4721 HW 6

Duncan Wilkie

6 April 2023

Problem 1. For the following gamma transitions, give all permitted multipoles and indicate which might be the most intense:

- 1. $\frac{9}{2}^- \mapsto \frac{7}{2}^+$
- 2. $\frac{1}{2}^- \mapsto \frac{7}{2}^-$
- 3. $1^- \mapsto 2^+$
- 4. $4^+ \mapsto 2^+$
- 5. $3^+ \mapsto 3^+$

Problem 2. An even-Z, even-N nucleus has the following sequence of levels: 0+ (ground state), 2+ (89 keV), 4+ (288 keV), 6+ (585 keV), 0+ (1050 keV), 2+ (1129 keV). Drawn an energy level diagram and show all reasonbably probable gamma-ray transitions and their dominant multipole assignments.

Problem 3. The excited states of 174 Hf have two similar rotational bands, with energies (in MeV) given in the following table. Calculate the moments of inertia for these two bands and comment on the difference.

	$E(0^{+})$	$E(2^{+})$	$E(4^{+})$	$E(6^{+})$	$E(8^{+})$	$E(10^{+})$	$E(12^{+})$
Band 1	0	0.091	0.297	0.608	1.010	1.486	2.021
Band 2	0.827	0.900	1.063	1.307	1.630	2.026	2.489

Problem 4 (Bonus). Show explicitly that a uniformly-charged ellipsoid at rest with a total charge of Ze and semi-axes a and b has a quadrupole moment

$$Q = \frac{2}{5}Z(a^2 - b^2)$$

Problem 5. Use the answer to Problem 4 to determine the sizes of the semi-major and semi-minor axes of 165 Ho, which has a quadrupole moment of Q=3.5 b.

Problem 6. Find the angle between the angular momentum vector ℓ and the z-axis for all possible orientations when $\ell = 3$.

Problem 7. Calculate the binding energy and binding energy per nucleon of the deuteron.

Problem 8. At what energy in the laboratory system does a proton beam scattering off a proton target become inelastic—i.e. at what proton beam energy can pions be produced?

Problem 9. *In the spherical shell model, what are the expected ground state spins and parities for:* ¹¹B, ¹⁵C, ¹⁷F, ³¹P, ¹⁴¹Pr, and ²⁰⁷Pb. *Look up the experimental values. Do they agree?*

Problem 10. The ground state of ¹⁷F has spin-parity of $\frac{5}{2}^+$ and the first excited state has a spin-parity of $\frac{1}{2}^+$. Using Povh Fig. 18.7, suggest two possible configurations for this excited state.

Problem 11. The ground state of a nucleus with an odd proton and an odd neutron (aka. an "odd-odd" nucleus) is determined from the angular momentum coupling of the odd proton and neutron: $\vec{J} = \vec{j}_p + \vec{j}_n$. Consider the following nuclei: $^{16}N(2^-)$, $^{12}B(1^+)$, $^{34}P(1^+)$, $^{28}Al(3^+)$.

- 1. Draw simple vector diagrams illustrating these couplings—i.e. $\vec{J} = \vec{j}_p + \vec{j}_n$.
- 2. Replace \vec{j}_p and \vec{j}_n , respectively, by $\vec{\ell}_p + \vec{s}_p$ and $\vec{\ell}_n + \vec{s}_n$, illustrating the two vectors $\vec{\ell}$ and \vec{s} .
- 3. Examine your four diagrams and deduce an empirical rule for the relative orientation of \vec{s}_p and \vec{s}_n in the ground state.
- 4. Use this empirical rule to predict the \vec{J}^{π} assignments of $^{26}\mathrm{Na}$ and $^{28}\mathrm{Na}$.

Problem 12 (Bonus). Let's suppose we can form ${}^{3}\text{He}$ or ${}^{3}\text{H}$ by adding a proton or a neutron (respectively) to ${}^{2}\text{H}$, which has $\vec{J}^{\pi} = 1^{+}$.

- 1. What are the possile values of the total angular momentum for $^3{\rm He}$ and $^3{\rm H}$, given an orbital angular momentum ℓ for the added nucleon?
- 2. Given that ³He and ³H have positive parity, which of these is still possible?
- 3. What is the most likely value for the ground-state orbital angular momentum of ${}^{3}\mathrm{He}$ and ${}^{3}\mathrm{H}$.

Problem 13. Common forms assumed for the momentum distributions of valence quarks in the proton are:

$$F_u = xu(x) = a(1-x)^3, \ F_d(x) = xd(x) = b(1-x)^3.$$

If the valence quarks account for half of the proton's momentum—i.e.

$$\int_0^1 x u(x) dx + \int_0^1 x d(x) dx = \frac{1}{2},$$

find the values of a and b. Hint: the u quarks carry approximately twice as much momentum as the d quarks in the proton.

Problem 14. What is the color wavefunction for mesons, in analogy to that for baryons of

$$y_{baryon} = y_{space}y_{spin}(rgb + gbr + brg - rbg - bgr - grb)$$
?

Explain your answer.

Problem 15. The diagram below shows the internal gluon interactions in a proton. Complete the diagram by labelling the color of the quarks and gluons.

Problem 16. Which of the following processes are allowed? If not allowed, state why. If allowed, say whether the process is strong, weak, or electromagnetic.

1.
$$\nu_e + p \to e^- + \pi^+ + p$$

2.
$$e^+ + e^- \rightarrow \mu^+ + \mu^-$$

3.
$$\Sigma^- \rightarrow n + \pi^-$$

4.
$$\bar{\nu}_e + p \to e^- + n$$

5.
$$e^- + p \rightarrow \nu_e + \pi^0$$

Problem 17 (Double Points). The differential cross section for $e^+ + e^- \rightarrow \mu^+ + \mu^-$ is given by

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\alpha^2}{4s} (\hbar c)^2 (1 + \cos^2 \theta)$$

in a collider experiment where $s = 4E_e$ and E_e is the electron/positron energy.

- 1. Integrate over the solid angle to obtain an expression for the total cross section.
- 2. If you use an electron beam energy of 4 GeV, what rate of production of $\mu^+\mu^-$ would you expect at a luminosity of 10^{33} Hz/cm²?
- 3. Calculate the ratio of the hadronic production cross section to that for $\mu^+\mu^-$ at $E_e=500\,\mathrm{GeV}$. If you use an electron beam energy of 500 GeV, what must the luminosity be to measure the hadronic cross section within 24 hours with 10% statistical uncertainty?

Problem 18 (Double Points). In an e^+e^- collider experiment, a resonance R is observed at $E_{cm}=10\,\mathrm{GeV}$ in both the $\mu^+\mu^-$ and hadronic final states. The integrated cross sections are

$$\int \sigma_{\mu\mu}(E)dE = 10\,\mathrm{nb}\cdot\mathrm{GeV}$$

and

$$\int \sigma_h(E)dE = 300\,\mathrm{nb}\cdot\mathrm{GeV}.$$

Use a Breit-Wigner form for the resonance production to deduce the partial widths $\Gamma_{\mu\mu}$ and Γ_h in MeV for the decays $R \to \mu^+\mu^-$ and $R \to$ hadrons. Assume the integral

$$\int_{resonance} \frac{dE}{(E-Mc^2)+\Gamma^2/4} dE \approx \frac{2\pi}{\Gamma}.$$

Problem 19. Find the threshold kinetic energy for each of the following reactions, assuming the first particle to be incident on the second particle at rest:

1.
$$K^- + p \to \Xi^- + K^+$$

2.
$$\bar{p} + p \rightarrow \Upsilon$$

3.
$$\pi^- + p \rightarrow \omega + n$$

Problem 20. Which of the following reactions are allowed and which are forbidden by the conservation laws appropriate for weak interactions?

- $\bullet \ \nu_{\mu} + p \to \mu^{+} + n$
- $\nu_e + p \to n + e^- + \pi^+$
- $K^+ \to \pi^0 + \mu^+ + \nu_\mu$
- $\nu_e + p \to e^- + \pi^+ + p$
- $\bullet \ \tau^+ \to \mu^+ + \bar{\nu}_\mu + \nu_\tau$

Problem 21. In the decay of ${}^{47}\mathrm{Ca}$ to ${}^{47}\mathrm{Sc}$, what kinetic energy is given to the neutrino when the electron has kinetic energy $0.8\,\mathrm{MeV}$.

Problem 22. Classify the following decays by degree of forbiddenness:

- 1. ${}^{81}\mathrm{Ge}\left(\frac{5}{2}^{-}\right) \rightarrow {}^{81}\mathrm{Ge}\left(\frac{9}{2}^{+}\right)$
- 2. ${}^{93}\mathrm{Kr}\left(\frac{1}{2}^+\right) \rightarrow {}^{93}\mathrm{Rb}\left(\frac{5}{2}^+\right)$
- 3. ${}^{93}\mathrm{Kr}\left(\frac{1}{2}^+\right) \rightarrow {}^{93}\mathrm{Rb}\left(\frac{3}{2}^+\right)$
- 4. $^{178}\text{Lu}(1^+) \rightarrow ^{178}\text{Hf}(3^+)$

Problem 23. Draw the lowest-order Feynman diagrams for:

- 1. $\nu_e \nu_\mu$ elastic scattering,
- 2. $e^+ + e^- \rightarrow e^+ + e^-$
- 3. (Bonus) a fourth-order diagram for $\gamma + \gamma \rightarrow e^- + e^+$

Problem 24. Find the kinetic energy (in the rest frame of the original particle) of each product particle in the following two-body decays:

- $\bullet \ \pi^+ \to \mu^+ + \nu_\mu$
- $\bullet \ \Lambda^0 \to p + \pi^-$
- $K^+ \to \pi^+ + \pi^-$

Problem 25. Calculate the average binding energy for ⁴⁰K.

Problem 26. *The mass of* ⁷⁴*Ge is* 73.921 177 *u*.

- 1. Calculate its mass defect in MeV/c^2 .
- 2. Calculate its binding energy in MeV.
- 3. What is the binding energy per nucleon?

Problem 27.

1. Calculate the energy released in the beta decay of ^{32}P .

2. If the resulting beta particle has energy 650 keV, how much energy does the antineutrino have?

Problem 28. Use the semi-empirical mass formula to estimate the prompt energy released in spontaneous fission of ²³⁹Pu as

$$^{239}Pu \longrightarrow ^{112}Pd + ^{124}Cd + 3n$$

Problem 29. Use accurate masses from the 2021 atomic mass evaluation to calculate the actual prompt energy released in problem 4. Compare the answers. How different are they?

Problem 30. Following spontaneous fission from the last problem, a chain of beta decays converts the ¹¹²Pd and ¹²⁴Cd to stable nuclei.

- 1. What are the final nuclei produced?
- 2. What is the total beta-delayed energy released in the beta-decay chains? What is the ratio of beta-delayed to prompt energy released?
- 3. (Bonus) About how long does it take (on average) for all the energy to be released?

Problem 31. The isotope 252 Cf is commonly used to study the geology around underground wells due to the high number of neutrons emitted. Each spontaneous fission of 252 Cf produces an average of 3.77 neutrons. However, alpha decay dominates, with only 3.09% of the decays being fission.

- 1. Calculate the activity (in Curies) of 252 Cf that would be required to produce 5×10^8 neutrons/s.
- 2. If we make such a source, the neutron flux will decrease over time as the 252 Cf decays. How many neutrons/s will be produced 4 years later? $(t_{1/2}=2.645\,\mathrm{yr})$

Problem 32. The oldest formerly living objects that can be measured by 14 C dating are about 50 000 yo.

- 1. What is the ratio of $^{14}C/^{12}C$ in such a sample?
- 2. Assume the natural abundance ratio in the atmosphere is 1.5×10^{-12} . If you have to count 25 atoms of 14 C to make a measurement (20% accuracy), how much mass of carbon would you need to date a 50 000 yo object?

Problem 33. The Cassini spacecraft went into orbit around the planet Saturn in July 2004, after a nearly seven-year journey from Earth. On-board electrical systems were powered by heat from three radioisotope thermoelectric generators, which together utilized a total of 32.7 kg of 238 Pu, encapsulated as PuO_2 . The isotope has a half-life of 86.4 y and emits an alpha particle with an average energy of 5.49 MeV.

- 1. How much total thermal power is generated in the spacecraft?
- 2. To see why RTGs are so attractive, calculate the solar panel area needed to produce the same amount of wattage at the distance of Saturn. Assume your solar panel is 10% efficient and that the Sun's luminosity is 3.8×10^{26} W.

Problem 34. *Calculate the minimum energy required to be over the Coulomb barrier for:*

- 1. p + p,
- 2. $p + {}^{12}C$,

3.
$${}^{4}\text{He} + {}^{208}\text{Pb}$$
.

Problem 35. The cross section for charged-particle reactions is proportional to the probability of tunneling through the Coulomb barrier given by the Gamow factor, which has a convenient approximation:

$$e^{-2\pi\eta} = e^{-2\pi Z_1 Z_2 e^2/\hbar\nu} = e^{-31.287 Z_1 Z_2 \sqrt{\mu/E}}$$

where μ is the reduced mass in amu and E is the center-of-mass energy in keV. For the 3 cases you considered above, calculate the Gamow factor for an energy that is one-quarter the barrier energy you found in problem 1

Problem 36. A 2 MeV beam of protons bombards a 16 O target and the differential cross section is measured to be 0.094 b/sr at a lab angle of 167° .

- 1. What is the expected cross-section if you assume Rutherford scattering?
- 2. What is the calculated Mott cross-section?
- 3. How do your answers to (a) and (b) differ from the measured cross section and why might they be different?

Problem 37. Assume that ^{197}Au is made from a solid, uniform sphere of nuclear material with a radius of $R=1.2\,\mathrm{fm}\cdot A^{1/3}$. Calculate the form factor F(q).

Problem 38. Show that the mean-square charge radius of a uniformly charged sphere is $\langle r^2 \rangle = 3R^2/5$.

Problem 39. A nuclear charge distribution more realistic than the uniformly charged distribution is the Fermi distribution, $\rho(r) = \frac{\rho_0}{1+\exp\left[(r-c)/a\right]}$. Find the value of a if t=2.3 fm

Problem 40 (Bonus). Evaluate $\langle r^2 \rangle$ for the Fermi distribution in Problem 6.