Chapitre 5 Inéquations linéaires

Table 5.1 – Objectifs. À fin de ce chapitre 5...

	Pour m'entraîner <u>k</u>					
Je dois connaître/savoir faire	6	•	Ö			
Intervalles de $\mathbb R$						
notation	5.1	5.2				
union et intersection d'intervalles		5.3, 5.4				
Résolution d'inéquations						
relation d'ordre dans $\mathbb R$ et règles opératoires		5.5, 5.6	5.7, 5.8			
résolution d'inéquations linéaires	5.9, 5.10, 5.11	5.12, 5.13				
résoudre des inéquations de la forme $ ax + b < c$.			5.14			
Modéliser par une inéquation						
modéliser par des inéquations	5.15, 5.16	5.17				
application directes	5.18, 5.19	5.20, 5.21	5.21 5.22			
inéquations avec paramètre		5.23 à 5.27	5.28 à 5.30			
Club maths : Inéquations siumultanées et applications						

5.1 Les intervalles

■ Exemple 5.1

1. $I=\{x\in\mathbb{R}\mid 3\leqslant x\leqslant 5\}$ désigne l'ensemble des réels $x\in\mathbb{R}$ tel que $3\leqslant x\leqslant 5$.

Figure 5.1 – I = [3; 5]

Il se note I = [3; 5], à lire « intervalle fermé de 3 à 5 ».

2. $J=\{x\in\mathbb{R}\mid x\leqslant 4\}$ désigne l'ensemble des réels x vérifiant $x\leqslant 4$. Il se note $J=]-\infty;4]$, à lire « Intervalle de $-\infty$ à 4, fermé en 4 ».

Table 5.2 – Les différentes variantes d'intervalles bornés par a et $b \in \mathbb{R}$

Intervalle	Inégalité	Représentation sur droite graduée		
$x \in [a; b]$	$a \leqslant x \leqslant b$	$a \qquad b \qquad x$		
$x \in]a;b[$	a < x < b			
$x \in [a; b[$	$a \leqslant x < b$			
$x \in]a;b]$	$a < x \leqslant b$	$a \qquad b$		

Table 5.3 – Les différentes variantes d'intervalles infinis

Intervalle	Inégalité	Représentation sur droite graduée		
$x \in [a; +\infty[$	$x \geqslant a$			
$x \in]a; +\infty[$	x > a			
$x \in]-\infty;b]$	$x \leqslant b$	b		
$x \in]-\infty; b[$	x < b			

5.2 Relation d'ordre dans $\mathbb R$ et opérations

Définition 5.1 — Comparer deux expressions a et b revient à étudier le signe de la différence.

Pour tout a et $b \in \mathbb{R}$, a est supérieur à b s.s.i. la différence (a - b) est positive :

$$a \geqslant b \iff (a-b) \geqslant 0$$

■ Exemple 5.2

$$x^{2} \geqslant y \qquad 2x \leqslant 5 \qquad 5x - 1 < 0 \qquad \sqrt{ab} < \frac{a + b}{2}$$

$$\iff x^{2} - y \geqslant 0 \qquad \iff 2x - 5 \leqslant 0 \qquad \iff 5x < 1 \qquad \iff 0 < \frac{a + b}{2} - \sqrt{ab}$$

Théorème 5.1 — L'addition. conserve l'ordre :

Pour tout
$$a, b, n \in \mathbb{R}$$
 on a: $(a \ge b) \Rightarrow (a + n \ge b + n)$

Démonstration.

Soit $a, b \in \mathbb{R}$ tel que $a \geqslant b$.

Pour comparer a + n et b + n on cherchera le le signe de la différence :

$$\begin{array}{c} (a+n)-(b+n)=a+n-b-n=a-b\\ (a+n)-(b+n)\geqslant 0\\ a+n\geqslant b+n \end{array} \right) car\ a\geqslant b$$

Théorème 5.2 — la Multiplication. par un nombre positif non nul conserve l'ordre.

Pour tout
$$a, b, p \in \mathbb{R}$$
 on a: $a \ge b$ et $p > 0 \Rightarrow pa \ge pb$

La multiplication par un nombre *négatif non nul* inverse l'ordre.

Pour tout
$$a, b, n \in \mathbb{R}$$
 on a: $a \ge b$ et $n < 0 \implies na \le nb$

Démonstration.

Soit $a, b \in \mathbb{R}$ tel que $a \geqslant b$. Soit n < 0 et p > 0 deux réels.

Comparer pa et pb avec le signe de la différence :

5.3 Inéquations : vocabulaire

Définition 5.2

Une inéquation à une inconnue est une inégalité dans laquelle apparaît une lettre.

Une solution de l'inéquation est une valeur de l'inconnue pour laquelle l'inégalité est vraie.

■ Exemple 5.3

Soit l'inéquation $4x + 7 < x^2$ d'inconnue x.

1. x=0 n'est pas solution de l'inéquation car l'égalité $4\times 0+7<0^2$ est

■ Exemple 5.4

Soit l'inéquation $7x - 12 \geqslant x^2$ d'inconnue x.

 $7(5) - 12 \ge (5)^2 \text{ est } \dots 7(10) - 12 \ge (10)^2 \text{ est } \dots$

..... sont des solutions de l'inéquation.

Définition 5.3

Résoudre une équation dans $\mathbb R$ c'est trouver l'ensemble des solutions réelles.

Définition 5.4 Deux inéquations sont dites *équivalentes* (symbole \iff) si elles ont le même ensemble de solutions c.à.d elles sont vraies pour les mêmes valeurs de l'inconnue.

■ Exemple 5.5

- 1. Les inéquations 2x > 1 et 2x 1 > 0 d'inconnue x sont équivalentes.
- 2. Les inéquations $x \le 2$ et $x^2 \le 4$ ne sont pas équivalentes. En effet x = -3 et x = -4 sont des solutions de $x \le 2$ mais pas des solutions de $x^2 \le 4$.

5.4 Règles de balancement

Théorème 5.3 — admis, propriétés des inéquations.

Appliquer les opérations suivantes à une inéquation donne une équation équivalente :

• *ajouter* aux *2 membres* d'une inéquation *une même* expression donne une inéquation équivalente.

$$\begin{array}{c} A > B \\ \\ \Longleftrightarrow \ A + C >= B + C \end{array} \bigg) + C$$

• multiplier les 2 membres d'une inéquation par une même expression positive non nulle donne une inéquation équivalente.

$$A\leqslant B \\ \iff PA\leqslant PB \ \ \, \bigvee \times P \text{, avec } P>0$$

• multiplier les 2 membres d'une inéquation par une même expression négative non nulle donne une inéquation équivalente à condition de changer le sens du signe de l'inéquation

$$\begin{array}{c} A < B \\ \\ \Longleftrightarrow NA > NB \end{array} \bigg) \times N \text{, avec } N < 0$$

■ Exemple 5.6 — additions.

$$15 > 4x + 3$$

$$15 > 4x + 3$$

$$15 - 3 > 4x + 3 - 3$$

$$\implies 3x + 5 \leqslant 17 - x$$

$$3x + 5 + x - 2 \leqslant 17 - x + x - 2$$

$$\implies 4x + 3 \leqslant 15$$

■ Exemple 5.7 — multiplications. on prendra soin vérifier les signes :

■ Exemple 5.8 — non exemple.

Sans conditions sur le signe de
$$x$$
, la première implication est fausse. En effet tout nombre négatif vérifie l'inéquation $x>2x$ $\Rightarrow \frac{x}{x}>\frac{2x}{x}$ simplifier $\Rightarrow 1>2$ Ainsi, $x=-1$ est vérifie l'inéquation car $(-1)>2(-1)$.

impossible

Nous éviterons de multiplier des inégalités par des expressions de la forme ax + b, car cela nécessite de faire une disjonction de cas selon le signe de ax + b.

5.5.1 Exercices : Intervalles

Exercice 5.1

Compléter par \in ou \notin .

1.
$$-5 \dots [0; +\infty[;$$
 | $3 \dots]-\infty; 4[;$ | $-3,1 \dots [-4; -3];$ | $-5 \dots]-4; +\infty[$

2. 3 ...]2; 3];
$$| 3 ...]3;4]; | 3 ...]-\infty; 3[; | 0 ...]-\infty; 0];$$

1.
$$-5 \dots [0; +\infty[;$$
 | $3 \dots]-\infty; 4[;$ | $-3,1 \dots [-4; -3];$ | $-5 \dots]-4; +\infty[;$

2. $3 \dots]2; 3];$ | $3 \dots]3; 4];$ | $3 \dots]-\infty; 3[;$ | $0 \dots]-\infty; 0];$

3. $\frac{17}{4} \dots]4; 5[;$ | $\frac{1}{4} \dots \left[\frac{1}{3}; \frac{1}{2}\right];$ | $-\frac{4}{5} \dots [-5; -4];$ | $0,3 \dots \left[\frac{1}{3}; 1\right[;$

Exercice 5.2

Compléter le tableau suivant :

Intervalle	Inégalité(s)	Représentation	Phrase
$x \in [-3; 5]$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	x < 3		
			Intervalle de 4 à 6, fermé en 4 et ouvert en 6.
$x \in [2; +\infty[$			
	$-3 < x \leqslant -1$	-	
			Intervalle de $-\infty$ à 5, fermé en 5.
	$-3 \leqslant x \leqslant -1$		
	$5 \geqslant x > 1$		
	$x \geqslant -\frac{3}{4}$	-	
	-4 > x > -7		
	$5 \geqslant x > -3$		

■ Exemple 5.9 — Intersections et unions d'intervalles.

1.
$$A =]-\infty; 1]$$
 et $B =]0; +\infty[$.

$$A \cap B =]0;1]$$

$$A \cup B =]-\infty; +\infty[$$

$$A \cap B = [1; 2]$$

$$A \cup B =]-3;5]$$

3.
$$A =]-3;1[$$
 et $B = [2;5]$.

$$A \cap B = \emptyset$$

$$A \cup B =]-3; 1[\cup [2; 5]$$

Exercice 5.3

Pour chaque cas déterminez les ensembles $A \cap B$ et $A \cup B$

1.
$$A = [-10; 2[$$
 et $B = [-5; 3].$

$$A \cap B = \dots$$

$$A \cup B = \dots$$

$$A \cap B = \dots$$

$$A \cup B = \dots$$

3.
$$A = [3; +\infty[$$
 et $B =]-\infty; 6[$.

$$A \cap B = \dots$$

$$A \cup B = \dots$$

$$A \cap B = \dots$$

$$A \cup B = \dots$$

$$A \cap B = \dots$$

$$A \cup B = \dots$$

6.
$$A = [-4; 2]$$
 et $B = [2; 5]$.

$$A \cap B = \dots$$

Exercice 5.4 — entrainement.

Déterminez les ensembles ci-dessous.

2.
$$]-\infty;3] \cap [-7;10] = \dots$$
 6. $]-\infty;0] \cup [0;+\infty[=\dots]$

3.
$$[-5; 2] \cup [0; 5] = \dots$$
 7. $] -\infty; 0] \cap [0; +\infty[= \dots$

5.5.2 Exercices : inégalités et relations d'ordre dans $\mathbb R$

Exercice 5.5 — concepts.

- 1. Choisir la(les) bonnes réponses :
 - a) **propriété nº 1** Si (une expression (A) positive) (B) (négative) est (A) (ajoutée) (B) (soustraite) ou des deux membres d'une inégalité, le sens de l'inégalité reste inchangé.
 - b) **propriété n° 2** Si les deux membres d'une inégalité sont (A) (multipliés) (B) (divisés) par une expression (A) (positive) (B) (négative) le sens de l'inégalité reste inchangé.
 - c) **propriété n° 3** Si les deux membres d'une inégalité sont (A) (multipliés) par une expression (A) (positive) (B) (négative) le sens de l'inégalité est inversé.
- 2. Compléter par $\langle , \rangle, \geqslant$ ou \leqslant et préciser les opérations réalisées

a)
$$a < b$$
 $x \le y$ $a > 1$ $x \ge -2$ $\Rightarrow a - b \dots 0$ $\Rightarrow y - x \dots 0$ $\Rightarrow a - 1 \dots 0$ $\Rightarrow x \dots \ge 0$

b)
$$x < y$$
 $\rightarrow x + 2 \dots y + 2$ $\rightarrow x + 2 \dots + 2 \dots + 3 \dots +$

d)
$$-3x \geqslant -3y$$
 $x \leqslant -2$ $x \leqslant$

e)
$$4x - 3 > 2y - 3$$

$$\Rightarrow 4x \dots 2y$$

$$\Rightarrow 2x \dots y$$

$$x - 2y > x$$

$$\Rightarrow -2y \dots 0$$

$$\Rightarrow y \dots 0$$

$$x < y$$

$$\Rightarrow -\frac{2}{3}x \dots -\frac{2}{3}y$$

$$\Rightarrow -\frac{2}{3}x + 1 \dots -\frac{2}{3}y + 1$$

■ Exemple 5.10 — utiliser un contre-exemple.

Si A et B sont deux affirmations. Pour réfuter l'implication « Si A alors B », il faut proposer un contre-exemple pour lequel A est vraie et B est fausse.

L'implication « Si a > b alors $ac^2 > bc^2$ est fausse. En effet, prenons a = 2, b = 1 et c = 0.

On vérifie : a > b est vraie (2 > 1), et $ac^2 > bc^2$ est fausse (0 > 0)

■ Exemple 5.11

On suppose $c \neq 0$. L'implication « Si a > b alors $ac^2 > bc^2$ est vraie, car on multiplie les deux membres de l'inégalité par $c^2 > 0$.

Exercice 5.6

1. Compléter pour démontrer l'implication « Si x < 3 et y < 2 alors x + y < 5 ».

$$x + y \dots$$

- 2. L'implication « Si x < 3 et y < 2 alors xy < 6. » est fausse. Proposer un contre exemple.
- 3. L'implication « Si x < 1 alors $\frac{1}{x} > 1$. » est fausse. Proposer un contre exemple.

Exercice 5.7

Les implications suivantes sont fausses. Donner un contre-exemple pour chacune en proposant des valeurs judicieuses pour a,b et $c \in \mathbb{R}$.

- 1. Si a < b alors $ac \leq bc$.
- 2. Si a > 0 alors $ab \leq b$.
- 3. Si $a \leq 0$ alors $ab \leq 0$.
- 4. Si $a^2 > 0$ alors a > 0.

- 5. Si $a^2 \geqslant a$ alors $a \geqslant 0$.
- 6. Si $a \ge 0$ alors $a^2 \ge a$.
- 7. Si $a \geqslant b$ alors $\frac{a}{b} \geqslant 1$.
- 8. Si a < 1 alors $a^2 < a$.

Exercice 5.8

Dire si l'implication est vraie ou fausse. Si fausse, proposer un contre-exemple.

- 1. Si $1 < x \le 5$ alors $2 < 2x \le 10$.
- **2.** Si $-5 < x \le 2$ alors $-2 < -x \le 5$
- 3. Si x > 1 alors $x^2 > x$.
- 4. Si $x^2 > 4$ alors x > 2.

- 5. Si $x^2 \leqslant 4$ alors $x \leqslant 2$.
- 6. Si x(x+1) > 0 alors x > 0.
- 7. Si x(x+1) > 5 alors x > 5.
- 8. Si $ac^2 > bc^2$ alors a > b.

5.5.3 Exercices : résolution d'inéquations linéaires

■ Exemple 5.12 — isoler l'inconnue.

Résoudre dans \mathbb{R} les inéquations suivantes d'inconnue x:

$$3x + 4 > 10$$

$$\Leftrightarrow 3x > 6$$

$$\Leftrightarrow \frac{3}{3}x > \frac{6}{3}$$

$$\Leftrightarrow x > 2$$

$$\mathscr{S} =]2; +\infty[$$

$$-2x - 8 \ge 10$$

$$\Leftrightarrow -2x \ge 18$$

$$\Leftrightarrow -2x \ge 18$$

$$\Leftrightarrow \frac{-2}{-2}x \le \frac{18}{-2}$$

$$\Leftrightarrow x \le -9$$

$$\mathscr{S} =]-\infty; -9]$$

$$\Leftrightarrow x = 0$$

$$\mathscr{S} = 0$$

Exercice 5.9

Résoudre dans \mathbb{R} les inéquations suivantes d'inconnue x:

$$\begin{aligned} &(I_1) \ x+1<9 \\ &(I_2) \ x-4>3 \\ &(I_3) \ -6x\geqslant 30 \\ &(I_4) \ -3x\leqslant -2 \end{aligned} \qquad \begin{aligned} &(I_5) \ -x<8 \\ &(I_6) \ -3-x>2 \\ &(I_7) \ 7<2x-11 \\ &(I_8) \ -8x-5>0 \end{aligned} \qquad \begin{aligned} &(I_9) \ 42x>0 \\ &(I_{10}) \ 14-6x\geqslant -10 \\ &(I_{11}) \ -\frac{6}{7}x-1,2<3,6 \\ &(I_{12}) \ \frac{3}{2}x-1>4 \end{aligned}$$

■ Exemple 5.13 — Encadrements.

Résoudre dans \mathbb{R} les inéquations suivantes d'inconnue x:

Exercice 5.10

Résoudre dans \mathbb{R} les inéquations suivantes d'inconnue x:

$$(I_1) -3 < x - 4 < 7$$

$$(I_2) 4 < 5x - 4 \le 5$$

$$(I_3) -6 \le 3 + x < 4$$

$$(I_4) 2 \le 2x < 10$$

$$(I_5) -1 \le -x < 3$$

$$(I_6) -3 \le 1 - x < 4$$

$$(I_9) 4 < 2x - 1 \le 10$$

Exercice 5.11

1. Résoudre dans \mathbb{N} les inéquations suivantes d'inconnue x:

$$(I_1) 3x - 18 < 30$$
 $| (I_2) 11 \ge 3x - 2$ $| (I_3) 10 > 23 - 3x > 0$

2. Déterminer la plus petite solution entière de l'équation 35 - 2x < 20.

■ Exemple 5.14

Résoudre dans \mathbb{R} les inéquations suivantes d'inconnue x:

$$6x - 6 \geqslant 3x + 2$$

$$\Leftrightarrow 3x \geqslant 8$$

$$\Leftrightarrow \frac{3}{3}x \geqslant \frac{8}{3}$$

$$\Leftrightarrow x \geqslant \frac{8}{3}$$

$$\Leftrightarrow x \geqslant \frac{8}{3}$$

$$\Leftrightarrow -15 < -18$$

Exercice 5.12

Résoudre dans \mathbb{R} les inéquations suivantes d'inconnue x:

$$(I_1) \ 3x > 2x + 1$$
 $(I_3) \ x + 5 < 10x$ $(I_5) \ 1 - 7x \le 7 + x$ $(I_6) \ 5(x - 1) > 4(2x - 1)$

■ Exemple 5.15

Résoudre dans $\mathbb R$ l'inéquation suivante d'inconnue x :

$$\frac{5x+9}{4}\geqslant \frac{5x+2}{6}$$

$$\Leftrightarrow \frac{(5x+9)}{4}\geqslant \frac{(5x+2)}{6}$$

$$\Leftrightarrow \frac{12(5x+9)}{4}\geqslant \frac{12(5x+2)}{6}$$

$$\Rightarrow 3(5x+9)\geqslant 2(5x+2)$$

$$\Leftrightarrow 3(5x+27\geqslant 10x+4)$$

$$\Leftrightarrow 5x\geqslant -23$$

$$\Leftrightarrow x\geqslant \frac{-23}{5}$$

$$\mathcal{S}=\left[\frac{-23}{5};+\infty\right[$$

$$parenthèses autour des numérateurs$$

$$\times 12, multiplier par le dénominateur commun$$

$$\Rightarrow simplifier$$

$$\Rightarrow 4x\geqslant -23$$

$$\Rightarrow 5x\geqslant -23$$

Exercice 5.13

Résoudre dans \mathbb{R} les inéquations suivantes d'inconnue x

$$|(I_1)| \frac{3x-2}{2} > \frac{x-1}{3}$$
 $|(I_2)| \frac{2x-5}{3} < \frac{6x-1}{4}$ $|(I_3)| \frac{3x-1}{4} - 1 \geqslant 0$

■ Exemple 5.16 — inéquations de la forme |ax + b| < c.

Résoudre dans \mathbb{R} les inéquations suivantes :

$$|x|\leqslant 1 \qquad |x|<1 \qquad |x|\leqslant -1$$

$$\iff -1\leqslant x\leqslant 1 \qquad \iff -1< x<1 \qquad \text{impossible}$$

$$\mathscr{S}=[-1;1] \qquad \mathscr{S}=[-1;1] \qquad \mathscr{S}=\varnothing$$

$$|2x-3|\leqslant 0.5 \qquad |2x-3|\leqslant 0.5 \qquad |2x-3|\leqslant 0.5 \qquad |3x+2|\leqslant 1 \qquad \iff -0.5\leqslant 2x-3\leqslant 0.5 \qquad |3x+2|\leqslant 1 \qquad \iff 3-0.5\leqslant 2x\leqslant 3+0.5 \qquad |3x+1|\leqslant -5 \qquad \implies 3-0.5\leqslant 2x\leqslant 3+0.5 \qquad |3x+1|\leqslant -5 \qquad |3x+1|$$

■ Exemple 5.17 — inéquations de la forme |ax + b| > c.

Résoudre dans $\mathbb R$ les inéquations suivantes :

$$|x|\geqslant 1 \qquad |x|>1 \qquad |x|>1$$

$$\iff x\geqslant 1 \text{ ou } x\leqslant -1 \qquad \iff x>1 \text{ ou } x<-1$$

$$\mathscr{S}=]-\infty;-1]\cup[1;+\infty[\qquad \mathscr{S}=]-\infty;-1[\cup]1;+\infty[$$

$$|x+3|>6 \qquad |2x|\geqslant 10$$

$$\iff x+3>6 \text{ ou } x+3<-6 \qquad \iff 2x\geqslant 10 \text{ ou } 2x\leqslant -10$$

$$\iff x>3 \text{ ou } x<-9 \qquad \iff x\geqslant 5 \text{ ou } x\leqslant -5$$

$$\mathscr{S}=]-\infty;-9[\cup]3;+\infty[\qquad \mathscr{S}=]-\infty;5]\cup[5;+\infty[$$

$$|x|\geqslant -1$$

$$|x+3|\geqslant -3$$

Exercice 5.14

Résoudre dans \mathbb{R} les inéquations suivantes, inconnue x:

1. $(I_1) x < 3$	$ (I_3) x \geqslant 5$	$ (I_5) x \leqslant -1$
$(I_2) x \leqslant 5$	$ (I_4) x > 10$	$ (I_6) x > -10$
2. $(I_1) x+6 > 7$	$ (I_3) 6x < 12$	$ (I_5) x+5 <-2$
$(I_2) x+3 < 4$	$\left (I_4) \right -5x \right > 10$	$ (I_6) -x <5$
3. $(I_1) x \leq 0$	$ (I_2) x > 0$	$ (I_3) -3x \geqslant 0$
4. $(I_1) \left \frac{-1}{4} x \right > 12$	$ (I_3) 5x+3 <1$	$ (I_5) 1+2x \leqslant -1$
$ 4 $ $(I_2) 3x - 5 > 10$	$ (I_4) 1 + 2x \geqslant -1$	$ (I_6) 2x-5 <7$

5.5.4 Exercices : modéliser par une inéquation

Exercice 5.15

Traduire les expressions suivantes par une inégalité :

Exercice 5.16

Écrire une inégalité vérifiée par x dans les cas suivants :

1. Helga a 54 points au premier test Pix, et *x* points au second, sans valider le module. Pour valider, un élève doit avoir un total d'au moins 120 points sur 2 tests......

Exercice 5.17

Un groupe de x enfants se partage les mêmes jouets. Si chaque enfants reçoit 4 jouets, il en restera 27. Si chaque enfant en prend 5, il n'en aura pas assez.

Ecrire une inéquation en x et déterminer les valeurs possibles de x.

Exercice 5.18

Sachant que $\frac{2(2x-3)}{3}$ est positif, déterminer les valeurs possibles de x.

Exercice 5.19 — bis.

Sachant que $\frac{1-2x}{5}$ n'est pas inférieur à 3x+2. Déterminer les valeurs possibles de x.

Exercice 5.20

Déterminer les entiers négatifs non nuls solutions de l'inéquation 3x + 6 > -3.

Exercice 5.21 — bis.

Déterminer les entiers positifs non nuls solutions de l'inéquation 3x - 5 > 5x - 13.

Exercice 5.22

La plus petite solution entière de l'inéquation 4(x-3)+5<6(x-2)+1, inconnue x, est aussi solution de l'équation 4x-ax=3. Déterminer la valeur de a.

Exercice 5.23

x=3 est une solution de l'inéquation $mx^2-5x+3m-1\leqslant 0$, inconnue x. Déterminer une inéquation vérifiée par m est en déduire les valeurs possibles de m.

Exercice 5.24 — bis.

x = -2 est une solution de l'inéquation $x^3 + 3mx \ge 1 - 2m$, inconnue x. Déterminer une inéquation vérifiée par m est en déduire les valeurs possibles de m.

Exercice 5.25

Soit l'équation 5x = m - 11, inconnue x.

- 1. Exprimer x en fonction du parametre m.
- 2. Sachant que la solution pour x est positive non nulle, déterminer les valeurs possibles du paramètre m.

Exercice 5.26 — bis.

Soit l'équation 5x - 2m = -x + 5, inconnue x. Sachant que la solution pour x est supérieure ou égale à 1, déterminer les valeurs possibles de m

Exercice 5.27 — bis.

Soit l'équation (1-m)x = 1-2x, inconnue x. Sachant que la solution pour x est un nombre strictement négatif, déterminer les valeurs possibles pour m.

Exercice 5.28

Soit l'inéquation $2x - a \ge 0$, inconnue x. Sachant que x = 1, x = 2 et x = 3 sont des solutions entières, déterminer les valeurs possibles pour a.

Exercice 5.29

Soit l'inéquation (a-3)x > a-3, inconnue x. Sachant que l'ensemble des solutions est $\mathscr{S} =]-\infty; 1[$, déterminer la valeur de a.

Exercice 5.30

Soit l'inéquation $\frac{ax-5}{6} - \frac{2-ax}{4} > 0$, inconnue x. Sachant que l'ensemble des solutions est $\mathscr{S} =]1; +\infty[$, déterminer les valeurs possibles de a.