MATH 239 Spring 2014: Assignment 7 Due: 3:00 PM, Tuesday July 8, 2014 in the dropboxes outside MC 4066

Last Name:		First Name:
I.D. Number:		Section:
Mark (For the marker only):	/28	
	a proof. If it is	ut any graph G and three of its vertices u, v, w , determine whether false, give a counterexample with appropriate explanations. Hegree at least 2.
(b) If there is a walk containing u	v,v,w, then then	re is a path containing u, v, w .
(c) If there exist a cycle containing vertices u, w .	ing vertices u, v	v and a cycle containing vertices v, w , then there exists a cycle

2. Consider the following proposition.

Proposition. Let G be a non-empty graph where every vertex has degree at least k. Then G contains a path of length at least k.

(a) $\{2 \text{ marks}\}\$ The following is an incorrect proof of the proposition using induction on k. Determine the main flaw of this proof.

Bad proof. When k = 1, G has at least 1 vertex v with degree at least 1, so it has at least one neighbour w. Then v, w is a path of length at least 1 in G.

Assume that the statement is true for k-1. Let G be a graph where every vertex has degree at least k-1. By induction hypothesis, there exists a path $P=v_1,v_2,\ldots,v_k$ of length k-1. Construct a new graph G' by adding a new vertex x and join x with every vertex in G. Then every vertex has degree at least k in G'. In particular, $v_k x$ is an edge, so v_1, v_2, \ldots, v_k, x is a path of length k in G'. Therefore, G' contains a path of length at least k.

(b) {4 marks} Give a correct proof of this proposition. (You do not need to use induction.)

3.	$\{4 \text{ marks}\}\ \text{Let}\ k \geq 2\ \text{be an integer}.$ Let G be a graph where every vertex has degree at least k. Prove that G contains	ins
	at least $\lfloor k/2 \rfloor$ edge-disjoint cycles (i.e. no two of these cycles share any edges, but they may share some vertices)	
1	$\{4 \text{ marks}\}\ \text{Let } G \text{ be a bipartite graph with } n \text{ vertices. Prove that if every vertex has degree at least } \frac{n}{4}+1$, then	G
т.	is connected.	u

5	For some $k \in \mathbb{N}$.	let G be	a connected	granh	with $2k$	odd-degree	vertices	and any	z number	of even-	legree v	vertices
Ο.	TOI BOILLO IN C IV.	, ice o be	a comicetta	SIGPII	WIUII 210	oud degree	VCI UICCO,	and an	y mumber	OI CVCII (icgicc '	v CI UICCS.

(a) $\{4 \text{ marks}\}\$ Prove that there exist k walks such that each edge in G is used in exactly one walk exactly once. What is so special about the end vertices of the k walks? (Hint: Add some edges to create an Eulerian circuit, and then remove them.)

(b) $\{2 \text{ marks}\}\$ Prove that it is not possible that a set of k-1 walks in G uses each edge exactly once. (This shows that to cover G with walks containing no repeated edges, you need at least k walks.)

(c) $\{2 \text{ marks}\}\$ Partition the edges of the leftmost graph below into as few walks as possible.

