Finding Many Stable Molecular Arrangements

Conformational Searching with Genetic Algorithms

Evan Curtin October 10, 2016

University of Illinois at Urbana-Champaign

Outline

- 1. Background Information
- 2. The Genetic Algorithm
- 3. Conclusion

Background Information

Computational methods require knowledge of molecular structure

Computational methods require knowledge of molecular structure

 \Rightarrow We need to find the lowest energy structure

Computational methods require knowledge of molecular structure

 \Rightarrow We need to find the lowest energy structure

The potential energy surface (PES) is high dimensional and has many minima

Computational methods require knowledge of molecular structure

 \Rightarrow We need to find the lowest energy structure

The potential energy surface (PES) is high dimensional and has many minima

⇒ We can't tell for sure if we've found the global minimum

Computational methods require knowledge of molecular structure

 \Rightarrow We need to find the lowest energy structure

The potential energy surface (PES) is high dimensional and has many minima

⇒ We can't tell for sure if we've found the global minimum

We may need information about one or more low-energy conformations

Computational methods require knowledge of molecular structure

 \Rightarrow We need to find the lowest energy structure

The potential energy surface (PES) is high dimensional and has many minima

⇒ We can't tell for sure if we've found the global minimum

We may need information about one or more low-energy conformations

 \Rightarrow Ok, let's find them all!

Possible Solutions

Many techniques are well established

method	description	implemented, e.g., in	
grid-based	based on grids of selected Cartesian or internal coordinates (e.g., grids of different torsional angle values of a molecule)	MOE ¹³	
rule/knowledge-based	use known (e.g., from experiments) structural preferences of compounds	ALFA, 14 CONFECT, 15 CORINA and ROTATE, 16,17 COSMOS, 18,19 OMEGA ²⁰	
population-based metaheuristic	improve candidate solutions in a guided search	Balloon, ²¹ Cyndi ²²	
distance geometry	based on a matrix with permitted distances between pairs of atoms	RDKit ²³	
basin-hopping ²⁴ / minima hopping ²⁵	based on moves across the PES combined with local relaxation	ASE, ²⁶ GMIN, ²⁷ TINKER SCAN ²⁸	
"Names of freely available programs are highlighted in boldface.			

Possible Solutions

Many techniques are well established None are perfect

method	description	implemented, e.g., in	
grid-based	based on grids of selected Cartesian or internal coordinates (e.g., grids of different torsional angle values of a molecule)	CAESAR, Open Babel, Confab, MacroModel, MoE ¹³	
rule/knowledge-based	use known (e.g., from experiments) structural preferences of compounds	ALFA, 14 CONFECT, 15 CORINA and ROTATE, 16,17 COSMOS, 18,19 OMEGA ²⁰	
population-based metaheuristic	improve candidate solutions in a guided search	Balloon, ²¹ Cyndi ²²	
distance geometry	based on a matrix with permitted distances between pairs of atoms	RDKit ²³	
basin-hopping ²⁴ / minima hopping ²⁵	based on moves across the PES combined with local relaxation	ASE, ²⁶ GMIN, ²⁷ TINKER SCAN ²⁸	
"Names of freely available programs are highlighted in boldface.			

 \cdot Accurate energies & Structures, ab initio or DFT

- · Accurate energies & Structures, ab initio or DFT
- Minimize number of geometry optimizations

- · Accurate energies & Structures, ab initio or DFT
- Minimize number of geometry optimizations
- Find the entire low energy population of conformations

- · Accurate energies & Structures, ab initio or DFT
- Minimize number of geometry optimizations
- Find the entire low energy population of conformations
- · Minimal human input

- · Accurate energies & Structures, ab initio or DFT
- Minimize number of geometry optimizations
- Find the entire low energy population of conformations
- · Minimal human input
- · Parallel-Scalable

The Genetic Algorithm

Outline

- Inspired by biological evolution
- Evolve a population over generations
- · Survival of the fittest
- · Requirements:
 - Represent individuals as vector
 - · Fitness function

•
$$V = (x_1 y_1 z_1 x_2 y_2 z_2 ... x_N y_N z_N)$$

•
$$F = \frac{E_{max} - E}{E_{max} - E_{min}}$$

Selecting Parents

- Several methods are common
- Reinforce good characteristics
- · Still give losers a chance
- · 'Breed' pairs of winners

Selecting Parents

- Several methods are common
- Reinforce good characteristics
- · Still give losers a chance
- · 'Breed' pairs of winners

The Next Generation

The Next Generation

Crossover distinguishes this from Monte Carlo

Conclusion

Backup slides

a