Name:

Tutorial Group:_____ (day/time)

1 Determine whether $((p \lor q) \land (q \to r)) \to r$ is a tautology.

[2 marks]

- **2** Let $A = \{-2, -1, 0, 1, 2\}$, $B = \{0, 1, 4\}$ and $C = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$. Which of the following are true? Justify your answer.
 - (i) $\forall x \in C \ (x \in A) \leftrightarrow (x^2 \in B)$.

[2 marks]

(ii) $\forall x \in C \ (\forall y \in B \ xy \in B) \rightarrow (x^2 = x).$

[2 marks]

(iii) $\exists x \in A \ \forall y \in A \ (x \neq 0) \land (xy \in B).$

[2 marks]

(iv) $\sim (\forall x \in A \exists y \in A (x \neq 0) \land (xy \in B)).$

[2 marks]

"For any integers m and n , if $m+n$ is even, then either both m and n are even or both are odd."	
(i) State the claim symbolically, using predicates $Even(x)$ and $Odd(y)$.	[2 marks]
The following is a proof:	
"We prove by contradiction. Suppose one of them is odd and the other is even. Without low may assume m is even and n is odd. Then, $m=2h$ and $n=2k+1$ for some integer $m+n=2(h+k)+1$. Since $h+k$ is an integer, $m+n$ is therefore odd, so we get a contradiction.	ers h and k , so
(ii) Let p be the claim in (i). Why does the proof for p start by assuming that one int	_
the other is even?	[2 marks]
(iii) Point out one example of universal instantiation in this proof.	[1 mark]
	[]
(iv) Point out one example of modus ponens in this proof.	[1 mark]
	[1 1]
(v) Explain what is meant by "Without loss of generality" in this proof.	[1 mark]
1 Two sequences β and γ are said to span a space S over field F if and only if	
"every sequence α in S can be expressed as $\alpha = b\beta + c\gamma$ for some b and c in F "	
(i) State the condition (in "") symbolically.	[1 mark]
A student writes: " ψ and η span S because $\omega \in S$, $0 \in F$ and $\omega = 0\psi + 0\eta$." (Note: $\omega \in S$, $0 \in F$ and $\omega = 0\psi + 0\eta$ are all correct.)	
(ii) Explain why this argument might be wrong.	[1 mark]
()	
(iii) Explain why this argument might be correct.	[1 mark]

Consider the claim: