数季电路与逻辑设计

Digital circuit and logic design

● 第四章 组合逻辑电路

主讲教师赵贻竹

多输出函数的组合逻辑电路

由同一组输入变量产生多个输出函数

应该将多个输出函数当作一个整体考虑,而不应该将其截然分开

关键: 在函数化简时找出各输出函数的公用项,实现对逻辑门的"共享"

设计一个全加器,能对两个1位二进制数及来自低位的"进位"进行相 加,产生本位"和"及向高位"进位"的逻辑电路

全 加 器

2 全加器可用于实现两个n位数相加

$$A_{n-1}A_{n-2}\cdots A_i \cdots A_1A_0$$

$$+B_{n-1}B_{n-2}\cdots B_i \cdots B_1B_0$$

$$C_i \quad C_{i-1}$$

$$S_i$$

分 析

$$A_{n-1}A_{n-2}\cdots A_i \cdots A_1A_0$$

$$+B_{n-1}B_{n-2}\cdots B_i \cdots B_1B_0$$

$$C_i \quad C_{i-1}$$

$$S_i$$

输入端

 A_i :被加数

 B_i :加数

 C_{i-1} :来自低位的进位输入

输出端

 S_i :本位和

 C_i : 向高位的进位

真值表

A_i	B_i	C_{i-1}	S_i	C_i
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S_i = \sum m(1,2,4,7)$$

$$C_i = \sum m(3,5,6,7)$$

函数化简

$$S_{i} = \sum_{i} m(1,2,4,7)$$

$$= \overline{A_{i}} \overline{B_{i}} \frac{C_{i-1}}{C_{i-1}} + \overline{A_{i}} B_{i} \overline{C_{i-1}} + A_{i} \overline{B_{i}} \overline{C_{i-1}} + A_{i} B_{i} C_{i-1}$$

$$= (\overline{A_{i}} B_{i} + A_{i} \overline{B_{i}}) \overline{C_{i-1}} + (\overline{A_{i}} \overline{B_{i}} + A_{i} B_{i}) C_{i-1}$$

$$= (A_{i} \oplus B_{i}) \overline{C_{i-1}} + \overline{A_{i} \oplus B_{i}} C_{i-1}$$

$$= A_{i} \oplus B_{i} \oplus C_{i-1}$$

函数化简

$$C_i = \sum_i m (3,5,6,7)$$

= $A_i B_i + A_i C_{i-1} + B_i C_{i-1}$

电路图

该电路就单个函数而言, S_i 、 C_i 均已达到最简

从整体考虑则并非最简

$$S_i = A_i \oplus B_i \oplus C_{i-1}$$

$$C_i = \sum m (3,5,6,7)$$

数字电路与逻辑设计

函数化简

$$S_i = A_i \oplus B_i \oplus C_{i-1}$$

$$C_i = \sum m \ (\ 3,5,6,7\)$$

$$=A_iB_i+\overline{A_i}B_iC_{i-1}+A_i\overline{B_i}C_{i-1}$$

$$=A_iB_i+\left(\overline{A_i}B_i+A_i\overline{B_i}\right)C_{i-1}$$

$$=A_iB_i + \left(\begin{array}{c} A_i \oplus B_i \end{array} \right) C_{i-1}$$

电路图

$$S_i = = A_i \oplus B_i \oplus C_{i-1}$$

$$C_i = A_i B_i + (A_i \oplus B_i) C_{i-1}$$

设计一个乘法器,用于产生两个2位二进制数相乘的积。

输入: A_1A_0 和 B_1B_0 ,

输出函数: 4

 $Max(A_1A_0) = 11$ $Max(B_1B_0) = 11$

 $Max(A_1A_0 \times B_1B_0) = 1001$

相乘的积为 $M_3M_2M_1M_0$

$$M_3 = C_2$$

$$M_2 = A_1 \times B_1 + C_1$$

$$M_1 = A_1 \times B_0 + A_0 \times B_1$$

 C_2

 M_3

$$M_0 = A_0 \times B_0$$

		A_1 $\times B_1$	A_0 B_0
7	+ $A_1 \times B_1$	$A_1 \times B_0$ $A_0 \times B_1$	$A_0 \times B_0$
41	$\times B_1 + C_1 A_1$	$\times B_0 + A_0 \times B_1$	$A_0 \times B_0$
	M_2	M_1	M_0

Α	В	或	与	异或	积	和
0	0	0	0	0	0	0
0	1	1	0	1	0	1
1	0	1	0	1	0	1
1	1	1	1	0	1	0

$\boldsymbol{\mathcal{C}_1}$

 A_1B_0 和 A_0B_1 相加产生的进位

$$C_1 = 1 \iff A_1 B_0 = 1 \& A_0 B_1 = 1$$

$\boldsymbol{C_2}$

 C_1 和 A_1B_1 相加产生的进位

$$C_2 = 1 \iff C_1 = 1 \& A_1B_1 = 1$$

$$C_2 = C_1 A_1 B_1 = A_0 B_1 A_1 B_0$$

$$M_0 = A_0 \times B_0$$

$$M_0 = A_0 B_0$$

$$M_1 = A_1 \times B_0 + A_0 \times B_1$$

$$M_1 = A_0 B_1 \oplus A_1 B_0$$

$$M_2 = A_1 \times B_1 + C_1$$

$$M_2 = C_1 \oplus A_1 B_1 = A_0 B_1 A_1 B_0 \oplus A_1 B_1$$

$$M_3 = C_2$$

$$M_3 = A_0 B_1 A_1 B_0$$

用全加器如何实现?

 M_0

 A_0

数季电路与逻辑设计

Digital circuit and logic design

● 谢谢,祝学习快乐!

主讲教师 赵贻竹

