

Painel de Códigos:

```
/* This is a default program--
Use File->Load Prog to load a different program
*/
int count;

void setup()
{
    count=0;
}

void loop()
{
    count=count+1;
    delay(100);
}

//the "int main()" below is IMPLICIT in Arduino
//but is shown here EXPLICITLY by UnoArduSim
int main()
{
    setup();
    while(true)
    {
        loop();
        serialEventRun();
        reconstructions.
```

Passo ou Executar usando 🗓 , 💆 ou 💆 . Para Parar em um linha específica programa primeiro c lamber a realçar essa linha, e depois clique Executar Para 🐱 . Para Parar quando um variável específico é gravado, primeiro clique nele para realçar, e depois clique Executar Até 📡

Navegue a chamada-stack utilização 🎎 e 🌇 , ou saltar entre módulos funcionais Clicando em qualquer lugar, em seguida, usar PgDn e PgUp.

Definir texto de pesquisa com 🚧 , e depois pule para esse texto usando

Mover entre '#include' arquivos usando

Preferências:

Configurar | Prereferências para definir, salvar e carregar as opcões do usuário.

Língua (s) alternativa (s) definida (s) pela localidade do usuário e por uma código de duas letras na primeira linha do

myArduPrefs.txt Preferências arquivo

Editar/Examinar:

Para abrir em uma linha específica, *Duplo click* nessa linha n a **Painel de Códigos** ou usar **Arquivo | Editar/Examinar** (e abre na última linha destacada)

O recuo da tabulação será feito automaticamente se essa preferência é escolhida de **Configurar | Prereferências** - Você também pode dimensionar uma ou duas vezes a largura da tabulação.

Adicionar ou excluir guias para um grupo de linhas usando seta direita ou TAB e seta esquerda (depois de selecionar um grupo de 2 ou mais linhas consecutivas).

Para adicionar um item (depois do caret) f da lista à direita dos Built-ins, clique duas vezes nele.

Buscar (use ctrl-f), Buscar / Substituir (use ctrl-H), Desfazer (ctrl-Z), Refazer (ctrl-y) Use ALT-right-arrow a solicitação escolhas auto-conclusão para construídas-em mundial variáveis, e para membro variáveis e módulos funcionais.

Compilar e deixe aberto (ctrl-R) ou Aceitar (ctrl-U) ou Salvar (ctrl-S) fechar.

Buscar a **correspondência chavetas-** par parceiro clicando duas vezes em ele - ambos parênteses, mais todo o texto entre, se destacam (como na imagem acima).

Usar **ctrl-PgDn** e **ctrl-PgUp** pular para próxima (ou anterior) quebra de linha vazia .

Painel de Variáveis:

```
LED_pin= 5
angle= 135
i= 3
k= 6
notefreq= 1046
dur= 0.12500
beats= 160
wholenote= 1500
quarternote= 375
msecs= 375
RingTones[](-)
RingTones[0].frequency= 1046
RingTones[0].duration= 0.12500

▲
```

Clique em (+) para expandir ou em (-) para contrair matrizes e objetos.

Use o **VarAtualizar** menu para controlar a frequência de atualização durante a execução.

Duplo click em qualquer variável para rastrear seu valor durante execução, ou para mudar para um novo valor no meio de (parado) programa execução:

Ou clique único para realçar qualquer variável (ou objeto-membro ou matrizelemento), então use **Executar Até** para avançar execução até o próximo **acesso de escrita** para esse variável ou localização.

Painel de Banco de Laboratório e o 'Uno' ou 'Mega':

Clique esquerdo em qualquer pin para criar (ou adicionar a) Formas de Onda Digitais:

Clique com o botão direito em qualquer pin para criar um Fomra de Onda Analógica janela:

Para MAIS ZOOM e REDUZIR O ZOOM use a roda do mouse ou atalhos CTRL-seta para cima e CTRL-down-arrow.

'Tipo 'Ctrl-S' para salvar o forma de onda (X, Y) aponta para um texto arquivo ('X' é microssegundos a partir da esquerda 'Y' é volts)

Painel de Banco de Laboratório 'I/O' Dispositivos

Definir números e tipos de cada um usando Configurar | 'I/O' Dispositivos. Defina pins usando um valor de 2-dígito de 00 a 19 (ou A0-A5). Vários desses dispositivos suportam o escalonamento de seus valores digitados usando o controle deslizante na barra de ferramentas principal do janela (consulte 'I/O_____S' abaixo de cada uma das mangueiras dispositivos abaixo):

Monitor 'Serial' ('SERIAL')

Digite um ou mais caracteres na caixa de edição superior ('TX chars') e *hit Retorno* .

Duplo click (ou clique com o botão direito) abrir um maior janela para caracteres TX e RX.

Se você opcionalmente especificar uma porta 'COM'

anexada em seu arquivo de texto de dispositivos 'I/O', você pode, em vez disso, ter uma porta 'COM' real se comunicando com seu programa UnoArduSim através de 'Serial' (consulte o arquivo de Ajuda Completa).

Alternar Serial ('ALTSER')

Digite um ou mais caracteres na caixa de edição superior ('TX chars') e *hit Retorno* .

Clique duas vezes (ou clique com o botão direito do mouse) para abrir um maior janela para caracteres TX e RX.

Gerador Único-Tiro ('1SHOT')

Um digital um tiro. Produz um pulso de polaridade escolhida **'Out'** depois de um atraso especificado de qualquer um subindo ou uma queda provocando borda visto em sua **'Trg'** entrada.

Uma vez acionado, ele ignorará as bordas de disparo subseqüentes até que pulso ligado **'Out'** foi totalmente concluído.

'Pulse' e 'Delay' valores (se for sufixado com um 'S'). será dimensionado a partir do controle deslizante

'I/O S' da barra de ferramentas

Registro de Deslocamento Escravo ('SRSLV')

Um simples shift-register dispositivo.

Transições de borda no CLK Troca de gatilho.

SS * baixo, impele MSB na Dout.

SPI Escravo ('SPISLV')

Um escravo SPI configurável no modo dispositivo ('MODE0', 'MODE1', 'MODE2' ou 'MODE3')

Duplo click (ou clique com o botão direito) abrir um maior janela definir / ver hex 'DATA' e 'Recv' bytes .

SS * baixo, impele MSB no MISO.

Dois fios I2C Escravo ('I2CSLV')

UMA somente modo escravo I2C dispositivo.

Duplo click (ou clique com o botão direito) abrir um maior janela definir / ver hex 'Send' e 'Recv' bytes

LCD Character I2C ('LCDI2C')

Um 1,2, o4 4-line personagem-LCD, em um de três modos (2 syles mochila, além de um modo nativo), com o apoio de código da biblioteca para cada modo dispositivo fornecida dentro da pasta 'include_3rdParty'.

Duplo click (Ou clique com o botão direito) abrir um janela maior ver a tela LCD (E define-size)

LCD Character SPI ('LCDSPI')

Um 1,2, o4 4-line character-LCD, em um dos dois modos (um syle mochila, além de um modo nativo), com o apoio de código da biblioteca para cada modo dispositivo fornecida dentro da pasta 'include_3rdParty'.

Duplo click (Ou clique com o botão direito) abrir um janela maior ver a tela LCD (E define-size)

LCD Character SPI ('LCDSPI')

Um 1,2, o4 4-line character-LCD, em um dos dois modos (um syle mochila, além de um modo nativo), com o apoio de código da biblioteca para cada

modo dispositivo fornecida dentro da pasta 'include 3rdParty'.

06 LCD D4 10
DB4-DB7 RS
Recv
Øx Øa

E R/W
03 05

Duplo click (Ou clique com o botão direito) abrir um ianela maior ver a tela LCD (E define-size)

Porta de Expansão SPI ('EXPSPI')

Uma 8-bit expansor porta com base no MCP23008, com apoio 'MCP23008.h' código proporcionado no interior do 'include_3rdParty' pasta. Você pode escrever para MCP23008 registros, e ler novamente o GPIO pin níveis. Interrupções pode ser habilitado em cada mudança GPIO pin - uma interrupção desencadeada vai impelir o 'INT' pin.

Duplo click

(Ou clique com o botão direito) abrir um janela maior ver a 8 linhas de porta GPIO, e as resistências pull-up anexas. Você pode alterar pull-ups manualmente clicando, ou anexar um contador que irá periodicamente mudá-los de uma forma up-contagem.

Porta de Expansão I2C ('EXPI2C')

Uma 8-bit expansor porta com base no MCP23008, com apoio 'MCP23008.h' código fornecido dentro do 'include_3rdParty' pasta. Capacidades coincidir com o 'EXPSPI' dispositivo.

Duplo click (Ou clique com o botão direito) para abrir uma janela maior como fro o 'EXPSI' dispositivo.

Multiplexador DEL SPI ('MUXSPI')

UMA controlador multiplexado-DEL baseado no MAX6219, com apoiando 'MAX7219.h' código fornecido dentro do 'include_3rdParty' pasta para impelir até oito dígitos de 7 segmentos.

Duplo click (Ou clique com o botão direito) para abrir uma janela maior ver o colorido -7-segmento dígito visor.

Hex RX: 01 00 02 01 03 02 04 03

RX Clear

○ R ⊙ G ○ Y ○ B

Multiplexador DEL I2C ('MUXI2C')

UMA controlador multiplexado-DEL baseado no HT16K33, com apoiando

Adafruit_LEDBackpack.h código fornecido dentro do 'include_3rdParty' pasta.

Duplo click (Ou clique com o botão direito) para abrir uma janela maior escolher e vista um de vários DEL colorido exibida.

Motor Passo a Passo ('STEPR)'

Aceita sinais de controle em 2 ou 4 pins. 'Steps' deve ser um múltiplo de 4. Usar '#include <Stepper.h>'.

Para emular a redução de engrenagem por N no seu programa, use um contador de módulo-N para determinar quando realmente chamar 'Stepper.step()'

O torque de carga e a inércia de carga adicionados podem ser especificados em um arquivo 'I/O' Dispositivos.txt (consulte a **Ajuda Completa**).

Pulsada Motor Passo a Passo ('PSTEPR')

Cada flanco ascendente no 'STEP' provoca um passo (micro) na direcção controlado por 'DIR' quando activado por um baixo em 'EN' . 'Steps' deve ser um múltiplo de 4, e 'micro' devemos ser 1,2,4,8, ou 16 micro-passos por passo completo.

O torque de carga e a inércia de carga adicionados podem ser especificados em um arquivo 'I/O'

Dispositivos.txt (consulte a Ajuda Completa).

Motor DC ('MOTOR')

Aceita sinais PWM em **Pwm** pin, sinal de nível em **Dir**e gera 8 agudos e 8 baixos por roda revolução em **Enc** .

O torque de carga e a inércia de carga adicionados podem ser especificados em um arquivo 'I/O' Dispositivos.txt (consulte a **Ajuda Completa**).

A velocidade máxima é de quase 3 rotações por segundo sem carga adicional.

Servo Motor ('SERVO')

Aceita sinais de controle pulsados em pin especificado. Pode ser modificado para se tornar rotação contígua, marcando a caixa de seleção inferior esquerda

Pulsador Digital ('PULSER')

Gera sinais digital forma de onda em pin especificado.

Escolha base de tempo em milissegundos ('msec') ou microssegundos ('usec')

O período mínimo é 50 microssegundos, de pulso de largura mínima de 10 microssegundos. Ambos os valores se (sufixo com um 'S'). será escalonada a

partir do controle deslizante barra de ferramentas 'I/O_____S

Escolha pulsos positivos curso (0 a 5V) ou pulsos curso negativos (5V a 0V).

Analógico Gerador de Funções ('FUNCGEN')

Gera analógico forma de onda sinaliza no pin especificado.

'Period' Mínimo é 100 microssegundos, dimensionado a partir do slider 'I/O____S' da barra de ferramentas (se estiver sufixado com um 'S').

Formas de onda senoidais, triangulares ou dente de

serra.

'I/O' programável Dispositivo ('PROGIO')

Um 'Uno' placa de circuito vazio que você pode programa (com um programa separado) para emular um 'I/O' dispositivo cujo comportamento você define completamente.

Esse escravo 'Uno' não pode ter **'I/O'** dispositivos próprio - ele pode compartilhar apenas o tpo4 pins (IO1, IO2, IO3 e IO4) em comum com o mestre 'Uno' ou 'Mega' que fica no janela principal **Painel de Banco de**

Laboratório .

Clique com o botão direito do mouse (ou Duplo click) para abrir um janela maior mostrando sua Painel de Códigos e Painel de Variáveis . Usar Arquivo | Carregar para carregar um novo programa neste escravo 'Uno' - seu execução sempre permanece sincronizado com o do mestre 'Uno' ou 'Mega'.

<u>Depois de clicar dentro de sua Painel de Códigos</u> y Você pode até usar Arquivo | Executar a Passo ou Executar Para ou Executar Até dentro de seu escravo programa (o mestre 'Uno or 'Mega' irá executar apenas o suficiente para permanecer em sincronia).

'1-Wire' Escravo ('OWISLV')

UMA somente modo escravo I2C dispositivo.

Duplo click (ou clique com o botão direito) abrir um maior janela para definir / ver registros internos e paralelo IO pins.

Unidade de Disco SD ('SD DRV')

Um pequeno disco SD de 8-Mbyte impulsionado da SPI sinais, e espelhados em um 'SD' subdiretório no diretório do carregado programa (a 'SD' subdiretório será criado se ausente).

Duplo click (ou clique com o botão direito) abrir um maior janela ver Diretórios, Arquivos, e conteúdo.

CS * baixo para ativar.

Tela TFT ('TFT')

um Adafruit™ visor LCD de película-fina transistor de 128 x 160 pixels impulsionado do barramento 'SPI'.

O 'DS*' pin é dados / comandos selecionar, eo 'CS*' pin é a substância activa de baixa chip-select Não há nenhuma

Reinicializar pin fornecido, mas sistema Reinicializar redefine-lo ..

Duplo click (Ou clique com o botão direito) abrir um janela maior para ver o ecrã TFT real

Orador Piezo ('PIEZO')

"Ouvir" sinais em qualquer 'Uno' ou 'Mega' pin escolhido.

Botão de Pressão ('PUSH)'

Um normalmente aberto **momentâneo** botão de pressão para + 5V ou terra

Um normalmente aberto **trancando** botão de pressão para + 5V ou terra

(pressione o botão "trinco" também para obter este modo).

Você pode fechar o botão clicando nele. ou pressionando qualquer tecla do teclado - o efeito de contato só será produzido se você usar **barra de espaço** chave.

Resistor de Slide ('R=1K')

Um pull-up de 1 k-Ohm até + 5V OU um pull-down de 1 k-Ohm à terra.

DEL colorido ('LED')

R, Y, G ou B DEL conectado entre qualquer 'Uno' ou 'Mega' pin escolhido e ou moído ou + 5V

Linha 4-DEL ('LED4')

R, Y, G ou B linha de 4 LEDs conectados entre <u>quatro</u> <u>consecutivos</u> 'Uno' ou 'Mega' pins e ou terra ou + 5V O fornecido **1of4** Número pin corresponde a o DEL mais à esquerda.

7 segmentos DEL Dígito ('7SEG')

Um 7-DEL_segment colorido dígito. O fornecido **1of4** O número pin representa o primeiro *quatro consecutivos* 'Uno' ou 'Mega' pins. Os níveis ativos-HIGH nestes 4 pins definem o código hexadecimal para o display desejado dígito ('0' a 'F'), onde o menor número pin corresponde ao

bit menos significativo do código hexadecimal.

Pin Jumper ('JUMP')

Permite que você conecte dois 'Uno' o 'Mega' pins juntos, desde que isso não crie um conflito elétrico.

Veja o Full Socorro arquivo para possíveis usos para este dispositivo (a maioria envolve interrupções)

Deslizante Analógico

Um controlado por controle deslizante potenciômetro. 0-5V a impelir qualquer 'Uno' ou 'Mega' pin escolhido.

<u>Menus</u>

Arquivo:

Carregar INO ou PDE Prog	Permite ao usuário escolher um programa arquivo com a extensão selecionada. O programa é imediatamente analisado
Editar/Examinar	Abre o programa carregado para visualização / edição.
<u>Salvar</u>	Salvar o conteúdo programa editado de volta para o original programa arquivo.
Salvar Como	Salvar o conteúdo programa editado com um nome arquivo diferente.
Próximo ('#include')	Avança o Painel de Códigos para exibir o próximo '#include' arquivo
Anterior ←	Retorna o display Painel de Códigos para o arquivo anterior
<u>Saída</u>	Sai do UnoArduSim.

Configurar:

'I/O' Dispositivos	Escolha o número desejado de cada tipo de dispositivo (8 grandes e 16 pequenos, 'I/O' dispositivos são permitidos)
<u>Preferências</u>	Escolha a indentação automática, a fonte tipo de letra, o tamanho de tipo maior opcional, a sintaxe do especialista, os operadores lógicos de palavra-chave, reforçando os limites do matriz, mostrando descarregando, versão 'Uno' ou 'Mega' placa de circuito e comprimento do buffer TWI

Buscar:

Escalar pilha de chamadas	Pule para a função de chamada anterior na pilha de chamadas - o Painel de Variáveis será ajustado para essa função
Descer pilha de chamadas	Pule para a próxima função chamada na pilha de chamadas - o Painel de Variáveis será ajustará a essa função
Definir texto Buscar (ctrl-F)	Ative a caixa de edição Buscar da barra de ferramentas para definir o texto a ser pesquisado.
Buscar Próximo texto	Salta para a próxima ocorrência de Texto no Painel de Códigos (se tiver o foco ativo) ou para a próxima ocorrência de Texto no Painel de Variáveis (se em vez disso tiver o foco ativo).
Buscar Texto anterior	Salta para a ocorrência de Texto anterior no Painel de Códigos (se tiver o foco ativo) ou para a ocorrência de Texto anterior no Painel de Variáveis (se em vez disso tiver o foco ativo).

Executar:

Passo Dentro (F4)	Passos execução para a frente por uma instrução, ou em um chamado módulo funcional .
Passo Acima (F5)	Passos execução para a frente por uma instrução, ou por uma chamada módulo funcional completa.
Passo Fora (F6)	Avança execução por apenas o suficiente para deixar o módulo funcional atual.
Executar Para (F7)	Executa o programa, parando na linha programa desejada - você deve primeiro clicar no realçar uma linha desejada do programa antes de usar o Executar Para.
Executar Até (F8)	Executa o programa, parar quando a localização realçada do Painel de Variáveis variável for escrita porclique para realçar um desejado item antes de usar o Run-Till).
Executar (F9)	Executa o programa.
Parar (F10)	Determina programa execução (e congela o tempo).
Reinicializar	Redefine o programa (todos os valores variáveis são redefinidos para o valor 0 e todos os indicadores variáveis são redefinidos para 0x0000).
Animar	Passa automaticamente pelas linhas programa consecutivas <i>com atraso</i> artificial adicionado e realce da linha de código atual.
<u>Câmera Lenta</u>	Diminui o tempo por um fator de 10.

Opções:

Passo Acima Estruturas / Operadores	Voe direto através dos construtores, destruidores e sobrecarga do operador módulo funcional durante qualquer passo (ou seja, ele não irá parar dentro destes módulos funcionais).
Modelagem de alocação de registros	Atribuir locais módulo funcional para registradores livre ATmega em vez de para a pilha.
Atraso de loop () adicionado	Adicione 1 miilisegundo. (por padrão) para cada chamada loop () (caso o usuário não tenha adicionado atrasos em nenhum lugar)
Erro no Uninitialized	Sinalize como um erro Analisar em qualquer lugar em que seu programa tente usar um variável sem ter inicializado seu valor pela primeira vez.
Mostrar Programa Descarregando	Mostrar programa descarregando para o 'Uno' ou 'Mega' placa de circuito (com atraso do atendente).
Permitir interrupções aninhadas	Permitir a reativação usando 'interrupts.()' de dentro de uma rotina de serviço de interrupção do usuário.

VarAtualizar:

Permitir Auto (-) Contrair	Permita que o UnoArduSIm para contrair exiba expandidos matrizes / structs / objetos quando ficar atrás do tempo real.
Mínimo	Apenas atualize o display Painel de Variáveis 4 vezes por segundo.
Atualizações do HighLight	Realçar o valor variável alterado pela última vez (pode causar lentidão).

Comandos do menu Socorro:

Modo "O que é isto" (Ctrl>) 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【	Entre no modo de ajuda "O que é isto" - clicando em um Menu ou item da Barra de Ferramentas, ou no texto da Barra de Status, será exibido um pop-up contendo uma explicação em inglês que pode ser copiada/colada no aplicativo de tradução de sua escolha.
Rápido Socorro Arquivo	Abre o PDF arquivo do UnoArduSim_QuickHelp.
Completo Socorro Arquivo	Abre o PDF arquivo do UnoArduSim_FullHelp.
Erro Correções	Veja correções significativas do erro desde o lançamento anterior.
Mudanças / Melhorias	Veja alterações e melhorias significativas desde o lançamento anterior.
Sobre	Exibe versão, copyright

Janelas:

Monitor 'Serial'	Adicione um serial IO dispositivo (se nenhum) e puxe para cima um texto janela TX / RX do monitor 'Serial' maior.
Restaurar tudo	Restaurar todos janelas filho minimizado.
Formas de Onda Digitais	Restaure um janela Formas de Onda Digitais minimizado.
Fomra de Onda Analógica	Restaure um janela Fomra de Onda Analógica minimizado.