HW 1 Math 274

- 1. Let $\{(A_i, B_i) \mid 1 \leq i \leq m\}$ be a family of pairs of subsets of the set of integers such that $|A_i| = k$ for all $i, |B_i| = \ell$ for all $i, A_i \cap B_i = \emptyset$ for all $i, A_i \cap B_i$
- 2. Suppose there are m red clubs R_1, \ldots, R_m and m blue clubs B_1, \ldots, B_m in a town of n citizens. Define the $m \times m$ matrix M as follows:

$$M_{ij} = |A_i \cap B_j|.$$

Show that if M is non-singular, then $m \leq n$.

- 3. Let p be a prime. Let $A \subseteq \mathbb{Z}_p$ be a set such that $|A| < p^{2/3}$. Prove that there are $x, y \in \mathbb{Z}_p$ such that $A \cap (A+x) \cap (A+y) = \emptyset$.
- 4. Let $X = \{1, 2, 3\}^n$. A proper box of X is a subset $Y \subseteq X$ of the form $Y_1 \times Y_2 \times \ldots \times Y_n$ where each Y_i is a nonempty subset of $\{1, 2, 3\}$ of size at most 2. Prove that any partition of X into a family of pairwise disjoint proper boxes contains at least 2^n proper boxes.
- 5. Let m(n, s) denote the maximum number of points in \mathbb{R}^n such that their pairwise distances take at most s values. Prove:

$$\binom{n+1}{s} \le m(n,s) \le \binom{n+s+1}{S}.$$