Inteligência Artificial

Match The Tiles

Grupo 39

Mariana Ramos – up201806869

Pedro Ferreira – up201806506

Pedro Ponte – up201809694

Especificação do Projeto

- O jogo consiste na existência de um tabuleiro contendo diferentes tipos de "tiles", correspondendo cada tile a uma célula do tabuleiro.
- Existem três tipos de tiles no jogo, onde cada um apresenta uma cor diferente que os relaciona com o seu objetivo no jogo. Tiles preenchidas com uma cor escura correspondem a paredes, tiles com um ponto no centro correspondem a tiles objetivo e tiles pintadas com um círculo no centro correspondem a tiles jogáveis.
- O objetivo do jogo é colocar as tiles jogáveis nas posições onde se encontram as tiles objetivo com a cor correspondente. Para tal, o jogador pode deslocar as peças para cima, baixo, esquerda e direita. Os movimentos são sincronizados, portanto, deve-se usar tiles fixos existentes para criar espaços entre os tiles e resolver o puzzle.

Referências e Trabalho Relacionado

- Link para a página do jogo na Google Play;
- Exemplo para desenvolvimento gráfico;
- Exemplo de desenvolvimento de algoritmos de pesquisa
- Slides das aulas teóricas e teórico-práticas para desenvolvimento dos diferentes algoritmos.

Formulação do Problema como um problema de pesquisa

Estado de Representação

O tabuleiro de jogo é representado por uma matriz B quadrangular com Y colunas e Y linhas, 4 <= Y <= 6. Os valores de cada célula têm os seguintes valores:

- 'X', no caso de ser uma parede,
- 'B', 'G', 'O', 'P', 'R' ou 'Y' no caso de ser uma célula jogável
- 'BF', 'GF', 'OF', 'PF', 'RF' ou 'YF' no caso de ser uma célula destino
- '-' no caso de ser uma célula vazia.

Heurística:

f(n) = g(n) + h(n), onde g(n) é o custo do caminho desde o estado inicial até ao nó n e h(n) é uma função heurística que estima o custo do caminho mais barato desde n até ao estado objetivo.

Estado Inicial

Matriz B com estado inicial desejado. Por exemplo:

Estado Objetivo

Matriz F sem estados finais (FZ) sozinhos. Por exemplo:

Operadores:

Nome	Pré-condição	Efeitos	Custo
Up	∃IZ, B[IZx , IZy-1] ∉ { "X" , "IZ" } ∧ IZy > 0	∀IZ, While (B[IZx-1, IZy] ∉ { "X" , "IY" }) do B[Izx , IXy-1]=IZ	1
Down	∃IZ, B[IZx , Ixy + 1] ∉ { "X" , "IZ" } ∧ IZy < B.size	∀IZ, While (B[IZx+1,Izy] ∉ { "X" ,"IY"}) do B[Izx , IXy+1] = IZ	1
Left	∃IZ, B[IZx-1 , Ixy] ∉ { "X" , "IZ" } ∧ IZx > 0	∀IZ, While (B[Izx , IZy-1] ∉ { "X" , "IY" }) do B[IZx-1 , Ixy] = IZ	1
Right	∃IZ, B[IZx+1 , Ixy] ∉ { "X" , "IZ" } ∧ Izx < B.size	∀IZ, While (B[IZx , IZy+1] ∉ { "X" ,"IY"}) do B[IZx+1 , Ixy] = IZ	1

Legenda: IZ - peça que se move IY - outra peça X - parede

Detalhes de Implementação

Linguagem de programação

Python, recorrendo ao pacote pygame para representação da interface do jogo.

Ambiente de desenvolvimento

VSCode / Spyder.

Estruturas de dados

- Listas, para representar os tabuleiros de jogo;
- Nodes e Graphs.

Estrutura de ficheiros:

 A figura ao lado representa a estrutura dos ficheiros com diferentes matrizes para diferentes níveis com os quais podemos testar o jogo;

Trabalho já implementado

- Representação gráfica do tabuleiro;
- Verificação dos movimentos válidos;
- Modo de jogo individual;
- Implementação do algoritmo BFS.