1. Гомоскедастичность

Для проверки гипотез мы предполагали условную гомоскедастичность ошибок:

$$E(\varepsilon_i^2|X) = \sigma^2$$

Что произойдет если эта предпосылка будет нарушена?

2. Гомоскедастичность:

Условная гомоскедастичность $E(\varepsilon_i^2|X) = \sigma^2$ Условная гетероскедастичность $E(\varepsilon_i^2|X) \neq const$ Безусловная гомоскедастичность $E(\varepsilon_i^2) = \sigma^2$ Безусловная гетероскедастичность $E(\varepsilon_i^2) \neq \sigma^2$ тут вставка

3. Когда логично ожидать гетероскедастичность?

- * безусловной в случайной выборке не бывает
- * условная присутствует почти всегда

* наличие «размера» объекта

4. В остальном всё ок

Все остальные предпосылки классической модели со стохастическими регрессорами для случайной выборки выполнены.

(тут пачка предпосылок)

5. Мы используем прежние формулы:

Для оценок коэффициентов:
$$\hat{\beta} = (X'X)^{-1}X'y$$

Для оценки ковариационной матрицы оценок коэффициентов, $\widehat{Var}(\hat{\beta}|X)$ $\frac{RSS}{n-k}(X'X)^{-1}$

В частности,
$$\widehat{Var}(\hat{\beta}_j|X) = \frac{\hat{\sigma}^2}{RSS_j}$$
 и $se(\hat{\beta}_j) = \sqrt{\widehat{Var}(\hat{\beta}_j|X)}$

- 6. Три группы свойств:
 - конечная выборка без предположения о нормальности arepsilon
 - конечная выборка с предположением о нормальности ε
 - асимптотические свойства (без предположения о нормальности ε) Что происходит в каждом случае?
- 7. Конечная выборка без предположения о нормальности ε
 - * Линейность по y
 - * Условная несмещенность, $E(\hat{\beta}|X) = \beta$

- * (—) Оценки неэффективны
- (—) свойство потеряно при условной гетероскедастичности

8. Конечная выборка с предположением о нормальности ε

*
$$(-)$$
 $\frac{\hat{\beta}_{j} - \beta_{j}}{se(\hat{\beta}_{j})} | X \sim t_{n-k}$

* $(-)$ $\frac{RSS}{\sigma^{2}} | X \sim \chi_{n-k}^{2}$

* $(-)$ $\frac{(RSS_{R} - RSS_{UR})/r}{RSS_{UR}/(n-k)} \sim F_{r,n-k}$

9. Асимптотические свойства:

$$* \hat{\beta} \to \beta$$

$$* \frac{RSS}{n-k} \to \sigma^2$$

$$* (-) \frac{\hat{\beta}_j - \beta_j}{se(\hat{\beta}_j)} \to N(0,1)$$

$$* (-) \frac{RSS_R - RSS_{UR}}{RSS_{UR}/(n-k)} \to \chi_r^2$$

10. Мораль:

- * Сами $\hat{\beta}$ можно интерпретировать и использовать
- * Стандартные ошибки $se(\hat{eta}_j)$ несостоятельны
- * Не можем строить доверительные интервалы для β_j и проверять гипотезы

11. Что делать?

- * Исправить стандартные ошибки!
- * Другая формула для оценки $\widehat{Var}_{HC}(\hat{eta}|X)$
- * Следовательно, другие $se_{HC}(\hat{eta}_j)$
- 12. Робастная (устойчивая) к гетероскедастичности оценка ковариационной матрицы
 - * Вместо $\widehat{Var}(\hat{\beta}|X) = \frac{RSS}{n-k}(X'X)^{-1}$

использовать $\widehat{Var}_{HC}(\hat{\beta}|X) = (X'X)^{-1}X'\hat{\Omega}X(X'X)^{-1}$

* Уайт, 1980, НС0:

$$\hat{\Omega} = diag(\hat{\varepsilon}_1^2, \dots, \hat{\varepsilon}_n^2)$$

* Современный вариант, НС3:

$$\hat{\Omega} = diag\left(\frac{\hat{\varepsilon}_1^2}{(1-h_{11})^2}, \dots, \frac{\varepsilon_n^2}{(1-h_{nn})^2}\right)$$

Суть корректировки:

Мы меняем $se(\hat{\beta}_j)$ на $se_{HC}(\hat{\beta}_j)$

Какие проблемы решены?

*
$$\frac{\hat{\beta}_j - \beta_j}{se_{HC}(\hat{\beta}_j)} \to N(0, 1) \text{ (YPA!)}$$

- 13. Какие проблемы не решены?
 - (—) оценки $\hat{\beta}$ не меняются и остаются неэффективными даже при предположении о нормальности ε :

*
$$(-) \frac{\hat{\beta}_{j} - \beta_{j}}{se(\hat{\beta}_{j})} | X \sim t_{n-k}$$

* $(-) \frac{RSS}{\sigma^{2}} | X \sim \chi_{n-k}^{2}$

* $(-) \frac{(RSS_{R} - RSS_{UR})/r}{RSS_{UR}/(n-k)} \sim F_{r,n-k}$

- 14. С практической точки зрения:
 - * Новая формула для $\widehat{Var}_{HC}(\hat{eta}|X)$, и, следовательно, для $se_{HC}(\hat{eta}_j)$
 - * ковариационная матрица в R (по умолчанию НС3):

model <- lm(y~x, data=data)
vcovHC(model)</pre>

* С ней жизнь прекрасна!

$$\frac{\hat{\beta}_j - \beta_j}{se_{HC}(\hat{\beta}_j)} \to N(0, 1)$$

- 15. Когда следует использовать
 - * Как только есть случайная выборка и объекты могут быть разного «размера», использовать $se_{HC}(\hat{\beta}_j)$ для проверки гипотез

16. Обнаружение гетероскедастичности

- * Оцениваем интересующую нас модель с помощью МНК
- * Строим график квадратов (или модулей) остатков в зависимости от регрессора

Тут графики 1 и 2 (присланы как png файлы)

17. Формальные тесты на гетероскедастичность

- * Tecт Уайта (White)
- * Асимптотический, не требуется нормальность остатков

18. Тест Уайта начало

- * Оценить основную регрессию, получить $\hat{arepsilon}_i$
- * Оценить вспомогательную регрессию:

$$\hat{\varepsilon}_i^2 = \gamma_1 + \gamma_2 z_{i2} + \ldots + \gamma_{i,k} z_{im} + u_i$$

 $z_{i2}, \, \dots, \, z_{im} - факторы, определяющие форму гетероскедастичности$

Посчитать $LM = nR_{aux}^2$

19. Тест Уайта продолжение

При верной H_0 об условной гомоскедастичности

$$H_0$$
: $E(\varepsilon_i^2|X) = \sigma^2$

 $LM \sim \chi^2_{m-1}$, где m — число параметров во вспомогательной регрессии

По умолчанию во вспомогательной регрессии берут исходные регрессоры, их квадраты и попарные произведения

Здесь график 3 (прислан как фото рисунка от руки) Подписи на графике:

 H_0 не отвергается H_0 отвергается $\chi^2_{cr}\ H_0: E(\varepsilon_i^2|X) = const$

20. вставка чудо-доска тест Уайта

По 200 киоскам мороженого и исследователь оценил зависимость спроса (q) от цены (p), разнообразия ассортимента (a) и удаленности от метро (d).

Какой регрессор скорее всего влияет на условную дисперсию ошибок?

Исследователь провел классический тест Уайта и получил $R_{aux}^2 = 0.2$.

Как выглядит вспомогательная регрессия?

Имеет ли место условная гетероскедастичность?

21. Тест Голдфельда-Квандта (Goldfeld-Quandt)

- * Есть переменная, от которой может зависеть условная дисперсия ошибок
- * Требуется нормальность ошибок
- * Тест подходит для малых выборок

22. Процедура теста Голдфельда-Квандта

- * Сортируем наблюдения по предполагаемому убыванию условной дисперсии
- * Выкидываем часть наблюдений посередине (20%)
- * оцениваем исходную модель отдельно по первым и по последним наблюдениям

* Считаем
$$F = \frac{RSS_1/(n_1-k)}{RSS_2/(n_2-k)}$$

23. Тест Голдфельда-Квандта продолжение

 * При верной H_0 об условной гомоскедастичности

$$H_0$$
: $E(\varepsilon_i^2|X) = \sigma^2$

$$F \sim F_{n_1-k,n_2-k}$$

Здесь график 4 (прислан как фото рисунка от руки) Подписи на графике:

 H_0 не отвергается H_0 отвергается F_{cr} $H_0: E(\varepsilon_i^2|X) = const$

24. Вставка с чудо-доской

По 200 киоскам мороженого и исследователь оценил зависимость спроса (q) от цены (p), разнообразия ассортимента (a) и удаленности от метро (d).

Чтобы проверить наличие гетероскедастичности исследователь оценил эту модель отдельно по 80 самым удаленным от метро киоскам, получил, $RSS_2 = 120$. По 80 самым близки к метро киоскам, получил, $RSS_1 = 210$.

25. Эффективность оценок?

- * Да, надо смириться с тем, что оценки неэффективны
- * Мы довольны несмещенностью, состоятельностью и возможностью проверять гипотезы
- * Для получения эффективных оценок нужно точно понимать как устроена гетероскедастичность. Это большая редкость.

26. Вставка с чудо-доской

Задача про среднюю оценку по математике в классе Если бы мы знали как устроена гетероскедастичность...

27. Мораль

- * Мы рассмотрели ситуацию нарушения предпосылки условной гомоскедастичности
- * Почти всегда нарушена
- * Неприятность мелкая, мы используем робастные стандартные ошиб-ки