Analyse I – Corrigé de la Série 6

Exercice 1.

$$i) \lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(\sqrt{n^2 + an + b} - n \right) = \lim_{n \to \infty} n \left(\sqrt{1 + \frac{a}{n} + \frac{b}{n^2}} - 1 \right)$$
$$= \lim_{n \to \infty} \frac{a + \frac{b}{n}}{\sqrt{1 + \frac{a}{n} + \frac{b}{n^2}} + 1} = \frac{a}{2}$$

Par l'Intermezzo dans la Série 5 on sait que $1 \le \sqrt{1+x} \le 1 + \frac{1}{2}x$ pour tout $x \ge 0$, alors la limite $\lim_{n\to\infty} \sqrt{1+\frac{a}{n}+\frac{b}{n^2}}=1$ d'après le théorème des 2 gendarmes.

$$ii) \lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(\sqrt{2n^2 - n + 1} - 2n \right) = \lim_{n \to \infty} n \left(\sqrt{2 - \frac{1}{n} + \frac{1}{n^2}} - 2 \right)$$
$$= \lim_{n \to \infty} \frac{-2n - 1 + \frac{1}{n}}{\sqrt{2 - \frac{1}{n} + \frac{1}{n^2}} + 2} = -\infty$$

Par l'Intermezzo dans la Série 5 on sait que $1+x \le \sqrt{1+x} \le 1+\frac{1}{2}x$ pour tout $-1 \le 1$ $x \le 0$. On a $-1 \le -\frac{1}{2n} + \frac{1}{2n^2} \le 0$ pour tout $n \ge 1$, alors la limite $\lim_{n \to \infty} \sqrt{2 - \frac{1}{n} + \frac{1}{n^2}} =$ $\lim_{n \to \infty} \sqrt{2} \sqrt{1 - \frac{1}{2n} + \frac{1}{2n^2}} = \sqrt{2} \text{ d'après le théorème des 2 gendarmes.}$

iii) On a $\forall x \in \mathbb{R} - 1 \le \cos(x) \le 1$.

Ainsi, $-\frac{3+\frac{6}{n}}{n+2+\frac{6}{n}} \le a_n \le \frac{3+\frac{6}{n}}{n+2+\frac{6}{n}}$. Les deux membres bornant a_n ayant pour limite 0 pour

 $n \to \infty$, on a donc d'après le théorème des gendarmes : $\lim_{n \to \infty} a_n = 0$

iv) Démontrons que $\lim_{n\to\infty} \sqrt[n]{n} = 1$. Soit $\varepsilon > 0$. On a très clairement, $\forall n \in \mathbb{N}, a_n \geq 1$. Donc il faut trouver $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0$, on a $\sqrt[n]{n} \le (1+\varepsilon)$, ou $(1+\varepsilon)^n \ge n$. Par la formule binomiale on a $(1+\varepsilon)^n \ge 1 + n\varepsilon + \frac{n(n-1)}{2}\varepsilon^2 \ge \frac{n(n-1)}{2}\varepsilon^2$. Alors pour avoir $\varepsilon^2 \frac{n(n-1)}{2} \ge n$, il faut prendre n tel que $\frac{n-1}{2} \ge \frac{1}{\varepsilon^2}$, d'où $n \ge 1 + \frac{2}{\varepsilon^2}$.

On peut prendre par exemple $n_0 = \left| \frac{2}{\varepsilon^2} + 2 \right|$.

Une autre méthode : On a $\forall n \in \mathbb{N}, a_n \geq 1$. De plus, $n^{\frac{1}{n}} = (\sqrt{n}\sqrt{n} \cdot 1^{n-2})^{\frac{1}{n}} \leq \frac{2\sqrt{n} + n - 2}{n}$ d'après l'inégalité arithmético-géométrique :

$$\sqrt[n]{x_1 \cdot x_2 \cdot \ldots \cdot x_n} \le \frac{x_1 + x_2 + \ldots + x_n}{n}$$

pour tout $\{x_1, x_2, \dots x_n\}$ positifs.

Enfin, $\lim_{n\to\infty} \frac{2\sqrt{n}+n-2}{n} = 1$. Ainsi, d'après le théorème des gendarmes, $\lim_{n\to\infty} a_n = 1$.

v) Soit $a = b_k > 0$ le coefficient dominant de P(n) et $k \in \mathbb{N}$ le degré de P(n). Alors $\lim_{n \to \infty} \frac{P(n)}{an^k} = 1$. Pour $\varepsilon = \frac{1}{2}$, $\exists n_0 \in \mathbb{N}$ tel que $\forall n \geq n_0$,

$$1 - \frac{1}{2} \le \frac{P(n)}{an^k} \le 1 + \frac{1}{2} \implies \frac{1}{2} \le \frac{P(n)}{an^k} \le \frac{3}{2}.$$

Alors pour tout $n \ge n_0$

$$\left(\frac{a}{2}n^k\right)^{\frac{1}{n}} \le (P(n))^{\frac{1}{n}} \le \left(\frac{3a}{2}n^k\right)^{\frac{1}{n}}.$$

On sait que $\lim_{n\to\infty} \sqrt[n]{n}=1$ et que pour tout s>0, $\lim_{n\to\infty} \sqrt[n]{s}=1$. Alors d'après le théorème des 2 gendarmes, on a $\lim_{n\to\infty} (P(n))^{\frac{1}{n}}=1$.

Exercice 2.

i) On a $\forall x \in \mathbb{R} - 1 \le \cos(x) \le 1$.

D'où
$$-\frac{1}{2n+1} \le \frac{\cos(\sqrt{n^2+2})}{2n+1} \le \frac{1}{2n+1}$$
.

D'après le théorème des gendarmes on a donc $\lim_{n\to\infty} \frac{\cos\left(\sqrt{n^2+2}\right)}{2n+1} = 0.$

ii) On a $\forall x \in \mathbb{R}_+ \sin(x) \le x$ et $\cos(x) \le 1$.

De plus, on montre assez trivialement que $\forall n \geq 1$, $\cos\left(\frac{1}{n^2}\right) \geq 0$ et $\sin\left(\frac{1}{n^3}\right) \geq 0$. Ainsi, pour $n \geq 1$, $0 \leq n^2 \cos\left(\frac{1}{n^2}\right) \sin\left(\frac{1}{n^3}\right) \leq \frac{1}{n}$.

Enfin, d'après le théorèmes des gendarmes on a donc $\lim_{n\to\infty} n^2 \cos\left(\frac{1}{n^2}\right) \sin\left(\frac{1}{n^3}\right) = 0$

iii) Nous allons utiliser les formules de trigonométrie suivantes :

$$\sin(p) - \sin(q) = 2\sin\left(\frac{p-q}{2}\right)\cos\left(\frac{p+q}{2}\right)$$
$$\cos(p) + \cos(q) = 2\cos\left(\frac{p-q}{2}\right)\cos\left(\frac{p+q}{2}\right).$$

Ainsi,
$$\frac{\sin(n+1) - \sin(n-1)}{\cos(n+1) + \cos(n-1)} = \tan(1)$$
.

On a donc directement $\lim_{n\to\infty} \frac{\sin(n+1) - \sin(n-1)}{\cos(n+1) + \cos(n-1)} = \tan(1)$

iv) Comme pour le cosinus, on a $\forall x \in \mathbb{R} - 1 \le \sin(x) \le 1$.

D'où
$$-\frac{1}{1+n^2+n^3} \le \frac{\sin(\sqrt{n^3+n^2+1})}{n^3+n^2+1} \le \frac{1}{1+n^2+n^3}.$$

D'après le théorème des gendarmes on a donc $\lim_{n\to\infty} \frac{\sin(\sqrt{n^3+n^2+1})}{n^3+n^2+1} = 0.$

$$v) \frac{\sqrt{n^2 + n + 1} - \sqrt{n^2 + 3n + 4}}{2} = \frac{(n^2 + n + 1) - (n^2 + 3n + 4)}{2(\sqrt{n^2 + n + 1} + \sqrt{n^2 + 3n + 4})}$$

$$=\frac{-2-\frac{3}{n}}{2\left(\sqrt{1+\frac{1}{n}+\frac{1}{n^2}}+\sqrt{1+\frac{3}{n}+\frac{4}{n^2}}\right)}.$$

Par opérations élémentaires sur les limites et l'argument comme dans l'Exercice 1(i), on a $\lim_{n\to\infty}\frac{\sqrt{n^2+n+1}-\sqrt{n^2+3n+4}}{2}=-\frac{1}{2}$

$$vi) \sqrt{n} \left(\sqrt{n^3 + n} - \sqrt{n^3 + 1} \right) = \frac{\sqrt{n} (n - 1)}{\sqrt{n^3 + n} + \sqrt{n^3 + 1}} = \frac{1 - \frac{1}{n}}{\sqrt{1 + \frac{1}{n^2} + \sqrt{1 + \frac{1}{n^3}}}}$$

Par opérations élémentaires sur les limites et l'argument comme dans l'Exercice 1(i), on a $\lim_{n\to\infty} \sqrt{n} \left(\sqrt{n^3+n} - \sqrt{n^3+1} \right) = \frac{1}{2}$

$$vii) - \frac{n^3}{7^n} \le \frac{n^3}{7^n} \cos\left(\frac{7^n}{(n+1)^3}\right) \le \frac{n^3}{7^n}$$

La suite $\left(\frac{n^3}{7^n}\right)$ converge vers 0 par le critère de d'Alembert :

$$\lim_{n \to \infty} \left| \frac{(n+1)^3}{7^{n+1}} \frac{7^n}{n^3} \right| = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^3 \frac{1}{7} = \frac{1}{7} < 1.$$

D'après le théorème des gendarmes on trouve que $\lim_{n\to\infty}\frac{n^3}{7^n}\cos\left(\frac{7^n}{(n+1)^3}\right)=0$

viii) La suite $n^2 \, 3^n e^{-3n} = n^2 \, \left(\frac{3}{e^3}\right)^n$ converge vers 0 par le critère de d'Alembert :

$$\lim_{n \to \infty} \left| \frac{(n+1)^2 3^{n+1}}{(e^3)^{n+1}} \frac{(e^3)^n}{n^2 3^n} \right| = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^2 \frac{3}{e^3} = \frac{3}{e^3} < 1$$

Alors on a $\lim_{n\to\infty} n^2 \, 3^n e^{-3n} = 0$

Exercice 3.

i) La suite $a_{n+1} = \frac{1}{4}(3a_n + 1)$, $a_0 = 0$ est un exemple d'une récurrence linéaire de la forme $a_{n+1} = qa_n + b$, où $q = \frac{3}{4}$ et $b = \frac{1}{4}$. Par la proposition vue dans le cours (voir Notes du Cours 9), puisque |q| < 1, la suite converge vers la limite $\frac{b}{1-q} = \frac{1/4}{1-3/4} = 1$. Donc on a

$$\lim_{n \to \infty} a_n = 1.$$

ii) La suite $a_{n+1} = \frac{1}{4}(a_n + 4)$, $a_0 = 3$ est encore un exemple d'une récurrence linéaire de la forme $a_{n+1} = qa_n + b$, où $q = \frac{1}{4}$ et b = 1. Par la proposition vue dans le cours (voir Notes du Cours 9), puisque |q| < 1, la suite converge vers la limite $\frac{b}{1-q} = \frac{1}{1-1/4} = \frac{4}{3}$. Donc on a

$$\lim_{n \to \infty} a_n = \frac{4}{3}.$$

iii) Si la limite $\lim_{n\to\infty} a_n = a$ existe, elle satisfait l'équation (utiliser les propriétés algébriques comme précédemment)

$$a = \frac{7}{3} - \frac{1}{1+a} \iff 1 = \left(\frac{7}{3} - a\right) (1+a) \iff 0 = \frac{4}{3} + \frac{4}{3}a - a^2 \iff 3a^2 - 4a - 4 = (3a+2)(a-2) = 0 \iff a = 2 \text{ ou } a = -\frac{2}{3}.$$

On montre par récurrence que $a_n \geq 0$ pour tout $n \in \mathbb{N}^*$. On a $a_1 = 1 \geq 0$. Si $a_{n-1} \geq 0$, alors

$$a_n = \frac{7}{3} - \frac{1}{1 + a_{n-1}} \ge \frac{7}{3} - 1 = \frac{4}{3} \ge 0.$$

Ainsi la seule limite possible est a = 2.

On montre alors (encore par récurrence) que (a_n) est majorée par a=2. On a $a_1=1\leq a$. Si $0\leq a_{n-1}\leq a$, on a alors

$$a_n = \frac{7}{3} - \frac{1}{1+a_{n-1}} \le \frac{7}{3} - \frac{1}{1+a} = 2 = a$$
.

Montrons que (a_n) est croissante. On a $a_0 = 1 < a_1 = \frac{7}{3} - \frac{1}{2}$. Pour $n = 1, 2, \ldots$ on a

$$a_{n+1} - a_n = \frac{7}{3} - \frac{1}{1+a_n} - \frac{7}{3} + \frac{1}{1+a_{n-1}} = \frac{a_n - a_{n-1}}{(1+a_n)(1+a_{n-1})},$$

donc $a_n - a_{n-1} > 0$ implique $a_{n+1} - a_n > 0$ pour tout $n \ge 1$. En étant croissante et majorée, la suite (a_n) est donc convergente avec limite a = 2.

Remarque: Ici $a_{n+1} = g(a_n)$ avec g(x) une fonction croissante. Donc la suite (a_n) est monotone par la méthode d'Exercice 4 ci-dessous. Elle est nécessairement croissante parce que $a_0 < a_1$.

Exercice 4.

i) On a par définition de la fonction $g, \forall n \geq 1, m < a_n < M$.

Ainsi, $\forall n \in \mathbb{N}, a_n > \min(a_0, m) \text{ et } \forall n \in \mathbb{N}, a_n < \max(a_0, M).$

La suite $(a_n)_{n\in\mathbb{N}}$ est donc bien bornée.

ii) Nous avons donc g fonction croissante. Ainsi, $x \leq y \Leftrightarrow g(x) \leq g(y)$.

Afin de montrer que $(a_n)_{n\in\mathbb{N}}$ est mononotone, raisonnons par disjonction de cas :

Si $a_1 \geq a_0$, alors montrons par récurrence que $a_{n+1} \geq a_n$ pour tout $n \in \mathbb{N}$.

 $Initialisation: a_1 \geq a_0$

 $H\acute{e}r\acute{e}dit\acute{e}$: Supposons que $a_n \geq a_{n-1}$ pour un $n \in \mathbb{N}^*$. Alors parce que g est croissante, $a_{n+1} = g\left(a_n\right) \geq g\left(a_{n-1}\right) = a_n$. Donc (a_n) est croissante.

Si $a_1 \leq a_0$, alors montrons par récurrence que $a_{n+1} \leq a_n$ pour tout $n \in \mathbb{N}$.

 $Initialisation: a_1 \leq a_0$

 $H\acute{e}r\acute{e}dit\acute{e}$: Supposons que $a_n \leq a_{n-1}$ pour un $n \in \mathbb{N}^*$. Alors parce que g est croissante, $a_{n+1} = g\left(a_n\right) \leq g\left(a_{n-1}\right) = a_n$. Donc (a_n) est décroissante.

- iii) Par propriété, toute suite monotone et bornée est convergente.
- iv) Si la fonction g(x) est décroissante, alors la suite définie par la formule $a_0 \in E$, $a_{n+1} = g(a_n)$ pour tout $n \in \mathbb{N}$, n'est pas monotone en général. En effet, supposons que $a_0 \le a_1$. Alors puisque g est décroissante, on obtient $g(a_0) \ge g(a_1)$, ce qui donne $a_1 \ge a_2$. Supposons maintenant que $a_0 \ge a_1$. Alors on a $g(a_0) \le g(a_1)$, ce qui donne $a_1 \le a_2$. Dans les deux cas, la suite obtenue n'est pas monotone sauf si $a_0 = a_1 = \dots$

Par contre, on peut conclure que les deux sous-suites (a_{2n}) et (a_{2n+1}) sont monotones : Nous voulons montrer que les sous-suites $(a_{2n})_{n\in\mathbb{N}}$ et $(a_{2n+1})_{n\in\mathbb{N}}$ sont monotones et de croissance opposée (si $(a_{2n})_{n\in\mathbb{N}}$ est croissante alors $(a_{2n+1})_{n\in\mathbb{N}}$ est décroissante).

Si la fonction g(x) est décroissante, alors la fonction $g \circ g(x) = g(g(x))$ est croissante : pour tout $x_1 \leq x_2$, on a $g(x_1) \geq g(x_2)$ et $g(g(x_1)) \leq g(g(x_2))$. Puisque $a_{n+2} = g \circ g(a_n)$ pour tout $n \in \mathbb{N}$, on sait d'après ii) que les suites $(a_{2n})_{n \in \mathbb{N}}$ et $(a_{2n+1})_{n \in \mathbb{N}}$ sont monotones. Pour démontrer qu'elles sont de croissance opposée, il suffit de constater que la relation d'ordre entre a_0 et a_2 , est opposée à celle entre $g(a_0) = a_1$ et $g(a_2) = a_3$.

v) Posons $\forall x \in [1, +\infty[, g(x) = 7 - \frac{6}{x}]$.

Il est facile à voir que g est strictement croissante, minorée par 1 et majorée par 7. D'après iii), nous avons donc que $(a_n)_{n\in\mathbb{N}}$ est convergente. Sa limite est donc solution de l'équation $l=7-\frac{6}{l}$ et donc de l'équation $l^2-7l+6=0$. On trouve alors $l_{1,2}=\frac{7\pm 5}{2}$. De plus, $a_1=4>a_0$ donc d'après ii), $(a_n)_{n\in\mathbb{N}}$ est strictement croissante. La solution l=1 ne convient donc pas. Ainsi, l=6.

Exercice 5.

Supposons que $(a_n)_{n\in\mathbb{N}}$ converge vers un réel l. Alors l est solution de l'équation $l=\sqrt{b+l}$. Cela revient à résoudre le trinôme $l^2-l-b=0$ ce qui conduit à $l_{1,\,2}=\frac{1\pm\sqrt{1+4b}}{2}$. Cependant, l'équation $l=\sqrt{b+l}$ impose $l\geq 0$. Ainsi, on a $l=\frac{1+\sqrt{1+4b}}{2}$.

La fonction $g(x) = \sqrt{b+x}$ est croissante pour tout b > 0 et x > 0. De plus, on a $a_1 = \sqrt{b+1} > 1 = a_0$. Alors par Exercice 4(ii), la suite (a_n) est croissante.

Il nous reste à démontrer que la suite (a_n) est majorée. D'abord, par définition de $(a_n)_{n\in\mathbb{N}}$, nous avons que $\forall n\in\mathbb{N},\ a_n>0$. Ensuite, montrons par récurrence que $\forall n\in\mathbb{N},\ a_n< l$.

Initialisation: $a_0 = 1 < \frac{1 + \sqrt{1 + 4b}}{2} \text{ car } b > 0.$

 $H\acute{e}r\acute{e}dit\acute{e}$: Supposons qu'il existe $n \in \mathbb{N}$ tel que $a_n < l$. Alors

$$a_{n+1} = \sqrt{b+a_n} \stackrel{b=l^2-l}{=} \sqrt{l^2-l+a_n} < \sqrt{l^2-l+l} = l.$$

Donc (a_n) est majorée par $l = \frac{1+\sqrt{1+4b}}{2}$. Alors (a_n) est une suite croissante et majorée, donc convergente, et on a

$$\lim_{n \to \infty} a_n = \frac{1 + \sqrt{1 + 4b}}{2}.$$

Remarque : Nous pouvons aussi utiliser le résultat de l'Exercice 7 de la Série 5 :

Soient $(a_n)_{n \in \mathbb{N}}$ et $(b_n)_{n \in \mathbb{N}}$ deux suites, et $0 < b_n < 1$ pour tout $n \in \mathbb{N}$. Soit $l \in \mathbb{R}$ tel que

$$a_{n+1} - l = b_n(a_n - l) \quad \forall n \in \mathbb{N}.$$

Alors la suite (a_n) est convergente.

Ici $b_n = \frac{a_{n+1} - l}{a_n - l}$ pour tout $n \in \mathbb{N}$. Puisque $a_{n+1} > a_n$ et $0 < a_n < l$ pour tout $n \in \mathbb{N}$, on obtient $0 < b_n < 1$. Cela démontre que la suite $(a_n)_{n \in \mathbb{N}}$ est convergente.

Exercice 6.

Si la limite $a = \lim_{n \to \infty} a_n$ existe, elle satisfait l'équation

$$a = 1 + \frac{1}{2}a^2 - \frac{1}{2}a \quad \Leftrightarrow \quad a^2 - 3a + 2 = (a - 1)(a - 2) = 0,$$
 (1)

et donc a = 1 ou a = 2.

On a

$$a_2 = 1 + \frac{1}{2} \left(\frac{3}{2}\right)^2 - \frac{1}{2} \cdot \frac{3}{2} = 1 + \frac{9}{8} - \frac{3}{4} = \frac{11}{8} < \frac{12}{8} = \frac{3}{2} = a_1$$
.

Montrons par récurrence que la suite est minorée par 1. On a

$$a_1 = \frac{3}{2} \ge 1,$$

et si $a_{n-1} \ge 1$, il suit que

$$a_n = 1 + \frac{1}{2}a_{n-1}^2 - \frac{1}{2}a_{n-1} = 1 + \frac{1}{2}a_{n-1}(a_{n-1} - 1) \ge 1.$$

De plus, la fonction $g(x) = 1 + \frac{1}{2}x^2 - \frac{1}{2}x$ est croissante pour tout x > 1: si x > y > 1, on a $2(g(x) - g(y)) = x^2 - x - y^2 + y = (x - y)(x + y) - (x - y) = (x - y)(x + y - 1) > 0$. Alors en remarquant que $1 < (a_n) \le \frac{3}{2}$, par Ex. 4(ii) et (iii) la suite (a_n) est décroissante et bornée, donc convergente, et sa lilmite est $a = \lim_{n \to \infty} a_n = 1$.

Exercice 7.

- i) VRAI. $(|a_n|)_{n\geq 1}$ est clairement minorée par 0 et toute suite décroissante et minorée converge.
- *ii*) VRAI. On a $|a_n| \le |a_1|$ pour tout $n \in \mathbb{N}^*$.
- iii) FAUX. Contre-exemple : Prendre $a_n = (-1)^n \left(1 + \frac{1}{n}\right)$
- iv) FAUX. Contre-exemple : Prendre $a_n = 1 + \frac{1}{n} = \frac{n+1}{n}$. Alors $\frac{1}{a_n} = \frac{n}{n+1}$ qui est convergente et donc bornée.
- v) VRAI. On a $|a_{n+1}| < |a_n| \Leftrightarrow a_{n+1}^2 < a_n^2$ pour tout $n \in \mathbb{N}^*$. Ainsi, $(a_n^2)_{n \in \mathbb{N}}$ est décroissante. De plus, $(a_n^2)_{n \in \mathbb{N}}$ est clairement minorée par 0. Toute suite décroissante et minorée converge.
- vi) FAUX. Contre-exemple: Prendre $a_n = \frac{n+1}{n}$. Alors $\frac{1}{a_n^2} = \frac{n^2}{(n+1)^2}$ qui converge vers 1.
- vii) FAUX. Contre-exemple: Prendre $a_n = (-1)^n \left(1 + \frac{1}{n}\right)$. Alors $|a_{n+1} a_n| > 2$ pour tout $n \in \mathbb{N}^*$.

Exercice 8.

- i) On a $a_n = \sin\left(2 + \frac{1}{n+1}\right) = (\sin 3, \sin(2 + \frac{1}{2}), \sin(2 + \frac{1}{3}), \sin(2 + \frac{1}{4}), \ldots)$. Puisque $\sin(x)$ est décroissante sur $[2,3] \subset [\pi/2,\pi]$, on a $x_n = \sup\{a_k, k \geq n\} = (\sin(2), \sin(2), \sin(2), \sin(2), \ldots)$ et $\limsup_{n \to \infty} a_n = \sin(2)$. On a aussi $z_n = \inf\{a_k, k \geq n\} = a_n$ et $\liminf_{n \to \infty} a_n = \sin(2)$. Alors la suite est convergente et $\lim_{n \to \infty} a_n = \sin(2)$. On trouve facilement $\sup\{a_n\}_{n \in \mathbb{N}} = \sin(2)$ et $\inf\{a_n\}_{n \in \mathbb{N}} = \sin(3)$.
- ii) On a $a_n = \sin\left(2 + \frac{(-1)^n}{2n+1}\right) = (\sin 3, \sin(2 \frac{1}{3}), \sin(2 + \frac{1}{5}), \sin(2 \frac{1}{7}), \sin(2 + \frac{1}{9}), \ldots).$ Puisque $\sin(x)$ est décroissante sur $\left[2 - \frac{1}{3}, 3\right] \subset \left[\pi/2, \pi\right]$, on a

$$x_n = \sup\{a_k, k \ge n\} = \left(\sin\left(2 - \frac{1}{3}\right), \sin\left(2 - \frac{1}{3}\right), \sin\left(2 - \frac{1}{7}\right), \sin\left(2 - \frac{1}{7}\right), \dots\right) =$$

$$= \sin\left(2 - \frac{1}{2(n+1)+(-1)^n}\right),$$

et $\limsup_{n\to\infty} a_n = \sin(2)$. On a aussi

$$z_n = \inf\{a_k, k \ge n\} = (\sin 3, \sin\left(2 + \frac{1}{5}\right), \sin\left(2 + \frac{1}{5}\right), \sin\left(2 + \frac{1}{9}\right), \sin\left(2 + \frac{1}{9}\right), \ldots) =$$
$$= \sin\left(2 + \frac{1}{2(n+1)+(-1)^{n+1}}\right),$$

et $\liminf_{n\to\infty} a_n = \sin(2)$. Alors la suite est convergente et $\lim_{n\to\infty} a_n = \sin(2)$. On trouve facilement $\sup\{a_n\}_{n\in\mathbb{N}} = \sin(2-\frac{1}{3})$ et $\inf\{a_n\}_{n\in\mathbb{N}} = \sin(3)$.

iii) On a
$$a_n = \cos(\pi n) + \frac{(-1)^n}{n+1} = (2, -1 - \frac{1}{2}, 1 + \frac{1}{3}, -1 - \frac{1}{4}, 1 + \frac{1}{5}, \ldots)$$
. On obtient
$$x_n = \sup\{a_k, k \ge n\} = (2, 1 + \frac{1}{3}, 1 + \frac{1}{3}, 1 + \frac{1}{5}, 1 + \frac{1}{5}, \ldots) = 1 + \frac{1}{n+\frac{3+(-1)^{n+1}}{2}},$$

et $\limsup_{n\to\infty} a_n = 1$. On a aussi

$$z_n = \inf\{a_k, k \ge n\} = (-1 - \frac{1}{2}, -1 - \frac{1}{2}, -1 - \frac{1}{4}, -1 - \frac{1}{4}, \dots) =$$
$$= -1 - \frac{1}{n + \frac{3 + (-1)^n}{2}},$$

et $\liminf_{n\to\infty} a_n = -1$. Puisque $\liminf_{n\to\infty} a_n \neq \limsup_{n\to\infty} a_n$, la suite diverge. On trouve facilement $\sup\{a_n\}_{n\in\mathbb{N}} = 2$ et $\inf\{a_n\}_{n\in\mathbb{N}} = -\frac{3}{2}$.

Exercice 9.

- i) VRAI. Supposons que $\sum_{n=0}^{\infty} a_n$ converge vers S. On a $a_n = \sum_{n=0}^{n} a_n \sum_{n=0}^{n-1} a_n$. Or, $\lim_{n \to \infty} \left(\sum_{n=0}^{n} a_n \sum_{n=0}^{n-1} a_n \right) = S S = 0$ donc $\lim_{n \to \infty} a_n = 0 = \lim_{n \to \infty} |a_n|$.
- ii) FAUX. Contre-exemple : Prendre $a_n = \frac{1}{2(n+1)}$ et $b_n = \frac{1}{n+1}$.
- iii) FAUX. Contre-exemple : Prendre $a_n = (-1)^n$.

- iv) VRAI. Remarquons tout d'abord que la suite de sommes partielles est croissante : $\forall n \in \mathbb{N}, \, S_{n+1} S_n = |a_{n+1}| \geq 0$. De plus, (S_n) est bornée donc majorée. Toute suite croissante et majorée converge. Donc $\exists S \in \mathbb{R}_+$ tel que $\lim_{n \to \infty} \sum_{n=0}^{n} |a_n| = S$. Ce qui démontre que $\sum_{n=0}^{\infty} a_n$ converge absolument.
- v) FAUX. Contre-exemple : $a_n = \frac{1}{2}$.
- vi) FAUX. Contre-exemple : $a_n = -n$.
- *vii*) VRAI. $\sum_{n=1}^{\infty} (-1)^n a_n$ converge absolument.
- viii) VRAI. La convergence d'une série ne dépend pas des premiers termes. $\sum_{n=1}^{n} a_n$ converge absolument. Donc d'après Q1, $\lim_{n\to\infty} |a_n| = 0$. Il existe donc $n_0 \in \mathbb{N}$ tel que $\forall n \geq n_0$, $|a_n| \leq 1$. Décomposons notre série : $\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{n_0-1} |a_n| + \sum_{n=n_0}^{\infty} |a_n| = A + B$ car la série converge. En remarquant que $\forall |x| < 1$ on a $x^2 < |x|$, nous pouvons écrire que $\sum_{n=1}^{\infty} a_n^2 = \sum_{n=1}^{n_0-1} a_n^2 + \sum_{n=n_0}^{\infty} a_n^2 \leq \sum_{n=1}^{n_0-1} a_n^2 + B$. Le premier terme étant une somme finie, $\sum_{n=1}^{\infty} a_n^2$ converge.
 - ix) FAUX. On a pour tout $n \ge 2$ que $\sqrt{n} \le n$ et donc $\frac{1}{n} \le \frac{1}{\sqrt{n}}$. Comme la série harmonique diverge, on conclut par le critère de comparaison que la série en question diverge aussi.