ARQUITECTURA

o diagrama arquitectura.png: Diagrama de la arquitectura final del proyecto.

BÚSQUEDA Y DATOS

- descarga_accidentes_2010-2020.ipynb: Notebook de Python con la descarga de los dataframes relativos a los accidentes de tráfico en Madrid.
- o descarga_estado_meteorologico_2010-2020_aemet_api.ipynb: Notebook de Python con la descarga de los dataframes relativos al estado meteorológico de AEMET.
- DOCUMENTACIÓN ACCIDENTES:
 - accidentes_trafico_2010-2018.pdf: Documentación relativa a la base de datos sobre los accidentes de tráfico entre los años 2010 y 2018.
 - accidentes_trafico_2019-2020.pdf: Documentación relativa a la base de datos sobre los accidentes de tráfico entre los años 2019 y 2020.

LIMPIEZA DE DATOS

- eficiencia_dask.ipynb: Notebook de Python con un experimento para medir la eficiencia del uso de Dask en nuestro proyecto.
- accidentes_data_cleaning_paralelo.ipynb: Notebook de Python con el data-cleaning del dataframe con los accidentes de tráfico en Madrid.
- estado_meteorologico_data_cleaning_paralelo.ipynb: Notebook de Python con el datacleaning del dataframe con el estado meteorológico de AEMET.
- union_accidentes_estado_meteorologico.ipynb: Notebook de Python con la unión de los dataframes relativos a los accidentes de tráfico de Madrid y el estado meteorológico de AEMET.
- procesamiento_paralelo_data_cleaning_accidentes.png: Task graph del procesamiento en paralelo para la obtención del conjunto de datos de accidentalidad en la ciudad de Madrid.
- procesamiento_paralelo_data_cleaning_estado_meteorologico.png: Task graph del procesamiento en paralelo para la obtención del conjunto de datos del estado meteorológico en la ciudad de Madrid.
- procesamiento_paralelo_data_cleaning_accidentes_estado_meteorológico.png: Task graph del procesamiento en paralelo para la obtención del conjunto de datos final con la accidentalidad en la ciudad de Madrid y la información meteorológica de dicho día.

MODELOS ANALÍTICOS

RANDOM FOREST

■ Random_Forest_accidentes.r: Script escrito en R con la creación de un modelo, utilizando la técnica Random Forest, para predecir la lesividad de la persona involucrada en un accidente.

XGBOOST

- XGBoost_model_to_predict_LESIVIDAD.ipynb: Notebook en Python con la creación de un modelo, utilizando la técnica Extreme Gradient Boosting para predecir la lesividad de la persona involucrada en un accidente.
- matriz_confusion_xgboost.png: Matriz de confusión sobre el conjunto de datos de prueba del modelo XGBoost implementado.
- *importancia_variables.png:* Gráfico de barras con el listado de la importancia de las diferentes variables sobre el modelo XGBoost implementado.

REGRESIÓN LOGÍSTICA

■ Regresión_logística_accidentes.r: Script escrito en R con la creación de un modelo, utilizando la técnica Regresión Logística, con el objetivo de predecir la gravedad de los individuos involucrados en un accidente, dividido en Accidente Grave y Accidente Leve.

VISUALIZACION

- o analisis exp r.R: Script con el análisis exploratorio de las variables numéricas.
- o edad.pbix: Dashboard con gráficos relativos a la edad.
- lesividad_distribucion.pbix: Dashboard que contiene el análisis exploratorio de la variable
 LESIVIDAD y algunos gráficos relativos a las variables relacionadas con las fechas.
- o *mapa.pbix:* Dashboard con el mapa interactivo y la distribución de la variable DISTRITOS.
- meteo.pbix: Dashboard con el análisis exploratorio de las variables cualitativas relativas a la meteorología.
- tablas.pbix: Dashboard con algunas tablas relativas a algunas variables expuestas en el apartado del análisis exploratorio.