Praxis I Notes

FDCR Model

Figure 1: The FDCR model represents the iterative engineering design process.

- Frame: Defining an opportunity with stakeholders and requirements.
- **Diverge**: Generating ideas and exploring alternatives.
- Converge: Making decisions, justifying recommendations, filtering down, and actually coming up with a solution.
- Represent: Expressions of our ideas through words, images, diagrams, models, etc.

Perry Model of Intellectual and Ethical Development

Figure 2: The Perry Model describes students' attitude towards knowledge over time.

- **Dual**: At the start, We view the world as black or white. Authorities will tell us what to do and what is the right answer.
- Multiple: As we proceed, things get more confusing as we realize that there are multiple answers. We recognize the ambiguity and uncertainty of the world.
- Relative: We realize that opinions are relative; some opinions are better than others.
- Commitment: At the end, we are able to combine our values and analysis to help us make informed decisions.

Hoover Dam Model

Figure 3: A model about the process of engineering design.

Toulmin's Structure of Argument

Figure 4: Toulmin's structure of argument describes the essential components of an argument.

- Anytime we construct an argument, we must have a **ground** on which we stand which is something that exists in an undisputed way.
- From that we would construct a **claim** which is something that we want to convince others of.
- For our claim to be accepted, we must first provide evidence and justification.
- Evidence includes everything from data and graphs to information and facts.
- Justification is the logical connection between evidence and claim.
- To strengthen are argument, a **qualifier** is used to limit the ambition of our claim and narrow our scope of our argument (ex. Bananas taste good only on Sundays).
- Lastly, it is important to acknowledge counterclaim arguments.

Figure 5: A Line graph for the different types of claims.

Requirements Model

• Requirements for an engineering opportunity should be defined by a set of **objectives**.

- Each objective should be chosen based on the **stakeholder**'s needs.
- Each objective must have a **metric**, and each metric should be informed by **criteria** or **constraints**.
- A metric consists of a characteristic and a unit.
- **High level objectives** should be split up into several **detailed objectives** each with their own metric, criteria, and constraint.

Example

Objective	Metric	Criteria	Constraint
The dishwasher	The percentage of	Less is better.	Must be less than
should minimize the	mass of		50%.
use of non-recyclable	non-recyclable		
materials.	materials as defined		
	by Toronto's		
	Recycling guidelines.		

Design For X

DfX Principles help us define specific requirements around common high level objectives.

Repairability, Maintainability, Testing, Environment, Assembly, Accessibility, Safety, Durability, Manufacturing, Reliability, Recycling, Logistics, Usability

CRAAP Test

The **CRAAP** Test can be used to evaluate sources.

- Currency: The timeliness of the information.
- Relevance: The importance of the information for our needs.
- Authority: The source of the information.
- Accuracy: The reliability, truthfulness and correctness of the content.
- Purpose: The reason the information exists.

Framing Definitions

- Design Space The set of all potential designs that meet our constraints.
- Scoping defines the boundaries of what is and is not in consideration.
- Framing defines how we are looking at the opportunity.

PUBS

The PUBS model can be used to write an effective introduction.

- Purpose: Establishes what the report is trying to do.
- Unknown: Hints at what we will find out.
- Background: Gives us what we need to start.
- Set-up Sets up the structure to guide us.

PIAA Model

Figure 6: This model helps us enhance our self-awareness and increase our intentionality when framing.

AID Model

The AID model is used for providing holistic feedback. It helps us provide beneficial **critique** and not criticism.

- Action What did the person do?
- Impact How did this behavior affect us?
- Development What can the person do to improve their actions?

Diverging Definitions

- Refine Improve the clarity, detail, and substance of the brief.
- Re-scope Change the magnitude of the opportunity in the brief.
- **Reframe** Change the nature, kind, and objectives in the brief.
- Bias Brainwriting, Lotus Flower, and Morph Charts are all methods of minimizing cogitative biases.
 - **Functional Fixedness** When an individual develops an inability to use an object in more ways than it is traditionally intended to be used.
 - Anchoring Bias When we rely too heavily on the first piece of information we are given about a topic.

- A **Prototype** is a model whose purpose is to generate or communicate information about a design concept.
- Brainwriting Each person is given a piece of paper to sketch their designs, and every few minutes, everyone would swap papers.
- Lotus Blossom Technique Choose a central theme, and then branch out into several other sub-themes, where design ideas for each subcategory would be written down.
- Morph Chart Pick different functions/functions and think of different options of how they could be implemented into a design.
- Scamper Substitute, Combine, Adapt, Modify, Put to other purposes, Eliminate, Reverse.

Converging Definitions

- Converging Techniques
 - Pairwise Comparison Matrices Compare each design holistically and sum up points.
 - Measurement Matrix Metrics of each design are listed in a table.
 - Pugh Charts For each design, list out whether they meet or fail to meet each objective.
- Proxy tests allow us to compare designs with the materials, prototypes, and tools we have.