

<u>Course</u> > <u>Unit 5:</u> ... > <u>Lec. 10:</u>... > 7. Exer...

7. Exercise: Expected value rule and total expectation theorem

Exercises due Mar 13, 2020 05:29 IST Completed

Exercise: Expected value rule and total expectation theorem

6/8 points (graded)

Let X, Y, and Z be jointly continuous random variables. Assume that all conditional PDFs and expectations are well defined. E.g., when conditioning on X=x, assume that x is such that $f_X(x)>0$. For each one of the following formulas, state whether it is true for all choices of the function g or false (i.e., not true for all choices of g).

$$^{\mathsf{1.}}\mathbf{E}\big[g\left(Y\right)\,|\,X=x\big]=\int\!g\left(y\right)f_{Y|X}\left(y\,|\,x\right)\,dy$$

True

Answer: True

$$^{2\text{.}}\mathbf{E}\big[g\left(y\right)\mid X=x\big]=\int\!g\left(y\right)f_{Y\mid X}\left(y\mid x\right)\,dy$$

False

Answer: False

$$^{\mathsf{3.}}\,\mathbf{E}ig[g\left(Y
ight)ig] = \int\!\mathbf{E}ig[g\left(Y
ight)\mid\! Z=zig]\,f_{Z}\left(z
ight)\,dz$$

True

✓ Answer: True

$$^{4.}\mathbf{E}ig[g\left(Y
ight)\mid X=x,Z=zig]=\int\!g\left(y
ight)f_{Y\mid X,Z}\left(y\mid x,z
ight)\,dy$$

True ✓ **Answer:** True

 $^{5.}\mathbf{E}ig[g\left(Y
ight)\left|X=x
ight]=\int\!\mathbf{E}ig[g\left(Y
ight)\left|X=x,Z=z
ight]f_{Z\left|X
ight.}\!\left(z\left|x
ight)dz$

True

✓ Answer: True

6. $\mathbf{E}[g(X,Y) \mid Y=y] = \mathbf{E}[g(X,y) \mid Y=y]$

False **× Answer:** True

7. $\mathbf{E}ig[g\left(X,Y
ight)\mid Y=yig]=\mathbf{E}ig[g\left(X,y
ight)ig]$

True

Answer: False

 $^{8.}\mathbf{\,E}ig[g\left(X,Z
ight)\mid Y=yig]=\int\!g\left(x,z
ight)f_{X,Z\mid Y}\left(x,z\mid y
ight)\,dy$

False

Answer: False

Solution:

- 1. True. This is the usual expected value rule, applied to a conditional model where we are given that X=x.
- 2. False. Here the quantity inside the expectation, $g\left(y\right)$, is a number (not a random variable). The left-hand side is a function of y, whereas on the right-hand side, y, is a dummy variable that gets integrated away. So, the formula is wrong on a purely syntactical basis (the left-hand side depends on y, while the right-hand side does not).
- 3. True. This is the total expectation theorem, where we condition on the events $Z=z.\,$
- 4. True. This is the usual expected value rule, applied to a conditional model where we are given that X=x and Z=z.
- 5. True. This is the same total expectation theorem as in the third part, except that everything is calculated within a conditional model in which event X=x is known to have occurred.
- 6. True. When we condition on Y=y, we know the value of Y , and we can replace $g\left(X,Y\right)$ by $g\left(X,y\right) .$

False. Given that Y=y, we need to somehow take into account the conditional distribution of X, whereas the right-hand side is determined by the unconditional PDF of X.

8. False. The left-hand side is a function of y, whereas the right-hand side (after y is integrated out) is a function of x and z. The correct form (expected value rule, in a conditional model) is:

$$\mathbf{E}ig[g\left(X,Z
ight) \mid Y=yig] = \int \int g\left(x,z
ight) f_{X,Z\mid Y}\left(x,z\mid y
ight) \, dx \, dz.$$

Submit

You have used 1 of 1 attempt

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 5: Continuous random variables:Lec. 10: Conditioning on a random variable; Independence; Bayes' rule / 7. Exercise: Expected value rule and total expectation theorem

Show all posts ✓ by recent act	tivity 🗸
? Question 5 I need more explanation for question 5 please	v_ 4
I'm not sure who writes those problems but thank you so much. Although I got some of them wrong, but it cleared many issues I had with notations and conditioning.	4
? How to prove part 6 mathematically? I'm struggling to lose the second integral in the LHS to get to RHS. Any help? (deadline is over so we can	5
? <u>Difficulty to interpret hypothesis</u> "X, Y, and Z be jointly continuous random variables" Does it mean that the pairs X and Y, Y and Z, Z and	2
? RHS of 6 and 7 To me, the right hand side of parts 6 and 7 is equivalent, but I might be missing some notation nuance. I	1 new_
(Staff) Serious issue with (2) I have given this section a good thought, and I could get all right except 2. My initial choice was what you	4

✓ number 2 - isn't the expected value of a constant is a constant?	4
? Part 7	2
? Part 5. Why expectation and an extra variable in the integral?	4
? #5 Can help to explain on the derivation on #5?	3
Hint for #5 Course -> Unit 4: Discrete random variables -> Lec. 7: Conditioning on a random variable; Independence	1

© All Rights Reserved

