2019年 SEU-Xilinx 国际暑期学校团队项目策 划书

项目名称 : 基于 FPGA 的高帧率目标检测系统设计

项目组长

: ____13021951750 联系电话

: _____720 实验教室

填表说明

- 一、申报表要按照要求逐项认真填写,填写内容必须实事求是表述准确严谨。空 缺项要填"无"。
- 二、格式要求:表格中的字体采用小四号宋体,单倍行距;需签字部分由相关人员以黑色钢笔或签字笔签名。
 - 三、表格栏高不够可增加。
 - 四、填报者须注意页面的排版。

项目名称

基于机器视觉的智能目标检测系统应用非常广泛,尤其在实际应用中, 经常涉及高速目标的实时检测和控制,对目标检测的智能性和实时性提出了 更严格的要求。使用深度学习技术实现的目标检测算法,能够准确地将目标 检测并识别出来。但为了提升准确率使用大型网络,由此因此很难满足图像 信喜传输和处理的实时性要求。

目 简 介

目前很多学者正致力于高帧率目标检测系统的研究。学术界常用来提高 识别帧率的方法有,通过网络剪枝减小网络冗余,通过量化减少参数冗余, 通过定点化减少计算复杂度和压缩网络,通过并行、流水技术增加计算单元 的计算并行度。

本研究以高帧频与实时性作为研究的切入点,设计一种基于 Ultral 96 平 台, 充分利用芯片上的 FPGA 资源及其硬件并行的优势, 进行目标检测识别 的任务。本研究主要从两个方面入手实现既定目标:一是从算法上,选取更 适合应用场景的网络,再逐步对网络进行压缩,将网络配置到硬件上。二是 从硬件上,增加摄像头 OV5640 以及 HDMI 接口,板卡上电后直接对 OV5640 捕获到的图像进行识别,再将识别结果以 HDMI 接口输出,摆脱了对主机的 依赖, 更加符合 IOT 对终端设备的要求。

Xilinx 提供的 demo 识别速率为 14fps,本研究最终目标是希望能达到对 640*480*3 的图像实现 30fps 的识别效果,并将结果通过 HDMI 接口实时显 示出来。

申请人或申请团队		姓名	学校	年级	所在院系 /专业	联系电话	E-mail
	组长	林晓波	北京 科技 大学	博士四 年级	自动化学院/ 控制科学与 控制工程	1302195175 0	linxiaobo110@g mail.com
		许运丰	北京大学	硕士一 年级	软件与微电 子学院/电子 与通信工程	1881097003 8	xuyunfeng@pku .edu.cn
	成	刘扬	东南 大学	本科三 年级	电子信息工 程	1536688031 5	liuyang151617 @126.com
	员	刘杨琳	南京 航空 航天 大学	硕士一 年级	能源与动力 学院/航空工 程	1322279071	554580839@qq. com

一、项目技术路线(技术方案、系统框图、功能模块划分等)

本项目拟研发一款基于 DPU 的 yolo-v3 神经网络硬件加速方案,以实现低功耗、高效率、高帧率的道路目标识别(识别行人车辆灯等)。针对低功耗、高效率的性能指标,本项目拟选用 xilinx 的 soc 平台(含 arm 核和 fpga)作为神经网络计算的主要载体;针对实时高帧率的系统要求,本项目拟采用针对嵌入式设备优化的网络模型(yolo v3-mobileNet)和先进的剪枝算法来优化整体的网络模型;针对研发时间短、研发难度大的问题,本项目拟采用众多已有的技术如 DPU、VDMA 等 IP 来减小工作量和提高可行性。总体图如下:

考虑系统功能与任务分工,将项目分成以下四个部分:

1. 深度网络的训练与剪枝

考虑到深度网络过于复杂与 fpga 平台算力不足的矛盾,需要训练精度下降不多同时网络大小大幅减小的网络模型。本项目拟使用 tensorflow 框架来实现 yolo v3 网络,然后采用先进的剪枝技术,有效减小网络的权值数量,以方便在 fpga 平台上的实现。

2. 深度模型的转换与定点化

为了利用 DPU 提高整个系统的开发效率,需要把 tensorflow 输出的模型转换成 DPU 支持的模型,此外,还需要把浮点的权值转换为定点操作以节省 fpga 的资源开销,此部分工作拟通过 DNNDK 来实现。

3. 实时图像采集与结果输出

本项目拟采用摄像头模块来完成图像采集工作,通过 LCD 屏幕完成处理后的图像的展示工作。图像采集拟采用 usb 摄像头来实现,结果输出拟通过 vdma 来完成。系统的总体流程控制在 ps 端实现,用户可以通过按键开关控制系统的运行。

4. 操作系统定制与驱动编写

Linux 操作系统可以提供方便的任务和、文件管理和网络通信等功能,本项目拟采用 petalinux 定制适宜的 linux 内核及 rootfs。同时,为了方便 linux 下对 PL 中的 DPU、VDMA 等 IP 核的操作,本项目需要对相关的驱动进行定制和重新编译。

二、特色与创新体现

- 1、本项目基于 DPU 实现 yolo-v3 神经网络硬件的加速。DPU 是基于 Xilinx 可重构特性的 FPGA 芯片,设计的专用的深度学习处理单元,基于已有的逻辑单元,设计并行高效的乘法器及逻辑电路,且抽象出定制化的指令集和编译器,从而可实现快速的开发与产品迭代。
- 2、本项目使用先进的计算模型、剪枝算法、转换数据类型等手段进行优化,减少计算量、提高速度,实现更高帧率的处理效果。在先进的计算模型的基础上,通过剪枝算法舍去大量权值,并保证整体性能下降微小,以实现更高的"性价比"。因为浮点数对资源开销太大,所以将权值的数据类型从浮点数转换为定点数,以节省资源。

三、项目时间进度(按天计划)、以及相应的人员分工情况等

进度计划:

- 7.12 阅读资料,掌握和熟悉整个流程
- 7.13 接入摄像头
- 7.14 接入 HDMI
- 7.15 模型剪枝压缩量化
- 7.16 模型改进
- 7.17 整理材料,制作视频
- 7.18 项目提交,项目验收

人员分工:

林晓波:整体框架设计、模型剪枝

许运丰:模型量化、定点化

刘扬: HDMI 接口显示 刘杨琳: 摄像头接口输入