Cálculo Numérico - IME/UERJ Gabarito - Lista de Exercícios 2

Série de Taylor e Raízes de funções

1. (a)
$$P_3(0.5) \approx 1,64583$$
.

Erro absoluto cometido:

$$|e^{0.5} - P_3(0.5)| \approx 2,88794 \times 10^{-3}.$$

(b)
$$R_3(0.5) \le \frac{1.64872}{4!} (0.5)^4 \approx 4,29354 \times 10^{-3}.$$

Como $2,88794\times 10^{-3}<4,29354\times 10^{-3},$ o resultado é compatível.

2. (a)
$$P_3(0.5) = 0.5 - \frac{1}{2}(0.5)^2 + \frac{1}{3}(0.5)^3 \approx 0.4167.$$

O erro absoluto cometido é:

$$|f(0.5) - P_3(0.5)| = |\ln(1.5) - P_3(0.5)| \approx 0.0112.$$

(b)
$$|R_3(0.5)| \le 0.015625$$
.

Como 0.0112 < 0.015625, o resultado é compatível.

3. Resposta: Vamos calcular os valores de p(x) em pontos suficientemente próximos das raízes. Assim, temos a tabela:

								3.5		
p(x)	400	85.75	0	-7.8125	- 2	0	- 0.5	- 0.3125	0	1.75

Analisando o sinal de p(x) para os valores da tabela, concluímos que nas proximidades da raiz 2.5, no intervalo (2,3), a função p(x) não mudou de sinal. Portanto, o método da Bisseção não funciona para a raiz 2.5.

- 4. [2, 3]. Número de iterações: $k_{\min} = 10$.
- 5. (a) Resposta:

$$f(x) = e^{-2x} + x^2 - 4 = 0 \Rightarrow e^{-2x} = 4 - x^2.$$

Portanto, graficamente, as raízes são os pontos de interseção das funções e^{-2x} e $9-x^2$.

1

Assim, temos duas raízes: $r_1 \in (-1,0)$ e $r_2 \in (1,2)$.

Para r_1 , uma boa aproximação inicial é $x_0 = -0, 7$, enquanto para r_2 , uma boa aproximação inicial é $x_0 = 1, 9$.

(b) Resposta:

Pelo teorema do método do ponto fixo, há uma sequência convergente para uma raiz quando $\varphi'(x) \leq M < 1$ para todo $x \in I$, onde I é um intervalo centrado na raiz e $x_0 \in I$.

$$|\varphi_1'(x)| = \left| \frac{e^{-2x}}{\sqrt{4 - e^{-2x}}} \right| = \frac{e^{-2x}}{\sqrt{4 - e^{-2x}}}$$

Então, para as aproximações iniciais das raízes do item (a):

$$|\varphi'_1(r_1 \approx -0.7)| \approx 1.9731 > 1 \Rightarrow \text{Diverge!}$$

 $|\varphi_1'(r_2 \approx 1, 9)| \approx 0,0113 < 1 \Rightarrow \varphi_1(x)$ converge para $r_2 \in (1, 2)$.

$$|\varphi_2'(x)| = \left| \frac{x}{4 - x^2} \right|$$

Então, para as aproximações iniciais das raízes do item (a):

$$|\varphi_2'(r_1 \approx -0,7)| \approx 0,1994 < 1 \Rightarrow \varphi_2(x)$$
 converge para $r_1 \in (-1,0)$.

$$|\varphi_2'(r_2 \approx 1,9)| \approx 4,8718 > 1 \Rightarrow \text{Diverge!}$$

- 6. A maior raiz é $r_2 \approx 1,9954$.
- 7. (a) $\varphi_1(x) = e^{-2x}$. Como $|\varphi_1'(x)| = 2 \cdot e^{-2x} < 1 \Rightarrow x > 0.34657$, um bom intervalo é (0.34657, 0.5), pois $f_1(0.34657) \cdot f_1(0.5) < 0$.
 - (b) As raízes são: $r_1 \in (0, 0.5), r_2 \in (3, 3.5)$.

Então, uma boa estimativa inicial de raiz para r_1 é $x_0 = 0.2$ e uma boa estimativa inicial para r_2 é $x_0 = 3.2$.

Uma função de iteração é $\varphi_2(x) = e^{x-2}$.

Para r_1 : $|\varphi_2'(0.2)| = e^{0.2-2} = e^{-1.8} \approx 0.1653 < 1 \Rightarrow \varphi_2(x)$ converge para r_1 .

Para r_2 : $|\varphi_2'(3.2)| = e^{3.2-2} = e^{1.2} \approx 3.3201 > 1 \Rightarrow \varphi_2(x)$ não converge para r_2 .

- (c) $\varphi_3(x) = e^{x/6}$; $r \in (1, 2)$.
- (d) $\varphi_{41}(x) = \sqrt{\sin(x)}$; $r_1 \in (0.8, 0.9)$. A raiz $r_2 \in (-0.1, 0.1)$ deve ser encontrada em $\varphi_{42}(x) = -\sqrt{\sin(x)}$.
- (e) As raízes são: $r_1 \in (-4, -3), r_2 \in (-3, -2)$ e $r_3 \in (1, \pi/2)$.

Então, uma boa estimativa inicial de raiz para r_1 é $x_0=-3.8$, uma boa estimativa inicial para r_2 é $x_0=-2.1$ e uma boa estimativa inicial para r_3 é $x_0=1.2$.

Uma função de iteração que podemos usar é $\varphi_5(x) = \arccos(x/4)$.

Então, vamos analisar o que acontece com as estimativas iniciais:

Para r_1 : $|\varphi_5'(-3.8)| \approx 0.8006 < 1 \Rightarrow \varphi_5(x)$ converge para r_1 .

Para r_2 : $|\varphi'_5(-2.1)| \approx 0.2937 < 1 \Rightarrow \varphi_5(x)$ converge para r_2 .

Para r_3 : $|\varphi_5'(1.2)| \approx 0.2621 < 1 \Rightarrow \varphi_5(x)$ converge para r_3 .

- 8. Resolver.
- 9. Como $|\varphi_1'(2)| < |\varphi_2'(2)| < 1$, logo $\varphi_1(x)$ gera sequências mais rapidamente convergentes para a raiz.
- 10. Resolver.