Objectives

- 1. Use K_w to determine relative amounts of hydroxide and hydronium ions in solution and assess whether the solution is acidic, basic, or neutral
- 2. Calculate equilibrium concentrations and pH using any appropriate approximations
- 3. Determine the pH or pOH of a solution and identify the relationship between these quantities
- 4. Carry out all kinds of pH calculations and calculations using pH to find other quantities

Key Questions

1. Write the expressions for K_c and K_a of water. Recall that $[H_2O] \approx 55$ M. Using this information, the expression for the K_a of water, and the fact that water's K_a is 1.8×10^{-16} , calculate the value of $[\mathrm{H_3O^+}] \times [\mathrm{OH^-}].$

Start with writing the equation:

```
H_2O + H_2O \longrightarrow H_3O^+ + OH
Then the K_c expression: K_c = \frac{[H_3O^+][OH^-]}{[H_2O][H_2O]}
```

To go from K_c to K_a , we remove a factor of $[H_2O]$:

$$K_{a} = \frac{[H_{3}O^{+}][OH^{-}]}{[H_{2}O]}$$

$$\begin{split} K_a &= \frac{[H_3O^+][OH^-]}{[H_2O]} \\ Finally, rearrange to solve for the desired [H_3O^+][OH^-]: \end{split}$$

$$K_a \times [H_2O] = [H_3O^+][OH^-] = 1.8 \times 10^{-16} \times 55 = 1.0 \times 10^{-14}$$

- 2. What is the name for the value calculated in the previous problem? K_{w}
- 3. Use the value of K_w to calculate the hydronium and hydroxide ion concentrations in pure water. Also calculate the pH and pOH of pure water.

```
In pure water, [H_3O^+] = [OH^-], so K_w = [H_3O^+]^2 and [H_3O^+] = [OH^-] = (K_w)^{\frac{1}{2}}
(K_w)^{\frac{1}{2}} = (1.0 \times 10^{-14})^{\frac{1}{2}} = 1.0 \times 10^{-7}
pH = -log[H_3O^+] = 7
pOH = -log[OH^-] = 7
```

4. For the following concentrations, state whether the associated solution will be acidic, basic, or neutral, and calculate the corresponding hydroxide or hydronium concentration.

For a neutral solution, $[H_3O^+] = [OH^-] = 1.0 \times 10^{-7}$, so if $[H_3O^+] > 1.0 \times 10^{-7}$, the solution is acidic and if $[H_3O^+] < 1.0 \times 10^{-7}$, the solution is basic. Similarly, if $[OH^-] > 1.0 \times 10^{-7}$, the solution is basic and if $[OH^-] < 1.0 \times 10^{-7}$, the solution is acidic.

```
Since K_w = 1.0 \times 10^{-14} = [H_3O^+] \times [OH^-], [H_3O^+] = K_w / [OH^-] and [OH^-] = K_w / [H_3O^+].
```

- (a) $[H_3O^+] = 7.2 \times 10^{-4} \text{ M}$ acidic, $[OH^-] = 1.4 \times 10^{-11}$
- (b) $[H_3O^+] = 5.8 \times 10^{-10} \text{ M}$ basic, $[OH^{-}] = 1.7 \times 10^{-5}$
- (c) $[OH^{-}] = 1.8 \times 10^{-6} \text{ M}$ basic, $[H_3O^+] = 5.6 \times 10^{-9}$
- (d) $[OH^{-}] = 1.0 \times 10^{-7} \text{ M}$ neutral, $[H_3O^+] = 1.0 \times 10^{-7}$

5. Given an initial concentration of 0.5 M H_2S and its K_a of 1.1×10^{-7} , determine the equilibrium concentration of HS⁻, the pH of the solution, and [OH⁻].

(R)	$H_2S + H_2O \Longrightarrow H_3O^+ + HS^-$					
I	0.5	_	0	0		
C	-x	_	+x	+x		
E	0.5-x	_	X	X		

$$\begin{array}{l} {\rm K_a} = \frac{{\rm [H_3O^+][HS^-]}}{{\rm [H_2S]}} \implies 1.1 \times 10^{-7} = \frac{x^2}{0.5 - x} \\ {\rm Rearrange:} \ 1.1 \times 10^{-7} (0.5 - x) = x^2 \implies 5.5 \times 10^{-8} - 1.1 \times 10^{-7} x = x^2 \\ \implies x^2 - 5.5 \times 10^{-8} + 1.1 \times 10^{-7} x = 0 \end{array}$$

Now, use quadratic equation to find x = -0.000235, 0.000234. The negative root gives a nonsensical negative concentration, so take the positive root. From the RICE table, we see that x is the equilibrium concentration of HS⁻ so that part of the answer is finished. pH is given by pH = $-\log[H_3O^+]$ and x is also $[H_3O^+]$, so $pH = -\log(0.000234) = 3.63$. As we saw previously, we can get $[OH^-]$ from $K_w/$ $[H_3O^+]$, so $[OH^-] = 1.0 \times 10^{-14} / 2.34 \times 10^{-4} = 4.27 \times 10^{-11} M$.

6. How many moles of NH₃ must be dissolved in 1.00 liters of aqueous solution to produce a solution with a pH of 11.47? The K_a of NH_4^+ is 5.8×10^{-10} .

This will ultimately be a RICE table problem, but first we have to use the pH to calculate the equilibrium concentration of OH⁻. We want OH⁻ in this case because NH₃ is a base and will react with water in the reaction $NH_3 + H_2O \Longrightarrow NH_4^+ + OH^-$. To go from pH to pOH, use the relation that pH + pOH = 14, so 14 - pH = pOH = 14 - 11.47 = 2.53. Like pH, $pOH = -log[OH^-]$, so $[OH^-] = 10^{-pOH} = 10^{-2.53} = 2.95 \times 10^{-3}$. This time, our unknown is actually the initial concentration of NH₃, but we know we start with none of our products but end up with $[OH^-] = 2.95 \times 10^{-3}$, so we know the change and can fill in our RICE table accordingly and actually end up with an easier problem than normal.

(R)	$NH_3 + H_2O \Longrightarrow NH_4^+ + OH^-$				
I	X	_	0	0	
\mathbf{C}	-2.95×10^{-3}	_	$+2.95\times10^{-3}$	$+2.95\times10^{-3}$	
\mathbf{E}	$x - 2.95 \times 10^{-3}$	_	2.95×10^{-3}	2.95×10^{-3}	

 $\mathrm{NH_{3}}$ is a base, so we need a $\mathrm{K_{b}}$ expression, despite being given a $\mathrm{K_{a}}$ value, so convert to $\mathrm{K_{b}}$ using $K_b = K_w / K_a = 1.0e-14 / 5.8 \times 10^{-10} = 1.7 \times 10^{-5}$

$$K_{a} = \frac{[NH_{4}^{+}][OH^{-}]}{[NH_{3}]} \implies 1.7 \times 10^{-5} = \frac{(2.95 \times 10^{-3})^{2}}{x - 2.95 \times 10^{-3}}$$

Now set up the K_b expression: $K_a = \frac{[NH_4^+][OH^-]}{[NH_3]} \implies 1.7 \times 10^{-5} = \frac{(2.95 \times 10^{-3})^2}{x - 2.95 \times 10^{-3}}$ Rearrange and solve for x to get x = 0.515. This is the initial concentration of NH₃ required to make a solution of pH = 11.47, but because the problem specifies the total volume is 1 L, it is also the number of moles desired.

7. Calculate the percent ionization of the weak acid, HA, given a 0.25 M HA solution and a K_a of 5.3×10^{-7} .

The percent ionization is given by the ratio of dissociated acid to the initial amount of acid. For every molecule of acid that dissociates, one molecule of H₃O⁺ and one molecule of conjugate base is produced, assuming a 1:1 stoichiometry, so percent ionization is given by the equation $\%I = \frac{[H_3O^+]}{(HA)_0} \times 100\%$ We have the initial concentration of acid, (HA)₀, so we just need a RICE table to calculate the equilibrium hydronium concentration.

(R)	$HA + H_2O \Longrightarrow H_3O^+ + A^-$					
I	0.25	_	0	0		
\mathbf{C}	$-\mathbf{x}$	_	+x	+x		
\mathbf{E}	0.25 - x	_	x	x		

 $K_a=5.3\times 10^{-7}=\frac{x^2}{0.25-x},~x=-0.000364,0.000364,$ again discarding the negative root to get $x=3.64\times 10^{-4}=[H_3O^+].$ Dividing this by the initial acid concentration and multiplying by 100% gives the percent ionization: $\%I=[H_3O^+]~/~(HA)_0\times 100\%=0.14\%.$