MONORRAÍL DE SPRINGFIELD

Tenemos el siguiente problema:

Sujeta a condiciones de interpolación que se especificará en cada problema del presente laboratorio.

PLANTEAMIENTO DEL PROBLEMA

Limpiamos el Workspace y el Command Window:

```
clearvars
clear all
close all
clc
```

Introducimos las posiciones que muestra el problema. Con ello encontramos las posiciones discretas de

cada parada.

```
x = [0 1.5 3 4 6 7 9 10];
y = [20 100 60 120 20 40 100 0];
plot(x,y,'g*')
grid on
xlabel('Posición X')
ylabel('Posición Y')
title('Monorraíl de SpringField')
legend('Paradas')
```


PROBLEMA 1: INTERPOLACIÓN LINEAL

```
n = length(x);
```

Es claro el grado de cada polinomio de la interpolación:

```
ginterp = 1;
nesp = 30;
for i = 1:n-1
    if i > 1
        xinterpaux = xinterp;
        yinterpaux = yinterp;
end
```

Usamos la función predeterminada de MATLAB para encontrar los parámetros sujetos a cada ecuación de recta:

```
l(i,:) = polyfit(x(i:i+1),y(i:i+1),ginterp);
```

Introducimos la función correspondiente como anónima:

```
linterp = @(x) l(i,1)*x+l(i,2);
xinterp = linspace(x(i),x(i+1),nesp);
yinterp = linterp(xinterp);
if i > 1
     xinterp = [xinterpaux xinterp];
    yinterp = [yinterpaux yinterp];
end
```

Se escriben las ecuaciones, con coeficientes a dos decimales:

```
fprintf('Polinomio %d:\n',i)
    fprintf('l(i) = (%.2f)x+(%.2f)',l(i,1),l(i,2))
end

Polinomio 1:
    l(i) = (53.33)x+(20.00)
    Polinomio 2:
    l(i) = (-26.67)x+(140.00)
    Polinomio 3:
    l(i) = (60.00)x+(-120.00)
    Polinomio 4:
```

GRÁFICA (INTERPOLACIÓN LINEAL)

l(i) = (-50.00)x+(320.00)

l(i) = (20.00)x+(-100.00)

l(i) = (30.00)x+(-170.00)

 $l(i) = (-100.00) \times + (1000.00)$

Polinomio 5:

Polinomio 6:

Polinomio 7:

Tenemos:

```
plot(xinterp,yinterp,'bo',x,y,'r',x,y,'g*')
grid on
xlabel('Posición X')
ylabel('Posición Y')
title('Monorraíl de SpringField')
legend('Interpolación lineal','Líneas','Paradas')
```


xli = xinterp;
yli = yinterp;

OBSERVACIÓN:

Es claro que se tiene, en conjunto, una función no derivable con puntos picos en cada parada. Asimismo, es claro que el recorrido de cada parada consecutiva es el menor posible.

PROBLEMA 2: INTERPOLACIÓN POR NEWTON

Dado que tenemos un conjunto de 8 puntos, tanto en abscisas como en ordenadas, encontraremos un único polinomio interpolable según Newton. Este será de grado 7.

GRÁFICA (INTERPOLACIÓN POR NEWTON)

```
[xn,yn] = InterpNewton(x,y);
```


OBSERVACIÓN:

Es claro que se tiene, en conjunto, una función un poco más suave. Sin embargo, se nota que el recorrido entre las dos primeras paradas es innecesariamente extenso.

PROBLEMA 3: INTERPOLACIÓN DE HERMITE

Este polinomio de interpolación será de grado 2*(#datos-1)+1 = 15. Con lo que se tendrá curvas incluso más suaves. La teoría de Hermite trabaja con las derivadas en cada punto; en el caso particular nos pide que sean nulas. Por tanto, hacemos:

```
dydx = zeros(1,n);
```

E interpolando:

GRÁFICA (INTERPOLACIÓN POR HERMITE)

```
[hp,xh,yh] = InterpHermite(x,y,dydx);
```


Polinomio de interpolación por Hermite:

```
\begin{array}{lll} P(x) &= (-0.00)x^{15} + (0.00)x^{14} + (-0.05)x^{13} + (1.00)x^{12} + (-13.97)x^{11} + \\ (136.57)x^{10} + (-962.29)x^{9} + (4935.14)x^{8} + (-18368.29)x^{7} + (48838.65)x^{6} \\ + (-89840.63)x^{5} + (107883.35)x^{4} + (-75580.13)x^{3} + (23328.98)x^{2} + (0.00)x^{1} + (20.00) \end{array}
```

OBSERVACIÓN:

Se observa que se trata de un polinomio de grado 12, al reducirse a 2 cifras decimales. Es fácil ver que el recorrido entre las dos primeras paradas es incluso más ridiculamente extenso que el anterior.

PROBLEMA 4: INTERPOLACIÓN POR SPLINES CÚBICOS

Escogemos, en particular, la interpolación por polinomios naturales de tercer grado:

```
[xsl3,ysl3] = InterpSpline3([x;y]);
```

```
Polinomio 1 de la interpolación por spline cúbico p1(x):(20.00)+(84.43)*(x-(0.00))+(0.00)*(x-(0.00))^2+(-13.82)*(x-(0.00))^3

Polinomio 2 de la interpolación por spline cúbico p2(x):(100.00)+(-8.86)*(x-(1.50))+(-62.19)*(x-(1.50))^2+(33.54)*(x-(1.50))^3

Polinomio 3 de la interpolación por spline cúbico p3(x):(60.00)+(30.99)*(x-(3.00))+(88.76)*(x-(3.00))^2+(-59.75)*(x-(3.00))^3

Polinomio 4 de la interpolación por spline cúbico
```

```
p4(x): (120.00) + (29.26)*(x-(4.00)) + (-90.49)*(x-(4.00))^2 + (25.43)*(x-(4.00))^3
Polinomio 5 de la interpolación por spline cúbico p5(x): (20.00) + (-27.52)*(x-(6.00)) + (62.11)*(x-(6.00))^2 + (-14.58)*(x-(6.00))^3
Polinomio 6 de la interpolación por spline cúbico p6(x): (40.00) + (52.94)*(x-(7.00)) + (18.36)*(x-(7.00))^2 + (-14.91)*(x-(7.00))^3
Polinomio 7 de la interpolación por spline cúbico p7(x): (100.00) + (-52.59)*(x-(9.00)) + (-71.12)*(x-(9.00))^2 + (23.71)*(x-(9.00))^3
```


Obteniéndose un conjunto de 7 polinomios. Observamos inmediatamente que este método de interpolación es más cómodo que los anteriores.

PROBLEMA 5: SUPERPOSICIÓN DE GRÁFICAS

Agrupamos lo anterior:

```
plot(xli,yli,'o',xn,yn,'o',xh,yh,'o',xsl3,ysl3,'o',x,y,'g*')
grid on
xlabel('Posición X')
ylabel('Posición Y')
title('Monorraíl de SpringField')
legend('Interp. lineal','Interp. Newton','Interp. Hermite','Interp. Spline Cúbicos','Paradas')
```



```
function [xint,yint] = InterpNewton(x,y)
    n = length(x);
    b = zeros(n);
    b(:,1) = y(:);
    nesp = 80;
    for j = 2:n
        for i = 1:n-j+1
            b(i,j) = (b(i+1,j-1)-b(i,j-1))/(x(i+j-1)-x(i));
        end
    end
    xint = linspace(min(x), max(x), nesp);
    prodint = ones(1,length(xint));
    yint = b(1,1);
    for i = 1:n-1
        prodint = prodint.*(xint-x(i));
        yint = yint+b(1,i+1)*prodint;
    plot(xint, yint, 'bo', xint, yint, 'r', x, y, 'q*')
    grid on
    xlabel('Posición X')
    ylabel('Posición Y')
    title('Monorraíl de SpringField')
    legend('Interpolación de grado 7 (Newton)', 'Líneas', 'Paradas')
end
function [hp,xint,yint] = InterpHermite(x,y,yp)
    n = length(x);
    z = zeros (1,2*n);
    f = zeros (1,2*n);
    z(1:2:2*n-1) = x;
    z(2:2:2*n) = x;
```

```
f(1) = y(1);
   f(3:2:2*n-1) = (y(2:n)-y(1:n-1))./(x(2:n)-x(1:n-1));
   f(2:2:2*n) = yp;
   for i = 3:2*n
       f(i:2*n) = (f(i:2*n)-f(i-1:2*n-1))./(z(i:2*n)-z(1:2*n-i+1));
   hp = zeros (1,2*n);
   p = [1];
   for i = 1:2*n
       hp = hp + f(i)*[zeros(1,2*n-i) p];
       p = conv(p, [1 - z(i)]);
   end
   nesp = 200;
   xint = linspace(min(x), max(x), nesp);
   yint = polyval(hp,xint);
   plot(xint, yint', 'bo', xint, yint', 'r', x, y, 'q*')
   grid on
   xlabel('Posición X')
   ylabel('Posición Y')
   title('Monorraíl de SpringField')
   legend('Interpolación de grado 15 (Hermite)','Líneas','Paradas')
function [xint,yint] = InterpSpline3(X)
   n=length(X(1,:));
   for i=1:n
       a(i)=X(2,i);
   end
   for i=1:n-1
       h(i)=X(1,i+1)-X(1,i);
   end
   for i=2:n-1
       alfa(i)=3/h(i)*(a(i+1)-a(i))-3/h(i-1)*(a(i)-a(i-1));
   end
   l(1)=1;
   mu(1)=0;
   z(1)=0;
   for i=2:n-1
       l(i)=2*(X(1,i+1)-X(1,i-1))-h(i-1)*mu(i-1);
       mu(i)=h(i)/l(i);
       z(i)=(alfa(i)-h(i-1)*z(i-1))/l(i);
   end
   l(n)=1;
   z(n)=0;
   c(n)=0;
   for i=n-1:-1:1
       c(i)=z(i)-mu(i)*c(i+1);
       b(i)=(a(i+1)-a(i))/h(i)-h(i)*(c(i+1)+2*c(i))/3;
       d(i)=(c(i+1)-c(i))/(3*h(i));
   end
   nesp = 40;
   for i=1:n-1
       if i > 1
           xpre = xint;
           ypre = yint;
       xint=linspace(X(1,i),X(1,i+1),nesp);
       yint=a(i)+b(i)*(xint-X(1,i))+c(i)*(xint-X(1,i)).^2+d(i)*(xint-X(1,i)).^3;
       fprintf('Polinomio %d de la interpolación por spline cúbico %d:',i)
       fprintf('\n')
       fprintf('\n')
```