19.2 Control Registers

Register 19-1: UxMODE: UARTx Mode Register

Upper Byte) :						
R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	U-0	U-0
UARTEN	_	USIDL	_	reserved	ALTIO	reserved	reserved
bit 15		_					bit 8

Lower Byte:											
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
WAKE	LPBACK	ABAUD	_	_	PDSE	L<1:0>	STSEL				
bit 7							bit 0				

bit 15 **UARTEN:** UART Enable bit

1 = UART is enabled. UART pins are controlled by UART as defined by UEN<1:0> and UTXEN control bits.

0 = UART is disabled. UART pins are controlled by corresponding PORT, LAT, and TRIS bits.

bit 14 Unimplemented: Read as '0'

bit 13 USIDL: Stop in Idle Mode bit

1 = Discontinue operation when device enters Idle mode

0 = Continue operation in Idle mode

bit 12 Unimplemented: Read as '0'

bit 11 Reserved: Write '0' to this location

bit 10 ALTIO: UART Alternate I/O Selection bit

1 = UART communicates using UxATX and UxARX I/O pins

0 = UART communicates using UxTX and UxRX I/O pins

Note: The alternate UART I/O pins are not available on all devices. See device data sheet for details.

bit 9-8 Reserved: Write '0' to these locations

bit 7 WAKE: Enable Wake-up on Start bit Detect During Sleep Mode bit

1 = Wake-up enabled

0 = Wake-up disabled

bit 6 LPBACK: UART Loopback Mode Select bit

1 = Enable Loopback mode

0 = Loopback mode is disabled

bit 5 ABAUD: Auto Baud Enable bit

1 = Input to Capture module from UxRX pin

0 = Input to Capture module from ICx pin

bit 4-3 Unimplemented: Read as '0'

bit 2-1 PDSEL<1:0>: Parity and Data Selection bits

11 = 9-bit data, no parity

10 = 8-bit data, odd parity

01 = 8-bit data, even parity

00 = 8-bit data, no parity

bit 0 STSEL: Stop Selection bit

1 = 2 Stop bits

0 = 1 Stop bit

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

dsPIC30F Family Reference Manual

Register 19-2: UxSTA: UARTx Status and Control Register

Upper Byte) :						
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-1
UTXISEL	_	_	_	UTXBRK	UTXEN	UTXBF	TRMT
bit 15	-		•	-			bit 8

Lower Byte	:						
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7				-			bit 0

- bit 15 UTXISEL: Transmission Interrupt Mode Selection bit
 - 1 = Interrupt when a character is transferred to the Transmit Shift register and as result, the transmit buffer becomes empty
 - 0 = Interrupt when a character is transferred to the Transmit Shift register (this implies that there is at least one character open in the transmit buffer)
- bit 14-12 Unimplemented: Read as '0'
- bit 11 UTXBRK: Transmit Break bit
 - 1 = UxTX pin is driven low, regardless of transmitter state
 - 0 = UxTX pin operates normally
- bit 10 UTXEN: Transmit Enable bit
 - 1 = UART transmitter enabled, UxTX pin controlled by UART (if UARTEN = 1)
 - 0 = UART transmitter disabled, any pending transmission is aborted and buffer is reset. UxTX pin controlled by PORT.
- bit 9 UTXBF: Transmit Buffer Full Status bit (Read Only)
 - 1 = Transmit buffer is full
 - 0 = Transmit buffer is not full, at least one more data word can be written
- bit 8 TRMT: Transmit Shift Register is Empty bit (Read Only)
 - 1 = Transmit shift register is empty and transmit buffer is empty (the last transmission has completed)
 - 0 = Transmit shift register is not empty, a transmission is in progress or queued in the transmit buffer
- bit 7-6 URXISEL<1:0>: Receive Interrupt Mode Selection bit
 - 11 =Interrupt flag bit is set when Receive Buffer is full (i.e., has 4 data characters)
 - 10 =Interrupt flag bit is set when Receive Buffer is 3/4 full (i.e., has 3 data characters)
 - 0x = Interrupt flag bit is set when a character is received
- bit 5 **ADDEN:** Address Character Detect (bit 8 of received data = 1)
 - 1 = Address Detect mode enabled. If 9-bit mode is not selected, this control bit has no effect.
 - 0 = Address Detect mode disabled
- bit 4 RIDLE: Receiver Idle bit (Read Only)
 - 1 = Receiver is Idle
 - 0 = Data is being received
- bit 3 **PERR:** Parity Error Status bit (Read Only)
 - 1 = Parity error has been detected for the current character
 - 0 = Parity error has not been detected
- bit 2 **FERR:** Framing Error Status bit (Read Only)
 - 1 = Framing Error has been detected for the current character
 - 0 = Framing Error has not been detected

Register 19-2: UxSTA: UARTx Status and Control Register (Continued)

bit 1 OERR: Receive Buffer Overrun Error Status bit (Read/Clear Only)

- 1 = Receive buffer has overflowed
- 0 = Receive buffer has not overflowed
- bit 0 URXDA: Receive Buffer Data Available bit (Read Only)
 - 1 = Receive buffer has data, at least one more character can be read
 - 0 = Receive buffer is empty

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' C = Bit can be cleared-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

dsPIC30F Family Reference Manual

Register 19-3: UXRXREG: UARTX Receive Register

Upper Byte	e:						
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0
_	_	_	_	_	_	_	URX8
bit 15							bit 8

Lower Byte	e:						
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			URX<7	·:0>			
bit 7							bit 0

bit 15-9 Unimplemented: Read as '0'

bit 8 **URX8:** Data bit 8 of the Received Character (in 9-bit mode)

bit 7-0 URX<7:0>: Data bits 7-0 of the Received Character

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

Register 19-4: UxTXREG: UARTx Transmit Register (Write Only)

Upper Byte	Upper Byte:											
U-0	U-0	U-0	U-0	U-0	U-0	U-0	W-x					
_	_	_	_	_	_	_	UTX8					
bit 15							bit 8					

Lower Byte) :						
W-x	W-x	W-x	W-x	W-x	W-x	W-x	W-x
			UTX<7	:0>			
bit 7							bit 0

bit 15-9 Unimplemented: Read as '0'

bit 8 UTX8: Data bit 8 of the Character to be Transmitted (in 9-bit mode)

bit 7-0 UTX<7:0>: Data bits 7-0 of the Character to be Transmitted

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

Register 19-5: UxBRG: UARTx Baud Rate Register

Upper Byte) :						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			BRG<15	5:8>			
bit 15							bit 8

Lower Byte) :						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			BRG<7	:0>			
bit 7							bit 0

bit 15-0 BRG<15:0>: Baud Rate Divisor bits

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

dsPIC30F Family Reference Manual

19.3 UART Baud Rate Generator (BRG)

The UART module includes a dedicated 16-bit baud rate generator. The UxBRG register controls the period of a free running 16-bit timer. Equation 19-1 shows the formula for computation of the baud rate.

Equation 19-1: UART Baud Rate

$$Baud\ Rate = \frac{FCY}{16 \cdot (UxBRG + 1)}$$

$$UxBRG = \frac{FCY}{16 \cdot Baud Rate} - 1$$

Note: Fcy denotes the instruction cycle clock frequency.

Example 19-1 shows the calculation of the baud rate error for the following conditions:

- Fcy = 4 MHz
- Desired Baud Rate = 9600

Example 19-1: Baud Rate Error Calculation

Desired Baud Rate FCY/(16 (UxBRG + 1))Solving for UxBRG value: UxBRG ((FCY/Desired Baud Rate)/16) - 1 UxBRG ((4000000/9600)/16) - 1UxBRG [25.042] = 25Calculated Baud Rate 4000000/(16 (25 + 1)) 9615 Error (Calculated Baud Rate - Desired Baud Rate) Desired Baud Rate (9615 - 9600)/96000.16%

The maximum baud rate possible is Fcy / 16 (for UxBRG = 0), and the minimum baud rate possible is Fcy / (16 * 65536).

Writing a new value to the UxBRG register causes the BRG timer to be reset (cleared). This ensures the BRG does not wait for a timer overflow before generating the new baud rate.

19.3.1 Baud Rate Tables

UART baud rates are provided in Table 19-1 for common device instruction cycle frequencies (FcY). The minimum and maximum baud rates for each frequency are also shown.

Table 19-1: UART Baud Rates

BAUD	Fcy = 3	30 MHz	BRG	25	ИHz	BRG	20 1	ИНz	BRG	16 N	ИНz	BRG
RATE (Kbps)	KBAUD	% ERROR	value (decimal)									
0.3	0.3	0.0	6249	0.3	+0.01	5207	0.3	0.0	4166	0.3	+0.01	3332
1.2	1.1996	0.0	1562	1.2001	+0.01	1301	1.1996	0.0	1041	1.2005	+0.04	832
2.4	2.4008	0.0	780	2.4002	+0.01	650	2.3992	0.0	520	2.3981	-0.08	416
9.6	9.6154	+0.2	194	9.5859	-0.15	162	9.6154	+0.2	129	9.6154	+0.16	103
19.2	19.1327	-0.4	97	19.2901	0.47	80	19.2308	+0.2	64	19.2308	+0.16	51
38.4	38.2653	-0.4	48	38.1098	-0.76	40	37.8788	-1.4	32	38.4615	+0.16	25
56	56.8182	+1.5	32	55.8036	-0.35	27	56.8182	+1.5	21	55.5556	-0.79	17
115	117.1875	+1.9	15	111.6071	-2.95	13	113.6364	-1.2	10	111.1111	-3.38	8
250							250	0.0	4	250	0.0	3
500										500	0.0	1
MIN.	0.0286	0.0	65535	0.0238	0.0	65535	0.019	0.0	65535	0.015	0.0	65535
MAX.	1875	0.0	0	1562.5	0.0	0	1250	0.0	0	1000	0.0	0

BAUD RATE (Kbps)	Fcy = 12 MHz		BRG	10 MHz		BRG	8 MHz		BRG	7.68 MHz		BRG
	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)
0.3	0.3	0.0	2499	0.3	0.0	2082	0.2999	-0.02	1666	0.3	0.0	1599
1.2	1.2	0.0	624	1.1996	0.0	520	1.199	-0.08	416	1.2	0.0	399
2.4	2.3962	-0.2	312	2.4038	+0.2	259	2.4038	+0.16	207	2.4	0.0	199
9.6	9.6154	-0.2	77	9.6154	+0.2	64	9.6154	+0.16	51	9.6	0.0	49
19.2	19.2308	+0.2	38	18.9394	-1.4	32	19.2308	+0.16	25	19.2	0.0	24
38.4	37.5	+0.2	19	39.0625	+1.7	15	38.4615	+0.16	12			
56	57.6923	-2.3	12	56.8182	+1.5	10	55.5556	-0.79	8			
115			6									
250	250	0.0	2				250	0.0	1			
500							500	0.0	0			
MIN.	0.011	0.0	65535	0.010	0.0	65535	0.008	0.0	65535	0.007	0.0	65535
MAX.	750	0.0	0	625	0.0	0	500	0.0	0	480	0.0	0

BAUD RATE (Kbps)	FcY = 5 MHz		BRG	4 MHz		BRG	3.072 MHz		BRG	1.8432 MHz		BRG
	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)
0.3	0.2999	0.0	1041	0.3001	0.0	832	0.3	0.0	639	0.3	0.0	383
1.2	1.2019	+0.2	259	1.2019	+0.2	207	1.2	0.0	159	1.2	0.0	95
2.4	2.4038	+0.2	129	2.4038	+0.2	103	2.4	0.0	79	2.4	0.0	47
9.6	9.4697	-1.4	32	9.6154	+0.2	25	9.6	0.0	19	9.6	0.0	11
19.2	19.5313	+1.7	15	19.2308	+0.2	12	19.2	0.0	9	19.2	0.0	5
38.4 56	39.0625	+1.7	7				38.4	0.0	4	38.4	0.0	2
115												
250												
500												
MIN.	0.005	0.0	65535	0.004	0.0	65535	0.003	0.0	65535	0.002	0.0	65535
MAX.	312.5	0.0	0	250	0.0	0	192	0.0	0	115.2	0.0	0