## Project 2: Data Wrangling for new Shop location

Pawdacity is a leading pet store chain in Wyoming with 13 stores throughout the state. This year, Pawdacity would like to expand and open a 14th store. Your manager has asked you to perform an analysis to recommend the city for Pawdacity's newest store, based on predicted yearly sales.

Your first step in predicting yearly sales is to first format and blend together data from different datasets and deal with outliers.

Your manager has given you the following information to work with:

- 1. The monthly sales data for all of the Pawdacity stores for the year 2010.
- 2. NAICS data on the most current sales of all competitor stores where total sales is equal to 12 months of sales.
- 3. A partially parsed data file that can be used for population numbers.
- 4. Demographic data (Households with individuals under 18, Land Area, Population Density, and Total Families) for each city and county in the state of Wyoming. For people who are unfamiliar with the US city system, a state contains counties and counties contains one or more cities.



Map of Wyoming Counties

## Step 1: Business and Data Understanding

**Key Decisions:** 

1. What decisions needs to be made?

A proposal for the location of the newest store of Pawdacity, based on the yearly sales statistics.

- 2. What data is needed to inform those decisions?
- Monthly sales of Pawdacity for year 2010
- Demographic data for the cities in Wyoming.

## Step 2: Building the Training Set

The training set was built the following way:

P2-wy-demographic data was the basis for calculationg Population for each city, based on Land Area and Population density. Then the Partially parsed web scraped data was cleaned, removing not needed characters with a series of regexp cleanup, null checks and data enrichment for missing county information. Then, the pawdacity yearly sales numbers were calculated based on the monthly sales statistics. All these 3 inputs were Joined together, thus I could calculate the sums and averages for the fields above.



Figure 1 – The training set

The calculated averages were checked based on the output in the red circle on Figure 3 and the results are in Figure 2.

| Record |   | Name                     | Average       |  |  |
|--------|---|--------------------------|---------------|--|--|
| 1      |   | 2010 Census              | 19442         |  |  |
|        | 2 | Pawdacity Estimate       | 343027.636364 |  |  |
|        | 3 | Households with Under 18 | 3096.727273   |  |  |
|        | 4 | Land Area                | 3006.489126   |  |  |
|        | 5 | Population Density       | 5.709091      |  |  |
|        | 6 | Total Families           | 5695.708182   |  |  |

Figure 2 - The calculated averages for the predictor variables

## Step 3: Dealing with Outliers

For calculation IQR Interquartile range the Basic data profile information was extracted to get Q1 and Q3 quartile values for the dataset, and then IQR = Q3 - Q1, Upper Fence = Q3 + 1.5 IQR and Lower Fence = Q1 - 1.5 IQR calculation have been applied, see Figure 3 blue circle and Figure 4 numerical results



Figure 3 – Extracting the basic statistics of predictor values and calculating IQR values

| Record | Name                       | Sum          | FieldName                | Q1          | Q3        | IQR         | Upper Fence | Lower Fence |
|--------|----------------------------|--------------|--------------------------|-------------|-----------|-------------|-------------|-------------|
|        | 1 2010 Census              | 213862       | 2010 Census              | 7917        | 26061.5   | 18144.5     | 53278.25    | -19299.75   |
|        | 2 Households with Under 18 | 34064        | Households with Under 18 | 1327        | 4037      | 2710        | 8102        | -2738       |
|        | 3 Land Area                | 33071.380389 | Land Area                | 1861.721074 | 3504.9083 | 1643.187226 | 5969.689139 | -603.059765 |
|        | 4 Pawdacity Estimate       | 3773304      | Pawdacity Estimate       | 226152      | 312984    | 86832       | 443232      | 95904       |
|        | 5 Population Density       | 62.8         | Population Density       | 1.72        | 7.39      | 5.67        | 15.895      | -6.785      |
|        | 6 Total Families           | 62652.79     | Total Families           | 2923.41     | 7380.805  | 4457,395    | 14066.8975  | -3762.6825  |

Figure 4 – The IQR numerical results

Based on the actual values of the predictor variables for the cities (Figure 5) and the IQR Upper and Lower Fence limits (Figure 4), one can implement Alteryx checks for these values (Figure 6).

| Record | City           | Land Area   | Households with Under 18 | Population Density | Total Families | Population   | 2010 Census | Pawdacity Estimate |
|--------|----------------|-------------|--------------------------|--------------------|----------------|--------------|-------------|--------------------|
|        | 1 Buffalo      | 3115.5075   | 746                      | 1.55               | 1819.5         | 4829.036625  | 4585        | 185328             |
|        | 2 Casper       | 3894.3091   | 7788                     | 11.16              | 8756.32        | 43460.489556 | 35316       | 317736             |
|        | 3 Cheyenne     | 1500.1784   | 7158                     | 20.34              | 14612.64       | 30513.628656 | 59466       | 917892             |
|        | 4 Cody         | 2998.95696  | 1403                     | 1.82               | 3515.62        | 5458.101667  | 9520        | 218376             |
|        | 5 Douglas      | 1829.4651   | 832                      | 1.46               | 1744.08        | 2671.019046  | 6120        | 208008             |
|        | 6 Evanston     | 999.4971    | 1486                     | 4.95               | 2712.64        | 4947.510645  | 12359       | 283824             |
|        | 7 Gillette     | 2748.8529   | 4052                     | 5.8                | 7189.43        | 15943.34682  | 29087       | 543132             |
|        | 8 Powell       | 2673.57455  | 1251                     | 1.62               | 3134.18        | 4331.190771  | 6314        | 233928             |
|        | 9 Riverton     | 4796.859815 | 2680                     | 2.34               | 5556.49        | 11224.651967 | 10615       | 303264             |
| 1      | 0 Rock Springs | 6620.201916 | 4022                     | 2.78               | 7572.18        | 18404.161326 | 23036       | 253584             |
| 1      | 1 Sheridan     | 1893.977048 | 2646                     | 8.98               | 6039.71        | 17007.913891 | 17444       | 308232             |

Figure 5 – The actual values of predictor variables



Figure 6 – Alteryx checks for the IQR fences

When checking the output of the predictor value checks against the IQR fences (see Figure 7), one can see three cities from outlier results, Cheyenne has 3 outlier values, while Gillette and Rock Spring have one. Since the dataset is quite small and Cheyenne has 3 outliers:

- 917892 Pawdacity Estimate (see Figure 5) exceeding the upper IQR limit of 443232 (see Figure 4)
- 14613 total family number (Figure 5) exceeding the upper IQR limit of 14067 (see Figure 4)
- 20.34 Population density (see Figure 5) exceeding the upper IQR limit of 20.9 (see Figure 4)

therefore I would recommend to remove **Cheyenne** from the dataset, as it is most likely that there has been errors in collecting the data.

| Record | City         | Pawdacity Estimate test | Total Families test | Household test | Landarea test | Population density test |
|--------|--------------|-------------------------|---------------------|----------------|---------------|-------------------------|
| 1      | Buffalo      | OK                      | OK                  | OK             | OK            | OK                      |
| 2      | Casper       | OK                      | OK .                | OK .           | OK .          | OK                      |
|        | Cheyenne     | NOT OK                  | NOT OK              | OK             | OK            | NOT OK                  |
| 4      | Cody         | OK .                    | OK                  | OK             | OK            | OK                      |
|        | Douglas      | OK                      | OK                  | OK             | OK            | OK                      |
| (      | Evanston     | OK.                     | OK                  | OK             | OK            | OK                      |
| 7      | Gillette     | NOT OK                  | OK                  | OK             | OK            | OK                      |
|        | Powell       | OK.                     | OK                  | OK             | OK            | OK                      |
| 9      | Riverton     | OK                      | OK                  | OK             | OK            | OK                      |
| 10     | Rock Springs | OK                      | OK                  | ОК             | NOT OK        | OV.                     |
| 11     | Sheridan     | OK                      | OK                  | OK             | OK .          | OK                      |

Figure 7 – The results of the predictor values against the IQR Upper and Lower Limits