Statistics & Explanatory Data Analysis

Two-sample tests

dr Marcin Chlebus, dr Ewa Cukrowska - Torzewska

Two independent samples t test

DATA TYPE:

- Dependent variable is interval/ratio & continuous
- Independent variable is binary
- Data for each population are normally distributed
- Observations between groups are independent. That is, not paired or repeated measures data
- Moderate skewness is permissible if the data distribution is unimodal without outliers
- Different statistics when variances are equal and not equal.

HYPOTHESIS:

H0: Means are equal

H1 (2 sided): Means are not equal

INTERPRETATION:

H0: Fail to reject that means are significantly different

H1 (2 sided): Means are significantly different

Equal variances:

$$t = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - (\mu_1 - \mu_2)}{\sqrt{\frac{(n_1 - 1)(n_2 - 1)}{n_1 + n_2 - 2}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2}$$

Unequal variances:

$$t = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - (\mu_1 - \mu_2)}{\sqrt{\frac{(n_1 - 1)(n_2 - 1)}{n_1 + n_2 - 2}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2} \qquad t = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \sim t \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{s_1^4}{n_1^2(n_1 - 1)} + \frac{s_2^4}{n_2^2(n_2 - 1)}}$$

Normality assumption:

- n>30 for both samples
- fail to reject H0 about normality for both samples

Variance assumption:

Test for equal variances (F test)

F test for equal variances

DATA TYPE:

- Dependent variable is interval/ratio & continuous
- Independent variable is binary
- Data for each population are normally distributed
- Observations between groups are independent. That is, not paired or repeated measures data

HYPOTHESIS:

H0: Variances are equal

H1 (2 sided): Variances are not equal

INTERPRETATION:

HO: Fail to reject that variances are significantly different

H1 (2 sided): Variances are significantly different

$$F = \frac{S_1^2}{S_2^2} \sim F_{(n_1 - 1; n_2 - 1)}$$

Two-sample Wilcoxon rank-sum/Mann-Whitney U Test

DATA TYPE:

- Two-sample data.
- Dependent variable is ordinal, interval, or ratio
- Independent variable is a factor with two levels.
- Observations between groups are independent.
- In order to be a test of medians, the distributions of values for each group need to be of similar shape and spread (outliers affect the spread). Otherwise the test is a test of distributions

HYPOTHESIS:

- H0: The medians of values for each group are equal (distributions are similar in shape and spread)/The distribution of values for each group are equal (otherwise).
- H1 (2-sided): The medians of values for each group are not equal/there is systematic difference in the distribution of values for the groups
 Equal scale testing: Ansari-Bradley test

Procedure:

- 1. Order both samples together in ascending order *median test is an appropriate alternative*
- 2. Assign Ranks to each observation (if ties assign for average of ranks)

$$T=\sum_{i=1}^{n_1}R_{1i}\;\;U=T-rac{n_1(n_1+1)}{2}$$
 For small samples tables $U\stackrel{aproxx}{\longrightarrow} N(\mu_U,\sigma_U)$

If the distributions of values of each group are

similar in shape, but have outliers, then Mood's

Two-sample Mood's Median Test

DATA TYPE:

- Two-sample data. (or more)
- Dependent variable is ordinal, interval, or ratio
- Independent variable is a factor with two levels (or more).
- Observations between groups are independent.
- Distributions of values for each group are similar in shape; however, the test is not sensitive to outliers (different variances are acceptable)

HYPOTHESIS:

- H0: The medians of values for each group are equal.
- H1 (2-sided): The medians of values for each group are not equal

Procedure:

- 1. Pool data for the two samples and order them in an ascending orderCalculate median for join sample
- 2. Prepare contingency table (Below/Above median vs original sample ID)
- 3. Perform Fischer Exact or Pearson Chi2 test

Low power in comparison to Wilcoxon/M-W test, but do not require approximately equal variances (scale/spread)

Only option for data with serious outliers

Two-sample paired t test

DATA TYPE:

- Dependent variable is interval/ratio & continuous
- Independent variable is binary
- Samples are paired. Observation in one group can be paired logically or by subject to an observation in the other group
- The distribution of the difference of paired measurements is normally distribute Moderate skewness is permissible if the data distribution is unimodal without outliers
- Moderate skewness is permissible if the data distribution is unimodal without outliers

HYPOTHESIS:

H0: The difference between paired observations is equal to zero.

H1 (2 sided): The difference between paired observations is not equal to zero.

$$t = \frac{\overline{X}_D - \mu_D}{\sqrt{\frac{S_D^2}{n}}} \sim t_{n-1}$$

Normality assumption:

- n>30 for sample of differences
- fail to reject H0 about normality

Two-sample wilcoxon paired signed-rank test

DATA TYPE:

- Two-sample paired data. That is, one-way data with two groups only, where the observations are paired between groups.
- Dependent variable is ordinal, interval, or ratio
- Independent variable is a factor with two levels. That is, two groups
- The distribution of differences in paired samples is symmetric

If the distribution of differences between paired samples is not symmetrical, the twosample sign test for paired data can be used.

HYPOTHESIS:

- H0: The distribution of the differences in paired values is symmetric around zero.
- H1 (2-sided): The distribution of the differences in paired values is not symmetric around zero
- Remark: Rank Sum test is a one-sample Rank Sum test for difference of paired values from two samples
- · Procedure:
 - For each pair of observations (N) calculate absolute difference: $|X_i Y_i|$
 - Drop observations with absolute difference equal to 0 (N_r observations left)
 - Order the rest in ascending order and assign ranks R_i . For tied ranks assign an average rank.
 - Calculate test statistics: $W = \sum_{i=1}^{N_r} [sgn(X_i Y_i)R_i]$
 - Take critical values form reference table (specific distribution with E(W) = 0 & VAR(W) = $\frac{N_r(N_r+1)(2N_r+1)}{\epsilon}$ =) or use normal approximation

Two-sample paired sign test

DATA TYPE:

- Two-sample paired data.
- Dependent variable is ordinal, interval, or ratio
- Independent variable is a factor with two levels. That is, two groups

HYPOTHESIS:

H0: The median of difference of between pairs is equal to 0

H1 (2 sided): The median of the differences between pairs is not zero

- Data does not have to be symmetric in distribution
- Has **smaller power** than Wilcoxon one sample test
- Procedure:
 - For each observation (from N) calculate difference from assumed ME: $X_i Y_i$
 - Drop observations with absolute difference equal to 0 (N_r observations left)
 - Calculate sum of positive difference (S) and sum of negative difference (F).
 - P-Value: $P(s \le S)$; $S \sim binomial(n = N_r, p = 0.5)$

