My Mathematica cheat sheet

Nasser M. Abbasi

March 21, 2019

Compiled on March 21, 2019 at 3:24pm

Contents

1	Mathematica links?	6
2	Mathematica old signal processing package	6
3	Reading Mathematica commands source code?	6
4	How do pure functions work?	6
5	Mathematica directories after installation	7
6	How to write a package?	8
7	How to use context and packages?	9
8	How to load an m file or a package?	9
9	Finding names of functions in a package	9
10	Finding a package that has specific function	9
11	Finding all contexts that belong to a package?	10
12	How to remove packages?	10
13	Finding partial fraction expansion	10
14	Some keyboard shortcuts	10
15	Tracing a function	10
16	Removing Big O notation from Series expansion	10
17	How to plot circle?	10
18	Solve implicit differentiation of equations	11
19	Drawing roots of complex equation?	12

20	DSolveIntegrals package	12
21	How to simplify with conditions?	12
22	Smart replacement everywhere?	12
23	Plotting real and imaginary parts	13
24	Plotting mapping of complex numbers?	13
25	Saving a plot as eps	13
26	Extracting DSolve solutions	13
27	Mathematica not evaluate its arguments?	14
28	Combining more than plot	14
29	Speed of functional and procedural	14
30	Using subscript variables in function definitions	14
31	Using zero as index	14
32	Extracting the LHS and RHS of equation	14
33	Making animated GIF of a manipulate	15
34	How to do convolution?	15
35	How to use Piecewise function?	15
36	Making labeles for frame plot	15
37	Doing some matrix operations	15
38	How to find if an expression implies another?	21
39	Displaying matrices in MatrixForm	21
40	Making 3D axes normal instead of boxed	2
41	How to use ListPlot on set of x, y data?	22
42	How to do autocorrelation	22
43	How to make a spring?	22
44	How to list files in a directory?	22
45	Where is init.m and how to use it?	23
46	Making plot range a slider	23

47 On Mathematica accuracy and precision	23
48 Guidelines when writing Mathematica demonstration	25
49 Making condition as pattern	27
50 Reading Mathematica example data and location	27
51 Stopping 3D plot from changing size	28
52 Selecting elements from a list that satisfy a condition	28
53 Selecting and replace elements from matrix	28
54 What are the AppearanceElements names?	29
55 How to make listplot	29
56 Getting points from plot once it is plotted	30
57 Notes on dynamics	30
58 Making struct/record and array of structs	33
59 Applying a function using 2 arguments from a list	33
60 Using Sow and Reap	34
61 Making comments use monospaced fonts	34
62 How to do long division of 2 polynomials?	34
63 Common patterns for function parameters	34
64 How to add rational polynomials?	35
65 How to use options in functions?	35
66 How to replace patterns in expressions	35
67 Finding which folders are on trusted path	36
68 Difference between Block, With and Module	37
69 Generating T.O.C. to sections in a notebook	37
70 Extracting values in a list of the form x->value	38
71 Aligning inside Framed environment	39
72 Aligning individual row of a grids	39
73 Printing numerical value not in scientific notation?	39

74	Clearing notebook cache from any old symbols	39
75	Difference between RotationMatrix and RotationTransform	40
76	How to change the head of a list?	41
77	Displaying polynomial from higher to lower order	42
78	How to understand symbol shadwing?	42
79	How to do OO in Mathematica?	42
80	How to sort a list of numbers?	42
81	Copy/paste code to Stackexchange or email messages?	43
82	Making automatic subscripted matrix notation	43
83	Finding Names of build-in function context and options	44
84	Making escape key add around elements	45
85	Searching for substring inside a larger string	46
86	Dynamically change the layout of Manipulate	46
87	What are most common commands?	46
88	common signature definitions	47
89	How to check for Head of expression?	51
90	How to make different Grids	51
91	Common Patterns	52
92	Compare Manipulate to DynamicModule	54
93	Replacing dependent variables and its derivatives in an equation	54
94	things to remember	54
95	Copying outout cells to another notebook	55
96	Mathematica equivalent command to Matlab blkdiag	55
97	floating points stuff	55
98	Mathematica functions that does the same thing	55
99	Complex rules to help simplifications	55
100	How to find names of named characters?	56

101 How to understand views for 3D Graphics?	56
102 On imagepadding, imageMargins etc	57
103 How to thread functions over equations?	57
104 Usages of Manipulate	57
105 Correct way to define function for Integrate use	59
106 How to find list of all distributions	60
107 How to find number of points used in Plot command?	60
108 How to save matrix of data to file, and read it again later?	61
109 How to solve ODE using power series method?	61
110 How to delete all input cells?	61
111 Use of ## &[]	62
112 How to use MapThread to map function on 2 lists?	62
113 How to make shortcut to add [[and]] quickly?	62
114 How to run Mathematica m file as script on windows?	62
115 How to run CDF in Chrome browser? This plugin is not supported issues	63
116 Installing Mathematica 10.1 on Linux	64
117 How to use Mathematica to get step-by-step solution from Alpha	64
118 How to nest Map inside Map?	65
119 TeXForm handling of derivative higher than two	65
120 How to classify singular points for ODE?	65
121 How to replace $y(x)$ by $e^{s(x)}$ in an ode?	66
122 How to print definitions of some internal functions?	67
123 How to rewrite ODE so that derivative on one side and rest on another side?	67
124 How to convert code from Mathematica stacexchange to 2D math in notebook?	67
125 How to trace DSolve running?	67
126 How to put time out on integrate in DSolve?	67

127 How to post Mathematics code with Greek letters to stackexchange?

This is my Mathematica cheat sheet. I keep in it useful things I learn about Mathematica and keep forgetting, and some things I see on the net. If something here is from the net, I try to make sure I put a reference or credit to where I saw it, else it will be something I wrote myself, in that case, all blames to me.

This was written using Latex and converted to HTML using tex4ht and to pdf using pdflatex.

1 Mathematica links?

Few are here

- 1. Archive of Mathematica weekly newsletters
- 2. Mathematica stackexchange forum
- 3. The large links page for Mathematica at stackexchnage
- 4. Language reference
- 5. What is new in V 10
- 6. Summary of New Features in 10
- 7. wolfram cloud
- 8. How to solve basic engineering and mathematics problems using Mathematica and Matlab

2 Mathematica old signal processing package

Here is a link to information about old Mathematica signal processing package. Currently as of Mathematica version 9, it contains number of build-in DSP functions.

3 Reading Mathematica commands source code?

Say you want to read source code of LaplaceTransform. First load it with some call then apply ?? on it

```
1 LaplaceTransform[x,x,t];
```

2 ClearAttributes[LaplaceTransform, ReadProtected]

3 ??LaplaceTransform

4 How do pure functions work?

I made this simple diagram to help me understand pure functions.

68

5 Mathematica directories after installation

I made this diagram to show the installation tree structure.

6 How to write a package?

Small note here

7 How to use context and packages?

How to find what contexts are loaded? ?\$Packages "gives a list of the contexts corresponding to all packages which have been loaded in your current Mathematica session."	{"JLink`", "GetFEKernelInit`", "ResourceLocator`", "PacletManager`", "QuantityUnits`", "WebServices`", "System`", "Global`"}
How to find what packages are loaded? \$ContextPath	{"PacletManager`", "QuantityUnits`", "WebServices`", "System`", "Global`"}
Finding packages in specific context Names["System`ComplexExpand`*"]	{"System`ComplexExpand`AbsExpr", "System`ComplexExpand`ArgExpr", "System`ComplexExpand`ConjugateExpr", "System`ComplexExpand`ReImExpr", "System`ComplexExpand`ReImFail", "System`ComplexExpand`SignExpr"}
How to find what contexts are loaded? ?Contexts	Contexts[] gives a list of all contexts. Contexts["string"] gives a list of the contexts which match the string.

8 How to load an m file or a package?

Append to the Path the folder name where the package is located in. In this example, assuming there is a package control. m located in folder C: \data then type the following to load the package

```
1 AppendTo[$Path, "C:\\data"]
```

2 << control.m

9 Finding names of functions in a package

\$Packages	{"JLink`", "GetFEKernelInit`", "ResourceLocator`", "PacletManager`", "QuantityUnits`", "WebServices`", "System`", "Global`"}
Names["JLink`*"]	{"JLink`AddPeriodical", "JLink`AddToClassPath",

10 Finding a package that has specific function

use Context.

Context[Integrate]	"System`"
--------------------	-----------

11 Finding all contexts that belong to a package?

Use Contexts ["packageName*"]

12 How to remove packages?

to do

13 Finding partial fraction expansion

?Apart

14 Some keyboard shortcuts

To insert I	esc ii esc
To enter π	esc p esc
To enter E	esc ee esc
ctrl-6 wil make exponent	
ctrl^ will make superscript	

15 Tracing a function

Trace[Integrate[x, {x, 1, 2}], TraceInternal -> True]

16 Removing Big O notation from Series expansion

```
Normal[Series[f[x], {x, 0, 3}]] f[0]+x (f^{()})[0]+1/2 x^2 (f^{()')}[0]+1/6 x^3 (f^{()})[0]
```

17 How to plot circle?

```
ParametricPlot[\{Sin[u], Cos[u]\}, \{u, 0, 2 Pi\}, AspectRatio -> 1]
```


18 Solve implicit differentiation of equations

Suppose we are given $z = xe^{-y}$, $x = \cosh(t)$, $y = \cos(s)$ and need to find $\frac{dz}{ds}$

```
 \begin{bmatrix} \mathbf{x}[\mathsf{t}_{-}] & := \mathbf{Cosh}[\mathsf{t}] \\ \mathbf{y}[\mathsf{s}_{-}] & := \mathbf{Cos}[\mathsf{s}] \\ \mathbf{z}[\mathsf{x}_{-}, \ \mathbf{y}_{-}] & := \mathbf{x}[\mathsf{t}] \ \mathbf{Exp}[-\mathsf{y}[\mathsf{s}]] \\ \mathbf{D}[\mathsf{z}[\mathsf{x}, \ \mathbf{y}], \ \mathsf{s}] \end{bmatrix}  (Cosh[t]*Sin[s])/E^Cos[s]
```

Another example: $u = x^2y^3z$, $x = \sin(s+t)$, $y = \cos(s+t)$, $z = e^{st}$ and we need to find $\frac{du}{ds}$ and $\frac{du}{dt}$

```
 \begin{array}{c} x[s\_, t\_] := \textbf{Sin}[s+t]; \\ y[s\_, t\_] := \textbf{Cos}[s+t]; \\ z[s\_, t\_] := \textbf{Exp}[s+t]; \\ u[s\_, t\_] := x[s, t]^2 y[s, t]^3 z[s, t]; \\ u[s\_, t\_] := x[s, t]^2 y[s, t]^3 z[s, t]; \\ \textbf{Clear}[s, t]; \\ \textbf{D}[u[s, t], s] \end{array}
```

19 Drawing roots of complex equation?

20 DSolveIntegrals package

Where did I get this from?

"Mathematica can handle partial differential equations via the DSolveIntegrals package. These arise in chemical contexts in the 1D wave equation, 3D wave equation, 3D diffusion equation, Time-dependent and Time independent Schrödinger equation. Hermite showed that the quintic equation could be solved by elliptic functions"

21 How to simplify with conditions?

For example, to integrate this below, for n positive integer we do

22 Smart replacement everywhere?

23 Plotting real and imaginary parts

```
f[t_] := BesselK[3, I t]
Plot[{Re[f[t]], Im[f[t]]}, {t, 0.01, 20}]
```


24 Plotting mapping of complex numbers?

25 Saving a plot as eps

26 Extracting DSolve solutions

one way

```
Clear[y, x]
DSolve[{y'[x]^2 == 1 - y[x]^2, y[0] == 0},
y[x] /. %

{{y[x] -> -Sin[x]}, {y[x] -> Sin[x]}}

{-Sin[x], Sin[x]}
```

27 Mathematica not evaluate its arguments?

```
In[60]:= s = HoldForm[1 + 2]
Out[60]= HoldForm[1 + 2]
In[61]:= ReleaseHold[s]
Out[61]= 3
```

28 Combining more than plot

One way is to use Show

29 Speed of functional and procedural

By Bill Rowe http://forums.wolfram.com/mathgroup/archive/2004/Apr/msg00357.html

30 Using subscript variables in function definitions

Use notation package

31 Using zero as index

See using_zero_index_in_Mathematica

32 Extracting the LHS and RHS of equation

```
In[62]:= eq = x^2 + Sin[4*a] == 3 - Derivative[1][y][t]
Out[62]= x^2 + Sin[4*a] == 3 - Derivative[1][y][t]

In[63]:= lhs = eq /. (lhs_) == (rhs_) -> lhs
Out[63]= x^2 + Sin[4*a]

In[64]:= rhs = eq /. (lhs_) == (rhs_) -> rhs
Out[64]= 3 - Derivative[1][y][t]
```

33 Making animated GIF of a manipulate

One way is to use Vitaliy Kaurov ManToGif. Another way is to run the manipulate and do screen capture using program such as LICEcap

34 How to do convolution?

see ?ListConvolve

35 How to use Piecewise function?

see ?Piecewise

36 Making labeles for frame plot

from the net. Using Times font family is the idea.

```
data = Table[{x, Random[Real, {0, x}]}, {
    x, 0, 10}];

ListPlot[data, Frame -> True,

PlotStyle -> {FontFamily -> "Times"},

PlotLabel -> "64Cycles in FIFO",

FrameLabel -> {"S/N dB", "RMS error mm"}
}]
```


37 Doing some matrix operations

Rememebr: Position and Cases return result that can be used by Extract directly. But can't be used by Part directly.

37.1 How to extract first column in matrix

1	a = Table [RandomInteger[100], {4}, {4}]	Out[69]= {{55, 63, 78, 45}, {13, 45, 67, 1}, {94, 32, 48, 90}, {31, 75, 43, 60}}
	a[[All,1]]	Out[70]= {55, 13, 94, 31}

37.2 How to extract first 3 rows in the first column?

37.3 How to find some matrix rows based on some condition on value in say the first column??

Find rows which has elements in first column less than 3 in the following

$$a = \{\{1, 2, 3\}, \{4, 5, 8\}, \{7, 8, 9\}\}$$

Reference: how-to-extract-rows-from-matrix-based-on-value-in-first-entry

The solution using pattern below (by WRech) is interesting since the same pattern can be used by Cases and Position.

solution by me

$$\begin{array}{l} \operatorname{pos} = \operatorname{Position}[a[[\operatorname{All},1]], \ _?(\#1 <= 4 \ \& \)] \\ \operatorname{Out}[73] = \left\{\{1\}, \ \{2\}\right\} \\ \\ \operatorname{Extract}[a, \operatorname{pos}] \\ \operatorname{Out}[74] = \left\{\{1, \ 2, \ 3\}, \ \{4, \ 5, \ 8\}\right\} \\ \\ \operatorname{by Simon} \\ \operatorname{pos} = \operatorname{Position}[a, \ _\operatorname{List}?(\operatorname{First}[\#1] <= 4 \ \& \), \ \{1\}] \\ \operatorname{Out}[75] = \left\{\{1\}, \ \{2\}\right\} \\ \\ \operatorname{Extract}[a, \operatorname{pos}] \\ \operatorname{Out}[76] = \left\{\{1, \ 2, \ 3\}, \ \{4, \ 5, \ 8\}\right\} \\ \\ \operatorname{By Asim} \\ \operatorname{Pick}[a, \ a[[\operatorname{All},1]], \ _?(\#1 <= 4 \ \& \)] \\ \operatorname{Out}[77] = \left\{\{1, \ 2, \ 3\}, \ \{4, \ 5, \ 8\}\right\} \\ \end{array}$$

By WReach

```
\begin{aligned} & \mathrm{Cases}[a, \{n\_, \_ \} /; n < = 4, \{\}] \\ & \mathrm{Out}[78] = \{ \{1, 2, 3\}, \{4, 5, 8\} \} \end{aligned}
```

By WReach

```
\begin{array}{l} pos{=}Position[a,\{n\_,\_\_\}/;n{<}{=}4,\{\}]\\ Extract[a,pos] \end{array}
```

Out[79]=
$$\{\{1\},\{2\}\}$$

Out[80]= $\{\{1,2,3\},\{4,5,8\}\}$

37.4 How to generate a diagonal matrix?

Random values on the diagonal

DiagonalMatrix[Table[Random[], {3}]]

Ones on the diagonal

DiagonalMatrix[Table[1, {3}]]

37.5 How to generate upper diagonal matrix?

```
one way, using SparseArray
```

Or using Table. But notice that in SparseArray, the 'zeros' are already the default case, so using SparseArray is simpler.

```
Table[If[i == j, 2*i, If[i < j, i + j, 0]], {i, 5}, {j, 5}]
Out[82]= ... same as above
```

37.6 How to find the trace of a matrix?

```
see ?Tr[a]
```

37.7 How to find product of elements on the Trace?

```
a = {{1, 2, 3},

{4, 5, 8},

{7, 8, 9}}

Tr[a, Times]

out[84] = 45
```

37.8 How to check if a Matrix is diagonal matrix?

```
by Ion MacLoone

DiagonalQ[m_List] /; ArrayDepth[m] === 2 && Equal @@ Dimensions[m] :=

And @@ Flatten[MapIndexed[#1 === 0 || Equal @@ #2 & , m, {2}]];

DiagonalQ[m_] := Return[False];

a = {{1, 2}, {2, 4}}

b = {{1, 0}, {0, 2}}

DiagonalQ[a]

Out[89] = False

DiagonalQ[b]

Out[90] = True
```

37.9 How to find locations of all zeros (or any other value) in a matrix?

Find location of zeros in this matrix

```
a = \{\{1, 2, 3\}, \\ \{4, 0, 8\}, \\ \{7, 8, 0\}\} one way
```

Position[a, 0] Out[96]= $\{\{2, 2\}, \{3, 3\}\}$

Another way

```
Position[a, \_?(#1 == 0 \& )]
Out[97]= {{2, 2}, {3, 3}}
```

37.10 How to find locations of elements subject to some test?

find all elements between 4 and 8

```
a = \{\{1, 2, 3\}, \\ \{4, 0, 8\}, \\ \{7, 8, 0\}\}
```

```
Position[a, _?(#1 >= 4 && #1 <= 8 & )]

Out[99]= \{\{2, 1\}, \{2, 3\}, \{3, 1\}, \{3, 2\}\}

Extract[a, %]

Out[100]= \{4, 8, 7, 8\}
```

37.11 How to insert an element in specific position?

Using Part to inser 99 in position (1,1)

$$a = \{\{1, 2, 3\}, \\ \{4, 0, 8\}, \\ \{7, 8, 0\}\} \\ a[[1,1]] = 99; \\ a$$

$$Out[103] = \{\{99, 2, 3\}, \\ \{4, 0, 8\}, \\ \{7, 8, 0\}\}$$

37.12 How to insert a row into a matrix?

$$a = \{\{1, 2, 3\}, \\ \{4, 0, 8\}, \\ \{7, 8, 0\}\}$$

To insert this row in the second row in matrix above

$$\begin{aligned} &\text{row} = \{97,\, 98,\, 99\};\\ &\text{newa} = \text{Insert}[\text{a, row},\, \{2\}] \\ &\text{Out}[106] = \{\{1,\, 2,\, 3\},\\ &\quad \{97,\, 98,\, 99\},\\ &\quad \{4,\, 0,\, 8\},\\ &\quad \{7,\, 8,\, 0\}\} \end{aligned}$$

or just use '2', it will also work

$$newa = Insert[a, row, 2]$$

$$\begin{aligned} \text{Out}[107] &= \{\{1, \, 2, \, 3\}, \\ \{97, \, 98, \, 99\}, \\ \{4, \, 0, \, 8\}, \\ \{7, \, 8, \, 0\}\} \end{aligned}$$

37.13 How to insert a column into a matrix?

$$a = \{\{1, 2, 3\}, \\ \{4, 0, 8\}, \\ \{7, 8, 0\}\}$$

To insert this column in the second column position in above matrix

```
column = \{97, 98, 99\};
```

one way

```
\label{eq:newa} \begin{split} \text{newa} &= \text{Transpose}[\text{Insert}[\text{Transpose}[a], \, \text{column}, \, 2]] \\ \text{Out}[110] &= \{\{1, \, 97, \, 2, \, 3\}, \\ &= \{4, \, 98, \, 0, \, 8\}, \\ &= \{7, \, 99, \, 8, \, 0\}\} \\ \text{another way} \end{split}
```

$$\begin{split} Normal[SparseArray[\{\{i_, j_\} :> column[[i]] \ /; \ j == 2, \\ \{i_, j_\} :> a[[i,j]] \ /; \ j == 1, \ \{i_, j_\} :> a[[i,j-1]] \ /; \ j > 1\}, \\ \{3, \ 4\}]] \end{split}$$

$$\begin{aligned} \text{Out}[111] &= \{\{1,\,97,\,2,\,3\},\\ \{4,\,98,\,0,\,8\},\\ \{7,\,99,\,8,\,0\}\} \end{aligned}$$

Another way by Leonid Shifrin how-to-insert-a-column-into-a-matrix-the-correct-mathematica-way

MapThread[Insert, {a, column, Table[2, {Length[column]}]]}]

$$\begin{aligned} \text{Out}[112] &= \{ \{1, 97, 2, 3\}, \\ \{4, 98, 0, 8\}, \\ \{7, 99, 8, 0\} \} \end{aligned}$$

Another by Leonid Shifrin

ArrayFlatten[{{a[[All,1;; 1]], Transpose[{column}], a[[All,2;; All]]}}]

$$Out[113] = \{\{1, 97, 2, 3\}, \\ \{4, 98, 0, 8\}, \\ \{7, 99, 8, 0\}\}$$

37.14 How to build a large matrix from blocks of smaller matrices?

Given

$$\mathbf{a} = \{\{1,\,2,\,3\},\\ \{4,\,0,\,8\},\\ \{7,\,8,\,0\}\}$$

and we want to make matrix $\{a,a\},\{a,a\}$

$$b = ArrayFlatten[\{\{a, a\}, \{a, a\}\}]$$

$$\begin{aligned} \text{Out}[118] & \{\{1,\,2,\,3,\,1,\,2,\,3\},\\ & \{4,\,0,\,8,\,4,\,0,\,8\},\\ & \{7,\,8,\,0,\,7,\,8,\,0\},\\ & \{1,\,2,\,3,\,1,\,2,\,3\},\\ & \{4,\,0,\,8,\,4,\,0,\,8\},\\ & \{7,\,8,\,0,\,7,\,8,\,0\}\}] \end{aligned}$$

37.15 How to apply a function to each element in a 2D matrix?

Given

$$a = \{\{1, 2, 3\}, \\ \{4, 0, 8\}, \\ \{7, 8, 0\}\}$$

and we want to apply the this function to it

$$f[x_] := x + 2*Sin[x]$$

Then using Map

$$r = Map[f[#1] \& , a, \{2\}]$$

$$\begin{aligned} \text{Out}[123] &= \{ \{1 + 2*\text{Sin}[1], \, 2 + 2*\text{Sin}[2], \, 3 + 2*\text{Sin}[3] \}, \\ \{4 + 2*\text{Sin}[4], \, 0, \, 8 + 2*\text{Sin}[8] \}, \\ \{7 + 2*\text{Sin}[7], \, 8 + 2*\text{Sin}[8], \, 0 \} \} \end{aligned}$$

38 How to find if an expression implies another?

39 Displaying matrices in MatrixForm

One way

$$\begin{array}{l} {\rm \$PrePrint} = {\rm If}[{\rm MatrixQ}[\#],\,{\rm MatrixForm}[\#],\,\#] \,\,\&; \\ {\rm m} = \{\{1,\,2\},\,\{3,\,4\}\} \end{array}$$

Another otpion is to use TraditionalForm. Can change default form from the menu, so this way no need to change \$PrePrint

40 Making 3D axes normal instead of boxed

Use Boxed -> False

$$\begin{aligned} & \text{Plot3D[2 x + 7 y, \{x, -4, 4\}, \{y, -4, 4\},} \\ & \text{Boxed -> False,} \\ & \text{AxesEdge -> \{\{-1, -1\}, \{-1, -1\}, \{-1, -1\}\},} \\ & \text{AxesLabel -> \{x, y, z\}]} \end{aligned}$$

41 How to use ListPlot on set of x, y data?

One way to use Transpose

```
 \begin{split} \mathbf{x} &= \mathrm{Table}[\mathrm{i}, \, \{\mathrm{i}, \, 0, \, 2 \; \mathrm{Pi}, \, \mathrm{Pi}/10 \}]; \\ \mathbf{y} &= \mathrm{Sin}[\mathbf{x}]; \\ \mathrm{data} &= \mathrm{Transpose}[\{\mathbf{x}, \, \mathbf{y}\}]; \\ \mathrm{ListPlot}[\mathrm{data}, \, \mathrm{Joined} \, -\!\!\!> \mathrm{True}] \end{split}
```


42 How to do autocorrelation

43 How to make a spring?

From the net, lost reference

```
\begin{split} & \operatorname{ParametricPlot3D[\{Sin[u],\,Cos[u],\,0.2\,\,u\},\,\{u,\,0,\,10^*2\,\,Pi\},} \\ & \operatorname{PlotStyle} \to \{\operatorname{Tube[0.1]}\}, \\ & \operatorname{ViewPoint} \to \{3.38378,\,0,\,0\}, \\ & \operatorname{ViewVertical} \to \{0,\,1,\,0\}, \\ & \operatorname{ViewAngle} \to \operatorname{Automatic}, \\ & \operatorname{Axes} \to \operatorname{False},\,\operatorname{Boxed} \to \operatorname{False}, \\ & \operatorname{ImageSize} \to 200] \end{split}
```


See also how-to-draw-a-spring

44 How to list files in a directory?

```
\begin{split} \textbf{SetDirectory} & \texttt{\$BaseDirectory}; \\ \textbf{FileNames} & \texttt{["*"]} \end{split}
```

45 Where is init.m and how to use it?

Possible locations for init.m files include the following:

- 1. \$BaseDirectory/Kernel kernel initialization code for all users
- 2. \$UserBaseDirectory/Kernel kernel initialization code for the currently logged-in user
- 3. \$BaseDirectory/FrontEnd front end initialization code for all users
- 4. \$UserBaseDirectory/FrontEnd front end initialization code for the currently logged-in user
- 5. I have my init.m in the following folder

C:\Documents and Settings\All Users\Application Data\Mathematica\Kernel\in

46 Making plot range a slider

47 On Mathematica accuracy and precision

47.1 From class notes: UC Davis, Dr Rocke

some notes below

Precision means the variability between estimates Accuracy means the amount of deviation between the estimate and the "true value"

The condition number is the ratio of the output error to the input error. if the condition number is about 10k, then one loses about k digits of accuracy.

The main sources of inaccuracy (= error) is truncation error and round-off error.

From the above dart diagram, then we can say this: a value is accurate if it is near the bull-eye. But if is away from the bull-eye, but it is always away from the bull-eye and in the same place, then it is precise. So something can be precise but not accurate. So precise has to do with repeated values. i.e. one can't say a value is precise, but must talk about an experiment being precise, it is produced same result each time (or very close results each time).

So, it is best of course to be both accurate and precise. So what does it mean to be accurate but not precise? using the above dart diagram, it means values generated from the experiment are always close to the pull eye, but not in the same locations.

47.2 by Andrzej Kozlowski

From http://forums.wolfram.com/mathgroup/archive/2010/Jan/msg00917.html

The definition of precision in Mathematica is this. Suppose x is a number known up to an error of epsilon, that is it can be viewed as lying in the interval (x-epsilon/2,x+epsilon/2). Then its precision is

-Log[10,epsilon/x]. Its accuracy is -Log[10,epsilon]. The two are related by the equation:

Precision[x] - Accuracy[x] == RealExponent[x]

The interpretation in terms of digits is only approximate. Both accuracy and precision can be negative - this depends on the scale of the number i.e. RealExponent. A number will have negative accuracy if its absolute

error is large. It is easy to produce such numbers by cancellation

```
 \begin{aligned} & With[\{x = N[10^{\hat{}}100, \, 50] - N[10^{\hat{}}100, \, 50]\}, \\ & Accuracy[x]] \end{aligned}
```

-50.301

On the other hand, since

\$MinPrecision

0

You won't normally in Mathematica see numbers with negative Precision. Precision is the main concept, Accuracy is only used because Precision is singular at 0 (remember - its relative error).

It's all perfectly documented so this tired scape goat is not available this time.

48 Guidelines when writing Mathematica demonstration

In math italicize single Roman letters that are variables or functions (example, x,y,f(x),t

- 2. Exception to above is capital letters for points like P and Q in geometry.
- 3. Do not italicize Greek letters (example, alpha, gamma, beta, etc..), and units like sec or rad, or punctuation like ().
- 4. Styling the control labels is optional.
- 5. Do not use strings with <> for such formatting. Use Row[{ }]
- 6. put () around units in plot labels. As (sec) or (hz)
- 7. do not italicize function names longer than one letter. So Style["exp",Italic] should just be "exp"
- 8. The t in delta(t) should be italic--but not the delta, Greek letter are not Italian letters is how I remember that.
- 9. Log should be log.
- 10. Is $j^2 = -1$? Better say so in the caption for non EE.

see also http://demonstrations.wolfram.com/guidelines.html

I made small copy here so I do not have to keep looking for this all the time.

Demonstration Title

- Make the title as specific as you can. "Density Map for the 3n + 1 Problem" is a better title than "3n + 1
 Problem"
- The Demonstration's title and file name are generated from what you enter in this section, so the file name of the notebook you upload does not matter.
- The permanent URL of a Demonstration is also generated from the title. We encourage authors to use standard English alpha numeric characters, because the URL syntax does not support many characters from outside this set.

Controls for Your Manipulate

- Choose your controls judiciously. Unnecessary clutter only distracts from the idea of your Demonstration.
- Let the sliders do the animating. A slider that steps through an evolution is usually better than an
 animation the user cannot control.
- Label controls clearly with English words: "number of subdivisions" is more instructive than "n."
- InputField is not supported in Demonstrations.
- Set Appearance->"Labeled" for any slider whose values should be displayed to the right of the slider.
 Display other useful data in the content area of the Manipulate, for instance as a PlotLabel.
- Nested Manipulates or functions that return Manipulate are not allowed. Keep things simple and use
 only one Manipulate per Demonstration.
- Appearance->"Open" is not allowed for Manipulator controls in Demonstrations, as it takes up
 precious screen space. Users can open the controls manually.

Testing Your Demonstration

Check your Demonstration before you upload. This will speed it through our review process.

- The Demonstration's screen size, including its controls, should not change as controls are manipulated. The outer border of each Demonstration should lie outside the white area of the Test Image Size palette and inside the translucent green area. The palette is located in the Tools menu. Also, consider setting an <u>ImageSize</u> option or using a <u>Pane</u> construct to control the size of your Demonstration.
- Move each control to its limits. Check for any error messages, unnecessary slowdowns, or other signs
 of improper function.
- As you move the controls, check for any jiggling of the Manipulate contents. You can eliminate jiggling
 by using the PlotRange or ImagePadding options, Spacers, or a Pane construct.
- Review and edit the Caption and Details sections to make them as clear as possible.
- . Use the Check Spelling button in the Tools menu.

To put label on plot, example

To typeset math for display on the demo use this type of coding

Text@Style[TraditionalForm[HoldForm[Sin[x] + Cos[y]], 12]]

To add invisible space use ESC is ESC

49 Making condition as pattern

By Bob Hanlon from math group:

```
\begin{split} & \text{Clear}[x, \$\text{PrePrint}] \\ & \text{expr} = \{\text{E}^x, \, x, \, x^2, \, \text{Log}[x]\}; \\ & \text{Position}[\text{expr}, \, \_?( \, !\text{PolynomialQ}[\#1, \, x] \, \& \, ), \, 1] \\ & \text{Out}[146] = \{\{1\}, \, \{4\}\} \end{split}
```

50 Reading Mathematica example data and location

on windows, V 8, example data is located in

 $\label{lem:condition} C:\operatorname{Program\ Files}\operatorname{Wolfram\ Research}\operatorname{Mathematica}\ 8.0\operatorname{Documentation}\operatorname{English}\operatorname{System}\operatorname{ExampleData}$ and it can be read like this

```
str = OpenRead["ExampleData/USConstitution.txt"]
```

Out[147] = InputStream[ExampleData/USConstitution.txt, 127]

51 Stopping 3D plot from changing size

```
Use SphericalRegion->True
```

```
ListPlot3D[Table[RandomReal[], \{5\}, \{5\}], AxesLabel -> \{"x", "y", "z"\}, ImageSize -> \{200, 200\}, ImagePadding -> 20, SphericalRegion -> True];
```

52 Selecting elements from a list that satisfy a condition

```
This question was posted on the net. Given
```

```
b:=Table[\{x,y\},\{x,1,6\},\{y,1,6\}]

select from it elements x,y which satsify x+y>9

some answers

(me)

Select[Flatten[b, 1], #1[[1]] + #1[[2]] > 9 & ]

Out[152]= \{\{4,6\},\{5,5\},\{5,6\},\{6,4\},\{6,5\},\{6,6\}\}
```

Adriano Pascoletti answer

```
Cases[b, \{x\_Integer, y\_Integer\} / ; x + y > 9, \{2\}]
```

Bill Row answer

```
Cases[Flatten[b, 1], \_?(Total[#1] > 9 & )]
```

Murray Eisenberg answer

```
Select[Flatten[b, 1], First[#1] + Last[#1] > 9 & ]
```

53 Selecting and replace elements from matrix

Given a matrix, say which has Indeterminate and we want to change all these entries in the matrix by zero.

```
\begin{aligned} & \text{mat} = \{ \{-1., -1., \text{Indeterminate}, -1., -1. \}, \\ & \{-1., -1., \text{Indeterminate}, -1., -1. \}, \\ & \{ \text{Indeterminate}, \text{Indeterminate}, \text{Indeterminate}, \text{Indeterminate}, \text{Indeterminate}, \\ & \{-1., -1., \text{Indeterminate}, -1., -1. \}, \\ & \{-1., -1., \text{Indeterminate}, -1., -1. \} \} \end{aligned} p = \text{Position}[\text{mat}, \text{Indeterminate}] \text{mat} = \text{ReplacePart}[\text{mat}, p \rightarrow 0] \text{Out}[169] = \{ \{-1., -1., 0, -1., -1. \}, \\ \{-1., -1., 0, -1., -1. \}, \end{aligned}
```

```
{0, 0, 0, 0, 0},
{-1., -1., 0, -1., -1.},
{-1., -1., 0, -1., -1.}}
```

another example, given a matrix of values, replace those values which are less than 0.5 by NULL

```
\begin{array}{l} n=5;\\ a=Table[RandomReal[], \{n\}, \{n\}];\\ p=Position[a, x_{\_}/; x<0.5];\\ a=ReplacePart[a, p->Null]\\ \\ Out[173]=\{\{Null, Null, Null, 0.6781657418995635, 0.7290662037036753\},\\ \{Null, 0.7084980071179792, Null, Null, 0.5811489862295911\},\\ \{Null, Null, 0.8467863882617719, Null, 0.8891915946646993\},\\ \{0.8173279058333203, 0.7272894246356278, Null, Null, 0.8665880423275274\},\\ \{Null, Null, 0.662026816962838, 0.5982839657423036, 0.6603967280952212\}\}\\ \end{array}
```

54 What are the Appearance Elements names?

see full-documentation-for-appearanceelements

```
list = {
      "AutorunPlayButton",
     "BookmarksButton",
     "BookmarksPlayButton"
     "ContentResizeArea",
     "DirectionButton",
     "FasterSlowerButtons",
     "HideControlsButton",
     "InteractiveTradingChartMenu",
     "InteractiveTradingChartSnapshotButton",
     "InteractiveTradingChartResetButton",
     "InputField",
     "InlineInputField",
     "ManipulatePlayButton",
     "ManipulateMenu",
     "PlayPauseButton",
     "ProgressSlider",
     "ResetButton",
     "SnapshotButton",
     "StepLeftButton",
     "StepRightButton",
     "UpdateButton",
     None};
```

55 How to make listplot

one way

```
\begin{split} p &= Plot[Sin[x], \{x, 0, Pi\}, MaxRecursion -> 0, \\ &\quad PlotPoints -> 10]; \\ data &= Cases[Normal[p], x\_Line :> First[x], Infinity]; \\ Show[p, ListPlot[data, PlotStyle -> Red]] \end{split}
```


56 Getting points from plot once it is plotted

```
\begin{split} p &= ContourPlot3D[x^2 + y^3 - z^3 == 0, \{x, -2, 2\}, \{y, -2, 2\}, \{z, -2, 2\}, \\ PlotPoints -> Automatic] \\ data &= (InputForm@p)[[1, 1, 1]] \\ and \\ data &= Reap[DensityPlot[Sin[x*y], \{x, 0, 2 Pi\}, \{y, 0, 2 Pi\}, \\ &\quad EvaluationMonitor :> Sow[\{x, y, Sin[x*y]\}]]][[2, 1]]; \\ ListPlot3D[data] \end{split}
```

57 Notes on dynamics

Useful notes taken from different places from Mathematica documentation. And some added by me.

1. (added 7/5/14) There is a race condition between when updating a variable in the second argument of dynamics, which is also updated in the Manipulate expression. The problem is easy to explain

$$\label{eq:manipulator} Manipulate[\dots \ n=n+1;\dots, \ Manipulator[Dynamic[f,\{f=\#;n=0\}\&\dots]]$$

Now, what happens, sometimes, is that when moving the slider, and setting n=0, that this update to n can be lost, since it depends on the timing of when this happens. The Manipulate expression could be in the middle on updating n itself. This is classical lost update problem in multi-threading. The way to avoid this, is to follow this rule of thumb: When using second argument of dynamics in a Manipulate control, do not update a shared variable which can also be updated inside the Manipulate expression, as the update can be lost. The write to the shared variable/updating should only happen either inside the Manipulate expression or in the second argument of dynamics. But not in both places

- 2. Dynamic is wrapped around the whole expression, so evaluation of the Table command is delayed until the output is displayed in the notebook. Any time the value of x is changed, the Table command will be reevaluated.
- 3. Remember that Dynamic has the effect of delaying evaluation until the expression reaches the front end
- 4. Because it has the attribute HoldFirst, Dynamic does not evaluate its first argument. This is fundamental to the workings of Dynamic, but it can lead to a somewhat unexpected behavior

- 5. Ordinary variables in Mathematica are owned by the kernel. Their values reside in the kernel, and when you ask Mathematica to display the value in the front end, a transaction is initiated with the kernel to retrieve the value.
- 6. Variables declared with DynamicModule, on the other hand, are owned by the front end. Their values reside in the front end, and when the front end needs a value, it can be retrieved locally with very little overhead.
- 7. The most important is the fact that values of all DynamicModule variables are saved in the file when the notebook is saved.
- 8. By default, dynamic outputs triggered by changes in variable values are updated no faster than twenty times per second (this rate can be changed with the SystemOption "DynamicUpdateInterval
- 9. Dynamic outputs are only updated when they are visible on screen.
- 10. Remember to add synchorization->False to all dynamics, else will time out. When using Refresh also.
- 11. Never make a refresh[] tracks on 2 of my own symbols (not control variables). Use tick, only. Causes major synchronization problems with I update 2 variables inside a refresh, and have the refresh tracks both. Only make one track local variable, such as ticks
- 12. Ok, Found out that finishDynamic[] can causes annoying refresh on the UI whenever I move sliders. So removed it.
- 13. Remember to use :> and not -> for TrackedSymbols

57.1 Notes from John Fultz collected on dynamics

Module variables should *never* appear inside Dynamics or Manipulates internal to that Module.

To be clear with some examples (all using Dynamic, but they could equally well use Manipulate, which is implemented using Dynamic)...

By John Fultz on math group, jan 24/2012

"Generally, you should construct controls so that they're not inside Dynamics that will trigger while you're interacting with those controls, since this can create instability"

By John Fultz on math group, feb 3/2012

"CDF files which you expect to deploy cannot rely on Shift+Enter evaluations to prime the pump. You need to make sure that all of the code dependencies are in the dynamic evaluations somewhere. Some possible ways of doing this, all of which have been discussed at various points on MathGroup, include:

- * Using the Initialization option of Dynamic, DynamicModule, or Manipulate
- * Using the SaveDefinitions option of Manipulate

- * Adding code to the NotebookDynamicExpression option of the notebook (if it's initialization code, then wrapped in Refresh[#, None]& to prevent it from evaluating more than once per session).
- * Not such a good idea for function definitions, but if you simply have code that needs to run before Dynamic code runs, nesting a DynamicWrapper around it might be appropriate, too."

Notes from WRI tech support

This is the support explanation of why this error came showed up:

```
The issue is specifically with the section:
Evaluate@env[{{age, 100, "age"}, 10, 200, 1}]
```

Manipulate doesn't really evaluate until it gets to the Initialization option, but it will check its input for correct form. Mathematica reads the main body of the Manipulate before running the Initialization option. This is can be verified by using a Print statement:

```
Initialization -> (Print["Test"];
  makeCustomEnvironmentAlt =
   Function[Null, Function[code, With @@ Hold[{##}, code], HoldAll],
   HoldAll];
  env = makeCustomEnvironmentAlt[$age = 1, $salary = 2];
  Print["Test"])
```

Test does not print.

Getting around this will be probably not be clean.

...

Having the code for the controller for age depend on evaluation of some function which must be initialized does not appear to be possible with simply Manipulate.

see how-to-define-constants-for-use-with-with-in-one-place-and-then-apply-them-lat

Some useful posts and links on dynamics why-wont-this-work-dynamic-in-a-select

When DynamicModule is first evaluated, initial assignments for local variables are made during the evaluation. Any setting for the Initialization option is evaluated only when the output of DynamicModule is displayed.

see how-to-make-dynamicmodule-work-without-an-extra-enter

Here is a trick to allow one to control one slider based on another

```
\begin{split} & \text{Manipulate}[\{a,\,b\},\\ & \text{Grid}[\{\\ & \{\text{``a''},\,\text{Manipulator}[\text{Dynamic}[a,\,\{(a=\#)\,\&,\,(a=\#;\,\text{If}[b>a,\,b=a])\,\&\}],\\ & \{1,\,10,\,1\}],\,\text{Dynamic}[a]\},\\ & \{\text{``b''},\,\text{Manipulator}[\text{Dynamic}[b,\,\{(b=\#)\,\&,\,(b=\#;\,\text{If}[b>a,\,b=a])\,\&\}],\\ & \{1,\,10,\,1\}],\,\text{Dynamic}[b]\}\}\\ & ], \end{split}
```

```
{{a, 5}, None},
{{b, 3}, None}
```

58 Making struct/record and array of structs

There is no build-in struct or record in Mathematica. But this is what I do. Since in M a matrix can include non-numeric data, I use a list for a record, and then use a matrix to make an array of records (or array of structs). I just need to make a constant to indicate the field name in the record, to make it easier to reference. Here is an example

```
id = 1; (*first field name*)
pop = 2; (*second field name*)
name = 3; (*third field name*)

(*now build the array of record, each row is a record*)
m = {{1, 3000, "London"},
     {1, 6000, "New York"},
     {3, 7300, "Moscow"}};

(*now can iterate over the records*)

Do[
    Print@m[[i, id]];
    m[[i, pop]] += 1,
    {i, Length[m]}
]
```

Ok, not very fancy, but easy to setup and data works with all M other functions, since it is just a list of lists.

Some more links on the subject

- 1. struct-data-type-in-mathematica
- 2. setting-up-a-struct-in-mathematica-safely
- 3. using-a-struct-inside-manipulate-to-help-manage-control-variables-how-to-initia
- 4. struct-equivalent-in-mathematica

59 Applying a function using 2 arguments from a list

```
Remove[a, b, c, d, e, f]  \begin{aligned} &\text{Apply}[\#1+3^*\#2\ \&\ ,\ \{\{a,\,b\},\ \{c,\,d\},\ \{e,\,f\}\},\ 1] \end{aligned} \\ &\text{Out}[183] = \{a+3^*b,\,c+3^*d,\,e+3^*f\} \\ &\text{Or} \end{aligned}
```

```
\begin{split} & \text{Apply}[\#1+3^*\#2\ \&\ ,\ \{\{a,\,b\},\ \{c,\,d\},\ \{e,\,f\}\},\ \{1\}] \\ & \text{Out}[184] = \{a+3^*b,\,c+3^*d,\,e+3^*f\} \end{split}
```

60 Using Sow and Reap

```
\label{listAnimate} \begin{split} & ListAnimate[Flatten[Reap[Do[Sow@Plot[Sin[x-c], \{x, 0, 4 Pi\}, \\ & Ticks -> None], \{c, 0, 2 Pi - Pi/10, Pi/10\}]]]] \end{split}
```

61 Making comments use monospaced fonts

Thanks to Alexey Popkov for this

```
SetOptions[EvaluationNotebook[],
AutoStyleOptions -> {"CommentStyle" -> {FontWeight -> Plain,
FontColor -> GrayLevel[0.6], ShowAutoStyles -> False,
ShowSyntaxStyles -> False, AutoNumberFormatting -> False,
FontFamily -> "Consolas"}}]
```

62 How to do long division of 2 polynomials?

This came about when I was trying to convert $1/(1-x^2/2)$ to normal form, i.e. tell Mathematica to change the above to $1+x^2/2$ But doing Simplify[$1/(1-x^2/2)$] or Expand does not work. So the only solution I found is to use Series command, as follows

```
Normal[Series[1/r, \{x, 0, 2\}]]
Out[189]= 1 + x^2/2
```

63 Common patterns for function parameters

Use these in parameter "declaration" of functions to make more robust. From the help

```
an integer n
n Integer
x Real
                                                an approximate real number x
z_Complex
                                                a complex number z
Complex[x_,y_]
                                                a complex number x+ty
Complex[x_Integer,y_Integer]
                                                a complex number where both real and imaginary parts are integers
                                                rational number or integer r
(r_Rational|r_Integer)
Rational[n_,d_]
                                                a rational number 7
                                                a real number of any kind
(x_/; NumberQ[x] \epsilon \epsilon Im[x] == 0)
(x_/; NumberQ[x])
                                                a number of any kind
```

```
x\_List or x: \{\_\_\}a listx\_List/; VectorQ[x]a vector containing no sublistsx\_List/; VectorQ[x, NumberQ]a vector of numbersx: \{\_\_List\} or x: \{\{\_\_\}...\}a list of listsx\_List/; MatrixQ[x]a matrix containing no sublistsx\_List/; MatrixQ[x, NumberQ]a matrix of numbersx: \{\{\_,\_\}...\}a list of pairs
```

64 How to add rational polynomials?

```
Clear[s]; f1 = 2/(s+3); \\ f2 = 7/(s^2 + 2.5*s + 7); \\ Simplify[Together[f1 + f2]] Out[193] = (35. + 12.*s + 2.*s^2)/(21. + 14.5*s + 5.5*s^2 + s^3)
```

65 How to use options in functions?

```
 \begin{aligned} & \text{Options[myFun]} = \{ \text{form -> "linear"} \}; \\ & \text{myFun[x\_, OptionsPattern[]]} := \text{Module[} \{ \}, \text{Print["x=", x, "form=", OptionValue[form]]}; ] } \\ & \text{myFun[3, form -> "quadratic"]} \end{aligned}
```

This below is also a useful post by David Park on the net on options usage in packages ${\tt msg00335.html}$

66 How to replace patterns in expressions

66.1 example 1

by Andrzej Kozlowski on math group, July 2010:

Suppose in the expression 2/3 I + x/y I you wish to replace all fractions (that is 2/3 and x/y) by r and I by d. Without worrying about evaluation you can do this as follows:

```
 Unevaluated
[Unevaluated[(2/3)*I + (x/y)*I] /. HoldPattern
[(x_)/(y_)] -> r] /. HoldPattern
[I] -> d
```

$$Out[200] = -d + d*(1 - x^2/2)$$

If you allow the expression to evaluate the patterns will no longer match. For example, with only one Unevaluated you will get

```
 \begin{split} & \text{Unevaluated}[(2/3)^*I + (x/y)^*I] \text{ /. HoldPattern}[(x\_)/(y\_)] \text{ ->} \\ & \text{r /. HoldPattern}[I] \text{ -> d} \\ & \text{Out}[201] = \text{-I} + I^*(1 - x^2/2) \end{split}
```

66.2 example 2

question: I want to replace y for x everywhere except in Exp[x].

Answer by Bob Hanlon on the net. messageID=7120881&tstart=0

```
Remove["Global`*"]

\exp r = a^*x + b^*x^2 - c^*Exp[x];

\exp r /. \{Exp[x] -> z, x -> y\} /. z -> Exp[x]

Out[211]= (-c)*E^x + a*y + b*y^2
```

67 Finding which folders are on trusted path

Thanks to Mike for these commands, see http://stackoverflow.com/questions/8583521/why-do-i-get-security-warning-message-this-file-contains-potentially-unsafe-dyn

```
CurrentValue[$FrontEnd, {"NotebookSecurityOptions", "TrustedPath"}]
```

```
\label{eq:out_212} \begin{split} \text{Out}[212] &= \{ \text{FrontEnd`FileName}[\{\$\text{InstallationDirectory}\}], \\ &\quad \text{FrontEnd`FileName}[\{\$\text{UserBaseDirectory}\}]\} \end{split}
```

CurrentValue[\$FrontEnd, {"NotebookSecurityOptions", "UntrustedPath"}]

```
Out[213]= {FrontEnd`FileName[{FrontEnd`$DesktopDirectory}],
FrontEnd`FileName[{FrontEnd`$DownloadsDirectory}],
FrontEnd`FileName[{FrontEnd`$LocalApplicationDataDirectory}],
FrontEnd`FileName[{FrontEnd`$RemoteApplicationDataDirectory}],
FrontEnd`FileName[{FrontEnd`$ProgramFilesDirectory}],
FrontEnd`FileName[{FrontEnd`$ProgramFilesX86Directory}],
FrontEnd`FileName[{$TemporaryPrefix}]}
```

Now to find if your current notebook is on the trusted path type NotebookDirectory[] and see if the output shows up in the trusted path of not. To add a folder to trusted path go to "Preferences > Advanced > Open Options Inspector". Then under Global Preferences search for trusted

68 Difference between Block, With and Module

This below from help. I need to add more basic examples showing the difference in use

Block Module . Module allows you to set up local variables with names that are local to the * Module creates new symbols to represent each of its local variables every . Block allows you to set up an environment in which the values of variables * Module creates a symbol with name xxxεπππ to represent a local variable can temporarily be changed. with name xxx. The number now is the current value of \$ModuleNumber. * When you execute a block, values assigned to x, y, ... are cleared. When the execution of the block is finished, the original values of these symbols are restored. * The value of &ModuleNumber is incremented every time any module is » Before evaluating expr, Module substitutes new symbols for each of the = Block affects only the values of symbols, not their names. local variables that appear anywhere in expr except as local variables in scoping constructs. Initial values specified for x, y, ... are evaluated before x, y, ... are cleared. . Symbols created by Module carry the attribute Temporary. You can use Block[{vars}, body/; cond] as the right-hand side of a transformation rule with a condition attached. . Symbols created by Module can be returned from modules. = Block has attribute HoldAll. You can use $Module[\{vars\}, body/; cond]$ as the right-hand side of a transformation rule with a condition attached. . Block implements dynamic scoping of variables - Module has attribute HoldAll. . Module constructs can be nested in any way, with inner variables being renamed if necessary. Module is a scoping construct that implements lexical scoping.

Block and Module have values, the last expression evaluated is their value, we can see this by making a Grid (or just printing). But module leaked symbols have \$ signs

```
Remove["Global`*"]
Grid[\{\{Module[\{x\}, x]\}\}\}, Frame -> All]
```

Modules and Blocks both execute if they are in the path of code, without calling them. Block:

```
Remove["Global`*"]
x = 4:
Block[\{\}, If[x == 4, x = 3]];
Out[217] = 3
Module:
Remove["Global`*"]
x = 4;
Module[\{\}, If[x == 4, x = 3]];
Out[221] = 3
```

69 Generating T.O.C. to sections in a notebook

These are the steps I use to make TOC which is just HTML links to internal tags in the notebook, where these cell tags are sections. This way, when I exprt to HTML, I end up with TOC which is hyperlinks to internal locations within the web page.

- 1. create the section as normal. As in right-click the mouse, and select INSERT new cell, and select Section. Now in the new cell, write the section title.
- 2. Copy, using the mouse the title of the Section you just wrote so that the title is in the buffer. Now go to Cell->Cell tags->Add/remove and in the little window, paste the title of the section there and click Add.
- 3. Go to the top of the document itself, where the TOC is located, and also PASTE the name of the section there. It will be plain text now.
- 4. Now, using the mouse again, select the text you just pasted, and do right-click and select MAKE hyperlink. This will bring up a menu like this

- 5. Select the option Current notebook from above, and this will bring up a list of all cell tags below. Scroll down looking for the same title there and click on it. This will make the TOC entry HTML link.
- 6. Now do SAVE AS HTML, and the notebook will be saved as HTML and the TOC will be links to the sections

70 Extracting values in a list of the form x->value

$$\begin{split} & \text{lst} = \{ \{ \text{x} -> 4, \, \text{y} -> 7 \}, \, \{ \text{x} -> 2, \, \text{y} -> 5 \}, \, \{ \text{x} -> -1, \, \text{y} -> 10 \} \} \\ & \text{one way} \\ & (\{ \#1[[1,2]], \, \#1[[2,2]] \} \, \& \,) \, /@ \, \, \text{lst} \\ & \text{Out}[223] = \{ \{ 4, \, 7 \}, \, \{ 2, \, 5 \}, \, \{ -1, \, 10 \} \} \\ & \text{another way} \\ & \text{Cases}[\text{lst}, \, \{ _ -> \, n_, \, _ -> \, m_ \} :> \{ n, \, m \}] \\ & \text{Out}[224] = \{ \{ 4, \, 7 \}, \, \{ 2, \, 5 \}, \, \{ -1, \, 10 \} \} \end{split}$$

71 Aligning inside Framed environment

One way us to use Item

```
mat = Table[Random[], {3}, {3}];
Framed[
  Item[Grid[mat, Frame -> All, Alignment -> Center],
  Alignment -> {Center, Top}], ImageSize -> {300, 200}]
```


72 Aligning individual row of a grids

```
One way us to use Item
```

```
Grid[{{"row1,row1"}, {"row2"}, {"row3"}},
Frame -> All]

Grid[{{"row1,row1"},
{Item["row2", Alignment -> Left]},
{"row3"}}, Frame -> All]
```


73 Printing numerical value not in scientific notation?

Use NumberForm

```
\label{eq:numberForm} NumberForm[1./10^6, ExponentFunction -> (Null \& )] \\ Out[227] \ 0.000001
```

74 Clearing notebook cache from any old symbols

Sometimes I get the case that the notebook retain old definitions and symbols even after I deleted them from the notebook. This happened when I was using a Demonstration stylesheet and had an separate initilization cell, and had added SaveDefinitions->True in the Manipulate cell.

To make sure the notebook clears any old symbols, enter this command in the notebook once

```
SetOptions[EvaluationNotebook[],
PrivateNotebookOptions -> {"FileContents" -> {"NotebookData"},
"FileOutlineCache" -> False}]
```

In addition, I change the preferences like this:

75 Difference between RotationMatrix and RotationTransform

The call for each is as follows

76 How to change the head of a list?

A list has a Head at its zero index position

```
\begin{split} & \text{lst} = \{1,\,2,\,3\}; \\ & \text{Head[lst]} \\ & \text{Out[242]= List} \\ & \text{lst[[0]]} \\ & \text{Out[243]= List} \end{split}
```

By changing the head we use Apply. For example, to add the numbers of the above lst, we need to change the Head from List to Plus. There is a command in Mathematica to change the Head, called Apply

```
Plus @@ lst
```

Out[244] = 6

We could have used the zero index trick, but it is better to use Apply:

```
\begin{split} & \text{lst}[[0]] = \text{Plus} \\ & \text{Out}[245] = \text{Plus} \\ & \text{lst} \\ & \text{Out}[246] = 6 \\ & \text{If we have a list of lists, like this} \\ & \text{lst} = \{\{1,\,2,\,3\},\,\{4,\,5,\,6\},\,\{7,\,8,\,9\}\} \end{split}
```

 $Out[247] = \{\{1, 2, 3\}, \{4, 5, 6\}, \{7, 8, 9\}\}\$

And we wanted to change the head of each list in it, for example, we want the product of each list shown, then we need to change the head of each list to Times. To do that, the follwing short but might be strange looking command

```
Apply[Times, lst, \{1\}] Out[248]= \{6, 120, 504\}
```

Another way to do the above is to Map the Apply function

```
(Times @@ #1 & ) /@ lst Out[249]= \{6, 120, 504\}
```

or, little shorter version of the above:

```
(Times @@ #1 & ) /@ lst Out[250]= \{6, 120, 504\}
```

77 Displaying polynomial from higher to lower order

Mathematica default display of polynomial is reverse the traditional form:

poly =
$$x^3 + a^*x + b^*x^2 + c + d$$

Out[251]= 27 + 3*a + 9*b + c + d

use Traditional Form with ParameterVariables to make it appear as in text books

TraditionalForm[poly, ParameterVariables :> {a, b, c, d}]

78 How to understand symbol shadwing?

See this article by David Wagner http://www.mathematica-journal.com/issue/v6i2/columns/wagner/wagner62.pdf

And why-are-some-function-names-red

79 How to do OO in Mathematica?

Some note here

80 How to sort a list of numbers?

 ${\tt Sort}\,[\,\,]$ sorts numbers from small to large by default. By supplying a function, one can change this as needed

```
\begin{aligned} & \text{lst} = \{1, 2, 5, 3, 7\}; \\ & \text{Sort[lst]} \\ & \text{Out[255]} = \{1, 2, 3, 5, 7\} \\ & \text{Sort[lst, } \#1 < \#2 \& ] \\ & \text{Out[256]} = \{1, 2, 3, 5, 7\} \\ & \text{Sort[lst, } \#1 > \#2 \& ] \\ & \text{Out[257]} = \{7, 5, 3, 2, 1\} \end{aligned}
```

81 Copy/paste code to Stackexchange or email messages?

82 Making automatic subscripted matrix notation

Format[t_a] := Subscripted[t]
$$t = Table[a[i, j], \{i, 2\}, \{j, 3\}]$$
 Out[48]= $\{\{a_1, 1, a_1, 2, a_1, 3\}, \{a_2, 1, a_2, 2, a_2, 3\}\}$ Out[49]//MatrixForm=
$$\begin{pmatrix} a_1, 1 & a_1, 2 & a_1, 3 \\ a_2, 1 & a_2, 2 & a_2, 3 \end{pmatrix}$$

83 Finding Names of build-in function context and options

To find say all names in NDSolve and options used by that name if any do (this example is for NDSolve)

```
 \begin{array}{l} {\rm getList[name\_String]} := {\rm Module[\{options, idx\},} \\ {\rm options} = {\rm Names[name} <> ``*"]; \\ {\rm options} = {\rm ToExpression} /@ {\rm options}; \\ {\rm options} = {\rm foExpression} /@ {\rm options}; \\ {\rm options} = {\rm foptions[\#]} \& /@ {\rm options}; \\ {\rm idx} = {\rm Range[Length[options]]}; \\ {\rm options} = {\rm foptions[\#[[2]]]} \& /@ {\rm options}; \\ {\rm options} = {\rm Insert[options[\#[[2]]]}, \#, 1] \& /@ {\rm idx}; \\ {\rm options} = {\rm Insert[options, \{"\#", "Option", "Options to this option"\}, 1]}; \\ {\rm Grid[options, Frame} -> {\rm All, Alignment} -> {\rm Left, FrameStyle} -> {\rm Directive[Thickness[.005], Gray]}] \\ {\rm ]}; \\ \end{array}
```

then call it with

```
getList["NDSolve"]
```

It will produce large table. Here is part of it

Ħ	Option	Options to this option
1	NDSolve Adams	MaxDifferenceOrder → 12
		VariableStepCoefficients → Automatic
2	NDSolve`BaderSequenceFunction	(1)
		ImplicitSolver → NDSolve`Newton
3	NDSolve BDF	MaxDifferenceOrder → 5
		VariableStepCoefficients → Automatic
4	NDSolve`BootstrapDenseOutput	()
5	NDSolve`BulirschSequenceFunction	□
		Method → Automatic
6	NDSolve Chasing	ExtraPrecision → 0

getList["FindMinimum"]

Ħ	Option	Options to this option	
1		Method → PolakRibiere	
		RestartIterations → ∞	
		RestartThreshold $\rightarrow \frac{1}{10}$	
		10	
		$StepControl \rightarrow \left\{LineSearch, CurvatureFactor \rightarrow \frac{1}{10}\right\}$	
2	FindMinimum`FMsymbol	{}	
3	FindMinimum`InitializeMethod	{}	
	FindMinimum\InteriorPoint	CropLambda → True	
		CropMatrix → False	
		AdaptivePenalty → False	
		CompareLastMerit → False	
		Alpha $\rightarrow \frac{1}{100}$	
		$Beta \rightarrow \frac{99}{100}$	
		Theta → 1	
4		SplitFreeVariables → False	
		AugmentedMerit → True	
		$BarrierFactor \rightarrow \frac{1}{10}$	
		$StepFactor \rightarrow \frac{1}{2}$	
		Penalty $\rightarrow \frac{1}{10}$	
		LineSearch → BackTracking	
		BarrierUpdate → EveryIteration	
		StartingIteration → 1	
		FeasibilityRestoration → True	
		Scaling → True	
	FindMinimum`LevenbergMarquardt	EvaluationMonitor → Automatic	
5		Jacobian → Automatic	
		Residual → Automatic	
		StepControl → TrustRegion	
6	FindMinimum`Newton	Hessian → Automatic	
Ľ		StepControl → LineSearch	
7	FindMinimum`QuasiNewton	StepControl → LineSearch	
'		StepMemory → Automatic	

84 Making escape key add around elements

if one types in 1, 2, 3, 4 is there is a way to select these and have $\{\}$ automatically put around them to make a list $\{1,2,3,4\}$ using escape key shortcut?

Answer by Chris Degnen who wrote this

```
\label{lem:contend} FrontEndExecute [FrontEnd`AddMenuCommands["DuplicatePreviousOutput", \\ \{Delimiter, MenuItem["Make List", FrontEnd`KernelExecute[nb = SelectedNotebook[]; sel = NotebookRead[nb]; \\ NotebookWrite[nb, Cell[BoxData[RowBox[{"{", sel, "}"}]]]]], \\ MenuKey["u", Modifiers -> {"Control"}], \\ MenuEvaluator -> Automatic]\}]]
```

put it in the init file to load at start-up. See wrap-text-selection-in-brackets-in-mathematica

85 Searching for substring inside a larger string

I needed to do this when I was parsing some output. The problem is like this: given a string say "foo[] boo[] more goo[] more" and wanted to look for pattern like this "__["

In other words, a letter or more that end with "[", but needed to find the first one. Hence in the above, I wanted to find "foo".

2 ways to do this:

```
\label{eq:special} $s = "foo[] boo[] more goo[] more"; $StringCases[s, RegularExpression["^\w*\\["]] $Out[265]= \{foo[\} $ and $StringCases[s, Shortest[StartOfString~~_~"["], Overlaps -> False] $Out[266]= \{foo[\} $ $ foo[] $ fo
```

86 Dynamically change the layout of Manipulate

```
Manipulate[x,
```

```
{x, {True, False}},
Grid[{
    {Dynamic@If[x,
        Control[{y, {True, False}}],
        Control[{z, 0, 1, .1}]
    ]
    }
}
]
```

87 What are most common commands?

87.1 Mape or /@

Takes function and applies it to each element in a list

```
\begin{split} &f / @ \; \{a,\,b,\,c\} \\ &Out[267] = \{f[a],\,f[b],\,f[c]\} \\ &(1+g[\#1] \;\& \;) \; / @ \; \{a,\,b,\,c\} \\ &Out[268] = \{1+g[a],\,1+g[b],\,1+g[c]\} \\ &f / @ \; \{a,\,b,\,c\} \\ &Out[269] = \{f[a],\,f[b],\,f[c]\} \end{split}
```

87.2 Thread

Use when function needs to be called with arguments taken from more than one list, else use Map if argument come from one list

```
\begin{split} & \text{Thread}[f[\{a, b, c\}]] \\ & \text{Out}[270] = \{f[a], f[b], f[c]\} \\ & \text{f } / @ \{a, b, c\} \\ & \text{Out}[271] = \{f[a], f[b], f[c]\} \\ & \text{Thread}[f[\{a, b, c\}, \{1, 2, 3\}]] \\ & \text{Out}[272] = \{f[a, 1], f[b, 2], f[c, 3]\} \end{split}
```

87.3 MapThread

```
MapThread[f, \{\{a, b, c\}, \{1, 2, 3\}\}\}]
Out[273]= \{f[a, 1], f[b, 2], f[c, 3]\}
```

In this case gives the same answer as using Thread

```
Thread[f[{a1, a2, a3}, {b1, b2, b3}]]
Out[274]= {f[a1, b1], f[a2, b2], f[a3, b3]}
```

This is only when the lists are one level. For 2 levels we have to use MapThread. This shows the difference

```
\begin{split} & \text{MapThread}[f, \ \{\{\{a,\,b\}, \ \{c,\,d\}\}, \ \{\{1,\,2\}, \ \{3,\,4\}\}\}] \\ & \text{Out}[275] = \{f[\{a,\,b\}, \ \{1,\,2\}], \ f[\{c,\,d\}, \ \{3,\,4\}]\} \\ & \text{Thread}[f[\{\{\{a,\,b\}, \ \{c,\,d\}\}, \ \{\{1,\,2\}, \ \{3,\,4\}\}\}]] \\ & \text{Out}[276] = \{f[\{\{a,\,b\}, \ \{c,\,d\}\}], \ f[\{\{1,\,2\}, \ \{3,\,4\}\}]\} \end{split}
```

88 common signature definitions

see tutorial/PatternsOverviewthis below from tutorial/PuttingConstraintsOnPatterns
See also what-is-the-recommended-way-to-check-that-a-list-is-a-listof-numbers-in-argumen

It is common to use /; to set up patterns and transformation rules that apply only to expressions with certain properties. There is a collection of functions built into *Mathematica* for testing the properties of expressions. It is a convention that functions of this kind have names that end with the letter Q, indicating that they "ask a question".

```
IntegerQ[expr]
                                             integer
EvenQ[expr]
                                              even number
OddQ[expr]
                                              odd number
PrimeQ[expr]
                                             prime number
NumberQ[expr]
                                              explicit number of any kind
NumericQ[expr]
                                              numeric quantity
PolynomialQ[expr, {x_1, x_2, ...}]
                                             polynomial in x_1, x_2, ...
VectorQ[expr]
                                             a list representing a vector
MatrixQ[expr]
                                             a list of lists representing a matrix
VectorQ[expr, NumericQ] , MatrixQ[expr, NumericQ]
                                              vectors and matrices where all elements are numeric
VectorQ[expr, test] , MatrixQ[expr, test]
                                              vectors and matrices for which the function test yields True on
                                              every element
ArrayQ[expr, d]
                                             full array with depth matching d
```

Some functions for testing mathematical properties of expressions.

From tutorial/FindingExpressionsThatMatchAPattern

Finding Expressions That Match a Pattern

```
Cases [list, form] give the elements of list that match form

Count [list, form] give the number of elements in list that match form

Position [list, form, {1}] give the positions of elements in list that match form

Select [list, test] give the elements of list on which test gives True

Pick [list, sel, form] give the elements of list for which the corresponding elements of sel match form
```

88.1 some signatures collection

88.1.1 integer

```
\begin{aligned} & foo[(x\_)?(Element[\#1, Integers] \ \& \ )] := x \\ & foo[x\_Integer] := x \\ & foo[x\_Integer] := x \end{aligned}
```

88.1.2 integer strictly positive

```
foo[(x_)?(IntegerQ[#1] && #1 > 0 & )] := x foo[x_Integer /; x > 0] := x
```

```
foo[(x\_Integer)?Positive] := x

foo[x\_Integer /; x > 0] := x
```

88.1.3 integer strictly negative

```
\begin{aligned} & \text{foo}[(x_{-})?(\text{IntegerQ}[\#1] \&\& \ \#1 < 0 \& \ )] := x \\ & \text{foo}[x_{-}\text{Integer} \ /; \ x < 0] := x \\ & \text{foo}[(x_{-}\text{Integer})?\text{Negative}] := x \\ & \text{foo}[x_{-}\text{Integer} \ /; \ x < 0] := x \end{aligned}
```

88.1.4 integer zero or positive

```
\begin{aligned} & \text{foo}[(x_{-})?(\text{IntegerQ}[\#1] \&\& \#1 >= 0 \&)] := x \\ & \text{foo}[x_{-}] \text{Integer} /; x >= 0] := x \\ & \text{foo}[(x_{-}] \text{Integer})?(\text{NonNegative}] := x \\ & \text{foo}[x_{-}] \text{Integer} /; x >= 0] := x \end{aligned}
```

88.1.5 integer zero or negative

```
\begin{aligned} & \text{foo}[(x\_)?(\text{IntegerQ}[\#1] \&\& \#1 <= 0 \&)] := x \\ & \text{foo}[x\_\text{Integer} /; x <= 0] := x \\ & \text{foo}[(x\_\text{Integer})?\text{NonPositive}] := x \\ & \text{foo}[x \ \text{Integer} /; x <= 0] := x \end{aligned}
```

88.1.6 integer in some range

foo[x_Integer /;
$$x > 3 \&\& x < 7$$
] := x

88.1.7 Real

$$\begin{aligned} &\text{foo}[\mathbf{x}_?(\mathbf{Element}[\#,\,\mathbf{Reals}]\,\,\&)] := \mathbf{x} \\ &\text{foo}[\mathbf{x}_\mathbf{Real}] := \mathbf{x} \end{aligned}$$

88.1.8 Real strictly positive

```
 \begin{array}{l} \text{foo[x\_Real /; x > \$MachineEpsilon] := x} \\ \text{foo[x\_Real /; x > \$MachineEpsilon] := x} \\ \text{foo[x\_Real /; Positive[x]] := x} \\ \text{foo[x\_ (Element[\#, Reals] \&\& Positive[\#] \&)] := x} \\ \end{array}
```

88.1.9 Real strictly negative

```
 \begin{array}{l}  foo[x\_Real \ /; \ x < \ MachineEpsilon] := x \\  foo[x\_Real \ /; \ x < \ MachineEpsilon] := x \\  foo[x\_Real \ /; \ Negative[x]] := x \\  foo[x\_?(Element[\#, Reals] \ \&\& \ Negative[\#] \ \&)] := x \\  \end{array}
```

88.1.10 Real zero or positive

```
 \begin{array}{l}  foo[x\_Real \ /; \ x >= \MachineEpsilon] := x \\  foo[x\_Real \ /; \ x >= \MachineEpsilon] := x \\  foo[x\_Real \ /; \ Positive[x] \ || \ x == 0] := x \\  foo[x\_ \ (Element[\#, \ Reals] \ \&\& \ (Positive[\#] \ || \ \# == 0) \ \&)] := x \\  \end{array}
```

88.1.11 Real zero or negative

```
 \begin{array}{l}  foo[x\_Real \ /; \ x <= \$MachineEpsilon] := x \\  foo[x\_Real \ /; \ x <= \$MachineEpsilon] := x \\  foo[x\_Real \ /; \ Negative[x] \ || \ x == 0] := x \\  foo[x\_ \ (Element[\#, \ Reals] \ \&\& \ (Negative[\#] \ || \ \# == 0) \ \&)] := x \\  \end{array}
```

88.1.12 Real in some range

```
 \begin{array}{l} \text{foo}[x\_ \text{ (Element}[\#, \, Reals] \&\& ((\# \text{-} 3) > \$MachineEpsilon \&\& (7 \text{-} \#) > \$MachineEpsilon) \&)] := x \\ \text{foo}[x: \_Real /; (x \text{-} 3) > \$MachineEpsilon \&\& (7 \text{-} x) > \$MachineEpsilon] := x \\ \end{array}
```

88.1.13 Boolean

```
foo[x_?(Element[\#, Booleans] \&)] := x
```

88.1.14 any numerical parameter

```
\begin{aligned} &\text{foo}[x\_?(\text{Element}[\#, \, \text{Reals}] \,\,\&)] := x \\ &\text{foo}[x\_?(\text{NumericQ}[\#] \,\,\&)] := x \\ &\text{foo}[x : \_?\text{NumericQ}] := x \end{aligned}
```

88.1.15 checks for Head Real, Integer, Ratioal and Complex

$$foo[x_?(NumberQ[\#] \&)] := x$$

88.1.16 general complex number

```
\begin{aligned} &\text{foo}[x\_Complex] := x \\ &\text{foo}[x\_?(Not@FreeQ[\#, \_Complex] \&)] := x \end{aligned}
```

88.1.17 list of any dimension, ragged lists, 1D vectors, 2D, any content

```
foo[x\_List] := x
```

88.1.18 1D list (i.e. vector)

$$foo[x_{?}(VectorQ[\#] \&)] := x$$

88.1.19 Numeric 1D list

```
foo[x_{?}(VectorQ[\#, NumericQ] \&)] := x
```

88.1.20 Numeric 1D list

```
\begin{aligned} &\text{foo}[x\_?(\text{VectorQ}[\#, \text{NumericQ}] \&)] := x \\ &\text{foo}[x: \{\_?\text{NumericQ} ..\}] := x \\ &\text{foo}[x: \{\_\_?\text{NumericQ} \}] := x \\ &\text{foo}[x\_?(\text{VectorQ}[\#, \text{IntegerQ}] \&)] := x \end{aligned}
```

88.1.21 2D matix of numbers

```
\begin{aligned} &\text{foo}[x\_?(\text{MatrixQ}[\#, \, \text{NumericQ}] \,\,\&)] := x \\ &\text{foo}[x: \{\{\_?\text{NumericQ} \,\,..\}\}] := x \\ &\text{foo}[x: \{\{\_\_?\text{NumericQ} \,\,\}\}] := x \end{aligned}
```

88.1.22 2D matrix numeric but contains no complex numbers

```
foo[x\_?(MatrixQ[\#,\,NumericQ]\,\,\&\&\,\,FreeQ[\#,\,\_Complex]\,\,\&)] := x
```

88.1.23 2D matrix of strings

```
foo[x_?(MatrixQ[\#, StringQ] \&)] := x
```

89 How to check for Head of expression?

use MatchQ

```
MatchQ[1/3, _Rational]
Out[277]= True
MatchQ[3, _Integer]
Out[278]= True
Or for the above can do
IntegerQ[3]
Out[279]= True
```

90 How to make different Grids

```
Grid[{
    {Item[a, Alignment -> Center], b},
    {SpanFromAbove, c}}, Frame -> All]

Grid[{
    {Item[a, Alignment -> Center], Item[Column[{b, c}]]}}, Frame -> All]

Grid[{
    {Item[a, Alignment -> Center], Item[Column[{b, c}, Frame -> All]]}}, Frame -> All]

Grid[{
    {a, Item[b, Alignment -> Center]},
    {c, SpanFromAbove}}, Frame -> All]

Grid[{
    {Item[a, Alignment -> Center], Item[b, Alignment -> Center], c},
    {SpanFromAbove, SpanFromAbove, d},
    {SpanFromAbove, e, f}}, Frame -> All]
```


91 Common Patterns

From help

```
any single expression
                              any single expression, to be named x
                        x_{-}
                              any sequence of one or more expressions
                              sequence named x
                       x___
                     x_{-}h
                             sequence of expressions, all of whose heads are h
                              any sequence of zero or more expressions
                              sequence of zero or more expressions named x
                     x____
                    x_{--}h
                              sequence of zero or more expressions, all of whose heads
                              are h
                          f[n_]
                                    f with any argument, named n
                      f[n_, m_] f with two arguments, named n and m
                           x^n_
                                  x to any power, with the power named n
                          x_^n_ any expression to any power
                         a_ + b_
                                   a sum of two expressions
                     {a1_, a2_}
                                   a list of two expressions
                      f[n_, n_]
                                   f with two identical arguments
                           a sum of two or more terms
                x_{-} + y_{-}
               x_+ + y_-. a single term or a sum of terms
         n_Integer x_ an expression with an explicit integer multiplier
           a_{-}. + b_{-}. x_{-} a linear expression a + bx
                x_- \land n_- \quad x^n \text{ with } n \neq 0, 1
               x_- \cap n_-. x^n with n \neq 0
a_{-}. + b_{-}. x_{-} + c_{-}. x_{-} a quadratic expression with non-zero linear term
```

```
x_{\text{List}} or x:\{\_\_\} a list x_{\text{List}}; VectorQ[x] a vector containing no sublists x_{\text{List}}; VectorQ[x, NumberQ] a vector of numbers x:\{\_\_\text{List}\} or x:\{\{\_\_\}...\} a list of lists x_{\text{List}}; MatrixQ[x] a matrix containing no sublists x_{\text{List}}; MatrixQ[x, NumberQ] a matrix of numbers x:\{\{\_, \_\}...\} a list of pairs
```

91.1 string matching in list See select-and-blank

```
test = {{"String1", "a"}, {"String2", "b"}, {"String3", "a"}, {"String4", "a"}};
Cases[test, {_String, "a"}]
Out[281]= {{String1, a}, {String3, a}, {String4, a}}
Select[test, MatchQ[#1, {_String, "a"}] & ]
Out[282]= {{String1, a}, {String3, a}, {String4, a}}
```

91.2 how to find if one symbolic term starts with minus sign or not?

See given-a-symbolic-expression-how-to-find-if-starts-with-a-minus-or-not

```
Clear[x] p = (\_.)^*\_?Negative; MatchQ[-3^*x^2, p] Out[285] = True MatchQ[3^*x^2, p] Out[286] = False expr = -3^*x^2; (expr /. Thread[Variables[expr] -> 1]) < 0 Out[288] = True expr = 3^*x^2; (expr /. Thread[Variables[expr] -> 1]) < 0 Out[290] = False
```

92 Compare Manipulate to DynamicModule

See convert_manipulate_to_dynamicModule

93 Replacing dependent variables and its derivatives in an equation

Suppose we have $u''(t) + u'(t) + u(t) = 3\cos(2t)$ and we wanted to find a particula solution by replacing u in the differential equation by some guess for a particular solution. Then do

```
ode = Derivative[2][u][t] + Derivative[1][u][t] + u[t] == 3*Cos[2*t]; ode /. u -> (c1*Cos[#1] + c2*Sin[#1] & )
Out[2]= c2*Cos[t] - c1*Sin[t] == 3*Cos[2*t]
```

94 things to remember

Watch out for adding the extra third argument to trigger as show below (which is 1 now). This seems to cause a problem. Was using it in Manipulate and when I added, sometimes the trigger stops firing on its own. When I remove it, it never does stop.

```
Trigger[Dynamic[t0, \{t0 = \#\} \&], \{0, 10000, 1\}, ....]
ToString[#] & /@ a| is same as ToString /@ a
```

95 Copying outout cells to another notebook

see how-to-select-and-delete-all-output-cells

96 Mathematica equivalent command to Matlab blkdiag

To make a matrix, which contains on its diagonal matrices, Matlab uses the command blkdiag. In Mathematica use the following

```
\begin{aligned} \mathbf{a} &= \{\{1,\,2,\,3\},\,\{4,\,5,\,6\}\} \\ \mathbf{b} &= \{\{7,\,8\},\,\{9,\,10\}\} \\ \mathbf{SparseArray}[\mathbf{Band}[\{1,\,1\}] \rightarrow \{\mathbf{a},\,\mathbf{b}\}] \end{aligned}
```

97 floating points stuff

Below is from "accuracy and stability of numerical algorithms", by Highma, page 36

It is important to realize that the floating point numbers are not equally spaced. If $\beta=2$, t=3, $e_{\min}=-1$, and $e_{\max}=3$ then the nonnegative floating point numbers are

```
0, 0.25, 0.3125, 0.3750, 0.4375, 0.5, 0.625, 0.750, 0.875, 1.0, 1.25, 1.50, 1.75, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 6.0, 7.0.
```

They can be represented pictorially as follows:

98 Mathematica functions that does the same thing

```
ClearAll["Global`*"]
lst = {{a, b}, {c, d}};
MapThread[f, lst]
Out[14]= {f[a, c], f[b, d]}
Thread[f[Sequence @@ lst]]
Out[15]= {f[a, c], f[b, d]}
```

99 Complex rules to help simplifications

```
\begin{split} & \operatorname{ClearAll}[x,\,y,\,z,\,g,\,foo]; \\ & \operatorname{p1} = \operatorname{Conjugate}[x\_] * \operatorname{Conjugate}[y\_] :> \operatorname{Conjugate}[x^*y]; \\ & \operatorname{p2} = (x\_) * \operatorname{Conjugate}[x\_] :> \operatorname{Abs}[x]^2; \\ & \operatorname{p3} = \operatorname{Abs}[(x\_)^*(y\_)]^\smallfrown(n\_.) :> \operatorname{Abs}[x]^\smallfrown n^*\operatorname{Abs}[y]^\smallfrown n; \\ & \operatorname{p4} = (x\_)^*\operatorname{Conjugate}[y\_] + (y\_)^*\operatorname{Conjugate}[x\_] :> 2^*(\operatorname{Re}[x]^*\operatorname{Re}[y] + \operatorname{Im}[x]^*\operatorname{Im}[y]); \end{split}
```

```
p5 = (x_{-}) + Conjugate[x_{-}] :> 2*Re[x]; \\ allRules = \{p1, p2, p3, p4, p5\}; \\ test it \\ expr = \{\{foo = x*Conjugate[y] + y*Conjugate[x]; foo, foo //. allRules\}, \\ \{foo = x*Conjugate[y] + y*Conjugate[x] + z*Conjugate[g] + g*Conjugate[z]; foo, foo //. allRules\}, \\ \{foo = x*Conjugate[x]; foo, foo //. allRules\}, \{foo = x*y*Conjugate[x*y]; foo, foo //. allRules\}, \\ \{foo = x*y*z*Conjugate[x*y*z]; foo, foo //. allRules\}, \{foo = x + Conjugate[x]; foo, foo //. allRules\}, \\ \{foo = x*y + Conjugate[x*y], foo; foo //. allRules\}, \{foo = x*y*z + Conjugate[x*y*z]; foo, foo //. allRules\}, \\ \{foo = x*y + Conjugate[x]*Conjugate[y]; foo, foo //. allRules\}, \\ \{foo = x*y*z*g + Conjugate[x]*Conjugate[y]*Conjugate[z]*Conjugate[g]; foo, foo //. allRules\}\}; \\ Grid[expr, Frame -> All, Spacings -> \{0.5, 1\}, Alignment -> Left]
```

Out[63]=	y Conjugate[x] + x Conjugate[y]	2 (Im[x] Im[y] + Re[x] Re[y])
	<pre>z Conjugate[g] + y Conjugate[x] + x Conjugate[y] + g Conjugate[z]</pre>	2 (Im[x] Im[y] + Re[x] Re[y]) + 2 (Im[g] Im[z] + Re[g] Re[z])
	x Conjugate[x]	Abs[x] ²
	x y Conjugate[x y]	Abs[x]2 Abs[y]2
	x y z Conjugate[x y z]	Abs[x]2 Abs[y]2 Abs[z]2
	x + Conjugate[x]	2 Re [x]
	x y + Conjugate[x y]	2 Re [x y]
	x y z + Conjugate[x y z]	2 Re [x y z]
	x y + Conjugate[x] Conjugate[y]	2 Re [x y]
	g x y z + Conjugate[g] Conjugate[x] Conjugate[y] Conjugate[z]	2 Re [g x y z]

100 How to find names of named characters?

See mathematica/guide/ListingOfNamedCharacters.html

101 How to understand views for 3D Graphics?

From extract-values-for-viewmatrix-from-a-graphics3d/3538 by Yu-Sung Chang (Wolfram Research)

Instead, you can try to use 5 values that can define the matrix using <code>Dynamic</code>: <code>ViewPoint</code>, <code>ViewAngle</code>, <code>ViewVertical</code>, <code>ViewCenter</code>, and <code>ViewRange</code>.

102 On imagepadding, imageMargins etc.....

- 1. ref/ImagePadding.html
- 2. tutorial/GridsRowsAndColumns.html
- 3. ref/PlotRangePadding.html

103 How to thread functions over equations?

eq =
$$E^{(0.002/t)} + E^{(0.032/t)} == 2*E^{(0.03/t)}$$

Thread[Log[eq], Equal]
Out[26]= $Log[E^{(0.002/t)} + E^{(0.032/t)}] == Log[2*E^{(0.03/t)}]$

104 Usages of Manipulate

I wrote these for an answer here http://community.wolfram.com/groups/-/m/t/ $153862?p_p_auth=GLyok3xN$

The manipulate expression is anything between the start of Manipulate and the first ", "

Manipulate[
$$Plot[Sin[x (1 + a x)], \{x, 0, 6\}], \{a, 0, 2\}]$$

It has the form

Manipulate[expression, controlVariables, Initialization :> ()]

104.1 case 1

```
foo[] := Plot[Sin[x (1 + a x)], \{x, 0, 6\}]
Manipulate[Evaluate@foo[], \{a, 0, 2\}]
```

104.2 case 2

move foo[] in the above example to inside Manipulate, in the initialization section, add literal symbol a so Manipulate will track it

```
\label{eq:manipulate_a} \begin{split} & \text{Manipulate[a;} \\ & \text{foo[]}, \{a, 0, 2\}, \\ & \text{Initialization:} > \\ & \text{(foo[] := Plot[Sin[x (1 + a x)], \{x, 0, 6\}])} \\ & \text{]} \end{split}
```

Notice the trick above. a was added so that it appears in the Manipulate expression. Otherwise, it will not be tracked. You'll get an initial plot, but nothing will happen when moving the slider

104.3 case 3

move foo[] to global context, but have to tell Manipulate that LocalizeVariable is false

```
foo[] := Plot[Sin[x (1 + a x)], \{x, 0, 6\}];
Manipulate[a;
foo[], \{a, 0, 2\}, LocalizeVariables -> False]
```

But notice, we still need to put a somewhere in the expression for it to tracked. Not enough just to say LocalizeVariables -> False

104.4 case 4

It is not enough to use TrackedSymbols :> a, if the symbol itself do not show up in the expression. Hence this does not work

```
foo[] := Plot[Sin[x (1 + a x)], \{x, 0, 6\}];
Manipulate[foo[], \{a, 0, 2\}, LocalizeVariables -> False, TrackedSymbols :> a]
```

Notice there is no a in the expression. Manipulate will not track a even though we told it to!

104.5 case 5

Same as case 4, even if we put the function inside the Initialization section, it will still not track a . One will get an initial plot, but that is all.

```
\begin{aligned} & \text{Manipulate[foo[], \{a, 0, 2\},} \\ & \text{TrackedSymbols} :> a, \\ & \text{Initialization} :> \\ & \text{(foo[] := Plot[Sin[x (1 + a x)], \{x, 0, 6\}];)]} \end{aligned}
```

104.6 case 6

Putting the function definition of foo[] itself inside Manipulate expression, now Manipulate sees a there and will automatically track it. No need to do anything more:

```
\begin{aligned} & Manipulate[Module[\{\},\,foo[] := Plot[Sin[x\ (1+a\ x)],\,\{x,\,0,\,6\}];\\ & foo[]],\,\{a,\,0,\,2\}] \end{aligned}
```

Or simply

```
Manipulate[Plot[Sin[x (1 + a x)], \{x, 0, 6\}], \{a, 0, 2\}]
```

104.7 case 7

This is the method I use myself. Put all the functions inside the initialization section, but pass the dependent variables by argument call.

```
\label{eq:manipulate} \begin{split} & \operatorname{Manipulate[foo[a], \{a, 0, 2\},} \\ & \operatorname{Initialization} :> ( \\ & \operatorname{foo[a\_]} := \operatorname{Module[\{x\}, Plot[Sin[x \ (1+a \ x)], \{x, 0, 6\}]]} )] \end{split}
```

I like this, because it achieves both the goal of having all the slider symbols inside the Manipulate expression, hence Manipulate will track them, and at the same time, it avoid the function be in global context, and it is the modular way, since one can see which parameter each function depends on by looking at the signature of the function.

104.8 case 8

Similar to case 7, but the function itself is now in the global context. This is a fine solution as well, if this function needs to be called from somewhere else as well other than from the Manipulate. Otherwise, it is best not to have in the global context and use case 7.

```
 \begin{array}{l} {\rm foo[a\_] := Module[\{x\}, \, Plot[Sin[x \,\, (1+a\,\, x)], \, \{x, \, 0, \, 6\}]];} \\ {\rm Manipulate[foo[a], \, \{a, \, 0, \, 2\}]} \end{array}
```

105 Correct way to define function for Integrate use

Watch out when defining a function such as this:

```
f[x_{\underline{\phantom{A}}}] := Integrate[x - t, \{t, 0, x\}]
```

The problem is this:

$$In[45] := f[t]$$

Out[45] = 0

This is because the replacement of "x" by "t" changed the integrand to zero.

The correct way is to always use Module symbols for everything inside the function, like this

$$f[x_] := Module[\{t\}, Integrate[x - t, \{t, 0, x\}]]$$

Now it gives the correct answer regardless of the symbol used as argument

In[46]:= f[t]
Out[46]=
$$t^2/2$$

In[47]:= f[x]
Out[47]= $x^2/2$

106 How to find list of all distributions

Gives

```
{"ArcSinDistribution"}, {"BarabasiAlbertGraphDistribution"}, {"BenfordDistribution"}, {"BenfordDistribution"}, {"BenniolDistribution"}, {"CalactyDistribution"}, {"CalactyDistribution"}, {"CalactyDistribution"}, {"CalactyDistribution"}, {"ColactyDistribution"}, {"Distribution"}, {"Distribution"}, {"Distribution"}, {"Distribution"}, {"Distribution"}, {"Distribution"}, {"Distribution"}, {"Distribution"}, {"ExponentialDistribution"}, {"ExponentialPowerDistribution"}, {"ExponentialPowerDistribution"}, {"ExponentialPowerDistribution"}, {"ExponentialDistribution"}, {"Firehaption"}, {"Firehaption"}, {"ExponentialDistribution"}, {"Firehaption"}, {"ExponentialDistribution"}, {"ExponentialDistribution"}, {"ExponentialDistribution"}, {"Indistribution"}, {"HypergometricDistribution"}, {"HypergometricDistribution"}, {"HypergometricDistribution"}, {"HypergometricDistribution"}, {"Indistribution"}, {"Indistribution"},
```

107 How to find number of points used in Plot command?

see how-to-return-the-value-of-automatic-when-it-is-used-in-a-mathematica-function

Thanks to Bob Hanlon for this method:

```
p1 = Plot[Sin[x], {x, 0, Pi}, PlotPoints -> Automatic]
Cases[p1, Line[pts_] :> Length[pts], Infinity]
(*259*)
```

Another method due to Simon Woods

```
Trace[
Plot[Sin[t], {t, 0, 2 Pi}],
HoldPattern[PlotPoints | MaxRecursion -> _],
TraceInternal -> True] // Flatten // Union

{MaxRecursion -> 6, MaxRecursion -> Automatic, PlotPoints -> 50,
PlotPoints -> Automatic}
```

108 How to save matrix of data to file, and read it again later?

```
SetDirectory[NotebookDirectory[]];
list = {{3, 4, 5}, {4, 5, 6}};
Export["data.txt", list]
```

To read it later, say after closing and restarting Mathematica again to continue working on the data

```
\begin{split} \textbf{SetDirectory}[\textbf{NotebookDirectory}[]];\\ \textbf{list} &= \textbf{ToExpression@Import}["data.txt", "List"]}\\ & \{\{3,\,4,\,5\},\,\{4,\,5,\,6\}\} \end{split}
```

109 How to solve ODE using power series method?

For an ode, that has just ordinary point at $x = x_0$, we can find power series solution near x_0 as follows. Assume the ode is

$$u''(t) + \frac{1}{10}u(t)^3u'(t)^2 + 4u(t) = 0$$

with intitial conditions u(0) = 1, u'(0) = 1, then

```
\begin{split} & \text{findSeriesSolution}[t\_, \, \text{nTerms}\_] := \, \text{Module}[\{\text{pt} = 0, \, \text{u}, \, \text{ode}, \, \text{s0}, \, \text{s1}, \, \text{ic}, \, \text{eq}, \, \text{sol}\}, \\ & \text{ic} = \{\text{u}[0] -> 1, \, \text{u}'[0] -> 1\}; \\ & \text{ode} = \, \text{u}''[t] + 4 \, \text{u}[t] + 1/10 \, \text{u}[t] \hat{\ \ } 3 \, \text{u}'[t] \hat{\ \ } 2; \\ & \text{s0} = \, \text{Series}[\text{ode}, \, \{t, \, \text{pt}, \, \text{nTerms}\}]; \\ & \text{s0} = \, \text{s0} \, /. \, \, \text{ic}; \\ & \text{roots} = \, \text{Solve@LogicalExpand}[\text{s0} == 0]; \\ & \text{s1} = \, \text{Series}[\text{u}[t], \, \{t, \, \text{pt}, \, \text{nTerms} + 2\}]; \\ & \text{sol} = \, \text{Normal}[\text{s1}] \, /. \, \, \text{ic} \, /. \, \, \text{roots}[[1]] \\ & \text{]} \end{split}
```

and now call it with

seriesSol = findSeriesSolution[t, 6]

It returns

$$\frac{445409479t^8}{840000000} + \frac{8878343t^7}{10500000} - \frac{277427t^6}{600000} - \frac{12569t^5}{50000} + \frac{1607t^4}{2000} - \frac{29t^3}{50} - \frac{41t^2}{20} + t + 1$$

110 How to delete all input cells?

link

make sure to copy the notebook first, just in case.

```
Module[{nb},
nb = EvaluationNotebook[];
NotebookFind[EvaluationNotebook[], "Input", All, CellStyle];
NotebookDelete[nb]]
```

111 Use of ## &[]

reference

To understand what it does, these three do the same thing

```
\begin{aligned} &\text{Map}[\text{If}[\# == 1, \text{Unevaluated@Sequence}[], \#] \&, \{1, 2, 3\}]; \\ &\text{If}[\# == 1, \text{Unevaluated@Sequence}[], \#] \& /@ \{1, 2, 3\}; \\ &\text{If}[\# == 1, \text{Sequence @@ } \{\}, \#] \& /@ \{1, 2, 3\}; \\ &\text{If}[\# == 1, \#\# \&[], \#] \& /@ \{1, 2, 3\}; \end{aligned}
```

All above give $\{2,3\}$. So the effect of ## &[] is to remove the entry completely (so we do not end up with a Null or empty slot in there).

112 How to use MapThread to map function on 2 lists?

Given lists $a = \{1, 2, 3\}$, $b = \{4, 5, 6\}$ and we want to do operation from slot 1 from a with slot 1 from b, and so on. For this, we can use 'MapThread'. Suppose we want to add each corresponding slot, then

```
a = \{1, 2, 3\}
b = \{4, 5, 6\}
MapThread[(#1 + #2) &, \{a, b\}]
(* \{5, 7, 9\} *)
```

Of course, in this simple example, doing a+b will work, but this is just an example.

113 How to make shortcut to add [[and]] quickly?

 $see \, https://mathematica.stackexchange.com/questions/5212/automating-esc-esc-formatting$

114 How to run Mathematica m file as script on windows?

Thanks to Rolf Mertig reference for help on this.

Make a file foo.m such as

```
AppendTo[$Echo, "stdout"]
SetOptions[ $Output, FormatType -> OutputForm ];
Integrate[Sin[x],x]
```

Now type, from DOS window

```
"C:\Program Files\Wolfram Research\Mathematica\10.1\math.exe" < foo.m
```

This will send input and output to screen. To send output to file do

"C:\Program Files\Wolfram Research\Mathematica\10.1\math.exe" < foo.m > log.txt

You can modify the PATH on windows to add the above to environment variable so not to have to type the long command each time

115 How to run CDF in Chrome browser? This plugin is not supported issues

Type this in the chrome window

chrome://flags/#enable-npapi

and click enable to enable NPAPI. Chrome now disables NPAPI and so CDF no longer runs inside browser. After doing the above, restart the browser again. Now it should run

116 Installing Mathematica 10.1 on Linux

```
>sudo bash Mathematica 10.1.0 LINUX.sh
[sudo] password for me:
Mathematica 10.1.0 for LINUX Installer Archive
Verifying archive integrity.
Extracting installer. .....
Wolfram Mathematica 10.1 Installer
Copyright (c) 1988-2015 Wolfram Research, Inc. All rights reserved.
WARNING: Wolfram Mathematica is protected by copyright law
and international treaties. Unauthorized reproduction or
distribution may result in severe civil and criminalpenalties
and will be prosecuted to the maximum extent possible under law.
Enter the installation directory, or press ENTER to select
 /usr/local/Wolfram/Mathematica/10.1:
Now installing...
Type the directory path in which the Wolfram Mathematica script(s)
will be created, or press ENTER to select /usr/local/bin:
Installation complete.
>which Mathematica
/usr/local/bin/Mathematica
>export DISPLAY=:0
>Mathematica
```

117 How to use Mathematica to get step-by-step solution from Alpha

```
WolframAlpha["Integrate[x Sin[x],{x,0,Pi}]", {{"Input", 2},
"Content"}, PodStates -> {"Input__Step-by-step solution"}]
```

```
WolframAlpha["solve y"=-y",
IncludePods -> "DifferentialEquationSolution",
AppearanceElements -> {"Pods"},
TimeConstraint -> {20, Automatic, Automatic, Automatic},
PodStates -> {"DifferentialEquationSolution___Step-by-step solution"}]
```

or for text output

```
WolframAlpha["solve y''=-y", {{"DifferentialEquationSolution", 2}, "Plaintext"}, PodStates -> {"DifferentialEquationSolution___Step-by-step solution"}]
```

118 How to nest Map inside Map?

 $see \ http://mathematica.stackexchange.com/questions/15480/how-do-i-designate-arguments-in-a-nested-map$

From about url by Halirutan:

```
Map[Function[p2, Map[Function[p1, f[p1, p2]], list1]], list2]
```

119 TeXForm handling of derivative higher than two

How to make TeXForm handle higher derivatives better.

See http://mathematica.stackexchange.com/questions/134936/texform-handling-of-derivative-higher-than-two

From above URL by Carl Woll

```
\label{eq:decompositive} Derivative /: MakeBoxes[Derivative[n\_Integer?Positive][h\_], TraditionalForm] := SuperscriptBox[MakeBoxes[h, TraditionalForm], StringJoin@ConstantArray["\[Prime]",n] ] \\ TeXForm[y''''[t] + 2 x'''[t] - y'[t] == x[t]]
```

120 How to classify singular points for ODE?

Given an ode, such as x(1-x)y''(x) + (c-(a+b+1)x)y'(x) - aby(x) = 0 and we want to classify the singular points (finite and infinite).

We write it as y''(x) + p(x)y'(x) + q(x) = 0 and then follow standard procedures. In this example, we want to classify points $0, 1, \infty$.

This small function I wrote for a HW will do this. Pass it p(x), q(x) and list of the points to classify.

```
 \begin{array}{l} checkForSingularity[p\_, q\_, at\_List, x\_] := Module[\{p0, q0, t, r, r0\}, \\ r = First@Last@Reap@Do[ \\ If[at[[n]]] === Infinity, \\ p0 = p /. x -> (1/t); \\ p0 = (2 t - p0)/t^2; \\ q0 = (q /. x -> (1/t))/t^4; \\ r0 = checkForSingularity[p0, q0, \{0\}, t]; \\ Sow[Flatten[\{Infinity, Rest[Flatten@r0]\}]]; \\ , \\ r0 = \{at[[n]], Limit[(x - at[[n]]) \ p, x -> at[[n]]], \\ Limit[(x - at[[n]])^2 \ q, x -> at[[n]]]\}; \\ Sow@r0 \\ ] \\ , \{n, 1, Length@at\} \\ ]; \\ r \\ ] \\ \end{array}
```

To use it on the above example

Gives

```
 \begin{cases} \{\text{"point", "limit x p(x)", "limit x^2 q(x)"}\}, \\ \{0, & c, & 0\}, \\ \{1, & 1+a+b-c, & 0\}, \\ \{\setminus [\text{Infinity}], 1-a-b, & ab\} \\ \} \end{cases}
```

Since all points have finite limits, then all $0, 1, \infty$ are removable singularities.

I did not test this function too much, but it works for the HW I did:)

121 How to replace y(x) by $e^{s(x)}$ in an ode?

Given ode y''' = xy(x) we want to replace y(x) by $e^{s(x)}$ ClearAll[y,x,s]

eq = y'''[x] == x y[x]

eq = eq /. y -> Function[{x}, Exp[s[x]]]

Simplify@Thread[eq/Exp[s[x]], Equal]

```
Gives x = s'''(x) + s'(x)^3 + 3s'(x)s''(x)
```

122 How to print definitions of some internal functions?

```
Needs["GeneralUtilities`"];
PrintDefinitions@Charting`FindTicks
```

Thanks to https://mathematica.stackexchange.com/questions/132568/extract-ticks-from-plot

The above works if the function is not read protected.

See also this link

123 How to rewrite ODE so that derivative on one side and rest on another side?

```
Given y'[x]+3 \sin[x]-3-\cos[x]-2 y[x]==0 how to rewrite it to be y'[x]==3+\cos[x]-3 \sin[x]+2 y[x] i.e. put y'[x] on one side, and the rest on the other side?
```

```
ClearAll[f,x,y]
expr=y'[x]+3 Sin[x]-3-Cos[x]-2 y[x]==0;
lhs=expr/.lhs_==rhs_:>lhs;
rhs=expr/.lhs_==rhs_:>rhs;
rhs=-(lhs/.(y'[x]+any_.):>any)+rhs;
expr=y'[x]==rhs
```

This makes it easier to make it in form y'(x) = f(x, y) so analyze the ode.

124 How to convert code from Mathematica stacexchange to 2D math in notebook?

sometime code is posed at Mathematica stacexchange which is hard to read. To convert it to clear 2D math code, copy into a mathematica cell (in an opne notebook) on the computer, then do

CTRL-SHIFT-N

125 How to trace DSolve running?

```
Use this

| Block[{DSolve`print=Print},
| DSolve[{ode,ic},y[t],t]
| ]
```

126 How to put time out on integrate in DSolve?

see https://mathematica.stackexchange.com/questions/120364/why-cant-dsolve-find-a-solution-for-this-ode/120650#120650 by Michael E2.

```
ClearAll[withTimedIntegrate];
  SetAttributes[withTimedIntegrate, HoldFirst];
  withTimedIntegrate[code_, tc_] := Module[{$in},
3
     Internal`InheritedBlock[{Integrate},
5
      Unprotect[Integrate];
      i : Integrate[___] /; ! TrueQ[$in] :=
6
7
       Block[{$in = True},
        TimeConstrained[i, tc, Inactivate[i, Integrate]]
8
9
      Protect[Integrate];
10
11
      code
12
      ]
     ];
13
14
  with Timed Integrate [\{dsol\} = DSolve[ode == 0, y, x], 1]; // Absolute Timing
15
  dsol
```

127 How to post Mathematics code with Greek letters to stackexchange?

Copy the Mathematica code from the notebook, paste it into http://steampiano.net/msc/and click convert. Then copy the output and paste that into the post at stackexchange.