Symulacje Komputerowe

Raport: 1

Temat sprawozdania	
Wykonawca:	
Imię i Nazwisko, nr indeksu	Kacper Budnik, 262286 Szymon Malec, 262276
Wydział	Wydział matematyki, W13
Termin zajęć:	Wtorek, 15 ¹⁵
Numer grupy ćwiczeniowej	T00-70d
Data oddanie sprawozdania:	24 kwietnia 2022
Ocena końcowa	

Adnotacje dotyczące wymaganych poprawek oraz daty otrzymania poprawionego sprawozdania

1. Wstep - Koniec

2. Liniowy generator kongruentny - Kiedyś

3. Metoda odwrotnej dystrybuanty - Malec

3.1. Opis

Metoda ta polega na generowaniu zmiennej losowej X generując zmienną U z rozkładu jednostajnego oraz nakładając na nią funkcję odwrotną dystrybuanty.

Algorytm dla rozkładów dyskretnych

Załóżmy, że rozkład X ma postać $P(X = x_i) = p_i, i = 1, 2, ...$

- 1. Generuj $U \sim \mathcal{U}(0, 1)$.
- 2. Wyznacz $j \in \mathbb{N}$ takie, że $\sum_{i=1}^{j-1} p_i < U \leqslant \sum_{i=1}^{j} p_i$.
- 3. Zwróć $X = x_i$

Algorytm dla rozkładów ciągłych

Załóżmy, że X ma dystrybuantę F(x).

- a) Jeśli dystrybuanta jest ściśle rosnąca:
 - 1. Generuj $U \sim \mathcal{U}(0, 1)$.
 - 2. Zwróć $X = F_{Y}^{-1}(U)$.
- b) Jeśli dystrybuanta nie jest ściśle rosnąca:
 - 1. Generuj $U \sim \mathcal{U}(0, 1)$.
 - 2. Zwróć $X = \tilde{F}_X^{-1}(U)$, gdzie $\tilde{F}_X^{-1}(y) = \inf\{x \in \mathbb{R} : F_X(x) \ge y\}$.

3.2. Przykłady

Dyskretny - chuj

Ciagły - rozkład Cauchy'ego

Chcemy wygenerować $X \sim C(\mu, \sigma)$. Dystrybuanta rozkładu Cauchy'ego ma postać

$$F(x) = \frac{1}{\pi} \arctan\left(\frac{x-\mu}{\sigma}\right) + \frac{1}{2}.$$

Za pomocą elementarnych przekształceń jesteśmy w stanie otrzymać funkcję odwrotną

$$F^{-1}(y) = \sigma \tan \left(\pi \left(y - \frac{1}{2}\right)\right) + \mu.$$

Zatem, żeby wygenerować X, należy najpierw wygenerować $U \sim \mathcal{U}(0,1)$ i zwrócić $F^{-1}(U)$. Możemy to jednak lekko uprościć. Niech $Z \sim \mathcal{U}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Wtedy

$$Z \stackrel{d}{=} \pi \left(U - \frac{1}{2} \right).$$

2

Ostatecznie algorytm będzie wyglądał następująco:

- 1. Generuj $Z \sim \mathcal{U}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
- 2. Zwróć $X = \sigma \tan(Z) + \mu$.

4. Metoda akceptacji i odrzucenia^[1] - Budnik

4.1. Opis

Metoda akceptacji i odrzucenia służy do generowania zmiennej losowej \mathbf{X} przy użyciu innych zmiennych. By móc wykorzystać tą metodę muszą być spełnione:

- Potrafimy efektywnie generować inną zmienną losową Y
- Zmienne X oraz Y muszą być skupione na tym samym zbiorze
- Potrafimy wyznaczyć stałą c taką że $\frac{\mathbb{P}(X=i)}{\mathbb{P}(Y=i)} \le c$ dla każdego i

Jeśli są spełnione powyższe założenia możemy użyć poniższego algorytmu do generowania zmiennej \mathbf{X} .

Algorytm

- 1. Generuj jedną realizację Y
- 2. Generuj U~U(0,1), **U ⊥⊥ Y**
- 3. Jeśli $\mathbf{U} \leq \frac{p_{\mathbf{Y}}}{cq_{\mathbf{Y}}}$ zwróć **X=Y**, w przeciwnym wróć do 1.

Prawdopodobieństwo że zmienna zostanie zaakceptowana wynosi

$$\mathbb{P}(\text{'wartość zaakceptowana'}) = \frac{1}{c}$$

zatem by algorytm był wydajny stała c powinna być jak najmniejsza. Średnia liczba powtórzeń algorytmu wynosi c. **To było dyskretne, jeszcze potrzebne ciągłe**

4.2. Przykład

- 5. Metoda splotowa Malec
- 6. Metoda kompozycji Malec
- 7. Metoda Boxa-Mullera Budnik
- 8. Metoda biegunowa Budink
- 9. Zakończenie Początek

Bibliografia

[1] https://youtu.be/NFmbgbyj5M0?t=1323