第四周

必做题:

一、己知 Γ 是平面 Π : Ax + By + Cz + D = 0上的一条光滑闭曲线,其中 $A^2 + B^2 + C^2 = 1$, Γ 所围成的区域 Σ 的面积为S:求证:

$$S = \left| \frac{1}{2} \oint_{\Gamma} (Bz - Cy) dx + (Cx - Az) dy + (Ay - Bx) dz \right|$$

- 二、设 \vec{n} 为光滑闭曲面 Σ 的外法向量, \vec{a} 为常向量.求: $\bigoplus_{\Sigma} \cos(\vec{n}, \vec{a}) \, \mathrm{d}S$.
- 三、设函数 f(x,y) 在闭区域 $D: x^2 + y^2 \le 1$ 上有二阶偏导数,且 $\frac{\partial^2 f(x,y)}{\partial x^2} + \frac{\partial^2 f(x,y)}{\partial y^2} = e^{-x^2 y^2}$.求:

$$\iint_{D} \left(x \frac{\partial f(x, y)}{\partial x} + y \frac{\partial f(x, y)}{\partial y}\right) dxdy$$

四、设 f(x), g(x) 在 [a,b] 上连续,在 (a,b) 内可导,且 2b>3a , a+b>0 , f(a)=0 , $f(\frac{2a+2b}{5})+f(\frac{3a+3b}{5})=0$,证明存在一点 $\xi\in(a,b)$,使得 $f'(\xi)+f(\xi)g'(\xi)=0$ 。

五、设平面 $\Pi: \frac{x}{3} + \frac{y}{4} + \frac{z}{5} = 1$ 和圆柱面 $\Sigma: x^2 + y^2 = 1$ 的交线为 C,求:(1) C 在 yoz 平面上的投影曲线方程;(2) C 到 xoy 平面的最短距离.

六、求经过三条平行直线 $L_1: x=y=z$, $L_2: x-1=y=z+1$, $L_3: x=y+1=z-1$ 的圆柱面的方程.

选做题:

七、设 f(x) 可微,且满足 $x = \int_0^x f(t) dt + \int_0^x t f(t-x) dt$,求(1) f(x) 的表达式;(2) $\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}} |f(t)|^n dt$. (其中 $n = 2, 3, \cdots$).

八、设函数 f(x) 在 [a,b] 上有 2n 阶连续导数且 $f^{(k)}(a) = f^{(k)}(b) = 0$, $k = 0,1,2,\cdots,2n-1$. 证明:

$$\left| \int_{a}^{b} f(x) dx \right| \leq \frac{(b-a)^{2n+1} (n!)^{2}}{(2n)! (2n+1)!} \max_{x \in [a,b]} \left| f^{(2n)}(x) \right|.$$