Almendra Coutremez CSCI 104 - HW 1 Runtime Analysis Part (a): void 91 (int n) int i = 2; while (i<n) /* do something */
i = i * i; * Could be re-written as: for (int i=2; i<n, i=i+i) * $\Theta(2)+\Theta(4)+\Theta(16)+\Theta(256)+\cdots+\Theta(n)$ i = 21 2 i = 4 = 2 2 I ter Iter Tter 2 THER 1=65,536=216 Tter 4 Iter K i = 22 = n $log_{2}^{2^{k}} = log_{2}(n)$ $2^{k} = log_{2}(n)$

contd: log, 2 = log, log, (vi) K = log log (n) $(2^{2^k}) = 0 \ge 2^k$ $= \Theta(2^{2\log\log_2(n)})$ $=\Theta\left(2^{\log_2(n)}\right)$ Purtine = O(N)

Part (b): void P2(int n) for(int i=1; i<=n; i++) if (i/. (int) sqrt(n) ==0) 2 for (int j=0, j<pow(i,3); j++) { /x do something O(1) for (int j=0; j<pon(i,3); j++ il (i% TN ==0) -Nhen i % $\sqrt{1} \neq 0$, takes: $\Theta(\Sigma, \Theta(1))$ upper bound $\mathcal{Q}(\mathcal{Z},\Theta(1))$ lower bound - Input that will loop every time: execute j-/. JW = = 0

Por (int
$$i = 1$$
; $i <= N$, $i + t$)

Ti(N) = $\sum_{i=0}^{N-1} \Theta(\Theta(i^3))$
 $i = 0$
 $i = 0$
 $i = 0$
 $i = 0$

Runtime =
$$\Theta(N^4)$$

Part (c) for (int i=1; i<=n; 1++) for (int K=1. K<=n, K++)

if (A[K] = = i)

for (int m=1; m<=n, m= m+m)

// do something o(1) for (int m=1, m=n, m=n+m) $\rightarrow \Theta(1) + \Theta(2) + \Theta(4) + \Theta(8) + \Theta(16) + \cdots + \Theta(n)$ に イ = 2° IterO Iter 1 Iter 2 $i = 2 = 2^{1}$ $i = 2^{2}$ $i = 2^{3}$ Iter 3 Iter K i=2k= w → log2 = logn if (A[K] == i) $- T_i(N) = \Theta(\Theta(N))$

$$\begin{array}{cccc}
\text{for (int } & \text{K=1; } & \text{K=n; } & \text{K++}) \\
\text{n} & & \text{n} \\
\text{T'(n)=5, } & \Theta(\Theta(n)) = \Theta & \text{S, n} \\
\text{K=1} & & \text{K=1} \\
& = \Theta(N^2)
\end{array}$$

$$for(int i=1 ; i<=n : i++)$$
 r
 r
 $i(n) = \sum_{i=1}^{n} \Theta(n^{2})$

Runtinne =
$$\Theta(n^3)$$

Part (d)

Por (int
$$j = 0$$
; $j < size$; $j + +$)

 $Size - 1$
 $T_i(n) = S_i + 0$
 $J = 0$
 J

$$Por(int i = 0; i < n; i + +)$$
 $T_i(n) = \sum_{i=0}^{n-1} \Theta(\Theta(size))$
 $i = 0$
 $Size = -10$

Runtime =
$$\Theta(n)$$