Лабораторна робота № 1

Побудова оцінок та довірчих інтервалів

Нехай ω_1 та ω_2 — це незалежні рівномірно розподілені на [0,1] випадкові величини (в.в.). Пара незалежних в.в. (ξ_1,ξ_2) , які мають стандартний нормальний розподіл (тобто N(0,1)), генерується за допомогою перетворення:

$$\xi_1 = \sqrt{-2\ln\omega_1} \sin(2\pi\omega_2), \qquad \xi_2 = \sqrt{-2\ln\omega_1} \cos(2\pi\omega_2)$$

(в.в. N(0,1) можна генерувати і за допомогою вбудованого в комп'ютер генератора). Позначимо $a = \mathbf{M} \xi_i = 0, \ \sigma^2 = \mathbf{D} \xi_i = 1.$

Нехай спостерігається вибірка $\overline{X} = (X_1, ..., X_n)$, де $X_i \sim N(0,1)$.

Завдання 1. Побудувати довірчий інтервал для:

- а) математичного сподівання a у припущенні, що спостерігаються в.в. $\{X_i\}$, які мають нормальний розподіл, але дисперсія σ^2 невідома;
- b) математичного сподівання a у припущенні, що спостерігаються в.в. $\{X_i\}$, розподіл яких невідомий.
- с) дисперсії σ^2 у припущенні, що спостерігаються в.в. $\{X_i\}$, які мають нормальний розподіл.

Всі довірчі інтервали будуються із достовірністю $1-\gamma=0.99\,$ для $n=100\,$, $n=10\,000\,$ та $n=1\,000\,000\,$. В усіх цих випадках дослідити, чи потрапляють математичне сподівання та дисперсія у побудовані довірчі інтервали, а також оцінити, як змінюється довжина довірчого інтервалу при збільшенні n . Інакше кажучи, виводити на друк:

- кількість виконаних реалізацій;
- отриману оцінку;
- побудований довірчий інтервал;
- ширину довірчого інтервалу.

<u>Зауваження</u>. Формули для побудови оцінок та довірчих інтервалів див. лекцію 4. Для випадку b) краще використовувати незміщену оцінку дисперсії.

Завдання 2: обчислення ймовірності чотирьма способами із дослідженням швидкості збіжності, тобто кількості реалізацій, витрачених різними алгоритмами на побудову оцінки із заданими достовірністю та відносною похибкою. Потрібно обчислити наступну ймовірність:

$$Q(\alpha) = \mathbf{P}\{\xi_{\alpha} < \eta\},\,$$

де ξ_{α} та η — незалежні в.в., які мають функції розподілу (ф.р.) $F_{\alpha}(x)$ та G(x) відповідно. Припустимо, що $\xi_{\alpha} \geq 0$ для будь-яких значень параметра α та $\eta \geq 0$ з ймовірністю 1 і існують щільності $f_{\alpha}(u) = F'_{\alpha}(u), \ u \geq 0,$ та $g(u) = G'(u), \ u \geq 0$. Виберемо наступні ф.р.:

$$F_{\alpha}(u) = 1 - e^{-(\alpha u)^4}, \quad G(u) = 1 - e^{-u^2}, \quad u \ge 0.$$

Тоді ймовірність $Q(\alpha)$ обчислюється за формулою:

$$Q(\alpha) = \mathbf{P}\{\xi_{\alpha} < \eta\} = \int_{0}^{\infty} F_{\alpha}(u) dG(u) = \int_{0}^{\infty} \left(1 - e^{-(\alpha u)^{4}}\right) 2u e^{-u^{2}} du \quad \underset{\alpha \to 0}{\sim} 2\alpha^{4} \int_{0}^{\infty} u^{5} e^{-u^{2}} du =$$

$$\left\|v = u^{2}, \ dv = 2u du\right\| = \alpha^{4} \int_{0}^{\infty} v^{2} e^{-v} dv = \alpha^{4} \Gamma(3) = 2\alpha^{4}, \tag{1}$$

де
$$\Gamma(\beta) = \int_{0}^{\infty} v^{\beta-1} e^{-v} dv$$
, $\beta > 0$, – гамма-функція.

Зауваження 1. Нехай ω , ω_1 , ω_2 , ... — послідовність незалежних рівномірно розподілених на відрізку [0,1] в.в. (послідовність псевдовипадкових чисел). Тоді моделювання в.в. ξ_{α} та η відбувається за формулами: $\xi_{\alpha} = F_{\alpha}^{-1}(\omega)$ і $\eta = G^{-1}(\omega)$ (за умови, що ці обернені функції існують). Тобто

$$\xi_{\alpha}^{(i)} = \frac{1}{\alpha} (-\ln \omega_i)^{\frac{1}{4}}, \quad \eta_i = (-\ln \omega_i)^{\frac{1}{2}}, \quad i = 1, 2, \dots$$

(враховано, що в.в. $1-\omega_i$ та ω_i мають один і той же рівномірний на [0,1] розподіл).

3ауваження 2. Загальна схема обчислення ймовірності $Q(\alpha)$ виглядає наступним чином. Нехай $\hat{q}_1, \hat{q}_2, \ldots$ – незміщені оцінки ймовірності $Q(\alpha)$. Позначимо

$$\hat{Q}_n(\alpha) = \frac{1}{n} \sum_{i=1}^n \hat{q}_i, \quad \hat{\sigma}_n^2(\alpha) = \frac{1}{n-1} \left(\sum_{i=1}^n \hat{q}_i^2 - n \, \hat{Q}_n^2(\alpha) \right)$$

- незміщена оцінка дисперсії.

Кількість реалізацій $n^*(\alpha)$ алгоритму, які потрібно здійснити для обчислення ймовірності $Q(\alpha)$ із заданою достовірністю $1-\gamma$ та відносною похибкою ε обчислюється за формулою:

$$n^*(\alpha) = \min \left\{ n \ge n_0(\alpha) : n \ge \frac{z_{\gamma}^2 \, \hat{\sigma}_n^2(\alpha)}{\varepsilon^2 \, \hat{Q}_n^2(\alpha)} \right\},\,$$

де $n_0(\alpha)$ — початкова кількість реалізацій, яка потрібна для "стабілізації" дисперсії, а z_γ — це коефіцієнт, який знаходиться з рівняння $2\Phi(z)=1-\gamma$ ($\Phi(z)$ — це функція Лапласа).

В усіх наведених вище випадках обчислення вести із достовірністю 0.99 та відносною похибкою 1%, тобто $z_{\gamma}=2.575\,$ і $\varepsilon=0.01\,$. Розглядаються три можливі значення параметра α : 1, 0.3 та 0.1. Потрібно виконати наступні завдання.

- **А.** При кожному $\alpha = 1$; 0.3; 0.1 обчислити точне значення ймовірності $Q(\alpha)$ (виключно для тестування всіх чотирьох алгоритмів).
- **В.** Стандартний метод Монте-Карло (*метод I*): $Q(\alpha) = \mathbf{M} \, I(\xi_{\alpha} < \eta) \,, \, \text{тобто} \, \, \hat{q}_i = I(\xi_{\alpha}^{(i)} < \eta_i) \,, \, \text{де} \, \, I(\cdot) \, \, \text{індикаторна функція.}$

C. Метод 2:
$$Q(\alpha) = \int_{0}^{\infty} [1 - G(u)] dF_{\alpha}(u) = \mathbf{M}[1 - G(\xi_{\alpha})]$$
, тобто

$$\hat{q}_i = 1 - G(\xi_{\alpha}^{(i)}) = e^{-\left[\xi_{\alpha}^{(i)}\right]^2}$$
.

D. Метод 3:
$$Q(\alpha) = \int_{0}^{\infty} F_{\alpha}(u) dG(u) = \mathbf{M} F_{\alpha}(\eta)$$
, тобто

$$\hat{q}_i = F_{\alpha}(\eta_i) = 1 - e^{-(\alpha \eta_i)^4}$$
.

E. Memo∂ 4:

$$Q(\alpha) = \int_{0}^{\infty} F_{\alpha}(u) dG(u) = \int_{0}^{\infty} F(u) g(u) du = \int_{0}^{\infty} F_{\alpha}(u) \frac{g(u)}{h_{\alpha}(u)} h_{\alpha}(u) du = \mathbf{M} \left[F_{\alpha}(\gamma_{\alpha}) \frac{g(\gamma_{\alpha})}{h(\gamma_{\alpha})} \right],$$

де γ_{α} — невід'ємна в.в. із щільністю $h_{\alpha}(u), \ u \geq 0$. Використовуючи співвідношення (1), маємо

$$F_{\alpha}(u)g(u) = \left(1 - e^{-(\alpha u)^4}\right) 2u e^{-u^2} \sim_{\alpha \to 0} 2\alpha^4 u^5 e^{-u^2}.$$

Із співвідношення (1) випливає, що $\int_0^\infty u^5\,e^{-u^2}du=1$. Тому як щільність $h_\alpha(u),\,u\ge 0$, раціонально вибрати $h_\alpha(u)=u^5\,e^{-u^2},\,u\ge 0$. Легко показати, що саме таку щільність має в.в. $\gamma_\alpha=\sqrt{\theta^{(1)}+\theta^{(2)}+\theta^{(3)}}$, де $\theta^{(1)},\,\theta^{(2)}$ та $\theta^{(3)}$ — незалежні в.в., які мають показниковий розподіл з параметром 1, тобто $\theta^{(i)}=-\ln \omega_i$ (у нашому випадку в.в. γ_α та щільність розподілу $h_\alpha(u)$ від параметра α не залежать). Звідси випливає, що

$$\hat{q}_{i} = \left[1 - e^{-(\alpha \beta_{i})^{4}}\right] \frac{2 \beta_{i} e^{-\beta_{i}^{2}}}{\beta_{i}^{5} e^{-\beta_{i}^{2}}} = \frac{2}{\beta_{i}^{4}} \left[1 - e^{-(\alpha \beta_{i})^{4}}\right],$$

де $\beta_i = \sqrt{\theta_i^{(1)} + \theta_i^{(2)} + \theta_i^{(3)}}$, причому $\theta_i^{(1)} = -\ln \omega_{3i-2}$, $\theta_i^{(2)} = -\ln \omega_{3i-1}$, $\theta_i^{(3)} = -\ln \omega_{3i}$, $i = 1, 2, \ldots$

Для кожного значення параметра α для кожного з чотирьох методів виводити на друк:

- точне значення $Q(\alpha)$;
- оцінку;
- вибіркову дисперсію;
- довірчий інтервал;
- кількість виконаних реалізацій для побудови оцінки із достовірністю 0.99 та відносною похибкою 1%.