

Functional Analysis Applied to PDEs (2024-1)

Google Classroom: kmk6w62 Telegram: https://t.me/+bOM71NAzRMI2MDQx

> Professor: Dr. Alberto Saldaña Email: alberto.saldana@im.unam.mx

> > Telegram: AlbertoSaldana

Homework 7

<u>Instructions:</u> Solve the following exercises justifying your answers carefully. Upload your written answers in LaTeX format using the Google Classroom platform by **Monday**, **November 27th** at the latest.

Exercises:

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain.

1. Using energy methods (3 points) and maximum principles (3 points), prove that the Neumann problem

$$-\Delta u = 0 \quad \text{in } \Omega, \qquad \partial_{\nu} u = 0 \quad \text{on } \partial \Omega, \tag{1}$$

only has constant solutions.

(Using maximum principles) Suppose that (1) has a nonconstant solution $u \in C^2(\Omega) \cap C(\overline{\Omega})$. The strong maximum principle implies that there is $z_0 \in \partial \Omega$ such that $u(z_0) > u(x)$ for all $x \in \Omega$. Take a small ball centred in $x \in \Omega$ such that $B_{\varepsilon}(x) \subseteq \Omega$ and $z_0 \in \partial B_{\varepsilon}(x)$, this is possible since we suppose that $\partial \Omega$ is flat enough since the outwards normal vector exists. Now u is a solution and therefore a subsolution in the ball $B_{\varepsilon}(x)$. Hopf lemma implies that $\partial_{\nu}u(z_0) > 0$ contradicting Neumann's boarder conditions.

2. (5 points) Let λ_1 be the first eigenvalue of the Laplacian with Dirichlet conditions in Ω . Prove that

$$\lambda_1 = \sup_{u \in U} \inf_{x \in \Omega} \frac{-\Delta u(x)}{u(x)},$$

where

$$U:=\{u\in C^\infty(\overline\Omega)\,:\, u>0 \text{ in }\Omega \text{ and }u=0 \text{ on }\partial\Omega\}.$$

(Hint: By regularity theory, you can use that the first eigenfunction of the Laplacian φ_1 belongs to U).

Using the hint, lets take $\varphi_1 \in U$ the firs eigenfunction of $-\Delta$. Since

$$\lambda_1 = \frac{-\Delta \varphi_1(x)}{\varphi_1(x)}, \quad \forall x \in \Omega,$$

we have that

$$\lambda_1 \le \sup_{u \in U} \inf_{x \in \Omega} \frac{-\Delta u(x)}{u(x)}.$$

To prove the reverse inequality, let $u \in U$. Let's prove that ther is an $x^* \in \Omega$ such that

$$\lambda_1 \ge \frac{-\Delta u(x^*)}{u(x^*)}.$$

Suppose that this is not the case. This means that

$$\frac{-\Delta\varphi_1(x)}{\varphi_1(x)} = \lambda_1 < \frac{-\Delta u(x)}{u(x)},$$

for all $x \in \Omega$. In other words

$$0 < \frac{-\Delta u(x)\varphi_1(x) - (-\Delta\varphi_1(x)u(x))}{\varphi_1(x)u(x)} \quad \forall x \in \Omega.$$

Since $u, \varphi_1 \in U$ are positive in Ω the previous condition is equivalent to

$$0 < -\Delta u(x)\varphi_1(x) - (-\Delta\varphi_1(x)u(x)) \quad \forall x \in \Omega.$$

Integrating over Ω and using integration by parts (using the fact that u and φ_1 vanishes on $\partial\Omega$) we obtain

$$\int_{\Omega} -\Delta u(x)\varphi_1(x) - (-\Delta\varphi_1(x)u(x)) dx$$

$$= \int_{\Omega} \nabla u(x) \cdot \nabla \phi_1(x) - \nabla \varphi_1(x) \cdot \nabla u(x) dx = 0.$$

A contradiction. Then the existence of such x^* is proved. Since u was an arbitrary function in U then

$$\lambda_1 \ge \sup_{u \in u} \inf_{x \in \Omega} \frac{-\Delta u(x)}{u(x)},$$

wich completes the prove.

3. (5 points) Let λ_k be the k-th eigenvalue of the Laplacian with Dirichlet boundary conditions. Prove that

$$\lambda_k = \max_{S \in \Sigma_{k-1}} \min_{u \in S^{\perp}} \frac{\int_{\Omega} |\nabla u|^2 \, dx}{\int_{\Omega} |u|^2 \, dx},$$

where Σ_{k-1} denotes the collection of all subspaces of $H_0^1(\Omega)$ with dimension k-1.