ЛАБОРАТОРНАЯ РАБОТА № 6.11.2

Исследование фотопроводимости полупроводников

Автор работы: Хоружий Кирилл

От: 28 марта 2022 г.

Цель работы

- 1. Исследовать собственную фотопроводимость полупроводника.
- 2. Определить ширину запрещенной зоны полупроводника из полученной спектральной зависимости.

Рис. 1: Схема установки

Оборудование

- источника И;
- монохроматора УМ-2
- линза Л;
- вольтметр В7-34.

Снятие и обработка данных

По характерным линиям ртути проверим соответствие градуировки монохроматора. В пределах погрешности характерные линии совпадают с табличными значениями.

Для CdS и CdSe измерим спектральную зависимость фототока (см. таблицу 1, приложение). Также фитируем зависимость $\lambda(\varphi)$ для монохроматора и нормировку по интенсивности кубическими полиномами.

С помощью полученных зависимостей найдём отнормированную зависимость фототока $I(\lambda)$, значения и погршеность также см. в таблице 1. Погрешность φ – угла монохроматора, примем равной 10. Погрешность показаний вольтметра U примем за 2 мВ.

Построим полученные спектры с учетом нормировки по зависимости эффективности монохроматора от длины волны. Графики приведены на рис. 2.

Рис. 2: Спектральная зависимость фототока для CdS (сера) и CdSe (селен)

В образце с серой можем оценить красную границу $\lambda_{\rm S}^{\rm kp}=570$ нм, тогда $E_{\rm S}^{\rm эксп}=2.2$ эВ, что достаточно близко к табличному значению $E_{\rm S}^{\rm табл}=2.42$ эВ. Также можем наблюдать примесный пик (излом) в районе 800 нм, что соответствует 1.6 эВ.

В образце с селеном можем оценить красную границу $\lambda_{\rm Se}^{\rm kp}=750$ нм, тогда $E_{\rm Se}^{\rm эксп}=1.7$ эВ, что достаточно совпадает с табличным значением $E_{\rm Se}^{\rm rafo}=1.74$ эВ. Также можем наблюдать плато в районе 650 нм, что соответствует 1.9 эВ.

Вывод

Исследована собственная фотопроводимость полупроводников (CdS и CdSe). По полученным спектральным зависимостям фототока определены ширины запрещенных зон. Получены значения совпадающие с табличными в пределах погрешности, обусловленной формальностью графического определения красной границы фотопроводимости. Наблюдались примеси в SdS.

Приложение

Таблица 1: Спектральная зависимость фототока для CdSe

φ , ° × 10 ⁻¹	U, MB	λ , HM	I, y.e.
200	26	507 ± 1	0.187 ± 0.015
210	39	520 ± 1	0.193 ± 0.011
220	53	534 ± 1	0.191 ± 0.008
230	71	550 ± 1	0.195 ± 0.007
240	105	567 ± 1	0.228 ± 0.006
245	112	577 ± 2	0.219 ± 0.005
250	127	587 ± 2	0.224 ± 0.005
260	154	609 ± 2	0.226 ± 0.004
270	179	635 ± 2	0.224 ± 0.004
280	209	664 ± 3	0.226 ± 0.003
287	229	689 ± 3	0.224 ± 0.003
289	247	694 ± 3	0.237 ± 0.003
289	250	696 ± 3	0.238 ± 0.003
290	253	698 ± 3	0.239 ± 0.003
292	252	705 ± 3	0.232 ± 0.003
292	275	707 ± 3	0.252 ± 0.003
293	253	708 ± 3	0.231 ± 0.003
295	250	716 ± 3	0.222 ± 0.003
297	265	725 ± 3	0.229 ± 0.003
300	267	735 ± 4	0.224 ± 0.003
310	232	778 ± 4	0.175 ± 0.002
320	226	825 ± 5	0.154 ± 0.002
330	224	878 ± 5	0.140 ± 0.002

Таблица 2: Спектральная зависимость фототока для CdS

φ , ° × 10 ⁻¹	U, мВ	λ , HM	I, y.e.
160	4	459 ± 1	0.35 ± 0.04
170	7	471 ± 1	0.40 ± 0.04
180	12	483 ± 1	0.37 ± 0.03
190	23	495 ± 1	0.35 ± 0.02
192	34	498 ± 1	0.42 ± 0.02
194	39	500 ± 1	0.44 ± 0.02
195	45	501 ± 1	0.47 ± 0.02
196	51	502 ± 1	0.50 ± 0.02
197	62	503 ± 1	0.56 ± 0.02
197	67	504 ± 1	0.58 ± 0.02
200	76	507 ± 1	0.59 ± 0.02
205	88	513 ± 1	0.56 ± 0.02
206	85	515 ± 1	0.50 ± 0.02
207	80	517 ± 1	0.47 ± 0.01
210	84	520 ± 1	0.40 ± 0.01
215	82	527 ± 1	0.38 ± 0.01
220	86	534 ± 1	0.34 ± 0.01
225	93	542 ± 1	0.32 ± 0.01
230	98	550 ± 1	0.29 ± 0.01
240	105	567 ± 1	0.25 ± 0.01
260	124	609 ± 2	0.200 ± 0.004
270	120	635 ± 2	0.165 ± 0.003
280	123	664 ± 3	0.146 ± 0.002
290	125	698 ± 3	0.130 ± 0.002
300	130	735 ± 4	0.119 ± 0.002
310	128	778 ± 4	0.106 ± 0.001
315	118	801 ± 4	0.093 ± 0.001
320	108	825 ± 5	0.082 ± 0.001
325	87	851 ± 5	0.065 ± 0.001
330	67	878 ± 5	0.050 ± 0.001
335	46	907 ± 5	0.035 ± 0.001
340	35	938 ± 6	0.027 ± 0.001