Introduction to Machine Learning

Praanesh Balakrishnan Nair

January 28, 2025

Contents

1	Intr	roduction]			
2	Well-posed Learning Problem by Tom Mitchell (1998)					
3	Components of a dataset					
	3.1	Features	2			
	3.2	Data Points	2			
	3.3	Feature Vector	2			
3.4 Distance and Similarity Matrix						
		3.4.1 Distance Matrix	2			
4	4 Classification					
4.1 Types of Classification Learning						
		4.1.1 Supervised Learning	3			
		4.1.2 Unsupervised Learning	3			
		4.1.3 Semi-supervised Learning	3			
	4.2	Model Accuracy	3			
		4.2.1 Error Rate				
		4.2.2 Confusion Matrix	Ġ			
		4.2.3 Receiver Operating Characteristic Curve (ROC) and Area Under the Curve (AUC)	4			
	4.3	Model Validation Techniques	4			
		4.3.1 Internal Validation	4			
		4.3.2 External Validation	4			
5	Reg	gression	4			
	5.1	Model Accuracy	F			

1 Introduction

Quote by Herbert Alexander Simon:

Learning is the process by which any system improves its performance from experience

2 Well-posed Learning Problem by Tom Mitchell (1998)

A computer program

• Performs Task T

- Has some Performance P
- Learns from Experience E

Sl. No	Task	Performance	Experience
1.	Classifying Emails as Spam/Not Spam	Number of emails correctly classified	Watching you Label Ema
2.	Playing Chess	Percent of games won	Watch enemy play
3.	Handwriting Recognition	Percent of correct recognitions	Sample images

3 Components of a dataset

3.1 Features

• Individual measurable properties, which are going to be used as input to the machine learning model. Eg. Age of people, Dimensions of a house, etc

3.2 Data Points

- Multiple samples of features.
- Eg:

Sl. No	Age	Height	Weight	BP
1	19	175	68	999
2	25	169	69	0

Each of these rows are data points. In each data point, you have different samples of the same features

3.3 Feature Vector

- Features in one data-point is often mathematically represented as a Vector
- Eg:

Sl. No	Age	Height	Weight	BP	Feature Vector
1	19	175	68	999	[19, 175, 68]
2	25	169	69	0	[25, 169, 0]

3.4 Distance and Similarity Matrix

3.4.1 Distance Matrix

- Basically Adjacency Matrix
- $d(i,j) = \text{distance between } i^{th} \text{ data point and } j^{th} \text{ data point.}$
- It's Symmetric
- Diagonal Elements are 0
- The actual distance between i^{th} data point and j^{th} data point can be measured in many ways:

- 1. Euclidean Distance = $\sqrt{\sum (x_i y_i)^2}$
- 2. Manhattan distance = $\sum |x_i y_i|$
- 3. Cosine Distance = $1 \frac{x \cdot y}{|x||y|}$

4 Classification

Here, you input some data, and the output is a classification of it.

4.1 Types of Classification Learning

4.1.1 Supervised Learning

- Classify features X_i into classes/labels Y_i
- You find the pattern of data that is associated with one label, and use that pattern to classify.

4.1.2 Unsupervised Learning

- You have only features X_i and no labels
- You find patterns, so that similar patterns form one label, and anything different will be given another label.

4.1.3 Semi-supervised Learning

The entire dataset consists of labelled and unlabelled data

- 1. Perform supervised learning on the labelled data
- 2. Now you use this to predict the labels of the unlabelled data. The predicted labels are called **psuedo-labels**.
- 3. Now do supervised learning on the combined data

4.2 Model Accuracy

4.2.1 Error Rate

- In classification, the model accuracy is quantified by the **error rate**.
- Error Rate = $\frac{\text{number of misclassifications}}{\text{total number of data points}}$
- Error Rate = $\frac{\sum_{i=1}^{n} I(y_i \neq \hat{y_i})}{n}$, where $I(y_i \neq \hat{y_i})$ is 1 if it's a mismatch, and 0 if it's a match

4.2.2 Confusion Matrix

- Matrix where:
 - rows signify Ground truth (Row1: +, Row2: -)
 - columns signify predicted output (Column1: +, Column2: -)
- If row and column have same sign, it means the model has predicted correctly (it's a **true output**).
- If row and column have opposite signs, it means the model has predicted incorrectly (it's a **false output**).

• Here are things you can derive from the confusion matrix:

Actual + Predicted + Predicted Actual + True Positive False Negative Sensitivity/Recall
Actual - False Positive True Negative Specificity
Precision Negative Predictive Value

$$- \ \, \textbf{Sensitivity} = \frac{\text{Diag. Element of Row 0}}{\text{Row 0}} = \frac{TP}{TP + FN} \\ - \ \, \textbf{Specificity} = \frac{\text{Diag. Element of Row 1}}{\text{Row 1}} = \frac{TN}{FP + TN} \\ - \ \, \textbf{Precision} = \frac{\text{Diag. Element of Column 0}}{\text{Column 0}} = \frac{TP}{TP + FP} \\ - \ \, \textbf{Negative Predictive Value} = \frac{\text{Diag. Element of Column 1}}{\text{Column 1}} = \frac{TN}{FN + TN} \\ \end{array}$$

4.2.3 Receiver Operating Characteristic Curve (ROC) and Area Under the Curve (AUC)

- ROC is the plot between True Positive and False Positive
- AUC is the area under ROC
- $0 \le AUC \le 1$
- $AUC = \int_0^1 (\mathbf{ROC} \ \mathbf{Curve})$

4.3 Model Validation Techniques

4.3.1 Internal Validation

- Seperation between clusters should be high
- Cohesion (distance between points in a cluster) should be low

4.3.2 External Validation

- 1. Dice Coefficient
 - $D(A,B) = \frac{2|A \cap B|}{|A|+|B|}$
 - If D(A, B) = 0, then there's no overlap. Similarly if D(A, B) = 1, they are the same set.
 - A could be the data we have and B could be some external data.
- 2. Jaccard Similarity Index
 - $J(A,B) = \frac{|A \cap B|}{|A \cup B|}$

5 Regression

Here, you input some data and you get a quantitative response.

5.1 Model Accuracy

- In regression, it's called the **quality of fit** and it's the quantification of the degree of closeness of predicted response and the true response
- The most commonly used measure for this, is the Mean Square Error (MSE).
- $MSE = \frac{\sum_{i=1}^{n} (y_i f(x_i))^2}{n}$, where y_i is the true value, $f(x_i)$ is the predicted value
- \bullet Accuracy of the Model $\propto \frac{1}{MSE}$