TEA LEAVES CLASSIFICATION

NMA PROJECT POD EMPANADA

ANGARITA PEÑA, YESELTH; ARMAS, MIGUEL; CEBRIÁN BACA, JOSE ENRIQUE; CHICCHON, MIGUEL AND MAESTRI, MARÍA LAURA

SOMETHING ABOUT TEA

TEA IS ONE OF THE MOST POPULAR DRINKS IN THE WORLD, SECOND ONLY TO WATER.

ORIGINATING IN CHINA, CONTAINS MEDICAL PROPERTIES AND HEALTH CARE FUNCTIONS, AND IS QUITE EFFECTIVE IN ENHANCING HUMAN IMMUNITY.

PROBLEMATIC

AT PRESENT, THE DIAGNOSIS OF TEA LEAF DISEASES RELIES ON THE MANUAL METHOD, MAKING RESULTS LARGELY SUBJECTIVE AND SOMETIMES INACCURATE.

DUE TO MACHINE LEARNING AND IMAGE PROCESSING METHODS THAT DO NOT REQUIRE MANUAL INTERVENTION HAVE BEEN WIDELY USED IN THE DETECTION AND IDENTIFICATION OF PLANT DISEASES.

DATA SET:

- → FROM KAGGLE
- → 886 IMAGES OF LEAVES
 - L CONTAINS 7 COMMON DISEASES OF TEA CLASSES AND A CLASS OF HEALTHY LEAVES:
 - L (1) RED LEAF SPOT; (2) ALGAL LEAF SPOT; (3) BIRD'S EYESPOT; (4) GRAY BLIGHT; (5) WHITE SPOT; (6) ANTHRACNOSE; (7) BROWN BLIGHT

DATA SET DISTRIBUTION

SAMPLE

PREPROCESSING

→ WE WORK WITH 880 IMAGES: WE REMOVE DUPLICATES AND "EMPTY" IMAGES

*Early stopping was used in all the experiments

\rightarrow WE SPLIT THE DATA SET IN: TRAINING (70%), VALIDATION (15%) AND TEST (15%)

DATA AUGMENTATION

RESULTS: VGG (RGB)


```
Input_size(3,224,224),
Batch_size_train(16),
Adam(lr=1e-4),
ReduceLROnPlateau(patience=10),
EarlyStop(patience=25),
stop_epoch(46), Best_epoch(20)
```


RESULTS: RESNET18 (RGB) + DA + TL


```
Input_size(3,224,224),
Batch_size_train(16),
Adam(lr=1e-4),
ReduceLROnPlateau(patience=5),
EarlyStop(patience=20),
stop_epoch(40), Best_epoch(19)
```


RESULTS FROM TEST DATASET

MODEL	GLOBAL METRICS								
	ACCURACY	PRECISION	RECALL	F1-Score					
VGG RGB	0.90	0.90	0.90	0.90					
RESNET18 (RGB) + DA + TL	0.91	0.91	0.92	0.91					

Model	ACCURACY								
	ANTHRACNOSE	ALGAL LEAF	BIRD EYE SPOT	BROWN BLIGHT	GRAY LIGHT	HEALTHY	RED LEAF SPOT	WHITE SPOT	
VGG RGB	0.68	1.00	0.75	0.91	0.90	1.00	1.00	0.95	
RESNET18 (RGB) + DA + TL	0.74	0.93	0.92	0.82	1.00	1.00	1.00	0.95	

CONCLUSIONS

THE BEST RESULT WERE OBTAINED USING A RESNET 18 RGB WITH DATA AUGMENTATION AND TRANSFER LEARNING.

THE ANTHRACNOSE DISEASE WAS THE MOST DIFFICULT TO IDENTIFY.

*Early stopping was used in all the experiments

THANK YOU NEUROMATCH ACADEMY!

