Συντομότερες Διαδρομές

Διδάσκοντες: **Αρ. Παγουρτζής, Δ. Φωτάκης, Δ. Σούλιου, Παν. Γροντάς**

Επιμέλεια διαφανειών: Δ. Φωτάκης

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Εθνικό Μετσόβιο Πολυτεχνείο

Συντομότερη Διαδρομή

- \square Κατευθυνόμενο G(V, E, w) με μήκη $w: E \mapsto \mathbb{R}$
 - lacksquare Μήκος διαδρομής $p = (v_0, v_1, \dots, v_k) : w(p) = \sum_{i=1}^k w(v_{i-1}, v_i)$
 - Απόσταση d(u, v): μήκος συντομότερης u v διαδρομής.
 - Aν δεν υπάρχει u v διαδρομή, $d(u, v) = \infty$.
- Ζητούμενο: αποστάσεις και συντομότερες διαδρομές από αρχική κορυφή s προς όλες τις κορυφές.
 - Θεμελιώδες πρόβλημα συνδυαστικής βελτιστοποίησης.

Κύκλοι Αρνητικού Μήκους

- Διαδρομή: ακολ. κορυφών όπου διαδοχικές συνδέονται με ακμή.
- Μονοκονδυλιά: διαδρομή χωρίς επαναλαμβανόμενες ακμές.
- (Απλό) μονοπάτι: διαδρομή χωρίς επαναλαμβανόμενες κορυφές.
 - Υπάρχει διαδρομή u ν ανν υπάρχει μονοπάτι u ν.
- Συντομότερη διαδρομή είναι μονοπάτι εκτός αν...
 - Υπάρχει κύκλος αρνητικού μήκους!
 - Αποστάσεις δεν ορίζονται γιατί συνολικό μήκος διαδρομής μπορεί να μειώνεται επ' άπειρο!
 - Κύκλος αρνητικού μήκους σε κάποια u v διαδρομή $\Rightarrow d(u, v) = -\infty$.

Συντομότερα Μονοπάτια

- \square Av $p = (v_0, v_1, ..., v_k)$ είναι συντομότερο μονοπάτι, κάθε $v_i v_j$ τμήμα του αποτελεί συντομότερο $v_i v_j$ μονοπάτι.
 - Αρχή βελτιστότητας.
- Συντομότερα μονοπάτια από s προς όλες τις κορυφές:Δέντρο Συντομότερων Μονοπατιών (SPT, ΔΣΜ).
 - Αν συντομότερα s ν₁ και s ν₂ μονοπάτια έχουν κοινή κορυφή u, χρησιμοποιούν (ίδιο) συντομότερο s u μονοπάτι.
 - ΔΣΜ αναπαρίσταται με πίνακα γονέων.

Συντομότερα Μονοπάτια

- **Π** Ταυτίζεται ΔΣΜ με ΕΣΔ;
- □ Έστω συντομότερα μονοπάτια από s σε G(V, E, w).
 - Τι συμβαίνει σε G(V, E, kw), k > 0;
 - Τι συμβαίνει σε G(V, E, kw), k < 0;</p>
 - Τι συμβαίνει σε G(V, E, w+k), k > 0;

Αποστάσεις

□ Αποστάσεις ικανοποιούν την «τριγωνική ανισότητα»:

$$\forall (v, u) \in E, d(s, u) \leq d(s, v) + w(v, u)$$

 $\forall v, u \in V, d(s, u) \leq d(s, v) + d(v, u)$

■ Ισότητα ισχύει ανν συντ. s – u μονοπάτι περιέχει ακμή (v, u) (αντίστοιχα, διέρχεται από κορυφή v).

Υπολογισμός Συντομότερων Μονοπατιών

- □ Διατηρούμε «απαισιόδοξη» εκτίμηση D[u] για d(s, u).
 - Αρχικά: D[s]=0 και $D[u]=\infty$ $\forall u\in V\setminus\{s\}$ p[u]= NULL $\forall u\in V$
 - Αλγόριθμος εξετάζει ακμές (v, u) και αναπροσαρμόζει D[u]. Αν D[u] > D[v] + w(v,u), τότε $D[u] \leftarrow D[v] + w(v,u)$ $p[u] \leftarrow v$
- □ D[u] = μἡκος συντομότερου γνωστού s − u μονοπατιού.
 - Επαγωγικά: αν ισχύει πριν τελευταία εξέταση ακμής (v, u), ισχύει και μετά αφού $D[u] \leftarrow \min\{D[u], D[v] + w(v, u)\}$
 - lacksquare Πάντα $D[u] \geq d(s,u)$, και $D[u] = \infty$ αν $\nexists s u$ μονοπάτι.
 - Όταν ακμές συντομότερου s ν μονοπατ. εξεταστούν με τη σειρά, γίνεται D[u] = d(s, u) και δεν μειώνεται στο μέλλον.
- Συστηματική εξέταση ακμών και κριτήριο τερματισμού.

Αλγόριθμος Bellman-Ford

- «Απαισιόδοξη»εκτίμηση D[u].
 - Τέλος κάθε φάσης i,
 D[u] ≤ D[u, i]
- Σε φάση i = 1, ..., n-1,
 κάθε ακμή εξετάζεται
 μία φορά.
- Επιπλέον φάση γιαέλεγχο ὑπαρξης κὑκλουαρνητικού μἡκος.
- \square Χρόνος εκτέλεσης $\Theta(nm)$.

```
\begin{aligned} & \textbf{Bellman-Ford}(G(V,E,w),s) \\ & \textbf{for all } u \in V \textbf{ do} \\ & D[u] \leftarrow \infty; \ p[u] \leftarrow \text{NULL}; \\ & D[s] \leftarrow 0; \\ & \textbf{for } i \leftarrow 1 \textbf{ to } n-1 \textbf{ do} \\ & \textbf{ for all } (v,u) \in E \textbf{ do} \\ & \textbf{ if } D[u] > D[v] + w(v,u) \textbf{ then} \\ & D[u] \leftarrow D[v] + w(v,u); \\ & p[u] \leftarrow v; \\ & \textbf{ for all } (v,u) \in E \textbf{ do} \\ & \textbf{ if } D[u] > D[v] + w(v,u) \textbf{ then} \\ & \textbf{ return}(\text{NEG-CYCLE}); \end{aligned}
```

Αλγ. Bellman-Ford: Παράδειγμα

Aλγ. Bellman-Ford ως DP

- □ Ιδέα: δοκιμή όλων των ακμών σε κάθε πιθανή θέση για συντομότερο s u μονοπάτι (ταυτόχρονα για όλες τις u).
 - $D(u, i) = \mu \dot{\eta}$ κος συντομότερου s u μονοπ. με ≤ i ακμές.
 - Αρχικά D(s, 0) = 0 και $D(u, 0) = \infty$ για κάθε $u \neq s$.
 - Από ΣΜ με \leq i ακμές σε ΣΜ με \leq i+1 ακμές: $D(u,i+1) = \min\{D(u,i), \min_{v:(v,u)\in E}\{D(v,i)+w(v,u)\}\}$
 - (Απλό) μονοπάτι έχει $\leq n 1$ ακμές \Rightarrow D(u, n-1) = d(s, u) D(u, n) < D(u, n-1) ανν κύκλος αρνητικού μήκους.
 - Υπολογισμός τιμών D(u, i),
 u ∈ V, i = 1, ..., n, με
 δυναμικό
 προγραμματισμό.

Αλγ. Bellman-Ford: Ορθότητα

- □ Αν όχι κύκλος αρνητικού μήκους, D[u] = d(s, u) στο τέλος.
 - **Σ**υντομότερο s u μονοπάτι s = v_0 , v_1 , ..., v_k = u με k ακμές.
 - Επαγωγική υπόθ.: Τέλος φάσης i 1, D[v_{i-1}] = d(s, v_{i-1}).
 - Tέλος φάσης i: εξέταση ακμής (v_{i-1}, v_i) και $D[v_i] = d(s, v_i)$:

$$d(s, v_i) \le D[v_i] \le D[v_{i-1}] + w(v_{i-1}, v_i)$$

= $d(s, v_{i-1}) + w(v_{i-1}, v_i) = d(s, v_i)$

- Τέλος φάσης n 1: D[u] = d(s, u) για κάθε κορυφή u.
- D[u] δεν μειώνεται άλλο, αφού πάντα D[u] ≥ d(s, u).
- Αλγόριθμος δεν επιστρέφει ένδειξη για κύκλο αρνητικού μήκους.

Αλγ. Bellman-Ford: Ορθότητα

- Αν κύκλος αρνητικού μήκους, ένδειξη στο τέλος.
 - Έστω κύκλος αρνητικού μήκους V_0 , V_1 , ..., V_{k-1} , V_k (= V_0) προσπελάσιμος από s.
 - Εκτιμήσεις D[v_i] πεπερασμένες στο τέλος φάσης n-1.
 - Αν όχι ένδειξη, πρέπει στη φάση η για κάθε $\mathbf{v_i}$ στον κύκλο: $D[v_i] \leq D[v_{i-1}] + w(v_{i-1}, v_i)$
 - Αθροίζοντας κατά μέλη:

$$\sum_{i=1}^{k} D[v_i] \le \sum_{i=1}^{k} D[v_{i-1}] + \sum_{i=1}^{k} w(v_{i-1}, v_i) \Rightarrow \sum_{i=1}^{k} w(v_{i-1}, v_i) \ge 0$$

Άτοπο! Άρα ο αλγόριθμος επιστρέφει ένδειξη για κύκλο αρνητικού μήκους.

Συντομότερα Movoπάτια σε DAG

- Σε DAG, σειρά εμφάνισης κορυφών σε κάθε μονοπάτι (άρα και ΔΣΜ) ακολουθεί τοπολογική διάταξη!
 - Έστω τοπολογική διάταξη $s = v_1, v_2, ..., v_n$.
 - d(s, v_k) εξαρτάται μόνο $d(s,v_k)=\min_{v_j:(v_j,v_k)\in E}\{d(s,v_j)+w(v_j,v_k)\}$ από d(s, v_j) με j < k :
- Κορυφές εντάσσονται στο ΔΣΜ με σειρά τοπολογ. διάταξης και εξετάζονται εξερχόμενες ακμές τους (μια φορά κάθε ακμή!).
 - Ορθότητα με <mark>επαγωγή</mark> (παρόμοια με Bellman-Ford).
 - Επαγωγική υπόθ.: ακριβώς πριν την ένταξη του v_k στο ΔΣΜ, ισχύει ότι $D[v_i] = d(s, v_i)$ για κάθε j = 0, ..., k.
 - Ακριβώς πριν ένταξη v_{k+1} στο ΔΣΜ, $D[v_{k+1}] = d(s, v_{k+1})$ αφού

$$D[v_{k+1}] = \min_{v_j:(v_j,v_{k+1})\in E} \{D[v_j] + w(v_j,v_{k+1})\}$$

Συντομότερα Movoπάτια σε DAG

- Χρόνος εκτέλεσης: γραμμικός, $\Theta(n+m)$
- Χρησιμοποιείται και για υπολογισμό μακρύτερων μονοπατιών.
 - Av G(V, E, w) akuk λ ik \dot{o} , р μακρύτερο s – u μονοπάτι ανν ρ συντομότερη s - u διαδρομή στο G(V, E, -w).

```
ShortestPath-DAG(G(V, E, w), v_1)
      Έστω τοπολογική διάταξη v_1, v_2, \ldots, v_n;
      for j \leftarrow 1 to n do
           D[v_i] \leftarrow \infty; p[v_i] \leftarrow \text{NULL};
      D[v_1] \leftarrow 0;
for j \leftarrow 1 to n-1 do
           for all (v_i, v_i) \in E do
                if D[v_i] > D[v_i] + w(v_i, v_i) then
                     D[v_i] \leftarrow D[v_i] + w(v_i, v_i);
                     p[v_i] \leftarrow v_i;
```

Παράδειγμα

Παράδειγμα

Αλγόριθμος Dijkstra

- Ταχύτερος αν όχι αρνητικά μήκη! Αποτελεί γενίκευση BFS.
 - Ταχύτερα αν υπάρχει πληροφορία για σειρά εμφάνισης κορυφών σε συντομότερα μονοπάτια (και ΔΣΜ).
 - Μη αρνητικά μήκη: κορυφές σε αύξουσα σειρά απόστασης.
- Κορυφές εντάσσονται σε ΔΣΜ σε αύξουσα απόσταση και εξετάζονται εξερχόμενες ακμές τους (μια φορά κάθε ακμή!).
 - Αρχικά D[s] = 0 και D[u] = ∞ για κάθε u ≠ s.
 - Κορυφή u εκτός ΔΣΜ με ελάχιστο D[u] εντάσσεται σε ΔΣΜ.
 - Για κάθε ακμή $(u,v),\,D[v]\leftarrow\min\{D[v],D[u]+w(u,v)\}$
- Ορθότητα: όταν u εντάσσεται σε $\Delta \Sigma M$, D[u] = d(s, u).
 - Μη αρνητικά μήκη: κορυφές ν με μεγαλύτερο D[v] σε μεγαλύτερη απόσταση και δεν επηρεάζουν D[u].

Αλγόριθμος Dijkstra: Παράδειγμα

Αλγόριθμος Dijkstra

- Άπληστος αλγόριθμος.
- Υλοποίηση:
 - Ελάχιστο D[v]: ουρά προτεραιότητας.
 - Binary heap: $\Theta(m \log n)$
 - Fibonacci heap: $\Theta(m+n\log n)$
 - Ελάχιστο D[v] γραμμικά: $\Theta(n^2)$.

```
Dijkstra(G(V, E, w), s)
        for all u \in V do
             D[u] \leftarrow \infty; \ p[u] \leftarrow \text{NULL};
       D[s] \leftarrow 0; S \leftarrow \emptyset;
        while |S| < |V| do
             u \notin S : D[u] = \min_{v \notin S} \{D[v]\};
             S \leftarrow S \cup \{u\};
             for all v \in AdjList[u] do
                  if D[v] > D[u] + w(u, v) then
                        D[v] \leftarrow D[u] + w(u,v);
                       p[v] \leftarrow u;
```

Κάτι μου Θυμίζει ...;!

```
Dijkstra(G(V, E, w), s)
     for all u \in V do
          D[u] \leftarrow \infty; \ p[u] \leftarrow \text{NULL};
     D[s] \leftarrow 0; S \leftarrow \emptyset;
     while |S| < |V| do
          u \notin S : D[u] = \min_{v \notin S} \{D[v]\};
          S \leftarrow S \cup \{u\}:
          for all v \in AdjList[u] do
                if D[v] > D[u] + w(u, v) then
                     D[v] \leftarrow D[u] + w(u,v);
                     p[v] \leftarrow u;
```

```
MST-Prim(G(V, E, w), s)
     for all u \in V do
           c[u] \leftarrow \infty; \ p[u] \leftarrow \text{NULL};
     c[s] \leftarrow 0; S \leftarrow \emptyset; \Delta \leftarrow \emptyset;
     while |S| < |V| do
           u \not\in S : c[u] = \min_{v \not\in S} \{c[v]\};
           S \leftarrow S \cup \{u\};
           for all v \in AdjList[u] do
                 if v \not\in S and w(u,v) < c[v] then
                       c[v] \leftarrow w(u,v);
                      p[v] \leftarrow u;
           if p[u] \neq NULL then
                 \Delta \leftarrow \Delta \cup \{u, p[u]\};
```

Αλγόριθμος Dijkstra: Εξέλιξη

- Απόσταση (και συντομότερο μονοπάτι) από s προς κοντινότερη (στην s), 2^η κοντινότερη (στην s) κορυφή, κοκ.
- Συντομότερα μονοπάτια για κοντινότερες κορυφές, με υπολογισμένες αποστάσεις, σχηματίζουν υποδέντρο του ΔΣΜ.
- Επόμενη κοντινότερη (στην s) κορυφή είναι συνοριακή κορυφή.
 - Συνοριακή κορυφή: δεν ανήκει σε υποδέντρο ΔΣΜ και έχει εισερχόμενη ακμή από υποδέντρο.
- Εκτιμήσεις απόστασης συνοριακών κορυφών διατηρούνται σε ουρά προτεραιότητας.
- Συνοριακή κορυφή με ελάχιστη εκτίμηση απόστασης «βγαίνει» από ουρά προτεραιότητας και προστίθεται στο υποδέντρο.
 - Εκτιμήσεις απόστασης συνοριακών κορυφών ενημερώνονται με προσθήκη νέας κορυφής στο υποδέντρο (για εξερχόμενες ακμές της).

Αλγόριθμος Dijkstra: Ορθότητα

- \square Θ.δ.ο όταν κορυφή u εντάσσεται σε $\Delta \Sigma M$, D[u] = d(s, u).
 - Επαγωγή: έστω D[v] = d(s, v) για κάθε v ήδη στο ΔΣΜ.
 - u έχει ελάχιστο D[u] (εκτός ΔΣΜ). Έστω ότι D[u] > d(s, u).
 - p συντομότερο s u μονοπάτι με μήκος d(s, u) < D[u], και z τελευταία κορυφή πριν u στο p:

Μπορεί z στο ΔΣΜ;

$$d(s,u) = d(s,z) + w(z,u) < D[u]$$

$$\Rightarrow z \not\in S$$

'Οχι!

Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2022)

Αλγόριθμος Dijkstra: Ορθότητα

- \Box Θ.δ.ο όταν κορυφή u εντάσσεται σε $\Delta \Sigma M$, D[u] = d(s, u).
 - Επαγωγή: ἐστω D[v] = d(s, v) για κάθε v ήδη στο ΔΣΜ.
 - u έχει ελάχιστο D[u] (εκτός ΔΣΜ). Έστω ότι D[u] > d(s, u).
 - p συντομότερο s u μονοπάτι με μήκος d(s, u) < D[u], και z τελευταία κορυφή πριν u στο p:

Έστω x (≠ z) τελευταία κορυφή του p

στο ΔΣΜ και y (μπορεί y = z) επόμενη της x στο p.

$$D[y] \le D[x] + w(x, y)$$

$$= d(s, x) + w(x, y)$$

$$= d(s, y) < D[u]$$

$$\Rightarrow D[y] < D[u],$$
áτοπο!

Dijkstra vs Bellman-Ford

- Αλγ. Dijkstra ταχύτερος κατά η αλλά δεν εφαρμόζεται για αρνητικά μήκη.
 - Βασίζεται στο ότι αποστάσεις δεν μειώνονται κατά μήκος συντομότερου μονοπατιού.
- □ Αλγ. Bellman-Ford εφαρμόζεται για αρνητικά μήκη.
 - Αποστάσεις μπορεί να μειώνονται κατά μήκος συντομότερου μονοπατιού.
 - «Τελευταία» κορυφή μπορεί σε μικρότερη απόσταση από αρχική.

Ερωτήσεις - Ασκήσεις

- Αρνητικά μήκη \rightarrow προσθέτουμε μεγάλο αριθμό \rightarrow \rightarrow θετικά μήκη \rightarrow αλγόριθμος Dijkstra;
- Νδο BFS υπολογίζει ΔΣΜ όταν ακμές μοναδιαίου μήκους.
- Όταν μη-αρνητικά μήκη, μπορεί ένα ΔΣΜ και ένα ΕΣΔ να μην έχουν καμία κοινή ακμή;
- **Bottleneck** Shortest Paths:
 - Κόστος μονοπατιού p: $c(p) = \max_{e \in p} \{w(e)\}$
 - Υπολογισμός ΔΣΜ για bottleneck κόστος;
 - Τροποποίηση Dijkstra λύνει Bottleneck Shortest Paths (ακόμη και για αρνητικά μήκη):

```
\forall (v, u) \in E, D[u] \leftarrow \min\{D[u], \max\{D[v], w(v, u)\}\}
```

Συντομότερα Μονοπάτια για Όλα τα Ζεύγη Κορυφών

- Υπολογισμός απόστασης d(v, u) και συντομότερου v u μονοπατιού για κάθε ζεύγος (v, u) ∈ V × V.
- \square Αλγόριθμος για ΣΜ από μία κορυφή για κάθε $s \in V$.
 - Αρνητικά μήκη: Bellman-Ford σε χρόνο $\Theta(n^2 m)$.
 - Μη-αρνητικά μήκη: Dijkstra σε χρόνο $\Theta(n m + n^2 \log n)$.
- \square Αρνητικά μήκη: Floyd-Warshall σε χρόνο $\Theta(n^3)$.
- Αναπαράσταση λύσης:
 - Αποστάσεις: πίνακας D[1..n][1..n]
 - Συντομότερα μονοπάτια: η ΔΣΜ, ένα για κάθε αρχική κορυφή.
 - Πίνακας P[1..n][1..n]: η πίνακες γονέων.
 - \square Γραμμή P[i]: πίνακας γονέων ΔΣΜ(v_i).

Αλγόριθμος Floyd-Warshall

- Θεωρούμε γράφημα G(V, E, w) με μήκη στις ακμές.
 - Καθορισμένη (αυθαίρετη) αρίθμηση κορυφών $v_1, v_2, ..., v_n$.
- Αναπαράσταση γραφήματος με πίνακα γειτνίασης:

$$w(v_i, v_j) = \begin{cases} 0 & v_i = v_j \\ w(v_i, v_j) & v_i \neq v_j \ (v_i, v_j) \in E \\ \infty & v_i \neq v_j \ (v_i, v_j) \notin E \end{cases}$$

Υπολογισμός απόστασης $d(v_i, v_i)$ από $d(v_i, v_k)$, $d(v_k, v_i)$ για όλα τα $k ∈ V \setminus \{v_i, v_i\}$:

$$d(v_i, v_j) = \min\{w(v_i, v_j), \min_{v_k \in V \setminus \{v_i, v_j\}} \{d(v_i, v_k) + d(v_k, v_j)\}\}$$

- Φαύλος κύκλος(;): $d(v_i, v_k) \rightarrow d(v_i, v_j)$ και $d(v_i, v_j) \rightarrow d(v_i, v_k)$
- Δυναμικός προγραμματισμός: υπολογισμός όλων με συστηματικό bottom-up τρόπο!

Αλγόριθμος Floyd-Warshall

- $D_{k}[v_{i}, v_{i}]$: μήκος συντομότερου $v_{i} v_{i}$ μονοπατιού με ενδιάμεσες κορυφές μόνο από $V_k = \{v_1, ..., v_k\}$
 - Αρχικά $D_0[v_i, v_i] = w(v_i, v_i)$ γιατί $V_0 = \emptyset$.
 - Έστω ότι γνωρίζουμε $D_{k-1}[v_i, v_i]$ για όλα τα ζεύγη v_i, v_i .
 - $D_k[v_i, v_i]$ διέρχεται από v_k καμία ή μία φορά (μονοπάτι!): $D_k[v_i, v_i] = \min\{D_{k-1}[v_i, v_i], D_{k-1}[v_i, v_k] + D_{k-1}[v_k, v_i]\}$
 - Αναδρομική σχέση για D₀, D₁, ..., D_n:

$$D_k[v_i, v_j] = \begin{cases} w(v_i, v_j) & k = 0\\ \min\{D_{k-1}[v_i, v_j], D_{k-1}[v_i, v_k] + D_{k-1}[v_k, v_j]\} & k = 1, \dots, n \end{cases}$$

- Υπολογισμός D_n με **δυναμικό προγραμματισμό**.
- Κύκλος αρνητικού μήκους αν $D_n[v_i, v_i] < 0$.

Αλγόριθμος Floyd-Warshall

Τυπικός δυναμικός Xρόνος: Θ(n³)προγραμματισμός: Floyd-Warshall(G(V, E, w)) for $i \leftarrow 1$ to n do for $j \leftarrow 1$ to n do if $(v_i, v_j) \in E$ then $D_0[i, j] \leftarrow w(v_i, v_j)$; else $D_0[i,j] \leftarrow \infty$; $D_0[i,i] \leftarrow 0;$ for $k \leftarrow 1$ to n do for $i \leftarrow 1$ to n do for $j \leftarrow 1$ to n do if $D_{k-1}[i,j] > D_{k-1}[i,k] + D_{k-1}[k,j]$ then $D_k[i,j] \leftarrow D_{k-1}[i,k] + D_{k-1}[k,j];$ else $D_k[i,j] \leftarrow D_{k-1}[i,j];$

Παράδειγμα

$$D_0 = \begin{pmatrix} 0 & 1 & \infty & -2 & \infty \\ \infty & 0 & -1 & 3 & \infty \\ \infty & \infty & 0 & 2 & \infty \\ \infty & \infty & \infty & 0 & 4 \\ 3 & 5 & \infty & \infty & 0 \end{pmatrix}$$

$$D_2 = \begin{pmatrix} 0 & 1 & 0 & -2 & \infty \\ \infty & 0 & -1 & 3 & \infty \\ \infty & \infty & 0 & 2 & \infty \\ \infty & \infty & \infty & 0 & 4 \\ 3 & 4 & 3 & 1 & 0 \end{pmatrix}$$

$$D_{4} = \begin{pmatrix} 0 & 1 & 0 & -2 & 2 \\ \infty & 0 & -1 & 1 & 5 \\ \infty & \infty & \infty & 0 & 2 & 6 \\ \infty & \infty & \infty & 0 & 4 \\ 3 & 4 & 3 & 1 & 0 \end{pmatrix}$$

$$D_{5} = \begin{pmatrix} 0 & 1 & 0 & -2 & 2 \\ 8 & 0 & -1 & 1 & 5 \\ 9 & 10 & 0 & 2 & 6 \\ 7 & 8 & 7 & 0 & 4 \\ 3 & 4 & 3 & 1 & 0 \end{pmatrix}$$

$$D_{0} = \begin{pmatrix} 0 & 1 & \infty & -2 & \infty \\ \infty & 0 & -1 & 3 & \infty \\ \infty & \infty & 0 & 2 & \infty \\ \infty & \infty & \infty & 0 & 4 \\ 3 & 5 & \infty & \infty & 0 \end{pmatrix} \qquad D_{1} = \begin{pmatrix} 0 & 1 & \infty & -2 & \infty \\ \infty & 0 & -1 & 3 & \infty \\ \infty & \infty & \infty & 0 & 4 \\ 3 & 4 & \infty & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 & -2 & \infty \\ \infty & 0 & -1 & 3 & \infty \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 & 0 & -2 & \infty \\ \infty & 0 & -2 & \infty \end{pmatrix}$$

$$D_{2} = \begin{pmatrix} 0 & 1 & 0 & -2 & \infty \\ \infty & 0 & -1 & 3 & \infty \\ \infty & \infty & \infty & 0 & 2 & \infty \\ \infty & \infty & \infty & 0 & 4 \\ 3 & 4 & 3 & 1 & 0 \end{pmatrix} \qquad D_{3} = \begin{pmatrix} 0 & 1 & 0 & -2 & \infty \\ \infty & 0 & -1 & 1 & \infty \\ \infty & \infty & \infty & 0 & 4 \\ 3 & 4 & 3 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 & -2 & 2 \\ 0 & 1 & 0 & -2 & 2 \\ 0 & 0 & 1 & 1 & 5 \end{pmatrix}$$

$$D_5 = \begin{pmatrix} 0 & 1 & 0 & -2 & 2 \\ 8 & 0 & -1 & 1 & 5 \\ 9 & 10 & 0 & 2 & 6 \\ 7 & 8 & 7 & 0 & 4 \\ 3 & 4 & 3 & 1 & 0 \end{pmatrix}$$

Υπολογισμός Συντομότερων Μονοπατιών

- $P_k[v_i, \cdot] : \Delta \Sigma M(v_i)$ με ενδιάμεσες κορυφές μόνο από V_k .
 - **Δ** Αποστάσεις $D_k[v_i, \cdot]$ αντιστοιχούν σε μονοπάτια $P_k[v_i, \cdot]$.
 - $\mathbf{P}_k[\mathbf{v}_i, \mathbf{v}_j]$: προηγούμενη κορυφή της \mathbf{v}_j στο συντομότερο $\mathbf{v}_i \mathbf{v}_j$ μονοπάτι με ενδιάμεσες κορυφές μόνο από \mathbf{V}_k .
- $\mathbf{P_0}$ καθορίζεται από πίνακα γειτνίασης: $P_0[v_i,v_j] = \begin{cases} \text{NULL} & \text{αν } i=j \ \acute{\mathbf{\eta}} \ (v_i,v_j) \not\in E \\ v_i & \text{διαφορετιμά} \end{cases}$
- \square Αναδρομική σχέση για P_0 , P_1 , ..., P_n :

$$P_k[v_i, v_j] = \begin{cases} P_{k-1}[v_i, v_j] & D_{k-1}[v_i, v_j] \le D_{k-1}[v_i, v_k] + D_{k-1}[v_k, v_j] \\ P_{k-1}[v_k, v_j] & D_{k-1}[v_i, v_j] > D_{k-1}[v_i, v_k] + D_{k-1}[v_k, v_j] \end{cases}$$

- Υπολογισμός P_n ταυτόχρονα με υπολογισμό D_n.
- Εύκολη τροποποίηση προηγούμενης υλοποίησης.

Παράδειγμα

32

$$P_{5} = \begin{pmatrix} \text{NULL} & 1 & 2 & 1 & 4 \\ 5 & \text{NULL} & 2 & 3 & 4 \\ 5 & 1 & \text{NULL} & 3 & 4 \\ 5 & 1 & 2 & \text{NULL} & 4 \\ 5 & 1 & 2 & 1 & \text{NULL} \end{pmatrix}$$

Αλγόριθμος Johnson

- Συντομότερα μονοπάτια για όλα τα ζεύγη κορυφών σε αραιά γραφήματα με αρνητικά μήκη:
 - Μετατροπή αρνητικών μηκών σε μη αρνητικά χωρίς να αλλάξουν τα συντομότερα μονοπάτια.
- Αλγόριθμος για γράφημα G(V, E, w):
 - Νέα κορυφή s που συνδέεται με κάθε u ∈ V με ακμή μηδενικού μήκους: $G'(V \cup \{s\}, E \cup \{(s, u)\}, w)$.
 - Bellman-Ford για G' με αρχική κορυφή s. Έστω h(u) απόσταση κορυφής u ∈ V από s.
 - Αν όχι κύκλος αρνητικού μήκους, υπολόγισε <mark>νέα</mark> (μη αρνητικά) μήκη: $\hat{w}(v,u) = w(v,u) + h(v) - h(u), \forall (v,u) \in E$
 - Για κάθε $u \in V$, Dijkstra σε $G(V, E, \hat{w})$ με αρχική κορυφή u.

Αλγόριθμος Johnson

- Χρονική πολυπλοκότητα:
 - Bellman-Ford και η φορές Dijkstra: $\Theta(n m + n^2 \log n)$.
- Ορθότητα:
 - Νέα μήκη μη αρνητικά: h(·) αποστάσεις από s, και ισχύει ότι $\forall (v, u) \in E, h(u) \leq h(v) + w(v, u) \Rightarrow \hat{w}(v, u) \geq 0$
 - Μεταβολή στα μήκη δεν επηρεάζει συντομότερα μονοπάτια.
 - Μήκος κάθε α β μονοπατιού μεταβάλλεται κατά h(β) h(α).
 - Έστω $p = (a = v_0, v_1, ..., v_k = β)$ οποιοδήποτε a β μονοπάτι.

$$\hat{\ell}(p) = \sum_{i=0}^{k-1} \hat{w}(v_i, v_{i+1}) = \sum_{i=0}^{k-1} [w(v_i, v_{i+1}) + h(v_i) - h(v_{i+1})]$$

$$= \sum_{i=0}^{k-1} w(v_i, v_{i+1}) + h(v_0) - h(v_k) = \ell(p) + h(\alpha) - h(\beta)$$

Σύνοψη

- Συντομότερα μονοπάτια από μία αρχική κορυφή s:
 - Αρνητικά μήκη: Bellman-Ford σε χρόνο $\Theta(n m)$.
 - Δυναμικός προγραμματισμός.
 - DAGs με αρνητικά μήκη σε χρόνο $\Theta(m + n)$.
 - Μη-αρνητικά μήκη: Dijkstra σε χρόνο $\Theta(m + n \log n)$.
 - Προσαρμοστικός) άπληστος αλγόριθμος.
- Συντομότερα μονοπάτια για όλα τα ζεύγη κορυφών:
 - Αρνητικά μήκη: Floyd-Warshall σε χρόνο $\Theta(n^3)$.
 - Δυναμικός προγραμματισμός.
 - (Mη-)αρνητικά μήκη και αραιά γραφήματα, $m = o(n^2)$:
 - \square η φορές Dijkstra σε χρόνο $\Theta(n m + n^2 \log n)$.
 - □ Αν αρνητικά μήκη, αλγ. Johnson για μετατροπή σε θετικά!