Assignment 2

Li Yueheng s2306706

2022.2.7

Question 1

 \mathbf{a}

$$A := \{(x_1, x_2) : f(x_1) = f(x_2)\}\$$

For any $y_1 \in Y$, $y_2 \in Y$ and $y_1 \neq y_2$, choose x_1, x_2 such that $f(x_i) = y_i$. Then $(x_1, x_2) \notin A$. Since A is closed, there exists an open neighborhood W of (x_1, x_2) such that $W \cap A = \emptyset$. From the definition of product topology on $X \times X$ we know there exists $U \times V$ such that

- 1. U and V are open neighborhoods of x_1 and x_2 .
- 2. $U \times V \subset W \subset A^c$.

Since f is open, f(U) and f(V) are open neighborhoods of y_1 and y_2 . They cannot intersect, otherwise there exist $z \in U$ and $w \in V$ such that f(w) = f(z), thus $(z, w) \in A$, but $(z, w) \in U \times V \subset W \subset A^c$, a contradiction. Hence f(U) and f(V) are disjoint open neighborhoods of y_1 and y_2 , so Y is Huasdorff.

b

$$B := \{x : f(x) = g(x)\}$$

For any $x \notin B$, $f(x) \neq g(x)$. Since Y is Hausdorff, there exist disjoint open neighborhoods of f(x) and g(x), namely U and V. Then $W := f^{-1}(U) \cap g^{-1}(V)$ is en open neighborhood of x and $W \cap B = \emptyset$. Hence B^c is open, i.e. B is closed.

Question 2

 \mathbf{a}

Suppose $f:[0,1]\to (0,1)$ is a homeomorphism, then $\tilde{f}:=f|_{(0,1]}$ is a homeomorphism between (0,1] and $(0,1)-\{f(0)\}$. While (0,1] is path connected, the other is not, which leads to a contradiction. So f must not exist.

b

Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ is a homeomorphism. Then $\tilde{f}:=f|_{x\neq 0}$ is a homeomorphism between the punctured plane and $\mathbb{R}-\{f(0)\}$. The punctured plane is path connected while $\mathbb{R}-\{f(0)\}$ isn't. Hence f must not exist.

Question 3

Let A and B be two disjoint closed sets on the Sorgenfrey line.

For each $a \in A$, since $a \in B^c$ and B is a closed set, a has an open neighborhood that lies within B^c . Therefore, there exists an element of the topological base, [a, a') such that $[a, a') \subset B^c$. Define an open neighborhood of A as

$$U:=\bigcup_{a\in A}[a,a')$$

Similarly define an open neighborhood V for B:

$$V:=\bigcup_{b\in B}[b,b')$$

where each [b, b'] is an open neighborhood of b that does not intersect A.

For any pair $a \in A, b \in B$, without loss of generality assume a < b. Since $[a, a') \subset B^c$, we have $[a, a') \cap [b, b') = \emptyset$. Thus $U \cap V = \emptyset$. Hence the Sorgenfrey line is T_4 .

Question 4

 \mathbf{a}

Let $l_0 \in l^{\infty}$ and $||l_0||_{\infty} = 1$. $l_{n+1} := Tl_n$. $r_n := ||l_n||_{\infty}$. Then

$$||T^k|| = \max_{||l_0||_{\infty} = 1} ||T^k l_0|| = \max_{||l_0||_{\infty} = 1} r_k$$

Suppose

$$l_n = (a_1, a_2, a_3, \dots)$$

then

$$l_{n+1} = (a_1 + a_2, a_1, a_2, \dots)$$

$$l_{n+2} = (a_1 + a_2 + a_1, a_1 + a_2, a_1, \dots)$$

thus $r_{n+2} \leq r_{n+1} + r_n$ and with equality for $l_0 = (1, 1, 0, ...)$. Therefore

$$||T^k|| = \frac{1}{\sqrt{5}}((\frac{1+\sqrt{5}}{2})^{k+2} - (\frac{1-\sqrt{5}}{2})^{k+2})$$

and

$$r(T) = \lim_{k \to \infty} ||T^k||^{1/k} = \frac{1 + \sqrt{5}}{2}$$

Suppose λ is an eigenvalue of T and v is its corresponding eigenvector with $\|v\|_{\infty}=1$. Then

$$|\lambda| = \frac{\|Tv\|_{\infty}}{\|v\|_{\infty}} \le \max_{\|v\|_{\infty} = 1} \frac{\|Tv\|_{\infty}}{\|v\|_{\infty}} = \|T\|$$
$$|\lambda| = (|\lambda|^k)^{1/k} = (\frac{\|T^k v\|_{\infty}}{\|v\|_{\infty}})^{1/k} \le \|T^k\|^{1/k}$$

taking limits on both sides yield $|\lambda| \leq r(T)$.

Question 5

Let J = [a, b] be any bounded closed interval. Suppose $\{U_i\}_{i \in I}$ is an open cover of J but does not have a finite subcover. Divide J by half into two closed intervals

$$J_{11} = [a, \frac{a+b}{2}]$$
 $J_{12} = [\frac{a+b}{2}, b]$

Then, at least one of these two intervals does not have a finite subcover. Again divide this interval without finite subcover by half and repeat to choose the one without finite subcover. Such process lasts endlessly and will result in a series of nested intervals, every one of them does not have a finite subcover. By the nested intervals theorem, there is a point x_0 that belongs to all the intervals. Since $\{U_i\}_{i\in I}$ covers J, there should be an open set U_{i_0} such that $x_0\in U_{i_0}$. But as the lengths of the nested intervals tend to 0, at least one of them lies within U_{i_0} . This contradicts the fact that none of these intervals has a finite subcover. Hence $\{U_i\}_{i\in I}$ must have a finite subcover for J.

Question 6

Firstly, we show that the weak topology τ on X satisfies the given universal property:

Suppose g is continuous, since the weak topology makes all the f_i s continuous, it follows that $f_i \circ g$ is continuous.

Then suppose $f_i \circ g$ is continuous for all is. Fix i, take any open set $U_i \in \tau_i$. it follows from the continuity of f_i and $f_i \circ g$ that $f_i^{-1}(U_i) \in \tau$ and $g^{-1}(f_i^{-1}(U_i)) \in \tau_Z$. Thus sets of the form $f_i^{-1}(U_i)$ are pulled back by g into τ_Z .

Notice that

$$\{f_i^{-1}(U_i): i \in I \text{ and } U_i \in \tau_i\}$$

form a subbase of the weak topology τ . It follows that this subbase is pulled back by g into τ_Z . Therefore every element of τ is pulled back by g into τ_Z , that is, g is continuous.

For the other side of the proposition, assume τ' is a topology on X that satisfies the universal property. Let $(Z, \tau_Z) = (X, \tau)$ and $g = \operatorname{id}: X \to X$. Since $f_i \circ g$ is continuous, $g = \operatorname{id}$ is continuous, thus every open set of τ' is an open set of τ , and $\tau' \subset \tau$.

$$(X,\tau) \downarrow_{g} f_{i} \circ g \\ (X,\tau') \xrightarrow{f_{i}} (X_{i},\tau_{i})$$

We then let $(Z, \tau_Z) = (X, \tau')$, which makes g = id continuous. Therefore $f_i \circ g$ is continuous according to the universal property. Hence for any $U_i \in \tau_i$, $f_i^{-1}(U_i) \in \tau'$. Since sets of the form $f_i^{-1}(U_i)$ form a subbase of the weak topology τ , we may conclude that $\tau \subset \tau'$.

$$(X, \tau') \downarrow_{g} f_{i} \circ g \\ (X, \tau') \xrightarrow{f_{i}} (X_{i}, \tau_{i})$$

The arguments above shows that $\tau = \tau'$, thereby shows that the universal property characterizes the weak topology.