## The KdV equation

The evolution of the KdV flow represents an isospectral deformation of the Schrödinger operator

$$\mathcal{L}(t)\psi = -\psi_{xx} - q(x,t)\psi.$$

The "spectrum" of  $\mathcal L$  is constant in time.

The forward scattering transform amounts to determining linearly independent solutions  $\psi_{\pm}(x,t,\lambda)$  of the Lax pair,  $\mathcal{L}(t)\psi_{\pm}=\lambda\psi_{\pm}$ , that are:

- 1. analytic on the complement of the spectrum of  $\mathcal{L}$ ,
- 2. are uniquely determined by jump/residue conditions on the spectrum, and

3. satisfy 
$$\psi_{\pm}(x,t,\lambda) = e^{\pm i\sqrt{\lambda}x \pm 4i\sqrt{\lambda}^3 t} (1+o(1)), \lambda \to \infty$$
.



## The KdV equation with decaying data

w/ Bernard Deconinck, Sheehan Olver