Homework 6

Ryan Coyne

March 8, 2024

Question 1

Consider the group $G = D_8$. You are given that $H = \{e, r^4, s, sr^4\}$ is a subgroup of D_8 .

a) Either show that H is a normal subgroup of D_8 , or show that it is not a normal subgroup.

Proof For H to be normal, it is necessary that gH = Hg for all $g \in G$. Now, consider g = r:

$$rH = \{r, r^5, rs, rsr^4\}$$

$$= \{r, r^5, sr^7, sr^{11}\}$$

$$= \{r, r^5, sr^7, sr^3\}$$

$$Hr = \{r, r^5, sr, sr^5\}.$$

Thus, H is not normal because $rH \neq Hr$.

b) List all the left cosets of H.

Question 2

Give the composition table for the group $\operatorname{Aut}(\mathbb{Z}_{24}).$

0	f_1	f_5	f_7	f_{11}	f_{13}	f_{17}	f_{19}	f_{23}
f_1	f_1	f_5	f_7	f_{11}	f_{13}	f_{17}	f_{19}	f_{23}
f_5	f_5	f_1	f_{11}	f_7	f_{17}	f_{13}	f_{23}	f_{19}
f_7	f_7	f_{11}	f_1	f_5	f_{19}	f_{23}	f_{13}	f_{17}
f_{11}	f_{11}	f_7	f_5	f_1	f_{23}	f_{19}	f_{17}	f_{13}
f_{13}	f_{13}	f_{17}	f_{19}	f_{23}	f_1	f_5	f_7	f_{11}
f_{17}	f_{17}	f_{13}	f_{23}	f_{19}	f_5	f_1	f_{11}	f_7
f_{19}	f_{19}	f_{23}	f_{13}	f_{17}	f_7	f_{11}	f_1	f_5
f_{23}	f_{23}	f_{19}	f_{17}	f_{13}	f_{11}	f_7	f_5	f_1