Simulation Studies

Computer Science

Isaac Griffith

CS 6620 Department of Informatics and Computer Science Idaho State University

Why Simulation

- Simulations
 - analyze the behavior of complex processes
- Useful in SE Process Research
 - Static models even with data are still hard to anticipate
 - Software processes contain iterations and rework loops
 - leading to delays ranging from minutes to years

Why Simulation

- Static process descriptions (i.e., flow charts)
 - Do not shed much light on the behavior of a process over time
- The usual process analysis method is a case study
 - requires actual engineers
 - extremely costly
 - does not generalize to other contexts

Simulation

- Simulation provides
 - means to clarify assumptions/mental models
 - visualize the implicit mental models that govern observed process behavior
 - support understanding, analysis, prediction, and decision-support
- Simulations act like virtual laboratories
 - hypotheses about problems may be tested
 - corrective policies experimented with
 - provides significant benefits to management decision support
 - can be integrated with systematic experimentation and other empirical research
 - supports project planning and estimation

Effective Simulation

- Simulation is only effective
 - model reflects real world
 - data used to drive the model reflects real world
- Quantitative output requires
 - quantitative expert estimates, or
 - measurement data
- To minimize data collection effort
 - focus on key variables
 - leads to identifying relevant factors for measurement program

Simulation Modeling Process

Problem Statement

- Defines the modeling goal and focuses the modeling activities
- Defines model purpose and scope (Kellner 1999):
 - Purpose
 - strategic management
 - planning, control and operational management
 - process improvement and technology adoption
 - understanding
 - training and learning
 - Scope
 - a portion of the life cycle
 - a development project
 - multiple, concurrent projects
 - long-term product evolution
 - long-term organization

Reference Behavior

Ensures that the problem statement is sutable for simulation-based problem-solving

Reference Behavior

- captures dynamic variation of key attributes of real-world entities
- can be both:
 - observed problematic behavior to be analyzed and improved
 - desired behavior to be achieved
- Importance:
 - identifies important model (output) parameters
 - focuses subsequent modeling steps
 - input to model validation for comparing simulation results to observed (or desired) behavior

Defining Model Concepts

- Existing process, quality, and resource models
- 2 Implicit or explicit decision rules
- 3 Typical observed behavior patterns
- Organizational information flows
- 6 Policies

Model Concepts

- Either quantitative or qualitative models
 - abstractions of behaviors observed in reality
 - captures implicit and tacit expert knowledge as rules
- Domain Experts
 - have knowledge not found in documents/databases alone
 - help distinguish relevant and irrelevant real-world data

Model Concepts

- Model concepts are implemented into a simulation tool
- Domain knowledge is represented in the simulation
- Result is then an executable model

Executable Model

- Last step is model calibration and experimentation
 - Experiments are performed to understand the system's behavior
 - Calibration is the adjustment of model parameters until the output corresponds with real-world data
 - Both go hand-in-hand
- Calibration can be done through
 - expert estimation
 - parameter fitting based on historic data

Executable Model

- Calibration helps to build confidence in the model
 - Once calibrated experiments are used to:
 - understand observed behavior
 - evaluate planning alternatives
 - explore improvement opportunities
- Output: simulation results

Model V&V

- **Verification** ensures the model fits its intended purpose
 - check internal correctness/appropriateness
 - requires expert knowledge concerning selected simulation technique
 - partially supported by tools
- Validation ensures the model appropriately reflects the real-world behavior
 - check whether transformation steps defined in the simulation have been conducted correctly
 - checks whether the model represents structural/behavioral properties of the real system
 - partly supported by tools
 - requires expert knowledge about the real-world system
- These activities continue throughout the modeling life-cycle

SE Applications

- Project management
- Risk management
- Product and Requirements Engineering
- Process Engineering
- Strategic Planning
- Quality assurance and management

- Software maintenance and evolution
- Global software development
- Software acquisition management and COTS
- Product-lines
- Training and education

Simulation Techniques

- Deterministic vs. Stochastic
- Static vs. Dynamic
- Continuous vs. Event-Driven
- Quantitative vs. Qualitative

Deterministic vs Stochastic

- Stochastic has probabilistic components
 - outputs depend on stochastic variation of (due to random sampling of statistical distributions)
 - input parameters
 - internal model variables
- **Deterministic** non-probabilistic
 - for same inputs will have same outputs
- You need to remember to repeat stochastic simulation runs to see the output distribution
 - number of runs is depends upon
 - computing power limitations
 - confidence required for results

Static vs Dynamic

- Static captures variation at one single point in time
 - Monte Carlo simulations
- **Dynamic** captures variation over a period of time

Continuous vs ED

- Both are types of Dynamic Simulations
- Continuous
 - update variables at equidistant time steps using defined equations
 - based on a set of linear differential equations
 - Best known approach: **System Dynamics** (SD)

• Event-Driven

- updates values of variables as events occur
- Best known approach: discrete-event (DE) simulation
 - Models are represented as a network of activities
 - Items then flow through the network triggering events
 - Events may occur at any time

Quantitative vs Qualitative

Quantitative

- Model params are specified as real or integer numbers
 - needs empirical data of sufficient quantity and quality
 - experts to provide estimates

Qualitative

- approach to understand general behavior patterns of dynamic systems
- useful when conclusions must be drawn from insufficient data

Hybrid Simulation

- Combining continuous and event-driven
- · Combining deterministic with stochastic elements
- Benefit
 - gain advantages of both model types
- Drawback
 - increased complexity

SD vs. DE

System Dynamics

- captures complex process behavior via a small set of core constructs
- possible to reuse a set of generic model patterns
- focuses on modeling the average of a system
- captures cause/effect relationships better

Discrete Event

- Complementary perspective to SD
- Provides a more detailed view of system behavior
- Utilizes attributes/properties of modeled components which may be refined
- Easily adaptable to changes
- Can model distinct real-world entities
- may capture too many details

Practical Aspects

- Simulation is not a "silver bullet"
 - Garbage in = Garbage out
 - Predictive power depends upon model validity
- Often simulation is not practical
 - human actors data gathering is often very costly
 - may not be able to reproduce simulated events for purposes of validation

Practical Aspects

- Simulation is only a simplification of the real-world
 - we cannot prove a priori model correctness
 - more tests and observations leads to more confidence
- Simulation is not:
 - a means unto itself (requires follow-up action)
 - a means to generate ideas

Are there any questions?

