Topology: Homework 2

Peter Kagey

September 11, 2018

Problem 1.

Let

$$p: \mathbb{R} \to S^1 \text{ by } x \mapsto (\cos x, \sin x)$$

 $\alpha: [0,1] \to S^1 \text{ by } t \mapsto p(2\pi t),$

let f be some map with the property that f(-x, -y) = -f(x, y) And let $\widetilde{\beta} \colon [0, 1] \to \mathbb{R}$ be a lift of the path $\beta = f \circ \alpha$.

a. Show that there exists an integer $n_0 \in \mathbb{Z}$ such that $\widetilde{\beta}(\frac{1}{2}) = \widetilde{\beta}(0) + 2n_0\pi + \pi$.

Proof.

We know that $p \circ \widetilde{\beta} = f \circ \alpha$, which is to say,

$$(\cos(\widetilde{\beta}(t)), \sin(\widetilde{\beta}(t))) = f(\cos(2\pi t), \sin(2\pi t)).$$

And let's further decompose f as $f(x,y) = (f_x(x,y), f_y(x,y))$.

Thus, when t = 0, $\cos(\widetilde{\beta}(0)) = f_x(1,0)$. Similarly, when $t = \frac{1}{2}$, $\cos(\widetilde{\beta}(\frac{1}{2})) = f_x(-1,0) = -f_x(1,0)$.

$$\cos(\widetilde{\beta}(0)) + \cos(\widetilde{\beta}(\frac{1}{2})) = 0$$

so $\widetilde{\beta}(0)$ and $\widetilde{\beta}(\frac{1}{2})$ differ by π up to some multiple of 2π :

$$\widetilde{\beta}(\frac{1}{2}) = \widetilde{\beta}(0) + 2n_0\pi + \pi.$$

b. Show that, for the integer n_0 of part \mathbf{a} , $\widetilde{\beta}(t) = \widetilde{\beta}(t - \frac{1}{2}) + 2n_0\pi + \pi$ for every $t \in \left[\frac{1}{2}, 1\right]$.

Proof.

Writing things explicitly gives

$$\begin{split} (\cos(\widetilde{\beta}(t)), \sin(\widetilde{\beta}(t))) &= f(\cos(2\pi t), \sin(2\pi t)) \\ (\cos(\widetilde{\beta}(t-\frac{1}{2})), \sin(\widetilde{\beta}(t-\frac{1}{2}))) &= f((\cos(2\pi (t-\frac{1}{2})), \sin(2\pi (t-\frac{1}{2})))) \\ &= f((\cos(2\pi t - \pi), \sin(2\pi t - \pi))) \\ &= f((-\cos(2\pi t), -\sin(2\pi t))) \\ &= -f((\cos(2\pi t), \sin(2\pi t))) \end{split}$$

So similarly to part a,

$$\cos(\widetilde{\beta}(t)) + (\cos(\widetilde{\beta}(t - \frac{1}{2})) = f_x(\cos(2\pi t), \sin(2\pi t)) - f_x(\cos(2\pi t), \sin(2\pi t)) = 0$$

the arguments $\widetilde{\beta}(t)$ and $\widetilde{\beta}(t-\frac{1}{2})$ must differ by π up to a multiple of 2π . By continuity, this multiple of 2π must be the same as in part **a**. Thus

$$\widetilde{\beta}(t) = \widetilde{\beta}(t - \frac{1}{2}) + 2n_0\pi + \pi.$$

Thus

$$\widetilde{\beta}(1) = \widetilde{\beta}(\frac{1}{2}) + 2n_0\pi + \pi,$$

$$\widetilde{\beta}(\frac{1}{2}) = \widetilde{\beta}(0) + 2n_0\pi + \pi, \text{ and so}$$

$$\widetilde{\beta}(1) = \widetilde{\beta}(0) + 4n_0\pi + 2\pi,$$

and because $4n_0 + 2 \neq 0$ for all $n_0 \in \mathbb{Z}$, $\widetilde{\beta}(1) \neq \widetilde{\beta}(0)$.

c. Show that, if $x_0 = (1,0)$ and $y_0 = f(1,0)$, the induced homomorphism $f_*: \pi_1(S^1; x_0) \to \pi_1(S^1; y_0)$ is non-trivial.

Proof.

Consider the generating element $[\alpha] \in \pi(S^1; x_0)$, which maps to $[f \circ \alpha] = [p \circ \widetilde{\beta}]$ under f_* . Since part **b** shows that $\widetilde{\beta}(1) \neq \widetilde{\beta}(0)$, we know that $p \circ \widetilde{\beta}$ must describe a non-trivial loop around S^1 , and thus the homomorphism is non-trivial.

- **d.** Consider the 2-dimensional sphere S^2 and identify the unit circle S^1 to its equator.
 - (i) Show that for every map $F: S^2 \to S^1$, the restriction $f: S^1 \to S^1$ which sends $(x, y) \mapsto F(x, y, 0)$ is homotopic to a constant map.

Proof.

This is similar to ... \Box

(ii) Show that there is no map $F: S^2 \to S^1$ such that F(-x, -y, -z) = -F(x, y, z) for every $(x, y, z) \in S^2$.

Proof. This follows from parts \mathbf{c} and \mathbf{d} (i). Suppose that there were such a map. Then its restriction to the equator would satisfy the conditions for f above, and thus by part \mathbf{c} , it would not be nullhomotopic. However, part \mathbf{d} (i) showed that such a map must be nullhomotopic, a contradiction. Thus no map may exist.

e. Let $f: S^2 \to \mathbb{R}^2$ be continuous. Show that there exists at least one pair of antipodal points that have the same image under g.

Proof. As per the hint, consider the map $F: S^2 \to S^1$ by

$$F(x,y,z) = \frac{g(x,y,z) - g(-x,-y,-z)}{||g(x,y,z) - g(-x,-y,-z)||}.$$

This function meets the criteria in part d (ii), namely

$$-F(x,y,z) = \frac{g(-x,-y,-z) - g(x,y,z)}{||g(x,y,z) - g(-x,-y,-z)||} = \frac{g(-x,-y,-z) - g(x,y,z)}{||g(-x,-y,-z) - g(x,y,z)||} = F(-x,-y,-z).$$

Therefore no such continuous function exists on all of S^2 , and so there exists some (x, y, z) such that ||g(-x, -y, -z) - g(x, y, z)|| = 0, and thus there exists some (x, y, z) such that g(-x, -y, -z) = g(x, y, z).

- **f.** Let A and B be two bounded domains in the xy-plane $\mathbb{R}^2 \times \{0\} \subset \mathbb{R}^3$.
 - (i) For each unit vector $\vec{u} \in S^2 \subset \mathbb{R}^3$, let $P_{\vec{u}}$ be the plane in \mathbb{R}^3 passing through the point (0,0,1) and orthogonal to \vec{u} , and let $H_{\vec{u}}$ be the half-space delimited by $P_{\vec{u}}$ such that \vec{u} points toward the interior of $H_{\vec{u}}$.

Show that there exists $\vec{u} \in S^2$ such that $\operatorname{area}(A \cap H_{\vec{u}}) = \frac{1}{2}\operatorname{area}(A)$ and $\operatorname{area}(B \cap H_{\vec{u}}) = \frac{1}{2}\operatorname{area}(B)$.

Proof. As suggested by the hint, let $g: S^2 \to \mathbb{R}^2$ be defined by

$$g(\vec{u}) = (\operatorname{area}(A \cap H_{\vec{u}}), \operatorname{area}(B \cap H_{\vec{u}})).$$

Notice that $P_{-\vec{u}} = P_{\vec{u}}^c$, so

$$g(-\vec{u}) = (\operatorname{area}(A) - \operatorname{area}(A \cap H_{\vec{u}}), \operatorname{area}(B) - \operatorname{area}(B \cap H_{\vec{u}}))$$

and moreover, $g(\vec{u}) = g(-\vec{u})$ precisely when

$$\begin{aligned} &\operatorname{area}(A\cap H_{\overrightarrow{u}}) = \frac{1}{2}\operatorname{area}(A) \\ &\operatorname{area}(B\cap H_{\overrightarrow{u}}) = \frac{1}{2}\operatorname{area}(B). \end{aligned}$$

It takes some measure-theoretic argument to show that g is continuous, but taking that for granted, part \mathbf{e} proves that there exists a pair of antipodal points that have the same image under g. Thus the desired vector \vec{u} is the one that satisfies the antipodal equality property.

(ii) Show that there exists a line in \mathbb{R}^2 that divides each of A and B into halves of equal area.

Proof. Simply choose any vector \vec{u} that satisfies part \mathbf{f} (i), and take the line which is the intersection of $P_{\vec{u}}$ and the xy-plane.