	NAME:	SOL	UTTOR	JS							
	1 /1	5 2	/6 3	/16 4	/10 5	/10 6	/8	7	/10	Т	/
			MA	TH 430 (Fall	2008) Exa	m 1, Sep 2	9				
				how all work ar total of 75 point		lete explan	ations.				
	(1) [15 pts] (a) Define the	ne nullspac	ce and rang	e of a matrix.	fix. T	le nul	lspo	ee of	P	AU	2
	N(A) =	= {	₹e	$\mathbb{R}^n / A =$	7 = 5	}	nd	Te	_	ng	e
	of A	م									
	R(A)	- {	7 E	Rn/3=	ER?	A 70 =	4 }	- S A.	2	1= 6	· (R
			-	eorem, and illus							
THM	A te			xn n		. The	n				
	din	N(A	1 +	din	R(A)	= n					
	Let	A =		EXT TX	(-r) -)x/(-r)	Let bans	R. B.	- ē	has	d	
Ten					,	11-	tal	2 50	7	40	4 0
(R(A) =	SP	on {	F1, 1	Fr}	hors	din	ensis	in.	~	
)	N(A)	= Sp	on (=	T+1 11	Z.]	has .	dine.	منصر	9	L-T.	·

finte dimensional (c) Define the concept of a maximal linearly independent subset of a vector sp A subset I = IV, -, Vn I of a vector space V is a maximal linearly independent subset of V Of walt outset, ie if Exit = o then xixoti @ If I so ony other LI. subset of V then I have released to \widehat{f} .

(2) [6 pts] Let \mathbf{A} be a block matrix of the form $\mathbf{A} = \begin{pmatrix} \mathbf{B} \\ \mathbf{C} \end{pmatrix}$. Prove that $N(\mathbf{A}) = N(\mathbf{B}) \cap N(\mathbf{C})$. First observe that $A\vec{x} = \begin{pmatrix} B \\ c \end{pmatrix} \vec{x} = \begin{pmatrix} B \\ \vec{x} \end{pmatrix}$ NA) = NB) NCC) Let $\vec{x} \in N(A)$. Then $A\vec{x} = \begin{pmatrix} R\vec{x} \\ \vec{x} \end{pmatrix} = \begin{pmatrix} \vec{0} \\ \vec{2} \end{pmatrix}$ So B== 3 and (== 5. So FEN(B) and FEN(C) : . ALE & STEN(B) NN(C) NB)NN(C) < N(A) Let JEN(B) AN(C). So JEB(B) and JEN(C) S. Brito and (25).

(3) [16 pts] Let A be the matrix

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 9 & 7 \\ 3 & 7 & 4 \\ 8 & 18 & 14 \end{pmatrix}. \quad A \quad \text{is} \quad m \times n = 4 \times 3$$

Find bases for the four fundamental subspaces of A.

$$Or = 2$$
, $R(A) = Span \left\{ \begin{pmatrix} 1 \\ 4 \\ 3 \\ 6 \end{pmatrix}, \begin{pmatrix} 2 \\ 9 \\ 7 \\ 18 \end{pmatrix} \right\}$ Bosic colo of A

(4) [10 pts]
(a) Prove that if a matrix is both symmetric and skew then it is zero.

Let A be a square metrix that is both symmetric and show - symmetric AT = A and AT = -A S_{o} $A = A^{T} = -A$ S. 24 = 0 So A =0 (b) Without using matrices prove that the composition of two linear mappings between vector spaces is Let f: V, -> 1/2 and g: 1/2 -> 1/3

be linear. We must show that gof: Vitor on linear. Let deR, 7 JEV. Then (90f) (x = +3) = g(f(x = +3)) = 9 (x f(x) + f(g)) as fline = x 9 (f()) + 9 (f()) asglin = 2 (90f)(1) + 60f(g)

(5) [10 pts]

(a) Let **A** be $m \times n$ and **B** be $n \times \ell$. Prove that each column of **AB** can be expressed as a linear combine of the columns of **A**. In particular, find the coefficients in these linear combinations.

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

$$(AB)_{i} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

So $(AB)_{*j} = \sum_{k=1}^{\infty} B_{kj} A_{*k}$

The jth column of AB is the a livear

combination of the columns of A, where the lest column of the lest column of

so given by Bkj.

(b) Let

$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 \end{pmatrix}$$
in (a) to calculate the 3rd column of AB

AR is 3

Use the formula you derived in (a) to calculate the 3rd column of AB.

$$(AB)_{*3} = \sum_{k=1}^{3} B_{k3} A_{*k}$$

$$= 9 \left(\frac{1}{3}\right) + 13 \left(\frac{2}{4}\right)$$

$$= \begin{pmatrix} 9 + 26 \\ 9 + 4 & 2 \end{pmatrix} \qquad 135$$

(7) [10 pts] Find a basis for the vector space consisting of all 3×3 skew-symmetric matrices and prove that it is indeed a basis.

$$A = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$

Let
$$B = \{ \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix} \}$$

The elements of B are 3x3 skew symmetric metrices. By (B) B spans the vector space of all 3x3 skew symmetric metrices.

Suppose
$$\alpha \begin{pmatrix} 0 & 1 & 3 \\ -1 & 0 & 3 \end{pmatrix} + b \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 3 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
Pledge: I have neither given nor received aid on this exam

Signature: