Esteusioni nomali:

es. 1)

Costruire un CRC K del polinouir $f(x) = x^3 + 2x + 1$ su F = 72/372. L'esteusione $F \subseteq K$ è normale?

 \Rightarrow consideriour $K_0 = F(x) = F[x]/(x)$ can a radice di f $(f \in irriducible : f(0) = f(1) = f(2) = 1 \neq 0)$

 \Rightarrow si ha $\times^3 + 2 \times + 1 = (\times - \alpha)(\times^2 + \alpha \times + \alpha^2 + 2)$

 $\Rightarrow x^{2} + \alpha x + \alpha^{2} + 2 = x^{2} - 2\alpha x + \alpha^{2} + 2 = (x - \alpha)^{2} + 2$ $= (x - \alpha)^{2} - 1 = (x - \alpha + 1)(x - \alpha - 1)$

⇒ f si fattorizza completamente

⇒ Ko = K i CRC di f

 \Rightarrow F \subseteq K $\stackrel{?}{=}$ NORMALE se e solo se ogni polinomio in F[x] avente una rodice in K fottonizza completamente in K[x] (\Leftrightarrow $\stackrel{?}{=}$ CRC di un polinomio non costante $f(x) \in F[x]$)

⇒ K é normale

es. 2)

Quali delle seguenti esteusioni sono normali?

a) $Q \subseteq Q(\sqrt{-5})$:

 \Rightarrow $\sqrt{-5}$ è radice di $\times^2 + 5 \Rightarrow [Q(\sqrt{-5}):Q] = 2$

⇒ ogui esteusione di grador 2 è normale

b) $Q \subseteq Q(x)$ con $x = \sqrt{15}$

⇒ « è radice di ×7-5, irriducibile per Eiseustein

in Q, tuttaria possiède radici emplesse une reali $\Rightarrow Q(\prec)$ von è normale

c) $Q(\lambda) \subseteq Q(\lambda, \sqrt{5})$ con $\lambda = \sqrt{5}$

 $\Rightarrow \times^2 - 5$ ha radice $\sqrt{5}$

 $\Rightarrow [Q(x, N5): Q(x)] \leq 2 \Rightarrow \bar{e}$ nomale

d) $\mathbb{R} \subseteq \mathbb{R}(\sqrt{-7})$:

 $\Rightarrow [IR(N-7):IR] = 2$ dato che $x^2 + 7$ è poliuonnio nuiniur di N-7

⇒ è normale

e) $C \subseteq C(N-7)$:

 \Rightarrow ((N-7) = (\Rightarrow l'esteurione ha grado 1

⇒ ĕ normale

Esteurioni Separalili:

Ricondiama che:

- 1) Un poliumier irriducibile $f \in F[\times]$ i seporabile se NON ha zeri di urdteplicità >1 in alcuma esteusime $F \subseteq K \iff f'(\times) \neq 0$
- 2) Un poliumier f(x) è separalile se la sonor tutti i suoi fattoni irriducilili
- 3) Un elements algebrics $z \in K$ ($F \subseteq K$ estensione di campi) è separalile se il sur polinamis minimo è separalile in F[x]
- 4) Un 'esteurique algebrica F = K è separable se ogni

LEK algebrica e separalile su F

⇒ Ogui esteusione F⊆K con corF=O è seporabile

⇒ Ogui esteusione F⊆K cm |F| < +∞ è separalile esempio (esteusione NON separalile):

Fo = 15p = 72/p72 can p primo.

⇒ considerians l'estensione trascendente Fo(4) = F (com 4 trascendente ⇔ 4 non risolve nessura equasione polinaniale)

 $\Rightarrow F = \left\{ \frac{1}{3} \mid f \in F_0[x], g \in F_0[u] \setminus \{0\} \right\}$

 \Rightarrow cor $F = p \neq 0 \land |F| = \infty$

 \Rightarrow consideriour $f(x) = x^p - y \in F[x]$

1) f é irriducibile

2) f ha radici multiple nel CRC K di f su F Dim:

2) lu K f ha ma rocice $T (T^p = y)$ $\Rightarrow (X - T)^p = X^p - T^p = X^p - y = x^p$ Sozur della matricola

⇒ tutte le radici de f in K sous uguali a T

1) Supposioner f = gh cm 0 < deg g < p, $g,h \in F[\times]$ \Rightarrow per l'unicità della fattoritzazione, $g = (\times - \tau)^s$ cm 0 < s = deg g < p

 $\Rightarrow T^{s} \in F \Rightarrow s \in copriner com p, quindi per Bernit <math>\exists A, \beta \ t.c. \ AS + \beta p = 1$

 $\Rightarrow \tau^{AA+BP} = (\tau^{A})^{A} \cdot (\tau^{P})^{B} \in F \Rightarrow \tau \in F$ $\downarrow u \in F$

$$\Rightarrow \tau = \frac{v(u)}{w(u)} \quad cm \quad v, w \in F[x] \Rightarrow v(u) = \tau \cdot w(u)$$

$$\Rightarrow (v(u))^{p} = T^{p}(w(u))^{p} = u(w(u))^{p}$$

$$\Rightarrow v(u)^p - u w(u)^p = 0$$

Calcalor di gruppi di automorfismi:

ls.3)

Calcalore i seguenti gruppi di automosfismi

a) Aut ((():

$$\Rightarrow \forall \in A_{J+R}(\mathcal{I}) \Rightarrow \forall (z) = \forall (\alpha) + \forall (6) \forall (i)$$

$$\Rightarrow \varphi(i)^2 = \varphi(i^2) = -1 \Rightarrow \varphi(i) = \pm i$$

$$\Rightarrow$$
 se $e(i)=i$, $e=Id$, se $e(i)=-i$, $e=il$ comingior di $e(e(z)=e(\overline{z}))$

b) Aut (Q(\$\sqrt{2})):

$$\Rightarrow Q(\sqrt[3]{2}) = \{a + 6\sqrt[3]{2} + C\sqrt[3]{2}^2 \mid a, b, c \in Q\}$$

$$\Rightarrow (EA_{\nu}+_{\mathbb{Q}}(\mathbb{Q}(\tilde{\mathcal{J}}_{2}))) \Rightarrow ((\alpha+b\tilde{\mathcal{J}}_{2}+c\tilde{\mathcal{J}}_{2}^{2}) = \alpha+b\tilde{\mathcal{J}}_{2}+c\tilde{\mathcal{J}}_{2}^{2}) = \alpha+b\tilde{\mathcal{J}}_{2}+c\tilde{\mathcal{J}}_{2}^{2}$$

$$\Rightarrow (\sqrt[3]{2})^3 = (2) = 2 \Rightarrow (\sqrt[3]{2})$$
 è radice di $\times^3 - 2$

$$\Rightarrow \ell(\sqrt[3]{2}) = \sqrt[3]{2}, \omega^{3/2}, \omega^{2}\sqrt[3]{2} \quad cm \quad \omega = -\frac{1}{2} + i\sqrt{\frac{3}{2}}$$

$$\Rightarrow$$
 deve essere $(372) = 372 \Rightarrow e = Id$

$$\Rightarrow \forall (\alpha + 6\sqrt{7}) = \alpha + 6 \forall (\sqrt{7}) \Rightarrow \forall (\sqrt{7})^2 = 7$$

$$\Rightarrow \varphi(\sqrt{7}) = \pm \sqrt{7} \Rightarrow \text{se } \varphi(\sqrt{7}) = \sqrt{7}, \ \varphi = \text{Id}$$

$$\Rightarrow$$
 se $((N7) = -N7, ((a+bN7) = a-bN7)$ che è isaumfisura $(Q(N7) \cong Q(-N7))$

$$\Rightarrow |A_{\nu}+_{\Omega}(Q(\sqrt{7}))| \leq [Q(\sqrt{7}):Q]=2$$

$$\Rightarrow A_{U} +_{Q} (Q(N7)) = \{ Id, Y \}$$

$$F = |F_p(u)| = \{ \frac{4}{3} | \text{felfp[x]}, \text{gelfp(0)} \}$$
 (ppino),

$$\Rightarrow$$
 sia $p = 5$, $Aut_F(F(\tau))$

$$\Rightarrow$$
 in $F(\tau)$, $\times^{p}-u = (\times - \tau)^{p}$

$$\Rightarrow \varphi(\alpha+6\tau) = \alpha+6\varphi(\tau) cm:$$

$$((\tau)^p = u \Rightarrow ((\tau) \in radice di \times^{p} - u$$

$$\Rightarrow \varphi(\tau) = \tau \Rightarrow \varphi = IJ$$

$$\Rightarrow$$
 $A_{i}+_{F}(F(\tau))=\{IJ\}$

N.B. Notore che $|A_{v+F}(F(T))| < [F(T): F]$

$$\Rightarrow$$
 $F \subseteq F(T)$ NON \bar{e} separalile (come vistor sopra)
HA $\bar{\iota}$ unuale (\bar{e} CRC di \times^{p} -4)