Lecture 10 Examples on Competitive Equilibrium and Social Planner's Problem

Hui-Jun Chen

The Ohio State University

June 9, 2022

Overview

After constructing both consumers' and firms' problem, we start to bring them together in one-period model:

- Lecture 8: competitive equilibrium (CE)
 - each agent solve their problems individually
- Lecture 9. social planer's problem (SPP) most effection
 - imaginary and benevolent social planner determines the allocation
 - should be the most efficient outcome
- Lecture 10: CE and SPP examples

Two Dimensional Chain Rule

consumer make decision given in

Suppose we have a utility function U(C, l), where C is the consumption, and l is the leisure, and both C=C(w) and l=l(w) are the function of equilibrium wage w, then how much utility change how much change because of consumption change change because $\frac{d}{dw}[U(C(w),l(w))] = D_C U(C(w),l(w)) \times \frac{dC(w)}{dw}$ (1) $+D_l U(C(w),l(w)) \times \frac{dl(w)}{dw}$

$$\frac{d}{dw}[U(C(w), l(w))] = D_C U(C(w), l(w)) \times \frac{dC(w)}{dw}$$

$$+ D_l U(C(w), l(w)) \times \frac{dl(w)}{dw}$$
(1)

Lecture 10 June 9, 2022 3/18

"Taken as Given"

Here is a good rule of thumb:

When you solve the problem of an agent who chooses y taking x as given, the answer should take the form of y(x).

Example: the consumer maximizes utility by choosing consumption, leisure, and labor supply, taking the wage and profits as given. (G=0)

$$\max_{C,l,N^s} U(C,l) \text{ subject to } C = wN^s + \pi \text{ and } l + N^s = h \tag{2}$$
 solution takes the form:
$$C(w,\pi), l(w,\pi), N^s(w,\pi) = N^s(w)$$
 why not \underline{h} , or utility parameters? Not endogenous to the model!

- can repeat this idea for the <u>firm</u> to get $N^d(w), Y(w), \pi(w)$

Lecture 10 June 9, 2022 4 / 18

ex demand

What does equilibrium do? Figures out what level of "taken as given" but endogenous variables has to occur:

- consumer: $\pi = \pi(w)$ from firm's problem
- lacksquare labor supply can be rewrite as: $\underline{N^s}(\underline{w},\underline{\pi}) = N^s(w,\underline{\pi}(\underline{w})) = N^s(w)$
- labor market clearing $N^d(w^*) = N^s(w^*)$, where w^* is eqm wage

Question: any of the "taken as given variables" show up in the SPP?

■ Ans: NO! Social planner is benevolent dictator!

Hui-Jun Chen (OSU) Lecture 10 June 9, 2022 5/18

Model Environment

constant rate of CRRA risk aversion

- Consumer: $U(C,l) = \frac{C^{1-b}}{1-b} + \frac{l^{1-d}}{1-d}$, where b=2 and $d=\frac{3}{2}$.
 - b, d are parameters
 - h = 1 is time endowment to allocate between leisure and labor supply
 - share of capital • owns the firm, subject to lump-sum tax T > 0
- Firm: $zF(K,N) = \overline{zK^{\alpha}N^{1-\alpha}}$, where K = 1 and $\alpha = \frac{1}{2}$ (param)
- Government: T = G
- lacktriangle Labor market: both consumer and firm take wage rate w as given

Lecture 10 June 9, 2022 6/18

Experiments

```
1 Benchmark: \underline{z=1} and \underline{G=0}
2 Experiment 1: z=1.2 and G=0
3 Experiment 2: z = 1 and G = 0.5
Directly solve social planner's problem

i) all underlying assumptions hold

ii) CE = SPP.
```

Hui-Jun Chen (OSU) Lecture 10 June 9, 2022 7 / 18

Solve Benchmark in Social Planner's Problem

Y= C+G Y= Z
$$F(K,N)$$
=Z $K^{\alpha}N^{-\alpha}$ = Z N

- PPF: $C + G = zN^{1-\alpha}$, where $\alpha = \frac{1}{2}$
- Time: N = h l, where h = 1
- Social Planner's Problem:

$$\max_{l} U(C(l), l) = \frac{C(l)^{1-b}}{1-b} + \frac{l^{1-d}}{1-d}$$
s.t.
$$C = Y - G \Rightarrow C = Z \bigwedge^{l-\alpha} - G$$

$$Y = zN^{1-\alpha} = 2(l-l) - G$$

$$N = 1 - l$$

$$N = 1 - l$$

$$1 - b + l^{1-d}$$

$$1 - d$$
(3)

Hui-Jun Chen (OSU) Lecture 10 June 9, 2022 8/18

Solve Benchmark in Social Planner's Problem (Cont.)

$$\max_{l} \underbrace{\begin{pmatrix} |-b| \\ |-b| \end{pmatrix}}_{l} \underbrace{\begin{pmatrix} |-b| \\ |-a| \end{pmatrix}}_{l} \underbrace{\begin{pmatrix} |-b| \\ |-a$$

FOC:
$$\underbrace{(\underline{z(1-l)^{1-\alpha}}_{l-b})^{-b} \times (\underline{1-\alpha})z(1-l)^{-\alpha}}_{z(1-l)^{1-\alpha}} \times \underbrace{(-1)}_{-l} + \underline{l^{-d}}_{l} = 0$$
 (5)

$$G = 0: \quad \underbrace{z^{-b}(1-l)^{-b(1-\alpha)}}_{(1-\alpha)z^{1-b}(1-l)^{-\alpha-b+\alpha b}} \times \underbrace{(1-\alpha)\underline{z}(1-l)^{-\alpha}}_{1-b} = \underbrace{l^{-d}}_{1-b}$$
(6)

$$\frac{(1-\alpha)z}{\alpha = 1/2; \quad b = 2; \quad d = 3/2}$$

$$\underbrace{\alpha = 1/2}_{2}; \quad \underline{b = 2}_{2}; \quad \underline{d = 3/2}_{2} = -\frac{3}{2}$$
Apply:
$$\frac{1}{2}z^{-1}(1-l)^{-\frac{3}{2}} = l^{-\frac{3}{2}} \Rightarrow \frac{1}{2z} = (\frac{1-l}{l})^{\frac{3}{2}}$$
(8)

$$\Rightarrow \frac{1-l}{l} = (\frac{1}{2z})^{\frac{2}{3}} \Rightarrow l(z,0) = \frac{1}{1+(2z)^{-\frac{2}{3}}}$$
 (10)

$$z = 1 \quad \Rightarrow l \approx \underline{0.61}, N \approx \underline{0.39}, Y = C \approx 0.62, w = \frac{z}{2}N^{-\frac{1}{2}} \approx \underline{0.8}$$
 (11)

Hui-Jun Chen (OSU) Lecture 10 June 9, 2022 9/18

$$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{3}{2} = \frac{1}{2}$$

$$= \frac{1-l}{2}$$

$$= \frac{1-l}{2}$$

$$= \frac{1-l}{2}$$

13+/)

Visualization: Benchmark in SPP

Indifference curve and PPF are tangent at optimal bundle

slope at tangency
$$(C_0, l_0)$$

$$=$$
 slope of IC $(-MRS_{l,C})$

$$=$$
 slope of budget line $(-w)$

$$=\hspace{1.5cm}\mathsf{slope}\hspace{1.5cm}\mathsf{of}\hspace{1.5cm}\mathsf{PPF}(-MRT_{l,C})$$

= slope of production
$$fcn(-MPN)$$

Hui-Jun Chen (OSU) Lecture 10 June 9, 2022 10/18

Solving with New TFP

Recall that we solved for the equilibrium quantity of leisure as a function of TFP:

$$\underline{l(z)} = \frac{1}{1 + (2z)^{-\frac{2}{3}}} \tag{12}$$

11 / 18

So now we've solved for all possible "experiment 1's"! Just plug in z=1.2 to get $l\approx 0.642$, and plug in to get all the rest as well.

-Jun Chen (OSU) Lecture 10 June 9, 2022

Tangency preserved, just shifted

slope at tangency
$$(C_1, l_1)$$

- = slope of $IC(-MRS_{l,C})$
- = slope of budget line(-w)
- $=\hspace{1em}\mathsf{slope}\hspace{1em}\mathsf{of}\hspace{1em}\mathsf{PPF}(-MRT_{l,C})$
- = slope of production fcn(-MPN)

Hui-Jun Chen (OSU) Lecture 10 June 9, 2022 12 / 18

Comparison: Experiment 1 and Benchmark

What's different?

- higher productivity means PPF shifts outward
- outward shift of PPF makes higher utility level (IC) attainable
- tangency is steeper: wage increases
- both consumption and leisure increase!

Hui-Jun Chen (OSU) Lecture 10 June 9, 2022 13 / 18

Experiment 1: Income and Substitution Effect

$$\int_{M} = MPN = \frac{3N}{3N} = \frac{3(2 \cdot N^{\frac{1}{2}})}{3N} = \frac{1}{2} \frac{2N}{2N}$$
Recall was

Recall wage increase case from the consumer problem:

- substitution effect: move along IC but reflect new wage (i,e, new budget or new PPF)
 - \bullet C increases, l decreases
- <u>income effect</u>: move up to new budget line / PPF
 - ullet C and l both increase
- here, income effect wins and leisure increases

Hui-Jun Chen (OSU) Lecture 10 June 9, 2022 14 / 18

Comparison: Experiment 2 and Benchmark

dashed: benchmark solid: experiment 2.

Note: SPP harder to solve by hand with $G \neq 0$ details. But, can still analyze with graphs! $\int C = \int -G \int$

- higher government spending shifts PPF inward
- inward shift of PPF lowers utility level (IC) attainable
- budget shallower: wage falls
- consumption, leisure fall (recall normal goods assumption)
- can show output increases

Response to Data

Effect of ↑ in	TFP /	G	
	• • •		
Output	Increase '	Increase	TFP is a overall
Consumption	Increase ·	Decrease 1	better match! Real
Employment	Ambiguous	Increase 🗸	Business Cycle theory
Wage	Increase ~	Decrease v	× ×

- recall key business cycle facts: employment, consumption, real wage are all procyclical
- recall key trend: output has grown steadily for last century
- question: which model is more consistent with these facts?

Lecture 10 June 9, 2022 16 / 18

Data: Government Spending from WWII

Figure 5.7 GDP, Consumption, and Government Expenditures

- large increase in *G* to finance war effort
- lacksquare modest increase in Y
- lacksquare slight decline in C
- consistent with our model!

lui-Jun Chen (OSU) Lecture 10 June 9, 2022 17 / 18

Figure 4.18 The Solow Residual for the United States

1960 1970 1980 2000 2010 2020 Year

Figure 5.11 Deviations from Trend in GDP and the Solow Residual

Appendix

How to solve $G \neq 0$

Back

$$\max_{l} \quad \frac{(z(1-l)^{1-\alpha} - G)^{1-b}}{1-b} + \frac{l^{1-d}}{1-d}$$
 (13)

FOC:
$$z(1-l)^{1-\alpha} - G)^{-b} \times (1-\alpha)z(1-l)^{-\alpha} = l^{-d}$$
 (14)

Divide:
$$(z(1-l)^{1-\alpha} - G)^{-b} = \frac{l^{-a}}{(1-\alpha)z(1-l)^{-\alpha}}$$
 (15)

power of
$$-\frac{1}{b}$$
: $z(1-l)^{1-\alpha} - G = \left[\frac{l^{-d}}{(1-\alpha)z(1-l)^{-\alpha}}\right]^{-\frac{1}{b}}$ (16)

Solve
$$G: G = F(l) = z(1-l)^{1-\alpha} - \left[\frac{l^{-d}}{(1-\alpha)z(1-l)^{-\alpha}}\right]^{-\frac{1}{b}}$$
(17)

 $\iff l = F^{-1}(G) \tag{18}$

Hui-Jun Chen (OSU) Lecture 10 June 9, 2022 2