# Calculus and Differential Equations

Queensland University of Technology

Dr Vivien Challis 2021, Semester 2

Tarang Janawalkar

This work is licensed under a Creative "Attribution-NonCommercial-ShareAlike 4.0 International" license.



# Contents

| C        | contents                                                                                                                                                        | 1                     |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 1        | Integration Techniques  1.1 Derivative Table  1.2 Partial Fractions  1.3 Integration by Parts  1.4 Integration by Substitution  1.5 Trigonometric Substitutions | 2<br>3<br>3<br>3<br>4 |
| <b>2</b> | Limits, Continuity and Differentiability                                                                                                                        | 5                     |
|          | 2.1 Limits                                                                                                                                                      | 5                     |
|          | 2.2 Continuity                                                                                                                                                  | 5                     |
|          | 2.3 Differentiability                                                                                                                                           | 5                     |
| 3        | Definite Integrals                                                                                                                                              | 6                     |
|          | 3.1 Riemann Sums                                                                                                                                                | 6                     |
|          | 3.2 Fundamental Theorem of Calculus                                                                                                                             |                       |
|          | 3.3 Taylor and Maclaurin Polynomials                                                                                                                            | 8                     |
| 4        | Taylor and Maclaurin Series                                                                                                                                     | 9                     |
|          | 4.1 Infinite Series                                                                                                                                             | 9                     |
|          | 4.2 Convergence Tests                                                                                                                                           | 9                     |
| 5        | Multivariable Calculus                                                                                                                                          | 10                    |
| 6        | Double and Triple Integrals                                                                                                                                     | 11                    |
| 7        | Vector-Valued Functions                                                                                                                                         | 12                    |
| 8        | First-Order Differential Equations                                                                                                                              | 13                    |
| 9        | Second-Order Differential Equations                                                                                                                             | 14                    |

# 1 Integration Techniques

# 1.1 Derivative Table

Let f(x) be a function, and  $a \in \mathbb{R}$  be a constant.

| f                                              | $\frac{\mathrm{d}f}{\mathrm{d}x}$                       | f                       | $\frac{\mathrm{d}f}{\mathrm{d}x}$                                                                                                                                                                                                                             |
|------------------------------------------------|---------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $x^a$                                          | $ax^{a-1}$                                              | a                       | 0                                                                                                                                                                                                                                                             |
| $\sqrt{x}$                                     | $\frac{1}{2\sqrt{\pi}}$                                 | x                       | 1                                                                                                                                                                                                                                                             |
| $a^x$                                          | $\frac{\overline{2\sqrt{x}}}{\ln(a)a^x}$                | $a_1 u(x) \pm a_2 v(x)$ | $a_1 \frac{\mathrm{d}u}{\mathrm{d}x} \pm a_2 \frac{\mathrm{d}v}{\mathrm{d}x}$                                                                                                                                                                                 |
| $\mathbf{e}^x$                                 | $\mathbf{e}^x$                                          | u(x)v(x)                | $\begin{bmatrix} a_1 \frac{\mathrm{d}u}{\mathrm{d}x} \pm a_2 \frac{\mathrm{d}v}{\mathrm{d}x} \\ \frac{\mathrm{d}u}{\mathrm{d}x} v + u \frac{\mathrm{d}v}{\mathrm{d}x} \\ \frac{\mathrm{d}u}{\mathrm{d}x} v - u \frac{\mathrm{d}v}{\mathrm{d}x} \end{bmatrix}$ |
| $\log_a x, \ a \in \mathbb{R} \setminus \{0\}$ | 1                                                       | $\frac{u(x)}{v(x)}$     |                                                                                                                                                                                                                                                               |
| $\frac{1}{\ln x}$                              | $\begin{array}{c c} a \ln x \\ \frac{1}{x} \end{array}$ | u(v(x))                 | $\frac{v(x)^2}{\frac{\mathrm{d}u}{\mathrm{d}v}\frac{\mathrm{d}v}{\mathrm{d}x}}$                                                                                                                                                                               |

| •                                      |                                                                  |                                         |                                                        |
|----------------------------------------|------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------|
| f                                      | $\frac{\mathrm{d}f}{\mathrm{d}x}$                                | f                                       | $\frac{\mathrm{d}f}{\mathrm{d}x}$                      |
| $\sin(ax)$                             | $a\cos(ax)$                                                      | $\sinh{(ax)}$                           | $a\cosh\left(ax\right)$                                |
| $\cos(ax)$                             | $-a\sin(ax)$                                                     | $\cosh\left(ax\right)$                  | $a\sinh\left(ax\right)$                                |
| $\tan{(ax)}$                           | $a \sec^2{(ax)}$                                                 | $\tanh\left(ax\right)$                  | $a\operatorname{sech}^{2}\left( ax\right)$             |
| $\cot(ax)$                             | $-a\csc^2(ax)$                                                   | $\coth{(ax)}$                           | $-a\operatorname{csch}^{2}\left( ax\right)$            |
| $\sec{(ax)}$                           | $a \sec(ax) \tan(ax)$                                            | $\operatorname{sech}\left(ax\right)$    | $-a\operatorname{sech}(ax)\tan(ax)$                    |
| $\csc(ax)$                             | $-a\csc(ax)\cot(ax)$                                             | $\cosh\left(ax\right)$                  | $-a \operatorname{csch}(ax) \cot(ax)$                  |
| $\arcsin\left(ax\right)$               | $\frac{a}{\sqrt{1-a^2}}$                                         | $\operatorname{arcsinh}\left(ax\right)$ | $\frac{a}{\sqrt{1+a^2x^2}}$                            |
| $\arccos\left(ax\right)$               | $ \begin{array}{c} \sqrt{1-a^2x^2} \\ -\frac{a}{a} \end{array} $ | $\mathrm{arccosh}(ax)$                  | $\frac{a}{\sqrt{1-a^2x^2}}$                            |
| , ,                                    | $-\frac{1}{\sqrt{1-a^2x^2}}$                                     | $\operatorname{arctanh}\left(ax\right)$ | a                                                      |
| $\arctan\left(ax\right)$               | $\frac{1+a^2x^2}{a}$                                             | $\operatorname{arccoth}(ax)$            | $\frac{1-a^2x^2}{a}$                                   |
| $\operatorname{arccot}(ax)$            | $-\frac{1}{1+a^2x^2}$                                            | $\operatorname{arcsech}(ax)$            | $-\frac{\overline{1-a_1^2x^2}}{\overline{1-a_1^2x^2}}$ |
| $\operatorname{arcsec}\left(ax\right)$ | $\frac{1}{x\sqrt{a^2x_1^2-1}}$                                   | (****)                                  | $a\left(1+ax\right)\sqrt{\frac{1-ax}{1+ax}}$           |
| $\operatorname{arccsc}\left(ax\right)$ | $-\frac{1}{x\sqrt{a^2x^2-1}}$                                    | $\mathrm{arccsch}(ax)$                  | $-\frac{1}{ax^2\sqrt{1+\frac{1}{a^2x^2}}}$             |
|                                        |                                                                  |                                         | $ax^{-}\sqrt{1+\frac{1}{a^{2}x^{2}}}$                  |

Table 1: Derivatives of Elementary Functions

### 1.2 Partial Fractions

**Definition 1.2.1** (Partial Fraction Decomposition). **Partial fraction decomposition** is a method where a rational function  $\frac{P(x)}{Q(x)}$  is rewritten as a sum of fraction.

| Factor in denominator          | Term in partial fraction decomposition                                                                             |  |  |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------|--|--|
| ax + b                         | $\frac{A}{ax+b}$                                                                                                   |  |  |
| $(ax+b)^k$                     | $\frac{A_1}{ax+b} + \frac{A_2}{\left(ax+b\right)^2} + \dots + \frac{A_k}{\left(ax+b\right)^k}, \ k \in \mathbb{N}$ |  |  |
| $ax^2 + bx + c$                | $\frac{A}{ax^2+bx+c}$                                                                                              |  |  |
| $\left(ax^2 + bx + c\right)^k$ | $\frac{A_1x + B_1}{ax^2 + bx + c} + \frac{A_2}{(ax + b)^2} + \dots + \frac{A_k}{(ax + b)^k}, \ k \in \mathbb{N}$   |  |  |

Table 2: Partial Fraction Forms

### 1.3 Integration by Parts

Theorem 1.3.1.

$$\int u \, \mathrm{d}v = uv - \int v \, \mathrm{d}u$$

Proof.

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}x} \left( u(x)v(x) \right) &= \frac{\mathrm{d}u(x)}{\mathrm{d}x} v(x) + u(x) \frac{\mathrm{d}v(x)}{\mathrm{d}x} \\ u(x) \frac{\mathrm{d}v(x)}{\mathrm{d}x} &= \frac{\mathrm{d}}{\mathrm{d}x} \left( u(x)v(x) \right) - \frac{\mathrm{d}u(x)}{\mathrm{d}x} v(x) \\ \int u(x) \frac{\mathrm{d}v(x)}{\mathrm{d}x} \, \mathrm{d}x &= \int \frac{\mathrm{d}}{\mathrm{d}x} \left( u(x)v(x) \right) \mathrm{d}x - \int \frac{\mathrm{d}u(x)}{\mathrm{d}x} v(x) \, \mathrm{d}x \\ \int u(x) \, \mathrm{d}v(x) &= u(x)v(x) - \int v(x) \, \mathrm{d}u(x) \end{split}$$

## 1.4 Integration by Substitution

Theorem 1.4.1.

$$\int f(g\left(x\right))\frac{\mathrm{d}g(x)}{\mathrm{d}x}\,\mathrm{d}x = \int f(u)\,\mathrm{d}u\,,\; where\; u = g(x)$$

# 1.5 Trigonometric Substitutions

| Form                        | Substitution                                      | Result                             | Domain                                                                            |
|-----------------------------|---------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------|
|                             | $x = \frac{a}{b}\sin\left(\theta\right)$          |                                    |                                                                                   |
|                             | $x = \frac{\ddot{a}}{b} \tan \left(\theta\right)$ |                                    |                                                                                   |
| $\left(b^2x^2-a^2\right)^n$ | $x = \frac{a}{b}\sec(\theta)$                     | $a^{2}\tan^{2}\left(\theta\right)$ | $\theta \in \left[0,  \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2},  \pi\right]$ |

Table 3: Trigonometric substitutions for various forms.

# 2 Limits, Continuity and Differentiability

### 2.1 Limits

**Theorem 2.1.1** (Limits).  $\lim_{x\to x_0} f(x)$  exists if and only if  $\lim_{x\to x_0^+} f(x)$  and  $\lim_{x\to x_0^-} f(x)$  exist and are equal.

For  $f: S \to T$ ,

$$I\subseteq S: \exists L\in I: \lim_{x\to x_0}f(x)=L\iff \lim_{x\to x_0^+}f(x)=\lim_{x\to x_0^-}f(x)=L$$

**Theorem 2.1.2** (L'Hôpital's Rule). For two differentiable functions f(x) and g(x). If  $\lim_{x \to x_0} f(x) = \int_{0}^{x} f(x) dx$ 

 $\lim_{x\to x_0}g(x)=0,\ or\ \lim_{x\to x_0}f(x)=\lim_{x\to x_0}g(x)=\pm\infty,\ then\ \lim_{x\to x_0}\frac{f(x)}{g(x)}=\lim_{x\to x_0}\frac{f'(x)}{g'(x)}\ (as\ long\ as\ the\ limit\ exists,\ or\ diverges\ to\ \pm\infty).$ 

## 2.2 Continuity

**Theorem 2.2.1** (Continuity at a Point). f(x) is continuous at c iff  $\lim_{x\to c} f(x) = f(c)$ .

**Theorem 2.2.2** (Continuity over an Interval). f(x) is continuous on I if f(x) is continuous for all  $x \in I$ .

- f(x) is continuous on I:(a, b) if it is continuous for all  $x \in I$ .
- f(x) is continuous on I : [a, b] if it is continuous for all  $x \in I$ , but only right continuous at a and left continuous at b.

If f(x) is continuous on  $(-\infty, \infty)$ , f(x) is continuous everywhere.

**Theorem 2.2.3** (Intermediate Value Theorem). If f(x) is continuous on I : [a, b] and c is any number between f(a) and f(b), inclusive, then there exists an  $x \in I$  such that f(x) = c.

## 2.3 Differentiability

**Theorem 2.3.1** (Differentiability). f(x) is differentiable at  $x = x_0$  iff

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

exists. When this limit exists, it defines the derivative

$$\frac{\mathrm{d}f(x)}{\mathrm{d}x}|_{x=x_0} = \lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$$

**Theorem 2.3.2.** f(x) is differentiable on I if f(x) is differentiable for all  $x_0 \in I$ .

**Theorem 2.3.3.** Differentiability implies continuity.

**Theorem 2.3.4** (Mean Value Theorem). If f(x) is continuous on I : [a, b] and differentiable on I, then there exists a point  $x_0 \in I$  such that

$$\frac{\mathrm{d}f}{\mathrm{d}x} = \frac{f(b) - f(a)}{b - a}$$

#### 3 Definite Integrals

**Theorem 3.0.1.** If f(x) is continuous on an interval I:[a, b], then the net signed area A between the graph of f(x) and the interval I is

$$A = \int_{a}^{b} f(x) \, \mathrm{d}x$$

## Properties of Definite Integrals

**Theorem 3.0.2.** Suppose that f(x) and g(x) are continuous on the interval I, with  $a, b, c \in I \text{ and } k \in \mathbb{R} \text{ then}$ 

a) 
$$\int_{a}^{a} f(x) \, \mathrm{d}x = 0.$$

b) 
$$\int_a^b f(x) \, \mathrm{d}x = -\int_b^a f(x) \, \mathrm{d}x.$$

c) 
$$\int_a^b kf(x) \, \mathrm{d}x = k \int_a^b f(x) \, \mathrm{d}x.$$

$$d) \int_a^b (f(x) \pm g(x)) dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx.$$

$$e) \int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

e) 
$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

#### 3.1Riemann Sums

**Theorem 3.1.1.** Let A be the area under f(x) on the interval [a, b], then

$$\int_a^b f(x) \, \mathrm{d}x = \lim_{\max \Delta x_k \to 0} \sum_{k=1}^n f(x_k) \Delta x_k$$

where n is the number of rectangles,  $x_k$  is the centre of the rectangle k, and  $\Delta x_k$  is the width of the rectangle k. If every rectangle has the same width, then

$$\forall k: \Delta x_k = \frac{b-a}{n}$$

### Fundamental Theorem of Calculus

The fundamental theorem of calculus provides a logical connection between infinite series (definite integrals) and antiderivatives (indefinite integrals).

**Theorem 3.2.1** (The Fundamental Theorem of Calculus: Part 1). If f(x) is continuous on [a, b] and F is any antiderivative of f on [a, b] then

$$\int_{a}^{b} f(x) \, \mathrm{d}x = F(b) - F(a)$$

**Equivalently** 

$$\int_a^b \frac{\mathrm{d}}{\mathrm{d}x} F(x) \, \mathrm{d}x = F(b) - F(a) \equiv \left. F(x) \right|_a^b$$

**Theorem 3.2.2** (The Fundamental Theorem of Calculus: Part 2). If f(x) is continuous on I then it has an antiderivative on I. In particular, if  $a \in I$ , then the function F defined by

$$F(x) = \int_{a}^{x} f(t) \, \mathrm{d}t$$

is an antiderivative of f(x). That is,

$$\frac{\mathrm{d}}{\mathrm{d}x}F(x) = f(x) \iff \frac{\mathrm{d}}{\mathrm{d}x} = f(x)$$

**Theorem 3.2.3.** Differentiation and integration are inverse operations.

# 3.3 Taylor and Maclaurin Polynomials

**Theorem 3.3.1** (Taylor Polynomials). If f(x) is a n differentiable function at  $x_0$ , then the nth degree Taylor polynomial for f(x) near  $x_0$ , is given by

$$f(x) \approx P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} \left(x - x_0\right)^k$$

**Theorem 3.3.2** (Maclaurin Polynomials). Evaluating a Taylor polynomial near 0, gives the nth degree Maclaurin polynomial for f(x)

$$f(x) \approx P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x^k$$

**Theorem 3.3.3** (Error in Approximation). Let  $R_n(x)$  denote the difference between f(x) and its nth Taylor polynomial, that is

$$R_n(x) = f(x) - P_n(x) = f(x) - \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} \left(x - x_0\right)^k$$

# 4 Taylor and Maclaurin Series

### 4.1 Infinite Series

**Definition 4.1.1** (Taylor Series). If f(x) has derivatives of all orders at  $x_0$ , then the Taylor series for f(x) about  $x = x_0$  is given by

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

**Definition 4.1.2** (Maclaurin Series). If a Taylor series is centred on  $x_0 = 0$ , it is called a Maclaurin series, defined by

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

**Definition 4.1.3** (Power Series). Both Taylor and Maclaurin series are examples of **power series** defined as follows

$$\sum_{n=0}^{\infty} c_n \left( x - x_0 \right)^n$$

### 4.2 Convergence Tests

For any infinite series of the form  $\sum_{i=i_0}^{\infty}a_i.$ 

# **Alternating Series**

Conditions  $a_i = (-1)^i b_i$  or  $a_i = (-1)^{i+1} b_i$ .  $b_i > 0$ .

Is 
$$b_{i+1} \leqslant b_i$$
 &  $\lim_{i \to \infty} b_i = 0$ ?   
 
$$\begin{cases} \text{YES} & \sum a_i \text{ Converges} \\ \text{NO} & \text{Inconclusive} \end{cases}$$

### Ratio Test

 $\mbox{\bf Conditions} \ \forall i: a_i>0 \ \mbox{and} \ \lim_{i\to\infty} \frac{a_{i+1}}{a_i} \neq 1.$ 

Is 
$$\lim_{i \to \infty} \frac{a_{i+1}}{a_i} < 1$$
? 
$$\begin{cases} \text{YES} & \sum a_i \text{ Converges} \\ \text{NO} & \sum a_i \text{ Diverges} \end{cases}$$

Is 
$$\lim_{i \to \infty} \left| \frac{a_{i+1}}{a_i} \right| < 1$$
?  $\begin{cases} \text{YES} & \sum a_i \text{ Converges Absolutely} \\ \text{NO} & \sum a_i \text{ Diverges} \end{cases}$ 

# 5 Multivariable Calculus

**Definition 5.0.1.** A function is multivariable if its domain consists of several variables. In the reals, these functions are defined

$$f:\mathbb{R}^n\to\mathbb{R}$$

# ${\bf 6}\quad {\bf Double\ and\ Triple\ Integrals}$

# 7 Vector-Valued Functions

### 8 First-Order Differential Equations

# 9 Second-Order Differential Equations