Algorytmy Metaheurystyczne Komiwojażer Heurystycznie

Gabriel Budziński (254609) Franciszek Stepek (256310)

Przedmowa

Na samym początku omówimy po krótce użyte algorytmy, oraz zastanowimy się nad ich złożonością obliczeniową, natomiast dalej dopiero przejdziemy do opisu eksperymentów.

1 Podsumowanie złożoności obliczeniowych implementacji

2 Opis eksperymentów

2.1 Implementacja

Algorytmy implementujemy w języku C/C++, odległości między wierzchołkami są przechowywane jako pełne tablice dwuwymiarowe typu int, a trasy są w kontenerach vector, co ułatwia operacje odwracania i mieszania. Korzystaliśmy z kompilatora g++ wraz z użyciem flag -lSDL2 (używanej przy wizualizacji, wraz z odpowiednim dla danego systemu operacyjnego podlinkowania do folderu zawierającego) oraz -lpthread (przy korzystaniu z wielowątkowości)

2.2 Sprzęt

Programy były testowane na dwóch maszynach, laptopie *Lenovo* i komputerze stacjonarnym. Obie jednostki są wyposażone w procesor architektury x86 marki intel oraz 16GB pamięci RAM.

2.2.1 Pececik

Komputer stacjonarny posiada procesor sześciordzeniowy i5-10600K 4,1 GHz (o obniżonym napięciu operacyjnym).

2.2.2 Lapek

Laptop posiada procesor czterordzeniowy i7-6700HQ 2,6 GHz

2.3 Instancje

2.3.1 Przykłady TSPLIB

W części eksperymentów użyto instancji euklidejskiego problemu komiwojażera.

2.3.2 Instancje losowe

W celu zwiększenia liczności i dokładności testów spreparowano losowo generowane instancje eukidejskiego problemu komiwojażera.

2.4 Metodologia/cel

Testy przeprowadzono za pomocą zaimplementowanych w tym celu funkcji ku jak największej automatyzacji. Dane o przeprowadzonych testach zapisywano do plików tekstowych w formacie CSV, a następnie poddane analizie. Testowanie miało na celu wskazanie mocnych i słabych stron zaimplementowanych heurystyk, jak i ich porównanie.

2.5 Opis wyników

2.6 Wyniki z custom-parameter-tuner

Zaimplementowany został także masowy test, który miał na celu wynalezienie 'optymalnych' hiperparametrów mając za zbiór testowy 3 instancje (70, 280 oraz 1002 miastowe). Największe różnorodności otrzymano dla instancji z 70 miastami, dla miast 280 można już było zawęzić nieco wyniki, natomiast dla instancji z 1002 miastami różnice okazały się na tyle znaczące, że bez problemu można wyznaczyć najlepsze.

Na początku przedstawmy tabelę wynikową dla n = 70. Ale zanim to zrobimy, to dodajmy tylko, że w tabeli 1 zawrzemy jedynie przedstawienie wyników dla otoczenia *Invert*, ponieważ dla pozostałych 2 otoczeń dobór parametrów okazał się praktycznie bez znaczenia po względnie minimalnym odcinku czasu (po około 0.5 sekundy od rozpoczęcia działania każdy z pojedynczych testów ostatecznie zwracał ten sam wynik), gdzie otoczenie *Insert* dało wynik 722, natomiast *Swap* 756.

Tabela 1.						
Kik Mode	Tabu Size Mode	Enhance Mode	Min	Avg	Max	$\int St Dev$
\overline{Invert}	7	Tabu * 2 + 1	675	675	675	0
		Tabu * 10	675	692.(3)	699	10
		Tabu * \sqrt{Size}	675	687.(6)	699	12.0726964676496
		Tabu * $log_2(Size)$	690	696.(8)	699	3.05959329178095
	\sqrt{Size}	Tabu * 2 + 1	684	694.(3)	699	6.14410286372226
		Tabu * 10	675	693	699	10.2834819006016
		Tabu * \sqrt{Size}	675	691	699	9.94987437106621
		Tabu * $log_2(Size)$	691	696.(7)	701	3.73422608373463
	$log_2(Size)$	Tabu * 2 + 1	686	686.(8)	694	2.666666666666
		Tabu * 10	675	689.(7)	699	9.25712938466584
		Tabu * \sqrt{Size}	695	697.(6)	699	1.9999999999999
		Tabu * $log_2(Size)$	686	695.(4)	699	5.70331287742287
Insert	7	Tabu * 2 + 1	695	701.(4)	707	5.05250213040802
		Tabu * 10	696	696.(8)	701	1.69148192751537
		Tabu * \sqrt{Size}	687	696.(4)	707	7.09068246206084
		Tabu * $log_2(Size)$	688	691	701	5.67890834580028
	\sqrt{Size}	Tabu * 2 + 1	681	694.(3)	699	5.83095189484535
		Tabu * 10	688	691.(8)	708	6.97216688778397
		Tabu * \sqrt{Size}	688	692.(7)	713	8.52610370828576
		Tabu * $log_2(Size)$	681	695.(2)	712	11.9035475571127
	$log_2(Size)$	Tabu * 2 + 1	697	709.(6)	716	9.5
		Tabu * <u>10</u>	685	692.(7)	703	6.99603062060507
		Tabu * \sqrt{Size}	681	691.(8)	703	8.22259758902934
		Tabu * $log_2(Size)$	686	690.(6)	696	4.76969600708475
Swap	7	Tabu * 2 + 1	691	694.(3)	697	2.783882181415
		Tabu * <u>10</u>	691	695.(8)	701	4.01386485959743
		Tabu * \sqrt{Size}	683	692.(3)	699	6.24499799839846
		Tabu * $log_2(Size)$	685	691.(8)	696	4.53994615729206
	\sqrt{Size}	Tabu * 2 + 1	679	683.(7)	696	5.71790559946948
		Tabu * <u>10</u>	686	696.(7)	701	4.86769395550341
		Tabu * \sqrt{Size}	686	693.(7)	701	6.01618188259331
		Tabu * $log_2(Size)$	686	693.(5)	701	7.50185162328459
	$log_2(Size)$	Tabu * 2 + 1	684	694.(2)	708	11.110555541666
		Tabu * 10	694	698.(6)	701	3.5000000000000001
		Tabu * \sqrt{Size}	685	690.(1)	701	5.84047182264508
		Tabu * $log_2(Size)$	681	690.(8)	695	5.66(6)

W tabeli pogrubione zostały wyniki najlepsze w danej sekcji. Rozważaliśmy tutaj 3 parametry (oraz 1 niewspominany):

- Kik Mode rodzaj kroków wykonywanych przez podprocedurę Kik (wyskakiwanie z obecnego rozwiązania)
- Tabu Size Mode wielkość listy Tabu
- Enhance Mode Liczba iteracji po której nie było poprawy (po przekroczeniu najpierw następuje 'cofanie' po liście długoterminowe
- (Kik Size) niewspominany tutaj, po części ze względu na czytelność tabeli (zwiększyłaby wtedy swój rozmiar 3-krotnie), ale w głównej mierze ze względu na brak wpływania tutaj na wyniki.

W kontekście analizy tabeli 1.:

- Po pierwsze widać znaczną przewagę przy używaniu Kik'a w trybie *Invert*, ponieważ nie dość, że osiąga najlepsze wyniki, to także oograniczenia górne (Max) sa niższe niż w przypadku pozostałych trybów.
- W przypadku długości listy Tabu można wyróżnić 2 wartości: magicznq 7, oraz (już uzależnioną od wielkości) wartość \sqrt{n} , gdzie n jest wielkością problemu. Tak jak w przypadku pierwszego trybu Kika lepsza była 7, tak w 2 pozostałych przypadkach lepiesj sprawdził się pierwiastek. Można zaryzykować, że dla naszych potrzeb są ze sobą 'wysoce porównywalne'
- Iteracje do poprawy tutaj już widać, że jest to mocno uzależnione od pozostałych parametrów, oraz że różne wartości zachowują się najlepiej w połączeniu z innymi ustawieniami (Wysoka różnorodność rozłożenia najlepszego wyniku w danych 'sekcjach')

Załączymy także wykresy dystrybucji wyniku względem liczby wykonananych 'Kików' (3 w podziale na tryb 'Kika', ora jeden zbiorczy). Tutaj także rozważamy jedynie otoczenie invert, ponieważ jak już zostało wspomniane, pozostałe zwracały te same wyniki.

Jak można (albo i nie) zauważyć, różne tryby kików zupełnie inaczej wpływają na ich efektywność - najlepiej to widać dal Inverta, dla którego albo mała ich liczba jest 'bardzo trafiona', albo względnie słaba, ale jest mało wartości pośrednich, natomiast dla posostałych 2 trybów jest zupełnie na odwrót, przy czym widać, że Insert osiąga nieco lepsze pod względem dystrybucji (większa koncentracja ze strony 'lewej') wyniki od swapa (który jednak bardziej koncentruje się w 'środku')

Przejdźmy teraz do Tabeli 2, w której to zawrzemy wyniki analogiczne do tych z Tabeli 1.

Tabela 2.						
${ m KikMode}$	TabuSizeMode	EnhanceMode	Min	Average	Max	StDev
Invert	7	Tabu * 2 + 1	2663	2673.(3)	2685	9.89275829415974
		Rest	2672	2680	2685	6.26099033699945
	Size / 10	Tabu * 2 + 1	2659	2673.(3)	2679	7.81451640644948
		Rest	2672	2676.(6)	2679	3.61478445646025
	$\sqrt{(Size)}$	Tabu * 2 + 1	2657	2669.(3)	2679	10.0531918646103
		Rest	2672	2676.(6)	2679	3.61478445646025
	$log_2(Size)$	Tabu * 2 + 1	2672	2679.(3)	2685	6.47044563122727
		Rest	2672	2680	2685	6.26099033699945
Insert	7	Tabu * 2 + 1	2685	2685	2685	0
		Rest	2682	2684	2685	1.54919333848294
	Size / 10	Any	2679	2679	2679	0
	$\sqrt{(Size)}$	Tabu * 2 + 1	2670	2676	2679	4.64758001544889
		Rest	2679	2679	2679	0
	$log_2(Size)$	Tabu * 2 + 1	2685	2685	2685	0
		Rest	2682	2684	2685	1.54919333848294
Swap	7	Tabu * 2 + 1	2685	2685	2685	0
		Rest	2671	2680.(3)	2685	7.22956891292053
	Size / 10	Tabu * $\sqrt{(Size)}$	2665	2676.(6)	2679	5.71547606649408
		Rest	2665	2674.(3)	2679	7.22956891292053
	$\sqrt{(Size)}$	Any	2665	2674.(3)	2679	7.22956891292053
	$log_2(Size)$	Any	2671	2680.(3)	2685	7.22956891292053

Wypunktujmy kilka obserwacji na podstawie tej tabeli:

- Jak można tutaj zauważyć, niektóre przypadki się nam 'zlepiły ze sobą' (Tam gdzie cała kategoria osiągała takie same wyniki zaznaczone to zostało jako 'Any', natomiast tam, gdzie jedna się wyróżniła, to została nazwana, a pozostałe zbiorczo funkcjonują pod nazwą 'Rest').
- Jednak zauważalne jest to że mimmo wszystko najepsz wynik został osiągnięty między innymi dzięki zastosowaniu długości listy Tabu równej \sqrt{n} .
- Pojawia się nam tutaj także ciekawa własność, że zaraz po najlepszym, wyniku 2657 bardzo blisko są wyniki osiągane przez Kika tryby Swap w przeciwieństwie do przypadku poprzedniego, gdzie Swap prezentował się dobrze, ale nie wyróżniająco.
- Na koniec jeszcze tylko zwróćmy uwagę na to, jak mało od siebie się różnią wartości maksymalne co oznacza, że wiele zaczyna 'asymptocznie' zbiegać do podobnego wyniku.

I na koniec w tej sekcji jeszcze mini-tabela 3, w której to jedynie pokażemy, jakie były najmniejsze, oraz największe osiągnięte wartości funkcji celu dla poszczególnych trybów otoczenia (Wszystkie wyniki osiągnęły łącznie jedynie 12 różnych wartości, dlatego uznajemy ten przypadek za 'zdegenerowany' dla naszych potrzeb i tak samo najmniej się zajmiemy jego analizą):

Tabela 3.		
NeiMode	Min Score	Max Score
Invert	276539	278997
Insert	301883	301883
Swap	302798	303465

Jak widać, granice są bardzo wyraźne, oraz można stwierdzić, że bezsprzecznie otoczenie rodzaju Invert zadziałał tu najlepiej.

2.7 porównanie wpływu listy długoterminowej

Dla porównania wpływu korzystania z listy długoterminowej (LTM) przetestowane zostały instancje o 'prosperujących' hiperparametrach ustalonych wcześniej (jakie dokładnie - zaraz), oraz przy czasie równym 60 sekund na każdy przebieg. W tabeli 4. zostały umieszczone wyniki uzyskane z- i bez LTM, oraz (aby być może zobaczyć różnicę w zależności od parametrów) zrobione to zostało dla 2 wariantów:

- Lista tabu długości = 7
- Lista tabu długości = \sqrt{n}

Wartości stałe dla każdego przebiegu:

- \bullet Rodzaj otoczenia Invert
- Rodzaj 'Kika' *Invert*
- Wielkość 'Kika' 7
- Liczba iteracji bez poprawy |Tabu| * 2 + 1

Tabela 4.				
n	LTM 7	LTM Sqrt	No LTM 7	No LTM Sqrt
51	0.887966804979253	0.887966804979253	0.887966804979253	0.887966804979253
52	0.961129446277961	0.961129446277961	0.961129446277961	0.961129446277961
70	0.847989949748744	0.858040201005025	0.85929648241206	0.858040201005025
76(1)	0.899671052631579	0.894736842105263	0.894736842105263	0.893092105263158
76(2)	0.834281742424821	0.829515509352969	0.829187067009876	0.834304657006897
99	0.856645789839944	0.846903270702853	0.848295059151009	0.856645789839944
100(1)	0.866021540205685	0.863227791724026	0.866021540205685	0.863227791724026
100(2)	0.863545047133364	0.860531602534384	0.868567454798331	0.863429145418019
100(3)	0.889518174133559	0.889391377852916	0.889814032121724	0.89429416737109
100(4)	0.867777241268308	0.869628198937711	0.86934653146628	0.866288427490745
100(5)	0.903881849729642	0.906827536114922	0.898232588168832	0.901904608183359
101	0.865951742627346	0.857908847184987	0.859249329758713	0.867292225201072
105	0.854738706820195	0.854738706820195	0.854738706820195	0.854738706820195
107	0.957647814910026	0.953770351328192	0.956319622964867	0.954755784061697
124	0.900335545447767	0.900335545447767	0.900335545447767	0.900335545447767
127	0.903279508484319	0.892126342821736	0.900218733436354	0.902428463714885
130	0.901809510450274	0.899424884275494	0.915556178987235	0.882311684668256
136	0.86353914781804	0.870348223093241	0.85543809415729	0.861278185643327
144	0.963224197887278	0.963224197887278	0.962682894823174	0.962682894823174
150(1)	0.934064389146633	0.934064389146633	0.934064389146633	0.934064389146633
150(2)	0.885638044410559	0.870612154134502	0.865942374281267	0.879411671272912
150(3)	0.847647970643131	0.846920375818544	0.844642687672013	0.848723545601215
152	0.946244532703233	0.943994771504701	0.947451108541551	0.941267407370167
195	0.916156202143951	0.916156202143951	0.916156202143951	0.916156202143951
200(1)	0.87395420200909	0.87395420200909	0.87395420200909	0.87395420200909
200(2)	0.869422701969538	0.867077340416514	0.857441577891435	0.858939218401198
225(1)	0.907264780832254	0.913685349429836	0.907264780832254	0.913685349429836
225(2)	0.886194844910441	0.887287024901704	0.887505460899956	0.884010484927916
226	0.886301754689256	0.886215316794883	0.885858760480595	0.885858760480595
264	0.909911728542328	0.910168651703951	0.922133930373823	0.922133930373823
280	0.888403361344538	0.88436974789916	0.889747899159664	0.893109243697479
299	0.860103982566619	0.860103982566619	0.860103982566619	0.860103982566619
318(1)	0.887664884860064	0.887664884860064	0.883132456657385	0.885124286091746
318(2)	0.887664884860064	0.887664884860064	0.883132456657385	0.885124286091746
439	0.885270769472609	0.891880845712489	0.859081977521025	0.891880845712489
575	0.888527461528838	0.890404103590642	0.889153008882772	0.890404103590642
783	0.883111954459203	0.883111954459203	0.883111954459203	0.883111954459203
1002	0.88141324961354	0.88141324961354	0.88141324961354	0.88141324961354

Na danej tabeli zostało wykonane kilka testów Wilcoxona (przy użyciu pythonowej biblioteki *scipy.stats*, aby móc w miarę rzetelny sposób zbadać dane zjawisko. Wyniki danych testów przedstawione zostały w Tabeli 5, wraz z przyjętymi oznaczeniami z Tabeli 4. oraz z dodatkowymi (przy trybie - Mode):

- L. (less) Hipoteza, że Lewa strona wyrażenia jest 'Lepsza' od Prawej
- 2. (two-sided) Hipoteza, że obie strony są od siebie niezależne
- P. (pratt) uwzględnienie zer przy wyliczeniu rang, ale pominięcie ich przy końcowej statystyce
- W. (wilcox) odrzucenie różnic zerowych
- \bullet Z. (zsplit) uwzględnienie zer przy wyliczaniu rang, oraz równomierna dystrybucja przy wyliczaniu końcowej statystyki.

Przejdźmy do tabelki:

Tabela 5.	1								
Mode	LT	LTM-7 : LTM-Sqrt		NoLTM-7 : NoLTM-Sqrt		LTM-7: NoLTM-7		LTM-Sqrt : NoLTM-Sqrt	
Mode	Stat	P-Val	Stat	P-Val	Stat	P-Val	Stat	P-Val	
L.P.	420	0.920489778898223	220	0.059777402992287	427	0.920623436703554	299	0.43152360785135	
L.W.	212	0.90855218158477	103	0.054684728027371	235	0.93463641598738	119	0.281659901157887	
L.Z.	465.5	0.916875235701623	265.5	0.062996261780571	466	0.917769251905686	359	0.43328385710822	
2.P.	230	0.159020442203553	220	0.119554805984574	236	0.158753126592892	299	0.8630472157027	
2.W.	113	0.182895636830461	103	0.109369456054742	116	0.13072716802524	119	0.563319802315774	
2.Z.	275.5	0.166249528596755	265.5	0.125992523561142	275	0.164461496188629	359	0.866567714216441	

Analiza tabeli:

- Najpierw zauważmy, że w większości przypadków sposoby wliczania zerowych różnic niewiele zmieniły, poza przyppadkiem ostatnim, dlatego w kolejnych podpunktach nie będziemy o tym wspominali, a ostatni przykład omówimy
 (niespodziewane!) na końcu
- Spójrzmy teraz na porównanie ze sobą tych wariantów, gdzie w obu przypadkach była użyta LTM, albo nie. Przy Hipotezie, że jeden z tych wariantów jest 'lepszy', przy użyciu LTM można z około 91% pewnością stwierdzić, że Lista tabu długości 7 daje lepsze wyniki niż √n. Jednakże, jeżeli nie będziemy z niej korzystać, to z około 96% pewnością można powiedzieć, że jest całkowicie na odwrót! Jednak samo zjawisko, że jedne parametry lepiej działają w porównaniu z innymi jest samo w sobie wpisane w definicję algorytmu Tabu Search
- Przy porównywaniu ze sobą opcji z- i bez użycia LTM dla długości Tabu = 7 (W dalszym ciągu przy hipotezie o 'byciu llepszym') można zauważyć, że rzeczywiście jest to na korzyść użytku
- W kontekście bycia 'jednakowo skutecznym' dla omawianych powyżej statystyk widać, że nie otrzymujemy zbyt wysokich wyników są one rzędu 10-20 %, czego można by się spodziewać, ponieważ z powyższego stwierdziliśmy, że można znacząco stwierdzić, co 'zazwyczaj' działa lepiej
- Zastanówmy się jeszcze nad ostatnią kolumną, czyli porównania użycia LTM dla wariantu z długością listy Tabu = \sqrt{n} . Przy hipotezie, że użycie LTM porawia wynik, nie otrzymujemy zbyt dobrych wyników, jednakże dla założenia, że są one sobie podobne, wartość statystyki sięga nawet 86% pewności, że rzeczywiście są sobie jednakowe. Jednak, jest tak dla statystyk uwzględniających zerowe różnice. Kiedy je wykluczymy (Tryb W.), to wtedy nasza pewność spada aż do 56%.

Można by tutaj wysnuć wniosek, że w tym przypadku względnie często użycie LTM całkowicie nie wpływało na rozwiązanie (zerowe różnice), a kiedy już jakoś wpływało, to niestety rzadko kiedy coś popprawiało (ze statystyki wyżej - również dla trybu W. - widać, że z tylko 28% pewnością stwierdzamy poprawę, czyli na 72% lepiej jej nie używać)

Podsumowując, nie można powiedzieć, że LTM zawsze pomaga, jednakże dzieje się to na tyle często, że warto (w naszej subiektywnej ocenie) ją stosować. Dodatkowo mamy tutaj idealny przykład jak jeden parametr może diametralnie zmienić ostatecznie otrzymywane wartości.

2.8 Porównanie wariantów dla optymalnych parametrów

Po przetestowaniu optymalnych parametrów przeprowadzono testy dla ustalonych instancji TSPLIB. Wykresy podzielono na dwie grupy, po lewej operacja kick była losowa w zadanym przedziale, po prawej deterministyczna.

W obydwu wariantach operacji kick można zauważyć zbliżone wyniki przy wszystkich wielkościach problemu. Co więcej, wraz ze zwiększaniem się problemu bardziej klarownie widać różnice między wersjami.

- Początkowa trasa na podstawie Nearest Neighbour daje lepsze wyniki niż k-random
- Wszystkie otoczenia są porównywalne, najlepszy Invert, następnie Insert, najgorszy Swap

2.8.1 Algorytmy uwspółbieżnione

Uwspółbieżnienie zaimplementowano na zasadzie równoległego uruchamiania kilku instancji algorytmu TABU-Search jednocześnie. Z oczywistych względów nie testowano zachowania deterministycznej wersji algorytmu. Niestety, ta metoda uwspółbieżnienia nie dała dobrych rezultatów:

Dla każdego otoczenia i każdego rodzaju trasy startowej nie uzyskano w ten sposób polepszenia trasy.

2.9 Wnioski

Drobne uwagi