Crunching and visualizing Big Data on a Computer Cluster

Joana Simões

March 30, 2015

Table of Contents

- Introduction
- 2 Importing a Spatial-Temporal Series
- Recovering the Spatial Attributes
- 4 Putting it All Together
- 5 Piping the Results into the Outside World

Motivation

- Problem: the increasing volume of information, by explosion of traditional sources + new sources
- Target: fast query responses, which require a scalable architecture
- Possible solution: support clusters on a cost-effective architecture, such as commodity clusters or cloud environments

Cloud Services

A thought...

First the use case, then the tools.

Use Case

- Study spatial and temporal patterns of road traffic accidents.
- Relate target variable (accident) with context variables (e.g.: weather, proximity to SPI).

Use Case

- Study spatial and temporal patterns of road traffic accidents.
- Relate target variable (accident) with context variables (e.g.: weather, proximity to SPI).
- In most (Big) Data Analysis 80% of the effort is devoted to the Extract-Transform-Load (ETL) process
- ETL: process responsible for pulling data out of the source systems and placing it into a data warehouse

Use Case

- Study spatial and temporal patterns of road traffic accidents.
- Relate target variable (accident) with context variables (e.g.: weather, proximity to SPI).
- In most (Big) Data Analysis 80% of the effort is devoted to the Extract-Transform-Load (ETL) process
- ETL: process responsible for pulling data out of the source systems and placing it into a data warehouse
 - Extract data from different source systems and convert it into one consolidated data warehouse format which is ready for transformation processing
 - **Transform**: cleaning, filtering, splitting a column, joining data, apply validation, apply rules, etc
 - Load: into the data warehouse, repository or reporting applications

Another thought...

There are no free lunches.

 ML platforms may provide high-level data import tools:

- ML platforms may provide high-level data import tools:
 - They generally trade ease of use for flexibility

- ML platforms may provide high-level data import tools:
 - They generally trade ease of use for flexibility
 - They may have a cost (\$\$\$)

- ML platforms may provide high-level data import tools:
 - They generally trade ease of use for flexibility
 - They may have a cost (\$\$\$)
- To ensure maximum flexibility, we should be able to link together many tools, often using the command line.

Stack

Hadoop

Hive

Hadoop GIS

Pig

PostgreSQL + PostGIS

E(L)K

From S3 to HDFS

- Micro-task: Understand the dataset structure
 - A sample dataset is stored on an S3 bucket: s3n://workshop-bdsd/accidents/

From S3 to HDFS

- Micro-task: Understand the dataset structure
 - A sample dataset is stored on an S3 bucket: s3n://workshop-bdsd/accidents/
 - https://s3-eu-west-1.amazonaws.com/workshop-bdsd/ accidents/accidents sample.csv

From S3 to HDFS

- Micro-task: Understand the dataset structure
 - A sample dataset is stored on an S3 bucket: s3n://workshop-bdsd/accidents/
 - https://s3-eu-west-1.amazonaws.com/workshop-bdsd/ accidents/accidents_sample.csv
 - Download and view dataset

- Micro-task: Create a table linking to the data
 - Enter hive and create an external table linking to the S3 bucket

- Micro-task: Create a table linking to the data
 - Enter hive and create an external table linking to the S3 bucket
 - Use the CSV serde to parse the table structure

- Micro-task: Create a table linking to the data
 - Enter hive and create an external table linking to the S3 bucket
 - Use the CSV serde to parse the table structure
 - separator char
 - quote char
 - headers

- Micro-task: Create a table linking to the data
 - Enter hive and create an external table linking to the S3 bucket
 - Use the CSV serde to parse the table structure
 - separator char
 - quote char
 - headers
 - View imported data

Micro-task: Type Mapping

- Micro-task: Type Mapping
 - Create an empty table with correct types

- Micro-task: Type Mapping
 - Create an empty table with correct types
 - Insert data from accidents_import

- Micro-task: Type Mapping
 - Create an empty table with correct types
 - Insert data from accidents_import
 - View table

Putting it All Together Piping the Results into the Outside World

What is so "Special" about Spatial

What is so "Special" about Spatial

- Location attributes allow us to detect spatial patterns
- Location also works as a "key", allowing us to connect with other datasets

Putting it All Together Piping the Results into the Outside World

Analysis of the Spatial Attributes

 Spatial Attributes are encoded as coordinates in "d_coord_geo_impacte"

Analysis of the Spatial Attributes

- Spatial Attributes are encoded as coordinates in "d_coord_geo_impacte"
- Problems with this field:

Analysis of the Spatial Attributes

- Spatial Attributes are encoded as coordinates in "d_coord_geo_impacte"
- Problems with this field:
 - Unstructured: needs parsing
 - Inconsistent format (order of coordinates, separator)
 - Invalid values (e.g.: 77, names)
 - No metadata

Analysis of the Spatial Attributes

- Spatial Attributes are encoded as coordinates in "d_coord_geo_impacte"
- Problems with this field:
 - Unstructured: needs parsing
 - Inconsistent format (order of coordinates, separator)
 - Invalid values (e.g.: 77, names)
 - No metadata
 - Mixed CRS:

Analysis of the Spatial Attributes

- Spatial Attributes are encoded as coordinates in "d_coord_geo_impacte"
- Problems with this field:
 - Unstructured: needs parsing
 - Inconsistent format (order of coordinates, separator)
 - Invalid values (e.g.: 77, names)
 - No metadata
 - Mixed CRS:
 - WGS84 (EPSG:4326)
 - European Grid (EPSG:5554)
 - European Grid encoded by the police using an ad-hoc format

Analysis of the Spatial Attributes

- Spatial Attributes are encoded as coordinates in "d_coord_geo_impacte"
- Problems with this field:
 - Unstructured: needs parsing
 - Inconsistent format (order of coordinates, separator)
 - Invalid values (e.g.: 77, names)
 - No metadata
 - Mixed CRS:
 - WGS84 (EPSG:4326)
 - European Grid (EPSG:5554)
 - European Grid encoded by the police using an ad-hoc format
 - lon = y/1000 + 400000
 - lat = y/1000 + 4500000

CRS

World Geodetic System (WGS84, EPSG:4326): standard for use in cartography, geodesy, and navigation; reference CRS for GPS.

European Terrestrial Reference System 1989 (ETRS89, EPSG:5554):
proposed, multipurpose Pan-European mapping
standard; based on the ETRS89 Lambert Azimuthal
Equal-Area projection coordinate reference system

Objective

- Separate lat, long fields and map them to correct types
- Remove invalid values
- Convert all coordinates into a single CRS (WGS84)

- Pig uses filters to subset the data
- To merge back the subsetted data, we can use joins by a common field
- Micro-task: Export the data

- Pig uses filters to subset the data
- To merge back the subsetted data, we can use joins by a common field
- Micro-task: Export the data
 - Create a copy of the accidents table, with an id field (joins).

- Pig uses filters to subset the data
- To merge back the subsetted data, we can use joins by a common field
- Micro-task: Export the data
 - Create a copy of the accidents table, with an id field (joins).
 - Export this table into a tsv

- Pig uses filters to subset the data
- To merge back the subsetted data, we can use joins by a common field
- Micro-task: Export the data
 - Create a copy of the accidents table, with an id field (joins).
 - Export this table into a tsv
 - Store it in HDFS (if needed)
 - View exported data

Presenting the Pig Script

- Subsets the coordinate list, using filters
- Detects each coordinate "type", using regular expressions
- In the case of grid encoded, it applies a formula to decode back into grid
- Stores the results into separate files, in HDFS

REGEX

 Sequence of characters that forms a search pattern, mainly for use in pattern matching with strings, or string matching

REGEX

- Sequence of characters that forms a search pattern, mainly for use in pattern matching with strings, or string matching
- REGEX_EXTRACT(D_COORD_(
 z]',0)

REGEX

- Sequence of characters that forms a search pattern, mainly for use in pattern matching with strings, or string matching
- REGEX_EXTRACT(D_COORD_(z]',0)
- '[A-z]'

Introduction Importing a Spatial-Temporal Series

Putting it All Together Piping the Results into the Outside World

Running Pig

Micro-task: run pig script

- Micro-task: run pig script
 - Download script from S3: https://s3-eu-west-1.
 amazonaws.com/workshop-bdsd/recover_geography.pig

- Micro-task: run pig script
 - Download script from S3: https://s3-eu-west-1.
 amazonaws.com/workshop-bdsd/recover_geography.pig
 - Edit script and ammend paths

- Micro-task: run pig script
 - Download script from S3: https://s3-eu-west-1.
 amazonaws.com/workshop-bdsd/recover_geography.pig
 - Edit script and ammend paths
 - Run script

- Micro-task: run pig script
 - Download script from S3: https://s3-eu-west-1.
 amazonaws.com/workshop-bdsd/recover_geography.pig
 - Edit script and ammend paths
 - Run script
 - Check output files

Importing Data Back into Hive

• Micro-task: Create tables linking to pig output

Importing Data Back into Hive

- Micro-task: Create tables linking to pig output
 - Create table with wgs84 data
 - Create table with grid data
 - Create table with police-decoded data

Exporting data into PostGIS

- As of Hadoop GIS 2.0, CRS transformation is not supported
- We need to rely on another tool: PostGIS on RDS
- Micro-task: Export grid data to PostGIS

Exporting data into PostGIS

- As of Hadoop GIS 2.0, CRS transformation is not supported
- We need to rely on another tool: PostGIS on RDS
- Micro-task: Export grid data to PostGIS
 - Merge grid (grid + police) tables in a single table

Exporting data into PostGIS

- As of Hadoop GIS 2.0, CRS transformation is not supported
- We need to rely on another tool: PostGIS on RDS
- Micro-task: Export grid data to PostGIS
 - Merge grid (grid + police) tables in a single table
 - Exported merged table into TSV

Introduction Importing a Spatial-Temporal Series

Putting it All Together Piping the Results into the Outside World

Importing Data into PostGIS

• Micro-task: Import grid data into PostGIS

- Micro-task: Import grid data into PostGIS
 - Install the PSQL client
 - Log into RDS:

- Micro-task: Import grid data into PostGIS
 - Install the PSQL client
 - Log into RDS:
 - host: bdigitaldb.celqzuwfokoe.eu-west-1.rds.amazonaws.com
 - user: workshop
 - password: geohipster
 - database: workshop_bdigital

- Micro-task: Import grid data into PostGIS
 - Install the PSQL client
 - Log into RDS:
 - host: bdigitaldb.celqzuwfokoe.eu-west-1.rds.amazonaws.com
 - user: workshop
 - password: geohipster
 - database: workshop_bdigital
 - Create table to accompdate data

- Micro-task: Import grid data into PostGIS
 - Install the PSQL client
 - Log into RDS:
 - host: bdigitaldb.celqzuwfokoe.eu-west-1.rds.amazonaws.com
 - user: workshop
 - password: geohipster
 - database: workshop_bdigital
 - Create table to accomodate data
 - Copy data into table

Introduction Importing a Spatial-Temporal Series

Putting it All Together Piping the Results into the Outside World

CRS Transformation

• Micro-task: Convert all features in European grid to WGS84

- Micro-task: Convert all features in European grid to WGS84
 - Create geometry fields to accommodate geometry in the two CRS (Grid, WGS84)

- Micro-task: Convert all features in European grid to WGS84
 - Create geometry fields to accommodate geometry in the two CRS (Grid, WGS84)
 - Add columns
 - Set SRID
 - Create geometry index

- Micro-task: Convert all features in European grid to WGS84
 - Create geometry fields to accommodate geometry in the two CRS (Grid, WGS84)
 - Add columns
 - Set SRID
 - Create geometry index
 - Instantiate grid geometry

- Micro-task: Convert all features in European grid to WGS84
 - Create geometry fields to accommodate geometry in the two CRS (Grid, WGS84)
 - Add columns
 - Set SRID
 - Create geometry index
 - Instantiate grid geometry
 - Transform grid geometry into another CRS

- Micro-task: Convert all features in European grid to WGS84
 - Create geometry fields to accommodate geometry in the two CRS (Grid, WGS84)
 - Add columns
 - Set SRID
 - Create geometry index
 - Instantiate grid geometry
 - Transform grid geometry into another CRS
 - Export grid geometry in GeoJSON

GeoJSON

GeoJSON: is an open standard format for encoding collections of simple geographical features along with their non-spatial attributes using JavaScript Object Notation.

Introduction
Importing a Spatial-Temporal Series

Putting it All Together Piping the Results into the Outside World

Importing Data back into Hive

• Micro-task: Import transformed data

Piping the Results into the Outside World

Importing Data back into Hive

- Micro-task: Import transformed data
 - Enter Hive

Importing Data back into Hive

- Micro-task: Import transformed data
 - Enter Hive
 - Create table linking to the PostGIS export

Importing Data back into Hive

- Micro-task: Import transformed data
 - Enter Hive
 - Create table linking to the PostGIS export
 - Create new table and instantiate geometry from GeoJSON

Joining Data

 Micro-task: Join imported coordinates with WGS84 coordinates and the rest of the dataset

Joining Data

- Micro-task: Join imported coordinates with WGS84 coordinates and the rest of the dataset
 - Join imported records with original table with all fields

Joining Data

- Micro-task: Join imported coordinates with WGS84 coordinates and the rest of the dataset
 - Join imported records with original table with all fields
 - Merge imported records with WGS84 records, for a single table with unified geometry

Introduction Importing a Spatial-Temporal Series Recovering the Spatial Attributes Putting it All Together

Understanding Indexes

Introduction Importing a Spatial-Temporal Series Recovering the Spatial Attributes Putting it All Together

Generating Indexes

References

- http://tweettracker.fulton.asu.edu/tda/TwitterDataAnalytics.pdf
- http://www2.qgis.org
- http://plugins.qgis.org/plugins/
- http://geokoder.com/mongodb-plugin-for-quantum-gis
- http://www.gislounge.com/heat-maps-in-gis/
- https://alastaira.wordpress.com/2011/02/23/ heat-mapping-crime-data-with-bing-maps-and-html5-canvas/
- http://docs.qgis.org/2.0/en/docs/user_manual/plugins/plugins_heatmap.html
- http://en.wikipedia.org/wiki/Kernel_%28statistics%29#Kernel_functions_in_common_use
- http://en.wikipedia.org/wiki/Cluster_analysis
- https://plugins.qgis.org/plugins/clusterpy_qgis_plugin/
- http://www.rise-group.org/section/Software/clusterPy/
- http://threejs.org/
- http://anitagraser.com/2014/03/15/3d-viz-with-qgis-three-js/

Thank you for Listening!

