Tutorium Hardware- und Systemgrundlagen

Gruppe 1

Raum F109 | Mittwoch, 11.30 Uhr

Mirko Bay

[mirko.bay@htwg-konstanz.de]

Gruppe 2

Raum F110 | Mittwoch, 11.30 Uhr

Michael Bernhardt

[michael.bernhardt@htwg-konstanz.de]

Zahlensysteme I

Dual-, Oktal-, Dezimal-, Hexadezimalsystem

Betrag + Vorzeichen Einer- / Zweierkomplement

IEEE-P 754-Floating-Point-Standard BCD-Zahl

Zahlensysteme I: Mögliche Aufgabentypen

von Basis 10 in Basis n

► Horner Schema (Vorauss. Ausgangs-Basis 10)

Beispiel: (42)₁₀ als Dualzahl (Basis 2)

$$42: 2 = 21$$
 Rest 0
 $21: 2 = 10$ Rest 0
 $10: 2 = 5$ Rest 0
 $5: 2 = 2$ Rest 1
 $2: 2 = 1$ Rest 0
 $1: 2 = 0$ Rest 1

Beispiel: (0,42)₁₀ als Dualzahl (Basis 2)

$$0,42 \cdot 2 = 0 \\
0,84 \cdot 2 = 1 \\
0,68 \cdot 2 = 1 \\
0,36 \cdot 2 = 0 \\
0,72 \cdot 2 = 1 \\
0,44 \cdot 2 = 0$$

$$0,44 \cdot 2 = 0$$

$$0,84 \\
0,68 \\
0,36 \\
0,72 \\
0,72 \\
0,88$$

$$= (0,011 \ 010)_{2}$$

Beispiel: $(0,\overline{4})_{10}$ = 4/9 = als Dualzahl (Basis 2)

von Basis n in Basis n (über Basis 10)

- ► Stellenwert berechnen und addieren
- ▶ dann weiter mit Horner Schema

Beispiel: (42), als Dualzahl (Basis 2)

 $(42)_7 = 4 \cdot 7^1 + 2 \cdot 7^0$

$$= 4 \cdot 7 + 2 \cdot 1$$

$$= 28 + 2$$

$$= (30)_{10}$$

$$30: 2 = 15 \quad \text{Rest} \quad 0$$

$$15: 2 = 7 \quad \text{Rest} \quad 1$$

$$7: 2 = 3 \quad \text{Rest} \quad 1$$

$$3: 2 = 1 \quad \text{Rest} \quad 1$$

$$1: 2 = 0 \quad \text{Rest} \quad 1$$

von Basis n in Basis 8 / 16

► Erst Dezimalzahl berechnen, dann mit Horner ins Dualsystem, dann auflösen in Oktal/Hexa

$$(1120)_{3} = 1 \cdot 3^{3} + 1 \cdot 3^{2} + 2 \cdot 3^{1} + 0 \cdot 3^{0}$$

$$= 27 + 9 + 6 + 0$$

$$= (42)_{10}$$

$$(42)_{10} = (101 \ 010)_{2} = (\frac{5}{2})_{8}$$

$$(\frac{0010}{2} \ \frac{1010}{10})_{2}$$

von Basis 8 / 16 in Basis 2 (und umgekehrt!)

- ▶ untereinander schreiben
- ▶ in 3er / 4er Pakete zusammenfassen

Beispiel: (3D3,A2)₁₆ als Dualzahl (Basis 2)

 $(3D3,A2)_{16} = (0011\ 1101\ 0011\ ,\ 1010\ 0010)_{2}$

Beispiel: (7312,67)₈ als Dualzahl (Basis 2)

 $(7312,67)_8 = (111\ 011\ 001\ 010\ ,\ 110\ 111)_2$

- → wichtig: Perioden müssen immer als Bruch geschrieben werden, da sonst Genauigkeitsverlust!
- → auf gute Struktur achten, das hilft gerade bei den Dualzahlen viel!

- Aufgabe 1: a) (247)₈ ins Dezimalsystem
- **b)** (159)₁₀ in Zahl zur Basis 4

Aufgabe 2:

- a) (D59FA)₁₆ ins Dualsystem
- **b)** (1 0110, 01)₂ ins Dezimalsystem

Aufgabe 3: $(0101\ 0110)_2$ ins Dezimalsystem

Aufgabe 4: (666)₁₀ als Dualzahl (mit Horner Schema)

Aufgabe 5: (-27)₁₂ als Oktalzahl (Nachklausur WS 06/07)

Aufgabe 6: (DDDD,DDD)₁₆ als Oktalzahl

(Testat WS 13/14)

Aufgabe 7: (-53,2)₁₀ als Zahl zur Basis 7 (Testat WS 13/14)

Aufgabe 8: Wandeln Sie den unendlichen Dezimalbruch $(0,\overline{4})_{10}$ in einen unendlichen Dualbruch um!

(Testat WS 10/11)

Aufgabe 9: (110 120)₃ als Hexadezimalzahl

Aufgabe 10:

Addieren Sie die beiden Hexadezimal-Zahlen $(21A5,3C)_{16}$ und $(BE04,8)_{16}$ und die Oktalzahl $(57231,05)_8$ zusammen.

(Testat WS 06/07)

Aufgabe 11: (1100 1100 1101)₂ als Dezimalzahl

Aufgabe 12: Finden Sie die Basen r und s so, dass gilt $12_r = 111_s$!

(Klausur WS 07/08)

Aufgabe 13:

 $\left(\frac{3}{5}\right)_{10}$ [drei fünftel] als Hexadezimalzahl, mit 4 Stellen nach dem Komma!

(Klausur WS 06/07)

(Klausur WS 11/12)

Aufgabe 15: a) (9CF4,BE)₁₆ als Oktalzahl

b) Den unendlichen Dezimalbruch $(0,\overline{1})_{10}$ in einen unendlichen Dualbruch

(Testat SS 07)

Aufgabe 16: Stellen Sie die angegebenen Zahlen im jeweils anderen Zahlensystem dar:

(Testat WS 02/03)

Dual	Dezimal	Oktal	Hexadezimal
	1435,625		
1	0,3		

Mit 8 Stellen nach dem Komma!