Formes normales

Formes normales

- Première forme normale
- Deuxième forme normale
- Troisième forme normale
- ...

2

1ère forme normale

- Définition
 - Une relation est en première forme normale si tous ses attributs sont atomiques (inhérent au modèle relationnel)
- Un attribut atomique n'est pas :
 - multivalué (liste de valeurs)
 - □ composé (structuré en sous-attributs)

Deuxième forme normale

- Définition
 - □ Une relation est en deuxième forme normale ssi :
 - elle est en première forme normale
 - tout attribut non clé dépend de la totalité de toutes les clés
- Exemple
 - $\ \square$ C(nc, dateexp, qtéexp, nb) pas en 2FN car nc, dateexp clé et nc \rightarrow nb

4

Troisième forme normale

- Objectif : élimination des redondances dues aux dépendances fonctionnelles déduites par transitivité
- Définition
 - □ Une relation est en troisième forme normale ssi :
 - elle est en deuxième forme normale
 - il n'existe aucune DF entre attributs non clé

5

Comment calculer une forme normale

Soit R(A₁, ..., A_n) et DF_R ens. de DF associé

- calculer DF_R⁺
- déterminer la (les) clé (s) de R
- partitionner les attributs en attributs clés (ils appartiennent à au moins une clé) et attributs non clés
- appliquer les définitions de forme normale (depuis la 1ère)

6

Propriétés

- Toute relation R admet au moins une décomposition en 3FN qui préserve l'information et les DF
- Deux approches pour la calculer :
 - décomposition : on s'arrête dès que les relations dérivées sont en 3FN (mais pas de garantie sur les DF)
 - □ synthèse à partir de la couverture minimale

7

Algorithme de synthèse en troisième forme normale

- Pré : connaissance du contenu de la relation universelle + DF
- Principe de l'algorithme :
 - A partir du graphe G des DF, calculer une couverture minimale C
 - Editer l'ensemble des attributs isolés dans une même relation (tous sont clés)
 - Recherche le plus grand ensemble X d'attributs qui détermine d'autres attributs
 - Editer la relation R(X, A₁, ..., A_n)
 - $\hfill \square$ Supprimer les DF $\, X \to A_1,\,...,\, X \to A_n$ du graphe de couverture minimale C
 - Supprimer les attributs isolés de C
 - □ Reprendre l'opération à partir de l'étape 3 jusqu'à ce que C soit vide

8

Bases de Données

Insuffisance de la 3FN

Relation VINS(CRU, PAYS, REGION)

Chenas, France, Beaujolais Juliénas, France, Beaujolais Chablis, France, Bourgogne Chablis, USA, Californie

avec les DF suivantes :

région → pays; cru, pays → région VINS est en 3FN, pourtant il y a des redondances (ici on peut régler cela avec la 3FN Boyce Codd Kent)

Conclusion sur la normalisation

- Permet d'affiner une conception de schéma
- Peut se coupler avec une démarche de conception "à la Merise"
- Inconvénient majeur : on suppose qu'on possède une couverture minimale des DF (si on a oublié une DF tout est faux)
- Autres formes normales avec d'autres types de dépendance
- Peut être remis en cause au niveau physique (dénormalisation)

10

Bases de Données Conception - 3