Core Concepts in Financial Econometrics

Romain Lafarguette, Ph.D.

ADIA Quant & IMF External Consultant

Singapore Training Institute, 08 November 2022

Exponential Smoothing: Historical Perspective

Under the simplest, additive specification:

$$x_t = l_{t-1} + b_{t-1} + s_{t-m} + \epsilon_t$$

- Exponential smoothing was developed in the 1950s as algorithms to produce point forecasts
- ETS combines a "level" (l_{t-1}) , a "trend" $((b_{t-1}))$ and a "seasonal" (s_{t-m}) components to describe a time series
- The rate of change of the components are controlled by "smoothing" parameters: α for the level, β for the trend, γ for the seasonal
- The researcher has to:
 - 1 To choose the best values for the smoothing parameters
 - 2 The initial state of the parameters
- Equivalent ETS state-space models have been developed in the 1990s and the 2000s

Main Idea: Control the Rate of Change

- α controls the flexibility of the **level**
 - If $\alpha = 0$, the level never updates (stays at the mean)
 - If $\alpha = 1$, the level updates completely (naive, start from yesterday)
- β controls the flexibility of the **trend**
- If $\beta = 0$, the trend is linear
- If $\beta = 1$, the trend changes suddenly at each observation
- γ controls the flexibility of the **seasonality**
 - If $\gamma = 0$ the seasonality is fixed (seasonal mean)
 - If $\gamma = 1$ the seasonality updates completely (seasonal naive)