NETWORKS AND COMPLEXITY

Solution 22-3

This is an example solution from the forthcoming book Networks and Complexity. Find more exercises at https://github.com/NC-Book/NCB

Ex 22.3: Product Formula [3]

Consider the Kronecker product

$$\mathbf{J} = \mathbf{A} \otimes \mathbf{B} \tag{1}$$

where \mathbf{A} and \mathbf{B} are matrices. Find a formula that relates the eigenvalues of \mathbf{J} to the eigenvalues of \mathbf{A} and \mathbf{B} . (This is very similar, but simpler than the derivation in the lecture. Formulate an Ansatz for the eigenvector \mathbf{v} , then show that it works and find the eigenvalue on the way).

<u>Solution</u>

We use the Ansatz

$$\boldsymbol{v} = \boldsymbol{a} \otimes \boldsymbol{b} \tag{2}$$

We now show that (under suitable assumptions) this is an eigenvector of J. We write

$$\mathbf{J}\boldsymbol{v} = (\mathbf{A} \otimes \mathbf{B})(\boldsymbol{a} \otimes \boldsymbol{b}) \tag{3}$$

$$= \mathbf{A}\boldsymbol{a} \otimes \mathbf{B}\boldsymbol{b} \tag{4}$$

$$= \alpha \boldsymbol{a} \otimes \beta \boldsymbol{b} \tag{5}$$

$$= \alpha \beta(\boldsymbol{a} \otimes \boldsymbol{b}) \tag{6}$$

$$= \alpha \beta \mathbf{v} \tag{7}$$

Where we had to assume that \boldsymbol{a} is an eigenvector of \mathbf{A} with eigenvalue α (i.e. $\boldsymbol{a}\mathbf{A} = \alpha \boldsymbol{a}$) and similarly $\boldsymbol{b}\mathbf{B} = \beta \boldsymbol{b}$.

The calculation above shows that if J is a Kronecker product of 2 matrices and we know the eigenvectors of these matrices, then the Kronecker product of two a pair of eigenvectors is an eigenvector of J and the corresponding eigenvalue is the product of the two eigenvalues.

We can see that the number of eigenvalues we can construct in this way is

$$\dim(\mathbf{A}) \cdot \dim(\mathbf{B}) = \dim(\mathbf{J}) \tag{8}$$

hence we can find all eigenvalues and eigenvectors of \mathbf{J} in this way.