

The role of ceria on the activity and SO₂ resistance of catalysts for the selective catalytic reduction of NOx by NH₃

Dong Wook Kwon, Ki Bok Nam, Sung Chang Hong*

Department of Environmental Energy Engineering, Graduate School of Kyonggi University, 94-6 San, Iui-dong, Youngtong-ku, Suwon-si, Gyeonggi-do 443-760, Republic of Korea

ARTICLE INFO

Article history:

Received 29 July 2014

Received in revised form 31 October 2014

Accepted 3 November 2014

Available online 13 November 2014

Keywords:

Ceria effect

SO₂ resistance

NH₃-SCR

V/Sb/Ce/Ti

CeO₂

ABSTRACT

We investigated the influence of Ce on the catalytic activity of V/Sb/Ce/Ti and its deactivation due to SO₂. We studied the properties of the catalyst using physio-chemical techniques, including transmission infrared spectroscopy (IR), NH₃ and SO₂ temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), H₂ temperature programmed reduction (H₂-TPR), and thermal gravimetric analysis (TGA). The catalysts V/Sb/Ti and V/Sb/Ce/Ti showed an excellent NO_x conversion and N₂ selectivity in the temperature range of 200–400 °C. Increasing Brønsted acid sites and the NH₃ adsorption positively affected the efficiency of the catalyst. The Ce⁴⁺ ratio increased upon the addition of Sb and V to Ce/Ti. The catalyst V/Sb/Ce/Ti was prepared by controlling the Ce⁴⁺ ratio and exhibited an excellent activity upon increasing the Ce⁴⁺ ratio. The V/Sb/Ti (or V/W/Ti) showed one route in which NH₄HSO₄ formed by converting SO₂ into SO₃ upon the injection of SO₂ in the selective catalytic reduction (SCR) reaction. In addition to this route, the reaction in the presence of V/Sb/Ce/Ti can proceed via a second route, in which Ce₂(SO₄)₃ is formed in the reaction of Ce with SO₂ and O₂. Thus, V/Sb/Ce/Ti can inhibit the formation of NH₄HSO₄ due to the consumption of SO₂ in the formation of Ce₂(SO₄)₃. Therefore, V/Sb/Ce/Ti was found to have excellent SO₂ resistance compared to V/Sb/Ti (or V/W/Ti).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Nitrogen oxides (NO_x) are a major air pollutant. They are primarily emitted during the combustion of fossil fuels from stationary and mobile sources [1–3]. It is well known that the selective catalytic reduction (SCR) of NO_x with NH₃ is a superior technology for the removal of NO_x in terms of removal efficiency, stability, and costs. In this process, NO_x contained in the fuel gases is reduced to N₂ and H₂O by NH₃ [4]:

Various studies on the development of SCR catalysts have been conducted in order to improve their activities, e.g. through the addition of metals. For example, the support [5], V₂O₅-MnO_x-TiO₂ [6], and different alkali and alkaline earth metals (Na, K, Ca, and Mg) have been used to supplement V₂O₅-WO₃/TiO₂ [7], F-doped V₂O₅-WO₃/TiO₂ [8], and Cr-V₂O₅/TiO₂ [9]. In particular, a recent study demonstrated high NO_x conversion rates at low temperatures using ceria (CeO₂) as co-catalyst [10–13]. Ceria has been extensively

studied regarding its redox properties and its exceptional ability to store and release oxygen via the redox shift between Ce⁴⁺ and Ce³⁺ under oxidizing or reducing conditions, respectively [14]. Ceria accelerates the oxidization of NO to NO₂ and the SCR of NO to N₂ by ammonia [15].

Most fossil fuels contain sulfur, and the exhaust gas contains a substantial amount of sulfur dioxide (SO₂). According to some reports, SO₂ forms sulfate species on the catalyst surface and enhances the SCR activity. Guo et al. claimed that an excellent NO reduction activity was observed since the density of Brønsted acid sites increases upon the sulfation of V₂O₅/TiO₂ [16]. According to Amiridis et al. [17], the turnover frequency was increased under conditions of a low vanadium surface coverage if the surface of the sulfate species was formed on the V₂O₅ catalyst. In addition, SO₂ poisons the NH₃-SCR catalyst at low temperatures since sulfur compounds can form at the catalyst in the presence of SO₂. Various studies have been performed to inhibit the degradation of vanadium-titanium-based catalysts by SO₂. Kobayashi et al. [18,19] confirmed that the oxidation rate of SO₂ decelerates as the SiO₂ concentration increases, provided the SiO₂ concentrations in V₂O₅/SiO₂-TiO₂ and V₂O₅/SiO₂-TiO₂-MoO₃ were below 20 wt%. Seo et al. [20] reported that the milling process enhanced non-stoichiometric oxide concentrations (V^{x+} ($x \leq 4$) and Ti^{y+} ($y \leq 3$))

* Corresponding author. Tel.: +82 31 249 9733; fax: +82 31 254 4941.

E-mail addresses: schong@kgu.ac.kr, schong@kyonggi.ac.kr (S.C. Hong).

as well as the redox capacity of the V_2O_5/TiO_2 catalyst. In addition, it was reported that the formation of ammonium sulfate salts was inhibited. Liu et al. [21] claimed that the SCR activity and the H_2O/SO_2 durability were excellent since the surface of $FeVO_4/TiO_2$ was enriched with VO_x species that acted as the true active sites. According to Ha et al. [22], Sb at 2 wt% showed a better SO_2 resistance than tungsten at 10 wt% because of its high electrical conductivity. Wu et al. [23] reported an increased efficiency and SO_2 resistance at 150 °C due to the addition of ceria to Mn/TiO_2 . Lee et al. [24] claimed that the SO_2 adsorption decreased and SO_2 resistance increased by the addition of ceria to the SbV/TiO_2 catalyst. Thus far, many studies have been conducted to examine the efficiency of the NH_3 -SCR catalyst and the promotion of SO_2 resistance.

Among these studies, experiments showing an improved activity and SO_2 resistance due to the addition of Sb and Ce provide very interesting results. Therefore, on the basis of the above literature, we aim to investigate the role of Ce in the catalyst $V/Sb/Ce/Ti$. We studied the correlation between the catalysts Ce valence state and its activity. In addition, we clearly identified the cause of the increased SO_2 resistance by deactivating the catalyst with the addition of Ce. We studied the properties of the catalyst using physio-chemical analyses, which included transmission infrared (IR) spectroscopy, NH_3 and SO_2 temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), H_2 temperature programmed reduction (H_2 -TPR), and thermal gravimetric analysis (TGA).

2. Experiments

2.1. Catalyst preparation

$V/Ce/Ti$ and $V/Sb/Ce/Ti$ were prepared by the wet impregnation of vanadium (2 wt% V) and antimony (2 wt% Sb) on a prepared Ce/Ti support. $V/Sb/Ti$ was prepared by wet impregnation of vanadium and antimony on a prepared Ti support. $V/W/Ti$ was prepared by wet impregnation of vanadium and tungsten (5 wt% W) on a prepared Ti support. The required quantity of ammonium metavanadate (NH_4VO_3 , Aldrich Chemical Co.) was added to an oxalic acid ($(COOH)_2$, Aldrich Chemical Co.) solution and heated to form an ammonium oxalate solution. An aqueous solution of antimony was prepared using antimony acetate ($Sb(CH_3COO)_3$, Alfa Aesar). Ammonium metatungstate hydrate ($((NH_4)_6H_2W_{12}O_{40}$, Aldrich Co.) was used as W precursor. Both of these solutions were added to the beaker containing the calculated amount of the Ce/Ti powder; TiO_2 was combined with this solution by gradual stirring. This mixed solution, which was in a slurry state, was then stirred for more than an hour. Subsequently, the water was evaporated at 70 °C using a rotary vacuum evaporator (Eyela Co. N-N series). Then, the samples were dried for an additional 24 h at 103 °C in a dry oven to remove residual water. The samples were then calcined in air for 4 h at 500 °C. The Ce/Ti support was synthesized by a deposition precipitation method followed by the hydrolysis with ammonium hydroxide (Aldrich, 25%) [25]. Therefore, the required quantities of cerium(III) nitrate (10 wt% Ce; $Ce(NO_3)_3 \cdot 6H_2O$, Aldrich Chemical Co.) and commercial TiO_2 (DT-51, Cristal Global Co.) powders were mixed in water. To this solution, dilute aqueous ammonia was added as a precipitating agent, and the resultant precipitate was filtered. The sample was dried for an additional 24 h at 103 °C in a dry oven to remove residual water. Then, the sample was calcined in air for 4 h at 500 °C [24]. The x in $V/Sb/Ce/Ti(x)$ is denoted as follows: x = the calcination temperature of the Ce/Ti support at 400, 450, 500, 550, and 600 °C. $V/Sb/Ce/Ti(x)$ were prepared using commercial TiO_2 (G-5, Cristal Global Co. G-5 was used as titanic acid, which was in this state prior to the final calcination step upon the manufacture of anatase TiO_2).

2.2. Catalytic activity tests

SCR activity tests were carried out in a fixed-bed quartz-reactor with an inner diameter of 8 mm. The reactant gases were fed to the reactor using a mass flow controller (MKS Co.). The reaction conditions were as follows: 750 ppm NO, 48 ppm NO_2 , 800 ppm NH_3 , 3 vol% O_2 , 6 vol% H_2O , and 500 ppm SO_2 in Ar. Approximately, 0.3 g of the catalyst (40–50 mesh, 0.6 cm³) was used for each test. Under ambient conditions, the total flow rate was 600 cm³/min and the gas hourly space velocity was 60,000 h⁻¹. The composition of the feed gases and the effluent streams were continuously monitored on-line using non-dispersive infrared gas analyzers: ZKJ-2 (Fuji Electric Co.) for NO/NO_2 , and Ultramat 6 (Siemens Co.) for N_2O , and the pulsed fluorescence gas analyzer 43 C-High level (Thermo Co.) for SO_2 . Before the gas flowed into the analyzers, the moisture was removed with a moisture trap inside the chiller. The NOx conversion and rate constant were calculated from the concentrations of the gases at steady state according to the following equations:

$$NO_x \text{ conversion (\%)} = \frac{([NO + NO_2]_{in} - [NO + NO_2]_{out})}{[NO + NO_2]_{in}} \times 100 \quad (2)$$

$$N_2 \text{ selectivity (\%)} = \frac{(([NO]_{in} + [NH_3]_{in}) - [NO_2]_{out} - 2[N_2O]_{out})}{([NO]_{in} + [NH_3]_{in})} \times 100 \quad (3)$$

$$NH_3 \text{ conversion (\%)} = \frac{[NH_3]_{in} - [NH_3]_{out}}{[NH_3]_{in}} \times 100 \quad (4)$$

2.3. Catalyst characterizations

In situ DRIFTS analysis was used in this study and performed with an FT-IR 660 Plus (JASCO Co.). A DR (Diffuse Reflectance) 400 accessory was used for solid reflectance analysis. The CaF_2 window was used as a plate for DR measurement; spectra were collected using a mercury cadmium telluride (MCT) detector. All of the catalysts used in the analysis were ground using a rod in the sample pan of an in situ chamber with an installed temperature controller. To exclude the influence of moisture and impurities, the sample was preprocessed with Ar at a rate of 100 cm³/min at 300 °C for 1 h; then, the vacuum state was maintained using a vacuum pump. To collect the spectra of the catalyst, a single-beam spectrum of the preprocessed sample was measured as background, and all analyses were performed through auto scanning at a resolution of 4 cm⁻¹.

NH_3 temperature programmed desorption measurements were carried out with 0.3 g samples of the catalysts under a total flow rate of 50 cm³/min. Before the TPD measurements, the catalysts were pretreated in a flow of 5% O_2/Ar at 300 °C for 0.5 h and subsequently cooled to 50 °C. The samples were then treated with 1% NH_3/Ar for 1 h. The NH_3 was purged with Ar for 2 h before starting the TPD experiments. During the TPD experiments, the quantity of NH_3 (m/e 15) was continuously monitored using a quadrupole mass spectrometer (QMS 422) while the temperature was increased to 600 °C at a rate of 10 °C/min.

An ESCALAB 210 (VG Scientific) was used for X-ray photoelectron spectroscopy (XPS) analysis with monochromatic $Al K\alpha$ (1486.6 eV) as the excitation source. After the complete removal of moisture from the catalysts by drying at 100 °C for 24 h, the analysis was performed without surface sputtering and etching, so that the degree of vacuum in the XPS equipment was maintained at 10⁻⁶ Pa. Spectra were analyzed using the XPS PEAK software (version 4.1). The intensities were estimated from the integration of each peak, subtraction of the Shirley background, and fitting of the experimental curve to a combination of Lorentzian and Gaussian curves of various proportions. All binding energies were referenced to the C 1s line at 284.6 eV. Binding energy values were measured with a precision of ±0.3 eV.

The temperature programmed reduction (TPR) of H_2 was measured using 10% H_2/Ar and 0.3 g of the catalyst at a total flow rate

of $50\text{ cm}^3/\text{min}$. Before the H_2 -TPR measurement, the catalyst was pretreated in a flow of 5% O_2/Ar at 400°C for 0.5 h, followed by cooling to 50°C . The catalyst was placed in dilute hydrogen and the consumption of hydrogen was monitored with Autochem 2920 (Micrometrics) by increasing the temperature to 600°C at a rate of $10^\circ\text{C}/\text{min}$.

SO_2 temperature programmed desorption measurements were carried out with 0.3 g samples of the catalysts with a total flow rate of $50\text{ cm}^3/\text{min}$. Before the TPD measurements, the catalysts were pretreated in a flow of 5% O_2/Ar at 300°C for 0.5 h and then cooled to 250°C . The samples were then treated with 1% SO_2/Ar for 1 h. The SO_2 was purged with Ar for 2 h before starting the TPD experiments. During the TPD experiments, the quantity of SO_2 (m/e 64) was continuously monitored using a quadrupole mass spectrometer (QMS 422) while the temperature was increased to 900°C at a rate of $10^\circ\text{C}/\text{min}$.

TGA experiments were conducted by a thermo gravimetric analyzer (TGA) from TA Instruments. The catalyst was loaded into the TGA reactor, and the reactor was purged with N_2 for 5 min. The temperature of the TGA furnace was increased to 120°C and kept constant for 20 min to remove adsorbed water. The temperature was then increased to 900°C at a rate of $10^\circ\text{C}/\text{min}$ under N_2 atmosphere.

The transmission IR spectra were recorded with a Nicolet Nexus spectrometer (Model Magna IR 550 II) equipped with a liquid nitrogen cooled MCT detector, which collected 100 scans with a spectral resolution of 4 cm^{-1} . The samples were mixed with KBr and pressed into pellets for the measurements.

3. Results and discussion

3.1. NH_3 -SCR catalyst activity

The experiments were performed using vanadium-titanium-based catalysts to examine the influence of antimony and ceria on the selective catalytic reduction activity. As shown in Fig. 1(a), the NO_x conversion activity was determined on Ce/Ti, V/Ce/Ti, V/Sb/Ti, V/Sb/Ce/Ti, and V/W/Ti at 200 – 400°C with a GHSV of $60,000\text{ h}^{-1}$. The Ce/Ti exhibited an activity below 70% at temperatures up to 300°C . V/Ce/Ti prepared by impregnating vanadium on the Ce/Ti support showed a higher efficiency compared with Ce/Ti at temperatures up to 300°C . However, since large amounts of N_2O (30 ppm) were produced due to the oxidation of NH_3 , which was injected as a reducing agent at approximately 270°C , this catalyst showed the lowest N_2 selectivity. V/Sb/Ti and V/Sb/Ce/Ti showed an excellent N_2 selectivity and activity in the range of 250 – 400°C . N_2 selectivity and activity were enhanced at 200 – 400°C as Sb was added to V/Ce/Ti. In the case of V/W/Ti, the activity was similar to that of V/Sb/Ti and V/Sb/Ce/Ti at 250°C or higher. However, it showed a slightly lower activity at temperatures up to 200°C . Fig. 1(b) shows the NH_3 conversion for the SCR reaction. This conversion is proportional to the NO_x conversion since the SCR reaction is held at a molar ratio of 1.0 NH_3/NO_x . Therefore, the NH_3 conversion curve was associated with the temperature range in which the NO_x conversion decreased.

3.2. NH_3 adsorption study

The catalytic activity of Ce/Ti, V/Ce/Ti, V/Sb/Ti, and V/Sb/Ce/Ti varied depending on the metal impregnated on the titanium support. To investigate the reason for this, the NH_3 adsorption capacity of various catalysts was compared. The adsorption ability of the catalysts was measured by DRIFTS and NH_3 -TPD analysis.

To examine the acid site of the catalysts in the SCR reaction, a NH_3 adsorption analysis was performed using a DRIFT

Fig. 1. The effect of reaction temperature on (a) NO_x conversion and (b) NH_3 conversion of various catalysts (NO: 750 ppm, NO_2 : 48 ppm, NH_3/NO_x : 1.0, O_2 : 3 vol%, H_2O : 6 vol%, S.V.: $60,000\text{ h}^{-1}$).

spectrometer at 250°C . These measurements showed a clear difference in the activity (Fig. 2). NH_3 (2000 ppm) was injected for 30 min and the adsorbed species were examined. In these experiments, the peak corresponding to $-\text{OH}$, caused by the adsorption of NH_4^+ onto $-\text{OH}$, was observed at 3644 cm^{-1} . The adsorption of NH_3 on the Lewis acid sites was observed at 1605 , 3170 , 3256 , and 3364 cm^{-1} [26]. All catalysts exhibited peaks corresponding to Lewis acid sites and $-\text{OH}$. In the case of V/Ce/Ti, V-Sb/Ti, and V/Sb/Ce/Ti impregnated with vanadium, a negative peak was observed at 2040 cm^{-1} , which corresponds to $\text{V}=\text{O}$ [27]. Additionally, the adsorption of the NH_4^+ ion on the Brønsted acid sites was simultaneously observed at 1430 and 1670 cm^{-1} [26]. In the case of Ce/Ti, the Brønsted acid sites showed a very small peak. In the case of Ce/Ti impregnated vanadium, it seemed that the Brønsted acid sites were more abundant compared with those on Ce/Ti. Additionally, the number of Brønsted acid sites was increased by the addition of Sb to V/Ce/Ti. V/Sb/Ti and V/Sb/Ce/Ti revealed the largest peaks corresponding to Brønsted acid sites and showed an excellent catalytic activity at 250°C . In addition, the largest negative peak of the adsorption of NH_4^+ onto $-\text{OH}$ was observed at 3644 cm^{-1} for V/Sb/Ti and V/Sb/Ce/Ti. At 250°C , where the difference in catalytic activity was clearly distinguished, the activity tended to increase concomitantly with the peak corresponding to NH_4^+ adsorbed

Fig. 2. DRIFT spectra of (a) Ce/Ti, (b) V/Ce/Ti, (c) V/Sb/Ti and (d) V/Sb/Ce/Ti exposed to 2000 ppm NH_3 for 30 min at 250 $^{\circ}\text{C}$.

on the Brønsted acid sites. The intensities for the Brønsted acid site peaks decreased in the order V/Sb/Ce/Ti (12.3) \approx V/Sb/Ti (12.2) $>$ V/Ce/Ti (6.0) $>$ Ce/Ti (1.0) (the ratio of the deconvoluted Brønsted acid site peak areas in DRIFTs). This suggests that NH_4^+ adsorbs on the Brønsted acid sites, which correlates strongly with the catalytic activity as also shown in previous studies [28–30].

To further determine the effect of the NH_3 adsorption on the SCR, NH_3 -TPD was measured after saturation of the catalysts with NH_3 . Fig. 3 shows the NH_3 -TPD curves of various catalysts. All of the catalysts exhibited two broad NH_3 desorption peaks at 80–200 and 230–400 $^{\circ}\text{C}$, which were attributed to the Brønsted and Lewis acid sites, respectively. It is well known that ammonia desorbs from Brønsted acid sites at lower temperatures than it desorbs from Lewis acid sites [31,32]. The desorption peak in the temperature range of 80–500 $^{\circ}\text{C}$ was the largest when V/Sb/Ce/Ti was employed. The peak areas of NH_3 -TPD decreased in the order V/Sb/Ce/Ti (1.00) $>$ V/Sb/Ti (0.81) $>$ V/Ce/Ti (0.70) $>$ Ce/Ti (0.67). The Brønsted acid sites increased with an increasing catalytic activity, but the total acidity showed different results. V/Sb/Ce/Ti showed a large

Fig. 4. Ce 3d spectra of (a) Ce/Ti, (b) V/Ce/Ti, (c) V/Sb/Ti and (d) V/Sb/Ce/Ti by XPS analysis.

amount of NH_3 desorption peaks corresponding to Lewis acid sites at temperatures of 200 $^{\circ}\text{C}$ or higher. The total acidity of V/Sb/Ce/Ti increased more than that of V/Sb/Ti. These findings suggest an increase in the Lewis acid sites, which is ascribed to the addition of ceria. As revealed by the catalytic activity of Ce/Ti, ceria could be applied as an active metal in SCR catalysis [33–36] and could harbor NH_3 adsorption capacity. V/Sb/Ce/Ti had a higher NH_3 adsorption capacity than V/Sb/Ti owing to the addition of ceria. When ceria was added to V/Sb/Ti, the total acidity increased due to the increase in Lewis acid sites, whereas the catalytic activity remained constant.

3.3. Ce valence state study

The valence state of the involved metals is an important factor in the SCR reaction, which for Ce was either Ce⁴⁺ or Ce³⁺. Thus, the valence states of Ce were examined in Ce/Ti, V/Ce/Ti, and V/Sb/Ce/Ti with various activities. In addition, the Ce valence state of Sb/Ce/Ti without the impregnation of vanadium was examined in V/Sb/Ce/Ti. Fig. 4 shows the XPS peaks of Ce 3d for Ce/Ti, Sb/Ce/Ti, V/Ce/Ti, and V/Sb/Ce/Ti. The Ce 3d peak was fitted into sub-bands by searching for the optimum combination of Gaussian bands. The sub-bands labeled u₁ and v₁ represent the 3d¹⁰4f¹ initial electronic state corresponding to Ce³⁺. The sub-bands labeled u, u₂, u₃, v, v₂, and v₃ represent the 3d¹⁰4f⁰ state of Ce⁴⁺ [11]. The Ce⁴⁺ ratios of all samples were calculated by Ce⁴⁺/(Ce³⁺ + Ce⁴⁺). The Ce⁴⁺ ratios decreased in the order of V/Sb/Ce/Ti (76.85%) $>$ V/Ce/Ti (69.94%) $>$ Sb/Ce/Ti (62.74%) $>$ Ce/Ti (60.96%). The Ce⁴⁺ ratio of Ce/Ti was 60.96% and it gradually increased with the impregnation of Sb, Ce, and Sb/Ce. Table 1 shows the catalyst activities and the Ce⁴⁺ ratios for Ce/Ti, V/Ce/Ti, and V/Sb/Ce/Ti. As Sb and/or Ce were

Fig. 3. NH_3 -TPD patterns of Ce/Ti, V/Ce/Ti, V/Sb/Ti and V/Sb/Ce/Ti.

Table 1

The ratio of deconvoluted Brønsted acid site peak areas in DRIFTS, Ce⁴⁺ ratio of catalysts and their activities. The following conditions were employed: 750 ppm NO, 48 ppm NO₂, 1.0 NH₃/NOx, 3% O₂, 6% H₂O, S.V. 60,000 h⁻¹.

Catalyst	The ratio of Brønsted acid site	Ce ⁴⁺ ratio (%)	NO _x conversion at 250 °C (%)	NO _x conversion at 200 °C (%)
Ce/Ti	1.0	60.96	38.86	21.41
V/Ce/Ti	6.0	69.94	77.48	36.14
V/Sb/Ce/Ti	12.3	76.58	94.80	47.77

added to Ce/Ti, the ratio of the Brønsted acid sites increased. Thus, an excellent activity resulted and the Ce⁴⁺ ratio increased as well. Changes of the Ce valence state were observed upon addition of the metal to Ce/Ti. When CeO₂ was added to TiO₂, ceria interacted with Ce and Ti and formed the valence states Ce⁴⁺ and Ce³⁺ (Ce⁴⁺: 60.96%). When Sb or V was added, an oxygen bridge of Ce–O–Sb or Ce–O–V was formed by the stable V₂O₅ (or Sb₂O₅), which increased the amount of ceria and the oxygen binding. When both Sb and V were simultaneously added to Ce/Ti, the amount of Ce–O–Sb(V) oxygen bridges increased as well as the Ce⁴⁺ ratio. These findings indicate that the elements Ce⁴⁺, Sb, and V supported on TiO₂ exert a positive synergistic interaction and accelerate the SCR reaction. Yang et al. [37] clarified how the presence of Ce⁴⁺ on the catalyst surface enhances the SCR reaction. They reported that Ce⁴⁺ activated adsorbed NH₃ on the surface to form NH₂, which then reacts with gaseous NO to form N₂ and H₂O.

The dependence of the catalytic activity on the Ce valence state was examined on V/Sb/Ce/Ti. Lee et al. [38] reported that the Ce⁴⁺/Ce³⁺ ratio varied depending on the temperature of the thermal treatment of Ce/Ti during the catalyst preparation. In this study, V and Sb were impregnated after the thermal treatment temperature of Ce/Ti was changed and V/Sb/Ce/Ti was prepared. To thoroughly investigate the thermal treatment effects of ceria and TiO₂, TiO₂ was used as titanic acid, which is the state prior to the final calcination step upon the manufacture of anatase TiO₂. Fig. 5 shows the Ce 3d XPS peak of V/Sb/Ce/Ti(400–600). The Ce⁴⁺ ratios varied for all catalysts prepared at the thermal treatment temperature of Ce/Ti. The Ce⁴⁺ ratios in V/Sb/Ce/Ti(400–600) decreased in the order of V/Sb/Ce/Ti(500) > V/Sb/Ce/Ti(550) > V/Sb/Ce/Ti(600) > V/Sb/Ce/Ti(450) > V/Sb/Ce/Ti(400). The highest Ce⁴⁺ ratio was obtained when the thermal treatment of Ce/Ti was performed at a temperature of 500 °C. Fig. 6 shows the correlation of the Ce⁴⁺ ratio and the catalytic activity. The Ce⁴⁺ ratio of V/Sb/Ce/Ti(500) was 82.48%. An increase in the Ce⁴⁺ ratio resulted in an excellent catalytic activity.

H₂-TPR analysis was carried out to investigate the presence of reducible species in V/Sb/Ce/Ti(400–600). To distinguish the vanadium and antimony peaks in V/Sb/Ce/Ti(400–600), H₂-TPR analyses of V/Ti and V/Sb/Ti were performed. Fig. 7 shows the results of the H₂-TPR analysis for V/Ti, V/Sb/Ti, and V/Sb/Ce/Ti(400–600). All catalysts exhibited major reduction peaks at temperatures in the range of 300–550 °C. Both peaks were observed at 380 and 403 °C in V/Ti. According to a previous study, the high temperature reduction peak is generally attributed to the reduction of vanadium in polymeric and bulk-like V₂O₅ species. The low temperature reduction peak is ascribed to highly dispersed vanadium species or monomeric species [39–41]. A new peak at a temperature of 426 °C was observed for the V-Sb/Ti catalyst. Since Sb₂O₅ species were reduced at a higher temperature than VO_x species [42], the peak at 426 °C could possibly be caused by Sb. Upon the addition of ceria, V/Sb/Ce/Ti(400–600) exhibited peaks other than V/Ti and V/Sb/Ti at higher temperature. According to the literature [15], the TPR peak at approximately 480 °C could be ascribed to the surface reduction of Ce⁴⁺ to Ce³⁺. The XPS Ce 3d spectra (Fig. 5) reveal that the peak at 480 °C increased in V/Sb/Ce/Ti(500) with the highest amount of Ce⁴⁺. Thus, a higher Ce⁴⁺ ratio was beneficial for the catalytic efficiency of V/Sb/Ce/Ti and occurred when the thermal treatment temperature of Ce/Ti was 500 °C.

Fig. 5. Ce 3d spectra of (a) V/Sb/Ce/Ti(400), (b) V/Sb/Ce/Ti(450), (c) V/Sb/Ce/Ti(500), (d) V/Sb/Ce/Ti(550) and (e) V/Sb/Ce/Ti(600) by XPS analysis.

Fig. 6. Correlation of the Ce⁴⁺ ratio with NO_x conversion over V/Sb/Ce/Ti(x00).

Fig. 7. H_2 -TPR profiles of V/Ti, V/Sb/Ti and V/Sb/Ce/Ti(x00) (experimental conditions: 30 mg cat, pretreatment at 400 $^{\circ}\text{C}$ for 30 min with 5% O_2/Ar 50 cm^3/min , 10% H_2/Ar reduction with heating rate 10 $^{\circ}\text{C}/\text{min}$, total flow rate 50 cm^3/min).

3.4. SO_2 resistance study

The effects of SO_2 addition on the activity of V/Sb/Ti, V/Sb/Ce/Ti, and V/W/Ti were monitored as a function of time on stream during the SCR of NO by NH_3 . The reaction conditions were as follows: 750 ppm NO, 48 ppm NO_2 , $\text{NH}_3/\text{NOx} = 1.0$, 3 vol% O_2 , 6 vol% H_2O , 500 ppm SO_2 , S.V. = 60,000 h^{-1} , and a total flow rate of 600 cm^3/min at 250 $^{\circ}\text{C}$. The activities of all catalysts were detected until they decreased to 0.85 with respect to their initial activities. Fig. 8(a) depicts the time dependence of the relative catalytic activity (k/k_0) on the proceeding SO_2 reaction, initiated by the addition of SO_2 at $t=0.0$ h. The initial efficiency was found to be more than 96% for all catalysts. The activity gradually decreased depending on the SO_2 injection time. V/W/Ti and V/Sb/Ti showed a rapid deactivation upon the addition of SO_2 in comparison with V/Sb/Ce/Ti. The duration times of V/W/Ti and V/Sb/Ti were 24.5 and 32.5 h at the final k/k_0 ratio of 0.85. In comparison to this, V/Sb/Ce/Ti exhibited a very high duration time of 58 h at a k/k_0 ratio of 0.85. The mechanisms of the SO_2 oxidation and sulfation reactions on the catalyst surface had been clarified as follows [43]: (1) (V^{3+})- $\text{SO}_3(\text{ads})$ formed when $\text{SO}_2(\text{g})$ coordinated to the terminal oxygen $\text{V}=\text{O}$; (2) (V^{3+})- $\text{SO}_3(\text{ads})$ converted to $\text{SO}_3(\text{g})$; (3) $\text{SO}_3(\text{g})$ induced the deactivation of the catalyst by forming NH_4HSO_4 , which resulted from the reaction of NH_3 and H_2O . It is well known that the deactivation of $\text{V}_2\text{O}_5/\text{TiO}_2$ in the presence of SO_2 at low temperatures is primarily due to the blocking of the catalyst pores caused by the formation of NH_4HSO_4 , which SO_3 oxidizes more readily than supported V_2O_5 , NH_3 , and H_2O [9,44]. For all catalysts, a similar drop in NH_3 , approximately 20 ppm, during the SCR reaction was detected in the absence of SO_2 . The difference in the deactivation of V/W/Ti, V/Sb/Ti, and V/Sb/Ce/Ti in the presence of SO_2 is possibly caused by the reaction between the catalysts and SO_2 rather than with NH_3 . The time dependence of catalyst deactivation due to SO_2 was studied by detecting the outlet SO_2 concentration, as shown in Fig. 8(b). The outlet SO_2 concentration started to decrease at the same point of time as the catalytic activity. The decrease in NH_3 results from a decrease in the catalytic activity and is accelerated by deactivation of the catalyst, which is caused by the reaction with SO_2 . The outlet SO_2 concentration was measured initially for 1 h after the injection of SO_2 into V/Sb/Ti, V/Sb/Ce/Ti, and V/W/Ti (Fig. 8(c)). V/W/Ti exhibited a low SO_2 resistance after reacting for 1 h with the highest concentration of SO_2 . Separately, V/Sb/Ce/Ti exhibited an excellent SO_2 resistance after reacting with the lowest concentrations of SO_2 .

Fig. 8. (a) Relative activity, (b) outlet SO_2 concentration, (c) outlet SO_2 concentration (for the initial 1 h) in the presence of SO_2 for the SCR of NO by NH_3 over V/Sb/Ti, V/Sb/Ce/Ti and V/W/Ti at 250 $^{\circ}\text{C}$ (NO: 750 ppm, NO_2 : 48 ppm, NH_3/NOx : 1.0, O_2 : 3 vol%, H_2O : 6 vol%, SO_2 : 500 ppm, S.V.: 60,000 h^{-1}).

In addition, changes in catalytic activity with respect to the initial catalytic activity were observed upon SO_2 injection. SCR activities of V/Sb/Ti, V/Sb/Ce/Ti, and V/W/Ti were determined after 20 h deactivation with SO_2 (Fig. 9). V/Sb/Ce/Ti, which had an excellent SO_2 resistance, exhibited an activity similar to its initial activity, but the activities of V/Sb/Ti and V/W/Ti were lower. Thus, V/Sb/Ce/Ti showed a better SO_2 resistance than V/Sb/Ti and V/W/Ti.

Fig. 9. The effect of reaction temperature on NO_x conversion of V/Sb/Ti, V/Sb/Ce/Ti and V/W/Ti after deactivation due to SO₂ for 20 h (NO: 750 ppm, NO₂: 48 ppm, NH₃/NO_x: 1.0, O₂: 3 vol%, H₂O: 6 vol%, S.V.: 60,000 h⁻¹).

To clarify the deactivation due to SO₂, we examined the SO₂-TPD for V/W/Ti, V/Sb/Ti, and V/Sb/Ce/Ti after exposure to 5000 ppm SO₂ for 1 h at 250 °C. Fig. 10 shows the dependence of the SO₂ (64 m/z) signals on the temperature, which exhibits one peak and one shoulder peak around 610 and 700 °C, respectively, for V/W/Ti, and two peaks around 615 and 700 °C for V/Sb/Ti. The low-temperature peak might be assigned to the desorption of SO₂ adsorbed to the catalyst surface. The high-temperature peak might originate from an impurity or from the desorption of SO₂ adsorbed to the catalyst in the bulk [45]. This peak appeared around 770 °C for V/Sb/Ti. In addition, for the SO₂-TPD of Ce/Ti, the peak at 700–875 °C corresponds to a sulfated ceria species. This study considered that CeO₂ formed the species Ce₂(SO₄)₃ by the reaction with SO₂ using the catalyst V/Sb/Ce/Ti. The SO₂-TPD measurements reveal that SO₂ rapidly decreases the deactivation efficiency of V/W/Ti and its desorption spectrum shows the largest peak. The SO₂-TPD peak of V/Sb/Ti decreased than V/W/Ti. This indicates that the addition of antimony inhibits the reaction of the vanadium and SO₂. The SO₂-TPD of V/Sb/Ce/Ti showed that the addition of antimony and ceria inhibited the reaction of vanadium and SO₂ more efficiently by reducing the amount of adsorbed SO₂. The peak of V/Sb/Ce/Ti at 770 °C is related to the formation of Ce₂(SO₄)₃ from SO₂ and

Fig. 10. SO₂-TPD patterns of V/W/Ti, V/Sb/Ti and V/Sb/Ce/Ti.

Fig. 11. TGA curves of V/Sb/Ce/Ti (fresh) and V/Sb/Ce/Ti (used) samples.

was extremely decreased in intensity. The SO₂-TPD peak decreased due to the deactivation of the catalyst upon SO₂ adsorption. This result demonstrates the excellent resistance of V/Sb/Ce/Ti against the deactivation due to SO₂.

The resistance to SO₂ greatly improved during the SO₂ deactivation experiment when ceria was added to V/Sb/Ce/Ti in comparison with V/Sb/Ti. To identify the cause, thermal gravimetric analysis (TGA) and transmission infrared spectroscopy (IR) of fresh and used samples were performed of V/Sb/Ce/Ti. The TGA spectra (Fig. 11) reveal a loss of mass of the used sample in two steps in the temperature ranges of 270–435 and 600–720 °C. The cause of the decrease in catalytic activity was the formation of ammonium sulfate on the catalyst surface during the deactivation due to SO₂. The loss of mass at 270–435 °C was caused by the decomposition of (NH₄)₂SO₄ [46], while the loss of mass at 600–720 °C corresponds to Ce₂(SO₄)₃. Fresh and used samples showed weight reductions of 0.64 wt% and 3.05 wt%, respectively. The amount of Ce₂(SO₄)₃ increased as CeO₂ reacted with SO₂ and O₂ during the progress of the experiment.

Fig. 12 shows the transmission IR spectra of the fresh and used catalysts. For the used sample, several bands at 982, 1196, 1128, 1414, and 1631 cm⁻¹, and a wide band at 3400–3500 cm⁻¹ were detected. According to the literature [47], the strong bands at 1196

Fig. 12. Transmission IR spectra of (a) V/Sb/Ce/Ti (fresh) and (b) V/Sb/Ce/Ti (used) samples.

and 1128 cm^{-1} are caused by bulk sulfate on the CeO_2 catalyst. The bands at 982 and 1414 cm^{-1} are due to surface sulfate species with only one $\text{S}=\text{O}$ double bond, and three $\text{S}-\text{O}$ bonds with the O atoms linked to the surface. The broad bands between 3400 and 3500 cm^{-1} and the band at 1631 cm^{-1} were assigned to H_2O [48]. It can be concluded that both surface and bulk sulfate species formed on the used sample. The bulk sulfate species correspond to $\text{Ce}_2(\text{SO}_4)_3$, which decomposes at high temperature.

In summary, the catalyst $\text{V}/\text{Sb}/\text{Ce}/\text{Ti}$ had a better SO_2 resistance compared with that of $\text{V}/\text{Sb}/\text{Ti}$ (or $\text{V}/\text{W}/\text{Ti}$). In the case of $\text{V}/\text{Sb}/\text{Ti}$ (or $\text{V}/\text{W}/\text{Ti}$), the deactivation progressed since SO_2 was oxidized to SO_3 after the injection, which induced the formation of NH_4HSO_4 on the surface of the catalyst. In the case of $\text{V}/\text{Sb}/\text{Ce}/\text{Ti}$, other reactions proceed upon SO_2 injection in addition to the formation of NH_4HSO_4 . SO_2 formed $\text{Ce}_2(\text{SO}_4)_3$ by reacting with CeO_2 and H_2O . Since SO_2 was consumed in the formation of $\text{Ce}_2(\text{SO}_4)_3$, the oxidation of SO_2 to SO_3 substantially decreased compared with $\text{V}/\text{Sb}/\text{Ti}$ (or $\text{V}/\text{W}/\text{Ti}$). Thus, the addition of Ce had a positive effect on delaying the catalyst deactivation in the presence of SO_2 .

4. Conclusions

We investigated the effects of Ce on the activity and the deactivation due to SO_2 of the catalyst $\text{V}/\text{Sb}/\text{Ce}/\text{Ti}$. In $\text{V}/\text{Sb}/\text{Ti}$ and $\text{V}/\text{Sb}/\text{Ce}/\text{Ti}$, Brønsted acid sites developed and similar activities were shown. The Ce^{4+} ratio increased upon the addition of Sb and V to Ce/Ti . $\text{V}/\text{Sb}/\text{Ce}/\text{Ti}$ was prepared by adjusting the Ce^{4+} ratio and showed an excellent activity when the Ce^{4+} ratio was increased. $\text{V}/\text{Sb}/\text{Ti}$ (or $\text{V}/\text{W}/\text{Ti}$) formed NH_4HSO_4 by the conversion of SO_2 to SO_3 by performing the SCR reaction in the presence of SO_2 (one route). However, $\text{V}/\text{Sb}/\text{Ce}/\text{Ti}$ shows additional reactions upon the injection of SO_2 , aside from the reaction that forms NH_4HSO_4 . At $\text{V}/\text{Sb}/\text{Ce}/\text{Ti}$, CeO_2 forms $\text{Ce}_2(\text{SO}_4)_3$ by reacting with SO_2 and O_2 (two routes). $\text{V}/\text{Sb}/\text{Ce}/\text{Ti}$ suppresses the production of NH_4HSO_4 since the injected SO_2 is consumed upon the formation of $\text{Ce}_2(\text{SO}_4)_3$. $\text{V}/\text{Sb}/\text{Ce}/\text{Ti}$ shows an excellent SO_2 resistance compared with that of $\text{V}/\text{Sb}/\text{Ti}$ (or $\text{V}/\text{W}/\text{Ti}$). In other words, CeO_2 formed cerium sulfate on the surface of $\text{V}/\text{Sb}/\text{Ce}/\text{Ti}$ in the reaction with SO_2 and O_2 . SO_2 poisons the catalyst, and once it is converted to cerium sulfate, the formation of ammonium bi-sulfate is suppressed.

References

- [1] G. Qi, R.T. Yang, J. Catal. 217 (2003) 434–441.
- [2] P.S. Metkar, M.P. Harold, V. Balakotaiah, Appl. Catal. B: Environ. 111–112 (2012) 67–80.
- [3] S. Roy, M.S. Hedge, G. Madras, Appl. Energy 86 (2009) 2283–2297.
- [4] P. Forzatti, Appl. Catal. A: Gen. 222 (2001) 221–236.
- [5] Y. Zhang, X. Zhu, K. Shen, H. Xu, K. Sun, C. Zhou, J. Colloid Interface Sci. 376 (2012) 233–238.
- [6] X. Wu, Z. Si, G. Li, D. Weng, Z. Ma, J. Rare Earths 29 (2011) 64–68.
- [7] L. Chen, J. Li, M. Ge, Chem. Eng. J. 170 (2011) 531–537.
- [8] S. Zhang, H. Li, Q. Zhong, Appl. Catal. A: Gen. 435–436 (2012) 156–162.
- [9] H. Huang, L. Jin, H. Lu, H. Yu, Y. Chen, Catal. Commun. 34 (2013) 1–4.
- [10] L. Chen, J. Li, M. Ge, Environ. Sci. Technol. 44 (2010) 9590–9596.
- [11] W. Shan, F. Liu, H. He, X. Shi, C. Zhang, Appl. Catal. B: Environ. 115–116 (2012) 100–106.
- [12] W. Shan, F. Liu, H. He, X. Shi, C. Zhang, Catal. Today 184 (2012) 160–165.
- [13] H. Chang, J. Li, J. Yuan, L. Chen, Y. Dai, H. Arandiyan, J. Xu, J. Hao, Catal. Today 201 (2013) 139–144.
- [14] B.M. Reddy, A. Khan, Y. Yamada, T. Kobayashi, S. Loridant, J.C. Volta, J. Phys. Chem. B 107 (2003) 5162–5167.
- [15] L. Chen, J. Li, M. Ge, J. Phys. Chem. C 113 (2009) 21177–21184.
- [16] X. Guo, C. Bartholomew, W. Hecker, L.L. Baxter, Appl. Catal. B: Environ. 92 (2009) 30–40.
- [17] M.D. Amiridis, I.E. Wachs, G. Deo, J.M. Jehng, D.S. Kim, J. Catal. 161 (1996) 247–253.
- [18] M. Kobayashi, R. Kuma, A. Morita, Catal. Lett. 112 (2006) 37–44.
- [19] M. Kobayashi, R. Kuma, S. Masaki, N. Sugishima, Appl. Catal. B: Environ. 60 (2005) 173–179.
- [20] P.W. Seo, J.Y. Lee, K.S. Shim, S.H. Hong, S.C. Hong, S.I. Hong, J. Hazard. Mater. 165 (2009) 39–47.
- [21] F. Liu, H. He, Z. Lian, W. Shan, L. Xie, K. Asakura, W. Yang, H. Deng, J. Catal. 307 (2013) 340–351.
- [22] H.H. Phil, M.P. Reddy, P.A. Kumar, L.K. Ju, J.S. Hyo, Appl. Catal. B: Environ. 78 (2008) 301–308.
- [23] Z. Wu, R. Jin, H. Wang, Y. Liu, Catal. Commun. 10 (2009) 935–939.
- [24] K.J. Lee, P.A. Kumar, M.S. Maqbool, K.N. Rao, K.H. Song, H.P. Ha, Appl. Catal. B: Environ. 142–143 (2013) 705–717.
- [25] K.N. Rao, B.M. Reddy, S.E. Park, Appl. Catal. B: Environ. 100 (2010) 472–480.
- [26] N.Y. Topsøe, J.A. Dumesic, H. Topsøe, J. Catal. 151 (1995) 241–252.
- [27] N.Y. Topsøe, H. Topsøe, J.A. Dumesic, J. Catal. 151 (1995) 226–240.
- [28] F. Tang, B. Xu, H. Shi, J. Qiu, Y. Fan, Appl. Catal. B: Environ. 94 (2010) 71–76.
- [29] Y. Zheng, A.D. Jensen, J.E. Johnson, Ind. Eng. Chem. Res. 43 (2004) 941–947.
- [30] D. Nicosia, I. Czekaj, O. Kröcher, Appl. Catal. B: Environ. 77 (2008) 228–236.
- [31] J.G. Amores, V.S. Escribano, G. Ramis, G. Busca, Appl. Catal. B: Environ. 13 (1997) 45–58.
- [32] G. Busca, L. Lietti, G. Ramis, F. Berti, Appl. Catal. B: Environ. 18 (1998) 1–36.
- [33] W. Xu, Y. Yu, C. Zhang, H. He, Catal. Commun. 9 (2008) 1453–1457.
- [34] X. Gao, Y. Jiang, Y. Fu, Y. Zhong, Z. Luo, K. Cen, Catal. Commun. 11 (2010) 465–469.
- [35] L. Chen, J. Li, M. Ge, R. Zhu, Catal. Today 153 (2010) 77–83.
- [36] W. Shan, F. Liu, H. He, X. Shi, C. Zhang, ChemCatChem 3 (2011) 1286–1289.
- [37] S. Yang, Y. Guo, H. Chang, L. Ma, Y. Peng, Z. Qu, N. Yan, C. Wang, J. Li, Appl. Catal. B: Environ. 136–137 (2013) 19–28.
- [38] S.M. Lee, H.H. Lee, S.C. Hong, Appl. Catal. A: Gen. 470 (2014) 189–198.
- [39] D.W. Kwon, K.H. Park, S.C. Hong, Appl. Catal. A: Gen. 451 (2013) 227–235.
- [40] I. Giakoumelou, C. Fountzoula, C. Kordulis, S. Boghosian, J. Catal. 239 (2006) 1–12.
- [41] G. Du, S. Lim, M. Pinault, C. Wang, F. Fang, L. Pfefferle, G.L. Haller, J. Catal. 253 (2008) 74–90.
- [42] H. Zhang, Z. Liu, Z. Feng, C. Li, J. Catal. 260 (2008) 295–304.
- [43] J.P. Dunn, P.R. Koppula, H.G. Stenger, I.E. Wachs, Appl. Catal. B: Environ. 19 (1998) 103–117.
- [44] R. Khodayari, C.U.I. Odenbrand, Appl. Catal. B: Environ. 33 (2001) 277–291.
- [45] C. Yanxin, J. Yi, L. Wenzhao, J. Rongchao, T. Shaozhen, H. Wenbin, Catal. Today 50 (1999) 39–47.
- [46] W. Xu, H. He, Y. Yu, J. Phys. Chem. A 113 (2009) 4426–4432.
- [47] M. Waqif, P. Bazin, O. Saur, J.C. Lavalle, G. Blanchard, O. Touret, Appl. Catal. B: Environ. 11 (1997) 193–205.
- [48] S. Lucas, E. Champion, D. Bernache-Assollant, G. Leroy, J. Solid State Chem. 177 (2004) 1302–1311.