Summary of One-Sample Hypothesis-Testing Procedures

O.C. Curve Appendix Chart VII	a, b c, d c, d	e, f g, h g, h	i, j k, l m, n	
O.C. Curve Parameter	$d = \mu - \mu_0 /\sigma$ $d = (\mu - \mu_0)/\sigma$ $d = (\mu_0 - \mu)/\sigma$	$d = \mu - \mu_0 /\sigma$ $d = (\mu - \mu_0)/\sigma$ $d = (\mu_0 - \mu)/\sigma$	$\lambda = \sigma/\sigma_0$ $\lambda = \sigma/\sigma_0$ $\lambda = \sigma/\sigma_0$	
P-value	$P = 2[1 - \Phi(z_0)]$ Probability above z_0 $P = 1 - \Phi(z_0)$ Probability below z_0 $P = \Phi(z_0)$	Sum of the probability above $ t_0 $ and below $- t_0 $ Probability above t_0 Probability below t_0	See text Section 9.4.	$P = 2[1 - \Phi(z_0)]$ Probability above z_0 $P = 1 - \Phi(z_0)$ Probability below z_0 $P = \Phi(z_0)$
Fixed Significance Level Criteria for Rejection	$ z_0 > z_{\alpha/2}$ $z_0 > z_{\alpha}$ $z_0 < -z_{\alpha}$	$ t_0 > t_{\alpha/2, n-1}$ $t_0 > t_{\alpha, n-1}$ $t_0 < -t_{\alpha, n-1}$	$\chi_0^2 > \chi_{\alpha/2, n-1}^2$ or $\chi_0^2 < \chi_{1-\alpha/2, n-1}^2$ $\chi_0^2 > \chi_{\alpha, n-1}^2$ $\chi_0^2 > \chi_{\alpha, n-1}^2$ $\chi_0^2 < \chi_{1-\alpha, n-1}^2$	$ z_0 > z_{\alpha/2}$ $z_0 > z_{\alpha}$ $z_0 < -z_{\alpha}$
Alternative Hypothesis	$H_1\colon \mu eq \mu_0$ $H_1\colon \mu < \mu_0$ $H_1\colon \mu < \mu_0$	$H_1\colon \mu \neq \mu_0$ $H_1\colon \mu > \mu_0$ $H_1\colon \mu < \mu_0$	H_1 : $\sigma^2 \neq \sigma_0^2$ H_1 : $\sigma^2 > \sigma_0^2$ H_1 : $\sigma^2 < \sigma_0^2$	$H_1: p \neq p_0$ $H_1: p > p_0$ $H_1: p < p_0$
Test Statistic	$z_0 = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$	$t_0 = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$	$x_0^2 = \frac{(n-1)s^2}{\sigma_0^2}$	$z_0 = \frac{x - np_0}{\sqrt{np_0(1 - p_0)}}$
Null Hypothesis	H_0 : $\mu=\mu_0$ σ^2 known	H_0 : $\mu=\mu_0$ σ^2 unknown	H_0 : $\sigma^2=\sigma_0^2$	H_0 : $p=p_0$
Case	_	2.	3.	4.

Summary of One-Sample Confidence Interval Procedures

Variance σ^2 of a normal distribution Proportion or parameter of a binomial distribution p

Summary of Two-Sample Hypothesis-Testing Procedures

O.C. Curve Appendix Chart VII	a, b	c,d	c,d	e,f	8, h 8, h	I	l					o, p	9, r	-		
O.C. Curve Parameter	$d = \frac{ \mu_1 - \mu_2 - \Delta_0 }{\sqrt{\sigma_1^2 + \sigma_2^2}}$	$d = \frac{\mu_1 - \mu_2 - \Delta_0}{\sqrt{\sigma_1^2 + \sigma_2^2}}$	$d = \frac{\mu_2 - \mu_1 - \Delta_0}{\sqrt{\sigma_1^2 + \sigma_2^2}}$	$d = \Delta - \Delta_0 /2\sigma$	$d = (\Delta - \Delta_0)/2\sigma$ $d = (\Delta_0 - \Delta)/2\sigma$ where $\Delta = \mu_1 - \mu_2$			l			1 1	$\lambda = \sigma_1/\sigma_2$	$\lambda = \sigma_1/\sigma_2$	I		
P-value	$P=2[1-\Phi(z_0)]$	Probability above z_0 $P = 1 - \Phi(z_0)$	Probability below z_0 $P = \Phi(z_0)$	Sum of the probability above $ t_0 $ and below $- t_0 $	Probability above t_0 Probability below t_0	Sum of the probability above $ t_0 $ and below $- t_0 $	Probability below t_0			Sum of the probability	Probability above t_0 Probability below t_0	See text Section 10-5.2.		$P = 2[1 - \Phi(z_0)]$	Probability above z_0 $P = 1 - \Phi(z_0)$	Probability below z_0 $P = \Phi(z_0)$
Fixed Significance Level Criteria for Rejection	$ z_0 >z_{lpha/2}$	$z_0 > z_{lpha}$	$\overset{\circ}{\sim}_0$	$ t_0 > t_{\alpha/2,n_1+n_2-2}$	$t_0 > t_{\alpha,n_1+n_2-2}$ $t_0 < -t_{\alpha,n_1+n_2-2}$	$ t_0 >t_{lpha/2, u}$	$t_0 > t_{\alpha,\nu}$ $t_0 < -t_{\alpha,\nu}$	Δ΄Σ. 		$ t_0 >t_{\alpha/2,n-1}$	$t_0 > t_{lpha,n-1}$ $t_0 < -t_{lpha,n-1}$	$f_0 > f_{\alpha/2, n_1 - 1, n_2 - 1}$	or $f_0 < f_{1-\alpha/2, n_1-1, n_2-1}$ $f_0 > f_{\alpha, n_1-1, n_2-1}$	$ z_0 >z_{lpha/2}$	$z_0>z_lpha$	$z_0 < -z_lpha$
Alternative Hypothesis	H_1 : $\mu_1 = \mu_2 eq \Delta_0$	$H_1\colon \mu_1-\mu_2>\Delta_0$	H_1 : $\mu_1 - \mu_2 < \Delta_0$	H_1 : $\mu_1 - \mu_2 \neq \Delta_0$	$H_1\colon \mu_1-\mu_2>\Delta_0 \ H_1\colon \mu_1-\mu_2<\Delta_0$	H_1 : $\mu_1 - \mu_2 \neq \Delta_0$	$H_1\colon \mu_1=\mu_2>\Delta_0$ $H_1\colon \mu_1=\mu_2<\Delta_0$	1 , 72 <u>1</u>		H_1 : $\mu_d \neq 0$	$H_1\colon \mu_d>0 \ H_1\colon \mu_d<0$	H_1 : $\sigma_1^2 \neq \sigma_2^2$	$H_1;\sigma_1^2>\sigma_2^2$	$H_1: p_1 \neq p_2$	H_1 : $p_1 > p_2$	$H_1: p_1 < p_2$
Test Statistic	$z_0 = \frac{\bar{x}_1 - \bar{x}_2 - \Delta_0}{\sqrt{\sigma_1^2 + \sigma_2^2}}$	$\sqrt{n_1}$ n_2		$t_0 = \overline{x_1 - \overline{x_2} - \Delta_0}$	$s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	$t_0 = \frac{\bar{x}_1 - \bar{x}_2 - \Delta_0}{\sqrt{\gamma}}$	$\sqrt{\frac{s_1^2}{n_1}}$	+	$\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}$	$t_0 = \frac{\overline{d}}{\sqrt{dt}}$	11 ^ /Ps	$f_0 = s_1^2 / s_2^2$		$z_0 = \frac{\hat{p}_1 - \hat{p}_2}{z_0}$	$\sqrt{\hat{p}(1-\hat{p})\left[\frac{1}{n}+\frac{1}{n_2}\right]}$	1
Null Hypothesis	H_0 : $\mu_1 - \mu_2 = \Delta_0$ σ_1^2 and σ_2^2 known			$H_0: \mu_1 - \mu_2 = \Delta_0$ $\sigma_1^2 = \sigma_2^2 \text{ unknown}$	72	H_0 : $\mu_1 - \mu_2 = \Delta_0$ $\sigma_2^2 \neq \sigma_2^2$ unknown	70 . 10			Paired data $H_{i} \cdot u_{i} = 0$	O (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	$H_0 \colon \sigma_1^2 = \sigma_2^2$		H_0 : $p_1 = p_2$		
Case	T.			2.		3.				4.		5.		6.		

Summary of Two-Sample Confidence Interval Procedures