1 Estudiar convergencia de
$$\sum fn$$
,

con $fn(z) = \left(\frac{z^2 - i}{z^2 + i}\right)^n$ $\forall z \in \mathbb{C} \setminus \left\{\frac{1}{2} + \frac{-1 + i}{\sqrt{2}}\right\}$

Sabemos que $\sum_{n\geq 0} w^n$, converge absolutamente en D(0,1) y uniformemente en cade $K\subset D(0,1)$ compacto 4=5 $W\in U=\{w\in C\}$ |w|<1 (ansideramos $G: C\setminus Z=\frac{z^2-i}{\sqrt{z}}$) $=\frac{z^2-i}{z^2+i}$

Entonces,
$$fu(z) = (e(z))^n$$
, $y = \sum_{n \geq 0} f_n = \sum_{n \geq 0} e^n$

. Queremos encontrar un Ω c $\mathbb{C} \setminus \{ \frac{1}{2} - \frac{1+i}{\sqrt{2}} \}$ tal que $\{ e(\Omega) = \mathbb{U} \}$. Fijamos $z \in \mathbb{C} \setminus \{ \frac{1}{2} - \frac{1+i}{\sqrt{2}} \}$ t $q \in \mathbb{C} \setminus \{ e(z) \in \mathbb{U} \}$ $\Leftrightarrow \mathbb{C} \setminus \{ e(z) \in \mathbb{C} \}$ $\Leftrightarrow \mathbb{C} \setminus \{$

$$(x^{2}-y^{2}) + (2xy-1)i + (2xy+1)i + (2xy+1)i + (2xy+1)i + (2xy+1)i + (2xy+1)i + (2xy+1)^{2}$$

$$(x^{2}-y^{2})^{2} + (2xy-1)^{2} < \sqrt{(x^{2}-y^{2})^{2} + (2xy+1)^{2}}$$

$$(x^{2}/y^{2})^{2} + (2xy-1)^{2} < (x^{2}/y^{2})^{2} + (2xy+1)^{2}$$

y no comerge en ninguin punto fuera de I.

2) Estudiar derivabilidad de
$$f,g: C \longrightarrow C$$
 dedes por $f(z) = z^2 e^{\frac{\pi}{2}}$ $f(z) = seu(z) f(z)$ $\forall z \in C$

•)
$$f: \mathbb{C} \longrightarrow \mathbb{C}$$

 $f(z) = z^2 e^{\overline{z}}$

 $f(\mathbb{C}) = z^2 e^{\overline{z}}$

Emperamos estudiando la derivabilidad de e= , z e C

$$e^{\frac{\pi}{2}} = e^{(x-i\gamma)} = e^{x} \cdot e^{i\gamma} = e^{x} \left(\cos(\gamma) - i \sec(\gamma)\right)$$
 $x,y \in \mathbb{R}$ Definions has funciones:

$$u(x,y) = e^{x} cos(y)$$
 $v(x,y) = -e^{x} seu(y)$ $\forall x,y \in \mathbb{R}$

Aubas son diferenciables en \mathbb{R}^2 =D por el Teorence de Candry - Riemann , $e^{\frac{7}{2}}$ será derivable on z=x+iy ri se cumples las ecuaciones de Candry - Riemann

$$\frac{\partial U}{\partial x} = e^{x} \cos(y) \qquad \frac{\partial U}{\partial x} = \frac{\partial v}{\partial y} \implies e^{x} \cos(y) = -e^{x} \cos(y) = 0$$

$$\frac{\partial V}{\partial y} = -e^{x} \cos(y) \qquad \frac{\partial U}{\partial x} = \frac{\partial v}{\partial y} \implies e^{x} \cos(y) = -e^{x} \cos(y) = 0$$

$$\frac{\partial V}{\partial y} = -e^{x} \sin(y)$$

Como el seux y el coseno vunca se anulan a la vez, las ecuciones de Canchy-Riemann vo se cumplen para vingún $z \in \mathbb{C} \implies e^{\frac{z}{2}}$ no es derivable en vingún $z \in \mathbb{C}$.

- o) Si $z \neq 0$ = 0 $e^{\overline{z}} = \frac{f(z)}{z^2}$ = 0 f(z) no puede ser derivable (porque si lo fuera, $e^{\overline{z}}$ seria cociente de funciones derivables y, por tanto, derivable !!)
 - ·) Si z=0 = estudiamos la derivabilidad de z con la definición.

$$\lim_{z \to 0} \frac{f(z) - f(0)}{z - 0} = \lim_{z \to 0} \frac{z^2 \cdot e^{\overline{z}} - 0}{z} = \lim_{z \to 0} z \cdot e^{\overline{z}} = 0$$

→ Por tanto, f es derivable en z=0

$$\neg D g(z) = ser(z) f(z) \quad \forall z \in \mathbb{C}$$

IL= { kT: KEZ }

•) Si
$$z \notin \Omega$$
 =D $f(z) = \frac{g(z)}{\sin(z)}$ y , si $g(z)$ fluex derivable, también lo seria $f(z)$!!

·) Si = E I =

$$\lim_{\omega \to 2} \frac{g(\omega) - g(z)}{g(\omega)} = \lim_{\omega \to 2} \frac{w - z}{sw(\omega) \cdot f(\omega)} = \lim_{\omega \to 2} \frac{w - z}{sw(\omega)} = \lim_{\omega \to 2} \frac{w}{sw(\omega)} = \lim_{\omega \to 2} \frac{w - z}{sw(\omega)} = \lim_{\omega \to$$

$$= \lim_{\omega \to 2} \frac{\operatorname{sen}(\omega) \cdot f(\omega)}{\omega - z} = \lim_{\omega \to 2} \frac{\operatorname{sen}(\omega) \cdot \omega^2 \cdot e^{\overline{\omega}}}{\omega - z} =$$

$$= \lim_{\omega \to 2} \frac{\operatorname{sen}(\omega)}{\omega^{-2}} \cdot \lim_{\omega \to 2} \frac{\omega^{2} \cdot e^{\overline{\omega}}}{\omega^{-2}} = \lim_{\omega \to 2} \frac{\operatorname{sen}(\omega) - \operatorname{sen}(z)}{\omega^{-2}} \cdot f(z) =$$

= seu (z). f(z)

Por toute g, es derivable en 12 y no le es fuera de él.

$$\int_{C(0,1)} \frac{z(z-2)^2}{cos(z)} dz$$

Fórmula de Cauchy para una circunferencia

Sean
$$\Omega = \Omega^{\circ} \subset \mathbb{C}$$
 y $f \in \mathcal{H}(\Omega)$

Dados $a \in \Omega$ y $r \in \mathbb{R}^+$ tales que $\overline{D}(a,r) \subset \Omega$, se tiene:

$$f(z) = \frac{1}{2\pi i} \int_{C(a,r)} \frac{f(w)}{w - z} dw \qquad \forall z \in D(a,r)$$

$$\frac{\cos(z)}{z(z-2)^2} = \frac{\cos(z)}{(z-2)^2} \cdot \frac{1}{z-0} \qquad \text{Towamos} \quad f(z) = \frac{\cos(z)}{(z-2)^2} \quad \text{on } z \in D(0,r)$$

y
$$f \in \mathcal{H}(D(0,r))$$
, por ser cociente de funciones holomorfas.

Como
$$D(0,1) \subset D(0,r)$$
 Conchy para circumferencia $\mathbb{Z} = D(0,r)$

$$\int_{C(0,1)} \frac{f(z)}{z-0} dz = 2\pi i \cdot f(0) = 2\pi i \cdot \frac{1}{(-z)^2} = 2\pi i \cdot \frac{1}{4} = \frac{\pi i}{2}$$

(4) a, b e C, a + b, R > 0: R > wax { |a|, |b|}.

Probar que si f es entera =D

$$\frac{f(z)}{(z-\alpha)(z-b)} dz = 2\pi i \frac{f(b)-f(a)}{b-a}$$
Dados $a \in \Omega$ $y \in \mathbb{R}^+$ tales que $D(a,r) \subset \Omega$, se
$$f(z) = \frac{1}{2\pi i} \int_{C(a,r)} \frac{f(w)}{w-z} dw \qquad \forall z \in D(a,r)$$

Dados $a \in \Omega$ y $r \in \mathbb{R}^+$ tales que $\overline{D}(a,r) \subset \Omega$, se tiene:

$$f(z) = \frac{1}{2\pi i} \int_{C(a,r)} \frac{f(w)}{w - z} dw \qquad \forall z \in D(a,r)$$

Deducir que toda función entera y acotada es constante (diouville).

$$\frac{f(z)}{(z-\alpha)(z-b)} = \frac{f(z)}{b-\alpha} \left[\frac{1}{z-b} - \frac{1}{z-\alpha} \right] = \frac{1}{b-\alpha} \left(\frac{f(z)}{z-b} - \frac{f(z)}{z-\alpha} \right)$$

$$=D \int \frac{f(z)}{f(z)} dz = \frac{b-a}{l} \left(\int \frac{f(z)}{f(z)} dz - \int \frac{f(z)}{f(z)} dz \right) = C(0,R)$$

$$= \frac{1}{b-a} \left(2\pi i f(b) - 2\pi i f(a) \right) = 2\pi i \frac{f(b) - f(a)}{b-a}.$$