Lecture 7: Partial Derivatives

October 18, 2016

Sunil Kumar Gauttam

Department of Mathematics, LNMIIT

Definition 7.1 Let $D \subseteq \mathbb{R}^2$ and let $f: D \to \mathbb{R}$ be any function. Let $(x_0, y_0) \in D$ be an interior point of D, i.e., there exist some r > 0 such that $B_r(x_0, y_0) \subseteq D$. We say that the partial derivative of f with respect to x at (x_0, y_0) exists if the limit

$$\lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h} \quad exists.$$

This limit is denoted by $f_x(x_0, y_0)$ or $\frac{\partial f}{\partial x}(x_0, y_0)$. Similarly, We say the partial derivative of f with respect to g at (x_0, y_0) is defined as

$$\frac{\partial f}{\partial y}(x_0, y_0) = f_y(x_0, y_0) := \lim_{k \to 0} \frac{f(x_0, y_0 + k) - f(x_0, y_0)}{k}$$

provided limit in right hand side exist.

These partial derivatives are also called the first-order partial derivatives or simply the first partials of f at (x_0, y_0) .

Definition 7.2 If $f_x(x_0, y_0)$, $f_y(x_0, y_0)$ exists, then the ordered pair $(f_x(x_0, y_0), f_y(x_0, y_0))$ is called the gradient of f at (x_0, y_0) and is denoted by $\nabla f(x_0, y_0)$. Thus

$$\nabla f(x_0, y_0) = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right)$$

Physical Interpretation of Partial Derivatives:

The partial derivative $f_x(x_0, y_0)$ gives the rate of change in f at (x_0, y_0) along the x-axis, whereas $f_y(x_0, y_0)$ gives the rate of change in f at (x_0, y_0) along the y-axis. In practice, finding the partial derivative of f with respect to x amounts to taking the derivative of f(x, y) as a function of x, treating y as a constant.

Geometrical Interpretation of Partial Derivatives:

Example 7.3 Consider the function

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Find partial derivative of f at (0,0).

Solution: For $h \neq 0$, we have

$$\frac{f(0+h,0) - f(0,0)}{h} = \frac{0-0}{h} = 0$$

Hence $f_x(0,0) = 0$. Similarly, for $k \neq 0$, we have

$$\frac{f(0,0+k) - f(0,0)}{k} = \frac{0-0}{k} = 0$$

Hence $f_y(0,0) = 0$.

Remark 7.4 We have seen that f is not continuous at (0,0). So existence of partial derivatives does not imply the continuity. This tell us that partial derivative is not equivalent to existence of derivative of f.

Example 7.5 Let $f: \mathbb{R}^2 \to \mathbb{R}$ be the norm function given by $f(x,y) := \sqrt{x^2 + y^2}$. Then both the partial derivatives of f exist at every point of \mathbb{R}^2 except the origin; in fact, for any $(x_0, y_0) \neq (0, 0)$,

$$f_x(x_0, y_0) = \frac{x_0}{\sqrt{x_0^2 + y_0^2}}$$
 and $f_y(x_0, y_0) = \frac{y_0}{\sqrt{x_0^2 + y_0^2}}$

To examine whether any of the partial derivatives exist at (0,0), we look at $f(x,0) = \sqrt{x^2} = |x|$. We know that it is not differentiable at x = 0. Hence $f_x(0,0)$ does not exists. Similarly, to find $f_y(0,0)$ look at $f(0,y) = \sqrt{y^2} = |y|$, which is again not differentiable at 0.

Question: Is f continuous at (0,0)? **Answer:** Yes. We give two methods.

- 1. Note that $g(x,y) = x^2 + y^2 \ge 0$ is a polynomial function hence continuous everywhere. Also $h(t) = \sqrt{t}$ is a continuous function for all $t \ge 0$. Hence composition $f(x,y) = (h \circ g)(x,y)$ is continuous everywhere on the plane. So in particular, f is continuous at (0,0).
- 2. Note that $g(x,y) = x^2 + y^2 \ge 0$ is a polynomial function hence continuous everywhere, therefore $\lim_{(x,y)\to(0,0)} g(x,y) = 0 = g(0,0)$. Now applying the "root rule" of limits of functions of two variable,

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} \sqrt{g(x,y)} = \sqrt{0} = 0 = f(0,0)$$

Hence f is continuous at (0,0).

This example tells us continuity does not imply existence of partial derivatives.

Theorem 7.6 If the partial derivatives of f(x, y) exist throughout $B_r(x_0, y_0)$ for some r > 0 and if either f_x or f_y is bounded on the disk $B_r(x_0, y_0)$ then f is continuous at (x_0, y_0) .

Exercise 7.7 Let f be as in Example 7.3. Show that none of the partial derivatives is bounded on any disk centered at (0,0).