Lecture 12

- Frequency Response

Outline

- Frequency response
- -Transfer function
- -Bode plots (or diagram)

Frequency Response

Case 1: $\omega = 2\pi \times 3000$

$$\mathbf{Z}_{eq} = 468.2 \angle -62.1^{\circ}\Omega$$

$$V_1 = 2.34 \angle -62.1^{\circ}V$$

Case 2:
$$\omega = 2\pi \times 455000$$

$$\mathbf{Z}_{eq} = 3.5 \angle -89.8^{\circ}\Omega$$

$$V_2 = 17.5 \angle -89.8$$
° mV

Frequency Response

- The "Frequency Response" is a characterization of the input-output relation for sinusoidal inputs at <u>all</u> frequencies.
- Its output is also a sinusoid at the same frequency.
- Only the <u>magnitude</u> and <u>phase</u> of the output differ from the input.
- Significant for applications, esp. in communications and control systems.

Transfer Function

• The transfer function $H(\omega)$ is the frequency-dependent ratio of a forced function $Y(\omega)$ to the forcing function $X(\omega)$.

$$H(\omega) = \frac{Y(\omega)}{X(\omega)}$$

$$H(\omega) = \text{Voltage gain} = \frac{V_o(\omega)}{V_i(\omega)}$$

$$H(\omega) = \text{Current gain} = \frac{I_o(\omega)}{I_i(\omega)}$$

$$H(\omega) = \text{Transfer impedance} = \frac{V_o(\omega)}{I_i(\omega)}$$

$$H(\omega)$$
 = Transfer admittance = $\frac{I_o(\omega)}{V_i(\omega)}$

Transfer Function

- Complex quantity
- Both magnitude and phase of the output are functions of frequency

$$\frac{\mathbf{V_{out}}}{\mathbf{V_{in}}} = \frac{V_{out}}{V_{in}} \angle \left(\theta_{out} - \theta_{in}\right)$$

Example

$$H = \frac{1}{\sqrt{1 + (\omega/\omega_0)^2}}, \qquad \phi = -\tan^{-1}\frac{\omega}{\omega_0}$$

ω/ω_0	H	$oldsymbol{\phi}$	$oldsymbol{\omega}/oldsymbol{\omega}_0$	H	$\boldsymbol{\phi}$
0	1	0	10	0.1	-84°
1	0.71	-45°	20	0.05	−87°
2	0.45	-63°	100	0.01	-89°
3	0.32	-72°	∞	0	-90°

Exercise

• Obtain the transfer function V_0/V_s of the RL circuit.

Assuming $v_s = V_m \cos \omega t$.

Bode Plots

Plotting the frequency response, magnitude & phase, on plots with

Frequency X in log scale

Y scale in dB (for magnitude) & degree (for phase)

Bel and Decibel (dB)

- A bel (symbol B) is a unit of measure of ratios of power levels, i.e. relative power levels.
 - The name was coined in the early 20th century in honor of Alexander Graham Bell, a telecommunication pioneer.
 - Definition of bel:

Ratio with a unit of B = $log_{10}(P_1/P_2)$ where P_1 and P_2 are power levels.

 One bel is too large for everyday use, so the decibel (dB), equal to 0.1B, is more commonly used.

Ratio with a unit of dB =
$$10 \log_{10}(P_1/P_2)$$

used to measure electric power, gain or loss of amplifiers, etc.

dB for Voltage or Current

 We can similarly relate the reference voltage or current to the reference power, as

$$P = (V)^2/R$$
 or $P = (I)^2R$

Hence,

Voltage, V in decibels =
$$20\log_{10}(V_1/V_2)$$

Current, I, in decibels = $20\log_{10}(I_1/I_2)$

Question: How many decibels larger is the voltage of a 9-volt transistor battery than that of a 1.5-volt AA battery?

Question: **The voltage gain** of an amplifier with input = 0.2 mV and output = 0.5 V is ?

[Source: Berkeley]

Summary

If G is defined as the power gain,

$$G = \frac{P}{P_0},$$

then the corresponding gain in dB is defined as

$$G [dB] = 10 \log G = 10 \log \left(\frac{P}{P_0}\right) \qquad (dB).$$

$$G[dB] = 10 \log \left(\frac{\frac{1}{2} |\mathbf{V}|^2 / R}{\frac{1}{2} |\mathbf{V}_0|^2 / R} \right) = 20 \log \left(\frac{|\mathbf{V}|}{|\mathbf{V}_0|} \right)$$

$\frac{P}{P_0}$	dB	
10 ^N	10 <i>N</i> dB	
10^{3}	30 dB	
100	20 dB	
10	10 dB	
4	$\simeq 6 \text{ dB}$	
2	$\simeq 3 \text{ dB}$	
1	0 dB	
0.5	$\simeq -3 \text{ dB}$	
0.25	$\simeq -6 \text{ dB}$	
0.1	-10 dB	
10^{-N}	-10N dB	

$\left \frac{\mathbf{V}}{\mathbf{V}_0} \right \text{ or } \left \frac{\mathbf{I}}{\mathbf{I}_0} \right $	dB
10^{N}	20 <i>N</i> dB
10^{3}	60 dB
100	40 dB
10	20 dB
4	$\simeq 12 \text{ dB}$
2	$\simeq 6 \mathrm{dB}$
1	0 dB
0.5	$\simeq -6 \mathrm{dB}$
0.25	$\simeq -12 \text{ dB}$
0.1	−20 dB
10^{-N}	-20N dB

Bode Plots

Plotting the frequency response, magnitude or phase, on plots with

- Frequency X in log scale
- Y scale in dB (for magnitude) or degree (for phase)

Bode Plots

 Bode plot is particularly useful for displaying transfer function— a general form is displayed as:

$$\mathbf{H}(\omega) = \frac{K(j\omega)^{\pm 1} (1 + j\omega/z_1)[1 + j2\zeta_1\omega/\omega_k + (j\omega/\omega_k)^2]\cdots}{(1 + j\omega/p_1)[1 + j2\zeta_2\omega/\omega_n + (j\omega/\omega_n)^2]\cdots}$$

In constructing a Bode plot, we plot each factor separately and then add them graphically. The factors can be considered one at a time and then combined additively because of the logarithms involved. It is this mathematical convenience of the logarithm that makes Bode plots a powerful engineering tool.

Constant term K

$$\mathbf{H}(\omega) = \frac{K(j\omega)^{\pm 1} (1 + j\omega/z_1)[1 + j2\zeta_1\omega/\omega_k + (j\omega/\omega_k)^2]\cdots}{(1 + j\omega/p_1)[1 + j2\zeta_2\omega/\omega_n + (j\omega/\omega_n)^2]\cdots}$$

K>0

K<0

$$\mathbf{H}(\omega) = \frac{K(j\omega)^{\pm 1} (1 + j\omega/z_1)[1 + j2\zeta_1\omega/\omega_k + (j\omega/\omega_k)^2]\cdots}{(1 + j\omega/p_1)[1 + j2\zeta_2\omega/\omega_n + (j\omega/\omega_n)^2]\cdots}$$

$$(j\omega)^{-1}$$

$$\mathbf{H}(\omega) = \frac{K(j\omega)^{\pm 1} (1 + j\omega/z_1)[1 + j2\zeta_1\omega/\omega_k + (j\omega/\omega_k)^2]\cdots}{(1 + j\omega/p_1)[1 + j2\zeta_2\omega/\omega_n + (j\omega/\omega_n)^2]\cdots}$$

jω

• In general:

$$1+j\omega/z_1$$

$$\mathbf{H}(\omega) = \frac{K(j\omega)^{\pm 1} (1 + j\omega/z_1)[1 + j2\zeta_1\omega/\omega_k + (j\omega/\omega_k)^2]\cdots}{(1 + j\omega/p_1)[1 + j2\zeta_2\omega/\omega_n + (j\omega/\omega_n)^2]\cdots}$$

Simple pole/zero: For the simple zero $(1 + j\omega/z_1)$, the magnitude is $20 \log_{10} |1 + j\omega/z_1|$ and the phase is $\tan^{-1} \omega/z_1$. We notice that

$$H_{\text{dB}} = 20 \log_{10} \left| 1 + \frac{j\omega}{z_1} \right| \quad \Rightarrow \quad 20 \log_{10} 1 = 0$$

$$\text{as } \omega \to 0$$

$$H_{\text{dB}} = 20 \log_{10} \left| 1 + \frac{j\omega}{z_1} \right| \quad \Rightarrow \quad 20 \log_{10} \frac{\omega}{z_1}$$

$$\text{as } \omega \to \infty$$

$1/(1+j\omega/p_1)$

$1/[1+2j\zeta_2\omega/\omega_n + (j\omega/\omega_n)^2]$

$$\mathbf{H}(\omega) = \frac{K(j\omega)^{\pm 1} (1 + j\omega/z_1)[1 + j2\zeta_1\omega/\omega_k + (j\omega/\omega_k)^2]\cdots}{(1 + j\omega/p_1)[1 + j2\zeta_2\omega/\omega_n + (j\omega/\omega_n)^2]\cdots}$$

Magnitude:

$$H_{\rm dB} = -20 \log_{10} \left| 1 + \frac{j2\zeta_2 \omega}{\omega_n} + \left(\frac{j\omega}{\omega_n} \right)^2 \right| \implies 0$$

and

$$H_{\rm dB} = -20 \log_{10} \left| 1 + \frac{j2\zeta_2 \omega}{\omega_n} + \left(\frac{j\omega}{\omega_n} \right)^2 \right| \qquad \Rightarrow \qquad -40 \log_{10} \frac{\omega}{\omega_n}$$
as $\omega \to \infty$

the phase is $-\tan^{-1}(2\zeta_2\omega/\omega_n)/(1-\omega^2/\omega_n^2)$.

$1+2j\zeta_1\omega/\omega_k + (j\omega/\omega_k)^2$

$$\mathbf{H}(\omega) = \frac{K(j\omega)^{\pm 1} (1 + j\omega/z_1)[1 + j2\zeta_1\omega/\omega_k + (j\omega/\omega_k)^2]\cdots}{(1 + j\omega/p_1)[1 + j2\zeta_2\omega/\omega_n + (j\omega/\omega_n)^2]\cdots}$$

TABLE 14.3

Summary of Bode straight-line magnitude and phase plots.

Factor	Magnitude	Phase	
	20 log ₁₀ K		
K		09	
	ω	ω	
	20N dB/decade _	90N°	
$(j\omega)^N$			
	1 ω	ω	
1			
$\frac{1}{(j\omega)^N}$	1 ω	ω	
	-20N dB/decade	-90N°	
/ · \ N	20N dB/decade	90N°	
$\left(1+\frac{j\omega}{z}\right)^N$		0°	
	z w	$\frac{z}{10}$ z $10z$ ω	
	p	$\frac{p}{10}$ p $10p$	
$\frac{1}{\left(1+j\omega/p\right)^{N}}$	ω	0° ω	
(1 - 10/p)	−20N dB/decade	-90N°	
	40N dB/decade	180N°	
$[2j\omega\zeta (j\omega)^2]^N$			
$\left[1 + \frac{2j\omega\zeta}{\omega_n} + \left(\frac{j\omega}{\omega_n}\right)^2\right]^N$		0°	
	ω_n	$\frac{\omega_n}{10}$ ω_n $10\omega_n$ ω	
	ω_k	$\frac{\omega_k}{10}$ ω_k $10\omega_k$	
1	ω	0° ω	
$\frac{1}{\left[1+2j\omega\zeta/\omega_k+(j\omega/\omega_k)^2\right]^N}$			
	−40N dB/decade		
		-180N°	

Example--Standard Form

$$\mathbf{H}(\omega) = \frac{200j\omega}{(j\omega + 2)(j\omega + 10)}$$

$$\mathbf{H}(\omega) = \frac{10j\omega}{(1+j\omega/2)(1+j\omega/10)}$$

Example - Magnitude

$$H_{\text{dB}} = 20 \log_{10} 10 + 20 \log_{10} |j\omega| - 20 \log_{10} \left| 1 + \frac{j\omega}{2} \right| - 20 \log_{10} \left| 1 + \frac{j\omega}{10} \right|$$

Example - Phase

$$\mathbf{H}(\omega) = \frac{10j\omega}{(1+j\omega/2)(1+j\omega/10)}$$

$$= \frac{10|j\omega|}{|1+j\omega/2||1+j\omega/10|} / \frac{90^{\circ} - \tan^{-1}\omega/2 - \tan^{-1}\omega/10}{2}$$

$$\phi = 90^{\circ} - \tan^{-1}\frac{\omega}{2} - \tan^{-1}\frac{\omega}{10}$$

Exercises

•
$$\mathbf{H}(\omega) = \frac{(20 + j4\omega)^2}{j40\omega(100 + j2\omega)}$$

•
$$\mathbf{H}(\omega) = \frac{(j10\omega + 30)^2}{(300 - 3\omega^2 + j90\omega)}$$

Obtain the transfer function

