ANÁLISIS NUMÉRICO

Práctica N° 3: Transformada de Laplace. Aplicación a la Resolución de Ecuaciones Diferenciales

1) Calcular por definición la transformada de Laplace de las siguientes funciones:

1.1)
$$f(t) = \begin{cases} 0, & t < 0 \\ 3, & t \ge 0 \end{cases}$$

1.2)
$$f(t) = \begin{cases} 0, & t < 0 \\ 3e^{-2t}, & t \ge 0 \end{cases}$$

2) Calcular $\lim_{t\to 0} f(t)$, y $\lim_{t\to \infty} f(t)$ para las siguientes funciones, utilizando los Teoremas de Valor Inicial y de Valor Final:

2.1)
$$F(s) = \frac{1}{s(s+5)}$$

2.2)
$$F(s) = \frac{s}{(s-2)(s+3)}$$

2.3)
$$F(s) = \frac{1}{(s+5)}$$

3) A partir de las tablas y propiedades, calcular la Transformada de Laplace de las siguientes funciones:

3.1)
$$f(t) = 3t + 4$$

3.2)
$$f(t) = t^2 + 3t + 4$$

3.3)
$$f(t) = 2te^t$$

3.4)
$$f(t) = e^{2t+4}$$

3.5)
$$f(t) = sen(\frac{\pi t}{2})$$

4) Calcular la transformada de Laplace Y(s) de las siguientes ecuaciones diferenciales:

4.1)
$$\ddot{y} + 3\dot{y} + 6y = 0$$
, $y(0) = 0$, $\dot{y} = 3$

4.2)
$$2\ddot{y} + 7\dot{y} + 3y = 0$$
, $y(0) = 3$, $\dot{y} = 0$

4.3)
$$\ddot{y} - 3\dot{y} + 2y = 2e^{3t}$$
, $y(0) = 0$, $\dot{y} = 4$

4.4)
$$\ddot{y} + 5\dot{y} + 4y = t$$
, $y(0) = 0$, $\dot{y} = 1$

4.5)
$$\ddot{y} + 5\dot{y} + 4y = sen(t)$$
, $y(0) = 0$, $\dot{y} = 0$

5) Calcular la transformada inversa de Laplace y(t) de las siguientes funciones:

5.1)
$$Y(s) = \frac{1}{s(s+5)}$$

5.2)
$$Y(s) = \frac{s}{(s-2)(s+3)}$$

5.3)
$$Y(s) = \frac{1}{(s+5)}$$

5.4)
$$Y(s) = \frac{s+3}{(s^2+s-2)}$$

5.1)
$$Y(s) = \frac{1}{s(s+5)}$$

5.2) $Y(s) = \frac{s}{(s-2)(s+3)}$
5.3) $Y(s) = \frac{1}{(s+5)}$
5.4) $Y(s) = \frac{s+3}{(s^2+s-2)}$
5.5) $Y(s) = \frac{s}{s^2-1} + \frac{s-2}{(s^2+s)}$