Tutorial 3 Flip-Flops

COMP2120B Computer organization

Kevin Lam (yklam2)

Overview

A combinational circuit generates outputs base on the current input only.

 A sequential circuit generates outputs base on the current and the past input.

- Past input is usually captured using the previous output.
- Flip-flop is one of the simplest form of sequential circuit, we start with the S-R latch.

Analyzing S-R latch

 The S-R latch and the corresponding truth table.

Observation

As output Q and \overline{Q} will be served as input immediately, The output will be updated again for the highlighted cases.

	Inp	out		Ou	tput
S	R	Q	\overline{Q}	Q	\overline{Q}
0	0	0	0	1	1
0	0	0	1	0	1
0	0	1	0	1	0
0	0	1	1	0	0
0	1	0	0	0	1
0	1	0	1	0	1
0	1	1	0	0	0
0	1	1	1	0	0
1	0	0	0	1	0
1	0	0	1	0	0
1	0	1	0	1	0
1	0	1	1	0	0
1	1	0	0	0	0
1	1	0	1	0	0
1	1	1	0	0	0
1	1	1	1	0	0

Stable state

Input		Output(1)		Output(2)		Output(3)			
S	R	Q	\overline{Q}	Q	\overline{Q}	Q	\overline{Q}	Q	\overline{Q}
0	1	1	0	0	0	0	1	0	1

Let's consider one of the case

State won't change anymore

Unstable state

	Input		Output(1)		Output(2)		Output(3)		
S	R	Q	\overline{Q}	Q	\overline{Q}	Q	\overline{Q}	Q	\overline{Q}
0	0	0	0	1	1	0	0	1	1

State will never be stable

Let's consider another case

S-R Latch – stable states

- We can repeat the analysis to find all stable states.
 - The latch is unstable only when S and R were set to zero AND when $Q = \overline{Q}$.
 - However, this happens only when we set both S and R to 1.
 - If we avoid setting both *S* and *R* to 1, we can always avoid reaching an unstable state.
 - Q and \overline{Q} are then always complementary.
- The result can then be further summarized.

S	R	Q_{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	-

	Inp	out		Out	put
S	R	Q	\overline{Q}	$Q \qquad \overline{Q}$	
0	0	0	0	Unst	able
0	0	0	1	0	1
0	0	1	0	1	0
0	0	1	1	Unst	able
0	1	0	0	0	1
0	1	0	1	0	1
0	1	1	0	0	1
0	1	1	1	0	1
1	0	0	0	1	0
1	0	0	1	1	0
1	0	1	0	1	0
1	0	1	1	1	0
1	1	0	0	0	0
1	1	0	1	0	0
1	1	1	0	0	0
1	1	1	1	0	0

Clocked S-R Latch

• To synchronize S-R state with clock pulse, the clock signal is used to control when the input of S and R should be taken.

Only when clock is 1, the 1 in S or R could be sent to the latch

S-R Flip-flops

- Bistable device, could be used to store 1 bit of data.
- Built from clocked latches.
- Two outputs, which are always the complements of each others. (Q and \overline{Q})
- Two other typical flip-flops are D flip-flop and J-K flip-flop.

D flip-flop

- Single input (D).
- Also called data flip-flop or delay flip-flop.
- Using a NOT gate, forcing only one of the input for the S-R latch to be 1.

D	Q_{n+1}
0	0
1	1

J-K flip flop

 Same as S-R flip-flop, except that it allows both inputs to be 1, which will toggle the state.

J	K	Q_{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	$\overline{Q_n}$

You are encouraged to derive this table yourselves.

Summary

Flip-flop	Graphical symbol	Truth table
S-R	$ \begin{array}{c cccc} \hline S & SET & Q \\ \hline R & CLR & \overline{Q} \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
D	$ \begin{array}{c cccc} \hline D & SET & Q \\ \hline \end{array} $ $ \begin{array}{c cccc} \hline \end{array} $	$ \begin{array}{c cccc} D & Q_{n+1} \\ 0 & 0 \\ 1 & 1 \end{array} $
J-K	J SET Q K CLR Q	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Usage example

- Suppose we want to design a 2-bit decremental counter J-K flip flops that repeatedly produces the sequence of output of 3, 2, 1, 0, 3, 2, 1, 0, ...
- Number of flip-flops needed: 2

Design

Cur	Current		Next		Inputs		
Q_B	Q_A	Q_B	Q_A	J_B	K_B	J_A	K_A
0	0	1	1	1	d	1	d
0	1	0	0	0	d	d	1
1	0	0	1	d	1	1	d
1	1	1	0	d	0	d	1

Alternative way

Cur	rent	Next		
Q_B	Q_A	Q_B	$oldsymbol{Q}_A$	
0	0	1	1	
0	1	0	0	
1	0	0	1	
1	1	1	0	

Observation

 Q_A is simply toggling each time Q_B is toggled only when Q_A is 0

Exercise

- Expand the previous example to a 3-bit decremental counter.
 - How about 4-bit?

Solution

	Curren	t		Next	
Q_C	Q_B	Q_A	Q_C	Q_B	Q_A
0	0	0	1	1	1
0	0	1	0	0	0
0	1	0	0	0	1
0	1	1	0	Ī	0
1	0	0	0	1	1
1	0	1	1	0	0
1	1	0	1	0	1
1	1	1	1	1	0

Solution (4-bit)

Clock

