LOCITIDI OVUILI

Esempio 2.1. Insieme di definizione. Determinare l'insieme di definizione delle seguenti funzioni (ossia il più ampio sottoinsieme di R su cui la funzione è ben

(a)
$$\frac{\log_2(3+x)}{\sqrt[3]{x+2}}$$
; (b) $\sqrt{2^x-8} \cdot \log|x-4|$; (c) $\tan(\log x)$; (d) $\log(\tan x)$.

=0
$$\log_b(a) = c$$
 $\Leftrightarrow b^c = a$ quindi $2^{x^c} 8^a = \log_2(8) = x = 0 \times 3$

•
$$\log |x-4|$$
; $|x-4| > 0$, siccome e sempre >0 (per il modulo), ci basta che non sia \emptyset
=0 $x-4\neq 0$ per $x\neq 4$

$$=0 \quad \text{\mathbb{D}} = \left\{ x \in \mathbb{R} \setminus x > 3 - x = 4 \right\}$$

Pari:
$$f(-x) = f(x)$$

Dispari: $f(-x) = -f(x)$

a)
$$\frac{x}{1+x^2}$$
; $f(-x) = \frac{-x}{1+(-x)^2} = -\frac{x}{1+x^2} = -f(x) = 0$ Dispayi -D I e III o II e III

b)
$$x \tan^3 x$$
; $f(-x) = -x \tan^3 (-x) = x \tan^3 x = f(x)$ pari $-x = x \tan^3 x = x$

C)
$$x + 2x^2$$
; $-x + 2(-x)^2 = -x + 2x^2$ Nessure

d)
$$2^{-x^2}$$
; $f(-x) = 2^{-(-x)^2} = 2^{-x^2} = f(x) - D$ Pari - D I e II o II e IV

e)
$$\sin(x^3)$$
; $f(-x) = \sin(-x^3) = -\sin(x^3) = -f(x) - b$ Dispari

$$f) 3^{x^3}$$
; $f(-x) = 3^{-x^3}$ Nessuna

Esempio 2.4. Monotonia di una funzione. Dire se la seguente funzione è monotona in tutto il suo insieme di definizione (specificando se crescente o decrescente) oppure no:

- (a) 2^{3x+x^3} ; (b) $\log_{1/2}(1+4x)$; (c) $\arctan(1+2^{-x})$;
 - (d) $\frac{1}{1+r^3}$; (e) $\frac{1}{1+r^2}$; (f) $\frac{1}{1+e^x}$

Crescente: $\forall x_1 < x_2 = 0 f(x_1) < f(x_2) \in S$: $y = 2^x$

Non Decrescente: $\forall x_1 < x_2 = 0$ $f(x_2) \le f(x_2)$

Decre scente: $\forall x_1 < x_2 = b \quad f(x_1) > f(x_2)$ Es: $y = (\frac{1}{2})^x$

b) log_ (1+4x); 1+4x e monotono e crescente log_ e monotono e decrescente = D, f e monotono decrescente

C) $\arctan (1+2^{-x})$; $1+2^{-x}$ decrescente -

oirctain crescente -=0, f e monotono decrescente

d) $\frac{1}{1+x^3}$; 1 e costante 1+ x^3 e crescente

e) $\frac{1}{1+x^2}$; $1+x^2$ non e monotona

Bonus

1) 1/t e Decresconte -D (rescente)

(rescente)

2) et et PARI -> Ne'crescente ne' decrescente

2) et et Dispari -> Crescente

- · Crescente
- Non crescente
- Decre scente
- Non Decrescente

Funzioni inverse

Date le juntione y = f(x), per trovare x = f(x) dobbiamo:

• Veolere se e invertibile: La funcione deve essere Biunivoca; se non e biunivoca, controlliamo se essa e iniettiva; se e iniettiva e invertibile, ma solo in un dato intervallo.

y= x³ e Bijettive o Biunivoca perclu' per tutto il suo dominio viene intersecata do linee orizzontali ESATTAMENTE una sola volto.

• Se la f y=f(x) e invertibile, possiamo trovare

ES:
$$f(x) = y = x + 8$$
 $x \mid y$ $0 \mid 8 = 0$

f-(x):

 $f(x) = x + 8 \implies x = y + 8$ mettiamo in evidenza la y = 6 y = x - 8

Per trovare l'inversa dobbiamo Scambiare in f la x con la y:

ES: y = 2x + 8 e iniettive? E' iniettive se $f(x_2) = f(x_2)$ quindi:

$$\frac{1}{2} 2x_1 + 8 = 2x_2 + 8 \cdot \frac{1}{2} = 0 \quad x_1 = x_2$$

$$= 0 \quad x = 2(9-3) \quad \text{e'suriettive}$$

$$= 0 \quad x = 2(9-3) \quad \text{e'suriettive}$$

Tutte le funtioni inversa ha questa simmetria.

Es:
$$f = 4x + 5 = D$$
 $f(x_1) = f(x_2) = D$ $\frac{4x_1 + 5}{4x_2 + 5} = D$ $x_1 = x_2$ e iniettiva!
Es: $f = x^2 + 4x - 5 = D$ $f(x_1) = f(x_2) = D$ $x_1^2 + 4x_1 - 5 = x_2^2 + 4x_2 - 5 = D$ $x_1^2 + 4x_1 = x_2^2 + 4x_2$
Esercizi libro f inverse

Esempio 2.5. Funzione inversa. Scrivere esplicitamente la funzione inversa della seguente funzione, precisando il dominio della funzione inversa:

(a)
$$f(x) = \frac{3 + 2\sqrt{x}}{2 - \sqrt{x}}$$
; (b) $f(x) = e^{\frac{x+1}{x-1}}$.

$$f(x) = \frac{3+2\sqrt{x}}{2-\sqrt{x}} \text{ Risolvia mo per } x: (2-\sqrt{x})y = 3+2\sqrt{x}; 2y-\sqrt{x}y = 3+2\sqrt{x}; 2y-\sqrt{x}y-2\sqrt{x}=3$$

$$=0-\sqrt{x}(y+2)+2y=3; \sqrt{x}(y+2)=2y-3; \sqrt{x}=\frac{2y-3}{y+2};$$

$$=0 \quad x = \left(\frac{2y-3}{y+2}\right)^2$$

La
$$f(x)$$
 e lecita solo se $y>0$:

$$\frac{2y-3}{y+z}>0 \quad \text{per } 2y-3>0; \quad y>\frac{2}{2} \} \quad \text{Vals}$$

$$=0 \quad f(x) \quad \text{e definito in } \left(-\infty,-2\right) \cup \left(\frac{3}{2},\infty\right)$$