Übungen zur Vorlesung "Mathematik 1"

Angewandte Informatik/Infotronik

Blatt 6

Aufgabe 51. (Zahlenfolgen)

a) Bestimmen Sie die ersten fünf Glieder der Folge (a_n) .

i)
$$a_n = 1 - \frac{1}{n}$$
 ii) $a_n = n^2 + (-1)^n n$ iii) $a_n = \frac{n}{n+1} - \frac{n+1}{n}$
iv) $a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_n} \right)$ mit $a_1 = 1$ v) $a_{n+1} = a_n + a_{n-1}$ mit $a_0 = 0$, $a_1 = 1$.

b) Bestimmen Sie den Grenzwert der Folge (a_n) für $n \to \infty$:

i)
$$a_n = \frac{2n-1}{3n+1}$$
 ii) $a_n = \left(\frac{2n+1}{n}\right)^{10}$ iii) $a_n = (-1)^n \frac{n}{1-n^2}$ iv) $a_n = \frac{-\frac{1}{3}n^3 + 4n^2 - 1}{\frac{2}{9}n^3 - n^2 + 1}$ v) $a_n = \sqrt{n+1} - \sqrt{n}$ vi) a_n wie in iv) von 51 a)

Aufgabe 52.(Reihen)

a) Bestimmen Sie die ersten fünf Partialsummen s_n folgender Reihen.

i)
$$\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n$$
 ii) $\sum_{n=0}^{\infty} \frac{1}{n!}$

ii)
$$\sum_{n=0}^{\infty} \frac{1}{n!}$$

iii)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$$

iv)
$$\sum_{n=0}^{\infty} \frac{n^2}{2^n}$$

i)
$$\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n$$
 ii) $\sum_{n=0}^{\infty} \frac{1}{n!}$ iii) $\sum_{n=1}^{\infty} (-1)$ iv) $\sum_{n=0}^{\infty} \frac{n^2}{2^n}$ v) $\sum_{n=1}^{\infty} \frac{n!}{(2n-1)!}$ vi) $\sum_{n=1}^{\infty} \frac{2^{n+1}}{n!}$

$$vi) \sum_{n=1}^{\infty} \frac{2^{n+1}}{n!}$$

b) Zeigen Sie, dass die Reihen aus a) konvergieren.

Aufgabe 53. Berechnen Sie folgende Grenzwerte.

a)
$$\lim_{x\to 2} \frac{(x-2)(3x+1)}{4x-8}$$
 b) $\lim_{x\to 0^-} \arctan \frac{1}{x}$ c) $\lim_{x\to 1} \frac{1-x}{1-\sqrt{x}}$

b)
$$\lim_{x\to 0^-} \arctan \frac{1}{x}$$

c)
$$\lim_{x \to 1} \frac{1 - x}{1 - \sqrt{x}}$$

d)
$$\lim_{x\to 0} \frac{\sin 2x}{\sin x}$$

e)
$$\lim_{x\to\infty} \sqrt{x} \cdot e^{-x}$$

e)
$$\lim_{x\to\infty} \sqrt{x} \cdot e^{-x}$$
 f) $\lim_{x\to 0} \frac{1-\cos x}{\sin^2 x}$

g)
$$\lim_{x \to \pi/2} (1 - \sin x) \tan x$$
 i) $\lim_{x \to 1} \frac{1}{x - 1} - \frac{1}{\ln x}$ k) $\lim_{x \to 0} \frac{\sin 2x - 2\sin x}{2e^x - x^2 - 2x - 2}$

$$\sin 2x - 2\sin x \\ \frac{\sin 2x - 2\sin x}{2e^x - x^2 - 2x - 2}$$

Aufgabe 54. (Ableiten) Differenzieren Sie folgende Funktionen.

a)
$$y = e^{-2x} \cos x$$

b)
$$y = e^x \sin x$$

c)
$$y = (x^2 - 1)^2(x + 5)^3$$

d)
$$y = (4x - 1)^2 \sin 2x$$
 e) $y = x \ln (x + e^x)^2$ f) $y = x^x$

e)
$$y = x \ln(x + e^x)^2$$

f)
$$y = x^3$$

$$g) y = \ln(\tanh x)$$

$$h) y = \left(\frac{x+1}{x}\right)^r$$

g)
$$y = \ln(\tanh x)$$
 h) $y = \left(\frac{x+1}{x}\right)^n$ i) $y = \sin(x^2 + 1)\cos(4x)$

k)
$$y = 2x\sqrt{x^2 - 1}$$

k)
$$y = 2x\sqrt{x^2 - 1}$$
 l) $y = \sqrt[3]{(x^2 - 4x + 10)^2}$ m) $\ln|\cos x|$

m)
$$\ln |\cos x|$$

n)
$$y = \arccos \sqrt{x^2 - 1}$$
 o) $y = \frac{1 + \cos x}{1 - \sin x}$ p) $\frac{\sqrt{x} - x^2}{x^2 + 1}$

$$y = \frac{1 + \cos x}{1 - \sin x}$$

p)
$$\frac{\sqrt{x} - x^2}{x^2 + 1}$$

Aufgabe 55. Bestimmen Sie das Krümmungsverhalten folgender Funktionen und berechnen Sie die Krümmung im jeweils angegebenen Punkt.

a)
$$y = (x-1)^2 + 2$$
 $P(1;2)$ b) $y = 8x^2(x+1)$ $P(-\frac{1}{2};1)$ c) $y = e^{-x^2}$ $P(0;1)$

Aufgabe 56. Bestimmen Sie den maximalen Definitionsbereich, Nullstellen, Polstellen, hebbare Definitionslücken und Asymptoten folgender gebrochenrationaler Funktionen.

a)
$$y = \frac{x^2 - 1}{(x - 1)^3}$$
 b) $y = \frac{x^3 - 6x^2 + 12x - 8}{x^2 - 4}$ c) $y = \frac{2x^3 - 2x}{x^3 + x^2 - x - 1}$

Aufgabe 57. Führen Sie zu folgenden Funktionen jeweils eine Kurvendiskussion durch. (max. Def.bereich, Nullstellen, Pole, Symmetrie, lokale Extrema, Wendepunkte, Graph)

a)
$$f(x) = x^4 - 5x^2 + 4$$
 b) $g(x) = \frac{x^2 + 1}{x - 3}$ c) $h(x) = \frac{1}{2}x + \sqrt{9 - x^2}$

c)
$$h(x) = \frac{1}{2}x + \sqrt{9 - x^2}$$

d)
$$k(x) = (1 - e^{-2x})^2$$

d)
$$k(x) = (1 - e^{-2x})^2$$
 e) $m(x) = \arctan(\frac{x}{1 + x^2})$ f) $n(x) = x^2 \ln x - \frac{1}{2}x^2$

f)
$$n(x) = x^2 \ln x - \frac{1}{2}x^2$$

g)
$$p(x) = 1 - \cosh(x^2 - 1)$$
 h) $q(x) = \frac{e^x - 1}{e^x + 1}$

h)
$$q(x) = \frac{e^x - 1}{e^x + 1}$$

i)
$$r(x) = (1 - \cos x)^2$$

Aufgabe 58.

- a) Bestimmen Sie die Abmessungen ℓ (Länge) und b (Breite) des flächengrößten Rechtecks, das zwischen $y(x) = 12 - x^2$ und der x-Achse einbeschrieben werden kann.
- b) Ein Zaun der Länge U_0 soll eine möglichst große Rechteckfläche eingrenzen. Berechnen Sie diese und das zugehörige Seitenverhältnis, wenn
 - i) keine weiteren Bedingungen gestellt sind,
 - ii) eine Seite an eine Mauer grenzt, sodass dort kein Zaun nötig ist,
 - iii) zwei benachbarte Seiten an eine Mauer grenzen, sodass dort kein Zaun nötig ist.
- c) Berechnen Sie das Längenverhältnis h/r eines geraden Kreiszylinders mit vorgegeben Volumen V_0 und minimaler Oberfläche A_0 .

Aufgabe 59. Berechnen Sie das Integral

- a) $I_1 = \int_0^{\ln 2} \sqrt{e^x 1} \, dx$ unter Anwedung der Substitution $u = \sqrt{e^x 1}$,
- b) $I_2 = \int_1^2 \frac{2x^2 + 3x 2}{-x^3 + x^2} dx$ unter Anwendung einer Partialbruchzerlegung,
- b) $I_3 = \int x e^{-x} dx$ unter Anwendung einer partiellen Integration.

Aufgabe 60.

- a) Berechnen Sie den Inhalt der Fläche, die von den Funktionen $f(x) = x^2 4$, $g(x) = \frac{1}{2}x + 1$ und der positiven y-Achse begrenzt wird.
- b) Berechnen Sie die Bogenlänge der Kurve $\Gamma = G_f$ mit $f: [-1,1] \to \mathbb{R}, x \mapsto$ $\cosh x$.
- c) Berechnen Sie das
 - i) lineare Mittel
 - ii) quadratische Mittel
 - der Funktion $f:[0,a]\to\mathbb{R}, x\mapsto\sqrt{x}+1.$
- d) Der Graph der Funktion $f:[0,1]\to\mathbb{R}, x\mapsto -4x(x-1)$ erzeugt durch Rotation um die x-Achse die Mantelfläche eines Rotationskörpers. Bestimmen Sie sein Volumen V.