Year 10A

Logarithms

Non Calculator Section

Skills	and Knowled	lge Assessed:	
•	Use the definit	tion of a logarithm to establish and apply the laws of logarithms (ACMNA265)	Name
Sect	tion 1	Non Calculator Section	
		Write all working and answers in the spaces provided or	n this test paper.
1.	Evaluate	log_5 125.	
2.	Simplify l	$\log_{x}\left(\frac{1}{x^{3}}\right).$	
3.	Write a lo	egarithm statement which is equivalent to $s = b^n$.	
4.	The graph	of $y = log_a x$ is reflected in the line $y = x$. What is the	equation of the resulting graph?

5. E	valuate	$log_z(z^2)$	(2-4z)	log_z	(z-4).
------	---------	--------------	--------	---------	--------

.....

Use the following information to answer questions 6 and 7. $log_3 p = 0.81$ and $log_3 q = 0.09$.

6.	Evaluate	$log_3 pq^2$
----	----------	--------------

7.	Evaluate	$log_3 \frac{1}{\sqrt{p}}$.
----	----------	------------------------------

.....

8. Evaluate $log_4(8)$.

.....

9. The line y = 2 is drawn on the same set of axes as the graph of $y = log_2 x$. What are the coordinates of the point of intersection of the two graphs?

.....

10. Express $log_a(x^2 - 6x - 16) - log_a(x + 2) + 2log_a(x)$ as a single logarithm to base a.

Logarithms

Year 10A

Calculator Allowed Section

Name

Section 2 Multiple Choice Section

Mark all your answers on the accompanying multiple choice answer sheet, not on this test paper. You may do any working out on this test paper. Calculators are allowed for this section.

1. $log_b A = y$ is equivalent to :

A.
$$A = b^y$$

B.
$$A = y^b$$

C.
$$b = A^y$$

$$D. y = A^b$$

2. Which is the graph of $y = log_2(x)$?

B.

C.

D.

3. What is the value of $log_3 27$?

- A. 1
- B. 2
- C. 3
- D. 9

4. $log_x(ab) =$

A. $b \times log_x a$

B. $\log_x a \times \log_x b$

C. $\log_x a - \log_x b$

D. $\log_x a + \log_x b$

- 5. $\log_a 4 + \log_a 6 \log_a 8 =$
 - A. $log_a 2$.
- B. $log_a 3$.
- C. *log* _{*a*} 6.
- D. $log_a 10$.

- 6. $\log_{2}\left(\frac{1}{8}\right) =$
 - A. -3
- B. -2
- C. $\frac{1}{3}$
- D. $\frac{1}{2}$
- 7. Given $log_b 2 = 0.43$ and $log_b 3 = 0.68$, evaluate $log_b 18$.
 - A. 0.2924
- B. 0.8924
- C. 1.11
- D. 1.79

- 8. Simplify $log_7 49a log_7 a$.
 - A. 2

- B. 2*a*
- C. 7
- D. 7*a*
- 9. Given that $2 \log_m 2 + \log_m 25 = 2$, find the value of m.
 - A. 2
- B. 5
- C. 10
- D. 100

- 10. Simplify $\log_a (x^2 + 7x + 12) \log_a (x + 3)$.
 - A. $\log_{a}(x^{2} + 6x + 9)$.
- B. $\log_a(x^2 + 8x + 15)$.
- C. $log_a(x+4)$.
- D. $log_a(x) + log_a(4)$.

Multiple Choice Answer Sheet

Name	

Completely fill the response oval representing the most correct answer.

1.	A 🔾	В	c 🔾	$D \bigcirc$
2.	$A \bigcirc$	В	c 🔾	D 🔾
3.	$A \bigcirc$	В	c 🔾	$D \bigcirc$
4.	$A \bigcirc$	В	c 🔾	$D \bigcirc$
5.	$A \bigcirc$	В	c \bigcirc	D 🔾
6.	$A \bigcirc$	В	c \bigcirc	D 🔾
7.	$A \bigcirc$	В	c \bigcirc	$D \bigcirc$
8.	$A \bigcirc$	В	c \bigcirc	$D \bigcirc$
9.	$A \bigcirc$	В	c \bigcirc	$D \bigcirc$
10.	A 🔾	В	c \bigcirc	D 🔾

High School Mathematics Test 2013 Logarithms

ANSWERS

	Section 1
1.	$log_5 125 = log_5 \left(5^3\right) = 3$
2.	$\log_{x}\left(\frac{1}{x^{3}}\right) = \log_{x}\left(x^{-3}\right) = -3$
3.	$log_b s = n.$
4.	$x = a^y$
5.	$\log_z \left(z^2 - 4z\right) - \log_z \left(z - 4\right) = \log_z \left(\frac{z^2 - 4z}{z - 4}\right)$
	$= \log_z\left(\frac{z(z-4)}{z-4}\right)$
	$= log_z(z)$
	= 1
6.	$\log_3 pq^2 = \log_3 p + \log_3 q^2$
	$= log_3 p + 2log_3 q$
	$= 0.81 + 2 \times 0.09$
	= 0.81 + 0.18
	= 0.99
7.	$log_3 \frac{1}{\sqrt{p}} = log_3 \left(p^{-\frac{1}{2}}\right)$
	$= -\frac{1}{2}(log_3 p)$
	$= -\frac{1}{2} \times 0.81$
	=-0.405
8.	$log_4(8) = log_4(2 \times 4) = log_4 2 + log_4 4$
	$= log_4\left(4^{\frac{1}{2}}\right) + log_4\left(4^{1}\right)$
	$= \frac{1}{2} \log_4 4 + \log_4 4$
	$=\frac{1}{2}+1$
	$= 1\frac{1}{2}$

9. Substitute
$$y = 2$$
 into $y = log_2x$.
 $2 = log_2 x$
 $x = 2^2 = 4$
 $y = log_2 4 = log_2 (2^2) = 2$
The point is $(4, 2)$.

10. $log_a (x^2 - 6x - 16) - log_a(x + 2) + 2log_a(x) = log_a (x - 8)(x + 2) - log_a(x + 2) + log_a(x^2)$
 $= log_a (x - 8) + log_a (x^2)$
 $= log_a (x^3 - 8x^2)$

	Section 2				
1.	A				
2.	В				
3.	С				
4.	D				
5.	В				
6.	A				
7.	D				
8.	A				
9.	С				
10.	С				

Multiple Choice Answer Sheet

Name Marking Sheet

Completely fill the response oval representing the most correct answer.

1.	Α 💮	$B \bigcirc$	c 🔾	$D\bigcirc$
2.	$A \bigcirc$	В	c 🔾	$D \bigcirc$
3.	$A \bigcirc$	В	C	$D \bigcirc$
4.	$A \bigcirc$	В	c 🔾	D
5.	$A \bigcirc$	В	c 🔾	D 🔾
6.	A •	В	c 🔾	D 🔾
7.	$A \bigcirc$	В	c 🔾	D
8.	A •	В	c \bigcirc	D \bigcirc
9.	$A \bigcirc$	В	C	D 🔾
10.	A 🔾	В	C	D 🔾