

IP(Internet Protocol)

: 태그	NETWORK
를 주차	8주차

IP(Internet Protocol)

목치

1. IP

- 1-1. IP datagram 구조
- 1-2. IP 단편화 및 재결합
 - 1) 단편화(fragmentation)
 - 2) 재결합(reassembly)
- 1-3. IP 프로토콜의 한계

2. IPv4

- 1) 서브넷(subnet)
- 2) 호스트(host)
- 2-1. 서브넷 마스크(subnet mask)
- 2-2. CIDR(Classless Inter-Domain Routing)
- 2-3. 호스트가 IP 주소를 할당받는 방법
 - 1) 고정 IP 주소
 - 2) 유동 IP 주소
- 2-4. DHCP(Dynamic Host Configuration Protocol)
 - 1) 특징
 - 2) 동작 과정
- 2-5. NAT (Network Address Translation)
 - 1) 장점

3. IPv6

- 3-1. 특징
- 3-2. 구조
- 3-3. IPv4에서 IPv6로 전환하는 방법
 - 1) 터널링(turnneling)

1. IP

- 인터넷이 통하는 네트워크에서 어떤 정보를 송수신하는 통신에 대한 규약
 - 패킷 교환 네트워크 상에서 데이터를 교환하기 위한 프로토콜
 - 。 지정한 IP 주소에 데이터를 패킷이라는 단위로 전달하는 역할
- 네트워크 ID와 호스트ID로 나뉘어 있음
- 이 프로토콜을 국제적으로 표준화하기 위해 ISO 위원회가 발족되고, OSI 7계층이 발표 됨

1-1. IP datagram 구조

4	4	8		1	6	[bit]	_	
Ver	IHL	Service Type	Total Length			1		
	Identification Flags Fragment Offset							
Time t	o Live	Protocol	Header Checksum				헤더	
Source IP Address						OII CI		
Destination IP Address								
	IP Options Padding					,		
TCP 또는 UDP 데이터					Ţ			

IHL: IP Header Length

Ver: Version

필드명	길이(bit)	기능
Ver (Version)	4	IP 버전 값을 표시(현재는 4)
IHL	4	4byte 단위로 헤더 길이를 표시(최소 5)
Service Type	8	서비스 클래스 지정(보통 0)
Total Length	16	IP 패킷 크기(바이트 단위, 최대 65535)
Identification	16	데이터그램 ID
Flags	3	첫번째 비트: More 비트(0: 마지막 패킷, 1: 연속되는 패킷) 두번째 비트: 세분화 금지 플래그(0: 세분화 가능)

필드명	길이(bit)	기능
		세번째 비트 : 미사용
Fragment Offset	13	전체 메시지 중 이 패킷의 위치를 표시(8바이트 단위)
TTL(Time to Live)	8	패킷이 통신망 내에서 계속 돌아다니는 것을 방지하기 위해 사용되며, 보통 hop counter 값 사용. 노드를 지나갈 때마다 TTL값이 1씩 감소하고, 0이 되는 노드에서 이 패킷을 제거
Protocol	8	데이터를 전달할 상위 계층 프로토콜 지정 (1: ICMP, 6: TCP, 17: UDP)
Header Checksum	16	헤더 부분의 오류 검출
Src IP Address	32	송신지 IP 주소
Dest IP Address	32	수신지 IP 주소
IP Options	가변	옵션 선택(보통 사용하지 않음)
Padding	가변	32비트 단위로 패킷의 길이를 맞춤(보통 사용하지 않음)

1-2. IP 단편화 및 재결합

- 네트워크 링크에는 MTU(Maximum Transmission Unit) 사이즈가 존재. 즉, 데이터 의 최대 크기가 존재하며, 이는 네트워크 링크 종류에 따라 다름
 - o Ethernet은 1500bytes

1) 단편화(fragmentation)

• 만약 큰 MTU 사이즈를 가진 네트워크에서 작은 MTU 사이즈를 가진 네트워크로 데이터를 이동시켜야 한다면 데이터를 잘게 쪼개야 함

2) 재결합(reassembly)

- IP header에는 쪼개진 datagram 조각의 순서를 식별하기 위한 필드가 포함되어 있음
- 쪼개진 datagram을 마지막 도착지에서 다시 합치는 것

1-3. IP 프로토콜의 한계

- 비연결성
 - 。 패킷을 받을 대상이 있든 없든 전송
- 비신뢰성

。 패킷이 중간에 사라지거나 순서대로 오지 않아도 해결할 방법이 없음

• 프로그램 구분

같은 IP를 사용하는 서버에서 통신하는 어플리케이션이 둘 이상이면 이를 구분할 방법이 없음

2. IPv4

- 32비트로 구성되어 있으며, 한 칸당 10진수 8bit의 IP 주소로 구성되어 있음
- 호스트/라우터의 네트워크 인터페이스마다 하나씩 존재하지만, 호스트/라우터마다 두 개 이상의 네트워크 인터페이스가 존재하므로 IP 주소도 여러개 존재할 수 있음
- 32비트의 IP주소는 크게 두 부분으로 나뉨
 - ㅇ 상위 비트: 서브넷
 - 。 하위 비트: 네트워크 안에서의 호스트

1) 서브넷(subnet)

- IP 주소에서 동일한 장치의 인터페이스를 말함
- 하나의 서브넷 안에서는 라우터 없이 연결되어 있으므로 동일한 LAN(이더넷 or Wifi) 안에서 상호간에 물리적으로 연결되어 있음

2) 호스트(host)

• 특정 서브넷 안에서의 사용자 번호

2-1. 서브넷 마스크(subnet mask)

- 상위 몇 비트까지 서브넷으로 사용할 것인지를 나타냄
 - 슬래시(/)로 표기

2-2. CIDR(Classless Inter-Domain Routing)

- IETF에서 1993년부터 도입한 표준 IP 주소 할당 방식으로, 8, 16, 24비트가 아닌 23, 15비트 등으로 서브넷 구분
- 고갈되는 IP 주소를 기존의 클래스 기반 IP 주소 할당 방식보다 더 효율적으로 사용할 수 있는 장점이 있음

- 。 CIDR 도입 이후로는 클래스 기반 IP 주소할당 방식은 사용되지 않음
- 255.255.255.255 는 서브넷에 속해있는 모든 호스트에게 보낼 수 있는 브로드캐스트 (Broadcast) 주소를 의미

2-3. 호스트가 IP 주소를 할당받는 방법

1) 고정 IP 주소

• 관리자가 수동으로 시스템 파일에 저장하는 방법

2) 유동 IP 주소

• DHCP을 통해 IP 주소를 할당받는 방법

2-4. DHCP(Dynamic Host Configuration Protocol)

• 클라이언트에게 동적으로 IP 주소를 할당하는 방법을 제공하는 프로토콜

1) 특징

- 사용중인 주소의 대여기간 갱신(연장) 가능
- 주소의 재사용 가능
- 네트워크에 접속하고자 하는 이동 사용자 지원

2) 동작 과정

- 1. 호스트가 DHCP discover 메세지로 브로드캐스트(255.255.255.255)
- 2. DHCP 서버가 DHCP offer 로 응답
- 3. 호스트가 IP 주소를 요청: DHCP request 메세지
- 4. DHCP 서버는 IP 주소를 보냄: DHCP ACK 메세지

와이파이 네트워크 패스워드를 저장할 수 있는 이유는 동적 IP 주소를 보고 구분하는 것이 아니라 노트북의 Wifi LAN카드의 MAC 주소를 기억하고 구분하기 때문

외부 서버와의 통신

DHCP 서버는 외부 네트워크와 통신하기 위해서는 IP주소 외에도 first-hop 라우터의 IP 서버, DNS 서버의 이름 & IP 주소, 서브넷 마스크 등의 정보가 추가적으로 필요

2-5. NAT(Network Address Translation)

• 라우터 등의 장비에서 다수의 사설 IP(Private IP)를 외부 IP(Public IP)로 변환하는 기술

1) 장점

- 모든 라우터에 몰려있는 장비에 대해 하나의 주소만 ISP로부터 얻어오면 됨
- 외부 IP와 내부 IP가 독립적으로 설정되어 있어 외부/내부 주소를 변경해도 외부에 영향이 없음
- 내부 네트워크 주소가 외부에 노출되지 않으므로 보안 측면에서 장점이 있음

3. IPv6

• 128-bit로 구성되어 있으며, 한 칸당 16bits를 4자리의 16진수로 표현하여 8조각으로 구성된 IP 주소로 구성

- **ex**) 2001:0db8:85a3:1319:8a2e:0370:7334
- IPv4의 32-bit IP 주소 공간(2³², 약 43억 개)은 이미 고갈된 상태이므로 128-bit의 IPv6가 등장
 - IPv6는 2¹²⁸개의 주소공간 수용 가능

3-1. 특징

- 주소 공간이 매우 많음
- header 형식 개선으로 우선순위 및 품질에 따라 순차적 할당 기능 등의 QoS 지원
- 보안 기능을 기본적으로 제공

QoS(Quality of Service)

- 컴퓨터 네트워크에서 데이터의 중요도에 따라 처리하는 기술.
- 라우터 또는 스위치가 트래픽 유형을 구별한 후 적절한 동작을 트래픽에 적용 할 수 있도록 해주는 프로세스
- 트래픽과 리소스의 우선순위를 지정해 특정 어플리케이션 또는 서비스의 성 능 보장 가능

3-2. 구조

ver	pri	flow label			
payload len			next hdr	hop limit	
	source address (128 bits)				
destination address (128 bits)					
data					

32 bits -

필드명	길이(비트)	기능
Src Port	16	송신 측의 응용 프로세스를 구분하는 포트번호
Dest Port	16	수신 측의 응용 프로세스를 구분하는 포트번호
Sequence #	32	송신된 데이터의 순서 번호(바이트 단위)
Ack#	32	수신된 데이터 바이트 수 + 1 (아래의 ACK=1일 때 의미가 있음)
Header Length	4	헤더 크기(4Byte 단위)로, 보통 5
Code Bits: SYN	1	연결 요청시 사용되며, Sequence #가 초기값 임을 알림
Code Bits: ACK	1	ACK용 데이터임을 표시(이 때 ACK #값이 유효)
Code Bits: URG	1	긴급 데이터임을 표시(이 때 Urgent Pointer 값 이 유효)
Code Bits: FIN	1	접속을 종료하는 데 사용
Code Bits: RST	1	접속을 리셋하는 데 사용
Window	16	흐름 제저용 윈도우 크기(바이트 단위)
Checksum	16	TCP PDU 전체와 IP계층의 헤더 중 후반부 12 바이트(송수신지 IP 주소 등)에 대한 오류 검출 코드)

필드명	길이(비트)	기능
Urgent Pointer	16	긴급 데이터가 들어 있는 위치를 표시

3-3. IPv4에서 IPv6로 전환하는 방법

- IPv4를 없애고 전부 IPv6로 변환하는 것은 불가능
 - 。 혼용 사용중

1) 터널링(turnneling)

• IPv4는 IPv6의 기능을 지원하지 않으므로 IPv4의 라우터에서 IPv4의 datagram의 payload에 IPv6의 datagram을 넣어 전달해 호환성 해결