Lab03 – Slurm job definition

16.10.2024

Previous lab

- Any issues completing the tasks from Lab02?
- Be cautious when copying from .doc documents!

Slurm resource manager/scheduler

- Was an abbreviation of: Simple Linux Utility for Resource Management
- Slurm is responsible for:
 - Resource management
 - Scheduling
 - o Interaction with the cluster
 - Not a policing tool
 - No in-depth knowledge of what is being computed
- Links:
 - o Information specific for Ares https://docs.cyfronet.pl/display/~plgpawlik/Ares
 - o Information specific for Athena https://docs.cyfronet.pl/display/~plgpawlik/Athena
 - Quick start: https://kdm.cyfronet.pl/portal/Podstawy:SLURM
 - o Rules:
 - https://kdm.cyfronet.pl/portal/Zeus:Podstawy#Zasady_obowi.C4.85zuj.C4.85ce_na_klas trze_Zeus (rules apply to all Cyfronet's clusters!)
 - o Slurm intro: https://slurm.schedmd.com/quickstart.html

Basic commands

- sinfo info about nodes
- squeue queue status
- sbatch submit a job
- srun job step (if used inside of a job script)
- scancel cancel job
- sacct accounting information

Resource specification

- Node -> tasks -> cores
- How to specify resources? With -N, -n, --ntasks-per-node etc. man sbatch
- sbatch -N 1 Node count
- sbatch -N 1 --ntasks-per-node=4 one node with 4 tasks per node = 4 cores
- sbatch -N 1 --ntasks-per-node=4 --cpus-per-task=12 one node with 4 tasks, each has 12 cores, 48 in total
- sbatch -N 2 --ntasks-per-node=4 --cpus-per-task=12, same as above but for 2 nodes, 96 cores in total

- sbatch -A plglscclass24-cpu declare using the plglscclass24-cpu grant for your computations, this is important if you have other computing grants and want to use a specific one!
- The account name plglscclass24-cpu can be determined by inspecting the `hpc-grants` output, and looking for "allocation" name. Please note that there can be multiple grants, use the most recent one!
- Be cautious about available node configurations, you are responsible for "fitting in"
- In most cases jobs are specified with "job scripts"
- Example job script (*.sh file), parameters can be included in the job script or be supplied from the command line as sbatch arguments:

Example no. 1:

```
#!/bin/bash -1
#SBATCH --nodes=10
#SBATCH --ntask-per-node=4
#SBATCH --cpus-per-task=12
#SBATCH --account=plgglscclass24
#SBATCH --partition=plgrid
#SBATCH --time=02:00:00
#initialization
module load gromacs/2023-foss-2021b-plumed-2.9b
# data handling and work
cd $SLURM_SUBMIT_DIR
mpiexec gmx_mpi mdrun -noappend -deffnm dyn -plumed ...
# this will result in 10*4=40 app processes each using 12 cores, 480 in total
```

Example no. 2:

Figure 1: Example SLURM job structure and script. (Source: https://garnatxadoc.uv.es/slurm/slurm_info.html)

Example no. 3:

```
#!/bin/bash -1
#SBATCH --nodes=2
#SBATCH --ntask-per-node=2
#SBATCH --cpus-per-task=24
#SBATCH --time=01:00:00
srun --nodes=1 --ntasks-per-node=1 --cpus-per-task=48 do preprocessing.bin ...
srun --nodes=2 --ntasks-per-node=2 --cpus-per-task=24 do computations.bin ...
# end of the script
$ sbatch ...
$ sacct -j 11966005 -o jobid%20,alloctres%40
              JobID
                                                   AllocTRES
           11966005
                       billing=96,cpu=96,mem=369600M,node=2
      11966005.batch
                                    cpu=48, mem=184800M, node=1
         11966005.0
                                    cpu=48, mem=184800M, node=1
          11966005.1
                                    cpu=96, mem=369600M, node=2
```


Figure 2: Example SLURM job mapping to resouces over time

- The resources specified by srun... command:
 - o can not exceed job's resources!
 - should be available, if not slurm will complain and timeout the request after a while

Environment

- SLURM communicates a lot of information through environment variables
 - Also job configuration and allocated resources
- Other variables: man sbatch, or check with 'env' command in an interactive job

Simple "bag of tasks" workload processing

- The challenge might be "embarrassingly parallel"
- Good examples: image processing, dataset manipulation, etc.
- Each task should be run by srun
- Usefull tools command line tools allowing for parallelization, xargs, parallel, e.g.:
 - o echo 1 2 3 | xargs -n1 -P<number of instances> command_to_run <parameter>
 - The same thing can be achieved with "parallel"

o If xargs is given more input than –P, some tasks will wait

xargs demo (sleep sort implementation):

```
$ cat sleeper.sh
#!/bin/bash
sleep $1
echo $1

$ chmod +x sleeper.sh

$ echo 2 1 3 | xargs -t -n1 -P3 ./sleeper.sh
./sleeper.sh 2
./sleeper.sh 1
./sleeper.sh 3
1
2
3
```

Tasks

- 1. Obtain the image set which will serve as an input for processing
 - a. A set of 1000 images are available here: /net/pr2/projects/plgrid/plgglscclass/image_data_sets/data/training_images/
 - b. please copy the images to a new directory in \$SCRATCH
- 2. Create a converter.sh script which will convert an image using imagemagic:
 - a. magick convert -adaptive-resize 3840x2160 -adaptive-sharpen 10 <input> <output> (processing of single image from t should take about 30s)
 - b. Can be done in bash or any other scripting language
 - c. The script must take "imagename" as an argument, the output can be determined based on inputfile or can be given as a second parameter
 - d. It is best to test the conversion inside of an interactive job so login nodes is not stressed
 - i. Lab02 shows and example how to start an interactive job in the plgrid-now partition.
- 3. Create a job script and execute it, the job should:
 - a. Process in parallel multiple images inside of a single job
 - b. Use the converter script from previous point
 - c. Parallelization should be done using xargs ... srun combination
 - d. Determine the proper -P parameter for xargs
 - e. Determine the proper srun arguments
 - i. Each process should be a single task using 1 core
 - f. How to create a convenient input for xargs?
 - g. Please add the:

export OMP_NUM_THREADS=1 right after the #SBATCH directives, this will instruct imagemagic to use single core per process.

h. The job template is included below:

```
#!/bin/bash -1
#SBATCH --nodes=1
#SBATCH --ntask-per-node=48
#SBATCH --cpus-per-task=1
#SBATCH --account=plgglscclass24
#SBATCH --partition=plgrid-now
#SBATCH --time=01:00:00
# above config is mandatory!
export OMP_NUM_THREADS=1
# modules initialization
...
# data handling and work
...
# end of the script
```