A Proof of Arrow's Impossibility Theorem

Yudai Kubono

April 26, 2025

Graduate School of Science and Technology, Shizuoka University

What is Arrow's (Impossibility) Theorem?

アローの不完全性定理について教えてください。

もちろんです!

アローの不完全性定理(Arrow's Impossibility Theorem)は、経済学者ケネス・アロー(Kenneth Arrow)が 1951年に著書『Social Choice and Individual Values(社会的選択と個人的価値)』の中で示した、とても有名な定理です。簡単にいうと、

「個人の好みを集約して社会全体の好みを決めるとき、いくつか自然な条件を満たす方法は、独裁制以外には存在しない」

というものです。

Source: Text generated by ChatGPT.

アローの不可能性定理とは?

多数決(投票)に参加する人が2人以上で、選択肢が3つ以上ある時は、公正な投票制度が存在しないという定理。

Source: 『アローの不可能性定理を分かりやすく』どうすれば選挙は上手く機能するのか. https://kitaguni-economics.com/arrows-impossibilitytheorem/.

Arrow's Theorem

Theorem 1 (Arrow's Theorem)

Suppose that there are more than two alternatives and finite individuals. Then, any social welfare function that respects transitivity, completeness, independence of irrelevant alternatives, and unanimity is a dictatorship.

- ▶ Individuals: $I = \{1, \ldots, n\}$
- ightharpoonup Alternatives: $A = \{a, b, \dots, n\}$
 - ▶ Individual preference \leq_i : i's preference ordering over A ($a \leq_i b \prec_i c$).
- ▶ Social welfare function S: a function that maps n-tuple of individual preferences to a social preference \leq .

Conditions

- ► Transitivity and Completeness: Individual and social preferences are transitive and complete relation (weak ordering).
- ► Independence of irrelevant alternatives (IIA): the social preference of any two alternatives depends only on individuals' preferences of them.
 - ▶ Let $\leq_i \mid \{a,b\}$ denote the part of \leq_i concerning alternatives a and b. For any $a,b \in A$, if for all $i \in I$, $\leq_i \mid \{a,b\} = \leq_i' \mid \{a,b\}$, then $\leq \mid \{a,b\} = \leq' \mid \{a,b\}$.
- ▶ Unanimity (U): For any a, b, if for all i, $a \prec_i b$, then $a \prec b$ (weak Pareto).
- ▶ Dictatorship: there is i such that for any a, b, if $a \prec_i b$, then $a \prec b$.

Extremal Lemma

Lemma 1 (Extremal Lemma)

Let alternative b be chosen arbitrarily. If all individuals put b at the very top or bottom of their preference, then the social preference must as well.

Proof.

Suppose to the contrary that for such individual preferences and some $a, c \in A$, the social preference put $a \leq b$ and $b \leq c$. If every i moves a above c, the relations continue to hold due to IIA.

Thus, by transitivity, it continues to put $a \leq c$, but by U, it also puts $c \leq a$. This is a contradiction.

Theorem 1 (Arrow's Theorem)

Suppose that there are more than two alternatives and finite individuals. Then, any social welfare function that respects transitivity, completeness, independence of irrelevant alternatives, and unanimity is a dictatorship.

Proof.

1. Let alternative b be chosen arbitrarily and every individual put b at the very bottom of their preferences. Then, let individuals $\{1,\ldots,n\}$ successively move b from the very bottom to the very top of their preferences while keeping the other relative orderings unchanged.

It follows from the Extremal Lemma that there exists $i \in I$ such that by moving b to the very top of his/her preference, she can move b from the very bottom of the social preference to the very top, who is denoted by i(b). We denote by tuple X the list of all individual preferences just before i's moving and Y the list just after his/her moving.

2. We argue that i(b) is a dictator over any alternative pair a, c not involving b. To prove this, we construct tuple Z from Y by letting i(b) put $a \prec_i b \prec_i c$ and all the other individuals arbitrarily rearrange their orderings of a and c while leaving b in its extreme position.

By IIA, the social preferences corresponding to Z put $b \prec c$ as in X and $a \prec b$ as in Y. By transitivity and IIA, $a \prec c$, which agree with i(b)'s preference ordering.

3. If we take another alternative d different from b, there must be an individual i(d), who is a dictator over any alternative pairs not involving d. This means that i(d) dominates the social preference of any pair, including a and c. This dictator must be i(b). Thus, there exists only one dictator over every pair of alternatives.

Since this argument can be applied to any n-tuple of individual preferences, if a social structure function satisfies the conditions, then there exists a dictator for any n-tuple of individual preferences.

REFERENCES

- Geanakoplos, J. (2005). Three brief proofs of Arrow's impossibility theorem. *Economic Theory*, 26(1), 211-215.
- Morreau, M. (2019). Arrow's Theorem. https://plato.stanford.edu/entries/arrows-theorem/ (accessed April 24, 2025).
- OpenAI. (2025). ChatGPT 4o (March 27 version). [Large language model]. https://chat.openai.com.
- 『アローの不可能性定理を分かりやすく』どうすれば選挙は上手く機能するのか. (2019). https://kitaguni-economics.com/arrows-impossibilitytheorem/ (accessed April 26, 2025).