Exercise 11g

Question 1.

Show that the function f(x) = 5x - 2 is a strictly increasing function on R.

Answer:

Domain of the function is R

Finding derivative f'(x)=5

Which is greater than 0

Mean strictly increasing in its domain i.e R

Question 2.

Show the function f(x) = -2x + 7 is a strictly decreasing function on R.

Answer:

Domain of the function is R

Finding derivative f'(x)=-2

Which is less than 0

Means strictly decreasing in its domain i.e R

Question 3.

Prove that f(x) = ax + b, where a and b are constants and a > 0, is a strictly increasing function on R.

Answer:

Domain of the function is R

Finding derivative i.e f'(x)=a

As given in question it is given that a>0

Derivative>0

Means strictly increasing in its domain i.e R

Question 4.

Prove that the function $f(x) = e^{2x}$ is strictly increasing on R.

Answer:

Domain of the function is R

finding derivative i.e $f'(x)=2e^x$

As we know e^x is strictly increasing its domain

f'(x) > 0

hence f(x) is strictly increasing in its domain

Question 5.

Show that the function $f(x) = x^2$ is

- a. strictly increasing on [0, ∞[
- b. strictly decreasing on $[0, \infty[$
- c. neither strictly increasing nor strictly decreasing on R

Answer:

Domain of function is **R**.

f'(x)=2x

for x>0 f'(x)>0 i.e. increasing

for x<0 f'(x)<0 i.e. decreasing

hence it is neither increasing nor decreasing in R

Question 6.

Show that the function f(x) = |x| is

- a. strictly increasing on]0, ∞[
- b. strictly decreasing on] $-\infty$, 0[

Answer:

For x>0

Modulus will open with + sign

$$f(x)=+x$$

$$\Rightarrow$$
 f'(x)=+1 which is <0

for x<0

Modulus will open with -ve sign

$$f(x) = -x = -f'(x) = -1$$
 which is >0

hence f(x) is increasing in x>0 and decreasing in x<0

Question 7.

Prove that the function $f(x) = \log_e x$ is strictly increasing on]0, ∞ [.

Answer:

$$f(x)=ln(x)$$

$$f(x) = \frac{1}{x}$$

for x<0

$$f'(x) = -ve \rightarrow increasing$$

for x>0

$$f'(x)=+ve \rightarrow decreasing$$

f(x) in increasing when x>0 i.e $x \in (0, \infty)$

Question 8.

Prove that the function $f(x) = \log_a x$ is strictly increasing on $]0, \infty[$ when a > 1 and strictly decreasing on $]0, \infty[$ when 0 < a < 1.

Answer:

Consider $f(x) = \log_a x$

domain of f(x) is x>0

$$f'(x) = \frac{1}{x} \ln(a)$$

 \Rightarrow for a>1, ln(a)>0,

hence f'(x) > 0 which means strictly increasing.

 \Rightarrow for 0<a<1, ln(a)<0,

hence f'(x) < 0 which means strictly decreasing.

Question 9.

Prove that $f(x) = 3^x$ is strictly increasing on R.

Answer:

Consider $f(x)=3^x$

The domain of f(x) is R.

 $f'(x)=3^x ln(3)$

 3^{x} is always greater than 0 and ln(3) is also + ve.

Overall f'(x) is >0 means strictly increasing in its domain i.e. R.

Question 10.

Show that $f(x) = x^3 - 15x^2 + 75x - 50$ is increasing on R.

Answer:

Consider $f(x)=x^3-15x^2+75x-50$

Domain of the function is R.

$$f'(x)=3x^2-30x+75$$

$$=3(x^2-10+25)$$

$$=3(x-5)(x-5)$$

$$=3(x-5)^2$$

$$f'(x)=0$$
 for $x=5$

for x<5

and

for x>5

we can see throughout R the derivative is +ve but at x=5 it is 0 so it is increasing.

Question 11.

Show that $f(x) = \left(x - \frac{1}{x}\right)$ is increasing all $x \in R$, where $x \neq 0$.

Answer:

$$f(x) = \left(x - \frac{1}{x}\right)$$

domain of function is R-{0}

$$f'(x) = 1 + \frac{1}{x^2}$$

 $f'(x) \forall x \in R$ is greater than 0.

Question 12.

Show that $f(x) = \left(\frac{1}{x} + 5\right)$ is decreasing for all $x \in \mathbb{R}$, where $x \neq 0$.

$$f(x) = \frac{1}{x} + 5$$

domain of function is R-{0}

$$f'(x) = -\frac{1}{x^2}$$

for all x, f'(x) < 0

Hence function is decreasing.

Question 13.

Show that $f(x) = \frac{1}{(1+x^2)}$ is decreasing for all $x \ge 0$

Answer:

Consider $f(x) = \frac{1}{(1+x^2)'}$

$$f'(x) = -\frac{2x}{(1+x^2)^2}$$

for $x \ge 0$,

f'(x) is -ve.

hence function is decreasing for $x \le 0$

Question 14.

Show that $f(x) = \left(x^3 + \frac{1}{x^3}\right)$ is decreasing on]-1,1[.

Answer:
$$f(x)=x^3+x^{-3}$$

$$f'(x)=3x^2-3x^{-4}$$

$$=3(x^2-1/x^4)$$

$$=3(\frac{x^3-1}{x^2}.\frac{x^3+1}{x^2})$$

$$=\frac{3(x-1)(x^2+x+1)(x+1)(x^2-x+1)}{x^4}$$

Root of f'(x)=1 and -1

Here we can clearly see that f'(x) is decreasing in [-1,1]

So, f(x) is decreasing in interval [-1,1]

Question 15.

Show that
$$f(x) = \frac{x}{\sin x}$$
 is increasing on $\left]0, \frac{\pi}{2}\right[$.

Answer:

Consider
$$f(x) = \frac{x}{\sin x}$$

$$f(x) = \frac{\sin x - x \cdot \cos x}{\sin^2 x}$$

$$f(x) = \frac{\cos x(\tan x - x)}{\sin^2 x}$$

in
$$\left]0,\frac{\pi}{2}\right[\cos>0,$$

tan x-x>0,

$$\sin^2 x > 0$$

hence f'(x)>0,

so, function is increasing in the given interval.

Question 16.

Prove that the function $f(x) = \log(1+x) - \frac{2x}{(x+2)}$ is increasing for all x > -1.

Answer:

Consider
$$f(x) = \log(1+x) - \frac{2x}{(x+2)'}$$

$$f(x) = \frac{1}{1+x} - \frac{4}{(x+2)^2}$$

$$=\frac{(x+2)^2-4(x+1)}{(x+1)(x+2)^2}$$

$$=\frac{x^2}{(x+1)(x+2)^2}$$

Clearly we can see that f'(x)>0 for x>-1.

Hence function is increasing for all x>-1

Question 17.

Let I be an interval disjoint from]-1,1[. Prove that the function $f(x)=(x+\frac{1}{x})$ is strictly increasing on I.

Consider
$$f(x) = \left(x + \frac{1}{x}\right)$$

$$f'(x) = 1 - \frac{1}{x^2}$$

$$f'(x) = \frac{x^2 - 1}{x^2}$$

$$=\frac{x-1.x+1}{x^2}$$

We can see f'(x) < 0 in [-1,1]

i.e. f(x) is decreasing in this interval.

We can see f'(x) > 0 in $(-\infty, -1) \cup (1, \infty)$

i.e. f(x) is increasing in this interval.

Question 18.

Show that $f(x) = \frac{(x-2)}{(x+1)}$ is increasing for all $x \in R$, except at x = -1.

Answer:

Consider
$$f(x) = \frac{(x-2)}{(x+1)}$$

$$f'(x) = \frac{3}{(x+1)^2}$$

f'(x) at x=-1 is not defined

and for all $x \in R- \{-1\}$

hence f(x) is increasing.

Question 19.

Find the intervals on which the function $f(x) = (2x^2 - 3x)$ is

- (a) strictly increasing
- (b) strictly decreasing.

Answer:

$$f(x)=(2x^2-3x)$$

$$f'(x)=4x-3$$

$$f'(x)=0$$
 at $x=3/4$

Clearly we can see that function is increasing for $x \in [3/4, \infty)$ and is decreasing for $x \in (-\infty, 3/4)$

Question 20.

Find the intervals on which the function $f(x) = 2x^3 - 3x^2 - 36x + 7$ is

(a) strictly increasing (b) strictly decreasing.

$$f(x)=2x^3-3x^2-36x+7$$

$$f'(x)=6x^2-6x-36$$

$$f'(x)=6(x^2-x-6)$$

$$f'(x)=6(x-3)(x+2)$$

$$f'(x)$$
 is 0 at x=3 and x=-2

$$F'(x)>0$$
 for $x\in (-\infty, -2]\cup [3, \infty)$

hence in this interval function is increasing.

$$F'(x) < 0 \text{ for } x \in (-2,3)$$

hence in this interval function is decreasing.

Question 21.

Find the intervals on which the function $f(x) = 6 - 9x - x^2$ is

(a) strictly increasing (b) strictly decreasing.

Answer:

$$f(x)=6-9x-x^2$$

$$f'(x) = -(2x+9)$$

We can see that f(x) is increasing for $x \in \left(-\infty, -\frac{9}{2}\right]$ and decreasing in $x \in \left(-\frac{9}{2}, \infty\right)$

Question 22.

Find the intervals on which each of the following functions is (a) increasing (b) decreasing.

$$f(\mathbf{x}) = \left(\mathbf{x}^4 - \frac{\mathbf{x}^3}{3}\right)$$

Consider
$$f(x) = \left(x^4 - \frac{x^3}{3}\right)$$

$$f'(x)=4x^3-x^2$$

$$=x^{2}(4x-1)$$

F'(x)=0 for x=0 and x=1/4

Function f(x) is decreasing for $x \in (-\infty, 1/4]$ and increasing in $x \in (1/4, \infty)$

Question 23.

Find the intervals on which each of the following functions is (a) increasing (b) decreasing.

$$f(x) = x^3 - 12x^2 + 36x + 17$$

Answer:
$$f(x)=x^3-12x^2+36x+17$$

$$f'(x)=3x^2-24x+36$$

$$f'(x)=3(x^2-8x+12)$$

$$=3(x-6)(x-2)$$

Function f(x) is decreasing for $x \in [2,6]$ and increasing in $x \in (-\infty,2) \cup (6,\infty)$

Question 24.

Find the intervals on which each of the following functions is (a) increasing (b) decreasing.

$$f(x) = (x^3 - 6x^2 + 9x + 10)$$

Answer:
$$f(x)=x^3-6x^2+9x+10$$

$$f'(x)=3x^2-12x+9$$

$$f'(x)=3(x^2-4x+3)$$

$$=3(x-3)(x-1)$$

Function f(x) is decreasing for $x \in [1,3]$ and increasing in $x \in (-\infty,1) \cup (3,\infty)$

Question 25.

Find the intervals on which each of the following functions is (a) increasing (b) decreasing.

$$f(x) = (6+12x+3x^2-2x^3)$$

Answer:
$$f(x) = -2x^3 + 3x^2 + 12x + 6$$

$$f'(x) = -6x^2 + 6x + 12$$

$$f'(x) = -6(x^2 - x - 2)$$

$$=-6(x-2)(x+1)$$

Function f(x) is increasing for $x \in [-1,2]$ and decreasing in $x \in (-\infty,-1) \cup (2,\infty)$

Question 26.

Find the intervals on which each of the following functions is (a) increasing (b) decreasing.

$$f(x) = 2x^3 - 24x + 5$$

Answer:

$$f(x)=2x^3-24x+5$$

$$f'(x)=6x^2-24$$

$$f'(x)=6(x^2-4)$$

$$=6(x-2)(x+2)$$

Function f(x) is decreasing for $x \in [-2,2]$ and increasing in $x \in (-\infty,-2) \cup (2,\infty)$

Question 27.

Find the intervals on which each of the following functions is (a) increasing (b) decreasing.

$$f(x) = (x-1)(x-2)^2$$

$$f(x)=(x-1)(x-2)^2=x^2-4x+4 * x-1=x^3-4x^2+4x-x^2+4x-4$$

$$f(x)=x^3-5x^2+8x-4$$

$$f'(x)=3x^2-10x+8$$

$$f'(x)=3x^2-6x-4x+8$$

$$=3x(x-2)-4(x-2)$$

$$=(3x-4)(x-2)$$

Function f(x) is decreasing for $x \in [4/3,2]$ and increasing in $x \in (-\infty,4/3) \cup (2,\infty)$

Question 28.

Find the intervals on which each of the following functions is (a) increasing (b) decreasing.

$$f(x) = (x^4 - 4x^3 + 4x^2 + 15)$$

Answer:

$$f(x)=x^4-4x^3+4x^2+15$$

$$f'(x)=4x^3-12x^2+8x$$

$$=4x(x^2-3x+2)$$

$$=4x(x-1)(x-2)$$

Function f(x) is decreasing for $x \in (-\infty,0] \cup [1, 2]$ and increasing in $x \in (0,1) \cup (2, \infty)$

Question 29.

Find the intervals on which each of the following functions is (a) increasing (b) decreasing.

$$f(x) = 2x^3 + 9x^2 + 12x + 15$$

$$f(x) = 2x^3 + 9x^2 + 12x + 15$$

$$f'(x)=6x^2+18x+12$$

$$f'(x)=6(x^2+3x+2)$$

$$=6(x+2)(x+1)$$

Function f(x) is decreasing for $x \in [-1,-2]$ and increasing in $x \in (-\infty,-1) \cup (-2,\infty)$

Question 30.

Find the intervals on which each of the following functions is (a) increasing (b) decreasing.

$$f(x) = x^4 - 8x^3 + 22x^2 - 24x + 21$$

Answer:

$$f(x) = x^4 - 8x^3 + 22x^2 - 24x + 21$$

$$f'(x)=4x^3-24x^2+44x-24$$

$$=4(x^3-6x^2+11x-6)$$

$$=4(x-3)(x-1)(x-2)$$

Function f(x) is decreasing for $x \in (-\infty,1] \cup [2,3]$ and increasing in $x \in (1,2) \cup (3,\infty)$

Question 31.

Find the intervals on which each of the following functions is (a) increasing (b) decreasing.

$$f(x) = 3x^4 - 4x^3 - 12x^2 + 5$$

$$f(x) = 3x^4 - 4x^3 - 12x^2 + 5$$

$$f'(x)=12x^3-12x^2-24x$$

$$=12x(x^2-x-2)$$

$$=12(x)(x+1)(x-2)$$

Function f(x) is decreasing for $x \in (-\infty, -1] \cup [0, 2]$ and increasing in $x \in (-1, 0) \cup (2, \infty)$

Question 32.

Find the intervals on which each of the following functions is (a) increasing (b) decreasing.

$$f(x) = \frac{3}{10}x^4 - \frac{4}{5}x^3 - 3x^2 + \frac{36}{5}x + 11$$

Answer:

$$f'(x) = \frac{12x^2}{10} - \frac{12x^2}{5} - 6x + \frac{36}{5}$$

$$f'(x)=(12x^3-24x^2-60x+72)/10$$

$$=1.2(x^3-2x^2-5x+6)$$

$$=1.2(x-1)(x-3)(x+2)$$

Function f(x) is decreasing for $x \in (-\infty, -2] \cup [1, 3]$ and increasing in $x \in (-2, 1) \cup (3, \infty)$