$$G_{\pi}(t) + C_{\pi}(t) = B_{ut}$$
  
17. 保性问题, 这部。  $B, C, G_{\pi}(t) = B_{ut}$   
2). 这外:  $f_{\pi}(t) = \frac{\pi(t) - \pi(\tau - h)}{h}$   
 $\Rightarrow (G_{\pi}(t)) \times (t) = B_{ut} + \frac{C_{\pi}(t - h)}{h}$ 

通过固定步长 h 来求解这个微分方程—本质: 迭代—t-h 项来求 t 项 采用梯形法进行离散化处理的话:

$$\begin{array}{c} c \frac{d \times h}{\partial t} + G \times h = B \cdot h \\ \Rightarrow \frac{d \times h}{\partial t} = -c^{-1}G \times h + c^{-1}B \cdot h \\ \Rightarrow \frac{d \times h}{\partial t} = -c^{-1}G \times h + c^{-1}B \cdot h \\ & = -c^{-1}G \times h = c^{-1}B \cdot h \\ & = \frac{d \times h}{\partial t} = \frac{d \times h}{\partial t} + \frac{d \times h}{\partial t} + \frac{d \times h}{\partial t} \\ & = \frac{d \times h}{\partial t} = \frac{d \times h}{\partial t} + \frac{d \times h}{\partial t} + \frac{d \times h}{\partial t} + \frac{d \times h}{\partial t} \\ & \times h = \frac{d \times h}{\partial t} = \frac{d \times h}{\partial t} + \frac{d \times h}{\partial t} + \frac{d \times h}{\partial t} + \frac{d \times h}{\partial t} \\ & \times h = \frac{d \times h}{\partial t} = \frac{d \times h}{\partial t} + \frac{d \times h}{\partial t} \\ & \times h = \frac{d \times h}{\partial t} = \frac{d \times h}{\partial t} + \frac{d \times h}{\partial t} \\ & \times h = \frac{d \times h}{\partial t} = \frac{d \times h}{\partial t} + \frac{d \times h}{\partial t} \\ & \times h = \frac{d \times h}{\partial t} = \frac{d \times h}{\partial t} + \frac{d \times$$

#### C、G、B: 稀疏矩阵存储. csc 列压缩格式:

也就是说按列 z 形方向,存储非零元素的行列坐标和值。Csc 格式的话列坐标是存储的递增的数目。



#### 要求:

1. 精度要求:如果与标准解最大绝对误差小于 10mV 且平均绝对误差小于 1mV



2. 步长要求: 步长范围很大

#### 求解:

1. 直接法求解: 稀疏矩阵求解更复杂

稀疏矩阵求解: 1.排序,

2. 迭代法

1), they the mum!

2), 
$$7634+$$
.  $cond(G) = \frac{\lambda mox(G)}{\lambda min(G)}$ 
 $P = G \rightarrow G = r$ 
 $P = G$ 

### 概述:

# 电源地线网 (power grid) 分析

· Time Domain

$$Gv + C\frac{dv}{dt} = Bu(t)$$







#### 赛题

• 题目: 大规模电源地网络瞬态仿真的分布式并行加速

• 关键词: 大规模, 瞬态仿真, 并行加速

$$Gx(t) + C\frac{dx(t)}{dt} = Bu(t)$$

## 求解线性方程

- 大规模
  - >100万
  - 稀疏
- 稀疏矩阵存储与求解
  - 什么格式?
  - 怎么进行访问和数据操作?
- 直接法
  - LU/Cholesky?
  - 矩阵分解和回代
  - 矩阵重排序: AMD, ND
  - 求解: KLU, NICSLU, ...
- 迭代法
  - GMRES/CG
  - Preconditioner: ILU
  - Multi Grid



L1-13

### 直接法和迭代法分别适用什么情况?

# 并行计算

$$Gx(t) + C\frac{dx(t)}{dt} = Bu(t)$$

- 多线程,多进程,分布式并行
- 任务怎么切分?怎么分发?怎么收集结果?
  - 线性方程求解怎么并行?
    - 矩阵分块, 图分割
  - 瞬态仿真能并行么?
- 并行计算的关键:减小数据传输!





### 问题求解:

Eigen 做稀疏矩阵运算+MPI 做并行计算