```
In [ ]: import pandas as pd
        from sklearn.preprocessing import MinMaxScaler
        from sklearn.model_selection import train_test_split
        import tensorflow as tf
        from tensorflow.keras.models import Model
        from tensorflow.keras.layers import Input, LSTM, Dense, RepeatVector, TimeDistri
        import numpy as np
In [ ]: data = pd.read_csv('/content/weather_data.csv', parse_dates=['date'])
        data.set_index('date', inplace=True)
        print(data.head())
                  temperature
       date
       2014-01-01
                   10.248357
       2014-01-02
                    9.950428
       2014-01-03 10.362958
       2014-01-04 10.820167
       2014-01-05
                    9.961091
```

# Preprocessing and normalizing the data

```
In [ ]: scaler = MinMaxScaler()
   data['temperature'] = scaler.fit_transform(data[['temperature']])

   temperature_data = data['temperature'].values

# Split into training and testing here train is 80% and test is 20%
   train_size = int(len(temperature_data) * 0.8)
   train_data, test_data = temperature_data[:train_size], temperature_data[train_si
```

## Creating the sequence

### **Building the LSTM Model**

```
In [ ]: input = train_sequences.shape[1] # sequence Length
    features = train_sequences.shape[2]
```

test sequences = test sequences.reshape(-1, sequence length, 1)

#### **Defining the Autoencoder model**

```
inputs = Input(shape=(input, features))

# Encoder
encoded = LSTM(128, activation='relu', return_sequences=True)(inputs)
encoded = LSTM(64, activation='relu', return_sequences=False)(encoded)
latent = Dense(32, activation='relu')(encoded) # Dense Layer for Latent space
latent_repeated = RepeatVector(input)(latent)

# Decoder
decoded = LSTM(64, activation='relu', return_sequences=True)(latent_repeated)
decoded = LSTM(128, activation='relu', return_sequences=True)(decoded)
output = TimeDistributed(Dense(1))(decoded)

In []: autoencoder = Model(inputs, output)
autoencoder.compile(optimizer='adam', loss='mse')
autoencoder.summary()
```

### Model: "functional"

In [ ]: # Define the Autoencoder model

| Layer (type)                        | Output Shape    |
|-------------------------------------|-----------------|
| <pre>input_layer (InputLayer)</pre> | (None, 30, 1)   |
| lstm (LSTM)                         | (None, 30, 128) |
| lstm_1 (LSTM)                       | (None, 64)      |
| dense (Dense)                       | (None, 32)      |
| repeat_vector (RepeatVector)        | (None, 30, 32)  |
| lstm_2 (LSTM)                       | (None, 30, 64)  |
| lstm_3 (LSTM)                       | (None, 30, 128) |
| time_distributed (TimeDistributed)  | (None, 30, 1)   |

```
Total params: 241,825 (944.63 KB)

Trainable params: 241,825 (944.63 KB)

Non-trainable params: 0 (0.00 B)
```

```
In [ ]: history = autoencoder.fit(train_sequences, train_sequences, epochs=50, batch_siz
```

| Epoch              | 1/50  |                                                         |
|--------------------|-------|---------------------------------------------------------|
| 57/57              |       | <b>16s</b> 134ms/step - loss: 0.1476 - val_loss: 0.0215 |
| Epoch              |       |                                                         |
| 57/57              |       | <b>11s</b> 158ms/step - loss: 0.0179 - val_loss: 0.0082 |
| Epoch <b>57/57</b> |       | <b>9s</b> 144ms/step - loss: 0.0050 - val_loss: 0.0037  |
| Epoch              |       | 33 144m3/3cep - 1033. 0.0030 - Val_1033. 0.003/         |
| 57/57              |       | <b>9s</b> 115ms/step - loss: 0.0025 - val_loss: 0.0041  |
| Epoch              | 5/50  |                                                         |
|                    |       | <b>12s</b> 151ms/step - loss: 0.0025 - val_loss: 0.0034 |
| Epoch              |       | 0.447 / 1 0.0000 1 1 0.0004                             |
| <b>57/57</b> Epoch |       | <b>8s</b> 147ms/step - loss: 0.0023 - val_loss: 0.0034  |
| 57/57              |       | <b>7s</b> 116ms/step - loss: 0.0023 - val_loss: 0.0034  |
| Epoch              |       |                                                         |
| 57/57              |       | <b>9s</b> 154ms/step - loss: 0.0022 - val_loss: 0.0034  |
| Epoch              |       |                                                         |
| 57/57              |       | <b>7s</b> 131ms/step - loss: 0.0023 - val_loss: 0.0034  |
| Epoch <b>57/57</b> |       | <b>9s</b> 114ms/step - loss: 0.0022 - val_loss: 0.0034  |
| Epoch              |       | 73 114m3, 3ccp 1033. 0.0022 var_1033. 0.0034            |
|                    |       | <b>11s</b> 129ms/step - loss: 0.0022 - val_loss: 0.0035 |
| Epoch              | 12/50 |                                                         |
|                    |       | <b>8s</b> 142ms/step - loss: 0.0024 - val_loss: 0.0035  |
|                    | 13/50 | 7s 117ms/ston loss: 0 0022 val loss: 0 0024             |
|                    | 14/50 | <b>7s</b> 117ms/step - loss: 0.0022 - val_loss: 0.0034  |
| 57/57              |       | <b>12s</b> 146ms/step - loss: 0.0022 - val_loss: 0.0034 |
| Epoch              | 15/50 | ·                                                       |
|                    |       | <b>7s</b> 119ms/step - loss: 0.0022 - val_loss: 0.0034  |
| Epoch              |       | 10- 117/shop less 0 0022 welless 0 0024                 |
| <b>57/57</b> Epoch |       | <b>10s</b> 117ms/step - loss: 0.0022 - val_loss: 0.0034 |
| 57/57              |       | <b>10s</b> 113ms/step - loss: 0.0022 - val loss: 0.0035 |
| Epoch              |       | ·                                                       |
|                    |       | <b>9s</b> 152ms/step - loss: 0.0022 - val_loss: 0.0034  |
|                    | 19/50 | 0. 115/                                                 |
|                    | 20/50 | <b>8s</b> 115ms/step - loss: 0.0023 - val_loss: 0.0033  |
|                    |       | <b>10s</b> 119ms/step - loss: 0.0022 - val_loss: 0.0034 |
|                    | 21/50 |                                                         |
|                    |       | <b>11s</b> 134ms/step - loss: 0.0022 - val_loss: 0.0035 |
|                    | 22/50 |                                                         |
|                    | 23/50 | <b>11s</b> 150ms/step - loss: 0.0022 - val_loss: 0.0033 |
|                    |       | <b>11s</b> 163ms/step - loss: 0.0022 - val_loss: 0.0034 |
|                    | 24/50 |                                                         |
|                    |       | <b>8s</b> 126ms/step - loss: 0.0023 - val_loss: 0.0035  |
|                    | 25/50 |                                                         |
|                    |       | <b>11s</b> 145ms/step - loss: 0.0022 - val_loss: 0.0034 |
|                    | 26/50 | <b>10s</b> 176ms/step - loss: 0.0023 - val_loss: 0.0036 |
|                    | 27/50 | 103 1/0m3/step - 1033. 0.0023 - Val_1033. 0.0030        |
|                    |       | <b>8s</b> 139ms/step - loss: 0.0022 - val_loss: 0.0033  |
| Epoch              | 28/50 |                                                         |
|                    |       | <b>11s</b> 151ms/step - loss: 0.0021 - val_loss: 0.0035 |
|                    | 29/50 | <b>10s</b> 151ms/step - loss: 0.0021 - val_loss: 0.0032 |
| Epoch              |       | 103 1311115/ Steh - 1022. 0.0051 - A91 1022: 0.0035     |
|                    |       | <b>10s</b> 139ms/step - loss: 0.0022 - val_loss: 0.0033 |
|                    |       |                                                         |

```
Epoch 31/50
57/57
                          - 9s 152ms/step - loss: 0.0021 - val_loss: 0.0033
Epoch 32/50
57/57 -
                          - 11s 168ms/step - loss: 0.0021 - val_loss: 0.0032
Epoch 33/50
57/57 •
                          - 8s 133ms/step - loss: 0.0021 - val_loss: 0.0032
Epoch 34/50
57/57 -
                          - 11s 138ms/step - loss: 0.0021 - val_loss: 0.0032
Epoch 35/50
57/57 -
                          - 11s 157ms/step - loss: 0.0021 - val_loss: 0.0033
Epoch 36/50
                          - 11s 176ms/step - loss: 0.0021 - val_loss: 0.0032
57/57 -
Epoch 37/50
57/57 -
                          - 7s 117ms/step - loss: 0.0021 - val_loss: 0.0033
Epoch 38/50
57/57 -
                          - 10s 175ms/step - loss: 0.0021 - val_loss: 0.0032
Epoch 39/50
                          - 10s 176ms/step - loss: 0.0020 - val_loss: 0.0032
57/57 -
Epoch 40/50
57/57 -
                          - 9s 150ms/step - loss: 0.0021 - val_loss: 0.0032
Epoch 41/50
57/57 -
                          - 9s 149ms/step - loss: 0.0020 - val_loss: 0.0032
Epoch 42/50
57/57 •
                          - 9s 134ms/step - loss: 0.0022 - val_loss: 0.0032
Epoch 43/50
                          - 9s 115ms/step - loss: 0.0021 - val_loss: 0.0032
57/57 -
Epoch 44/50
57/57
                          - 10s 115ms/step - loss: 0.0020 - val_loss: 0.0032
Epoch 45/50
57/57 -
                          - 12s 152ms/step - loss: 0.0021 - val_loss: 0.0032
Epoch 46/50
57/57 •
                          - 11s 160ms/step - loss: 0.0020 - val_loss: 0.0032
Epoch 47/50
57/57 -
                          - 8s 118ms/step - loss: 0.0021 - val_loss: 0.0032
Epoch 48/50
57/57 -
                          - 11s 135ms/step - loss: 0.0021 - val_loss: 0.0033
Epoch 49/50
57/57 -
                          - 8s 141ms/step - loss: 0.0021 - val_loss: 0.0033
Epoch 50/50
                          - 9s 115ms/step - loss: 0.0020 - val_loss: 0.0032
57/57 -
```

### **Evaluating the reconstructed error on the test data**

```
[0.02654336 0.02586378 0.02570156 0.0263128 0.02737298 0.0275918
0.02562043 0.0244387 0.02627327 0.02910139 0.02878802 0.02971195
0.02799226 0.0292581 0.03045627 0.03042937 0.02949074 0.03136913
0.03341803 0.03547095 0.03570749 0.0339844 0.03449505 0.03470341
0.03428251 0.03191402 0.0306152 0.02916922 0.0290991 0.02867593
0.02831038 0.02952028 0.03252427 0.03120742 0.03428234 0.03496773
0.03341628 0.03320396 0.03193354 0.03225524 0.03210103 0.03288249
0.02918788 0.02631635 0.02694649 0.0263589 0.02875356 0.02970265
0.03041847 0.03047745 0.02942998 0.02889165 0.02691572 0.02822017
0.02990897 0.0298489 0.02636058 0.02806514 0.02481824 0.02539696
0.02756385 0.02770718 0.02883419 0.02904134 0.02837334 0.02833468
0.02989393 0.03176818 0.03267954 0.0311951 0.03056417 0.03027849
0.03120494 0.0313825 0.03154805 0.03074861 0.03198005 0.03091977
0.03160488 0.03159999 0.03339173 0.03231817 0.03316526 0.03164898
0.0319019 0.03244975 0.03348529 0.03457806 0.03584694 0.03623006
0.03581393 0.03549958 0.03534539 0.03439362 0.03545868 0.03576036
0.03586183 0.03591478 0.03707687 0.03810749 0.03883241 0.03521689
0.03616176 0.03619076 0.03303691 0.0326137 0.03386454 0.0344613
0.03566637 0.03355186 0.03226199 0.02950803 0.02841898 0.02806674
0.03097346 0.03042771 0.02922008 0.02969531 0.02775521 0.02653694
0.02686071 0.02799531 0.02972301 0.03077673 0.0323043 0.03340023
0.03155809 0.03250915 0.03363989 0.03327568 0.03358943 0.03443845
0.0323
          0.03235097 0.03226919 0.0335641 0.03323457 0.03330258
0.03432403 0.03569718 0.03737895 0.03683084 0.03728195 0.03857271
0.03502733 0.03611407 0.0358394 0.03733024 0.0381485 0.0382916
0.03906982 0.03745168 0.03623868 0.03625457 0.03698829 0.03613772
0.03736153 0.03683177 0.03653231 0.03588189 0.03661505 0.03598252
0.03339652 0.03193173 0.03037013 0.03103588 0.03138352 0.03112924
0.03213021 0.03186877 0.03333627 0.03170905 0.03172098 0.04505282
0.04450559 0.04449171 0.04387247 0.04551043 0.04381066 0.04514442
0.04601866 0.04531985 0.04405978 0.04496478 0.04518928 0.043159
0.04186105 0.0423924 0.04211949 0.04447844 0.04467598 0.04572269
0.04783441 0.0479123 0.04616582 0.04748443 0.04632007 0.03122838
0.03101682 0.03084349 0.0299596 0.03120415 0.03218197 0.03257026
0.02999219 0.0288557 0.02872221 0.02933065 0.02880775 0.02895108
0.03106506 0.03046218 0.03052536 0.03010881 0.02928688 0.02757141
0.02857368 0.02935039 0.02790201 0.0245871 0.02416659 0.02438939
0.02440128 0.02379951 0.02448565 0.02277768 0.02368871 0.02440376
0.02698077 0.02770839 0.02661778 0.02678649 0.02679724 0.02636816
0.02797082 0.02840413 0.02872681 0.02818521 0.02954829 0.02804828
0.02770231 0.02767882 0.02910171 0.02698125 0.02865417 0.03005976
0.03024631 0.03185913 0.03164115 0.03285141 0.03250482 0.03426595
0.03513109 0.03641387 0.03598622 0.03568404 0.03487864 0.03497899
0.03373735 0.03399788 0.03414225 0.03578845 0.03543721 0.03617814
0.03640196 0.03678376 0.0353737 0.03506329 0.0330481 0.03342571
0.03347462 0.03307949 0.03242754 0.0322284 0.03413633 0.03403891
0.03438548 0.03261509 0.03181217 0.03003165 0.03007343 0.02857571
0.02784397 0.02609654 0.02644606 0.02776655 0.02830365 0.02753163
0.02788164 0.02668298 0.02799736 0.02873901 0.02977732 0.03007716
0.03101995 0.03273423 0.03323475 0.0340325 0.03368193 0.0341692
0.03334407 0.03387023 0.03104715 0.02984039 0.02916631 0.0294828
0.02984381 0.03015198 0.02908283 0.0305484 0.03002394 0.03011742
```

```
0.02869221 0.02786463 0.0264399
                                0.02652712 0.0261804 0.02732668
0.02823125 0.02697547 0.02793366 0.02802372 0.02797888 0.02828991
0.02809544 0.02837469 0.02872604 0.02869146 0.02807559 0.02685657
0.02711559 0.02746921 0.02772862 0.02905359 0.02881187 0.02922308
0.02678
           0.02728398 0.02570515 0.02599337 0.0259262 0.02780557
0.02746966 0.02840401 0.02982425 0.02817437 0.02844608 0.02818287
0.02590256 0.02462226 0.02635045 0.02716752 0.02789983 0.02720564
0.02731731 0.02769811 0.02949184 0.02876363 0.02884772 0.02934087
0.03120701 0.0323035 0.03268874 0.03125484 0.03185643 0.03232873
0.03234745 0.03442992 0.03494237 0.03529073 0.03474607 0.03499222
0.03556191 0.03493811 0.0341155 0.0348742 0.03506122 0.03572457
0.03531657 0.03256198 0.03221482 0.03181012 0.03331924 0.03294514
0.03752612 0.0365204 0.03790033 0.03818956 0.03851186 0.03557505
0.03110378 0.03107529 0.03184307 0.02997039 0.0305227 0.03363525
0.03299427 0.03214885 0.03185787 0.03491445 0.03514757 0.03302729
0.03311939 0.03220335 0.03210082 0.03291542 0.03466083 0.03617977
0.03541436 0.03470181 0.03442113 0.03516349 0.03456202 0.03413546
0.03104474 0.02935513 0.02994661 0.02897669 0.02969342 0.03081458
0.03009334 0.02987376 0.03337426 0.03357078 0.03475793 0.03192574
0.03306044 0.03520394 0.03685619 0.03526705 0.03828815 0.03867658
0.03927318 0.04008049]
```

```
In []: # Plotting Reconstruction Error
plt.figure(figsize=(14, 7))
plt.plot(test_dates, reconstruction_error, label='Reconstruction Error', color='
plt.axhline(y=threshold, color='red', linestyle='--', label='Anomaly Threshold')
plt.title('Reconstruction Error Over Time')
plt.xlabel('Date')
plt.ylabel('Reconstruction Error')
plt.legend()
plt.show()
```



The graph illustrates the reconstruction error over time and highlights the points where the error surpasses the defined anomaly threshold, indicating potential anomalies in the temperature data. Significant spikes in the reconstruction error occur at certain dates, signaling that the temperature readings for those days deviated from the expected pattern. Specifically, the threshold is crossed **around March 2020**, where there is a notable increase in the reconstruction error, suggesting an unusual temperature event.

Additionally, another significant anomaly is observed towards the **end of 2020**, where the error exceeds the threshold once again.

## **Defining the Threshold for anomaly**

```
In [ ]: threshold = np.percentile(reconstruction_error, 95)
    print(f"Anomaly detection threshold: {threshold}")
```

Anomaly detection threshold: 0.04386938399752767

#### **Identifing the anomalies**

```
In []: anomalies = reconstruction_error > threshold

# Ensuring that test_dates matches the length of reconstruction_error so that i
test_dates = test_dates[:len(reconstruction_error)]

# Creating a DataFrame for anomalies
anomalies_df = pd.DataFrame({
    'Date': test_dates,
    'Reconstruction_Error': reconstruction_error,
    'Anomaly': anomalies
})
```

## **Visualizing the Anomalies**

```
In [ ]: import matplotlib.pyplot as plt

plt.figure(figsize=(14, 7))
    plt.plot(data.index, data['temperature'], label='Temperature', color='purple')

# Highlighting anomalies
    anomaly_dates = anomalies_df[anomalies_df['Anomaly']]['Date']
    plt.scatter(anomaly_dates, data.loc[anomaly_dates, 'temperature'], color='red',

plt.title('Temperature data with Detected Anomalies')
    plt.xlabel('Date')
    plt.ylabel('Normalized Temperature')
    plt.legend()
    plt.show()
```



## Interpretation

The plot shows temperature changes over the years, with the green line representing the normal seasonal patterns. The red dots highlight unusual days when the temperature was significantly different from what's expected, either much higher or lower. These unusual points could indicate extreme weather events, like heatwaves or cold spells, or possible errors in the data. Most of the temperatures follow the normal trend, but the red dots stand out as anomalies that need further investigation to understand what caused them.