EXAMEN ARTIUM 1978 KJEMI

A Kj AR Ki 31

Eksamenstid: 5 timer

Naturfaglinjen og 3. klasse ny struktur **Bokmålstekst**

M står for mol/dm³. Atommasser/atomvekter og andre konstanter det blir bruk for, står oppført etter oppgave IV.

- Forklar hvoriedes en kan framstille oksygen i laboratoriet. Skriv reaksjonslikning. a) Forklar deretter hvordan oksygen blir framstilt i industrien.
- Fortell om de fysiske og kjemiske egenskapene til oksygen, og gi noen eksempler på hva b) oksygen blir brukt til.
- Skriv reaksjonslikningene for de reaksjonene som går for seg når oksygen 1) c) reagerer med hvert av stoffene Mg, N2, SO2 og NH3
 - Skriv likningene for reaksjonene mellom vann og hver av disse stoffene: CO_2 , $\mathrm{P}_2\mathrm{O}_5$, $\mathrm{Na}_2\mathrm{O}$ og MgO. Sett navn på reaksjonsproduktene.
- Gjør greie for bindingsforholdene i hydrogenperoksyd. d) Skriv reaksjonslikningen for spaltingen av hydrogenperoksyd, og vis at dette er en redoksreaksjon.
- Hvorledes dannes ozon, og hva blir det brukt til? e) Hvordan er bindingsforholdene i et ozonmolekyl?

- Hvor mange gram KMnO_4 trenger en for å lage 0,500 dm 3 0,300 M KMnO_4 -løsning? a)
- Hvor mange gram CO_2 blir dannet når 14,0 g NaHCO $_3$ blir spaltet? Reaksjonslikningen er: 2 NaHCO $_3$ \longrightarrow Na $_2$ CO $_3$ + H $_2$ O + CO $_2$ b)

Hva blir volumet av denne gassen ved 0 °C og 1 atmosfæres trykk?

c)

Bruk det du vet om oksydasjonstall til å balansere likningen:
$$\operatorname{Cr}_2\operatorname{O_7}^2 - + \operatorname{SO_3}^2 - + \operatorname{H}^+ \longrightarrow \operatorname{Cr}^3 + + \operatorname{SO_4}^2 - + \operatorname{H}_2\operatorname{O}.$$

Regn deretter ut hvor mange gram ${
m K_2Cr_2O_7}$ som trengs for å oksydere 1,0 dm 3

- Finn pH i 0.10 M CH₃COOH når $K_a = 2.0 \cdot 10^{-5}$ M. Hva blir pH dersom en til 1,0 dm av denne løsningen setter til 100 cm 3 1,2 M CH₃COOH? d)
- Finn løsligheten til sølvsulfat i mol/dm 3 når $K_{\rm SD}({\rm Ag_2SO_4})$ er 1,6·10 $^{-5}$ M 3 . e)

- $\text{Når H}_2(\mathbf{g}) \text{ og I}_2(\mathbf{g}) \text{ blir blandet, får vi likevekstreaksjonen H}_2(\mathbf{g}) + \mathbf{I}_2(\mathbf{g}) \ensuremath{\rightleftarrows} 2 + \mathbf{I}_2(\mathbf{g}).$ a) Forklar hva som skjer i blandingen fra det øyeblikket H $_2$ og I $_2$ blir blandet og til likevekt har innstilt seg. Utled et uttrykk for likevektskonstanten K for denne reaksjonen.
- I et kar leder en inn 3,0 mol $\rm H_2$ og 2,0 mol $\rm I_2$. Regn ut hvor mange mol HI det er i b) karet ved likevekt når K = 54.

- Hvilke typer av isomeri kjenner du fra organisk kjemi? Gi eksempler på de forskjellige a) typene.
- Gi et eksempel på hvordan en ved oksydasjon eller ved hydrolyse av to isomere forbindelb) ser får dannet forskjellige sluttprodukter.
- Et stoff inneholder 88,9% karbon og 11,1% hydrogen.

Finn den empiriske (enkleste) formelen. Hva blir molekylformelen når formelmassen er

Tegn de mulige strukturformlene for stoffet.

Atommasser (u)/atomvekter og andre konstanter:

Ag: C:	108,0 12,0		$54,9 \\ 23,0$	Molvolum 22,4 dm ³ ved 0 ⁰ og 1 atm.
Cr:	52,0	O:	16,0	
H:	1,0	S:	32,1	
K:	39, 1			

Gi opp i margen på første side av eksamenspapiret det læreverket og de utgavene som du legger opp.

Merk: Bokmálstekst på den andre sida!

KJEMI Naturfaglinja og 3. klasse ny struktur

Nynorsk tekst

Eksamenstid: 5 timar

c)

M står for mol/dm³. Atommassar/atomvekter og andre konstantar det blir bruk for, står oppførte etter oppgåve IV.

A Ki

AR Kj 31

- Forklar korleis ein kan framstille oksygen i laboratoriet. Skriv reaksjonslikning. a) Forklar deretter korleis oksygen blir framstilt i industrien.
- Fortel om dei fysiske og kjemiske eigenskapane til oksygen, og gi nokre døme på kva b) oksygen blir brukt til.
 - Skriv reaksjonslikningane for dei reaksjonane som går for seg når oksygen reagerer med kvart av stoffa Mg, N2, SO2 og NH3.
 - Skriv likningane for reaksjonane mellom vatn og kvart av desse stoffa: ${\rm CO_2},\ {\rm P_2O_5},\ {\rm Na_2O}$ og MgO. Set namn på reaksjonsprodukta.
- d) Gjer greie for bindingsforholda i hydrogenperoksyd.

Skriv reaksjonslikninga for spaltinga av hydrogenperoksyd, og vis at dette er ein redoksreaksjon.

Korleis blir ozon danna, og kva blir det brukt til? e) Korleis er bindingsforholda i eit ozonmolekyl?

- Kor mange gram KMnO₄ treng ein for å lage 0,500 dm³ 0,300 M KMnO₄ -løysing? a)
- Kor mange gram ${\rm CO}_2$ blir danna når 14,0 g NaHCO $_3$ blir spalta? Reaksjonslikninga er: b } $2 \text{ NaHCO}_3 \longrightarrow \text{Na}_2 \text{CO}_3 + \text{H}_2 \text{O} + \text{CO}_2$

Kva blir volumet av denne gassen ved 0 °C og 1 atmosfæres trykk?

c)

Bruk det du veit om oksydasjonstal til å balansere likninga:
$$\operatorname{Cr}_2\operatorname{O_7}^2$$
 - + $\operatorname{SO_3}^2$ - + H + \longrightarrow Cr^3 + + $\operatorname{SO_4}^2$ - + H₂O.

Rekn deretter ut kor mange gram $\mathrm{K_2Cr_2O_7}$ som trengst for å oksydere 1,0 dm 3 $0.10 \text{ M} \text{ H}_2\text{SO}_3$.

- Finn pH i $\stackrel{7}{0}$, $\stackrel{7}{10}$ M CH₃COOH når K_a = 2,0 · 10 $\stackrel{-5}{0}$ M. Kva blir pH dersom ein til 1,0 dm³ d) av denne løysinga set til 100 cm 3 1,2 M CH $_3$ COOH?
- Finn løysingsevna til sølvsulfat i mol/dm 3 når $K_{\rm sp}({\rm Ag_2SO_4})$ er 1,6·10 $^{-5}$ M 3 . e)

- Når $H_2(g)$ og $I_2(g)$ blir blanda, fär vi jamvektsreaksjonen $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$. a) Forklar kva som skjer i blandinga frå den augneblinken H₂ og I₂ blir blanda og til jamvekt har innstilt seg. Lei ut eit uttrykk for jamvektskonstanten K for denne reaksjonen.
- I eit kar leier ein inn 3,0 mol $\rm H_2$ og 2,0 mol $\rm I_2$. Rekn ut kor mange mol $\rm HI$ det er i b) karet ved jamvekt når K = 54.

IV

- Kva for typar av isomeri kjenner du frå organisk kjemi? Gi døme på dei forskjellige typane. a)
- Gi eit døme på korleis ein ved oksydasjon eller ved hydrolyse av to isomere sambindingar b) får danna forskjellige sluttprodukt.
- Eit stoff inneheld 88,9% karbon og 11,1% hydrogen. c)

Finn den empiriske (enklaste) formelen. Kva blir molekylformelen når formelmassen er 54,0 u?

Teikn dei moglege strukturformlane for stoffet.

Atommassar (u)/atomvekter og andre konstantar:

	108,0		54,9	Molyolum 22,4 dm ³ ved 0° og 1
C:	12,0	Na:	23,0	Morvorum 22,4 dm ved o og r
Cr:	52,0	O:	16,0	
H:	1,0	S:	32, 1	
K:	39 1			

atm.