Package 'chicane'

October 12, 2022

Title Capture Hi-C Analysis Engine

```
Type Package
Version 0.1.8
Date 2021-11-03
Author Erle Holgersen [aut],
      Olivia Leavy [aut],
      Olivia Fletcher [aut],
      Frank Dudbridge [aut],
      Syed Haider [aut, cre]
Maintainer Syed Haider < Syed . Haider@icr.ac.uk>
Description Toolkit for processing and calling interactions in capture Hi-C data. Con-
      verts BAM files into counts of reads linking restriction fragments, and identifies pairs of frag-
      ments that interact more than expected by chance. Significant interactions are identified by com-
      paring the observed read count to the expected background rate from a count regression model.
Depends R (>= 3.5.0), gamlss.tr, gamlss, data.table
License GPL-2
Encoding UTF-8
LazyData true
biocViews
Imports MASS, stats, foreach, doParallel, iterators, bedr, knitr,
      rmarkdown
SystemRequirements bedtools
Suggests testthat, GenomicInteractions, GenomicRanges, Gviz, countreg
Additional_repositories http://R-Forge.R-project.org/
VignetteBuilder knitr
RoxygenNote 7.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2021-11-06 15:00:16 UTC
```

36

Index

R topics documented:

add.covariates	3
add.fragment.coordinates	4
bedtools.installed	4
bre80	5
check.model.numerical.fit	6
check.split.data.numerical.fit	6
chicane	7
combine.replicates	9
compare.replicates	1
convert.bam	1
convert.hicup.digest.bed	2
convert.standard.format	13
convert.to.one.based	13
create.locus.plot	4
create.modelfit.plot	6
distance.bin	6
distance.split	17
fill.in.zeros	8
filter.fragments	8
fit.glm	9
fit.model	20
get.combination.count	22
get.components	22
get.distance	23
get.id.components	24
get.interaction.id	24
get.trans.counts	25
is.glm.nb.maxiter.warning	25
is.glm.nb.theta.error	26
is.glm.nb.theta.warning	26
model.rows.sanity.check	27
model.try.catch	27
multiple.testing.correct	28
prepare.data	29
read.bed	31
	31
smart.split	32
stratified.enrichment.sample	33
test.enrichment	33
verify.interaction.data	34

add.covariates 3

add.covariates

add.covariates

Description

Add model covariates (trans counts and distance) to an interactions data table.

Usage

```
add.covariates(interaction.data)
```

Arguments

```
interaction.data
```

data.table with interaction data. Must contain columns bait.id, target.id, bait.chr, bait.start, bait.end, target.chr, target.start, target.end and count.

Value

Updated data table with new columns

```
bait.trans.count
number of trans interactions of bait fragment
target.trans.count
number of trans interactions of target fragment
distance distance between bait and target fragment, or NA if trans
```

Author(s)

Erle Holgersen < Erle. Holgersen@icr.ac.uk>

Examples

```
data(bre80);
input.cols <- c('bait.id', 'target.id', 'bait.chr', 'bait.start',
'bait.end', 'target.chr', 'target.start', 'target.end', 'count');
output <- add.covariates(bre80[, input.cols, with = FALSE]);</pre>
```

4 bedtools.installed

```
add. fragment. coordinates \\ add. fragment. coordinates
```

Description

Expand target and bait IDs of the form chrN:start-end to separate coordinate columns in the data table

Usage

```
add.fragment.coordinates(id.data)
```

Arguments

id.data

data table containing columns target.id and/or bait.id to be expanded

Value

Data table with added coordinate columns for target and bait (as applicable).

Author(s)

Erle Holgersen < Erle. Holgersen@icr.ac.uk >

Examples

```
data(bre80);
add.fragment.coordinates(bre80[, .(bait.id, target.id)]);
```

bedtools.installed

bedtools.installed

Description

Check if bedtools exists in PATH

Usage

```
bedtools.installed()
```

Value

Logical indicating if bedtools was found in PATH

bre80 5

Author(s)

Erle Holgersen < Erle. Holgersen@icr.ac.uk >

Examples

bedtools.installed();

bre80

Bre80 Cell Line

Description

A dataset containing processed data from a capture Hi-C experiment in the Bre80 normal epithelial breast tissue cell line. The experiment targeted several breast cancer risk loci, and reads that mapped to the 2q35 SNPs rs13387042 and rs16857609 are included in the dataset.

Data was prepared using the prepare. data function. Coordinates are GRCh38.

Usage

data(bre80)

Format

A data table object with 47,766 rows and 13 columns.

The variables are as follows:

- target.id String in chrN:start-end format identifying target fragment
- bait.id String in chrN:start-end format identifying bait fragment
- target.chr Chromosome of target fragment
- target.start Start coordinate of target fragment (zero-based)
- target.end End coordinate of target fragment
- bait.chr Chromosome of bait fragment
- bait.start Start coordinate of bait fragment (zero-based)
- bait.end End coordinate of bait fragment
- bait.to.bait Boolean indicating if the interaction is bait-to-bait (i.e. the fragment listed as target is also a bait)
- bait.trans.count The number of reads linking the bait to fragments in trans (a measure of "interactibility")
- target.trans.count The number of reads linking the target to fragments in trans (a measure of "interactibility")
- distance Distance between the midpoints of the bait and target fragments (basepairs). NA for trans interactions
- · count The number of reads linking the two fragments

References

Baxter, Joseph S., et al. "Capture Hi-C identifies putative target genes at 33 breast cancer risk loci." Nature Communications 9.1 (2018): 1028.

Description

Check if chicane model can be fit on a given dataset. glm.nb does not work when all responses are constant, or there are only two unique values and a covariate is a perfect predictor.

Usage

```
check.model.numerical.fit(interaction.data)
```

Arguments

interaction.data

Data table of interaction data on which model is to be fit

Value

boolean indicating if model can be fit

Description

Helper function to check if the chicane model can be fit on each element of a split data list.

Usage

```
check.split.data.numerical.fit(split.data)
```

Arguments

split.data List of data.table objects with fragment interaction data

Value

Logical indicating if the model can be fit

chicane 7

chicane chicane

Description

Run full method for detecting significant interactions in capture Hi-C experiments, starting either from a BAM file or preprocessed data from prepare.data

Usage

```
chicane(
  bam = NULL,
  baits = NULL,
  fragments = NULL,
  interactions = NULL,
  replicate.merging.method = "sum",
  distribution = "negative-binomial",
  include.zeros = "none",
  bait.filters = c(0, 1),
  target.filters = c(0, 1),
  distance.bins = NULL,
  multiple.testing.correction = c("bait-level", "global"),
  adjustment.terms = NULL,
  remove.adjacent = FALSE,
  temp.directory = NULL,
  keep.files = FALSE,
  maxit = 100,
  epsilon = 1e-08,
  cores = 1,
  trace = FALSE,
  verbose = FALSE,
  interim.data.dir = NULL
)
```

Arguments

bam	Path to a BAM file
baits	Path to a BED file containing the baits
fragments	Path to a BED file containing all restriction fragments in the genome
interactions	Data table or path to a text file detailing fragment interactions, typically from prepare.data. Can be used instead of bam/baits/fragments specification if the text files have already been prepared.
replicate.merg	ing.method
	Method that should be used for merging replicates, if applicable
distribution	Name of distribution of the counts. Options are 'negative-binomial', 'poisson', 'truncated-poisson', and 'truncated-negative-binomial'

8 chicane

include.zeros String specifying what zero counts to include. Options are none (default), cis,

and all.

bait.filters Vector of length two, where the first element corresponds to the lower-end filter

and the second to the upper-end filter. When global multiple testing correction is performed, altering the bait filtering settings may affect the number of significant

results.

target.filters Vector of length two, giving lower and higher filter, respectively. Changing this

filtering setting may affect multiple testing correction by altering the number of

tests performed.

distance.bins Number of bins to split distance into. Models are fit separately in each bin.

multiple.testing.correction

String specifying how multiple testing correction should be performed, by bait

or globally.

adjustment.terms

Character vector of extra terms to adjust for in the model fit.

remove.adjacent

Logical indicating whether to remove all reads mapping to adjacent restriction

fragments.

temp.directory Directory where temporary files should be stored. Defaults to current directory.

keep.files Logical indicating whether to keep temporary files

maxit Maximum number of IWLS iterations for fitting the model (passed to glm.control)

epsilon Positive convergence tolerance for Poisson and negative binomial models. Passed

to glm.control

cores Integer value specifying how many cores to use to fit model for cis-interactions.

trace Logical indicating if output should be produced for each of model fitting proce-

dure. Passed to glm. control or gamlss. control

verbose Logical indicating whether to print progress reports.

interim.data.dir

Path to directory to store intermediate QC data and plots. NULL indicate skip

intermediate results.

Value

Data table with columns

target.id String in chrN:start-end format identifying target fragment bait.id String in chrN:start-end format identifying bait fragment

target.chr Chromosome of target fragment

target.start Start coordinate of target fragment (zero-based)

target.end End coordinate of target fragment
bait.chr Chromosome of bait fragment

bait.start Start coordinate of bait fragment (zero-based)

bait.end End coordinate of bait fragment

combine.replicates 9

bait.to.bait Boolean indicating if the interaction is bait-to-bait (i.e. the fragment listed as target is also a bait) bait.trans.count The number of reads linking the bait to fragments in trans (a measure of "interactibility") target.trans.count The number of reads linking the target to fragments in trans (a measure of "interactibility") distance Distance between the midpoints of the bait and target fragments (basepairs). NA for trans interactions count The number of reads linking the two fragments expected The expected number of reads linking the two fragments under the fitted model p.value P-value for test of the observed number of reads significantly exceeding the expected count q.value FDR-corrected p-value

Author(s)

Erle Holgersen < Erle. Holgersen@icr.ac.uk>

Examples

```
if( bedtools.installed() ) {
    # start from BAM file
    bam <- system.file('extdata', 'Bre80_2q35.bam', package = 'chicane');
    baits <- system.file('extdata', '2q35.bed', package = 'chicane');
    fragments <- system.file('extdata', 'GRCh38_HindIII_chr2.bed.gz', package = 'chicane');
    results <- chicane(
    bam = bam,
    baits = baits,
    fragments = fragments
);
}

# start from pre-processed data
data(bre80);
results <- chicane(interactions = bre80);</pre>
```

combine.replicates

combine.replicates

Description

Merge biological replicates.

10 combine.replicates

Usage

```
combine.replicates(replicates, method = c("sum", "weighted-sum"))
```

Arguments

replicates list of data table objects from prepare.data

method string specifying the method for merging replicates. Options are 'sum' and

'weighted-sum'.

Details

The parameter method determines which method is used for merging replicates. Available options are weighted-sum and sum.

'weighted-sum' implements the size factor scaling approach used in DEseq, rounded to the closest integer. See Anders and Huber 2010 for details.

'sum' is the naive sum of counts across biological replicates.

Value

Data table object containing merged data, where counts are stored in colums

```
count . i count of interaction in ith replicate count count after merging replicates
```

References

Anders, Simon, and Wolfgang Huber. "Differential expression analysis for sequence count data." *Genome biology* 11.10 (2010): R106.

Examples

```
if( bedtools.installed() ) {
    # preprocess data
    bam <- system.file('extdata', 'Bre80_2q35.bam', package = 'chicane');
    baits <- system.file('extdata', '2q35.bed', package = 'chicane');
    fragments <- system.file('extdata', 'GRCh38_HindIII_chr2.bed.gz', package = 'chicane');
    input.data <- prepare.data(
    bam = bam,
    baits = baits,
    fragments = fragments
);

# combined two datasets into one
    merged <- combine.replicates(list(input.data, input.data));
}</pre>
```

compare.replicates 11

compare.replicates

compare.replicates

Description

Compare replicates in a pairwise manner and further stratified by distance

Usage

```
compare.replicates(interaction.data = NULL, output.directory = "./")
```

Arguments

interaction.data

A named vector specifying paths to files created using {prepare.data()}

output.directory

Path to the output directory where pairwise plots are generated

Value

TRUE if pairwise plots were successfully created

Author(s)

Syed Haider

Examples

TODO

convert.bam

convert.bam

Description

Convert a BAM file to a format that can be used for replicate merging.

Note: This function does not process data enough to be used for interaction calling. Use prepare. data for full preprocessing.

Usage

```
convert.bam(bam, baits, fragments, temp.directory = NULL, keep.files = FALSE)
```

Arguments

bam Path to a BAM file

baits Path to a BED file containing the baits

fragments Path to a BED file containing all restriction fragments in the genome

temp.directory Directory where temporary files should be stored. Defaults to current directory.

keep.files Logical indicating whether to keep temporary files

Author(s)

Erle Holgersen < Erle. Holgersen@icr.ac.uk >

See Also

prepare.data

convert.hicup.digest.bed

convert.hicup.digest.bed

Description

Convert a HiCUP digest file to BED format.

Usage

```
convert.hicup.digest.bed(hicup.digest, file.name = "")
```

Arguments

hicup.digest Path to HiCUP digest

file. name Path to output file. A blank string indicates output to the console.

Examples

```
hicup.digest <- system.file('extdata', 'HiCUP_digest_example.txt', package = 'chicane');
convert.hicup.digest.bed(hicup.digest);</pre>
```

convert.standard.format 13

```
convert.standard.format
```

convert.standard.format

Description

Create a file in standard format for cross compatability including with WashU Epigenome Browser.

Usage

```
convert.standard.format(chicane.results, file.name = "")
```

Arguments

```
chicane.results
Path to CHiCANE interaction calls file
file.name
Path to output file
```

Value

TRUE if output files are created successfully

Author(s)

Andrea Gillespie, Syed Haider

Examples

```
chicane.results <- system.file(
   'extdata', 'T47D_2q35_filtered_chicane_calls.txt',
   package = 'chicane'
   );
output.file = file.path(tempdir(), 'temp_standard_format.txt');
convert.standard.format(chicane.results, file.name = output.file);</pre>
```

convert.to.one.based convert.to.one.based

Description

Convert zero-based region in format chr:start-end to 1-based

Usage

```
convert.to.one.based(id)
```

14 create.locus.plot

Arguments

id string in format chr:start-end

Value

one-converted ID

create.locus.plot

create.locus.plot

Description

Create a file compatible with WashU Epigenome Browser from CHiCANE interaction calls.

Usage

```
create.locus.plot(
  genome = "hg38",
  chr = NULL,
  start = NULL,
  end = NULL,
  gene.data = NULL,
  genomic.features = NULL,
  feature.name = NULL,
  fdr.filter = 0.05,
  interaction.data = NULL,
  file.name = NULL,
  height = 5.5,
  width = 8.5,
  track.heights = c(0.2, 0.5, 0.8, 0.5, 1.5, 2),
  ...
)
```

Arguments

genome Name of genome build (e.g. 'hg38' or 'hg37')

chr Chromosome number for desired locus including 'chr' (e.g. 'chr1')

start Start coordinate of desired locus

start Start coordinate of desired locus
end End coordinate of desired locus

gene.data Path to chosen genome annotation file in .gtf format

genomic.features

Path to BED file with coordinates of desired feature track

feature.name Title to appear above genomic features

fdr.filter Q-value filter threshold for interaction calls to be included

create.locus.plot 15

interaction.data

Path to unfiltered CHiCANE calls output

file.name Path to output file

height Height in inches for desired plot width Width in inches of desired plot

track.heights Vector of length 6 indicating desired height of individual tracks

... Any additional parameters to Gviz::plotTracks

Value

TRUE if plot was successfully created

Author(s)

Andrea Gillespie, Syed Haider

Examples

```
# In order to conserve memory only significant interactions are included in example
# interaction.data file. However, in order to show raw counts, unfiltered calls should be
# included and only significant interactions (as set by fdr.filter) wil be displayed
gene.data <- system.file('extdata', 'gencode_2q35.gtf', package = 'chicane');</pre>
genomic.features <- system.file('extdata', '2q35.bed', package = 'chicane');</pre>
interaction.data <- system.file(</pre>
  'extdata', 'T47D_2q35_filtered_chicane_calls.txt',
 package = 'chicane'
 );
file.name <- file.path(tempdir(), "chr2_interactions.pdf");</pre>
create.locus.plot(
  genome = 'hg38',
  chr = 'chr2',
  start = 216600000,
  end = 217200000,
  gene.data = gene.data,
   genomic.features = genomic.features,
   feature.name = 'baits',
   interaction.data = interaction.data,
   file.name = file.name,
  collapseTranscripts = TRUE,
  shape = "arrow"
  );
```

16 distance.bin

```
create.modelfit.plot create.modelfit.plot
```

Description

create a plot representing model's fit

Usage

```
create.modelfit.plot(model, file.name = NULL, resolution = 300)
```

Arguments

model An object of fitted model

file.name A string specifying plotting file name resolution A numeric specifying plot's resolution

Value

TRUE if plot was successfully created

Author(s)

Syed Haider

distance.bin distance.bin

Description

Assign distances to a meaningful category

Usage

```
distance.bin(distance)
```

Arguments

distance Vector of distances that should be mapped to a distance bin

Value

vector of same length as distance containing assigned distance bins

distance.split 17

distance.split

distance.split

Description

Split interaction data into subsets that are large enough for the chicane model to be fit (see Details), based on distance. This step allows the distance term in the model to be fit in a piecewise linear fashion.

Usage

```
distance.split(
  interaction.data,
  distance.bins = NULL,
  min.rows.bin = 50,
  verbose = FALSE
)
```

Arguments

interaction.data

Data table of interaction data, typically from prepare.data

distance bins Number of distance bins desired. If NULL, a number is chosen to ensure that

the negative binomial can be fit in all bins.

min.rows.bin The minimum number of expected rows in a distance bin. Ignored if distance.bins

is set

verbose Logical indicating whether to print progress reports

Details

Fitting glm.nb fails when there is a lack of overdispersion in the data. The chicane method contains logic to catch these errors and instead fit a Poisson model. However, to avoid this happening more than necessary, an attempt is made to avoid distance splits that will clearly result in numerical errors. This includes bins of data where the count is the same for all rows, or a covariate is a perfect predictor of count.

Value

List where each element corresponds to a specified distance bin, and the final one corresponding to trans-interactions (if present)

Examples

```
data(bre80);
distance.split(bre80);
```

18 filter.fragments

fill.in.zeros

fill.in.zeros

Description

Add zero counts to interaction data

Usage

```
fill.in.zeros(interaction.data, baits, fragments)
fill.in.zeroes(interaction.data, baits, fragments)
```

Arguments

interaction.data

Data table containing interaction data

baits Vector of bait IDs used in the experiment, in format chrN:start-end

fragments Vector of potential fragments the baits can link up to, in format chrN:start-end

Value

Data table containing origiina

Examples

```
data(bre80);
bait.file <- system.file('extdata', '2q35.bed', package = 'chicane');
fragment.file <- system.file('extdata', 'GRCh38_HindIII_chr2.bed.gz', package = 'chicane');
results <- fill.in.zeros(
bre80,
baits = read.bed(bait.file),
fragments = read.bed(fragment.file)
);</pre>
```

filter.fragments

filter.fragments

Description

Filter low and high-interacting restriction fragments based on the total number of trans counts

fit.glm 19

Usage

```
filter.fragments(
  interaction.data,
  bait.filters = c(0, 1),
  target.filters = c(0, 1),
  verbose = FALSE
)
```

Arguments

interaction.data

Data table containing interactions

bait.filters

Vector of length two, where the first element corresponds to the lower-end filter and the second to the upper-end filter. When global multiple testing correction is performed, altering the bait filtering settings may affect the number of significant results.

target.filters Vector of length two, giving lower and higher filter, respectively. Changing this filtering setting may affect multiple testing correction by altering the number of tests performed.

verbose

Logical indicating whether to print progress reports.

Value

Data table containing fragments that passed all filters

Author(s)

Erle Holgersen < Erle. Holgersen@icr.ac.uk>

Examples

```
# filter out lowest 10% of baits
filter.fragments(bre80, bait.filters = c(0.1, 1))
```

fit.glm

fit.glm

Description

Fit GLM according to a specified distribution. This needs to be done separately from glm in order to include negative binomial and truncated distributions as options.

20 fit.model

Usage

```
fit.glm(
  formula,
  data,
  distribution = c("negative-binomial", "poisson", "truncated-poisson",
    "truncated-negative-binomial"),
  start = NULL,
  init.theta = NULL,
  maxit = 100,
  epsilon = 1e-08,
  trace = FALSE
)
```

Arguments

formula Formula specifying model of interest

data Data frame containing variables specified in formula

distribution Name of distribution of the counts. Options are 'negative-binomial', 'poisson',

'truncated-poisson', and 'truncated-negative-binomial'

start Starting values for model coefficients

init. theta Initial value of theta if fitting the negative binomial distribution

maxit Maximum number of IWLS iterations for fitting the model (passed to glm.control)

epsilon Positive convergence tolerance for Poisson and negative binomial models. Passed

to glm.control

trace Logical indicating if output should be produced for each of model fitting proce-

dure. Passed to glm.control or gamlss.control

Value

List with elements

model model object

expected.values

vector of expected values for each element in original data

p. values vector of p-values for test of significantly higher response than expected

fit.model fit.model

v

Description

Fit negative binomial model to obtain p-values for interactions.

fit.model 21

Usage

```
fit.model(
  interaction.data,
  distance.bins = NULL,
  distribution = "negative-binomial",
  bait.filters = c(0, 1),
  target.filters = c(0, 1),
  adjustment.terms = NULL,
  maxit = 100,
  epsilon = 1e-08,
  cores = 1,
  trace = FALSE,
  verbose = FALSE,
  interim.data.dir = NULL
)
```

Arguments

interaction.data

data.table object containing interaction counts. Must contain columns distance,

count, and bait_trans_count.

distance.bins Number of bins to split distance into. Models are fit separately in each bin.

distribution Name of distribution of the counts. Options are 'negative-binomial', 'poisson',

'truncated-poisson', and 'truncated-negative-binomial'

bait.filters Vector of length two, where the first element corresponds to the lower-end filter

and the second to the upper-end filter. When global multiple testing correction is performed, altering the bait filtering settings may affect the number of significant

results.

target.filters Vector of length two, giving lower and higher filter, respectively. Changing this

filtering setting may affect multiple testing correction by altering the number of

tests performed.

adjustment.terms

Character vector of extra terms to adjust for in the model fit.

maxit Maximum number of IWLS iterations for fitting the model (passed to glm. control)

epsilon Positive convergence tolerance for Poisson and negative binomial models. Passed

to glm.control

cores Integer value specifying how many cores to use to fit model for cis-interactions.

trace Logical indicating if output should be produced for each of model fitting proce-

dure. Passed to glm.control or gamlss.control

verbose Logical indicating whether to print progress reports.

interim.data.dir

Path to directory to store intermediate QC data and plots.

Details

Fit a negative binomial model for obtaining p-value for interactions. The data is first sorted by distance, and models are fit separately in each quantile of the distance-sorted data.

22 get.components

Value

Interactions data with expected number of interactions and p-values added.

Examples

```
data(bre80);
fit.model(bre80);

get.combination.count get.combination.count
```

Description

Calculate the number of possible combinations between baits and fragments, excluding self-ligations and only counting bait-to-bait interactions once (e.g. a-b, not b-a)

Usage

```
get.combination.count(baits, fragments, cis.only = FALSE)
```

Arguments

baits vector of bait IDs in form chrN:start-end fragments vector of fragment IDs in form chrN:start-end

cis.only logical indicating whether cis-interactions only should be considered

Value

total number of possible combinations

```
get.components get.components
```

Description

Split a fragment in format chr:start-end to a list of corresponding elements

Usage

```
get.components(id)
```

get.distance 23

Arguments

id

string in format chr:start-end

Value

```
list with entries 'chr', 'start', 'end'
```

get.distance

get.distance

Description

Calculate distance between bait and target region

Usage

```
get.distance(interaction.data)
```

Arguments

```
interaction.data
```

data.table with interaction data. Must contain columns bait.chr, bait.start, bait.end, target.chr, target.start, target.end

Value

vector of absolute distances (NA for trans-interactions)

Examples

```
data(bre80);
input.cols <- c('bait.chr', 'bait.start', 'bait.end',
'target.chr', 'target.start', 'target.end');
get.distance( bre80[, input.cols, with = FALSE]);</pre>
```

24 get.interaction.id

get.id.components get.id.components

Description

Split a segment ID in form chrN: start-end into its different components

Usage

```
get.id.components(id)
```

Arguments

id segment ID of form chrN:start-end

Value

A character vector of length three, where the elements are chromosome, start, and end, respectively. If id is a vector, a list of the same length is returned

Examples

```
get.id.components('chrX:6-30');
get.id.components(c('3:4-10', '22:1000-20000'))
```

 ${\tt get.interaction.id} \qquad \textit{get.interaction.id}$

Description

Generate a unique identifying ID for each interaction

Usage

```
get.interaction.id(bait, other.end, bait.to.bait, zero.based = FALSE)
```

Arguments

bait id of bait in format chr:start-end
other.end id of other end in format chr:start-end
bait.to.bait logical indicating whether both ends are baits
zero.based logical indicating if IDs are zero-based

Value

string identifying interaction

get.trans.counts 25

get.trans.counts

get.trans.counts

Description

Calculate the number of trans-interactions per fragment, accounting for the fact that baits can be listed either as bait or target.

Usage

```
get.trans.counts(interaction.data)
```

Arguments

interaction.data

Data table containing interactions

Value

Data table with columns fragment.id and trans.count.

fragment.id ID of restriction fragment in chrN:start-end format trans.count Number of trans interactions involving the fragment

Examples

```
data(bre80);
get.trans.counts(bre80[, .(bait.chr, target.chr, bait.id, target.id, count)]);
```

```
is.glm.nb.maxiter.warning
```

is.glm.nb.maxiter.warning

Description

Check if a warning object is an iteration limit reached warning from glm.nb

Usage

```
is.glm.nb.maxiter.warning(w)
```

Arguments

W

Warning object

Value

Logical indicating if warning matches iteration limit reached warning

 $\verb|is.glm.nb.theta.error|| check.glm.nb.theta.error|$

Description

Check if an error matches the error raised by glm. nb due to an inflated theta estimate. This happens when the variance of the negative binomial does not exceed the mean (i.e. there is no overdispersion). In such cases, the Poisson distribution may be a suitable alternative.

Usage

```
is.glm.nb.theta.error(e)
```

Arguments

е

Error object

Value

Boolean indicating if error matches

```
is.glm.nb.theta.warning
```

is.glm.nb.theta.warning

Description

Check if a warning matches the square root warning raised by glm.nb due to an inflated theta estimate. This happens when the variance of the negative binomial does not exceed the mean (i.e. there is no overdispersion). In such cases, the Poisson distribution may be a suitable alternative.

Usage

```
is.glm.nb.theta.warning(w)
```

Arguments

W

Warning object

Value

Boolean indicating if warning matches

Description

Check that the model fit contains the same number of rows as the data used to fit it, and throw an error if not

Usage

```
model.rows.sanity.check(model.data, model)
```

Arguments

model.data Data used to fit model

model Resulting negative binomial model object

Value

None

```
model.try.catch model.try.catch
```

Description

Internal function for fitting model within a tryCatch loop, handling numerical errors gracefully.

Usage

```
model.try.catch(
  model.formula,
  data,
  distribution = "negative-binomial",
  maxit = 100,
  epsilon = 1e-08,
  init.theta = NULL,
  start = NULL,
  trace = FALSE,
  verbose = FALSE
)
```

Arguments

model.formula formula data model data

distribution Name of distribution of the counts. Options are 'negative-binomial', 'poisson',

'truncated-poisson', and 'truncated-negative-binomial'

maxit Maximum number of IWLS iterations for fitting the model (passed to glm. control)

epsilon Positive convergence tolerance for Poisson and negative binomial models. Passed

to glm.control

init.theta Initial value of theta in negative binomial model start starting values of coefficients in linear predictor

trace Logical indicating if output should be produced for each of model fitting proce-

dure. Passed to glm.control or gamlss.control

verbose Logical indicating whether to print progress reports.

Value

List with elements

model model object. Set to NULL if no model could be fit.

expected.values

vector of expected values for each element in original data, or vector of NAs if

no model could be fit

p.values vector of p-values for test of significantly higher response than expected, or

vector of NAs if no model could be fit

multiple.testing.correct

multiple.testing.correct

Description

Perform multiple testing correction on p-values from interaction test. By default, multiple testing correction is applied per bait. To change this to a global multiple testing correction, set bait.level = FALSE.

Usage

```
multiple.testing.correct(interaction.data, bait.level = TRUE)
```

Arguments

interaction.data

Data table of interaction calls. Must contain columns p.value and bait.id.

bait.level Logical indicating whether multiple testing correction should be performed per

bait.

prepare.data 29

Value

Original data table with new column

q. value FDR-corrected p-value

Examples

```
## Not run:
data(bre80);
results <- fit.model(bre80);
adjusted.results <- multiple.testing.correct(results);
## End(Not run)</pre>
```

prepare.data

prepare.data

Description

Prepare data for running interaction calling. Takes a BAM file and baits and restriction fragments as input, and returns a data table with data ready for analysis.

Usage

```
prepare.data(
  bam,
  baits,
  fragments,
  replicate.merging.method = "sum",
  include.zeros = c("none", "cis", "all"),
  remove.adjacent = FALSE,
  temp.directory = NULL,
  keep.files = FALSE,
  verbose = FALSE
```

Arguments

bam Path to a BAM file

baits Path to a BED file containing the baits

fragments Path to a BED file containing all restriction fragments in the genome

replicate.merging.method

Method that should be used for merging replicates, if applicable

include.zeros String specifying what zero counts to include. Options are none (default), cis,

and all.

30 prepare.data

remove.adjacent

Logical indicating whether to remove all reads mapping to adjacent restriction

fragments.

temp.directory Directory where temporary files should be stored. Defaults to current directory.

keep.files Logical indicating whether to keep temporary files verbose Logical indicating whether to print progress reports.

Value

Data table object with columns

target.id String in chrN:start-end format identifying target fragment bait.id String in chrN:start-end format identifying bait fragment

target.chr Chromosome of target fragment

target.start Start coordinate of target fragment (zero-based)

target.end End coordinate of target fragment bait.chr Chromosome of bait fragment

bait.start Start coordinate of bait fragment (zero-based)

bait.end End coordinate of bait fragment

bait.to.bait Boolean indicating if the interaction is bait-to-bait (i.e. the fragment listed as

target is also a bait)

count The number of reads linking the two fragments

bait.trans.count

The number of reads linking the bait to fragments in trans (a measure of "inter-

actibility")

target.trans.count

The number of reads linking the target to fragments in trans (a measure of "in-

teractibility")

distance Distance between the midpoints of the bait and target fragments (basepairs). NA

for trans interactions

Examples

```
if( bedtools.installed() ) {
   bam <- system.file('extdata', 'Bre80_2q35.bam', package = 'chicane');
   baits <- system.file('extdata', '2q35.bed', package = 'chicane');
   fragments <- system.file('extdata', 'GRCh38_HindIII_chr2.bed.gz', package = 'chicane');
   input.data <- prepare.data(
bam = bam,
baits = baits,
fragments = fragments
);
}</pre>
```

read.bed 31

read.bed read.bed

Description

Read a BED file and return regions in chrN:start-end format

Usage

```
read.bed(bed.path, zero.based = TRUE)
```

Arguments

bed.path Path to bed file

zero.based Whether to return ID in zero-based coordinates

Value

vector of region IDs

Examples

```
bait.file <- system.file('extdata', '2q35.bed', package = 'chicane');
baits <- read.bed(bait.file);</pre>
```

run.model.fitting

run.model.fitting

Description

Run model fitting procedure for either bait-to-bait or other interactions. Meant for internal use only.

Usage

```
run.model.fitting(
  interaction.data,
  distance.bins = NULL,
  distribution = "negative-binomial",
  bait.to.bait = FALSE,
  adjustment.terms = NULL,
  maxit = 100,
  epsilon = 1e-08,
  cores = 1,
   trace = FALSE,
  verbose = FALSE,
  interim.data.dir = NULL
)
```

32 smart.split

Arguments

interaction.data

data.table object containing interaction counts. Must contain columns distance,

count, and bait_trans_count.

distance.bins Number of bins to split distance into. Models are fit separately in each bin.

distribution Name of distribution of the counts. Options are 'negative-binomial', 'poisson',

'truncated-poisson', and 'truncated-negative-binomial'

bait.to.bait Logical indicating if model should be fit as bait-to-bait

adjustment.terms

Characted vector of extra terms to adjust for in the model fit

maxit Maximum number of IWLS iterations for fitting the model (passed to glm.control)

epsilon Positive convergence tolerance for Poisson and negative binomial models. Passed

to glm.control

cores Integer value specifying how many cores to use to fit model for cis-interactions.

trace Logical indicating if output should be produced for each of model fitting proce-

dure. Passed to glm.control or gamlss.control

verbose Logical indicating whether to print progress reports.

interim.data.dir

Path to directory to store intermediate QC data and plots.

Value

Interactions data with expeceted number of interactions and p-values added.

Description

Split a data frame into a prespecified number of bins, using split and cut. Unlike the default R functions, this does not fail when asked to split the data into a single bin.

Usage

```
smart.split(dat, bins)
```

Arguments

dat Data frame or data table to be split bins Number of bins to split data into

Value

List with bins elements. Each element corresponds to one portion of the data

```
stratified. enrichment. sample \\ \textit{stratified.enrichment.sample}
```

Description

Generate a stratified sample matching distance distribution of significant interactions.

Usage

```
stratified.enrichment.sample(nonsignificant.results, significant.results)
```

Arguments

```
nonsignificant.results
```

Data table containing non-significant interactions that should be sampled from significant.results

Data table of significant results. Used to determine size of strata in stratified sampling procedure.

test.enrichment

test.enrichment

Description

test.enrichment

Usage

```
test.enrichment(
  interaction.data,
  feature.bed,
  significance.cutoff = 0.05,
  span = 0,
  n = 1000,
  remove.bait.to.bait = TRUE
)
```

Arguments

```
interaction.data
```

Data table containing details on interactions

feature.bed BED file with regions of features

significance.cutoff

q-value threshold for significant interactions

34 verify.interaction.data

span Distance around target restriction fragment to consider. If set to zero (default),

only features that overlap with the restriction fragment itself are considered.

n Number of random samples to consider

remove.bait.to.bait

Logical specifying whether to exclude bait-to-bait interactions

Value

list with elements

observed overlap between significant interactions and features

random vector of length n giving overlap between random samples and features

Author(s)

Erle Holgersen < Erle. Holgersen@icr.ac.uk>

Examples

```
if( bedtools.installed() ) {
   data(bre80);
   ctcf.bed <- system.file('extdata', 'T47D_chr2_CTCF.bed.gz', package = 'chicane');
   results <- chicane(interactions = bre80);
   test.enrichment(results, ctcf.bed, significance.cutoff = 0.25);
}</pre>
```

verify.interaction.data

verify.interaction.data

Description

Verify that interaction.data object is in expected format. Throws an error if object does not fit requirements.

Usage

```
verify.interaction.data(interaction.data)
```

Arguments

```
interaction.data
```

Object to be verified.

verify.interaction.data 35

Value

None

Index

```
* datasets
                                                model.rows.sanity.check, 27
    bre80, 5
                                                model.try.catch, 27
                                                \verb|multiple.testing.correct|, 28
add.covariates, 3
                                                prepare.data, 12, 29
add.fragment.coordinates, 4
                                                read.bed, 31
bedtools.installed, 4
                                                run.model.fitting, 31
bre80, 5
                                                smart.split, 32
check.model.numerical.fit, 6
                                                stratified.enrichment.sample, 33
check.split.data.numerical.fit,6
chicane, 7
                                                test.enrichment, 33
combine.replicates, 9
compare.replicates, 11
                                                verify.interaction.data, 34
convert.bam, 11
convert.hicup.digest.bed, 12
convert.standard.format, 13
convert.to.one.based, 13
create.locus.plot, 14
create.modelfit.plot, 16
distance.bin, 16
distance.split, 17
fill.in.zeroes (fill.in.zeros), 18
fill.in.zeros, 18
filter.fragments, 18
fit.glm, 19
fit.model, 20
get.combination.count, 22
get.components, 22
get.distance, 23
get.id.components, 24
get.interaction.id, 24
get.trans.counts, 25
is.glm.nb.maxiter.warning, 25
is.glm.nb.theta.error, 26
is.glm.nb.theta.warning, 26
```