```
In [1]: import numpy as np
import pandas as pd

In [2]: df = pd.read_csv('datafile_02.csv')
```

Out[2]:

print(df.columns)

df.head()

	Port	Traffic in Eleventh Plan (MT) (2011- 12)Proj.	Traffic in Eleventh Plan (MT) (2011-12) Ach.	Traffic in Eleventh Plan (MT) (2011-12) %	Total Capacity in Eleventh Plan (MT) (2011-12) Proj.	Total Capacity in Eleventh Plan (MT) (2011-12) Ach.	Total Capacity in Eleventh Plan (MT) (2011-12) %
0	Kolkata	1343	1223	9100	3145	1635	5100
1	Haldia	4450	3101	7000	6340	5070	7900
2	Paradeep	7640	5425	7100	10640	7650	7100
3	Visakhapatnam	8220	6742	8200	10810	7293	6700
4	Ennore	4700	1496	3200	6420	3100	4800

```
In [3]: # Renaming the columns
df.rename(columns = {'Traffic in Eleventh Plan (MT) (2011-12)Proj.':'Traffic_Proj
df
```

Out[3]:

	Port	Traffic_Projected	Traffic_Achieved	Traffic in Eleventh Plan (MT) (2011- 12) %	Total_Capacity_Projected	Total_Ca _l
0	Kolkata	1343	1223	9100	3145	
1	Haldia	4450	3101	7000	6340	
2	Paradeep	7640	5425	7100	10640	
3	Visakhapatnam	8220	6742	8200	10810	
4	Ennore	4700	1496	3200	6420	
5	Chennai	5750	5571	9700	7230	
6	Tuticorin	3172	2810	8900	6398	
7	Cochin	3817	2010	5300	5475	
8	NMPT	4881	3294	6800	6050	
9	Mormugao	4455	3900	8800	6690	
10	Mumbai	7105	5618	7900	9191	
11	JNPT	6604	6575	10000	9560	
12	Kandla	8672	8250	9500	12220	

```
In [4]: # Perparing the Calculations:
        Traffic_Percent = round((df.Traffic_Achieved/df.Traffic_Projected)*100,2)
        Traffic_Percent
Out[4]: 0
              91.06
        1
              69.69
        2
              71.01
        3
              82.02
              31.83
        4
        5
              96.89
        6
              88.59
        7
              52.66
        8
              67.49
              87.54
        9
        10
              79.07
        11
              99.56
        12
              95.13
        dtype: float64
In [5]: Total_Percent = round( (df.Total_Capacity_Achieved/df.Total_Capacity_Projected)*:
        Total_Percent
Out[5]: 0
               51.99
               79.97
        1
        2
               71.90
        3
               67.47
               48.29
        4
        5
              110.26
               52.11
        6
        7
               74.85
        8
               84.25
        9
               62.63
        10
               48.45
               66.95
        11
               71.12
        12
```

dtype: float64

```
In [6]: # Replacing the existing columns with newly created columns
    df.rename(columns = {'Traffic in Eleventh Plan (MT) (2011-12) %':'Traffic_Percent
    df.iloc[:,3:4] = Traffic_Percent
    df.iloc[:,6:] = Total_Percent
    df
```

Out[6]:		Port	Traffic_Projected	Traffic_Achieved	Traffic_Percent%	Total_Capacity_Projected	T
	0	Kolkata	1343	1223	91.06	3145	
	1	Haldia	4450	3101	69.69	6340	
	2	Paradeep	7640	5425	71.01	10640	
	3	Visakhapatnam	8220	6742	82.02	10810	
	4	Ennore	4700	1496	31.83	6420	
	5	Chennai	5750	5571	96.89	7230	
	6	Tuticorin	3172	2810	88.59	6398	
	7	Cochin	3817	2010	52.66	5475	
	8	NMPT	4881	3294	67.49	6050	
	9	Mormugao	4455	3900	87.54	6690	
	10	Mumbai	7105	5618	79.07	9191	
	11	JNPT	6604	6575	99.56	9560	
	12	Kandla	8672	8250	95.13	12220	

```
In [7]: df.shape
Out[7]: (13, 7)
In [8]: # Checking for null values
df.isnull().sum()
```

```
Out[8]: Port 0
Traffic_Projected 0
Traffic_Achieved 0
Traffic_Percent% 0
Total_Capacity_Projected 0
Total_Capacity_Achieved 0
Total_Percent% 0
dtype: int64
```

In [9]: |df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 13 entries, 0 to 12 Data columns (total 7 columns):

Column Non-Null Count Dtype -----0 Port 13 non-null object Traffic_Projected 1 13 non-null int64 2 Traffic_Achieved 13 non-null int64 3 Traffic_Percent% 13 non-null float64 4 Total_Capacity_Projected 13 non-null int64

Total_Percent% dtypes: float64(2), int64(4), object(1)

Total_Capacity_Achieved

memory usage: 856.0+ bytes

In [10]: df.describe()

5

6

Out[10]:

	Traffic_Projected	Traffic_Achieved	Traffic_Percent%	Total_Capacity_Projected	Total_Capacity
count	13.000000	13.000000	13.000000	13.000000	
mean	5446.846154	4308.846154	77.887692	7705.307692	5
std	2133.280019	2212.894855	19.382398	2570.242673	2
min	1343.000000	1223.000000	31.830000	3145.000000	1
25%	4450.000000	2810.000000	69.690000	6340.000000	4
50%	4881.000000	3900.000000	82.020000	6690.000000	5
75%	7105.000000	5618.000000	91.060000	9560.000000	7
max	8672.000000	8250.000000	99.560000	12220.000000	8
4					

13 non-null

13 non-null

int64

float64

In [12]: #Finding Outliers anr replacing the outliers import matplotlib.pyplot as plt import seaborn as sns sns.boxplot(x='Port',y='Traffic_Projected',data=df) plt.rcParams["figure.figsize"] = [17.50, 3.50] plt.rcParams["figure.autolayout"] = True


```
In [13]: # Check For Categorical Columns and do encoding
         from sklearn.preprocessing import LabelEncoder
         le = LabelEncoder()
         print(df.Port.value_counts())
         df.Port = le.fit_transform(df.Port)
         print(df.Port.value_counts())
         Visakhapatnam
                           1
         Kolkata
                           1
         Kandla
                           1
         Mormugao
                           1
         Paradeep
                           1
         Chennai
                           1
         Ennore
                           1
         Tuticorin
                           1
         NMPT
                           1
         Cochin
                           1
         Mumbai
                           1
         Haldia
                           1
         JNPT
                           1
         Name: Port, dtype: int64
               1
         1
               1
         2
               1
         3
               1
         4
               1
         5
               1
         6
               1
         7
               1
         8
               1
```

Name: Port, dtype: int64

Out[14]:		Port	Traffic_Projected	Traffic_Achieved	Traffic_Percent%	Total_Capacity_Projected	Total_Capac
	0	6	1343	1223	91.06	3145	_
	1	3	4450	3101	69.69	6340	
	2	10	7640	5425	71.01	10640	
	3	12	8220	6742	82.02	10810	
	4	2	4700	1496	31.83	6420	

In [16]: ddf = df.drop(['Traffic_Percent%'],axis=1)
 ddf

0+1	$\Gamma 1 \subset \Gamma$	١.
out	I TO	1

		Port	Traffic_Projected	Traffic_Achieved	Total_Capacity_Projected	Total_Capacity_Achieved	Tot
-	0	6	1343	1223	3145	1635	
	1	3	4450	3101	6340	5070	
	2	10	7640	5425	10640	7650	
	3	12	8220	6742	10810	7293	
	4	2	4700	1496	6420	3100	
	5	0	5750	5571	7230	7972	
	6	11	3172	2810	6398	3334	
	7	1	3817	2010	5475	4098	
	8	9	4881	3294	6050	5097	
	9	7	4455	3900	6690	4190	
	10	8	7105	5618	9191	4453	
	11	4	6604	6575	9560	6400	
	12	5	8672	8250	12220	8691	

```
In [17]: x = ddf.iloc[:,1:]
          print(x)
              Traffic_Projected Traffic_Achieved Total_Capacity_Projected \
          0
                            1343
                                               1223
                                                                           3145
         1
                            4450
                                               3101
                                                                           6340
          2
                            7640
                                               5425
                                                                          10640
          3
                            8220
                                               6742
                                                                          10810
         4
                            4700
                                               1496
                                                                           6420
          5
                            5750
                                               5571
                                                                           7230
          6
                            3172
                                               2810
                                                                           6398
         7
                                                                           5475
                            3817
                                               2010
         8
                            4881
                                               3294
                                                                           6050
         9
                            4455
                                                                           6690
                                               3900
         10
                            7105
                                               5618
                                                                           9191
         11
                            6604
                                                                           9560
                                               6575
         12
                            8672
                                               8250
                                                                          12220
              Total_Capacity_Achieved Total_Percent%
         0
                                                  51.99
                                  1635
         1
                                  5070
                                                  79.97
         2
                                  7650
                                                  71.90
          3
                                  7293
                                                  67.47
         4
                                  3100
                                                  48.29
         5
                                  7972
                                                 110.26
          6
                                  3334
                                                  52.11
         7
                                  4098
                                                  74.85
         8
                                  5097
                                                  84.25
         9
                                  4190
                                                  62.63
         10
                                  4453
                                                  48.45
         11
                                  6400
                                                  66.95
          12
                                  8691
                                                  71.12
In [18]: y = df.iloc[:,2:3]
          print(y)
              Traffic_Achieved
         0
                           1223
         1
                           3101
          2
                           5425
          3
                           6742
          4
                           1496
          5
                           5571
          6
                           2810
         7
                           2010
         8
                           3294
         9
                           3900
         10
                           5618
         11
                           6575
```

```
In [19]: #1. Logistic Regression
          from sklearn.model_selection import train_test_split
          x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=0.2)
          print(x_train.shape
               )
          print(x_test.shape)
          print(y_train.shape)
          print(y_test.shape)
          (10, 5)
          (3, 5)
          (10, 1)
          (3, 1)
In [20]: | from sklearn.linear_model import LinearRegression
          mlr=LinearRegression()
          mlr.fit(x_train,y_train)
          LinearRegression()
          x_test[0:5]
Out[20]:
              Traffic_Projected Traffic_Achieved Total_Capacity_Projected Total_Capacity_Achieved Total_Per
                        3172
            6
                                        2810
                                                              6398
                                                                                    3334
           11
                        6604
                                        6575
                                                              9560
                                                                                    6400
                        4700
                                        1496
                                                              6420
                                                                                    3100
In [21]: y_test[0:5]
Out[21]:
              Traffic_Achieved
            6
                        2810
           11
                        6575
            4
                        1496
In [22]: mlr.predict(x_test[0:5])
Out[22]: array([[2810.],
                 [6575.],
                 [1496.]])
In [23]: from sklearn.metrics import r2_score
          r2_score(mlr.predict(x_test),y_test)
Out[23]: 1.0
```

```
In [25]: from sklearn.metrics import mean_squared_error
a = mlr.predict(x_test)
mean_squared_error(a,y_test)

Out[25]: 3.394887097353051e-24

In [ ]:
```