Optimizing IoT Data Collection for Federated Learning Under Constraint of Wireless Bandwidth

竹本志恩

April 18, 2025

INIAD

目次

1. はじめに

- 2. 動機
- 3. 手法
- 4. 知見
- 5. 他

書誌情報

- 題名
 - Optimizing IoT Data Collection for Federated Learning Under Constraint of Wireless Bandwidth
- 発表日
 - 20 August 2024
- 著者
 - Tajiri Kengo, Ryoichi Kawahara
- 論文誌名
 - IEEE

どんな研究?

- loT でのデータ利活用のため
- 帯域幅制約の下で実験を行い
- 提案手法による FL* の精度向上を確認
 - * Federated Learning, 連合学習

目次

- 1. はじめに
- 2. 動機
- 3. 手法
- 4. 知見
- 5. 他

背景

- IoT の普及に伴いデバイスが増加
- 従来のデータ集約・分析が困難に
 - 総データ生成量の増加
 - 利用帯域・計算コストの増加
- Federated Learning に着目
 - 分散機械学習の一手法
 - データを分散し、上記の問題を解決

Federated Learning とは

- 連合学習, FL
 - 分散的に学習する手法の一つ
 - 各サーバはデータを持ち, 学習
 - 学習結果をあるサーバで集約
 - 統合, パラメータサーバが存在
- 大まかな流れ
 - 統合サーバからモデルを配布
 - 各パラメータサーバはローカルデータで学習
 - モデルのパラメータを統合サーバで集約
 - モデルを更新し再配布
 - 一連の流れを繰り返す

FL のイメージ

課題

- IoT デバイス (ID) から基地局 (BS) へのデータ転送
- 想定されるシナリオ
 - 各 BS はサーバと ID を所持
 - BS に ID からデータを送信
 - サーバの持つデータでモデルを学習
- FL の精度
 - サーバの持つデータの量と分布が影響
 - 量と分布は制約の下決めた伝送先に依存
 - ID からどの BS に送信するかが重要
- 帯域幅制約下で FL の精度を向上
 - 制約により送信先が限定
 - その中で最適な BS を決定

再掲

目次

- 1. はじめに
- 2. 動機
- 3. 手法
- 4. 知見
- 5. 他

手法の概要

- やること
 - 帯域制約の下
 - FL の精度を最大化するような
 - 最適化問題を解く
- 解法
 - 遺伝的アルゴリズム
 - ID からどの BS にデータを送信するか決定
- 実験
 - 提案手法とナイーブを比較
 - 数値実験
 - 仮想クラスタでの学習
 - 三種類の機械学習モデルで比較

OFDMA

- 周波数を分割し割当て
- 単一の通信路で複数のやり取りが可能に
- リソースブロック (RB) という単位で管理?
 - データのやり取りに用いるそういう塊がある

問題設定

- ID: $I = \{1, 2, ..., N\}$
- BS: $B = \{1, 2, ..., M\}$
- 単位時間あたりのデータ生成量: λ_i
- 一回の学習におけるデータ収集量: T
- RB: $R = \{1, 2, ..., K\}$

制約条件1-4

- IDがRBを使ってBSにデータを渡すよ, というのを定義
- ID に対して BS は 0 個でもいい
 - 送らない ID の存在を許容
- 伝送時には BS と RB が同じだけ必要
- RB は ID に一つのみ割り当て
 - 送らない場合があるので不等式

$$\sum_{j \in \mathcal{B}} u_{ij} \le 1 \quad \forall i \in \mathcal{I}, \tag{1}$$

$$\sum_{k \in \mathcal{R}} v_{ik} \le 1 \quad \forall i \in \mathcal{I}, \tag{2}$$

$$\sum_{j \in \mathcal{B}} u_{ij} = \sum_{k \in \mathcal{R}} v_{ik} \quad \forall i \in \mathcal{I}.$$
 (3)

$$\sum_{i \in \mathcal{I}} u_{ij} v_{ik} \le 1 \quad \forall j \in \mathcal{B}, \forall k \in \mathcal{R}.$$
 (4)

制約条件5-8

- 無線接続の帯域幅を定義
- 7が単純に ID BS 間の帯域幅
- 式8が基本の帯域幅制約
 - 8は混雑を回避するための制約
 - 7で定めた帯域幅がある伝送路 を通る総データ生成量を以上 なる

$$c_{ij}^k = B\log_2(1 + \gamma_{ij}^k),\tag{7}$$

$$u_{ij}c_{ij}^k \ge u_{ij}v_{ik}\lambda_i \quad \forall i \in \mathcal{I}, \forall j \in \mathcal{B}, \forall k \in \mathcal{R}.$$
 (8)

制約条件 9-18

- 汎化誤差の上界を推定
 - 汎化誤差は未知のデータに対する予測の 誤差
 - 上界は実際の集合より大きな数値のこと?
- 汎化誤差を最小化したい
 - 予測の精度を向上させるのが目的
 - 汎化誤差を最小化する式は 18
 - パラメータは U,VID に対して BS は 0 個でもいい

$$F(U,V) = p(c) \log p(c) - \sum_{j \in \mathcal{B}} \sigma_j \sum_{c \in \mathcal{C}} p(c) \log p_j(c) + \beta \sqrt{\frac{\log |D|}{2|D|}},$$

$$\min_{U,V} (17) \quad \text{s.t.} (1) - (4), (8)$$

$$(18)$$

|実験1数値シミュレーション

• 問題設定

- ID 20,BS 3,RB 5
- ID, BS は 1km の正方形空間にランダム配置
- ID で生成されるデータの量: $\lambda_i=100|1000$ Kbps
- 学習時間の T における総量 50000 データ
- ラベル数は 10
- 各 ID のラベル分布 p_i(C) はランダム
- 生成データ量を変えて実験
- 式 17 の β 依存性も見た
- データの量と分布を確認
- 最適化は 4,8 の制約に従う

 $\sum_{i \in \mathcal{I}} u_{ij} v_{ik} \le 1 \quad \forall j \in \mathcal{B}, \forall k \in \mathcal{R}.$ $u_{ij} c_{ij}^k \ge u_{ij} v_{ik} \lambda_i \quad \forall i \in \mathcal{I}, \forall j \in \mathcal{B}, \forall k \in \mathcal{R}.$

実験1数値シミュレーション

- ナイーブ法
 - ID はランダムに配置
 - 最も近い BS に接続

実験1の結果

- fig2 **の見方**
 - 星が BS
 - 点が ID
 - 同じ色の BS に接続
 - 黒は未接続

実験1の結果

- 図 a,b の比較
 - データ生成量の多寡
 - a は生成量小
 - 制約8での送信先の縛りが緩い
 - b は生成量大
 - 扱うデータ量が増大
 - 制約がより厳しくなる
 - 近い BS に送信することが多い
- 提案手法とナイーブの比較
 - 提案手法は BS に接続した ID の総量が 多い
 - 利用したデータの数が多い
 - KL(p(c) | pj (c)) が小さい?

実験2深層学習モデル 問題設定

- データセット
 - cifar10
 - 画像の 10 クラス分類
 - 全部で5万のデータ
- ID のデータ分布
 - シミュレーションで決まった λ i と pi (c) に従う
 - ランダムに選択?
- 利用したモデル
 - VGG19
 - DenseNet121
 - ResNet152

実験2深層学習モデル 問題設定

- FL を Flower で実装
- FedAVG で集約
- FL の設定
 - 5つのローカルトレーニング
 - 多分五回
 - 50 エポック
 - 一回で50回?
 - 50 回になるよう繰り返した?

実験2結果

- データセット
- 精度の差が出た理由
 - 100 の時
 - 2ポイントほど差があった
 - 制約が緩いため
 - 最良のデータ転送が行えた
 - 量と分布が最適になる転送?
 - データ生成量 1000 の時
 - 精度はほぼ同じ
 - データが増え, 制約が厳しく
- β も KL も最適化で重要
- モデルの構造に依存する?

TABLE II: Results of simulation and actual models accuracy, as proposed optimization 100 1000 1000 1000 10 100 β 10 $\sum_{i\in\mathcal{I},j\in\mathcal{B}}u_{ij}$ 15 13 12 14 1.127×10^{-2} $KL(p(c)||p_j(c))$ 7.724×10^{-3} 6.643×10^{-3} 4.260×1 |D|39015 33189 29565 33585 VGG19 acc 0.8072 ± 0.0006 0.7955 ± 0.0085 0.7813 ± 0.0053 0.7966 ± 0 DenseNet121 acc. 0.8301 ± 0.0015 0.8151 ± 0.0036 0.8051 ± 0.0006 0.8206 ± 0 ResNet152 acc. 0.7423 ± 0.0033 0.7244 ± 0.0064 0.7098 ± 0.0021 0.7232 ± 0

実験2結果

TABLE II: Results of simulation and actual models accuracy. acc. means accuracy.

	proposed optimization				naive method	
$ar{\lambda}$	100	1000	1000	1000	100	1000
β	10	10	1	100		
$\sum_{i\in\mathcal{I},j\in\mathcal{B}}u_{ij}$	15	13	12	14	12	11
$KL(p(c) p_j(c))$	7.724×10^{-3}	1.127×10^{-2}	6.643×10^{-3}	4.260×10^{-2}	5.463×10^{-2}	5.339×10^{-2}
D	39015	33189	29565	33585	30150	29369
VGG19 acc.	0.8072±0.0006	0.7955±0.0085	0.7813±0.0053	0.7966±0.0033	0.7857±0.0012	0.7793±0.0066
DenseNet121 acc.	0.8301±0.0015	0.8151±0.0036	0.8051±0.0006	0.8206±0.0021	0.8099±0.0044	0.8139 ± 0.0069
ResNet152 acc.	0.7423±0.0033	0.7244±0.0064	0.7098 ± 0.0021	0.7232±0.0027	0.7164±0.0050	0.7181 ± 0.0052
	-					

目次

- 1. はじめに
- 2. 動機
- 3. 手法
- 4. 知見

5. 他

得られた結果,知見

- 提案手法はナイーブと比べて精度を改善
 - いずれの実験でも改善された
 - 実験2は平均値で観察
 - 詳細な設定はまだ見ていない
 - データ転送の最適化で FL の精度が向上
 - ID から BS にデータを送信し FL を行うシナリオにおいて
 - 提案手法は制約条件の下, データ量と分布が最適になるようデータを送信
 - データ転送の観点から精度の向上が実現

目次

- 1. はじめに
- 2. 動機
- 3. 手法
- 4. 知見
- 5. 他

分かっていない/気になる点

- 用語など
 - 遺伝的アルゴリズム
 - 最適化の式
- 精度がナイーブより高いことの意味
 - 制約を守った上で精度が高いのが偉い?
 - 帯域幅の制約を守る FL が先??
 - 守った上で精度が出せたのが偉いのか, 精度が出せるのは 当たり前なのか
- 数値シミュレーション
 - 最適化手法は式 17 を小さくするために多数接続
 - BS に接続する ID の数が増えると良いらしい
 - β 依存性の議論

分かっていない/気になる点

- より複雑なモデルでの検証
- ID,BS 間の具体的な通信
- FL について, バッテリー制約も同時に満たせないか
- モデル転送も考慮できないか