

CONTENIDO

EJERCICIO 1

ARQUITECTURA

ARQUITECTURA

TECNICAS DE OPTIMIZACION

OPTIMIZACION

¿Qué parámetros vamos a utilizar?

ANÁLISIS ETA con epochs=10000 y arquitectura 35-20-2-20-35

ANÁLISIS POR ÉPOCAS

eta = 0.0005 Momentum = true

¿Cuál es la arquitectura óptima?

ARQUITECTURA 35-2-35

Eta = 0.0005 Epocas = 1000 Momentum = True

Error medio promedio: 0.526

ARQUITECTURA 35-20-2-20-35

Eta = 0.0005 Epocas = 1000 Momentum = True

Error medio promedio: 0.383

ARQUITECTURA 35-20-2-20-35

Original

ARQUITECTURA 35-20-10-2-10-20-35

Eta = 0.0005 Epocas = 1000 Momentum = True

Error medio promedio: 0.293

ARQUITECTURA 35-20-10-2-10-20-35

OBSERVACION

Con menor error de reconstrucción, el espacio latente se vuelve menos representativo, pero las imágenes reconstruidas son más nítidas

Utilizaremos la arquitectura 35-20-10-2-10-20-35 en denoising

GENERATE NEW CHARACTER

ARQUITECTURA 35-20-10-2-10-20-35

Eta = 0.0005 Epocas = 1000 Momentum = True

Error medio: 0.66

DENOISING AUTOENCODER

ARQUITECTURA 35-20-10-2-10-20-35

Noise = 0.2

Eta = 0.0005 Epocas = 1000 Momentum = True

Error medio promedio: 0.573

ARQUITECTURA 35-20-10-2-10-20-35

Noise = 0.05

Error medio promedio: 0.33

CONCLUSIONES

Ejercicio 2

AUTOENCODER VARIACIONAL

$$-\mathcal{L} = -\underbrace{\mathbb{E}_{q(z)} \log p(x/z)}_{\text{Error de reconstrucción}} + \underbrace{\mathit{KL}(q(z)||p(z))}_{\text{Término regularizador}}$$

$$z = h(x) = \epsilon \odot \Sigma(x) + \mu(x)$$

AUTOENCODER VARIACIONAL

- Busca regularizar el entrenamiento
 - Continua
 - o Completa
- Codifica el input con distribución normal a lo largo del espacio latente

- Problema de varianza muy chica y/o distribuciones con medias lejanas en espacio latente
 - Regularizar matriz de covarianza y la media de lo retornado por el encoder

PARAMETROS A UTILIZAR **OPTIMIZACION ACTIVACION ADAM** DATASET RELU MINST FONT

DATASET -> MINST

REPRESENTACIÓN EN ESPACIO LATENTE

REPRESENTACIÓN EN ESPACIO LATENTE

REPRESENTACIÓN EN ESPACIO LATENTE

CONCLUSIONES

