means that if (x_1, x_2) are the coordinates with respect to the standard origin (0, 0) and if (x'_1, x'_2) are the coordinates with respect to the new origin (c_1, c_2) , we have

$$x_1 = x_1' + c_1$$
$$x_2 = x_2' + c_2$$

and similarly for (y_1, y_2) and (y'_1, y'_2) , then show that

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = R_{\theta,(a_1,a_2)} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

becomes

$$\begin{pmatrix} y_1' \\ y_2' \end{pmatrix} = R_\theta \begin{pmatrix} x_1' \\ x_2' \end{pmatrix}.$$

Conclude that with respect to the new origin (c_1, c_2) , the affine map $R_{\theta,(a_1,a_2)}$ becomes the rotation R_{θ} . We say that $R_{\theta,(a_1,a_2)}$ is a rotation of center (c_1, c_2) .

(3) Use Matlab to show the action of the affine map $R_{\theta,(a_1,a_2)}$ on a simple figure such as a triangle or a rectangle, for $\theta = \pi/3$ and various values of (a_1,a_2) . Display the center (c_1,c_2) of the rotation.

What kind of transformations correspond to $\theta = k2\pi$, with $k \in \mathbb{Z}$?

- (4) Prove that the inverse of $R_{\theta,(a_1,a_2)}$ is of the form $R_{-\theta,(b_1,b_2)}$, and find (b_1,b_2) in terms of θ and (a_1,a_2) .
 - (5) Given two affine maps $R_{\alpha,(a_1,a_2)}$ and $R_{\beta,(b_1,b_2)}$, prove that

$$R_{\beta,(b_1,b_2)} \circ R_{\alpha,(a_1,a_2)} = R_{\alpha+\beta,(t_1,t_2)}$$

for some (t_1, t_2) , and find (t_1, t_2) in terms of β , (a_1, a_2) and (b_1, b_2) .

Even in the case where $(a_1, a_2) = (0, 0)$, prove that in general

$$R_{\beta,(b_1,b_2)} \circ R_{\alpha} \neq R_{\alpha} \circ R_{\beta,(b_1,b_2)}.$$

Use (4)-(5) to show that the affine maps of the plane defined in this problem form a nonabelian group denoted SE(2).

Prove that $R_{\beta,(b_1,b_2)} \circ R_{\alpha,(a_1,a_2)}$ is not a translation (possibly the identity) iff $\alpha + \beta \neq k2\pi$, for all $k \in \mathbb{Z}$. Find its center of rotation when $(a_1, a_2) = (0, 0)$.

If $\alpha + \beta = k2\pi$, then $R_{\beta,(b_1,b_2)} \circ R_{\alpha,(a_1,a_2)}$ is a pure translation. Find the translation vector of $R_{\beta,(b_1,b_2)} \circ R_{\alpha,(a_1,a_2)}$.

Problem 6.10. (Affine subspaces) A subset \mathcal{A} of \mathbb{R}^n is called an *affine subspace* if either $\mathcal{A} = \emptyset$, or there is some vector $a \in \mathbb{R}^n$ and some subspace U of \mathbb{R}^n such that

$$\mathcal{A} = a + U = \{a + u \mid u \in U\}.$$