Homework 1

Emil Artin and Emmy Noether

Problem 1 (Golan 12). For a field $\mathbb{F} = \langle F, +, \cdot, -, 0, 1 \rangle$, show that the function $a \mapsto a^{-1}$ is a permutation of the set $F \setminus \{0_F\}$.

Solution.

Problem 2 (Golan 16). Let z_1 , z_2 , and z_3 be complex numbers satisfying $|z_i| = 1$ for i = 1, 2, 3. Show that $|z_1z_2 + z_1z_3 + z_2z_3| = |z_1 + z_2 + z_3|$.

Solution.

Problem 3 (Golan 22 Abel's inequality). Let z_1, \ldots, z_n be a list of complex numbers and, for each $1 \leq k \leq n$, let $s_k = \sum_{i=1}^k z_i$. For real numbers a_1, \ldots, a_n satisfying $a_1 \geq a_2 \geq \cdots \geq a_n \geq 0$, show that

$$\left| \sum_{i=1}^{n} a_i z_i \right| \le a_1 \left(\max_{1 \le k \le n} |s_k| \right). \tag{1}$$

Solution.

Problem 4 (Golan 24). If p is a prime positive integer, find all subfields of GF(p). Solution.

Problem 5. Write down the definition of a module as a (universal) algebra, $\mathbf{M} = \langle M, F \rangle$. That is, describe the set F of operations and give the conditions that they should satisfy in order for \mathbf{M} to agree with the classical definition of a module over a ring.

[Hint: Let $\mathbf{R} = \langle R, +, \cdot, -, 0, 1 \rangle$ be a ring and, for each $r \in R$, define a scalar multiply operation $f_r \in F$.]

Solution.

Problem 6. Let $\mathbf{R} = \langle R, +, \cdot, -, 0, 1 \rangle$ be a ring.

- 1. Define left ideal of \mathbf{R} .
- 2. Let $\mathscr{A} = \{A_i : i \in \mathscr{I}\}\$ be a family of left ideals of **R**. Prove that $\bigcap \mathscr{A}$ is a left ideal.

Solution.

Problem 7. Let **R** be a ring and fix $a, b \in R$. Prove that if 1 - ba is left invertible, then 1 - ab is also left invertible. What is the inverse?

[Hint: Consider the left ideal R(1-ab). It contains the left ideal Rb(1-ab) = Rb and therefore contains 1. Verify these statements, then try to compute the inverse of 1-ab, as follow. (Ask for more hints as needed.)]

Solution.