CSC 3110 – Homework 4

- 1. Find the order of growth for solutions of the following recurrences:
 - a. T(n) = 5T(n/3)+n

b. $T(n) = 9T(n/3)+n^2$

c. $T(n) = 10T(n/3)+n^3$

G)
$$T(n) = 10 T(n/3) + n^3$$
 $a = 10$ $f(n) G (n^4) d \ge 0$
 $b = 3$
 $0 > 3$
 $10 < b > 3$
 $V T(n) G (n^3)$
 $10 = 3^3 \times 10 > 3^3 \times 10 > 3^3 \times 10$

2. Traverse the following binary tree in

- a. Preorder = 8,3,1,6,4,7,10,14,13
- b. Inorder = 1,3,4,6,7,8,10,13,14
- c. Postorder = 1,4,7,6,3,13,14,10,8
- 3. Indicate the time efficiency classes of the three main operations of the priority queue implemented as
 - a. Unsorted array
 - i. Insert = O(1)
 - ii. Delete = O(n)
 - iii. Peek = O(n)
 - b. Sorted array
 - i. Insert = $O(\log n)$
 - ii. Delete = O(1)
 - iii. Peek = O(1)
 - c. Binary Search Tree
 - i. Insert = $O(\log n)$
 - ii. Delete = O(log n)
 - iii. Peek = $O(\log n)$
 - d. AVL tree
 - i. Insert = $O(\log n)$
 - ii. Delete = O(log n)
 - iii. Peek = $O(\log n)$
 - e. Heap
 - i. Insert = $O(\log n)$
 - ii. Delete = O(log n)
 - iii. Peek = O(1)

4. Construct both an AVL tree and a 2-3 tree for the values 3 6 5 1 2 4

a. AVL tree

b. 2-3 Tree

5. Apply Quicksort using both Lomuto's and Hoare's partitioning algorithms on 3 6 5 1 2 4 $\,$

a. Lomuto's

P=a	[2 : 3 6 5 4]
	[2 1 3 6 5 4] s:
	[12 3654]
	1/sort other size
P=6	[2 3 6 5 4]
	[2 3 6 5 4] s:
	Managements
	NABANAS
	[1 2 3 6 5 4] s i
	[123/654]
	51
1	[123456]

b. Hoare's

