Ch 21 Electric Charge & Electric Field

Season 2 Episode 5 - STYLE

In this episode of LARC Physics 3B, we're going to . . .

■ Create your own approach to solving "Electric field" & "Coulomb's Law" problems.

Lecture Review

In Ch 21, we'll be working largely with just two equations: Electric Field & Coulomb's Law

The electric field E is given by

$$E = k \frac{q}{r^2}$$

where q := source charge r := distance between q and some reference point

The electrostatic force F is given by Coulomb's Law

$$F = k \frac{q_1 \, q_2}{r^2}$$

where $q_1 := \text{Charge 1}$ $q_2 := \text{Charge 2}$ $r := \text{distance between } q_1 \text{ and } q_2$

Guided Practice

Create our own cookbook recipe for finding the net Electric Field!

Recipe to Find $\vec{E}_{\rm net}$

- 1.
- 2.
- 3.
- 4.

Breakout-Room Activity

Find the magnitude & direction of the \vec{E} at the center of a square with sidelength 52.5 cm if one corner is occupied by a $-38.6\,\mu\text{C}$ charge and the other three are occupied by $-27.0\,\mu\text{C}$ charges.

Hint: Use symmetry to your advantage!

Answer: $|\vec{E}| = 7.6 \times 10^5 \,\text{N/C}$, towards the $-38.6 \,\mu\text{C}$ charge i.e. 225° from the +x axis

Breakout-Room Activity

Find the magnitude & direction of the force on each charge shown in the figure below.

Hint: There's definitely some clever trick involving the symmetry . . . but what is it??!

Answer: $|\vec{F}| = 1.4 \times 10^7 \,\text{N}$ and the direction for each charge is basically just towards the center of the square.

