МИНИСТЕРСТВО ЦИФРОВОГО РАЗВИТИЯ, СВЯЗИ И МАССОВЫХ КОММУНИКАЦИЙ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ ИМ. ПРОФ. М. А. БОНЧ-БРУЕВИЧА» (СПБГУТ)

ОТЧЁТ ЛАБОРАТОРНАЯ РАБОТА №4

Циклические вычислительные процессы. Вычисления по рекуррентным формулам

Руководитель,		
старший преподаватель		Помогалова А. В.
	подпись, дата	
Исполнитель, группа ИКПИ-33		Коньков М. Д.
TPJIIIW TITCHITI 33	полпись, дата	renakea ivi. A.

УСЛОВИЯ РАБОТЫ

Вариант № 12: Создать программу по вычислению значений функций у и z:

Номер варианта	Функция	Рабочий набор	
		n	x
12	$y = 4x + \frac{2}{3} \sum_{k=1}^{n} \frac{1}{(2k-1)9^{k-1}}$	15	0,4

Общая формулировка:

Решить задачу вычисления значений рекуррентной функции, содержащей сумму или (и) произведение.

1 Общие алгоритм решения

Решаемая задача относится к категории задач формульного счета. Для нахождения переменной результата у необходимо пройти несколько итераций операции суммы и получить ответ. Это называется рекуррентной функцией.

В программе должен быть предусмотрен ввод исходных данных, к которым относятся переменные x, n; вычисления величин y, summ; вывод результатов вычислений (вывод значений величин y и summ).

1.1 Общий алгоритм решения

N	Обозначение в задаче	Идентификатор	Назначение
1	y	y	Результат
2	x	X	Исходные
			данные
3	\sum	summ	Промежуточная
			величина
4	n	n	Исходные
5	count	count	данные

1.2 Тестирование

Для тестирования программы выбираем контрольный набор исходных данных: $x=0.4,\ n=15$

Переменная	X	n	У
Рабочий набор	0.4	15	1.626481
Контрольный	0.5	10	2.026480
набор			

ПРИЛОЖЕНИЕ А ЛИСТИНГ ПРОГРАММЫ LABA4.C (C)

```
#include <stdio.h>
#include <math.h>
int main(){
    int n, k = 1, i, again, count = 1;
    float x, y, summ;
    while(1){
        printf("\033[0d\033[2J");
        // Entering variables and checking
        printf("Enter x: \n");
        scanf("%f", &x);
        printf("Enter n (more than 1): \n");
        scanf("%d", &n);
        if (n < 2){
            printf("Invalid value. Please, try again \n");
            continue;
        summ = 1 / ((2 * k - 1) * pow(9, k - 1));
        printf("Result of summ: \n");
        printf("%d. %f\n", count, summ);
        for (k = 2; k <= n; k++){}
            summ = summ + (1 / ((2 * k - 1) * pow(9, k-1)));
            count += 1;
            printf("%d. %f\n", count, summ);
        y = 4 * x + (2.0 / 3.0) * summ;
        printf("y = %f\n", y);
        // Checking for repeat
        printf("\nDo you want to try again? (1 - yes / 0 - no)\n");
        scanf("%d", &again);
        if (again == 1){
            continue;
            return 0;
    return 0;
```

приложение Б

РЕЗУЛЬТАТ РАБОТЫ ПРОГРАММЫ LABA4.С (С)

```
Enter x:
0.4
Enter n (more than 1):
Result of summ:
1. 1.000000
2. 1.037037
3. 1.039506
4. 1.039702
5. 1.039719
6. 1.039721
7. 1.039721
8. 1.039721
9. 1.039721
10. 1.039721
11. 1.039721
12. 1.039721
13. 1.039721
14. 1.039721
15. 1.039721
y = 2.293147
Do you want to try again? (1 - yes / 0 - no)
```

```
Enter x:
0.5
Enter n (more than 1):
Result of summ:
1. 1.000000
2. 1.037037
3. 1.039506
4. 1.039702
5. 1.039719
6. 1.039721
7. 1.039721
8. 1.039721
9. 1.039721
10. 1.039721
y = 2.693147
Do you want to try again? (1 - yes / 0 - no)
```