Test-3, 2020, Time-1 hour, Marks: 15

Reaction Engineering (CH31009)

- Q1. (a) A second order elementary reaction $2A \rightarrow R$ is carried out in a mixed flow reactor. For 80% conversion, what is the Damkohler number(Da) for the process assuming no volume change during reaction. [3]
- (b) Consider a gas-phase reaction 2A = R +S with unknown kinetics. If a space velocity of 1 min⁻¹ is needed for 90% conversion of a plug flow reactor, find the corresponding space-time and mean residence time or holding time of fluid in the reactor. [2]
- Q2. Answer the following question:
 - (a) What are the advantages of using 'Recycle Reactor' instead of PFR?
 - (b) For the study of liquid phase elementary reaction A→R , at what conversion of A the volume of mixed flow reactor needed twice the volume that of plug flow reactor under all identical conditions, i.e. C_{AO} , flow rate, rate kinetics. [2+3]
- Q3. The following results were obtained for a pulse test in a reacting vessel.

The output concentration rose linearly from zero to 1.0 μ mol/L in 5 min, fell linearly to zero in 15 min(after reaching a maximum value of 1.0 μ mol/L).

- (a) Plot the C- Curve, E-Curve with a time interval $\Delta t = 1$ min
- (b) Calculate the mean residence time and dispersion number

[3+2]