Name: Nikita kumani section: CST SPL-1 6 €. Date: 10/3/22 Roll: 19 Design Analysis of Algorithms C C Tutorial-1 C Q1. A symptotic Motations :- It is the mathema-that way of supresenting the time complexi-ty. It is used to describe the ownning time of an algorithm, how much time an algorithm takes with a given input, n. totic Motations: ___ Big - 0 (0) (worst case) 10 f(n) = 0 g(n) f(n) ≤ c.g(n) ∀ n ≥ no ifor some constant c>0 ⇒g(n) ?s "tigat" upper bound of f(n). function? size of 7/p3 Big. Omega (Ω) [Best case) $f(n) = \Omega(g(n))$ g(n) is " Hight" bound of function f(n) $f(n) = \Omega(g(n))$ if $f(n) \geq c \cdot g(n)$ $f(n) \geq n_0$, for some constant, c > 0. 2.

C

function 1 Size of PIP>

3. Theto (0)

$$\Rightarrow$$
 $f(n) = 8g(n)$

 $f(n) = \theta g(n)$ $g(n) \not \ni 3s \quad bath "tight" upper and lower bound of function <math>f(n)$. $f(n) = \theta g(n)$ $f(n) = \theta g(n)$ $f(n) = \delta g(n)$

for some constant c, so f c2 so.

Examples : -

Big D.

1.

Include < Stallooks

Int mainly &

for(Int 7=0, 7 <=no, 3++) >

\$ // fut som=sum+i;

а.	Big Omega (s)
→	The worst case swining time of
	Big Omega (12) The worst case ownning time of binary search is $\Omega(1)$, because it
	takes at least constant time.
	•
3.	Theta(0)
\rightarrow	The high temperature today will be 20°C and the low will be 10°C.
	20°C and the low will be 10°C.
83,	for (3=1 to n)
	12 7 * 2 9
	a hel les times
	n=10 l=4 Ames
	n times (log2h+1) times
	> Tn = .0 (lag > n) Ans
	· · ·

.

03.
$$T(n) = 3T(n-1)$$
, $n > 0$
 $T(0) = 1$

T(n) = $3T(n-1)$ — ①

put $n = n-1$ in ①

 $T(n-1) = 3T(n-2)$ — ①

put $n = n-2$ in ②

 $T(n-2) = 3T(n-3)$ — ①

putting (17) in (17)
 $T(n) = 3(3T(n-2)) = 3^2T(n-2)$

putting (111) in (17)
 $T(n) = 3^2(3T(n-3)) = 3^3T(n-3)$
 $T(n) = 3^3(3T(n-3)) = 3^3T(n-3)$
 $T(n) = 3^3(3T(n-3)$

Date (Vaye

"nt?=1*, 8=1; /10(1) wwile (\$ <=n) \$ 95. 3 + + ; S = S + ? ; printf("#")"; } b E 1+1+1+ ---58=1 o, T(n) = 0 (n 112) Ans, void function (int n) s 86 . int i, count = 0; for (i=1; i i i <=n; i++) count ++; (10(1) n=8 , 1+1+... In times 0(Jn) or 0(n12). Ans

Page :

68, $T(n) = T(n-3) + n^2 \leftarrow 0$ T(1)=1 put N=N-3 in ① $T(N-3)=T(N-6)+(N-3)^2$ —① put n = n-6 in (i) T(n-6) T(n-6) Putting (1) 3n (3) $T(n) = T(n-6) + (n-3)^{2} + n^{2} - (i)$ putting T(h-6) in (v) $T(n) = T(n-9) + (n-6)^2 + (n-3)^2 + n^2$ $= T(n-3.3) + (n-3.2)^2 + (n-3.1)^2 + (n-3.0)^2$ $\Rightarrow T(n) = T(n-3K) + (n-3(K-1))^2 + (n-3(K-2))^2$ putting n-3K=01; n=3K+1 $K=\frac{n-1}{3}$ $T(n) = T(1) + (1+3)^{2} + (1+6)^{3} - ... n^{2}$ $= 1 + 4^{2} + ... n^{2}$ $= 1 + (n) = 0(n^{2}) \quad Ans$ void function (int n) 9. for ()= 1 +0 n) }

printf (" # ");

