Problem 1.5 - Uncertainty Analysis, Case A

Get["UCAnalysis.m", Path → {NotebookDirectory[]}]

$$\frac{p}{\rho_{\text{Hg}}\,g} \quad \mapsto \quad \begin{pmatrix} \rho_{\text{Hg}} & 13\,550\,\pm\,5 & \text{Uniform}\mathcal{D} \\ g & 9.80665 \\ p & 101\times10^3\pm0.5\times10^3 & \text{Uniform}\mathcal{D} \end{pmatrix}$$

Evaluated Functional Relationship

QAnalysisEnvironment

$$y = \frac{x_3}{x_1 x_2}$$

Variable		Uncertainty Interval	Distribution	$ \partial f/\partial x_i $
x ₁ x ₂	$ ho_{ ext{ t Hg}}$	$(1.3550 \pm 0.0005) \times 10^4$ 9.80665 × (exact) 10°	Uniform	5.60947×10^{-5} 7.7507×10^{-2}
x ₃	p	$(1.010 \pm 0.005) \times 10^{5}$	Uniform	7.52558×10^{-6}

У	0.760083671666205	
Ymin	0.756041898961835	y - 0.00404177
Ymax	0.764128428329774	y + 0.00404476
ε_{\max} y ± ε_{\max}	0.00404326413337472 (7.60 ± 0.04) × 10-1	= 0.532% = $7.60(4) \times 10^{-1}$
u _c	0.00217847480928703	= 0.287%
y ± u _c	$(7.60 \pm 0.02) \times 10^{-1}$	= $7.60(2) \times 10^{-1}$

Absolute Maximum Uncertainty

$$\varepsilon_{\text{max}} = \sum_{i=1}^{n} |\partial_{x_i} f[x]| \varepsilon_i; f[x] \pm \varepsilon_{\text{max}} // \text{QUCE}$$

```
0.760083671666205 ± 0.00404326

\in [0.75604; 0.764127]

\simeq (7.60 \pm 0.04) \times 10^{-1} = 7.60(4) \times 10^{-1}
```

Combined Standard Uncertainty

$$u_{c} = \left(\sum_{i=1}^{n} \left(\partial_{x_{i}} \mathbf{f}[\mathbf{x}]\right)^{2} u_{i}^{2}\right)^{1/2}; \quad \mathbf{f}[\mathbf{x}] \pm u_{c} // \text{ QUCA}$$

```
0.760083671666205 ± 0.00217847

\in [0.757905; 0.762262]

\simeq (7.60 \pm 0.02) \times 10^{-1} = 7.60(2) \times 10^{-1}
```

Monte Carlo Simulation

```
Block[{data, trials = 10<sup>6</sup>},
data = f@@Table[RandomReal[fDist[i], {trials}], {i, 1, n}];
Mean[data] ± StandardDeviation[data]] // PUCA

0.760084426837153 ± 0.0021794

€ [0.757905; 0.762264]

α (7.60±0.02) × 10<sup>-1</sup> = 7.60(2) × 10<sup>-1</sup>
```