Class 18 Regression Discontinuity Design

Dr Wei Miao

UCL School of Management

Thu, Dec 01 2022

Section 1

Regression Discontinuity Design

What is an RDD

- A regression discontinuity design (RDD) is a quasi-experimental design that aims to determine the causal effects of interventions by assigning a cutoff or threshold above or below which an intervention is assigned.
- It was invented by educational psychology¹ and generalized by economists to economics and business fields.

 $^{^1}$ Thistlethwaite, Donald L., and Donald T. Campbell. 1960. "Regression-Discontinuity Analysis: An Alternative to the Ex Post Facto Experiment." Journal of Educational Psychology 51 (6): 309.

Visual Illustration of RDD

Visual Illustration of RDD: An Example of Distinction on Salary

Question: What is the causal effect of a Distinction honor on a student's future salary?

When to Use an RDD

- An RDD arises when treatment is assigned based on whether an underlying continuous score variable crosses a cutoff.
 - The characteristic is often referred to as the running variable.
- AND the characteristic cannot be perfectly manipulated by individuals
 - We should only focus on individuals in the neighborhood of the cutoff point.
 - We can only estimate the local treatment effects from an RDD study.

RDD in R

Why RDD Gives Causal Effects?

- Because the "running variable" cannot be perfectly controlled by the individuals around the cutoff point, it's as if the treatment was randomly assigned in the neighborhood of cutoff.
- At the same time, individuals on either side of the cut-off should be very similar to each other, such that there should be no systematic differences across the treatment and control group other than the treatment.
- With the treatment being the only discontinuity at this threshold, a discontinuous jump in the outcome of interest at the threshold is the treatment effect.

Section 2

Steps of RDD Analyses

Step 1: Select Sample of Analysis

- Determine the cutoff-point and select the subset of individuals near the cut-off point
 - e.g., filter out students with average scores between 69 and 70
- There is no econometric requirement on the "near"; however, we face a trade-off between external validity and internal validity:
 - External validity: If we have a narrower subset of individuals, we have a smaller subset of subjects which may not be representative of remaining individuals
 - Internal validity: If we have a broader subset of individuals, it is more likely the control group and treatment group are less likely to be "as-if randomized"
- In practice, we may need to run a set of different neighborhood bands as robustness checks.

Step 2: Examine Continuity of Observed Characteristics

- Examine if the observed characteristics of the treatment group and control group are continuous at the cut-off point.
 - The idea is similar to "randomization check" in the Step 5 of an RCT.

Step 3: Analysis

- Regress the outcome variable on the treatment indicator to obtain the statistical significance.
 - In R, there is also a package rddtools which can help us estimate an RDD model.

Section 3

RDD in R

Causal Impact of Distinction on Salaries

- It is important to understand the causal impact of degree honors on students' future salaries and other outcomes.
- Can we get causal inference from simple linear regression?²

$$Salary_i = \beta_0 + \beta_1 Distinction_i + X\beta + \epsilon_i$$

RCT, IV or DID?

- Since omitted variable bias prevents us from obtaining causal inference, we need to find another causal inference tool to overcome the challenge.
- How about
 - RCT
 - Instrumental Variable
 - Difference-in-Differences
- Fortunately, we can use regression discontinuity design.

Dataset for RDD

- To run RDD, we need to select students with very similar scores due to the tradeoff between internal validity and external validity.
 - In the selected dataset, scores range from 69.07 to 72.93

```
pacman::p_load(dplyr)
data_rdd <- read.csv('https://www.dropbox.com/s/4f0zaqqkzo0at5o/data_rd</pre>
```

head(data rdd,5)

student_id	salary	score	experience
1	46.41270	69.06849	3.872425
2	47.55037	69.15068	3.236511
3	46.07215	69.23288	3.202071
4	44.21388	69.31507	3.280689
5	44.35247	69.39726	3.548198

Data Wrangling

- To use RDD, we need to generate the treatment variable treated, which equals 1 if a student receives the treatment and 0 otherwise.
 - The treatment in an RDD is in spirit similar to that of an RCT, only that the treatment is assigned by nature (hence the name "natural experiment")

```
data_rdd <- data_rdd %>%
mutate(treated = ifelse(score>=70,1,0))
```

RDD Analysis Using R

```
pacman::p_load(modelsummary,fixest)
rdd_result <- feols(
  fml = salary ~ treated,
  data = data_rdd
)
modelsummary(rdd_result,stars = TRUE)</pre>
```

	Model 1	
(Intercept)	46.143***	
	(0.479)	
treated	2.257***	
	(0.553)	
Num.Obs.	48	
R2	0.266	
R2 Adj.	0.250	
RMSE	1.62	
Std.Errors	IID	
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001		

Variant 1: Regression Discontinuity in Time

- An event or treatment occurred at a point in time. Meanwhile, the treatment affected all individuals.
 - Because all individuals were affected, there were no control group and we could not do DiD analyses.
- However, if we can justify, seasonality is not strong within certain time window before and after the event, then we can do a regression discontinuity in time design (RDiT), as follows:

$$Outcome_{i,t} = \alpha + \beta_1 Post_i + X\beta + \mu_{i,t}$$

- \bullet As we learned in DiD lecture, β_1 includes both (1) the treatment effect, and (2) seasonality
 - If the time window is short, say a few weeks before and after, it is likely seasonality effect is null, and we can claim β_1 measures the causal effect of the event.

Variant 2: Spatial Regression Discontinuity

- Some new policies/events may be region specific. For instance, In the US, each state has their independent laws and regulations, so a state's new policy only affects that state but not other states.
- Residents near the same border should be similar in their characteristics, but only one side of the border receives the treatment.
 - As-if a randomized controlled trial

Variant 2: Spatial Regression Discontinuity

- Then we can compare the outcome of the treated residents and control residents near the border. Hence, spatial regression discontinuity is sometimes called border strategy.
 - Refer to this paper for a comprehensive description of the topic.

After-class Reading

• (recommended) Quasi-experiment (Econometrics with R)