Two Sigma Connect: Rental Listing Inquiries

 $\frac{https://github.com/tatvch/Two-Sigma-Connect-Rental-Listing-Inquiries/blob/main/two-sigma-connect-rental-listing-Inquiries.jpynb}{} \\$

```
# This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python
# For example, here's several helpful packages to load

import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

# Input data files are available in the read-only "../input/" directory
# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory

import os
for dirname, _, filenames in os.walk('/kaggle/input'):
    for filename in filenames:
        print(os.path.join(dirname, filename))

# You can write up to 206B to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "
# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session
```

```
/kaggle/input/two-sigma-connect-rental-listing-inquiries/images_sample.zip
/kaggle/input/two-sigma-connect-rental-listing-inquiries/kaggle-renthop.torrent
/kaggle/input/two-sigma-connect-rental-listing-inquiries/sample_submission.csv.zip
/kaggle/input/two-sigma-connect-rental-listing-inquiries/test.json.zip
/kaggle/input/two-sigma-connect-rental-listing-inquiries/train.json.zip
```

```
import pandas as pd
import numpy as np
import numpy as np \# linear algebra
import pandas as pd \# data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
import itertools
import matplotlib.pyplot as plt
import string
import re
import collections
from sklearn import preprocessing
from wordcloud import WordCloud
from sklearn.model_selection import train_test_split, KFold, cross_val_score
from xgboost import XGBClassifier
import xgboost as xgb
from sklearn.metrics import make_scorer, f1_score, accuracy_score, mean_absolute_error, confusion_matrix
import optuna
%matplotlib inline
import itertools
import matplotlib.pvplot as plt
import seaborn as sns
color = sns.color_palette()
%matplotlib inline
sns.set_style("whitegrid")
import warnings
```

train = pd.read_json('../input/two-sigma-connect-rental-listing-inquiries/train.json.zip')
test = pd.read_json('../input/two-sigma-connect-rental-listing-inquiries/test.json.zip')

Basic Insight of Dataset (Базовое представление о наборе данных)

t	rain. h	ead(3)										
	bathrooms	bedrooms	building_id	created	description	display_address	features	latitude	listing_id	longitude	manager_id	
4	1.0	1	8579a0b0d54db803821a35a4a615e97a	2016- 06-16 05:55:27	Spacious 1 Bedroom 1 Bathroom in Williamsburg!	145 Borinquen Place	[Dining Room, Pre-War, Laundry in Building, Di	40.7108	7170325	-73.9539	a10db4590843d78c784171a107bdacb4	[https://photos.renthop.
6	1.0	2	b8e75fc949a6cd8225b455648a951712	2016- 06-01 05:44:33	BRAND NEW GUT RENOVATED TRUE 2 BEDROOMFind you	East 44th	[Doorman, Elevator, Laundry in Building, Dishw	40.7513	7092344	-73.9722	955db33477af4f40004820b4aed804a0	[https://photos.renthop.
9	1.0	2	cd759a988b8f23924b5a2058d5ab2b49	2016- 06-14 15:19:59	**FLEX 2 BEDROOM WITH FULL PRESSURIZED WALL**L	East 56th Street	[Doorman, Elevator, Laundry in Building, Laund	40.7575	7158677	-73.9625	c8b10a317b766204f08e613cef4ce7a0	[https://photos.renthop.

train.shape

(49352, 15)

print(train.columns.values)

['bathrooms' 'bedrooms' 'building_id' 'created' 'description' 'display_address' 'features' 'latitude' 'listing_id' 'longitude' 'manager_id' 'photos' 'price' 'street_address' 'interest_level']

train.describe()

	bathrooms	bedrooms	latitude	listing_id	longitude	price
count	49352.00000	49352.000000	49352.000000	4.935200e+04	49352.000000	4.935200e+04
mean	1.21218	1.541640	40.741545	7.024055e+06	-73.955716	3.830174e+03
std	0.50142	1.115018	0.638535	1.262746e+05	1.177912	2.206687e+04
min	0.00000	0.000000	0.000000	6.811957e+06	-118.271000	4.300000e+01
25%	1.00000	1.000000	40.728300	6.915888e+06	-73.991700	2.500000e+03
50%	1.00000	1.000000	40.751800	7.021070e+06	-73.977900	3.150000e+03
75%	1.00000	2.000000	40.774300	7.128733e+06	-73.954800	4.100000e+03
max	10.00000	8.000000	44.883500	7.753784e+06	0.000000	4.490000e+06

train.describe(include = "all")

	bathrooms	bedrooms	building_id	created	description	display_address	features	latitude	listing_id	longitude	manager_id	photos	price	street
count	49352.00000	49352.000000	49352	49352	49352	49352	49352	49352.000000	4.935200e+04	49352.000000	49352	49352	4.935200e+04	
unique	NaN	NaN	7585	48675	38244	8826	10254	NaN	NaN	NaN	3481	45677	NaN	
top	top NaN NaN (2016- N 0 04-08 Broadway [] N 01:14:27		NaN	NaN	NaN	e6472c7237327dd3903b3d6f6a94515a	0	NaN	В			
freq	NaN	NaN	8286	3	1647	438	3218	NaN	NaN	NaN	2533	3615	NaN	
mean	1.21218	1.541640	NaN	NaN	NaN	NaN	NaN	40.741545	7.024055e+06	-73.955716	NaN	NaN	3.830174e+03	
std	0.50142	1.115018	NaN	NaN	NaN	NaN	NaN	0.638535	1.262746e+05	1.177912	NaN	NaN	2.206687e+04	
min	0.00000	0.000000	NaN	NaN	NaN	NaN	NaN	0.000000	6.811957e+06	-118.271000	NaN	NaN	4.300000e+01	
25%	1.00000	1.000000	NaN	NaN	NaN	NaN	NaN	40.728300	6.915888e+06	-73.991700	NaN	NaN	2.500000e+03	
50%	1.00000	1.000000	NaN	NaN	NaN	NaN	NaN	40.751800	7.021070e+06	-73.977900	NaN	NaN	3.150000e+03	
75%	1.00000	2.000000	NaN	NaN	NaN	NaN	NaN	40.774300	7.128733e+06	-73.954800	NaN	NaN	4.100000e+03	
max	10.00000	8.000000	NaN	NaN	NaN	NaN	NaN	44.883500	7.753784e+06	0.000000	NaN	NaN	4.490000e+06	

train.info() <class 'pandas.core.frame.DataFrame'> Int64Index: 49352 entries, 4 to 124009 Data columns (total 15 columns):

```
train.isnull().sum()
```

```
bathrooms 0
bedrooms 0
building_id 0
created 0
description 0
display_address 0
features 0
latitude 0
listing_id 0
longitude 0
manager_id 0
photos 0
price 0
street_address 0
interest_level 0
dtype: int64
```

Data visualization and pre-processing (Визуализация данных и предварительная обработка)

'interest_level'¶

train.groupby(train['interest_level']).mean()

	bathrooms	bedrooms	latitude	listing_id	longitude	price
interest_level						
high	1.116176	1.546496	40.748007	7.017844e+06	-73.964613	2700.293045
low	1.238741	1.514759	40.739504	7.026373e+06	-73.951667	4176.599142
medium	1.163906	1.622050	40.745567	7.019098e+06	-73.965033	3158.767388

train['interest_level'].value_counts()

low 34284 medium 11229 high 3839

Name: interest_level, dtype: int64

sns.set_style('whitegrid')
sns.countplot(x='interest_level',data=train,palette='RdBu_r')

'bathrooms'

'bathrooms'¶

Value Counts
train['bathrooms'].value_counts()

1.0 39422 2.0 7660

```
3.0
1.5
         645
         313
0.0
         277
159
2.5
4.0
        70
29
20
3.5
4.5
5.0
         5
5.5
6.0
          4
          1
6.5
7.0
         1
1
10.0
Name: bathrooms, dtype: int64
```

train.groupby(['bathrooms']) ['interest_level'].value_counts(normalize=True)

bathro	_	
0.0	low	0.977636
	medium	0.019169
	high	0.003195
1.0	low	0.674268
	medium	0.239156
	high	0.086576
1.5	low	0.937984
	medium	0.062016
2.0	low	0.726632
	medium	0.220235
	high	0.053133
2.5	low	0.989170
	medium	0.010830
3.0	low	0.900671
	medium	0.080537
	high	0.018792
3.5	low	1.000000
4.0	low	0.943396
	medium	0.031447
	high	0.025157
4.5	low	1.000000
5.0	low	1.000000
5.5	low	1.000000
6.0	low	1.000000
6.5	low	1.000000
7.0	1ow	1.000000
10.0	low	1.000000
	interest level.	
	,	,,

train.pivot_table('price', 'bathrooms', 'interest_level', 'count').plot(kind='bar', stacked=True)

'bedrooms'

```
# Value Counts
train['bedrooms'].value_counts()
```

1 15752 2 14623

```
0 9475
3 7276
4 1929
5 247
6 46
8 2
7 2
Name: bedrooms, dtype: int64
```

train.groupby(['bedrooms']) ['interest_level'].value_counts(normalize=True)

bedroo	ms interest_le	vel
0	low	0.687916
	medium	0.222691
	high	0.089393
1	low	0.743715
	medium	0.196420
	high	0.059865
2	low	0.670246
	medium	0.240443
	high	0.089311
3	low	0.649670
	medium	0.268966
	high	0.081363
4	low	0.639191
	medium	0.283567
	high	0.077242
5	low	0.983806
	high	0.008097
	medium	0.008097
6	low	0.956522
	medium	0.043478
7	low	0.500000
	medium	0.500000
8	low	1.000000
Name:	interest_level,	dtype: float64

train.pivot_table('price', 'bedrooms', 'interest_level', 'count').plot(kind='bar', stacked=True)


```
# 'bathrooms' and 'bedrooms'
fig, axes = plt.subplots(ncols=2)
train.pivot_table('price', ['bathrooms'], 'interest_level', 'count').plot(ax=axes[0], title='bathrooms')
train.pivot_table('price', ['bedrooms'], 'interest_level', 'count').plot(ax=axes[1], title='bedrooms')
```


'building_id

Most advertised buildings
train.building_id.value_counts().nlargest(10)

0	8286
96274288c84ddd7d5c5d8e425ee75027	275
11e1dec9d14b1a9e528386a2504b3afc	215
80a120d6bc3aba97f40fee8c2204524b	213
bb8658a3e432fb62a440615333376345	212
f68bf347f99df026f4faad43cc604048	191
c94301249b8c09429d329864d58e5b82	167
ce6d18bf3238e668b2bf23f4110b7b67	165
57ef86c28a8ae482dc3a3c3af28e8e48	159
128d4af0683efc5e1eded8dc8044d5e3	153
Name: building_id, dtype: int64	

'created'

Convertion to Python Date (Преобразование в дату Python)
train.created = pd.to_datetime(train.created, format='%Y-%m-%d %H:%M:%S')
test.created = pd.to_datetime(test.created, format='%Y-%m-%d %H:%M:%S')

```
# Month, Day of Week and Hour Features (Месяц, день недели и часы)
train['month'] = train.created.dt.month
train['day_of_week'] = train.created.dt.weekday
train['hour'] = train.created.dt.hour

train.head(2)
```

isplay_address	features	latitude	listing_id	longitude	manager_id	photos	price	street_address	interest_level	month	day_of_week	hour
145 Borinquen Place		40.7108	7170325	-73.9539	a10db4590843d78c784171a107bdacb4	[https://photos.renthop.com/2/7170325_3bb5ac84	2400	145 Borinquen Place	medium	6	3	5
East 44th	[Doorman, Elevator, Laundry in Building, Dishw	40.7513	7092344	-73.9722	955db33477af4f40004820b4aed804a0	[https://photos.renthop.com/2/7092344_7663c19a	3800	230 East 44th	low	6	2	5
												_


```
# Iterest per Hour
fig = plt.figure(figsize=(12,6))
sns.countplot(x="hour", hue="interest_level", hue_order=['low', 'medium', 'high'], data=train);
plt.xlabel('Hour');
plt.ylabel('Number of occurrences');
```


'display_address'

```
# Number of unique Display Addresses print('Number of Unique Display Addresses is {}'.format(train.display_address.value_counts().shape[0]))
```

Number of Unique Display Addresses is 8826

```
# 20 most popular Display Addresses
train.display_address.value_counts().nlargest(20)
```

```
Broadway
East 34th Street
                     438
                     355
Second Avenue
                     349
Wall Street
West 37th Street
                     287
West Street
                     258
First Avenue
                     244
Gold Street
                     241
Washington Street
                    237
York Avenue
                     228
John Street
Water Street
                     214
East 39th Street
                    200
East 89th Street
                    195
                    193
West 54th Street
Lexington Avenue
                    189
Fifth Avenue
                    189
West 42nd Street
                    184
Christopher Street
                    180
Third Avenue
                   178
Name: display_address, dtype: int64
```

```
# Top 20 northernmost points (Топ-20 самых северных точек)
train.latitude.nlargest(20)
```

```
78568
         44.8835
16405
         44.6038
18267
         43.0346
81815
         42.8725
4719
         42.8724
872
         42.3459
24747
         42.3459
80360
         42.3459
85995
         42.3459
62409
```

```
73065
         42.3033
117255
         42.2509
39046
          42.2019
         42.2019
41022
57131
          42.2019
114889
         42.2019
72896
          41.7530
18023
          41.0868
71920
         41.0868
100346
         41.0412
Name: latitude, dtype: float64
```

```
# Rent interest graph of New-York
sns.lmplot(x="longitude", y="latitude", fit_reg=False, hue='interest_level',
    hue_order=['low', 'medium', 'high'], size=9, scatter_kws={'alpha':0.4,'s':30},
    data=train[(train.longitude>train.longitude.quantile(0.1))
        &(train.longitude<train.longitude.quantile(0.9))
        &(train.latitude>train.latitude.quantile(0.1))
        &(train.latitude>train.latitude.quantile(0.9))]);
plt.xlabel('Longitude');
```


'manager id'

train.manager_id.value_counts().nlargest(10)

```
e6472c7237327dd3903b3d6f6a94515a 2533
6e5c18246156ae5bdcd9b487ca99d96a 711
8f5a9c893f6d602f4953fcc0b8e6e9b4 410
62b685cc0d876c3ala51d63a9d6a88082 402
cb87dadbca78fad62b388dc9e8f25a5b 373
9df32cb8dda19d3222d66e69e258616b 3300
b7de4cb395920136663132057fa89d84 3220
2a9bfa5f67ed9997ea341dee8a3a271 316
ad3d8ddc52c7e8859b5-6c7f7949c3bd 395
c9c33695ee2a2f818e9f1d8f7d1c4b9 299
Name: manager_id, dtype: int64
```

```
# Let's get a list of top 10 managers
top10managers = train.manager_id.value_counts().nlargest(10).index.tolist()
# ...and plot number of different Interest Level rental adverts for each of them
fig = plt.figure(figsize=(12,6))
ax = sns.countplot(x="manager_id", hue="interest_level",
                         data=train[train.manager_id.isin(top10managers)]);
plt.xlabel('Manager');
plt.ylabel('Number of advert occurrences');
### Manager_ids are too long. Let's remove them
plt.tick_params(
     axis='x', # changes apply to the x-axis
which='both', # both major and minor ticks are affected
bottom='off', # ticks along the bottom edge are off
top='off', # ticks along the top edge are off
      labelbottom='off');
plt.xticks([])
# Adding percents over bars
height = [0 if np.isnan(p.get_height()) else p.get_height() for p in ax.patches]
ncol = int(len(height)/3)
total = [height[i] + height[i + ncol] + height[i + 2*ncol] for i in range(ncol)] * 3 for i, p in enumerate(ax.patches):
      ax.text(p.get_x()+p.get_width()/2,
                height[i] + 20,
                 \{:1.0\%\}.format(height[i]/total[i]),
                 ha="center")
```


'photos_number'

```
# count of photos
train["photos_number"] = train["photos"].apply(len)
train["photos_number"].value_counts()
```

```
5
     7887
     6739
     4952
3
     4553
8
     3972
0
     3615
9
     1772
10
     1390
2
     1334
1
     1178
12
      816
11
      784
13
      377
14
      232
15
16
      152
18
      114
17
      109
20
      87
22
       73
32
       62
```

```
21
       21
26
       19
37
25
       18
       17
23
       16
       16
45
       12
28
       11
27
38
       7
       5
5
34
30
       4
29
35
        3
46
60
       2
       1
44
        1
68
        1
50
31
Name: photos_number, dtype: int64
```

price

```
# Value Counts
train['price'].value_counts()
2500
         1106
3200
         881
3000
          840
2700
          777
2400
          772
5753
2417
5433
135000
Name: price, Length: 2808, dtype: int64
```

```
# Price exploration
prices=train.groupby('interest_level', as_index=False)['price'].mean()
colors = ['lightcoral', 'gold', 'lightblue']

fig=plt.figure(figsize=(8,6))
plt.bar(prices.interest_level, prices.price, color=colors, width=0.5, alpha=0.8)
#set titles
plt.xlabel('Interest level')
plt.ylabel('Average price')
plt.title('Average price across interest level')
plt.show()
```


'description'

```
train['description'].iloc[0]
```

'Spacious 1 Bedroom 1 Bathroom in Williamsburg!Apartment Features:- Renovated Eat in Kitchen With Dishwasher- Renovated Bathroom-Beautiful Hardwood Floors- Lots of Sunlight- Great Closet Space- Freshly Painted- Heat and Hot Water Included- Live in Super Nearby L, J, M & G Trains !
br />cbr />contact Information:Kenneth BeakExclusive AgentC: 064-692-8838Email: kagglemanager@renthop.com, Text or Email to schedule a private viewing!
br />cbr />cbr

```
# REMOVE UNNECESSARY WORDS FROM DESCRIPTION (УДАЛИТЬ НЕНУЖНЫЕ СЛОВА ИЗ ОПИСАНИЯ)

train['description'] = train['description'].apply(lambda x: x.replace("cbr />", ""))

train['description'] = train['description'].apply(lambda x: x.replace("br", ""))

train['description'] = train['description'].apply(lambda x: x.replace("<a", ""))

train['description'].iloc[0]
```

'Spacious 1 Bedroom 1 Bathroom in Williamsburg!Apartment Features:- Renovated Eat in Kitchen With Dishwasher- Renovated Bathroom-Beautiful Hardwood Floors- Lots of Sunlight- Great Closet Space- Freshly Painted- Heat and Hot Water Included- Live in Super Nearby L, J, M & G Trains !Contact Information:Kenneth BeakExclusive AgentC: 064-692-8838Email: kagglemanager@renthop.com, Text or Email to schedule a private viewing! website_redacted '

```
# description contains email
regex = r'[\w\.-]+@[\w\.-]+'
train['has_email'] = train['description'].apply(lambda x: 1 if re.findall(regex, x) else 0)
train['has_email'].value_counts()
```

```
0 32077
1 17275
Name: has_email, dtype: int64
```

```
0 31492
1 17860
Name: has_phone, dtype: int64
```

'features'

```
# count of "features"
train["num_features"] = train["features"].apply(len)
train["num_features"].value_counts()
```

```
3
      6211
      5459
4
5
      4547
1
      4340
6
      3835
      3374
0
     3218
      2840
      2453
10
      2217
11
     1681
```

```
13
     1009
14
     737
15
     456
16
     283
17
     161
      45
20
      24
21
      14
22
      13
26
      8
      6
24
      5
28
       3
25
       2
32
36
       1
39
Name: num_features, dtype: int64
```

```
# CONVERT LOWER ALL OF WORDS
train[["features"]] = train[["features"]].apply(
  lambda _: [list(map(str.strip, map(str.lower, x))) for x in _])
train[["features"]]
```

	features
4	[dining room, pre-war, laundry in building, di
6	[doorman, elevator, laundry in building, dishw
9	[doorman, elevator, laundry in building, laund
10	0
15	[doorman, elevator, fitness center, laundry in
124000	[elevator, dishwasher, hardwood floors]
124002	[common outdoor space, cats allowed, dogs allo
124004	[dining room, elevator, pre-war, laundry in bu
124008	[pre-war, laundry in unit, dishwasher, no fee,
124009	[dining room, elevator, laundry in building, d
49352 ro	ws × 1 columns

MOST FREQUENT FEATURES EXTRACTION (ИЗВЛЕЧЕНИЕ НАИБОЛЕЕ ЧАСТОТЫХ ФУНКЦИЙ)

```
feature_value_train = train['features'].tolist()
feature_value_test = test['features'].tolist()
```

```
feature_lst_train = []
for i in range(len(feature_value_train)):
    feature_lst_train += feature_value_train[i]
uniq_feature_train = list(set(feature_lst_train))
# print(uniq_feature) #all unique features
len(uniq_feature_train)
```

```
# see the frequency of each feature
import collections
def most_common(lst):
```

	feature_value	frequency
8	elevator	26273
4	hardwood floors	23558
6	cats allowed	23540
5	dogs allowed	22035
7	doorman	20967
734	** central park steal! * massive studio suprem	1
251	12th st & 3rd ave	1
736	full kitchen	1
737	new stainless appliances	1
1292	available 06/04/16 firepalce	1

1293 rows × 2 columns

df_features_train.head(20)

	feature_value	frequency
8	elevator	26273
4	hardwood floors	23558
6	cats allowed	23540
5	dogs allowed	22035
7	doorman	20967
3	dishwasher	20806
2	laundry in building	18944
9	no fee	18079
11	fitness center	13257
10	laundry in unit	9435
1	pre-war	9149
14	roof deck	6555
34	outdoor space	5270
0	dining room	5150
15	high speed internet	4299
23	balcony	3058
16	swimming pool	2730
30	new construction	2608
33	terrace	2313
32	exclusive	2167

```
facilities = [
'elevator', 'cats allowed', 'hardwood floors', 'dogs allowed', 'doorman', 'dishwasher', 'no fee', 'laundry in building', 'fitness cent
'laundry in unit', 'pre-war', 'roof deck', 'outdoor space','dining room', 'high speed internet', 'balcony', 'swimming pool',
'new construction', 'terrace']
for name in facilities:
    train = newColumn(name, train, train['features'])
    test = newColumn(name, test, test['features'])
train.head(5)
```

	bathrooms	bedrooms	building_id	created	description	display_address	features	latitude	listing_id	longitude	 laundry in unit			outdoor space	dining room	high speed internet	balc
4	1.0	1	8579a0b0d54db803821a35a4a615e97a	2016- 06-16 05:55:27	Spacious 1 Bedroom 1 Bathroom in Williamsburg!	145 Borinquen Place	[dining room, pre-war, laundry in building, di	40.7108	7170325	-73.9539	 0	1	0	0	1	0	
6	1.0	2	b8e75fc949a6cd8225b455648a951712	2016- 06-01 05:44:33	BRAND NEW GUT RENOVATED TRUE 2 BEDROOMFind you	East 44th	[doorman, elevator, laundry in building, dishw	40.7513	7092344	-73.9722	 0	0	0	0	0	0	
9	1.0	2	cd759a988b8f23924b5a2058d5ab2b49	2016- 06-14 15:19:59	**FLEX 2 BEDROOM WITH FULL PRESSURIZED WALL**L	East 56th Street	[doorman, elevator, laundry in building, laund	40.7575	7158677	-73.9625	 1	0	0	0	0	0	
10	1.5	3	53a5b119ba8f7b61d4e010512e0dfc85	2016- 06-24 07:54:24	A Brand New 3 Bedroom 1.5 bath ApartmentEnjoy 	Metropolitan Avenue	0	40.7145	7211212	-73.9425	 0	0	0	0	0	0	
15	1.0	0	bfb9405149bfff42a92980b594c28234	2016- 06-28 03:50:23	Over-sized Studio w abundant closets. Availabl	East 34th Street	[doorman, elevator, fitness center, laundry in	40.7439	7225292	-73.9743	 0	0	0	0	0	0	
5 rov	ws × 41 colu	imns											_				

```
#WORDCLOUD FOR DESCRIPTION AND DISPLAY ADDRESS
#Preprocessing
text = ''
text_da = ''
text_desc = ''
text_str = ''
for ind, row in train.iterrows():
     for feature in row['features']:
    text = " ".join([text, "_".join(feature.strip().split(" "))])

text_d = " ".join([text_da, "_".join(row['display_address'].strip().split(" "))])

text_desc = " ".join([text_desc, row['description']])

text_str = " ".join([text_str, row['street_address']])
text = text.strip()
text_da = text_da.strip()
text_desc = text_desc.strip()
text_str = text_str.strip()
# wordcloud for features
plt.figure(figsize=(12,6))
wordcloud = WordCloud(background_color='white', width=600, height=300, max_font_size=50, max_words=40).generate(text)
wordcloud.recolor(random_state=0)
plt.imshow(wordcloud)
plt.title("Wordcloud for features", fontsize=30)
plt.axis("off")
plt.show()
# wordcloud for display address
plt.figure(figsize=(12,6))
wordcloud = WordCloud(background\_color='white', width=600, height=300, max\_font\_size=50, max\_words=40).generate(text\_da)
wordcloud.recolor(random\_state=0)
plt.imshow(wordcloud)
plt.title("Wordcloud for Display Address", fontsize=30)
plt.axis("off")
plt.show()
# wordcloud for description
plt.figure(figsize=(12,6))
wordcloud = WordCloud(background_color='white', width=600, height=300, max_font_size=50, max_words=40).generate(text_desc)
wordcloud.recolor(random_state=0)
```

```
plt.imshow(wordcloud)
plt.title("Wordcloud for Description", fontsize=30)
plt.axis("off")
plt.show()

# wordcloud for street address
plt.figure(figsize=(12,6))
wordcloud = Wordcloud(background_color='white', width=600, height=300, max_font_size=50, max_words=40).generate(text_str)
wordcloud.recolor(random_state=0)
plt.imshow(wordcloud)
plt.title("Wordcloud for Street Address", fontsize=30)
plt.axis("off")
plt.show()
```

Wordcloud for features doorman elevator roof_deck doorman high_speed_internet dishwasher laundry_in_building dishwasher elevator flaundry_in_building dishwasher elevator laundry_in_building elevator laundry_in_building elevator laundry_in_building high_speed_internet laundry_in_building laundry_in_building laundry_in_building laundry_in_building laundry_in_building elevator dishwasher hardwood_floors dogs_allowed pre Wardoorman fitness_center no_fee outdoor_space fitness_center laundry_in_building elevator dishwasher hardwood_floors dogs_allowed pre Wardoorman fitness_center no_fee outdoor_space dogs_allowed cats_allowed dogs_allowed cats_allowed dogs_allowed loors and laundry_in_building elevator dishwasher hardwood_floors dogs_allowed cats_allowed dogs_allowed loors and laundry_in_building elevator dishwasher hardwood_floors dogs_allowed laundry_in_building elevator dishwasher hardwood_floors dogs_allowed laundry_in_building elevator dishwasher hardwood_floors dogs_allowed laundry_in_building elevator dishwasher laundry_in_bu

Wordcloud for Description real estate closet space washer dryer equal housing living roomapartment feature housing opportunity living roomapartment feature housing opportunity living roomapartment feature housing opportunity living roomapartment feature blank href Kagglemanager renthop bedroom apartment hardwood floor estate oker stainless steel unitbuilding call Text steel appliance high ceiling New York fitness center New York roof deck

Wordcloud for Street Address Ave W West Street 39th Street Avenue E Street S ത Avenue East Gold Street E Street East Street West 54th Street Avenue West St W Ave West E St Street W⁵ 46th Street St West et Wall Avenue W 63rd Street Street Broadway Street Wall Ave East York Avenue West 37th

Our target 'INTEREST LEVEL' is an object.(Наша цель «УРОВЕНЬ ИНТЕРЕСА» — это объект.)

Let's convert to the numeric to analyze easily (Давайте перейдем к числовому, чтобы легко анализировать)

0 : low; 1 : medium; 2 : high

DROP UNNECESSARY COLUMNS (УДАЛИТЬ НЕНУЖНЫЕ СТОЛБЦЫ)

```
# TRAINING DATASET
train.drop('interest_level', axis=1, inplace=True)
train.drop('description', axis=1, inplace=True)
train.drop('description', axis=1, inplace=True)
train.drop('features', axis=1, inplace=True)
train.drop('photos', axis=1, inplace=True)

# TEST DATASET
test.drop('created', axis=1, inplace=True)
test.drop('description', axis=1, inplace=True)
test.drop('features', axis=1, inplace=True)
test.drop('photos', axis=1, inplace=True)
test.drop('photos', axis=1, inplace=True)
```

LABEL ECONDING FOR CATEGORICAL VARIABLES (КОДИРОВАНИЕ METKИ ДЛЯ CATEGORICAL ПЕРЕМЕННЫХ)

```
categorical = ["display_address", "manager_id", "building_id", "street_address"]
for f in categorical:
    if train[f].dtype=='object':
        lbl = preprocessing.LabelEncoder()
        lbl.fit(list(train[f].values) + list(test[f].values))
```

```
train[f] = lbl.transform(list(train[f].values))
test[f] = lbl.transform(list(test[f].values))
```

XGBOOST (алгоритм градиентного бустинга на деревьях)

```
kf = KFold(n_splits=5, shuffle=False)

X_train = X_train.values
y_train = y_train.values
scores = []

for train, test in kf.split(X_train, y_train):
    model = XGBClassifier(n_estimators=1000, learning_rate=0.05, max_depth = 10)
    model.fit(X_train[train], y_train[train])
    scores.append(model.score(X_train[test], y_train[test]))
```

/opt/conda/lib/python3.7/site-packages/xgboost/sklearn.py:1224: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future releas e. To remove this warning, do the following: 1) Pass option use label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].

Warnings.warn(label_encoder_deprecation_msg, UserWarning)
[09:11:19] MARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'multi:softprob' was changed from 'merror' to 'mlogloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
[09:14:47] MARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'multi:softprob' was changed from 'merror' to 'mlogloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
[09:18:12] MARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'multi:softprob' was changed from 'merror' to 'mlogloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
[09:21:39] MARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'multi:softprob' was changed from 'merror' to 'mlogloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
[09:25:06] MARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'multi:softprob' was changed from 'merror' to 'mlogloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

```
def objective(trial):
    params = {
        'booster':trial.suggest_categorical('booster', ['gbtree', 'dart', 'gblinear']),
        'learning_rate':trial.suggest_loguniform("learning_rate", 0.01, 0.1),
        'max_depth':trial.suggest_int("max_depth", 3, 11),
        'subsample':trial.suggest_uniform("subsample", 0.0, 1.0),
        'colsample_bytree':trial.suggest_uniform("colsample_bytree", 0.0, 1.0),
}

model = XGBClassifier(**params)
    cv = KFold(n_splits=3, shuffle=True, random_state=None)
    scorer = make_scorer(f1_score, greater_is_better=True)

bst = xgb.train(params, dtrain)
    preds = bst.predict(dvalid)
```

```
pred_labels = np.rint(preds)
f1_scores = f1_score(y_test, pred_labels, average='micro')
return f1_scores
```

```
study = optuma.create_study(direction="maximize")
study.optimize(objective, n_trials=100, timeout=600)

[I 2022-01-31 09:15:36,464] A new study created in emercy with name: no-name-slc0bSae-266e-462e-8612-978102409316
[I 2022-01-31 09:15:36,569] Trial a finished with value: 0.48854731871377 and parameters: ('booster': 'gblinear', 'learning_rate': 0.06978904317996577, 'max_depth': 6, 's ubsample': 0.9356622099088, 'colsample_bytree': 0.31565247845473343], Best is trial 0 with value: 0.688847431871377.

[09:36:36] MANNING: ./src/learner.cc:576:
Parameters: ('colsample_bytree': 0.9356247845473343], Best is trial 0 with value: 0.688847431871377.

[1 302-01-31 09:36:37,011] Trial 1 finished with value: 0.70043924396 and parameters: ('booster': 'gbtree', 'learning_rate': 0.07173704735625912, 'max_depth': 5, 'subsample': 0.8688878938977487, 'colsample bytree': 0.9075799468858805], Best is trial 1 with value: 0.7004356194924396.

[I 2022-01-31 09:36:37,011] Trial 1 finished with value: 0.8095875628975 and parameters: ('booster': 'dart', 'learning_rate': 0.07173704735625912, 'max_depth': 5, 'subsample': 0.8688878938977487, 'colsample bytree': 0.2003343219851943].

[I 2022-01-31 09:36:37,017] Trial 5 finished with value: 0.8095876628975 and parameters: ('booster': 'dart', 'learning_rate': 0.043825559706, 'max_depth': 10, 'subsample': 0.2200061144102255, 'colsample bytree': 0.2004343219851493]. Best is trial 1 with value: 0.700435619491396.

[I 2022-01-31 09:36:38,038] Trial 4 finished with value: 0.707831021060647 and parameters: ('booster': 'gbtree', 'learning_rate': 0.03300267080837999, 'max_depth': 9, 'subsample': 0.12200061144012255, 'colsample_bytree': 0.200434521098564697 and parameters: ('booster': 'gbtree', 'learning_rate': 0.0330026709837999, 'max_depth': 9, 'subsample': 0.12200061144012255, 'colsample_bytree': 0.2004345210935646979 and parameters: ('booster': 'gbtree', 'learning_rate': 0.0376409904857424, 'max_depth': 9, 'subsample': 0.8350037053125931, 'colsample_bytree': 0.92436830183893877). Best is trial 4
```

```
| cample': 0.7922526198937557, 'colsample_bytree': 0.9851971809909537). Best is trial 81 with value: 0.7244435449498531.
| cample': 0.7922526198937557, 'colsample' pree': 0.740825805252672 and parameters: ('booster': 'dart', 'learning_rate': 0.8763829153088128, 'max_depth': 11, 'sub_sample': 0.792313408691384, 'colsample' with value: 0.9868587687). Best is trial 81 with value: 0.7244453440908531.
| cample': 0.79232080723558023, 'colsample' pree': 0.858886715769031, 'booster': 'dart', 'learning_rate': 0.8742935999277723, 'max_depth': 18, 'max_depth': 0.792485874698531.
| cample': 0.7922508723, 'max_depth', 'subsample') sight not be used.
| cample': 0.7922508723, 'max_depth', 'subsample') sight not be used.
| cample': 0.7922508723, 'max_depth', 'subsample') sight not be used.
| cample': 0.7922508723, 'max_depth', 'subsample') sight not be used.
| cample': 0.7922508723, 'max_depth', 'subsample') sight not be used.
| cample': 0.7922508723, 'max_depth', 'subsample') sight not be used.
| cample': 0.7922508723, 'max_depth', 'subsample') sight not be used.
| cample': 0.7922508723, 'max_depth', 'subsample') sight not be used.
| cample': 0.7922508723, 'max_depth', 'subsample') sight not be used.
| cample': 0.7922726723, 'max_depth', 'subsample') sight not be used.
| cample': 0.79227267273, 'max_depth', 'subsample') sight not be used.
| cample': 0.79227267273, 'max_depth', 'subsample') sight not be used.
| cample': 0.79227267273, 'max_depth', 'subsample': 0.79227273, 'max_depth', 'subsample': 0.79227273, 'max_depth', 'subsample': 0.79227273, 'max_depth': 11, 'subsample': 0.79227273, 'max_depth', 'subsample': 0.79227273, 'max_depth': 11, 'subsample': 0.79227273, 'max_depth': 0.79227273, 'max_depth': 11, 'subsample': 0.79227273, 'max_depth': 11, 'subsample': 0.79227273, 'max_depth': 11, 'subsample': 0.79227273, 'max_depth': 0.
```

study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=100, timeout=600)

```
new_params = study.best_params
new_model = XGBClassifier(**new_params)
new_model.fit(X, y)
preds = new_model.predict(X_test)

print('Optimized SuperLearner accuracy: ', accuracy_score(y_test, preds))
print('Optimized SuperLearner f1-score: ', f1_score(y_test, preds, average='micro'))
```

```
new_params = study.best_params

new_model = XGBClassifier(**new_params)
new_model.fit(X, y)
preds = new_model.predict(X_test)

print('Optimized SuperLearner accuracy: ', accuracy_score(y_test, preds))
print('Optimized SuperLearner f1-score: ', f1_score(y_test, preds, average='micro'))

/opt/conda/lib/python3.7/site-packages/xgboost/sklearn.py:1224: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future releas
e. To remove this warnings, do the following: 1) Pass option use_label_encoder=false when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starti
ng with 0, i.e. 0, 1, 2, ..., [num_class - 1].

warnings.warn(label_encoder_deprecation_msg, UserWarning)
[09:47-39] WARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'multi:softprob' was changed from 'merror' to
'mlogloss' Explicitly set eval_metric if you'd like to restore the old behavior.
Optimized SuperLearner accuracy: 0.919636612298653
Optimized SuperLearner f1-score: 0.919636612298653
```

```
print("Number of finished trials: ", len(study.trials))
print("Best trial:")
trial = study.best_trial
```

```
print(" Value: {}".format(trial.value))
print(" Params: ")
for key, value in trial.params.items():
    print(" {}: {}".format(key, value))
```

```
print('Optimized SuperLearner accuracy: ', accuracy_score(y_test, preds))
print('Optimized SuperLearner f1-score: ', f1_score(y_test, preds, average='micro'))

//opt/conda/lib/pythonl.7/site-packages/xgboost/sklearn.py:1224: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, and the following: 1) Pass option use_label_encoder=false when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings_warn(label_encoder_deprecation_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_superliner.integers_construction_su
```

```
print("All of accuracies")
print(scores)

print("Mean of accuracies")
print(np.mean(scores))
```

Вывод:

```
print('Optimized SuperLearner fi-score: ', fi_score(y_test, preds, average='micro'))

ApplyConda/lib/gython1.7/site-packages/sqboost/sklaarm.py:128: Userskarning: The use of label encoder in XMXClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1)

Fass option use label_encode-false when constructing XMXclassifier object; and 2) fincode your labels (y) as integers starting with 0, i.e. 0, i, 2, ..., [mm_class - 1].

swarnings_warninglead_encode-generation use; Userskarning)

If the construction of the construction of the default evaluation metric used with the objective 'multisoffprob' was changed from 'merror' to 'mingloss'. Explicitly set eval_metric if you'd

Optimized SuperLearner accuracy: 0.91000306112780053

Print('Number of finished trials: ', len(study.trials))

print('Number of finished trials: ', len(study.trials))

print(' Value: ()'.format(trial_value))

print(' Value: ()'.format(key, value))

Number of finished trials: 100

Express:

Douting date: 0.81305707904402

max_(septh: 11

sub-maple: 0.71223704738078

objects: date: 0.81305707904402

max_(septh: 11

sub-maple: 0.71223704738078

objects: 0.71223704738078

objects: 0.71223704738078

All of accuracies')

print('(p.mean(cores))

All of accuracies')

print('(p.mean(cores))

All of accuracies')

print('(p.mean(cores))

All of accuracies')

print('(p.mean(cores))
```