# **Importing Libraries**

### In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

# **Importing Datasets**

### In [2]:

df=pd.read\_csv(r"C:\Users\user\Downloads\C10\_air\csvs\_per\_year\csvs(Dataset)\madrid\_2003.
df

### Out[2]:

| <b>0</b> 0      | 2003-<br>03-01<br>01:00:00 | NaN    |      |      |      |      |           |            |      |           |      |
|-----------------|----------------------------|--------|------|------|------|------|-----------|------------|------|-----------|------|
|                 |                            |        | 1.72 | NaN  | NaN  | NaN  | 73.900002 | 316.299988 | NaN  | 10.550000 | 55   |
| <b>1</b> 0      | 2003-<br>03-01<br>1:00:00  | NaN    | 1.45 | NaN  | NaN  | 0.26 | 72.110001 | 250.000000 | 0.73 | 6.720000  | 52.  |
| <b>2</b> 0      | 2003-<br>03-01<br>01:00:00 | NaN    | 1.57 | NaN  | NaN  | NaN  | 80.559998 | 224.199997 | NaN  | 21.049999 | 63.: |
| <b>3</b> 0      | 2003-<br>03-01<br>01:00:00 | NaN    | 2.45 | NaN  | NaN  | NaN  | 78.370003 | 450.399994 | NaN  | 4.220000  | 67.  |
| <b>4</b> 0      | 2003-<br>03-01<br>01:00:00 | NaN    | 3.26 | NaN  | NaN  | NaN  | 96.250000 | 479.100006 | NaN  | 8.460000  | 95.  |
|                 |                            |        |      |      |      |      |           |            |      |           |      |
| <b>243979</b> 0 | 2003-<br>10-01<br>0:00:00  | 0.20   | 0.16 | 2.01 | 3.17 | 0.02 | 31.799999 | 32.299999  | 1.68 | 34.049999 | 7.:  |
| <b>243980</b> 0 | 2003-<br>10-01<br>0:00:00  | 0.32   | 0.08 | 0.36 | 0.72 | NaN  | 10.450000 | 14.760000  | 1.00 | 34.610001 | 7.   |
| <b>243981</b> 0 | 2003-<br>10-01<br>0:00:00  | NaN    | NaN  | NaN  | NaN  | 0.07 | 34.639999 | 50.810001  | NaN  | 32.160000 | 16.  |
| <b>243982</b> 0 | 2003-<br>10-01<br>0:00:00  | NaN    | NaN  | NaN  | NaN  | 0.07 | 32.580002 | 41.020000  | NaN  | NaN       | 13.  |
| <b>243983</b> 0 | 2003-<br>10-01<br>0:00:00  | 1.00   | 0.29 | 2.15 | 6.41 | 0.07 | 37.150002 | 56.849998  | 2.28 | 21.480000 | 12.  |
| 243984 ro       | 243984 rows × 16 columns   |        |      |      |      |      |           |            |      |           |      |
| 4               |                            | Joidin |      |      |      |      |           |            |      |           | •    |

# **Data Cleaning and Data Preprocessing**

### In [3]:

df=df.dropna()

#### In [4]:

```
df.columns
```

```
Out[4]:
```

### In [5]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 33010 entries, 5 to 243983
Data columns (total 16 columns):
             Non-Null Count Dtype
    Column
    -----
             -----
---
0
    date
             33010 non-null object
 1
    BEN
             33010 non-null float64
 2
    CO
             33010 non-null float64
 3
    EBE
             33010 non-null float64
 4
             33010 non-null float64
    MXY
 5
             33010 non-null float64
    NMHC
 6
    NO_2
             33010 non-null float64
 7
    NOx
             33010 non-null float64
 8
    OXY
             33010 non-null float64
 9
    0 3
             33010 non-null float64
 10
    PM10
             33010 non-null float64
 11
    PXY
             33010 non-null float64
 12
    S0_2
             33010 non-null float64
 13
    TCH
             33010 non-null float64
 14
             33010 non-null float64
    TOL
15 station 33010 non-null int64
dtypes: float64(14), int64(1), object(1)
memory usage: 4.3+ MB
```

```
In [7]:
```

```
data=df[['EBE', 'MXY', 'PXY']]
data
```

### Out[7]:

|        | EBE   | MXY   | PXY  |
|--------|-------|-------|------|
| 5      | 9.83  | 21.49 | 7.94 |
| 23     | 3.43  | 7.08  | 2.62 |
| 27     | 5.75  | 10.88 | 4.24 |
| 33     | 10.63 | 24.73 | 8.93 |
| 51     | 3.20  | 7.08  | 2.70 |
|        |       |       |      |
| 243955 | 3.07  | 9.38  | 3.48 |
| 243957 | 3.88  | 10.86 | 3.89 |
| 243961 | 4.53  | 10.88 | 4.13 |
| 243979 | 2.01  | 3.17  | 1.20 |
| 243983 | 2.15  | 6.41  | 2.43 |

33010 rows × 3 columns

# Line chart

### In [8]:

```
data.plot.line(subplots=True)
```

### Out[8]:

array([<AxesSubplot:>, <AxesSubplot:>], dtype=object)



# Line chart

### In [9]:

data.plot.line()

### Out[9]:

### <AxesSubplot:>



# **Bar chart**

## In [10]:

b=data[0:50]

### In [11]:

b.plot.bar()

### Out[11]:

## <AxesSubplot:>



# Histogram

### In [12]:

data.plot.hist()

### Out[12]:

<AxesSubplot:ylabel='Frequency'>



# Area chart

### In [13]:

data.plot.area()

### Out[13]:

<AxesSubplot:>



## **Box chart**

## In [14]:

data.plot.box()

## Out[14]:

## <AxesSubplot:>



# Pie chart

### In [16]:

```
b.plot.pie(y='EBE' )
```

### Out[16]:

<AxesSubplot:ylabel='EBE'>



# **Scatter chart**

#### In [17]:

```
data.plot.scatter(x='EBE' ,y='MXY')
```

#### Out[17]:

<AxesSubplot:xlabel='EBE', ylabel='MXY'>



### In [18]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'> Int64Index: 33010 entries, 5 to 243983 Data columns (total 16 columns): # Column Non-Null Count Dtype \_\_\_\_ \_\_\_\_\_ 0 date 33010 non-null object 1 BEN 33010 non-null float64

2 CO 33010 non-null float64 3 EBE 33010 non-null float64 4 MXY 33010 non-null float64 5 NMHC 33010 non-null float64 6 NO 2 33010 non-null float64 7 NOx33010 non-null float64 8 0XY 33010 non-null float64 9 0\_3 33010 non-null float64 10 PM10 33010 non-null float64 11 PXY 33010 non-null float64 float64 12 SO 2 33010 non-null 13 TCH 33010 non-null float64 14 TOL 33010 non-null float64

15 station 33010 non-null int64 dtypes: float64(14), int64(1), object(1)

memory usage: 4.3+ MB

```
In [19]:
```

```
df.describe()
```

### Out[19]:

|       | BEN          | СО           | EBE          | MXY          | NMHC         | NO_2         |
|-------|--------------|--------------|--------------|--------------|--------------|--------------|
| count | 33010.000000 | 33010.000000 | 33010.000000 | 33010.000000 | 33010.000000 | 33010.000000 |
| mean  | 2.192633     | 0.759868     | 2.639726     | 5.838414     | 0.137177     | 57.328049    |
| std   | 2.064160     | 0.545999     | 2.825194     | 6.267296     | 0.127863     | 31.811082    |
| min   | 0.000000     | 0.000000     | 0.000000     | 0.000000     | 0.000000     | 0.000000     |
| 25%   | 0.900000     | 0.430000     | 1.010000     | 1.880000     | 0.060000     | 34.529999    |
| 50%   | 1.610000     | 0.620000     | 1.890000     | 4.070000     | 0.110000     | 55.105000    |
| 75%   | 2.810000     | 0.930000     | 3.300000     | 7.530000     | 0.170000     | 76.160004    |
| max   | 66.389999    | 7.920000     | 92.589996    | 177.600006   | 2.180000     | 342.700012   |
| 4     |              |              |              |              |              | <b>&gt;</b>  |

### In [20]:

```
df1=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3', 'PM10', 'PXY', 'SO_2', 'TCH', 'TOL', 'station']]
```

# **EDA AND VISUALIZATION**

### In [21]:

sns.pairplot(df1[0:50])

### Out[21]:

<seaborn.axisgrid.PairGrid at 0x18dd3ef6b50>



#### In [22]:

```
sns.distplot(df1['EBE'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

#### Out[22]:

<AxesSubplot:xlabel='EBE', ylabel='Density'>



#### In [23]:

sns.heatmap(df1.corr())

#### Out[23]:

### <AxesSubplot:>



# TO TRAIN THE MODEL AND MODEL BULDING

```
In [24]:
```

```
In [25]:
```

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

# **Linear Regression**

### In [26]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

#### Out[26]:

LinearRegression()

#### In [27]:

```
lr.intercept_
```

#### Out[27]:

28079000.88287165

#### In [28]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

### Out[28]:

|      | Co-efficient |
|------|--------------|
| BEN  | 1.692702     |
| со   | -38.977600   |
| EBE  | -1.867924    |
| MXY  | 0.174105     |
| NMHC | 152.722698   |
| NO_2 | 0.163994     |
| NOx  | -0.071702    |
| OXY  | -1.299032    |
| O_3  | -0.014141    |
| PM10 | -0.050933    |
| PXY  | 2.076299     |
| SO_2 | 0.865766     |
| тсн  | 35.557182    |
| TOL  | -0.922173    |

### In [29]:

```
prediction =lr.predict(x_test)
plt.scatter(y_test,prediction)
```

### Out[29]:

<matplotlib.collections.PathCollection at 0x18de1c99c70>



# **ACCURACY**

```
8/4/23, 9:58 AM
                                             madrid 2003 - Jupyter Notebook
 In [30]:
 lr.score(x_test,y_test)
 Out[30]:
 0.1724179923348299
 In [31]:
 lr.score(x_train,y_train)
 Out[31]:
 0.1775053138791619
 Ridge and Lasso
 In [32]:
 from sklearn.linear_model import Ridge,Lasso
 In [33]:
 rr=Ridge(alpha=10)
 rr.fit(x_train,y_train)
 Out[33]:
 Ridge(alpha=10)
 Accuracy(Ridge)
 In [34]:
 rr.score(x_test,y_test)
 Out[34]:
 0.17104202048880912
```

```
In [35]:
rr.score(x_train,y_train)
Out[35]:
0.17647021880331226
In [36]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[36]:
```

Lasso(alpha=10)

```
In [37]:
```

```
la.score(x_train,y_train)
```

#### Out[37]:

0.03743296904759286

# **Accuracy(Lasso)**

```
In [38]:
la.score(x_test,y_test)
Out[38]:
0.03248687905869285
```

# **Accuracy(Elastic Net)**

```
In [40]:
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
Out[40]:
ElasticNet()
In [41]:
en.coef_
Out[41]:
                                           , -0.01685342, 0.14109596,
array([ 0.
                 , -0.22243934, 0.
        0.15774441, -0.07187445, -1.12341392, -0.04543365,
                                                            0.08531711,
        0.33830415, 0.7394519, 1.57593375, -0.47188519)
In [42]:
en.intercept_
Out[42]:
28079037.19291707
```

prediction=en.predict(x\_test)

In [43]:

```
In [44]:
en.score(x_test,y_test)
Out[44]:
0.04581467200955813
```

## **Evaluation Metrics**

```
In [45]:
```

```
from sklearn import metrics
print(metrics.mean_absolute_error(y_test,prediction))
print(metrics.mean_squared_error(y_test,prediction))
print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))
29.119161570718372
```

1184.5346313544042 34.41706889545367

# **Logistic Regression**

from sklearn.preprocessing import StandardScaler

```
In [51]:
fs=StandardScaler().fit_transform(feature_matrix)
In [52]:
logr=LogisticRegression(max_iter=10000)
logr.fit(fs,target_vector)
Out[52]:
LogisticRegression(max_iter=10000)
In [53]:
observation=[[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
In [54]:
prediction=logr.predict(observation)
print(prediction)
[28079035]
In [55]:
logr.classes_
Out[55]:
array([28079006, 28079024, 28079035, 28079099], dtype=int64)
In [56]:
logr.score(fs,target_vector)
Out[56]:
0.7584974250227204
In [57]:
logr.predict_proba(observation)[0][0]
Out[57]:
2.3306153265290618e-23
In [58]:
logr.predict_proba(observation)
Out[58]:
```

array([[2.33061533e-23, 1.44436075e-55, 1.00000000e+00, 6.68457491e-16]])

## **Random Forest**

```
In [59]:
```

```
from sklearn.ensemble import RandomForestClassifier
```

```
In [60]:
```

```
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
```

#### Out[60]:

RandomForestClassifier()

#### In [61]:

#### In [62]:

```
from sklearn.model_selection import GridSearchCV
grid_search = GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(x_train,y_train)
```

#### Out[62]:

#### In [63]:

```
grid_search.best_score_
```

#### Out[63]:

0.7254074069545836

#### In [64]:

```
rfc_best=grid_search.best_estimator_
```

#### In [65]:

```
from sklearn.tree import plot_tree

plt.figure(figsize=(80,40))
plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['a','b','c','d'],f
[261, 46, 291, 153]\nclass = c'),
    Text(4389.6, 181.199999999982, 'gini = 0.572\nsamples = 2161\nvalue =
[2027, 94, 795, 502]\nclass = a')]
```

## Conclusion

## **Accuracy**

Linear Regression:0.1775053138791619

Ridge Regression:0.03743296904759286

Lasso Regression:0.03248687905869285

ElasticNet Regression:0.04581467200955813

Logistic Regression:0.7584974250227204

Random Forest: 0.0.7254074069545836

## Logistic Regression is suitable for this dataset