COMP2611 Fall 2018 Homework #1

Note:

- 1. The due date is 5pm Monday, Oct 8.
- 2. Work out your solution either by typing or handwriting.
- 3. Take photos of the solution before submission.
- 4. Submit a hard copy to COMP2611 assignment collection box. The box is in a big blue metal cabinet located in the CSE lab area, in the corridor of lift 21 opposing the male-toilet close to lift 21. There are assignment collection boxes for other courses nearby, make sure you submit to the COMP2611 box.

Question 1: Data representation (16 points)

a) Given the following **signed integer values**, write their corresponding 16-bit 2's complement representations and decimal values. (4 points)

b) Given the following **signed integer values**, write their corresponding 32-bit 2's complement representations and decimal values. (4 points)

```
I. F0D1(16):
2's complement =
Decimal =
II. -2450(10):
2's complement =
Hexadecimal =
```

- c) Please give the IEEE754 single-precision representation of the following decimal number. Can the decimal number be represented precisely? If not, please find the nearest approximation of the number. Show your steps briefly. (4 points)
 - I. -313.3125

II. 0.095

d)	What decimal values are represented by the following IEEE754 single-precision
	floating-point representations? Show your steps briefly. (4 points)

Question 2: Boolean algebra (8 points)

Simplify the following logic equations using the laws of Boolean algebra only. Briefly show your steps.

I.
$$A\overline{B}C + AB + A\overline{C} + AB\overline{C}$$

II.
$$(AB(C + \overline{BD}) + \overline{AB})CD$$

III.
$$B(A + \overline{C}) + A + A(\overline{A} + B)$$

IV.
$$AB + \overline{A}C + \overline{B}C$$

Question 3: Combinational Logic (14 points)

We want to design a circuit that verifies whether a 3-input NOR gate works properly or not. f = 1 (LED ON) if the NOR gate does NOT work properly.

Assumption: when the NOR gate does not work properly, it generates 1's instead of 0's and vice versa.

a) Construct the truth table for the circuit. (3 points)

	Input					
a	b	c	X	Output f		

b) Derive the logic expression the corresponding logic function f (x, a, b, c), in both **Sum-of-Product** and **Product-of-Sum** format. (2 points)

d) Implement the simplified logic function with OR gate(s) and XNOR gate(s) only. A XNOR B = AB + \overline{A} \overline{B} .

Note: If you use other gates and your logic is correct, you will get 2 points. (4 points)

Question 4: Sequential Logic (12 points)

a) Fill the truth table of the given sequential circuit. Assume Q_t and Q_{t+1} are the value of output Q at clock cycle t and t+1, respectively. (4 points)

	Input	Output		
R	Н	Qt	Q_{t+1}	P
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

b) The below circuit consists of an XOR gate and four rising edge-triggered D Flip-flops. Refer to the circuit and the timing diagram, write the value of Q (where $Q=Q_3Q_2Q_1Q_0$) for each clock-cycle in the timing diagram. Assume the initial Q value equals to "0000". Ignore any propagation delays. (8 points)

-----End------