Politechnika Wrocławska

Katedra Teorii Pola, Układów Elektronicznych i Optoelektroniki

Zespół Układów Elektronicznych

LABORATORIUM UKŁADÓW ELEKTRONICZNYCH

Data: 10.05.2021 **Dzień**: Poniedziałek

Grupa: E12-93| **Godzina**: 13:15-15:30

TEMAT ĆWICZENIA:

Wzmacniacz tranzystorowy

DANE PROJEKTOWE:

Tranzystor BC 547 C

$$I_{CQ} = 1mA$$

$$K_{U} = 50 \frac{V}{V}$$

$$R_L = 5.6k\Omega$$

$$R_g=8,\!2k\Omega$$

Lp.	Nazwisko i Imię	Oceny	
1.	Kuboń Piotr 252871		

1. Część praktyczna

1.1. Dane projektowe

1.1.1. Zapis danych

Wzmocnienie napięciowe: $K_U = -100 \frac{V}{V}$

Prąd kolektora: $I_{CQ} = 3.5 mA$

Rezystancja obciążenia: $R_L = 3k\Omega$

Rezystancja wyjściowa: $R_g = 10k\Omega$

$$U_{CEO} = 5V$$

$$\beta = 300$$

$$C_1 = C_2 = 100nF$$

$$C_E = 100 \mu F$$

1.1.2. Obliczenie wartości elementów

$$g_m = \frac{I_{CQ}}{\varphi_T} = \frac{3,5mA}{26mV} = 135mS$$

$$R_{obc} = \frac{K_u}{-g_m} = \frac{100}{0,135} = 740,4\Omega$$

$$\frac{1}{R_{obc}} = \frac{1}{R_L} + \frac{1}{R_{CE}} + \frac{1}{R_C}$$

$$R_C = \left(\frac{1}{R_{OBC}} - \frac{1}{R_l} - \frac{1}{R_{CE}}\right)^{-1} = \left(\frac{1}{740,74} - \frac{1}{3000} - \frac{1}{58700}\right)^{-1} = 1000\Omega$$

Przymujemy:

$$U_{RE} = (2 \div 4) U_{BEQ}$$

$$U_{BEO} = 0.65V$$

$$U_{RE} = 3U_{BEQ} = 1,95V$$

$$I_E = I_B + I_C$$

$$I_E \sim I_C = 3.5 mA$$

$$R_E = \frac{U_{RE}}{I_{CQ}} = \frac{1,95}{0,0035} = 557\Omega$$

Przyjmujemy zgodnie z szeregiem E24 $R_E=560 \Omega$

$$I_{BQ} = \frac{I_{CQ}}{\beta} = \frac{0,0035}{300} = 11,6\mu A$$

$$I_D = 10 I_{BO} = 116,6 \,\mu A$$

$$R_{B2} = 4 * \frac{U_{BEQ}}{I_D} = 22,298k\Omega$$

Przyjmujemy zgodnie z szeregiem E24 $R_{B2} = 22k\Omega$

$$U_{CC} = U_{RC} + U_{CEO} + U_{RE}$$

$$U_{CC} = I_{CQ}R_C + U_{CEQ} + I_{CQ}R_E = 5 + 3.5 * 10^{-3}(10^3 + 560) = 10.5V$$

$$U_B = 4 * U_{BEQ} = 2,6V$$

$$R_{B1} = \frac{U_{CC} - U_B}{11 * I_{BO}} = \frac{10.5 - 2.6}{128.26 * 10^{-6}} = 61593\Omega$$

Przyjmujemy zgodnie z szeregiem E24 $R_{B1}=62k\Omega$

Z noty katalogowej odczytujemy:

$$C_{BC} = 3.5pF$$

$$f_T = 300MHz$$

$$h_{FE}(C) = \beta = 500$$

$$R_{be} = \frac{\beta}{a_m} = \frac{500}{0.135} = 3703 \Omega$$

$$R_{we} = \left(\frac{1}{R_{P1}} + \frac{1}{R_{P2}} + \frac{1}{R_{P2}}\right)^{-1} = \left(\frac{1}{62k} + \frac{1}{22k} + \frac{1}{3703}\right)^{-1} = 3015\Omega$$

$$R_{wy} = \left(\frac{1}{R_{CE}} + \frac{1}{R_C}\right)^{-1} = \left(\frac{1}{58700} + \frac{1}{1000}\right)^{-1} = 1000\Omega$$

$$C_{BE} = \frac{g_m}{2\pi f_T} - C_{BC} = \frac{0,135}{2*3,14*300*10^6} - 3,5*10^{-12} = 68pF$$

$$C_{we} = C_{BE} + C_{BC}(1 - K_u) = 418pF$$

$$f_g = \frac{1}{2\pi C_{we} \left(\left(\frac{1}{R_{we}} + \frac{1}{R_g} \right)^{-1} \right)} = 165,5kHz$$

$$f_{d1}(C_1) = \frac{1}{2\pi C_1(R_a + R_{we})} = 122Hz$$

$$f_{d2}(C_2) = \frac{1}{2\pi C_2 (R_L + R_{wy})} = 400,89Hz$$

$$f_{dE}(C_E) = \frac{\beta}{2\pi C_E \left(\left(\frac{1}{R_g} + \frac{1}{R_{B1}} + \frac{1}{R_{B2}} \right)^{-1} + R_{be} \right)} = 80,4Hz$$

$$f_d = \sqrt{f_{d1}^2 + f_{d2}^2 + f_{dE}^2} = 426Hz$$

1.1.3. Pomiar wartości elementów układu:

$$R_C = 997,6\Omega$$

$$R_E = 551,6\Omega$$

$$R_{B2}=21607\Omega$$

$$R_{B1}=62,3k\Omega$$

$$R_L = 3024,9\Omega$$

$$R_g = 9885 \Omega$$

$$C_1 = 98nF$$

$$C_2 = 100,41nF$$

$$C_{CE} = 87 \mu F$$

1.2. Przebieg pomiarów dla układu bez sprzężenia zwrotnego

1.2.1. Pomiar punktu pracy tranzystora

Pomiaru dokonano dla:

$$U_{kolektora} = 10,5V$$

Zmierzono napięcie między kolektorem a emiterem, uzyskując napięcie U_{CEQ} równe 5V. Następnie dokonano pomiaru napięcia między bazą a emiterem uzyskując $U_{BEQ}=0.6387V$, natomiast pomiaru prądu kolektora dokonano pośrednio, za pomocą pomiaru spadku napięcia na rezystorze kolektorowym oraz przy użyciu prawa Ohma:

$$I_{CQ} = \frac{U_c}{R_c} = \frac{3,537}{1000} = 3,537 mA$$

1.2.2. Pomiar maksymalnej amplitudy napięcia wejściowego

Pomiary wykonano dla częstotliwości sygnału 10kHz.

Zwiększając stopniowo amplitudę sygnału wejściowego, uzyskano maksymalną wartość niezniekształconego sygnału wyjściowego, którego wartość wynosi 3,52V Peak-Peak.

Uzyskano tą wartość dla napięcia wejściowego równego 160mV Peak-Peak.

1.2.3. Pomiar wzmocnienia

Pomiary wykonano dla napięcia wejściowego równego 30,8mV Peak-Peak.

W celu pomiaru wartości wzmocnienia skutecznego, należy zmierzyć wartości sygnałów wejściowego i wyjściowego, w celu wstawienia odpowiednich danych do wzoru:

$$K_{US} = \frac{U_{WY}}{U_{WE}} = \frac{0.716}{0.0308} = 23.24 \frac{V}{V}$$

$$K_{US} = 27,34 dB$$

Rys. 1: Ekran oscyloskopu podczas pomiaru wartości wzmocnienia skutecznego

W celu dokonania pomiaru wartości wzmocnienia należy zewrzeć rezystor Rg oraz powtórzyć pomiary. Przed dokonaniem pomiaru zmieniono wartość napięcia wejściowego na wartość 5,12mV Peak-Peak. Uzyskujemy następujące wzmocnienie:

$$K_U = \frac{U_{WY}}{U_{WE}} = \frac{0,424}{0,00512} = 82.8 \frac{V}{V}$$

$$K_U = 38,36 \ dB$$

Rys. 2: Ekran oscyloskopu podczas pomiaru wartości wzmocnienia

1.2.4. Pomiar wartości rezystancji wyjściowej i wejściowej

Pomiaru należy dokonać dla dołączonego i odłączonego obciążenia, następnie zmierzone wartości napięcia wyjściowego wstawić do wzoru:

$$R_{wy} = \left(\frac{U_{wy}(R_l = \infty)}{U_{wy}(R_l)} - 1\right) R_l = \left(\frac{0.322}{0.244} - 1\right) 3000 = 959\Omega$$

Wartość rezystancji wejściowej można wyliczyć ze wzoru:

$$R_{we} = \frac{R_g}{\frac{K_U}{K_{USk}} - 1} - R_{wy \ dzielnika} = \frac{10000}{\frac{82,8}{23,24} - 1} - 91 = 3810\Omega$$

1.2.5. Pomiar częstotliwości granicznych

Pomiary wykonano dla napięcia wyjściowego wynoszącego 1V Peak-Peak.

Pomiar wykonano zwiększając częstotliwość sygnały wejściowego od 10kHz, aż do uzyskania na wyjściu sygnału o wartości 0,707*1V. Spadek napięcia wyjściowego o do tej wartości odpowiada spadkowi wartości o 3dB, co pozwala określić górną częstotliwość graniczną, która wynosi:

$$f_a = 220kHz$$

Pomiar dolnej częstotliwości granicznej dokonano tym samym sposobem, jednak zmniejszając, a nie zwiększając częstotliwość. Uzyskana częstotliwość odpowiadająca spadkowi napięcia wyjściowego o 3dB od wartości początkowej wynosi:

$$f_d = 500Hz$$

1.2.6. Sporządzenie charakterystyki częstotliwościowej i fazowej

Charakterystykę wygenerowano przy pomocy programu. Oznaczono na niej częstotliwość graniczną górną i dolną.

Rys. 3 Charakterystyka amplitudowo-częstotliwościowa i amplitudowo-fazowa bez sprzężenia

1.3. Przebieg pomiarów dla układu ze sprzężenia zwrotnego

W celu przeprowadzenia pomiarów ze sprzężeniem zwrotnym, wylutowano kondensator C_E .

1.3.1. Pomiar punktu pracy tranzystora

Punkt pracy tranzystora pozostaje bez zmian.

1.3.2. Pomiar maksymalnej amplitudy napięcia wejściowego

Pomiary wykonano dla częstotliwości sygnału 10kHz.

Zwiększając stopniowo amplitudę sygnału wejściowego, uzyskano maksymalną wartość niezniekształconego sygnału wyjściowego, którego wartość wynosi 5,28V Peak-Peak.

Rys. 4: Ekran oscyloskopu przy pomiarze maksymalnej nie zniekształconej wartości sygnału wyjściowego

1.3.3. Pomiar wzmocnienia

Pomiary wykonano dla napięcia wejściowego równego 30,8mV Peak-Peak.

W celu pomiaru wartości wzmocnienia skutecznego, należy zmierzyć wartości sygnałów wejściowego i wyjściowego, w celu wstawienia odpowiednich danych do wzoru:

$$K_{US} = \frac{U_{WY}}{U_{WE}} = \frac{0.912}{1.03} = 0.885 \frac{V}{V}$$

Co odpowiada wzmocnieniu:

$$K_{US} = -1,061 dB$$

Osiągnięto wartość ujemną wzmocnienia w dB, ponieważ wzmocnienie w V/V jest mniejsze od 1.

W celu dokonania pomiaru wartości wzmocnienia należy zewrzeć rezystor Rg oraz powtórzyć pomiary. Uzyskujemy następujące wzmocnienie:

$$K_U = \frac{U_{WY}}{U_{WE}} = \frac{1,48}{1,03} = 1,44\frac{V}{V}$$

Co odpowiada wzmocnieniu:

$$K_{II} = 3,167 dB$$

1.3.4. Pomiar wartości rezystancji wejściowej i wyjściowej

$$R_{we} = \frac{R_g}{\frac{K_U}{K_{Usk}} - 1} - R_{wy \ dzielnika} = \frac{10000}{\frac{1,44}{0,885} - 1} - 91 = 15854\Omega$$

$$R_{wy} = \left(\frac{U_{wy}(R_l = \infty)}{U_{wy}(R_l)} - 1\right) R_l = \left(\frac{1,19}{0,904} - 1\right) 3000 = 949\Omega$$

1.3.5. Pomiar częstotliwości granicznych

Pomiary wykonano dla napięcia wyjściowego wynoszącego 1V Peak-Peak.

Pomiar wykonano zwiększając częstotliwość sygnały wejściowego od 10kHz, aż do uzyskania na wyjściu sygnału o wartości 0,707*1V. Spadek napięcia wyjściowego o do tej wartości odpowiada spadkowi wartości o 3dB, co pozwala określić górną częstotliwość graniczną, która wynosi:

$$f_q = 2,3MHz$$

Pomiar dolnej częstotliwości granicznej dokonano tym samym sposobem, jednak zmniejszając, a nie zwiększając częstotliwość. Uzyskana częstotliwość odpowiadająca spadkowi napięcia wyjściowego o 3dB od wartości początkowej wynosi:

$$f_d = 460 Hz$$

Rys. 5: Ekran oscyloskopu przy pomiarze częstotliwości górnej

1.3.6. Sporządzenie charakterystyki częstotliwościowej i fazowej

Charakterystykę wygenerowano przy pomocy programu. Oznaczono na niej częstotliwość graniczną górną i dolną.

Rys. 6 Charakterystyka amplitudowo-częstotliwościowa i amplitudowo-fazowa ze sprzężeniem

1.4. Tabela parametrów wzmacniacza

	Wzmacniacz bez sprzężenia zwrotnego		Wzmacniacz ze sprzężeniem zwrotnym	
Parametr	Wartość zadana	Wartość	Wartość zadana	Wartość zmierzona
	lub obliczona	zmierzona	lub obliczona	
$U_{CEQ}[V]$	5	5		5
$U_{BEQ}[V]$	0,65	0,6387		0,6387
$I_{CQ}[mA]$	3,5	3,537		3,537
$U_{WY \max P-P}[V]$	-	3,52		5,28
$K_{USK}\left[\frac{V}{V}\right]; [dB]$	-23,095 27,27	-23,24 27,34		0,885 -1,06
$K_U\left[\frac{V}{V}\right]; [dB]$	-100 40	-82,8 38,36		1,44 3,17
f_d [Hz]	426	500		460
$f_g[kHz]$	165,5	220		2300
$R_{WY}[k\Omega]$	1	0,959		0,949
$R_{WE}[k\Omega]$	3,015	3,810		15,854

Tabela 1: Tabela parametrów wzmacniacza

2. Część symulacyjna

2.1. Dane projektowe

2.1.1. Zapis danych

Wzmocnienie napięciowe: $K_U = -50 \frac{V}{V}$

Prąd kolektora: $I_{CQ} = 1mA$

Rezystancja obciążenia: $R_L=5.6k\Omega$

Rezystancja wyjściowa: $R_g = 8.2k\Omega$

$$U_{CEO} = 5V$$

$$\beta = 300$$

$$C_1 = C_2 = 100nF$$

$$C_E = 100 \mu F$$

2.1.2. Obliczenie wartości elementów

$$g_m = \frac{I_{CQ}}{\varphi_T} = \frac{1mA}{26mV} = 38,5mS$$

$$R_{obc} = \frac{K_u}{-g_m} = \frac{50}{0,0385} = 1300\Omega$$

$$\frac{1}{R_{obc}} = \frac{1}{R_L} + \frac{1}{R_{CE}} + \frac{1}{R_C}$$

$$R_{CE} = \frac{U_{EY} + U_{CEQ}}{I_{C}} = 205000 \ \Omega$$

$$R_C = \left(\frac{1}{R_{OBC}} - \frac{1}{R_l} - \frac{1}{R_{CE}}\right)^{-1} = \left(\frac{1}{1300} - \frac{1}{5600} - \frac{1}{205000}\right)^{-1} = 1707\Omega$$

 $Przymujemy: R_C = 1800\Omega$

$$U_{RE} = (2 \div 4) U_{BEQ}$$

$$U_{BEO} = 0.65V$$

$$U_{RE} = 3U_{BEQ} = 1,95V$$

$$I_E = I_B + I_C$$

$$I_E \sim I_C = 1mA$$

$$R_E = \frac{U_{RE}}{I_{CO}} = \frac{1,95}{0,001} = 1950\Omega$$

Przyjmujemy zgodnie z szeregiem E24 $R_E=2000\Omega$

$$I_{BQ} = \frac{I_{CQ}}{\beta} = \frac{0,001}{300} = 3,33 \mu A$$

$$I_D = 10 I_{BO} = 33,3 \, \mu A$$

$$R_{B2} = 4 * \frac{U_{BEQ}}{I_D} = 78k\Omega$$

Przyjmujemy zgodnie z szeregiem E24 $R_{B2} = 75k\Omega$

$$U_{CC} = U_{RC} + U_{CEO} + U_{RE}$$

$$U_{CC} = I_{CQ}R_C + U_{CEQ} + I_{CQ}R_E = 5 + 1 * 10^{-3}(1800 + 2000) = 8,8V$$

$$U_B = 4 * U_{BEO} = 2,6V$$

$$R_{B1} = \frac{U_{CC} - U_B}{11 * I_{BO}} = \frac{8,8 - 2,6}{11 * 3,33 * 10^{-6}} = 169k\Omega$$

Przyjmujemy zgodnie z szeregiem E24 $R_{B1} = 160k\Omega$

Z noty katalogowej odczytujemy:

$$C_{BC} = 3.5pF$$

$$f_T = 300MHz$$

$$h_{FE}(C) = \beta = 500$$

$$R_{be} = \frac{\beta}{q_m} = \frac{500}{0.0385} = 13000 \Omega$$

$$R_{we} = \left(\frac{1}{R_{R1}} + \frac{1}{R_{R2}} + \frac{1}{R_{he}}\right)^{-1} = \left(\frac{1}{160k} + \frac{1}{78k} + \frac{1}{13k}\right)^{-1} = 10.4k\Omega$$

$$R_{wy} = \left(\frac{1}{R_{CF}} + \frac{1}{R_C}\right)^{-1} = \left(\frac{1}{205000} + \frac{1}{1800}\right)^{-1} = 1784\Omega$$

$$C_{BE} = \frac{g_m}{2\pi f_T} - C_{BC} = \frac{0.0385}{2 * 3.14 * 300 * 10^6} - 3.5 * 10^{-12} = 17pF$$

$$C_{we} = C_{BE} + C_{BC}(1 - K_u) = 195pF$$

$$K_{usk} = -g_m \left(\frac{1}{R_I} + \frac{1}{R_{wv}}\right)^{-1} \frac{r_{we}}{r_{we} + R_G} = -29.1$$

$$f_g = \frac{1}{2\pi C_{we} \left(\left(\frac{1}{R_{we}} + \frac{1}{R_a} \right)^{-1} \right)} = 178kHz$$

$$f_{d1}(C_1) = \frac{1}{2\pi C_1(R_a + R_{we})} = 85,8Hz$$

$$f_{d2}(C_2) = \frac{1}{2\pi C_2 (R_L + R_{WV})} = 215,6Hz$$

$$f_{dE}(C_E) = \frac{\beta}{2\pi C_E \left(\left(\frac{1}{R_g} + \frac{1}{R_{B1}} + \frac{1}{R_{B2}} \right)^{-1} + R_{be} \right)} = 40Hz$$

$$f_d = \sqrt{f_{d1}^2 + f_{d2}^2 + f_{dE}^2} = 235Hz$$

2.1.3. Obliczenia dla układu ze sprzężeniem zwrotnym

2.1.3. Obliczenia dla układu ze sprzężeniem zwrót
$$R_{we} = \left(\frac{1}{R_{B1}} + \frac{1}{R_{B2}} + \frac{1}{R_{be} + R_E(\beta + 1)}\right)^{-1} = 48,6k\Omega$$
 $R_{wy} = \left(\frac{1}{R_{CE}} + \frac{1}{R_C}\right)^{-1} = \left(\frac{1}{205000} + \frac{1}{1800}\right)^{-1} = 1784\Omega$ $f_{d1}(C_1) = \frac{1}{2\pi C_1(R_g + R_{we})} = 28Hz$ $f_{d2}(C_2) = \frac{1}{2\pi C_2(R_L + R_{wy})} = 215,6Hz$ $f_d = \sqrt{f_{d1}^2 + f_{d2}^2} = 216,8Hz$ $f_g = \frac{1}{2\pi C_{we}\left(\left(\frac{1}{R_{we}} + \frac{1}{R_g}\right)^{-1}\right)} = 116kHz$ $K_{usk} = \frac{R_C}{R_E} \frac{r_{we}}{r_{we} + R_C} = 0,77$

2.1.4. Symulowany układ

Rys. 7: Schemat symulowanego układu

2.2. Przebieg pomiarów dla układu bez sprzężenia zwrotnego

2.2.1. Pomiar punktu pracy tranzystora

Pomiaru dokonano dla:

$$U_{kolektora} = 8.8V$$

Zmierzono napięcie między kolektorem a emiterem, uzyskując napięcie U_{CEQ} równe 4,853V. Następnie dokonano pomiaru napięcia między bazą a emiterem uzyskując $U_{BEQ}=0,6208V$, natomiast pomiaru prądu kolektora dokonano pośrednio, za pomocą pomiaru spadku napięcia na rezystorze kolektorowym oraz przy użyciu prawa Ohma:

$$I_{CQ} = \frac{U_c}{R_c} = \frac{1,8676}{1800} = 1,04mA$$

2.2.2. Pomiar maksymalnej amplitudy napięcia wejściowego

Pomiary wykonano dla częstotliwości sygnału 10kHz.

Zwiększając stopniowo amplitudę sygnału wejściowego, uzyskano maksymalną wartość niezniekształconego sygnału wyjściowego, którego wartość wynosi 440mV Peak-Peak.

2.2.3. Pomiar wzmocnienia

Pomiary wykonano dla napięcia wejściowego równego 24mV Peak-Peak.

W celu pomiaru wartości wzmocnienia skutecznego, należy zmierzyć wartości sygnałów wejściowego i wyjściowego, w celu wstawienia odpowiednich danych do wzoru:

$$K_{US} = \frac{U_{WY}}{U_{WE}} = \frac{0.216}{0.00434} = 49.7 \frac{V}{V}$$

$$K_{US} = 33,9 \ dB$$

Rys. 8: Ekran Symulacji dla pomiarów wzmocnienia skutecznego

W celu dokonania pomiaru wartości wzmocnienia należy zewrzeć rezystor Rg oraz powtórzyć pomiary. Uzyskujemy następujące wzmocnienie:

$$K_U = \frac{U_{WY}}{U_{WF}} = \frac{51,2}{1} = 51,2\frac{V}{V}$$

Co odpowiada wzmocnieniu:

$$K_{II} = 34,2dB$$

2.2.4. Pomiar wartości rezystancji wyjściowej i wejściowej

Pomiaru należy dokonać dla dołączonego i odłączonego obciążenia, następnie zmierzone wartości napięcia wyjściowego wstawić do wzoru:

$$R_{wy} = \left(\frac{U_{wy}(R_l = \infty)}{U_{wy}(R_l)} - 1\right) R_l = \left(\frac{0.177}{0.1363} - 1\right) 5600 = 1672\Omega$$

Wartość rezystancji wejściowej można wyliczyć ze wzoru:

$$R_{we} = \frac{R_g}{\frac{K_U}{K_{Usk}} - 1} - R_{wy \ dzielnika} = \frac{8200}{\frac{51,2}{49,7} - 1} - 91 = 272k\Omega$$

2.2.5. Pomiar częstotliwości granicznych

W celu wykonania pomiarów częstotliwości granicznej górnej i dolnej odczytano z wykresu wartości częstotliwości dla których napięcie wyjściowe spadło o -3dB od swojej wartości początkowej.

$$f_g = 238kHz$$
$$f_d = 266Hz$$

2.2.6. Charakterystyki częstotliwościowa i fazowa

Rys. 9: Charakterystyka częstotliwościowa i fazowa układu bez sprzężenia zwrotnego

2.3. Przebieg pomiarów dla układu ze sprzężenia zwrotnego

W celu przeprowadzenia pomiarów ze sprzężeniem zwrotnym, odłączono kondensator C_E .

2.3.1. Pomiar punktu pracy tranzystora

Punkt pracy tranzystora pozostaje bez zmian.

2.3.2. Pomiar maksymalnej amplitudy napięcia wejściowego

Pomiary wykonano dla częstotliwości sygnału 10kHz.

Zwiększając stopniowo amplitudę sygnału wejściowego, uzyskano maksymalną wartość niezniekształconego sygnału wyjściowego, którego wartość wynosi 3,4V Peak-Peak.

Rys. 10: Wykres napięcia wyjściowego, przy pomiarze maksymalnej amplitudy

2.3.3. Pomiar wzmocnienia

Pomiary wykonano dla napięcia wejściowego równego 34mV Peak-Peak.

W celu pomiaru wartości wzmocnienia skutecznego, należy skorzystać ze wzoru:

$$K_{US} = \frac{U_{WY}}{U_{WE}} = \frac{0.01142}{0.01705} = 0.7 \frac{V}{V}$$

Co odpowiada wzmocnieniu:

$$K_{IIS} = -3.1 dB$$

W celu dokonania pomiaru wartości wzmocnienia należy zewrzeć rezystor Rg oraz powtórzyć pomiary. Uzyskujemy następujące wzmocnienie:

$$K_U = \frac{U_{WY}}{U_{WE}} = \frac{0.0134}{0.019} = 0.705 \frac{V}{V}$$

$$K_U = -3.04dB$$

2.3.4. Pomiar wartości rezystancji wejściowej i wyjściowej

Pomiaru należy dokonać dla dołączonego i odłączonego obciążenia, następnie zmierzone wartości napięcia wyjściowego wstawić do wzoru:

$$R_{wy} = \left(\frac{U_{wy}(R_l = \infty)}{U_{wy}(R_l)} - 1\right) R_l = \left(\frac{0,01513}{0,01144} - 1\right) 5600 = 1806\Omega$$

$$R_{we} = \frac{R_g}{\frac{K_U}{K_{Usk}} - 1} - R_{wy \ dzielnika} = \frac{8200}{\frac{0,705}{0,7} - 1} - 91 = 1,15M\Omega$$

2.3.5. Pomiar częstotliwości granicznych

W celu wykonania pomiarów częstotliwości granicznej górnej i dolnej odczytano z wykresu charakterystyki częstotliwościowej wartości częstotliwości dla których napięcie wyjściowe spadło o -3dB od swojej wartości początkowej.

$$f_g = 5,59MHz$$
$$f_d = 218Hz$$

Przy pomiarze częstotliwości górnej nastąpił błąd działania symulacji.

2.3.6. Charakterystyki częstotliwościowa i fazowa

Rys. 9: Charakterystyka częstotliwościowa i fazowa układu ze sprzężeniem zwrotnym

2.4. Tabela parametrów wzmacniacza

	Wzmacniacz bez sprzężenia zwrotnego		Wzmacniacz ze sprzężeniem zwrotnym	
Parametr	Wartość zadana	Wartość	Wartość zadana	Wartość zmierzona
	lub obliczona	zmierzona	lub obliczona	
$U_{CEQ}[V]$	5	4,853	5	4,853
$U_{BEQ}[V]$	0,65	0,62	0,65	0,62
$I_{CQ}[mA]$	1	1,04	1	1,04
$U_{WY \max P-P}[V]$	-	0,44	-	3,4
$K_{USK}\left[\frac{V}{V}\right]; [dB]$	-29,053 29,26	49,7 34	0,77 -2,27	0,7 -3,1
$K_U\left[\frac{V}{V}\right]$; $[dB]$	-50 34	51,2 34,2	0,9 -0,915	0,705 -3,04
$f_d[Hz]$	235	266	217	218
$f_g[kHz]$	178	238	116	5590
$R_{WY}[k\Omega]$	1,784	1,672	1,784	1,806
$R_{WE}\left[k\Omega\right]$	10,4	272	48,6	1150

Tabela 1: Tabela parametrów wzmacniacza

3. Wnioski

3.1. Część praktyczna

- porównując wartości zmierzone z wartościami obliczonymi można stwierdzić, iż dokonano poprawnych obliczeń wartości elementów układu.
- uzyskano zbliżoną wartość wzmocnienia układu, co potwierdza poprawność
 przeprowadzonych obliczeń. Gdyby dobrano elementy o większej dokładności, uzyskany
 wynik byłby bliższy zakładanemu.
- zmierzone wartości częstotliwości granicznych znacząco odbiegają od wartości obliczonych
- Porównując obliczone wartości rezystancji wejściowej oraz wyjściowej dla wzmacniacza bez sprzężenia, można stwierdzić, że rezystancja wyjściowa została obliczona prawidłowo. Rezystancja wejściowa odbiega od obliczonej wartości, lecz nadal mieści się w normie.

3.2. Część symulacyjna

- porównując wartości zmierzone z wartościami obliczonymi można stwierdzić, iż dokonano poprawnych obliczeń wartości elementów układu.
- uzyskano zbliżoną wartość wzmocnienia układu, co potwierdza poprawność
 przeprowadzonych obliczeń. Gdyby dobrano elementy o wartościach bliższych obliczonym,
 uzyskany wynik byłby bliższy zakładanemu.
- zmierzone wartości częstotliwości granicznych znacząco odbiegają od wartości obliczonych
- Porównując obliczone wartości rezystancji wejściowej oraz wyjściowej dla wzmacniacza bez sprzężenia, można stwierdzić, że rezystancja wyjściowa została obliczona prawidłowo. Rezystancja wejściowa odbiega od obliczonej wartości.