Übungsblatt 10

Aufgabe 1 (Router, Layer-3-Switch, Gateway)

- 1. Beschreiben Sie den Zweck von **Routern** in Computernetzen. (Erklären Sie auch den Unterschied zu Layer-3-Switches.)
- 2. Beschreiben Sie den Zweck von **Layer-3-Switches** in Computernetzen. (Erklären Sie auch den Unterschied zu Routern.)
- 3. Beschreiben Sie den Zweck von Gateways in Computernetzen.
- 4. Erklären Sie warum **Gateways** in der Vermittlungsschicht von Computernetzen heutzutage selten nötig sind.

Aufgabe 2 (Adressierung in der Vermittlungsschicht)

- 1. Erklären Sie die Bedeutung von **Unicast** in der Vermittlungsschicht von Computernetzen.
- 2. Erklären Sie die Bedeutung von **Broadcast** in der Vermittlungsschicht von Computernetzen.
- 3. Erklären Sie die Bedeutung von **Anycast** in der Vermittlungsschicht von Computernetzen.
- 4. Erklären Sie die Bedeutung von **Multicast** in der Vermittlungsschicht von Computernetzen.
- 5. Erklären Sie warum der **Adressraum** von IPv4 nur 4.294.967.296 Adressen enthält.
- 6. Erklären Sie warum das klassenlose Routing Classless Interdomain Routing (CIDR) eingeführt wurde.
- 7. Beschreiben Sie in einfachen Worten die Funktionsweise von CIDR. Legen Sie den Schwerpunkt auf die Art und Weise, wie IP-Adressen behandelt und Subnetze erstellt werden.

Inhalt: Themen aus Foliensatz 10 Seite 1 von 6

Aufgabe 3 (Adressierung in der Vermittlungsschicht)

Berechnen Sie für jede Teilaufgabe die erste und letzte Hostadresse, die Netzadresse und die Broadcast-Adresse des Subnetzes.

IP-Adresse: Netzmaske: Netzadresse? Erste Hostadresse? Letzte Hostadresse? Broadcast-Adresse?	151.175.31.100 255.255.254.0 	10010111.10101111.00011111.01100100 11111111
IP-Adresse: Netzmaske: Netzadresse? Erste Hostadresse? Letzte Hostadresse? Broadcast-Adresse?	151.175.31.100 255.255.255.240 	10010111.10101111.00011111.01100100 11111111
IP-Adresse: Netzmaske: Netzadresse? Erste Hostadresse? Letzte Hostadresse? Broadcast-Adresse?	151.175.31.100 255.255.255.128 	10010111.10101111.00011111.01100100 11111111

binäre Darstellung	dezimale Darstellung	binäre Darstellung	dezimale Darstellung		
10000000	128	11111000	248		
11000000	192	11111100	252		
11100000	224	11111110	254		
11110000	240	11111111	255		

Aufgabe 4 (Adressierung in der Vermittlungsschicht)

In jeder Teilaufgabe überträgt ein Sender ein IP-Paket an einen Empfänger. Berechnen Sie für jede Teilaufgabe die **Subnetznummern von Sender und Empfänger** und geben Sie an, ob das IP-Paket **während der Übertragung das Subnetz verlässt** oder nicht.

Inhalt: Themen aus Foliensatz 10 Seite 2 von 6

Prof. Dr. Christian Baun FB 2: Informatik und Ingenieurwissenschaften Betriebssysteme und Rechnernetze (SS2022) Frankfurt Univ. of Appl. Sciences

 Sender:
 11001001.00010100.11011110.00001101
 201.20.222.13

 Netzmaske:
 11111111.1111111.1111111.11110000
 255.255.255.240

Empfänger: 11001001.00010100.11011110.00010001 201.20.222.17 Netzmaske: 11111111.11111111.1111111.11110000 255.255.255.240

Subnetznummer des Senders?

Subnetznummer des Empfängers?

Verlässt das IP-Paket das Subnetz [ja/nein]?

Sender: 00001111.11001000.01100011.00010111 15.200.99.23 Netzmaske: 11111111.11000000.00000000.0000000 255.192.0.0

Empfänger: 00001111.11101111.00000001.00000001 15.239.1.1 Netzmaske: 11111111.11000000.00000000.00000000 255.192.0.0

Subnetznummer des Senders?

Subnetznummer des Empfängers?

Verlässt das IP-Paket das Subnetz [ja/nein]?

Aufgabe 5 (Adressierung in der Vermittlungsschicht)

Berechnen Sie für jede Teilaufgabe Netzmaske und beantworten Sie die Fragen.

1. Teilen Sie das Klasse C-Netz 195.1.31.0 so auf, das 30 Subnetze realisierbar sind.

Inhalt: Themen aus Foliensatz 10 Seite 3 von 6

Prof. Dr. Christian Baun FB 2: Informatik und Ingenieurwissenschaften Betriebssysteme und Rechnernetze (SS2022) Frankfurt Univ. of Appl. Sciences
Netzadresse: 11000011.00000001.00011111.00000000 195.1.31.0 Anzahl Bits für Subnetznummern? Netzmaske:
2. Teilen Sie das Klasse A-Netz 15.0.0.0 so auf, das 333 Subnetze realisierbar sind.
Netzadresse: 00001111.00000000.00000000.00000000 15.0.0.0 Anzahl Bits für Subnetznummern? Netzmaske:
3. Teilen Sie das Klasse B-Netz 189.23.0.0 so auf, das 20 Subnetze realisierbar sind.
Netzadresse: 10111101.00010111.00000000.00000000 189.23.0.0 Anzahl Bits für Subnetznummern? Netzmaske:
4. Teilen Sie das Klasse C-Netz 195.3.128.0 in Subnetze mit je 17 Hosts auf.
Netzadresse: 11000011.00000011.10000000.0000000 195.3.128.0 Anzahl Bits für Hostadressen? Anzahl Bits für Subnetznummern? Anzahl möglicher Subnetze? Netzmaske:
5. Teilen Sie das Klasse B-Netz 129.15.0.0 in Subnetze mit je 10 Hosts auf.
Netzadresse: 10000001.00001111.00000000.0000000 129.15.0.0 Anzahl Bits für Hostadressen? Anzahl Bits für Subnetznummern? Anzahl möglicher Subnetze? Netzmaske:

binäre Darstellung	dezimale Darstellung	binäre Darstellung	dezimale Darstellung
10000000	128	11111000	248
11000000	192	11111100	252
11100000	224	11111110	254
11110000	240	11111111	255

Inhalt: Themen aus Foliensatz 10 Seite 4 von 6

Aufgabe 6 (Private IP-Adressbereiche)

Nennen Sie die drei privaten IP-Adressbereiche.

Aufgabe 7 (Adressierung in der Vermittlungsschicht)

Geben Sie für jede Teilaufgabe die korrekte **Netzmaske** an.

- 1. Maximal viele Subnetze mit je 5 Hosts in einem Klasse B-Netz.
- 2. 50 Subnetze mit je 999 Hosts in einem Klasse B-Netz.
- 3. 12 Subnetze mit je 12 Hosts in einem Klasse C-Netz.

Quelle: Jörg Roth. Prüfungstrainer Rechnernetze. Vieweg (2010)

Aufgabe 8 (IPv6)

augabe o (11 vo)
1. Vereinfachen Sie die folgende IPv6-Adressen:
• 1080:0000:0000:0000:0007:0700:0003:316b
Lösung:
• 2001:0db8:0000:0000:f065:00ff:0000:03ec
Lösung:
• 2001:0db8:3c4d:0016:0000:0000:2a3f:2a4d
Lösung:
• 2001:0c60:f0a1:0000:0000:0000:0001
Lösung:
• 2111:00ab:0000:0004:0000:0000:1234
Lösung:
2. Geben Sie alle Stellen der folgenden vereinfachten IPv6-Adressen an:
• 2001::2:0:0:1
Lösung:::::::

•	• 2001:db8:0:d	:::1c					
	Lösung::	::	.:	.:	:	:	:
•	1080::9956:0:0:234						
	Lösung::	::	.:	.:	:	:	:
•	• 2001:638:208	3:ef34::91	ff:0:	5424			
	Lösung::	::	_:	.:	:	:	:
•	• 2001:0:85a4:	:4a1e:370	:7112	!			
	Lösung				•		