History

Poincare, *Analysis Situs* papers in 1895. Coined "homeomorphism", defined homology, gave rigorous definition of homotopy, established "method of invariants" and essentially kicked off algebraic topology.

Motivation

- \(n=1\): True. Trivial
- \(n=2\): True. Proved by Poincare, classical
- \(n=3\): True. Perelman (2006) using Ricci flow + surgery
- \(n=4\): True. Freedman (1982), Fields medal!
- \(n=5\): True. Zeeman (1961)
- \(n=6\): True. Stalling (1962)
- \(n\geq 7\): True. Smale (1961) using h-cobordism theorem, uses handle decomposition + Morse functions

Smooth Poincare Conjecture: When is a homotopy sphere a smooth sphere?

- \(n=1\): True. Trivial
- \(n=2\): True. Proved by Poincare, classical
- \(n=3\): True. (Top = PL = Smooth)
- \(n=4\): **Open**
- \(n=5\): Zeeman (1961)
- \(n=6\): Stalling (1962)
- \(n\geq 7\): False in general (Milnor and Kervaire, 1963), Exotic \(S^n\), 28 smooth structures on \(S^7\)

It is unknown whether or not \$ B^4 \$ admits an exotic smooth structure. If not, the smooth \$ 4 \$-dimensional Poincare conjecture would have an affirmative answer.

Current line of attack: Gluck twists on on \(S^4\). Yield homeomorphic spheres, *suspected* not to be diffeomorphic, but no known invariants can distinguish smooth structures on \(S^4\).

Relation to homotopy: Define a monoid (G_n) with

- Objects: smooth structures on the \(n\) sphere (identified as oriented smooth \(n\) manifolds which are homeomorphic to \(S^n\))
- · Binary operation: Connect sum

For $(n\neq 4)$, this is a group. Turns out to be isomorphic to $(\theta + 1)$, the group of $(h\cdot 1)$ obordism classes of "homotopy (S^n) "

Recently (almost) resolved question: what is \(\Theta n\) for all \(n\)?

Application: what spheres admit unique smooth structures?

- Define \(bP_{n+1} \leq \Theta_n\\) the subgroup of spheres that bound parallelizable manifolds (define in a moment).
- The Kervaire invariant is an invariant of a framed manifold that measures whether the manifold could be surgically converted into a sphere. 0 if true, 1 otherwise.
- Hill/Hopkins/Ravenel (2016): = 0 for \(n \geq 254\).
- Kervaire invariant = 1 only in 2, 6, 14, 30, 62. Open case: 126.
- Punchline: there is a map \(\Theta_n/bP_{n+1} \to \pi_n^S/ J\), (to be defined) and the Kervaire invariant influences the size of \(bP_{n+1}\). This reduces the differential topology problem of classifying smooth structures to (essentially) computing homotopy groups of spheres.
- Open question: is there a manifold of dimension 126 with Kervaire invariant 1?

Parallelizable/framed: Trivial tangent bundle, i.e. the principal frame bundle has a smooth global section. Parallelizable spheres (S^0, S^1, S^3, S^7) corresponding to (RR, CC, \mathbb{H}) , \mathbb{G} .

• Framed Bordism Classes of manifolds – \(\Omega^{fr}_n \cong \pi_n^S\) > Note: bordism is one of the coarsest equivalence relations we can put on manifolds. Hope to understand completely!

Background

Definition (Homotopy) Given two paths \(P_1, P_2: I \to X\) (where we identify the paths with their images under these maps), then a *homotopy* from \(P_1\) to \(P_2\) is a function \[H: I \to (I \to X) \\ H(0, \wait) = $x_0 \ \ H(1, \wait) = x_1 \ \ \ H(\wait, 0) = P_1(\wait) \ \ H(\wait, 1) = P_2(\wait) \ \ \ \$

such that the associated "partially applied" function \(H t: I \to X\) is continuous.

Definition (Homotopic Maps) Given two maps \(f, g: X \to Y\), we say \(f\) is *homotopic* to \(g\) and write \(f \times g\) if there is a homotopy \[H: I \to (X \to Y) \\ H(0, \wait) = f(\wait)\\ H(1, \wait) = g(\wait)\\ \\]

such that $\(H_t: X \to Y)$ is continuous.

Can think of this as a map from the cylinder on (X) into (Y), or deformations through continuous functions.

Note: This is an equivalence relation. If $(f: X \to Y)$ is a map, we write ([X, Y]) to denote the homotopy classes of maps (X) to (Y).

Definition (Fundamental Group) \[\pi_1(X) \definedas [S^1, X]. \]

Note that this actually measures homotopy classes of *loops* in $\(X\)$.

Example: $(\pi_1 T^2 = ZZ^{\alpha})$, a *free* abelian group of rank 2.

Definition (Higher Homotopy Groups) \[\pi_n(X) \definedas [S^n, X]. \]

Introduced by Cech in 1932, Alexandrov reportedly told him to withdraw because it couldn't possibly be the right generalization due to the following theorem:

Theorem: $[n \geq 2 \in S^n, X] \in \mathbb{S}^n$, X] $\in \mathbb{S}$

Theorem (Hopf, 1931): $[[S^3, S^2] = ZZ \setminus 0]$

Recall that homology vanishes above the dimension of a given manifold!

This group is generated by the *Hopf fibration*, and provides infinitely many ways of "wrapping" a 3-sphere around a 2-sphere nontrivially! This was surprising and unexpected

Definition (CW Complex) A CW complex is any space built from the following inductive process:

Denote (X_n) the $(n\ash)$ skeleton.

- Let \(X_0\) by a discrete set of points.
- Let (X_{n+1}) be obtained from (X_n) by taking a collection of $(n\cdot x_n)$ balls and glue them to (X_n) by maps $[\phi X_n]$.
- If infinitely many stages, let $(X = \lambda_n)$ with the weak topology (i.e. a set $(A \subset X)$ is open iff $(A \subset X_n)$ is open for all (n))

Example: Every graph is a 1-dimensional CW complex

Example: Identification polyhedra for surfaces

Example: $(S_n = e_0 + e_n)$ by gluing (B^{n+1}) to a point by a map (ϕ_n) to ϕ_n i.e. $(B^{n+1} / B^n \subset S^n)$. Can also attach two hemispheres at each (ϕ_n) to get $(S^n = e_0 + e_1 + 2e_2 + \cdots + 2e_n)$.

Note: Cellular homology is very easy to compute!

Note: Replacing \(\phi\) with a homotopic map yields an equivalent CW complex. So understanding CW complexes boils down to understanding \([S^n, S^m]\) for \(m < n\), i.e. higher homotopy groups of spheres.

Definition (Cellular Map) A map between $\f(x)$ between CW complex is *cellular* if $\f(x_{(k)})$ subseteq Y $\f(k)$ for every $\f(k)$.

Theorem (Cellular Approximation): Any map \(f: X \to Y\) is homotopic to a cellular map.

Application: $\(\sum_k S^n = 0 \)$ if $\(k < n \)$. Use $\(f \in \mathbb{S}_k S_n)$, deform $\(f \in \mathbb{S}_k S_n)$, deform $\(f \in \mathbb{S}_k S_n)$, a constant map.

Definition (Homotopy Equivalence) Two spaces $\(X, Y\)$ are said to be *homotopy equivalent* if there exists a maps $\(f: X \to Y\)$ and $\(f\in Y \to X\)$ such that $\(f\in X \to Y\)$ and $\(f\in X \to Y\)$

Definition (Weak Equivalence) A continuous map $\{[f: X \mid f: X$

Note that this is a strictly weaker notion than homotopy equivalence – we don't require an explicit inverse.

Note that a weak homotopy equivalence also induces isomorphisms on all homology and cohomology.

Theorem (Whitehead): If \(f: X\to Y\) is a weak equivalence between CW complexes, then it is a homotopy equivalence.

Corollary (Relative Whitehead): If $(f:X\to Y)$ between CW complexes induces an isomorphism $(H * X \to H * Y)$, then (f) is a weak equivalence.

Theorem (CW Approximation): For every topological space $\(X\)$, there exists a CW complex $\(X\)$ and a weak homotopy equivalence $\(f: X \setminus X\)$.

Note: Weak equivalences = equivalences for CW complexes, which means we can essentially throw out the distinction!

Note: This says that if we understand CW complexes, we essentially understand the category hoTop completely. Moreover, we only have to understand spaces up to *weak* equivalence, i.e. we just need to check induced maps on \(\pi_*\) instead of checking for inverse maps.

Definition (Connectedness): A space is said to be $(n\cdot dash)$ connected if $(\pi X = 0)$.

Recall that a space is *simply connected* iff $(\pi X = 0)$.

Theorem (Hurewicz): Given a fixed space \(X\), any map \(f \in \pi_kX = [S^k, X]\) has the type \(f: S^k \to X\). This induces a map \(f_*: H_* S^k \to H_* X\). Since \(H_k S^k \cong \ZZ \cong \generators{\mu}\), define a family of maps \[h_k: \pi_k X \to H_k X \\ [f] \mapsto f_*(\mu) \]

If $(n \ge 2)$ and (X) is (n-1) connected, then (h_k) is an isomorphism for all $(k \le n)$.

Note: If (k=1), then (h_1) is the abelianization of (π_1) .

Application

If $\(X\)$ a simply connected, closed 3-manifold is a homology sphere, then it is a homotopy sphere.

- $\(H_0 X = ZZ)\)$ since $\(X)\)$ is path-connected
- \(H_1 X = 0\) since \((X\)) is simply-connected
- $\(H_3 X = \ZZ\)$ since $\(X\)$ is orientable
- \(H_2 X = H^1 X\) by **Poincare duality**. What group is this?
- So \(H_*(X) = [\ZZ, 0, 0, \ZZ, 0, \cdots]\)
- So \(h_3: \pi_3 X \to H_3 X\) is an isomorphism by **Hurewicz**. Pick some \(f\in \pi_3 X \cong \ZZ\).
 By partial application, this induces an isomorphism \(H_* S^3 \to H_* X\).
- Taking **CW** approximations for (S^3, X) , we find that (f) is a homotopy equivalence.

Other Topics

Theorem (Freudenthal Suspension): If (X) is an $(n\cdot CX)$ connected CW complex, then there is a map $[Sigma: \pi_i X \to \pi_i X]$

which is an isomorphism for \(i \leq 2n\) and a surjection for \(i=2n+1\).

Note: $([S^k, X] \setminus Sigma S^k, Sigma X] = [S^{k+1}, Sigma X])$

Application: $(\pi_2 S^2 = \pi_3 S^3 = \cdot s)$ since (2) is already in the stable range.

A consequence: $\(\pi_1 \times \pi_2 \times \pi_3 \times \pi_2 \times \pi_2 \times \pi_3 \times \pi_2 \times \pi_2 \times \pi_2 \times \pi_2 \times \pi_3 \times \pi_2 \times \pi_3 \times \pi_2 \times \pi_3 \times$

 $(X = S^n)$ yields stable homotopy groups of spheres, ties back to initial motivation.

Noting that $(\sum S^n = S^{n+1})$, we could alternatively define $(\sum S^n = S^n + 1)$, we could alternatively define $(\sum S^n + 1)$, then it turns out that $(\sum S^n + 1)$.

This object is a *spectrum*, which vaguely resembles a chain complex with a differential: $[X_0 \text{ mapsvia}] X_2 \text{ mapsvia} X_3 \text{ sigma} \cdots]$

Spectra *represent* invariant theories (like cohomology) in a precise way. For example, $\[HG \setminus K(G, 1) \rightarrow K(G, 2) \rightarrow K(G, 2) \]$

then $\(H^n(X; G) \subset [X, K(G, 1)]\)$, and we can similarly extract $\(H^*(X; G)\)$ from (roughly) $\(\pi_* \in \mathbb{S}, HG \rightarrow \mathbb{S})$.

Note: this glosses over some important details! Also, smash product basically just looks like the tensor product in the category of spectra.

A modern direction is cooking up spectra that represent *extraordinary* cohomology theories. There are Eilenberg–Steenrod axioms that uniquely characterize homology on spaces; if we drop $(H^* \neq 0)$, we get generalized alternatives.

Other Topics

- · The homotopy hypothesis
- Generalized Cohomology theories
- Stable Homotopy Theory
- Infinity Categories
- · Higher Homotopy Groups of Spheres

• Eilenberg Mclane and Moore Spaces

	π ₁	π ₂	π ₃	π_4	π ₅	π_6	π ₇	π ₈	π ₉	π ₁₀	π ₁₁	π ₁₂	π ₁₃	π ₁₄	π ₁₅
s ⁰	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
s¹	\mathbb{Z}	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S ²	0	Z	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_3	\mathbb{Z}_{15}	\mathbb{Z}_2	\mathbb{Z}_2^2	$\mathbb{Z}_{12} \times \mathbb{Z}_2$	$\mathbb{Z}_{84} \times \mathbb{Z}_2^2$	\mathbb{Z}_2^2
S ³	0	0	Z	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_3	\mathbb{Z}_{15}	\mathbb{Z}_2	\mathbb{Z}_2^2	$\mathbb{Z}_{12} \times \mathbb{Z}_2$	$\mathbb{Z}_{84} \times \mathbb{Z}_2^2$	\mathbb{Z}_2^2
S ⁴	0	0	0	Z	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z} \times \mathbb{Z}_{12}$	\mathbb{Z}_2^2	\mathbb{Z}_2^2	$\mathbb{Z}_{24} \times \mathbb{Z}_3$	\mathbb{Z}_{15}	\mathbb{Z}_2	\mathbb{Z}_2^3	$\mathbb{Z}_{120} \times \mathbb{Z}_{12} \times \mathbb{Z}_2$	$\mathbb{Z}_{84} \times \mathbb{Z}_2^5$
S ⁵	0	0	0	0	Z	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{30}	\mathbb{Z}_2	\mathbb{Z}_2^3	$\mathbb{Z}_{72} \times \mathbb{Z}_2$
S ⁶	0	0	0	0	0	Z	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0	Z	\mathbb{Z}_2	ℤ ₆₀	$\mathbb{Z}_{24} \times \mathbb{Z}_2$	\mathbb{Z}_2^3
s ⁷	0	0	0	0	0	0	Z	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0	0	\mathbb{Z}_2	\mathbb{Z}_{120}	\mathbb{Z}_2^3
S ⁸	0	0	0	0	0	0	0	Z	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0	0	\mathbb{Z}_2	$\mathbb{Z} \times \mathbb{Z}_{120}$

Image

- Below jagged line: Zero by cellular approximation, or stable by Freudenthal suspension.
- Above line: Unstable range. Need to throw everything in the book at these guys to compute!