

Modelos de volatilidad

Randall Romero Aguilar, PhD randall.romero@ucr.ac.cr

EC4301 - Macroeconometría

I Semestre 2020

Última actualización: 17 de mayo de 2020

Tabla de contenidos

- 1. Introducción
- 2. El modelo ARCH
- 3. El modelo GARCH
- 4. Variantes del modelo GARCH

1. Introducción

La volatilidad de muchas series no es constante

- ► En modelos econométricos convencionales, se asume que la varianza del término de error es constante.
- Muchas series de tiempo económicas exhiben períodos de volatilidad inusualmente alta, seguidos por períodos de relativa tranquilidad.
- ► En tales circunstancias, el supuesto de homoscedasticidad es inapropiado.
- ► En ocasiones, uno puede estar interesado en pronosticar la varianza condicional de una serie.

- Consideremos el mercado accionario. Algunas veces el mercado es muy volátil, otras veces no.
- ▶ La volatilidad del retorno de las acciones determina el riesgo de las inversiones.
- ► En finanzas se tiene por cierto que el riesgo y el retorno están correlacionados positivamente
- ▶ Para hacer buenas inversiones, es crucial entender el riesgo apropiadamente.

Figura: Volatilidad en el mercado accionario

Figura: Volatilidad en el mercado petrolero

Pronosticando la varianza

- Un enfoque para pronosticar la varianza es introducir explícitamente una variable independiente que ayude a predecir la volatilidad.
- Por ejemplo

- Si $x_t = x_{t-1} = \dots$ una constante, entonces $\{y_t\}$ es ruido blanco.
- lackbox De lo contrario, la varianza de y_{t+1} condicional en el valor observado x_t es

$$\operatorname{Var}\left(y_{t+1} \mid x_t\right) = x_t^2 \sigma^2$$

Si x_t tiene correlación serial positiva, entonces la varianza condicional de y_{t+1} también la tendrá.

El modelo ARCH

- ► El modelo ARCH fue desarrollado por Engel (1982)
- ► Este trabajo le hizo co-ganador del Premio Nobel de Economía de 2003.
- ► En términos generales, todos los modelos ARCH (y GARCH, que estudiamos más adelante) consisten en dos ecuaciones
 - 1. una ecuación de la media, que describe la evolución de la variable de interés y_t ,
 - 2. una ecuación de la varianza, que describe la evolución de la varianza de y_t .
- ► En adelante, vamos a denotar por Ω_t todos los datos realizados hasta la fecha t.

El modelo ARCH(1)

ARCH(1)

El modelo ARCH(1) está definido por estas dos ecuaciones:

$$y_t = c + \epsilon_t$$
 (media) $\epsilon_t = u_t \sqrt{\alpha_0 + \alpha_1 \epsilon_{t-1}^2}$ (varianza)

donde $u_t \sim N(0, 1), \ \alpha_0 > 0, \ y \ \alpha_1 > 0.$

- A continuación estudiamos los momentos condicionales y no condicionales del término de error ϵ_t .
- Luego vemos los momentos de la variable y_t .

Momentos del término de error

La media incondicional del término de error es cero:

$$\mathbb{E} \epsilon_t = \mathbb{E} \left[u_t \sqrt{\alpha_0 + \alpha_1 \epsilon_{t-1}^2} \right]$$
$$= \mathbb{E} \left[u_t \right] \mathbb{E} \left[\sqrt{\alpha_0 + \alpha_1 \epsilon_{t-1}^2} \right] = 0$$

▶ De manera similar, la media condicional en información previa también es cero:

$$\mathbb{E}\left[\epsilon_{t}|\Omega_{t-1}\right] = \mathbb{E}\left[u_{t}\sqrt{\alpha_{0} + \alpha_{1}\epsilon_{t-1}^{2}} \left|\Omega_{t-1}\right|\right]$$
$$= \mathbb{E}\left[u_{t}\left|\Omega_{t-1}\right|\right]\sqrt{\alpha_{0} + \alpha_{1}\epsilon_{t-1}^{2}} = 0$$

Elevando al cuadrado la ecuación de la varianza es fácil calcular la varianza no condicional del error ε:

$$\epsilon_t^2 = u_t^2 \left(\alpha_0 + \alpha_1 \epsilon_{t-1}^2\right)$$

$$\mathbb{E} \, \epsilon_t^2 = \mathbb{E} \left[u_t^2 \left(\alpha_0 + \alpha_1 \epsilon_{t-1}^2\right) \right]$$

$$= \mathbb{E} \left(u_t^2 \right) \mathbb{E} \left(\alpha_0 + \alpha_1 \epsilon_{t-1}^2\right)$$

$$= \mathbb{E} \left(u_t^2 \right) \left(\alpha_0 + \alpha_1 \mathbb{E} \, \epsilon_{t-1}^2\right)$$

$$= \mathbb{E} \left(u_t^2 \right) \left(\alpha_0 + \alpha_1 \mathbb{E} \, \epsilon_{t-1}^2\right)$$

$$= \mathbb{E} \, \epsilon_t^2$$

$$\operatorname{Var} \left(\epsilon_t \right) = \frac{\alpha_0}{1 - \alpha_1}$$

De manera similar, la varianza condicional en la información disponible a t-1 es:

$$\mathbb{E}\left[\epsilon_t^2 | \Omega_{t-1}\right] = \mathbb{E}\left[u_t^2 \left(\alpha_0 + \alpha_1 \epsilon_{t-1}^2\right) | \Omega_{t-1}\right]$$
$$= \left(\alpha_0 + \alpha_1 \epsilon_{t-1}^2\right) \mathbb{E}\left[u_t^2 | \Omega_{t-1}\right]$$

Por lo tanto:

$$\operatorname{Var}\left[\epsilon_{t}|\Omega_{t-1}\right] = \alpha_{0} + \alpha_{1}\epsilon_{t-1}^{2}$$

► Vemos que la varianza condicional tiene forma autorregresiva, de ahí el nombre del modelo ARCH (*AutoRegressive Conditional Heteroskedasticity*).

ightharpoonup Para futura referencia, resumimos en esta tabla los momentos que hemos calculado para la perturbación ϵ_t

	Incondicional	Condicional	
Media	$\mathbb{E}\epsilon_t = 0$	$\mathbb{E}\epsilon_t = 0 \qquad \qquad \mathbb{E}\left[\epsilon_t \middle \Omega_{t-1}\right] = 0$	
Varianza	$\operatorname{Var} \epsilon_t = \frac{\alpha_0}{1 - \alpha_1}$	$\operatorname{Var}\left[\epsilon_{t} \Omega_{t-1}\right] = \alpha_{0} + \alpha_{1}\epsilon_{t-1}^{2}$	

Momentos del proceso y

ightharpoonup La media incondicional de y_t es:

$$\mathbb{E}(y_t) = \mathbb{E}(c + \epsilon_t)$$
$$= c + \mathbb{E}(\epsilon_t)$$
$$= c$$

mientras que su varianza incondicional es

$$Var(y_t) = Var(c + \epsilon_t)$$
$$= Var(\epsilon_t)$$
$$= \frac{\alpha_0}{1 - \alpha_1}$$

ightharpoonup La media condicional de y_t es:

$$\mathbb{E}(y_t|\Omega_{t-1}) = \mathbb{E}(c + \epsilon_t | \Omega_{t-1})$$

$$= c + \mathbb{E}(\epsilon_t | \Omega_{t-1})$$

$$= c$$

mientras que su varianza condicional es

$$Var (y_t | \Omega_{t-1}) = Var (c + \epsilon_t | \Omega_{t-1})$$

$$= Var (\epsilon_t | \Omega_{t-1})$$

$$= Var (\epsilon_t | \epsilon_{t-1})$$

$$= \alpha_0 + \alpha_1 \epsilon_{t-1}^2$$

Ejemplo 1: Simulando un modelo ARCH(1)

- En este y algunos de los próximos ejemplos vamos a simular procesos ARCH y GARCH.
- ► En todos ellos, se ejecuta este código al inicio

```
* Fijar parámetros de las simulaciones

set obs 1000

set seed 12345

gen time = _n

tsset time

gen u = rnormal(0,1)
```

Este código genera una realización del modelo

$$x_t = 10 + \epsilon_t \qquad \qquad \epsilon_t = u_t \sqrt{0.4 + 0.5\epsilon_{t-1}^2}$$

```
local c=10
local alpha0 = 0.4
local alpha1 = 0.5
gen ex = 0
replace ex = u*('alpha0' + 'alpha1'*(L.ex^2))^(1/2) in 2/L
gen x = 'c' + ex
tsline x
```


Para estimar el modelo

arch x, arch(1)

```
ARCH family regression
Sample: 1-1000
                            Number of obs = 1,000
Distribution: Gaussian
                            Wald chi2(.) = ...
Log\ likelihood = -1229.004 Prob > chi2 =
                           OPG
                  Coef. Std. Err. z P>|z|
         Х
X
               9.993379 .0235107 425.06
                                           0.000
      _cons
ARCH
       arch
        L1.
               .4658485 .0570226
                                    8.17
                                           0.000
               .4361722 .0295631 14.75 0.000
      _cons
```

El modelo AR(1)-ARCH(1)

AR(1)-ARCH(1)

El modelo AR(1)-ARCH(1) está definido por estas dos ecuaciones:

$$y_t = c + \phi y_{t-1} + \epsilon_t$$
 (media)
$$\epsilon_t = u_t \sqrt{\alpha_0 + \alpha_1 \epsilon_{t-1}^2}$$
 (varianza)

donde $u_t \sim N(0,1)$, $|\phi| < 1$, $\alpha_0 > 0$, y $\alpha_1 > 0$.

- La ecuación de volatilidad es la misma de antes, por lo que los momentos de ϵ_t son los mismos del modelo ARCH(1).
- ➤ A diferencia del modelo ARCH(1), en esta especificación la media tiene una dinámica propia.
- **B** Busquemos los momentos de la variable y_t .

ightharpoonup La media incondicional de y_t es:

$$\mathbb{E}(y_t) = \mathbb{E}(c + \phi y_{t-1} + \epsilon_t)$$

$$= c + \phi \mathbb{E}(y_{t-1}) + \mathbb{E}(\epsilon_t)$$

$$= c + \phi \mathbb{E}(y_t)$$

$$= \frac{c}{1 - \phi}$$

ightharpoonup mientras que la media condicional en Ω_{t-1} es

$$\mathbb{E}(y_t \mid \Omega_{t-1}) = \mathbb{E}(c + \phi y_{t-1} + \epsilon_t \mid \Omega_{t-1})$$

$$= c + \phi \mathbb{E}(y_{t-1} \mid \Omega_{t-1}) + \mathbb{E}(\epsilon_t \mid \Omega_{t-1})$$

$$= c + \phi y_{t-1}$$

$$= c + \phi y_{t-1}$$

- ightharpoonup Por simplicidad, asumamos que $\mathbb{E}\left(y_{t}\right)=0$
- ► Entonces su varianza incondicional es

$$\operatorname{Var}(y_{t}) = \mathbb{E}(y_{t}^{2})$$

$$= \mathbb{E}(\phi^{2}y_{t-1}^{2} + 2\phi y_{t-1}\epsilon_{t} + \epsilon_{t}^{2})$$

$$= \phi^{2}\mathbb{E}(y_{t-1}^{2}) + 2\phi \mathbb{E}(y_{t-1}\epsilon_{t}) + \mathbb{E}(\epsilon_{t}^{2})$$

$$= \operatorname{Var}(y_{t}) = 2\phi\mathbb{E}(y_{t-1}u_{t}\sqrt{\alpha_{0} + \alpha_{1}\epsilon_{t-1}^{2}}) + \frac{\alpha_{0}}{1 - \alpha_{1}}$$

$$= 0$$

por lo que

$$\operatorname{Var}(y_t) = \frac{1}{1 - \phi^2} \frac{\alpha_0}{1 - \alpha_1}$$

► Por otra parte, su varianza condicional es

$$Var (y_t | \Omega_{t-1}) = Var (c + \phi y_{t-1} + \epsilon_t | \Omega_{t-1})$$

$$= Var (\epsilon_t | \Omega_{t-1})$$

$$= \alpha_0 + \alpha_1 \epsilon_{t-1}^2$$

Ejemplo 2: Simulando un modelo AR(1)-ARCH(1)

Este código genera una realización del modelo

$$y_t = 1 + 0.9y_{t-1} + \epsilon_t$$
 $\epsilon_t = u_t \sqrt{0.4 + 0.5\epsilon_{t-1}^2}$

```
local c = 1
local phi1 = 0.9
local alpha0 = 0.4
local alpha1 = 0.5
gen ey = 0

replace ey = u*('alpha0' + 'alpha1'*(L.ey^2))^(1/2) in 2/L
gen y = 11
replace y = 'c' + 'phi1'*L.y + ey in 2/L
tsline y
```


Para estimar el modelo

arch y L.y, arch(1)

egression			
Sample: $2-1000$ Distribution: Gaussian Log likelihood = -1227.867		Wald $chi2(1) =$	
 	OPG		
Coef.		z	P> z
.9127598	.0109761	83.16	0.000
.8621232	.1121024	7.69	0.000
.4683382	.0572297	8.18	0.000
.4350871			0.000
	Gaussian I = -1227.867 Coef. .9127598 .8621232	O00 Number of Wald chi2 Prob > ch OPG Coef. Std. Err. OPG Std. Err. .9127598 .0109761 .8621232 .1121024 .4683382 .0572297 .4350871 .0296678	O00 Number of obs = Wald chi2(1) = Prob > chi2 = OPG Coef. Std. Err. z .9127598 .0109761 83.16 .8621232 .1121024 7.69 .4683382 .0572297 8.18

El modelo ARCH(2)

ARCH(2)

El modelo ARCH(2) está definido por estas dos ecuaciones:

$$y_t=c+\epsilon_t$$
 (media)
$$\epsilon_t=u_t\sqrt{\alpha_0+\alpha_1\epsilon_{t-1}^2+\alpha_2\epsilon_{t-2}^2}$$
 (varianza)

donde $u_t \sim N(0, 1), \ \alpha_i > 0, \ \alpha_1 + \alpha_2 < 1.$

- A continuación estudiamos los momentos condicionales y no condicionales del término de error ϵ_t .
- Luego vemos los momentos de la variable y_t .

Momentos del término de error

La media incondicional del término de error es cero:

$$\mathbb{E} \epsilon_t = \mathbb{E} \left[u_t \sqrt{\alpha_0 + \alpha_1 \epsilon_{t-1}^2 + \alpha_2 \epsilon_{t-2}^2} \right]$$
$$= \mathbb{E} \left[u_t \right] \mathbb{E} \left[\sqrt{\alpha_0 + \alpha_1 \epsilon_{t-1}^2 + \alpha_2 \epsilon_{t-2}^2} \right] = 0$$

De manera similar, la media condicional también es cero:

$$\mathbb{E}\left[\epsilon_{t}|\Omega_{t-1}\right] = \mathbb{E}\left[u_{t}\sqrt{\alpha_{0} + \alpha_{1}\epsilon_{t-1}^{2} + \alpha_{2}\epsilon_{t-2}^{2}} \left|\Omega_{t-1}\right]\right]$$
$$= \mathbb{E}\left[u_{t}\left|\Omega_{t-1}\right|\right]\sqrt{\alpha_{0} + \alpha_{1}\epsilon_{t-1}^{2} + \alpha_{2}\epsilon_{t-2}^{2}} = 0$$

Elevando al cuadrado la ecuación de la varianza es fácil calcular la varianza no condicional del error ε:

$$\epsilon_t^2 = u_t^2 \left(\alpha_0 + \alpha_1 \epsilon_{t-1}^2 + \alpha_2 \epsilon_{t-2}^2 \right)$$

$$\mathbb{E} \, \epsilon_t^2 = \mathbb{E} \left[u_t^2 \left(\alpha_0 + \alpha_1 \epsilon_{t-1}^2 + \alpha_2 \epsilon_{t-2}^2 \right) \right]$$

$$= \mathbb{E} \left(u_t^2 \right) \mathbb{E} \left(\alpha_0 + \alpha_1 \epsilon_{t-1}^2 + \alpha_2 \epsilon_{t-2}^2 \right)$$

$$= \mathbb{E} \left(u_t^2 \right) \left(\alpha_0 + \alpha_1 \mathbb{E} \, \epsilon_{t-1}^2 + \alpha_2 \mathbb{E} \, \epsilon_{t-2}^2 \right)$$

$$= \mathbb{E} \, \epsilon_t^2$$

De manera similar, la varianza condicional en la información disponible a t-1 es:

$$\mathbb{E}\left[\epsilon_{t}^{2}|\Omega_{t-1}\right] = \mathbb{E}\left[u_{t}^{2}\left(\alpha_{0} + \alpha_{1}\epsilon_{t-1}^{2} + \alpha_{2}\epsilon_{t-2}^{2}\right)|\Omega_{t-1}\right]$$
$$= \left(\alpha_{0} + \alpha_{1}\epsilon_{t-1}^{2} + \alpha_{2}\epsilon_{t-2}^{2}\right) \mathbb{E}\left[u_{t}^{2}|\Omega_{t-1}\right]$$

Por lo tanto:

$$\operatorname{Var}\left[\epsilon_{t}|\Omega_{t-1}\right] = \alpha_{0} + \alpha_{1}\epsilon_{t-1}^{2} + \alpha_{2}\epsilon_{t-2}^{2}$$

- ▶ Como $y_t = c + \epsilon_t$, vemos que las varianzas (condicional e incondicional) de y_t son iguales a las de ϵ_t .
- ► Entonces:

$$Var y_t = Var \epsilon_t$$
$$= \frac{\alpha_0}{1 - \alpha_1 - \alpha_2}$$

$$\operatorname{Var}(y_t | \Omega_{t-1}) = \operatorname{Var}(\epsilon_t | \Omega_{t-1})$$
$$= \alpha_0 + \alpha_1 \epsilon_{t-1}^2 + \alpha_2 \epsilon_{t-2}^2$$

Ejemplo 3: Simulando un modelo ARCH(2)

Este código genera una realización del modelo

$$z_t = 10 + \epsilon_t$$
 $\epsilon_t = u_t \sqrt{0.2 + 0.3\epsilon_{t-1}^2 + 0.4\epsilon_{t-2}^2}$

Para estimar el modelo

arch z, arch(1/2)

nily re	gression			
Sample: $1 - 1000$ Distribution: Gaussian Log likelihood = -992.1954		Number of obs = Wald chi2(.) = Prob > chi2 =		1,000
	 	OPG		
z	Coef.		z	P> z
cons	9.993861	.0170434	586.38	0.000
arch				
L1.	.658891	.0656346	10.04	0.000
L2.	.0187866	.0271173	0.69	0.488
_cons	.2137528	.0171361	12.47	0.000
	1 - 10 tion: lihood z cons arch L1. L2.	z Coef. cons 9.993861 arch L1. .658891 L2. .0187866	1 - 1000 Number of Wald chi2 Prob > ch OPG OPG Z Coef. Std. Err. cons 9.993861 .0170434 arch L1. .658891 .0656346 L2. .0187866 .0271173	1 - 1000

El modelo ARCH(q)

ARCH(q)

El modelo ARCH(q) está definido por estas dos ecuaciones:

$$y_t = c + \epsilon_t$$
 (media)
$$\epsilon_t = u_t \sqrt{\alpha_0 + \alpha_1 \epsilon_{t-1}^2 + \dots + \alpha_q \epsilon_{t-q}^2}$$
 (varianza)

- Para que la varianza sea estacionaria, se requiere que

 - $-1 < \alpha_i < 1$ $\sum_{i=1}^{1} \alpha_i < 1$

► En el caso del proceso ARCH(q), la varianza condicional es

$$\operatorname{Var}(y_t \mid \Omega_{t-1}) = \alpha_0 + \alpha_1 \epsilon_{t-1}^2 + \dots + \alpha_q \epsilon_{t-q}^2$$

mientas que la varianza incondicional es

$$\operatorname{Var}(y_t) = \frac{\alpha_0}{1 - \alpha_1 - \alpha_2 - \dots - \alpha_q}$$

Determinando si los datos presentan ARCH

- ¿Cómo sabemos si los datos exhiben ARCH?
- Los cuadrados de los residuos son una estimación de la varianza, así que una forma de diagnosticar ARCH es estudiar la autocorrelación de los cuadrados de los residuos.
- Estudiaremos dos pruebas:
 - 1. La prueba de Ljung-Box
 - 2. La prueba de Engle basada en el multiplicador de Lagrange
- Ambas pruebas empiezan con los mismos dos pasos
 - 1. Se estima la ecuación de la media: se hace una regresión de y_t sobre sus rezagos o variables exógenas x_t
 - Se investiga las propiedades de los residuos y de los cuadrados de los residuos

La prueba Q de Ljung-Box

- Recordemos que esta prueba sirve para determinar si una variable es ruido blanco.
- ▶ Se basa en la suma de los cuadrados de los primeros m coeficientes de autocorrelación, la cual debe ser "pequeña" si $\rho_1=\rho_2=\cdots=\rho_m=0$
- ► En este caso, calculamos el estadístico

$$Q = T(T+2) \sum_{j=1}^{m} \frac{\hat{\rho}_j^2}{T-j} \stackrel{\text{asy}}{\sim} \chi_{m-k}^2$$

a partir de las autocorrelaciones de los cuadrados de los residuos.

▶ En la fórmula, T es el número de observaciones (de la regresión, no de la serie original) y k el número de parámetros estimados en esa regresión (sin contar el intercepto).

La prueba de Engel

ightharpoonup Se estima una ecuación AR(m) para los residuos al cuadrado:

$$\hat{\epsilon}_t^2 = a_0 + a_1 \hat{\epsilon}_{t-1}^2 + a_2 \hat{\epsilon}_{t-2}^2 + \dots + a_m \hat{\epsilon}_{t-m}^2 + v_t$$

Test de Eng	gel (1982)
200	¿Hay efectos ARCH en la serie de tiempo y_t ?
H _o	$a_1=a_2=\cdots=a_m=0$ (no hay ARCH)
Test	$\lambda = T'R^2 \stackrel{ ext{asy}}{\sim} \chi_m^2$
``	Si $\lambda>\chi_m^2(1-\alpha)$, rechazar H_0 con $100\alpha\%$ de significancia: la serie sí tiene efectos ARCH.

Encontrando el óptimo número de rezagos

- ► Tanto en la prueba de Ljung-Box como en la de Engle asumimos que conocíamos el orden m del proceso ARCH(m)
- ► En la práctica, eso no es así.
- ▶ Para determinar el valor de m, recurrimos de nuevo a los criterios de información:
 - criterio de información de Akaike
 - criterio de información bayesiano
- \triangleright Escogemos el valor m que minimice estos criterios.
- Y si no se pone de acuerdo? en tal caso el bayesiano escogerá un valor menor que el de Akaike:
 - usamos el bayesiano si preferimos una especificación más parsimoniosa,
 - usamos Akaike si nos preocupa incurrir en sesgo de variable omitida.

Estimando modelos ARCH

▶ En general, la ecuación de varianza de los modelos ARCH se pueden escribir como $\epsilon_t=u_t\sqrt{h_t}$, en los cuales siempre se asume que

$$\mathbb{E} u_t = 0$$
 $\operatorname{Var} u_t = 1$ $\operatorname{Cov}(u_t, u_{t-j}) = 0$

- ► Hay varios métodos para estimar estos modelos:
 - la el método de máxima verosimilitud.
 - la el método de cuasi-máxima verosimilitud,
 - el método generalizado de momentos.
- Además, las estimaciones de máxima verosimilitud pueden asumir distintas distribuciones del ruido blanco u_t .

Ejemplo 4:

Un modelo ARCH del tipo de cambio del colón/dólar

```
tipo-cambio.csv
```


Calculamos los cuadrados de los residuos de la ecuación de la media:

```
quietly regress tc
predict e, resid
gen e2 = e^2
ac e2 /* autocorrelograma*/
```


Sin importar cuántos rezagos usamos, la prueba del multiplicador de lagrange nos dice que sí hay efectos ARCH.

estat archlm, lags(1/12)

LM test f ARCH)	_	essive co	onditional heter	oskedasticity (
lags(p)	chi2	df	Prob > chi2	
1	209.419	1	0.0000	
2	212.541	2	0.0000	
3	231.625	3	0.0000	
4	283.783	4	0.0000	
5	284.577	5	0.0000	
6	284.471	6	0.0000	
7	291.968	7	0.0000	
8	293.769	8	0.0000	
9	298.060	9	0.0000	
10	301.888	10	0.0000	
11	310.374	11	0.0000	
12	322.986	12	0.0000	
HO: no AR	CH affacts	ve H1.	ARCH(n) distur	- hance

Los criterios de Akaike y el bayesiano coiciden en especificar un modelo ARCH(10).

```
BIC = -974.95011
lags = 1 AIC = -990.60684
lags = 2 AIC = -1218.8708
                            BIC = -1197.9952
lags = 3 AIC = -1276.3479 BIC = -1250.2534
lags = 4 AIC = -1315.5608
                            BIC = -1284.2473
lags = 5 AIC = -1361.0546
                            BIC = -1324.5222
lags = 6 AIC = -1378.8952 BIC = -1337.144
lags = 7 AIC = -1378.8461 BIC = -1331.8759
lags = 8 AIC = -1381.6959
                            BIC = -1329.5068
lags = 9 AIC = -1401.3779 BIC = -1343.9699
lags = 10 AIC = -1420.0086 BIC = -1357.3817
lags = 11 AIC = -1418.071
                            BIC = -1350.2252
```

Estimamos el modelo ARCH con el número óptimo de rezagos y pronosticamos la varianza del siguiente mes:

```
arch tc, arch(1/10)
tsappend, add(20) /* ampliamos la muestra*/
predict varhat, variance /* pronóstico */
tsline e2 varhat in -40/1
```


De ARCH a GARCH

- 1. Los modelos ARCH pueden capturar muchas de las características de datos financieros, pero para lograrlo pueden necesitar muchos rezagos en la ecuación de varianza.
- 2. En 1986 Bollerslev encontró una solución a este problema via una generalización del modelo ARCH.
- 3. Un modelo GARCH(p,q) puede reflejar un ARCH(∞) usando pocos parámetros.

 Antes de generalizar el modelo ARCH(q), reescribamos la ecuación de la varianza así

$$\epsilon_t = u_t \sqrt{\alpha_0 + \alpha_1 \epsilon_{t-1}^2 + \dots + \alpha_q \epsilon_{t-q}^2} = \sigma_t u_t$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 \epsilon_{t-1}^2 + \dots + \alpha_q \epsilon_{t-q}^2$$

- Vemos que la varianza condicional σ_t^2 de un modelo ARCH(q) es similar a un proceso MA(q).
- ▶ El modelo GARCH(p,q) se obtiene agregando p rezagos de la varianza condicional al proceso ARCH(q):

$$\sigma_t^2 = \alpha_0 + \alpha_1 \epsilon_{t-1}^2 + \dots + \alpha_q \epsilon_{t-q}^2 + \beta_1 \sigma_{t-1}^2 + \dots + \beta_p \sigma_{t-p}^2$$

El modelo GARCH(1,1)

GARCH(1,1)

El modelo GARCH(1,1) está definido por estas tres ecuaciones:

$$y_t = c + \epsilon_t$$

$$\epsilon_t = u_t \sigma_t$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 \epsilon_{t-1}^2 + \beta \sigma_{t-1}^2$$

▶ Notemos lo parecida que es esta formulación de la varianza condicional a un proceso ARMA(1,1).

Podemos escribirla así la varianza condicional

$$\sigma_{t}^{2} = \alpha_{0} + \alpha_{1}\epsilon_{t-1}^{2} + \beta\sigma_{t-1}^{2}$$

$$\sigma_{t}^{2} - \beta\sigma_{t-1}^{2} = \alpha_{0} + \alpha_{1}\epsilon_{t-1}^{2}$$

$$(1 - \beta L) \sigma_{t}^{2} = \alpha_{0} + \alpha_{1}\epsilon_{t-1}^{2}$$

$$\sigma_{t}^{2} = (1 - \beta L)^{-1} (\alpha_{0} + \alpha_{1}\epsilon_{t-1}^{2})$$

$$= \frac{\alpha_{0}}{1 - \beta} + (1 + \beta L + \beta^{2} L^{2} + \dots) \alpha_{1}\epsilon_{t-1}^{2}$$

$$= \frac{\alpha_{0}}{1 - \beta} + \alpha_{1}\epsilon_{t-1}^{2} + \alpha_{1}\beta\epsilon_{t-2}^{2} + \alpha_{1}\beta^{2}\epsilon_{t-3}^{2} + \dots$$

siempre y cuando $|\beta| < 1$.

- ▶ Vemos que el proceso GARCH(1,1) es equivalente a un proceso ARCH(∞).
- ► Esto permite al GARCH capturar procesos muy complejos sin necesidad de estimar muchísimos parámetros.

Ejemplo 5: Simulando un modelo GARCH(1,1)

Este código genera una realización del modelo

```
w_t = 10 + \epsilon_t   \epsilon_t = u_t \sigma_t   \sigma_t^2 = 0.2 + 0.4 \epsilon_{t-1}^2 + 0.6 \sigma_{t-1}^2
 local c = 10
 local alpha0 = 0.2
local alpha1 = 0.4
 local beta1 = 0.6
gen ew = 0
gen sigma2 = 1
forvalues i=2/'=_N'{
  replace sigma2 = 'alpha0' + 'alpha1'*(L.ew^2) + 'beta1'*(L
       .sigma2) in 'i'
  replace ew = u*sqrt(sigma2) in 'i'
gen w = 'c' + ew
 tsline w
```


Para estimar el modelo

arch w, arch(1) garch(1)

ARCH family r	egression				
Sample: 1 — 10 Distribution: Log likelihood			.) =	1,000	
	1	OPG			
w	Coef.	Std. Err.	z	P> z	
w					
_cons	9.971864	.0446534	223.32	0.000	
ARCH					
arch L1.	 .3949275 	.0446639	8.84	0.000	
garch L1.	.6291797	.0317643	19.81	0.000	
_cons	 .1593738	.0421826	3.78	0.000	

El modelo GARCH(p,q)

GARCH(p,q)

El modelo GARCH(p,q) está definido por estas tres ecuaciones:

$$y_t = c + \epsilon_t$$

$$\epsilon_t = u_t \sigma_t$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 \epsilon_{t-1}^2 + \dots + \alpha_q \epsilon_{t-q}^2 + \beta_1 \sigma_{t-1}^2 + \dots + \beta_p \sigma_{t-p}^2$$

▶ En la práctica, es inusual requerir más de dos rezagos ARCH y GARCH (i.e., $p \le 2$ y $q \le 2$).

Ejemplo 6: Un modelo GARCH del tipo de cambio del colón/dólar

- tipo-cambio.csv
- arch-tipo-cambio.do

Los criterios de Akaike y el bayesiano coiciden en especificar un modelo GARCH(2,3).

```
forvalues p=0/2{
forvalues q=1/4{
  if `p'==0{
   quietly arch tc, arch(1/`q')
  else {
   quietly arch tc, arch(1/`q') garch(1/`p')
  quietly estat ic
  matrix temp = r(S)
 display "p = " `p' " q = " `q' " AIC = " temp
     [1,5] "BIC = "temp[1,6]
```

Estimamos el modelo GARCH con el número óptimo de rezagos y pronosticamos la varianza del siguiente mes:

```
arch tc, arch(1/3) garch(1/2)
predict varhat2, variance
tsline e2 varhat2 in -40/1
```


Aunque no mostramos más detalles acá, podemos también estimar modelos AR-GARCH. Por ejemplo este modelo AR(1)-GARCH(2,2) del tipo de cambio

arch tc L.tc, arch(1/2) garch(1/2)

Sample: U4feb2	2015 — 25apr20	20 Number o	of obs $=$	1,364
Distribution:	Gaussian	Wald chi	(2(1)) =	96.45
Log likelihood	I = 791.6779	Prob > 0	chi2 =	0.0000
tc	Coef.	Std. Err.	z	P> z
	 			
L1.tc	.31708	.0322866	9.82	0.000
_cons	.0020962	.0028756	0.73	0.466
	 			
ARCH				
L1.arch	.4853867	.0299791	16.19	0.000
L2.arch	4833929	.0299363	-16.15	0.000
L1.garch	1.453636	.0334281	43.49	0.000
L2.garch	454845	.033364	-13.63	0.000
cons	-1.84e-06	1.41e - 06	-1.31	0.192

4. Variantes del modelo GARCH

Variantes del modelo GARCH

- A la fecha se ha realizado mucha investigación para mejorar la capacidad de ajuste de los modelos GARCH.
- Las mejoras se logran principalmente cambiando las restricciones sobre los parámetros del modelo.
- Existen muchísimas variantes del modelo GARCH, entre ellas:
 - GARCH-t, que asume que el ruido blanco sigue una distribución t-Student en vez de una normal estándar.
 - GARCH-M, que incluye la varianza como una variable explicativa de la media.
 - ► GJR-GARCH, E-GARCH, T-GARCH, para modelar respuestas asimétricas a los shocks.
 - I-GARCH, para procesos que tienen una varianza con raíz unitaria.

El modelo GARCH-M

- En finanzas se tiene por hecho que mayores riesgos solo se asumen si se esperan mayores retornos.
- ► Esto sugiere una modificación del modelo GARCH: incluir la varianza del proceso en la ecuación del retorno esperado.
- Así, por ejemplo, puede especificarse el modelo

$$y_t = c + \gamma x_t + \lambda \sigma_t + \epsilon_t$$

$$\epsilon_t = \sigma_t u_t$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 \epsilon_{t-1}^2 + \beta_1 \sigma_{t-1}^2$$

Este modelo puede generalizarse aún más, incluyendo además rezagos de la varianza en la ecuación de y_t .

Referencias I

Hamilton, James M. (1994). *Time Series Analysis*. Princeton University Press. ISBN: 0-691-04289-6.

Levendis, John D. (2018). *Time Series Econometrics. Learning Through Replication*. Springer. ISBN: 978-3-319-98281-6.