Counterparty Risk: Implications for Network Linkages and Asset Prices

Fotis Grigoris, Yunzhi Hu, Gill Segal 2021 叶鑫 2021/07/22

Background & Motivation

- The amount of credit a lender extends to a borrower in the network depends on the risk of each agent and the macroeconomy.
 Consequently, credit should convey important information about firmand aggregate-level fundamentals.
- Trade credit is among non-financial firms' largest sources of short-term financing, and consequently, plays a key macroeconomic role.
- Motivated by this intuition, we study the implications of credit provision for micro- and macro-level risks and for network linkages, using trade credit in production networks as a laboratory.

Research question

- 1. Does offering trade credit increase a supplier's exposure to operating and counterparty risks?
- 2. How does trade credit relate to macroeconomic risk?
- 3. Can trade credit provide information on suppliers' trade counterparties (i.e., customers), such as their quality?
- 4. Do changes in trade credit affect the strength of suppliercustomer links, and the production network's density?

Research Contents

- First, we find that trade credit is an important determinant of firms' risk profiles. Firms that extend more trade credit, and have higher ratios of receivables-to-sales (henceforth R/S), earn a significantly lower risk premium(7% p.a.).
- Second, trade credit impacts the dynamics of supplier-customer links.
 At the micro-level, high R/S firms have longer duration links to their customers. At the macro-level, aggregate trade credit positively predicts the density of the production network.
- Third, to reconcile the first two findings we establish a novel linkduration spread: firms that have longer-lived relationships with their customers command lower expected returns.

Related Literature and Innovation

- Dou, Ji, Reibstein, and Wu (2019) show that the departure of key talent affects the fragility of supplier-customer links.
 - We highlight that trade credit affects the durability of these links.
- Ahern (2013) shows that industries with a higher eigenvalue centrality earn higher expected returns, while Gofman (2020) show that upstream earn higher expected returns than downstream firms.
 - ➤ We confirm that the counterparty premium is not explained by network centrality and is positive and significant within all layers of the production network..
- Cohen and Frazzini (2008) and Menzly and Ozbas (2010) examine the predictability of stock returns using supplier-customer links.
 - We show that supplier-customer links are predictable via trade credit.

Research Data

- Our sample includes all public firms in the CRSP/Compustat universe, excluding financial firms and public utilities.
 - ➤ We focus on the years ranging from 1978 to 2016 because data on trade receivable is sparse prior to 1978.
- We obtain Fama and French 3- and 5-factor and Carhart(1997) 4- factor data from the data library of Kenneth French.
- Firm-level data on supplier-customer relationships is obtained from the FactSet Revere database which provides comprehensive coverage of inter-firm links.
 - ➤ Importantly, by reporting both the start and end date of each suppliercustomer link, the FactSet data allows us to measure link duration.

Empirical Fact 1: Trade credit and risk premium

 We measure the extent of trade credit provision for firm i in year t by scaling the firm's trade receivables by its sales:

$$R/S_{i,t} = \frac{\text{Trade receivables}_{i,t}}{Sales_{i,t}}$$
 (1)

- At the end of each June from 1978 to 2016, we sort firms into portfolios based on the value of R/S in the fiscal year ending in calendar year t-1.
- We form three portfolios on each sort date. The low (high) R/S portfolio includes all firms whose R/S ratio is at or below (above) the 10th (90th) percentile of the R/S ratios. The low and high R/S portfolios are well-diversified, with each containing about 340 firms.

Portfolio in		Portfolio in year $t+1$	
year t	Low	Medium	High
Low	0.849	0.129	0.022
Medium	0.015	0.948	0.037
High	0.018	0.372	0.610

Empirical Fact 1: Trade credit and risk premium

- By and large, there is an inversely monotonic relation between average returns and R/S.
- Moreover, we find an economically and statistically significant spread between the returns of low and high R/S firms.

Portfolio	Value-w	reighted	Equal-weighted	
	Mean	SD	Mean	SD
Low R/S	1.185	5.029	1.191	6.348
Medium	1.062	4.545	1.286	6.122
High R/S	0.589	5.981	0.744	7.476
Spread (L-H)	0.597 (2.95)	4.128	0.448 (2.28)	3.439

 And our results are robust to alternative choices of portfolio breakpoints (30%, 70%).

	Mean	SD
Low R/S	1.129	4.292
Medium	1.050	4.571
High R/S	0.871	5.451
Spread (L-H)	0.259 (2.09)	2.498

Empirical Fact 1: The resource of counterparty premium

- We examine whether the counterparty premium is explained by 5 common unconditional factor models: CAPM, FM 3- and 5-factor, the Carhart (1997) 4-factor model, Hou(2015) q-factor.
- The results show that the monthly α's obtained from these projections are always greater than 0.49% per month and statistically significant.
- Common empirical asset-pricing models fail to explain the counterparty premium.

	(1)	(2)	(3)	(4)	(5)
MKTRF	-0.312	-0.308	-0.288	-0.256	-0.276
	(-6.13)	(-6.03)	(-5.45)	(-5.02)	(-5.08)
SMB		0.035	0.025	0.132	0.154
		(0.47)	(0.34)	(1.64)	(2.35)
HML		0.053	0.096	-0.050	
		(0.56)	(1.09)	(-0.51)	
MOM			0.107		
			(1.84)		
Profit.				0.367	0.322
				(3.40)	(2.88)
Invest.				0.138	0.181
				(1.06)	(1.55)
α	0.798	0.775	0.684	0.585	0.487
	(4.07)	(3.97)	(3.57)	(3.06)	(2.56)

Empirical Fact 1 : Counterparty premium: a puzzle?

- From the perspective of financial statement analysis, high R/S firms are typically perceived as having low operating efficiency, and as potentially having high exposures to shocks that deteriorate their customers' financial conditions.
- However, the fact that they command lower risk premia suggests that high R/S firms are, in fact, safer than low R/S firms.
- On the other hand, endogenously riskier firms may choose to extend less trade credit, but the source of risk (i.e., the type of systematic shock) that renders low R/S firms riskier remains unclear.
- In particular, we show that the counterparty premium is not explained by common macroeconomic pricing factors.

Empirical Fact 1: Trade credit and macroeconomic factors

- Consequently, counterparty risk may be a distinct determinant for investors' stochastic discount factor (SDF) and stock prices.
- We examine this possibility by evaluating whether a counterparty risk factor is priced in the cross-section of stock returns.

$$M_{\rm t} = 1 - b'f_t - b_{CPR}CPR_{\rm t} \quad (2)$$

- We measure the counterparty risk factor using the spread between the value-weighted returns of the portfolio that buys high R/S firms and sells low R/S firms.
- *f* is a k*1 column vector that contains either the excess market return only, or the Fama and French (1993) three factors. All factors underlying the equation are demeaned.
- We estimate the risk factor loadings in equation (2) by generalized method of moments(GMM) using the following set of moment conditions:

$$E[M_t r_{i,t}^e] = 0$$

• $r_{i,t}^e$ denotes the excess return of test asset i at time t.

Empirical Fact 1: Trade credit and macroeconomic factors

- First, we estimate the risk factor loadings using 25 value-weighted portfolios double sorted on size and book-to-market.
- We then add the test assets with the Fama-French 17 value-weighted industry portfolios (42).
- Third, We add the test assets with 10 portfolios sorted on each of investment and momentum (62).
- The GMM evidence suggests that a counterparty risk factor is priced in the cross-section of returns, and carries a negative market price of risk.

Panel B: Four-factor model

	25 por	rtfolios	42 por	rtfolios	62 por	rtfolios
	FF3F	+CPR	FF3F	+CPR	FF3F	+CPR
b_M	3.988	9.313	4.042	5.022	3.952	5.481
$t(b_M)$	(3.14)	(4.74)	(3.29)	(3.79)	(3.36)	(4.34)
b_S	1.489	1.190	0.372	0.673	0.181	0.534
$t(b_S)$	(0.87)	(0.61)	(0.22)	(0.40)	(0.11)	(0.32)
b_H	6.375	4.777	4.991	4.992	4.385	4.138
$t(b_H)$	(3.62)	(2.18)	(2.85)	(2.75)	(2.52)	(2.36)
b_{CPR}		-17.803		-3.589		-5.331
$t(b_{CPR})$		(-4.08)		(-2.27)		(-3.52)
MAE	0.608	0.478	0.728	0.708	0.775	0.737

2021/1/22

Empirical Fact 2: Network characteristics

We check whether high and low R/S firms differ in terms of key network-based characteristics:

- Prior papers have established that network (eigenvalue) centrality, upstreamness customer concentration and volatility are associated with risk premia.
- In addition, we also consider another overlooked characteristic: the average duration (in months) of a suppliers' links with its existing customers.

High R/S firms are typically more upstream producers than low R/S firms. However, this cannot explain the counterparty premium as Gofman et al. (2020) show that more upstream firms earn higher returns.

	Low (L)	Medium	High (H)	Diff(L-H)	t(Diff)
Centrality	0.31	0.44	0.42	-0.11	(-0.91)
Upstreamness	1.65	2.74	3.03	-1.38	(-15.34)
HHI (Customer)	0.17	0.35	0.24	-0.07	(-1.03)
IVOL (Customer)	1.47	1.49	1.24	0.24	(1.15)
Duration	39.60	46.69	47.98	-8.38	(-2.68)

Empirical Fact 2: Link duration and trade credit

 We estimate Fama-MacBeth regressions utilize supplier-level characteristics to predict (1) the expected duration of a supplier's links with its customers, and (2) the probability that supplier-customer links break.

$$D_{s,t} = const + \beta X'_{s,t} + \epsilon_{s,t} \quad \forall \ t \in \{2003, ..., 2016\}$$
 (4)

- We use two measures for $D_{s,t}$:
 - ➤ (1) the average life of a supplier's existing links going forward (in months).
 - ➤ (2) an indicator variable that identifies the event in which the links between the supplier and its current customers break in the future. Specifically, the indicator takes on a value of one if 50% of the supplier's links that exist in year t do not survive until year t+3.
- $X'_{s,t}$ include the R/S ratio, the natural logarithm of the supplier's market value, investment rate, and profitability. Each predictor is scaled by its unconditional standard deviation for ease of interpretation.

Empirical Fact 2: Link duration and trade credit

- The left side of the table shows that increases in the amount of trade credit offered are associated with longer lived supplier-customer relationships.
- A one standard deviation increase in R/S extends the expected link duration by about five months.
- The right side of the table yields similar results, showing that increases in R/S reduce the probability of supplier-customer links breaking.
- A one standard deviation increase in a supplier's R/S reduces the likelihood of links breaking by 9%.

	Future	Future duration		ak = 1
Constant	55.62	56.70	0.58	0.57
	(11.49)	(11.38)	(23.32)	(25.76)
R/S	4.69	5.86	-0.09	-0.09
	(3.59)	(3.66)	(-3.11)	(-3.98)
SIZE		-2.20		-0.01
		(-5.15)		(-0.34)
I/K		-2.84		0.01
		(-1.94)		(0.88)
ROA		2.82		-0.04
		(3.61)		(-3.36)

Empirical Fact 2: Production network analysis

- The aggregation of equation (4) across all firms implies that the average level of trade credit should positively predict the density of the production network.
- To test this conjecture we project the future density of the production network on the average level of R/S across all firms:

$$Density_{t+k} = const + \beta_{rs} \overline{R/S_t} + \beta_{IP} \Delta IP_t + \beta_d Density_t + \eta_t$$

- $Density_t$ is the density of the production network at quarter t, defined as the ratio of observed-to-potential links in the network.
- ΔIP_t is the quarterly log-growth rate of industrial production.
- Each independent variable is normalized by its standard deviation and, for ease of interpretation, we divide each slope coefficient by the unconditional mean of network density.

Empirical Fact 2: Production network analysis

- Consistent with the above conjecture, a one standard deviation increase in aggregate R/S predicts the one-quarter ahead network density will rise by about 4% relative to density's mean.
- The predictive power of the aggregate R/S ratio is economically sizable and statistically significant up to five-quarters ahead.
- Furthermore, the economic significance of trade credit is of the same magnitude as that of lagged density.

	1Q :	ahead	3Q a	ahead	5Q a	ahead	7Q	ahead
$\overline{R/S}$	0.06	0.04	0.05	0.03	0.06	0.05	0.04	0.04
	(3.25)	(4.25)	(2.53)	(2.50)	(2.67)	(2.75)	(1.42)	(1.48)
Density		0.07		0.06		0.03		0.01
		(13.82)		(5.29)		(1.98)		(0.34)
IP		0.00		-0.02		-0.01		0.01
		(0.28)		(-1.85)		(-0.53)		(0.37)
\mathbb{R}^2	0.17	0.83	0.09	0.51	0.13	0.20	0.03	-0.01

Reconciling facts 1 and 2: the link duration premium

- Our empirical results have shown that low R/S firms have higher expected return (Fact 1) and lower duration links with their customers (Fact 2).
- We reconcile these two facts jointly to see whether the differences in link duration can explain the counterparty premium by establishing a novel "link duration" premium.
- We conduct a univariate portfolio sort using the link duration characteristic:
 - First, the sorts begin in April 2003 instead of June 1978, given the availability of FactSet data.
 - Second, we rebalance the portfolios monthly.

Reconciling facts 1 and 2: the link duration premium

- Suppliers that maintain shorter-lived links with their customers earn average value-weighted returns that are 0.98% per month higher than those earned by suppliers that maintain longer-lived links.
- This link duration premium is aligned with the R/S spread, as low R/S firms maintain low duration links.
- This suggests that the economic origin of the counterparty premium is potentially related to the duration of supplier-customer links.

	Panel A: Univariate sort on link duration			
Portfolio	Mean	SD		
Low (L)	2.005	2.005		
Medium	0.860	3.795		
High (H)	1.021	1.021		
Spread	0.984	2.533		
(L-H)	(4.26)			

Reconciling facts 1 and 2: the link duration premium

- We examine this possibility by conducting a conditional portfolio double sort analysis.
- The R/S spread is close to 1% per month among low link duration suppliers, but is insignificant at the 10% level. The R/S spread is qualitatively negative within the medium link duration portfolio, and is statistically indistinguishable from zero among high link duration suppliers.
- These results show the link duration effect crowds out the counterparty premium.

Panel B: Controlling for duration

	Low Dur.	Medium	High Dur.	
Low R/S	2.28	0.82	1.49	
Medium	1.97	0.84	0.98	
High R/S	1.30	0.83	1.02	
Spread	0.98	-0.02	0.47	Joint test
(L-H)	(p = 0.11)	(p = 0.52)	(p = 0.20)	(p = 0.61)

Mechanism: Lower R/S firms are riskier

- First, low R/S firms are more likely to search for a new customer next period, and therefore have a larger exposure (in absolute value) to systematic shocks that govern the cost of searching for a new counterparty.
- Second, low R/S firms are matched with lower quality customers.
 Consequently, low R/S firms have higher operating risks than high R/S firms that are typically matched to more productive customers.

Conclusion

- We document three novel facts: First, low R/S firms earn a higher risk premium. Second, R/S is an economically important and statistically significant predictor of the average duration of supplier-customers links. Third, low link duration firms earn a higher risk premium.
- Consequently, low R/S firms have higher operating risks than high R/S firms that are typically matched to more productive customers. The model delivers the prediction that low R/S firms have lower link duration with their counterparty.
- In all, the empirical and theoretical evidence suggests that trade credit contains valuable information for both risk and for the dynamics of the production network.

Summary

- This paper studies the relation between trade credit, risk, and the dynamics of production network linkages. We find that firms that extend more trade credit earn 7% p.a. lower risk premia, and maintain longer relationships with their customers. Moreover, suppliers with longerduration links to their customers command lower expected returns.
- Using a production-based model, we quantitatively explain these facts.
 Trade credit helps to hedge customers against liquidity risks, thereby reducing suppliers' exposures to costs incurred in finding new customers.
- Overall, trade credit is informative about the lifespan of suppliercustomer links, the production network's density, and macroeconomic risk.