CLAIMS

1. A compound of formula (I):

$$R^{2b}$$
 R^{2a}
 R^{2a}
 R^{2a}
 R^{2a}
 R^{2a}
 R^{2a}
 R^{2a}
 R^{2a}

(l)

5 wherein:

A represents an optionally substituted aryl, or an optionally substituted 5- or 6- membered heterocyclyl ring, or an optionally substituted bicyclic heterocyclyl group;

B represents a phenyl or pyridyl ring;

Z represents O, S, SO, or SO₂;

R¹ represents CO₂R⁴, CN, CONR⁵R⁶, CH₂CO₂R⁴, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted SO₂alkyl, SO₂NR⁵R⁶, NR⁵CONR⁵R⁶, COalkyl, 2H-tetrazol-5-yl-methyl, optionally substituted bicyclic heterocycle or optionally substituted heterocyclyl;

R^{2a} and R^{2b} independently represents hydrogen, halogen, optionally substituted alkyl,

optionally substituted alkoxy, CN, SO₂alkyl, SR⁵, NO₂, optionally substituted aryl, CONR⁵R⁶ or optionally substituted heteroaryl;

R^x represents optionally substituted alkyl wherein 1 or 2 of the non-terminal carbon atoms are optionally replaced by a group independently selected from NR⁴, O and SO_n, wherein n is 0, 1 or 2: or R^x represents optionally substituted CQ^aQ^b-heterocyclyl, optionally

substituted CQ^aQ^b-bicyclic heterocyclyl or optionally substituted CQ^aQ^b-aryl;

R⁴ represents hydrogen or an optionally substituted alkyl;

R⁵ represents hydrogen or an optionally substituted alkyl;

R⁶ represents hydrogen or optionally substituted alkyl, optionally substituted heteroaryl, optionally substituted SO₂aryl, optionally substituted SO₂alkyl, optionally substituted

25 SO₂heteroaryl, CN, optionally substituted CQ^aQ^baryl, optionally substituted CQ^aQ^bheteroaryl or COR⁷;

R⁷ represents hydrogen, optionally substituted alkyl, optionally substituted heteroaryl or optionally substituted aryl;

 R^8 and R^9 independently represent hydrogen, chloro, fluoro, CF_3 , C_{1-3} alkoxy or C_{1-3} alkyl;

Q^a and Q^b are independently selected from hydrogen and CH₃; wherein when A is a 6-membered ring the R¹ substituent and phenyl ring are attached to carbon atoms 1,2-, 1,3- or 1,4- relative to each other, and when A is a five-membered ring or bicyclic heterocyclyl group the R¹ substituent and phenyl ring are attached to substitutable carbon atoms 1,2- or 1,3- relative to each other:

5

10

and derivatives thereof; provided that the compound is not 2-benzyloxy[1,1';2',1"]terphenyl-4"-carboxylic acid.

- 2. A compound according to claim 1 wherein when A is a 6-membered ring, the R¹ substituent and phenyl ring are attached to carbon atoms 1,2-, or 1,3- relative to each other.
 - 3. A compound according to claim 1 or claim 2 wherein A is phenyl, pyridyl, or pyrazinyl.
 - 4. A compound of formula (la):

$$R^{2b}$$
 Q^{2}
 Q^{1}
 Q^{1}
 Q^{1}
 Q^{2}
 $Q^{$

wherein:

W, X, and Y each represents CR¹² or N:

15 V represents CR¹, CR¹² or N;

wherein at least two of W, X, Y or V is CR^{12} ; and R^{12} is independently selected from hydrogen, halogen, CN, optionally substituted CO_2C_{1-6} alkyl, $CONR^5R^6$, NR^5R^6 , optionally substituted NR^5CO phenyl, optionally substituted $NR^$

- 20 ₆alkyl, OH, optionally substituted OC_{1.6}alkyl, optionally substituted C_{1.6}alkyl and NR¹⁰R¹¹; Q¹ and Q² each represents CH, or one of Q¹ and Q² is N and the other is CH; R¹ is CO₂H, optionally substituted CONHSO₂aryl, CH₂CO₂H, SO₂NHCOR⁷, SO₂NHCOC_{1.6}alkyl or tetrazolyl and is positioned 1,2-, or 1,3- relative to the phenyl ring; R^{2a} and R^{2b} are independently selected from hydrogen, halo, or CF₃;
- R^x represents optionally substituted C₁₋₈alkyl, or R^x represents optionally substituted CQ^aQ^b-heterocyclyl or optionally substituted CQ^aQ^b-phenyl wherein Q^a and Q^b are independently selected from hydrogen and CH₃;
 R⁴ represents hydrogen or an optionally substituted C₁₋₆alkyl;

R⁵ represents hydrogen or an optionally substituted C₁₋₈alkyl;

R⁶ represents hydrogen or an optionally substituted C₁₋₆alkyl, optionally substituted SO₂phenyl, optionally substituted SO₂heterocyclyl group, CN, optionally substituted CH₂phenyl or COR⁷;

 R^7 represents hydrogen, optionally substituted heteroaryl or optionally substituted phenyl; R^8 and R^9 independently represent hydrogen, chloro, fluoro, CF_3 , C_{1-3} alkoxy or C_{1-3} alkyl;

35 and

10

20

R¹⁰ and R¹¹ together with the nitrogen atom to which they are attached form a morpholine ring, a 5- or 6-membered lactam ring or a 5- or 6-membered cyclic sulphonamide, and derivatives thereof.

- 5 5. A compound according to any one of claims 1 to 4 wherein R^x is optionally substituted C₁₋₈alkyl, optionally substituted CH₂phenyl, CH₂pyridyl, or CH₂thienyl.
 - 6. A compound according to any one of claims 1 to 5 wherein R^{2b} is positioned 1,4-relative to the Z substituent and 1,3- relative to the phenyl ring.
 - 7. A compound selected from the compounds of Examples 1-90 or a derivative thereof.
- 8. A pharmaceutical composition comprising a compound according to any one of claims 1 to 7 or a pharmaceutically acceptable derivative thereof together with a pharmaceutical carrier and/or excipient.
 - 9. A compound according to any one of claims 1 to 7 or a pharmaceutically acceptable derivative thereof for use as an active therapeutic substance.
 - 10. A compound according to any one of claims 1 to 7 or a pharmaceutically acceptable derivative thereof for use in the treatment of a condition which is mediated by the action of PGE₂ at EP₁ receptors.
- 25 11. A method of treating a human or animal subject suffering from a condition which is mediated by the action of PGE₂ at EP₁ receptors which comprises administering to said subject an effective amount of a compound according to any one of claims 1 to 7 or a pharmaceutically acceptable derivative thereof.
- 30 12. A method of treating a human or animal subject suffering from a pain, or an inflammatory, immunological, bone, neurodegenerative or renal disorder, which method comprises administering to said subject an effective amount of a compound according to any one of claims 1 to 7 or a pharmaceutically acceptable derivative thereof.
- 35 13. A method of treating a human or animal subject suffering from inflammatory pain, neuropathic pain or visceral pain which method comprises administering to said subject an effective amount of a compound according to any one of claims 1 to 7 or a pharmaceutically acceptable derivative thereof.
- 40 14. Use of a compound according to any one of claims 1 to 7 or a pharmaceutically acceptable derivative thereof for the manufacture of a medicament for the treatment of a condition which is mediated by the action of PGE₂ at EP₁ receptors.

15. Use of a compound according to any one of claims 1 to 7 or a pharmaceutically acceptable derivative thereof for the manufacture of a medicament for the treatment or prevention of a condition such as a pain, or an inflammatory, immunological, bone, neurodegenerative or renal disorder.

5

- 16. Use of a compound according to any one of claims 1 to 7 or a pharmaceutically acceptable derivative thereof for the manufacture of a medicament for the treatment or prevention of a condition such as inflammatory pain, neuropathic pain or visceral pain.
- 17. A process for the preparation of a compound of formula (I) as defined in claim 1 or a derivative thereof comprising: reacting a compound of formula (IV):

$$R^{\theta}$$
 L^{1}
 A
 R^{1}
 A

(IV)

wherein R⁸, R⁹, A, and R¹ are as hereinbefore defined above for a compound of formula (I), L¹ is a leaving group and P is an optional protecting group; with a compound of formula (III):

wherein R^{2a} , R^{2b} , B, Z, and R^{x} are as hereinbefore defined above for a compound of formula (I);

and where required converting:

one group A to another group A, and/or

one group Rx to another group Rx;

- and where required carrying out the following optional steps in any order: effecting deprotection; and/or converting one group R¹ to another group R¹; and/or forming a derivative of the compound of formula (I) so formed.
- 30 18. A compound of formula (I) or a derivative thereof, according to claim 1, substantially as hereinbefore described with reference to any one of the Examples.