Title

Contents

1	Wed	Inesday, October 28	2
		Review of Last Time	
	1.2	Description of $T^{\mu}_{\lambda}(H^{i}(w \cdot \lambda))$	2

1 Wednesday, October 28

1.1 Review of Last Time

Suppose we have two weights in the same facet, i.e. they're in the same stabilizer under the action of the affine Weyl group:

Figure 1: Weights in the same facet

We had a theorem: if λ, μ are in the same facet, then $\mathcal{B}_{\lambda} \cong \mathcal{B}_{\mu}$ is an equivalence of categories, where the map is via the translation functors.

1.2 Description of $T^\mu_\lambda \Big(H^i(w \cdot \lambda) \Big)$

We can write

$$T_{\lambda}^{\mu}\Big(H^{i}(w \cdot \lambda)\Big) = \operatorname{pr}_{\mu}\Big(L(\nu_{1}) \otimes \operatorname{pr}_{\lambda}\Big(H^{i}(w \cdot \lambda)\Big)\Big)$$
$$= \operatorname{pr}_{\mu}\Big(L(\nu_{1}) \otimes H^{i}(w \cdot \lambda)\Big)$$
$$= \operatorname{pr}_{\mu}\Big(L(\nu_{1}) \otimes R^{i} \operatorname{Ind}_{B}^{G} w \cdot \lambda\Big)$$
$$= \operatorname{pr}_{\mu}\Big(R^{i} \operatorname{Ind}_{B}^{G} (L(\nu_{1}) \otimes w \cdot \lambda)\Big).$$

Take a composition series by B-modules of $L(\nu_1) \otimes w \cdot \lambda$, say

$$0 = M_0 \subset M_1 \cdots \subset M_r = L(\nu_1) \otimes w \cdot \lambda.$$

where $M_j/M_{j-1} \cong \lambda + j + w \cdot \lambda$ and $\lambda_j < \lambda_{j'} \implies j < j'$, i.e. we can order them in a decreasing way.

Consider the SES

$$0 \longrightarrow M_{j-1} \longrightarrow M_j \longrightarrow M_j/M_{j-1} \longrightarrow 0$$

where applying $\mathrm{pr}_{\mu}(\,\cdot\,)$ induces the LES

$$\cdots \longrightarrow \operatorname{pr}_{\mu} M_{j-1} \longrightarrow \operatorname{pr}_{\mu} M_{j} \longrightarrow \operatorname{pr}_{\mu} (M_{j}/M_{j-1}) \longrightarrow \cdots$$

We know that

$$\operatorname{pr}_{\mu} H^{i}(\lambda_{j} + w \cdot \lambda) = \begin{cases} H^{i}(\lambda_{j} + w \cdot \lambda) & \lambda + j + w \cdot \lambda \in W_{p} \cdot \mu \\ 0 & \text{else} \end{cases},$$

i.e. this projection is the identity for weights linked to μ and zero otherwise. We also have

$$\operatorname{pr}_{\mu}H^{i}(M_{r}) = T^{\mu}_{\lambda}H^{i}(w \cdot \lambda).$$

Theorem 1.2.1(?). Let $\lambda, \mu \in \overline{C}_{\mathbb{Z}}$ and F be a facet with $\lambda \in F$. If $\mu \in \overline{F}$, then we have

$$T^{\mu}_{\lambda}(H^{i}(w \cdot \lambda)) = H^{i}(w \cdot \mu) \qquad \forall w \in W_{p}.$$

Figure 2: Image

Example 1.2.1 (?).

Here consider $H_0(\lambda) \xrightarrow{T_{\lambda}^{\mu}} H_0(\mu) = 0$, since μ is outside of the dominant region (in orange.) We also have $H^0(w \cdot \lambda) \to H^0(w \cdot \mu) \neq 0$, since this falls *into* the dominant region.

Proof(?).

Let $\lambda \in F$ and $\mu \in \overline{F}$. Then $\operatorname{Stab}_{W_p}(\lambda) \subseteq \operatorname{Stab}_{W_p}(\mu)$. By a previous technical lemma, we had a formula for computing $\operatorname{ch} T_{\lambda}^{\mu}V$, which involved considering

$$w_1 \in \frac{\operatorname{Stab}_{W_p}(\lambda)}{\operatorname{Stab}_{W_p}(\lambda) \cap \operatorname{Stab}_{W_p}(\mu)}.$$

In this case, we get $w_1 = id$, since the top and bottom are equal.

By that lemma, there exists a unique ℓ such that $w \cdot \lambda + \lambda_{\ell} \in W_p \cdot \mu$, where λ_{ℓ} is a weight of $L(\nu_1)$. From the LES, we have

$$\cdots \longrightarrow \operatorname{pr}_{\mu} M_{j-1} \longrightarrow \operatorname{pr}_{\mu} M_{j} \longrightarrow \operatorname{pr}_{\mu} (M_{j}/M_{j-1}) = \lambda_{j} + w \cdot \lambda \longrightarrow \cdots$$

where the last term will only be nonzero