Metody przetwarzania i analizy danych w R $_{\mathit{Lukasz~Wawrowski}}$ 

## Contents

| Wprowadzenie |                                                          | 5  |
|--------------|----------------------------------------------------------|----|
| 1            | Wprowadzenie do analizy danych 1.1 Hipoteza statystyczna | 7  |
| 2            | Regresja prosta                                          | 9  |
| 3            | Regresja wieloraka                                       | 11 |

4 CONTENTS

# Wprowadzenie

#### Literatura podstawowa:

- Przemysław Biecek  $Przewodnik\ po\ pakiecie\ R$
- Marek Gągolewski Programowanie w języku R. Analiza danych, obliczenia, symulacje.
- Garret Grolemund, Hadley Wickham R for Data Science (polska wersja)

#### Literatura dodatkowa:

- inne pozycje po polsku
- inne pozycje po angielsku

#### Internet:

- R-bloggers
- rweekly

6 CONTENTS

### Chapter 1

## Wprowadzenie do analizy danych

Podstawowe cele w analizie danych:

- porównanie grup
- prognozowanie
- klasyfikacja

Bez względu na cel analizy jest kilka pojęć, które są wspólne.

### 1.1 Hipoteza statystyczna

Przypuszczenie dotyczące własności analizowanej cechy, np. średnia w populacji jest równa 10, rozkład cechy jest normalny.

Formuluje się zawsze dwie hipotezy: hipotezę zerową  $(H_0)$  i hipotezę alternatywną  $(H_1)$ . Hipoteza zerowa jest hipotezą mówiącą o równości:

$$H_0: \bar{x} = 10$$

Z kolei hipoteza alternatywna zakłada coś przeciwnego:

$$H_1: \bar{x} \neq 10$$

Zamiast znaku nierówności  $(\neq)$  może się także pojawić znak mniejszości (<) lub większości (>).

### 1.2 Poziom istotności i wartość p

Hipotezy statystyczne weryfikuje się przy określonym poziomie istotności  $\alpha$ , który wskazuje maksymalny poziom akceptowalnego błędu (najczęściej  $\alpha = 0,05$ ).

Większość programów statystycznych podaje w wynikach testu wartość p. Jest to prawdopodobieństwo uzyskania obserwowanych wyników przy założeniu prawdziwości hipotezy zerowej.

Generalnie jeśli  $p < \alpha$  - odrzucamy hipotezę zerową.

Krytyka wartości p

### 1.3 Testy parametryczne i nieparametryczne

Testy statystyczne dzielą się na dwie grupy:

- parametryczne, które wymagają spełnienia założeń, ale są dokładniejsze,
- nieparametryczne, które nie wymagają tylu założeń, ale są mniej dokładne.

## Chapter 2

# Regresja prosta

Na podstawie danych dotyczących informacji o doświadczeniu i wynagrodzeniu pracowników zbuduj model określający 'widełki' dla potencjalnych pracowników o doświadczeniu równym 8, 10 i 11 lat.

## Chapter 3

# Regresja wieloraka

Na podstawie danych dotyczących zatrudnienia opracuj model, w którym zmienną zależną jest bieżące wynagrodzenie. Jaka cecha ma największy wpływ na tę wartość?