Information Expansion about energy codes in China

1. Overall perception of green energy-efficient buildings

Recommended to read this standard to know the main concerns of green energy-efficient buildings in China.

• "Assessment standard for green building" (GB/T 50378-2019) [English version] Links to the document:

https://www.mohurd.gov.cn/gongkai/fdzdgknr/zfhcxjsbwj/202107/20210730_761399.html See website attachment.

2. Domestic and Shanghai building design standards in Chinese version

Specific design standards for buildings are given in detail in the following documents.

• "Green design standard for public buildings" (DGJ08-2143-2021)

Links to the document: https://zjw.sh.gov.cn/xxbz/index-3.html See website attachment.

- "Design standard for energy efficiency of public buildings" (GB 50189-2015)
 Links to the document: http://www.jianbiaoku.com/webarbs/book/73810/1628137.shtml See website online document.
- "General code for energy efficiency and renewable energy application in buildings" (GB 55015-2021)

Links to the document:

https://www.mohurd.gov.cn/gongkai/fdzdgknr/zfhcxjsbwj/202110/20211013_762460.html See website attachment.

3. Overview of the current situation of energy-efficient buildings in China

Information on building energy consumption levels is obtained from design limits and energy consumption reports. The following data is only used as a reference for general building energy consumption levels in China. Actual energy consumption level in this competition should follow the actual situation.

3.1 According to the design limits

• Standard for energy consumption of building (GB/T 51161-2016)

Links to the document: https://www.soujianzhu.cn/NormAndRules/NormContent.aspx?id=753
See website online document.

This standard applies to the management of energy consumption in the operation of civil buildings. Two indicators are given in this standard which are constraint value of energy consumption indicator and leading value of energy consumption indicator. When the actual energy consumption is higher than constraint value of energy consumption indicator, it means that the energy consumption of the building is high and needs energy-saving renovation. When

the actual energy consumption is between the constraint value and the leading value, it means that the energy consumption of the building is at a normal level. When the actual energy consumption is lower than the leading value, it means that the building is an energy-saving building.

For the office building in Shanghai area, constraint value of total energy consumption indicator is $85 \text{ kW} \cdot \text{h} / (\text{m}^2 \cdot \text{a})$ and leading value of total energy consumption indicator is $70 \text{ kW} \cdot \text{h} / (\text{m}^2 \cdot \text{a})$, as shown in the table below.

Table 5.2.1 Constraint value and Leading value of energy consumption indicators for office buildings[kW·h / (m²·a)]

Building Type		Severe cold and cold		Hot-summer and		Hot-summer and		Warm zone	
		zone		cold-winter zone		warm-winter zone			
		constraint	constraint	constraint	leading	constraint	leading	constraint	leading
		value	value	value	value	value	value	value	value
A	Institutional office buildings	55	45	70	55	65	50	50	40
	Commercial office buildings	65	55	85	70	80	65	65	50
В	Institutional office buildings	70	50	90	65	80	60	60	45
	Commercial office buildings	80	60	110	80	100	75	70	55

• Technical standard for nearly zero energy buildings (GB/T 51350-2019)

Links to the document:

https://www.soujianzhu.cn/NormAndRules/NormContent.aspx?id=1035 See website online document.

According to the standard, public nearly zero energy buildings in Shanghai should have a renewable energy utilization rate of more than 10%. In addition, the appendix B of the standard shows that the equivalent power consumption value ranges from $22\sim57 \text{ kW}\cdot\text{h} / (\text{m}^2\cdot\text{a})$.

Table B.0.2 Equivalent power consumption value of public nearly zero energy buildings $(kW \cdot h / (m^2 \cdot a))$

City	Small office	Large office	Small hotel	Large hotel	Shopping Mall	Hospital	School Building- Academic Building	School Building- Library
Harbin	24	29	26	32	43	46	24	25
Shenyang	22	27	26	31	44	44	24	24
Beijing	23	28	27	33	49	47	28	25
Zhumadian	22	29	29	35	54	49	31	27
Shanghai	22	30	30	37	57	52	34	28
Wuhan	21	29	30	35	57	50	31	27
Chengdu	21	29	29	34	57	52	33	28

Shaoguan	23	32	33	40	66	57	38	31
Guangzhou	25	35	37	46	76	66	43	36
Kunming	16	22	23	26	43	40	21	21

Note: A) The data in the table are the calculation results of typical buildings using IBE's near-zero energy building design and evaluation tool. Due to the large differences in actual building functions and building forms, the data in the table are not used as evaluation values for nearly zero-energy public buildings, but only as a reference in the design process.

- B) The data in the table are calculated on the basis of typical building models, in which small office buildings and small hotel buildings are panel buildings with a floor area of less than 10,000m². Other types of buildings are typical buildings with a floor area of more than 20,000m².
- C) The data in the table are the equivalent power consumption value of heating, air conditioning, ventilation, lighting, domestic hot water, elevators and renewable energy systems, which converts the energy consumption values of various energy types into the energy consumption of electric power kWh.

3.2 According to actual energy consumption reports

China Building Energy Efficiency Annual Development Research Report 2022 (Public Buildings Topic)

ISBN: 9787112271948

According to the China Building Energy Consumption Development Report, China's public buildings consumed 24.7kgce/m2 in 2020 and small volume office buildings consumed 60kW·h/m2.

