

mary lymphedema (clinical classification).

Diagnosis	Frequency ^{22,31,32,39} (% of all primary forms)
<i>Congenital (onset <2 years after birth)</i>	6-12
Familial, autosomal dominant (Nonne-Milroy disease)	
Familial, non-dominant inheritance	
Sporadic (most common congenital form)	
<i>Lymphedema precox (onset between 2-35 years)</i>	77-94
Familial, autosomal recessive (Meige disease)	
Sporadic (83-94% of all lymphedema precox)	
<i>Lymphedema tarda (onset after 35 years of age)</i>	11

Figure 1A

Functional Classification of Primary Lymphedema

	Distal Obliteration (80%)	Proximal Obliteration (10%)	Hyperplasia* (10%)
Gender	Female	Male or female	Male or female
Onset			
Time	Puberty	Any age	Congenital
Location	Ankle; bilateral	Whole leg, thigh; unilateral	Whole leg; unilateral or bilateral
Progression	Slow	Rapid	Progressive
Family history	Frequently positive	None	Frequently positive

Adapted from Browse NL: The diagnosis and management of primary lymphedema. J Vasc Surg 3:181, 1986.

*With or without reflux of chyle.

Figure 1B

Secondary lymphedema.

Blockade at the level of the lymph node

- Regional lymph node dissection
 - Axillary (post-mastectomy lymphedema)
 - Pelvic and para-aortic (leg and groin lymphedema)
 - Neck (head and neck lymphedema)
- Neoplastic disease
 - Hodgkin lymphoma
 - Metastatic cancer
 - Prostate cancer
 - Cervical cancer
 - Breast cancer
 - Melanoma

Disruption or obliteration of lymphatic channels

- Surgery, e.g. ilio-femoral bypass
- Direct injury, e.g. trauma of the medial aspect of the thigh
- Radiation-induced fibrosis
- Neoplastic infiltration of lymphatic channels
- Rheumatoid arthritis
- Filariasis
- Recurrent infection, e.g. erysipelas

Figure 1C

Lymphangiographic Patterns

Normal vs. Primary Lymphedema

Figure 2

Rabbit Ear Lymphedema Model

Clinical Appearance - 5 Month

Control

VEGF-2

Figure 3

Rabbit Ear Lymphedema Model
Lymphoscintigraphy - 5 Month Post-Op

Figure 4

VEGF-2

*CONTROL

Rabbit Ear Lymphedema Model
Lymphoscintigraphy-Orientation

Figure 5

Rabbit Ear Lymphedema Model
Lymphoscintigraphy-Early Post-Op

Figure 6

Figure 7

Rabbit Ear Lymphedema Model 3 Days Post-Op

Figure 8

Human Lymphoscintigraphy Right Lower Extremity

Pre-VEGF2

Post-VEGF2

Thigh

Knee

Foot

Figure 9

Ultrasound Imaging of Intra-Muscular VEGF-2 Gene Transfer: Lymphedema

Figure 10

Figure 11

Fig. 12A

Fig. 12B

Fig. 12C

Intradermal and Subcutaneous

500ug

D1 D6 D11

Fig. 13A

Fig. 13B

Figs. 14 A-C

$$\begin{aligned} &(24125-14800)/(17296-15331) \\ &= 4.75 \end{aligned}$$

Fig. 15A

$$\begin{aligned} &(21376-14217)/(18602-16302) \\ &= 3.11 \end{aligned}$$

Fig. 15B

Fig. 15C

Fig. 16B

Fig. 16A

Figs. 17 C-D

Control

VEGF-C

Fig. 18A

Fig. 18B

Figs. 19 A-J

Fig. 20A

α -tubulin

Fig. 20B

	rb	bo	hu	mo	rb	bo	hu	mo	rb	bo	hu	mo	rb	bo	hu	mo	rb	bo	hu	mo	rb	bo	hu	mo	rb	bo	hu	mo
1					CGGTGCGGG TAGCGGGGGC ADACGTGCC AGCATCTAT CGTACAGAGA				CGGTGCGGG TAGCGGGGGC AGCATCTAT CGTACAGAGA				CGGTGCGGG TAGCGGGGGC AGCATCTAT CGTACAGAGA				CGGTGCGGG TAGCGGGGGC AGCATCTAT CGTACAGAGA				CGGTGCGGG TAGCGGGGGC AGCATCTAT CGTACAGAGA				CGGTGCGGG TAGCGGGGGC AGCATCTAT CGTACAGAGA			
2					CGTGCCTAG TAGCTGGAC GCACGTAGCC AGCATCTGT CGTACAGAGA				CGTGCCTAG TAGCTGGAC GCACGTAGCC AGCATCTGT CGTACAGAGA				CGTGCCTAG TAGCTGGAC GCACGTAGCC AGCATCTGT CGTACAGAGA				CGTGCCTAG TAGCTGGAC GCACGTAGCC AGCATCTGT CGTACAGAGA				CGTGCCTAG TAGCTGGAC GCACGTAGCC AGCATCTGT CGTACAGAGA				CGTGCCTAG TAGCTGGAC GCACGTAGCC AGCATCTGT CGTACAGAGA			
3					CGTGCCTTG TAGCTGGAC GCACGTAGCC AGCATCTGT CGTACAGAGA				CGTGCCTTG TAGCTGGAC GCACGTAGCC AGCATCTGT CGTACAGAGA				CGTGCCTTG TAGCTGGAC GCACGTAGCC AGCATCTGT CGTACAGAGA				CGTGCCTTG TAGCTGGAC GCACGTAGCC AGCATCTGT CGTACAGAGA				CGTGCCTTG TAGCTGGAC GCACGTAGCC AGCATCTGT CGTACAGAGA				CGTGCCTTG TAGCTGGAC GCACGTAGCC AGCATCTGT CGTACAGAGA			
4					TGAGGCTCT CTGGAGAAC ATCTCGAAAT CGACCTCGGG GACTGAAACC CGCTCACTG				TGAGGCTCT CTGGAGAAC ATCTCGAAAT CGACCTCGGG GACTGAAACC CGCTCACTG				TGAGGCTCT CTGGAGAAC ATCTCGAAAT CGACCTCGGG GACTGAAACC CGCTCACTG				TGAGGCTCT CTGGAGAAC ATCTCGAAAT CGACCTCGGG GACTGAAACC CGCTCACTG				TGAGGCTCT CTGGAGAAC ATCTCGAAAT CGACCTCGGG GACTGAAACC CGCTCACTG				TGAGGCTCT CTGGAGAAC ATCTCGAAAT CGACCTCGGG GACTGAAACC CGCTCACTG			
5	51	51	51	51	TGAGGCTCT CTGGAGAAC ATCTCGAAAT CGACCTCGGG GACTGAAACC CGCTCACTG				TGAGGCTCT CTGGAGAAC ATCTCGAAAT CGACCTCGGG GACTGAAACC CGCTCACTG				TGAGGCTCT CTGGAGAAC ATCTCGAAAT CGACCTCGGG GACTGAAACC CGCTCACTG				TGAGGCTCT CTGGAGAAC ATCTCGAAAT CGACCTCGGG GACTGAAACC CGCTCACTG				TGAGGCTCT CTGGAGAAC ATCTCGAAAT CGACCTCGGG GACTGAAACC CGCTCACTG				TGAGGCTCT CTGGAGAAC ATCTCGAAAT CGACCTCGGG GACTGAAACC CGCTCACTG			
6	101	101	101	101	AGAGGCTGAG CAICAGGGC GTGGCGGAGG AGGACCGGCG CGCTAATCTG				AGAGGCTGAG CAICAGGGC GTGGCGGAGG AGGACCGGCG CGCTAATCTG				AGAGGCTGAG CAICAGGGC GTGGCGGAGG AGGACCGGCG CGCTAATCTG				AGAGGCTGAG CAICAGGGC GTGGCGGAGG AGGACCGGCG CGCTAATCTG				AGAGGCTGAG CAICAGGGC GTGGCGGAGG AGGACCGGCG CGCTAATCTG				AGAGGCTGAG CAICAGGGC GTGGCGGAGG AGGACCGGCG CGCTAATCTG			
7	151	151	151	151	TGCAAGCTGT ECAACGCAA GCACTCGGCG AGCTCTGTC CGAGGTGTC				TGCAAGCTGT ECAACGCAA GCACTCGGCG AGCTCTGTC CGAGGTGTC				TGCAAGCTGT ECAACGCAA GCACTCGGCG AGCTCTGTC CGAGGTGTC				TGCAAGCTGT ECAACGCAA GCACTCGGCG AGCTCTGTC CGAGGTGTC				TGCAAGCTGT ECAACGCAA GCACTCGGCG AGCTCTGTC CGAGGTGTC				TGCAAGCTGT ECAACGCAA GCACTCGGCG AGCTCTGTC CGAGGTGTC			
8	201	201	201	201	TGTGGAGGC CGCGAAAGATA GAGGAGGAAAT GGAGATCTGT ATCCGCTGG				TGTGGAGGC CGCGAAAGATA GAGGAGGAAAT GGAGATCTGT ATCCGCTGG				TGTGGAGGC CGCGAAAGATA GAGGAGGAAAT GGAGATCTGT ATCCGCTGG				TGTGGAGGC CGCGAAAGATA GAGGAGGAAAT GGAGATCTGT ATCCGCTGG				TGTGGAGGC CGCGAAAGATA GAGGAGGAAAT GGAGATCTGT ATCCGCTGG				TGTGGAGGC CGCGAAAGATA GAGGAGGAAAT GGAGATCTGT ATCCGCTGG			
9	251	251	251	251	CCTGGAAAGGC TCTAGGGATA AAGGAGGAAAT GGAGATCTGT ATCCGCTGG				CCTGGAAAGGC TCTAGGGATA AAGGAGGAAAT GGAGATCTGT ATCCGCTGG				CCTGGAAAGGC TCTAGGGATA AAGGAGGAAAT GGAGATCTGT ATCCGCTGG				CCTGGAAAGGC TCTAGGGATA AAGGAGGAAAT GGAGATCTGT ATCCGCTGG				CCTGGAAAGGC TCTAGGGATA AAGGAGGAAAT GGAGATCTGT ATCCGCTGG				CCTGGAAAGGC TCTAGGGATA AAGGAGGAAAT GGAGATCTGT ATCCGCTGG			
10	301	301	301	301	TGTAACATGA CGACGGCGAC CTCATGAGAC ATCAAGAGCG GCTACCTGTC				TGTAACATGA CGACGGCGAC CTCATGAGAC ATCAAGAGCG GCTACCTGTC				TGTAACATGA CGACGGCGAC CTCATGAGAC ATCAAGAGCG GCTACCTGTC				TGTAACATGA CGACGGCGAC CTCATGAGAC ATCAAGAGCG GCTACCTGTC				TGTAACATGA CGACGGCGAC CTCATGAGAC ATCAAGAGCG GCTACCTGTC				TGTAACATGA CGACGGCGAC CTCATGAGAC ATCAAGAGCG GCTACCTGTC			
11	351	351	351	351	CATCATCATG GATCGGGGGG AAGTGCCTCT CGAGGAAGCAA TGTGATAACC				CATCATCATG GATCGGGGGG AAGTGCCTCT CGAGGAAGCAA TGTGATAACC				CATCATCATG GATCGGGGGG AAGTGCCTCT CGAGGAAGCAA TGTGATAACC				CATCATCATG GATCGGGGGG AAGTGCCTCT CGAGGAAGCAA TGTGATAACC				CATCATCATG GATCGGGGGG AAGTGCCTCT CGAGGAAGCAA TGTGATAACC				CATCATCATG GATCGGGGGG AAGTGCCTCT CGAGGAAGCAA TGTGATAACC			
12	401	401	401	401	TGTCTTACGA CGCGAGCGAG TGTCTTACGA TGTCTTACGA CGCGAGCGAG				TGTCTTACGA CGCGAGCGAG TGTCTTACGA TGTCTTACGA CGCGAGCGAG				TGTCTTACGA CGCGAGCGAG TGTCTTACGA TGTCTTACGA CGCGAGCGAG				TGTCTTACGA CGCGAGCGAG TGTCTTACGA TGTCTTACGA CGCGAGCGAG				TGTCTTACGA CGCGAGCGAG TGTCTTACGA TGTCTTACGA CGCGAGCGAG				TGTCTTACGA CGCGAGCGAG TGTCTTACGA TGTCTTACGA CGCGAGCGAG			

Fig. 21

	1	ACAVAGAHNP	SIVWVKKDERL	LVEEGGDLA	DNGDLSIQR	VREEDAGRL
rb	1	RCPYAGATHNP	SIVWVKKDERL	LVEEGGDLA	DNGDLSIQR	VREEDAGRL
bo	1	QCLVAGAHNP	SIVWVKKDERL	LVEEGGDLA	DNGDLSIQR	VREEDAGRL
hu	1	RCPYAGAHNP	SIVWVKKDERL	LVEEGGDLA	DNGDLSIQR	VREEDAGRL
■o	1	RCPYAGAHNP	SIVWVKKDERL	LEKEGGDLA	DNGDLSIQR	VREEDAGRL
	51	CSVNNAKCGV	NSSASVAYGG	AEDRSMEIV	ILVGTGVAY	FFFWVLLLI
rb	51	CSVNNAKCGV	NSSASVAYEG	SEDKGSMETV	ILVGTGVAY	FFFWVLLLI
bo	51	CSVNNAKCGV	NSSASVAYEG	SEDKGSMETV	ILVGTGVAY	FFFWVLLLI
hu	51	CSVNNAKCGV	NSSASVAYEG	SEDKGSMETV	ILVGTGVAY	FFFWVLLLI
■o	51	CSVNNAKCGV	NSSASVAYEG	SEDKGSMETV	ILVGTGVAY	FFFWVLLLI
	101	CWIKRPAHD	IKIGYLSIM	DPGEVPLEEQ	CEVLSYDASQ	
rb	101	CWIKRPAHD	IKIGYLSIM	DPGEVPLEEQ	CEVLSYDASQ	
bo	101	CWIKRPAHD	IKIGYLSIM	DPGEVPLEEQ	CEVLSYDASQ	
hu	101	CWIKRPAHD	IKIGYLSIM	DPGEVPLEEQ	CEVLSYDASQ	
■o	101	CWIKRPAHD	IKIGYLSIM	DPGEVPLEEQ	CEVLSYDASQ	

Fig. 22A

Mass Lung Kidney LN

Fig. 22B

Fig. 22C

Fig. 22D

Fig. 23A

Fig. 23B

Fig. 23C

LE-Saline

Fig. 24 A-D