(B) 部分偏振光且只是在该光由真空入射到折射率为 $\sqrt{3}$ 的介质时,折射角是 30°. (C) 部分偏振光,但须知两种介质的折射率才能确定折射角. (D) 部分偏振光且折射角是 30°.
7. K 系与 K' 系是坐标轴相互平行的两个惯性系, K' 系相对于 K 系沿 Ox 轴正方向匀速运动. 一根刚性尺静止在 K' 系中,与 O'x '轴成 30° 角. 今在 K 系中观测得该尺与 Ox 轴成 45° 角,则 K' 系相对于 K 系的速度是: (A) (2/3)c. (B) (1/3)c. (C) (2/3) ^{1/2} c. (D) (1/3) ^{1/2} c.
8. 设某微观粒子的总能量是它的静止能量的 K 倍,则其运动速度的大小为(以 c 表示真空中的 光速) $ (A) \frac{c}{K} \sqrt{K^2 - 1} . \qquad (B) \frac{c}{K} \sqrt{1 - K^2} \; . $
(C) $\frac{c}{K-1}$. (D) $\frac{c}{K+1}\sqrt{K(K+2)}$. [] 9. 用頻率为 μ 的单色光照射某种金属时,测得饱和电流为 I_1 ,以频率为 μ 的单色光照射该金属时,测得饱和电流为 I_2 ,若 $I_1>I_2$,则 (A) $\mu>\mu$. (B) $\mu<\mu$. (C) $\mu=\mu$. (D) μ 与 μ 的关系还不能确定. []
二、填空题(本大题共 25 分) $ 10. \ ($ 本题 4 分)一驻波表达式为 $y=2A\cos(2\pi x/\lambda)\cos\omega t$,则 $x=\frac{\lambda}{3}$ 处质点的振动方程是
11.(本题 3 分)在双缝干涉实验中,双缝间距为 <i>d</i> ,双缝到屏的距离为 <i>D</i> (<i>D>>d</i>),测得中央零级明纹与第三级明纹之间的距离为 <i>x</i> ,则入射光的波长为

12. (本题 3 分)波长为λ的单色光垂直照射如图所示的设

薄膜. 膜厚度为 e, 两束反射光的光程差

的透明	Λ	
	$\sqrt{n_1} = 1.00 \sqrt{n_1}$	V
	$n_2 = 1.30$	e
_	$n_3 = 1.50$	

- 14. (本题 3 分) 用波长为 λ 的单色平行红光垂直照射在光栅常数 $d=2\mu m$ ($1\mu m=10^{-6}$ m)的光栅上,用焦距 f=0.500 m 的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离 l=0.1667m.则可知该入射的红光波长 $\lambda=$ _______nm.
- **15.** (本题 4 分) 在某地发生两件事,静止位于该地的甲测得时间间隔为3s,若相对于甲作匀直线运动的乙测得时间间隔为5s,则乙相对于甲的运动速度是
- 16. (本题 3 分) 频率为200MHZ的一个光子的能量是 E=______,动量的大小是 $p_c=$ _____。(普朗克常量 $h=6.63\times10^{-34}\,\mathrm{J\cdot s.}$)

三、计算题(本大题共48分)

17. (本题 5 分) 二小球悬于同样长度 / 的线上. 将第一球沿竖直方向上举到悬点,而将第二球从平衡位置移开,使悬线和竖直线成一微小角度 α ,如图. 现将二球同时放开,则何者先到 达最低位置?

18. (本题 5 分) 一简谐振动的振动曲线如图所示. 求振动方程.

19. (本 题 5 分)在弹性媒质中有一沿 x 轴正向传播的平面波,其表达式为 $y=0.01\cos(4t-\pi x-\frac{1}{2}\pi)$ (SI). 若在 x=5.00 m 处有一媒质分界面,且在分界面处反射波相位突变 π ,设反射波的强度不变,试写出反射波的表达式.

20. (本题 10 分) 一列平面简谐波在媒质中以波速 u=5 m/s 沿 x 轴正向传播,原点 O 处质元的振动曲线如图所示.

(2) 求解并画出
$$t=3$$
 s 时的波形曲线.

22. (本题 8 分) 粒子在一维矩形无限深势阱中运动,波函数为: $\psi_n(x) = \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a}$ (0 < x < a) 若粒子处于 n=1 的状态,试求在区间 $0 < x < \frac{1}{2}a$ 发现粒子的几率。(积分 $\int \sin^2 x dx = \frac{1}{2}x - \frac{1}{4}\sin 2x + C$)

21.(本题 10 分)在牛顿环装置的平凸透镜和平板玻璃之间充满折射率 n=1.33 的透明液体(设平凸透镜的折射率 1.25,平板玻璃的折射率为 1.48),凸透镜的曲率半径 R=300~cm,波长 $\lambda=650~nm$ 的平行单色光垂直照射到牛顿环装置上,凸透镜的顶部刚好与平玻璃板接触。求:

1) 从中心向外数第 6 个暗环所在处液体厚度 e_{10} ; 2) 第 6 个暗环的半径 r_{10} 。

