Full Name: SOLUTIONS

MATHEMATICS Specialist Units 3 & 4

Test 2 – Functions and Sketching Graphs

Semester 1 2019

Section One - Calculator Free

Time allowed for this section

Working time for this section:

24 minutes

Marks available:

24 marks

Material required/recommended for this section

To be provided by the supervisor

This Question/Answer booklet Formula sheet

To be provided by the student

Standard items:

pens, pencils, pencil sharpener, eraser, correction fluid, ruler, highlighters

Special items:

Nil

Important note to students

No other items may be used in this section of the assessment. It is **your** responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the assessment room. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

1. (8 marks: 3, 3, 1, 1)

Let
$$f(x) = x^2 - 2|x| - 3$$

a. Rewrite f(x) in piecewise form.

critical pt x=0 S(x): {x2+2x-3, x <0 / x2-2x-3/, x >0

b. On the axes below, sketch the graph of $f(x) = x^2 - 2|x| - 3$.

10 2 Vymoty Vymoty Vyolid curves Vyolid curves

c. Use the sketch to explain why f(x) does not have an inverse function.

investe is not a function. Fails HLT. d. Suggest an appropriate restriction on the domain for the inverse of f(x) to be a

function.

limit the function to $x \ge 1$, $x \le -1$ or other alterdive

2. (6 marks) Sketch the graph of $f(x) = -\frac{4(x-3)(x+1)}{x^2-2x-8}$ on the axes below.

x2-7x-8 = (x-u)xx+2)

vertical asymptotics at x=-2,4

x-intercepts at x=-1,3

turning pt @ x=1

horizontal asymptotic @ y=-4

technicur as x==:00, y==:00

Curve shope and according v

3. (3 marks) Given the graph of g(x) below, sketch and label clearly y = |g(x)| on the second axes.

- 4. (7 marks: 3, 1, 3)
 - Suppose $f(x) = 9 \sqrt{x}$ and $g(x) = x^2 + 4$.
 - a. Find $f \circ g(x)$ and state its domain and range.

b. Find $g \circ f(x)$

c. Find $f \circ f(x)$ and state its domain and range.

End of Section One

This page has intentionally been left blank

You may use this space to extend or re-attempt an answer to a question or questions and should you do so then number the question(s) attempted and cross out any previous unwanted working.

Full Name: SOLUTIONS

MATHEMATICS Specialist Units 3 & 4

Test 2 – Functions and Sketching Graphs

Semester 1 2019

Section Two - Calculator Assumed

Time allowed for this section

Working time for this section: 26 minutes Marks available: 26 marks

Material required/recommended for this section

To be provided by the supervisor

This Question/Answer booklet Formula sheet

To be provided by the student

Standard items: pens, pencils, pencil sharpener, eraser, correction fluid, ruler, highlighters

Special items: drawing instruments, templates, notes on one unfolded sheet of A4 paper,

and up to three calculators satisfying the conditions set by the Curriculum

Council for this course.

Important note to candidates

No other items may be used in this section of the examination. It is **your** responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

4. (5 marks)

The graph of $y = \frac{ax+b}{cx+4}$, where a and b are coefficients and c is a constant, is shown below.

The point (2,1) lies on the graph, and the equations of its vertical and horizontal asymptotes are x=-2 and y=2.5 respectively.

Find the values of a, b and c.

$$c \times +4 = c \times (-2) + 4 = 0$$

 $c = 2.5 = c = 2.5 \times 2 = 5$
 $c = 2.5 + b = -2$
 $c = 2 \times 5 + b = -2$
 $c = 2 \times 5 + b = -2$
 $c = 2 \times 5 + b = -2$
 $c = 2 \times 5 + b = -2$

6. (9 marks: 4, 3, 2) The graph of y = f(x) is shown below.

a. On the axes below, sketch the graph of $y = \frac{1}{f(x)}$.

b. On the axes below, sketch the graph of y = f(-|x|).

c. Solve the equation |f(x) - 1| = 1.

7. (7 marks: 2, 3, 2)

The graph of the function $f(x) = -\frac{1}{2}x^2$, $0 \le x \le 2$, is shown below.

- a. Sketch the graph of $y = f^{-1}(x)$ on the axes with f(x) above.
- b. Determine the defining rule for $y = f^{-1}(x)$ and state its domain.

$$y = -\frac{1}{2}x^{2}$$

$$x = -\frac{1}{2}y^{2}$$

$$-2x = y^{2}$$

$$y = \frac{1}{2}\sqrt{-2x}$$

$$only + required$$

$$\therefore S^{-1}(x) = \sqrt{-2x} \quad D\{x: -2 \le x \le 0\}$$

c. Solve:

$$i. \quad f(x) = -\frac{3}{2}$$

ii.
$$f^{-1}(x) = 1$$

8. (5 marks)

The graph of y=g(x) is shown below. It has asymptotes at x=-3, x=2, y=-1. On the next set of axes draw the graph of $y=\frac{1}{g(x)}$, clearly showing any roots and asymptotes.

roots @ x = -3, 2asymptotes at x = -1, 4 and y = -1behavior as $x > \pm \infty$ $y > \pm \infty$

End of Section Two