

- a) a = b.
- **b**) a + b = 4.
- c) a > b.
- **d**) a | b.
- **e**) gcd(a, b) = 1. **f**) lcm(a, b) = 2.

- (c) {(1,0), (7,0), (2,1), (3,0), (3,1), (3,2), (4,0), (4,1), (4,2), (4,3) }
- (d) {(10), (11), (12), (13), (70), (22), (3,0), (3,3), (4,0)}
- (a) { (a.1), (10), (11), (11), (113), (11), (12), (3,1), (3,2), (4,1), (4,3)}
  - 2. For each of these relations on the set {1, 2, 3, 4}, decide whether it is reflexive, whether it is symmetric, whether it is antisymmetric, and whether it is transitive.

Each property needs to be answered. (Yes/No)

- **a**) {(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}
- **b**) {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)}
- **c**) {(2, 4), (4, 2)}
- **d**) {(1, 2), (2, 3), (3, 4)}
- **e**) {(1, 1), (2, 2), (3, 3), (4, 4)}
- **f**) {(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 4)}

| <b>v</b> C. | reflexive | 34mmetric | anti symmetriz | transitive |
|-------------|-----------|-----------|----------------|------------|
| a           | N         | \ \ \     | JN             | Y          |
| b           | Y         | 7         | V              | Y          |
| C           | Ż         | Ì         | $\mathcal{N}$  | X          |
| d           | $\sim$    | Ż         | Y              | $\sim$     |
| e           | Y         | Y         | Y              | Y          |
| +           | Ň         | $\sim$    | N              | N          |

(1) { (a,i), (x,i), (xi)}

- 3. Determine whether the relation R on the set of all integers is reflexive, symmetric, antisymmetric, and/or transitive, where  $(x, y) \in R$  if and only if
  - a)  $x \neq y$ .

- **b**)  $xy \ge 1$ .
- c) x = y + 1 or x = y 1.
- **d**)  $x \equiv y \pmod{7}$ .
- e) x is a multiple of y.
- f) x and y are both negative or both nonnegative.
- **g**)  $x = y^2$ .

**h**)  $x \ge y^2$ .

|   | reflexive     | symmetric | antisymmetriz | transitive |
|---|---------------|-----------|---------------|------------|
| a | N             | Y         | N             | N          |
| Ь | $\mathcal{N}$ | 4         | N             | Y          |
| C | N             | Y         | N             | V          |
| d | Y             | \<br>\    | $\mathcal{N}$ | r          |
| e | <b>/</b>      | N         | $\sim$        | <i>Y</i>   |
| t |               | Y         | N             | 7          |
| g | $\mathcal{N}$ | N         | Y             | N          |
| ĥ | $\mathcal{N}$ | N         | ·             | y          |

**4.** Let *R* be the relation  $\{(1, 2), (1, 3), (2, 3), (2, 4), (3, 1)\}$ , and let *S* be the relation  $\{(2, 1), (3, 1), (3, 2), (4, 2)\}$ . Find  $S \circ R$ .

 $\{(1,1),(1,2),(2,1),(2,1)\}.$ 

- 5. Represent each of these relations on {1, 2, 3} with a matrix (with the elements of this set listed in increasing order).
  - **a**) {(1, 1), (1, 2), (1, 3)}
  - **b**) {(1, 2), (2, 1), (2, 2), (3, 3)}
  - **c**) {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}
  - **d**) {(1, 3), (3, 1)}

$$(\alpha) \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \qquad (c) \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

- $(b) \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad (d) \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ 
  - 6. List the ordered pairs in the relations on {1, 2, 3} corresponding to these matrices (where the rows and columns correspond to the integers listed in increasing order).

a) 
$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
  
c) 
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

$$\mathbf{b}) \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

(a) 
$$(1,1)$$
,  $(1,3)$ ,  $(2,2)$ ,  $(3,1)$ ,  $(3,3)$   
(b)  $(1,1)$ ,  $(2,2)$ ,  $(3,2)$ 

7. Draw the directed graph that represents the relation  $\{(a, a), (a, b), (b, c), (c, b), (c, d), (d, a), (d, b)\}.$ 



8. Let R be the relation represented by the matrix

$$\mathbf{M}_R = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

Find the matrices that represent

**a**) 
$$R^2$$
.

**b**) 
$$R^3$$
.

c) 
$$R^4$$
.

- **9.** Let *R* be the relation on the set {0, 1, 2, 3} containing the ordered pairs (0, 1), (1, 1), (1, 2), (2, 0), (2, 2), and (3, 0). Find the
  - a) reflexive closure of R. b) symmetric closure of R.

(a) 
$$R = \{(0.70), (0.1), (1.1), (1.2), (2.0), (2.2), (3.7), (3.3)\}$$

$$(10)$$
  $R = \{(0.1), (0.2), (0.3), (1.0), (11.1), (1.2), (2.0), (2.1), (2.2), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), (2.0), ($ 

10. Draw the directed graph of the reflexive closure of the relations with the directed graph shown.

