قابلية القسمة Divisibility

ليكن a,b عددين صحيحين غير صفريين. إذا وجد عدد صحيح a بحيث a بقال أن a يقسم a ونكتب a عددين صحيحين غير صفريين. إذا وجد عدد صحيح a بحيث a عندما a لا a عندما a عندما a عندما a عندما a يقسم a (أو عامل) ل a أو a مضاعف ل a مضاعف a عندما a عندما a عندما a يقسم a (بمعنى أن a لا وجود له).

يمكن الحصول على الكثير من الخواص البسيطة لقابلية القسمة من التعريف السابق (البراهين متروكة لك).

- رخاصية التعدي للقسمة). $b \mid a$ فإن $b \mid c$ و $b \mid c$ القسمة).
- |a|=|b| فإن |a|=|b| أو |a|=|b| و |a|=|b| و |a|=|b| فإن |a|=|a|=|a| أو |a|=|a|=|a| أو |a|=|a|=|a| أو |a|=|a|=|a| أو المنابعة التالية، من الواضح أن لأي عددين صحيحين |a|=|a|=|a| ليس بالضرورة أن يقسم أحدهما الآخر. لذا كان الحاجة للنتيجة التالية، والتي تسمى خوارزمية القسمة. وهي النتيجة الأعظم في أوليات نظرية الأعداد.
 - (q,r) عددين صحيحين، a>b . يوجد زوج وحيد من الأعداد الصحيحة a,b عددين صحيحين، a>b . يوجد زوج وحيد من الأعداد الصحيحة a

$$a = bq + r$$
 and $0 \le r < b$

يقال للعدد a المقسوم (dividend)، للعدد b المقسوم عليه (divisor)، للعدد a المقسوم a المحكنة a المحكنة a الباقي (quotient). العدد a الباقي (remainder). العدد a المحكنة هي: a المحكنة a وعددها a. إذا a فإن a فإن a قبل القسمة على a.

لاحظ أن القلب النابض لخوارزمية القسمة هو متباينة الباقي $0 \le r < b$. لاحظ أيضًا أن خارج القسمة q في لاحظ أن القلب النابض لخوارزمية القسمة هو في الواقع $\left[\frac{a}{b}\right]$ (هو أكبر عدد صحيح لا يزيد عن $\frac{a}{b}$).

الطريقة الأساسية لإثبات أن $b \mid a$ هي تحليل a إلى عاملين أحدهما a والآخر عدد صحيح آخر. لذا صيغ المتطابقات الجبرية مفيدة جدًا لإثبات ذلك. سنكتفى بذكر المتطابقتين القويتين التاليتين.

ا فإن موجبًا فإن موجبًا فإن موجبًا فإن ا عددًا موجبًا فإن ا

$$x^{n} - y^{n} = (x - y)(x^{n-1} + x^{n-2}y + ... + xy^{n-2} + y^{n-1})$$

ا فرديًا فإن عددًا صحيحًا موجبًا فرديًا فإن n

$$x^{n} + y^{n} = (x + y)(x^{n-1} - x^{n-2}y + ... - xy^{n-2} + y^{n-1})$$

1001 مثال 1: أثبت أن 1

 $(2^{2^n}+1)\,|\,(2^{2^m}-1)\,$ مثال $(2^{2^m}+1)\,|\,(2^m+1)\,|\,$

ملاحظة: عندما يكون من الصعب إثبات أن $a \mid b$ ، من الحيل القوية اختيار "عدد وسيط" a من الممكن معه إثبات أن $a \mid c$ ، ومن ثم نصل للمطلوب. مثال $a \mid c$ تطبيق مثالي لهذه الحيلة.

مثال 3: لكل عدد صحيح موجب n ، نكتب S(n) ترمز لمجموع أرقام العدد في النظام العشري. برهن أن n إذا كان S(n) . إذا كان S(n) .

ملاحظة: ربما تستخدم البواقي لإثبات مثال 3 (وهو الطريقة الأسهل في الواقع)، ولكن يمكننا إثبات المطلوب بإثبات $a\,|b_1,a\,|b_2,...,a\,|b_n$ فإن النتيجة القوية $a\,|b_1,a\,|b_2,...,a\,|b_n$ فقط ستحتاج استخدام أنيق لخاصية التطابق "إذا كان $a\,|b_1,a\,|b_2,...,a\,|b_n$ ".

مثال 4: بفرض $1 \geq k \geq 1$ عددًا فرديًا، n عددًا صحيحًا موجبًا. أثبت أن $n \leq k \geq 1$ لا يقبل القسمة على $n \leq k \geq 1$. n+2

ملاحظة: الحيلة الأهم لحل مثال 4 هي "طريقة المزاوجة pairing method" وهي طريقة شائعة للتعامل مع المقادير.

 (2^n+1) مثال (2^m-1) نا ثبت أن (2^m-1) کا یقسم (2^m+1) عددین صحیحین موجبین، مثال (2^m+1) کا یقسم هال توسط به مثال (2^m+1) مثال این معامدین صحیحین موجبین، معامدین صحیحین موجبین، معامدین صحیحین موجبین، معامدین صحیحین موجبین، مثال این معامدین صحیحین موجبین، معامدین صحیحین ص

m = n, m > n, m < n لحظة: لحل مثال 5، ستحتاج لدراسة كل الحالات:

تمارين

1) ليكن n,k عددين صحيحين موجبين. برهن أن من بين الأعداد n,k يوجد بالضبط $\left[\frac{n}{k}\right]$ عددًا تقبل القسمة على k (حيث [x] يعني أكبر عدد صحيح أصغر من أو يساوي x).

- n^2+9n-2 ذهب 11 بنتًا و n ولدًا لقطف الورود. قطف كل طفل نفس عدد الورود. فإذا قطف كل الأطفال 20 دهب 11 بنتًا و n0 وردة، فأيهم أكثر عددًا الأولاد أم البنات؟
- وضع ($0 \leq a_i \leq 9, a_k \neq 0$ بفرض $\overline{a_k \dots a_1 a_0}$ المصورة على الصورة محتابته على الصورة محتال موجبًا، تم كتابته على الصورة المحتال مع التبادلي لأرقام $T(n) = a_0 a_1 + \dots + (-1)^k a_k$ إذا كان $T(n) = a_0 a_1 + \dots + (-1)^k a_k$ باذا كان $T(n) = a_0 a_1 + \dots + (-1)^k a_k$
 - 4) ليكن هناك n من الأعداد الصحيحة الموجبة لهم الخاصية التالية: الفرق بين حاصل ضرب أي n-1 عددًا منها والعدد المتبقى يقبل القسمة على n . أثبت أن مجموع مربعات هذه ال n عددًا أيضًا يقبل القسمة على n .
 - لتكن a,b,c,d أعداد صحيحة بحيث ad-bc>1 . أثبت أن أحد هذه الأعداد الأربعة على الأقل لا يقبل (5) لتكن ad-bc>1 . ad-bc
- . B عدي M: إذا كانت A مجموع أرقام العدد A بعدد A بعد A أرقام العدد A عموع أرقام العدد A عدي أرقام العدد A
- p,q حيث $\frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\ldots +\frac{1}{1333}-\frac{1}{1334}+\frac{1}{1335}$ حيث p,q حيث p,q حيث p خيث p خيث p خيث p خيث p أوليان نسبيًا، بين أن p مضاعف ل 2003.
- 8) أوجد كل الأعداد المكونة من رقمين بحيث إذا ضربنا العدد في أي من 1,2,3,4,5,6,7,8,9 مجموع أرقامه 1,2,3,4,5,6,7,8,9
 - با المكنة. A,B,C المكنة. 7,8,9 إذا كان العدد 739ABC يقبل القسمة على 7,8,9 فأوجد كل قيم
 - $a!b! \mid (a+b)!$ اِذا كان a,b عددين طبيعيين. أثبت أن **IMO Longlists** (10
 - x < y < z حيث (x,y,z) أثبت أن المعادلة y! = z! لها عدد لا نحائي من الحلول الصحيحة الموجبة x! = x!
 - $\left|x^{2}-1\right|+\left|x^{2}-4\right|=mx$: للمعادلة: **IMO Longlists** قوجد كل الحلول الصحيحة عدي الحلول الصحيحة عدي الحلول الصحيحة حيث m بارامتر.