Примерни задачи за контролна работа № 2 - пръстени

Задача 1. Да се определи кои от следните числови множества образуват пръстен относно обичайните операции събиране и умножение на комплексни числа:

(i) $R_1 = \left\{ \frac{a}{p^k} \mid k \in \mathbb{N}, a \in \mathbb{Z}, p$ не дели $a \right\}$, където p е фиксирано просто число;

(ii) $R_2 = \left\{ \frac{a}{b} \middle| a, b \in \mathbb{Z}, b \neq 0, (a, b) = 1, p$ не дели $b \right\}$, където p е фиксирано просто число;

(iii)
$$R_3 = \{x + y\sqrt{2} \mid x, y \in \mathbb{Q}\};$$

(iv)
$$R_4 = \{x + y\sqrt[3]{2} \mid x, y \in \mathbb{Q}\};$$

(v)
$$R_5 = \{x + y\sqrt[3]{2} + z\sqrt[3]{4} \mid x, y, z \in \mathbb{Q}\}.$$

Задача 2. Нека $\mathbb{Z}[i] = \{a+bi \,|\, a,b \in \mathbb{Z}\}$ е множеството на целите Гаусови числа. Да се докаже, че $\mathbb{Z}[i]$ е област на цялост, която не е поле и мултипликативната група

$$\mathbb{Z}[i]^* = \{\pm 1, \pm i\} = \langle i \rangle = \mathbb{C}_4$$

е циклична от ред 4.

 ${\it Упътване}: \ \ {\rm За} \ {\rm всяко} \ z=a+bi\in \mathbb{Z}[i]^*$ изведете, че |z|=1, така че $z=\pm 1$ или $z=\pm i.$

Задача 3. Нека $\varphi:R\to S$ е хомоморфизъм на пръстени с образ $Im\varphi=S.$ Да се докаже, че

- (i) ако пръстенът R е комутативен, то и пръстенът S е комутативен:
- (ii) ако съществува цяло число n, така че $nr=0_R$ за $\forall r\in R,$ то $ns=0_S$ за $\forall s\in S.$

Задача 4. Нека m и n са естествени числа и n не дели m. Да се докаже, че единственият хомоморфизъм на пръстени $f: m\mathbb{Z} \to n\mathbb{Z}$ е тъждествено нулевият.

Упътване: Първо докажете, че f(mz) = f(m)z, разглеждайки поотделно случаите на естествено z, цяло отрицателно z и z = 0. Ако допуснем, че $f(m) \neq 0$, то от равенството $f(m)^2 = f(m^2) = f(m)m$ следва $f(m) = m \in n\mathbb{Z}$, което противоречи на условието.

Задача 5. Нека F е крайно поле с n елемента и $x_1, x_2, \dots x_{n-1}$ са всички ненулеви елементи на F. Да се докаже, че $x_1x_2\dots x_{n-1}+1=0$.

Задача 6. Да се докаже, че всяко крайно поле F с характеристика p има p^n елемента за някое естествено n.

Упътване: Проверете, че F е линейно пространство над простото си подполе $P \simeq \mathbb{Z}_p$ и ако $\dim_P F = n$, то съществува P-линеен изоморфизъм на F с пространството P^n на наредените n-торки елементи от P.

Задача 7. Избройте елементите на мултипликативните групи \mathbb{Z}_7^* и \mathbb{Z}_9^* на пръстените \mathbb{Z}_7 и \mathbb{Z}_9 от остатъци при деление със 7 и 9. Определете обратния на всеки елемент на \mathbb{Z}_7^* и \mathbb{Z}_9^* . Докажете, че \mathbb{Z}_7^* и \mathbb{Z}_9^* са циклични групи и определете всички техни пораждащи.

Задача 8. Дайте пример за комутативен пръстен с единица R, идеал $I \neq R$ и елемент $\alpha \in R$, който не е в мултипликативната група R^* на R, но чийто клас $\alpha + I \in (R/I)^*$ по модул I е в мултипликативната група $(R/I)^*$ на фактор-пръстена R/I.

Упътване: Използвайте взаимно прости естествени α и β , по-големи от 1.

Задача 9. Нека A е пръстен, K е идеал в A,

$$R = \left\{ \left(\begin{array}{cc} a & b \\ 0 & a \end{array} \right) \, \middle| \, a, b \in A \right\},\,$$

$$I = \left\{ \left(\begin{array}{cc} a & b \\ 0 & a \end{array} \right) \;\middle|\; a \in K, \, b \in A \right\}.$$

Да се докаже, че R е пръстен, I е идеал в R и фактор-пръстенът R/I е изоморфен на фактор-пръстена A/K.

Задача 10. Нека R е комутативен пръстен с единица, X е подмножество на R, а

$$\langle X \rangle = \left\{ \sum_{i=1}^{n} x_i r_i \, \middle| \, x_i \in X, \, r_i \in R, \, n \in \mathbb{N} \right\}.$$

Да се докаже, че:

- (i) $\langle X \rangle$ е идеал в R;
- (ii) ако I_1,\ldots,I_k са идеали в R, то $\langle I_1\cup\ldots\cup I_k\rangle=I_1+\ldots+I_k$.

Задача 11. За идеалите $m\mathbb{Z} = \langle m \rangle$, $n\mathbb{Z} = \langle n \rangle$, породени от ненулеви цели числа m, n, да се докаже, че:

- (i) $\langle m \rangle + \langle n \rangle = \langle (m, n) \rangle;$
- (ii) $\langle m \rangle \cap \langle n \rangle = \langle [m, n] \rangle$;
- (iii) $\langle m \rangle \langle n \rangle = \langle mn \rangle$, където (m,n) е най-големият общ делител на m и n, а [m,n] е тяхното най-малко общо кратно.

Задача 12. В комутативен пръстен с единица R, идеалите I и J се наричат взаимно прости, ако I+J=R. Да се докаже, че ако $I \triangleleft R$ и $J \triangleleft R$ са взаимно прости, то $IJ=I \cap J$. Обърнете внимание, че идеалите $\langle m \rangle = m\mathbb{Z}$ и $\langle n \rangle = n\mathbb{Z}$ в пръстена на целите числа \mathbb{Z} са взаимно прости тогава и само тогава, когато целите числа m и n са взаимно прости.

Задача 13. Нека R е комутативен пръстен с единица.

- (i) Собственият идеал $M \subsetneq R$ е максимален, ако единственият идеал в R, съдържащ строго M е целият пръстен R. Да се докаже, че M е максимален идеал в R тогава и само тогава, когато фактор-пръстенът R/M е поле.
- (ii) Идеалът $P \triangleleft R$ се нарича прост, ако от $ab \in P$ за някои $a,b \in R$ следва $a \in P$ или $b \in P$. Да се докаже, че P е прост идеал в R тогава и само тогава, когато фактор-пръстенът R/P е област.

В частност, всеки максимален идеал е прост.

Задача 14. Да се докаже, че:

- (i) простите идеали в пръстена \mathbb{Z} на целите числа са нулевият идеал $\{0\}$ и идеалите, $p\mathbb{Z} = \langle p \rangle$, породени от прости числа p.
 - (ii) максималните идеали в Z са ненулевите прости идеали.