Transformaciones lineales

Para realizar los ejercicios de esta guía hace falta conocer la definición de transformación lineal, las definiciones de núcleo e imagen de una transformación lineal, matriz asociada a una transformación lineal en una base, el teorema fundamental de las transformaciones lineales y la noción de diagonalización.

1. Analizar si las siguientes aplicaciones son transformaciones lineales.

a.
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $f(x_1, x_2) = (x_1 + x_2, 0)$.

b.
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $f(x_1, x_2) = (x_1, x_2 - 3, 1)$.

c.
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
, $T(x_1, x_2, x_3) = (x_3 + 2x_1, \frac{4x_1 + 2x_3}{3})$.

d.
$$T: \mathbb{R}^3 \to \mathbb{R}^4$$
, $T(x, y, z) = (x + 2y, 3z, 2x + y + z, 0)$.

2. Analizar si existe una transformación lineal T que satisfaga las condiciones dadas. En caso afirmativo, encontrar una expresión para T.

a.
$$T: \mathbb{R}^2 \to \mathbb{R}^2: T(1,0) = (3,-1); T(0,1) = (-2,4)$$

b.
$$T: \mathbb{R}^2 \to \mathbb{R}^2: T(2,1) = (-1,2); T(3,0) = (-1,2)$$

c.
$$T: \mathbb{R}^2 \to \mathbb{R}^2: T(1, -1) = (0,7); T\left(-\frac{1}{2}, \frac{1}{2}\right) = (2, -1)$$

d.
$$T: \mathbb{R}^3 \to \mathbb{R}^2: T(1,0,-1) = (2,0); T(0,-1,2) = (3,-1); T(1,-1,0) = (-1,4)$$

e.
$$T: \mathbb{R}^3 \to \mathbb{R}^3: T(1,1,1) = (1,0,0); T(1,1,0) = (0,1,0); T(0,0,-1) = (-1,1,0)$$

- **3.** Dar la expresión analítica de una transformación lineal $T: \mathbb{R}^2 \to \mathbb{R}^2$ que produzca los efectos geométricos indicados en cada caso.
 - a. Reflexión respecto del eje y

b. Reflexión respecto de la recta y = - x

c. Transformación de un cuadrado en un paralelogramo

4. <u>Núcleo e imagen de una transformación lineal</u>

Sea $T: \mathbb{R}^2 \to \mathbb{R}^2$ la transformación lineal dada por $T(x_1, x_2) = (3x_1 - 2x_2, -6x_1 + 4x_2)$

- a. ¿Pertenecen los siguientes vectores al núcleo de T? Justificar.
 - i. (0,0)
- ii. (2,3)
- iii. (3, -2)
- iv. $\left(1, \frac{1}{3}\right)$
- b. Los siguientes vectores, ¿pertenecen a la imagen de T? Justificar.
 - i. (3, -6)
- ii. (2,3)
- iii. (1, -2)
- iv. (4, -3)
- 5. Para cada una de las siguientes transformaciones lineales hallar, si existe, una base del núcleo y una base de la imagen.

a.
$$T: \mathbb{R}^2 \to \mathbb{R}^3: T(x_1, x_2) = (x_1 - 2x_2, -5x_2, 0).$$

b.
$$T: \mathbb{R}^3 \to \mathbb{R}^3: T(x_1, x_2, x_3) = (x_2 - 2x_1 - x_3, -x_2 + x_3, x_1).$$

c.
$$T: \mathbb{R}^4 \to \mathbb{R}^3: T(x_1, x_2, x_3, x_4) = (9x_3 - 3x_1 + 6x_2, x_4, 3x_3 - x_1 + 2x_2).$$

- 6. Hallar, si existe, la expresión analítica de una transformación lineal que verifique las condiciones dadas en cada
 - a. $T: \mathbb{R}^2 \to \mathbb{R}^3$ tal que T(1, -2) = (-1, 3, 4) y $(0, -5) \in \mathbb{N}u(T)$. Sin obtener el conjunto imagen, ¿puede ser $Im(T) = R^3$?
 - b. $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal gue $Nu(T) = \{(x, y, z) \in \mathbb{R}^3 : x + y 2z = 0\}$, $Im(T) = gen\{(-1, 0, 0)\}$.
 - c. $T: \mathbb{R}^3 \to \mathbb{R}^4$ tal que $Im(T) = \mathbb{R}^4$.
- 7. Decidir si la siguiente proposición es verdadera o falsa. Justificar.

"Si $T: \mathbb{R}^4 \to \mathbb{R}^3$ es una transformación lineal tal que dim $\mathrm{Nu}(\mathrm{T}) = 1$, entonces $\mathrm{Im}(T) = \mathbb{R}^3$ "

Matriz de una transformación lineal

8. Escribir la matriz asociada en la base canónica de cada una de las siguientes transformaciones lineales.

a.
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T(x, y) = (\frac{1}{3}x + \frac{2}{5}y, 5y - x)$

b.
$$T: \mathbb{R}^3 \to \mathbb{R}^4$$
, $T(x_1, x_2, x_3) = \left(x_1 + x_2 + x_3, \frac{x_1 + x_2}{2}, -\frac{x_3}{4}, x_2 - x_3\right)$

c.
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
, $T(x_1, x_2) = (x_1 + x_2, 2x_1 + x_2, -4x_1)$

Nota: En la página 5 de esta guía encontrarás resuelto un ejercicio integrador sobre transformaciones lineales.

9. Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ una transformación lineal tal que su matriz asociada en la base canónica está dada por

$$A = \begin{pmatrix} 2 & -1 & 0 \\ 1 & -3 & -1 \\ 0 & -3 & 2 \end{pmatrix}$$

- a. Hallar T(1, -5,3), T(0,0,0), T(1, -1,1).
- b. Hallar una base del núcleo y una base de la imagen.
- Hallar la expresión analítica de la transformación lineal T.
- 10. En el siguiente applet podrás visualizar distintas transformaciones que produce en una figura una transformación lineal. ¿Qué valores tienen que tomar a, b, c y d para que la figura se refleje con respecto al eje x? ¿Y para que se transforme en un paralelogramo ubicado en el tercer cuadrante?
- 11. Teniendo en cuenta la siguiente animación describe con tus palabras qué efecto geométrico se produce en la figura si la matriz de la transformación lineal en la base canónica es:

a.
$$M = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$

a.
$$M = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$
 b. $M = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ c. $M = \begin{pmatrix} -2 & 0 \\ 1 & 1 \end{pmatrix}$

$$c. M = \begin{pmatrix} -2 & 0 \\ 1 & 1 \end{pmatrix}$$

Autovalores y autovectores. Diagonalización

12. Hallar los autovalores y autovectores de cada una de las siguientes transformaciones lineales.

a.
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T(x, y) = (3x + y, x + 3y)$

b.
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T(x, y) = (4x + y, 4y)$

c.
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
, $T(x_1, x_2, x_3) = (x_1 + 2x_2 - x_3, -5x_2 - 4x_3, 8x_2 + 7x_3)$

d.
$$T: R^3 \to R^3, T(X) = AX \text{ siendo } A = \begin{pmatrix} 1 & -4 & 2 \\ 0 & 2 & 0 \\ 0 & -2 & 3 \end{pmatrix}$$

13. Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal cuya matriz asociada en la base canónica es

$$A = \begin{pmatrix} 0 & 0 & -3 \\ 1 & 0 & -1 \\ k & 1 & -1 \end{pmatrix}$$

- a. Hallar todos los valores de $k \in R$ de modo tal que $\lambda = 1$ sea un autovalor de T.
- b. Para los valores de k hallados, calcular todos los autovalores de T.
- **14.** Para cada una de las siguientes matrices, determinar su espectro y autoespacios. Decidir si son o no diagonalizables. En caso afirmativo, hallar una matriz regular P tal que $D = P^{-1}$. A. P sea una matriz diagonal.

a.
$$A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$$

b.
$$A = \begin{pmatrix} -1 & 4 & -1 \\ 0 & 3 & -1 \\ 0 & 0 & 2 \end{pmatrix}$$

c.
$$A = \begin{pmatrix} 5 & -1 & 2 \\ -1 & 5 & 2 \\ 2 & 2 & 2 \end{pmatrix}$$

d.
$$A = \begin{pmatrix} 1 & -4 & 2 \\ 0 & 0 & 1 \\ -2 & 8 & -4 \end{pmatrix}$$

- 15.
- a. Demostrar que si A es una matriz de orden n inversible, entonces $\lambda = 0$ no es autovalor de A.
- b. Sea A una matriz de orden n. Demostrar que A y A^T tienen los mismos autovalores. ¿Es cierto que tienen los mismos autovectores?

Nota Para conocer algunas aplicaciones de autovalores y autovectores, te sugerimos visitar la siguiente página

Ejercicio sobre transformaciones lineales

Enunciado:

Dada la aplicación $T: \mathbb{R}^3 \to \mathbb{R}^2 / T(x_1; x_2; x_3) = (x_1 + x_2; -x_3)$. Se pide:

- 1) Demostrar que T es una transformación lineal
- 2) Obtener el núcleo y la imagen de la transformación.
- 3) Interpretar geométricamente lo anterior y obtener una base de cada una.
- 4) Hallar la matriz asociada a la transformación en la base canónica.

Solución:

Vamos a interpretar qué significa aplicar la transformación T a un vector cualquiera $(x_1; x_2; x_3)$ de \mathbb{R}^3 ,

Por ejemplo: ¿Cómo se obtiene el transformado del vector (1; -2; 4) € R³?

$$T(1;-2;4) = (1+(-2);-4)$$

 $T(1;-2;4) = (-1;-4)$, donde (-1;-4) $\in \mathbb{R}^2$

1) Para demostrar que T es una transformación lineal, tenemos que aplicar la definición:

"Sea T una aplicación de un espacio vectorial V en otro espacio vectorial W. T es una transformación lineal si cumple dos propiedades:

a) El transformado de la suma de dos vectores cualesquiera de V es igual a la suma de sus transformados. T(u+v) = T(u) + T(v) siendo $u \in V$ y $v \in V$

Consideramos a u y v dos vectores cualesquiera de R^3 . Deben ser genéricos, no podemos particularizar en valores concretos porque sino estaríamos probando sólo para esos valores y no en general. Sean $u = (u_1; u_2; u_3)$ y $v = (v_1; v_2; v_3)$

Queremos ver que se cumple la siguiente igualdad:

$$T(u+v) = T(u) + T(v)$$

Trabajando con el primer miembro:

 $T(u+v) = T \big[(u_1;u_2;u_3) + (v_1;v_2;v_3) \big] \quad \text{escribimos a } u \text{ y } v \text{ como dos ternas ordenadas}.$

$$T(u+v) = T[(u_1 + v_1; u_2 + v_2; u_3 + v_3)]$$
 por suma de vectores (suma de ternas)

$$T(u+v) = ((u_1 + v_1) + (u_2 + v_2); -(u_3 + v_3))$$
 aplicamos la transformación T

① $T(u+v) = (u_1 + v_1 + u_2 + v_2; -u_3 - v_3)$ operamos algebraicamente en cada componente.

Trabajando con el segundo miembro:

 $T(u) + T(v) = T(u_1; u_2; u_3) + T(v_1; v_2; v_3)$ escribimos a u y v como dos ternas ordenadas

$$T(u) + T(v) = (u_1 + u_2; -u_3) + (v_1 + v_2; -v_3)$$
 aplicamos la transformación T

②
$$T(u) + T(v) = (u_1 + u_2 + v_1 + v_2; -u_3 - v_3)$$
 operamos algebraicamente en cada componente.

Como las expresiones ① y ② son iguales, se cumple la primera condición.

b) El transformado de un escalar por un vector cualquiera del espacio vectorial V es igual al escalar multiplicado por el transformado del vector. Es decir, T(k.u) = k.T(u) siendo $u \in V$ y $k \in R$

Consideramos a $u=(u_1;u_2;u_3)$ un vector cualquiera de R^3 y $k \in R$. Tendríamos que ver que

Trabajando con el primer miembro:

 $T(k.u) = T[k.(u_1; u_2; u_3)]$ escribimos a u como una terna.

 $T(k.u) = T[(k.u_1; k.u_2; k.u_3)]$ por producto entre escalar y vector (terna).

① $T(k.u) = (k.u_1 + k.u_2; -k.u_3)$ aplicamos la transformación T.

Trabajando con el segundo miembro:

 $k.T(u) = k.T(u_1; u_2; u_3)$ escribimos a u como una terna.

 $k.T(u) = k.(u_1 + u_2; -u_3)$ aplicamos la transformación T.

 $k.T(u) = (k.(u_1 + u_2); k.(-u_3))$ por producto entre escalar y vector (par ordenado)

② k.T(u) = $(k.u_1 + k.u_2; -k.u_3)$ operamos algebraicamente en cada componente.

Como las expresiones $\ensuremath{\mathbb{1}}$ y $\ensuremath{\mathbb{2}}$ son iguales, se cumple la condición.

Conclusión: Al cumplirse las condiciones a) y b), podemos afirmar que T es una transformación lineal.

2) Como probamos que es una transformación lineal, podemos obtener el núcleo y la imagen de la misma. En una transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^2$ el núcleo es el subespacio formado por los vectores de \mathbb{R}^3 cuya imagen a través de T es el vector nulo de \mathbb{R}^2 .

Para cualquier $(x_1; x_2; x_3) \in \mathbb{R}^3$

 $T(x_1;x_2;x_3) = (0;0)$ por definición de núcleo de una transformación

 $(x_1 + x_2; -x_3) = (0;0)$ aplicamos la transformación al vector

$$\begin{cases} x_1+x_2=0\\ -x_3=0 \end{cases} \text{ por igualdad de pares ordenados} \\ \begin{cases} x_1=-x_2\\ x_3=0 \end{cases} \text{ operando algebraicamente en cada componente} \end{cases}$$

Armamos la expresión del núcleo, reemplazando las componentes obtenidas

$$(x_1;x_2;x_3)=(-x_2;x_2;0)$$

 $(x_1; x_2; x_3) = x_2.(-1; 1; 0)$ por definición (recíproca) de escalar por vector

 $(x_1; x_2; x_3) = t.(-1; 1; 0)$ como x_2 es un real cualquiera lo sustituimos por el parámetro "t"

El núcleo de la transformación queda:

$$N(T) = \left\{ (x_1; x_2; x_3) \in R^3 / (x_1; x_2; x_3) = t.(-1; 1; 0) \text{ con } t \in R \right\}$$

En una transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^2$ la imagen de la transformación es el subespacio formado por los vectores de \mathbb{R}^2 que son imagen, a través de T, de algún vector de \mathbb{R}^3 .

Para cualquier
$$(x_1; x_2; x_3) \in \mathbb{R}^3$$

$$T(x_1; x_2; x_3) = (x_1 + x_2; -x_3)$$

$$(x_1 + x_2; -x_3) = (x_1; 0) + (x_2; 0) + (0; -x_3)$$

$$(x_1 + x_2; -x_3) = x_1(1; 0) + x_2(1; 0) - x_3(0; 1)$$

La imagen de la transformación queda:

Im(T) =
$$\{ (y_1; y_2) \in \mathbb{R}^2 / (y_1; y_2) = p(1; 0) + q(0; 1) \text{ conpyqreales} \}$$

No es la única forma de escribir a la imagen de la transformación, también se puede expresar:

 $Im(T) = gen\{(1,0); (0,1)\}$ y en este caso en particular podemos decir que $Im(T) = R^2$

3) Tanto en núcleo de la transformación como la imagen son sub-espacios de los espacios vectoriales donde están incluidos. En el caso del núcleo de esta transformación, incluido en R³, tiene por dimensión 1, pues tiene un solo vector asociado y por lo tanto responde geométricamente a una recta que pasa por el origen de coordenadas.

$$N(T) = \{(x_1; x_2; x_3) = t.(-1; 1; 0)\}$$

$$Vector$$

$$director$$

$$Base del núcleo$$

La imagen de la transformación está generada por dos vectores de R^2 , tiene dimensión 2, representando geométricamente a todo el plano R^2 .

$$Im(T) = gen\{(1;0), (0;1)\}$$

$$B_{Im(T)} = \{(1;0), (0;1)\}$$

$$-7 -$$

4) Para hallar la matriz de la transformación en la base canónica se deben calcular los transformados de los vectores canónicos del espacio de partida, en este caso R³.

Para nuestro caso: $T: \mathbb{R}^3 \to \mathbb{R}^2 / T(x_1; x_2; x_3) = (x_1 + x_2; -x_3)$. La matriz que buscamos es de orden 2x3. Los transformados de los vectores canónicos de \mathbb{R}^3 según la transformación T, son:

$$T(x_{1}; x_{2}; x_{3}) = \begin{pmatrix} x_{1} + x_{2} \\ -x_{3} \end{pmatrix}$$

$$T(1; 0; 0) = \begin{pmatrix} 1 + 0 \\ -0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$T(0; 1; 0) = \begin{pmatrix} 0 + 1 \\ -0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$T(0; 0; 1) = \begin{pmatrix} 0 + 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$
La matriz A, queda formada por: $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

Notemos que podemos expresar nuestra transformación como el producto entre la matriz A y un vector genérico de R3:

$$T(x_1 x_2 x_3) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ -x_3 \end{pmatrix}$$
 que es la transformación dada.