Galois Theory Mock Exam

1. (a) Eisenstein's Criterion

Let $f(x) = a_0 + a_1 x + \dots + a_n x^n \in \mathbb{Z}[x]$.

If \exists prime p s.t. • ptan • plai $(0 \le i \le n-1)$ • $p^2 \ne a_0$ then f is reducible over Q.

b) Converse: Let $f(x) \in \mathbb{Z}(x)$, $f(x) = \sum_{i=0}^{n} a_i x^i$.

If f is wred over \mathbb{Q} then \exists prime p s.t. p = 1 prime p = 1 pr

False: eg $X^2+1 \in \mathbb{Z}[X]$ is irreducible over \mathbb{Q} but no such p exists.

C) (i) $f(X) = 3X^5 + 6X^4 + 18X^3 + 12X + 2$ Take p = 2 & use Eisenstein =) f wired over Q.

ii) $g(x) = 3x^5 + 6x^4 + 18x^3 + 12x + 4$ Can't apply Eisenstein (would need p=2 but $2^2.14$). Can we apply an adjustment to g?

 $x^{5} g(\frac{1}{x}) = 4x^{5} + 12x^{4} + 18x^{2} + 6x^{2} + 3 = g_{1}, say$

Irreducible by Eisenstein using p=3

Any factorization of g would lead to a factorization of gi, impossible. So g rived over Q.

iii) Tutorial question.

$$h(x) = \frac{x^{p_1}}{x-1}$$
. Let $h_1(x) := h(x+1)$;

then $h_1(x) = \frac{1}{x}((x+1)^p - 1) = \sum_{i=0}^{p-1} {p \choose i} x^{p-i-1}$

Now pl(Pi) for 1≤i≤p-1. So can apply

- Essenstein to see that h, is irredubible. If h = uv is a proper factorization of h, $h_1(x) = u(x+1)v(x+1)$,
 - a proper factorization of hi-impossible So h wied over Q.

ie of splits over $F(\alpha)$.

- 2. a) Splitting field of f over F: an extension K of Fst f splits completely over K & does not split completely over any subfield of K.
 - b) Since α∈K and F⊆K, F(α) ⊆ K; subfield by defn.
 Clearly f does not split over any proper subfield, as F(α) is smallest containing F and roof α.
 Why does f split over F(α)?
 Over F(α), f(x) = (x-α)g(x) where g(x) has degree 1.
 So g(x) = (x-β) ∈ F(α)[x], ie β ∈ F(α),
 - C) Let $f \in F[X]$ and let K be its splitting field over F.

 Then Gal(f) is Gal(L:K), the set of all automorphisms of L which fix K pointwise.

d) $f = (x^2 - 2)(x^2 + 1)$.

Splitting field for f over Q is Q(52, i).

 $2 \left\{ \begin{array}{c} \mathbb{Q}(\sqrt{2}, i) \\ \mathbb{Q}(\sqrt{2}) \\ 2 \left\{ \begin{array}{c} \mathbb{Q}(\sqrt{2}) \\ \mathbb{Q} \end{array} \right.$

Degree of $\mathbb{Q}(\sqrt{2})$ over \mathbb{Q} is 2; min poly $\chi^2=2$, $(\sqrt{2}\in\mathbb{R}\setminus\mathbb{Q})$ begree of $\mathbb{Q}(\sqrt{2})(i)$ over $\mathbb{Q}(\sqrt{2})$ is 2; min poly χ^2+1 ($\mathbb{Q}(\sqrt{2})\subseteq\mathbb{R}$).

By Tower Law, degree of Q(12,i) over Q is 4.

Gal (f) has order 4.

Let $\sigma \in Gal(f)$; σ maps roots to roots so $\sqrt{2} \mapsto \pm \sqrt{2}$ $\Rightarrow \pm i$

4 options: identity and 3 maps of deg 2. Gal(f) = Ky.

g = (x4+1)

Splitting field is Q(12, i).

Same situation as above.

Clearly isomorphic; both are Q(12, i).

b)
$$f = X^4 - 5$$

 $E = \text{Splitting field of } f \text{ over } \mathbb{Q}$
 $G = Gal(E:\mathbb{Q}).$

18
$$f(\beta) = 0$$
, $\beta^{4} = 5$
 $(\frac{\beta}{5})^{4} = 1$
ie $\frac{\beta}{5} = \{1, -1, i, -i\}$

So rosts are 54, -54, i54, -i54

Clearly of splits in $\mathbb{Q}(x,i)$ (where $x=5^{4}$) since all roots lie in this field.

To show: f does not split in a smaller field. Clearly $i \notin \mathbb{Q}(\alpha) \subseteq \mathbb{R}$. Also, $\chi = 5^{\prime 4} \notin \mathbb{Q}(i)$ since $5^{\prime 4}$ is wrational. So $\mathbb{Q}(\alpha,i)$ is smallest over which f splits.

(ii) Tower Law: for fields FEKEL, [L:F] = [L:K][K:F]

We have splitting field $\mathbb{Q}(\alpha, i)$ ever \mathbb{Q} : $(\mathbb{Q}(\alpha, i) : \mathbb{Q}) = (\mathbb{Q}(\alpha, i) : \mathbb{Q}(\alpha) : \mathbb{Q})$ by Tower Law elegree 2, min elegree 4, psy X+1, since min psy X+5, $\mathbb{Q}(\alpha) \subseteq \mathbb{R} \not = i$ wried by Eisenstein

3

By theory, |Gal(E:Q)| = [E:Q]if E:Q is a Galois extension.

Normal? E is a splotting field by defin Separable? Char O

So | Gal (f) | = | Gal (E:Q) | = [E:Q] = 8.

iii) $\sigma(x) = ix = \sigma(-x) = -ix$, so $\sigma(ix) = \sigma(i)\sigma(x) = iix = -ix = \sigma(-ix) = x$ Thus or permuesthe roofs of G so $\sigma \in Gal(E: Q)$.

> t(x)=x=> T(-x)=-x. t(ix)=-ix=> t(-ix)=ix

t pemoles the rooks of G, so tegal(E.Q).

(Vi	٠	1 , 1	1						
, . ,		10	E	0)	•
,	1	X	~	iα	1 ×	ーム	·- ×	-di	- id
	i	ì	-1	i	~ i	•	- ",	Ĭ	\i
(K, C s.r. el	ris	(0,01	(0,1)	(1,0)	(3,1)	(20)	(2,1)	(3,0)	(1,1).
OKth All images covered so									

each aut has this Com.

V) $\angle \cdot t \sigma t' = \angle \sigma t' = (i \angle) t' = -i \angle i$ $i \cdot t \sigma t' = (-i) \sigma t' = (-i) t' = i$. So $t \sigma t' = \sigma^3 = \sigma^{-1}$.

vi) (moup is D8.

Subgraps of Do d-order 2 => subjecteds
of index 4.

Elts of order 2 are oic, osis3 and or2.

By the Fundamental Thm, He 5 subgroups of order 2 generated by Mere elements yield precisely 5 subfields of order 4.

C) BOOK WOOK. POOK004 (9 a) Bookwood (n 170 1220 20 13 71 than · 20 120 F9 pory 05 -7!-= 2 (27.1) Fapoxy 05 27:-= 2(27!) 71 = SI! 66 order 4. Lasges vo of Manadranos os 1710 proyqus 4 xmpv! vo 05 (A) 10 VII) (B (IS) is a digree 2 extension a unight normal extension.

Merce by Prodomodral Mer 12

8

d) K=Q(E).

E has minimum polynomial dividing Xn-1, so G=Gal(K:Q) sends & ho one n' rooms of unity.

Since k is specified by E over Q, ho de Grean element of G it suffices to specify the image of E.

Let O, TE Gal (K: Q), and S'por O: E 1-> E'

. T. E - E'.

Then ot (E)= Eits = to(E), So ot=to and Gis delian.

el $E = \Omega(E, x)$; $K = \Omega(E)$. E is the splitting field for $x^{n}-2$ over Ω , so is Gralois over Ω .

The rook of xn-2 one 4, Ex, ... End. Elementsol Gral(E:16) must Gix Es so to desurbe an element a HEGal(E:K) ir suffices to define inage of x: Let OEU, LO= E'X $TEM, xt = E^3x$ Then $xoc = E^{i+s}x = xco$ So Qt = to & U is abelian. Since k is a splitting Gold ar Xn-1, Kis normal over 0,00 Gral (E: K) Da normal subsp of Gral (E: (D) that is obelien and Gal(E:W) = Gal(K:0)

is also abelian, so GallE:0) (1)
is a sop orth an abelian
normal subgroup and abelian
guther, so is solble.