머신러닝 강의자료

3강 - 분류(Classification)

닥터윌컨설팅 딥러닝 R&D 책임연구원 고려대학교 인공지능대학원 박사과정

류회성(Hoe Sung Ryu)

들어가기 앞서

강의내용

●분류

- 분류 데이터셋
- 이진 분류기 훈련
- 성능 측정
- 다중 분류
- 에러 분석
- 다중 레이블 분류
- 다중 출력 분류

[지난시간복습] Copyright (C) Hoe Sung Ryu all rights reserved

지난 시간 복습

● 머신러닝 개요

- 왜 머신러닝을 사용하는가?
- 머신러닝의 종류
- 머신러닝의 주요 도전 과제
- 테스트와 검증

● 머신러닝 파이프라인

- 데이터 가져오기
- 탐색적 데이터 분석
- 데이터 전처리
- 피처 엔지니어링
- 피처 셀렉션
- 모델링
- 평가

머신러닝 파이프라인

Classification Identifying which category an object belongs to. Applications: Spam detection, image recognition. Algorithms: SVM, nearest neighbors, random forest, and more...

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency

Model selection

Comparing, validating and choosing parameters and models.

Examples

Applications: Improved accuracy via parameter

Preprocessing

Feature extraction and normalization.

Applications: Transforming input data such as text for use with machine learning algorithms.

머신러닝 파이프라인

분류	모듈명	설명		
예제 데이터	sklearn.datasets	Scikit-learn에 내장된 예제 데이터셋		
	sklearn.preprocessing	데이터 전처리에 필요한 다양한 기능 제공(인코딩, 정규화, 스케일링 등)		
피쳐 처리	sklearn.feature_selection	알고리즘에 영향을 미치는 특성을 우선순위대로 선택 작업을 수행하는 다양 한 기능 제공		
	sklearn.feature_extraction	텍스트 데이터나 이미지 데이터의 벡터화된 피쳐를 추출하는데 사용됨.		
	sklearn.decomposition	차원 축소와 관련된 알고리즘 지원 (PCA, NMF 등)		
데이터 분리, 검증 & 파라미터 튜닝	sklearn.model_selection	교차 검증을 위한 훈련용/테스트용 데이터 분리, GridSearch 기능 등 제공		
평가	sklearn.metrics	각종 머신 러닝 알고리즘(회귀, 분류, 클러스터링 등)의 다양한 성능 측정 방법 제공 (accuracy, precision, recall, ROC-AUC 곡선 등)		
	sklearn.ensemble	앙상블 알고리즘 제공(Random Forest, AdaBoost, Gradient boosting, 등)		
	sklearn.linear_model	선형회귀, 릿지, 라쏘 및 로지스틱 회귀 등 회기ㅜ 관련 알고리즘 지원		
	sklearn.naïve_bayes	나이브 베이즈 알고리즘 제공. 가우시안 NB, 다항 분포 NB 등		
머신 러닝 알고리즘	sklearn.neighbors	KNN 알고리즘 제공		
	sklearn.svm	SVM 알고리즘 제공		
	sklearn.tree	의사 결정 트리 알고리즘 제공		
	sklearn.cluster	클러스터링 알고리즘 제공 (k-means, DBScan 등)		
유틸리티 (지원 기 능)	sklearn.pipeline	피쳐 처리 등의 변환과 ML 알고리즘 학습, 예측 등을 함께 묶어서 실행할 수 있는 유틸리티 제공		

머신러닝 파이프라인 - 데이터셋 모듈

- 별도의 외부 웹사이트에서 데이터 세트를 내려 받을 필요 없이
- 예제로 활용 가능한 데이터셋 혹은 데이터 생성 기능 제공

datasets.clear_data_home([data_home])	Delete all the content of the data home cache.
datasets.dump_svmlight_file(X,y,f[,])	Dump the dataset in symlight / libsym file format.
datasets.fetch_20hewsgroups ([data_home,])	Load the filenames and data from the 20 newsgroups dataset (classification).
datasets.fetch_20newsgroups_vectorized([])	Load the 20 newsgroups dataset and vectorize it into token counts (classification).
datasets.fetch_california_housing([])	Load the California housing dataset (regression).
datasets.fetch_covtype([data_home,])	Load the covertype dataset (classification).
datasets.fetch_kddcup99([subset, data_home,])	Load the kddcup99 dataset (classification).
datasets.fetch_lfw_pairs([subset,])	Load the Labeled Faces in the Wild (LFW) pairs dataset (classification).
datasets.fetch_lfw_people([data_home,])	Load the Labeled Faces in the Wild (LFW) people dataset (classification).
datasets.fetch_olivetti_faces([data_home,])	Load the Olivetti faces data-set from AT&T (classification).
datasets.fetch_openml ([name, version,])	Fetch dataset from openml by name or dataset id.
datasets.fetch_rcv1 ([data_home, subset,])	Load the RCV1 multilabel dataset (classification).
datasets fetch species distributions ([_])	Loader for species distribution dataset from Phillips et
datasets.get_data_home ([data_home])	Return the path of the scikit-learn data dir.
datasets.load_boston([return_X_y])	Load and return the boston house-prices dataset (regression).
datasets.load_breast_cancer([return_X_y])	Load and return the breast cancer wisconsin dataset (classification).
datasets.load_diabetes([return_X_y])	Load and return the diabetes dataset (regression).
datasets.load_digits([n_class, return_X_y])	Load and return the digits dataset (classification).
datasets.load_files(container_path[,])	Load text files with categories as subfolder names.
datasets.load_iris([return_X_y])	Load and return the iris dataset (classification).
datasets.load_linnerud([return_X_y])	Load and return the linnerud dataset (multivariate regression).
datasets.load_sample_image(image_name)	Load the numpy array of a single sample image
datasets.load_sample_images()	Load sample images for image manipulation.
datasets.load_svmlight_file(f[, n_features,])	Load datasets in the symlight / libsym format into sparse CSR matrix
datasets.load_svmlight_files(files[,])	Load dataset from multiple files in SVMlight format
datasets.load_wine([return_X_y])	Load and return the wine dataset (classification).

데이터의 크기가 커서 패 키지에 저장되어 있는 것 이 아니라 인터넷에서 다 운로드 받는 함수 (fetch_XXX)

분류/회귀용 샘플 데이터 (load_XXX)

머신러닝 파이프라인 – 전처리 모듈

- 데이터 품질을 향상 시키기 위한 다양한 기능 제공
- 인코딩(Encoding)
 - 범주형 feature를 수치형으로 변환
- 스케일링(scaling)
 - feature 들의 값 범위를 일정한 수준으로 맞추는 기능

분류	모듈명	설명	
데이터 인코딩	LabelEncoder	레이블 인코딩 (카테고리 피처를 코드형 숫자값으로 변환) (e.g. 성별 피처의 값인 Male, Female을 각각 0과 1로 변환)	
네이니 한고경	OneHotEncoder	특성(피처)의 모든 값들을 새로운 특성으로 추가해 해당 값에 해당하는 칼럼에 만 1을 표시, 나머지는 0으로 표시하는 방식	
피처 스케일링	StandardScaler	피처의 값들이 가우시안 분포(평균 = 0, 분산 = 1)를 따르도록 변환	
/정규화	MinMaxScaler	피처의 값들을 0과 1사이의 값으로 변환	

[분류데이터셋] 10 Copyright (C) Hoe Sung Ryu all rights reserved

분류 데이터셋

- 붓꽃 데이터셋
- 유방암 데이터셋
- MNIST 데이터셋
- Fashion MNIST 데이터셋

datasets.clear_data_home ([data_home])	Delete all the content of the data home cache.
datasets.dump_svmlight_file(X, y, f[,])	Dump the dataset in symlight / libsym file format.
datasets.fetch_20newsgroups ([data_home,])	Load the filenames and data from the 20 newsgroups dataset (classification).
datasets.fetch_20newsgroups_vectorized([])	Load the 20 newsgroups dataset and vectorize it into token counts (classification).
datasets.fetch_california_housing([])	Load the California housing dataset (regression).
datasets.fetch_covtype([data_home,])	Load the covertype dataset (classification).
datasets.fetch_kddcup99([subset, data_home,])	Load the kddcup99 dataset (classification).
datasets.fetch_lfw_pairs([subset,])	Load the Labeled Faces in the Wild (LFW) pairs dataset (classification).
datasets.fetch_lfw_people([data_home,])	Load the Labeled Faces in the Wild (LFW) people dataset (classification).
datasets.fetch_olivetti_faces([data_home,])	Load the Olivetti faces data-set from AT&T (classification).
datasets.fetch_openml ([name, version,])	Fetch dataset from openml by name or dataset id.
datasets.fetch_rcv1 ([data_home, subset,])	Load the RCV1 multilabel dataset (classification).
datasets fetch species distributions ([])	Loader for species distribution dataset from Phillips et
datasets.get_data_home ([data_home])	Return the path of the scikit-learn data dir.
datasets.load_boston([return_X_y])	Load and return the boston house-prices dataset (regression).
datasets.load_breast_cancer([return_X_y])	Load and return the breast cancer wisconsin dataset (classification).
datasets.load_diabetes([return_X_y])	Load and return the diabetes dataset (regression).
datasets.load_digits([n_class, return_X_y])	Load and return the digits dataset (classification).
datasets.load_files(container_path[,])	Load text files with categories as subfolder names.
datasets.load_iris([return_X_y])	Load and return the iris dataset (classification).
datasets.load_linnerud([return_X_y])	Load and return the linnerud dataset (multivariate regression).
datasets.load_sample_image(image_name)	Load the numpy array of a single sample image
datasets.load_sample_images()	Load sample images for image manipulation.
datasets.load_svmlight_file(f[, n_features,])	Load datasets in the symlight / libsym format into sparse CSR matrix
datasets.load_svmlight_files(files[,])	Load dataset from multiple files in SVMlight format
datasets.load_wine([return_X_y])	Load and return the wine dataset (classification).

데이터의 크기가 커서 패 키지에 저장되어 있는 것 이 아니라 인터넷에서 다 운로드 받는 함수 (fetch_XXX)

분류/회귀용 샘플 데이터 (load_XXX)

붓꽃 데이터셋

붓꽃 데이터셋

Out [5]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	label
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0
145	6.7	3.0	5.2	2.3	2
146	6.3	2.5	5.0	1.9	2
147	6.5	3.0	5.2	2.0	2
148	6.2	3.4	5.4	2.3	2
149	5.9	3.0	5.1	1.8	2

150 rows x 5 columns

유방암 데이터셋

유방암 데이터셋

```
In [12]:

1     data_bc = load_breast_cancer()
2     data = pd.DataFrame(data=data_bc.data,columns=data_bc.feature_names)
3     data['label'] = data_bc.target
4     data

executed in 37ms, finished 00:02:58 2020-08-07
```

Out [12]:

nean ness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	 worst texture	worst perimeter	worst area	worst smoothness	worst compactness	worst concavity	worst concave points	worst symmetry	worst fractal dimension	label
7760	0.30010	0.14710	0.2419	0.07871	 17.33	184.60	2019.0	0.16220	0.66560	0.7119	0.2654	0.4601	0.11890	0
7864	0.08690	0.07017	0.1812	0.05667	 23.41	158.80	1956.0	0.12380	0.18660	0.2416	0.1860	0.2750	0.08902	0
5990	0.19740	0.12790	0.2069	0.05999	 25.53	152.50	1709.0	0.14440	0.42450	0.4504	0.2430	0.3613	0.08758	0
8390	0.24140	0.10520	0.2597	0.09744	 26.50	98.87	567.7	0.20980	0.86630	0.6869	0.2575	0.6638	0.17300	0
3280	0.19800	0.10430	0.1809	0.05883	 16.67	152.20	1575.0	0.13740	0.20500	0.4000	0.1625	0.2364	0.07678	0
1590	0.24390	0.13890	0.1726	0.05623	 26.40	166.10	2027.0	0.14100	0.21130	0.4107	0.2216	0.2060	0.07115	0
0340	0.14400	0.09791	0.1752	0.05533	 38.25	155.00	1731.0	0.11660	0.19220	0.3215	0.1628	0.2572	0.06637	0
0230	0.09251	0.05302	0.1590	0.05648	 34.12	126.70	1124.0	0.11390	0.30940	0.3403	0.1418	0.2218	0.07820	0
7700	0.35140	0.15200	0.2397	0.07016	 39.42	184.60	1821.0	0.16500	0.86810	0.9387	0.2650	0.4087	0.12400	0
4362	0.00000	0.00000	0.1587	0.05884	 30.37	59.16	268.6	0.08996	0.06444	0.0000	0.0000	0.2871	0.07039	1

MNIST

- MNIST (Modified National Institute of Standards and Technology database)
 - 손으로 쓴 숫자들로 이루어진 대형 데이터베이스
 - 데이터베이스는 또한 기계 학습 분야의 트레이닝 및 테스트에 널리 사용
 - 정규화 및 스케일링 처리가 완료된 깔끔한 데이터셋

MNIST

- MNIST (Modified National Institute of Standards and Technology database)
 - 전체 데이터셋: 70,000개
 - 학습 데이터셋: 60,000개
 - 평가 데이터셋: 10,000개

컴퓨터에서 이미지를 읽는 과정 - MNIST

컴퓨터에서 이미지를 읽는 과정 - MNIST

MNIST

MNIST

Fashion-MNIST

Kannda-MNIST

0	೨	೩	မွ	R	೬	ع	೮	6	00
ಒಂದು	ಎರಢು	ಮೂರು	ನಾಲ್ಕು	ಐದು	ಆರು	పకు	ಎಂಟು	ಒಂಬತ್ತು	ಹತ್ತು
oṃdu	eradu	mūru	nālku	aidu	āru	ēļu	emţu	oṃbattu	hattu
1	2	3	4	5	6	7	8	9	10

[이진 분류기 훈련]

이진 분류

이진 분류

이진 분류

```
y_train_5 = (y_train == 5) # 5는 True고, 다른 숫자는 모두 False
y_test_5 = (y_test == 5)
```

```
from sklearn.linear_model import SGDClassifier

sgd_clf = SGDClassifier(random_state=42)

sgd_clf.fit(X_train, y_train_5)
```

```
>>> sgd_clf.predict([some_digit])
array([ True])
```


Quiz1

- Q1. 머신러닝 파이프라인
 - A1.
- Q2. 분류는 지도학습이다. (O / X)
 - A2.
- Q3. MNIST 데이터셋의 형상(shape)은 얼마인가?
 - A3.

[분류에서의성능측정]

오차행렬

● 오차행렬을 만들기 위해선

- 실제 값과 비교할 수 있도록 먼저 예측 값을 만들어야 함

그림 3-2 이 오차 행렬 그림은 진짜 음성 샘플(왼쪽 위), 거짓 양성(오른쪽 위), 거짓 음성(왼쪽 이래), 진짜 양성(오른쪽 이래)를 보여줍니다.

이진 분류에서의 성능 측정

		실제 정답			
		True	False		
분류	True	True Positive	False Positive		
분류 결과	False	False Negative	True Negative		

$$accuracy = \frac{TP + TN}{TP + FN + TN + FP}$$

이진 분류에서의 성능 측정 - Accuracy

		실제 정답			
		True	False		
분류	True	True Positive	False Positive		
분류 결과	False	False Negative	True Negative		

$$accuracy = \frac{TP + TN}{TP + FN + TN + FP}$$

Accuracy만으로 부족한가?

예시: 암 검사를 Accuracy로?

- 암 검사를 위해서 Accuracy로 판단할까?
- 아무래도 암 환자는 일반인에 비해서 확연하게 적기 때문에 Accuracy는 높음
 - 1000명 중 1명 꼴로 암에 걸린다고 할 때, 단순하게 생각해도 암 걸릴 확률을 $\frac{1}{1000}$ 이라고 할 수 있음
 - 따라서 임의의 환자가 암인지 아닌지 맞출 Accuracy는 99.9%라고 할 수 있음
 - 왜냐하면 눈 감고 찍어도 높은 확률로 정상인임
 - 즉, 여기 있는 여러분 누구라도 암인지 아닌지 검사할 수 있는 Accuracy 99% 이상이라고 말할 수 있음
 - 과연 이러한 지표로 암 검사를 하면 확실할까? 즉, 환자에게 신뢰를 줄 수 있을까?

● Accuracy를 보완하기 위해 나온 다른 지표들

- Recall
- Precision
- F1 Score

이진 분류에서의 성능 측정 - Precision

		실제 정답			
		True	False		
분류 결과	True	True Positive	False Positive		
결과	False	False Negative	True Negative		

$$\begin{array}{rcl} precision & = & \frac{TP}{TP + FP} \\ \\ recall & = & \frac{TP}{TP + FN} \\ \\ F1 & = & \frac{2 \times precision \times recall}{precision + recall} \\ \\ accuracy & = & \frac{TP + TN}{TP + FN + TN + FP} \\ \\ specificity & = & \frac{TN}{TN + FP} \\ \end{array}$$

이진 분류에서의 성능 측정 - Recall

		실제 정답			
		True	False		
분류	True	True Positive	False Positive		
결과	False	False Negative	True Negative		

$$\begin{array}{rcl} precision & = & \frac{TP}{TP + FP} \\ \hline recall & = & \frac{TP}{TP + FN} \\ \hline F1 & = & \frac{2 \times precision \times recall}{precision + recall} \\ accuracy & = & \frac{TP + TN}{TP + FN + TN + FP} \\ specificity & = & \frac{TN}{TN + FP} \\ \end{array}$$

이진 분류에서의 성능 측정 - Precision과 Recall

```
>>> from sklearn.metrics import precision_score, recall_score
>>> precision_score(y_train_5, y_train_pred) # == 4096 / (4096 + 1522)
0.7290850836596654
>>> recall_score(y_train_5, y_train_pred) # == 4096 / (4096 + 1325)
0.7555801512636044
```

Precision / Recall Trade-off

● 두 마리 토끼를 모두 잡을 순 없다!

- 적절한 임계값을 선택해야함
- Precision을 높이면 Recall이 내려가고
- Recall을 높이려면 Precision이 내려간다

그림 3-3 이 정밀도/재현율 트레이드오프 이미지는 분류기가 만든 점수 순으로 나열되어 있습니다. 선택한 결정 임곗값 위의 것을 양성으로 판단합니다. 임곗값이 높을수록 재현율은 낮아지고 반대로 (보통) 정밀도는 높아집니다.

그림 3-4 결정 임곗값에 대한 정밀도와 재현율

이진 분류에서의 성능 측정 - F1 Score

>>> from sklearn.metrics import f1_score

>>> f1_score(y_train_5, y_train_pred)

0.7420962043663375

이진 분류에서의 성능 측정 – ROC와 AUC

- 수신기 조작 특성(Receiver Operating Characteristic, ROC)
 - 거짓 양성 비율(FPR)에 대한 진짜 양성 비율(TPR)의 곡선

$$-FPR = \frac{FP}{FP+TN} = \frac{FP+TN-TN}{FP+TN} = 1 - \frac{TN}{FP+TN} = 1 - TNR$$

- 곡선 아래의 면적(Area Under the Curve, AUC)
 - 완벽하게 분류한 ROC의 AUC의 값은 1
 - 완전 랜덤한 ROC의 AUC의 값은 0.5

from sklearn.metrics import roc_curve

fpr, tpr, thresholds = roc_curve(y_train_5, y_scores)

그림 3-6 모든 가능한 임곗값에서 진짜 양성 비율에 대한 거짓 양성 비율을 나타낸 ROC 곡선, 붉은 점이 선택한 비율의 지점입니다(43,68%의 재현율).

Quiz2

- Q1. 정확도(Accuracy)의 정의는 무엇인가?
 - A1.
- Q2. 재현율(Recall)의 정의는 무엇인가?
 - A2.
- Q3. 정밀도(Precision)의 정의는 무엇인가?
 - A3.
- Q4. F1 스코어의 정의는 무엇인가?
 - A4.

[교차검증] 43 Copyright (C) Hoe Sung Ryu all rights reserved

학습, 검증, 평가 데이터셋

- 주어진 데이터에 과적합이 되는 걸 방지함
- 데이터셋이 충분할 때, 성능 평가를 위해선
 - 학습 데이터와 검증 데이터셋과 테스트 데이터셋으로 나뉘어야 한다

교차 검증

- 학습 데이터가 부족할 때는 어떻게 해야할까?
 - 데이터가 부족하면 성능에 대한 신뢰도가 낮아짐
- K-교차검증
 - 데이터를 k개로 나누어 학습
- Stratified K 교차검증
 - 데이터를 k개로 나눌 때, 각 클래스 별로 고르게 분포하도록 나눔

[다중분류] 46 Copyright (C) Hoe Sung Ryu all rights reserved

- 둘 이상의 클래스를 구별하는 작업
- OvA and OvO
 - OvA (One-Versus-All)
 - 1 vs (2,3, ···, 9)
 - 2 vs (1,3, ···, 9)
 - _ ...
 - OvO (One-Versus-One)
 - 1 vs 2
 - 1 vs 3
 - _ ...
 - 8 vs 9

- 다중 분류란?
 - 둘 이상의 클래스를 구별하는 작업
- OvA and OvO
 - OvA (One-Versus-All)
 - 1 vs (2,3, ···, 9)
 - 2 vs (1,3, ···, 9)
 - _ ...
 - OvO (One-Versus-One)
 - 1 vs 2
 - 1 vs 3
 - _ ...
 - 8 vs 9


```
>>> from sklearn.multiclass import OneVsRestClassifier
>>> ovr_clf = OneVsRestClassifier(SVC())
>>> ovr_clf.fit(X_train, y_train)
>>> ovr_clf.predict([some_digit])
array([5], dtype=uint8)
>>> len(ovr_clf.estimators_)
10

>>> sgd_clf.fit(X_train, y_train)
>>> sgd_clf.predict([some_digit])
array([5], dtype=uint8)
```


에러 분석

- 모델의 성능을 향상시킬 수 있는 방법 → 에러분석
 - 오차행렬을 통해서 확인해보자

```
>>> y_train_pred = cross_val_predict(sgd_clf, X_train_scaled, y_train, cv=3)
>>> conf_mx = confusion_matrix(y_train, y_train_pred)
>>> conf_mx
array([[5578,
             0, 22, 7, 8, 45, 35, 5, 222, 1],
                 35, 26, 4, 44, 4, 8, 198, 13],
        0, 6410,
       28, 27, 5232, 100, 74, 27,
                                    68,
                                        37, 354,
                                                  11],
       23, 18, 115, 5254, 2, 209,
                                    26,
                                        38, 373, 73],
       11, 14, 45, 12, 5219, 11,
                                    33,
                                        26, 299, 172],
       26, 16, 31, 173, 54, 4484, 76,
                                        14, 482, 65],
       31, 17, 45, 2, 42, 98, 5556,
                                         3, 123,
                                                  17,
       20, 10, 53,
                     27, 50, 13,
                                     3, 5696, 173, 220],
                                    24, 11, 5421, 48],
     [ 17, 64, 47, 91, 3, 125,
     [ 24, 18, 29, 67, 116, 39, 1, 174, 329, 5152]])
```

에러 분석

```
X_aa = X_train[(y_train == cl_a) & (y_train_pred == cl_a)]
X_ab = X_train[(y_train == cl_a) & (y_train_pred == cl_b)]
X_ba = X_train[(y_train == cl_b) & (y_train_pred == cl_a)]
X_bb = X_train[(y_train == cl_b) & (y_train_pred == cl_b)]
plt.figure(figsize=(8,8))
plt.subplot(221); plot_digits(X_aa[:25], images_per_row=5)
plt.subplot(222); plot_digits(X_ab[:25], images_per_row=5)
plt.subplot(223); plot_digits(X_ba[:25], images_per_row=5)
plt.subplot(224); plot_digits(X_bb[:25], images_per_row=5)
save_fig("error_analysis_digits_plot")
plt.show()
그림 저장: error_analysis_digits_plot
                                     55555
                                     55555
```

In [69]: cl_a, cl_b = 3, 5

[다중레이블분류]

다중 레이블 분류

- 다중 레이블 분류와 다중 분류는 다르다
 - 다중 분류는 <mark>여러 개의 클래스</mark>를 분류하는 것
 - 오늘 저녁 식사 뭐 먹을지 예측
 - 김치찌개, 부대찌개, 햄버거 등
 - 다중 레이블 분류는 <mark>여러 개의 레이블</mark>을 분류하는 것
 - 오늘 점심, 저녁 식사 뭐 먹을지 예측
 - 점심
 - 김치찌개, 부대찌개
 - 저녁
 - 햄버거, 피자, 치킨

Multi-Class apple pear orange 1 0 0

다중 레이블 분류

Quiz3

- Q1. OvA 와 OvO가 차이점은 무엇인가?
 - A1.
- Q2. 다중분류와 다중클래스 분류의 차이점은 무엇인가?
 - A2.
- Q3. 교차 검증이란 무엇이며 왜 하는 걸까요?
 - A3.

58

MNIST로 이진 분류 및 다중 분류를 해봅시다!

