A Study of Machine Learning in Survival Analysis

Abel Villanueva

University of North Carolina at Charlotte

Fall 2024

Outline

- 1 Overview of Survival Analysis
- 2 Machine Learning Methods
- 3 Real Dataset
- 4 Conclusion

Introduction

Survival Data

For each instance i, we observe (X_i, y_i, δ_i)

- X_i: Feature Vector
- y_i: Observed Time
- \bullet δ_i : Event Indicator

$$y_i = \begin{cases} T_i & \delta_i = 1 \\ C_i & \delta_i = 0 \end{cases}$$
 T_i : True Time C_i : Censoring Time

Applications: Healthcare, Manufacturing, Finance [Wang et al., 2019]

Censoring

Functions

Overview of Survival Analysis

Survival Function

$$S(t) = P(T \ge t) = \exp[-H(t)]$$

Hazard Function

$$h(t) = \frac{f(t)}{S(t)} = -\frac{d}{dt}[\ln S(t)] \qquad H(t) = \int_0^t h(u)du$$

[Reddy and Li, 2015]

Kaplan-Meier Curve

Overview of Survival Analysis

Non-Parametric Estimate

$$\hat{S}(t) = \prod_{j:T_j < t} \left(1 - \frac{d_j}{r_j}\right)$$

- r_i: number of individuals at risk prior to time T_i
- \bullet d_i : number of events at T_i
- Confidence Interval

Kaplan-Meier Curve of Survival Probabilty Survival Probability urvival Probability 10

Months

Logrank Test

Overview of Survival Analysis

$$H_0: h_0(t) = h_1(t)$$
 $H_1: h_0(t) \neq h_1(t)$

$$\chi^{2}_{logrank} = \frac{\left[\sum_{j=1}^{k} \left(d_{0j} - \frac{r_{0j}d_{j}}{r_{j}}\right)\right]^{2}}{\sum_{j=1}^{k} \frac{r_{1j}r_{0j}d_{j}(r_{j} - d_{j})}{r_{j}^{2}(r_{j} - 1)}}$$

[Fleming and Harrington, 1981]

Cox-Proportional Hazards Model

Cox-Proportional Hazards Model

$$h(t|X_i) = h_0(t) \exp[X_i\beta]$$

$$S(t|X_i) = \exp[-H_0(t) \exp(X_i\beta)]$$

•000000

Software

Python

- pandas
- numpy
- scikit-learn
- scikit-survival

Survival Trees

- Splitting Criterion
- Prediction
- Cross Validation
- Pruning

[Safavian and Landgrebe, 1991]

Random Survival Forest

- Ensemble of Survival Trees
- Bagging
- Subspace Sampling
- Feature Importance
- Prediction

[Ishwaran et al., 2008]

Machine Learning Methods

0000000

Support Vector Machine (SVM)

- Hyperplane
- Kernels
- Regularization

[Wang et al., 2019]

Evaluation Metrics I

Overview of Survival Analysis

Concordance Index

$$\hat{c} = \frac{1}{num} \sum_{i:\delta_i=1} \sum_{j:y_i < y_j} I[\hat{S}(y_i|X_i) < \hat{S}(y_j|X_j)]$$

$$= \frac{1}{num} \sum_{i:\delta_i=1} \sum_{j:y_i < y_j} I[X_i \hat{\beta} > X_j \hat{\beta}]$$

[Uno et al., 2011]

Evaluation Metrics II

Integrated Brier Score

$$IBS = \int_{t_1}^{t_k} BS(t)dt$$

$$BS(t) = \frac{1}{n} \sum_{i=1}^{n} \left[\hat{S}(t|X_i) - I[T_i > t] \right]^2$$

[Graf et al., 1999]

Evaluation Metrics III

Overview of Survival Analysis

Cumulative/Dynamic AUC

$$AUC(t) = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} I[T_i > t] I[T_j \le t] I[\hat{S}(t|X_i) \ge \hat{S}(t|X_j)]}{\sum_{i=1}^{n} \sum_{j=1}^{n} I[T_i > t] I[T_j \le t]}$$

[Uno et al., 2011]

Breast Cancer (METABRIC)

```
Column
                                      Non-Null Count
                                                       Dtype
    Patient ID
                                      2509 non-null
                                                       object
    Age at Diagnosis
                                      2498 non-nu11
                                                       float64
    Type of Breast Surgery
                                      1955 non-null
                                                       object
    Cancer Type
                                      2509 non-null
                                                       object
    Cancer Type Detailed
                                      2509 non-null
                                                       object
    Cellularity
                                      1917 non-null
                                                       object
    Chemotherapy
                                      1980 non-null
                                                       object
    Pam50 + Claudin-low subtype
                                      1980 non-null
                                                       object
                                      2498 non-null
                                                       float64
    ER status measured by IHC
                                      2426 non-null
                                                       object
   ER Status
                                      2469 non-null
                                                       object
    Neoplasm Histologic Grade
                                      2388 non-null
                                                       float64
    HER2 status measured by SNP6
                                      1980 non-null
                                                       object
    HER2 Status
                                      1980 non-null
                                                       object
    Tumor Other Histologic Subtype
                                      2374 non-null
                                                       object
    Hormone Therapy
                                      1980 non-null
                                                       object
    Inferred Menopausal State
                                      1980 non-null
                                                       object
    Integrative Cluster
                                      1980 non-null
                                                       object
    Primary Tumor Laterality
                                      1870 non-null
                                                       object
   Lymph nodes examined positive
                                      2243 non-null
                                                       float64
    Mutation Count
                                                       float64
    Nottingham prognostic index
                                      2287 non-null
                                                       float64
    Oncotree Code
                                      2509 non-null
                                                       object
    Overall Survival (Months)
                                      1981 non-null
                                                       float64
    Overall Survival Status
                                      1981 non-null
                                                       object
25 PR Status
                                      1980 non-null
                                                       object
    Radio Therapy
                                      1980 non-null
                                                       object
    Relapse Free Status (Months)
                                      2388 non-null
                                                       float64
    Relapse Free Status
                                      2488 non-null
                                                       object
                                      2509 non-null
                                                       object
    3-Gene classifier subtype
                                      1764 non-null
                                                       object
    Tumor Size
                                      2360 non-null
                                                       float64
    Tumor Stage
                                      1788 non-null
                                                       float64
    Patient's Vital Status
```

1980 non-null

object

- 2.509 Breast Cancer **Patients**
- 30 Features
- Overall Survival Status
- Overall Survival (Months)
- Relapse Free Status
- Relapse Free Status (Months)

EDA I

Abel Villanueva

University of North Carolina at Charlotte

EDA II

Real Dataset

EDA III

Real Dataset

EDA IV

EDA V

EDA VI

Pre-processing

Feature Removal:

- Patient ID
- Cancer Type
- Sex
- Integrative Cluster
- Patient's Vital Status

Complete Dataset

- 1092 Instances
- 8 Numerical
- 16 Nominal
- 1 Ordinal
- 4 Labels
- 45 Features

Kaplan Meier Curve

Cox-Proportional Hazards Model I

Cohort	0.677704
Mutation Count	0.612564
Hormone Therapy_Yes	0.578156
Tumor Stage	0.554470
Chemotherapy_Yes	0.552463
Radio Therapy_Yes	0.546204
Primary Tumor Laterality_Right	0.533041
Tumor Size	0.528651
Nottingham prognostic index	0.526868
HER2 status measured by SNP6_Neutral	0.526080

- Cohort: -0.497392
- Mutation Count: -0.141548
- Hormone Therapy_Yes: 0.378709
- Tumor Stage: 0.076158
- Chemotherapy_Yes: 0.493760
- Radio Therapy_Yes: 0.293066
- Primary Tumor Laterality_Right: 0.121881

Cox-Proportional Hazards Model II

Cox-Proportional Hazards Model III

- C-Index: 0.71579
- Integrated Brier Score: 0.12082
- Cumulative AUC Mean: 0.76155

Log Rank Test I

Hormone Therapy

 χ^2 : 19.87413

p-value: 8.27119e-06

Log Rank Test II

Chemotherapy

 χ^2 : 36.52974

p-value: 1.50354e-09

Log Rank Test III

Radio Therapy

 χ^2 : 18.00271

p-value: 2.20590e-05

Log Rank Test IV

Primary Tumor Laterality

 χ^2 : 10.73803

p-value: 0.01323

Survival Tree I

Cross Validaion: 5 Fold

Max Depth: 8

Min Samples Leaf: 40

■ 17 Leafs

Survival Tree II

Survival Tree III

- C-Index: 0.71565
- Integrated Brier Score: 0.11133
- Cumulative AUC Mean: 0.76799

Random Survival Forest I

Cross-Validation: 5 Fold

Max Depth: 6

Min Samples Leaf: 10

Random Survival Forest II

	importances_mean	importances_std
Cohort		0.023901
Hormone Therapy_Yes	0.011999	0.007818
Nottingham prognostic index	0.007982	0.005699
Age at Diagnosis	0.007514	0.003328
Chemotherapy_Yes		0.008137
Pam50 + Claudin-low subtype_LumA	0.004899	0.001824
Tumor Stage		
Type of Breast Surgery_Mastectomy	0.003784	0.001758
Tumor Size	0.003568	0.002902
Radio Therapy_Yes	0.002508	0.002876

Random Survival Forest III

- C-Index: 0.75570
- Integrated Brier Score: 0.10784
- Cumulative AUC Mean: 0.81813

SVM

alpha: 0.0625

■ C-Index: 0.72064

Cumulative AUC Mean: 0.76021

Comparison

	C-Index	IBS	AUC Mean
CoxPH	0.7159	0.12082	0.76155
ST	0.71565	0.11133	0.76799
RSF	0.75570	0.10784	0.81813
SVM	0.72064		0.76021

Conclusion

- Survival Analysis
- Machine Learning
- Real Data Analysis

Real Dataset

Future Work

- Imputation
- Relapse Free Status
- Other ML Methods [Wang et al., 2019]:
 - Neural Networks
 - **Gradient Boosting**
 - Bagging Survival Trees

References I

Fleming, T. R. and Harrington, D. P. (1981).

A class of hypothesis tests for one and two sample censored survival data.

Communications in Statistics - Theory and Methods, 10(8):763–794.

Graf, E., Schmoor, C., Sauerbrei, W., and Schumacher, M. (1999).

Assessment and comparison of prognostic classification schemes for survival data.

Statistics in Medicine, 18(17-18):2529–2545.

References II

Ishwaran, H., Kogalur, U. B., Blackstone, E. H., and Lauer, M. S. (2008).

Real Dataset

Random survival forests.

The Annals of Applied Statistics, 2(3):841 – 860.

Reddy, C. K. and Li, Y. (2015).

A review of clinical prediction models.

In Healthcare Data Analytics.

Safavian, S. and Landgrebe, D. (1991).

A survey of decision tree classifier methodology.

IEEE Transactions on Systems, Man, and Cybernetics, 21(3):660-674.

References III

Overview of Survival Analysis

Uno, H., Cai, T., Pencina, M. J., D'Agostino, R. B., and Wei, L. J. (2011).

On the c-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data.

Statistics in Medicine, 30(10):1105–1117

Statistics in Medicine, 30(10):1105–1117.

Wang, P., Li, Y., and Reddy, C. K. (2019). Machine learning for survival analysis: A survey. *ACM Comput. Surv.*, 51(6).