

Runtime randomization and perturbation for virtual machines.

JAVIER CABRERA ARTEAGA

Licentiate Thesis in [Research Subject - as it is in your ISP]
School of Information and Communication Technology
KTH Royal Institute of Technology
Stockholm, Sweden [2022]

TRITA-ICT XXXX:XX ISBN XXX-XXX-XXXX-X KTH School of Information and Communication Technology SE-164 40 Kista SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges till offentlig granskning för avläggande av licentiatexamen i [ämne/subject] [veckodag/weekday] den [dag/day] [månad/month] [år/2022] klockan [tid/time] i [sal/hall], Electrum, Kungl Tekniska högskolan, Kistagången 16, Kista.

© Javier Cabrera Arteaga, [month] [2022]

Tryck: Universitetsservice US AB

Abstract

Write your abstract here... $\textbf{Keywords:} \ \, \textbf{Keyword1}, \, \textbf{keyword2}, \, \dots$

Sammanfattning

Write your Swedish summary (popular description) here... $\bf Keywords : Keyword1, \, keyword2, \, ...$

Acknowledgements

Write your professional acknowledgements here...

Acknowledgements are used to thank all persons who have helped in carrying out the research and to the research organizations/institutions and/or companies for funding the research.

 $Name\ Surname,$ Place, Date

Contents

C	onter	\mathbf{nts}		vi			
List of Figures							
Li	st of	Table	S	ix			
Li	st of	Acron	nyms	x			
1	Intr 1.1 1.2	Motiva 1.1.1 Contri		1 1 1			
2	Bac 2.1	kgroui CROV	nd and State of the art V	2 2			
3	Met 3.1	thodole Evalua 3.1.1 3.1.2 3.1.3	ogy ation	4 4 4 5			
4	4.1 4.2	4.0.1 Metric 4.1.1 4.1.2 4.1.3	Static	9 9 10 10			
	4.3	4.2.3	Dynamic comparison	11 11 11			

C(ONTI	ENTS	vii	
	4.4	Results	11	
		4.4.1 Challenges for automatic diversification	12	
		4.4.2 Properties for large diversification using CROW	12	
		4.4.3 Variant properties	13	
	4.5	Conclusions	14	
		4.5.1 Static	14	
		4.5.2 Dynamic	14	
		4.5.3 Preservation	14	
	4.6	Conclusions	16	
5	Var	iant's application	17	
	5.1	Security MTD	17	
	5.2	Reliability (CVE + fuzz) future work	17	
6	Cor	nclusion and Future Work	18	
	6.1	Future Work	18	
		6.1.1 wasm-mutate future work	18	
Appended papers 18				

List of Figures

2.1	CROW workflow to generate program variants. CROW takes C/C++	
	source codes or LLVM bitcodes to look for code blocks that can be	
	replaced by semantically equivalent code and generates program variants	
	by combining them	2

List of Tables

3.1	TODO	4
3.2	CROW tweaking for variants generation. The table is composed by the	
	name of the corpus, the timeout parameter and the count of allowed	
	instructions during the synthesis process	5
4.1	Wasm engines used during the diversification assessment study. The	
	table is composed by the name of the engine and the description of the	
	compilation process for them	11
4.2	General diversification results. The table is composed by the name of the	
	corpus, the number of functions, the number of successfully diversified	
	functions, the number of non-diversified functions and the cumulative	
	number of variants.	12

List of Acronyms

Wasm WebAssembly

DTW Dynamic Time Warping