Sharp Threshold Phenomena in Statistical Physics

André Victor Ribeiro Amaral † Orientador: Roger William Câmara Silva

Exame de Qualificação

Universidade Federal de Minas Gerais - ICEx, Departamento de Estatística. (06/07/2020)

[†] E-mail: avramaral@gmail.com

Sumário

Introdução

Como provar que $(f_k)_{k\in\mathbb{N}}$ passa por sharp threshold

Fórmula de Russo-Margulis

Inequação de sharp threshold

Desigualdade de O'Donnel-Saks-Schramm-Servedio

Aplicações em percolação Bernoulli (\mathbb{L}^d)

Ponto crítico para percolação em \mathbb{L}^2

 $\mathit{Sharpness}$ da transição de fase para percolação Bernoulli em \mathbb{L}^d

Modelos de Percolação com dependência

Percolação 2k Dependente

Percolação FK

Referências

Em modelos com componentes estocásticas, dizemos que um sistema aleatório finito passa por *sharp threshold* se o seu comportamento muda "rapidamente" como resultado de uma pequena perturbação dos parâmetros que governam sua estrutura.

Em modelos com componentes estocásticas, dizemos que um sistema aleatório finito passa por *sharp threshold* se o seu comportamento muda "rapidamente" como resultado de uma pequena perturbação dos parâmetros que governam sua estrutura.

Nesse sentido, o modelo probabilístico assumido, a menos que seja dito o contrário, será descrito por $(\Omega, \mathcal{F}, \mathbb{P}_p)$, onde $\Omega = \{0,1\}^n$, para $n \in \mathbb{N}$, $\mathcal{F} = \mathcal{P}(\Omega)$ e \mathbb{P}_p é a medida produto Bernoulli $\prod_{i \in [n]} \mu_i$, tal que $\mu_i(\omega_i = 1) = p$ e $\mu_i(\omega_i = 0) = 1 - p$; com $[n] = \{1, \dots, n\}$.

Em modelos com componentes estocásticas, dizemos que um sistema aleatório finito passa por *sharp threshold* se o seu comportamento muda "rapidamente" como resultado de uma pequena perturbação dos parâmetros que governam sua estrutura.

Nesse sentido, o modelo probabilístico assumido, a menos que seja dito o contrário, será descrito por $(\Omega, \mathcal{F}, \mathbb{P}_p)$, onde $\Omega = \{0,1\}^n$, para $n \in \mathbb{N}$, $\mathcal{F} = \mathcal{P}(\Omega)$ e \mathbb{P}_p é a medida produto Bernoulli $\prod_{i \in [n]} \mu_i$, tal que $\mu_i(\omega_i = 1) = p$ e $\mu_i(\omega_i = 0) = 1 - p$; com $[n] = \{1, \dots n\}$.

Em $(\Omega, \mathcal{F}, \mathbb{P}_p)$, nos concentraremos em analisar sequências de funções Booleanas; i.e., sequências do tipo $(f_k)_{k \in \mathbb{N}}$, tal que $f_k : \Omega \to \{0,1\}$, para $k \in \mathbb{N}$.

Além disso, definindo $F_k(p) := \mathbb{E}_p(f_k(\omega))$, para $k \in \mathbb{N}$, temos, com \mathbb{P}_p medida produto,

$$F_k(p) = \sum_{i \in [n]} f_k(\omega) \, p^{\sum_{i \in [n]} \omega_i} \, (1 - p)^{\sum_{i \in [n]} 1 - \omega_i}. \tag{1}$$

Em modelos com componentes estocásticas, dizemos que um sistema aleatório finito passa por *sharp threshold* se o seu comportamento muda "rapidamente" como resultado de uma pequena perturbação dos parâmetros que governam sua estrutura.

Nesse sentido, o modelo probabilístico assumido, a menos que seja dito o contrário, será descrito por $(\Omega, \mathcal{F}, \mathbb{P}_p)$, onde $\Omega = \{0,1\}^n$, para $n \in \mathbb{N}$, $\mathcal{F} = \mathcal{P}(\Omega)$ e \mathbb{P}_p é a medida produto Bernoulli $\prod_{i \in [n]} \mu_i$, tal que $\mu_i(\omega_i = 1) = p$ e $\mu_i(\omega_i = 0) = 1 - p$; com $[n] = \{1, \dots n\}$.

Em $(\Omega, \mathcal{F}, \mathbb{P}_p)$, nos concentraremos em analisar sequências de funções Booleanas; i.e., sequências do tipo $(f_k)_{k\in\mathbb{N}}$, tal que $f_k: \Omega \to \{0,1\}$, para $k \in \mathbb{N}$.

Além disso, definindo $F_k(p):=\mathbb{E}_p(f_k(\omega))$, para $k\in\mathbb{N}$, temos, com \mathbb{P}_p medida produto,

$$F_k(p) = \sum_{i \in [n]} f_k(\omega) \, p^{\sum_{i \in [n]} \omega_i} \, (1 - p)^{\sum_{i \in [n]} 1 - \omega_i}. \tag{1}$$

Por fim, e com a intenção de estabelecer uma ordem parcial para as possíveis configurações do espaço amostral, dizemos que, para $\omega, \omega' \in \Omega$, $\omega \leq \omega'$ se $\omega_i \leq \omega_i'$, $\forall i \in [n]$. Assim, $f(\omega)$ é crescente se $f(\omega) \leq f(\omega')$ sempre que $\omega \leq \omega'$.

Definição 1

Uma sequência de funções Booleanas crescentes $(f_k)_{k\in\mathbb{N}}$ passa por **sharp threshold** em $(p_k)_{k\in\mathbb{N}}$ se existe $(\delta_k)_{k\in\mathbb{N}}$, com $\lim_{k\to+\infty} \delta_k = 0$, tal que $F_k(p_k - \delta_k) \longrightarrow 0$ e $F_k(p_k + \delta_k) \longrightarrow 1$, quando $k \to +\infty$.

Definição 1

Uma sequência de funções Booleanas crescentes $(f_k)_{k\in\mathbb{N}}$ passa por **sharp threshold** em $(p_k)_{k\in\mathbb{N}}$ se existe $(\delta_k)_{k\in\mathbb{N}}$, com $\lim_{k\to+\infty} \delta_k = 0$, tal que $F_k(p_k - \delta_k) \longrightarrow 0$ e $F_k(p_k + \delta_k) \longrightarrow 1$, quando $k \to +\infty$.

Graficamente,

Figura 1: Esboço de $F_k(p)$ para k "muito grande", t.q. $(f_k)_{k\in\mathbb{N}}$ passa por sharp threshold.

Note que se $f_k(\omega) = \mathbb{I}_{A_k}(\omega)$ tem essa característica, então $F_k(p) = \mathbb{P}_p(A_k)$ está "perto" de 0 ou 1 para k "muito grande".

Como provar que $(f_k)_{k\in\mathbb{N}}$ passa por sharp threshold

Seja $f:\Omega \to \{0,1\},$ então defina:

$$\nabla_i f(\omega) := f(\omega) - f(\operatorname{Flip}_i(\omega)),$$

onde

$$\operatorname{Flip}_i(\omega)_j = \begin{cases} \omega_j & \text{para } j \neq i \\ 1 - \omega_j & \text{para } j = i. \end{cases}$$

Além disso, defina a **influência** do bit i como

$$\operatorname{Inf}_i(f(\omega)) := \mathbb{E}_p(|\nabla_i f(\omega)|),$$

que é o mesmo que $\operatorname{Inf}_i(f(\omega)) = \mathbb{P}_p(f(\omega) \neq f(\operatorname{Flip}_i(\omega))).$

Como provar que $(f_k)_{k\in\mathbb{N}}$ passa por sharp threshold

Seja $f:\Omega \rightarrow \{0,1\},$ então defina:

$$\nabla_i f(\omega) := f(\omega) - f(\operatorname{Flip}_i(\omega)),$$

onde

$$\mathrm{Flip}_i(\omega)_j = \begin{cases} \omega_j & \text{ para } j \neq i \\ 1 - \omega_j & \text{ para } j = i. \end{cases}$$

Além disso, defina a **influência** do bit i como

$$\operatorname{Inf}_i(f(\omega)) := \mathbb{E}_p(|\nabla_i f(\omega)|),$$

que é o mesmo que $\mathrm{Inf}_i(f(\omega)) = \mathbb{P}_p(f(\omega) \neq f(\mathrm{Flip}_i(\omega))).$

Nesse sentido, o primeiro resultado importante é enunciado através do teorema a seguir.

Teorema 1 (Fórmula de Russo-Margulis)

Para $f: \Omega \to \{0,1\}$ crescente, vale:

$$\frac{d}{dp} \mathbb{E}_p(f(\omega)) = F'(p) = \sum_{i \in [n]} \operatorname{Inf}_i(f(\omega)).$$

Fórmula de Russo-Margulis

Um resultado imediado do Teorema 1 é o de que, para $f(\omega)$ crescente, F(p) é crescente e diferenciável.

Além disso, suponha por um instante que seja possível provar cotas do tipo

$$F'(p) \ge C \, \mathbb{V}_p(f(\omega)),$$
 (2)

para uma constante C "grande" e $\mathbb{V}_p(f(\omega)) = F(p) (1 - F(p))$. Então vale que, reescrevendo a Equação 2,

$$\left(\frac{F'(p)}{F(p)\left(1 - F(p)\right)}\right) = \left(\ln \frac{F(p)}{1 - F(p)}\right)' \ge C. \tag{3}$$

Fórmula de Russo-Margulis

Um resultado imediado do Teorema 1 é o de que, para $f(\omega)$ crescente, F(p) é crescente e diferenciável.

Além disso, suponha por um instante que seja possível provar cotas do tipo

$$F'(p) \ge C \, \mathbb{V}_p(f(\omega)),$$
 (2)

para uma constante C "grande" e $\mathbb{V}_p(f(\omega)) = F(p) (1 - F(p))$. Então vale que, reescrevendo a Equação 2,

$$\left(\frac{F'(p)}{F(p)\left(1 - F(p)\right)}\right) = \left(\ln\frac{F(p)}{1 - F(p)}\right)' \ge C.$$
(3)

Agora, tome ptal que $F(p)=\frac{1}{2}.$ Então, para $\delta>0$ e integrando a Equação 3 entre $(p-\delta)$ e p, vale que

$$F(p-\delta) \le e^{-\delta C}$$
.

Analogamente, integrando a Equação 3 entre p e $(p + \delta)$, obtemos

$$F(p+\delta) > 1 - e^{-\delta C}$$
.

Ou seja, a sequência $(f_k)_{k\in\mathbb{N}}$ associada passa por *sharp threshold*.

Inequação de sharp threshold

Teorema 2 (Talagrand)

Existe constante c>0 tal que, $\forall p\in[0,1]$ e $n\in\mathbb{N}$, vale que, para qualquer função Booleana crescente $f:\Omega\to\{0,1\}$,

$$\mathbb{V}_p(f(\omega)) \le c \ln \frac{1}{p(1-p)} \sum_{i \in [n]} \frac{\operatorname{Inf}_i(f(\omega))}{\ln \frac{1}{\operatorname{Inf}_i(f(\omega))}}.$$

Inequação de sharp threshold

Teorema 2 (Talagrand)

Existe constante c>0 tal que, $\forall p\in[0,1]$ e $n\in\mathbb{N}$, vale que, para qualquer função Booleana crescente $f:\Omega\to\{0,1\}$,

$$\mathbb{V}_p(f(\omega)) \le c \ln \frac{1}{p(1-p)} \sum_{i \in [n]} \frac{\operatorname{Inf}_i(f(\omega))}{\ln \frac{1}{\operatorname{Inf}_i(f(\omega))}}.$$

Note que, do Teorema 2, para mostrar que a sequência associada $(f_k)_{k\in\mathbb{N}}$ passa por sharp threshold, temos que mostrar que $\left(c\ln\frac{1}{p(1-p)}\right)^{-1}\ln\frac{1}{\max(\mathrm{Inf}_i(f(\omega)))}$ é "grande"; i.e., $\forall i\in[n]$, $\mathrm{Inf}_i(f(\omega))$ é "pequeno".

Porém, provar que todas as *influências* são "pequenas" pode ser o verdadeiro desafio.

Desigualdade de O'Donnel-Saks-Schramm-Servedio

Alternativamente, podemos utilizar a ideia de *algoritmo* para conseguir cotas como a da Equação 2.

Definição 2 (Algoritmo)

Dados uma n-upla $x=(x_1,\cdots,x_n)$ e um $t\leq n$, com $t\in\mathbb{N}$, defina $x_{[t]}:=(x_1,\cdots,x_t)$ e $\omega_{x_{[t]}}:=(\omega_{x_1},\cdots,\omega_{x_t})$. Um algoritmo \mathbf{T} é uma tripla $(i_1,\psi_t,t\leq n)$ que toma $\omega\in\Omega$ como entrada e devolve uma sequência ordenada (i_1,\cdots,i_n) construída indutivamente da seguinte forma: para $2\leq t\leq n$,

$$i_t = \psi_t(i_{[t-1]}, \omega_{i_{[t-1]}}) \in [n] \setminus \{i_1, \dots, i_{t-1}\};$$

onde ψ_t é interpretada como a regra de decisão no tempo t (ψ_t toma, como argumentos, a localização e o valor dos bits para os primeiros (t-1) passos do processo de indução, e, então, decide qual o próximo bit que será consultado). Aqui, note que a primeira coordenada i_1 é determinística. Por fim, para $f:\Omega\to\{0,1\}$, defina:

$$\tau(\omega) = \tau_{f,\mathbf{T}}(\omega) := \min\{t \ge 1 : \forall x \in \Omega, x_{i_{[t]}} = \omega_{i_{[t]}} \implies f(x) = f(\omega)\}.$$

Desigualdade de O'Donnel-Saks-Schramm-Servedio

Teorema 3 (Desiguladade de OSSS)

Seja $p \in [0,1]$ e $n \in \mathbb{N}$. Fixe uma função Booleana crescente $f:\Omega \longrightarrow \{0,1\}$ e um algoritmo \mathbf{T} ; então vale que:

$$\mathbb{V}_p(f(\omega)) \le p(1-p) \sum_{i \in [n]} \delta_i(\mathbf{T}) \operatorname{Inf}_i(f(\omega)),$$

onde $\delta_i(\mathbf{T}) = \delta_i(f, \mathbf{T}) := \mathbb{P}_p(\exists t \leq \tau(\omega) : i_t = i)$ é chamado de revelação de f para o algoritmo \mathbf{T} e o bit i.

Desigualdade de O'Donnel-Saks-Schramm-Servedio

Teorema 3 (Desiguladade de OSSS)

Seja $p \in [0,1]$ e $n \in \mathbb{N}$. Fixe uma função Booleana crescente $f:\Omega \longrightarrow \{0,1\}$ e um algoritmo \mathbf{T} ; então vale que:

$$\mathbb{V}_p(f(\omega)) \le p(1-p) \sum_{i \in [n]} \delta_i(\mathbf{T}) \operatorname{Inf}_i(f(\omega)),$$

onde $\delta_i(\mathbf{T}) = \delta_i(f, \mathbf{T}) := \mathbb{P}_p(\exists t \leq \tau(\omega) : i_t = i)$ é chamado de revelação de f para o algoritmo \mathbf{T} e o bit i.

Perceba que, sobre a Equação 2, se todas as revelações $\delta_i(\mathbf{T})$ forem pequenas; ou seja, se existe um algoritmo que determina de forma completa $f(\omega)$, mas revela "poucos" bits, então $(f_k)_{k\in\mathbb{N}}$ passa por *sharp threshold*.

FAZER COMENTÁRIOS ADICIONAIS SOBRE, TALVEZ, A INTERPRETAÇÃO.

Seja $\mathbb{L}^d = (\mathbb{Z}^d, \mathbb{E}^d)$ reticulado tal que \mathbb{Z}^d é conjunto de vértices e $\mathbb{E}^d = \{(x,y) \in \mathbb{Z}^d \times \mathbb{Z}^d : \delta(x,y) = 1\}$ é conjunto de elos, onde $\delta(x,y) = \sum_{i=1}^d |x_i - y_i|$.

Seja $\mathbb{L}^d = (\mathbb{Z}^d, \mathbb{E}^d)$ reticulado tal que \mathbb{Z}^d é conjunto de vértices e $\mathbb{E}^d = \{(x,y) \in \mathbb{Z}^d \times \mathbb{Z}^d : \delta(x,y) = 1\}$ é conjunto de elos, onde $\delta(x,y) = \sum_{i=1}^d |x_i - y_i|$.

O espaço de probabilidade $(\Omega, \mathcal{F}, \mathbb{P}_p)$ é definido por $\Omega = \{0, 1\}^{|\mathcal{E}^d|}, \mathcal{F} = \sigma(\text{conjuntos cilíndricos})$ e \mathbb{P}_p é a medida produto Bernoulli $\prod_{e \in \mathcal{E}^d} \mu_e$, tal que $\mu_e(\omega_e = 1) = p$ e $\mu_e(\omega_e = 0) = 1 - p$.

Seja $\mathbb{L}^d = (\mathbb{Z}^d, \mathbb{E}^d)$ reticulado tal que \mathbb{Z}^d é conjunto de vértices e $\mathbb{E}^d = \{(x,y) \in \mathbb{Z}^d \times \mathbb{Z}^d : \delta(x,y) = 1\}$ é conjunto de elos, onde $\delta(x,y) = \sum_{i=1}^d |x_i - y_i|$.

O espaço de probabilidade $(\Omega, \mathcal{F}, \mathbb{P}_p)$ é definido por $\Omega = \{0, 1\}^{|\mathcal{E}^d|}, \mathcal{F} = \sigma(\text{conjuntos cilíndricos})$ e \mathbb{P}_p é a medida produto Bernoulli $\prod_{e \in \mathcal{E}^d} \mu_e$, tal que $\mu_e(\omega_e = 1) = p$ e $\mu_e(\omega_e = 0) = 1 - p$.

Figura 2: $\omega \in \Omega$ em \mathbb{L}^2 com p = 0.25.

Seja $\mathbb{L}^d = (\mathbb{Z}^d, \mathbb{E}^d)$ reticulado tal que \mathbb{Z}^d é conjunto de vértices e $\mathbb{E}^d = \{(x,y) \in \mathbb{Z}^d \times \mathbb{Z}^d : \delta(x,y) = 1\}$ é conjunto de elos, onde $\delta(x,y) = \sum_{i=1}^d |x_i - y_i|$.

O espaço de probabilidade $(\Omega, \mathcal{F}, \mathbb{P}_p)$ é definido por $\Omega = \{0, 1\}^{|\mathcal{E}^d|}, \mathcal{F} = \sigma(\text{conjuntos cilíndricos})$ e \mathbb{P}_p é a medida produto Bernoulli $\prod_{e \in \mathcal{E}^d} \mu_e$, tal que $\mu_e(\omega_e = 1) = p$ e $\mu_e(\omega_e = 0) = 1 - p$.

Figura 3: $\omega \in \Omega$ em \mathbb{L}^2 com p = 0.50.

Seja $\mathbb{L}^d = (\mathbb{Z}^d, \mathbb{E}^d)$ reticulado tal que \mathbb{Z}^d é conjunto de vértices e $\mathbb{E}^d = \{(x,y) \in \mathbb{Z}^d \times \mathbb{Z}^d : \delta(x,y) = 1\}$ é conjunto de elos, onde $\delta(x,y) = \sum_{i=1}^d |x_i - y_i|$.

O espaço de probabilidade $(\Omega, \mathcal{F}, \mathbb{P}_p)$ é definido por $\Omega = \{0, 1\}^{|\mathbf{E}^d|}, \mathcal{F} = \sigma(\text{conjuntos cilíndricos})$ e \mathbb{P}_p é a medida produto Bernoulli $\prod_{e \in \mathbf{E}^d} \mu_e$, tal que $\mu_e(\omega_e = 1) = p$ e $\mu_e(\omega_e = 0) = 1 - p$.

Figura 4: $\omega \in \Omega$ em \mathbb{L}^2 com p = 0.75.

Perceba, porém que, se considerarmos funções Booleanas do tipo $f: \bar{\Omega} \to \{0,1\}$, com $\bar{\Omega} \subset \Omega$ finito, então resultados como os dos Teoremas 2 e 3 ainda valem.

Notações e definições:

• Sejam $x, y \in \mathbb{Z}^d$, então x está conectado a y se existe caminho de elos abertos $(e \in \mathbb{E}^d$ "aberto" é o mesmo que $\omega_e = 1$) que conecta x a y (notação: $x \leftrightarrow y$).

- Sejam $x, y \in \mathbb{Z}^d$, então x está conectado a y se existe caminho de elos abertos $(e \in E^d$ "aberto" é o mesmo que $\omega_e = 1$) que conecta x a y (notação: $x \leftrightarrow y$).
- Dado $x \in \mathbb{Z}^d$, $C_x(\omega) = \{y \in \mathbb{Z}^d : x \leftrightarrow y\}$ é dito cluster de x. Nesse sentido, $\{\omega \in \Omega : |C_0(\omega)| = +\infty\}$ é chamado de evento **percolar** (notação: $\{0 \leftrightarrow +\infty\}$).

- Sejam $x, y \in \mathbb{Z}^d$, então x está conectado a y se existe caminho de elos abertos $(e \in E^d$ "aberto" é o mesmo que $\omega_e = 1$) que conecta x a y (notação: $x \leftrightarrow y$).
- Dado $x \in \mathbb{Z}^d$, $C_x(\omega) = \{y \in \mathbb{Z}^d : x \leftrightarrow y\}$ é dito cluster de x. Nesse sentido, $\{\omega \in \Omega : |C_0(\omega)| = +\infty\}$ é chamado de evento **percolar** (notação: $\{0 \leftrightarrow +\infty\}$).
- Defina $\Lambda_n := [-n, n]^d$ caixa d-dimensional de lado 2n e $\partial \Lambda_n := \Lambda_n \setminus \Lambda_{n-1}$; ou seja, $\partial \Lambda_n$ é a fronteira de Λ_n .

- Sejam $x, y \in \mathbb{Z}^d$, então x está conectado a y se existe caminho de elos abertos $(e \in E^d$ "aberto" é o mesmo que $\omega_e = 1$) que conecta x a y (notação: $x \leftrightarrow y$).
- Dado $x \in \mathbb{Z}^d$, $C_x(\omega) = \{y \in \mathbb{Z}^d : x \leftrightarrow y\}$ é dito cluster de x. Nesse sentido, $\{\omega \in \Omega : |C_0(\omega)| = +\infty\}$ é chamado de evento **percolar** (notação: $\{0 \leftrightarrow +\infty\}$).
- Defina $\Lambda_n := [-n, n]^d$ caixa d-dimensional de lado $2n \in \partial \Lambda_n := \Lambda_n \setminus \Lambda_{n-1}$; ou seja, $\partial \Lambda_n$ é a fronteira de Λ_n .
- Defina $\theta(p) := \mathbb{P}_p(|C_0(\omega)| = +\infty)$.

- Sejam $x, y \in \mathbb{Z}^d$, então x está conectado a y se existe caminho de elos abertos $(e \in E^d$ "aberto" é o mesmo que $\omega_e = 1$) que conecta x a y (notação: $x \leftrightarrow y$).
- Dado $x \in \mathbb{Z}^d$, $C_x(\omega) = \{y \in \mathbb{Z}^d : x \leftrightarrow y\}$ é dito cluster de x. Nesse sentido, $\{\omega \in \Omega : |C_0(\omega)| = +\infty\}$ é chamado de evento **percolar** (notação: $\{0 \leftrightarrow +\infty\}$).
- Defina $\Lambda_n := [-n, n]^d$ caixa d-dimensional de lado $2n \in \partial \Lambda_n := \Lambda_n \setminus \Lambda_{n-1}$; ou seia, $\partial \Lambda_n$ é a fronteira de Λ_n .
- Defina $\theta(p) := \mathbb{P}_p(|C_0(\omega)| = +\infty)$.
- Defina $p_c(d) := \sup\{p : \theta(p) = 0\}.$

- Sejam $x, y \in \mathbb{Z}^d$, então x está conectado a y se existe caminho de elos abertos $(e \in \mathbb{E}^d$ "aberto" é o mesmo que $\omega_e = 1$) que conecta x a y (notação: $x \leftrightarrow y$).
- Dado $x \in \mathbb{Z}^d$, $C_x(\omega) = \{y \in \mathbb{Z}^d : x \leftrightarrow y\}$ é dito cluster de x. Nesse sentido, $\{\omega \in \Omega : |C_0(\omega)| = +\infty\}$ é chamado de evento **percolar** (notação: $\{0 \leftrightarrow +\infty\}$).
- Defina $\Lambda_n := [-n, n]^d$ caixa d-dimensional de lado $2n \in \partial \Lambda_n := \Lambda_n \setminus \Lambda_{n-1}$; ou seia, $\partial \Lambda_n$ é a fronteira de Λ_n .
- Defina $\theta(p) := \mathbb{P}_p(|C_0(\omega)| = +\infty)$.
- Defina $p_c(d) := \sup\{p : \theta(p) = 0\}.$
- Para $n, m \in \mathbb{Z}$, defina a caixa $R(n, m) := [0, n] \times [0, m]$ e os eventos $\mathcal{H}(n, m) := \{\exists \text{ cruzamento horizontal em } R(n, m)\} \text{ e } \mathcal{V}(n, m) := \{\exists \text{ cruzamento vertical em } R(n, m)\}.$

- Sejam $x, y \in \mathbb{Z}^d$, então x está conectado a y se existe caminho de elos abertos $(e \in \mathbb{E}^d$ "aberto" é o mesmo que $\omega_e = 1$) que conecta x a y (notação: $x \leftrightarrow y$).
- Dado $x \in \mathbb{Z}^d$, $C_x(\omega) = \{y \in \mathbb{Z}^d : x \leftrightarrow y\}$ é dito cluster de x. Nesse sentido, $\{\omega \in \Omega : |C_0(\omega)| = +\infty\}$ é chamado de evento **percolar** (notação: $\{0 \leftrightarrow +\infty\}$).
- Defina $\Lambda_n := [-n, n]^d$ caixa d-dimensional de lado $2n \in \partial \Lambda_n := \Lambda_n \setminus \Lambda_{n-1}$; ou seja, $\partial \Lambda_n$ é a fronteira de Λ_n .
- Defina $\theta(p) := \mathbb{P}_p(|C_0(\omega)| = +\infty)$.
- Defina $p_c(d) := \sup\{p : \theta(p) = 0\}.$
- Para $n, m \in \mathbb{Z}$, defina a caixa $R(n, m) := [0, n] \times [0, m]$ e os eventos $\mathcal{H}(n, m) := \{\exists \text{ cruzamento horizontal em } R(n, m)\} \text{ e } \mathcal{V}(n, m) := \{\exists \text{ cruzamento vertical em } R(n, m)\}).$
- Defina um reticulado dual $(\mathbb{L}^2)^* = ((\mathbb{Z}^2)^*, (\mathbb{E}^2)^*)$ onde $(\mathbb{Z}^2)^* = \mathbb{Z}^2 + (\frac{1}{2}, \frac{1}{2})$ é conjunto de vértices e $(\mathbb{E}^2)^* = \{(x^*, y^*) \in (\mathbb{Z}^2)^* \times (\mathbb{Z}^2)^* : \delta(x^*, y^*) = 1\}$ é conjunto de elos. Além disso, para cada elo $e \in \mathbb{E}^2$, denote por $e^* \in (\mathbb{E}^2)^*$ o elo no reticulado dual que o cruza; por fim, defina $\omega_{e^*}^* := 1 \omega_e$.

Teorema 4 (Kesten, 1980)

O ponto crítico para percolação Bernoulli em \mathbb{L}^2 é $\frac{1}{2}$.

Teorema 4 (Kesten, 1980)

O ponto crítico para percolação Bernoulli em \mathbb{L}^2 é $\frac{1}{2}.$

 ${\cal O}$ Teorema 4 será demonstrado através de resultados parciais.

Proposição 1

Para todo $n \in \mathbb{N}$, $\mathbb{P}_{\frac{1}{2}}(\mathcal{H}(n+1,n)) = \frac{1}{2}$.

Teorema 4 (Kesten, 1980)

O ponto crítico para percolação Bernoulli em \mathbb{L}^2 é $\frac{1}{2}$.

O Teorema 4 será demonstrado através de resultados parciais.

Proposição 1

Para todo $n \in \mathbb{N}$, $\mathbb{P}_{\frac{1}{n}}(\mathcal{H}(n+1,n)) = \frac{1}{2}$.

Demonstração:

Comece observando que, pela definição do reticulado dual, se $\omega \sim \mathbb{P}_p$, então $\omega^* \sim \mathbb{P}_{1-p}$. Em particular, se $p = \frac{1}{2}$, então ω e ω^* têm a mesma distribuição. Assim,

$$\mathbb{P}_{\frac{1}{2}}(\mathcal{H}(n+1,n)) = 1 - \mathbb{P}_{\frac{1}{2}}(\mathcal{H}(n+1,n)^c)$$

$$\begin{split} &=1-\mathbb{P}_{\frac{1}{2}}\left(\mathcal{V}^{\star}\left(\left[\frac{1}{2},n+\frac{1}{2}\right]\times\left[-\frac{1}{2},n+\frac{1}{2}\right]\right)\right)\\ &=1-\mathbb{P}_{\frac{1}{2}}(\mathcal{H}(n+1,n)), \text{ por rotação e utilizando o fato de que }p=\frac{1}{2}. \end{split}$$

Logo, $\mathbb{P}_{\frac{1}{2}}(\mathcal{H}(n+1,n)) = \frac{1}{2}, \forall n \in \mathbb{N}.$

Corolário 1

Para todo $n \in \mathbb{N}$, $\mathbb{P}_{\frac{1}{2}}(\mathcal{H}(n,n)) \geq \frac{1}{2}$.

Corolário 1

Para todo $n \in \mathbb{N}$, $\mathbb{P}_{\frac{1}{2}}(\mathcal{H}(n,n)) \ge \frac{1}{2}$.

Demonstração:

Como $\mathcal{H}(n,n)\supset\mathcal{H}(n+1,n)$, pela Proposição 1, $\mathbb{P}_{\frac{1}{2}}(\mathcal{H}(n,n))\geq\mathbb{P}_{\frac{1}{2}}(\mathcal{H}(n+1,n))=\frac{1}{2}.$

Corolário 1

Para todo $n \in \mathbb{N}$, $\mathbb{P}_{\frac{1}{2}}(\mathcal{H}(n,n)) \ge \frac{1}{2}$.

Demonstração:

Como $\mathcal{H}(n,n) \supset \mathcal{H}(n+1,n)$, pela Proposição 1, $\mathbb{P}_{\frac{1}{2}}(\mathcal{H}(n,n)) \geq \mathbb{P}_{\frac{1}{2}}(\mathcal{H}(n+1,n)) = \frac{1}{2}$.

Proposição 2

Para qualquer $\rho > 0$, existe $c = c(\rho) > 0$ tal que, $\forall n \ge 1$,

$$c \leq \mathbb{P}_{\frac{1}{2}}(\mathcal{H}(\rho n, n)) \leq 1 - c.$$

Para demonstrar a Proposição 2, é suficiente determinar a cota inferior para a probabilidade desejada para algum $\rho=1+\epsilon>1$, com $\epsilon>0$.

Corolário 1

Para todo $n \in \mathbb{N}$, $\mathbb{P}_{\frac{1}{2}}(\mathcal{H}(n,n)) \geq \frac{1}{2}$.

Demonstração:

Como $\mathcal{H}(n,n) \supset \mathcal{H}(n+1,n)$, pela Proposição 1, $\mathbb{P}_{\frac{1}{2}}(\mathcal{H}(n,n)) \geq \mathbb{P}_{\frac{1}{2}}(\mathcal{H}(n+1,n)) = \frac{1}{2}$.

Proposição 2

Para qualquer $\rho > 0$, existe $c = c(\rho) > 0$ tal que, $\forall n \geq 1$,

$$c \le \mathbb{P}_{\frac{1}{2}}(\mathcal{H}(\rho n, n)) \le 1 - c.$$

Para demonstrar a Proposição 2, é suficiente determinar a cota inferior para a probabilidade desejada para algum $\rho=1+\epsilon>1$, com $\epsilon>0$.

Demonstração (Proposição 2):

Para $\rho=\frac{3}{2}$, queremos determinar a cota inferior para $\mathbb{P}_{\frac{1}{2}}(\mathcal{V}(2n,3n))$. Nesse caso, considere as componentes representadas através da Figura 5.

Figura 5: Caixas R, S e S' com *eventos* de interesse (esq.) e conjunto de vértices $V(\gamma)$ (dir.).

Figura 5: Caixas R, S e S' com *eventos* de interesse (esq.) e conjunto de vértices $V(\gamma)$ (dir.).

Assim, se Γ é o cruza. horizontal em S mais alto, temos que

$$\begin{split} \mathbb{P}_{\frac{1}{2}}(B) &= \sum_{\gamma} \mathbb{P}_{\frac{1}{2}}(B \,|\, A' \cap \{\Gamma = \gamma\}) \cdot \mathbb{P}_{\frac{1}{2}}(A' \cap \{\Gamma = \gamma\}), \text{ já que } B \subset A' \\ &\geq \sum_{\gamma} \mathbb{P}_{\frac{1}{2}}(\gamma \leftrightarrow l \text{ em V}(\gamma) \,|\, A' \cap \{\Gamma = \gamma\}) \cdot \mathbb{P}_{\frac{1}{2}}(A' \cap \{\Gamma = \gamma\}), \text{ incl. de eventos} \end{split}$$

$$\begin{split} \mathbb{P}_{\frac{1}{2}}(B) &\geq \sum_{\gamma} \mathbb{P}_{\frac{1}{2}}(\gamma \leftrightarrow l \text{ em V}(\gamma)) \cdot \mathbb{P}_{\frac{1}{2}}(A' \cap \{\Gamma = \gamma\}), \text{ por independência} \\ &\stackrel{\square}{\geq} \frac{1}{4} \sum_{\gamma} \mathbb{P}_{\frac{1}{2}}(A' \cap \{\Gamma = \gamma\}) = \frac{1}{4} \; \mathbb{P}_{\frac{1}{2}}(A') \stackrel{\text{Cor. 1}}{\geq} \frac{1}{8}, \end{split}$$

onde " \square " vale, pois

$$\begin{split} \frac{1}{2} \stackrel{\text{Cor. 1}}{\leq} \mathbb{P}_{\frac{1}{2}}(\{\exists \text{ cruza. vertical em S}'\}) &\leq \mathbb{P}_{\frac{1}{2}}(\{\gamma \leftrightarrow l \text{ em V}(\gamma)\} \cup \{\sigma(\gamma) \leftrightarrow l \text{ em V}(\gamma)\}) \\ &\leq 2 \ \mathbb{P}_{\frac{1}{2}}(\gamma \leftrightarrow l \text{ em V}(\gamma)), \text{ por simetria;} \end{split}$$

o que implica que $\mathbb{P}_{\frac{1}{2}}(\gamma \leftrightarrow l \text{ em V}(\gamma)) \geq \frac{1}{4}$.

$$\begin{split} \mathbb{P}_{\frac{1}{2}}(B) &\geq \sum_{\gamma} \mathbb{P}_{\frac{1}{2}}(\gamma \leftrightarrow l \text{ em V}(\gamma)) \cdot \mathbb{P}_{\frac{1}{2}}(A' \cap \{\Gamma = \gamma\}), \text{ por independência} \\ &\stackrel{\square}{\geq} \frac{1}{4} \sum \mathbb{P}_{\frac{1}{2}}(A' \cap \{\Gamma = \gamma\}) = \frac{1}{4} \; \mathbb{P}_{\frac{1}{2}}(A') \stackrel{\text{Cor. 1}}{\geq} \frac{1}{8}, \end{split}$$

onde " \square " vale, pois

$$\begin{split} \frac{1}{2} \stackrel{\text{Cor. 1}}{\leq} \mathbb{P}_{\frac{1}{2}}(\{\exists \text{ cruza. vertical em S}'\}) &\leq \mathbb{P}_{\frac{1}{2}}(\{\gamma \leftrightarrow l \text{ em V}(\gamma)\} \cup \{\sigma(\gamma) \leftrightarrow l \text{ em V}(\gamma)\}) \\ &\leq 2 \ \mathbb{P}_{\frac{1}{2}}(\gamma \leftrightarrow l \text{ em V}(\gamma)), \text{ por simetria;} \end{split}$$

o que implica que $\mathbb{P}_{\frac{1}{2}}(\gamma \leftrightarrow l \text{ em V}(\gamma)) \geq \frac{1}{4}$.

Finalmente, note que para $\mathcal{V}(2n,3n)$ acontecer, é suficiente que A,B e B' aconteçam, onde $B'=\{\exists \text{ cruza. horizontal em S que está conectado a } [-n,n]\times\{2n\} \text{ em } [-n,n]\times[0,2n]\}$. Aqui, observe que, por simetria, $\mathbb{P}_{\frac{1}{n}}(B')=\mathbb{P}_{\frac{1}{n}}(B)\geq \frac{1}{8}$. Dessa forma, vale que

$$\begin{split} \mathbb{P}_{\frac{1}{2}}(\mathcal{V}(2n,3n)) &\geq \mathbb{P}_{\frac{1}{2}}(A \cap B \cap B'), \text{ por inclusão de eventos} \\ &\overset{\text{FKG}}{\geq} \mathbb{P}_{\frac{1}{2}}(A) \cdot \mathbb{P}_{\frac{1}{2}}(B) \cdot \mathbb{P}_{\frac{1}{2}}(B') \geq \frac{1}{128}. \end{split}$$

Corolário 2

Existe $\alpha > 0$ tal que, para todo $n \ge 1$, $\mathbb{P}_{\frac{1}{2}}(0 \leftrightarrow \partial \Lambda_n) \le n^{-\alpha}$. Em particular $p_c \ge \frac{1}{2}$.

Corolário 2

Existe $\alpha > 0$ tal que, para todo $n \ge 1$, $\mathbb{P}_{\frac{1}{2}}(0 \leftrightarrow \partial \Lambda_n) \le n^{-\alpha}$. Em particular $p_c \ge \frac{1}{2}$.

Demonstração:

Denote por $A_k = \{\partial \Lambda_k \leftrightarrow \partial \Lambda_{2k}\}$. Agora, defina a sequência (B_i) , t.q. $i \in \{1, \dots, 4\}$, para $B_i = \{\exists \text{ cruzamento no lado mais fácil no retângulo } R_i\}$; onde $R_1 = [-2k, 2k] \times [k, 2k]$, $R_2 = [k, 2k] \times [-2k, 2k]$, $R_3 = [-2k, 2k] \times [-2k, -k]$ e $R_4 = [-2k, k] \times [-2k, 2k]$.

Figura 6: Caixas Λ_k e Λ_{2k} (linha sólida) com ocorrência do evento A_k e caixas R_i , com $i \in \{1, \dots, 4\}$ (linha tracejada).

Perceba que, nesse caso, $A_k \subset \bigcup_{i=1}^4 B_i$; logo,

$$\mathbb{P}_{\frac{1}{2}}(A_k) \le 1 - \mathbb{P}_{\frac{1}{2}}\left(\bigcap_{i=1}^4 {B_i}^c\right) \le 1 - \mathbb{P}_{\frac{1}{2}}({B_1}^c)^4, \text{ por rotação e FKG}$$
$$\le 1 - c^4 =: c_1 < 1, \text{ pela Proposição 2}.$$

Perceba que, nesse caso, $A_k \subset \bigcup_{i=1}^4 B_i$; logo,

$$\mathbb{P}_{\frac{1}{2}}(A_k) \le 1 - \mathbb{P}_{\frac{1}{2}}\left(\bigcap_{i=1}^4 {B_i}^c\right) \le 1 - \mathbb{P}_{\frac{1}{2}}({B_1}^c)^4, \text{ por rotação e FKG}$$
$$\le 1 - c^4 =: c_1 < 1, \text{ pela Proposição 2}.$$

Agora, seja A a intersecção dos eventos A_k , tal que k é da forma 2^m , com $m \in \mathbb{N}$, e $k \leq n$. Assim, $\{0 \leftrightarrow \partial \Lambda_n\} \subset A$; dessa forma,

$$\begin{split} \mathbb{P}_{\frac{1}{2}}(0 \leftrightarrow \partial \Lambda_n) &\leq \mathbb{P}_{\frac{1}{2}}(A) = \mathbb{P}_{\frac{1}{2}}\left[\bigcap_k (\partial \Lambda_k \leftrightarrow \partial \Lambda_{2k})\right] \\ &= \prod_k \mathbb{P}_{\frac{1}{2}}(\partial \Lambda_k \leftrightarrow \partial \Lambda_{2k}), \text{ por independência} \\ &\leq c_1^{\lfloor \log_2(n) \rfloor} \leq n^{-\alpha}, \text{ com } \alpha \text{ pequeno o suficiente e } n \geq 1. \end{split}$$

Perceba que, nesse caso, $A_k \subset \bigcup_{i=1}^4 B_i$; logo,

 $\forall x \in \mathbb{Z}^2$; o que implica que $p_c \geq \frac{1}{2}$.

$$\begin{split} \mathbb{P}_{\frac{1}{2}}(A_k) &\leq 1 - \mathbb{P}_{\frac{1}{2}}\left(\bigcap_{i=1}^4 {B_i}^c\right) \leq 1 - \mathbb{P}_{\frac{1}{2}}({B_1}^c)^4, \text{ por rotação e FKG} \\ &\leq 1 - c^4 =: c_1 < 1, \text{ pela Proposição 2.} \end{split}$$

Agora, seja A a intersecção dos eventos A_k , tal que k é da forma 2^m , com $m \in \mathbb{N}$, e $k \leq n$. Assim, $\{0 \leftrightarrow \partial \Lambda_n\} \subset A$; dessa forma,

$$\begin{split} \mathbb{P}_{\frac{1}{2}}(0 \leftrightarrow \partial \Lambda_n) &\leq \mathbb{P}_{\frac{1}{2}}(A) = \mathbb{P}_{\frac{1}{2}} \left[\bigcap_k (\partial \Lambda_k \leftrightarrow \partial \Lambda_{2k}) \right] \\ &= \prod_k \mathbb{P}_{\frac{1}{2}}(\partial \Lambda_k \leftrightarrow \partial \Lambda_{2k}), \text{ por independência} \\ &\leq c_1^{\lfloor \log_2(n) \rfloor} \leq n^{-\alpha}, \text{ com } \alpha \text{ pequeno o suficiente e } n \geq 1. \end{split}$$

Por fim, para mostrar que $p_c \geq \frac{1}{2}$, basta notar que se $n \to +\infty$, então $\mathbb{P}_{\frac{1}{2}}(\{\omega \in \Omega : |C_0(\omega)| = +\infty\}) = 0$. Assim, como existe uma quantidade enumerável de vértices $x \in \mathbb{Z}^2$, por invariância por translação, temos $\mathbb{P}_{\frac{1}{3}}(\{\omega \in \Omega : |C_x(\omega)| = +\infty\}) = 0$,

Proposição 3

Para qualquer $p>\frac{1}{2},$ existe $\beta=\beta(p)>0,$ tal que

$$\mathbb{P}_p(\mathcal{H}(2n,n)) \ge 1 - \frac{1}{\beta}n^{-\beta}.$$

Proposição 3

Para qualquer $p > \frac{1}{2}$, existe $\beta = \beta(p) > 0$, tal que

$$\mathbb{P}_p(\mathcal{H}(2n,n)) \ge 1 - \frac{1}{\beta}n^{-\beta}.$$

Demonstração:

Comece por definir a função Booleana $f(\omega) := \mathbb{I}_{\mathcal{H}(2n,n)}(\omega)$. Fixe um elo e em R(2n,n) e veja que se $\nabla_e f(\omega) \neq 0$, então existe um caminho aberto na rede dual que passa pelo elo e^* e cruza (a menos de e^*) verticalmente uma caixa do tipo $R^* = \left[\frac{1}{2}, 2n - \frac{1}{2}\right] \times \left[-\frac{1}{2}, n + \frac{1}{2}\right]$; nesse caso, pelo menos um dos dois "braços" de elos

tem tamanho maior ou igual a $\frac{n}{2}$.

abertos na rede dual que se originam em e^* Figura 7: Caixas R = R(2n, n) e R^* para um elo fixado e, tal que $\nabla_e f(\omega) \neq 0$.

Como os estados dos elos de ω^{\star} são determinados, de maneira independente, seguindo uma distribuição Bernoulli de parâmetro 1-p, o Corolário 2 nos dá que, para $p>\frac{1}{2},$

$$\mathbb{P}_p(f(\omega) \neq f(\mathrm{Flip}_e(\omega))) = \mathrm{Inf}_e(f(\omega)) \leq 2 \, \mathbb{P}_{1-p} \left(0 \leftrightarrow \partial \Lambda_{\frac{n}{2}} \right), \text{ por inclusão de eventos}$$

$$\leq 2 \, \mathbb{P}_{\frac{1}{2}} \left(0 \leftrightarrow \partial \Lambda_{\frac{n}{2}} \right), \text{ já que } 1 - p < \frac{1}{2}$$

$$\leq \frac{1}{N}, \text{ onde } N = \frac{1}{2} \left(\frac{n}{2} \right)^{\alpha}.$$

Como os estados dos elos de ω^* são determinados, de maneira independente, seguindo uma distribuição Bernoulli de parâmetro 1-p, o Corolário 2 nos dá que, para $p>\frac{1}{2}$,

$$\mathbb{P}_p(f(\omega) \neq f(\operatorname{Flip}_e(\omega))) = \operatorname{Inf}_e(f(\omega)) \leq 2 \mathbb{P}_{1-p} \left(0 \leftrightarrow \partial \Lambda_{\frac{n}{2}} \right), \text{ por inclusão de eventos}$$

$$\leq 2 \mathbb{P}_{\frac{1}{2}} \left(0 \leftrightarrow \partial \Lambda_{\frac{n}{2}} \right), \text{ já que } 1 - p < \frac{1}{2}$$

$$\leq \frac{1}{N}, \text{ onde } N = \frac{1}{2} \left(\frac{n}{2} \right)^{\alpha}.$$

O que acabamos de ver é que, para todo $e \in R(2n, n)$, $\operatorname{Inf}_e(f(\omega)) \leq \frac{1}{N}$; o que, pelo Teorema 2, implica em dizer que, para $p > \frac{1}{2}$,

(4)

$$F'(p) \ge c' \ln(N) \, \mathbb{V}_p(f(\omega)), \text{ onde } c' = \left(c \ln \frac{1}{p(1-p)}\right)^{-1}.$$

Assim, integrando a Equação 4 entre $\frac{1}{2}$ e p, obtemos

$$F(p) \ge 1 - \frac{1}{F(\frac{1}{2})} N^{-c'(p-\frac{1}{2})}.$$

Por fim, basta relembrar que $F(p) := \mathbb{E}_p(\mathbb{I}_{\mathcal{H}(2n,n)}(\omega))$ e tomar β pequeno o suficiente.

Demonstração (Teorema 4):

Para provar que, em d=2, p_c é igual a $\frac{1}{2}$, basta mostrar que $p_c \leq \frac{1}{2}$; já que, pelo Corolário 2, temos que $p_c \geq \frac{1}{2}$. Porém, a estratégia utilizada aqui será a de mostrar que, para $p > \frac{1}{2}$, existe, com probabilidade 1, aglomerado de tamanho infinito em ω .

Demonstração (Teorema 4):

Para provar que, em d=2, p_c é igual a $\frac{1}{2}$, basta mostrar que $p_c \leq \frac{1}{2}$; já que, pelo Corolário 2, temos que $p_c \geq \frac{1}{2}$. Porém, a estratégia utilizada aqui será a de mostrar que, para $p > \frac{1}{2}$, existe, com probabilidade 1, aglomerado de tamanho infinito em ω .

Defina, como na Figura 8, os eventos $A_n := \mathcal{H}(2^{n+1}, 2^n)$ e $B_n := \mathcal{V}(2^n, 2^{n+1})$.

Figura 8: Ocorrência (alternada) dos eventos $\mathcal{H}(2^{n+1},2^n)$ e $\mathcal{V}(2^n,2^{n+1})$ para $n\in\{0,1,2\}$.

Agora, note que se A_n e B_n ocorrem para todo $n \in \mathbb{N}$ – exceto por uma quantidade finita desses valores –, então existe aglomerado de tamanho infinito em ω .

Assim, pela Proposição 3, e considerando um retângulo do tipo $R(2^{n+1},2^n)$, temos que, para $p>\frac{1}{2}$,

$$\sum_{n=1}^{+\infty} \mathbb{P}_p(A_n^c) \le \frac{1}{\beta} \sum_{n=1}^{+\infty} 2^{-\beta n}. \tag{5}$$

Agora, note que se A_n e B_n ocorrem para todo $n \in \mathbb{N}$ – exceto por uma quantidade finita desses valores –, então existe aglomerado de tamanho infinito em ω .

Assim, pela Proposição 3, e considerando um retângulo do tipo $R(2^{n+1},2^n)$, temos que, para $p>\frac{1}{2}$,

$$\sum_{n=1}^{+\infty} \mathbb{P}_p(A_n^c) \le \frac{1}{\beta} \sum_{n=1}^{+\infty} 2^{-\beta n}.$$
 (5)

Da Equação 5, perceba que $\sum_{n=1}^{+\infty} 2^{-\beta n}$ converge; logo, por Borel-Cantelli, $A_n{}^c$ ocorre infinitas vezes com probabilidade 0; logo, $\mathbb{P}_p(A_n \text{ infinitas vezes}) = 1$. Por rotação, $\mathbb{P}_p(B_n \text{ infinitas vezes}) = 1$. Dessa forma, como A_n e B_n ocorrem para todo $n \in \mathbb{N}$ – exceto por uma quantidade finita desses valores –, existe, com probabilidade 1, aglomerado de tamanho infinito em ω .

Teorema 5 (Decaimento exponencial)

Para percolação Bernoulli em \mathbb{Z}^d ,

- 1. Para $p < p_c$, existe $c_p > 0$ tal que, para todo $n \ge 1$, $\mathbb{P}_p(0 \leftrightarrow \partial \Lambda_n) \le e^{-c_p n}$.
- 2. (Mean Field Lower Bound) Existe c > 0 tal que $p > p_c$, $\mathbb{P}_p(0 \leftrightarrow +\infty) \ge c(p p_c)$.

Teorema 5 (Decaimento exponencial)

Para percolação Bernoulli em \mathbb{Z}^d ,

- 1. Para $p < p_c$, existe $c_p > 0$ tal que, para todo $n \ge 1$, $\mathbb{P}_p(0 \leftrightarrow \partial \Lambda_n) \le e^{-c_p n}$.
- 2. (Mean Field Lower Bound) Existe c > 0 tal que $p > p_c$, $\mathbb{P}_p(0 \leftrightarrow +\infty) \ge c(p p_c)$.

 ${\cal O}$ Teorema 5 será demonstrado através de resultados parciais.

Lema 1

Considere uma sequência de funções convergentes $f_n:[0,\bar{x}]\to[0,M]$ diferenciáveis e crescentes em x tal que, para todo $n\geq 1$,

$$f'_n \ge \frac{n}{\sum_n} f_n$$

onde $\Sigma_n = \sum_{k=0}^{n-1} f_k$. Então existe $\tilde{x} \in [0, \bar{x}]$ tal que

- a. Para qualquer $x < \tilde{x}$, existe $c_x > 0$ tal que, para qualquer $n \ge 1$, $f_n(x) \le e^{c_x n}$.
- b. Para qualquer $x > \tilde{x}$, $f = \lim_{n \to +\infty} f_n$ satisfaz $f(x) \ge x \bar{x}$.

Defina $\theta_n(p) := \mathbb{P}_p(0 \leftrightarrow \partial \Lambda_n) \in S_n := \sum_{k=0}^{n-1} \theta_k(p)$.

Proposição 4

Para qualquer $n \geq 1$, temos que

$$\sum_{e \in \mathbb{F}} \operatorname{Inf}_{e}(\mathbb{I}_{0 \leftrightarrow \partial \Lambda_{n}}(\omega)) \geq \frac{n}{S_{n}} \, \theta_{n}(p) \, (1 - \theta_{n}(p)),$$

onde E_n é o conjunto de elos tal que as duas extremidades de e estão em Λ_n .

Defina $\theta_n(p) := \mathbb{P}_p(0 \leftrightarrow \partial \Lambda_n) \in S_n := \sum_{k=0}^{n-1} \theta_k(p)$.

Proposição 4

Para qualquer $n \ge 1$, temos que

$$\sum_{e \in \mathbb{F}} \operatorname{Inf}_{e}(\mathbb{I}_{0 \leftrightarrow \partial \Lambda_{n}}(\omega)) \geq \frac{n}{S_{n}} \, \theta_{n}(p) \, (1 - \theta_{n}(p)),$$

onde E_n é o conjunto de elos tal que as duas extremidades de e estão em Λ_n .

Note que para provar o resultado da Proposição 4, basta de mostrar que para qualquer $k \in [n]$, temos um algoritmo \mathbf{T} para $\mathbb{I}_{0\leftrightarrow\partial\Lambda_n}(\omega)$ tal que, para todo $e=(x,y)\in \mathcal{E}_n$,

$$\delta_e(\mathbf{T}) \leq \mathbb{P}_p(x \leftrightarrow \partial \Lambda_k) + \mathbb{P}_p(y \leftrightarrow \partial \Lambda_k).$$
 (6)

Defina $\theta_n(p) := \mathbb{P}_p(0 \leftrightarrow \partial \Lambda_n) \in S_n := \sum_{k=0}^{n-1} \theta_k(p).$

Proposição 4

Para qualquer $n \ge 1$, temos que

$$\sum_{e \in \mathbb{F}} \operatorname{Inf}_{e}(\mathbb{I}_{0 \leftrightarrow \partial \Lambda_{n}}(\omega)) \geq \frac{n}{S_{n}} \, \theta_{n}(p) \, (1 - \theta_{n}(p)),$$

onde E_n é o conjunto de elos tal que as duas extremidades de e estão em Λ_n .

Note que para provar o resultado da Proposição 4, basta de mostrar que para qualquer $k \in [n]$, temos um algoritmo \mathbf{T} para $\mathbb{I}_{0 \leftrightarrow \partial \Lambda_n}(\omega)$ tal que, para todo $e = (x, y) \in \mathcal{E}_n$,

$$\delta_e(\mathbf{T}) \le \mathbb{P}_p(x \leftrightarrow \partial \Lambda_k) + \mathbb{P}_p(y \leftrightarrow \partial \Lambda_k).$$
 (6)

Figura 9: Revelação para $\mathbb{I}_{0\leftrightarrow\partial\Lambda_n}(\omega)$.

De fato, assumindo que é verdade que $\sum_{k=1}^n \mathbb{P}_p(x \leftrightarrow \partial \Lambda_k) \leq 2 S_n$ (a mesma cota vale para $\sum_{k=1}^n \mathbb{P}_p(y \leftrightarrow \partial \Lambda_k)$), então, aplicando o Teorema 3 para $\mathbb{I}_{0 \leftrightarrow \partial \Lambda_n}(\omega)$ e utilizando a cota para as revelações estabelecida pela Equação 6, temos que

$$\mathbb{V}_p(\mathbb{I}_{0\leftrightarrow\partial\Lambda_n}(\omega)) \leq p(1-p) \sum_{e\in\mathcal{E}_n} \left(\mathbb{P}_p(x\leftrightarrow\partial\Lambda_k) + \mathbb{P}_p(y\leftrightarrow\partial\Lambda_k)\right) \operatorname{Inf}_e(\mathbb{I}_{0\leftrightarrow\partial\Lambda_n}(\omega)),$$

o que implica em, somando sobre todos os k's e substituindo o valor de $\mathbb{V}_p(\mathbb{I}_{0\leftrightarrow\partial\Lambda_n}(\omega))$,

$$\sum_{k=1}^{n} \theta_n(p) (1 - \theta_n(p)) \le 4 S_n p (1 - p) \sum_{e \in \mathcal{E}_n} \operatorname{Inf}_e(\mathbb{I}_{0 \leftrightarrow \partial \Lambda_n}(\omega)),$$

que o mesmo que

$$\sum_{e \in \mathcal{E}_n} \operatorname{Inf}_e(\mathbb{I}_{0 \leftrightarrow \partial \Lambda_n}(\omega)) \ge \frac{n}{p(1-p) \, 4 \, S_n} \, \theta_n(p) \, (1-\theta_n(p)) \ge \frac{n}{S_n} \, \theta_n(p) \, (1-\theta_n(p)).$$

Assim, e como já dito, basta provar a Equação 6.

Demonstração (Proposição 4):

Defina o conjunto de índices e utilizando duas sequências $\partial \Lambda_k = V_0 \subset V_1 \subset \cdots \subset V_n$ e $\emptyset = E_0 \subset E_1 \subset \cdots \subset E_n$. Aqui, V_t representa o conjunto de vértices que o algoritmo verificou estar conectado a $\partial \Lambda_k$ e E_t representa o conjunto de elos explorados pelo algoritmo até o instante t.

Demonstração (Proposição 4):

Defina o conjunto de índices e utilizando duas sequências $\partial \Lambda_k = V_0 \subset V_1 \subset \cdots \subset V_n$ e $\emptyset = E_0 \subset E_1 \subset \cdots \subset E_n$. Aqui, V_t representa o conjunto de vértices que o algoritmo verificou estar conectado a $\partial \Lambda_k$ e E_t representa o conjunto de elos explorados pelo algoritmo até o instante t.

Fixando uma ordem para os elos de E_n , defina $V_0 = \partial \Lambda_k$ e $E_0 = \emptyset$. Assuma, então, que os conjuntos $V_t \subset V_n$ e $E_t \subset E_n$ foram construídos de tal forma que, em t, uma das duas situações a segui se aplica:

a. Se existe elo e=(x,y) em $\mathcal{E}_n\setminus\mathcal{E}_t$ tal que $x\in\mathcal{V}_t$ e $y\not\in\mathcal{V}_t$ (se existir mais de um, escolha o menor deles — de acordo com a ordem estabelecida), então defina $\mathbf{e}_{t+1}:=e,\,\mathcal{E}_{t+1}:=\mathcal{E}_t\cup\{e\}$ e

$$\mathbf{V}_{t+1} := \begin{cases} \mathbf{V}_t \cup \{y\} & \text{se } \omega_e = 1 \\ \mathbf{V}_t & \text{caso contrário.} \end{cases}$$

b. Se e não existe, então defina \mathbf{e}_{t+1} como o menor elo em $\mathbf{E}_n \setminus \mathbf{E}_t$ (de acordo com a ordem estabelecida), $\mathbf{E}_{t+1} := \mathbf{E}_t \cup \{e\}$ e $\mathbf{V}_{t+1} := \mathbf{V}_t$.

Perceba que, enquanto estivermos na situação "a.", ainda estamos descobrindo elos que fazem parte da componente conectada a $\partial \Lambda_k$; ao passo que, assim que mudamos para a situação "b.", nós permanecemos nela. Nesse caso, $\tau(\omega)$ não é maior que o último t para o qual ainda estamos na situação "a.".

Relembrando a definição de $\delta_e(\mathbf{T}) := \mathbb{P}_p(\exists t \leq \tau(\omega) : e_t = e)$, temos que

$$\mathbb{P}_{p}(\exists t \leq \tau(\omega) : e_{t} = e) \leq \mathbb{P}_{p}(\{x \leftrightarrow \partial \Lambda_{k}\} \cup \{y \leftrightarrow \partial \Lambda_{k}\})$$
$$\leq \mathbb{P}_{p}(x \leftrightarrow \partial \Lambda_{k}) + \mathbb{P}_{p}(y \leftrightarrow \partial \Lambda_{k}),$$

o que prova a Inequação 6 e, portanto, finaliza a demonstração.

Demonstração (Teorema 5):

Para $\mathbb{I}_{0\leftrightarrow\partial\Lambda_n}(\omega)$, utilize o Teorema 1 e a Proposição 4 para dizer que

$$\theta_n'(p) = \sum_{e \in \mathbb{R}} \operatorname{Inf}_e(\mathbb{I}_{0 \leftrightarrow \partial \Lambda_n}(\omega)) \ge \frac{n}{S_n} \theta_n(p) (1 - \theta_n(p)).$$
 (7)

Demonstração (Teorema 5):

Para $\mathbb{I}_{0\leftrightarrow\partial\Lambda_n}(\omega),$ utilize o Teorema 1 e a Proposição 4 para dizer que

$$\theta_n'(p) = \sum_{e \in F} \operatorname{Inf}_e(\mathbb{I}_{0 \leftrightarrow \partial \Lambda_n}(\omega)) \ge \frac{n}{S_n} \theta_n(p) (1 - \theta_n(p)).$$
 (7)

Fixando $\bar{p} \in (p_c, 1)$, veja que, para $p \leq \bar{p}$, $1 - \theta_n(p) \geq 1 - \theta_1(\bar{p}) > 0$; dessa forma, considerando a Inequação 7, somos capazes de dizer que

$$\left(\frac{1}{1-\theta_1(\bar{p})}\,\theta_n(p)\right)' \geq \frac{n}{(1-\theta_1(\bar{p}))^{-1}\,S_n} \cdot \left(\frac{1}{1-\theta_1(\bar{p})}\,\theta_n(p)\right).$$

Demonstração (Teorema 5):

Para $\mathbb{I}_{0\leftrightarrow\partial\Lambda_n}(\omega)$, utilize o Teorema 1 e a Proposição 4 para dizer que

$$\theta_n'(p) = \sum_{e \in \mathcal{E}} \operatorname{Inf}_e(\mathbb{I}_{0 \leftrightarrow \partial \Lambda_n}(\omega)) \ge \frac{n}{S_n} \theta_n(p) (1 - \theta_n(p)).$$
 (7)

Fixando $\bar{p} \in (p_c, 1)$, veja que, para $p \leq \bar{p}$, $1 - \theta_n(p) \geq 1 - \theta_1(\bar{p}) > 0$; dessa forma, considerando a Inequação 7, somos capazes de dizer que

$$\left(\frac{1}{1-\theta_1(\bar{p})}\,\theta_n(p)\right)' \ge \frac{n}{(1-\theta_1(\bar{p}))^{-1}\,S_n} \cdot \left(\frac{1}{1-\theta_1(\bar{p})}\,\theta_n(p)\right).$$

Assim, aplicando o Lema 1 para $f_n(p) = (1 - \theta_1(\bar{p}))^{-1} \theta_n(p)$, $\exists \tilde{p}_c \in [0, \bar{p}]$ tal que

- a. Para qualquer $p < \tilde{p}_c$, existe $c_p > 0$ tal que, para qualquer $n \ge 1$, $(1 \theta_1(\bar{p}))^{-1} \theta_n(p) \le e^{-c_p n} \implies \theta_n(p) \le e^{-c_p n}$.
- b. Existe c > 0 tal que, para qualquer $p > \tilde{p}_c$, $\theta(p) \ge c (p \tilde{p}_c)$.

Já que \bar{p} foi escolhido maior do que p_c , então \tilde{p}_c deve ser, necessariamente, igual a p_c .

Comece com um grafo d dimensional $\mathbb{L}^d = (\mathbb{Z}^d, \mathbb{E}^d)$, com \mathbb{Z}^d conjunto de vértices e \mathbb{E}^d conjunto de elos tal que $\mathbb{E}^d = \left\{ (x,y) \in \mathbb{Z}^d \times \mathbb{Z}^d : \sum_{i=1}^d |x_i - y_i| = 1 \right\}$.

Comece com um grafo d dimensional $\mathbb{L}^d = (\mathbb{Z}^d, \mathbb{E}^d)$, com \mathbb{Z}^d conjunto de vértices e \mathbb{E}^d conjunto de elos tal que $\mathbb{E}^d = \left\{ (x,y) \in \mathbb{Z}^d \times \mathbb{Z}^d : \sum_{i=1}^d |x_i - y_i| = 1 \right\}$.

O espaço de probabilidade $(\Omega, \mathcal{F}, \mu_p)$ é definido por com $\Omega = \{0, 1\}^{|E^d|}$, $\mathcal{F} = \sigma$ (conjuntos cilíndricos) e μ_p medida de probabilidade construída sobre (Ω, \mathcal{F}) .

Comece com um grafo d dimensional $\mathbb{L}^d = (\mathbb{Z}^d, \mathbb{E}^d)$, com \mathbb{Z}^d conjunto de vértices e \mathbb{E}^d conjunto de elos tal que $\mathbb{E}^d = \left\{ (x,y) \in \mathbb{Z}^d \times \mathbb{Z}^d : \sum_{i=1}^d |x_i - y_i| = 1 \right\}$.

O espaço de probabilidade $(\Omega, \mathcal{F}, \mu_p)$ é definido por com $\Omega = \{0, 1\}^{|E^d|}$, $\mathcal{F} = \sigma$ (conjuntos cilíndricos) e μ_p medida de probabilidade construída sobre (Ω, \mathcal{F}) .

Além disso, defina uma sequência $(\xi_x)_{x\in\mathbb{Z}^d}$ de variáveis aleatórias i.i.d., indexada pelo conjunto de vértices \mathbb{Z}^d , tal que $\mathbb{P}_p(\xi_x=1)=p$ e $\mathbb{P}_p(\xi_x=0)=1-p$.

Comece com um grafo d dimensional $\mathbb{L}^d = (\mathbb{Z}^d, \mathbb{E}^d)$, com \mathbb{Z}^d conjunto de vértices e \mathbb{E}^d conjunto de elos tal que $\mathbb{E}^d = \left\{ (x,y) \in \mathbb{Z}^d \times \mathbb{Z}^d : \sum_{i=1}^d |x_i - y_i| = 1 \right\}$.

O espaço de probabilidade $(\Omega, \mathcal{F}, \mu_p)$ é definido por com $\Omega = \{0, 1\}^{|E^d|}$, $\mathcal{F} = \sigma$ (conjuntos cilíndricos) e μ_p medida de probabilidade construída sobre (Ω, \mathcal{F}) .

conjunto de vértices \mathbb{Z}^d , tal que $\mathbb{P}_p(\xi_x = 1) = p$ e $\mathbb{P}_p(\xi_x = 0) = 1 - p$. Por fim, como forma de, indiretamente, determinar $\mu_p(\omega)$, diga que, para $k \in \mathbb{N}$ fixo,

Além disso, defina uma sequência $(\xi_x)_{x \in \mathbb{Z}^d}$ de variáveis aleatórias *i.i.d.*, indexada pelo

 $\omega_e = 1$ se existe $x \in \mathbb{Z}^d$ tal que $\xi_x = 1$ e $e \in \Lambda_k(x)$.

Para esse modelo, note que existe dependência (finita) para os estados dos elos 1

4 □ → 4 ≡ → 28 / 33

pendência (finita) para os estados dos elos. Figura 10: Configuração ω para o modelo de Percolação 2k Dependente com k=1 em \mathbb{L}^2 .

Teorema 6 (Decaimento exponencial)

Para o modelo de Percolação 2k Dependente em \mathbb{L}^d , existe $p_c = p_c(d, k)$ tal que

- 1. Para $p < p_c$, existe um $c_p > 0$ tal que para todo $n \ge 1$, $\mu_p(0 \leftrightarrow \partial \Lambda_n) \le e^{-c_p n}$.
- 2. (Mean Field Lower Bound) Existe c>0 tal que $p>p_c,\,\mu_p(0\leftrightarrow+\infty)\geq c\,(p-p_c)$.

Teorema 6 (Decaimento exponencial)

Para o modelo de Percolação 2k Dependente em \mathbb{L}^d , existe $p_c = p_c(d,k)$ tal que

- 1. Para $p < p_c$, existe um $c_p > 0$ tal que para todo $n \ge 1$, $\mu_p(0 \leftrightarrow \partial \Lambda_n) \le e^{-c_p n}$.
- 2. (Mean Field Lower Bound) Existe c > 0 tal que $p > p_c$, $\mu_p(0 \leftrightarrow +\infty) \ge c(p p_c)$.

Demonstração:

Considere uma família de algoritmos \mathbf{T} similar àquela definida para a Proposição 4. Nesse caso, \mathbf{T} irá revelar o aglomerado de $\partial \Lambda_s$, com $s \in [n]$. Aqui, porém, perceba que o algoritmo explora, primeiro, os vértices $x \in \Lambda_n$ tal que $\partial \Lambda_k(x)$ está conectada, através de um caminho aberto no processo de percolação de elos, a $\partial \Lambda_s$ (notação: $\partial \Lambda_k(x) \stackrel{\omega}{\leftrightarrow} \partial \Lambda_s$)

Figura 11: Revelação para $\mathbb{I}_{\substack{0 \ \omega \ \partial \Lambda_n}}(\tilde{\omega})$.

Para um conjunto de índices \mathbf{v} com duas sequências $\partial \Lambda_s = \mathbf{A}_0 \subset \mathbf{A}_1 \subset \cdots \subset \mathbf{A}_n$ e $\emptyset = \mathbf{B}_0 \subset \mathbf{B}_1 \subset \cdots \subset \mathbf{B}_n$, com \mathbf{A}_t representando o conjunto de vértices x tal que $\partial \Lambda_k(x) \stackrel{\omega}{\leftrightarrow} \partial \Lambda_s$ e \mathbf{B}_t o conjunto de vértices explorados até o instante t, temos, dada uma ordem para os vértices considerados, uma construção (em t) do seguinte tipo:

a. Ou existe um vértice x em $\Lambda_n \setminus B_t$ tal que $\partial \Lambda_k(x) \overset{\omega}{\leftrightarrow} A_t$ (se existir mais de um, escolha o menor). Nesse caso, defina $\mathbf{v}_{t+1} := x$, $B_{t+1} = B_t \cup \{x\}$,

$$\mathbf{A}_{t+1} := \begin{cases} \mathbf{A}_t \cup \{x\} & \text{se } \xi_x = 1 \\ \mathbf{A}_t & \text{caso contrário.} \end{cases}$$

b. Ou não existe x com tais características. Nesse caso, defina \mathbf{v}_{t+1} como o menor vértice em $\Lambda_n \setminus \mathbf{B}_t$, $\mathbf{B}_{t+1} := \mathbf{B}_t \cup \{x\}$ e, por fim, $\mathbf{A}_{t+1} := \mathbf{A}_t$.

Perceba que, em "a.", ainda estamos descobrindo vértices x tal que $\partial \Lambda_k(x) \overset{\omega}{\leftrightarrow} \partial \Lambda_s$; porém, quando em "b.", permanecemos nessa opção até o final da exploração. Em resumo, para $\tilde{\omega} \in \tilde{\Omega} = \prod_{x \in \mathbb{Z}^d} \{0,1\}$, $\tau(\tilde{\omega})$ não é maior que o último t para o qual a opção "a." ainda é válida.

Assim, relembrando a definição de $\delta_x(\mathbf{T})$, temos

$$\mathbb{P}_p(\exists t \le \tau(\tilde{\omega}) : v_t = x) \le \mathbb{P}_p(\partial \Lambda_k(x) \stackrel{\omega}{\leftrightarrow} \partial \Lambda_s). \tag{8}$$

Assim, relembrando a definição de $\delta_x(\mathbf{T})$, temos

$$\mathbb{P}_p(\exists t \le \tau(\tilde{\omega}) : v_t = x) \le \mathbb{P}_p(\partial \Lambda_k(x) \stackrel{\omega}{\leftrightarrow} \partial \Lambda_s). \tag{8}$$

Perceba, porém, que podemos reescrever o lado direito da Equação 8 como

$$\implies \mathbb{P}_p(\partial \Lambda_k(x) \overset{\omega}{\leftrightarrow} \partial \Lambda_s) \le h \, \mathbb{P}_p(x \overset{\omega}{\leftrightarrow} \partial \Lambda_s),$$

com $h = h(p) \ge 1$ "pagando o preço" para abrir $\Lambda_k(x)$. Dessa forma, para todo $x \in \Lambda_n$,

 $\mathbb{P}_p(\{\partial \Lambda_k(x) \overset{\omega}{\leftrightarrow} \partial \Lambda_s\} \cap \{\Lambda_k(x) \text{ está aberta}\}) \leq \mathbb{P}_p(x \overset{\omega}{\leftrightarrow} \partial \Lambda_s)$

$$\delta_x(\mathbf{T}) \le h \, \mathbb{P}_p(x \stackrel{\omega}{\leftrightarrow} \partial \Lambda_s).$$
 (9)

Assim, relembrando a definição de $\delta_x(\mathbf{T})$, temos

$$\mathbb{P}_p(\exists t \le \tau(\tilde{\omega}) : v_t = x) \le \mathbb{P}_p(\partial \Lambda_k(x) \stackrel{\omega}{\leftrightarrow} \partial \Lambda_s). \tag{8}$$

Perceba, porém, que podemos reescrever o lado direito da Equação 8 como

$$\Longrightarrow \mathbb{P}_p(\partial \Lambda_k(x) \overset{\omega}{\leftrightarrow} \partial \Lambda_s) \le h \, \mathbb{P}_p(x \overset{\omega}{\leftrightarrow} \partial \Lambda_s),$$

com $h = h(p) \ge 1$ "pagando o preço" para abrir $\Lambda_k(x)$. Dessa forma, para todo $x \in \Lambda_n$,

 $\mathbb{P}_p(\{\partial \Lambda_k(x) \overset{\omega}{\leftrightarrow} \partial \Lambda_s\} \cap \{\Lambda_k(x) \text{ está aberta}\}) \leq \mathbb{P}_p(x \overset{\omega}{\leftrightarrow} \partial \Lambda_s)$

$$\delta_x(\mathbf{T}) \le h \, \mathbb{P}_p(x \stackrel{\omega}{\leftrightarrow} \partial \Lambda_s).$$
 (9)

Agora, aplicando o Teorema 3 para $f(\tilde{\omega}) = \mathbb{I}_{0 \stackrel{\omega}{\leftrightarrow} \partial \Lambda_n}(\tilde{\omega})$ com a cota apresentada na Equação 9, empregando a mesma estratégia adotada na prova da Proposição 4 e utilizando o Teorema 1 e o Lema 1 para $f_n(p) = h (1 - \theta_1(\bar{p}))^{-1} \theta_n(p)$, tal que $\bar{p} \in (p_c, 1)$, obtemos o resultado desejado para a medida \mathbb{P}_p .

Assim, relembrando a definição de $\delta_x(\mathbf{T})$, temos

$$\mathbb{P}_p(\exists t \le \tau(\tilde{\omega}) : v_t = x) \le \mathbb{P}_p(\partial \Lambda_k(x) \stackrel{\omega}{\leftrightarrow} \partial \Lambda_s). \tag{8}$$

Perceba, porém, que podemos reescrever o lado direito da Equação 8 como

$$\implies \mathbb{P}_p(\partial \Lambda_k(x) \overset{\omega}{\leftrightarrow} \partial \Lambda_s) \le h \; \mathbb{P}_p(x \overset{\omega}{\leftrightarrow} \partial \Lambda_s),$$

com $h = h(p) \ge 1$ "pagando o preço" para abrir $\Lambda_k(x)$. Dessa forma, para todo $x \in \Lambda_n$,

 $\mathbb{P}_p(\{\partial \Lambda_k(x) \overset{\omega}{\leftrightarrow} \partial \Lambda_s\} \cap \{\Lambda_k(x) \text{ está aberta}\}) \leq \mathbb{P}_p(x \overset{\omega}{\leftrightarrow} \partial \Lambda_s)$

$$\delta_x(\mathbf{T}) \le h \, \mathbb{P}_p(x \stackrel{\omega}{\leftrightarrow} \partial \Lambda_s). \tag{9}$$

Agora, aplicando o Teorema 3 para $f(\tilde{\omega}) = \mathbb{I}_{0 \stackrel{\omega}{\leftrightarrow} \partial \Lambda_n}(\tilde{\omega})$ com a cota apresentada na Equação 9, empregando a mesma estratégia adotada na prova da Proposição 4 e utilizando o Teorema 1 e o Lema 1 para $f_n(p) = h (1 - \theta_1(\bar{p}))^{-1} \theta_n(p)$, tal que $\bar{p} \in (p_c, 1)$, obtemos o resultado desejado para a medida \mathbb{P}_p .

Para estender o resultado para μ_p , note que, por construção, $\mathbb{P}_p(\{\tilde{\omega} \in \tilde{\Omega} : 0 \stackrel{\omega}{\leftrightarrow} \partial \Lambda_n\}) = \mu_p(\{\omega \in \Omega : 0 \leftrightarrow \partial \Lambda_n\});$ bem como, para o cluster $C_0(\tilde{\omega}) := \{y \in \mathbb{Z}^d : 0 \stackrel{\omega}{\leftrightarrow} y\},$ $\mathbb{P}_p(\{\tilde{\omega} \in \tilde{\Omega} : |C_0(\tilde{\omega})| = +\infty\}) = \mu_p(\omega \in \Omega : |C_0(\omega)| = +\infty\}).$

Percolação FK

COMPLETAR.

Referências