Problem 1.

By Montels little theorem, $\{f_k\}$ is normal if and only if $\{f'_k\}$ is locally bounded and at some z_0 , $f(z_0)$ is uniformly bounded. We see that

$$f_{k}'(z) = \cos(kz).$$

Therefore $\{f'_k\}$ is bounded since for |z| < 1,

$$|\cos(kz)| \leq \cos(k|z|) \leq 1.$$

Furthermore we have at $z_0=0,\, f_k(0)=\frac{\sin(kz)}{k}=0.$ Therefore $\{f_k\}$ is a normal family.

Problem 2.

(a) First note that by Harnacks Inequality, this is true for the real part of f, i.e. we have that

$$\frac{1-|z|}{1+|z|} \leqslant \operatorname{Re}(f) \leqslant \frac{1+|z|}{1-|z|}.$$

A similar argument can be made for the imaginary part of f by adjusting constant so im(f) > 0. It follows that the inequality holds for any $f \in A$.

- (b) We claim that \mathcal{A} is locally bounded. Take any $z \in D$. Then on any sufficiently small neighbourhood of z containing z we have that $|f(z)| \leq \frac{1+|z_0|}{1-|z_0|}$ at some z_0 in the disk, for all $f \in \mathcal{A}$. Thus \mathcal{A} is locally bounded and hence normal.
- (c) By Cauchys inequality, we have that for each f_k ,

$$a_1^k \leqslant r^{-1} \sup_{|z| = r} |\mathsf{f}_k(z)| \leqslant r^{-1} \sup_{|z| = r} \frac{1}{2\pi} \int_{|z| = r} |\mathsf{f}(z)| dz \leqslant 1$$

Since this is true for all k, we have that $|f'_k(0)| \leq 1$.

Problem 3.

(a) By the Riemann Mapping Theorem, there exists a conformal $g: \Omega \to D$. For $\alpha \in \Omega$, we define $h: D \to D$ by $h(z) = e^{i\theta} \frac{z-g(\alpha)}{1-\overline{g(\alpha)}g(z)}$ for some θ . We define $f = h \circ g$, so $f = e^{i\theta} \frac{g(z)-g(\alpha)}{1-\overline{g(\alpha)}g(z)}$. Notice that f is a conformal mapping of Ω to D, with $f(\alpha) = 0$. It remains to show that $f'(\alpha) > 0$. We compute that

$$\mathsf{f}'(z) = e^{\mathsf{i}\theta} \frac{\mathsf{g}'(z)(1 - \overline{\mathsf{g}(\mathfrak{a})}\mathsf{g}(z)) + \overline{\mathsf{g}(\mathfrak{a})}(\mathsf{g}(z) - \mathsf{g}(\mathfrak{a}))}{(1 - \overline{\mathsf{g}(\mathfrak{a})}\mathsf{g}(z))^2}.$$

Evaluating at z = a we get

$$f'(z) = e^{i\theta} \frac{g'(\alpha)(1 - |g(\alpha)|^2)}{(1 - |g(\alpha)|^2)^2}.$$

This will be positive for some choice of θ , so that $e^{i\theta}g'(\alpha)>0$. We now claim that such f is unique. Suppose f_1, f_2 satisfy our desired properties. Then $f_2\circ f_1^{-1}\in Aut(D)$. Furthermore, $f_2\circ f_1^{-1}(0)=f_2(\alpha)=0$. So by Schwartz' Lemma $f_1=\lambda f_2$ for some $\lambda\in U(1)$. Since $f_1'(\alpha), f_2'(\alpha)>0$ we have that $\lambda=1$.

- (b) i) Let $\gamma \subset \Omega$ be a closed curve. There must be some minimal N so that $\gamma \subset \Omega_N$. Since Ω_N is simply connected γ can be deformed to a point in Ω_N and hence in Ω .
 - ii) Note that $\{f_n\}$ is a normal family, since $\{f'_n\}$ is locally bounded, and $f_n(0) = 0$ for all n. Therefore there is a uniformly convergent subsequence $\{f_{n_k}\}$ that converges to some $f: D \to \Omega$. Note that by uniform convergence, we have that f(0) = 0, and f'(0) > 0. By a previous result, we have that f is 1-1 as well. It follows that f is a conformal mapping of $D \to \Omega$. Furthermore, it is unique by 3a. This is true for every subsequence of $\{f_n\}$, since $\lim_{n\to\infty} \Omega_n = \Omega$. It follows that every subsequence converges uniformly to f so f_n converges uniformly to f.

Problem 4.

We identify $\mathbb{C}\setminus\{0\}$ with $S^2\setminus\{S,N\}$, (Riemann Sphere without the poles). Therefore an automorphism of $\mathbb{C}\setminus\{0\}$ is an automorphism of S^2 which either fixes the poles or reverses them i.e. $f(0)=0, f(\infty)=\infty$ or $f(0)=\infty, f(\infty)=0$. We have that f must be a fractional linear transformation. If f fixes the poles, it must be of the form f(z)=az for nonzero $a\in \mathbb{C}$. If f swaps the poles it must be of the form $f(z)=\frac{c}{z}$ for nonzero $c\in \mathbb{C}$. This gives a complete description of $Aut(\mathbb{C}\setminus\{0\})$.

Problem 5.

(a) By the discussion from class, a rectangle with corners at k, -k, -k+ik', k+ik' is the image of the Riemann mapping given by

$$F(w) = \int_0^w \frac{dt}{\sqrt{(1-t^2)(1-k^2t^2)}},$$

with F(1)=k. Therefore to have $F(\infty)$ be a corner, it is enough to find $g\in Aut(\mathbb{H}^+)$ so $g(\infty)=1$. Taking

$$g(z) = \frac{z+1}{z+2},$$

will suffice. Then $F \circ g$ will be a conformal mapping of \mathbb{H}^+ onto the rectangle, with $F \circ g(\infty) = k$.

(b) By tiling with the rectangles given by a), we obtain $\wp(z)$ generated by $\Gamma = \langle 4k, 2ik' \rangle$, corresponding to the elliptic curve $(\wp'(z), \wp(z)) \subset \mathbb{C}^2$.

Problem 6.

We claim the image of the map will be the attatched image. Note that each a_i gets sent to 0. We claim that on each arc between a_i , a_{i+1} the argument of f is constant. We have that

$$\log'(f(z)) = -\frac{1}{z} + \sum_{k=1}^{n} \frac{\lambda_k}{(z - a_k)}.$$

We claim that the imaginary part of this function is constant for $|z| = 1, z = e^{i\theta}, \theta \in (arg(a_i), arg(a_{i+1}))$. Then,

$$\log'(f(e^{\mathrm{i}\theta})) = -e^{-\mathrm{i}\theta} + \sum_{k=1}^n \frac{\lambda_k}{(e^{\mathrm{i}\theta} - \alpha_k)} = -e^{-\mathrm{i}\theta} + \sum_{k=1}^n \frac{\lambda_k(e^{-\mathrm{i}\theta} - \overline{\alpha_k})}{2 - Re(e^{-\mathrm{i}\theta}\alpha_k)}.$$

Since the imaginary part of this is constant, we have that this will map the arcs to 0.

Problem 7.

Let f be meromorphic, defined on S^2 . Then the spherical derivative at z is given by:

$$\mathsf{f}^{\#}(z) = \lim_{w \to z} \frac{\mathsf{d}(\mathsf{f}(z), \mathsf{f}(w))}{\mathsf{d}(z, w)},$$

where d is the chordal metric on S^2 . First assume that z is not a pole of f. Then we have that

$$\mathsf{f}^{\#}(z) = \lim_{w \to z} \frac{\mathsf{d}(\mathsf{f}(z), \mathsf{f}(w))}{\mathsf{d}(z, w)} = \lim_{w \to z} \frac{\rho(\mathsf{f}(z), \mathsf{f}(w)) + |\mathsf{f}(z) - \mathsf{f}(w)|^2}{\mathsf{d}(z, w)} = \lim_{w \to z} \frac{\rho(\mathsf{f}(z), \mathsf{f}(w))}{|z - w|}.$$

If z is a pole, since $f^{\#} = \frac{1}{f^{\#}}$, we apply the previous computation and conclude that the desired equality holds.