### Assignment #1 - Find Real Roots of a Quadratic Equation

#### **Overview**

In this assignment, you will write a program using Visual Basic 2019 to find real roots of a quadratic equation. Three coefficients of a quadratic equation are to be entered through three textboxes; calculation process is initiated (or called) by clicking a button; and the results are then displayed on two labels.

This assignment must be done individually, and it is worth 5% of the course grade.

### **Mathematical Background**

A quadratic equation,  $ax^2 + bx + c = 0$ , may have two different real roots, two equal real roots, or two imaginary (or not real) roots, depending on the value of  $b^2 - 4ac$ .

- If  $b^2 4ac > 0$ , then the quadratic equation has two different (or distinct) real roots,  $x_1$  and  $x_2$ . And  $x_1 = \frac{-b \sqrt{b^2 4ac}}{2a}$  and  $x_2 = \frac{-b + \sqrt{b^2 4ac}}{2a}$
- If  $b^2 4ac = 0$ , then it has two equal real roots, also called double real roots, i.e.,  $x_1 = x_2$ . And  $x_1 = x_2 = \frac{-b}{2a}$
- If  $b^2 4ac < 0$ , then it has two imaginary (or not real) roots, which are

$$x_1 = \frac{-b}{2a} - \frac{\sqrt{4ac - b^2}}{2a}i$$
 and  $x_2 = \frac{-b}{2a} + \frac{\sqrt{4ac - b^2}}{2a}i$ 

This assignment requires you to develop a VB program to identify the above 3 conditions, but you only need to find and display the real roots.

# **Design and Coding**

- 1. Launch Visual Studio 2019 and create a Visual Basic Windows Forms App (.NET Framework).
  - 1.1. Project Name: A1\_FindRealRoots\_YourCollegeUsername
    - Your College username is the username you use to log into eConestoga.
  - 1.2. Project Location: your Visual Studio 2019 projects folder on your College OneDrive
- 2. Design a graphical user interface (GUI) to include the following controls with property settings:



| CONTROL  | PROPERTY           | SETTING                        |
|----------|--------------------|--------------------------------|
| Form1    | Text               | Assignment #1: Find Real Roots |
|          | FormBorderStyle    | FixedToolWindow                |
|          | StartPosition      | CenterScreen                   |
| Label1   | Text               | Enter the Three Coefficients:  |
| Label2   | Text               | a=                             |
| Label3   | Text               | b=                             |
| Label4   | Text               | C=                             |
| Label5   | Text               | The Real Roots are:            |
| Label6   | Text               | x1=                            |
| Label7   | Text               | x2=                            |
| TextBox1 | (Name)             | txtCoeffA                      |
|          | TextAlign          | Right                          |
| TextBox2 | (Name)             | txtCoeffB                      |
|          | TextAlign          | Right                          |
| TextBox3 | (Name)             | txtCoeffC                      |
| l abalo  | TextAlign          | Right                          |
| Label8   | (Name)<br>AutoSize | LBLRootX1<br>False             |
|          | Text               | raise                          |
|          | TextAlign          | MiddleRight                    |
|          | BorderStyle        | Fixed3D                        |
| Label9   | (Name)             | LBLRootX2                      |
|          | AutoSize           | False                          |
|          | Text               |                                |
|          | TextAlign          | MiddleRight                    |
|          | BorderStyle        | Fixed3D                        |
| Button1  | (Name)             | btnCalculate                   |
|          | Text               | Calculate                      |
| Button2  | (Name)             | btnQuit                        |
|          | Text               | Quit                           |

- 3. Here are the detailed requirements for this assignment:
  - 3.1. Follow the "IPOD" coding model that was discussed in class and practiced in tutorials #2 and #3 to create the VB code.
  - 3.2. The calculation process is initiated by clicking the Calculate button.
  - 3.3. If  $b^2 4ac < 0$ , show a message to indicate that the quadratic equation has no real roots, and then return to the program for re-entering coefficients.
  - 3.4. If  $b^2 4ac \ge 0$ , then the calculation process is performed with the real roots displayed in the two result labels.
    - 3.4.1. Keep 2 decimal places for the calculated roots using Round math function.
    - 3.4.2. If  $b^2 4ac > 0$ , show a message that this quadratic equation has two distinct real roots.
    - 3.4.3. If  $b^2 4ac = 0$ , show a message that this quadratic equation has two equal real roots.
    - 3.4.4. You can either use a message box that will display the message and disappear after clicking OK, or add another label and place it on the interface to display the message.

- 3.5. Use the **TextChange** event of each textbox to perform the followings:
  - 3.5.1. Whenever a new coefficient is entered, the program will clear the values in the two result labels.
    - Note: if you chose to an extra label in Step 3.4.4, then clear that label as well.
  - 3.5.2. Examine whether or not an entered coefficient is a number. If not a number, then display a message to remind the user of entering a number.
- 3.6. The app is ended and closed when the Quit button is pressed.
- 4. Here are three test cases for you to test your program.

Case A: Two distinct real roots

Case B: Two equal real roots



Case C: The quadratic has no real roots.



# **Assignment Submissions**

You need to submit a PDF file of your source code with a title page, as well as uploading the zipped file of your VB project to Assignment #1 dropbox.

- a. For the PDF file, you must include your <u>full name</u>, course number, course name, etc. on the title page and on the FIRST line of your source code, as a comment.
- b. For the zipped file, refer to Tutorial #04 (available in Week 04 syllabus) on how to compress a Visual Basic 2019 project for the detailed instructions.
- c. The due date of Assignment #1 is shown on eConestoga. Both files must be submitted by the due date late submission will NOT be accepted.