Reinforcement Learning David Silver - Lecture 4 Notes: Model-Free Prediction

Name: Eli Andrew

- Model-free prediction is the same case as before except that now no one is giving us the MDP.
- Model-free prediction methods go directly from environment interactions (observations) to value-functions without the use of a model (MDP).
- In other words, we are trying to estimate the value function of an unknown MDP.

• Monte-Carlo Learning Overview:

- MC methods learn directly from episodes of experience
- MC is *model-free*: no knowledge of MDP transitions or rewards
- MC learns on complete episodes: no bootstrapping
- MC uses simplest possible idea: value = mean return
- Caveat: can only apply MC to episodic MDPs (all episodes must terminate)

• Monte-Carlo Learning Details:

- Goal: learn v_{π} from episodes of experience under policy π $(S_1, A_1, R_2, \dots, S_k \pi)$
- Recall that return is the total discounted reward: $G_t = R_{t+1} + \gamma R_{t+2} + \cdots + \gamma^{T-1} R_T$
- Recall that the value function is the expected return: $v_{\pi}(s) = E\pi[G_t|S_t = s]$
- MC policy evaluation uses empirical mean return instead of expected return.

• First-visit Monte-Carlo Policy Evaluation:

- To evaluation state s
- The first time-step t that state s is visited in an episode
- Increment counter $N(s) \leftarrow N(s) + 1$
- Increment total return $S(s) \leftarrow S(s) + G_t$
- Value is estimated by mean return $V(s) = \frac{S(s)}{N(s)}$
- By law of large numbers, $V(s) \to v_{\pi}(s)$ as $N(s) \to \infty$
- Note: N(s) and S(s) persist over all episodes
- **Important:** what we care about here is ensuring that we visit all states in S that we care about for policy π and not necessarily seeing all states. The way to ensure that we see all states that we care about for policy π is to actually just follow policy π and work with the samples of S that it gives us.

• Every-visit Monte-Carlo Policy Evalutation:

- To evaluation state s
- Every time-step t that state s is visited in an episode
- Increment counter $N(s) \leftarrow N(s) + 1$
- Increment total return $S(s) \leftarrow S(s) + G_t$
- Value is estimated by mean return $V(s) = \frac{S(s)}{N(s)}$
- Again, $V(s) \to v_{\pi}(s)$ as $N(s) \to \infty$

• Incremental Mean

- The mean μ_1, μ_2, \ldots of a sequence x_1, x_2, \ldots can be computed incrementally
- $\mu_k = \frac{1}{k} \sum_{j=1}^k x_j$
- $\mu_k = \frac{1}{k} (x_k + \sum_{j=1}^{k-1} x_j)$
- $\mu_k = \frac{1}{k}(x_k + (k-1)\mu_{k-1})$
- $-\mu_k = \mu_{k-1} + \frac{1}{k}(x_k \mu_{k-1})$
- This final equation can be thought of as taking the old mean μ_{k-1} and taking a small step with size $\frac{1}{k}$ towards the value we just saw $(x_k \mu_{k-1})$

• Incremental Monte-Carlo Updates:

- Update V(s) incrementally after each episode $S_1, A_1, R_2, \ldots, S_T$
- For each state S_t with return G_t :
- $N(S_t) \leftarrow N(S_t) + 1$
- $-V(S_t) \leftarrow V(S_t) + \frac{1}{N(S_t)}(G_t V(S_t))$
- In non-stationary problems it can be useful to track a running mean, i.e. to forget old episodes: $V(S_t) \leftarrow V(S_t) + \alpha(G_t V(S_t))$

\bullet Temporal-Difference Learning Overview:

- TD methods learn directly from episodes of experience
- $-\,$ TD is $\it model-free$: no knowledge of MDP transitions or rewards
- TD learns from *incomplete* episodes, by bootstrapping This is in contrast to MC which must use full episodes.
- Instead of taking complete episodes to determine rewards, TD can take partial
 episodes and then use estimates to guess what the reward for the rest of the
 episode would be.
- TD updates a guess towards a guess

• MC and TD:

- Goal: learn v_{π} online from experience under policy π
- Incremental every-visit Monte-Carlo
 - * Update value $V(S_t)$ toward actual return G_t : $V(S_t) \leftarrow V(S_t) + \alpha(G_t V(S_t))$
- Simplest temporal-difference learning algorithm: TD(0)
 - * Update value $V(S_t)$ toward estimated return $R_{t+1} + \gamma V(S_{t+1})$:
 - * $V(S_t) \leftarrow V(S_t) + \alpha((R_{t+1} + \gamma V(S_{t+1}) V(S_t)))$
 - * $R_{t+1} + \gamma V(S_{t+1})$ is called the TD target
 - * $\delta_t = R_{t+1} + \gamma V(S_{t+1}) V(S_t)$ is called the TD error
- At each step of TD you are updating your estimate of what you thought would happen with what did happen.
- With MC you update each step by correcting based on what happened with the entire episode rather than with just that step.

• Advantages and Disadvantages of MC vs. TD:

- TD can learn before knowing the final outcome
 - * TD can learn online every step
 - * MC must wait until end of episode before return is known
- TD can learn without the final outcome
 - * TD can learn from incomplete sequences
 - * MC can only learn from complete sequences
 - * TD works in continuing (non-terminating) environments
 - * MC only works for episodic (terminating) environments

• Bias/Variance Trade-Off:

- Return $G_t = R_{t+1} + \gamma R_{t+2} + \cdots + \gamma^{T-1} R_T$ is unbiased estimate of $v_{\pi}(S_t)$
- True TD target $R_{t+1} + \gamma v_{\pi}(S_{t+1})$ is unbiased estimate of $v_{\pi}(S_t)$
- TD target $R_{t+1} + \gamma V(S_{t+1})$ is biased estimate of $v_{\pi}(S_t)$
- TD target is much lower variance than the return:
 - * Return depends on many random actions, transitions, rewards
 - * TD target depends on one random action, transition, reward
 - * In other words, we are only subject to the noise from the single step with the TD target vs. from the entire trajectory with the return

• Continued Advantages and Disadvantages of MC vs. TD:

- MC has high variance and zero bias
 - * Good convergence properties
 - * (even with function approximation)
 - * Not very sensitive to initial value
 - * Very simple to understand and use
- TD has low variance, some bias
 - * Usually more efficient than MC
 - * TD(0) converges to $v_{\pi}(s)$
 - * (but not always with function approximation)
 - * More sensitive to initial value

- Certainty Equivalence:

- * MC converges to solution that minimizes mean-squared-error
- * This is the best fit to all observed returns
- * TD(0) converges to solution of MDP that best explains the data
- * Think of this as first fitting for an MDP and then solving for the MDP
- TD exploits the Markov property is usually more efficient in Markov environments
- MC does not exploit Markov property and is usually more efficient in non-Markov environments

Bootstrapping:

- * Update involves an estimate
- * MC does not bootstrap
- * DP bootstraps
- * TD bootstraps

- Sampling:

- * Update samples an expectation
- * MC samples
- * DP does not sample
- * TD does sample

– TD(λ):

- * Let TD look n steps into the future before deciding how to update
- * $n = \infty$ is Monte-Carlo
- * Recall, TD (n = 1) has update $V(S_t) \leftarrow V(S_t) + \alpha((R_{t+1} + \gamma V(S_{t+1})) V(S_t))$
- * n = 2: $V(S_t) \leftarrow V(S_t) + \alpha((R_{t+1} + \gamma R_{t+2} + \gamma^2 V(S_{t+3}) V(S_t))$
- * Define $G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})$

- * Then n-step TD learning updates with $V(S_t) \leftarrow V(S_t) + \alpha(G_t^{(n)} V(S_t))$
- * We can average n-step returns over different n
- * e.g. average 2-step and 4-step returns: $\frac{1}{2}G^{(2)} + \frac{1}{2}G^{(4)}$
- * This combines information from two different time-steps
- * Doing this across all n gives λ -return which is like a geometrically weighted average across all n
- * $G_t^{\lambda} = (1 \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$
- * λ is giving the weight for each successive n
- * The weighting for a given n is $(1 \lambda)\lambda^{n-1}$
- * Now use this for TD learning update: $V(S_t) \leftarrow V(S_t) + \alpha(G_t^{\lambda} V(S_t))$

- Eligibility Traces:

- * Combine frequency and recency heuristics to solve problem of assigning credit to the right factor
- * $E_0(s) = 0$, $E_t(s) = \gamma \lambda E_{t-1}(s) + \mathbf{1}(S_t = s)$

– Backward View $TD(\lambda)$:

- * Keep eligibility trace for every state s
- * Update value V(s) for every state s
- * In proportion to TD-error δ_t and eligibility trace $E_t(s)$
- * $\delta_t = R_{t+1} + \gamma V(S_{t+1}) V(S_t)$
- * $V(s) \leftarrow V(s) + \alpha \delta_t E_t(s)$

– TD(λ) and TD(0):

* When $\lambda = 0$, only current state is updated

$$E_t(s) = \mathbf{1}(S_t = s)$$

$$V(s) \leftarrow V(s) + \alpha \delta_t E_t(s)$$

* This is exactly equivalent to TD(0) update