Extension of the Polarizable Charge Equilibration Model to Higher Oxidation States with Applications to Ge, As, Se, Br, Sn, Sb, Te, I, Pb, Bi, Po, and At Elements

Julius J. Oppenheim¹, Saber Naserifar¹, and William A. Goddard III^{1,*}

¹Materials and Process Simulation Center, California Institute of Technology, Pasadena, California, 91125

- 1. Parameter Set for PQEq2
- 2. Electrostatic Interaction Energy Curves
- 3. Charge Comparison between PQEq, PQEq2, and QM
- 4. Test of LACVP Basis Set for Iodine
- 5. Molecular Structures of Training Set
- 6. Dipole Scans of other Oxidation States
- 7. Effects of Functionals on Electrostatic Interaction Dipole Scans
- 8. Effect of Direction on Electrostatic Interaction Dipole Scans

References

1. Parameter Set for PQEq2

Table S1: The electronegativity χ , idempotential J, shell charge Q_c , atomic covalent radius $R_c=R_s$, and spring force constant K_s for PQEq2.

Atom	χ(eV)	J (eV)	Qc	$R_c=R_s(A)$	K_s (kcal/mol/Å ²)
Н	4.52719	15.17433	1	0.371	2037.201
Не	9.66	29.84	1	1.3	1619.411
Li	3.006	4.772	1	1.557	13.64832
Be	4.877	8.886	1	1.24	59.29709
В	5.11	9.5	1	0.822	109.592
С	5.41477	10.25602	1	0.759	198.8405
N	6.87577	10.26467	1	0.715	301.8761
О	9.7139	14.66128	1	0.669	414.0445
F	9.71494	17.7886	1	0.706	596.1646
Ne	11.04	21.1	1	1.768	842.1173
Na	2.843	4.592	1	2.085	13.77286
Mg	3.951	7.386	1	1.5	31.32676
Al	4.06	7.18	1	1.201	48.8329

Si	4.80466	6.71377	1	1.176	60.04769
Р	6.02536	7.86352	1	1.102	91.4776
S	7.01035	8.95326	1	1.047	114.5047
Cl	7.81003	10.23353	1	0.994	152.3228
Ar	9.465	12.71	1	2.108	202.3422
K	2.421	3.84	1	2.586	7.71165
Ca	3.231	5.76	1	2	14.5642
Sc	3.395	6.16	1	1.75	18.65526
Ti	3.47	6.76	1	1.607	22.74409
V	3.65	6.82	1	1.47	26.77933
Cr	3.415	7.73	1	1.402	28.62618
Mn	3.325	8.21	1	1.533	35.32593
Fe	3.76	8.28	1	1.393	39.53139
Со	4.105	8.35	1	1.406	44.27516
Ni	4.465	8.41	1	1.398	48.8329
Cu	3.729	5.002	1	1.434	53.55866

Zn	5.106	8.57	1	1.4	57.75021
Ga	3.641	6.32	1	1.211	40.89454
Ge	4.80386	6.71243	1	1.189	56.86022
As	5.41473	7.5831	1	1.204	77.04494
Se	6.05692	8.40969	1	1.224	88.08056
Br	7.79	8.79002	1	1.141	108.8733
Kr	8.505	11.43	1	2.27	133.6595
Rb	2.331	3.692	1	2.77	7.02929
Sr	3.024	4.88	1	2.415	12.03129
Y	3.83	5.62	1	1.998	14.62836
Zr	3.4	7.1	1	1.758	18.55104
Nb	3.55	6.76	1	1.603	21.15055
Mo	3.465	7.51	1	1.53	25.94248
Тс	3.29	7.98	1	1.5	29.12839
Ru	3.575	8.03	1	1.5	34.58997
Rh	3.975	8.01	1	1.509	38.61206

Pd	4.32	8	1	1.544	69.17994
Ag	4.436	6.268	1	1.622	48.97695
Cd	5.034	7.914	1	1.6	45.11735
In	3.506	5.792	1	1.404	32.55526
Sn	4.62392	6.45025	1	1.354	52.87639
Sb	4.56949	6.45124	1	1.404	50.31268
Te	6.02877	6.80311	1	1.38	60.37522
I	6.1548	7.50909	1	1.333	62.06798
Xe	7.595	9.95	1	2.459	82.11269
Cs	2.183	3.422	1	2.984	5.58842
Ba	2.814	4.792	1	2.442	8.36432
La	2.8355	5.483	1	2.071	10.67729
Ce	2.774	5.384	1	1.925	11.21837
Pr	2.858	5.128	1	2.007	11.77531
Nd	2.8685	5.241	1	2.007	10.57528
Pm	2.881	5.346	1	2	11.03202

Sm	2.9115	5.439	1	1.978	11.52999
Eu	2.8785	5.575	1	2.227	11.98786
Gd	3.1665	5.949	1	1.968	14.13037
Tb	3.018	5.668	1	1.954	13.02211
Dy	3.0555	5.743	1	1.934	13.55362
Но	3.127	5.782	1	1.925	14.0705
Er	3.1865	5.829	1	1.915	14.62836
Tm	3.2514	5.8658	1	2	15.23228
Yb	3.2889	5.93	1	2.158	15.88822
Lu	2.9629	4.9258	1	1.896	15.16273
Hf	3.7	6.8	1	1.759	20.49776
Та	5.1	5.7	1	1.605	25.34837
W	4.63	6.62	1	1.538	29.91565
Re	3.96	7.84	1	1.6	34.23337
Os	5.14	7.26	1	1.7	39.06632
Ir	5	8	1	1.866	43.69259

Pt	4.79	8.86	1	1.557	51.08672
Au	4.894	5.172	1	1.618	57.25236
Hg	6.27	8.32	1	1.6	66.14815
Tl	3.2	5.8	1	1.53	43.69259
Pb	3.9	7.06	1	1.444	47.5736
Bi	4.53181	7.32783	1	1.514	44.87347
Po	4.42943	8.40996	1	1.48	48.8329
At	4.53674	8.99576	1	1.47	55.34395
Rn	5.37	10.74	1	2.2	62.65353
Fr	2	4	1	2.3	6.83259
Ra	2.843	4.868	1	2.2	8.67007
Ac	2.835	5.67	1	2.108	10.34466
Th	3.175	5.81	1	2.018	10.34466
Pa	2.985	5.81	1	1.8	13.07337
U	3.341	5.706	1	1.713	13.33589
Np	3.549	5.434	1	1.8	13.38967

Pu	3.243	5.638	1	1.84	13.55362
Am	2.9895	6.007	1	1.942	14.25166
Cm	2.8315	6.379	1	1.9	14.43755
Bk	3.1935	6.071	1	1.9	14.62836
Cf	3.197	6.202	1	1.9	16.19823
Es	3.333	6.178	1	1.9	16.85603
Fm	3.4	6.2	1	1.9	13.95226
Md	3.47	6.22	1	1.9	18.24526
No	3.475	6.35	1	1.9	20.24779
Lr	3.5	6.4	1	1.9	0

2. Electrostatic Interaction Energy Curves

Figure S1: A comparison between QM (LACVP**++¹ or ERMLER**++² and B3LYP³) with PQEq and PQEq2 via the electrostatic interaction dipole energies. A subfigure is depicted for each plot to describe the direction of the dipole scan.