Алгебра. ИИИ. Осенний семестр

III. Группы. Изоморфизм групп

- 1. Найдите все подгруппы групп D_3 , V_4 , \mathbb{Z}_6 , \mathbb{Z}_9^* , $\mathbb{Z}_5 \times \mathbb{Z}_7$, $\mathbb{Z}_4 \times \mathbb{Z}_9$.
- 2. G и H группы. Верно ли, что любую подгруппу в $G \times H$ можно представить в виде $A \times B$, где $A \leqslant G$, $B \leqslant H$?
- 3. G группа вещественных преобразований $f_{a,b}(x)=ax+b\;(a,b\in\mathbb{R},\,a
 eq 0)$ относительно композиции. Какие из подмножеств H_i являются её подгруппами: $H_1 = \{f_{1,b}\}, H_2 = \{f_{a,a}\}, H_2 = \{f_{a,0}\}?$
- 4. Постройте левое и правое разложения группы D_4 по подгруппе:
 - а) отражений относительно центра;
 - б) отражений относительно диагонали.
- 5. $H \leqslant G$. Докажите, что если $G \backslash H$ конечно, то либо G конечна, либо H = G.
- 6. $H_1, H_2 \leqslant G$. Докажите, что $H_1 \cap H_2 \leqslant G$. Что можно сказать о порядке группы $H_1 \cap H_2$, если $|H_1| = 120$, а $|H_2| = 78$?
- 7. Является ли группа \mathbb{Z}_9^* циклической? А \mathbb{Z}_{15}^* ? Если да, то каким известным циклическим группам они изоморфны?
- 8. Приведите примеры плоских фигур, группы симметрий которых изоморфны:

- a) \mathbb{Z}_2 ; б) \mathbb{Z}_3 ; в) S_3 ; г) V_4 .
- 9. $\varphi: G \to H$ гомоморфизм групп. Докажите, что если уравнение $x^n = g$ имеет решение в G, то уравнение $x^n = \varphi(g)$ имеет решение в H. Докажите, что если φ — изоморфизм, то и число решений совпадает.
- 10. Изоморфны ли группы:
 - а) \mathbb{Z}_4 и D_4 ;
- б) \mathbb{Z}_4 и V_4 ;
- в) \mathbb{Z}_4 и R_4 ;

- г) \mathbb{Z}_{24} и S_4 ;
- д) $3\mathbb{Z}$ и $5\mathbb{Z}$;
- e) \mathbb{R} и \mathbb{R}^* ;

- ж) $\mathbb{Z}_2 \times \mathbb{Z}_2$ и V_4 ; з) $\mathbb{Z}_2 \times \mathbb{Z}_3$ и \mathbb{Z}_6 ; и) $\mathbb{Z}_2 \times \mathbb{Z}_4$ и \mathbb{Z}_8 ?
- 11. Докажите, что $\mathbb{Z}_{mn} \, \simeq \, \mathbb{Z}_m imes \mathbb{Z}_n$ тогда и только тогда, когда m и n взаимно простые.
- 12. Докажите, что множество пар $\{(a,b) | a,b \in \mathbb{R}, a \neq 0\}$ относительно операции (a,b)*(c,d)=(ac,ad+b) образует группу. Какой из уже встречавшихся групп она изоморфна?

13.* Граф — пара $\langle V, R \rangle$, где V — некоторое конечное множество (множество верuuu), а R — некоторое множество неупорядоченных пар элементов V (множество $p\ddot{e}bep$). Если R содержит ребро AB, то вершины A и B называют смежсными. Автоморфизм графа $\langle V, R \rangle$ — любая биекция V на себя, которая переводит смежные вершины в смежные, несмежные — в несмежные. Все автоморфизмы графа $\mathscr G$ образуют группу $\operatorname{Aut}\mathscr G$ относительно композиции. Найдите $Aut \mathcal{G}$ (определите, какой из встречавшихся групп она изоморфна), если:

a)
$$\mathscr{G} = \langle \{A, B, C, D\}, \{AB, BC, CD\} \rangle$$
;

6)
$$\mathcal{G} = \langle \{A, B, C, D\}, \{AB, AC, AD\} \rangle$$
;

в)
$$\mathcal{G} = \langle \{A, B, C, D\}, \{AB\} \rangle;$$

$$\mathbf{r}) \, \mathcal{G} = \langle \{A, B, C, D\}, \{AB, CD\} \rangle.$$

14.* Придумайте пример графа, группа автоморфизмов которого изоморфна:

- a) S_n ; 6) D_n ; B) $\{1\}$;
- r) \mathbb{Z}_3 .

15 cdot* G — конечная абелева группа нечётного порядка. Докажите, что отображение $\varphi\colon G o G,\ g\mapsto g^2$ является автоморфизмом.