

CROCOPY RESOLUTION TEST CHART
NATIONAL RUREAU OF STANDARDS 1963-A

AN ASSESSMENT OF THE DYNA-METRIC INVENTORY MODEL DURING INITIAL PROVISIONING

THESIS

Robert R. Yauch, B.S. Captain, USAF

AFIT/GLM/LSM/86S-89

DESTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

86 11 25 019

SELECTE NOV 2 5 1986

AN ASSESSMENT OF THE DYNA-METRIC INVENTORY MODEL DURING INITIAL PROVISIONING

THESIS

Robert R. Yauch, B.S. Captain, USAF

AFIT/GLM/LSM/86S-89

Approved for public release; distribution unlimited

The contents of the document are technically accurate, and no sensitive items, detrimental ideas, or deleterious information is contained therein. Furthermore, the views expressed in the document are those of the author and do not necessarily reflect the views of the School of Systems and Logistics, the Air University, the United States Air Force, or the Department of Defense.

	:						
Accesi	on For						
DTIC	ounced	0					
By Dipt ibution/							
Availability Codes							
Di:t	Avait a c Specia						
A-1							

AN ASSESSMENT OF THE

DYNA-METRIC INVENTORY MODEL

DURING INITIAL PROVISIONING

THESIS

Presented to the Faculty of the School of Systems and Logistics

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Logistics Management

Robert R. Yauch, B.S. Captain, USAF

September 1986

Approved for public release; distribution unlimited

Acknowledgements

The completion of this thesis would not have been possible without the guidance and assistance of a number of people. First, I would like to thank the personnel of HQ AFLC/XRS, Captain Melinda Grant, Mr. Mike Niklas and Ms. Barbara Weiland, who gave of their time and expertise in using the MOD-METRIC and Dyna-METRIC inventory models.

Special thanks go to Mr. Wayne Lyle and Mr. Les Willis, McDonnell Aircraft Company, who provided critical data, support, and encouragement throughout this research. I would also like to thank Major Anthony Yaskin for his hours of proof-reading, brainstorming and editing of this thesis.

Finally, I wish to thank my wife Sherrie for her help, concern and understanding during the many hours that were spent preoccupied with this demanding effort.

Robert R. Yauch

Table of Contents

																					Page
Ackno	owledg	gement	s.	•				•	•	•		•		•	•	•	•				ii
List	of Fi	gures		•	•		•			•	•	•			•	•	•			•	v
List	of Ta	ables		•	•		•		•	•	•	•			•	•	•	•	•		vi
Abstı	ract .			•	•			•		•		•		•	•	•	•	•			vii
ı.	Intro	oducti	on	•	•	•	•			•		•	•	•		•	•	•	•		1
		Backg Probl Purpo Resea Scope	em se rch	Sta Ok	ite oje	eme •ct	ent iv	ves	•	•	•	•	•	•	•	•	•	•	•	•	1 3 3 5 6
II.	Lite	rature	Re	vie	w.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
		Overv Initi Initi MOD-M Dyna-	al al ETR	Pro Rec IC	ivo iup	isi ire	or eme	nir ent	ng :s	Pr De	te •	es	ss nir	nat	i.	on	•	•	•	•	7 7 14 16 18
III.	Metho	odolog	y.	•	•	•	•	•		•	•		•	•	•		•	•	•	•	25
		Overv Scena Exper Resea	rio Sce Dat ime	ai nai a l nta	nd ric Bas al	Da Se De	ata •	a I	3 as •			•	•	•	•	•	•	•	•	•	25 26 27 29 31 33
IV.	Resu	lts an	d A	na:	lys	sis	3	•		•		•	•	•	•	•	•		•	•	37
		Overv Prese the S	nta Stoc	ti k]	on Lev	a: ve:	nd l (Aı Qua	na] ant	lys Lit	sis tie	s c	of •	•			•			•	37 38
		Prese								-											46

		Page
V. Summary	, Conclusions and Recommendations	51
Cor	mmary of Research Effort	51 52 54
Appendix A:	Acronym Definitions	57
Appendix B:	MOD-METRIC Input File	59
Appendix C:	AFLCR 57-27 Spreadsheet	61
Appendix D:	Dyna-METRIC Input File	69
Bibliography		72
Vita		75

List of Figures

Figu:	re	Page
1.	Simplified Initial Provisioning Process	10
2.	MOD-METRIC System	17
3.	Dyna-METRIC View of the World	20
4.	Basic Dyna-METRIC Equation	22
5.	Initial Spares Requirements Computation	32
6.	Aircraft Availability	33
7	Pesparch Procedure	36

List of Tables

Table	9	Page
I.	Flying Program	28
II.	Stock Level Quantities	39
III.	Dyna-METRIC versus MOD-METRIC Stock Level Quantities	44
IV.	Stock Level Performance (Percent of FMC Aircraft)	48
٧.	Total Backorders	5.0

Abstract

A goal of initial provisioning is to provide the highest level of readiness for a fixed level of investment. MOD-METRIC and AFLCR 57-27, the traditional initial provisioning methods, determine which spare parts are needed and in what quantity without considering aircraft readiness. On the other hand, Dyna-METRIC, an availability model, quantifies the number of spares needed and finds the optimal mix for a dynamic initial provisioning environment.

This research is a comparison of the requirements computation (stock level) recommended by each method and a comparison of the aircraft availability that resulted from those stock levels. The data consists of 41 fuel system. Line Replaceable Units modeled during the initial provisioning of the F-15 aircraft in FY 73 and FY 74.

Results indicate that the Dyna-METRIC model performed equal to or better than the traditional methods for computing initial spare requirements given the same investment constraint. Further, the research suggests that the Dyna-METRIC model would recommend a smaller inventory of spare parts than the MOD-METRIC model while maintaining an equal level of performance.

NOTES STATE SECRECATION SECURITIES SECURITIE

AN ASSESSMENT OF THE

DYNA-METRIC INVENTORY MODEL

DURING INITIAL PROVISIONING

I. Introduction

Background

AFM 1-1, Basic Aerospace Doctrine of the United States
Air Force, describes the proper use of aerospace forces in
military action and provides broad guidelines for preparing
and employing those forces. One of the guidelines outlined
in Chapter Four of AFM 1-1 involves Equipping Aerospace
Forces. Equipping Aerospace Forces is one of the major
responsibilities that Congress has given the Department of
the Air Force. To fulfill this responsibility "the Air
Force must develop enduring aerospace systems and ones that
possess an optimum mix of the fundamental characteristics of
speed, range, and flexibility" (11:4-8).

Restricting any one of these characteristics will inhibit the capability of the weapon system to respond with force in a conflict. The ability of the Air Force to project these characteristics into a conflict establishes force readiness, the most fundamental requirement of our

defense posture. This force readiness cannot be maintained during a conflict without the required supply of spares and repair parts.

The capacity to deter, or to fight and win, such a conflict hinges on the ability to project fighting forces where and when they are needed and to sustain them for as long as they are needed. Readiness and sustainability, therefore, are the backbone of today's national defense posture. (27:3)

To maintain readiness and sustainability, the initial provisioning process must address which spare parts are needed, and in what quantity. AFR 800-36, Provisioning of Spares and Repair Parts, establishes a number of Air Force provisioning objectives to reach this goal. One important objective is to "procure the range and depth of spares needed to support baseline readiness and availability objectives that were determined based on priority of the system and the logistics costs" (14:1).

Two methods are currently used to quantify the stockage posture needed to meet this baseline of support in initial provisioning. They include (15:1): 1) AFLCR 57-27, <u>Initial Requirements Determination</u> and, 2) the MOD-METRIC computer model. The AFLCR 57-27 computational process seeks to answer the range and depth decisions for spares and repair parts without taking into consideration system readiness or availability.

Similarly, the objective of MOD-METRIC is to minimize the total number of backorders for a set of components with respect to a given budget constraint. MOD-METRIC treats every backorder as if it would result in an aircraft that is not fully mission capable (16:1-2). The use of backorders as a criterion does not give any indication of the number of aircraft available to perform the mission. Therefore, a valid method is needed to relate initial provisioning to weapon system readiness and availability. This research effort will demonstrate the capabilities of Rand Corporation's Dyna-METRIC inventory model as a decision making tool for use when computing initial provisioning requirements.

Problem Statement

The validity of the Dyna-METRIC computer program in computing initial spares levels needs to be assessed. This assessment will be accomplished by comparing initial spare computations from AFLCR 57-27, MOD-METRIC, and Dyna-METRIC models using data acquired during the initial provisioning of the F-15 weapon system.

Purpose

ASSESSED STREET, SOURCE STREET, STREET, STREET,

The purpose of this research is to assess the potential benefits of Rand Corporation's Dyna-METRIC inventory model for computing initial spares levels. Currently, Air Force

policy for the provisioning of initial spares and repair parts requires that "all acquisition programs will use AFLCR 57-27 for requirements computations" (14:3). However, further guidance in AFLCR 57-4, Recoverable Consumption Item Requirements System (D041), prescribes procedural instructions in computing these recoverable end items and identifies an additional computational method. Specifically, these two methods are:

- Manually, through the use of AFLC Form 614, Recoverable Items Requirements Computation Worksheet (Initial Replenishment), and
- 2. Mechanically, by means of an authorized math model (MOD-METRIC) (AFLCR 57-27) or comparable mechanical process. (15:1-1)

Requirements levels for spare and repair parts were derived from a combination of both methods during the initial provisioning process for the F-15 in FY 73 and FY 74 (24). But these methods of computation may not calculate the optimum quantity of necessary components with respect to a given budget constraint. Dyna-METRIC on the other hand, was primarily designed to measure reparable spares requirements during dynamic wartime conditions, where changes in aircraft usage put stress on the logistics support system (28:v). Therefore, Dyna-METRIC may provide a better decision making tool in determining the spare parts necessary to maintain a desired level of aircraft availability.

This research effort will follow-on Captain Michael G. Mills' Master of Science Thesis by addressing one of his recommendations. He states that "the validation and use of the [Dyna-METRIC] model for calculating initial spares requirements would benefit the Air Force and enhance an important portion of the acquisition process" (25:56). In addition, the procedures developed in this research will provide guidance in handling future comparison problems involving the implementation of AFLCR 57-27, MOD-METRIC and Dyna-METRIC models.

Research Objectives

The research objectives are twofold. First, a comparative technique will be used to analyze the absolute difference of stock levels produced by the three computation methods. The input to these methods include realistic initial provisioning scenario and planning data acquired from the FY 73 and FY 74 initial provisioning process for the F-15 weapon system.

Secondly, using the stock levels as input, these three methods will be evaluated on the basis of aircraft availability for the two year initial provisioning period. The similarities and differences of each method used in the initial provisioning process will be discussed.

Scope

CANADA NO CANADA

This research will examine the initial provisioning requirements computations for AFLCR 57-27, MOD-METRIC, and Dyna-METRIC models. The data base will be taken from historical information available at McDonnell Aircraft Company. This data will be limited to the analysis of 41 spare parts that comprise the fuel system of the F-15 aircraft.

Further, this thesis will analyze only reparable (non-consumable) spare parts. It is estimated that these items account for some 95 percent of all money spent on supplies stocked in a typical base supply organization (3:5). However, these same spares compose only five percent of the total purchased items in the Air Force inventory. The key to an effective inventory policy, and a credible defense posture in times of a constrained budget, is to maximize the repair and reuse of these assets (5:3). While conclusions drawn may be applicable to all Department of Defense systems, the results will focus only on the initial provisioning of the F-15 weapon system.

II. Literature Review

Overview

To build a basic foundation of understanding this chapter will begin with a brief discussion of the initial provisioning process. The provisioning process determines the type and quantity of initial spares and support equipment required to support a new end item or weapon system. The methods used to quantify F-15 spare and repair parts are the focus of this research and therefore, they will be examined and explained. These methods include calculations from AFLCR 57-27, the MOD-METRIC computer program, and the Dyna-METRIC computer program.

Initial Provisioning Process

The Department of Defense defines provisioning as:

The management process of determining and acquiring the range and quantity of support items necessary to operate and maintain an end item of material for an initial period of service. (7:2-1)

Provisioning, therefore, ensures the timely availability of initial stocks of spares and repair parts at using commands and maintenance organizations. These initial stocks sustain the programmed operation of end items until normal supply

procedures can take over (10:19-1). The three types of provisioning are: 1) initial provisioning, 2) follow-on provisioning, and 3) reprovisioning. Initial provisioning is the first-time provisioning for new end items or systems. Follow-on provisioning is the subsequent provisioning of the same end items procured from the same contractor, and reprovisioning is provisioning of the same end items procured from a different contractor (7:2-1).

The focus of this research is on the initial provisioning period. The spare parts involved are defined as:

Reparable spares and repair parts needed to support and maintain newly fielded systems or subsystems during the initial phase of service, including pipeline quantities needed as initial stockage at all levels. (17:1)

Two ingredients are required to successfully implement the initial provisioning for these spare parts. They are the provisioning strategy and the formal provisioning process.

The provisioning strategy is composed of specific methods and techniques essential to the effectiveness and supportability of a new system. These methods and techniques are required to accomplish timely provisioning, and thereby ensure that support is ready when a system is fielded (10:18-1). The three specific methods include organic, conference team, and resident provisioning team. The method chosen for the F-15 acquisition, the aircraft

investigated in this research, was the resident provisioning team, called the Logistics Support Cadre (LSC).

STATES AND THE PROPERTY AND THE PROPERTY OF TH

Various techniques have also evolved to implement the detailed actions required to provision new systems. possible techniques include the accelerated provisioning concept, interim release, and spares acquisition integrated with production. The accelerated provisioning concept is a technique which combines provisioning order placement along with the provisioning conference (source coding and cataloging) to speed timely support (9:33-1). technique, interim release, gives long lead time item protection to the government, by allowing the contractor to begin procurement of critical or long lead time materials prior to production (8:15). Finally, Spares Acquisition Integrated with Production (SAIP) is a final technique used to combine order placement and production of identical spares that would otherwise be produced at a different time. SAIP minimizes the cost of spares and repair parts to the government by avoiding nonrecurring charges that would result from separate purchasing and manufacturing actions (8:7). After the provisioning strategy has been determined, the requirements of the strategy are defined in the provisioning section of the Request For Proposal (10:18-1). Figure 1 depicts a simplified outline of an initial provisioning process.

Figure 1. Simplified Initial Provisioning Process

After the provisioning strategy is developed the second ingredient, the formal provisioning process, begins with a data call made by the responsible program office (Figure 1). The data call is a letter to all appropriate functional specialists involved with the end item, requesting their provisioning data requirements. This provisioning data is then compiled for inclusion in the data requirements section of the Request For Proposal (32).

A guidance conference is then held, normally within 45-days of contract award. The conference is attended by representatives from AFLC, AFSC, the appropriate ALC, the using command, the contractor, and when necessary, the contractor's major vendors. The conference focuses on providing guidance to the contractor and establishing calendar dates which will become the contractual milestones for the delivery of the spares and repair parts (31:17).

After the guidance conference, the next major step is for the contractor to deliver Provisioning Technical Documentation (PTD). PTD is used to reference the various types of provisioning lists, logistics support analysis summary reports, and data processing cards or tapes. PTD is used by Department of Defense components for the identification, selection, and determination of initial requirements for support items to be procured through the provisioning process (7:3-1). The PTD will also include Supplemental Provisioning Technical Documentation (SPTD). SPTD is the

technical data used to describe parts or equipment. It consists of specifications, standards, drawings, photographs, descriptions and sketches. The SPTD also includes diagrams such as general arrangement drawings, schematics, and wiring or cabling diagrams needed to indicate the location or function of an item (7:2-2). Without adequate PTD and SPTD, follow-on and reprocurement action cannot occur.

Next, the provisioning conference occurs, which allows the government to make item selection and assign technical and management codes. The purpose of this process is to determine the range of items required for support. This includes maintenance factors such as recoverability status, and indicates to the user the source for supply support. Items selected at the conference are placed on the post-conference list and submitted to the item manager at the ALC for processing (9:16-1).

The item manager review is held at the responsible ALC to make sure PTD and SPTD submitted by the contractor are adequate to process the items. Participants include the item manager, cataloger, provisioner, and equipment specialists. Actions taken include spares requirements computations (in accordance with AFLCR 57-27), subcomponent review, stocklisting tasks, delivery schedule establishment and destination certification (10:19-1).

In general, items identified for spares acquisition fall into one of three categories:

- Items already in the Air Force inventory.
- 2. Items already managed by another federal agency.
- New items not stocklisted or managed in the federal supply system. (31:18)

Items that fall under the first category are processed separately. If an item is already managed by the Air Force it will normally not be acquired through the provisioning process. Rather, it will be identified to the responsible item manager that the system being provisioned will require the use of this new item. The item manager will then include the new forecast demand for the item in the regular requirements computation and acquisition process (31:18).

The process is somewhat more complex if the system is already managed by another federal agency (category 2). If the item is consumable, the Air Force communicates the new requirements through the use of a Supply Support Request (SSR). The SSR will automatically be forwarded to the managing activity. If the item is non-consumable (i.e. reparable), a Non-consumable Item Material Support Request (NIMSR) is forwarded to the managing activity. In either case, the managing activity is notified of the Air Force's forecasted need (31:18).

Items that fall into category three are not currently stocklisted or managed in the federal supply system and must be acquired through the provisioning process. The Provisioning Item Order (PIO) is the instrument for this acquisition. PIOs normally do not have a fixed price or a fixed delivery schedule. They are offered to the contractor with an estimated price and a desired delivery schedule. After acceptance, the contractor negotiates a final price and schedule with a government representative. This procedure increases the government's risk, but it also improves the timeliness of initial delivery because price and schedule negotiations do not delay actual placement of the spares order (31:19). Now that the spare and repair parts have been identified, the tools used to calculate the number of spare parts quantities will be examined.

<u>Initial Requirements Determination</u>

One of the methods used to determine the quantity of spares and repair parts is outlined in AFLCR 57-27, <u>Initial Requirements Determination</u>. This regulation states the policy and procedures for deciding which items qualify for stockage, and for computing new requirements for all types of initially provisioned items. AFLCR 57-27 applies to anyone in AFLC responsible for determining the initial spares levels for new Air Force weapon systems and end

items, either in production or under modification (13:1-1). Essentially, the regulation determines the range and depth of initial spares and support equipment required for a new system.

the contract source assume

SCORES STARS NAVEL STARS STARS STARS STARS

The determination of which items to stock (range) is covered in detail in Chapter One of AFLCR 57-27. requirements computation (depth) for different types of authorized items is outlined in the remaining chapters. Chapter Three, Instructions for Initial Requirements Determinations of Recoverable (XD) Consumption Items, includes procedures that are relevant to the scope of this research. These procedures require the preparation of AFLC Form 614, Recoverable Items Requirements Computation Worksheet, for each authorized spare or repair part. Informative item data as well as computed data must be entered on this form. streamline the time consuming manual process of preparing individual AFLC Form 614s for each item, simplified equations have been constructed that focus only on the mathematical operations required for initial provisioning computations (30). Appendix C presents these formulas.

The policy concerning the use of math models was recently changed by Interim Message Change 85-1 to AFLCR 57-27 dated 14 February 1985. Any math model that provides a different mix of inventory may be used if the model conforms to specific criteria as listed in the message.

MOD-METRIC is one math model that meets all requirements.

MOD-METRIC

MOD-METRIC was developed by John Muckstadt to model the control of a multi-item, multi-echelon, multi-indenture inventory system. An "indenture" describes the relationship between an assembly and its sub-components, and "echelon" describes the repair levels (base and depot) for items in need of repair (26:472).

The MOD-METRIC technique considers the line replaceable unit (LRU) and the shop replaceable unit (SRU) relationship, and computes the effect of the SRU stock level on the availability of LRU's (16:1-2). An LRU is an item removed and replaced as a single unit from a weapon system or item of equipment (12:393). An SRU is a subcomponent of an LRU removed and replaced at a repair facility, and used to return the LRU to a serviceable condition (12:627). This two-echelon, two-indenture system is illustrated in Figure 2.

The basic objective of MOD-METRIC is to provide better support of aerospace systems by allocating limited resources in an optimal manner. It computes the best mix of reparable spare parts given a specified budget when the objective is to minimize backorders. A backorder is defined in MOD-METRIC as the expected number of unfilled demands or "holes" existing at the base level at any point in time (16:1-1).

white the same and the same and

82 Miles

Secretal Process

Figure 2. MCD-METRIC System (16:1-4)

'MOD-METRIC provides a technique to compute the probability of an aircraft being grounded given a specified stock level, and incorporates marginal analysis in allocating money to the various LRUs and SRUs. Marginal analysis is a method that computes the increase in support per additional dollar invested (16:1-2).

As with all math models, MOD-METRIC is subject to certain assumptions. They include the following:

- A stationary compound Poisson probability distribution describes the demand process for each item.
- 2. There is no lateral resupply between bases.
- A failure of one type of item is statistically independent of those that occur for any other type of item.

- 4. Repair times are statistically independent.
- 5. There is no batching of items before repair is started on an item (infinite channel queuing assumption).
- 6. The level at which repair is performed depends only on the complexity of the repair (and not on existing workload).
- 7. No cannibalization takes place. (16:1-2)

MOD-METRIC completed the ground work for analyzing the two-echelon system consisting of a depot and several bases. A representation of the multi-echelon, multi-indenture inventory system was now ready to be adapted to model the behavior of a highly dynamic inventory environment (6:17).

Dyna-METRIC

Dyna-METRIC is an inventory model developed by The Rand Corporation and designed to help improve the management of Air Force multi-echelon, multi-indenture reparable items. It has been continually improved since its first release with version 2.1 in July 1980. The latest and most sophisticated version is 4.4, released in August 1984. It is pending official acceptance by HQ USAF/LEYS as the Air Force standard version (29). Because of significant improvements, this version is currently being used by a number of Air Force agencies and is the focus of this research.

Dyna-METRIC views each aircraft as a collection of spare parts, each with a probability of failure over a

period of flying time. Because each part is considered essential for mission accomplishment, a failed part must be replaced to maintain a fully mission capable (FMC) aircraft. The FMC aircraft can then be flown as needed during the scenario. If a failed part has no replacement available from base stock, the aircraft is considered not mission capable due to supply (NMCS) until the part becomes available. Similar to MOD-METRIC, the parts that compose the aircraft in Dyna-METRIC are multi-indentured. They consist of LRUs, SRUs and subSRUs, where subSRUs are now components of SRUs.

Dyna-METRIC can also model cannibalization. This is an important improvement over past methods, because in many maintenance systems cannibalizing is a common practice, particularly in cases where the repair is modularized as with LRUs and SRUs. In the model, cannibalization of parts from one aircraft to another is either accomplished as necessary for all items, (full cannibalization) or is restricted to only a few items (partial cannibalization) in support of the mission objectives (4;29). In the full cannibalization mode, an additional source of supply is provided when the stock is low or when service times are long. However, a few related issues are not considered in the model, such as aircrew availability, flight line support (fuel and munitions), and personnel support (food and medicine) (28).

Figure 3. Dyna-METRIC View of the World (Adapted from 2:3)

Dyna-METRIC is a three-echelon model consisting of multiple depots, Centralized Intermediate Repair Facilities (CIRFs), and operating bases. Dyna-METRIC can handle a variety of scenarios from a single base with its supporting depot to a multiple base, CIRF, and depot configuration. An example of possible structures is depicted in Figure 3.

In this example, there are three bases, each with its own repair facility. Two of the bases are augmented by a CIRF, while the third is not. In version 4.4, "complete" depot treatment is now possible, which means depot stock is no longer assumed to be unlimited. The user can limit the depot repair time, depot condemnation rate, and number of depot repairs each day (29). Additionally, each part can be identified with one or more of the supporting depots and the

corresponding transportation times. These capabilities make version 4.4 of the model even more realistic.

The second secon

CONTRACTOR CONTRACTOR

The lines in Figure 3 represent the flow of parts (pipeline) to and from the various facilities. Dyna-METRIC calculates the expected number of components in each pipeline for each day and for each segment of the scenario, using daily demands and process delay times defined by the user. These process delay times are composed of local repair times and transportation times. The sum of all pipeline segments is the key parameter used to compute the probability (typically Poisson) that a given number of components are in repair or on order (28:vii). Dyna-METRIC computes the probability distribution of all pipeline segments using an expansion of Palm's Theorem developed by Hillestad and Carrillo (22). Figure 4 summarizes the basic mathematical theory used in Dyna-METRIC. A complete treatment of the mathematics is contained in Hillestad (21).

The equation centers on the demand function M(s) and the repair function l - F(s,t) with several variables used to describe the pipeline and provide limits on the repair distribution. By using this theory, the model captures dynamic demands and transient behavior generally associated with flying and sortie surges.

Given:

Service Function = the probability that a component entering repair at time s has completed the service by time t.

Demand Function = the components repair demand rate M(s) at time s.

(quantity of the component on the aircraft) * (percentage of aircraft with the component)

Then: The expected number of components L, in the repair pipeline at time t is:

$$L (t) = \int_{0}^{t} (1 - F(s,t)) * M(s) ds$$
 [1]

Restated: The expected number of any one type component in repair at time t is a function of all demands for that component and the capability to repair it during the elapsed time period.

Figure 4. Basic Dyna-METRIC Equation (21;22)

Unlike its predecessors, the probability distributions for all components in the pipeline can then be combined to estimate aircraft availability, fully mission capable aircraft, sorties, and expected backorders from not fully mission capable aircraft (28:vii).

Several limitations arise from the mathematical assumptions, approximations, and program implementation constraints in Dyna-METRIC. These limitations reflect the tradeoffs between current "state-of-the-art" inventory systems and computational resources (computer time and memory) needed to use the model (28:14). The following is a list of the eight most frequently noted limitations the user should consider when determining the application of the model to any given situation:

- Unconstrained repair may overestimate or underestimate performance, because demands are required to arrive randomly according to a probability distribution (typically Poisson). Repair and transportation times have a known probability distributions that are independent.
- 2. Lateral resupply is not modeled explicitly.
- 3. Aircraft deployed at each base are nearly identical.
- 4. Constrained repair computations are only approximate.
- 5. Ordering policies for economic order quantities are not modeled.
- 6. Expected backorders and awaiting parts quantities approximate additive pipelines because the model does not compute joint probability distributions for them.

- 7. Flightline and operational constraints are not explicitly modeled.
- 8. Real computers limit the model's precision and accuracy because they have finite computational precision. (23:14-20)

Even though these eight limitations of Dyna-METRIC appear extensive, it is one of the latest and most sophisticated reparable inventory models used by the Air Force. The logic and accuracy of the model have been fully verified and validated against real world flying operations (4).

III. Methodology

Overview

The overall objective of this research was to compare different methods for computing initial spares requirements. Currently, the initial provisioning process employs AFLCR 57-27 and MOD-METRIC to compute initial spares requirements. Because of changing flying requirements and phase-in of new items, the initial provisioning period of service is very dynamic. This dynamic environment requires an equally dynamic model to forecast spares requirements. For this study, Dyna-METRIC was chosen as an alternative to current methods because it was designed to capture the changes that take place in a dynamic wartime environment.

To accomplish the research objectives two basic ingredients were necessary. First, a realistic initial provisioning scenario and spare parts data were needed to provide a foundation for model comparisons. Data acquired from the original FY 73 and FY 74 acquisition of the F-15 satisfied this requirement for two reasons: 1) the system was originally provisioned using MOD-METRIC and, 2) most of the actual planning data was available. The second ingredient necessary to accomplish the research objectives was the formulation of an experimental design and research

procedure. A comparative analysis technique was chosen to assess the similarities and differences between stock levels and aircraft availabilities when the budget was held constant. This research will demonstrate the utility of Dyna-METRIC in initial provisioning, and will support it as an alternative to present methods.

Scenario and Data Base

McDonnell Aircraft Company (MCAIR), St. Louis Missouri, provided the unclassified scenario and data base for this research. The F-15 Item Manager provided the AFLC Form 27 (Programming Checklist), revision number two, dated 28 June The Programming Checklist contained the total planned aircraft deliveries and flying hours over the two year initial provisioning period for FY 73 and FY 74. A reconstruction of monthly planned flying hours and aircraft deliveries was developed through interviews with Mr. Wayne Lyle, Logistics Engineering Manager, MCAIR. During the initial provisioning period, Mr. Lyle, then Lieutenant Colonel Lyle, was the Chief of the Logistics Support Cadre He was responsible for the initial provisioning requirements for the F-15, and used MOD-METRIC as the primary determinant of initial spares procurement quantities (24). He provided the MOD-METRIC LRU input data and output quantity listings, dated 21 November 1973, for one subsystem of the F-15, the fuel system. The fuel system, consisting mainly of pumps and valves, sufficiently exercised each of the computational techniques studied in this research, and thus provided a representative system for comparison.

Mr. Les Willis, the Senior Production Support Analyst for MCAIR, provided three critical pieces of information. First, he provided the input data from the initial provisioning period necessary to reconstruct the AFLCR 57-27 computations. Second, he provided the actual equations from AFLCR 57-27 used to calculate the initial provisioning requirements for FY 73 and FY 74. These equations simplified the computational task involved by eliminating the need to complete AFLC Form 614 for each item. Third, he provided a formula used by MCAIR to adjust the AFLCR 57-27 quantities based on a given confidence level. The equations and confidence level formula are discussed in Appendix C.

Scenario. One hundred and seven aircraft were planned for delivery during the two year initial provisioning period. The scenario required the aircraft to be delivered to two bases having one supporting depot. The first year, 30 aircraft were to be delivered to Luke AFB (Base 1) and were to fly a total of 5400 hours. The second year six aircraft were to be transferred from Luke to Langley AFB (Base 2). The remainder of the 77 aircraft were to then be delivered to Langley AFB. The hours to be flown for the second year totaled 37,400 hours (see Table I).

TABLE I FLYING PROGRAM

LUKE AFB (Base 1) LANGLEY AFB (Base 2)

MONTH	AIRCRAFT	HOURS	AIRCRAFT HOURS
1 2 3 4 5 6 7 8 9 10 11 12	2 5 7 10 12 15 17 20 22 25 27 30	54 135 189 270 324 405 459 540 594 675 729 810	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 14 15 16 17 18 19 20 21 22 23 24	24 24 24 24 24 24 24 24 24 24 24 24	1008 1008 1008 1008 1008 1008 1008 1008	12 540 18 810 25 1125 31 1395 38 1710 44 1980 50 2250 57 2565 63 2835 70 3150 76 3420 83 3735
FY 74	HOURS	12096	FY 74 HOURS 25515

Flying Program Total Hours: 42795

FORM 27 Total Hours: 42800 (within .1 percent)

Source: (28)

Database. In addition to the flying hour program, each model required other specific input data. For the first method of computation, MOD-METRIC, Mr. Lyle provided the input data which comprised the F-15 fuel system. This input data, used throughout this research, consisted of 41 LRUs and their associated characteristics. The LRU input data characteristics included work unit code (WUC), part number, unit cost, mean time between demand (MTBD), not reparable this station (NRTS) percent, condemnation (COND) percent, quantity per aircraft (QPA), base repair time (BRT), depot repair time (DRT), and monthly production lead time (PLT). The input for the flying hour program consisted of only one value per base due to the nature of the MOD-METRIC program. This value was the peak monthly flying hours, 1008 hours for Luke and 3735 hours for Langley. A 14 day order and ship time (OST) was taken from AFLCR 57-4 (15:1-7), and was used as a standard input for each computational method. Appendix B contains the MOD-METRIC input data file.

The AFLC 57-27 computations, the second method analyzed, required inputs from both Mr. Willis and the MOD-METRIC LRU input data. Mr. Willis provided the procurement cycle safety level (PCSL), the average month program (AMP), and the peak month program (PMP) values for each year of the provisioning period. Other values needed in the 57-27 equations were taken from the MOD-METRIC LRU input data. For example, the maintenance repair factor (MRF) is defined

as 100 divided by the MTBD. The depot condemnation repair (DCR) is the condemnation percent if the part is condemned at the depot, or the base condemnation repair (BCR) if the part is condemned at the base.

The third method of computing stock requirements used Dyna-METRIC in the requirements mode with the same flying program and LRU input data. Due to the dynamic nature of Dyna-METRIC, the flying program was more accurately portrayed by modeling a monthly change to the aircraft levels and flying hours. Three values needed for Dyna-METRIC were demands per flying hour (DPFH), PLT, and desired aircraft availability. DPFH is defined as the inverse of the MTBD and assumed to follow a Poisson distribution as mentioned in Chapter II. The PLT needed only to be expressed in days versus months.

Aircraft availability was taken from a table printed as part of the MOD-METRIC output. Even though the aircraft availability was listed as an approximation, the formula used to arrive at the availability values is an expansion of the formula used in Dyna-METRIC when purchasing base LRU stock to a no cannibalization policy (20;23). A detailed derivation, explanation, and tests supporting this formula are found in Fisher and others (18). This procedure has an accepted application found in other research work (25:33). Therefore, the MOD-METRIC availability calculation was used as the availability input constraint for the requirements

mode of Dyna-METRIC. Appendix D contains the Dyna-METRIC input data file.

Experimental Design

The general design used to solve this research problem was a comparison of various stock levels and aircraft availabilities. The experimental design supported the research objectives by displaying the similarities and differences between the computational methods used in initial provisioning. This comparative technique was chosen to portray the facts as clearly, simply, and accurately as possible. The comparison was assessed at two levels. The first level involved an analysis between stock quantities produced by each method. Figure 5 outlines this design.

The second column of Figure 5 lists the original MOD-METRIC stock levels when the entire weapon system was modeled in November 1973. The next column is for MOD-METRIC using only the fuel system LRUs constrained to the November 1973 MOD-METRIC total cost. The fourth column is for straight AFLCR 57-27 calculations. Column five adjusts the AFLCR 57-27 quantities by varying the MCAIR confidence level to meet the FY 73 MOD-METRIC total cost. The last column lists Dyna-METRIC stock levels when the confidence level is again varied to meet the FY 73 MOD-METRIC total cost.

TABLE II STOCK LEVEL QUANTITIES								
WORK UNIT CODE	FY 73 MOD- METRIC	MOD- METRIC	BASIC AFLCR 57-27	ADJ. AFLCR 57-27	DYNA-			
Item 1 Item 41								
TOTAL QUANTITY								
TOTAL COST								

CONTRACTOR OF THE PROPERTY OF

SECTION SECTION BUSINESS SECTION

Figure 5. Initial Spares Requirements Computation

The values used to vary the confidence level for AFLCR 57-27 and Dyna-METRIC are presented in Chapter IV.

The second level of analysis addressed the performance capability of each stock option when evaluated for weapon system readiness. The evaluation tool chosen to accomplish this comparison was the Dyna-METRIC model, but this time operated in the assessment mode. The Dyna-METRIC model was selected as the evaluation tool because of its sophistication and dynamic ability to model real world events. Figure 6 presents the design used to display the aircraft availability for each method at 90 day intervals over the two year initial provisioning period.

TABLE IV									
	STOCK LEVEL PERFORMANCE (Percent of FMC Aircraft)								
	FY 73 BASIC ADJ. MOD- MOD- AFLCR AFLCR DYNA- METRIC METRIC 57-27 57-27 METRIC								
DAY	CANN. FULL NO	CANN. FULL NO	CANN. FULL NO	CANN. FULL NO	CANN. FULL NO				
90 180									

Figure 6. Aircraft Availability

The stock level performance will be displayed for both a full and no cannibalization policy to identify a range of expected aircraft availability. In general, a no cannibalization policy underestimates capability, while a full cannibalization policy overestimates capability (29).

Research Procedure

After acquiring the data provided by MCAIR, the first step to ensure consistency was to rerun the MOD-METRIC model using the fuel system LRU input data and the reconstructed flying hour program. This was done for two reasons. First, the reconstructed flying hour program was not guaranteed to

centain the exact values used in the November 1973 MOD-METRIC runs. The second, and main purpose of rerunning the MOD-METRIC model was to eliminate any variance in the marginal analysis tradeoff the model performed as it purchased stock. The original MOD-METRIC analysis optimized the purchase of stock across the entire weapon system, and any change to the number of spare parts analyzed would affect the mix of the stock quantities produced (4;24). By correcting for the selection of only the 41 LRUs that comprised the fuel subsystem, and using a common flying hour program, this step ensured a fixed baseline for comparison between the three methods of computation analyzed.

The next step was to choose an investment constraint. The output from MOD-METRIC provided a series of tables showing different investment levels for a given set of LRUs. The user would select the appropriate budget level desired, which would indicate a stock level for that total cost. The budget chosen for this study was the cost of the fuel system stock produced by the November 1973 MOD-METRIC run. This budget was used as the investment constraint for each method.

The third step was to calculate the AFLCR 57-27 stock levels using the equations and values provided by Mr. Willis. To achieve this, a spreadsheet was developed (see Appendix C). The spreadsheet had the capability to calculate both the basic AFLCR 57-27 values and the adjusted

AFLCR 57-27 values based on a confidence level input. The confidence level for the adjusted AFLCR 57-27 calculations was increased until the stock level met the investment constraint. Because AFLCR 57-27 calculations were a yearly quantity, the total stock level was the sum for each year of the two year initial provisioning period.

The fourth step of the research approach was to run the Dyna-METRIC model in the requirements mode. The options selected for the requirements mode purchased both depot and base stock under a given confidence level and desired aircraft availability. The aircraft availability, as mentioned earlier, was the value obtained from the MOD-METRIC output. The confidence level, however, was varied until the total cost met the investment constraint. The results from each method are presented in tabular form in Chapter IV.

STROVE SCRING RECOVER SERVES SERVES SERVERS SERVERS SERVERS RECEIVE SERVERS SERVERS SERVER

An evaluation of the computed stock levels was the final step in this research approach. Dyna-METRIC was run in the assessment mode to provide performance measures of the different methods using the various stock levels. Since Dyna-METRIC provides the performance measures for a maximum of nine points in time, the comparison of each stock level was performed at 90 day intervals over the two year initial provisioning period. The results of this second comparison are also presented in Chapter IV.

Results of this methodology are expected to produce data in terms of stock quantity and aircraft availability.

The data will be evaluated by comparing the absolute difference of the values produced. The research procedure is diagrammed below in Figure 7.

Figure 7. Research Procedure

IV. Results and Analysis

<u>Overview</u>

Three methods of computing initial spares requirements were outlined in Chapter III. The results are now presented in tabular form for ease of comparison. The three methods were assessed in two areas, 1) requirements computation, or stock level quantity and, 2) performance, or aircraft availability. The purpose of Table II is to display the similarities and differences of requirements computations across each fuel system LRU when constrained to the FY 73 MOD-METRIC budget. Table IV is used to evaluate the requirements computations for performance based on the percent of fully mission capable (FMC) aircraft. This evaluation is presented in 90 day intervals over the two year initial provisioning period using the assessment mode of Dyna-METRIC.

Two tables of comparative data were added from the design described in Chapter III to focus on the relationship between MOD-METRIC and Dyna-METRIC. These comparisons are presented in Table III and Table V. The purpose of Table III is to expand on the data contained in Table II (stock levels), and reveal the critical relationship between item cost and failure rate. On the other hand, the purpose of

Table V is to display additional information, in the form of total backorders, under the performance area or aircraft availability. Together, these tables will satisfy the research objectives and answer the research problem outlined in Chapter I.

Presentation and Analysis of the Stock Level Quantities

As noted previously, the three different methods used to compute the initial spares requirements were the MOD-METRIC computer program, AFLCR 57-27 computations, and the Dyna-METRIC computer program. Table II presents the stock level quantities computed by these three methods across 41 LRUs of the F-15 fuel system. To help in the comparative analysis of the stock level quantities, additional information has been added to Table II. This information includes the LRU cost, mean time between demand (MTBD), and quantity per aircraft (QPA) used as input to each of the three methods.

The MOD-METRIC program has two columns of stock level quantities listed in Table II. The first MOD-METRIC column contains the November 1973 quantities taken directly from the MOD-METRIC printouts used in the initial provisioning of the F-15 aircraft. The total cost of \$364,867 for the 41 fuel system LRUs provides the investment constraint designated for this research.

TABLE II
STOCK LEVEL QUANTITIES

relibrio assable sastella prefera sasteso sasteso

=====	=====			_Q	~			
WUC	COST	MTBD	QPA	FY 73 MOD- METRIC	MOD- METRIC	BASIC AFLCR 57-27	ADJ. AFLCR 57-27	DYNA- METRIC
46AAA	350	11000	2	13	13	2	8	9
46AAK	420	25000	1	8	7	0	3	5
46AAL	240	35000	1	8	7	0	3	4
46AAM	350	11000	1	10	10	1	5	7
46AAV	554	11000	1	8	8	1	4	6
46AAW	2900	60000	2	4	2	0	3 3	2
46AAX	547	25000	1	6	6	0	3	5
46AAY	240	35000	1	8	7	0	3	4
46ABD	547	25000	2	8	8	1	4	5
46ABE	240	35000	2	9	8	0	3 3	4
46ABF	547	25000	1	6	6	0	3	5
46ABG	240	35000	1	8	7	0	3	4
46ACA	1956	1250	1	12	17	7	17	20
46ACB 46ACG	467 1005	14000 8333	1	8 8	8 7	1 1	4	5
46ACP	911	13000	1	7	7	1	4	5 5
46ADD	720	7000	1	9	9	1	4 5	8
46ADE	5412	13000	ì	2	1	0	3	2
46ADG	1300	38824	2	6	5	0	3 3	4
46ADK	350	1000	1	19	28	10	23	28
46ADN	1732	3300	1	9	10	2	9	11
46ADP	554	11000	ì	8	8	1	4	6
46ADR	685	11000	ì	8	8	î	4	6
46ADS	685	11000	i	8	8	ì	4	6
46AEA	5486	2200	ī	8	8	2	9	11
46AEC	4059	3700	ī	5	4	ī	5	5
46AEE	1467	3846	ī	8	9	ī	7	9
46AEF	1282	3700	ī	7	7	ī	5	6
46BAA	10300	2000	3	, 5	5	2	9	5
46BBA	260	50000	ì	6	5	Ō	i	4
46BBB	183	20000	3	10	10	ì	5 •	6
46BBC	359	25000	1	8	7	0	3	5
46BBE	651	35000	ī	6	5	Ö	3	4
46BCA	826	10000	2	10	10	1	7	8
46BCB	1800	8333	3	9	11	3	10	9
46BCC	170	40000	1	8	7	0	2	4
46BCF	261	180()	1	8	8	0	3	5
46BCH	360	10000	1	8	8	1	4	6
46BCL	501	6624	4	15	23	7	19	17
46DAC	1318	7059	1	8	7	1	5	6
46DAD	3130	6200	1	6	5	1	5	6
TC	TAL QU	ANTITY		335	344	53	231	282
	TOTAL	COST		\$364,867	\$363,742	\$81,439		
=====	=====		====				364,28 ======	, ======

To maintain the integrity of the comparative analysis, the MOD-METRIC program was rerun using only the fuel system LRUs as input, and constrained to the FY 73 total cost.

The second column for MOD-METRIC in Table II contains the rerun stock level quantities computed for an investment of \$363,742. These stock level quantities were chosen because in the next iteration of MOD-METRIC, the model purchased one more LRU 46AEA, forcing total cost over the designated investment constraint.

The main purpose of rerunning MOD-METRIC with the fuel system LRUs was to eliminate any variance in the marginal analysis tradeoff the model performed as it purchased stock. In FY 73, the entire weapon system was modeled to obtain the mix of spare parts for a total weapon system investment. This resulted in the tradeoff of parts across all systems, not just the fuel system LRUs. In the fuel system only run, a difference in the marginal analysis tradeoff occurred because funds were distributed across only 41 LRUs. LRU 46ACA, 46ADK, and 46BCL are a good example of this difference, because they have a stock quantity greater than five or more over the FY 73 MOD-METRIC quantity. Note that LRU 46ACA and 46ADK have the lowest MTBD rate of any item whereas LRU 46BCL has the largest QPA of any item.

In addition, MOD-METRIC tends to buy more low cost items when compared to the other methods of computation. This is the result of MOD-METRIC adding the item to

inventory that reduces backorders the most per dollar invested (6). As an example, MOD-METRIC purchased double the number of LRU 46AAL, 46AAY, 46ABG, 46BBB and 46BCC (the least expensive items) and increased the total quantity of parts by at least 50 items as compared to either Dyna-METRIC or the adjusted AFLCR 57-27.

AFLCR 57-27 was the second method used to compute spares requirements. The AFLCR 57-27 calculations attempt to fill the transportation pipeline with spare parts during the initial stages of a new weapon system (24). These spares are required to support minimum supply times and to obtain the optimum initial support from available sources (13:1-1). Table II contains two columns for AFLCR 57-27 computations. The first column lists the basic AFLCR 57-27 stock level, while the next column is for the adjusted AFLCR 57-27 stockage posture.

A spreadsheet was developed and validated by Mr. Willis, Senior Production Support Analyst for MCAIR, to ensure accuracy in calculating the AFLCR 57-27 values (Appendix C). The stock levels from the basic AFLCR 57-27 computations resulted in quantities that cost \$81,439, far less than the budget of \$364,867. To increase this basic stock level, a confidence level formula provided also by Mr. Willis was used to adjust the quantity of parts to reach the investment constraint. A standard deviation with the value of 3.28 was used for the adjusted AFLCR 57-27 computations,

resulting in an investment of \$364,287. This indicates the model bought the mean quantity desired for each part, plus enough to equal 3.28 standard deviations from the mean quantity. This standard deviation implies a 99.95 percent confidence level, assuming a normal distribution. The standard deviation of 3.28 was used in the calculations, because the next increment, a value of 3.29 resulted in an increase of expenditure to \$374,587, well over the designated investment constraint.

The formulas used to calculate the initial spares requirements are also contained in Appendix C. Each item computed under AFLCR 57-27 is considered independent from all other items in a weapon system (24). Therefore, these formulas do not reflect any type of marginal analysis tradeoff between parts of a system. LRU 46BAA is a good example of how marginal analysis can be used to control over purchasing of a component in an interdependent system. The adjusted AFLCR 57-27 computations for LRU 46BAA resulted in nine parts at an individual cost of \$10,300 (the most expensive item). This quantity is double the number computed by either of the other two methods and reflects an additional expenditure of \$41,200 for that part alone.

The final method of initial spares requirements computations, and the focus of this research, was Dyna-METRIC.

To meet the designated investment constraint, a Dyna-METRIC confidence level of .9989 resulted in the stock levels shown

in Table II for a total cost of \$363,815. These stock level quantities where chosen because the next higher confidence level of .9990 resulted in an investment of \$369,656, which is over the designated investment constraint.

Dyna-METRIC, similar to MOD-METRIC, also seeks to limit costs, but in a different fashion. The marginal analysis used in Dyna-METRIC adds the item to inventory that gives the greatest increase in aircraft availability (21:64). Because component failures are based on the number of flying hours, the failure rate (inverse of MTBD) is a strong determinant in identifying parts needed to support the weapon system. LRU 46ACA, 46ADK and 46AEA have the lowest MTBD, or highest failure rates, resulting in the highest quantity purchased as compared to either MOD-METRIC or AFLCR 57-27.

STATE STATES AND MADERAL SERVICES SERVICES AND MADERAL SERVICES SERVICES SERVICES SERVICES SERVICES SERVICES

MOD-METRIC and Dyna-METRIC inventory models by focusing on the relationship between item cost and failure rate. The 41 LRUs were sorted by cost from low to high, and then resorted by MTBD from low to high. (Note: a low MTBD equates to a high failure rate.) Because a clear relationship between item cost and failure rate is evident in LRUs with extreme values, the median values were discarded and the relative range for this comparison was established (see Table III).

TABLE III

DYNA-METRIC VERSUS MOD-METRIC STOCK LEVEL QUANTITIES

-

FAILURE RATE

		LOW (MTBD > 30000)			HIGH (MTBD < 7000)			
		WUC	MOD- METRIC	DYNA- METRIC	WUC	MOD- METRIC	DYNA- METRIC	
C O	HIGH (\$ > 1900)	46AAW	2	2	46ACA 46AEA 46AEC 46BAA 46DAD	8 4	20 11 5 5	
T	LOW (\$ < 400)	46AAL 46AAY 46ABE 46ABG 46BBA 46BCC	7 7 8 7 5 7	4 4 4 4 4 4	46ADK	28	28	

The LRU relationship resulted in a matrix with four quadrants. The quadrants contain items with:

- Low cost / low failure rate.
- 2. High cost / low failure rate.
- 3. High cost / high failure rate.
- 4. Low cost / high failure rate.

Dyna-METRIC consistently purchased a quantity of parts less than MOD-METRIC for low cost/low failure rate LRUs. At

the same time, however, Dyna-METRIC purchased equal to or greater than the quantity of parts purchased by MOD-METRIC for high cost/high failure rate items. This relationship demonstrates the practicality of Dyna-METRIC, which purchased more items having high failure rates (affecting aircraft availability), and less items when failure rates were low and less critical.

A major decision in logistics management is the cost of stocking an item versus the cost of not stocking an item (4). When the cost to stock is greater than the cost not to stock, fewer parts should be purchased. This relationship is identified in Table III under the quadrant for high cost/low failure rate. Both Dyna-METRIC and MOD-METRIC purchased relatively few of LRU 46AAW, because it would be costly to hold for it's long MTBD. Conversely, when the cost not to stock is greater than the cost to stock, more parts should be purchased. Again, both Dyna-METRIC and MOD-METRIC purchased large quantities of LRU 46ADK, because of it's low cost and high failure rate. Therefore, Dyna-METRIC performed equally well compared to MOD-METRIC when the decision to stock versus not stock was required, and better than MOD-METRIC when aircraft availability was invclved. The next section discusses the performance of the recommended stock level quantities.

<u>Presentation and Analysis of Stock Level Performance</u>

Dyna-METRIC, operated in the assessment mode, was used as the evaluation tool for determining performance in terms of aircraft availability for the three methods studied (see Table IV). Five Dyna-METRIC assessment mode runs were performed. Each used as input the stock level quantities from one of the methods shown in Table II.

Several performance measures were provided by the Dyna-METRIC output for each day analyzed. These measures included the probability of achieving a target not fully mission capable (NFMC) rate, the probability of achieving a target sortie rate, the expected number of fully mission capable (FMC) aircraft at a specified degree of confidence, the expected number of NFMC aircraft, the expected percent of aircraft that were NFMC, and the expected number of sorties flown. These values were computed at the end of each day of analysis, and displayed under the performance section in the Dyna-METRIC printout for both full cannibalization and partial cannibalization policies. Since cannibalization was not allowed on any LRU, the measures computed under the Dyna-METRIC output heading of "partial cannibalization" actually reflect the values for a no cannibalization policy (23:11).

The percent of FMC aircraft is the only performance value displayed in Table IV. This value provides an

aircraft availability measure that can be used for comparison between the changing flying program and aircraft levels, and it is one of the most important logistics objectives to the operational forces (28:22). Table IV includes this performance measure for both full and no cannibalization policies, because cannibalization has a significant effect on the performance of a stockage posture (1:1-25). The values for the percent of FMC aircraft were computed from Dyna-METRIC output for each 90 day interval, by subtracting the expected percent of NFMC aircraft from the value of 1.000.

10000

THE RESERVED PROPERTY RESPONDE THE RESPONDE THE PROPERTY OF TH

Under full cannibalization, failed components at each base were instantly consolidated to the fewest possible aircraft, resulting in the generation of as many FMC aircraft as possible. For no cannibalization, the removal of a properly functioning component from a broken aircraft to repair another aircraft did not take place. The performance measures were very sensitive to the cannibalization policy, and the first sign of a performance shortfall was displayed under no cannibalization (23:11).

The performance of MOD-METRIC in Table IV consistently resulted in high aircraft availability. However, a potential stockage problem may exist at day 720 where the percent of FMC aircraft drops off to .987 under the no cannibalization policy.

TABLE IV

STOCK LEVEL PERFORMANCE
(Percent of FMC Aircraft)

=====	========	=========	=========		========	
	FY 73 MOD- METRIC	MOD- METRIC	BASIC AFLCR 57-27	ADJ. AFLCR 57-27	DYNA- METRIC	
DAY	CANN. FULL NO			CANN. FULL NO		
90	1.00 1.00	.998 .998	.941 .927	1.00 1.00	.998 .998	
180	1.00 1.00	.997 .997	.951 .920	.999 .999	.998 .998	
270	1.00 1.00	.996 .996	.959 .914	.999 .999	.997 .997	
3 6 0	1.00 1.00	.996 .995	.966 .910	.999 .999	.997 .997	
450	1.00 1.00	.996 .996	.954 .851	.998 .998	.996 .995	
540	.999 .999	.997 .996	.959 .821	.998 .998	.995 .995	
630	.997 .997	.997 997	.957 .788	.997 .997	.994 .993	
720	.990 .987	.997 .987	.951 .751	.996 .995	.993 .991	

The performance of the basic AFLCR 57-27 stock levels quickly deteriorated because of the limited amount of stock purchased for an investment of \$81,439. This lower dollar investment is 78 percent less than the designated investment constraint of \$364,867. Under full cannibalization, the percent of FMC aircraft decreased to .941 by the first day of analysis (day 90). Because broken aircraft become an additional source of supply under full cannibalization, the percent of FMC aircraft was stable for most of the two year initial provisioning period. However, cannibalization

resulted in an average reduction in mission capability of 5 percent.

Under AFLCR 57-27 with no cannibalization, the percent of FMC aircraft continued to decrease throughout the two year period, down to .751. This is a reduction mission capability of 25 percent, and clearly shows that under a no cannibalization policy (the most restrictive), a decrease in the dollars invested does not result in a linear or proportional decrease in aircraft availability. Restated, a decrease in the budget of a given percentage does not result in an equal decrease in percentage of FMC aircraft.

As a final evaluation of Table IV, the adjusted AFLCR 57-27 and Dyna-METRIC stock levels consistently performed well throughout the two year period at a rate of .990 or better under both full and no cannibalization policies. No performance shortfalls were evident in either stockage posture.

Table V was included under the stock level performance evaluation to further highlight the relationship between MOD-METRIC and Dyna-METRIC. The stock levels produced by each method in turn led to the total backorders displayed in Table V for each 90 day interval. Specifically, at day 720 only .97 units were backordered for Dyna-METRIC and .37 units were backordered for MOD-METRIC. This compares favorably, for example, to the 30.46 units which would have been backordered using the basic AFLCR 57-27 model.

TABLE V

TOTAL BACKORDERS

=====	==========			========	========
DAY	FY 73 MOD- METRIC	MOD- METRIC	BASIC AFLCR 57-27	ADJ. AFLCR 57-27	DYNA- METRIC
90	0.00	0.02	0.53	0.00	0.01
180	0.00	0.05	1.25	0.01	0.03
270	0.00	0.09	1.98	0.02	0.06
360	0.01	0.15	2.82	0.04	0.10
450	0.02	0.22	7.91	0.09	0.24
540	0.06	0.24	13.35	0.15	0.37
630	0.30	0.28	20.68	0.28	0.59
720	1.37	0.37	30.46	0.53	0.97

Dyna-METRIC, therefore, in addition to adding the item to inventory that yielded the greatest increase in aircraft availability, also succeeded in minimizing total backorders nearly as well as MOD-METRIC.

The main goal of this research, to assess The Rand Corporation's Dyna-METRIC inventory model for computing initial spares levels, has been accomplished. The results of this comparative analysis indicate that the Dyna-METRIC model met or exceeded the performance of the other methods of initial spares requirements computations when constrained to the same investment. The conclusions and recommendations drawn from the research results are presented in Chapter V.

V. Summary, Conclusions and Recommendations

Summary of Research Effort

600

4.00

STATE SECTION STATE BOTTOM SECTION SECTION

The goal of initial provisioning is to provide the highest level of readiness for a fixed level of investment. The problem then, is to find a strategy for acquiring spares that will provide a specified level of weapon system availability, at the least total cost. Currently, two methods are authorized by AFLCR 57-4 to compute the mix of spares for initial provisioning: MOD-METRIC and AFLCR 57-27. These traditional methods determine the mix of spares without considering aircraft readiness. On the other hand, Dyna-METRIC, an availability model, quantifies the number of spares needed and finds the optimal mix for a dynamic (wartime) scenario.

Through the use of an accurate initial provisioning data base and scenario, a comparative analysis technique was applied to study results from MOD-METRIC, AFLCR 57-27, and Dyna-METRIC computations at two levels. First, the requirements computation (stock level) for each method was analyzed for similarities and differences. At the second level, the stock levels computed by each method were evaluated for their impact on aircraft availability (percent of FMC aircraft) over a two year initial provisioning scenario.

Conclusions

The first method for computing initial spares requirements was MOD-METRIC. The decrease in performance to MOD-METRIC's lowest value of .987 on day 720, is of minimum consequence for two reasons. First, changes and adjustments during the initial provisioning would have necessitated the reaccomplishment of MOD-METRIC with updated information. Secondly, by day 720, the initial provisioning of F-15 support would have transitioned into a more standardized support configuration (replenishment), which would have more accurately approximated the normal supply support system. Therefore, MOD-METRIC marginal analysis tradeoff of cost versus expected backorders resulted in a successful initial provisioning (high aircraft availability) during a period of acquisition generally characterized by uncertainty and financial limitation.

The stock levels produced, however, by the basic AFLCR 57-27 resulted in a dramatically reduced investment and the poorest performance of the three methods. AFLCR 57-27 is a simple deterministic model that calculates only the mean or average quantity of parts needed, in an attempt to fill the pipeline. Therefore, AFLCR 57-27 resulted in a shortfall in performance, ranging from 5 to 25 percent, for the two year initial provisioning period.

The final method, Dyna-METRIC, provided a mixture of spare parts that resulted in a consistently high level of aircraft availability (greater than 99 percent) throughout the two year scenario. Two basic conclusions can be drawn from the results shown in Chapter IV. The first conclusion is Dyna-METRIC performed equal to, or better than MOD-METRIC in this analysis. They both tended to stock equal amounts of low cost/high failure rate items, and avoided stocking high cost/low failure rate items. Additionally, they both minimized backorders and maximized aircraft availability, across a given range of spares, to nearly equal levels.

The second conclusion is Dyna-METRIC had the advantage over MOD-METRIC for two reasons. First, Dyna-METRIC tended to stock more high failure rate items and less low failure rate items than MOD-METRIC. This characteristic of Dyna-METRIC (stocking more high failure rate items) for example, would reduce the dependency on supply and maintenance for rapid turn around of reparable spares. Likewise, having less low failure rate items allows the redirection of dollars to high demand type items. Second, Dyna-METRIC purchased less total items for the same cost as MOD-METRIC, but achieved the same results. At first glance it would appear spending more for equal capability is not a benefit. However, having less spares would reduce holding, handling and transportation costs and thereby, could achieve a significant savings in the long run.

Charles assessed to a specifical

This research has demonstrated the utility of Dyna-METRIC as a computational tool for use in initial provisioning. Further, it has demonstrated Dyna-METRIC's ability to compute an optimum level of initial provisioning support. Finally, the results of this research have clarified Dyna-METRIC's purpose and use in the dynamic initial provisioning environment. The results support the validity of Dyna-METRIC and the stated model assumptions on which the model is based.

Recommendations

Dyna-METRIC should be used often during the acquisition of a new weapon system as an evaluation and analysis tool. This is because "the model depicts the impact of logistics resources on operational scenarios and then describes those impacts in terms that the Air Force manager can use to resolve potential support shortfalls" (19:24). As soon as component level data becomes available, even if those data are only estimated, the Dyna-METRIC model becomes a powerful tool for: 1) establishing the investment dollar requirements, 2) computing the best mix of spare parts for any specified level of investment and, 3) assessing the expected level of performance given a stockage posture. It is this author's opinion that Dyna-METRIC is a valid decision

making tool for use in initial provisioning, and should be recognized as such by the United States Air Force.

A number of improvements can be suggested to any model that is used to simulate real world events. The decision to change the model should be based on the feasibility and realistic benefits expected from the effort. One major change to improve Dyna-METRIC that this author feels is worth exploring, was expressed also by Captain Mike Mills. He states:

The depot stockage option and the base stockage option do not work well together. One uses a no cannibalization policy, while the other uses a full cannibalization policy. The depot stockage option also includes a confidence level not used in the base stockage option. A no cannibalization option for the depot should be included so consistent results could be achieved when this type of policy is desired. At present, the model computes each option separately, the base stockage option after the depot stockage option. This results in the bases stocking more parts if a shortage is perceived at the depot. This may not be the optimal mix between depot and base. The two options should be revised to work together, in order to optimally distribute stock between the depot and bases. (25:54)

THE SECTION BEARING SERVICE SHARK SECTION SECTION SECTION

A final recommendation concerns AFLCR 57-27 and includes two areas for further research. The first area for further research is to expand this study to include multi-indentured items. This research only addressed LRUs.

Future research should include systems that contain LRUs, SRUs, and possibly subSRUs to expand and clarify the interdependent relationships. A study of this type would

reevaluate the results obtained from this research and could include sensitivity testing that would identify critical inputs and the range over which those inputs are applicable.

Secondly, the use of MCAIR's confidence level formula should undergo further research for it's application and validity for use with AFLCR 57-27 in initial provisioning. The purpose of this research was not to evaluate the formula but only to use it as a means for adjusting stock levels to meet the designated investment constraint.

Appendix A: Acronym Definitions

AFLC -- Air Force Logistics Command

AFLCR -- Air Force Logistics Command Regulation

AFM -- Air Force Manual

AFR -- Air Force Regulation

AFSC -- Air Force Systems Command

ALC -- Air Logistics Center

AMP -- Average Month Program

BCR -- Base Condemnation Rate

BRT -- Base Repair Time

CIRF -- Centralized Intermediate Repair Facility

COND -- Condemnation percent

DCR -- Depot Condemnation Rate

DPFH -- Demand Per Flying Hour

DRT -- Depot Repair Time

FMC -- Fully Mission Capable

FY -- Fiscal Year

HQ -- Headquarters

LRU -- Line Replaceable Unit

LSC -- Logistics Support Cadre

MCAIR -- McDonnell Aircraft Company

METRIC -- Multi Echelon Technique for Recoverable

Inventory Control

MRF -- Maintenance Repair Factor

MTBD -- Mean Time Between Demand

NFMC -- Not Fully Mission Capable

NIMSR -- Non-consumable Item Material Support Request

NMCS -- Not Mission Capable Supply

NRTS -- Not Reparable This Station

OST -- Order and Ship Time

PCSL -- Procurement Cycle Safety Level

PIO -- Provisioning Item Order

PLT -- Production Lead Time

PMP -- Peak Month Program

PTD -- Provisioning Technical Documentation

QPA -- Quantity Per Aircraft

QPEI -- Quantity Per End Item

SAIP -- Spares Acquisition Integrated with Production

SD -- Standard Deviation

SPTD -- Supplemental Provisioning Technical

Documentation

SRU -- Shop Replaceable Unit

SSR -- Supply Support Request

USAF -- United States Air Force

WUC -- Work Unit Code

Appendix B: MOD-METRIC Input File

```
92 MOD-METRIC INPUTS FOR F15 INITIAL SPARES STUDY
91 NO IPT IPH IBSO
98 6 010 0
91 NBIS BETA BSTART BSTOP CFAC PBINC CANNOP DELAYOP
99 10 3.00 3.01 0.00 1.00 .001
   NB HRS1 OS1 HRS2 OS2
    2 1008.14. 3735.14.
97
91 NB AC1
             AC2
                                 COST MTBD NRTS C Q BR DR PLT
91 WUC
                                  350 11000 100 1 2 10 56 14
                                                                   00
11 46AAA
15 46AAA
                                  420 25000 100 1 1 10 41 14
                                                                   00
11 46AAK
15 46AAK
                                  n
                                  240 35000 100 1 1 10 41 13
                                                                   00
11 46AAL
15 46AAL
                                  350 11000 100 1 1 10 56 14
                                                                   00
11 46AAM
15 46AAM
                                  554 11000 100 1 1 10 41 14
                                                                    00
11 46AAV
15 46AAV
                                 2900 60000 100 1 2 10 41 17
                                                                    00
11 46AAW
15 46AAW
                                  547 25000 100 1 1 10 41 14
                                                                    00
11 46AAX
15 46AAX
                                  240 35000 100 1 1 10 41 13
                                                                    00
11 46AAY
15 46AAY
                                                                    00
                                  547 25000 100 1 2 10 41 14
11 46ABD
15 46ABD
11 46ABE
                                  240 35000 100 1 2 10 41 13
                                                                    00
15 46ABE
                                  547 25000 100 1 1 10 41 14
                                                                    00
11 46ABF
15 46ABF
                                  240 35000 100 1 1 10 41 13
                                                                    กก
11 46ABG
15 46ABG
                                 1956 1250 100 1 1 10 41 14
                                                                    00
11 46ACA
15 46ACA
                                  467 14000 100 1 1 10 41 15
                                                                    00
11 46ACB
15 46ACB
                                 1005 8333 70 1 1 10 41 16
                                                                    00
11 46ACG
15 46ACG
11 46ACP
                                  911 13000 100 1 1 10 41 16
15 46ACP
11 46ADD
                                  720 7000 100 1 1 10 41 14
                                                                    00
15 46ADD
                                 5412 13000 20 1 1 10 41 13
                                                                    00
11 46ADE
15 46ADE
```

11	46ADC	1300	38824	80	2	2	10	41	13	0 0
	46ADG	0								
	46ADK	350	1000	100	1	1	10	56	15	0 0
	46ADK	0								
	46ADN	1732	3300	100	2	1	10	41	14	00
	46ADN	0	11000							
	46ADP		11000	100	1	1	10	41	14	00
	46ADR	0 405	11000	100	,	,	10	41	15	00
	46ADR	0	11000	100	1	1	10	41	15	0 0
	46ADS		11000	100	,	,	10	41	16	0 0
	46ADS	0	11000	100	1	1	10	41	15	UU
	46AEA	5486	2200	7 0	,	,	10	41	10	nn
	46AEA	→ 80	2200	70	1	1	10	41	17	0 0
	46AEC	4059	3700	30	,	,	10	43	10	0 0
	46AEC	0	2700	70		+	10	41	19	00
	46AEE	1467	3846	70	1	,	10	41	10	00
	46AEE	0	2040	70	1	-	10	41	10	UU
	46AEF	1282	3700	30	1	1	10	41	19	0 0
	46AEF	0	2,00	-	•	•	10	71	17	•
	46BAA	10300	2000	0	1	3	10	41	18	00
	46 BAA	0		_	_	-		-		
11	46BBA	260	50000	6 0	1	1	10	41	13	00
15	46BBA	0								
11	46888	183	20000	60	1	3	10	41	14	00
15	4688 B	0								
11	46BBC	359	25000	100	1	1	6	41	15	00
15	46BBC	0								
11	46BBE	651	35000	100	1	1	6	41	12	00
15	46BBE	0								
11	46BCA	826	10000	100	1	2	10	41	15	00
15	46BCA	0								
11	46BCB	1800	8333	100	1	3	10	41	15	00
15	468C8	0								
	46BCC	1 7 0	40000	9 0	1	1	10	41	13	00
	46BCC	0								
	46BCF		18000	90	1	1	10	41	23	00
	46BCF	0								
	46BCH		10000	80	1	1	10	41	15	0 0
	46BCH	0								
	46BCL	501	6624	100	10	4	10	41	12	00
	46BCL	0			_	_				
	46DAC	1318	7 059	80	1	1	10	41	17	00
	46DAC	0	(000							-00
	46DAD	3130	6200	60	1	1	10	41	1>	00
13	46DAD	0								

,

Appendix C:

AFLCR 57-27 SPREADSHEET LEGEND

AFLCR 57-27 Spreadsheet

Input Value Mr. Willis Mr. Willis Mr. Willis AFLCR 57-4 Mr. Willis Mr. Lyle Mr. Lyle Mr. Lyle Mr. Lyle Mr. Lyle Mr. Lyle SOURCE 0.00 for Basic AFLCR 57-27, 3.28 for Adjusted AFLCR 57-27 4.32 for FY 73, 31.34 for FY 74 8.10 for FY 73, 47.43 for FY 74 FY 73 MOD-NETRIC LRU Input Data FY 73 MOD-METRIC LRU Input Data FY 73 MOD-NETRIC LRU Input Data FY 73 MOD-NETRIC LRU Input Data FY 73 MOD-NETRIC LRU Input Data FY 73 MOD-METRIC LRU Input Data OR EQUATION 1 / MTBD * 100. VALUE 14. 11 11 Ħ ŧı H NRTS MTBD PCSL **COS** 1 ZAF MCC **SCR** Š 150 BCR AMP ¥ ß

QPEI	**	FY 73 MOD-METRIC LRU Input Data	Mr. Lyle
PLI	u	FY 73 MOD-METRIC LRU Input Data	Mr. Lyle
DAC	H	FY 73 MCO-METRIC LRU Input Data	Mr. Lyle
BRC	#1	FY 73 MOO-METRIC LRU Input Data	Mr. Lyle
PCSL QTY	11	HAF * ((NRTS * DCR) + ((1-NRTS) * BCR)) * QPEI * AMP * PCSL	Mr. Willis
PLT QTY	11	MRF * ((NRIS * DCR) + ((1-NRTS) * BCR)) * QPEI * AMP * PLT	Mr. Willis
DRC QTY	•	((MRF * NRTS) + (MRF * (1-NRTS) * BCR))) * QPEI * AMP * DCR \prime 30.	Mr. Willis
BRC QTY	41	HRF * (1-NRTS) * (1-BCR) * QPEI * PMP * BCR / 30.	Mr. Willis
051 QTY	Ħ	((MRF * NRTS) + (MRF * (1-NRTS) * BCR)) * QPE1 * PMP * OST / 30.	Mr. Willis
TOTAL QTY	#1	PCSL GIY + PLT GIY + DRC GIY + BRC GIY + OST GIY	Mr. Willis
FACTOR QTY	11	SD * SQUARE ROOT of (TOTAL QTY)	Mr. Willis
RNDED QTY	tt.	INTEGER OF (TOTAL QTY + FACTOR QTY + .5)	Mr. Willis
1503	11	COST * RNDED GIY	

BASIC AFLCR 57-27 SPREADSHEET CALCULATIONS FY 73 (SD = 0.00)

	AMP 4.32	9.1 8.1	80 0.00	PCSL 3	14														
											PCSL	PLI	DRC	BRC	150	TOTAL	FACTOR	RNDED	
MUC	1500	MTBD	AR.	NRTS	UCR	BCR QPEI	,	דר	DRC	BRC	QTY	QTY	QTY	QTY	Q1Y	QTY	QTY	TOTAL	C051
VVVV	(F3	OPPORT (MINITE	CHPOTH).	5.3	Ē	D.00	2	٤	, Ž	2	VŽIKU.	oi in.	ואנע טינאאן.	OCKO)	האח.	.22n7	0.00.0	=	_
46AAK	420	25000	.00400	1.00	.01	0.00	~	14	41	10	.0005	.0024	.0236	0.000.0	.0151	.0417	0.000	0	0
46AAL	240	35000	.00286	1.00	10.	0.00	-	13	41	01	.000	.0016	0 6910.	0.000.0	.0108	.0296	0.000	0	0
46AAM	350	11000	60600	1.00	.01	0.00	-	14	26	10	.0012	.0055	.0733	0.000	.0344	.1143	0.000	0	0
46AAV	554	11000	60600	1.00	<u>.</u>	0.00	_	14	۷1	10	.0012	.0055	0 7880.	0.000.0	.0344	.0947	0.000	0	0
ACVVA	2900	00009	.00167	1.00	.01	0.00		17	41	10	.0004	.0024	0197	0.000.0	.0126	.0352	0.000	0	0
46AAX	547	25000	.00400	1.00	.01	0.00	1	14	41	10	.0005	.0024	.0236	0.000.0	.0151	.0417	0.000	0	0
46AAY	240	35000	.00286	1.00	.01	0.00	-	13	4	01	.0004	.0016	0 6910.	0.000	.0108	.0296	0.000	0	0
46ARD	547	25000	.00400	1.00	<u>e</u> .	0.00	7	14	41	10	.0010	.0048	.0472	0.000	.0302	.0833	0.000	0	0
46ARE	240	35000	.00286	1.00	.00	0.00	7	13	41	10	.0007	.0032	0337 0	0.000	.0216	.0593	0.000	0	0
46ABF	547	25000	.00400	1.00	10.	0.00	~	14	4]	10	.0005	.0024	.0236	0.000.0	.0151	.0417	0.000	0	0
46ABG	240	35000	.00286	1.00	10.	0.00	_	13	41	9	.0004	.0016	.0169	0.000	.0108	.0296	0.000	0	0
46ACA	1956	1250	.08000	1.00	10.	0.00	_	14	41	10	.0104	.0484	.4723 0	0.000.0	.3024	.8335	0.000	-	1956
46ACB	467	14000	.00714	1.00	<u>.</u>	0.00	-	15	41	10	6000	.0046	.0422	0.000.0	.0270	.0747	0.000	0	0
46ACG	1005	8333	.01200	. 70	<u>.</u>	0.00	_	16	41	2	.001	.0058	9640	.0097	.0318	.0980	0.000	0	0
46ACP	911	13000	.00769	1.00	.00	0.00	-	16	41	2	.0010	.0053	.0454	0.000	.0291	.0808	0.000	0	0
46ADD	720	7000	.01429	1.00	10.	0.00	-	14	41	2	.0019	9800	.0843 0	0.000.0	.0540	.1488	0.000	0	0
46ADE	5412	13000	.00769	92.	<u>.0</u>	0.00	~	13	41	10	.0002	.000	.0091	.0166	.0058	.0326	0.000	0	0
46ADC	1300	38824	.00258	.80	20.	0.00	7	13	4]	2	.001	.0046	.0243	.0028	.0156	.0484	0.000	0	0
46ADK	350	1000	.10000	1.00	.00	0.00	7	15	26	2	.0130	.0648	.8064	0.000.0	.3780 1	1.2622	0.000	~	35
46ADN	1732	3300	.03030	1.00	.02	0.00	-	۲	41	10	.0079	.0367	.1789	0.000	.1145	.3380	0.000	0	0
46ADP	554	11000	60600	1.00	.0°	0.00	-	14	4]	10	.0012	.0055	.0537	0.000.0	.0344	.0947	0.000	0	0
46ADR	685	11000	60600	1.00	<u>o</u> .	0.00	_	15	۵1	10	.0012	.0059	0537	0.000.0	.0344	.0951	0.000	0	0
46ADS	685	11000	60600	1.00	<u>.</u>	0.00	-	15	41	10	.0012	.0059	.0537	0.000	.0344	1560.	0.000	0	0
46AEA	5486	2200	.04545	R	0.00	.01	-	61	41	10	.0018	.0112	.1887	.0365	.1208	3589	0.000	0	0
46AEC	4029	3700	.02703	R .	0.00	.01	1	16	41	10	.0025	.0155	.0490	.0506	.0314	.1489	0.000	0	0
46AEE	1467	3846	.0250n	.70	0.00	.0 .	1	18	41	10	.0010	.0061	.1079	.0209	.0691	.2049	0.00	0	0
46AEF	1282	3700	.02703	₽.	0.00	.01	-	19	41	10	.0025	.0155	.0490	9050	.0314	.1489	0.00	0	0

0	0	0	0	0	0	C	0	0	0	<u>8</u>	C	0	
0	C	0	0	0	0	0	0	0	0	-	0	0	•
0.000	0.000	0.000	0.000	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.00	
.4050	.0146	.1100	.0418	.0295	. 2092	.3766	.0240	.0555	.0891	.9761	. 1272	.1187	
0.000	.0045	.0340	.0151	.0108	.0756	.1361	.0085	.0189	.0302	.2283	.0428	.0366	
.4050	.0022	.0162	0.0000	0.000	0.000	0.000.0	.0007	.0015	.0054	0.000	9200.	.0174	
0.000	.0071	.0531	.0236	.0169	.1181	.2126	.0133	.0295	.0472	.3565	.0669	.0571	
0.000	.0007	.0054	.0026	.0015	.0130	.0233	.0013	.0050	.0052	.3130	.0083	.0063	
0.000	.000	:0012	.0005	.0004	.0026	.0047	.0003	9000.	.0010	.0783	.0015	.0013	
10	10	10	9	9	10	10	10	10	10	10	10	10	
41	41	4]	4]	41	41	4]	41	41	41	4]	4]	41	
18	13	14	15	12	15	15	13	23	15	12	17	15	
•	-	•	-	_	7	₩	-	1	-	4	-	-	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
.01	.0	10.	.01	10.	.01	.01	10.	10:	.01	.10	.01	.01	
0.00	8.	.60	1.00	1.00	1.00	1.00	.90	.90	.80	1.00	.80	.60	
.05000	.00200	.00500	.00400	.00286	.01000	.01200	.00250	.00556	.01000	.01510	.01417	.01613	
2000	20000	20000	25000	35000	10000	8333	\$0000	18000	10000	6624	7059	6200	
10300	260	183	359	651	826	1800	170	261	360	501	1318	3130	
	46BBA	46BBB	46BBC	46BBE	46BCA	46BCB	46BCC	46BCF	46BCH	46BCL	46DAC	46DAD	

BASIC AFLCR 57-27 SPREADSHEET CALCULATIONS FY 74 (SD = 0.00)

2807

FY 73 TOTAL COST

			COST	200	0	0	350	554	0	0	0	547	0	0
		RNDED	TOTAL	2	0	0	-	7	0	0	0	-	0	0
			•	0.000	0.900	0.00	0.000	0.000	0.000	0.000	0.000	0.00	0.00	0.000
		TOTAL		1.5630	.2812	1999	.7815	.6390	.2374		.1999	.5623	3999	.2812
		150	ŲΤΥ	.4024	.0885	.0632	.2012	•		•	.0632	1771.	.1265	.0885
		BRC	ŲΙΥ	0.0000	0.000	0.000	0.000.0	0.000	.1428 0.0000	0.000	0.000	0.000	0.000	0.000
		DRC C	QTY	1.0637	.1713	.1224	.5318	. 3894	.1428	.1713	.1224	.3427	.2448	.1713
		PLT	QTY	.0798	.0176	.0116	.n399	.0399	.0178	.0176	.0116	.0351	.0233	.0176
		PCSL	ŲΤΥ	.0171	.0038	.0027	.0085	.0085	.0031	.0038	.0027	.0075	.0054	.0038
			BRC	므	10	10	10	10	10	10	10	10	10	10
			DAC	58	4]	41	26	41	41	4]	41	41	41	41
			٦	14	14	13	14	14	17	14	13	14	1.3	14
			QPEI	2	~	7	1	1	2	-	-	2	2	-
			BCR	0.0	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00
			DCR	<u>.</u>	.01	.01	.0	.01	.01	ū.	.01	<u>.</u> 0	<u>.</u> 0	.01
			NRTS	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
			MRF	350 11000 .00909	.00400	.00286	.00909	.00909	. 00167	.00400	.00286	.00400	.00286	.00400
d d	47.43		COST MTBD	11000	25000	35000	11000	11000	00009	25000	35000	25000	240 35000 .	25000
AMP	31.34 47.43		C051	350	420	240	350	554	2900	547	240	547	240	547
	•		MUC	46AAA	46AAK	46AAL	46AAM	46AAV	46AAW	46AAX	46AAY	46ABD	46ABE	46ABF

240	35000	.00286	1.00	<u>6</u>	0.00	- -	13	41	01 5	.0027	9110.	. 1224	0.0000	.0632	. 1999	0.000	0	0
467	14000	.00714	1.00	10:	0.00	-	12	41	2 2	.0067	.0336	.3059	0.0000	.1581	.5043	0.000	° –	467
1005	8333	.01200	.70	<u>o</u> .	0.00	-	16	4]	10	.0079		3598	.0569	.1859	.6527	0.000	-	1005
911	13000	.00769	1.00	.01	0.00	_	16	41	10	.0072		. 3295	0.000.0	.1703	.5455	0.00	-	911
720	7000	.01429	1.00	ω.	0.00	-	14	4]	10		.0627	.6119	0.0000	.3162	1.0042	0.000	_	720
5412	13000	.00769	8.	.01	0.00	-	13	41	10		.0063	.0659	.0973	.0341	. 2050	0.000	0	0
1300	38824	.00258	.80	80.	0.00	7	13	41	10		.0336	.1765	.0163	.0912	.3254	0.000	0	0
350	1000	.10000	1.00	.01		T	15	26	10		.4701	5.8501	0.000	2.2134	8.6277	0.000	6	3150
1732	3300	.03030	1.00	.02	0.00	~	14	4]	10		.2659	1.2979	0.000.0	.6707	2.2915	0.00	7	3464
554	11000	.00909	1.00	.01	0.00	1	14	41	2		.0399	. 3894	0.0000	.2012	.6390	_	~	554
685	11000	.00909	1.00	.01	0.00	1	15	41	10		.0427	. 3894	0.000	.2012	.6419		-	685
685	11000	.00909	1.00	.01		-	15	41	10		.0427	. 3894	0.000	.2012	.6419		_	685
5486	2200	.04545		00.0		~	19	41	10		.0812	1.3687	.2134	.7073	2.3834		7	10972
4029	3700	.02703	못.	0.00	.01	-	19	41	10		.1127	3554	. 2961	.1837	9696	0.000	-	4059
1467	3846	.02600	운.	0.00	.01	7	18	41	10	\$700.	.0440	.7829	.1221	.4046 1	1.3609		-	1467
1282	3700	.02703	8		.01	7	19	4]	10		.1127	.3554	. 2961	.1837	9696	0.000	-	1282
10300	2000	.05000	0.00	.01	0.00	~	18	41	10 0		0.0000	0.0000	2.3715	0.0000	2.3715		7	00907
260	20000	.00200	8.	.01	0.00	-	13	41	10		.0049	.0514	.0126	.0266	.0966	0.000	0	0
183	20000	.00500	99.	.01	0.00	~	14	41	10		.0395	.3855	.0949	.1992	.7275	0.00	-	183
359	25000	.00400	1.00	.01	0.00	-	15	41	9		.0188	.1713	0.000	.0885	.2824	0.000	0	0
651	35000	.00286	3.00	.01	0.00	П	12	4]	9		.0107	.1224	0.0000	.0632	.1990	0.00	0	0
826	10000	.01000	1.00	.01	0.00	2	15	4]	10		.0940	.8566	0.000	.4427	1.4121	0.000	-	826
1800	8333	.01200	1.00	.01	0.00	~	15	41	10		.1692	1.5420	0.000.0	. 7969	2.5419	0.00	~	5400
170	40000	.00250	.90	.01	0.00	-	13	41	10	.0021		.0964		.0498	.1614	0.000	0	0
192	18000	.00556	.90	.01	0.00	-	23	41	10	.0047		.2142		.1107	. 3744	0.00.0	0	0
360	10000	.01000	.80	.01	0.00	-	15	41	10	.0075	.0376	. 3427	.0316	1771.	. 5965	0.000	7	360
501	6624	.01510	1.00	.10	0.00	4	12	41	10	. 5678		2.5864		1.3366	6.7618	0.00	7	3507
1318	7059	.01417	.80	.01	0.00	-	17	4]	10	.0107	.0604	.4854	.0448	.2508	.8521	0.000	-	1318
3130	6200	.01613	09.	.01	0.00	7	15	4]	10	.0091	.0455	.4145	.1020	.2142	.7853	0.000	-	3130
																	·	-

Second Second Receipt Second

FY 74 TOTAL COST 78632
=====
FY 73 AND FY 74 GRAND TOTAL 81439

⁶⁵

ADJUSTED AFLCR 57-27 SPREADSHEET CALCILLATIONS FY 73 (SD = 3.28)

	A.	Ž	S	PCSL	UST														
	4.32	8.1	3.28	~	14						ū	-	2	Ç	5	10101	ractob		
MUC	COST	MTBD	MRF	NRTS	PCR	BCR (DPE1	P.1	DRC	BRC	17.5 Q17	01. 11.	0,T₹	grv grv	QTY			TOTAL	COST
46AAA	350	11000	60600	1.00	.00	0.00	2	14	28	10	.0024	.0110	.1466	0.0000	.0687	.2287	1.569	2	1002
46AAK	_	25000	.00400	1.00		0.00	-	14	41	10	.0005	.0024	_	0.0000	.0151	.0417	.670	7	420
46AAL	240	35000	.00286	1.00	.01	0.00	-	13	41	10	.0004	.0016	.0169	0.000.0	.0108	.0296	.565	7	240
46AAH	350	11000	.00900	1.00	.0	0.00	-	14	28	9	.0012	.0055	.0733	0.000	.0344	.1143	1.109	-	350
46AAV	554	11000	.00909	1.00	.01	0.00	-	14	4]	10	.0012	.0055	.0537	0.000	.0344	.0947	1.009	1	554
46AAW	2900	00009	.00167	1.00	.01	0.00	2	17	41	10	.0004	.0024	.0197	0.000.0	.0126	.0352	.615	7	2900
46AAX	547	25000	.00400	1.00	10.	0.00	~	14	41	10	.0005	.0024	.0236	0.000	.0151	.0417	.670	7	547
46AAY	240	35000	.00286	1.00	.01	0.00	-	13	41	10	.0004	.0016	.0169	0.000	.0108	.0296	. 565	7	240
46ABD	247	25000	.00400	1.00	.01	0.00	2	14	41	10	.0010	.0048		0.0000	.0302	.0833	.947	7	547
46ABE	240	35000	.00286	1.00	.01	0.00	7	13	41	10	.0007	.0032	.0337	0.000.0	.0216	.0593	.799	7	240
46ARF	547	25000	.00400	1.00	.01	0.00	-	14	41	10	.0005	.0024	_	0.000.0	.0151	.0417	.670	7	547
46ABG	240	35000	.00286	1.00	.01	0.00	_	13	41	10	.0004	.0016	.0169	0.000	.0108	.0296	.565	~	240
46ACA	1956	1250	.09000	1.00	.00	0.00	-	14	41	10	.0104	.0484		0.000.0	.3024	.8335	2.994	4	7824
46ACB	467	14000	.00714	1.00	<u>.</u>	0.00	-	15	4]	10	.0009	.0046		0.000.0	.0270	.0747	.897	~	467
46ACG	1005	8333	.01200	.70	.01	0.00	-	16	41	10	.0011	.0058	.0496	.0097	.0318	.0980	1.027	7	1005
46ACP	911	13000	.00769	1.00	.01	0.00	-	16	41	10	.0010	.0053		0.000.0	.0291	.0808	.932	7	911
46ADD	720	7000	.01429	1.00	.01	0.00	-	14	41	10	.0019	9800.	.0843	0.000	.0540	.1488	1.265	-	720
46ADE	5412	13000	.00769	23	.01	0.00	-	13	41	10	.0002	6000.	.0091	.0166	.0058	.0326	. 592	7	5412
46ADG	1300	38824	.00258	.80	.02	0.00	7	13	41	10	.0011	.0046	.0243	.0028	.0156	.0484	.722	-	1300
46ADK	350	1000	.1000	1.00	.01	0.00	_	15	26	10	.0130	.0648	.8064	0.000	.3780	1.2622	3.685	'n	1750
46ADN	1732	3300	.03030	1.00	.02	0.00	-	14	41	10	.0079	.0367		0.000	.1145	.3380	1.907	2	3464
46ADP	554	11000	.00900	1.00	.01	0.00	-	14	41	10	.0012	.0055		0.000	.0344	.0947	1.009	-	554
46ADR	685	11000	60600	1.00	10.	0.00	-	15	41	10	.0012	.0059		0.000	.0344	.0951	1.012	7	685
46ADS	685	11000	60600	1.00	.01	0.00	_	15	41	10	.0012	.0059	.0537	0.000	.0344	.0951	1.012	-	685
46AEA	5486	2200	.04545	.70	0.00	17.	7	19	41	10	.0018	.0112	.1887	.0365	.1208	.3589	1.965	~	2260
46AEC	4059	3700	.02703		0.00	.01	-	19	41	10	.0025	.0155	.0490	9050	.0314	. 1489	1.266	-	4029
46AEE	1467	3846	.02600	.70	0.00	<u>.</u>	-	18	41	10	.0010	.0061	.1079	.0209	.0691	.2049	1.485	2	2934
46AEF	1282	3700	.02703	Σ.	0.00	.01	_	19	41	10	.0025	.0155	.0490	.0506	.0314	.1489	1.266	-	1282

46BAA	10300	2000	.05000	0.00	.01	0.00	~	18	41	10 0	0.0000	0.000	0.000	.4050	0.0000	.4050	2.087	2	20600
46BBA	260	20000	00200	8.	<u>.0</u>	0.00	_	13	4]	10	.0002	.0007	.0071	.0022	.0045	.0146	. 396	0	0
46888	183	20000	.00500	8.	.01	0.00	~	14	4]	10	.0012	.0054	.0531	.0162	.0340	.1100	1.088	-	183
46BBC	359	25000	4688C 359 25000 .00400 1	1.00	.01	0.00	-	15	41	9	.0005	.0026	.0236	0.000	.0151	.0418	.671	-	359
46BBE	651	35000	.00286	1.00	.01	0.00	-	12	41	9	.0004	.0015	.0169	0.0000	.0108	.0295	. 564	_	651
46BCA	826	10000	.01000	00.1	.01	0.00	2	15	41	10	.0026	.0130	.1181	0.000	.0756	.2092	1.500	7	1652
46BCB	1800	8333	.01200	1.00	.01	0.00	~	15	4]	10	.0047	.0233	.2126	0.0000	.1361	.3766	2.013	7	3600
46BCC	170	40000	.00250	8.	Ŀ.		-	13	41	10	.0003	.0013	.0133	.0007	.0085	.0240	. Sn8	7	170
46BCF	261	18000	.00556		.01	0.00	7	23	4]	10	9000	.0050	.0295	.0015	.0189	.0555	5773	-	261
46BCH	360	10000	.01000		.01	0.00	1	15	41	10	.0010	.0052	.0472	.0054	.0302	.0891	626.	-	360
468CL	501	6624	.01510	1.00	.10	0.00	4	12	4]	10	.0783	.3130	. 3565	0.000	.2283	.9761	3.241	4	2004
46DAC	1318	7059	.01417	.80	.01	0.00	-	17	4]	10	.0015	.0083	6990.	.0076	.0428	.1272	1.170	_	1318
46DAD	3130	6200	.01613	8.	.01	0.00	_	15	41	10	.0013	.0063	.0571		.0366	.1187	1.130	_	3130
																FY 73	TOTAL	COS 1	85837

ADJUSTED AFLCR 57-27 SPREADSHEET CALCULATIONS FY 74 (SD = 3.28)

	L L																		
	31.34	31.34 47.43																	
											PCSL	Pt.1	DRC	BRC	051		FACTOR		
MACC.	C051	COST MTBD	MRF	NRTS	DCR	BCR (OPEI P	PL 1	D R C	BRC	ΩŢΥ	QTY	QΤΥ	QTY	QTY	ΩTΥ	ŲΙΥ	TOTAL	C051
46AAA	:	350 11000	60600	1.00	.01	0.00	2	14	28	10	.0171	.0798	1.0637 0.0000	0.000	.4024	1.5630	4.101	9	2100
46AAK		25000	00400		.01	0.00	_	14	41	10	.0038	.0176	.1713	0.000	.0885	.2812	1.739	7	840
46AAL		35000	.00286	1.00	.0	0.00	1	13	41	10	.0027		.1224	0.000	.0632	.1999	1.467	7	480
46AAM		11000	350 11000 .00909	1.00	.01	0.00	_	14	26	10	.0085	.0399	.5318	0.000	.2012	. 7815	2.900	4	1400
46AAV		11000	1 .00909 1	1.00	10.	0.00	_	14	4]	10	.0085	.0399	, 3894 (0.000	.2012	.6390	2.622	•	1662
46AAW		00009	1 79100.	1.00	.01	0.00	2	17	41	10	.0031	.0178	.1428 (0000.0	.0738	.2374	1.598	7	5800
46AAX		25000	.00400	1.00	<u>.</u>	0.00	-	14	41	10	.0038	.0176	. 1713 (0.000.0	.0885	.2812		8	1094
46AAY		35000	.00286	1.00	.01	0.00	1	13	4]	10	.0027	.0116	.1224 (0000.0	.0632	. 1999	1.467	7	480
46ABD		25000	00400 1	1.00	.01	0.00	7	14	41	10	.0075	.0351	.3427 0.0000	0.000	1771.	.5623	2.460	~	1641
46ABE		35000	0.00286	1.00	.01	0.00	7	13	4]	10	.0054	.0233	.2448	0.000	.1265	. 3999	2.074	8	480
46ABF		25000	547 25000 .00400	1.00	.01	0.00	-	14	41	10	.0038	.0176	.1713	0.000.0	.0885	.2812	1.739	2	1094

480	25428	1401	3015	2733	2880	0824	2600	6300	12124	1662	2055	2055	9402	6236	7335	5128	2100	260	732	718	1302	4130	14400	170	522	1080	7515	5272	2520	
8	13 2	~	۴	٣	4	2 1	7	18	7	٤	₩	~	7 3	4	5	4	7.7	7	4	2	2	Ŋ	8 1	1	2	٢	15	4	4 1	
1.467	7.778	2.329	2.650	2.423	3.287	1.485	1.871	9.634	4.965	2.622	2.628	2.628	5.064	3.223	3.826	3.223	5.051	1.020	2.798	1.743	1.463	3.898	5.229	1.318	2.007	2.533	8.529	3.028	2.907	
.1999	5.6235	.5043	.6527	. 5455	1.0042	. 2050	.3254	8.6277	2.2915	.6390	.6419	.6419	2.3834	.9656	1.3609	9696	2.3715	9960	.7275	.2824	.1990	1.4121	2.5419	.1614	.3744	. 5965	6.7618	.8521	.7853	
.0632	1.7707	.1581	.1859	.1703	.3162	.0341	.0912			.2012	.2012		.7073	.1837	.4046	.1837	00000.0	.0266	.1992	.0885	.0632			.0498	.1107	1771.	1.3366	.2508	.2142	
0.000	0.000	0.000	.0569	0.000	0.000	.0973	.0163	0.000	0.000.0		0.000													.0040	.0088	.0316	0.0000	.0448	.1020	
.1224	3.4265	. 3059	.3598	3295			.1765		1.2979	. 3894	. 3894	. 3894	1.3687	.3554	.7829	. 3554	0000.0	.0514	.3855	. 1713	.1224	.8566	1.5420 (.0964	.2142	.3427	2.5864 (.4854	.4145	
.0116	.3510	.0336	.0421	.0386	.0627	.0063	.0336	.4701	.2659	.0399	.0427	.0427	.0812	.1127	.0440	.1127	0.0000	.0049	.0395	.0188	.0107	.0940	.1692	.0092	.0360	.0376	2.2710	.0604	.0455	
.0027	.0752	.0067	.0079	.0072	.0134	.0014	.0077	.0940																.0021	.0047	.0075	. 5678	.0107	.0091	
10	10	10	10	10	10	10	10	10	10	22	10	10	10	10	10	10	10	10	10	9	9	10	10	10	10	10	10	10	10	
4]	41	4]	41	41	41	41	41	26	41	41	41	4]	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	4]	41	
13	14	15	16	16	14	13	13	15	14	14	15	15	19	19	18	19	18	13	14	15	12	15	15	13	23	15	12	17	15	
1	7	-	-	7		7	2	7	-	-	_	7	-	-	7	-	€	-	•	-	-	7	~	-	_	-	₹	7	-	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	.01	.01	.01	.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
.01	.01	.01	.01	.01	.01	.01	.02	.01	.02	.01	.01	.01	0.00	0.00	0.00	0.00	.00	.01	.01	.01	.01	.01	.01	.01	.01	.01	.10	.01	.01	
1.00	1.00	1.00	.70	1.00	1.00	8.	.80	1.00	1.00	1.00	00.1	1.00	۶.	8	8.	2	0.00	89.	99.	1.00	1.00	1.00	1.00	8.	96.	.80	1.00	.80	.60	
.00286	.08000	.00714	.01200	.00769	.01429	.00769	.00258	.10000	.03030	.00900	60600	60600.	.04545	.02703	.02600	.02703	0.00000	.00200	.00500	.00400 1	.00286	.0100	.01200	.00250	.00556	.01000	.01510	.01417	.01613	
240 35000 .00286	1250	14000	8333	13000	7000	13000	38824	1000	3300	11000	11000	11000	2200	3700	3846	3700	2000	20000	20000	25000	35000	10000	8333	40000	18000	10000	6624		6200	
240	1956	467	1005	911	720	5412	1300	350	1732	554	685	685	5486	4059	1467	1282	10300	260	183	359	651	826	1800	170	261	360	501	1318	3130	
46ABG	46ACA	46ACB	46ACG	46ACP	46ADD	46ADE	46ADG	46ADK	46ADN	46ADP	46ADR	46ADS	46AEA	46AEC	46AEE	46AEF	46BAA]	4688A	46888	46BPC	46BBE	46BCA	46BCB	46BCC	468CF	46BCH	46BCL	46DAC	46DAD	

FY 74 TOTAL COST 278450

===== FY 73 AND FY 74 GRAND 101AL 364287

Appendix D: Dyna-METRIC Input File

```
DYNA+METRIC REQUIREMENTS MODE INPUTS FOR F15 INITIAL SPARES STUDY
                  VERSION 4.4 MT1MT2MT3MT4MT5
  90 180 270 360 450 540 630 720
       1.9989
     12 1.9999
     17
            .99
BASE
                                                   1.0 1.0
BAS1
                                                                        1.0
BAS2
                                                   1.0 1.0
                                                                        1.0
DEPT
DEP1
                                                   1.0 1.0
                                                                        1.0
TRNS
BAS1 DEP1 14.0 14.0
                        1.0
BAS2 DEP1 14.0 14.0
                        1.0
ACFT
BAS1
      0
          1
             2 31
                      5 61
                              7 91 10 121 12 151 15 181 17 211 20 241 22
271 25 301 27 331
                     30 361 24
                    18 421 25 451 31 481 38 511 44 541 50 571 57 601 63
      0 361 12 391
631 70 661 76 691
SRTS
BAS1 0.0 1 1.09999
BAS2 0.0 361 1.09999
FLHR
BAS1 0.0
         1 0.9 361 1.49999
BAS2 0.0 361 1.59999
TURN
BAS1 0.0 1 3.09999
BAS2 0.0 361 3.09999
LRU
46AAA
                DEP1 1 0 2 2 1 .00009 .00009 10.0 1.00
46AAA
                               56.0
                                         0.01 420. 420.
                                                            350.
                                                                        1
46AAK
                DEP1 1 0 1 1 1 .00004 .00004 10.0 1.00
46AAK
                               41.0
                                         0.01 420. 420.
                                                            420.
46AAL
                DEP1 1 0 1 1 1 .00003 .00003 10.0 1.00
46AAL
                               41.0
                                         0.01 390. 390.
                                                            240.
46AAM
                DEP1 1 0 1 1 1 .00009 .00009 10.0 1.00
46AAM
                               56.0
                                         0.01 420. 420.
                                                            350.
                DEP1 1 0 1 1 1 1.00009 .00009 10.0 1.00
46AAV
46AAV
                               41.0
                                         0.01 420. 420.
                                                            554.
                DEP1 1 0 2 2 1 .00002 .00002 10.0 1.00
46AAW
46AAW
                               41.0
                                         0.01 510. 510.
                                                           2900.
                                                                        1
46AAX
                DEP1 1 0 1 1 1 .00004 .00004 10.0 1.00
46AAX
                               41.0
                                         0.01 420. 420.
                                                                        1
                                                            547.
```

46AAY	DEP1 1 0	1		.00003 10.0 1.00		
46AAY			41.0	0.01 390. 390.	240.	1
46ABD	DEP1 1 0	2	2 1 .00004	.00004 10.0 1.00		
46ABD			41.0	0.01 420. 420.	547.	1
46ABE	DEP1 1 0	2	2 1 .00003	.00003 10.0 1.00		
46ABE			41.0	0.01 390. 390.	240.	1
46ABF	DEP1 1 0	1	1 1 .00004	.00004 10.0 1.00		
46ABF			41.0	0.01 420. 420.	547.	1
46ABG	DEP1 1 0	1	1 1 .00003	.00003 10.0 1.00		
46ABG			41.0	0.01 390. 390.	240.	1
46ACA	DEP1 1 0	1	1 1 .00080	.00080 10.0 1.00		
46ACA			41.0	0.01 420. 420.	1956.	1
46ACB	DEP1 1 0	1	1 1 .00007	.00007 10.0 1.00		
46ACB			41.0	0.01 450. 450.	467.	1
46ACG	DEP1 1 0	1	1 1 .00012	.00012 10.0 0.70		
46ACG			41.0	0.01 480. 480.	1005.	1
46ACP	DEP1 1 0	1	1 1 .00008	.00008 10.0 1.00		
46ACP			41.0	0.01 480. 480.	911.	1
46ADD	DEP1 1 0	1	1 1 .00014	.00014 10.0 1.00		
46ADD			41.0	0.01 420. 420.	720.	1
46ADE	DEP1 1 0	1	1 1 .00008	.00008 10.0 0.20		
46ADE			41.0	0.01 390. 390.	5412.	1
46ADG	DEP1 1 0	2	2 1 .00003	.00003 10.0 0.80		
46ADG			41.0	0.02 390. 390.	1300.	1
46ADK	DEP1 1 0	1	1 1 .00100	.00100 10.0 1.00		
46ADK			56.0	0.01 450. 450.	350.	1
46ADN	DEP1 1 0	1	1 1 .00030	.00030 10.0 1.00		
46ADN			41.0	0.02 420. 420.	1732.	1
46ADP	DEP1 1 0	1	1 1 .00009	.00009 10.0 1.00		
46ADP			41.0	0.01 420. 420.	554.	1
46ADR	DEP1 1 0	1	1 1 .00009	.00009 10.0 1.00		
46ADR			41.0	0.01 480. 480.	685.	1
46ADS	DEP1 1 0	1	1 1 .00009	.00009 10.0 1.00		
46ADS	_		41.0	0.01 480. 480.	685.	1
46AEA	DEP1 1 0	1		.00045 10.0 0.70		
46AEA		-	41.0	0.00 570. 570.	5486.	1
46AEC	DEP1 1 0	1		.00027 10.0 0.30		_
46AEC		-		0.00 570. 570.	4059.	1
46AEE	DEP1 1 0	1		.00026 10.0 0.70		-
46AEE			41.0	0.00 540. 540.	1467.	1
46AEF	DEP1 1 0	1		.00027 10.0 0.30	0.01	
46AEF			41.0	0.00 570. 570.	1282.	1
46BAA	DEP1 1 0	3		.00050 10.0 0.00		
46BAA			41.0	0.01 540. 540.	10300.	1
46BBA	DEP1 1 0	1		.00002 10.0 0.60		
468BA	_		41.0	0.01 390. 390.	260.	1
46BBB	DEP1 1 0	3		.00005 10.0 0.60		
46888			41.0	0.01 420. 420.	183.	1
46BBC	DEP1 1 0	1		.00004 6.0 1.00		
46BBC			41.0	0.01 450. 450.	359.	1

468BE	DEP1 1 0 1	1 1 .00003	.00003 6.0 1.00		
46BBE		41.0	0.01 360. 360.	651.	1
46BCA	DEP1 1 0 2	2 1 .00010	.00010 10.0 1.00		
46BCA		41.0	0.01 450. 450.	B26.	1
46BCB	DEP1 1 0 3	3 1 .00012	.00012 10.0 1.00		
46BCB		41.0	0.01 450. 450.	1800.	1
46BCC	DEP1 1 0 1	1 1 .00003	.00003 10.0 0.90		
46BCC		41.0	0.01 390. 390.	170.	1
46BCF	DEP1 1 0 1	1 1 .00006	.00006 10.0 0.90		
468CF		41.0	0.01 690. 690.	261.	1
468CH	DEP1 1 0 1	1 1 .00010	.00010 10.0 0.80		
46 BCH		41.0	0.01 450. 450.	360.	1
468CL	DEP1 1 0 4	4 1 .00015	.00015 10.0 1.00		
46BCL		41.0	0.10 360. 360.	501.	1
46DAC	DEP1 1 0 1	1 1 .00014	.00014 10.0 0.80		
46DAC		41.0	0.01 510. 510.	1318.	1
46DAD	DEP1 1 0 1	1 1 .00016	.00016 10.0 0.60		
46DAD		41.0	0.01 450. 450.	3130.	1

Bibliography

- 1. Abell, John B. and others. The Use of Availability Models in Initial Provisioning. Logistics Management Institute, Washington DC, April 1981 (AD-All1197).
- Air Force Logistics Management Center. <u>User's Guide</u>
 <u>Dyna-METRIC</u>. Draft Report. Gunter AFS AL, June 1982.
- 3. Beauregard, Maj. "Repair Cycle Asset Management," <u>TIG Brief</u>, 9:5-6 (4 May 1979).
- 4. Budde, Capt Michael J. and Capt Richard D. Mabe. Lecture materials distributed in LOG-290, Combat Capability Assessment. School of Systems and Logistics, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, FY 1986.
- 5. Christensen, Maj Bruce P. and Capt Russell E. Ewan. An Introduction to Reparable Inventory Models and Theory. Unpublished report. School of Systems and Logistics, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, November 1985.
- 6. Demmy, W. Steven and Jon R. Hobbs. "Dyna-METRIC: An Overview," Air Force Journal of Logistics, 7: 14-17 (Spring 1983).
- 7. Department of Defense. <u>Provisioning of End Items of Materiel</u>. DOD Directive 4140.40. Washington: Government Printing Office, 28 June 1983.
- 8. ----. <u>Provisioning Procedures, Uniform DOD</u>.

 MIL-STD-1561B. Washington: Government Printing Office,
 17 November 1984.
- 9. Department of the Air Force. Air Force Provisioning Policies and Procedures. AFLCR 65-5. Headquarters Air Force Logistics Command, Wright-Patterson AFB OH, 28 March 1980.
- 10. ---- Acquisition Logistics Management. AFLCP/AFSCP 800-34. Wright-Patterson AFB OH, Andrews AFB DC, 12 August 1981.
- 11. ---- Basic Aerospace Doctrine of the United States
 Air Force. AFM 1-1. Washington: Government Printing
 Office, 16 March 1984.

- 12. ----. Compendium of Authenticated Systems and Logistics Terms, Definitions and Acronyms. Air Force Institute of Technology (AU), Wright-Patterson AFB OH, 1 April 1981.
- 13. ---- Initial Requirements Determination. AFLCR 57-27. Headquarters Air Force Logistics Command, Wright-Patterson AFB OH, 20 July 1982.
- 14. ---- Provisioning of Spares and Repair Parts. AFR 800-36. Washington: HQ USAF, 11 June 1985.
- 15. ---- Recoverable Consumption Item Requirements
 System (D041). AFLCR 57-4. Headquarters Air Force
 Logistics Command, Wright-Patterson AFB OH, 29 April
 1983.
- 16. ---- Recoverable Inventory Control Using MOD-METRIC. AFLCP 57-13. Headquarters Air Force Logistics Command, Wright-Patterson AFB OH, 28 February 1975.
- 17. Spares Acquisition Integrated With Production (SAIP). AFR 800-26. Washington: HQ USAF, 21 August 1985.
- 18. Fisher, W. B. and others. <u>Comparison of Aircraft</u>
 Availability with Variable <u>Safety Level Methods for</u>
 Budget Program 1500 Allocation. Logistics Management
 Institute, Washington DC, January 1983.
- 19. Gage, Thomas W. and Capt Andrew J. Ogan. "Dyna-METRIC: A Valuable Management Tool," <u>Air Force Journal of Locistics</u>, 7: 22-24 (Spring 1983).
- 20. Crant, Capt Melinda W. Operations Research Analyst. Personal interviews. Headquarters AFLC/XRS, Wright-Fatterson AFB OH, 15 May through 1 September 1986.
- 21. Hillestad, R. J. <u>Dyna-METRIC: Dynamic Multi-Echelon</u>
 <u>Technique for Recoverable Item Control</u>. Report No.
 R-2785-AF. The Rand Corporation, Santa Monica CA, July
 1982 (AD-A120446).
- 22. Hillestad, R. J. and M. J. Carrillo. Models and Techniques for Recoverable Item Stockage When Demand and the Repair Process are Nonstationary-Part I:

 Performance Measurement. Report No. N-1482-AF. The Rand Corporation, Santa Monica CA, May 1980 (AD-A091935).

- 23. Isaacson, Karen E. and others. <u>Dyna-METRIC Version 4:</u>
 Modeling Worldwide Logistics Support to Aircraft
 Components. Working Draft No. WD-2659-AF. The Rand
 Corporation, Santa Monica CA, June 1985.
- 24. Lyle, W. Wayne, Manager, Logistics Engineering.
 Personal and telephone interviews. McDonnell Aircraft
 Company, St. Louis MO, 16 December 1985 through 1
 September 1986.
- 25. Mills, Capt Michael G. <u>Initial Provisioning with the Dyna-METRIC Inventory Model</u>. MS thesis AFIT/GLM/LSM/85S-51. School of Systems and Logistics, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, September 1985 (AD-A161449).
- 26. Muckstadt, John A. "A model for a Multi-Item, Multi-Echelon, Multi-Indenture Inventory System," Management Science, 20: 472-481 (December 1973).
- 27. Mullins, Gen James P. "Spare Parts and Competition: Redressing Yesterday's Neglect," <u>Defense Management Journal</u>, 20: 2-7 (Third Quarter 1984).
- 28. Pyles, Raymond. The Dyna-METRIC Readiness Assessment Model. Report No. R-2886-AF. The Rand Corporation, Santa Monica CA, July 1984 (AD-A145699).
- 29. Weiland, Barbara J. <u>Dyna-METRIC: New Capabilities</u>. Unnumbered and undated working paper. Headquarters Air Force Logistics Command, Wright-Patterson AFB, OH.
- 30. Willis, Leslie G., Senior Analyst, Production Support, Telephone interviews. McDonnell Aircraft Company, St. Louis MO, 16 December 1985 through 1 September 1986.
- 31. Youther, Charles F. and Patrick M. Bresnahan. What is Provisioning, Anyway?. Unpublished report. Wright-Patterson AFB OH, 1985.
- 32. Youther, Charles F. and Captain Richard D. Mabe. Lecture materials distributed in LOG-260, Air Force Provisioning Management. School of Systems and Logistics, Air Force Institute of Technology (AU). Wright-Patterson AFB OH, FY 1986.

ATIV

Captain Robert R. Yauch was born on 11 June 1953 in St. Joseph, Michigan. He attended Michigan State University in East Lansing and graduated in June 1976 with a Bachelor Of Science degree in Computer Science. He received his commission on 23 December 1977, after completion of Officer Training School at Lackland AFB, Texas. Upon completion of navigator training at Mather AFB, California in September 1978, he underwent training as a F-4 Weapon System Officer (WSO) at both Holloman AFB, New Mexico and MacDill AFB, Florida. Following the completion of this training in May 1979, he was assigned to the 612th Tactical Fighter Squadron, Torrejon AB, Spain as a WSO. In June of 1982, he was assigned to the 309th Tactical Fighter Training Squadron at Homestead AFB, Florida. While there he served as an Instructor WSO and then as a Standardization and Evaluation Officer for the 31st Tactical Training Wing. He entered the School of Systems and Logistics, Air Force Institute of Technology, in May 1985. Following graduation he will be assigned to the 363rd Supply Squadron at Shaw AFB, South Carolina.

Permanent address: 4753 Ridge Road

Stevensville, Michigan 4912

					•			
UNCLASS	CLASSIFICATION	ON OF THE	S PAGE		A N-1	MY 33		
SECURITY	CASSIFICATION	ON OF THE	37702					
				REPORT DOCUM				
	T SECURITY C	LASSIFICA	ATION		16. RESTRICTIVE	MARKINGS		
	ASSIFIED	CATION AL	THORITY		3. DISTRIBUTION/	AVAILABILITY OF F	EPORT	
28. SECONI					1	for public re		
26. DECLA	SSIFICATION/	DOWNGRA	DING SCHE	DULE		ion unlimited.		
4. PERFOR	MING ORGAN	IZATION	REPORT NU	MBER(S)	5. MONITORING O	RGANIZATION REPO	ORT NUMBER	S)
AFIT	/GLM/LSM/	86 S~ 89			1			
	F PERFORMI		NIZATION	Sb. OFFICE SYMBOL	7a. NAME OF MON	ITORING ORGANIZA	TION	
	ol of Sys			(If applicable)				
Logis				AFIT/LSM	<u> </u>			
6c. ADDRE	SS (City, State	and ZIP Co	de)		7b. ADDRESS (City	, State and ZIP Code)		
Air F	force Inst	titute	of Techr	nology				
Wrigh	nt-Patters	SON AFF	Ohio	45433 - 6583				
	of FUNDING/			Bb. OFFICE SYMBOL	9. PROCUREMENT	INSTRUMENT IDEN	TIFICATION N	NUMBER
	IZATION			(If applicable)				
8c. ADDRE	SS (City, State	and Z!P Co	de)		10. SOURCE OF FL	INDING NOS.		_
					PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT
11. TITLE	Include Securit	y Classifica	tion)		┨			
See E	30x 19							
12. PERSON	NAL AUTHOR	(S)						
	t R. Yau	ch, B.S			144 0475 05 858	ORT (Yr., Mo., Day)	15. PAGE	COUNT
	of REPORT Thesis		13b. TIME	TO	1			C00141
	MENTARY NO	OTATION			- 1986 Sep	cember		
17.	COSATI	CODES		18. SUBJECT TERMS (
FIELD	GROUP	su	B. GR.		isioning, Inv			RIC,
15	05				Requirements		1,	
19 ARSTR	ACT (Continue	On reverse	if necessary a	nd identify by block numb	ares. Spare Pa	arts		
10. 200		O.1. 1606766	.,	ine tacking by order hame	,			
Title	e: AN AS	SESSMEN	T OF THE	DYNA-METRIC IN	VENTORY MODEL	DURING INITIA	AL PROVIS	IONING
Thesi	is Advison			Mabe, Capt, USA				
		Ins	tructor	of Supply Manage	ement 3	proved for public rel	ecse: IAW AF	R 100-1/.
					i	E VOLVER	495	# 86
					D F	and for Research and It Force Institute of Te	Professional De	relopment

Virigin-Palterson APB OH 4543

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT	21. ABSTRACT SECURITY CLASSIFICATION	
UNCLASSIFIED/UNLIMITED 🗗 SAME AS RPT. 🗆 DTIC USERS 🗀	UNCLASSIFIED	
22a. NAME OF RESPONSIBLE INDIVIDUAL	22b TELEPHONE NUMBER (Include Area Code)	22c. OFFICE SYMBOL
Richard D. Mabe, Capt, USAF	513-255-4017	AFIT/LSM

SECURITY CLASSIFICATION OF THIS PAGE

A goal of initial provisioning is to provide the highest level of readiness for a fixed level of investment. MOD-METRIC and AFLCR 57-27, the traditional initial provisioning methods, determine which spare parts are needed and in what quantity without considering aircraft readiness. On the other hand, Dyna-METRIC, an availability model, quantifies the number of spares needed and finds the optimal mix for a dynamic initial provisioning environment.

This research is a comparison of the requirements computation (stock level) recommended by each method and a comparison of the aircraft availability that resulted from those stock levels. The data consists of 41 fuel system Line Replaceable Units modeled during the initial provisioning of the F-15 aircraft in FY 73 and FY 74.

Results indicate that the Dyna-METRIC model performed equal to or better than the traditional methods for computing initial spare requirements given the same investment constraint. Further, the research suggests that the Dyna-METRIC model would recommend a smaller inventory of spare parts than the MOD-METRIC model while maintaining an equal level of performance.

12-86

07/