

NEY Page 5, between lines 10 and 11, insert the heading
-- SUMMARY OF THE INVENTION --.

NEY Page 7, delete lines 29-32.

NEY Page 7, before line 33, insert the heading -- BRIEF
DESCRIPTION OF THE DRAWINGS --.

NEY Page 8, between lines 3 and 4, insert the heading
-- DESCRIPTION OF PREFERRED EMBODIMENTS --.

IN THE CLAIMS:

Please amend Claims 1-8 as follows:

-- 1 (Amended). A digital equalization method for estimating discrete information symbols $[(d_k)]$ of a transmitted signal from digital samples $[(y_k)]$ of a signal received over a transmission channel represented by a finite impulse response of $W+1$ coefficients $[(r_0, r_1, \dots, r_w)]$, W being an integer greater than 1, comprising the steps of:

A1

- determining [the] W roots $[(\alpha_1, \alpha_2, \dots, \alpha_W)]$ in the complex plane of the Z-transform $[(R(Z))]$ of the impulse response;
- distributing the W roots into a first set of $W-p$ roots $[(\alpha_1, \dots, \alpha_{W-p})]$ and a second set of p roots $[(\alpha_{W-p+1}, \dots, \alpha_W)]$, p being an integer greater than 0

and smaller than W, the roots of the second set being closer to the unit circle than those of the first set according to a determined distance criterion in the complex plane;

- obtaining an intermediate signal $[(Y')]$ by applying a first equalization method to the received signal $[(Y)]$ based on a finite impulse response [whose] having a Z-transform $[(R^S(Z))]$, formed by] consisting of a polynomial of degree $W-p$ in Z^{-1} , [has] having roots [which are] equal to the $W-p$ roots of the first set; and
- obtaining estimations $[(\hat{d}_k)]$ of the discrete information symbols [of the transmitted signal] by applying a second equalization method to the intermediate signal based on a finite impulse response [whose] having a Z-transform $[(R^I(Z))]$, formed by] consisting of a polynomial of degree p in Z^{-1} , [has] having roots [which are] equal to the p roots of the second set.

2 (Amended). A method according to claim 1, wherein the first equalization method yields the intermediate signal in the form of a vector Y' of $n+p$ samples $[(y'_1, \dots, y'_{n+p})]$ obtained according to the relation :

$$Y' = (A'^H A')^{-1} A'^H Y$$

where n is an integer representing a frame size, Y is a vector composed of $n+W$ samples $[(y_k)]$ of the received signal, and A' is a matrix with $n+W$ rows and $n+p$ columns having a Toeplitz structure formed from the coefficients $[(s_q)]$ of said polynomial of degree $W-p$ in Z^{-1} $[(R^S(Z))]$.

3 (Amended). A method according to claim 1 [or 2], wherein the second equalization method comprises implementing a Viterbi algorithm.

4 (Amended). A method according to [any one of claims 1 to 3] claim 1, wherein the unit circle distance criterion, used to distribute the W roots $\alpha_1, \dots, \alpha_W$ of the Z-transform $[(R(Z))]$ of the channel impulse response into the first and second sets, is expressed as a distance δ_q of the form $\delta_q = 1 - |\alpha_q|$ if $|\alpha_q| \leq 1$, and of the form $\delta_q = 1 - 1/|\alpha_q|$ if $|\alpha_q| > 1$, for $1 \leq q \leq W$.

5 (Amended). A radio communications receiver comprising:

- conversion means [(1,3,4)] to produce digital samples $[(y_k)]$ from a radio signal received over a transmission channel represented by a finite impulse response of $W+1$ coefficients $[(r_0, r_1, \dots, r_W)]$, W being an integer greater than 1;
- means [(6)] for measuring the channel impulse response;
- means for calculating [the] W roots $[(\alpha_1, \alpha_2, \dots, \alpha_W)]$ in the complex plane of the Z-transform $[(R(Z))]$ of the impulse response;
- means for distributing the W roots into a first set of $W-p$ roots $[(\alpha_1, \dots, \alpha_{W-p})]$ and a second set of p roots $[(\alpha_{W-p+1}, \dots, \alpha_W)]$, p being an integer greater than 0 and smaller than W , the roots of the second set being closer to the unit circle than those of the first set according to a determined distance criterion in the complex plane;

- a first equalization stage for producing an intermediate signal by applying a first equalization method to the received signal $[(y_k)]$ based on a finite impulse response [whose] having a Z-transform $[(R^S(Z))]$, formed by] consisting of a polynomial of degree $W-p$ in z^{-1} , [has] having roots [which are] equal to the $W-p$ roots of the first set; and
- a second equalization stage for producing estimations $[(\hat{d}_k)]$ of the discrete symbols of a signal carried on the channel by applying a second equalization method to the intermediate signal based on a finite impulse response [whose] having a Z-transform $[(R^I(Z))]$, formed by] consisting of a polynomial of degree p in z^{-1} , [has] having roots [which are] equal to the p roots of the second set.

6 (Amended). A receiver according to claim 5, wherein the first equalization stage is arranged to yield the intermediate signal in the form of a vector Y' of $n+p$ samples $[(y'_1, \dots, y'_{n+p})]$ obtained according to the relation:

$$Y' = (A'^H A')^{-1} A'^H Y$$

where n is an integer representing a frame size, Y is a vector composed of $n+W$ samples $[(y_k)]$ of the received signal, and A' is a matrix with $n+W$ rows and $n+p$ columns having a Toeplitz structure formed from the coefficients $[(s_q)]$ of said polynomial of degree $W-p$ in z^{-1} $[(R^S(Z))]$.

7 (Amended). A receiver according to claim 5 [or 6], wherein the second equalization stage is arranged to implement a Viterbi algorithm.

A1

8 (Amended). A receiver according to [any one of claims 5 to 7] claim 5, wherein the means for distributing the W roots into the first and second sets make use of a unit circle distance criterion expressed as a distance δ_q of the form $\delta_q = 1 - |\alpha_q|$ if $|\alpha_q| \leq 1$, and of the form $\delta_q = 1 - 1/|\alpha_q|$ if $|\alpha_q| > 1$, for $1 \leq q \leq W$. --