

SysML Implemented

Sofía Orte Lorenzo Tarabini Castellani

SysML Implemented

INDEX

- 1. MBSE Pillars
- 2. IBM Rhapsody
- 3. Modelling Guidelines
- 4. SysML Diagrams
- 5. Demo
- 6. Conclusions

1. MBSE Pillars

1. MBSE Pillars

LANGUAGES

Define the kinds of elements and relationships allowed to put into the model

- Systems Modeling Language (SysML)
- UML
- UPDM
- MARTE
- SoaML

TOOLS (Vendors)

Enable to construct models in the modelling languages

- Cameo Systems Modeler (NoMagic™)
- Rhapsody (IBM®)
- Enterprise Architect (Sparx Systems®)
- Integrity Modeler (PTC®)
- Modelio (Softeam™)

METHODOLOGIES

Set of guidelines and rules to create a system model consistency

- Object-Oriented SE Method (INCOSE)
- Telelogic Harmony SE (IBM)
- Custom for E.T.PACK needs

2. IBM Rhapsody

The IBM Engineering Systems Design Rhapsody for Software and Systems Engineering.

Main features (full edition):

- SysML (or other languages) modeling
- Document generation
- Simulation internal engine
- Automatic code generation
- Integration with DOORS (req management)
- integration with MATLAB Simulink (design verification)
- Integration with EWM (change management)

2. IBM Rhapsody

General View

3. Modelling Guidelines

3. Modelling Guidelines Model vs View

1 model with infinite views (diagrams and text artifacts), where changes made in the model are automatically propagated to all the views -> Consistency

Each view displays exclusively the relevant information for that representation, and not all the information included within the element → Readability

The view of an element is not the element, just a representation of it.

MODEL ELEMENT

VIEWS OF THE ELEMENT

3. Modelling Guidelines Standarization

- Elements should include a brief description
- Naming convention:
 - Do not use spaces nor underscore
 - Start with small letter and separate words with capital letter
 - Use short but precise names
 - Additional convention for each element type
- Color code for each diagram
- ESA profile (to tailor SysML)

3. Modelling Guidelines SysML ETPACK Training Activities

SysML Training 1: Getting Started with SysML

- Theory 2021-Feb-22 (4h)
- Practice 2021-Feb-22 (4h)

SysML Training 2: ESA Profile & ETPACK Model

• 2021-May-11 (4h)

SysML Training 3: Collaborative Development Environment

• 2021-October-TBC (4h)

delivered material

ETPACK-SEN-SysML-0001 Practice

ETPACK-SEN-SysML-0003 Training-Session-II

ETPACK-SEN-TN-0005 Design Approach with Rhapsody

ETPACK-SEN-TN-0007 SysML ESA Profile Installation And Customizations

ETPACK-SEN-SW-0001 ESAprofile

ETPACK-SEN-SW-0002 ETPACKv1

ETPACK-SEN-SW-0002 ETPACKv3

ETPACK-SEN-TN-0009 Collaborative Development Environment

4. SysML Diagrams

Every system can be graphically described using only 9 diagrams!

Requirement Diagram:

"Set of requirements (necessity imposed on the future system by the end user) and their relationships to other elements".

Use Case Diagram:

"Set of services the system provides under request of an external actor."

Activity Diagram:

"Flow of actions, behaviours and event occurrences over time"

4. SysML Diagrams Block Definition Diagram

Block Definition Diagram:

"System decomposition, displaying the structural relationships between them" Elements populated with Properties (mass, cost, power, etc)

4. SysML Diagrams Internal Block Diagram

Internal Block Diagram:

"Internal structure of a system, representing the connections and interfaces between the internal parts of it"

Sequence Diagram:

"Time ordered interactions and messages enchange between elements in the model"

Statechart:

"States of the system and transitions between states in response to event occurrences"

Parametric Diagram:

"Define mathematical expressions as constrains to perform evaluation with an external tool"

Package Diagram:

"Represent the model organization in cohesive groups"

5. Demo

5. DemoLive Demonstration

3.2.1 entering the "Rhapsody" ...

6. Conclusions

6. Conclusions MBSE Approach

This presentation is focused on the SysML language and the IBM Rhapsody tool.

It provides a set of guidelines to start modeling following the MBSE approach

It goes through each of the 9 diagrams and their different elements and relationships among them. To do so, it describes the E.T.PACK project using IBM Rhapsody.

THANK YOU

www.aeroespacial.sener

in www.linkedin.com/company/sener

www.youtube.com/user/senerengineering