Expt. No. 5 Page No. 11 Write a program to implement the naive Bayesian classifier for a sample training dataset stored as a · csv file. Compute the accuracy of the classifien considering few test data sets. import CSV, random math import Statistics as St def loadesu (filename): lines = csv. reader (open (filename, "x")) dataset = list (lines) for i in range (len (dataset)): dataset(i) = [float(x) for x in dataset(i)] return dataset split Dataset (dataset, split Ratio): def test Size = int (len (dataset) * split Ratio); trainset = list (dataset); testset = [] while len (testset) < testsize: index = random. randrange (len (trainset)); testset append (tramset pop(index)) return (trainset testset) Schonate Byclas (dataset): def sepanated = 93 for i in range (len(dataset)): x =dataset[i] if [x[-1] not in sepanated: Schanated [X[-1]]=[] Schanated [x[-1]] . append (x)

Teacher's Signature:

	Abigal Shano	4 Mathias, 4mT17809ate 22/12/2020
Expt. No) 5	Page No. 12
	return seperated.	
def	Compute_mean_sta (datasct)	1
_		(attribute), St. Stder (attribute))
	for attribute in zip	
	del mean_std[-1]	
-	return mean-std.	
de	f Summanize Byllas (dataset):	
-	Sepanated = Sepanate Byctais	(dataset),
	Summary = 13	
_	for class value, instance	y in separated items():
	summany (classival	ve] = compute_mean_std (;nstanu)
	return sommany.	
act	estimate Probability (x, means	Stdev):
	exponent = math. exp (-(math pow(x-mean, a) / (a * math.
		pow (Stacy, a))))
	return (1/(math-sqrt (2+	math-pi) * stdev)) * exponent.
def	calculate Class Probabilities (5	ummaniu, testvetor):
		nmaniy in Sommaniy, itemy()
	b [dois Value]=1	
-	for i in range (len	(does Suggestine
+		assummania [i];
-	X = test Vector [i]	113 2 00 (((1) (1) (1) () () ()
+		act mate arababates la megnatha
-		estimate Probability Lx, mean stan
-	retwin b	
-		Teacher's Signature

Abigal Shanal Martias, 4MT1715005	Date au 12 20
Expt. No. 5	Page No. 14
print ('First Five instancy of dataset:")	
for i in range (5):	
print (i+1, ";", datasetli])	
SplitRatio=0.2	
trainingset, testset = SplitDataset (dataset, spli	it Ratio)
print ('In Dataset is split into training ar	
print ("Training examples = 103 \n Testing ex	
format (len (training)	
Summanies = Summanize Byllass (trainingset);	,
predictions = perform_ classification (summari	icy testSet)
accuracy = get Accuracy (testset, predictions)	
print ("In Accuracy of the Naive Bayesian	classifier is:".
	accuracy)
	-
	and annual divide Output and Advance in page 4 and in a grape an incompany and a second

Output:

Pima Indian Diabetes Dataset loaded...

Total instances available: 768

Total attributes present: 8

First Five Instancy of dataset:

1: [6.0, 148.0, 72.0, 35.0,0.0, 33.6, 0.627,50.0,1.0]

2. [1.0,85.0, 66.0, 29.0,0.0, 26.6, 0.351, 31.0,0.0]

3. [8.0, 183.0, 64.0,0.0,0.0, 23.3, 0.672, 32-0,1.0]

4: [1.0, 89-0, 66.0, 23.0, 94.0, 28.1, 0.167, 21.0,0.0]

5: [0.0, 137.0, 40.0, 35.0, 168.0, 43.1, 2.288, 33.0, 1.0]

Dataset is split into training and testing set

Training examples = 615

Testing examply = 153

Accuracy of the Naive Bayesian classifier is: 75.16339869281046.