Universidad de los Andes-Dpto. de Física Mecánica Cuántica I-2014/II

Tarea 3

1. Considere un sistema físico con un espacio de Hilbert de dimensión 2. Una base ortonormal en este espacio viene dada por $\{ \mid 1 \rangle , \mid 2 \rangle \}$. Representados en esa base el Hamiltoniano y dos operadores \hat{A} y \hat{B} vienen dados por

$$\hat{H} = \frac{\hbar\omega}{3} \begin{pmatrix} 5 & i\sqrt{2} \\ -i\sqrt{2} & 4 \end{pmatrix} \quad , \quad \hat{A} = \frac{a}{3} \begin{pmatrix} 2\sqrt{2} & -i \\ i & -2\sqrt{2} \end{pmatrix} \quad , \quad \hat{B} = \frac{b}{3} \begin{pmatrix} 1 & -4i\sqrt{2} \\ 4i\sqrt{2} & 5 \end{pmatrix} \quad (1)$$

donde ω , a y b son constantes reales positivas. Al instante t=0 el sistema se encuentra en el estado

$$|\Psi(0)\rangle = N\left(\sqrt{2}|1\rangle + \sqrt{3}|2\rangle\right) \tag{2}$$

- (a) Normalice el estado anterior.
- (b) Si se mide la energía del sistema a t=0 qué resultados se pueden encontrar y con cuáles probabilidades?. Si se realizan muchas mediciones a t=0 de la energía cuál es el valor promedio?.
- (c) Suponga que en lugar de medir la energía a t=0 se midiera el observable correspondiente a \hat{A} . Qué resultados se pueden encontrar y con cuáles probabilidades?. Cuál es el valor promedio de \hat{A} ?
- (d) Lo mismo del literal anterior pero ahora para \hat{B} .
- (e) Qué puede decir del producto de incertidumbres $\Delta A \Delta B$ a t=0?.
- (f) Iniciando con el estado de la Ec.(2) convenientemente normalizado, determine el estado del sistema a un tiempo t > 0 arbitrario, es decir $| \Psi(t) \rangle$.

- 2. (i) Sea \hat{H} el Hamiltoniano de un sistema físico con ecuación de valores propios $\hat{H}|E_n\rangle = E_n|E_n\rangle$. Calcule $\langle E_n|[\hat{A},\hat{H}]|E_n\rangle$, donde \hat{A} es un observable cualquiera.
 - (ii) Si $\hat{H} = \frac{\hat{P}^2}{2m} + \hat{V}(x)$, calcular en función de \hat{P} , \hat{X} y $\hat{V}(x)$, el conmutador: $[\hat{H}, \hat{X}\hat{P}]$.

3. Se tiene un sistema cuántico descrito en un espacio de Hilbert de dimensión 3. Sus estados estacionarios (estados propios del Hamiltoniano) se notan como $|a\rangle,|b\rangle$ y $|c\rangle$ con valores correspondientes de energía $\hbar\omega,0$ y $-\hbar\omega$, respectivamente. Se sabe que otro observable \hat{A} está definido por las siguientes acciones sobre la base de estados estacionarios:

$$\hat{A}|a\rangle = \frac{1}{\sqrt{2}}|b\rangle \quad , \quad \hat{A}|b\rangle = \frac{1}{\sqrt{2}}[|a\rangle + |c\rangle] \quad , \quad \hat{A}|c\rangle = \frac{1}{\sqrt{2}}|b\rangle$$
 (3)

- (i) Escribir la matriz que representa a \hat{A} en la base de estados estacionarios (base ordenada en la forma $\{|a\rangle,|b\rangle,|c\rangle\}$).
- (ii) Calcular los valores propios $\lambda_1 > \lambda_2 > \lambda_3$ de \hat{A} , y los vectores propios correspondientes (normalizados!) que se van a notar como $|1\rangle, |2\rangle$ y $|3\rangle$, respectivamente.
- (iii) Suponer que al instante t=0 el estado del sistema es $|\Psi(0)\rangle = |1\rangle$. Determine $\langle E \rangle$ y ΔE en este estado.
- (iv) Calcular al instante t > 0 el estado del sistema $|\Psi(t)\rangle$ y el valor medio $<\hat{A}(t)>$.
- (v) Si se mide el observable \hat{A} al instante t>0, qué posibles resultados se van a obtener y con cuáles probabilidades.