

MANUAL DE PRACTICAS

Nombre de la práctica		XPRESIONES REGULARES – UNIDAD 2					
Asignatura:	LENGUAJES Y AUTÓMATAS I	Carrera:	INGENIERÍA EN SISTEMAS COMPUTACIONALES- 3501	Duración de la práctica (Hrs)	5 horas		

NOMBRE DEL ALUMNO: Jesús Navarrete Martínez

GRUPO: 3501

I. Competencia(s) específica(s):

Crea y reconoce Expresiones Regulares para solucionar problemas del entorno.

Encuadre con CACEI: Registra el (los) atributo(s) de egreso y los criterios de desempeño que se evaluarán en la materia.

No.	Atributos de egreso del	No.	Criterios de desempeño	No. Indicador	Indicadores
atributo	PE que impactan en la asignatura	Criterio			
	El estudiante diseñará esquemas de trabajo y procesos, usando	CD1	Identifica metodologías y procesos empleados en la resolución de problemas	I1	Identificación y reconocimiento de distintas metodologías para la resolución de problemas
2	metodologías congruentes en la resolución de problemas de Ingeniería en Sistemas Computacionales	CD2	Diseña soluciones a problemas, empleando metodologías apropiadas al área	l1 l2	Uso de metodologías para el modelado de la solución de sistemas y aplicaciones Diseño algorítmico (Representación de diagramas de transiciones)
3	El estudiante plantea soluciones basadas en tecnologías empleando su juicio ingenieril para valorar necesidades,	CD1	Emplea los conocimientos adquiridos para el desarrollar soluciones	I1 I2	Elección de metodologías, técnicas y/o herramientas para el desarrollo de soluciones Uso de metodologías adecuadas para el desarrollo de proyectos Generación de productos y/o proyectos
	recursos y resultados esperados.	CD2	Analiza y comprueba resultados	l1 12	Realizar pruebas a los productos obtenidos Documentar información de las pruebas realizadas y los resultados

II. Lugar de realización de la práctica (laboratorio, taller, aula u otro):

Laboratorio de cómputo y equipo de cómputo personal.

III. Material empleado:

- Equipo de cómputo
- Software para desarrollo

MANUAL DE PRACTICAS

IV. Desarrollo de la práctica:

Diagramas a utilizar para el desarrollo de los ejercicios:

Diagrama T1

Alfabeto:

• V = { letra, digito, _ ,\$ }

Conjuntos:

- letra = { [a − z], [A − Z]}
- digito = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }
- símbolos = { \$, _ }

Expresión regular:

letra* (letra | \$ | _) letra* (digito+ letra*)*

Lenguaje por comprensión:

 $L = \{ w \in \{ letra, digito, _, \$ \}^* \mid w cumple con (letra^* (letra | \$ | _) letra^* (digito^+ letra^*)^*) \}$

		letra	digito	\$	_	palabra vacia
inicial	q0	q1, q0	q3	q1	q1	q3
aceptación	q1	q1	q2			
aceptación	q2	q2	q2			
	q3	q3	q3			

MANUAL DE PRÁCTICAS

Diagrama T2

Alfabeto:

• V = { letraMayus , letraMinus }

Conjuntos:

- letraMayus = { [A Z] }
- letraMinus = $\{ [a z] \}$

Expresión regular:

(letraMayus letraMinus⁺)

Lenguaje por comprensión:

L = { w € { letraMayus, letraMinus }* | w cumple con (letraMayus letraMinus+) }

		letraMayus	letraMinus
inicial	q0	q1	
	q1		q2
aceptación	q2		q2

ESTADO DE MÉXICO

MANUAL DE PRACTICAS

Diagrama T3

Alfabeto:

• V = { signo, digito, operadorArit, = }

Conjuntos:

- Signo = { +, } digito = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }
- operadorArit = { +, -, *, $^{\wedge}$, / }
- $igual= \{ = \}$

Expresión regular:

(signo digito⁺ (operadorArit signo digito⁺)* =)

Lenguaje por comprensión:

L = { w € { signo, digito, operadorArit, = }* | w cumple con (signo digito+ (operadorArit signo digito+)* =) }

		signo	digito	operadorArit	igual	palabra vacia
inicial	q0	q1				
	q1		q2			
	q2		q2	q3	q4	
	q3					q0
aceptación	q4					

MANUAL DE PRACTICAS

Diagrama T4

Alfabeto:

V = { digito, punto, operador, igual }

Conjuntos:

- digito = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }
- punto = { }
- operador = { +, -, *, ^, / }
- igual= { = }

Expresión regular:

digito+ ((punto | operador) digito+)* igual

Lenguaje por comprensión:

L = { w € { digito, punto, operador, igual }* | w cumple con la propiedad digito+ ((punto | operador) digito+)* igual }

		digito	punto	operador	igual	palabra vacia
inicial	q0	q1				
	q1	q1	q0	q2	q3	
	q2					q0
aceptacion	q3					

MANUAL DE PRACTICAS

EJERCICIO 1

UNION DE T1 CON T2

Alfabeto:

• V = {letra, digito, \$, _ , letraMayus, letraMinus }

Conjuntos:

- letra = { letraMayus, letraMinus }
- digito = $\{0,1,2,3,4,5,6,7,8,9\}$
- símbolos = {\$, _}
- letraMayus = { [A-Z] }
- letraMinus = { [a-z] }

Expresión regular:

(letra* (letra | \$ | _) letra* (digito+ letra*)*) U (letraMayus letraMinus+)

Lenguaje por comprensión:

L = { w € { letra, digito, \$, _}* | w cumple con la propiedad (letra* (letra | \$ | _) letra* (digito+ letra*)*) U (letraMayus letraMinus+) }

		letra	digito	\$	-	letraMayus	letraMinus	palabra vacia
inicio	q0	q1, q4	q3	q4	q4	q6		q3,q2
	q1	q1,q4	q3	q4	q4			q3
	q2					q6		
	q3	q3	q3					
final	q4	q4	q5					
final	q5	q5	q5					
	q6						q7	
final	q7						q7	

MANUAL DE PRACTICAS

EJERCICIO 2

UNION DE T3 CON T4

Alfabeto:

• V = {signo, digito, igual, punto, operador}

Conjuntos:

- signo = { +, }
- digito = $\{0,1,2,3,4,5,6,7,8,9\}$
- igual = { = }
- punto = { . }
- operador = {+, -, /, *, ^}

Expresión regular:

(signo digito+ (operadorArit signo digito+)* igual) U (digito+ ((punto | operador) digito+)* igual)

Lenguaje por comprensión:

 $L = \{ \ w \in \ \{ \ signo, \ digito^+ \ (operador \ \}^* \ | \ w \ cumple \ con \ la \ propiedad \ (signo \ digito^+ \ (operador \ signo \ digito^+)^* \ igual) \ \}$

		signo	digito	punto	operador	igual	palabra vacia
inicial	q0	q3	q8				q1,q2
	q1	q3					
	q2		q8				
	q3		q4				
	q4		q4		q5	q6	
	q5						q1
final	q6						
	q7						q2
	q8					q9	
final	q9						

MANUAL DE PRACTICAS

EJERCICIO 3

• CONCATENACIÓN DE T3 CON T4

Alfabeto:

V = {signo, digito, igual, punto, operador}

Conjuntos:

- signo = { +, }
- digito = $\{0,1,2,3,4,5,6,7,8,9\}$
- igual = { = }
- punto = { . }
- operador = {+, , / , *, %}

Expresión regular:

(signo digito⁺ (operador signo digito⁺)* igual) . (digito⁺ ((punto | operador) digito⁺)* igual)

Lenguaje por comprensión:

L = { $w \in \{ \text{ signo, digito, igual, punto, operador } \}^* | w \text{ cumple con la propiedad (signo digito+ (operador signo digito+)* igual) }$

		digito	punto	operador	signo	igual	palabra vacia
inicial	q0				q1		
	q1	q2					
	q2	q2		q3		q4	
	q3						q0
	q4						q5
	q5	q6					
	q6	q6		q8		q7	
final	q7						
	q8						q5

MANUAL DE PRACTICAS

EJERCICIO 4

CONCATENACIÓN DE T4 CON T3

Alfabeto:

V = { signo, digito, igual, punto, operador }

Conjuntos:

- signo = { +, }
- digito = $\{0,1,2,3,4,5,6,7,8,9\}$
- igual = { = }
- punto = { . }
- operador = {+, , / , *, %}

Expresión regular:

(digito⁺ ((punto | operador) digito⁺)* igual) . (signo digito⁺ (operadorArit signo digito⁺)* igual)

Lenguaje por comprensión:

 $L = \{ w \in \{ \text{ signo, digito, igual, punto, operador} \}^* \mid w \text{ cumple con la propiedad (digito}^+ ((\text{punto} \mid \text{operador}) \text{ digito}^+)^* \text{ igual} \}$

		digito	punto	operador	signo	igual	palabra vacia
inicial	q0	q1					
	q1	q1	q0	q2		q3	
	q2						q0
	q3						q4
	q4				q5		
	q5	q6					
	q6	q6		q7		q8	
	q7						q4
final	q8						

MANUAL DE PRACTICAS

EJERCICIO 5

ESTRELLA DE KLEENE DE T4

Alfabeto:

• V = { digito, punto, operador, igual }

Conjuntos:

- digito = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }
- punto = { }
- operador = { +, -, *, ^, / }
- igual= { = }

Expresión regular:

(digito+ ((punto | operador) digito+)* igual)*

Lenguaje por comprensión:

L = { $w \in \{ \text{ digito, punto, operador, igual } \}^* \mid w \text{ cumple con la propiedad (digito}^+ ((\text{punto } | \text{ operador}) \text{ digito}^+)^* \text{ igual})^* \}$

		digito	punto	operado	or igual	palabra vacia
inicio	q0	q3				q1
	q1	q3				
	q2					q1
	q3	q3	q1	q2	q4	
final	q4	q3				q1

MANUAL DE PRACTICAS

EJERCICIO 6

ESTRELLA DE KLEENE DE T3

Alfabeto:

• V = { signo, digito, operadorArit, = }

Conjuntos:

- Signo = { +, }
- digito = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }
- operadorArit = { +, , *, ^, / }
- igual= { = }

Expresión regular:

(signo digito⁺ (operadorArit signo digito⁺)* =)*

Lenguaje por comprensión:

L = { w € { signo, digito, operadorArit, = }* | w cumple con (signo digito+ (operadorArit signo digito+)* =)* }

		signo	digito	operadorArit	igual	palabra vacia
inicio	q0	q2				q1
	q1	q2				
	q2		q3			
	q3		q3	q4	q5	
	q4					q1
final	q5	q2				q1

MANUAL DE PRÁCTICAS

V. Conclusiones:

Las expresiones regulares son una herramienta fundamental en la teoría de autómatas y lenguajes formales, utilizadas para describir patrones en conjuntos de cadenas sobre un alfabeto determinado. Estas expresiones permiten representar de manera concisa lenguajes regulares mediante combinaciones de operaciones como la concatenación, la unión y la estrella de Kleene. Su capacidad para definir estructuras repetitivas, opcionales o alternativas dentro de cadenas las hace esenciales para diversas aplicaciones en ciencias computacionales, desde el análisis de texto hasta el diseño de compiladores.

Su uso es particularmente relevante en tareas como la validación de entradas, la búsqueda y reemplazo de patrones en texto, así como en el diseño de compiladores y procesadores de lenguajes de programación. Las expresiones regulares permiten representar tanto patrones simples como aquellos que requieren un mayor nivel de complejidad, como combinaciones de letras, dígitos y símbolos especiales, ajustándose a una amplia variedad de contextos.

Dominar las operaciones y el alcance de las expresiones regulares no solo mejora la capacidad para modelar y manipular datos, sino que también optimiza procesos que requieren reconocimiento eficiente de patrones. En conclusión, las expresiones regulares son un recurso indispensable para el análisis y procesamiento de lenguajes en la computación moderna, permitiendo soluciones elegantes y precisas a problemas que involucran la estructura y validación de datos textuales.