РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук Кафедра прикладной информатики и теории вероятностей

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 2

Расчёт сети Fast Ethernet

дисциплина: Сетевые технологии

Студент: Саргсян Арам Грачьяевич

Группа: НПИбд 02-20

МОСКВА

2022 г.

ЦЕЛЬ РАБОТЫ:

Цель данной работы— изучение принципов технологий Ethernet и Fast Ethernet и практическое освоение методик оценки работоспособности сети, построенной на базе технологии Fast Ethernet.

ХОД РАБОТЫ

1. Для расчёта работоспособности сети Fast Ethernet по первой модели я перенес данные длины всех сегментов в таблицу Excel.

Nº	s1	52	53	54	s5	s6
	1 96	92	80		97	97
	95	85	85	90	90	98
	60	95	10		90	100
	70	65	10	4	90	80
	60	95	10		90	100
	70	98	10		70	100

Рис. 1

2. Я изучил топологию сети и длины сегментов, поняв, что в каждом случае диаметром домена коллизий будет считаться сумма длин наибольшего из первых трех сегментов, четвертого сегмента, и наибольшего из пятого и шестого сегмента. После просчитал каждую из них. (Рис. 2)

Первая модель							
Nº	Диаметр домена коллизий		Yzen 1	11111111111	Yaen3	Yaen4	Y3415
	10,1100	198					
		283		Cormert2	Щ		
		200	STATE OF THE PARTY OF		ST.	BETTER	-
112	1	164	Corweirt	Internation	Сегмент3	Cerwents (managing C	erweur!
	i e	210			- Southern		
	,	207		Повторитель	E	Повторитель	
				knacca II		en acca II	

Рис. 2

3. Предельно допустимый диаметр домена коллизий у нас равен 205 метров, так как у нас имеются 2 повторителя класса II, а также все сегменты типа ТХ. Следовательно, рабочими сетями будут варианты с меньшим диаметром домена коллизий. В итоге получается, что правилам первой модели удовлетворяют варианты № 1, 3 и 4. (Рис. 3)

Первая модель		
Nº	Диаметр домена коллизий	Работаспособность
1	198	Удовлетворяет правилам первой модели.
2	283	Не удовлетворяет правилам первой модели.
3	200	Удовлетворяет правилам первой модели.
4	164	Удовлетворяет правилам первой модели.
5	210	Не удовлетворяет правилам первой модели.
6	207	Не удовлетворяет правилам первой модели.

4. Посчитаем работоспособность по второй модели. Нужно посчитать время двойного оборота. Расчёт выполняется путём суммирования временных задержек в сегментах, повторителях и терминалах. Также не забываем про 4 страховых би. Полученный результат не должен превышать 512 би. Так как топология у нас одна, то суммирования временных задержек в повторителях и терминалах у нас будет одинаковой. Учитываем, что у нас Витая пара 5 с удельным временем двойного оборота 1,112 би/м. (рис. 4)

No.	Длина худшей сети	би	Работаспо	особность
	1	198	508,176 Удовлетв	оряет правилам второй модели
	2	283	602,696 Не удовле	творяет правилам первой модели
	3	200	510,4 Удовлетв	оряет правилам второй модели
	4	164	470,368 Удовлетв	оряет правилам второй модели
	5	210	521,52 Не удовле	творяет правилам первой модели
	6	207	518,184 Не удовле	творяет правилам первой модели

Рис. 4

 Сравниваем 2 модели и убеждаемся, что они совпадают. В обеих моделях работоспособны сети № 1,3 и 4.

ВЫВОД

Я изучил основные принципы технологии Ethernet и Fast Ethernet, и разобрался с двумя способами оценок работоспособности сети.