Construction Engineering Research Laboratory US Army Corps of Enchrons

NOVEMBER 1984

AD-A179434 SITE FILE COPEY

DCA CIRCULAR 300-95-1

3

U.S. Army Construction Engineering Research Laboratory

SEMIHARDENED CONTINGENCY

COMMUNICATION SHELTERS

10072/12/10/30

Prepared for the

28

Defense Communications Engineering Co Defense Communications Agency

Reston, Virginia 22090 1860 Wiehie Avenue

MIPR HC1001-3-40111 Under

FORFWORD

This investigation was performed by the Facility Systems Division (FS), U.S. Army Construction Engineering Research Laboratory (USA-CERL), for the Defense Communication Agency under Order No. HClOOl-3-40111 (DEC. 1982).

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

2000					
	REPORT DOCUME	NTATION PAG	E		•
18 REPORT SECURITY CLASSIFICATION UNCLASSIFIED		16. RESTRICTIVE M	IARKINGS		
28. SECURITY CLASSIFICATION AUTHORITY N/A		3. DISTRIBUTION/A	VAILABILITY O	F REPORT	
26. DECLASSIFICATION/DOWNGRADING SCHED	PULE	Unlimited D	istribution	, /I	
4. PERFORMING ORGANIZATION REPORT NUM	BER(S)	5. MONITORING OR	GANIZATION RE	EPORT NUMBER(S	S)
DCA Circ ular_3 00-95-1					•
60 NAME OF PERFORMING ORGANIZATION U.S. Army Corps of Engineers Construction Engineering Resea Laboratory	6b. OFFICE SYMBOL (If applicable) rch N/A	7a. NAME OF MONI Defense Comm Defense Comm	nunications	Agency	r
6c. ADDRESS (City, State and ZIP Code)	,	7b. ADDRESS (City,		le)	
Champaign, IL 61820		1860 Wiehle Reston, VA			
Se. NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT	NSTRUMENT IO	ENTIFICATION N	UMBER
	R620	MIPR HC1001-	-3-40111		
8c. ADDRESS (City, State and ZIP Code)		10. SOURCE OF FUN	IDING NOS.		
1860 Wiehle Avenue Reston, VA 22090-5500	•	PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT
11. TITLE (Include Security Classification) (U) S Contingency Communications She	emihardened Iters	33126К	1170	8018	·
12. PERSONAL AUTHOR(S) See Item 12 (Continued)					
134 TYPE OF REPORT . 135. TIME C		14. DATE OF REPOR	T (Yr., Mo., Day)	15. PAGE C 118	OUNT
Final FROM De	<u>с 82 то Dec 83</u>	1984 1100		1 118	
Analysis					,
17. COSATI CODES	18. SUBJECT TERMS (C		cessary and identi	fy by block number	9
FIELD GROUP SUB. GR.	(U) Survivabil				
1313	(U) Cost Effect (U) Communicat				
The purpose of this analysis we constructing semihardened shell equipment or operations function that will simplify selection of threat, and function, and (3) least costly to an AUTODIN Swi	dentify by block number as to (1) invest ters for Defense ons, (2) provide f the least expe present one case	, tigate concept e Communicatio e planners wit ensive facilit	ons Systems th parametr ty for any	DCS) prepo ic relations given locati	ships Ion
The development process and ca describes the basic requiremen Unit Storage Shelter, the Reco Shelter. While developing thi and selected for use in the co section structures of cast-in-	ts and initial on nstitutional Pac s section, design nceptual design place concrete w	conceptual des ckage Storage gn alternative and cost esti were selected	igns for the Shelter, and shelter, and she were considered mate. Rectas baseline	ne Transport nd the Opera sidered, eva tangular cro e design.	table itional iluated,
20. DISTRIBUTION/AVAILABILITY OF ABSTRAC	τ	21. ABSTRACT SECU	HITY CLASSIFIC	CATION	
UNCLASSIFIED/UNLIMITED 🗀 SAME AS RPT	XX OTIC USERS -	UNCLASSIFIE	ED .		
E. Michael Hanz		226 TELEPHONE NE Include Ama Co. (703) 437-21	der	22a. OFFICE SYM R620	вос

Item 12 (Continued) - Personal Authors

BLACKMON, Bob ELKSWORTH, Douglas E. FISHER, Dr. Walter E. LYNCH, Barry G. NORRIS, Gregory A. PIERCE, E. Thomas Prendergast, James D.

Item 19 (See Continuation Sheet)

The second section describes baseline buildings using a preengineered metal structure as the unhardened example and a standard ammunition igloo for the semihardened example. The concepts were developed to provide a comparative basis for addressing a "low first cost" criteria. Neither building could meet the threat definition no could they be modified easily to provide the needed hardness. The igloo would provide a low level of protection, however, and could be considered for use in some areas.

The third section addresses several construction alternatives, each designed to reduce the onsite construction time or the skilled labor demands. Two alternatives specifically discussed for the operational shelter would have limited usefulness for storing truck-mounted equipment.

The fourth section presents general explanations of the design method and construction cost estimates together with the major underlying assumptions. The important findings of the design and cost estimating aspects of this investigation are summarized. Also summarized are alternative construction concepts that satisfy the specified performance criteria for the various shelter types. The planner is completely responsible for selecting the most suitable shelter concept and construction technique at a specific geographical location.

In the final section the least-cost alternatives developed in prior sections are applied to an AUTODIN Switch Facility with a limited threat definition and different operational requirements. Facility configurations and cost estimates are presented.

Account to	4 %I 3 3 094	200	- - - - - - - -
Py District Available Pist	oution/ ability (vai) am Specia	0/02	ASS

TABLE OF CONTENTS

SECTION A INTRODUCTION

Purpose Background Threat Definition Approach

SECTION B BASIC DESIGN

81 - Transportable Unit Storage Shelter 82 - Reconstitutional Package Storage Shelter 83 - Operational Shelter

BASELINE FACILITIES SECTION C

CI - Baseline Netal Building C2 - Baseline Concrete Building

CONSTRUCTION ALTERNATIVES SECTION D

61 - Shotcrete Construction

D2 - Precast Panel Construction

D3 - filt-Up Panel Construction

D4 - Bouch P Panel Mail Construction

D5 - Seaf-Circular Arch Construction

D6 - Circular Construction

D7 - Concrete/Prefabricated Box Form Construction

D8 - Dome Construction

SECTION E ANALYSIS

Structural Design Construction Cost Estimates Costing Issues Protective Cover Findings and Conclusions

SECTION F CONCLUSIONS

CASE STUDY SECTION 6

Bibliography

APPENDIX A COST ESTIMATES

SEMI-MARDENED CONTINGENCY COMMUNICATION SHELTERS

Prepared by: Bob Blackmon
James D. Prendergast
Dr. Walter E. Fisher
E. Thomas Pierce
Coccon E. Element Barry G. Lynch
Gregory A. Norris

U.S. Army Corps of Engineers Construction Enginecring Research Laboratory, Champaign, IL

TABLE OF CONTENTS

		P 3 9 e
SECTION A IN Purpose Background	INTRODUCTION	RS-5
Threat Definition Approach	inition	
SECTION B BA B1 - Reconf B2 - Recons B3 - DCS 0p	Reconfiguration Storage Shelter Reconstitution Storage Shelter DCS Operational Shelter	RS-9
SECTION C BASELI C1 - Baseli C2 - Baseli	BASELINE CONSTRUCTION Baseline Metal Building Baseline Concrete Building	RS-31
SECTION D CO 01 - Shoter 02 - Precas 03 - 711t-v 04 - 50bbie 05 - 50bbie 06 - Circul 07 - Concre	CONSTRUCTION ALTERATIVES	RS-35
SECTION E AMALYSIS Structural Design Construction Cost Findings	AMALYSIS AND CONCLUSIONS	RS-53
SECTION F C	CASE STUDY	RS-75
APPENDIX CO	COST ESTIMATES	RS-87
DISTRIBUTION		

LIST OF FIGURES

Semicircular ArchAlternative A Semicircular ArchAlternative B Semicircular ArchAlternative B Semicircular ArchAlternative C Semicircular ArchAlternative C Semicircular Arch Configuration Inflatable Form, isam, and Shotcrete Construction Corrugated Metal, Foam, and Fibrous Concrete Construction Section Prefabricated Box FormsFloor Plan Construction TechniquePrefabricated Box Forms Section H-M Section I-I Dome ConstructionFloor Plan Section J-J Section J-J	Additional Facility Cost for Extension of Rock Rubble Blanket Roof ThicknessCover Relationship (Rectangular Cross Section) Roof ThicknessCover Relationship (Semicircular Cross Section) Wall Designs for Rectangular Section Wall Designs for Composite Circular Section Wall Designs for Dome Section Total Facility Costs for Transportable Unit Shelter, Rectangular Section	Total Facility Costs for Iransportable Unit Shelter, Circular Section Total Facility Costs for Reconstitutional Package Shelter, Total Facility Costs for Reconstitutional Package Shelter, Rectangular Section Total Facility Costs for Reconstitutional Package Shelter, Circular Section Total Facility Costs for Integrated Operational and Transportable Unit Shelter Total Facility Costs for Operational Shelter Total Facility Costs for Transportable Unit Shelter Wall Thickness Relative to Aerial Urdnance Threat Total Facility Cost for Transportable Unit Shelter Relative to Aerial Ordnance Threat	AUTODIN Switch Facility PlanRectangular Configuration AUTODIN Switch Facility PlanDome Configuration
0-21 0-23 0-24 0-25 0-26 0-29 0-30 0-33		[-1] [-1] [-1] [-1] [-1] [-1]	1-5
General Appearance of Shelters Floor PlanIransportable Unit Storage Shelter Shelter Section Floor Irack Section Floor Irack Oetail Section Through Track Cover Floor PlanReconstitutional Package Storage Shelter Floor PlanOperational Shelter Section A.A Section B.B	Section C-C Section 0-0 Section 0-0 Section 0-0 Imperory Exit Detail Imp	tievationMetal Baseline Building Mail Section Mall Section Mall Section Mall Section Mall Remarks BBaseline Concrete Building Alternative BBaseline Concrete Building Alternative CBaseline Concrete Building Alternative CBaseline Concrete Building Roof Slab Joint Plinned Precast Elements Plinned Shoulder Joint Beams for Precast Roof Panels FlewationPinned Lap Joint Section G-GPinned Lap Joint Section G-Pinned Lap Joint	Mail Section Precast Concrete Circular Section Circular Precast Concrete Shelter Circular Precast Concrete Shelter Rectangular Precast Concrete Shelter Tilt-up Panel Construction Process Precast Wail Panel-Jointing Technique Wall-to-Roof Foundation Joints Wall-to-Roof Foundation Joints Detail-Collapsible Form Detail-Jisposable Form
	83.4 Sect 83.5 Sect 83.6 Emeri 83.7 Long 83.9 Site 83.10 Sect 83.11 Sect 83.13 Floo	Alter	6-9 Wall 0-10 Prec. 0-11 Prec. 0-12 Prec. 0-13 Rect. 0-14 Tilt 0-15 Prec. 0-16 Wall 0-17 Typic 0-19 Deta

SECTION A INTRODUCTION

A INTRODUCTION

Purpose

The purpose of this analysis is to (1) investigate concepts that can be used in constructing semihardened shelters for Defense Communications Systems (DCS) prepositioned equipment or operations functions, (2) provide planners with parametric relationships that will simplify selection of the least expensive facility for any given location, threat, and function, and (3) present one case study applying the concepts found to be least costly to an AUTODIN Switch-Facility.

Background

When examining wartime DCS facilities' performance requirements and solution options, a discrepancy in construction cost and level of protection provided is apparent between the present peacetime structures and those fully hardened redoubts capable of surviving direct hits by the heaviest conventional weapons. There is a need to resolve this by the heaviest conventional weapons. There is a need to resolve this discrepancy with an inventory of facility concepts using several construction techniques that provide a range of protection levels at minimized construction cost. Recent attention given to identifying storage facilities for contingency or reconstitution assets therefore has emphasized the need for facility concepts that can relate construction cost directly with the level of protection achieved.

Iwo competing schools of thought on DCS survivability both paradoxically support the development of such a concept. The first presupposes placing to be command and control (CAC) communications responsibility on transportable equipment prepositioned in trucks, trailers, or wans. The second school teaks a more optimistic perspective, suggesting that cost-effective sceps can be taken to enhance the survivability of fixed sites so that a large percentage could remain operational at some level. For the damage inevitably experienced, prepositioned reconstitution packages are proposed to permit restoration of critical links and service.

Without attempting to resolve this difference in viewpoint, it should nevertheless be clear that the case for transportable communications units logically requires a storage plan which would provide much greater survivability than the vulnerable stations which the transportables are designed to replace. Basing the transportable units in an open motor pool or conventional warehouse sharply lowers the probability that a significant number will remain unscathed and ready for use soon after attack. The only reasonable alternative would be greater dispersion, but the need for physical security, logistic support, and long-term environmental protection makes this option less attractive for the DCS.

Similarly, the proponents of upgrading existing stations need a low-cost hardened shelter to store reconstitution packages. Marehouses and other bulk storage facilities are as unsuitable for this purpose as they are for transportable units, and for the same reason. Therefore,

package storage and that for actual operations, along with the possibility of reducing the quantity and cost of reconstitutional assets at certain locations. Unvei the med for a low-cost, reasonably hardened smelter capable of enduring inducing blast and overpressure threats, a combination of construction techniques and support equipment configurations appears to offer the best potential solution.

The desired performance attributes for the proposed facility are:

- Low first cost--no greater than 1.5 times equivalent nonnardened cammunication facility construction cost.
- 2. Rapid construction--no greater than 80 percent equivalent non-nardened construction time.
- 3. Endurability—capuable of sustaining direct hits by heavy armorphomere plending ground weapons and mear misses by 1.1-ton aerial orderine without loss of structural integrity or major damage to personnel and equipment located inside.
- 4. Low operating cost-energy and maintenance cost no greater than bu percent ecuivalent numbergened construction.

breat Definition

The major concern in developing semihardened shelters for Defense Communications Agency (UCA) equipment and personnel is to protect the stored contents against external attacks from the enemy. During these attacks, the shelters would need to sustain direct hits from heavy annor/concrete piercing ground weapons and near maises by 1.1-tun aerial ordinance mithout loss of structural integrity or major damage to personnel and equipment inside. To develop the best type of shelter, this study analyzed each threat separately and quantitatively. (The threat for the AUTOZIM Smitch facility was limited to aerial ordinance falling no closer than 75 ft from the facility.) The analysis of these primary threats is summarized below.

concrete penetrating artillery round weighing about 220.7 lb and Heavy ammor/concrete piercing projectiles. These projectiles are very effective in perforating armor plate and reinforced concrete. The projectiles have a tough hardened alloy nose to withstand the high impact stresses and to distribute them over the projectile's forward Projectiles typically are fused with delayed action inertia-type fuses that detonate the explosives after maximum penetration has achieved. Approximately 15 percent of the projectile weight is highly explosive. Oblique impact decreases penetration and causes the projectiles to ricochet. Based on the available data, the Soviet 8.02centa ning about 34.2 lb of INI was selected by DCA as the most logical Rocket-assisted projectiles are believed to be under development for some of the artillery weapons which would greatly extend these velocity and range capabilities, however, they were not considered in this analysis. ,suodpam threat.

15 percent, and SAP 30 percent. Fragmentation bombs contain only enough explosives to fracture their case and cause maximum velocity of the fragments. The 1.1-ton GP bomb was selected as the most logical threat they are not as effective. The charge weight ratios for HE bombs are approximately as follows: GP 50 percent, LC 75 to 80 percent, AP 5 to perforate light reinforced concrete and thin armor. After penetrating the earth, they will cause considerable damage to nearby structures due piercing (AP) bombs have heavy cases that resist deformation when strik-(HE) bouibs such as general purpose, light case, armor piercing, semi-General purpose (GP) bombs are to the confined explosion. Light case (LC) bombs contain a larger percentage of HE and, consequently, their cases readily deform upon striking heavily protected targets such as protective structures. Semiarmorpiercing (SAP) bombs have characteristics similar to AP bombs, however, Inere are several types of highly explosive ing resistant materials, their main damage results from blast. designed for general destruction by blast and fragmentation. and it was assumed to contain lius lb of INI. annor piercing, and fragmentation. Aerial ordnance.

Approach

The rest of this report is organized into five sections that describe the development process and the case study.

Section B describes the basic requirements and initial conceptual designs for the Transportable Unit Storage Shelter, the Reconstitutional Package Storage Shelter, and the Operational Shelter. While developing this section, design alternatives were considered, evaluated, and selected for use in the conceptual design and cost estimate. Rectangular cross section structures of cast-in-place concrete were selected as baseline Sesign.

Section C describes baseline buildings using a preengineered metal structure as the unhardened example and a standard amountion igloo for the seminardened example. The concepts were developed to provide a comparative basis for addressing a "low first cost" criteria. Building could meet the threat definition nor could they be modified easily to provide the needed hardness. The igloo would provide a low level of protection, however, and could be considered for use in some areas. Buildings can be constructed at grade and mounded, partially buried and mounded, partially buried and mounded, partially buried in the comparative analysis.

Section D addresses several construction alternatives, each designed to reduce the onsite construction time or the skilled labor demands. Two alternatives specifically discussed for the operational shelter would have limited usefulness for storing truck-mounted equipment. The quality of space provided also varies among the alternatives, which may be a consideration in the final selection of building configuration and construction technique.

Section E presents general explanations of the design method end construction cost estimates together with the major underlying assumptions. The important findings of the design and cost estimating aspects

of this investigation are summarized. Also summarized are alternative construction concepts that satisfy the specified performance criteria for the various shelter types. The planner is completely responsible for selecting the most suitable shelter concept and construction technique at a specific geographical location.

In Section F, the least-cost alternatives developed in Sections D and E are applied to an AU:00!N Switch Facility with a limited threat definition and different operational requirements. Facility configurations and cost estimates are presented.

FIGURE A-1. GENERAL APPEARANCE OF SHELTERS.

KS-10

STORAGE SHELTER RECONFIGURATION

unction

enables them to survive attack and be available for reestablishing the store truck transportable OCS communication units in a way that loss of unhardened complete after the communication facilities. network Communication

policy/sop

- reestablishing its communications network after initiation of hostilities and loss of existing unhardened facilities. Facilities than that provided in the motor pools, warehouses, and aircraft are meeded to provide a level of protection to the equipment greater prepositioned communication equipment in
- No provisions will be made in the shelter, for housing personnel. During an attack, if personnel should be present, space around the vehicles could be used for shelter; but life support systems and facilities are not required.
- Site security will be external to the shelter and will be installed and monitored by others (i.e., personnel other than those responsible for building operation).
- The communication equipment will not be operated in the shelter during or after the attack. There is no secondary mission for the shelter after the vehicles have been removed.
- Systems should be provided by others to monitor and manage equipment in the shelter from a remote location.
- back up the base power supply. However, exposed components should be considered sacrificed during the attack and unusable If needed, unprotected power generation equipment can be provided to afterwards. Power must be provided for opening the blast doors.
- Mo effort will be made to camouflage the shelters' location.

issues and assumptions

Shelters should be located away from primary targets (e.g., aircraft, runways, weapon systems, ammunition dumps) to reduce the possibility of collateral damage from the attack. It has been assumed that the shelters are not prime targets and will be subjected only to warheads intended for other targets. Shelters may be located on- or off-post as needed to provide adequate separation from prime targets. If located off-post, the cost of providing and maintaining security must be considered in planning. Shelters should be

construction can be observed easily by satellite, and (2) the large, paved area needed for maneuvering ehicles in front of the shelter is highly visible. Depending on the terrain, the shelter can be constructed either on surface and mounded, partially buried and mounded, or totally ed. if possible, it should be sited to provide an entrance that slopes away from the sheiter. This sloping entrance would help keep debris from accumulating on the entrance pavement, maintaining a clear because been considered has not concealment

Shelter

area for when the equipment must be removed and put into opers:ion. Advantage should be taken of the land's natural contour. Foundation drainage is required in most configurations to control groundwater. Use

of tunnels in mountainous areas should be considered.

and entrance pad with a roadway connecting it to the other entrance. The one long shelter configuration was selected for this comparative analysis as being the most cost-effective (Figures BI-1 and BI-2). side-by-side into two garages. Also, vehicles can be stored using either a "drive-through" configuration or an alternative single-access drive that would require backing-in for storage. Rapid mobilization through configuration may simplify the vehicles' movement and eliminate the need for backing into the long shelter. However, the drive-through fransport cabs and trailers can be backed into one long garage or The driveconfiguration would require a second vehicular entrance into the shelter complete with a large blast door, extended roofline to protect the door, requires that all vehicles be headed-out while in storage.

Equipment shelter floors will be sloped to drain and constructed with depressed wheel tracks for guiding trailers as they are backed into the shelter. Cover plates will be provided to cover the tracks in the front section of the shelter to simplify movement of personnel and the portable generators (Figures BI-3 through BI-5).

STATES BLOCKED IN FESTIVATION SEEDS IN PRODUCE FOR THE RESPONSE IN PROSPERING THE PERSON IN THE SEED IN THE SECONIAL THE SEED IN THE SEED

SECTION B BYSIC DESIGN

equipment	1. Simple HVAC unit with heating and dehumidification capability. 2. Separate control for ventilation air. 3. Humidity and temper- ature instruments. 4. Portable electronic testing equipment on movable carts.
personnel	1. Equipment m. intenance team. 2. Inventory per- sonnel. 3. Vehicle drivers.
activities	1. Driving in equipment initially. 2. Making the equipment accessible for maintenance. 3. Monitoring humidity and temperature. 4. Maintaining and installing accessories.
issues and assumptions	Each shelter shall have environmental control equipment. dase electrical power will be the shelter's aain power source. Emergency and boack up bower will be the shelter's aain power source. Emergency and boack up bower will be provided by a portable generator using an external connection. Sometion. Power requirements are limited to maintaining the electronism of party the blast doors, and providing alnimal lighting after attack. One portable generator could serve several shelters located on an installation. The stored equipment is relatively earth-covered, it should experience very little temperature change from the weather. For these reasons, the stored equipment would not be damined if has been assumed that project planners will satisfy security requirements and, thus, such information has not then included in this comparative analysis.

The second second

Ċ

	31-04	
requirements	criteria	commentary
l. Adequate space.	1. Shelter must be sized to house the truck-mounted equipment and to provide adequate clearance for moving the truck in and out of the shelter. Space must be provided around the vehicles to allow maintenance personnel access to the equipment.	
2. Structure.	2. The shelter should be semihardened to withstand direct hits from at least two HE artillery rounds and mean misses of hombs described under Threat definition (Section 4 in this document). These warheads would be falling outside their primary targets and would come near the communications shelter by accident.	
3. Openings.	3. One large vehicular blast door on a hanger-type sliding unit and a separate personnel-size sliding blast door must be provided. The personnel door would provide access to the equipment without opening the large (main) blast door.	
 Ventilation system and humidity control. 	4. A filter must be provided to remove dust from air in the shelter. Relative humidity control: 95 to 100 percent noncondensing at an ambient temperature of 100 degrees f.	
5. !llumination.	5. A 50-lux general light level must be provided with 110- V outlets for adjustable lights (for parts installation and/or inventory).	
6. Power.	6. A 110-V a.c. source must be provided for maintenance tools, 20 ft on-center throughout the shelter.	
7. Heating.	7. Shelter temperature must be maintainable at a level that will make it easy to start the truck. (The stored equipment can withstand temperatures of -50 to 155 degrees F without damage.)	
8. Survivability protection.	8. High-altitude electromagnetic pulse (HEMP) and chemical-biological-radiological (CBR) control equipment must be installed.	
9. Security fence.	 An 8-ft-high chain-link fence with three strands of barbed wire, as a minimum, will be provided by others. 	
10. Orainage ditches.	10. Cross-overs for drainage ditches must be provided so that all areas are readily accessible.	
11. Pavements.	 Pavements and other site elements must be laid out to provide for the turning radius (35 ft) of the vehicle(s) stored. 	
		parameter est

To be possessed the second of the second of

FIGURE B1-3. FLOOR TRACK SECTION.

Steel cover over track provides continuous surface for transport of generators and equipment.

FIGURE B1-4. F100R TRACK DETAIL.

FIGURE B1-5. SECTION THROUGH TRACK COVER.

systems

1. Environmental control system

Storage shelter requirements affect the environmental control system in two ways. First, the exterior environment's influence on the interior is narrowed through the insulating effect of the earth cover. Second, limited activities are expected to be performed in the conditioned space. The primary load is assumed to be dehumidification in connection with storage.

?. Power systems

Commercial power will be used during the preattack period. There are no power' requirements other than for battery-powered lighting during the attack period. To lower construction and operating costs, it was decided not to include a dedicated power generator in the shelter. In the post-attack period, a portable generator will supply power through an external connector to open the blast doors for vehicle removal.

B2 RECONSTITUTION STORAGE SHELTER

function

to store vehicle-mounted DCS communication equipment such that it will be protected from attack and accessible for reconstituting damaged communication centers to reestablish the network.

policy/sop

- hostilities and loss of existing unhardened facilities. Facilities are needed to provide a level of protection to the equipment greater than that provided in the motor pools, warehouses, and aircraft reestablishing its communications network after initiation of DCS has prepositioned communication equipment in Europe for use.
- No provisions will be made for housing personnel in the shelter. During an attack, if personnel should be present, space around the vehicles could be used for shelter, but life support systems and facilities are not required.
- Site security will be external to the shelter and installed/monitored by others.
- ing or after the attack. The shelter has no secondary mission after the vehicles have been removed. The communication equipment will not be operated in the shelter dur-
- Systems should be provided by others to remotely monitor and manage the equipment installed in the shelter. 'n
- If needed, unprotected power generation equipment can be provided as a backup to base power. However, exposed components should be considered sacrificed during the attack and unusable afterwards. Power must be provided for opening the blast doors.

issues and assumptions

1. Siting

craft, runways, weapon systems, ammunition dumps) to reduce the possibility of collateral damage from attack. It has been assumed that the shelters are not prime targets and will be subjected only to warheads intended for other targets. Shelters may be located on- or off-post as needed to provide adequate senaration from prime targets. If located off-post, the cost of providing and maintaining security must be consid-Shelters should be located away from primary targets (i.e., airered in planning. Shelter concealment has not been considered because (1) construction can be observed easily by satellite, and (2) the large paved area needed for maneuvering vehicles in front of the shelter is highly vis-

ied. If possible, the sheiter should be sited to provide an entrance that slopes away from the shelter. This sloping entrance would help keep debris from accumulating on the entrance pavement, maintaining a Depending on the terrain, the shelter can be constructed either on clear area for when the equipment must be removed and put into operation. Advantage should be taken of the land's natural contour. Foundation drainage also is required in most configurations to control groundwater. Consideration should be given to using tunnels in mountainous surface and mounded, partially buried and mounded, or totally burareas.

2. Access

through configuration may simplify the vehicles' movement and eliminate the need for backing into the shelter. However, the drive-through configuration would require a second vehicular entrance into the shelter complete with a large blast door, extended roof to protect the door, and entrance pad with a roadway connecting it to the other entrance. The single-entrance configuration was selected for this comparative analysis Irucks and trailers will be backed into the shelter. being the most cost-effective (Figure B2-1).

depressed wheel tracks for guiding the truck as it backs into the shelter. Cover plates will be provided to cover the tracks in the front The shelter floor will be sloped to drain and constructed with section of the shelter to simplify personnel movement.

Primary mechanical systems and the need for emergency power

ment, opening the blast doors, and providing minimal lighting after the attack. One portable generator could serve several shelters located on an installation. The stored equipment is relatively insensitive to temback-up power will be provided by a portable generator using an external connector. Power requirements are limited to maintaining the environperature changes. Moreover, since the shelter will be earth covered, it these reasons, the stored equipment would not be damaged if the power should experience very little temperature change from weather. Each shelter shall have environmental control equipments. electrical nower will be the shelter's main power source. Supply were interrupted over an extended period.

CANADA BEANINGER

equipment	1. Simple HVAC unit with heating and debumidification capability. 2. Separate control of ventilation air. 3. Humidity and temperature instruments. 4. Portable electronic feesting equipment on movable caste.	
personnel	1. Equipment maintenance team. 2. Inventory personnel. 3. Vehicle drivers.	
activities	1. Oriving in equipment initially. 2. Making the equipment accessible for periodic maintenance. 3. Monitoring humidity and temperature. 4. Installing and maintalning and maintalning accessories.	
	will satismy security been included here.	
	4. Security It has been assumed that project planners w requirements and, thus, this information has not been requirements and, thus, this information has not been requirements.	

requirements	Criteria	
		COMMINENTAL
1. Adequate space.	1. Shelter must be sized to house the truck-mounted equipment and to provide adequate clearance for moving around the vehicle to allow maintenance personnel access to the equipment.	
2. Structure.	2. Shelter should be semi-hardened to withstand direct hits from at least two HE artillery rounds and near misses of bombs described under Ihreat definition. These warheads would be falling outside their primary targets and come near the communications shelter only by accident.	
3. Openings.	3. One large vehicular blast door on a hanger-type sliding unit and a separate personnel-size sliding blast door must be provided. The personnel door will provide access to the equipment without opening the large (main) blast door.	
4. Ventilation system and humidity control.	4. A filter must be installed to remove dust from the air in the shelter. Relative humidity control should maintain a 95 to 100 percent noncondensing environment at an amblent temperature of 100 degrees F.	
5. Illumination.	5. A 50-lux general light level must be provided with 110-V a.c., outlets for adjustable lights (for parts installation and/or inventory).	
b. Power.	6. Supply 110-V a.c. power for maintenance tools, 20 ft on-center throughout the shelter.	
7. Heating.	7. Shelter temperature must be maintained at a level that will make it easy to start the truck. (Stored equipment can withstand temperatures of -50 to 155 degrees F without damage.)	
8. Survivability.	8. HEMP and CBR control equipment must be installed.	
9. Security fence.	9. An 8-ft-high, chain-link fence with three strands of barbed wire, as a minimum, will be provided by others.	
10. Orainage ditches.	 Cross-overs for drainage ditches must be provided so that all areas are readily accessible. 	
11. Pavements.	 Pavements and other site elements must be laid out to provide for the turning radius (35 ft) of the stored vehicle. 	

and the second of the second o

NEW SECOND SECON

FIGURE 82-1. FLOOOR PLAM--RECONSTITUTIONAL PACKAGE STORAGE SHELTER.

systems

1. Environmental control system

Storage shelter requirements affect the environmental control system in two ways. First, the exterior environment's influence on the interior is narrowed through the insulating effect of the earth cover. Second, the conditioned space is expected to support only limited activities. The primary load is assumed to be debumidification in connection with storage.

2. Power systems

Commercial power will be used during the preattack period. The shelter has no power requirements, other than for battery-powered lighting, during the attack period. To lower-construction and operation costs, it was decided not to include a dedicated power generator in the shelter. In the postattack period, a portable generator will supply power through an external connector to open the blast doors for vehicle removal.

equipment

personnel

Temperature and hu-midity sensors and controls.

?

DEH personnel to fill and maintain stor-age tanks.

?

Heating, ventilat-ing, and A/C equip-ment.

Equipment installers.

Communication equipment.

÷.

Inventory per-sonnel.

Portable electronic testing equipment on movable carts.

Fire alarms and sensors.

s.

Equipment test, opera-tion, and evaluation personnel.

Security system com-ponents.

•

DEH building equipment maintenance personnel.

7. Water pumps and supply equipment.

Sanitary lift sta-tion.

.

9. fuel storage tank and distribution.

B3 DCS OPERATIONAL SHELTER

<u> </u>	l											
activities	Establishing work- stations.	Installing communication equipment initially, including integration and checkout.	Filling water and fuel storage tanks.	Checking backup		Monitoring internal environment and sta-	tus of storage tanks.	Performing periodic operational checks.	ent.			•
å	1.		ë.	÷	vi.	•		, <u>, 9</u>		,		
B3 DCS OPERATIONAL SHELTER	function	To provide a semihardened communications operational center that can be used to reestablish and operate the DCS communications network in areas subject to attack.		policy/sop	1. The operational shelter will be used either in conjunction with a Iransportable Unit Shelter or in a stand-alone configuration.	 Space will be provided for a crew of 25 plus sanitary facilities, water supply, and power supply to support operations during base power interruptions. 	 Site security will be external to the facility and installed/moni- tored by others. 	4. Provisions will be made for maintaining an environment that would support life in the operational space for at least 4 hours without external assistance.	5. This comparative analysis does not consider the design, siting, and construction of an antenna.	6. The shelter should provide for the command and communication circuits from the unhardened communication center as well as circuits to an antenna located at some recote site.	 The base power supply will be the shelter's primary source. An onsite power supply will be provided for postattack operations. 	

issues and assumptions

1. Siting

Shelters should be located away from primary targets (e.g., aircraft, runways, weapon systems, ammunition dumps) to reduce the possibility of colleteral damage from attack. It has been assumed that the shelters are not prime targets and will be subjected only to warheads intended for other targets. Shelters may be located on- or off-post as needed to provide adequate separation from prime targets. If located of from the cost, the cost

Shelter concealment has not been considered because (1) construction can be observed easily by satellite, and (2) the large paved area needed for maneuvering vehicles in front of the shelter is highly visible.

the surface and mounded, partially buried and mounded, or totally buried. If possible, the shelter shrild be sited to provide an entrance that slopes away from the shelter. Shrild be sited to provide an entrance that slopes away from the shelter. This sloping entrance would help keep debris from accumulating on the entrance paveent, maintaining a clear area for when the equipment must be removed and put into operation. Advantage should be taken of the land's natural contour. In addition, most configurations require foundation drainage to control groundwater. Consideration should be given to using tunnels in the mountainous areas.

. Facility configuration

The operational shelter (Figures B3-1 through B3-5) has been as sumed to be an integral part of the equipment shelter to reduce construction cost and still meet the endurability criteria. The two spaces share a common wall; artillery rounds striking the center of the building would hit near the center wall. Consideration was given to constructing two buildings at least 10 ft apart and connected by two tunnels—one for equipment and personnel movement, and the other just for personnel. This design would require additional excavation and structural walls, compacted backfill between the two structures, and a much larger rock rubble blanket. On the basis of cost and extended construction time, the two-shelter concept was d: opped in favor of an integrated shelter.

The integrated shelter should be designed to present a flat roof, with the difference in interior vertical ceiling heights reflected in the floor elevations. Steps inside the operators' shelter will be used to compensate for the difference in floor elevations. Ramps were considered and then rejected on the basis that they require additional floor space. Ramps would make equipment movement easy, but the benefit was not worth the cost in floor space. To facilitate equipment movement, the equipment room floor should be placed at the same level as the equipment shelter with a roll-up door used to separate the two spaces.

ssues and assumptions

Biast doors for personnel and vehicles (Figure B3-2) will be designed to wichstand overpressures and debris from the specified threat. These horizontal sliding doors will be protected in structural concrete pockets. The vehicular door will operate electrically. The roofline will be extended to protect the doors from direct hits and to provide weather protection for the generator sets in their operating positions. The blast doors' design will consider the reflected effect of blast within the enclosed area.

Personnel doors will connect the equipment and operational shelers. Fire-rated doors will be used to isolate the two areas.

Vents with fire dampers will be provided in the wall between the operational and equipment spaces. The vents will allow air to circuiste from the operational space into the equipment space, then to the outside through a blast valve. In case of fire, the dampers will close to prevent smoke from spreading between the two areas.

The floors will be treated with a sealant to reduce dust and a wearing surface will be provided for the operators' comfort. Raised floors are not required. A dropped ceiling will be used to cover the overhead air handling units, chilled water lines, and ductwork.

The equipment shelter floor will be sloped to drain and constructed with depressed wheel tracks to guide trailers being backed into the shelter. Cover plates will be provided to cover the tracks in the shelter's front section to simplify movement of personnel and generators.

The total length of operator's shelter will exceed that of the equipment shelter. To maintain a rectangular configuration and to minimize cost, the operators' shelter wi. be designed to wrap around the end of the equipment shelter. As a stand-alone shelter, the most economical configuration appears to be a 40-ft-wide building with a center load-bearing wall (see Figure B3-12, later).

The exterior wall and roof surfaces will be waterproofed with a sprayed-on material or a single-ply membrane and covered with insulation board before backfilling.

3. Access

Personnel access to the operators' space will be through the equipment space in the integrated shelter. Decontamination of personnel entering the shelter is not a consideration. An emergency exit to grade will be provided (Figure B3-6).

issues and assumptions

emergency exit will be placed behind the equipment shelter to shelter, climb through the exit, and release the weather cap. Two wall-hung ladders will be provided to allow personnel to release the inner door from one side and not be subjected to the load of falling sand. take advantage of the intersection of two structural walls. The tube extending to the surface will be filled with sand to ensure the continuity of the protective layer over the shelter. To use, personnel would release the lower door allowing the sand to fall into the equipment

ever, the configuration would require a second vehicular entrance into the shelter complete with a large blast door, extended roof, entrance trance configuration was selected for this comparative analysis as being and a roadway connecting it to the other entrance. The single enthe least expensive. Figure 83.7 shows alternative entryways for this "drive-through" configuration may simplify the movement of hicles and eliminate the need for backing into the long shelter. pad.

4. Electrical power

not to be operated other than four periodic tests, the load expected will be that for environmental control. Ouring an attack, all operations would cease and battery-operated emergency lights would provide illumination after base power is lost. All operations will cease during the Portable dissellengine generator sets stored in the equipment shelter will provide postattack power. The generators will be moved to the exterior operating space, connected to the fuel and power supply lines, and rut into operation. The stored equipment is relatively insensitive to temperature changes that could be experienced inside the shelter due control during the pre and postattack periods. The base power system will be the shelter's main source. If the communication equipment is shelter will require power for operations and environmental attack until the blast doors can be opened, the generators moved to outside and brought online, and the communications network reestablished. to temperature changes that to extended power outages.

criteria plus the environmental control system. This requirement can best be met by two 300-kW portable diese; generator sets. A buried fuel storage tank with an 8400-gal capacity will provide for 7 days of conestimated power requirement is 520 kM based on the 300-kM load tinuous operations. A single 600-kM generator was rejected because:

- It has lower availability/reliability; with two generators, operations could continue on a limited basis if one of the generators were to fail. ė,
- During periods of low power requirements, the two 300-kM generators could be used to supply a wide range of energy levels efficiently. Since generators should not be operated at less than 60 percent of their rated capacity, the 600-kM generator would be severely limited in supplying low energy levels.

CHEST BOX BOX 1011

issues and assumptions

Generators should be trailer-mounted to simplify over the-road movement and maintenance and to provide the flexibility to move them to other shelters if needed.

protecting the shelter. Tanks will be situated to provide a gravity feed to the generator operating area and to prevent shelter damage if the buried fuel tank will be protected by the same soil rock layer they should be ruptured during attack

ator sets were selected. The need to survive the attack eliminated systems that depend on collectors and other structures that are above ground and impractical to harden. Since postattack operations do not require hardened power supplies, the need for some of the more expensive ha-denable power sources was eliminated. Using a power supply that can be moved outside for operation also eliminated the need for hardened air Alternative energy sources were considered before the diesel generintake and exhaust structures and for an engine cooling system.

Environmental control

During the preattack nonoperational period, minimal HVAC functions will be provided to control the humidity inherent in buried shelters. Operational cooling during pre- or postattack will be provided by a 100-ton groundwater-cooled chiller, a chilled water distribution system, and a distributed system of air handling units. Mater will be taken from one well, passed through the chiller, and returned to the ground through a second well. Two wells will provide a more reliable water source for the shelter and, in case of pumping problems with one well, cooling mater could be masted to the sewage lagoon or just to the outside. The mechanical equipment room will have an air handling unit (AHU) and distribution system to meet low cooling loads and distribute outside air throughout the operational space. Three chilled-water AHUs will be located above the ceiling in the operational space to rary the remainder of the load. Distributed AHUs could be floor-mounted if space is available. The four AHUs can be used to meet cooling requirements efficant ciently as the loads vary.

the equipment space. To reduce operating costs, an outside air system rated at 19,000 ofm will also be provided for total cooling by outside air. The system will be provided with a blast valve but no CBR filter. The air will be exhausted through a blast valve by the prasqure differblast valve and CBR filter. This approach will cause a positive pres-sure in the operational space to reduce infusion of contaminants from Outside air will be ducted into the shelter at 375 ofm through ential from the equipment shelter.

ate; however, it has been calculated that the operational crew could easily survive more than 16 hours in the shelter without additional out-During the button-up perior, no environmental equipment will operside air or use of the mechanical equipment.

ues and assumptions

The mechanical equipment room will contain one AHU with a CBR filter, chiller, chilled water circulation pumps, compressor for control systems, and the sanitary sewage lift station. A roll-up door will be provided between the equipment shelter and the mechanical room to simplify initial installation of equipment and maintenance (figure 83-8).

6. Water and waste disposal

Water will be supplied from a ground well and pressure tank to meet both potable and cooling water requirements. Cooling water will be returned to the ground through a second well. Iwo wells will provide a secondary water source that can be used if a failure occurs in the primary system. Cooling water will be wasted to the outside through the watewater system if it is not possible to return it to the ground through one of the wells.

Mastewater will be discharged to the sewage lagoon through the lift station located in the mechanical equipment room (see Figure B3-9 for siting the lagoon). Successful operation of the facility depends on being able to discharge waste. Therefore, the lift station should be placed in the shelter for protection; an unprotected lift station located near the lagoon would require the gravity pipe to be buried deeply. After an attack, if the discharge pipe has been blocked (damaged or destroyed), the lift station will be used to pump waste to the surface through a flexible hose. The lagoon will be designed on the basis of the expected wastewater flow. However, if cooling water must be discharged through the system because of some problem, the lagoon may overflow until the problem can be corrected.

Flexible connections will be used in the piping systems near the building to reduce possible damage from ground shock (Figures B3-10 and B3-11).

7. Security

It has been assumed that project planners will satisfy security requirements and, thus, this information has not been included here.

issues and assumptions

	C7-CV	UCA CIRCULAR 300-95-1
requirements	criteria	commentary
l. Adequate space.	1. Shelter must provide 100 sq ft per operator, plus sanitary facilities and mechanical space. There are no requirements for living quarters, rest areas, food storage/preparation, general storage, or maintenance.	
2. Structure.	2. Shelter should be semihardened to withstand the specified threat.	
3. Openings.	3. Shelter will have one emergency escape exit to the surface. Two personnel doors will be provided between the operational space and the equipment storage area for fire and environmental control. Two separate personnel entrances will be provided on the stand-alone shelter configuration for fire safety (Figures B3-12 through B3-14). Openings will be provided in the roof extending over the generator operating area to pass exhaust to the extensor, thus preventing a build-up of fumes in the entrance area.	
4. Ventilation system and humidity control.	4. A filter must be installed to remove dust from the air. Ventilation and humidity requirements will conform to existing criteria for operational spaces. A CBR filter will be provided in the ventilation air system for use during the button-up period. Openings will be provided (covered with fire dampers) between the major areas for air circulation.	
5. Illumination.	5. A 50-lux general light level must be provided with 100-V outlets for adjustable lights.	
6. Power.	6. A 300-kW supply is needed for all lighting, equipment operation, and environmental control equipment. Electrical outlets, 100-V a.C., will be provided for equipment on 10-foot centers throughout the shelter. Backup power will be provided by a portable generator. Energy needed to reject the waste heat, etc. will add approximately 300 kM, raising the needed power generation to 600 kM. Fuel storage and cooling system should be sized to support at least 7 days of continuous operations without external support.	
7. Heating and cooling.	7. The environment shall be maintained within the standard temperature range for the operational spaces. Ground loop or well water cool- ing Systems should be considered.	

eservate assessment in menone

requirements	Critoria	
Survivability protection.	8. HEMP and CBR controls must be provided. Shelter must be capable of being totally buttoned up for 4 hours without a power source. The environment must be maintained to support personnel in a nonoperational mode during the button-up period.	
Security.	9. To be provided by others, depending on the situational require- ments.	
Oralnage.	10. Site must be well drained to control ground- and run-off water.	
Potable water.	11. Approximately 1125 gal of water are needed daily for the operators. The need to treat well water will vary by location.	
Sanitary waste removal.	12. Provisions must be made for safe disposal of sanitary waste.	

,51

ıst

CANNAMENTAL STATES OF THE STAT

guidance

E 5×5×5×3 職分字公司 E 6×5×0×4 国家安全 I 6×5×5×5

guidance

E DODDODO HOSSOONE FORGODOROS FOR HOSSOONES.

guidance

guidance

1. Environmental control system

Burying a shelter greatly reduces the exterior environment's influence on the interior. The operational space will require an environment in the postattack period equal to any other communication space. The vehicle storage bay requires no environmental treatment.

2. Power systems

Commercial power will be used during the preattack period. The only power requirement during the attack period is for battery-powered lighting. Since the operational space will be used in the post-attack period, two portable generators should be provided. These generators will operate outside the shelter with weather protection only; however, hardened fuel storage will be required to support the generators.

SECTION C BASELINE CONSTRUCTION

RS-31

guidance

Requirements

All facility concepts must be evaluated in terms of the four performance attributes by a comparison with conventional construction. For comparison, baseline descriptions were developed for two facilities representing different construction technologies. The first is a conventional preengineered, steel-framed, metal-sided building designed to protect the equipment from the weather. The other is a standard reinforced-concrete ammunition igloo with an exposed blast door. Neither facility would protect against the specified threat. The cost estimates are based on the rationale stated in Section E, ANALYSIS AND CONCLU-

Cl Baseline metal building

The building selected is a low, rigid-frame, preengineered steel structure manufactured and erected by several firms (Figure C-1). Figure C-2 shows a typical wall section. The structure has a reinforced concrete foundation and floor slab and a rigid steel frame with bents on 20-ft centers. The clear height is 15 ft and the width is 20 ft. The wall system is 26-gage factory-fabricated and -finished steel panels with 4 in. of insulation and vapor barrier. Interior surfaces are covered with 26-gage wall panels up to 8 ft high to protect the insulation. The roof is a 24-gage steel panel system with 6 in. of doors are metal-clad and insulated.

Contraction of

tion inside the igloo during vehicle loading/unloading activities (when 3). In Condition B, the igloo is partially buried and mounded (Figure C-4). In Condition C, the igloo is totally buried (Figure C-5). The structure was designed to carry little more than the weight of the earth stored annunition from accidental detonation due to external causes and to limit the damage that could result if the ammunition were detonated inside the igloo. Embankments often are constructed across the road from the blast door to reduce the possibility of this door becoming a target for enemy fire and to limit the damage that could cause a detonathe standard ammunition igloo is constructed of cast-in-place reinposed and contains the blast door. The igloo is designed to protect the forced concrete using reusable metal forms. One end wall is left exthe door is open). Three different siting conditions were considered. In Condition A, the igloo is constructed on-grade and mounded (Figure C-

See the Estimated costs for the shelters are summarized below. appendix for detailed cost estimates.

RECONSTITUTIONAL UNIT STORAGE (900 SQ FT)

liner panel to 8'0" height Interior 26 ga. G.I. wall

WF Column

itermined by wind load

will girt location

•	lotal Cost	Unit Co
Condition A Condition B Condition C	\$259,000 \$258,000 \$257,000	\$287.78 \$287.67 \$285.56

TRANSPORTABLE UNIT STORAGE (2500 SQ FT)

Unit Cost	\$162.00 \$162.00 \$164.00
Total Cost	\$405,000 \$405,000 \$410,000
ı	Condition A Condition B Condition C

conc. foundation

pilasters at columns

6" washed gravel or sand

llermal break

Base angle

reinf.

Compacted fill

apor Barrier

RS-33

WALL SECTION

FIGURE C-2.

cover and cannot withstand a major dynamic load. C2 Baseline concrete building :, cyear Root purlins at 5'0" o.c. ************

26 ga. (.0198") G.I. ribbed-

wall panel system Fiberglass insul, cont.

ver wall girts

Factory Finished spandrel

"4 ga. (.0275") 6.1. ribbyd.

guidance

o" fiberglass batt insul .--

foot panel system insulation spacer Roof purlin

Preformed foam closure.

." G.I. gutter -

10" VF Beam

CONSTRUCTION ALTERNATIVES SECTION D

issues and assumptions

Requirements

Hardened and semihardened shelters are invariably constructed of concrete in various configurations using several forming techniques. This section identifies several alternative construction techniques that can be used to reduce both construction time and cost. These alternatives include conventional concrete mixes as well as fibrous concrete replaces reinforcing steel bars with short steel fibers mixed into the concrete matrix. The short fibers give fibrous concrete much higher resistance to cracking; moreover, this material's performance does not depend on the bond developed between the matrix and reinforcing steel bars. Fibrous concrete can be placed in forms, pumped, or applied through shotcreting equipment.

01 Shotcrete construction

Shotcreting techniques can reduce construction time. In conventional construction, shotcreting reduces the time it takes to deliver the concrete into the forms and simplifies placement that otherwise would require erection of ramps, etc., to move heavy loads. Using fibrous reinforced concrete could further reduce construction time by eliminating the need for reinforcing bars in the forms. Fibrous concrete can be pumped in a shotcreting operation or placed in mass using the same techniques commonly used in concrete construction. However, shotcreting requires special equipment that may not be readily available in all locations. In addition, fibrous concrete, though used in the United States, may be an unknown material in some locations. Finally, the ductility factor assigned to shotcrete is somewhat lower than that assigned to cast-in-place concrete, so that shotcrete would require additional structural thicknesses to provide equal protection.

Precast construction

The shelter could be constructed of structural elements precast either ousite or in commercial casting yards and transported to the site. Elements would be cast horizontally to simplify the placement of relinforcing steel and allow entire panels to be cast in one operation. If they were constructed vertically, the shelter walls would require that concrete be placed in lifts with the lower concrete allowed to set before the remaining height could be placed. Precast techniques eliminate the need to construct all forms by producing standard precast elements. These elements require that adequate lifting equipment be onsite for lifting them into place. In addition, precast elements that must be truck-transported from offsite casting yards will be limited in weight and width. (The precast elements' weight may become a major problem as their thickness increases.)

issues and assumptions

The primary weakness in this construction technique is the limited strength that can be developed in the connections. Mall-to-roof joints between precast concrete elements often are simple, but other joints are secured in place by welding together steel plates embedded in the surface of the elements. The joint's resistance to movement and rotation depends on the weld and on the plates' embedded anchors. The joint can be pinned together and stiffened with reinforcing steel bars in grouted holes (Figure D-1). However, with a lateral load, the joints will not react as a fixed joint and the wall will tend to deflect inward, causing joints to open. Roof units are keyed together to resist downward pressures (Figure D-2). These types of joints were assumed to be used in the precast concrete shelter considered in this analysis.

As an alternative technique for stiffening joints, the wall-to-roof joint could be stiffened to external lateral pressures by using a shoulder on the roof slab (Figure D-3) and a step in the floor slab. However, the shelter has not been designed to withstand internal pressure. Roof construction could also be stiffened by using precast concrete beam panels (Figure D-4) to avoid the inherent weakness of the keyed joint. Although these techniques would improve the structural joints, construction cost and time would increase with no major increase in the ductility factor.

Figures D-5 through D-7 show another type of connection--a pinned lap joint. Figures D-8 and D-9 illustrate keyed joints.

Outline of integral longitudinal segmental sections precast consider built of integral longitudinal segmental sections precast onsite. The section's length would be determined by its weight and the capacity of onsite cranes. Sections could be cast in reusable forms then lifted into place. They would fit together using a tongue-and-growe detail on the contacting surfaces. After all units are installed, a system of posttensioning tendons could be used to clamp the sections together. Figures D-10 through D-13 show details of this alternative concept. The wall panels could be cast horizontally on the foundation slab to minimize.formwork and excavation.

RS-37

al Especial Especial Secreta Secreta In Secreta Responsibility in Secreta In Secretary Secretary (Secretary (Sec

FIGURE D-12. PRECAST CONCRETE RECTANGULAR SECTION.

FIGURE D-13. RECTANGULAR PRECAST CONCRETE SHELTER.

03 Tilt-up panel construction

Structural wall panels could be cast adjacent to their final vertical position, then tilted up and anchored in place as the shelter is constructed. This variation of precasting has been used successfully in constructing commercial buildings and may be of some value to the seminardened shelters of interest. He wall panels could be cast horizontally on the foundation slab to minimize formwork and excavation, and the forming would be fairly simple. It is usually easier to construct horizontal panels rather than vertical panels, but much of these savings is lost when the work must be done 10 to 20 ft below grade. This technique also presents the same problems as other precast methods. For example, adequate streigth can be developed across the joints for normal dead and live loads, but very little strength can be developed to resist lateral blast loads. The ductility factor has been set at unity-the lowest in the group-because of the inherent problems with the joints.

The joint problem in tilt-up construction can be eliminated partly by using the alternative construction illustrated in Figure D-14. Precast tilt-up panels are anchored securely to the floor slab through the use of turned-up reinforcing bars and a steel angle. A cast-in-place roof is used to securely anchor the reinforcing steel of the wall panels. The foundation slab is constructed with reinforcing steel turned upward to be incorporated into the joint at the base of the wall (Figure D-15). The foundation is formed to provide a keyway for the wall joint. A steel angle is then placed between the rows of the panels (Figure D-16). The foundation is formed to provide a keyway for the ingred or a stending from both top and bottom of the panels (Figure D-16). These panels are cast on the foundation slab, lifted into place, and welded to the exposed foundation slab, lifted inspection, the cavity under the wall is pressure-grouted to form an integrated joint. The roof can be constructed in two different ways, both of which incorporate the reinforcing steel from the wall panels. In one method, conventional forms are placed, reinforcing steel is placed to achieve the required slab depth. In the other method, the cost of forming is eliminated by using thin precast concrete on top. The thin slab also would eliminate the need for extensive shoring and form-nique will ensure that fully integrated joints are formed and that the ductility factor is increased.

guidance

RS-41

III kasangal Perenggalarsadangan profesional mprofesion profesion profesion | Jeroeses II | Peresession | Parameter | Parameter |

RS-43

guidance

Double-panel wall construction

self-supporting and removable from the top of the wall. These special forms (figure D-18) would have to be built in sections, heavily braced to take the lateral loads, and collapsible for removal with all controls near the top edge, forms should be 3 ft high to allow the walls to be constructed in two lifts. After removing the forms, the cavity should be filled with compacted sand or selected soils. The finished lower As an alternative to constructing thick walls to resist lateral loads, the shelter could be constructed with two thinner walls separated by a cavity filied with compacted soil. The compacted fill will transeliminating the need for special forms. Treated cardboard tabular forms appear to be a better alternative than the special collapsing type. The tabular forms can be placed in position, filled, capped and left in place, completely eliminating the need for inner forms on both walls. Concrete placed in the form will tend to fill the voids around the teyrated element. Walls could be cast-in-place or precast; however, the cast-in-place approach would produce the better product (Figure D-17). The cast-in-place technique has been selected for this analysis. The type of formwork used between the walls depends somewhat on the space available. Prefabricated wood or metal forms could be used if they are be filled with compacted sand or selected soils. The finished lower section would serve as the foundation for the upper section. Or, disposable forms (Figure D.:9) could be used and left in place, completely orms, making the composite wall more rigid. Special equipment may be er the load to the interior wall, allowing the walls to react as an inequired to compact the sand or soil in the forms.

TOTAL TOTAL MANAGEMENT AND CONTRACTOR

05 Semicircular arch construction

The arch will be constructed of cast-in-place concrete and curved reinforcing steel bars placed over prefabricated forms. The exterior forming will be used in lifts to ensure placement and compaction of concrete at the lower edges. The arch inherently is able to resist heavier loads than the rectangular configuration shelters. However, the arch configuration requires more floor space to obtain the needed vertical clearances. By using a configuration similar to the baselined igloo (Figure D-20), the amount of floor space can be reduced and made more usable, but it still exceeds that required with the rectangular configuration. Figures D-21 through D-24 illustrate different arch configurations.

As an alternative, a semicircular shelter could be constructed using an inflated form, insulating foam, and sprayed-on fibrous concrete following the steps shown in Figure D-25. A conventional foundation slab is constructed with reinforcing steel stubbed up to be incorporated into the roof. An air-inflatable form is then placed on the slab and inflated to provide the form for the roof. The form is covered with sprayed-on foam to a 6-in. expanded thickness to provide insulation and to protect the form from steel wires in the fibrous concrete. After the foam cures, the form is deflated and removed. Fibrous reinforced concrete is shot onto the foam surfaces to the required thickness, incorporating the foundation reinforcing rods into the resulting structural cover. The end walls and entrance wing walls can be constructed easily using conventional techniques.

06 Circular construction

large-diameter pipes and tunnel liners could be used to shelter the equipment by using fill in the bottom quadrant to form adequate interior floor space (figures 0-25 and 0-27). Because of the needed diameters, the circular structures would have to be precast in sections or cast-in-place. Constructing such a shelter in place may eliminate economic advantages because of the intensive use of special forms.

As an alternative to conventional construction, the shelter could be constructed of integral longitudinal segmented sections precast onsite and interconnected with posttensioning tendons as discussed in paragraph 02.

The basic structure could be constructed of corrugated metal sections with bolted field connections and covered by fibrous concrete (figures 0-26 and 0-27). Shear pins or other devices for increasing the bond between the metal and concrete would have to be installed before applying the fibrous concrete. The completed structure's strength would depend on the strength of the horizontal bolted joints. These joints would need to be staggered so that joints in adjacent panels are at least 24 in, apart.

The corrugated metal/fibrous concrete structure could be coated with 4 to 6 in. of polyurethane foam after shotcreting. This composite structure should be more resistant to blast loading since the foam layer would absorb part of the blast and reduce the deflection of the fibrous concrete, thus lowering resultant stresses on the builted connections.

guidance

RS-49

07 Concrete/prefabricated box forms

niques can be reduced by using prefabricated box forms and reinforcing steel cages placed on a prepared foundation slab. The forms would or 40 ft long (same dimensions as the standard MiLVANs) or a higher roof height if 8 ft is restrictive. Boxes would be complete with a structural floor, wood-lined walls, and wall channels for mounting equipment. Much of the equipment could be installed in the box forms before shiplimited to the exterior surfaces. The few different form types required to build this type of structure would include the standard box, those to build walkways between the boxes, and those for constructing the hardened entrance. Iwo blast doors, separated by the generator shelter, would satisfy the safety criteria. Emergency control would be based on a central chiller and small AHUs in each space. Ceiling-hung ducts The time required to construct the shelters by conventional tech-The box the basic box could have a cross sectional dimension of 8 by 8 ft by 20 ment as a way to reduce both shipping volume and installation time in the field. The forms' spacing on the foundation slab will determine the thickness of the interior load-bearing walls. Conventional forming is remain in place to comprise the inner liner of the shelter. The box forms would be limited to 8 ft wide to make them truck-transportable. would distribute the outside air. The building configuration (figures 0-28 through D-31) in this analysis is flexible and can be changed easily to better suit local operational or geographical conditions.

FIGURE D-29. COMSTRUCTION TECHNIQUE -- PREFABRICATED BOX FORMS.

FIGURE D-30. SECTION H-H.

FIGURE D-31. SECTION 1-1.

08 Dome construction

Structural domes can provide needed operational space rapidly. Domes have been used successfully for years to satisfy a wide range of shelter requirements. Recent experience has been gained with fibrous reinforced concrete over polyurethane foam which has been sprayed onto an inflatable form. The U.S. Army Construction Engineering Research Laboratory (USA-CERL) has constructed domes up to 50 ft in diameter, and others exceeding 150 ft in diameter have been built. A dome 28 ft in diameter was selected for this analysis to keep the excavation depth approximately the same as for the rectangular section shelter built to provide operational space. The dome should be constructed on a prepared foundation. A rubber balloon form would be placed on the foundation, inflated, and covered with approximately 6 in. of polyurethane foam. After curing, the foam would be cut to form doorways and other openings and to remove the deflated balloon.

Openings can be made in foam structures in at least two ways. The foam is easily cut to form doorways, and the joints between foam surfaces and wood or metal surfaces filled with additional foam. Door frames can also be placed on the form and included in the initial spraying, since foam bonds very well with other surfaces. Two in, of fibrous concrete would be sprayed on the dome's interior and the rest of the needed concrete thickness would be sprayed on the exterior. Concrete would be applied in approximately 1-in, layers. When the concrete cures, the backfill and protective rock layers can be placed.

Ihe resulting structure (Figures 0-32 and 0-33) is a heavily insulated, reinforced concrete facility complete with interior fire-proofing. The dome is hemispherical, providing a 14-ft ceiling height in the center for mechanical equipment, storage platforms, or other purposes. Akis should be placed in the center of each dome either on the floor, on a pedestal, or on a platform to reduce the use of floor space. Chilled water lines should be placed under the floor. Partial hemispherical dome structures should be used to protect the personnel entrance and generator operating area. Interior areas could be subdivided easily using partitions to meet operational requirements.

The second of th

SECTION E ANALYSIS & CONCLUSIONS

STRUCTURAL DESTON

Structural concepts

Within the constraints of threat definition, the hardening required for the shelters dictates that a rock rubble/boulder blanket or, alternatively, a concrete burster slab be incorporated into the protective cover to defeat the effects of direct hits from artillery concepts using rectanglists; so direct hits from artillery concepts using rectangular, semicircular, and dome configurations and various construction techniques and materials described in Section 0.

Point of detonation

The important variables affecting threat loading intensity on the shelter are: (1) weapon size and the distance from the point of detonation to the structure, (2) mechanical properties of the soil and rock, and (3) the projectile's depth of penetration. The rock rubble blanket will reduce the resulting blast load on the roof from direct hits by artillery rounds. If the projectile detonates too near the shelter, however, the shelter will fail due to localized breaching. The rock rubble blanket's function is to either destroy the incoming projectile at in-act or reduce its penetration depth and increase the explosion standoff distance. The penetration depth into a dense medium such as the rock blanket depends on the following variables:

- Characteristics of the projectile such as weight, caliber or diameter, length, nose shape, and structural integrity (rigidity, wall thickness, etc.)
- Striking conditions such as impact velocity, angle of incidence, and yaw.
- Properties of the rock rubble blanket such as the rock hardness, caliber, number of layers of and shape of boulders, and the placement method.

In general, depending on the interaction of all these variables, any of the following situations could prevail to defeat the projectile or reduce its effectiveness:

- . The projectile could break upon impact.
- . The projectile could ricochet or broach after impacting the rock rubble blanket.
- The projectile's path could be deflected.
- The projectile's path could be deflected and it could detonate at some location within the rubble blanket.

For the analysis in this study, it was assumed that the projectile would enter the rock blanket and detonate at approximately the midpoint of the rock rubble blanket along the centerline of the roof.

guidance

For the case of a near miss by a bomb, the detonation point was assumed to be located along the shelter wall centerline. The nearest assumed point of detonation was set at 40 ft, which exceeds the edge of the rock rubble blanket. The rock rubble blanket would provide little protection against bomb attacks for partially and totally buried shelters; however, the rock could be extended to provide this protection if desired. Completely mounded shelters do be no provide this protection if blanket since rock nearly covers the shelter's complete vertical profile and would produce ground-burst from the bombs.

Thickness limitations

The following practical limitations on thickness were established for the various types of construction considered in this analysis. The actual thickness for precast and tilt-up concrete elements actually depends on the size or weight of the structural element and the availability of suitable lifting equipment.

Thickness (in.)	99	9	36	36	24
Construction	Cast-in-Place Concrete	Fibrous Reinforced Concrete	Precist Concrete	Shotcrete	Tilt-up Concrete

Design method

It is possible to design the shelter on an elastic basis using normal code limits, to withstand the large dynamic loads described in the threat; however, severity of these loads would make the design very costly. Design; that use localized plastic deformation to absorb the energy imparted by these loads are desirable; in fact, they are generally mandatory for maintaining practical structural proportions, provided the overall integrity on the structure is not imparted. Accordingly, the design and proportioning of the structural elements were based on ultimate strength design methods, the material's dynamic properties, and the structural elements' dynamic response.

A simplified, rapid procedure was used in designing the shelters to resist the dynamic loads produced by the primary threat. This method of analysis required: a description of the loading time curve on the structures and knowledge of the limiting structural resistance; the

shape of the resistance-deflection curve for the structure, and especially a characterization of it by a ductility parameter that gives the permissible maximum deflection in relation to the structure's effective yield point deflection; and a measure of the period of vibration in the structure's effective "elastic range." This procedure is accurate enough to analyze the resistance because the parameters entering the problem cannot be determined accurately. This is due to a lack of definitive knowledge concerning: (1) the blast pressure at a given distance from a given energy detonation; (2) the blast wave duration; and described elsewhere.

Structural deformations often are described in terms of ductility ratio, which is the ratio of the maximum deformation to maximus elastic deformation. Members that have large ductility ratios can absorb more strain energy and are thus more efficient in resisting dynamic loads. Furthermore, for buried structures, ductility is essential in order to permit the structural deformations required to take full advantage of the inherent strength of the soil surrounding the structure. Soil resistance can be mobilized only after deformations are imposed upon it.

Ihe ductility factor that corresponds to collapse for various structures ranges from slightly greater than I for brittle structures to more than 20 for very ductile structures. The ductility factor used in these particular designs was assumed to be controlled by the material's ductility limit at failure rather than by functional requirements. Since the shelters are required to withstand multiple loadings, the normal ductility factors for single loading were reduced by a factor of approximate;; 2 to provide reasonable assumance that enough reserve energy absorption capacity would be available for multiple loadings. The ductility ratios used in the preliminary design are:

Ductility Factor Failure Mode	Brittle	1.0	1.0	1.0	1.0	1.0	1.0	
Duct 11	Duct i le	5.0	3.0	1.5	1.0	. 2.0	2.0	
Construction Type		Cast-in-Place	Precast Concrete Segmental Units	Conventional Elements	Tilt-Up Elements	Shotcrete	Fibrous Concrete	

H. M. Newmark and J. D. Haltiwanger, Principles and Practices for Design of Hardened Structures, Air Force Manual AFSWC-TDR-62-168 (Air Force Special Meapons Center, Kirkland AFB).

guidance

CONSTRUCTION COST ESTIMATES

Assumptions

Construction cost estimates for the various shelter concepts were based on the following assumptions:

- The proposed construction sites are located on or near existing installations. Real estate costs have not been included.
- The proposed construction sites are located near populated areas; therefore, costs for mobilization and crew life support have not been included.
- 3. There are no unusual construction conditions at the proposed
- . Utilities are available at the proposed construction sites.
- Ihere are no local, regional, or national shortages of materials that would affect construction.
- Costs for roads, storm drainage, electrical service and communication lines, and other site development work beyond the 5ft line of the facility have not been included.
- No cost for possible impact on existing support has been included.
- The daily construction output is based on an 8-hr day in daylight with no allowance for overtime.
- The site and construction technique will have no impact on the existing transportation system.
- 10. Construction costs will not be affected by weather, season, contractor management efficiency, local union restrictions, local construction requirements or availability of adequate energy, manpower, and materials.

Unit costs

Unit cost data were obtained from the following sources:

- 1. Army Regulation (AR) 415-7, Construction Cost Estimating for Military Programming, (U.S. Department of the Army, 1980).
- 2. Annual Construction Pricing Guide (U.S. Air Force, 1983).

- 3. Robert Snow Means Co., Means' Building Construction Cost Data (Kingston, MA, 1983)
- Robert Snow Means Co., Means' Mechanical and Electrical Cost Lata, 6th ed. (Kingston, MA, 1983).
- . Robert Snow Means Co., Means' Building System Cost Guide, 8th ed. (Kingston, MA, 1983).
- W. J. Wooley Company, Oak Brook, Illinois, cost data on blastresistant doors.

Specific in-place cost data were developed for the shelters' conceptual construction cost estimates. Mechanical, electrical, and blast door costs were developed on a lump-sum basis because they were generally constant for a given concept and insensitive to whether the shelters would be constructed above or below grade.

ost estimate adjustment factors

In unit cost data were used to develop an unadjusted expected facility cost based on an assumed construction date of January 1984 and a geographical location reflecting Mashington, D.C. These estimates must be adjusted by various factors to reflect actual costs in specific geographical areas, the cost growth expected due to economic factors that apply to construction projects scheduled differently from the stated assumptions, a reserve for construction contingencies to cover unexpected conditions, and supervision and administration. The values assigned to the adjustment factors were:

00	00	. 50	9
1.00	1.00	1.05	1.05
1. tocation	2. Cost growth	3. Contingencies	Supervision and administration
_;	2.	ب	4,

For geographical areas other than Mashington, D.C., and a midpoint date other than January 1984, Tables E-1 and E-2 can be used to determine the proper location and cost growth factors needed to adjust the estimated cost.

When evaluating the concepts for economic feasibility, note that it is not the actual construction cost which is most important, but the relative cost among alternative concepts and how they compare to baseline costs.

guidance

Costing issues

i. Above- Versus Below-Ground Construction. To determine if a significant cost advantage is associated with locating the shelters below as opposed to above ground, a shelter for the transportable unit was designed and costed in both configurations with similar construction methods and siting conditions assumed. The results of this analysis indicated that, for all practical purposes, the costs for these configurations were identical, with any differences attributed to the design procedure accuracy. Therefore, for this investigation, the cost reported can be assumed to apply to all three configurations.

The partially mounded approach appears to be the fastest, least expensive way to construct and probably suited best for a wide range of locations.

Above-ground construction greatly simplifies site preparation and construction techniques, improves site accessibility, and reduces the cost of the entrance ramp and related pavements. The approach does require an excessive amount of soil for the mound. In addition, the soil must be furrowed and hauled to the site and the rock rubble blanket must be extended to cover the entire building configuration. The mound width could easily range from 120 to 150 ft.

Totally buried construction eliminates the need for constructing a large mound. The waste from the excavation can be used to backfill around the structure and resione the surface for natural drainage. The entrance ramp, sloped at 30 degrees, would require a 50-ft extension to return to grade. However, this ramp, being a long open fit, could easily collect debris during an attack and this would have to be removed before the truck can be moved and the stored equipment used. In addition, cranes used for lifting heavy precast sections would have to be incident the precast elements' size. Constructing the facility in a 30-ft-deep pit also would increase the cost of material handling and require additional equipment.

Partially buried construction would permit a better balance between the earthwork cut and fill, often eliminating the need to transport fill material to the site. Construction would start about 8 ft below grade, which is not an unusual depth, and conventional techniques can be used. The entrance ramp would be very short compared with that required for the totally buried building. In addition, totally buried shelters may be impractical to construct in the field due to the local terrain and the presence of a high groundwater table, saturated soil, and/or rock,

- 2. Cast-in-Place Concrete Unit Prices. To determine the sensitivity of the total facility cost to the in-place unit cost of cast-in-place concrete, excluding steel reinforcement, the cost of the concrete in the transportable unit shelter was varied by plus- and minus-50 percent of the estimated value. The resulting change in the total facility cost was approximately 10 percent in each case.
- 3. Width of the rock rubble blanket. The rock rubble blanket was extended to a distance approximately 20 ft beyond the shelter's vertical projection to provide reasonable assurance that the shelter would not be damaged by a direct hit. However, it may be desirable to extend the

SANCA BARANA BE

FIGURE E-1. ADDITIONAL FACILITY COST FOR EXTENSION OF ROCK RUBBLE BLANKET.

rock rubble blanket to a greater distance to improve the shelter's resistance to near misses by bombs. Figure E-1 illustrates the additional cost for extending the rock rubble blanket beyond the normal limits for a shelter housing the transportable unit. For example, an additional 20 ft of rock rubble perimeter coverage would cost another \$20,000.

FINDINGS

The optimal thickness of the protective soil and rock rubble layer rectangular and semicircular shelter cross sections. In Figure E-2, the burial depth is related to the roof thickness and weight of explosives. The roof thickness and weight of explosives slight increase in thickness results in a major increase in explosive weight. The protective cover was assumed to contain a rock rubble blanket that would cause the round to detonate at the cover's midpoint. Below 8 ft, the protective layer's weight rather than the explosive weight, would determine the roof thickness. Figure E-3 addresses arch thickness requirements as a function of burial depth for the specified threat. Here again, it appears that an 8-ft burial depth is optimal. This depth therefore was selected as a constant for all structures in this analysis.

in general, member proportions were determined by the blast conditions from a near miss by the specified bomb; however, when the range exceeded 100 ft, the roof thickness was determined by the artillery round impacting on the center of the roof. Range, the perpendicular distance from the structural wall's midpoint to the point of bomb detonation, was varied between 40 and 100 ft in the analysis. At ranges less than 40 ft, member proportions approached or exceeded the practical limits for cast-in-place reinforced concrete. At this point, the failure mode for the shelter would begin to change from ductile to brittle. In addition, cratering effects and the damage that can be caused by ejecta would begin to be a concern. For ranges exceeding 100 ft, there appears to be only a minor change in member proportions as the range increases.

- a. Rectangular section. Figure E-4 shows the typical wall designs required to withstand the specified blast conditions. Wall thickness for cast-in-place concrete construction varies from 9 to 37-1/2 in. over the bomb range of interest. Wall thicknesses for the other construction alternatives exceed their practical thickness limitations when the range is less than 50 ft for precast and shotcrete and less than 70 ft for till-up construction. The curves appear as dashed lines when the practical thickness limits are exceeded.
- b. Double-panel wall section. Composite double-panel wall sections, i.e., elements composed of two concrete panels separated by a sand-filled cavity, have certain characteristics useful to semihardened design for structures located close to a detonation point. However, when the wall thickness was determined for the specified threat, the panel's thickness was governed by the min-

TEXTICAL PRODUCTION FOR THE PROPERTY OF SAME TO PROPERTY OF THE PROPERTY OF TH

imum wall thickness requirement rather than structural locating for ranges exceeding 50 ft (Figure E-5). The design was found to be noncompetitive at ranges exceeding 6. ft when compared to cast-in-place concrete. Although it might be competitive at ranges less than 40 ft, this is the region in which cratering and ejecta would dominate.

- c. Semicircular arch section. Compared to the rectangular configuration, the semicircular arch section requires more floor space or building volume to provide the needed vertical clearance. Since the rectangular and circular sections use the building volume much more effectively than the semicircular section, the semicircular section was dropped from the list of feasible alternatives.
- Circular section. Figure E-6 shows the typical wall designs required to withstand the specified threat. In general, the wall thickness for the circular section is less than that required for the rectangular section. In the case of cast-in-place concrete, the wall thickness for the circular section is about 25 to 40 percent less than that for the rectangular section. Similar reductions in wall thickness can be observed for the other construction alternatives. This reduction is attributable to the way in which a circular section resists the imposed loads, i.e., a combination of thrust and bending rather than pure bending.
- e. Composite circular section. This consists of a bolted corrugated multiplate circular section covered with fibrous concrete and a cellular foam. The foam would absorb energy from a shock wave and transfer stress uniformly to the composite wall section. It has been assumed that the foam would reduce the blast loading on the composite wall section by about 50 percent. Figure E-7 shows typical thicknesses for fibrous concrete in the composite wall section; these vary from 4 to 15 in.
- the concrete prefabricated box section. Wall and roof designs for the concrete prefabricated box section were developed using procedures similar to those used for the rectangular section, but with reduced span lengths. Figure E-8 illustrates the wall designs. As expected, the wall and roof thicknesses were substantially less than those for the larger rectangular section. Both thicknesses varied from 6 to 22 in. over the threat range of 40 to 100 ft; however, the curves followed slightly different paths between these two points.
- 9. Dome section. The wall thickness for the fibrous concrete dome section was determined by the imposed loading and the sections' compressional load-carrying capacity. In addition, it was assumed that the minimum section thickness was 2 in. Figure E-9 illustrates the dome thickness as a function of the blast range. In the 40- to 60-ft range, the curve is approximately linear; thereafter, it approaches the minimum thickness dimension.

guidance

Transportable unit

Construction costs were estimated developed for below-ground shelters for the transportable units using different configurations and conventional cast-in-place concrete construction as well as various construction alternatives described in Section D. Each shelter was designed to withstand the specified threat.

- estimates for the transportable unit rectangular shelters for estimates for the transportable unit rectangular shelters for cast-in-place reinforced concrete as well as the shotcrete and precast construction alternatives. Dashed lines appear where the member proportions exceeded the practical wall thickness limits established previously. For conventional cast-in-place concrete, the total facility costs varied from about \$540K to \$885K, depending on the range. Corresponding unit costs varied from \$267 to \$438/sq ft. The shotcrete, tilt-up, and conventional precast alternatives have limited ranges of application and, in general, are more expensive than cast-in-place concrete. Although the double-wall panel and segmental precast constructional alternatives can be used over the range of interest, both alternatives appear to be slightly more expensive than the cast-in-place shelter. Local construction experience and site peculiarities may govern the selection of the most economical construction method.
- b. Circular configuration. Figure E-11 gives construction cost estimates for the transportable unit circular shelters for cast-in-place reinforced concrete as well as the shotcrete and precast construction alternatives. Dashed lines appear where member proportions exceeded the practical wall thickness limits established previously. For the circular cast-in-place reinforced concrete shelters, the total facility costs varied from about 5600K to \$1000K, depending un the range Corresponding unit costs varied from \$100 to \$500/sq ft, respectively. The composite wall section using foam, fibrous concrete, and corrugated multiplate section and the precast segmental units both were over about 15 percent higher. In general, the other construction alternatives are more expensive than conventional cast-in-place convertee.

Reconstitutional package

Construction costs were estimated for below-ground shelters for the reconstitutional package using procedures similar to those used for the the transportable unit. For the rectangular cast-in-place reinforced concrete section, the total facility cost varied from about \$400K to \$575K as the range decreased from 100 to 40 ft [Figure E-12]. The corresponding unit cost varied from boout \$540 to \$777/sq ft, respectively. For the circular cast-in-place reinforced concrete section, the total facility cost varied from about \$430K (Figure E-13). The

Office Sees Market State and Market State State

about twice the unit costs for the transportable unit and suggest that hardening the shelters for reconstitutional packages may not be cost-effective for the deployment concept under consideration. Perhaps several reconstitutional packages could be consolidated into a single larger shelter similar in size to the transportable unit shelter to reduce the total facility cost. In general, the other construction alternatives have the same limitation as discussed in the section on These costs are corresponding unit cost varied from \$580 to \$850/sq ft. transportable unit shelters.

Operational shelters

shelter as (1) a facility integrated with the transportable unit shelter and (2) a stand-alone facility. The integrated facility would be more cost-effective due to savings in concrete and steel when common walls and earthwork are used. First, however, this concept must be estabcost estimates were developed for the operational lished as operationally feasible. Construction

- rectangular section; total cost decreases rapidly as the range Corresponding unit costs varied from about \$166 to \$262/sq ft. The combined cost for individual stand-alone facilities The curves' shapes in figure E-14 varied from 36 to 60 percent more over the same range compared feel shows construction cost estimates for the facility with rectangular section, for cast-in-place reinforced concrete construction, the cost varied from \$895K to \$1415K. are similar to those for the transportable unit with Integrated operational and transportable unit shelters. to the integrated facility. increases from 40 to 80 ft. construction, the
- Stand-alone operational shelter. Figure E-15 shows construction cost estimates for a stand-alone rectangular cast-in-place operational shelter with the layout shown in Figure B3-12. The total facility costs varied from \$690K to \$1010K and the corresponding unit costs varied from about \$190 to \$280/sq ft. ۵
- estimated only for the cast-in-place reinforced concrete construction concept (see Figure E-15). The total facility costs varied from about \$685k to \$930k. Corresponding unit costs ranged from about \$205 to \$280/sq ft. Because of the shorter roof and wall spans, the total facility costs were less sensitive to range t'an the other types. The total facility costs developed assuming new shipping containers would be A substantial cost savings, about \$175K to \$200K, would Construction costs were be realized if used containers were substituted. Concrete/prefabricated box section. used.
- Dome section. Figure E-15 shows construction cost estimates for the operational shelter using the dome construction alternative. The total facility costs varied from \$560K to \$670K over the range. Corresponding unit costs varied from alternative. The total facility \$670K over the range. Correspon \$180 to \$220/sq ft, respectively. for ÷

RS-59

guidance

Strategic Control of the Control of

None of the second seco

CONCLUSIONS

The objective of this study was to identify facility configurations and construction techniques that would provide the DCS with alternative ways of constructing shelters to protect prepositioned communication equipment and operational space on installations subject to attack. The desired performance attributes for the proposed facilities were:

Low first cost.-no greater than 1.5 times equivalent of nonhardened construction cost.

Rapid construction--no greater than 80 percent equivalent of nonhardened construction time. Endurance—able to sustain direct hits by heavy armor/concrete piercing ground weapons and near misses by 1.1-ton aerial ordnance without loss of structural integrity or major damage to equipment and loss of personnel located inside.

Low operating cost-energy and maintenance cost no greater than 90 percent equivalent of nonhardened construction. Iwo buildings were used to baseline the analysis: a preengineered metal building was taken as the least expensive nonhardened weather shelter available for the stored equipment, and the standard reinforced concrete ammunition storage igloo as the shelter meeting minimum requirements for mounding or burial. The igloo is used primarily to store explosives and to prevent sympathetic detonation of the stored explosives due to accidental detonation of explosives in an adjacent igloo. The igloo is designed to support a minimum earth cover, but significant external dynamic loading. The igloo needed to shelter the transportable unit is about 13.6 times the cost of the metal preengineered building; the ratio for the reconstitutional unit storage is about 22.4. This cost threats does bring slightly more protection than can be provided by the metal building; however, it adds little protection against the specified threat.

The standard igloo was assumed to be the baseline for comparative estimates. It is basically nonhardened and incorporates the mounding used in all of the alternatives. The cost limit for the transportable unit shelter would be about \$1215K and about \$770K for the reconstitutional unit shelter using the factor of 3 given in the desired performance attributes.

Several building configurations and construction techniques were investigated that would satisfy all four performance attributes. All shelters considered were designed to withstand the specified threat which would allow the 1.1-ton bomb to detonate as close as 40 ft from the exterior wall at a penetration depth equal to the wall's centerline, and to survive direct hits to the roof from 8-in, artillery rounds. If the bomb detonates closer than 40 ft, the shelter could be damaged by cratering action or by flying ejecta. Superhard structures would be required to withstand this more severe threat.

guidance

The transportable unit shelter can be constructed to withstand the 40-ft standoff distance for \$885k to \$1060k, about 2.19 to 2.62 times the cost of the baseline shelter. Shelters meeting the performance criteria are partially buried facilities of the following types:

- Cast-in-place concrete rectangular cross section
- Cast-in-place concrete circular cross section
- e fibrous concrete, insulating foam, and corrugated metal plate composite construction in a circular cross section
- Precast segmental units, rectangular cross section
- Precast segmental units, circular cross section
- Double wall panel, rectangular cross section.

The composite construction approach could be constructed fastest since it does not require forms to be erected and removed or walls to be constructed using lifts.

The reconstitutional unit shelter can be constructed for \$575K to \$760K or 2.24 to 2.92 times the baseline shelter. The shelters meeting the performance criteria are partially buried facilities of the following types:

- Cast-in-place concrete rectangular cross section
- Cast-in-place concrete circular cross section
- Precast segmental units, rectangular cross section
- Precast segmental units, circular cross section
- Shotcrete circular cross section

The rectangular cross sectional shelter could be constructed fastest since it would use standard forms and conventional construction techniques.

The operational shelters can be constructed for \$650K to \$1415K or I.ll to 2.43 times baseline facility cost. Shelters meeting the performance criteria are partially buried facilities of the following types:

- Cast-in-place concrete integrated with the transportable unit storage in the rectangular cross section
- Cast-in-place concrete rectangular cross section
- Concrete/prefabricated box form construction
- Dome construction

これでは、 これのできないのできない。 これできないのできない。 これのこれをはないないできない。 これのこれをはないというとう

guidance

Ihe concrete/prefabricated box form probably could be constructed fastest since it does not require special equipment or unique skills. However, there should be very little difference in construction times between the box forms and the dome.

All other configurations and construction techniques were found to be much more expensive than the alternatives selected above when designed to survive the defined threat. All shelter concepts were designed to meet the low operating costcriteria by incorporating the following features:

- . Environmental control systems were designed on the basis that burled/mounded shelter interiors will be maintained at a constant ground temperature.
- In the operational shelters, a chiller using well water as the cooling fluid will be installed rather than other cooling techniques that could require more equipment and maintenance.
- i. The ventilation system for the operational shelter will be protected completely with a blast valve and can control the interior environment using outside air without use of the chiller. This system can be used when outside conditions permit. Under conditions that require CBR filtering, the blast-valve-protected ventilation system can draw 375 cfm into the cooling system to reduce the demand on the cooling system and to change the air in the shelter.
- The mechanical and electrical systems will be very simple, requiring only basic controls.
- The fuel storage tank will be elevated above the generators to eliminate the need for pumps and related equipment.
- Waste will be discharged through a lift station, which is located in the mechanical room to make it easily accessible for maintenance.
- . The mechanical room floor in the operational shelter will be placed at the same level as the adjoining shelter floor to simplify equipment movement and maintenance.
- Equipment storage shelter floors will be sloped to drain to the outside and provided with two depressed tracks to help guide vehicles as they are backed into the shelter.

Selection of the appropriate shelter concepts and construction techniques to be further investigated for design consideration at a specific geographical location is strictly the planners' responsibility. Enough comparative data have been provided, however, to assist planners in determining approximate construction cost or the impact of changing the assumptions underlying the cost estimates presented.

Propagation (Careeran)

100

guidance

All power generation operations were moved outside sheltered areas to eliminate the need for high-maintenance, seminardened air intake and exhaust structures and for removing the resulting waste hear from the building. This provides the flexibility to perform maintenance on the portable generators either in place or at a remote maintenance shop.

Power generators were not included in the transportable unit and reconstitutional unit shelters. To reduce cost and maintenance requirements, it was assumed that the crews responsible for opening the shelters and removing the stored equipment would use portable generators. Using this technique, one portable generator set could be used to open all the shelters on an installation.

RS-70

TABLE E-1

COST GROWTH FACTOR (CGF)

CCF - Rew Inflation Index for Midpoint of Construction
Raw Inflation Index for Midpoint of the Cost Estimate to be Adjusted

MONTHLY RAW INFLATION INDICES FOR MILITARY CONSTRUCTION BASED ON OSU* RAW INFLATION RATES BASE PERIOD 1983 : 10

			
930	.945 1.005	1.115 1.171 1.230 1.291 1.356	1.424
AOM.	.879 .879 1.005	1.115 1.171 1.229 1.291 1.355	1.423
100	.804 .873 .939 1.000	1.111 1.166 1.224 1.286 1.350	1.417
835	. 792 . 858 . 926 . 988	1.100 1.155 1.213 1.273 1.337	1.404
yne.	. 783 . 848 . 917 . 979	1.092 1.146 1.204 1.264 1.327	1.393
JUL	.775 .838 .903 .971	1.084 1.130 1.195 1.255 1.318	1.384
NOC	.765 .825 .897 .961	1.075 1.129 1.185 1.245 1.307	1.373
MAY	.760 .821 .892 .956	1.071 1.125 1.181 1.240 1.302	1.367
æ	. 758 . 819 . 890 . 955	1.123 1.123 1.179 1.238 1.300	1.365
\$.753 .814 .885 .950 1.010	1.166 1.119 1.175 1.234 1.296	1.361
FE8	.750 .812 .882 .947	1.063 1.117 1.173 1.232 1.293	1.358
JAN	.749 .811 .881 .947	1.063 1.117 1.172 1.231 1.293	1.357
YEAR	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	85 86 87 88 89	8

*OSD = Office of the Secretary of Defense.

PS-71

TABLE E-2

AREA CONSUMPTION FACTOR (ACF) AND EXCHANGE RATE ASSUMPTIONS*

- A. ACF=1.0 (Washington, OC)
- B. Exchange Rates are AD/LEEEC forecasts for FY 83. When official exchange rates for the FY 83 MCP become available in late summer, AF/LEEEC will adjust MAJCOM prices accordingly.

	FACTOR	8.8.5	2	2.5	8	.23	1.04	8	2.5	2.		6	1.05	1.10	1.05	6	À.	Ş.	6.	-95	1.05	1.10	8. 1. 1.
	LOCATION	GEORGIA. Atlanta. Ft Steart	King's Bay	Kauni	CHACL	At Home AFB	SIONITI	Glenview	Granite City Army Depot			477	Gary	Grissom AFB	Indianapolis			KANSAS	KENTUCKY	LOUISIANA	England AFB	New Orleans	Morthern Area
	FACTOR	.87	1.15	22	2:	1.15	1.15	2.5	22	2.1	ft Richie	8.8	22:		1.03	1.20	8		3	.95.	8.5	1.15	:: ::
COMUS cont'd	LOCATION	ARKANSASCAI IFODNIA	Beale AFB. Castle AFB.	Desert Areas Edwards AFB	George AFB	Mather AFB	McClellan AfB	San Francisco Bay Area	Sterra Army Depot		_	COLORADO	Denver		CONNECTICUT	Mew London	DELEMARE		טואונון ער נטנשפוא	FLORIDA	Gulf Coast	Tomat I	PAETICK AFB
	FACTOR	1.00	3.80	88	2.5	2.20	88	2.10	88	8:	2.10	2.10	88	8	85	2.10	85	3.50	8.5	Scott AFB	1.01	2 2 3 3 3 3	1.15
COMUS	LOCATION	ALABANAGulf Coast Area	ALASKAAlands		: :	Clear AFS	Cold Bay	Eielson AfB	Elmendorf AFBFt Greely (Rid Delta	ft Richardson	Ft Wasmwright	ft Whittier	G & C & C & C & C & C & C & C & C & C &	King Salmon Airport	Kotzahua	Hurphy Dome	Nome.	Sparrevohn	Tatalina	. ,	ARIZONA	Davis-Monthan Ard Ft Huachuca	Gila Bend AFSYuma P.G

HQ USAF ANNUAL COMSTRUCTION PRICING GUIDE FOR PY 83 THRU 87 PROCRAMS AS OF MAR 81.

and animal interest and present the second of the second o

0
•
╚
₹
చ
~:
```
w
=
ĭ
<u> </u>

FACTOR LOCATION FACTOR	1.04 SOUTH DAKOTA	1.05 NAS MEMPHIS.	1.03 1.06 TEXAS. 1.06 Carswell AFB.	1.17	1.06	8. 8. 8	95 VERMONT	1.00 1.00 VIRGINIA		. 91 Dahlgren. 1.00	Morfolk-Newport News Area	1.02 MASHINGTON STATE	1.00 HEST VIRGINIA				
CONUS cont'd	NEW JERSEY	Holloman AfB	Griffiss AfB	Long Island  Mew York City.	Plattsburg AFBUS Military Academy	NORTH CAROLINA.	Cherry Point.	Pope AfBSeymour Johnson AfB		MORTH DAKOTA.	NOT CHECK IN A CO	OH10	OKLAHONATinker AFB		PENNSYLVANIA	RHODE ISLAND.	SOUTH CAROLINA
LOCATION	MARYLAND 96 Area Adjacdent to DC 1.00	• •	Morthern Area	MINNESOTA99	MISSISSIPPI	.5	Ft Leonard Wood		MONTANA	Maistrom AFB.	Northein Area	NEBRASKA		Tonopah	5	• •	Dugway Proving Ground

		,																							
		FACTOR	2.40 2.40 2.40	1.50 1.50	2.20		1.00 1.00	38.	3.00	25.	9.	23.	1.40	8.	4.20	8.5	3.6	8.3 <u>.</u>	1.50	1.10		1.30	01.10	07:1	
Service of	I C T I O N S	LOCATION	0		VIRGIN ISLANDS		LOCATION FACTOR	Guantanmo Bay	(ER = 6.50 Kroner/US \$) DIEGO GARCIA	EGYPT	(ER = 0.7 Pounds/US \$) EL SAVADOR	FRENCE GULANAGERMANY, WEST	(ER = 2.00 Mark/US \$) GREECE	GREENLAND I Ce Cab		GUATENALA	INDIA	Borebay.	(ER = 8.6 Shekel/US \$) US Labor	Local Labor	ITALY.	Northern	Southern (Naples)	JAMA LA	
TABLE	1 MOLE E-6, UN S	FACTOR	2.00	2.00	2.40	, .	FACTOR 2.20	2.50	2.30	1.30	•	2.5	;	3.2	05.1	97	1.40	1.20	0.1	1.40	08.1	2.20	4.20	2.50	1.30
	UNITED STATES JURIS	LOCATION	CANAL ZONE	LINE ISLANDS Paymyra Paymyra HARIAMA ISLANDS (GUAM) MARSHALI ISLANDS (AMA)	Bikini	UVERSEAS	LUCATION ADMIRALTY ISLANDS.	ARGENTINA. ASCENSION ISLAND	AUSTRAL IA North Coastal Areas	AZORES		BELGIUM	(ER + 35.00 Franc/US \$)	BERMUDA	BRAZIL		And igns	Trinidad	BURMA	(ER = 1.15 Dollar/US \$)	Newfoundland Argentia	Inland Areas.	(Dew Line)	CHILI CHRISTMAS ISLANDS.	COL UMB I A
							ŋ																		
									,											٠					

TABLE E-2, CONT'D

FACTOR		1.00 1.00 1.60 1.60 1.60 1.40 2.25	1.20	2.25 1.30 1.20	1.60 1.60 1.30 3.50
	(\$	(ns \$)	•	, s/us <b>\$)</b>	00 Lira/US \$) 00ML: Pounds/US \$)
Ξĺ	(ER = 200.00 Yen/US \$) Northern Area. Okinawa. Southern Area. Makkana! REA. (ER = 650.00 Won/US \$)	PEATURE ATOM PRESCO CITY.  PERIOR CITY.  REHERLANDS.  REW ZEALAND.  MICARAGUA.  MICARAGUA.  OMAN.	West Karachi PARAGUAY PHILIPPINE ISLANDS  (ER = 7.50 Peso/US \$) PHOENIX ISLANDS CANTON ISLANDS		40 KINGDOM -43 Pounds ELA
LOCATION	JAPAN (ER = 2 (ER = 2 (ER) Okinawa Okinawa Souther Wakkana KOREA	MEATO MOROCCO. MOROCCO. NETHERLA (ER - MEW ZEAL MICARAGU MORIAY.	Mest Kar PARAGUAY PHILIPPINE (ER = 7. PHOENIX IS CARLON I	SPAIN	INALEADO INALEADO (ER = 7) UNITED KII (ER = 4) UNUGUAY VENEZUELA

#### SECTION F CASE STUDY

### C/.SE STUDY

#### function

To provide a semihardened shelter for an AUTODIN facility that can maintain operations in areas subject to attack using the design concepts developed in Section D.

policy/sop

#### policy/sop

- The facility will provide the same functional spaces as now designed into unhardened AUTODIN facilities. Maximum facility population is estimated at 30.
- Site security will be external to the facility and installed/ monitored by others. Space will be provided for security and access control.
- The facility will be able to operate on a continuous, uninterruptible basis without external support for at least 96 hours.
- The design, siting, and construction of external facilities are not to be considered in this study.
- The facility should provide for the command and communication circuits from the unhardened communication center as well as needed circuits to the remote facilities.
- 6. The base power supply will be the primary source for the facility. A hardened uninterruptable power source (UPS) will be provided for temporary backup and portable generator sets will be provided for permanent backup.

### issues and assumptions

#### . Siting

Facilities should be located away from primary targets (e.g., aircraft, runways, weapon systems, ammunition dumps) to reduce the possibility of collateral damage from an attack. It has been assumed that the facility is not a prime target and will be subjected only to bombs intended for other targets. The facility can be located on- or off-post as needed to provide adequate sparation from prime targets. If located off-post, the cost of providing and maintaining perimeter security must be considered in planning.

Shelter concealment has not been considered since construction can be observed easily by satellite. Depending on the terrain, the facility can be constructed either on the surface and mounded, partially buried and mounded, or totally buried. If possible, the facility should be sited to provide an entrance sloping away from the facility. Advantage should be taken of the natural contour of the land. Foundation drainage is required to control groundwater.

### Facility configuration

The facility has been designed using two of the alternatives discussed in Section D: (a) the rectangular shape with longitudinal interior load bearing walls and short roof spans and (b) interconnected hemispherical domes. Floor elevations in both configurations will be constant. Structural slabs below each raised floor area will be depressed to provide adequate plenum volume and will be sloped for drainage.

Blast doors for personnel and equipment movement will be designed to withstand overpressure and debris from the specified threat. These horizontal sliding doors will be protected in structural concrete pockets and will be operated electrically. The roofline will be extended to protect the doors from direct hits and to provide weather protection for the portable generators sets in their operating positions. The blast doors' design will consider the reflected effect of a blast within the

Interior fire-rated doors will be used to isolate areas of the facility for fire and smoke control.

Vents with fire dampers will be provided in the load bearing walls as needed to promote air circulation. Air will be exhausted to the exterior through a blast valve.

Uncovered concrete floors will be treated with a sealant to reduce dust, and vinyl floor covering will be provided in all other areas. The raised floor will be designed for computer room applications and expected loads. A dropped ceiling will be used in the rectangular configuration to cover the overhead air handling units, chilled-water lines, and ductwork. In the dome configuration, air handling units will be mounted in vertical shafts located in the center of each dome. Chilled-water lines will be placed under the floor.

### issues and assumptions

sprayed-on material or single-ply membrane and covered with insulation waterproofed with roof surfaces will be board before backfilling. Exterior wall and

trol area. Decontamination of personnel entering the facility was not a Personnel access to the facility will be through the security condesign consideration. Iwo emergency exits to grade have been provided.

to take advantage of two structural walls' intersection. Each exit will consist of a tube extending to the surface, filled with sand to ensure continuity of the protective layer over the facility. To use the exit, personnel will release the lower door, allowing the sand to fall into the facility, climb up the ladder in the tube, and release the weather cap at the surface. Iwo wall-hung ladders will be provided to allow personnel to release the inner door from one side to avoid the load of falling sand. emergency exits will be placed as shown in Figures F-1 and F-2

### 4. Electrical power

Ine facility will require power for operations and environmental control. The base power system will be the facility's main power source. A rotary UPS will be used to ensure power availability over short periods of interruption. During an attack, all operations would cease and battery-operated emergency lights would provide illumination after the base power is lost. After an attack, operations would begin again once the portable generators are moved outside and brought online. The generators, stored in the mechanical room, would be moved to their exterior operating spaces, connected to the fuel and power supply lines. and put into operation.

The estimated power requirement is 400 kM based on the 177-kM load criteria plus the environmental control system. This requirement can best be met by two 200-kM portable diesel generator sets. A buried fuel storage tank with a 6000-gal capacity will provide for 7 days of continuous operations.

### Environmental control

Operational cooling will be provided by a 50-ton groundwater-cooled chiller, a chilled-water distribution system, and a distributed system of air handling units. Water will be taken from one well, passed through the chiller and returned to the ground through a second well. Iwo wells will provide a more reliable water source for the facility and, in case of pumping problems, cooling water could be wasted to the sewage lagoon or just to the outside.

### issues and assumptions

PS-77

and distribution system for meeting low cooling loads and distributing outside air throughout the operational space. Chilled water ANUS will be located above the dropped cellings or in the vertical shafts in the operational spaces to carry the rest of the load. Distributed ANUS could be floor-mointed if space were available. The ANUS can be used to mechanical equipment room will have an air handling unit (AHU) meet the cooling requirements efficiently as the loads vary.

blast valve and CBR filter. This approach will produce a positive pres-sure in the facility, which will reduce infusion of contaminants from the outside. To reduce operating costs, an outside air system rated at 10,000 ofm will be provided for economic cooling when conditions permit. this system uses a blast valve for drawing in outside air, but does not have a CBR filter. The air will be exhausted by a pressure differential Outside air will be ducted into the facility at 450 of a through through the blast valve.

chilled-water circulation pumps, compressor for control sys-The mechanical equipment room contains one AMU with a CBR filter, tems, and a sanitary sewage lift station.

### Water and waste disposal

turned to the ground through a second well. Two wells will ensure a secondary water source in case of a failure in the primary system. Cooling water will be wasted to the outside through the wastewater system if it is not possible to return it to the ground through one of the Water will be supplied from a ground well and pressure tank to meet both potable and cooling water requirements. Cooling water will be reMastewater will be discharged into the sewage lagoon through the lift station located in the mechanical room. The facility's successful operation depends on the ability to discharge waste. Therefore the lift station will be placed inside the shelter for protection. (An unprotected lift station located near the lagoon would require the gravity pipe to be buried deeply.) After an attack, if the discharge pipe is blocked (damaged or destroyed), the lift station can be used to pump waste to the surface through a flexible hose. The lagoon will be designed based on the expected wastewater flow. If cooling water is discharged through the system, the lagoon will be allowed to overflow until system problems can be solved.

Flexible connections will be used in the piping systems near the facility to reduce possible demage from ground shock.

#### 7. Security

It has been assumed that project planners will satisfy site security requirements and, thus, this information has not been considered here. Security personnel will provide interior security. Space will be provided in the facility for an access control station. A small, secure space has been provided to store a few incendiary devices for destroying classified documents.

Westing, wentilation, and AC equiparity, and AC equ	personnel	equipment	activities	personnel	equipment
Hemperture and hamildity senors and controls.  Communication equipment or controls electronic testing equipment or movable carts.  Fire alarms and senors accomponents.  Sors alarms and senors accomponents.  Sors alarms and senors accomponents.  Sories and supponents.  Sanitary lift state.  Ply equipment.  Sanitary lift state.  Feel storage tank and distribution.		1. Heating, ventila- tion, and A/C equip-			
Communication equipment.  Portally electronic testing equipment on movable carts.  Fire alarms and sensors.  For alarms and sensors.  Scurity system components.  Scurity system components.  Mater pumps and supply equipment.  Sanitary lift station.  Fuel storage tank and distribution.		2. Temperature and humidity sensors and controls.			
testing euithment on movable carts.  Fire alares and sensors.  Fire alares and sensors.  Fire alares and sensors.  Fire alares and supporter pumps and supply equipment.  Sanitary lift station.  Fuel storage tank and distribution.		3. Communication equip- ment.	,		
Security system components. Security system components. Mater pumps and supply equipment. Sanitary lift station. Fuel storage tank and distribution.	•	. Portable electronic testing equipment on movable carts.			
Security system conponents. Water pumps and supply equipment. Sanitary life station. Fuel storage tank and distribution.	÷.	fire alarms and sensors.			
Mater pumps and sup- Dly equipment. Sanitary lift sta- tion. Fuel storage tank and distribution.	•	Security system com- ponents.			
Sanitary lift station.  Fuel storage tank and distribution.	7.	Mater pumps and supply equipment.	,		
fuel storage tank and distribution.	•	Sanitary lift sta- tion.			
	œ.	Fuel storage tank and distribution.			
		•			
	•	,	,		
		r - 1			
	,		· Page - processed		
				, ,	
	ı				

requirements	Criteria	
		commentary
1. Adequate space.	1. Size facility to provide space equal to that shown on the DCA-furnished layout drawings for an AUTODIN switch. There are no requirements for living quarters, rest areas, food storage/preparation, or general storage.	
2. Structure.	<ol> <li>Semiharden facility to withstand overpressures due to blasts from near misses by bombs exploding at ranges of 75 ft or more.</li> </ol>	
3. Openings.	3. Provide two emergency escape exits to the surface. Boors between the communication equipment room and other spaces will be fire-rated. Provide one hardened blast door for personnel and one for equipment movement as access to the facility from the main tunnel entrance. Openings will be provided in the roof over the generator operating area for fumes in the entrance area.	·
4 Ventilation system and humidity control.	4. Install filters to remove dust from the incoming mir. Ventilation and humidity requirements will conform to existing criteria for operational spaces. Provide a CBR filter in the ventilation mir system for use during the button-up period. Provide openings covered with fire dampers for mir circulation between the major meas.	
5. Illumination.	5. Provide standard ADP and office area lighting levels (50 lux).	
6. Power.	6. Provide 177-kW supply for all lighting and communications equipment operation. Provide 110-V a.c. electrical outlets on 10-ft centers throughout the facility for equipment. Provide temporary backup power by a battery-based rotary UPS. Provide permanent backup with portable generators. Energy needed to reject the waste heat, etc. will add approximately 175 kW to the equipment load, raising the needed power generation capacity to approximately 400 kW. Size fuel storage and the cooling system to support at least 7 days of continuous operations without external support.	
7. Heating and cooling.	7. Install equipment to maintain the environment within the standard temperature range for operational spaces. Well-water cooling systems will be used as the primary source. The pienum under the equipment floor will be used for distributing the air supply. Space will be provided above the dropped ceilings for returns. A water source heat pump will be used in conjunction with the well water circulating system to heat the facility.	
8. Survivability protection.	8. Provide HEMP and CBR control. The facility must be capable of being totally buttoned-up for 4 hours without external support. The environment must be maintained to support personnel and equipment in an operational mode during the button-up period.	

requirements	eria	commentary
9. Fire protection.	install a Halon system below the equipment floor. Install a dry-pipe water sprinkler system with manual override on the cellings.	
10. Security. 10.	Provide space for controlling personnel access to the facil- ity. Allow for approximately 1350 qal/day potable water for opera-	
removal.	tors. Provide water treatment equipment if needed.  Provide a system for disposing of sanitary waste outside the facility	
13. Drainage. 13.	Provide good drainage to control ground- and surface water at the sitz.	

#### guidance

#### Analysis

The facility design and cost estimates were developed using the same assumptions and processes discussed in Section E, with one exception: the location factor was changed to 1.50 to reflect the cost of construction in Belgium.

### findings and conclusions

The rectangular cast-in-place concrete configuration can be constructed for \$1810K, or \$215/5q ft. The fibrous concrete multidome configuration can be constructed for \$1786K, or \$207/5q ft.

Ihe dome configuration should have the shortest construction time, considering the use of inflated forms, spray-applied polyurethane foam form material, and fibrous shotcrete.

Ihe dome-based facility could be constructed in a variety of general configurations. However, the general rectangular shape appears to be the best, considering both room layout and earthwork requirements.

The facility's total cost may be reduced by reconsidering floor space requirements in the nonequipment areas. The spaces indicated are based on those provided in a low-cost unhardened facility. In the domebased facility, the space may be used more efficiently by reconsidering the passageway in the toilet area and the waiting rooms as well as possible use of storage platforms. Overhead storage space could be constructed to take advantage of the 14-ft ceiling height.

### guidance

i i i je



RS-83



FIGURE F-2. AUTODIN SHITCH FACILITY PLAN -- DONE CONFIGURATION.

### METRIC CONVERSIONS

1 ft = .308 m

1 in. = 2.54 cm

1 sq ft = .092 m².

| cu ft = .028 m3

cu ft/min = .467 mm3/sec

gal = 3.785 L

| Lux = | lumen/m2

hp = .745 kW

1 1b = ..453 kg ·

1 Ton · 906 kg

1 ps1 - 6.89 Pe

### APPENDIX

COST ESTIMATES

# APPENDIX A COST ESTIMATES

# Baseline - Conventional Construction

,		ger.			Bare Costs		Total
Tree .	Description	Quen.	Unit	Hat.	Inst.	Total	inc1. 04P
-	DCS TRANSPORTABLE UNIT Low Rigid Frame Bldg.						
	Fdn. 4' depth, 12" x 16" footer			787	A11 Costs	All Costs: Per S.F.	2.00
	Pre-engineered Bldg.			70	79.	1.65 1.62	8.
	Panels, gal. steel roof			7:	3	5.78 6.36	8
	Insulation			.50 Total	Total Cost/S.F. = 12.00 Total Cost = \$29,670	.82 .9 = 12.00 \$29,670	1.00
	DCS RECONSTITUTIONAL PACKACE						
	Fdn. 4' depth, 12" x 16" footer 6" conc. slab, wire mesh reinf.				All Costs	All Costs: Per 3.F.	2.00
	Pre-engineered Bldg.			•	70.	78.1 (9.1	3:
	Panels & Roof Panels			1.7	<b>3</b>	6.60 7.27	8 •
	Insulation			.S Total	5 .32 Total Cost/S.F. Total Cost =	.5 .32 .82 .9 Total Cost/S.F. = 13.00 Total Cost = \$11,440	8.

Baseline - Reconstitutional Package Storage - Igloo - Condition A

•		Est.			Bare Costs		Total
It en	Description	Quen.	Frit	Nøt.	Inst.	Total	incl. 04P
-	20 MOO						
)	Arch	65	C.Y.	6110	9100	15.210	19 875
	beams	2.5	C. Y.	345	250	2	200
	Slab	1000		2	720	1660	1980
	Footings	35	c.Y.	2625	1330	3955	4725
	Fdn. Walls (Front & Back)	11.5	c. y.	996	1380	2346	3048
	Walls (Front & Back)	07	c. Y.	3360	4800	0919	10.600
	Fdn. Walls (Sides)	21	c.۲.	1617	1995	3612	4620
	Vent Shaft	21	c.Y.	2079	3570	5649	7455
	,					Subtotal	53,428
~	REBARS:						
	Footings	3.75	Tons	1856	1144	300	3750
	Fdn. Walls	9.5	Tons	4703	2043	6745	8265
	Walls and Arch	16.7	Tons	87.56	3591	11,857	14,529
	Floor Slab	0.7	Ton	485	280	765	960
			,			Subtocel	27,504
~	FORMS:						
	Pootings	1461	SPCA	424	1753	2177	. 2951
	Keyuay	200	L.P.	71	*	2	*
	Beans	300	SPCA	- 126	447	573	774
	Ploor Slab	150	r. P.	23	741	891	231
	Fnd. Wall	246	SPCA	251	972	1223	1660
	Front & Rear Wall	2396	SPCA	1102	4265	5367	7284
	Arch & Side Walls	2760	SPCA	3514	15,437	18,950	25,862
	,					Subtotal	38.858

RS-n

Reconstitutional Package Storage--Igloo, cont'd

4	FINISHING: Ploor: Screed Trowel	1000 1000 3000	92 th. th.	210	160 310 1440	160 310 1650 Subtotal	220 420 2250 2890
~	SECURITY DOORS			TIME	UNIT PRICE -	124,000	
•	MOISTURE PROTECTION: Slab Vapor Barrier Hembrane Waterproofing* (ALCh) Membrane Waterproofing (Front & Walls) Caulking	10 2000 2400 50	<u>ச</u> ங்க் க்	54 1660 1992 33	1280 1766 42	94 2940 3758 15	116.5 3700 4670
	#3-ply fabric					1970 300	8583
	SITE-WORK: Excavation (Bldg) Pootings Excavation (Road)	148 180 65	<b>5</b> 5	188 193 70	175 243 17	363	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
	Compacted Backfill Road - 3" deep stone Erosion Control Fine Grading & Seeding	948 89 517 517	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	958 75 285 93	364 78 465	1261 101 362 558 Subtotel	1496 116 424 739 3878
						TOTAL	\$259,161

RS-91

Baseline - Reconstitutional Package Storage - Igloo - Condition B

					Bare Costs		Total
It en	Description	Quen.	- Pari:	Hat.	Inst.	Total	incl. 04P
-	CONCRETE: Same as condition A except; subtract portal wall portions,						
	Fourings Foundation Wall	~ ~ ~		150	240	A Subtotal 226 408 Subtotal	53,428 - 270 - 530 52,628
2	KEBARS: Same as condition A except: Footing Fdn. Walls & Walls	1.	Ton.	49.5	30.5	A Subtotal 80 242 Subtotal	27,504 - 100 - 280 - 280 - 280
<b>m</b>	FORMS: Same as condition A except: Footings Fdn. & Walls	150	SPCA	44	180	A Subtocal 224 207 Subtotal	38,858 - 303 - 208 38,275
4	FINISHING: Same as condition A						2,890
\$.	SECURITY DOORS		,				124,000
•	MOISTURE PROTECTION: Same as condition A except Membrane Waterproofing	\$0	s. P.	43	32	A Subtotel 74 Subtotel	8583 - 93 8,490
~	SITE WORK: Excavation (Bldg) Excavation (Road) Compacted Backfill Roadway 3" deep stone Erosion Control Pine Grading & Seeding	553 534 454 476 476	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	702 593 459 262 86	653 144 145 61 72 428	1355 737 737 604 241 343 514 Subtotal	1714 865 717 275 390 681 4,642
						TOTAL	\$258,033

Baseline - Reconstitutional Package Storage - Igloo - Condition C

•		Est.			Bare Costs		Total
It em	Description	Quen.	thit	Hat.	Inst.	Total	inc1. 04P
_	CONCRETE:						
	Same as condition A except:		_				
	Footings	14.8	, K	=======================================	2,43	191010ne v	92,426
	Fdn. Wall	1.1		398	898	7/81	355
	Portal Wall	61	c. Y.	1596	2280	3876	2035
					) 	Subtotal	45,138
~	REBARS:			.†			٠
	Same as condition A except					A Subsect	11 504
	Footing/Fdn.		Tons	331	234	919	5
	Portal Wall	.,	Tons	352	151	465	
				<u> </u>		Subtotal	
			•	,		101000	017'07
				'			
`	FURISE						
	Same as condition A except:					A subtotal	38.858
	Footing (Portal)	230	SPCA	154	636	740	1201
	Fdn. Wall (Portal)	. 250	SCCA	1	***	25	1/01
	Portal Wall	1024	SPCA	: ;		900	9 :
			5	;	7791	4622	
						Subtotal	33,914
4	FINISHING						
	Same as condition A						
							069.7
	SECURITY DOOR					,	124,000
•	HOI STURE PROTECTION:						
	Same as condition A except:					A subtotal	8583
<b></b>	Membrane Waterproofing	213	S. F.	425	328	75.7	870
					1	Subtotal	7.635
	SITE WORK:						
	Excavation (Bidg)	1411	C. Y.	1876	1771	3619	0637
	Excavation (Road)	3111	ζ.,	1951	3671	1623	616
	Compacted Backfill	855	, ,	866	7,7	1133	
	Roadway - 3" deep stone	777	۸5	328	1 20		1661
	Erosion Control	407	š	22.6	: 3	200	9/6
	Fine Grading & Seeding	403	λS	74	366	460	
		·				Subtotal	17,068
		,				14104	
						34101	19/ 0074

Baseline - Transportable Unit Storage - Igloo - Convition A

Totel	incl. 06P		59.170	32%	2940	13,905	204	10,600	13,860	7455	117,268		Of 1.4	9353	43.500	2923	906.65		\$636	=	2129	555	3000	7284	51,725	/ 196 > /
	Total		45,496	2506	4980	11,639	2346	9160	10,835	\$649	Subtotal		3304	7633	35.500	2329	TOTAL		4381	791	1576	403	2213	2367	37,900 Subroral	
Bere Costs	Inst.		27,160	1540	2160	3914	1380	7800	5965	3570			1260	2311	10.750	• \$2			3528	90	1230	320	1759	4265	30,847	
	Mat.		18,236	996	2820	1125	996	3360	4850	2079			2044	5321	24,750	1476			853	35	347	ž	454	1102	7027	
	Pait		c. Y.	c. Y.	 	c. Y.	. <del>.</del>		C.Y.	c. Y.			Tons	Tons	Tone	Tons			SPCA	1	SPCA	2	SPCA	SPCA	SPCA	
Est.	Quen.		194	^	3000	. 103	11.5	9	63	21			4.13	10.75	20	3.0			2940	360	825	360	986	2396	11,520	
	Description	CONCRETE:	Arch	Beans	Sieb	Footings	Fdn. Walls/Front & Back	Walls (Front & Back)	Fdn. Walls (Sides)	Vent Shaft		REBARS:	Footings	Fdn. Walls	Walls & Arch	Floor Slab		FORMS:	Footings	Keyuay	Desas	. Ploor Slab	Fdn. Wells	Front & Rear Walls	Arch & Side Walls	
	it ea •	-			`,					,		2						3								

guldance

Transportable Unit Storage--Igloo, cont^od

25. 20. 20. 20. 20. 20. 20.	124,000	350	4670	401	95	4495	1271	10,135	\$404,988
460 930 3036 Subtotal	Unit Price	282	3756 75 Subtotal	1046	£3.	3764	1065	Subtotel	TOTAL
480 930 2650	,	120	336	\$23	25.	910	233		1
300		162	1992	263	193	2874	853		
Day No. Do.		o s	: i:	2,7	 	 	÷ >		
3000 3000 5520		· 0£	2400	143	180	2845	1550		
Fluishing: Floor: Screed Troweling	SECURITY DOORS . 1-15' x 18' x 14"	MOISTURE PROTECTION: Slab Vapor Barrier (.010 thick)	Membrane Waterproofing (Front & Rear Walls) Caulking (Reglets)	SITE WORK: Exteration (Bldg.) Backhoe	Footings - Backhoe Excavation (Roadway) Dozer	Compacted Backfill Boadway 3" deep store	Erosion Control Fine Grading & Seeding		
•	•	•		_	· ·.				

3		Est.			Bere Costs	•	Total
<u></u>	Description	Gran.	Lair.	Haft.	Inst.	Total	incl. 06P
	COMCRETE: Same as condition A except suffact column accordingly to reduced portal wall size, Fuctings Fdm. Mail	~ ~		150	74.	A subtotal 226 408	117,268
٠						Subtotal	116,468
* '	No GAM St.	7,	Tone	49.5	8.5	A subtotal	59,906
-	Series Being & Chick	<b>*</b>	d oot	•	2	242 Subtotel	59,510
<b></b> 						,	2
	Same as Condition & except:	150	25	;	2	224	- 303
14-14-7	43	76	្ត ង	7	<u> </u>	207 Subtotal	70,244
<b>*•</b>	SAME AS CONDITION A						970 4
! 'A	Second IT formes Same as condition &						124,000
F	MOISTURE PROTECTION: Same as condition A except Membrane Materproofing	\$0	3	;	, a	74 Subtotal	16,792
	SITE WARE: Frenchion (Bide) (Bechboe)	0991	,	90.	9,01	784	3
-	Excelention (Rosdesy) (Doser)	354	: ن ز	265	**	3	865
-	Compacted Backfull	1363	; ; ;	13.5	3	1613	2154
	Rustusy 3" deep stone	211	<b>S</b> . 7.	180	3	241	275
	Erosion Control	1427		=	214	666	1170
	fine Grading & Seeding	1427	÷ ;	253	1285	1541 Subtotal	11,651

Baseline - Transportable Unit Storage - Igloo - Condition C

Comparison   Control March	•		Est.	•		Bare Costs		Total
Communication   Communicatio	# ! 		5	5	Hat.	Inst.	Totel	incl. 04P
Secondarion A	<b>-</b>	C.C. (18.1)						
Fig.   Partial Wall)   14.0   C.Y.   1111   545   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674   1674		Same as condition A except subtract:					A subtotel	117 24
Fig.   Wail (Furtal Wall)   4.7   C.Y.   1596   2300   3874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1874   1		Contings (Ports ball)			1111	\$63	1674	2000
March   Marc		· Fdn. Mail (Portal ball)	4.7	C. <b>Y.</b>	396	268	38	- 1255
			. 6	. C.Y.	1596	2280	3876	- 5035
			***************************************				Subtotal	108,978
State at condition A except:	~	1000円	-					
Fulling   Fall		Same as condition A except:						-
Force  Mail   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   10		Fort topy Fide.	117	Lone	Ş	1,1	TO TOTAL	5.6
State at condition A except:   330   SFCA   114   634   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   79		Fortal hall	7	100	3	3 2		2.
Same as condition A except:   330   SFCA   134   634   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790			1		<b>\</b>		Subtotal	\$6,518
Secondition A except:   530   SFCA   154   634   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790   790		•						
Second   S	-							
Fouring (Porcel)  Fouring (Porcel)  Fouring (Porcel)  Fouring (Porcel)  Fouring (Porcel)  Fouring (Porcel)  Fouring (Forcel)  Fouring Mail (Forcel)  Fouring Mail (Forcel)  Security Goods:  Same as condition A  WOUSTURE PROTECTION:  Same as condition A  WOUSTURE FROM SAME SAME SAME SAME SAME SAME SAME SAM		Same as condition A except:					A 6ht 0.0.0	
Finishing  Fully (Portain Mail)  Fully (See as condition A secret:  Shee a		Footnot (Ported)	5		2	;	19101001	70'0
Finisdim:  Section Wall  Finisdim:  Same as condition A  Structure Fauticrition:  Same as condition A  Same as con		Edo, hell (Poster)		5 5	<u>.</u>	2	067	1701 -
SECURITY COORST   Same as condition A   SECA   471   1822   2294			9	5	=	**	250	92
Section   Subtotal   Subtotal   Subtotal   Subtotal			1024	25	7.7	1822	2294	- 331
SECURITY GOOMS:   Same as condition A   SECURITY GOOMS:   Same as condition A   Same a							Subtotal	65,883
Sect at Condition A   Section   A	:							
Secretarion   A	4	SHIPSING SHIPS						
SECURITE CACCEST   Same as condition A   Notice		Same as condition A						970
Same as condition A   Same as condition A except;   Siz   S.F.   425   328   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753					_			
Same as condition A  #UISTURE PROTECTION: Same as condition A except: Same as condition A subtotal Site work: Excavation (Bidg) Campaced Backill Same atom (Bidg) Campaced Backill Same atom (Bidg) Campaced Backill Same atom (Bidg) Same	~	SECONDIT DISORS:						
#UISTURE PROTICTION:  Same as condition A except:  Same as condition A same and a same an		8						
Size as Condition A except;   Size   S.F.   425   328   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   753   75	-		·					
Size as condition & except:   Size		MOISTURE PROTECTION:						
Malerproofing         312         S.F.         425         326         326         753           un (Bidg)         4430         C.Y.         4429         6168         10,854           un (Road)         3111         C.Y.         3951         3671         7622           d Backfill         2365         C.Y.         2591         821         3412           Long stone         444         S.Y.         378         129         856           Control         1222         S.Y.         47         856         856           Sing 6 Seeding         1222         S.Y.         220         1100         1320           Subtotal         Subtotal         Subtotal         3ubtotal		Same as condition A except?					-	:
Un (Bidg.)  10,834  20,834  20,834  30,111  20,111  20,111  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11  30,11		Nembrane Marerproofing	512		¥67.	425		19.792
on (Bidg) 4430 C.Y. 4429 6166 16 on (Road) 3111 C.Y. 3951 3671 4 Backfill 2565 C.Y. 2591 821 - 3" deep stone 444 S.Y. 378 129 Control 1222 S.Y. 378 1100 Subt	-						Subtotal	15,84
tone 4430 C.Y. 4429 6168 16 21 2565 C.Y. 2591 821 821 821 821 822 8.Y. 2591 822 8.Y. 270 1100 Subt	~	SITE MORK:						
t 2565 C.Y. 3951 3671 251 251 251 251 251 251 251 251 251 25		Excavelion (Bidg)	4430	C. Y.	4479	7717	778 01	:
stone 444 5.Y. 2591 821 129 1222 5.Y. 672 186 1100 5ubt		Excession (Road)	1111	,		3 :		13,13
Atha 1222 S.Y. 220 1100 Subt		Company of many	3736	;;	1000	2	779	**
Seeding 1222 S.Y. 220 1100 Subt				: ;	100	7	214	4053
Seeding 1222 S.Y. 672 194 1100 1100 Subt		Buons days for heart a	;	. Y.	378	129	2	578
1222 S.Y. 220 1100 Subt		Ercuton Control	1222	s. _Y .	<b>6</b> 12	<u> </u>	856	1002
Subtotal		Burgeruf & Burgeruf	1222	S.Y.	220	2001	1320	174
	1						Subtotal	20.75

TRANSPORTABLE UNIT SHELTER

RECTANGULAR CONFIGURATION

DCS Trai Cast-in-P	DCS Transportable Unit Shelter Cost Estimate Cast-in-Place Concrete Rectangular Construction	t Shelter Cos Rectangular (	t Estimate onstruction		OCS Tran Precast S	DCS Transportable Unit Shelter Cost Estimate Precast Segmental Unit Rectangular Construction	. Shelter Cost Rectangular Co	Estimate Anstruction	
l tem	Unit	Quantity	Unit Cost S	Total Cost Sk	item	Unit	Quantity	Unit Cost	Total Cost
Cast-in-place concrete Reinforcing steel Blast doors Mechanical	5-32	440 94	200. 1000. 127,500.	88.0 94.0 127.5	Precast concrete Reinforcing steel Post-tensioning system	2-2	470	175.	82.3 102.0
t lectrical Orainage Materproofing	3888	0601	5,600. 5,600. 5,500.	5.6 5.6 6.0	Blast door Mechanical Electrical Orainage	ភភភភ		127,500. 13,400. 75,600.	127.5 13.4 75.6
Backfill Rock rubble Disposal Seeding	וצלללל	9980 5710 1700 4280	3.00 6.00 7.50 8.00 9.50	28.9 34.3 6.8 0.7	Materproofing Excavation Backfill Rock rubble	ಕರವನ	10,060 5,740 1,720		
Unadjusted Facility Costs				\$492.8k	Seeding	22	4,325	2.50 1,000.	10.8 1.0
Location adjustment factor (Washington, DC) 1.00	r (Washington,	00.1 (00			Unadjusted Facility Cost				\$520.9k
Supervision and administration factor Construction data factor (Jan 84)	ation factor (Jan 84)	1.05			Location adjustment factor (Washington, DC) Contingency factor Supervision and administration factor	r (Washington,	9C) 1.00		
Adjusted Facility Cost \$492.8 x 1.00 x 1.05 x	492.8 x 1.00 x		1.05 x 1.00 - \$543.3k		Construction data factor (Jan 84)	(Jen 84)	1.05		
					Adjusted Facility Cost \$520.9k x 1.00 x 1.05 x 1.05 x 1.00 * \$574.3k	520.9k x 1.00 )	K 1.05 x 1.05	× 1.00 = \$574.	×

*Range between bomb and structure equals 100 ft.

*Range between bomb and structure equals 100 ft.

			·						
OCS Tran Precas	OCS Transportable Unit Shelter Precast Elements Rectanyular		Cost Estimate Construction		DCS Trans Precast	DCS Transportable Unit Shelter Cost Estimate Precast Tilt-up Rectangular Construction	Shelter Cost angular Const	Estimate ruction	
Item	Unit	Quantity	Unit Cost	Total Cost ≸k	item	Unit Measure	Quantity	Unit Cost	Total Cost Sk
Precast concrete Reinforcing steel Blast doors Mechanical	ر د د د د د د	535	175. 1,000. 127,500. 13,400.	93.6 118.0 127.5 13.4	Cast-in-place concrete Reinforcing steel Blast doors Mechanical	2-2S	618 140	150. 1,000. 127,500. 13,400.	92.7 140.0 127.5 13.4
tlecfrical Drainage Wateproofing Excavation Backfill	2222	1140 10,265 5,815	75,600. 5,600. 3,500. 3,500. 6,600.	75. 6. 6. 6. 6. 8. 9. 9.	Electrical Orainage Excavation Backfill	22255	1,170 10,550 5,920	75,600. 5,700. 5.50 3.00	75.6 5.7 31.6 35.5
Nock rubble Disposal Seeding	S C C C	4,455	4.00 2.50 1,000.	7.1 11.1 1.0	Rock rubble Disposal Seeding	CY CY	1,820 4,630	4.00 2.50 1,000.	7.3 11.6 1.0
Unadjusted Facility Costs				\$524.9k	Unadjusted Facility Cost				\$548.3k
Location adjustment factor (Mashington, Contingency factor Supervision and administration factor Construction data factor (Jan 84)	r (Washington, ation factor (Jan 84)	0C) 1.00 1.05 1.05 1.00	,	·	Location adjustment factor (Washington, DC) Confingency factor Supervision and administration factor Construction data factor (Jan 84)	(Mashington, tion factor Jan 84)	0C) 1.00 1.05 1.05 1.00		
Adjusted facility Cost \$	\$524.9k x 1.00 x 1.05	×	1.05 x 1.00 = \$578.7	.,	Adjusted Facility Cost \$5	48.3k × 1.00	1.05 x 1.05	\$548.3k x 1.00 x 1.05 x 1.05 x 1.00 = \$604.5k	.5k
					·				
,						•			,
	٠						,		
*Range between bomb and structure equals 100 f	structure equa	als 130 ft.			*Range between bomb and structure equals 100 ft.	ructure equal:	100 ft.		
	•								

State   Stat	Double F	Double Panel Wall Rectangular		Cost Estimate Construction		DCS Trans	OCS Transportable Unit Shelter Cost Estimate Shotcrite Rectangular Construction	Shelter Cost	Estimate tion	
1200.   120.0   Shotcrete	ltem	Unit Measure	Quantity	Unit Cost	Total Cost Sk	Item	Unit	Quantity	Unit Cost	Total Cost
75,600.   75,600.   75,600.   75,600.   75,600.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,900.   75,9	Cast.in place concrete Reinforcing steel Blast doors Mechanical	2- SS	600 135	200. 1,000. 127,500.	120.0 135.0 127.5 13.4	Shotcrete Reinforcing Steel Blast doors Mechanical	ر د د	500 110	350. 1,000. 127,500.	175.0 110.0 127.5
6.00 37.5 Backfill 8.2 Rock rubble CY 5,775 6.00 8.2 Rock rubble CY 1,740 4.00 2.50 13.3 Disposal CY 1,740 4.00 2.50 13.3 Seeding CY 1,740 4.00 8.5 Rock rubble CY 1,740 4.00 1.100. 1.100	Cracercal Orainage Waterproofing Excavation	522C	1,350	75,600. 5,900. 5,50 3.00	75.6 5.9 34.3	Electrical Orainage Waterproofing Excavation	222	1125	75,600. 5,600. 5,50	
1.05 x 1.00 = \$639.1k  Unadjusted Facility Cost  Location adjustment factor (Washington, DC) 1.00  Location adjusted Factor  Location adjusted Facility Cost \$597.4k x 1.00 x 1.05 x 1.00 = \$658.6	Baxfill Rock rubble Disposal Seeding	2333	6,250 2,045 5,330	6.00 4.00 2.50 1,100.	37.5 8.2 13.3 1.1	Backfill Rock rubble Disposal Seeding	೭ನನನ	5,775 1,740 4,350	5.00 6.00 4.00 2.50 1,000.	34.6 7.0 1.0
00 05 00 1.05 × 1.00 • \$639.1k	Unadjusted Facility Cost	,			\$579.7k	Unadjusted Facility Cost				\$597.4k
1.05 x 1.00 * \$639.1k	Location adjustment factor Contingency factor Supervision and administrationstruction data factor (	(Washington, Ition factor Jan 84)				Location adjustment factor Contingency factor Supervision and administra Construction data factor (	. (Washington, ition factor (Jan 84)			
	Adjusted Facility Cost \$5	179.7k × 1.00		x 1.00 - \$639		Adjusted Facility Cost \$5	97.4k × 1.00	x 1.05 x 1.05	× 1.00 = \$658	3.

*Range between bomb and structure equals 100 ft.

*Range between bomb and structure equals 100 ft.

RS-101

# TRANSPORTABLE UNIT SHELTER

# CIRCULAR CONFIGURATION

DCS Tran Cast-in	OCS Transportable Unit Shelter Cast-in Place Concrete Circular	t Sneiter Lost e Circular Con	Lost Estimate Construction		ous Iran Precast	Dus Transportable Unit Smeiter Lost Estimate Precast Segmental Unit Circular Construction	Unit Circular Construction	struction	
ltem	Unit Measure	Quantity	Unit Cost	Total Cost Sk	Item	Unit Measure	Quantity	Unit Cost	Total Cost Sk
Cast-in-place concrete Reinforcing steel Blast doors Mechanical	. CY 1. LS	415 87	300. 1,200. 127,500. 13,400.	- 124.5 104.4 127.5 13.4	Precast concrete Reinforcing steel Post tensioning system Blast doors	5-25	80	250. 1,200. 25,000. 127,500.	107.5 108.0 25.0 127.5
Electrical Orainage Waterproofing	53.25 5	870 10 440	75,600. 5,600. 5.50	75.6 6.6 8.6 8.6	Hechanical Electrical Oralnage	ನವನ	875	13,400. 75.6 5,700.	13.4 75.6 8.7
Backfill Rock rubble Disposal Seeding	2555	5,120 1,800 3,320	6.00 4.00 2.50 1,000.	30.7 7.2 8.3 1.0	Exception Backfill Rock rubble	35555	10,500 5,150 1,820 5,355	8.6.9.9.5. 8.6.9.9.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	31.5
Unadjusted Facility Cost				\$539.3k	Seeding Unadjusted Facility Cost	C .		1,000.	\$551.6k
Location adjustment factor (Mashington, UC) Contingency factor Supervision and administration factor Construction data factor (Jan 84)	or (Washington ration factor (Jan 84)	1.00 1.05 1.05 1.00			Location adjustment factor (Washington, DC) Contingency factor Supervision and administration factor Construction data factor (Jan 84)	or (Washington, ation factor (Jan 84)	0C) 1.00 1.05 1.05		
Adjusted Facility Cost \$521.9 x 1.00 x 1.05 x	1521.9 × 1.00	- 1	.05 × 1.00 = \$594.6k	6k	Adjusted Facility Cost '551.6k x 1.00 x 1.05 x 1.05 x 1.00 = \$608.1k	.551.6k x 1.00	× 1.05 × 1.05	5 x 1.00 = \$608	1k

^{*}Range between bomb and structure equals 100 ft.

^{*}Range between bomb and structure equals 100 ft.

DCA CIRCULAR 300-95-1

DCS Fransp Corrugated	OCS Transportable Unit Shelter Corrugated Steel/Fibrous Concret	t Shelter Cost us Concrete Co	Cost Estimate te Construction	•	DCS-1r	DCS Transportable Unit Shelter Cost Estimate Shotcrete Circular Construction	Shelter Cost Tar Constructi	Estimate	
ltem	Unit Measure	Quantity	Unit Cost	Total Cost Sk	Ites	Unit		Unit Cost	Total Cost
fibrous concrete  Cast-in-place concrete  Cast-in-place concrete  Reinforcing fibers  Reinforcing steel  Corrugated steel plate  Foam  Blast doors  Mechanical  Flectrical  Orainage  Waterproofing  Excavation  Cox	CY CY CY LIS SF LIS LIS LIS CY CY CY CY CY CY CY CY CY CY CY CY CY	96 245 245 25,400 41 8,070 5,175 1,330 5,400 5,400 10,570 5,400	350. 200. 0.50. 1,000. 94,000. 127,500. 13,400. 75,600. 5,600. 5,600. 5,600. 6,000. 6,000. 1,000.	33.6 49.0 12.7 41.0 9.4 24.2 127.5 13.4 75.6 5.6 4.9 31.7 31.7 31.7 31.7 31.7 31.7 31.7 5.6 13.5 13.5	Shotch steel         CY         452         400.           Reinforcing steel         T         452         400.           Reinforcing steel         T         96         1,200.           Blast doors         LS         127,500.           Hechanical         LS         13,400.           Flectrical         LS         13,400.           Oralinge         LS         5,600.           Haterproofing         SY         885         3,600.           Recavation         CY         5,180         6.00           Rock rubble         CY         5,180         6.00           Rock rubble         CY         5,405         2.50           Seeding         LS         1,000           Unadjusted Facility Cost         LS         5,405         1,000           Unadjusted factor (Washington, DC) 1.00         1.05         1.00           Contingency factor         Location addaministration factor         1.05           Construction data factor (Jan 84)         1.00         1.05           Adjusted Facility Cost         500.73 x 1.06 x 1.05 x 1.05 x 1.06 x 1.05 x 1.0	Heasure  CY  LS  LS  LS  LS  CY  CY  CY  CY  CY  CY  CY  CY  CY  C	96 96 96 10,585 5,180 1,835 5,405 1,00 1,05 1,05 1,00	\$ 400. 1,200. 127,500. 13,400. 75,600. 5,600. 6,00 6,00 1,000	\$k 180.8 115.2 127.5 127.5 13.4 75.6 5.6 4.9 31.1 7.3 13.5 13.5 1.0
Construction data factor (Jan 84)	on factor n 84)	1.05		<b>.</b>	1607 (1111) 1011	x 0.11 x x/./noe	1.05 × 1.05 v	c 1.00 = \$669.	*
Adjusted Facility Cost \$566.1k x 1.00 x 1.05 x	. lk × 1.00 x	1 <b>-</b> 1	.05 x 1.00 * \$624.1k	ᆂ					

*Range between bomb and structure equals 100 ft.

^{*}Range between bomb and structure equals 100 ft.

RECONSTITUTIONAL PACKAGE SHELTER

RECTANGULAR CONFIGURATION

DCS Reconstitutional Package Shelter Cost Estimate Cast-in-Place Concrete Rectangular Construction

Cost Estimate	Construction
Shelter	lar (
Package	Rectangu
tutional	Precast Tilt-up
OCS	

Item	Measurc	Quantity	unit Cost S	Total Cost Sk	Item	Unit	74140000	Unit Cost	Total Cost
						TEGSULE.	Mancick	•	×
Cast-in-place concrete	5	290	200.	58.0	Precise to contracts	. ?			
Reinforcing steel	<b>-</b>	- 55	000	25.0	Detection to the state of	5	3/2	. 20	56.3
Blast doors	5		127 500	22.60	Seinforcing Steel	-	75	.000 <b>.</b>	75.0
Mechanical	2		12 200.	10.00	BIAST GOORS	rs	•	127,500.	127.5
Flectrical	3 2		14,400.	12.2	Mechanical	ST .		12, 200	12.2
Dradan	2 -		34,400.	54.4	Electrical	S	-	54.400	7 7 7
Latorna of the	3.2		3,700.	3.7	Orainage	51	-	202	-
Fyravation	7 3	495	5.50	2.7	Waterproof ing	35	530		
Racker 1	58	6565	8.8	19.5	Excavation	ح د	6.765	88	
Door with 1	בֿ כ	3/85	<b>9</b> .9	22.7	Backfill	:2	3005	3.8	555
AUCK TUDDIE	5	006	8.8	3.6	Ro. k ruth)	; ?		6.6	2:7
Ulsposal	ర	2,610	2.50	9	Discos 1	5 (	200	3	3.9
Seeding	1.5		2009	5.0	Specific	5 %	5,875	2.50	7.1
					2000	12		600	9.0
Unadjusted Facility Cost				\$366.0k	Unadjusted Facility Cost	•			
				Ŧ	20 (2000)	25			¥./85
Location adjustment factor (Mashington, OC) 1.00	(Washington,	00) 1.00			Location adjustment factor (Mashington, DC)	ctor (Mashington.	יי אַ		
Concerngency ractor		1.05			Contingency factor	1			
Construction data factor (12, 94)	tion factor	50.1			Supervision and administration factor	stration factor	1.65		
מומר מבומו מפרפ ופרומו	Jan 64)	30.1			Construction data factor (Jan 84)	or (Jan 84)	1.00		
Adjusted Facility Cost \$366.0k x 1.00 x 1.05 x 1	66.0k × 1.00 ×		.05 x 1.00 = \$403.5k	.5k	Adjusted Facility Cost \$387.6k x 1.00 x 1.05 x 1.05 x 1 m = 4427 34	\$387.6k x 1.00	x 1.05 x 1.05	x 1 00 = \$427	2
								31.	•
						,			

^{*}Range between bomb and structure equals 100 ft.

^{*}Range between bomb and structure equals 100 ft.

							÷		
DCS Recons Prece	DCS Reconstitutional Package Shell Precast Tilt-up Rectangular (	age Shelter C angular Const	ter Cost Estimate Construction		DCS Reconsti	DCS Reconstitutional Package Shelter Cost Estimate Precast Segmental Rectangular Construction	kage Shelter ( ctangular Cons	Cost Estimate struction	
item	Unit Measure	Quantity	Unit Cost	Total Cost Sk	ltem	Unit Heasure	Quantity	Unit Cost	Total Cost Sk
Precast concrete Reinforcing steel Blast doors Mechanical Crainage Auterroofing Excavation Backfill Sock rubble Disposal	2000088888	375 75 75 530 6,765 3,945 980 2,825	150. 1,000. 127,500. 12,200. 54,400. 3,700. 3,700. 3,000. 6,00 4,00 7,50	56.3 12.2 12.2 12.2 3.4 2.2 2.3 2.3 3.9	Precast concrete Reinforcing steel Post-tens-oning system Blast door: Mechanical Electrical Drainage Waterproofing Excavation Rock rubb:e	\$-222226555	305 58 500 6,450 3,810 910 7,440	175. 1,000. 17,000. 12,500. 12,200. 54,400. 3,700. 3,000. 6,00	53.4 58.0 57.5 12.2 5.4 5.4 19.3 19.3
Unadjusted Facility Cost	1			\$387.6k	Seeding	is s		510	0.5
	The Property of	-			Unadjusted Facility Costs				\$381.9k
Construction data factor (Jan 84)	adjustment factor (washington, uc) ncy factor (no and administration factor tion data factor (Jan 84)	1.05			Location adjustment factor (Mashington, OC) Contingency factor Supervision and administration factor Construction data factor (Jan 84)	r (Washington, ation factor (Jan 84)	, 0C) 1.00 1.05 1.05 1.00	·	. •
Adjusted Facility Cost	\$387.6k x 1.00	× 1.05 × 1.05	x 1.00 = \$427.3k	.3k	Adjusted Facility Cost \$	\$381.9k × 1.00	x 1.65	5 x 1.00 = \$421.0k	a
				<del></del>					
			r						•
		•	•				•	•	
		,							
					•				
*Range between bomb and structure equals 100 ft	structure equa	1s 100 ft.	,		*Rangs between bomb and structure equals 100 ft.	tructure equal	Is 100 ft.		, r
					. ,				
· .					,	•			,

DCA CIRCULAR 300-95-1

and the control of the sage of the Cost Estimate of the cost and the sage of t

age Shelter Cost Estimate	Rectangular Construction
DCS Reconstitutional Package	Frecast Elements Rec

150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,   150,		Unit	Out they	Unit Cost	Total Cost
2007 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1	<u>ب</u> م		222	37.1	
(42.5)		; <b>-</b> -	\$ 59	000	7.5
160.77		23	}	127.500	127.5
	_	S)		12,200.	12.2
· • •		<u>s</u>	.,	. <del>1</del> 00	3
		<u>S</u>		3,700.	3.7
2 6		5	515	3.5	2.8
3 /	CO. 10.	5	285.9	3.00	16.7
3.8		5	3,865	8.9	23.7
3.	A STATE OF THE STA	5	3	8	•
<b>3.3</b>		ځ	2,720	3.	•
N	Xed ing	15		200	0.5
#5"#215	t Load Justed Facility Cost	٠			7
					37.7.76
(A) 1000 (A) (A) 1000 (A) 1000 (A) 1000 (A) (A) 1000 (A) (A) 1000 (A) (A)	Location adjustment factor (Nashington, OC)	or (Mashington,	00:1 1:00		
	Contingency factor	•	_		
	Supervision and administration factor	ration factor	 20.	÷	
Control of the contro	Construction data factor (Jan 84)	<b>3 4 5</b>	8.		
Pousses farberg funt 1456 as a find a 1.05 a 1.05 a 1.00 a 10.	Chaster 1775 Cost	17 17 Cost \$377.7k x 1.00 x 1.05 x 1.05 x 1.00 = \$416 44	1.05 a 1.05	2 1.00 s %al6	1

"Adryd between bomb and structure equals 100 ft.

1-68-000 14-0040 AND

RECONSTITUTIONA! PACKAGE SHELTER

CIRCULAR CONFIGURATION

						10000	Segrental unit	rietasi segmentai unit tircuiar tonstruction	istruct 10n	
12, 280   1, 200   1, 200   1, 200   1, 200   1, 200   1, 200   1, 200   1, 200   1, 200   1, 200   1, 200   1, 200   1, 200   1, 200   1, 200   1, 200   1, 200   1, 200   1, 200   1, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200   2, 200		Measure	Suantity	Unit Cost S	Total Cost	itea	Unit	Quantity	Unit Cost	Total Cost Sk
12.500   12.5   12.500   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.5   12.	CASE-10-034cm Concrete	5	<b>38</b> 3	90.5	6.3	Precast concrete	۵۰	85	250.	72.5
12.200   12.2   12.200   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.2   12.	かん かんしょう こうこう かんかんの	2 23	₹	127,500.	127.5	Post-fees looing system	_ <u>~</u>	·	8.5	63.6
15   15   15   15   15   15   15   15	Me. Panical	S	FERRALIPA	12,200.	12.2	Blast doors	3		127,500.	127.5
10	1 10 trace	2)		54,400.	54.4	Mechanical	21		12,200.	12.2
Cr 6,500 3.00 70.11 Haterproofing 57 6,73 88 6.00 17.7 Excavation Cr 7, 2,56 6.00 17.9 Excavation Cr 7, 2,56 6.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17	000 000 000 000 000 000 000 000 000 00	23	***	3,700.	7.7	Electrical	23		54,400.	54.4
17.7   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5	CO		6.55	R 8	2.5		28	50.	3,000.	
1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00	34687111	5	35.	8.8	17.7	Figure 100	; č	3 2	2.5	7.5
CT   3.750   9.4   Bock rubble   CY   3.77     Sys. 5   Disposal   CY   3.77     Sys. 5   Disposal   CY   3.77     Sys. 5   Disposal   CS   Disposal   CS     Seeding   Steeling   CS     Steeling   CS   Disposal   CS     Steeling   CS   Disposal   CS     Sys. 5   Disposal   CS     Disposal	Pour rucole	5	970	8.4	3.9	Backfill	5	2.965	8.9	12.8
1		5	35.5	<b>3.</b> %	7.6	Rock rubble	5	975	4.00	3.9
S195.5 a x 1.00 t. 00 tocation adjusted facility Cost  1.05 t. 00				38.	0.3	Seeding	<u>5</u> 2	5.//5	8 ~ §	
t factor (washington, GC) 1.00  Location adjustment factor (Washington, DC)  Location adjustment factor (Washin	unadjusted facility Cost				\$395.5					
Location adjustment factor (Mashington, DC)  almistration factor (Mashington, DC)  factor (Jan 84)  Los  Contingency factor  C		4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	-			Unadjusted facility Cost				\$404.8k
Stylen and administration factor  (Jan 84)  1.00  Supervision and administration factor  (Jan 84)  Stylen and administration factor  (Jan 84)  Stylen and administration factor  (Jan 84)  Stylen and administration factor  (Jan 84)  Adjusted Facility Cost \$404.8k x 1.00 x 1.05  Adjusted Facility Cos	Contingency factor	The string con				Location adjustment factor	· (Mashington,	-		
SPS.5a x 1.00 x 1.05 x 1.05 x 1.00 = \$436.0k Adjusted Facility Cost \$404.8k x 1.00 x 1.05 districture equals 100 ft. "Range between bomb and structure equals 100 ft.	Construction data factor	drich ractor (Jan 84)	5.5			Contingency factor Supervision and administra	ition factor	1.05 1.05		
Adjusted facility Cost \$404.8k x 1.00 x 1.05 structure equals 100 ft. "Range between bomb and structure equals 100 f	1	05.5%	r 1.65 x	8		Construction data factor	Jan 84)	1.00		
	ı						104.8k x 1.00	x 1.05 x 1.05	x 1.00 = \$446.3k	. ¥
						·				
	*Range Detween bomb and s	tructure equa	1s 100 ft.			*Range between bomb and st	inucture equal	s 100 ft.		
						•				
	,									
						1				

BUS Reconstitutional Package Shelter Cost Estimate Shotcrete Circular Construction

[tes	Unit Measure	Quantity	Unit Cost	Total Cost Sk
Shoturete	ځ	300	<b>900</b>	120 0
Reinforcing steel		55	902	9
dlast doors	57	}	127.500.	127.5
Mechanical	57		12.200	12.2
Electrical	2		400	3
STA1104GE	2		3.700	3.7
materproofing	25	382	5.50	7
Excavation	ک	26.79	5	· 8
Backfill	5	600	38	2 2
Rock rubble	: 2	986	38	
Aicheal	; ?	200	3 3	
Seeding	: 5	60.0.1	7 5 5	ø (
Unadjusted Facility Cost				7. St.73
				82.0C.E.
location adjustment factor (Washington, BC)	(Mashington,	_		
Contingency ractor Supervision and administration factor	tion factor	50.1 50.1		
Construction data factor (Jan 84)	Jan 84)	8.1		
Adjusted Facility Cost \$438.2k x 1.00 x 1.05 x 1.05 x 1.00 - \$483.1k	38.2k x 1.00	x 1.05 x 1.0	5 x 1.00 = \$483	11.

*Ran's between bomb and structure equals 100 ft.

OPERATIONAL SHELTER

DCA CIRCULAR 300-95-1

BCS Integrated Operational and Transportable Cast-in-place Concrete Rectamgu	ed Operational and Transportabl Cast-in-place Concrete Rectangu		e Unit Shelter Cost Estimate lar Construction	Estimate	DCS O Cast-in-pl	DCS Operational Shelter Cost Estimate Cast-in-place Concrete Rectangular Construction	elter Cost Es Rectangular C	timate onstruction	•
Item	Unit Measure	Quantity	Unit Cost	Total Cost Sk	ltem	Unit Measure	Quantity	Unit Cost	Total Cost Sk
Cast-in-place concrete Reinforcing steel	٠٠	785	200.	157.0	Cast-in-place comprete	ν,	620	200.	124.0
Blast doors Mechanical	55		127,500.	127.5	Blast doors Mechanical	.22		57,500. 50,800.	57.5
Orainage Waterproofing	222	2,000	8,000. 8,000. 5.50	8.0 8.0 11.0	r lectrical Drainage Waterproofing	a e e	1.490	154,200. 4,500. 5,50	154.2 4.5 8.2
Excavation Backfill Rock ruthle	555	13,510 6,385	888	38.3	Excavation Backfill	555	10,365 5,060	8.88	 
Dispusal	253	7,130	2.50 1,500.		ROCK TUBBIE Disposal Seeding	וצלה	5,315	4.00 2.50 650.	13.3 0.7
Unadjusted Facility Cost				\$815.8k	Unadjusted Facility Cost				\$627.4k
Location adjustment factor (Mashington, DC) Contingency factor Supervision and administration factor Construction data factor (Jan 84)	(Nashington tion factor Jan 84)	. DC) 1.00 1.05 1.05 1.00			Location adjustment factor (Mashington, DC) Contingency factor Supervision and administration factor Construction data factor (Jan 84)	r (Washington ation factor (Jan 84)	. BC) 1.00 1.05 1.05 1.00		·
Allusted Facility Cost \$815.8k x 1.00 x 1.05	15.8k x 1.00	×	1.05 x 1.00 = \$899.4k		Adjusted Facility Cost \$	627.4k x 1.00	x 1.05 x 1.0	\$627.4k x 1.00 x 1.05 x 1.05 x i.00 = \$691.7k	.7k
			. ,						
				•					

*Range between bomb and structure equals 100 ft.

*Range between bomb and structure equals 100 ft.

Unit Measure				ימורי ביב/ו	rerabricated	Concrete/Prefabricated Box Form Construction	nstruction	
	Quart 1ty	Unit Cost	Total Cost	Item	Unit	Quantity	Unit Cost	Total Cost
***************************************	041	036	0 07	Cast to place concete	ح	196	200	20.0
Cast in place concrete CY	<u> </u>	200	32.0	Reinforcing steel	5⊢	98	1.000	26.0
33	25,400	05.0	12.7	Blast doors	2		57,500.	57.5
· -	91	1,000	16.0	Milvans	\$	61	12,500.	237.5
Found SF	6,160	98.9	37.0	Mechanical	2	,	20,800	8.0
Blast doors		57,500.	57.5	Electrical	S	•	154,200.	154.2
Mechanical		900	8.5	Waterproof Ing	<u>ک</u>	010.1	8.6	
Liectrical LS	1.40	154,200.	7.4.5	L'allage Everante	ځ	5 740		17.2
	3	2		Back [1]	5	2,170	8.9	13.0
Excavation	150	8.5	0.5	Rock rubble	5	2,530	8.	1.01
	9,200	9.9	55.2	Disposal		1,040	S.2	5.6
ubble	2,360	9.9	7.6	Seeding	LS		1,500.	1.5
Borrow	8,990	25.50	22.5					16 0639
Seeding		1,200.	7::	Unadjusted Facility Lost				\$050./K
Unadjusted Facility Cost			\$509.9k	Location adjustment factor (Mashington, DC)	(Weshington,		•	
Location adjustment factor (Washington, DC)				Supervision and administration factor	ion factor	35.5		
Contingency factor				CONSTRUCTION GREAT ACTOR (JAN 64)	en 04)	3		
Construction data factor (Jan 84)	8.8			Adjusted Facility Cost \$62	0.7k × 1.00	x 1.05 x 1.0	\$620.7k × 1.00 × 1.05 × 1.05 × 1.00 = \$684.3k	
Adjusted Facility Cost \$509.8k x 1.00 x 1.05 x	1	1.05 x 1.00 = \$562.2k	.2k					

*Range between bomb and structure equals 100 ft.

*Range between bomb and structure equals 100 ft.

CASE STUD

RS-115

investigation, construction cost estimates have been developed for hypothetical operational shelters to be located at Chievres AB, Belgium, near Supreme Headquarters Allied Powers Europe. The shelters were required to withstand overpressures due to blasts from near misses by bombs exploding at ranges of 75 ft or more. Of the several types of semihardened operational shelters, two were considered: the cast-in-place concrete rectangular floor space areas for the rectangular and dome configurations are 8400 sq ft and 8620 sq ft, respectively. Soth structures were covered with 8 ft of soil shelters, two were considered: the cast-in-place concrete rectangular construction and the fibrous concrete dome construction. The floor plans for the two shelters are presented in Figure G-1 and G-2 respectively. The given and rock as shown in Figure D-33. The rectangular shelter was buried while order to present a realistic application of the results from the dome shelter was mounded.

for the Durpose of cost estimation, several assumptions were made:

- The location adjustment factor for Belgium is 1.50
- The contingency factor is 1.05
- The supervision and administration factor is 1.05
- The construction date factor as of January 1984 is 1.00
- All communications, computer, and UPS equipment will be GFE
- Other requirements include the following:
- 177 kM (within the shelter) 30 (within the shelter at one time Total equipment load Total manpower
  - Special features ن
- Air conditioning system

 underfloor plenum for supply, space above false ceiling for return; water source heat pump with on-site wells for supply

18 in. raised computer floor

required

e. Lighting

and return

- Fire protection
- Power 6
- Standard ADP and office area Highting levels Water sprinkler ceiling with manual override
  - commercial for normal opera-tions, rollout scheme for contingency standby, rotary
    - UPS for backup

The costs associated with item 6 above are reflected principally in the mechanical and electrical estimates for the shelters.

Based on these assumptions, construction cost estimates were developed for the buried rectangular cast-in-place concrete construction and for the mounded fibrous concrete dome construction. The total facility costs were

\$1810k and \$1786k, and the corresponding unit costs were \$215/sq ft and \$207/sq ft, respectively. Obtailed cost estimates are provided in Tables G-1 and G-2, respectively.

		Total Cost Sk		34.9	\$1,080.3k		\$1,786.6k	
-	n on	Unit Cost	350. 200. 0.50 1,000. 57,500. 110,500. 214,800. 214,800. 3.00	4.200.			1.05 x 1.00 =	
	DCS Case Study Cost Estimate Multiple Dome Construction	Quantity	435 (15 (14,830 79 18,500 3,250 14,540	13,950	1.50	1.05	\$1,080.3k x 1.50 x 1.05 x 1.05 x 1.00	
	S. Case Stud	Unit	なかにといいとより	223	(Belgium)	tion factor Jan 84)	,080.3k × 1.	
,	<b>5</b>	Item	Fibrous concrete Cast-in-place concrete Reinforcing fibers Reinforcing steel Foam Blast doors Mechanical Waterproofing Orainage Excavation Backfill	Rock rubble Borrow Seeding	Unadjusted Facility Cost Location adjustment factor (Belgium)	contingency ractor Supervision and administration factor Construction data factor (Jan 84)	Adjusted Facility Cost \$1	
		Total Cost	250.0 312.0 57.5 113.0 17.2 7.5 64.5 64.3 14.9 14.9	\$1,094.6k		\$1,810.2k		
	s: onstruction	Unit Cost	200. 1,000. 57,500. 113,000. 192,400. 7,500. 3,00 6,00 6,00 4,00.			x 1.05 x 1.00 =		
	Cost Estimate Rectangular Co	Quantity	1,250 312 312 3,120 18,180 8,210 3,730 9,970		1.50 1.05 1.05	× 1.05		
	OCE Case Study Cost Estimate: Cast-in-Place Concrete Rectangular Construction	Unit	5-222225555		r (Belglum) ation factor (Jan 84)	\$1,094.6K × 1.50		
	Cast-in-Pl	Itea	Cast-in-place concrete Reinforcing steel Blast doors Mechanica! Electrical Drainage Waterproofing Excavation Backfill Rock rubble Disposal Seeding	Unadjusted Facility Cost	Location adjustment factor (Belgium) Contingency factor Supervision and administration factor Construction data factor (Jan 84)	Adjusted Facility Cost \$		

RS-118

guidance