Interrogation no 1

Mardi 8 octobre 2024 — durée : 65 minutes

Les réponses doivent être justifiées. On portera une attention particulière à la rédaction.

Les documents, téléphones portables et autres appareils électroniques sont interdits.

Les exercices sont indépendants les uns des autres.

Chaque question est notée sur 1 point.

Question de cours. Énoncer proprement deux résultats du cours portant sur l'espérance conditionnelle d'une variable aléatoire par rapport à une tribu.

On veillera à bien introduire chaque lettre mathématique, comme X ou \mathcal{G} , par un « soit » et à n'oublier aucune hypothèse. On demande des résultats sur l'espérance conditionnelle, pas la définition d'espérance conditionnelle.

Exercice 1. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes, toutes de loi uniforme sur [0,1]. L'objectif de cet exercice est de démontrer que $X_n + \frac{X_{n+1}}{n}$ converge en loi vers X_1 .

- 1. Montrer que $X_1 + \frac{X_2}{n}$ converge en loi vers X_1 .
- 2. Pour tout $n \ge 1$, montrer que (X_n, X_{n+1}) a même loi que (X_1, X_2) .
- 3. Conclure.

Exercice 2. Soient X, Y et Z trois variables aléatoires indépendantes définies sur un espace probabilisé $(\Omega, \mathscr{F}, \mathbf{P})$. On suppose que chacune de ces trois variables aléatoires est de loi gaussienne (on dit aussi normale) d'espérance nulle et de variance égale à 1. On s'intéresse à la variable aléatoire $U = XZ \mathbf{1}_{\{Z>0\}} + \sin(XY)$.

Aucune des questions de cet exercice ne requiert de faire des calculs compliqués. Les questions 2, 3 et 4 peuvent être traitées indépendamment les unes des autres.

1. Justifier soigneusement que, pour toute sous-tribu $\mathscr G$ de $\mathscr F$, tous les termes de la formule suivante ont un sens et que cette formule est vraie :

$$\mathbf{E}[U \,|\, \mathscr{G}] = \mathbf{E}\left[XZ\,\mathbf{1}_{\{Z \geq 0\}} \,|\, \mathscr{G}\right] + \mathbf{E}[\sin(XY) \,|\, \mathscr{G}].$$

La réponse à la question 1 n'a pas à être longue, il s'agit seulement que les arguments soient là.

- 2. Calculer $\mathbf{E}[U \mid X, Y]$, c'est-à-dire l'espérance conditionnelle de U sachant X et Y. Il s'agit de $\mathbf{E}[U \mid (X, Y)]$, ou encore de $\mathbf{E}[U \mid \mathscr{G}]$ pour $\mathscr{G} = \sigma(X, Y)$.
- 3. Calculer $\mathbf{E}[U \mid Z]$.
- 4. Calculer $\mathbf{E}[U \mid X]$.

Exercice 3. Soit $(Y_n)_{n\geq 1}$ une suite de variables aléatoires réelles indépendantes. On introduit la variable aléatoire $S=\sup_{n\geq 1}Y_n=\sup\{Y_n:n\geq 1\}$.

- 1. Montrer que $\mathbf{P}(S=\infty) \in \{0,1\}$. On justifiera soigneusement. Notamment, il se trouve que si on remplace ∞ par 1, alors la probabilité n'appartient pas nécessairement à $\{0,1\}$. Votre argument devra être suffisamment détaillé pour que je comprenne en quoi la valeur ∞ joue un rôle particulier.
- 2. Dans le cadre de cet énoncé, est-il possible d'avoir simultanément l'égalité $\mathbf{P}(S=\infty)=1$ et la convergence en probabilité de Y_n vers 0? Si oui, on donnera un exemple de suite $(Y_n)_{n\geq 1}$ qui convient et expliquera pourquoi il convient. Sinon, on démontrera que ces conditions sont incompatibles.