Математическая логика и теория алгоритмов

1. Класс функций ТО

Определение класса ТО

Класс функций Т0 (класс функций, сохраняющих константу 0) — это множество всех булевых функций $f(x_1, x_2, ..., x_n)$, которые принимают значение 0, когда все переменные равны 0:

$$f(0, 0, ..., 0) = 0$$

Другими словами, класс T0 состоит из всех булевых функций, которые отображают нулевой набор в 0.

Доказательство замкнутости класса ТО

Для доказательства замкнутости класса Т0 относительно операции суперпозиции нужно показать, что любая суперпозиция функций из Т0 также принадлежит классу Т0.

Замкнутость относительно подстановки констант: Если f(x₁, x₂, ..., xn) ∈ ТО и
некоторые переменные заменяются константами, то полученная функция также
принадлежит ТО.

Если
$$f(x_1, x_2, ..., x_n) \in T0$$
, то $f(0, 0, ..., 0) = 0$.

При подстановке констант в некоторые аргументы получается функция g от меньшего числа переменных. Для набора (0, 0, ..., 0) значение g совпадает со значением f на наборе, где подставленные константы остаются, а все остальные аргументы равны 0. Поскольку f ∈ T0, то g также принадлежит T0.

2. Замкнутость относительно перестановки переменных: Если $f(x_1, x_2, ..., x_n) \in T0$, то любая перестановка аргументов (например, $f(x_2, x_1, ..., x_n)$) также дает функцию из T0.

Это очевидно, так как f(0, 0, ..., 0) = 0, и при перестановке аргументов набор (0, 0, ..., 0) перейдет в себя.

3. Замкнутость относительно суперпозиции: Если $f(x_1, x_2, ..., x_n) \in T0$ и $g_1, g_2, ..., g_n \in T0$, то $h(x) = f(g_1(x), g_2(x), ..., g_n(x))$ также принадлежит T0.

Если все $g_i \in T0$, то $g_i(0, 0, ..., 0) = 0$ для всех i.

Тогда $h(0, 0, ..., 0) = f(g_1(0, 0, ..., 0), g_2(0, 0, ..., 0), ..., g_n(0, 0, ..., 0)) = f(0, 0, ..., 0) = 0.$

Следовательно, h ∈ T0.

Таким образом, класс функций ТО замкнут относительно операции суперпозиции.

2. Класс функций Т1

Определение класса T1

Класс функций Т1 (класс функций, сохраняющих константу 1) — это множество всех булевых функций $f(x_1, x_2, ..., x_n)$, которые принимают значение 1, когда все переменные равны 1:

$$f(1, 1, ..., 1) = 1$$

Другими словами, класс T1 состоит из всех булевых функций, которые отображают единичный набор в 1.

Доказательство замкнутости класса T1

Для доказательства замкнутости класса Т1 относительно операции суперпозиции нужно показать, что любая суперпозиция функций из Т1 также принадлежит классу Т1.

1. Замкнутость относительно подстановки констант: Если $f(x_1, x_2, ..., x_n) \in T1$ и некоторые переменные заменяются константами, то полученная функция также принадлежит T1.

Если
$$f(x_1, x_2, ..., x_n) \in T1$$
, то $f(1, 1, ..., 1) = 1$.

При подстановке констант в некоторые аргументы получается функция g от меньшего числа переменных. Однако, если константы отличны от 1, то это не гарантирует, что $g \in T1$. Поэтому нужно рассмотреть случай, когда все подстановки равны 1.

Если подставляются только константы 1, то при наборе (1, 1, ..., 1) значение g совпадает со значением f на наборе из одних единиц. Поскольку $f \in T1$, то g также принадлежит T1.

2. Замкнутость относительно перестановки переменных: Если $f(x_1, x_2, ..., x_n) \in T1$, то любая перестановка аргументов (например, $f(x_2, x_1, ..., x_n)$) также дает функцию из T1.

Это очевидно, так как f(1, 1, ..., 1) = 1, и при перестановке аргументов набор (1, 1, ..., 1) перейдет в себя.

3. Замкнутость относительно суперпозиции: Если $f(x_1, x_2, ..., x_n) \in T1$ и $g_1, g_2, ..., g_n \in T1$, то $h(x) = f(g_1(x), g_2(x), ..., g_n(x))$ также принадлежит T1.

Если все $g_i \in T1$, то $g_i(1, 1, ..., 1) = 1$ для всех i.

Тогда h(1, 1, ..., 1) = $f(g_1(1, 1, ..., 1), g_2(1, 1, ..., 1), ..., g_n(1, 1, ..., 1)) = f(1, 1, ..., 1) = 1.$

Следовательно, h ∈ T1.

Таким образом, класс функций Т1 замкнут относительно операции суперпозиции.

3. Построение СДНФ для функции, заданной таблицей

Определение СДНФ

Совершенная дизъюнктивная нормальная форма (СДНФ) булевой функции $f(x_1, x_2, ..., x_n)$ — это дизъюнкция элементарных конъюнкций, каждая из которых соответствует набору значений переменных, на котором функция принимает значение 1. При этом в каждую элементарную конъюнкцию входят все переменные либо в прямом, либо в инверсном виде.

Алгоритм построения СДНФ

- 1. **Выявление наборов, на которых функция равна 1**: По таблице истинности выбираются все наборы значений переменных (x₁, x₂, ..., x_n), на которых функция f принимает значение 1.
- 2. **Формирование элементарных конъюнкций**: Для каждого такого набора (a₁, a₂, ..., a_n) формируется элементарная конъюнкция, в которую входят все переменные:
 - Если a_i = 1, то в конъюнкцию включается x_i
 - Если a_i = 0, то в конъюнкцию включается ¬х_i
- 3. **Построение СДНФ**: СДНФ получается путем объединения всех полученных элементарных конъюнкций операцией дизъюнкции (логическое ИЛИ).

Пример построения СДНФ

Пусть задана функция f(x₁, x₂, x₃) следующей таблицей истинности:

X ₁	X ₂	Хз	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

1. Выбираем наборы, на которых f = 1:

- o (0, 0, 1)
- o (1, 0, 0)
- o (1, 1, 0)
- o (1, 1, 1)

2. Формируем элементарные конъюнкции:

- ∘ Для набора (0, 0, 1): ¬х₁ ∧ ¬х₂ ∧ х₃
- Для набора (1, 0, 0): x₁ ∧ ¬x₂ ∧ ¬x₃
- \circ Для набора (1, 1, 0): $x_1 \wedge x_2 \wedge \neg x_3$
- Для набора (1, 1, 1): x₁ ∧ x₂ ∧ x₃
- 3. Строим СДНФ: $f(x_1, x_2, x_3) = (\neg x_1 \wedge \neg x_2 \wedge x_3) \vee (x_1 \wedge \neg x_2 \wedge \neg x_3) \vee (x_1 \wedge x_3 \wedge \neg x_3 \wedge \neg x_3) \vee (x_1 \wedge x_3 \wedge \neg x_3 \wedge \neg x_3 \wedge \neg x_3) \vee (x_1 \wedge x_3 \wedge \neg x_3 \wedge \neg x_3 \wedge \neg x_3 \wedge \neg x_3) \vee (x_1 \wedge x_3 \wedge \neg x_3) \vee (x_1 \wedge x_3 \wedge \neg x$

Используя стандартные обозначения: $f(x_1, x_2, x_3) = \bar{x_1}\bar{x_2}x_3 \vee x_1\bar{x_2}\bar{x_3} \vee x_1x_2\bar{x_3} \vee x_1x_2x_3$

4. Построение СКНФ для функции, заданной таблицей

Определение СКНФ

Совершенная конъюнктивная нормальная форма (СКНФ) булевой функции $f(x_1, x_2, ..., x_n)$ — это конъюнкция элементарных дизъюнкций, каждая из которых соответствует набору значений переменных, на котором функция принимает значение 0. При этом в каждую элементарную дизъюнкцию входят все переменные либо в прямом, либо в инверсном виде.

Алгоритм построения СКНФ

- 1. **Выявление наборов, на которых функция равна 0**: По таблице истинности выбираются все наборы значений переменных (x₁, x₂, ..., x_n), на которых функция f принимает значение 0.
- 2. **Формирование элементарных дизъюнкций**: Для каждого такого набора (a_1 , a_2 , ..., a_n) формируется элементарная дизъюнкция, в которую входят все переменные:
 - Если a_i = 0, то в дизъюнкцию включается x_i
 - ∘ Если a_i = 1, то в дизъюнкцию включается ¬х_i
- 3. **Построение СКНФ**: СКНФ получается путем объединения всех полученных элементарных дизъюнкций операцией конъюнкции (логическое И).

Пример построения СКНФ

Используем ту же функцию $f(x_1, x_2, x_3)$, что и в предыдущем примере:

X ₁	X ₂	Хз	f
0	0	0	0

X ₁	X ₂	Хз	f
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

1. Выбираем наборы, на которых f = 0:

- o (0, 0, 0)
- o (0, 1, 0)
- o (0, 1, 1)
- o (1, 0, 1)
- 2. Формируем элементарные дизъюнкции:
 - Для набора (0, 0, 0): x₁ ∨ x₂ ∨ x₃
 - Для набора (0, 1, 0): x₁ ∨ ¬x₂ ∨ x₃
 - Для набора (0, 1, 1): x₁ ∨ ¬x₂ ∨ ¬x₃
 - Для набора (1, 0, 1): ¬x₁ ∨ x₂ ∨ ¬x₃
- 3. Строим СКНФ: $f(x_1, x_2, x_3) = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3)$

5. Определение логического следствия и теоремы

Определение логического следствия

Логическое следствие — это отношение между формулами (высказываниями) в логике, при котором одна формула (следствие) обязательно истинна, если истинны другие формулы (посылки).

Формально: формула В является логическим следствием формул A_1 , A_2 , ..., A_n (обозначается A_1 , A_2 , ..., $A_n \models B$), если для любой интерпретации I, в которой все формулы A_1 , A_2 , ..., A_n истинны, формула В также истинна.

В терминах теории моделей: В является логическим следствием A_1 , A_2 , ..., A_n , если любая модель множества формул $\{A_1, A_2, ..., A_n\}$ является также моделью формулы В.

Теорема 1 о логическом следствии

Теорема 1: Формула В является логическим следствием формул A_1 , A_2 , ..., A_n тогда и только тогда, когда формула $(A_1 \wedge A_2 \wedge ... \wedge A_n) \rightarrow B$ является тавтологией.

Доказательство:

1. Пусть В является логическим следствием A_1 , A_2 , ..., A_n . Нужно доказать, что $(A_1 \wedge A_2 \wedge ... \wedge A_n) \to B$ — тавтология.

Предположим, что $(A_1 \wedge A_2 \wedge ... \wedge A_n) \rightarrow B$ не является тавтологией. Тогда существует интерпретация I, в которой $(A_1 \wedge A_2 \wedge ... \wedge A_n)$ истинно, а B ложно. Но это противоречит тому, что B является логическим следствием A_1 , A_2 , ..., A_n , так как по определению, если все посылки истинны, то и следствие должно быть истинным.

2. Пусть $(A_1 \wedge A_2 \wedge ... \wedge A_n) \rightarrow B$ — тавтология. Нужно доказать, что В является логическим следствием $A_1, A_2, ..., A_n$.

Пусть I — произвольная интерпретация, в которой все формулы $A_1, A_2, ..., A_n$ истинны. Тогда в этой интерпретации конъюнкция $(A_1 \wedge A_2 \wedge ... \wedge A_n)$ также истинна. Поскольку $(A_1 \wedge A_2 \wedge ... \wedge A_n) \rightarrow B$ — тавтология, то в интерпретации I формула В также истинна. Таким образом, В является логическим следствием $A_1, A_2, ..., A_n$.

Теорема 2 о логическом следствии

Теорема 2: Формула В является логическим следствием формул A_1 , A_2 , ..., A_n тогда и только тогда, когда формула ($A_1 \wedge A_2 \wedge ... \wedge A_n \wedge \neg B$) противоречива (невыполнима).

Доказательство:

1. Пусть В является логическим следствием A_1 , A_2 , ..., A_n . Нужно доказать, что ($A_1 \wedge A_2 \wedge ... \wedge A_n \wedge \neg B$) противоречива.

Предположим, что формула ($A_1 \wedge A_2 \wedge ... \wedge A_n \wedge \neg B$) выполнима. Тогда существует интерпретация I, в которой эта формула истинна. Это означает, что в I все формулы A_1 , A_2 , ..., A_n истинны, а B ложна. Но это противоречит тому, что B является логическим следствием A_1 , A_2 , ..., A_n , так как по определению, если все посылки истинны, то и следствие должно быть истинным.

2. Пусть ($A_1 \wedge A_2 \wedge ... \wedge A_n \wedge \neg B$) противоречива. Нужно доказать, что В является логическим следствием $A_1, A_2, ..., A_n$.

Пусть I — произвольная интерпретация, в которой все формулы A_1 , A_2 , ..., A_n истинны. Предположим, что в этой интерпретации формула В ложна. Тогда в I формула ¬В истинна, а значит, истинна и конъюнкция $(A_1 \wedge A_2 \wedge ... \wedge A_n \wedge \neg B)$. Но это противоречит тому, что $(A_1 \wedge A_2 \wedge ... \wedge A_n \wedge \neg B)$ невыполнима. Следовательно, в интерпретации I формула В истинна, что и доказывает, что В является логическим следствием A_1 , A_2 , ..., A_n .

6. Алгоритм Куайна-МакКлоски для перечисления простых импликантов

Определение импликанты и простой импликанты

Импликанта булевой функции f — это конъюнкция литералов (переменных или их отрицаний), такая что если эта конъюнкция истинна, то и функция f истинна.

Простая импликанта булевой функции f — это такая импликанта, что удаление любого литерала из неё приводит к конъюнкции, которая уже не является импликантой для f.

Алгоритм Куайна-МакКлоски

Алгоритм Куайна-МакКлоски используется для нахождения всех простых импликант булевой функции и последующего построения минимальной ДНФ.

Шаги алгоритма в общем виде

- 1. **Построение СДНФ**: Для заданной булевой функции f строится совершенная дизъюнктивная нормальная форма (СДНФ).
- 2. **Инициализация**: Конъюнкции из СДНФ группируются по числу вхождений прямых переменных (т.е. переменных без отрицания).
- 3. Этап 1: Нахождение простых импликант: а. Конъюнкции из соседних групп (отличающихся на 1 по числу прямых переменных) попарно сравниваются. b. Если две конъюнкции отличаются только в одной переменной (одна содержит переменную, другая её отрицание), то выполняется операция склеивания:

образуется новая конъюнкция, не содержащая этой переменной. с. Исходные конъюнкции помечаются как использованные в склеивании. d. Процесс продолжается до тех пор, пока возможны новые склеивания. e. Все конъюнкции, не помеченные как использованные в склеивании, являются простыми импликантами.

- 4. Этап 2: Построение минимальной ДНФ: а. Составляется таблица покрытия, где строки соответствуют простым импликантам, а столбцы наборам значений переменных, на которых функция f принимает значение 1. b. В ячейке таблицы ставится отметка, если соответствующая простая импликанта принимает значение 1 на соответствующем наборе. с. Выбираются обязательные простые импликанты (те, которые единственные покрывают хотя бы один набор). d. Для оставшихся непокрытыми наборов решается задача о минимальном покрытии.
- 5. **Построение результата**: Минимальная ДНФ получается как дизъюнкция выбранных простых импликант.

7. Предваренная нормальная форма (ПНФ) и алгоритм преобразования

Определение предваренной нормальной формы

Предваренная нормальная форма (ПНФ) — это форма записи формулы логики предикатов, в которой все кванторы вынесены в начало формулы (образуют префикс), а за ними следует бескванторная часть (матрица).

Общий вид ПНФ: $Q_1X_1 Q_2X_2 ... Q_nX_n M(X_1, X_2, ..., X_n)$

где Q_1 , Q_2 , ..., Q_n — кванторы (\forall или \exists), а M — бескванторная формула, называемая матрицей.

10 правил преобразования для ПНФ

- 1. Устранение импликации: А → В эквивалентно ¬А ∨ В
- 2. **Устранение эквивалентности**: $A \leftrightarrow B$ эквивалентно $(A \to B) \land (B \to A)$, или после устранения импликации: $(\neg A \lor B) \land (\neg B \lor A)$
- 3. Ограничение области действия отрицания:
 - о ¬(А ∧ В) эквивалентно ¬А ∨ ¬В (закон де Моргана)
 - ¬(A ∨ B) эквивалентно ¬А ∧ ¬В (закон де Моргана)
 - ¬¬А эквивалентно А (закон двойного отрицания)
- 4. **Переименование связанных переменных**: Если х связана квантором и в формуле есть другая переменная с тем же именем, то х переименовывается для устранения конфликта имен.
- 5. Устранение отрицания перед кванторами:
 - \circ ¬($\forall x A(x)$) эквивалентно $\exists x \neg A(x)$
 - \circ ¬($\exists x A(x)$) эквивалентно $\forall x ¬A(x)$

6. Вынесение кванторов за скобки:

- \circ ($\forall x \ A(x)$) \land В эквивалентно $\forall x \ (A(x) \land B)$, если x не входит свободно в В
- \circ ($\exists x \ A(x)$) \land В эквивалентно $\exists x \ (A(x) \land B)$, если x не входит свободно в В
- \circ (∀х A(x)) \lor В эквивалентно ∀х (A(x) \lor В), если х не входит свободно в В
- \circ ($\exists x \ A(x)$) $\lor B$ эквивалентно $\exists x \ (A(x) \lor B)$, если x не входит свободно в B

7. Объединение одноименных кванторов:

- ∀х ∀у А(х, у) эквивалентно ∀у ∀х А(х, у)
- \circ $\exists x \exists y \ A(x, y) \ \exists x \ Bubbar = A(x, y)$

8. Распределение кванторов над конъюнкцией и дизъюнкцией:

- \circ $\forall x (A(x) \land B(x))$ эквивалентно ($\forall x A(x)) \land (\forall x B(x))$
- \circ $\exists x (A(x) \lor B(x))$ эквивалентно ($\exists x A(x)) \lor (\exists x B(x))$

9. Выделение области действия квантора:

- ∘ $\forall x (A(x) \lor B)$ эквивалентно $(\forall x A(x)) \lor B$, если x не входит свободно в B
- \circ $\exists x (A(x) \land B)$ эквивалентно $(\exists x A(x)) \land B$, если x не входит свободно в B
- 10. **Преобразование матрицы к КНФ или ДНФ**: После вынесения всех кванторов матрица преобразуется к конъюнктивной или дизъюнктивной нормальной форме.

Алгоритм преобразования формул в ПНФ

- Устранение импликации и эквивалентности: Заменить все вхождения A → B на ¬A ∨ B и все вхождения A ↔ B на (¬A ∨ B) ∧ (¬B ∨ A).
- 2. Ограничение области действия отрицания: С помощью законов де Моргана и двойного отрицания преобразовать формулу так, чтобы отрицания стояли только перед атомарными формулами или кванторами.
- 3. **Переименование связанных переменных**: Переименовать связанные переменные так, чтобы каждая переменная была связана только одним квантором и не совпадала по имени со свободными переменными.
- 4. Устранение отрицания перед кванторами: Заменить $\neg \forall x \ A(x)$ на $\exists x \ \neg A(x)$ и $\neg \exists x$ A(x) на $\forall x \ \neg A(x)$.
- 5. **Вынесение кванторов за скобки**: Вынести все кванторы в начало формулы, используя правила вынесения кванторов за скобки и правила распределения кванторов.
- 6. **Преобразование матрицы**: Преобразовать бескванторную часть (матрицу) к конъюнктивной или дизъюнктивной нормальной форме.

8. Скулемовская стандартная форма и процедура преобразования

Определение скулемовской стандартной формы

Скулемовская стандартная форма — это предваренная нормальная форма, в которой:

- 1. Все кванторы вынесены в начало формулы.
- 2. Все кванторы существования (∃) устранены путем их замены на функции (скулемовские функции) от переменных, связанных кванторами всеобщности (∀), которые предшествуют данному квантору существования.
- 3. Префикс содержит только кванторы всеобщности (∀).
- 4. Матрица преобразована к конъюнктивной нормальной форме.

Процедура преобразования формул в скулемовскую стандартную форму

- 1. **Преобразование к предваренной нормальной форме**: Преобразовать формулу к предваренной нормальной форме с помощью алгоритма, описанного выше.
- 2. **Скулемизация** (устранение кванторов существования): а. Если квантор существования ∃у не находится в области действия ни одного квантора всеобщности, то переменная у заменяется на новую константу с (скулемовскую константу). b. Если квантор существования ∃у находится в области действия кванторов всеобщности ∀x₁, ∀x₂, ..., ∀xn, то переменная у заменяется на терм f(x₁, x₂, ..., xn), где f новая функциональная константа (скулемовская функция). c. После замены квантор ∃у удаляется из префикса.
- 3. **Преобразование матрицы к КНФ**: Преобразовать бескванторную часть (матрицу) к конъюнктивной нормальной форме.

Пример преобразования

Рассмотрим формулу: $\forall x (P(x) \rightarrow \exists y Q(x, y))$

- 1. Устранение импликации: $\forall x (\neg P(x) \lor \exists y Q(x, y))$
- 2. Преобразование к ПНФ (вынесение кванторов): $\forall x \exists y (\neg P(x) \lor Q(x, y))$
- 3. Скулемизация: \exists у находится в области действия \forall х, поэтому у заменяется на f(x), где f новая скулемовская функция: \forall х (\neg P(x) \lor Q(x, f(x)))
- 4. Префикс содержит только кванторы ∀, а матрица уже находится в КНФ.

Итоговая скулемовская стандартная форма: $\forall x \; (\neg P(x) \lor Q(x, f(x)))$