Predvidjanje kvaliteta vina na osnovu hemijskih aributa

Autor: Aleksandra Petrovic 4008/21

Uvod

- Cilj ovog projekta je da se isprobaju razni modeli za predvidjanje kvaliteta vina na osnovu hemijskih atributa koji su dostupni u bazi podataka
- Baza podataka koja se koristi je na <u>linku</u>
- Sastoji se iz dva skupa podataka, belog i crvenog vina "Vihno Verde" koje potice iz Portugalije
- U ovom projektu analiziran je skup belog vina
- Ima 11 atributa i 4898 instanci
- Kolona "quality" govori o kvalitetu vina i uzima vrednosti od 0-10

Pretprocesiranje

- Svi atributi su neprekidnog tipa
- Nema nedostajucih podataka
- Ulazne promenljive (bazirane na fizičko-hemijskim testovima):
 - 1 fiksna kiselost (fixed acidity)
 - 2 fluktuirajuća kiselost (volatile acidity)
 - 3 limunska kiselina (citric acid)
 - 4 ostatak šećera (residual sugar)
 - 5 hloridi (chlorides)
 - 6 slobodan sumpor-dioksid (free sulfur dioxide)
 - 7 ukupan sumpor-dioksid (total sulfur dioxide)
 - 8 gustina (density)
 - 9 pH 10 sulfati (sulphates)
 - 11 alkohol (alcohol)
- Izlazna promenljiva (bazirana na senzornim podacima):
 - 12 kvalitet ocena između 0 i 10 (quality)

- · Neizbalansirana podela po ocenama kvaliteta na osnovu histograma
- Najvise srednje ocenjenih vina, malo sa visokom ocenom (odlicnih) kao i sa niskom ocenom (losih)

• Matrica konfuzije, korelacija izmedju kolona

Modeli

- Modeli koji su isprobani u ovom projektu su:
 - KNN K najblizih suseda
 - Linearna regresija sa tezinama
 - AdaBoost
 - Multinomijalna logisticka regresija
 - · Potpuno povezana neuronska mreza

Podela i standardizacija

- Izvrsena je podela na test i trening skup
- Trening skup je 80%
- Standardizacija je izvrsena standardnim scaler-om

KNN

- K najblizih suseda je model koji klasifikuje novu instancu na osnovu k vrednosti kojih se nalaze u njegovom okruzenju
- Isprobano je 1-25 vrednosti za k, sa ocenom tacnoscu i koriscena je kros validacija za izbor modela
- Izabran je k=19 i treniran je model za tu vrednost
- · Izracunata je tacnost modela na osnovu test skupa
- Tacnost je 0.57

	precision	recall	f1-score	support
3	0.00	0.00	0.00	4
4	0.00	0.00	0.00	33
5	0.62	0.62	0.62	291
6	0.58	0.71	0.64	440
7	0.43	0.35	0.38	176
8	0.00	0.00	0.00	35
9	0.00	0.00	0.00	1
accuracy			0.57	980
macro avg	0.23	0.24	0.23	980
weighted avg	0.52	0.57	0.54	980

Linearna regresija sa tezinama

- Linearna regresija sa tezinama je neprarametarski model
- Koristi se kada zelimo da dodamo tezinu nekim instancama, nesto sto se smatra bitnijim ili manje bitnim
- Isprobane tezine
 - w1=1/y_train
 - w2=np.abs((1-np.sum(y_train))/y_train)
 - w3= np.abs(np.random.randn(3918))
- · Izabrana je prva tezina za treniranje modela, zbog najmanje greske
- MSE=0.67
- MAPE=0.09
- R2=0.15
- Tacnost je 0.52

AdaBoost

- AdaBoost (Adaptive Boosting) je algoritam ansambla (ensemble) koji se koristi za poboljšanje performansi klasifikacionih modela
- Zasniva se na promenama tezina instanci
- · Neophodno je prvo da se napravi bazni model, dodele mu se parametri
- Zatim se pravi ansambl i trenira se
- Tacnost je 0.7

	precision	recall	f1-score	support
3	0.00	0.00	0.00	4
4	0.82	0.27	0.41	33
5	0.73	0.70	0.72	291
6	0.67	0.81	0.73	440
7	0.69	0.59	0.63	176
8	1.00	0.37	0.54	35
9	0.00	0.00	0.00	1
accuracy			0.70	980
macro avg	0.56	0.39	0.43	980
weighted avg	0.71	0.70	0.69	980

• Matrica konfuzije

[[0	0	1	3	0	0	0]
[0	9	16	7	1	0	0]
[0	2	204	84	1	0	0]
[0	0	55	355	30	0	0]
[0	0	3	70	103	0	0]
[0	0	0	9	13	13	0]
[0	0	0	0	1	0	0]]

- MSE=0.4
- R2=0.49
- MAPE=0.6

Multinomijalna logisticka regresija

- Statisticki model koji se koristi za predvidjanje vise klasa
- · Za probleme klasifikacije se koristi
- Generalizuje logisticku regresiju za vise od dve klase
- · Softmax funkcija pretvara tezinu i ulaz u verovatnocu za svaku od klasa
- Tacnost je 0.54
- MSE=0.64
- MAPE=0.09
- R2=0.18

• Matrica konfuzije

]]	0	0	1	3	0	0	0]
[0	3	19	10	1	0	0]
[0	1	162	125	2	1	0]
[0	2	79	324	35	0	0]
[0	0	6	128	42	0	0]
[0	0	1	23	11	0	0]
[0	0	0	0	1	0	0]]

Izvestaj

	precision	recall	f1-score	support
3	0.00	0.00	0.00	4
4	0.50	0.09	0.15	33
5	0.60	0.56	0.58	291
6	0.53	0.74	0.62	440
7	0.46	0.24	0.31	176
8	0.00	0.00	0.00	35
9	0.00	0.00	0.00	1
accuracy			0.54	980
macro avg	0.30	0.23	0.24	980
weighted avg	0.52	0.54	0.51	980

Potpuno povezana neuronska mreza

- Potpuno povezana neuronska mreza je tip mreza gde je svaki neuron povezan sa svim neuronima iz prethodnog i narednog sloja
- Sadrzi ulazni sloj, skrivene slojeve i izlazni sloj
- Koristi se Keras i Tensorflow biblioteka
- Ulaz je broj atributa
- Izlaz je vrednost ocena kvaliteta (0-10)
- Isprobano je vise modela sa razlicitim aktivacionim funkcijama, razlicitim brojevima slojeva i neurona
- model = Sequential([Input(shape=(number_of_features,)),
- Dense(units=64, activation='relu'),
- Dense(units=32, activation='relu'),
- Dense(units=output_size,activation='linear')
-])

Model

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 64)	768
dense_1 (Dense)	(None, 32)	2080
dense_2 (Dense)	(None, 10)	330

Total params: 3178 (12.41 KB)
Trainable params: 3178 (12.41 KB)
Non-trainable params: 0 (0.00 Byte)

• Model se kompajlira sa optimizatorom ADAM, greskom srednjom kvadratnom i metrikom tacnoscu

• Model se trenira za 50 epoha, gde je batch_size 16, validacioni skup je 20%

• Grafik promene greske

Grafik promene tacnosti

- Evaluiran model na test skupu
 - Tacnost 0.083, Greska 0.49
- Evaluiran model na trening skupu
 - Tacnost 0.081, Greska 0.41

Rezultati

• Prema dobijenim podacima iz isprobanih modela, najbolju tacnost za predvidjanje ima model AdaBoost, gde tacnost iznosi 0.7

Listing paketa

- Numpy
- Matplotlib
- Pandas
- Sklearn
- Tensorflow
- Keras

Literatura

- · Skripta "Masinsko ucenje", Mladen Nikolic, Andjelka Zecevic, Beograd 2019
- · Predavanja i vezbe predmeta Masinsko ucenje na Masinskom fakultetu
- https://cs229.stanford.edu/proj2015/245_report.pdf