The Untyped Lambda Calculus: A Simple Functional Programming Language

Paul Gustafson

Math 482 - Texas A&M University

March 5, 2013

Why is the λ -calculus important?

- Computer Science
 - Variable binding in function declarations
 - Scope
 - Type sytems
 - Functional programming languages (Lisp, ML variants, Haskell)
- Logic
 - Recursion theory
 - Computability
- Linguistics

Why was the λ -calculus developed?

- Formal system of logic developed by Alonzo Church in 1932
- Used to solve Leibniz' Entscheidungsproblem ("Decision problem")
 - "Is every statement in first-order logic over a finite set of axioms decidable?"
 - No.
 - Solved independently by Turing.

How does the λ -calculus work? (I): λ -terms

- The set of λ -terms, Λ , is built from a countable set of variables $V = \{v, v', v'', \ldots\}$:

 - \bigcirc $M, N \in \Lambda \implies (MN) \in \Lambda$
- Examples of λ -terms
 - v'
 - $(\lambda v.(v'v))$
 - $(((\lambda v.(\lambda v'.(v'v)))v'')v''')$

Convenient syntactic assumptions

- Drop outer parentheses
- Lower case letters are placeholders for arbitrary variables
- ullet Scope of λ extends as far to the right as possible
 - Example: $\lambda x.\lambda y.xy = \lambda x.(\lambda y.xy)$)
- Expressions are left associative by default
 - Example: xyz = (xy)z.

How does the λ -calculus work? (II): Conversion Rules

- α -conversion: $\lambda x.[...x...] = \lambda y.[...y...]$.
 - "We can rename bound variables."
 - Example: $\lambda a.a = \lambda b.b$
- β -conversion: $\lambda x.[...x...]T = [...T...].$
 - "Evaluation / substitution."
 - Example: $(\lambda x.x)y = y$.
- η -conversion: $\lambda x.F(x) = F$.
 - "Extensionality a function is defined by what it does."
 - Example: $\lambda y.\lambda x.yx = \lambda y.y$

Church numerals

- A representation of the natural numbers
- $0 := \lambda f. \lambda x. x$
- $1 := \lambda f.\lambda x.fx$
- $2 := \lambda f . \lambda x . f(fx)$
- $3 := \lambda f.\lambda x.f(f(fx))$
- . . .

Arithmetic with Church numerals

- Successor: $\lambda n.\lambda f.\lambda x.f(nfx)$
- Addition: $\lambda m. \lambda n. \lambda f. \lambda x. mf(nfx)$
- Multiplication: $\lambda m. \lambda n. \lambda f. m(nf)$
- Exponentiation: $\lambda m. \lambda n. nm$
- Predecessor: $\lambda n.\lambda f.\lambda x.n(\lambda g.\lambda h.h(gf))(\lambda u.x)(\lambda u.u)$

References

- Untyped Lambda Calculus. Deepak D'Souza.
 http://drona.csa.iisc.ernet.in/ deepakd/pav/lecture-notes.pdf
- Introduction to Lambda Calculus. Barendregt and Barensen. ftp://ftp.cs.ru.nl/pub/CompMath.Found/lambda.pdf
- Lambda Calculus, Then and Now. Dana S. Scott. http://www.youtube.com/watch?v=7cPtCpyBPNI