```
ANSWER 4 OF 6 WPINDEX COPYRIGHT 1999 DERWENT INFORMATION LTD
     94-228289 [28] WPINDEX
DNN N94-180167
                     DNC C94-104462
    Dry etching of silicon cpd. layer using a fluorocarbon cpd. - having a
     carbonyl gp. and a fluorine atom, where surplus carbon polymer is
     controlled.
     A85 L03 M14 U11
DC
     (SONY) SONY CORP
PA
CYC 1
                                                                     <--
                                                 H01L021-302
    JP 06163476 A 940610 (9428)*
                                         6 рр
ΡI
ADT JP 06163476 A JP 92-309102 921118
PRAI JP 92-309102
                   921118
     ICM H01L021-302
ICS C23F004-00
     JP06163476 A UPAB: 19940831
     Silicon cpd. layer is etched using a gas contg. a fluorocarbon cpd. having
     a carbonyl gp. and a fluorine atom.
          USE - The quality of the carbon polymer film is high and surplus
     carbon polymer is controlled.
     Dwg.1/1
     CPI EPI
FS
     AB; GI
FΑ
     CPI: A12-E07C; L04-A01; L04-C07B; M14-A
MC
```

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

FΙ

(11)特許出願公開番号

特開平6-163476

(43)公開日 平成6年(1994)6月10日

(51)Int.Cl.5

識別記号

庁内整理番号

技術表示箇所

H 0 1 L 21/302 C23F 4/00

F 9277-4M

E 8414-4K

審査請求 未請求 請求項の数3(全 6 頁)

(21)出願番号

特願平4-309102

(71)出願人 000002185

ソニー株式会社

東京都品川区北品川 6 丁目 7 番35号

(22)出顧日

平成 4年(1992)11月18日

(72)発明者 柳田 敏治

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(74)代理人 弁理士 小池 晃 (外2名)

(54) 【発明の名称】 ドライエッチング方法

(57)【要約】

【目的】 SiO2 層間絶縁膜3に微細なコンタクト・ ホール5を開口する際のドライエッチングにおいて、マ イクロローディング効果を防止する。

【構成】 カルボニル基を有する炭素数2以上のフルオ ロカーボン系化合物をエッチング・ガスとして用いる。 この化合物は、(a) SiO2 のエッチング種であるF *, CFx + を放出し、(b) 気相中に生成する炭素系 ポリマーに>C=O基やC-O結合を導入してその膜質 を強化し、(c) 還元性のCO* を供給してエッチング を高速化し、(d) O* の供給により過剰な炭素系ポリ マーの堆積を抑制する、という4大効果を有し、基本的 に単独組成で1段階エッチングにより高速・高選択加工 を可能とする。上記化合物の具体例としては、CF3 C OCF3 (ヘキサフルオロアセトン)、CF3 COF (フッ化トリフルオロアセチル) 等がある。

【特許請求の範囲】

【請求項1】 分子内にカルポニル基とフッ素原子とを 有する炭素数2以上のフルオロカーポン系化合物を含む エッチング・ガスを用いてシリコン化合物層をエッチン グすることを特徴とするドライエッチング方法。

【請求項2】 前記エッチング・ガスが一酸化炭素を含むことを特徴とする請求項1記載のドライエッチング方法

【請求項3】 前記エッチング・ガスが放電解離条件下 で遊離のイオウを放出するイオウ系化合物を含むことを 特徴とする請求項1または請求項2に記載のドライエッ チング方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は半導体装置の製造分野等において適用されるドライエッチング方法に関し、特に 微細な接続孔 (ホール) 加工等においてマイクロローディング効果を抑制しながら高速・高選択エッチングを実現する方法に関する。

[0002]

【従来の技術】近年のVLSIにみられるように半導体装置の高集積化および高性能化が進展するに伴い、酸化シリコン(SiO2)に代表されるシリコン化合物層のドライエッチングに対する技術的要求も厳しさを増している。まず、高集積化によりデバイス・チップの面積が拡大しウェハが大口径化していること、形成すべきがなしたが高度に微細化されウェハ面内の均一処理が要求されていること、またASICに代表されるように多品和でいること、またASICに代表されるように多品和でいること、またASICに代表されるように多品を大幅である。この際、従来と同等の生産性を維持するためには、ウェハ1枚当たりのエッチング速度を大幅に向上させなければならない。

【0003】また、デバイスの高速化や微細化を図るために不純物拡散領域の接合深さが浅くなり、また各種の材料層も薄くなっている状況下では、従来以上に下地選択性に優れダメージの少ないエッチング技術が要求される。たとえば、半導体基板に形成された不純物拡散領域やSRAMの抵抗負荷素子として用いられるPMOSトランジスタのソース・ドレイン領域に臨んで接続孔を開口する(ホール加工)ために、シリコン基板や多結晶シリコン層の上でSiO2層間絶縁膜のエッチングを行う場合等が、その例である。

【0004】従来からSiO2 系材料層のエッチングは、強固なSi-O結合を切断するために、イオン性を高めたモードで行われている。典型的なエッチング・ガスは、CHF3, CF4 等であり、これらから生成する CF_x + の入射イオン・エネルギーを使用している。 しかし、高速エッチングを行うためにはこの入射イオン・エネルギーを高めることが必要であり、エッチング反応

が物理的なスパッタ反応に近くなるため、高速性への要求と高選択性・低ダメージ性への要求とが常に背反していた。

【0005】そこで通常は、エッチング・ガスにH2や 堆積性の炭化水素系ガス等を添加してエッチング反応系 の見掛け上のC/F比(炭素原子数とフッ素原子数の 比)を増大させ、エッチング反応と競合して起こる炭素 系ポリマーの堆積を促進することにより高選択性を達成 している。

【0006】これら従来のエッチング・ガスに代わり、本願出願人は先に特開平3-276626号公報において、炭素数2以上の飽和ないし不飽和の高次鎖状フルオロカーボン系ガスを使用するシリコン化合物層のドライエッチング方法を提案している。これは、 C_2F_6 , C_3F_8 , C_4F_8 等のフルオロカーボン系ガスを使用することにより1分子から大量の CF_x + を効率良く生成させ、エッチングの高速化を図ったものである。

【0007】ただし、高次鎖状フルオロカーボン系ガスを単独で使用するとF*の生成量も多くなり、レジスト選択比およびシリコン下地選択比を十分に大きくとることが難しい。そこで上記公報では、高次鎖状フルオロカーボン系ガス単独によるエッチングを下地が露出する直前で停止し、シリコン化合物層の残余部をエッチングする際にはエチレン(C2 H4)等の炭化水素系ガスを添加するという、2段階エッチングも提案している。これは、エッチング反応系のC/F比を高めて炭素系ポリマーの堆積を促進するためである。

【0008】一方、パーティクル汚染を低減させる観点からは、炭素系ポリマーの生成量はできるだけ少ない方が望ましい。炭素系ポリマーの堆積量を抑えながら高選択エッチングを実現するため、本発明者は先に特開平4-170026号公報において、オクタフルオロブテン(C4F8)やヘキサフルオロプロペン(C3F6)等、分子内に不飽和結合を有する鎖状不飽和フルオロカーボン化合物を用いる方法を開示している。これらのガスは、放電解離により高活性なラジカルを生成させ易く、炭素系ポリマーが優れたエッチング耐性を示すため、選択性の確保に必要な堆積量が少なくて済み、堆積性ガスを併用する必要もなくなった。

【0009】さらに、本発明者は先に特開平4-258 177号公報において、分子構造の少なくとも一部に環 状部を有する飽和ないし不飽和フルオロカーボン化合物 を含むエッチング・ガスを用いる技術を提案している。 環状フルオロカーボン化合物は少なくとも炭素数が3以 上であり、しかも炭素数の等しい鎖状フルオロカーボン 化合物と比べてC/F比が高いので、大量のCFx + に よる高速エッチングと、効率良いポリマー生成による高 選択エッチングが可能となった。

[0010]

【発明が解決しようとする課題】このように、炭素数 2 以上の高次フルオロカーボン化合物を用い、かつこの化合物の構造を選択することにより、シリコン化合物層の高速・高選択エッチングを基本的に単独組成のエッチング・ガスで行うことが可能となった。しかしながら、近年の微細なデザイン・ルールの下では、上述の技術をホール加工に適用した場合に、マイクロローディング効果が顕在化され易くなることが明らかとなってきた。

【0011】16MDRAMクラスの集積度を有する半 導体装置では、ホール加工時の被エッチング面積がウェ ハ面積の5%にも満たなくなっている。一般にSi〇2 系材料層のエッチングでは、入射イオンにスパッタアウ トされた〇原子が炭素系ポリマーの一部を燃焼除去する ことで、選択性の確保に必要な炭素系ポリマーの堆積量 が実用的なエッチング速度を損なわない程度に適度に維 持されている。しかし、上述のように被エッチング面積 が少なくなると、スパッタアウトされる〇原子が極端に 少なくなる。しかも、アスペクト比の大きなホールの底 部では、イオンの入射確率も減少する。これらの理由に より、ホールの内部では炭素系ポリマーの堆積が過剰に なり、エッチング速度が著しく低下してしまうのであ る。これが、マイクロローディング効果であり、枚葉式 エッチングが主流となる今後の半導体装置の製造分野で は、生産性の低下に直接悪影響を及ぼす要因となる。

【0012】そこで本発明は、微細なホール加工等においてもマイクロローディング効果を抑制しながら高速、 高選択、低汚染、低ダメージ・エッチングを可能とする ドライエッチング方法を提供することを目的とする。

[0013]

【課題を解決するための手段】本発明のシリコン化合物 層のドライエッチング方法は、上述の目的を達成するために提案されるものであり、分子内にカルボニル基とフ ッ素原子とを有する炭素数2以上のフルオロカーボン系 化合物を含むエッチング・ガスを用いるものである。

【0014】本発明はまた、前記エッチング・ガスが一 酸化炭素を含むものである。

【0015】本発明はさらに、前記エッチング・ガスが 放電解離条件下で遊離のイオウを放出するイオウ系化合 物を含むものである。

[0016]

【作用】本発明では、エッチング・ガスの構成成分として、分子内にカルボニル基とフッ素原子とを有する炭素数2以上のフルオロカーボン系化合物を用いる。このフルオロカーボン系化合物は、(a) F*, CFx + を供給できること、(b) カルボニル基の供給により自身の分解生成物およびレジスト・マスクの分解生成物に由来する炭素系ポリマーを強化できること、(c) CO*の供給によりエッチングを高速化できること、(d) O*の供給により過剰な炭素系ポリマーの堆積を抑制できること、の4つの効果を、基本的に単独組成により達成す

ることができる。これらの効果について順次説明する。 【0017】まず、上記フルオロカーボン系化合物の構成元素は、C、F、Oである。したがって、上記(a)の項で述べたように、この化合物は放電解離条件下でF*を放出することができる。F*, CF_X は、言うまでもなく SiO_2 系材料層に代表されるシリコン化合物層の主エッチング種として寄与する。

【0018】(b)の項で述べた炭素系ポリマーの強化 については、重合度の増大と化学結合の強化の両方の側 面から可能である。上記フルオロカーボン系化合物は、 分子中にカルボニル基を有しているが、このカルボニル 基の分極構造が炭素系ポリマーの重合反応を促進し、イ オン入射やラジカルの攻撃に対する耐性を高める働きを する。また、炭素系ポリマーにC-〇結合やカルボニル 基が導入されると、単に $-CX_2-(X$ はハロゲン原子 を表す。)の繰り返し構造からなる従来の炭素系ポリマ ーよりも化学的、物理的安定性が増すことも、近年の研 究により明らかとなっている。これは、2原子間の結合 エネルギーを比較すると、C-O結合(1077kJ/ mol) がC-C結合 (607kJ/mol) より遙か に大きいことからも直観的に理解される。さらに、カル ボニル基の導入により炭素系ポリマーの極性が増大し、 負に帯電しているエッチング中のウェハに対してその静 電吸着力が高まることによっても、炭素系ポリマーの表 面保護効果は向上する。

【0019】このように、炭素系ポリマー自身の膜質が強化されることは、選択性の確保に必要な炭素系ポリマーの堆積量を低減できることを意味しており、結果としてプロセスの低汚染化を実現することができる。

【0020】また、上記フルオロカーボン系化合物は、放電解離条件下でCO*を生成することができる。このラジカルは強い還元作用を有しており、SiO2中のO原子を引き抜くことができる。つまり本発明ではSi-O8 合の切断を、CFx+C1 による物理的なイオン・スパッタ作用のみに頼るのではなく、化学的な作用も利用して行うことができる。この結果、上記(c)の項に述べたようなエッチングの増速が可能となる。このことは、C-O4 合うKJ/mo1)より大きいことからも理解できる。O6 分別子が引き抜かれた後のSi7 原子は、エッチング反応系に存在するF*と結合し、SiFx0 形で速やかに除去される。

【0021】このようにエッチングが高速化されることにより、実用的なエッチング速度を得るために必要な入射イオン・エネルギーを減ずることができ、優れた高選択性と低ダメージ性とが達成される。また、下地選択性を向上させるための手法として、従来からエッチング・プロセスをジャストエッチングとオーバーエッチングの2段階に分けることがしばしば行われているが、本発明によれば基本的には1段階エッチングでも十分に高い選

択性が達成される。

【0022】さらに、上記フルオロカーボン系化合物は、放電解離条件下で〇*も生成することができる。この〇*は、炭素系ポリマーの燃焼に寄与する化学種である。前述したように、近年の微細化されたデザイン・ルールの下ではSiО2 系材料層からスパッタアウトされる〇*が極端に減少するが、本発明ではこの〇*を気相中から補うことができるので、(d)の項で述べたように炭素系ポリマーの過剰な堆積が防止され、この結果、マイクロローディング効果を抑制してエッチングを高速化することができる。

【0023】以上が、本発明の基本的な考え方である。本発明ではこれに加えて、さらに高速性、高選択性、低ダメージ性、低汚染性を精密に制御する技術も提案する。そのひとつは、エッチング・ガスに一酸化炭素を添加することである。これは、気相中のCO*生成量を増加させることによりSiO2中のO原子の引き抜き反応を促進し、エッチングを高速化させることを意図したものである。これにより、選択性、低ダメージ性が一層改善される。

【0024】いまひとつは、ウェハの表面保護に寄与す る炭素系ポリマーの一部を、パーティクル汚染源となる 虞れのない他の物質で代替することである。具体的に は、放電解離条件下で遊離のイオウ(S)を放出するイ オウ系化合物をエッチング・ガスに添加する。生成した Sは、昇華温度より低温域に維持されたウェハに吸着 し、レジスト・マスクの表面や下地のシリコン系材料層 の露出面等において表面保護効果を発揮する。これは、 これらの表面においてSの堆積過程とスパッタ除去過程 とが競合するからである。しかし、SはSiO2のエッ チングを大きく減速させることはない。これは、SiO 2 の被エッチング面からスパッタアウトされる〇原子に より、Sが直ちに燃焼除去されるからである。しかもS は、エッチング終了後にレジスト・マスクの除去を目的 とした通常のO2 プラズマ・アッシングを行えば、同時 に燃焼除去することができる。あるいは、ウェハをおお よそ90℃以上に加熱するだけでも昇華除去することが できる。いずれにしても、Sがパーティクル汚染顔とな る虞れはない。

【0025】また、かかるSの堆積を利用すれば、選択性の確保に必要な炭素系ポリマーの堆積量を相対的に減少させることができるため、パーティクル汚染を極めて効果的に抑制することが可能となる。

[0026]

【実施例】以下、本発明の具体的な実施例について説明 する。

【0027】 実施例1

本実施例は、本発明をコンタクト・ホール加工に適用 し、 $CF_3 COCF_3$ (ヘキサフルオロアセトン: 沸点 -27.4%)を用いて SiO_2 層間絶縁膜をエッチン グした例である。このプロセスを、図1を参照しながら説明する。本実施例においてサンプルとして使用したウェハは、図1(a)に示されるように、予め下層配線としての不純物拡散領域2が形成された単結晶Si基板1上にSi〇2 層間絶縁膜3が形成され、さらにこの上に所定の形状にパターニングされたレジスト・マスク4が形成されてなるものである。上記レジスト・マスク4には、開口径約0.35 μ mの開口部4aが形成されている。

【0028】上記ウェハを、マグネトロンRIE(反応性イオン・エッチング)装置のウェハ載置電極上にセットした。ここで、上記ウェハ載置電極は冷却配管を内蔵しており、装置外部に接続されるチラー等の冷却設備から該冷却配管に冷媒を供給して循環させることにより、エッチング中のウェハ温度を室温以下に制御することが可能となされている。一例として、下記の条件でSiO2層間絶縁膜3のエッチングを行った。

[0029]

 CF3 COCF3 流量
 50 SCCM

 ガス圧
 2.0 Pa

 RFパワー密度
 2.0 W/cm² (1

 3.56 MHz)

磁場強度 1.

1. 5.0×1.0^{-2} T (= 1.5.0

G)

ウェハ温度 冷媒使用) -30 ℃(アルコール系

【0030】このエッチング過程では、 CF_3 $COCF_3$ からF* 、 CF_x + 、CO* 、O* 等の化学種が生成する。F* はS i O_2 層間絶縁膜3 からのS i 原子の引き抜き、CO* は同じくO原子の引き抜きにそれぞれ関与し、 CF_x + はこれらのラジカル反応をその入射イオン・エネルギーを与えることによりアシストした。上記エッチング過程では高選択性が達成されるが、これはカルボニル基やC - O結合を取り込んだ強固な炭素素している性が拡散領域2 の露出面が保護されること、おより、アングを取り込んだ強固な点により、これによりレジスト・マスク4の本が、E ないが低温冷却されているためにレジスト・マスク4や単結晶E i 基板E のように主としてラジカル反応によりエッチングされる材料層のエッチング速度が相対的に低下したこと、等の理由によるものである。

【0031】ただし、上記炭素系ポリマーの生成量はそれ程多くはない。これは、CO*の寄与により高速エッチングに必要な入射イオン・エネルギーが少なくて済むため、RFパワー密度が低く設定されレジスト・マスク4のスパッタリングが抑制されていること、および気相中から供給されるO*により炭素系ポリマーの一部が燃焼除去されること、等の理由による。したがって、マイクロローディング効果を抑制することができた。さらに、かかる炭素系ポリマーの低減によりパーティクル・レベルが従来よりも大幅に改善された他、エッチング・

チャンパのクリーニングに必要なメンテナンスの頻度を 低減することができ、生産性も著しく向上した。

【0032】なお、本プロセスにおけるSiO2 層間絶 緑膜3のエッチング速度は約850 nm/分、対レジス ト選択比は約7、対Si選択比は約25と良好であっ た。また、オーバーエッチング後でもレジスト・マスク 4の後退や浅い接合の破壊等は認められなかった。

【0033】実施例2

[0034]

 CF3 COCF3 流量
 35 SCCM

 CO流量
 35 SCCM

 ガス円
 2.0 Pa

ガス圧 2.0 Pa RFパワー密度 1.5 W/cm² (1

3.56 MHz)

磁場強度 1.50×10-2 T(=150

G)

ウェハ温度 0 ℃(アルコール系

冷媒使用)

【0035】本実施例におけるエッチング機構は、ほぼ実施例1で上述したとおりである。ただし、本実施例ではCO*の生成量が増大していることから、SiO2層間絶縁膜3からのO原子の引き抜き反応が促進され、実施例1よりもRFパワー密度を低下させたにもかかわらず、ほぼ同等の高速エッチングが進行した。また、このようにして入射イオン・エネルギーが低減されることにより、実施例1ほどウェハを低温冷却していないにもかかわらず、レジスト・マスク4や単結晶Si基板1(正確には不純物拡散領域2)に対して十分な選択性を確保することができた。

[0036] 実施例3

本実施例では、同じコンタクト・ホール加工をCF3COCF3/S2F2 混合ガスを用いて行った。すなわち、図1(a) に示したウェハをマグネトロンRIE装置にセットし、一例として下記の条件でSiO2 層間絶縁膜3をエッチングした。

[0037]

 CF3 COCF3 流量
 35 SCCM

 S2 F2 流量
 15 SCCM

 ガス圧
 2.0 Pa

 RFパワー密度
 1.5 W/cm² (1

 3.56 MHz)

磁場強度

1. 5.0×1.0^{-2} T (= 1.5.0

G)

ウェハ温度 冷媒使用) 0 ℃(アルコール系

【0038】ここで、上記 S_2 F_2 は、本願出願人が先に特開平4-84427号公報において、 S_1O_2 系材料層のエッチング用に提案した4 種類のフッ化イオウのうちのひとつである。 S_2 F_2 から生成する主エッチング種は、 S_1F_2 から生成する主エッチングは、従来からエッチング・ガスとして実用化されている S_1F_2 に比べて S_1F_3 (1分子中の S_1F_3)が大きく、放電解離条件下でプラズマ中に遊離の S_1F_3 を放出することができる。

【0039】上記エッチング過程では、 S_2F_2 から生成するF* や SF_X + がエッチング種として利用できる他、同じく S_2F_2 から効率良く生成するSをウェハ上に堆積させ、表面保護に利用できる点が大きな特色である。つまり、 CF_3COCF_3 やレジスト・マスク4に由来する炭素系ポリマーに加えて、 S_2F_2 からもSを供給して表面保護効果を増強することができる。これにより、実施例1に比べて入射イオン・エネルギーが低く、またウェハ温度が高い条件であるにもかかわらず、良好な高速・高選択エッチングを行うことができた。

【0040】なお、ウェハ上に堆積したSは、エッチング終了後に通常のO2プラズマ・アッシングを行ったところ、レジスト・マスク4や堆積していた炭素系ポリマーと共に燃焼除去され、ウェハ上に何らパーティクル汚染を残すことはなかった。

【0041】以上、本発明を3例の実施例にもとづいて 説明したが、本発明はこれらの実施例に何ら限定される ものではない。たとえば、分子内にカルボニル基とフッ **素原子とを有する炭素数2以上のフルオロカーボン系化** 合物として、上述の実施例ではCF3 COCF3 を用い たが、この構造異性体であるCF3 CF2 COF (フッ 化ペンタフルオロプロピオニル;沸点-27℃)を用い て同じ条件でエッチングを行った場合にも、ほぼ同様の 結果を得ることができた。さらに、CF3 COF(フッ 化トリフルオロアセチル;沸点-59℃)、(CF₃ C O)2 O(無水トリフルオロ酢酸;沸点40℃)、FO C (CF2)3 COF (フッ化ヘキサフルオログルタリ ル;沸点46℃)等も同様に用いることができる。この うち、常温で液体である化合物については、Heガス・ バブリング等の手段を用いて気化させた後に、エッチン グ・チャンバ内へ導入すれば良い。

【0042】放電解離条件下で遊離のSを放出するイオウ系化合物としては、上述の S_2F_2 の他、 SF_2 , SF_4 , S_2F_{10} 等を用いることができる。Sを放出できる点のみに着目すれば、 S_2C_{12} , S_2B_{12} , H_2S_5 等、他にも該当する化合物は存在するが、特に $S_1O_2S_7$ が種として S_2S_7 を想定した場合には、エッチング種として S_2S_7 を生成できる化合物の方が有利である。【 S_2S_7 0043】シリコン化合物層は、上述の S_1O_2 層間絶縁膜の他、 S_2S_7 056, S_2S_7 06。 S_2S_7 07。 S_2S_7 08。 S_2S_7 08 S_2

るいはSiNxからなるものであっても良い。エッチング・サンプルとして用いたウェハの構成も上述の構成に限られるものではなく、たとえばSiO2層間絶縁膜の下地は単結晶Si基板以外にも、多結晶シリコン層、ポリサイド膜、あるいはAl-1%Si層等の金属材料層等である場合が考えられる。

【0044】エッチング・ガスには、スパッタリング効果、希釈効果、冷却効果等を得る目的でHe, Ar等の希ガスが適宜添加されていても構わない。その他、使用するエッチング装置、エッチング条件等が適宜変更可能であることは言うまでもない。

[0045]

【発明の効果】以上の説明からも明らかなように、本発明ではシリコン化合物層のエッチング・ガスの構成成分として分子内にカルボニル基とフッ素原子とを有する炭素数2以上のフルオロカーボン系化合物を用いることにより、基本的には単独組成のエッチング・ガスを用い、1段階プロセスにより高速、高選択、低汚染、低ダメージ・エッチングを実現することができる。さらに、COやイオウ系化合物をエッチング・ガスに添加することに

より、これらの諸要件をさらに高いレベルで満足させる ことも可能である。

【0046】本発明は微細なデザイン・ルールにもとづいて設計され、高集積度、高性能、高信頼性を要求される半導体装置の製造において、歩留りや生産性を大きく改善することに貢献する。

【図面の簡単な説明】

【図1】本発明をコンタクト・ホール加工に適用したプロセス例をその工程順にしたがって示す概略断面図であり、(a) は SiO_2 層間絶縁膜上にレジスト・マスクが形成された状態、(b) はコンタクト・ホールが形成された状態をそれぞれ表す。

【符号の説明】

1 · · · 単結晶 S i 基板

2 ・・・不純物拡散領域

3 · · · SiO2 層間絶緣膜

4 ・・・レジスト・マスク

4 a・・・開口部

5 ・・・コンタクト・ホール

【図1】

