

INTEGRAÇÃO DE ROBÔS MÓVEIS COM LIDAR E ROS PARA IMPLEMENTAÇÃO DE LOCALIZAÇÃO E MAPEAMENTO

Orientador(s):

Dr°. Paulo César M. de Abreu Farias Dr°. Tiago Trindade Ribeiro

Salvador (BA)

Discentes:

Dhavidy de Almeida Silva Erick Bragança Martins Santos Lucas Pinheiro Soares

Introdução

Objetivos gerais e específicos

Objetivos gerais e específicos Objetivo geral

"Implementar um sistema de localização para um robô móvel car-like equipado com LiDAR 2D, utilizando ROS com algoritmos de SLAM para mapear e estimar a posição do robô."

Objetivos gerais e específicos

Objetivos específicos

- Adaptar a comunicação do robô para tópicos ROS.
- Integrar sensores de acelerômetro e giroscópio.
- Programar e implementar a odometria do robô.
- Aplicar algoritmos de SLAM utilizando o filtro de Kalman.
- Validar a solução em testes simulados e reais.

Fundamentação Teórica

- Robô Car-Like
- Odometria
- ROS
- Controle

Robô Car-Like

 Robôs car-like e direção de Ackermann

Robôs *car-like* e direção de Ackermann

Protótipo

- Escolha dos componentes
- Diagrama elétrico
- Modelagem 3D
- Aquisição e controle

Escolha dos componentes Direção

Modelagem 3D Sistema de direção

Escolha dos componentes Motor CC

- **Redução** 34,02:1
- 210 RPM
- 10 Kg•cm
- **Encoder** de quadratura de 11 pulsos por revolução

Escolha dos componentes Bateria

- Samsung ICR18650-26F
- 18mm x 65mm
- 3,7V

$$t_h = \frac{C_{min} \cdot \eta(I)}{I} \to \frac{2550mAh \cdot 0,95_{0,5C}}{2 \cdot 600mA + 100mA} = 1,86h.$$

Escolha dos componentes Plataforma computacional

ESP32 x Placas Jetson x Raspberry Pi

Escolha dos componentes Sensor de distância

• VL53L0X

- Taxa de aquisição de até 50 Hz
- Alcance de até 2 m
- o Precisão 1mm
- Cone de visão de 25º
- o I2C

Modelagem 3D LiDAR v2

Escolha dos componentes Outros componentes

Escolha dos componentes Outros componentes

Escolha dos componentes Outros componentes

Diagrama Elétrico Diagrama

Modelagem 3D Chassi

Aquisição e controle Comunicação

- Wi-Fi: "UDP_Comm"
- Protocolo UDP
 - IP Host: 192.168.4.22
 - o IP Cliente: 192.168.4.23
 - o Port: 8080

```
[Quantidade_de_Pontos]_[Dist0]_[Dist1]_..._[Dist15]
[Velocidade]_[Esterçamento]
```

Comando	Valor auxiliar	Descrição
go	0 255	Comando de controle do PWM de motor do LiDAR
Parar	X	Comando para parar a movimentação do pro- tótipo
Points	4 16	Comando para confi- grar a quantidade de pontos por revolição do LiDAR
Amostragem	50 5000	Comando para configu- rar o tempo de amos- tragem da velocidade e ângulo das rodas
Deg	0 255	Comando de controle do PWM de motor de tração
Vel	0 500	Comando de controle de velocidade do protó- tipo em mm/s
Acelerar	X	Comando para acelerar o protótipo
Re	X	Comando para desace- lerar o protótipo
Dir	-30 30	Comando para configu- rar o ângulo de esterça- mento da roda virtual do modelo
Direita	X	Comando para incre- mentar a direção para a direita
Esquerda	Х	Comando para incre- mentar a direção para a esquerda
off	Х	Comando para desati- var o LiDAR

Acelerômetro

Adição do acelerômetro

Adição do acelerômetro MPU5060

- MPU5060
 - o I2C
 - o Aceleração
 - Velocidade angular

Adição do acelerômetro

Diagrama

Adição do acelerômetro

Diagrama

Odometria

- Tipos de Odometria
- Cálculo de velocidade angular e deslocamento

- Odometria baseada em encoders
- Odometria visual
- Odometria baseada em LiDAR

Odometria baseada em encoders

Vantagens

- ✓ Simples e de baixo custo.
- Funciona bem em superfícies lisas e estáveis.
- √ Fácil de implementar com microcontroladores e ROS.

Desvantagens

- X Acúmulo de erro ao longo do tempo (drift).
- 💢 Deslizamento das rodas pode gerar medições imprecisas.
- X Ineficiente em terrenos irregulares.

Odometria visual

Vantagens

- Não sofre com deslizamento das rodas.
- ✓ Pode funcionar em superfícies irregulares ou em veículos sem rodas.
- V Funciona bem em ambientes ricos em características visuais.

Desvantagens

- X Exige maior capacidade computacional.
- 🖊 Depende de boa iluminação e texturas no ambiente.
- X Pode falhar em ambientes com baixa visibilidade (pouca luz, superfícies lisas)

Odometria baseada em LiDAR

Vantagens

- Alta precisão em ambientes estruturados.
- Funciona bem mesmo em condições de baixa iluminação.
- Não depende do contato com o solo, evitando erros de deslizamento.

Desvantagens

- X Mais caro que encoders e câmeras.
- X Alto consumo de processamento.
- X Sensível a superfícies reflexivas e pouca variação no ambiente.

Odometria

Cálculo de velocidade angular e deslocamento

```
float pos_rad = pos * M_PI / 180.0;
float rot = (vel / L) * tan(pos_rad);

// Atualiza a posição
xx += vel * dt * cos(theta);
yy += vel * dt * sin(theta);
theta += rot * dt;
```

$$\tan(\delta_i) = \frac{L}{R - \frac{w}{2}}$$
 $\tan(\delta_o) = \frac{L}{R + \frac{w}{2}}$

ROS

- Estrutura de controle
- Estrutura de arquivos

Estrutura de controle

Estrutura de controle

Transformações

• Frame

o tf2

Estrutura de arquivos

Estrutura de arquivos

Controle

- Comunicação e odometria
- Filtro de Kalman
- SLAM com gmapping

Controle

Comunicação e odometria

- Bibliotecas
- Variáveis globais
- Função de controle por comando de texto
- Função de recebimento de mensagem
 - o Filtro de tipo de mensagem
 - Velocidade e imu
 - Cálculo de odometria e imu
 - Publicação de odometria
 - Publicação de imu
 - LiDAR
 - Publicação do /scan
 - Publicação das transformações

- Função de recebimento de /cmd_vel (controle pelo teclado)
- Main
 - Configuração do nó
 - o Configuração das bibliotecas e funções
 - Envio de mensagens

Aquisição e controle Comunicação

```
[Microsegundos]_{Quantidade\_de\_Pontos]_{Dist0}_{Dist1}_{...}_{Dist15}} $$ [Microssegundos]_{Velocidade}_{Esterçamento}_{AcelX}_{AcelY}_{AcelY}_{AcelZ}_{RotX}_{RotY}_{RotZ} $$ $$
```


Controle Kalman

```
# Filter Configuration
frequency: 10
sensor_timeout: 0.1
silent tf failure: false
two_d_mode: true
transform_time_offset: 0.0
transform_timeout: 0.0
print diagnostics: true
# Transform Settings
publish_tf: true
publish acceleration: false
permit_corrected_publication: false
# Frame Configuration
map frame: map
odom frame: odom
base_link_frame: base_link
world_frame: odom
```


Controle

Kalman

```
# Odometry Input (odom0)
     odom0: /odom
23 ~
     odom0_config: [true,
                           true,
                                   true,
                    true,
                           true,
                                  true,
                                  true,
                    true,
                           true,
                    true,
                           true, true,
27
                    false, false, false]
     odom0 queue size: 2
     odom0 nodelav: false
     odom@ differential: false
     odom0 relative: false
     odom0_pose_rejection_threshold: 5
     odom0 twist rejection threshold: 1
```

```
# IMU Input (imu0)
imu0: /imu/data
imu0_config: [false, false, false,
              true,
                    true, true,
              false, false, false,
              true,
                    true, true,
              true,
                     true, true]
imu0_queue_size: 5
imu0_nodelay: false
imu0 differential: false
imu0 relative: true
imu0_pose_rejection_threshold: 0.8
imu0_twist_rejection_threshold: 0.8
imu0_linear_acceleration_rejection_threshold: 0.8
imu0 remove gravitational acceleration: true
```


Controle Gmapping

```
src > udp_receiver > launch > a gmapping.launch
        <!-- Inicia o Gmapping -->
        <node name="slam gmapping" pkg="gmapping" type="slam gmapping" output="screen">
          <param name="base frame" value="base link" /> <!-- Frame base do robô -->
          <param name="odom frame" value="odom" />
                                                          <!-- Frame da odometria -->
          <param name="map frame" value="map" />
                                                          <!-- Frame do mapa -->
          <param name="maxUrange" value="1.0" />
                                                         <!-- Alcance máximo do LIDAR (em metros) -->
          <param name="minimumScore" value="6" />
                                                        <!-- Qualidade mínima para uma leitura ser usada -->
          <param name="linearUpdate" value="0.1" />
                                                          <!-- Atualização do mapa após mover 20 cm -->
                                                          <!-- Atualização do mapa após girar 0.1 rad -->
          <param name="angularUpdate" value="0.1" />
                                                          <!-- Número de partículas usadas no filtro -->
          <param name="particles" value="30" />
                                                         <!-- Limites do mapa (em metros) -->
          <param name="xmin" value="-5.0" />
          <param name="ymin" value="-5.0" />
          <param name="xmax" value="5.0" />
          <param name="ymax" value="5.0" />
          <param name="delta" value="0.05" />
          <param name="iterations" value="10" />
           <!-- Configuração do tópico do scan -->
          <remap from="scan" to="/scan" />
      </launch>
```


Execução

- Rviz
- Tópicos
- Frames

Aquisição e controle Rviz

Aquisição e controle Gmapping

Aquisição e controle /tf

Aquisição e controle /tf

```
tucss@tucss:~/Documents$ rostopic info /tf
Type: tf2 msgs/TFMessage
Publishers:
* /ekf se odom (http://tucss:45759/)
 * /udp dialog (http://tucss:39785/)
 * /slam gmapping (http://tucss:37349/)
Subscribers:
* /ekf se odom (http://tucss:45759/)
 * /slam gmapping (http://tucss:37349/)
 * /rviz 1738635849867239929 (http://tucss:35711/)
tucss@tucss:~/Documents$
```


Resultados

- Ambiente
- Operação

Resultados Ambiente

Resultados Ambiente

Resultados Operação

- Movimentação lenta
 - o 75mm/s
- Pouco esterçamento
 - 0 ±6°

Resultados

Resultados

Referências

CRUZ Júnior, G. P. Investigação de técnicas lidar slam para um dispositivo robótico de inspeção de ambientes confinados. Revista da SBA, v. 2, n. 1, 2021.

DANTAS Junior, J. S. C. Slam de um robô móvel terrestre utilizando sensor lidar e odometria com filtro de kalman estendido. Trabalho de Conclusão de Curso (graduação) – Universidade Federal do Ceará, Centro de Tecnologia, Curso de Engenharia Elétrica, Fortaleza, 2023.

SOARES, L. P. Projeto e construção de um robô móvel car-like equipado com lidar 2d. Curso de Graduação em Engenharia Elétrica da Universidade Federal da Bahia -Universidade de Salvador, 2023.

VELOSO, P. H. O. Desenvolvimento de um protótipo para veículos autônomos com localização e mapeamento simultâneos. Instituto Federal de Educação, Ciência e Tecnologia de Minas Gerais – Campus Formiga., 2019.

Teste em sala de aula

