TD 1 - Groupes

Solutions des exercices

Exercice 1.

1) — Étape 1 : Nous allons montrer que $H_d = \langle c^{n/d} \rangle$ est d'ordre d. Soit d un diviseur de n. On peut donc écrire n = dq. Considérons $H = \langle c^q \rangle$. On a

$$H = \langle e, e^q, e^{2q}, \dots, e^{(d-1)q} \rangle$$
 d éléments distincts.

De plus, pour tout $k \in \mathbb{Z}$, k = nd + r, $c^{qk} = c^{qnd}c^{qr} = c^{qr}$

— Étape 2 : On va montrer qu'un sous-groupe de C_n s'écrit $H = \langle c^{n/d} \rangle$. Soit $H < C_n$. $\forall h \in H, \exists k \in \mathbb{Z}$ tel que $h = e^k$.

Si $H = \{e\}$, il n'y a rien à faire car $H = \{e^n\}$ et $n \mid n$.

Si $H \neq \{e\}$, $\exists h \in H$, $h = e^k$ tel que $n \nmid k$.. On peut supposer que 0 < k < n.

Soit $k_0 = \min\{k > 0 \mid c^k \in H\}$.

Montrons que $k_0 \mid n$ et que $\langle c^{k_0} \rangle = H$.

Soit $n = mk_0 + r$, $0 \le r < k_0$.

$$c^r = c^n c^{-mk_0} = (c^{k_0})^{-m} \in H.$$

Donc r = 0 par minimalité de k_0 .

Montrons que $H = \langle c^{k_0} \rangle$.

Supposons que pour $l \in \mathbb{Z}$, $c^l \in H$.

On écrit $l = mk_0 + r \ 0 < r < k_0$:

$$c^r = c^l(c^{k_0})^{-m} \in H.$$

Ce qui est en contradiction avec la minimalité de k_0 .

On a donc montré que les sous-groupes de C_n sont les $\langle c^{k_0} \rangle$, où k_0 parcourt les diviseurs positifs de n.

— Étape 3 : On va montrer que $H_d = \{x \in C_n \mid x^d = e\}$

Pour l'inclusion, on remarque que comme $|H_d| = d$, alors $x^d = e$.

Pour l'inclusion réciproque, on prend $x \in C_n$ tel que $x^d = e$. Alors il existe $k \in \mathbb{Z}$, $c^k = x$ et $(c^k)^d = e$.

Alors $n \mid kd$. Donc $qd \mid kd$, où q = n/d.

Donc $q \mid k$ et $c^k \in \langle c^q \rangle = H_d$.

2) D'après la question précédente, les sous-groupes de C_{15} sont : $H_1 = \{e\}$, $H_3 = \langle c^5 \rangle$, $H_5 = \langle c^3 \rangle$, $H_{15} = C_{15}$.

1

3) Soit φ : $G \mapsto H$. Montrons que $v(\varphi(a)) \mid v(a) \ \forall a \in G$.

Soit k = v(a). Alors $a^k = e$.

Comme φ est un morphisme, alors $\varphi(a^k) = \varphi(a)^k = e$.

Donc $v(\varphi(a)) \mid k = v(a)$.

4) Soit $\varphi: C_{12} \mapsto C_{15}$ un morphisme non trivial.

$$\forall y \in \text{Im } \varphi, \exists a \in C_{12}, \ \varphi(a) = y \text{ et } v(y) \mid v(a) \mid 12.$$

Alors $v(y) \mid 12$, mais aussi $v(y) \mid 15$ (car $y \in C_{15}$). Donc v(y) divise le pgcd de 12 et 15, c'està-dire 3. Donc $v(y) \in \{1,3\}$.

Si v(y) = 3, $\langle y \rangle \subset C_{15}$ est un sous-groupe d'ordre 3. Donc $\langle y \rangle = \langle c'^5 \rangle$.

$$\langle y \rangle = \{e, y, y^2\} = \{e, c'^5, c'^{10}\}$$

$$\operatorname{Im} \varphi = \langle c'^5 \rangle$$

5) φ est entièrement déterminé par $\varphi(c)$. En effet, pour tout x de C_{12} , il existe un entier k tel que $x = c^k$. Alors $\varphi(x) = \varphi(c)^k$ est déterminé par $\varphi(c)$.

Si φ est non trivial, alors Im $\varphi = \langle c'^5 \rangle$, et il n'y a que deux possibilités pour $\varphi(c) \neq e$:

$$\varphi(c) = c'^{5}$$
 ou $\varphi(c) = c'^{10}$

Donc, en comptant le morphisme trivial, il y a au plus 3 morphismes $\varphi_i : c \mapsto c'^{5i}$.

Il reste à montrer que les trois morphismes satisfaisant cette condition existent.

En effet, si la condition est vérifiée, $\forall k \in \mathbb{Z}$, $\varphi_i(c^k) = c'^{5ik}$

Pour utiliser la dernière formule comme définition de φ_i , vérifions sa cohérence : $\forall x \in X^{12}$, si $x = c^k = c^l$, alors $c'^{5ik} = c'^{5il}$.

De plus, $c^k = c^l$ si et seulement si 12 divise k - l donc $c'^{5ik}(c'^{5il})^{-1} = c'^{5i(k-l)} = c'^{60im} = e$.

Cela montre l'existence de l'application φ , et il est clair que c'est un morphisme.

6) Si pgcd(m, n) = 1, alors le seul morphisme $C_n \mapsto C_m$ est trivial.

Soit $d = \operatorname{pgcd}(n, m)$. L'ordre de $\varphi(c)$ divise m et m. Donc :

$$v(\varphi(c))\mid d\Longrightarrow \varphi(c)\in H_d=\langle c'^{n/d}\rangle=\{y\in C_m\mid y^d=e\}$$

Comme dans la question 5, on montre l'existence et l'unicité de morphisme

$$\varphi_i: C_n \mapsto C_m, c \mapsto c'^{n/d \ ik} \ i = 0, 1, \dots, d-1, k \in \mathbf{Z}$$

— Injectivité :

Si $n \nmid m$, alors d < n et φ ne peut être injectif.

Si $n \mid m, d = n$ et $\varphi_i : c^k \mapsto c'^{m/n}$ est injectif et $\varphi_i(c) = c'^{m/n}$ est un générateur de $H_n < C_m$.

 φ_i est une bijection de $C_n \mapsto H_n$.

— Si $m \nmid n$, alors le morphisme n'est pas surjectif. Si $m \mid n$, alors d = m et $H_d = C_m$ est l'image de φ_i .

7) On a décrit tous les morphismes $C_n \mapsto C_n$. Il y en a n:

 $\varphi_i: C_n \mapsto C_n$ tels que $\varphi_i(c) = c^i$, $i \in \{0, 1, ..., n-1\}$. Alors:

 $\varphi_i \in \operatorname{Aut}(C_n) \iff \varphi_i \text{ est surjective.}$

 $\iff c^i$ est un générateur de C_n .

 $\iff i \in n\mathbf{Z}$ est un générateur de $\mathbf{Z}/n\mathbf{Z}$.

 \iff *i* est premier à *n*.

Donc, parmi les *n* morphismes, il y a $\phi(n)$ automorphismes.

Exercice 2.

Considérons

$$f : K \times H \to KH$$
$$(k,h) \mapsto kh$$

Idée : Montrer que $|f^{-1}(kh)| = |K \cap H|$. Cela entraine que $|K \times H| = |KH| \cdot |K \cap H|$

$$(k_1, h_1) \in f^{-1}(hk) \iff k_1 h_1 = kh$$
$$\iff k^{-1} k_1 = hh_1^{-1} \in K \cap H$$

Si on note $s = k^{-1}k_1$, on a $k_1 = ks$ et $h_1 = s^{-1}h$. On a donc montré :

$$f^{-1}(kh) = \{(ks, s^{-1}h) \mid s \in K \cap H\}$$

Donc $|f^{-1}(kh)| = |K \cap H|$

Exercice 3. Soit *G* un groupe d'ordre |G| > 1 et *p* le plus petit diviseur premier de |G|.

Pour tout g dans G, $gHg^{-1} < G$ est un sous-groupe distingué de H.

On considère l'action de G sur l'ensemble des sous-groupes de G par conjuguaison.

On note \mathcal{O}_H l'orbite de H sous cette action. Alors le stabilisateur de H pour cette action n'est autre que le normalisateur.

$$\mathcal{N}_G(H) = \{g \in G \mid gHg^{-1} = H\}$$

Il est évident que $H \triangleleft N_G(H)$ par définition du normalisateur.

$$|\mathcal{O}_H| = [G : \mathcal{N}_G(H)]$$

Alors,

$$H \triangleleft G \iff \mathcal{O}_H = \{H\} \text{ (ie : } |\mathcal{O}_H| = 1)$$

$$\iff G = \mathcal{N}_G(H)$$

Soit donc H < G d'indice p. Alors $H \triangleleft \mathcal{N}_G(H) < G$.

$$[\mathcal{N}_G(H):H] \mid [G:H]$$

Donc $[\mathcal{N}_G(H): H] = 1$ ou p.

Or, $[\mathcal{N}_G(H): H] = 1S$ si et seulement si $\mathcal{N}_G(H) = G$, c'est-à-dire $H \triangleleft G$.

Supposons que $[\mathcal{N}_G(H): H] = 1$, c'est-à-dire $\mathcal{N}(H)_G = H$.

Dans ce cas, $|\mathcal{O}_H| = p$, ce qui donne un morphisme non-trivial $\varphi : G \mapsto \mathfrak{S}$.

Soit $K = \ker \varphi$. Alors $\operatorname{Im} \varphi \cong G/K$ et $\operatorname{Im} \varphi < \mathfrak{S}_{p}$.

Donc |G/K| $||\mathfrak{S}| = p!$

Or, |G/K| divise aussi |G|, et le seul premier commun de p! et |G| est p. Donc |G/K| = p.

$$|G/K| = [G:K] = [G/H] = p$$
 (1)

Et, $\forall h \in H, hHh^{-1} = H$.

$$h \in K \iff hgHg^{-1}h^{-1} = gHg^{-1} \ \forall g \in G$$

Donc $H \subset K$. Montrons que $K \subset H$.

$$k \in K \iff kgHg^{-1}k^{-1} = gHg^{-1} \ \forall g \in G$$

En particulier, en prenant g = 1, on a : kHk^{-1} . Donc $k \in \mathcal{N}_G(H)$.

Or, $\mathcal{N}_G(H) = H$. Donc K < H. Par (1), on a alors K = H.

Donc $H = \ker \varphi \triangleleft G$, ce qui est absurde. Donc $\mathcal{N}_G(H) \neq H$ par l'absurde.

Cela démontre que $\mathcal{N}_G(H) = G$, c'est-à-dire $H \triangleleft G$.

Exercice 4.

Montrons que si $|G| = p^n$, alors $|\mathcal{Z}_G| = p^r$, $r \neq 0$.

G agit sur lui-même par conjuguaison. Cela définit une partition de G en orbites, celles-çi étant les classes de conjuguaison.

Les stabilisateurs pour cette action s'appelle centralisateurs.

$$C_G(g) = \{x \in G \mid xgx^{-1} = g\}$$

Soient g_1, \dots, g_m les représentants distincts des classes de conjuguaison. On a, par la formule des classes :

$$G = \Omega_{g_1} \cup \dots \cup \Omega_{g_m}$$

$$|G| = p^n = |\Omega_{g_1}| + \dots + |\Omega_{g_1}|$$

Et, pour tout g dans G, $|\Omega_g| ||G|$, $|C_G(g)| ||G|$ et $|\Omega_g| \times |C_G(g)| = |G|$. Comme $|G| = p^n$, il existe m nombres n_i tels que $|C_G(g)| = p^{n_i}$ et

$$p^n = p^{n_1} + \dots + p^{n_m}$$

De plus, on a $g_1 = e$, donjc $\Omega_{g_1} = \Omega_e = \{e\}$. Donc $n_1 = 0$ et $p^{n_1} = 1$.

Cela entraine qu'il y a des termes $p^{n_i}=1$ autre que p^{n_1} . (En effet, dans le cas contraire on aurait $p\mid 1\not = 1$)

$$\forall g \in G, |\Omega_g| = 1 \iff g \in \mathcal{Z}_G$$

Donc $\mathcal{Z}_G \neq \{e\}$, et alors $|\mathcal{Z}_G| = p^r$.

Exercice 5.

Remarque. Tout sous-groupe du centre est distingué.

Raisonnons par l'absurde. Supposons que G/H est cyclique. Alors il existe $c \in G$ tel que $\overline{c} = cH$ est un générateur de G/H. (ie : $G/H = \langle \overline{c} \rangle$)

Montrons que dans ce cas, G est abélien.

En effet, soient $g, g' \in G$ quelconques. Alors :

$$\exists k, k' \in \mathbf{Z}, \ \overline{g} = \overline{c}^k \ \text{et} \ \overline{g'} = \overline{c}^{k'}$$

Donc il existe $h, h' \in H$ tels que $g = c^k h$ et $g' = c^{k'} h'$.

Mais alors on voit que gg' = g'g.

$$gg' = c^k h c^{k'} h' = c^k c^{k'} h h' = c^{k+k'} h' h = c^{k'} c^k h' h = g'g$$

Donc G est abélien, ce qui est absurde.

Exercice 6.

Soit p un nombre premier. Montrons que tout groupe d'ordre p^2 est abélien.

Notons que $|\mathcal{Z}_g| = p$ ou p^2 par l'exercice 4.

Si $|\mathcal{Z}_G| = p^2$, alors $\mathcal{Z}_G = G$ est abélien.

Supposons que $|\mathcal{Z}_G| = p$. Alors $\mathcal{Z}_G \triangleleft G$ et G/\mathcal{Z}_G est un groupe d'ordre p.

Puisque p est premier, G/\mathcal{Z}_G est cyclique, ce qui contredit l'exercice 5.

Exercice 7. $p^k \mid |G|$, p^k est la puissance max de p divisant |G|. Par le premier théorème de Sylow, G admet un sous-groupe K d'ordre p^k . Ainsi $q \mid |G|$, et q est la puissance max de q divisant |G|, donc G admet un sous-groupe H d'ordre q. (K est un p-Sylow, H est un q-Sylow). vérifions les axiomes de produit semi-direct :

- Pour le point (*i*), deux solutions :
 - 1) $K \triangleleft G$ par l'exercice 2. En effet, K est un sous-groupe de G d'ordre q, et q est le plus petit premier divisant $|G| = p^k q$
 - 2) Par le deuxième théorème de SYLOW, si on note N_p ke nilbre de p-Sylows distincts, on a :

$$N_p \equiv 1[p]$$

De plus, par le troisième théorème de SYLOW, tous les p-Sylows sont conjugués entre eux, donc forment une orbite de l'action G par conjuguaison, de stabilisateur $\mathcal{N}_G(K) \supset K$, donc

$$N_p = [G : \mathcal{N}_G(K)]$$

Dans notre cas, [G:K] = q. Donc

$$N_p \equiv 1[p]$$
 et $N_p \mid q$

Or, q < pn et si $N_p \ne 1$, alors $N_p = lp + 1$ avec l > 0, d'où $N_p \ge p + 1 > q$. Donc N_p ne peut pas être diviseur de q, ce qui est absurde.

Donc $N_p = 1$ et $K \triangleleft G$.

— Montrons que *K*, *H* engendre *G*.

Remarque. Quelques soient deux sous-groupes *K*, *H* d'un groupe *G*, on a :

$$-K \triangleleft G \Longrightarrow KH = HK \text{ et } KH \triangleleft G$$

$$-KH < G \Longrightarrow KH = HK$$

On a déjà montré que $K \triangleleft G$, donc KH est un groupe, et

$$K < KH < G \Longrightarrow [KH:K] \mid [K:G] = q \Longrightarrow [KH:K] = 1 \text{ ou } q$$

Or, [KH:K] = 1 si et seulement si KH = K, or $KH \neq K$ car $KH \supset H$ a des éléments d'ordre q tandis que l'ordre de chaque élément de K est un diviseur de $p^k = |K|$; donc est une puissance de p.

Donc $KH \neq K$ et [KH : K] = q = [G : K], d'où G = KH.

— Montrons que $H \cap K = \{e\}$.

Soit $x \in H \cap K$. On a:

$$v(x) | |K| = p^k v(x) | |H| = q$$

Donc $v(x) \mid \operatorname{pgcd}(p^k, q) = 1$. Donc v(x) divise 1, c'est-à-dire x = e. **Remarque.** On pouvait commencer par démontrer le troisième point et déduire le second en utilisant la formule du produit. (exercice 2).

Exercice 8.

1) Table des classes de conjugaison de \mathfrak{S}_4 (g_i : $\text{Cl}_{\mathfrak{S}_4}(g_i)$).

—
$$g_1 = e$$
, $|Ω_{\mathfrak{S}_4}(g_1)| = 1$

—
$$g_2 = (12)$$
, $|\Omega_{\mathfrak{S}_4}(g_2)| = 6$

—
$$g_3 = (12)(34), |\Omega_{\mathfrak{S}_4}(g_3)| = 3$$

—
$$g_4 = (123), |\Omega_{\mathfrak{S}_4}(g_4)| = 8$$

—
$$g_5 = (1234)$$
, $|\Omega_{\mathfrak{S}_4}(g_5)| = 6$

- 2) Si N < G, alors $N \lhd G \iff \forall x \in N \forall g \in G, gxg^{-1} \in N \iff \forall x \in N, \operatorname{Cl}_G(x) \in N$. Donc $N \lhd G$ si et seulement si N est réunion de classes de conjugaison dans G.
- 3) La cardinalité d'une réunion de classes de conjuguaison parmi $\Omega_{\mathfrak{S}_4}(g_i)$, $i=1,\ldots,5$ est donnée par

$$n = \delta_1 + 6\delta_2 + 3\delta_3 + 8\delta_4 + 6\delta_5$$

où $\delta_i = 1$ si $\Omega_{\mathfrak{S}_4}(g_i) \subset N$, 0 sinon.

De plus, $e \in N \longrightarrow \delta_1 = 1$, et on cherche les autres $\delta_i \in \{0, 1\}$ tels que $n \mid 24$.

- Solutions triviales : $\delta_2 = \delta_3 = \cdots = \delta_5 = 0$, alors $n = 1|24; N = \{e\} \triangleleft \mathfrak{S}_4$, et $\delta_2 = \cdots = \delta_5 = 1$, alors $n = 24|24; N = \mathfrak{S}_4 \triangleleft \mathfrak{S}_4$.
- Si $\delta_2 \neq 0$, alors $n \geq 1+6=7$, $n|24 \Longrightarrow n \in \{8,12,24\}$. n=24 est une solution triviale, n=8 est impossible car min $\{3,8,6\}=3\neq n-7=1$; pareil pour n=12:n-7=5 n'est pas somme de quelques uns des nombres 3,8,6. Donc il n'y a pas de solution non triviale avec $\delta_2=1$.. Par le même raisonnement, $\delta_5=1$ est impossible.
- On considère les solutions non triviales avec $\delta_2 = \delta_5 = 0$. Si $\delta_3 = 1$, on a : $\delta_1 + 3\delta_3 = 1 + 3 = 4|24$. De plus, $\Omega_{\mathfrak{S}_4}(e) = \Omega_{\mathfrak{S}_4}((12)(34)) = V_4$ est un sous groupe de \mathfrak{S}_4 ,

$$V_4 = \{e, (12)(34), (13)(24), (14)(23)\} \lhd \mathfrak{S}_4$$

(groupe de Klein d'ordre 4).

Si $\delta_4 = 1$, on a : $n \ge 1 + 8 = 9$, donc la seule solution non triviale possible correspond à n = 12, et cela donne une unique solution : $\delta_3 = \delta_4 = 1$,

$$N = \{e\} \cup \{(12)(34), (13)(24), (24)(23)\} \cup \{3\text{-cycles}\} = A_4 \triangleleft \mathfrak{S}_4$$

Conclusion : $\{e\}$, V_4 , A_4 , \mathfrak{S}_4

Exercice 9.

On les énumère suivant l'ordre d|24.

- d = 1; $\{e\}$, 1 sous-groupe d'ordre 1, $\mathcal{N}_{\mathfrak{S}_4}(\{e\} = \mathfrak{S}_4)$
- -d = 2;
 - $\langle (ij) \rangle$, $1 \le i \le j \le 4$, 6 sous-groupes engendrés par une transposition, deux à deux conjugués; $\mathcal{N}_{\mathfrak{S}_4}(\langle (12) \rangle) = \langle (12), (34) \rangle$ (on a choisi un représentant)

— $\langle (ij)(kl)\rangle$, $\{i,j\}\cap\{k,l\}=\varnothing$, 3 sous-groupes donnant une orbite sous les conjuguaison, $N_G(\langle (12)(34)\rangle)\supset V_4$ car $(12)(34)\in V_4$ et V_4 est commutatif.

On remarque que (12), (34) $\in N_G(\langle (12)(34) \rangle)$. Donc

$$N_G(\langle (12)(34)\rangle) = V_4 \cup \{(12), (34), (13)(24)(12) = (1423)\}, (1324)\}.$$

C'est le groupe diédral \mathcal{D}_8 .

Résumé pour d=2, il y a 2 orbites de conjuguaison d'ordre 2, une de longueur 6, l'autre de longueur 3.

- d=3; 4 sous-groupes d'ordre 3, $\langle (ijk)\rangle = \langle (ikj)\rangle$ de normalisateur $S_{\{i,j,k\}} \cong \mathfrak{S}_3$
- -d = 4;
 - 3 sous-groupes cycliques d'ordre 4, $\langle (1ijk) \rangle = \langle (1kji) \rangle$, $\langle (ijk) \rangle$ parcourt les permutations cycliques de (2,3,4)). $\mathcal{N}_{\mathfrak{S}_4}(\langle (1ijk) \rangle) = \mathcal{N}_{\mathfrak{S}_4}(\langle (1j)(ik) \rangle) \cong \mathcal{D}_8$ (le premier est contenu dans le second, et les deux sont d'ordre 8 car les orbites respectives sont de longueur 3, donc les deux normalisateurs coincident)
 - V_4 est distingué, l'orbite est un singleton et son normalisateur est le groupe tout entier, \mathfrak{S}_4 .
 - $H = \{e, (ij), (kl), (ij)(kl)\}$, où $\{i, j, k, l\} = \{1, 2, 3, 4\}$. Il est normalisé par (13)(24) et (14)(23). Donc $|N_G(H)| \ge 6$.

On trouve encore un élément : (1324), et deux cycles de même longueur sont conjugués, donc $N_G(H) \supset H \cup \{(13)(24), (12)(34), (1324), (1423)\} = K < \mathfrak{S}_4$. $K \cong \mathcal{D}_8$.

De plus, la longueur de l'orbite $\mathcal{O}(H)$ de H divise $|\mathfrak{S}_4|/|\mathcal{N}_{\mathfrak{S}_4}(H)| | |\mathfrak{S}_4|/|K| = 3$.

Il n'y a que deux possibilités pour $|\mathfrak{S}_4|/|\mathcal{N}_{\mathfrak{S}_4}(H)|$: 1 et 3. Or 1 est impossible car H n'est pas parmi les sous-groupes distingués (cf exo 8), donc $|\mathfrak{S}_4|/|\mathcal{N}_{\mathfrak{S}_4}(H)|=3$ et $\mathcal{N}_{\mathfrak{S}_4}=K\cong \mathcal{D}_8$.

On a trouvé trois types (trois orbites) de sous groupes d'ordre 4. Montrons qu'il n'y en a pas d'autres.

Soit $H < \mathfrak{S}_4$, |H| = 4. $\forall g \in H$, v(g)||H| = 4, donc $g \in \{1, 2, 4\}$.

Si H contient un élément g d'ordre 4, H est cyclique et g est un des cycles de \mathfrak{S}_4 , donc $H = \langle g \rangle$ est de type 1.

Si H ne contient pas d'élément d'ordre 4, alors $H = \{e, a, b, ab\}$ où a, b, ab = ba sont d'ordre 2. Il y a alors deux sous-cas :

- $H < A_4$ (H ne contient pas de transpositions). Alors $H = V_4$, donc de type 2, parce qu'il n'y a que 3 éléments d'ordre 2 dans \mathfrak{S}_4 qui ne sont pas des transpositions, et donc $\{a, b, ab\}$ coincide avec l'ensemble de ces 3 éléments d'ordre 2, $\{(12)(34), (13)(24), (14)(23)\}$
- H contient une transposition. Alors H n'est pas contenu dans A_4 et ker $\varepsilon = \pm 1$ est d'ordre 2. Donc H contient 2 transpositions (ie : 2 permutations impaires, toujours d'ordre 2), et une permutation paire : on peut poser a = (ij), b = (kl), ab = (ij)(kl).

De plus, puisque a et b commutent, les supports de (ij) et de (kl) sont disjoints, c'est-à-dire $\{i, j, k, l\} = \{1, 2, 3, 4\}$. Donc B est de type 3.

— d = 6; Soit $H < \mathfrak{S}_4$. Comme \mathfrak{S}_4 n'a pas d'éléments d'ordre 6, $H \setminus \{e\}$ est formé d'éléments d'ordre 3 ou 2, il y a au moins un élément d'ordre 3 et au moins un élément d'ordre 2

d'après le lemme de Cauchy.

Les éléments d'ordre 3 de \mathfrak{S}_4 sont les cycles de longueur 3. Donc il existe un cycle $(i\,j\,k)\in H$. Quitte à conjuguer H par un élément de \mathfrak{S}_4 , on peut supposer que $(123)\in H$. Soit $\tau\in H$ un élément d'ordre 2.

- $\tau = (ij), \{i, j\} \subset \{1, 2, 3\} \text{ donc } H = \langle (123), (ij) \rangle = \mathfrak{S}_3 = S_{\{1, 2, 3\}} = \text{Stab}_{\mathfrak{S}_4}(4) = \{g \in \mathfrak{S}_4 \mid g(4) = 4\}$
- $\tau = (i4)$ Dans ce cas H contiendrait $\sigma(i4)\sigma^{-1} = (\sigma(i)4)$ et $\sigma^2 = (i4)\sigma^{-2} = (\sigma^2(i)4)$, donc toutes les transpositions (i4), (24), (34).

Donc $H \ni (124) = (34)(123)(34)$, c'est-à-dire qu'on a trouvé 7 éléments distincts de H, donc ce cas est impossible.

Remarque: $\langle (132), (i4) \rangle = \mathfrak{S}_4$

 τ = (ij)(k4) où {i, j, k} = {1,2,3} On voit comme plus haut que (12)(34), (13)(24), (14)(23) ∈ H. Donc V_4 ⊂ H et |H| est un multiple de 4. Ce qui est absurde car on cherche les sous-groupes d'ordre 6.

On a donc montré que tout sous-groupe d'ordre 6 de \mathfrak{S}_4 est conjugué) $\mathfrak{S}_3 = \operatorname{Stab}_{\mathfrak{S}_4}(4)$. Si on conjugue ce \mathfrak{S}_3 par un $g \in \mathfrak{S}_4$, on aura : $g\operatorname{Stab}_{\mathfrak{S}_4}(4)g^{-1} = \operatorname{Stab}_{\mathfrak{S}_4}(g(4))$.

Or, g(4) peut prendre 4 valeurs : 1,2,3,4. Donc l'orbite de \mathfrak{S}_3 dans \mathfrak{S}_4 est formée de 4 sous groupes $conjugu\acute{e}s$, $|\mathcal{N}_{\mathfrak{S}_4}(\mathfrak{S}_3)| = 24/4 = 6 = |\mathfrak{S}_3|$

Donc $\mathcal{N}_{\mathfrak{S}_4}(\mathfrak{S}_3) = \mathfrak{S}_3$.

— d = 8. On a rencontré des sous-groupes d'ordre 8 : les normalisateurs des sous-groupes d'ordre 4.

Ils sont conjugués au sous-groupe diédral $\mathcal{D}_8 = \langle (1234), (12)(34) \rangle$.

On a donc 3 sous-groupes de cette forme. Y en a-t-il d'autres?

 $\mathcal{N}_{\mathfrak{S}_4}(\mathcal{D}_8)$

Les deux sous-groupes de Sylow de \mathfrak{S}_4 sont tous deux à deux conjugués donc il n'y a qu'une orbite de sous-groupe d'ordre 8, c'est l'ensemble des conjugués de \mathfrak{D}_8 .

- d=12; On connait un sous-groupe d'ordre 12, c'est \mathfrak{A}_4 . Montrons que c'est le seul. Si $H<\mathfrak{S}_4$ est d'ordre 12, alors H est d'indice 2, donc $H \lhd \mathfrak{S}_4$. Or on connait la liste des sous-groupes distingués de \mathfrak{S}_4 . Il n'y en a qu'un d'ordre 12, c'est \mathfrak{A}_4 et $\mathcal{N}_{\mathfrak{S}_4}(\mathfrak{A}_4)=\mathfrak{S}_4$
- Le seul sous-groupe d'ordre 24 est $\mathfrak{S}_4 = \mathcal{N}_{\mathfrak{S}_4}(\mathfrak{S}_4)$

Exercice 10.

1) $|\mathfrak{S}_4| = 24 = 3 \times 2^3$; donc $N_2 = 3$ (cf exo précedent), $N_3 = 4$. Une façon de voir que $N_2 = 3$ sans référence à l'exercice précédent est d'invoquer le théorème de SYLOW,

$$N_2 | |\mathfrak{S}_4| / |H| = 24/8 = 3 \Longrightarrow N_2 \equiv 1[2]$$

Donc $N_2 \in \{1,3\}$. Par l'exercice 8, \mathfrak{S}_4 n'a pas de sous-groupes distingués d'ordre 8. Donc $N \neq 1$ et $N_2 = 3$.

2) $|\mathfrak{A}_4| = 12 = 2^2 \times 3$. Par l'exercice 8, $V_4 \lhd \mathfrak{A}_4$. Donc \mathfrak{A}_4 n'a qu'un seul 2-Sylow qui est V_4 , et $N_2 = 1$. Tous les sous-groupes d'ordre 3 de \mathfrak{S}_4 sont contenus dans \mathfrak{A}_4 , donc le nombre de 3-Sylows pour \mathfrak{A}_4 est le même que pour $\mathfrak{S}_4: N_3 = 4$.

3) $|\mathfrak{S}_5| = 5! = 120 = 2^3 35$ donc $n_2 = 1[2]$, $N_2 | 15 \longrightarrow N_2 \in \{1, 3, 5, 15\}$. De plus $N_2 \ge 3$ car $\mathfrak{S}_4 \subset \mathfrak{S}_5$, et on a trouvé 3 sous-groupes d'ordre 8 dans \mathfrak{S}_4 . De plus, on a 5 façons de plonger \mathfrak{S}_4 dans \mathfrak{S}_5 :

$$\psi_i: \mathfrak{S}_4 \cong \mathfrak{S}_{\{1,2,3,4,5\}\setminus \{i\}} = \operatorname{Stab}_{\mathfrak{S}_5}(i)$$

Chacune des 5 images $\psi_i(\mathfrak{S}_4)$, contient 3 2-Sylow, donc \mathfrak{S}_5 en contient 15. On a montré que $N_2=15$.

$$N_3 = \frac{|\{\text{cycles de longueur 3}\}|}{2}$$

Et $|\{(ijk) \in \mathfrak{S}_5\}| = {5 \choose 3} \times \frac{3!}{3}$ (le coefficient binomial représente le choix du support $\{i, j, k\} \subset \{1, 2, 3, 4, 5\}$ du cycle).

Donc $N_3 = 10$.

$$N_5 = \frac{|\{\text{cycles de longueur 5}\}|}{4} = \frac{5!}{5 \times 4} = 6$$

(5 façons d'écrire un 5-cycle)

4) $|\mathfrak{A}_5| = 60 = 2^2 \cdot 3 \cdot 5$.

 $N_3 = 10$, $N_5 = 6$, car les sous-groupes de \mathfrak{S}_5 d'ordre 3 ou 5 sont automatiquement sous groupes de \mathfrak{A}_5 .

On a : $N_2 \equiv 1|2|$, $N_2|15$ donc $N_2 \in \{1, 3, 5, 15\}$

Remarque : Si on utilise le résultat de l'exercice 13, la simplicité de \mathfrak{A}_5 , on a le raisonnement suivant :

- $N_2 \neq 1$ car si $N_2 = 1$, alors un 2-Sylow est distingué, mais par la simplitude de \mathfrak{A}_5 , il est soit $\{e\}$ soit \mathfrak{A}_5 .
- $N_2 \neq 3$, car si $N_2 = 3$, l'action de \mathfrak{A}_5 sur les 2-Sylows définit un morphisme $\mathfrak{A}_5 \mapsto \mathfrak{S}_3$ non-trivial. Donc son noyau ker $\varphi \triangleleft \mathfrak{A}_5$ est non trivial. (ie : est propre)

$$1 < |\operatorname{Im} \varphi| = |\mathfrak{A}_5|/|\ker \varphi| = 60/|\ker \varphi| \le 6 = |\mathfrak{S}_3|$$

$$1 < 60/|\ker \varphi| \le 6 \iff 10 \le |\ker \varphi| < 60$$

Cela contredit la simplicité. Donc $N_2 \neq 3$.

— $N_2 \neq 15$. En effet, soit H un 2-Sylow. Alors $N_2 = 15 \iff \mathcal{N}_{\mathfrak{A}_5}(H) = H$. On a $V_4 \subset \mathfrak{A}_4 \subset \mathfrak{A}_5$ et on sait que tous les 2-Sylow sont conjugués; donc ils sont conjugués à V_4 , on peut donc poser $H = V_4$.

A-t-on $\mathcal{N}_{\mathfrak{A}_5}(V_4 == V_4$? Non car $V_4 \triangleleft \mathcal{A}_{\triangle}$, donc $\mathcal{N}_{\mathfrak{A}_5}(V_4)$ contient au moins \mathfrak{A}_4 .

Et
$$\mathcal{N}_{\mathfrak{A}_5}(V_4) > \mathfrak{A}_4 \Longrightarrow 12 \mid |\mathcal{N}_{\mathfrak{A}_5}(V_4)| \Longrightarrow N_2 \mid 5 = 60/|\mathfrak{A}_4| \Longrightarrow N_2 \neq 15$$

Conclusion : $N_2 = 5$

Si on ne se sert pas de la simplicité de \mathfrak{A}_5 , on devrait simplement éliminer les cas $N_2=1$ et $N_2=3$ par un autre raisonnement. On peut le faire comme suit : on connait un 2-Sylow, qui est $V_4 \subset \mathfrak{A}_4 \subset \mathfrak{A}_5$. En prenant 5 plogements différents $\varphi_i:\mathfrak{S}_4 \mapsto \mathfrak{S}_5$, on a 5 sous-groupes différents $\varphi_i(\mathfrak{A}_4)$ d'ordre 4, donc $N_2 \geqslant 5$ et on montre ensuite quye $N_2 \neq 15$ comme dans le 3ème point au dessus.

Exercice 11. On a p! permutations de (1,2,...,p), donc p!/p cycles distincts de longueur p. Chaque sous-groupe d'ordre p contient p-1 cycles de longueur p, et deux sous-groupes distincts d'ordre p s'intersectent par $\{e\}$, donc $N_p = p!/p(p-1) = (p-2)!$

Remarque : Le 2ème théorème de Sylow nous dit que $N_p \equiv 1[p]$, donc on a démontré :

$$(p-2)! \equiv 1[p]$$

cf Théorème de Wilson.

Exercice 12. *G* est produit semi-direct de ses sous-groupes $K, H \iff K \triangleleft G, KH = G, K \cap H = \{e\}$.

- $G = \mathfrak{S}_3$; $\mathfrak{A}_3 \triangleleft \mathfrak{S}_3$, $\langle (ij) \rangle = H$, $\mathfrak{S}_3 = \mathfrak{A}_3 \rtimes H$
- $G = \mathfrak{A}_4$; le seul sous groupe distingué est V_4 , pour H on peut choisir n'importe quel sous-groupe d'ordre 3, $H = \langle (ijk) \rangle$, alors $\mathfrak{A}_4 = V_4 \rtimes H$.

Pour visualiser un peu mieux, on peut considérer $V_4 \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, $H \cong \mathbb{Z}/3\mathbb{Z}$.

— $G = \mathfrak{S}_4$; $\mathfrak{S}_4 = V_4 \rtimes \mathfrak{S}_3 = \mathfrak{A}_4 \rtimes H$, où $H = \langle (12) \rangle$.

Donc deux paires (K, H) de groupes à isomorphisme près : $(\mathfrak{A}_4, \mathbb{Z}/2\mathbb{Z})$ et $(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, \mathfrak{S}_4)$

— $G = \mathcal{D}_8$; quels sont les sous-groupes distingués de \mathcal{D}_8 ?

$$\mathcal{D}_8 = \{e, \sigma, \sigma^2, \sigma^3, \tau, \tau\sigma, \tau\sigma^2, \tau\sigma^3\}$$

On remarque que $\mathcal{Z}(\mathcal{D}_8) = \{e, \sigma^2\} \lhd \mathcal{D}_8$ et il n'y a aucun autre sous-groupe d'ordre 2 distingué.

Les sous-groupes d'ordre 4 (tous distingués) :

- $--\langle \sigma \rangle \cong \mathbb{Z}/4\mathbb{Z}$, cyclique
- $\langle \tau, \sigma^2 \rangle, \langle \tau \sigma, \sigma^2 \rangle \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$

Existe-t-il un sous-groupe $H < \mathcal{D}_8$ complémentaire à $\mathcal{Z}(\mathcal{D}_8)$? (c'est-à-dire tel que \mathcal{D}_8 est produit semi direct de $\mathcal{Z}(\mathcal{D}_8)$ et H)

Pour un tel H, on aurait |H| = 4, $H \cap \mathcal{Z}(\mathcal{D}_8) = \{e\}$. Or c'est impossible car tous les sousgroupes d'ordre 4 contiennent $\mathcal{Z}(\mathcal{D}_8)$.

Donc il n'existe pas de représentation de \mathcal{D}_8 comme produit semi-direct de $\mathcal{Z}(\mathcal{D}_8)$ et d'un sous-groupe d'ordre 4.

Pour $K' = \langle \tau, \sigma^2 \rangle$, il existe des sous-groupes d'ordre 2 complémentaires : $H' = \langle \tau \sigma \rangle$ ou $H' = \langle \tau \sigma^3 \rangle$.

Donc $\mathcal{D}_8 \cong (\mathbf{Z}/2Z\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}) \times \mathbf{Z}/2Z$.

Pareil pour $K' = \langle \tau \sigma, \sigma^2 \rangle$ et $H' = \langle \tau \rangle$ ou $H' = \langle \tau \sigma^2 \rangle$.

Pour $K' = \langle \sigma \rangle$, on a 4 choix possibles pour H', $H' = \langle \tau \rangle$ ou $\langle \tau \sigma \rangle$ ou $\langle \tau \sigma^2 \rangle$ ou $\langle \tau \sigma^3 \rangle$. On obtient une représentation :

$$\mathcal{D}_8 = \mathbf{Z}/4\mathbf{Z} \times \mathbf{Z}/2Z$$

 $-G = \mathcal{Q}_8$

$$\mathcal{Q}_8 = \{\pm 1, \pm i, \pm j, \pm k\}$$

avec $i^2 = j^2 = k^2 = -1$ et ij = -ji = k, jk = -kj = i, ki = -ik = j. Dans ce cas :

$$\mathcal{Z}(\mathcal{Q}_8) = \{\pm 1\}$$

Et -1 est le seul élément d'ordre 2 de \mathcal{Q}_8 , tous les 6 éléments de $\mathcal{Q}_8 \setminus \mathcal{Z}(\mathcal{Q}_8)$ sont d'ordre 4.

Donc les sous-groupes propres de \mathcal{Q}_8 sont :

—
$$\langle i \rangle = \langle -i \rangle$$
, $\langle j \rangle = \langle -j \rangle$, $\langle k \rangle = \langle -k \rangle$ d'ordres 4

Tous les sous-groupes sont distingués. Mais aucun n'a de sous-groupe complémentaire. En effet, deux sous groupes contiennent toujours -1, donc ont une intersection non triviale. Donc \mathcal{Q}_8 admet 4 sous-groupes distingués propres, mais aucun ne donne de produit semi-directe. En effet on a la suite exacte

$$1 \longrightarrow C_4 \longrightarrow \mathcal{Q}_8 \xrightarrow{\swarrow \widehat{s} \searrow} C_2 \longrightarrow 1$$

Cette suite n'est pas scindée. (pour une section s on aurait $gs = \mathrm{Id}_{C_2}$ et donc l'image du générateur c_2 de C_2 par s serait un élément d'ordre 2, mais il n'y a pas d'éléments d'ordre 2 parmi les antécédents de c_2 : $g^{-1}(c_2) = \{\pm j, \pm k\}$ d'ordre 4)

Exercice 13.

1) Établissons une liste des classes de conjuguaison pour \mathfrak{S}_5 :

-
$$g_1 = e$$
, $|\Omega_{\mathfrak{S}_5}(g_1)| = 1$
- $g_2 = (12)$, $|\Omega_{\mathfrak{S}_5}(g_2)| = 10$

$$g_3 = (123), |\Omega_{\mathfrak{S}_5}(g_3)| = 20$$

-
$$g_4 = (12)(34), |\Omega_{\mathfrak{S}_5}(g_4)| = 15$$

-
$$g_5 = (1234), |\Omega_{\mathfrak{S}_5}(g_5)| = 30$$

—
$$g_6 = (12345), |\Omega_{\mathfrak{S}_5}(g_6)| = 24$$

--
$$g_7 = (123)(45), |\Omega_{\mathfrak{S}_5}(g_6)| = 20$$

2) On fait pareil pour \mathfrak{A}_5 :

$$- g_1 = e$$
, $|\Omega_{\mathfrak{S}_5}(g_1)| = 1$

—
$$g_2 = (12)(34), |\Omega_{\mathfrak{S}_5}(g_2)| = 15$$

—
$$g_3 = (123), |\Omega_{\mathfrak{S}_5}(g_3)| = 20$$

—
$$g_4 = (12345), |\Omega_{\mathfrak{S}_5}(g_4)| = 12$$

—
$$g_5 = (15432), |\Omega_{\mathfrak{S}_5}(g_5)| = 12$$

Remarque.

 $|\Omega_{\mathfrak{S}_n}(\sigma)| = \frac{|\mathfrak{S}_n|}{|C_{\mathfrak{S}_n}(\sigma)|} \text{ avec } C_{\mathfrak{S}_n}(\sigma) = \{g \in \mathfrak{S}_n \mid g\sigma g^{-1} = \sigma\} \text{ le centralisateur de } \sigma.$

Si σ est produit de r_1 cycles de longueur l_1, \ldots, r_s cycles de longueur l_s à support indépendant, $l_1 > l_2 > \cdots > l_s \ge 1$, alors

$$|C_{\mathfrak{S}_n}(\sigma)| = l_1^{r_1} r_1! \dots l_s^{r_s} r_s!$$

Donc

$$|\Omega_{\mathfrak{S}_n}(\sigma)| = \frac{n!}{l_1^{r_1} r_1! \dots l_s^{r_s} r_s!}$$

Lorsqu'on passe à \mathfrak{A}_n ; on a une dichotomie :

a) $C_{\mathfrak{S}_n}(\sigma) \subset \mathfrak{A}_n \Longrightarrow C_{\mathfrak{S}_n}(\sigma) = C_{\mathfrak{A}_n}(\sigma)$ et

$$|\Omega_{\mathfrak{A}_n}(\sigma)| = \frac{|\mathfrak{A}_n|}{|C_{\mathfrak{A}_n}(\sigma)|} = \frac{1}{2}|\Omega_{\mathfrak{S}_n}(\sigma)|$$

b) $C_{\mathfrak{S}_n}(\sigma) \not\subset \mathfrak{A}_n \Longrightarrow C_{\mathfrak{A}_n}(\sigma) = C_{\mathfrak{S}_n}(\sigma) \cap \mathfrak{A}_n$ est d'ordre $\frac{1}{2}|C_{\mathfrak{S}_n}(\sigma)|$, ce qu'on déduit en observant le morphisme

$$C_{\mathfrak{S}_n} \hookrightarrow \mathfrak{S}_n \to \mathfrak{S}_n/\mathfrak{A}_n \cong C_2$$

Il est surjectif, donc son noyau $C_{\mathfrak{S}_n}(\sigma) \cap \mathfrak{A}_n$ est d'ordre égal à la moitié de $|C_{\mathfrak{S}(\sigma)}|$. Dans ce cas :

$$|\Omega_{\mathfrak{A}_n}(\sigma)| = \frac{|\mathfrak{A}_n|}{|C_{\mathfrak{A}_n}(\sigma)|} = \frac{1/2|\mathfrak{S}_n|}{1/2|C_{\mathfrak{S}_n}(\sigma)|} = |\Omega_{\mathfrak{S}_n}(\sigma)|$$

Exercice 14.

Soit *G* un groupe simple d'ordre 60.

1) Soit N_5 le nombre de 5-Sylow de G.

Par les théorèmes de Sylow, $N_5 \mid 60/5 = 12$ et $N_5 \equiv 1[5]$ donc $N_5 \in \{1,6\}$. Mais $N_5 \neq 1$ puisque G est simple et si N_5 était 1, le 5-Sylow serait distingué. Donc $N_5 = 6$. L'action de G par conjuguaison sur les six 5-Sylow définit un morphisme

$$\varphi: G \mapsto \mathfrak{S}_6$$
.

Il est non trivial car les 5-Sylow sont deux à deux conjugués, donc $\varphi(G)$ opère transitivement sur $\{1,2,3,4,5,6\}$ et ne se se réduit pas à l'identité. (ie : élément neutre)

Le noyau $\ker \varphi$ est un sous-groupe distingué. Puisque G est simple, $\ker \varphi = \{e\}$ ou G. Or φ est non-trivial, donc $\ker \varphi \neq G$, donc $\ker \varphi = \{e\}$, donc φ est injectif. Supposons que $\varphi(G) \nsubseteq \mathfrak{A}_6$. Alors la composée

$$G \mapsto \mathfrak{S}_6 \mapsto \mathfrak{S}_6/\mathfrak{A}_6$$

est surjective et son noyau est un sous-groupe distingué d'ordre 30 de G, ce qui est absurde car G est simple.

Donc $\varphi(G) \subset \mathfrak{A}_6$ et

$$|\varphi(G)| = |G| = 60$$
, $|\mathfrak{A}_6| = 360 \Longrightarrow \varphi(G)$ est d'indice 6 dans G

2) Soit $H < \mathfrak{A}_6$ d'indice 6. Montrons qu'il existe $\varphi : \mathfrak{A}_6 \mapsto \mathfrak{S}_6$ tel que

$$\varphi(H) = \mathfrak{S}_6 = \mathfrak{A}_5 \subset \mathfrak{S}_5 = \operatorname{Stab}_{\mathfrak{S}_6}(6).$$

Soient $g_1H,...,g_6H$ les 6 classes à gauche de \mathfrak{A}_6 mod H. Le groupe G opère par translations à gauche sur l'ensemble $\{g_1H,...,g_6H\}$.

Donc on a un morphisme $\varphi : \mathfrak{A}_6 \mapsto \mathfrak{S}_6$.

$$\varphi(g): \begin{cases} g_1 H \mapsto g g_1 H = g_{i_1} H \\ \vdots \\ g_6 H \mapsto g g_6 H = g_{i_6} H \end{cases}$$

$$\varphi_0(g) = (i_1, \dots, i_6)$$

 φ est non trivial car l'action de \mathcal{A}_6 sur \mathcal{A}_6/H est transitive.

On peut supposer que $g_6 = e$, $g_6H = H$, alors $H = g_6H$ est stabilisé par H et donc $\varphi_0(H) \subset \mathfrak{S}_5 = \operatorname{Stab}_{\mathfrak{S}_6}(6)$

Montrons que φ_0 est injectif. Cela suit facilement de la simplicité de \mathfrak{A}_6 :

 φ_0 est non trivial, donc $\ker \varphi_0 \neq \mathfrak{A}_6$ et donc $\ker \varphi_0 = \{e\}$.

Donc $\varphi_0(H)$ est un sous-groupe d'ordre 60 de \mathfrak{S}_5 . Il est facile de voir que $\varphi_0(H) \subset \mathfrak{A}_5$. En effet, dans le cas contraire, le morphisme $\alpha: \varphi_0(H) \mapsto \mathfrak{S}_6/\mathfrak{A}_5$ nous donnerait un sous-groupe distingué $\ker \alpha = \varphi_0(H) \cap \mathfrak{A}_5 \lhd \mathfrak{A}_5$ en tant que sous-groupe d'indice 2, or \mathfrak{A}_5 est simple. \not

Donc $\varphi_0(H) = \mathfrak{A}_5$.

3) Puisque $H \cong \varphi_0(H)$, on a démontré que $H \cong \mathfrak{A}_5$.

Exercice 15.

Ordre	Groupe
1	{ <i>e</i> }
2	C_2
3	C_3
4	C_4 , $C_2 \times C_2$
5	C_5
6	C_6,\mathfrak{S}_3
7	C_7
8	$C_8, C_4 \times C_2, C_2 \times C_2 \times C_2$
9	C_9 , $C_3 \times C_3$
10	C_{10} , \mathscr{D}_{10}
11	C_{11}
12	$C_{12}, C_6 \times C_2, \mathfrak{A}_4, \mathcal{D}_{12}, C_3 \rtimes C_4$
13	C_{13}
14	C_{14} , \mathscr{D}_{14}
15	C_{15}

- 1) Poures groupes d'ordre p premier, il n'y a qu'une classe d'isomorphisme pour chaque p, le groupe cyclique C_p .
- 2) Pour les groupes d'ordre p^2 , il y a cette fois-çi deux classes, C_{p^2} et $C_p \times C_p$.
- 3) Les groupes d'ordre p, q, p > q premiers. D'après le cours (ou bien l'exo 7 avec k = 1), G ≅ C_p ⋈_φ C_q pour un morphisme φ : C_q → Aut(C_p) ≅ C_{p-1}.
 Conclusion 1 : Si q ∤ p − 1, le seul morphisme φ : C_p → C_{p-1} est le morphisme trivial, donc dans ce cas C_p ≅ C_p × C_q ≅ C_{pq}. Cela donne la réponse G ≅ C₁₅ pour l'ordre 15.
 Supposons que q | p − 1. Alors il y a q − 1 morphismes non triviaux φ_i : C_q → C_{p-1}.
 Si on note un générateur de C_n par c_n, on peut écrire

$$\varphi_i(c_q) = c_{p-1}^{\frac{p-1}{q}}, i = 1, ..., q-1$$

Ces q-1 morphismes différents définissent en fait des produits semi-directs isomorphisme. L'application

$$\psi_i: C_p \rtimes_{\varphi_i} C_q \mapsto C_p \rtimes_{\varphi_1} C_q$$
$$(x, y) \mapsto (x, y^i)$$

est un isomorphisme de groupe.

Vérification:

 $\operatorname{Aut}(C_p) \cong (\mathbf{Z}/p\mathbf{Z})^{\times} \cong \langle [h_0] \rangle \cong C_{p-1}; \text{ le générateur } c_{p-1} = [h_0] \text{ agit par } x \longrightarrow x^{n_0} \ (x \in C_p).$

Alors $c_{p-1}^{\frac{p-1}{q}}$ agit par $x \longrightarrow x^{n_1}$, où $n_1 = n_0^{\frac{p-1}{q}}$. Donc :

$$\varphi_1(c_q): C_p \longrightarrow C_p, \ x \longrightarrow x^{n_1}$$

$$\varphi_i(c_q): C_p \longrightarrow C_p, \ x \longrightarrow x^{n_1} \ (i = 1, ..., q - 1)$$

$$(x, y) *_i (x', y') = (x\varphi_i(y)(x'), yy') = (xx'^{h_1^{ij}}, yy')$$

Où on a posé $y = c_q^j$;

$$\psi_i((x,y)) *_1 \psi_i((x',y')) = (x,y^i) *_1 (x',y'^i) = (xx'^{h_1^{i,j}},y^iy'^i) = \psi_i((x,y) *_i (x',y'))$$

La bijectivité de ψ_i suit de la bijectivité de $C_q \longrightarrow C_q$, $y \longrightarrow y^i$ pour chaque i = 1, ..., q - 1. On obtient :

Conclusion 2: Lorsque $q \mid p-1$, il y a précisemment deux classe d'isomorphisme des groupes $pq: C_p \times C_q = C_{pq}$ et un produit semi-direct $C_p \rtimes_{\varphi} C_q$ non trivial (pour un morphisme $\varphi: C_q \mapsto C_{p-1}$ quelconque)

Exemle: p = 7, q = 3

$$(\mathbf{Z}/7\mathbf{Z})^{\times} = \langle 3 \rangle, [3] : C_7 \longrightarrow C_7, x \longrightarrow x^3$$

L'automorphisme [3] est un élément d'ordre 6 = p-1 de $Aut(C_7) \cong C_6$ (on le notait par $[n_0]$ et C_{p-1})

Pour un produit semi-direct $C_7 \rtimes_{\varphi} C_3$, il nous faut envoyer le gnéérateur c_3 de C_3 sur un élément d'ordre 3 de Aut (C_7) . Les deux éléments d'ordre 3 sont $[3^2] = [9] = [2]$ (on calcule modulo p = 7) et $[3^4] = [2^2] = [4]$.

Voilà donc les deux morphismes non triviaux

$$\varphi_1 : c_3^j \longrightarrow \left[x \mapsto x^{2^j} \right]$$

$$\varphi_2 : c_3^j \longrightarrow \left[x \mapsto x^{4^j} \right]$$

Les deux groupes d'ordre 21 à isomorphisme près sont :

$$-C_7 \times C_3 \cong C_{21}$$
 et

—
$$C_7 \rtimes_{\omega_1} C_3 = \langle \sigma, \tau \mid \sigma^7 = \tau^3 = e, \tau \sigma \tau^{-1} = \sigma^4 \rangle$$
 est isomorphe à celui du point 2.

Remarque: Le groupe $C_7 \rtimes_{\varphi_2} C_3 = \langle \sigma, \tau \mid \sigma^7 = \tau^3 = e, \tau \sigma \tau^{-1} = \sigma^2 \rangle$

4) Groupes non-abéliens d'ordre 8 :

Soit \overline{G} un groupe d'ordre 8, pour tout $g \in G \setminus \{e\}$, $v(g) \in \{2,4,8\}$.

S'il existe g d'ordre 8, alors $G = \langle g \rangle$ est abélien, ce qui n'est pas le cas.

Si tous les éléments de $G \setminus \{e\}$ sont d'ordre 2, G est abélien, en effet,

$$\forall a, b \in G \ a^2 = b^2 = (ab)^2 = e \Longrightarrow ab = ba$$

Donc G contient un élément d'ordre 4. Choisissons un tel élément et notons le σ .

— *Premier cas* : $G \setminus \langle \sigma \rangle$ contient un élément τ d'ordre 2. Alors $\langle \sigma \rangle \cap \langle \tau \rangle = \{e\}$, $\langle \sigma \rangle \lhd G$ (car d'indice 2), $|\langle \sigma \rangle \langle \tau \rangle = |\sigma \rangle ||\langle \tau \rangle|$, car $\langle \sigma \rangle \cap \langle \tau \rangle = e$, donc $|\langle \sigma \rangle \langle \tau \rangle| = 8$ et $\langle \sigma \rangle \langle \tau \rangle = G$, donc G est produit semi direct de $\langle \sigma \rangle$ et $\langle \tau \rangle$:

$$G \cong C_4 \rtimes_{\varphi} C_2$$

Où φ : $C_2 \mapsto \text{Aut}(C_4)$ est un morphisme de groupe. On a :

Aut
$$(C_4) = \{c_4^j \to c_4^j (= i d_c 4) \ c_4^j \mapsto c_4^{-j} = c_4^{3j}\} \equiv C_2$$

Il y a un unique morphisme non trivial $C_2 \mapsto C_2$ donc il y a un unique produit semi direct non abélien. C'est le groupe \mathcal{D}_8 .

— Second cas : Tous les éléments de $G \setminus \{\sigma\}$ sont d'ordre 4.

$$G = \{e, \sigma, \sigma^2, \sigma^3, \tau_1, \tau_1^{-1}, \tau_2, \tau_2^{-1}\}$$

où les τ_i sont d'ordre 4, et σ^2 est l'unique élément d'ordre 2. On a $\tau_1^2 = \tau_2^2 \sigma^2$. G est engendré par σ et τ_1 . $\tau_1 \sigma \tau_1^{-1}$ est un élément d'oirdre 4, $\langle \sigma \rangle$ est distingué, (car d'indice 2), donc $\tau_1 \sigma \tau_1^{-1} = \sigma$ ou σ^{-1} . Si $\tau_1 \sigma \tau_1^{-1} = \sigma$, G est abélien, ce qui n'est pas le cas, donc on a

$$\tau_1 \sigma \tau_1^{-1} = \sigma^{-1}$$

$$(\tau_1\sigma=\sigma^{-1}\tau_1=\sigma^3\tau)$$

$$G = \{e, \sigma, \sigma^2, \sigma^3, \tau_1, \sigma\tau_1, \sigma^2\tau_1, \sigma_3\tau\}$$

Les relations $\sigma^4=\tau_1^4=e,\ \sigma^2=\tau_1^2,\ \tau_1\sigma=\sigma^{-1}\tau$ déterminent complètement la table de multiplication de G.

Un tel groupe existe, c'est le groupe des quaternions.

5) Groupes non abéliens d'ordre 12

Soit Gun groupe non abélien d'ordre $12 = 2^2 \cdot 3$.

Soient H_4 , H_3 ses sous-groupes de Sylow. On a $H_4 \cap H_3 = \{e\}$, donc $|H_4 \cdot H_3| = 12$ et $H_4 H_3 = 12$ G.

— Premier cas: $H_4 \triangleleft G$. Si $H_4 \cong C_4$, Aut $(H_4) \cong (\mathbb{Z}/4\mathbb{Z})^{\times} \cong \mathbb{Z}/2\mathbb{Z}$, et tout morphisme $C_3 \mapsto$ $Aut(H_4)$ est trivial. Donc G est commutatif, ce qui est absurde. Donc H_4 n'est pas cyclique et $H_4 \cong C_2 \times C_2$. Dans ce cas, $\operatorname{Aut}(H_4) \cong \mathfrak{S}_3$, agissant par permutations des trois éléments d'ordre 2.

$$G \cong (C_2 \times C_2) \rtimes_{\varphi} C_3 \varphi : \begin{cases} e \mapsto e \\ a_1 \mapsto a_2 \\ a_2 \mapsto a_3 \\ a_3 \mapsto a_1 \end{cases}$$

$$C_2 \times C_2 = \{e, a_1, a_2, a_3\}$$
 $a_3 = a_1 a_2$ $a_2 = a_3 a_1$ $a_1 = a_2 a_3$

Ce G est isomorphe à \mathcal{A}_1 :

$$(C_2 \times C_2) \rtimes_{\varphi} C_3 \longrightarrow \mathcal{A}_4$$

$$a_1 = (c_2, e, e) \longrightarrow (12)(34)$$

$$a_2 = (e, c_2, e) \longrightarrow (23)(24)$$

$$a_3 = (c_2, c_2, e) \longrightarrow (14)(23)$$

$$(e, e, c_3) \longrightarrow (132)$$

- Second cas: $H_4 \not \subset G$, $H_3 \triangleleft G$
 - Si $H_4 \cong C_4$, $G \cong C_3 \rtimes_{\varphi} C_4$; avec $\varphi : c_4 \longrightarrow [c_3 \longrightarrow c_3^{-1}]$, le seul élément d'ordre non trivial de $\operatorname{Aut}(C_4) \cong C_2$.
 - Si $H_4 \cong C_2 \times C_2$, $G \cong C_3 \rtimes_{\varphi} (C \circlearrowleft 2 \times C_2)$, $\varphi : C_2 \times C_2 \longrightarrow \operatorname{Aut}(C_3) \cong C_2 = \langle x \rangle$, $x^2 = e, x : c_3 \longrightarrow c_3^{-1}$.

 φ est non trivial, donc injectif donc est déterminé par son noyau, il y a trois morphismes différents :

$$\varphi_1: \begin{cases} c_2 \longrightarrow x \\ c'_2 \longrightarrow x \\ c_2 c'_2 \longrightarrow e \end{cases}$$

$$\varphi_2: \begin{cases} c_2 \longrightarrow x \\ c'_2 \longrightarrow e \\ c_2 c'_2 \longrightarrow x \end{cases}$$

$$\varphi_3: \begin{cases} c_2 \longrightarrow e \\ c'_2 \longrightarrow x \\ c_2 c'_2 \longrightarrow x \end{cases}$$

Ces morphismes sont équivalents par les changement de générateurs c_2 , c_2' de $C_2 \times C_2'$, donc il y a un unique produit semi-direct à isomorphisme près

$$G \cong C_3 \rtimes_{\varphi_3} (C_2 \times C_2) \cong (C_3 \times C_2) \rtimes C_2 \cong C_6 \rtimes C_2 \cong \mathcal{D}_{12}$$

Remarques:

- $K \rtimes_{\varphi \circ \psi} H \cong K \rtimes_{\varphi} H (k, h) \longrightarrow (k, \psi(h))$ Pour tout ψ automorphisme de H. On l'a appliqué pour $K = C_p$, $H = C_q$.
- Tout automorphisme de K "changement de générateur" induit aussi un isomorphisme de produit semi direct respectifs $f \in \operatorname{Aut}(K), \hat{f} \in \operatorname{Aut}(\operatorname{Aut}K), \hat{f} : g \longrightarrow f \circ g \circ f^{-1}$

$$K \rtimes_{\varphi} H \cong K \rtimes_{\hat{f} \circ \varphi} H$$

Exercice 16.

$$|G| = 750 = 5^3 \cdot 2 \cdot 3$$

 $N_5|6$, $N_5 \equiv 1[5]$, donc si G est simple, $N_5 = 6$, l'action de G sur les six 5-Sylows donne un morphisme non-trivial (car transitif):

$$\varphi: G \longrightarrow S_6$$
, $e < \varphi(G) < S_6$

$$|\varphi(G)| < |S_6| = 6! = 720 < |G| = 750$$

donc φ est non injectif, donc le noyau est un sous groupe propre de G, et il est distingué, ce qui est absurde.

Exercice 17.

 $|G| = 45 = 3^2 \cdot 5$

 $N_3 \equiv 1[3]$, $N_3 \mid 5$ donc $N_3 = 1$. Donc H_9 , le 3 sylow est distingué et $G \cong H_9 \rtimes C_5$.

- Premier cas : $H_9 \cong C_9$, Aut $(C_9) \cong C_8$ Alors il n'existe pas de morphisme non trivial $C_5 \mapsto C_8$ donc $H_9 \times C_5$ commutatif.
- Second cas: $H_9 \cong X_3 \times C_3$ et $Aut(C_9) \cong Aut(C_3 \times C_3)$. Alors $|Aut(C_3 \times C_3)| = 8 \cdot 6 = 48$, donc il n'existe pas de morphisme non trivial $C_5 \mapsto AutC_3 \times C_3$ et on a la même conclusion.

Exercice 18.

1) Le cas $|G| = p^3 q$

Le cas où p > q suit de l'exercice 7. $(G = H_{p^3} \rtimes H_q)$

Il reste à traiter le cas où p < q.

On suppose G simple, donc les Sylows de G ne sont pas distingués, et $N_p > 1$, $N_q > 1$.

On a $N_q \mid q$, $n_p \neq 1$, donc $N_p = q$.

De plus, $n_p \equiv 1[p]$, donc p divise q-1. Puis, N_q divisant p^3 , on a que $N_q \in \{p, p^2, p^3\}$.

Si $N_q = p^3$, G contient $N_q(q-1) = p^3(q-1)$ éléments d'ordre q est les p^3 éléments restants ne peuvent former qu'un seul p-Sykiw H_{p^3} n donc H_{p^3} serait distin gué dans G, ξ .

Dibc $N_q \neq p^3$. Puis $N_q \equiv 1[q]$ donc $N_q \geq q+1 > p$, et $n_q \neq p$, donc $N_q = p^2$ et q divise $p^2 - 1 = (p-1)(p+1)$, d'où q divise p-1 ou p+1. Or, q > p, donc la seule solution est q = p+1. Donc q = 3, p = 2. (le seul coupe de premiers dont la différence vaut 1).

Donc |G| = 24, $N_2 = 3$, donc l'action de G par conjuguaison sur les trois 2-Sylows définit un morphisme non trivial $\varphi : G \longrightarrow \mathfrak{S}_3$. Comme $|\mathfrak{S}_3| = 6 < |G| = 24$, le noyau de φ est un sous groupe propre distingué de G, donc G n'est pas simple. Donc l'hypothèse de départ est fausse, et G est non simple.

Remarque : Pour $G = \mathfrak{S}_4$, on a bien $N_q = p^2$, $n_p = q$; on a montré, en fait, que p = 2, q = 3 est l'unique paire de premier pour lesquels un groupe d'ordre $p^3 q$, avec $N_q = p^2$, $N_q = p$ existe, et ce groupe n'est pas simple.

2) Traitons le cas |G| = pqr, p > q > r. Supposons G simple.

$$N_p \mid qr \ N_p \geqslant p+1 \Longrightarrow N_p = qr$$

$$N_q \mid pr, \ N_q \geqslant q+1 \Longrightarrow N_q \geqslant p$$

$$N_r \mid pq, \ N_r \geqslant r+1 \Longrightarrow N_r \geqslant q$$
#{éléments d'ordre p } = $N_p(p-1) = (p-1)qr$
#{éléments d'ordre q } = $N_q(q-1) \geqslant p(q-1)$
#{éléments d'ordre r } = $N_r(r-1) \geqslant q(r-1)$

$$pqr = |G| \geqslant 1 + q(r-1) + p(q-1) + qr(p-1)$$

$$= pqr + pq - p - q + 1$$

$$= pqr + (p-1)(q-1) \not$$

3) Le cas $|G| = p^2 q^2$. Supposons G simple, $N_p > 1$, $N_q > 1$, on suppose p > q donc $N_p \mid q^2$, $N_p \ge p + 1$ donc $N_p = q^2$.

Soient $H_{p,1}$, $H_{p,2}$ deux p-Sylow distincts et K l'intersection des deux. Supposons l'intersection non triviale, alors les deux $H_{p,i}$ sont abéliens, et alors ils centralisent K. Dans ce cas, $\mathcal{N}_G(K) \cup H_{p,1}H_{p,2}$, d'ordre $> |H_{p,i}| = p^2$, donc $|\mathcal{N}_G(K)| \ge p^2 q$. Si $|\mathcal{N}_G(K)| = p^2 q$ alors $\mathcal{N}_G(K) \lhd G$ par l'exercice 3.

Si $|\mathcal{N}_G(K)| = p^2 q^2$, alors $\mathcal{N}_G(K) = G$ et $K \triangleleft G$, ce qui est absurde.

On a démontré que $H_{p,1} \cap H_{p,2} = \{e\}$.

Par l'exercice 2;

$$|H_{p,1} \cdot H_{p,2}| = \frac{|H_{p,1}| \cdot |H_{p,2}|}{|h_{p,1}| \cap H_{p,2}} = p^4 > |G| \$$

Donc *G* est non simple.

m

Exercice 19.

Exercice 20.

Exercice 21.

Exercice 22.