重庆大学

学生实验报告

实验课程名称	水数学实验
开课实验室	重庆大学虎溪校区 LD104
学 院	大数据与软件学院 年级 2021 级专业班 软件
工程X班	
学生姓名	学 号 <u>2021XXXX</u>
开课时间	至
总 成 绩	

数统学院制

开课学院、实验室: 数学与统计学院、LD104 实验时间: 2022 年 9 月 4 日

课程	数学实验	实验	项目	MATLAB 初步	实验项目类型					
名称	双于入 疆		称	WIATLAD 19179	验证	演示	综合	设计	其他	
指导	XX	成	绩		1					
教师										

题目1

某零售店有9种商品的单件进价(元)、售价(元)及一周的销量如表1,问哪种商品的利润最大,哪种商品的利润最小;按收入由小到大,列出所有商品及其收入;求这一周该9种商品的总收入和总利润。

	表 1										
货号	1	2	3	4	5	6	7	8	9		
单件进价	7. 15	8. 25	3. 20	10.30	6.68	12.03	16.85	17. 51	9.30		
单件售价	11.10	15.00	6.00	16. 25	9.90	18. 25	20.80	24. 15	15. 50		
销量	568	1205	753	580	395	2104	1538	810	694		

程序1

```
%设定数据输出格式
1
      format shortg
      %清空命令行窗口内容
3
      clc;
4 -
      %清空工作区变量
      clear:
6 -
      %列出货号、进价、售价、销量
7
                          4 5 6 7
      Serial=[ 1 2 3
      Purchase=[7.15 8.25 3.20 10.30 6.68 12.03 16.85 17.51 9.30];
9 -
      Selling=[11.10 15.00 6.00 16.25 9.90 18.25 20.80 24.15 15.50]:
10 -
      Sales=[568 1205 753 580 395 2104 1538 810
                                                       694]:
11 -
      %计算单种商品卖出一件的利润
12
      ProfitPer=Selling-Purchase;
13 -
      %计算单种商品销售一周的利润
14
15 -
      ProfitWeek=ProfitPer.*Sales:
      %输出单种商品销售一周的最大利润及其编号
16
      fprintf('单种商品销售一周的最大利润及其编号:')
17 -
      [MaxProfit, MaxGoods] = max (ProfitWeek)
18 -
      %输出单种商品销售一周的最小利润及其编号
19
20 -
      fprintf('单种商品销售一周的最小利润及其编号:')
      [MinProfit, MinGoods] = min(ProfitWeek)
21 -
      %计算每样商品的一周收入
22
      Income=Selling.*Sales;
23 -
      %按照收入由小到大列出所有商品及其收入
24
      fprintf('按照收入由小到大列出所有商品及其收入:')
25 -
      [a, b] = sort (Income):
26 -
      EachIncome=[b;a]
27 -
      %求出这一周9种商品的总收入和总利润
      fprintf('总收入为:')
29 -
      AllIncome=sum(Income)
30 -
     fprintf('总利润为:')
31 -
      AllProfit=sum(ProfitWeek)
32 -
```

```
单种商品销售一周的最大利润及其编号:
MaxProfit =
    13087
MaxGoods =
  6
单种商品销售一周的最小利润及其编号:
MinProfit =
  1271.9
MinGoods =
  5
按照收入由小到大列出所有商品及其收入:
EachIncome =
1 至 7 列
   5 3 1 4 9 2 8
3910.5 4518 6304.8 9425 10757 18075 19562
 8 至 9 列
   7 6
31990 38398
总收入为:
AllIncome =
 1.4294e+05
总利润为:
AllProfit =
    46052
```

结果1

题目2

建立一个命令 M-文件: 求所有的"水仙花数", 所谓"水仙花数"是指一个三位数, 其各位数字的立方和等于该数本身。例如, 153 是一个水仙花数, 因为 153=13+53+33。

程序2

```
%清空命令行窗口内容
1
     clc:
     %清空工作区变量
3
4 -
     clear;
     the=[];
5 -
6 - for i=100:1:999
         %求出个位
7
          a=mod(i, 10);
8 -
         %求出十位
9
         b=mod((i-a)/10, 10);
10 -
         %求出百位
11
         c=floor(i/100);
12 -
         %判断是否为水仙花数
13
         if i==a^3+b^3+c^3
14 -
         the (end+1)=i;
15 -
          end
16 -
    - end
17 -
     %输出水仙花数
18
     fprintf('三位数的水仙花数分别为:')
19 -
     disp(the);
20 -
```

结果 2

三位数的水仙花数分别为: 153 370 371 407

题目3

某厂生产一种弹子锁具,锁具的钥匙有 5 个槽,槽高从 {1,2,3,4,5,6} 中任取一数,并满足下列条件:

- 1) 至少有三个槽的高度互不相同
- 2) 相邻两个槽高度差不为 5 所有互不相同的锁具称为一批,求一批锁具中共有多少把锁?

程序3

```
%清空命令行窗口内容
1
 2 -
        clc;
       %清空工作区变量
 3
 4 -
       clear;
 5 -
       Sum=0;
 6 -
       n=5;
 7 - for i1=1:n+1
 8 -
     Ė
          for i2=1:n+1
      ψ.
 9 -
              for i3=1:n+1
      \Box
10 -
                   for i4=1:n+1
11 -
                       for i5=1:n+1
12 -
                           x1=i1;
13 -
                           x2=i2;
14 -
                           x3=i3;
15 -
                           x4=i4;
16 -
                           x5=i5;
17 -
                           themax=max([x1, x2, x3, x4, x5]);
18 -
                           themin=min([x1, x2, x3, x4, x5]);
                           N=(themax-x1)*(x1-themin)+(themax-x2)*(x2-themin)+(themax-x3)*(x3-themin)
19 -
                           next=max([abs(x1-x2), abs(x2-x3), abs(x3-x4), abs(x4-x5)]);
20 -
21 -
                           if N>0
22 -
                               if next<5
23 -
                                   Sum=Sum+1;
                               end
24 -
25 -
                           end
26 -
                        end
27 -
                    end
28 -
                end
29 -
            end
30 -
       ∟ end
        %输出结果
31
32 -
        Sum
```

结果3

Sum = 5880

分析 通过本次实验的学习,我初步接触并了解了 Matlab 软件,对 Matlab 的基本语法有了一定的认识,学习并使用了诸如 max、min、sort、abs 等数学函数,这些函数对于问题的成功解决起到很大的作用,使用方法也非常便利。这次实验中我也存在许多不足,代码或许可以写得更加简练明了,对内存的占用更小,这一点有待改进。我仅仅见识到了 Matlab 软件强大功能的冰山一角,更多的功能需要在接下来的学习中了解掌握,但我相信,今后我将会利用 Matlab 解决更多的实际问题,收获许多成果。

备注:

1、一门课程有多个实验项目的,应每一个实验项目一份,课程结束时将该课程所有实验项目 内页与封面合并成一个电子文档上交。