Домашнее задание По предмету Теоретические Модели Вычислений По теме Регулярные языки и конечные автоматы

Выполнила студентка группы A-13a-19 Филиппенко Вероника

Содержание

1	Построение конечного автомата, распознающего заданный язык.	•
2	Построение конечного автомата, используя прямое произведение.	4
3	Построение минимального ДКА по регулярному выражению.	13
1	Определение авляется ли азык регуларным или нет	1,

1 Построение конечного автомата, распознающего заданный язык.

1.
$$L = \{w \in \{a, b, c\} * \mid |w|_c = 1\}$$

Язык состоит из всех слов, содержащих буквы $\{a,b,c\}$, причем буква c содержится в единственном экземпляре.

2.
$$L = \{w \in \{a, b\} * \mid |w|_a \le 2, |w|_b \ge 2\}$$

Язык состоит из всех слов, содержащих буквы $\{a,b\}$, причем букв a не более двух, а букв b не менее двух.

3.
$$L = \{w \in \{a, b\} * | |w|_a \neq |w|_b\}$$

Язык состоит из всех слов, содержащих буквы $\{a,b\}$, причем буквы a и b содержатся в неравном количестве.

4.
$$L = \{w \in \{a, b\} * \mid ww = www\}$$

Язык состоит из всех слов, содержащих только пустые символы.

2 Построение конечного автомата, используя прямое произведение.

1.
$$L_1 = \{w \in \{a, b\} \mid |w|_a \ge 2 \land |w|_b \ge 2\}$$

Язык состоит из всех слов, содержащих буквы $\{a,b\}$, причем обеих букв более двух. Разбиваем на два автомата:

Автомат $N_{\underline{0}}1$:

$$\Sigma_{1} = \{a, b\}$$

$$Q_{1} = \{q1, q2, q3\}$$

$$s_{1} = \{q1\}$$

$$T_{1} = \{q3\}$$

Автомат №2:

$$\Sigma_2 = \{a, b\}$$
 $Q_2 = \{p1, p2, p3\}$
 $s_2 = \{p1\}$
 $T_2 = \{p3\}$

Итог:

$$\begin{split} \Sigma &= \Sigma_1 \cup \Sigma_2 = \{a,b\} \\ Q &= Q_1 \times Q_1 = \{ < q1, p1 >, < q1, p2 >, < q1, p3 >, < q2, p1 >, < q2, p2 >, < q2, p3 >, < q3, p1 >, < q3, p2 >, < q3, p3 > \} \\ s &= < s_1, s_2 >= \{ < q1, p1 > \} \\ T &= T_1 \times T_2 = \{ < q3, p3 > \} \end{split}$$

Таблица состояний:

_	a	b
<q1,p1></q1,p1>	<q2,p1></q2,p1>	<q1,p2></q1,p2>
<q1,p2></q1,p2>	<q2,p2></q2,p2>	<q1,p3></q1,p3>
<q1,p3></q1,p3>	<q2,p3></q2,p3>	<q1,p3></q1,p3>
<q2,p1></q2,p1>	<q3,p1></q3,p1>	<q2,p2></q2,p2>
<q2,p2></q2,p2>	<q3,p2></q3,p2>	<q2,p3></q2,p3>
<q2,p3></q2,p3>	<q3,p3></q3,p3>	<q2,p3></q2,p3>
<q3,p1></q3,p1>	<q3,p1></q3,p1>	<q3,p2></q3,p2>
<q3,p2></q3,p2>	<q3,p2></q3,p2>	<q3,p3></q3,p3>
<q3,p3></q3,p3>	<q3,p3></q3,p3>	<q3,p3></q3,p3>

Результирующий автомат:

2.
$$L_2 = \{w \in \{a, b\} * \mid |w| \ge 3 \land |w| \text{ is odd } \}$$

Разбиваем на два автомата:

Автомат $N_{\underline{0}}1$:

$$\Sigma_{1} = \{a, b\}$$

$$Q_{1} = \{q1, q2, q3, q4\}$$

$$s_{1} = \{q1\}$$

$$T_{1} = \{q4\}$$

Автомат N^о2:

$$\Sigma_2 = \{a, b\}$$
 $Q_2 = \{p1, p2\}$
 $s_2 = \{p1\}$
 $T_2 = \{p2\}$

Итог:

$$\begin{split} \Sigma &= \Sigma_1 \cup \Sigma_2 = \{a,b\} \\ Q &= Q_1 \times Q_1 = \{ < q1, p1 >, < q1, p2 >, < q2, p1 >, < q2, p2 >, < q3, p1 >, < q3, p2 >, < q4, p1 >, < q4, p2 > \} \\ s &= < s_1, s_2 > = \{ < q1, p1 > \} \end{split}$$

$$T = T_1 \times T_2 = \{ \langle q4, p2 \rangle \}$$

Таблица состояний:

_	a	b
<q1,p1></q1,p1>	<q2,p1></q2,p1>	<q1,p2></q1,p2>
<q1,p2></q1,p2>	<q2,p2></q2,p2>	<q1,p1></q1,p1>
<q2,p1></q2,p1>	<q3,p1></q3,p1>	<q2,p2></q2,p2>
<q2,p2></q2,p2>	<q3,p2></q3,p2>	<q2,p1></q2,p1>
<q3,p1></q3,p1>	<q4,p1></q4,p1>	<q3,p2></q3,p2>
<q3,p2></q3,p2>	<q4,p2></q4,p2>	<q3,p1></q3,p1>
<q4,p1></q4,p1>	<q4,p1></q4,p1>	<q4,p2></q4,p2>
<q4,p2></q4,p2>	<q4,p2></q4,p2>	<q4,p1></q4,p1>

Результирующий автомат:

3. $L_3 = \{w \in \{a, b\} * \mid |w|_a \text{ is even } \land |w|_b \text{ multiple of } 3\}$

Разбиваем на два автомата:

Автомат $N_{\underline{0}}1$:

$$\Sigma_1 = \{a, b\}$$
 $Q_1 = \{q1, q2\}$
 $s_1 = \{q1\}$
 $T_1 = \{q1\}$

Автомат N^о2:

$$\Sigma_{2} = \{a, b\}$$

$$Q_{2} = \{p1, p2, p3\}$$

$$s_{2} = \{p1\}$$

$$T_{2} = \{p1\}$$

Итог:

$$\begin{split} \Sigma &= \Sigma_1 \cup \Sigma_2 = \{a,b\} \\ Q &= Q_1 \times Q_1 = \{ < q1, p1 >, < q1, p2 >, < q1, p3 >, < q2, p1 >, < q2, p2 >, < q2, p3 > \} \\ s &= < s_1, s_2 >= \{ < q1, p1 > \} \\ T &= T_1 \times T_2 = \{ < q1, p1 > \} \end{split}$$

Таблица состояний:

Результирующий автомат:

_	a	b
<q1,p1></q1,p1>	<q2,p1></q2,p1>	<q1,p2></q1,p2>
<q1,p2></q1,p2>	<q2,p2></q2,p2>	<q1,p3></q1,p3>
<q1,p3></q1,p3>	<q2,p3></q2,p3>	<q1,p1></q1,p1>
<q2,p1></q2,p1>	<q1,p1></q1,p1>	<q2,p2></q2,p2>
<q2,p2></q2,p2>	<q1,p2></q1,p2>	<q2,p3></q2,p3>
<q2,p3></q2,p3>	<q1,p3></q1,p3>	<q2,p1></q2,p1>

$$4. \ L_4 = \overline{L_3}$$

5.
$$L_5 = L_2 \setminus L_3$$

$$L_5 = L_2 \cap \overline{L_3}$$

Автомат L_2 :

Автомат $\overline{L_3}$:

Результирующий автомат:

Таблица состояний:

_	a	b
<q1,p1></q1,p1>	<q2,p4></q2,p4>	<q2,p2></q2,p2>
<q1,p2></q1,p2>	<q2,p5></q2,p5>	<q2,p3></q2,p3>
<q1,p3></q1,p3>	<q2,p6></q2,p6>	<q2,p1></q2,p1>
<q1,p4></q1,p4>	<q2,p1></q2,p1>	<q2,p5></q2,p5>
<q1,p5></q1,p5>	<q2,p2></q2,p2>	<q2,p6></q2,p6>
<q1,p6></q1,p6>	<q2,p3></q2,p3>	<q2,p4></q2,p4>
<q2,p1></q2,p1>	<q3,p4></q3,p4>	<q3,p2></q3,p2>
<q2,p2></q2,p2>	<q3,p5></q3,p5>	<q3,p3></q3,p3>
<q2,p3></q2,p3>	<q3,p6></q3,p6>	<q3,p1></q3,p1>
<q2,p4></q2,p4>	<q3,p1></q3,p1>	<q3,p5></q3,p5>
<q2,p5>	<q3,p2></q3,p2>	<q3,p6></q3,p6>
<q2,p6></q2,p6>	<q3,p3></q3,p3>	<q3,p4></q3,p4>
<q3,p1></q3,p1>	<q4,p4></q4,p4>	<q4,p2></q4,p2>
<q3,p2></q3,p2>	<q4,p5></q4,p5>	<q4,p3></q4,p3>
<q3,p3></q3,p3>	<q4,p6></q4,p6>	<q4,p1></q4,p1>
<q3,p4></q3,p4>	<q4,p1></q4,p1>	<q4,p5></q4,p5>
<q3,p5></q3,p5>	<q4,p2></q4,p2>	<q4,p6></q4,p6>
<q3,p6></q3,p6>	<q4,p3></q4,p3>	<q4,p4></q4,p4>
<q4,p1></q4,p1>	<q3,p4></q3,p4>	<q3,p2></q3,p2>
<q4,p2></q4,p2>	<q3,p5></q3,p5>	<q3,p3></q3,p3>
<q4,p3></q4,p3>	<q3,p6></q3,p6>	<q3,p1></q3,p1>
<q4,p4></q4,p4>	<q3,p1></q3,p1>	<q3,p5></q3,p5>
<q4,p5></q4,p5>	<q3,p2></q3,p2>	<q3,p6></q3,p6>
<q4,p6></q4,p6>	<q3,p3></q3,p3>	<q3,p4></q3,p4>

3 Построение минимального ДКА по регулярному выражению.

$$1. (ab + aba)^*a$$

Недетерминированный автомат:

Таблица преобразования НКА в ДКА:

_	a	b
q1	q2,q3,q4	_
q2,q3,q4	-	q1,q5
q1,q5	q1,q2,q3,q4	_
q1,q2,q3,q4	q2,q3,q4	q1,q5

2.
$$a(a(ab)*b)*(ab)*$$

Недетерминированный автомат:

Таблица преобразования НКА в ДКА:

_	a	b
q1	q2	-
q1,q2	q3,q5	-
q3,q5	q4	q2
q4	_	q3
q3	q4	q2

Минимизированный детерминированный автомат:

3.
$$(a + (a + b)(a + b)b)^*$$

Недетерминированный автомат:

Таблица преобразования НКА в ДКА:

_	a	b
q1	q1,q2	q2
q1,q2	q1,q2,q3	q2,q3
q2	q3	q3
q1,q2,q3	q1,q2,q3	q1,q2,q3
q2,q3	q3	q1,q2
q3	-	q1
q1,q3	q1,q2	q1,q2

4.
$$(b+c)((ab)^*c+(ba)^*)^*$$

4 Определение, является ли язык регулярным или нет.

1.
$$L = \{(aab)^n b(aba)^m : n0, m0\}$$

Т.к. по этому языку можно составить ДКА, он является регулярным:

2.
$$L = \{uaav|u \in \{a,b\}^*, v \in \{a,b\}^*, |u|_b|v|_a\}$$

Применяется лемма о разрастании. Фиксируется $\forall n \in N$, затем, разбирается слово $\omega = b^n a a a^n, \ |\omega| = 2n+2 \geq n.$ После - все разбиения данного слова $\omega = xyz$ такие, что $|y| \neq 0, \ |xy| \leq n$:

$$x=b^k,\;y=b^l,\;z=b^{n-k-l}aaa^n$$
 , где $1\leq k+l\leq n\;\wedge\;l>0$

Других допустимых разбиений - нет.

Для любых подобных разбиений $xy^0z \notin L$. => лемма не выполняется => L не является регулярным языком.

3.
$$L = \{a^m w : w \in \{a, b\}^*, 1|w|_b m\}$$

Применяется лемма о разрастании. Фиксируется $\forall n \in N$, затем разбирается слово $\omega = a^n b^n$, $|\omega| = 2nn$. После - все разбиения данного слова $\omega = xyz$ такие, что $|y| \neq 0$, $|xy| \leq n$:

$$x=a^l,\;y=a^m,\;z=a^{n-l-m}b^n$$
 , где $l+kn\;\wedge\;m
eq0$

Других допустимых разбиений - нет.

Выполняется накачка:

$$xy^iz = a^l(a^m)^ia^{n-l-m}b^n = a^{n-mi}b^n \notin L, i0 \in N$$

Лемма не выполняется =>L не является регулярным языком.

4.
$$L = \{a^k b^m a^n : k = n \lor m > 0\}$$

Применяется лемма о разрастании. Фиксируется $\forall n \in N$, затем, разбирается слово $\omega = a^n b a^n$, $|\omega| = 2n + 1n$. После - все разбиения данного слова $\omega = xyz$ такие, что $|y| \neq 0, \; |xy| \leq n$:

$$x = a^k, \ y = a^m, \ z = a^{n-k-m}ba^n,$$
 где $k + mn \ \land \ m \neq 0$

Других допустимых разбиений - нет.

Выполняется накачка:

$$xy^{i}z = a^{k}(a^{m})^{i}a^{n-k-m}ba^{n} = a^{n+m(i-1)}ba^{n} \notin L, i2 \in N$$

Противоречие => лемма не выполняется => L не является регулярным языком.

5.
$$L = \{ucv : u \in \{a, b\}^*, v \in \{a, b\}^*, u \neq v^R\}$$

Применяется лемма о разрастании. Фиксируется $\forall n \in N$, затем, разбирается слово $\omega = (ab)^n c(ab)^n = \alpha_1 \alpha_2 ... \alpha_{4n+1}, \ |\omega| = 4n+1n$. Следом, разбираются все разбиения слова $\omega = xyz$, с условием $|y| \neq 0, \ |xy| \leq n$:

$$x = \alpha_1 \alpha_2 ... \alpha_k, \ y = \alpha_{k+1} ... \alpha_{k+m}, \ z = \alpha_{k+m+1} ... \alpha_{4n+1} c(ab)^n,$$
 где $k+mn \land m \neq 0$ Других допустимых разбиений - нет.

Выполняется накачка:

$$xy^iz=(\alpha_1\alpha_2...\alpha_k)(\alpha_{k+1}...\alpha_{k+m})^i(\alpha_{k+m+1}...\alpha_{4n+1}c(ab)^n)$$
 При $i=2$:

$$xy^2z=(\alpha_1\alpha_2...\alpha_k)(\alpha_{k+1}...\alpha_{k+m})^2(\alpha_{k+m+1}...\alpha_{4n+1}c(ab)^n)\notin L$$

Лемма не выполняется => L не является регулярным языком.