# **Probability & Information Theory**

Shan-Hung Wu shwu@cs.nthu.edu.tw

Department of Computer Science, National Tsing Hua University, Taiwan

Machine Learning

#### Outline

- 1 Random Variables & Probability Distributions
- 2 Multivariate & Derived Random Variables
- 3 Bayes' Rule & Statistics
- 4 Application: Principal Components Analysis
- 5 Technical Details of Random Variables
- 6 Common Probability Distributions
- 7 Common Parametrizing Functions
- Information Theory
- 9 Application: Decision Trees & Random Forest

#### Outline

- 1 Random Variables & Probability Distributions
- 2 Multivariate & Derived Random Variables
- 3 Bayes' Rule & Statistics
- 4 Application: Principal Components Analysis
- 5 Technical Details of Random Variables
- 6 Common Probability Distributions
- 7 Common Parametrizing Functions
- 8 Information Theory
- 9 Application: Decision Trees & Random Forest

### Random Variables

- A random variable x is a variable that can take on different values randomly
  - E.g.,  $Pr(x = x_1) = 0.1$ ,  $Pr(x = x_2) = 0.3$ , etc.
  - Technically, x is a function that maps events to a real values
- Must be coupled with a probability distribution P that specifies how likely each value is
  - ullet  $\mathbf{x} \sim \mathbf{P}(oldsymbol{ heta})$  means "x has distribution P parametrized by  $oldsymbol{ heta}$ "

- If x is discrete, P(x = x) denotes a *probability mass function*  $P_x(x) = Pr(x = x)$ 
  - E.g., the output of a fair dice has discrete uniform distribution with P(x) = 1/6

- If x is discrete, P(x = x) denotes a *probability mass function*  $P_x(x) = Pr(x = x)$ 
  - E.g., the output of a fair dice has discrete uniform distribution with P(x) = 1/6
- If x is continuous, P(x = x) denotes a *probability density function*  $p_x(x) > 0$

- If x is discrete, P(x = x) denotes a *probability mass function*  $P_x(x) = Pr(x = x)$ 
  - E.g., the output of a fair dice has discrete uniform distribution with P(x) = 1/6
- If x is continuous, P(x = x) denotes a *probability density function*  $p_x(x) \ge 0$ 
  - Is  $p_{\mathbf{x}}(\mathbf{x})$  a probability?

- If x is discrete, P(x = x) denotes a *probability mass function*  $P_x(x) = Pr(x = x)$ 
  - E.g., the output of a fair dice has discrete uniform distribution with P(x) = 1/6
- If x is continuous, P(x = x) denotes a *probability density function*  $p_x(x) \ge 0$ 
  - Is  $p_x(x)$  a probability? **No**, it is "rate of increase in probability at x"

$$\Pr(a \le x \le b) = \int_{[a,b]} p(x) dx$$

- If x is discrete, P(x = x) denotes a *probability mass function*  $P_x(x) = Pr(x = x)$ 
  - E.g., the output of a fair dice has discrete uniform distribution with P(x) = 1/6
- If x is continuous, P(x = x) denotes a *probability density function*  $p_x(x) \ge 0$ 
  - Is  $p_x(x)$  a probability? **No**, it is "rate of increase in probability at x"

$$\Pr(a \le x \le b) = \int_{[a,b]} p(x) dx$$

- $p_{\rm x}(x)$  can be greater than 1
- E.g., a continuous uniform distribution within [a,b] has p(x) = 1/b-a if  $x \in [a,b]$ ; 0 otherwise

# Marginal Probability

- $\bullet$  Consider a probability distribution over a set of variables, e.g., P(x,y)
- The probability distribution over the subset of random variables called the marginal probability distribution:

$$P(x = x) = \sum_{y} P(x, y)$$
 or  $\int p(x, y)dy$ 

Also called the sum rule of probability

# **Conditional Probability**

Conditional density function:

$$P(x = x | y = y) = \frac{P(x = x, y = y)}{P(y = y)}$$

• Defined only when P(y = y) > 0

# Conditional Probability

Conditional density function:

$$P(x = x | y = y) = \frac{P(x = x, y = y)}{P(y = y)}$$

- Defined only when P(y = y) > 0
- Product rule of probability:

$$P(x^{(1)},\cdots,x^{(n)}) = P(x^{(1)})\Pi_{i=2}^n P(x^{(i)}\,|\,x^{(1)},\cdots,x^{(i-1)})$$

• E.g., 
$$P(a,b,c) = P(a|b,c)P(b|c)P(c)$$

## Independence and Conditional Independence

We say random variables x is independent with y iff

$$P(x | y) = P(x)$$

- Implies P(x,y) = P(x)P(y)
- Denoted by  $x \perp y$

## Independence and Conditional Independence

We say random variables x is independent with y iff

$$P(x | y) = P(x)$$

- Implies P(x,y) = P(x)P(y)
- Denoted by  $x \perp y$
- We say random variables x is conditionally independent with y given z iff

$$P(x | y, z) = P(x | z)$$

- Implies P(x,y|z) = P(x|z)P(y|z)
- Denoted by  $x \perp y \mid z$

### Expectation

The expectation (or expected value or mean) of some function f with respect to x is the "average" value that f takes on:<sup>1</sup>

$$\mathrm{E}_{\mathbf{x} \sim \mathrm{P}}[\mathrm{f}(\mathbf{x})] = \sum_{\mathbf{x}} P_{\mathbf{x}}(\mathbf{x}) f(\mathbf{x}) \text{ or } \int p_{\mathbf{x}}(\mathbf{x}) f(\mathbf{x}) d\mathbf{x} = \mu_{\mathrm{f}(\mathbf{x})}$$

Shan-Hung Wu (CS, NTHU)

 $<sup>^{1}</sup>$ The bracket  $[\cdot]$  here is used to distinguish the parentheses inside and has nothing to do with functionals.

### Expectation

The expectation (or expected value or mean) of some function f with respect to x is the "average" value that f takes on:<sup>1</sup>

$$E_{\mathbf{x} \sim \mathbf{P}}[\mathbf{f}(\mathbf{x})] = \sum_{\mathbf{x}} P_{\mathbf{x}}(\mathbf{x}) f(\mathbf{x}) \text{ or } \int p_{\mathbf{x}}(\mathbf{x}) f(\mathbf{x}) d\mathbf{x} = \mu_{\mathbf{f}(\mathbf{x})}$$

• Expectation is linear: E[af(x) + b] = aE[f(x)] + b for deterministic a and b

Shan-Hung Wu (CS, NTHU)

The bracket  $[\cdot]$  here is used to distinguish the parentheses inside and has nothing to do with functionals.

## Expectation

The expectation (or expected value or mean) of some function f with respect to x is the "average" value that f takes on:<sup>1</sup>

$$\mathrm{E}_{\mathbf{x} \sim \mathrm{P}}[\mathbf{f}(\mathbf{x})] = \sum_{\mathbf{x}} P_{\mathbf{x}}(\mathbf{x}) f(\mathbf{x}) \text{ or } \int p_{\mathbf{x}}(\mathbf{x}) f(\mathbf{x}) d\mathbf{x} = \mu_{\mathrm{f}(\mathbf{x})}$$

- Expectation is linear: E[af(x) + b] = aE[f(x)] + b for deterministic a and b
- E[E[f(x)]] = E[f(x)], as E[f(x)] is deterministic

Shan-Hung Wu (CS, NTHU)

 $<sup>^{1}</sup>$ The bracket  $[\cdot]$  here is used to distinguish the parentheses inside and has nothing to do with functionals.

## **Expectation over Multiple Variables**

Defined over the join probability distribution, e.g.,

$$E[f(x,y)] = \sum_{x,y} P_{x,y}(x,y)f(x,y) \text{ or } \int_{x,y} p_{x,y}(x,y)f(x,y)dxdy$$

# **Expectation over Multiple Variables**

• Defined over the join probability distribution, e.g.,

$$E[f(x,y)] = \sum_{x,y} P_{x,y}(x,y)f(x,y) \text{ or } \int_{x,y} p_{x,y}(x,y)f(x,y)dxdy$$

- $E[f(x)|y=y] = \int p_{x|y}(x|y)f(x)dx$  is called the **conditional** expectation
- E[f(x)g(y)] = E[f(x)]E[g(y)] if x and y are independent [Proof]

### **Variance**

 The variance measures how much the values of f deviate from its expected value when seeing different values of x:

$$\text{Var}[f(x)] = E\left[(f(x) - E[f(x)])^2\right] = \sigma_{f(x)}^2$$

ullet  $\sigma_{f(x)}$  is called the **standard deviation** 

### Variance

 The variance measures how much the values of f deviate from its expected value when seeing different values of x:

$$Var[f(x)] = E\left[(f(x) - E[f(x)])^2\right] = \sigma_{f(x)}^2$$

- $\bullet$   $\sigma_{f(x)}$  is called the **standard deviation**
- $Var[f(x)] = E[f(x)^2] E[f(x)]^2$  [Proof]
- $Var[af(x) + b] = a^2 Var[f(x)]$  for deterministic a and b [Proof]

#### Covariance I

 Covariance gives some sense of how much two values are linearly related to each other

$$Cov[f(x),g(y)] = E\left[(f(x)-E[f(x)])(g(y)-E[g(y)])\right]$$

- If sign positive, both variables tend to take on high values simultaneously
- If sign negative, one variable tend to take on high value while the other taking on low one

#### Covariance I

 Covariance gives some sense of how much two values are linearly related to each other

$$Cov[f(x),g(y)] = E\left[(f(x)-E[f(x)])(g(y)-E[g(y)])\right]$$

- If sign positive, both variables tend to take on high values simultaneously
- If sign negative, one variable tend to take on high value while the other taking on low one
- If x and y are independent, then Cov(x, y) = 0 [Proof]
  - The converse is **not** true as X and Y may be related in a nonlinear way
  - E.g.,  $y = \sin(x)$  and  $x \sim \text{Uniform}(-\pi, \pi)$

### Covariance II

• 
$$Var(ax + by) = a^2 Var(x) + b^2 Var(y) + 2abCov(x, y)$$
 [Proof]

#### Covariance II

- $Var(ax + by) = a^2Var(x) + b^2Var(y) + 2abCov(x, y)$  [Proof] • Var(x + y) = Var(x) + Var(y) if x and y are independent
- Cov(ax+b, cy+d) = acCov(x, y) [Proof]

### Covariance II

- $Var(ax + by) = a^2Var(x) + b^2Var(y) + 2abCov(x, y)$  [Proof] • Var(x + y) = Var(x) + Var(y) if x and y are independent
- Cov(ax + b, cy + d) = acCov(x, y) [Proof]
- Cov(ax + by, cw + dv) =acCov(x, w) + adCov(x, v) + bcCov(y, w) + bdCov(y, v) [Proof]

### Outline

- 1 Random Variables & Probability Distributions
- 2 Multivariate & Derived Random Variables
- 3 Bayes' Rule & Statistics
- 4 Application: Principal Components Analysis
- 5 Technical Details of Random Variables
- 6 Common Probability Distributions
- 7 Common Parametrizing Functions
- 8 Information Theory
- 9 Application: Decision Trees & Random Forest

- ullet A multivariate random variable is denoted by  ${f x} = [x_1, \cdots, x_d]^{ op}$ 
  - Normally,  $x_i$ 's (attributes or variables or features) are dependent with each other
  - ullet  $P(oldsymbol{x})$  is a joint distribution of  $x_1,\cdots,x_d$

- A multivariate random variable is denoted by  $\mathbf{x} = [x_1, \cdots, x_d]^{\top}$ 
  - Normally,  $x_i$ 's (attributes or variables or features) are dependent with each other
  - $P(\mathbf{x})$  is a joint distribution of  $x_1, \dots, x_d$
- The *mean* of **x** is defined as  $\mu_{\mathbf{x}} = \mathrm{E}(\mathbf{x}) = [\mu_{x_1}, \cdots, \mu_{x_d}]^{\top}$

- ullet A multivariate random variable is denoted by  ${f x} = [x_1, \cdots, x_d]^{ op}$ 
  - Normally,  $x_i$ 's (attributes or variables or features) are dependent with each other
  - $P(\mathbf{x})$  is a joint distribution of  $x_1, \dots, x_d$
- The *mean* of **x** is defined as  $\mu_{\mathbf{x}} = \mathrm{E}(\mathbf{x}) = [\mu_{x_1}, \cdots, \mu_{x_d}]^{\top}$
- The covariance matrix of x is defined as:

$$\Sigma_{\mathbf{x}} = \left[ egin{array}{cccc} \sigma_{\mathrm{x}_1}^2 & \sigma_{\mathrm{x}_1,\mathrm{x}_2} & \cdots & \sigma_{\mathrm{x}_1,\mathrm{x}_d} \ \sigma_{\mathrm{x}_2,\mathrm{x}_1} & \sigma_{\mathrm{x}_2}^2 & \cdots & \sigma_{\mathrm{x}_2,\mathrm{x}_d} \ dots & dots & \ddots & dots \ \sigma_{\mathrm{x}_d,\mathrm{x}_1} & \sigma_{\mathrm{x}_d,\mathrm{x}_2} & \cdots & \sigma_{\mathrm{x}_d}^2 \end{array} 
ight]$$

• 
$$\sigma_{x_i,x_i} = \text{Cov}(x_i, x_j) = E[(x_i - \mu_{x_i})(x_j - \mu_{x_j})] = E(x_i x_j) - \mu_{x_i} \mu_{x_i}$$

- A multivariate random variable is denoted by  $\mathbf{x} = [x_1, \dots, x_d]^{\top}$ 
  - Normally,  $x_i$ 's (attributes or variables or features) are dependent with each other
  - $P(\mathbf{x})$  is a joint distribution of  $x_1, \dots, x_d$
- The *mean* of **x** is defined as  $\mu_{\mathbf{x}} = \mathrm{E}(\mathbf{x}) = [\mu_{x_1}, \cdots, \mu_{x_d}]^{\top}$
- The covariance matrix of x is defined as:

$$\Sigma_{\mathbf{x}} = \left[ egin{array}{cccc} oldsymbol{\sigma}_{\mathbf{x}_1}^2 & oldsymbol{\sigma}_{\mathbf{x}_1,\mathbf{x}_2} & \cdots & oldsymbol{\sigma}_{\mathbf{x}_1,\mathbf{x}_d} \ oldsymbol{\sigma}_{\mathbf{x}_2,\mathbf{x}_1} & oldsymbol{\sigma}_{\mathbf{x}_2}^2 & \cdots & oldsymbol{\sigma}_{\mathbf{x}_2,\mathbf{x}_d} \ dots & dots & \ddots & dots \ oldsymbol{\sigma}_{\mathbf{x}_d,\mathbf{x}_1} & oldsymbol{\sigma}_{\mathbf{x}_d,\mathbf{x}_2} & \cdots & oldsymbol{\sigma}_{\mathbf{x}_d}^2 \end{array} 
ight]$$

• 
$$\sigma_{x_i,x_j} = \text{Cov}(x_i,x_j) = \text{E}[(x_i - \mu_{x_i})(x_j - \mu_{x_j})] = \text{E}(x_i x_j) - \mu_{x_i} \mu_{x_j}$$

$$\bullet \ \Sigma_{\mathbf{x}} = \operatorname{Cov}(\mathbf{x}) = \operatorname{E}\left[(\mathbf{x} - \boldsymbol{\mu}_{\mathbf{x}})(\mathbf{x} - \boldsymbol{\mu}_{\mathbf{x}})^{\top}\right] = \operatorname{E}(\mathbf{x}\mathbf{x}^{\top}) - \boldsymbol{\mu}_{\mathbf{x}}\boldsymbol{\mu}_{\mathbf{x}}^{\top}$$

 $\bullet$   $\Sigma_x$  is always symmetric

- $\Sigma_{\mathbf{x}}$  is always symmetric
- $\bullet \ \Sigma_x \ \text{is always positive semidefinite [Homework]}$

- $\Sigma_{\mathbf{x}}$  is always symmetric
- $\Sigma_x$  is always positive semidefinite [Homework]
- $\bullet$   $\Sigma_x$  is nonsingular iff it is positive definite

- $\Sigma_{\mathbf{x}}$  is always symmetric
- $\Sigma_{\mathbf{x}}$  is always positive semidefinite [Homework]
- $\bullet$   $\Sigma_{x}$  is nonsingular iff it is positive definite
- $\Sigma_{\mathbf{x}}$  is singular implies that  $\mathbf{x}$  has either:
  - Deterministic/independent/non-linearly dependent attributes causing zero rows, or
  - Redundant attributes causing linear dependency between rows

### **Derived Random Variables**

- Let  $y = f(x; w) = w^{\top}x$  be a random variable transformed from x
- $\bullet \ \mu_{\mathbf{y}} = \mathbf{E}(\mathbf{w}^{\top}\mathbf{x}) = \mathbf{w}^{\top}\mathbf{E}(\mathbf{x}) = \mathbf{w}^{\top}\boldsymbol{\mu}_{\mathbf{x}}$
- $\sigma_{\mathbf{y}}^2 = \mathbf{w}^{\top} \Sigma_{\mathbf{x}} \mathbf{w}$  [Homework]

### **Outline**

- 1 Random Variables & Probability Distributions
- 2 Multivariate & Derived Random Variables
- 3 Bayes' Rule & Statistics
- 4 Application: Principal Components Analysis
- 5 Technical Details of Random Variables
- 6 Common Probability Distributions
- 7 Common Parametrizing Functions
- 8 Information Theory
- 9 Application: Decision Trees & Random Forest

What Does Pr(x = x) Mean?

Prob. & Info. Theory

### What Does Pr(x = x) Mean?

Bayesian probability: it's a degree of belief or qualitative levels of certainty

### What Does Pr(x = x) Mean?

- Bayesian probability: it's a degree of belief or qualitative levels of certainty
- **2** Frequentist probability: if we can draw samples of x, then the proportion of frequency of samples having the value x is equal to Pr(x = x)

### Bayes' Rule

$$P(y | x) = \frac{P(x | y)P(y)}{P(x)} = \frac{P(x | y)P(y)}{\sum_{y} P(x | y = y)P(y = y)}$$

 Bayes' Rule is so important in statistics (and ML as well) such that each term has a name:

$$\textit{posterior of } y = \frac{(\textit{likelihood of } y) \times (\textit{prior of } y)}{\textit{evidence}}$$

## Bayes' Rule

$$P(y | x) = \frac{P(x | y)P(y)}{P(x)} = \frac{P(x | y)P(y)}{\sum_{y} P(x | y = y)P(y = y)}$$

 Bayes' Rule is so important in statistics (and ML as well) such that each term has a name:

$$\textit{posterior of } y = \frac{(\textit{likelihood of } y) \times (\textit{prior of } y)}{\textit{evidence}}$$

Why is it so important?

## Bayes' Rule

$$P(y | x) = \frac{P(x | y)P(y)}{P(x)} = \frac{P(x | y)P(y)}{\sum_{y} P(x | y = y)P(y = y)}$$

 Bayes' Rule is so important in statistics (and ML as well) such that each term has a name:

$$\textit{posterior of } y = \frac{(\textit{likelihood of } y) \times (\textit{prior of } y)}{\textit{evidence}}$$

- Why is it so important?
- E.g., a doctor diagnoses you as having a disease by letting x be "symptom" and y be "disease"
  - $\, \bullet \, \, P(x \, | \, y)$  and P(y) may be estimated from sample frequencies more easily

#### Point Estimation

• **Point estimation** is the attempt to estimate some fixed but unknown quantity  $\theta$  of a random variable by using sample data

#### Point Estimation

- **Point estimation** is the attempt to estimate some fixed but unknown quantity  $\theta$  of a random variable by using sample data
- Let  $\{x^{(1)}, \dots, x^{(n)}\}$  be a set of n independent and identically distributed (i.i.d.) samples of a random variable x, a **point estimator** or **statistic** is a function of the data:

$$\hat{\theta}_n = g(x^{(1)}, \cdots, x^{(n)})$$

•  $\hat{\theta}_n$  is called the **estimate** of  $\theta$ 

• Given  $X = [x^{(1)}, \dots, x^{(n)}]^{\top} \in \mathbb{R}^{n \times d}$  the i.i.d samples, what are the estimates of the mean and covariance of  $\mathbf{x}$ ?

- Given  $X = [\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}]^{\top} \in \mathbb{R}^{n \times d}$  the i.i.d samples, what are the estimates of the mean and covariance of  $\mathbf{x}$ ?
- A sample mean:

$$\hat{\mu}_{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} x^{(i)}$$

- Given  $X = [\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}]^{\top} \in \mathbb{R}^{n \times d}$  the i.i.d samples, what are the estimates of the mean and covariance of  $\mathbf{x}$ ?
- A sample mean:

$$\hat{\mu}_{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} x^{(i)}$$

A sample covariance matrix:

$$\hat{\Sigma}_{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}^{(i)} - \hat{\boldsymbol{\mu}}_{\mathbf{x}}) (\mathbf{x}^{(i)} - \hat{\boldsymbol{\mu}}_{\mathbf{x}})^{\top}$$

$$\hat{\sigma}_{\mathbf{x}_i, \mathbf{x}_j}^2 = \frac{1}{n} \sum_{s=1}^n (x_i^{(s)} - \hat{\mu}_{\mathbf{x}_i}) (x_j^{(s)} - \hat{\mu}_{\mathbf{x}_j})$$

- Given  $X = [\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}]^{\top} \in \mathbb{R}^{n \times d}$  the i.i.d samples, what are the estimates of the mean and covariance of  $\mathbf{x}$ ?
- A sample mean:

$$\hat{\mu}_{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} x^{(i)}$$

A sample covariance matrix:

$$\hat{\Sigma}_{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}^{(i)} - \hat{\boldsymbol{\mu}}_{\mathbf{x}}) (\mathbf{x}^{(i)} - \hat{\boldsymbol{\mu}}_{\mathbf{x}})^{\top}$$

- $\bullet \ \hat{\sigma}_{\mathbf{x}_i,\mathbf{x}_i}^2 = \frac{1}{n} \sum_{s=1}^n (x_i^{(s)} \hat{\mu}_{\mathbf{x}_i}) (x_i^{(s)} \hat{\mu}_{\mathbf{x}_i})$
- ullet If each  $m{x}^{(i)}$  is centered (by subtracting  $\hat{m{\mu}}_{m{x}}$  first), then  $\hat{m{\Sigma}}_{m{x}} = rac{1}{n} m{X}^{ op} m{X}$

### **Outline**

- 1 Random Variables & Probability Distributions
- 2 Multivariate & Derived Random Variables
- 3 Bayes' Rule & Statistics
- 4 Application: Principal Components Analysis
- 5 Technical Details of Random Variables
- 6 Common Probability Distributions
- 7 Common Parametrizing Functions
- 8 Information Theory
- 9 Application: Decision Trees & Random Forest

- ullet Give a collection of data points  $\mathbb{X} = \{m{x}^{(i)}\}_{i=1}^N$ , where  $m{x}^{(i)} \in \mathbb{R}^D$
- Suppose we want to lossily compress  $\mathbb{X}$ , i.e., to find a function f such that  $f(x^{(i)}) = z^{(i)} \in \mathbb{R}^K$ , where K < D
- How to keep the maximum info in X?

- Let  $x^{(i)}$ 's be i.i.d. samples of a random variable x
- Let f be linear, i.e.,  $f(\mathbf{x}) = \mathbf{W}^{\top} \mathbf{x}$  for some  $\mathbf{W} \in \mathbb{R}^{D \times K}$

- Let  $x^{(i)}$ 's be i.i.d. samples of a random variable x
- Let f be linear, i.e.,  $f(\mathbf{x}) = \mathbf{W}^{\top} \mathbf{x}$  for some  $\mathbf{W} \in \mathbb{R}^{D \times K}$
- Principal Component Analysis (PCA) finds K orthonormal vectors  $\mathbf{W} = [\mathbf{w}^{(1)}, \cdots, \mathbf{w}^{(K)}]$  such that the transformed variable  $\mathbf{z} = \mathbf{W}^{\top} \mathbf{x}$  has the most "spread out" attributes, i.e., each attribute  $\mathbf{z}_j = \mathbf{w}^{(j)\top} \mathbf{x}$  has the maximum variance  $\mathrm{Var}(\mathbf{z}_j)$ 
  - $w^{(1)}, \dots, w^{(K)}$  are called the *principle components*

- ullet Let  $oldsymbol{x}^{(i)}$ 's be i.i.d. samples of a random variable  $oldsymbol{ ext{x}}$
- Let f be linear, i.e.,  $f(\mathbf{x}) = \mathbf{W}^{\top} \mathbf{x}$  for some  $\mathbf{W} \in \mathbb{R}^{D \times K}$
- Principal Component Analysis (PCA) finds K orthonormal vectors  $\mathbf{W} = [\mathbf{w}^{(1)}, \cdots, \mathbf{w}^{(K)}]$  such that the transformed variable  $\mathbf{z} = \mathbf{W}^{\top} \mathbf{x}$  has the most "spread out" attributes, i.e., each attribute  $\mathbf{z}_j = \mathbf{w}^{(j)\top} \mathbf{x}$  has the maximum variance  $\mathrm{Var}(\mathbf{z}_j)$ 
  - $\mathbf{w}^{(1)}, \cdots, \mathbf{w}^{(K)}$  are called the **principle components**
- Why  $w^{(1)}, \dots, w^{(K)}$  need to be orthogonal with each other?

- ullet Let  $oldsymbol{x}^{(i)}$ 's be i.i.d. samples of a random variable  $oldsymbol{ ext{x}}$
- Let f be linear, i.e.,  $f(\mathbf{x}) = \mathbf{W}^{\top} \mathbf{x}$  for some  $\mathbf{W} \in \mathbb{R}^{D \times K}$
- Principal Component Analysis (PCA) finds K orthonormal vectors  $\mathbf{W} = [\mathbf{w}^{(1)}, \cdots, \mathbf{w}^{(K)}]$  such that the transformed variable  $\mathbf{z} = \mathbf{W}^{\top} \mathbf{x}$  has the most "spread out" attributes, i.e., each attribute  $\mathbf{z}_j = \mathbf{w}^{(j)\top} \mathbf{x}$  has the maximum variance  $\mathrm{Var}(\mathbf{z}_j)$ 
  - $\mathbf{w}^{(1)}, \cdots, \mathbf{w}^{(K)}$  are called the **principle components**
- Why  $\mathbf{w}^{(1)}, \dots, \mathbf{w}^{(K)}$  need to be orthogonal with each other?
  - ullet Each  $oldsymbol{w}^{(j)}$  keeps information that cannot be explained by others, so together they preserve the most info

- Let  $x^{(i)}$ 's be i.i.d. samples of a random variable x
- Let f be linear, i.e.,  $f(\mathbf{x}) = \mathbf{W}^{\top} \mathbf{x}$  for some  $\mathbf{W} \in \mathbb{R}^{D \times K}$
- Principal Component Analysis (PCA) finds K orthonormal vectors  $\mathbf{W} = [\mathbf{w}^{(1)}, \cdots, \mathbf{w}^{(K)}]$  such that the transformed variable  $\mathbf{z} = \mathbf{W}^{\top} \mathbf{x}$  has the most "spread out" attributes, i.e., each attribute  $\mathbf{z}_j = \mathbf{w}^{(j)\top} \mathbf{x}$  has the maximum variance  $\mathrm{Var}(\mathbf{z}_j)$ 
  - $w^{(1)}, \cdots, w^{(K)}$  are called the *principle components*
- Why  $\mathbf{w}^{(1)}, \dots, \mathbf{w}^{(K)}$  need to be orthogonal with each other?
  - Each  $\mathbf{w}^{(j)}$  keeps information that cannot be explained by others, so together they preserve the most info
- Why  $||w^{(j)}|| = 1$  for all j?

- Let  $x^{(i)}$ 's be i.i.d. samples of a random variable x
- Let f be linear, i.e.,  $f(\mathbf{x}) = \mathbf{W}^{\top} \mathbf{x}$  for some  $\mathbf{W} \in \mathbb{R}^{D \times K}$
- Principal Component Analysis (PCA) finds K orthonormal vectors  $\mathbf{W} = [\mathbf{w}^{(1)}, \cdots, \mathbf{w}^{(K)}]$  such that the transformed variable  $\mathbf{z} = \mathbf{W}^{\top} \mathbf{x}$  has the most "spread out" attributes, i.e., each attribute  $\mathbf{z}_j = \mathbf{w}^{(j)\top} \mathbf{x}$  has the maximum variance  $\mathrm{Var}(\mathbf{z}_j)$ 
  - $ullet w^{(1)}, \cdots, w^{(K)}$  are called the *principle components*
- Why  $\mathbf{w}^{(1)}, \dots, \mathbf{w}^{(K)}$  need to be orthogonal with each other?
  - Each  $\mathbf{w}^{(j)}$  keeps information that cannot be explained by others, so together they preserve the most info
- Why  $||w^{(j)}|| = 1$  for all j?
  - Only directions matter—we don't want to maximize  $Var(z_j)$  by finding a long  $\mathbf{w}^{(j)}$

- For simplicity, let's consider K = 1 first
- How to evaluate  $Var(z_1)$ ?

- For simplicity, let's consider K = 1 first
- How to evaluate  $Var(z_1)$ ?
  - Recall that  $\mathbf{z}_1 = \mathbf{w}^{(1)\top}\mathbf{x}$  implies  $\sigma_{\mathbf{z}_1}^2 = \mathbf{w}^{(1)\top}\Sigma_{\mathbf{x}}\mathbf{w}^{(1)}$  [Homework]
  - How to get  $\Sigma_{\mathbf{x}}$ ?

- For simplicity, let's consider K = 1 first
- How to evaluate  $Var(z_1)$ ?
  - Recall that  $\mathbf{z}_1 = \mathbf{w}^{(1)\top}\mathbf{x}$  implies  $\sigma_{\mathbf{z}_1}^2 = \mathbf{w}^{(1)\top}\Sigma_{\mathbf{x}}\mathbf{w}^{(1)}$  [Homework]
  - How to get  $\Sigma_{\mathbf{X}}$ ?
  - ullet An estimate:  $\hat{\Sigma}_{\mathbf{x}} = \frac{1}{N} X^{ op} X$  (assuming  $x^{(i)}$ 's are centered first)

- For simplicity, let's consider K = 1 first
- How to evaluate Var(z<sub>1</sub>)?
  - Recall that  $\mathbf{z}_1 = \mathbf{w}^{(1)\top}\mathbf{x}$  implies  $\sigma_{\mathbf{z}_1}^2 = \mathbf{w}^{(1)\top}\Sigma_{\mathbf{x}}\mathbf{w}^{(1)}$  [Homework]
  - How to get  $\Sigma_{\mathbf{x}}$ ?
  - An estimate:  $\hat{\Sigma}_{\mathbf{x}} = \frac{1}{N} \mathbf{X}^{\top} \mathbf{X}$  (assuming  $\mathbf{x}^{(i)}$ 's are centered first)
- Optimization problem to solve:

$$\arg\max_{\pmb{w}^{(1)} \in \mathbb{R}^D} \pmb{w}^{(1)\top} \pmb{X}^{\top} \pmb{X} \pmb{w}^{(1)}, \text{ subject to } \|\pmb{w}^{(1)}\| = 1$$

- For simplicity, let's consider K = 1 first
- How to evaluate Var(z<sub>1</sub>)?
  - Recall that  $\mathbf{z}_1 = \mathbf{w}^{(1)\top}\mathbf{x}$  implies  $\sigma_{\mathbf{z}_1}^2 = \mathbf{w}^{(1)\top}\Sigma_{\mathbf{x}}\mathbf{w}^{(1)}$  [Homework]
  - How to get  $\Sigma_x$ ?
  - An estimate:  $\hat{\Sigma}_{\mathbf{x}} = \frac{1}{N} \mathbf{X}^{\top} \mathbf{X}$  (assuming  $\mathbf{x}^{(i)}$ 's are centered first)
- Optimization problem to solve:

$$\arg\max_{\boldsymbol{w}^{(1)} \in \mathbb{R}^D} \boldsymbol{w}^{(1)\top} \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{w}^{(1)}, \text{ subject to } \|\boldsymbol{w}^{(1)}\| = 1$$

 $\bullet$   $X^{\top}X$  is symmetric thus can be eigendecomposed

- For simplicity, let's consider K = 1 first
- How to evaluate  $Var(z_1)$ ?
  - Recall that  $\mathbf{z}_1 = \mathbf{w}^{(1)\top}\mathbf{x}$  implies  $\sigma_{\mathbf{z}_1}^2 = \mathbf{w}^{(1)\top}\Sigma_{\mathbf{x}}\mathbf{w}^{(1)}$  [Homework]
  - How to get  $\Sigma_{\mathbf{x}}$ ?
  - An estimate:  $\hat{\Sigma}_{\mathbf{x}} = \frac{1}{N} \mathbf{X}^{\top} \mathbf{X}$  (assuming  $\mathbf{x}^{(i)}$ 's are centered first)
- Optimization problem to solve:

$$\underset{\mathbf{w}^{(1)} \in \mathbb{R}^D}{\max} \mathbf{w}^{(1)\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{w}^{(1)}, \text{ subject to } \|\mathbf{w}^{(1)}\| = 1$$

- $\bullet$   $X^{\top}X$  is symmetric thus can be eigendecomposed
- By Rayleigh's Quotient, the optimal  $\mathbf{w}^{(1)}$  is given by the eigenvector of  $\mathbf{X}^{\top}\mathbf{X}$  corresponding to the largest eigenvalue

• Optimization problem for  $w^{(2)}$ :

$$\arg\max_{\mathbf{w}^{(2)} \in \mathbb{R}^D} \mathbf{w}^{(2)\top} \mathbf{X}^\top \mathbf{X} \mathbf{w}^{(2)}, \text{ subject to } \|\mathbf{w}^{(2)}\| = 1 \text{ and } \mathbf{w}^{(2)\top} \mathbf{w}^{(1)} = 0$$

• Optimization problem for  $w^{(2)}$ :

$$\arg\max_{\mathbf{w}^{(2)} \in \mathbb{R}^D} \mathbf{w}^{(2)\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{w}^{(2)}, \text{ subject to } \|\mathbf{w}^{(2)}\| = 1 \text{ and } \mathbf{w}^{(2)\top} \mathbf{w}^{(1)} = 0$$

ullet By Rayleigh's Quotient again,  ${\it w}^{(2)}$  is the eigenvector corresponding to the 2-nd largest eigenvalue

• Optimization problem for  $w^{(2)}$ :

$$\arg\max_{\mathbf{w}^{(2)} \in \mathbb{R}^D} \mathbf{w}^{(2)\top} \mathbf{X}^\top \mathbf{X} \mathbf{w}^{(2)}, \text{ subject to } \|\mathbf{w}^{(2)}\| = 1 \text{ and } \mathbf{w}^{(2)\top} \mathbf{w}^{(1)} = 0$$

- By Rayleigh's Quotient again,  $w^{(2)}$  is the eigenvector corresponding to the 2-nd largest eigenvalue
- For general case where K > 1, the  $\mathbf{w}^{(1)}, \dots, \mathbf{w}^{(K)}$  are eigenvectors of  $\mathbf{X}^{\top}\mathbf{X}$  corresponding to the largest K eigenvalues
  - Proof by induction [Proof]

### Visualization



**Figure:** PCA learns a linear projection that aligns the direction of greatest variance with the axes of the new space. With these new axes, the estimated covariance matrix  $\hat{\Sigma}_{\mathbf{z}} = \mathbf{W}^{\top} \hat{\Sigma}_{\mathbf{x}} \mathbf{W} \in \mathbb{R}^{K \times K}$  is always diagonal.

### **Outline**

- 1 Random Variables & Probability Distributions
- 2 Multivariate & Derived Random Variables
- 3 Bayes' Rule & Statistics
- 4 Application: Principal Components Analysis
- 5 Technical Details of Random Variables
- 6 Common Probability Distributions
- 7 Common Parametrizing Functions
- 8 Information Theory
- 9 Application: Decision Trees & Random Forest

### Sure and Almost Sure Events

- $\bullet$  Given a continuous random variable x, we have  $\Pr(\mathbf{x}=\mathbf{x})=0$  for any value x
- Will the event x = x occur?

#### Sure and Almost Sure Events

- $\bullet$  Given a continuous random variable x, we have  $\Pr(\mathbf{x}=x)=0$  for any value x
- Will the event x = x occur? **Yes!**
- An event A happens *surely* if always occurs
- An event  $\mathbb A$  happens almost surely if  $\Pr(\mathbb A)=1$  (e.g.,  $\Pr(x\neq x)=1$ )

## **Equality of Random Variables I**

### Definition (Equality in Distribution)

Two random variables x and y are equal in distribution iff  $Pr(x \le a) = Pr(y \le a)$  for all a.

### **Definition (Almost Sure Equality)**

Two random variables x and y are equal almost surely iff Pr(x = y) = 1.

#### **Definition** (Equality)

Two random variables x and y are **equal** iff they maps the same events to same values.

### **Equality of Random Variables II**

 What's the difference between the "equality in distribution" and "almost sure equality?"

### **Equality of Random Variables II**

- What's the difference between the "equality in distribution" and "almost sure equality?"
- Almost sure equality implies equality in distribution, but converse not true

## **Equality of Random Variables II**

- What's the difference between the "equality in distribution" and "almost sure equality?"
- Almost sure equality implies equality in distribution, but converse not true
- E.g., let x and y be binary random variables and  $P_x(0) = P_x(1) = P_y(0) = P_y(1) = 0.5$ 
  - They are equal in distribution
  - But  $Pr(x = y) = 0.5 \neq 1$

## Convergence of Random Variables I

#### Definition (Convergence in Distribution)

A sequence of random variables  $\{x^{(1)}, x^{(2)}, \cdots\}$  converges in distribution to x iff  $\lim_{n\to\infty} P\left(x^{(n)}=x\right)=P(x=x)$ 

### Definition (Convergence in Probability)

A sequence of random variables  $\{x^{(1)}, x^{(2)}, \cdots\}$  converges in probability to x iff for any  $\varepsilon > 0$ ,  $\lim_{n \to \infty} \Pr\left(|x^{(n)} - x| < \varepsilon\right) = 1$ .

#### **Definition (Almost Sure Convergence)**

A sequence of random variables  $\{x^{(1)}, x^{(2)}, \cdots\}$  converges almost surely to x iff  $\Pr(\lim_{n\to\infty} x^{(n)} = x) = 1$ .

## Convergence of Random Variables II

• What's the difference between the convergence "in probability" and "almost surely?"

## Convergence of Random Variables II

- What's the difference between the convergence "in probability" and "almost surely?"
- Almost sure convergence implies convergence in probability, but converse not true

## Convergence of Random Variables II

- What's the difference between the convergence "in probability" and "almost surely?"
- Almost sure convergence implies convergence in probability, but converse not true
- $\lim_{n\to\infty} \Pr\left(|\mathbf{x}^{(n)}-\mathbf{x}|<\varepsilon\right)=1$  leaves open the possibility that  $|\mathbf{x}^{(n)}-\mathbf{x}|>\varepsilon$  happens an infinite number of times
- $\Pr\left(\lim_{n\to\infty}x^{(n)}=x\right)=1$  guarantees that  $|x^{(n)}-x|>\varepsilon$  almost surely will not occur

### Distribution of Derived Variables I

- Consider a continuous scalar random variable x
- Suppose y = f(x) and  $f^{-1}$  exists, does  $P(y = y) = P(x = f^{-1}(y))$  always hold?

### Distribution of Derived Variables I

- Consider a continuous scalar random variable x
- Suppose y = f(x) and  $f^{-1}$  exists, does  $P(y = y) = P(x = f^{-1}(y))$  always hold? **No**, when x and y are continuous
- 1D example: let  $x \sim \mathsf{Unifrom}(0,1)$  and  $y = 2x \sim \mathsf{Unifrom}(0,2)$
- If  $p_y(y) = p_x(\frac{1}{2}y)$ , then

$$\int_{y=0}^{2} p_{y}(y)dy = \int_{y=0}^{2} p_{x}(\frac{1}{2}y)dy = 2 \neq 1$$

• Violates the *unit measure* axiom of probability



### Distribution of Derived Variables II

- Recall that  $Pr(y = y) = p_y(y)dy$  and  $Pr(x = x) = p_x(x)dx$
- To preserve unit measure, we need to ensure that

$$p_{y}(f(x))dy = p_{x}(x)dx, \forall x$$



We have

$$p_{\mathbf{x}}(x) = p_{\mathbf{y}}(f(x)) \left| \frac{\partial f(x)}{\partial x} \right| \text{ (or } p_{\mathbf{y}}(y) = p_{\mathbf{x}}(f^{-1}(y)) \left| \frac{\partial f^{-1}(y)}{\partial y} \right| \text{)}$$

- Absolute values deal with the case where y = -cx
- In 1D example:  $p_{\mathbf{v}}(y) = \frac{1}{2}p_{\mathbf{x}}(\frac{1}{2}y)$  for all y

### Distribution of Derived Variables III

• In multivariate case where y = f(x), we need to ensure that

$$p_{\mathbf{y}}(f(\mathbf{x}))|\det(\Delta)| = p_{\mathbf{x}}(\mathbf{x})dx_1dx_2\cdots,\forall \mathbf{x}$$

- $dx_1 dx_2 \cdots$ : volume of dx
- $|\det(\Delta)|$ : volume of dy, where  $\Delta$  captures the linear relationship between dy and dx



- We have  $p_{\mathbf{x}}(\mathbf{x}) = p_{\mathbf{y}}(\mathbf{f}(\mathbf{x})) \left| \frac{1}{dx_1 dx_2 ...} \det(\Delta) \right| = p_{\mathbf{y}}(\mathbf{f}(\mathbf{x})) \left| \det(\mathbf{J}(\mathbf{f})(\mathbf{x})) \right|$ 
  - J(f)(x) is the Jacobian matrix of f at input x
  - Or equivalently,  $p_{\mathbf{v}}(\mathbf{y}) = p_{\mathbf{x}}(\mathbf{f}^{-1}(\mathbf{y})) |\det (\mathbf{J}(\mathbf{f}^{-1})(\mathbf{y}))|$

### Distribution of Derived Variables IV

- Why  $\frac{1}{dx_1 dx_2 \dots} \det(\Delta) = \det(J(f)(x))$ ?
- 2D example:

$$\frac{1}{dx_{1}dx_{2}}\det\left(\begin{bmatrix} a & c \\ b & d \end{bmatrix}\right) = \frac{1}{dx_{1}dx_{2}}\det\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right)$$

$$= \det\left(\begin{bmatrix} \frac{a}{dx_{1}} & \frac{b}{dx_{1}} \\ \frac{c}{dx_{2}} & \frac{d}{dx_{2}} \end{bmatrix}\right) = \det\left(\begin{bmatrix} \frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{1}} \\ \frac{\partial y_{1}}{\partial x_{2}} & \frac{\partial y_{2}}{\partial x_{2}} \end{bmatrix}\right)$$

$$= = \det\left(\begin{bmatrix} \frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} \\ \frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}} \end{bmatrix}\right) = \det\left(\mathbf{J}(\mathbf{f})(\mathbf{x})\right)$$

$$x_{2} = \begin{bmatrix} 0, dx_{2} \\ 0, dx_{2} \end{bmatrix}$$

$$(c, d) = \begin{bmatrix} 0, dx_{2} \\ 0, dx_{2} \end{bmatrix}$$

$$(c, d) = \begin{bmatrix} 0, dx_{2} \\ 0, dx_{2} \end{bmatrix}$$

 $x_1$ 

### **Outline**

- 1 Random Variables & Probability Distributions
- 2 Multivariate & Derived Random Variables
- 3 Bayes' Rule & Statistics
- 4 Application: Principal Components Analysis
- 5 Technical Details of Random Variables
- 6 Common Probability Distributions
- 7 Common Parametrizing Functions
- 8 Information Theory
- 9 Application: Decision Trees & Random Forest

## Random Experiments

- The value of a random variable x can be think of as the outcome of an random experiment
- Helps us define P(x)

# Bernoulli Distribution (Discrete)

• Let  $x \in \{0,1\}$  be the outcome of tossing a coin, we have:

Bernoulli(x = x; 
$$\rho$$
) =  $\begin{cases} \rho, & \text{if } x = 1 \\ 1 - \rho, & \text{otherwise} \end{cases}$  or  $\rho^x (1 - \rho)^{1-x}$ 

- Properties: [Proof]
  - $\bullet$   $E(x) = \rho$
  - $Var(x) = \rho(1-\rho)$

# Categorical Distribution (Discrete)

• Let  $x \in \{1, \dots, k\}$  be the outcome of rolling a k-sided dice, we have:

Categorical
$$(x = x; \rho) = \prod_{i=1}^{k} \rho_i^{1(x; x=i)}$$
, where  $\mathbf{1}^{\top} \rho = 1$ 

# Categorical Distribution (Discrete)

• Let  $x \in \{1, \dots, k\}$  be the outcome of rolling a k-sided dice, we have:

$$\text{Categorical}(\mathbf{x}=x;\boldsymbol{\rho}) = \prod_{i=1}^k \rho_i^{1(x;x=i)}, \text{ where } \mathbf{1}^\top \boldsymbol{\rho} = 1$$

An extension of the Bernoulli distribution for k states

# Multinomial Distribution (Discrete)

• Let  $\mathbf{x} \in \mathbb{R}^k$  be a random vector where  $\mathbf{x}_i$  the number of the outcome i after rolling a k-sided dice n times:

Multinomial(
$$\mathbf{x} = \mathbf{x}; n, \rho$$
) =  $\frac{n!}{x_1! \cdots x_k!} \prod_{i=1}^k \rho_i^{x_i}$ , where  $\mathbf{1}^\top \rho = 1$  and  $\mathbf{1}^\top \mathbf{x} = n$ 

# Multinomial Distribution (Discrete)

• Let  $\mathbf{x} \in \mathbb{R}^k$  be a random vector where  $\mathbf{x}_i$  the number of the outcome i after rolling a k-sided dice n times:

Multinomial(
$$\mathbf{x} = \mathbf{x}; n, \rho$$
) =  $\frac{n!}{x_1! \cdots x_k!} \prod_{i=1}^k \rho_i^{x_i}$ , where  $\mathbf{1}^\top \rho = 1$  and  $\mathbf{1}^\top \mathbf{x} = n$ 

- Properties: [Proof]
  - $\bullet$  E(**x**) =  $n\rho$
  - $\operatorname{Var}(\mathbf{x}) = n \left( \operatorname{diag}(\rho) \rho \rho^{\top} \right)$ (i.e.,  $\operatorname{Var}(\mathbf{x}_i) = n\rho_i (1 - \rho_i)$  and  $\operatorname{Var}(\mathbf{x}_i, \mathbf{x}_i) = -n\rho_i \rho_i$ )

#### Theorem (Central Limit Theorem)

The sum x of many independent random variables is approximately normally/Gaussian distributed:

$$\mathcal{N}(\mathbf{x} = \mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\sigma}^2) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(\mathbf{x} - \boldsymbol{\mu})^2\right).$$

#### Theorem (Central Limit Theorem)

The sum x of many independent random variables is approximately normally/Gaussian distributed:

$$\mathcal{N}(\mathbf{x} = \mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\sigma}^2) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(\mathbf{x} - \boldsymbol{\mu})^2\right).$$

Holds regardless of the original distributions of individual variables

#### Theorem (Central Limit Theorem)

The sum x of many independent random variables is approximately normally/Gaussian distributed:

$$\mathcal{N}(\mathbf{x} = \mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\sigma}^2) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(\mathbf{x} - \boldsymbol{\mu})^2\right).$$

- Holds regardless of the original distributions of individual variables
- $\mu_x = \mu$  and  $\sigma_y^2 = \sigma^2$

#### Theorem (Central Limit Theorem)

The sum x of many independent random variables is approximately normally/Gaussian distributed:

$$\mathcal{N}(\mathbf{x} = \mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\sigma}^2) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(\mathbf{x} - \boldsymbol{\mu})^2\right).$$

- Holds regardless of the original distributions of individual variables
- $\mu_{\rm x} = \mu$  and  $\sigma_{\rm x}^2 = \sigma^2$
- To avoid inverting  $\sigma^2$ , we can parametrize the distribution using the **precision**  $\beta$ :

$$\mathcal{N}(\mathbf{x} = \mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\beta}^{-1}) = \sqrt{\frac{\beta}{2\pi}} \exp\left(-\frac{\beta}{2}(\mathbf{x} - \boldsymbol{\mu})^2\right)$$

### **Confidence Intervals**



**Figure:** Graph of  $\mathcal{N}(\mu, \sigma^2)$ .

### **Confidence Intervals**



**Figure:** Graph of  $\mathcal{N}(\mu, \sigma^2)$ .

• We say the interval  $[\mu-2\sigma,\mu+2\sigma]$  has about the 95% confidence



## Why Is Gaussian Distribution Common in ML?

- 1 It can model noise in data (e.g., Gaussian white noise)
  - Can be considered to be the accumulation of a large number of small independent latent factors affecting data collection process

## Why Is Gaussian Distribution Common in ML?

- 1 It can model noise in data (e.g., Gaussian white noise)
  - Can be considered to be the accumulation of a large number of small independent latent factors affecting data collection process
- ② Out of all possible probability distributions (over real numbers) with the same variance, it encodes the maximum amount of uncertainty
  - Assuming  $P(y | x) \sim \mathcal{N}$ , we insert the least amount of prior knowledge into a model

## Why Is Gaussian Distribution Common in ML?

- 1 It can model noise in data (e.g., Gaussian white noise)
  - Can be considered to be the accumulation of a large number of small independent latent factors affecting data collection process
- ② Out of all possible probability distributions (over real numbers) with the same variance, it encodes the maximum amount of uncertainty
  - Assuming  $P(y \mid x) \sim \mathcal{N}$ , we insert the least amount of prior knowledge into a model
- 3 Convenient for many analytical manipulations
  - Closed under affine transformation, summation, marginalization, conditioning, etc.
  - Many of the integrals involving Gaussian distributions that arise in practice have simple closed form solutions

## **Properties**

• Closed under affine transformation: if  $\mathbf{x} \sim \mathcal{N}(\mu, \sigma^2)$ , then  $a\mathbf{x} + b \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$  for any deterministic  $a, b \in \mathbb{R}$ ,  $a \neq 0$  [Proof] •  $\mathbf{z} = \frac{\mathbf{x} - \mu}{\sigma} \sim \mathcal{N}(0, 1)$  the **z-normalization** or **standardization** of  $\mathbf{x}$ 

## **Properties**

- Closed under affine transformation: if  $\mathbf{x} \sim \mathcal{N}(\mu, \sigma^2)$ , then  $a\mathbf{x} + b \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$  for any deterministic  $a, b \in \mathbb{R}$ ,  $a \neq 0$  [Proof]  $\mathbf{z} = \frac{\mathbf{x} \mu}{\sigma} \sim \mathcal{N}(0, 1)$  the **z-normalization** or **standardization** of  $\mathbf{x}$
- Closed under summation: if  $\mathbf{x}^{(1)} \sim \mathcal{N}(\boldsymbol{\mu}^{(1)}, \sigma^{2(1)})$  is independent with  $\mathbf{x}^{(2)} \sim \mathcal{N}(\boldsymbol{\mu}^{(2)}, \sigma^{2(2)})$ , then  $\mathbf{x}^{(1)} + \mathbf{x}^{(2)} \sim \mathcal{N}(\boldsymbol{\mu}^{(1)} + \boldsymbol{\mu}^{(2)}, \sigma^{2(1)} + \sigma^{2(2)})$  [Homework:  $p_{\mathbf{x}^{(1)} + \mathbf{x}^{(2)}}(x) = \int p_{\mathbf{x}^{(1)}}(x y) p_{\mathbf{x}^{(2)}}(y) dy$  the convolution]

## **Properties**

- Closed under affine transformation: if  $\mathbf{x} \sim \mathcal{N}(\mu, \sigma^2)$ , then  $a\mathbf{x} + b \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$  for any deterministic  $a, b \in \mathbb{R}$ ,  $a \neq 0$  [Proof]  $\mathbf{z} = \frac{\mathbf{x} \mu}{\sigma} \sim \mathcal{N}(0, 1)$  the **z-normalization** or **standardization** of  $\mathbf{x}$
- Closed under summation: if  $\mathbf{x}^{(1)} \sim \mathcal{N}(\mu^{(1)}, \sigma^{2(1)})$  is independent with  $\mathbf{x}^{(2)} \sim \mathcal{N}(\mu^{(2)}, \sigma^{2(2)})$ , then  $\mathbf{x}^{(1)} + \mathbf{x}^{(2)} \sim \mathcal{N}(\mu^{(1)} + \mu^{(2)}, \sigma^{2(1)} + \sigma^{2(2)})$  [Homework:  $p_{\mathbf{x}^{(1)} + \mathbf{x}^{(2)}}(x) = \int p_{\mathbf{x}^{(1)}}(x y) p_{\mathbf{x}^{(2)}}(y) dy$  the convolution]
  - **Not** true if  $x^{(1)}$  and  $x^{(2)}$  are dependent

 $\bullet$  When  $\mathbf{x}$  is sum of many random vectors:

$$\mathcal{N}(\mathbf{x} = \mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sqrt{\frac{1}{(2\pi)^d \det(\boldsymbol{\Sigma})}} \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right]$$

•  $\mu_{\mathbf{x}} = \mu$  and  $\Sigma_{\mathbf{x}} = \Sigma$  (must be nonsingular)

ullet When  ${f x}$  is sum of many random vectors:

$$\mathcal{N}(\mathbf{x} = \mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sqrt{\frac{1}{(2\pi)^d \mathrm{det}(\boldsymbol{\Sigma})}} \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right]$$

- $\mu_{\mathbf{x}} = \mu$  and  $\Sigma_{\mathbf{x}} = \Sigma$  (must be nonsingular)
- If  $\mathbf{x} \sim \mathcal{N}(\mu, \Sigma)$ , then each attribute  $x_i$  is univariate normal
  - Converse not true

ullet When  ${f x}$  is sum of many random vectors:

$$\mathcal{N}(\mathbf{x} = \mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sqrt{\frac{1}{(2\pi)^d \mathrm{det}(\boldsymbol{\Sigma})}} \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right]$$

- $\mu_{\mathbf{x}} = \mu$  and  $\Sigma_{\mathbf{x}} = \Sigma$  (must be nonsingular)
- If  $\mathbf{x} \sim \mathcal{N}(\mu, \Sigma)$ , then each attribute  $\mathbf{x}_i$  is univariate normal
  - Converse not true
  - However, if  $\mathbf{x}_1, \dots, \mathbf{x}_d$  are i.i.d. and  $\mathbf{x}_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$ , then  $\mathbf{x} \sim \mathcal{N}(\mu, \Sigma)$ , where  $\mu = [\mu_1, \dots, \mu_d]^\top$  and  $\Sigma = \operatorname{diag}(\sigma_1^2, \dots, \sigma_d^2)$

ullet When  ${f x}$  is sum of many random vectors:

$$\mathcal{N}(\mathbf{x} = \mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sqrt{\frac{1}{(2\pi)^d \mathrm{det}(\boldsymbol{\Sigma})}} \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right]$$

- $\mu_{\mathbf{x}} = \mu$  and  $\Sigma_{\mathbf{x}} = \Sigma$  (must be nonsingular)
- If  $\mathbf{x} \sim \mathcal{N}(\mu, \Sigma)$ , then each attribute  $\mathbf{x}_i$  is univariate normal
  - Converse not true
  - However, if  $\mathbf{x}_1, \dots, \mathbf{x}_d$  are i.i.d. and  $\mathbf{x}_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$ , then  $\mathbf{x} \sim \mathcal{N}(\mu, \Sigma)$ , where  $\mu = [\mu_1, \dots, \mu_d]^\top$  and  $\Sigma = \operatorname{diag}(\sigma_1^2, \dots, \sigma_d^2)$
- What does the graph of  $\mathcal{N}(\mu, \Sigma)$  look like?

## Bivariate Example I

Consider the Mahalanobis distance first

$$\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sqrt{\frac{1}{(2\pi)^d \text{det}(\boldsymbol{\Sigma})}} \exp\left[-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})\right]$$

## Bivariate Example I

Consider the Mahalanobis distance first

$$\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sqrt{\frac{1}{(2\pi)^d \mathrm{det}(\boldsymbol{\Sigma})}} \exp\left[-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})\right]$$



• The level sets closer to the center  $\mu_{\mathbf{x}}$  are lower

## Bivariate Example I

Consider the Mahalanobis distance first

$$\mathcal{N}(\mu, \Sigma) = \sqrt{\frac{1}{(2\pi)^d \det(\Sigma)}} \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right]$$







- The level sets closer to the center  $\mu_{\mathbf{x}}$  are lower
- Increasing  $Cov[x_1, x_2]$  stretches the level sets along the  $45^{\circ}$  axis
- Decreasing  $Cov[x_1, x_2]$  stretches the level sets along the  $-45^{\circ}$  axis

### Bivariate Example II

• The hight of  $\mathscr{N}(\mu, \Sigma) = \sqrt{\frac{1}{(2\pi)^d \det(\Sigma)}} \exp\left[-\frac{1}{2}(\mathbf{x} - \mu)^\top \Sigma^{-1}(\mathbf{x} - \mu)\right]$  in its graph is inversely proportional to the Mahalanobis distance



### Bivariate Example II

• The hight of  $\mathscr{N}(\mu, \Sigma) = \sqrt{\frac{1}{(2\pi)^d \det(\Sigma)}} \exp\left[-\frac{1}{2}(\mathbf{x} - \mu)^\top \Sigma^{-1}(\mathbf{x} - \mu)\right]$  in its graph is inversely proportional to the Mahalanobis distance



• A multivariate Gaussian distribution is **isotropic** iff  $\Sigma = \sigma I$ 

### **Properties**

- Closed under affine transformation: if  $\mathbf{x} \sim \mathcal{N}(\mu, \Sigma)$ , then  $\mathbf{w}^{\top}\mathbf{x} \sim \mathcal{N}(\mathbf{w}^{\top}\mu, \mathbf{w}^{\top}\Sigma\mathbf{w})$  for any deterministic  $\mathbf{w} \in \mathbb{R}^d$ 
  - More generally, given  $W \in \mathbb{R}^{d \times k}$ , k < d, we have  $W^{\top} \mathbf{x} \sim \mathcal{N}(W^{\top} \mu, W^{\top} \Sigma W)$  that is k-variate normal
  - ullet I.e., the projection of  ${f x}$  onto a k-dimensional subspace is still normal

### **Properties**

- Closed under affine transformation: if  $\mathbf{x} \sim \mathcal{N}(\mu, \Sigma)$ , then  $\mathbf{w}^{\top}\mathbf{x} \sim \mathcal{N}(\mathbf{w}^{\top}\mu, \mathbf{w}^{\top}\Sigma\mathbf{w})$  for any deterministic  $\mathbf{w} \in \mathbb{R}^d$ 
  - More generally, given  $W \in \mathbb{R}^{d \times k}$ , k < d, we have  $W^{\top} \mathbf{x} \sim \mathcal{N}(W^{\top} \mu, W^{\top} \Sigma W)$  that is k-variate normal
  - ullet I.e., the projection of  ${\bf x}$  onto a k-dimensional subspace is still normal

• Consider 
$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} \sim \mathcal{N}(\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \Sigma = \begin{bmatrix} \Sigma_{1,1} & \Sigma_{1,2} \\ \Sigma_{2,1} & \Sigma_{2,2} \end{bmatrix})$$
:

### **Properties**

- Closed under affine transformation: if  $\mathbf{x} \sim \mathcal{N}(\mu, \Sigma)$ , then  $\mathbf{w}^{\top}\mathbf{x} \sim \mathcal{N}(\mathbf{w}^{\top}\mu, \mathbf{w}^{\top}\Sigma\mathbf{w})$  for any deterministic  $\mathbf{w} \in \mathbb{R}^d$ 
  - More generally, given  $W \in \mathbb{R}^{d \times k}$ , k < d, we have  $W^{\top} \mathbf{x} \sim \mathcal{N}(W^{\top} \mu, W^{\top} \Sigma W)$  that is k-variate normal
  - ullet I.e., the projection of  ${\bf x}$  onto a k-dimensional subspace is still normal

$$\bullet \ \, \mathsf{Consider} \ \, \mathbf{x} = \left[ \begin{array}{c} \mathbf{x}_1 \\ \mathbf{x}_2 \end{array} \right] \sim \mathcal{N}(\mu = \left[ \begin{array}{c} \mu_1 \\ \mu_2 \end{array} \right], \Sigma = \left[ \begin{array}{cc} \Sigma_{1,1} & \Sigma_{1,2} \\ \Sigma_{2,1} & \Sigma_{2,2} \end{array} \right]) :$$

- Closed under marginalization:  $\mathbf{x}_1 \sim \mathcal{N}(\mu_1, \Sigma_{1,1})$  [Proof:  $P(\mathbf{x}_1) = \int_{\mathbf{x}_2} P(\mathbf{x}_1, \mathbf{x}_2; \mu, \Sigma) d\mathbf{x}_2)$ ]
- Closed under conditioning:  $(\mathbf{x}_1 \,|\, \mathbf{x}_2) \sim \mathcal{N}(\mu_1 + \Sigma_{1,2} \Sigma_{2,2}^{-1} (\mathbf{x}_2 \mu_2), \Sigma_{1,1} \Sigma_{1,2} \Sigma_{2,2}^{-1} \Sigma_{2,1}) \text{ [Proof]}$

# **Exponential Distribution (Continuous)**

 $\bullet$  In deep learning, we often want to have a probability distribution with a sharp point at x=0

# **Exponential Distribution (Continuous)**

- $\bullet$  In deep learning, we often want to have a probability distribution with a sharp point at x=0
- To accomplish this, we can use the exponential distribution:

Exponential 
$$(x = x; \lambda) = \lambda 1(x; x \ge 0) \exp(-\lambda x)$$



## Laplace Distribution (Continuous)

• Laplace distribution can be think of as a "two-sided" exponential distribution centered at  $\mu$ :

Laplace
$$(x = x; \mu, b) = \frac{1}{2b} \exp\left(-\frac{|x - \mu|}{b}\right)$$



## Dirac Distribution (Continuous)

ullet In some cases, we wish to specify that all of the mass in a probability distribution clusters around a single data point  $\mu$ 

## Dirac Distribution (Continuous)

- ullet In some cases, we wish to specify that all of the mass in a probability distribution clusters around a single data point  $\mu$
- This can be accomplished by using the *Dirac distribution*:

$$Dirac(\mathbf{x} = \mathbf{x}; \boldsymbol{\mu}) = \delta(\mathbf{x} - \boldsymbol{\mu}),$$

where  $\delta(\cdot)$  is the Dirac delta function that

- 1 Is zero-valued everywhere except at input 0
- 2 Integrals to 1

# **Empirical Distribution (Continuous)**

- Given a dataset  $\mathbb{X} = \{x^{(i)}\}_{i=1}^N$  where  $x^{(i)}$ 's are i.i.d. samples of  $\mathbf{x}$
- What is the distribution  $P(\theta)$  that maximizes the likelihood  $P(\theta|\mathbb{X})$  of  $\mathbb{X}$ ?

# **Empirical Distribution (Continuous)**

- Given a dataset  $\mathbb{X} = \{x^{(i)}\}_{i=1}^N$  where  $x^{(i)}$ 's are i.i.d. samples of  $\mathbf{x}$
- What is the distribution  $P(\theta)$  that maximizes the likelihood  $P(\theta|\mathbb{X})$  of  $\mathbb{X}$ ?
- ullet If x is discrete, the distribution simply reflects the empirical frequency of values:

Empirical(
$$\mathbf{x} = \mathbf{x}; \mathbb{X}$$
) =  $\frac{1}{N} \sum_{i=1}^{N} 1(\mathbf{x}; \mathbf{x} = \mathbf{x}^{(i)})$ 

# **Empirical Distribution (Continuous)**

- Given a dataset  $\mathbb{X} = \{x^{(i)}\}_{i=1}^N$  where  $x^{(i)}$ 's are i.i.d. samples of  $\mathbf{x}$
- What is the distribution  $P(\theta)$  that maximizes the likelihood  $P(\theta|\mathbb{X})$  of  $\mathbb{X}$ ?
- If x is discrete, the distribution simply reflects the empirical frequency of values:

Empirical(
$$\mathbf{x} = \mathbf{x}; \mathbb{X}$$
) =  $\frac{1}{N} \sum_{i=1}^{N} 1(\mathbf{x}; \mathbf{x} = \mathbf{x}^{(i)})$ 

• If x is continuous, we have the *empirical distribution*:

Empirical(
$$\mathbf{x} = \mathbf{x}; \mathbb{X}$$
) =  $\frac{1}{N} \sum_{i=1}^{N} \delta(\mathbf{x} - \mathbf{x}^{(i)})$ 

• We may define a probability distribution by combining other simpler probability distributions  $\{P^{(i)}(\theta^{(i)})\}_i$ 

- We may define a probability distribution by combining other simpler probability distributions  $\{P^{(i)}(\theta^{(i)})\}_i$
- E.g., the mixture model:

Mixture(
$$\mathbf{x} = \mathbf{x}; \rho, \{\theta^{(i)}\}_i$$
) =  $\sum_i P^{(i)}(\mathbf{x} = \mathbf{x}|\mathbf{c} = i; \theta^{(i)})$ Categorical( $\mathbf{c} = i; \rho$ )

- We may define a probability distribution by combining other simpler probability distributions  $\{P^{(i)}(\theta^{(i)})\}_i$
- E.g., the mixture model:

$$Mixture(\mathbf{x} = \mathbf{x}; \boldsymbol{\rho}, \{\boldsymbol{\theta}^{(i)}\}_i) = \sum_i \mathbf{P}^{(i)}(\mathbf{x} = \mathbf{x}|\mathbf{c} = i; \boldsymbol{\theta}^{(i)}) Categorical(\mathbf{c} = i; \boldsymbol{\rho})$$

• The empirical distribution is a mixture distribution (where  $\rho_i = 1/N$ )

- We may define a probability distribution by combining other simpler probability distributions  $\{P^{(i)}(\theta^{(i)})\}_i$
- E.g., the mixture model:

Mixture(
$$\mathbf{x} = \mathbf{x}; \rho, \{\theta^{(i)}\}_i$$
) =  $\sum_i P^{(i)}(\mathbf{x} = \mathbf{x}|\mathbf{c} = i; \theta^{(i)})$ Categorical( $\mathbf{c} = i; \rho$ )

- The empirical distribution is a mixture distribution (where  $ho_i = 1/N$ )
- The component identity variable c is a *latent variable* 
  - Whose values are not observed

#### Gaussian Mixture Model

• A mixture model is called the *Gaussian mixture model* iff  $P^{(i)}(\mathbf{x} = \mathbf{x}|\mathbf{c} = i; \theta^{(i)}) = \mathcal{N}^{(i)}(\mathbf{x} = \mathbf{x}|\mathbf{c} = i; \mu^{(i)}, \Sigma^{(i)}), \ \forall i$ 

#### Gaussian Mixture Model

- A mixture model is called the *Gaussian mixture model* iff  $P^{(i)}(\mathbf{x} = \mathbf{x}|\mathbf{c} = i; \boldsymbol{\theta}^{(i)}) = \mathcal{N}^{(i)}(\mathbf{x} = \mathbf{x}|\mathbf{c} = i; \boldsymbol{\mu}^{(i)}, \boldsymbol{\Sigma}^{(i)}), \ \forall i$ 
  - Variants:  $\Sigma^{(i)} = \Sigma$  or  $\Sigma^{(i)} = \mathrm{diag}(\sigma)$  or  $\Sigma^{(i)} = \sigma I$

#### Gaussian Mixture Model

- A mixture model is called the *Gaussian mixture model* iff  $P^{(i)}(\mathbf{x} = \mathbf{x} | \mathbf{c} = i; \boldsymbol{\theta}^{(i)}) = \mathcal{N}^{(i)}(\mathbf{x} = \mathbf{x} | \mathbf{c} = i; \boldsymbol{\mu}^{(i)}, \boldsymbol{\Sigma}^{(i)}), \ \forall i$ 
  - Variants:  $\Sigma^{(i)} = \Sigma$  or  $\Sigma^{(i)} = \operatorname{diag}(\sigma)$  or  $\Sigma^{(i)} = \sigma I$
- Any smooth density can be approximated by a Gaussian mixture model with enough components



#### **Outline**

- 1 Random Variables & Probability Distributions
- 2 Multivariate & Derived Random Variables
- 3 Bayes' Rule & Statistics
- 4 Application: Principal Components Analysis
- 5 Technical Details of Random Variables
- 6 Common Probability Distributions
- 7 Common Parametrizing Functions
- 8 Information Theory
- 9 Application: Decision Trees & Random Forest

## **Parametrizing Functions**

- ullet A probability distribution  $P(\theta)$  is parametrized by  $\theta$
- $\bullet$  In ML,  $\theta$  may be the output value of a deterministic function
  - Called parametrizing function

### **Logistic Function**

 The logistic function (a special case of sigmoid functions) is defined as:

$$\sigma(x) = \frac{\exp(x)}{\exp(x) + 1} = \frac{1}{1 + \exp(-x)}$$



### **Logistic Function**

 The logistic function (a special case of sigmoid functions) is defined as:

$$\sigma(x) = \frac{\exp(x)}{\exp(x) + 1} = \frac{1}{1 + \exp(-x)}$$



Always takes on values between (0,1)

### **Logistic Function**

 The logistic function (a special case of sigmoid functions) is defined as:

$$\sigma(x) = \frac{\exp(x)}{\exp(x) + 1} = \frac{1}{1 + \exp(-x)}$$



- Always takes on values between (0,1)
- ullet Commonly used to produce the ho parameter of Bernoulli distribution

## **Softplus Function**

• The softplus function:

$$\zeta(x) = \log(1 + \exp(x))$$



## **Softplus Function**

• The softplus function:

$$\zeta(x) = \log(1 + \exp(x))$$

5

• A "softened" version of  $x^+ = \max(0, x)$ 

-5

-10

## **Softplus Function**

The softplus function :

$$\zeta(x) = \log(1 + \exp(x))$$

- A "softened" version of  $x^+ = \max(0, x)$
- Range:  $(0, \infty)$
- ullet Useful for producing the eta or  $\sigma$  parameter of Gaussian distribution

# Properties [Homework]

$$1 - \sigma(x) = \sigma(-x)$$

$$\log \sigma(x) = -\zeta(-x)$$

• 
$$\frac{d}{dx}\sigma(x) = \sigma(x)(1 - \sigma(x))$$

• 
$$\frac{d}{dx}\zeta(x) = \sigma(x)$$

• 
$$\forall x \in (0,1), \sigma^{-1}(x) = \log(\frac{x}{1-x})$$

• 
$$\forall x > 0, \zeta^{-1}(x) = \log(\exp(x) - 1)$$

• 
$$\zeta(x) = \int_{-\infty}^{x} \sigma(y) dy$$

• 
$$\zeta(-x)$$
 is the softened  $x^- = \max(0, -x)$ 

$$x = x^{+} - x^{-}$$

#### **Outline**

- 1 Random Variables & Probability Distributions
- 2 Multivariate & Derived Random Variables
- 3 Bayes' Rule & Statistics
- 4 Application: Principal Components Analysis
- 5 Technical Details of Random Variables
- 6 Common Probability Distributions
- 7 Common Parametrizing Functions
- 8 Information Theory
- 9 Application: Decision Trees & Random Forest

# What's Information Theory

 Probability theory allows us to make uncertain statements and reason in the presence of uncertainty

## What's Information Theory

- Probability theory allows us to make uncertain statements and reason in the presence of uncertainty
- Information theory allows us to quantify the amount of uncertainty

#### Self-Information

• Given a random variable x, how much information you receive when seeing an event x = x?

#### Self-Information

- Given a random variable x, how much information you receive when seeing an event x = x?
- Likely events should have low information
  - E.g., we are less surprised when tossing a biased coins

#### **Self-Information**

- Given a random variable x, how much information you receive when seeing an event x = x?
- Likely events should have low information
  - E.g., we are less surprised when tossing a biased coins
- 2 Independent events should have additive information
  - E.g, "two heads" should have twice as much info as "one head"

#### **Self-Information**

- Given a random variable x, how much information you receive when seeing an event x = x?
- Likely events should have low information
  - E.g., we are less surprised when tossing a biased coins
- 2 Independent events should have additive information
  - E.g, "two heads" should have twice as much info as "one head"
  - The self-information:

$$I(x = x) = -\log P(x = x)$$

#### **Self-Information**

- Given a random variable x, how much information you receive when seeing an event x = x?
- 1 Likely events should have low information
  - E.g., we are less surprised when tossing a biased coins
- 2 Independent events should have additive information
  - E.g, "two heads" should have twice as much info as "one head"
  - The self-information:

$$I(x = x) = -\log P(x = x)$$

- Called bit if base-2 logarithm is used
- Called nat if base-e

Self-information deals with a particular outcome

- Self-information deals with a particular outcome
- We can quantify the amount of uncertainty in an entire probability distribution using the *entropy*:

$$H(x \sim P) = E_{x \sim P}[I(x)] = -\sum_{x} P(x) \log P(x) \text{ or } -\int p(x) \log p(x) dx$$

• Let  $0\log 0 = \lim_{x\to 0} x\log x = 0$ 

- Self-information deals with a particular outcome
- We can quantify the amount of uncertainty in an entire probability distribution using the *entropy*:

$$H(x \sim P) = E_{x \sim P}[I(x)] = -\sum_{x} P(x) \log P(x) \text{ or } -\int p(x) \log p(x) dx$$

- Let  $0\log 0 = \lim_{x\to 0} x\log x = 0$
- Called Shannon entropy when x is discrete; differential entropy when x is continuous

- Self-information deals with a particular outcome
- We can quantify the amount of uncertainty in an entire probability distribution using the *entropy*:

$$H(x \sim P) = E_{x \sim P}[I(x)] = -\sum_{x} P(x) \log P(x) \text{ or } -\int p(x) \log p(x) dx$$

- Let  $0\log 0 = \lim_{x\to 0} x \log x = 0$
- Called Shannon entropy when x is discrete; differential entropy when x is continuous



**Figure:** Shannon entropy H(x) over Bernoulli distributions with different  $\rho$ .

# Average Code Length

• Shannon entropy gives a lower bound on the number of "bits" needed on average to encode values drawn from a distribution P

# Average Code Length

- ullet Shannon entropy gives a lower bound on the number of "bits" needed on average to encode values drawn from a distribution P
- $\bullet$  Consider a random variable  $x \sim Uniform$  having 8 equally likely states
  - To send a value x to receiver, we would encode it into 3 bits
  - Shannon entropy:  $H(x \sim Uniform) = -8 \times \frac{1}{8} \log_2 \frac{1}{8} = 3$

# Average Code Length

- Shannon entropy gives a lower bound on the number of "bits" needed on average to encode values drawn from a distribution P
- $\bullet$  Consider a random variable  $x \sim Uniform$  having 8 equally likely states
  - To send a value x to receiver, we would encode it into 3 bits
  - Shannon entropy:  $H(x \sim Uniform) = -8 \times \frac{1}{8} \log_2 \frac{1}{8} = 3$
- $\bullet \ \ \text{If the probabilities of the 8 states are} \ (\tfrac{1}{2},\tfrac{1}{4},\tfrac{1}{8},\tfrac{1}{16},\tfrac{1}{64},\tfrac{1}{64},\tfrac{1}{64},\tfrac{1}{64}) \ \text{instead}$ 
  - H(x) = 2
  - $\bullet$  The encoding 0, 10, 110, 1110, 111100, 111101, 111110, 111111 gives the average code length 2

# Kullback-Leibler (KL) Divergence

 How many extra "bits" needed in average to transmit a value drawn from distribution P when we use a code that was designed for another distribution Q?

# Kullback-Leibler (KL) Divergence

- How many extra "bits" needed in average to transmit a value drawn from distribution P when we use a code that was designed for another distribution Q?
- Kullback-Leibler (KL) Divergence or (relative entropy) from distribution Q to P:

$$D_{KL}(P\|Q) = E_{x \sim P} \left[ log \frac{P(x)}{Q(x)} \right] = -E_{x \sim P} \left[ log \, Q(x) \right] - H(x \sim P)$$

• The term  $-E_{x\sim P}[\log Q(x)]$  is called the *cross entropy* 

# Kullback-Leibler (KL) Divergence

- How many extra "bits" needed in average to transmit a value drawn from distribution P when we use a code that was designed for another distribution Q?
- Kullback-Leibler (KL) Divergence or (relative entropy) from distribution Q to P:

$$D_{KL}(P\|Q) = E_{x \sim P} \left[ log \frac{P(x)}{Q(x)} \right] = -E_{x \sim P} \left[ log \, Q(x) \right] - H(x \sim P)$$

- The term  $-E_{x \sim P}[\log Q(x)]$  is called the *cross entropy*
- If P and Q are independent, we can solve

$$\arg\min_{Q} D_{KL}(P||Q)$$

by

$$\operatorname{arg\,min}_{Q} - \operatorname{E}_{x \sim P} \left[ \log Q(x) \right]$$

#### **Properties**

- $\bullet$  D<sub>KL</sub>(P||Q)  $\geq$  0,  $\forall$ P,Q
- $\bullet \ D_{KL}(P\|Q) = 0$  iff P and Q are equal almost surely
- KL divergence is asymmetric, i.e.,  $D_{KL}(P||Q) \neq D_{KL}(Q||P)$



Figure: KL divergence for two normal distributions.

### Minimizer of KL Divergence

- Given P, we want to find Q\* that minimizes the KL divergence

## Minimizer of KL Divergence

- Given P, we want to find Q\* that minimizes the KL divergence
- ullet  $Q^{*(from)}$  places high probability where P has high probability
- ullet  $Q^{*(to)}$  places low probability where P has low probability



**Figure:** Approximating a mixture P of two Gaussians using a single Gaussian Q.

#### **Outline**

- 1 Random Variables & Probability Distributions
- 2 Multivariate & Derived Random Variables
- 3 Bayes' Rule & Statistics
- 4 Application: Principal Components Analysis
- 5 Technical Details of Random Variables
- 6 Common Probability Distributions
- 7 Common Parametrizing Functions
- 8 Information Theory
- 9 Application: Decision Trees & Random Forest

#### **Decision Trees**

- Given a supervised dataset  $\mathbb{X} = \{(\boldsymbol{x}^{(i)}, y^{(i)})\}_{i=1}^N$
- Can we find out a tree-like function f (i.e, a set of rules) such that  $f(\mathbf{x}^{(i)}) = y^{(i)}$ ?



- Start from root which corresponds to all data points  $\{(\boldsymbol{x}^{(i)}, y^{(i)}) : \text{Rules} = \emptyset)\}$
- Recursively split leaf nodes until data corresponding to children are "pure" in labels

- Start from root which corresponds to all data points  $\{(\boldsymbol{x}^{(i)}, y^{(i)}) : \text{Rules} = \emptyset)\}$
- Recursively split leaf nodes until data corresponding to children are "pure" in labels
- How to split?

- Start from root which corresponds to all data points  $\{(x^{(i)}, y^{(i)}) : \text{Rules} = \emptyset\}$
- Recursively split leaf nodes until data corresponding to children are "pure" in labels
- How to split? Find a cutting point (j, v) among all unseen attributes such that after partitioning the corresponding data points  $\mathbb{X}^{\mathsf{parent}} = \{(\boldsymbol{x}^{(i)}, y^{(i)} : \mathsf{Rules})\}$  into two groups



$$\mathbb{X}^{\mathsf{left}} = \{(\boldsymbol{x}^{(i)}, y^{(i)}) : \mathsf{Rules} \cup \{x_j^{(i)} < v\}\}, \text{ and}$$
 
$$\mathbb{X}^{\mathsf{right}} = \{(\boldsymbol{x}^{(i)}, y^{(i)}) : \mathsf{Rules} \cup \{x_j^{(i)} \geq v\}\},$$
 the "impurity" of labels drops the most

- Start from root which corresponds to all data points  $\{(x^{(i)}, y^{(i)}) : \text{Rules} = \emptyset\}$
- Recursively split leaf nodes until data corresponding to children are "pure" in labels
- How to split? Find a cutting point (j, v) among all unseen attributes such that after partitioning the corresponding data points  $\mathbb{X}^{\text{parent}} = \{(\mathbf{x}^{(i)}, y^{(i)} : \text{Rules})\}$  into two groups



$$\mathbb{X}^{\mathsf{left}} = \{ (\boldsymbol{x}^{(i)}, y^{(i)}) : \mathsf{Rules} \cup \{ x_j^{(i)} < v \} \}, \text{ and}$$

$$\mathbb{X}^{\mathsf{right}} = \{ (\boldsymbol{x}^{(i)}, y^{(i)}) : \mathsf{Rules} \cup \{ x_i^{(i)} \ge v \} \},$$

the "impurity" of labels drops the most, i.e., solve

 $\arg\max_{j,\boldsymbol{\nu}} \left( \mathrm{Impurity}(\mathbb{X}^{\mathsf{parent}}) - \mathrm{Impurity}(\mathbb{X}^{\mathsf{left}},\mathbb{X}^{\mathsf{right}}) \right)$ 

### Impurity Measure

$$\arg\max_{j,\nu}\left(\mathrm{Impurity}(\mathbb{X}^{\mathsf{parent}}) - \mathrm{Impurity}(\mathbb{X}^{\mathsf{left}},\mathbb{X}^{\mathsf{right}})\right)$$

■ What's Impurity(·)?

# Impurity Measure

$$\arg\max_{j,\nu}\left(\mathrm{Impurity}(\mathbb{X}^{\mathsf{parent}}) - \mathrm{Impurity}(\mathbb{X}^{\mathsf{left}},\mathbb{X}^{\mathsf{right}})\right)$$

- What's Impurity(·)?
- Entropy is a common choice:

$$Impurity(\mathbb{X}^{\mathsf{parent}}) = H[y \sim Empirical(\mathbb{X}^{\mathsf{parent}})]$$

$$Impurity(\mathbb{X}^{\mathsf{left}}, \mathbb{X}^{\mathsf{right}}) = \sum_{i = \mathsf{left.right}} \frac{|\mathbb{X}^{(i)}|}{|\mathbb{X}^{\mathsf{parent}}|} H[y \sim \mathsf{Empirical}(\mathbb{X}^{(i)})]$$

## Impurity Measure

$$\arg\max_{j,\nu} \left( \mathrm{Impurity}(\mathbb{X}^{\mathsf{parent}}) - \mathrm{Impurity}(\mathbb{X}^{\mathsf{left}},\mathbb{X}^{\mathsf{right}}) \right)$$

- What's Impurity(·)?
- Entropy is a common choice:

$$Impurity(\mathbb{X}^{\mathsf{parent}}) = H[y \sim Empirical(\mathbb{X}^{\mathsf{parent}})]$$

$$\text{Impurity}(\mathbb{X}^{\mathsf{left}}, \mathbb{X}^{\mathsf{right}}) = \sum_{i = \mathsf{left}, \mathsf{right}} \frac{|\mathbb{X}^{(i)}|}{|\mathbb{X}^{\mathsf{parent}}|} \mathsf{H}[y \sim \mathsf{Empirical}(\mathbb{X}^{(i)})]$$

• In this case,  $Impurity(\mathbb{X}^{parent}) - Impurity(\mathbb{X}^{left}, \mathbb{X}^{right})$  is called the *information gain* 

A decision tree can be very deep

- A decision tree can be very deep
- Deeper nodes give more specific rules
  - Backed by less training data
  - May not be applicable to testing data
- How to ensure the generalizability of a decision tree?
  - I.e., to have high prediction accuracy on testing data

- A decision tree can be very deep
- Deeper nodes give more specific rules
  - Backed by less training data
  - May not be applicable to testing data
- How to ensure the generalizability of a decision tree?
  - I.e., to have high prediction accuracy on testing data
- 1 Pruning (e.g., limit the depth of the tree)

- A decision tree can be very deep
- Deeper nodes give more specific rules
  - Backed by less training data
  - May not be applicable to testing data
- How to ensure the generalizability of a decision tree?
  - I.e., to have high prediction accuracy on testing data
- 1 Pruning (e.g., limit the depth of the tree)
- Random forest: an ensemble of many (deep) trees

- f 1 Randomly pick M samples from the training set with replacement
  - Called the **bootstrap** samples

- $oldsymbol{\Phi}$  Randomly pick M samples from the training set with replacement
  - Called the **bootstrap** samples
- 2 Grow a decision tree from the bootstrap samples. At each node:
  - Randomly select K features without replacement
  - 2 Find the best cutting point (j, v) and split the node

- Randomly pick M samples from the training set with replacement
   Called the bootstrap samples
- 2 Grow a decision tree from the bootstrap samples. At each node:
  - Randomly select K features without replacement
  - **2** Find the best cutting point (j, v) and split the node
- 3 Repeat the steps 1 and 2 for T times to get T trees

- Randomly pick M samples from the training set with replacement
   Called the bootstrap samples
- 2 Grow a decision tree from the bootstrap samples. At each node:
  - Randomly select K features without replacement
  - 2 Find the best cutting point (j, v) and split the node
- 3 Repeat the steps 1 and 2 for T times to get T trees
- Aggregate the predictions made by different trees via the majority vote

- Randomly pick M samples from the training set with replacement
   Called the bootstrap samples
- 2 Grow a decision tree from the bootstrap samples. At each node:
  - Randomly select K features without replacement
  - 2 Find the best cutting point (j, v) and split the node
- 3 Repeat the steps 1 and 2 for T times to get T trees
- 4 Aggregate the predictions made by different trees via the majority vote
- Each tree is trained slightly differently because of Step 1 and 2(a)
- Provides different "perspectives" when voting

#### **Decision Boundaries**



#### Decision Trees vs. Random Forests

- Cons of random forests:
  - Less interpretable model

#### Decision Trees vs. Random Forests

- Cons of random forests:
  - Less interpretable model
- Pros:
  - Less sensitive to the depth of trees
    - The majority voting can "absorb" the noise from individual trees
  - Can be parallelized
    - Each tree can grow independently