In []:	FE - 680 Assignment 3 Instructor: Dragos Bozdog (PhD)
	import os import matplotlib import matplotlib.pyplot as plt import seaborn as sns import pandas as pd
In []:	<pre>import numpy as np from scipy.stats import norm print(os.getcwd())</pre>
	d:\Documents\Stevens\FE-680\HW3 Problem 1
	In the Hull–White model, $a=0.08$ and $\sigma=.02$.Calculate the price of a one-year European call option on a zero-coupon bond that will mature in five years when the term structure is flat at 5 , the principal of the bond is $\$100$, and the strike price is $\$70$.
	Page 719 of Hull states: Some of the models just presented allow options on zero-coupon bonds to be valued analytically. For the Vasicek, Ho–Lee, and Hull–White one-factor models, the price at time zero of a call option that matures at time T on a zero-coupon bond maturing at time s is
	$LP(0,s)N(h)-KP(0,T)N(h-\sigma_P) \eqno(32.10)$ Where: • L = Principal of the bond
	• K = Strike Price • T = Maturity of option • s = Maturity of Zero Coupon Bond
	$egin{align} h = rac{1}{\sigma_P} ln(rac{LP(0,s)}{P(0,T)K} + rac{\sigma_P}{2}) \ \sigma_P = rac{\sigma}{a} [1-e^{-a(s-T)}] \sqrt{rac{1-e^{-2aT}}{2a}} \ \end{array}$
	So $P(0,T) = risk - free \ discount \ factor$
	Riley's thoughts: We know the Vasicek is a special case for Hull-White when $a(t)$, $b(t)$, and $c(t)$ are contants. What about Ho-Lee? Is Ho-Lee also a special case of Vasicek? The textbook by Hull implied all three stocastic interest rate equations have the exact same analytical solution! (A little bit skeptical here.)
In []:	a = .08
	sigma = .02 T = 1.0 s = 5.0 r = .05 L = 100 K = 70
In []:	POT = np.exp(-r*T) POs = np.exp(-r*s)
	# Step 2: Find Sigma P sigma_p = (sigma / a) * (1 - np.exp(-a * (s-T))) * (np.sqrt((1-np.exp(-2*a*T))/(2*a))) # Step 3: Find h h = (1 / sigma_p) * np.log(((L*P0s)/(K*P0T)) + (sigma_p / 2))
	<pre># Step 4: Find the price price = L*P0s*norm.cdf(h,loc=0, scale=1) - K*P0T*norm.cdf((h-sigma_p),loc=0, scale=1) print('P(0,T) = ' + str(P0T)) print('P(0,s) = ' + str(P0s)) print('sigma_p = ' + str(sigma_p))</pre>
	<pre>print('h = ' + str(h)) print('The price = \$' + str(np.round(price, decimals = 3)))</pre>
	P(0,T) = 0.951229424500714 P(0,s) = 0.7788007830714049 sigma_p = 0.06581336189047297 h = 2.802182536818634
	The price = \$11.303 Problem 2
	Consider the example in lecture Notes: Vasicek Model Tree Construction and implement an algorithm to calculate the interest rates for 6 months ($\Delta t=1month$). The risk neutral dynamics of the Vasicek model is given by: $dr=k(\theta-r)dt+\sigma dW(t)$ Where:
	$egin{aligned} oldsymbol{\cdot} & k = .025 \ oldsymbol{\cdot} & \sigma = 126 \ oldsymbol{\cdot} & r_0 = 5.121\% \end{aligned}$
	• $ heta=15.339\%$ a) Report the interest rate values on the terminal nodes at $\Delta t=6\ months$.
	b) Calculate the price of a zero-coupon bond with maturity in 6 months with face value 100. c) Calculate the price of a European call option on the zero-coupon bond that expires at t = 6 months and has strike \$90.
	d) Calculate the price of an American call option on the zero-coupon bond that expires at t = 6 months and has strike \$90.
	Riley's Notes I don't believe the intent for this problem was to be complicated! I attempted by best to create a Vasicek tree based upon the instructions on Lecture 4 The General Hull-White Model and Super Calibration.PDF. I've come to the realization however this is a trinomial tree, but the problem is asking for a binomial tree.
In []:	I will have to review this problem further next week.
	I dont know (Send Help)
	Problem 3 Risk-free zero rates are flat at 5% in the U.S and flat at 9% in Australia (both rates are annually compounded). In a 4-year differential swap Australian floating risk-free rate is received and 8% is paid with both being applied to a USD principal of \$10 million.
	in a 4-year differential swap Australian floating fisk-free rate is received and 6% is paid with both being applied to a 03D principal of \$10 million.
	Payments are exchanged annually. The volatility of all 1-year forward rates in Australia is estimated to be 30%, the volatility of the forward USD/AUD exchange rate (AUD per USD) is 20% for all maturities, and the correlation between the two is 0.3. What is the value of the swap?
	Payments are exchanged annually. The volatility of all 1-year forward rates in Australia is estimated to be 30%, the volatility of the forward USD/AUD exchange rate (AUD per USD) is 20% for all maturities, and the correlation between the two is 0.3. What is the value of the swap? Riley's thoughts: This is just a swap, <i>not</i> a swap option.
In []:	Payments are exchanged annually. The volatility of all 1-year forward rates in Australia is estimated to be 30%, the volatility of the forward USD/AUD exchange rate (AUD per USD) is 20% for all maturities, and the correlation between the two is 0.3. What is the value of the swap? Riley's thoughts: This is just a swap, not a swap option. $Swap\ Value = floating\ value - Fixed\ value$ $V_i\rho_i\sigma_W\sigma_V t \qquad (34.3)$
In []:	Payments are exchanged annually. The volatility of all 1-year forward rates in Australia is estimated to be 30%, the volatility of the forward USD/AUD exchange rate (AUD per USD) is 20% for all maturities, and the correlation between the two is 0.3. What is the value of the swap? Riley's thoughts: This is just a swap, not a swap option. $Swap Value = floating value - Fixed value$ $V_i \rho_i \sigma_W \sigma_V t \qquad (34.3)$
In []:	Payments are exchanged annually. The volatility of all 1-year forward rates in Australia is estimated to be 30%, the volatility of the forward USD/AUD exchange rate (AUD per USD) is 20% for all maturities, and the correlation between the two is 0.3. What is the value of the swap? Riley's thoughts: This is just a swap, not a swap option. $Swap Value = floating \ value - Fixed \ value \\ V_i \rho_i \sigma_W \sigma_V t \qquad (34.3)$ principal = 10 diff_swap_rate = .08
In []:	Payments are exchanged annually. The volatility of all 1-year forward rates in Australia is estimated to be 30%, the volatility of the forward USD/AUD exchange rate (AUD per USD) is 20% for all maturities, and the correlation between the two is 0.3. What is the value of the swap? Riley's thoughts: This is just a swap, nor a swap option. $Swap Value = floating value - Fixed value$ $V_i p_i \sigma_W \sigma_V t \qquad (34.3)$
In []:	Payments are exchanged annually. The volatility of all 1-year forward rates in Australia is estimated to be 30%, the volatility of the forward USD/AUD exchange rate (AUD per USD) is 20% for all maturities, and the correlation between the two is 0.3. What is the value of the swap? Riley's thoughts: This is just a swap, not a swap option. $Swap Value = floating value - Fixed value$ $V_{ip}, \sigma_{W}\sigma_{V}t = (34.3)$ principal = 18 diff_swap_rate = .88
In []:	Payments are exchanged annually. The valuality of all 1-year forward rates in Australia is estimated to be 30%, the valuality of the forward USD/AUD exchange rate (AUD per USD) is 20% for all maturities, and the correlation between the two is 0.3. What is the value of the swap? Rileys thoughts: This is just a swap, not a swap option. $Susp Value = floating value - Fixed value$ $V_{ip}, \sigma_{ij} \sigma_{ij} v_{ij} t_{ij} t_$
In []:	Payments are exchanged annually. The volatility of all 1-year forward rates in Australia is estimated to be 30%, the volatility of the forward USD/AUD exchange rate (AUD per USD) is 20% for all maturities, and the correlation between the two is 0.3. What is the value of the swap? Riley's thoughts: This is just a swap, not a swap option. Surap Value = floating value - Fixed value V.pawort = (34.3) principal = 10 diff_swap_rate = .08 1_vpars = 4 2
In []:	Payments are exchanged annually. The volatility of all 1-year forward rates in Australia is estimated to be 30%, the volatility of the forward USD/AUD exchange rate (AUD per USD) is 20% for all maturities, and the correlation between the two is 0.3. What is the value of the swap? Riley's thoughts: This is just a swap, not a swap uption. Swap Value = floating value - Pixed value
In []:	Payments are exchanged annually. The votability of all 1-year forward rates in Australia is estimated to to 20%, the votability of the feweral USDAUD exchange rate (AUD por USD) is 20% for all maturities, and the correlation between the two is 0.3. What is the value of the sweep? Compared the content of the sweep option
In []:	Payments are contemporal annually. The voisibility of all Lyear forward reas in Australia is estimated to be 20%, the voisibility of the forward USD/AUD exchange rate (AUD set USD) is 20% for all maturities, and the contribution increases in china to 3. White is the volute of the samp? Rileys movints: This is just a swap cord a swap option. Swap Valion = floating value — Fined value Vincen of 1 (84.3) principal = 16 ciff is swap rate = .06 ciff is swap r
In []:	Pagements are exchanged annually. The existing of all syear formed rates in Associals is estimated to be 20%, the whatlifty of the forward USDAND exchange rate (AUD per USD) is 25% for all misurities, and the contribution to the local in the case of the except of the local interval in the local interval interval in the local int
In []:	Poperors are suchosped arready. The wording of all types travaril rates in Authorian continuous to 230, the wording with a forward ISDALID accoming vate (AUD per USO) is 20% for all incurtions, and the common treases in the care of 3.1 What is mere with a first part of the property of
In []:	Payments are exchanged annually. The volatility of all 1-year forward rease in Australia is estimated to be 30% the volatility of the forward USDAVID exchange rate (AUD ear USD) is 20% for all malarities, and the correlation between the vision 0.0 0.0 Whitis the value of the sexual? Sump Violate = Routing exclusion Procedure
In []:	Page 100 and 100 february 100 and 11 year version distance in section is extended to a 200 february of the condition of the 200 and the condition of the 200 and the condition of the 200 and 100 and
	Compared to the content of the con
	Page 2017 Page
	Department on the political part of the
	Paper Pape
In []:	### Process of the control of the co
In []:	Figure 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
In []:	Process
In []:	Description Commence Commen
In []:	