UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Matematika – 1. stopnja

${\bf Luka\ Horjak} \\ {\bf HOLOMORFNI\ AVTOMORFIZMI} \\$

Delo diplomskega seminarja

Mentor: prof. dr. Miran Černe

Kazalo

1	Holomorfni avtomorfizmi v kompleksni ravnini		
	1.1	Enostavno povezana območja	
	1.2	Kolobarji in punktirani diski	
2	Riemannove ploskve		
	2.1	Gladke in kompleksne mnogoterosti	
		Riemann-Rochov izrek	
	2.3	Weierstrassove točke	
	2.4	Hipereliptične ploskve	
3	Avtomorfizmi Riemannovih poloskev		
	3.1	Sfere in torusi	
	3.2	Ploskve večjih rodov	

Holomorfni avtomorfizmi

Povzetek

• • •

${\bf Holomorphic\ automorphisms}$

Abstract

...

Math. Subj. Class. (2020): ..., ... Ključne besede: ..., ...

 $\mathbf{Keywords:}\ ...,\ ...$

1 Holomorfni avtomorfizmi v kompleksni ravnini

1.1 Enostavno povezana območja

Definicija 1.1. *Območje* v kompleksni ravnini \mathbb{C} je vsaka odprta povezana množica.

Definicija 1.2. Holomorfni avtomorfizem območja Ω je bijektivna holomorfna preslikava $f: \Omega \to \Omega$ s holomorfnim inverzom.

Opazimo, da je zadosten pogoj že to, da je f bijektivna z neničelnim odvodom. Opazimo še, da množica avtomorfizmov nekega območja tvori grupo z operacijo kompozitum. To grupo označimo z $\operatorname{Aut}(\Omega)$.

Primer 1.3. Kompleksna ravnina je območje v $\mathbb{C}.$ Njena grupa avtomorfizmov je enaka

$$Aut(\mathbb{C}) = \{az + b \mid a \neq 0\}.$$

Primer 1.4. Naj bo Δ odprt enotski disk v \mathbb{C} . Tedaj je

$$\operatorname{Aut}(\mathbb{A}) = \left\{ e^{i\theta} \cdot \frac{z - a}{1 - \overline{a}z} \mid a \in \mathbb{A} \land \theta \in [0, 2\pi) \right\}.$$

Izkaže se, da smo s tem do izomorfizma natančno opisali grupe avtomorfizmov vseh povezanih in enostavno povezanih množic v \mathbb{C} . Velja namreč naslednja lema:

Lema 1.5. Naj bosta Ω_1 in Ω_2 biholomorfno ekvivalentni območji v \mathbb{C} . Tedaj je $\operatorname{Aut}(\Omega_1) \cong \operatorname{Aut}(\Omega_2)$.

Dokaz. Naj bo $f: \Omega_1 \to \Omega_2$ biholomorfna preslikava. Sedaj definiramo preslikavo $\Phi: \operatorname{Aut}(\Omega_1) \to \operatorname{Aut}(\Omega_2)$ s predpisom

$$\Phi(\phi) = f^{-1} \circ \phi \circ f.$$

Ker je s predpisom

$$\Phi^{-1}(\psi) = f \circ \psi \circ f^{-1}$$

očitno podan predpis inverza preslikave Φ , je ta bijektivna. Velja pa

$$\Phi(\phi \circ \psi) = f^{-1} \circ \phi \circ \psi \circ f = \left(f^{-1} \circ \phi \circ f \right) \circ \left(f^{-1} \circ \psi \circ f \right) = \Phi(\phi) \circ \Phi(\psi),$$

zato je Φ homomorfizem.

Spomnimo se na Riemannov upodobitveni izrek, ki pravi, da je vsako povezano in enostavno povezano območje v kompleksni ravnini ali biholomorfno ekvivalentno Δ ali pa kar enako \mathbb{C} . Grupe avtomorfizmov povezanih in enostavno povezanih območij so do izomorfizma natančno tako le $\operatorname{Aut}(\Delta)$ in $\operatorname{Aut}(\mathbb{C})$.

Omenimo še, da lahko kompleksno ravnino dopolnimo do Riemannove sfere $\hat{\mathbb{C}}$. Njeni avtomorfizmi so Möbiusove transformacije, torej

$$\operatorname{Aut}\left(\widehat{\mathbb{C}}\right) = \left\{ \frac{az+b}{cz+d} \mid ad-bc = 1 \right\}.$$

1.2 Kolobarji in punktirani diski

Po obravnavi enostavno povezanih območij so naslednji korak območja z »luknjami«. Najosnovnejši tak primer je seveda kolobar.

Opazimo, da se pri velikem številu lukenj grupa avtomorfizmov bistveno zmanjša – enostavno povezana območja imajo neskončno avtomorfizmov, prav tako območja z eno luknjo.

2 Riemannove ploskve

2.1 Gladke in kompleksne mnogoterosti

2.2 Riemann-Rochov izrek

Definicija 2.1. Delitelj na Riemannovi ploskvi M je formalni simbol

$$\mathfrak{A} = \prod_{P \in M} P^{\alpha(P)},$$

kjer za vsak P velja $\alpha(P) \in \mathbb{Z}$ in je $\alpha(P) \neq 0$ za kvečjemu končno mnogo točk $P \in M$. Stopnja delitelja \mathfrak{A} je definirana kot

$$\deg \mathfrak{A} = \sum_{P \in M} \alpha(P).$$

Delitelji na M tvorijo grupo za naravno definirano množenje – to grupo označimo z $\mathrm{Div}(M)$. Tako je deg: $\mathrm{Div}(M) \to \mathbb{Z}$ homomorfizem grup.

Za vsako neničelno meromorfno funkcijo $f \in \mathcal{K}(M)$ definiramo njen glavni delitelj kot

$$(f) = \prod_{P \in M} P^{\operatorname{ord}_P f}.$$

Definiramo lahko še polarni delitelj

$$f^{-1}(\infty) = \prod_{P \in M} P^{\max(-\operatorname{ord}_P f, 0)}$$

in ničelni delitelj

$$f^{-1}(0) = \prod_{P \in M} P^{\max(\text{ord}_P f, 0)}.$$

Opazimo, da velja

$$(f) = \frac{f^{-1}(0)}{f^{-1}(\infty)}.$$

Lema 2.2. Naj bo M kompaktna Riemannova ploskev. Za vsako neničelno funkcijo $f \in \mathcal{K}(M)$ velja deg $f^{-1}(0) = \deg f^{-1}(\infty)$. Ekvivalentno je $\deg(f) = 0$.

Dokaz. Predpostavimo lahko, da je f nekonstantna. Iz kompleksne analize vemo, da za vsako točko $P \in M$ obstajajo take lokalne koordinate \tilde{z} , da je $f(\tilde{z}) = f(P) + \tilde{z}^n$. Število n označimo z b(P).

Za vsako naravno število m naj bo

$$\Sigma_m = \left\{ \alpha \in \widehat{\mathbb{C}} \mid \sum_{f(P) = \alpha} b(P) \ge m \right\}.$$

Označimo še

$$\varphi(\alpha) = \sum_{f(P)=\alpha} b(P).$$

Vse množice $\Sigma_m \setminus \{\infty\}$ so odprte – če je b(P) = n, lahko v lokalnih koordinatah zapišemo $f(\tilde{z}) = \alpha + \tilde{z}^n$. Enačba $f(\tilde{z}) = \alpha + \varepsilon$ ima tako natanko n rešitev, zato na dovolj majhni okolici točke P velja

$$b(P) = \sum_{f(Q)=\alpha+\varepsilon} b(Q).$$

Če to enakost seštejemo po okolicah vseh točk P, dobimo

$$m \le \varphi(\alpha) \le \varphi(\alpha + \varepsilon).$$

Pokažimo še, da so te množice zaprte v $\widehat{\mathbb{C}}$. Naj bo Q limita zaporedja točk $Q_k \in \Sigma_m$, pri čemer je brez škode za splošnost b(P) = 0 za vsak $P \in f^{-1}(Q_k)$. Ker imajo vse množice $f^{-1}(Q_k)$ vsaj m elementov, lahko najdemo tako podzaporedje zaporedja $(Q_k)_{n=1}^{\infty}$, da lahko iz njihovih praslik tvorimo m konvergentnih zaporedij. Tako sledi

$$\sum_{P \in f^{-1}(Q)} b(P) \ge m.$$

Sledi, da so vse množice Σ_m odprte in zaprte v \mathbb{C} . Čim je ena izmed množic $\Sigma_m \setminus \{\infty\}$ neprazna, je tako enaka celotni kompleksni ravnini. Ker je Σ_m poleg tega še zaprta v $\widehat{\mathbb{C}}$, velja kar $\Sigma_m = \widehat{\mathbb{C}}$. Sledi, da obstaja tako naravno število m, da je $\varphi(\alpha) = m$ za vsa kompleksna števila α , poleg tega pa velja še $\varphi(\infty) \leq m$.

Ker lahko identičen razmislek naredimo tudi za funkcijo $\frac{1}{f}$, sledi še neenakost $\varphi(\infty) \geq m$. Tako je φ konstantna na $\widehat{\mathbb{C}}$.

Za zaključek dokaza je dovolj opaziti, da velja

$$f^{-1}(0) = \varphi(0) = \varphi(\infty) = f^{-1}(\infty).$$

Posebej velja opomniti, da to pomeni, da imajo funkcije na kompaktnih Riemannovih ploskvah enako število ničel in polov (štetih z večkratnostmi).

Na deliteljih lahko uvedemo relacijo delne urejenosti kot

$$\prod_{P \in M} P^{\alpha(P)} \geq \prod_{P \in M} P^{\beta(P)} \iff \forall P \in M \colon \alpha(P) \geq \beta(P).$$

Ni težko videti, da je za vsak delitelj $\mathfrak A$ na M množica

$$L(\mathfrak{A}) = \{ f \in \mathcal{K}(M) \mid (f) \ge \mathfrak{A} \}$$

vektorski prostor – njegovo dimenzijo označimo z $i(\mathfrak{A})$. Podobno je tudi

$$\Omega(\mathfrak{A}) = \{ df \mid f \in \mathcal{H}(M) \land (df) > \mathfrak{A} \}$$

vektorski prostor. Označimo $i(\mathfrak{A}) = \dim \Omega(\mathfrak{A})$.

Izrek 2.3 (Riemann-Roch). Naj bo M kompaktna Riemannova ploskev roda g in A delitelj na M. Tedaj velja

$$r\left(\mathfrak{A}^{-1}\right) = \deg \mathfrak{A} - g + 1 + i(\mathfrak{A}).$$

2.3 Weierstrassove točke

Izrek 2.4. Naj bo M ploskev roda g > 0 in $P \in M$. Tedaj obstaja natanko g števil

$$1 = n_1 < n_2 < \dots < n_g < 2g,$$

za katera ne obstaja funkcija $f \in \mathcal{K}(M)$, ki je holomorfna na $M \setminus \{P\}$ in ima pol reda n_i v P. Tem številom pravimo GAP.

Definicija 2.5. Točka $P \in M$ je Weierstrassova točka, če na M obstaja neničelna holomorfna diferencialna 1-forma z ničlo reda vsaj $g \vee P$.

Lema 2.6. Ekvivalentno, vsaj eno izmed števil $2, \ldots, g$ ni GAP.

Dokaz. Obstoj diferencialne 1-forme z ničlo reda vsaj g v P je ekvivalentna pogoju $i(P^g) > 0$. Po Riemann-Rochovem izreku je ta neenakost ekvivalentna

$$r\left(P^{-g}\right) - 1 > 0,$$

oziroma $r(P^{-g}) \geq 2$. Ker je r(1) = 1, med $2, \ldots, g$ obstaja število, ki ni GAP.

Lema 2.7. Naj bo M kompaktna Riemannova ploskev roda $g \geq 2$. Tedaj za število w Weierstrassovih točk veljata oceni

$$2g + 2 \le w \le g^3 - g.$$

2.4 Hipereliptične ploskve

 $^{^{1}}$ V splošnem definiramo q-Weierstrassove točke – obstaja q-forma z ničlo reda vsaj dim $\mathcal{H}^{q}(M)$.

3 Avtomorfizmi Riemannovih poloskev

3.1 Sfere in torusi

Za določanje grupe avtomorfizmov Riemannovih ploskev so pomembne njihove topološke lastnosti – vsak avtomorfizem je namreč tudi homeomorfizem. Iz geometrijske topologije vemo, da je vsaka orientabilna kompaktna ploskev homeomorfna vsoti g torusov. Številu g pravimo rod ploskve.

Najprej si oglejmo ploskve z ničelnim rodom – topološko so to kar sfere. V prejšnjih razdelkih smo ugotovili, da je grupa avtomorfizmov Riemannove sfere enaka

$$\operatorname{Aut}\left(\widehat{\mathbb{C}}\right) = \left\{ \frac{az+b}{cz+d} \mid ad-bc = 1 \right\}.$$

Vemo pa, da je grupa avtomorfizmov odvisna ne samo od topoloških lastnosti objekta, ampak tudi njegove kompleksne strukture.

Naslednji izziv so ploskve z rodom g = 1 – torusi. Za toruse IZREK ne velja, zato imamo več različnih grup avtomorfizmov. Oglejmo si, kako jih dobimo:

3.2 Ploskve večjih rodov

Trditev 3.1. Naj bo $T \in \text{Aut } M$ netrivialen avtomorfizem. Tedaj ima T največ 2g + 2 fiksnih točk.

Dokaz. Naj bo $P \in M$ točka, za katero je $T(P) \neq P$. Tedaj obstaja meromorfna funkcija $f \in \mathcal{K}(M)$ s polarnim deliteljem P^r za nek $1 \leq r \leq g+1$. Oglejmo si funkcijo $h = f - f \circ T$. Njen polarni delitelj je očitno $P^r(T^{-1}P)^r$. Velja torej

$$\deg h^{-1}(0) = \deg h^{-1}(\infty) = 2r \le 2g + 2,$$

zato ima g kvečjemu 2g+2 ničel. Ni težko videti, da so njene ničle natanko fiksne točke avtomorfizma T.

Lema 3.2. Naj bo M kompaktna Riemannova ploskev roda $g \geq 2$, W pa množica njenih Weierstrassovih točk. Tedaj ta vsak avtomorfizem $T \in \operatorname{Aut} M$ velja T(W) = W.

Dokaz. Avtomorfizmi ohranjajo GAPE.

Izrek 3.3 (Schwarz). Grupe avtomorfizmov kompaktnih ploskev roda $g \geq 2$ so končne.

Dokaz. Po zgornji lemi sledi, da obstaja homomorfizem λ : Aut $M \to S_W$, kjer je S_W simetrična grupa. Dovolj je pokazati, da ima λ končno jedro. Ločimo dva primera.

- a) Če M ni hipereliptična, ima več kot 2g+2 Weierstrassovih točk. Vsak avtomorfizem, ki fiksira Weierstrassove točke, je zato kar identiteta, zato je ker λ trivialno.
- b) Če je M hipereliptična, velja kar ker $\lambda = \langle J \rangle$, kjer je J hipereliptična involucija, velja pa $|\langle J \rangle| = 2$.

Slovar strokovnih izrazov