

CS37300: Data Mining and Machine Learning

Exploratory Data Analysis

Sep 13 2023

Exploratory data analysis

- Data analysis approach that employs a number of (mostly graphical) techniques to:
 - Maximize insight into data
 - Uncover underlying structure
 - Identify important variables
 - Detect outliers and anomalies
 - Test underlying modeling assumptions
 - Develop parsimonious models
 - Generate hypotheses from data

Data summarization

Measures of location

- Mean: $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x(i)$
- Median: value with 50% of points above and below
- Quartile: value with 25% (75%) points above and below
- Mode: most common value

www.brainfuse.com

Data summarization

- Measures of dispersion or variability
 - Variance: $\hat{\sigma}_k^2 = \frac{1}{n} \sum_{i=1}^n (x(i) \mu)^2$
 - Standard deviation: $\hat{\sigma}_k = \sqrt{\frac{1}{n} \sum_{i=1}^n (x(i) \mu)^2}$
 - Range: difference between max and min point
 - Interquartile range: difference between 1st and 3rd Q
 - Skew: $\operatorname{E}\left[\left(\frac{X-\mu}{\sigma}\right)^{3}\right] \Leftrightarrow \frac{\sum_{i=1}^{n}(x(i)-\hat{\mu})^{3}}{\left(\sum_{i=1}^{n}(x(i)-\hat{\mu})^{2}\right)^{\frac{3}{2}}}$

Histograms (1D)

- Most common plot for univariate data
- Split data range into equalsized bins, count number of data points that fall into each bin
- Graphically shows:
 - Center (location)
 - Spread (scale)
 - Skew
 - Outliers
 - Multiple modes

Histogram limitations

- Histograms can be misleading for small datasets
 - Slight changes in the data or binning approach can result in different histograms
- Solution: smoothed density plots
 - Use kernel function to estimate density at each point x, pools information from neighboring points

Density plots

Estimated density is:

$$\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} K\left(\frac{x - x(i)}{h}\right)$$

- Two parameters:
 - Kernel function K
 (e.g., Gaussian,
 Epanechnikov)
 - Bandwidth h

Bar plots

Box plot (2D)

- For each discrete value X, calculate quartiles and range of associated Y values
- Data summary for:
 minimum, first quartile,
 median, third quartile, and
 maximum
- Can also plot outliers separately

Interpreting Box Plots

- Petals of Iris-Versicolor are:
 - Always longer than 3.1?
 - At least 50% of the petals are longer than 4

Scatter plot (2D)

- Most common plot for bivariate data
 - Horizontal X axis: the suspected independent variable
 - Vertical Y axis: the suspected dependent variable
- Graphically shows:
 - If X and Y are related
 - Linear or non-linear relationship
 - If the variation in Y depends on X
 - Outliers

No relationship

Should this variable be excluded or "pre-pruned" when building a decision tree? Why or why not?

Linear relationship

Non-linear relationship

Homoskedastic

Heteroskedastic

Which one of the plots describes a positive correlation?

Scatterplot limitations

Too much data

Overprinting

Scatterplot limitations

Solution: Jitter points

Contour plot (3D)

 Limitations of 2D scatterplot (e.g., when there is too much data to discern relationship)

 Solution: represent a 3D surface by plotting constant z slices (contours) in a 2D format

Scatterplot matrix

Good to check for linear relationships in multivariate datasets

import seaborn as sns import matplotlib.pyplot as plt sns.set(style="ticks")

df = sns.load_dataset("iris")
sns.pairplot(df, hue="species")
plt.show()

Summary – Data Exploration

http://extremepresentation.typepad.com/blog/2006/09/choosing a good.html

Chart Suggestions—A Thought-Starter

