Fiche de révision DS1

Fiche de révision DS1 de maths

- 1. Rappel primitive et dérivé
- 2. Identités trigonométrique:
- 3. Rappel mathématique
 - IPP
 - Fréquence
 - Partité d'une fonction
- 4. Espaces de Hilbert
 - <u>Définitions</u>
 - Propriétés
- <u>5. Décomposition en Séries de Fourier</u>
 - Définition
 - Coefficients de Fourier
 - Propriétés
- 6. Convolution
 - <u>Définition</u>
 - Propriétés
 - Exemple: Convolution de deux fonctions exponentielles
 - Correction
- 7. Distribution de Dirac
 - Définition
 - Propriétés
- 8. Distribution de 2 variables
 - Définition
 - Gradient d'une fonction à 2 variables
 - <u>Dérivée partielle selon x</u>
 - <u>Dérivée partielle selon y</u>
 - Rotationnel en 2D
 - Théorème de Schwarz
 - Recherche de point critique
- 9. Matrice hessienne
 - Définition
 - Propriétés

- Exemple: $f(x, y) = x^2 + xy + y^2$
- Calcul des dérivées partielles
- Matrice hessienne
- Analyse

1. Rappel primitive et dérivé

Fonction $f(x)$	Dérivée $f'(x)$	Primitive $F(x)$
$x^n (n eq -1)$	nx^{n-1}	$\frac{x^{n+1}}{n+1}$
x^{-1}	$-x^{-2}$	$\ln \ x\ $
$\ln(x)$	$\frac{1}{x}$	$x \ln(x) - x$
e^x	e^x	e^x
a^x	$a^x \ln(a)$	$\frac{a^x}{\ln(a)}$
$\sin(x)$	$\cos(x)$	$-\cos(x)$
$\sin(ax)$	$a\cos(x)$	$-rac{1}{a}\cos(ax)$
$\cos(x)$	$-\sin(x)$	$\sin(x)$
$\cos(ax)$	$-a\sin(x)$	$\frac{1}{a}\sin(ax)$
$\tan(x)$	$1+ an^2(x)=rac{1}{\cos^2(x)}$	

2. Identités trigonométrique:

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$

$$\sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a)$$

$$\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b)$$

$$\sin(a-b) = \sin(a)\cos(b) - \sin(b)\cos(a)$$

$$\cos(a)\sin(b) = \frac{1}{2}[\sin(a+b) + \sin(a-b)]$$

$$\cos(a)\cos(b) = \frac{1}{2}[\cos(a+b) + \cos(a-b)]$$

$$\sin(a)\sin(b) = \frac{1}{2}[\cos(a-b) - \cos(a+b)]$$

3. Rappel mathématique IPP

$$\int u \, v' \, dx = uv - \int u' \, v \, dx$$

Fréquence

$$\omega = 2\pi * F$$
 ou $\omega = \frac{2\pi}{T}$ $F = \frac{1}{T}$

Partité d'une fonction

Une fonction est paire si f(-x) = f(x)Une fonction est impaire si f(-x) = -f(x)Une fonction peut ne pas avoir de parité.

4. Espaces de Hilbert

Un **espace de Hilbert** est un espace vectoriel normé complet muni d'un produit scalaire.

Définitions

Produit scalaire :

$$\langle u,v \rangle = \sum_{i=1}^n u_i \overline{v_i} \quad \text{(ou une intégrale si l'espace est infini-dimensionnel)}.$$

Norme induite :

$$\|u\|=\sqrt{\langle u,u
angle}$$

Propriétés

1. **Orthogonalité** : Deux vecteurs u et v sont orthogonaux si :

$$\langle u,v
angle = 0$$

2. Inégalité de Cauchy-Schwarz :

$$|\langle u,v
angle|\leq \|u\|\|v\|.$$

3. Théorème de projection orthogonale :

Si H est un sous-espace fermé, tout vecteur x se décompose en :

$$x=x_H+x_H^\perp,\quad x_H\in H,\, x_H^\perp\in H^\perp.$$

5. Décomposition en Séries de Fourier

Définition

Une fonction périodique f(x) de période 2π peut être décomposée en une série de Fourier :

$$f(x)=a_0+\sum_{n=1}^{\infty}\left[a_n\cos(nx)+b_n\sin(nx)
ight].$$

Coefficients de Fourier

• a_0 : (tous le temps)

$$a_0 = rac{1}{T} \int_d^{d+T} f(x) \, dx$$

• *a_n* : (si paire)

$$a_n = rac{2}{T} \int_d^{d+T} f(x) \cos(nx) \, dx$$

• b_n : (si impaire)

$$b_n = rac{2}{T} \int_d^{d+T} f(x) \sin(nx) \, dx$$

Propriétés

- Convergence : La série converge en moyenne quadratique dans $L^2([-\pi,\pi])$. (Pas vu en cours mais je le note la quand même au cas ou)
- Parseval:

$$rac{1}{2\pi}\int_{-\pi}^{\pi}|f(x)|^2dx=rac{a_0^2}{2}+\sum_{n=1}^{\infty}rac{a_n^2+b_n^2}{2}$$

6. Convolution

Définition

La convolution de deux fonctions f et g est définie par :

$$(fst g)(t)=\int_{-\infty}^{\infty}f(au)g(t- au)\,d au$$

Propriétés

1. Commutativité :

$$f * g = g * f$$

2. Associativité :

$$f * (g * h) = (f * g) * h$$

3. Distributivité:

$$f * (g + h) = (f * g) + (f * h)$$

4. Lien avec la transformée de Fourier :

$$\mathcal{F}(f*g) = \mathcal{F}(f) \cdot \mathcal{F}(g)$$

Exemple: Convolution de deux fonctions exponentielles

Soient α et beta deux nombres réels. Nous cherchons à démontrer l'existence et à calculer le produit de convolution :

$$\left(e^{lpha x}\mathbf{1}_{[0,+\infty[}(x)
ight)st\left(e^{eta x}\mathbf{1}_{[0,+\infty[}(x)
ight).$$

Correction

Remarquons d'abord que l'existence du produit de convolution de ces deux fonctions ne résulte pas immédiatement des théorèmes du cours.

- Si alpha>0 et beta>0, alors les deux fonctions ne sont dans aucun L^p pour $p\geq 1$.
- Elles appartiennent à L^1_{loc} , mais aucune des deux n'a de support compact.

Ainsi, pour démontrer l'existence du produit de convolution, il faut montrer que, pour tout $x \in \mathbb{R}$, la fonction

$$y\mapsto e^{lpha(x-y)}\mathbf{1}_{[0.+\infty[}(x-y)e^{eta y}\mathbf{1}_{[0.+\infty[}(y)$$

est intégrable.

Comme cette fonction est positive, il suffit de faire le calcul sans les valeurs absolues.

On a alors:

$$fst g(x)=\int_{\mathbb{D}}e^{lpha(x-y)}\mathbf{1}_{[0,+\infty[}(x-y)e^{eta y}\mathbf{1}_{[0,+\infty[}(y)\,dy.$$

Substituons les fonctions indicatrices :

$$fst g(x)=e^{lpha x}\int_0^{+\infty}e^{-lpha y}\mathbf{1}_{[0,+\infty[}(x-y)e^{eta y}\,dy.$$

Or, $x-y\in [0,+\infty[\iff x\geq y.$ Il en résulte que :

• Si $x \leq 0$, alors f * g(x) = 0. - Si $x \geq 0$, alors :

$$f*g(x)=e^{lpha x}\int_0^x e^{(eta-lpha)y}\,dy$$

Pour terminer, on a:

• Si $\beta \neq \alpha$, alors :

$$f*g(x)=rac{1}{eta-lpha}ig(e^{eta x}-e^{lpha x}ig).$$

- Si $\beta = \alpha$, alors :

$$f * g(x) = xe^{\alpha x}.$$

Ce qui donne le produit de convolution:

$$fst g(x) = egin{cases} 0 & ext{si } x \leq 0, \ rac{1}{eta-lpha}ig(e^{eta x}-e^{lpha x}ig) & ext{si } x>0 ext{ et } eta
eq lpha, \ xe^{lpha x} & ext{si } x>0 ext{ et } eta=lpha. \end{cases}$$

7. Distribution de Dirac

Définition

La distribution de Dirac $\delta(x)$ est définie par :

$$\int_{-\infty}^{\infty} \delta(x) f(x) \, dx = f(0)$$

pour toute fonction f continue au voisinage de 0.

Propriétés

1. Support ponctuel:

$$\delta(x) = 0 \quad \text{pour } x \neq 0$$

2. Translation:

$$\delta(x-a)$$
 est centrée en $x=a$

3. Propriété de filtrage :

$$\int_{-\infty}^{\infty} \delta(x-a) f(x) \, dx = f(a)$$

4. Lien avec la transformée de Fourier :

$$\mathcal{F}(\delta(x)) = 1$$

8. Distribution de 2 variables

Définition

Une **distribution de deux variables** est une généralisation des fonctions classiques permettant de modéliser des phénomènes singuliers ou localisés, comme les impulsions ou les discontinuités. Elle agit sur des fonctions tests $\phi(x,y)$ lisses et à support compact par une intégrale généralisée.

Gradient d'une fonction à 2 variables

$$abla f(x,y) = egin{bmatrix} rac{\partial f}{\partial x} \ rac{\partial f}{\partial y} \end{bmatrix}$$

Dérivée partielle selon x

$$rac{\partial f}{\partial x} = \lim_{\Delta x o 0} rac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

Dérivée partielle selon y

$$rac{\partial f}{\partial y} = \lim_{\Delta y o 0} rac{f(x,y+\Delta y) - f(x,y)}{\Delta y}$$

Rotationnel en 2D

$$abla imes f = rac{\partial f_y}{\partial x} - rac{\partial f_x}{\partial y}$$

Théorème de Schwarz

$$rac{\partial^2 f}{\partial x \partial y} = rac{\partial^2 f}{\partial y \partial x}, \quad ext{si } f_{xy} ext{ et } f_{yx} ext{ sont continues.}$$

Recherche de point critique

On pose $\nabla f(x,y) = 0$

Puis une fois que x est exprimé par rapport a y on cherche les points évidents.

Ensuite une exprime la matrice hessienne pour les points critiques.

Si le déterminant $\Delta > 0$ est défini positive.

Si $\frac{\partial^2 f}{\partial x^2} > 0$, alors le point critique est un **minimum local**.

Si $\frac{\partial^2 f}{\partial x^2} < 0$, alors le point critique est un **maximum local**.

Si Δ < 0 le point critique est un **point de selle**.

Si Δ = 0 le test est **indéterminé**, et il faut utiliser d'autres méthodes pour conclure.

9. Matrice hessienne

Définition

La matrice hessienne d'une fonction $f: R^n \to R$ est une matrice carrée composée des dérivées partielles secondes de f. Si $f(x_1, x_2, x_3, \dots, x_n)$ est deux fois continûment différentiable, alors :

$$H_f(x) = egin{bmatrix} rac{\partial^2 f}{\partial x_1^2} & rac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & rac{\partial^2 f}{\partial x_1 \partial x_n} \ rac{\partial^2 f}{\partial x_2 \partial x_1} & rac{\partial^2 f}{\partial x_2^2} & \cdots & rac{\partial^2 f}{\partial x_2 \partial x_n} \ dots & dots & dots & dots \ rac{\partial}{\partial x_2 \partial x_1} & rac{\partial^2 f}{\partial x_2 \partial x_n} \ rac{\partial}{\partial x_2 \partial x_1} & rac{\partial}{\partial x_2 \partial x_2} & \cdots & rac{\partial}{\partial x_2 \partial x_n} \ \end{pmatrix}$$

Propriétés

- 1. La matrice hessienne est **symétrique** si f est de classe C^2 $\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$.
- 2. La hessienne permet de déterminer la ${\bf convexit\acute{e}}$ ou la ${\bf concavit\acute{e}}$ de f :
 - Si $H_f(x)$ (x) est définie positive $(\forall v, v^T H_f(x) v > 0)$ alors f est **strictement** convexe.

• Si $H_f(x)$ (x) est définie négative ($\forall v, v^T H_f(x) v < 0$) alors f est **strictement** concave.

Exemple: $f(x, y) = x^2 + xy + y^2$

Calcul des dérivées partielles

1. Les dérivées partielles premières :

$$\frac{\partial f}{\partial x} = 2x + y, \quad \frac{\partial f}{\partial y} = x + 2y.$$

2. Les dérivées partielles secondes :

$$rac{\partial^2 f}{\partial x^2}=2, \quad rac{\partial^2 f}{\partial y^2}=2, \quad rac{\partial^2 f}{\partial x \partial y}=rac{\partial^2 f}{\partial y \partial x}=1$$

Matrice hessienne

$$H_f(x,y) = egin{bmatrix} 2 & 1 \ 1 & 2 \end{bmatrix}$$

Analyse

La matrice hessienne $H_f(x,y)$ est définie positive (ses valeurs propres sont toutes positives). Cela signifie que la fonction $f(x,y)=x^2+xy+y^2$ est strictement convexe.

© Félix MARQUET