A bound for the order of the fundamental group of a complete noncompact Ricci shrinker

Bennett Chow* Peng Lu[†]

For shrinking (gradient) Ricci solitons, we note a quantification of Wylie's [6] result that $\pi_1(\mathcal{M}) < \infty$. **Lemma 1** (f-uniqueness) Let $(\mathcal{M}^n, g, f_i, \varepsilon)$, i = 1, 2, be a complete gradient Ricci soliton (GRS), i.e., $\operatorname{Rc} + \nabla^2 f_i + \frac{\varepsilon}{2} g = 0$. Then $f_1 - f_2$ is constant or (\mathcal{M}, g) is isometric to $(\mathbb{R}, ds^2) \times (\mathcal{N}^{n-1}, h)$, where (\mathcal{N}, h) is isometric to each level set $\{f_1 - f_2 = c\}$, $c \in \mathbb{R}$. Moreover, $(f_1 - f_2)(s, y) = as + b$, $a, b \in \mathbb{R}$. **Proof.** Let $F = f_1 - f_2$. Then $\nabla^2 F = 0$. Assume that F is not a constant. Then $|\nabla F| = a$, where $a \in \mathbb{R}^+$. Let $\Sigma_c = \{F = c\}$. Then Σ_c is C^∞ and its second fundamental form is $\operatorname{II}(X, Y) = \frac{\nabla^2 F(X, Y)}{|\nabla F|} = 0$. Let $\{\varphi_t\}_{t \in \mathbb{R}}$ be the 1-parameter group of isometries generated by ∇F . We have $F \circ \varphi_t = F + a^2t$. Moreover, φ_t maps Σ_c isometrically onto Σ_{c+a^2t} . This produces the product structure on (\mathcal{M}, g) .

Let (\mathcal{M}^n, g, f) be a complete noncompact shrinking GRS, where $\operatorname{Rc} + \nabla^2 f = \frac{1}{2}g$ and f is normalized by $R + |\nabla f|^2 = f$. Let $(\tilde{\mathcal{M}}^n, \tilde{g}, \tilde{f})$ be the universal covering shrinking GRS, that is, $\pi : \tilde{\mathcal{M}} \to \mathcal{M}$ is the universal covering map, $\tilde{g} = \pi^* g$, and $\tilde{f} = f \circ \pi$. Then we have that $\operatorname{Rc}_{\tilde{g}} + \nabla_{\tilde{g}}^2 \tilde{f} = \frac{1}{2} \tilde{g}$ and $R_{\tilde{g}} + |\nabla \tilde{f}|_{\tilde{g}}^2 = \tilde{f}$.

Let $\gamma \in \pi_1(\mathcal{M}) - \{e\}$. Then γ corresponds to a deck transformation $\gamma : \tilde{\mathcal{M}} \to \tilde{\mathcal{M}}$ that is a fixed-point-free isometry of the metric \tilde{g} . Since both \tilde{f} and $\tilde{f} \circ \gamma$ are normalized potential functions for $\tilde{g} = \gamma^* \tilde{g}$, by the lemma we have $\tilde{f} \circ \gamma = \tilde{f}$. In particular, γ is a fixed-point-free isometry of any level or sublevel set of \tilde{f} . Hence $\operatorname{Vol}_{\tilde{g}}(\{\tilde{f} \leq s\}) = |\pi_1(\mathcal{M})| \operatorname{Vol}_g(\{f \leq s\})$ for any s > 0. Let O be a minimum point of f. By Cao and Zhou [1] and its improvement of constants by Haslhofer and Müller [2], we have

$$\frac{1}{4}\left((d(x,O) - 5n)_{+}\right)^{2} \le f(x) \le \frac{1}{4}(d(x,O) + \sqrt{2n})^{2} \tag{1}$$

for g and the same inequalities for \tilde{g} (using \tilde{f} and using a lift \tilde{O} of O), and $\operatorname{Vol}_{\tilde{g}}(\{\tilde{f} \leq s\}) \leq C(n)s^{n/2}$. Similarly, Munteanu and Wang [4] proved that $\operatorname{Vol} B_r(O) \leq \omega_n e^{n/2} r^n$ for r > 0, where $\omega_n = \operatorname{Vol}_{\mathbb{R}^n} B_1$. By Munteanu and Wang [3], there is a constant $c(n, \int_{\mathcal{M}} e^{-f} d\mu) > 0$ such that $\operatorname{Vol} B_r(O) \geq cr$ for $r \geq 1$. **Proposition 2** $If(\mathcal{M}^n, g, f)$ is a complete noncompact shrinking GRS, then $|\pi_1(\mathcal{M})| \leq C(n, \int_{\mathcal{M}} e^{-f} d\mu)$. **Proof.** By the above, we have that $C(n)(2n)^{\frac{n}{2}} \geq \operatorname{Vol}_{\tilde{g}}(\{\tilde{f} \leq 2n\}) = |\pi_1(\mathcal{M})| \operatorname{Vol}_g(\{f \leq 2n\})$. The proposition follows from this and the inequality $\operatorname{Vol}_g(\{f \leq 2n\}) \geq \operatorname{Vol}_g(B_{\sqrt{2n}}(O)) \geq c(n, \int_{\mathcal{M}} e^{-f} d\mu)$. **Remark 3** Assume for $x \in \mathcal{M}$ and r > 0 such that $R \leq r^{-2}$ in $B_r(x)$, we have $\operatorname{Vol} B_s(x) \geq \kappa s^n$ for $0 < s \leq r$. (For shrinking GRS that are singularity models, there is such a $\kappa > 0$ by Perelman [5].) Since $R \leq 2n$ on $B_{\frac{1}{\sqrt{2n}}}(O)$, we have $\operatorname{Vol} B_{\frac{1}{\sqrt{2n}}}(O) \geq (2n)^{-\frac{n}{2}} \kappa$ and we conclude that $|\pi_1(\mathcal{M})| \leq C(n)\kappa^{-1}$.

References

- [1] Cao, H.-D.; Zhou, D.-T. On complete gradient shrinking Ricci solitons. J. Differential Geom. 85 (2010), 175–186.
- [2] Haslhofer, R.; Müller, R. A compactness theorem for complete Ricci shrinkers. Geom. Funct. Anal. **21** (2011), 1091–1116.
- [3] Munteanu, O.; Wang, J. Analysis of weighted Laplacian and applications to Ricci solitons. Comm. Anal. Geom. **20** (2012), 55–94.
- [4] Munteanu, O.; Wang, J. Geometry of manifolds with densities. Adv. Math. 259 (2014), 269–305.
- [5] Perelman, G. The entropy formula for the Ricci flow and its geometric applications. arXiv:0211159.
- [6] Wylie, W. Complete shrinking Ricci solitons have finite fundamental group. Proc. Amer. Math. Soc. 136 (2008), 1803–1806.

^{*}Dept. of Math., UC San Diego, La Jolla, CA 92093

[†]Dept. of Math., Univ. of Oregon, Eugene, OR 97403. P.L. is partially supported by a grant from Simons Foundation.