Instructor: Yanlin Qi

Institute of Transportation Studies

Department of Statistics

University of California, Davis

Scenario change

- We have completed the probability portion of the course:
 - distributions of discrete random variables
 - distributions of continuous random variables
 - joint distributions of two (discrete) random variables
 - sampling distributions of statistics

Previous settings

we assumed that we had full knowledge of the distribution, including both:

- The distribution type
- The values of the associated parameters
 - Examples
 - *❖ Bernoulli*(0.5)
 - ❖ Pois(2.2)
 - *❖ N*(65,22)
 - $\star Exp(\frac{1}{15})$

Practical Settings

- Typically, we only know the type of the distribution for the population or can make a reasonable assumption about it
- However, we do not know the values of its parameters.

Challenges

In most cases, it is often too difficult or expensive to study the whole population to find the exact value of a distribution parameter.

❖ A more efficient way is to use a sample from the population to infer about the population parameters. This is called statistical inference.

For example, in the brown egg problem, we **only know (or can assume)** that the weights of all the brown eggs produced at the farm (population) **follow a normal distribution** (this is our model).

We will <u>need to determine</u> the values of its parameters μ (mean weight) and σ^2 (variance).

Inference about the population mean μ and the variance σ^2 can be made based on a random sample X_1, \ldots, X_n from the distribution (e.g., weights of a carton of eggs selected from the population).

- We may consider <u>three</u> different kinds of inference tasks:
 - **Point estimation:** What is the single (best) guess of the population mean μ ?
 - Interval estimation: In what interval (range) does μ lie "with high probability"?
 - **Hypothesis testing:** The label says $\mu = 65$ g, but the average weight of the eggs in a randomly selected carton is only 63.9 g. Is this a contradiction?

For each task, inference will be performed through a statistic:

- Consider the brown egg example again.
- **Example 0.1.** Suppose the weights of the 12 eggs in a selected carton are

$$x_1 = 63.3$$
, $x_2 = 63.4$, $x_3 = 64.0$, $x_4 = 63.0$, $x_5 = 70.4$, $x_6 = 65.7$, $x_7 = 63.7$, $x_8 = 65.8$, $x_9 = 67.5$, $x_{10} = 66.4$, $x_{11} = 66.8$, $x_{12} = 66.0$

- Obviously, one can use the sample mean \bar{x} = 65.5 g as a reasonable guess of the population mean μ .
 - We say that $\bar{x} = 65.5$ g is a **point estimate** of μ .
 - However, point estimates will likely vary from sample to sample.

 \bullet To study such randomness, we need to consider a random sample X_1, \ldots, X_{12} from the population and examine the associated statistic:

$$\bar{X} = \frac{1}{12} \sum_{i=1}^{12} X_i.$$

- \diamond The statistic \bar{X} is called a **point estimator** of μ .
 - Note that a point estimator is a random variable (also a statistic) while a point estimate is an observed value of the point estimator (obtained through a realization of the sampling process).

- Question. Are there other estimators for μ in the brown egg example and what are the corresponding point estimates (based on the same sample)?
- **Sample median** \tilde{X} . Point estimate is $\tilde{x} = \frac{65.7 + 65.8}{2} = 65.75$
- ❖ Midpoint of the range M. Point estimate is $m = \frac{63.0+70.4}{2} = 66.7$

- **Conclusion**: Point estimators of μ are not unique.
 - → Follow-up question: Which one is the best?

General definition

- * More generally, consider a distribution $f(x; \theta)$ with known type f but unknown parameter value θ . For example,
 - f is the normal PDF and θ represents μ (assuming σ^2 known);
 - f is the Poisson PMF and θ is the associated parameter λ ;
- **Def 0.1.** A **point estimator** $\hat{\theta}$ of θ is any (reasonable) statistic that is used to estimate θ .
- For any specific realization of the random sample, the corresponding value of $\hat{\theta}$ is called a **point estimate** of θ .

Example 0.2. Suppose we draw a random sample $X_1, ..., X_n$ from the uniform distribution Uniform(0, b). Then the sample maximum

can be used as a point estimator for b.

Follow-up question. Is there another statistic that may be used to estimate the unknown parameter b in the preceding example?

- **New question.** Given a random sample $X_1, ..., X_n$ from a population with unknown variance σ^2 , what estimators can we use for σ^2 ?
 - The sample variance is the most common point estimator:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

Another possibility is to use population variance estimator:

$$S'^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} = \frac{n-1}{n} S^{2}$$

Example 0.3. Given the same sample from before,

$$x_1 = 63.3, x_2 = 63.4, x_3 = 64.0, x_4 = 63.0, x_5 = 70.4, x_6 = 65.7, x_7 = 63.7, x_8 = 65.8, x_9 = 67.5, x_{10} = 66.4, x_{11} = 66.8, x_{12} = 66.0$$

A point estimate of σ^2 based on S^2 is $s^2 = 4.72$. In contrast, $s'^2 = 4.32$.

Evaluation of estimators

The best estimators are unbiased and have least possible variance.

Def 0.2. A point estimator $\hat{\theta}$ of θ is said to be <u>unbiased</u> if

$$E(\hat{\theta}) = \theta.$$

- It does not systematically overestimate or underestimate the true value
- \diamond Otherwise, it is <u>biased</u> and the <u>bias of θ </u> is defined as

$$B(\hat{\theta}) = E(\hat{\theta}) - \theta.$$

- * Theorem 0.1.
 - Let $X_1, ..., X_n \stackrel{\textit{iid}}{\sim} f(x)$ with $E(X_i) = \mu$ and $Var(X_i)$ = σ^2 for all $1 \le i \le n$. The statistics \overline{X} , S^2 are always unbiased estimators of μ , σ^2 respectively.

ightharpoonup Proof. The \bar{X} part directly follows from a previous sampling result:

$$E(\bar{X}) = \mu.$$

The variance part can be proved based on the following identity

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} = \frac{1}{n-1} \left| \sum_{i=1}^{n} X_{i}^{2} - n\bar{X}^{2} \right|$$

That is,

$$E(S^{2}) = \frac{1}{n-1} \left[\sum_{i=1}^{n} E(X_{i}^{2}) - nE(\bar{X}^{2}) \right]$$

$$= \frac{1}{n-1} \left[\sum_{i=1}^{n} (\mu^{2} + \sigma^{2}) - n(\mu^{2} + \frac{\sigma^{2}}{n}) \right]$$

$$= \frac{1}{n-1} \left[n(\mu^{2} + \sigma^{2}) - (n\mu^{2} + \sigma^{2}) \right]$$

$$= \sigma^{2}$$

• (In the above we have used the formula $E(Y^2) = E(Y)^2 + Var(Y)$ for any random variable Y).

• Remark. The theorem implies that S^2 is a biased estimator of σ^2 :

$$E(S^{'2}) = E(\frac{n-1}{n}S^2) = \frac{n-1}{n}\sigma^2 \neq \sigma^2$$

and the bias is

$$B(S'^2) = E(S'^2) - \sigma^2 = -\frac{1}{n}\sigma^2$$

That is, $S^{\prime 2}$ tends to <u>underestimate</u> σ^2 .

- * Remark. Note that μ may represent <u>different parameters</u> for <u>different populations</u>:
 - Normal: \bar{X} is an unbiased estimator of μ ;
 - Bernoulli: \bar{X} is an unbiased estimator of p;
 - Poisson: \bar{X} is an unbiased estimator of λ ;
 - Uniform(0,b): \bar{X} is an unbiased estimator of $\frac{b}{2}$, which implies that $2\bar{X}$ unbiased estimator of b.

Example 0.4. For a random sample of size n from the $\underline{Uniform(0,b)}$ distribution ($\underline{where b is unknown}$), it can be shown that the sample maximum is a biased estimator of b:

$$E(X_{\max}) = \frac{n}{n+1}b$$

with negative bias

$$B(X_{\text{max}}) = E(X_{\text{max}}) - b = \frac{n}{n+1}b - b = -\frac{1}{n+1}b$$

However, $\frac{n+1}{n}X_{\max}$ is an unbiased estimator of

$$E\left(\frac{n+1}{n}X_{\max}\right) = \frac{n+1}{n}E\left(X_{\max}\right) = \frac{n+1}{n} \cdot \frac{n}{n+1}b = b$$

(Recall that $2\bar{X}$ is another unbiased estimator of b).

- Between two unbiased estimators (of some parameter), the one with smaller variance is better.
- **Def 0.3.** The <u>unbiased estimator $\hat{\theta}^*$ of $\underline{\theta}$ that has the <u>smallest</u> variance is called <u>a minimum variance unbiased estimator (MVUE)</u>.</u>

ightharpoonup Theorem 0.2. For normal populations, \overline{X} is a MVUE for μ .

Methods of Point Estimation

Method of Maximum Likelihood

- 1. One of the best methods to obtain a point estimator
- 2. Suppose that X is a RV with PDF $f(x;\theta)$, where θ is a single unknown parameter
- 3. Let $x_1, x_2, ..., x_n$ be the observed values in a RS of size n
- 4. The likelihood function (LF) of the RS is

$$L(\theta) = f(x_1; \theta) \cdot f(x_2; \theta) \cdot \cdots \cdot f(x_n; \theta)$$

- \bullet Note that the LF is now a function of only θ
- 5. The maximum likelihood estimator (MLE) of θ is:
 - The value that **maximizes** the LF $L(\theta)$

Normal Distribution MLE for μ

- 1. Let X be normally distributed with unknown mean μ and known variance σ^2
- 2. The likelihood function for a RS of size n is

$$L(\mu) = \prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2\pi}} e^{-(x_i - \mu)^2 / (2\sigma^2)} = \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\sum_{i=1}^{n} (x_i - \mu)^2 / (2\sigma^2)}$$

3. Now, taking the logarithm and then the derivative

$$\ln L(\mu) = -\frac{n}{2} \ln(2\pi\sigma^2) - (2\sigma^2)^{-1} \sum_{i=1}^{n} (x_i - \mu)^2 \qquad \frac{d \ln L(\mu)}{d\mu} = (\sigma^2)^{-1} \sum_{i=1}^{n} (x_i - \mu)$$

4. Equating this last result to zero and solving for μ yields

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{X}$$

Normal Distribution MLEs for μ and σ^2

- Let X be normally distributed with unknown mean μ and unknown variance σ^2
- The likelihood function for a RS of size n and its logarithms are the same as in the previous case
- Now, by taking the derivatives and equating them to zero

$$\frac{\partial \ln L(\mu, \sigma^2)}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu) = 0 \qquad \frac{\partial \ln L(\mu \sigma^2)}{\partial (\sigma^2)} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 = 0$$

• Solving for μ and σ^2 yields

$$\hat{\mu} = \overline{X} \qquad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$

Notice this is not unbiased

Properties of a MLE

- **1. General Conditions:** Under very general and not restrictive conditions, when the sample size n is large and if $\hat{\theta}$ is the MLE of θ
- 2. **Approximately Unbiased:** $\hat{\theta}$ is an approximately unbiased estimator for θ
- **3. Minimum Variance:** The variance of $\hat{\theta}$ is nearly as small as the variance that could be obtained with any other estimator
- **4. Normal Distribution:** $\hat{\theta}$ has an approximate normal distribution
- **5. PDF Requirement:** To use the ML estimation, the PDF of the population must be either known or assumed

Assume a distribution f(x) with an unknown parameter θ and a random sample X_1, \ldots, X_n from this population.

Basic concepts

Point estimator: a *statistic* used to estimate the parameter θ , denoted as $\hat{\theta}$. The observed value of $\hat{\theta}$ corresponding to a specific sample is called a **point estimate**.

Unbiasedness:

- $\hat{\theta}$ is unbiased if $E(\hat{\theta}) = \theta$. Otherwise, the bias is $B(\hat{\theta}) = E(\hat{\theta}) \theta$.
- *When two estimators $\hat{\theta}_1$, $\hat{\theta}_2$ are both unbiased, we prefer the one with smaller variance.
- *The unbiased estimator $\hat{\theta}^*$ with the smallest variance is called a minimum variance unbiased estimator (MVUE) for θ .

Important results

- Sample mean $\bar{X} = \frac{1}{n} \sum X_i$ is always unbiased (as an estimator for population mean μ). For example,
 - *For Normal populations $N(\mu, \delta^2)$, \overline{X} is unbiased for μ ; For $N(\mu, \delta^2)$, also has the smallest variance (among all unbiased estimators) and thus is a MVUE for μ
 - *For Poisson populations $Pois(\lambda)$, \overline{X} is unbiased for λ ;
 - For Uniform distributions Unif(0, θ), \overline{X} is unbiased for $\frac{\theta}{2}$

- Sample variance $S^2 = \frac{1}{n-1} \sum (X_i \bar{X})^2$ is always unbiased (as an estimator for population variance σ^2). For example:
 - For Normal populations $N(\mu, \delta^2)$, S^2 is unbiased for δ^2 ;
 - For Poisson populations $Pois(\lambda)$, S^2 is unbiased for λ ;

Note that $S'^2 = \frac{1}{n} \sum (X_i - \bar{X})^2$ is always a biased estimator for δ^2 , the bias is $B(S'^2) = -\frac{1}{n} \delta^2$

