Throughout, G is a connected, reductive algebraic group over $k = \bar{\mathbf{F}}_q$ with a Frobenius map $F: G \to G$ corresponding to an \mathbf{F}_q -form, and (B,T) is an F-stable Borel pair. Today we will discuss the virtual characters of G^F arising from Deligne–Lusztig varieties, largely following Bonnafé's book (and notes I took from a WARTHOG course by Dudas).

4.1.

First, we review étale cohomology as a "black-box" formalism. This also serves as a warm-up for a later lecture about derived categories of complexes of sheaves with constructible cohomology. Throughout, [d] means the degree-d shift functor on **Z**-graded vector spaces V, so that $(V[d])^i = V^{i+d}$ for all i.

Fix a prime ℓ invertible in k. For our purposes, the ℓ -adic étale cohomology of a scheme X of finite type over k consists of \mathbb{Z} -graded $\bar{\mathbb{Q}}_{\ell}$ -vector spaces

$$\mathrm{H}^*(X) = \bigoplus_i \mathrm{H}^i(X)$$
 and $\mathrm{H}^*_c(X) = \bigoplus_i \mathrm{H}^i_c(X)$

satisfying these properties, where all maps of graded vector spaces are assumed to be grading-preserving:

(1) Any map $f: Y \to X$ induces

a pullback
$$f^*: H^*(X) \to H^*(Y)$$
.

If f is smooth of relative dimension d, then it induces

a !-pushforward
$$f_!: \operatorname{H}^*_c(Y)[2d] \to \operatorname{H}^i_c(X)$$
.

Similarly, if f is proper, then it induces

a pushforward
$$f_! = f_* : H_c^*(Y) \to H_c^*(X)$$
.

All of these constructions are functorial in f. In particular, if a group Γ acts on X, then it acts on $H^*(X)$ contravariantly. If Γ acts by proper maps, then it also acts on $H^*_c(X)$ covariantly.

- (2) There are functorial maps $H_c^*(X) \to H^*(X)$. They are isomorphisms for proper X.
- (3) For X connected and smooth of dimension n, there is a perfect pairing

$$\mathrm{H}^*(X) \otimes \mathrm{H}_c^*(X) \to \bar{\mathbf{Q}}_{\ell}[-2n].$$

called *Poincaré duality*. Note that the grading-preserving condition means that it restricts to a perfect pairing between $H^i(X)$ and $H_c^{2n-i}(X)$.

(4) For any closed embedding $i: Z \to X$ with complement $j: U \to X$, we have a long exact sequence

$$\cdots \to \mathrm{H}^*_c(U) \xrightarrow{j_!} \mathrm{H}^*_c(X) \to \mathrm{H}^*_c(Z) \to \mathrm{H}^*_c(U)[1] \to \cdots$$

When X is proper, so that Z is also proper, the map $H_c^*(X) \to H_c^*(Z)$ is dual via item (2) and Poincaré to the map $i_! = i_*$.

(5) Pullback induces functorial isomorphisms

$$H^*(X \sqcup Y) \simeq H^*(X) \oplus H^*(Y)$$
 and $H^*(X \times Y) \simeq H^*(X) \otimes H^*(Y)$,

and similarly with H_c^* in place of H^* (by Poincaré).

(6) For the affine *n*-space A^n , we have

$$\mathrm{H}^*(\mathbf{A}^n) \simeq \bar{\mathbf{Q}}_\ell$$
 (in degree zero),
 $\mathrm{H}^*_c(\mathbf{A}^n) \simeq \bar{\mathbf{Q}}_\ell[-2n]$ (by Poincaré).

(7) If $d = \dim X$, then $H^i(X) = 0$ for i > 2d and i < 0. If X is moreover affine, then $H^i_c(X) = 0$ for i < d.

We say that $H^*(X)$ is the *ordinary cohomology* and $H^*_c(X)$ the *compactly-supported cohomology*.

Now instead of schemes of finite type over k, consider the category of pairs (X, F), where X is of finite type over k and $F: X \to X$ is a Frobenius map corresponding to an \mathbf{F}_q -rational structure on X, where morphisms of such pairs are the k-morphisms that commute with the Frobenius maps.

Let $\bar{\mathbf{Q}}_{\ell}(m)$ be the *m-fold Tate twist*: the one-dimensional representation of $\langle F \rangle$ given by $F \cdot 1 = q^{-m}$. Then:

- (8) The maps in items (1)–(6) are F-equivariant after we replace [2m] with [2m](m).
- (9) For smooth X, we have the Lefschetz fixed-point formula

$$|X^F| = \sum_i \operatorname{tr}(F \mid \operatorname{H}^i_c(X)).$$

Note that the right-hand side uses H_c^i , not H^i .

Example 4.1. The formula for the ℓ -adic cohomology of affine space implies the formula for that of projective space, via Lefschetz. First, use the partition $\mathbf{P}^n = \mathbf{A}^n \sqcup \mathbf{P}^{n-1}$ and induction to show that $\mathbf{H}^i(\mathbf{P}^n)$ vanishes for i odd and that F acts on $\mathbf{H}^{2j}(\mathbf{P}^n)$ by q^j . Next, since $|\mathbf{P}^n(\mathbf{F}_q)| = 1 + q + \cdots + q^n$, Lefschetz forces dim $\mathbf{H}^{2j} = 1$ for $0 \le j \le n$.

Last time we defined the varieties X_w and \tilde{X}_w . Let us now present a slightly different viewpoint on X_w .

Recall that \mathcal{B} is the flag variety of G, isomorphic to G/B for any choice of Borel B, but itself independent of that choice. Let $O_w \subseteq \mathcal{B} \times \mathcal{B}$ be the G-orbit indexed by w. Explicitly, if we fix a Borel B, then the k-points of O_w are the pairs (gB, gwB) for $g \in G(k)$. We see that X_w can be defined through a cartesian square:

$$egin{array}{ccc} X_w & \longrightarrow & \mathcal{B} \ & & & \downarrow F imes \mathrm{id} \ O_w & \longrightarrow & \mathcal{B} imes \mathcal{B} \end{array}$$

It turns out that O_w is smooth of dimension $\ell(w) + \dim \mathcal{B}$ and intersects the image of $\mathrm{id} \times F$, *i.e.*, the graph of F, transversely: The latter claim can be verified by calculating differentials. Thus X_w is a smooth variety of dimension $\ell(w)$. Here, $\ell(w) = \dim(BwB)/B$.

Recall that we also defined a scheme \tilde{X}_w with commuting actions of G^F and T^{wF} , such that T^{wF} acts freely and the quotient by T^{wF} defines a G^F -equivariant finite cover

$$\pi_w: \tilde{X}_w \to X_w$$
.

We draw the following conclusions:

- (1) The map π_w is finite étale. Thus \tilde{X}_w is also a smooth variety of dimension $\ell(w)$.
- (2) The compactly-supported cohomology $\mathrm{H}^*_c(\tilde{X}_w)$ forms a graded (G^F, T^{wF}) -bimodule. In particular, if we write $V[\theta]$ for the θ -isotypic component of a representation V of T^{wF} , then the $\bar{\mathbf{Q}}_{\ell}$ -vector space

$$\mathbf{R}_{w,\theta} = \mathbf{R}_{TwF}^{GF}(\theta) := \mathbf{H}_{c}^{*}(\tilde{X}_{w})[\theta]$$

is a graded representation of G^F for any character $\theta: T^{wF} \to \bar{\mathbf{Q}}_{\ell}^{\times}$.

(3) Pushforward defines a map

$$\pi_{w,!} = \pi_{w,*} : \mathrm{H}_c^*(\tilde{X}_w) \to \mathrm{H}_c^*(X_w).$$

With more work, one can show that it factors through an isomorphism $\mathbf{R}^{G^F}_{T^{wF}}(1) = \mathrm{H}^*_c(\tilde{X}_w)^{T^{wF}} \overset{\sim}{\to} \mathrm{H}^*_c(X_w)$.

We refer to the operation $\mathbf{R}_{T^{wF}}^{G^F}$ as *Deligne-Lusztig induction* from T^{wF} to G^F . In their original paper, Deligne-Lusztig focused on the virtual character of G^F defined by

$$R_{w,\theta} = R_{T^{wF}}^{G^F}(\theta) := \sum_{i} (-1)^i \mathcal{H}_c^i(\tilde{X}_w)[\theta].$$

Indeed this alternating sum resembles that appearing in the Lefschetz formula, which suggests that $R_{w,\theta}$ is related to point-counting, hence more tractable than $\mathbf{R}_{w,\theta}$ itself.

4.3.

Take $G = SL_2$ and F the standard Frobenius, so that we can write $W = \{e, s\}$. We saw last time that

$$X_{\mathfrak{s}} = \mathbf{P}^1 \setminus Z$$

where Z is a set of q+1 points. In particular, X_s is affine of dimension 1, so we know that $\mathrm{H}^0_c(X_s)=0$ and the remaining compactly-supported cohomology of X_s is supported in degrees 1 and 2. Similarly, the compactly-supported cohomology of Z is supported in degree 0, where it is $\bar{\mathbf{Q}}_\ell^{\oplus (q+1)}$. The long exact sequence from the inclusion $j:X_s\to\mathbf{P}^1$ gives

$$\cdots \to 0 = \mathrm{H}^1_c(Z) \to \mathrm{H}^2_c(X_s) \xrightarrow{j_!} \mathrm{H}^2_c(\mathbf{P}^1) \to \mathrm{H}^2_c(Z) = 0 \to \cdots$$

from which $\mathrm{H}^2_c(X_s) \simeq \mathrm{H}^2_c(\mathbf{P}^1) \simeq \bar{\mathbf{Q}}_\ell(-1)$, and

$$\cdots \rightarrow 0 = \operatorname{H}_{c}^{0}(X_{s}) \xrightarrow{j_{!}} \operatorname{H}_{c}^{0}(\mathbf{P}^{1}) \rightarrow \operatorname{H}_{c}^{0}(Z) \rightarrow \operatorname{H}_{c}^{1}(X_{s}) \xrightarrow{j_{!}} \operatorname{H}_{c}^{1}(\mathbf{P}^{1}) = 0 \rightarrow \cdots$$

from which $\mathrm{H}^1_c(X_s) \simeq \mathrm{H}^0_c(Z)/\mathrm{H}^0_c(\mathbf{P}^1) \simeq \bar{\mathbf{Q}}_\ell^{\oplus q}$. In particular,

$$\operatorname{tr}(F \mid \operatorname{H}_{c}^{1}(X_{s})) = \operatorname{tr}(F \mid \operatorname{H}_{c}^{2}(X_{s})) = q.$$

This agrees with the sanity check from Lefschetz: $|X_s^F| = 0$ by construction, matching 0 - q + q = 0.

Note that $H_c^1(X_s)$ and $H_c^2(X_s)$ individually define representations of G^F . With more work, one can show that their respective characters are ρ , the Steinberg character, and 1, the trivial character, using the notation from the previous set of notes. Unfortunately, this means that $\mathbf{R}_{s,1} = H^*(X_s)$ fails to see anything new: We have only reproduced the principal series from last time. Even so, we see something interesting on virtual characters:

$$R_{e,1} = 1 + \rho,$$

 $R_{s,1} = 1 - \rho,$

so under the pairing $(-,-)_{G^F}$ on class functions induced by the Hom_{G^F} -pairing on isomorphism classes of representations, we have $(R_{e,1},R_{s,1})_{G^F}=1-1=0$: *i.e.*, $R_{e,1}$ and $R_{s,1}$ are orthogonal.