Almost Sure's

$$\mathbb{P}\left(\left\{\left(A\right)\right\}\right) = 1$$

In Probability

In Distribution:

$$F_{n} \rightarrow F$$

$$CDF \neq X$$

$$\frac{\mathcal{E}_{X}}{\sqrt{n}} = \max_{i=1,\dots,n} \chi_{i}$$

$$\frac{1}{\sqrt{n}} = \lim_{i=1,\dots,n} \chi_{i}$$

$$Z_n = n (1 - \gamma_n)$$

Colistributional limit?

$$F_n(3) = P(Z_n = 3)$$

= $P(n(1-y_n) \le 3)$ maximum
= $P(y_n \ge 1-36)$

Theorem: $a.s. \Rightarrow p \Rightarrow d$

Partial Converse:

n ica constant

Partial Converse:

If $X_n \to C$ C is a constant

I, e. a degree ate

then $X_n \to C$.

For a seg of numbers: $\chi_n, y_n \in \mathbb{R}, \text{ ad } \chi_n \to \chi, y_n \to y$ then $\to \chi_n + y_n \to \chi + y$ $\to \chi_n y_n \to \chi y$

 $\rightarrow \frac{1}{2} \frac{$

 $\rightarrow a\chi_n + by_n \rightarrow a\chi + by$

The over :

(at $X_n \to X$, $Y_n \to Y$ and $a, b \in \mathbb{R}$) and the convergence is either a.s. or p(NoT d).

Then

Niste III
Note Hut:
We can treat a sez of ER as a sez of
degenerate RVs
So if $d_n \rightarrow d$ (as numbers)
then on a.s. c (as RUs)
Punchline: (n -> c ad //n -> / (a.s. or i.p)
ther (1) $aX_n + bC_n \rightarrow aX + bC$
(2) (2) (2) (2) (2) (3)
What about convergence in dist?
Theorem: Slutsky's Theorem _ constant
Theorem: Slutsky's Theorem If $X_h \stackrel{d}{\to} X$ and $Y_h \stackrel{P}{\to} c$ Then
then $(1) \times_n + Y_n \xrightarrow{d} \times + C$
$\left(\frac{x_n}{y_n} \xrightarrow{d} x_c\right)$
Margins Therein

Theorem: Continuous Mapping Theaeur

If g:R >R is a continuous function

$$\frac{N^{2}}{5} = \frac{1}{N} \sum_{N=1}^{N} (X_{N} - \overline{X}_{N})^{2}, \quad \text{E} \hat{\sigma}^{2} = \frac{N-1}{N} \hat{\sigma}^{2}$$

Theorem: MSE \rightarrow 0 then \hat{O} is consistent If MSE(\hat{O}_N) $\stackrel{N}{\longrightarrow}$ 0 then \hat{O}_N $\stackrel{P}{\longrightarrow}$ O.

pf.

Want to show:

$$\lim_{N\to\infty} P(|\hat{0}_N - 0| \ge \varepsilon) = 0$$

$$P(|\hat{0}_{N} - 0| \ge \varepsilon) = P((\hat{0}_{N} - 0)^{2} \ge \varepsilon^{2})$$

$$\leq \frac{\mathbb{E}[(\hat{0}_{N} - 0)^{2}]}{\varepsilon^{2}}$$

$$= \frac{MSE(\hat{0}_{N})}{\varepsilon^{2}}$$

So

M(F(a)

If MSE(Ĝ_N) → 0 then so does my IP(lô_N-017ε) → 0

Intuition:

X, this should be a good estimator

Saw: EXN = M and Var XN = 52

Theorem: Weak Law of Large Numbers (WLLN)

If Xns are uncorrelated and

(2) Var
$$(\chi_n) = \sigma^2 \angle \infty$$

$$\frac{(2) \text{ Var}(x_n) = 0 \quad < \infty}{X_N} + M.$$

Weak: weak assumptions and converg in prob.

Pf. Chehyshev's
$$\mu = E \%$$

$$P(| \% - \mu | > E) \leq \frac{\text{Var}(\%)}{E^2}$$

Want to show:

$$\mathbb{P}(|\overline{X}_{N} - \mu| \geq \varepsilon) \xrightarrow{N} 0$$

$$0 \le \mathbb{P}(|\overline{X}_N - \mu| \ge \varepsilon) \le \frac{\operatorname{Var}(\overline{X}_N)}{\varepsilon^2} = \frac{\delta^2}{N\varepsilon^2}$$

$$\mathcal{E}_{X_n} \times_n \stackrel{iid}{\sim} P_{ois}(x)$$

$$\mathbb{E}_{X_n} = \lambda \quad \text{ad} \quad Var(x_n) = \lambda < \infty$$

$$\text{WLLN:} \quad \overline{X_n} \stackrel{P}{\rightarrow} \lambda.$$

WLLN: XN PS X

Con Slightly generalize WLLN

lim 1 2 6,2 L 00 N > 00 N n=1 n L 00

then $P(|X_N - \mu| > E) \leq \frac{|Var(X_N)|}{|E|^2}$

 $(ar(\overline{\chi}_{N}))$

chehyslev's

 $= \sqrt{\frac{1}{N^2}\sum_{n=1}^{N}6_n^2}$

 $-\frac{1}{N}\left(\frac{1}{N}\sum_{n}^{\infty}6_{n}\right)$

 \rightarrow \bigcirc

as $n \rightarrow \infty$

So XN P M.