Lectures on Random Matrices (Spring 2025)

Lecture 6: Double contour integral kernel. Steepest descent and local statistics

Leonid Petrov

February 12, 2025*

Notes for the lecturer

- 1. GUE det structure
 - 2. Formulate Cauchy-Binet and Andreief
 - 3. Recall that $\rho_n = P_n$ and it is $(\det[\psi_i(x_j)]_{n \times n})^2$, then reproduce the proofs here.

1 Recap: Determinantal structure of the GUE

Last time, we proved the following result:

Theorem 1.1. The GUE correlation functions are given by

$$\rho_k(x_1,\ldots,x_k) = \det\left[K_n(x_i,x_j)\right]_{i,j=1}^k,$$

with the correlation kernel

$$K_n(x,y) = \sum_{j=0}^{n-1} \psi_j(x)\psi_j(y).$$

Here

$$\psi_j(x) = \frac{1}{\sqrt{h_j}} p_j(x) e^{-x^2/4},$$

where $p_j(x)$ are the monic Hermite polynomials, and h_j are the normalization constants so that $\psi_j(x)$ are orthonormal in $L^2(\mathbb{R})$.

For this theorem, we need Cauchy–Binet summation formula and Andreief identity (which is essentially the same as Cauchy–Binet, but when summation is replaced by integration). Having these, we can write

$$\rho_k(x_1,\ldots,x_k) = \frac{n!}{(n-k)!} \int_{\mathbb{R}^{n-k}} p(x_1,\ldots,x_n) \, dx_{k+1} \cdots dx_n$$

^{*}Course webpage • Live simulations • TeX Source • Updated at 15:10, Saturday 8th February, 2025

$$\begin{split} &= \frac{1}{(n-k)!} \sum_{\widehat{Z}_{n,2}} \sum_{\substack{\sigma,\tau \in S_n \\ \sigma(k+1) = \tau(k+1), \dots, \sigma(n) = \tau(n)}} \operatorname{sgn}(\sigma) \operatorname{sgn}(\tau) \prod_{i=1}^k \psi_{\sigma(i)-1}(x_i) \psi_{\tau(i)-1}(x_i) \\ &= \operatorname{const}_n \sum_{I \subseteq [n], \, |I| = k} \sum_{\sigma',\tau' \in S(I)} \operatorname{sgn}(\sigma') \operatorname{sgn}(\tau') \prod_{i=1}^k \psi_{\sigma'(i)-1}(x_i) \psi_{\tau'(i)-1}(x_i) \\ &= \operatorname{const}_n \sum_{I \subseteq [n], \, |I| = k} \det \left[\psi_{i_\alpha}(x_j) \right]_{\alpha,j=1}^k \det \left[\psi_{i_\alpha}(x_j) \right]_{\alpha,j=1}^k, \end{split}$$

where $I = \{i_1, \ldots, i_k\}$ is a subset of [n] of size k, and S(I) is the set of permutations of I. The last sum of products of two determinants is written by the Cauchy-Binet formula as

$$\operatorname{const}_n \cdot \det \left[\sum_{j=0}^{n-1} \psi_j(x_\alpha) \psi_j(x_\beta) \right]_{\alpha,\beta=1}^k,$$

and finally the constant is equal to 1 by Andreief identity.

2 Double Contour Integral Representation for the GUE Kernel

2.1 One contour integral representation for Hermite polynomials

Recall that the GUE kernel is defined by

$$K_N(x,y) = \sum_{n=0}^{N-1} \psi_n(x)\psi_n(y),$$

with the orthonormal functions

$$\psi_n(x) = \frac{1}{\sqrt{h_n}} p_n(x) e^{-x^2/4},$$

where the (monic, probabilists') Hermite polynomials are given by

$$p_n(x) = (-1)^n e^{x^2/2} \frac{d^n}{dx^n} e^{-x^2/2}.$$
 (2.1)

Note that the monic Hermite polynomials are uniquely defined by the orthogonality property. We are not proving (2.1) here, it is an exercise.

Lemma 2.1 (Generator function for Hermite polynomials). We have

$$\exp\left(xt - \frac{t^2}{2}\right) = \sum_{n>0} p_n(x) \frac{t^n}{n!}.$$

The series converges for all t since the left-hand side is an entire function of t.

Proof. Write the generating function as

$$\sum_{n>0} p_n(x) \frac{t^n}{n!} = \sum_{n>0} \frac{(-1)^n t^n}{n!} e^{x^2/2} \frac{d^n}{dx^n} e^{-x^2/2}.$$

Since the factor $e^{x^2/2}$ does not depend on n, we can factor it out:

$$\sum_{n>0} p_n(x) \frac{t^n}{n!} = e^{x^2/2} \sum_{n>0} \frac{(-t)^n}{n!} \frac{d^n}{dx^n} e^{-x^2/2}.$$

Now, recall Taylor's theorem: for any analytic function f we have

$$f(x-t) = \sum_{n>0} \frac{(-t)^n}{n!} f^{(n)}(x).$$

Applying this with $f(x) = e^{-x^2/2}$, we deduce that

$$\sum_{n>0} \frac{(-t)^n}{n!} \frac{d^n}{dx^n} e^{-x^2/2} = e^{-(x-t)^2/2}.$$

Thus, our generating function becomes

$$\sum_{n>0} p_n(x) \frac{t^n}{n!} = e^{x^2/2} e^{-(x-t)^2/2},$$

as desired. \Box

By Cauchy's integral formula we can write using Lemma 2.1:

$$p_n(x) = \frac{n!}{2\pi i} \oint_C \frac{\exp\left(xt - \frac{t^2}{2}\right)}{t^{n+1}} dt,$$
 (2.2)

where the contour C is a simple closed curve encircling the origin. Indeed, here we use the complex analysis property

$$\frac{1}{2\pi i} \oint_C \frac{1}{z^{k+1}} dz = \begin{cases} 1, & \text{if } k = 0, \\ 0, & \text{if } k \neq 0, \end{cases}$$

so (2.2) is simply a complex analysis version of the operation of extracting the coefficient of t^n in the Taylor expansion.

Therefore,

$$\psi_n(x) = \frac{1}{\sqrt{h_n}} p_n(x) e^{-x^2/4} = \frac{e^{-x^2/4}}{\sqrt{h_n}} \frac{n!}{2\pi i} \oint_C \frac{\exp\left(xt - \frac{t^2}{2}\right)}{t^{n+1}} dt.$$

2.2 Another contour integral representation for Hermite polynomials

We start with the Fourier transform identity

$$\int_{-\infty}^{\infty} \exp\left(-\frac{t^2}{2} + i t x\right) dt = \sqrt{2\pi} e^{-x^2/2}.$$

Differentiating both sides n times with respect to x yields

$$\frac{d^n}{dx^n} \left(e^{-x^2/2} \right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (i\,t)^n \, e^{-t^2/2 + i\,t\,x} \, dt.$$

Recalling the definition

$$p_n(x) = (-1)^n e^{x^2/2} \frac{d^n}{dx^n} \left(e^{-x^2/2}\right),$$

we obtain

$$p_n(x) = \frac{(-1)^n e^{x^2/2}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (i t)^n e^{-t^2/2 + i t x} dt.$$

Next, perform the change of variable

$$s = it$$
, so that $t = -is$, $dt = -ids$.

Under this substitution the factors transform as follows:

$$(it)^n = s^n,$$

and the exponent becomes

$$-\frac{t^2}{2} + itx = -\frac{(-is)^2}{2} + i(-is)x = \frac{s^2}{2} + sx.$$

Thus, the integral transforms into

$$\int_{-\infty}^{\infty} (it)^n e^{-t^2/2 + itx} dt = -i \int_{-i\infty}^{i\infty} s^n e^{s^2/2 + sx} ds.$$

Substituting back we have

$$p_n(x) = \frac{(-1)^n e^{x^2/2}}{\sqrt{2\pi}} (-i) \int_{-i\infty}^{i\infty} s^n e^{s^2/2 + sx} ds.$$

That is,

$$p_n(x) = \frac{i(-1)^{n+1} e^{x^2/2}}{\sqrt{2\pi}} \int_{-i\infty}^{i\infty} s^n e^{s^2/2 + s x} ds.$$

Finally, change the sign of s, and we get:

$$p_n(x) = \frac{i e^{x^2/2}}{\sqrt{2\pi}} \int_{-i\infty}^{i\infty} s^n e^{s^2/2 - s x} ds.$$

Therefore,

$$\psi_n(x) = \frac{i e^{x^2/4}}{\sqrt{2\pi h_n}} \int_{-i\infty}^{i\infty} s^n e^{s^2/2 - s x} ds.$$

2.3 Double contour integral representation for the GUE kernel

Lemma 2.2. We have

$$h_n = \int_{-\infty}^{\infty} p_n(x)^2 e^{-x^2/2} dx = n! \sqrt{2\pi}.$$

Proof. Multiply the generating function

$$\exp\left(xt - \frac{t^2}{2}\right) = \sum_{n>0} p_n(x) \frac{t^n}{n!}$$

with a second copy (with parameter s):

$$\exp\left(xs - \frac{s^2}{2}\right) = \sum_{m>0} p_m(x) \frac{s^m}{m!}.$$

Then,

$$\exp\left(xt - \frac{t^2}{2}\right) \exp\left(xs - \frac{s^2}{2}\right) = \sum_{n,m>0} p_n(x)p_m(x)\frac{t^n s^m}{n!m!}.$$

Integrate both sides against $e^{-x^2/2} dx$. Using the orthogonality

$$\int_{-\infty}^{\infty} p_n(x)p_m(x)e^{-x^2/2}dx = h_n\delta_{nm},$$

the right-hand side becomes

$$\sum_{n>0} \frac{h_n}{(n!)^2} (ts)^n.$$

On the left-hand side, we have

$$\int_{-\infty}^{\infty} e^{-x^2/2} \exp\left(x(t+s) - \frac{t^2 + s^2}{2}\right) dx.$$

Completing the square in x or recalling the standard Gaussian integral yields

$$\sqrt{2\pi} \exp\left(\frac{(t+s)^2 - (t^2 + s^2)}{2}\right) = \sqrt{2\pi} \exp(ts).$$

Thus, we obtain

$$\sqrt{2\pi} \exp(ts) = \sum_{n>0} \frac{h_n}{(n!)^2} (ts)^n.$$

Expanding the left side as

$$\sqrt{2\pi} \sum_{n \ge 0} \frac{(ts)^n}{n!},$$

and comparing coefficients, we conclude that

$$\frac{h_n}{(n!)^2} = \frac{\sqrt{2\pi}}{n!} \implies h_n = n!\sqrt{2\pi}.$$

This completes the proof.

Therefore, we can sum up the kernel (another proof of the Christoffel–Darboux formula):

$$K_n(x,y) = \sum_{k=0}^{n-1} \psi_k(x)\psi_k(y)$$

$$= \sum_{k=0}^{n-1} \frac{e^{-x^2/4}}{\sqrt{h_k}} \frac{k!}{2\pi i} \oint_C \frac{\exp\left(xt - \frac{t^2}{2}\right)}{t^{k+1}} dt \frac{i e^{y^2/4}}{\sqrt{2\pi h_k}} \int_{-i\infty}^{i\infty} s^k e^{s^2/2 - sy} ds$$

$$= e^{(y^2 - x^2)/4} \sum_{k=0}^{n-1} \frac{1}{4\pi^2} \oint_C \frac{\exp\left(xt - \frac{t^2}{2}\right)}{t^{k+1}} dt \int_{-i\infty}^{i\infty} s^k e^{s^2/2 - sy} ds.$$

We can now extend the sum to $k = -\infty$, and get a formula for the GUE kernel as a double contour integral:

$$K_n(x,y) = \frac{e^{(y^2 - x^2)/4}}{4\pi^2} \oint_C \int_{-i\infty}^{i\infty} \frac{\exp\left\{\frac{s^2}{2} - sy - \frac{t^2}{2} + tx\right\}}{s - t} \left(\frac{s}{t}\right)^n ds dt.$$

Details will be in the next Lecture 6.

Remark 2.3. Many other versions of the GUE / unitary invariant ensembles admit determinantal structure:

- 1. The GUE corners process [JN06]
- 2. The Dyson Brownian motion (e.g., add a GUE to a diagonal matrix) [NF98]
- 3. GUE corners plus a fixed matrix [FF14]
- 4. Corners invariant ensembles with fixed eigenvalues UDU^{\dagger} , where D is a fixed diagonal matrix and U is Haar distributed on the unitary group [Met13]

F Problems (due DATE)

References

- [FF14] P. Ferrari and R. Frings, Perturbed GUE minor process and Warren's process with drifts, J. Stat. Phys 154 (2014), no. 1-2, 356–377. arXiv:1212.5534 [math-ph]. ↑6
- [JN06] K. Johansson and E. Nordenstam, Eigenvalues of GUE minors, Electron. J. Probab. 11 (2006), no. 50, 1342–1371. arXiv:math/0606760 [math.PR]. ↑6
- [Met13] A. Metcalfe, Universality properties of Gelfand-Tsetlin patterns, Probab. Theory Relat. Fields 155 (2013), no. 1-2, 303-346. arXiv:1105.1272 [math.PR]. ↑6
- [NF98] T. Nagao and P.J. Forrester, Multilevel dynamical correlation functions for Dyson's Brownian motion model of random matrices, Physics Letters A **247** (1998), no. 1-2, 42–46. ↑6
- L. Petrov, University of Virginia, Department of Mathematics, 141 Cabell Drive, Kerchof Hall, P.O. Box 400137, Charlottesville, VA 22904, USA E-mail: lenia.petrov@gmail.com