Discrete Optimization

The Knapsack Problem: Modeling

Goals of the Lecture

 How to formalize an optimization task as a mathematical model

The (1-Dimensional) Knapsack Problem

- ► Given a set of items I, each item i ∈ I characterized by
 - its weight w_i
 - its value v_i

and

a capacity K for a knapsack

find the subset of items in I

- that has maximum value
- does not exceed the capacity K of the knapsack

Optimization Models

- How to model an optimization problem
 - choose some decision variables
 - they typically encode the result we are interested in
 - express the problem constraints in terms of these variables
 - they specify what the solutions to the problem are
 - express the objective function
 - the objective function specifies the quality of each solution
- ► The result is an optimization model
 - It is a declarative formulation
 - specify the "what", not the "how"
 - There may be many ways to model an optimization problem

A Knapsack Model

- Decision variables
 - x_i denotes whether item i is selected in the solution
 - $x_i = 1$ means the item is selected
 - $x_i = 0$ means that it is not selected
- Problem constraint
 - -The selected item cannot exceed the capacity of the knapsack $\sum_{i \in I} w_i x_i \leq K$
- Objective function
 - -Captures the total value of the selected items $\sum_{i \in I} v_i x_i$

A Knapsack Model

Putting it all together

maximize
$$\sum_{i \in I} v_i \ x_i$$
 subject to $\sum_{i \in I} w_i x_i \leq K$ $x_i \in \{0,1\} \ (i \in I)$

Exponential Growth

- How many possible configurations?
 - -(0,0,0,...,0),(0,0,0,...,1),...,(1,1,1,...,1)
- Not all of them are feasible
 - They cannot exceed the capacity of the knapsack
- ► How many are they?
 - **-** 2|II|
- How much time to explore them all?
 - 1 millisecond to test a configuration
 - if III = 50, it will take1,285,273,866 centuries

Until Next Time