Controlled K-theory, part I

H. Oyono Oyono

October 27, 2021

Séminaire Kervaire 2021: Baum-Connes Conjecture 24 - 29 Octobre 2021 Les Diablerets

Introduction

Conjecture (Novikov)

Let M be a compact oriented manifold. The higher signature $\langle \mathbf{f}_*(\mathbb{L}(\mathbf{M}) \cap [\mathbf{M}]), \mathbf{x} \rangle$ is homotopy invariant, where

- [M] is the fundamental class of M;
- $\mathbb{L}(M) \in H^*(M, \mathbb{Q})$ is the Pontrjagin-Hirzebruch class of M;
- $\Gamma = \pi_1(M)$ and $f : M \longrightarrow B_{\Gamma}$ is the classifying map;
- x is an element in $H^*(B_{\Gamma}, \mathbb{Q}) \cong H^*(\Gamma, \mathbb{Q})$.
- G. Yu proved the Novikov conjecture for a very large class of finitely generated groups Γ only using the geometry of Γ :
 - to any finite, symmetric generating set S is associated a length $\ell(\gamma) = \inf\{n \text{ such that } \gamma = \gamma_1 \cdots \gamma_n \text{ with } \gamma_1, \ldots, \gamma_n \text{ in } S\};$
 - then Γ is provided with the metric $d(\gamma, \gamma') = \ell(\gamma^{-1}\gamma')$ and the proof is carried out using "cut-and-pasting" on the metric space (Γ, d) .

The Coarse Baum-Connes assembly map

- Let Σ be a proper discrete metric space (balls are finite). Fix \mathscr{H} a separable Hilbert space of infinite dimension. The Roe algebra $C^*(\Sigma)$ is the closure in $\mathcal{L}(\ell^2(\Sigma) \otimes \mathscr{H})$ of the algebra of locally compact operators T with finite propagation, i.e
 - $T = (T_{\sigma,\sigma'})_{(\sigma,\sigma')\in\Sigma^2}$ with $T_{\sigma,\sigma'}\in\mathscr{K}(\mathscr{H})$;
 - there exists r > 0 such that $T_{x,y}$ if d(x,y) > r.
- The Rips complex of degree d is the set $P_d(\Sigma)$ of probability measures on Σ with support of diameter less than d.
- There is a family of assembly maps

$$\mu^{\mathcal{C}}_{\Sigma,*}: K_*(P_{\mathcal{C}}(\Sigma)) {\longrightarrow} K_*(C^*(\Sigma))$$

compatible with $P_d(\Sigma) \subseteq P_{d'}(\Sigma)$

We obtain taking inductive limit the Coarse BC assembly map

$$\mu_{\Sigma,*}: \lim_{d>0} K_*(P_d(\Sigma)) \longrightarrow K_*(C^*(\Sigma).$$

• Σ satisfies the Coarse BC conjecture if $\mu_{\Sigma,*}$ is an isomorphism.

The descent principle of Higson/Roe

Theorem

- Let Γ be a finitely generated group equipped with any word metric whose classifying space B_Γ has homotopy type of a finite CW-complex.
- Assume that Γ as a metric space satisfies the Coarse BC Conjecture.

Then Γ satisfies the Novikov conjecture.

The case of a finite metric space!

- Assume that X is a finite metric space.
 - $C^*(X) = \mathscr{K}(\ell^2(X) \otimes \mathscr{H})$ and hence $K_*(C^*(X)) \cong \mathbb{Z}$.
 - The assembly map

$$\mu_{X,*}^{d}: K_{*}(P_{d}(X)) {\longrightarrow} K_{*}(C^{*}(X)) \cong \mathbb{Z}$$

is the index map (induced by $P_d(X) \mapsto \{pt\}$).

- For d > diam X, then $P_d(X)$ is contractible and hence $K_*(P_d(X)) \cong \mathbb{Z}$;
- Indices have finite propagation!
- Can we take into account this propagation?

Propagation and indices I

- Let *D* be an elliptic differential operator on a compact manifold *M*.
- Let *Q* be a parametrix for *D*.
- Then $S_0 := Id QD$ and $S_1 := Id DQ$ are smooth kernel operators on $M \times M$, i.e of the form $K \cdot f(x) = \int k(x, y) f(y) dy$;

0

$$P_D = egin{pmatrix} S_0^2 & S_0(Id + S_0)Q \ S_1D & Id - S_1^2 \end{pmatrix}$$

is an idempotent with coefficients in smooth kernel operators on $M \times M$ and we can choose Q such that P_D has arbitrary small propagation i.e $P_D - I_2$ is given by a smooth kernel $k: M \times M \to M_2(\mathbb{C})$ with support arbitrary close to the diagonal.

D is a Fredholm operator and

$$\operatorname{Ind} D = [P_D] - \begin{bmatrix} \begin{pmatrix} 0 & 0 \\ 0 & Id \end{pmatrix} \end{bmatrix} \in K_0(\mathscr{K}(L^2(M)) \cong \mathbb{Z}.$$

Operator propagation

Definition

Let (X, d) be a compact metric space, let (\mathcal{H}_X, ρ_X) be a non degenerated representation of C(X) and $T \in \mathcal{L}(\mathcal{H}_X)$

• supp T is the complementary of the open subset of $X \times X$

$$\{(x,y) \in X \times X \text{ s.t } \exists f \text{ and } g \in C(X) \text{ s.t}$$

 $f(x) \neq 0, g(y) \neq 0 \text{ and } \rho_X(f) \cdot T \cdot \rho_X(g) = 0\}$

• T has propagation less than r if d(x, y) < r for all (x, y) in supp T.

Example

if μ is a borelian measure on X and if $k: X \times X \to \mathbb{C}$ is continuous and supported in $\{(x,y) \in X \times X \text{ s.t } d(x,y) < r\}$ then the kernel operator $L^2(X,\mu) \to L^2(X,\mu)$; $f \mapsto \int k(\cdot,y)f(y)d\mu(y)$ has propagation < r.

Propagation and indices II

Let X be a compact metric space and let $(\mathcal{H}_X, \rho_X, T)$ be an even K-cycle for $K_*(X) = KK_*(C(X), \mathbb{C})$ with \mathcal{H}_X non degenerated and $T = \begin{pmatrix} 0 & D \\ D^* & 0 \end{pmatrix}$. Recall that T commutes with functions modulo compact. Replacing T by the compact deformation

$$\rho_X(f_1^{1/2}) \cdot T \cdot \rho_X(f_1^{1/2}) + \ldots + \rho_X(f_n^{1/2}) \cdot T \cdot \rho_X(f_n^{1/2})$$

where $(f_i)_{i=1,...,n}$ is a partition of the unit for X, we can assume that T has propagation arbitrary small. Set

$$P_D = \begin{pmatrix} DD^* & -(1-D^*D)^{1/2}D^* \\ -D(1-D^*D)^{1/2} & Id-D^*D \end{pmatrix}$$

Then the index of $[\mathcal{H}_X, \rho_X, T]$ is $[P_D] - [\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}]$.

Controlled Index

Replacing in

$$P_D = \begin{pmatrix} DD^* & -(1-D^*D)^{1/2}D \\ -D(1-D^*D)^{1/2} & Id-D^*D \end{pmatrix}$$

the coefficient $(1 - D^*D)^{1/2}$ by a power serie, we obtain for any $0 < \varepsilon < 1/4$ and r > 0 an approximation $Q_D^{\varepsilon,r}$ such that

- $Q_D^{\varepsilon,r}$ is an ε -r-projection i.e.
 - $Q_D^{\varepsilon,r}$ is self-adjoint and $\|(Q_D^{\varepsilon,r})^2 Q_D^{\varepsilon,r}\| < \varepsilon;$
 - $Q_D^{\bar{\varepsilon},r}$ has propagation less than r.
- The spectral projection $\kappa(Q_D^{\varepsilon,r})$ of $Q_D^{\varepsilon,r}$ is close to P_D and hence the index of $[\mathcal{H}_X, \rho_X, T]$ is

$$\left[\kappa(Q_D^{\varepsilon,r})\right] - \left[\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\right].$$

Propagation in coarse assembly maps

First step: define for finite metric space controlled assembly maps

$$K_*(P_d(X)) \longrightarrow$$
 "classes in $K_*(\mathcal{K}(\ell^2(X)))$ of propagation $< r_d$ "

Second step: investigate for family of finite metric space the existence of an "inverse up to rescaling"

$$K_*(P_{d_r}(X)) \leftarrow$$
 "classes in $K_*(\mathcal{K}(\ell^2(X)))$ of propagation $< r$ "

i.e
$$K_*(P_d(X))$$
 \longrightarrow propagation $< r_d$ and $K_*(P_{d_{r_d}}(X))$

$$K_*(P_{d_r}(X))$$
 — propagation $< r$

propagation
$$< r_{d_r}$$

Main goal

Our aim is to provide (coarse) Baum-Connes type statements for family of finite discrete metric spaces such that:

- it takes into account (uniformly) finite propagation;
- for the family of finite subsets of Γ, it implies the Novikov conjecture.
- the statements are stable under "cut-and-pasting" (coarse decomposition).

QUANTITATIVE K-THEORY

(support for "finite propagation indices")

The framework: Filtered algebras

Definition

A filtered C^* -algebra A is a C^* -algebra equipped with a family $(A_r)_{r>0}$ of closed linear subspaces:

- $A_r \subseteq A_{r'}$ if $r \leqslant r'$;
- \bullet A_r is closed under involution;
- $\bullet A_r \cdot A_{r'} \subseteq A_{r+r'};$
- the subalgebra $\bigcup_{r>0} A_r$ is dense in A.
- If A is unital, we also require that the identity 1 is an element of A_r for every positive number r.
- The elements of A_r are said to have propagation less than r.

Examples

- Let (X, d) be a finite metric space. Then $\mathcal{K}(\ell^2(X))$ is a filtered C^* -algebra : an element $T = (T_{x,y})_{(x,y) \in X^2}$ in $\mathcal{K}(\ell^2(X))$ has propagation less than r if $T_{x,y} = 0$ whenever d(x,y) > r.
- In the same way, for any C^* -algebras A then $A \otimes \mathcal{K}(\ell^2(X))$ is a filtered C^* -algebra;
- More generally, if X is a compact metric space, (\mathcal{H}_X, ρ_X) a non-degenerated representation, then $\mathcal{K}(\mathcal{H}_X)$ is filtered using operator propagation.
- Roe algebras;
- C*-algebras of finitely generated groups and cross-products algebra by such a group action;
- C*-algebra of étale groupoids (C. Dell'Aiera);
- Compact quantum groups (C. Dell'Aiera).

Almost projections and almost unitaries

Let $A = (A_r)_{r>0}$ be a unital filtered C^* -algebra, r>0 (propagation) and $0 < \varepsilon < 1/4$ (control):

- $p \in A$ is an ε -r-projection if $p \in A_r$, $p = p^*$ and $\|p^2 p\| < \varepsilon$.
- an ε -r projection p has a spectral gap around 1/2 and hence gives rise by functional calculus to a projection $\kappa(p)$ s.t $\|p \kappa(p)\| < 2\varepsilon$.
- $u \in A$ is an ε -r-unitary if $u \in A_r$, $||u^* \cdot u 1|| < \varepsilon$ and $||u \cdot u^* 1|| < \varepsilon$. (in particular, ε -r-unitaries are invertible).

Remark

- if q and q' are ε -r-projections of A, then diag(q, q') and diag(q', q) are homotopic ε -r-projections in $M_2(A)$;
- if u and v are ε -r-unitaries in A, then diag(u, v), diag(v, u) and diag(uv, 1) are homotopic as 3ε -2r-unitaries in $M_2(A)$;
- If u is an ε -r-unitary in A, then $diag(u, u^*)$ and l_2 are homotopic as 3ε -2r-unitaries in $M_2(A)$.

Notations

- $P^{\varepsilon,r}(A)$ is the set of ε -r-projections of A.
- $U^{\varepsilon,r}(A)$ is the set of ε -r-unitaries of A.
- $\mathsf{P}^{\varepsilon,r}_{\infty}(A) = \bigcup_{n \in \mathbb{N}} \mathsf{P}^{\varepsilon,r}(M_n(A))$ for $\mathsf{P}^{\varepsilon,r}(M_n(A)) \hookrightarrow \mathsf{P}^{\varepsilon,r}(M_{n+1}(A)); x \mapsto \mathsf{diag}(x,0).$
- $U_{\infty}^{\varepsilon,r}(A) = \bigcup_{n \in \mathbb{N}} U^{\varepsilon,r}(M_n(A))$ for $U^{\varepsilon,r}(M_n(A)) \hookrightarrow U^{\varepsilon,r}(M_{n+1}(A))$; $x \mapsto \text{diag}(x,1)$.

Quantitative K-groups

Define for a unital C^* -algebra A, r > 0 and $0 < \varepsilon < 1/100$ the (stably)-homotopy equivalence relations on $P^{\varepsilon,r}_{\infty}(A) \times \mathbb{N}$ and $U^{\varepsilon,r}_{\infty}(A)$ (with $P^{\varepsilon,r}_{\infty}(A) = \bigcup_{n \in \mathbb{N}} P^{\varepsilon,r}(M_n(A))$ and $U^{\varepsilon,r}_{\infty}(A) = \bigcup_{n \in \mathbb{N}} U^{\varepsilon,r}(M_n(A))$):

- $(p, l) \sim (q, l')$ if there exists $k \in \mathbb{N}$ such that $diag(p, l_{k+l'})$ and $diag(q, l_{k+l})$ are homotopic as 25ε -r-projections.
- $u \sim v$ if u and v are homotopic as 25ε -2r-unitaries.

Definition

- $K_0^{\varepsilon,r}(A) = P^{\varepsilon,r}(A)/\sim and [p,l]_{\varepsilon,r}$ is the class of (p,l) mod. \sim ;
- $K_1^{\varepsilon,r}(A) = U^{\varepsilon,r}(A)/\sim and [u]_{\varepsilon,r}$ is the class of u mod. \sim .
 - $K_0^{\varepsilon,r}(A)$ is an abelian group for $[p, I]_{\varepsilon,r} + [p', I']_{\varepsilon,r} = [\operatorname{diag}(p, p'), I + I']_{\varepsilon,r};$
 - $K_1^{\varepsilon,r}(A)$ is an abelian group for $[u]_{\varepsilon,r} + [v]_{\varepsilon,r} = [\operatorname{diag}(u,v)]_{\varepsilon,r}$.
 - if A is not unital, we use its unitarization to define $K_0^{\varepsilon,r}$ and $K_1^{\varepsilon,r}$.

Structure homomorphisms

For any filtered C^* -algebra A, $0 < \varepsilon < 1/100$ and $0 < r \leqslant r'$, we have natural (compatible) structure homomorphisms

•
$$\iota_0^{\varepsilon,r,r'}: K_0^{\varepsilon,r}(A) \longrightarrow K_0^{\varepsilon,r'}(A); [p,l]_{\varepsilon,r} \mapsto [p,l]_{\varepsilon,r'};$$

•
$$\iota_1^{\varepsilon,r,r'}: K_1^{\varepsilon,r}(A) \longrightarrow K_1^{\varepsilon,r'}(A); [u]_{\varepsilon,r} \mapsto [u]_{\varepsilon,r'}.$$

$$\bullet \ \iota_*^{\varepsilon,r,r'} = \iota_0^{\varepsilon,r,r'} \oplus \iota_1^{\varepsilon,r,r'}.$$

We set

$$K_*^{\varepsilon,r}(A) = K_0^{\varepsilon,r}(A) \oplus K_1^{\varepsilon,r}(A).$$

Approximation of *K*-theory

Remark

For $\varepsilon = 0$ and $r = +\infty$, then $K_*^{\varepsilon,r}(\bullet) = K_*(\bullet)$.

For any filtered C^* -algebra A, $0 < \varepsilon < 1/4$ and 0 < r, we have natural homomorphisms (compatible with the structure homomorphisms)

- $\iota_0^{\varepsilon,r}: K_0^{\varepsilon,r}(A) \longrightarrow K_0(A); [p,l]_{\varepsilon,r} \mapsto [\kappa(p)] [l_l];$
- $\iota_1^{\varepsilon,r}: K_1^{\varepsilon,r}(A) \longrightarrow K_1(A); [u]_{\varepsilon,r} \mapsto [u]; (\varepsilon r unitaries are invertible);$
- $\bullet \ \iota_*^{\varepsilon,r} = \iota_0^{\varepsilon,r} \oplus \iota_1^{\varepsilon,r}.$

For any $\varepsilon \in (0, 1/4)$ and any projection p in A, there exists r > 0 and q an ε -r-projection of A such that $\kappa(q)$ and p are closed and hence homotopic projections. We have a similar result for unitaries

Consequence

For every $\varepsilon \in (0, 1/4)$ and $y \in K_*(A)$, there exists r and x in $K_*^{\varepsilon, r}(A)$ such that $\iota_*^{\varepsilon, r}(x) = y$.

Standard module

Definition

Let X be a compact space. A non degenerated representation (\mathcal{H}_X, ρ_X) of C(X) is an X-standard module if $\rho_X(f)$ compact implies f = 0;

Example

- if X is a connected compact riemannian manifold of dim \geqslant 1, the representation on $L^2(X)$ by pointwise multiplication is standard.
- if (\mathcal{H}_X, ρ_X) is a faithfull representation of C(X) and if \mathcal{H}_0 is an infinite dimension Hilbert space. Then the diagonal representation $(\mathcal{H}_X \otimes \mathcal{H}_0, \rho_X \otimes Id_{\mathcal{H}_0})$ is standard.

Theorem (Voiculescu)

Let (\mathscr{H}_X, ρ_X) be a X-standard module. Then any element of $K_*(X) = KK_*(C(X), \mathbb{C})$ can be represented by a K-cycle $(\mathscr{H}_X, \rho_X, T)$.

Controlled index

Let X be a compact metric space and let us fix a X-standard module (\mathscr{H}_X, ρ_X) . Let $(\mathscr{H}_X, \rho_X, T)$ be an even K-cycle for $K_*(X) = KK_*(C(X), \mathbb{C})$ with \mathscr{H}_X non degenerated and $T = \begin{pmatrix} 0 & D \\ D^* & 0 \end{pmatrix}$. Recall that we can assume that D has propagation arbitrary small. We define

$$Ind^{\varepsilon,r}(D) = [Q_D^{\varepsilon,r}, 1] \in K_0^{\varepsilon,r}(\mathscr{K}(\mathscr{H}_X)),$$

$$Q_D^{\varepsilon,r}$$
 being an ε - r -projection close to $P_D = \begin{pmatrix} DD^* & (1-D^*D)^{1/2}D^* \\ -D(1-D^*D)^{1/2} & Id-D^*D \end{pmatrix}$

Lemma

We have a homomorphism

$$Ind_{X,*}: K_*(X) \rightarrow K_*^{\varepsilon,r}(\mathscr{K}(\mathscr{H}_X))$$

 $[\mathscr{H}_X, \rho_X, T] \mapsto Ind^{\varepsilon,r}(D)$

Controlled index map with coefficients

If X is a metric compact space and A is a C^* -algebra, we set $K_*(X,A) = KK_*(C(X),A)$. The previous construction can be extended to K-cycle for $K_*(X,A)$:

Lemma

Let X be a metric compact space and fix a non degenerated standard X-module (ρ_X, \mathscr{H}_X) . For any $0 < \varepsilon < 1/100$ and any r > 0, there exists a controlled index map $\operatorname{Ind}_{X,A}^{\varepsilon,r}: K_*(X,A) \to K_*^{\varepsilon,r}(\mathscr{K}(\mathscr{H}_X) \otimes A)$ such that

- $\bullet \quad \iota_*^{\varepsilon,r,r'} \circ \operatorname{Ind}_{X,A}^{\varepsilon,r} = \operatorname{Ind}_{X,A}^{\varepsilon,r'};$
- the composition

$$K_*(X,A) \longrightarrow K_*^{\varepsilon,r}(\mathscr{K}(\mathscr{H}_X) \otimes A) \xrightarrow{\iota_*^{\varepsilon,r}} K_*(\mathscr{K}(\mathscr{H}_X) \otimes A) \cong K_*(A)$$

is the index map $\operatorname{Ind}_{X,A}: K_*(X,A) \to K_*(A)$ (induced by $X \mapsto \{pt\}$).

Behaviour for small propagation

Theorem

Let X be a finite simplicial complex equipped with a metric and let A be a C^* -algebra. For every $0 < \varepsilon < 1/200$, there exists $r_{\varepsilon} > 0$ such that for any $0 < r < r_{\varepsilon}$

$$\mathsf{Ind}_{X,\mathcal{A}}^{arepsilon,\mathit{r}}: \mathit{K}_*(X,\mathcal{A}) o \mathit{K}_*^{arepsilon,\mathit{r}}(\mathscr{K}(\mathscr{H}_X) {\otimes} \mathcal{A})$$

is an isomorphism.

Remark

For the simplicial metric, r_{ε} only depends only on the dimension of X;

Next steps

For X a finite metric space, complete

$$K_*(P_d(X), A) \stackrel{\operatorname{Ind}_{X,A}^{\varepsilon,r}}{\longrightarrow} K_*^{\varepsilon,r}(\mathscr{K}(\mathscr{H}_{P_d(X)}) \otimes A) \longrightarrow K_*^{\varepsilon,r}(\mathscr{K}(\ell^2(X)) \otimes A)$$

in a controlled assembly map;

- State a uniformly controlled version of the Coarse Baum-Connes asssembly map for families of finite metric spaces;
- show that it is stable under "cut-and pasting".