Задание на четвертую неделю.

№0

См. в прошлом задании номер 9.

№1

(і) Из условия очевидно, что:

$$\phi \in L \Leftrightarrow \exists \vec{x} : \forall \vec{y} \to \phi(\vec{x}, \vec{y}) = 1.$$

- \Rightarrow Из определения $L \in \Sigma_2$.
- (ii) Возьмем следующую задачу: Язык булевых формул от трех наборов переменных $\phi(x_1,\ldots,x_n,y_1\ldots y_n,z_1\ldots z_n)=\phi(\vec{x},\vec{y},\vec{z})$ таких, что при некоторых значениях \vec{x},\vec{z} они справедливы вне зависимости от значений y_1,\ldots,y_n .

$$\varphi \in L \Leftrightarrow \exists \vec{x} : \forall \vec{y} \to \exists \vec{z} : \varphi(\vec{x}, \vec{y}, \vec{z}) = 1.$$

 \Rightarrow Из определения $L \in \Sigma_3.$

(iii)

$$L \in \Sigma_k \Longleftrightarrow (\exists y_1, \dots y_k, R(x, \vec{y}) : R \in P, \forall i | y_i | = poly(|x|), x \in L \Leftrightarrow$$

$$\Leftrightarrow \exists y_1 \forall y_2 \exists \ldots y_k \to R(x,y_1,\ldots,y_k) = 1) \Longleftrightarrow (\exists y_1,\ldots y_k,y_{k+1},R(x,\vec{y}):$$

$$R_1 \in P, \forall i |y_i| = poly(|x|), x \in L \Leftrightarrow$$

$$\Leftrightarrow \forall y_{k+1} \exists y_1 \forall y_2 \exists \dots y_k \to R_1(x, y_1, \dots, y_k, y_{k+1}) = R(x, y_1, \dots, y_k) = 1).$$

 \Rightarrow Из определения $L \in \Pi_{k+1}$.

Аналогично,

$$L \in \Sigma_k \iff (\exists y_1, \dots y_k, R(x, \vec{y}) : R \in P, \forall i | y_i | = poly(|x|), x \in L \Leftrightarrow$$

$$\Leftrightarrow \exists y_1 \forall y_2 \exists \dots y_k \to R(x,y_1,\dots,y_k) = 1) \Longleftrightarrow (\exists y_1,\dots y_k,y_{k+1},R(x,\vec{y}): \sqsubseteq$$

$$x \in L \Leftrightarrow \exists y_1 \forall y_2 \exists \dots y_k (\forall ? \exists) y_{k+1} \rightarrow R_1(x, y_1, \dots, y_k, y_{k+1}) = R(x, y_1, \dots, y_k) = R(x, y_$$

где ? означает, что может быть один из кванторов (это ни на что не влияет, т. к. R_1 не зависит от y_{k+1}). \Rightarrow Из определения $L \in \Sigma_{k+1}$. (iv) Покажем, что $3SAT \in PSPACE$:

Пусть дана формула из п переменных. Для каждого из 2^n возможных набора значений переменных проверим истинность этой формулы на нем (это делается за O(n) пространства), освобождая после каждой проверки использованное пространство. \Rightarrow 3SAT \subseteq PSPACE. Т. к. 3SAT это NP—complete, то значит любую задачу из NP можно решить за PSPACE, сведя полиномиально к 3SAT. NP \subseteq PSPACE. В машине Тьюринга с полиномиальным числом ячеек не более экспоненциального числа всесвозможных конфигураций. Значит МТ справится, перебрав их, за экспоненциальное число шагов. \Rightarrow PSPACE \subseteq EXPTIME.

№2

Рассмотрим матрицу $n \times n$, где

 $\alpha_{xy} = \begin{cases} 1, & \text{элементу с номером } i_x \text{ можно занимать позицию } j_y \\ 0, & \text{элементу с номером } i_x \text{ запрещено занимать позицию } j_y \end{cases}$

Тогда перманент этой матрицы равный

$$Per = \sum_{k=1}^{n!} a_{1y_1(k)} \dots a_{ny_n(k)},$$

где $y_1(k), \ldots y_n(k)$ это k-ая перестановка n множества чисел $\{1,,n\}$, и есть искомое в задаче значение: т. к. произведение $\alpha_{1y_1(k)} \ldots \alpha_{ny_n(k)}$ отлично от нуля и равно единицы тогда и только тогда, когда k-ая перестановка такая, что соответствующая ей перестановка элементов допустимая (т. е. все элементы $i_{y_x(k)}$ стоят на разрешенных местах j_x), иначе $\alpha_{xy_x(k)}$ равнялось бы нулю. Таким образом, количетво единичных слагаемых в сумме равно кол-ву допустимых перестановок из n элементов и равно перманентну введенной матрицы.

№3

Покажем полиномиальный алгоритм, решающий задачу L выполнимости $\Delta H \Phi$:

Пусть дана формула с n переменными и m конъюнктами, чтобы проверить ее выполнимость будем для каждого конъюкта проверять, есть ли в нем противоположные литералы (т. е. x и \bar{x}). Формула выполнима тогда и только тогда, когда нашелся хотя бы один конъюкт, в котором нет противоположных литералов. Проверка конъюкта занимает не более n^2 , попарных сравнений элементов в конъюкте. Всего конъюктов m, значит сложность алгоритм $O(n^2m)$, \bar{x} . е. полиномиальный алгоритм построен. $\Rightarrow L \in P$.

Рассуждение, что любую $KH\Phi$ можно преобразовать в эквивалентную $\Delta H\Phi$, поэтому задача выплнимости $KH\Phi$ сводится к задаче выполнимости $\Delta H\Phi$ и лежит в P, не правильно, т. к. не учитывает сложность сведения $KH\Phi$ к $\Delta H\Phi$ (она может быть экспоненциальна).

№3.5

Как уже раньше было показано проверка выполнимости CNF это NP-complete. Из прошлой задачи, проверка выполнимости DNF это P.

Проверить формулу ф на тавтологию \iff проверить $\bar{\Phi}$ на выполнимость. С помощью правил Моргана, если ф имеет форму CNF или DNF, ее отрицание можно за полиномиальное время преобразовать в DNF или CNF соответственно. Т. к. проверка выполнимости CNF это NP—complete, то проверка на тавтологию DNF со—NP—complete. Аналогично, проверка на тавтологию CNF это P.

№5

Да, останется. Покажем как свести к этому языку L обычный язык 3SAT: Пусть переменная x повторяется формуле φ k раз. Вместо каждого вхождения x поставим переменные x_1, \ldots, x_k и добавим дизьюнкт $(x_1 \vee \bar{x_2}) \wedge (x_2 \vee \bar{x_3}) \ldots ((x_{k-1} \vee \bar{x_k}) \wedge (x_k \vee \bar{x_1})$. Эту операцию

повторим для всех переменных, входящих в формулу больше двух раз. Это и будет функция преобразования (она очевидно полиномиальна по времени). В полученной формуле каждый литерал содержится не более двух раз. Каждый присоединенный дизъюнкт верен тогда и только тогда, когда новые перемены, заменяющие x, равны между собой. Значит, если ф принимало истинные значения на некотором наборе, то преобразованная формула так же будет истинна на наборе значений, где заменяющим переменным присвоено значение переменной из старого набора, которую они заменяют. И наоборот. Таким образом, $3SAT \leq_p L$, а значит L полный язык. T. е. сведение выполнено.

№6

Пусть функция f такая, что f(G)=G, если в графе <2k вершин или G это вообще не граф, а иначе f(G)=G', где G' граф, полученный из G добавлением V-2k вершин (V это количество вершин в G), соединенных попарно со всеми остальными вершинами. f - полиномиальная функция.

Если в графе G есть клика размером k и $V \geq 2k$, то в графе G' вершины из этой клики вместе с новодобавленными вершинами образуют клику размером V-2k+k, а это половина вершин в новом графе из V-2k+V вершин. $\Rightarrow G \in L_k \Longrightarrow f(G) \in L_{0.5}$.

Если в графе G' с 2V-2k вершинами есть клика размером хотя бы V-k, то после того как мы уберем добавленные V-2k вершин (применим f^{-1} , размер клики уменьшится не более чем на V-2k, т. е. в графе G есть клика размером k.

$$\Rightarrow$$
 G \in L $_k$ \Leftrightarrow f(G) \in L $_{0.5}$. Значит, L $_k$ $\leq_\mathfrak{p}$ L $_{0.5}$

№4

Из матанализа
$$k^{\alpha} \leq \int_{k}^{k+1} x^{\alpha} dx \leq (k+1)^{\alpha}. \Rightarrow \int_{0}^{k} x^{\alpha} dx \leq \sum_{k=1}^{n} k^{\alpha} \leq \int_{1}^{k+1} x^{\alpha} dx. \Rightarrow k^{\alpha+1} \cdot \frac{1}{\alpha+1} \leq \sum_{k=1}^{n} k^{\alpha} \leq (k+1)^{\alpha+1} \cdot \frac{1}{\alpha+1} - \frac{1}{\alpha+1}.$$
 $\Rightarrow \sum_{k=1}^{n} k^{\alpha} = \Theta(k^{\alpha+1}).$ В частности:

$$\sum_{k=1}^{n} \sqrt{k} = \Theta(k^{3/2})$$

$N_{\overline{2}}7$ a)

 Δ а, верно, например $f(n) = n^{\log_2 n}$:

•
$$\frac{n^c}{n^{\log_2 n}} = \frac{1}{n^{c-\log_2 n}} \longrightarrow 0$$
 при $n \to \infty. \Rightarrow f(n) = \omega(n^c).$

•
$$\sqrt{\log f(n)} = \sqrt{\log^2 n} = \log_n = O(\sqrt{n}) = O(\sqrt{\log f(2^{nd})}). \Rightarrow f(n) = O(2^{nd}).$$

№7 б)

Нет, неверно, т. к. не ясно, можно ли свести полиномиально DNF к 4DNF. Если такой все-таки такой алгоритм есть, то тогда из задачи это верно, т. к. вытекает из задачи 3.