## QUIZ 1: 60 Minutes

| Last Name:  | - |
|-------------|---|
| First Name: |   |
| RIN:        |   |
| Section:    |   |

Answer **ALL** questions.

NO COLLABORATION or electronic devices. Any violations result in an F. NO questions allowed during the test. Interpret and do the best you can.

## GOOD LUCK!

Circle at most one answer per question. **10 points** for each correct answer.

You **MUST** show **CORRECT** work to get full credit.

When in doubt, TINKER.

**Total** 

**200** 

| 1. | $\sqrt{2}$ is what kind of number?                                                                                  |
|----|---------------------------------------------------------------------------------------------------------------------|
|    | A natural number.                                                                                                   |
|    | B A rational number.                                                                                                |
|    | C An irrational number.                                                                                             |
|    | D An integer.                                                                                                       |
|    | E None of the above.                                                                                                |
|    |                                                                                                                     |
| 2. | The set $S = \{n \mid n = (k-1)(-1)^k$ , where $k \in \mathbb{N}\}$ . Which of these sets could be $S$ ?            |
|    | $\boxed{A} \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \dots\}$                                                                |
|    |                                                                                                                     |
|    | $C = \{0, 1, -2, 3, -4, 5, -6, 7, -8, 9, -10, \dots\}$                                                              |
|    | $ \boxed{D} \{1, -2, 3, -4, 5, -6, 7, -8, 9, -10, \dots\} $                                                         |
|    | $\boxed{\mathbf{E}} \{0, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, \dots\}$                                               |
| Q  | A and B are sets. Which answer is another way to represent $\overline{A \cap B}$ .                                  |
| J. | A and B are sets. Which answer is another way to represent $A \cap B$ .                                             |
|    | $A \cap B$ .                                                                                                        |
|    | $C \overline{A} \cup \overline{B}$ .                                                                                |
|    |                                                                                                                     |
|    |                                                                                                                     |
|    | E None of the above.                                                                                                |
| 4. | An integer $n \in \mathbb{Z}$ has an even square, that is $n^2$ is even. Which claim is true?                       |
|    | $\boxed{\mathbf{A}} n \text{ is odd.}$                                                                              |
|    | $\boxed{\mathrm{B}}$ n is positive.                                                                                 |
|    | $\boxed{\mathbb{C}}$ $n^2$ is divisible by 4.                                                                       |
|    | $\boxed{\mathbb{D}}$ n is divisible by 4.                                                                           |
|    | E None of the above claims are true.                                                                                |
|    |                                                                                                                     |
| 5. | How many rows are there in the truth table of the compound proposition $((p \to q) \lor (p \to r)) \to (q \to r)$ ? |
|    | $oxed{A}$ 2.                                                                                                        |
|    |                                                                                                                     |
|    | <u>C</u> 8.                                                                                                         |
|    | D 12.                                                                                                               |
|    | $oxed{\mathrm{E}}$ 16.                                                                                              |

| 6. | On your car's back bumper is a sticker that says "Honk if you love FOCS." Joe was behind you and honked. Later, Sue was behind you and didn't honk. What would be a valid inference? |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | A Joe loves FOCS. We don't know about Sue.                                                                                                                                           |
|    | B Sue loves FOCS. We don't know about Joe                                                                                                                                            |
|    | C Joe does not love FOCS. We don't know about Sue.                                                                                                                                   |
|    | D Sue does not love FOCS. We don't know about Joe                                                                                                                                    |
|    | <b>E</b> Joe loves FOCS and Sue does not love FOCS.                                                                                                                                  |
| 7. | For $x, y \in \mathbb{N} = \{1, 2, 3, \ldots\}$ , determine T or F for the proposition $\forall y : (\exists x : x^2 = y)$ .                                                         |
|    | $oxed{A}$ Can't be done because $p$ is not a valid proposition which is either T or F.                                                                                               |
|    | B It depends on $x$ .                                                                                                                                                                |
|    | $oxed{C}$ It depends on $y$ .                                                                                                                                                        |
|    | $oxed{D}$ F.                                                                                                                                                                         |
|    | E T.                                                                                                                                                                                 |
| 8. | What method of proof did we use to prove that $\sqrt{2} \notin \mathbb{Q}$ ?                                                                                                         |
|    | A Direct proof                                                                                                                                                                       |
|    | B Contraposition proof.                                                                                                                                                              |
|    | C Proof by induction.                                                                                                                                                                |
|    | D Proof by contradiction.                                                                                                                                                            |
|    | E None of the above.                                                                                                                                                                 |
| 9. | What method would you use to prove that $1^3 + 2^3 + 3^3 + 4^3 + \dots + n^3 = (\frac{1}{2}n(n+1))^2$ for all $n \ge 1$ ?                                                            |
|    | A Direct proof                                                                                                                                                                       |
|    | B Contraposition proof.                                                                                                                                                              |
|    | C Show that the formula is true for $n = 1$ up to $n = 1000$ .                                                                                                                       |
|    | D Proof by induction.                                                                                                                                                                |
|    | E Proof by contradiction.                                                                                                                                                            |
| 10 | You must prove $P(n)$ for $n \geq 3$ . You proved $P(n) \rightarrow P(n+3)$ for $n \geq 3$ . What base cases do you need?                                                            |
|    | lacksquare A $P(1)$                                                                                                                                                                  |
|    | $\boxed{\mathrm{B}} P(3)$                                                                                                                                                            |
|    | $\boxed{\mathbb{C}} P(1), P(2) \text{ and } P(3)$                                                                                                                                    |
|    | $\boxed{\mathbb{D}} P(3), P(4) \text{ and } P(5)$                                                                                                                                    |
|    | E None of the above.                                                                                                                                                                 |

| 11. For $x, y \in \mathbb{N}$ , which statement is a contradiction (cannot possibly be true)?                                                                             |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $\boxed{\mathrm{A}} \ x^2 < y.$                                                                                                                                           |  |
| $\boxed{\mathrm{B}} \ x^2 = y/2$                                                                                                                                          |  |
| $\boxed{\mathbf{C}} \ x^2 - y^2 \le 1$                                                                                                                                    |  |
| $\boxed{\mathrm{D}} \ x^2 + y^2 \le 1$                                                                                                                                    |  |
| $\boxed{\mathrm{E}}$ None of the above. That is, each statement above can be true for specific choices of $x, y$ .                                                        |  |
|                                                                                                                                                                           |  |
| <b>12.</b> Which gives a valid way to prove the implication $p \to q$ .                                                                                                   |  |
| $\boxed{\mathbf{A}}$ Assume $p$ is F and show that $q$ must be F.                                                                                                         |  |
| $\boxed{\mathrm{B}}$ Assume $q$ is T and show that $p$ must be T.                                                                                                         |  |
| $\boxed{\mathrm{C}}$ Assume $p$ is T and show that $q$ must be F.                                                                                                         |  |
| $\boxed{\mathrm{D}}$ Assume $p$ is T and $q$ is F and derive a contradiction.                                                                                             |  |
| E None of the above.                                                                                                                                                      |  |
|                                                                                                                                                                           |  |
| 13. What is the difference between using Induction versus Strong Induction to prove $P(n)$ for $n \ge 1$ ?                                                                |  |
| A The base cases are different.                                                                                                                                           |  |
| B Induction is usually easier than Strong Induction.                                                                                                                      |  |
| $\boxed{\mathrm{C}}$ In Induction you prove $P(n+1)$ . In Strong Induction you prove $P(n+2)$ .                                                                           |  |
| $\boxed{\mathrm{D}}$ In Induction you assume $P(n)$ . In Strong Induction you assume $P(1) \wedge P(2) \wedge \cdots \wedge P(n)$ .                                       |  |
| E There is no difference between the two methods.                                                                                                                         |  |
| <b>14</b> G (4 1) (4 1) (4 1) (4 1) (4 1) (4 1)                                                                                                                           |  |
| <b>14.</b> Compute the value of $(1 - \frac{1}{2}) \times (1 - \frac{1}{3}) \times (1 - \frac{1}{4}) \times (1 - \frac{1}{5}) \times \cdots \times (1 - \frac{1}{100})$ . |  |
| $\boxed{A}$ 1/5                                                                                                                                                           |  |
| $\boxed{\text{B}}$ 1/10                                                                                                                                                   |  |
| C 1/50                                                                                                                                                                    |  |
| D 1/100                                                                                                                                                                   |  |
| E None of the above.                                                                                                                                                      |  |
| 15. We wish to break a group of $n$ students into project-teams. Each team must have either 4 or 6 students.                                                              |  |
| $\boxed{\mathbf{A}}$ IF $n \geq 4$ , THEN it can be done.                                                                                                                 |  |
| B IF $n \ge 6$ , then it can be done.                                                                                                                                     |  |
| $\boxed{\mathrm{C}}$ IF $n \geq 10$ , then it can be done.                                                                                                                |  |
| $\boxed{\mathrm{D}}$ If $n \geq 4$ and $n$ is even, then it can be done.                                                                                                  |  |
| E None of the above.                                                                                                                                                      |  |

- **16.** What are the first four terms  $A_0, A_1, A_2, A_3$  in the the recurrence
- $A_n = \begin{cases} 1 & n = 0; \\ 2A_{n-1} + 1 & n \ge 1. \end{cases}$

- A 1, 2, 3, 4.
- $\boxed{\text{B}} 1, 2, 4, 8.$
- C 1, 3, 6, 12.
- $\boxed{D}$  1, 3, 7, 15.
- E None of the above.
- 17. For  $n \geq 0$ , what is a formula for  $A_n$ , where  $A_n$  satisfies the recurrence

$$A_n = \begin{cases} 1 & n = 0; \\ 2A_{n-1} + 1 & n \ge 1. \end{cases}$$

- $\boxed{\mathbf{A}} \ A_n = 1 + 2n \text{ for } n \ge 0.$
- $\boxed{\mathbf{B}} A_n = 1 + n + n^2 \text{ for } n \ge 0.$
- C  $A_n = 1 + \frac{1}{3}(5n + n^3)$  for  $n \ge 0$ .
- $\boxed{\mathbf{D}} A_n = 2^{n+1} 1 \text{ for } n \ge 0.$
- E None of the above.
- **18.** String x is a palindrome, that is  $x = x^R$  where  $x^R$  is the reversal of x. Which statement about x is **false**?
  - $\boxed{\mathbf{A}}$  x could be the string 1001.
  - $\boxed{\mathrm{B}}$  The reversal of x must be a palindrome, that is  $x^{\mathrm{R}}$  is a palindrome.
  - $\boxed{\mathbf{C}}$  The concatenation of x with itself is a palindrome, that is  $x \cdot x$  is a palindrome.
  - $\boxed{\mathbf{D}}$  x must have even length.
  - [E] The concatenation of x with its reversal is a palindrome, that is  $x \cdot x^{R}$  is a palindrome.
- 19. Rooted binary trees (RBTs) are recursively defined below. How many RBTs have 3 vertices?
  - A 2
  - B 3
  - C 4
  - D 5
  - E 6

## Recursive Definition of RBT

- (1) The empty tree  $\varepsilon$  is an RBT.
- ② If  $T_1, T_2$  are disjoint RBTs with roots  $r_1$  and  $r_2$ , then linking  $r_1$  and  $r_2$  to a *new* root r gives a new RBT with root r.
- (3) Nothing else is an RBT.







- 20. A rooted binary tree (RBT) has 8 vertices. How many links (edges) does the RBT have?
  - A There is not enough information to determine the number of links.
  - B 5
  - C 6
  - D 7
  - E 8

## SCRATCH