

# High Voltage Power MOSFET

IXTH 6N120 IXTT 6N120

 $V_{DSS} = 1200 V$   $I_{D25} = 6 A$   $R_{DS(on)} = 2.6 \Omega$ 

N-Channel Enhancement Mode Avalanche Rated

Preliminary Data Sheet



| Symbol                                                | <b>Test Conditions</b>                                                                                                                                                   | Maximun                     | n Ratings      |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------|
| V <sub>DSS</sub><br>V <sub>DGR</sub>                  | $T_J = 25^{\circ}\text{C to } 150^{\circ}\text{C}$<br>$T_J = 25^{\circ}\text{C to } 150^{\circ}\text{C}; R_{GS} = 1 \text{ M}\Omega$                                     | 1200<br>1200                | V<br>V         |
| V <sub>GS</sub><br>V <sub>GSM</sub>                   | Continuous<br>Transient                                                                                                                                                  | ±20<br>±30                  | V              |
| D <sub>25</sub>                                       | T <sub>C</sub> = 25°C                                                                                                                                                    | 6                           | А              |
| I <sub>DM</sub>                                       | $\rm T_{\rm C}$ = 25°C, pulse width limited by $\rm T_{\rm JM}$                                                                                                          | 24                          | Α              |
| I <sub>AR</sub>                                       | $T_{c} = 25^{\circ}C$                                                                                                                                                    | 6                           | Α              |
| <b>E</b> <sub>AR</sub>                                | T <sub>C</sub> = 25°C                                                                                                                                                    | 25                          | mJ             |
| E <sub>AS</sub>                                       | $T_{c} = 25^{\circ}C$                                                                                                                                                    | 500                         | mJ             |
| dv/dt                                                 | $\begin{split} &I_{_{S}} &\leq I_{_{DM}},  di/dt \leq 100 \; A/\mu s,  V_{_{DD}} \leq V_{_{DSS}}, \\ &T_{_{J}} &\leq 150^{\circ} C,  R_{_{G}} = 2 \; \Omega \end{split}$ | 5                           | V/ns           |
| $\overline{\mathbf{P}_{\mathrm{D}}}$                  | T <sub>C</sub> = 25°C                                                                                                                                                    | 300                         | W              |
| T <sub>J</sub><br>T <sub>JM</sub><br>T <sub>stg</sub> |                                                                                                                                                                          | -55 +150<br>150<br>-55 +150 | °C<br>°C<br>°C |
| T <sub>L</sub>                                        | 1.6 mm (0.062 in.) from case for 10 s                                                                                                                                    | 300                         | °C             |
| M <sub>d</sub>                                        | Mounting torque                                                                                                                                                          | 1.13/10                     | Nm/lb.in.      |
| Weight                                                | TO-247 AD<br>TO-268                                                                                                                                                      | 6<br>4                      | g<br>g         |



## TO-268 (IXTT) Case Style



### **Features**

- International standard packages
- Low R<sub>DS (on)</sub> HDMOS™ process
- Rugged polysilicon gate cell structure
- Unclamped Inductive Switching (UIS) rated
- Low package inductance
  - easy to drive and to protect

| Symbol                | <b>Test Conditions</b>                                                             | Ch                     | aracteri | istic Val | ues |
|-----------------------|------------------------------------------------------------------------------------|------------------------|----------|-----------|-----|
| $(T_J = 25^{\circ}C)$ | , unless otherwise specified)                                                      | Min.                   | Тур.     | Max.      |     |
| V <sub>DSS</sub>      | $V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$                                    | 1200                   |          |           | V   |
| V <sub>GS(th)</sub>   | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$                                               | 2.5                    |          | 5.0       | V   |
| I <sub>GSS</sub>      | $V_{GS} = \pm 20 V_{DC}, V_{DS} = 0$                                               |                        |          | ±100      | nA  |
| I <sub>DSS</sub>      | $V_{DS} = V_{DSS}$                                                                 | $T_J = 25^{\circ}C$    |          | 25        | μΑ  |
|                       | $V_{GS} = 0 V$                                                                     | T <sub>J</sub> = 125°C |          | 500       | μΑ  |
| R <sub>DS(on)</sub>   | $V_{GS} = 10 \text{ V}, I_{D} = 0.5 I_{D25}$<br>Pulse test, t \le 300 \mus, duty ( | cycle d ≤2%            |          | 2.6       | Ω   |

### **Advantages**

- Easy to mount
- Space savings
- High power density

© 2004 IXYS All rights reserved DS99024B(01/04)



| Symbol                      | Test Condition                     | $(T_J = 25^{\circ}C, \text{ unle})$                |   | therwis | istic Va<br>se spec<br>Max. |     |
|-----------------------------|------------------------------------|----------------------------------------------------|---|---------|-----------------------------|-----|
| g <sub>fs</sub>             | $V_{DS} = 20 \text{ V; } I_{D}$    | = 0.5 I <sub>D25</sub> , pulse test                | 3 | 5       |                             | S   |
| C <sub>iss</sub>            | )                                  |                                                    |   | 1950    |                             | рF  |
| $\mathbf{C}_{oss}$          | $ V_{GS} = 0 V, V_{D}$             | <sub>s</sub> = 25 V, f = 1 MHz                     |   | 175     |                             | рF  |
| $\mathbf{C}_{rss}$          | J                                  |                                                    |   | 60      |                             | pF  |
| t <sub>d(on)</sub>          | )                                  |                                                    |   | 28      |                             | ns  |
| t <sub>r</sub>              | $V_{GS} = 10 \text{ V}, \text{ V}$ | $_{DS} = 0.5 \text{ V}_{DSS}, I_{D} = 0.5 I_{D25}$ |   | 33      |                             | ns  |
| $\mathbf{t}_{	ext{d(off)}}$ | $R_{\rm G} = 4.7 \Omega $ (I       | External)                                          |   | 42      |                             | ns  |
| t <sub>f</sub>              | J                                  |                                                    |   | 18      |                             | ns  |
| $\mathbf{Q}_{g(on)}$        | )                                  |                                                    |   | 56      |                             | nC  |
| $\mathbf{Q}_{gs}$           | $V_{GS} = 10 \text{ V}, \text{ V}$ | $_{DS} = 0.5 \text{ V}_{DSS}, I_{D} = 0.5 I_{D25}$ |   | 13      |                             | nC  |
| $\mathbf{Q}_{gd}$           | J                                  |                                                    |   | 25      |                             | nC  |
| R <sub>thJC</sub>           |                                    |                                                    |   |         | 0.42                        | K/W |
| R <sub>thCK</sub>           | (TO-247)                           |                                                    |   | 0.21    |                             | K/W |

### Source-Drain Diode

Characteristic Values

 $(T_J = 25^{\circ}C, \text{ unless otherwise specified})$ 

| Symbol          | Test Conditions                                                                                                                                | min. | typ. | max. |    |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|----|
| I <sub>s</sub>  | $V_{GS} = 0 \text{ V}$                                                                                                                         |      |      | 6    | Α  |
| SM              | Repetitive                                                                                                                                     |      |      | 24   | Α  |
| V <sub>SD</sub> | $\begin{split} &I_{_F} = I_{_S}, V_{_{GS}} = 0 \; V, \\ &\text{Pulse test, } t \leq 300 \; \mu\text{s, duty cycle d} \leq 2 \; \% \end{split}$ |      |      | 1.5  | V  |
| T <sub>rr</sub> | I <sub>F</sub> = 6A<br>-di/dt = 100 A/μs                                                                                                       |      | 850  |      | ns |

### Min Recommended Footprint



IXYS reserves the right to change limits, test conditions, and dimensions.

# 

Terminals: 1 - Gate 2 - Drain 3 - Source Tab - Drain

| Dim.           | Millimeter |       | Inc   | Inches |  |
|----------------|------------|-------|-------|--------|--|
|                | Min.       | Max.  | Min.  | Max.   |  |
| Α              | 4.7        | 5.3   | .185  | .209   |  |
| A <sub>1</sub> | 2.2        | 2.54  | .087  | .102   |  |
| A <sub>2</sub> | 2.2        | 2.6   | .059  | .098   |  |
| b              | 1.0        | 1.4   | .040  | .055   |  |
| b <sub>1</sub> | 1.65       | 2.13  | .065  | .084   |  |
| b <sub>2</sub> | 2.87       | 3.12  | .113  | .123   |  |
| С              | .4         | .8    | .016  | .031   |  |
| D              | 20.80      | 21.46 | .819  | .845   |  |
| Е              | 15.75      | 16.26 | .610  | .640   |  |
| е              | 5.20       | 5.72  | 0.205 | 0.225  |  |
| L              | 19.81      | 20.32 | .780  | .800   |  |
| L1             |            | 4.50  |       | .177   |  |
| ØP             | 3.55       | 3.65  | .140  | .144   |  |
| Q              | 5.89       | 6.40  | 0.232 | 0.252  |  |
| R              | 4.32       | 5.49  | .170  | .216   |  |
| S              | 6.15       | BSC   | 242   | BSC    |  |





Terminals: 1 - Gate 2 - Drain 3 - Source Tab - Drain

| INCHES   |                                                                                     | MILLIMETERS                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MIN      | MAX                                                                                 | MIN                                                                                                                                                                             | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| .193     | .201                                                                                | 4.90                                                                                                                                                                            | 5.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| .106     | .114                                                                                | 2.70                                                                                                                                                                            | 2.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| .001     | .010                                                                                | 0.02                                                                                                                                                                            | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| .045     | .057                                                                                | 1.15                                                                                                                                                                            | 1.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| .075     | .083                                                                                | 1.90                                                                                                                                                                            | 2.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| .016     | .026                                                                                | 0.40                                                                                                                                                                            | 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| .057     | .063                                                                                | 1.45                                                                                                                                                                            | 1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| .543     | .551                                                                                | 13.80                                                                                                                                                                           | 14.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| .488     | .500                                                                                | 12.40                                                                                                                                                                           | 12.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| .624     | .632                                                                                | 15.85                                                                                                                                                                           | 16.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| .524     | .535                                                                                | 13.30                                                                                                                                                                           | 13.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| .215 BSC |                                                                                     | 5.45 BSC                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .736     | .752                                                                                | 18.70                                                                                                                                                                           | 19.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| .094     | .106                                                                                | 2.40                                                                                                                                                                            | 2.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| .047     | .055                                                                                | 1.20                                                                                                                                                                            | 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| .039     | .045                                                                                | 1.00                                                                                                                                                                            | 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| .010     | BSC                                                                                 | 0.25 BSC                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .150     | .161                                                                                | 3.80                                                                                                                                                                            | 4.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | MIN .193 .106 .001 .045 .075 .016 .057 .543 .488 .624 .215 .736 .094 .047 .039 .010 | MIN MAX .193 .201 .106 .114 .001 .010 .010 .045 .057 .083 .016 .026 .057 .063 .543 .551 .488 .500 .624 .632 .524 .535 .215 BSC .736 .752 .094 .106 .047 .055 .039 .045 .010 BSC | MIN         MAX         MIN           .193         .201         4.90           .106         .114         2.70           .001         .010         .002           .045         .057         .15           .075         .083         1.90           .016         .026         0.40           .057         .063         1.45           .543         .551         13.80           .624         .632         15.85           .524         .535         13.30           .215         BSC         5.45           .736         .752         18.70           .094         .106         2.40           .047         .055         1.20           .039         .045         1.00           .010         BSC         0.25 |



Fig. 1. Output Characteristics



Fig. 2. Extended Output Characteristics



Fig. 3. Output Characteristics
@ 125 Deg. C



Fig. 4.  $R_{\text{DS(on)}}\,\text{Normalized to }I_{\text{D25}}\,\text{Value vs.}$ 



Fig. 5.  $R_{DS(on)}$  Normalized to  $I_{D25}$ 



Fig. 6. Drain Current vs. Case Temperature





Fig. 7. Input Admittance



Fig. 8. Transconductance



Fig. 9. Source Current vs. Source-To-Drain



Fig. 10. Gate Charge



Fig. 11. Capacitance



Fig. 12. Maximum Transient Thermal



IXYS reserves the right to change limits, test conditions, and dimensions.

