" />

R 데이터 매니지먼트: tidyverse

김진섭; ♥jinseob2kim

차라투(주)

Executive Summary

tidyverse는 직관적인 코드를 장점으로 원래의 R 문법을 빠르게 대체하고 있다.

- magrittr 패키지의 %>% 연산자로 의식의 흐름대로 코딩한다.
- dplyr 패키지의 select, mutate, filter, group_by, summarize 함수는 %>% 와 찰떡궁합이다.

magrittr: %>%

하나만 기억해야 한다면 %>%

- 단축키 Ctrl + Shift + M (**OS X**: Cmd + Shift + M)
- 의식 흐름대로 코딩 가능.

```
a <- read.csv("https://raw.githubusercontent.com/jinseob2kim/R-skku-biohrs/main/da
library(magrittr)
a %>% head
```

	Sex	Age	Height	Weight
	<chr></chr>	<int></int>	<int></int>	<dbl></dbl>
1	M	52	160	63
2	M	67	162	63
3	M	75	163	63
4	F	66	154	61
5	M	52	165	64
6	М	56	166	70

6 rows | 1-5 of 15 columns

a의 head를 보여줘

- head(a) 와 a %>% head 는 동일한 코드.
- 후자가 생각의 흐름을 그대로 반영.

```
head(a)
a %>% head ## 동일
a %>% head() ## 동일
```

Zarathu Co.,Ltd_____ 김진섭

%>%: 함수 입력값을 앞으로 빼 옴.

첫 입력값은 그냥 빼오면 됨

• f(x, y) = x % f(y)

첫 입력값 아니라면 . 으로 흔적 남겨야

```
a %>% head(n = 10)

10 %>% head(a, .)

10 %>% head(a, n = .)
```

Zarathu Co.,Ltd _____ 김진섭

실습 1: %>% 써보기

데이터셋 a 에서 **남자만** 뽑고, 1주차 방법과 비교하기.

```
subset(a, Sex == "M")
a %>% subset(Sex == "M")
```

	Sex	Age	Height	Weight
	<chr></chr>	<int></int>	<int></int>	<dbl></dbl>
1	M	52	160	63.0
2	M	67	162	63.0
3	M	75	163	63.0
5	М	52	165	64.0
6	M	56	166	70.0
11	М	60	170	75.0
12	M	69	161	67.0
13	М	55	162	67.0
15	M	73	168	66.0
16	М	73	168	64.0
1-10 of 7	746 rows 1-5 of 15 co	lumns Previous	1 2 3 4 5	6 75 Next

Previous **1** 2 3 4 5 6 75 Next

실습 2: 변수 선택

Sex 변수만 고르기

Zarathu Co.,Ltd_____ 김진섭

여러 함수 같이 쓸 때

a에서 남자만 뽑아서 head를 보여줘

```
head(subset(a, Sex == "M"))
a %>% subset(Sex == "M") %>% head
```

	Sex	Age	Height	Weight	
	<chr></chr>	<int></int>	<int></int>	<dbl></dbl>	
1	M	52	160	63	
2	M	67	162	63	
3	M	75	163	63	
5	M	52	165	64	
6	M	56	166	70	
11	M	60	170	75	
6 rows 1-5 of 15 columns					

Zarathu Co.,Ltd_____ 김진섭

예: 회귀분석

남자만 뽑아 회귀분석을 수행하고 그 계수와 p-value 보여주기

```
b <- subset(a, Sex == "M")
model <- glm(DM ~ Age + Weight + BMI, data = b, family = binomial)
summ.model <- summary(model)
summ.model$coefficients</pre>
```

	Estimate	Std. Error	z value	Pr(> z)
	<qpl></qpl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
(Intercept)	-4.366	0.937	-4.662	0.000
Age	0.033	0.008	4.032	0.000
Weight	0.028	0.009	3.190	0.001
BMI	-0.001	0.001	-1.327	0.185
4 rows				

중간 결과물인 b, model, summ.model 필요

회귀분석 with %>%

```
a %>%
  subset(Sex == "M") %>%
  glm(DM ~ Age + Weight + BMI, data = ., family = binomial) %>%
  summary %>%
  .$coefficients
```

	Estimate	Std. Error	z value	Pr(> z)
	<db ></db >	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
(Intercept)	-4.366	0.937	-4.662	0.000
Age	0.033	0.008	4.032	0.000
Weight	0.028	0.009	3.190	0.001
BMI	-0.001	0.001	-1.327	0.185
4 rows				

읽기 쉬움, 중간결과물 필요없음

각 줄은 꼭 %>% 로 끝나야 한 다

```
a %>% subset(Sex == "M")
%>% head
```

(X)

```
a %>% subset(Sex == "M") %>% head
```

(O)

오늘 강의에서 %>% 만 익숙해지면 성공

arathu Co.,Ltd_____ 김진섭

실습 3

50세 이상만 뽑아서, **성별과 흡연력** 에 따른 **모든 변수**들의 **평 균, 표준편차**를 구하라. (aggregate)

aggregate 는 범주형 변수 알아서 제외해줌.

%>%: 중간결과물인 b 필요없음

```
a %>%
subset(Age >= 50) %>%
aggregate(. ~ Sex + Smoking, data = .,
FUN = function(x){c(mean = mean(x), sd = sd(x))})
```

Zarathu Co.,Ltd_____ 김진섭

실습 3: 결과 저장

결과를 out 에 저장

```
out <- a %>%
  subset(Age >= 50) %>%
  aggregate(. ~ Sex + Smoking, data = .,
      FUN = function(x){c(mean = mean(x), sd = sd(x))})
```

-> 도 가능하지만 권장안함.

Zarathu Co.,Ltd_____ 김진섭

dplyr

데이터 다루는 함수들 모음

• 기본 R 함수보다 깔끔

```
## 따로 magrittr 불러올 필요 없음 a %>%

filter(Age >= 50) %>%

select(-STRESS_EXIST) %>% ## 범주형 변수 제외
group_by(Sex, Smoking) %>%
summarize_all(list(mean = mean, sd = sd))

•
```

Sex	Smoking	Age_mean	Height_mean	Weight_mean \
<chr></chr>	<int></int>	<dbl></dbl>	< db >	<dbl></dbl>
F	0	68.32456	153.4035	58.96096
F	1	64.33333	151.4444	53.11111
M	0	64.62500	166.3380	69.17037
M	1	62.88785	166.4299	68.87336
4 rows 1-5 of 2	24 columns			

filter: subset 과 비슷

subset 과 거의 동일

```
subset(a, Sex == "M")
a %>% subset(Sex == "M")
filter(a, Sex == "M")
a %>% filter(Sex == "M")
```

Sex	Age	Height	Weight	ВМІ
<chr></chr>	<int></int>	<int></int>	<dbl></dbl>	<dbl></dbl>
M	52	160	63.0	24.60938
M	67	162	63.0	24.00549
M	75	163	63.0	23.71184
M	52	165	64.0	23.50781
M	56	166	70.0	25.40282
M	60	170	75.0	25.95156
M	69	161	67.0	25.84777
M	55	162	67.0	25.52964
M	73	168	66.0	23.38435
I to	70	1.CO 기지서	C40	22.67574

여러 조건일 때 편함

- & 대신 , 가능
- between: 범위 설정

```
a %>% subset(Age >= 50 & Age <= 60)
a %>% filter(Age >= 50, Age <= 60) # ,
a %>% filter(between(Age, 50, 60)) # between 50 and 60
```

Sex	Age	Height	Weight	ВМІ
<chr></chr>	<int></int>	<int></int>	<dpl></dpl>	<dbl></dbl>
M	52	160	63.0	24.60938
M	52	165	64.0	23.50781
M	56	166	70.0	25.40282
M	60	170	75.0	25.95156
M	55	162	67.0	25.52964
M	56	167	69.0	24.74094
М	52	174	75.0	24.77210
M	57	168	75.0	26.57313
М	57	168	57.0	20.19558

arrange: 정렬

• order 는 순서만 보여줌. arrage 는 바로 정렬까지.

```
a[order(a$Age), ]
a %>% .[order(.$Age), ]
a %>% arrange(Age)
a %>% arrange_("Age") ## 문자로 넣을 때
```

Sex	Age	Height	Weight	ВМІ
<chr></chr>	<int></int>	<int></int>	<dpl></dpl>	<dbl></dbl>
M	21	174	74.0	24.44180
M	35	169	79.0	27.66010
M	36	178	101.0	31.87729
M	36	99	99.0	999.00000
M	37	180	90.0	27.77778
M	38	175	95.0	31.02041
M	38	183	75.0	22.39541
M	38	172	78.0	26.36560
F	38	156	58.0	23.83300
Itd.	40	4 7 7 김지선	740	22 (2020

desc 내림차순

```
a[order(a$Age, -a$BMI), ]
a %>% .[order(.$Age, -.$BMI), ]
a %>% arrange(Age, desc(BMI))
```

Sex	Age	Height	Weight	BMI
<chr></chr>	<int></int>	<int></int>	<dbl></dbl>	<qpl></qpl>
M	21	174	74.0	24.44180
M	35	169	79.0	27.66010
M	36	99	99.0	999.00000
M	36	178	101.0	31.87729
M	37	180	90.0	27.77778
M	38	175	95.0	31.02041
M	38	172	78.0	26.36560
F	38	156	58.0	23.83300
M	38	183	75.0	22.39541
M	40	170	78.0	26.98962
1-10 of 1,000 row	s 1-5 of 14 columns	Previous	1 2 3 4	5 6 100 Next

select: 변수 선택

```
a[, c("Sex", "Age", "Height")]
a %>% .[, c("Sex", "Age", "Height")]
a %>% select(Sex, Age, Height)
a %>% select_("Sex", "Age", "Height")
```

Sex	Age	Height
<chr></chr>	<int></int>	<int></int>
M	52	160
M	67	162
M	75	163
F	66	154
M	52	165
M	56	166
F	67	155
F	65	155
F	68	145
F	45	156
1-10 of 1,000 rows	Previous 1 2 3 4 5	6 100 Next

여러 표현방법

```
a %>% select(Sex:Height) ## Sex 부터 Height 사이의 모든 변수
a %>% select("Sex":"Height")
a %>% select(2, 3, 4)
a %>% select(c(2, 3, 4))
a %>% select(2:4)
```

특정 변수 제외

```
a[, -c("Sex", "Age", "Height")]
a %>% .[, -c("Sex", "Age", "Height")]
a %>% select(-Sex, -Age, -Height)
```

Weight	ВМІ	DM	HTN	Smoking
<dbl></dbl>	<dbl></dbl>	<int></int>	<int></int>	<int></int>
63.0	24.60938	0	1	1
63.0	24.00549	1	1	0
63.0	23.71184	1	1	0
61.0	25.72103	0	0	0
64.0	23.50781	0	1	0
70.0	25.40282	1	1	1
56.0	23.30905	0	1	0
57.0	23.72529	1	0	0
55.0	26.15933	0	1	0
56.0	23.01118	0	0	0
1-10 of 1,000 rov	ws 1-5 of 11 colu	mns Previous	1 2 3 4	5 6 100 Next

여러 표현방법

```
a %>% select(-2, -3, -4)
a %>% select(-(2:4))
a %>% select(-c(2, 3, 4))

a %>% select(-(Sex:Height))
a %>% select(-"Sex", -"Age", -"Height")
a %>% select(-("Sex":"Height"))
```

특정 조건

_date 로 끝나는 변수들만 고르고 싶다면?

```
a[, grep("_date", names(a))] ## "_date" 포함
a %>% .[, grep("_date", names(.))]
a %>% select(ends_with("date")) ## "_date" 로 끝남
```

MACCE_date	Death_date
<int></int>	<int></int>
1056	1056
270	270
1875	1875
2112	2112
2052	2052
792	792
2171	2171
1210	1210
2437	2437
1078	1078

select 와 함께하는 함수들

```
start_with("abc"): "abc"로 시작하는 이름
end_with("xyz"): "xyz"로 끝나는 이름
contains("ijk"): "ijk"를 포함하는 이름
one_of(c("a", "b", "c")): 변수명이 a, b, c 중 하나
num_range("x", 1:3): x1, x2, x3
```

실습 4

남자 만 골라, Sex:HTN 사이의 변수들만 뽑고, 나이로 정렬하라.

a %>% filter(Sex == "M") %>% select(Sex:HTN) %>% arrange(Age)

Sex	Age	Height	Weight	BMI
<chr></chr>	<int></int>	<int></int>	<dbl></dbl>	<dbl></dbl>
M	21	174	74.0	24.44180
M	35	169	79.0	27.66010
M	36	178	101.0	31.87729
M	36	99	99.0	999.00000
M	37	180	90.0	27.77778
M	38	175	95.0	31.02041
M	38	183	75.0	22.39541
M	38	172	78.0	26.36560
M	40	177	74.0	23.62029
M	40	168	66.0	23.38435
1-10 of 746 rows 1	-5 of 7 columns	Previous '	1 2 3 4 5	6 75 Next

실습 4: 기본 R 스타일

```
a %>% subset(Sex == "M") %>% .[, c("Sex", "Age", "Height", "Weight", "BMI", "DM", a %>% subset(Sex == "M") %>% .[, 2:8] %>% .[order(.$Age), ]
```

Sex	Age	Height	Weight	ВМІ
<chr></chr>	<int></int>	<int></int>	<dbl></dbl>	<dbl></dbl>
M	21	174	74.0	24.44180
M	35	169	79.0	27.66010
M	36	178	101.0	31.87729
M	36	99	99.0	999.00000
M	37	180	90.0	27.77778
M	38	175	95.0	31.02041
M	38	183	75.0	22.39541
M	38	172	78.0	26.36560
M	40	177	74.0	23.62029
M	40	168	66.0	23.38435
1-10 of 746 rows	1-5 of 7 columns	Previous	1 2 3 4 5	6 75 Next

mutate: 변수 생성

Old, Overweight 변수 만들기

Sex	Age	Height	Weight	BMI
<chr></chr>	<int></int>	<int></int>	<dbl></dbl>	<dbl></dbl>
M	52	160	63.0	24.60938
M	67	162	63.0	24.00549
M	75	163	63.0	23.71184
F	66	154	61.0	25.72103
M	52	165	64.0	23.50781
M	56	166	70.0	25.40282
F	67	155	56.0	23.30905

transmute: 만든 변수만 보여 주기

group_by & summarize

그룹으로 나누고, **요약통계량**을 구한다

```
a %>%
    group_by(Sex, Smoking) %>%
    summarize(count = n(), ## n()는 샘플수
    meanBMI = mean(BMI),
    sdBMI = sd(BMI))
```

Sex	Smoking	count	meanBMI	sdBMI
<chr></chr>	<int></int>	<int></int>	<dbl></dbl>	<dbl></dbl>
F	0	242	32.76081	88.44981
F	1	12	104.36833	281.74522
М	0	493	42.47247	130.59380
M	1	253	32.51974	86.49165
4 rows				

summarize_a|| 모든 변수에 적용

```
a %>%
filter(Age >= 50) %>%
group_by(Sex, Smoking) %>%
summarize_all(mean)
```

Sex	Smoking	Age	Height	Weight ,
<chr></chr>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
F	0	68.32456	153.4035	58.96096
F	1	64.33333	151.4444	53.11111
M	0	64.62500	166.3380	69.17037
M	1	62.88785	166.4299	68.87336
4 rows 1-5 of	14 columns			

범주형 변수의 평균은 NA 로 나온다.

summarize_all with 여러 함

```
a %>%
 filter(Age >= 50) %>%
 select(-STRESS_EXIST) %>% ## Except categorical variable
 group_by(Sex, Smoking) %>%
 summarize_all(funs(mean = mean, sd = sd))
```

Sex	Smoking	Age_mean	Height_mean	Weight_mean \
<chr></chr>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
F	0	68.32456	153.4035	58.96096
F	1	64.33333	151.4444	53.11111
М	0	64.62500	166.3380	69.17037
M	1	62.88785	166.4299	68.87336
4 rows 1-5 o	f 24 columns			

실습 5: 실습 3과 비교

50세 이상만 뽑아서, **성별과 흡연력** 에 따른 **모든 변수**들의 **평 균, 표준편차**를 구하라.

```
a %>%
subset(Age >= 50) %>%
aggregate(. ~ Sex + Smoking, data = .,
FUN = function(x){c(mean = mean(x), sd = sd(x))})
```

```
a %>%
  filter(Age >= 50) %>%
  select(-Patient_ID, -STRESS_EXIST) %>%  ## Except categorical variable
  group_by(Sex, Smoking) %>%
  summarize_all(funs(mean = mean, sd = sd))
```

미리보기가 없음

Executive Summary

tidyverse는 직관적인 코드를 장점으로 원래의 R 문법을 빠르게 대체하고 있다.

- magrittr 패키지의 %>% 연산자로 의식의 흐름대로 코딩한다.
- dplyr 패키지의 select, mutate, filter, group_by, summarize 함수는 %>% 와 찰떡궁합이다.

END