

УЧЕБЕН ПРОЕКТ

ПО

Диференциални уравнения и приложения спец. Софтуерно инженерство, 2 курс, летен семестър,

Тема № СИ20-П-12

учебна година 2019/20

	Onema .	

Група 3

Изготвил: Калоян Николов

26.06.2020

София

Съдържание

1. Тема (задача) на проекта	3
2. Решение на Задачата	4
2.1. Теоретична част	4
2.2. MatLab код и получени в командния прозорец	
резултати при изпълнението му	7
2.3. Графики (включително от анимация)	9
2.4. Коментари към получените с MatLab резултати	13

1. Тема (задание) на проекта

Тема СИ20-П-12. Дадена е системата

$$\begin{vmatrix} \dot{x} = x - x^3 \\ \dot{y} = -y. \end{vmatrix}$$

- 1. Намерете нейните равновесни точки. Напишете линейното приближение на системата в околност на една от намерените равновесни точки.
- 2. Начертайте фазов портрет на написанта линейна система в подточка (1). Към всяка една от изобразените фазови криви (без равновесната точка) начертайте по един тангенциален вектор. Маркирайте със символа звезда положението на равновесие.

2. Решение на задачата

2.1. Теоретична част

Dagena e incremata: $|\dot{x} = x - x^3|$ $|\dot{y} = -y$

Ровковесноге тогки на истемита са решенията на

chequate cuctema:

$$\begin{vmatrix} x - x^3 = 0 \\ -y = 0 \end{vmatrix} = 0$$

$$x (1-x^{2}) = 0$$

$$x = 0$$

$$(1-x^{2}) = 0$$

$$(1-x)(1+x) = 0$$

$$x_{2} = 1$$

$$x_{3} = -1$$

Cregobaterros pabrobecquite Torku ra gagetiata cueterra ca: (0,0), (1,0) u (-1,0)

Линейного (първо) приблимение на дадения система в оконност на равновеската тогка (9,8)

e cutema:

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = J(\alpha, \beta) \begin{pmatrix} x-\alpha \\ y-\beta \end{pmatrix}, \text{ Kegeto } J(x,y) = \begin{pmatrix} f'_x(x,y) & f'_y(x,y) \\ g'_x(x,y) & g'_y(x,y) \end{pmatrix}$$

$$u f(x,y) = x - x^3, g(x,y) = -y$$

Chegobaterno:

$$f'_{x} = 1 - 3x^{2} \qquad f'_{y} = 0$$

$$g'_{x} = 0 \qquad g'_{y} = -1$$

$$= \int J(x,y) = \begin{pmatrix} 1 - 3x^{2} & 0 \\ 0 & -1 \end{pmatrix}$$

1. B OKONNOCT HO PABHOBECHA TORMA (1;0) $J(1,0) = \begin{pmatrix} 1-3 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} -2 & 0 \\ 0 & -1 \end{pmatrix}$

Cregobaterno muneritro TO rendrusceme na gagarata meterna 6 okonsuct na tezu publisherna torna e:

$$\Rightarrow \begin{vmatrix} \dot{x} = -2x + 2 \\ \dot{y} = -y \end{vmatrix}$$

Анамочитью можем да намерим и минейного приближение на системата в окомно ст на останамите ровновени точки

2. BORDMOCT HA PUBLISHERA TOTHA (0,0)
$$J(0,0) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = J\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}$$

$$\Rightarrow \begin{vmatrix} \dot{x} = x \\ \dot{y} = -y \end{vmatrix}$$

3. BONDMOUT HO POSHOBECHIA TO'CHA (-1;0)
$$J(-1;0) = \begin{pmatrix} -2 & 0 \\ 0 & -1 \end{pmatrix} \Rightarrow \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} -2 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x+1 \\ y \end{pmatrix}$$

$$\Rightarrow \begin{vmatrix} \dot{x} = -2x - 2 \\ \dot{y} = -y \end{vmatrix}$$

2.2. MatLab код и получени в командния прозорец резултати при изпълнението му

```
function Tema12
    function z=ff(t,y)
        % за точка (1;0)
        z=[-2*y(1)+2; -y(2)];
        % за точка (0;0)
        %z = [y(1); -y(2)];
        % за точка (-1;0)
        %z = [-2*y(1)-2; -y(2)];
    end
tmax=5;
clf;
clc;
hold on;
grid on;
daspect([1 1 1])
% можем да изобразим повече фазови криви като намалим стъпката
x=-3:0.5:3;
y=-3:0.5:3;
[X,Y] = meshgrid(x,y);
%чертаем равновесните точки на системата
plot(1, 0, 'k*')
%plot(0, 0, 'k*')
%plot(-1, 0, 'k*')
%чертаем фазов портрет
for i=1:length(x)
       for j=1:length(y)
             [T,Z] = ode45(@ff, [0, tmax], [X(i,j), Y(i,j)]);
             [T1,Z1] = ode45(@ff, [0, -tmax], [X(i,j), Y(i,j)]);
            plot(Z(:,1), Z(:,2), Z1(:, 1), Z1(:, 2))
             axis([-4, 4, -4, 4])
       end
end
% тангенциални вектори:
% за точка (1;0)
DX = -2 * X + 2;
DY=-Y;
% за точка (0;0)
%DX=X;
```

```
%DY=-Y;
% за точка (-1;0)
%DX=-2*X - 2;
%DY=-Y;
%чертаем ненормирани тангенциални вектори
%quiver(X, Y, DX, DY, 1.5, 'k');
%нормираме тангенциалните вектори
D=sqrt(DX.^2+DY.^2);
%чертаем тангенциалните вектори
quiver(X,Y,DX./D,DY./D,0.5,'k')
end
```

Няма резултати, които се извеждат в командния прозорец.

2.3. Графики (включително от анимация)

За точка (1;0) : Фазов портрет и нормирани тангенциални вектори

Фазов портрет и ненормирани тангенциални вектори

За точка (0;0): Фазов портрет и нормирани тангенциални вектори

Фазов портрет и ненормирани тангенциални вектори

За точка (-1;0) : Фазов портрет и нормирани тангенциални вектори

Фазов портрет и ненормирани тангенциални вектори

2.4. Коментари към получените с MatLab резултати

От полученият чертеж, можем да забележим, че фазовите криви към равновестите точки (-1;0) и (1;0) са параболи.

Също се забелязва, че равновесните точки (-1;0) и (1;0) са асимптотично устойчиви – и двете точки са пример за устойчив възел. Точката (0;0) е неустойчива и се нарича седло. Това можем да покажем и със следните изчисления:

1. 3a pabrobeum Totku
$$(-1;0)$$
 u $(1;0)$:

 $J(-1;0) = J(1,0) = \begin{pmatrix} -2 & 0 \\ 0 & -1 \end{pmatrix}$

Cregolaterno Tpodba fa specmethem:

 $\begin{vmatrix} -2-\lambda & 0 \\ 0 & -1-\lambda \end{vmatrix} = 0 \iff (-2-\lambda)(-1-\lambda) = 0$
 $(2+\lambda)(1+\lambda) = 0$
 $\lambda_1 = -2 < 0$; $\lambda_2 = -1 < 0$

Cregobaterno $(-1;0)$ u $(1;0)$ co aumototuzko yctoŭtubu sonomenus na pabrobeume. Karto $(-1;0)$, Toka u $(1;0)$ e yctoŭtub bozen

2. 3a pabrobeum totka $(0;0)$
 $J(0;0) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \Rightarrow \begin{vmatrix} 1-\lambda & 0 \\ 0 & -1-\lambda \end{vmatrix} = 0$
 $(1-\lambda)(1-\lambda) = 0$
 $(1-\lambda)(1+\lambda) = 0$
 $\lambda_1 = 1 > 0$; $\lambda_2 = -1 < 0$

Cregobaterno $(0;0)$ e keyctoŭtubo sonomenue na pabrobeume u ce kaputa cegno.