

### University of Pisa

### Artificial Intelligence and Data Engineering Business and Project Management

Analyzing and Enhancing *Product Summaries* from Amazon Reviews Using ChatGPT API: A Parameter-based Approach

Ricky Marinsalda Vittoria Acampora

August 25, 2023

## Contents

| 1 | Intr           | oduction                            |
|---|----------------|-------------------------------------|
| 2 | <b>Arc</b> 2.1 | nitecture<br>Sensors                |
|   | 2.2            | Data encoding                       |
| 3 | Ana            | lytics                              |
|   |                | Database                            |
|   | 3.2            | Grafana                             |
| 4 | Imp            | lementation's Details               |
|   | 4.1            | Collector                           |
|   | 4.2            | IoT Nodes                           |
|   |                | 4.2.1 The Actuator Interface        |
|   |                | 4.2.2 The ActuatorManager Interface |
|   |                | 4.2.3 The Fan Class                 |

# Introduction

### Architecture

We have the following sensors:

- float sensors, used to monitor the water level
- ullet co2 sensors, used to monitor the co2 level
- humidity, used to monitor the environment's humidity and the following actuators:

#### 2.1 Sensors

### 2.2 Data encoding

## Analytics

#### 3.1 Database

We're using a MySQL-compatibile database management system, cllaed MariaDB. We're storing historic sensors' data in tables, one for each sensor's class, in the form of tuples: timestamp, sensor's id and sensor's datum. The following DDL was used to build the zoo's database:

#### 3.2 Grafana

Our project incorporates a real-time monitoring and visualization aspect through the implementation of a

## Implementation's Details

#### 4.1 Collector

#### 4.2 IoT Nodes

This code represents a system for managing actuators in an Internet of Things (IoT) environment. Let's break down the code and explain its functionality:

#### 4.2.1 The Actuator Interface

The Actuator interface defines the contract for an actuator, which is responsible for sending

#### 4.2.2 The ActuatorManager Interface

#### 4.2.3 The Fan Class

The Fan class implements the Actuator interface and represents a specific type of actuator for a fan. It includes a constructor that takes an IP address as a parameter and initializes a CoAP client for communication.