

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

534108

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

PCT

(10) Internationale Veröffentlichungsnummer
WO 2004/041424 A1

(51) Internationale Patentklassifikation⁷: **B01J 4/02**,
4/06, 19/26, B05B 1/34, B01F 5/06

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): FAYE, Ian [US/DE];
Parlerstrasse 14, 70192 Stuttgart (DE). MILLER, Frank
[DE/DE]; Bahnhofstr. 7, 74360 Ilfeld (DE).

(21) Internationales Aktenzeichen: PCT/DE2003/003213

(74) Gemeinsamer Vertreter: ROBERT BOSCH GMBH;
Postfach 30 02 20, 70442 Stuttgart (DE).

(22) Internationales Anmeldedatum:
26. September 2003 (26.09.2003)

(81) Bestimmungsstaaten (national): JP, US.

(25) Einreichungssprache: Deutsch

(84) Bestimmungsstaaten (regional): europäisches Patent (AT,
BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR,
HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

(26) Veröffentlichungssprache: Deutsch

Veröffentlicht:

— mit internationalem Recherchenbericht

[Fortsetzung auf der nächsten Seite]

(54) Title: DOSING DEVICE

(54) Bezeichnung: DOSIEREINRICHTUNG

(57) Abstract: A dosing device (1) for liquid fuels, particularly for introduction into a chemical reformer in order to obtain hydrogen, comprises a metering device (2) for metering fuel into a metering line (12) and comprises a nozzle body (7), which is connected to the metering line (12) and which is provided with spray openings (6) that discharge into a metering space (10). On the spraying side, the nozzle body (7) spherically projects into the metering space (10), and the spray openings (6) are distributed over the spherically shaped portion of the nozzle body (7).

(57) Zusammenfassung: Eine Dosiereinrichtung (1) für flüssige Kraftstoffe, insbesondere zum Eintrag in einen chemischen Reformer zur Gewinnung von Wasserstoff, weist eine Zumesseinrichtung (2) zum Zumessen von Kraftstoff in eine Zumessleitung (12) und einen sich an die Zumessleitung (12) anschließenden Düsenkörper (7) mit Abspritzöffnungen (6), die in einen Zumessraum (10) ausmünden, auf, wobei der Düsenkörper (7) abspritzseitig sphärisch in den Zumessraum (10) ragt und über den sphärisch ausgeformten Teil des Düsenkörpers (7) die Abspritzöffnungen (6) verteilt sind.

WO 2004/041424 A1

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

5

10

Dosiereinrichtung**15 Stand der Technik**

Die Erfindung geht aus von einer Dosiereinrichtung nach der Gattung des Hauptanspruchs.

20 Bei brennstoffzellengestützten Transportsystemen kommen zur Gewinnung des benötigten Wasserstoffs aus kohlenwasserstoffhaltigen Kraftstoffen wie beispielsweise Benzin, Ethanol oder Methanol sog. chemische Reformer zum Einsatz.

25

Alle vom Reformer zum Reaktionsablauf benötigten Stoffe, wie z.B. Luft, Wasser und Kraftstoff, werden idealerweise dem Reaktionsbereich des Reformers in gasförmigem Zustand zugeführt. Da aber die Kraftstoffe, wie z.B. Methanol oder 30 Benzin, und Wasser, an Bord des Transportsystems vorzugsweise in flüssiger Form vorliegen, müssen sie erst, kurz bevor sie zum Reaktionsbereich des Reformers gelangen, erhitzt werden, um sie zu verdampfen. Dies erfordert einen Vorverdampfer, eine separate Komponente oder eine 35 Vormischkammer im Reformer, die in der Lage sind, die entsprechenden Mengen an gasförmigem Kraftstoff und Wasserdampf zur Verfügung zu stellen.

Die für die chemische Reaktion, in welcher beispielsweise der Kraftstoff unter anderem zu Wasserstoff reformiert wird, notwendige Temperatur wird durch sogenannte Katbrenner zur Verfügung gestellt. Katbrenner sind Komponenten, welche mit 5 einem Katalysator beschichtete Flächen aufweisen. In diesen katalytischen Brennern wird das Kraftstoff/Luftgemisch in Wärme und Abgase gewandelt, wobei die entstehende Wärme beispielsweise über die Mantelflächen und/oder über den warmen Abgasstrom an die entsprechenden Komponenten, wie 10 beispielsweise den chemischen Reformer oder einen Verdampfer, geführt wird.

Die Umsetzung des Kraftstoffs in Wärme ist stark von der Größe der Kraftstofftröpfchen, welche auf die katalytische 15 Schicht auftreffen, abhängig. Je kleiner die Tröpfchengröße ist und je gleichmäßiger die katalytische Schicht mit den Kraftstofftröpfchen benetzt wird, desto vollständiger wird der Kraftstoff in Wärme gewandelt und desto höher ist der Wirkungsgrad. Der Kraftstoff wird so zudem schneller 20 umgesetzt und Schadstoffemissionen gemindert. Zu große Kraftstofftröpfchen führen zu einer Belegung der katalytischen Schicht und damit zu einer nur langsamem Umsetzung. Dieses führt insbesondere in der Kaltstartphase beispielsweise zu einem schlechten Wirkungsgrad.

25

Da der Wasserstoff zumeist sofort verbraucht wird, müssen die chemischen Reformer in der Lage sein, die Produktion von Wasserstoff verzögerungsfrei, z.B. bei Lastwechseln oder Startphasen, an die Nachfrage anzupassen. Insbesondere in 30 der Kaltstartphase müssen zusätzliche Maßnahmen ergriffen werden, da der Reformer keine Abwärme bereitstellt. Konventionelle Verdampfer sind nicht in der Lage, die entsprechenden Mengen an gasförmigen Reaktanden verzögerungsfrei zu erzeugen.

35

Es ist daher sinnvoll, den Kraftstoff durch eine Dosiereinrichtung in feinverteilter Form und/oder gut platziert an Orte und Flächen zu verteilen, an denen die Kraftstoffe gut verdampfen können, beispielsweise in den

Reaktionsraum oder die Vormischkammer eines Reformers oder katalytischen Brenners, die Innenflächen eines zylindrischen Brennraums oder die inneren Mantelflächen eines Katbrenners. Darüber hinaus ist es sinnvoll, die Geometrie des abgespritzten Kraftstoffes so wählen zu können, daß bestimmte Stellen bzw. Orte, an denen der Kraftstoff schlecht verdampfen kann, bzw. ungünstig auf das Betriebsverhalten, beispielsweise eines Reformers einwirkt, nicht unmittelbar mit dem eingespritzten Kraftstoff in Berührung kommen.

Beispielsweise sind aus der US 3,971,847 Vorrichtungen zur Eindosierung von Kraftstoffen in Reformer bekannt. Der Kraftstoff wird hier von vom Reformer relativ weit entfernten Zumeßeinrichtungen über lange Zuführungsleitungen und eine einfache Düse in einen temperierten Stoffstrom zugemessen. Dabei trifft der Kraftstoff zuerst auf Prallbleche, die nach der Austrittsöffnung der Düse angeordnet sind, welche eine Verwirbelung und Verteilung des Kraftstoffs bewirken sollen, und gelangt dann über eine relativ lange Verdampfungsstrecke, welche für den Verdampfungsprozess notwendig ist, in den Reaktionsbereich des Reformers. Durch die lange Zuführungsleitung kann die Zumeßeinrichtung von thermischen Einflüssen des Reformers isoliert werden.

Nachteilig bei den aus der obengenannten Druckschrift bekannten Vorrichtungen ist insbesondere, daß durch die einfache Konstruktion der Düse und die Anordnung der Prallbleche eine gezielte Eindosierung von Kraftstoff, beispielsweise in Bereiche des Reformers mit großem Wärmeangebot, nur unzureichend möglich ist. Dies führt zu einem relativ großen Raumbedarf durch die Notwendigkeit einer langen und voluminösen Verdampfungsstrecke.

35

Außerdem ergeben sich im Kaltstartbetrieb Probleme, da sich lange und voluminöse Verdampfungsstrecken nur langsam aufheizen und zudem relativ viel Wärme ungenutzt abgeben. Durch die in der US 3,971,847 offenbarten Anordnungen von

Düse und Prallblechen ist es insbesondere nicht möglich, eine Hohlzylinderinnenfläche oder sphärische Ausnehmung gleichmäßig mit Kraftstoff zu benetzen oder dabei bestimmte Flächen des Hohlzylinders von der Benetzung mit Kraftstoff 5 auszunehmen. Auch die Form der durch den Zumeßvorgang entstehenden Kraftstoffwolke kann nur unzureichend beeinflußt werden.

Vorteile der Erfindung

10

Die erfindungsgemäße Dosiereinrichtung mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß durch den sphärisch in den Zumeßraum ragenden Düsenkörper und einer geeigneten 15 Anbringung der Abspritzöffnungen auf dem sphärisch in den Zumeßraum ragenden Düsenkörper die Geometrie des abgespritzten Kraftstoffes bzw. der Kraftstoffwolke den im Zumeßraum herrschenden Gegebenheiten und den dadurch gegebenen Bedingungen hervorragend angepaßt werden kann. 20 Insbesondere ist es möglich, hohlzyllindrische Innenflächen und sphärische Ausnehmungen gleichmäßig mit Kraftstoff zu benetzen.

Ferner ist es möglich, die Kraftstoffwolke so zu formen, daß 25 eine Lücke in der Kraftstoffwolke geformt wird. Durch die Ausnehmung bestimmter Flächen von der Benetzung mit Kraftstoff bzw. Lücken in der Kraftstoffwolke ist es beispielsweise möglich, auf der Innenfläche des Zumeßraumes angebrachte Sensoren von einer Kraftstoffbeaufschlagung 30 auszunehmen und deren Meßgenauigkeit zu verbessern.

Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen der im Hauptanspruch angegebenen Dosiereinrichtung möglich.

35

In einer Weiterbildung der Erfindung ist der Düsenkörper an seinem der Zumeßleitung zugewandten Ende hohlzyllindrisch geformt. Dies läßt eine besonders einfache und damit kostensparende Herstellung zu und ermöglicht überdies die

Anbringung eines Gewindes in diesem Bereich, womit der Düsenkörper vorteilhaft besonders einfach, dichtend und beständig mit der Zumeßleitung verbunden werden kann.

5 Der Düsenkörper kann mit der Zuführungsleitung vorteilhafterweise auch verschweißt, insbesondere laserverschweißt, werden.

Gemäß einer weiteren Weiterbildung der erfindungsgemäßen
10 Dosiereinrichtung, weisen die Abspritzöffnungen unterschiedliche Durchmesser auf. Dadurch kann insbesondere die durch die jeweilige Abspritzöffnung tretende Kraftstoffmenge bestimmt und den jeweiligen Anforderungen angepaßt werden.

15 Von Vorteil ist außerdem, die Mittelachsen der Abspritzöffnungen auf einen gemeinsamen Schnittpunkt zu legen, sowie den Schnittpunkt auf die Düsenkörperachse zu legen. Durch die Wahl der Stelle des Schnittpunkts auf der
20 Düsenkörperachse kann die Geometrie der Kraftstoffwolke den jeweiligen Anforderungen angepaßt werden.

Überdies kann auch durch eine unsymmetrische Lageanordnung bzw. Mittelachsenneigung der Abspritzöffnungen zur
25 Düsenkörperachse die Geometrie der Kraftstoffwolke bzw. die durch die austretenden Kraftstoffstrahlen gebildete Abstrahlgeometrie eingestellt und verbessert werden.

Durch die Reduzierung der Wandstärke des sphärischen Teils
30 des Düsenkörpers auf eine Wandstärke, die geringer ist als die des übrigen Teils des Düsenkörpers, können die Abspritzgeometrie des Kraftstoffes und das Wärmeleitverhalten des Düsenkörpers positiv beeinflußt werden.

35 Vorteilhafterweise wird als Zumeßeinrichtung ein Brennstoffeinspritzventil eingesetzt, wie es z.B. für Hubkolbenmaschinen mit innerer Verbrennung benutzt wird. Der Einsatz solcher Ventile hat mehrere Vorteile. So lassen sie

eine besonders genaue Steuerung bzw. Regelung der Kraftstoffzumessung zu, wobei die Zumessung über mehrere Parameter, wie z.B. Tastverhältnis, Taktfrequenz und ggf. Hublänge, gesteuert werden kann. Dabei ist die Abhängigkeit

5 vom Pumpendruck weit weniger ausgeprägt, als bei Zumeßeinrichtungen, die über den Leitungsquerschnitt den Volumenstrom des Kraftstoffs steuern und der Dosierbereich ist deutlich größer.

10 Darüber hinaus sind die Brennstoffeinspritzventile vielfach bewährte, in ihrem Verhalten bekannte, kostengünstige, gegenüber den verwendeten Kraftstoffen chemisch stabile und zuverlässige Bauteile, wobei dies im besonderen für sog. Niederdruck-Brennstoffeinspritzventile zutrifft, die

15 aufgrund der thermischen Entkopplung hier gut einsetzbar sind.

Die Zumeßleitung weist vorteilhafte Weise eine Anzahl wandstärkerreduzierter Stellen auf, die die Wärmeleitfähigkeit der Zumeßleitung herabsetzen bzw. auch 20 als Kühlkörper dienen können.

Vorzugsweise weist die erfindungsgemäße Dosiereinrichtung im Düsenkörper einen Dralleinsatz mit einem Drallkanal zur

25 Erzeugung eines Dralls im eingemessenen Kraftstoff bzw. Kraftstoff-Gas-Gemisch auf. Dadurch kann die Gemischaufbereitung und Zerstäubung des Kraftstoffes weiter verbessert werden.

30 Vorteilhaft ist es zudem, wenn die Form des Dralleinsatzes der Innengeometrie des Düsenkörpers gleicht und der Dralleinsatz mit einem Abstand zur Wandung des Düsenkörpers angeordnet ist. Dadurch lässt sich die Geschwindigkeit des Kraftstoffes bzw. des Kraftstoff-Gas-Gemisches am

35 Dralleinsatz steigern und zudem gut einstellen. Dies verbessert die Gemischaufbereitung und Zerstäubung.

Vorzugsweise weist der Dralleinsatz mehrere Drallkanäle auf, wobei die mehreren Drallkanäle parallel verlaufen oder sich

in ihrem Verlauf schneiden können. In dieser Weise kann die Drallzeugung den Eigenschaften des Kraftstoffes bzw. des Kraftstoff-Gas-Gemisches leicht angepaßt werden und die Drallstärke den Anforderungen entsprechend angepaßt werden.

5

Vorteilhaft ist schließlich, die Dosiereinrichtung mit einer Luftzuführung auszuführen, mit welcher Luft oder ein anderes Gas in die Zumeßleitung eingebracht werden kann. Die Gemischaufbereitung kann damit weiter verbessert und die 10 Kraftstofftröpfchengröße weiter reduziert werden. Außerdem kann so die Zumeßleitung, insbesondere in Stillstandsphasen und beispielsweise durch Ausblasen mit Luft durch die Luftzuführung, von Kraftstoff bzw. dem Kraftstoff-Gas-Gemisch befreit bzw. gereinigt werden. Ein unkontrollierter 15 Austritt von Kraftstoff bzw. eines Kraftstoff-Gas-Gemisches aus der Zumeßleitung wird somit verhindert.

Durch den mehrteiligen Aufbau der Dosiereinrichtung ist eine kostengünstige Herstellung und der Einsatz von 20 standardisierten Bauteilen möglich.

Zeichnung

Ausführungsbeispiele der Erfindung sind in der Zeichnung 25 vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:

Fig. 1 eine schematische Darstellung eines Ausführungsbeispiels einer erfindungsgemäßen 30 Dosiereinrichtung;

Fig. 2 die schematische Ansicht des Düsenkörpers von Fig. 1 von einem zwischen Adapterstück und Düsenkörper liegenden Punkt der Düsenkörperachse;

35 Fig. 3 eine schematische Schnittdarstellung des in Fig. 2 dargestellten Düsenkörpers entlang der Linie III-III in einer Seitenansicht;

Fig. 4 eine schematische Schnittdarstellung eines weiteren Ausführungsbeispiels eines erfindungsgemäßen Düsenkörpers in einer Seitenansicht,

5

Fig. 5 die schematische Schnittdarstellung des Ausführungsbeispiels mit einem hohlzylindrischen Zumeßraum mit sphärischer Ausnehmung,

10 Fig. 6 eine schematische Schnittdarstellung eines weiteren Ausführungsbeispiels eines erfindungsgemäßen Düsenkörpers mit einem Dralleinsatz und

15 Fig. 7 eine schematische Darstellung eines Dralleinsatzes.

Beschreibung des Ausführungsbeispiels

20 Nachfolgend wird ein Ausführungsbeispiel der Erfindung beispielhaft beschrieben.

Ein in Fig. 1 dargestelltes Ausführungsbeispiel einer erfindungsgemäßen Dosiereinrichtung 1 ist in der Form einer 25 Dosiereinrichtung 1 für die Verwendung von Niederdruck-Brennstoffeinspritzventilen ausgeführt. Die Dosiereinrichtung 1 eignet sich insbesondere zum Eintrag und zur Zerstäubung von Kraftstoff in einen beispielhaft in Fig. 5 dargestellten Zumeßraum 10 eines nicht weiter 30 dargestellten chemischen Reformers zur Gewinnung von Wasserstoff.

Die Dosiereinrichtung 1 besteht aus einer Zumeßeinrichtung 2, welche in diesem Ausführungsbeispiel als Niederdruck-Brennstoffeinspritzventil ausgeführt ist, einem elektrischen Anschluß 4, einem Kraftstoffanschluß 3, einem Adapterstück 5 zur Aufnahme der Zumeßeinrichtung 2 und einer rohrförmigen Zumeßleitung 12, einer Luftzuführung 9 und einem Düsenkörper 7. Die Zumeßeinrichtung 2 ist rohrförmig, wobei sich der

Kraftstoffanschluß 3 an der Oberseite befindet. An der Unterseite der Zumeßeinrichtung 2 erfolgt die Zumessung von Kraftstoff in die Zumeßleitung 12, wobei das Adapterstück 5 die Zumeßeinrichtung 2 und die Zumeßleitung 12 nach außen 5 hydraulisch dicht miteinander verbindet. Die rohrförmige Luftzuführung 9 mündet in die Zumeßleitung 12 und ist mit ihr über eine Gewindeverbindung oder Schweißverbindung, insbesondere Laserschweißverbindung, dichtend verbunden.

10 Das der Zumeßleitung 12 zugewandte hohlzylindrisch geformte Ende des Düsenkörpers 7 umfaßt das entsprechende Ende der Zumeßleitung 12 und ist dort über eine Fügeverbindung, die eine Schweiß- oder Schraubverbindung, insbesondere eine durch Laserschweißen hergestellte Fügeverbindung sein kann, 15 hydraulisch dicht mit der Zumeßleitung 12 verbunden. Alternativ dazu ist es auch möglich, daß das entsprechende Ende der Zumeßleitung 12 das ihm zugewandte hohlzylindrisch geformte Ende des Düsenkörpers 7 umfaßt. Die Zumeßleitung 12 selbst besteht beispielsweise aus einem standardisierten aus 20 Edelstahl bestehenden Metallrohr.

Der Düsenkörper 7 weist in seinem kugelsegmentförmig bzw. halbkugelförmig geformten abspritzseitigen sphärischen Teil 13 mehrere, in diesem Ausführungsbeispiel zwanzig, 25 Abspritzöffnungen 6 auf, welche in Fig. 2 und Fig. 3 näher dargestellt sind. In dem hier dargestellten Ausführungsbeispiel sind alle Abspritzöffnungen 6 symmetrisch zu einer der Längsachse 15 des Düsenkörpers 7 entsprechenden Düsenkörperachse 8 angeordnet, wobei die 30 gedachten Verlängerungen der Mittelachsen 14 der Abspritzöffnungen 6 durch einen auf der Düsenkörperachse 8 liegenden Schnittpunkt 11 verlaufen.

Der Zumeßeinrichtung 2 wird über den Kraftstoffanschluß 3 Kraftstoff, beispielsweise Benzin, Ethanol oder Methanol, von einer nicht dargestellten Kraftstoffpumpe und Kraftstoffleitung druckbehaftet zugeführt. Der Kraftstoff strömt bei Betrieb der Dosiereinrichtung 1 nach unten und wird durch den im unteren Ende der Zumeßeinrichtung 2

liegenden, nicht dargestellten Dichtsitz in bekannter Weise durch Öffnen und Schließen des Dichtsitzes in die Zumeßleitung 12 eingemessen. Durch die seitlich nahe der Zumeßeinrichtung 2 in die Zumeßleitung 12 mündende 5 Luftzuführung 9 können zur Gemischaufbereitung Luft oder andere Gase, beispielsweise brennbare Restgase aus einem Reformierungs- oder Brennstoffzellenprozeß, zugeführt werden. Im weiteren Verlauf wird der Kraftstoff durch die Zumeßleitung 12 zum Düsenkörper 7 befördert und wird dort 10 durch die Abspritzöffnungen 6 in den in Fig. 5 beispielhaft dargestellten Zumeßraum 10 eindosiert.

Fig. 2 zeigt den in Fig. 1 dargestellten Düsenkörpers 7 vergrößert von einem im Zumeßraum 10 liegenden Punkt der 15 Düsenkörperachse 8. Die Einspritzöffnungen 6 liegen in dieser Ansicht auf zwei zueinander rechtwinkligen Linien, die sich auf der hier als Punkt dargestellten Düsenkörperachse 8 schneiden.

20 Fig. 3 zeigt die Schnittdarstellung des in Fig. 2 dargestellten Düsenkörpers 7 entlang der Linie III - III in einer Seitenansicht. Deutlich erkennbar schneiden in diesem Ausführungsbeispiel die Mittelachsen 14 der Abspritzöffnungen 6 den gemeinsamen auf der Düsenkörperachse 25 8 liegenden Schnittpunkt 11. Im sphärisch ausgeformten Teil 13 des Düsenkörpers 7, der in den beispielhaft in Fig. 4 dargestellten Zumeßraum 10 ragt, befinden sich in diesem Ausführungsbeispiel symmetrisch zur Düsenkörperachse 8 angeordnet zwanzig Abspritzöffnungen 6.

30 Fig. 4 zeigt ein weiteres Ausführungsbeispiel des in Fig. 2 dargestellten Düsenkörpers 7 in einer Seitenansicht, ähnlich des in Fig. 3 dargestellten Ausführungsbeispiels. Die Wandstärke des sphärischen Teils 13 des Düsenkörpers 7 ist 35 im Vergleich zur übrigen Wandstärke des Düsenkörpers 7 jedoch geringer.

Fig. 5 zeigt den an der Zuführungsleitung 12 befestigten, in den Zumeßraum 10 ragenden Düsenkörper 7. Der Zumeßraum 10

ist zylinderförmig, wobei das dargestellte Ende des Zumeßraumes 10 eine sphärische Ausnehmung aufweist. In diesen Bereich wird der Kraftstoff durch die in Fig. 4 nicht dargestellten Abspritzöffnungen 6 eindosiert. Vorteilhaft 5 ist dabei, daß durch die abspritzseitige sphärische Formgebung des Düsenkörpers 7 die Abspritzöffnungen 6 so angeordnet sind, daß die sphärische Ausnehmung des Zumeßraumes 10 gleichmäßig mit Kraftstoff beaufschlagt wird.

10 Fig. 6 zeigt eine schematische Schnittdarstellung eines weiteren Ausführungsbeispiels eines erfindungsgemäßen Düsenkörpers 7 mit einem im Inneren des Düsenkörpers 7 angeordneten Dralleinsatz 16. Die Wandung des Düsenkörpers 7 ist nur schematisch als Linie ohne die vorhandenen 15 Abspritzöffnungen 6 gezeigt. Der Dralleinsatz 16 weist umfänglich verlaufende Drallkanäle 17 auf, welche gegen eine Dralleinsatzlängsachse 18 geneigt sind und so den vorbeiströmenden Kraftstoff bzw. das vorbeiströmende Kraftstoff-Gas-Gemisch in Drehung versetzen. In diesem 20 Ausführungsbeispiel deckt sich die Dralleinsatzlängsachse 18 mit der Mittelachse 15 des Düsenkörpers 7.

Die Form des Dralleinsatzes 16 ist sowohl radial als auch zum sphärischen Teil 13 des Düsenkörpers 7 hin der inneren 25 Form des Düsenkörpers 7 angepaßt. In diesem Ausführungsbeispiel ist der Dralleinsatz 16 mit einem gleichmäßigen Abstand 19, der hier beispielsweise weniger als 0,2 mm beträgt, an den radialen Seiten sowie am seinem sphärischem Teil vom Düsenkörper 7 beabstandet. Durch den 30 relativ kleinen Abstand 19 kommt es zu einer Druckerhöhung in den Drallkanälen 17 und somit zu einer besseren Aufbereitung.

Fig. 7 zeigt eine schematische Darstellung eines weiteren 35 Dralleinsatzes 16, wobei die Drallkanäle 17 nicht wie im Ausführungsbeispiel in Fig. 6 parallel verlaufen sondern sich im umfänglichen Verlauf kreuzen.

5

10

Ansprüche

1. Dosiereinrichtung (1) für flüssige Kraftstoffe,
15 insbesondere zum Eintrag in einen chemischen Reformer zur
Gewinnung von Wasserstoff, mit zumindest einer
Zumeßeinrichtung (2) zum Zumessen von Kraftstoff in eine
Zumeßleitung (12) und mit einem sich an die Zumeßleitung
(12) anschließenden Düsenkörper (7), der Abspritzöffnungen
20 (6) aufweist, die in einen Zumeßraum (10) ausmünden,
dadurch gekennzeichnet,

daß der Düsenkörper (7) abspritzseitig mit einem sphärischen
Teil (13) in den Zumeßraum (10) ragt und über den
sphärischen Teil (13) des Düsenkörpers (7) die
25 Abspritzöffnungen (6) verteilt sind.

2. Dosiereinrichtung nach Anspruch 1,
dadurch gekennzeichnet,
daß der Düsenkörper (7) an dem der Zumeßleitung (12)
30 zugewandten Ende hohlzylinderförmig ist.

3. Dosiereinrichtung nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß der Düsenkörper (7) mit der Zumeßleitung (12) dichtend
35 verschraubt oder verschweißt, insbesondere laserverschweißt
ist.

4. Dosiereinrichtung nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,

daß die Abspritzöffnungen (6) unterschiedliche Durchmesser aufweisen.

5. Dosiereinrichtung nach einem der Ansprüche 1 bis 4,
5 dadurch gekennzeichnet,
daß die Mittelachsen (14) der Abspritzöffnungen (6) einen gemeinsamen Schnittpunkt (11) haben.

6. Dosiereinrichtung nach Anspruch 5,
10 dadurch gekennzeichnet,
daß der gemeinsame Schnittpunkt (11) auf der Mittelachse (15) des Düsenkörpers (7) liegt.

7. Dosiereinrichtung nach einem der Ansprüche 1 bis 6,
15 dadurch gekennzeichnet,
daß die Lage der Abspritzöffnungen (6) unsymmetrisch zur Mittelachse (15) des Düsenkörpers (7) ist.

8. Dosiereinrichtung nach einem der Ansprüche 1 bis 7,
20 dadurch gekennzeichnet,
daß die Neigung der Mittelachsen (14) der Abspritzöffnungen (6) unsymmetrisch zur Mittelachse (15) des Düsenkörpers (7) ist.

25 9. Dosiereinrichtung nach einem der Ansprüche 1 bis 8,
dadurch gekennzeichnet,
daß die Wändstärke des sphärischen Teils (13) des Düsenkörpers (7) geringer ist als die des übrigen Teils des Düsenkörpers (7).

30 10. Dosiereinrichtung nach einem der Ansprüche 1 bis 9,
dadurch gekennzeichnet,
daß die Zumeßeinrichtung (2) ein Brennstoffeinspritzventil ist.

35 11. Dosiereinrichtung nach Anspruch 10,
dadurch gekennzeichnet,

daß das Brennstoffeinspritzventil ein Niederdruckbrennstoffeinspritzventil ist, welches mit Brenn- bzw. Kraftstoffdrücken von bis zu 10 bar arbeitet.

5 12. Dosiereinrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet,
daß die Zumeßleitung (12) in ihrem axialen Verlauf zumindest eine wandstärkereduzierte Stelle oder einen wandstärkereduzierten Bereich aufweist.

10 13. Dosiereinrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet,
daß der Düsenkörper (7) einen Dralleinsatz (16) mit einem Drallkanal (17) aufweist, wobei der Dralleinsatz (16) den
15 Kraftstoff bzw. das Kraftstoff-Gas-Gemisch in eine kreisförmige Bewegung versetzt.

14. Dosiereinrichtung nach Anspruch 13,
dadurch gekennzeichnet,

20 daß die Form des Dralleinsatzes (16) der Innengeometrie des Düsenkörpers (7) weitgehend gleicht.

15. Dosiereinrichtung nach einem der Ansprüche 13 und 14,
dadurch gekennzeichnet,

25 daß der Dralleinsatz (16) im Düsenkörper (7) mit einem Abstand (19) zur Wandung des Düsenkörpers (7) angeordnet ist.

16. Dosiereinrichtung nach einem der Ansprüche 13 bis 15,
30 dadurch gekennzeichnet,
daß der Dralleinsatz (16) mehrere Drallkanäle (17) aufweist.

17. Dosiereinrichtung nach Anspruch 16,
dadurch gekennzeichnet,

35 daß die Drallkanäle (17) parallel verlaufen oder sich überkreuzen.

18. Dosiereinrichtung nach einem der vorangegangenen Ansprüchen,

dadurch gekennzeichnet,
daß die Dosiereinrichtung (1) eine Luftzuführung (9)
aufweist, mit der Luft oder ein anderes Gas in die
Zumeßleitung (12) eingebracht werden kann.

1/4

Fig. 1

2/4

Fig. 2

Fig. 3

3/4

Fig. 4

Fig. 5

4/4

Fig. 6

Fig. 7

INTERNATIONAL SEARCH REPORT

International Application No

PCT/DE 03/03213

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 B01J4/02 B01J4/06 B01J19/26 B05B1/34 B01F5/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 B01J B05B B01F F02M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 02/42635 A (BOSCH GMBH ROBERT) 30 May 2002 (2002-05-30) figure 1	1
A	PATENT ABSTRACTS OF JAPAN vol. 1998, no. 10, 31 August 1998 (1998-08-31) & JP 10 141183 A (ISUZU MOTORS LTD), 26 May 1998 (1998-05-26) abstract	1
A	WO 02/059477 A (BOSCH GMBH ROBERT ; HOHL GUENTHER (DE); KEIM NORBERT (DE)) 1 August 2002 (2002-08-01) figure 1	1
A	EP 1 186 774 A (VISTEON GLOBAL TECH INC) 13 March 2002 (2002-03-13) figures	1

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

19 February 2004

Date of mailing of the International search report

26/02/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Van Belleghem, W

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/DE 03/03213

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 0242635	A	30-05-2002	DE WO EP	10057631 A1 0242635 A1 1339971 A1		23-05-2002 30-05-2002 03-09-2003
JP 10141183	A	26-05-1998		NONE		
WO 02059477	A	01-08-2002	DE BR WO EP	10103051 A1 0203801 A 02059477 A2 1356202 A2		08-08-2002 03-06-2003 01-08-2002 29-10-2003
EP 1186774	A	13-03-2002	US EP JP	6405945 B1 1186774 A2 2002098028 A		18-06-2002 13-03-2002 05-04-2002

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/DE 03/03213

A. KLASSEFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 B01J4/02 B01J4/06

B01J19/26

B05B1/34

B01F5/06

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 B01J B05B B01F F02M

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, PAJ

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	WO 02/42635 A (BOSCH GMBH ROBERT) 30. Mai 2002 (2002-05-30) Abbildung 1	1
A	PATENT ABSTRACTS OF JAPAN Bd. 1998, Nr. 10, 31. August 1998 (1998-08-31) & JP 10 141183 A (ISUZU MOTORS LTD), 26. Mai 1998 (1998-05-26) Zusammenfassung	1
A	WO 02/059477 A (BOSCH GMBH ROBERT ; HOHL GUENTHER (DE); KEIM NORBERT (DE)) 1. August 2002 (2002-08-01) Abbildung 1	1
A	EP 1 186 774 A (VISTEON GLOBAL TECH INC) 13. März 2002 (2002-03-13) Abbildungen	1

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche	Absendedatum des Internationalen Recherchenberichts
19. Februar 2004	26/02/2004
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Bevollmächtigter Bediensteter Van Belleghem, W

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen

e zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/DE 03/03213

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO 0242635	A	30-05-2002	DE WO EP	10057631 A1 0242635 A1 1339971 A1		23-05-2002 30-05-2002 03-09-2003
JP 10141183	A	26-05-1998		KEINE		
WO 02059477	A	01-08-2002	DE BR WO EP	10103051 A1 0203801 A 02059477 A2 1356202 A2		08-08-2002 03-06-2003 01-08-2002 29-10-2003
EP 1186774	A	13-03-2002	US EP JP	6405945 B1 1186774 A2 2002098028 A		18-06-2002 13-03-2002 05-04-2002