Thinking Rational

Time Limit - 1.5 seconds

In mathematics, a rational number is any number that can be expressed as the quotient or fraction \mathbf{P}/\mathbf{Q} of two integers, with the denominator Q not equal to zero. Since Q may be equal to 1, every integer is a rational number. A rational number can have many representatives.

In this problem, you are given a rational number in the form of P/Q and two other numbers, **A** and **B**. You have to find how many representatives of P/Q are there where for some

$$X/Y = P/Q$$
 where, $-A < X < +A$ and $-B < Y < +B$

Input:

Input starts with an integer T (\leq 1000), denoting the number of test cases.

Each case contains a line of four integers P, Q, A, B.

Both P and Q are integer numbers (- 10^8 <= P , Q <= 10^8 and P != 0 and Q != 0) and both A and B are positive integers (1 <= A , B <= 10^8)

Output:

For each case, print the case number and the expected answer. See the sample I/O format.

Sample Input	Sample Output
4	Case 1: 2
	Case 2: 0
1 2 3 4	Case 3: 6
	Case 4: 4
4 3 2 1	
4 4 4 4	
6 3 6 3	