Контрольная работа № 1 Предел

Демонстрационный вариант

Ниже представлены задания КР. В некоторых из них есть подпункты а), б) ..., они отражают вариации этих заданий. При написании КР вам попадётся одна из них.

Задание 1. Метод математической индукции

- а) Найдите краткую формулу для суммы при любом $n \in \mathbb{N}$: $\frac{1}{1 \cdot 4} + \frac{1}{4 \cdot 7} + \dots + \frac{1}{(3n-2)(3n+1)}$.
- б) Докажите, что для любого натурального числа n величина $5^{2n-1} + 2^{2n+2}$ делится на 21.
- в) Докажите, что при любых натуральных n справедливо неравенство $3^n > 2^n + n$.

Задание 2. Ограниченность множеств

- а) Докажите, что множество $\{x_n\} = \left\{\frac{2n+1}{n+1}, \ n \in \mathbb{N}\right\}$ ограничено. Найдите $\sup\{x_n\}$ и $\inf\{x_n\}$, а также $\max\{x_n\}$ и $\min\{x_n\}$, если они существуют.
- б) Докажите, что множество $\{x_n\} = \left\{\frac{1-n^4}{n^3+5}, \ n \in \mathbb{N}\right\}$ неограниченно.

Задание 3. Предел последовательности по определению

Исходя из определения предела последовательности, докажите, что:

a)
$$\lim_{n \to \infty} \frac{4n-1}{n+5} = 4$$
, 6) $\lim_{n \to \infty} \frac{2n-5n^2}{3n+6} = -\infty$.

Задание 4. Предел функции по Коши

Исходя из определения предела функции по Коши, докажите, что $\lim_{r\to 1} \frac{x-1}{\sqrt{x}-1} = 2$.

Задание 5. Предел функции по Гейне

Исходя из определения предела функции по Гейне, докажите, что не существует $\lim_{x\to 0} \operatorname{arctg}\left(\frac{1}{x}\right)$.

Задание 6. Теорема Вейерштрасса и критерий Коши

- а) При помощи теоремы Вейерштрасса о монотонной ограниченной последовательности докажите, что последовательность сходится: $x_n = \frac{1}{5+1} + \frac{1}{5^2+1} + \frac{1}{5^3+1} + \cdots + \frac{1}{5^n+1}$.
- б) При помощи критерия Коши докажите, что последовательность сходится: $x_n = \frac{1}{5+1} + \frac{1}{5^2+1} + \frac{1}{5^3+1} + \dots + \frac{1}{5^n+1}$.

Задание 7. Подпоследовательности

Выделив подпоследовательности, докажите, что последовательность $x_n = (-1)^{n-1} \left(2 + \frac{3}{n}\right)$ расходится, найдите $\overline{\lim_{n \to \infty}} x_n$, $\underline{\lim_{n \to \infty}} x_n$.

Задание 8. Арифметические свойства пределов

Вычислите при помощи арифметических свойств пределов

a)
$$\lim_{n \to \infty} \frac{7n^2 - 4n + 7}{\sqrt{n^4 + 6n^2 - 7}}$$
 6) $\lim_{n \to \infty} \left(\sqrt{n^2 + n} - \sqrt{n^2 - n} \right)$ B) $\lim_{x \to -1} \frac{4x^2 + 5x + 1}{x^3 + 1}$ 7) $\lim_{x \to 4} \frac{x - 4}{\sqrt{x - 3} - 1}$

Задание 9. Второй замечательный предел

Вычислите при помощи второго замечательного предела:

a)
$$\lim_{n \to \infty} \left(\frac{3-2n}{5-2n} \right)^{\frac{n-6}{2}}$$
 6) $\lim_{x \to \infty} \left(\frac{x^2-2}{x^2+3} \right)^{2x^2+6}$ B) $\lim_{x \to 2} (3-x)^{\frac{4}{2-x}}$

Задание 10. Замена на эквиваленты

Вычислите при помощи замены на эквиваленты:

a)
$$\lim_{x\to 0} \frac{\ln(2x+1)}{x \operatorname{ctg}\left(x+\frac{\pi}{4}\right)}$$
 6) $\lim_{x\to 0} \frac{x \arcsin(x/2)}{1-\cos 4x}$ B) $\lim_{x\to -1} \frac{\operatorname{arctg}(x+1)}{x^2-1}$