Modélisation géométrique et synthèse d'images Propriétés différentielles des courbes et des surfaces

Christian Gentil

Master 2 IIA - Université de Bourgogne

MGSI: B-Rep - maillage 2020-2021

Pourquoi

- Pb de raccord $C1, C_2, ..., C_n$
- Expression de contraintes (surface posée sur un plan : plan = plan tangent)
- Géométrie : construction d'une surface par balayage \Rightarrow repère de Frenet $(\vec{t}, \vec{n}, \vec{b})$.
- Visualisation : calcul d'illumination
 ⇒ normal à la surface.
- Animation : déplacer un objet le long d'une courbe ⇒ repère de Frenet

Dérivée / tangent

C(t) une courbe. Le vecteur $C^{\prime}(t)$ la vitesse de parcours de la courbe au point t

Il est tangent à la courbe.

Calcul de la dérivée

Exemple d'une courbe cubique :

$$C(t) = (u^3 u^2 u 1)M_BP$$

$$C'(t) = (3u^2 \ 2u \ 1 \ 0)M_BP$$

c'est tout!

Si formule trop compliquée alors on utilise

les différences finies

 $\epsilon = \mathit{valeurpetite}$

$$C'(t) \approx C^D(t) = \frac{C(t+\epsilon)-C(t)}{\epsilon}$$

Calcul de la dérivée

Les différences finies améliorées = moyenne de la dérivée avant et après (bien si la dérivée est continue) :

$$C'(t) pprox C^{DNew}(t) = rac{C^D(t-\epsilon) + C^D(t)}{2} = rac{C(t+\epsilon) - C(t-\epsilon)}{2\epsilon}$$

Dérivée seconde

- = variation de la dérivée
- = variation de la vitesse = accélération = C''(t)

Se décompose en une accélération normale et une accélération tangentielle $C''(t)=C_T''(t)+C_N''(t)$

Dérivée seconde et courbure

- $C_T''(t)$ augmentation de la vitesse
- $C_N''(t)$ changement de direction de la vitesse ce qui définie la courbure

$$C_N''(t) = \frac{C'(t) \wedge C''(t)}{\parallel C'(t) \parallel}$$

 $(\land = produit vectoriel)$

Courbure

On montre que l'accélération s'exprime en fonction du rayon de courbure $\rho=1/R$ par :

$$\vec{A} = \frac{dv}{dt}\vec{t} + \frac{v^2}{R}\vec{n}$$

ď où

$$||C_N''(t)|| = \frac{||C'(t)||^2}{R}$$

$$\rho = \frac{1}{R} = \frac{||C'(t) \wedge C''(t)||}{\|C'(t)\|^3}$$

Calcul de la dérivée seconde

Exemple d'une courbe cubique :

$$C(t) = (u^3 \ u^2 \ u \ 1)M_BP$$

 $C'(t) = (3u^2 \ 2u \ 10)M_BP$
 $C''(t) = (6u \ 200)M_BP$

Si formule trop compliquée alors on utilise différences finies des différences finies

les différences finies

 $\epsilon = valeurpetite$

$$C'(t) pprox C^{DD}(t) = \frac{C^D(t+\epsilon)-C^D(t)}{\epsilon}$$

Abscisse curviligne

Longueur d'une courbe C(t):

$$\phi(t) = \int_0^t \parallel C'(u) \parallel du$$

RQ $\phi'(t)=\parallel C'(t)\parallel$ paramétrage par l'abscisse curviligne $s=\phi(t)=$ abscisse curviligne $C(s)=C(\phi^{-1}(t)$