Optimization in ML

Machine Learning and Data Mining

Maxim Borisyak National Research University Higher School of Economics (HSE)

Machine Learning in a nutshell

Every (supervised) ML algorithm ever:

ightharpoonup a model $\mathcal A$ - set of all possible solutions:

$$\mathcal{A} \subseteq \{f : \mathcal{X} \to \mathcal{Y}\}$$

- \mathcal{X} , \mathcal{Y} sample and target spaces.
- a search procedure:

$$S: (\mathcal{X} \times \mathcal{Y})^n \to \mathcal{A}$$

Decision Trees:

- model: piece-wise constant functions;
- search procedure: very sinful one.

SVM:

- linear functions (in some space);
- search procedure: margin maximization.

Logistic regression:

- linear functions;
- search procedure: $cross-entropy \rightarrow min$, any optimization method.

In Deep Learning models are often decoupled from search procedures.

Machine Learning in a nutshell

Often, model-search can be factorized further:

parametrized model:

$$\mathcal{A} = \{ f_{\theta} : \mathcal{X} \to \mathcal{Y} \mid \theta \in \Theta \subseteq \mathbb{R}^n \}$$

optimization problem:

$$L(f_{\theta}, D) = \mathcal{L}(\theta) \to_{\theta} \min$$

- ▶ $D \in (\mathcal{X} \times \mathcal{Y})^N$ training set;
- **p** optimization method *O*:

$$\theta^{t+1} = O\left[\theta^t, \mathcal{L}\right].$$

- parametrized model:
 - heavily domain/data dependent;
- optimization problem:
 - more or less universal:

```
\mathcal{L} = \{\log, \text{hinge}, \dots\} - \text{loss} + \{l_1, l_2\} - \text{regularization};
```

- **▶** optimization method *O*:
 - ightharpoonup heavily-dependent on nature of \mathcal{L} .

Optimization in ML

Optimization methods:

- heavily restrict:
 - > speed of the algorithm:
 - quality of solutions;
- some optimization methods allows for new models:
 - discreet or mixed parameters;
 - variable size models.

Gradient methods

Gradient methods 8/33

The zoo

- SGD, SGD with momentum:
 - you have no memory;
 - → you have to write optimizer in 1 minute;
- Nesterov momentum:
 - you want to fine-tune your solution.
- RMSprop:
 - you have little memory and you gradients explode/vanish;
 - you have 2 minutes before submitting your code for training;
- adagrad, adadelta, adam, adamax:
 - methods to go.

Details are likely to be considered in Deep Learning course.

Gradient methods 9/3:

Second-order methods

Second-order methods 10/33

Flow chart

Do you have a nearly-quadratic target function?

- ▶ yes: is the problem low-dimensional?
 - yes: go Newton!
 - ▶ <u>no</u>: use gradient or quasi-Newton methods;
- no: use gradient or quasi-Newton methods.

Second-order methods 11/33

Hyper-parameter optimization

Hyper-parameter optimization

Hyper-parameter optimization is a meta-algorithm that operates on union of models parametrized by ψ :

$$\mathcal{A} = \bigcup_{\psi} \mathcal{A}_{\psi} = \{ f_{\theta_{\psi}}^{\psi} \mid \theta_{\psi} \in \Theta_{\psi} \}$$

outer loss might differ from inner loss:

$$\psi^* = \operatorname*{arg\,max}_{\psi} Q \left(\operatorname*{arg\,min}_{\theta_{\psi}} L(\theta_{\psi}) \right)$$

- no sacred meaning, just for convinience:
- ightharpoonup example: L cross-entropy, Q ROC AUC.

Hyper-parameter optimization

Outer optimization is usually evaluated on a separate set:

- via train-validation-test split;
- via cross-validation;
- the main reason for split into outer and inner problems.

Alternatevely, BIC or similar can be used.

Outer optimization problem is usually non-differentiable:

number of units, maximal depth of trees.

Grid-search

Usually, ML algorithms are designed to have **a few**, **non-sensitive** hyper-parameters:

- outer problem is mostly convex and changes slowly;
- grid-search often works perfectly fine.

Modifications, alternatives:

- randomized grid-search;
- random walk.

Gradient-free methods

Gradient-free methods 16/33

Gradient-free methods

- local optimization:
 - 'traditional' methods;
- global optimization:
 - gradient and Hessian are fundamentally local properties;
 - evolutionary methods;
- black-box optimization:
 - variational optimization;
 - Bayesian optimization.

Gradient-free methods 17/33

Traditional gradient-free methods

- evaluation of objective function is cheap;
- in practice, **often** can be replaced by gradient-methods:

$$\mathsf{cheap} \Rightarrow \begin{bmatrix} \mathsf{closed\text{-}form\ expression} \\ & \mathsf{or} \\ & \mathsf{allow\ approximation} \end{bmatrix} \Rightarrow \mathsf{differentiable}.$$

example: Powell, Nelder-Mead.

Gradient-free methods 18/33

Multi-start

Just launch local procedure multiple times with different initial guesses.

- each local optima acts like an attractor for local methods;
- effective if depth of local optima positively depend on area of attraction.

Gradient-free methods 19/33

Evolution methods

There are just so many...

Basic operations:

- ightharpoonup mutation: x' = x + noise;
- rightharpoonup crossover: $x' = \operatorname{crossover}(x_1, x_2);$

Application:

- you have no idea how to optimize objective function;
- evolution algorithms basically can handle any parametrization:
 - e.g. DNA molecules.

Gradient-free methods 20/33

Memetic algorithms

```
def memetic(global_step=evolutionary,
            locally optimize=annealing):
  population = []
  mature population = [ <random> ]
  while ...:
    population = global step(mature population)
    mature population = [
      locally optimize(x) for x in population
  return mature population
multistart = lambda locally optimize:
                                       memetic(
  random sampling, locally optimize
```

Gradient-free methods 21/33

Black-box optimization

- heavy objective;
- non-differentiable:
 - complex computer simulations (e.g. aero-dynamics);
- so multi-modal, gradient does not have sense:
 - extremely deep networks (e.g. recurrent networks);

Gradient-free methods 22/33

Surrogate optimization

A type of black-box optimization.

Given known samples $\mathcal{O}^t = \{(\theta_i, L_i)\}_{i=1}^t$:

- **▶** fit regression (surrogate) model to $\{(\theta_i, L_i)\}_{i=1}^t$;
- **ightharpoonup** find the most promising θ_{t+1} with conventional optimization methods;
- evaluate objective in θ_{t+1} ;
- $\mathcal{O}^{t+1} = \mathcal{O}^t \cup \{(\theta_{t+1}, L_{t+1})\};$
- repeat.

Gradient-free methods 23/33

Bayesian optimization

The most well-known black-box optimization method.

Surrogate model:

- ightharpoonup must estimate: $P(y \mid D, x)$;
- usually Gaussian processes:
 - easy to handle (normal distribution everywhere);
 - computationally expensive $O(n^3)$, n number of points.
- possible to use Random Forest or Boosting;
- the most promising point is defined by aquisition function:

 $a(x) \to \max$

Gradient-free methods 24/33

Aquisition functions

ightharpoonup f' - current minimum; D - observed values.

Probability of improvement:

$$a_{pi}(x) = \mathbb{E}\left[\mathbb{I}[f(x) > f'] \mid D\right] \underbrace{= \Phi(f', \mu(x), K(x, x))}_{GP}$$

Expected improvement:

$$\underbrace{a_{ei}(x) = \mathbb{E}\left[\max(0, f' - f(x)) \mid D\right] = \underbrace{(f' - \mu(x))\Phi(f', \mu(x), K(x, x)) + K(x, x)\phi(f', \mu(x), K(x, x))}_{GP}$$

Lower confidence bound:

$$a_{lcb}(x) = \mu(x) + \beta \sigma(x)$$

Gradient-free methods 25/33

Variational optimization

$$\min_{x} f(x) \le \mathop{\mathbb{E}}_{x \sim \pi_{\psi}} f(x) = J(\psi)$$

 \bullet π_{ψ} - search distribution;

$$\nabla J(\psi) = \nabla \underset{x \sim \pi_{\psi}}{\mathbb{E}} f(x) =$$

$$\int_{x} f(x) (\nabla \pi(x \mid \psi)) \frac{\pi(x \mid \psi)}{\pi(x \mid \psi)} dx =$$

$$\int_{x} f(x) \nabla \log \pi(x \mid \psi) \pi(x \mid \psi) dx =$$

$$\underset{x \sim \pi_{\psi}}{\mathbb{E}} f(x) \nabla \log \pi(x \mid \psi) \approx$$

$$\frac{1}{n} \sum_{i=1}^{n} f(x_{i}) \nabla \log \pi(x_{i} \mid \psi)$$

Gradient-free methods 26/33

Evolution Strategies

Evolution Strategies - is a subset of variational optimization (?).

- Repeat:
 - ▶ sample $\{x_i\}_{i=1}^n$ from $\pi(\cdot \mid \psi)$;
 - evaluate $f_i = f(x_i)$;
 - compute:

$$\nabla J(\psi) \approx \frac{1}{n} \sum_{i=1}^{n} f_i \nabla \log \pi(x_i \mid \psi)$$

• update ψ , e.g.

$$\psi \leftarrow \operatorname{adamax}(\nabla J(\psi))$$

Gradient-free methods 27/33

Evolution Strategies

- ightharpoonup d dimensionality of the problem;
- \bullet π_{ψ} Gaussian:
 - ▶ $\dim(\psi) = O(d^2)$: covariance matrix and mean vector;
 - $O(d^3)$ operations per step;
- \bullet π_{ψ} Gaussian with independent components:
 - $|\psi| = O(d)$: diagonal covariance matrix and mean vector;
 - O(d) operations per step;
- \bullet π_{ψ} scaled normal:
 - ▶ $|\psi| = O(d)$: variance σ and mean vector;
 - \bullet O(d) operations per step;
 - ▶ less samples for estimating gradient.

Gradient-free methods 28/33

Summary

Summary 29/33

Summary

Known your optimization algorithms:

- differentiable ⇒ gradient methods;
- super heavy objective ⇒ Bayesian;
- non-differentiable ⇒ Variational Optimization;
- ightharpoonup wierd model \Rightarrow evolutionary optimization.

Don't blindly follow this.

Summary 30/33

References, gradient-methods

- ▶ Bottou, L., 2012. Stochastic gradient descent tricks. In Neural networks: Tricks of the trade (pp. 421-436). Springer Berlin Heidelberg.
- ➤ Kingma, D. and Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
- ➤ Zeiler, M.D., 2012. ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.5701.

Summary 31/3

References, quasi-Newton

▶ Fletcher, R., 2013. Practical methods of optimization. John Wiley Sons.

Summary 32/33

References, gradient-free

- **▶** Back, T., 1996. Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford university press.
- ➤ Kennedy, J., 2011. Particle swarm optimization. In Encyclopedia of machine learning (pp. 760-766). Springer US.
- Wierstra, D., Schaul, T., Glasmachers, T., Sun, Y., Peters, J. and Schmidhuber, J., 2014. Natural evolution strategies. Journal of Machine Learning Research, 15(1), pp.949-980.
- ▶ Snoek, J., Larochelle, H. and Adams, R.P., 2012. Practical bayesian optimization of machine learning algorithms. In Advances in neural information processing systems (pp. 2951-2959).

Summary 33/33