

VLSI and Embedded (E&C) Presentation on "ENHANCEMENT OF NIGHT TIME VIDEO IP ACCELERATOR USING DCP"

Presented By:
Rakotojaona Andrianoelisoa Nambinina,PATEL Monal
, Electronics and Communication

Supervised by:

Prof. Carlos Valderrama (External Guide)
Head of Microelectronics Department,
University of Mons, Belgium

Outline

- ☐ Introduction
- □ DCP Algorithm
- ☐ Vitis unified software
- ☐ Required Component
- Programming languages
- ☐ Library used for hardware implementation
- □ software/hardware implementation of algorithm
- ☐ Result
- Conclusion
- references

Introduction

- ☐ Aim:-
 - ☐ Enhanced night input frame
 - ☐ Accelerate the video processing speed

Introduction

Hardware available for implementation

Criteria	CPUs	GPUs	FPGAs	ASICs
Processing peak power	Moderate	Very High	High	Highest
Power Consumption	High	Very High	Low	Very Low
Flexibility	Highest	Very High	Medium	Lowest

- **♦** Parallelism design
- **♦** Consume less power
- **❖** Reconfigurable hardware

DCP Algorithm

- ☐ Enhancement: Computer system modeled to enhanced the quality of input frame
- □ DCP algorithm: enhanced night input frame based on the minimum pixel value of RGB
- □ WHY DCP
- ➤ Simple algorithm
- ➤ Less component on hardware
- > Fast

DCP Overview

☐ Model mathematical of McCartney

$$I(x) = J(x) t(x) + A (1 + t(x))$$

[1]

- I(x): Input frame with x: coordinate of pixel (i,j)
 - A: Highest pixel value of I (x)
- t (x): Medium transmission
 - J (x): Output Frame (Enhanced frame)
- \Box Output frame (J(x))

$$J(x) = I(x) - A(1 + t(x)) / t(x)$$

[2]

 \square Medium transmission (t(x))

$$t(x) = 1 - w I dark(x)$$
 with w: control parameter / $w = 0.8$

 \Box Dark channel of Input frame (I dark (x))

$$I dark (x) = min_{(R,G,B)} I (x)$$

DCP Algorithm

I (x): Input frame

Idark: Dark input frame

Imed: medium transmission of I dark

J(x): Recover Frame)

Vitis software environment /Architecture

Vitis unified software:

- Vitis software: Build an application software run on hardware.
- Xilinx

Flow of Building application program on Vitis

Component used to build a project

Alveo u-200

PCle Gen 3 x 16

Core i-7 2.7Ghz, 16 Go Ram

Power supply (225 W)

FPGA USED

◆ALVEO CARD U200

Introduced by Xilinx

Open source

Environment: Vitis unified software

Why:

- > Prototype
- ➤ Using multiple languages and Libraries, designers can benefits of programmable logic and CPU
- ➤ High frame rate video Low latency

SYSTEM ARCHITECTURE

APPLICATION PROGRAM

Programming languages

OpenCL (Host language)

♦ OpenCL : language used to target Hardware (FPGA/ GPU / CPU, ...)

- Command used on kernel program :
- set up the kernel
- ❖ Write/ Read data to/from Global memory
- **Execute** data, ...

Library - Vitis vision

- ❖ computer vision library designed to work on Vitis software .
- **♦**Open source library
- **♦** Small architecture
- **♦**Easy and fast vs Open-CV
- ❖ Available for academic and business purpose for free

DATA FLOW OF PROPOSED ALGORITHM

Global architecture of proposed method

Design flow of proposed

Host kernel data flow

DCP / Medium transmission on Kernel

DCP and Medium transmission function is accelerated on hardware

♦ DCP (Vitis vision)
Input Image
Extract Channel
Channel
R,G,B
ERODE
Output Dark channel Image

Medium transmission

Dehaze on CPU

Recover frame: executed on software

Recover

Output

Input frame

Medium transmission

Dark input frame

Enhanced frame

Timing summary of ap_clk

```
+----+
| Clock | Target | Estimated| Uncertainty|
+----+
|ap_clk | 3.33 ns | 2.433 ns | 0.90 ns |
+----+
```

Latency

```
| Latency (cycles) | Latency (absolute) | | |
| min | max | min | max |
| 8303056| 8321548| 27.674 ms | 27.736 ms |
```


DCP / Medium transmission/Dehaze Processing time on software

Frame size	DCP	Medium transmission	Dehaze
1600 x 900	15.58 s	15.47 s	0.144s
1600 x 900	5.23s	5.49 s	0.09s
1200 x 675	0.43s	0.44 s	0.02s
320 x 180	0.05s	0.045s	0.06s

- DCP and Medium transmission: consume much time
- Solution : create kernel for DCP and Medium transmission

Comparison of software/Hardware Processing time

Frame size	CPU (second)	Alveo board (msecond) Average running speed
1600 x 900	31.048	4.86
1200 x 675	10.71	2.76
640 x 360	0.865	0.81
320 x 180	0.087	0.23

Hardware: 620 faster than software with frame size (1600 x 900)

Conclusion: Efficient

Resources used

* Summary:					
Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP Expression FIFO Instance Memory Multiplexer Register	- - 0 70 - -	- - 32 - -	- 0 183 15770 - -		- - - 0 - -
Total	70	32	15971	48750	0
Available SLR	1440	2280	788160	394080	320
Utilization SLR (%)	4	1	2	12	0
Available	4320	6840	2364480	1182240	960
Utilization (%)	1	0.4	0.6	4 	0

The algorithm consume :1 % BRAM, 0.4 % DSP48E, 0.6% FF, 4% LUT

Conclusion: Efficient consume less hardware resources.

Conclusion

- ❖ Processing time of DCP on CPU: Not sufficient
- * Required an hardware to accelerate DCP Algorithm.
- ❖ The DCP algorithm: used less 4 % of resources on hardware.
- Proposed algorithm efficient on hardware.
- **❖** Future work : Increased Compute unit on hardware.

Reference

Author	Citation	IEEE Paper/ Journal	Year of Publish	Key Learning
Kim, M., Park, D., Han, D. K., & Ko, H	Novel framework for extremely low-light video enhancement	IEEE	2014	 Enhancement of low light video Algorithm
Bhagya H.K Keshaveni N	Video Enhancement using Histogram Equalization with JND Mode	IJRTE	2019	Enhanced image with histogram equalization

Reference

Author	Citation	IEEE Paper/ Journal	Year of Publish	Key Learning
Z. Rahman, D. J. Jobson, and G	Multi Scale Retinex for Color Image Enhancement,	IEEE	1996	How to use retinex for enhancement of color image
Xuesong Jiang, Hongxun Yao, Shengping Zhang	Night video enhancement using improved Dark Channel Prior	IEEE	2013	How to implement enhancement of night time using DCP on software

Reference

Author	Citation	IEEE Paper/ Journal	Year of Publish	Key Learning
Zhu Q, Mai J, Shao L A	fast single image haze removal algorithm using color attenuation prior	IEEE	2015	How to use hze removal algorithm using color attenuation prior

Paper publication

1.SURVEY ON HARDWARE IMPLEMENTATION OF ARTIFICIAL NEURAL NETWORK USING FIELD PROGRAMMABLE GATE ARRAY

Journal	International Journal of Research and Analytical Reviews (IJRAR)
Manuscript ID	Paper ID: 212763
Manuscript types	Review Paper
Date Submitted by the Author:	December 2019
Complete List of Authors:	Rakotojaona Nambinina, Haresh Suthar
Key word:	FPGA, neural network, activation function, look up table, piece wise linear approximation

Paper publication

1.ENHANCEMENT OF NIGHT TIME VIDEO USING DARK CHANNEL PRIOR IP ACCELERATOR

Journal	International Journal of Engineering and Advanced Technology (IJEAT)
Manuscript ID	Paper ID: D6707049420
Manuscript types	Research Paper
Date Submitted by the Author:	04 march 2020
Complete List of Authors:	Rakotojaona Nambinina, Haresh Suthar, Yogesh Parmar, Carlos Valderrama
Key word:	Image enhancement, DCP, FPGA, Vitis Xilinx software

Github Reference

- 1. https://github.com/nambhine1/Vitis-software-
- 2. https://github.com/Xilinx/Vitis_Libraries/tree/master/vision
- 3. https://github.com/nambhine1/DCP_

Questions?

Thank You

