Semestrální projekt 4: Optimalizace tepelné izolace školy - teoretická studie

Základní informace

• **Předmět:** Praktické použití fyziky a chemie

• Typ projektu: Energetický audit a optimalizační studie

• Časová dotace: 16 týdnů (2 hodiny týdně + domácí příprava)

• Práce v týmu: 2-3 studenti

Charakteristika projektu

Studenti zpracují zjednodušený energetický audit školní budovy se zaměřením na tepelné ztráty a navrhnou optimalizaci tepelné izolace. Projekt kombinuje teoretické znalosti stavební fyziky s praktickou aplikací na reálnou budovu, ekonomickým hodnocením a environmentálními aspekty.

Cíle projektu

Hlavní cíl

Analyzovat tepelně-technické vlastnosti školní budovy, identifikovat kritická místa tepelných ztrát a navrhnout ekonomicky optimální řešení zateplení.

Dílčí cíle

- 1. Osvojit si principy přenosu tepla ve stavebních konstrukcích
- 2. Naučit se pracovat s normami ČSN v oblasti stavební fyziky
- 3. Pochopit metodiku energetického auditu
- 4. Rozvíjet schopnost systémového přístupu k řešení problémů
- 5. Získat praktické zkušenosti s hodnocením investic

Zadání projektu

- 1. Mapování současného stavu (25% hodnocení)
- **1.1 Dokumentace budovy Získání podkladů** Půdorysy všech podlaží (1:100) Řezy budovou (1:100) Situační plán Rok výstavby a rekonstrukcí Technická dokumentace (pokud existuje)

Vlastní měření a dokumentace - Ověření rozměrů - Fotodokumentace fasád - Identifikace konstrukčního systému - Orientace ke světovým stranám

1.2 Stavební konstrukce Obvodové stěny - Materiál a tloušťka - Součinitel prostupu tepla U $[W/m^2 \cdot K]$ - Plocha stěn podle orientace $[m^2]$ - Tepelné mosty

 $\textbf{Střecha/strop pod půdou} - \text{Typ konstrukce} - \text{Skladba vrstev} - \text{Současn\'e zateplen\'e} - \text{Součinitel U } [\text{W/m}^2 \cdot \text{K}]$

 $\mathbf{V\acute{y}pln\check{e}}$ otvorů - Typy oken (jednoduché, dvojité, trojité) - Materiál rámů - Součinitel Uw $[\mathbf{W}/\mathbf{m}^2 \cdot \mathbf{K}]$ - Celková plocha oken $[\mathbf{m}^2]$

Podlaha/strop nad suterénem - Konstrukce - Zateplení (pokud existuje) - Součinitel U [W/m²·K]

1.3 Vytápěcí systém

- Zdroj tepla (typ, výkon, účinnost)
- Roční spotřeba energie [GJ/rok]
- Náklady na vytápění [Kč/rok]
- Otopná soustava (radiátory, podlahové)

2. Výpočet tepelných ztrát (35% hodnocení)

2.1 Tepelné ztráty prostupem Metodika výpočtu dle ČSN 73 0540

Pro každou konstrukci vypočítejte:

$$HT, i = Ai \times Ui \times bi [W/K]$$

kde: - Ai = plocha konstrukce $[m^2]$ - Ui = součinitel prostupu tepla $[W/m^2 \cdot K]$ - bi = teplotní redukční činitel [-]

Výpočty pro: - Obvodové stěny (S, J, V, Z) - Střecha/strop pod půdou - Podlaha/strop nad suterénem - Okna a dveře

Celková měrná ztráta prostupem:

$$HT = \Sigma HT, i + \Delta HT, tb [W/K]$$

kde Δ HT,
tb jsou tepelné mosty (10-15% z HT)

2.2 Tepelné ztráty větráním Přirozené větrání

$$HV = 0.34 \times n \times V [W/K]$$

kde: - n = intenzita výměny vzduchu [h $^{\rm 1}]$ - V = objem vytápěného prostoru [m $^{\rm 3}]$

Nucené větrání (pokud existuje) - Průtok vzduchu [m³/h] - Účinnost rekuperace [%]

2.3 Celková tepelná ztráta

$$Q = (HT + HV) \times (ti - te) [W]$$

kde: - ti = vnitřní teplota (20°C) - te = venkovní výpočtová teplota (-15°C)

2.4 Roční potřeba tepla Denostupňová metoda

$$E = 24 \times \times (HT + HV) \times D / 1000 [GJ/rok]$$

kde: - = opravný součinitel (0,8-0,9) - D = počet denostupňů $[K \cdot den]$

3. Návrh úsporných opatření (30% hodnocení)

3.1 Katalog opatření Pro každé opatření určete: - Technické řešení - Zlepšení součinitele U - Investiční náklady $[K\check{c}]$ - Úspora energie [GJ/rok] - Prostá návratnost [roky]

Opatření 1: Zateplení fasády - ETICS 160 mm EPS/MW - U před: 1,2 W/m²·K \rightarrow U po: 0,20 W/m²·K - Cena: 1 800 Kč/m² včetně montáže

Opatření 2: Zateplení střechy/stropu - 300 mm minerální vaty - U před: $0.8 \text{ W/m}^2 \cdot \text{K} \rightarrow \text{U po: } 0.12 \text{ W/m}^2 \cdot \text{K}$ - Cena: 800 Kč/m^2

Opatření 3: Výměna oken - Trojsklo s teplým rámem - Uw před: 2,8 W/m² · K \rightarrow Uw po: 0,8 W/m² · K - Cena: 12 000 Kč/m²

Opatření 4: Zateplení soklu - XPS 120 mm - U před: $1.5 \text{ W/m}^2 \cdot \text{K} \rightarrow \text{U po: } 0.25 \text{ W/m}^2 \cdot \text{K}$ - Cena: 2.200 Kč/m^2

Opatření 5: Instalace rekuperace - Účinnost 85% - Investice: 500 000 Kč - Úspora větrání: 70%

3.2 Výpočet úspor Pro každé opatření:

$$\Delta E = 24 \times \times \Delta H \times D / 1000 [GJ/rok]$$

kde $\Delta H = \text{snížení tepelné ztráty } [W/K]$

Finanční úspora:

$$\Delta N = \Delta E \times cena_tepla [Kč/rok]$$

3.3 Kombinace opatření Varianta A: Minimální - Pouze nejnutnější opravy - Investice do 1 mil. Kč

Varianta B: Optimální - Nejlepší poměr cena/výkon - Návratnost do 10 let

Varianta C: Komplexní - Pasivní standard - Maximální úspory

4. Ekonomické vyhodnocení (10% hodnocení)

4.1 Investiční náklady

Opatření	Množství	Jednotková cena	Celkem
Zateplení fasády	m^2	$ m K\check{c}/m^2$	Kč
Zateplení střechy	$ m m^2$	Kč/m²	Kč
Výměna oken	m^2	$ m K\check{c}/m^2$	Kč
CELKEM			Kč

4.2 Hodnocení variant Pro každou variantu vypočítejte: - Celkové investiční náklady [Kč] - Roční úspora energie [GJ] - Roční úspora nákladů [Kč] - Prostá návratnost [roky] - NPV (20 let, i=4%) - IRR [%]

4.3 Prioritizace opatření Seřaďte opatření podle: 1. Návratnosti (nejkratší první) 2. Absolutní úspory (největší první) 3. Technické naléhavosti

4.4 Dotační možnosti

- Nová zelená úsporám
- OPŽP
- Vlastní zdroje

Výstupy projektu

1. Energetický audit (15-20 stran)

Struktura dokumentu:

- 1. Identifikační údaje
 - · Název budovy
 - Adresa
 - Vlastník/provozovatel
 - Zpracovatel auditu
- 2. Executive summary (1 strana)
 - Hlavní zjištění
 - Doporučení
 - Ekonomické ukazatele

3. Popis budovy

- Stavebně-technické řešení
- Vytápěcí systém
- Současná spotřeba

4. Výpočet tepelných ztrát

- Metodika
- Detailní výpočty
- Souhrnné tabulky

5. Návrh opatření

• Technická řešení

- Výpočet úspor
- Investiční náklady

6. Ekonomické vyhodnocení

- Varianty řešení
- Finanční analýza
- Doporučení

7. Environmentální přínosy

- Snížení emisí CO
- Úspora primární energie

8. Závěr a doporučení

9. **Přílohy**

- Výpočtové tabulky
- Půdorysy s vyznačením opatření
- Fotodokumentace
- Cenové nabídky

2. Prezentace pro vedení školy

PowerPoint (15 minut) - Současný stav (fotky, termovize) - Tepelné ztráty (graf rozdělení) - Navrhovaná opatření (vizualizace) - Investice vs. úspory (graf návratnosti) - Varianty řešení (srovnávací tabulka) - Dotační možnosti - Doporučený postup

3. Informační leták

A4 oboustranně - Pro studenty a rodiče - Jednoduché vysvětlení problému - Navrhovaná řešení - Přínosy (úspory, komfort, ekologie)

4. 3D vizualizace (bonus)

- Model budovy před/po zateplení
- Tepelné toky
- Kritická místa

Hodnotící kritéria

Bodové hodnocení (100 bodů)

Část	Body	Kritéria
Analýza stavu	25	Úplnost dat, správnost U-hodnot
Výpočty Návrh opatření	$\frac{35}{30}$	Metodika, správnost, interpretace Realističnost, komplexnost, inovace
Ekonomika	10	Správnost analýzy, závěry

Bonusové body (max. 10)

- Termovizní snímky: +3 body
- Konzultace s energetickým auditorem: +2 body
- 3D model/vizualizace: +3 body
- Měření infiltrace (blower door): +2 body

Časový harmonogram

Týden	Fáze	Úkoly	Výstup
1-2	Start	Týmy, studium zadání	Plán projektu
3-4	Mapování	Dokumentace budovy	Technické podklady
5-6	Analýza	Součinitele U, plochy	Tabulka konstrukcí
7-8	Výpočty I	Tepelné ztráty	Výpočtový protokol
9-10	Výpočty II	Roční spotřeba	Energetická bilance
11-12	Návrhy	Opatření, úspory	Katalog opatření
13	Ekonomika	Hodnocení variant	Finanční analýza
14-15	Dokumentace	Audit, prezentace	Finální dokumenty
16	Prezentace	Obhajoby	Prezentace

Doporučené zdroje

Normy a předpisy

- 1. ČSN 73 0540 Tepelná ochrana budov
- 2. ČSN EN ISO 13790 Energetická náročnost budov
- 3. Vyhláška 78/2013 Sb. Energetická náročnost budov
- 4. TNI 73 0329 Zjednodušené výpočtové hodnocení

Literatura

- 1. VAVERKA, J. a kol.: Stavební tepelná technika a energetika budov. Brno: VUTIUM, 2006
- 2. ŘEHÁNEK, J.: Tepelná akumulace budov. Praha: ČKAIT, 2002
- 3. HÁJEK, P.: Pozemní stavitelství III. Praha: ČVUT, 2004

Online nástroje

- www.tzb-info.cz/tabulky-a-vypocty/58-prostup-tepla-vicevrstvou-konstrukci
- www.isover.cz/aplikace/tep-technika
- $\bullet \ \ www.knaufinsulation.cz/kalkulacka-uspor$
- www.nkn.cz Národní kalkulační nástroj

Software (volitelné)

- Teplo (Svoboda Software)
- Area (Svoboda Software)
- Energy+ (pokročilí)

Katalogy materiálů

- ISOVER, ROCKWOOL tepelné izolace
- BAUMIT, STO ETICS systémy
- VEKRA, INTERNORM okna a dveře

Praktické pokyny

Získávání dat

- 1. Kontaktujte správce budovy technická dokumentace
- 2. **Změřte si sami** laser, pásmo
- 3. Využijte katastr půdorys budovy
- 4. Fotodokumentace všechny fasády
- 5. Ptejte se rok rekonstrukcí, problémy

Určení součinitelů U

Pokud neznáte skladbu: - Použijte tabulkové hodnoty dle roku výstavby - Orientační hodnoty: - Nezateplená zeď 45 cm: $U=1,2~W/m^2\cdot K$ - Okna dvojitá stará: $U=2,8~W/m^2\cdot K$ - Střecha nezateplená: U=0,8-1,0 $W/m^2\cdot K$

Časté chyby

- Zapomenutí na tepelné mosty (+10-15%)
- Špatné jednotky (W vs. kW, GJ vs. kWh)
- Nereálné ceny (ověřte u firem)
- Zanedbání údržby a životnosti
- Podcenění přípravných prací

Tipy pro úspěch

- 1. Začněte včas získání dat trvá
- 2. Rozdělte si práci každý člen něco
- 3. Kontrolujte výpočty řády veličin
- 4. Používejte Excel snadné přepočty
- 5. Konzultujte využijte všech možností

Rozšíření projektu

Pokročilé analýzy

- Dynamická simulace (hodinový krok)
- Tepelné zisky (sluneční, vnitřní)
- Letní přehřívání
- Denní světlo

Další opatření

- Fotovoltaika
- Tepelné čerpadlo
- Zelená střecha
- Stínění

Konzultace

Pravidelné

- **Středa:** 14:00-15:00 (kabinet fyziky)
- Online: MS Teams (rezervace)

Speciální (po domluvě)

- Energetický auditor
- Projektant pozemních staveb
- Zástupce dodavatele izolací

Kontrolní body

- **Týden 4:** Dokumentace budovy
- Týden 8: Kontrola výpočtů
- Týden 12: Návrh opatření

Poznámky

Bezpečnost

• Při dokumentaci dodržujte bezpečnost

- Nevstupujte na střechu bez povolení
- Při měření používejte OOPP

Etika

- Respektujte soukromí
- Nefotografujte osoby
- Data používejte pouze pro projekt

Kontakt

Vyučující: [Jméno učitele]

Email: [email]

Kabinet: [číslo místnosti] MS Teams: [odkaz na tým]