

Introdução à Transmissão e Comunicação de Dados

MIEI, 3º ANO, 1º Semestre

Universidade do Minho Grupo de Comunicações por Computador e Redes Departamento de Informática

MIEI-RC Universidade do Minho 0

Comunicação de dados Introdução: noções elementares

- cooperação entre entidades que comunicam entre si para troca de dados
- Noção de protocolo de comunicação
 - conjunto de regras que regem a comunicação entre intervenientes,
 i.e. entre entidades ao mesmo nível funcional
 - uma entidade é uma abstração de um ou mais processos computacionais
 - as regras ou funções protocolares são implementadas pelas entidades de uma camada ou nível protocolar
 - as funções protocolares são variadas e têm âmbitos ou contextos distintos, e.g. endereçamento

Funções gerais dos protocolos: exemplos

- geração de sinais
- definição interfaces
- sincronização
- formatação dados
- endereçamento
- detecção de erros
- correcção de erros
- controlo de fluxo

- formatação de msgs
- encaminhamento msgs
- transporte de msgs
- verificação de msgs
- recuperação de msgs
- independência dados
- privacidade/segurança
- gestão da comunicação

MIEI-RC Universidade do Minho

Comunicação de dados Introdução: noções elementares

- Noção de organização protocolar
 - agrupamento e estruturação de tarefas em níveis ou camadas funcionais, hierárquicas, com funções independentes e bem definidas -> constituição de uma <u>pilha de protocolos</u>
- Noção de serviço de comunicação
 - o resultado das tarefas executadas pela camada protocolar N para realização da função da camada superior (N+1), podendo envolver o recurso a serviços da camada N-1
 - cada camada protocolar oferece um serviço à camada superior e solicita um serviço à camada inferior através de primitivas específicas

conceitos gerais

- WAN, MAN, LAN, PAN, BAN
 - designação depende da área geográfica coberta
 - WAN (wide area networks): área alargada, acima das dezenas de kilómetros
 - MAN (metropolitan area networks): cobertura de uma área metropolitana, até poucas dezenas de kilómetros
 - LAN (local areas networks): área local, até poucas centenas ou dezenas de metros
 - PAN (personal area networks): área pessoal, até poucos metros
 - BAN (body area networks): até cerca de um metro
 - condicionam o tipo de protocolos e tecnologias a usar

MIEI-RC Universidade do Minho 1

Redes de Computadores

- WAN, MAN, LAN, PAN, BAN: exemplos de tecnologias
 - WANs: Metro/Carrier Ethernet (IEEE 802.1), (Ethernet over) MPLS, ATM
 - MANs: WiMAX (IEEE 802.16); DQDB (IEEE 802.6); MPLS
 - LANs: Ethernet (IEEE 802.3); Wi-Fi (IEEE 802.11)
 - PANs: Infravermelhos, Bluetooth (IEEE 802.15), Wi-Fi
 - BANs: ZigBee, IEEE 802.15.4

Objectivo das LANs

- Acesso e partilha de recursos locais:
 - servidores, equipamentos especializados, etc.
- Comunicação para cooperação entre processos
 - computação distribuída
- Acesso a redes alargadas (WAN ou MAN)
 - interface partilhada para ligação a redes externas, e.g. Internet
 - e.g. UMinho (desde 2013) acesso com ligação a 10Gbps

MIEI-RC

Universidade do Minho

15

Redes Locais de Computadores Universidade do Minho

Características das LANs

- Elevadas velocidades de transmissão
 - mega (10⁶), giga (10⁹) bps ...
- Protocolo de controlo de acesso ao meio (MAC)
 - específico da tecnologia; acesso garantido ou em contencioso
- Utilização dos recursos
 - baixo factor de utilização conduz a melhor desempenho
- Desempenho "aceitável" para tráfego distincto
 - tempo real, transacional, regular, etc...
- Acesso democrático oferecido a todos os sistemas
- Fácil instalação, configuração e interligação

Universidade do Minho

16

· nem sempre.. · tendência para

diferenciação e priorização de tráfego

Características das LANs

- Utilização generalizada:
 - permitem a interligação de um elevado número de sistemas terminais (computadores, sistemas de voz e vídeo) em áreas limitadas
 - topologias mais frequentes:
 - barramento, anel, estrela e árvore, malha

características?

- em geral, constituem redes privadas
- Tecnologia normalizada e de baixo custo (normas IEEE 802)
- Elementos de uma rede:
 - estações possuem interfaces de rede [NIC, Network Interface Cards]
 - rede possui equipamentos de interligação
 - repetidores, bridges, switches, routers, etc.

diferenças?

· equipamento interligado por cablagem ou meio sem fios.

MIEI-RC Universidade do Minho 17

Redes Locais de Computadores

Equipamentos de Interligação: Repetidor ou HUB

- Repetidor
 - opera ao nível físico (OSI), equipamento passivo
 - não interpreta as tramas
 - monitorização contínua de sinais e sua regeneração
 - repete tudo o que "ouve"
 - permite cobrir maiores distâncias
 - permite maior flexibilidade no desenho da rede
 - usado LANs, MANs, WANs

Ex. HUB Ethernet

MIEI-RC

Universidade do Minho

Redes Locais de Computadores

Equipamentos de Interligação: Bridge

Bridge

- opera ao nível da ligação lógica (OSI)
- ligação por interface de rede; tem endereço físico
- interpreta o formato das tramas; faz aprendizagem
- permite isolar tráfego
- divide o domínio de colisão
- configuração transparente
- em configuração multipla, evita ciclos infinitos (Algoritmo Spanning Tree)

Processo de Aprendizagem em **bridging transparente**

[CNI,Comer98]

MIEI-RC Universidade do Minho 1

Redes Locais de Computadores

Equipamentos de Interligação: Switch

- Switch
 - mais de 2 interfaces
 - capacidade aprendizagem como as *bridges*
 - permite paralelismo
 - requer *buffering* adequado
 - reduz carga na rede
 - aumenta desempenho
 - pode validar endereços MAC
 - permite criar LANs virtuais
 - usado em LAN, MAN e WAN

MIEI-RC

Universidade do Minho

Tópicos de estudo

Abordagem Bottom-Up:

- Nível Físico
 - Transmissão vs comunicação de dados
- Nível Lógico
 - Protocolos de ligação de dados
 - Controlo de fluxo e controlo de erros
 - Destaque nas redes locais de computadores para o protocolo Ethernet e suas variantes
- Nível de Rede
 - Interligação de redes
 - Destaque para as redes IP

MIEI-RC Universidade do Minho

Transmissão de dados

Meios de transmissão

- Efeitos indesejáveis
 - atenuação
 - distorção [ruído, interferência interna (cross-talk) e externa]
 Os sinais a transmitir são atenuados ou corrompidos nos meios de transmissão [erros nos dados]
- A atenuação e/ou distorção são influenciadas por:
 - distância entre o transmissor e o receptor; alta temperatura
 - ritmo de transmissão (bps)
 - tipo de meio de transmissão
- Tipos de meios:
 - não guiados: atmosfera, água do mar... (propagação omnidireccional vs. direccional)
 - guiados: par entrançado (xTP), cabo coaxial, fibra óptica

MIEI-RC Universidade do Minho 26

Transmissão de dados

Meios de transmissão não guiados

- Propagação omnidireccional vs. direccional
- Principais aplicações:
 - radio FM, VHF e parte de UHF, redes de dados
 - micro-ondas terrestres comunicações de longa distância (TV e voz), ligações ponto-a-ponto, comunicação de dados em pequenas áreas (wireless)
 - micro-ondas por satélite- distribuição de TV, voz a longa distância, redes de dados

camada física: transmissão

- Transmissão em série ou em paralelo?
 - Por regra, em telecomunicações, a transmissão faz-se em série por bit
- Transmissão, o que interessa conhecer?

cuidado com as

- ritmo binário (bits/s), kbps, Mbps, Gbps
- potência do sinal (em mW ou em dBm)
- código de linha utilizado (forma do sinal que representa os bits)
- probabilidade de erro do código ou probabilidade de erro total na linha de transmissão (P_e, também designado BER=bit error ratio)
- Técnicas de transmissão de dados em série:
 - transmissão assíncrona
 - transmissão síncrona

MIEI-RC Universidade do Minho 50

Comunicação de dados

camada física: transmissão assíncrona (UART)

- Estratégia:
 - enviar dados em pequenas unidades (character)
 - os caracteres ocorrem assincronamente
 - muito usada para configuração de equipamento de comunicações e controlo de outro equipamento (micro-controladores)
 - envia código de caractere (5 a 8 bits) de cada vez

Formato de um caractere

Universidade do Minho

[DCC,Stallings07]

51

MIEI-RC

camada física: transmissão assíncrona

• Vantagens:

- sincronização no início e dentro de cada caractere
- esquema simples e económico

Assincronismo entre caracteres

[DCC,Stallings07]

MIEI-RC

Universidade do Minho

52

Comunicação de dados

camada física: transmissão assíncrona

• Desvantagens:

- overhead elevado (em geral > 20%)
- erros resultantes de assimetrias

Timing error

[DCC,Stallings07]

MIEI-RC

Universidade do Minho

camada física: transmissão assíncrona

Exemplo

Quanto tempo demora a transmissão de um volume de dados 80 kbytes, através de uma interface série RS-232c com uma codificação em 8 bits de dados, sem paridade, e 1 stop bit, com um débito de 112 kbps?

- quantos caracteres v\(\tilde{a}\) ser transmitidos (n_{char})?
- quanto tempo demora a transmitir um caracter (t_{char})?
- $tempo\ total = n_{char}\ x\ t_{char}$
- qual o "overhead" na transmissão (em percentagem)?
- qual a taxa de transmissão real a que os dados são transmitidos?

MIEI-RC Universidade do Minho 54

Comunicação de dados camada física: transmissão síncrona

- Usada para transmitir unidades de dados maiores
- Sincronização transmissor (Tx) com receptor (Rx):
 - não são usados start/stop bits
 - ou existe um canal separado de sincronização [chamada sincronização fora da banda]
 - ou a sincronização faz-se no canal dos dados [chamada sincronização dentro da banda]
- O formato de cada trama depende do tipo de transmissão ser orientado ao *caractere* ou ao *bit*.

camada física: transmissão síncrona

- Trama = campo de controlo + campo de dados
 - ex: campo de controlo = endereço(s) destino/origem, comprimento da trama, número de sequência, tipo dos dados (*Trama* é tb. a designação dada à *unidade de dados* ao nível físico)
- Detecção de início e fim de trama:
 - caracteres especiais ou padrão de bits de alinhamento (flag).
 Exemplo: <flag><trama><flag>

[DCC,Stallings07]

MIEI-RC

Universidade do Minho

56

Comunicação de dados

camada física: transmissão síncrona

Exemplo de um código de caracteres (ASCII)

MIEI-RC

Universidade do Minho

detecção de erros

- A cada trama, o Tx adiciona um número de bits que será usado pelo Rx para detecção de erros.
- Em caso de erro, ou o Rx corrige o erro, ou o Tx deve ser notificado.
- Técnicas:
 - utilização de bit e de caractere de paridade
 - verificação de redundância cíclica (CRC)

MIEI-RC Universidade do Minho 58

Comunicação de dados

detecção de erros - CRC

Cyclic Redundacy Check

Dada uma mensagem inicial de k bits, o transmissor gera uma sequência de n-k bits [CRC ou FCS Frame Check Sequence] tal que, os n bits da trama resultante sejam divisíveis por um número prédeterminado G.

Comunicação de dados detecção de erros - CRC

- Detecção de erros na recepção
 - dividir a trama recebida por G(x)
 - se Resto = 0 conclui que não há erro, senão
- Exemplo de um polinómio gerador G(x):
 CRC-32:

 $x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^8+x^7+x^5+x^4+x^2+x+1$ normalizado para transmissão síncrona ponto-a-ponto (IEEE-802.x)

MIEI-RC

Universidade do Minho

60

Comunicação de dados

correcção de erros

- Técnica de Forward Error Correction (FEC)
 - é o receptor que corrige o erro
 - probabilidades de erro aceitáveis exigem que o código seja gerado por polinómio com grau da mesma ordem de grandeza do dos dados.
 - técnica pouco usada em comunicação de dados
 - apenas usada em situações onde é impraticável a retransmissão (e.g. Bluetooth usa FEC para aumentar a imunidade a erros)
 - em geral, é preferível retransmitir

MIEI-RC

Universidade do Minho

Comunicação de dados correcção de erros

- Técnica de *Automatic Repeat Request* (ARQ)
 - o receptor não tenta corrigir os erros
 - o código de controlo de erros é usado no receptor apenas como detector erros
 - detectados erros, o receptor pede a retransmissão da unidade de dados
 - probabilidades de erro aceitáveis podem ser obtidas com polinómios de menor grau
 - técnica mais usada em comunicação de dados