Obliczenia naukowe

2017/2018

Prowadzący: dr Filip Zagórski

czwartek TN, 11:15

Agata Jasionowska 229726

Laboratorium – Lista 1

1. Zadanie 1

1.1. Macheps

1.1.1. Opis problemu

Napisanie w języku Julia programu wyznaczającego w sposób iteracyjny epsilony maszynowe (czyli najmniejsze takie liczby macheps > 0, że 1.0 + macheps > 1.0) dla wszystkich dostępnych w tym języku typów zmiennopozycyjnych (Float16, Float32 oraz Float64).

1.1.2. Opis rozwiązania

W celu znalezienia liczby *macheps* dla danego typu liczby zmiennopozycyjnej skorzystano z operacji przesunięcia bitowego w prawo zgodnie z podanymi niżej krokami:

- 1. Zdefiniowanie zmiennej a = 1.0 wybranego typu;
- 2. (W pętli) Dopóki 1.0 + a > 1.0 przypisanie aktualnej wartości a w pomocniczej zmiennej b oraz wykonanie przesunięcia bitowego w prawo dla a.

Po zakończeniu wykonywania pętli w zmiennej a pozostanie wartość na tyle mała, że zostanie potraktowana jako zero maszynowe (czyli 1.0 + a = 1.0). Zmienna b będzie przechowywała ostatnią przypisaną wartość większą niż 0.0, czyli poszukiwany macheps.

1.1.3. Wyniki

Uzyskano następujące wyniki dla kolejnych typów zmiennopozycyjnych:

typ	b	eps(typ)	С
Float32	9.7656e-4	9.7656e-4	9.77e-4
	1.192 092 9e-7	1.192 092 9e-7	1.192093e-7
	2.220 446 049 250 313e-16	2 220 446 049 250 313e-16	2.220446e-16

Tabela 1. Wyniki *macheps* wraz z prawidłowymi wartościami

1.1.4. Wnioski

Uzyskano rozwiązania identyczne ze zwracanymi przez funkcje eps, co dowodzi prawidłowości przyjętego sposobu rozwiązania problemu.

Precyzja arytmetyki (ϵ) ma wpływ na to, jak wiele cyfr znaczących liczby jest reprezentowanych dokładnie i zależy wyłącznie od liczby bitów przeznaczonych na reprezentację mantysy. W związku z tym istnieje jej bezpośredni związek z wartością epsilona maszynowego. Im mniejszy macheps, tym większa jest względna precyzja obliczeń.

1.2. ETA

1.2.1. Opis problemu

Napisanie w języku Julia programu wyznaczającego w iteracyjny sposób liczbę eta (taką, że eta > 0.0) dla dostępnych w nim typów zmiennopozycyjnych (Float16, Float32 oraz Float64).

1.2.2. Opis rozwiązania

Algorytm wyznaczenia liczby eta jest zbliżony do algorytmu obliczającego wartości macheps:

```
Algorithm 1 a \leftarrow 1.0 while a/2.0 > (0.0) do a \leftarrow a/2.0 end while
```

Po zakończeniu wykonywania pętli w zmiennej a pozostanie poszukiwana wartość eta.

1.2.3. Wyniki

Uzyskano następujące wyniki dla kolejnych typów zmiennopozycyjnych:

typ	a	nextfloat(0.0)	MIN_{SUB}
Float16 Float32	0.000	6.00e-8 1.0e-45 5.0e-324	5.96e-8 1.4e-45 4.9e-324

Tabela 2. Wyniki eta wraz z prawidłowymi wartościami

1.2.4. Wnioski

Uzyskano rozwiązania identyczne ze zwracanymi przez funkcję nextfloat(), co dowodzi prawidłowości przyjętego sposobu rozwiązania problemu. Liczba eta jest bardzo zbliżona do Min_{SUB} .

1.3. MAX

1.3.1. Opis problemu

Napisanie w języku Julia programu wyznaczającego w iteracyjny sposób liczbę MAX dla dostępnych w nim typów zmiennopozycyjnych (Float16, Float32 oraz Float64).

1.3.2. Opis rozwiązania

W celu znalezienia wartości MAX dla danego typu liczby zmiennopozycyjnej skorzystano z operacji przesunięcia bitowego w prawo oraz z funkcji isinf(a) (zwracającej wartość true, jeżeli argument jest nieskończonością) zgodnie z podanymi niżej krokami:

- 1. Zdefiniowanie zmiennej a = 1.0 wybranego typu;
- 2. (W pętli) Dopóki $a*{\sf FloatX}(2.0)(gdzieX\in 16,32,64$ jest skończone, wykonanie przesunięcia bitowego w prawo dla a

Po zakończeniu wykonywania pętli w zmiennej a pozostanie wartość równa nieskończoności. Funkcja prevfloat(a) umożliwia odczytanie poprzedniej wartości zmiennopozycyjnej danego typu, czyli zadanej liczby MAX.

1.3.3. Wyniki

Uzyskano następujące wyniki dla kolejnych typów zmiennopozycyjnych:

typ	a	realmax(typ)	С
Float16	6.55e + 4	6.55e + 4	6.5504e+4
Float32	$3.4028235\mathrm{e}{+38}$	$3.4028235\mathrm{e}{+38}$	$3.4028234664\mathrm{e}{+38}$
Float64	1.7976931348623157e + 308	1.7976931348623157e + 308	1.79769e + 308

Tabela 3. Wyniki MAX wraz z prawidłowymi wartościami

1.3.4. Wnioski

Uzyskano rozwiązania identyczne ze zwracanymi przez funkcję $\mathtt{realmax}()$, co dowodzi prawidłowości przyjętego sposobu rozwiązania problemu. Wartości MAX dla kolejnych typów zmiennopozycyjnych są bardzo zbliżone do maksymalnych wartości deklarowanych w dokumentacji języka \mathtt{C} .

2. Zadanie 2

2.1. Opis problemu

Napisanie w języku Julia programu, który eksperymentalnie sprawdzi słuszność stwierdzenia Kahana (epsilon maszynowy może zostać wyznaczony

w wyniku obliczenia 3(4/3-1)-1 w danej arytmetyce zmiennopozycyjnej) dla wszystkich dostępnych typów zmiennopozycyjnych.

2.2. Opis rozwiązania

Obliczenie wartości wyrażenia z użyciem właściwego rzutowania typów zgodnie z poniższym wzorem:

 $\texttt{FloatX}(3) * ((\texttt{FloatX}(4) / \texttt{FloatX}(3)) - \texttt{FloatX}(1)) - \texttt{FloatX}(1), \, \text{dla } X \in \{16, 32, 64\}.$

2.3. Wyniki

Uzyskano następujące wyniki dla kolejnych typów zmiennopozycyjnych:

typ	Kachan	macheps
Float16	-9.77e-4	9.77e - 4
Float32	$1.1920929\mathrm{e}{-7}$	$1.1920929e{-7}$
Float64	$2.220446049250313\mathrm{e}{-16}$	$2.220446049250313\mathrm{e}{-16}$

Tabela 4. Wyniki twierdzenia Kachana wraz z prawidłowymi wartościami

2.3.1. Wnioski

Powyższa tabela pokazuje, że prawidłowe rozwiązanie udało się uzyskać jedynie dla typu Float32. W dwóch pozostałych przypadkach wynik różnił się znakiem. Stwierdzenie Kachana byłoby słuszne, gdyby z wartości wyrażenia wziąć jego wartość bezwzględną.

3. Zadanie 3

3.1. Opis problemu

Napisanie w języku Julia programu, który eksperymentalnie sprawdzi, że w arytmetyce Float64 liczby zmiennopozycyjne są równomiernie rozmieszczone w [1,2] z krokiem $\delta=2^{-52}$. Równoznaczne jest to ze stwierdzeniem, iż każda liczby zmiennopozycyjna x z zakresu [1,2] może zostać przedstawiona jako $x=1+k*\delta$ w danej arytmetyce, dla $k=1,2,\ldots,2^{52}-1$ i $\delta=2^{-52}$.

3.2. Opis rozwiązania

Eksperymentalne sprawdzenie rozmieszczenia liczb zgodnie z poniższym schematem:

- 1. Utworzenie takiej zmiennej δ , że $\delta=2^k,\,k=0,-1,-2\ldots$ typu zmiennopozycyjnego;
- 2. Zdefiniowanie zmiennej a pierwszą wartością przedziału;
- 3. (W pętli) Zwiększanie a o wartość δ oraz wyświetlenie rezultatu wraz z jego zapisem bitowym (uzyskany przy pomocy funkcji bits(a).

3.3. Wyniki

1. Przedział [1, 2]

\overline{a}	zapis bitowy a
$ \begin{array}{c} 1.0 \\ 1.0 + \delta \\ 1.0 + 2 * \delta \end{array} $	00111111111110000001 001111111111110000010 0011111111
$ \begin{array}{l} \vdots \\ 2.0 - 3 * \delta \\ 2.0 - 2\delta \\ 2.0 - \delta \end{array} $: 00111111111111111101 00111111111111

Tabela 5. Rozmieszczenie liczb w zakresie [1, 2] dla $\delta = 2^{-52}$

Zapis bitowy pokazuje, że dodawanie do liczby a wartości $\delta=2^{-52}$ zwiększa ją o kolejny jeden bit.

2. Przedział [0.5, 1]

\overline{a}	zapis bitowy a
0.5	00111111111100000010
$0.5 + \delta$	00111111111100000100
$0.5 + 2 * \delta$	00111111111100000110
$0.5 + 3 * \delta$	00111111111100001000
:	:
$1.0 - 3 * \delta$	001111111111111 11011
$1.0-2\delta$	001111111111111 11101
$1.0 - \delta$	001111111111111111111111111111111111111

Tabela 6. Rozmieszczenie liczb w zakresie [0.5,1]dla $\delta=2^{-52}$

Analizę rozmieszczenia liczb rozpoczęto od zbadania zmian w zapisie bitowym dla $\delta=2^{-52}$. Wyniki widoczne powyżej pokazują cykliczne zwiększanie się a o 2 bity, czyli wartości rozłożone są z dwukrotnie większym krokiem. Zatem rozmieszczenie dla tego przedziału to $\delta=\frac{1}{2}*2^{-52}=2^{-53}$.

3. Przedział [2, 4]

W ostatnim rozpatrywanym przedziale rezultaty dla $\delta=2^{-52}$ uwidaczniają regularną zmianę bitów naprzemiennie co 1- oraz 3-krotne powiększenie a o wartość δ . Sugeruje to rozkład liczb z krokiem większym niż początkowo założony. Wartość zwiększono więc dwukrotnie δ i otrzymano wyniki:

Zatem rozkład liczb w [2,4] następuje z krokiem $\delta = 2^{-51}$.

a	zapis bitowy a
2.0	010000000
$2.0 + \delta$	010000000
$2.0 + 2 * \delta$	010000001
$2.0 + 3 * \delta$	010000010
$2.0 + 4 * \delta$	010000010
$2.0 + 5 * \delta$	010000010

Tabela 7. Rozmieszczenie liczb w zakresie [2,4] dla $\delta=2^{-52}$

a	zapis bitowy a
2.0	00111111111100000010
$2.0 + \delta$	00111111111100000100
$2.0 + 2 * \delta$	00111111111100000110
$2.0 + 3 * \delta$	00111111111100001000
:	:
$4.0 - 3 * \delta$	001111111111111 11011
$4.0-2\delta$	001111111111111 11101
$4.0 - \delta$	001111111111111111111111111111111111111

Tabela 8. Rozmieszczenie liczb w zakresie [2,4] dla $\delta=2^{-51}$

3.4. Wnioski

Analiza przypadku [1,2] dowodzi równomiernego rozmieszczenia liczb w tym przedziałe z krokiem $\delta=2^{-52}$, czyli prawdziwy jest wzór: $x=1+k*\delta$. Zaobserwowano następujące rozmieszczenie w pozostałych przedziałach:

```
- [0.5, 1]: x = 1 + k * \delta, \delta = 2^{-53};

- [2, 4]: x = 1 + k * \delta, \delta = 2^{-51}
```

4. Zadanie 4

4.1. Opis problemu

Napisanie w języku Julia programu znajdującego eksperymentalnie taką liczbę zmiennopozycyjną Float64 1 < x < 2, że $x*(1/x) \neq 1$ (tj. $fl(xfl(1/x)) \neq 1$) oraz wyznaczenie najmniejszej takiej wartości.

4.2. Opis rozwiązania

Zastosowanie programu działającego zgodnie z poniższym pseudokodem:

Algorithm 2

```
a \leftarrow \texttt{Float64}(1.0)

b \leftarrow \texttt{Float64}(1.0)

while a < \texttt{Float64}(2.0) do

if ((b/a) * a \neq b) then wypisz a

end if

a \leftarrow \texttt{nextfloat}(a)

end while
```

4.3. Wyniki

W wyniku kilkugodzinnej pracy program znalazł 2164117 rozwiązań (przy czym przy czym nie są to wszystkie) spełniających warunki zadania. Najmniejszym z nich jest liczba 1.000000057228997.

4.4. Wnioski

Eksperyment pozwala uzmysłowić, jak wiele istnieje liczb zmiennopozycyjnych pomiędzy każdą parą sąsiednich liczb całkowitych.

5. Zadanie 5

5.1. Opis problemu

Napisanie w języku Julia implementacji czterech algorytmów obliczających iloczyn skalarny dwóch zadanych wektorów: x=[2.718281828, -3.141592654, 1.414213562, 0.5772156649, 0.3010299957], y=[1486.2497, 878366.9879, -22.37492, 4773714.647, 0.000185049] z użyciem typów Float32 oraz Float64.

5.2. Opis rozwiązania

- 1. "w przód" $\sum_{i=1}^{n} x_i y_i$ 2. "w tył" $\sum_{i=n}^{1} x_i y_i$
- 3. od największego do najmniejszego Obliczenie sumy tym algorytmem zostało zaimplementowane w następujący sposób (przykład kodu dla arytmetyki Float32):
- 4. od najmniejszego do największego Implementacja ostatniego z algorytmów jest analogiczna do kodu z poprzedniego podpunktu. Jedyna różnica polega tutaj na odpowiedniej kolejności sortowania tablicy z sumami częściowymi.

5.3. Wyniki

Poniższa tabela prezentuje uzyskane wyniki dla czterech algorytmów obliczających iloczyn skalarny:

podpunkt	Float32	Float64
a b c d	00000	$\begin{array}{c} 1.0251881368296672\mathrm{e}{-10} \\ -1.5643308870494366\mathrm{e}{-10} \\ 0.0 \\ 0.0 \end{array}$

Tabela 9. Obliczanie iloczynu skalarnego wektorów

5.4. Wnioski

WYCIĄGNĄĆ WNIOSKI!!!

6. Zadanie 6

6.1. Opis problemu

Obliczenie w języku Julia w arytmetyce Float
64 wartości funkcji $f(x)=\sqrt{x^2+1}-1$ oraz $g(x)=\frac{x^2}{\sqrt{x^2+1}+1}$ dla kolejnych wartości
 $x=8^{-1},8^{-2},\ldots$

6.2. Opis rozwiązania

Obliczanie wartości obu funkcji w pętli dla kolejnych argumentów.

6.3. Wyniki

Poniższa tabela prezentuje otrzymane rozwiązania:

x	f(x)	g(x)
8-1	7.7822185373186414e - 3	7.7822185373187065e - 3
8^{-2}	1.2206286282867573e - 4	1.2206286282875901e - 4
8^{-3}	1.9073468138230965e - 6	1.907346813826566e - 6
:	:	:
8^{-7}	1.1368683772161603e - 13	1.1368683772160957e - 13
8^{-8}	1.7763568394002505e - 15	1.7763568394002489e - 15
8^{-9}	0.0	2.7755575615628914e - 17
8^{-10}	0.0	4.336808689942018e - 19

Tabela 10. Wartości funkcji f(x) oraz g(x)

6.4. Wnioski

Analiza uzyskanych rozwiązań pozwala zaobserwować, iż dla argumentu 1 < x < 8 funkcje zwracają bardzo zbliżone wartości. Jednak dla x > 8 funkcja f zaczyna zwracać 0.0, zaś g podaje dokładny wynik. Pozwala to przypuszczać, że to właśnie jest bardziej wiarygodna funkcja.

7. Zadanie 7

7.1. Opis problemu

Obliczenie w języku Julia w arytmetyce Float64 przybliżonej wartości pochodnej funkcji $f(x) = \sin x + \cos 3x$ w punkcie x_0 oraz błędów | $f'(x_0) - \tilde{f}(x_0)$ | dla h = 2 - n (n = 0, 1, 2, ..., 54).

7.2. Opis rozwiązania

Utworzenie funkcji f(x) oraz jej pochodnej g(x), przy czym $g(x) = \cos x - 3*\sin 3x$. Stworzenie pomocniczych funkcji: obliczającej przybliżoną pochodną oraz błąd pomiaru.

7.3. Wyniki

W wyniku pracy programu uzyskano następujące rezultaty:

\overline{n}	f' (x)	blad
0	2.0179892252685967	7.7822185373187065e - 3
1	1.8704413979316472	1.2206286282875901e - 4
2	1.1077870952342974	1.907346813826566e - 6
:	:	:
45	0.11328125	0.003661031688538152
46	0.109375	0.007567281688538152
47	0.109375	0.007567281688538152
48	0.09375	0.023192281688538152
49	0.125	0.008057718311461848
50	0.0	0.11694228168853815
51	0.0	0.11694228168853815
52	-0.5	0.6169422816885382
53	0.0	0.11694228168853815
54	0.0	0.11694228168853815

Tabela 11. Wartości funkcji f(x) oraz g(x)

7.4. Wnioski

NAPISAĆ WNIOSKI!!! Jak wytłumaczyć, że od pewnego momentu zmniejszanie wartości h nie poprawia przybliżenia wartości pochodnej? Jak zachowują się wartości 1+h? Obliczone przybliżenia pochodnej porównać z dokładną wartością pochodnej, tj. zwróć uwagę na błędy f dla h=2-n $(n=0,1,2,\ldots,54)$.