

Phase-1 Submission

Student Name: Dhyanesh V

Register Number: 712523104018

Institution: PPG Institute of Technology

Department: B.E. Computer Science and Engineering

Date of Submission: 25/04/2025

1.Problem Statement

Predicting air quality levels using advanced machine learning algorithms for environmental insights

2. Objectives of the Project

- a) To develop an accurate air quality prediction model
- b) To perform comprehensive data preprocessing and integration
- c) To identify and evaluate key factors affecting air quality
- d) To enable near real-time forecasting capabilities
- e) To design and implement an interactive user interface
- f) To promote environmental awareness through data visualization and insights
- g) To deploy the predictive model and interface for real-world application

3. Scope of the Project

a) Features to Be Developed or Analyzed

i. Analysis of key pollutants such as PM2.5, PM10, CO, NO₂, SO₂, and O₃ that directly influence the Air Quality Index (AQI).

- ii. Inclusion of temperature, humidity, wind speed, and atmospheric pressure to examine their correlation with air pollution levels.
- iii. Identification of temporal trends, such as daily, monthly, and seasonal variations in air quality.
- iv. Ability to input new data and generate predicted AQI levels dynamically
- v. Charts and graphs to enhance user understanding and promote awareness.

b) Limitations and Constraints

- i. Missing or Incomplete Data
- ii. The project focuses on machine learning algorithms and does not include deep learning-based time series forecasting (e.g., LSTM), due to time and resource constraints
- iii. Generalization Issues
- iv. Depending on server and internet speed, there might be slight delays in real-time AQI prediction and response time.
- v. The project will be implemented using Python-based tools (Pandas, Streamlit), with limited scope for integration of advanced IoT or edge devices.

4.Data Sources

Kaggle

API: OpenAQ

Github

5.High-Level Methodology

• Data Collection –

- OpenAQ API for global and real-time air quality data
- Meteorological APIs (OpenWeatherMap) to obtain temperature, humidity, wind speed, and pressure data

• Data Cleaning –

- Imputation techniques (mean, median) will be applied for missing values
- o Duplicate rows will be removed
- Data types and formats will be standardized for all features

• Exploratory Data Analysis (EDA) –

- Time series plots to visualize seasonal or hourly trends in AQI
- **Histogram and boxplots** to observe value distributions and outliers

• Feature Engineering –

- New features such as pollutant ratios, moving averages, and lag variables may be created
- **Temporal features** like hour of the day, day of the week, or month will be extracted from timestamps.

• Model Building -

- Linear Regression As a baseline model
- Random Forest Regressor Robust to outliers and useful for feature importance

Model Evaluation –

- Root Mean Squared Error (RMSE) Penalizes large errors
- R-squared (R²) Measures how well the model explains the variance in AQI

• Visualization & Interpretation –

- Dashboards and interactive charts will display AQI trends and predictions
- o Feature importance plots will help explain model behavior
- Deployment
 - HTML/CSS + JS for the frontend interface
 - o AWS-
 - EC2-hosting
 - S3-Storage

6.Tools and Technologies

- **♦** Programming Language
 - ◆ Python
 - ◆ HTML
 - ◆ CSS
 - ◆ JavaScript
 - ◆ Bootstrap
- ◆ Notebook/IDE Visual Studio Code

♦ Libraries –

- ◆ Numpy
- **♦** Pandas
- ◆ Matplotlib
- ◆ Seaborn
- ♦ Flask
- ◆ Streamlit

◆ Tools for Deployment – Docker

7. Team Members and Roles

Name	Role	Description
Sivabalan V	Project Manager	Leads and manages the projectOversees EDA and interprets insights Coordinates all team activities and deliverables
Dhyanesh V	Backend & Deployment Developer	Builds backend API (Flask/FastAPI) Integrates model and deploys the application on a cloud platform

Semmozhiyan NS	Machine Learning Engineer	Trains, tunes, and evaluates prediction models Selects the best-performing model for deployment
Sri Sabarish U	Data Collection & Preprocessing Lead	Sources and integrates AQI/weather data Handles data cleaning, preprocessing,.
Chandru M	Frontend Developer + Documentation Lead	Designs the UI and handles user interaction Prepares project documentation, reports, and presentation