

Antonio Cianfrani

Packet Tracer and initial router configuration

Packet Tracer (1/2)

Packet Tracer?

Cisco Packet Tracer is a software able to emulate CISCO networking devices.

Packet Tracer features:

- Allows to create network topologies with Cisco devices and generic device.
- Emulate the Command Line Interface (CLI) of the Cisco IOS (a subset of functions).
- Allows to configure, using the CLI (or the GUI), the network devices so that to check the correctness of a network configuration.
- Dynamically evaluate the device state and the traffic packets exchanged into the network.

Packet Tracer (2/2)

Topology and available devices

It is possible

- To start from an existing topology
 - open -> Reference_Topologies
- Or to create your own network

It is possible to use

- Cisco network devices with specific hardware features
- Customize generic devices

How to insert a device

The Common Tools Bar

Connecting devices

- To connect two network devices, it is needed to select:
 - An adequate physical medium (wired/wireless cable)
 - The proper interfaces
- It is also possible to use the smart connection mode:
 - Packet Tracer selects on itself the cable and the interfaces to be connected

The Smart Connection mode

Port Status

Port Labels

Configuring a device

- Packet Tracer provides a set of basic configuration commands to be performed by means of the graphical interface (GUI- Grafic User Interface).
- On the bottom, the list of commands to be used for the CLI is shown.

Configuring the Router Hostname

Router FastEthernet Interface

Laboratory of Network Design and Configuration - A.Y. 2019/2020

Saving the configuration

How to check the connectivity

- Realtime Mode: using the CLI of a router/PC and performing a ping (like in the real world....).
- Simulation Mode: it is possible to follow the packets crossing all network devices in their path

Ping from a PC

Simulation Mode

Creating a PDU

Laboratory of Network Design and Configuration - A.Y. 2019/2020

Event List

Playing the Simulation

Results

PDU Information

Configuring a Cisco Router

CLI (1/2)

- To configure a router/switch we need to learn how the Command Line Interface (CLI) is organized
- How to reach the CLI?
 - Console Session
 - Telnet Session

CLI (2/3)

- Il CLI has a hierarchical structure
 - Different modes with different configuration levels
 - User EXEC mode
 - Privileged EXEC mode or enable mode
 - Global Configuration mode

CLI (3/3)

- The User EXEC only allows for basic monitoring functions ("view only" mode)
 - It is not possible to perform configuration actions
 - It is identified by the prompt ">".
- The Privileged EXEC mode allows for more operational functions
 - It is possible to secure with a password
 - It is identified by the prompt "#"
- To move form User mode to Privileged mode
 - "enable" command

Moving among modes

To come back to Privileged mode from global configuration: "exit" or "Ctrl-Z"

Configuration mode

- The global configuration mode allows to perform configuration commands
- To move from the Privileged mode to the Global Configuration one:

```
Router#configure terminal Router(config)#
```

From the Global Configuration mode it is possible to configure: interfaces, routing protocols, etc..

Summary

Configuration Mode	Prompt
Interface	Router(config-if)#
Subinterface	Router(config-subif)#
Controller	Router(config-controller)#
Map-list	Router(config-map-list)#
Map-class	Router(config-map-class)#
Line	Router(config-line)#
Router	Router(config-router)#
IPX-router	Router(config-ipx-router)#
Route-map	Router(config-route-map)#

CLI Help

- The Question Mark (?) is used to list the set of available commands
 - After "-More-" other commands
 - "Enter" to see line by line
 - "Space" to see the whole next page
- It is possible to cut off a word ("ena" instead of enable)
- "Ctrl-P" o "Up Arrow" to recall the last commands
- The ^ symbol show the wrong command part

Router name

Each route has a nome (Router is the default name)

- TO assign a different name:
 - > From Global configuration mode

```
Router(config) #hostname Tokyo
Tokyo(config) #
```


Securing router access (1/4)

- It is possible to configure a password for router access
- The password can be defined for different access ways:
 - 1. Console port
 - 2. Telnet access, referred to as Virtual Terminal Line (vty) in the CLI
 - 3. Privileged EXEC mode

Securing router access (2/4)

Password for the console port:

```
Router(config)#line console 0
Router(config-line)#password <password>
Router(config-line)#login
```

Password for the telnet access (virtual terminal line):

```
Router(config) #line vty 0 4
Router(config-line) #password <password>
Router(config-line) #login
```


Securing router access (3/4)

- Two possibilities to configure a password for the Privileged mode:
- 1. "enable password" command

Router(config)#enable password <password>

- The password is shown (not encrypted) in the configuration files (more later when introducing commands "show runningconfig" o "show startup-config")
- It is possible to encrypt the password (all the passwords) using the command:

Router(config) #service password-encryption

Securing router access (4/4)

2. "enable secret" command

Router(config)#enable secret <password>

The algorithm used by the enable secret command is more robust than the one used by the service password-encryption command

The "show" command (1/2)

- It is used to provide information about router features (both hardware and software)
- It is available both in the User EXEC and Privileged EXEC modes (with different information provided)
- Esempi:
 - "show interfaces" statistics about interfaces
 - "show controllers serial" hardware level information about interfaces
 - "show clock" router clock
 - <u>"show hosts"</u> list of devices (hostname and IP address) known by the router

The "show" command (2/2)

- "show users" users connected to the router
- "show history" list of commands used in the past
- "show flash" information about flash memory and available IOS image files
- "show version" hardware level features of the router and running IOS
- "show ARP" ARP table of the router
- "show protocol" Layer 3 protocols configured at router level and at interface level
- "show startup-configuration" startup configuration file (saved into the NVRAM)
- "show running-configuration" running configuration file (saved into the RAM)

The configuration files (1/2)

- The running-config file stores the actual configuration of the router
- The startup-config file stores the last configuration saved (that will be loaded on router re-start)
- To save the actual configuration in the NVRAM:
 Router# copy running-config startup-config

The configuration files (2/2)

- If a command accepted by the router was not the one to be used it is possible to come back:
 - Execute "no command name"
- If all the commands executed from router startup must be removed from the configuration:
 - Reload the startup configuration file from NVRAM

Router# copy startup-config running-config

Serial interface configuration (1/2)

```
Router(config) #interface serial 0/0

Router(config-if) #ip address <ip address>
<netmask>
Router(config-if) #clock rate 56000

Router(config-if) #no shutdown
```

- The serial interfaces require a clock for synchronization purposes
- All un router interfaces are "physically down" (powered off): the powering up command is "no shutdown"

Ethernet interface configuration

- Similar to the serial interface one.
- No need to configure a clock

```
Router (config) #interface e0
Router (config-if) #ip address 183.8.126.2 255.255.128
Router (config-if) #no shutdown
```


Interface description (2/2)

Tokyo (config) #interface e 0

Tokyo (config-if) #description Engineering LAN, Bldg. 18

Static routing

Static routing and dynamic routing (1/2)

- > The routing table of a router can be updated in two different ways:
 - Using information exchanged with different routers (Dynamic routing - Routing protocols);
 - By means of configuration commands executed by the network administrator (Static Routing)

Static routing and dynamic routing (2/2)

- > The static routing is not scalable:
 - A static route must be configured manually;
 - In the case of a topology change, the network administrator must modify the proper static routes;
 - It has an high management complexity in case of big networks.
- > Usually both static and dynamic routing are used

Static route configuration

- > The command to configure a static route is
- R1 (config) #ip route Dest_IP_Add SubNet_Mask A/B
- Two options for the forwarding part:
 - Option A: the output interface (it is possible only in the case of a point-to-point link)
 - > Option B: the next-hop router IP address
- > The default route can be configured statically:

ip route 0.0.0.0 0.0.0.0 A/B

The administrative distance

- The administrative distance (AD) is a measure of the reliability degree of a route
 - Low value of $AD \rightarrow high\ reliability$
- Static routes are reliable by default (AD = 1)
- It is possible to increase the administrative distance:

Routing table (1/2)

Routing table (2/2)

- > The rows (route) of a routing table have different sources:
 - Directly connected routes (C)
 - Statics routes (S,S*)
 - Dynamic Routes (RIP→R, OSPF→O, etc...)
- The administrative distance is a measure of the route reliability (depends on the source)
- > To check reachability: ping and traceroute

Practical activity

