Types of Machine Learning

Types of Machine Learning

• Supervised Learning

• Unsupervised Learning

- · Like learning under a teacher's supervision
- ML algorithm given data along with responses
- · Learns from looking at questions and answers

- Classification
 - Spam or Ham
 - Mammal or Fish or Reptile or Bird or Amphibian
- Regression (predict numeric value)
 - Income of shopper

X causes Y

x Variables

- Attributes which an ML algorithm focuses on are called features
- Each data point is a list (or vector) of such features
- Input to an ML algorithm is a feature vector
- Feature vectors are called x variables
- · Also called independent variables or predictors

y Variables

- · Attributes which an ML algorithm tries to predict are called labels
- · Labels can be:
 - · Categorical (classification)
 - Continuous (regression)
- · Labels are referred to as y variables
- Also called dependent variable

Vata Set

Sender	Subject	IP	Body	Result
abc@bank.com	Statement for February 2018	73.45.167.1	Dear Customer, Your account statement	Ham
familymember@gmail.c om	Sunday lunch	103.209.2.92	Are we OK with tapas or should we try	Ham
xyz@suspicious.net	Click for FREE gift!	204.1.36.82	Valued Customer, You have been selected	Spam
spammer@donottrust me.com	Miracle cure for baldnesss!!	54.172.109.5	Steve, Donnottrustme has launched	Spam
kat@ecommercesite.c om	Invoice for your purchase of headphones	119.3.5.49	The invoice for the transaction on 24-Feb	Ham

$$y = f(x)$$

Most machine learning algorithms aim to "learn" the function f which links the features x to the labels y

- Linear Regression
- Logistic Regression

Linear Regression

$$y = Wx + b$$

$$f(x) = Wx + b$$

Linear regression specifies, up-front, that the function f is linear

Data: $(x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4)...$

Residuals: $(y_1-\hat{y}_1)$, $(y_2-\hat{y}_2)$, $(y_3-\hat{y}_3)$, $(y_4-\hat{y}_4)$...

Goal: Minimize error for the training data

e.g. Least Square method

Minimize:
$$(y_1-\hat{y}_1)^2 + (y_2-\hat{y}_2)^2 + (y_3-\hat{y}_3)^2 + (y_4-\hat{y}_4)^2...$$

Linear Regression

- Use only when errors are normally distributed
- Can also use with multiple independent variables

- · Used when the dependent variable is categorical
- Independent variables can be continuous or categorical
- Predict probability of each outcome assign result to category with highest probability

Objective function: Minimize cross-entropy

Unsupervised Learning

- There is only input data x not output data
- Model the underlying structure to learn more about the data
- Algorithms self discover patterns and structure in the data

Unsupervised Learning - algorithms

- Autoencoding Identify latent factors that drive data (e.g. PCA)
- Clustering Identify patterns in data items

Looking Within

- · Be emotionally self-sufficient
- Learn what matters (to you)
- Identify others who share them...
- ...and those who don't
- Eliminate what does not matter
- Train yourself to navigate the outside world

Why Look Within?

In life

Be emotionally self-sufficient

Learn what matters (to you)

Identify others who share them...

...and those who don't

Eliminate what does not matter

In Machine Learning

Make unlabelled data self-sufficient

Latent factor analysis

Clustering

Anomoly detection

Quantisation

Why Look Within?

ML technique

Make unlabelled data self-sufficient

Latent factor analysis

Clustering

Anomoly detection

Quantisation

Use Case

Identify photos of specific individual

Find common drivers of 100 stocks

Find relevant document in a corpus

Flag fraudulent credit card transactions

Compress 24-bit true colour to 8 bit

Why Look Within?

What

How

Make unlabelled data self-sufficient

Latent factor analysis

Clustering

Anomoly detection

Quantisation

Autoencoding

Autoencoding

Clustering

Autoencoding

Clustering