AMENDMENTS TO THE CLAIMS

2

1. (Currently Amended) A compound having the generalized structural formula

$$X - (CR^{4}_{2}) - J$$

$$Z' - R^{1}$$

$$R^{2}$$

$$G^{3})_{q}$$

$$R^{2}$$

I.

wherein

 \mathbf{R}^1 and \mathbf{R}^2

together form a bridge containing two T^2 moieties and one T^3 moiety, said bridge, taken together with the ring to which it is attached, forming a bicyclic of structure

wherein

each T^2 independently represents [[N,]]CH, or CG^1 ; and T^3 represents S, O, CR^4G^1 , $C(R^4)_2$, or NR^3 CR^4G^1 or $C(R^4)_2$;

and wherein

G¹ is a substituent independently selected from the group consisting of

- $-N(R^6)_2$;
- $-NR^3COR^6$;
- halogen;
- alkyl;
- cycloalkyl;
- lower alkenyl;
- lower cycloalkenyl;

- halogen-substituted alkyl;
- amino-substituted alkyl;
- N-lower alkylamino-substituted alkyl;
- N,N-di-lower alkylamino-substituted alkyl;
- N-lower alkanoylamino-substituted alkyl;
- hydroxy-substituted alkyl;
- cyano-substituted alkyl;
- carboxy-substituted alkyl;
- lower alkoxycarbonyl-substituted alkyl;
- phenyl lower alkoxycarbonyl-substituted alkyl;
- halogen-substituted alkylamino;
- amino-substituted alkylamino;
- N-lower alkylamino-substituted alkylamino;
- N,N-di-lower alkylamino-substituted alkylamino;
- N-lower alkanoylamino-substituted alkylamino;
- hydroxy-substituted alkylamino;
- cyano-substituted alkylamino;
- carboxy-substituted alkylamino;
- lower alkoxycarbonyl-substituted alkylamino;
- phenyl-lower alkoxycarbonyl-substituted alkylamino;
- $-OR^6$;
- $-SR^6$;
- $-S(O)R^6$;
- $-S(O)_2R^6$;
- halogenated lower alkoxy;
- halogenated lower alkylthio;
- halogenated lower alkylsulfonyl;
- $-OCOR^6$;
- $-COR^6$;

- $-CO_2R^6$;
- $-CON(R^6)_2$;
- $-CH_2OR^3$;
- -NO₂;
- -CN;
- amidino;
- guanidino;
- sulfo;
- -B(OH)2;
- optionally substituted aryl;
- optionally substituted heteroaryl;
- optionally substituted saturated heterocyclyl;
- optionally substituted saturated heterocyclylalkyl;
- optionally substituted partially unsaturated heterocyclyl;
- optionally substituted partially unsaturated heterocyclylalkyl;
- $-OCO_2R^3$;
- optionally substituted heteroarylalkyl;
- optionally substituted heteroaryloxy;
- -S(O)_p(optionally substituted heteroaryl);
- optionally substituted heteroarylalkyloxy;
- -S(O)_p(optionally substituted heteroarylalkyl);
- -CHO;
- $-OCON(R^6)_2$;
- $-NR^3CO_2R^6$;
- $-NR^3CON(R^6)_2$

R³ is H or lower alkyl;

R⁶ is independently selected from the group consisting of

```
• H;
```

- alkyl;
- cycloalkyl;
- optionally substituted aryl; and
- optionally substituted aryl lower alkyl;
- lower alkyl- $N(R^3)_2$; and
- lower alkyl-OH;

R⁴ is H, halogen, or lower alkyl;

p is 0, 1, or 2;

X is selected from the group consisting of O, S, and NR³;

Y is selected from the group consisting of

- lower alkylene;
- -CH₂-O-;
- -CH₂-S-;
- -CH₂-NH-;
- -O-;
- -S-;
- -NH-;
- $-(CR^4_2)_n$ - $S(O)_p$ -(5-membered heteroaryl)- $(CR^4_2)_s$ -;
- $-(CR_2^4)_n-C(G^2)(R^4)-(CR_2^4)_s-$;

wherein

n and s are each independently 0 or an integer of 1-2; and $G^2 \text{ is selected from the group consisting of -CN, -CO}_2R^3, \text{-CON}(R^6)_2, \text{ and -} \\ CH_2N(R^6)_2;$

- -O-CH₂-;
- -S(O)-;
- $-S(O)_{2}$;

```
Docket No.: 69713DIV(304795)
```

- -SCH₂-;
- $-S(O)CH_2-$;
- -S(O)₂CH₂-;
- -CH₂S(O)-; and
- -CH₂S(O)₂-

Z is \mathbb{CR}^4 -or N;

q is 0, 1, or 2;

 G^3 is a monovalent or bivalent moiety selected from the group consisting of:

- lower alkyl;
- $-NR^3COR^6$;
- carboxy-substituted alkyl;
- lower alkoxycarbonyl-substituted alkyl;
- $-OR^6$;
- $-SR^6$;
- $-S(O)R^6$;
- $-S(O)_2R^6$;
- $-OCOR^6$;
- -COR⁶;
- $-CO_2R^6$;
- $-CH_2OR^3$;
- $-CON(R^6)_2$;
- $-S(O)_2N(R^6)_2$;
- $-NO_2$;
- -CN;
- optionally substituted aryl;
- optionally substituted heteroaryl;
- optionally substituted saturated heterocyclyl;

- optionally substituted partially unsaturated heterocyclyl;
- optionally substituted heteroarylalkyl;
- optionally substituted heteroaryloxy;
- -S(O)_p(optionally substituted heteroaryl);
- optionally substituted heteroarylalkyloxy;
- -S(O)_p(optionally substituted heteroarylalkyl);
- $-OCON(R^6)_2$;
- $-NR^3CO_2R^6$;
- $-NR^3CON(R^6)_2$; and
 - bivalent bridge of structure T²=T²-T³ wherein

each T² independently represents N, CH, or CG³; and T³ represents S, O, CR⁴G³, C(R⁴)₂, or NR³; wherein G³ represents any of the above-defined moieties G³ which are monovalent; and

the terminal T^2 is bound to L, and T^3 is bound to D, forming a 5-membered fused ring;

A and D independently represent N or CH;

B and E independently represent N or CH;

L represents N or CH; and

with the provisos that

- a) the total number of N atoms in the ring containing A, B, D, E, and L is 0, 1, 2, or 3; and
- b) when L represents CH <u>and q=0</u> or any G³ is a monovalent substituent, at least one of A and D is an N atom; and
- c) when L represents CH and a G^3 is a bivalent bridge of structure $T^2=T^2-T^3$, then A, B, D, and E are also CH;

J is a ring selected from the group consisting of

- aryl;
- pyridyl; and
- cycloalkyl;
 - q' represents the number of substituents G⁴ on ring J and is 0, 1, 2, 3, 4, or 5, and
 - G⁴ is a monovalent or bivalent moiety selected from the group consisting of
- $-N(R^6)_2$;
- $-NR^3COR^6$;
- halogen;
- alkyl;
- cycloalkyl;
- lower alkenyl;
- lower cycloalkenyl;
- halogen-substituted alkyl;
- amino-substituted alkyl;
- N-lower alkylamino-substituted alkyl;
- N,N-di-lower alkylamino-substituted alkyl;
- N-lower alkanoylamino-substituted alkyl;
- hydroxy-substituted alkyl;
- cyano-substituted alkyl;
- carboxy-substituted alkyl;
- lower alkoxycarbonyl-substituted alkyl;
- phenyl lower alkoxycarbonyl-substituted alkyl;
- halogen-substituted alkylamino;
- amino-substituted alkylamino;
- N-lower alkylamino-substituted alkylamino;
- N,N-di-lower alkylamino-substituted alkylamino;
- N-lower alkanoylamino-substituted alkylamino;

- hydroxy-substituted alkylamino;
- cyano-substituted alkylamino;
- carboxy-substituted alkylamino;
- lower alkoxycarbonyl-substituted alkylamino;
- phenyl-lower alkoxycarbonyl-substituted alkylamino;
- $-OR^6$;
- $-SR^6$;
- $-S(O)R^6$;
- $-S(O)_2R^6$;
- halogenated lower alkoxy;
- halogenated lower alkylthio;
- halogenated lower alkylsulfonyl;
- $-OCOR^6$;
- $-COR^6$;
- $-CO_2R^6$;
- $-CON(R^6)_2$;
- $-CH_2OR^3$;
- -NO₂;
- -CN;
- amidino;
- guanidino;
- sulfo;
- -B(OH)2;
- optionally substituted aryl;
- optionally substituted heteroaryl;
- optionally substituted saturated heterocyclyl;
- optionally substituted partially unsaturated heterocyclyl;
- $-OCO_2R^3$;
- optionally substituted heteroarylalkyl;

- optionally substituted heteroaryloxy;
- -S(O)_p(optionally substituted heteroaryl);
- optionally substituted heteroarylalkyloxy;
- -S(O)_p(optionally substituted heteroarylalkyl);
- -CHO;
- $-OCON(R^6)_2$;
- $-NR^3CO_2R^6$;
- $-NR^3CON(R^6)_2$; and
 - fused ring-forming bivalent bridges attached to and connecting adjacent positions of ring J, said bridges having the structures:

a)

$$T^2$$
 T^2
 T^2

wherein

each T² independently represents N, CH, or CG⁴;

T³ represents S, O, CR⁴G⁴, C(R⁴)₂, or NR³; wherein

G4' represents any of the above-defined moieties G⁴ which are monovalent; and

binding to ring J is achieved via terminal atoms T^2 and T^3 ;

b)

$$\begin{array}{c|c}
T^2 & T^2 \\
T^2 & T^2
\end{array}$$

wherein

each T² independently represents N, CH, or CG⁴; wherein

G4' represents any of the above-defined moieties G⁴ which are monovalent; and

with the proviso that a maximum of two bridge atoms T^2 may be N; and binding to ring J is achieved via terminal atoms T^2 ; and

c)

$$T^{4}$$
, T^{5} , T^{5} , T^{6} , T^{5} , T^{6} , or T^{5} , T^{6} , ,

wherein

each T⁴, T⁵, and T⁶ independently represents O, S, CR⁴G^{4'}, C(R⁴)₂, or NR³; wherein

Docket No.: 69713DIV(304795)

G4' represents any of the above-defined moieties G⁴ which are monovalent; and

binding to ring J is achieved via terminal atoms T^4 or T^5 ; with the provisos that:

- i) when one T^4 is O, S, or NR^3 , the other T^4 is $CR^4G^{4'}$ or $C(R^4)_2$;
 - ii) a bridge comprising T⁵ and T⁶ atoms may contain a maximum of two heteroatoms O, S, or N; and
 - iii) in a bridge comprising T⁵ and T⁶ atoms, when one T⁵ group and one T⁶ group are O atoms, or two T⁶ groups are O atoms, said O atoms are separated by at least one carbon atom;

when G^4 is an alkyl group located on ring J adjacent to the linkage $-(CR^4_2)_{p^-}$, and X is NR^3 wherein R^3 is an alkyl substituent, then G^4 and the alkyl substituent R^3 on X may be joined to form a bridge of structure $-(CH_2)_{p'}$ - wherein p' is 2, 3, or 4, with the proviso that the sum of p and p' is 2, 3, or 4, resulting in formation of a nitrogen-containing ring of 5, 6, or 7 members;

and with the further provisos that:

- in G¹, G², G³, and G⁴, when two groups R³ or R⁶ are each alkyl and located on the same N atom they may be linked by a bond, an O, an S, or NR³ to form a N-containing heterocycle of 5 − 7 ring atoms;
- when an aryl, heteroaryl, or heterocyclyl ring is optionally substituted, that ring may bear up to 5 substituents which are independently selected from the group consisting of amino, mono-loweralkyl-substituted amino, di-loweralkyl-substituted amino, lower

alkanoylamino, halogeno, lower alkyl, halogenated lower alkyl, hydroxy, lower alkoxy, lower alkylthio, halogenated lower alkoxy, halogenated lower alkylthio, lower alkanoyloxy, $-CO_2R^3$, -CHO, $-CH_2OR^3$, $-OCO_2R^3$, $-CON(R^6)_2$, $-OCON(R^6)_2$, $-NR^3CON(R^6)_2$, nitro, amidino, guanidino, mercapto, sulfo, and cyano; and

Docket No.: 69713DIV(304795)

- when any alkyl group is attached to O, S, or N, and bears a hydroxyl substituent, then said hydroxyl substituent is separated by at least two carbon atoms from the O, S, or N to which the alkyl group is attached,

or a pharmaceutically acceptable salt or prodrug thereof.

2. (Currently Amended) A compound of claim 1 wherein

 R^1 and R^2

together form a bridge containing two T^2 moieties and one T^3 moiety, said bridge, taken together with the ring to which it is attached, forming a bicyclic of structure

$$Z'$$
 T^2
 T^3
 T^2
 T^3
 T^2
 T^3

wherein

each T² independently represents [[N,]]CH, or CG¹; and T³ represents S, O, CH₂, or NR³; with the proviso that when T³ is O or S, at least one T² is CH or CG¹.

- 3. (Original) A pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically acceptable carrier.
- 4. (Withdrawn) A method of treating a mammal having a condition characterized by abnormal angiogenesis or hyperpermiability processes, comprising administering to said mammal an amount of a compound of claim 1 which is effective to treat said condition.

- 5. (Withdrawn) The method of claim 4, wherein said condition is tumor growth; retinopathy, including diabetic retinopathy, ischemic retinal-vein occlusion, retinopathy of prematurity, and age-related macular degeneration; rheumatoid arthritis; psoriasis; or a bullous disorder associated with subepidermal blister formation, including bullous pemphigoid, erythema multiforme, and dermatitis herpetiformis.
- 6. (Currently Amended) A compound having the generalized structural formula

$$X-(CR^4_2)$$
 $D=E$
 $(G^3)_0$
 X
 X
 R^1
 $(G^4)_{q'}$

II.

wherein

 R^1 and R^2 :

- i) independently represent H or lower alkyl;
 - ii) together form a bridge of structure

$$G^1)_m$$

wherein binding is achieved via the terminal carbon atoms;

iii) together form a bridge of structure

$$=$$
 $G^1)_m$

wherein binding is achieved via the terminal carbon atoms;

iv) together form a bridge of structure

$$T^{1} = T^{1}$$

wherein one or two ring members T¹ are N and the others are CH or CG¹, and binding is achieved via the terminal atoms; or

v) together form a bridge containing two T² moieties and one T³ moiety, said bridge, taken together with the ring to which it is attached, forming a bicyclic of structure

wherein

each T^2 independently represents [[N,]]CH, or CG^1 ; and T^3 represents S, C, CR^4G^1 , O $C(R^4)_2$, or O CR^3 ;

and wherein

m is 0 or an integer 1 - 4; and

G¹ is a substituent independently selected from the group consisting of

- $-N(R^6)_2$;
- $-NR^3COR^6$;
- halogen;
- alkyl;
- cycloalkyl;
- lower alkenyl;
- lower cycloalkenyl;
- halogen-substituted alkyl;
- amino-substituted alkyl;
- N-lower alkylamino-substituted alkyl;
- N,N-di-lower alkylamino-substituted alkyl;
- N-lower alkanoylamino-substituted alkyl;
- hydroxy-substituted alkyl;
- cyano-substituted alkyl;
- carboxy-substituted alkyl;
- lower alkoxycarbonyl-substituted alkyl;

- phenyl lower alkoxycarbonyl-substituted alkyl;
- halogen-substituted alkylamino;
- amino-substituted alkylamino;
- N-lower alkylamino-substituted alkylamino;
- N,N-di-lower alkylamino-substituted alkylamino;
- N-lower alkanoylamino-substituted alkylamino;
- hydroxy-substituted alkylamino;
- cyano-substituted alkylamino;
- carboxy-substituted alkylamino;
- lower alkoxycarbonyl-substituted alkylamino;
- phenyl-lower alkoxycarbonyl-substituted alkylamino;
- $-OR^6$;
- $-SR^6$;
- $-S(O)R^6$;
- $-S(O)_2R^6$;
- halogenated lower alkoxy;
- halogenated lower alkylthio;
- halogenated lower alkylsulfonyl;
- $-OCOR^6$;
- $-COR^6$;
- $-CO_2R^6$;
- $-CON(R^6)_2$;
- $-CH_2OR^3$;
- -NO₂;
- -CN;
- amidino;
- guanidino;
- sulfo;
- -B(OH)2;

- optionally substituted aryl;
- optionally substituted heteroaryl;
- optionally substituted saturated heterocyclyl;
- optionally substituted saturated heterocyclylalkyl;
- optionally substituted partially unsaturated heterocyclyl;
- optionally substituted partially unsaturated heterocyclylalkyl;
- $-OCO_2R^3$;
- optionally substituted heteroarylalkyl;
- optionally substituted heteroaryloxy;
- -S(O)_p(optionally substituted heteroaryl);
- optionally substituted heteroarylalkyloxy;
- -S(O)_p(optionally substituted heteroarylalkyl);
- -CHO;
- $-OCON(R^6)_2$;
- $-NR^3CO_2R^6$;
- $-NR^3CON(R^6)_2$

R³ is H or lower alkyl;

R⁶ is independently selected from the group consisting of

- H;
- alkyl;
- cycloalkyl;
- optionally substituted aryl; and
- optionally substituted aryl lower alkyl;
- lower alkyl- $N(R^3)_2$; and
- lower alkyl-OH;

R⁴ is H, halogen, or lower alkyl;

```
Docket No.: 69713DIV(304795)
```

```
p is 0, 1, or 2;
    X is selected from the group consisting of O, S, and NR<sup>3</sup>;
    Y is selected from the group consisting of
  lower alkylene;
• -CH<sub>2</sub>-O-;
  -CH<sub>2</sub>-S-;
   -CH<sub>2</sub>-NH-;
   -O-;
   -S-;
   -NH-;
  -(CR_{2}^{4})_{n}-S(O)_{p}-(5-membered heteroaryl)-(CR_{2}^{4})_{s}-;
  -(CR_{2}^{4})_{n}-C(G^{2})(R^{4})-(CR_{2}^{4})_{s};
    wherein
        n and s are each independently 0 or an integer of 1-2; and
                  G^2 is selected from the group consisting of -CN, -CO<sub>2</sub>R<sup>3</sup>, -CON(R<sup>6</sup>)<sub>2</sub>, and -
                      CH_2N(R^6)_2;
   -O-CH<sub>2</sub>-;
   -S(O)-;
   -S(O)_2-;
   -SCH<sub>2</sub>-;
   -S(O)CH_2-;
   -S(O)_2CH_2-;
  -CH_2S(O)-; and
   -CH_2S(O)_2
    Z is N-or CR<sup>4</sup>;
    q is 1 or 2;
```

G³ is a monovalent or bivalent moiety selected from the group consisting of

- lower alkyl;
- $-NR^3COR^6$;
- carboxy-substituted alkyl;
- lower alkoxycarbonyl-substituted alkyl;
- $-OR^6$;
- $-SR^6$;
- $-S(O)R^6$;
- $-S(O)_2R^6$;
- $-OCOR^6$;
- -COR⁶;
- $-CO_2R^6$;
- $-CH_2OR^3$;
- $-CON(R^6)_2$;
- $-S(O)_2N(R^6)_2$;
- -NO₂;
- -CN;
- optionally substituted aryl;
- optionally substituted heteroaryl;
- optionally substituted saturated heterocyclyl;
- optionally substituted partially unsaturated heterocyclyl;
- optionally substituted heteroarylalkyl;
- optionally substituted heteroaryloxy;
- -S(O)_p(optionally substituted heteroaryl);
- optionally substituted heteroarylalkyloxy;
- -S(O)_p(optionally substituted heteroarylalkyl);
- $-OCON(R^6)_2$;
- $-NR^3CO_2R^6$;

```
Docket No.: 69713DIV(304795)
```

```
• -NR^3CON(R^6)_2; and
```

• bivalent bridge of structure $T^2=T^2-T^3$:

wherein

each T² independently represents N, CH, or CG^{3'}; and

T³ represents S, O, CR⁴G^{3'}, C(R⁴)₂, or NR³; wherein

G^{3'} represents any of the above-defined moieties G3 which are monovalent;

the terminal T^2 is bound to L, and T^3 is bound to D, forming a 5-membered fused ring;

A and D are CH;

B and E are CH;

L is CH;

with the proviso that the resulting phenyl ring bears as a G^3 substituent said bivalent bridge of structure $T^2=T^2-T^3$;

J is a ring selected from the group consisting of

- aryl;
- pyridyl; and
- cycloalkyl;

q' represents the number of substituents G^4 on ring J and is 0, 1, 2, 3, 4, or 5, and G^4 is a monovalent or bivalent moiety selected from the group consisting of

- $-N(R^6)_2$;
- $-NR^3COR^6$;
- halogen;
- alkyl;
- cycloalkyl;
- lower alkenyl;
- lower cycloalkenyl;
- halogen-substituted alkyl;

- amino-substituted alkyl;
- N-lower alkylamino-substituted alkyl;
- N,N-di-lower alkylamino-substituted alkyl;
- N-lower alkanoylamino-substituted alkyl;
- hydroxy-substituted alkyl;
- cyano-substituted alkyl;
- carboxy-substituted alkyl;
- lower alkoxycarbonyl-substituted alkyl;
- phenyl lower alkoxycarbonyl-substituted alkyl;
- halogen-substituted alkylamino;
- amino-substituted alkylamino;
- N-lower alkylamino-substituted alkylamino;
- N,N-di-lower alkylamino-substituted alkylamino;
- N-lower alkanoylamino-substituted alkylamino;
- hydroxy-substituted alkylamino;
- cyano-substituted alkylamino;
- carboxy-substituted alkylamino;
- lower alkoxycarbonyl-substituted alkylamino;
- phenyl-lower alkoxycarbonyl-substituted alkylamino;
- $-OR^6$;
- $-SR^6$;
- $-S(O)R^6$;
- $-S(O)_2R^6$;
- halogenated lower alkoxy;
- halogenated lower alkylthio;
- halogenated lower alkylsulfonyl;
- $-OCOR^6$;
- $-COR^6$;
- $-CO_2R^6$;

- $-CON(R^6)_2$;
- $-CH_2OR^3$;
- -NO₂;
- -CN;
- amidino;
- guanidino;
- sulfo;
- -B(OH)2;
- optionally substituted aryl;
- optionally substituted heteroaryl;
- optionally substituted saturated heterocyclyl;
- optionally substituted partially unsaturated heterocyclyl;
- $-OCO_2R^3$;
- optionally substituted heteroarylalkyl;
- optionally substituted heteroaryloxy;
- -S(O)_p(optionally substituted heteroaryl);
- optionally substituted heteroarylalkyloxy;
- -S(O)_p(optionally substituted heteroarylalkyl);
- -CHO;
- $-OCON(R^6)_2$;
- $-NR^3CO_2R^6$;
- $-NR^3CON(R^6)_2$; and
 - fused ring-forming bivalent bridges attached to and connecting adjacent positions of ring J, said bridges having the structures:

a)

$$T^2$$
 T^2
 T^2

wherein

each T^2 independently represents N, CH, or $CG^{4'}$;

 T^3 represents S, O, CR^4G^4 , $C(R^4)_2$, or NR^3 ; wherein $G^{4'}$ represents any of the above-defined moieties G^4 which are monovalent; and

binding to ring J is achieved via terminal atoms T² and T³;

b)

wherein

each T^2 independently represents N, CH, or CG^4 ; wherein G4 represents any of the above-defined moieties G^4 which are monovalent; and

with the proviso that a maximum of two bridge atoms T^2 may be N; and binding to ring J is achieved via terminal atoms T^2 ; and

c)

wherein

each T^4 , T^5 , and T^6 independently represents O, S, $CR^4G^{4'}$, $C(R^4)_2$, or NR^3 ; wherein

G4' represents any of the above-identified moieties G4 which are monovalent; and

binding to ring J is achieved via terminal atoms T^4 or T^5 ; with the provisos that:

- i) when one T^4 is O, S, or NR^3 , the other T^4 is $CR^4G^{4'}$ or $C(R^4)_2$;
 - ii) a bridge comprising T⁵ and T⁶ atoms may contain a maximum of two heteroatoms O, S, or N; and
 - iii) in a bridge comprising T⁵ and T⁶ atoms, when one T⁵ group and one T⁶ group are O atoms, or two T⁶ groups are O atoms, said O atoms are separated by at least one carbon atom;

when G^4 is an alkyl group located on ring J adjacent to the linkage $-(CR^4_2)_{p^-}$, and X is NR^3 wherein R^3 is an alkyl substituent, then G^4 and the alkyl substituent R^3 on X may be joined to form a bridge of structure $-(CH_2)_{p'}$ - wherein p' is 2, 3, or 4, with the proviso that the sum of p and p' is 2, 3, or 4, resulting in formation of a nitrogen-containing ring of 5, 6, or 7 members;

and with the further provisos that:

- in G¹, G², G³, and G⁴, when two groups R³ or R⁶ are each alkyl and located on the same N atom they may be linked by a bond, an O, an S, or NR³ to form a N-containing heterocycle of 5 7 ring atoms;
- when an aryl, heteroaryl, or heterocyclyl ring is optionally substituted, that ring may bear up to 5 substituents which are independently selected from the group consisting of amino, mono-loweralkyl-substituted amino, di-loweralkyl-substituted amino, lower alkanoylamino, halogeno, lower alkyl, halogenated lower alkyl, hydroxy, lower alkoxy, lower alkylthio, halogenated lower alkoxy, halogenated lower alkylthio, lower alkanoyloxy, -CO₂R³, -CHO, -CH₂OR³, -OCO₂R³, -CON(R⁶)₂, -OCON(R⁶)₂, -NR³CON(R⁶)₂, nitro, amidino, guanidino, mercapto, sulfo, and cyano; and
- when any alkyl group is attached to O, S, or N, and bears a hydroxyl substituent, then said hydroxyl substituent is separated by at least two carbon atoms from the O, S, or N to which the alkyl group is attached,

or a pharmaceutically acceptable salt or prodrug thereof.

- 7. (Original) A compound of claim 6 wherein, in the ring comprising A, B, D, E, and L and a bivalent bridge of structure T²=T²-T³, the terminal T² represents N and the T³ unit of said bridge represents S, O, CR⁴₂, or NR³.
- 8. (Original) A pharmaceutical composition comprising a compound of claim 6 and a pharmaceutically acceptable carrier.

- 9. (Withdrawn) A method of treating a mammal having a condition characterized by abnormal angiogenesis or hyperpermiability processes, comprising administering to said mammal an amount of a compound of claim 6 which is effective to treat said condition.
- 10. (Withdrawn) The method of claim 9, wherein said condition is tumor growth; retinopathy, including diabetic retinopathy, ischemic retinal-vein occlusion, retinopathy of prematurity, and age-related macular degeneration; rheumatoid arthritis; psoriasis; or a bullous disorder associated with subepidermal blister formation, including bullous pemphigoid, erythema multiforme, and dermatitis herpetiformis.
- 11. (Withdrawn) A compound having the generalized structural formula

$$X - (CR^{4}_{2}) - J$$

$$Z' - R^{1}$$

$$A - B$$

$$A - B$$

$$CG^{4}_{1}_{0}$$

$$R^{2}$$

$$G^{3}_{0}_{1}$$

III.

wherein

 R^1 and R^2 :

- i) independently represent H or lower alkyl;
 - ii) together form a bridge of structure

$$G^1)_m$$

wherein binding is achieved via the terminal carbon atoms;

iii) together form a bridge of structure

$$=$$
 $G^1)_m$

wherein binding is achieved via the terminal carbon atoms;

iv) together form a bridge of structure

$$T^{1}$$
 T^{1}

wherein one or two ring members T¹ are N and the others are CH or CG¹, and binding is achieved via the terminal atoms; or

v) together form a bridge containing two T² moieties and one T³ moiety, said bridge, taken together with the ring to which it is attached, forming a bicyclic of structure

$$Z'$$
 T^2
 T^2
 T^3
 T^2
 T^3
 T^2
 T^3

wherein

each T² independently represents N, CH, or CG¹; and T³ represents S, O, CR⁴G¹, C(R⁴)₂, or NR³;

and wherein

m is 0 or an integer 1 - 4; and

G1 is a substituent independently selected from the group consisting of

- $-N(R^6)_2$;
- $-NR^3COR^6$;
- halogen;
- alkyl;
- cycloalkyl;
- lower alkenyl;
- lower cycloalkenyl;
- halogen-substituted alkyl;
- amino-substituted alkyl;
- N-lower alkylamino-substituted alkyl;
- N,N-di-lower alkylamino-substituted alkyl;

- N-lower alkanoylamino-substituted alkyl;
- hydroxy-substituted alkyl;
- cyano-substituted alkyl;
- carboxy-substituted alkyl;
- lower alkoxycarbonyl-substituted alkyl;
- phenyl lower alkoxycarbonyl-substituted alkyl;
- halogen-substituted alkylamino;
- amino-substituted alkylamino;
- N-lower alkylamino-substituted alkylamino;
- N,N-di-lower alkylamino-substituted alkylamino;
- N-lower alkanoylamino-substituted alkylamino;
- hydroxy-substituted alkylamino;
- cyano-substituted alkylamino;
- carboxy-substituted alkylamino;
- lower alkoxycarbonyl-substituted alkylamino;
- phenyl-lower alkoxycarbonyl-substituted alkylamino;
- $-OR^6$:
- $-SR^6$;
- $-S(O)R^6$;
- $-S(O)_2R^6$;
- halogenated lower alkoxy;
- halogenated lower alkylthio;
- halogenated lower alkylsulfonyl;
- -OCOR⁶;
- $-COR^6$;
- $-CO_2R^6$;
- $-CON(R^6)_2$;
- $-CH_2OR^3$;
- -NO₂;

- -CN;
- amidino;
- guanidino;
- sulfo;
- -B(OH)2;
- optionally substituted aryl;
- optionally substituted heteroaryl;
- optionally substituted saturated heterocyclyl;
- optionally substituted saturated heterocyclylalkyl;
- optionally substituted partially unsaturated heterocyclyl;
- optionally substituted partially unsaturated heterocyclylalkyl;
- $-OCO_2R^3$;
- optionally substituted heteroarylalkyl;
- optionally substituted heteroaryloxy;
- -S(O)_p(optionally substituted heteroaryl);
- optionally substituted heteroarylalkyloxy;
- -S(O)_p(optionally substituted heteroarylalkyl);
- -CHO;
- $-OCON(R^6)_2$;
- $-NR^3CO_2R^6$;
- $-NR^3CON(R^6)_2$

R³ is H or lower alkyl;

R⁶ is independently selected from the group consisting of

- H;
- alkyl;
- cycloalkyl;
- optionally substituted aryl; and

```
• optionally substituted aryl lower alkyl;
```

- lower alkyl- $N(R^3)_2$; and
- lower alkyl-OH;

```
R<sup>4</sup> is H, halogen, or lower alkyl;
```

```
p is 0, 1, or 2;
```

X is selected from the group consisting of O, S, and NR³;

Y is selected from the group consisting of

- lower alkylene;
- -CH₂-O-;
- -CH₂-S-;
- -CH₂-NH-;
- -O- ;
- -S-;
- -NH-;
- $-(CR_2^4)_n$ - $S(O)_p$ -(5-membered heteroaryl)- $(CR_2^4)_s$ -;
- $-(CR_2^4)_n-C(G^2)(R^4)-(CR_2^4)_s-$;

wherein

n and s are each independently 0 or an integer of 1-2; and $G^2 \text{ is selected from the group consisting of } -CN, -CO_2R^3, -CON(R^6)_2, \text{ and } -CH_2N(R^6)_2;$

- -O-CH₂-;
- -S(O)-;
- $-S(O)_2-$;
- -SCH₂-;
- -S(O)CH₂-;
- -S(O)₂CH₂-;

```
Docket No.: 69713DIV(304795)
```

```
-CH_2S(O)-; and
-CH_2S(O)_2
 Z is CR^4;
 q is 1 or 2;
 G<sup>3</sup> is a monovalent or bivalent moiety selected from the group consisting of
-NR<sup>3</sup>COR<sup>6</sup>;
carboxy-substituted alkyl;
lower alkoxycarbonyl-substituted alkyl;
 -OR^6;
 -SR^6;
 -S(O)R^6;
 -S(O)_2R^6;
 -OCOR<sup>6</sup>;
 -COR^6;
-CO_2R^6;
 -CH_2OR^3;
 -CON(R^6)_2;
 -S(O)_2N(R^6)_2;
 -NO_2;
 -CN;
 optionally substituted aryl;
 optionally substituted heteroaryl;
optionally substituted saturated heterocyclyl;
 optionally substituted partially unsaturated heterocyclyl;
 optionally substituted heteroarylalkyl;
```

optionally substituted heteroaryloxy;

-S(O)_p(optionally substituted heteroaryl);

- optionally substituted heteroarylalkyloxy;
- -S(O)_p(optionally substituted heteroarylalkyl);
- $-OCON(R^6)_2$;
- $-NR^3CO_2R^6$;
- $-NR^3CON(R^6)_2$; and
 - bivalent bridge of structure T²=T²-T³ wherein

each T^2 independently represents N, CH, or $CG^{3'}$; and T^3 represents S, O, $CR^4G^{3'}$, $C(R^4)_2$, or NR^3 ; wherein $G^{3'}$ represents any of the above-defined moieties G^3 which are monovalent; and

the terminal T² is bound to L, and T³ is bound to D, forming a 5-membered fused ring;

A and D independently represent N or CH;

B and E independently represent N or CH;

L represents N or CH;

with the provisos that

- a) the total number of N atoms in the ring containing A, B, D, E, and L is 0, 1, 2, or 3; and
- b) when L represents CH and any G³ is a monovalent substituent, at least one of A and D is an N atom; and
- c) when L represents CH and a G^3 is a bivalent bridge of structure $T^2=T^2-T^3$, then A, B, D, and E are also CH;

J is a ring selected from the group consisting of

- aryl;
- pyridyl; and
- cycloalkyl;

q' represents the number of substituents G⁴ on ring J and is 0, 1, 2, 3, 4, or 5, and

G⁴ is a monovalent or bivalent moiety selected from the group consisting of

- $-N(R^6)_2$;
- $-NR^3COR^6$;
- halogen;
- alkyl;
- cycloalkyl;
- lower alkenyl;
- lower cycloalkenyl;
- halogen-substituted alkyl;
- amino-substituted alkyl;
- N-lower alkylamino-substituted alkyl;
- N,N-di-lower alkylamino-substituted alkyl;
- N-lower alkanoylamino-substituted alkyl;
- hydroxy-substituted alkyl;
- cyano-substituted alkyl;
- carboxy-substituted alkyl;
- lower alkoxycarbonyl-substituted alkyl;
- phenyl lower alkoxycarbonyl-substituted alkyl;
- halogen-substituted alkylamino;
- amino-substituted alkylamino;
- N-lower alkylamino-substituted alkylamino;
- N,N-di-lower alkylamino-substituted alkylamino;
- N-lower alkanoylamino-substituted alkylamino;
- hydroxy-substituted alkylamino;
- cyano-substituted alkylamino;
- carboxy-substituted alkylamino;
- lower alkoxycarbonyl-substituted alkylamino;
- phenyl-lower alkoxycarbonyl-substituted alkylamino;

- $-OR^6$;
- $-SR^6$;
- $-S(O)R^6$;
- $-S(O)_2R^6$;
- halogenated lower alkoxy;
- halogenated lower alkylthio;
- halogenated lower alkylsulfonyl;
- $-OCOR^6$;
- $-COR^6$;
- $-CO_2R^6$;
- $-CON(R^6)_2$;
- $-CH_2OR^3$;
- -NO₂;
- -CN;
- amidino;
- guanidino;
- sulfo;
- -B(OH)2;
- optionally substituted aryl;
- optionally substituted heteroaryl;
- optionally substituted saturated heterocyclyl;
- optionally substituted partially unsaturated heterocyclyl;
- $-OCO_2R^3$;
- optionally substituted heteroarylalkyl;
- optionally substituted heteroaryloxy;
- -S(O)_p(optionally substituted heteroaryl);
- optionally substituted heteroarylalkyloxy;
- -S(O)_p(optionally substituted heteroarylalkyl);
- -CHO;

- $-OCON(R^6)_2$;
- $-NR^3CO_2R^6$;
- $-NR^3CON(R^6)_2$; and
 - fused ring-forming bivalent bridges attached to and connecting adjacent positions of ring J, said bridges having the structures:

a)

$$T^2$$
 T^2
 T^2

wherein

each T² independently represents N, CH, or CG⁴;

T³ represents S, O, CR⁴G⁴, C(R⁴)₂, or NR³; wherein

G4' represents any of the above-defined moieties G4 which are monovalent; and

binding to ring J is achieved via terminal atoms T² and T³;

b)

wherein

each T² independently represents N, CH, or CG⁴; wherein

G4' represents any of the above-defined moieties G4 which are monovalent; and

with the proviso that a maximum of two bridge atoms T^2 may be N; and binding to ring J is achieved via terminal atoms T^2 ; and

c)

$$T^{4}$$
, T^{5} , T^{6} , T^{5} , T^{6} , T^{5} , T^{6} , or T^{6} , T^{5} , T^{6} , T^{6} , T^{5} , T^{6} ,

wherein

each T⁴, T⁵, and T⁶ independently represents O, S, CR⁴G⁴, C(R⁴)₂, or NR³; wherein

Docket No.: 69713DIV(304795)

G4' represents any of the above-defined moieties G4 which are monovalent; and

binding to ring J is achieved via terminal atoms T^4 or T^5 ; with the provisos that:

- i) when one T^4 is O, S, or NR^3 , the other T^4 is $CR^4G^{4'}$ or $C(R^4)_2$;
 - ii) a bridge comprising T⁵ and T⁶ atoms may contain a maximum of two heteroatoms O, S, or N; and
 - iii) in a bridge comprising T⁵ and T⁶ atoms, when one T⁵ group and one T⁶ group are O atoms, or two T⁶ groups are O atoms, said O atoms are separated by at least one carbon atom;

when G^4 is an alkyl group located on ring J adjacent to the linkage $-(CR^4_2)_{p^-}$, and X is NR^3 wherein R^3 is an alkyl substituent, then G^4 and the alkyl substituent R^3 on X may be joined to form a bridge of structure $-(CH_2)_{p'}$ - wherein p' is 2, 3, or 4, with the proviso that the sum of p and p' is 2, 3, or 4, resulting in formation of a nitrogen-containing ring of 5, 6, or 7 members;

and with the further provisos that:

- in G¹, G², G³, and G⁴, when two groups R³ or R⁶ are each alkyl and located on the same N atom they may be linked by a bond, an O, an S, or NR³ to form a N-containing heterocycle of 5 7 ring atoms;
- when an aryl, heteroaryl, or heterocyclyl ring is optionally substituted, that ring may bear up to 5 substituents which are independently selected from the group consisting of amino, mono-loweralkyl-substituted amino, di-loweralkyl-substituted amino, lower alkanoylamino, halogeno, lower alkyl, halogenated lower alkyl, hydroxy, lower alkoxy, lower alkylthio, halogenated lower alkoxy, halogenated lower alkylthio, lower alkanoyloxy, -CO₂R³, -CHO, -CH₂OR³, -OCO₂R³, -CON(R⁶)₂, -OCON(R⁶)₂, -NR³CON(R⁶)₂, nitro, amidino, guanidino, mercapto, sulfo, and cyano; and

- when any alkyl group is attached to O, S, or N, and bears a hydroxyl substituent, then said hydroxyl substituent is separated by at least two carbon atoms from the O, S, or N to which the alkyl group is attached,

Docket No.: 69713DIV(304795)

or a pharmaceutically acceptable salt or prodrug thereof.

- 12. (Withdrawn)A compound of claim 11 wherein R⁴ is H.
- 13. (Withdrawn)A pharmaceutical composition comprising a compound of claim 11 and a pharmaceutically acceptable carrier.
- 14. (Withdrawn)A method of treating a mammal having a condition characterized by abnormal angiogenesis or hyperpermiability processes, comprising administering to said mammal an amount of a compound of claim 11 which is effective to treat said condition.
- 15. (Withdrawn)The method of claim 14, wherein said condition is tumor growth; retinopathy, including diabetic retinopathy, ischemic retinal-vein occlusion, retinopathy of prematurity, and age-related macular degeneration; rheumatoid arthritis; psoriasis; or a bullous disorder associated with subepidermal blister formation, including bullous pemphigoid, erythema multiforme, and dermatitis herpetiformis.

16. (Currently Amended) A compound selected from the group consisting of

Ex. No.:	Compound Name (IUPAC):
1	N-(4-chlorophenyl)-4-(4-pyridinylsulfanyl)-1-isoquinolinamine
2	N-(2,3-dihydro-1H-inden-5-yl)-4-(4-pyridinylsulfanyl)-1-
	<u>isoquinolinamine</u>
3	N-(1,3-benzothiazol-6-yl)-4-(4-pyridinylsulfanyl)-1-isoquinolinamine
4	N-(4-chlorophenyl)-4-(4-pyridinylmethyl)-1-isoquinolinamine
5	N-(1,3-benzothiazol-6-yl)-4-(4-pyridinylmethyl)-1-isoquinolinamine
6	N-(2,3-dihydro-1H-inden-5-yl)-4-(4-pyridinylmethyl)-1-
	<u>isoquinolinamine</u>
7	N-(3-fluoro-4-methylphenyl)-4-(4-pyridinylmethyl)-1-isoquinolinamine
8	N-(4-chlorophenyl)-7-(4-pyridinylmethoxy)thieno[2,3-d]pyridazin-4-
	<u>amine</u>

_	
9	N-(4-chlorophenyl)-7-(4-pyridinylmethoxy)furo[2,3-d]pyridazin-4-
	amine
10	4-[({4-[(4-chlorophenyl)amino]thieno[2,3-d]pyridazin-7-
	yl}oxy)methyl]-2-pyridinecarboxamide
11	4-[({4-[(4-chlorophenyl)amino]thieno[2,3-d]pyridazin-7-
	yl\oxy)methyl]-N-methyl-2-pyridinecarboxamide
12	4-({1-[(4-chlorophenyl)amino]-4-isoquinolinyl}methyl)-2-
	pyridinecarboxamide
13	4-({1-[(4-chlorophenyl)amino]-4-isoquinolinyl}methyl)-N-methyl-2-
	pyridinecarboxamide
14	4-[({4-[(4-chlorophenyl)amino]furo[2,3-d]pyridazin-7-yl}oxy)methyl]-
	N-methyl-2-pyridinecarboxamide
16	4-[({4-[(4-chlorophenyl)amino]furo[2,3-d]pyridazin-7-yl}oxy)methyl]-
	2-pyridinecarboxamide
17	N-(1,3-benzothiazol-6-yl)-N-{4-[(4-chlorophenyl)amino]thieno[2,3-
	d]pyridazin-7-yl}amine
18	N-(1,3-benzothiazol-6-yl)-N-[4-(2,3-dihydro-1H-inden-5-
	ylamino)thieno[2,3-d]pyridazin-7-yl]amine
19	4-(5-bromo-2,3-dihydro-1 <i>H</i> -indol-1-yl)-7-(4-
	pyridinylmethoxy)furo[2,3-d]pyridazine
20	4-[({4-[(4-methoxyphenyl)amino]furo[2,3-d]pyridazin-7-
20	yl\oxy)methyl]-N-methyl-2-pyridinecarboxamide
21	N-(4-methoxyphenyl)-7-(4-pyridinylmethoxy)furo[2,3-d]pyridazin-4-
21	amine
22	4-[({4-[(4-methoxyphenyl)amino]furo[2,3-d]pyridazin-7-
22	yl}oxy)methyl]-2-pyridinecarboxamide
23	N^{7} -(1,3-benzothiazol-6-yl)- N^{4} -(4-chlorophenyl)thieno[2,3-d]pyridazine-
23	4,7-diamine
24	N-(1,3-benzothiazol-6-yl)-N-[4-(2,3-dihydro-1H-inden-5-
24	ylamino)thieno[2,3-d]pyridazin-7-yl]amine
27	N-(1H-indazol-5-yl)-N-[4-(1H-indazol-5-ylamino)thieno[2,3-
21	•
28	d]pyridazin-7-yl]amine N (1.2 hangathiagal 6 yl) N [4 (1.2 hangathiagal 6 ylamina) fyra[2.2]
28	N-(1,3-benzothiazol-6-yl)-N-[4-(1,3-benzothiazol-6-ylamino)furo[2,3-
2.4	d]pyridazin-7-yl]amine
34	4-[({4-[(4-methoxyphenyl)amino]furo[2,3-d]pyridazin-7-
2.5	yl}oxy)methyl]-N-methyl-2-pyridinecarboxamide
35	4-[({4-[(3-chlorophenyl)amino]furo[2,3-d]pyridazin-7-yl}oxy)methyl]-
2.5	N-methyl-2-pyridinecarboxamide
36	4-[({4-[(3-chloro-4-fluorophenyl)amino]furo[2,3-d]pyridazin-7-
	yl}oxy)methyl]-N-methyl-2-pyridinecarboxamide
37	4-[({4-[(4-fluorophenyl)amino]furo[2,3-d]pyridazin-7-yl}oxy)methyl]-
	N-methyl-2-pyridinecarboxamide
38	4-[({4-[(4-bromophenyl)amino]furo[2,3-d]pyridazin-7-yl}oxy)methyl]-
	N-methyl-2-pyridinecarboxamide
39	N-methyl-4-[({4-[(4-methylphenyl)amino]furo[2,3-d]pyridazin-7-
	yl\oxy)methyl]-2-pyridinecarboxamide

40	N-methyl-4-[({4-[(3-methylphenyl)amino]furo[2,3-d]pyridazin-7-yl}oxy)methyl]-2-pyridinecarboxamide
42	N-methyl-4-{[(4-{[4-(trifluoromethyl)phenyl]amino}furo[2,3-
72	d]pyridazin-7-yl)oxy]methyl}-2-pyridinecarboxamide
12	N-methyl-4-{[(4-{[4-(trifluoromethoxy)phenyl]amino}furo[2,3-
43	
4.4	d]pyridazin-7-yl)oxy]methyl}-2-pyridinecarboxamide
44	4-[({4-[(3-chloro-4-methoxyphenyl)amino]furo[2,3-d]pyridazin-7-
	yl}oxy)methyl]-N-methyl-2-pyridinecarboxamide
45	4-(\[4-(\{4-\[acetyl(methyl)amino\]phenyl\}amino)\furo[2,3-d]pyridazin-7-
	yl]oxy}methyl)-N-methyl-2-pyridinecarboxamide
46	N-methyl-4-{[(4-{[4-(4-morpholinyl)phenyl]amino}furo[2,3-
	d]pyridazin-7-yl)oxy]methyl}-2-pyridinecarboxamide
47	4-[({4-[(3,4-difluorophenyl)amino]furo[2,3-d]pyridazin-7-
	yl}oxy)methyl]-N-methyl-2-pyridinecarboxamide
48	N-(1,3-benzothiazol-6-yl)-N-{4-[(4-chlorophenyl)amino]furo[2,3-
	d pyridazin-7-yl}amine
49	4-({[4-(2,3-dihydro-1H-inden-5-ylamino)furo[2,3-d]pyridazin-7-
	yl]oxy}methyl)-N-methyl-2-pyridinecarboxamide
50	4-[({4-[(2-methoxyphenyl)amino]furo[2,3-d]pyridazin-7-
	yl}oxy)methyl]-N-methyl-2-pyridinecarboxamide
51	4-[({4-[(3-methoxyphenyl)amino]furo[2,3-d]pyridazin-7-
	yl}oxy)methyl]-N-methyl-2-pyridinecarboxamide
52	4-({[4-(1,3-benzodioxol-5-ylamino)furo[2,3-d]pyridazin-7-
	yl]oxy}methyl)-N-methyl-2-pyridinecarboxamide
53	4-[({4-[(3,4-dichlorophenyl)amino]furo[2,3-d]pyridazin-7-
	yl}oxy)methyl]-N-methyl-2-pyridinecarboxamide
54	4-[({4-[(3,5-dimethylphenyl)amino]furo[2,3-d]pyridazin-7-
	yl}oxy)methyl]-N-methyl-2-pyridinecarboxamide
55	4-({[4-(1H-indazol-5-ylamino)furo[2,3-d]pyridazin-7-yl]oxy}methyl)-
	N-methyl-2-pyridinecarboxamide
56	N-(4-methoxyphenyl)-7-(4-pyridinylmethoxy)furo[2,3-d]pyridazin-4-
	amine
57	4-[(4-hydroxyphenyl)amino]furo[2,3-d]pyridazin-7-
	yl}oxy)methyl]-N-methyl-2-pyridinecarboxamide
58	4-{[7-(4-pyridinylmethoxy)furo[2,3-d]pyridazin-4-yl]amino}phenol
59	4-{[(4-anilinofuro[2,3-d]pyridazin-7-yl)oxy]methyl}-N-methyl-2-
	pyridinecarboxamide
60	4-[({4-[(3-methoxy-4-methylphenyl)amino]furo[2,3-d]pyridazin-7-
	yl}oxy)methyl]-N-methyl-2-pyridinecarboxamide
61	N-(4-chlorophenyl)-7-{[2-(4-morpholinylcarbonyl)-4-
	pyridinyl]methoxy}furo[2,3-d]pyridazin-4-amine
62	N-methyl-4-[({4-[(2-methyl-1,3-benzothiazol-5-yl)amino]furo[2,3-
02	d]pyridazin-7-yl}oxy)methyl]-2-pyridinecarboxamide
63	4-({[4-(1,3-benzothiazol-6-ylamino)furo[2,3-d]pyridazin-7-
	yl]oxy}methyl)-N-methyl-2-pyridinecarboxamide trifluoroacetate
	yrloxy (mouny)-14-mouny-2-pyriumecatooxaimue urriuotoacetate

64	4-[(4-[(4-chlorophenyl)amino]furo[2,3-d]pyridazin-7-
	yl\oxy)methyl\-2-pyridinyl\methanol
65	4-({[4-(2,3-dihydro-1-benzofuran-5-ylamino)furo[2,3-d]pyridazin-7-
	yl]oxy}methyl)-N-methyl-2-pyridinecarboxamide
66	4-({[4-(2,3-dihydro-1-benzofuran-5-ylamino)thieno[2,3-d]pyridazin-7-
	yl]oxy}methyl)-N-methyl-2-pyridinecarboxamide
67	4-[({4-[(4-fluorophenyl)amino]thieno[2,3-d]pyridazin-7-
	yl}oxy)methyl]-N-methyl-2-pyridinecarboxamide
68	N-methyl-4-[({4-[(3-methylphenyl)amino]thieno[2,3-d]pyridazin-7-
	yl\oxy)methyl\-2-pyridinecarboxamide
69	4-[({4-[(4-methoxyphenyl)amino]thieno[2,3-d]pyridazin-7-
	yl}oxy)methyl]-N-methyl-2-pyridinecarboxamide
70	N-methyl-4-{[(4-{[4-(trifluoromethoxy)phenyl]amino}thieno[2,3-
	dlpyridazin-7-yl)oxylmethyl}-2-pyridinecarboxamide
71	N-methyl-4-{[(4-{[4-(trifluoromethyl)phenyl]amino}thieno[2,3-
	dlpyridazin-7-yl)oxylmethyl}-2-pyridinecarboxamide
72	4-[({4-[(4-bromophenyl)amino]thieno[2,3-d]pyridazin-7-
	yl}oxy)methyl]-N-methyl-2-pyridinecarboxamide
73	4-({[4-(2,3-dihydro-1H-inden-5-ylamino)thieno[2,3-d]pyridazin-7-
	yl]oxy}methyl)-N-methyl-2-pyridinecarboxamide
74	4-({[4-(1,3-benzodioxol-5-ylamino)thieno[2,3-d]pyridazin-7-
	yl]oxy}methyl)-N-methyl-2-pyridinecarboxamide
75	N-(1,3-benzothiazol-6-yl)-N-[4-(1,3-benzothiazol-6-
	ylamino)thieno[2,3-d]pyridazin-7-yl]amine
76	N-(1,3-benzothiazol-6-yl)-N-{4-[(4-bromophenyl)amino]thieno[2,3-
	d]pyridazin-7-y1}amine
78	$N-(1,3-benzothiazol-6-yl)-N-\{4-[(2,4-yl)-1]\}$
	dimethylphenyl)amino]thieno[2,3-d]pyridazin-7-yl}amine
79	N-(1,3-benzothiazol-6-yl)-N-{4-[(3-fluoro-4-
	methylphenyl)amino]thieno[2,3-d]pyridazin-7-yl}amine
82A	4-[({4-[(4-chlorophenyl)amino]furo[2,3-d]pyridazin-7-yl}oxy)methyl]-
	N-[2-(dimethylamino)ethyl]-2-pyridinecarboxamide
82B	4-[({4-[(4-chlorophenyl)amino]furo[2,3-d]pyridazin-7-yl}oxy)methyl]-
	N-cyclopropyl-2-pyridinecarboxamide
82C	4-[({4-[(4-chlorophenyl)amino]furo[2,3-d]pyridazin-7-yl}oxy)methyl]-
	N-(2-hydroxyethyl)-2-pyridinecarboxamide
82D	4-[({4-[(4-chlorophenyl)amino]furo[2,3-d]pyridazin-7-yl}oxy)methyl]-
	N-ethyl-2-pyridinecarboxamide
85	N-(4-chlorophenyl)-4-(4-pyridinylsulfanyl)-1-isoquinolinamine
88	N-(2,3-dihydro-1H-inden-5-yl)-4-(4-pyridinylsulfanyl)-1-
	isoquinolinamine
89	N-(1,3-benzothiazol-6-yl)-4-(4-pyridinylsulfanyl)-1-isoquinolinamine
93	N-(1,3-benzothiazol-6-yl)-N-[4-(1,3-benzothiazol-6-ylamino)-1-
	phthalazinyl]amine

95	N-(1H-benzimidazol-6-yl)-N-{4-[(4-chlorophenyl)amino]-1-phthalazinyl}amine
96	
90	N-(1H-1,2,3-benzotriazol-5-yl)-N-{4-[(4-chlorophenyl)amino]-1-
07	phthalazinyl}amine N (1.2 harrathianal (nl) 4 (5 harra 2.2 dibadaa 111 indal 1 nl) 1
97	N-(1,3-benzothiazol-6-yl)-4-(5-bromo-2,3-dihydro-1H-indol-1-yl)-1-
00	phthalazinamine
98	N-(1,3-benzothiazol-6-yl)-N-{4-[(2,2-difluoro-1,3-benzodioxol-5-
0.0	yl)amino]-1-phthalazinyl}amine
99	N-(1,3-benzothiazol-6-yl)-N-(4-{[4-(1-piperidinyl)phenyl]amino}-1-
	phthalazinyl)amine
100	N-(1,3-benzothiazol-6-yl)-N-[4-({4-
	[ethyl(isopropyl)amino]phenyl}amino)-1-phthalazinyl]amine
101	N-(1,3-benzothiazol-6-yl)-N-{4-[(3-bromophenyl)amino]-1-
	phthalazinyl}amine
102	N-(1,3-benzothiazol-6-yl)-N-{4-[(4-isopropylphenyl)amino]-1-
	<pre>phthalazinyl}amine</pre>
103	N-(1,3-benzothiazol-6-yl)-N-{4-[(3-methoxyphenyl)amino]-1-
	phthalazinyl}amine
104	N-(1,3-benzothiazol-6-yl)-N-{4-[(3-fluoro-4-methylphenyl)amino]-1-
	phthalazinyl}amine
105	N-(1,3-benzothiazol-6-yl)-N-{4-[(4-chlorophenyl)amino]-1-
	phthalazinyl}amine
106	4-[({4-[(4-chlorophenyl)amino]furo[2,3-d]pyridazin-7-yl}oxy)methyl]-
	N-methyl-2-pyridinecarboxamide 4-methylbenzenesulfonate
107	4-[({4-[(4-chlorophenyl)amino]furo[2,3-d]pyridazin-7-yl}oxy)methyl]-
	N-methyl-2-pyridinecarboxamide 4-chlorobenzenesulfonate
108	4-[({4-[(4-chlorophenyl)amino]furo[2,3-d]pyridazin-7-yl}oxy)methyl]-
	N-methyl-2-pyridinecarboxamide methanesulfonate
109	4-[({4-[(4-chlorophenyl)amino]furo[2,3-d]pyridazin-7-yl}oxy)methyl]-
	N-methyl-2-pyridinecarboxamide ethanesulfonatesulfonate
110	4-[({4-[(4-chlorophenyl)amino]furo[2,3-d]pyridazin-7-yl}oxy)methyl]-
	N-methyl-2-pyridinecarboxamide dihydrochloride
111	4-[({4-[(4-chlorophenyl)amino]furo[2,3-d]pyridazin-7-yl}oxy)methyl]-
	N-methyl-2-pyridinecarboxamide hydrobromide
112	4-[({4-[(4-chlorophenyl)amino]furo[2,3-d]pyridazin-7-yl}oxy)methyl]-
112	N-methyl-2-pyridinecarboxamide sulfate
113	4-[({4-[(4-chlorophenyl)amino]furo[2,3-d]pyridazin-7-yl}oxy)methyl]-
	N-methyl-2-pyridinecarboxamide nitrate
114	4-[({4-[(4-chlorophenyl)amino]furo[2,3-d]pyridazin-7-yl}oxy)methyl]-
117	N-methyl-2-pyridinecarboxamide 2-hydroxyethanesulfonate
115	4-[({4-[(4-chlorophenyl)amino]furo[2,3-d]pyridazin-7-yl}oxy)methyl]-
113	N-methyl-2-pyridinecarboxamide benzenesulfonate
	11-meary1-2-pyriameearooxamiae oenzenesamonate