Course code: EEE-453
Course title: Numerical Method
Lecture on
Curve Fitting Techniques

Curve Fitting Technique

Curve Fitting Technique

✓ Curve fitting technique is a process to determine a mathematical model with some data. Generally data are obtained from experimentally.

Necessity of Curve Fitting Technique

- ✓ It is a mathematical model for a system whose data are obtained.
- ✓ It gives or shows the pattern or trend of data.
- ✓ From it those value can be estimated for data were not taken.

Curve Fitting Technique

Curve Fitting Technique Types

- 1. Least square regression
 - i. Linear model
 - ii. Quadrature model

2. Interpolation

- i. Polynomial Interpolation
 - a. Newton's Interpolating Polynomial
 - b. LaGrange's Interpolating Polynomial
- ii. Spline Interpolation

Curve Fitting Technique Difference between Curve Fitting Technique Types

Least square regression

- 1. Data is fitted to a pre-defined curve in such way that error will be minimum
- 2. The curve may or may not pass through all data point
- 3. It is applicable when data have less accuracy

Interpolation

- 1. Single or multiple curve are obtained using all data point
- 2. The curve must pass all the point so error is zero
- 3. It is applicable when data have high accuracy and reliability

Curve Fitting Technique

Least Square Regression

In this process data is fitted to a pre-defined curve in such way that the sum of square of individual error has to be minimum

$$Sr = \sum_{i=1}^{n} \{e_i^2\}$$

$$Sr = e_1^2 + e_2^2 + e_3^2 + e_4^2$$

$$e_i^2 = \text{fitted data value- actual data}$$
value

Curve Fitting Technique: Least square regression 6 Principle of Least square regression

✓ Linear model

$$a_0+a_1x=y$$
 $na_0+(\Sigma x)a_1=\Sigma y$
 $(\Sigma x)a_0+(\Sigma x^2)a_1=\Sigma xy$

✓ Quadratic Model

$$a_0 + a_1 x + a_2 x^2 = y$$
 $na_0 + (\Sigma x)a_1 + + (\Sigma x^2)a_2 = \Sigma y$
 $(\Sigma x)a_0 + (\Sigma x^2)a_1 + (\Sigma x^3)a_2 = \Sigma xy$
 $(\Sigma x^2)a_0 + (\Sigma x^3)a_1 + (\Sigma x^4)a_2 = \Sigma x^2 y$

n=no. of data point x=independent variable y=dependent variable

Problem 01

The capacitance of a varactor diode used in VCO(voltage control oscillator) varies with its input voltage. A sample varactor diode is tested for various voltage V in volts and the following capacitance $C(\mu F)$ is founded.

V(volt)=x	0	1	3	6	8	12
$C(\mu F)=y$	2	2.5	2.75	5	9.5	20

- a. Using principle of Least square regression fit the above data in a linear model like $C=C_0+C_1V$ to determine C_0 and C_1 .
- b. Fit it to a model like $C=C_0+C_1V+C_2V^2$ to determine C_0,C_1 and C_2 .

Solution

```
a. Here
n=data point=6
C1=a<sub>1</sub> and C0= a<sub>0</sub>
```

Linear model

$$a_0+a_1x=y$$
 $na_0+(\Sigma x)a_1=\Sigma y$
 $(\Sigma x)a_0+(\Sigma x^2)a_1=\Sigma xy$

To fit data in linear model we need Σx , Σy , Σx^2 and Σxy

×	Y	x ²	xy
0	2	0	0
1	2.5	1	2.5
3	2.75	9	8.25
6	5	36	30
8	9.5	64	76
12	20	144	240
Σx=30	Σy=41.75	$\Sigma x^2 = 254$	Σxy=356.75

So, $6a_0+30a_1=41.75$ $30a_0+254a_1=356.75$ $C_0 = a_0 = -0.1571$ $C_1 = a_1 = 1.4231$


```
b. Here
n=data point=6
C2=a<sub>2</sub>, C1=a<sub>1</sub> and C0= a<sub>0</sub>
```

Quadratic Model

$$a_0 + a_1 x + a_2 x^2 = y$$
 $na_0 + (\Sigma x)a_1 + + (\Sigma x^2)a_2 = \Sigma y$
 $(\Sigma x)a_0 + (\Sigma x^2)a_1 + (\Sigma x^3)a_2 = \Sigma xy$
 $(\Sigma x^2)a_0 + (\Sigma x^3)a_1 + (\Sigma x^4)a_2 = \Sigma x^2 y$

To fit data in linear model we need Σx , Σx^2 , Σx^3 , Σx^4 , Σy , Σxy and Σx^2y

X	Y	x ²	x ³	× ⁴	xy	x²y
0	2	0	0	0	0	
1	2.5	1	1	1	2.5	
3	2.75	9	9	27	8.25	
6	5	36			30	
8	9.5	64			76	
12	20	144			240	
Σx=30	Σy=41. 75	Σx ² = 254	Σx ³⁼	Σx ⁴⁼	Σxy=35 6.75	$\Sigma x^2 y =$

50,

$$6a_0+30a_1++254a_2=41.75$$

 $30a_0+254a_1+(\Sigma x^3)a_2=356.75$
 $254a_0+(\Sigma x^3)a_1+(\Sigma x^4)a_2=\Sigma x^2y$

$$C_0 = a_{0} =$$

$$C_{1}=a_{1}=$$
 and

Linearization of non-linear relationship Here an exponential relation is linearized

```
y=aeBx
ln(y)=ln(ae^{\beta x})
ln(y)=ln(a)+ln(e^{\beta x})
ln(y)=ln(a)+\beta x
50
a_{0}=ln(a)
a = e^{a_0} and a_{1} = \beta
```

```
Linear model a_0 + a_1 x = y
na_0 + (\Sigma x)a_1 = \Sigma y
(\Sigma x)a_0 + (\Sigma x^2)a_1 = \Sigma xy
```

Curve Fitting Technique: Least square regression 14 Linearization of non-linear relationship

Non-linear relation	Linearization	Determination of coefficient
1. Exponential y=ae ^{β×}	$\ln(y) = \ln(a) + \beta x$ $y = a_0 + a_1 \times$	$a = e^{a_0}$ and $\beta = a_1$
2. Power relation $y=\alpha x^{\beta}$	$\ln(y) = \ln(\alpha) + \beta \ln(x)$ $= a_0 + a_1$	$a = e^{a_0}$ and $\beta = a_1$
3. Rational $y = \frac{\alpha l p h a}{\beta + x}$	$\frac{1}{y} = \frac{\beta}{\alpha l p h \alpha} + \frac{x}{\alpha l p h \alpha}$ $= a_0 + a_1 x$	alpha= $\frac{1}{a_1}$ and $\beta=a_0$ alpha

The capacitance of a varactor diode used in VCO(voltage control oscillator) varies with its input voltage. A sample varactor diode is tested for various voltage V in volts and the following capacitance $C(\mu F)$ is found.

V(volt)=x	0	1	3	6	8	12
$C(\mu F)=y$	2	2.5	2.75	5	9.5	20

a. Using principle of Least square regression fit the above data in a exponential relationship like $C=Coe^{C_1V}$ to determine C_0 and C_1 .

Solution a. Here n=data point=6 $C_1=a_1$ and $C_0=a_0=\ln(a)$ or $a=e^{a_0}$ $C = C_0 e^{C_1 V}$ y=ae^{bx} $ln(y)=ln(ae^{\beta x})$ $ln(y)=ln(a)+ln(e^{\beta x})$ $ln(y)=ln(\alpha)+\beta x$ $a_0 + a_1$ To fit data in linear model we need ΣX , ΣY , ΣX^2 and ΣXY

Linear model $a_0+a_1x=y$ $na_0+(\Sigma x)a_1=\Sigma y$ $(\Sigma x)a_0 + (\Sigma x^2)a_1 = \Sigma xy$

X=x	Y	Y=In(y)	X ²	XY
0	2	0.6931	0	0
1	2.5	0.9163	1	0.9163
3	2.75	1.0116	9	3.0348
6	5	1.6094	36	9.6564
8	9.5	2.2513	64	18.0104
12	20	2.9957	144	35.9484
Σ <mark>×</mark> =30	Σy=41.75	Σ <mark>У</mark> =9.4779	Σ <mark>χ²</mark> = 254	Σ <mark>ΧΥ</mark> =67.5663

$$na_0+(\Sigma x)a_1 = \Sigma y$$

 $(\Sigma x)a_0+(\Sigma x^2)a_1 = \Sigma xy$

[Here
$$Y = ln(y)$$
]
So,
 $6a_0 + 30a_1 = 9.4774$
 $30a_0 + 254a_1 = 67.5663$

```
a_{0} = 0.6094
    a_{1} = 0.1940
So, \beta = \alpha_{1} = 0.1940
      a = e^{a_0} = 1.8393
C = C_0 e^{C_1 V} = 1.8393 e^{0.1940 V}
```


Assignment

Curve Fitting Technique: Interpolation

Interpolation

- ✓ In interpolation a single or multiple curves are fitted such that those pass through all data points.
- ✓ Interpolation is applied when data have high accuracy.

Interpolation Types

- 1. Polynomial Interpolation
 - 1. Newton's Polynomial Interpolation
 - 2. Lagrange's Polynomial Interpolation
- 2. Spline Interpolation

Curve Fitting Technique: Interpolation Difference between Interpolation Technique Types

Polynomial Interpolation

- 1.A single curve is fitted to passing through all data points
- 2. The order of the fitted function is decided by the no. of data point. A nth order polynomial is formed with n+1 data points

Spline Interpolation

- 1. A separate curve is fitted with every two consecutive data points
- 2. The order of the curve is predecided means the curve may be linear, quadrature, cubic etc. Exlinear spline, cubic spline etc.

Curve Fitting Technique: Polynomial Interpolation

Polynomial Interpolation

N+1 data points will form a polynomial of nth order. So the fitted data will have the function of

$$y=f(x)=a_0+a_1X+a_2X^2+a_3X^3+a_1X^{n-1}$$

To fit the data a_0 , a_1 , a_2 , a_3 a_{n-1} , a_n has to be determined

Two forms of Polynomial Interpolation

- 1. Newton's Polynomial Interpolation
- 2. Lagrange's Polynomial Interpolation

Curve Fitting Technique: Polynomial Interpolation

Newton's Polynomial Interpolation For n+1 data points,

$$\{(x_1,y_1), (x_2,y_2), (x_3,y_3), (x_{n+1},y_{n+1})\}$$

The polynomial has the form of

Y=f(x)= b0 + b1(x-
$$x_1$$
) + b2(x- x_1)(x- x_2) + b3(x- x_1)(x- x_2)(x- x_3) + b4(x- x_1)(x- x_2)(x- x_3)(x- x_4)......+ bn(x- x_1)(x- x_2)....(x- x_n)

bo, b1, b2, b3, b4.......... bn are the coefficient of the function those are determine by "Divided Difference Method"

Problem 03

Suppose the demand of electricity in a small town is surveyed from 2000-2015 in regular interval and the following data is obtained.

Year	2000	2003	2007	2009	2013	2015	2020
Time(t)	0	3	7	9	13	15	20
Electricity Demand(MW)	10	15	18	22	27	35.5	?

Use Newton's Polynomial Interpolation to estimate the demand in Electricity in 1999(t=-1) and 2020(t=20) in that town.

Solution Here

Time(t=x)	0	3	7	9	13	15	20
y	10	15	18	22	27	35.5	?

$$Y=f(x)=b_0+b_1(x-0)+b_2(x-0)(x-3)+b_3(x-0)(x-3)(x-7)+b_4(x-0)(x-3)(x-7)(x-9)+b_5(x-0)(x-3)(x-7)(x-9)(x-13)$$

X= -1(for 1999) and 20(for 2020)

Now coefficient b0,b1,.....b5 should be calculated in Divided difference method.

Divided difference method= $\Delta Y/\Delta x = (Y2-Y1)/(x2-x1)$

×	Y(bo)	b1	b2	b3	b4	b5
0	10	15-10_	0.75-1.6667	0.2083-0.1309	-0.0333 -0.0377	0.00928+0.00546
		3-0 1.6667	7-0 = -0.0310	9 -0	13-0	15-0
3	<mark>15</mark>	$\frac{18-15}{7-3}$ =0.7	$\frac{2-0.75}{9-3}$			
7	18	2	$\frac{1.25-2}{13-7}$			
9	22	1.25	4.25-1.25 15-9			
13	27	4.25				
15	35. 5					20

```
Now
```

$$Y=f(x)=b_0+b_1(x-0)+b_2(x-0)(x-3)+b_3(x-0)(x-3)(x-7)+b_4(x-0)(x-3)(x-7)(x-9)+b_5(x-0)(x-3)(x-7)(x-9)(x-13)$$

So
$$Y=b_0+b_1(x-0)+b_2(x-0)(x-3)+b_3(x-0)(x-3)(x-7)+b_4(x-0)(x-3)(x-7)(x-9)+b_5(x-0)(x-3)(x-7)(x-9)(x-13)$$

Similarly for 2020 x=20

Curve Fitting Technique: Polynomial Interpolation

Lagrange's Polynomial Interpolation

- ✓ Another form of Newton's Polynomial Interpolation
- ✓ The polynomial has the form of

$$Y=f(x)=\sum_{i=1}^{n}Li\ f(Xi)$$

- \sqrt{n} = Number of data points
- ✓ Li = $\prod_{i=1}^{n} \frac{x-xj}{xi-xj}$ and [j ≠ i]

For L1=
$$\frac{x-x_1}{x_1-x_1}$$
* $\frac{x-x_2}{x_1-x_2}$ * $\frac{x-x_3}{x_1-x_3}$ $\frac{x-x_n}{x_1-x_n}$
L3= $\frac{x-x_1}{x_3-x_1}$ * $\frac{x-x_2}{x_3-x_2}$ * $\frac{x-x_3}{x_3-x_3}$ $\frac{x-x_n}{x_3-x_n}$

Lagrange's Polynomial Interpolation

Problem 04

Suppose the demand of electricity in a small town is surveyed from 2000-2015 in regular interval and the following data is obtained.

Year	2000	2003	2007	2009	2013	2015	2020
Time(t)=x	0	3	7	9	13	15	20
Electricity Demand(MW)=y	10	15	18	22	27	35.5	?

Use Lagrange's Polynomial Interpolation to estimate the demand in Electricity in 1999(t=-1) and 2020(t=20) in that town.

Solution

Lagrange's Polynomial Interpolation

Time(t=x)	0	3	7	9	13	15	20
y	10	15	18	22	27	35.5	?

$$y=10\frac{(x-3)(x-7)(x-9)(x-13)(x-15)}{(0-3)(0-7)(0-9)(0-13)(0-15)} + 15\frac{(x-0)(x-7)(x-9)(x-13)(x-15)}{(3-0)(3-7)(3-9)(3-13)(3-15)} + 18\frac{(x-0)(x-3)(x-9)(x-13)(x-15)}{(7-3)(7-0)(7-9)(7-13)(7-15)} + 22\frac{(x-0)(x-3)(x-7)(x-13)(x-15)}{(9-3)(9-7)(9-0)(9-13)(9-15)} + 27\frac{(x-0)(x-3)(x-7)(x-9)(x-15)}{(13-3)(13-7)(13-9)(13-0)(13-15)} + 27\frac{(x-0)(x-15)(x-15)}{(13-3)(x-15)(x-15)} + 27\frac{(x-0)(x-15)(x-15)}{(13-3)(x-15)(13-15)} + 27\frac{(x-0)(x-15)(x-15)(x-15)}{(13-3)(x-15)(x-15)(x-15)} + 27\frac{(x-0)(x-15)(x-15)(x-15)}{(13-3)(x-15)(x-15)(x-15)} + 27\frac{(x-0)(x-15)(x-15)(x-15)}{(13-3)(x-15)(x-15)(x-15)} + 27\frac{(x-0)(x-15)(x-15)(x-15)}{(13-3)(x-15)(x-15)(x-15)(x-15)} + 27\frac{(x-0)(x-15)(x-15)(x-15)}{(13-3)(x-15)(x-15)(x-15)(x-15)(x-15)} + 27\frac{(x-0)(x-15)(x-15)(x-15)(x-15)}{(x-0)(x-15)$$

$$35.5 \frac{(x-0)(x-3)(x-7)(x-9)(x-13)}{(15-0)(15-7)(15-9)(15-13)(15-3)}$$
 (i)

Lagrange's Polynomial Interpolation

Spline Interpolation(Linear)

- ✓ Multiple curve can be obtain from neighboring two point
- ✓ For linear spline function can be look like

```
y=a_0+a_1x ; X1 \le X \le X2

y=a_2+a_3x ; X2 \le X \le X3

y=a_4+a_5x ; X3 \le X \le X4
```

- ✓ Interpolation-- x in between data points
- ✓ Extrapolation--x beyond data points
 like y= X4≤X
 y= X≤X1

Problem 05

Suppose the demand of electricity in a small town is surveyed from 2000-2015 in regular interval and the following data is obtained.

Year	2000	2003	2007	2009	2013	2015	2020
Time(t)=x	0	3	7	9	13	15	20
Electricity Demand(MW)=y	10	15	18	22	27	35.5	?

Use Spline Interpolation to estimate the demand in Electricity in 1999(t=-1) and 2020(t=20) in that town.

Solution Here

Time(t=x)	0	3	7	9	13	15	20
У	10	15	18	22	27	35.5	?
	(0,10)	(3,15)	(7,18)	(9,22)	(13,27)	(15,35.5)	

Interpolation

When x is within limit like x=10

$$9 \le x \le 13$$
 $\frac{y-27}{22-27} = \frac{x-13}{9-13}$ $y=(...)x+(...)$ So $x=10$ $y=(...)10+(...)$

$$\left[\frac{y-y1}{y2-y1} = \frac{x-x1}{x2-x1}\right]$$

Extrapolation

When x is not within the limit like x=20

So for
$$x=-1$$

 $Y=(...)(-1)+(...)$

Assignment