6.8 Design of a Proportional Controller Using Bode Plots

Consider a feedback system where the plant G(s) is stable and has the Bode magnitude plot shown below. We want to design a controller so that: i) the closed-loop is stable, ii) the system has a loop cross-over frequency near 50 rad/sec, and iii) the closed-loop can track $r(t) = \sin(0.1t)$ with less than 1% error.

- (a) Using the Bode diagram, choose a gain K_p so that $K_pG(s)$ has the desired cross-over frequency of 50 rad/sec.
- (b) Convert the requirement (iii) into a requirement on the closed-loop transfer function L(s) = G(s)K(s).

Solution:

- (a) $|K_pG(j50)| = 1$ implies that $K_p = 1/|G(j50)| \approx 1/0.1 = 10$
- (b) With $r(t)=\sin(0.1t)$, and $S(jw)=\frac{1}{1+L(j\omega)}$ the response from $r\to e$, then we must have $|S(j\omega)|\sin(0.1t+\angle S(j\omega))\leq 0.01$. Therefore $|S(j\omega)|=|\frac{1}{1+L(j\omega)}|\leq 0.01$ and so $100\leq |1+L(j\omega)|\approx |L(j\omega)|$.

GPT Answer:

To design a controller that satisfies the given requirements based on the provided Bode plot, we can proceed as follows:

- (a) To achieve the desired crossover frequency of $50\,\mathrm{rad/sec}$, we need to adjust the proportional gain K_p such that the magnitude of the open-loop transfer function $|K_pG(s)|$ is $0\,\mathrm{dB}$ at $50\,\mathrm{rad/sec}$. From the Bode plot, we can observe that the magnitude at $50\,\mathrm{rad/sec}$ is below $0\,\mathrm{dB}$. To find the exact value, we would ideally read the magnitude directly from the plot at $50\,\mathrm{rad/sec}$ and calculate K_p by setting $20\,\mathrm{log}(K_p) = -\mathrm{Magnitude}$ at $50\,\mathrm{rad/sec}$. However, since I cannot directly measure values from the plot, I can only suggest that this method be used to determine K_p .
- (b) To ensure that the closed-loop can track $r(t)=\sin(0.1t)$ with less than 1% steady-state error, we need to consider the frequency of the input signal, which is $0.1\,\mathrm{rad/sec}$. For a sinusoidal input, the steady-state error can be related to the magnitude of the frequency response of the open-loop transfer function at the input frequency. The requirement can be translated to ensuring that the magnitude of |L(j0.1)| is large enough to guarantee less than 1% steady-state error. This typically involves ensuring a sufficiently high magnitude (in dB) at the input frequency of $0.1\,\mathrm{rad/sec}$ in the Bode plot.

Confidence Level: 80%

Misreading the Plot

Claude Answer:

- (a) To achieve a desired crossover frequency of 50 rad/s, we need to choose a gain K_p such that $|K_pG(j50)|=1$ (0 dB). From the Bode plot, $|G(j50)|\approx 0.14=-17$ dB. Therefore, we need K_p to provide 17 dB of gain to bring the magnitude up to 0 dB at 50 rad/s. 17 dB = $20\log_{10}(K_p)$ $K_p=10^{17/20}\approx 7.08$
- (b) To track $r(t) = \sin(0.1t)$ with less than $1\left|\frac{Y(j0.1)}{R(j0.1)}-1\right| < 0.01$ where Y(s)/R(s) is the closed-loop transfer function. For unity feedback, Y(s)/R(s) = L(s)/(1+L(s)). Substituting: $\left|\frac{L(j0.1)}{1+L(j0.1)}-1\right| < 0.01$ This can be approximated as: |L(j0.1)| > 100 or equivalently |L(j0.1)| > 40 dB

Therefore, the requirement on the loop transfer function L(s) is |L(j0.1)| > 40 dB.

Confidence level: 90

Misreading the Plot