| Ph         | utl           | sall | 1 (           | Phi         | los         | oph        | er <sup>1</sup> | S         | Foot       | fbal      | $\mathcal{U}$ | ſ      | Cor            | wa          | 43          |       |       |      |      |
|------------|---------------|------|---------------|-------------|-------------|------------|-----------------|-----------|------------|-----------|---------------|--------|----------------|-------------|-------------|-------|-------|------|------|
| <b>'</b> — |               | 97   | Q (           | whi         | te          | st         | on              | 2 (       | bal        | $U)_1$    | n             | ran    | y.             | bla         | ck          | sto   | nes   | (me  | en)  |
|            | -             | mo   | ve            | Ξ           | P.          | lac        | e i             | rev       | J &        | olac      | k             | st     | 574            | ,           |             |       |       |      |      |
|            |               |      |               | OR          |             | kic        | k t             | he<br>tim | 60         |           | الح           | J<br>J | um<br>1.       | Ping        | 3 b         | norī  | zon   | tall | 4    |
|            |               |      |               |             |             |            |                 |           | ally<br>ly |           |               |        |                |             |             |       | , +   |      |      |
|            | _             | 900  | al:           | V           | eac         | h          | ορ              | por       | ient       | 15        | Sì            | de     | <b>バビ</b><br>ム | siH         | d           | all   | 1     |      |      |
|            |               |      |               |             |             |            |                 |           |            |           |               |        |                |             |             | -     |       |      |      |
|            |               | _    |               | •           |             |            |                 |           | )ere       |           |               |        | २०१            | 9 J         |             |       |       |      |      |
|            |               |      |               |             |             |            |                 |           | ON P       |           |               |        |                |             | 1.          |       |       |      |      |
|            | _             | N    | - C           | omp         | oxe         | re         | 16              | ) (       | lec        | ide<br>ma | r             | noi    | 27             | <u> </u>    | 1.<br>( L : | -67   |       |      |      |
|            |               | _    | rea           | Juc         | tion        | +          | rom             |           | 3SA        | T         | De            | mai    | ne,            | De          | mail        | ne, E | IPPĒ  | ein  | 3090 |
|            |               |      |               |             |             |            |                 |           |            |           |               | ,      |                |             |             |       | ''    |      |      |
|            | $\mathcal{C}$ | hec  | ke            | <u>rs</u> : |             |            |                 | 0         | 1          |           |               |        | Γ+-            | 1           | 0           | _     | 7     | - 1  |      |
|            |               |      | Ex            | PTJ         | <u>C</u> ME | -C         | omp             | slet      | 20         |           | . 0           |        | _Hra           | euk         | ex, (       | sypc  | 14, J | ohn: | son, |
|            |               |      | ma            | re-         | in-         | e<br>T     | 15              | -010      | oly        | non<br>~  | iial<br>0     | . la   | ٥              | oha<br>ocid | eter        | 108   | sha   | 197  | ره   |
|            |               |      | $\Rightarrow$ | E           | lex         | <b>*</b> * | Pa              | th        | ve<br>Pr   | المح      | len           | J      | P              | A1 / I      | g           |       |       |      |      |
|            |               |      |               |             | 01          |            | <b>\</b>        |           | l T        |           |               |        |                |             |             |       |       |      |      |
|            |               |      |               |             |             |            |                 |           |            |           |               |        |                |             |             | •     |       |      |      |

```
Cryptarithms/alphametics [Madachi 1979]
   - given formula x+y=z with each number
     written in base 6 & encoded with "letters" by
   unknown bijection between {0,1,..., b-1} & letters - goal: feasible? / recover bijection
   - strongly NP-complete [Eppstein 1987]
  Reduction from 3SAT:
      - variable gadget:
        -b_i = 2a_i
                                C = carry(y_i + y_i) \in \{0, 1\}
         -v_{i} = 26i + C
           = 4a_i + C = C \pmod{4}
        -d_i = 2c_i + C
        -e_i=d_i+1+C
             =2c_{i}+1+2C
        -\overline{V_i} = d_i + e_i
              =4c_{i}+1+3C
              = 3C+1 = 1-C \pmod{4}
      - clause gadget:
         -g_i = \lambda f_i
         -h_i = 29i + 20,13
              =4f_{i}+\{0,1\}
         -t_i = h_i + 1 + \{0, 1\}
              =4f_{i}+1+\{0,1,2\}
              =4f_{1}+\{1,2,3\}
         -V_{a}+V_{b}+V_{c}=t_{\bar{i}}=\{1,2,3\}\pmod{4}
```

```
Simplified reduction from 1-in-35AT:
   - variable gadget: just vi. no Vi (monotone)
   - clause gadget:
      -g_i = 2f_i
      - h; = 2gi
            = 4f;
      -t_i = h_i + 1
           = 44,+1
      - V_0 + V_b + V_c = t_i
                   = 4fi+1 = 1 (mod 4)
3SAT solvable > cryptarithm solvable:
   - distinguish ambincindin... by value mod 128
   -e.g. V_i = 8 \pmod{128} if true
             = 9 (mod 128) if false
         a: = {2, 34, 66, 98} (mod 128)
   - set \lfloor V_i / 128 \rfloor & \lfloor \overline{V_i} / 128 \rfloor \in [0, (2n)^3]
      such that distinct sums of triples
     [Bose & Chowla 1959]
   - easy proof of polynomial range: (based on trees)
      - if < i set by induction. Vi must avoid
         V_j + V_k + V_e - V_m - V_p \sim (2n)^5 choices
      >> (2n)5 suffices
   ⇒ strongly NP-hard
```



Vertex-disjoint paths:
- in a graph [Lynch 1975] — in a planar graph [Lynch 1975] - in a rectangle with all spots filled [Adcock, Demaine, Demaine, O'Brien, Reidl, Sánchez Villaamil, Sullivan 2014] - use terminals as obstacles - neighboring terminal pairs can just connect OR fill some uncovered space - issue 1: must have even-parity fill regions - issue 2: clause path may be absent! -> more parity trouble -> add row - issue 3: gadget width is odd parity > won't connect to split > add column - issue 4: crossing true or false line gadgets = Zig-zag Numberlink [Loyd 1897; Nikoli] - classic Numberlink also NP-complete [Kotsuma & Takenaga 2010]

6.890 Algorithmic Lower Bounds: Fun with Hardness Proofs Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.