Método dos Fótons Equivalentes Revisão e Aplicações

Alfredo Achterberg S. Pacheco

Orientador: Prof. Dr. Werner Krambeck Sauter Defesa da Proposta de Trabalho de Conclusão de Curso

Curso de Bacharelado em Física - Universidade Federal de Pelotas

25 de Setembro, 2023

Estrutura da Apresentação

- 1 Introdução e Contextualização
- Objetivos do Trabalho
- 3 Seção de Choque Diferencial e Total
- 4 Demonstração do Método
- **5** Sobre o Fator de Forma
- 6 Colisões Ultraperiféricas
- Metodologia
- 8 Cronograma

Figura: Foto do detector ATLAS do LHC. Créditos: [https://home.web.cern.ch/science/experiments/atlas]

Colisões de partículas constituem o método experimental mais utilizado atualmente para o entendimento da estrutura fundamental da matéria e de teste para novos modelos físicos.

Estudos desse tipo de processo tem longa história na física.

- ▶ O trabalho de decréscimo de velocidade de partículas α e β em meios materiais por N. Bohr, realizado em 1913;
- este propôs que a interação de partículas carregadas pode ser entendida pelo fenômeno eletromagnético de dispersão (uma analogia);
- em 1924, E. Fermi propôs que os campos de uma partícula carregada podem ser aproximados como pulsos de onda ou fluxos de fótons virtuais.

Disso, E. J. Williams, em 1933, propôs a generalização relativística do que seria o método dos fótons equivalentes.

- consiste em obter o número de fótons virtuais a partir da transformada de Fourier dos campos E e B;
- este consiste de uma aproximação semi-clássica.

Figura: Esquema representando os campos relativísticos de dois íons Z_1 e Z_2 . Adaptado de [Bertulani et al., 2005].

- Há motivação para o estudo do método nas áreas de interação nuclear e de partículas;
- focaremos nas colisões ultraperiféricas de íons;
- são colisões com maior distância (parâmetro de impacto) e com interação dominantemente eletromagnética;
- por conta disso, também há menos multiplicidade nos estados finais e os resultados experimentais são mais facilmente tratados;
- ► fenômenos de interesse incluem a produção de pares de partículas a partir de colisões de fótons.

Objetivos do Trabalho

Para a realização do trabalho propomos uma revisão bibliográfica com cálculo analítico e computacional de quantidades de interesse dos processos de colisão. Para isso, temos os seguintes objetivos específicos:

- 1 realizar a revisão bibliográfica do método;
- realizar o cálculo do fator de forma para o fator de forma para diferentes distribuições de carga;
- **3** deduzir o número de fótons equivalentes para diferentes distribuições de carga;
- 4 realizar um estudo mais aprofundado sobre o fenômeno de fotoprodução de pares de partícula-antipartícula;
- 5 obter as curvas teóricas para as seções de choque de diferentes processos de colisão e compará-las com as curvas experimentais.

Seção de Choque Diferencial e Total

O problema de interesse do método é o de colisão de partículas carregadas. A quantidade de interesse em colisões é a seção de choque.

Figura: Partícula adentrando a região de espalhamento por uma seção de área $d\sigma$ e sendo espalhada em um ângulo sólido $d\Omega$. Retirado de [Griffiths, 1987].

Seção de Choque Diferencial e Total

Da figura temos as diferenciais,

$$d\sigma = |b\,db\,d\phi|,\tag{1}$$

$$d\Omega = |\operatorname{sen}\theta \, d\theta \, d\phi|,\tag{2}$$

$$\Rightarrow \frac{d\sigma}{d\Omega} = \left| \frac{b}{\sin \theta} \frac{db}{d\theta} \right|. \tag{3}$$

A seção de choque total vem pela integral sobre Ω ,

$$\sigma = \int \frac{d\sigma}{d\Omega} \operatorname{sen} \theta \, d\theta \, d\phi. \tag{4}$$

Isto para uma partícula incidente individual!

Estamos levando em conta uma partícula individual. Se quisermos tratar um feixe de partículas, vamos precisar definir a *luminosidade*.

Seção de Choque Diferencial e Total

Luminosidade

Para um feixe de N partículas com mesma energia atravessando a área $d\sigma$, a luminosidade $\mathcal L$ é definida como a quantidade de partículas que atravessam a região de espalhamento por unidade de área por unidade de tempo.

Disso, reescrevemos a seção de choque para um feixe de múltiplas partículas,

$$dN = \mathcal{L}d\sigma, \tag{5}$$

$$\Rightarrow \frac{d\sigma}{d\Omega} = \frac{1}{\mathcal{L}} \frac{dN}{d\Omega}.$$
 (6)

Inicialmente consideramos uma carga em movimento como abaixo.¹

Figura: Carga q em movimento com velocidade v passando por um ponto de observação P com parâmetro de impacto b e distância r. Referencial Σ é solidário ao ponto P e Σ' é solidário à carga pontual q. Adaptado de [Jackson, 1999].

¹A partir dagui usaremos unidades naturais ($\hbar = c = 1$).

Os campos E e B são escritos em forma explicitamente covariante usando o tensor eletromagnético,

$$F^{\mu\nu} = \begin{pmatrix} 0 & -E_1 & -E_2 & -E_3 \\ E_1 & 0 & -B_3 & B_2 \\ E_2 & B_3 & 0 & -B_1 \\ E_3 & -B_2 & B_1 & 0 \end{pmatrix}.$$
 (7)

A tranformada de Lorentz das componentes deste tensor é dada por,

$$F^{\prime\mu\nu} = \frac{\partial x^{\prime\mu}}{\partial x^{\alpha}} \frac{\partial x^{\prime\nu}}{\partial x^{\beta}} F^{\alpha\beta} = \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} F^{\alpha\beta}. \tag{8}$$

 Λ^{μ}_{ν} são as componentes da matriz de transformação de Lorentz, dada, para o nosso caso, como,

$$(\Lambda^{\mu}_{\nu}) = \begin{pmatrix} \gamma & -\gamma\beta & 0 & 0 \\ -\gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \tag{9}$$

sendo $\gamma = \frac{1}{\sqrt{1-\beta^2}}$ e $\beta = v/c$ os parâmetros relativísticos da partícula.

O cálculo dos termos não nulos leva a,

$$\begin{cases}
E'_{1} = E_{1} \\
E'_{2} = \gamma(E_{2} - \beta B_{3}) \\
E'_{3} = \gamma(E_{3} + \beta B_{2})
\end{cases}
\begin{cases}
B'_{1} = B_{1} \\
B'_{2} = \gamma(B_{2} + \beta E_{3}) \\
B'_{3} = \gamma(B_{3} - \beta E_{2})
\end{cases}$$
(10)

Escrevendo os campos nas coordenadas de Σ e depois aplicando a transformada de Lorentz temos os campos no referencial Σ ,

$$E_1(t) = -\frac{q\gamma vt}{(b^2 + \gamma^2 v^2 t^2)^{3/2}},$$
(11)

$$E_2(t) = \frac{q\gamma b}{(b^2 + \gamma^2 v^2 t^2)^{3/2}},$$
(12)

$$B_3(t) = \beta E_2(t). \tag{13}$$

Aproximamos estes campos como pulsos de onda.

Analisando esses campos podemos notar que E_2 e B_3 formam um pulso de onda na direção x_1 . Ainda assim, a interação do campo E_1 pode ser analisada como um pulso de onda pela inserção de um campo magnético artificial como aproximação.

(a) Campos observados no referencial do ponto P.

(b) Pulsos aproximados P_1 e P_2 atingindo P.

Figura: Aproximação chave do método dos fótons virtuais é a de substituir os campos elétrico e magnético por pulsos de radiação equivalentes. Ambas as figuras adaptadas de [Caruso, 2009].

Com isso, iremos calcular agora os espectros de frequência², para ambos os pulsos. Estes o são

$$I_1(\omega, b) = \frac{1}{2\pi} |E_2(\omega)|^2,$$
 (14)

$$I_2(\omega, b) = \frac{1}{2\pi} |E_1(\omega)|^2,$$
 (15)

em que

$$E_{1,2}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} dt \ E_{1,2}(t) e^{i\omega t},$$
 (16)

é a transformada de Fourier da parte elétrica dos pulsos.

²A energia por unidade de frequência e área de um pulso

O cálculo da integral para os dois campos leva ao seguinte resultado,

$$I_{1}(\omega, b) = \frac{1}{\pi^{2}} \frac{q^{2}}{\beta^{2} b^{2}} \xi^{2} K_{1}^{2}(\xi), \qquad (17)$$

$$I_2(\omega, b) = \frac{1}{\pi^2} \frac{q^2}{\beta^2 b^2} \frac{1}{\gamma^2} \xi^2 K_0^2(\xi), \qquad (18)$$

onde $\xi \equiv \frac{\omega b}{vv}$ e as funções K_1 e K_0 são as funções modificadas de Bessel.

A partir disso, o número de fótons equivalentes pode ser obtido pelo espectro de frequência como,

$$N(\omega, b) = \frac{1}{\omega} [I_1(\omega, b) + I_2(\omega, b)]$$

$$= \frac{1}{\pi^2} \frac{q^2}{\beta^2 b^2} \frac{1}{\omega^2} \xi^2 \left[K_1^2(\xi) + \frac{1}{\gamma^2} K_0^2(\xi) \right].$$
(19)

Este pode ser simplificado:

Por conta do fator γ^{-2} , para velocidades relativísticas altas o termo com K_0 contribui pouco para o fluxo de fótons e podemos escrever,

$$N(\omega, b) = \frac{1}{\pi^2} \frac{q^2}{\beta^2 b^2} \frac{1}{\omega^2} \xi^2 K_1^2(\xi).$$
 (20)

O número de fótons total é dado pela integral de $N(\omega,b)$ sobre os parâmetros de impacto,

$$n(\omega) = \int_{b_{\min}}^{\infty} db \ bN(\omega, b) = \frac{1}{\pi} \frac{2q^2}{\beta^2} \frac{1}{\omega} \left\{ \xi_{\min} K_0(\xi) K_1(\xi_{\min}) - \frac{\beta^2}{2} \xi_{\min}^2 \left[K_1^2(\xi_{\min}) - K_0^2(\xi_{\min}) \right] \right\}.$$
(21)

Sobre o Fator de Forma

Para o caso da partícula incidente não ser pontual é introduzido o *fator* de forma $F(|\mathbf{q}|)$. Assim, o $N(\omega, b)$ fica escrito como,

$$N(\omega, b) = \frac{1}{\pi^2} \frac{Z^2 \alpha}{\beta^2 \omega b^2} \left| \int du \ u^2 J_1(u) \frac{F[(u^2 + \xi^2)/b^2]}{u^2 + \xi^2} \right|^2.$$
 (22)

O fator de forma $F(|\mathbf{q}|)$ é a transformada de Fourier da distribuição de carga $f(\mathbf{r})$. \mathbf{q} aqui é a transferência de momento na colisão.

Sobre o Fator de Forma

➤ A maior parte das distribuições de carga são esfericamente simétricas.

,, 	1			
f(r)	F(q)			
$\delta(r)/4\pi$	1			
$\frac{a^3}{8\pi}e^{-ar}$	$\left(\frac{1+ \mathbf{q} ^2}{\sigma^2}\right)^{-2}$			
$(a^2/2\pi)^{3/2} e^{-a^2r^2/2}$	$e^{ \mathbf{q} ^2/2\sigma^2}$			
$\begin{cases} 3/4\pi R^3, & r \le R \\ 0, & r > R \end{cases}$	$\frac{3(\sin\alpha - \alpha\cos\alpha)}{\alpha}, \ \alpha = \mathbf{q} R$			

Tabela: Fatores de forma disponíveis para diferentes distribuições de carga esfericamente simétricas. Tabela retirada de [Povh et al., 2012].

- ▶ Possuem alto parâmetro de impacto *b*.
- A interação é predominantemente eletromagnética.
- ightharpoonup Estados finais tem baixa multiplicidade ightharpoonup dados experimentais mais limpos!
- Fenômenos de interesse ocorrem como a produção de partículas por colisão de fótons.

(a) Processo de excitação do íon Z_2 pelo fóton γ e produção do estado final X.

(b) Processo de produção do estado X por colisão dos fótons γ .

Figura: Fenômenos de fotoprodução de estados X. Ambas as figuras retiradas de [Bertulani et al., 2005].

As seções de choque são calculadas com $n(\omega)$

As seções de choque dos processos são obtidos com o número de fótons equivalentes. Para os processos de excitação e colisão de fótons temos, respectivamente,

$$\sigma_X = \int d\omega \, \frac{n(\omega)}{\omega} \sigma_X^{\gamma}(\omega) \tag{23}$$

$$\sigma_{Z_1 Z_2 \to X} = \int d\omega_1 d\omega_2 \, \frac{n(\omega_1)}{\omega_1} \frac{n(\omega_2)}{\omega_2} \sigma_{\gamma\gamma \to X}(\omega_1, \omega_2), \tag{24}$$

onde σ_X^γ é a seção de choque fotonuclear e $\sigma_{\gamma\gamma\to X}$ é a seção de choque fóton-fóton.

- Energia (a frequência ω) e parâmetro de impacto mínimo são relacionados aos parâmetros dos experimentos de colisão;
- Destacamos a luminosidade e a energia máxima de colisão $\omega_{\text{max}} \sim \frac{\gamma v}{h}$;
- Estes são relacionados com a quantidade de íons por feixe e a energia máxima com que estes colidem.

Íons	Acelerador	ω_{max}	$\mathcal{L} [10^{30} \text{cm}^{-2} \text{s}^{-1}]$	
	$e^+ e^-$ VEPP (Novosibirsk) BEPC-II (China)		20	
$e^+\ e^-$			1000	
	CESR-C (Cornwell)	6,0 GeV	76	
рр	LHC (CERN)	6,5 TeV	2,11 ·10 ⁴	
р̄р	TEVATRON (Fermilab)	0,980 TeV	431	
Au Au	RHIC (Brookhaven)	0,1 TeV	8,7	
p Au	RHIC	0,1 TeV	450	
Xe Xe	LHC	2,72 TeV	0,4	

Tabela: Parâmetros de experimentos de alguns colisores. Tabela baseada em [Workman et al., 2022].

Metodologia

- Revisão mais aprofundada da literatura sobre os temas discutidos;
- refazer os cálculos analíticos para as quantidades de interesse nos casos em que for possível:
 - Fatores de forma $F(|\mathbf{q}|)$;
 - números de fótons $N(\omega, b)$ e $n(\omega)$;
 - \blacksquare seções de choque σ .
- obter as curvas teóricas e realizar cálculos computacionais com auxílio da biblioteca GSL (Gnu Scientific Library) para C++.

Cronograma

	Mês 1	Mês 2	Mês 3	Mês 4	Mês 5
1) Revisão bibliográfica	×	×	×	×	
2) Dedução dos $F(\mathbf{q})$	×	×	×		
3) Cálculo de $N(\omega, b)$ e $n(\omega)$		×	×	×	
4) Obtenção das σ		×	×	×	
5) Redação do TCC			×	×	×
6) Defesa do TCC					×

Tabela: Cronograma a ser seguido na execução do projeto.

Referências I

Bertulani, C. A., Klein, S. R., and Nystrand, J. (2005). Physics of ultra-peripheral nuclear collisions.

Annual Review of Nuclear and Particle Science, 55(1):271–310.

Caruso, F. (2009).

Sobre o método de weiszäcker-williams e suas primeiras aplicações. Monografia do CBPF. CBPF-MO-001/09.

Griffiths, D. (1987).

Introduction to Elementary Particles.

John Wiley & Sons, INC.

Jackson, J. D. (1999).

Classical Electrodynamics.

John Wiley & Sons, INC., 3 edition.

Referências II

Review of particle physics.

Progress of Theoretical and Experimental Physics, 2022(8):083C01.

Agradecimentos

Dedução da Transformada de Lorentz para os Campos

Sendo os campos elétrico e magnético escritos em termos dos potenciais,

$$\mathsf{E} = -\nabla \Phi - \frac{\partial \mathsf{A}}{\partial t},\tag{25}$$

$$B = \nabla \times A, \tag{26}$$

estes são escritos em forma explicitamente covariante usando o tensor eletromagnético,

$$F^{\mu\nu} = \begin{pmatrix} 0 & -E_1 & -E_2 & -E_3 \\ E_1 & 0 & -B_3 & B_2 \\ E_2 & B_3 & 0 & -B_1 \\ E_3 & -B_2 & B_1 & 0 \end{pmatrix}. \tag{27}$$

Como escrevemos os Campos nas Coordenadas de Σ

Os campos como percebidos em P, no referencial Σ' tem a forma

$$E'_1 = -\frac{qvt'}{r'^3}, \qquad E'_2 = \frac{qb}{r'^3}.$$
 (28)

Escrevemos nas coordenadas de Σ usando,

$$t' = \gamma t,$$

$$r' = \sqrt{b^2 + (vt')^2}$$

$$= \sqrt{b^2 + v^2 \gamma^2 t^2}.$$

Assim

$$E_1' = -\frac{q\gamma vt}{(b^2 + v^2 v^2 t^2)^{3/2}},$$
 (31)

$$E_2' = \frac{qb}{(b^2 + \gamma^2 v^2 t^2)^{3/2}},$$
 (32)

para os quais devemos aplicar a transformação de Lorentz.

(30)