WO 00/38730 PCT/US99/30693 -132-

such as skeletal muscle disease and myocardial infarction. Total LDH is used to measure independent prognostic value in patients with advanced germ cell tumors. LDH levels less than 1.5 x the reference range are associated with a good prognosis, levels between 1.5 and 10 x the reference range, inclusive, are associated with an intermediate prognosis, and levels more than 10 x the reference range are associated with a poor prognosis.

PLAP is a enzyme of alkaline phosphatase normally expressed by placental syncytiotrophoblasts. Elevated serum concentrations of PLAP are found in seminomas, non-seminomatous tumors, and ovarian tumors, and may also provide a marker for testicular tumors. PLAP has a normal half life after surgical resection of between 0.6 and 2.8 days.

Prostate Cancer

20

25

A nonlimiting example of a tumor marker useful in the present invention for the detection of prostate cancer is prostate specific antigen (PSA). PSA is a glycoprotein that is almost exclusively produced in the prostate. In human serum, uncomplexed f-PSA and a complex of f-PSA with al-anthichymotrypsin make up total PSA (t-PSA). T-PSA is useful in determining prognosis in patients that are not currently undergoing anti-androgen treatment. Rising t-PSA levels via serial measurement indicate the presence of residual disease.

Breast Cancer

Non-limiting examples of serum tumor markers useful in the present invention for the detection of breast cancer include, but is not limited to carcinoembryonic antigen (CEA) and MUC-1 (CA 15.3). Serum CEA and CA15.3

WO 00/38730 PCT/US99/30693

levels are elevated in patients with node involvement compared to patients without node involvement, and in patients with larger tumors compared to smaller tumors. Normal range cutoff points (upper limit) are 5-10 mg/L for CEA and 35-60 u/ml for CA15.3. Additional specificity (99.3%) is gained by confirming serum levels with two serial increases of more than 15%.

Ovarian Cancer

A non-limiting example of a tumor marker useful in the present invention for the detection of ovarian cancer is CA125. Normally, women have serum CA125 levels between 0-35 kU/L; 99% of post-menopausal women have levels below 20 kU/L. Serum concentration of CA125 after chemotherapy is a strong predictor of outcome as elevated CA125 levels are found in roughly 80% of all patients with epithelial ovarian cancer. Further, prolonged CA125 half-life or a less than 7-fold decrease during early treatment is also a predictor of poor disease prognosis.

20

25

30

10

15

Gastrointestinal Cancers

A non-limiting example of a tumor marker useful in the present invention for the detection of colon cancer is carcinoembryonic antigen (CEA). CEA is a glycoprotein produced during embryonal and fetal development and has a high sensitivity for advanced carcinomas including those of the colon, breast, stomach and lung. High preor postoperative concentrations (>2.5 ng/ml) of CEA are associated with worse prognosis than are low concentrations. Further, some studies in the literature report that slow rising CEA levels indicates local

WO 00/38730 PCT/US99/30693

recurrence while rapidly increasing levels suggests hepatic metastasis.

-134-

Lung Cancer

10

20

25

30

Examples of serum markers useful in the present invention to monitor lung cancer therapy include, but are not limited to, CEA, cytokeratin 19 fragments (CYFRA 21-1), and Neuron Specific Enolase (NSE).

NSE is a glycolytic isoenzyme of enolase produced in central and peripheral neurons and malignant tumors of neuroectodermal origin. At diagnosis, NSE concentrations greater than 25 ng/mL are suggestive of malignancy and lung cancer while concentrations greater than 100 ng/mL are suggestive of small cell lung cancer.

CYFRA 21-1 is a tumor marker test which uses two specific monoclonal antibodies against a cytokeratin 19 fragment. At diagnosis, CYFRA 21-1 concentrations greater than 10 ng/mL are suggestive of malignancy while concentrations greater than 30 ng/mL are suggestive of lung cancer.

Accordingly, dosing of the cyclooxygenase-2 inhibitor and antineoplastic agent may be determined and adjusted based on measurement of tumor markers in body fluids or tissues, particularly based on tumor markers in serum. For example, a decrease in serum marker level relative to baseline serum marker prior to administration of the cylcooxygenase-2 inhibitor and antineoplastic agent indicates a decrease in cancerassociated changes and provides a correlation with inhibition of the cancer. In one embodiment, therefore, the method of the present invention comprises administering the cyclooxygenase-2 inhibitor and

antineoplastic agent at doses that in combination result