Section 1: Right-angled triangles

1.

The right-angled triangle drawn below (which is not drawn to scale) has an angle of 65°.

The shorter of the sides adjacent to this angle has length 8.

What is the length, to one decimal place, of the hypotenuse?

2.

The right-angled triangle drawn below (which is not drawn to scale) has an angle of 50°.

The hypotenuse has length 10.

What is the length, to one decimal place, of the side labelled a, opposite to the angle of size 50° in the diagram?

3.

The two shorter sides of the right-angled triangle drawn below (which is not drawn to scale) are 5 and 8 respectively.

What is the size, in radians to 3 decimal places, of the angle marked θ , opposite the side of length 5.

Section 2: Trigonometric functions

- **4**. Find all solutions between 0 and 2π of the equation $\sin \theta = -\frac{1}{\sqrt{2}}$
- 5. How many values of θ in radians between $-\pi$ and $\frac{\pi}{2}$ satisfy $\sin \theta = 0.3$?
- **6.** How many values of θ in radians between $-\frac{\pi}{2}$ and $\frac{5\pi}{2}$ satisfy $\tan \theta = 0.6$?
- 7. How many values of θ in radians between -2π and $\frac{3\pi}{2}$ satisfy $\cos\theta = -0.5$?

Section 3: Sine and cosine rules

8. The triangle below has sides of lengths 4.4 and 5.9. The angle opposite the side of length 5.9 is 79°.

What is the size, to the nearest degree, of the angle marked θ , opposite the side of length 4.4.

9. The triangle below, which is not drawn to scale, has sides of lengths 3, 5 and 7.

What is the size, to the nearest degree, of the angle marked θ , opposite the side of length 7?

10.

The triangle below, which is not drawn to scale, has two sides of lengths 4 and 7 and the angle between them is 80°.

What is the length, to one decimal place, of the third side of the triangle?

11.

The triangle below has angles of size 135° and 25°. The side opposite the angle of size 135° has length 12.4.

What is the length, to one decimal place, of the side, labelled as a, opposite the angle of size 25°?

12.

The triangle below, which is not drawn to scale, has two sides of lengths 11.7 and 12.1 and the angle between them is 40°.

What is the area of the triangle, to one decimal place?

Section 4: Further trigonometric identities

13. If $\sin \theta \neq 0$ and $\cos \theta \neq 0$, which of the following is equivalent to $\frac{\csc \theta}{\cot \theta}$?

 $\mathbf{A} \cos \theta$

B $\sin \theta$

C $\sec \theta$

D tan θ

E $\sec \theta \tan \theta$

14. Which of the following is equivalent to $2 \csc 2\theta \cos \theta$?

 $\mathbf{A} \cot \theta$

B $\sin \theta$

C $\sec \theta$

D $\tan \theta$

E $cosec \theta$

15. Given that $-\pi < \theta < \pi$ such that $\csc \theta = -\sqrt{2}$ and $\tan \theta = -1$, find the exact value of θ and justify your answer.

16. Given that $\theta \in \left(0, \frac{\pi}{2}\right)$ and $\sin \theta = \frac{2}{5}$, use appropriate trigonometric identities to find:

(i) $cos(2\theta)$

(ii) $\cos \theta$

(iii) $\sin 2\theta$

17. Use a trigonometric identity to find the exact value of $\cos \frac{\pi}{12}$.

Hence, find the exact value of $\sin \frac{\pi}{24}$.

18. Find all the solutions in the interval $[0, 2\pi]$ of the equation

$$\sin 3\theta \cos 2\theta - \sin 2\theta \cos 3\theta = 0$$

19. Find all the solutions in the interval (0, π) of the equation $\sqrt{3}\sin 2\theta + 2\sin^2\theta = 1$

20 . (i) By starting with the identity $\sin^2\theta+\cos^2\theta=1$, obtain an identity linking $\tan^2\theta$ and $\sec^2\theta$.

(ii) Find all the solutions between 0° and 360° of the equation $\sec^2 \theta + \tan \theta = 3$