МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра математической физики и вычислительной математики

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ ПОДГОТОВКЕ

по дисциплине «Методы вычислений»

OTTAINED 2 MAN CO 241 PRANTINA
студента _3_курса _341 группы
направления 02.03.03 – Математическое обеспечение и администрирование
информационных систем
код и наименование направления (специальности)
Факультета компьютерных наук и информационных технологий
наименование факультета, института, колледжа
Филиппенко Дмитрия Александровича
фамилия, имя, отчество
проверил:
подпись, дата

СОДЕРЖАНИЕ

Задание 1. Интерполяционный многочлен	3
1) В общем виде:	3
2) В форме Лагранжа:	4
3) В форме Ньютона.	5
Задание 3. Метод Гаусса	6
Кодовое представление:	6
Задание 4. Метод прогонки.	8
Кодовое представление:	8
Задание 5. Решение задачи Коши методом Эйлера	10
Задание 6. Метод неопределенных коэффициентов для краевой задачи ОД	•
Задание 7. Решение интегрального уравнения Фредгольма в случ вырожденного ядра.	

Задание 1. Интерполяционный многочлен

С помощью данной таблицы - функции вычислите приближенное значение функции в указанных точках, используя интерполяционный многочлен:

- 1) в общем виде;
- 2) в форме Лагрнажа;
- 3) в форме Ньютона.

Таблица - функция:

Xi	0	1	2	3
Y(Xi)	12	13	20	39

Найти:

X	0,5	1,5	2,5
Pn(X)	?	?	?

1) В общем виде:

```
import numpy
var = 12.0

M2 = numpy.array([[0., 0., 0., 1.], [1., 1., 1., 1.],
[8., 4., 2., 1.], [27., 9., 3., 1.]]) # матрица
v2 = numpy.array([var, 1+var, 8+var, 27+var]) # свободные
члены
abcd = numpy.linalg.solve(M2, v2)
print(abcd)
for i in range(0, 3, 1):
    answer = abcd[0]*(i+0.5)**3 + abcd[1]*(i+0.5)**2 +
abcd[2]*(i+0.5) + abcd[3]
    print(answer)
```

Вывод:

12.125

15.375

27.625

2) В форме Лагранжа:

```
import numpy as np
x = np.array([0, 1, 2, 3])
V = 12.0
y = np.array([V, 1 + V, 8 + V, 27 + V])
def lagrange(x, y, x values):
    n = len(x)
    result = []
    for x val in x values:
        L n = 0
        for i in range(n):
            1 i = 1
            for j in range(n):
                 if i != j:
                     l i *= (x val - x[j]) / (x[i] - x[j])
            L n += l i * y[i]
        result.append(L n)
    return result
x \text{ value} = [0.5, 1.5, 2.5]
interpolated values = lagrange(x, y, x value)
for x val, y val in zip(x value, interpolated values):
    print(f"x = \{x val\}: y = \{y val\}")
Вывод:
x = 0.5: y = 12.125
x = 1.5: y = 15.375
x = 2.5: y = 27.625
```

3) В форме Ньютона.

```
from math import prod
def NetRec(y i, x i, xs, xe):
    if xs == xe:
        return y i[xs]
    else:
                     a = (NetRec(y i, x i, xs+1, xe) -
NetRec(y i, x i, xs, xe-1))/(xe-xs)
        print(f"{xs}, {xe}", a)
        return a
def main():
    variant, n = int(input()), int(input())
     y i = [variant + i**3 for i in range(0,n+1)] #
значения функции в углах интерполяции
    x i = [i for i in range(0,n)] # узлы интерполяции
(переменная Х)
    for x in [0.5 + i \text{ for } i \text{ in range}(0, 3)]:
        answer = sum([NetRec(y i, x i, 0, i)*prod([x-i1 for
il in range(0,i)]) for i in range(0,n)])
        print(f"P n({x}) = {answer}")
main()
Вывод:
x = 0.5: y = 12.125
x = 1.5: y = 15.375
x = 2.5: y = 27.625
```

Задание 3. Метод Гаусса

Решить СЛАУ методом Гаусса. V = 12

$$A * x = b$$

$$A = \begin{pmatrix} V & \dots & \frac{V}{100} \\ \frac{V+1}{100} & V+1 & \frac{V+1}{100} \\ \vdots & V+2 & \vdots \\ \frac{V+3}{100} & V+3 & \frac{V+3}{100} \\ \frac{V+4}{100} & \dots & V+4 \end{pmatrix}$$

$$b = A * \begin{pmatrix} V \\ V+1 \\ \vdots \\ V \end{pmatrix}$$

Кодовое представление:

```
import numpy as np
def gauss_method(matrix, rhs):
```

:param matrix: матрица коэффициентов системы (размер $n \times n$)

:param rhs: вектор правых частей (размер n)

:return: решение системы в виде вектора (размер n)

11 11 11

n = len(matrix)

aug_matrix = np.hstack([matrix, rhs.reshape(-1, 1)])
Прямой ход, делаем матрицу треугольного вида
for i in range(n):

меняем местами в текущем столбце строку с макс элементом

max_row = i + np.argmax(np.abs(aug_matrix[i:,
i]))
aug matrix[[i, max row]] = aug matrix[[max row,

i]]

приведение текущей строки к удобному виду, чтобы на главной позиции был 1

aug_matrix[i] = aug_matrix[i] / aug_matrix[i, i]

ниже главного жлемента обнуляем, чтоб получилась треугольная матрица

for j in range(i + 1, n):

```
aug matrix[j] -= aug matrix[i] * aug matrix[j,
i]
    # Обратный ход
    solution = np.zeros(n)
    for i in range(n - 1, -1, -1): \# проходимся снизу
вверх
               solution[i] = aug matrix[i, -1]
np.sum(aug matrix[i, i + 1:n] * solution[i + 1:n])
    return solution
# матрица коэффициентов
A = np.array([[0, 1, -1],
              [-3, -1, 2],
              [-2, 1, 2]], dtype=float)
b = np.array([8, -11, -3], dtype=float) # векторы правых
частей
solution = gauss method(A, b)
print("Решение системы:", solution)
Вывод:
Решение системы: [-0.28571429 4.14285714 -3.85714286]
```

Задание 4. Метод прогонки.

Решить СЛАУ методом прогонки. V = 12

$$A * x = b$$

$$A = \begin{pmatrix} V & \frac{V}{100} & 0 & \dots & 0 \\ \frac{V+1}{100} & V+1 & \frac{V+1}{100} & & \vdots \\ 0 & \frac{V+2}{100} & V+2 & \frac{V+2}{100} & 0 \\ \vdots & & \frac{V+3}{100} & V+3 & \frac{V+4}{100} \\ 0 & \dots & 0 & \frac{V+4}{100} & V+4 \end{pmatrix}$$

знаменатель в формулах для Р и Q

$$b = A * \begin{pmatrix} V \\ V+1 \\ \vdots \\ V+4 \end{pmatrix}$$

Кодовое представление:

```
import numpy as np
n = 5
V = 4
a = np.array([(V + i) / 100 for i in range(1, n)])
поддиагонал
b diagonal = np.array([V + i for i in range(0, n)])
главная диагональ
c = np.array([(V + i) / 100 for i in range(2, n + 1)])
наддиагональ
A = np.zeros((n, n))
np.fill diagonal (A, b diagonal)
np.fill diagonal(A[1:], a)
np.fill diagonal(A[:, 1:], c)
b = A @ b diagonal # умножаем матрицу А на столбец
главной диагонали b diagonal
# метод прогонки
def progonka(a, b, c, d):
    n = len(d)
    P = np.zeros(n-1)
    Q = np.zeros(n)
    # Прямой ход
    P[0] = c[0] / b[0]
    Q[0] = d[0] / b[0]
    for i in range (1, n-1):
         denominator = b[i] - a[i-1] * P[i-1] # это
```

```
# Он учитывает предыдущие коэффициенты, что
позволяет нам исключить неизвестные
                                         ИЗ
                                              предыдущих
уравнений
        P[i] = c[i] / denominator # исп для того, чтобы
"исключить" одно из неизвестных при переходе от одного
уравнения к следующему
        Q[i] = (d[i] - a[i-1] * Q[i-1]) / denominator #
показывает, что происходит с текущим уравнением после
учета влияния всех предыдущих уравнений
    # находим последний элемент
    Q[-1] = (d[-1] - a[-2] * Q[-2]) / (b[-1] - a[-2] *
P[-2]
    # обратный ход, начинаем с конца системы
    x = np.zeros(n)
    x[-1] = Q[-1]
    for i in range (n-2, -1, -1):
        x[i] = Q[i] - P[i] * x[i+1]
    return x, P, O
x, P, Q = progonka(a, b diagonal, c, b)
print("Матрица A:")
print(A)
print("\nВектор правой части b = A * (столбец главной
диагонали):")
print(b)
print("\nПрогоночные коэффициенты Р i:")
print(P)
print("\nПрогоночные коэффициенты Q i:")
print("\nРешение системы (вектор x):")
print(x)
Вывод:
Вектор правой части b = A * (столбец главной диагонали):
[16.3 25.62 36.86 50.14 64.56]
Прогоночные коэффициенты Р і:
            0.0140021
                      0.0133352 0.01285886]
[0.015
Прогоночные коэффициенты Q i:
            5.0840126 6.0933464 7.10287086 8.00878437]
[4.075
Решение системы (вектор х):
           4.99999998 6.00000151 6.99988704 8.00878437]
[4.
```

Задание 5. Решение задачи Коши методом Эйлера

Решить задачу методом Эйлера и усовершенствованным методом Эйлера.

```
y_{\rm T} = x^3 (x - 11)

\frac{dy}{dx} = 4x^3 - 33x^2

y(11) = 0
```

Найти приближение к решению на [11;16] с шагами h = 0.1; h=0.05

Кодовое представление:

```
import numpy as np
V = 12.0
def f(x, y):
    return 4 * (x**3) - 3 * (x**2) * V
def exact solution(x):
    return (x**3) * (x - V)
# Метод Эйлера
def euler method(f, x0, y0, h, x end):
    x values = [x0]
    y values = [y0]
    x = x0
    y = y0
    while x < x \text{ end}:
        y += h * f(x, y)
        x += h
        x values.append(x)
        y values.append(y)
    return np.array(x values), np.array(y values)
# Улучшенный метод Эйлера
def improved euler method(f, x0, y0, h, x end):
    x values = [x0]
    y values = [y0]
    x = x0
    y = y0
    while x < x end:
        y \text{ predict} = y + h * f(x, y)
        y += (h / 2) * (f(x, y) + f(x + h, y predict))
        x += h
        x values.append(x)
        y values.append(y)
    return np.array(x values), np.array(y values)
v = 0
v_0 = 0
x end = V + 5
```

```
steps = [1, 0.1, 0.05]
for h in steps:
    print(f"\n ar h = \{h\}")
    # Метод Эйлера
   x euler, y euler = euler method(f, x0, y0, h, x end)
    print("Метод Эйлера:")
    print("x\t\tПриближенное у\tТочное у\t\tРазница")
    for x val, y val in zip(x euler, y euler):
        y exact = exact solution(x val)
        diff = y val - y exact
        print(f''\{x val:.5f\}\t\{y val:.5f\}\t\{y exact:.5f\}
\t{diff:.5f}")
    # Улучшенный метод Эйлера
   x improved, y improved = improved euler method(f, x0,
y0, h, x end)
    print("\пУлучшенный метод Эйлера:")
    print("x\t\tПриближенное y\tTочное y\t\tPазница")
    for x val, y val in zip(x improved, y improved):
        y exact = exact solution(x val)
        diff = y val - y exact
        print(f''\{x val:.5f\}\t\{y val:.5f\}\t\{y exact:.5f\}
\t{diff:.5f}")
# Открываем файл для записи
with open("results 4 1.txt", "w", encoding="utf-8") as
file:
    for h in steps:
        file.write(f"\nMar h = {h}\n")
        print(f"\n mar h = \{h\}")
        # Метод Эйлера
         x euler, y euler = euler method(f, x0, y0, h,
x end)
        file.write("Метод Эйлера:\n")
               file.write("x\t\tПриближенное у\tТочное
y\t\tРазница\n")
        print("Метод Эйлера:")
       print("x\t\tПриближенное y\tТочное y\t\tРазница")
        for x val, y val in zip(x euler, y euler):
            y exact = exact solution(x val)
            diff = y val - y exact
             file.write(f''(x val:.5f)\t{y val:.5f}\t{y e}
xact:.5f\t{diff:.5f}\n")
```

```
print(f"{x val:.5f}\t{y val:.5f}\t{y exact:
.5f}\t{diff:.5f}")
        # Улучшенный метод Эйлера
       x improved, y improved = improved euler method(f,
x0, y0, h, x end)
        file.write("\пУлучшенный метод Эйлера:\n")
               file.write("x\t\tПриближенное у\tТочное
y\t\tРазница\n")
        print("\nУлучшенный метод Эйлера:")
       print("x\t\tПриближенное у\tТочное у\t\tРазница")
        for x val, y val in zip(x improved, y improved):
            y exact = exact solution(x val)
            diff = y val - y exact
             file.write(f"\{x \ val:.5f\}\t\{y \ val:.5f\}\t\{y \ e
xact:.5f}\t{diff:.5f}\n")
             print(f"\{x\_val:.5f\}\t\{y\_val:.5f\}\t\{y\_exact:
.5f}\t{diff:.5f}")
Вывод:
\text{Mar } h = 1
Метод Эйлера:
        Приближенное у Точное у Разница
12.00000 0.00000 0.00000 0.00000
13.00000 1728.00000
                    2197.00000
                                  -469.00000
14.00000 4432.00000
                     5488.00000
                                  -1056.00000
15.00000 8352.00000 10125.00000 -1773.00000
16.00000 13752.00000 16384.00000 -2632.00000
17.00000 20920.00000 24565.00000 -3645.00000
Улучшенный метод Эйлера:
        Приближенное у Точное у
                                       Разница
12.00000 0.00000 0.00000 0.00000
13.00000 2216.00000
                     2197.00000
                                  19.00000
14.00000 5528.00000
                     5488.00000
                                  40.00000
15.00000 10188.00000 10125.00000 63.00000
16.00000 16472.00000 16384.00000 88.00000
17.00000 24680.00000 24565.00000 115.00000
```

Mar h = 0.1

Метод Эйлера:

X	Приближенное	У	Точное у	Разница
12.00000	0.00000 0.00	000	0.00000	
12.10000	172.80000	177.	15610	-4.35610
12.20000	354.34840	363.	16960	-8.82120
12.30000	544.86360	558.	26010	-13.39650
12.40000	744.56640	762.	64960	-18.08320
12.50000	953.68000	976.	56250	-22.88250
12.60000	1172.43000	1200	.22560	-27.79560

...

Улучшенный метод Эйлера:

X	Приближенное	У	Точное у	Разница
12.00000	0.00000 0.00	000	0.0000	
12.10000	177.17420	177.	15610	0.01810
12.20000	363.20600	363.	16960	0.03640
12.30000	558.31500	558.	26010	0.05490
12.40000	762.72320	762.	64960	0.07360
12.50000	976.65500	976.	56250	0.09250
12.60000	1200.33720	1200	.22560	0.11160
12.70000	1433.99900	1433	8.86810	0.13090
12.80000	1677.87200	1677	7.72160	0.15040
12.90000	1932.19020	1932	2.02010	0.17010

...

War h = 0.05

Метод Эйлера:

X	Приближенное	У	Точное у	Разница
12.00000	0.00000 0.00	000	0.00000	
12.05000	86.40000 87.4	8451	-1.08451	
12.10000	174.97353	177.	15610	-2.18258
12.15000	265.74773	269.	04201	-3.29428
12.20000	358.74990	363.	16960	-4.41970
12.25000	454.00750	459.	56641	-5.55891
12.30000	551.54813	558.	26010	-6.71198
12.35000	651.39953	659.	27851	-7.87898
12.40000	753.58960	762.	64960	-9.06000

...

Улучшенный метод Эйлера:

X	Приближенное	У	Точное у	Разница
12.00000	0.00000 0.00	000	0.0000	
12.05000	87.4867687.4	8451	0.00226	
12.10000	177.16063	177.	15610	0.00452

12.15000	269.04881	269.04201	0.00681
12.20000	363.17870	363.16960	0.00910
12.25000	459.57781	459.56641	0.01141
12.30000	558.27383	558.26010	0.01372
12.35000	659.29456	659.27851	0.01606
12.40000	762.66800	762.64960	0.01840
12.45000	868.42226	868.40151	0.02076
12.50000	976.58563	976.56250	0.02312
12.55000	1087.18651	1087.16101	0.02551
12.60000	1200.25350	1200.22560	0.02790

...

Задание 6. Метод неопределенных коэффициентов для краевой задачи ОДУ

$$egin{cases} y'' + x^2y' + xy = 4x^4 - 3Vx^3 + 6x - 2V, \ y(0) = y(V) = 0 \end{cases}$$

Предполагаемое решение:

$$y_{\text{толгч}} = x^2(x - V), \quad x \in [0; V]$$

Требуется:

- 1. Решить задачу с использованием разностного метода.
- 2. Найти неопределённые коэффициенты.

Метод неопределенных коэффициентов для краевого задачи ОДУ

```
import numpy as np
V = 12 # правая граница
n = 100 # кол-во узлов
h = V / n \# \text{mar}
def p(x): return x^*2
def q(x): return x
def f(x): return 4 * x**4 - 3 * V * <math>x**3 + 6 * x - 2 *
def y exact(x): return x**2 * (x - V)
# Сетка
x = np.linspace(0, V, n+1)
# Матрица и вектор
A = np.zeros((n+1, n+1))
b = np.zeros(n+1)
# узлы
for i in range(1, n):
    A[i, i-1] = 1 / h**2 - p(x[i]) / (2 * h)
    A[i, i] = -2 / h**2 + q(x[i])
    A[i, i+1] = 1 / h**2 + p(x[i]) / (2 * h)
    b[i] = f(x[i])
A[0, 0] = 1
A[n, n] = 1
b[0] = 0
b[n] = 0
y = np.linalg.solve(A, b)
y = xact values = y = xact(x)
difference = y approx - y exact values
```

```
print("x\t\t y approx\t y exact\t difference")
for xi, yi_approx, yi_exact, di in zip(x, y_approx,
y exact values, difference):
              print(f"{xi:.5f}\t {yi approx:.5f}\t
{yi exact:.5f}\t {di:.5e}")
output file = "results 5 1.txt"
with open(output_file, "w", encoding="utf-8") as file:
    file.write("x\t\t y приблж\t y точное\t разница\n")
    for xi, yi approx, yi exact, di in zip(x, y approx,
y exact values, difference):
            file.write(f"{xi:.5f}\t {yi approx:.5f}\t
{yi exact:.5f}\t {di:.5e}\n")
Вывод:
                     у точное разница
         у приблж
X
0.00000 0.00000 -0.00000 4.95682e-14
0.12000 -0.08113
                     -0.17107 8.99459e-02
0.24000
        -0.49780
                     -0.67738
                                1.79578e-01
0.36000
        -1.24058
                     -1.50854
                                2.67963e-01
        -2.30063
                     -2.65421
0.48000
                                3.53578e-01
0.60000
        -3.66960
                     -4.10400
                                4.34401e-01
0.72000
        -5.33949
                     -5.84755
                                5.08059e-01
0.84000
        -7.30244
                     -7.87450
                                 5.72061e-01
0.96000 -9.55038
                     -10.17446 6.24084e-01
                     -170.03002 2.41607e-02
10.44000 -170.00586
10.56000 -160.55742
                     -160.57958
                                2.21662e-02
                     -150.56237 2.01971e-02
10.68000 -150.54217
10.80000 -139.94975
                     -139.96800
                                1.82527e-02
                     -128.78611 1.63321e-02
10.92000 -128.76978
                     -117.00634
11.04000 -116.99190
                                 1.44345e-02
11.16000 -104.60574
                     -104.61830
                                 1.25592e-02
11.28000 -91.60094
                     -91.61165
                                 1.07055e-02
11.40000 -77.96713
                     -77.97600
                                8.87273e-03
11.52000 -63.69393
                     -63.70099
                                 7.06015e-03
11.64000 -48.77099
                     -48.77626
                                 5.26718e-03
11.76000 -33.18793
                     -33.19142
                                 3.49321e-03
11.88000 -16.93439
                     -16.93613
                                 1.73767e-03
12.00000 0.00000 0.00000 0.00000e+00
```

Задание 7. Решение интегрального уравнения Фредгольма в случае вырожденного ядра.

Решить следующее интегральное уравнение Фредгольма.

$$y(x) + 1 \int_0^1 (xt + x^2t^2 + x^3t^3) y(t) dt = v(\frac{4}{3}x + \frac{1}{4}x^2 + \frac{1}{5}x^3),$$

$$y_{\text{TOYH}} = vx.$$

Вывести:

x ₀	x ₁	 X_n
$y_{\text{мет}}(x_0)$	$y_{\text{мет}}(x_1)$	 $\mathbf{y}_{\text{met}}(\mathbf{x}_{\mathrm{n}})$
у _{точн} (х ₀)	$y_{\text{точн}}(x_1)$	 $y_{\text{точн}}(x_n)$
e ₀	$\mathbf{e_1}$	 e _n

Кодовое представление:

```
import numpy as np
import matplotlib.pyplot as plt
def q(x):
    return 1 + x
def h(t):
    return 1 - t
def f(x):
    return x * np.exp(-x)
# методом трапеции ищем площадь под кривой
def numerical integral(func, a, b, n):
    x = np.linspace(a, b, n)
    dx = (b - a) / (n - 1)
    return np.trapz(func(x), x) # Метод трапеций
# найдя все х можно подставить в уравнение
def solve integral equation(a, b, n):
    # Дискретизация интервала [a, b]
    x values = np.linspace(a, b, n)
    # Строим правую часть уравнения
    integral value = numerical integral(h, a, b, n)
Интеграл по t для фиксированного x
    f values = f(x values)
```

```
y values = np.array([f values[i] / (g(x values[i]) *
integral value) for i in range(n)])
    return x values, y values
а = 0 # Левая граница
b = 1 # Правая граница
n = 100 # Количество точек дискретизации
x values, y values = solve integral equation(a, b, n)
plt.plot(x values, y values, label="Решение y(x)")
plt.xlabel("x")
plt.ylabel("y(x)")
plt.title("Решение интегрального уравнения Фредгольма с
вырожденным ядром")
plt.legend()
plt.grid(True)
plt.show()
K Figure 1
```

Решение интегрального уравнения Фредгольма с вырожденным ядрог

(x, y) = (0.115, 0.2804)