STUDYPE

**Predicting Financial Time Series using Deep Learning** 

Module 1. Google Colaboratory

Jongho Kim

NICE Pricing & Information Inc.

Fall, 2018

Note. This content mainly refers the summer session of KAIST organized by Jiyong Park(2018)

### "Hello World" on Colab

Access to URL: https://colab.research.google.com/notebooks/welcome.ipynb#recent=true





## "Hello World" on Colab



- print("Hello World")
- Click button or type "CTRL + ENTER"

# "File Upload" on Colab

Access to URL: <a href="https://colab.research.google.com/notebooks/io.ipynb">https://colab.research.google.com/notebooks/io.ipynb</a>

```
from google.colab import files

uploaded = files.upload()

for fn in uploaded.keys():
    print('User uploaded file "{name}" with length {length} bytes'.format(
    name=fn, length=len(uploaded[fn])))

다 파일선택 선택된 파일 없음 Cancel upload
```

## "Set GPU" on Colab





## Run Keras on Google Colab

Code URL: https://colab.research.google.com/drive/1U81gAePnC0oX9iq13dCzl-KOcJC3TcP5

#### This is keras tutorial code from pythonprogramming

https://pythonprogramming.net/introduction-deep-learning-python-tensorflow-keras/

```
In [ ]: import tensorflow as tf # deep learning library. Tensors are just multi-dimensional arrays
import matplotlib.pyplot as plt
%matplotlib inline
```

#### keras MNIST data load

#### **Fully Connected Neural Net Model**

```
In []: model = tf.keras.models.Sequential()  # a basic feed-forward model
  model.add(tf.keras.layers.Flatten())  # takes our 28x28 and makes it 1x784
  model.add(tf.keras.layers.Dense(128, activation=tf.nn.relu))  # a simple fully-connected layer, 12
  8 units, relu activation
  model.add(tf.keras.layers.Dense(128, activation=tf.nn.relu))  # a simple fully-connected layer, 12
```



# Google Colaboratoy Useful Shortcuts

| Actions                 | Colab        | Jupyter      |
|-------------------------|--------------|--------------|
| show keyboard shortcuts | Ctrl/Cmd M H | Н            |
| Insert code cell above  | Ctrl/Cmd M A | A            |
| Insert code cell below  | Ctrl/Cmd M B | В            |
| Delete cell/selection   | Ctrl/Cmd M D | DD           |
| Interrupt execution     | Ctrl/Cmd M I | II           |
| Convert to code cell    | Ctrl/Cmd M Y | Y            |
| Convert to text cell    | Ctrl/Cmd M M | M            |
| Split at cursor         | Ctrl/Cmd M - | Ctrl Shift - |

# Thank you ©

Contact Info: quantic.jh@gmail.com

## References

• Jiyong Park (2018), KAIST Summer Session, Retrieved from <a href="https://sites.google.com/view/kaist-mis-session2018/overview?authuser=0">https://sites.google.com/view/kaist-mis-session2018/overview?authuser=0</a>