Math 231, Fri 12-Feb-2021 -- Fri 12-Feb-2021 Differential Equations and Linear Algebra Spring 2020

Eniday Fahryany 12+h 2021

Friday, February 12th 2021

Topic:: Column space

Topic:: Linear independence

Read:: ODELA 1.6

One new term:

- so far

/ Is b in the span of set of vectors

Are there weights such that a linear combination of vectors produces b?

Does a system of m equations in n unknowns have a solution?

 \langle Is Ax = b consistent?

- ทคพ์

Is b in the column space of A

Col(A) is same as range of the map $f:R^n \rightarrow R^m$ given by f(x) = Ax

When we solve Ax=b we

are successful only if b is in this range (Col(A))

find all x in the domain that "map" to b

Null(A) consists of those x in domain that map to 0 vector

- Determine whether any/all are true by doing GE on augmented [A | b]

Can use GE to describe the column space of A_{mxn}

- if RREF(A) has a pivot in every row, then col(A) = R^m
- when RREF(A) has a row of zeros at hottom, the story is more interesting example: A = [2 -1 5; 1 1 1; -1 2 -4]

Take a nonzero vector u_1 in R^n

- What would a vector w in R^n look like if it were in span(u_1)?
 What would RREF([u_1 w]) look like?
 span(u_1, w) = span(u_1) = line through origin in R^4
- Suppose u_2 is in R^4 and is not in span(u_1).
 Note how this means u_2 goes off in another direction besides u_1 span(u_1, u_2), a plane, is different from span(u_1), a line

```
u_1, u_2 are linearly independent
What would RREF([u_1 u_2]) look like?
```

Do a null space problem

- make it a matrix with a nontrivial nullspace, perhaps #{rows} > #{cols}
- Write equivalent form of problem: generating ${\bf 0}$ vector as lin.comb. cols of A Why does a nontrivial soln exist?

Geometrically, a nontrivial soln describe nontrivial paths to 0

- Defn: linear independence

Same as saying, with vectors at hand, only path to 0 is never to leave A statement about a collection

linear dependence is the opposite

Test for it

collection containing just one vector?

two L.I./L.D. vectors

RREF as a test

· null space - consists of vectors $\vec{x} \in \mathbb{R}^n$ satisfying $A\vec{x} = \vec{0}$

. column space - consists of all rectors \vec{b} (destructions) that make $A\vec{x} = \vec{b}$ consistent

$$A = \begin{bmatrix} 2 & -1 & 5 \\ 1 & 1 & 1 \\ -1 & 2 & -4 \end{bmatrix}$$

Want to describe possible "destructions" $\vec{l} = \langle b_1, b_2, b_3 \rangle$ — i.e. columns we can augment to A so that the problem $A\vec{x} = \vec{b}$ is consistent.

$$\begin{bmatrix} 2 & -1 & 5 & b_1 \\ 1 & 1 & 1 & b_2 \\ -1 & 2 & -4 & b_3 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & b_2 \\ 2 & -1 & 5 & b_1 \\ -1 & 2 & -4 & b_3 \end{bmatrix}$$

To be consisted, need
$$b_3 - b_1 - b_1 = 0$$
 - one constraint on the 3 components of b

$$\vec{b} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad \text{is in Col}(A)$$
So Col(A) has 2 degrees of freedom

but $\vec{b} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad \text{isn't}$.

So Col(A) hus 2 degrees of freedom

T -20 -13

Say I have a vector \vec{v} , ϵR^m $\vec{V}_1 = \begin{bmatrix} 2 \\ 1 \\ -3 \end{bmatrix}$

> What would a w look like if it is in span (v,)? Perhaps: $\vec{w} = \begin{bmatrix} 4 \\ 2 \\ -6 \\ 2 \end{bmatrix}$ / $\begin{bmatrix} -6 \\ -3 \\ q \\ 1 \end{bmatrix}$, etc.

What if we built a matrix from I wo and took it to echelon form? นี้ . c = นึ่

 $\begin{bmatrix}
u, & w \\
\downarrow & \downarrow
\end{bmatrix}$ $\begin{cases}
Span(\overline{u}, \overline{w}) = Span(\overline{u}, \overline{w}) \\
\vdots & \vdots \\
Span(\overline{u}, \overline{w})
\end{cases}$

On the other hand, if select uz not in span of u,

then building a matrix from u, uz leads to RREF KREF DI We might say i, it are linearly independent. Span (a, uz) includes more things then span (a,) Take n, nz binearly independent and a third vector w. If wis in span (n, n): $\begin{bmatrix} u_1 & u_2 & w \\ 1 & J & J \end{bmatrix} \qquad \begin{array}{c} RREF & 1 & 0 & * & 7 \\ 0 & 1 & * & 7 \\ 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \end{array}$ If w is not in spon of vi, in then $\begin{bmatrix} u_1 & u_2 & v_1 \\ 1 & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} RREF \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ \vdots & \vdots & \vdots \end{bmatrix}$ Span (T, T, T) includes new destinations not forms in span (v., ū2).

Say a collection of vectors $\vec{u}_1, \vec{u}_2, ..., \vec{u}_n \in \mathbb{R}^m$ is linearly sudepullent if (precisely when) the only weights $c_1, c_2, ..., c_n$ that produce, under linear combination

0 = C, W, + C, W,

the zero vector that werk are $C_1 = C_2 = ... C_n = 0$. When $\bar{u}_1,...,\bar{u}_n$ are not linearly independent, say they are linearly dependent.

Equalitations:

\[
\text{\text{\$\bar{u}_1,...,\bar{u}_n\$}} \] \text{\text{\$\lambda}} \]

\[
\text{RREF} \begin{pmatrix} \bar{u}_1 \\ \alpha_1 \\ \alpha_2 \\ \alpha_2 \\ \alpha_2 \\ \alpha_2 \\ \alpha_2 \\ \alpha_3 \\ \alpha_2 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \\ \alpha_2 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \\ \alpha_2 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \\ \alpha_4 \\ \alpha_4 \\ \alpha_4 \\ \alpha_5 \\ \alph