

Producing Zirconium Diboride Components with Complex, Near-Net Shape Geometries by Aqueous Room- Temperature Injection Molding

Valerie Wiesner

Profs. Jeffrey Youngblood and Rodney Trice

*Purdue University
School of Materials Engineering*

NSF Materials and Surface Engineering Grant CMMI-0726304
NASA Pathways Program, NASA Glenn Research Center
U.S. Dept. of Education GAANN Grant P200A10036

Advancing Ceramic Processing for Hypersonics

- Need for manufacturing complex-shaped ceramic components in aerospace
- Hypersonic flight speeds > Mach 5
 - Temperatures > 1900°C (3500°F)

NASA's X-43A hypersonic vehicle.

Advancing Ceramic Processing for Hypersonics

- Need for manufacturing complex-shaped ceramic components in aerospace
- Hypersonic flight speeds > Mach 5
 - Temperatures > 1900°C (3500°F)

Material	Melting Temperature (°C)	Density (g/cm³)	Flexural Strength (MPa)	Elastic Modulus (GPa)
ZrB ₂	3245	6.08	275-490	489-493
SiC	Dissociates 2245	3.21	480-580	410-444
Al ₂ O ₃	2072	3.9	200-700	393
Stainless Steel AISI316L	1400	8	515-620	193
Aluminum 7075	900	2.8	228-572	71

Opeka, M.M., et al., *Journal of the European Ceramic Society*, 1999. 19(13-14): p. 2405-2414.

Fahrenholz, W.G., et al., *Journal of the American Ceramic Society*, 2007. 90(5): p. 1347-1364.

Callister Jr., W. D., *Materials Science and Engineering An Introduction*. John Wiley & Sons, Inc.: 2007; Vol. 7th.

Advancing Ceramic Processing

- Ceramic injection molding
 - Net-shape production of parts possible
 - High-volume production
 - Pressureless sintering

Parts fabricated by injection molding powders.

Previous Work on Ceramic Injection Molding

- **Ceramic injection molding**
 - Net-shape production of parts possible
 - High-volume production
 - Pressureless sintering
- **Polymer-based binder system in feedstock**
 - Thermoplastic polymer
 - Wax (carnauba, paraffin)
 - Plasticizer or dispersant

Schematic of conventional plunger-type injection molding apparatus.

Previous Work on Ceramic Injection Molding

- Ceramic injection molding
 - Net-shape production of parts possible
 - High-volume production
 - Pressureless sintering
- Polymer-based binder system in feedstock
 - Thermoplastic polymer
 - Wax (carnauba, paraffin)
 - Stearic acid

→ Energy-intensive heating and cooling of feedstock

→ Non-aqueous, multi-component binders

Ceramic Suspension Gel (CeraSGel)

- Suspension of ceramic powders in polymer gel
 - High ceramic content (~50 vol.%)
 - Minimal addition of water-soluble polymer (<5 vol.%)

Advantages

- Flowable at room temperature
- Yield-pseudoplastic
 - High yield point
 - Shear thinning

Sintered ZrB_2 specimen (right) formed by casting CeraSGels.

Injection Mold Design and Setup

- Force at constant rate exerted onto plunger to force CeraSGel out of chamber into mold
 - MTS setup
- Mold design
 - Mechanical characterization using ASTM C1323-10

Schematic of injection mold device.

- Machine C-shape from ring

CeraSGel Injection Molding Process

ZrB₂ CeraSGel Material Selection

- *Pressureless sintering* of ZrB₂ typically >2000°C
 - ZrB₂ sensitive to oxygen impurities
 - B₄C sintering aid
 - Attrition mill using WC media
- Dispersant to maximize ZrB₂ powder loading
- PVP as binder to tailor flow properties

SEM images of a) as-received ZrB₂ powders (H.C. Starck Grade B); b) ZrB₂+B₄C powders after attrition milling with WC media resulting in d₅₀~0.5 μm.

Characterizing CeraSGel Formulations

Evaluate effect of PVP content in CeraSGels containing 48.6 vol.% $\text{ZrB}_2+\text{B}_4\text{C}+\text{WC}$

- 1 vol.% PVP
- 2 vol.% PVP
- 3 vol.% PVP

- Rheological behavior of CeraSGels
- Machinability in green state
- Density and composition after binder removal and pressureless sintering
- Mechanical strength of sintered samples

Rheological Dependence on Polymer Content

Vary PVP amount in CeraSGel

- 1 vol.% PVP
- 2 vol.% PVP
- 3 vol.% PVP

Polymer Content	pH	Estimated Yield Stress [Pa]
1 vol.%	8.85 ± 0.1	567
2 vol.%	8.91 ± 0.1	405
3 vol.%	8.89 ± 0.1	235

- pH of suspensions constant for PVP contents
→ PVP content does not alter pH
- Time-dependent response
- Use creep test approach to approximate yield shear stress for $\text{ZrB}_2 + \text{B}_4\text{C} + \text{WC}$ suspensions
→ Yield stress decreases with increasing polymer content

Machinable in Green State

- Prepare sample in green state
 - Even out surfaces by polishing
 - Chamfer edges
- **Binder burnout and pressureless sintering**
 - Ramp to 600°C (4°C/min), 1h hold (vacuum)
 - 1650°C (10°C/min), 1h hold, begin argon backfill
 - 1850 (10°C/min), 1.5h hold in argon

Preparing green body for mechanical testing.

a) ZrB_2 sample in green state and b) after binder burnout and sintering.

PVP Effect on Density and Internal Porosity

- Archimedes density test
 - True density (TD) = 6.17 g/cm³
 - Based on 86 wt.% ZrB₂, 4 wt.% B₄C and 10 wt.% WC

PVP content	Relative density (TD%)
1 vol.%	99.4 ± 0.3
2 vol.%	100.5 ± 0.4
3 vol.%	98.2 ± 0.8

- Specimens prepared with 3 vol.% PVP had lowest density
- ~21% linear shrinkage

PVP Effect on Density and Internal Porosity

Scanning electron microscopy (SEM)

- Dense microstructure
- Grain size dependence

PVP content	Relative density (TD%)	Average grain size (μm)
1 vol.%	99.4 ± 0.3	9.8 ± 6.2
2 vol.%	100.5 ± 0.4	10.6 ± 5.3
3 vol.%	98.2 ± 0.8	7.7 ± 3.7

→Unclear if polymer content affects grain size of sintered part

Elemental Analysis of Sintered Specimens

Energy dispersive spectroscopy (EDS)

- B_4C grains surrounded by ZrB_2 grains
- No presence of oxygen detected

Cross section of specimen prepared with 1 vol.% PVP CeraSGel.

Phase Analysis of Sintered Specimens

- Tungsten formed solid solution with ZrB_2
→ ZrB_2 peaks shifted to higher angles after sintering

- No oxide phases detected

✓ **Binder content did not seem to affect sintered ceramic compositions**

XRD spectra of sintered ZrB_2 specimens prepared with 1, 2 and 3 vol.% PVP CeraSGels and of attrition milled $\text{ZrB}_2/\text{B}_4\text{C}/\text{WC}$ powders.

Mechanical Strength of Sintered Parts

ASTM C 1323-10¹

Ultimate strength at ambient temperatures

- Requires compressive loading of C-ring specimens

$$\sigma_{\theta \max} = \frac{PR}{btr} \left[\frac{r_o - r_a}{r_a - R} \right]$$

$$R = \frac{(r_o - r_i)}{\ln(r_o/r_i)} \quad r_a = \frac{r_o + r_i}{2}$$

Geometry of C-ring specimen for ASTM C 1323-10 (modified from standard¹).

Effect of PVP on Average C-ring Strength of ZrB₂ Samples

- C-ring strength values lower than anticipated
 - ASTM C 1323-10 not comparable to other flexure tests
- Grain sizes comparable to literature
- Defects introduced during forming

PVP Content in vol.% (wt.%)	Relative density (TD%)	Average C-ring strength (MPa)
1 (0.3)	99.4 ± 0.3	31 ± 12
2 (0.7)	100.5 ± 0.4	73 ± 15
3 (1.0)	98.2 ± 0.8	75 ± 27

Final sintered C-shaped sample.

→ Evaluate ZrB₂-based CeraSGels with varying PVP contents and powder loadings

Conclusions and Future Work

- **Rheology of ZrB₂+B₄C+WC CeraSGels**
 - Flow properties suitable for room-temperature processing
 - Effective yield point decreased with increasing PVP content
- **Machinable in green state**
- **Dense (>98%TD) ZrB₂ samples produced by pressureless sintering**
 - 21% linear shrinkage
 - PVP did not affect final composition
- **Mechanical characterization using ASTM C 1323-10**
 - C-strength increased with increasing PVP content

→ Prepare and evaluate CeraSGels and resulting C-ring specimens containing >3 vol.% PVP with varying solids loading

Dense ZrB₂ rings have been fabricated by room-temperature injection molding of CeraSGels.