COMP4211 - Machine Learning

Fall 2024, HKUST

Problem Set

Name: Shawn Darren S. Chua Student ID: 20946705

Problem 1.

- (2) $h^{l-1^{\top}} \in \mathbb{R}^d$ and $h^{l-1^{\top}} \mathbf{W}^I \in \mathbb{R}^d$, so $\mathbf{W}^I \in \mathbb{R}^{d \times d}$ $h^{l-1^{\top}} \in \mathbb{R}^d$ and $h^{l-1^{\top}} \mathbf{W}^O \in \mathbb{R}^d$, so $\mathbf{W}^O \in \mathbb{R}^{d \times d}$ Thus $\mathbf{W}^I, \mathbf{W}^O$ both have d^2 parameters.
- $\begin{array}{l} (3) \ \ a_i^l \in \mathbb{R}^{2d \times 1} \ \text{and} \ \ \mathbf{W}_z a_i^l \in \mathbb{R}^{d \times 1}, \ \text{so} \ \ \mathbf{W}_z \in \mathbb{R}^{d \times 2d} \\ a_i^l \in \mathbb{R}^{2d \times 1} \ \text{and} \ \ \mathbf{W}_r a_i^l \in \mathbb{R}^{d \times 1}, \ \text{so} \ \ \mathbf{W}_r \in \mathbb{R}^{d \times 2d} \\ a_i^l \in \mathbb{R}^{2d \times 1} \ \text{and} \ \ \mathbf{W}_h a_i^l \in \mathbb{R}^{d \times 1}, \ \text{so} \ \ \mathbf{W}_h \in \mathbb{R}^{d \times 2d} \\ \text{Thus} \ \ \mathbf{W}_z, \mathbf{W}_r, \mathbf{W}_h \ \text{all have} \ 2d^2 \ \text{parameters}. \end{array}$

$$\begin{split} & h_i^{l-1} \in \mathbb{R}^{d \times 1} \text{ and } \mathbf{U}_z h_i^{l-1} \in \mathbb{R}^{d \times 1}, \text{ so } \mathbf{W}_z \in \mathbb{R}^{d \times d} \\ & h_i^{l-1} \in \mathbb{R}^{d \times 1} \text{ and } \mathbf{U}_r h_i^{l-1} \in \mathbb{R}^{d \times 1}, \text{ so } \mathbf{W}_r \in \mathbb{R}^{d \times d} \\ & r_i^l \odot h_i^{l-1} \in \mathbb{R}^{d \times 1} \text{ and } \mathbf{U}_h \left(r_i^l \odot h_i^{l-1} \right) \in \mathbb{R}^{d \times 1}, \text{ so } \mathbf{W}_h \in \mathbb{R}^{d \times d} \end{split}$$
 Thus $\mathbf{U}_z, \mathbf{U}_r, \mathbf{U}_h$ all have d^2 parameters.

- (4) Experiments to demonstrate the effectiveness of CGNN
 - I will train and test the CGNN model on real-world datasets such as MovieLens and Amazon product reviews and compare its performance against baseline recommendation models like matrix factorization and collaborative filtering.
 - I will conduct ablation studies to assess various components of CGNN, so I'll be able to better understand its functionality.
 - To evaluate the robustness of CGNN, I will test it with inputs that vary in session lengths and item diversity. For example, one sequence may consist of a a few copies of only one or two items, while another sequence may contain entirely different items.

Methods to prevent overfitting in CGNN

- Introduce dropout layers or use regularization techniques.
- Randomly modify the input data, either by adding new items or modifying existing items, to increase robustness.
- (5) \mathbf{W}^{I} , \mathbf{W}^{O} have a total of $2d^{2}$ parameters.

 $\mathbf{b}^I, \mathbf{b}^O \in \mathbb{R}^d$ have a total of 2d parameters.

 $\mathbf{W}_z, \mathbf{W}_r, \mathbf{W}_h$ have a total of $6d^2$ parameters.

 $\mathbf{U}_z, \mathbf{U}_r, \mathbf{U}_h$ have a total of $3d^2$ parameters.

 $\mathbf{W}_{q1}, \mathbf{W}_{q2}$ have the same shapes as $\mathbf{W}_{k1}, \mathbf{W}_{k2}$, so they have a total of $6d^2$ parameters.

Summing these up, we get $2d^2 + 2d + 6d^2 + 3d^2 + 6d^2 = 17d^2 + 2d = 170200$ parameters.

Problem 2.

$$\begin{split} e^{(0)} \in \mathbb{R}^{100}, e^{(1)} \in \mathbb{R}^{80}, e^{(2)} \in \mathbb{R}^{40}, e^{(3)} \in \mathbb{R}^{20}, \, \text{so} \\ & \mathbf{W}_{1}^{(1)} \in \mathbb{R}^{80 \times 100}, \quad \mathbf{W}_{2}^{(1)} \in \mathbb{R}^{80 \times 100}, \quad \mathbf{W}_{3}^{(1)} \in \mathbb{R}^{80 \times 200} \\ & \mathbf{W}_{1}^{(2)} \in \mathbb{R}^{40 \times 80}, \quad \mathbf{W}_{2}^{(2)} \in \mathbb{R}^{40 \times 80}, \quad \mathbf{W}_{3}^{(2)} \in \mathbb{R}^{40 \times 160} \\ & \mathbf{W}_{1}^{(3)} \in \mathbb{R}^{20 \times 40}, \quad \mathbf{W}_{2}^{(3)} \in \mathbb{R}^{20 \times 40}, \quad \mathbf{W}_{3}^{(3)} \in \mathbb{R}^{20 \times 80} \end{split}$$

Therefore, we have a total of $80 \cdot 400 + 40 \cdot 320 + 20 \cdot 160 = 48000$ parameters.