Introdução de estudo sobre o jogo Game of Life

Vinícius Pacheco Vieira

¹Instituto de Informática – Centro Universitário Franciscano (UNIFRA) Santa Maria – RS – Brazil

vinipachecov@gmail.com

Resumo. Este artigo propõe uma introdução do estudo ao jogo Game of Life e aos referênciais teóricos que ele pelos quais ele se embasa como os autômatos celulares. Neste trabalho serão apresentados os funcionamento e a origem do jogo assim e breves menções de campos de estudo que ele ajudou a popularizar.

1. Introdução

O Game of Life ou apenas Life, em Português Jogo da vida ou apenas vida, é um automato celular proposto pelo matemático britânico John orton Conway na década de 1970. Jogo é no modelo zero-player game, no qual não o jogo trabalha "sozinho" precisando apenas da primeira entrada. O usuário interage com o Game of Life(GoL) criando uma configuração inicial e observando como ela evolui. Para os mais experientes, também é possível criar padrões com propriedades particulares.

2. Origem

A ideia do jogo da vida proposto por Conway, foi inspirada nas descobertas científicas do matemático John von Neumann. O cientista buscava encontrar um modelo matemático que conseguisse criar cópias de si mesmo e conseguiu quando encontrou um modelo matemático com uma série de parametros para definir os estados de cada célula dentro de uma malha retangular. O jogo foi comentado em revistas do meio científico como Scientific American, e nas palavras do colunista da época Martin Gardner "O jogo tornou a Conway instantaneamente famosa, mas também abriu um novo campo de pesquisa na matemática, o campo de automato celular...Por conta das analogias com a ascenção, queda e alterações de uma sociedade de organismos vivos, o jogo pertence a uma classe da qual chamamos de "jogos de simulação" (jogos baseados em processos da vida real).

3. Regras

O ambiente de Game of Life é uma malha bidimensional ortogonal de "células" quadradas, nas quais é possível ter dois conjuntos de estados: viva ou morta, populada ou não populada. Cada célula

interage com oito vizinhos, os quais são as células verticalmente, horizontalmente ou diagonalmente adjacentes. A cada passo no tempo as seguintes transições ocorrem:

- 1. Qualquer célula viva com menos de dois vizinhos vivos irá morrer, como se fosse causada por pouca população.
- Qualquer céulla viva com dois ou três vizinhos vivos irá sobreviver na próxima geração.
- 3. Qualquer célula viva com três ou mais vizinhos vivos morre, por conta de super população.
- 4. Qualquer célula morta com exatamente três vizinhos vivos se torna uma célulaviva, como se fosse por reprodução.

Esse padrão seguirá alimentando o sistema. A primeira geração é criada pelo sistema usando essas regras acima simultaneamente para cada célula que nasce, segue viva ou morre, e o momento discreto o qual acontece o que algumas vezes é chamado de *tick* (em outras paalvras, cada geração é uma pura função da anterior). As regras continuam a serem aplicadas repetidamente para criar novas gerações.

3.1. Peculiaridades

Foram escolhidas regras cuidadosamente após experimentação para atender os seguintes critérios:

- Não deve haver crescimento explosivo.
- Deve exitir um pequeno conjunto de padrões iniciais com resultados caóticos e imprevisíveis.
- Deve haver potencial para construtores universáis Von Neumann
- As regras devem ser as mais simples possíveis, enquando aderem as propostas acima.

4. Exemplos de Padrões

Os primeiros padrões interessantes no GoL foram descobertos sem uso de computadores. Muitos padoes diferentes ocorrem no Game of Life, incluindo still lifes, oscillators e padrões que podem remeter a coisas da realidade como os padrões de espaço-naves descobertos por Richard K.Guy em 1970. Alguns dos padrões que ocorrem no jogo dentro dessas 3 classes são mostradas abaixo onde as células em preto são as vivas e as em branco são as mortas.

Referências

Chapman, Paul (2002), "Life Universal Computer". Retrieved 12 July 2009.

Berlekamp, E. R.; Conway, John Horton; Guy, R. K. (2001–2004). Winning Ways for your Mathematical Plays (2nd ed.). A K Peters Ltd.