a)

The Morgan's laws state that given two events A and B from the same sample space, $\overline{A \cup B} = \overline{A} \cap \overline{B}$ and $\overline{A \cap B} = \overline{A} \cup \overline{B}$. Proof both assertions graphically using Venn diagrams.

b)

Let A and B be two events of a same sample space, such that P(A) = 3/8, P(B) = 1/2 and $P(A \cap B) = 1/4$. Compute the following probabilities:

- (a) $P(A \cup B)$.
- (b) $P(\overline{A})$ and $P(\overline{B})$.
- (c) $P(\overline{A} \cap \overline{B})$.
- (d) $P(A \cap \overline{B})$.
- (e) P(A|B).
- (f) $P(A|\overline{B})$.

c)

Let A and B be two events of a same sample space, such that P(A) = 0.6 and $P(A \cup B) = 0.9$. Compute P(B) under the following assumptions:

- (a) A and B are incompatible.
- (b) A and B are independent.

a)

Las leyes de Morgan establecen que dados dos sucesos aleatorios A y B de un mimo espacio muestral, $\overline{A \cup B} = \overline{A} \cap \overline{B}$ y $\overline{A \cap B} = \overline{A} \cup \overline{B}$. Demostrar ambas igualdades usando diagramas de Venn.

b)

Sean A y B sucesos de un mismo espacio muestral tales que: P(A) = 3/8, P(B) = 1/2, $P(A \cap B) = 1/4$. Calcular:

- a) $P(A \cup B)$.
- b) $P(\overline{A})$ y $P(\overline{B})$.
- c) $P(\overline{A} \cap \overline{B})$.
- d) $P(A \cap \overline{B})$.
- e) P(A/B).
- $f) P(A/\overline{B}).$

ر)

Sean A y B sucesos de un mismo espacio muestral, tales que P(A) = 0.6 y $P(A \cup B) = 0.9$. Calcular P(B) si:

- a) A y B son incompatibles.
- b) A y B son independientes.