1

Assignment 16

Yenigalla Samyuktha EE20MTECH14019

 ${\it Abstract} {\it \bf --} This \ document \ solves \ a \ problem \ on \ Jordan \\ form \ of \ a \ complex \ matrix.$

Download all latex-tikz codes from

https://github.com/EE20MTECH14019/EE5609/ tree/master/Assignment_16

1 Problem

How many possible Jordan forms are there for a 6×6 complex matrix with characteristic polynomial $(x + 2)^4 (x - 1)^2$?

2 EXPLANATION

From the characteristic polynomial,

$$(x+2)^4 (x-1)^2$$
 (2.0.1)

We get the eigen values of the 6×6 complex matrix as,

$$\lambda_i = \{-2, -2, -2, -2, 1, 1\}$$
 (2.0.2)
for $\lambda = -2, A_M = 4$ (2.0.3)

for
$$\lambda = 1, A_M = 2$$
 (2.0.4)

The minimal polynomial for a matrix with characteristic polynomial must have both (x + 2) and (x - 1) as factors and it must divide (2.0.1). Hence the minimal polynomial will be of the form

$$p = (x+2)^a (x-1)^b$$
, $a \le 4, b \le 2$ (2.0.5)

So, there are 8 different possibilities for a minimal polynomial. Let us note that one minimal polynomial may correspond to more than one Jordan forms. The possible Jordan blocks associated with the eigen values -2 and 1 are given in the Table 2. From Table 2, we can say that there are $5 \times 2 = 10$ possible Jordan forms. For example, the Jordan forms corresponding to minimal polynomial

 $p = (x + 2)^2 (x - 1)$ built from the Jordan blocks can be,

$$\mathbf{J} = \begin{pmatrix} -2 & 1 & 0 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 0 \\ 0 & 0 & -2 & 1 & 0 & 0 \\ 0 & 0 & 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
 (2.0.6)

and

$$\mathbf{J} = \begin{pmatrix} -2 & 1 & 0 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 0 \\ 0 & 0 & -2 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
 (2.0.7)

Parameter	Description
A_M	Algebraic multiplicity of λ in the characteristic polynomial, also equal to the size of Jordan block for that eigen value
G_M	Geometric multiplicity determines the number of Jordan subblocks in a Jordan block for λ .
$\mathbf{J}_{(x-\lambda)^k}$	Jordan block corresponding to the eigen value λ and k is the multiplicity of λ in the minimal polynomial determines size of largest Jordan sub-block.

TABLE 1: Parameters

Factor	Possible Jordan blocks	
(x+2)	$\mathbf{J}_{(x+2)} = \begin{pmatrix} -2 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -2 \end{pmatrix} (G_M = 4)$	(2.0.8)
	$\mathbf{J}_{(x+2)^2} = \begin{pmatrix} -2 & 1 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -2 \end{pmatrix} (G_M = 3)$	(2.0.9)
	$\mathbf{J}_{(x+2)^2} = \begin{pmatrix} -2 & 1 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & -2 \end{pmatrix} (G_M = 2)$	(2.0.10)
	$\mathbf{J}_{(x+2)^3} = \begin{pmatrix} -2 & 1 & 0 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -2 \end{pmatrix} (G_M = 2)$	(2.0.11)
	$\mathbf{J}_{(x+2)^4} = \begin{pmatrix} -2 & 1 & 0 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & -2 \end{pmatrix} (G_M = 1)$	(2.0.12)
(x - 1)	$\mathbf{J}_{(x-1)} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad (G_M = 2)$	(2.0.13)
	$\mathbf{J}_{(x-1)^2} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \qquad (G_M = 1)$	(2.0.14)

TABLE 2: Possible Jordan Blocks

3 Answer

Therefore 10 different Jordan forms are possible for a 6×6 complex matrix with characteristic polynomial $(x + 2)^4 (x - 1)^2$.