## Ekonometria Finansowa

Jednowymiarowe modele szeregów czasowych

mgr Paweł Jamer<sup>1</sup>

31 stycznia 2016



<sup>&</sup>lt;sup>1</sup>pawel.jamer@gmail.com

# Biały szum

## Biały szum

Białym szumem nazwiemy szereg czasowy  $\epsilon_t$  niezależnych zmiennych losowych o tym samym rozkładzie taki, że

$$\mathbb{E}(\epsilon_t) = 0,$$

$$Var(\epsilon_t) = \sigma^2.$$

Biały szum oznaczać będziemy symbolem WN  $(0, \sigma^2)$ .

**Uwaga** Bardziej złożone modele szeregów czasowych wykorzystują biały szum do opisu niepewności pomiaru opisywanych przez nie wielkości.

# Błądzenie losowe

### Błądzenie losowe (bez dryftu)

Szereg czasowy  $p_t$  nazwiemy błądzeniem losowym bez dryftu, jeżeli spełnia on równanie

$$p_t = p_{t-1} + \epsilon_t,$$

gdzie

•  $\epsilon_t$  — biały szum.

**Uwaga.** Uzupełniając powyższy wzór o niezerową stałą lpha

$$p_t = \alpha + p_{t-1} + \epsilon_t$$

uzyskujemy proces błądzenia losowego z dryftem.

# Ceny instrumentów finansowych

### Hipoteza

Cena instrumentu finansowego  $p_t$  jest błądzeniem losowym.

Rozważmy model

$$p_t = \alpha + \rho p_{t-1} + \epsilon_t.$$

Prawdziwość powyższej hipotezy jest równoznaczna z tym, że:

- $oldsymbol{\hat{
  ho}}$  statystycznie nie różni się od jedności,
- ullet  $\epsilon_t$  jest białym szumem.

Ponadto, jeżeli na zadanym poziomie istotności zachodzi:

- $\hat{\alpha} = 0$ , to  $p_t$  jest błądzeniem losowym bez dryfu,
- $\hat{\alpha} \neq 0$ , to  $p_t$  jest błądzeniem losowym z dryfem.

**Uwaga.** Z powodu możliwej niestacjonarności  $p_t$  estymacja powyższego równania jest problematyczna.

# Właściwości błądzenia losowego

## Błądzenie losowe bez dryftu Błądzenie losowe z dryftem

$$p_t = p_{t-1} + \epsilon_t,$$
  $p_t = \alpha + p_{t-1} + \epsilon_t,$   $p_t = p_0 + \sum_{h=0}^t \epsilon_{t-h},$   $p_t = p_0 + t\alpha + \sum_{h=0}^t \epsilon_{t-h},$   $\mathbb{E}(p_t) = p_0,$   $\mathbb{E}(p_t) = p_0 + t\alpha,$   $\mathbb{Var}(p_t) = t\sigma_{\epsilon_t}^2.$   $\mathbb{Var}(p_t) = t\sigma_{\epsilon_t}^2.$ 

# Stopy zwrotu instrumentów finansowych

Rozważmy model błądzenia losowego bez dryftu dla logarytmu cen pewnego instrumentu finansowego

$$\log(p_t) = \log(p_{t-1}) + \epsilon_t.$$

Model ten przekształcić możemy do postaci

$$r_t = \log\left(\frac{p_t}{p_{t-1}}\right) = \epsilon_t.$$

**Uwaga.** Badanie czy logarytm cen  $p_t$  instrumentu finansowego jest błądzeniem losowym sprowadza się do ustalenia, czy logarytmiczne stopy zwrotu  $r_t$  tego instrumentu są białym szumem.

# Krytyka

Optymalna prognoza ceny instrumentu finansowego na okres przyszły, to przyjęcie ceny tego instrumentu z okresu bieżącego.

Nie uwzględnia się rentowności zależnej od ryzyka.

# Proces AR

Zdefiniujmy operator

$$\varphi(B) = I - \varphi_1 B - \ldots - \varphi_p B^p,$$

gdzie  $p \in \mathbb{Z}_+$ .

#### **Proces AR**

Słabo stacjonarny szereg czasowy  $X_t$  nazwiemy procesem AR (autoregresyjnym) rzędu p, jeżeli spełnia on równanie

$$\varphi(B)X_t=\epsilon_t,$$

gdzie  $\epsilon_t \sim \text{WN}(0, \sigma^2)$ .

Oznaczenie. Proces AR rzędu p oznacza się symbolem AR (p).

## Proces MA

Zdefiniujmy operator

$$\theta(B) = I + \theta_1 B + \ldots + \theta_q B^q,$$

gdzie  $q \in \mathbb{Z}_+$ .

#### **Proces MA**

Słabo stacjonarny szereg czasowy  $X_t$  nazwiemy procesem MA (średniej ruchomej) rzędu q, jeżeli spełnia on równanie

$$X_{t}=\theta\left( B\right) \epsilon_{t},$$

gdzie  $\epsilon_t \sim \text{WN}(0, \sigma^2)$ .

Oznaczenie. Proces MA rzędu q oznacza się symbolem MA (q).

## Proces ARMA Definicja

#### **Proces ARMA**

Słabo stacjonarny szereg czasowy  $X_t$  nazwiemy procesem ARMA (p,q), jeżeli spełnia on równanie

$$\varphi(B)X_{t}=\theta(B)\epsilon_{t},$$

gdzie  $\epsilon_t \sim \text{WN}\left(0, \sigma^2\right)$ .

# Proces ARMA

Estymowanie funkcji autokorelacji (ACF)

### Estymator funkcji autokorelacji

Jako estymator funkcji autokorelacji procesu  $X_t$  możemy przyjąć

$$\hat{\rho}_h = \frac{\sum_{t=1}^{T-h} \left( X_t - \overline{X} \right) \left( X_{t+h} - \overline{X} \right)}{\sum_{t=1}^{T} \left( X_t - \overline{X} \right)^2}$$

## Proces ARMA

Estymowanie funkcji autokorelacji częściowej (PACF)

### Estymator funkcji autokorelacji częściowej

Jako estymator funkcji autokorelacji częściowej procesu  $X_t$  możemy przyjąć

$$\alpha_{0} = 1,$$

$$\alpha_{1} = \phi_{1,1} = \hat{\rho}_{1},$$

$$\alpha_{h} = \phi_{h,h} = \frac{\hat{\rho}_{h} - \sum_{j=1}^{h-1} \phi_{h-1,j} \hat{\rho}_{h-j}}{1 - \sum_{j=1}^{h-1} \phi_{h-1,j} \hat{\rho}_{j}}, h = 2, 3, \dots,$$

gdzie  $\phi_{i,j}$  to rozwiązania układu Yule'a-Walkera.

**Intuicja.** Współczynnik autokorelacji częściowej mierzy korelację między zmiennymi  $X_t$  oraz  $X_{t-h}$  po eliminacji wpływu zmiennych pośrednich.

# Proces ARMA Identyfikacja na podstawie ACF oraz PACF

- Jeżeli proces jest typu AR(p), to funkcja autokorelacji powoli maleje, natomiast funkcja autokorelacji częściowej staje się statystycznie równa zero od wartości p+1.
- Jeżeli proces jest typu MA(q), to funkcja autokorelacji staje się statystycznie równa zero od wartości q+1, natomiast funkcja autokorelacji częściowej powoli maleje.
- Jeżeli proces jest typu ARMA (p, q), to funkcja autokorelacji oraz funkcja autokorelacji częściowej łagodnie zanikają.

# Proces ARMA Identyfikacja na podstawie kryteriów informacyjnych

#### Idea

Należy oszacować modele ARMA (p,q) dla wszystkich możliwych kombinacji parametrów  $p=1,2,\ldots,P$  oraz  $q=1,2,\ldots,Q$ , a następnie obliczyć dla nich wartości wybranego kryterium informacyjnego. Minimalna wartość kryterium wyznacza optymalną parę parametrów p i q.

# Proces ARMA Kryteria informacyjne

Niech  $L_{p,q}$  oznacza wiarogoność modelu ARMA (p,q).

## Kryterium informacyjne Akaike (AIC)

$$AIC_{p,q} = -2 \ln L_{p,q} + 2 (p+q+1)$$

## Bayesowskie kryterium informacyjne (BIC)

$$BIC_{p,q} = -2 \ln L_{p,q} + (p+q+1) \ln T$$

# Proces ARMA Podział metod estymacji

### Metody estymacji:

- Metody estymacji parametrów modelu AR(p):
  - równania Yule'a-Walkera,
  - metoda najmniejszych kwadratów,
  - metoda największej wiarogodności.
- Metody estymacji parametrów modelu ARMA (p, q):
  - metoda największej wiarogodności.

Biały szum Błądzenie Iosowe **Modele ARMA** Modele GARCH Model ECM

# Proces ARMA

#### Równania Yule'a-Walkera

Równania Yule'a-Walkera to liniowy układ równań pozwalający na wyrażenie parametrów autoregresji za pomocą współczynników autokorelacji. Oszacowania parametrów modelu AR(p) otrzymujemy zastępując we wspomnianym układzie współczynniki autokorelacji ich estymatorami, a następnie rozwiązując układ.

## Metoda najmniejszych kwadratów

Wykorzystanie klasycznej MNK do stacjonarnego szeregu czasowego typu AR(p). Uzysane w ten sposób estymatory będą zgodne z estymatorami metody największej wiarogodności.

### Metoda największej wiarogodności

Metoda polegająca na maksymalizacji funkcji największej wiarogodności procesu ARMA (p, q).

# Proces ARMA Prognoza

Interesuje nas prognoza na h okresów w przód:

$$X_{t+h} = \sum_{k=1}^{p} \rho_k X_{t+h-k} + \sum_{k=0}^{q} \theta_k \epsilon_{t-k},$$

gdzie  $\theta_0 = 1$ .

Możemy wyrazić ją jako warunkową wartość oczekiwaną:

$$\hat{X}_{t}(h) = \mathbb{E}(X_{t+h} \mid X_{t}, X_{t-1}, \dots),$$

$$\mathbb{E}(X_{t+j} \mid X_{t}, X_{t-1}, \dots) = \begin{cases} X_{t+j}, & j \leq 0, \\ \hat{X}_{t}(j), & j > 0, \end{cases}$$

$$\mathbb{E}(\epsilon_{t+j} \mid \epsilon_{t}, \epsilon_{t-1}, \dots) = \begin{cases} \epsilon_{t+j}, & j \leq 0, \\ 0, & j > 0. \end{cases}$$

# Proces ARIMA

#### **Proces ARIMA**

Szereg czasowy  $X_t$  nazwiemy procesem ARIMA (p, d, q), jeżeli szereg czasowy  $\Delta^d X_t$  jest procesem ARMA (p, q).

Z powyższej definicji wynika, że proces ARIMA (p, d, q) jest opisywany przez następujące równanie:

$$\varphi(B)\left(\Delta^{d}X_{t}\right)=\theta(B)\epsilon_{t}.$$

# Multiplikatywny proces ARMA Intuicja

Niech proces  $X_t$  charakteryzuje równanie

$$\varphi_X(B)X_t = \theta_X(B)\epsilon_t,$$

natomiast proces  $\epsilon_t$  równanie

$$\varphi_{\epsilon}(B) \epsilon_{t} = \theta_{\epsilon}(B) \eta_{t},$$

gdzie  $\eta_t \sim \mathsf{WN}\left(0,\sigma^2\right)$ . Składając powyższe równania uzyskujemy

$$\varphi_{\epsilon}(B)\varphi_{X}(B)X_{t}=\theta_{X}(B)\theta_{\epsilon}(B)\eta_{t}.$$

**Uwaga.** Powyższe złożenie dwóch procesów ARMA pozostaje nadal procesem ARMA.

# Multiplikatywny proces ARMA Definicja

### Multiplikatywny proces ARMA

Szereg czasowy  $X_t$  nazwiemy multiplikatywnym procesem ARMA  $(p,q) \times (P,Q)_s$ , jeżeli spełnia on równanie

$$\Phi(B^s)X_t = \Theta(B^s)\epsilon_t,$$

### gdzie

- $\Phi$  operator analogiczny do  $\varphi$  rzędu P,
- $\Theta$  operator analogiczny do  $\theta$  rzędu Q,
- $\epsilon_t$  proces ARMA (p, q).

# Multiplikatywny proces ARMA Właściwości

**Reprezentacja.** Proces ARMA  $(p,q) \times (P,Q)_s$  jest specyficznym przypadkiem procesu ARMA (p+sP,q+sQ).

**Estymacja.** Estymacja parametrów multiplikatywnych procesów ARMA odbywa się przez osobną estymację parametrów każdego z procesów ARMA wchodzących w jego skład.

# Sezonowy proces ARIMA

#### Sezonowy proces ARIMA

Szereg czasowy  $X_t$  nazwiemy sezonowym procesem ARIMA  $(p,d,q) \times (P,D,Q)_s$ , jeżeli spełnia on równanie

$$\Phi(B^s)\phi(B)\Delta_s^D\Delta^dX_t=\Theta(B^s)\theta(B)\epsilon_t,$$

gdzie

- $\epsilon_t$  biały szum,
- $\Delta_s^D \Delta^d X_t$  proces stacjonarny.

# Stylizowane fakty

#### Stylizowane fakty dla stóp zwrotu:

- Rozkłady stóp zrotu mają grubsze ogony niż rozkład normalny.
- Wartości stóp zwrotu są nieskorelowane, ale ich kwadraty są skorelowane.
- Duże zmianny wartości stóp zwrotu następują często po wcześniejszych dużych zmianach.

## Model ARCH

#### Model ARCH

Powiemy, że szereg czasowy  $r_t$  jest procesem ARCH (p), jeżeli

$$r_t = \sigma_t \epsilon_t,$$
  

$$\sigma_t^2 = \alpha_0 + \sum_{j=1}^p \alpha_j r_{t-j}^2,$$

gdzie

- $\epsilon_t$  iid WN (0,1),
- $\alpha_0 > 0$ ,
- $\alpha_j \ge 0$  dla j = 1, 2, ..., p.

Uwaga. Model ARCH jest często wykorzystywany do opisu reszt w modelach ARMA.

# Stacjonarność

## Stacjonarność

Stacjonarne szeregi czasowe typu  $\mathsf{ARCH}\left(p\right)$  spełniają nierówność

$$\sum_{j=1}^{p} \alpha_j < 1.$$

# Warunkowa wariancja

Niech  $\mathcal{R}_{ au}$  będzie zbiorem wszystkich informacji o szeregu czasowym  $r_t$  do chwili czasu au. Wówczas:

$$\begin{aligned} & \operatorname{Var}(r_{t} \mid \mathcal{R}_{t-1}) &= \mathbb{E}\left(r_{t}^{2} \mid \mathcal{R}_{t-1}\right) - \mathbb{E}^{2}\left(r_{t} \mid \mathcal{R}_{t-1}\right), \\ & \operatorname{Var}(r_{t} \mid \mathcal{R}_{t-1}) &= \mathbb{E}\left(\sigma_{t}^{2} \epsilon_{t}^{2} \mid \mathcal{R}_{t-1}\right) - \mathbb{E}^{2}\left(\sigma_{t} \epsilon_{t} \mid \mathcal{R}_{t-1}\right), \\ & \operatorname{Var}(r_{t} \mid \mathcal{R}_{t-1}) &= \sigma_{t}^{2} \mathbb{E}\left(\epsilon_{t}^{2} \mid \mathcal{R}_{t-1}\right) - \sigma_{t}^{2} \mathbb{E}^{2}\left(\epsilon_{t} \mid \mathcal{R}_{t-1}\right), \\ & \operatorname{Var}(r_{t} \mid \mathcal{R}_{t-1}) &= \sigma_{t}^{2} \mathbb{E}\left(\epsilon_{t}^{2}\right) - \sigma_{t}^{2} \mathbb{E}^{2}\left(\epsilon_{t}\right), \\ & \operatorname{Var}(r_{t} \mid \mathcal{R}_{t-1}) &= \sigma_{t}^{2}. \end{aligned}$$

**Wniosek.**  $\sigma_t^2$  jest warunkową wariancją procesu  $r_t$  pod warunkiem przeszłości  $\mathcal{R}_{t-1}$ .

## Efekt ARCH Test Engle'a

Szacujemy parametry modelu:

$$r_t^2 = \alpha_0 + \sum_{i=1}^{p} \alpha_j r_{t-j}^2 + \eta_t, \eta_t \text{ iid WN } (0, s).$$

Testujemy hipotezę postaci:

$$H_0: \sum_{j=1}^p \alpha_j^2 = 0.$$

Statystyka testowa przyjmuje postać:

$$LM = TR^2 \rightarrow \chi_p^2$$

gdzie  $R^2$  to współczynnik determinacji modelu wyjściowego.

## Efekt ARCH Test McLeoda-Li

Badamy szereg czasowy kwadratów wartości szeregu czsowego wyjściowego  $r_t$ .

Testujemy hipotezę postaci

$$H_0: \sum_{j=1}^h \rho_j^2 = 0.$$

Statystyka testowa przyjmuje postać:

$$T_{LB} = n(n+2)\sum_{i=1}^{h} \frac{\hat{\rho}_j^2}{n-j} \to \chi_h^2,$$

gdzie

$$\hat{\rho}_j = \frac{\sum_{t=h+1}^T r_t^2 r_{t-h}^2}{\sum_{t=1}^T r_t^4}.$$



## Model GARCH

#### **Model GARCH**

Powiemy, że szereg czasowy  $r_t$  jest procesem GARCH (p,q), jeżeli

$$r_t = \sigma_t \epsilon_t,$$

$$\sigma_t^2 = \alpha_0 + \sum_{j=1}^q \alpha_j r_{t-j}^2 + \sum_{j=1}^p \beta_j \sigma_{t-j}^2,$$

gdzie

- $\epsilon_t$  iid WN (0,1),
- $\alpha_0 > 0$ ,
- $\alpha_i \ge 0$  dla j = 1, 2, ..., q,
- $\beta_i \ge 0$  dla j = 1, 2, ..., p.

**Uwaga.** Model GARCH jest często wykorzystywany do opisu reszt w modelach ARMA.



## Właściwości

- Przy spełnieniu odpowiednich założeń model GARCH można sprowadzić do postaci modelu ARCH.
- Model GARCH (p, q) można przedstawić w postaci modelu ARMA (m, p) dla szeregu  $r_t^2$ , gdzie  $m = \max(p, q)$ .

#### Stacjonarność

Stacjonarne szeregi czasowe typu GARCH(p,q) spełniają nierówność

$$\sum_{j=1}^{q} \alpha_j + \sum_{j=1}^{p} \beta_j < 1.$$

# Estymacja

Estymacja modeli klasy GARCH odbywa się z wykorzystaniem metody największej wiarogodności. Maksymalizuje się funkcję log-wiarogodności

$$L_{T}(\boldsymbol{\theta}) = \sum_{t=1}^{T} \ell_{t}(\boldsymbol{\theta}),$$

#### gdzie

- θ wektor wszystkich parametrów modelu,
- $\ell_t\left(\theta\right)$  funkcja log-wiarogodności dla obserwacji z chwili czasu t.

### Estymacja Przypadek reszt o rozkładzie normalnym

Niech dane będzie równanie

$$r_t = \sigma_t \epsilon_t$$

gdzie  $\epsilon_t$  iid  $\mathcal{N}(0,1)$ .

Funkcja log-wiarogodności dla tego równania w chwili czasu t wyraża się wzorem

$$\ell_t\left(\boldsymbol{\theta}\right) = \log \frac{1}{\sqrt{2\pi}\sigma_t} e^{-\frac{r_t^2}{2\sigma_t^2}} = -\frac{r_t^2}{2\sigma_t^2} - \log \sigma_t - \log \sqrt{2\pi}.$$

Finalna postać tej funkcji zależy od sposobu zdefiniowania warunkowej wariancji  $\sigma_t^2$  w danym modelu klasy GARCH.

# Ocena jakości modelu

#### Idea

Inwestor jest bardziej zainteresowany poznaniem kierunku zmian kursu instrumentu finansowego, niż dokładną wartością tego kursu.

# Ocena jakości modelu

Miary zgodności kierunku zmian stopy zwrotu

#### Niech:

- $r_t$  rzeczywista wartość stopy zwrotu w chwili czasu t,
- ullet  $\hat{r}_t$  predykowana wartość stopy zwrotu w chwili czasu t.

Podstawowe miary zgodności kierunku zmian stopy zwrotu to:

$$Q_{1} = \frac{\#\{t : r_{t}\hat{r}_{t} > 0\}}{\#\{t : r_{t}\hat{r}_{t} \neq 0\}},$$

$$Q_{2} = \frac{\#\{t : r_{t-1}r_{t} < 0 \land r_{t}\hat{r}_{t} > 0\}}{\#\{t : r_{t-1}r_{t} < 0 \land r_{t}\hat{r}_{t} \neq 0\}}.$$

# Ocena jakości modelu <sup>Modyfikacje miary Q1</sup>

Uwzględniając koszta transakcji w wysokości g możemy miarę  $Q_1$  zmodyfikować w następujący sposób:

$$Q_1' = \frac{\#\{t : r_t > g \land r_t \hat{r}_t > 0\}}{\#\{t : r_t > g \land r_t \hat{r}_t \neq 0\}}.$$

W przypadku modeli pozwalających szacować wyłącznie zmienność stopy zwortu  $\sigma_t$  (np. modele GARCH bez części ARIMA) możemy zastosować następującą modyfikację miary  $Q_1$ :

$$Q_1^{\mathsf{x}} = \frac{\# \{t : r_t \Delta \hat{\sigma}_t < 0\}}{\# \{t : r_t \Delta \hat{\sigma}_t \neq 0\}}.$$

# Model GARCH-M

# Model EGARCH

# Model TGARCH

# Kointegracja

**Idea.** Chcemy wiedzieć, czy bazując na pewnej grupie niestacjonarnych szeregów czasowych możemy bezpiecznie zbudować model.

#### Kointegracja

Powiemy, że szeregi czasowe  $X_{1,t}, X_{2,t}, \ldots, X_{n,t}$  są skointegrowane w stopniu (d,b), jeżeli dla każdego  $i=1,2,\ldots,n$  zachodzi

$$X_{i,t} \sim I(d)$$

oraz istnieją takie wartości  $\beta_1,\beta_2,\ldots,\beta_n,$  że

$$\beta_1 X_{1,t} + \beta_2 X_{2,t} + \ldots + \beta_n X_{n,t} \sim I(d-b).$$

**Intuicja.** Relacje pomiędzy skointegrowanymi niestacjonarnymi szeregami czasowymi pozostają w długiej perspektywie czasowej niezmienne.

# Testowanie kointegracji

### Procedura Engle'a-Grangera.

- Należy zweryfikować czy wszystkie analizowane szeregi czasowe charakteryzuje ten sam stopień integracji.
- Należy zbudować model regresji liniowej wielorakiej w którym jeden z analizowanych szeregów pełni rolę zmiennej objaśnianej, pozosałe natomiast zmiennych objaśniających.
- Należy przetestować stopień integracji reszt wyznaczonego w poprzednim kroku modelu.

## Model ECM

## Model korekty błędem (ECM)

$$\Delta y_{t} = \mu + \alpha (y_{t-1} - \beta_{0} - \beta_{1} x_{t-1}) + \sum_{i=1}^{k-1} \theta_{i} \Delta y_{t-i} + \sum_{i=0}^{k-1} \gamma_{i} \Delta x_{t-i} + \epsilon_{t}$$

#### Interpretacja:

- $y_{t-1} = \beta_0 + \beta_1 x_{t-1}$  równanie równowagi długookresowej,
- $y_{t-1} \beta_0 \beta_1 x_{t-1}$  odchylenie od równowagi długookr.,
- $\alpha$  współczynnik opisujący szybkość dostosowywania się zmiennej objaśnianej do poziomu równowagi długookresowej (w stabilnym modelu  $\alpha < 0$ ).
- $\theta_i, \gamma_i$  współczynniki opisujące dynamikę krótkookresową.

## Stosowalność

**Uwaga.** Twierdzenie Grangera o reprezentacji gwarantuje nam możliwość zastosowania mechanizmu korekty błędem względem skointegrowanych szeregów czasowych.

# Estymacja

Estymacja parametrów równania równowagi długookresowej

$$y_{t-1} = \beta_0 + \beta_1 x_{t-1}.$$

2 Skonstruowanie szeregów czasowych

$$\epsilon_t = y_t - \beta_0 - \beta_1 x_t, 
\Delta x_t = x_t - x_{t-1}, 
\Delta y_t = y_t - y_{t-1}.$$

Stymacja parametrów równania modelu korekty błędem

$$\Delta y_t = \mu + \alpha \epsilon_{t-1} + \sum_{i=1}^{k-1} \theta_i \Delta y_{t-i} + \sum_{i=0}^{k-1} \gamma_i \Delta x_{t-i} + \epsilon_t$$

# Pytania?

# Dziękuję za uwagę!