KONSTRUKSI YIELD CURVE UNTUK PERHITUNGAN IMBALAN KERJA BERDASARKAN YIELD RATE ZERO COUPON BOND

Karya Tulis Ini Disusun untuk Memenuhi Penilaian pada Mata Kuliah MA3271 Pemodelan Matematika

Disusun Oleh

Sausan Habiibah Mughni	10121024
Rahma Okta Feriska	10121050
Muthia Alifah Rahmi	10121071
Vridha Amalia Rozaq	10121074
Marcell Vanessa	10121082

INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM 2024

ABSTRAK

Yield curve memiliki peranan penting dalam perekonomian sebagai acuan penentuan nilai wajar suatu obligasi, tolok ukur imbal hasil obligasi, dan untuk menyimpulkan ekspektasi ekonomi. Salah satu model yang dapat digunakan untuk mengkonstruksi yield curve adalah model Nelson-Siegel. Model ini diaplikasikan pada data obligasi pemerintah zero-coupon KKA YUSI. Pengkonstruksian vield curve ini yang digunakan dalam perhitungan imbalan kerja dengan memanfaatkan *yield rate* dari obligasi pemerintah zero-coupon pemerintah. Yield curve berperan dalam penilaian kewajiban imbalan kerja karena memberikan gambaran mengenai tingkat suku bunga yang relevan untuk berbagai jangka waktu. Untuk mengestimasi parameter-parameter model Nelson-Siegel, digunakan algoritma optimisasi Nelder-Mead dengan tujuan meminimalkan Mean Squared Error (MSE) antara yield rate sebenarnya dan *yield rate* yang diprediksi oleh model. Hasil analisis menunjukkan bahwa yield curve yang dibangun melalui metode ini memberikan estimasi yang akurat dan relevan untuk berbagai jangka waktu. Selain itu, *yield curve* yang dihasilkan juga memberikan fleksibilitas dalam penilaian kewajiban imbalan kerja sesuai dengan standar akuntansi yang berlaku. Penelitian ini memberikan kontribusi dalam meningkatkan akurasi perhitungan kewajiban imbalan kerja untuk perusahaan mempersiapkan dana untuk masa depan.

Kata kunci: *Yield curve*, model Nelson-Siegel, optimisasi Nelder-Mead, suku bunga, Mean Squared Error, imbalan kerja

DAFTAR ISI

ABSTRAK	1
DAFTAR ISI	2
BAB I	
PENDAHULUAN	3
1.1. Latar Belakang	3
1.2. Rumusan Masalah	3
1.3. Tujuan Penelitian	3
1.4. Batasan Masalah	3
BAB II	
DATA DAN METODOLOGI	4
2.1. Data	4
2.2. Model Nelson Siegel	4
2.3. Sifat Parameter Nelson Siegel	5
2.4. Mean Square Error	6
2.5. Optimisasi Nelder-Mead	6
2.6. Present Value Benefit Obligation	9
BAB III	
KONSTRUKSI YIELD CURVE	10
3.1. Inisialisasi Parameter	10
3.2. Optimisasi Parameter	10
BAB IV	
HASIL DAN PEMBAHASAN	13
4.1. Konstruksi Yield Curve dari Data Yield Rate Zero Coupon Bond	13
4.2. Penggunaan Yield Curve untuk Perhitungan Imbalan Kerja	13
BAB V	
PENUTUP	16
5.1. Kesimpulan	16
5.2. Saran	16
DAFTAR PUSTAKA	17
LAMPIRAN A	18
LAMPIRAN B	21
LAMPIRAN C	24

BAB I PENDAHULUAN

1.1. Latar Belakang

Pernyataan Standar Akuntansi Keuangan 24 (PSAK 24) mensyaratkan penentuan kewajiban imbalan kerja dilakukan menggunakan metode aktuaria. Dalam valuasi tersebut discount rate memiliki peranan besar dalam penentuan besar atau kecilnya kewajiban. Discount rate yang dimaksud ditentukan dengan mengacu pada imbal hasil pasar atas obligasi pemerintahan. Dalam kasus ini kita membahas tentang imbal hasil pasar atas obligasi pemerintah yang berbasis *zero coupon bond*. Obligasi pemerintah *zero coupon bond* adalah instrumen keuangan yang bergerak bebas berdasarkan pasar.

Setiap bulan, Kantor Konsultan Aktuaria Yusi dan Rekan diminta untuk melakukan perhitungan kewajiban imbalan kerja dari perusahaan klien. Penyusun diberikan data *yield rate zero coupon bond* per bulan untuk tenor 1-30 dari bulan Januari 2018 sampai dengan Januari 2024. Kami membutuhkan model matematika untuk bisa mengonstruksi *yield curve* yang berisi hasil interpolasi data *yield rate* sehingga menjadi kurva kontinu. Dari *yield curve* tersebut akan dihitung dana pensiun yang didapatkan karyawan perusahaan klien setiap bulannya.

1.2. Rumusan Masalah

- 1.2.1. Bagaimana mengonstruksi *yield curve* dari data *yield rate zero coupon* bond?
- 1.2.2. Bagaimana menggunakan *yield curve* yang telah dikonstruksi untuk menghitung imbalan kerja?

1.3. Tujuan Penelitian

- 1.3.1. Untuk mengonstruksi *yield curve* dari data *yield rate zero coupon bond*.
- 1.3.2. Untuk menggunakan *yield curve* yang telah dikonstruksi untuk menghitung imbalan kerja.

1.4. Batasan Masalah

- 1.4.1. Data yang digunakan adalah obligasi pemerintah karena merupakan obligasi yang minim risiko.
- 1.4.2. Konstruksi *yield curve* hanya dipengaruhi dari data historis *yield rate* dari obligasi *zero coupon bond*.
- 1.4.3. Data *yield rate* yang dipakai berasal dari Kantor Konsultan Aktuaria Yusi dan Rekan dari bulan Januari 2018 Januari 2024 dengan tiap bulannya terdiri dari 30 tenor

BAB II DATA DAN METODOLOGI

2.1. Data

Pemodelan ini menggunakan data dari penyedia jasa konsultasi aktuaria, KKA Yusi & Rekan memiliki data *yield rate* pada bulan Januari 2018 - Januari 2024 yang setiap bulannya terdiri dari 1-30 tenor.

Gambar 1. Grafik Yield Rate terhadap Waktu

2.2. Model Nelson Siegel

Nelson dan Siegel (1987) menyebutkan *forward rate* dapat dimodelkan menggunakan solusi dari persamaan diferensial orde dua dengan akar real kembar, khususnya akar real negatif. Dari persamaan karakteristik $r^2 - 2r_1r^2 + r_1^2 = 0$ diperoleh solusi umum sebagai berikut:

$$f(m) = C_1 e^{r_1 x} + C_2 x e^{r_1 x}$$

Untuk memodelkan *yield curve* berdasarkan Nelson-Siegel, pilih $C_1 = \beta_1$, $C_2 = \beta_2$, $r_1 = -1$, $x = \frac{m}{\tau}$, dan tambahkan $\beta_0 > 0$. Sehingga didapat persamaan forward rate sebagai berikut:

$$f(m) = \beta_0 + \beta_1 e^{-\frac{m}{\tau}} + \beta_2 \frac{m}{\tau} e^{-\frac{m}{\tau}}$$

Keterangan:

f(m) : Yield rate yang berlaku di masa depan

m : Waktu maturitas (tenor)

τ : Parameter non linear maturitas

 $\beta_0, \beta_1, \beta_2$: Parameter linear

Yield rate untuk zero coupon bond dimodelkan dengan persamaan spot rate yang merupakan rata-rata dari forward rate, atau disebut juga persamaan *dynamic* Nelson Siegel. Nilai parameter pada persamaan *dynamic* Nelson Siegel berubah-ubah setiap waktu. Diperoleh persamaan *yield* untuk *yield curve zero coupon bond* sebagai berikut:

$$y_{i}(m) = \frac{1}{m} \int_{0}^{m} f(m) dt$$

$$= \frac{1}{m} \int_{0}^{m} (\beta_{0} + \beta_{1} e^{-\frac{m}{\tau}} + \beta_{2} \frac{m}{\tau} e^{-\frac{m}{\tau}}) dt$$

$$= \beta_{0,i} + \beta_{1,i} \frac{(1 - e^{-\frac{m}{\tau_{i}}})}{\frac{m}{\tau_{i}}} + \beta_{2,i} (\frac{(1 - e^{-\frac{m}{\tau_{i}}})}{\frac{m}{\tau_{i}}} - e^{-\frac{m}{\tau_{i}}})$$

Keterangan:

 $y_i(m)$: Yield rate masa sekarang pada waktu-i dan tenor-m

m : Waktu maturitas (tenor)

τ : Parameter non linear maturitas

 $\beta_{i,j}$: Parameter linear pada waktu ke-i (j = 0,1,2)

2.3. Sifat Parameter Nelson Siegel

2.3.1. Beta (β_0)

Nilai beta0 dalam model nelson siegel harus lebih besar dari 0. Nilai β_0 mewakili tingkat *yield rate* yang akan dicapai pada tenor mendekati jangka waktu tak hingga yaitu pada tenor periode terpanjang.

$$\lim_{m\to\infty} y(m) = \beta_0$$

2.3.2. Beta1 (β_1)

Nilai β_1 mempengaruhi *yield rate* pada periode pendek. Ketika tenor mendekati 0 yaitu tenor dengan periode terpendek, maka *yield rate* akan mendekati penjumlahan dari β_0 dan β_1 .

$$\lim_{m \to 0} y(m) = \beta_0 + \beta_1$$

2.3.3. Beta2 (β_2)

Parameter ini mempengaruhi bentuk kurva pada periode menengah. Jika $\beta_2 > 0$, kurva akan berbentuk concave. Jika $\beta_2 < 0$, kurva akan berbentuk convex. Jika $\beta_2 = 0$, kurva akan berbentuk datar.

2.3.4. Tau (τ)

Parameter τ merupakan dalam nelson siegel menentukan lokasi temporal dari puncak (humph) dalam kurva yield curve. Parameter τ harus bernilai lebih besar dari 0.

2.4. Mean Square Error

Mean Squared Error (MSE) mengukur seberapa akurat sebuah model regresi dalam memprediksi nilai numerik. MSE menghitung rata-rata perbedaan kuadrat antara nilai aktual dengan nilai prediksi. Semakin besar nilai MSE maka model memiliki error yang semakin besar pula. MSE dapat dihitung dengan rumus sebagai berikut:

$$MSE = \frac{\sum (y_i - \widehat{y_i})^2}{n}$$

Keterangan:

 y_i : nilai yang diobservasi ke-i

 y_i : nilai hasil prediksi ke-i

n : jumlah data yang diobservasi

Nilai MSE selalu bernilai non negatif karena MSE diperoleh dari kuadrat perbedaan antara data prediksi dan data aktual. MSE bernilai nol menandakan bahwa model sempurna dan tidak memiliki error.

2.5. Optimisasi Nelder-Mead

Nelder Mead adalah suatu metode optimisasi untuk meminimumkan suatu fungsi objektif. Metode ini bekerja dengan cara iteratif sehingga bergerak ke arah solusi yang optimal.

Tinjau suatu masalah meminimumkan suatu fungsi f dari n peubah menggunakan metode Nelder-Mead. Pilih suatu himpunan n+1 titik awal untuk masalah dimensi n. Misalkan titik-titik tersebut adalah P_0 , P_1 , ..., P_n membentuk simpleks awal. Tulis f_i sebagai nilai fungsi dari P_i dan definisikan

 P_h : titik simpleks dengan nilai fungsi objektif terbesar, yakni $f_h = max(y_i)$

 P_l : titik simpleks dengan nilai fungsi objektif terkecil, yakni $f_l = min(y_i)$

P : titik simpleks dengan nilai fungsi objektif kedua terbesar

Definisikan Pm sebagai centroid dari titik-titik P0, P1,...,Pn dengan ih. Metode Nelder Mead melibatkan tiga operasi yakni refleksi, ekspansi, dan kontraksi.

1. Refleksi

Titik P_h direfleksi menjadi P_r dengan cara sebagai berikut

$$P_r = P_m + r(P_m - P_h)$$

Kemudian tinjau nilai f_r .

- a. Jika $f_r < f_l$, refleksi memberikan titik minimum baru dan akan dilanjutkan operasi ekspansi.
- b. Jika $f_l \le f_r \le f_s$, maka P_h digantikan oleh P_r dan akan digunakan sebagai simpleks baru.
- c. Jika $f_s < f_r < f_h$, maka P_h digantikan oleh P_r dan akan dilakukan operasi kontraksi.
- d. Jika $f_r \ge f_h$, refleksi ini memberikan titik maksimum baru dan akan dilakukan operasi kontraksi.

2. Ekspansi

Titik P_r akan diekspansi menjadi P_e dengan cara sebagai berikut

$$P_e = P_m + \gamma (P_r - P_m)$$

Kemudian tinjau nilai f_{ρ} .

- a. Jika $f_e < f_r$ maka operasi ekspansi berhasil dan P_h digantikan oleh P_e
- b. Jika $f_e \ge f_r$ maka operasi ekspansi gagal; P_h digantikan oleh r

3. Kontraksi

Titik P_h dikontraksi menjadi P_c dengan cara sebagai berikut

$$P_c = P_m + \beta(P_h - P_m)$$

Kemudian tinjau nilai f_c .

- a. Jika $f_c \le f_h$, maka operasi kontraksi berhasil; P_h digantikan oleh P_c
- b. Jika $f_c > f_h$, maka operasi kontraksi gagal; seluruh P_i digantikan oleh $\frac{(P_i + P_l)}{2}$.

Setiap selesai satu iterasi, perlu dilakukan pengecekan konvergensi menggunakan MSE. Apabila belum konvergen, proses iterasi diulangi dengan menggunakan nilai-nilai P_h , P_s , P_l , P_m , f_h , f_s , dan f_l yang diperoleh dari iterasi sebelumnya.

Apabila peubah memiliki kendala dan setelah dilakukan operasi nilai peubah berada di luar domain, lakukan proyeksi hanya sampai batas kendala. Misalnya, operasi refleksi memberikan titik yang berada di luar domain, maka operasi refleksi dilakukan hanya sampai batas kendala. Begitu pula untuk operasi ekspansi. (Luersen dkk., 2004)

Gambar 2. Diagram Alir Algoritma Nelder Mead

Keterangan:

 P_i : Titik simpleks ke-i

 f_i : Nilai fungsi objektif pada P_i

 P_h : Titik simpleks dengan nilai fungsi objektif terbesar

 P_s : Titik simpleks dengan nilai fungsi objektif terbesar kedua

 P_{l} : Titik simpleks dengan nilai fungsi objektif terkecil

P : Titik simpleks *centroid*

r : Koefisien refleksiβ : Koefisien kontraksiγ : Koefisien ekspansi

2.6. Present Value Benefit Obligation

Present Value Benefit Obligation (PVBO) adalah pengukuran aktuarial yang digunakan untuk mengukur besaran dana yang dibutuhkan oleh perusahaan saat ini untuk menutupi dana pensiun di masa depan.

PVBO = salary ×
$$(1 + S)^t$$
 × benefit factor × $\prod_{i=1}^t (1 + y_i)^{-1}$

Keterangan:

S: Salary increment

 y_{i} : Discount rate

BAB III KONSTRUKSI YIELD CURVE

3.1. Inisialisasi Parameter

Dalam proses optimisasi kali ini, inisialisasi parameter digunakan untuk memulai algoritma optimisasi. Inisialisasi parameter setiap bulannya ditentukan menggunakan sifat-sifat dari parameter Nelson Siegel yang telah dijelaskan pada bagian 2.3.

a. Beta (β_0)

 β_0 diperoleh dari nilai *yield rate* pada tenor terbesar di setiap bulannya, yaitu nilai pada tenor ke-30 di setiap bulan.

b. Beta1 (β_1)

 β_1 diperoleh diperoleh dari selisih nilai *yield rate* pada tenor terkecil di setiap bulannya, yaitu tenor ke-1, dengan nilai Beta0 pada bulan tersebut.

c. Beta2 (β_2)

 β_2 diperoleh menggunakan analisis sensitivitas berdasarkan MSE (Mean Square Error) terkecil dari range 0 hingga 10 dengan asumsi τ sebesar 30.

d. Tau (τ)

τ diperoleh menggunakan analisis sensitivitas berdasarkan MSE (Mean Square Error) terkecil dengan nilai $β_0$, $β_1$, $β_2$ tetap seperti yang telah dijelaskan pada poin a, b dan c.

Lakukan analisis sensitivitas tiap bulannya. Maka akan diperoleh $\beta_{0,i}$, $\beta_{1,i}$, $\beta_{2,i}$, τ_i dengan i=1,2,3,...,72 adalah indeks dari bulan Januari 2018 hingga Januari 2024. Berikut adalah parameter inisialisasi pada bulan Januari 2024 dan inisialisasi parameter lainnya ditampilkan pada Lampiran A.

Dulan	Parameter Inisialisasi							
Bulan	β0	β1	β2	τ				
Januari 2024	7,069027	0,81957	0,70707	17.357859531772576				

Tabel 1. Nilai parameter Nelson Siegel di Bulan Januari 2024

3.2. Optimisasi Parameter

Metode penelitian yang kami gunakan adalah metode penelitian kuantitatif karena metode kuantitatif adalah metode yang paling tepat untuk menganalisis sensitivitas tiap parameternya yang bermanfaat untuk konstruksi *yield curve* dengan optimal. Dalam pemodelan kali ini, digunakan model Nelson Siegel dan metode optimisasi Nelder-Mead.

Berikut adalah alur pemodelan yang dilakukan:

1. Mendefinisikan matriks y yang berisi *yield rate* terhadap tenor setiap bulannya dari Januari 2018 hingga Januari 2024, yaitu

$$y = \begin{bmatrix} y_{1,1} & y_{1,2} & \cdots & y_{1,71} & y_{1,72} \\ y_{2,1} & \ddots & & & y_{2,71} \\ \vdots & & y_{i,m} & & \vdots \\ y_{29,1} & & \ddots & y_{29,72} \\ y_{30,1} & y_{30,2} & \cdots & y_{30,71} & y_{30,72} \end{bmatrix}$$

dengan i = 1, 2, 3, ..., 72 (bulan) dan m = 1, 2, ..., 30 (tenor).

2. Hitung prediksi numerik *yield rate* dengan fungsi Nelson Siegel dengan substitusi nilai parameter β_0 , β_1 , β_2 , τ inisialisasi setiap bulannya dari bulan Januari 2018 - Januari 2024 (72 bulan)

$$\hat{y}_{i}(m) = \beta_{0,i} + \beta_{1,i} \frac{(1-e^{-\frac{m}{\tau_{i}}})}{\frac{m}{\tau_{i}}} + \beta_{2,i} \left(\frac{1-e^{-\frac{m}{\tau_{i}}}}{\frac{m}{\tau_{i}}} - e^{-\frac{m}{\tau_{i}}}\right)$$

dengan i = 1, 2, 3, ..., 72 (bulan) dan m = 1, 2, ..., 30 (tenor).

3. Hitung error pada prediksi numerik terhadap data sebenarnya dengan metode Mean Square Error setiap bulannya dari bulan Januari 2018 - Januari 2024 (72 bulan)

$$MSE_{i} = \frac{1}{M} \sum_{m=1}^{M} (y_{i,m} - \hat{y}_{i,m})^{2}$$

dengan i = 1, 2, ..., 72 dan m = 1, 2, 3, ..., M

Keterangan:

M: jumlah sampel data (30 tenor)

y(m): nilai *yield rate* sebenarnya dari data tenor ke-m bulan ke-i

11

ŷ(m) : nilai prediksi *yield rate* dari model Nelson Siegel untuk data tenor ke-m bulan ke-i.

4. Hitung optimisasi parameter menggunakan metode Nelder-Mead dengan fungsi objektif yaitu MSE (Mean Square Error)

Fungsi Objektif:

$$MSE_{i} = \frac{1}{M} \sum_{m=1}^{M} (y_{i,m} - \hat{y}_{i,m})^{2}$$

Optimisasi yaitu meminimumkan fungsi objektif (error) :

$$min\left(\frac{1}{M}\sum_{m=1}^{M}(y_{i,m}-\hat{y}_{i,m})^{2}\right)$$

dengan i = 1, 2, ..., 72 (bulan) dan M = 30 (tenor terbesar)

5. Dari optimasi pada langkah ke-4, diperoleh nilai parameter β_0 , β_1 , β_2 , τ yang optimal setiap bulannya. Selanjutnya, nilai parameter yang optimal tersebut digunakan untuk mengonstruksi *yield curve* setiap bulannya dari bulan Januari 2018 hingga Januari 2024. Parameter tersebut akan mengonstruksi kurva yang mirip dengan data dengan error yang sangat kecil.

BAB IV HASIL DAN PEMBAHASAN

4.1.Konstruksi Yield Curve dari Data Yield Rate Zero Coupon Bond

Setelah melakukan inisialisasi parameter dan melakukan optimisasi fungsi objektif pada bab 3 sebelumnya, diperoleh parameter Nelson Siegel yang optimal setiap bulannya dari bulan Januari 2018 hingga Januari 2024, seperti yang terlampir pada Lampiran B. Salah satunya untuk Bulan Januari 2024 sebagai berikut.

Dulan	Parameter Optimal						
Bulan	β0	β1	β2	τ			
Januari 2024	7,405494	-1,38668433	-0,02727387	6,02304696			

Tabel 2. Parameter Optimal Bulan Januari 2024

Dari parameter optimal tersebut, dapat dikonstruksi *yield curve* yang optimal dengan nilai error minimum sebanyak 72 bulan dari bulan Januari 2018 hingga bulan Januari 2024. Konstruksi *yield curve* dari 72 bulan terlampir di Lampiran C, salah satunya untuk bulan Januari 2024 sebagai berikut.

Gambar 3. Konstruksi Yield Curve bulan Januari 2024

Berdasarkan proyeksi yang telah dilakukan, kami memperoleh rata-rata dari *Mean Squared Error* (MSE) rata-rata sebesar 0,007648. Nilai MSE ini menunjukkan bahwa model yang kami kembangkan memiliki tingkat akurasi yang cukup baik dalam mencocokkan data *yield rate* sebenarnya.

4.2.Penggunaan Yield Curve untuk Perhitungan Imbalan Kerja

Yield curve yang telah dikonstruksi untuk bulan Januari 2024 akan digunakan sebagai dasar dalam perhitungan imbalan kerja. Dengan yield curve ini, kami dapat

melakukan estimasi nilai kewajiban imbalan kerja secara lebih akurat, mengingat *yield curve* memberikan informasi *discount rate* gaji karyawan pada masa pensiun. Asumsikan pegawai pensiun pada usia 55 tahun dengan *salary increment* 7%. Kemudian akan dihitung imbalan kerja beberapa pegawai dengan data berikut:

Name	DOB	DOJ	Salary	Status	Tahun Pensiun Usia di Januari 2024 Lama Kerja		Usia di Januari 2024		3	Si	sa Wak	tu K	lerja				
Emp 1	01/10/1974	01/03/2000	Rp24.000.000	Tetap	01/10/2029	49	tahun	3	bulan	23	tahun	10	bulan	5	tahun	9	bulan
Emp 2	01/01/1983	01/04/2005	Rp16.000.000	Tetap	01/01/2038	41	tahun	0	bulan	18	tahun	9	bulan	13	tahun	0	bulan
Emp 3	01/09/1986	01/12/2010	Rp11.000.000	Tetap	01/09/2041	37	tahun	4	bulan	13	tahun	1	bulan	17	tahun	8	bulan
Emp 4	01/05/1995	01/08/2013	Rp8.000.000	Tetap	01/05/2050	28	tahun	8	bulan	10	tahun	5	bulan	26	tahun	4	bulan
Emp 5	01/07/2000	01/07/2022	Rp7.500.000	Tetap	01/07/2055	23	tahun	6	bulan	1	tahun	6	bulan	31	tahun	6	bulan

Tabel 3. Data Pegawai

Undang-Undang Ketenagakerjaan										
Masa Kerja	BF Pension		Masa Kerja	BF Pension		Masa Kerja	BF Pension			
< 1	2,3		10	25,3		20	28,75			
1	4,6		11	25,3		21	29,9			
2	6,9		12	26,45		22	29,9			
3	11,5		13	26,45		23	29,9			
4	13,8		14	26,45		24	32,2			
5	16,1		15	27,6		25	32,2			
6	19,55		16	27,6		26	32,2			
7	21,85		17	27,6		27	32,2			
8	24,15		18	28,75		28	32,2			
9	25,3		19	28,75		≥ 29	32,2			

Tabel 4. Data Benefit Factor Pensiun

Selanjutnya akan dihitung imbalan kerja untuk *employee* 5 yang berumur 23 tahun 6 bulan per valuasi Januari 2024 sebagai contoh perhitungan. Diawali dengan perhitungan *future value* dari gaji *employee* 5. Diketahui gajinya sebesar Rp7.500.000 dengan lama kerja 1 tahun 6 bulan. Asumsi bahwa *employee* 5 akan pensiun pada umur 55 tahun, maka sisa waktu kerja yang dimiliki yaitu 31 tahun 6 bulan.

Future Value = Salary ×
$$(1 + Salary Increment)$$
 Sisa Waktu Kerja
= $Rp7.500.000 \times (1 + 7\%)$ 31,5
= $Rp63.190.277$

Kemudian akan dicari imbalan kerja yang akan didapatkan *employee* 5 dari gaji yang didapatkan pada masa pensiun dengan dikalikan *benefit factor* sebagai berikut:

Future Benefit = Future Value
$$\times$$
 Benefit Factor
= $Rp63.190.277 \times 4,6$
= $Rp290.675.275$

Kemudian perusahaan perlu mengetahui nilai imbalan kerja *employee 5* pada masa kini, yaitu Januari 2024, dengan cara mengalikan dengan nilai *zero coupon bond* tenor 1 sampai tenor saat tahun pensiun dari konstruksi *yield curve* bulan Januari 2024 sebelumnya.

$$PVBO = Future\ Benefit \times \prod_{i=1}^{Sisa\ Waktu\ Kerja} (1 + y_i)^{-1}$$

= $Rp290.675.275 \times 0,12$
= $Rp35.170.554$

Didapatkan nilai PVBO sebesar Rp35.170.554 yang perlu dicadangkan perusahaan untuk mempersiapkan dana imbalan kerja *employee* 5.

Dilakukan perhitungan serupa untuk *employee* 1, 2, 3 dan 4 sehingga diperoleh hasil akhir perhitungan imbalan kerja sebagai berikut:

	Skenario 1 (UUTK) Karyawan Tetap											
Name	Terhitung?	Future Value	Benefit Factor	Future Benefit	PVBO							
Emp 1	Terhitung	Rp35.413.428	29,9	Rp1.058.861.485	Rp730.846.917							
Emp 2	Terhitung	Rp38.557.520	28,75	Rp1.108.528.700	Rp485.778.482							
Emp 3	Terhitung	Rp36.350.140	26,45	Rp961.461.210	Rp301.920.791							
Emp 4	Terhitung	Rp47.518.508	25,3	Rp1.202.218.261	Rp204.995.362							
Emp 5	Terhitung	Rp63.190.277	4,6	Rp290.675.275	Rp35.170.554							
		Rp1.758.712.105,05										

Tabel 5. Hasil Perhitungan Imbalan Kerja Pegawai

BAB V PENUTUP

5.1.Kesimpulan

Dalam mengonstruksi *yield curve*, analisis sensitivitas diperlukan untuk memperoleh nilai awal parameter yang baik sehingga menghasilkan nilai parameter yang lebih optimal. Konstruksi *yield curve* menggunakan persamaan *Dynamic* Nelson-Siegel dan metode optimasi Nelder-Mead menghasilkan nilai kontinu setiap bulannya dari data yang bersatuan tahun. Nilai *yield rate* yang kontinu tersebut dapat digunakan untuk menghitung imbalan kerja yang masa kerjanya sampai masa pensiunnya tidak genap dalam satuan tahun.

Perhitungan imbalan kerja dipengaruhi oleh faktor kenaikan gaji pegawai, benefit factor dan nilai yield rate pada tenor 1 sampai tenor jumlah sisa masa kerja. Hasil perhitungan imbalan kerja menyimpulkan perusahaan memerlukan pencadangan PVBO sebesar Rp1.758.712.105,05.

5.2.Saran

Dalam mengestimasi nilai parameter, dapat digunakan metode optimisasi dan model yang lebih baik untuk menghasilkan estimasi *yield rate* agar memperoleh *yield curve* yang lebih akurat mendekati data asli.

DAFTAR PUSTAKA

- Benninga, S. (2014), Financial Modeling, 4 edn, The MIT Press.
- Hartono, Vincent H. (2023). Konstruksi Yield Curve Obligasi Menggunakan Optimisasi Hybridnm-Spiral Untuk Model Nelson-Siegel Dan Model Nelson-Siegel-Svensson Serta Menggunakan Smoothing Spline.
- Nelder, J.A., Mead, R. (1965). A simplex method for function minimization Comput. J. 7(4), 308–313.
- Nelson, C.R., Siegel, A.F. (1897). *Parsimonious Modeling of Yield Curves*. The Journal of Business 60(4), 473–489
- Wahab, Z., 2001. Dana Pensiun dan Jaminan Sosial Tenaga Kerja di Indonesia, Citra Aditya Bakti, Bandung.

LAMPIRAN A

Inisialisasi parameter setiap bulannya Januari 2018 hingga Januari 2024

D., I.,	Parameter Inisialisasi						
Bulan	β0	β1	β2	τ			
Januari 2018	7,590273	-2,610586	4,949494	28,795986			
Februari 2018	7,650539	-2,652638	5,353535	27.491638795986624			
Maret 2018	7,728718	-2,629736	5,353535	27.792642140468228			
April 2018	7,621586	-1,769463	0,90909	30			
Mei 2018	7,954061	-1,627376	6,565656	30			
Juni 2018	8,426514	1,953664	6,969696	17.056856187290972			
Juli 2018	8,591366	2,095722	0,80808	12.441471571906355			
Agustus 2018	8,881024	2,694298	0,50505	16.8561872909699			
September 2018	10,397967	3,213222	9,0909	30			
Oktober 2018	10,24484	3,238019	5,454545	10.133779264214047			
November 2018	11,186362	4,464571	2,525252	15.150501672240804			
Desember 2018	10,185	3,370523	8,888888	21.270903010033447			
Januari 2019	9,433204	2,625713	0,90909	7.625418060200669			
Februari 2019	9,222576	2,64158	4,949494	29.79933110367893			
Maret 2019	9,017322	2,570733	10	13.645484949832776			
April 2019	9,003226	2,501097	5,656565	29.899665551839465			
Mei 2019	8,953965	2,425202	7,171717	18.963210702341136			
Juni 2019	9,140054	2,754674	4,343434	28.19397993311037			
Juli 2019	8,474241	2,284631	8,686868	10.535117056856187			
Agustus 2019	8,576013	2,369349	6,161616	30			
September 2019	8,557729	2,52522	6,161616	30			
Oktober 2019	8,508372	2,859927	6,262626	29.899665551839465			
November 2019	8,297408	2,76697	4,747474	1.605351170568562			
Desember 2019	8,189064	2,769109	5,656565	27.892976588628763			
Januari 2020	8,173573	3,175389	6,767676	1.0033444816053512			
Maret 2020	8,655469	3,327849	1,313131	17.25752508361204			
April 2020	8,422376	2,961744	1,212121	23.27759197324415			

Mei 2020	8,544801	3,159518	9,191919	1.1036789297658862
Juni 2020	7,914486	3,04838	6,161616	26.086956521739133
Juli 2020	8,15128	3,880687	4,444444	19.665551839464882
Agustus 2020	8,010066	4,209903	9,898989	30
September 2020	8,035898	4,185278	7,979797	0.802675585284281
Oktober 2020	7,985002	4,338211	8,080808	1.605351170568562
November 2020	7,803402	4,538678	8,585858	30
Desember 2020	7,83243	4,187832	8,787878	25.08361204013378
Januari 2021	7,456016	3,421379	8,989898	4.916387959866221
Februari 2021	7,553794	3,490799	5,151515	2.508361204013378
Maret 2021	8,190515	4,065891	2,323232	25.08361204013378
April 2021	8,086774	4,103522	7,272727	24.983277591973245
Mei 2021	8,280106	4,446515	5,959595	26.68896321070234
Juni 2021	7,874509	4,178707	2,525252	24.782608695652176
Juli 2021	7,750064	4,362761	9,595959	30
Agustus 2021	7,71099	4,474507	1,515151	30
September 2021	7,635472	4,144478	7,171717	1.1036789297658862
Oktober 2021	7,751318	4,194995	1,313131	12.74247491638796
November 2021	7,556417	4,094004	0,70707	15.150501672240804
Desember 2021	7,550766	4,155295	2,626262	12.040133779264215
Januari 2022	7,404013	4,038139	8,686868	26.889632107023413
Februari 2022	7,343303	4,162663	3,939393	13.645484949832776
Maret 2022	7,516785	4,032559	6,363636	18.762541806020067
April 2022	7,464285	3,281804	1,919191	27.692307692307693
Mei 2022	7,828501	3,52374	7,474747	15.652173913043478
Juni 2022	7,76739	3,497836	0,90909	14.749163879598662
Juli 2022	7,563467	3,160896	8,787878	10.635451505016723
Agustus 2022	7,226687	2,270232	4,141414	25.986622073578594
September 2022	7,506584	1,754267	4,646464	30
Oktober 2022	7,66173	1,538072	4,040404	1.3043478260869565
November 2022	7,299326	1,530022	8,585858	12.642140468227424
Desember 2022	7,429689	1,904797	1,616161	9.933110367892978
Januari 2023	7,239728	1,616994	6,060606	29.79933110367893

Februari 2023	7,20538	1,194629	5,757575	30
Maret 2023	7,201721	1,346121	1,111111	29.79933110367893
April 2023	7,103652	1,159632	3,131313	9.832775919732441
Mei 2023	7,06564	1,382987	2,424242	29.899665551839465
Juni 2023	7,075663	1,401523	4,040404	29.899665551839465
Juli 2023	6,930082	1,069416	4,242424	1.9063545150501673
Agustus 2023	6,91705	0,755084	0,70707	17.558528428093645
September 2023	7,032866	0,850131	7,777777	17.45819397993311
Oktober 2023	7,241339	0,533866	0,70707	26.387959866220736
November 2023	7,141692	0,693478	0,60606	19.665551839464882
Desember 2023	7,104897	0,734911	0,30303	10.434782608695652
Januari 2024	7,069027	0,81957	0,70707	17.357859531772576

LAMPIRAN B

Parameter optimal setiap bulannya Januari 2018 hingga Januari 2024

Dulan	Parameter Optimal							
Bulan	β0	β1	β2	τ				
Januari 2018	8,34128636	-3,89633804	-0,05011689	4,34327449				
Februari 2018	8,16077956	-3,69652519	-0,00485468107	2,98655767				
Maret 2018	8,15364857	-3,1763461	0,08910891	3,80339534				
April 2018	8,15582466	-3,02638002	-0,17516117	2,20057564				
Mei 2018	8,36425628	-2,15132354	0,01416602	4,04531078				
Juni 2018	8,27595959	-0,89587827	0,33999189	4,04358745				
Juli 2018	8,85521804	-1,58309356	0,16645774	6,1336252				
Agustus 2018	9,58537949	-1,62284845	0,12097832	16,34471102				
September 2018	197,819576	-190,425576	0,0000923864911	903,533496				
Oktober 2018	36,2501831	-27,8751025	0,00656196325	215,424221				
November 2018	511,626625	-504,780023	-0,0000749344278	2023,63797				
Desember 2018	52,5250979	-45,1301888	0,00189680266	250,694048				
Januari 2019	11,92251483	-4,18623971	0,04217649	25,59959395				
Februari 2019	11,05480321	-3,80743047	0,04755047	17,88242611				
Maret 2019	9,87614242	-3,51697656	0,02257918	7,26145752				
April 2019	9,65805538	-3,44572526	0,00293796615	5,11417707				
Mei 2019	9,32474674	-3,00207451	0,06261234	3,69144254				
Juni 2019	11,6914889	-5,38377848	0,00287443462	16,2298339				
Juli 2019	9,19611694	-3,54596145	-0,05741753	5,2259995				
Agustus 2019	9,28009144	-3,60005688	-0,05280946	4,90237651				
September 2019	9,34875765	-3,74202562	-0,02907291	5,40140314				
Oktober 2019	9,66514908	-4,22813854	0,00177435602	7,39202717				
November 2019	9,04684157	-3,70136477	0,02570332	5,28489086				
Desember 2019	8,76532986	-3,69892265	0,02442791	3,74797117				
Januari 2020	8,97650329	-4,34945273	0,00810784802	4,66105548				
Maret 2020	11,12767908	-8,38577477	-2,09168058	0,79126977				
April 2020	15,15586242	-10,50276992	-6,47075729	0,48482854				

Mei 2020	9,02735483	-3,26523845	0,18643358	4,57725292
Juni 2020	8,06396989	-3,32348249	0,23840903	2,79187038
Juli 2020	8,86795081	-5,70452774	-0,09868563	2,54720616
Agustus 2020	9,51440129	-7,99311648	-0,76279793	1,87181207
September 2020	9,36466108	-7,65461989	-0,6491345	1,81770318
Oktober 2020	9,14064157	-7,40339691	-0,45260956	2,05406983
November 2020	8,624404	-6,07397155	0,04332087	3,24714303
Desember 2020	8,69235179	-4,99599384	0,1037826	5,71930813
Januari 2021	8,44545521	-5,78985508	-0,30215532	2,58437306
Februari 2021	8,83894325	-6,80973508	-0,77949126	1,56798795
Maret 2021	8,79186589	-5,24015335	0,0648356	3,2985019
April 2021	8,77561671	-5,15116214	0,08064841	3,98343078
Mei 2021	9,11647113	-5,39566023	0,10239015	5,00742176
Juni 2021	8,88842	-6,66920446	-0,25660956	2,55412428
Juli 2021	8,77487847	-6,70102685	-0,1774208	2,80442618
Agustus 2021	8,59462033	-6,13531001	0,00103671481	3,42740825
September 2021	8,78556715	-6,87754663	-0,32251596	2,5748177
Oktober 2021	8,93024892	-6,96737452	-0,31955916	2,83159806
November 2021	9,14284145	-8,06931057	-0,87112373	1,9547929
Desember 2021	9,48364832	-8,80511789	-1,24599068	1,62463924
Januari 2022	10,48818428	-10,21353709	-2,50574685	1,08285352
Februari 2022	9,99409572	-9,85510055	-2,10290416	1,05879431
Maret 2022	10,98695239	-10,59633491	-2,90932194	0,94237791
April 2022	10,52146809	-8,91954261	-2,69615079	0,68691689
Mei 2022	10,88543556	-9,25391307	-2,6448459	0,82892272
Juni 2022	10,38533777	-9,00081433	-2,18970699	0,80899191
Juli 2022	6,98289109	-3,20304914	0,88086204	1,53361667
Agustus 2022	6,60106032	-1,04410274	0,79517616	2,30902549
September 2022	7,32090848	-2,1616917	0,38775329	1,41741631
Oktober 2022	7,93408309	-3,66057115	-0,13625052	0,56127537
November 2022	7,49525849	-2,47764702	-0,01248313	1,27777807
Desember 2022	7,75882383	-2,95692983	-0,08310147	1,84503502
Januari 2023	7,51751336	-2,10244657	0,02927139	3,31297398

Februari 2023	7,54792153	-1,94911549	-0,08005708	2,69866218
Maret 2023	7,4859145	-1,83881911	0,00486592956	3,37431233
April 2023	7,50085059	-2,02716855	-0,10749417	3,00457982
Mei 2023	7,49180114	-2,27333569	-0,07417406	4,08954705
Juni 2023	7,64387771	-2,24002868	-0,02191438	6,97801037
Juli 2023	5,74727201	-2,47605499	6,23577435	-8,48338196
Agustus 2023	7,31308299	-1,55135207	-0,06607862	5,48146635
September 2023	7,78575608	-2,33035605	-0,58805246	1,28402809
Oktober 2023	7,14998841	-0,78816136	0,13704001	0,95596143
November 2023	7,89489491	-1,36951293	0,00512276947	21,3485662
Desember 2023	8,32029444	-2,03078306	-0,0095186189	25,8432103
Januari 2024	7,405494	-1,38668433	-0,02727387	6,02304696

LAMPIRAN C

Hasil konstruksi yield curve optimal

