Lecture 52

niceguy

February 26, 2024

1 Recap

Tensors of rank k over a vector space V is a multilinear map

$$T: V^k \to \mathbb{R}$$

Given a basis of $V e_1, \ldots, e_n$, we have a basis for V^k composed of $\Phi_I(e_{j1}, \ldots, e_{jk})$ which is equal to one if $(j1, \ldots, j_k) = I$, where I is an ordered list (that possibly repeats). The dimension is then n^k .

Alternating k tensors are tensors whose sign changes when any two vectors are swapped, i.e.

$$T(v_1, \ldots, v_i, v_{i+1}, \ldots, v_k) = -T(v_1, \ldots, v_{i-1}, v_{i+1}, v_i, v_{i+2}, \ldots, v_k)$$

They form a linear subspace. Since the sign of permutations are well-defined, we can alternatively define alternating tensors as

$$T^{\sigma} = \operatorname{sgn}(\sigma)T$$

2 Althernating tensors

We are looking for a basis for $A^k(V)$, the set of alternating tensors. Consider a set of ordered k-tuples. Unlike the ϕ_I as above, we do not need to know the order of the permutation, since it is determined (by definition). Now given a permutation \bar{I} with increasing indices, e.g. $(v_1, v_2, v_3, v_5, ...)$, we can similarly define a $\phi_{\bar{I}}$, which has value ± 1 on permutations of \bar{I} depending on the sign. We want to say the set of this ϕ forms a basis. It is obvious that they are linearly independent. For an arbitrary tensor f, letting a_I be $f(v_{i1},\ldots,v_{ik})$ with I being increasing, consider $g=\sum_I a_I\phi_I$. For an arbitrary $w\in V^k$, we can write w as a sum of basis vectors. For both f,g, the function is only (possibly) nonzero on basis vectors where there are no repeating indices. For the rest, the fact that f,ϕ are alternating ensures f(w)=g(w). Since w is arbitrary, we can say that ϕ_I spans $A^k(V)$, completing the proof.

Example 2.1. Determinants are alternating tensors.

3 Wedge Product

We want an operation

$$\bigwedge : A^k(V) \times A^l(V) \to A^{k+l}(V)$$

We know we can take the tensor product $w_1 \otimes w_2$, which is alternating except (possibly) for switches between the first k and last l entries. We then desire an operaton to make it alternating.