

COMSATS University Islamabad, Lahore Campus

☑ Mid Lab Examination Spring 2024

Course Title:	Artificial Intelligence	Course Code:	CSC462	Credit Hours:	4(3,1)
Course Instructor/s:	M.Taimoor Akmal	Programme Name:	BCS	Maximum Marks:	25
Time Allowed:	90 Minutes	Date:	01-04-2024		
Student's Name:		Reg. No.			

Important Instructions / Guidelines:

- Attempt all questions.
- Show all your work for partial credits. Please be neat.
- Upload your solutions in Google Classroom.

Question 1: CLO: <6>; Bloom Taxonomy Level: <Applying>. [12.5 marks]

Implementing BFS

Scenario:

You are a treasure hunter exploring a vast underground dungeon represented by the given graph. Each node represents a room, and each edge represents a passage between two rooms. Your goal is to find the shortest path from the entrance (room A) to the treasure chamber (room J) using **Depth-First Search** (**DFS**). However, the dungeon is full of traps and dead ends, so you must navigate carefully to avoid getting lost.

Graph:

Question:

- 1. Use Depth-First Search (DFS) to find a path from Room A to Room J.
- 2. Use Depth-First Search (DFS) to find a path from Room A to Room I.

Sample Input/Output:

Path from Room A to Room F is:

Shortest path from A to J: A $ext{->}$ C $ext{->}$ F

Hints:

- 1. Start at node A and explore one path as far as possible before backtracking.
- 2. Maintain a stack to keep track of the nodes to visit next.
- 3. Mark each visited node to avoid revisiting nodes.
- 4. When the goal node is reached, return the path taken to reach that node.

Question 2: CLO: <6>; Bloom Taxonomy Level: <Applying>. [12.5 marks]

Consider the following directed graph representing a network of cities connected by roads, along with the cost of traveling between each pair of cities:

Assume that the heuristic values for each city (estimates of the cost to reach the goal city 'G') are as follows:

```
heuristic_values = {
    'A': 7,  # Estimated cost from A to G
    'B': 5,  # Estimated cost from B to G
    'C': 5,  # Estimated cost from C to G
    'D': 6,  # Estimated cost from D to G
    'E': 5,  # Estimated cost from E to G
    'F': 4,  # Estimated cost from F to G
    'G': 0  # Estimated cost from G to G
}
```

You are starting at city 'A' and want to reach city 'G' using the A* search algorithm.

Question. What is the path from city 'A' to city 'G' and its total cost?