Missing Data

November 25, 2019

Dana Tomc Dougherty

Agenda

01	Motivation	
02	Background	
03	Simulation	
04	Conclusion	

01 Motivation

Education (in years)	Income (in \$1000s)	
20	71.2	
13	NaN	
14	NaN	
18	NaN	
16	41.8	
15	51.6	

Motivation

- "Garbage in, garbage out"
- Selection bias → Biased results
- Loss of information → Biased results

→ Loss of statistical power

Education (in years)	Income (in \$1000s)	
20	71.2	
13	NaN	
14	NaN	
18	NaN	
16	41.8	
•••		
15	51.6	

Motivation

What data scientists spend the most time doing

- Building training sets: 3%
- Cleaning and organizing data: 60%
- Collecting data sets; 19%
- Mining data for patterns: 9%
- Refining algorithms: 4%
- Other: 5%

Source: forbes.com

02 Background

BackgroundMissing Data Patterns

Complete	Univariate	riate Multivariate Monotone		General

Background

Missingness Mechanisms

Missing Completely at Random (MCAR)

Missing at Random (MAR)

Missing Not at Random (MNAR)

BackgroundMissingness Mechanisms

X = observed part of the data

Y = missing part of the data

R = missing data indicator

X = Education (in years)	Y = Income (in \$1000s)	R
20	71.2	0
13	NaN	1
14	NaN	1
18	NaN	1
16	41.8	0
•••		
15	51.6	0

Background Missingness Mechanisms

X = Education (in years)	Y = Income (in \$1000s)	R
20	71.2	0
13	NaN	1
14	NaN	1
18	NaN	1
16	41.8	0
•••		
15	51.6	0

Background

Missingness Mechanisms

Missing Completely at Random (MCAR)

Missing at Random (MAR)

Missing Not at Random (MNAR)

BackgroundMissing Data Techniques

Create a complete dataset

Apply mechanism

Apply missingness missing data technique

Create a complete dataset

Apply mechanism technique

Apply missingness missing data

Education (in years)	Income (in \$1000s)	
20	71.2	
13	30.2	
14	33.1	
18	60.1	
16	41.8	
15	51.6	

- N rows
- income ~ Normal(48, 400)
- education = 8 + 0.17 * income + e e ~ Normal(0, 4) discretized education

Create a complete dataset

Apply

Apply missingness missing data mechanism technique

	
Education (in years)	Income (in \$1000s)
20	71.2
13	30.2
14	33.1
18	60.1
16	41.8
15	51.6

Create a complete dataset

Apply mechanism

Apply missingness missing data technique

Analyze data

Remove 25% of the data

- **MCAR**
- MAR
- **MNAR**

Create a complete dataset

Apply mechanism

Apply missingness missing data technique

Analyze data

MCAR

- Randomly select n rows
- Delete income from those rows

Education (in years)	Income (in \$1000s)
20	71.2
13	30.2
14	33.1
18	60.1
16	41.8
15	51.6

	Education (in years)	Income (in \$1000s)
	20	NaN
	13	NaN
	14	33.1
	18	60.1
	16	NaN
	15	51.6

Create a complete dataset

Apply mechanism

Apply missingness missing data technique

Analyze data

2. MAR

- Select n rows where education is the largest
- Delete income from those rows

Education (in years)	Income (in \$1000s)
20	71.2
13	30.2
14	33.1
18	60.1
16	41.8
15	51.6

Education (in years)	Income (in \$1000s)
20	NaN
13	30.2
14	33.1
18	NaN
16	NaN
15	51.6

Create a complete dataset

Apply mechanism

Apply missingness missing data technique

Analyze data

MNAR

- Select n rows where income is the largest
- Delete income from those rows

Education (in years)	Income (in \$1000s)
20	71.2
13	30.2
14	33.1
18	60.1
16	41.8
15	51.6

Education (in years)	Income (in \$1000s)
20	NaN
13	30.2
14	33.1
18	NaN
16	41.8
15	NaN

Create a complete dataset

Apply mechanism

Apply missingness missing data technique

- 1. Listwise Deletion
- 2. Mean Imputation
- 3. Regression Imputation
- 4. Multiple Imputation
- 5. Maximum Likelihood

Create a complete dataset

Apply mechanism

Apply missingness missing data technique

Analyze data

Calculate the sample mean of income

Create a complete dataset

Apply mechanism

Apply missingness missing data technique

$$E(\overline{Y}) = \mu = 48$$

$$\sigma^2(\overline{Y}) = \frac{\sigma^2}{n} = \frac{20^2}{40} = 10$$

Sampling Distribution of (Income) Sample Mean

Listwise Deletion

Listwise Deletion

Education (in years)	Income (in \$1000s)
20	71.2
13	30.2
14	33.1
18	NaN
16	NaN
15	NaN

Education (in years)	Income (in \$1000s)
20	71.2
13	30.2
14	33.1

Listwise Deletion

Dataset	Mean	Variance
Full	48.07	10.07
MCAR	48.11	14.06
MAR	40.93	11.87
MNAR	39.78	11.07

Mean Imputation

Mean Imputation

Education (in years)	Income (in \$1000s)
20	71.2
13	30.2
14	33.1
18	NaN
16	NaN
15	NaN

Education (in years)	Income (in \$1000s)
20	71.2
13	30.2
14	33.1
18	44.8
16	44.8
15	44.8

$$\frac{71.2 + 30.2 + 33.1}{3} = 44.8$$

Mean Imputation

Dataset	Mean	Variance
Full	48.07	10.51
MCAR	48.08	13.91
MAR	40.94	11.84
MNAR	39.76	11.36

Regression Imputation

Regression Imputation

Education (in years)	Income (in \$1000s)
20	71.2
13	30.2
14	33.1
18	NaN
16	NaN
15	NaN

Education (in years)	Income (in \$1000s)
20	71.2
13	30.2
14	33.1
18	58.7
16	46.7
15	40.7

Regression Imputation

Dataset	Mean	Variance
Full	47.99	9.49
MCAR	48.04	13.03
MAR	40.89	11.44
MNAR	39.71	10.73

Multiple Imputation

Multiple Imputation

Education (in years)	Income (in \$1000s)	
20	71.2	
13	30.2	
14	33.1	
18	NaN	
16	NaN	
15	NaN	

 $income_1 = 49.1$

$$\overline{income}_{total} = 48.2$$

$$income = -49.6 + 6.0 * education + e$$

Multiple Imputation

Dataset	Mean	Variance
Full	47.98	10.6
MCAR	48.00	11.59
MAR	47.98	12.87
MNAR	44.68	12.39

Maximum Likelihood Estimation

Maximum Likelihood Estimation

Background

Recall:

Normal distribution:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Education (in years)	Income (in \$1000s)	
20	71.2	
13	30.2	
14	33.1	
18	60.1	
16	41.8	
15	51.6	

Maximum Likelihood Estimation Background

Likelihood Function:

$$L = \prod_{i=1}^{n} \left[\frac{1}{\sigma\sqrt{2\pi}} exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right) \right]$$

Maximum Likelihood Estimates:

$$\hat{\mu}_Y = \frac{\Sigma Y}{N}$$
 $\hat{\sigma}_Y^2 = \frac{\Sigma (Y - \hat{\mu}_Y)^2}{N}$

Maximum Likelihood Estimation

Background

Education (in years)	Income (in \$1000s)		
20	71.2		
13	30.2		
14	33.1		
18	60.1		
16	41.8		
15	51.6		

$$\widehat{\mu} = \begin{bmatrix} 16.0 \\ 48.0 \end{bmatrix}$$

$$\hat{\Sigma} = \begin{bmatrix} 5.7 & 32.8 \\ 32.8 & 212.5 \end{bmatrix}$$

X -Education (in years)	Y - Income (in \$1000s)		
20	71.2		
13	30.2		
14	33.1		
18	NaN		
16	NaN		
15	NaN		

Initialize

E-Step: $\widehat{\mu} \text{ and } \widehat{\Sigma}$ Estimate missing values

M-Step: **Maximize** (update) $\hat{\mathbf{n}}$ and $\hat{\mathbf{y}}$

Repeat until $\hat{\mu}$ and $\hat{\Sigma}$ converges

Initialize $\widehat{\mu}$ and $\widehat{\Sigma}$ E-Step: Estimate missing values 3 M-Step: Maximize (update)

Maximize $\hat{\mathbf{u}}$ and $\hat{\mathbf{y}}$

$$\widehat{\mu} = \begin{bmatrix} 16.0 \\ 44.8 \end{bmatrix}$$

$$\hat{\Sigma} = \begin{bmatrix} 14.3 & 0 \\ 0 & 523.5 \end{bmatrix}$$

Initialize $\widehat{\mu}$ and $\widehat{\Sigma}$ E-Step: Estimate missing values 3 M-Step: Maximize (update)

Maximize

$$\hat{\beta}_{1} = \frac{\hat{\sigma}_{X,Y}}{\hat{\sigma}_{X}^{2}}$$

$$\hat{\beta}_{0} = \hat{\mu}_{Y} - \hat{\beta}_{1}\hat{\mu}_{X}$$

$$\hat{\beta}_{1} = \hat{\beta}_{0} + \hat{\beta}_{1}X_{i}$$

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X$$

X -Education (in years)	Y - Income (in \$1000s)		
20	71.2		
13	30.2		
14	33.1		
18	59.2		
16	45.8		
15	42.1		

Initialize $\widehat{\mu}$ and $\widehat{\Sigma}$ E-Step: Estimate missing values 3 M-Step: Maximize (update)

Maximize

X -Education (in years)	Y - Income (in \$1000s)	
20	71.2	
13	30.2	
14	33.1	
18	59.2	
16	45.8	
15	42.1	

Maximum Likelihood **Estimates:**

$$\hat{\mu}_Y = \frac{\Sigma Y}{N}$$

$$\hat{\sigma}_Y^2 = \frac{1}{N} \left(\sum Y^2 - \frac{(\sum Y)^2}{N} \right)$$

$$\widehat{\sigma}_{X,Y} = \frac{1}{N} \left(\sum XY - \frac{\sum X \sum Y}{N} \right)$$

Initialize

E-Step: $\widehat{\mu} \text{ and } \widehat{\Sigma}$ Estimate missing values

M-Step: **Maximize** (update) $\hat{\mathbf{n}}$ and $\hat{\mathbf{y}}$

Repeat until $\hat{\mu}$ and $\hat{\Sigma}$ converges

Dataset	Mean	Variance
Full	47.97	10.06
MCAR	47.98	11.52
MAR	48.02	12.41
MNAR	44.70	11.00

04 Conclusion

Techniques that Yield Unbiased Estimates			
	MCAR	MAR	MNAR
Listwise Deletion	X		
Mean Imputation	x		
Regression Imputation	x		
Multiple Imputation	X	X	
Maximum Likelihood Estimation (EM)	X	x	

Conclusions

 The missingness mechanism must be considered before applying techniques

Testing for missingness mechanism

Conclusions

- Deletion techniques
 - o smaller dataset → loss of statistical power

- Single imputation techniques
 - certainty of imputed values = certainty of observed values

Conclusions

- Multiple Imputation (MI) vs. Maximum Likelihood (ML)
 - MI requires many decision points:
 - imputation technique
 - variables included in imputation
 - magnitude of variance for residual term
 - number of datasets to impute
 - Uncertainty in MI regression coefficients
 - ML yield same results each time

Final Thoughts

- Packages available in R / Python
- Consider how to minimize missing data in collection phase
- If MCAR/MAR cannot be assumed:
 - impute using a conservative value
 - adjust inference statements

Thank you!

References

Allison, Paul. *Handling Missing Data by Maximum Likelihood*. SAS Global Forum, 2012.

Don, Yiran and Peng, Chao-Ying Joanne. *Principled Missing Data Methods for Researchers*. Springerplus, 2013.

Enders, Craig. Applied Missing Data Analysis. The Guilford Press, 2010

Little, Roderick and Rubin, Donald. Statistical Analysis with Missing Data. Wiley, 2019