

ANALYSIS OF CATEGORICAL OUTCOMES

Jose Andres Calvache MD MSc PhD

Department of Anesthesiology, Universidad del Cauca, Colombia Department of Anesthesiology, Easmus University Medical Centre, Rotterdam, The Netherlands @jacalvache

CI95% for a proportion

- A binary variable X of two categories: 1 / 0
- For the sample the proportion is p
- Useful if n is large

$$\sigma_{(p)} = \sqrt{\pi(1-\pi)}$$

$$DE_{(p)} = \sqrt{p(1-p)}$$
 $se_{(p)} = \sqrt{\frac{p(1-p)}{n}}$

$$CI95\% = p \pm 1.96 \sqrt{\frac{p(1-p)}{n}}$$

Example,

- To estimate the prevalence of obesity in faculty students
 - n = 200
 - p = 30% = 0.3

$$DE(p) = \sqrt{p(1-p)} = \sqrt{0.3(1-0.3)} = 0.458$$

$$SE(p) = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0,3(0,7)}{200}} = 0,032$$

$$CI95\% = p \pm 1.96 (SE(p)) = 0.3 \pm 1.96(0.032)$$

$$CI95\% = 0.3[0.237 - 0.362] = [23.7\% - 36.2\%]$$

Comparing proportions

- Pediatric AIDS Clinical Trial Group (ACTG)
 - "We conducted a randomized, double-blinded, placebo- controlled trial of the efficacy and safety of zidovudine (AZT) in reducing the risk of maternal-infant HIV transmission"
 - 363 pregnant women with HIV were randomized to AZT or placebo (18 postnatal months)

180 AZT HIV+ 13 children

183 Placebo HIV+ 40 children

Risk of transmission (CI 18 months)

	HIV +	HIV -	Total
AZT	13	167	180
Placebo	40	143	183
Total	53	310	363

$$CI_{AZT} = 13/180 = 7\%$$

 $CI_{PLAC} = 40/183 = 22\%$

Cumulative incidence and CI 95%

•
$$CI_{AZT} = 13/180 = 7\%$$
 $CI95\% [3.9 - 12]$
• $CI_{PLAC} = 40/183 = 22\%$ $CI95\% [16 - 28]$

 95% confidence intervals are calculated following the binomial distribution (if n is large it approaches normal)

The question is: Is this difference significant or can it be explained by chance (random error)?

Chi² test

	HIV +	HIV -	Total
AZT	13	167	180
Placebo	40	143	183
Total	53	310	363

What would they be then? the "expected" values if the H0 were true?

- Test that can be extended to two or more proportions
- It is based on,
 - "Expected" values and "observed" values
 - Expected: If H0 were true
 - Is there a relationship between columns and rows?

$$\chi^2 = \sum_{\text{4 cells}} \frac{(0 - E)^2}{E}$$

"Observed" vs "expected" if H0 were true

	HIV +	HIV -	Total
AZT	13	167	180
Placebo	40	143	183
Total	53	310	363

$$\chi^2 = \sum_{\text{4 cells}} \frac{(0 - E)^2}{E}$$

"expected" if the H0 were true

	HIV +	HIV -	Total
AZT	26	154	180
Placebo	27	156	183
Total	53	310	363

P value for Chi² test

$$\cdot CI_{A7T} = 13/180 = 7\%$$

•
$$CI_{PLAC} = 40/183 = 22\%$$

- P value for Chi² test = 0.0001
- There is sufficient evidence to reject H0 (equality)
- I accept H1: There are "statistically significant" differences between AZT and Placebo

Example 2,

 Food poisoning occurred at a certain site. Some believe that the origin was chicken sandwiches

Food poisoning

4)		Yes	No	Total
Sure	Sandwich	а	b	a+b
Exposure	Other food	С	d	c+d
Ш	Total	а+с	b+d	a+b+c+d

$$H_0$$
: $P_{sand} = P_{otro}$
 H_1 : $P_{sand} \neq P_{otro}$

$$H_1: P_{sand} \neq P_{otro}$$

Food poisoning

a)		Si	No	Total
Exposure	Sandwich	109	116	225
zxpo	Otro alimento	4	34	38
	Total	113	150	263

$$p_{sand} = 109/225 = 48\%$$
 $p_{otro} = 4/38 = 10\%$

$$p_{otro} = 4/38 = 10\%$$

P value for $Chi^2 test = 0.001$

Fisher's exact test

- The chi2 test is based on a normal approximation
- Works well if the samples are large

- Solution,
 - Fisher's exact test
 - Difficult manual calculation
 - It has no approximations and delivers an "exact" p-value
 - Useful in small samples

Fisher's exact test

 65 pregnant patients — classified as high risk for hypertension in pregnancy — are randomized in the third trimester to Aspirin 100 mg/day versus placebo to assess the effect on the occurrence of hypertension

	HT+	Non HT	Total
ASA 100	$\left(\begin{array}{c}4\end{array}\right)$	30	34
Placebo	11	20	31
Total	15	50	65

$$CI_{ASA} = 4/34 = 12\%$$

 $CI_{PLAC} = 11/31 = 35\%$

Schiff, E. et al. The use of aspirin to prevent pregnancy-induced hypertension and lower the ratio of thromboxane A2 to prostacyclin in relatively high risk pregnancies. *New England Journal of Medicine*, 321, 6.

Fisher's exact test

	HT+	Non HT	Total
ASA 100	4	30	34
Placebo	11	20	31
Total	15	50	65

$$CI_{ASA} = 4/34 = 12\%$$

 $CI_{PLAC} = 11/31 = 35\%$

- Fisher *p value* = 0.0378
- Chi² p value = 0.0234

Both tests reject H0

Test for variables with more than two categories

	Stratum 1	Stratum 2	Stratum 3	Total
Male	51	95	38	184
Female	17	101	75	193
Total	68	196	113	377

- The Chi2 test can be extended to variables with more than two categories
 - H0: Variables are independent
 - H1: Variables are related (or depend in some category on one another)

Test for variables with more than two categories

	Stratum 1	Stratum 2	Stratum 3	Total
Male	51	95	38	184
Female	17	101	75	193
Total	68	196	113	377

- Chi² p value = 0.000
- I have enough evidence to reject the H0 of independence
- They are significantly related