Multi-Agent Deep Reinforcement Learning for Distributed Satellite Routing

Federico Lozano-Cuadra, Beatriz Soret Senior Member, IEEE

Abstract—This paper introduces a Multi-Agent Deep Reinforcement Learning (MA-DRL) approach for routing in Low Earth Orbit Satellite Constellations (LSatCs). Each satellite is an independent decision-making agent with a partial knowledge of the environment, and supported by feedback received from the nearby agents. Building on our previous work that introduced a Q-routing solution, the contribution of this paper is to extend it to a deep learning framework able to quickly adapt to the network and traffic changes, and based on two phases: (1) An offline exploration learning phase that relies on a global Deep Neural Network (DNN) to learn the optimal paths at each possible position and congestion level; (2) An online exploitation phase with local, on-board, pre-trained DNNs. Results show that MA-DRL efficiently learns optimal routes offline that are then loaded for an efficient distributed routing online.

I. INTRODUCTION

Low Earth Orbit (LEO) Satellite Constellations (LSatCs) are one of the pillars of 6G ubiquitous and global connectivity, enhancing cellular coverage, supporting a global backbone, and enabling advanced applications [1]. Unlike terrestrial networks with stable links that can be handled with Dijkstra's algorithm and static routing tables, the unique characteristics of LSatCs calls for specific routing solutions. Specifically, LSatCs deal with rapidly moving satellites, predictable yet dynamic topology, significant propagation delays, and unbalanced and unpredictable terrestrial traffic [2].

This paper introduces a novel approach for the End-to-End (E2E) packet routing in LSatCs, avoiding the dependence upon the ground infrastructure and aiming for a robust, low-latency solution. Building on our previous work in Qrouting [3], we extend it to a deep learning framework able to handle a more complex state space, including local position and congestion information. This allows the agent to adapt easily to new situations. Our approach utilizes Multi-Agent Deep Reinforcement Learning (MA-DRL) where each satellite acts as a different agent with partial knowledge of the environment, informed by feedback from nearby agents. Unlike previous Machine Learning applications in routing, which have struggled with dynamic queuing times and multi-agent interactions [4]-[6], our MA-DRL algorithm incorporates a two-phase solution: (1) An offline exploration learning phase utilizing a global Deep Neural Network (DNN_q) to learn optimal paths for each position and congestion condition (Fig. 1.3); (2) An online exploitation phase with local, on-board,

F. Lozano-Cuadra (flozano@ic.uma.es) and B. Soret are with the Telecommunications Research Institute, University of Malaga, 29071, Malaga, Spain. This work is partially funded by ESA SatNEx V (prime contract no. 4000130962/20/NL/NL/FE), and by the Spanish Ministerio de Ciencia, Innovación y Universidades (PID2022-136269OB-I00).

Fig. 1. System model: 1) network graph; 2) multi-agent interaction needed to build the tuple experience (SARS); 3) and 4) are representations of the offline exploration and online exploitation phases, respectively.

pre-trained DNNs (Fig. 1.4). This paper presents a comprehensive model of LSatC and ground infrastructure, formulating routing as a Partially Observable Markov Decision Problem (POMDP) [3], and demonstrates that our MA-DRL algorithm learns and utilizes optimal routes for distributed routing.

II. SYSTEM MODEL

The LSatC network, formed by both space and ground layers, is abstracted as a graph. The **space segment** consists of N satellites across M orbital planes (Fig. 1.1), forming a finite set of satellite nodes, \mathbb{S} , and a set of edges, \mathcal{E} , representing the transmission links between them. Each satellite Sat_i is equipped with 2 antennas for intra-plane and 2 for inter-plane communication, with their feasible edge set, \mathcal{E}_i .

The **ground segment** includes a set of gateways (Fig. 1.1), \mathbb{G} , located at key global positions (Fig. 1.1). These gateways maintain a single ground-to-satellite link (GSL) with their nearest satellite, constituting the edge set \mathcal{E}_G . The data rate for communication is determined by the highest modulation and coding scheme possible within the current Signal-to-Noise Ratio (SNR), in line with DVB-S2 standards. Each gateway gathers the ground traffic and distributes it to each other gateway equally by injecting it to the LSatC.

The latency is computed considering the queue time at the satellite, transmission time based on data rate and propagation time over the link distance. This latency model accounts for varying traffic loads, where propagation time dominates in non-congested networks, but queue time quickly escalates under high traffic conditions [2].

Benchmarking involves comparing our MA-DRL algorithm with a traditional shortest path routing approach using Dijkstra's algorithm, where edge weights are proportional to the slant range between nodes.

III. LEARNING FRAMEWORK

In our MA-DRL, each satellite works as an independent agent in a networked multi-agent system, where the decision-making process for routing data packets is based on a POMDP. Upon packet arrival, each agent observes the **state** S_t and makes an **action** a_t . The observed S_t includes information about the agent's position, neighboring agents positions, packet destination and neighboring agents congestion levels. The a_t to take consists on selecting the next hop for forwarding the packet. Afterwards, the **reward** r_t for the (S_t, a_t) pair is based slant range reduction from the packet to its destination after being forwarded and time spent on the receiving agent queue.

In conventional DRL, an agent i stores every tuple of experiences (S_t, a_t, r_t, S_{t+1}) in order to learn, where S_{t+1} is the state where i has transited to and r_t is the reward after taking a_t at the observed state S_t . The innovative aspect of the MA-DRL algorithm lies in observing the impact of an action a_t from the perspective of a packet p with destination d, p(d). When p(d) is forwarded by an agent Sat_i to another agent Sat_j , it transits from the state S_t observed in Sat_i to S_{t+1}^* observed at Sat_j . This experience tuple SARS: $(S_t, a_t, r_t, S_{t+1}^*)$ with states observed in the interacting agents is then stored in a experience buffer D and used to train a DNN that learns the optimal routing policy (Fig. 1.2).

The learning process involves two phases. The first is the **offline exploration** (Fig. 1.3), where there is a global experience buffer D_g where experiences from all the agents are stored and used to train a global DNN_g . After DNN_g learns the optimal routing policy at every observed state the **online exploitation** phase starts (Fig. 1.4). Here every agent i has its own DNN_i onboard, which is a copy of the trained DNN_g that dictates the routing policy. In both phases there is a minimal feedback needed between satellites where each agent i needs its neighboring agents congestion information in order to observe S_t . Moreover, each agent i needs the new state S_{t+1}^* encountered at p(d) 's receiving agent j and the time spent on its queue in order to compute r_t (Fig 1.2). This information is then stored in the local experience buffer D_i in order let i keep training DNN_i with local data.

IV. PRELIMINARY RESULTS

During the exploration phase, the weights θ_g that parameterize DNN_g are initialized randomly. Coupled with a high exploration rate ϵ , DNN_g tends to make random routing actions initially. Fig. 2 shows how this behaviour disappears as ϵ decreases: DNN_g learns first sub-optimal paths and then converges to the shortest path in less than 1 second of real time simulated.

Fig. 2. E2E latency versus packet creation time. Comparison of our MA-DRL with the Q-Routing algorithm [3] and the slant range shortest path benchmark.

Note that the Q-learning method [3] converges faster than DNN due to simpler Q-Tables without positional data and reduced queue details, but it must continually converge to new solutions, which limits its adaptability to congestion and location changes, unlike MA-DRL. The shortest path algorithm has real time information about all the LSatC, while MA-DRL has only 1 hop neighboring information at every hop, which is a more realistic approach; it is impractical to have real time information about the whole LSatC due to the congestion caused by feedback messages and propagation times delays.

V. CONCLUSIONS

The implementation of MA-DRL in LSatC demonstrates promising results in terms of efficient learning, as it quickly converges to an optimal routing policy with minimal LSatC local status information at every hop, showcasing the effectiveness of the decentralized DNN-based approach. Notably, in terms of adaptability, MA-DRL has not only learned the optimal path but also a set of alternative paths during the offline exploration phase. This aspect becomes particularly advantageous in more loaded LSatCs where the agents, being aware of their neighbors' congestion status, can seamlessly switch to these alternative paths. This ability to adapt to changing network conditions by selecting appropriate routes underscores the robustness and practical utility of our MA-DRL approach in dynamic satellite environments.

REFERENCES

- [1] I. Leyva-Mayorga, B. Soret, M. Röper *et al.*, "LEO small-satellite constellations for 5G and Beyond-5G communications," *IEEE Access*, vol. 8, pp. 184 955–184 964, 2020.
- [2] J. W. Rabjerg, I. Leyva-Mayorga, B. Soret, and P. Popovski, "Exploiting topology awareness for routing in LEO satellite constellations," in *Proc. IEEE GLOBECOM*, 2021.
- [3] B. Soret, I. Leyva-Mayorga, F. Lozano-Cuadra, and M. D. Thorsager, "Q-learning for distributed routing in leo satellite constellations," arXiv preprint arXiv:2306.01346, 2023.
- [4] Z. M. F. et al., "State-of-the-art deep learning: Evolving machine intelligence toward tomorrow's intelligent network traffic control systems," IEEE Comms. Surveys & Tutorials, vol. 19, no. 4, pp. 2432–2455, 2017.
- [5] J. Liu and B. Z. et al., "DRL-ER: An intelligent energy-aware routing protocol with guaranteed delay bounds in satellite mega-constellations," *IEEE Trans. on Netw Sci. and Eng.*, vol. 8, pp. 2872–2884, 2021.
- [6] D. Liu, J. Zhang, J. Cui et al., "Deep learning aided routing for space-air-ground integrated networks relying on real satellite, flight, and shipping data," *IEEE Wireless Communications*, vol. 29, no. 2, pp. 177–184, 2022.