

CSU0007 Basic Electronics, Homework 4

- Three questions in total. Submit your work via Moodle before 9PM, Dec 4th, 2020.
- · Clearly state your reasoning to earn full score.
- Textbook coverage: Section 6.1 to Section 6.8 (before Section 6.8.1).
- The assignment for self-study: Section 6.8.1 in the textbook (no need to submit this assignment).

1. (30 points) Consider the S model. In the following circuit, suppose the input {A, B, C} corresponds to logical {0, 1, 0}. What would be the logical value output at D?

Typically, in this configuration we'll get E as logical 1, and therefore

E D is slogical O.

E D In an unusual case where $V_{CC_1} < V_{TL}$,

then E will be always logical O;

similarly, if $V_{CC_2} < V_{OH}$, then

there's no way to make D equal to

logical 1.

- 2. (40 points) Now, consider the SR model. Explain in your own words that under the static discipline,
 - 1. (20 points) why we must have $V_{IL} < V_{T}$?
 - 2. (20 points) why we must have $V_{OL} > V_{CC} rac{R_{ON}}{R_{ON} + R_L}$?
- 3. (30 points) Consider the SR model and the following specification: The noise margin is 0.5V for logical 0 and 1V for logical 1. The forbidden region is from 1V to 1.5V. V_T =1.2V, V_{cc} =3.3V, and R_N =5k Ω . Now, to build a MOSFET to meet this specification, what would be the maximum feasible value of ratio $\frac{L}{W}$? Assuming that R_L =8k Ω .

Otherwise, we might have two outcomes for logical 0 input outcome & for Vin < VI

2.3 otherwise, we may never be able to output logical o, since Vec Rontke is the minimum value of the output voltage.

To meet the static discipline, we must have $V_{IL} < V_T$ and $V_{OL} > V_{CC} \times \frac{Ron}{Ron + R_L}$ $\Rightarrow 0.5 > 3.3 \times \frac{Ron}{Ron + 8}$ $\Rightarrow Ron < \frac{4}{2.8}$ $\Rightarrow 5 \times \frac{L}{W} < \frac{4}{2.8} \Rightarrow \frac{L}{W} < \frac{2}{1}$