Probabilidad y Estadística (C)

Trabajo Práctico: Ley de los Grandes Números y Teorema Central del Límite.

Resolver los siguientes items utlizando R. Debe entregarse un archivo word o pdf con una breve introducción al tema y una descripción del trabajo realizado, sus resultados y conclusiones, que pueda entenderse sin necesidad de leer el presente documento ni el código de R. Además, adjuntar el script de R creado para resolver el ejercicio (éste no será corregido).

1. Para cada n entre 1 y 3000: generar observaciones x_1, \ldots, x_n de X_1, \ldots, X_n v.a.i.i.d. con distribución $\mathcal{E}(\lambda)$, con $\lambda = \ldots$ y obtener

$$\overline{x}_n = \frac{1}{n} \sum_{i=1}^n x_i \,,$$

es decir, una observación \overline{x}_n de $\overline{X}_n = (1/n) \sum_{i=1}^n X_i$.

Realizar un gráfico de n vs \overline{x}_n . ¿Qué observa? ¿A qué se debe?

Realice este cálculo fijando la semilla adentro y afuera del for. ¿Qué diferencia observa? ¿A qué se debe la diferencia entre los gráficos?

- 2. Para apreciar aún un poco más la Ley de los Grandes Números, realizar el siguiente experimento:
 - (a) Considerar dos observaciones x_1 y x_2 de variables aleatorias X_1 y X_2 independientes con distribución $\mathcal{E}(\lambda)$ y guardar el promedio de ambas, es decir, \overline{x}_2 . Repetir 1000 veces y a partir de los valores obtenidos realizar un histograma, un boxplot y un QQ-plot. ¿Qué características tienen?
 - (b) Aumentar a cinco las variables promediadas, es decir, considerar ahora n=5 observaciones de variables aleatorias independientes con la misma distribución del ítem anterior y guardar \overline{x}_5 . Repetir 1000 veces y realizar un histograma, un boxplot y un QQ-plot para los valores obtenidos. Comparar con los obtenidos en el ítem anterior. ¿Qué se observa?
 - (c) Aumentar a n=30 el número de observaciones de v.a.i.i.d. y repetir el ítem anterior. Repetir con n=500.
 - (d) ¿Qué pasaría si se siguiera aumentando el tamaño de la muestra?
 - (e) Por último, hacer un boxplot de los 4 conjuntos de datos en el mismo gráfico (es decir, "boxplots paralelos"). ¿Cómo puede comparar lo que observa con lo observado en el punto 1.?
- 3. El teorema central del límite nos dice que cuando hacemos la siguiente transformación con los promedios:

$$\frac{\overline{X}_n - E\left(X_1\right)}{\sqrt{\frac{Var(X_1)}{n}}},$$

la distribución de esta variable aleatoria se aproxima a la de la normal estándar si n es suficientemente grande. Comprobaremos mediante una simulación este resultado.

- (a) Calcular la esperanza y varianza de X_1 .
- (b) Realizar la transformación mencionada en los 4 conjuntos de datos del ítem 2. y graficar boxplots paralelos y QQ-plots.
- (c) Realizar 4 histogramas y a cada uno de ellos superponerle la densidad de la normal estándar. Sugerencia: una vez creado el histograma, utilizar la función lines(grilla,dnorm(grilla)) con grilla un vector de valores posibles (y consecutivos) para el eje x.
- (d) Explicar los resultados obtenidos.
- 4. Repetir los ítems anteriores generando ahora muestras de variables aleatorias independientes con distribución Bi(n, p), con $n = \dots$ y $p = \dots$.