Problem Session 5

Probability and Martingales, 1MS045

19 December 2024

Note: If not specified otherwise, all random variables are real-valued, with the usual σ -algebra of Borel sets.

Problems

1. Consider a market model with two assets S_t^1 and S_t^2 and two time steps as indicated in the diagram below. The riskless interest rate is assumed to be 0. Determine a martingale measure Q for this model.

2. Consider a market model with a single assets S_t and two time steps as indicated in the diagram below. The riskless bond is assumed to be S_t^0 . The Claim C has a payoff of 1

if $S_2 = 24$ at the second time step. Otherwise the payoff is 0. Determine a replicating strategy θ for this claim, as well as its fair price.

- 3. Consider a binomial model with $S_0 = 10$, a = -0.1, b = 0.2, and r = 0.05. Determine the fair price of a European call option and a European put option, both with a strike price of K = 12 and exercise date T = 6.
- 4. In the lecture, we derived the following formula for the price of a European call option under the Black–Scholes model:

$$\int_{-\infty}^{\infty} \left(S_0 e^{-\frac{1}{2}\sigma^2 T + \sigma\sqrt{T}x} - e^{-rT} K \right)^+ \cdot \frac{e^{-\frac{1}{2}x^2}}{\sqrt{2\pi}} dx.$$

Show that this is equivalent to

$$S_0\Phi(d_+) - e^{-rT}K\Phi(d_-),$$

where Φ is the cumulative distribution function of a standard normal distribution and

$$d_{\pm} = \frac{\log S_0 - \log K + (r \pm \frac{1}{2}\sigma^2)T}{\sigma\sqrt{T}}.$$

5. Derive the following bounds for the fair price $P_0(E)$ of a European put option with underlying stock S_t , strike price K, exercise date T, and discounting factor β^T using the arbitrage arguments

$$\max\{0, \beta^T K - S_0\} \le P_0(E) \le \beta^T K.$$

- 6. Consider the *trinomial model* with only one asset S_t whose price process is determined by $S_t = R_t \cdot S_{t-1}$, where $R_t \in \{1 + a, 1 + b, 1 + c\}$ with probabilities p_a, p_b, p_c , respectively (with $p_a + p_b + p_c = 1$). The riskless bond is given by $S_t^0 = (1 + r)^t$.
 - (a) When is the model viable?
 - (b) When is the model complete?
- 7. Consider the binomial model with two assets S_t^1 and S_t^2 . Their price processes are determined by

$$S_t^1 = R_t^1 \cdot S_{t-1}^1$$
 and $S_t^2 = R_t^2 \cdot S_{t-1}^2$,

where either $R_t^1 = 1 + a$, $R_t^2 = 1 + a'$ with probability p_a or $R_t^1 = 1 + b$, $R_t^2 = 1 + b'$ with probability $p_b = 1 - p_a$. The riskless bond is given by $S_t^0 = (1 + r)^t$.

(a) When is the model viable?

- (b) When is it complete?
- 8. Prove that the set of all equivalent martingale measures of a market model is always convex, i.e. for any two equivalent martingale measures Q and Q', and every $\lambda \in [0,1]$, the convex combination $\lambda Q + (1-\lambda)Q'$ is also an equivalent martingale measure.