Projeto 3: Algoritmos de Machine Learning

Aluno: Romulo Barros de Freitas

Matrícula: 521353

Agrupamento (Clustering)

K- Means

É um método de aprendizado não supervisionado que particiona objetos de dados em k-grupos onde cada observação pertence ao grupo mais próximo da média (centróides).

Objetiva-se, com a aplicação do algoritimo, agrupar os municipios do estado do Ceará, levando em consideração as seguintes variáveis: Densidade Demográfica, Taxa de Escolarização, Índice de Desenvolvimento Humano Municipal (IDHM), Taxa de Mortalidade Infantil, Receitas Realizadas, Despesas Empenhadas e Produto Interno Bruto (PIB).

Sumário

- 1 Projeto 3: Algoritmos de Machine Learning
 - 1.1 Agrupamento (Clustering)
 - 1.2 K- Means
 - <u>1.3 Etapas</u>
 - o 1.3.1 1. Dimensionar os Dados

- o 1.3.2 Plotando Davies-Bouldin score
- o 1.3.3 2. Iniciar centróides aleatórios
- o 1.3.4 3. Rotular cada ponto com base na distância para o centróide
- o 1.3.5 4. Atualizar os centróides
- o 1.3.6 5. Repetir etapas 3 e 4 até que os centróides se estabilizem
- 1.4 fazendo diretamente por meio do sklearn
- 2 Tópico Extra

```
In [14]: # Bibliotecas que serão utilizadas no trabalho
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sb

%matplotlib inline
    import warnings
    warnings.filterwarnings('ignore')
```

In [15]: from sklearn.metrics import davies_bouldin_score
 from sklearn.cluster import KMeans
 from sklearn.preprocessing import StandardScaler

In [16]: # Dataframe utilizado - todos os municípios do estado do ceará
municipios = pd.read_csv('DF_Cidades.csv')

In [17]: municipios.head()

Out[17]:

	codigo	cidade	prefeito	gentilico	area_territorial	populacao_estimada	densidade_c
0	2300101	Abaiara	AFONSO TAVARES LEITE	abaiarense	180.833	11965	
1	2300150	Acarape	FRANCISCO EDILBERTO BESERRA BARROSO	acarapense	130.002	15140	
2	2300200	Acaraú	ANA FLÁVIA RIBEIRO MONTEIRO	acarauense	842.471	63556	
3	2300309	Acopiara	ANTÔNIO ALMEIDA NETO	acopiarense	2254.279	54687	
4	2300408	Aiuaba	RAMILSON ARAUJO MORAES	aiuabense	2438.563	17584	

```
In [18]: # Selecionando as colunas que serão utilizadas no agrupamento
features = ['densidade_demografica', 'escolarizacao', 'idhm', 'mortalidade_inf
```

In [19]: # Excluindo os valores nulos das variáveis selecionadas
municipios = municipios.dropna(subset=features)

In [20]: # criando o dataframe com as colunas que serão utilizadas para fazer o agrupam
df = municipios[features].copy()

In [21]: df

Out[21]:

	densidade_demografica	escolarizacao	idhm	mortalidade_infantil	receitas_realizadas	despe
0	58.69	96.7	0.628	19.87	29043.96	
1	98.52	96.8	0.606	5.35	38762.54	
2	68.31	96.8	0.601	5.92	132656.39	
3	22.58	97.2	0.595	20.18	153148.71	
4	6.66	97.5	0.569	15.08	37794.63	
177	203.61	95.9	0.639	14.16	46252.58	
178	18.49	97.7	0.566	18.52	36175.66	
179	98.07	96.6	0.611	7.41	51275.61	
180	45.99	97.0	0.629	10.68	79368.16	
181	41.90	96.9	0.571	8.14	126024.79	

169 rows × 7 columns

Etapas

- 1. Dimensionar os dados
- 2. Iniciar centróides aleatórios
- 3. Rotular cada ponto com base na distância para o centróide
- 4. Atualizar os centróides
- 5. Repetir etapas 3 e 4 até que os centróides se estabilizem

1. Dimensionar os Dados

```
In [22]: # Dimensionando os valores do novo dataframe
df = (df - df.min()) / (df.max() - df.min()) * 9 + 1
```

In [23]: df.describe()

Out[23]:

	densidade_demografica	escolarizacao	idhm	mortalidade_infantil	receitas_realizadas
count	169.000000	169.000000	169.000000	169.000000	169.000000
mean	1.131079	7.135672	4.184566	4.073438	1.169573
std	0.716866	1.445865	1.356066	1.997359	0.697428
min	1.000000	1.000000	1.000000	1.000000	1.000000
25%	1.018128	6.400000	3.397196	2.659000	1.053145
50%	1.035284	7.300000	3.985981	3.550000	1.072529
75%	1.071111	8.071429	4.869159	5.200000	1.132268
max	10.000000	10.000000	10.000000	10.000000	10.000000

In [24]: df.head()

Out[24]:

	densidade_demografica	escolarizacao	idhm	mortalidade_infantil	receitas_realizadas	desp
0	1.060191	6.400000	4.700935	6.178	1.038366	
1	1.106268	6.528571	3.775701	1.822	1.051209	
2	1.071319	6.528571	3.565421	1.993	1.175288	
3	1.018417	7.042857	3.313084	6.271	1.202369	
4	1.000000	7.428571	2.219626	4.741	1.049930	

Plotando Davies-Bouldin score

```
In [25]: # Definindo o número total de clusters para fazer o agrupamento

def get_kmeans_score(data, center):
    kmeans = KMeans(n_clusters=center, init='k-means++')
    model = kmeans.fit_predict(df)

# Calculate Davies Bouldin score
    score = davies_bouldin_score(df, model)

return score
```

```
In [26]: scores = []
    centers = list(range(2,8))
    for center in centers:
        scores.append(get_kmeans_score(df, center))

plt.plot(centers, scores, linestyle='--', marker='o', color='b');
    plt.xlabel('K');
    plt.ylabel('Davies Bouldin score');
    plt.title('Davies Bouldin score vs. K');
```

Davies Bouldin score vs. K

De acordo com o Índice Davies-Bouldin score, devemos utilizar 3 clusters para a realização do agrupamento

2. Iniciar centróides aleatórios

```
centroids
In [29]:
Out[29]:
                                         0
                                                   1
                                                            2
            densidade_demografica 1.034671 1.091032
                                                     1.035284
                                                     9.100000
                     escolarizacao
                                  5.757143 8.971429
                            idhm
                                  2.387850
                                            3.901869
                                                     1.925234
               mortalidade_infantil 7.321000 3.037000 1.831000
                receitas_realizadas
                                  1.039834
                                            1.053776
                                                     1.076127
            despesas_empenhadas
                                  1.020505
                                            1.016623
                                                     1.070277
                              pib 2.507142 1.000000 1.383213
```

3. Rotular cada ponto com base na distância para o centróide

```
def get_labels(data, centroids):
In [30]:
              distances = centroids.apply(lambda x: np.sqrt(((df - x) ** 2).sum(axis = 1
              return distances.idxmin(axis = 1)
In [31]: labels = get_labels(df, centroids)
In [32]: labels
Out[32]:
         0
                 0
                 1
         1
         2
                 1
          3
                 0
          4
                 1
         177
                 0
         178
                 0
         179
                 1
         180
                 1
         181
         Length: 169, dtype: int64
In [33]:
         labels.value_counts()
Out[33]:
         1
               113
         0
                41
                15
         dtype: int64
```

De acordo com a nossa clusterização, o cluster 0 englobou 36 municípios, o cluster 1 englobou 111 municípios e o cluster 2 englobou 22 municípios.

4. Atualizar os centróides

```
In [34]: def new_centroids(data, labels, k_clusters):
    return df.groupby(labels).apply(lambda x: np.exp(np.log(x).mean())).T
```

5. Repetir etapas 3 e 4 até que os centróides se estabilizem

```
In [35]: # Análise de componenentes principais
    from sklearn.decomposition import PCA

# Plotagem de gráficos
    import matplotlib.pyplot as plt

# Limpar a saída do jupyter notebook cada vez que criarmos um novo gráfico
    from IPython.display import clear_output

In [36]: def plot_clusters(data, labels, centroids, iteration):
        pca = PCA(n_components = 2) # dados 2D
        df_2d = pca.fit_transform(df)
        centroids_2d = pca.transform(centroids.T)
        clear_output(wait=True)
        plt.title(f'Iteration {iteration}')
        plt.scatter(x=df_2d[:,0], y=df_2d[:,1], c=labels)
        plt.scatter(x=centroids_2d[:,0], y=centroids_2d[:,1])
        plt.show()
```

```
In [37]: max_iterations = 100
k_clusters = 3

centrois = random_centroids(df, k_clusters)
old_centroids = pd.DataFrame()
iteration = 1

while iteration < max_iterations and not centroids.equals(old_centroids):
    old_centroids = centroids

labels = get_labels(df, centroids)
    centroids = new_centroids(df, labels, k_clusters)
    plot_clusters(df, labels, centroids, iteration)
    iteration += 1</pre>
```

Iteration 12

In [38]: centroids

Out[38]:

0 1 2 densidade_demografica 1.039033 1.100527 1.081118 7.408323 7.460768 escolarizacao 4.255031 idhm 3.860702 4.166191 3.381181 mortalidade_infantil 6.816817 2.844471 3.116128 receitas_realizadas 1.069674 1.156746 1.090823 despesas_empenhadas 1.045286 1.126637 **pib** 1.414555 1.699432 1.315480

In [39]: # Municípios pertencentes ao cluster 0
municipios[labels == 0]

Out[39]:

populacao_estimad	area_territorial	gentilico	prefeito	cidade	codigo	
1196	180.833	abaiarense	AFONSO TAVARES LEITE	Abaiara	2300101	0
5468	2254.279	acopiarense	ANTÔNIO ALMEIDA NETO	Acopiara	2300309	3
1758	2438.563	aiuabense	RAMILSON ARAUJO MORAES	Aiuaba	2300408	4
784	1068.437	arneirozense	ANTÔNIO MONTEIRO PEDROSA FILHO	Arneiroz	2301505	17
2271	260.003	barreirense	ANTONIO ALAILSON OLIVEIRA SALDANHA	Barreira	2301950	23
			MICHELE			

In [40]: # Municípios pertencentes ao cluster 1
municipios[labels == 1]

Out[40]:

	codigo	cidade	prefeito	gentilico	area_territorial	populacao_estimada	densid
1	2300150	Acarape	FRANCISCO EDILBERTO BESERRA BARROSO	acarapense	130.002	15140	
2	2300200	Acaraú	ANA FLÁVIA RIBEIRO MONTEIRO	acarauense	842.471	63556	
7	2300705	Alto Santo	JOSE JOENI HOLANDA DE ARAUJO	alto-santense	1147.208	16077	
8	2300754	Amontada	FLAVIO CESAR BRUNO TEIXEIRA FILHO	amontadense	1175.044	44195	
11	2301000	Aquiraz	BRUNO BARROS	aquirazense	480.236	81581	

In [41]: # Municípios pertencentes ao cluster 2
municipios[labels == 2]

Out[41]:

	codigo	cidade	prefeito	gentilico	area_territorial	populacao_estimada d
6	2300606	Altaneira	FRANCISCO DARIOMAR RODRIGUES SOARES	altaneirense	72.675	7712
9	2300804	Antonina do Norte	ANTONIO ROSENO FILHO	antonino ou antoninense	259.706	7402
15	2301307	Araripe	CICERO FERREIRA DA SILVA	araripense	1097.339	21707
26	2302107	Baturité	HERBERLH FREITAS REIS CAVALCANTE MOTA	baturiteense	314.075	36127
30	2302503	Brejo Santo	MARIA GISLAINE SANTANA SAMPAIO LANDIM	brejo-santense	654.658	50195
34	2302909	Capistrano	ANTONIO SOARES SARAIVA JUNIOR	capistranense	226.549	17830
36	2303204	Caririaçu	JOSÉ EDMILSON LEITE BARBOSA	caririaçuense	634.179	27008
41	2303600	Catarina	THIAGO PAES DE ANDRADE RODRIGUES	catarinense	488.153	21041
61	2304608	General Sampaio	FRANCISCO CORDEIRO MOREIRA	sampaiense	230.371	7767
62	2304707	Granja	JULIANA FROTA LOPES DE ALDIGUERI ARRUDA	granjense	2663.174	55170
66	2304954	Guaiúba	IZABELLA MARIA FERNANDES DA SILVA	guaiubano	256.053	26508
71	2305266	Ibaretama	ELIRIA MARIA FREITAS DE QUEIROZ	ibaretamense	879.255	13385

d

	codigo	cidade	prefeito	gentilico	area_territorial	populacao_estimada	(
82	2306108	Irauçuba	PATRÍCIA MARIA SANTOS BARRETO	irauçubense	1466.412	24450	
86	2306504	Itapiúna	FRANCISCO DÁRIO DE OLIVEIRA COELHO	itapiunense	593.231	20653	
102	2307700	Maranguape	ATILA CORDEIRO CAMARA	maranguapense	583.505	131677	
112	2308500	Mombaça	ORLANDO BENEVIDES CAVALCANTE FILHO	mombacense	2115.748	43917	
125	2309706	Pacatuba	CARLOMANO GOMES MARQUES	pacatubano	133.236	85647	
132	2310308	Parambu	ROMULO MATEUS NORONHA	parambuense	2313.868	31391	
143	2311207	Potengi	FRANCISCO EDSON VERIATO DA SILVA	potengiense	343.264	11165	
173	2313559	Tururu	FRANCISCA HILZETE MALVEIRA BATISTA	tururuense	201.270	16588	
176	2313757	Umirim	FELIPE CARLOS UCHÔA SALES RIBEIRO	umiriense	315.648	19976	
177	2313807	Uruburetama	FRANCISCO ALDIR CHAVES DA SILVA	uruburetamense	99.400	22223	

fazendo diretamente por meio do sklearn

```
centroids = kmeans.cluster_centers_
In [45]:
In [46]: pd.DataFrame(kmeans.cluster_centers_, columns=features).T
Out[46]:
                                                           2
           densidade_demografica 1.040659
                                          1.092903
                                                    10.000000
                    escolarizacao
                                7.275380
                                          7.093861
                                                     5.628571
                                                    10.000000
                           idhm 3.940346 4.231366
               mortalidade_infantil 6.812851
                                          3.011438
                                                     3.823000
               receitas_realizadas
                                1.070676
                                          1.135009
                                                    10.000000
            despesas_empenhadas
                                1.045923 1.104510 10.000000
                                1.438642 1.779976
                                                     3.058255
```

Tópico Extra

```
In [47]: new_df = np.array(df)
In [48]: new_df
Out[48]: array([[1.06019065, 6.4
                                        , 4.70093458, ..., 1.03836597, 1.01385969,
                 1.28869597],
                 [1.10626779, 6.52857143, 3.77570093, ..., 1.05120894, 1.02764908,
                 1.42460578],
                [1.0713195, 6.52857143, 3.56542056, ..., 1.17528833, 1.12872518,
                 1.76975432],
                [1.10574721, 6.27142857, 3.98598131, ..., 1.06774478, 1.04287885,
                 2.48816808],
                [1.04549872, 6.78571429, 4.74299065, ..., 1.10486869, 1.0753531,
                 1.45885079],
                 [1.04076722, 6.65714286, 2.30373832, ..., 1.16652477, 1.12082808,
                 1.18376655]])
         kmeans = KMeans(n_clusters = 3, random_state = 0)
In [50]:
         kmeans.fit(new_df)
Out[50]:
                          KMeans
          KMeans(n_clusters=3, random_state=0)
```

3.421

2.659

1.104869

1.166525

```
In [51]: kmeans.labels_
Out[51]: array([2, 1, 1, 2, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 0, 2, 1,
                  1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 1,
                                                            1, 2, 2, 2, 1, 1, 1,
                                  1, 2, 0, 2, 0, 2, 2, 1,
                  1, 1, 1, 2, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1,
                               2, 0, 1, 2, 1, 2, 2, 1,
                                                         2,
                                                             2, 1, 1, 1, 2, 1, 1,
                  1, 2, 1, 1, 1, 2, 0, 0, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1,
                  1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 0,
                  1, 2, 1, 1, 2, 0, 1, 1, 2, 1, 1, 2, 1, 1, 1])
In [52]: df['k_classes'] = kmeans.labels_
In [53]: df
Out[53]:
                densidade_demografica escolarizacao
                                                     idhm mortalidade_infantil receitas_realizadas de
             0
                            1.060191
                                         6.400000 4.700935
                                                                       6.178
                                                                                      1.038366
             1
                            1.106268
                                         6.528571 3.775701
                                                                       1.822
                                                                                      1.051209
             2
                            1.071319
                                         6.528571 3.565421
                                                                       1.993
                                                                                      1.175288
             3
                            1.018417
                                         7.042857 3.313084
                                                                       6.271
                                                                                      1.202369
                            1.000000
                                         7.428571
                                                  2.219626
                                                                       4.741
                                                                                      1.049930
           177
                            1.227841
                                         5.371429 5.163551
                                                                       4.465
                                                                                      1.061107
           178
                            1.013685
                                         7.685714 2.093458
                                                                       5.773
                                                                                      1.047790
           179
                            1.105747
                                         6.271429 3.985981
                                                                       2.440
                                                                                      1.067745
```

6.785714 4.742991

6.657143 2.303738

169 rows × 8 columns

1.045499

1.040767

180

181

In [54]: sb.pairplot(df, hue = 'k_classes', palette = 'muted')

Out[54]: <seaborn.axisgrid.PairGrid at 0x1ffe40798d0>

15 of 15