Elementary Statistics: Math 080

Jordan Hanson

August 4, 2020

Whittier College Department of Physics and Astronomy

Summary

Summary

Unit 2 and 3

- 1. Central Limit Theorem: 7.1
- 2. Confidence Intervals and Hypothesis Testing
 - Confidence intervals and data interpretation: 8.1 8.4
 - Rejecting the null hypothesis, types of error, underlying distributions: 9.1 - 9.3, 9.6

The Central Limit Theorem

The Central Limit Theorem

The Central Limit Theorem

Central Limit Theorem: Let X be a continuous random variable, with mean μ_X and standard deviation σ_X . The average \bar{X} of n values of X is normally distributed like $N(\mu_X, \sigma_X/\sqrt{n})$.

The Central Limit Theorem

Figure 1: The normal distribution about a mean μ with the units of standard deviations shown.

Example: An unknown distribution has a mean of $\mu=90$ and a standard deviation of $\sigma=15$. Samples of size n=25 are drawn randomly from the population. Find the probability that the *sample mean* is between 87 and 93.

Interactive Questions

Interactive Questions: Central Limit Theorem

Suppose we take samples of size n=16 from a large data set and compute the averages and standard deviations of the samples. Suppose we repeat the whole process, but change n=100. Which of the following is true?

- A: The means of our samples will shift upwards by a factor of 100/16.
- B: The means of our samples will shift downwards by a factor of 100/16.
- C: The standard deviations of our samples will shift downwards by a factor of $\sqrt{100/16}$.
- D: The standard deviations of our samples will shift upwards by a factor of $\sqrt{100/16}$.

Interactive Questions: Central Limit Theorem

Suppose we take samples of size n=100 from a large data set that has mean μ and standard deviation σ , and compute the averages and standard deviations of the *samples*. Which of the following is true?

- A: Each standard deviation of each sample we collect will be $\sigma/10$.
- B: The standard deviation of the means of our samples will be $\sigma/10$.
- C: Each mean of each sample we collect will be $\mu/10$.
- D: The mean of the means of our samples will be μ .

Suppose we are attempting to measure a population parameter, such as the mean, μ . This is distinct from the sample mean, \bar{x} , of a set of data $\{x_i\}$.

Figure 2: Let the gray curve refer to a *population* of data. Let the red curve refer to the *distribution of averages* we find if we repeatedly sample. The standard deviation of the red curve is smaller because of the Central Limit Theorem: $\sigma_{\bar{x}} = \sigma_{pop}/\sqrt{n}$.

Figure 3: Suppose we decide to communicate the range in which the true mean μ falls, using our *point estimates* \bar{x} . How should we do that?

A good range: (Mean of \bar{x} distribution minus two standard deviations), to (mean of \bar{x} distribution plus two standard deviations). This interval has a 90 percent chance of containing μ .

(Mean of $\bar{x}-2s/\sqrt{n}$), to (Mean of $\bar{x}+2s/\sqrt{n}$). This interval has a 90 percent chance of containing μ .

- The error bound for the population mean (EBM) is the "two standard deviations" in this example, in which we know the population σ .
- Recall the 68 95 99.7 rule, and how sample means are normally distributed regardless of the underlying distribution.
- We choose the confidence level (CL), and construct the confidence interval for the given CL.
- $\alpha = 1 \mathit{CL}$, probability the confidence interval does not contain μ .

Professor example, next slide.

Professor example.

PhET: Illustration of Confidence

Intervals

PhET: Confidence Intervals

Go to this link: https://digitalfirst.bfwpub.com/stats_applet/stats_applet_4_ci.html

- 1. Select a confidence level (CL) of 95 percent using the slide bar at left.
- 2. Set your sample size to 100. The sample means will be distributed like $N(\mu, \sigma/\sqrt{n})$. This example assumes we know σ , the population standard deviation, but we do not know the mean μ .
- 3. Hit the green Sample 25 button to collect 25 samples of size 100, to get 25 means.
- 4. How many of these means fall within two standard deviations $\sigma/\sqrt{100}$ (CL: 95 percent) of the true mean μ ?
- 5. Repeatedly hit Sample 25, and notice what happens to the percentage at left of sample means that fall within 2 $\sigma/\sqrt{100}$ of μ .

Interactive Questions

Interactive Questions

Suppose you wanted to measure the average age of inhabitants of a large neighborhood. The population mean μ is unknown, but we can be reasonably certain that our sample standard deviations, s_1 , s_2 , ... are approximately σ , the standard deviation of the population. So we know that the $\sigma_{age}=20$ years. Suppose we collect 100 samples of 16 people apiece. This means the standard error in our mean $20/\sqrt{16}=5$ years.

- 1. Suppose the mean of all our data is 70 years. What is the EBM for two standard deviations in the mean?
- 2. How many of our samples should fall within 1 EBM of the true mean?

Solve via Breakout Rooms! Go.