Introduction to Audio Content Analysis

Module A.1: Fundamentals — Digitization

alexander lerch

introduction overview

corresponding textbook section

Section A.1

■ lecture content

- discretization of signals in time and amplitude
- ambiguity and aliasing
- sampling theorem
- properties of the quantization error

■ learning objectives

- summarize the principle of discretization
- describe the implications of the sample theorem

introduction overview

corresponding textbook section

Section A.1

■ lecture content

- discretization of signals in time and amplitude
- ambiguity and aliasing
- sampling theorem
- properties of the quantization error

■ learning objectives

- summarize the principle of discretization
- describe the implications of the sample theorem

digital signals introduction

digital signals are represented with a limited number of values

- **sampling**: time discretization continuous time → discrete equidistant points in time
- 2 quantization: amplitude discretization continuous amplitude → discrete, pre-defined, set of values

sampling basic concept

Georgia | Center for Music Tech 🛚 Technology

- f_S [Hz]: number of samples per second
- $T_{\rm S} = 1/f_{\rm S}$ [s]: distance between two neighboring samples

sampling sampling frequencies

Georgia │ Center for Music Tech ∭ Technology College of Design

What are typical sample rates

sampling sampling frequencies

Georgia Center for Music Tech Tech Technology

What are typical sample rates

- 8–16 kHz: speech (phone)
- 44.1–48 kHz: (consumer) audio/music
- >48 kHz: production audio

sampling sampling frequencies

What are typical sample rates

- 8–16 kHz: speech (phone)
- 44.1–48 kHz: (consumer) audio/music
- >48 kHz: production audio

sampling sampling ambiguity

Georgia Center for Music Tech Technology

compare speed of wheel (spokes) $f_{
m wheel}$ between real world and video recording for an accelerating stage coach

- 1 $f_{
 m wheel} < rac{f_{
 m S}}{2}$ speeding up
- $\frac{f_{\rm S}}{2} < f_{\rm wheel} < f_{\rm S}$ slowing down
- $f_{
 m wheel} = f_{
 m S}$: standing still
- 4 . . .

Georgia Center for Music Tech Technology

compare speed of wheel (spokes) $f_{
m wheel}$ between real world and video recording for an accelerating stage coach

- 1 $f_{\mathrm{wheel}} < rac{f_{\mathrm{S}}}{2}$ speeding up
- $\frac{f_{\rm S}}{2} < f_{\rm wheel} < f_{\rm S}$ slowing down
- $f_{
 m wheel} = f_{
 m S}$: standing still
- 4 . . .

Georgia Center for Music Tech Technology

compare speed of wheel (spokes) $f_{
m wheel}$ between real world and video recording for an accelerating stage coach

- 1 $f_{
 m wheel} < rac{f_{
 m S}}{2}$ speeding up
- $\frac{f_{\rm S}}{2} < f_{\rm wheel} < f_{\rm S}$ slowing down
- 3 $f_{
 m wheel} = f_{
 m S}$: standing still
- 4 . .

Georgia Center for Music Technology

compare speed of wheel (spokes) $f_{
m wheel}$ between real world and video recording for an accelerating stage coach

- 1 $f_{\mathrm{wheel}} < rac{f_{\mathrm{S}}}{2}$ speeding up
- $rac{f_{
 m S}}{2} < f_{
 m wheel} < f_{
 m S}$ slowing down
- 3 $f_{
 m wheel} = f_{
 m S}$: standing still
- 4 . .

video example: youtu.be/QYYK4tlCMIY

digital signals sampling theorem

sampling theorem

A sampled signal can be reconstructed without loss of information if the sample rate $f_{\rm S}$ is higher than twice the bandwidth $f_{\rm max}$ of the original audio signal.

$$f_{\rm S} > 2 \cdot f_{\rm max}$$

 $f_{\rm S}/2$ is also referred to as the $Nyquist^1$ -rate

¹Harry Nyquist, 1889–1976

digital signals quantization

Georgia Center for Music Tech Technology

- continuous amplitude values are mapped to pre-defined, equidistant set of values
- signal stored in binary ⇒ # quantization steps equals power of 2
- example: 4-bit quantization
 - word length: $w = \log_2(\mathcal{M}) = 4 \text{ bit}$
 - number of quantization steps: $M = 2^w = 16$

- continuous amplitude values are mapped to pre-defined, equidistant set of values
- signal stored in binary ⇒ # quantization steps equals power of 2
- example: 4-bit quantization
 - word length: $w = \log_2(\mathcal{M}) = 4 \text{ bit}$
 - number of quantization steps: $\mathcal{M} = 2^w = 16$

digital signals quantization wordlength

What are typical wordlengths?

digital signals quantization wordlength

Georgia Center for Music Tech Technology

0

What are typical wordlengths?

- 8 bit: speech
- 12–14 bit: low quality audio/music
- 16 bit: (consumer) audio/music
- >16 bit: production audio

digital signals quantization wordlength

8

What are typical wordlengths?

- 8 bit: speech
- 12–14 bit: low quality audio/music
- 16 bit: (consumer) audio/music
- >16 bit: production audio

digital signals quantization error

$$x(i) \xrightarrow{q(i)} x_{Q}(i) = x(i) + q(i)$$

quantization noise q is added to input signal x

$$x_{Q}(i) = x(i) + q(i)$$

$$q(i) = x(i) - x_{Q}(i)$$

digital signals quantization error

$$x(i)$$
 $\xrightarrow{q(i)}$ $x_{Q}(i) = x(i) + q(i)$

model for quantization: quantization noise q is added to input signal x

$$x_{Q}(i) = x(i) + q(i)$$

$$q(i) = x(i) - x_{Q}(i)$$

What is the maximum amplitude of the quantization error?

What is the maximum amplitude of the quantization error?

digital signals quantization error properties

Under the assumption that the signal has a variance much higher than the quantization step size (no derivation), we find that the quantization error

- is white noise and uncorrelated to signal,
- is uniformly distributed, and
- its power W_Q is directly related to the wordlength.

The quantizer quality is usually given by its *Signal-to-Noise Ratio (SNR)*

$$SNR = 10 \cdot \log_{10} \left(\frac{W_{\rm S}}{W_{\rm Q}} \right) \ [dB]$$

digital signals quantization error properties

Under the assumption that the signal has a variance much higher than the quantization step size (no derivation), we find that the quantization error

- is white noise and uncorrelated to signal,
- is uniformly distributed, and
- its power W_Q is directly related to the wordlength.

The quantizer quality is usually given by its Signal-to-Noise Ratio (SNR)

$$SNR = 10 \cdot \log_{10} \left(\frac{W_{\rm S}}{W_{\rm Q}} \right) [dB]$$

digital signals quantization: SNR

signal-to-noise ratio (quantizer)

$$SNR = 6.02 \cdot w + c_{\rm S} \quad [dB]$$

- every additional bit adds app. 6 dB SNR
- $lue{}$ constant c_{S} depends on signal (scaling and PDF)
- square wave (full scale): $c_S = 10.80 \, dB$
- sinusoidal wave (full scale): $c_S = 1.76 \, dB$
- rectangular PDF (full scale): $c_S = 0 dB$
- Gaussian PDF (full scale = $4\sigma_g$): $c_S = -7.27 \, dB$

digital signals quantization: SNR

signal-to-noise ratio (quantizer)

$$SNR = 6.02 \cdot w + c_{\rm S} \quad [dB]$$

- every additional bit adds app. 6 dB SNR
- \blacksquare constant c_S depends on *signal* (scaling and PDF)
- square wave (full scale): $c_{\rm S} = 10.80\,{\rm dB}$
- sinusoidal wave (full scale): $c_S = 1.76 \, dB$
- rectangular PDF (full scale): $c_S = 0 dB$
- Gaussian PDF (full scale = $4\sigma_g$): $c_S = -7.27 \, dB$

- when represented as integer, different wordlengths lead to different maximum amplitude ranges
- most common: normalize to the absolute maximum integer value and represent the signal in floating point format
- ⇒ signal amplitude:

$$-1 \le x_{\mathbf{Q}} < 1$$

 \Rightarrow level:

max. amplitude
$$\mapsto 0dBFS$$

floating point representation

$$x_{\rm Q} = M_{\rm G} \cdot 2^{E_{\rm G}}$$

- when represented as integer, different wordlengths lead to different maximum amplitude ranges
- most common: normalize to the absolute maximum integer value and represent the signal in floating point format
- ⇒ signal amplitude

$$-1 \le x_{\mathrm{Q}} < 1$$

 \Rightarrow level:

max. amplitude
$$\mapsto 0dBFS$$

floating point representation

$$x_{\rm Q} = M_{\rm G} \cdot 2^{E_{\rm G}}$$

- when represented as integer, different wordlengths lead to different maximum amplitude ranges
- most common: normalize to the absolute maximum integer value and represent the signal in **floating point format**
- \Rightarrow signal amplitude:

$$-1 \le x_{\rm Q} < 1$$

 \Rightarrow level:

max. amplitude $\mapsto 0 dBFS$

■ floating point representation

$$x_{\rm Q} = M_{\rm G} \cdot 2^{E_{\rm G}}$$

- when represented as integer, different wordlengths lead to different maximum amplitude ranges
- most common: normalize to the absolute maximum integer value and represent the signal in floating point format
- \Rightarrow signal amplitude:

$$-1 \le x_{\mathrm{Q}} < 1$$

 \Rightarrow level:

max. amplitude
$$\mapsto 0dBFS$$

floating point representation

$$x_{\rm Q} = M_{\rm G} \cdot 2^{E_{\rm G}}$$

- when represented as integer, different wordlengths lead to different maximum amplitude ranges
- most common: normalize to the absolute maximum integer value and represent the signal in floating point format
- \Rightarrow signal amplitude:

$$-1 \le x_{\rm Q} < 1$$

 \Rightarrow level:

max. amplitude
$$\mapsto 0dBFS$$

floating point representation

$$x_{\rm Q} = M_{\rm G} \cdot 2^{E_{\rm G}}$$

rview intro sampling sampling ambiguity theorem error discrete amplitude range summary

summary lecture content

- continuous signal is sampled to be discrete in time
 - number of samples per second is called sampling rate or sampling frequency
- continuous signal is quantized to be discrete in amplitude
 - number of quantization steps equals 2^{wordlength}

sampling theorem

- sampled signal can be reconstructed without loss of information if the sample rate $f_{\rm S}$ is higher than twice the bandwidth $f_{\rm max}$ of the original audio signal
- otherwise reconstruction is ambiguous and aliasing occurs

quantization error properties

- maximum amplitude is half the step size
- number of steps depends on wordlength

SNR

- SNR depends on input signal characteristic and wordlength
- SNR increases linearly (6 dB/bit) with wordlength

