Problem Statement

Linear Regression

Import Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

In [31]:
    a=pd.read_csv("iris.csv")
    a
```

Out[31]:		ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	Iris-setosa
	1	2	4.9	3.0	1.4	0.2	Iris-setosa
	2	3	4.7	3.2	1.3	0.2	Iris-setosa
	3	4	4.6	3.1	1.5	0.2	Iris-setosa
	4	5	5.0	3.6	1.4	0.2	Iris-setosa
	•••						
	145	146	6.7	3.0	5.2	2.3	Iris-virginica
	146	147	6.3	2.5	5.0	1.9	Iris-virginica
	147	148	6.5	3.0	5.2	2.0	Iris-virginica
	148	149	6.2	3.4	5.4	2.3	Iris-virginica
	149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

To display top 10 rows

```
In [32]: c=a.head(15) c
```

Out[32]:		ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	Iris-setosa
	1	2	4.9	3.0	1.4	0.2	Iris-setosa
	2	3	4.7	3.2	1.3	0.2	Iris-setosa
	3	4	4.6	3.1	1.5	0.2	Iris-setosa
	4	5	5.0	3.6	1.4	0.2	Iris-setosa

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
5	6	5.4	3.9	1.7	0.4	Iris-setosa
6	7	4.6	3.4	1.4	0.3	Iris-setosa
7	8	5.0	3.4	1.5	0.2	Iris-setosa
8	9	4.4	2.9	1.4	0.2	Iris-setosa
9	10	4.9	3.1	1.5	0.1	Iris-setosa
10	11	5.4	3.7	1.5	0.2	Iris-setosa
11	12	4.8	3.4	1.6	0.2	Iris-setosa
12	13	4.8	3.0	1.4	0.1	Iris-setosa
13	14	4.3	3.0	1.1	0.1	Iris-setosa
14	15	5.8	4.0	1.2	0.2	Iris-setosa

To find Missing values

```
In [33]:
         c.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 15 entries, 0 to 14
        Data columns (total 6 columns):
         # Column Non-Null Count Dtype
         0 Id 15 non-null int64
1 SepalLengthCm 15 non-null float64
         2 SepalWidthCm 15 non-null
                                         float64
            PetalLengthCm 15 non-null
         3
                                          float64
                                         float64
            PetalWidthCm 15 non-null
            Species 15 non-null
                                         object
         dtypes: float64(4), int64(1), object(1)
        memory usage: 848.0+ bytes
```

To display summary of statistics

In [34]:	a.describe()							
Out[34]:		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm		
	count	150.000000	150.000000	150.000000	150.000000	150.000000		
	mean	75.500000	5.843333	3.054000	3.758667	1.198667		
	std	43.445368	0.828066	0.433594	1.764420	0.763161		
	min	1.000000	4.300000	2.000000	1.000000	0.100000		
	25%	38.250000	5.100000	2.800000	1.600000	0.300000		
	50%	75.500000	5.800000	3.000000	4.350000	1.300000		
	75%	112.750000	6.400000	3.300000	5.100000	1.800000		
	max	150.000000	7.900000	4.400000	6.900000	2.500000		

To display column heading

Pairplot

```
In [36]: s=a.dropna(axis=1)
s
```

Out[36]:		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	Iris-setosa
	1	2	4.9	3.0	1.4	0.2	Iris-setosa
	2	3	4.7	3.2	1.3	0.2	Iris-setosa
	3	4	4.6	3.1	1.5	0.2	Iris-setosa
	4	5	5.0	3.6	1.4	0.2	Iris-setosa
	•••						
	145	146	6.7	3.0	5.2	2.3	Iris-virginica
	146	147	6.3	2.5	5.0	1.9	Iris-virginica
	147	148	6.5	3.0	5.2	2.0	Iris-virginica
	148	149	6.2	3.4	5.4	2.3	Iris-virginica
	149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

Out[39]: <seaborn.axisgrid.PairGrid at 0x1a23f0ffbe0>

Distribution Plot

In [40]: sns.displot(c['SepalLengthCm'])

Out[40]: <seaborn.axisgrid.FacetGrid at 0x1a23f0d2c40>

Correlation

Out[41]: <AxesSubplot:>

Train the model - Model Building

```
In [42]:
    g=c[['Id', 'SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm']]
    h=c['PetalWidthCm']
```

To split dataset into training end test

```
from sklearn.model_selection import train_test_split
g_train,g_test,h_train,h_test=train_test_split(g,h,test_size=0.6)
```

To run the model

```
In [44]: from sklearn.linear_model import LinearRegression
In [45]: lr=LinearRegression()
lr.fit(g_train,h_train)
Out[45]: LinearRegression()
In [46]: print(lr.intercept_)
-1.675380878014923
```

Coeffecient

```
In [47]: coeff=pd.DataFrame(lr.coef_,g.columns,columns=['Co-effecient'])
coeff
Out[47]: Co-effecient
```

```
        Id
        -0.007059

        SepalLengthCm
        0.221447

        SepalWidthCm
        -0.212875

        PetalLengthCm
        1.030678
```

Best Fit line

Out[48]: <matplotlib.collections.PathCollection at 0x1a111ee2e50>

To find score

Import Lasso and ridge

```
In [50]: from sklearn.linear_model import Ridge,Lasso
```

Ridge

Lasso

Out[55]: -0.2403846153846152

In [56]: ri.score(g_train,h_train)

Out[56]: 0.4047929916204691

In []: