MODELOWANIE RUCHU ULICZNEGO NA SKRZYŻOWANIACH

NATALIA KLEPACKA SZYMON MALEC FILIP OSZCZEPALIŃSKI DAMIAN SZUSTER MICHAŁ WIKTOROWSKI

MODELIJEGO ZAŁOŻENIA

NATĘŻENIE RUCHU

$$n = \frac{a_n r}{T}$$

 a_n - ilość aut dla natężenia

 γ - długość

GĘSTOŚĆ RUCHU

$$g = \frac{n}{v_{sr}} = \frac{a_n r}{v_{sr} T}$$

PRZEPUSTOWOŚĆ RUCHU

$$p = \frac{a_p r}{T}$$

 a_p - ilość aut dla przepustowości

T - długość

BUDOWA MODELU

BUDOWA MODELU

$$L' = (v_{sr} + L') g(t) - p(t)$$

ROZWIĄZANIE

$$L\left(t\right) = L_{0} + \int_{0}^{t} \frac{v_{sr}g\left(\tau\right) - p\left(\tau\right)}{1 - g\left(\tau\right)} d\tau$$

PRZYKŁADY

STAŁE NATĘŻENIE I PRZEPUSTOWOŚĆ

$$g(t) = g$$

$$p(t) = p$$

$$L(t) = L_0 + \frac{v_{sr}g - p}{1 - q}t$$

Wykres L(t)

SYGNALIZACJA ŚWIETLNA

$$g(t) = g$$

$$p(t) = \begin{cases} v_{sr} & \text{dla } 100n < t \le 100n + T_Z \\ 0 & \text{dla } 100n + T_Z < t \le 100(n+1) \end{cases}, \quad n \in \mathbb{N}$$

 T_Z – czas światła zielonego

Wykres przepustowości dla Tz = 50

Wykres L(t) dla Tz = 10

Wykres L(t) dla Tz = 10:60

