Universidade de São Paulo Escola de Artes, Ciências e Humanidades

ACH2011 – Cálculo I – 1º sem. 2015 Professor: Dr. José Ricardo G. Mendonça

7ª Lista de Exercícios — Logaritmos e exponenciais — 23 jun. 2015

Age is a function of mind over matter – if you don't mind, it doesn't matter. Leroy Robert "Satchel" Paige (1849–1925)

I. Logaritmos e exponenciais

- 1. Encontre a equação da reta tangente às seguintes curvas nos pontos indicados:
 - (a) $y = \ln x$ nos pontos $x = \frac{1}{2}$ e x = 2;
 - (b) $y = \ln x^3$ no ponto x = e;
 - (c) $y = xe^x$ no ponto x = 5;
 - (d) $y = x^2 e^{-x^2}$ no ponto x = 1;
- 2. Encontre a primeira e a segunda derivada das seguintes funções:
 - (a) $\ln \sin x$;
 - (b) $\sin \ln(2x+1)$;
 - (c) $\ln(x^2+1)$;
 - $(d) \ \frac{\ln 2x}{\sin x};$
 - (e) $e^{\sin 3x}$;
 - $(f) \ln(e^x + \sin x);$
 - (g) $\arcsin(e^x + x^2)$;
 - (h) e^{x^2+1} ;
 - $(i) \ \frac{1}{\sin e^{2x}};$
 - $(j) e^{-\arctan^2 x^2}$
- 3. Encontre a primeira e a segunda derivada das seguintes funções:
 - (a) 10^x ;
 - (b) 3^{-x} ;
 - (c) $x^{\sqrt{x}}$;
 - (d) $(x^2+x+1)^{(x+1)}$;
 - (d) $\log_a \sqrt{x}$, a > 0.

- 4. Dados os números reais x > 0 e a > 1, mostre que $x^a 1 \ge a(x 1)$.
- 5. Encontre o mínimo e o máximo da função $f(x) = x^2 a^{-x}$, a > 0.
- 6. Normalmente indica-se a n-ésima derivada de f(x) por $f^{(n)}(x)$; assim, $f(x) = f^{(0)}(x)$, $f'(x) = f^{(1)}(x)$, $f''(x) = f^{(2)}(x)$ e assim por diante. Mostre que a n-ésima derivada de $f(x) = xe^x$ é dada por $f^{(n)}(x) = (x+n)e^x$ e que a n-ésima derivada de $g(x) = xe^{-x}$ é dada por $g^{(n)}(x) = (-1)^n(x-n)e^{-x}$. Observação: às vezes usam-se numerais romanos para os sobrescritos, como em $f^{(ii)}(x)$, $f^{(iii)}(x)$, $f^{(iv)}(x)$ etc.
- 7. Esboce o gráfico das seguintes funções:

(a)
$$y = \ln(x^2 + 1)$$
;

(b)
$$y = x + \ln x$$
;

(c)
$$y = \ln \frac{1+x}{1-x}$$
 para $-1 < x < 1$.

- 8. Mostre que $\ln x < x$ para todo x > 1. Dica: mostre que $f(x) = \ln x x$ é estritamente decrescente para todo x > 1.
- 9. Mostre que

$$\lim_{h \to 0^+} \frac{\ln(1+h)}{h} = 1.$$

Dica: compare a área sob a curva 1/x entre os pontos x = 1 e x = 1 + h e mostre que

$$\frac{h}{1+h} < \ln(1+h) < h.$$

Desse resultado podemos concluir que para valores pequenos de |x| vale a aproximação $\ln(1\pm x)\simeq \pm x$. Verifique essa aproximação calculando, por exemplo, $\ln 0.95$ e $\ln 1.05$ em uma calculadora. *Obervação*: uma aproximação mais precisa é dada por $\ln(1+x)\simeq x-\frac{1}{2}x^2$ (verifique essa aproximação também).

- 10. Sabendo-se que $\ln 2 \simeq 0,693$, $\ln 3 \simeq 1,099$ e $\ln 10 \simeq 2,303$, calcule exatamente $\ln 5$ e aproximadamente $\ln 7$ (use o resultado do exercício anterior).
- 11. Mostre que para todo $n \in \mathbb{N}$ vale

$$\frac{1}{n+1} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n}.$$

- 12. Sejam as funções $\cosh x = \frac{1}{2}(e^x + e^{-x})$ e $\sinh x = \frac{1}{2}(e^x e^{-x})$.
 - (a) Mostre que $(\sinh x)' = \cosh x$ e que $(\cosh x)' = \sinh x$;
 - (b) Mostre que para todo x vale $\cosh^2 x \sinh^2 x = 1$
 - (c) Para valores adequados de x, determine as funções inversas de coshx e sinhx e calcule suas derivadas.

Essas funções são conhecidas como cosseno hiperbólico e seno hiperbólico e ocorrem bastante frequentemente em todas as áreas da matemática pura e aplicada.

2

- 13. Seja $a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} \ln n$ e $b_n = a_n \frac{1}{n}$ para todo inteiro $n \ge 2$.
 - (a) Usando o resultado do exercício I.11, mostre que $a_{n+1} < a_n$ e que $b_{n+1} > b_n$;
 - (b) Como a sequência de números positivos a_n é decrescente, a sequência de números positivos b_n é crescente e $b_n-a_n=-\frac{1}{n}$ se torna arbitrariamente pequeno quando n se torna arbitrariamente grande, deve existir uma constante $\gamma \in \mathbb{R}$ tal que $b_n < \gamma < a_n$ para todo inteiro positivo n. Essa constante é conhecida como constante de Euler (ou de Euler-Mascheroni) e vale $\gamma \simeq 0.577215664\cdots$. Atualmente γ é conhecida com mais de 100 bilhões de casas decimais, embora ainda não se saiba se γ é um número irracional ou não!

* -- * -- *