

JAN 09, 2023

OPEN ACCESS

DOI:

dx.doi.org/10.17504/protocol s.io.kxygxp81zl8j/v1

Protocol Citation: Jennifer H Wisecaver, Raeya Ogas, Pax Tomko, Gregory Gavelis 2023. Wisecaver Lab CTAB-based extraction of high molecular weight DNA from photosynthetic sea slugs.

protocols.io

https://dx.doi.org/10.17504/protocols.io.kxygxp81zl8j/v1

License: This is an open access protocol distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: Jul 15, 2021

Last Modified: Jan 09, 2023

PROTOCOL integer ID: 51580

Wisecaver Lab CTAB-based extraction of high molecular weight DNA from photosynthetic sea slugs

Jennifer H Wisecaver¹, Raeya Ogas¹, Pax Tomko¹, Gregory Gavelis²

¹Purdue University; ²Purdue University, Bigelow Laboratory for Ocean Sciences

Wisecaver Lab

Jennifer H Wisecaver Purdue University

ABSTRACT

Protocol for CTAB-based extraction of high molecular weight DNA from photosynthetic sea slugs. This protocol is optimized for samples with high mucopolysaccharide contents and is derived from:

Extraction of high molecular weight DNA from molluscs. 1993. Trends in Genetics. Vol 9: pg 407 https://doi.org/10.1016/0168-9525(93)90102-N.

MATERIALS

Required sterile tools and disposables:

- 5 mL and 1.5 ml LoBind microcentrifuge tubes
- Mortar & Pestle
- Scalpel, if performing slug dissection
- Magnetic stand for Ampure beads
- Wide-bore pipette tips
- Water bath

Other required solutions/chemicals:

- TrisHCL pH 8
- NaCL
- Beta-mercaptoethanol
- EDTA
- proteinase K
- Chloroform:Isoamyl alcohol (24:1)
- Phenol:Chloroform:Isoamyl alcohol (25:24:21)
- Isopropanol
- 100% Ethanol
- RNaseA (100 mg/mL)
- TE buffer
- Ampure Beads

SAFETY WARNINGS

① At steps involving beta-mercaptoethanol and chloroform (**carcinogens**) should be performed in the chemical fume hood.

Prepare CTAB DNA extraction buffer

- 1 Prepare 4 100 mL CTAB buffer:
 - 🗸 100 mL Ultrapure distilled water
 - <u>A 1.576 g</u> TrisHCL ph 8 (100 mM)
 - <u>A</u> 0.584 g EDTA (20 mM)
 - A 8.82 g NaCl (1.4 M)
 - 🚨 10 mg Proteinase K (0.1 mg/mL)

Note: This stock buffer is sufficient for 9-10 extractions.

Safety information

BME is a carcinogen.

ALL steps containing BME should be performed in the chemical fume hood.

All BME liquid waste should be ejected or decanted into the amber bottle labeled 'BME Waste' inside the fume hood. Any plasticware that comes into contact with BME needs to be properly disposed of in the sharps bin inside the fume hood labeled 'Mutagen/Carcinogen Sharps Do Not Autoclave'.

3 Use a water bath to preheat CTAB+BME buffer at \$\ 60 \cdot C \ in a water bath.

Prepare equipment and reagents

- 4 On the day of the of extraction:
 - Chill centrifuge to 4 °C
 - Get liquid nitrogen
 - Chill mortar and pestle in the -20 °C freezer

- Bring Ampure beads to room temperature (~ 👢 20 °C
- Prepare 🗸 5 mL of 70% Ethanol

Prepare slug sample(s)

Decide if performing DNA extraction using whole slugs or dissected tissue. Step 5 includes a Step case.

Dissection of brain tissue Frozen slugs

step case

Dissection of brain tissue

Dissections must be performed using living slugs (i.e., not slugs that were previously frozen). Euthanize slugs by cutting of their head. Dissect the head and remove the brain (light colored tissue that does not contain any plastids). This minimizes contamination by gut contents.

6 Use mortar + pestle + liquid nitrogen to grind the sample(s), either whole/partial slug or dissected brain tissue) to a powder

Remove mucopolysaccharides

- 7 Transfer pulverized sample to a 50 mL centrifuge tube with A 10 mL preheated CTAB+BME buffer
- 8 Incubate at \$ 60 °C for \$ 00:30:00

30m

9 Add 🗸 10 mL of chloroform:isoamyalcohol. Mix well.

Safety information

Chloroform is a carcinogen.

ALL steps containing Chloroform should be performed in the chemical fume hood.

All Chloroform liquid waste should be ejected or decanted into the amber bottle labeled 'Phenol:Chloroform Waste' inside the fume hood. Any plasticware that comes into contact with Chloroform needs to be properly disposed of in the sharps bin inside the fume hood labeled 'Mutagen/Carcinogen Sharps Do Not Autoclave'.

10 Centrifuge at 3 7700 x g for 5 00:10:00

10m

Transfer A 2.5 mL aqueous phase to a 5 mL lo-bind microcentrifuge tube.

Precipitate nucleic acids

Add 2/3 volume (🗸 1.7 mL) isopropanol and gently invert tube for 🚫 00:05:00 at room temperature.

5m

- Centrifuge for Δ 0 mL at 3 10000 x g . Discard th supernatant.
- Add \perp 300 μ L of 70% ethanol to the DNA pellet. Use a pipette tip to dislodge the pellet from the wall of the microcentrifuge tube.
- Centrifuge for $\textcircled{5}\ 00:05:00$ at $\textcircled{3}\ 10000\ x\ g$. Discard the supernatant.

5m

- Use a pipette to remove the remainder of teh supernatant from the tube. Be careful not to disrupt the pellet.
- Gently lay the tube on its side on a sterile work surface with the cap open. Allow the tube to air dry in this position for \bigcirc 00:10:00

_10m

Degrade RNA and extract DNA

- Resuspend the pellet in $\ \underline{\ \ }\ \ 120\ \mu L$ of TE buffer.
- Add DNAase-free RNase A to a final concentration of 1 ug/mL. Incubate at \$\ 37 \cdot \ 00:30:00

30m

20 Add 🗸 120 µL phenol:chloroform:isoamylalcohol.

Safety information

Chloroform is a carcinogen.

ALL steps containing Chloroform should be performed in the chemical fume hood.

All Chloroform liquid waste should be ejected or decanted into the amber bottle labeled 'Phenol:Chloroform Waste' inside the fume hood. Any plasticware that comes into contact with Chloroform needs to be properly disposed of in the sharps bin inside the fume hood labeled 'Mutagen/Carcinogen Sharps Do Not Autoclave'.

Centrifuge for \bigcirc 00:10:00 at \bigcirc 10000 x g . Transfer \triangle 60 μ L of the aqueous phase to a clean 1.5 mL lo-bind microcentrifuge tube. Discard the remainder.

10m

Safety information

This is the last supernatant and plastic waste that needs to be disposed of in the phenol:chloroform or BME waste containers. All waste in the remaining steps can go in the standard lab 'look-alike' waste bin.

Bead-purify DNA

Resuspend the ampure beads by quickly vortexing. Add \perp 108 μ L ampure bead solution to the aqueous phase sample. Mix gently by pipetting up and down 10 times using a wide-bore pipette tip.

23 Incubate at room temperature (\$\ 20 \cdot \cdot \) for $\cdot \cdot \cdot 00:05:00$

24 Place tube in the magnetic stand until the solution becomes clear (approx. 00:02:00).

2m

- 25 With the tube still in the magnetic stand, carefully discard the clear supernatant
- 26 Keeping the tube in the magnetic stand, add \perp 200 μ L of 70% ethanol. Incubate for \bigcirc 00:00:30 . Gently remove the clear supernatant, being careful not to disturb the beads.

- Repeat this wash step three times.
- 27 Ensure that the ethanol is completely removed and leave the tube top open to dry for 00:05:00. Do not 'overdry' (i.e., to the point that the bead streak is cracking)

5m

- 28 Remove the tube from the magnetic stand. Add \perp 60 μ L TE to dissolve the DNA.
- 29 Mix gently by pipetting up and down 10 times using a wide-bore pipette tip.
- 30 Incubate at room temperature (\$\ 20 \circ\$) for \(\frac{1}{20} \) 00:05:00

31 Place tube in the magnetic stand until the solution becomes clear (approx. (5) 00:01:00).

32 Transfer the clear DNA suspension to a new tube. Discard the old tube with the beads.

QC and cleanup

- Make sure all chloroform waste is properly disposed of in the chemical fume hood. Wipe down the chemical fume hood and the benchtop with 70-75% ethanol.
- Assess DNA integrity using the TapeStation. Make sure you reserve time on the TapeStation Teams calendar.
- While the TapeStation is running, measure the DNA concentration using the Qubit.
- If the TapeStation reports a high DNA integrity (DIN) score (\geq 7) and DNA concentration \geq 20 ng/uL, then you have successfully isolated DNA for whole genome sequencing!

Cap your sample tube tightly. Make sure each tube is labeled on the cap and vertically on the side with the sample's unique identifier*. Wrap the cap with parafilm and place sample in the 'Novogene' box in the full sized -20 freezer.

*The identifier should start with a letter and be no more than 12 characters long. Write it carefully using a fine tip permanent marker as this tube will be shipped off for DNA sequencing.