

ITMOx: I2CPx How to win coding competitions: secrets of champions

Help

- ▶ How To?
- Week 1
- Week 2
- Week 3
- ▼ Week 4

Algorithms on **Graphs**

4th Week **Problems**

due Dec 4, 2016 22:00 **CET**

4th Week

Problems: Training

Week 5

Week 4 > 4th Week Problems > Find a Cycle

Find a Cycle

☐ Bookmark this page

Find a Cycle

2.0/2.0 points (graded)

Input file:	cycle.in
Output file:	cycle.out
Time limit:	2 seconds
Memory limit:	256 megabytes

The input file contains a description of an unweighted directed graph. You are asked to determine whether this graph contains a cycle. If it does, print any of them.

Input

The first line of the input file contains two integers N and M (1 \leq N \leq 100 000, $M \le 100$ 000), the number of vertices and edges in the graph, correspondingly. The following M lines contain descriptions of edges of the graph. Each edge is described by a pair of integers – the indices of the source and target vertex, respectively.

All indices are one-based. The graph may contain loops and multiple edges between the same ordered pair of vertices.

Output

If the graph does not contain a cycle, print "NO".

Otherwise, print "YES". In the next line print the vertices which consitute a cycle, in the order along this cycle.

Example

cycle.in	cycle.out
2 2	YES
1 2	2 1
2 1	

© All Rights Reserved

© 2016 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

