Examen de Electrónica. Ingeniería Informática. 22 de enero de 2003 Nombre: Grupo:

Nota: Deben realizarse un total de cuatro problemas, siendo obligatorios los problemas 3, 4 y 5 y pudiéndose elegir entre el problema 1 y 2.

- 1. En la figura se muestra un circuito de una etapa amplificadora con un transistor bipolar de unión de β = 100.
 - (a) Calcular el circuito equivalente de Thèvenin de polarización del transistor y determinar el punto de trabajo, es decir, los valores de corriente de base (I_B), corriente de colector (I_C) y la caída de tensión colector-emisor (V_{CE}).
 - (b) Representar en una gráfica (V_{CE}, I_C) la recta de carga, el punto de trabajo y esquematizar las curvas características del BJT para varias I_B.
 - (c) Si v_s es una señal sinusoidal tal que genera una corriente de base $i_B(t)$ =(5 μ A)×sen ω t, hallar la tensión $v_o(t)$ en la resistencia de carga. Evaluar la amplificación en corriente.
 - (d) Explicar claramente el efecto que produce el condensador de emisor (C_E) si se supone muy grande.

(4 puntos)

- 2. Se tiene el amplificador de la figura a), basado en un transistor MOSFET, cuyas curvas características se encuentran en la figura b), con $V_{DD}{=}20$ V, $R_1{=}10$ M Ω , $R_2{=}10$ M Ω , $R_5{=}0.4$ k Ω y $R_d{=}0.6$ k Ω . Se pide:
 - a) Hallar la recta de carga del circuito de polarización del transistor y representarla sobre la figura b).
 - b) Determinar el punto de trabajo correspondiente a V_{GS}=6 V y representarlo.
 - c) A partir de los puntos de intersección de la recta de carga con las curvas características hacer una tabla donde se den los valores de I_D correspondientes a cada valor de V_{GS} . Representar los puntos obtenidos en una gráfica I_D vs V_{GS} (curva de transferencia). Obtener a partir de la gráfica la transconductancia del transistor g_m en el punto V_{GS} =6 V.
 - d) Se introduce una pequeña señal alterna V_{gs} . Pintar la señal amplificada y dar un valor aproximado del factor de amplificación de voltaje.
 - e) Supongamos que se conecta a R_s un condensador en paralelo. ¿Cómo afecta a los resultados de c). (4 puntos)

3. Determinar el voltaje de salida (V_0) y las corrientes que atraviesan los diodos D1 (I_{D1}) y D2 (I_{D2}) suponiendo que ambos son idénticos y su voltaje umbral es V_{γ} =0.7 V, en los casos:

(a)
$$V_1=0$$
 V
(b) $V_1=4$ V.
Datos: $R_1=5$ k Ω , $R_2=10$ k Ω , $V^+=+5$ V y $V^-=-5$ V.
(2 puntos)

4. Diseñar una puerta lógica NOR de dos entradas utilizando un transistor bipolar de unión o un transistor MOSFET, describiendo los voltajes de salida en función de los voltajes a la entrada y explicando los estados del transistor. Los estados lógicos 0 y 1 se deben corresponder con señales de 0 y 5 V. (2 puntos)

5. Diseñar un amplificador con una tensión de salida de la forma v_o (t) = 5 v_1 (t) -2 v_2 (t) mediante un circuito como el representado en la figura donde los amplificadores operacionales son ideales y las resistencias no superen el valor de 10 $k\Omega$. Para ello, determinar en primer lugar la expresión de la tensión de salida. (2 puntos)

