mlqp

Release 1.1

LogCreative

CONTENTS

1	minmax module	1
2	model module	3
3	util module	7
4	Indices and tables	9
Рy	ython Module Index	11
In	ndex	13

CHAPTER

ONE

MINMAX MODULE

```
class minmax.Max(operands)
     Bases: minmax.Operator
     Max module
     forward(src)
          Foward prediction for src input
              Parameters src(list) – the input list [x,y]
class minmax.Min(operands)
     Bases: minmax.Operator
     Min module
     forward(src)
          Foward prediction for src input
              Parameters src(list) – the input list [x,y]
class minmax.Operator(operands)
     Bases: object
     Base operator class for Min and Max module.
     forward(src)
          Foward prediction for src input
              Parameters src(list) – the input list [x,y]
minmax.divide(train_data, k=2)
     Divide the data into positive and negative merged 2D data array.
          Parameters
                • train_data (array) – the data to be divided
```

Returns the 2D divided data array for computation. **Return type** array

minmax.minmax(train_data, k, epochs, lr=0.05, random_seed=None, parallel=True) Train minmax network in multiprocessing.

• **k** (*int*) – the number of split on positive/negative set

Parameters

- **train_data** (*array*) the training data.
- \mathbf{k} (int) the number of split

- **epochs** (*int*) the threshold of training epochs.
- lr (float, optional) Learning rate. Defaults to 0.05.
- random_seed (int, optional) Random Seed. Defaults to None.
- parallel (bool, optional) If uses parallel training. Defaults to True.

Returns Target Network, subnets, min nets, elapsed training time among units if parallel or max training time if not parallel.

Return type *Max*, array[*Net*], array[*Min*], float

minmax.trainer(train_sub_data, epochs, lr=0.05, random_seed=None)

Trainer worker

Parameters

- **train_sub_data** (*array*) the input array for training.
- **epochs** (*int*) the number threshold of epochs.
- lr (float, optional) Learning rate. Defaults to 0.05.
- random_seed (int, optional) Random Seed. Defaults to None.

Returns the trained network.

Return type Net

MODEL MODULE

```
class model.Net(lr=0.05, alpha=0.8, random_seed=None, hidden_num=10)
```

Bases: object

MLQP Network

backward(pred, target)

Backward pass, update the parameters. NOTE: should run forward pass first before calling this function.

Parameters

- **pred** (*float*) prediction based on foward pass
- target (float) the target label

forward(src)

Foward pass, return the prediction based on the given data.

Parameters src(list) – the input list of data [x,y]

param_init()

Init parameters.

model.cross_validation(model, split_data)

Cross validation over split data.

Parameters

- model (Net) the instance of Net
- **split_data** (*array*) the splitted data generated from folds()

Returns the mean of training error and validation error among experiments.

Return type float, float

model.folds(data, k)

divide data sequencially into k portions

Parameters

- data (array) the data to be divided
- **k** (*int*) the number of portions

Returns the divided data

Return type array

model.split(train_data, k)

split train_data into k folds.

Parameters

- **train_data** (*array*) the training data
- \mathbf{k} (int) fold number

Returns the splited data formatted [train_data, val_data] array.

Return type array

model.step(model, data, with_grad=True)

Common step for data on training or testing.

Parameters

- model (Net) the instance of Net
- data (array) data for training or testing
- with_grad (bool, optional) If it needs backward process. Defaults to True.

Returns the mse loss of this batch of data

Return type loss

model.test(model, test_data)

Test the model

Parameters

- model (Net) the instance of Net
- test_data (arrat) the testing set

Returns the mse error over test set

Return type float

model.test_step(model, test_data)

Test the model for test_data

Parameters

- model (Net) the instance of Net
- test_data (array) the testing data

Returns the mse error over test_data

Return type array

model.train(model, train_data, epochs, test_data=None)

Train the model by epochs.

Parameters

- model (Net) the instance of Net
- train_data (array) the training set
- **epochs** (*int*) the number of epochs
- **test_data** (*array*, *optional*) if assigned, the test error will be tracked but will not go into the training process.

Returns trained model

Return type Net

model.train_step(model, train_data)

Train the model for one step.

Parameters

- model (Net) the instance of Net
- **train_data** (*array*) the training data

CHAPTER

THREE

UTIL MODULE

```
util.mse(pred, target)
util.read_data(filename)
    Reads data from the file and return an array of data formatting: [x y label]
    Parameters filename(str) - the path of file
    Returns the array of the data read from file
    Return type data
util.sigmoid(x)
util.sigmoid_prime(x)
```

CHAPTER

FOUR

INDICES AND TABLES

- genindex
- modindex
- search

PYTHON MODULE INDEX

m minmax, 1 model, 3 U util, 7

12 Python Module Index

INDEX

D	3		
backward() (model.Net method), 3	sigmoid() (in module util), 7		
C	<pre>sigmoid_prime() (in module util), 7 split() (in module model), 3</pre>		
<pre>cross_validation() (in module model), 3</pre>	step() (in module model), 4		
D	Т		
<pre>divide() (in module minmax), 1</pre>	test() (in module model), 4		
F	<pre>test_step() (in module model), 4 train() (in module model), 4</pre>		
<pre>folds() (in module model), 3</pre>	train_step() (in module model), 4		
forward() (minmax.Max method), 1	trainer() (in module minmax), 2		
forward() (minmax.Min method), 1 forward() (minmax.Operator method), 1	U		
forward() (model.Net method), 3	util		
M	module, 7		
Max (class in minmax), 1 Min (class in minmax), 1 minmax module, 1 minmax() (in module minmax), 1 model module, 3 module minmax, 1 model, 3 util, 7 mse() (in module util), 7			
N			
Net (class in model), 3			
0			
Operator (class in minmax), 1			
P			
<pre>param_init() (model.Net method), 3</pre>			
R			
read_data() (in module util), 7			