Datastrukturer – tidskomplexitet

Skemaer - til sammenligning

Udfyld et skema som det herunder med Big O estimater (kun i tid, ikke i rum) for de datastrukturer du lærer. Skriv også noter til dig selv om nogle af de antagelser du gør dig (for eksempel tager det O(1) at fjerne det sidste element i en arraylist, hvis arrayet ikke kopieres, men O(n) hvis det gør ...)

Queue

Læs et element ¹	første	sidste	midterste	i'te	næste ²
	O(1)	$O(n)^*$	O(n)**	O(n)	
Find element ³	eksisterer usorteret liste	eksisterer sorteret liste	eksisterer ikke usorteret liste	eksisterer ikke sorteret liste	
	O(1)	$O(n)^*$	O(n)**	O(n)	
Indsæt nyt element	i starten	i slutningen	i midten	efter node	før node
	O(1)***	O(1)			
Fjern element	første	sidste	i'te	efter node	før node
	O(1)	O(1)****			
Byt om på to elementer	første og sidste	første og i'te	sidste og i'te	i'te og j'te	nodes

^{*} Det er kun muligt at kigge på det sidste element ved at bruge getIndex, da man ikke direkte har adgang til tail.

^{**} du kan kunne finde det midterste element hvis du ved hvor lang køen er og halverer det. og burger getIndex og size().

^{***} det er kun muligt hvis køen er tom. Så vil det første element komme ind i starten af køen.

^{****} kun muligt hvis det er det eneste element i køen.

¹ At læse et element er som regel det samme som at skrive nyt indhold i et eksisterende element

² Hvis vi allerede har fat i ét element i en datastruktur, kan vi måske læse det "næste" hurtigere end i+1'te

³ Find et element med en bestemt værdi – alt efter om vi ved at listen er sorteret eller ej, og om elementet findes eller ej.