P1.42* Summing voltages for the lower left-hand loop, we have $-5 + \nu_a + 10 = 0$, which yields $\nu_a = -5$ V. Then for the top-most loop, we have $\nu_c - 15 - \nu_a = 0$, which yields $\nu_c = 10$ V. Finally, writing KCL around the outside loop, we have $-5 + \nu_c + \nu_b = 0$, which yields $\nu_b = -5$ V.

P1.69

Ohm's law for the 6- Ω resistor yields: $v_1=12$ V Then, we have $i_1=v_1/1=12$ A.Next, KCL yields $i_2=i_1+2=14$ A. Then for the top 2- Ω resistor, we have $v_2=14\times 1=14$ V. Using KVL, we have $v_3=v_2+v_1=26$ V. Next, applying Ohms law, we obtain $i_3=v_3/10=2.6$ A. Finally applying KCL, we have $I_x=i_2+i_3=16.6$ A.

P1.78 (a) $4 = i_1 + i_2$

- (b) $i_1 = v/15$ $i_2 = v/10$
- (c) 4 = v/15 + v/10v = 24 V
- (d) $P_{currentsource} = -I_s v = -96$ W (Power is supplied by the source.) $P_1 = v^2 / R_1 = 38.4$ W (Power is absorbed by R_1 .) $P_2 = v^2 / R_2 = 57.6$ W (Power is absorbed by R_2 .)

However i_3 and i_y are the same current: $i_y = i_3$. Simplifying and solving, we find that $i_3 = i_y = 2.31$ A.

P2.4* The $12-\Omega$ and $6-\Omega$ resistances are in parallel having an equivalent resistance of $4\ \Omega$. Similarly, the $18-\Omega$ and $9-\Omega$ resistances are in parallel and have an equivalent resistance of $6\ \Omega$. Finally, the two parallel combinations are in series, and we have

$$R_{ab} = 4 + 6 = 10 \ \Omega$$

P2.17 By symmetry, we find the currents in the resistors as shown below:

Then, the voltage between terminals a and b is $v_{ab} = R_{ea} = 1/3 + 1/6 + 1/3 = 5/6$

P2.25* Combining resistors in series and parallel, we find that the equivalent resistance seen by the current source is $R_{eq}=17.5~\Omega.$

Thus, $v = 8 \times 17.5 = 140 \text{ V}$. Also, i = 1 A.

P2.34
$$i = \frac{P}{V} = \frac{4.5 \text{ W}}{15 \text{ V}} = 0.3 A$$
 $R_{eq} = R + \frac{1}{1/R + 1/R} + R = 2.5 R$ $i = 0.3 = \frac{15}{R_{eq}} = \frac{15}{2.5 R}$ R= 20 Ω

$$\frac{v_1}{R_4} + \frac{v_1 - v_2}{R_2} + \frac{v_1 - v_3}{R_1} = 0$$

$$\frac{v_2 - v_1}{R_2} + \frac{v_2 - v_3}{R_3} = I_s$$

$$\frac{v_3}{R_5} + \frac{v_3 - v_2}{R_3} + \frac{v_3 - v_1}{R_1} = 0$$

In standard form, we have:

$$0.6167v_1 - 0.20v_2 - 0.25v_3 = 0$$

- 0.20v₁ + 0.325v₂ - 0.125v₃ = 4
- 0.25v₁ - 0.125v₂ + 0.50v₃ = 0

Using Matlab, we have

G = [0.6167 -0.20 -0.25; -0.20 0.325 -0.125; -0.25 -0.125 0.500]; I = [0; 4; 0]; V = G\I

V =

13.9016

26.0398

13.4608

P2.53* Writing a KVL equation, we have $v_1 - v_2 = 10$.

At the reference node, we write a KCL equation: $\frac{v_1}{5} + \frac{v_2}{10} = 1$.

Solving, we find $\nu_1=6.667$ and $\nu_2=-3.333$.

Then, writing KCL at node 1, we have $i_s = \frac{v_2 - v_1}{5} - \frac{v_1}{5} = -3.333$ A.

$$V_x = V_2 - V_1$$

Writing KCL at nodes 1 and 2:

$$\frac{v_1}{5} + \frac{v_1 - 2v_x}{15} + \frac{v_1 - v_2}{10} = 1$$

$$\frac{v_2}{5} + \frac{v_2 - 2v_x}{10} + \frac{v_2 - v_1}{10} = 2$$

Substituting and simplifying, we have

$$15\nu_1 - 7\nu_2 = 30 \quad \text{ and } \qquad \nu_1 + 2\nu_2 = 20 \, .$$

Solving, we find $\nu_1=5.405$ and $\nu_2=7.297$.