresponding to at least a subset of possible classes and further comprising a number of columns being addressed by signals or elements of sampled training input data examples, each column being defined by a vector having cells with values, said system comprising
- a) input means for receiving training input data examples of known classes,
- b) means for sampling the received input data examples and addressing column vectors in the stored set of n-tuples or LUTs,

- c) means for addressing specific rows in the set of n-tuples or LUTs, said rows corresponding to a known class,
- d) storage means for storing determined n-tuples or LUTs,
- e) means for determining column vector cell values so as to comprise or point to information based on the number of times the corresponding cell address is sampled from the training set(s) of input examples, and
- f) means for determining one or more output score functions and/or one or more decision rules, said output score functions and/or decision rules determining means being adapted to determine said functions and/or rules based on the information of at least part of the determined column vector cell values.
- 22. A system according to claim 21, wherein the means for determining the output score functions is adapted to determine such functions from a family of output score functions determined by a set of parameter values.
- 23. A system according to claim 21 or 22, wherein the means for determining the output score functions and/or the decision rules is adapted to determine such functions and/or rules based on a validation set of input data examples of known classes, said validation set preferably comprising at least part of the training set(s) used for determining the column cell values.
- 24. A system according to any of the claims 21-23, wherein the means for determining the output score functions and decision rules comprises means for initialising one or more sets output score functions and/or decision rules, and means for adjusting output score functions and decision rules by use of at least part of the validation set of input examples.
- 25. A system according to any of the claims 21-24, wherein the means for determining the column vector cell values is adapted to determine these values as a function of the number of times the corresponding cell address is sampled from the set(s) of training input examples.
- 26. A system according to any of the claims 21-25, wherein, when a training input data example belonging to a known class is applied to the classification network

20

25

30

5

thereby addressing one or more column vectors, the means for determining the column vector cell values is adapted to increment the value or vote of the cells of the addressed column vector(s) corresponding to the row(s) of the known class, said value preferably being incremented by one.

5

10

30

27. A system according to any of the claims 24-26, wherein the means for adjusting output score functions and/or decision rules is adapted to

determine a global quality value based on at least part of column vector cell values,

determine if the global quality value fulfils a required global quality criterion, and

adjust at least part of the output score functions and/or decision rules until the global quality criterion is fulfilled.

- 15 28. A system according to any of the claims 24-27, wherein the means for adjusting output score functions and decision rules is adapted to
 - a) determine a local quality value corresponding to a sampled validation input example, the local quality value being a function of at least part of the addressed vector cell values,
- 20 b) determine if the local quality value fulfils a required local quality criterion,
 - c) adjust one or more of the output score functions and/or decision rules if the local quality criterion is not fulfilled,
 - d) repeat the local quality test for a predetermined number of training input examples,
- e) determine a global quality value based on at least part of the column vectors being addressed during the local quality test,
 - f) determine if the global quality value fulfils a required global quality criterion, and,
 - g) repeat the local and the global quality test until the global quality criterion is fulfilled.
 - 29. A system according to any of the claims 27 or 28, wherein the means for adjusting the output score functions and decision rules is further adapted to stop the

iteration process if the global quality criterion is not fulfilled after a given number of iterations.

- 30. A system according to any of the claims 21-29, wherein the means for storing n-tuples or LUTs comprises means for storing adjusted output score functions and decision rules and separate means for storing best so far output score functions and decision rules or best so far classification system configuration values.
- 31. A system according to claim 30, wherein the means for adjusting the output score functions and decision rules is further adapted to replace previously separately stored best so far output score functions and decision rules with obtained adjusted output score functions and decision rules if the determined global quality value is closer to fulfil the global quality criterion than the global quality value corresponding to previously separately stored best so far output score functions and decision rules.
 - 32. A system for classifying input data examples of unknown classes into at least one of a plurality of classes, said system comprising:

storage means for storing a number or set of n-tuples or Look Up Tables (LUTs) with each n-tuple or LUT comprising a number of rows corresponding to at least a subset of the number of possible classes and further comprising a number of column vectors, each column vector being addressed by signals or elements of a sampled input data example, and each column vector having cell values being determined during a training process based on one or more sets of training input data examples,

storage means for storing one ore more output score functions and/or one or more decision rules, each output score function and/or decision rule being determined during a training or validation process based on one or more sets of validation input data examples, said system further comprising: input means for receiving an input data example to be classified, means for sampling the received input data example and addressing column vectors in the stored set of n-tuples or LUTs, means for addressing specific rows in the set of n-tuples or LUTs, said rows corresponding to a specific class,

15

5

20

25

30

means for determining output score values using the stored output score functions and at least part of the stored column vector values, and means for determining a winning class or classes based on the output score values and stored decision rules.

5

- 33. A system according to claim 32, wherein the cell values of the column vectors and the output score functions and/or decision rules of the classification system are determined by use of a training system according to any of the claims 21-31.
- 10 34. A system according to claim 32, wherein the column vector cell values and the output score functions and/or decision rules are determined during a training process according to any of the claims 1-19.

15

20

International application No.

PCT/DK 99/00340

A. CLASSIFICATION OF SUBJECT MATTER

IPC7: G06N 3/08, G06F 15/80 // G06K 9/64 According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC7: G06N, G06F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE,DK,FI,NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPI

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Gitation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	IEEE Transactions on Pattern Analyis & Machine Intelligence, Volume 10, No 4, April 1999, Thomas Martini Jorgensen et al, "Theoretical Analysis and Improved Decision Criteria for the n-Tuple Classifier", see the whole document	1-34
A	International Journal of Neural Systems, Volume 8, No 1, February 1997, Thomas Martini Jorgensen, "Classification of Handwritten Digits Using a Ram Neural Net Architecture" page 17 - page 25	1-34
		
A	WO 9200572 A1 (UNIVERSITY COLLEGE LONDON), 9 January 1992 (09.01.92)	1-36
		

X	Further documents are listed in the continuation of Box	C	X See patent family annex.
* "A"	Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance	" I'"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" "L"	erlier document but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other		document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"O"	special reason (as specified) document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than	"Y"	document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
_	the priority date claimed	~& ~	document member of the same patent family
	e of the actual completion of the international search December 1999		f mailing of the international search report

Authorized officer

Sylvain Dunand/ci Telephone No. + 46 8 782 25 00

Box 5055, S-102 42 STOCKHOLM Facsimile No. +46 8 666 02 86 Form PCT/ISA/210 (second sheet) (July 1992)

Name and mailing address of the ISA/

Swedish Patent Office

INTERNATIONAL SEARCH REPORT

International application No.

PCT/DK 99/00340

	•	PCI/DK 99/0	
C (Continua	ation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Gtation of document, with indication, where appropriate, of the rele	evant passages	Relevant to claim No.
E,A	EP 0935212 A1 (INTELLIX A/S), 11 August 1999 (11.08.99)		1-34
	•		

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

02/11/99

PCT/DK 99/00340

Patent document cited in search report		Publication date		Patent family	Publication date	
WO	9200572	A1	09/01/92	AT	131642 T	15/12/95
				AU	8192791 A	23/01/92
				AU	8214591 A	23/01/92
				CA	2085896 A	30/12/91
				DE	69115488 D,T	09/05/96
				EP	0537208 A,B	21/04/93
				· SE	0537208 T3	
				GB	2260837 A,B	28/04/93
				US	5175798 A	29/12/92
				US	5475795 A	12/12/95
				MO	9200573 A	09/01/92
 ΞΡ	0935212	A1	11/08/99	WO	9940521 A	12/08/99

REC'D **23 DEC 1999**WIPO PCT

Kongeriget Danmark

Patent application No.:

PA 1998 00883

PRIORITY DOCUMENT

Date of filing:

23 June 1998

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Applicant:

Risø

Postboks 49

DK-4000 Roskilde

This is to certify the correctness of the following information:

The attached photocopy is a true copy of the following document:

The specification, claims and drawings as filed with the application on the filing date indicated above

Patent- og Varemærkestyrelsen

Erhvervsministeriet

TAASTRUP 23 Dec 1999

Lizzi Vester Head of Section 12:30

2 % JUNI 1998

N-TUPLE OR RAM BASED NEURAL NETWORK CLASSIFICATION SYSTEM AND METHOD

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to n-tuple or RAM based neural network classification systems and, more particularly, to n-tuple or RAM based classification systems where the decision criteria applied to obtain the output scores and compare these output scores to obtain a classification are determined during a training process.

2. Description of the Prior Art

A known way of classifying objects or patterns represented by electric signals or binary codes and, more precisely, by vectors of signals applied to the inputs of neural network classification systems lies in the implementation of a so-called learning or training phase. This phase generally consists of the configuration of a classification network that fulfils a function of performing the envisaged classification as efficiently as possible by using one or more sets of signals, called learning or training sets, where the membership of each of these signals in one of the classes in which it is desired to classify them is known. This method is known as supervised learning or learning with a teacher.

A subclass of classification networks using supervised learning are networks using memory-based learning. Here, one of the oldest memory-based networks is the "n-tuple network" proposed by Bledsoe and Browning (Bledsoe, W.W. and Browning, I, 1959, "Pattern recognition and reading by machine", Proceedings of the Eastern Joint Computer Conference, pp. 225-232) and more recently described by Morciniec and Rohwer (Morciniec, M. and Rohwer, R., 1996, "A theoretical and experimental account of n-tuple classifier performance", Neural Comp., pp. 629-642).

One of the benefits of such a memory-based system is a very fast computation time, both during the learning phase and during classification. For the known types of n-tuple networks, which is also known as "RAM networks" or "weightless neural networks", learning may be accomplished by recording features of patterns in a random-access memory (RAM), which requires just one presentation of the training set(s) to the system.

The training procedure for a conventional RAM based neural network is described by Jørgensen (co-inventor of this invention) et al. in a contribution to a recent book on RAM based neural networks (T.M. Jørgensen, S.S. Christensen, and C. Liisberg, "Cross-validation and information measures for RAM based neural networks," RAM-based neural networks, J. Austin, ed., World Scientific, London, pp. 78-88, 1998). The contribution describes how the RAM based neural network may be considered as comprising a number of Look Up Tables (LUTs). Each LUT may probe a subset of a binary input data vector. In the conventional scheme the bits to be used are selected at random. The sampled bit sequence is used to construct an address. This address corresponds to a specific entry (column) in the LUT. The number of rows in the LUT

į

corresponds to the number of possible classes. For each class the output can take on the values 0 or 1. A value of 1 corresponds to a vote on that specific class. When performing a classification, an input vector is sampled, the output vectors from all LUTs are added, and subsequently a winner takes all decision is made to classify the input vector. In order to perform a simple training of the network, the output values may initially be set to 0. For each example in the training set, the following steps should then be carried out:

Present the input vector and the target class to the network, for all LUTs calculate their corresponding column entries, and set the output value of the target class to 1 in all the "active" columns.

By use of such a training strategy it may be guaranteed that each training pattern always obtains the maximum number of votes. As a result such a network makes no misclassification on the training set, but ambiguous decisions may occur. Here, the generalisation capability of the network is directly related to the number of input bits for each LUT. If a LUT samples all input bits then it will act as a pure memory device and no generalisation will be provided. As the number of input bits is reduced the generalisation is increased at an expense of an increasing number of ambiguous decisions. Furthermore, the classification and generalisation performances of a LUT are highly dependent on the actual subset of input bits probed. The purpose of an "intelligent" training procedure is thus to select the most appropriate subsets of input data.

Jørgensen et al. further describes what is named a "leave-one-out cross-validation test" which suggests a method for selecting an optimal number of input connections to use per LUT in order to obtain a low classification error rate with a short overall computation time. In order to perform such a cross-validation test it is necessary to obtain a knowledge of the actual number of training examples that have visited or addressed the cell or element corresponding to the addressed column and class. It is therefore suggested that these numbers are stored in the LUTs. It is also suggested by Jørgensen et al. how the LUTs in the network can be selected in a more optimum way by successively training new sets of LUTs and performing cross validation test on each LUT. Thus, it is known to have a RAM network in which the LUTs are selected by presenting the training set to the system several times.

The output vector from the RAM network contains a number of output scores, one for each possible class. As mentioned above a decision is normally made by classifying an example in to the class having the largest output score. This simple winner-takes-all (WTA) scheme assures that the true class of a training examples cannot lose to one of the other classes. One problem with the RAM net classification scheme is that it often behaves poorly when trained on a training set where the distribution of examples between the training classes are highly skewed. Accordingly there is a need for understanding the influence of the composition of the training material on the behaviour of the RAM classification system as well as a general understanding of the influence of specific parameters of the architecture on the performance. From such an understanding it could be possible to modify the classification scheme to improve its performance and competitiveness with other schemes. Such improvements of the RAM based classification systems is provided according to the present invention.

23/96/98

SUMMARY OF THE INVENTION

Recently Thomas Martini Jørgensen and Christian Linneberg (inventors of this invention) have provided a statistical framework that have made it possible to make a theoretical analysis that relates the expected output scores of the n-tuple net to the stochastic parameters of the example distributions, the number of available training examples, and the number of address lines n used for each LUT or n-tuple. From the obtained expressions, they have been able to study the behaviour of the architecture in different scenarios. Furthermore, they have based on the theoretical results come up with proposals for modifying the n-tuple classification scheme in order to make it operate as a close approximation to the maximum a posteriori or maximum likelihood estimator. The resulting modified decision criteria can for example deal with the socalled skewed class prior problem causing the n-tuple net to often behave poorly when trained on a training set where the distribution of examples between the training classes are highly skewed. Accordingly the proposed changes of the classification scheme provides an essential improvement of the architecture. The suggested changes in decision criteria are not only applicable to the original n-tuple architecture based on random memorisation. It also applies to extended n-tuple schemes, some of which use a more optimal selection of the address lines and some of which apply an extended weight scheme.

According to a first aspect of the present invention there is provided a method for training a computer classification system which can be defined by a network comprising a number of n-tuples or Look Up Tables (LUTs), with each n-tuple or LUT comprising a number of rows corresponding to at least a subset of possible classes and further comprising a number of columns being addressed by signals or elements of sampled training input data examples, each column being defined by a vector having cells with values, said method comprising

determining the column vector cell values based on one or more training sets of input data examples for different classes so that at least part of the cells comprise or point to information based on the number of times the corresponding cell address is sampled from one or more sets of training input examples. The method further comprises

determining one or more output score functions for evaluation of at least one output score value per class, and/or

determining one or more decision rules to be used in combination with at least part of the obtained output score values to determine a winning class.

It is preferred that the output score values are evaluated or determined based on the information of at least part of the determined column vector cell values.

According to the present invention it is preferred that the output score functions and/or the decision rules are determined based on the information of at least part of the determined column vector cell values.

It is also preferred to determine the output score functions from a family of output score functions determined by a set of parameter values. Thus, the output score functions may be determined either from the set of parameter values, from the

information of at least part of the determined column vector cell values or from both the set of parameter values and the information of at least part of the determined column vector cell values.

It should be understood that the training procedure of the present invention may be considered a two step training procedure. The first step may comprise determining the column vector cell values, while the second step may comprise determining the output score functions and/or the decision rules.

As already mentioned, the column vector cells are determined based on one or more training sets of input data examples of known classes, but the output score functions and/or the decision rules may be determined based on a validation set of input data examples of known classes. Here the validation set may be equal to or part of the training set(s), but the validation set may also be a set of examples not included in the training set(s).

According to the present invention the training and/or validation input data examples may preferably be presented to the network as input signal vectors.

It is preferred that determination of the output score functions is performed so as to allow different ways of using the contents of the column vector cells in calculating the output scores used to find the winning class amongst two or more classes. The way the contents of the column vector cells are used to obtain the score of one class might depend on which class(es) it is compared with.

It is also preferred that the decision rules used when comparing two or more classes in the output space are allowed to deviate from the decision rules corresponding to a WTA decision. Changing the decision rules for choosing two or more classes is equivalent to allowing individual transformation of the class output scores and keeping a WTA comparison. These corresponding transformations might depend on which class(es) a given class is compared with.

The determination of how the output score functions may be calculated from the column vector cell values, as well as the determination of how many output score functions to use and/or the determination of the decision rules to be applied on the output score values may comprise the initialisation of one or more sets of output score functions and/or decision rules.

Furthermore it is preferred to adjust at least part of the output score functions and/or the decision rules based on an information measure evaluating the performance on the validation example set. If the validation set equals the training set or part of the training set it is preferred to use a leave-one-out cross-validation evaluation or extensions of this concept.

In order to determine or adjust the output score functions and the decision rules according to the present invention, the column cell values should be determined. Here, it is preferred that at least part of the column cell values are determined as a function of the number of times the corresponding cell address is sampled from the set(s) of training input examples. Alternatively, the information of the column cells may be

determined so that the maximum column cell value is 1, but at least part of the cells have an associated value being a function of the number of times the corresponding cell address is sampled from the training set(s) of input examples. Preferably, the column vector cell values are determined and stored in storing means before the determination or adjustment of the output score functions and/or the decision rules.

According to the present invention, a preferred way of determining the column vector cell values may comprise the training steps of

- a) applying a training input data example of a known class to the classification network, thereby addressing one or more column vectors,
- b) incrementing, preferably by one, the value or vote of the cells of the addressed column vector(s) corresponding to the row(s) of the known class, and
- c) repeating steps (a)-(b) until all training examples have been applied to the network.

However, it should be understood that the present invention also covers embodiments where the information of the column cells is determined by alternative functions of the number of times the cell has been addressed by the input training set(s). Thus, the cell information does not need to comprise a count of all the times the cell has been addressed, but may for example comprise an indication of when the cell has been visited zero times, once, more than once, and/or twice and more than twice and so on.

In order to determine the output score functions and/or the decision rules, it is preferred to adjust these output score functions and/or decision rules, which adjustment process may comprise one or more iteration steps. The adjustment of the output score functions and/or the decision rules may comprise the steps of

determining a global quality value based on at least part of the column vector cell values,

determining if the global quality value fulfils a required quality criterion, and adjusting at least part of output score functions and/or part of the decision rules until the global quality criterion is fulfilled.

The adjustment process may also include determination of a local quality value for each sampled validation input example, with one or more adjustments being performed if the local quality value does not fulfil a specified or required local quality criterion for the selected input example. As an example the adjustment of the output score functions and/or the decision rules may comprise the steps of

- a) selecting an input example from the validation set(s),
- b) determining a local quality value corresponding to the sampled validation input example, the local quality value being a function of at least part of the addressed column cell values.
- c) determining if the local quality value fulfils a required local quality criterion, if not, adjusting one or more of the output score functions and/or decision rules if the
- local quality criterion is not fulfilled,
 d) selecting a new input example from a predetermined number of examples of the validation set(s),

12:30

09

- repeating the local quality test steps (b)-(d) for all the predetermined validation e) input examples,
- determining a global quality value based on at least part of the column vectors f) being addressed during the local quality test,
- determining if the global quality value fulfils a required global quality criterion, g)
- P) repeating steps (a)-(g) until the global quality criterion is fulfilled.

Preferably, steps (b)-(d) of the above mentioned adjustment process may be carried out for all examples of the validation set(s).

The local and/or global quality value may be defined as functions of at least part of the column cells.

It should be understood that when adjusting the output score functions and/or decision rules by use of one or more quality values each with a corresponding quality criterion, it may be preferred to stop the adjustment iteration process if a quality criterion is not fulfilled after a given number of iterations.

It should also be understood that during the adjustment process the adjusted output score functions and/or decision rules are preferably stored after each adjustment, and when the adjustment process includes the determination of a global quality value, the step of determination of the global quality value may further be followed by separately storing the hereby obtained output score functions and/or decision rules or classification system configuration values if the determined global quality value is closer to fulfil the global quality criterion than the global quality value corresponding to previously separately stored output score functions and/or decision rules or configuration values.

A main reason for training a classification system according to an embodiment of the present invention is to obtain a high confidence in a subsequent classification process of an input example of an unknown class.

Thus, according to a further aspect of the present invention, there is also provided a method of classifying input data examples into at least one of a plurality of classes using a computer classification system configured according to any of the above described methods of the present invention, whereby column cell values for each ntuple or LUT and output score functions and/or decision rules are determined using on one or more training or validation sets of input data examples, said method comprising

- applying an input data example to be classified to the configured classification network thereby addressing column vectors in the set of n-tuples or LUTs,
- selecting a set of classes which are to be compared using a given set of output b) score functions and decision rules thereby addressing specific rows in the set of n-tuples or LUTs,
- c) determining output score values as a function of the column vector cells and using the determined output score functions,
- d) comparing the calculated output values using the determined decision rules, and
- selecting the class or classes that win(s) according to the decision rules.

:

12:30

The present invention also provides training and classification systems according to the above described methods of training and classification.

Thus, according to the present invention there is provided a system for training a computer classification system which can be defined by a network comprising a stored number of n-tuples or Look Up Tables (LUTs), with each n-tuple or LUT comprising a number of rows corresponding to at least a subset of possible classes and further comprising a number of columns being addressed by signals or elements of sampled training input data examples, each column being defined by a vector having cells with values, said system comprising

- input means for receiving training input data examples of known classes,
- means for sampling the received input data examples and addressing column vectors in the stored set of n-tuples or LUTs,
- means for addressing specific rows in the set of n-tuples or LUTs, said rows corresponding to a known class,
- storage means for storing determined n-tuples or LUTs,
- means for determining column vector cell values so as to comprise or point to information based on the number of times the corresponding cell address is sampled from the training set(s) of input examples, and
- means for determining one or more output score functions and/or one or more decision rules.

Here, it is preferred that the means for determining the output score functions and/or decision rules is adapted to determine these functions and/or rules based on the information of at least part of the determined column vector cell values.

The means for determining the output score functions may be adapted to determine such functions from a family of output score functions determined by a set of parameter values. Thus, the means for determining the output score functions may be adapted to determine such functions either from the set of parameter values, from the information of at least part of the determined column vector cell values or from both the set of parameter values and the information of at least part of the determined column vector cell values.

According to the present invention the means for determining the output score functions and/or the decision rules may be adapted to determine such functions and/or rules based on a validation set of input data examples of known classes. Here the validation set may be equal to or part of the training set(s) used for determining the column cell values, but the validation set may also be a set of examples not included in the training set(s).

In order to determine the output score functions and decision rules according to a preferred embodiment of the present invention, the means for determining the output score functions and decision rules may comprise

means for initialising one or more sets output score functions and/or decision rules, and

means for adjusting output score functions and decision rules by use of at least part of the validation set of input examples.

12:30

N & HOIBERG + 43508001

As already discussed above the column cell values should be determined in order to determine the output score functions and decision rules. Here, it is preferred that the means for determining the column vector cell values is adapted to determine these values as a function of the number of times the corresponding cell address is sampled from the set(s) of training input examples. Alternatively, the means for determining the column vector cell values may be adapted to determine these cell values so that the maximum value is 1, but at least part of the cells have an associated value being a function of the number of times the corresponding cell address is sampled from the training set(s) of input examples.

According to an embodiment of the present invention it is preferred that when a training input data example belonging to a known class is applied to the classification network thereby addressing one or more column vectors, the means for determining the column vector cell values is adapted to increment the value or vote of the cells of the addressed column vector(s) corresponding to the row(s) of the known class, said value preferably being incremented by one.

For the adjustment process of the output score functions and decision rules it is preferred that the means for adjusting output score functions and/or decision rules is adapted to

determine a global quality value based on at least part of column vector cell

determine if the global quality value fulfils a required global quality criterion,

adjust at least part of the output score functions and/or decision rules until the global quality criterion is fulfilled.

As an example of a preferred embodiment according to the present invention, the means for adjusting output score functions and decision rules may be adapted to

- determine a local quality value corresponding to a sampled validation input a) example, the local quality value being a function of at least part of the addressed vector cell values.
- b) determine if the local quality value fulfils a required local quality criterion,
- c) adjust one or more of the output score functions and/or decision rules if the local quality criterion is not fulfilled,
- d) repeat the local quality test for a predetermined number of training input
- e) determine a global quality value based on at least part of the column vectors being addressed during the local quality test,
- determine if the global quality value fulfils a required global quality criterion, f)
- repeat the local and the global quality test until the global quality criterion is g) fulfilled.

The means for adjusting the output score functions and decision rules may further be adapted to stop the iteration process if the global quality criterion is not fulfilled after a given number of iterations. In a preferred embodiment, the means for storing n-tuples or LUTs comprises means for storing adjusted output score functions and decision

ŧ

rules and separate means for storing best so far output score functions and decision rules or best so far classification system configuration values. Here, the means for adjusting the output score functions and decision rules may further be adapted to replace previously separately stored best so far output score functions and decision rules with obtained adjusted output score functions and decision rules if the determined global quality value is closer to fulfil the global quality criterion than the global quality value corresponding to previously separately stored best so far output score functions and decision rules. Thus, even if the system should not be able to fulfil the global quality criterion within a given number of iterations, the system may always comprise the "best so far" system configuration.

According to a further aspect of the present invention there is also provided a system for classifying input data examples of unknown classes into at least one of a plurality of classes, said system comprising:

storage means for storing a number or set of n-tuples or Look Up Tables (LUTs) with each n-tuple or LUT comprising a number of rows corresponding to at least a subset of the number of possible classes and further comprising a number of column vectors, each column vector being addressed by signals or elements of a sampled input data example, and each column vector having cell values being determined during a training process based on one or more sets of training input data examples,

storage means for storing one ore more output score functions and/or one or more decision rules, each output score function and/or decision rule being determined during a training or validation process based on one or more sets of validation input data examples, said system further comprising: input means for receiving an input data example to be classified, means for sampling the received input data example and addressing column vectors in the stored set of n-tuples or LUTs, means for addressing specific rows in the set of n-tuples or LUTs, said rows

corresponding to a specific class.

means for determining output score values using the stored output score functions and at least part of the stored column vector values, and means for determining a winning class or classes based on the output score values and stored decision rules.

It should be understood that it is preferred that the cell values of the column vectors and the output score functions and/or decision rules of the classification system according to the present invention are determined by use of a training system according to any of the above described systems. Accordingly, the column vector cell values and the output score functions and/or decision rules may be determined during a training process according to any of the above described methods.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the present invention and in order to show how the same may be carried into effect, reference will now be made by way of example to the accompanying drawings in which:

Fig. 1 shows a block diagram of a RAM classification network with Look Up Tables (LUTs),

Fig. 2 shows a detailed block diagram of a single Look Up Table (LUT) according to an embodiment of the present invention,

Fig. 3 shows a block diagram of a computer classification system according to the present invention,

Fig. 4 shows a flow chart of a learning process for LUT column cells according to an embodiment of the present invention,

Fig. 5 shows a flow chart of a learning process according to a embodiment of the present invention,

Fig. 6 shows a flow chart of a classification process according to the present invention.

DETAILED DESCRIPTION OF THE INVENTION

In the following a more detailed description of the architecture and concept of a classification system according to the present invention will be given including an example of a training process of the column cells of the architecture and an example of a classification process. Furthermore, different examples of learning processes for the output score functions and the decision rules according to embodiments of the present invention are described.

Notation

The notation used in the following description and examples is as follows:

X: The training set.

 \bar{x} : An example from the training set.

 N_X : Number of examples in the training set X.

 \bar{x}_j : The j'th example from a given ordering of the training set X.

y: A specific example (possible outside the training set).

C: Class label.

 $C(\bar{x})$: Class label corresponding to example \bar{x} (the true class).

C_w: Winner Class obtained by classification.

 C_r : True class obtained by classification.

N_c: Number of training classes corresponding to the maximum number of rows in a LUT.

Ω: Set of LUTs (each LUT may contain only a subset of all possible address columns, and the different columns may register only subsets of the existing classes).

N_{LUT}: Number of LUTs.

N_{COL}: Number of different columns that can be addressed in a specific LUT (LUT dependent).

 X_C : The set of training examples labelled class C.

 $a_i(\vec{y})$: Index of the column in the i'th LUT being addressed by example \vec{y} .

⊽: Vector containing all vic elements of the LUT network.

QL: Local quality function. Global quality function. **Q**₀:

B^{C,C}: Decision rule matrix

 M_{q,e_j} : Cost matrix

S(·): Score function

Γ(·): Leave-one-out cross-validation score function

P: Path matrix

 \vec{B} : Parameter vector

E: Set of decision rules

d.: Score value on class c

D(-): Decision function

Description of architecture and concept

In the following references are made to Fig. 1, which shows a block diagram of a RAM classification network with Look Up Tables (LUTs), and Fig. 2, which shows a detailed block diagram of a single Look Up Table (LUT) according to an embodiment of the present invention.

A RAM-net or LUT-net consists of a number of Look Up Tables (LUTs) (1.3). Let the number of LUTs be denoted N_{LUT} . An example of an input data vector \overline{y} to be classified may be presented to an input module (1.1) of the LUT network. Each LUT may sample a part of the input data, where different numbers of input signals may be sampled for different LUTs (1.2) (in principle it is also possible to have one LUT sampling the whole input space). The outputs of the LUTs may be fed (1.4) to an output module (1.5) of the RAM classification network.

In Fig. 2 it is shown that for each LUT the sampled input data (2.1) of the example presented to the LUT-net may be fed into an address selecting module (2.2). The address selecting module (2.2) may from the input data calculate the address of one or more specific columns (2.3) in the LUT. As an example, let the index of the column in the i'th LUT being addressed by an input example \overline{y} be calculated as $a_i(\overline{y})$. The number of addressable columns in a specific LUT may be denoted N_{col} , and varies in general from one LUT to another. The information stored in a specific row of a LUT may correspond to a specific class C (2.4). The maximum number of rows may then correspond to the number of classes, N_c . The number of cells within a column corresponds to the number of rows within the LUT. The column vector cells may correspond to class specific entry counters of the column in question. The entry counter value for the cell addressed by the i'th column and class C is denoted $v_{\rm cc}$ (2.5).

The v_c -values of the activated LUT columns (2.6) may be fed (1.4) to the output module (1.5), where one or more output scores may be calculated for each class and where these output scores in combinations with a number of decision rules determine the winning class.

12:30

15

Let $\overline{x} \in X$ denote an input data example used for training and let \overline{y} denote an input data example not belonging to the training set. Let $C(\bar{x})$ denote the class to which \bar{x} belongs. The class assignment given to the example \overline{y} is then obtained by calculating one or more output scores for each class. The output scores obtained for class C is calculated as functions of the v_{ic} numbers addressed by the example $\mathcal F$ but will in general also depend on a number of parameters $\bar{\beta}$. Let the mth output score of class C be denoted $S_{C,m}(v_i, \overline{\beta})$. A classification is obtained by combining the obtained output scores from all classes with a number of decision rules. The effect of the decision rules is to define regions in the output score space that must be addressed by the output score values to obtain a given winner class. The set of decision rules is denoted Ξ and corresponds to a set of decision borders.

Figure 3 shows an example of a block diagram of a computer classification system according to the present invention. Here a source such as a video camera or a database provides an input data signal or signals (3.0) describing the example to be classified. These data are fed to a pre-processing module (3.1) of a type which can extract features, reduce, and transform the input data in a predetermined manner. An example of such a pre-processing module is a FFT-board (Fast Fourier Transform). The transformed data are then fed to a classification unit (3 2) comprising a RAM network according to the present invention. The classification unit (3.2) outputs a ranked classification list which might have associated confidences. The classification unit can be implemented by using software to programme a standard Personal Computer or programming a hardware device, e.g. using programmable gate arrays combined with RAM circuits and a digital signal processor. These data can be interpreted in a postprocessing device (3.3), which could be a computer module combining the obtained classifications with other relevant information. Finally the result of this interpretation is fed to an output device (3.4) such as an actuator.

Initial training of the architecture

The flow chart of Fig. 4 illustrates a one pass learning scheme or process for the determination of the column vector entry counter or cell distribution, v_{c} -distribution (4.0), according to an embodiment of the present invention, which may be described as follows:

- 1. Initialise all entry counters or column vector cells by setting the cell values, $\bar{\mathbf{v}}$, to zero (4.1).
- Present the first training input example, \bar{x} , from the training set X to the 2. network (4.2, 4.3).
- Calculate the columns addressed for the first LUT (4.4, 4.5). 3.
- 4. Add 1 to the entry counters in the rows of the addressed columns that correspond to the class label of \bar{x} (increment $v_{q(x)C(x)}$ in all LUTs) (4.6).
- Repeat step 4 for the remaining LUTs (4.7, 4.8).
- Repeat steps 3-5 for the remaining training input examples (4.9, 4.10). The number of training examples is denoted N_x .

ŧ

12:30

Initialisation of output score functions and decision rules

Before the trained network can be used for classification the output score functions and the decision rules must be initialised.

Classification of an unknown input example

When the RAM network of the present invention has been trained to thereby determine values for the column cells whereby the LUTs may be defined, the network may be used for classifying an unknown input data example.

In a preferred example according to the present invention, the classification is performed by using the decision rules 3 and the output scores obtained from the output score functions. Let the decision function invoking Ξ and the output scores be denoted D(·). The winning class can then be written as:

Figure 6 shows a block diagram of the operation of a computer classification system in which a classification process (6.0) is performed. The system acquires one or more input signals (6.1) using e.g. an optical sensor system. The obtained input data are preprocessed (6.2) in a pre-processing module, e.g. a low-pass filter, and presented to a classification module (6.3) which according to an embodiment of the invention may be a LUT-network. The output data from the classification module is then post-processed in a post-processing module (6.4), e.g. a CRC algorithm calculating a cyclic redundancy check sum, and the result is forwarded to an output device (6.5), which could be a monitor screen.

Adjustment of output score function parameter β and adjustment of decision rules Ξ

Usually the initially determined values of \bar{p} and the initial set of rules Ξ will not present the optimal choices. Thus, according to a preferred embodiment of the present invention, an optimisation or adjustment of the $\overline{\beta}$ values and the Ξ rules should be

In order to select or adjust the parameters $\bar{\rho}$ and the rules Ξ to improve the performance of the classification system, it is suggested according to an embodiment of the invention to define proper quality functions for measuring the performance of the \vec{p} -values and the Ξ -rules. Thus, a local quality function $Q_{\mathcal{L}}(\vec{v}, \vec{x}, X, \vec{p}, \Xi)$ may be defined, where \overline{v} denotes a vector containing all v_{cc} elements of the LUT network. The local quality function may give a confidence measure of the output classification of a specific example \bar{x} . If the quality value does not satisfy a given criterion the \bar{B} values and the Ξ rules are adjusted to make the quality value satisfy or closer to satisfying the criterion (if possible).

Furthermore a global quality function: $Q_G(\overline{v}, X, \overline{\beta}, \Xi)$ may be defined. The global quality function may measure the performance of the input training set as a whole.

Fig. 5 shows a flow chart for adjustment or learning of the $\bar{\beta}$ values and the Ξ rules according to the present invention.

Example 1

This example illustrates on optimisation procedure for adjusting the decision rules E.

For each class c we define a single output score function:

$$S_{\epsilon}\left(\nu_{\bullet_{1}(\mathbb{F}),\epsilon},\overline{\beta}\right) = \sum_{t \in \mathcal{O}}\beta_{i}\Theta_{k}\left(\nu_{\bullet_{1}(\mathbb{F}),\epsilon}\right), \ \overline{\beta} = (\beta_{1},\beta_{2},\ldots)$$

where $\boldsymbol{\delta}_{i,j}$ is Kroneckers delta ($\boldsymbol{\delta}_{i,j}$ = 1 if i=j and 0 otherwise), and

$$\Theta_k(z) = \begin{cases} 1 & \text{if } z \ge k \\ 0 & \text{if } z < k \end{cases}.$$

Here k is a parameter which may be set to any desired value. In this example it is preferred to set k to a value of onc.

The expression for the output score function illustrates a possible family of functions determined by a parameter vector $\overline{\beta}$. This example, however, will only illustrate a procedure for adjusting the decision rules Ξ , and not $\overline{\beta}$. For simplicity of notation we therefore initialise all values in $\overline{\beta}$ to one. We then

$$S_{\epsilon} \Big(v_{\bullet, \{\bar{x}\}, \epsilon} \Big) = \sum_{\ell \in \Omega} \Theta_{k} \Big(v_{\bullet, \{\bar{x}\}, \epsilon} \Big).$$

Thus, for this example, the above output score function itself is not a function of the column vector cell values, but the column vector cell values are used as input parameter in order to calculate the output score values.

The leave-one-out cross-validation vote-count on a given class c is:

$$\Gamma_{\epsilon}(\bar{x}) = \sum_{t \in O} \Theta_{k+\delta_{C_{T} \in I \setminus \sigma}} (v_{\bullet,(k),c}),$$

where C_T denotes the true class of example \overline{x} .

For all possible inter-class combinations, (c_1, c_2) we wish to determine a suitable decision border in the score space spanned by the two classes. The matrix B 4.52 is defined to contain the decisions corresponding to a given set of decision rules applied to the two corresponding output score values; i.e. whether class c_1 or class c_2 wins. The row and column dimensions are given by the allowed ranges of the two output score values, possibly after a discretisation procedure. The matrix elements contains one of the following three values: c_1, c_2 and k_{AAB} , where k_{AAB} is a constant different from c_1 and c_2 . The two output score values S_1 and S_2 obtained on class c_1 and class c_2 , respectively, address the element $b_{S,S}^{q,o_2}$ in the matrix B^{q,o_3} . If the addressed element contains the value c_1 it means that class c, wins over class c2. If the addressed element contains the value c2 it means that class c2 wins over class c_1 . Finally, if the addressed element contains the value k_{AAB} , it means the decision is ambiguous.

The decision rules are initialised to correspond to a WTA decision. This corresponds to having a decision border along the diagonal in the matrix B^c₁, Along the diagonal the elements are

initialised to take on the value k_{AAG} . Above and respectively below the diagonal the elements are labelled with opposite class values.

A strategy for adjusting the initialised decision border according to an information measure that uses the $\nu_{s,(R),c}$ values is outlined below.

create the cost matrix \mathbf{M}_{e_i,e_2} with elements given as:

$$m_{i,j} = \alpha_{e_i,e_2} \sum_{\overline{x} \in X_{e_i}} \left(\Gamma_{e_i}(\overline{x}) \le i \wedge \Gamma_{e_2}(\overline{x}) \ge j \right) +$$

$$\alpha_{e_2,e_1} \sum_{\overline{x} \in X_{e_2}} \left(\Gamma_{e_i}(\overline{x}) \ge i \wedge \Gamma_{e_2}(\overline{x}) \le j \right)$$

 α_{q_1,q_2} denotes the cost associated with classifying an example from class c_1 in to class c_1 and α_{q_1,q_2} denotes the cost associated with the opposite error. It is here assumed that a logical true evaluates to one and a logical false evaluates to zero.

A minimal-cost path from $m_{1,1}$ to $m_{N_{MT_{12}},N_{MT_{12}}}$ can be calculated using e.g. a dynamic programming approach (Q_G measures the total cost along a given path):

Loop through all entries in the cost matrix in reverse order:

For each entry, calculate the lowest associated total-costs given us.

$$m_{i,j}^{local} = m_{i,j} + \min(m_{i+1,j}, m_{i+1,j+1}, m_{i,j+1})$$

and note the corresponding direction in the path-matrix P:

$$p_{i,j} = \arg(\min(m_{i+1,j}, m_{i+1,j+1}, m_{i,j+1}))$$

(Indexes outside the matrix are considered as containing the value ∞)

According to the dynamic programming approach the path with the smallest associated total-cost is now obtained by traversing the P-matrix in the following manner to obtain the decision border in the score space spanned by the classes in question. $(b_1^{c_1})^{c_2}$ denotes an element in a matrix with dimensions given by the maximum number of possible votes on class c_1 times the maximum number of possible votes on c_2 .)

- 1. Set i=1 and j=1
- 2. Set $b_{i,j}^{a_i,b_i} = 0$ to indicate an ambiguous decision
- 3. Set $b_{i,j}^{c_1,c_2} = c_1$ for all i' > l and set $b_{i,j}^{c_1,c_2} = c_2$ for all j' > l to indicate the winning classes.
- 4. Update i and j according to the value of $p_{i,j}$:

$$i_{now} = i_{old} + (p_{l_{old},j_{old}} < 3)$$

$$j_{new} = j_{old} + (p_{i_{old},j_{old}} > 1)$$

5. Repeat 2-4 until the lover left corner is reached.

The dynamic programming approach can be extended with regularisation terms, which constraint the shape of the border.

An alternative method for determining the decision border could be to fit a B-spline with two control points in such a way that the associated cost is minimised.

Using the decision borders determined from the strategy outlined above an example can now be classified in the following manner:

- Present the example to the network in order to obtain the score values or vote numbers
- $S_{\varepsilon}(\vec{x}) = \sum_{i \in \mathcal{O}} \Theta_{\delta}(v_{\epsilon_{i}(\vec{x}),\varepsilon})$

12:30

- Define a new set of score values d_e for all classes and initialise the scores to zero: d_e = 0,
 1≤ e ≤ N.
- Loop through all possible inter-class combinations, (c_1,c_2) , and update the vote-values:
- $\qquad d_{b_{a_{1}}^{\alpha_{1},\alpha_{2}}(t),b_{a_{2}}(t)} = d_{b_{a_{1}}^{\alpha_{1},\alpha_{2}}(t),b_{a_{2}}(t)} + 1$
- The winning class can now be found as argmax(d_c)

A leave-one-out cross-validation test using the decision borders determined from the strategy outlined above is obtained in the following manner:

- Present the example to the network in order to obtain the leave-one-out score values or vote numbers
- $\bullet \qquad \Gamma_{c}(\overline{x}) = \sum_{f \in \Omega} \Theta_{d + \delta_{C_{fi} Y f_{c}}} \left(v_{a_{i}(\overline{x}), f} \right)$
- Define a new set of score values d_c for all classes and initialise the scores to zero: d_c = 0, 1≤ c ≤ N_c.
- Loop through all possible inter-class combinations. (c_1,c_2) , and update the vote-values:
- $\bullet \quad d_{b_{r_0}^{\alpha_{r_0}}(r_{r_0}(s))} = d_{b_{r_0}^{\alpha_{r_0}}(r_{r_0}(s))} + 1$
- The winning class can now be found as $\operatorname{argmax}(d_t)$

With reference to Figure 5 the above adjustment procedure for the decision rules (borders) Ξ may be described as

- Initialise the system by setting all values of $\bar{\beta}$ to one, selecting a WTA scheme on a two by two basis and by training the n-tuple classifier according to the flow chart in Fig. 4. (5.0)
- Batch mode optimisation is chosen. (5.1)
- Test all examples by performing a leave-one-out classification as outline above (5.12) and calculate the obtained leave-one-out cross-validation error rate and use it as the Q_{σ} -mesure. (5.13)
- Store the values of $\vec{\beta}$ and the corresponding Q_0 -value as well as the Ξ -rules. (5.14)
- If the Q_O-value does not satisfy a given criterion or another stop criterion is met then adjust the E-rules according to the dynamic programming approach outline above. (5.16, 5.15)
- If the Q_G-value is satisfied or another stop criterion is met then select the combination with the lowest total error-rate. (5.17)

In the above case one would as alternative stop criterion use a criterion that only allows two loops through the adjustment scheme.

Example 2

This example illustrates an optimisation procedure for adjusting $\overline{\beta}$.

For each class we again define a single output score

and in this example we use $\overline{\beta} = (k_1, k_2, ..., k_{N_s})$. We also initialise the Ξ rules to describe a WTA decision when comparing the output scores from the different classes.

- Initialise the system by setting all k_c-values to one, selecting a WTA scheme and by training the n-tuple classifier according to the flow chart in Fig. 4. (5.0)
- Batch mode optimisation is chosen. (5.1)
- Test all examples using a leave-one-out cross-validation test (5.12) and calculate the obtained leave-one-out cross-validation error rate used as Q_{α} . (5.13)
- Store the values of $\overline{\beta}$ and the corresponding Q_0 value. (5.14)
- Loop through all possible combinations of $k_0, k_{e_1}, ..., k_{e_{N_i}}$; $1 \le k_0, k_{e_1}, ..., k_{e_{N_i}} \le k_{MALY}$. (5.16, 5.15)
- Select the combination with the lowest total error-rate, (5.17)

For practical use, the k_{AMX}-value will depend upon the skewness of the class priors and the number of address-lines used in the RAM net system.

Example 3

This example also illustrates an optimisation procedure for adjusting $\bar{\beta}$ but with the use of a local quality function Q_L .

For each class we now define as many output scores as there are competing classes: i.e. $\lambda'_e = 1$ output scores.

$$S_{e_j,e_k}\left(v_{e_i(\mathcal{X}),e_j},\overline{\beta}\right) = \sum_{j\in\Omega}\Theta_{k_{e_j,e_k}}\left(v_{e_i(\mathcal{X}),e_j}\right), \ \forall k\neq f,$$

and in this example we use

$$\overline{\beta} = (k_{c_1,c_2},k_{c_1,c_3},\ldots,k_{c_1,c_{N_{r-1}}},k_{c_2,c_1},\ldots,k_{c_{N_r},c_{N_{r-1}}}).$$

We also initialise the Ξ rules to describe a WTA decision when comparing the output scores from the different classes

- Initialise the system by setting all k_{q_1,r_2} -values to say two, selecting a WTA scheme and by training the n-tuple classifier according to the flow that in Fig. 4. (5.0)
- On line mode as opposed to batch mode optimisation is chosen. (5.1)
- Loop through all examples in the training set (5.2, 5.7, and 5.8)
- Test each example to obtain the winner class C_W in a leave-one-crossvalidation. Let the Q_L-measure compare C_W with the true class C_T. (5.3,5.4)
- If C_R ≠ C_T a leave-one-out error is made so the values of k_{cp,cp} and k_{cp,cp} are adjusted by incrementing k_{cp,cp} with a small value, say 0.1, and by decrementing k_{cp,cp} with a small value, say 0.05. If the adjustment will bring the values below one, no adjustment is performed. (5.5,5.6)
- When all examples have been processed the global information measure Q_G (e.g. the leave-one-out-error-rate) is calculated and the values of β and Q_G are stored. (5.9,5,10)
- If Q_G or another stop criterion is not fulfilled the above loop is repeated. (5.11)
- If Q_0 is satisfied or another stop criterion is fulfilled the best value of the stored Q_0 -values are chosen together with the corresponding parameter values $\overline{\beta}$ and decision rules Ξ . (5.17,5.18)

The foregoing description of preferred exemplary embodiments of the invention has been presented for the purpose of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and obviously many modifications and variations are possible in light of the present invention to those skilled in the art. All such modifications which retain the basic underlying principles disclosed and claimed herein are within the scope of this invention.

Page 18

I. A method of training a computer classification system which can be defined by a network comprising a number of n-tuples or Look Up Tables (LUTs), with each n-tuple or LUT comprising a number of rows corresponding to at least a subset of possible classes and further comprising a number of columns being addressed by signals or elements of sampled training input data examples, each column being defined by a vector having cells with values, said method comprising

determining the column vector cell values based on one or more training sets of input data examples for different classes so that at least part of the cells comprise or point to information based on the number of times the corresponding cell address is sampled from one or more sets of training input examples, and

determining one or more output score functions for evaluation of at least one output score value per class, and/or

determining one or more decision rules to be used in combination with at least part of the obtained output scores to determine a winning class,

said output score functions and/or decision rules being determined based on the information of at least part of the determined column vector cell values.

- 2. A method according to claim 1, wherein the output score functions and/or the decision rules are determined based on a validation set of input data examples.
- 3. A method according to claim 2, wherein the validation set comprises at least part of the training set(s) of input data examples.
- 4. A method according to any of the claims 1-3, wherein the output score functions are determined by a set of parameter values.
- 5. A method according to any of the claims 1-4, wherein determination of the output score functions and/or the decision rules is based on an information measure evaluating the performance on the validation example set, said evaluating measure preferably being a leave-one-out cross validation test.
- 6. A method according to any of the claims 1-5, wherein an output score space is given by the output score variable containing the output score values, and the decision rules define regions in the output score space to be addressed by obtained output score values to obtain a winning class.
- 7. A method according to any of the claims 1-6, wherein determination of the output score functions and/or the decision rules comprises initialising the output score functions and/or the decision rules.
- 8. A method according to claim 7, wherein the initialisation of the output score functions comprises determining a number of set-up parameters.
- 9. A method according to claims 7 or 8, wherein the initialisation of the output score functions comprises setting all output score functions to a pre-determined mapping function.

į

- 10. A method according to any of the claims 7-9, wherein the initialisation of the decision rules comprises setting the rules to a pre-determined decision scheme.
- 11. A method according to any of the claims 1-10, further comprising adjusting the output score functions and/or the decision rules, said adjustment preferably being based on an information measure evaluation.
- 12. A method according to claim 11, wherein said information measure evaluation is a leave-one-out cross validation test.
- 13. A method according to claim 8 and any of the claims 11-12, wherein the adjustment comprises changing the values of the set-up parameters.
- 14. A method according to any of the claims 1-13, wherein the determination of the column vector cell values comprises the training steps of
- a) applying a training input data example of a known class to the
- classification network, thereby addressing one or more column vectors, incrementing, preferably by one, the value or vote of the cells of the addressed column vector(s) corresponding to the row(s) of the known class, and
- c) repeating steps (a)-(b) until all training examples have been applied to the network.
- A method according to any of the claims 11-14, wherein the adjustment process comprises the steps of

determining a global quality value based on at least part of the column vector cell values.

determining if the global quality value fulfils a required quality criterion, and adjusting at least part of output score functions and/or part of the decision rules until the global quality criterion is fulfilled.

- 16. A method according to claim any of the claims 11-15, wherein the adjustment process comprises the steps of
- a) selecting an input example from the validation set(s),
- b) determining a local quality value corresponding to the sampled validation input example, the local quality value being a function of at least part of the addressed column cell values.
- determining if the local quality value fulfils a required local quality criterion,
 if not,
 adjusting one or more of the output score functions and/or decision rules if the
 local quality criterion is not fulfilled,
- selecting a new input example from a predetermined number of examples of the validation set(s),
- e) repeating the local quality test steps (b)-(d) for all the predetermined validation input examples,
- f) determining a global quality value based on at least part of the column vectors being addressed during the local quality test,
- determining if the global quality value fulfils a required global quality criterion, and,
- h) repeating steps (a)-(g) until the global quality criterion is fulfilled.

- 17. A method according to claim 16, wherein steps (b)-(d) are carried out for all examples of the validation set(s).
- 18. A method according to any of the claims 15-17, wherein the local and/or global quality value is defined as functions of at least part of the column cells.
- 19. A method according to any of the claims 15-18, wherein the adjustment iteration process is stopped if the quality criterion is not fulfilled after a given number of iterations.
- 20. A method of classifying input data examples into at least one of a plurality of classes using a computer classification system configured according to any of the claims 1-19, whereby column cell values for each n-tuple or LUT and output score functions and/or decision rules are determined using on one or more training or validation sets of input data examples, said method comprising

 a) applying an input data example to be classified to the configured classification network thereby addressing column vectors in the set of n-tuples or LUTs,

- b) selecting a set of classes which are to be compared using a given set of output score functions and decision rules thereby addressing specific rows in the set of n-tuples or LUTs,
- c) determining output score values as a function of the column vector cells and using the determined output score functions,
- d) comparing the calculated output values using the determined decision rules, and
- e) selecting the class or classes that win(s) according to the decision rules.
- 21. A system for training a computer classification system which can be defined by a network comprising a stored number of n-tuples or Look Up Tables (LUTs), with each n-tuple or LUT comprising a number of rows corresponding to at least a subset of possible classes and further comprising a number of columns being addressed by signals or elements of sampled training input data examples, each column being defined by a vector having cells with values, said system comprising
- a) input means for receiving training input data examples of known classes,
- b) means for sampling the received input data examples and addressing column vectors in the stored set of n-tuples or LUTs,
- c) means for addressing specific rows in the set of n-tuples or LUTs, said rows corresponding to a known class,
- d) storage means for storing determined n-tuples or LUTs,
- e) means for determining column vector cell values so as to comprise or point to information based on the number of times the corresponding cell address is sampled from the training set(s) of input examples, and
- f) means for determining one or more output score functions and/or one or more decision rules, said output score functions and/or decision rules determining means being adapted to determine said functions and/or rules based on the information of at least part of the determined column vector cell values.
- 22. A system according to claim 21, wherein the means for determining the output score functions is adapted to determine such functions from a family of output score functions determined by a set of parameter values.

- 23. A system according to claim 21 or 22, wherein the means for determining the output score functions and/or the decision rules is adapted to determine such functions and/or rules based on a validation set of input data examples of known classes, said validation set preferably comprising at least part of the training set(s) used for determining the column cell values.
- 24. A system according to any of the claims 21-23, wherein the means for determining the output score functions and decision rules comprises means for initialising one or more sets output score functions and/or decision rules, and means for adjusting output score functions and decision rules by use of at least part of the validation set of input examples.
- 25. A system according to any of the claims 21-24, wherein the means for determining the column vector cell values is adapted to determine these values as a function of the number of times the corresponding cell address is sampled from the set(s) of training input examples.
- 26. A system according to any of the claims 21-25, wherein, when a training input data example belonging to a known class is applied to the classification network thereby addressing one or more column vectors, the means for determining the column vector cell values is adapted to increment the value or vote of the cells of the addressed column vector(s) corresponding to the row(s) of the known class, said value preferably being incremented by one.
- 27. A system according to any of the claims 24-26, wherein the means for adjusting output score functions and/or decision rules is adapted to determine a global quality value based on at least part of column vector cell values, determine if the global quality value fulfils a required global quality criterion, and adjust at least part of the output score functions and/or decision rules until the global quality criterion is fulfilled.
- 28. A system according to any of the claims 24-27, wherein the means for adjusting output score functions and decision rules is adapted to
- a) determine a local quality value corresponding to a sampled validation input example, the local quality value being a function of at least part of the addressed vector cell values.
- b) determine if the local quality value fulfils a required local quality criterion,
- c) adjust one or more of the output score functions and/or decision rules if the local quality criterion is not fulfilled,
- repeat the local quality test for a predetermined number of training input examples.
- e) determine a global quality value based on at least part of the column vectors being addressed during the local quality test,
- determine if the global quality value fulfils a required global quality criterion, and.
- g) repeat the local and the global quality test until the global quality criterion is fulfilled.

Page 22

12:30

- A system according to any of the claims 27 or 28, wherein the means for adjusting the output score functions and decision rules is further adapted to stop the iteration process if the global quality criterion is not fulfilled after a given number of iterations.
- 30. A system according to any of the claims 21-29, wherein the means for storing n-tuples or LUTs comprises means for storing adjusted output score functions and decision rules and separate means for storing best so far output score functions and decision rules or best so far classification system configuration values.
- A system according to claim 30, wherein the means for adjusting the output score functions and decision rules is further adapted to replace previously separately stored best so far output score functions and decision rules with obtained adjusted output score functions and decision rules if the determined global quality value is closer to fulfil the global quality criterion than the global quality value corresponding to previously separately stored best so far output score functions and decision rules.
- A system for classifying input data examples of unknown classes into at least one of a plurality of classes, said system comprising:

storage means for storing a number or set of n-tuples or Look Up Tables (LUTs) with each n-tuple or LUT comprising a number of rows corresponding to at least a subset of the number of possible classes and further comprising a number of column vectors, each column vector being addressed by signals or elements of a sampled input data example, and each column vector having cell values being determined during a training process based on one or more sets of training input data examples,

storage means for storing one ore more output score functions and/or one or more decision rules, each output score function and/or decision rule being determined during a training or validation process based on one or more sets of validation input data examples, said system further comprising: input means for receiving an input data example to be classified, means for sampling the received input data example and addressing column vectors in the stored set of n-tuples or LUTs,

means for addressing specific rows in the set of n-tuples or LUTs, said rows corresponding to a specific class.

means for determining output score values using the stored output score functions and at least part of the stored column vector values, and means for determining a winning class or classes based on the output score values and stored decision rules.

- A system according to claim 32, wherein the cell values of the column vectors and the output score functions and/or decision rules of the classification system are determined by use of a training system according to any of the claims 21-31.
- A system according to claim 32, wherein the column vector cell values and the output score functions and/or decision rules are determined during a training process according to any of the claims 1-19.

EN & HOIBERG → 43508001

Modtaget PD

2 3 JUNI 1998

N & HOIBERG → 43508001

Modtaget PD

Figure 3

1 daget PD 25 jüll i998

Figure 4

Modtaget PD

2 3 JUNI 1998

Figure 6