Comment calculer la loi d'une variable aléatoire?

La première chose à regarder est l'ensemble dans lequel la variable aléatoire prend ses valeurs. Vous devez savoir calculer la loi d'une variable aléatoire discrète (à valeurs dans \mathbb{R}) ou un ensemble fini), d'une variable aléatoire réelle (à valeurs dans \mathbb{R}), et d'un vecteur aléatoire (à valeurs dans \mathbb{R}^d avec d > 1) - souvent un couple de v.a. Z = (X, Y).

Donner la loi d'une variable aléatoire, c'est donner un moyen de calculer la valeur de $\mathbb{P}(X \in A)$ pour A une partie quelconque de \mathbb{N} (cas discret) ou un borélien quelconque de \mathbb{R}^d (cas réel ou vecteur alétoire).

I - Loi d'une v.a. discrète Toute partie A de \mathbb{N} étant une réunion dénombrable de sigletons $\{n\}$, on obtient la probabilité de l'événement $(X \in A)$ à partir des probabilités des événements (X = n) pour tout $n \in \mathbb{N}$. Donner une loi discrète est simplement donner les valeurs des

$$\mathbb{P}(X=n)$$
 pour tout n dans \mathbb{N} (ou une partie finie de \mathbb{N})

On dira 'X suit la loi discrète donnée par $\mathbb{P}(X = n) = \dots$ ' (et si possible on reconnaîtra une loi connue!).

II - Loi d'une v.a. dans \mathbb{R}^d : calcul de la fonction de répartition La fonction de répartition caractérise la loi. Il suffit alors donner les valeurs de la fonction

$$F_X(x) = \mathbb{P}(X \le x) \ \forall x \in \mathbb{R} \ (cas \ r\acute{e}el)$$

ou pour un vecteur aléatoire $X=(X_1,\ldots,X_d)$ de donner les valeurs de la fonction

$$F_X(x_1,\ldots,x_d) = \mathbb{P}((X_1 \le x_1) \cap \cdots \cap (X_d \le x_d)) \ \forall (x_1,\ldots,x_d) \in \mathbb{R}^d.$$

On dira 'X suit la loi de fonction de répartition $F_X(x) = \dots$ ' (et si possible on reconnaîtra la fonction de répartition d'une loi connue!).

III - Loi d'une va. dans \mathbb{R}^d : calcul de la densité Une grande partie des variables aléatoires à valeurs dans \mathbb{R}^d avec $d \geq 1$ sont des variables dites à densité par rapport à la mesure de Lebesgue. Cela signifie qu'il existe une fonction $f: \mathbb{R}^d \to \mathbb{R}^+$, appelée densité, vérifiant $\int_{\mathbb{R}^d} f = 1$ et pour tout borélien A,

$$\mathbb{P}(X \in A) = \int_A f(x_1, \dots, x_d) dx_1 \dots dx_d$$

Dans ce cas, donner la densité détermine complètement la loi. Deux méthodes pour calculer la densité : a) S'il existe une fonction f telle que la fonction de répartition s'écrive

$$F_X(x) = \int_{-\infty}^x f(t)dt \quad (cas \ r\acute{e}el)$$

$$F_{(X_1,...,X_d)}(x_1,...,x_n) = \int_{-\infty}^{x_1} ... \int_{-\infty}^{x_d} f(t_1,...,t_d)dt_1 ... dt_d \quad (cas \ g\acute{e}n\acute{e}ral)$$

alors la loi de X admet pour densité f.

b) Si il existe une fonction f telle que pour toute fonction continue bornée $g: \mathbb{R}^d \to \mathbb{R}$ (pour $d \geq 1$) on ait

$$\mathbb{E}[g(X_1,\ldots,X_d)] = \int_{\mathbb{R}^d} g(x_1,\ldots,x_d) f(x_1,\ldots,x_d) dx_1 \ldots dx_d \quad (cas \ g\'{e}n\'{e}ral)$$

alors la loi de X admet pour densité f.

On dira 'X suit la loi de densité f(t) = ... par rapport à la mesure de Lebesgue' (et on reconnaîtra si possible la densité d'une loi connue!).

IV - Calcul de la fonction génératrice ou fonction caractéristique Vous avez vu que pour une variable discrète, la fonction caractéristique $G_X(s) = \mathbb{E}[s^X]$ caractérise la loi. On dira 'X suit la loi ayant pour fonction caractéristique $G_X(s) = ...$ ' (et on reconnaîtra si possible la fonction caractéristique d'une loi connue!).

Cette méthode se généralisera plus tard aux variables aléatoires à valeurs dans \mathbb{R} (ou \mathbb{R}^d) avec l'introduction de la fonction caractéristique. Elle est très efficace pour calculer la loi d'une somme de v.a. indépendantes.

X suit la loi	$\mathbb{P}(X=n)$	$\mathbb{E}[X] =$	$G_X(s) =$
Bernoulli de paramère p	$\mathbb{P}(X=0) = 1 - p(=q)$	p	1-p+sp
$X \sim \mathcal{B}(p)$	$\mathbb{P}(X=1) = p$		
Binomiale de paramètres n et p	$\forall k \in \{0, \dots n\},\$	np	$(1 - p + sp)^n$
$X \sim \mathcal{B}(n,p)$	$P(X = k) = \binom{n}{k} p^k q^{n-k}$		
Géométrique de paramètre p	$\forall k \in \mathbb{N}^*,$	$\frac{1}{p}$	$\frac{1-p}{1-sp}$
$X \sim \mathcal{G}(p)$	$\mathbb{P}(X=k) = p(1-p)^{k-1}$	F	_F
Poisson de paramètre λ	$\forall k \in \mathbb{N},$	λ	$e^{\lambda(s-1)}$
$X \sim \mathcal{P}(\lambda)$	$\mathbb{P}(X=k) = e^{-\lambda} \frac{\lambda^k}{k!}$		

X suit la loi	densité $f(t)$	f.d.r $F_X(x) = \mathbb{P}(X \le x)$
Uniforme sur $[a, b]$	$f_X(t) = \frac{1}{b-a} \mathbb{1}_{[a,b]}(t)$	$F_X(x) = \frac{x-a}{b-a} \mathbb{1}_{[a,b[}(x)$
$X \sim \mathcal{U}([a,b])$		$+\mathbb{1}_{[b,+\infty[}(x)$
Exponentielle de paramètre λ	$f_X(t) = \lambda \exp(-\lambda t) \mathbb{1}_{[0,+\infty[}(t)$	$F_X(x) = (1 - e^{-\lambda x}) \mathbb{1}_{[0, +\infty[}(x)$
$X \sim \mathcal{E}(\lambda)$		
Normale centrée réduite	$f_X(t) = \frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}$	
$X \sim \mathcal{N}(0,1)$	V 2N	
Normale de paramètres μ et σ^2	$f_X(t) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(t-\mu)^2}{2\sigma^2}}$	
$X \sim \mathcal{N}(\mu, \sigma^2)$		