线性代数 笔记

任云玮

目录

1	Linear Algebra Done Right	2
	1.8 Operators on Complex Vector Spaces	2

1 Linear Algebra Done Right

1.8 Operators on Complex Vector Spaces

p243. 8.4 这一定理表明,如果 $T^{n+k}u = 0$,则 $T^nu = 0$,其中 $k \ge 0$.

p243. 8.5 一般而言, $V = \text{null } T \oplus \text{range } T$ 是不成立的,注意到虽然 $\dim V = \dim \text{null } T + \dim \text{range } T$ 始终成立,但是 null T 和 range T 之间可能有非零的重合。所以实际上这一定理的内容主要是 $\text{null } T^n \cap \text{range } T^n = \{0\}$.

p247. The proof of 8.13 注意有 $(T - \lambda_1 I)(T - \lambda_2 I) = ((T - \lambda_2 I)(T - \lambda_1 I))$. 我们的 思路在于逐个证明 $a_j = 0$. 要做到这一点,首先要去掉其他的项并保留当前 a_j 项,要消去其他项,只需利用 $v_k \in G(\lambda, T) = \operatorname{null}(T - \lambda_k I)^n$,即利用 $(T - \lambda_2 I)^n \cdots (T - \lambda_m I)^n$ 即可. 但是这样仅能得到

$$0 = a_1(T - \lambda_2 I)^n \cdots (T - \lambda_m I)^n v_1.$$

由于我们不能确保上式右侧的,不考虑系数的向量最后不为零,所以不能直接得出 $a_1 = 0$. 因此我们希望给 v_1 再作用一个 $(T - pI)^q$ 形式的线性算子(以确保仍可交换)使得它一定不为零。在此注意到如果 w 是 T 的非广义特征向量,则可以满足条件,同时我们有 $(T - \lambda_1 I)^k v_1$ 是 T 的一个非广义特征向量。