

Contenidos

- Niveles generales de la arquitectura
- El nivel externo
- El nivel conceptual
- Introducción al nivel interno
- El Administrador de la Base de Datos (DBA)
- Tipos de arquitecturas de implantación

Contenidos

- Niveles generales de la arquitectura
- El nivel externo
- El nivel conceptual
- Introducción al nivel interno
- El Administrador de la Base de Datos (DBA)
- Tipos de arquitecturas de implantación

Introducción

- ¿Por qué organizar en niveles?
 - Los usuarios pueden acceder a los mismos datos, pero desde distintas perspectivas.
 - Si un usuario cambia la forma de ver los datos no influye en el resto.
 - La organización global de los datos puede cambiarse sin afectar a los usuarios.
 - Los usuarios no tienen por qué gestionar aspectos relativos a la representación física de los datos.
 - El administrador de la BD puede cambiar la forma de representar los datos sin influir en los usuarios.

Arquitectura ANSI/SPARC

- La percepción de los datos en un SGBD puede hacerse siguiendo tres niveles de abstracción:
 - Nivel Interno
 - Nivel Conceptual
 - Nivel Externo
 - ANSI/SPARC
 - Precedente de dos niveles: DBTG CODASYL

Los tres niveles

Aquí se definen las distintas percepciones particulares de la base de datos por parte de los usuarios.

Abstracción global de la base e datos. Integra todas las percepciones que los distintos usuarios tienen de la base de datos.

Representación de la base de datos más cercana a la estructura de almacenamiento físico. Estructuras de datos sobre las que se sustentan los niveles superiores.

- Transformación o correspondencia entre niveles:
 - Conjunto de normas que establece cómo se definen los datos de un nivel en términos de otro.
 - Mecanismo fundamental para el establecimiento de la independencia:
 - Lógica
 - Física

- Transformación conceptual/interna:
 - Cómo se organizan las entidades lógicas del nivel conceptual en términos de registros y campos almacenados en el nivel interno.
 - Independencia física:
 - Varía el nivel interno
 - · Cambia la correspondencia
 - · No varía el nivel conceptual

- Transformación externa/conceptual:
 - Describe un esquema externo en términos del esquema conceptual subyacente.
 - Independencia lógica:
 - Varía el nivel conceptual
 - Cambia la correspondencia
 - No varía el nivel externo

- Transformación externa/externa:
 - Algunos SGBD permiten describir esquemas externos en términos de otros esquemas externos.
 - Independencia lógica:
 - Varía el esquema externo subyacente
 - Cambia la correspondencia
 - · No varía el esquema definido

Los tres niveles

- Recomendación ANSI/SPARC:
 - Disponer de un lenguaje específico orientado a los datos:
 - Definición
 - Control
 - Manipulación de datos
 - Sublenguaje de datos: DSL
 - Implementado en el propio SGBD
 - Tiene distintas partes:
 - DDL
 - DML
 - DCL

- Data Definition Language (DDL)
 - Subconjunto del DSL para definición de estructuras de datos y esquemas de la BD.
- Data Manipulation Language (DML)
 - Subconjunto del DSL para introducción de datos, modificación de datos, eliminación de datos y consulta de datos. También debe permitir consultar los esquemas definidos en la BD.
- Data Control Language (DCL)
 - Subconjunto del DSL para gestionar los requisitos de acceso a los datos y otras tareas de administración de la BD.

- ANSI/SPARC recomienda disponer de un DDL, un DML y un DCL para cada nivel de la arquitectura.
- En la práctica todos estos sublenguajes se presentan bajo una implementación única.
 - Cada sentencia trabaja sobre uno o varios niveles.
 - Un sistema de privilegios discrimina quién puede ejecutar qué.
- La industria ha seguido un camino diferente:
 - Lenguajes de datos estándares
- Ejemplo destacado:
 - SQL
 - SQL89
 - SQL92
 - SQL3

- Lenguaje anfitrión o de aplicación
 - Desarrollo de aplicaciones en el SO que trabajen sobre la BD.
 - Propósito general:
 - C/C++
 - Java
 - C#
 - Herramientas de desarrollo específicas:
 - · Developer de Oracle
 - Oracle Application Express (Oracle APEX)
 - Sybase PowerBuilder
 - · IBM Rational Application Developer
 - •
 - Proporciona:
 - Procesamiento avanzado de datos
 - · Gestión de la interfaz de usuario

- Hay que establecer un mecanismo para traducir:
 - Estructuras de datos
 - Operaciones
- Acoplamiento:
 - Débilmente acoplados:
 - · Lenguajes de propósito general
 - El programador puede distinguir:
 - · Sentencias propias del lenguaje anfitrión
 - · Sentencias dispuestas para acceder a la BD a través del DSL
 - Fuertemente acoplados
 - Lenguajes y herramientas de propósito específico
 - Se parte del DSL como elemento central y se le incorporan características procedimentales para facilitar el desarrollo de aplicaciones.

- Alternativas para implementar el acoplamiento débil:
 - APIs de acceso a BD
 - ODBC Open Database Connectivity
 - JDBC Java Database Connectivity
 - DSL inmerso en el código fuente del lenguaje anfitrión
 - El programador escribe un código híbrido. Mezcla sentencias del lenguaje anfitrión con sentencias DSL.
 - Hay un preprocesador que luego lo transforma.

- Alternativas para implementar el acoplamiento fuerte:
 - Diversas propuestas (la mayoría propietarias)
 - PL/SQL de Oracle
 - · Extensión Procedural para SQL
 - Ejecución de Java sobre una máquina virtual implantada en el propio SGBD.

- También han aparecido numerosos entornos de desarrollo específicos para el desarrollo de aplicaciones de gestión:
 - Diseñadores de informes
 - Diseñadores de formularios
 - •

Contenidos

- Niveles generales de la arquitectura
- El nivel externo
- El nivel conceptual
- Introducción al nivel interno
- El Administrador de la Base de Datos (DBA)
- Tipos de arquitecturas de implantación

Nivel Externo

- Parte de la BD que es relevante para cada usuario.
 - Sólo aquellas entidades, relaciones y atributos que le son de interés.
 - Representadas de la forma que le interesa al usuario:
 - Ejemplos:
 - Nombre completo o nombre y apellidos
 - Fecha o día, mes y año
 - ...
 - Datos calculados a partir de los que hay:
 - Edad
 - Ventas totales
 - •

Nivel Conceptual

- Visión global de los datos.
- Estructura lógica de los datos:
 - Qué datos están almacenados y qué relaciones hay entre ellos.
- Este nivel representa:
 - Todas las entidades, atributos y relaciones.
 - Las restricciones que afectan a los datos.
 - · Información semántica sobre los datos.
 - Información de seguridad y de integridad.
- Da soporte a cada vista externa
- No debe contener ningún detalle de almacenamiento

Nivel Interno

- Representación física de la BD en el ordenador.
- Cómo están almacenados los datos.
- Busca el rendimiento óptimo del sistema.
- Representa:
 - Estructuras de datos.
 - Organizaciones en ficheros.
 - Comunicación con el SO para gestionar el uso de unidades de almacenamiento.
 - Compresión de datos, encriptación ...
- Parte de las responsabilidades de este nivel las realiza el SO.
 - · Nivel físico.
 - No existe una división clara:
 - Depende de cada SGBD y de cada SO.

- Ejemplo de Gestión Docente Universitaria:
 - Item básico PROFESOR
 - Identificado por:
 - Número de registro personal (NRP)
 - Caracterizado por:
 - Nombre y apellidos
 - Sueldo
 - Departamento al que pertenece

Visión conceptual:

```
Profesor = registro de

NRP campo alfanumérico de 10 caracteres,
Apellidos campo alfanumérico de 30 caracteres,
Nombre campo alfanumérico de 20 caracteres,
Sueldo campo decimal de 8+2 dígitos,
Departamento campo alfanumérico de 30 caracteres
fin Profesor.
```


- Visión externa 1:
 - Gestión de personal
 - Lenguaje A

```
TYPE Profesor IS RECORD (
   NRP VARCHAR2(10),
   Apellidos VARCHAR2(30),
   Nombre VARCHAR2(20),
   Sueldo NUMBER(8,2)
);
```

Visión externa 2:

- Ordenación académica
- Lenguaje B

```
TYPE Profesor = RECORD

NRP : STRING[10];
Apellidos : STRING[30];
Nombre : STRING[20];
Departamento : STRING[30];
END;
```


Visión interna:

```
Profesor_interno BYTES=74

NRP TYPE=BYTES(10),OFFSET=0

Apellidos TYPE=BYTES(30),OFFSET=10

Nombre TYPE=BYTES(20),OFFSET=40

Sueldo TYPE=WORD(2),OFFSET=60

Departamento TYPE=BYTES(10),OFFSET=64.
```


Contenidos

- Niveles generales de la arquitectura
- El nivel externo
- El nivel conceptual
- · Introducción al nivel interno
- El Administrador de la Base de Datos (DBA)
- Tipos de arquitecturas de implantación

- El DBA es una figura de primordial relevancia en el contexto de los SGBDs:
 - Elaboración del esquema conceptual
 - Análisis de las necesidades de información de la empresa
 - Identificación de los datos operativos
 - Elaboración del esquema lógico
 - · Implantación del esquema conceptual
 - Decidir la estructura de almacenamiento en el nivel interno
 - Esquema interno
 - Correspondencia conceptual/interna asociada

- Conexión con usuarios
 - Análisis de requerimientos
 - Diseño lógico
 - Codificación del esquema externo, correspondencias ext/concept.
- Definir las restricciones de integridad:
 - Establecer reglas: genéricas y específicas
 - Incluir, si es posible, la integridad en el esquema conceptual

- Definir e implantar la política de seguridad:
 - Gestión de usuarios
 - Gestión de privilegios
- Definir e implantar la estrategia de recuperación frente a fallos:
 - Los SOs y los SGBDs suelen incorporar facilidades para afrontar los fallos:
 - SGBDs redundantes
 - RAID Redundant Array of Inexpensive Disks
 - El DBA puede y debe realizar copias de seguridad de la BD
 - · Políticas de gestión de transacciones

- Optimización del rendimiento
 - Liberar espacio no utilizado
 - · Reorganizar las operaciones para que se ejecuten de forma más rápida
 - Determinar la necesidad de nuevos recursos hardware
 - Establecer prioridades en el uso de los recursos
- Monitorizar el SGBD
 - Seguimiento continuo de la actividad del sistema.
 - Auditar el acceso de los usuarios a los diversos recursos de la BD
 - · Comprobar los niveles de uso de los sistemas de almacenamiento
 - Evaluar la eficiencia con que se realizan las operaciones

Contenidos

- Niveles generales de la arquitectura
- El nivel externo
- El nivel conceptual
- Introducción al nivel interno
- El Administrador de la Base de Datos (DBA)
- Tipos de arquitecturas de implantación

- El concepto de SBD ha evolucionado bastante.
 - Paralelamente al desarrollo de la Informática
 - Forma de gestionar la información
 - Forma de ejecutar los programas
 - Forma de interactuar con el usuario
- Inicialmente:
 - Esquema centralizado
 - Toda la carga de gestión y procesamiento de información recaía en servidores centrales
 - · El usuario accedía mediante terminales
 - En el ordenador principal:
 - SGBD
 - · Programas de aplicación

Arquitectura centralizada

- Problema:
 - Elevado coste de los ordenadores principales
 - Aparece el PC
- Solución
 - Desplazar la ejecución de los programas de usuario y la interacción hasta los PCs.
 - · Reducción de costes en hardware
 - Aproximación Cliente/Servidor:
 - Servidor
 - Servidor de BD
 - · Servicio de escucha de peticiones
 - PCs conectados en red con el servidor:
 - Programas de aplicación
 - Servicio de enlace cliente que interactúa con el servicio de escucha instalado en el servidor.
- Desarrollo de las redes de comunicaciones:
 - Enfoque distribuido

Arquitectura distribuida y cliente/servidor

• Problema:

- Alto coste de mantenimiento de los PCs:
 - Instalación
 - Configuración
 - Actualización

Solución

- Separar en las aplicaciones:
 - Parte que interactúa con el usuario: interfaz
 - · Parte de ejecución lógica del programa

Actualmente:

- Arquitectura articulada en tres niveles de procesamiento
- Nivel de servidor de datos
 - · Posiblemente distribuido
 - El SGBD permite organizar la información de la empresa como una BD global.
 - Las peticiones de datos formuladas desde una sede se traducen de forma transparente a peticiones en las sedes donde se encuentran esos datos.

Nivel de servidor de aplicaciones

- Son evoluciones de Servidores Web que proporcionan los programas de aplicación a Clientes ligeros, que disponen de entornos de ejecución de aplicaciones:
 - · Usando estándares.
 - Protocolos de red TCP/IP.
 - Protocolo HTTP.
 - Despliegue de Applets Java a ejecutar en Navegadores con soporte de máquina virtual Java.
 - Servlets, JSP, ASP, etc.

• El nivel de cliente:

- PCs ligeros dotados de configuraciones basadas en estándares abiertos.
 - Basados en el carácter portable con que se distribuyen las aplicaciones desde los servidores de aplicaciones.
 - Menos dependencia del hardware y del SO a la hora de abordar la ejecución de las aplicaciones.

• BD distribuida y programas de aplicación en arquitectura de tres capas

Ventajas:

- Reducción significativa en cuanto al mantenimiento de los clientes: instalación, configuración y actualización de las aplicaciones realizada en el servidor, no en cada cliente.
- Mayor facilidad y flexibilidad para el usuario. Puede acceder desde casi cualquier puesto y desde distintos dispositivos: móviles, tablets, portátil, pc, etc.

Inconvenientes:

- Mayor complejidad en:
 - La configuración y administración de los servidores de aplicaciones.
 - El desarrollo de las aplicaciones conforme a este modelo distribuido.

Ejemplo:

- Usuario del PC invoca desde el navegador la ejecución de una aplicación a través de una URL.
- La parte de interfaz de usuario de la aplicación se puede distribuir como:
 - · Un applet Java que se ejecuta en la máquina virtual del navegador
 - Una serie de paginas HTML generadas desde el servidor de aplicaciones:
 - Servlets
 - JSP
 - ASP
- La interacción del usuario a través de esta interfaz determina la interacción con la parte lógica de la aplicación que se ejecuta en el servidor de aplicaciones:
 - Peticiones de procesamiento
 - Acceso a datos de la BD
 - Generación de nuevas páginas o evolución del applet que ofrecen la respuesta al usuario a través de la interfaz de usuario.

Contenidos

- Niveles generales de la arquitectura
- El nivel externo
- El nivel conceptual
- Introducción al nivel interno
- El Administrador de la Base de Datos (DBA)
- Tipos de arquitecturas de implantación

