Vypracování - Backpropagation v třívrstvé síti

- V jazyku Java (či Python) vytvořte program, který umožní trénování třívrstvých sítí (sítí s 1 skrytou vrstvou).
- že si všichni náhodou zvolíte tu stejnou.)

 Proveďte analýzu citlivosti na počet neuronů ve skryté vrstvě, learning rate (parametr učení) a počet epoch učení porovnejte mse.

• Vytvořte a natrénujte síť tak, aby dokázala aproximovat Vámi zvolenou funkci z nabídky: sinh, cosh, tanh, coth, exp. (Neočekávám,

• Provedte analyzu citlivosti na pocet neuronu ve skryte vrstve, learning rate (parametr uceni) a pocet epoch uceni - porovnejte ms

Pro vypracování byla vybrána funkce **cosh**

Teorie

Feed forward neuronové sítě se skládají s vrstev neuronů, které netwoří cyklus. Existují tři typy neuronů: neurony vstupní vrstvy,

Feed forward neuronové sítě

neurony skrytých vrstev a neurony výstupní vrstvy. Vrstva je definována jako vektor aktivačních funkcí vrstvy předhozí $a^l=\sigma(w^{l-1}\cdot a^{l-1}+b^l)$ kde w je matice vah $w^l(|a^l|\times |a^{l-1}|)$, b

je vektor biasů a $\sigma(z)$ je libovolnou aktivační funkcí,

Backpropagation

Pro vstupní vrstvu I = 0 platí, že vektor b = 0.

Backpropagation je jádrem učícího algoritmu neuronové sítě. Výstup z feed forward se porovná s požadovanou hodnotou z tréningových dat \rightarrow k tomuto slouží účelová funkce C.

Účelová funkce použitá v této síti: funkce střední kvadratické chyby pro n iterací

Chyba ve výstupní vrstvě $\nabla_a C$ je gradient podle aktivací výstupní vrstvy, který sestává z parciálních derivací podle vah a biasů (3. a 4.)

```
1. \delta^L = 
abla_a C igodots \sigma'(z^L)
```

 $C=rac{1}{2n}\sum_{x}\left|\left|y(x)-a^{L}(x)
ight|
ight|^{2}$

Chyba ve skryté vrstvě l, rekurentní zadání pro chybu ve vrstvě l+1

```
o značí Hadamardův součin.
```

1. $\delta^l = ((w^{l+1})^T \delta^{l+1}) \bigodot \sigma'(z^l)$

1. $rac{\partial C}{\partial b^l_j}=\delta^l_j$ 2. $rac{\partial C}{\partial u^l_{jk}}=a^{l-1}_k\delta^l_j$

```
vektory \delta jsou použity pro aktualizaci biasů a vah.
```

In [1]: |

In [60]:

import numpy as np
import pandas as pd

plt.style.use('bmh')

 $_y = np.cosh(_x)$

result = {

y = [np.cosh(n) for n in x]

 $_x = np.linspace(-1, 1, 1000)$

from neural_net.neuralnet import NeuralNet
import neural_net.activation_functions as af
from matplotlib import pyplot as plt

rcParams['figure.figsize'] = 16, 6 # resize figures

training_data = [(x, y) for x, y in zip(x, y)]

Kartézské součiny budou použitý v jednotlivých iteracích

mse_list.append(e['mse'])

x = [np.array([np.random.uniform(-1, 1)]) for i in range(1000)]

import itertools import json from pylab import rcParams

```
Testovací parametry

In [7]: neurons = [50, 10, 5, 3, 1] epochs = [200, 100, 10] learning_rates = [0.005, 0.05, 0.1, 0.5] params = itertools.product(neurons, epochs, learning_rates)
```

```
In []: stats = []
    for p in params:
        mse_list = []
        nn = NeuralNet([1, p[0], 1], a_functions=[af.sigmoid, af.linear], a_functions_prime=[af.sigmoid_prime, a print(p, end='\n')
        for e in nn.gradient_descent(labeled_training_dataset=training_data, no_epochs=p[1], mini_batch_size=1,
```

print('EPOCH: {}\tmse: {}'.format(e['epoch'], e['mse']), end='\r')

'mse list' : mse_list,
 'last mse': mse_list[-1]
}

'learning rate': p[2],

'neurons': p[0],
'epochs': p[1],

```
stats.append(result)
              print('FINISHED')
          stats_json = json.dumps(stats)
          with open('resources/stats.json', 'w') as f:
              f.write(stats_json)
         Citlivostní analýza
         Tabulka výstupu analýzy
          df = pd.read_json('resources/stats.json')
In [36]:
          df.rename(columns={'avg nmse': 'avg mse'}, inplace=True)
          df[['neurons', 'epochs', 'learning rate', 'last mse']]
Out[36]:
             neurons epochs learning rate
                                           last mse
          0
                  50
                                  0.005 4.550588e-04
```

3 50 200 4 50 100

50

50

50

1

2

5

200

200

100

 6
 50
 100
 0.100
 1.015384e-05

 7
 50
 100
 0.500
 3.694219e-03

0.050 1.576850e-04

0.100 1.417064e-06

0.500 4.020041e-02

0.005 8.886462e-05

0.050 8.230188e-04

0.005 6.747720e-04 8 50 10 0.050 1.075443e-03 9 50 10 10 50 10 0.100 3.170347e-05 0.500 5.806157e-04 11 50 10 12 10 200 0.005 1.855490e-05 13 10 200 0.050 1.368015e-04 14 10 200 0.100 9.466203e-05 15 10 200 0.500 3.773642e-06 0.005 6.579429e-05 17 100 0.050 1.769363e-04 0.100 1.682562e-05 18 10 100 19 10 100 0.500 1.669553e-05 20 10 10 0.005 5.037918e-06 0.050 21 10 10 9.217336e-05 22 0.100 4.453521e-03 10 10 23 10 10 0.500 7.630469e-05 24 5 200 0.005 7.471602e-04 5 25 200 0.050 4.374841e-06 26 5 200 0.100 3.293414e-05 27

5 200 0.500 1.935023e-05 0.005 9.049019e-04 28 5 100 29 5 0.050 4.530042e-04 100 0.100 1.582729e-04 30 5 100 100 0.500 2.491765e-05 5 10 0.005 5.840269e-03 5 10 0.050 5.095461e-04

50 1 200 0.100 1.276824e-01 51 1 200 0.500 6.849134e-02 52 100 0.005 2.093512e-02 1 53 100 0.050 1.151596e-03 54 1 100 0.100 5.833758e-03 55 100 0.500 1.753175e-02 56 1 10 0.005 1.963039e-02 57 1 10 0.050 1.112857e-02 58 1 10 0.100 8.990957e-02 1 10 0.500 9.465807e-03 59

index_min = df['last mse'].idxmin()
lowest_mse = df.iloc[index_min, :]

0.005

6.989904e-03

0.050 9.277064e-03

48

49

1

1

lowest_mse

learning rate

plt.legend()

1.5

1.4

Name: 38, dtype: object

epochs

mse list

last mse

Out[12]: neurons

In [13]:

In [50]:

In [59]:

200

200

nn.learn(training_data, lowest_mse['epochs'], 1, lowest_mse['learning rate'])

EPOCH: 200 mse: 1.9022531636549555e-06

DONE

grafické znázornění

outputs = [nn.feed_forward(a)['z'] for a in x]

plt.scatter(x, outputs, label='nn output')
plt.plot(_x, _y, color='r', label='cosh(x)')

plt.title('Grafický výsledek učení')

[0.012408447090325, 0.052534303985128004, 9.88...

Pro aproximaci byla použita síť s konečnou nejmenší střední kvadratickou chybou mse

Out[50]: <matplotlib.legend.Legend at 0x7f1106231f10>

Grafický výsledek učení

3 200

0.1

1.0713e-07

nn = NeuralNet([1, lowest_mse['neurons'], 1], a_functions=[af.sigmoid, af.linear], a_functions_prime=[af.sig

13

ax, fig = plt.subplots()
fig.set_xlim([0,200])

12 11 10 cosh(x) 10 nn output -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

```
fig.set_ylim([-0.0005,0.002])
plt.xlabel('epoch')
plt.plot(lowest_mse['mse list'], label='mse')
plt.title('Vývoj mse v epochách')
plt.legend()

Out[59]: <matplotlib.legend.Legend at 0x7f1105de3460>

Vývoj mse v epochách

— mse
```

0.0015 0.0005 0.000000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0