Method of Moments and MLE

Matthew Seguin

1.

Let
$$X_1, X_2, ..., X_n \stackrel{iid}{\sim} F$$
 with density $f(x|\theta) = \theta x^{-2}$ for $0 < \theta \le x < \infty$

a.

$$L(\theta) = f(X_1, X_2, ..., X_n | \theta) = \prod_{i=1}^n f(X_i | \theta) = \prod_{i=1}^n \theta X_i^{-2} = \theta^n \left(\prod_{i=1}^n X_i\right)^{-2}$$

$$l(\theta) = \log(L(\theta)) = \log\left(\theta^n \left(\prod_{i=1}^n X_i\right)^{-2}\right) = n\log\theta - 2\sum_{i=1}^n \log X_i$$

 $\frac{\partial l(\theta)}{\partial \theta} = \frac{n}{\theta}$ which is monotonically decreasing in $\theta.$

Therefore our estimate for θ should be as small as possible with respect to our data.

So the MLE is
$$\hat{\theta}_n = min\{X_1, X_2, ..., X_n\}$$

b.

First we will calculate $\mathbb{E}[X]$:

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \, f(x|\theta) \, dx = \int_{\theta}^{\infty} \theta x^{-1} \, dx = \theta \log|x| \Big|_{\theta}^{\infty} = \theta \lim_{x \to \infty} \log|x| - \theta \log|\theta| = \infty$$

So $\mathbb{E}[X]$ does not converge and hence we can not use $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ for our MOM estimate.

Doing so would introduce the equation $\bar{X} = \mathbb{E}[X] = \infty$ which will not be true for any sample, we need the first moment to converge and be a function with θ present in order to use the first sample moment in our MOM estimate.

c.

Let
$$g(X) = X^{1/2}$$
 then let $\overline{X^{1/2}} = \sum_{i=1}^{n} X_i^{1/2}$

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) \, f(x|\theta) \, dx = \int_{\theta}^{\infty} \theta x^{-3/2} \, dx = -2\theta x^{-1/2} \Big|_{\theta}^{\infty} = -2\theta \lim_{x \to \infty} \frac{1}{x^{1/2}} + 2\theta \frac{1}{\theta^{1/2}} = 0 + 2\theta^{1/2} = 2\theta^{1/2}$$

Then we solve
$$\overline{X^{1/2}}=\mathbb{E}[g(X)]=2\theta^{1/2}$$
 to get us our MOM estimate is $\tilde{\theta}_n=\frac{1}{4}\Big(\overline{X^{1/2}}\Big)^2$

Let
$$\theta > 0$$
 then let $X_1, X_2, ..., X_n \stackrel{iid}{\sim} N(\theta, \theta)$.

$$L(\theta) = f(X_1, X_2, ..., X_n | \theta) = \prod_{i=1}^n f(X_i | \theta) = \prod_{i=1}^n \theta X_i^{-2} = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\theta}} e^{-\frac{1}{2\theta}(X_i - \theta)^2}$$

$$l(\theta) = log(L(\theta)) = log\left(\prod_{i=1}^n \frac{1}{\sqrt{2\pi\theta}} e^{-\frac{1}{2\theta}(X_i - \theta)^2}\right) = \sum_{i=1}^n log\left(\frac{1}{\sqrt{2\pi\theta}}\right) - \frac{1}{2\theta}(X_i - \theta)^2 = -n \log\left(\sqrt{2\pi\theta}\right) - \sum_{i=1}^n \frac{1}{2\theta}(X_i - \theta)^2$$

$$= -n \log\left(\sqrt{2\pi\theta}\right) - \sum_{i=1}^n \frac{1}{2\theta}(X_i^2 - 2X_i\theta + \theta^2) = -n \log\left(\sqrt{2\pi\theta}\right) - \sum_{i=1}^n \frac{X_i^2}{2\theta} - X_i + \frac{\theta}{2}$$

$$= -n \log\left(\sqrt{2\pi\theta}\right) - \frac{n\theta}{2} - \frac{1}{2\theta}\left(\sum_{i=1}^n X_i^2\right) + \left(\sum_{i=1}^n X_i\right)$$

$$\begin{split} \frac{\partial l(\theta)}{\partial \theta} &= -n \frac{\partial}{\partial \theta} log \left(\sqrt{2\pi\theta} \right) - \frac{n}{2} \frac{\partial}{\partial \theta} \theta - \left(\sum_{i=1}^{n} X_i^2 \right) \frac{\partial}{\partial \theta} \frac{1}{2\theta} = -n \left(\frac{1}{\sqrt{2\pi\theta}} \right) \left(\frac{\sqrt{2\pi}}{2\sqrt{\theta}} \right) - \frac{n}{2} + \frac{1}{2\theta^2} \sum_{i=1}^{n} X_i^2 \\ &= -\frac{n}{2\theta} - \frac{n}{2} + \frac{1}{2\theta^2} \sum_{i=1}^{n} X_i^2 \end{split}$$

Then:

Then we know the MLE will be at a critical point of $l(\theta)$ and hence we can set $\frac{\partial l(\theta)}{\partial \theta} = 0$:

$$\frac{\partial l(\theta)}{\partial \theta} = -\frac{n}{2\theta} - \frac{n}{2} + \frac{1}{2\theta^2} \sum_{i=1}^{n} X_i^2 = 0$$

Then multiplying both sides by $-\frac{2\theta^2}{n}$ implies:

$$\theta^2 + \theta - \frac{1}{n} \sum_{i=1}^{n} X_i^2 = 0$$

Which demonstrates that the MLE is a root of $\theta^2 + \theta - W$ where $W = \bar{X}_n^2 = \frac{1}{n} \sum_{i=1}^n X_i^2$ as desired.

The roots of this polynomial are:

$$\theta = \frac{-1 \pm \sqrt{1 + 4W}}{2}$$

To find which is the MLE we can use the fact that we know $\theta > 0$:

Since $\frac{-1-\sqrt{1+4W}}{2} < 0$ we know this can't be the MLE.

However, we know $\sqrt{1+4W} > 1$ since $W = \bar{X}_n^2 > 0$.

Therefore the MLE is
$$\hat{\theta}_n = \frac{-1 + \sqrt{1 + 4W}}{2} = \frac{-1 + \sqrt{1 + 4\bar{X}_n^2}}{2} = \frac{-1 + \sqrt{1 + \frac{4}{n}\sum_{i=1}^n X_i^2}}{2}$$