Rice's theorem

"every question about the [external] behavior of Turing machines is undecidable"

Rice's theorem

"There is no hope in trying to understand [arbitrary] computer programs"

Does this program halt? Does this program's behavior match the specification? Do these two programs agree on all inputs?

Notation

• L(M) = "the language recognized by M" = "the decision problem that M solves"

• L(M) = { x | M accepts x }

Undecidability Reductions involving TMs

Show that the following language undecidable:

$$L_{nonempty} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \neq \emptyset \}$$

- Recipe: show L_{accept} ≤ L_{nonempty}
 - Write an algorithm that decides L_{accept},
 using a (hypothetical) subroutine for L_{nonempty}

showing Lacopt & Laurempty $I_{\text{nonempty}} = \{ \langle M \rangle \mid L(M) \neq \emptyset \}$ • On input <M',x'>: // "does M' accept x'?" - Write down (but **don't execute**) source code: M* = "On input z: ignore z, just run M' on x' " - If $\langle M^* \rangle \in L_{nonempty}$ then say yes, else say no call hypothetical subjoint for Lnovempty If M' doesn't accept x'
then M* accepts no
inputs If M' accepts x' then M* accepts all Inputs => subroutine says yes => we say yes => We say ro

Be careful:

- (Unnamed) reduction algorithm: it solves L_{accept}, taking advantage of a subroutine for L_{nonemptv}
- <M',x'>: a generic instance of L_{accept}, and input to our (unnamed) reduction algorithm
- M*: a TM whose source code is generated on the fly by our reduction algorithm
 - Source code of M* depends on M' and x'
 - Hence the behavior of M* depends on M' and x'
- z: generic input to M*

$L_{\text{finite}} = \{ \langle M \rangle \mid L(M) \text{ finite } \}_{\text{indecidable}}^{15}$

- - On input <M',x'> // "does M' accept x'?"

```
M* = "On input z: ignore z, run Monx" " hard-coded
in M* from
```

- Write down (but don't execute) source code: $M^* = \text{"On input } z : \text{ ignore } z, \text{ run } M \text{ on } x \text{" in } M^* + M^* = \text{"In } M^* = \text{"In }$ hypothetical subnoutine

WANT:

Achieved:

If
$$M'$$
 accepts: $L(M^*) = \{0,1\}^*$
If M' doesnt $L(M^*) = \emptyset$

- On input <M',x'> // "does M' accept x'?"
 - Write down (but **don't execute**) source code:

$$L_{primes} = \{ \langle M \rangle \mid L(M) = PRIMES \}$$

- On input <M',x'> // "does M' accept x'?"
 - Write down (but **don't execute**) source code:

- If <M*> ∈ L_{primes} then say $\underline{\gamma}^{es}$, else say $\underline{n} \circ$

Rice's Theorem

- Theorem: { <M> | L(M) has property P } is undecidable if P is nontrivial:
 - there is an M_Y with L(M_Y) having property P
 - there is an M_N with L(M_N) not having property P
- In other words, given encoding of M:
 - Can't decide whether L(M) is empty
 - Can't decide whether some special $x \in L(M)$
 - Can't decide whether L(M) is finite
 - Can't decide anything interesting about L(M)

Rice's Theorem proof

Show: L_P = { <M> | L(M) has property P }

- On input <M',x'> // "does M' accept x'?"
 - Write down (but don't execute) source code:

$$M^* =$$
 "On input z :

if M' accepts \times' AND My accepts z

else reject

 $< M^* > \in L_D$ then say , else say

If <M*> ∈ L_D then say , else say

Rice's Theorem proof

- On input <M',x'> // "does M' accept x'?"
 - Write down (but don't execute) source code:

- If <M*> ∈ L_P then say $\underline{\gamma e S}$, else say $\underline{\wedge b}$

Idea: If M'accepts
$$x' \Rightarrow M^*$$
 acts just like My $\Rightarrow L(M^*)$ has property P $\Rightarrow We$ say yes If not $\Rightarrow M^*$ acts just like MN $\Rightarrow doesn'f$ have property P

Some technical issues about reductions

Properties:

- If A ≤ B and B decidable then A decidable, too
- If A ≤ B and A undecidable then B undecidable

What about this????

- If A ≤ B and B recognizable then A recognizable
- If A ≤ B and A unrecognizable then B unrecognizable

Some technical issues

Counterexample to: If A ≤ B and B recognizable then A recognizable

Constraining the reduction

- A ≤_T B, "Turing reduction", "Cook reduction":
 - Algorithm for A uses subroutine for B in arbitrary way
- A ≤_m B, "many-one reduction", "Karp reduction":
 - Algorithm for A only calls B subroutine once, as a "tail call"

Property: If A ≤_m B and B recognizable then A recognizable

Constraining the reduction

Property: If A ≤_m B and B recognizable then A recognizable

• Corollary: ~L_{accept} is not recognizable

 Recipe: to show that L is not recognizable, just show ~L_{accept} ≤_m L

Extended Rice's Theorem

- Theorem: { <M> | L(M) has property P } is not even recognizable if P is monotone:
 - there is an M_Y with L(M_Y) having property P
 - there is an M_N with $L(M_N)$ **not** having property P
 - $L(M_Y) \subseteq L(M_N)$
- So, the following are unrecognizable:
 - Given M, is L(M) finite?
 - Given M, is L(M) a regular language?
 - Given M, is L(M) empty?

Extended Rice's Theorem

- Main idea 1: Use ≤_m so we can say something about [un]recognizability
- Main idea 2: given <M,x>, design M* so that:
 - If M accepts x, then M* behaves like M_N
 - Otherwise M* behaves like M_Y
 - M ∈ ~L_{accept} ⇔ M doesn't accept x
 ⇔ M* behaves like M_Y
 ⇔ M* ∈ L_P