```
In [ ]:
           import pandas as pd
           import numpy as np
           import os
           import matplotlib.pyplot as plt
           import seaborn as sns
In [7]:
          #Loading Dataset
          df_trvl_rvw = pd.read_csv('tripadvisor_review.csv')
          df_trvl_rvw = df_trvl_rvw.set_index('User ID')
          df trvl rvw.head()
Out[7]:
                Category Category Category Category Category Category
                                                                                        Category
                                                                                                  Category
                                 2
                                                                5
          User
            ID
             1
                     0.93
                                1.8
                                         2.29
                                                    0.62
                                                              0.80
                                                                        2.42
                                                                                  3.19
                                                                                             2.79
                                                                                                       1.82
             2
                     1.02
                                2.2
                                         2.66
                                                    0.64
                                                              1.42
                                                                        3.18
                                                                                  3.21
                                                                                             2.63
                                                                                                       1.86
             3
                     1.22
                                8.0
                                         0.54
                                                    0.53
                                                              0.24
                                                                        1.54
                                                                                  3.18
                                                                                             2.80
                                                                                                       1.31
             4
                     0.45
                                1.8
                                         0.29
                                                    0.57
                                                              0.46
                                                                        1.52
                                                                                  3.18
                                                                                             2.96
                                                                                                       1.57
             5
                     0.51
                                1.2
                                         1.18
                                                    0.57
                                                              1.54
                                                                        2.02
                                                                                  3.18
                                                                                             2.78
                                                                                                       1.18
In [9]:
           #rename the columns for easier understanding
          re_name = ['art galleries'
            'dance clubs'
            'juice bars'
            'restaurants'
            'museums'
            'resorts'
            'parks'
            'beaches'
            'theaters'
            'religious']
          #rename
          df_trvl_rvw.columns = re_name
          df_trvl_rvw.head()
Out[9]:
                         dance juice
                                       restaurants museums resorts parks beaches theaters religious
                                 bars
                galleries
                          clubs
          User
            ID
             1
                    0.93
                            1.8
                                 2.29
                                              0.62
                                                        0.80
                                                                 2.42
                                                                        3.19
                                                                                 2.79
                                                                                           1.82
                                                                                                    2.42
             2
                                              0.64
                                                                                                    2.32
                    1.02
                            2.2
                                 2.66
                                                        1.42
                                                                 3.18
                                                                        3.21
                                                                                 2.63
                                                                                           1.86
             3
                    1.22
                            8.0
                                 0.54
                                              0.53
                                                        0.24
                                                                 1.54
                                                                                 2.80
                                                                                           1.31
                                                                                                    2.50
                                                                        3.18
             4
                                                                                                    2.86
                    0.45
                            1.8
                                  0.29
                                              0.57
                                                        0.46
                                                                 1.52
                                                                        3.18
                                                                                 2.96
                                                                                           1.57
             5
                                                                                                    2.54
                    0.51
                            1.2
                                 1.18
                                              0.57
                                                         1.54
                                                                 2.02
                                                                        3.18
                                                                                 2.78
                                                                                           1.18
```

```
In [10]: ##Exploratory Data Analysis
    display(df_trvl_rvw.info())
    display(df_trvl_rvw.describe())
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 980 entries, 1 to 980
Data columns (total 10 columns):
                   Non-Null Count Dtype
#
    Column
                   -----
---
0
    art galleries 980 non-null
                                   float64
    dance clubs
1
                   980 non-null
                                  float64
2
    juice bars
                   980 non-null
                                  float64
                                  float64
3
    restaurants
                   980 non-null
4
    museums
                   980 non-null
                                  float64
5
                   980 non-null
                                  float64
    resorts
6
                   980 non-null
                                  float64
    parks
7
                                  float64
    beaches
                   980 non-null
                   980 non-null
                                   float64
    theaters
9
    religious
                   980 non-null
                                   float64
dtypes: float64(10)
memory usage: 84.2 KB
None
```

	art galleries	dance clubs	juice bars	restaurants	museums	resorts	parks	beacl
count	980.000000	980.000000	980.000000	980.000000	980.000000	980.000000	980.000000	980.0000
mean	0.893194	1.352612	1.013306	0.532500	0.939735	1.842898	3.180939	2.8350
std	0.326912	0.478280	0.788607	0.279731	0.437430	0.539538	0.007824	0.1375
min	0.340000	0.000000	0.130000	0.150000	0.060000	0.140000	3.160000	2.4200
25%	0.670000	1.080000	0.270000	0.410000	0.640000	1.460000	3.180000	2.7400
50%	0.830000	1.280000	0.820000	0.500000	0.900000	1.800000	3.180000	2.8200
75 %	1.020000	1.560000	1.572500	0.580000	1.200000	2.200000	3.180000	2.9100
max	3.220000	3.640000	3.620000	3.440000	3.300000	3.760000	3.210000	3.3900

```
In [11]:
#All attribute should be float64 datatype and we have the same here so therfore the
print('Total missing values in dataset')
display(df_trvl_rvw.isnull().sum())
df_trvl_rvw = df_trvl_rvw.dropna()
```

```
Total missing values in dataset
art galleries
                  a
dance clubs
                  0
juice bars
                  0
restaurants
                  0
                  0
museums
resorts
                  0
                  0
parks
beaches
                  0
theaters
                  0
religious
                  0
dtype: int64
```

```
In [15]:
          df transform = pd.melt(df trvl rvw,value vars=['art galleries'
           'dance clubs'
            'juice bars'
            restaurants'
            'museums'
            'resorts'
            'parks'
            'beaches'
            'theaters'
           'religious'])
          fig = plt.figure(figsize = (15,7))
          garph = sns.boxenplot(x='variable',y='value',data=df_transform,palette = 'Set3')
          garph = sns.stripplot(x='variable',y='value',data=df_transform,size=1.5, color=".6")
          garph.set_xticklabels(garph.get_xticklabels(),rotation=90);
          garph.set title(f'Overall Rating Distribution',y=1.05,fontsize=20)
          garph.set_xlabel("")
          garph.set_ylabel("Rating",labelpad = 20)
          fig.tight_layout(pad = 0.5)
          plt.savefig('Overall Rating Distribution.png')
```

Overall Rating Distribution


```
#Since there is no much information regarding the attractions or the descriptive use # reviews and then cluster them into different preferences ##K-Means Clustering: Find right number of cluster # we will try K-Means clustering algorithm on 4 Scenarios and compared it result # -> K-Means Clustering on original data (10 features) # -> K-Means Clustering on scaled original data (10 features with scaled) by using # -> K-Means Clustering on PCA component # -> K-Means Clustering on PCA component with scaled data
```

```
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_samples, silhouette_score
from sklearn.decomposition import PCA
import matplotlib.ticker as ticker

#Original data
df_orig = df_trvl_rvw

#Scaled Data
df_scaled = StandardScaler().fit_transform(df_trvl_rvw)
```

```
#PCA without scaling
pca = PCA(n_components = 2,random_state=42)
df_PCA = pca.fit_transform(df_orig)

#PCA with scaling
df_PCA_scaled = pca.fit_transform(df_scaled)

data_list = [df_orig,df_scaled,df_PCA,df_PCA_scaled]
inertia_list = []
list_k = list(range(1, 30))
```

```
In [18]: #Run elbow to evaluate number of clusters
for i in range(len(data_list)):
    sse = []
    data = data_list[i]
    for k in list_k:
        km = KMeans(n_clusters=k,random_state=42)
        km.fit(data)
        sse.append(km.inertia_)
        inertia_list.append(sse)

result_ori = pd.DataFrame({'K':list_k,'Inertia':inertia_list[0],'data_type':'origina result_ori_scaled = pd.DataFrame({'K':list_k,'Inertia':inertia_list[1],'data_type':'result PCA = pd.DataFrame({'K':list_k,'Inertia':inertia_list[2],'data_type':'PCA'})
```

```
fig = plt.figure(figsize=(12,8))
graph = sns.lineplot(data=result,x='K',y='Inertia',hue='data_type',linewidth=4,marke
graph.set_xlabel('Nummber of cluster', labelpad = 20)
graph.set_ylabel('Inertia', labelpad = 20)
graph.yaxis.set_major_formatter(ticker.FuncFormatter(lambda x, pos: '{:,.0f}'.format
graph.tick_params(which="both", bottom=True)
graph.set_title('Selecting proper cluster number with elbow method',y=1.05, fontsize
```

result_PCA_scaled = pd.DataFrame({'K':list_k,'Inertia':inertia_list[3],'data_type':'
result = result_ori.append(result_ori_scaled).append(result_PCA).append(result_PCA_s

Selecting proper cluster number with elbow method


```
In [20]: pca.explained_variance_ratio_.sum()

Out[20]: 0.42402983746016876

In [21]: #K-Mean clustering algorithm on only 2 principle components which represent only 42% #(cummilative explianed variance ratio ~ 42%) may result in not so good clustering p #In conclusion, I'll continue on K-Mean clustering analysis on PCA scaled data with
```

```
In [22]:
    pca = PCA(n_components = 2,random_state=42)
    df_PCA_scaled = pca.fit_transform(df_scaled)

    model = KMeans(n_clusters=4,random_state=42)
    model.fit(df_PCA_scaled)
    cluster = model.labels_
```

```
In [32]:
    coeff = np.transpose(pca.components_[0:2, :])
    n = coeff.shape[0]
    labels = list(df_trvl_rvw.columns)
    xs = df_PCA_scaled[:,0]
    ys = df_PCA_scaled[:,1]
    scalex = 1.0/(xs.max() - xs.min())
    scaley = 1.0/(ys.max() - ys.min())
```

```
In [33]: fig = plt.figure(figsize=(15,10))
```

<Figure size 1080x720 with 0 Axes>

```
In [37]:
    #scatter plot of each data point
    graph = sns.scatterplot(xs * scalex,ys * scaley,hue=cluster,palette='Set2',alpha=0.8
```

```
#add cluster centroid
plt.scatter(x=model.cluster_centers_[:,0]*scalex, y=model.cluster_centers_[:,1]*scal
#add EigenVector representing how each attraction categories related to PC1 and PC2
for i in range(n):
    plt.arrow(0, 0, coeff[i,0], coeff[i,1],color = 'r',alpha = 0.5)
    plt.text(coeff[i,0]* 1.15, coeff[i,1] * 1.15, labels[i], color = 'g', ha = '

graph.set_xlabel("PC{}".format(1))
graph.set_ylabel("PC{}".format(2))
graph.set_title('Result of K-Means clustering',y=1.05, fontsize=20);
plt.savefig('Clustering Result.png')
```

c:\users\shanty\pycharmprojects\sh_dataset\lib\site-packages\seaborn_decorators.py:
36: FutureWarning: Pass the following variables as keyword args: x, y. From version
0.12, the only valid positional argument will be `data`, and passing other arguments
without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(

Result of K-Means clustering


```
In [38]:

#K-Means clustering result in 4 clusters(segments) of user as follow,

#

#Cluster#0 (Green): User who prefer nature like beaches, theatres and dance clubs

#Cluster#1 (Orange): this users likes resorts, museums, parks, juice bars and resto

#Cluster#2 (Light Blue): Art Lovers - dedicated to Art gallerries

#Cluster#3 (Pink): From scatter plot, member of this cluster are not loosely spread
```

```
In [39]:
    df_trvl_rvw['cluster'] = model.labels_
        df_long = pd.melt(df_trvl_rvw, "cluster", var_name="categories")

    fig = plt.figure(figsize = (20,10))
    for i in range(len(df_long.cluster.unique())):
        plt.subplot(1,len(df_long.cluster.unique()),i+1)
        graph = sns.barplot(y='categories',x='value',data=df_long[df_long['cluster']==i]

# g.set_xticklabels(g.get_xticklabels(),rotation=90);
        graph.set_title(f'Review distribution of Cluster#{i}',y=1.02,fontsize=20)

# g.set_xlabel("")
        graph.set_ylabel('Categories')
        graph.set_xlim(0,5)
    fig.tight_layout(pad=0.5)
    plt.savefig
```

Out[39]: <function matplotlib.pyplot.savefig(*args, **kwargs)>

<Figure size 1440x720 with 0 Axes>

