Uncertainty quantification(UQ) for offshore pile design

Ningxin Yang, PhD student

Supervisor: Dr Truong Le; Prof. Lidija Zdravkovic

Figure 1: Offshore piles from PISA project

Figure 1: Offshore piles from PISA project

• Different sources of uncertainties from soil parameters and complex physics

Figure 1: Offshore piles from PISA project

- Different sources of uncertainties from soil parameters and complex physics
- Manual back analysis to reduce the uncertainties is either time-consuming or computationally expensive

Figure 1: Offshore piles from PISA project

- Different sources of uncertainties from soil parameters and complex physics
- Manual back analysis to reduce the uncertainties is either time-consuming or computationally expensive
- Current UQ works require considerable resources and expertise to deploy and maintenance

Figure 1: Offshore piles from PISA project

- Different sources of uncertainties from soil parameters and complex physics
- Manual back analysis to reduce the uncertainties is either time-consuming or computationally expensive
- Current UQ works require considerable resources and expertise to deploy and maintenance
- There exists a notable absence of ML for data-driven UQ for offshore piles

Towards a scalable data-driven UQ framework for offshore piles

Towards a scalable data-driven UQ framework for offshore piles

! Computation model based on physical laws in UQ is expensive

Towards a scalable data-driven UQ framework for offshore piles

- ! Computation model based on physical laws in UQ is expensive
- Geotechnical problems naturally involves high input/output dimensions

Towards a scalable data-driven UQ framework for offshore piles

- ! Computation model based on physical laws in UQ is expensive
- Geotechnical problems naturally involves high input/output dimensions
- How to make UQ framework adaptive and scalable?

Towards a scalable data-driven UQ framework for offshore piles

- Computation model based on physical laws in UQ is expensive
- ! Geotechnical problems naturally involves high input/output dimensions
- ! How to make UQ framework adaptive and scalable?

By replacing the original model with a smipler surrogate model

Towards a scalable data-driven UQ framework for offshore piles

- ! Computation model based on physical laws in UQ is expensive
- ! Geotechnical problems naturally involves high input/output dimensions
- ! How to make UQ framework adaptive and scalable?

- By replacing the original model with a smipler surrogate model
- √ Alleviate this by using DR^a-based surrogate models and active learning

Towards a scalable data-driven UQ framework for offshore piles

- ! Computation model based on physical laws in UQ is expensive
- ! Geotechnical problems naturally involves high input/output dimensions
- ! How to make UQ framework adaptive and scalable?

- By replacing the original model with a smipler surrogate model
- √ Alleviate this by using DR^a-based surrogate models and active learning
- ✓ Use PGM^b and control theory

Towards a scalable data-driven UQ framework for offshore piles

- ! Computation model based on physical laws in UQ is expensive
- Geotechnical problems naturally involves high input/output dimensions
- ! How to make UQ framework adaptive and scalable?

- By replacing the original model with a smipler surrogate model
- √ Alleviate this by using DR^a-based surrogate models and active learning
- √ Use PGM^b and control theory

Goals: Leverage cutting-edge methodologies in the fields of **surrogate modeling**, **UQ**, **PGM** and **control theory**, to deliver a robust UQ framework in offshore piles

^aDimensionality reduction

^bProbabilistic graphical model

Choice for the UQ method

Choice for the UQ method is totally based on the **quantity** of accessible data:

- Lack or no data available, model can be solely based on expert judgement
- Substantial volume data available, model can fully use statistical inference (e.g., the methods of moments[1])
- Combination of two above: Bayesian methods

$$\pi(oldsymbol{x}|oldsymbol{y}) = rac{\mathcal{L}(oldsymbol{x}|oldsymbol{y}) \cdot \pi(oldsymbol{x})}{\pi(oldsymbol{y})}$$

PISA pile loading[2]

Sequential Bayesian inference setting in high dimensional space:

- Adaptive learning to enrich the experimental design
- DR-based surrogate to accelerate inversion
- Advanced MCMC sampler to obtain Qol

Abstraction for DR-based surrogate in Bayesian

inference

Abstraction for DR-based surrogate in Bayesian inference

Abstraction for DR-based surrogate in Bayesian inference

Abstraction for DR-based surrogate in Bayesian inference

Why introduce DR-based surrogate to Bayesian

inference

Why introduce DR-based surrogate to Bayesian inference

Why introduce DR-based surrogate to Bayesian inference

Surrogate-PCE

 Reduce the output size, and alleviate the burden on the surrogate construction

> DR-based Surrogate-(PCA-PCE)

Why introduce DR-based surrogate to Bayesian inference

Surrogate-PCE

- Reduce the output size, and alleviate the burden on the surrogate construction
- Capture the shape/covariance matrix of the output

DR-based Surrogate-(PCA-PCE)

Why introduce DR-based surrogate to Bayesian inference Stage 1 - output 1 Stage 2 - output 1 Stage 3 - output 1

-0.02

0.02 0.04

FE output (m)

Surrogate-PCE

Surrogate-

(PCA-PCE)

- Reduce the output size, and alleviate the burden on the surrogate construction
- Capture the shape/covariance matrix of the output
- Compared to scalar models (e.g., PCE, kriging), DR-based surrogate can consider the multiple output predictions DR-based

0.02 0.04

FE output (m)

FE output (m)

-10

-15

-20

-5

-10

-15

-20

Active learning for an efficient surrogate

In high dimensions, experimental design for a surrogate can be very expensive.

Active learning hopes to construct the surrogate in an adaptive way

Figure 2: Active learning workflow[3]

- Visualize the sequential inversion calculation
- Bring in control theory naturally to make prompt actions
- Support the transition from custom defined model towards a unified and scalable digital twin

- Visualize the sequential inversion calculation
- Bring in control theory naturally to make prompt actions
- Support the transition from custom defined model towards a unified and scalable digital twin

- Visualize the sequential inversion calculation
- Bring in control theory naturally to make prompt actions
- Support the transition from custom defined model towards a unified and scalable digital twin

- Visualize the sequential inversion calculation
- Bring in control theory naturally to make prompt actions
- Support the transition from custom defined model towards a unified and scalable digital twin

- Visualize the sequential inversion calculation
- Bring in control theory naturally to make prompt actions
- Support the transition from custom defined model towards a unified and scalable digital twin

- Visualize the sequential inversion calculation
- Bring in control theory naturally to make prompt actions
- Support the transition from custom defined model towards a unified and scalable digital twin

- Visualize the sequential inversion calculation
- Bring in control theory naturally to make prompt actions
- Support the transition from custom defined model towards a unified and scalable digital twin

Time plan

Table 1: PhD timeline

month	0	3	6	9	12	15	18	21	24	27	30	33	36	39	42	45	48
Literature review	√	√	√														
Numerical modelling		✓	√	✓	√	√	✓	✓	√	✓	√						
Implementing a data-driven approach (POMDP)		✓	✓	✓	√	✓	√	✓	√	✓	✓	✓	√	✓			
Writing PGM in MATLAB or Python		√	√	√													
Constructing the digital twin						√	√	√									
Develop a methodology for calibrating a digital twin prediction									✓	✓	✓	✓					
Develop an approach for data assimilation based on Bayesian inference framework												✓	√	√			
Thesis writing															√	√	✓
Journal/Conference								✓				√					✓

Reference

- P-R Wagner et al. "Bayesian calibration and sensitivity analysis of heat transfer models for fire insulation panels". In: *Engineering structures* 205 (2020), p. 110063.
- [2] Lidija Zdravković et al. "Ground characterisation for PISA pile testing and analysis". In: *Géotechnique* 70.11 (2020), pp. 945–960.
- [3] Maliki Moustapha, Stefano Marelli and Bruno Sudret. "Active learning for structural reliability: Survey, general framework and benchmark". In: Structural Safety 96 (2022), p. 102174.