10. PREVISIÓN DE CARGAS.

1. DEFINICIÓN.

La previsión de cargas de un edificio es el cálculo de la potencia de cada uno de los suministros eléctricos del edificio para posteriormente determinar las secciones de cada línea del circuito eléctrico del mismo:

- Acometida.
- LGA.
- Derivaciones individuales.
- Circuitos interiores.

PREVISIÓN DE POTENCIA

A) EDIFICIO DESTINADO PRINCIPALMENTE A VIVIENDAS.

P_{TOTAL}=Servicios generales+Garajes+Viviendas+Locales

B) EDIFICIOS NO DESTINADOS A VIVIENDAS.

_	Edificios de oficinas o comerciales	Edificios industriales			
Previsión de potencia	100 W/m² y planta	125 VWm ² y planta			
Mínimo por abonado	3450 W	10350 W			

2. EJEMPLOS DE PREVISIÓN DE CARGAS EN EDIFICIOS DE VIVIENDAS.

La carga total correspondiente a un edificio destinado principalmente a viviendas resulta de la suma de la carga correspondiente al conjunto de viviendas, de los servicios generales del edificio, de la correspondiente a los locales comerciales y de los garajes que forman parte del mismo.

2.1. VIVIENDAS. Se obtendrá multiplicando la media aritmética de las potencias máximas previstas en cada vivienda, por el coeficiente de simultaneidad indicado en la tabla, según el número de viviendas.

Para edificios cuya instalación esté prevista para la aplicación de la tarifa nocturna, la simultaneidad será 1

ü Viviendas (n)	Coeficiente de Simultaneidad	CASO 1. 10 Viviendas con grado de electrificación básico. 0 Viviendas con grado de electrificación elevado.
1	1	Total viviendas: 10
2	2	Coeficiente: 8,5
3	3	Potencia = 5750x8,5= 48.875,00 W.
4	3,8	
5	4,6	
6	5,4	CASC 1. 25 Viviendas con grado de electrificación básico.
7	6,2	0 Viviendas con grado de electrificación elevado.
8	7	
9	7,8	Total viviendas: 25 Coeficiente: 17,3
10	8,5	<u> </u>
11	9,2	Potencia = 5750x17,3= 99.475,00 W.
12	9,9	
13	10,6	
14	11,3	CASO 3. 0 Viviendas con grado de electrificación básico.
15	11,9	16 Viviendas con grado de electrificación elevado.
16	12,5	Total viviendas: 16
17	13,1	Coeficiente: 12,5
18	13,7	Potencia = 9200x12,5= 115.000,00 W.
19	14,3	
20	14,8	CASO 4. 0 Viviendas con grado de electrificación básico. 31 Viviendas con grado de electrificación elevado.
21	15,3	31 Viviendas con grado de electrificación elevado.
n>21	15,3+(n-21).0,5	Total viviendas: 31
	1 1- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Coeficiente: 20,3
		Potencia = 9200x20,3= 186.760,00 W.
		CASO 5. 10 Viviendas con grado de electrificación básico.
		12 Viviendas con grado de electrificación elevado.
		Total viviendas: 22 Coeficiente: 15,8
		Potencia = $\frac{5750 \times 10 + 12 \times 9200}{22}$ x15,8= 120.582,73

O Viviendas con tarifa nocturna de

Х

Х

×18,8=

9000 =

0 =

28

18,8 5750×12+ 9200×16

12

0

Total viviendas:

Potencia

viviendas= Potencia TN₁ =

Potencia TN₂ =

Coeficiente:

0 W

W.

W

W

W

145.162,86

108.000,00

0.00

253.162,86

2.2. LOCALES COMERCIALES Y OFICINAS. Se calculará considerando un mínimo de 100 W por metro cuadrado y planta, con un mínimo por local de 3.450 W a 230 V y coeficiente de simultaneidad 1.

Concepto	nº	Superficie (m²)	Potencia unitaria (W)	Mínimo (W)	Potencia instalada (W)	Potencia de cálculo (W)
Locales comerciales	y oficinas					
Local tipo 1	2	30	3.000	3.450	6.900	6.900,0
Local tipo 2	1	35	3.500	3.450	3.500	3.500,0
Oficina tipo 1	1	50	5.000	3.450	5.000	5.000,0
Oficina tipo 2	1	32	3.200	3.450	3.450	3.450,0
	<u>Total</u>	carga en lo	cales come	erciales y o	ficinas (W)	18.850,0

2.3. GARAJES. Se calculará considerando un mínimo de 10 W por metro cuadrado y planta para garajes de ventilación natural y de 20 W para los de ventilación forzada, con un mínimo de 3.450W a 230 V y coeficiente de simultaneidad 1.

Concepto	nº	Superficie (m²)	Potencia unitaria (W)	Mínimo (W)	Potencia instalada (W)	Potencia de cálculo (W)
<u>Garaje</u>						
Extracción natural	1	330	3.300	3.450	3.450	3.450,0
Extracción forzada	1	180	3.600	3.450	3.600	3.600,0
			<u>Tota</u>	7.050,0		

2.4. SERVICIOS GENERALES. Será la suma de la potencia prevista en ascensores, aparatos elevadores, centrales de calor y frío, grupos de presión, alumbrado de portal, caja de escalera y espacios comunes y en todo el servicio eléctrico general del edificio sin aplicar ningún factor de reducción por simultaneidad (factor de simultaneidad = 1).

Concepto	nº	Coeficiente	Potencia unitaria (W)	Mínimo (W)	Potencia instalada (W)	Potencia de cálculo (W)
Servicios generales						
Alumbrado fluorescente	14	1,80	36		504	907,2
Alumbrado incande scente	25	1,00	100		2.500	2.500,0
Amplificador TV	1	1,00	750		750	750,0
Portero electrónico	1	1,00	500		500	500,0
Ascensor	1	1,30	4.500		4.500	5.850,0
Bomba de agua	1	1,25	2.000		2.000	2.500,0
		Total	13.007,2			

Factores de corrección (aplicables a receptores, a efectos del cálculo de sección) Motores solos (ITC 47.3) Potencia x 1,25 Varios Motores (ITC 47.3) Potencia x 1,25 (Sólo el de mayor potencia) Motores de elevación y transporte (ITC 47.6) Potencia x 1,3 (Todos los motores) Lámparas de descarga(ITC 09.3), (ITC 44.3) Potencia x 1,8

3. EJERCICIO COMPLETO RESUELTO.

1 CARGA TOTAI	. CORRESP	ONDIENTE					
			Potencia unitaria		Potencia	Potencia de cálculo	
Concepto	n°	Coeficiente	(W)	(W)	instalada (W)	(W)	
Carga en viviendas							
i.E Bási∞	8		5.750		46 000		
3.EBevado	4		9.200		36,800		
	12	9,9	6,900		82,800	68.310.D	ITC-BT-10.3.1 Tabla 1.
arifa Noctuma	6	6	10,000			60,000 Д	
			<u>Total ca</u>	ga en v	iviendas (W)	128.310,0	
		ı	Potencia unitaria	Mínimo	Potencia	Potencia de cálculo	
Concepto	n°	Superficie (m²)	(W)	rwn	instalada (W)	(W)	
ocales comerciales y o	oficinas						100Wm², minimo 3.450 W. ITC-BT-10.3.3
ocaltipo 1	1	30	3,000	3,450	3,450	3.450.0	•
ocal tipo 2	1	40	4,000	3,450	4,000	4,000 0	
ficinatipo 1	1	20 50	2,000	3,450	3,450	3,450,0	
Ificinatipo 2	1	50	5,000	3,450	5,000	5,000 p	
		Total carga e	n locales comer	ciales y	oficinas (W)	15.900,0	
Garaje							ITC-BT-10.3.4
otracción natural	1	200	2,000	3,450	3,450	3,450,0	10\Wm² ventilación natural.
etracción forzada	1	200	4,000	3,450	4000	4000 p	20VWm² ventilación forzada.
_			Total o	arda er	garajes (W)	7.450,0	Minimo 3.450 W.
ervicios generales						,-	
lumbrado fluorescente	8	1,80	18		144	259.2	Coeficiente para lámparas de descarga: ITC-BT-44, 3
lumbrado incandescente	8	1,00			480	480 D	
mplificador TV	1	1,00	1,000		1,000	1,000,0	
ortero electrónico	i	1,00	1,000		1,000	1,000,0	
scensor	1	1,30	4,500		4,500	5.850 D	Coeficiente para máquinas de elevación: ITC-BT-47, 6
omba de agua	1	1,25	2,000		2,000	2,500,0	Coeficiente para motores: ITC-BT-47, 3.1
		To	tal carga en ser	vicios g	enerales (W)	11.089,2	
álculo Coef Simult						,	
órmulas		CAR	A TOTAL DE	LEDIE	ICIO AAA -	462.740.2	
Datos REBT		CARC	SA TOTAL DE	L EDIF	ICIO (VV) =	162.749,2	

- **5. CÁLCULO DE SECCIONES**. Una vez conocida la previsión de potencia de cada línea del edificio, procederemos a calcular la sección del conductor. Se realizará por los 2 métodos siguientes:
 - Por caída de tensión.
 - Por intensidad admisible.

Se escogerá la mayor de las 2 secciones calculadas.

5.1. FÓRMULAS.

				ITC-BT	Apartado	MONOFÁSICA	TRIFÁSICA	
POR	INT	ENSIDAD	DE CORRIE	NTE.				
a) FĆ	RMULA	S → I					Р	Р
							I =	I =
							U·cosφ	√3 ·U ·cos
b) TA	BLAS -	→ S						
		talaciones interior			ITC-BT-19	2.2.3		
		des subterráneas			ITO DT 07			
		- Conductores (A - Neutro.	l – Tabla 4, Cu – Tab	ola 5).	ITC-BT-07	3		
			NOIÓN			ı		
		DA DE TE	NSION.					
a) FĆ	RMULA	aS → S					2 · P · L	P ⋅ L
							S =	S =
		(0.1)					c.e.n	c.e.n
b)		(Cobre). (Aluminio).						
c)	C = 35	(Alumino).						
C)		CONTADORES	CENTRALIZADOS	ÚNICO				
	е	TOTALMENTE	PARCIALMENTE	USUARIO				
	LGA	0'5%	1%	NO HAY	ITC-BT-14	3		
	DI	1%	0'5%	1'5%	ITC-BT-15	3		

5.2. EJEMPLOS.

Datos LGA:								
1	- Conductores de cobre							
1	- Terna de cables unipolares							
	- Tensión nominal = 1000 V.							
2	- Aislamiento:	EPR						
1	-¿Bajo tubo?:	NO						
1	- Contadores:	- Totalmente concentrados						
	- Tensión de alimentación:	400	/230 V.					
	- Longitud de la LGA:	35	m.					
	- Factor de potencia:	0,90						

CARGA TOTAL DEL EDIFICIO (W) = 195.745,7

5.3. PROCESO DE CÁLCULO.

5.3.1. POR INTENSIDAD DE CORRIENTE.

- 1º. Observar el tipo de conductor (cobre o aluminio) y seleccionar la tabla adecuada (ITC-BT-07).
- 2º. Observar el tipo de cable: terna de cables unipolares o cable tripolar, y situarse en la columna adecuada.
- 3º. Observar el tipo de aislante: XLPE, EPR o PVC.
- 4º. Revisar la intensidad calculada y mirar en la tabla la inmediatamente superior.
- 5º. Moverse por la tabla hacia la izquierda para ver la sección adecuada.

630

885

870

770

5.3. PROCESO DE CÁLCULO.

5.3.2. POR CAÍDA DE TENSIÓN.

- 1º. Determinar la conductividad a partir del tipo de conductor (Cu=56, Al=35).
- 2º. Determinar la caída de tensión a partir del tipo de concentración de los contadores, según ITC-BT-14: La caída de tensión máxima permitida será:
 - Para líneas generales de alimentación destinadas a contadores totalmente centralizados: 0,5 por 100.
 - Para líneas generales de alimentación destinadas a centralizaciones parciales de contadores: 1 por 100.
- 3º. A partir de la sección calculada, elegir una sección normalizada: tabla ITC-BT-07.

Co	nduct	ores	s de	cobre	en ins	talacióı	n enter	rada.	
				na de cab olares (1)		1cable tr	ipolar o te	etrapolar	
SECCIÓN NO IINAL rim²			() ()	}	9	&			
				TIP	O DE AIS	SLAMIEN	TO		
		XL	PE1	EPR1	PVC1	XLPE2	EPR2	PVC2	
	6		72	70	63	66	64	56	
	10		96	94	85	88	85	75	
	16		125	120	110	115	110	97	
	25		160	155	140	150	140	125	
	35		190	185	170	180	175	150	
	50		230	225	200	215	205	180	
	70		280	270	245	260	250	220	
	95		335	325	290	310	305	265	
	120		380	375	335	355	350	305	
	150		425	415	370	400	390	340	
	185		480	470	420	450	440	385	
	240		550	540	485	520	505	445	
	300		620	610	550	590	565	505	
	400		705	690	615	665	645	570	
	500		790	775	685				
	630		885	870	770				

Se escoge la mayor de las dos secciones calculadas.

6. EJERCICIOS PROPUESTOS.

Un edificio destinado	principalmente	a viviendas est	á formado por:									
-	- 4 viviendas de Grado Electrificación básico.											
-	4			elevado	con tarifa noct	urna v potencia unitaria	a de:					
		9.000										
	Los locales com					ticas:						
-			nercial de		m² cada uno.							
-	- local comercial de				m² cada uno.							
-			na de		m² cada una.							
-			na de	50	m² cada una.							
	Los datos del ga											
-			acción natural de									
-			acción forzada de									
	Los servicios ge				•							
-	- tubos fluorescentes de				W cada uno.							
-	4	4 lámparas incandescentes de			W cada uno.							
-		1 ascer	5,00									
-		1 bomba d	2,00									
-			cador TV	0,80								
	10) 1		electrónico	0,70	KW							
	1°) La carga total c											
	2º) La sección de la			n).								
	3º) La caída de ten											
	4°) La sección de ι	ina derivacion indi	vidual a 1 local cor	mercial c		Datos Derivación in	divid	ual:				
Datos LGA:	- Conductores de	oohro						vorásica				
1	- Terna de cables					Montaje:		NOTASICA				
	- Tensión nominal					1		nductores de cobre				
2	- Aislamiento:		EPR			Longitud de la DI:	36	m.				
1	-¿Bajo tubo?:		NO			Factor de potencia:	0,90					
1	- Contadores:		- Totalmente co	ncentra	dos							
	- Tensión de alime	400	/230 V.									
	- Longitud de la LG	35	m.									
	- Factor de potenci	0,90										
		CARG	A TOTAL DEL	FDIF	ICIO (W) =	102.068.4						
		- JANO	· · · · · · · ·		10.0 (11)	.02.000,4						
		S _{LGA} =	95,0	mm ²								

6. EJERCICIOS PROPUESTOS.

