

AD-A095 539

HARVARD UNIV CAMBRIDGE MASS AIKEN COMPUTATION LAB
MINIMUM S-T CUT OF A PLANAR UNDIRECTED NETWORK IN O(N LOG2(N)) --ETC

F/G 12/1

1980 J H REIF

N00014-80-C-0647

NL

UNCLASSIFIED

TR-20-80

1 OF
AD
4095539

END
DATE
FILMED
3-81
DTIC

1 OF 1
AD.
AO95 539

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

HARVARD UNIVERSITY
CENTER FOR RESEARCH IN COMPUTING TECHNOLOGY

January 13, 1981

Chief of Naval Research
Code 437
800 North Quincy Street
Arlington, VA 22217

Dear Sir:

Enclosed are the papers "Minimum S-T Cut of a Planar Undirected Network in $O(n \log^2(n))$ Time", "The Complexity of Provable Properties of First Order Theories", and "On Probabilistic and Symmetric Parallel Computations". This work was supported by ONR contract N00014-80-C-0647.

Sincerely,

A handwritten signature in cursive script that appears to read "J. H. Reif".

John H. Reif
Assistant Professor
of Computer Science

JHR:bm
cc: ONR Branch Office; Eastern/Central Region
M. Kelley, ONR Representative
Naval Research Laboratory
DDC, Alexandria, VA

6

MINIMUM S-T CUT OF A PLANAR UNDIRECTED NETWORK
IN $O(n \log^2(n))$ TIME

by

10

John H. Reif

14

TR-20-80

12

22

15

N00954-80-C-0647

✓ NSF-MCS79-21024

DTIC
SELECTED
FEB 24 1981

11

1.980

405831

MINIMUM S-T CUT OF A PLANAR UNDIRECTED NETWORK
IN $O(n \log^2(n))$ TIME

by

John H. Reif

Aiken Computation Lab., Harvard University, Cambridge, MA 02138.
This work was supported in part by the National Science Foundation
grant NSF-MCS79-21024 and the Office of Naval Research grant
N00014-80-C-0647. ✓

Minimum s-t Cut of a Planar Undirected Network in $O(n \log^2(n))$ Time

Summary. Let N be a planar undirected network with distinguished vertices s, t , a total of n vertices, and each edge labeled with a positive real (the edge's cost) from a set L . This paper presents an algorithm for computing a minimum (cost) $s-t$ cut of N .

For general L , this algorithm runs in time $O(n \log^2(n))$ time on a (uniform cost criteria) RAM. For the case L contains only integers $\leq n^{0(1)}$, the algorithm runs in time $O(n \log(n) \log\log(n))$. Our algorithm also constructs a minimum $s-t$ cut of a planar graph (i.e., for the case $L = \{1\}$ in time $O(n \log(n))$.

The fastest previous algorithm for computing a minimum $s-t$ cut of a planar undirected network [Gomory and Hu, 1961] and [Itai and Shiloach, 1979] has time $O(n^2 \log(n))$ and the best previous time bound for minimum $s-t$ cut of a planar graph (Cheston, Probert, and Saxton, 1977) was $O(n^2)$.

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification <i>for file</i>	
By _____	
Distribution/ _____	
Availability Codes	
Avail and/or	
Dist	Special
A	

1. Introduction

The importance of computing a minimum s-t cut of a network is illustrated by Ford and Fulkerson's [1962] Theorem which states that the value of the minimum s-t flow of a network is precisely the minimum s-t cut.

The best known algorithms [Galil, Naamad 1979], [Shiloach, 1978] for computing the max flow or minimum s-t cut of a sparse directed or undirected network (with n vertices and $O(n)$ edges) has time $O(n^2 \log^2(n))$.

This paper is concerned with a planar undirected network N , which occurs in many practical applications.

Ford and Fulkerson [1956] have an elegant minimum s-t cut algorithm for the case N is (s,t) -planar (both s and t are on the same face) which efficiently implemented by [Gomory and Hu, 1961] and [Itai and Shiloach, 1979] has time $O(n \log(n))$.

Moreover, $O(n)$ executions of their algorithm suffices to compute the minimum s-t cut of an arbitrary planar network in total time $O(n^2 \log(n))$. Also, [Cheston, Probert, Saxton, 1977] have an $O(n^2)$ algorithm for the minimum s-t cut of a planar graph.

A key element of the [Ford and Fulkerson, 1956] algorithm for (s,t) -planar networks was an efficient reduction to finding a minimum cost path between two vertices in a sparse network. [Dijkstra, 1959] gives an algorithm for a generalization of this problem (to find a minimum cost path from a fixed "source" vertex s to each other vertex). Dijkstra's algorithm may be implemented (see [Aho, Hopcroft and Ullman, 1974]) in time $O(Q_L(n))$ for

a sparse network with n vertices, L is the set of non-negative reals labeling the edges, and $Q_L(n)$ is an upper bound on the time to maintain a queue of $O(n)$ elements with costs from L , and with $O(n)$ insertions and deletions. For the general case, $Q_L(n) = O(n \log(n))$ (see [Hopcroft and Ullman, 1974]). For the special case L is a set of positive integers $\leq n^{O(1)}$ [Boas, Kaas and Zijlstra, 1977], $Q_L(n) = O(n \log\log(n))$. It is obvious that if $L = \{1\}$, $Q_L(n) = O(n)$.

Our algorithm for computing the minimum s-t cut of a planar undirected network has time $O(Q_L(n)\log(n))$. This algorithm also utilizes an efficient reduction to minimum cost path problems. Our fundamental innovation is a divide and conquer approach for cuts on the plane.

The paper is organized as follows:

The next section gives preliminary definitions of graphs, networks, min cuts, and duals of planar networks. Section 3 gives the Ford-Fulkerson Algorithm for (s,t) -planar graphs.

Section 4 gives an efficient algorithm for minimum cut graphs containing a given face. Our divide and conquer approach is described and proved in Section 5. Section 6 presents our algorithm for minimum s-t cuts of planar networks.

Finally, Section 7 concludes the paper.

2. Preliminary Definitions

2.1 Graphs

Let a graph $G = (V, E)$ consist of a vertex set V and a collection of edges E . Each edge $e \in E$ connects two vertices $u, v \in V$ (edge e is a loop if it connects identical vertices). We let $\underline{e} = \{u, v\}$ denote edge e connects u and v . Edges e, e' are multiple if they have the same connections.

Let a path be a sequence of edges $p = e_1, \dots, e_k$ such that $e_i = \{v_{i-1}, v_i\}$ for $i = 1, \dots, k$ (we say p traverses vertices v_0, \dots, v_k). Let p be a cycle if $v_0 = v_k$ (cycles containing the same edges are considered identical). A path p' is a subpath of p if p' is a subsequence of p .

Let G be a standard graph if G has no multiple edges nor loops. Generally we let n be the number of vertices of graph G . G is sparse if the number of edges is $O(n)$. If G is planar, then by Euler's Theorem G is sparse and contains at most $6n - 12$ edges.

2.2 Networks

Let an undirected network $N = (G, c)$ consists of a graph $G = (V, E)$ and a mapping c from E to the positive reals. For each edge $e \in V$, $c(e)$ is the cost of e . For any edge set $E' \subseteq E$, let $c(E') = \sum_{e \in E'} c(e)$. Let the cost of path $p = e_1, \dots, e_k$ be $c(p) = \sum_{i=1}^k c(e_i)$. Let a path p from vertex u to vertex v be minimum if $c(p) \leq c(p')$ for all paths p' from u to v .

Let $N = (G, c, s, t)$ be a standard network if (G, c) is an undirected network, with $G = (V, E)$ a standard graph, and s, t are distinguished vertices of V (the source, sink respectively).

2.3 Min Cuts and Flows in Networks

Let $N = (G, c, s, t)$ be a standard network with $G = (V, E)$.

An edge set $X \subseteq E$ is a $s-t$ cut if $(V, E - X)$ has no paths from s to t . Let $s-t$ cut X be minimum if $c(X) \leq c(X')$ for each $s-t$ cut X .

A function f mapping E to the nonnegative reals is a flow if

(i) $\forall e \in E, f(e) \leq c(e)$.

(ii) $\forall v \in V - \{s, t\}, \text{IN}(f, v) = \text{OUT}(f, v)$

where

$$\text{IN}(f, v) = \sum_{\substack{e \in E \\ v \in e}} f(e)$$

$$\text{OUT}(f, v) = \sum_{\substack{e \in E \\ v \in e}} f(e) .$$

The value of the flow f is

$$\text{OUT}(f, s) - \text{IN}(f, t) .$$

The following motivates our work on minimum $s-t$ cuts:

Theorem 1. [Ford and Fulkerson, 1962]. The maximum value of any flow is the cost of a minimum $s-t$ cut.

2.4 Planar Networks and Duals

Let $G = (V, E)$ be a planar standard graph, with a fixed embedding on the plane. Each connected region of G is a face and has a corresponding cycle of edges which it borders. For each edge $e \in E$, let $D(e)$ be the

corresponding *dual edge* connecting the two faces bordering e .

Let $D(G) = (\mathcal{F}, D(E))$ be the *dual graph* of G , with vertex set \mathcal{F} = the faces of G , and with edge set $D(E) = \bigcup_{e \in E} D(e)$.

Note that the dual graph is not necessarily standard (i.e., it may contain multiple edges and loops), but is planar.

Let a cycle q of $D(G)$ be a *cut-cycle* if the region bounded by q contains exactly one of s or t .

Proposition 1. D induces an isomorphism between the $s-t$ cuts of G and the cut-cycles of $D(G)$.

Let $N = (G, c, s, t)$ be a *planar* standard network, with $G = (V, E)$ planar.

Let the *dual network* $D(N) = (D(G), D(c))$ have edge costs $D(c)$, where $D(c)(D(e)) = c(e)$ for all edges $e \in E$. (Generally we will use just c in place of $D(c)$ where no confusion with result.) For each face $F \in \mathcal{F}$, let a cut-cycle q in $D(N)$ be F_i -*minimum* if q contains F_i and $c(q) \leq c(q')$ for all cut-cycles q' containing F_i .

Proposition 2. A minimum $s-t$ cut has the same cost as a minimum cost cut-cycle of $D(G)$.

3. Ford and Fulkerson's Min s-t Cut Algorithm for (s,t)-Planar Networks

Let $N = (G, c, s, t)$ be a planar standard network. G (and also N) is (s, t) -planar if there exists a face F_0 containing both s and t . Let planar network N' be derived from N by adding on edge e_0 connecting s and t with cost ∞ . Let e_0 be embedded onto a line segment from s to t in F_0 , which separates F_0 into two new faces F_1 and F_2 .

[Ford and Fulkerson, 1956] have an elegant characterization of the minimum s-t cut of (s, t) -planar network N .

Theorem 2. There is an isomorphism between the s-t cuts of N and the paths of $D(N')$ from F_2 to F_1 and avoiding $D(e_0)$. Furthermore, this isomorphism preserves edge costs. Therefore, the minimum s-t cuts of N correspond to the minimum cost paths in $D(N')$ from F_2 to F_1 (which avoid $D(e_0)$).

Corollary 2. A minimum cost cut of (s, t) -planar N with n vertices may be computed in time $O(Q_L(n))$, where $L = \text{range}(c)$.

Note that this implies the $O(n \log(n))$ time minimum s-t cut algorithm of [Gomory and Hu, 1961] and [Itai and Shiloach, 1979] for (s, t) -planar undirected networks, and the $O(n)$ time minimum s-t cut algorithm of [Cheston, Probert, and Saxton, 1977] for (s, t) -planar graphs.

4. An $O(n \log(n))$ Algorithm for F-minimum Cut Cycles

Let $N = (G, c, s, t)$ be a planar standard network, with $G = (V, E)$ and $L = \text{range}(c)$. Our algorithm for minimum $s-t$ cuts will require efficient construction of F -minimum cut cycles for certain given faces F .

Let \mathcal{F}_s be the set of faces bordering s and let \mathcal{F}_t be the faces bordering t . Let a $\mu(s, t)$ path be a minimum cost path in $D(N)$ from a face of \mathcal{F}_s to a face of \mathcal{F}_t .

Proposition 3. Let μ be a $\mu(s, t)$ path traversing faces F_1, \dots, F_d . Let q_i be a F_i -minimum cut-cycle of $D(N)$ for $i = 1, \dots, d$. Then $D^{-1}(q_{i_0})$ is a minimum $s-t$ cut of N , where $c(q_{i_0}) = \min\{c(q_i) | i = 1, \dots, d\}$.

(Note: It is easy to compute a $\mu(s, t)$ path in time $O(Q_L(n))$. Let M be the planar network derived from $D(N)$ by adding new vertices v_s, v_t and an edge connecting v_s to each face in \mathcal{F}_s and an edge connecting each face in \mathcal{F}_t to v_t . Let the cost of each of these edges be 1. Let p be a minimum cost path in M from v_s to v_t . Then p , less its first and last edges, is a $\mu(s, t)$ path.)

Let μ be a $\mu(s, t)$ path traversing faces F_1, \dots, F_d .

By viewing μ as a horizontal line segment with s on the left and t on the right, each edge connected to a face F_i may be considered to be connected to F_i from the *below* or *above* (or both).

Let μ' be a copy of μ traversing new vertices x_1, \dots, x_d . Let D' be the network derived from $D(N)$ by reconnecting to x_i each edge entering F_i from above.

If p is a path of D' , then a corresponding path \hat{p} in $D(N)$ is constructed by replacing each edge and face appearing in μ' with the corresponding edge or face of μ . Clearly, $c(p) = c(\hat{p})$.

Theorem 3. If p is a minimum cost path connecting F_i and x_i in D' , then \hat{p} is a F_i -minimum cut cycle of $D(N)$.

Proof. Clearly, \hat{p} is a cut-cycle of $D(N)$. Suppose \hat{p} is not F_i -minimum. Let q be a F_i -minimum cut-cycle of $D(N)$, with $c(q) < c(\hat{p})$. Then there must be a subpath q_1 of q connecting faces F_j, F_k of μ but otherwise disjoint from μ and such that the edges of q_1 together with μ form a cut-cycle of $D(N)$ (else we can show q is not a cut-cycle).

Let μ_1 be the minimal subpath of μ containing faces F_i, F_j , and F_k . Observe that the edges of q_1 together with μ_1 form a F_i -minimum cut-cycle, else μ is not a $\mu(s,t)$ path. Let q'_1 be derived from q_1 by reconnecting the last edge to x_k instead of F_k . Let μ_2 be the subpath of μ_1 connecting F_i and F_j and let μ_3 be the subpath of μ_1 connecting F_i and F_k . Also, let μ'_3 be the subpath of μ' in D' corresponding to μ_3 . Then the edges of μ_2, q'_1 , and μ'_3 form a path from F_i to x_i in D' and with cost $c(q)$. But $c(q) < c(\hat{p}) = c(p)$ is a contradiction with the assumption that p is a minimum cost path from F_i to x_i . \square

Corollary 3. There is an $O_{L}(n)$ time algorithm to compute a F_i -minimum cut cycle for any face F_i of a $\mu(s,t)$ path in $D(N)$.

5. A Divide and Conquer Approach

Let μ be a $\mu(s,t)$ path of $D(N)$ traversing faces F_1, \dots, F_d as in Section 4. Note that any $s-t$ cut of planar network N must contain an edge bounding on a face F_1, \dots, F_d . Thus an obvious algorithm for computing a minimum $s-t$ cut of N is to construct a F_i -minimum cut cycle q_i in $D(N)$ for each $i = 1, \dots, d$. This may be done by d executions of the $O(Q_L(n))$ time algorithm of Corollary 3. Then by Proposition 3, $D^{-1}(q_{i_0})$ is a minimum $s-t$ cut where $c(q_{i_0}) = \min\{c(q_1), \dots, c(q_d)\}$. In the worst case, this requires $O(Q_L(n) \cdot n)$ total time. This section presents a divide and conquer approach which requires only $\log(d)$ executions of a F_i -minimum cut algorithm.

Lemma 1. Let F_i, F_j be distinct faces of μ , $i < j$. Let p be any F_j -minimum cut-cycle of $D(N)$ such that the closed region R bounded by p contains s . Then there exists an F_i -minimum cut-cycle q contained entirely in R .

Proof. Let q be any F_i -minimum cut-cycle. Let q' be the cut-cycle derived from q by repeatedly replacing subpaths connecting faces traversed by μ with the appropriate subpaths of μ (only apply replacements for which the resulting q' is cut-cycle).

Observe $c(q') \leq c(q)$ (else we can show μ is not a $\mu(s,t)$ path). Let R' be the closed region bounded by q . Suppose $R' \not\subseteq R$. Then there must be a subpath q_1 of q' connecting faces F^a, F^b of p such that q_1 only intersects R at F^a and F^b . Let p_1 be the subpath of p connecting F^a and F^b in R' . We claim $c(p_1) \leq c(q_1)$. Suppose $c(p_1) > c(q_1)$. By our construction of q' , either q_1 avoids F_j , $F_j = F^a$ or $F_j = F^b$. In any case, we may derive a cut-cycle p' from p by substituting q_1 for p_1 .

But this implies $c(p') < c(p)$, contradicting our assumption that p is a F_i -minimum cut-cycle.

Now substitute p_1 for q_1 in q' . The resulting cut-cycle is no more costly than q' , since $c(p_1) \leq c(q_1)$.

The lemma follows by repeated application of this process. □

The above lemma implies a method for dividing the planar standard network N , given an $s-t$ cut X . Let N_X be the network derived from N by deleting all edges of X . N_X can be partitioned into two networks N_s, N_t , where no vertex of N_s has a path to t , and no vertex of N_t has a path to s . Also, each edge $e \in X$ must have connections to a vertex of N_s and a vertex of N_t .

Let N'_s be the planar network consisting of N_s , a new vertex t' , and for each $e \in X$, add a new edge with cost $c(e)$ connecting t' to the vertex of e contained in N_s . Similarly, let N'_t be the planar network consisting of N_t , a new vertex s' , and adding a new edge of cost $c(e)$ connecting s' to the vertex of e contained in N_t , for each $e \in X$. (Note that N'_s and N'_t are not necessarily standard since they may contain multiple edges connecting a given vertex to s or t .) Let $\text{DIVIDE}(N, X, s)$ and $\text{DIVIDE}(N, X, t)$ be the planar standard networks derived from N'_s, N'_t respectively by merging multiple edges and setting the cost of each resulting edge to be the sum of the costs of the multiple edges from which it was derived.

Let E be the edges of network N .

Let Y be a set of edges of N_s (or N_t).

Let $E(Y)$ be the set of edges of E derived from Y by substituting for any edge e connecting t' (or s') the corresponding edges of X from which e was derived.

The following theorem follows immediately from the above lemma and Proposition 3.

Theorem 4. Let X be an $s-t$ cut of planar standard network N such that $D(X)$ is a F -minimum cut-cycle, for some face F in a $\mu(s,t)$ path of $D(N)$. Let X_s be a minimum $s-t'$ cut of $\text{DIVIDE}(N,X,s)$ and let X_t be a minimum $s'-t$ cut of $\text{DIVIDE}(N,X,s)$. Then $E(X_s)$ or $E(X_t)$ is a minimum $s-t$ cut of N .

6. The Min s-t Cut Algorithm for Planar Networks

Theorem 4 of the previous Section 4 yields a very simple, but efficient, "divide and conquer" algorithm for computing minimum s-t cut of a planar standard network.

We assume the [Ford and Fulkerson, 1956] Algorithm (given in Section 3).

(i) (s,t) -PLANAR-MIN-CUT(N)

which computes a minimum s-t cut of (s,t) -planar standard network N in time $O(Q_L(n))$. We also assume algorithms (given in Section 4).

(ii) $\mu(s,t)$ PATH($D(N)$)

computes a $\mu(s,t)$ path of $D(N)$ in time $O(Q_L(n))$.

(iii) F -MIN-CUT-CYCLE(N, F_i, μ)

computes a F_i -minimum cycle of N (for F_i in $\mu(s,t)$ path μ), in time $O(Q_L(n))$.

Recursive Algorithm PLANAR-MIN-CUT(N, μ)

input planar standard network $N = (G, c, s, t)$, where $G = (V, E)$, and

$\mu(s,t)$ path μ .

begin

Let F_1, \dots, F_d be the faces traversed by μ .

if $d = 1$ then return (s,t) -PLANAR-MIN-CUT(N);

else begin

$X \leftarrow D^{-1}(F\text{-MIN-CUT-CYCLE}(N, F_{\lfloor d/2 \rfloor}, \mu))$;

$N_0 \leftarrow DIVIDE(N, X, s)$;

$N_1 \leftarrow DIVIDE(N, X, t)$;

Let μ_0 (μ_1) be the subpath of μ contained in N_0

(respectively, N_1);

```

 $x_0 \leftarrow \text{PLANAR-MIN-CUT}(N_0, \mu_0)$ 
 $x_1 \leftarrow \text{PLANAR-MIN-CUT}(N_1, \mu_1)$ 
if  $c(E(x_0)) \leq c(E(x_1))$ 
    then return  $E(x_0)$ 
else return  $E(x_1);$ 
end;
end;

```

For any $\omega \in \{0,1\}^r$, $r \geq 0$, inductively let $N_\omega = (G_\omega, c_\omega, s_\omega, t_\omega)$ be the planar standard network and let μ_ω be the $\mu(s_\omega, t_\omega)$ -path in N_ω , defined by recursive calls to PLANAR-MIN-CUT. Suppose PLANAR-MIN-CUT(N_ω, μ_ω) is called. If μ_ω contains only one face, then let $N_{\omega 0}$ and $N_{\omega 1}$ be empty networks, and let $\mu_{\omega 0}$ and $\mu_{\omega 1}$ be empty paths. Else let x_ω be the $s_\omega - t_\omega$ cut of N_ω computed by the call to $D^{-1}(F\text{-MIN-CUT-CYCLE}(-1))$ and let $N_{\omega 0}$, $N_{\omega 1}$ be the planar standard networks constructed by the calls to DIVIDE, and let $\mu_{\omega 0}, \mu_{\omega 1}$ be the subpaths of μ contained in $N_{\omega 0}, N_{\omega 1}$. Then it is easy to verify that $\mu_{\omega 0}$ is a $\mu(s_{\omega 0}, t_{\omega 0})$ -path in $N_{\omega 0}$ and $\mu_{\omega 1}$ is a $\mu(s_{\omega 1}, t_{\omega 1})$ -path in $N_{\omega 1}$. Furthermore, if d is the length of μ (the $\mu(s, t)$ path of N), there can be no more than $\log(d) = O(\log(n))$ recursive calls (where n is the number of vertices of N).

Let n_ω be the number of vertices of N_ω . Since N_ω is planar, the number of edges of N_ω is $6n_\omega - 12$ by Euler's Theorem.

Lemma 2. For any $r \geq 0$,

$$\sum_{\omega \in \{0,1\}^r} n_\omega = O(n) .$$

Proof. Suppose for some fixed $r_0 > 0$, this holds for all r , $0 \leq r < r_0$. Consider some $\omega \in \{0,1\}^r$. Note that each edge of $N_{\omega 0}$ and $N_{\omega 1}$ constructed by DIVIDE corresponds to an edge of N_ω . Consider some fixed edge e of N_ω . Note that e appears only at most once in each of $N_{\omega 0}$ and $N_{\omega 1}$. If $e \notin x_\omega$ then e doesn't appear at all in one of $N_{\omega 0}$ or $N_{\omega 1}$. However if $e \in x_\omega$ then e may appear in both $N_{\omega 0}$ and $N_{\omega 1}$.

But (due to the merging of multiple edges in the definition of DIVIDE), for each $r_1 \geq r_0$, e appears in at most one $N_{\omega 0\alpha}$ for any $\alpha \in \{0,1\}^{r_1}$ and not at all in $N_{\omega 0\alpha'}$ for any $\alpha' \in \{0,1\}^{r_1} - \alpha$. Similarly, e appears in at most one $N_{\omega 1\beta}$ for some $\beta \in \{0,1\}^{r_1}$. Thus by induction,

$$\sum_{\omega \in \{0,1\}^{r_0}} n_\omega = O(n) . \quad \square$$

We have shown:

Theorem 5. Given a planar standard network $N = (G, c, s, t)$ with $L = \text{range}(c)$, and μ is a $\mu(s, t)$ path of N then PLANAR-MIN-CUT(N, μ) computes a minimum s - t cut of N in time $O(Q_L(n) \log(n))$.

By known upper bounds on the cost of maintaining queues (as discussed in the Introduction), we also have:

Corollary 5. A minimum s - t cut of N is computed in time $O(n \log^2(n))$ for general L (i.e., a set of positive reals), in time $O(n \log(n) \log \log(n))$ for the case L is a set of positive integers bounded by a polynomial in n , and in time $O(n \log(n))$ for the case $L = \{1\}$ (in this case N is a graph with identically weighted edges).

7. Conclusion

We have presented an algorithm for computing a minimum s-t cut of a planar undirected network. Our algorithm runs in an order of magnitude less time than previous algorithms for this problem. An additional attractive feature of this algorithm is its *simplicity*, as compared to certain other algorithms for computing minimum s-t cuts for sparse networks. [Galil, Naamad, 1979] and [Shiloach, 1978].

BIBLIOGRAPHY

[Aho, Hopcroft, and Ullman, 1974]

A. Aho, J. Hopcroft, J. Ullman, *The Design and Analysis of Computer Algorithms*, Addison Wesley, Reading, Mass (1974).

[Berge and Ghouila-Houri, 1965]

C. Berge and A. Ghouila-Houri, *Programming, Games, and Transportation Networks*, Methuen, Agincourt, Ontario, 1965.

[Boas, Kaas, and Zijlstra, 1977]

P. van Emde Boas, R. Kaas, E. Zijlstra, "Design and implementation of an efficient priority queue," *Mathematical Systems Theory*, 10, pp. 99-127 (1977).

[Cheston, Probert, Saxton, 1977]

G. Cheston, R. Probert, C. Saxton, "Fast Algorithms for Determination of Connectivity Sets for Planar Graphs," Univ. Saskatchewan, Dept. Comp. Science, Dec. 1977.

[Dijkstra, 1959]

E. Dijkstra, "A note on two problems in connections with graphs," *Numerische Mathematik*, 1, pp. 269-271 (1959).

[Even and Tarjan, 1975]

S. Even and R. Tarjan, "Network flow and testing graph connectivity," *SIAM J. Computing*, Vol. 4, No. 4, pp. 507-518 (Dec. 1975).

[Ford and Fulkerson, 1956]

C. Ford and D. Fulkerson, "Maximal flow through a network," *Canadian J. Math.*, 8, pp. 399-404 (1956).

[Ford and Fulkerson, 1962]

C. Ford and D. Fulkerson, *Flows in Networks*, Princeton University Press,
Princeton, N. J., 1962

[Galil and Naamad, 1979]

Z. Galil and A. Naamad, "Network Flow and Generalized Path Compression,"
Proceedings of Symposium of Theory of Computing, Atlanta, Georgia, 1979.

[Gomory and Hu, 1961]

R. Gomory and T. Hu, "Multi-terminal network flows," *SIAM J. Appl. Math.*,
pp. 551-570 (1961).

[Itai and Shiloach, 1979]

A. Itai and Y. Shiloach, "Maximum flow in planar networks," *SIAM J. of Computing*,
Vol. 8, No. 2, pp. 135-150 (May 1979).

[Shiloach, 1978]

Y. Shiloach, "An $O(n I \cdot \log^2 I)$ Maximum-flow Algorithm," Comp. Science Dept.,
Stanford Univ., Stanford, Cal. (Dec. 1978).

[Shiloach, 1980]

Y. Shiloach, "A Multi-terminal minimum cut algorithm for planar graphs,"
SIAM J. Computing, Vol. 9, No. 2, pp. 214-219 (May 1980).

**DATE
ILMED**

8