Formelsammlung Strömungsmechanik Bergische Universität Wuppertal Version 1.16 - 15.07.2024

Grundlagen

Dimensionslose Kennzahlen

	n physik. Parameter $f(a_1, a_2, a_3,, a_n) = 0$
Buckingham's ches Π -Theorem	i Grunddimensionen $F(\Pi_1, \Pi_2,, \Pi_{n-i})$
	(n-i) dimensions lose Kennzahlen Π
	Kapillar-Zahl $Ca = \frac{v \rho c}{\sigma}$
	Euler-Zahl $Eu = \frac{p}{\rho c^2}$
Dimensionslose Kennzahlen	Froude-Zahl $Fr = \frac{c}{\sqrt{gD}}$
	Mach-Zahl $Ma = \frac{c}{a}$
	Reynolds-Zahl $Re = \frac{cD}{\nu}$
	Strouhal-Zahl $Sr = \frac{D}{ct}$
	Weber-Zahl $We = \frac{\rho c^2 L}{\sigma}$
	Widerstandsbeiwert $c_D = \frac{F_D}{\frac{1}{2}\rho c^2 A}$
Scherspannung für Schichtströmungen (kartesisch, Zylinder)	$\tau = \eta \frac{du}{dy}, \qquad \tau = \eta \frac{dw}{dr}$

Hydrostatik

Oberflächenspannung

Definition Oberflächenspannung	$\sigma = \frac{F}{l}$
Young-Laplace-Gleichung für beliebig gekrümmte Flächen	$p_a - p_i = \sigma \left(\frac{1}{r_1} + \frac{1}{r_2}\right) (r > 0 \text{ konkav})$

Kräfte auf Bauteile

Hydrostatisches Grundgesetz	$\frac{\partial p}{\partial z} = -\rho g$
(Orientierung g und z beachten!)	$p = -\rho gz + C$
Auftriebskraft	$F_A = ho g V_{ m verdr\ddot{a}ngt}$
Druckkraft auf beliebig gekrümmte Fläche	$F = \int_{x} \int_{y} p(x, y) dx dy$
Horizontalkraft (S Schwerpunkt, A_y projizierte Fläche)	$F_{\mathcal{y}} = ho g t_{s} \cdot A_{\mathcal{y}}$
Kraftangriffspunkt (D Druckpunkt)	$e_{\mathcal{Y}} = t_{D,\mathcal{Y}} - t_{S,\mathcal{Y}} = \frac{I_{S,\mathcal{Y}}}{t_{S,\mathcal{Y}} \cdot A_{\mathcal{Y}}}$
Vertikalkraft	$F_t = \rho g V$

Hydrostatische Gleichung

Isotherme Schichtung (für $\Delta z \leq 400 \mathrm{m}$)	$p = p_0 e^{-\left(\frac{\rho_0 g}{p_0}\right)z}$
Isentrope Schichtung	$p = p_0 \left(1 - \frac{\kappa - 1}{\kappa} \frac{\rho_0 g}{p_0} z \right)^{\frac{\kappa}{\kappa - 1}}$

Fluiddynamik

${\bf Fluidkine matik}$

Mittlere Strömungsgeschwindigkeit	$\bar{c} = \frac{1}{A} \int_A c dA$
Geschwindigkeit eines Fluidteilchens entlang eines Stromfadens	$c = \frac{ds}{dt} = e \frac{ds}{dt}$
Stationäre Strömungsgeschwindigkeit	$c = \frac{ds}{dt} = \dot{s} = f(s)$
Instationäre Strömungsgeschwindigkeit	$c = \frac{ds}{dt} = \dot{s} = f(s, t)$
Beschleunigung	$a = \frac{dc}{dt} = \dot{c} = \frac{\partial c}{\partial t} + \frac{\partial c}{\partial s} \frac{ds}{dt} = \frac{\partial c}{\partial t} + c \frac{\partial c}{\partial s}$
Tangentialgeschwindigkeit	$c_T = rac{d\phi}{dt} r = \omega r$
Kontinuitätsgleichung	$\dot{m} = \rho A c = konstant$
	$\dot{V} = Ac = konstant$ (nur inkompressibel)

Umströmung von Körpern

Widerstandskraft	$F_W = \frac{1}{2} c_W A \rho c_\infty^2$
Auftriebskraft	$F_A = \frac{1}{2}c_A A \rho c_\infty^2$
Gleitzahl	$\epsilon = rac{c_W}{c_A}$

${\bf Kugelumstr\"omung}$

Reynoldszahl einer umströmten Kugel	$Re_d = \frac{c d_{\text{Kugel}}}{v}$
-------------------------------------	--

Laminare Grenzschicht

Näherungslösung nach Stokes $Re_d < 1$	$c_W = \frac{24}{Re_d}$
Näherungslösung nach Kaskas $1 < Re_d < 10^3$	$c_W = \frac{24}{Re_d} + \frac{4}{\sqrt{Re_d}} + 0,4$
$10^3 < Re_d < 10^5$	c_W nahezu konstant auf $0,5$

Umschlag von einer laminaren in eine turbulente Grenzschicht $(=Re_{krit})$

Sehr turbulente Anströmung	$Re_{krit} = Re_d = 1,7 \cdot 10^5$
Sehr laminare Anströmung	$Re_{krit} = Re_d = 4 \cdot 10^5$

Definition der kritischen Reynolds-Zahl bei einer Kugelströmung

Umschlagpunkt	$Re_{krit} = Re_d(c_W = 0,3)$
Omschiagpunkt	$Re_{krit} - Re_d(c_W - 0.5)$

${\bf Fluidkinetik}$

${\bf Eindimensionale\ Energiegleichung}$

Energiegleichung, inkompressibel entlang eines Stromfadens	$\rho g z_1 + p_1 + \rho \frac{c_1^2}{2} = \rho g z_2 + p_2 + \rho \frac{c_2^2}{2}$
Energiegleichung, inkompressibel im rotierenden System (w Relativgeschwindigkeit, u Umfangsgeschwindigkeit)	$\rho g z_1 + p_1 + \rho \frac{w_1^2}{2} - \rho \frac{u_1^2}{2} = \rho g z_2 + p_2 + \rho \frac{w_2^2}{2} - \rho \frac{u_2^2}{2}$
Energiegleichung mit Berücksichtigung innerer Energie u	$\rho g z_1 + p_1 + \rho \frac{c_1^2}{2} + \rho u_1 = \rho g z_2 + p_2 + \rho \frac{c_2^2}{2} + \rho u_2$
Erweiterte Energiegleichung, in- kompressibel	$\rho g z_1 + p_1 + \rho \frac{c_1^2}{2} = \rho g z_2 + p_2 + \rho \frac{c_2^2}{2} + \rho Y_{V,12}$
Instationäre Energiegleichung, in- kompressibel	$\rho g z_1 + p_1 + \rho \frac{c_1^2}{2} = \rho g z_2 + p_2 + \rho \frac{c_2^2}{2} + \rho Y_{V,12} + \rho \int_1^2 \frac{\partial c}{\partial t} ds$
Druckbegriffe	p = Statischer Druck
	$ \rho \frac{c^2}{2} $ = Dynamischer Druck
	$ ho gh = ext{Hydrostatischer Druck}$
	$p_{ges} = p + \rho \frac{c^2}{2} = \text{Gesamtdruck}$

Rohrströmungen

Rohr-Reynoldszahl	$Re = \frac{\rho \cdot D_h \cdot \bar{c}}{\eta}$
Hydraulischer Durchmesser	$D_h = 4\frac{A}{U}$
Geschwindigkeitsprofil nach Nikuradse	$c(r) = \left(1 - \frac{r}{R}\right)^n c_{max}$
	$\bar{c} = Kc_{max} \text{ mit } K = \frac{2}{(n+1)(n+2)}$

\boldsymbol{n} und \boldsymbol{K} für bestimmte $\boldsymbol{Re}\text{-}\mathrm{Zahlen}$

Re	$4\cdot 10^3$	$2,3\cdot 10^4$	$1,1\cdot 10^5$	$1,1\cdot 10^6$
n	$\frac{1}{6}$	<u>1</u> 6.6	$\frac{1}{7}$	<u>1</u> 8.8
K	0.791	0.807	0.817	0.850

Verlustenergie Rohr	$Y_V = \lambda \frac{L}{D} \frac{c^2}{2}$	
Laminares Gebiet	$\lambda = f(Re) = \frac{64}{Re}$	$Re < Re_{kr} = 2320$
Turbulentes Gebiet und glattes Verhalten $Re > Re_{kr} = 2320$	Näherung nach Blasius $\lambda = \frac{0.316}{\sqrt[4]{Re}}$	$Re_{kr} \le Re \le 10^5$
und $k_s \approx 0$	Näherung nach Nikuradse $\lambda = 0.0032 + \frac{0.221}{Re^{0.237}}$	$10^5 \le Re \le 10^8$
	Näherung nach Prandtl $\lambda \approx \frac{0.309}{\left(\log_{10}\left(Re-0.845\right)\right)^2}$	$Re \ge Re_{kr}$
Übergangsgebiet zwischen glattem und rauem Verhalten	Interpolations formel nach Colebrook $\frac{1}{\sqrt{\lambda}} = -2\log_{10}\left(\frac{2.51}{Re\sqrt{\lambda}} + 0.27\frac{k_s}{D}\right)$	$Re > Re_{kr} = 2320$
Turbulentes Gebiet und rauhes Verhalten	Näherung nach Kármán-Nikuradse $\lambda = \frac{1}{\left(2\log_{10}\left(\frac{D}{k_s}\right) + 1.14\right)^2}$	$Re > Re_{kr} = 2320$

Rohreinbauten

Allgemeiner Druckverlust / Verlustenergie	$\Delta p_V = \xi \frac{\rho}{2} c^2$ bzw. $Y_V = \xi \frac{1}{2} c^2$
Rohrauslaufwiderstand	$\xi = \left(\frac{D_h}{D_{Str}}\right)^2 - 1$
Borda- / Carnot-Stoß	$\xi = \left(\frac{A_2}{A_1} - 1\right)^2$
Diffusorwiderstand (8° – 10°)	$\xi \approx n \left[\left(\frac{A_2}{A_1} \right)^2 - 1 \right]$
Zimasor wiacistama (c 10)	mit Anpassungsfaktor $n=0,15-0,22$
Verlustleistung	$P_V = Y_V \dot{m}$
Pumpleistung	$P_P = \Delta p_P \ \dot{V}$
Volumetrischer Wirkungsgrad	$\eta = rac{\dot{v}_{ m effektiv}}{\dot{v}_{ m theoretisch}}$
Effektive Leistung Pumpe/Turbine	$P_{ ext{P, effektiv}} = rac{P_P}{\eta_P} P_{ ext{T, effektiv}} = P_P \eta_T$
Spezifische Rotationsenergie	$e = \frac{1}{2}r^2\omega^2 \text{ mit } v = r\omega$

Impuls

Impulssatz	$\sum \vec{F} - \sum \frac{\vec{l}}{dt} = 0$
Impulsstrom (stationär)	$\dot{I} = \dot{m}\vec{c} = \rho\dot{V}\vec{c} = \rho A c \vec{c}$
Impulsstrom (instationär)	$\dot{I} = m\frac{d\vec{c}}{dt} + \dot{m}\vec{c}$
Durckkraft	$ec{F_n} = p ec{A}$
Gravitationskraft	$ec{F_G} = mec{g} = ho Vec{g}$

Navier-Stokes-Gleichungen, kartesische Koordinaten

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho u) + \frac{\partial}{\partial y} (\rho v) + \frac{\partial}{\partial z} (\rho w) = 0$$

Energiegleichung

$$\rho c_{p} \left(\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z} \right) = k \left[\frac{\partial^{2} T}{\partial x^{2}} + \frac{\partial^{2} T}{\partial y^{2}} + \frac{\partial^{2} T}{\partial z^{2}} \right] + 2\mu \left[\left(\frac{\partial u}{\partial x} \right)^{2} + \left(\frac{\partial v}{\partial y} \right)^{2} + \left(\frac{\partial w}{\partial z} \right)^{2} \right] + \mu \left[\left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) + \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) + \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right) \right]$$
Impulsbilanz *x*-Richtung

Impulsional x-Richtung
$$\rho\left(\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z}\right) = -\frac{\partial p}{\partial x} + \mu\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right) + \rho g_x$$
Impulsional y-Richtung

Impulsbilanz z-Richtung
$$\rho\left(\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} + w\frac{\partial v}{\partial z}\right) = -\frac{\partial v}{\partial y} + \mu\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2}\right) + \rho g_y$$
Impulsbilanz z-Richtung

$$\rho\left(\frac{\partial w}{\partial t} + u\frac{\partial w}{\partial x} + v\frac{\partial w}{\partial y} + w\frac{\partial w}{\partial z}\right) = -\frac{\partial p}{\partial z} + \mu\left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2}\right) + \rho g_z$$

Navier-Stokes-Gleichungen, Zylinderkoordinaten

$$\frac{\partial \rho}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} (\rho r u) + \frac{1}{r} \frac{\partial}{\partial \theta} (\rho v) + \frac{\partial}{\partial z} (\rho w) = 0$$

Energiegleichung

$$\rho c_{p} \left(\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial r} + \frac{v}{r} \frac{\partial T}{\partial \theta} + w \frac{\partial T}{\partial z} \right) = k \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{1}{r^{2}} \frac{\partial^{2} T}{\partial \theta^{2}} + \frac{\partial^{2} T}{\partial z^{2}} \right]$$

$$+ 2\mu \left[\left(\frac{\partial u}{\partial r} \right)^{2} + \left[\frac{1}{r} \left(\frac{\partial v}{\partial \theta} + u \right)^{2} \right] + \left(\frac{\partial w}{\partial z} \right)^{2} \right]$$

$$+ \mu \left[\left(\frac{\partial v}{\partial z} + \frac{1}{r} \frac{\partial w}{\partial \theta} \right)^{2} + \left(\frac{\partial w}{\partial r} + \frac{\partial u}{\partial z} \right)^{2} + \left(\frac{1}{r} \frac{\partial u}{\partial \theta} + r \frac{\partial}{\partial r} \left(\frac{v}{r} \right) \right)^{2} \right]$$
Impulsbilanz r -Richtung
$$c \left(\frac{\partial u}{\partial r} + u \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial r} \right) = c \left(\frac{\partial v}{\partial r} + u \frac{\partial v}{\partial r} + v \frac{\partial u}{\partial r} \right) = c \left(\frac{\partial v}{\partial r} + v \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial r} \right) = c \left(\frac{\partial v}{\partial r} + v \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial r} \right) = c \left(\frac{\partial v}{\partial r} + v \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial r} \right) = c \left(\frac{\partial v}{\partial r} + v \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial r} \right) = c \left(\frac{\partial v}{\partial r} + v \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial r} \right) = c \left(\frac{\partial v}{\partial r} + v \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial r} \right) = c \left(\frac{\partial v}{\partial r} + v \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial r} \right) = c \left(\frac{\partial v}{\partial r} + v \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial r} \right) = c \left(\frac{\partial v}{\partial r} + v \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial r} \right) = c \left(\frac{\partial v}{\partial r} + v \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial r} \right) = c \left(\frac{\partial v}{\partial r} + v \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial r} \right) = c \left(\frac{\partial v}{\partial r} + v \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial r} \right) = c \left(\frac{\partial v}{\partial r} + v \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial r} \right) = c \left(\frac{\partial v}{\partial r} + v \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial r} \right) = c \left(\frac{\partial v}{\partial r} + v \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial r} \right) = c \left(\frac{\partial v}{\partial r} + v \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial r} \right) = c \left(\frac{\partial v}{\partial r} + v \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial r} \right) = c \left(\frac{\partial v}{\partial r} + v \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial r} \right) = c \left(\frac{\partial v}{\partial r} + v \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial r} \right) = c \left(\frac{\partial v}{\partial r} + v \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial r} \right) = c \left(\frac{\partial v}{\partial r} + v \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial r} \right) = c \left(\frac{\partial v}{\partial r} + v \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial r} \right) = c \left(\frac{\partial v}{\partial r} + v \frac{\partial u}{\partial r} + v \frac{\partial v}{\partial r} \right) = c \left(\frac{\partial v}{\partial r} + v \frac{\partial u}{\partial r} \right) = c \left(\frac{\partial v}{\partial r} + v \frac{\partial u}{\partial r} + v \frac{\partial$$

$$\rho\left(\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial r} + \frac{v}{r}\frac{\partial u}{\partial \theta} - \frac{v^2}{r} + w\frac{\partial u}{\partial z}\right) = -\frac{\partial p}{\partial r} + \mu\left[\frac{\partial}{\partial r}\left(\frac{1}{r}\frac{\partial}{\partial r}\left(ru\right)\right) + \frac{1}{r^2}\frac{\partial^2 u}{\partial \theta^2} - \frac{2}{r^2}\frac{\partial v}{\partial \theta} + \frac{\partial^2 u}{\partial z^2}\right] + \rho g_r$$

Impulsbilanz
$$\theta$$
-Richtung
$$\rho\left(\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{v}{r} \frac{\partial v}{\partial \theta} + \frac{uv}{r} + w \frac{\partial v}{\partial z}\right) = -\frac{1}{r} \frac{\partial p}{\partial \theta} + \mu \left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \, v\right)\right) + \frac{1}{r^2} \frac{\partial^2 v}{\partial \theta^2} + \frac{2}{r^2} \frac{\partial u}{\partial \theta} + \frac{\partial^2 v}{\partial z^2}\right] + \rho \, g_{\theta}$$
 Impulsbilanz z-Richtung

$$\rho\left(\frac{\partial w}{\partial t} + u\frac{\partial w}{\partial r} + \frac{v}{r}\frac{\partial w}{\partial \theta} + w\frac{\partial w}{\partial z}\right) = -\frac{\partial p}{\partial z} + \mu\left(\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial w}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 w}{\partial \theta^2} + \frac{\partial^2 w}{\partial z^2}\right) + \rho g_z$$

Potentialströmung

Kontinuitätsbedingung	$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$
Wirbelfreiheit	$\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = 0$
Vortizität	$\omega = \nabla \times u = 2\Omega$
Stromfunktion	$u = \frac{\partial \psi}{\partial y}$ $v = -\frac{\partial \psi}{\partial x}$
Potentialfunktion	$u = \frac{\partial \Phi}{\partial x}$ $v = \frac{\partial \Phi}{\partial y}$
Zirkulation	$\Gamma = \int_A \omega \cdot dA = \int_A (\nabla \times u) \cdot dA = \oint_C u \cdot dx$

Elementare Potentialfunktionen

Allgemeiner Ansatz	$f(z) = \Phi + i\Psi$
Koordinate z	$z = x + iy = r \cdot e^{i\varphi} = r(\cos \varphi + i \sin \varphi)$
Ableitung	$f'(z) = \frac{\partial \Phi}{\partial x} + i \frac{\Psi}{\partial x} = u - iv$
Ebene Translations-	$f(z) = a \cdot z a = a_1 + ia_2$
strömung	$f(z) = (a_1x + a_2y) + i(a_1y - a_2x)$
	φ ψ
Ebene Staupunkts-	$f(z) = \frac{a}{2} \cdot z^2 a \in \Re$
strömung	$f(z) = \frac{a}{2} \cdot z^2 a \in \Re$ $f(z) = \frac{a}{2} (x^2 - y^2) + i axy$
	$\widetilde{\varphi}$ $\widetilde{\psi}$
Quelle / Senke	$f(z) = \frac{Q}{2\pi} (\ln r + i\varphi)$ $Q > 0$: Quelle
Potentialwirbel	$f(z) = \frac{-\Gamma}{2\pi} (i \ln r - \varphi)$ $\Gamma > 0$ entgegen Uhrzeiger

Strömungen mit Dichteänderung

Schallgeschwindigkeit (Laplace)	$a = \sqrt{\frac{\partial p}{\partial \rho}}$
Schallgeschwindigkeit (isentrop)	$a_s = \sqrt{\kappa \frac{p}{\rho}} = \sqrt{\kappa p v} = \sqrt{\kappa R_s T}$
Eindimensionale Energiegleichung	$gz_1 + \frac{c_1^2}{2} + h_1 = gz_2 + \frac{c_2^2}{2} + h_2$
Eindimensionale Energiegleichung für Rohrströmung mit konst. Durchmesser	$pdp + \frac{p_1}{T_1} \frac{c_1^2}{v_1} T \frac{dc}{c} + \frac{c_1^2 p_1}{2v_1 T_1 D} T \lambda dx = 0$
Druckverlust für Rohrströmung mit konst. Durchmesser (polytrop, adiabath)	$\Delta p = ho_1 \lambda_1 rac{L}{D} rac{c_1^2}{2} rac{\overline{T}}{T_1}$
Druckverlust für Rohrströmung mit konst. Durchmesser (isotherm)	$\Delta p = \rho_1 \lambda_1 \frac{L}{D} \frac{c_1^2}{2}$
Mittlere Temperatur	$\overline{T} = \frac{T_1 + T_2}{2}$
Polytropenbeziehung	$pv^n = const$
Isentropenbeziehung	$\frac{p_2}{p_1} = (\frac{T_2}{T_1})^{\frac{\kappa}{\kappa-1}}, \qquad \frac{p_1}{\rho_1^{\kappa}} = \frac{p_2}{\rho_2^{\kappa}}$
Ideales Gasgesetz	$pV = mR_ST = nRT$

Düsenströmungen - Indizes 1 und 2 je nach Aufgabe wählen mit $p_1 > p_2!$

Kritisches Druckverhältnis	$P_{krit} = \frac{p_2}{p_1} = \left(\frac{2}{\kappa + 1}\right)^{\frac{\kappa}{\kappa - 1}}$
Kritisches Druckverhältnis	$\frac{p_2}{p_1} < P_{krit}$ (überkritisches Ausströmen)
	$\frac{p_2}{p_1} > P_{krit}$ (unterkritisches Ausströmen)
Isentrope Ausströmgeschwindigkeit	$c_{2,s} = \sqrt{c_1^2 + 2 \frac{\kappa}{\kappa - 1} R_s T_1 \left[1 - \left(\frac{p_2}{p_1} \right)^{\frac{\kappa - 1}{\kappa}} \right]}$
Isentrope Ausströmgeschwindigkeit für kleine c_1	$c_{2,s} = \sqrt{2 \frac{\kappa}{\kappa - 1} p_1 v_1 \left[1 - \left(\frac{p_2}{p_1} \right)^{\frac{\kappa - 1}{\kappa}} \right]}$
Geschwindigkeits Zahl φ	$c_2 = \varphi c_{2,S}$
	Bei Düsen $\varphi \approx 0, 90, 99$ (Richtwert)
Theoretisch ausfließender Massenstrom	$\dot{m}_{th} = A_2 \sqrt{2 p_1 \rho_1} \sqrt{\frac{\kappa}{\kappa - 1} \left[\left(\frac{p_2}{p_1} \right)^{\frac{2}{\kappa}} - \left(\frac{p_2}{p_1} \right)^{\frac{\kappa + 1}{\kappa}} \right]}$
	$\dot{m}_{th} = A_2 \psi_{A,2} \sqrt{2 p_1 \rho_1}$
Ausflußfunktion aus Düse	$\psi_{A,2} = \sqrt{\frac{\kappa}{\kappa - 1} \left(\left(\frac{p_2}{p_1} \right)^{\frac{2}{\kappa}} - \left(\frac{p_2}{p_1} \right)^{\frac{\kappa + 1}{\kappa}} \right)}$
Wärmekapazität	$c_p = \mathrm{spez}$. Wärmekapazität bei konst. Druck
	$c_v = \mathrm{spez}$. Wärmekapazität bei konst. Volumen
	$c_p = c_v + R_S$ $c_p = \frac{\kappa \cdot R_S}{\kappa - 1}$ $c_v = \frac{R_S}{\kappa - 1}$
Enthalpie und Leistung	Verlustleistung: $P = \dot{m}_{max} \cdot \Delta h_s$
	spezifische Enthalpie: $\Delta h = c_p \cdot (T_2 - T_1)$
	$\Delta h_S = c_p \cdot T_1 \cdot \left[1 - \left(\frac{p_2}{p_1}\right)^{\frac{\kappa - 1}{\kappa}}\right]$

Fluid	к	P_{krit}	$\psi_{a,krit}$
Einatomige Gase	1,67	0,487	0,514
Zweiatomige Gase	1,40	0,528	0,484
Mehratomige Gase	1,33	0,540	0,476
(Wasser-)Heißdampf	1,30	0,546	0,472
(Wasser-)Sattdampf	1,135	0,577	0,449

Symbol	Physikalische Größe	Einheit
а	Beschleunigung	$1\frac{\mathrm{m}}{\mathrm{s}^2}$
A	Fläche, Querschnitt	$1\mathrm{m}^2$
С	Geschwindigkeit	
c_a	Ausströmgeschwindigkeit	$1\frac{m}{s}$
c_s	Schallgeschwindigkeit	
c_p	Spezifische Wärmekapazität bei konstantem Druck	$1\frac{J}{kgK} = 1\frac{Nm}{kgK} = 1\frac{m^2}{Ks^2}$
D	Rohrdurchmesser	1 1000
D_h	Hydraulischer Durchmesser	$1\mathrm{m} = 1000\mathrm{mm}$
Е	Energie	$1 J = 1 W s = 1 N m = 1 \frac{kg m^2}{s^2}$
F	Kraft	$1\mathrm{N} = 1\frac{\mathrm{kg}\mathrm{m}}{\mathrm{s}^2}$
I	Impuls	$1\mathrm{N}\mathrm{s} = 1\frac{\mathrm{kg}\mathrm{m}}{\mathrm{s}}$
I	Flächenmoment 2. Ord.	m ⁴
k_s	Äquivalente Sandrauigkeit	1 mm
L	Rohrlänge	$1 \mathrm{m} = 1000 \mathrm{mm}$
М	Moment	1 N m
ṁ	Massenstrom	$1\frac{\mathrm{kg}}{\mathrm{s}}$
n	Drehzahl	$1\frac{1}{\min}$
n	Stoffmenge	1 mol
p	Druck	$1\frac{N}{m^2} = 0.01\frac{N}{cm^2} = 0.0001\frac{N}{mm^2}$
p_a	Umgebungsdruck	$1 \mathrm{Pa} = 1 \frac{\mathrm{N}}{\mathrm{m}^2}$
p_i	Innendruck	$1 \text{bar} = 10^5 \frac{\text{N}}{\text{m}^2}$
p	Überdruck	
P	Leistung	$1 \mathrm{W} = 1 \frac{\mathrm{J}}{\mathrm{s}} = 1 \frac{\mathrm{N} \mathrm{m}}{\mathrm{s}} = 1 \frac{\mathrm{kg} \mathrm{m}^2}{\mathrm{s}^3}$
r_1, r_2	Hauptkrümmungsradien	$1\mathrm{m} = 1000\mathrm{mm}$
R	Rohrradius	$1 \mathrm{m} = 1000 \mathrm{mm}$

R	universale Gaskonstante	$8,314463\frac{J}{\text{mol K}}$
R_s	spezifische Gaskonstante	$1\frac{J}{kgK} = 1\frac{Nm}{kgK} = 1\frac{m^2}{Ks^2}$
S	spezifische Entropie	$1\frac{J}{kgK} = 1\frac{Nm}{kgK} = 1\frac{m^2}{Ks^2}$
t	Zeit	1 h = 60 min = 3600 s
t	Tiefe	1 m
T	Temperatur	
T_a	Außentemperatur	1 Kelvin
T_i	Innentemperatur	
и	Spezifische Innere Energie	$1\frac{J}{kg} = 1\frac{Ws}{kg} = 1\frac{Nm}{kg} = 1\frac{m^2}{s^2}$
U	Umfang	$1 \mathrm{m} = 1000 \mathrm{mm}$
v	spezifisches Volumen	$1\frac{m^3}{kg} = 10^3 \frac{dm^3}{kg} = 10^6 \frac{cm^3}{kg} = 10^9 \frac{mm^3}{kg}$
Ż	Volumenstrom	$1\frac{m^3}{s} = 10^3 \frac{dm^3}{s} = 10^6 \frac{cm^3}{s} = 10^9 \frac{mm^3}{s}$
W	Arbeit	$1 J = 1 W s = 1 N m = 1 \frac{kg m^2}{s^2}$
Y_V	Verlustenergie	$1\frac{J}{kg} = 1\frac{Ws}{kg} = 1\frac{Nm}{kg} = 1\frac{m^2}{s^2}$
Z	Höhe über Nullniveau	$1 \mathrm{m} = 1000 \mathrm{mm}$
η, μ	Dynamische Viskosität $(\rho \nu)$	$1 \operatorname{Pas} = 1 \frac{\operatorname{Ns}}{\operatorname{m}^2} = 1 \frac{\operatorname{kg}}{\operatorname{ms}}$
ν	Kinematische Viskosität $(\frac{\eta}{\rho})$	$1\frac{m^2}{s}$
ρ	Dichte	$1\frac{\mathrm{kg}}{\mathrm{m}^3}$
σ	Oberflächenspannung	$1\frac{\mathrm{N}}{\mathrm{m}} = 1\frac{\mathrm{kg}}{\mathrm{s}^2}$

Dimensionslose Größen

Reynoldszahl <i>Re</i>	Mach-Zahl <i>Ma</i>
Euler-Zahl <i>Eu</i>	Froude-Zahl Fr
Rohreibungszahl λ	Widerstandszahl ξ
Wirkungsgrad η	Is entropenexponent $\kappa=1,4$ (Luft)
Widerstandsbeiwert c_W	Auftriesbeiwert c_A

 $\xi = \xi_u \cdot f_{Re}$

