CS F364: Design & Analysis of Algorithm

Algorithm Huffman

Dr. Kamlesh Tiwari

Assistant Professor, Department of CSIS, BITS Pilani, Pilani Campus, Rajasthan-333031 INDIA

ONLINE Feb 03, 2021

(Campus @ BITS-Pilani Jan-May 2021)

http://ktiwari.in/algo

Huffman code

				<u>ر</u> ج	3/8
		1	(14) d:16 a:45 0) 1 f:5 e:9	30 a:45 (4) (4) (4) (4) (5) (6) (7) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	Lecture-07/Feb 03, 2021)
UFFMAN(C)	Z.left $x = \text{EXTRACT-Win}(Q)$ Z.right $x = \text{EXTRACT-Win}(Q)$ Z.right $x = y = \text{EXTRACT-Win}(Q)$ Z.freq $x = x \text{.freq} + y \text{.freq}$ Insert (Q, z)	din(Q)	(b) G:12 E:13	(d) (5) (c) (2) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	M W F (3-4PM) online@BITS-Pilani
Algorithm 1: HUFFMAN(C) \bigcirc C \bigcirc C for $i=1$ to length(C) - 1 do	z.left = x = XTRACT-N z.right = y = EXTRACT z.treq = x.treq + y.treq Insert (Q, z)	s return EXTRACT-Min(Q)	e:9 c:12 b:13 d:16 a:45	0.16 2.5 a.45	
- 00	. 4 12 10 1-	80	(a) £:5 e:9	(c) (14) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	esign & Analysis of Algo. (BITS F364)

Complexity

	Algorithm 2: HUFFMAN(C)
-	0=0
2	for $i=1$ to length(C) -1 do
9	Allocate New node z
4	z.left = x = EXTRACT-Min(Q)
5	z.right = y = EXTRACT-Min(Q)
9	z.freq = $x.$ freq + $y.$ freq
7	Insert (Q, z)
80	s return EXTRACT-Min(Q)

- If you assume EXTRACT-Min takes $O(\log n)$
- Inner block is called n-1 times

So total the time is $O(n \log n)$

Lecture-07(Feb 03, 2021) 5/8

Huffman codes

Huffman invented a **greedy algorithm** that constructs an optimal prefix code called a Huffman code.

It is a variable-length prefix code, useful for lossless data

Consider for example, a data file of 100,000 characters only containing six characters a, b, c, d, e, f

	ಹ	Ω	ပ	ō	Ф	-	
requency(in k)	45	13	12	16	6	2	
Fixed length code	000	00	010	011	100	101	
inffman code	c	101	100 111	111	1101	1100	

- Fixed length code takes 300k bits
- \bullet Huffman code needs 224k bits ($\sim\!25\%$ compression)

Huffman code

Correctness - greedy choice property

There exists optimal prefix code, with two lowest frequency characters having same length codewords, differing only in the last bit.

Let x, y be two lowest freq items. And a, b are at bottom

$$\begin{split} B(T) - B(T') &= \sum_{c \in \mathcal{C}} c.f \times d_T(c) - \sum_{c \in \mathcal{C}} c.f \times d_{T'}(c) \\ &= x.f \times d_T(x) + a.f \times d_T(a) - x.f \times d_{T'}(x) - a.f \times d_{T'}(a) \\ &= x.f \times d_T(x) + a.f \times d_T(a) - x.f \times d_T(a) - a.f \times d_T(a) \\ &= x.f \times d_T(x) + a.f \times d_T(a) - x.f \times d_T(a) - a.f \times d_T(x) \\ &= (a.f - x.f) \times (d_T(a) - d_T(x)) \geq 0 \end{split}$$

- Similarly B(T') B(T") ≥ 0
 Since T is optimal B(T) ≤ B(T") So B(T) = B(T")

Correctness - Optimal Substructure (using induction)

Assume it produces optimal tree for size n

- Consider C of size n+1, Let us make C' as $C-\{x,y\}+z$ where x and y are minimum frequency item, and z.f=x.f+y.f
- As the size of C' is n, so one can get optimal tree T₀ using the algorithm. Expand z in T₀ to get T₁ for C. T₁ is optimal how?
 Prove by contradiction. Note that B(T₁) = B(T₀) + x.f + y.f
 Let T₂ is optimal tree instead of T₁. Does T₂ has x and y at the deepest leaf? If not make it using greedy choice property.
 In T₂ contract x and y in z using z.f = x.f + y.f. Let it becomes T₃
- - $B(T_3) =$
 - $B(T_2)-x.f-y.f$ $B(T_1)-x.f-y.f$ due to our assumption that T_2 is optimal $B(T_0)$

 - ullet Contradiction as T_3 and T_0 both are of size n, and at this size algorithm produces optimal tree, two optimal tree can not differ

Lecture-07(Feb 03, 2021) 7/8 sis of Algo. (BITS F364) M W F (3-4PM) onl

Thank You!

Thank you very much for your attention! (Reference1)

Queries?

1(I) Book - Introduction to Algorithm, By THOMAS H. CORMEN, CHARLES E. LEISERSON, RONALD L. RIVEST. CLIFORD STEIN

Lecture-07(Feb 03, 2021) 8/8 of Algo. (BITS F364) M W F (3-4PM) online