

Republic of the Philippines CAMARINES SUR POLYTECHNIC COLLEGES

Nabua, Camarines Sur

Telefax: (054) 288-4627 Website: www.cspc.edu.ph

COLLEGE of COMPUTER STUDIES

Name: JUDAH PAULO LL. VIÑAS

Year & Section: BSIT-2F

SET OPERATIONS

PROBLEM:

Find the answer of this problem : $(\mathbf{C}^c \setminus \mathbf{A})^c \cup \mathbf{B}$

SOLUTION:

To solve this problem, we'll break it down step by step.

Step 1: Find the complement of set C, denoted as C^c

The complement of set C (\mathbb{C}^c), contains all the elements in the universal set U that are not in set C.

$$C^c = \{1, 2, 3, 4, 5, 7, 8, 12, 13, 14, 15\}$$

Step 2: Find the set difference of the complement of set C and set A, denoted as $C^c \setminus A$.

$$A = \{3, 4, 7, 8, 9, 11, 15\}$$

The set difference of C^c and A is the elements in C^c that are not in A.

$$C^c \setminus A = \{1, 2, 5, 12, 13, 14\}$$

Step 3: Find the complement of the set difference obtained in Step 2, denoted as $(\mathbb{C}^c \setminus A)^c$.

The complement of the set difference $(C^c \setminus A)^c$ contains all the elements in the universal set U that are not in the set $\{1, 2, 5, 12, 13, 14\}$.

$$(C^c \setminus A)^c = \{3, 4, 6, 7, 8, 9, 10, 11, 15\}$$

Step 4: Find the union of the set obtained in Step 3 with set B, denoted as $(C^c \setminus A)^c \cup B$.

$$B = \{2, 5, 7, 8, 11\}$$

Combining the elements of set B with the set obtained in Step 3:

$$(C^c \setminus A)^c \cup B = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15\}$$

FINAL ANSWER:

Therefore, the union of $(C^c \setminus A)^c$ and B is $\{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15\}$.