Politechnika Warszawska

Wydział Elektroniki i Technik Informacyjnych Instytut Automatyki i Informatyki Stosowanej Laboratorium Wspomagania Decyzji (WDEC)

Laboratorium nr 3/4 - AMPL Sprawozdanie - zestaw 2.2

Ćwiczenie polegało na przygotowaniu modelu analizy wielokryterialnej sytuacji decyzyjnej, gdzie należało opracować podział budżetu na płace.

1. Rzeczowy model sytuacji decyzyjnej

Zmienne decyzyjne:

- X_i płace pracowników na poszczególnych stanowiskach, i \in {1, 2, 3, 4, 5},
- Omi⁺ dopuszczalne odchylenie w górę względem parametru Mi (odchylenie od płacy na i-tym stanowisku w innych firmach),
- Omi^- dopuszczalne odchylenie w dół względem parametru Mi (odchylenie od płacy na i-tym stanowisku w innych firmach),
- Opi^+ dopuszczalne odchylenie w górę względem parametru Pi (odchylenie od struktury referencyjnej płacy na i-tym stanowisku),
- Opi dopuszczalne odchylenie w dół względem parametru Pi (odchylenie od struktury referencyjnej płacy na i-tym stanowisku),
- Z1, Z2 zmienne pomocnicze,
- Yi zmienne pomocnicze związane z kryteriami, i \in {1, 2, 3, 4, 5}
- A zmienna pomocnicza do skalaryzacji metodą punktu odniesienia.

Parametry:

- Ni liczba osób pracujących na i-tym stanowisku, i \in {1, 2, 3, 4, 5},
- Pi wysokość płac na i-tym stanowisku wynikająca ze struktury referencyjnej,
- Mi wysokość płacy na i-tym stanowisku w innych firmach,
- Si minimalna różnica płac między stanowiskami o numerach i oraz i+1, i \in {1, 2, 3, 4},
- Fi poziom płacy minimalnej umownie przyjmujemy za tę wartość płacę na piątym stanowisku.

Dane wykorzystywane w zadaniu:

Stanowisko	Ni	Pi [tys.]	Mi [tys.]	Si [tys.]	Fi [tys.]
1	1	12	20	3	-
2	5	8	12	2	-
3	10	6	10	2	-
4	20	4	5	2	-
5	200	2	2	-	1

Ograniczenia:

- F5 ≤ Xi; Wszyscy pracownicy muszą zarabiać przynajmniej płacę minimalna na najgorzej opłacanym stanowisku,
- $Xi Xi + 1 \ge Si$, $i \in \{1, 2, 3, 4\}$; $Zak^{\dagger}adamy$, $\dot{z}e$ każde wyższe stanowisko zarabia tyle samo lub więcej niż stanowisko niższe o jeden stopień powiększone o pewną kwotę,
- Xi = Mi + Omi+ Omi-; Pensje na stanowiskach mają oscylować wokó† pensji na tych samych posadach w innych firmach,
- Xi = Pi + Opi+ Opi-; Dążymy do tego, aby pensje były jak najbardziej zbliżone do preferencyjnego rozkładu pensji,
- Omi+ ≥ 0,
- Omi- ≥ 0,
- Opi+ ≥ 0,
- Opi- ≥ 0.

Cztery powyższe ograniczenia dotyczą oznaczenia warunku nieujemności odchyleń od danych wartości.

2. Funkcja celu (kryteria):

Minimalizacja środków przeznaczonych na płace (Y1):

$$\sum_{i=1}^{5} (N_i * X_i) \rightarrow min$$

 Minimalizacja maksymalnego odchylenia od struktury płac wewnątrz firmy (warunek zostanie poddany skalaryzacji przy pomocy zmiennej Z1):

$$(Opi^+, Opi^-) \rightarrow min$$

Minimalizacja sumy odchyleń od płac wewnątrz firmy (Y3):

$$\sum_{i=1}^{5} (Opi^{+} + Opi^{-}) \rightarrow min$$

 Minimalizacja maksymalnego odchylenia od płac na zewnątrz firmy (warunek zostanie poddany skalaryzacji przy pomocy zmiennej Z2):

$$(Omi^+, Omi^-) \rightarrow min$$

Minimalizacja sumy odchyleń od płac na zewnątrz firmy (Y5):

$$\sum_{i=1}^{5} (Omi^{+} + Omi^{-}) \rightarrow min$$

Skalaryzacja kryteriów 2. i 4.:

Kryterium 2.

• $Y2 = Z1 \rightarrow min$

Ograniczenia:

- Z1 ≥ Opi+,
- Z1 ≥ Opi-.

Dla wszystkich i \in {1, 2, 3, 4, 5}

Kryterium 4.

• $Y4 = Z2 \rightarrow min$

Ograniczenia:

- Z1 ≥ Omi+,
- Z1 ≥ Omi-.

Dla wszystkich i \in {1, 2, 3, 4, 5}.

Ograniczenie potrzebne do skalaryzacji metodą punktu odniesienia:

 $A \le Qi - Yi$, $i \in \{1, 2, 3, 4, 5\}$, gdzie Qi to aspiracja.

3. Model w AMPL:

Plik .mod:

parametry

param N $\{1..5\}$ >= 0; # liczba pracowników na danym stanowisku

param P{1..5} >= 0; # płaca referencyjna na i-tym stanowisku

param M{1..5} >= 0; # płaca na zewnątrz firmy na podobnym stanowisku do i-tego

param S{1..5-1} >= 0; # minimalna różnica płac między stanowiskami i oraz i+1

param Q{1..5}; # aspiracje dla poszczególnych kryteriów

zmienne

var X{1..5} >= 0; # płaca na poszczególnych stanowiskach

var G{1..4, 1..5} >= 0; # macierz z wartościami Opi+, Opi-, Omi+ oraz Omi-

var Z{1..2}; # zmienne do skalaryzacji kryteriów

var A; # zmienna pomocnicza przy skalaryzacji metodą punktu odniesienia

var Y{1..5}; # zmienne pomocnicze do kryteriów

```
# ograniczenia
subject to placa_minimalna: X[5] >= 1;
subject to placa_referencyjna {i in 1..5}: X[i] = P[i] + G[1,i] - G[2,i];
subject to placa_zewnetrzna {i in 1..5}: X[i] = M[i] + G[3,i] - G[4,i];
subject to roznica_plac {i in 1..4}: X[i] - S[i] >= X[i+1];
subject to Z1_1 \{i \text{ in } 1..5\}: Z[1] >= G[1,i];
subject to Z1_2 \{i \text{ in } 1..5\}: Z[1] >= G[2,i];
subject to Z2_1 \{i \text{ in } 1..5\}: Z[2] >= G[3,i];
subject to Z2_2 \{i \text{ in } 1..5\}: Z[2] >= G[4,i];
subject to Y1: Y[1] = sum{i in 1..5} X[i]*N[i];
subject to Y2: Y[2] = Z[1];
subject to Y3: Y[3] = sum\{i \text{ in } 1..5\} (G[1,i] + G[2,i]);
subject to Y4: Y[4] = Z[2];
subject to Y5: Y[5] = sum\{i \text{ in } 1..5\} (G[3,i] + G[4,i]);
subject to skalaryzacja {i in 1..5}: (Q[i] - Y[i]) >= A;
# funkcja celu
maximize f_{celu}: Z + (0.0001/5)*(sum{i in 1..5} (Q[i] - Y[i]));
Data:
param n:=
11
25
3 10
4 20
5 200;
param p:=
1 12
28
36
44
5 2;
param m:=
1 20
2 12
3 10
45
5 2;
```

4. Wyniki i analiza

Tabela obliczonych wypłat X wygląda następująco.

X:

Stanowisko [nr]	Płaca [tys. zł]
1	20
2	12
3	6
4	4
5	2

Macierz odchyleń G:

G					
Opi+	8	4	0	8	7.25e-10
Opi-	0	0	-7.25e-10	8	0
Omi+	0	0	107.5	0	7.25e-10
Omi-	0	0	111.5	1	0

Zmienne skalaryzacji Z:

Z	
1	8
2	111.5

Parametr A = -220

Zmienne pomocnicze kryteriów Y:

Υ		
1	620	
2	8	
3	28	
4	111.5	
5	220	

Utopijnymi wartościami płac są wartości z tabeli poniżej:

Stanowisko [nr]	Płaca [tys. zł]
1	20
2	12
3	10
4	5
5	2

Jest to zasadniczo tabela płac referencyjnych w innych firmach, czyli algorytm obliczania wartości dąży do tego, aby wypłacić jak najwyższe pensje jednocześnie zachowując resztę parametrów, ale nie więcej niż w innych firmach. Teoretycznie przy pozbywaniu się kolejnych ograniczeń możemy dążyć do jak największych wypłat, ale akurat w tym przypadku interesuje nas nieprzekraczanie płacy w innych firmach. Aby obliczyć punkty utopijne, pozbywamy się ograniczeń płacy referencyjnej, minimalnej i różnic.

Tabela z nadirowymi wartościami wypłat:

Stanowisko [nr]	Płaca [tys. zł]
1	10
2	7
3	5
4	3
5	1

W przypadku wypłat nadirowych ignorujemy dążenie do wypłat referencyjnych oraz do wypłat z innych firm. Wychodzi na to, że jedynymi ograniczeniami są płaca minimalna i różnica wypłat. Oczywiście możemy też je ignorować, ale zadanie wtedy nie ma sensu analitycznego.

5. Wnioski:

Wykonana analiza jest przykładem analizy wielokryterialnej, gdzie nasze wypłaty sa ograniczony z dołu i góry przez pewne wartości. Widać, że minimalne wartości wypłat są związane z minimalizacją, różnicą płac i płacą minimalną. Dalsze ingerowanie w dolne ograniczenia daje wyniki typu [1, 1, 1, 1), które nie mają żadnej analitycznej wartości. Z drugiej strony mamy wartości utopijne, które chcielibyśmy osiągnąć. Pomijamy przy tym wartości referencyjne wewnątrz firmy, a skupiamy się tylko na wartościach z zewnętrznych firm i różnicy płac.

W przypadku modelu AMPL osiągnięcie wartości utopii oraz nadiru zostało poprzez wykluczenie niektórych ograniczeń kluczowych dla tych wartości.