Macroeconometrics

Lecture 23 Less than 2°C warming by 2100 unlikely – partial reproduction

Topics in Climate Change Forecasting CO₂ Emissions for the 21st Century

Tomasz Woźniak

The data, the model, and prior assumptions

Matrix notation and MCMC sampler

Estimation results

Probabilistic predictions

Lecture is based on

Raftery, Zimmer, Frierson, Startz, Liu (2017), Less than 2°C warming by 2100 unlikely, Nature Climate Change, Vol. 7.

Materials

A zip file L23mcxs-all.zip for the reproduction of the results

The data: GDP data

Annual data from 1959–2015 (T=56 of differentiated series, N=10) Model applied to logarithms of the original data Source: data files of Raftery et al. (2017)

The data: carbon intensity

The data, loess smoothed values, and cut-off dates

Model and prior assumptions

Model for the frontier economy – prior distributions.

$$F_{t} = F_{t-1} + \gamma + \gamma_{pre1973} \mathcal{I}(t \leq 1973) + \epsilon_{t}^{(f)}$$

$$\epsilon_{t}^{(f)} \sim \mathcal{N}(0, \sigma_{f}^{2})$$

$$\gamma \sim \mathcal{U}[0, 1]$$

$$\gamma_{pre1973} \sim \mathcal{U}[-0.1, 0.1]$$

$$\sigma_{f}^{2} \sim \mathcal{IG}2(\hat{s}^{2}, 3)$$

Model and prior assumptions

Model for other economies – prior distributions.

$$(F_{t} - G_{c.t}) = \phi_{c}(F_{t-1} - G_{c.t-1}) + \epsilon_{c.t}^{(g)}$$

$$\epsilon_{c.t}^{(g)} \sim \mathcal{N}\left(0, \sigma_{g.c}^{2}\right)$$

$$\phi_{c}|\mu_{\phi}, \sigma_{\phi}^{2} \sim \mathcal{T}\mathcal{N}_{[0,1]}\left(\mu_{\phi}, \sigma_{\phi}^{2}\right)$$

$$\mu_{\phi} \sim \mathcal{U}[0, 1]$$

$$\sigma_{\phi}^{2} \sim \mathcal{U}[0, 1]$$

$$\sigma_{g.c}^{2}|\underline{s} \sim \mathcal{IG}2\left(\underline{s}, 3\right)$$

$$\underline{s} \sim \mathcal{G}(1, 1)$$

Model and prior assumptions

Model for carbon intensity.

$$\begin{aligned} \tau_{c.t} &= \eta(t - \overline{t}) + \beta \tau_{c.t-1} - \delta_c + \rho \frac{\sigma_c}{\sigma_{g.c}} \epsilon_{c.t}^{(g)} + \epsilon_{c.t} \\ \epsilon_{c.t} &\sim \mathcal{N} \left(0, \sigma_c^2 \right) \\ \eta &\sim \mathcal{N} \left(0.1, 0.01 \right) \\ \beta &\sim \mathcal{U}[0, 1] \\ \rho &\sim \mathcal{U}[-1, 1] \\ \delta_c | \mu_\delta, \sigma_\delta^2 &\sim \mathcal{N} \left(\mu_\delta, \sigma_\delta^2 \right) \\ \mu_\delta &\sim \mathcal{N}(0, 1) \\ \sigma_\delta^2 &\sim \mathcal{IG2}(1, 1) \\ \sigma_c^2 | \underline{s}_\sigma &\sim \mathcal{IG2} \left(\underline{s}_\sigma, 3 \right) \\ \underline{s}_\sigma &\sim \mathcal{G}(1, 1) \end{aligned}$$

Matrix notation and Gibbs sampler

Metropolis-Hastings sampler

an MCMC method for sampling from the posterior distribution of parameters $\boldsymbol{\theta}$

requires only an ordinate of the kernel of the posterior density

$$k(\theta) = L(\theta, \mathbf{y})p(\theta)$$

relies on the specification of a candidate drawing density

$$\theta^* \sim q(\theta)$$

accept the candidate draw θ^* with probability

$$\min \left\{ 1, \frac{k(\theta^*)q(\theta^*)}{k(\theta^{(s-1)})q(\theta^{(s-1)})} \right\}$$

Gibbs sampler is its special case with acceptance probability 1

Metropolis-Hastings sampler

Due to a non-standard form of dependence in equation

$$\tau_{c.t} = \eta(t - \bar{t}) + \beta \tau_{c.t-1} - \delta_c + \rho \frac{\sigma_c}{\sigma_{g.c}} \epsilon_{c.t}^{(g)} + \epsilon_{c.t}$$

the full conditional posterior distributions are non-standard

Estimation strategy: derive the full conditional posterior densities for all of the parameters as if $\frac{\sigma_c}{\sigma_{g,c}} \epsilon_{c,t}^{(g)}$ was a fixed regressor and use these densities as candidate drawing densities. Accept or reject the candidate draws with appropriate probabilities.

Uniform prior distribution

- **Uniform prior** distributions help to impose restrictions
- **Density function** of a uniform distribution $\mathcal{U}(a,b)$ does not depend o the random variable and is equal to $(b-a)^{-1}$
- **Full conditional posterior** distribution for a parameter $\theta \sim \mathcal{U}(a,b)$ is a truncated density, for instance:

$$L(\theta|\mathbf{y}) = \mathcal{N}(\tilde{\theta}, \tilde{V}_{\theta})$$

$$\theta = \mathcal{U}(a, b)$$

$$\downarrow$$

$$p(\theta|\mathbf{y}, \dots) = \mathcal{N}(\tilde{\theta}, \tilde{V}_{\theta})\mathcal{I}(\theta \in [a, b])$$

Hierarchical prior distributions: normal

$$\theta | \mu_{\theta}, \sigma_{\theta}^{2} \sim \mathcal{N}(\mu_{\theta}, \sigma_{\theta}^{2})$$

$$\mu_{\theta} \sim \mathcal{N}(\mu_{\mu}, \sigma_{\mu}^{2})$$

$$\sigma_{\theta}^{2} \sim \mathcal{IG2}(s_{\theta}, \nu_{\theta})$$

$$\downarrow$$

$$\mu_{\theta} | \theta, \sigma_{\theta}^{2}, \mu_{\mu}, \sigma_{\mu}^{2} \sim \mathcal{N}\left((\sigma_{\theta}^{-2} + \sigma_{\mu}^{-2})^{-1}(\sigma_{\theta}^{-2}\theta + \sigma_{\mu}^{-2}\mu_{\mu}), (\sigma_{\theta}^{-2} + \sigma_{\mu}^{-2})^{-1}\right)$$

$$\sigma_{\theta}^{2} | \theta, \mu_{\theta}, s_{\theta}, \nu_{\theta} \sim \mathcal{IG2}\left(s_{\theta} + (\theta - \mu_{\theta})^{2}, \nu_{\theta} + 1\right)$$

Hierarchical prior distributions: inverse gamma 2

$$\sigma^{2}|\underline{s} \sim \mathcal{IG}2(\underline{s}, \nu) \propto \underline{s}^{\frac{\nu}{2}} \left(\sigma^{2}\right)^{-\frac{\nu+2}{2}} \exp\left\{-\frac{1}{2} \frac{\underline{s}}{\sigma^{2}}\right\}$$

$$\underline{s} \sim \mathcal{G}(s, a) \propto \underline{s}^{a-1} \exp\left\{-\frac{\underline{s}}{\underline{s}}\right\}$$

$$\downarrow$$

$$\underline{s}|\sigma^{2} \sim \mathcal{G}\left(\left(s^{-1} + 0.5\sigma^{-2}\right)^{-1}, \frac{\nu}{2} + a\right)$$

Model for the frontier economy: matrix notation.

$$F = X_F \gamma + \epsilon^{(f)}$$

$$\epsilon^{(f)} \sim \mathcal{N}_T \left(\mathbf{0}_T, \sigma_f^2 I_T \right)$$

$$\gamma \sim \mathcal{U}[0, 1]$$

$$\gamma_{pre1973} \sim \mathcal{U}[-0.1, 0.1]$$

$$\sigma_f^2 \sim \mathcal{I}\mathcal{G}2(\hat{s}^2, 3)$$

$$F_{56\times1} = \begin{bmatrix}
F_{2} - F_{1} \\
\vdots \\
F_{T} - F_{T-1}
\end{bmatrix}, \quad
X_{F}_{56\times2} = \begin{bmatrix}
I_{14} & I_{14} \\
I_{42} & \mathbf{0}_{42}
\end{bmatrix}, \quad
\epsilon_{56\times1}^{(f)} = \begin{bmatrix}
\epsilon_{1}^{(f)} \\
\vdots \\
\epsilon_{T}^{(f)}
\end{bmatrix}, \quad
\gamma_{2\times1} = \begin{bmatrix}
\gamma \\
\gamma_{pre1973}
\end{bmatrix},$$

Model for the frontier economy: MCMC sampler.

$$\gamma|F, X_{F}, \sigma_{f}^{2} \sim \mathcal{N}_{2}(\bar{\gamma}, \bar{V}_{\gamma})\mathcal{I}\begin{pmatrix} \gamma \in [0, 1] \\ \gamma_{pre1973} \in [-.1, .1] \end{pmatrix}$$

$$\bar{V}_{\gamma} = (\sigma_{f}^{-2}X'_{F}X_{F})^{-1}$$

$$\bar{\gamma} = (X'_{F}X_{F})^{-1}X'_{F}F$$

$$\sigma_{f}^{2}|F, X_{F}, \gamma \sim \mathcal{IG}_{2}(\bar{s}_{f}, \bar{\nu}_{f})$$

$$\bar{s}_{f} = \hat{s}^{2} + (F - X_{F}\gamma)'(F - X_{F}\gamma)$$

$$\bar{\nu}_{f} = T + 3$$

Model for other economies – matrix notation.

$$G = X_{G}\phi + \epsilon^{(g)}$$

$$\epsilon^{(g)} \sim \mathcal{N}_{(N-1)T} \left(\mathbf{0}_{(N-1)T}, \Sigma_{G} \right)$$

$$\Sigma_{G} = \operatorname{diag} \left(\sigma_{g,2}^{2}, \dots, \sigma_{g,N}^{2} \right) \otimes I_{T}$$

$$\phi | \mu_{\phi}, \sigma_{\phi}^{2} \sim \mathcal{N}_{N-1} \left(\mu_{\phi} I_{N-1}, \sigma_{\phi}^{2} I_{N-1} \right)$$

$$\mu_{\phi} \sim \mathcal{U}[0, 1]$$

$$\sigma_{\phi}^{2} \sim \mathcal{U}[0, 1]$$

$$\sigma_{g,c}^{2} | \underline{s} \sim \mathcal{I}G2(\underline{s}, 3)$$

$$\underline{s} \sim \mathcal{G}(1, 1)$$

Model for other economies – matrix notation.

$$\frac{G}{(N-1)T\times 1} = \begin{bmatrix}
F_2 - G_{2.1} \\
\vdots \\
F_T - G_{2.T} \\
\vdots \\
F_2 - G_{N.2} \\
\vdots \\
F_T - G_{N.T}
\end{bmatrix}, \quad e^{(g)}_{(N-1)T\times 1} = \begin{bmatrix}
\epsilon^{(g)}_{2.2} \\
\vdots \\
\epsilon^{(g)}_{2.T} \\
\vdots \\
\epsilon^{(g)}_{N.2} \\
\vdots \\
\epsilon^{(g)}_{N.2}
\end{bmatrix}, \quad \phi_{N-1\times 1} = \begin{bmatrix}\phi_2 \\
\vdots \\
\phi_N\end{bmatrix}$$

$$\begin{bmatrix}
F_1 - G_{2.1} & \dots & 0 \\
\vdots \\
F_{T-1} - G_{2.T-1} & \dots & 0 \\
\vdots \\
0 & \dots & F_1 - G_{N.1} \\
\vdots \\
0 & \dots & F_{T-1} - G_{N.T-1}
\end{bmatrix}$$

Model for other economies - MCMC sampler.

$$\begin{split} \phi | G, X_G, \sigma_g^2, \mu_{\phi}, \sigma_{\phi}^2 &\sim \mathcal{N}_{N-1} \left(\bar{\phi}, \bar{V}_{\phi} \right) \mathcal{I} \left(\phi_c \in [0, 1] \right) \\ \bar{V}_{\phi} &= \left(X_G' \Sigma_G^{-1} X_G + \sigma_{\phi}^{-2} I_{N-1} \right)^{-1} \\ \bar{\phi} &= \bar{V}_{\phi} \left(X_G' \Sigma_G^{-1} G + \sigma_{\phi}^{-2} \mu_{\phi} I_{N-1} \right) \\ \sigma_{g.c}^2 | G, X_G, \underline{s} &\sim \mathcal{I} \mathcal{G} 2 (\bar{s}_{g.c}, \bar{\nu}_{g.c}) \\ \bar{s}_{g.c} &= \underline{s} + (G - X_G \phi)' (G - X_G \phi) \\ \bar{\nu}_{g.c} &= T + 3 \end{split}$$

$$\mu_{\phi} | \phi, \sigma_{\phi}^2 &\sim \mathcal{N}_{N-1} \left(\bar{\mu}_{\phi}, \bar{V}_{\mu_{\phi}} \right) \mathcal{I} \left(\mu_{\phi} \in [0, 1] \right) \\ \bar{V}_{\mu_{\phi}} &= \sigma_{\phi}^2 / (N - 1) \\ \bar{\mu}_{\phi} &= \bar{V}_{\mu_{\phi}} \sigma_{\phi}^{-2} I_{N-1} \phi \\ \sigma_{\phi}^2 | \phi, \mu_{\phi} &\sim \mathcal{I} \mathcal{G} 2 \left(\bar{s}_{\phi}, N - 3 \right) \mathcal{I} \left(\sigma_{\phi}^2 \in [0, 1] \right) \\ \bar{s}_{\phi} &= (\phi - \mu_{\phi} I_{N-1})' (\phi - \mu_{\phi} I_{N-1}) \\ \underline{s} | \sigma_g^2 &\sim \mathcal{G} \left(\left(1 + .5 \sum_{c} \sigma_{g.c}^{-2} \right)^{-1}, 1.5 (N - 1) + 1 \right) \end{split}$$

Model for carbon intensity – matrix notation.

$$\begin{split} \tau &= X_{\tau}\beta_{\tau} + \epsilon \\ \epsilon &\sim \mathcal{N}_{\left(\sum_{c=1}^{N} \tau_{c}\right)}(\mathbf{0}, \Sigma) \end{split}$$

$$\beta_{\tau} | \mu_{\delta}, \sigma_{\delta}^{2} \sim \mathcal{N}_{N+3} \left(\underline{\mu}_{\beta}, \underline{V}_{\beta}\right) \mathcal{I} \begin{pmatrix} \beta \in [0, 1] \\ \rho \in [-1, 1] \end{pmatrix}$$

$$\mu_{\delta} \sim \mathcal{N}(0, 1)$$

$$\sigma_{\delta}^{2} \sim \mathcal{I} \mathcal{G} 2(1, 1)$$

$$\sigma_{c}^{2} | \underline{s}_{\sigma} \sim \mathcal{I} \mathcal{G} 2(\underline{s}_{\sigma}, 3)$$

$$\underline{s}_{\sigma} \sim \mathcal{G}(1, 1)$$

$$\underline{\mu}_{\beta} = \begin{bmatrix} 0.1 \\ 0 \\ \mu_{\delta} I_{N} \\ 0 \end{bmatrix}, \quad \underline{V}_{\beta}^{-1} = \begin{bmatrix} 100 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \sigma_{\delta}^{-2} I_{N} & \vdots \\ 0 & 0 & \dots & \sigma_{N}^{2} I_{T_{N}} \end{bmatrix}, \quad \Sigma = \begin{bmatrix} \sigma_{1}^{2} I_{T_{1}} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_{N}^{2} I_{T_{N}} \end{bmatrix}$$

Model for carbon intensity – matrix notation.

$$\chi_{\tau} = \begin{bmatrix} \tau_{1} \\ \vdots \\ \tau_{N} \end{bmatrix}, \quad \epsilon_{(\sum_{c=1}^{N} T_{c}) \times 1} = \begin{bmatrix} \epsilon_{1} \\ \vdots \\ \epsilon_{N} \end{bmatrix}, \quad \beta_{\tau} = \begin{bmatrix} \eta \\ \delta_{1} \\ \vdots \\ \delta_{N} \\ \rho \end{bmatrix}, \\
\chi_{\tau} = \begin{bmatrix} trend_{1} & \tau_{1.t-1} & -\iota_{T_{1}} & \mathbf{0} & \dots & \mathbf{0} & \frac{\sigma_{1}}{\sigma_{f}} \epsilon^{(f)} \\ trend_{1} & \tau_{1.t-1} & \mathbf{0} & -\iota_{T_{2}} & \dots & \mathbf{0} & \frac{\sigma_{2}}{\sigma_{g.2}} \epsilon^{(g)} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ trend_{N} & \tau_{N.t-1} & \mathbf{0} & \mathbf{0} & \dots & -\iota_{T_{N}} & \frac{\sigma_{N}}{\sigma_{g.2}} \epsilon^{(g)}_{N} \end{bmatrix},$$

Model for carbon intensity – MCMC sampler.

$$\begin{split} \beta_{\tau}|\tau, X_{\tau}, \sigma_{c}^{2}, \mu_{\delta}, \sigma_{\delta}^{2} &\sim \mathcal{N}_{N+3} \left(\bar{\mu}_{\beta}, \bar{V}_{\beta}\right) \mathcal{I} \left(\begin{array}{c} \beta \in [0, 1] \\ \rho \in [-1, 1] \end{array}\right) \\ \bar{V}_{\beta} &= \left(X_{\tau}' \Sigma^{-1} X_{\tau} + \underline{V}_{\beta}^{-1}\right)^{-1} \\ \bar{\mu}_{\beta} &= \bar{V}_{\beta} \left(X_{\tau}' \Sigma^{-1} \tau + \underline{V}_{\beta}^{-1} \underline{\mu}_{\beta}\right) \\ \sigma_{c}^{2}|\tau, X_{\tau}, \beta_{\tau} \underline{s}_{\sigma} &\sim \mathcal{I} \mathcal{G} 2(\bar{s}_{c}, \bar{\nu}_{c}) \\ \bar{s}_{c} &= \underline{s}_{\sigma} + (\tau - X_{\tau} \beta_{\tau})_{[(\tau_{c-1}+1):\tau_{c}]}^{\prime} (\tau - X_{\tau} \beta_{\tau})_{[(\tau_{c-1}+1):\tau_{c}]}^{\prime} \\ \bar{\nu}_{c} &= T_{c} + 3 \end{split}$$

$$\mu_{\delta}|\delta, \sigma_{\delta}^{2} &\sim \mathcal{N} \left(\bar{V}_{\mu_{\delta}} \sigma_{\delta}^{-2} I_{n}^{\prime} \delta, \bar{V}_{\mu_{\delta}}\right), \quad \bar{V}_{\mu_{\delta}} &= [\sigma_{\delta}^{-2} N + 1]^{-1} \\ \sigma_{\delta}^{2}|\delta, \mu_{\delta} &\sim \mathcal{I} \mathcal{G} 2(1 + (\delta - \mu_{\delta} I_{N})^{\prime} (\delta - \mu_{\delta} I_{N}), N + 1) \\ \underline{s}_{\sigma}|\sigma^{2} &\sim \mathcal{G} \left(\left(1 + \sum_{c} \sigma_{c}^{2}\right)^{-1}, 1.5N + 1\right) \end{split}$$

Estimation results

Model for the frontier economy

$$F_t = F_{t-1} + \gamma + \gamma_{pre1973} \mathcal{I}(t \le 1973) + \epsilon_t^{(f)}, \qquad \epsilon_t^{(f)} \sim \mathcal{N}\left(0, \sigma_f^2\right)$$
$$\gamma \sim \mathcal{U}[0, 1], \quad \gamma_{pre1973} \sim \mathcal{U}[-0.1, 0.1], \quad \sigma_f^2 \sim \mathcal{IG}(\hat{s}^2, 3)$$

θ	γ	$\gamma_{pre1973}$	σ_f		
$E[\theta \mathbf{y}]$	0.016	0.012	0.019		
$sd[\theta \mathbf{y}]$	0.003	0.006	0.002		

Model for other economies

$$(F_{t} - G_{c,t}) = \phi_{c}(F_{t-1} - G_{c,t-1}) + \epsilon_{c,t}^{(g)}, \qquad \epsilon_{c,t}^{(g)} \sim \mathcal{N}\left(0, \sigma_{g,c}^{2}\right)$$

$$\phi_{c}|\mu_{\phi}, \sigma_{\phi} \sim \mathcal{T}\mathcal{N}_{[0,1]}\left(\mu_{\phi}, \sigma_{\phi}^{2}\right), \quad \mu_{\phi} \sim \mathcal{U}[0,1], \quad \sigma_{\phi} \sim \mathcal{U}[0,1]$$

$$\sigma_{g,c}^{2}|\underline{s} \sim \mathcal{I}\mathcal{G}2\left(\underline{s}, 3\right), \quad \underline{s} \sim \mathcal{G}\left(1, 1\right)$$

ϕ_c	AUS	CAN	CHN	IDN	IND	JPN	NZL	PHL	POL
$E[\phi_c \mathbf{y}]$ $sd[\phi_c \mathbf{y}]$	0.98	0.99	0.99	0.99	0.99	0.95	0.99	0.99	0.99
$\sigma_{g.c}$	AUS	CAN	CHN	IDN	IND	JPN	NZL	PHL	POL
$E[\sigma_{g.c} \mathbf{y}]$ $sd[\sigma_{g.c} \mathbf{y}]$	0.02	0.01	0.06	0.05	0.04	0.03	0.03	0.04	0.04
θ	μ_{ϕ}	σ_{ϕ}	<u>s</u>						
$E[\theta \mathbf{y}]$ $sd[\theta \mathbf{y}]$	0.37 .28	0.56 .25	0.04						25-/

25 / 38

Model for carbon intensity

$$\begin{split} \tau_{c.t} &= \eta(t - \overline{t}) + \beta \tau_{c.t-1} - \delta_c + \rho \frac{\sigma_c}{\sigma_{g.c}} \epsilon_{c.t}^{(g)} + \epsilon_{c.t}, \quad \epsilon_{c.t} \sim \mathcal{N} \left(0, \sigma_c^2 \right) \\ & \eta \sim \mathcal{N} \left(0.1, 0.01 \right), \quad \beta \sim \mathcal{U}[0, 1], \quad \rho \sim \mathcal{U}[-1, 1] \\ & \delta_c | \mu_\delta, \sigma_\delta^2 \sim \mathcal{N} \left(\mu_\delta, \sigma_\delta^2 \right), \quad \mu_\delta \sim \mathcal{N}(0, 1), \quad \sigma_\delta^2 \sim \mathcal{IG}2(1, 1) \\ & \sigma_c^2 | \underline{s}_\sigma \sim \mathcal{IG}2 \left(\underline{s}_\sigma, 3 \right), \quad \underline{s}_\sigma \sim \mathcal{G}(1, 1) \end{split}$$

θ	η	β	ρ				μ_δ	σ_{δ}	<u>s</u> _σ	
$E[\theta \mathbf{y}]$ $sd[\theta \mathbf{y}]$	-0.001 .0003	0.96 .02	-0.13 .05				0.12 .57	0.59 .35	0.05 .007	
δ_c	USA	AUS	CAN	CHN	IDN	IND	JPN	NZL	PHL	POL
$E[\delta_c \mathbf{y}]$ $sd[\delta_c \mathbf{y}]$.042 .03	.047 .03	.045 .03	.061 .04	.043 .10	.045 .03	.031 .02	.033 .02	.018 .02	.042
σ_c	USA	AUS	CAN	CHN	IDN	IND	JPN	NZL	PHL	POL
$E[\sigma_c \mathbf{y}]$ $sd[\sigma_c \mathbf{y}]$.022 .002	.016 .002	.023 .002	.077 .007	.185 .060	.031 .005	.033 .004	.036 .005	.043 .008	.039
										26 / 3

Probabilistic predictions

Predictions: USA

Predictions: Australia

Predictions: Canada

Predictions: China

Predictions: Indonesia

Predictions: India

Predictions: Japan

Predictions: New Zealand

Predictions: Philippines

Predictions: Poland

Less than 2°C warming by 2100 unlikely

- Long-run forecasting of quantities that are essential for decision-makers faces multiple challenges
- Probabilistic forecasting is crucial for realistic assessment of future tendencies
- Hierarchical Bayesian modeling provides additional tools to calibrate the model to the objective of the research
- Much stricter policies lowering the carbon intensity of economies are required to keep the increase in global temperatures below the level triggering multiple climate change tipping points