GNN-PRP

Haoyang Ling

March 28, 2022

1 Ideas

Based on the code of graphcl and adgel, I come up with the following idea.

- 1. use trainable graph augumentation inspired by self-attention and GraphCL: tanh/softmax, bernouli
- 2. use mutual information trained by the enhanced loss function: adversarial loss
- 3. try to resolve the loss up-and-down problems
- 4. strategies for updating different encoders: parallel/momentum

1.1 Codes

1.1.1 Edge and Node Weights

Hope the dropping edges and nodes leads to dropping/generating sub-graphs

```
def edge_weight(self, z, edge_index):
    src, dst = edge_index[0], edge_index[1]

src_q = self.Q(src_embedding)
    dst_k = self.K(dst_embedding)
    src_v = self.V(src_embedding)

# edge_weight = src_q @ dst_k.t()
    edge_weight = src_q * dst_k

edge_weight = edge_weight / math.sqrt(edge_weight.shape[1])

edge_weight = (F.softmax(edge_weight, dim=1) @ src_v).mean(dim=1)

# edge_weight = self.V(torch.tanh(edge_weight)).mean(dim=1)

node_feat_weight = (self.N(z) / math.sqrt(self.hidden_dims)).mean()

return edge_weight, node_feat_weight
```

1.1.2 Encoders updating

```
def augment_encoder_update(self, inverse_momentum=1e-2):
    for param_q, param_k in zip(self.encoder.parameters(), self.augment_encoder.parameters()):
        param_k.data += (1 - inverse_momentum) * (param_q.data.detach() - param_k.data)
        # param_k.data = param_q.data.clone().detach()
```

1.1.3 Evaluator

```
class LogisticRegression(nn.Module):
    def __init__ ( self , num_features, num_classes):
        super(LogisticRegression, self ). __init__ ()
        self .fc = nn.Linear(num_features, num_classes)
        torch.nn.init.xavier_uniform_( self .fc .weight.data)

def forward(self , x):
    z = self .fc(x)
    return z
```

```
def reg_loss ( self , reg=1e-2):
    if reg == 0:
        return 0
    else:
        return reg * torch.mean(self.fc.weight.data**2)
```

1.1.4 Training

```
x, edge_index, batch = data.x, data.edge_index, data.batch
# if data.edge_attr is not None:
#
     edge_attr = data.edge_attr
# else:
      edge_attr = torch.zeros(edge_index.shape[1], 1, device=device)
#
z, _ = encoder_model(x, edge_index, batch)
edge_weights, node_feat_weights = encoder_model.edge_weight(z=z.clone().detach(), edge_index=
    edge_index, edge_attr=edge_attr)
gs = []
gs_ad = []
for drop_rate in torch.tensor([.3, .4], dtype=torch.float):
    edge = edge_index.clone()
    edge_prob = feature_drop_weights(edge_weights, tau, device=device)
    # feat_prob = feature_drop_weights(node_feat_weights, tau, device=device)
    # x_aug = drop_feature_weighted(x, feat_prob, 0.1)
   x_aug = x
    edge = drop_edge_weighted(edge, edge_prob, drop_rate)
    _, g_aug = encoder_model.encoder(x_aug, edge, batch)
    encoder_model.encoder_update()
    _{-}, g_{ad} = encoder_{model.augment_encoder}(x_{aug}, edge, batch)
    gs.append(g_aug)
    gs_ad.append(g_ad)
g1, g2 = gs[0], gs[1]
t1 = encoder\_model.mlp(g1)
t2 = encoder_model.mlp(g2)
\# can we compare the residuals
# train it to the learn the noise instead if parallel training
t3 = encoder_model.aug_mlp(gs_ad[0])
t4 = encoder\_model.aug\_mlp(gs\_ad[1])
loss = encoder\_model.loss(t1, t2) - alpha * (encoder\_model.loss(t3, t4)) + reg * encoder\_model.
    reg_loss()
loss.backward()
optimizer.step()
epoch_loss += loss.item()
```

1.2 Results

Compare tanh-parallel with softmax-frozen.

1.2.1 Some Figures with Better Results

- 1. Up-and-down figures show the discontinuity of training. It shows that the dropping schemes may break the important structure of it as we don't have the strategy to add some edges.
- 2. It seems that better training loss leads to better performance. Initialization and learning rate may account for it.

Figure 1: Contrastive Loss with Softmax-frozen

1.3 Reflection

- 1. Frozen may focus the adversarial loss to train the transformation only.
- 2. using edge_attr in edge weights not improving the graphs as some don't have the edge_attr
- 3. Some similarities from self-attention mechanism in transformer. How to calculate the attention? How to define the key and value pairs?
- 4. Find a proper way to embedding evaluation.

Dataset		PRO1	TEINS		PROTEINS				
Parameter		362	297						
Time	Bet	fore	After		Before		After		
Mode	Valid	Test	Valid	Test	Valid	Test	Valid	Test	
1	0.739	0.741	0.820	0.750	0.775	0.759	0.757	0.732	
2	0.775	0.705	0.694	0.750	0.793	0.741	0.829	0.812	
3	0.784	0.741	0.757	0.768	0.703	0.741	0.802	0.741	
4	0.820	0.643	0.748	0.795	0.757	0.786	0.760	0.759	
5	0.757	0.741	0.775	0.705	0.766	0.750	0.757	0.759	
Mean	0.775	0.714	0.759	0.754	0.759	0.755	0.781	0.761	
Std	0.027	0.038	0.041	0.029	0.030	0.017	0.029	0.028	
Max	0.820	0.741	0.820	0.795	0.793	0.786	0.829	0.812	

Dataset		IMDB-I	BINARY			IMDB-	BINARY	
Parameter		360	039					
Time	Bef	ore	After		Before		After	
Mode	Valid	Test	Valid	Test	Valid	Test	Valid	Test
1	0.690	0.620	0.670	0.730	0.660	0.590	0.690	0.680
2	0.710	0.770	0.700	0.690	0.750	0.760	0.770	0.690
3	0.740	0.670	0.770	0.750	0.750	0.710	0.680	0.680
4	0.700	0.740	0.660	0.670	0.760	0.690	0.750	0.710
5	0.660	0.710	0.700	0.770	0.690	0.670	0.730	0.740
Mean	0.700	0.702	0.700	0.722	0.722	0.684	0.724	0.700
Std	0.026	0.053	0.038	0.037	0.040	0.056	0.034	0.023
Max	0.740	0.770	0.770	0.770	0.760	0.760	0.770	0.740

Dataset		IMDB-	MULTI		IMDB-MULTI			
Parameter		36)39					
Time	Bet	ore	After		Before		After	
Mode	Valid	Test	Valid	Test	Valid	Test	Valid	Test
1	0.433	0.513	0.473	0.413	0.500	0.453	0.520	0.447
2	0.487	0.460	0.527	0.460	0.547	0.467	0.533	0.467
3	0.480	0.480	0.520	0.433	0.513	0.440	0.487	0.413
4	0.453	0.400	0.480	0.487	0.580	0.393	0.553	0.480
5	0.487	0.380	0.460	0.513	0.540	0.433	0.507	0.420
Mean	0.468	0.447	0.492	0.461	0.536	0.437	0.520	0.445
Std	0.022	0.050	0.027	0.036	0.028	0.025	0.022	0.026
Max	0.487	0.513	0.527	0.513	0.580	0.467	0.553	0.480

Dataset		NO	CI1		NCI1			
Parameter		406	583					
Time	Bef	ore	Af	ter	Before		After	
Mode	Valid	Test	Valid	Test	Valid	Test	Valid	Test
1	0.725	0.713	0.713	0.706	0.723	0.684	0.633	0.606
2	0.700	0.681	0.691	0.727	0.689	0.715	0.672	0.640
3	0.720	0.691	0.754	0.703	0.713	0.706	0.657	0.635
4	0.720	0.708	0.701	0.725	0.732	0.706	0.640	0.625
5	0.715	0.689	0.708	0.701	0.766	0.706	0.620	0.642
Mean	0.716	0.696	0.713	0.712	0.725	0.703	0.644	0.630
Std	0.009	0.012	0.022	0.011	0.025	0.010	0.018	0.013
Max	0.725	0.713	0.754	0.727	0.766	0.715	0.672	0.642

Dataset		_	D			D	D	
Parameter		47391						
Time	Bet	Before		After		Before		ter
Mode	Valid	Test	Valid	Test	Valid	Test	Valid	Test
1	0.735	0.714	0.761	0.798	0.740	0.689	0.829	0.748
2	0.709	0.681	0.812	0.739	0.863	0.672	0.812	0.756

3	0.795	0.714	0.821	0.689					
4	0.744	0.697	0.821	0.765					
5	0.803	0.672	0.778	0.773					
Mean	0.757	0.696	0.799	0.753	0.802	0.681	0.821	0.752	
Std	0.036	0.017	0.025	0.037	0.062	0.008	0.008	0.004	
Max	0.803	0.714	0.821	0.798	0.863	0.689	0.829	0.756	

Dataset			LAB			COL	LAB	
Parameter		300	039					
Time	Bef	ore	Af	ter	Bef	ore	After	
Mode	Valid	Test	Valid	Test	Valid	Test	Valid	Test
1	0.644	0.672	0.746	0.698	0.660	0.644	0.708	0.672
2	0.698	0.670	0.722	0.690				
3	0.696	0.692	0.722	0.664				
4	0.686	0.676	0.692	0.700				
5	0.664	0.662	0.738	0.716				
Mean	0.678	0.674	0.724	0.694				
Std	0.021	0.010	0.019	0.017				
Max	0.698	0.692	0.746	0.716				

Dataset			TAG		MUTAG			
Parameter		360	039					
Time	Bef	ore	Af	ter	Before		After	
Mode	Valid	Test	Valid	Test	Valid	Test	Valid	Test
1	0.889	0.650	0.944	0.700	1.000	0.900	0.944	0.900
2	0.833	0.700	0.944	0.850	0.944	0.800	1.000	0.700
3	0.889	0.650	0.833	0.700	1.000	0.950	0.944	0.950
4	1.000	0.950	0.889	0.850	0.899	0.950	1.000	0.800
5	0.889	0.800	0.944	0.900	0.944	0.900	0.944	0.900
Mean	0.900	0.750	0.911	0.800	0.957	0.900	0.966	0.850
Std	0.055	0.114	0.044	0.084	0.038	0.055	0.027	0.089
Max	1.000	0.950	0.944	0.900	1.000	0.950	1.000	0.950