Theory of Elasticity

Dr. Nicholas Smith

Wichita State University, Department of Aerospace Engineering

18 November, 2021

1

upcoming schedule

- 19 Nov HW 7 Due
- 23 Nov Complex Methods
- 25 Nov Thanksgiving (No Class)
- 30 Nov Complex Methods
- 2 Dec Final Exam Review
- 3 Dec HW 8 Due, HW 7 Self-Grade Due
- 7 Dec 5:40 7:30 Final Exam

outline

- group problems
- complex variable methods
- research and courses

group problems

2

Figure 1: group 1 airy stress problem

4

group 2

Figure 2: group 2 airy stress problem

Figure 3: group 3 airy stress problem

c

complex variable methods

complex variables

 Complex variables are made up of a real portion and imaginary portion

$$z = x + iy$$

Polar form is written as

$$z = r(\cos\theta + i\sin\theta) = re^{i\theta}$$

We also define the complex conjugate, z̄

$$\bar{z} = x - iy = re^{-i\theta}$$

complex variables

 A function of complex variables will also be made up of a real and imaginary portion

$$f(z) = f(x + iy) = u(x, y) + iv(x, y)$$

We also define the complex conjugate of the complex function

$$f(\bar{z}) = u(x, y) - iv(x, y)$$

7

uses for complex variables

- In Elasticity, complex variables are advantageous in many situations
- Conformal mappings allows a solution for a simple shape to be mapped onto a more complicated shape
- With complex methods we can handle singularities, and quantify the order of a singularity

9

uses for complex variables

- Multivalued displacements (dislocations)
- Fracture mechanics
- Westergaard functions (crack analysis)

multiply connected domains

Figure 4: multiply connected domains

11

mapping

westergaard stress function

 The Westergaard stress function is convenient for many planar crack problems

$$\sigma_{x} = Re[Z(z)] - yIm[Z'(z)] - A$$

$$\sigma_{y} = Re[Z(z)] + yIm[Z'(z)] + A$$

$$\tau_{xy} = -yRe[Z'(z)]$$

13

crack example

crack example

• Consider the Westergaard stress function

$$Z(z) = \frac{Sz}{\sqrt{z^2 - a^2}} - \frac{S}{2}$$

15

research and courses

continuum mechanics

- AE 831, even years Fall
- A "bigger picture" version of 731
- Develop framework for large deformation
- Solids, fluids, and viscoelastic solids

16

continuum mechanics - research

- When carbon fiber composites are manufactured, there is always a time where both liquids and solids are present
- If the system is under any motion, the fluid influences the fibers and the fibers influence the fluid
- We can use continuum mechanics to model both together and predict where the fibers will be

micromechanics and multi-scale modeling

- AE 760AA, odd years Spring
- Analytic and computational methods for multi-scale modeling
- Particularly applicable to various forms of composites (3D printed, molded composites, etc.)

18

fracture mechanics

- AE 737 (very applied class, AE 731 not pre-req), AE 837 (theoretical and numberical fracture mechanics methods, AE 731 is a pre-req)
- Research applications: characterize interlaminar fracture toughness, fatigue of aerospace structures, etc.