Junhao Pan

CS 498 AM1

Homework 1

Part 1:

1A: 0.75817

1B: 0.74575

1D: 0.77386

P₁A

P1B is roughly the same with substitution of NA

```
library(caret)
d_train_all <- read.csv("pima-indians-diabetes.csv")</pre>
n_col_total <- ncol(d_train_all)
n_row_total <- nrow(d_train_all)
accuracy <- matrix(ncol = 1, nrow = 10)</pre>
  train_idx <- createDataPartition(d_train_all$X1, p = 0.8, list = FALSE, times = 1)</pre>
  d_test <- d_train_all[-train_idx,]</pre>
  d_train <- d_train_all[train_idx,]</pre>
  n_col <- ncol(d_train)</pre>
  n_row <- nrow(d_train)</pre>
  lbs <- d_train[, 9]</pre>
  svm <- svmlight(d_train[, 1:8], d_train[, 9], pathsvm = ".")
pred <- predict(svm, d_test[, 1:8])</pre>
  correct_count <- 0
  for (i in 1:n_row_test) {
    if (pred[1] == d_test[i, 9])
      correct_count <- correct_count + 1
  accuracy[t, 1] <- correct_count/n_row_test</pre>
final_accuracy = mean(accuracy)
```

P1D with SVM Light

Gaussian untouched	0.6746		
Gaussian stretched	0.6576		
Bernoulli untouched	0.6917		
Bernoulli stretched	0.6346		
10 trees 4 depth untouched	0.7284		
10 trees 4 depth stretched	0.72515		
10 trees 16 depth untouched	0.9575		
10 trees 16 depth stretched	0.96415		
32 trees 4 depth untouched	0.76645		
32 trees 4 depth stretched	0.7558		
32 trees 16 depth untouched	0.97055		
32 trees 16 depth stretched	0.97455		

Overview Data Kernels Discussion Leaderboard Ru	les Team My Submissions	Submit Predictions	
Submission and Description	Public Score	Use for Final Score	
jpan22_12.csv	0.97455		
a few seconds age by Junhao Pan			
add submission details			
jpan22_11.csv	0.97055		
a few seconds ago by Juntiao Pan			
add submission details			
jpan22_10.csv	0.75580		
a few seconds ago by Junhao Pan			
add submission details			
jpan22_9.csv	0.76645		
a few seconds ago by Junhao Pan			
add submission details			
jpan22_8.csv	0.96415		
a minute ago by Junhao Pan			
add submission details			
jpan22_7.csv	0.95750		
a minute ago by Junhao Pan			
add submission details			
jpan22_6.csv	0.72515		
a minute ago by Junhao Pan			
add submission details			
jpan22_5.csv	0.72840		
a minute ago by Junhao Pan			
add submission details			
jpan22_4.csv	0.63460		
2 minutes ago by Junhao Pan			
add submission details			
jpan22_3.csv	0.69170		
2 minutes agn by Junhao Pan			
add submission details			
jpan22_2.csv	0.65760		
2 minutes ago by Junhao Pan			
add submission details			
jpan22 1.csv	0.67460		
2 minutes ago by Junhao Pan		_	

```
ibrary(caret)
library(EBImage)
thres <- 200
d_test_all <- read.csv("test.csv", header = FALSE)</pre>
d_train_all <- read.csv("train.csv")</pre>
d_val_all <- read.csv("val.csv")</pre>
source("util.R")
d_train_fit_all <- read.csv("d_train_fit.csv")</pre>
d_val_fit_all <- read.csv("d_val_fit.csv")</pre>
d_test_fit_all <- read.csv("d_test_fit.csv")</pre>
                                                                            correct <- 0
d_train_fit_all <- d_train_fit_all[, 2:ncol(d_train_fit_all)]</pre>
d_val_fit_all <- d_val_fit_all[, 2:ncol(d_val_fit_all)]</pre>
d_test_fit_all <- d_test_fit_all[, 2:ncol(d_test_fit_all)]</pre>
d_train <- d_train_all[, 2:ncol(d_train_all)]</pre>
d_val <- d_val_all[,</pre>
d_test <- d_test_all[,]</pre>
d_train_fit <- d_train_fit_all[,]</pre>
d_val_fit <- d_val_fit_all[,]</pre>
d_test_fit <- d_test_fit_all[,]</pre>
                                                                            return (ret)
```

```
rb_train <- function(data_t, data_v, data_tt, n_tree, n_level, code) {
   x <- data_t[, 2:ncol(data_t)]</pre>
   y <- as.factor(data_t[, 1])</pre>
   rb <- Rborist(x, y, nTree = n_tree, nLevel = n_level)
z <- data_v[, 2:ncol(data_v)]</pre>
   true <- as.factor(data v[. 1])
    pred <- predict(rb, z)</pre>
    pred_tt <- predict(rb, data_tt)</pre>
    y_pred <- pred$yPred -
   y_pred_tt <- pred_tt$yPred - 1</pre>
    test_csv <- matrix(y_pred_tt, nrow = length(y_pred_tt), ncol = 1)</pre>
   file_str <- paste("jpan22_", code, ".csv", sep = "")
write.csv(test_csv, file = file_str)</pre>
    confusion <- matrix(OL, nrow = 10, ncol = 10)</pre>
    for (i in 1:length(true)) {
         lb <- data_v[i, 1]</pre>
         pd <- y_pred[i]</pre>
         confusion[lb, pd] <- confusion[lb, pd] + 1</pre>
         if (pd == 1b)
             correct <- correct + 1
    accuracy <- correct/length(true)</pre>
    ret <- list(confusion, accuracy)
```

```
pred <- function (data, priors, params, thres) {</pre>
    means <- matrix(unlist(params[1]), ncol = ncol(data), byrow = TRUE)</pre>
    stddv <- matrix(unlist(params[2]), ncol = ncol(data), byrow = TRUE)</pre>
    bern1 <- matrix(unlist(params[3]), ncol = ncol(data), byrow = TRUE)</pre>
    predicts_norm <- matrix(0L, nrow = nrow(data), ncol = 1)</pre>
    predicts_bern <- matrix(OL, nrow = nrow(data), ncol = 1)</pre>
    for (i in 1:nrow(data)) {
        probs_norm <- matrix(0L, nrow = 10, ncol = 1)</pre>
        probs_bern <- matrix(0L, nrow = 10, ncol = 1)</pre>
         for (j in 1:10)
             probs_norm[j] <- log(priors[j])</pre>
             probs_bern[j] <- log(priors[j])</pre>
        for (j in 3:ncol(data)) {
             entry <- data[i, j-1]</pre>
             for (k in 1:10) {
                 if (means[k, j] != 0)
                      probs_norm[k] < probs_norm[k] + dnorm(entry, mean = means[k, j], sd = stddv[k, j], log = TRUE)
                 if (entry > thres)
                      probs_bern[k] <- probs_bern[k] + log(bern1[k, j])</pre>
         idx_norm <- arrayInd(which.max(probs_norm), dim(probs_norm))</pre>
        idx_bern <- arrayInd(which.max(probs_bern), dim(probs_bern))</pre>
        predicts_norm[i] <- idx_norm[, 1] - 1</pre>
        predicts_bern[i] <- idx_bern[, 1] - 1</pre>
    ret = list(predicts_norm, predicts_bern)
    return (ret)
```

```
train <- function(data, counts, thres) {</pre>
     n_row <- nrow(data)</pre>
    n_col <- ncol(data)</pre>
    means \leftarrow matrix(0L, nrow = 10, ncol = n_col)
     stddv <- matrix(OL, nrow = 10, ncol = n_col)
     bern1 <- matrix(0L, nrow = 10, ncol = n_col)
    for (i in 3:n_col) {
         feat_0 \leftarrow matrix(0L, nrow = counts[1], ncol = 2)
         feat_1 \leftarrow matrix(0L, nrow = counts[2], ncol = 2)
         feat_2 \leftarrow matrix(0L, nrow = counts[3], ncol = 2)
         feat_3 <- matrix(0L, nrow = counts[4], ncol = 2)
         feat_4 \leftarrow matrix(0L, nrow = counts[5], ncol = 2)
         feat_5 <- matrix(OL, nrow = counts[6], ncol = 2)</pre>
         feat_6 <- matrix(0L, nrow = counts[7], ncol = 2)
         feat_7 <- matrix(0L, nrow = counts[8], ncol = 2)
         feat_8 <- matrix(OL, nrow = counts[9], ncol = 2)</pre>
         feat_9 \leftarrow matrix(0L, nrow = counts[10], ncol = 2)
         nums \leftarrow matrix(0L, nrow = 10, ncol = 1)
         for (j in 1:n_row) {
              entry = data[j, i]
             if (lbs[i] == 0) {
                  nums[1] \leftarrow nums[1] + 1
                  n \leftarrow nums[1]
                  if (entry > thres) {
                       feat_0[n, 1] <- entry</pre>
                       feat_0[n, 2] <- 1
              } else if (lbs[i] == 1) {
                  nums[2] \leftarrow nums[2] + 1
                  n \leftarrow nums[2]
                  if (entry > thres) {
                       feat_1[n, 1] \leftarrow entry
                       feat_1[n, 2] <- 1
              } else if (lbs[j] == 2) {
                  nums[3] \leftarrow nums[3] + 1
                  n \leftarrow nums[3]
                  if (entry > thres) {
                       feat_2[n, 1] <- entry
                       feat_2[n, 2] \leftarrow 1
              } else if (lbs[j] == 3) {
                  nums[4] <- nums[4] + 1
                  n \leftarrow nums[4]
```