ComS 573 Machine Learning

Problem Set 1

Note: Please do not hesitate to contact the instructor or the TA if you have difficulty understanding or getting started with solving any of the problems.

1. (20 pts.) Consider a two category classification problem with one dimensional feature x. Assume that the priors are $P(\omega_1)=1/3$ and $P(\omega_2)=2/3$, and that the class-conditional distributions have normal densities $p(x|\omega_1)\sim N(1,1)$ and $p(x|\omega_2)\sim N(3,1)$, where

$$N(\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

- (a) Derive the Bayes decision rule for minimum-error-rate classification.
- (b) Let $\lambda_{ij} = \lambda(\alpha_i | \omega_j)$ be the loss incurred for deciding ω_i when the true category is ω_j . Assume $\lambda_{11} = 0$, $\lambda_{12} = 2$, $\lambda_{21} = 1$, $\lambda_{22} = 0$. Derive the Bayes decision rule for the minimum risk classification.
- 2. (20 pts.) Consider the Binary Independence Model for text document. Given a vocabulary $V:(w_1,\ldots,w_d)$ of all English words (and tokens), assume that a text document is represented as a vector of binary features $\vec{x}=(x_1,\ldots,x_d)^t$ such that x_i is 1 if the word w_i appears in the document, and x_i is 0 otherwise. We want to classify text documents into c categories. Let $P(\omega_j)$ be the prior probability for the class ω_j for $j=1,\ldots,c$. Assume that the components of \vec{x} are statistically independent given the category (Naive Bayes model), i.e.,

$$P(\vec{x}|\omega_j) = \prod_{i=1}^d P(x_i|\omega_j).$$

Assume we could estimate the following probability from the training data

$$p_{ij} = P(x_i = 1 | \omega_i)$$
 $i = 1, ..., d, j = 1, ..., c.$

Show that the minimum probability of error is achieved by the following decision rule: Decide ω_k if $g_k(\vec{x}) \geq g_j(\vec{x})$ for all $j \neq k$, where the discriminant function is given in the form of

$$g_j(\vec{x}) = \sum_{i=1}^d c_{ij} x_i + b_j.$$

Give the expressions of c_{ij} and b_j .

Problem 1:

0)

We have, $P(\omega_i) = \frac{1}{3}$ & $P(\omega_2) = \frac{2}{3}$ and, $P(x|\omega_i) \approx N(1,1)$ & $P(x|\omega_2) \sim N(3,1)$

Posterior distⁿ, $P(w_i|x) = \frac{P(x_i|w_i)P(w_i)}{P(x_i)}$ i=1,2 $\Rightarrow P(w_i|x) \approx P(x_i|w_i)P(w_i)$

Bayes desission rule can be written as-

 $g(x) = \begin{cases} P(\omega_1 | x) > P(\omega_2 | x) \Rightarrow \omega_1 \text{ class} \\ Otherwise \Rightarrow \omega_2 \text{ class}. \end{cases}$

So, $P(\omega_1/x)$ $7P(\omega_2/x)$

> P(X/WI) P(WI) > P(X/WI) P(WI)

=> P(XIW1) > 2 P(XIW2)

=> - exp[= (x-1)] 72 for exp[= (x-3)2]

 $\Rightarrow -\frac{1}{2}(x-1)^{2} > \ln 2 - \frac{1}{2}(x-3)^{2}$

=> (x-3)2-(x-1)2>614

=> x2-6x+9-x42x-17ln4

=) -4x+8 7ln4

=> x <- 1/2 +2

So, X 1 2 - 1/2

Thus. Bayes decession sule is, $2(x) = \begin{cases} ef \times 2 - \frac{\ln 2}{2} = \omega, class \\ otherwise = \omega_2 class. \end{cases}$

b) We have, $\chi_{11}=0$, $\chi_{12}=2$, $\chi_{22}=1$ & $\chi_{22}=0$ Risk function can be written as—

 $R(X_1|X) = \lambda_{11} P(\omega_1|X) + \lambda_{12} P(\omega_2|X) = 0$ and $R(X_2|X) = \lambda_{11} P(\omega_1|X) + \lambda_{22} P(\omega_2|X)$

from Q = 0 $R(2_1 1 \times) = 2 P(\omega_2 1 \times)$ and from $Q = P(\omega_1 1 \times)$

Bayer decision rule based on minimum risk classification, $g(x) = \begin{cases} R(X_1 | X) < R(X_2 | X) \Rightarrow \omega_1 \text{ class} \\ Otherwise \Rightarrow \omega_2 \text{ class}. \end{cases}$

So, $R(x_1|x) < R(x_2|x)$ =) $2P(\omega_2|x) < P(\omega_1|x)$ $\Rightarrow 2\cdot 2\cdot f enp[-\frac{1}{2}(x-3)^2] < f enp[-\frac{1}{2}(x-1)^2]$ =) $-4x+8>4\ln 2$ => $x < 2-\ln(2)$ Thus, Bayes decision rule for the minimum nisk classification. $g(x) = \begin{cases} \text{if } x < 2 - \ln(2) \Rightarrow \omega_1 \text{ clans.} \\ \text{otherwise} \Rightarrow \omega_2 \text{ clans.} \end{cases}$

Tooklen 2:

Based on the given information, we can write the decision rule as -

P(Wxlx) 7, P(Ws/x) \ \ J + K.

 $\Rightarrow P(X | W_K) P(W_K) 7, P(X_1 | W_i) P(W_i)$

=> [TT Pik (1-Pik) 1- xi] P(Wk) 7, [TT Pis (1-Pis) -xi] P(Ws)

Since, $x_i(\omega)$; in Bernoulli (Pi) and for v_i $P(x_i(\omega_k) = \prod_{i=1}^{n} P(x_i(\omega_i)) \quad \text{since endependent}$

=> [Film Pik + (1- Ri) ln (1- Pik)] + ln P(WK) 7,

 $= \sum_{i=1}^{d} \left\{ x_{i} \ln \left(1 - P_{ii} \right) \ln \left(1 - P_{ii} \right) \right\} + \ln P(\omega_{i})$ $= \sum_{i=1}^{d} x_{i} \ln P_{ii} + \sum_{i=1}^{d} \ln \left(1 - P_{ii} \right) - \sum_{i=1}^{d} x_{i} \ln \left(1 - P_{ii} \right) + \ln P(\omega_{i})$ $= \sum_{i=1}^{d} x_{i} \ln P_{ij} + \sum_{i=1}^{d} \ln \left(1 - P_{ij} \right) - \sum_{i=1}^{d} x_{i} \ln \left(1 - P_{ij} \right) + \ln P(\omega_{i})$ $= \sum_{i=1}^{d} x_{i} \ln P_{ij} + \sum_{i=1}^{d} \ln \left(1 - P_{ij} \right) - \sum_{i=1}^{d} x_{i} \ln \left(1 - P_{ij} \right) + \ln P(\omega_{i})$

$$\Rightarrow \sum_{i=1}^{d} x_{i} \ln \frac{P_{ik}}{1-P_{ik}} + \sum_{i=1}^{d} \ln (1-P_{ik}) + \ln P(\omega_{k}) 7$$

$$= \sum_{i=1}^{d} x_{i} \ln \frac{P_{ij}}{1-P_{ij}} + \sum_{i=1}^{d} \ln (1-P_{ij}) + \ln P(\omega_{i})$$

$$= \sum_{i=1}^{d} x_{i} \ln \frac{P_{ij}}{1-P_{ij}} + \sum_{i=1}^{d} \ln (1-P_{ij}) + \ln P(\omega_{i})$$

Let,
$$lij = ln\left(\frac{Pij}{1-Pij}\right)$$
 — (1)
and $bj = \sum_{i=1}^{d} ln\left(1-Pij\right) + lnP(wi)$ — (2)

where Ci; and b; are given in ey (& (2) nespectively

Thus,
$$C_{ij} = \ln \left(\frac{P_{ij}}{1 - P_{ij}} \right)$$

and $b_{ij} = \sum_{i=1}^{d} \ln \left(1 - P_{ij} \right) + \ln P(\omega_{ij})$