ELEMENTY JEZYKA C++: wskaźniki, referencje, tablice, dynamiczna alokacja pamięci.

1. Implementacja funkcji swap

Napisz funkcję, która zamienia miejscami wartości swoich dwóch argumentów. Niewykonalne? – przekaż do funkcji argumenty przy użyciu wskaźników albo referencji.

2. Funkcja o dwóch wartościach

Napisz funkcję, która pobiera dwa argumenty i zwraca dwa odrębne wyniki. Jednym z wyników powinien być iloczyn obu argumentów, a drugim ich suma. Ponieważ funkcja może bezpośrednio zwracać tylko jedną wartość, druga powinna być zwracana poprzez parametr wskaźnikowy albo referencję.

3. Porównywanie liczb *

Napisz funkcję, która zwraca większą z dwóch podanych zmiennych całkowitych oraz umożliwia nadanie jej nowej wartości. Funkcji powinno dać się użyć następująco:

```
int a=3, b=7; max(a,b)=0;
cut << a << " " << b << endl;</pre>
```

Wynikiem działania tego fragmentu programu powinno być wypisanie liczb 3 0.

4. Sformatowana tabliczka mnożenia

Napisz funkcję tworzącą dwuwymiarową tabliczkę mnożenia o dowolnej wielkości. Funkcja nie powinna wyświetlać tabliczki mnożenia, a jedynie ją generować. Następnie napisz drugą funkcję, której zadaniem jest wyświetlenie tabliczki mnożenia, ładnie sformatowanej. Przydziel pamięć potrzebną do stworzenia tablicy operatorem new, po skończeniu pracy zwolnij pamięć operatorem delete.

5. Element najmniejszy 2

Napisz program znajdujący najmniejszy element tablicy, posługując się wyłącznie wskaźnikami, a nie indeksami elementów. Program powinien wczytywać długość tablicy, tworzyć tę tablicę w pamięci, wypełniać losowymi liczbami rzeczywistymi z przedziału od 0 do 1, a następnie wypisywać elementy tablicy wraz z adresami oraz znaleziony adres i wartość elementu najmniejszego. Pamiętaj o zwolnieniu pamięci.

6. Odwrócony Pan Tadeusz

Zaimplementuj stos zmiennych typu *string*. Korzystając z tej struktury napisz program, który wczytuje ze standardowego wejścia ciąg słów, a następnie wypisuje je na standardowe wyjście w odwrotnej kolejności, oddzielone spacjami. Program przetestuj na tekście *Pana Tadeusza* i *Hamleta*.

7. Kwestionariusz osobowy

Napisz funkcję, która prosi użytkownika o podanie w dwóch osobnych zmiennych imienia i nazwiska, a następnie zamienia je miejscami. Funkcja powinna zwracać obie wartości za pośrednictwem dodatkowych parametrów wskaźnikowych (lub referencji) przekazywanych do niej podczas wywołania. *Dodatkowo*: Zmodyfikuj program w taki sposób, aby prosił użytkownika o podanie nazwiska tylko wtedy, gdy w parametrze dotyczącym nazwiska funkcja otrzyma wskaźnik o wartości NULL.

8. Obliczenia statystyczne 2

Niech dana będzie próba losowa N wartości x_i . Średnia i odchylenie standardowe z tej próby wynoszą odpowiednio:

$$\mu_x = \frac{1}{N} \sum_{i=1}^{N} x_i$$
 $\sigma_x = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu_x)^2}$

Następnie napisz program, który generuje próbę 1000 liczb pseudolosowych z rozkładu płaskiego w przedziale od 0 do 1, a następnie wypisuje na standardowe wyjście średnią i odchylenie standardowe. Skorzystaj z funkcji o deklaracji:

void statistics (double *s, double *m, double tab[], int size)

9. Odwrócony Pan Tadeusz 2 *

Czasem zamiast pisać samodzielnie potrzebną strukturę danych, warto rozejrzeć się dookoła – prawdopodobnie ktoś wykonał już to zadanie. Korzystając ze struktury <stack> zawartej w bibliotece STL napisz program, który wczytuje ze standardowego wejścia ciąg słów, a następnie wypisuje je na standardowe wyjście w odwrotnej kolejności, oddzielone spacjami. Program przetestuj na tekście *Pana Tadeusza* i *Hamleta*.

10. Konwerter systemów liczbowych 2

Do przedstawienia zadanej liczby naturalne n w systemie pozycyjnym o podstawie m można posłużyć się stosem liczb całkowitych. Algorytm przedstawia się następująco: resztę z dzielenia n przez m odkładamy na stos, a następnie zastępujemy n ilorazem z dzielenia n przez m. Czynności te powtarzamy dopóki n jest niezerowe. Następnie kolejno zdejmujemy liczby ze stosu i wypisujemy od lewej do prawej z tym, że zamiast liczby 10 wypisujemy literę A, i tak dalej.

Napisz program, który wczytuje ze standardowego wejścia liczby n oraz m, a następnie wypisuje na standardowe wyjście liczbę n w systemie pozycyjnym o podstawie m. Program powinien zawierać własną implementację stosu liczb całkowitych.

Pytania, a także rozwiązania zadań, można wysyłać na adres: MDABROWSKI@FUW.EDU.PL.