Chapitre 19

Fractions rationnelles

Sommaire

I	Construction de l'ensemble des fractions rationnelles	
	1) Définition d'une fraction rationnelle	
	2) Opérations sur les fractions	
	3) Représentants irréductibles	
II	Degré, pôles et racines d'une fraction	
	1) Notion de degré	
	2) Pôles et racines	
	3) Fonctions rationnelles	
	4) Dérivation d'une fraction rationnelle	
III	Décomposition d'une fraction rationnelle	
	1) Partie entière	
	2) Éléments simples	
	3) Existence de la décomposition	
IV	Décomposition dans le cas complexe	
	1) Forme de la décomposition	
	2) Calcul d'une partie polaire	
	3) Cas particuliers	
V	Décomposition dans le cas réel	
	1) Forme de la décomposition	
	2) Calcul des éléments simples de seconde espèce	
VI	Applications de la décomposition	
	1) Calcul de la dérivée n-ième d'une fraction	
	2) Primitives d'une fraction rationnelle	
VII	Solution des exercices	

I CONSTRUCTION DE L'ENSEMBLE DES FRACTIONS RATIONNELLES

Le corps $\mathbb K$ désigne un sous-corps de $\mathbb C$, *i.e.* un corps inclus dans $\mathbb C$.

1) Définition d'une fraction rationnelle

Dans l'ensemble $\mathbb{K}[X] \times (\mathbb{K}[X] \setminus \{0\}) = \{(P,Q) \mid P,Q \in \mathbb{K}[X], Q \neq 0\}$, on définit la relation \mathscr{R} en posant :

$$(P,Q)\mathcal{R}(R,S) \iff P \times S = Q \times R.$$

On vérifie que la relation \mathscr{R} est une relation d'équivalence dans $\mathbb{K}[X] \times (\mathbb{K}[X] \setminus \{0\})$. La transitivité de la relation utilise l'intégrité de $\mathbb{K}[X]$.

On appelle fraction rationnelle à coefficients dans $\mathbb K$ toute classe d'équivalence pour la relation $\mathcal R.$ La

classe de (P,Q) est notée $rac{\mathrm{P}}{\mathrm{Q}}$ [avec P le numérateur et Q le dénominateur], on a donc :

$$\frac{P}{Q} = \{(R,S) \in \mathbb{K}[X] \times (\mathbb{K}[X] \setminus \{0\}) \ / \ PS = QR\}.$$

On dit que (P,Q) est un **représentant** de la fraction $\frac{P}{Q}$. L'ensemble des fractions rationnelles est noté $\mathbb{K}(X)$ et la relation \mathcal{R} est appelée **égalité des fractions rationnelles**.

2) **Opérations sur les fractions**

Définition 19.2 (addition, multiplication, produit par un scalaire)

Soient $\frac{P}{O}$, $\frac{R}{S}$ deux fractions rationnelles et soit $\lambda \in \mathbb{K}$, on pose :

$$\frac{P}{O} + \frac{R}{S} = \frac{PS + QR}{OS}, \ \frac{P}{O} \times \frac{R}{S} = \frac{PR}{OS}, \ et \ \lambda \frac{P}{O} = \frac{\lambda P}{O}.$$

Pour que la définition ait un sens il faut le résultat ne dépende pas des représentants choisis pour les fractions, c'est à dire si $\frac{P}{O} = \frac{P'}{O'}$ et $\frac{R}{S} = \frac{R'}{S'}$, alors :

$$\frac{PS + QR}{QS} = \frac{P'S' + Q'R'}{Q'S'}; \frac{PR}{QS} = \frac{P'R'}{Q'S'} \text{ et } \lambda \frac{P}{Q} = \lambda \frac{P'}{Q'}.$$

Cette vérification est simple et laissée en exercice.

Propriétés :

- a) Pour l'addition:
 - elle est associative, commutative,
 - elle admet un élément neutre, la fraction $\frac{0}{Q}$ (\forall Q \neq 0), appelée fraction nulle. On remarquera qu'une fraction est nulle ssi son numérateur est nul
 - toute fraction $\frac{P}{Q}$ admet un opposé et $-\frac{P}{Q} = \frac{-P}{Q} = \frac{P}{-Q}$.
- b) Pour la multiplication:
 - elle est associative, commutative,
 - elle admet un élément neutre qui est la fraction $\frac{P}{P}$ (∀ P ≠ 0), appelée fraction unité.
 - toute fraction $\frac{P}{Q}$ non nulle (*i.e.* P ≠ 0) admet un inverse, et $\left(\frac{P}{Q}\right)^{-1} = \frac{Q}{P}$.
 - elle est distributive sur l'addition.
- c) Pour le produit par un scalaire : $\forall \lambda, \mu \in \mathbb{K}, \forall F, G \in \mathbb{K}(X)$:

$$1.F = F; \quad \lambda.(F+G) = \lambda.F + \lambda.G; \quad (\lambda + \mu).F = \lambda.F + \lambda.G; \quad \lambda.(\mu).F = (\lambda \mu).F$$

et

$$\lambda \cdot (F \times G) = (\lambda \cdot F) \times G = F \times (\lambda \cdot G).$$

-À retenir

Par conséquent, $(\mathbb{K}(X), +, \times)$ est un corps commutatif et $(\mathbb{K}(X), +\times, .)$ est une \mathbb{K} -algèbre commutative.

Représentants irréductibles

\frown Théorème 19.1 (plongement des polynômes dans $\mathbb{K}(X)$)

L'application $\phi: \mathbb{K}[X] \to \mathbb{K}(X)$ définie par $\phi(P) = \frac{P}{1}$ est un morphisme d'algèbres injectif.

Preuve : Celle-ci est simple et laissée en exercice.

Par conséquent on peut identifier le polynôme P avec la fraction $\frac{P}{I}$, ce qui fait que l'on peut considérer que $\mathbb{K}[X] \subset \mathbb{K}(X)$. En particulier la fraction nulle (en vertu de l'égalité des fractions) est identifiée au polynôme nul 0, et la fraction unité est identifiée au polynôme constant 1.

П

Définition 19.3

Soit $F = \frac{P}{O}$ une fraction, on dit que $\frac{P}{O}$ est un représentant irréductible lorsque pgcd(P,Q) = 1 et que Q

Exemple : Soit $F = \frac{X^3 - 1}{X^2 - 1}$, un représentant irréductible est $\frac{X^2 + X + 1}{X + 1}$, c'est à dire $F = \frac{X^2 + X + 1}{X + 1}$.

🙀 Théorème 19.2

Toute fraction admet un représentant irréductible unique.

Preuve : Celle-ci est simple et laissée en exercice.

DEGRÉ, PÔLES ET RACINES D'UNE FRACTION

1) Notion de degré

Soit F une fraction non nulle et $\frac{P}{O}$, $\frac{R}{S}$ deux représentants de F (*i.e.* F = $\frac{P}{O}$ = $\frac{R}{S}$), on a donc PS = QR, d'où deg(P) – deg(Q) = deg(R) – deg(S). Autrement dit, la différence entre le degré du numérateur et le degré du dénominateur, ne dépend pas du représentant de F, mais seulement de F.

Définition 19.4 (degré d'une fraction)

Soit $F = \frac{P}{Q}$ une fraction, on pose $\deg(F) = -\infty$ si F = 0, et $\deg(F) = \deg(P) - \deg(Q)$ sinon. Le degré d'une fraction est donc un élément de $\mathbb{Z} \cup \{-\infty\}$.

Remarque 19.1 – Soit P un polynôme, en tant que polynôme son degré est deg(P), mais en tant que fraction, son degré est $deg(\frac{P}{1}) = deg(P) - deg(1) = deg(P)$, on trouve bien la même chose.

Exemple: $deg(\frac{X^2 + X + 1}{X + 1}) = 1$ et $deg(\frac{X}{X^3 - X^2 + 2}) = -2$.

Théorème 19.3 (propriétés du degré)

Soient $F, G \in \mathbb{K}(X)$, on $a : \deg(F+G) \leq \max(\deg(F), \deg(G))$, et $\deg(F \times G) = \deg(F) + \deg(G)$. On retrouve les mêmes propriétés que pour les polynômes.

 $\begin{aligned} \textbf{Preuve}: \text{Posons } F &= \frac{P}{Q} \text{ et } G &= \frac{R}{S}, \text{ alors } F \times G &= \frac{PR}{QS}, \text{ donc } \text{deg}(F \times G) = \text{deg}(PR) - \text{deg}(QS) = \text{deg}(P) - \text{deg}(Q) + \text{deg}(R) - \text{deg}(S) = \text{deg}(F) + \text{deg}(G). \end{aligned}$ $donc \ on \ a \ deg(F+G) \leqslant deg(PS) - deg(QS) \ \textbf{ou} \ deg(F+G) \leqslant deg(QR) - deg(QS), \ c'est \ \grave{a} \ dire \ deg(F+G) \leqslant deg(F) \ ou \ deg(F+G) \leqslant deg(F+G$ $deg(F+G) \leq deg(G)$, finalement, $deg(F+G) \leq max(deg(F), deg(G))$.

Remarque 19.2:

- Une fraction rationnelle constante non nulle a un degré nul, mais la réciproque est fausse, par exemple :
- $Si \deg(F) \neq \deg(G) \ alors \deg(F+G) = \max(\deg(F), \deg(G)).$
- Une fraction F est nulle ssi son degré vaut $-\infty$.

Pôles et racines

Définition 19.5

Soit $F \in \mathbb{K}(X)$ non nulle, et soit $\frac{P}{O}$ un représentant **irréductible** de F. On dit que $a \in \mathbb{K}$ est racine de F de multiplicité $m \in \mathbb{N}^*$ lorsque a est racine du numérateur P de multiplicité m. On dit que $a \in \mathbb{K}$ est pôle de F de multiplicité $m \in \mathbb{N}^*$ lorsque a est racine du dénominateur Q de multiplicité m.

Remarque 19.3:

- Puisque $\frac{P}{O}$ est irréductible, on voit qu'un scalaire a ne peut pas être à la fois pôle et racine de F, sinon P et Q seraient divisibles par X – a.
- a est un pôle de F de multiplicité $m \in \mathbb{N}^*$ revient à dire que a est racine de multiplicité m de $\frac{1}{F}$.
- Par exemple, la fraction $F = \frac{X^3-1}{X^2-1}$ possède deux racines complexes simples j et j^2 , un pôle simple -1, mais pas racine réelle.

Fonctions rationnelles

Définition 19.6

Soit $F \in \mathbb{K}(X)$ et $\frac{P}{Q}$ un représentant irréductible de F. On pose $\mathcal{D}_F = \mathbb{K} \setminus \{p \hat{o} | \text{les de } F\}$, c'est à dire $\mathcal{D}_F = \{x \in \mathbb{K} \mid Q(x) \neq 0\}$. On appelle fonction rationnelle de \mathbb{K} dans \mathbb{K} associée à la fraction F, la fonction notée \tilde{F} de \mathcal{D}_F vers \mathbb{K} définie par $\tilde{F}(x) = \frac{\tilde{P}(x)}{\tilde{O}(x)}$

Remarque 19.4 – Avant d'étudier une fonction rationnelle, il faut la mettre sous forme irréductible.

🔛 Théorème 19.4

Soient F, G \in K(X), si les fonctions rationnelles \tilde{F} et \tilde{G} sont égales sur une partie infinie I de $\mathcal{D}_F \cap \mathcal{D}_G$, alors les fractions rationnelles sont égales, i.e. F = G.

Preuve : Le corps \mathbb{K} est infini, l'ensemble des pôles de F et celui de G sont finis, donc $\mathscr{D}_F \cap \mathscr{D}_G$ est un ensemble infini. Posons $F = \frac{P}{O}$ et $G = \frac{R}{S}$ irréductibles, alors $\forall x \in I$, on a P(x)S(x) - R(x)Q(x) = 0, donc le polynôme PS – QR est nul (infinité de racines) ce qui signifie exactement que F = G.

Dérivation d'une fraction rationnelle

Soit $F \in \mathbb{K}(X)$ une fraction rationnelle et $\frac{P}{O} = \frac{R}{S}$ deux représentants de F, on a PS = QR, d'où $(P'Q - PQ')S^2 = \frac{R}{S}$ $P'QS^2 - PQ'S^2 = P'QS^2 - Q'QRS = QS(P'S - \hat{Q}'R), mais en dérivant la relation polynomiale PS = QR on obtient PS = QR on o$ P'S + PS' = Q'R + QR', d'où $(P'Q - PQ')S^2 = QS(QR' - PS') = Q^2SR' - QPSS' = Q^2SR' - Q^2RS' = Q^2(SR' - RS')$, ce qui traduit l'égalité des fractions :

$$\frac{P'Q-PQ'}{Q^2} = \frac{R'S-RS'}{S^2}.$$

Définition 19.7

Soit $F = \frac{P}{Q} \in \mathbb{K}(X)$, on appelle fraction dérivée de F la fraction notée F' (ou $\frac{dF}{dX}$) définie par :

$$F' = \frac{P'Q - PQ'}{O^2},$$

Le résultat ne dépend pas du représentant de F choisi. On définit également les dérivées successives de F en posant $F^{(0)} = F$ et pour tout $n \in \mathbb{N}$, $F^{(n+1)} = (F^{(n)})'$.

Remarque 19.5 -

- Soit P un polynôme, la dérivée de P en tant que fraction rationnelle est $\left(\frac{P}{I}\right)' = \frac{P'I PI'}{I^2} = P'$, on retrouve bien la dérivée de P en tant que polynôme.
- Contrairement aux polynômes le degré de F' n'est pas toujours égal à deg(F) 1, par exemple : F = $\frac{X}{X+1}$, on $a \deg(F) = 0$ et $F' = \frac{1}{(X+1)^2}$ donc $\deg(F') = -2$. Par contre on a toujours $deg(F') \leq deg(F) - 1$.
- **\bigstarExercice 19.1** Montrer que si F' = 0 alors F est une fraction constante.

Théorème 19.5 (propriétés)

On retrouve les propriétés usuelles de la dérivation avec les formules usuelles : (F+G)'=F'+G'; $(F\times G)'=F'\times G+F\times G'$; $(\lambda.F)'=\lambda.F'$; $\left(\frac{1}{F}\right)'=\frac{-F'}{F^2}$, et la formule de Leibniz :

$$(F \times G)^{(n)} = \sum_{k=0}^{n} {n \choose k} F^{(k)} \times G^{(n-k)}.$$

Preuve : Celle-ci est simple et laissée en exercice.

Définition 19.8 (Dérivée logarithmique)

Soit F une fraction non nulle, la dérivée logarithmique de F est la fraction $\frac{F'}{F}$.

🎦 Théorème 19.6

Si F est une fraction non nulle qui se factorise en F = $F_1 \times \cdots \times F_n$ dans $\mathbb{K}(X)$ avec $(n \in \mathbb{N}^*)$, alors : $\frac{F'}{F} = \frac{F'_1}{F_1} + \cdots + \frac{F'_n}{F_n}.$

Preuve: Par récurrence sur n en commençant par le cas n = 2. Si $F = F_1F_2$ alors $F' = F'_1F_2 + F_1F'_2$, d'où $\frac{F'}{F} = \frac{F'_1F_2 + F_1F'_2}{F_1F_2} = \frac{F'_1F_2 + F_1F'_2}{F$ $\frac{F_1'}{F_1} + \frac{F_2'}{F_2}$. Le passage du rang n au rang n+1 se ramène au cas n=2.

DÉCOMPOSITION D'UNE FRACTION RATIONNELLE

Partie entière 1)

Soit $F = \frac{A}{B}$ une fraction, on effectue la division euclidienne de A par B : A = BQ + R avec deg(R) < deg(B). On a alors $F = Q + \frac{R}{B}$ avec $deg(\frac{R}{B}) < 0$ et $Q \in \mathbb{K}[X]$. Supposons qu'il existe un autre polynôme S et une fraction G tels que F = S + G avec deg(G) < 0, alors $deg(Q - S) = deg(G - \frac{R}{B}) < 0$ donc Q = S car ce sont des polynômes, et $G = \frac{R}{R}$. On peut donc énoncer :

🙀 Théorème 19.7

Soit $F \in \mathbb{K}(X)$, il existe un **unique polynôme** Q tel que $\deg(F - Q) < 0$, celui-ci est appelé **partie entière** de F, c'est le quotient dans la division euclidienne du numérateur de F par le dénominateur.

√A retenir

Si deg(F) < 0 alors la partie entière de F est nulle (à cause de l'unicité).

Éléments simples 2)

Définition 19.9

Un élément simple de $\mathbb{K}(X)$ est une fraction du type $\frac{A}{B^n}$ où B est un **polynôme irréductible unitaire** (*i.e.* B ∈ $I_{\mathbb{K}[X]}$), deg(A) < deg(B), et $n \ge 1$.

 Éléments simples dans C(X) : on sait que $I_{\mathbb{C}[X]} = \{X - a \mid a \in \mathbb{C}\}\$, donc les éléments simples de $\mathbb{C}(X)$ sont les fractions :

$$\frac{\alpha}{(X-a)^n}$$
 avec $\alpha, a \in \mathbb{C}$ et $n \ge 1$.

- Éléments simples de $\mathbb{R}(X)$: on sait que $I_{\mathbb{R}[X]} = \{X - a \mid a \in \mathbb{R}\} \cup \{X^2 + pX + q \mid p, q \in \mathbb{R}, p^2 - 4q < 0\}$, donc les éléments simples de $\mathbb{R}(X)$ sont de deux types :
 - éléments simples de première espèce :

$$\frac{\alpha}{(X-a)^n}$$
 avec $\alpha, a \in \mathbb{R}$ et $n \geqslant 1$.

• éléments simples de seconde espèce :

$$\frac{aX+b}{(X^2+pX+q)^n} \text{ avec } a,b,p,q \in \mathbb{R}, p^2-4q<0, \text{ et } n\geqslant 1.$$

Définition 19.10

Décomposer une fraction rationnelle F non nulle, c'est l'écrire comme somme de sa partie entière et d'éléments simples.

Exemples:

- $-F = \frac{X^3}{X^2+1}$, sa partie entière est X, et on a $F = X + \frac{-X}{X^2+1}$: c'est la décomposition de F en éléments simples dans $\mathbb{R}(X)$, mais pas dans $\mathbb{C}(X)$.
- Dans $\mathbb{C}(X)$ on a : $F = X + \frac{-1/2}{X+i} + \frac{-1/2}{X-i}$.

3) Existence de la décomposition

Soit F une fraction non nulle et non polynomiale : $F = \frac{A}{B}$ (**forme irréductible**), on calcule sa partie entière : E, on a alors = E + $\frac{R}{R}$ avec deg($\frac{R}{R}$) < 0, on est alors amené à décomposer une fraction de degré strictement négatif en éléments simples.

On factorise le dénominateur B en produit de polynômes irréductibles unitaires : B = $\prod_{i=1}^{r} P_i^{m_i}$ (B est unitaire).

👺 Théorème 19.8

Si T,S sont deux polynômes **premiers entre eux** et si $deg(\frac{A}{TS}) < 0$, alors il existe deux polynômes U et V tels que:

$$\frac{A}{TS} = \frac{U}{T} + \frac{V}{S} \ avec \ deg(U) < deg(T), deg(V) < deg(S).$$

Preuve : Il existe deux polynômes U', V' tels que U'S + V'T = 1 (théorème de Bézout), on a alors $\frac{A}{TS} = \frac{AU'}{T} + \frac{AV'}{S}$, soit E_1 la partie entière de $\frac{AU'}{T}$ et E_2 celle de $\frac{AV'}{S}$, il existe deux polynômes U et V tels que $\frac{AU'}{T} = E_1 + \frac{U}{T}$ avec deg(U) < deg(T), et $\frac{AV'}{S} = E_2 + \frac{V}{S} \text{ avec deg(V)} < \text{deg(S), d'où}: \frac{A}{TS} = E_1 + E_2 + \frac{U}{T} + \frac{V}{S}, \text{ mais deg}(\frac{U}{T} + \frac{V}{S}) < 0, \text{ donc } E_1 + E_2 \text{ est la partie entière de l'est la partie entière en$ $\frac{A}{TS}$, or celle-ci est nulle, donc $E_1 + E_2 = 0$, ce qui donne le résultat.

Conséquence : Par récurrence on en déduit que si $B_1,...,B_n$ sont premiers entre eux deux à deux et si $\deg(\frac{A}{B_1 \times ... \times B_n}) < 0$, alors il existe des polynômes $U_1, ..., U_n$ tels que :

$$\frac{A}{B_1 \times ... \times B_n} = \sum_{i=1}^n \frac{U_i}{B_i} \text{ avec deg}(U_i) < \text{deg}(B_i).$$

En appliquant ceci à notre fraction F, on peut affirmer qu'il existe des polynômes $(U_i)_{1 \le i \le r}$ tels que :

$$F = E + \sum_{i=1}^{r} \frac{U_i}{P_i^{m_i}} \text{ avec } \deg(U_i) < \deg[P_i^{m_i}].$$

Mara Parème 19.9 Mara Parit Mara Parit Par

Si T est un polynôme irréductible unitaire et si $\deg(\frac{A}{T^n}) < 0$ $(n \ge 1)$, alors il existe des polynômes $V_1,...,V_n$ tels que :

$$\frac{A}{T^n} = \sum_{k=1}^n \frac{V_k}{T^k} \ avec \ \deg(V_k) < \deg(T).$$

C'est une décomposition en éléments simples.

Preuve: Par récurrence sur n: pour n=1 il n'y a rien à faire. Si le théorème est vrai au rang n et si $\deg(\frac{A}{T^{n+1}}) < 0$, alors on effectue la division euclidienne de A par T : A = QT + V_{n+1} avec deg(V_{n+1}) < deg(T), ce qui donne $\frac{A}{T^{n+1}} = \frac{Q}{T^n} + \frac{V_{n+1}}{T^{n+1}}$, il est facile de voir que $deg(\frac{Q}{T^n}) < 0$, on peut donc appliquer l'hypothèse de récurrence, ce qui donne le résultat.

On peut appliquer ce théorème à chacune des fractions $\frac{U_i}{p_i^{m_i}}$: il existe des polynômes $V_{1,i},...,V_{m_i,i}$ tels que:

$$\frac{\mathbf{U}_i}{\mathbf{P}_i^{m_i}} = \sum_{j=1}^{m_i} \frac{\mathbf{V}_{j,i}}{\mathbf{P}_i^j} \text{ avec } \deg(\mathbf{V}_{j,i}) < \deg(\mathbf{P}_i).$$

Ce qui donne pour F:

$$\mathbf{F} = \mathbf{E} + \sum_{i=1}^{r} \left[\sum_{j=1}^{m_i} \frac{\mathbf{V}_{j,i}}{\mathbf{P}_i^j} \right].$$

C'est une décomposition de F en éléments simples.

Théorème 19.10 (admis)

La décomposition en éléments simples est unique.

Théorème 19.11 (décomposition de $\frac{P'}{P}$)

Soit P un polynôme non nul et P = $\lambda P_1^{m_1} \times \cdots \times P_n^{m_n}$ sa décomposition en facteurs irréductibles unitaires, alors $\frac{P'}{P} = \frac{m_1 P_1'}{P_1} + \cdots + \frac{m_n P_n'}{P_n}$ (décomposition en éléments simples).

Preuve : Découle de la propriété de la dérivée logarithmique.

DÉCOMPOSITION DANS LE CAS COMPLEXE

1) Forme de la décomposition

Soit $F = \frac{A}{B} \in \mathbb{C}(X)$, sous forme irréductible, soit E sa partie entière et soit $B = \prod_{k=1}^{r} (X - a_k)^{m_k}$ la factorisation du dénominateur. Les complexes a_k sont les pôles de F, et les entiers m_k ($\geqslant 1$) sont les multiplicités respectives.

D'après l'étude générale, la forme de la décomposition de F sera:

$$F = E + \sum_{k=1}^{r} \left[\sum_{j=1}^{m_k} \frac{b_{j,k}}{(X - a_k)^j} \right].$$

Chaque pôle de F va donc générer des éléments simples qui lui correspondent : ce sont les $\frac{b_{j,k}}{(X-a_j)^j}$ pour $j \in [1; m_k].$

Définition 19.11 (partie polaire)

La somme des éléments simples relatifs au pôle a_k est appelée **partie polaire** de F relative au pôle a_k , elle est notée $P_F(a_k)$.

On a donc $P_F(a_k) = \sum_{i=1}^{m_k} \frac{b_{j,k}}{(X-a_k)^j}$, et la forme de la décomposition de F est :

$$F = E + P_F(a_1) + \cdots + P_F(a_r).$$

C'est à dire : partie entière plus les parties polaires relatives aux pôles de F.

La décomposition dans $\mathbb{C}(X)$ consiste donc à calculer des parties polaires.

2) Calcul d'une partie polaire

Soit $F = \frac{A}{B} \in \mathbb{C}(X)$ (sous forme irréductible) et soit $a \in \mathbb{C}$ un pôle de F de multiplicité $m \ge 1$.

Cas d'un pôle simple : on prend m = 1. On peut écrire B = (X - a)Q avec $Q(a) \neq 0$. Comme m = 1, la partie polaire de F relative à a est $P_F(a) = \frac{c}{X-a}$, en regroupant les parties polaires relatives **aux autres pôles**, on peut écrire $F = E + \frac{c}{X-a} + \frac{U}{V}$ avec E la partie entière et $deg(\frac{U}{V}) < 0$. En multipliant par X - a on obtient : $\frac{A}{Q} = (X - a)E + c + (X - a)\frac{U}{V}$, mais a n'étant pas un pôle de $\frac{U}{V}$, on peut évaluer en a, ce qui donne : $c = \frac{A(a)}{Q(a)}$. Comme B = (X - a)Q, il est facile de voir que Q(a) = B'(a), en conclusion :

Si *a* est un pôle simple de $F = \frac{A}{B}$, alors la partie polaire de F relative à *a* est :

$$P_F(a) = \frac{c}{X-a}$$
 avec $c = \frac{A(a)}{B'(a)} = \frac{A(a)}{Q(a)}$ où Q est tel que $B = (X-a)Q$.

Exemple: Soit $F = \frac{1}{X^n - 1}$ avec $n \ge 1$. On a deg(F) < 0 donc la partie entière est nulle. Les pôles de F sont les racines n-ièmes de l'unité : $a_k = \exp(2ik\pi/n)$ avec $k \in [0; n-1]$, et ce sont des pôles simples. La partie polaire de F relative à a_k est $\frac{c_k}{\mathbf{X} - a_k}$ avec $c_k = \frac{1}{na_k^{n-1}} = \frac{a_k}{n}$. La décomposition de F est :

$$\frac{1}{X^n - 1} = \sum_{k=0}^{n-1} \frac{a_k}{n(X - a_k)}.$$

Cas d'un pôle double : on prend m = 2, on peut écrire $B = (X - a)^2 Q$ avec $Q(a) \neq 0$, la partie polaire de F relative à a est $P_F(a) = \frac{\alpha}{X-a} + \frac{\beta}{(X-a)^2}$, en regroupant les parties polaires relatives aux autres pôles, on obtient:

$$F = E + \frac{\alpha}{X - a} + \frac{\beta}{(X - a)^2} + \frac{U}{V}$$
 avec $deg(\frac{U}{V}) < 0$.

Si on multiplie le tout par $(X - a)^2$ et que l'on évalue en a (a n'est pas un pôle de $\frac{U}{V}$), on obtient $\beta = \frac{A(a)}{Q(a)}$ Pour obtenir α , on peut poser $G = F - \frac{\beta}{(X-a)^2}$, on a alors $G = E + \frac{\alpha}{X-a} + \frac{U}{V}$, donc a est un pôle simple de G, ce qui nous ramène au cas précédent.

Autre méthode: on pose $H = (X - a)^2 \times F = \frac{A}{Q}$, on a en fait $H = (X - a)^2 E + \alpha (X - a) + \beta + (X - a)^2 \frac{U}{V}$, en évaluant en a on trouve $\beta = H(a)$, et en évaluant la dérivée en a, on trouve $\alpha = H'(a)$. En conclusion :

Si *a* est un pôle double de F = $\frac{A}{B}$, alors la partie polaire de F relative à *a* est :

$$P_F(a) = \frac{\alpha}{X-a} + \frac{\beta}{(X-a)^2}$$
 avec $\beta = H(a)$ et $\alpha = H'(a)$, en posant $H = (X-a)^2 \times F$.

Remarque 19.6 – Cette autre méthode se généralise au cas d'un pôle a de multiplicité $m \geqslant 3$ en posant $H = (X - a)^m \times F$.

Exemple: Soit $F = \frac{X^6}{(X-1)^2(X^3+1)}$. La fraction est irréductible et son degré vaut 1, il y a donc une partie entière non nulle, on trouve E = X + 2(le dénominateur est égal à $X^5 - 2X^4 + X^3 + X^2 - 2X + 1$). La fraction possède 4 pôles : • 1 : c'est un pôle double, on pose $H = (X - 1)^2 \times F = \frac{X^3}{X^3 + 1}$, la partie polaire relative à 1 est :

$$P_{F}(1) = \frac{9/4}{X - 1} + \frac{1/2}{(X - 1)^{2}}.$$

Car H(1) = 1/2 et H'(1) = 9/4.

• -1 : c'est un pôle simple, la partie polaire de F relative à -1 est :

$$P_{F}(-1) = \frac{1/12}{X+1}.$$

• -j: c'est un pôle simple, la partie polaire relative à -j est:

$$P_{\rm F}(-j) = \frac{1/3}{X+j}.$$

• $-j^2$: est un pôle simple, la partie polaire relative à $-j^2$ est:

$$P_F(-j^2) = \frac{1/3}{X + j^2}.$$

Finalement, la décomposition de F en éléments simples dans $\mathbb{C}(X)$ est :

$$F = X + 2 + \frac{9/4}{X - 1} + \frac{1/2}{(X - 1)^2} + \frac{1/12}{X + 1} + \frac{1/3}{X + j} + \frac{1/3}{X + j^2}.$$

Cas particuliers 3)

- Si F est à coefficients réels alors :

les parties polaires relatives aux pôles conjugués, sont conjuguées.

Preuve : Si a est un pôle complexe non réel de F de multiplicité m, alors on sait que \overline{a} est un pôle de F de même multiplicité car $F \in \mathbb{R}(X)$, en regroupant les parties polaires relatives aux pôles autres que a, on obtient : $F = E + P_F(a) + \frac{U}{V}$, où $E \in \mathbb{R}[X]$ est la partie entière, si on conjugue l'expression, alors on obtient : $F = E + \overline{P_F(a)} + \frac{U}{\overline{V}}$.

Si on pose $P_F(a) = \sum_{k=1}^m \frac{c_k}{(X-a)^k}$, alors $\overline{P_F(a)} = \sum_{k=1}^m \frac{\overline{c_k}}{(X-\overline{a})^k}$ et donc :

$$F = E + \sum_{k=1}^{m} \frac{\overline{c_k}}{(X - \overline{a})^k} + \frac{\overline{U}}{\overline{V}},$$

mais \overline{a} n'est pas un pôle de $\frac{\overline{U}}{\overline{V}}$, donc $\overline{P_F(a)}$ est la partie polaire de F relative à \overline{a} , *i.e.* $\overline{P_F(a)} = P_F(\overline{a})$.

Exemple: Soit $F = \frac{1}{(X^2 + X + 1)^2}$, $\deg(F) < 0$ donc sa partie entière est nulle. F possède deux pôles doubles j et j^2 . La partie polaire relative au pôle j est : $P_F(j) = \frac{H'(j)}{X - j} + \frac{H(j)}{(X - j)^2}$ en posant $H = (X - j)^2 \times F = \frac{1}{(X - j^2)^2}$, on obtient H(j) = -1/3 et $H'(j) = -\frac{2i\sqrt{3}}{9}$. F étant à coefficients réels, la partie polaire relative à j^2 est la conjuguée de celle relative à j, la décomposition de F est donc :

$$F = \frac{-1}{3(X-j)^2} - \frac{2i\sqrt{3}}{9(X-j)} + \frac{-1}{3(X-\overline{j})^2} + \frac{2i\sqrt{3}}{9(X-\overline{j})}.$$

- Si F est paire ou impaire, alors en utilisant la relation entre F(X) et F(-X) et avec l'unicité de la décomposition, on obtient des relations entre les coefficients à déterminer dans les parties polaires.
- **Exemple**: Soit $F = \frac{X^4 + 1}{X(X^2 1)^2}$. deg(F) < 0 donc la partie entière est nulle. La fraction est irréductible, impaire, et possède un pôle simple : 0, et deux pôles doubles : 1 et -1. La forme générale de la décomposition de F est :

$$F = \frac{a}{X} + \frac{b}{X-1} + \frac{c}{(X-1)^2} + \frac{d}{X+1} + \frac{e}{(X+1)^2}.$$

F étant impaire, on a F(X) = -F(-X), ce qui donn e :

$$F = \frac{a}{X} + \frac{b}{X+1} + \frac{-c}{(X+1)^2} + \frac{d}{X-1} + \frac{-e}{(X-1)^2}.$$

L'unicité de la décomposition nous donne les relations : $\begin{cases} d = b \\ e = -c \end{cases}$, ce qui fait deux coefficients en moins à calculer. La partie polaire relative à 0 est $P_F(0) = \frac{1}{X}$ (pôle simple). En substituant 1 à X dans $(X-1)^2 \times F$, on obtient c=1/2, et en faisant tendre x vers $+\infty$ dans la fonction rationnelle $x \mapsto xF(x)$, on obtient la relation 1=a+b+d i.e. 2b=0 d'où b=0, finalement la décomposition de F est :

$$F = \frac{1}{X} + \frac{1}{2(X-1)^2} - \frac{1}{2(X+1)^2}.$$

V DÉCOMPOSITION DANS LE CAS RÉEL

1) Forme de la décomposition

Soit $F = \frac{A}{B} \in \mathbb{R}(X)$ (sous forme irréductible), soit E sa partie entière et soit :

$$B = \prod_{k=1}^{n} (X - a_k)^{m_k} \times \prod_{k=1}^{r} (X^2 + p_k X + q_k)^{\alpha_k}$$

la factorisation de B en produit de facteurs irréductibles unitaires ($p_k^2 - 4q_k < 0$). D'après l'étude générale, la forme de la décomposition de F est :

$$F = E + \sum_{k=1}^{n} \left[\sum_{j=1}^{m_k} \frac{b_{j,k}}{(X - a_k)^j} \right] + \sum_{k=1}^{r} \left[\sum_{j=1}^{\alpha_k} \frac{c_{j,k} X + d_{j,k}}{(X^2 + p_k X + q_k)^j} \right].$$

La première somme est en fait la somme des parties polaires de F relatives aux pôles réels de F. Les techniques de calculs sont les mêmes dans le cas complexe.

La seconde somme est la somme des éléments simples de seconde espèce.

2) Calcul des éléments simples de seconde espèce

On se limitera au cas où $X^2 + pX + q$ est un diviseur irréductible de B de **multiplicité** 1, en regroupant les autres éléments simples, on obtient :

$$F = E + \frac{aX + b}{X^2 + pX + a} + \frac{U}{V}.$$

Soient c et \overline{c} les deux racines complexes (non réelles) de $X^2 + pX + q$, alors c et \overline{c} ne sont pas pôles de $\frac{U}{V}$, et c et \overline{c} sont pôles simples de F, on peut calculer la partie polaire de F relative à c dans $\mathbb{C}(X)$: $P_F(c) = \frac{\alpha}{X-c}$, comme

 $F \in \mathbb{R}(X) \text{ on a } P_F(\overline{c}) = \frac{\overline{\alpha}}{X - \overline{c}}, \text{ la somme de ces deux parties polaires donne} : P_F(c) + P_F(\overline{c}) = \frac{2 \text{Re}(\alpha) X - 2 \text{Re}(\alpha \overline{c})}{X^2 + p X + q}, \text{ c'est polaires donne} : P_F(c) + P_F(\overline{c}) = \frac{2 \text{Re}(\alpha) X - 2 \text{Re}(\alpha \overline{c})}{X^2 + p X + q}, \text{ c'est polaires donne} : P_F(c) + P_F(\overline{c}) = \frac{2 \text{Re}(\alpha) X - 2 \text{Re}(\alpha \overline{c})}{X^2 + p X + q}, \text{ c'est polaires donne} : P_F(c) + P_F(\overline{c}) = \frac{2 \text{Re}(\alpha) X - 2 \text{Re}(\alpha \overline{c})}{X^2 + p X + q}, \text{ c'est polaires donne} : P_F(c) + P_F(\overline{c}) = \frac{2 \text{Re}(\alpha) X - 2 \text{Re}(\alpha \overline{c})}{X^2 + p X + q}, \text{ c'est polaires donne} : P_F(c) + P_F(\overline{c}) = \frac{2 \text{Re}(\alpha) X - 2 \text{Re}(\alpha \overline{c})}{X^2 + p X + q}, \text{ c'est polaires donne} : P_F(c) + P_F(\overline{c}) = \frac{2 \text{Re}(\alpha) X - 2 \text{Re}(\alpha \overline{c})}{X^2 + p X + q}, \text{ c'est polaires donne} : P_F(c) + P_F(\overline{c}) = \frac{2 \text{Re}(\alpha) X - 2 \text{Re}(\alpha \overline{c})}{X^2 + p X + q}, \text{ c'est polaires donne} : P_F(c) + P_F(\overline{c}) = \frac{2 \text{Re}(\alpha) X - 2 \text{Re}(\alpha \overline{c})}{X^2 + p X + q}, \text{ c'est polaires donne} : P_F(c) + P_F(c) = \frac{2 \text{Re}(\alpha) X - 2 \text{Re}(\alpha \overline{c})}{X^2 + p X + q}, \text{ c'est polaires donne} : P_F(c) + P_F(c) = \frac{2 \text{Re}(\alpha) X - 2 \text{Re}(\alpha \overline{c})}{X^2 + p X + q}, \text{ c'est polaires donne} : P_F(c) + P_F(c) = \frac{2 \text{Re}(\alpha) X - 2 \text{Re}(\alpha) X - 2 \text{Re}(\alpha)}{X^2 + p X + q}, \text{ c'est polaires donne} : P_F(c) + P_F(c) = \frac{2 \text{Re}(\alpha) X - 2 \text{Re}(\alpha)}{X^2 + p X + q}, \text{ c'est polaires donne} : P_F(c) + P_F(c) = \frac{2 \text{Re}(\alpha) X - 2 \text{Re}(\alpha)}{X^2 + p X + q}, \text{ c'est polaires donne} : P_F(c) + P_F(c) = \frac{2 \text{Re}(\alpha) X - 2 \text{Re}(\alpha)}{X^2 + p X + q}, \text{ c'est polaires donne} : P_F(c) + P_F(c) = \frac{2 \text{Re}(\alpha) X - 2 \text{Re}(\alpha)}{X^2 + p X + q}, \text{ c'est polaires donne} : P_F(c) + P_F(c) = \frac{2 \text{Re}(\alpha) X - 2 \text{Re}(\alpha)}{X^2 + p X + q}, \text{ c'est polaires donne} : P_F(c) + P_F(c) = \frac{2 \text{Re}(\alpha) X - 2 \text{Re}(\alpha)}{X^2 + p X + q}, \text{ c'est polaires donne} : P_F(c) + P_F(c) = \frac{2 \text{Re}(\alpha) X - 2 \text{Re}(\alpha)}{X^2 + p X + q}, \text{ c'est polaires donne} : P_F(c) + P_F(c) = \frac{2 \text{Re}(\alpha) X - 2 \text{Re}(\alpha)}{X^2 + p X + q}, \text{ c'est polaires donne} : P_F(c) + P_F(c) = \frac{2 \text{Re}(\alpha) X - 2 \text{Re}(\alpha$ un élément simple de $\mathbb{R}(X)$, comme la décomposition dans $\mathbb{R}(X)$ est unique, il en résulte que

$$\frac{aX+b}{X^2+pX+q} = \frac{2\mathrm{Re}(\alpha)X - 2\mathrm{Re}(\alpha\overline{c})}{X^2+pX+q}.$$

Autre méthode: soit $H = (X^2 + pX + q) \times F$, on a : $H = (X^2 + pX + q) \times E + aX + b + (X^2 + pX + q) \times \frac{U}{V}$. On obtient alors le système : $\left\{ \begin{array}{ll} \mathrm{H}(c) & = & ac+b \\ \mathrm{H}(\overline{c}) & = & a\overline{c}+b \end{array} \right. , \, \mathrm{en} \, \mathrm{r\'esolvant} \, \mathrm{on} \, \mathrm{trouve} \, a \, \mathrm{et} \, b.$

Exemple: Soit $F = \frac{X^4}{X^3 - 1}$.

On a deg(F) = 1, il y a donc une partie entière non nulle, celle-ci vaut X, d'autre part on a $X^3 - 1 =$ $(X-1)(X^2+X+1)$, d'où la forme de la décomposition :

$$F = X + \frac{a}{X-1} + \frac{bX + c}{X^2 + X + 1}.$$

La partie polaire relative à 1 est $P_F(1) = \frac{1}{3(X-1)}$. Dans $\mathbb{C}(X)$, la partie polaire relative à j est $P_F(j) = \frac{j^2}{3(X-j)}$, et la partie polaire relative à j^2 est la conjuguée, *i.e.* $P_F(j^2) = \frac{j}{3(X-j^2)}$, la somme de ces deux parties polaires donne : $\frac{-X+1}{3(X^2+X+1)}$, la décomposition de F est donc :

$$F = X + \frac{1}{3(X-1)} + \frac{-X+1}{3(X^2+X+1)}.$$

Remarque 19.7 – En évaluant en 0 on obtient c-a=0 d'où c=a=1/3. En faisant tendre x vers $+\infty$ dans $x(F(x) - x) = \frac{x^2}{x^3 - 1}$, on obtient a + b = 0 d'où b = -a = -1/3.

Le résultat suivant est souvent utile lors du calcul des différents coefficients réels :

🙀 Théorème 19.12

Soit z un complexe **non réel**, soient a, b, c et d quatre **réels** tels que az + b = cz + d, alors a = c et

Preuve : Par l'absurde, si $a \neq c$ alors on aurait $z = \frac{d-b}{c-a} \in \mathbb{R}$, or z est non réel, donc a = c, ce qui entraı̂ne b = d.

APPLICATIONS DE LA DÉCOMPOSITION

Calcul de la dérivée n-ième d'une fraction

Exemple: Soit $f(x) = \frac{1}{x^2 + 1}$, calculons $f^{(n)}(x)$. Dans $\mathbb{C}(X)$ on a $\frac{1}{X^2 + 1} = \frac{1}{2i(X - i)} - \frac{1}{2i(X + i)}$, d'où:

$$f^{(n)}(x) = \frac{1}{2i} \left[\frac{(-1)^n n!}{(x-i)^{n+1}} - \frac{(-1)^n n!}{(x+i)^{n+1}} \right].$$

Ce qui donne:

$$f^{(n)}(x) = (-1)^n n! \frac{\operatorname{Im}((x+i)^{n+1})}{(x^2+1)^{n+1}} = (-1)^n n! \frac{\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} {\binom{n+1}{2k+1}} (-1)^k x^{n-2k}}{(x^2+1)^{n+1}}.$$

Exercice 19.2 Calculer la dérivée n-ième de la fonction $f(x) = \frac{x}{(x-1)(x^2+x+1)}$

Primitives d'une fraction rationnelle

Soit $F \in \mathbb{R}(X)$, on décompose F en éléments simples dans $\mathbb{R}(X)$, on est donc ramené à calculer des primitives de trois types:

- La partie entière : c'est un polynôme.
- Les éléments simples de première espèce : $\frac{1}{(X-a)^n}$ avec $n \ge 1$, on sait les intégrer, car :

$$\int_{-\infty}^{x} \frac{dt}{(t-a)^n} = \begin{cases} \ln(|x-a|) & \text{si } n=1\\ \frac{-1}{(n-1)(x-a)^{n-1}} & \text{si } n \geqslant 2 \end{cases}.$$

- Les éléments simples de seconde espèce : $\frac{aX+b}{X^2+pX+q}$, pour ceux-là la méthode est la suivante :

 on fait apparaître la dérivée du trinôme X^2+pX+q au numérateur et on compense les X en mul-
 - on fait apparaître la dérivée du trinôme X² + pX + q au numérateur et on compense les X en multipliant par un facteur adéquat, puis on compense les constantes en ajoutant ce qu'il faut, ce qui donne :

$$\frac{aX+b}{X^2+pX+q} = \frac{a}{2} \frac{2X+p}{X^2+pX+q} + (b-\frac{ap}{2}) \frac{1}{X^2+pX+q}.$$

La première de ces deux fractions est facile à intégrer (du type $\frac{u'}{u}$).

• Pour la deuxième fraction : on met le trinôme $X^2 + pX + q$ sous forme canonique afin de mettre la fraction sous la forme : $\alpha \frac{u'}{1+u^2}$ où u est une fonction de x, cette fonction est s'intègre en α arctan(u).

Exemple: Calculons $F(x) = \int^x \frac{dt}{t^3 + 1} \operatorname{sur} \left[-1; +\infty \right]$:

On décompose la fraction rationnelle $\frac{1}{X^3+1}$ en éléments simples dans $\mathbb{R}(X)$, ce qui donne :

$$\frac{1}{X^3+1} = \frac{1}{3(X+1)} - \frac{X-2}{3(X^2-X+1)}.$$

On a:

$$\frac{X-2}{X^2-X+1} = \frac{1}{2} \frac{2X-1}{X^2-X+1} - \frac{3}{2} \frac{1}{X^2-X+1}$$

et:

$$\frac{1}{X^2-X+1} = \frac{1}{(X-1/2)^2+3/4} = \frac{2}{\sqrt{3}} \frac{2/\sqrt{3}}{\left(\frac{2X-1}{\sqrt{3}}\right)^2+1}.$$

On en déduit alors:

$$F(x) = \frac{1}{3}\ln(x+1) - \frac{1}{6}\ln(x^2 - x + 1) + \frac{\sqrt{3}}{3}\arctan(\frac{2x-1}{\sqrt{3}}).$$

C'est à dire:

$$F(x) = \frac{1}{3}\ln(\frac{x+1}{\sqrt{x^2 - x + 1}}) + \frac{\sqrt{3}}{3}\arctan(\frac{2x-1}{\sqrt{3}}) + \text{ cte.}$$

VII SOLUTION DES EXERCICES

Solution 19.1 Soit $F = \frac{P}{Q}$ un représentant irréductible, F' = 0 entraı̂ne P'Q = PQ', mais $P \wedge Q = 1$, donc $Q \mid Q'$, d'où Q' = 0, donc Q est constant et unitaire, finalement Q = 1 et P' = 0, donc P est constant et P aussi.

Solution 19.2 Soit $F = \frac{X}{(X-1)(X^2+X+1)}$. La décomposition dans $\mathbb{C}(X)$ de F donne :

$$F = \frac{1}{3(X-1)} + \frac{j^2}{3(X-j)} + \frac{j}{3(X-j^2)}.$$

On a donc:

$$f^{(n)}(x) = \frac{(-1)^n n!}{3} \left[\frac{1}{(x-1)^{n+1}} + 2\text{Re}\left(\frac{j^2}{(x-j)^{n+1}}\right) \right],$$

or $\frac{j^2}{(x-j)^{n+1}} = \frac{j^2(x-j^2)^{n+1}}{(x^2+x+1)^{n+1}}$, ce qui donne finalement :

$$f^{(n)}(x) = \frac{(-1)^n n!}{3} \left[\frac{1}{(x-1)^{n+1}} + 2 \frac{\sum\limits_{k=0}^{n+1} \binom{n+1}{k} (-1)^k \cos(4(k+1)\pi/3) x^{n+1-k}}{(x^2+x+1)^{n+1}} \right].$$