Double-click (or enter) to edit

Project #1: Bigmart Sale Prediction

Initializing Packages and Importing Data

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
import warnings # Ignores any warning
warnings.filterwarnings("ignore")

train = pd.read_csv("data/Train.csv")
test = pd.read csv("data/Test.csv")
```

Taking a peak at our data

train.head()

	Item_Identifier	Item_Weight	<pre>Item_Fat_Content</pre>	<pre>Item_Visibility</pre>	<pre>Item_Type</pre>	Item_
0	FDA15	9.30	Low Fat	0.016047	Dairy	249.8
1	DRC01	5.92	Regular	0.019278	Soft Drinks	48.2
2	FDN15	17.50	Low Fat	0.016760	Meat	141.6
3	FDX07	19.20	Regular	0.000000	Fruits and Vegetables	182.0
4	NCD19	8.93	Low Fat	0.000000	Household	53.8

train.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8523 entries, 0 to 8522
Data columns (total 12 columns):
```

Bigmart Sales Data Set.ipynb - Colaboratory

#	Column	Non-Null Count	Dtype		
0	Item_Identifier	8523 non-null	object		
1	Item_Weight	7060 non-null	float64		
2	Item_Fat_Content	8523 non-null	object		
3	<pre>Item_Visibility</pre>	8523 non-null	float64		
4	Item_Type	8523 non-null	object		
5	Item_MRP	8523 non-null	float64		
6	Outlet_Identifier	8523 non-null	object		
7	Outlet_Establishment_Year	8523 non-null	int64		
8	Outlet_Size	6113 non-null	object		
9	Outlet_Location_Type	8523 non-null	object		
10	Outlet_Type	8523 non-null	object		
11	<pre>Item_Outlet_Sales</pre>	8523 non-null	float64		
<pre>dtypes: float64(4), int64(1), object(7)</pre>					
memory usage: 799.2+ KB					

train.describe()

	Item_Weight	<pre>Item_Visibility</pre>	<pre>Item_MRP</pre>	Outlet_Establishment_Year	Item_Ou1
count	7060.000000	8523.000000	8523.000000	8523.000000	8
mean	12.857645	0.066132	140.992782	1997.831867	2
std	4.643456	0.051598	62.275067	8.371760	1
min	4.555000	0.000000	31.290000	1985.000000	
25%	8.773750	0.026989	93.826500	1987.000000	
50%	12.600000	0.053931	143.012800	1999.000000	1
75%	16.850000	0.094585	185.643700	2004.000000	3
max	21.350000	0.328391	266.888400	2009.000000	13

```
#Check for duplicates
idsUnique = len(set(train.Item_Identifier))
idsTotal = train.shape[0]
idsDupli = idsTotal - idsUnique
print("There are " + str(idsDupli) + " duplicate IDs for " + str(idsTotal) + " total entri
```

1. Exploratory Data Analysis (EDA)

1.1. Univariate Distribution

1.1.1. Distribution of the target variable: Item_Outlet_Sales

There are 6964 duplicate IDs for 8523 total entries

```
plt.style.use('fivethirtyeight')
plt.figure(figsize=(12,7))
sns.distplot(train.Item_Outlet_Sales, bins = 25)
plt.ticklabel_format(style='plain', axis='x', scilimits=(0,1))
```

```
plt.xlabel("Item_Outlet_Sales")
plt.ylabel("Number of Sales")
plt.title("Item_Outlet_Sales Distribution")
```



```
print ("Skew is:", train.Item_Outlet_Sales.skew())
print("Kurtosis: %f" % train.Item_Outlet_Sales.kurt())
```

Skew is: 1.1775306028542796

Kurtosis: 1.615877

1.1.2. Numerical Variables

```
numeric_features = train.select_dtypes(include=[np.number])
numeric_features.dtypes
```

Item_Weight	float64
<pre>Item_Visibility</pre>	float64
Item_MRP	float64
Outlet_Establishment_Year	int64
<pre>Item_Outlet_Sales</pre>	float64

dtype: object

numeric_features.corr()

	Item_Weight	Item_Visibility	Item_MRP	Outlet_Establishme
Item_Weight	1.000000	-0.014048	0.027141	-(
Item_Visibility	-0.014048	1.000000	-0.001315	-C
Item_MRP	0.027141	-0.001315	1.000000	C
Outlet_Establishment_Year	-0.011588	-0.074834	0.005020	1
Item_Outlet_Sales	0.014123	-0.128625	0.567574	-(

```
corr = numeric_features.corr()
```

print (corr['Item_Outlet_Sales'].sort_values(ascending=False))

#correlation matrix

f, ax = plt.subplots(figsize=(12, 9))
sns.heatmap(corr, vmax=.8, square=True);

1.1.3. Categorical Variables

1.1.3.1. Distribution of the Item_Fat_Content

sns.countplot(train.Item_Fat_Content)

1.1.3.2. Distribution of the Item_Type

train.Item_Type.value_counts()

Fruits and Vegetables	1232
Snack Foods	1200
Household	910

Frozen Foods	856
Dairy	682
Canned	649
Baking Goods	648
Health and Hygiene	520
Soft Drinks	445
Meat	425
Breads	251
Hard Drinks	214
Others	169
Starchy Foods	148
Breakfast	110
Seafood	64
<pre>Name: Item_Type, dtype:</pre>	int64

sns.countplot(train.Item_Type)
plt.xticks(rotation=90)

(array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]),

1.1.3.3. Distribution of the Outlet_Size

train.Outlet_Size.value_counts()

Medium 2793 Small 2388 High 932

Name: Outlet_Size, dtype: int64

sns.countplot(train.Outlet_Size)

1.1.3.4. Distribution of the Outlet_Location_Type

train.Outlet_Location_Type.value_counts()

Tier 3 3350 Tier 2 2785 Tier 1 2388

Name: Outlet_Location_Type, dtype: int64

sns.countplot(train.Outlet_Location_Type)

1.1.3.5. Distribution of the Outlet_Type

train.Outlet_Type.value_counts()

```
Supermarket Type1 5577
Grocery Store 1083
Supermarket Type3 935
Supermarket Type2 928
```

Name: Outlet_Type, dtype: int64

sns.countplot(train.Outlet_Type)
plt.xticks(rotation=90)

1.2. Bivariate Distribution

1.2.1. Numerical Variables

1.2.1.1. Item_Weight and Item_Outlet_Sales Analysis

```
plt.figure(figsize=(12,7))
plt.xlabel("Item_Weight")
plt.ylabel("Item_Outlet_Sales")
plt.title("Item_Weight and Item_Outlet_Sales Analysis")
plt.plot(train.Item_Weight, train["Item_Outlet_Sales"],'.', alpha = 0.3)
```

[<matplotlib.lines.Line2D at 0x7f1c253f1b90>]

1.2.1.2. Item_Visibility and Item_Outlet_Sales Analysis

```
plt.figure(figsize=(12,7))
plt.xlabel("Item_Visibility")
plt.ylabel("Item_Outlet_Sales")
plt.title("Item_Visibility and Item_Outlet_Sales Analysis")
plt.plot(train.Item_Visibility, train["Item_Outlet_Sales"],'.', alpha = 0.3)
```


1.2.1.3. Item_MRP and Item_Outlet_Sales Analysis

```
plt.figure(figsize=(12,7))
plt.xlabel("Item_MRP")
plt.ylabel("Item_Outlet_Sales")
plt.title("Item_MRP and Item_Outlet_Sales Analysis")
plt.plot(train.Item_MRP, train["Item_Outlet_Sales"],'.', alpha = 0.3)
```


1.2.1.4. Outlet_Establishment_Year and Item_Outlet_Sales Analysis

```
Outlet_Establishment_Year_pivot = \
train.pivot_table(index='Outlet_Establishment_Year', values="Item_Outlet_Sales", aggfunc=n

Outlet_Establishment_Year_pivot.plot(kind='bar', color='blue',figsize=(12,7))
plt.xlabel("Outlet_Establishment_Year")
plt.ylabel("Item_Outlet_Sales")
plt.title("Impact of Outlet_Establishment_Year on Item_Outlet_Sales")
plt.xticks(rotation=0)
plt.show()
```


1.2.2. Categorial Variables

numeric_features = train.select_dtypes(include=[np.object])
numeric_features.dtypes

Item_Identifier object
Item_Fat_Content object
Item_Type object
Outlet_Identifier object
Outlet_Size object
Outlet_Location_Type object
Outlet_Type object
dtype: object

1.2.2.1. Impact of Item_Identifier on Item_Outlet_Sales

```
plt.figure(figsize=(12,7))
plt.xlabel("Item_Identifier")
plt.ylabel("SQRT Item_Outlet_Sales")
plt.title("Item_Identifier and Item_Outlet_Sales Analysis")
plt.plot(train.Item_Identifier , train["Item_Outlet_Sales"],'.', alpha = 0.3)
```


Item Identifier

1.2.2.2. Impact of Item_Fat_Content on Item_Outlet_Sales

```
Item_Fat_Content_pivot = \
train.pivot_table(index='Item_Fat_Content', values="Item_Outlet_Sales", aggfunc=np.median)

Item_Fat_Content_pivot.plot(kind='bar', color='blue',figsize=(12,7))
plt.xlabel("Item_Fat_Content")
plt.ylabel("Item_Outlet_Sales")
plt.title("Impact of Item_Fat_Content on Item_Outlet_Sales")
plt.xticks(rotation=0)
plt.show()
```


1.2.2.3. Impact of Outlet_Identifier on Item_Outlet_Sales

```
Outlet_Identifier_pivot = \
train.pivot_table(index='Outlet_Identifier', values="Item_Outlet_Sales", aggfunc=np.median

Outlet_Identifier_pivot.plot(kind='bar', color='blue',figsize=(12,7))
plt.xlabel("Outlet_Identifier ")
plt.ylabel("Item_Outlet_Sales")
plt.title("Impact of Outlet_Identifier on Item_Outlet_Sales")
plt.xticks(rotation=0)
plt.show()
```


train.pivot_table(values='Outlet_Type', columns='Outlet_Identifier',aggfunc=lambda x:x.mod

Outlet_Identifier	OUT010	OUT013	OUT017	OUT018	OUT019	OUT027
Outlet_Type	Grocery Store	Supermarket Type1			Grocery Store	'

train.pivot_table(values='Outlet_Type', columns='Outlet_Size',aggfunc=lambda x:x.mode())

Outlet_Size	High	Medium	Small
Outlet_Type	Supermarket Type1	Supermarket Type3	Supermarket Type1

1.2.2.4. Impact of Outlet_Size on Item_Outlet_Sales

```
Outlet_Size_pivot = \
train.pivot_table(index='Outlet_Size', values="Item_Outlet_Sales", aggfunc=np.median)

Outlet_Size_pivot.plot(kind='bar', color='blue',figsize=(12,7))
plt.xlabel("Outlet_Size ")
plt.ylabel("Item_Outlet_Sales")
plt.title("Impact of Outlet_Size on Item_Outlet_Sales")
plt.xticks(rotation=0)
plt.show()
```


1.2.2.5. Impact of Outlet_Location_Type on Item_Outlet_Sales

```
Outlet_Location_Type_pivot = \
train.pivot_table(index='Outlet_Location_Type', values="Item_Outlet_Sales", aggfunc=np.med
Outlet_Location_Type_pivot.plot(kind='bar', color='blue',figsize=(12,7))
```

```
plt.xlabel("Outlet_Location_Type ")
plt.ylabel("Item_Outlet_Sales")
plt.title("Impact of Outlet_Location_Type on Item_Outlet_Sales")
plt.xticks(rotation=0)
plt.show()
```


train.pivot_table(values='Outlet_Location_Type', columns='Outlet_Type',aggfunc=lambda x:x.

Outlet_Type	Grocery	Supermarket	Supermarket	Supermarket
	Store	Type1	Type2	Type3
Outlet_Location_Type	Tier 3	Tier 2	Tier 3	Tier 3

1.2.2.6. Impact of Outlet_Type on Item_Outlet_Sales

```
Outlet_Type_pivot = \
train.pivot_table(index='Outlet_Type', values="Item_Outlet_Sales", aggfunc=np.median)
Outlet_Type_pivot.plot(kind='bar', color='blue',figsize=(12,7))
plt.xlabel("Outlet_Type ")
plt.ylabel("Item_Outlet_Sales")
plt.title("Impact of Outlet_Type on Item_Outlet_Sales")
plt.xticks(rotation=0)
plt.show()
```


1.2.2.7. Impact of Item_Type on Item_Outlet_Sales

```
pivoTable = \
train.pivot_table(index='Item_Type', values="Item_Outlet_Sales", aggfunc=np.mean)

pivoTable.plot(kind='bar', color='blue',figsize=(12,7))
plt.xlabel("Item_Type ")
plt.ylabel("Item_Outlet_Sales")
plt.title("Impact of Item_Type on Item_Outlet_Sales")
plt.xticks(rotation=90)
plt.show()
```


1.2.2.8. Impact of Item_Type vs Item_Visibility

```
pivoTable = \
train.pivot_table(index='Item_Type', values="Item_Visibility", aggfunc=np.mean)

pivoTable.plot(kind='bar', color='blue',figsize=(12,7))
```

pivoTable.plot(kind='bar', color='blue',figsize=(12,7)
plt.xlabel("Item_Type ")
plt.ylabel("Item_Visibility")
plt.title("Item_Type vs Item_Visibility")
plt.xticks(rotation=90)
plt.show()

2. Data Pre-Processing

2.1. Looking for missing values

```
# Join Train and Test Dataset

train['source']='train'

test['source']='test'

data = pd.concat([train,test], ignore_index = True)

data.to_csv("data/data.csv",index=False)

print(train.shape, test.shape, data.shape)

(8523, 13) (5681, 12) (14204, 13)
```

2.2. Imputing Missing Values

```
#aggfunc is mean by default! Ignores NA by default
item_avg_weight = data.pivot_table(values='Item_Weight', index='Item_Identifier')
print(item_avg_weight)
```

	Item_Weight
<pre>Item_Identifier</pre>	
DRA12	11.600
DRA24	19.350
DRA59	8.270
DRB01	7.390
DRB13	6.115
NCZ30	6.590
NCZ41	19.850
NCZ42	10.500
NCZ53	9.600
NCZ54	14.650

[1559 rows x 1 columns]

```
def impute_weight(cols):
    Weight = cols[0]
    Identifier = cols[1]

if pd.isnull(Weight):
        return item_avg_weight['Item_Weight'][item_avg_weight.index == Identifier]
```

```
else:
    return Weight

print ('Orignal #missing: %d'%sum(data['Item_Weight'].isnull()))
data['Item_Weight'] = data[['Item_Weight','Item_Identifier']].apply(impute_weight,axis=1).
print ('Final #missing: %d'%sum(data['Item_Weight'].isnull()))

Orignal #missing: 2439
Final #missing: 0
```

2.3. Imputing Outlet_size with the mode

```
#Import mode function:
from scipy.stats import mode

#Determing the mode for each
outlet_size_mode = data.pivot_table(values='Outlet_Size', columns='Outlet_Type',aggfunc=la
outlet_size_mode
```

Outlet_Type Grocery Store Supermarket Type1 Supermarket Type2 Supermarket Type3 Outlet Size Small Small Medium Medium

```
def impute_size_mode(cols):
    Size = cols[0]
    Type = cols[1]
    if pd.isnull(Size):
        return outlet_size_mode.loc['Outlet_Size'][outlet_size_mode.columns == Type][0]
    else:
        return Size

print ('Orignal #missing: %d'%sum(data['Outlet_Size'].isnull()))
data['Outlet_Size'] = data[['Outlet_Size','Outlet_Type']].apply(impute_size_mode,axis=1)
print ('Final #missing: %d'%sum(data['Outlet_Size'].isnull()))

Orignal #missing: 4016
Final #missing: 0
```

3. Feature Engineering

3.1. Should we combine Outlet_Type?

#Creates pivot table with Outlet_Type and the mean of Item_Outlet_Sales. Agg function is b
data.pivot table(values='Item Outlet Sales', columns='Outlet Type')

Outlet_Type Grocery Supermarket Supermarket Supermarket Type Type3 Type3

3.2. Item_Visibility minimum value 0

```
#Get all Item_Visibility mean values for respective Item_Identifier
visibility_item_avg = data.pivot_table(values='Item_Visibility',index='Item_Identifier')

def impute_visibility_mean(cols):
    visibility = cols[0]
    item = cols[1]
    if visibility == 0:
        return visibility_item_avg['Item_Visibility'][visibility_item_avg.index == item]
    else:
        return visibility

print ('Original #zeros: %d'%sum(data['Item_Visibility'] == 0))
    data['Item_Visibility'] = data[['Item_Visibility', 'Item_Identifier']].apply(impute_visibil
print ('Final #zeros: %d'%sum(data['Item_Visibility'] == 0))

    Original #zeros: 879
    Final #zeros: 0
```

3.3. Determine the years of operation of a store

```
#Years:
data['Outlet Years'] = 2013 - data['Outlet Establishment Year']
data['Outlet_Years'].describe()
              14204.000000
     count
                15.169319
     mean
                 8.371664
     std
                 4.000000
     min
     25%
                 9.000000
     50%
                 14.000000
     75%
                 26.000000
                 28.000000
     max
     Name: Outlet Years, dtype: float64
```

3.4. Create a broad category of Type of Item

```
Non-Consumable 2686
Drinks 1317
```

Name: Item_Type_Combined, dtype: int64

3.5. Modify categories of Item_Fat_Content

```
#Change categories of low fat:
print('Original Categories:')
print(data['Item_Fat_Content'].value_counts())
print('\nModified Categories:')
data['Item_Fat_Content'] = data['Item_Fat_Content'].replace({'LF':'Low Fat',
                                                              'reg': 'Regular',
                                                              'low fat':'Low Fat'})
print(data['Item Fat Content'].value counts())
     Original Categories:
     Low Fat
              8485
     Regular
               4824
     LF
                522
     reg
                195
     low fat
                178
     Name: Item_Fat_Content, dtype: int64
     Modified Categories:
     Low Fat 9185
     Regular
               5019
     Name: Item_Fat_Content, dtype: int64
#Mark non-consumables as separate category in low fat:
data.loc[data['Item_Type_Combined']=="Non-Consumable",'Item_Fat_Content'] = "Non-Edible"
data['Item_Fat_Content'].value_counts()
     Low Fat
                   6499
     Regular
                   5019
     Non-Edible
                   2686
     Name: Item_Fat_Content, dtype: int64
```

4. Feature Transformations

4.1. Creating variable Item_Visibility_MeanRatio

```
min 0.844563
25% 0.925131
50% 0.999070
75% 1.042007
max 3.010094
```

Name: Item_Visibility_MeanRatio, dtype: float64

4.2. Numerical and Categorical Variables – Dummy variables

```
#Import library:
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
#New variable for outlet
data['Outlet'] = le.fit transform(data['Outlet Identifier'])
var_mod = ['Item_Fat_Content','Outlet_Location_Type','Outlet_Size','Item_Type_Combined','O
le = LabelEncoder()
for i in var mod:
    data[i] = le.fit transform(data[i])
#Dummy Variables:
data = pd.get_dummies(data, columns=['Item_Fat_Content','Outlet_Location_Type','Outlet_Siz
                              'Item Type Combined', 'Outlet'])
data.dtypes
     Item Identifier
                                  object
                                  float64
     Item_Weight
     Item Visibility
                                  float64
                                  object
     Item_Type
     Item MRP
                                  float64
     Outlet Identifier
                                  object
                                   int64
     Outlet_Establishment_Year
     Item_Outlet_Sales
                                  float64
     source
                                  object
     Outlet Years
                                   int64
     Item_Visibility_MeanRatio
                                  float64
     Item Fat Content 0
                                    uint8
     Item_Fat_Content_1
                                    uint8
     Item Fat Content 2
                                    uint8
     Outlet Location Type 0
                                    uint8
     Outlet_Location_Type_1
                                    uint8
     Outlet_Location_Type_2
                                    uint8
     Outlet_Size_0
                                    uint8
     Outlet_Size_1
                                    uint8
     Outlet Size 2
                                    uint8
     Outlet_Type_0
                                    uint8
     Outlet_Type_1
                                    uint8
     Outlet Type 2
                                    uint8
     Outlet Type 3
                                    uint8
     Item_Type_Combined_0
                                    uint8
     Item Type Combined 1
                                    uint8
     Item_Type_Combined_2
                                    uint8
     Outlet_0
                                    uint8
     Outlet 1
                                    uint8
     Outlet 2
                                    uint8
```

```
Outlet 3
                                uint8
Outlet 4
                                uint8
Outlet 5
                                uint8
Outlet 6
                                uint8
Outlet 7
                                uint8
Outlet 8
                                uint8
Outlet_9
                                uint8
dtype: object
```

4.3. Exporting Data

```
#Drop the columns which have been converted to different types:
data.drop(['Item_Type','Outlet_Establishment_Year'],axis=1,inplace=True)
#Divide into test and train:
train = data.loc[data['source']=="train"]
test = data.loc[data['source']=="test"]
#Drop unnecessary columns:
test.drop(['Item_Outlet_Sales','source'],axis=1,inplace=True)
train.drop(['source'],axis=1,inplace=True)
#Export files as modified versions:
train.to csv("data/train modified.csv",index=False)
test.to_csv("data/test_modified.csv",index=False)
```

5. Model, predict and solve the problem

```
train df = pd.read csv('data/train modified.csv')
test_df = pd.read_csv('data/test_modified.csv')
#Define target and ID columns:
target = 'Item Outlet Sales'
IDcol = ['Item_Identifier','Outlet_Identifier']
from sklearn import metrics
from sklearn.model selection import cross val score
def modelfit(alg, dtrain, dtest, predictors, target, IDcol, filename):
    #Fit the algorithm on the data
    alg.fit(dtrain[predictors], dtrain[target])
    #Predict training set:
    dtrain predictions = alg.predict(dtrain[predictors])
    #Perform cross-validation:
    cv_score = cross_val_score(alg, dtrain[predictors],(dtrain[target]) , cv=20, scoring='
    cv_score = np.sqrt(np.abs(cv_score))
    #Print model report:
    print("\nModel Report")
```

```
print("RMSE : %.4g" % np.sqrt(metrics.mean_squared_error((dtrain[target]).values, dtra
print("CV Score : Mean - %.4g | Std - %.4g | Min - %.4g | Max - %.4g" % (np.mean(cv_sc

#Print r2 score:
print("r2 score : %.4g" % metrics.r2_score((dtrain[target]).values, dtrain_predictions

#Predict on testing data:
dtest[target] = alg.predict(dtest[predictors])

#Export submission file:
IDcol.append(target)
submission = pd.DataFrame({ x: dtest[x] for x in IDcol})
submission.to_csv(filename, index=False)
```

Linear Regression Model

```
from sklearn.linear_model import LinearRegression
LR = LinearRegression(normalize=True)

predictors = train_df.columns.drop(['Item_Outlet_Sales','Item_Identifier','Outlet_Identified
modelfit(LR, train_df, test_df, predictors, target, IDcol, 'LR.csv')

coef1 = pd.Series(LR.coef_, predictors).sort_values()
coef1.plot(kind='bar', title='Model Coefficients')
```

```
Model Report
```

Ridge Regression Model

Model Report RMSE: 1129

CV Score : Mean - 1130 | Std - 44.6 | Min - 1076 | Max - 1217

r2 score : 0.5625

<matplotlib.axes._subplots.AxesSubplot at 0x7f1c15913f10>

Decision Tree Model

```
from sklearn.tree import DecisionTreeRegressor
DT = DecisionTreeRegressor(max_depth=15, min_samples_leaf=100)
modelfit(DT, train_df, test_df, predictors, target, IDcol, 'DT.csv')

coef3 = pd.Series(DT.feature_importances_, predictors).sort_values(ascending=False)
coef3.plot(kind='bar', title='Feature Importances')
```

Model Report RMSE: 1058

CV Score : Mean - 1091 | Std - 45.42 | Min - 1003 | Max - 1186

r2 score : 0.6158

<matplotlib.axes._subplots.AxesSubplot at 0x7f1c15cb4750>

Random Forest Model

```
RF = DecisionTreeRegressor(max_depth=8, min_samples_leaf=150)
modelfit(RF, train_df, test_df, predictors, target, IDcol, 'RF.csv')
```

coef4 = pd.Series(RF.feature_importances_, predictors).sort_values(ascending=False)
coef4.plot(kind='bar', title='Feature Importances')

```
Model Report
    RMSE: 1069
    CV Score : Mean - 1097 | Std - 43.41 | Min - 1028 | Max - 1180
     r2 score : 0.6077
     <matplotlib.axes. subplots.AxesSubplot at 0x7f1c15b15150>
                   Feature Importances
     0.5
      0.4
      0.3
xgboost
         from xgboost import XGBRegressor
my model = XGBRegressor(n estimators=1000, learning rate=0.05)
my_model.fit(train_df[predictors], train_df[target], early_stopping_rounds=5,
            eval_set=[(test_df[predictors], test_df[target])], verbose=False)
     [08:42:53] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
    XGBRegressor(learning rate=0.05, n estimators=1000)
#Predict training set:
train_df_predictions = my_model.predict(train_df[predictors])
# make predictions
predictions = my model.predict(test df[predictors])
from sklearn.metrics import mean_absolute_error
print("Mean Absolute Error : " + str(mean absolute error(predictions, test df[target])))
print("RMSE : %.4g" % np.sqrt(metrics.mean squared error((train df[target]).values, train
print("r2 score : %.4g" % metrics.r2_score((train_df[target]).values, train_df_predictions
    Mean Absolute Error: 220.26657130725278
    RMSE: 1052
    r2 score : 0.6197
   IDcol.append(target)
   submission = pd.DataFrame({ x: test df[x] for x in IDcol})
```

submission.to_csv("XGboost.csv", index=False)