Entanglement & non-locality in infinite 1D systems

Sukhwinder Singh

Institute for Quantum Optics and Quantum Information (IQOQI), Vienna

Based on

Z. Wang, SS, and M. Navascues, arXiv:1608.03485 (to appear soon in PRL)

- Entanglement and non-locality are hallmark features that signify clear departure from classical physics.
- Entanglement: A quantum many-body state is entangled if it is not multi-separable.
- (Bell) Non-locality: A conditional probability distribution is (Bell) non-local or non-classical if there is no local hidden variable model to reproduce it.
- o Goal: Detection of entanglement and non-locality in 1D infinite translation invariant systems when you have access to only near-neighbors information.

Foundational motivation

- Detecting global properties of an infinite system from partial information (of a small number of neighbors).
- If some observers share a separable (classical) state and they have been promised that the state is part of an infinite TI state, they can detect if the total state is entangled (non-classical) in some cases.
- Reveals an interplay between TI and entanglement/non-locality.

Detection of entanglement/non-locality in condensed matter systems

 Can apply these results to detect entanglement and non-locality in condensed matter systems (typically, finite and non-TI!).

Previous work

- Global entanglement detection: Using bipartite entanglement between either a part of the chain with the rest of the chain or between two distant sites.
- O W. K. Wootters, Contemporary Mathematics, 305, 299 (2002), arXiv:quant-ph/0001114.
- M. M. Wolf, F. Verstraete, and J. I. Cirac, Phys. Rev. Lett., 92,087903 (2004).
- A. Osterloh, L. Amico, G. Falci, and R. Fazio, Nature, 416,608 (2002).
- O J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys., 82,277 (2010).
- Global non-locality detection: studied for finite number of parties.
- O J. Tura, A. B. Sainz, T. Vértesi, A. Acín, M. Lewenstein, and R. Augusiak, Journal of Physics A: Mathematical and Theoretical, 47, 424024 (2014).
- O J. Tura, G. De las Cuevas, R. Augusiak, M. Lewenstein, A. Acín, and J. I. Cirac, Phys. Rev. X, 7, 021005 (2017).
- Here we focus on <u>multi-partite</u> entanglement/non-locality in 1D <u>infinite</u> systems

Entanglement detection

 \circ Have a quantum state ho of a 1D infinite lattice

- \circ Have a quantum state ρ of a 1D infinite lattice
- Its <u>invariant under translations</u>: Reduced density matrix of any contiguous block of r sites is equal anywhere on the lattice (for all r).

- \circ Have a quantum state ρ of a 1D infinite lattice
- Its <u>invariant under translations</u>: Reduced density matrix of any contiguous block of r sites is equal anywhere on the lattice (for all r).
- Say we can access only a part of the state ρ_r . Can we detect if the total state ρ is entangled or not?

- \circ Have a quantum state ρ of a 1D infinite lattice
- Its <u>invariant under translations</u>: Reduced density matrix of any contiguous block of r sites is equal anywhere on the lattice (for all r).
- Say we can access only a part of the state ρ_r . Can we detect if the total state ρ is entangled or not?
- A quantum state is not entangled iff it is multi-separable:

$$\rho = \int d \vec{\rho} \ P(\rho_1, \rho_2, \dots) \ \rho_1 \otimes \rho_2 \otimes \cdots$$
 lity distribution reduced density matrix on site 1

some probability distribution

 \circ Of course, if ρ_r is entangled e.g. ρ_r is not positive under partial transposition then the total state ρ is also entangled.

- Of course, if ρ_r is entangled e.g. ρ_r is not positive under partial transposition then the total state ρ is also entangled.
- \circ We are interested in the case where ρ_r is multi-separable.

- Of course, if ρ_r is entangled e.g. ρ_r is not positive under partial transposition then the total state ρ is also entangled.
- \circ We are interested in the case where ρ_r is multi-separable.
- Will illustrate that the total state ρ can still be entangled in this case!

- Of course, if ρ_r is entangled e.g. ρ_r is not positive under partial transposition then the total state ρ is also entangled.
- \circ We are interested in the case where ρ_r is multi-separable.
- Will illustrate that the total state ρ can still be entangled in this case!
- \circ **Approach:** Does ho_r admit a <u>TI and separable extension</u>?

That is, can we find a 1D infinite TI state such that the reduced density matrix of any block of r sites is equal to ρ_r ?

 Problem of extending a separable state to an infinite TI separable state can be mapped to the following problem for simple probability distributions. Problem of extending a separable state to an infinite TI separable state can be mapped to the following problem for simple probability distributions.

Given a r-site probability distribution

$$P_{1,\ldots,r}(x_1,\ldots,x_r)$$

can it realized as the marginal of an infinite TI distribution?

 Problem of extending a separable state to an infinite TI separable state can be mapped to the following problem for simple probability distributions.

Given a r-site probability distribution

$$P_{1,\ldots,r}(x_1,\ldots,x_r)$$

can it realized as the marginal of an infinite TI distribution?

Yes, if and only if

$$P_{1,...,r-1}(x_1,...,x_{r-1}) = P_{2,...,r}(x_2,...,x_r)$$
 Lemma 1 (Known for some time. Proof in paper.)

Find all

$$P_{1,\ldots,r}(x_1,\ldots,x_r)$$

such that

$$P_{1,\dots,r-1}(x_1,\dots,x_{r-1}) = P_{2,\dots,r}(x_2,\dots,x_r)$$

Can be solved using linear programming.

Set of all such $P_{1,...,r}(x_1,...,x_r)$ form a <u>polytope</u> characterized by a finite number of vertices and facets.

 \circ We have a multi-separable state ρ_r :

$$\rho_r = \int d \vec{\rho} \, P(\rho_1, \dots, \rho_r) \, \rho_1 \otimes \dots \otimes \rho_r$$

Observation 1: ρ_r has a TIS extension iff $P(\rho_1, ..., \rho_r)$ satisfies Lemma 1.

 \circ We have a multi-separable state ρ_r :

$$\rho_r = \int d \vec{\rho} \, P(\rho_1, \dots, \rho_r) \, \rho_1 \otimes \dots \otimes \rho_r$$

- Observation 1: ρ_r has a TIS extension iff $P(\rho_1, ..., \rho_r)$ satisfies Lemma 1.
- O But not easy to find $P(\rho_1, ..., \rho_r)$ for any given separable state! Any simpler way to detect TIS extensibility?

 \circ We have a multi-separable state ho_r :

$$\rho_r = \int d \vec{\rho} \, P(\rho_1, ..., \rho_r) \, \rho_1 \otimes \cdots \otimes \rho_r$$

- Observation 1: ρ_r has a TIS extension iff $P(\rho_1, ..., \rho_r)$ satisfies Lemma 1.
- O But not easy to find $P(\rho_1, ..., \rho_r)$ for any given separable state! Any simpler way to detect TIS extensibility?

- o **Hypothesis 1:** If ρ_r has a TIS extension then
- 1) ρ_r must be separable
- 2) $\rho_{1,...,r-1} = \rho_{2,...,r}$

- We have a multi-separable state ρ_r : $\rho_r = \int d \vec{\rho} P(\rho_1, ..., \rho_r) \rho_1 \otimes \cdots \otimes \rho_r$
- Observation 1: ρ_r has a TIS extension iff $P(\rho_1, ..., \rho_r)$ satisfies Lemma 1.
- O But not easy to find $P(\rho_1, ..., \rho_r)$ for any given separable state! Any simpler way to detect TIS extensibility?

- \circ **Hypothesis 1:** If ρ_r has a TIS extension then
- 1) ρ_r must be separable
- 2) $\rho_{1,...,r-1} = \rho_{2,...,r}$

These conditions are necessary. But are they also sufficient? No!

 \circ All states TI states ho must satisfy:

$$tr(\rho_{1,2} \ \sigma_y \otimes \sigma_x) \leq \frac{2}{\Pi}$$
 (TI witness)

(Using Jordan-Wigner transformation)

 \circ All states TI states ρ must satisfy:

$$tr(\rho_{1,2} \ \sigma_y \otimes \sigma_x) \leq \frac{2}{\Pi}$$
 (TI witness)

(Using Jordan-Wigner transformation)

Consider the state

$$\rho = \frac{1}{2}(|i\rangle\langle i| \otimes |+\rangle\langle +|+|-i\rangle\langle -i| \otimes |-\rangle\langle -|$$
where $\sigma_x |\pm\rangle = \pm |\pm\rangle$ and $\sigma_y |\pm i\rangle = \pm |\pm i\rangle$

 \circ All states TI states ρ must satisfy:

$$tr(\rho_{1,2} \ \sigma_y \otimes \sigma_x) \leq \frac{2}{\pi}$$
 (TI witness)

(Using Jordan-Wigner transformation)

Consider the state

$$\rho = \frac{1}{2}(|i\rangle\langle i| \otimes |+\rangle\langle +|+|-i\rangle\langle -i| \otimes |-\rangle\langle -|$$
 where $\sigma_x |\pm\rangle = \pm |\pm\rangle$ and $\sigma_y |\pm i\rangle = \pm |\pm i\rangle$

- o ρ is separable and TI, $\rho_1 = \rho_2 = \frac{1}{2}I$ but $tr(\rho \sigma_y \otimes \sigma_x) = 1$
- Therefore, hypothesis 1 is false. Since these conditions cannot even guarantee the existence of a TI extension, separable or not.

- o **Hypothesis 2:** If ρ_r has a TIS extension then
- 1) ρ_r must be separable
- 2) $\rho_{1,...,r-1} = \rho_{2,...,r}$
- 3) ρ_r has a TI extension (improvement from Hypothesis 1)

These conditions are necessary. But are still <u>not</u> sufficient!

 \circ Can show that all states $\rho_{1,2}$ with a TIS extension must satisfy:

$$tr(\rho_{1,2} \ \sigma_y \otimes \sigma_x) \leq \frac{1}{2}$$
 (entanglement witness)

Got by applying Observation 1 (quantum extension of Lemma 1)

- We identified a family of TI states ρ^{λ} of an infinite lattice of qubits such that $\rho_{1,2}^{\lambda}$ is separable. Some of these states $\rho_{1,2}^{\lambda}$ do not violate the **TI witness** (so they have TI extensions) but violate the **entanglement** witness inequality (so they <u>do not</u> have TIS extensions).
- Therefore even Hypothesis 2 is false.
- Could not find a simple (for practical detection), necessary and sufficient criterion for a TIS extension.

 But these examples illustrate that some separable states admit <u>only</u> entangled TI extensions. Thus, observers with access only to the partial state can detect the presence of global entanglement in these cases.

Non-locality detection

Each site is a black box with $X = 1, 2, ..., n_x$ inputs (measurement settings) and $a = 1, 2, ..., n_a$ outputs (measurement outcomes)

- Each site is a black box with $X=1,2,\ldots,n_x$ inputs (measurement settings) and $a=1,2,\ldots,n_a$ outputs (measurement outcomes)
- O Have a conditional probability distribution of a 1D infinite system $B(a_1, a_2, ... | X_1, X_2, ...)$ (no signaling)

- Each site is a black box with $X=1,2,\ldots,n_{\chi}$ inputs (measurement settings) and $a=1,2,\ldots,n_{\alpha}$ outputs (measurement outcomes)
- O Have a conditional probability distribution of a 1D infinite system $B(a_1, a_2, ... | X_1, X_2, ...)$ (no signaling)
- O Box B is translation invariant: the marginal box B_r of any r sites is the same anywhere along the chain (for all r).

- Each site is a black box with $X=1,2,\ldots,n_x$ inputs (measurement settings) and $a=1,2,\ldots,n_a$ outputs (measurement outcomes)
- O Have a conditional probability distribution of a 1D infinite system $B(a_1, a_2, ... | X_1, X_2, ...)$ (no signaling)
- O Box B is translation invariant: the marginal box B_r of any r sites is the same anywhere along the chain (for all r).
- Have access to only a marginal box B_r . Can we detect if the total TI box B is classical or not?

A classical box is one that has a local hidden variable model, namely, its statistics can be modelled by sharing classical randomness.

- A classical box is one that has a local hidden variable model, namely, its statistics can be modelled by sharing classical randomness.
- \circ Formally, a box B is classical if and only if it can be decomposed as

- A classical box is one that has a local hidden variable model, namely, its statistics can be modelled by sharing classical randomness.
- \circ Formally, a box B is classical if and only if it can be decomposed as

$$B(a_1,a_2,\dots|X_1,X_2,\dots) = \int d\ \vec{d}\ Q(d_1,d_2,\dots)\ d_1(a_1|X_1) \otimes d_2\,(a_2|X_2) \otimes \cdots$$
 some probability distribution (local hidden variable model for B) deterministic box for site 1 (FINE'S THEOREM)

 \circ Again, the interesting case is if the marginal box B_r is classical.

- We were more successful in solving this problem: We completely characterized all classical boxes that admit a TI classical extension.
- \circ Using Fine's theorem, we can map a box B (conditional probability distribution) to a simple probability distribution Q.
- Observation 2: If B admits a TI classical extension then Q must have a TI extension. We have already solved this problem. (Lemma 1)
- Thus, simply borrowing the result here we have that the classical boxes that have a classical TI extension form a polytope.
- This is itself surprising. In 2D the corresponding set is not necessarily a polytope!
- Using standard software can find the facets of this polytope, which correspond to linear inequalities (Bell inequalities).

 Example inequalities for 3 parties, 2 inputs and 2 outputs with restricted access. Parties can only access the distribution for sites 1,2 and/or 1,3 (we wanted to restrict to 2-site correlators).

$$I_T \equiv -2E_0 - 4E_1 - 2E_{00}^{1,2} + 2E_{01}^{1,2} + 2E_{10}^{1,2} + 2E_{11}^{1,2} + E_{00}^{1,3} + 2E_{11}^{1,3} \ge -4$$

$$I_G \equiv -2E_0 - 6E_1 - 3E_{00}^{1,2} + 2E_{01}^{1,2} + 3E_{10}^{1,2} + 2E_{11}^{1,2} + 2E_{00}^{1,3} + E_{10}^{1,3} + E_{11}^{1,3} \ge -6$$

where
$$E_x \equiv \langle A_x^1 \rangle = \sum_{a=0,1} P_1(a|x)(-1)^a$$
 and

$$E_{x,y}^{i,j} \equiv \langle A_x^i A_y^j \rangle = \sum_{a,b=0,1} P_{1,j}(a,b|x,y)(-1)^a (-1)^b$$

• Here A_x^l denotes the observable corresponding to measuring property x at site i and assigning it the numerical value $(-1)^a$.

- Next, we wanted to find out if we can violate these inequalities by TI quantum states.
- Considered a quantum lattice made of sites of dimension 4 (these inequalities cannot be violated by qubits)
- Estimating the quantum value of an inequality given by

$$I \equiv \sum_{x,y=0,1} 0.5 C_x E_x + C_{xy}^{AB} E_{xy}^{1,2} + C_{xy}^{AC} E_{xy}^{1,3}$$

• Then identified observables A_0, A_1 at each site with the operators $A_0, \equiv M(0,0)$ $A_1 \equiv M(\theta,\phi)$ where

$$M(\theta,\phi) \equiv \begin{pmatrix} \cos(\theta) & \sin(\theta) & 0 & 0\\ \sin(\theta) & -\cos(\theta) & 0 & 0\\ 0 & 0 & \cos(\phi) & \sin(\phi)\\ 0 & 0 & \sin(\phi) & -\cos(\phi) \end{pmatrix}$$

 \circ Fixing θ , ϕ can map the original Bell inequality:

$$I \equiv \sum_{x,y=0,1} 0.5 C_x E_x + C_{xy}^{AB} E_{xy}^{1,2} + C_{xy}^{AC} E_{xy}^{1,3}$$

To a 3-body Hamiltonian

$$H \equiv \sum_{x,y=0,1} 0.5 C_x A_x^i + C_{xy}^{AB} A_x^i \otimes A_y^{i+1} + C_{xy}^{AC} A_x^i \otimes A_y^{i+2}$$

- \circ The minimum quantum value of the Bell inequality corresponds to the ground state energy per site of H. Can use MPS algorithms! (DMRG, TEBD)
- Examples of violations:

$$\theta = 0.077, \phi = 1.874, I_T = -4.1847$$

 $\theta = 6.236, \phi = 4.175, I_G = -6.1789$

Found many inequalities

No.	L	C_0	C_1	C_{00}^{AB}	C_{01}^{AB}	C_{10}^{AB}	C_{11}^{AB}	C_{00}^{AC}	C_{01}^{AC}	C_{10}^{AC}	C_{11}^{AC}
1	-3	-2	-2	2	2	-1	1	0	1	0	0
2	-4	-2	-4	-2	2	2	2	1	0	0	1
3	-5	-3	-3	2	2	2	-3	1	0	-1	2
4	-6	-4	-6	-3	2	3	2	2	0	1	1
5	-11	-4	-12	-4	6	6	6	1	-1	-1	4
6	-7	-5	-5	2	3	2	-4	1	1	-1	3
7	-8	-6	-8	-4	3	3	2	3	1	1	1
8	-5	-2	2	2	-2	-2	-4	1	1	1	2
9	-3	-3	1	1	1	1	-1	1	0	-1	1
10	-6	-4	2	2	2	2	-4	1	-1	-1	3
11	-6	-6	0	2	3	3	-2	3	-1	-1	1

No.	L	Q	θ	φ	inf Q	$\inf \mathcal{NS}$	Genuine
1	-3	-3.111	6.236	1.501	-3.1907	-3.5	N
2	-4	-4.184	0.077	1.874	-4.38643	-4.8	N
3	-5	-5.098	2.17	6.275	-5.3502	-5.8	N
4	-6	-6.179	6.236	4.175	-6.35706	-6.8	Y
5	-11	-11.104	5.996	4.691	-11.7124	-12.87	N
6	-7	-7.073	4.093	0.29	-7.31685	-7.8	Y
7	-8	-8.191	4.359	6.197	-8.52433	-9.06	Y
8	-5	-5.039	3.169	5.226	-5.32177	-5.8	N
9	-3	-3.04	3.843	1.193	-3.22662	-3.5	Y
10	-6	-6.109	0.817	2.421	-6.37417	-7	Y
11	-6	-6.081	3.787	6.067	-6.36487	-7	Y

Inequalities

Violations detected

Summary

Described how one can detect global properties of an infinite system from partial information (of a small number of neighbors).

Entanglement detection

- Provided a characterization of reduced density matrices of TI multi-separable states (Observation 1) and used it to derive entanglement witnesses for qubit chains.
- Constructed examples of TI states with separable 2-site reduced density matrix which admit only entangled TI extensions.

Bell non-locality detection

- Fully characterized the set of classical boxes admitting TI classical extensions.
- Identified a tripartite classical box which only admits non-classical TI extensions.
- Ground states of some few-body Hamiltonians are non-local! Can prepare these in the lab?

- \circ **Subtlety:** the inequalities I_T and I_G indicate two types of violations
- Consider the set of all tripartite classical box B_{123} such that $B_{12} = B_{23}$ (not necessarily equipped with TI classical extensions)
- o If we minimize the inequality I_T over this set we find the minimum value to be exactly -4 (i.e. the lower bound of I_T)
- \circ So a violation of this inequality simply indicates that the violating box B_{123} is non-classical, without reference to TI extensions.
- \circ But I_G is different. In the violating total box (obtained using MPS) we found that the marginal box B_{123} is non-classical. So we added some TI local noise to it such that the marginal box B_{123} becomes classical. But this B_{123} still violated inequality, indicating 'genuine TI non-classicality' (i.e. cannot be extended to TI classical box).

Thanks!