Найдите все обратимые элементы, все делители нуля и все нильпотентные элементы в кольце $R = \{ \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \} \mid a,b,c \in \mathbb{R} \ c$ обычными операциями сложения и умножения.

- 1. Матрица считается обратимой, когда $det \neq 0 \Rightarrow ac \neq 0 \Rightarrow a \neq 0, c \neq 0$. В остальных случаях $g^{-1} = \begin{pmatrix} \frac{1}{a} & 0 \\ -\frac{b}{ac} & \frac{1}{c} \end{pmatrix}$ остается в группе.
- 2. Элемент считается делителем нуля, если он является одновременно левым и правым делителем нуля. Пусть g— искомый делитель, h— ненулевая матрица.

$$g = \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \qquad h = \begin{pmatrix} m & 0 \\ n & k \end{pmatrix}$$
$$gh = \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \begin{pmatrix} m & 0 \\ n & k \end{pmatrix} \begin{pmatrix} am & 0 \\ bm + cn & ck \end{pmatrix} = 0$$

- $\begin{pmatrix} a \neq 0 & 0 \\ b \in \mathbb{R} & c \neq 0 \end{pmatrix}$ $\Rightarrow m = 0, k = 0 \Rightarrow cn = 0 \Rightarrow n = 0 \Rightarrow h$ нулевая, значит такого быть не может.
- ullet $egin{pmatrix} a=0 & 0 \\ b\in\mathbb{R} & c
 eq 0 \end{pmatrix} \Rightarrow$ подберем такую матрицу $h: m=1, n=-rac{b}{c}, k=0 \Rightarrow$ такая нам подходит.
- $\begin{pmatrix} a \neq 0 & 0 \\ b \in \mathbb{R} & c = 0 \end{pmatrix}$ \Rightarrow подберем такую матрицу h: m=0, n=0, k=1 \Rightarrow такая нам так же подходит.
- $\begin{pmatrix} a=0 & 0 \\ b\in\mathbb{R} & c=0 \end{pmatrix}$ \Rightarrow подберем такую матрицу h:m=0,n=0,k=1 \Rightarrow такая нам так же подходит.

Таким образом нашли все матрицы, являющиеся левыми нулями: $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}$, где a,c не равны нулю одновременно. Теперь проверим, что данные матрицы являются и правыми нулями так же.

$$hg = \begin{pmatrix} m & 0 \\ n & k \end{pmatrix} \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} = \begin{pmatrix} am & 0 \\ an + bk & ck \end{pmatrix} = 0$$

- $\begin{pmatrix} a=0 & 0 \\ b\in\mathbb{R} & c\neq 0 \end{pmatrix}$ \Rightarrow подберем такую матрицу h: m=1, n=0, k=0 \Rightarrow такая нам подходит.
- $\begin{pmatrix} a \neq 0 & 0 \\ b \in \mathbb{R} & c = 0 \end{pmatrix}$ \Rightarrow подберем такую матрицу $h: m=0, n=-\frac{b}{a}, k=1 \Rightarrow$ такая нам подходит.
- ullet $egin{pmatrix} a=0 & 0 \\ b\in\mathbb{R} & c=0 \end{pmatrix}$ \Rightarrow подберем такую матрицу h: m=1, n=1, k=0 \Rightarrow такая нам подходит.

3. Элемент g является нильпотентным, если $g^n=0$. Перемножая матрицы в предидущих пунктах мы уже получали, что при перемножение n раз нижнетреугольных матриц в клетке (1,1) получается a^n , в (2,2) $c^n \Rightarrow a^n=0$, $c^n=0 \Rightarrow a=0$, c=0.

$$g^2 = \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} = \begin{pmatrix} a^2 & 0 \\ b(a+c) & c^2 \end{pmatrix} = 0 \Rightarrow \text{ подходят все матрицы вида} \begin{pmatrix} 0 & 0 \\ b \in \mathbb{R} & 0 \end{pmatrix}$$

Приведите пример идеала в кольце Z[x], не являющегося главным.

В качестве идеала возьмем $\{(f,g)=xf(x)+2g(x),\ f,g\in\mathbb{Z}[x]\}$ - множество многочленов с четным свободным членом (достаточно очевидно что этот идеал не является полным и отличен от нулевого).

Стоит отметить, что данное множество замкнуто относительно операций сложения и умножения. При сложение, сумма четных свободных членов - четна. При умножение итоговый свободный член есть произведение свободных членов, тоже четный. Отсюда, это действительно идеал.

При перемножение многочлена с многочленом из Z[x] как с левой, так и с правой стороны, свободный член аналочино получается четным, то есть попадает в идеал.

Докажем тот факт, что этот идеал не является главным. Пусть $(f,g) = \{h\} \Rightarrow x \vdots h, \ 2 \vdots h$ (так как f,g— произвольные). Отсюда h является $\pm 2, \pm 1. \pm 1$ он быть не может, так как этот элемент пораждает вообще все многочлены. ± 2 не может так как это многочлены, где все коэффиценты четны, что заметно уже чем наше множество (к примеру многочлен 3x+2 уже туда не попадет).

Задача 3

Найдите размерность \mathbb{R} -алгебры $\mathbb{R}/(x^3-x^2+2)$.

Из условия, нам дано фактор кольцо R[x] по идеалу x^3-x^2+2 . Воспользуемся теоремой о гомоморфизме колец: элементами факторкольца $\mathbb{R}[x]/(x^3-x^2+2)$ будут остатки от деления многочленов на x^3-x^2+2 (так как x^3-x^2+2 есть ядро некого гомоморфизма). Получаем $\mathbb{R}[x]/(x^3-x^2+2)\simeq \{P(x)\}$, где P(x)- есть остаток от деления на наш многочлен, многочлен степени не более 2, причем достаточно очевидно, что все многочлены степени не выше 2 туда попадут. Базис в таком множестве: $(1,x,x^2) \Rightarrow$ размерность = 3.

Задача 4

Пусть F- поле, R- кольцо и $\varphi:F\to R-$ гомоморфизм колец. Докажите, что либо $\varphi(x)=0$ при всех $x\in F$, либо $Im\ \varphi\simeq F$.

Воспольщуемся теоремой о гомоморфизме колец: $Im\ \varphi\simeq F/Ker\ \varphi$. Здесь стоит отметить, что любое поле является простым кольцом, откуда следует что $Ker\ \varphi$ — несобственный идеал. Откуда:

$$\begin{bmatrix} \operatorname{Ker} \varphi = 0 \Rightarrow \operatorname{Im} \varphi \simeq F/\operatorname{Ker} \varphi \simeq F/\{0\} \simeq F \\ \operatorname{Ker} \varphi = F \Rightarrow \operatorname{Im} \varphi \simeq F/\operatorname{Ker} \varphi \simeq F/F \simeq \{0\} \end{bmatrix}$$

Посдедний случай означает, что размер отображения φ равен 1, откуда следует, что все отображение будет в 0, так как $\varphi(0) = 0$.