Outlier Suppression+: Accurate quantization of large language models by equivalent and optimal shifting and scaling

EMNLP 2023

Shared by: Chao Zeng

2024.01.30

模型量化:模型量化就是通过某种方法将浮点模型转为定点模型。即模型float32的权重和激活都是通过模型量化,将模型变成int8、int4等定点模型。

量化方法:

QAT (Quantization-Aware Training): 利用训练数据重新训练 网络,不实用;

PTQ (Post-Training Quantization):利用校准数据获得量化校准参数(或不需要),更常用。

Weight-only quantization

AWQ (Activation-aware Weight Quantization)

AWQ认为权重并非同等重要,仅保护1%的显著权重可以大大减少量化误差。然后,我们建议通过观察激活来搜索保护显著权重的最佳通道缩放。

$$\mathbf{s} = f(\mathbf{s}_{\mathbf{X}}, \mathbf{s}_{\mathbf{W}}) = \mathbf{s}_{\mathbf{X}}^{\alpha} \cdot \mathbf{s}_{\mathbf{W}}^{-\beta}, \quad \alpha^*, \beta^* = \operatorname*{arg\,min}_{\alpha, \beta} \mathcal{L}(\mathbf{s}_{\mathbf{X}}^{\alpha} \cdot \mathbf{s}_{\mathbf{W}}^{-\beta})$$
(2)

$$\mathbf{s}^* = \arg\min_{\mathbf{s}} \mathcal{L}(\mathbf{s}), \quad \mathcal{L}(\mathbf{s}) = \|Q(\mathbf{W} \cdot \mathbf{s})(\mathbf{s}^{-1} \cdot \mathbf{X}) - \mathbf{W}\mathbf{X}\|$$
(1)

GPTQ (Generative Pretrained Transformer Quantization)

GPTQ通过估计二阶导信息估计进行量化后误差优化。

$$\mathbf{H}_{-q}^{-1} = \left(\mathbf{H}^{-1} - \frac{1}{[\mathbf{H}^{-1}]_{qq}} \mathbf{H}_{:,q}^{-1} \mathbf{H}_{q,:}^{-1}\right)_{-p}.$$
 (3)

Weight-activation quantization

SmoothQuant

Smooth quant的思想是找到一个合适的向量scale(s), 对激活值X以及权重W做合理的缩放,将激活值一部 分量化难度转移到权重上,让激活值更加容易量化。

$$\mathbf{Y} = (\mathbf{X}\operatorname{diag}(\mathbf{s})^{-1}) \cdot (\operatorname{diag}(\mathbf{s})\mathbf{W}) = \hat{\mathbf{X}}\hat{\mathbf{W}} \qquad (3) \quad \mathbf{s}_j = \max(|\mathbf{X}_j|)^{\alpha} / \max(|\mathbf{W}_j|)^{1-\alpha}$$
(4)

FPTQ (Fine-grained Post-Training Quantization)

FPTQ针对activation和weight之间的关系选择更加细粒度的magnitude转移方案,使weight和activation的量化更容易。

$$\mathbf{s}_i = \max(|\mathbf{x}_i|) / \log_2(2 + \max(|\mathbf{x}_i|)); \quad \mathbf{x}_i = \mathbf{x}_i / \mathbf{s}_i$$
 (1)

$$\mathbf{W}' = \operatorname{diag}(\mathbf{s})\mathbf{W}; \quad \mathbf{X}' = \mathbf{X}\operatorname{diag}(\mathbf{s})^{-1} \quad s.t. \quad \mathbf{X}'\mathbf{W}' = \mathbf{X}\mathbf{W}$$
 (2)

创新点

- 引入通道移位和缩放操作,以消除不对称并缩小异常通道。该算法能20分钟实现OPT-175B模型的离线量化。
- 在W8A8和W6A6设置下实现近乎无损量化

Outlier shifting and scaling

$$\widetilde{X'} = X - z, \tag{1}$$

LLM中activation通道的异常值呈现不对称性, OPT-66B中第8725 channel范围在[-97, -58], 第6354 channel范围[5.7, 43], 呈现极端不对称性, 仅使用min-max整个tensor的范围为[-97, 43], 进行shifting后tensor范围[-20, 20]。

$$\widetilde{X} = (X - z) \oslash s.$$
 (2)

Scaling进一步缓解activation异常 channel数据分布

量化方法

(b) Channel-wise shifting

(c) Channel-wise scaling

Unified migration pattern

$$Y = WX + b$$
 $\widetilde{Y} = \widetilde{X}\widetilde{W} + \widetilde{b} = \left[\frac{X - z}{s}\right][s \odot W] + (zW + b)$

Figure 2: **Left**: We show the equivalent shifting and scaling operations by giving two representative examples: (a) for problematic output of Pre-LN (LayerNorm put inside residual connection) with Multi-Head Attention (MHA) structure; (b) for problematic output of Post-LN (LayerNorm put before residual connection) with Feed-Forward Network (FFN). **Right**: For optimal shifting and scaling values, the shifting vector can align the center of each channel to 0 and the scaling vector would shrink outliers into the outlier threshold t which is searched based on its left metric.

Algorithm 1: Outlier Suppression+

Input: Problematic output X of LayerNorm with parameters γ , β , subsequent module M with weight W and bias b, grid search iteration K.

{1. Optimal shifting and scaling:}

$$oldsymbol{z} = rac{\min(oldsymbol{X}_{:,j}) + \max(oldsymbol{X}_{:,j})}{2}$$

▷ Optimal shifting vector.

 $loss^* = INF$

for k = 1 to K do

$$t = \max(\boldsymbol{X} - \boldsymbol{z}) \cdot \frac{k}{K}, \ \boldsymbol{s}_j = \max(1.0, \frac{\max(\boldsymbol{X}_{:,j} - \boldsymbol{z}_j)}{t})$$

▶ Enumerate outlier threshold.

Calculate $loss_k$ based on Eq. (6), Eq. (7).

if $loss^* > loss_k$ then

$$loss^* = loss_k, s^* = s$$

▶ Optimal scaling factors.

{2. Equivalent shifting and scaling:}

$$\widetilde{oldsymbol{eta}} = (oldsymbol{eta} - oldsymbol{z}) \oslash s^*, \widetilde{oldsymbol{\gamma}} = oldsymbol{\gamma} \oslash s^*_j$$

 \triangleright Fuse z, s^* into former operations.

$$\widetilde{m{b}} = m{z}m{W}^ op + m{b}, \widetilde{m{W}} = m{W} \odot m{s}^*$$

▶ Update following modules.

return Transformed LayerNorm and subsequent module;

How to choose shifting and scale?

$$z_j = \frac{\max(X_{:,j}) + \min(X_{:,j})}{2}.$$
 (5)

利用 z_j 实现channel数据以0为中心分布,保证数据分布的对称性。

$$s_j = \max(1.0, \frac{\max(\boldsymbol{X}_{:,j} - \boldsymbol{z}_j)}{t}). \tag{8}$$

$$\min_{s} \mathbb{E}[\|\underbrace{Q((X-z) \oslash s)Q(W \odot s)^{\top} + \widetilde{b}}_{output \ after \ scaling \ and \ quantization} - \underbrace{(XW^{\top} + b)}_{original \ FP \ output}\|_{F}^{2}], \tag{6}$$

通过outlier threshold t, 将对每个channel scale的选择, 转化为对单一阈值变量t的选择。(t通过网格搜索实现)

小模型量化实验

Method	CoLA	MNLI	QNLI	SST-2	STS-B	Avg.
FP32	59.6	84.9	91.8	93.4	89.5	83.8
INT8*						
MinMax	52.3	81.3	89.0	91.1	86.2	79.5
OMSE	54.8	82.1	89.7	91.3	87.7	81.6
PEG	59.4	81.3	91.1	92.7	87.9	82.5
OS	60.3	83.9	90.2	92.9	88.2	83.0
Ours	60.9	84.4	91.1	92.7	88.3	83.5
INT6						
OMSE	35.4	73.7	84.7	86.3	85.8	73.5
Percentile	37.3	72.1	79.4	87.3	86.8	72.9
OS	54.4	81.8	89.8	91.9	88.7	81.2
Ours	56.0	84.5	90.9	92.4	89.5	82.8
INT4						
OMSE	4.7	38.5	52.2	50.3	0.2	41.1
Percentile	7.0	53.0	61.5	77.1	66.1	57.0
OS	28.5	57.9	72.5	80.4	67.8	62.7
Ours	50.0	80.2	85.4	91.4	86.5	78.2

Table 1: PTQ performance of BERT-base models. MNLI and STS-B report the combined score. Avg. indicates the averaged results of 8 tasks on GLUE benchmark (details in Appendix B). * means per-tensor quantization for weight. OS indicates Outlier Suppression for short.

Method	CoLA	MNLI	MRPC	QNLI	QQP	RTE	SST-2	STS-B	Arro
Memou	(Matt.)	(acc m/mm)	(f1/acc)	(acc)	(f1/acc)	(acc)	(acc)	(Pear./Spear.)	Avg.
FP32	63.3	86.7/85.9	91.6/88.0	92.2	88.1/91.1	74.0	93.5	90.3/90.1	84.9
INT8*									
MinMax	62.4	72.0/73.0	76.3/72.8	87.0	66.5/80.4	46.9	92.2	58.6/52.1	71.5
OMSE	59.9	82.7/83.5	87.8/83.8	89.0	79.2/86.2	47.3	92.0	83.9/83.3	78.1
Percentile	61.3	84.5/84.0	91.6/88.9	91.6	85.9/89.4	69.3	92.4	88.3/88.1	83.1
OS	62.3	85.1/84.5	90.1/86.0	91.1	87.0/90.3	75.1	92.4	88.7/88.4	83.9
Ours	62.2	85.9/85.2	90.9/87.0	92.2	87.8/90.8	71.8	93.3	89.3/89.3	84.1
INT6									
MinMax	5.6	32.0/32.0	50.2/46.1	50.2	0.0/63.2	49.5	53.0	5.0/4.8	38.1
OMSE	14.0	59.3/58.4	86.1/78.7	79.5	52.5/73.5	54.9	74.8	44.0/37.9	59.8
Percentile	16.4	63.5/63.8	82.0/77.2	87.0	44.8/70.7	49.8	81.7	65.7/67.8	62.8
OS	24.1	71.3/71.7	85.5/79.4	80.8	68.8/78.3	47.3	82.3	61.1/62.0	65.4
Ours	60.9	86.3/85.4	91.8/88.2	92.0	87.7/90.8	71.5	93.7	86.7/85.6	83.7

Table 7: PTQ performance of BERT-large models on GLUE benchmark. * means per-tensor quantization for weight. OS indicates Outlier Suppression for short.

Mathad	CoLA	MNLI	MRPC	QNLI	QQP	RTE	SST-2	STS-B	A
Method	(Matt.)	(acc m/mm)	(f1/acc)	(acc)	(f1/acc)	(acc)	(acc)	(Pear./Spear.)	Avg.
FP32	59.6	84.9/84.8	91.4/87.8	91.8	87.8/90.9	72.6	93.4	89.7/89.3	83.8
INT8*									
MinMax	52.3	80.9/81.7	85.3/80.9	89.0	84.8/88.6	68.2	91.1	84.7/87.6	79.5
OMSE	54.8	81.9/82.2	89.7/86.0	89.7	86.1/89.5	72.2	91.3	87.2/88.2	81.6
PEG	59.4	81.3	88.5	91.1	89.4	69.3	92.7	87.9	82.5
OS	60.3	83.8/84.0	90.4/87.0	90.2	87.3/90.4	71.1	92.9	87.8/88.7	83.0
Ours	60.9	84.4/84.4	90.6/87.2	91.1	87.1/90.6	73.3	92.7	87.7/88.9	83.5
INT8									
MinMax	57.1	82.8/83.5	89.9/85.8	90.8	87.8/90.7	69.7	92.8	86.8/88.6	82.3
OMSE	57.2	84.0/84.3	90.1/85.8	91.1	87.6/90.5	72.2	92.2	87.9/88.7	82.9
Percentile	57.1	83.9/84.1	90.7/86.7	91.3	87.7/90.7	71.1	93.4	87.7/88.7	82.9
OS	61.6	84.4/84.5	91.4/87.8	91.5	87.9/90.8	72.2	93.8	89.2/89.0	84.0
Ours	60.3	84.8/84.5	90.5/87.0	91.6	87.5/90.8	71.5	93.6	89.3/89.2	83.6
INT6									
MinMax	17.7	32.5/32.5	0.7/31.9	65.2	40.9/69.0	48.0	82.0	59.8/60.3	47.1
OMSE	35.4	74.0/73.3	81.5/76.5	84.7	76.1/82.1	64.3	86.3	85.6/86.1	73.5
Percentile	37.3	72.4/71.7	85.1/79.9	79.4	72.6/80.2	61.7	87.3	86.4/87.3	72.9
OS	54.4	82.0/81.7	87.5/83.3	89.8	84.7/88.9	70.8	91.9	88.7/88.6	81.2
Ours	56.0	84.6/84.4	90.0/86.3	90.9	87.0/90.5	71.8	92.4	89.6/89.4	82.8
INT4									
MinMax	-6.6	32.6/32.7	0.0/31.6	50.6	53.8/36.8	47.7	50.9	-0.5/-0.5	29.5
OMSE	4.7	38.5/38.4	81.3/69.1	52.2	45.2/50.9	59.9	50.3	0.1/-0.4	41.1
Percentile	7.0	52.6/53.5	83.0/75.7	61.5	44.7/68.3	55.6	77.1	65.9/66.3	57.0
OS	28.5	57.5/58.3	83.9/75.7	72.5	45.4/70.8	56.7	80.4	67.8/67.9	62.7
Ours	50.0	80.6/79.9	87.6/83.1	85.4	85.0/77.5	65.7	91.4	86.4/86.5	78.2

Table 6: PTQ performance of BERT-base models on GLUE benchmark. * means per-tensor quantization for weight. OS indicates Outlier Suppression for short.

两类大模型上的Zero-Shot实验对比

Name Method	Method		OPT	-13B			OPT-	30B		OPT-66B				OPT-175B			
		FP16	INT8*	INT8	INT6	FP16	INT8*	INT8	INT6	FP16	INT8*	INT8	INT6	FP16	INT8*	INT8	INT6
PIQA	LLM.int8(). ZeroQuant. SmoothQuant Ours	75.8	54.1 76.0 76.4	75.8 - - 75.9	53.0 73.5 75.8	77.6	54.2 77.2 77.4	77.3 - 77.6	52.0 66.7 77.4	78.7	53.2 78.3 78.7	78.7 - - 78.6	51.9 52.0 77.5	79.7	52.3 79.7 79.6	79.6 - - 79.5	53.1 52.6 80.0
LAMBADA	LLM.int8()* ZeroQuant* SmoothQuant Ours	68.6	0.0 68.3 68.3	68.4	0.0 65.2 65.7	71.5	0.0 71.0 70.8	71.4 - - 70.8	0.0 13.4 69.6	73.9	0.0 72.9 73.0	73.8 - - 73.4	0.0 0.0 72.7	74.7	0.0 74.6 74.5	74.6 - - 74.5	0.0 0.5 74.2
HellaSwag	LLM.int8()* ZeroQuant* SmoothQuant Ours	52.5	26.5 52.2 52.3	52.4 - 52.5	25.8 49.2 51.7	54.3	26.4 54.2 54.2	54.3 - 54.2	25.7 37.4 53.7	56.4	26.1 55.9 56.2	56.3 - 56.3	25.7 26.5 55.8	59.3	25.4 58.9 59.2	59.2 - 59.3	25.6 26.0 58.5
Winogrande	LLM.int8()* ZeroQuant* SmoothQuant Ours	65.1	52.1 64.9 65.0	64.8	51.1 60.3 64.0	68.5	51.8 68.2 68.0	68.1	51.8 55.0 68.9	68.9	50.7 68.3 69.0	68.5	48.0 52.1 69.4	72.5	50.2 71.2 72.5	72.3 - - 72.5	49.1 49.1 71.7
ARC (Challenge)	LLM.int8()* ZeroQuant* SmoothQuant Ours	32.8	19.3 32.1 33.5	33.5	20.7 30.6 32.7	34.6	19.8 33.8 34.5	34.7 - 34.7	20.6 26.7 34.6	37.3	20.8 36.5 37.5	37.0 - - 37.2	20.4 21.9 37.0	40.3	21.8 40.5 40.3	40.9 - - 39.9	20.6 21.2 41.0
ARC (Easy)	LLM.int8(). ZeroQuant. SmoothQuant Ours	67.3	27.5 66.2 67.3	67.3 - - 66.8	25.0 62.2 67.0	70.1	30.5 69.7 70.1	69.7 - - 70.0	25.0 55.8 68.9	71.7	29.7 70.5 71.3	71.8 - - 71.8	26.0 27.8 70.7	74.9	24.0 74.1 74.8	74.8 - - 74.7	25.6 28.8 74.3
СОРА	LLM.int8(). ZeroQuant. SmoothQuant Ours	86.0	63.0 85.0 85.0	86.0 - 86.0	55.0 82.0 85.0	82.0	55.0 83.0 83.0	82.0 - 82.0	55.0 75.0 84.0	86.0	53.0 84.0 85.0	87.0 - - 86.0	52.0 55.0 84.0	88.0	60.0 88.0 88.0	89.0 - - 89.0	55.0 55.0 91.0
StoryCloze	LLM.int8()* ZeroQuant* SmoothQuant Ours	76.1	49.6 76.0 75.8	76.3 - - 76.0	48.3 73.5 75.4	77.0	48.5 76.9 77.0	77.1 - - 76.9	48.0 61.4 76.6	77.5	49.2 77.3 77.3	77.7 - - 76.4	48.4 48.8 76.6	79.5	- 47.7 79.1 79.2	79.3 - - 79.1	48.2 49.8 78.1
Avg.	Ours	65.5	65.5	65.5	64.7	67.0	66.9	66.8	66.7	68.8	68.5	68.6	68.0	71.1	71.0	71.1	71.1

Method	Bits	HellaSwag	LAMBADA	PIQA	Winogrande
BLOOM-176B	FP16	55.9	67.7	78.8	70.3
ZeroQuant*	INT8*	54.8	67.8	76.0	69.4
SmoothQuant	INT8*	54.1	69.2	77.7	68.6
Ours	INT8*	54.9	68.0	78.4	69.1
ZeroQuant*	INT6	30.5	7.5	61.2	52.0
SmoothQuant	INT6	52.1	60.2	76.7	67.6
Ours	INT6	55.1	69.1	78.1	68.1
BLOOMZ-176B	FP16	57.1	67.8	80.6	72.5
ZeroQuant*	INT8*	56.3	67.6	79.1	70.9
SmoothQuant	INT8*	56.3	68.7	79.7	70.8
Ours	INT8*	56.7	68.5	79.9	71.3
ZeroQuant.	INT6	28.2	1.4	54.0	49.6
SmoothQuant	INT6	55.0	65.2	80.0	69.9
Ours	INT6	56.2	69.2	79.9	70.6

Table 5: Quantization results on 4 zero-shot tasks in terms of accuracy.

Method	OPT-	66B (INT6)	BERT (INT4)			
Welliod	PIQA	Winogrande	SST-2	MNLI		
Ours	77.5	69.4	91.4	80.2		
- shifting	76.5	66.5	89.3	77.7		
- shifting - scaling	54.7	49.4	82.3	63.7		

Table 4: Effect of scaling and shifting operations.

INT8量化下实际加速实验

量化内存减少实验

Figure 5: Averaged accuracy on PIQA, Winogrande, LAM-BADA, and HellaSwag of OPTs with different storages. We draw circles, rectangles, and triangles to refer to FP16, the 8-bit and 6-bit models with quantized activation and weight.

Fp16 model

INT8 model

INT6 model

THNAKS FOR LISTENING