Least Squares with Gradient Descent

Consider a least-squares problem with a matrix A and vector b. Formulate this as a quadratic minimization problem and use a gradient descent algorithm to solve the least-squares problem. The gradient descent algorithm should not involve any matrix inversions.

Analysis of the problem:

Algorithm of Gradient Descent Method:

given a starting point $x \in \operatorname{dom} f$. repeat

- 1. $\Delta x := -\nabla f(x)$.
- 2. Line search. Choose step size t via exact or backtracking line search.
- 3. Update. $x := x + t\Delta x$.

until stopping criterion is satisfied.

Least-square problem: $f_0 = ||Ax - b||_2$

Formulate this Least-square problem as a quadratic minimization problem:

Objective function:

$$f(x) = \|Ax - b\|_{2}^{2} = (Ax - b)^{T}(Ax - b) = [(Ax)^{T} - b^{T}](Ax - b) = (Ax)^{T}Ax - b^{T}Ax - (Ax)^{T}b + b^{T}b = (Ax)^{T}Ax - b^{T}Ax - x^{T}A^{T}b + b^{T}b = (Ax)^{T}Ax - b^{T}Ax - (b^{T}Ax)^{T} + b^{T}b = x^{T}A^{T}Ax - 2x^{T}A^{T}b + b^{T}b$$
Step 1: compute Δx :
Gradient: $\nabla f(x) = 2A^{T}Ax - 2A^{T}b$

Then $\Delta x = -\nabla f(x)$

Step 2: find t through exact line search:

For exact line search, $t = arg \min_{t>0} f(x + t\Delta x)$

$$f(x + t\Delta x) = (x + t\Delta x)^T A^T A (x + t\Delta x) - 2(x + t\Delta x)^T A^T b + b^T b$$

= $x^T A^T A x + t\Delta x^T A^T A x + x^T A^T A t\Delta x + t\Delta x^T A^T A t\Delta x - 2x^T A^T b$
 $- 2t\Delta x^T A^T b + b^T b$

Take derivative of $f(x + t\Delta x)$ with respect to t, making it vanish,

$$\nabla_t f(x + t\Delta x) = \nabla_t (t\Delta x^T A^T A x + x^T A^T A t\Delta x + t\Delta x^T A^T A t\Delta x - 2t\Delta x^T A^T b)$$

= $\Delta x^T A^T A x + x^T A^T A \Delta x + 2t\Delta x^T A^T A \Delta x - 2\Delta x^T A^T b = 0$

Solving it, we get:
$$t = \frac{2\Delta x^T A^T b - \Delta x^T A^T A x - x^T A^T A \Delta x}{2\Delta x^T A^T A \Delta x}$$

Step 3: update $x = x + t\Delta x$

The stopping criterion:

We cannot stop until the function value of the current step f(x) is very close to the optimal value p^* . i.e. $f(x) - p^* < \varepsilon$

Assume $x, y \in \text{domf}$, the second-order Taylor approximation of f(y) (y is any arbitrary point in domf) at point x is:

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{1}{2} (y - x)^T \nabla^2 f(x) (y - x)$$

Note that f(x) is convex, therefore, Taylor approximation of f(y) is an under estimator of f(y).

At optimal point, $\nabla f(x^*) = 0$, since $f(x) = \|Ax - b\|_2^2$ is convex, we further assume it to be strong convex, i.e. $\nabla^2 f(x) \ge mI$, where m > 0

We have:
$$f(y) \ge f(x) + \frac{m^2}{2} ||y - x||_2^2, m > 0$$

 $f(x) - f(y) \le \frac{m^2}{2} \|y - x\|_2^2$, which is an upper bound of $f(x) - p^*$, if y is the optimal solution $(f(y) = p^*)$. However, this upper bound is with respect to $\|y - x\|_2$, which is not satisfactory, therefore, we want to find an upper bound of $f(x) - p^*$, with respect to function value of f.

Since $\nabla f(x) = \frac{f(y) - f(x)}{\|y - x\|_2}$, plug it into the above function,

$$f(x) - f(y) \le -\frac{m^2}{2} \|y - x\|_2^2 = -\frac{m^2}{2} \left[\frac{f(x) - f(y)}{\nabla f(x)} \right]^2, m > 0$$

let y be the optimal solution $(f(y) = p^*)$, we have $f(x) - p^* \le \frac{\|\nabla f(x)\|_2^2}{2m}$

 $\frac{\|\nabla f(x)\|_2^2}{2m}$ is the upper bound of the gap between the final-step function value and optimal value, i.e. $f(x) - p^*$.

We want to limit it to be smaller than a predetermined threshold ε , $\frac{\|\nabla f(x)\|_2^2}{2m} < \varepsilon$, then $\|\nabla f(x)\|_2 < (2m\varepsilon)^{\frac{1}{2}}$. Since m is a constant depending on coordinates; ε is a

constant depending on accuracy requirement, we sometimes combine them,

The stopping criterion is: $\|\nabla f(x)\|_2 < \varepsilon$

Implement in Matlab: