# UPPSALA UNIVERSITET

FÖRELÄSNINGSANTECKNINGAR

# Affin & Projektiv Geometri

Rami Abou Zahra

## Contents

1. Plana algebraiska kurvor 2

#### 1. Plana algebraiska kurvor

Vi inleder med definition:

### Theorem 1.1: Plan affin algebraisk kurva

En **plan affin algebraisk kurva** är nollställesmängden till ett icke-konstant polynom  $f(x,y) \in \mathbb{R}[x,y]$  där  $\mathbb{R}[x,y]$  är mängden av alla polynom med 2 variabler med reella koefficienter.

Nollställesmängden kan betecknas  $V(f) = \{(x, y) \in \mathbb{R}^2 : f(x, y) = 0\}$ 

#### Theorem 1.2: Affin-avbildning

En linjär avbildning är på formen  $x\mapsto ax$ , medan en affin avbildning är "ungefär linjär", dvs  $x\mapsto ax+b$ 

Ett sätt att betrakta polynom är att de är ett ändligt antal utförande av operatorer på kropp-element.

#### Exempel:

Betrakta följande polynom i  $\mathbb{R}^2$ , ax + by + c = f(x, y). Polynomet är av grad 1, och är därför därmed ett linjärt polynom.

#### Exempel:

Vi kan även ha nollställesmängden som parabel med följande funktion  $f(x,y) = y - x^2$ 

Bygger vi vidare på föregående exempel kommer vi fram till följande mer generella formel för att "omvandla" ett endimensionellt polynom till en flerdimensionell:

$$f(x,y) = y - p(x)$$

Där p(x) är ett godtyckligt polynom.

#### Exempel:

Om vi betraktar följande funktion  $f(x,y) = x^2 + y^2$  (enhetscirkeln) så har den en nollställesmängd som är en punkt.

#### Exempel:

Om vi betraktar tomma-mängden som nollställesmängd (dvs exempelvis  $f(x,y) = x^2 + y^2 + 1$ ) så är det absolut en valid nollställesmängd, men en obehaglig sådan ty det inte finns en intuitiv geometrisk bild, kan vi kalla den för en kurva?  $f(x,y) = x^2 + 1$  har ju samma nollställesmängd!

#### Exempel:

Betrakta följande funktion f(x,y) = xy. Denna har unionen av x-axeln och y-axeln som lösningsmängd

En affin funktion från flervarren som vi kanske minns är faktiskt linjäriseringen av f:

$$f(\bar{r}) \approx f(\bar{r}_0) + \nabla f(\bar{r}_0) \cdot (\bar{r} - \bar{r}_0)$$

I den här kursen tillåter vi allmänna linjära basbyten, alltså ej bara isometriska avbildningar utan vi kan skala om ena axeln och krympa den/deformera den!