Source Coding and the Entropy Typical Set

Submit a PDF of your answers to Canvas

1. This problem will explore four properties of the *entropy typical set*. The properties imply the acheivability of the source coding theorem.

Consider n i.i.d. realizations of a discrete random variable $X \in \mathcal{X}$ with $|\mathcal{X}| < \infty$. The entropy typical set is defined as

$$A_n^{\varepsilon} = \left\{ \boldsymbol{x} : \left| \frac{1}{n} \log_2 \left(\frac{1}{p(\boldsymbol{x})} \right) - H(X) \right| \le \varepsilon \right\},$$

 $A_n^{\varepsilon} = \left\{ x : \left| \frac{1}{n} \log_2 \left(\frac{1}{p(x)} \right) - H(X) \right| \le \varepsilon \right\},$ from defining where $x \in \mathcal{X}^n$ is a vector of the n realizations.

a) Show that for any $x \in A_n^{\varepsilon}$, $2^{-n(H(X) + \varepsilon)} \le p(x) \le 2^{-n(H(X) - \varepsilon)}$.

The from defining the form of the second se

b) Show that for any fixed $\varepsilon > 0$, by $\ln x$ $\ln y = \ln y = \ln y = \ln x$ converges to $\ln x = \ln x = \ln x$ $\mathbb{P}(x\in A_n^\varepsilon)\geq 1-\varepsilon.\quad \text{by ε-6-$ large enough n can lead to most han $1-$6 of the x-$con verging}$

You may find results from a previous activity useful. Specify a value of n_0 for which $\mathbb{P}(\mathbf{x} \in A_n^{\varepsilon}) \ge 1 - \varepsilon$ holds for $n \ge n_0$.

c) Next show that $|A_{\varepsilon}^n| \leq 2^{n(H(X)+\varepsilon)}$ for sufficiently large n by justifying each line below:

$$\begin{array}{lll} 1 & \stackrel{(1)}{=} & \sum_{\boldsymbol{x} \in \mathscr{X}} p(\boldsymbol{x}) \\ & \stackrel{(2)}{\geq} & \sum_{\boldsymbol{x} \in A_{\varepsilon}^n} p(\boldsymbol{x}) & \text{is a subset, thus ε probles ε} \\ & \stackrel{(3)}{\geq} & \sum_{\boldsymbol{x} \in A_{\varepsilon}^n} 2^{-n(H(X) + \varepsilon)} & \text{from (a) we defined} \\ & \stackrel{(4)}{=} & 2^{-n(H(X) + \varepsilon)} |A_{\varepsilon}^n|. & \text{after summation} \end{array}$$

d) Show that $|A_{\varepsilon}^n| \geq (1 - \varepsilon)2^{n(H(X) - \varepsilon)}$ for sufficiently large *n* by justifying each step:

$$1-\varepsilon$$
 $\stackrel{(1)}{<}$ $\mathbb{P}(x \in A_n^{\varepsilon})$ for sufficiently large n from (6) $\stackrel{(2)}{\leq}$ $\sum_{x \in A_{\varepsilon}^n} 2^{-n(H(X)-\varepsilon)}$ from (a), upper bound $\stackrel{(3)}{=}$ $2^{-n(H(X)-\varepsilon)}|A_{\varepsilon}^n|$. Of the sum matrix

2. Write a short paragraph to explain how problem (1) shows that n i.i.d. random variables can be compressed into nH(X) bits with a negligible risk of error as n grows. Note that we have shown that the entropy typical set contains a relatively small number of the possible realizations of x, but most of the probability. While we have not shown the converse, there is not a significantly smaller set (in an asymptotic sense, see [Cover and Thomas, Theorem 3.3.1.]).

An denote the set of $X \in \mathcal{X}$ where, once compressed to n H(X) bits, the error remains within E. Since $P(X \in A_n^E)$ converges to 1 with smaller E and sufficiently large n, we can pick an n large enough the error is negligible (within E)