AD-	A	149	988
-----	---	-----	-----

AD

B R L

TECHNICAL REPORT BRL-TR-2622

AN ADVANCED FLASH SUPPRESSION NETWORK INVOLVING ALKALI SALTS

Joseph M. Heimerl

December 1984

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

US ARMY BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

DTIE FILE COPY

REPRODUCED FROM BEST AVAILABLE COPY

85 01 25 055

Destroy this report when it is no longer needed. Do not return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

UNCLASSIFIED					
SECURITY CLASSIFICATION OF THIS PAGE (When	Data Entered)				
REPORT DOCUMENTATI	ON PAGE	READ INSTRUCTIONS - BEFORE COMPLETING FORM			
1 REPORT NUMBER	2. GOVT ACCESSION NO.				
TECHNICAL REPORT BRL-TR-2622	FU-E149988				
4. TITUE (and Subtitle)	TYPE OF REPURT & PERIOD COVERED				
AN ADVANCED FLASH SUPPRESSION N INVOLVING ALKALI SALTS	Final				
		6. PERFORMING ORG. REPORT NUMBER			
7. AUTHOR(a)		B. CONTRACT OR GRANT NUMBER(e)			
Joseph M. Heimerl					
9. PERFORMING ORGANIZATION NAME AND ADDI US Army Ballistic Research Labo ATTN: AMXBR-IBD		10. PROGRAM ELEMENT PROJECT, TASK AREA & WORK UNIT NUMBERS			
Aberdeen Proving Ground, MD 2	1005-5066	1L161102AH43			
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE			
US Army Ballistic Research Labo	ratory	DECEMBER 1984			
ATTN: AMXBR-OD-ST	005 5044	13. NUMBER OF PAGES 39			
Aberdeen Proving Ground, MD 21 14 MONITORING AGENCY NAME & ADDRESS(II did	UU3-5060 (ferent from Controlling Office)	'5 SECURITY CLASS. (of this report)			
		Unclassified			
		15. DECLASSIFICATION DOWNGRADING SCHEDULE			
16. DISTRIBUTION STATEMENT (at this Report)					
Approved for public release;	_				
17. DISTRIBUTION STATEMENT (of the abetract en	tered in Block 20, if different fro	m Report)			
18. SUPPLEMENTARY NOTES This work was reported at the 21 University, Applied Physics Labo					
19 KEY WORDS (Continue on reverse side if necessariants) Muzzle Flash Flamer					
D1 D	ntary Chemistry Salts				
	Prediction				
Potassing Salts					

20 ABSTRACT (Continue as reverse side if necessary and identify by block number) jmh

The prediction of muzzle flash suppression has been hampered by the lack of detailed understanding of the fundamental suppression mechanism. Indirect evidence points toward a gas-phase chemical reaction as the general mechanism. A recent paper by Hynes, Steinberg, and Schofield on the elementary chemistry involved in the suppression of oxygen-rich hydrogen flames by sodium salts provides the basis for developing an advanced muzzle flash suppression mechanism by potassium salts.

Flash Suppression

SECURITY CLASSIFICATION CF THIS PAGE(When Date Entered)

The kinetic network to be described in this report was deduced by a systematic and duplicable methodology.

The reactive species are: H, O, OH, H2, O2, H2O, and HO2; together with CO and CO2; and the suppression species: K, KO, KO2, KOH, and KH. (N2 is a nonreactive diluent.) All unimolecular, two- and three-body reactions possible among this set of reactive species were generated. Reactions in which multiple bonds were broken were eliminated from further consideration. Where possible, rate coefficients for the remaining reactions were taken from the literature. Those for which no literature values could be found were assigned gas-kinetic values.

This network, consisting of 48 reactions, was used in the MEFF muzzle-flash-prediction code for M30 propellant with 1% and 2.7% K₂SO₄ added. The code results agree with previous MEFF calculations and with the observations that flash is observed in the former and not the latter case.

To further eliminate unimportant reactions, the hydrogen/air/suppressant network was employed in a flat flame model. By analysis of four different fuel/air ratio mixtures, many other reactions were eliminated. In addition, this analysis indicated the reactions which dominate and the reactions for which rate coefficients need to be measured.

This abbreviated network, consisting of 32 reactions, was again employed in MEFF calculations with results nearly identical to those above.

TABLE OF CONTENTS

	LIST OF T	ABLES				•		•	•		•	•	•	•	•	•	•	•	•	•	. 5)
ı.	INTRODU	CTION			•				•			•	•		٠.	•	•		•	•	. 7	,
II.	THE CONST	RUCTIO	N OF	TH	E S	UPP	RES	SI	ON	NET	CW C	RK			•	•	•		•	•	. 8	ļ
	A. The Sp	ecies.			•					•			•	•	•	•		•	•	•	8	
	B. The Re	action	Netv	ork	· •							•			•	•	•	•	•	•	. 9)
	C. The Ra	te Coei	fic	ient	s.					•	• •		•			•	•		•		. 13	
III.	RESULTS	AND DI	scus	SS 1 (ON .							•	•		•	•	•	•	•	•	.14	ŀ
IV.	SUMMARY.					•	•	•	•		•	•			•	•	•	•	•	•	.22	
	ACKNOWLED	GEMENT:	s			•		•	•		•	•,	•			•	•	•	•	•	. 23	ļ
	REFERENCE	s	• • •			•		•	•			•			•	•		•	•	•	.24	ŀ
	APPENDIX	A				•			•		•	•	•				•	•		•	.27	
	DISTRIBUT	ION LIS	ST.																		.33	,

LIST OF TABLES

Tabl	.e rage
	List of Active Species
2	Two-Body Reactions
3	Categories of Reactions
4	Three-Body Reactions
5	Network of All Single-Bond-Breaking Reactions
6	Transport and Thermodynamic Parameters
7	Initial Conditions for and Selected Output from the Steady-State, Laminar, Flat-Flame Model
8	Abbreviated Reaction Network
A-1	Selected Thermodynamic Values
A- 2	Gordon and McBride Coefficients, a. for KO.

I. INTRODUCTION

This paper is a sequel to an earlier work on muzzle flash and its suppression from an elementary kinetic point of view. In the earlier report we discussed definitions of terms, the importance of the problem, the options available to suppress the flash, and several apparently contradictory laboratory results on flame inhibition. The present paper builds upon the recent work of Hynes, Steinberg, and Schofield to produce a hypothetical but realistic suppression network of elementary chemical reactions. The most important aspect of the present work is the methodology employed to construct the network. The methodology is quite general and can be used iteratively as more accurate data (species or rate coefficients) become known.

We shall begin with a brief review of the problem (see Reference 1 for more details), then illustrate the methodology by actually constructing a suppression network.

The effluent from a large artillery piece is known to consist of a fuel rich mixture containing H₂ and CO. Upon mixing with the surrounding air, a combustion process can take place that results in a high intensity flash. This phenomenon is called secondary muzzle flash or simply muzzle flash. About one half the energy of the propellant can to be found in this effluent, so that muzzle flash can be accompanied by a substantial blast. In the past both this flash and blast have been suppressed in many weapons by the addition of alkali salts, usually potassium sulfate or potassium nitrate. Since only a few percent (by weight) salt addition has been found to be effective in many gun systems, the detailed mechanism appears to be chemical rather than physical in nature. If this mechanism were understood, then measures to suppress the flash could be taken into account early in the design stages of a new weapon or weapon subsystem. This procedure would lead to substantial cost saving over the current practice of treating each case empirically after the fact.

Earlier we discussed the problems that surround a popular suppression network that consists of two reactions. Recent work has shown how complex such a network can be. In this paper we shall build upon this work and, in a systematic fashion, construct an advanced suppression network that forms a working hypothesis against which future experiments, both in the field and in the laboratory, can be tested.

^{1.} J. M. Heimerl, "Muzzle Flash Suppression and Alkali Salt Inhibition," JANNAF 13th Plume Technology Meeting, Houston, TX, Vol I, pp. 413-418, 27-29 April 1982. Also available as: J. M. Heimerl, "Muzzle Flash and Alkali Salt Innibition from an Elementary Kinetic Point of View," Technical Report ARBRL-TR-02479, March, 1983. AD Al26 129.

^{2.} A. J. Hynes, M. Steinberg and K. Schofield, "The Chemical Kinetics and Thermodynamics of Sodium Species in Oxygen-Rich Hydrogen Flames," J. Chem. Phys., Vol.80, pp. 2585-2597, 1984.

II. THE CONSTRUCTION OF THE SUPPRESSION NETWORK

As with any new reaction network, three things must be determined: the reaction species, the network of reactions, and the rate coefficients for these reactions.

A. THE SPECIES

The species that correspond to hydrogen as a fuel are: H, O, OH, $\rm H_2$, O₂, $\rm HO_2$, and $\rm H_2O$. To include carbon monoxide as a fuel the species CO and $\rm CO_2$ must be added to this list. Since we are dealing with air we need also consider N₂. However, the temperatures are such that N₂ acts only as a diluent. The species $\rm H_2O_2$ is absent from the above list. The reason for this neglect is as follows. The major formation path for $\rm H_2O_2$ is given by the three-body reaction:

$$OH + OH + M = H_2O_2 + M$$

whose reaction rate coefficient is given³ by: $1.3 \times 10^{22} \times T^{-2} \text{ cm}^6/\text{mole}^2$ -sec. At one atmosphere and a temperature of 1500 K the effective two-body rate

coefficient for this reaction is about 5 x 10^{10} cm³/mole-sec. Two-body reactions involving the OH radical have much greater values for their rate coefficients at 1500 K. For example, the reactions:

$$0H + 0 = 0_2 + H,$$

$$OH + H_2 = H_2O + H$$
, and

$$OH + OH = H_2O + O$$

have values of about 2 x 10^{13} , 1 x 10^{12} and 6 x 10^{12} cm³/mole-sec, respectively.³ Thus, the species $\rm H_2O_2$ is not considered because at high temperatures its formation rate is much too small compared to other reactions involving OH.

There remains the selection of the suppressant species. The species Na, NaO, NaO₂ and NaOH were required to describe adequately the inhibition of oxygen-rich hydrogen flames by sodium salt. By analogy we consider the corresponding potassium molecules: K, KO, KO₂ and KOH. In addition, since the muzzle effluent is fuel-rich we also consider the species KH.

Thus we shall consider 14 reactive species and the diluent N2.

^{3.} J. Warnatz, "Survey of Rate Coefficients in the C/H/O System," Sandia Report SAND83-8606, February 1983.

Table 'shows the list of 14 active species, their standard enthalpies of formation, and their absolute entropies (both at 298 K). These values are taken from standard sources, except for the enthalpy of KO₂, which is estimated in the appendix. Conversion to SI units can be made through the relation 4.184 joules = 1 calorie.

TABLE 1. LIST OF ACTIVE SPECIES

		enthalpy (kcal/mole)	entropy (cal/mole/K)	reference
		110017110101	TABLETATAL	
1	H	52.10	27.40	a (p. 106)
2	K	21.30	38.30	b
3	0	59.60	38.50	a (p. 132)
4	H_2	0.00	31.20	ъ
5	кĦ	26.30	47.30	c, b
6	KO	17.50	5 6.90	c, b
7	OH .	9.50	43.90	d
8	02	0.00	49.00	ь
9	0 ₂ но ₂	3.50	54.40	e, b
10	н _о ō	-57.80	45.10	Ъ
11	KOH	-54.50	56 .90	c, b
12	KO_2	-25.00	62.00	f
13	coʻ	-26.40	47.20	b
14	co_2	-94.10	51.10	Ъ

- a) J. Phys. & Chem. Ref. Data, Vol.4, 1975.
- b) JANAF Thermochemical Tables, Second Edition, 1971.
- c) <u>J. Chem. Thermo.</u>, Vol.14, pp.1103-1113, 1982.
- d) J. Phys. & Chem. Ref. Data, Vol.3, p.443, 1974.
- e) <u>J. Phys. Chem.</u>, Vol.87, pp.3479-3482, 1983.
- f) This work, see appendix.

B. THE REACTION NETWORK

The next step in this process is the construction of a complete reaction network. We consider reactions involving as many as three molecules; i.e., we neglect reactions with four or more collision partners. We want to be sure that we have considered them all since the neglect of one implicitly assumes that its rate coefficient is zero. In principle, one simply writes down all combinations of the species to form the reactions. However, doing this manually for more than two or three species proves to be tedious and subject to error. Therefore, following Indritz, Maday and Sheinson, we have constructed a computer program to perform the necessary bookkeeping operations to assure that all two- and three-body reactions are in fact considered. Since the forward and reverse directions of an elementary reaction are

^{4.} D. Indritz, M. Maday and R. Sheinson, "Construction of Large Reaction Mechanisms," NRL Report 8498, October 1981.

automatically taken into account and since the reverse of three-body reactions of the form $A + B + M \le AB + M$ are unimolecular reactions, we automatically obtain the unimolecular decomposition reactions.

Table 2 shows the list of all exothermic two-body reactions that can be made from the species listed in Table 1. In order to avoid duplication, only those reactions that are exothermic at 298 K (i. e., have negative Gibbs free energies) are printed out. The selection of the Gibbs energy rather than the enthalpy of the reaction is arbitrary.

We can now begin the systematic elimination of the less important reactions. We make the reasonable assumption that if more that one bond is broken in a given reaction, it will have a very small rate coefficient and so can be neglected. With the exception of KO_2 , the structures of all the species listed in Table 1 are known. We assume that the gas phase KO_2

molecule has the same triangular geometry as the solid phase CaC_2 molecule.⁵ This assumption is consistent with our determination of the heat of formation of KO_2 . (See appendix.)

We find that reactions 19, 22, 24-26, 30, 32-39, 47, 52 and 54 require more than one bond to be broken and so are deleted from the network. Note that reactions 25, 26, 34, 38, and 52 contain KO_2 but require more than one bond to be broken no matter what the KO_2 structure. On the other hand, reactions 8, 10, 49, and 55 do depend on the structure assumed for KO_2 . With a triangular structure, these reactions require more than one bond to be broken and so they too are eliminated from the network.

As shown in Table 3, all reactions can conveniently be classified into: those reactions that are involved in the description of the hydrogen-oxygen flame, those reactions that describe the conversion of carbon monoxide to carbon dioxide, those reactions that are the potassium analogs of the sodium network of reference 2, those reactions that involve the species KH, and those reactions deleted (two categories).

Table 4 lists three-body reactions generated by the program. Not shown in this Table are the reactions:

$$0 + H_2 + M = H_20 + M$$
, and

$$0 + KH + M = KOH + M$$
,

because it is thought that the required rearrangement to form the product molecule is improbable. In addition, the four reactions:

^{5.} For a discussion of the structure of these molecules in the solid phase, see for example, <u>ADVANCED INORGANIC CHEMISTRY</u>, <u>A Comprehensive Text</u>, by F. A. Cotton and G. Wilkinson, Wiley and Son, New York, fourth edition, p. 363 and p. 498, 1980.

TABLE 2. TWO-BODY REACTIONS

c		react	10 n		ent halpy	entropy	<u>free</u> ener	<u>RY</u>
1	. H	+ KH	= K	+ H ₂	-57.1000	-5.2000	-55.5504	1
2	Н	+ KO	= K	+ 0H	-38.8000	-2.1000	-38.1742	2
3	H	+ OH	= 0	+ H ₂	-2.0000	-1.6000	-1.5232	3
4	Н	+ HO2	= 0	+ 1120	-53.8000	1.8000	-54.3364	4
5	H	+ HO2	= H ₂	+ 02	-55.6000	-1.6000	-55.1232	5
6	H	+ HO5	= 0H	+ 011	-36.6000	6.0000	-38.3880	6
7	Н	+ K0Ñ	≖ K	+ H ₂ O	-34.1000	-0.9000	-33.8318	7
8	H	+ K()2	= K	+ HÓ2	-2.3000	3.3000	-3.2834	8
9	Н	+ KO_{2}^{2}	= 0	+ KOH	-22.0000	6.0000	-23.7880	9
10	H	$+ K(\frac{1}{2})$	= KH	+ 02	-0.8000	6.9000	-2.8562	10
11	H	+ KG_2^{-}	= KO	+ 0H	-0.1000	11.4000	-3.4972	11
12	K	+ E02	= 0	+ Кон	-19.7000	2.7000	-20.5046	12
13	, K	+ $\mathrm{H}\mathrm{O}_2^2$	= KO	+ OH	2.2000	8.1000	-0.2138	13
14	O	+ KH [*]	= H	+ KO	-16.3000	-1.5000	-15.8530	
15	0	+ KH	= K	+ OH	-55.1000	-3.6000	-54.0272	14 15
16	O	+ KO	≖ K	+ 02	-55.8000	-8.1000	-53.3862	16
17	0	+ OH	= H	+ 02	-17.0000	-6.0000	-15.2120	17
18	0	+ EO2	= OH	+ 02	-53.6000	0.0000	-53.6000	18
19	0	+ H^Ō	= H ₂	+ 02	-1.8000	-3.4000	-0.7868	19
20	0	+ Κΰ,	= KÕ	+ 02	-17.1000	5.4000	-18.7092	20
21	H ₂	+ KC -	= H	+ KÖH	-19.9000	-3.8000	-18.7676	21
22	H2	+ KO	= K	+ H ₂ O	-54.0000	-4.7000	-52.5994	22
23	H ₂	+ OH	= H	+ H ₂ O	-15.2000	-2.6000	-14.4252	23
24	H ₂	+ HO ₂	≖ OH	$+ H_2^20$	-51.8000	3.4000	-52.8132	24
25	H ₂	+ $k0_2^2$	= KO	+ H ₂ 0	-15.3000	8.8000	-17.9224	25
26	H_2^2	$+ KO_{2}^{2}$	= OH	+ KOH	-20.0000	7.6000	-22.7648	
27	кĥ	+ K()2	= K	+ KOH	-77.0000	-9.0000	-74.3180	26 27
28	KH	+ OH	= H	+ кон	-38.2000	-6.9000	-36.1438	28
29	KH	+ OH	= K	+ H ₂ O	-72.3000	-7.8000	-69.9756	29
30	KН	+ OH	= H ₂	+ KÖ	-18.3000	-3.1000	-17.3762	
31	KH	+ 0.,	= K	+ HO ₂	-1.5000	-3.6000	-0.4272	30 31
32	KH	+ (7,	= 0	+ KOH	-21.2000	-0.9000	-20.9318	
33	KH	+ 02	= KO	+ OH	0.7000	4.5000	-0.6410	32 33
34	KH	+ HŐ ₂	= H ₂	+ KO ₂	-54.8000	-8.5000	-52.2670	
35	KH	+ HO ₂	= KO	+ H ₂ O	-70.1000	0.3000	-70.1894	34
36	KH	+ HU2	= OH	+ KOH	-74.8000	-0.9000		35
37	KH	+ H ₂ Ō	= H ₂	+ KOH	-23.0000	-4.3000	-74.5318 -21.7186	36
38	KH	+ κό ₂	= KO	+ KOH	-38.3000	4.5000	-39.6410	37
39	KH	+ 002	= KOH	+ CO	-13.1000	5.7000		38
40	KO	+ KO ²	= K	+ KO ₂	-38.7000	-13.5000	-14.7986	39
41	KO	+ OH	= 0	+ KOH	-21.9000	-5.4000	-34.6770	40
42	k0	+ HO ₂	= OH	+ KO ₂	-36.5000	-5.4000	-20.2908	41
43	ко	+ HO ₂	= 02	+ KO2	-75.5000	-5.4000 -5.4000	-34.8908 -73.8008	42
44	КО	+ H ₂ O	= OH	+ KOH	-4.7000		-73.8908	43
45	ко	+ cố	= K	+ CO ₂	-63.9000	-1.2000 -14.7000	-4.3424 -50 5104	44 1. E
46	OH	+ OH	= 0	+ H ₂ 0	-17.2000	-4.2000	-59.5194 -15.0686	45
47	OH	+ OH	= 1.2	+ 02	-19.0000	-7.600 0	-15.9484	46
			2	~2	-7.0000	-/.00J U	-16.7352	47

TABLE 2. TWO-BODY REACTIONS (continued)

			react	ion			enthalpy	entropy	free energ	<u>RY</u>
48	OH	+	HO_2		02	+ H ₂ 0	-70.8000	-4.2000	-69.5484	48
49	OH	+	KO_2	=	0_{2}^{-}	+ KŌH	-39.0000	0.0000	-39.0000	49
50	OH	+	co	=	H	+ CO2	-25.1000	-12.6000	-21.3452	50
51	0,	+	CO	=	0	+ CO ₂	-8.1000	-6.6000	-6.1332	51
52	нÕэ	+	KOH	=	H_2O	+ KO2	-31.8000	-4.2000	-30.5484	52
53	но-	+	CO	=	OĦ ·	+ CO2	-61.7000	-6.6000	-59.7332	53
54	н _э б	+	CO	=	H_2	+ CO2	-9.9000	-10.0000	-6.9200	54
55	кб ₂	+	СО	*	κδ	+ co ₂	-25.2000	-1.2000	-24.8424	55

TABLE 3. CATEGORIES OF REACTIONS

classification	reaction numbers
H ₂ /O ₂	3-6,17-18,23,46,48
co/co ₂	45,50-51,53
K analogs to Na scheme	2,7,9,11-13,16,20-21,40-44
reactions involving KH	1,14-15,27-29,31
deleted - multiple bond breaking	19,22,24-26,30,32-39,47,52,54
deleted - depends on KO ₂ structure	8,10,49,55

TABLE 4. THREE-BODY REACTIONS

$$H + \begin{cases} H \\ K \\ KO + M \\ O_2 \end{cases} = \begin{cases} H_2 \\ KH \\ KOH + M \\ HO_2 \end{cases}$$

$$K - \begin{cases} O \\ OH + M \\ O_2 \end{cases} = \begin{cases} KO \\ KOH + M \\ KO_2 \end{cases}$$

$$O + \begin{cases} KO \\ CO + M \end{cases} = \begin{cases} KO_2 \\ CO_2 + M \end{cases}$$

$$h + 0 + M = OH + M,$$
 $H + OH + M = H_2O + M,$
 $O + O + tI = O_2 + M,$ and
 $O + OH + M = HO_2 + M,$

do not appear because competing two-body reactions involving these radicals are known to be more important.

C. THE RATE COEFFICIENTS

There are several compilations and evaluations of rate coefficients for the hydrogen-oxygen network, 3,6,7 and we have elected to use the most recent recommendations of Warnatz.

He points out that reaction 4 of Table 2:

$$H + HO_2 = H_2O + O$$
,

has been postulated, even though there is no direct evidence of its occurrence. In addition, he argues that indirect determinations show its rate coefficient to be small relative to the other two branches of the H + HO₂ reaction (reactions 5 and 6 of Table 2). We accept his arguments and so do not consider this reaction further.

Warnatz 3 has also reviewed the values for the CO/CO $_2$ rate coefficients and we have again used his recommendations. The one reaction of the CO/CO $_2$ group not reviewed in the literature is:

$$KO + CO = K + CO_2$$
.

Fortunately, it is known that the sodium analog of this reaction is fast⁸ and

so we assume a value of $1 \times 10^{14} \text{ cm}^3/\text{mole-sec}$ for its rate coefficient. We use the published values of the rate coefficients for the sodium network as those values appropriate to the potassium analog reactions. (See Table 3.) The single exception to this strategy is the value of the rate coefficient for the reaction:

$$K + O_2 + M = KO_2 + M$$
.

^{6.} G. Dixon-lewis, "Kinetic Mechanism, Structure and Properties of Premixed Flames in Hydrogen-Oxygen-Nitrogen Mixtures," <u>Proc. Roy. Soc. London</u>, Vol. 292, pp. 45-99, 1979.

^{7.} N. Cohen and K. R. Westberg, "Chemical Kinetic Data Sheets for High Temperature Chemical Reactions," <u>J. Phys. Chem. Ref. Data</u>, Vol.12, pp. 531-566, 1983.

^{8.} J. Silver, Aerodyne Research Inc., private communication, 1984.

Here we have adopted Husain and Plane's value for the corresponding sodium reaction, 3×10^{17} cm³/mole-sec, independent of temperature.

Those two-body rate coefficients for which we could find no published values were set at 1×10^{14} cm³/mole-sec (= 0.17 x 10^{-09} cm³/particle-sec). Similarly the three-body rate coefficients were assumed to have a rate coefficients that varied as A x T⁻¹, where A = 10^{15} cm⁶/mole²-sec (= 0.83 x 10^{-30} cm³/particle²-sec). This network of 48 reactions and their respective rate coefficient parameters is shown in Table 5.

III. RESULTS AND DISCUSSION

At this point, the network of reactions shown in Table 5 is ready for testing. The MEFF muzzle-flash-prediction code 10 is the only operational flash prediction code with detailed chemistry, it has been compared with other available codes and, to some extent, with observations, 11 and a user guide has been written to facilitate its use. 12 Reference 11 documents calculations made with MEFF using an earlier, less comprehensive 25-reaction network. We found that, in a nominal 155-mm howitzer simulation with a nominal M203 propelling charge, 1% K $_2$ SO $_4$ suppressant permitted flash, but 2.7% K $_2$ SO $_4$ suppressant suppressed the flash. Similarly, in an 81-mm mortar simulation, a nominal M10 propellant lacking suppressant flashed, but the addition of 2% K $_2$ SO $_4$ suppressed the flash, in agreement with observations.

We repeated the howitzer and mortar calculations with the 48-reaction network of Table 5, and the predictions of the MEFF flash-prediction code were nearly identical.

There still remained the question of whether or not the network of 48 reactions was a minimum needed to describe flash suppression. With the goal now of finding out whether the size of this reaction network could be further reduced, we took reactions 1-41 of Table 5 as the reaction network to describe the inhibition of a hydrogen-air flame. We employed our steady-state,

^{9.} D. Husain and J. M. C. Plane, "Kinetic Investigation of the Reaction between Na + O₂ + M by Time-Resolved Atomic Resonance Absorption Spectroscopy," J. Chem. Soc. Faraday Trans. 2, Vol.78, pp. 163-178, 1982.

^{10.} V. Yousefian, "Muzzle Flash Onset," Contractor Report ARBRL-CR-00477, February, 1982. AD B063 573L.

^{11.} G. E. Keller, "An Evaluation of Muzzle Flash Prediction Models," U. S. Army Ballistic Research Laboratory ARBRL-MR-03318, November 1983.

^{12.} G. E. Keller, "A MEFF User's Guide," U. S. Army Ballistic Research Laboratory ARBRL-MR-03362, July 1984.

TABL. 5. NETWORK OF ALL SINGLE-BOND-BREAKING REACTIONS

				r	eac	tion	l			<u>A</u>		<u>B</u>	<u>c</u>
1	OH		+ H ₂				- H ₂ (0	+ H	0.17E-15	. -	1.6	
2	H		+ 02				- OH		+ 0	0.20E-06		0.9	
3	0		+ H ₂				= OH		+ H	0.25E-16		2.0	
4	H		+ 02		+ M		= HO2	,	+ M	0.55E-29		8.0	0.0
5	H		+ HO	2			= OH	•	+ OH	0.25E-09		0.0	
6	H		+ HO	2			= H ₂		+ 02	0.42E-10		0.0	-693.5
7	OH		+ HO:	,			= H ₂ ()	+ 02	0.33E-10		0.0	0.0
8	0		+ HO	2			= OH		+ 02	0.33E-10		0.0	0.0
9	H	•	+ H '	•	+ M		= H ₂		+ M	0.50E-29		.0	0.0
	H	•	► H		+ H	2	= H ₂		+ H ₂	0.27E-30	â).6	0.0
	OH		HO +		•		- 0 ²		+ H ₂ O	0.25E-14		.1	0.0
	H	4	+ KO ₂	,			= KO		+ OH	0.12E-09		0.0	0.0
13	KO	4	+ H ₂ Ĉ	5			= OH		► KOH	0.17E-09		0.0	0.0
	H		⊦ KÕH				= K		+ H ₂ 0	0.17E-10		0.0	0.0
	H	4	⊦ KO				- K		⊢ OĦ	0.33E-10		.0	0.0
16	H	4	KO ₂	,		;	= 0		KOH	0.33E-11		0.0	0.0
17	H	4	⊦ KO2				- K		HO ₂	0.33E-10		.0	0.0
	K	4	HO ₂	,			= 0		KOH	0.66E-13		.0	0.0
19	K	+	· HO	•			- KO	4		0.33E-11		.0	0.0
20	0	+		•			• K	4	_	0.33E-11		.0	0.0
21	0	+	KO2	,			- KO		$\cdot 0_2^2$	0.17E-11		.0	0.0
22	H_2	+	KO T	•			• H		KOH	0.83E-09		.0	
	ΚÔ	+					= 0		KOH	0.10E-09		.0	0.0 0.0
24	KO	+					= OH		KO ₂	0.33E-11		.0	
	KO	+					• 02		KOH	0.17E-09		.0	0.0
	OH		KO ₂				• 0 ₂		KOH	0.50E-12			
27		+		+	. м		€ KOH	+		0.30E-12 0.25E-30		.0	0.0
28		+	02	+			KO ₂		M	0.83E-30			0.0
29	KO	+	_				K K		KO ₂	0.17E-09		.0	0.0 0.0
30		+	KO	+	M		KOH	+		0.83E-30		.0	
31		+		+			KO ₂		M	0.83E-30		.0	0.0
32		+	0		M	-	KO KO	+		0.83E-30		.0	0.0
33		+	KH			=	K			0.03E-30		.0	0.0
34	0		KH			=	H		KÕ	0.83E-10		.0	0.0
35		+					K	77		0.83E-10		.0	0.0
36	KH	+	KO				K		KOH	0.17E-09	0.		0.0
37	KH	+	OH			-	H	+	KOH	0.17E-10	Ö.		0.0 0.0
38	KH	+				*	K	+	H ₂ O	0.17E-09	0.		
39		+	02			=	K	+	HO ₂	0.17E-09	0.		0.0
40	H	+	κố				KH	+	02	0.17E-09	o.		0.0 0.0
41	H		K	+	M	=			M	U.83E-30	1.		
42		+	OH		-	10	H	+	co ₂	0.73E-17	-1.		0.0
43		+	02			=	0	+	co_2	0.42E-11	0.		741.0
44		+				=	OH	+	co ₂	0.25E-09	0.		-47800.0 -23590.0
45		+	0 2			_	CO	+	02	0.28E-10	0.		-23590.0 -52580.0
46		+				=	CO	+	OH	0.27E-09	0.		-52580.0 -26300.0
47			CO	+	M	=	CO ₂	+	M	0.15E-33	0.		
48 1			CO			**	K	+		0.17E-09	0.		4540.0
								•	2	~ · · · / L-U7	v.	J	0.0

The rate coefficient = A x T^{-B} x e^C/RT where A in units of cm-particle-sec C in units of calorie/mole

laminar. flat-flame model 13,14 as a tool to make these decisions. The selection of input parameters other than the reactions and their rate coefficients will now be outlined.

The transport and thermodynamic parameters are shown in Table 6. The first line identifies the species and the five transport parameters. The first is the mass of the species, the second and third are the Lennard-Jones collision diameter (in Angstroms) and the Lennard-Jones potential well depth (in Kelvins), respectively, the fourth number is the dipole moment (in Debyes, where one Debye = $10^{-18} \, \mathrm{cm}^{3/2} \, \mathrm{erg}^{1/2}$), and the fifth number is the polarizability (in cubic Angstroms). These data were taken from Kee, et al., 15 except for the potassium-containing molecules. The transport parameters for K, KOH and KO were assumed to be like those of their sodium analogs. The transport parameters for KO₂ were assumed to be like those of O₃, while those of KH were assumed to be like argon. For each species there then follow the 14 thermodynamic parameters for use in the polynomial fits of Gordon and McBride. These parameters are tabulated for all species we consider except KO₂. The derivation of the KO₂ parameters is discussed in the appendix. The use of these parameters is detailed elsewhere. 14

Next, we limited our study to the $\rm H_2/air$ flame. The choice of fuel/oxidizer ratios was somewhat arbitrary except that we wanted to encompass a reasonably broad range. Figure 1, taken from reference 17, shows the flame velocity of $\rm H_2/air$ mixtures vs. $\rm H_2$ mole fraction. A mole fraction of 0.25 for $\rm H_2$ gives a lean mixture while one of 0.50 gives a rich one. The flame velocities as read from this figure are 182.5 cm/sec and 287.5 cm/sec, respectively. In general, a given value of the flame velocity corresponds to two values of the mole fraction and we simply took the other two $\rm H_2$ mole fractions for our test cases. This procedure gave us values of the equivalence ratio ranging from 0.79 to 3.88, as can be seen in Table 7.

This table shows the mole fraction initial conditions for the fuel, $\rm H_2$, the oxidizer, $\rm O_2$, the diluent, $\rm N_2$, and the inhibitor/suppressant, expressed as KOH. It also shows the computed flame speeds, $\rm S(cm/s)$, and the adiabatic flame temperature, $\rm T(Kelvin)$.

- 13. J. M. Heimerl and T. P. Coffee. "The Detailed Modeling of Premixed, Laminar Steady-State Flames. I. Ozone," <u>Combustion and Flame</u>, Vol.39, pp.301-315, 1980.
- 14. T. P. Coffee and J. M. Heimerl, "Transport Algorithms for Premixed, Laminar Steady-State Flames," <u>Combustion and Flame</u>, Vol.43, pp.273-289, 1981.
- 15. R. J. Kee, J. Warnatz and J. A. Miller, "A FORTRAN Computer Code Package for the Evaluation of Gas-Phase Viscosities, Conductivties, and Diffusion Coefficients," Sandia Report SAND83-8209, March 1983.
- 16. S. Gordon and B. J. McBride, "Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations," NASA-SP-273, 1971. (1982 program version.)
- 17. J. Warnatz, "Calculation of the Structure of Laminar Flat Flames II: Flame Velocity and Structure of Freely Propagating Hydrogen-Oxygen and Hydrogen-Air Flames," Ber. Bunsenges. Phys. Chem., Vol.82, pp.643-649, 1978.

TABLE 6. TRANSPORT AND THERMODYNAMIC PARAMETERS

```
2.05
                           145.
 .25000000D+01 0.
                                                                             H
                                                           0.
                              .25000000D+01 0.
                                                                             H
 .25474390D+05 -.45989841D+00
                                                           0.
              0.
                               .25474390D+05 -.45989841D+00
                                          ٥.
              17.
                    2.75
                                   0.
 .28897814D+01 .10005879D-02 -.22048807D-06 .20191288D-10 -.39409831D-15
                                                                            OH
 .38857042D+04 .55566427D+01 .38737300D+01 -.13393772D-02 .16348351D-05
                                                                            OH
-.52133639D-09 .41826974D-13 .35802348D+04 .34202406D+00
                                                                            OH
                            80.
                    2.75
                                   0.
                                          0.
              16.
 .25342961D+01 -.12478170D-04 -.12562724D-07 .69029862D-11 -.63797095D-15
                                                                             O
 .29231108D+05 .49628591D+01 .30309401D+01 -.22525853D-02 .39824540D-05
                                                                             0
-.32604921D-08 .10152035D-11 .29136526D+05 .26099342D+01
                                                                             O
                   3.46
                          107.
                                   ٥.
             33.
                                                                           HO2
                                             .71372882D-10 -.36458591D-14
 .40173060D+01 .22172883D-02 -.57710171D-06
                                                                           HO2
                                                            .75118344D-05
-.11412445D+04 .37846051D+01 .35964102D+01
                                             .52500748D-03
                                                                           HO2
-.95674952D-08 .36597628D-11 -.89333502D+03 .66372671D+01
                   2.92
                                         .79
                           38.
                                   0.
                                                                            H<sub>2</sub>
 .25195487D-14 .59740400D-03 -.16747471D-08 -.21247544D-10 .25195487D-14
                                                                            H<sub>2</sub>
-.86168476D+03 -.17207073D+01 .29432327D+01 .34815509D-02 -.77713819D-05
                                                                            H<sub>2</sub>
 .74997496D-08 -.25203379D-11 -.97695413D+03 -.18186137D+01
             32. 3.372 128.7
                                   0.
                                         1.6
                                                                            02
 36122139D+01 .74853166D-03 -.19820647D-06 .33749008D-10 -.23907374D-14
                                                                            02
-.11978151D+04 .36703307D+01 .37837135D+01 -.30233634D-02 .99492751D-05
                                                                            02
-.98189101D-08 .33031825D-11 -.10638107D+04 .36416345D+01
                    2.6 572. 1.844
                                          0.
             18.
 .29451374D-02 -.80224374D-06 .10226682D-09 -.48472145D-14
                                                                           H20
-.29905826D+05 .66305671D+01 .40701275D+01 -.11084499D-02
                                                            .41521180D-05
                                                                           H20
-.29637404D-08 .80702103D-12 -.30279722D+05 -.32270046D+00
                                                                           H20
                   3.62
                           97.
                                   0.
             28.
                                        1.76
                                                                            N<sub>2</sub>
 .16022128D-02 -.62936893D-06 .11441022D-09 -.78057465D-14
-.89008093D+03 .63964897D+01 .37044177D+01 -.14218753D-02 .28670392D-05
-.12028885D-08 -.13954677D-13 -.10640795D+04 .22336285D+01
                  4.69
                         39.4
                                          0.
                                   0.
             71.
0.56193353D+01 0.15509417D-02-0.68222055D-06 0.13299869D-09-0.95542863D-14
-0.14355891D+05-0.17198447D+01 0.34337129D+01 0.67246085D-02-0.33216077D-05
-0.16047227D-08 0.13795100D-11-0.13720689D+05 0.97559016D+01 FIGGER,ANDREWS
             39. 3.567 1375.
                                   0.
                                          0.
                                                                   LIKE Na
0.25673650D+01-0.14933596D-03 0.12342444D-06-0.53394240D-10 0.11948426D-13
0.99550531D+04 0.46642081D+01 0.2493C967D+01 0.50164177D-04-0.12751224D-06
0.13540491D-09-0.51145936D-13 0.99786360D+04 0.50560438D+01
```

TABLE 6. TRANSPORT AND THERMODYNAMIC PARAMETERS (continued)

KOH	56.	3.804	1962.	o. o.	LIKE NaOH
0.56400949D+0	0.13	2510226	D-02-0.34	984547D-06	0.44566993D-10-0.20870279D-14
-0.29698732D+0	5-0.40	0568187	D+01 0.40	733441D+01	0.97217945B-02-0.15988804D-04
0.12148353D-0	7-0.33	3709342	D-11-0.29	506558D+05	0.292223739+01 TRANDATA2
ко	55	3 217	383	0 0	LIKE NaO
					0.71308300D-11-0.50369687D-15
0.72052331D+0	0.3	2945055	D+01 0.37	410778D+01	0.31242017B-02-0.48020039D-05
0.34660605D-0	0.93	3599791	D-12 0.73	368714D+04	0.655376098+01 TRANDATA2
кн	40.	3.542	93.3	0. 0.	LIKE Ar
0.39603386D+0	0.7	2190323	D-03-0.26	918715D-06	0.526173000-10-0.37872683D-14
					0.398710600-02-0.33410548D-05
					0.671201450+01 TRANDATA2

TABLE 7. INITIAL CONDITIONS FOR AND SELECTED CUTPUT FROM THE STEADY-STATE, LAMINAR, FLAT-FLAME MODEL

	INI		<u>OUTPUT</u>				
e quivalenc	e						
<u>ratio</u>	<u>xH</u> 2	\underline{xo}_2	XN ₂	<u>xkoh</u>	<u>s</u>	I	
0.79	.25000	.15750	.59250	.0	174.6	2168	
	.24950	.15740	.59210	.001	182.3	2164	
	.24875	.15671	.58954	.005	152.1	2153	
1.28	.35000	.13650	.51350	.0	285.4	2338	
	.34965	.13636	.51299	.001	315.6	2334	
	.34825	.13582	.51093	.005	335.7	2320	
, , , , ,	.34650	.13514	.50836	.01	296.9	2302	
	.34300	.13377	.50323	.02	192.6	2267	
2.38	.50000	.10500	.39500	.0	275.1	1938	
	.50000	.10500	.39426	.00074	297.9	1937	
	.49750	.10448	.39302	.005	280.2	1920	
	.49500	.10395	.39105	.01	132.6	1902	
3.88	.62000	.07980	.30020	.0	177.0	1581	
	.61938	.07972	.29990	.001	177.6	1577	
	.61876	.07964	.29960	.002	131.0	1574	

An analysis (a so-called screening analysis) of each of these flames showed that several other reactions could be eliminated. These reactions were found to contribute less than 1% to the formation or destruction of any species over the computational space. The results of these eliminations is the 32-reaction network which is shown in Table 8. (The reactions retain the numbering of Table 5.)

Figure 1. Flame Velocity in the $\rm H_2/Air$ Flame as a Function of $\rm H_2$ Mole Fraction

TABLE 8. ABBREVIATED REACTION NETWORK

		¢	reaction		<u>A</u>	<u>B</u>	<u>C</u>
1	ОН	+ H ₂	= H ₂ 0	+ H	0.17E-15	-1.6	-3298.8
2	H	+ 02	= OH	+ 0	0.20E-06	0.9	-16573.2
3	0	+ H ₂	= OH	+ H	0.25E-16	-2.0	-7551.4
4	H	+ 02 +	$M = HO_2$	+ M	0.55E-29	0.8	0.0
5	H	+ HŐ2	= OH _	+ OH	0.25E-09	0.0	-1003.5
6	H	+ HO ₂	= H ₂	+ 02	0.42E-10	0.0	-693.5
7	OH	+ HO ₂	= H ₂ 0	+ 02	0.33E-10	0.0	0.0
8	0	$+ HO_2^2$	= OĤ	+ 02	0.33E-10	0.0	0.0
9	H	+ H +		+ M	0.50E-29	1.0	0.0
10	H	+ H +	$H_2 = H_2^2$	+ H ₂	0.27E-30	0.6	0.0
11	OH	+ OH	- 0	+ H ₂ O	0.25E-14	-1.1	0.0
12	H	+ KO2	= KO	+ OH	0.12E-09	0.0	0.0
13	KO	+ H ₂ Ō	= OH	+ KOH	0.17E-09	0.0	0.0
14	H	+ KÕH	= K	+ H ₂ 0	0.17E-10	0.0	0.0
16	H	+ KO2	= 0	+ KÕH	0.33E-11	0.0	0.0
17		+ KO2	= K	+ HO ₂	0.33E-10	0.0	0.0
19	K	+ HO ₂	= KO	+ OH	0.33E-11	0.0	0.0
21	0	$+ KO_2^2$	= KO	+ 0 ₂	0.17E-11	0.0	0.0
22	H ₂	+ KO	= H	+ кон	0.83E-09	0.0	0.0
28	K T	+ 02 +	м = ко ₂	+ M	0.83E-30	0.0	0.0
29	KO	+ KÕ	* K *	+ KO ₂	0.17E-09	0.0	0.0
33	H	+ KH	= K	+ H ₂ ²	0.17E-09	0.0	0.0
38	KH	+ OH	= K	+ H ₂ O	0.17E-09	0.0	0.0
39	KH	+ 0 ₂	= K	+ HÕ ₂	0.17E-09	0.0	0.0
40	H	+ KŌ ₂	= KH	+ 02	0.17E-09	0.0	0.0
42	CO	+ OH T	= H	+ cố ₂	0.73E-17	-1.5	741.0
43	CO	+ 02	** 0	+ co ₂	0.42E-11	0.0	-47800.0
44	CO	+ HÕ ₂	= OH	+ CO ₂	0.25E-09	0.0	-23590.0
45	co2	+ 0 ~	= CO	+ 02	0.28E-10	0.0	-52580.0
46	co	+ H	- CO	+ OĤ	0.27E-09	0.0	-26300.0
47	0	+ CO +	$\mathbf{M} = \mathbf{CO_2}$	+ M	0.15E-33	0.0	4540.0
48	KO	+ CO	= K ²	+ CO ₂	0.17E-09	0.0	0.0

The rate coefficient = A x T^{-B} x e^{C/RT}
where A in units of cm-particle-sec
C in units of calorie/mole

This 32-reaction network was also used as input for the MEFF code computations and results similar to the 48 reaction network were obtained. In addition, both hydrogen-air subsets of Tables 5 and 8, when used as input to the flat-flame code, yielded nearly identical species, temperature, and heat release profiles. We conclude that the abbreviated reaction network of Table 8 constitutes a minimal descriptive suppression network.

Caution must be urged at this point. If the values of any of the assumed rate coefficients, upon measurement, prove to be significantly less than given in Table 8, then, because of the non-linear couplings among all of the species and between the species and the temperature, the entire network given in Table 5 should be reexamined.

Referring to Table 7, one can see that the computed flame velocity drops with continued addition of suppressant, while the temperature is hardly affected. This is not surprising since we are dealing with a series of different flames and there need not be any simple correlation among them. To see this most easily, consider the two flames with initial fuel and oxidizer values of 0.50000 and 0.10500, respectively (equivalence ratio = 2.38). The only difference lies in the trace amount of KOH added at the expense of the diluent N_2 . The adiabatic flame temperature changes by one degree but the computed flame speed shows a noticeable change. Analysis shows that near the peaks of the respective heat release functions, the elementary chemistry has altered radically. In the case of no KOH addition, the rate of increase of temperature is governed by the reactions:

$$H + HO_2 = OH + OH$$
, and $H + HO_2 = H_2 + O_2$,

and by diffusion processes. In the case of the small addition of KOH, the rate of increase of temperature is governed by:

$$H + O_2 + M = HO_2 + M,$$
 $K + O_2 + M = KO_2 + M,$
 $OH + H_2 = H_2O + H,$ and
 $H + HO_2 = OH + OH;$

all listed in rank order.

The above points out the importance of obtaining reliable values for key reactions such as $K + O_2 + M = KO_2 + M$. Were we to repeat any of these computations we would use the most recent measurements of Husain and Plane and of Silver et al. Their values for this potassium reaction show that our assumed value is low by a factor ranging from 5 at 300 K to 50% at 3000 K. Had we used this value somewhat more, KO_2 would have been formed; however, this should not qualitatively affect our results.

The fact that the rate coefficient for the reaction forming KO_2 is so great has implications for the experimentalist. When we first began to use the flat-flame code we initialized all of the potassium as the atomic species, K. Analysis showed that within the space scale we were using (about 0.01 cm),

^{18.} D. Husain and J. M. C. Plane, "Kinetic Investigation of the Reaction between K + O₂ + M by Time-Resolved Atomic Resonance Absorption Spectroscopy," J. Chem. Soc. Faraday Trans. 2, Vol. 78, pp.1175-1194, 1982.

^{19.} J. A. Silver, M. S. Zahniser, A. C. Stanton, and C. E. Kolb, "Temperature Dependent Termolecular Reaction Rate Constants For Potassium and Sodium Superoxide Formation," Aerodyne Report ARI-RR 381, January 1984. See also: paper #68 Twentieth Symposium (International) on Combustion, the University of Michigan, Ann Arbor Michigan, 12-17 Aug 1984.

all the K was converted to KO_2 at the cold (298 K) boundary. The conclusion we draw is that unless special precautions are taken, the addition of free atomic potassium to an input gas stream containing O_2 would result in the conversion of the K to KO_2 before the gases could reach the burner surface. (In the execution of the flat-flame computer code this difficulty was easily overcome by assigning all the initial potassium to the species KOH.)

Table 8 shows that the species KH is involved in only a few reactions. Analysis shows that the KH is almost exclusively formed by the reaction:

 $H + KO_2 = KH + O_2$.

The computed concentration of KO₂ can be large for an intermediate species and in our computed results it is probably too low. To be able to tell whether or not the species KH will actually play a significant role in the flash suppression network will require a measurement of this reaction rate coefficient.

IV. SUMMARY

An advanced suppression network has been constructed by extending the inhibition network of Hypes et al. First, the most likely species to be involved in flash suppression were considered. These species include: K, KO, KO_2 , KOH, and KH. From these species a complete set of 55 two-body and 15 three-body reactions was constructed. Standard chemical kinetic arguments were used to reduce the number of reactions to 48. Use of screening analysis upon the output of flat-flame code computations enabled the network to be further reduced to 32 reactions. Both the extended set of 48 reactions and the abbreviated set of 32 reactions gave nearly identical results when used as the reaction network for the MEFF muzzle-flash-prediction code, for both howitzer and mortar calculations. In addition, when used as input for the flat-flame code, the respective hydrogen-air subsets, with and without potassium, also yielded the same computed profiles for the species, temperature, and heat release. Further analysis showed that KO_2 is mainly formed from $K + O_2 + M = KO_2 + M$ and that KH is mainly formed from $K + O_2 + K + KO_3$. The former is currently under investigation while the latter is a candidate for future work.

ACKNOWLEDGEMENTS

Several associates contributed materially to this work. Thanks are due to: T. P. Coffee for his help in the execution of the flat-flame code, to E. H. Freedman for his critical reading of an earlier version of this manuscript, and to G. E. Keller for his execution of the MEFF code and for several useful discussions.

REFERENCES

- I. J. M. Heimerl, "Muzzle Flash Suppression and Alkali Salt Inhibition," JANNAF 13th Plume Technology Meeting, Houston, TX, Vol I, pp. 413-418, 27-29 April 1982. Also available as: J. M. Heimerl, "Muzzle Flash and Alkali Salt Inhibition from an Elementary Kinetic Point of View," Technical Report ARBRL-TR-02479, March, 1983. AD Al 26 129.
- 2. A. J. Hynes, M. Steinberg and K. Schofield, "The Chemical Kinetics and Thermodynamics of Sodium Species in Oxygen-Rich Hydrogen Flames," J. Chem. Phys., Vol.80, pp. 2585-2597, 1984.
- 3. J. Warnatz, "Survey of Rate Coefficients in the C/H/O System," Sandia Report SAND83-8606, February 1983.
- 4. D. Indritz, M. Maday and R. Sheinson, "Construction of Large Reaction Mechanisms," NRL Report 8498, October 1981.
- 5. For a discussion of the structure of these molecules in the solid phase, see for example, <u>ADVANCED INORGANIC CHEMISTRY</u>, <u>A Comprehensive Text</u>, by F. A. Cotton and G. Wilkinson, Wiley and Son, New York, fourth edition, p. 363 and p. 498, 1980.
- 6. G. Dixon-Lewis, "Kinetic Mechanism, Structure and Properties of Premixed Flames in Hydrogen-Oxygen-Nitrogen Mixtures," <u>Proc. Roy. Soc. London</u>, Vol.292, pp.45-99, 1979.
- 7. N. Cohen and K. R. Westberg, "Chemical Kinetic Data Sheets for ligh Temperature Chemical Reactions," <u>J. Phys. Chem. Ref. Data</u>, Vol.12, pp. 531-566, 1983.
- 8. J. Silver, Aerodyne Research Inc., private communication. 1984.
- 9. D. Husain and J. M. C. Plane, "Kinetic Investigation of the Reaction between Na + O₂ + M by Time-Resolved Atomic Resonance Absorption Spectroscopy," <u>J. Chem. Soc. Faraday Trans. 2</u>, Vol.78, pp. 163-178, 1982.
- 10. V. Yousefian, "Muzzle Flash Onset," Contractor Report ARBRL-CR-00477, February, 1982. AD B063 573L.
- 11. G. E. Keller, "An Evaluation of Muzzle Flash Prediction Models," U. S. Army Ballistic Research Laboratory ARBRL-MR-03318, November 1983.
- 12. G. E. Keller, "A MEFF User's Guide," U. S. Army Ballistic Research Laboratory ARBRL-MR-03362, July 1984.
- 13. J. M. Heimerl and T. P. Coffee, "The Detailed Modeling of Premixed, Laminar Steady-State Flames. I. Ozone," <u>Combustion and Flame</u>, Vol.39, pp.301-315, 1980.
- 14. T. P. Coffee and J. M. Heimerl, "Transport Algorithms for Premixed, Laminar Steady-State Flames," <u>Combustion and Flame</u>, Vol.43, pp.273-289, 1981.

- 15. R. J. Kee, J. Warnatz and J. A. Miller, "A FORTRAN Computer Code Package for the Evaluation of Gas-Phase Viscosities, Conductivities, and Diffusion Coefficients," Sandia Report SAND83-8209, March 1983.
- 16. S. Gordon and B. J. McBride, "Computer Program for Calculation of Complex Chemical Equilibrium Compositions. Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations," NASA-SP-273, 1971. (1982 program version.)
- 17. J. Warnatz, "Calculation of the Structure of Laminar Flat Flames II: Flame Velocity and Structure of Freely Propagating Lydrogen-Oxygen and Hydrogen-Air Flames, "Ber. Bunsenges. Phys. Chem., Vol.82, pp.643-649, 1978.
- 18. D. Husain and J. M. C. Plane, "Kinetic Investigation of the Reaction between K + O₂ + M by Time-Resolved Atomic Resonance Absorption Spectroscopy," J. Chem. Soc. Faraday Trans. 2, Vol.78, pp.1175-1194, 1982.
- 19. J. A. Silver, M. S. Zahniser, A. C. Stanton, and C. E. Rolb, "Temperature Dependent Termolecular Reaction Rate Constants For Potassium and Sodium Superoxide Formation," Aerodyne Report ARI-RR 381, January 1984. See also: paper #68 Twentieth Symposium (International) on Combustion, the University of Michigan, Ann Arbor Michigan, 12-17 Aug 1984.
- A-1. S. Gordon and B. J. McBride, "Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance. Incident and Reflected Shocks, and Chapman-Jouguet Detonations," NASA-SP-273, 1971. (1982 program version.)
- A-2. n. Figger, W. Schrepp and X. Zhu, "Chemiluminescent Reaction Between Alkali Dimers and Oxygen Molecules," <u>J. Chem. Phys.</u>, Vol.79, pp.1320-1325, 1983.
- A-3. I. I. Vol'nov, V. N. Chamova, and E. I. Latysheva, "Mechanism of Alkali Metal Ozonide Formation," <u>Izv. Akad. Nauk. SSSR. Ser. Khim.</u>, pp.1183-1187, 1967. As quoted in <u>Chem.Abs.</u>, Vol.68, p.6291, 1968.
- A-4. R. R. Smardzewski and L. Andrews, "Raman Spectra of the Products of Na and K atom Argon Matrix Reactions with O₂ Mo'ecules," <u>J. Chem. Phys.</u>, Vol.57, pp.1327-1333, 1972.
- A-5. D. M. Lindsay, D. R. Herschbach, and A. L. Kwiram, "ESR of Matrix Isolated Alkali (Metal) Superoxides," Chem. Phys. Lett., Vol.25, pp.175-181, 1974.
- A-6. L. Andrews, "Matrix Reactions of K and Rb Atoms With Oxygen Molecule," J. Chem. Phys., Vol.54, pp.4935-4943, 1971.
- A-7. W. Kasstochkin and W. Kotow, "Structure of Potassium Tetroxide," J. Chem. Phys., Vol.4, p.458, 1936.
- A-8. JANAF Thermochemical Tables, 2nd Ed., D. R. Stull and H. Prophet, NSRDS-NBS-73, June 1971.
- A-9. B. J. McBride and S. Gordon, "FORTRAN IV Program for Calculation of Thermodynamic Data," NASA TN D-4097, 1967.

APPENDIX A

APPROXIMATE PROPERTIES OF THE ${
m KO}_2$ MOLECULE

APPENDIX A

Approximate Properties Of The KO2 Molecule

The one-dimensional, laminar, flat-flame code we used demands species-dependent thermodynamic functions of temperature. This was accomplish by using the polynomial expressions of Gordon and McBride. For each reaction species, the specific heat, enthalpy, and entropy as functions of temperature are given in the form:

$$C_{p}/R = a_{1} + a_{2}T + a_{3}T^{2} + a_{4}T^{3} + a_{5}T^{4},$$

$$H_{T}/RT = a_{1} + a_{2}T/2 + a_{3}T^{2}/3 + a_{4}T^{3}/4 + a_{5}T^{4}/5 + a_{6}/T,$$
and
$$S_{T}/R = a_{1}\ln T + a_{2}T + a_{3}T^{2}/2 + a_{4}T^{3}/3 + a_{5}T^{4}/4 + a_{7}.$$

Parameters corresponding to each species considered in this report are documented except for the species KO_2 . Suitable parameters for KO_2 can be generated provided that the heat of formation, moments of inertia, and the normal mode frequencies are known. First consider an estimation of the KO_2 heat of formation.

Figger, Schrepp, and Zhu^{A-2} used spectroscopic techniques to determine a lower limit for the K-O₂ bond enery of (45.2 +/- 2.4)kcal/mole. It is our present task then to relate this bond energy to the heat (enthalpy) of formation.

The standard enthalpy of formation of any compound is the net heat of reaction by which it is formed from its elements, the reactants and products all being in a given standard state. A convenient standard state for a substance is the state in which it is stable at 298.15K and one atmosphere pressure. By convention the enthalpies of the chemical elements in this particular state are set equal to zero.

Using the first law of thermodynamic; and considering only PV work, we find the change in enthalpy can be written as:

$$\Delta H = \Delta U + \Delta (PV)$$
.

By $\underline{\Delta}$ (PV) we mean the change in PV for the entire system; that is, the PV of the products minus the PV of the reactants for the particular chemical reaction. For reactions in the gas phase, the values of $\underline{\Delta}$ (PV) depend on the change in the number of moles of gas as a result of the reaction under consideration. From the ideal gas equation we can write:

$$L(PV) = RTLn.$$

A-1. S. Gordon and B. J. McBride, "Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations," NASA-SP-273, 1971. (1982 program version.)

A-2. H. Figger, W. Schrepp and X. Zhu, "Chemiluminescent Reaction Between Alkali Dimers and Oxygen Molecules," <u>J. Chem. Phys.</u>, Vol.79, pp.1320-1325, 1983.

Thus:

$$\Delta \mathbf{H} = \Delta \mathbf{U} + \mathbf{R} \mathbf{T} \Delta \mathbf{n},$$

where by Δn we mean the number of moles of gaseous products minus the number of moles of gaseous reactants.

For the present case:

$$KO_2 = K + O_2$$
.

We note that at zero degrees absolute:

$$\Delta H_0 = \Delta U_0 = \Delta H_r$$
.

Now:

$$\Delta H_r = \Delta H_{fo}(K) + \Delta H_{fo}(O_2) - \Delta H_{fo}(KO_2)$$

and substituting values from Table A-1 we find

45.2 = 21.5 + 0.0 -
$$\Delta H_{fo}(KO_2)$$

or

$$\Delta H_{fo}(KO_2) = -23.7 \text{kcal/mole.}$$

TABLE A-1. SELECTED THERMODYNAMIC VALUES

Species	∆ <u>H</u> fo	<u>∆H</u> f298	<u>+/-</u>	(H ₀ -H ₂₉₈)	Reference
K	21.522	21.31	0.20	-1.481	A-8
02	0.0	0.0		-2.075	A-8
02	34.8	34.2	0.4	-2.474	A-8
H20	-57.103	-57.7979		-2.367	A-8
^О 2 О3 Н ₂ О КОН	-54.6	-55.6	3.0	-2.730	*

 KO_2 (bond energy) = (45.2 +/- 2.4) kcal/mole A-

* J. Chem. Phys. Ref. Data, Vol.3, p.432, 1974.

To find the heat of formation at 298.15K we recognize that for the reaction above where the stoichiometric coefficients are unity:

$$\Delta H_{fT} = \Delta H_{f298} + (H_T - H_{298})_{compound} - SUM(H_T - H_{298}),$$

where the sum is taken over the elements in their standard state. For this case we have:

 $\underline{\triangle} H_{f0}(KO_2) = \underline{\triangle} H_{f298}(KO_2) + (H_0 - H_{298})_{KO2} - (H_0 - H_{298})_K - (H_0 - H_{298})_{O2}.$

Substituting appropriate values from Table A-1 we find:

 $\Delta H_{f298}(KO_2) = -(25 +/- 3) \text{ kcal/mole,}$

where we have approximated the difference in enthalpy for KO2 by that for O3.

As a check on this value we note that the room temperature heat of reaction for:

 $30_3 + 2KOH = 30_2 + 2KO_2 + H_2O - 101.2 \text{ kcal/mole,}$

was reported by the Vol'nov et al. A-3 Using the values given in Table A-1, we find:

 $\Delta H_{f298}(KO_2) = -(26 +/- 3) \text{ kcal/mole,}$

in good agreement with our above estimate.

Both Raman spectra $^{A-4}$ and electron spin resonance spectra $^{A-5}$ of KO_2 in rare gas matrices show that the structure is that of an isosceles triangle. Since the actual structure of the gas phase molecule has not been determined, we assume that the gas phase molecule also has an isosceles triangle structure, identical with that of the solid. Andrews $^{A-6}$ estimated the K-O distance in KO_2 to be 2.28A, while Kassatochkin and Kotow $^{A-7}$ obtained (1.28 +/- 0.07)A as the distance between adjacent oxygen atoms. With these data the moments of inertia can be computed. They are: 2.18, 14.0, and 16.18 in units of $10^{-39}\mathrm{gm-cm}^2$.

The last data we require for the KO₂ molecule are the values of the normal mode frequencies. Smardewski and Andrews^{A-4} measured the fundamental frequency to be 1108 cm⁻¹. They also measured the symmetric interioric stretching mode frequency of 307.5 cm⁻¹. Based on analogy with ozone^{A-8} we estimate the antisymmetric normal vibration frequency to be 1100 cm⁻¹.

A-3. I. I. Vol'nov, V. N. Chamova, and E. I. Latysheva, "Mechanism of Alkali Metal Ozonide 'ormation," <u>Izv. Akad. Nauk. SSSR. Ser. Khim.</u>, pp.1183-1187, 1967. As quoted in <u>Chem.Abs.</u>, Vol.68, p.6291, 1968.

A-4. R. R. Smardzewski and L. Andrews, "Raman Spectra of the Products of Na and K atom Argon Matrix Reactions with O₂ Molecules," <u>J. Chem. Phys.</u>, Vol.57, pp.1327-1333, 1972.

A-5. D. M. Lindsay, D. R. Herschbach, and A. L. Kwiram, "ESR of Matrix Isolated Alkali (Metal) Superoxides," Chem. Phys. Lett., Vol.25, pp.175-181, 1974.

A-6. L. Andrews, "Matrix Reactions of K and Rb Atoms With Oxygen Molecule," J. Chem. Phys., Vol.54, pp.4935-4943, 1971.

A-7. W. Kasstochkin and W. Kotow, "Structure of Potassium Tetroxide," J. Chem. Phys., Vol.4, p.458, 1936.

A-8. JANAF Thermochemical Tables, 2nd Ed., D. R. Stull and H. Prophet, NSRDS-NBS-73, June 1971.

Noting that the assumed geometry for KO₂ yields a symmetry number of two, we have all the required input information to generate the Gordon and McBride coefficients. The values for the a_i are shown in Table A-2.

TABLE A-2. GORDON AND MCBRIDE COEFFICIENTS, ai, FOR KO2

i	<u>T>1000K</u>	T<1000K
1	.56193353E+01	.34337129E+01
2	.15509417E-02	.67246035E-02
3	68222055E-06	33216077E-05
4	.13299869E-09	16047227E-08
5	95542863E-14	.13795100E-11
6	14355891E+05	13720689E+05
7	17198447E+01	.97559016E+01

Use of these a_i and R=1.9872 cal/mole/K yields a room temperature value for the entropy of $\rm KO_2$ of 62 cal/mole/K.

A-9. B. J. McBride and S. Gordon, "FORTRAN IV Program for Calculation of Thermodynamic Data," NASA TN D-4097, 1967.

	¢		· · ·
No. Of		No. Of	
Copies	Organization	Copies	Organization
	· · · · · · · · · · · · · · · · · · ·		
12	Administrator	_	
	Defense Technical Info Center	i	Director
			USA Air Mobility Research and
	ATTN: DTIC-DDA		Development Laboratory
	Cameron Station		Ames Research Center
	Alexandria, VA 22314		Moffett Field, CA 94035
			noticet ricia, on 9400)
1	HQDA	4	0
	DAMA-ART-M	4	Commander
	Washington, DC 20310		US Army Research Office
	washington, Do 20310		ATTN: R. Ghirardelli
•			D. Mann
1	Commander		R. Singleton
	USA Materiel Command		R. Shaw
	ATTN: AMCDRA-ST		Research Triangle Park, NC
	5001 Eisenhower Avenue		
	Alexandria, VA 22333		27709
	The state of the s		
1	Commander	1	Commander
			USA Communications Research
	Armament R&D Center		and Development Command
	USA AMCCOM		ATTN: AMSEL-ATDD
	ATTN: SMGAR-TDC		Fort Monmouth, NJ 07703
	Dover, NJ 07801		tore isotatodelly its 07703
		1	Commander
1	Commander	1	
	Armament R&D Center		USA Electronics Research and
	USA AMCCOM		Development Command
			Technical Support Activity
	ATTN: SMCAR-TSS		ATTN: . AMDSD-L
	Dover, NJ 07801-5001		Fort Monmouth, NJ 07703
			•
1	Commander	2	Commander
	USA AMCCOM	•	USA AMCCOM, ARDC
	ATTN: SMCAR-ESK-L		
	Rock Island, IL 61299		
			D.S. Downs
1	Director		J.A. Lannon
•			Dover, NJ 07801
	Benet Weapons Laboratory		
	Armament R&D Center	2 .	Commander
	USA AMCCOM		USA AMCCOM, ARDC
	ATTN: SMCAR-LCB-TL		ATTN: SMCAR-LC-G
	Watervliet, NY 12189		L. Harris
1	Commander		A.J. Bracuti
	USA Aviation Research and		Dover, NJ 07801
	Development Command		
		1	Commander
	ATTN: AMSAV-E		USA AMCCOM, ARDC
	4300 Goodfellow Blvd.		ATTN: SMCAR-SCA-T.
	St. Louis, MO 63120		L. Stiefel
			Dover, NJ 07801
1	Air Force Armament Laboratory		
	ATTN: AFATL/DLODL	1	Commander
	Eglin AFB, FL 32542		USA Missile Command
			ATTN: AMSMI-RK, W. Wharton
		33	Redstone Arsenal, AL 35898

No. Of		No. Of	
Copies	Organization	Copies	Organization
1	Commander USA Missile Command ATTN: AMSMI-R	1	Commander Naval Air Systems Command
	Redstone Arsenal, AL 35898		ATTN: J. Ramnarace, AIR-54111C
1	Commander USA Missile Command	•	Washington, DC 20360
	ATTN: AMSMI-YDL Redstone Arsenal, AL 35898	2	Commander Naval Ordnance Station ATTN: C. Irish
1	Commander		P.L. Stang, Code 515 Indian Head, MD 20640
	USA Missile Command ATTN: AMSMI-RK, D.J. Ifshin	ı	Commander
•	Redstone Arsenal, AL 35898		Naval Surface Weapons Center ATTN: J.L. East, Jr., G-23 Dahlgren, VA 22448
1	Commander USA Tank Automotive Command	2	Commander
	ATTN: AMSTA-TSL Warren, MI 48090		Naval Surface Weapons Center ATTN: R. Bernecker, R-13 G.B. Wilmot, R-16
1	Director USA TRADOC Systems Analysis	4	Silver Spring, MD 20910 Commander
	Activity ATTN: ATAA-SL WSMR, NM 88002	•	Naval Weapons Center ATTN: R.L. Derr, Code 389 China Lake, CA 93555
1	Commandant US Army Infantry School	2	Commander
	ATTN: ATSH-CD-CSO-OR Fort Benning, GA 31905		Naval Weapons Center ATTN: Code 3891, T. Boggs K.J. Graham
1	Commander	e é e	China Lake, CA 93555
	USA Army Development and Employment Agency ATTN: MODE-TED-SAB	· 5 ့ '	Commander Naval Research Laboratory
	Fort Lewis, WA 98433		ATTN: L. Harvey J. McDonald E. Oran
1	Office of Naval Research Department of the Navy ATTN: R.S. Miller, Code 432		J. Shnur R.J. Doyle, Code 6110 Washington, DC 20375
	800 N. Quincy Street Arlington, VA 22217	1	Commanding Officer
1	Navy Strategic Systems Project Office ATTN: R.D. Kinert, SP 2731		Naval Underwater Systems Center Weapons Dept. ATTN: R.S. Lazar/Code 36301 Newport, RI 02840
	Washington, DC 20376		

No. Of		No. Of	
Copies	Organization	Copies	Organization
1	Superintendent	1	Atlantic Research Corp.
	Naval Postgraduate School		ATTN: M.K. King
	Dept. of Aeronautics		5390 Cherokee Avenue
	ATTN: D.W. Netzer Monterey, CA 93940		Alexandria, VA 22314
5	AFRPL/LKCC	1	Atlantic Research Corp.
J	ATTN: R. Geisler		ATTN: R.H.W. Waesche
	D. George		7511 Wellington Road
	D. Weaver		Gainesville, VA 22065
	J. Levine		
	W. Roe	1	AVCO Everett Rsch. Lab. Div
			ATTN: D. Stickler
	Edwards AFB, CA 93523		2385 Revere Beach Parkway
			Everett, MA 02149
1	AFATL/DLJE	1	Battelle Memorial Institute
	ATTN: O.K. Heiney		Tactical Technology Center
	Eglin AFB, FL 32542		ATTN: J. Huggins
			505 King Avenue
2	AFOSR:		Columbus, OH 43201
	ATTN: L.H. Caveny		
	J.M. Tishkoff	2	Exxon Research & Eng. Co.
	Bolling Air Force Base	_	ATTN: A. Dean
	Washington, DC 20332		M. Chou
			P.O. Box 45
1	AFWL/SUL		Linden, NJ 07036
	Kirtland AFB, NM 87117		22
1	Director NASA	1	Ford Aerospace and
			Communications Corp.
	Langley Research Center		DIVAD Division
	ATTN: G.B. Northam/MS 168		Div. Hq., Irvine
	Hampton, VA 23365		ATTN: D. Williams
	National Bureau of Charlends		Main Street & Ford Road
4	National Bureau of Standards ATTN: J. Hastie		Newport Beach, CA 92663
	M. Jacox	1	General Electric Armament
	T. Kashiwagi	.	
	H. Semerjian		& Electrical Systems
	US Department of Commerce		ATTN: M.J. Bulman
	Washington, DC 20234		Lakeside Avenue
			Burlington, VT 05401
1	Aerojet Solid Propulsion Co.	1	General Electric Company
	ATTN: P. Micheli		ATTN: M. Lapp
	Sacramento, CA 95813		Schenectady, NY 12301
1	Applied Combustion	1	General Electric Ordnance
	Technology, Inc.		Systems
	ATTN: A.M. Varney		ATTN: J. Mandzy
	P.O. Box 17885		100 Plastics Avenue
	Orlando, FL 32860		Pittsfield, MA 01203

No Of		W- 06	q
No. Of	0	No. Of	
Copies	Organization	Copies	Organization
1	General Motors Rsch Labs	1	Inc. Aleman Western E
	Physics Department		Los Alamos National Lab
	ATTN: R. Teets		ATTN: B. Nichols
	Warren, MI 48090		17, MS-B284
	watten, 111 400790		P.O. Box 1663
•			Los Alamos, NM 87545
3	Hercules, Inc.		_
	Allegany Ballistics Lab.	1	Olin Corporation
	ATTN: R.R. Miller	_	Smokeless Powder Operations
	P.O. Box 210		ATTN: R.L. Cook
	Cumberland, MD 21501		
	•		P.O. Box 222
3	Hercules, Inc.		St. Marks, FL 32355
•	Bacchus Works	_	
	ATTN: K.P. McCarty	1	Paul Gough Associates, Inc.
			ATTN: P.S. Gough
	P.O. Box 98		1048 South Street
	Magna, UT 84044		Portsmouth, NH 03801
1	Hercules, Inc.	2	Princeton Combustion
	AFATL/DLDL	_	Research Laboratories, Inc.
	ATTN: R.L. Simmons		ATTN: M. Summerfield
	Eglin AFB, FL 32542		
	•		K.A. Messina
1	Honeywell, Inc.		475 US Highway One
-	Defense Systems Division		Monmouth Junction, NJ 08852
	ATTN: D.E. Broden/		
	MS MN50-2000	1	Hughes Aircraft Company
			ATTN: T.E. Ward
	600 2nd Street NE		8433 Fallbrook Avenue
	Hopkins, MN 55343		Canoga Park, CA 91303
1	IBM Corporation		Destructs as a
	ATTN: A.C. Tam	1	Rockwell International Corp.
	Research Division		Rocketdyne Division
	5600 Cottle Road		ATTN: J.E. Flanagan/HBO2
			6633 Canoga Avenue
:	San Jose, CA 95193		Canoga Park, CA 91304
1	Director	3	Sandia National Laboratories
	Lawrence Livermore	•	Combustion Sciences Dept.
	National Laboratory		
	ATTN: C. Westbrook		ATTN: R. Cattolica
	Livermore, CA 94550		D. Stephenson
	2210210000, 012 94990		P. Mattern
1	Lockheed Missiles & Space Co.		Livermore, CA 94550
			· 有种种类型物。
	ATTN: George Lo	1	Sandia National Laboratories
	3251 Hanover Street		ATTN: M. Smooke
	Dept. 52-35/B204/2		Division 8353
	Palo Alto, CA 94304		Livermore, CA 94550
		1	Science Applications, Inc.
			ATTN: R.B. Edelman
			23146 Cumorah Crest
	36		Woodland Hills, CA 91364
	JU		

No. Of		No. Of	
Copies	Organization	Copies	Organization
		ooptes	Organization
1	Science Applications, Inc.	2	Hadaad Tashaalaad
	ATTN: H.S. Pergament	2	United Technologies Corp. ATTN: R.S. Brown
	1100 State Road, Bldg. N	•	R.O. McLaren
	Princeton, NJ 08540		P.O. Box 358
	_		Sunnyvale, CA 94088
1	Space Sciences, Inc.		Sumyvale, CA 94000
	ATTN: M. Farber	1 .	Universal Propulsion Company
	Monrovia, CA 91016	_	ATTN: H.J. McSpadden
	ORT To a second		Black Canyon Stage 1
4	SRI International		Box 1140
	ATTN: S. Barker		Phoenix, AZ 85029
	D. Crosley D. Golden		,
	Tech Lib	1	Veritay Technology, Inc.
	333 Ravenswood Avenue		ATTN: E.B. Fisher
	Menlo Park, CA 94025		P.O. Box 22
			Bowmansville, NY 14026
1	Stevens Institute of Tech.		
	Davidson Laboratory	1	Brigham Young University
	ATTN: R. McAlevy, III		Dept. of Chemical Engineering
	Hoboken, NJ 07030		ATTN: M.W. Beckstead
	•		Provo, UT 84601
1	Teledyne McCormack-Selph	1	California Tausia
	ATTN: C. Leveritt	1	California Institute of Tech.
	3601 Union Road		Jet Propulsion Laboratory ATTN: MS 125/159
	Hollister, CA 95023		4800 Oak Grove Drive
			Pasadena, CA 91109
1	Thickol Corporation		rasadena, on 31103
	Elkton Division	1	California Institute of
	ATTN: W.N. Brundige	_	Technology
	P.O. Box 241		ATTN: F.E.C. Culick/
	Elkton, MD 21921		MC 301-46
3	Thickol Corporation		204 Karman Lab.
	Huntsville Division		Pasadena, CA 91125
	ATTN: D.A. Flanagan		
	Huntsville, AL 35807	1	University of California,
			Berkeley
3	Thickol Corporation		Mechanical Engineering Dept.
	Wasatch Division		ATTN: J. Daily
	ATTN: J.A. Peterson		Berkeley, CA 94720
	P.O. Box 524		
	Brigham City, UT 84302	1	University of California
	_ ,, 0,000		Los Alamos National Lab.
1 1	United Technologies		ATTN: T.D. Butler
4	ATTN: A.C. Eckbreth		P.O. Box 1063, Mail Stop B216
Į	East Hartford, CT 06108		Los Alamos, NM 87545

No. Of		No. Of	
Copies	Organization	Copies	Organization
337333	0.80	- COPICS	Vi Ball Lat Ivil
			•
2	University of California,	Y .	University of Illinois
	Santa Barbara	•	Dept. of Mech. Eng.
	Quantum Institute		•
	•		ATTN: H. Krier
	ATTN: K. Schofield		144MEB, 1206 W. Green St.
	M. Steinberg		Urbana, IL 61801
	Santa Barbara, CA 93106		01001
	•	_	
•	Madaganday of Courthage	1	Johns Hopkins University/APL
1	University of Southern		Chemical Propulsion
	California		Information Agency
	Dept. of Chemistry		
	ATTN: S. Benson		ATTN: T.W. Christian
			Johns Hopkins Road
	Los Angeles, CA 90007		Laurel, MD 20707
			20.07
1	Case Western Reserve Univ.	•	en 4 4. di
•		1	University of Minnesota
	Div. of Aerospace Sciences		Dept. of Mechanical
	ATTN: J. Tien		Engineering
	Cleveland, OH 44135		
			ATTN: E. Fletcher
•	G11 H		Minneapolis, MN 55455
1	Cornell University		
	Department of Chemistry	4	Pennsylvania State University
	ATTN: E. Grant	-	
	Baker Laboratory		Applied Research Laboratory
	<u>-</u>		ATTN: G.M. Faeth
	Ithaca, NY 14853		K.K. Kuo
			H. Palmer
1	Univ. of Dayton Rsch Inst.		
•			M. Micci
	ATTN: D. Campbell		University Park, PA 16802
	AFRPL/PAP Stop 24		• •
	Edwards AFB, CA 93523	1	Polytechnic Institute of NY
	•	1	
i	Hadanaadha af 81 1 -	Ē	ATTN: S. Lederman
1	University of Florida		Route 110
	Dept. of Chemistry		Farmingdale, NY 11735
	ATTN: J. Winefordner		rarmingagic, at tivi
	Gainesville, FL 32611	_	
t.	darmesville, ru Jeuri	2	Princeton University
		· e,	Forrestal Campus Library
3	Georgia Institute of		ATTN: K. Brezinsky
•	Technology		
ý Č	School of Aerospace		I. Glassman
			P.O. Box 710
	Engineering		Princeton, NJ 08540
	ATTN: E. Price		
	Atlanta, GA 30332	•	
		1	Princeton University
•			MAE Dept.
2	Georgia Institute of	•	ATTN: F.A. Williams
	Technology		
	School of Aerospace		Princeton, NJ 08544
	Engineering		
	ATTN: W.C. Strahle		
	B.T. Zinn		
	Atlanta, GA 30332		
	nezanea, un juija		

	,		
No. Of		No. Of	
Copies	Organization	Copies	Organization
•			
2	Purdue University	1	Virginia Polytechnic
	School of Aeronautics	•	Institute and
	and Astronautics		State University
	ATTN: R. Glick		ATTN: J.A. Schetz
	J.R. Osborn Grissom Hall		Blacksburg, VA 24061
			24001
	West Lafayette, IN 47906	Aberdee	n Proving Ground
3	Purdue University		
	School of Mechanical		Dir, USAMSAA
	Engineering		ATTN: AMXSY-D
	ATTN: N.M. Laurendeau		AMXSY-MP, H. Cohen
	S.N.B. Murthy		Cdr, USATECOM
	D. Sweeney		ATTN: AMSTE-TO-F
	TSPC Chaffee Hall		Cdr, CRD , AMCCOM
	West Lafayette, IN 47906		ATTN: SMCCR-RSP-A
•			SMCCR-MU
1	Rensselaer Polytechnic Inst.		SMCCR-IL
	Dept. of Chemical Engineering		
	ATTN: A. Fontijn		
	Troy, NY 12181		
1	University of Rhode Island		
	Dept. of Chemistry		
	ATTN: S.C. Yang		
	Kingston, RI 02881		
_			
2	Southwest Research Institute		
	ATTN: R.E. White		
	A.B. Wenzel		
	8500 Culebra Road San Antonio, TX 78228		4
	Jan Allevillo, IX 78228	c	
1 "	Stanford University		
	Dept. of Mechanical	4 1 1 1 1 1	e e
	Engineering	•	
	ATTN: R. Hanson		2.*
	Stanford, CA 94305		
1	University of Texas		
-	Dept. of Chemistry		
	ATTN: W. Gardiner		
	Austin, TX 78712		
	70/12		
	University of Utah		
	Dept. of Chemical Engineering		
	ATTN: G. Flandro		
	Salt Lake City, UT 84112		

USER EVALUATION SHEET/CHANGE OF ADDRESS

	ry undertakes a continuing effort to improve the quality of the blishes. Your comments/answers to the items/questions below will efforts.
1. BRL Repo	t NumberDate of Report
2. Date Rep	rt Received
3. Does thi other area o	report satisfy a need? (Comment on purpose, related project, or interest for which the report will be used.)
4. How spec data, proced	fically, is the report being used? (Information source, design re, source of ideas, etc.)
as man-hours	nformation in this report led to any quantitative savings as far or dollars saved, operating costs avoided or efficiencies achieved please elaborate.
	omments. What do you think should be changed to improve future dicate changes to organization, technical content, format, etc.)
	Name
CURRENT	Organization
ADDRESS	Address
<u>.</u>	City, State, Zip
7. If indica New or Correc	ing a Change of Address or Address Correction, please provide the Address in Block 6 above and the Old or Incorrect address below.
	Name
OLD ADDRESS	Organization
	Address

City, State, Zip