Topic

•		Cha	pter 1: Introduction to Writing Proofs in Mathematics
	•	□ 1.	1: Statements and conditional statements
		• 🗆	Tell the difference between a mathematical statement (proposition) and a sentence that is not a mathematical statement.
		• 🗆	Explain what it means for a mathematical statement to be "true" or "false".
		• 🗆	Decide whether a statement is true or false using various exploration techniques.
		• 🗆	Identify a statement as a conditional statement, and identify its hypothesis and conclusion.
		• 🗆	Construct the truth table for a simple conditional statement and state the conditions under which a conditional statement is true.
		• 🗆	Find a counterexample for a false conditional statement.
		• 🗆	Draw conclusions from conditional statements, given information about the smaller statements involved.
		• 🗆	Define the sets of real numbers, rational numbers, irrational numbers, natural numbers, and integers and determine whether these sets are closed under various arithmetic operations.
	•	□ 1.	2: Constructing direct proofs
		• 🗆	Construct examples and non-examples of a definition. (Even/odd)
		• 🗆	Construct a "know-show" table for a direct proof by use of both forward questions and backward questions.
		• 🗆	Convert a know-show table into a verbal proof (using the standards for writing outlined in the syllabus).
		• 🗆	Explain what a mathematical proof is, in general.
•		Cha	pter 2: Logical Reasoning
	•	□ 2.	.1: Statements and Logical Operators
			Identify the conjunction, disjunction, negation, and implication operators and use their notation correctly.
		• 🗆	Phrase the negation of a statement in a way that does not use the word "not".
		• 🗆	Construct truth tables for conjunctions, disjunctions, negations, and implications.
		• 🗆	Phrase a conditional statement in several different English formats.
		• 🗆	Construct truth tables for compound statements involving three or more variables.
		• 🗆	Identify a biconditional statement; construct a truth table and phrase it in several different English formats.
		• 🗆	Define the terms "tautology" and "contradiction" and use truth tables to determine if a statement is a tautology or a contradiction.
	•	□ 2.	2: Logically Equivalent Statements
		• 🗆	Use truth tables to determine if two statements are logically equivalent.
		• 🗆	State the converse and contrapositive of a conditional statement.
		• 🗆	State DeMorgan's Laws and apply them to simplify a statement involving negations and either conjunctions or disjunctions.
		• 🗆	Derive, state and use the results of Theorem 2.6.
			Form the negation of a conditional statement.
		• 🗆	Use previously-established logical equivalencies to determine if two statements are logically equivalent.
		• 🗆	Derive, state, and use the results of Theorem 2.8 (Important Logical Equivalencies).
	•	□ 2 .	3: Open Sentences and Sets
		• 🗆	Define the term "set" and write the contents of a set using the roster method.
		• 🗆	Use correct notation for the sets real numbers, rational numbers, integers, and natural numbers.
		• 🗆	Use correct notation to denote that an object is an element of a set (or not an element of a set).
		• 🗆	Define what it means for two sets to be equal.
		• 🗆	Define what it means for one set to be a subset of another, and use correct notation to denote this relationship.
		• 🗆	Define the term "open sentence" (a.k.a. "predicate" or "propositional function") and distinguish between an open sentence and a logical statement.
		• 🗆	Find values of variables that make an open sentence true or false; then determine the truth set of that open

 $\bullet \;\;\square \;$ Write the contents of a set using set builder notation.

sentence.

<u>Topic</u>
 Define the term "empty set" and use correct notation to denote this set.
• □ 2.4: Quantifiers and Negations
• Define the terms "universal quantifier" and "existential quantifier"; identify these quantifiers in practice and
use correct notation to denote them. • Determine whether a quantified statement is true or false.
 □ Phrase both universally and existentially quantified statements in several different English formats.
 ■ Find a counterexample for a (false) universally quantified statement.
• Form the negation of universally quantified and existentially quantified statements; write these negations in
forms that do not use the negation symbol.
Rewrite a conditional statement as a universally quantified statement. Construct examples and pen examples of definitions that involve quantified statements.
 Construct examples and non-examples of definitions that involve quantified statements. Phrase doubly-quantified statements in English, and determine if such statements are true or false.
 ■ Form the negation of a doubly-quantified statement.
• □ Chapter 3: Constructing and Writing Proofs in Mathematics
• 3.1: Direct Proofs
• State and instantiate the definitions of "divides", "divisor", "factor", and "multiple" and use correct notation to
work with these concepts.
• Explain what a "proof" is and what it takes for a proof to be correct.
 Explain the concepts of "undefined terms" and "axioms" and give examples of these in real life. Explain the terms "conjecture", "theorem", "proposition", "lemma", and "corollary".
 ■ Explain the terms conjecture, theorem, proposition, lemma, and coronary. ■ Construct a know-show table for a conditional statement using a combination of forward and backward
steps.
 ■ Convert a completed know-show table into a well-written English paragraph proof that adheres to MTH 210
writing guidelines. ■ □ State what it means for two integers to be "congruent modulo n".
 ■ Determine the truth value of propositions involving divisibility, integer congruence, and other basic
arithmetic concepts. If a proposition is true, construct a correct proof. If not, demonstrate a working
counterexample.
• □ 3.2: More Methods of Proof
 Write the contrapositive of a conditional statement (possibly complex). Construct a proof for a conditional statement by proving the contrapositive.
 Construct a proof for a biconditional statement by proving two conditional statements.
 ■ Explain the concept of a "constructive proof" and write a correct constructive proof for a proposition when it
makes sense to do so.
 Explain the difference between a constructive and non-constructive proof.
• 3.3: Proof by Contradiction
 Explain the basic strategy behind a proof by contradiction and why such a proof should be convincing. Correctly formulate all the assumptions made at the beginning of a proof by contradiction, and then
correctly state what you want to show having made those assumptions.
 Explain some situations in which a proof by contradiction might be an appropriate strategy for proof.
• Construct a correct proof by contradiction for a proposition when it makes sense to do so, including: proofs
of the nonexistence of an object, proofs involving rational and irrational numbers, and so on. ■ □ Prove that sqrt(2) is irrational.
• □ 3.4: Using Cases in Proofs
 Explain the basic concept and strategy behind a proof using cases.
 ■ Give examples of situations in which using cases in a proof might be appropriate, and give the cases
appropriate for each such situation.
 Construct correct proofs using cases for a proposition when it makes sense to do so, including: proofs involving even/odd integers, proofs involving rational/irrational numbers, and proofs involving absolute
values.
• □ 3.5: The Division Algorithm and Congruence
 ■ State the Division Algorithm and use it to write an integer as a combination of a quotient and remainder.

<u>Topic</u>	
	Construct a correct proof using cases where the cases are created by the remainder in the Division Algorithm.
	Derive, state, and use the results of Theorems 3.28 and 3.30 (Properties of Congruence Modulo n). Construct a correct proof using cases where the cases are created by congruence modulo n.
	ter 4: Mathematical Induction
•	: The Principle of Mathematical Induction
	State and instantiate the definition of "inductive set".
• 🗆 🤄	State the Principle of Mathematical Induction and explain why it is true.
• 🗆 E	Explain the basic strategy behind a proof by induction and why such a proof should be convincing.
• 🗆 🤄	State the basis step in a proof by induction.
• 🗆 🤄	State the inductive step and the inductive hypothesis in a proof by induction.
• 🗆 (Construct a complete and correct proof using mathematical induction.
	: Other Forms of Mathematical Induction
	State and instantiate the definitions of n! (n factorial), "prime number", and "composite number".
N	State the Extended Principle of Mathematical Induction; explain how it is different from the Principle of Mathematical Induction and why we might want to use it.
	Construct a complete and correct proof using the Extended Principle of Mathematical Induction.
	State the Second Principle of Mathematical Induction; explain how it is different from the Principle of
	Mathematical Induction and why we might want to use it. Construct a complete and correct proof using the Second Principle of Mathematical Induction.
	: Induction and Recursion
_	ist elements of a sequence whose terms are defined recursively (including the integers in the Fibonacci
	sequence).
• 🗆 (Construct proofs using mathematical induction for propositions involving recursively-defined sequences.
• □ Chap	ter 5: Set Theory
	: Sets and Operations on Sets
	State and instantiate the definitions of "intersection", "union", "set difference", "complement", "proper subset
	llustrate the concepts of intersection, union, difference, and complement using a Venn diagram.
	Phrase a statement about proper subsets into a quantified statement and vice-versa.
	State and use the result of Theorem 5.2 (test for set equality).
	Construct the power set of a finite set.
	State and instantiate the definition of "cardinality" of a finite set.
	: Proving Set Relationships Jse the "choose an element" method to prove that one set is a subset of another.
	Jse the "choose an element" method to prove that one set is a subset of another.
	State and instantiate the definition of "disjoint" sets.
	Prove that two sets are disjoint.
	: Properties of Set Operations
	Derive, state, and use the results of Theorem 5.18 (Algebra of Set Operations).
	Derive, state, and use the results of Theorem 5.20.
	Prove that three or more statements are equivalent.
• □ 5.4	: Cartesian Products
	State and instantiate the definitions of "ordered pair", "coordinates", and the "Cartesian product" of two sets.
	/isualize Cartesian products of sets of real numbers in the plane.
• 🗆 [Derive, state, and use the results of Theorem 5.25.
• □ <i>5.5</i>	: Indexed Families of Sets

• \square State and instantiate the definition of the union and intersection of an indexed family of sets.

• \square Derive, state, and use the results of Theorem 5.30.

• ☐ Chapter 6: Functions

• ☐ 6.1: Introduction to Functions

<u>Topic</u>
 State and instantiate the definitions of "function", "domain", "codomain", "range", "image" (of a point and of a function), and "preimage" (of a point), and use correct mathematical notation when working with functions. Exhibit fluency with working with functions whose domains or codomains are not sets of real numbers and which are not given by closed-form formulas (e.g. the birthday function, the sum of divisors function). Represent a function between finite sets using an arrow diagram.
• □ 6.2: More about Functions
 State what it means for two functions to be equal, and either prove or disprove that two functions are equal.
 ■ State and instantiate the "identity function" on a set.
 Work with functions involving congruences, mathematical processes, matrices, and sequences. Work with functions having more than one input.
• □ 6.3: Injections, Surjections, and Bijections
 State and instantiate the definitions of "injection", "surjection", and "bijection".
 Determine whether a given function is an injection, surjection, or bijection.
 Give examples of functions that are injections but not surjections; surjections but not injections; neither injections nor surjections; or bijections.
• □ 6.4: Composition of Functions
• State and instantiate the definition of the "composition" of two functions.
 Derive, state, and use the results of Theorem 6.20.
• 6.5: Inverse Functions
 Represent a function as a set of ordered pairs. State and instantiate the definition of the "inverse" of a function.
 ■ State and instantiate the definition of the inverse of a function. ■ Derive, state, and use the result of Theorem 6.25 (conditions under which f\(^{-1}\) is a function).
 Explain the notation for inverse functions and use this notation correctly.
 Derive, state, and use the result of Corollary 6.28 (compositions of inverse functions).
 G.6: Functions Acting on Sets State and instantiate the definitions of the "image" and "preimage" of a set under a function.
 ■ Derive, state, and use the results of Theorem 6.34 (images of unions and intersections) and 6.35
(preimages of unions and intersections).
• Chapter 7: Equivalence Relations
□ 7.1: Relations
 State and instantiate the definition of a "relation" from one set to another (or on a set by itself).
 Determine whether a set of ordered pairs forms a relation. If so, find the domain and the range.
 Work with standard mathematical relations given in Table 7.1.
 ■ Draw the directed graph for a relation.
• 🗆 7.2: Equivalence Relations
 Determine whether a relation is symmetric, reflexive, and/or transitive. Give examples of relations which
 have exactly zero, one, two, or three of these three properties. State and instantiate the definition of "equivalence relation" on a set, and use correct mathematical notation when working with equivalence relations.
 Give examples of standard mathematical equivalence relations, including equality, congruence modulo n, and equivalence of rational numbers.
• 🗆 7.3: Equivalence Classes
 Determine the equivalence class of a point under a given equivalence relation.
 Derive, state, and use the results of Theorem 7.14 (properties of equivalence classes).
 ■ State and instantiate the definition of a "partition" of a set.
 ■ Derive, state, and use the results of Theorem 7.18 (equivalence classes yield partitions and vice versa).
□ 7.4: Modular Arithmetic
$ullet$ State and instantiate the definition of the "set of integers modulo n" (Z_n).
 ■ Derive, state, and use the results of Theorems 3.28 and Corollary 7.19 (properties of modular arithmetic).
 ■ Carry out addition and multiplication modulo n.
 ■ Prove the validity of divisibility tests for 3 and 9.