hwjiang1510@gmail.com La Jolla, San Diego

Hanwen Jiang

Phone: +1(702) 613-7764 linkedin.com/in/hanwen-jiang

EDUCATION

University of California, San Diego (UCSD), USA

Sep 2019-Jun 2021

M.S. in Computer Science and Engineering

GPA: 4.0/4.0, Courses: Computer Vision, Probabilistic Learning, ML on Geometry Data, Recommender System

Wuhan University (WHU), Wuhan, China

Sep 2015-Jun 2019

B.Eng. in Measuring & Control Technology and Instrumentations, Electronic Engineering School

- GPA: 3.81/4.0 (90/100), Ranking: 1/46
- ♦ Honor: National Scholarship Recipient (1%, 2016 & 2017), Outstanding Graduation Thesis (5%)

PUBLICATION

- Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time, Shaowei Liu*, Hanwen Jiang*, Jiarui Xu, Sifei Liu, Xiaolong Wang (* equal contribution, submitted to NeurlPS'2020)
- Robust Road Lane Detection from Continuous Driving Scenes Using Deep Neural Networks, Qin Zou, Hanwen Jiang, Qiyu Dai,
 Yuanhao Yue, Long Chen, Qian Wang (IEEE Transactions on Vehicular Technology, 2020)

SPECIALIZED SKILLS

Python, C++, Java, MATLAB, PyTorch, TensorFlow, OpenCV, Git, Docker, Kubernetes

INTERN EXPERIENCE

Research Intern | Advisor: Gang Yu | Detection Group, MEGVII Face++

Jan 2019-May 2019

Fine-grained lane and road joint segmentation in urban scenes

- Built a fine-grained lane segmentation model for urban scene auto-driving, demonstrated 80% (selected 13classes) and 65% (overall, 30+ classes) mIoU on Apollo Landscape Lane Dataset (official baseline with 40% mIoU).
- Utilized dilated conv and spatial pyramid fusing to enlarge the receptive field for segmenting continuous lane-line instances.
- Pruned the W-shape convolution structure and SE blocks, demonstrated 13Fps on images with 2000*2500 resolution.
- Multi-task network: fused a drivable area segmentation model (a shared backbone and two specialized segmentation branches), and use domain adaptation techniques for fine-tuning and joint training.

RESEARCH EXPERIENCE

Research Assistant | Advisor: **Xiaolong Wang** (Assistant professor, CSE department, **UCSD**) **Understanding human hand-object interaction**

Jan 2020-Now

- Dranged a natural for joint hand chiest 2
- Proposed a network for joint hand-object 3D pose estimation, demonstrated SOTA on FPHA and HO-3D dataset, and a firstauthor paper submitted to NeurIPS 2020.
- Now working on hand affordance prediction for grasping object from multi-modality data.

Research Assistant | Advisor: Qin Zou (Associate professor, School of Computer, WHU)

Oct 2017-Feb 2019

Semantic segmentation algorithm and application on lane position detection

- Proposed a novel semantic-seg algorithm for short videos: a fully convolutional encoder-decoder for extracting and recovering feature map, and centered ConvLSTM for learning temporary feature propagation.
- Collected three continuous driving scene datasets for lane detection: a huge comprehensive dataset for training and two
 testsets for testing overall performance and robustness respectively.
- The model demonstrated a **98%** accuracy, **best robustness** and **220Fps** speed on our dataset, and SOTA performance on TuSimple lane dataset, see our PAPER for details.

General co-saliency object detection in single image

- Experimented with general detection and segmentation algorithms for identifying co-occurring objects in single image.
- Utilized RPN to find triplet proposals: an anchor proposal, a positive proposal and a negative proposal, which are objects with similar classes (e.g. white, white and black dog respectively).
- Created a fully-connected regional feature mapping block to discriminate the co-occurrence positive object samples.
- Combined a fully-convolutional segmentation decoder in the network to get the pixel-wise co-saliency map.

Research Assistant | Advisor: Kai-Wei Chang (Assistant Professor, CS School, UCLA CSST Program) Group bias analysis on YELP review dataset

July 2018-Jan 2019

- Designed baseline model for gender classification and sentiment analysis, and demonstrated an accuracy of **87%** and **76%**, higher than the champion of YELP challenge.
- Optimized the rationale analysis model to identify key words for gender and sentiment classification, and used them to analyze different speech patterns, especially word-pairs, between male and female qualitatively.
- Fine-tuned the word embedding of the word-pairs to prevent bias in word-embedding-based downstream tasks.