Robust sub-population discovery using self-pruning decision trees

Assaf Magen
Mamie Wang, Billy Kim
Claire Malley, Amulya Shastry
Christopher Rhodes, Jonathan Badger

Github: ReSET (Robust Subpopulation dEcision Trees)

Population structure discovery

Comparison across replicate experiments

Experiment I

Experiment II

Identify reproducible populations

Identify irreproducible populations

Experiment I

Experiment II

Experiment I

Experiment II

Identify cluster defining genes

Identify cluster defining genes

Identify cluster defining genes

Conclusions

- Clustering hierarchy provides improved functionality
- Optimal clustering granularity can be defined in an unbiased manner
- ML approached may improve marker gene identification

Future Directions

- Improve clustering and hierarchy deduction
- Identify ideal clustering granularity computationally
- Refine cluster marker genes discovery methodology

Acknowledgments

Hackathon lead

Allissa Dillman

Team members

Team lead

Assaf Magen

Cluster reproducibility

Mamie Wang, Billy Kim, Christopher Rhodes

ML strategies for cluster markers

Claire Malley, Amulya Shastry, Jonathan Badger