5-8: Unary Data Evaluation

Introduction to Recommender Systems

Implicit Feedback Data

- Many recommender contexts have no ratings or other explicit data
- Often data owners have non-unary data
 - Like vs. saw but didn't like
 - Clicked vs. saw but skipped
- W/ negative examples, can just do standard eval
- Use more data if you have it

Introduction

- We've talked a lot about ratings data
- Some metrics are applicable for unary
 - P/R and friends
- This time: unary data
 - Often studied under 'implicit feedback'
 - Unary data is positive-only (purchase, like)

Introduction to Recommender Systems

Unary Data

- We often don't have negatives
- · Anyone using a data dump
 - song plays (don't know didn't play)
 - click logs
- Intrinsic to certain domains/tasks
 - research papers
 - physical store purchases

Introduction to Recommender Systems

Introduction to Recommender Systems

Problems

- No negative examples
- How do we know if the recommender is wrong?
 - Or if the user just didn't know about the item?
- Put differently: how do we avoid punishing the recommender for doing its job?

Introduction to Recommender Systems

Mitigation strategies

- Synthesize unary data to get negatives
 - e.g. ratings, >= 3.5 stars is 'like'
 - only recommend from rated data
- Limit domain of recommendation
 - recommend from good + N unknown
 - limits likelihood of good-but-unknown
 - these items are probably excluded

Metrics

- Precision/Recall/MAP
 - but is 'bad' really bad?
- MRR (Mean Reciprocal Rank)
 - still gets pushed down
- % At or Before Rank
 - histogram of raw data for MRR
- nDCG
 - first item may still be misjudged

Introduction to Recommender Systems

Best we can do

- These evaluations are the best we have
- So use them
 - But be aware of limitations when reporting
- Look for alternatives
 - User testing
 - Try to get negative data
- Corroborate with additional evidence

Promising Directions

- One-sided classification
- New metrics and protocols (e.g. clarity)

Conclusion

- Evaluating recommenders is hard
- Offline evaluation doubly so
- We don't have great methods right now
- Be aware of problems when making claims
 - Both in research and industry

Introduction to Recommender Systems

Introduction to Recommender Systems

5-8: Unary Data Evaluation