2

2

2

2

2

Full Name:

- 1. **CIRCLE** the correct option (only one) in each of the following. In problems (a)-(c), 'lub' stands for least upper bound and 'glb' stands for greatest lower bound.
 - (a) Let M = lub of a nonempty bounded subset S of \mathbb{R} . Then M is also equal to
 - A. the *glb* of the set of all lower bounds (in \mathbb{R}) of *S*.
 - B. the *lub* of the set of all lower bounds (in \mathbb{R}) of *S*.
 - C. the *glb* of the set of all upper bounds (in \mathbb{R}) of *S*.
 - D. the *lub* of the set of all upper bounds (in \mathbb{R}) of *S*.
 - (b) Consider the following four intervals where a < b are both fixed real numbers:

Which of the following is true about the upper and lower bounds of these intervals?

- A. The glb for the intervals [a,b) and [a,b], while same to each other, differs from the glb of the intervals (a,b] and (a,b), which in turn are the same. Similarly, The lub for the intervals (a,b] and [a,b], while same to each other, differs from the lub of the intervals [a,b) and (a,b), which in turn are same.
- B. The intervals [a, b] and [a, b) have a glb and the intervals (a, b] and (a, b) do not. Further, the intervals [a, b] and (a, b] have a lub, and the intervals [a, b) and (a, b) do not.
- C. [a, b] is the only interval among the four intervals that has a glb and a lub.
- D. All of them have the same lub and glb.
- (c) Suppose *S* is a nonempty bounded subset of \mathbb{R} . Denote by -S the set $\{-s \mid s \in S\}$. Which of the following is true about *S*?

A.
$$lub(-S) = lub(S)$$
 and $glb(-S) = glb(S)$

B.
$$lub(-S) = glb(S)$$
 and $glb(-S) = lub(S)$

C.
$$lub(-S) = -lub(S)$$
 and $glb(-S) = -glb(S)$

D.
$$lub(-S) = -glb(S)$$
 and $glb(-S) = -lub(S)$

(d) If $\tan \theta = -\frac{4}{3}$, then $\sin \theta$ can be

A.
$$-4/5$$
 but not $4/5$

B.
$$4/5$$
 but not $-4/5$

C. either
$$-4/5$$
 or $4/5$

(e)
$$\tan\left(\frac{30\pi}{4} + \theta\right) =$$

A.
$$\tan \theta$$

B.
$$-\tan\theta$$

C.
$$\cot \theta$$

D.
$$-\cot\theta$$

- 2. Suppose *x* is a real number such that $\cos x + \sin x = \sqrt{2}\cos x$. Prove that $\cos x \sin x = \sqrt{2}\sin x$.
- 10

10

- 3. Suppose the equation $(5x^2 4x + 2) + m(4x^2 2x 1) = 0$ has no solution. Find all possible values of m.
 - 5 (bonus)
- 4. In a Geometric Progression, the $(m+n)^{th}$ term is p and the $(m-n)^{th}$ term is q. Show that its m^{th} term is \sqrt{pq} .