$$\operatorname{CSC}\ 282\ \text{-}\ \operatorname{Fall}\ 2017$$ http://www.cs.rochester.edu/~stefanko/Teaching/17CS282/

Nan	ne:
Honor I	Pledge (following http://www.rochester.edu/college/honesty/policy.html#pledge)
	I affirm that I will not give or receive any unauthorized help on this exam, and that all work will be my own.
	(signature/date)

problem 1		
problem 2		
problem 3		
TOTAL		

do not write on this page

1. (40 POINTS) Unlimited supply coin change problem with values and weights. There are n types of coins. We have an unlimited supply of each coin type. The i-th coin type has weight w_i and value v_i (where w_i and v_i are both positive integers). We want to pay amount A so that the total weight of the coins used is B and we minimize the total number of coins used. We will solve the problem using dynamic programming. Let T[a,b] be the minimum number of coins that can be used to pay amount a with the total weight of the coins used being b (we let $T[a,b] = \infty$ if it is not possible to pay amount a with the total weight of the coins used being b). Give an expression (or a piece of code) to compute T[a,b] from smaller subproblems. You don't have to deal with the base cases. Clearly explain your expression (or code). Clearly indicate your final answer.

2. (40 POINTS) A sequence c_1, \ldots, c_ℓ is **palindromic** if $c_j = c_{\ell+1-j}$ for all $j \in \{1, \ldots, \ell\}$. We say that a subsequence of a sequence a_1, \ldots, a_n is **valid** if no 2 consecutive numbers of a_1, \ldots, a_n are selected. We are given a sequence a_1, \ldots, a_n and want to find the longest subsequence of a_1, \ldots, a_n that is both valid and palindromic. For $1 \le i \le j \le n$ let T[i,j] be the length of the longest valid palindromic subsequence of a_i, \ldots, a_j . Give an expression (or a piece of code) to compute the value of T[i,j] from smaller subproblems. For simplicity assume $j-i \ge 4$. You don't have to deal with the base cases. Clearly explain your expression (or code). Clearly indicate your final answer.

¹Recall that a subsequence of a_1, \ldots, a_n is any sequence of the form $a_{i_1}, \ldots, a_{i_\ell}$ where $\ell \in \{0, \ldots, n\}$ and $1 \le i_1 < i_2 < \cdots < i_\ell \le n$. A subsequence is valid if $i_{j+1} - i_j > 1$ for all $j \in \{1, \ldots, \ell - 1\}$.

3. (40 POINTS) A shuffle of two strings A[1..n] and S[1..m] is formed by interspersing the characters into a new string, keeping the characters of A and S in the same order (for example, 'several' is a shuffle of 'seal' and 'evr'). We are given 3 strings A[1..n], B[1..m], C[1..p]. We want to check whether there exists a shuffle of A[1..n] and a subsequence² of B[1..m] that is C[1..p]. We will solve the problem using dynamic programming. Let T[i,j,k] = true if and only if there exists a shuffle of A[1..i] and a subsequence of B[1..j] that is C[1..k]. Give an expression (or a piece of code) to compute the value of T[i,j,k] from smaller subproblems. You don't have to deal with the base cases. Clearly explain your expression. Clearly indicate your final answer.

²A subsequence of a string B[1..m] = B[1]B[2]...B[m] is a string $B[i_1]B[i_2]...,B[i_\ell]$ where $\ell \in \{0,...,m\}$ and $1 \le i_1 < i_2 < \cdots < i_\ell \le m$.