HEALTHCARE APPLICATIONS OF DEEP CONVOLUTIONAL NEURAL NETWORKS (CNN)

Volume of medical images²

Numbers of Radiologists*

30% RISE IN CT-SCANS IN NHS BETWEEN 2013-2016

Pattern recognition Description Descriptio

FOY DOES IT WORKS

edges), which is presented in a feature map

3. Finally, the activation function selects the important neurons, then presents the distinct features to be used in the fully connected layer

- IT WAS INSPIRED BY
 VISUAL NEURONS IN
 ANIMALS

 ANIMALS
- CNN WORKS WITHOUT HUMAN SUPERVISION 3
- DETECTING TUBERCULOSIS
 ON CHEST X-RAYS:
 SENSITIVITY 97.3%
 SPECIFICITY 100% 4

Reconstruct³
CT images

Better health services²

Image segmentation³
by volume & shape

Classifying disease³

Classifying disease³

Classifying disease³

LEGAL AND ETHICAL ISSUES

To achieve high accuracy, CNNs need big datasets

Big Data

CNNs need big datasets for training <u>5</u>

Researchers do not know-how and why CNNs work 5

Transparency

Data Protection

For automated decisions, patients need to know how the decision was made 5

Algorithmic Bias

If datasets have bias, this will result in algorithm bias 5

1. Overfitting - not suitable for generalization ³

(e.g. cancer stages)

- 2. Lack of labelled datasets³
- 3. Costly devices³

FAILURE

As a result of algorithmic bias, millions of patients In the USA did not receive appropriate care ⁶

