MLO - BI-SPOL-14

Výroková logika: syntax a sémantika výrokových formulí, pravdivostní ohodnocení, logický důsledek, ekvivalence a jejich zjišťování. Universální systém logických spojek, disjunktivní a konjunktivní normální tvary, úplné a minimální tvary.

Obsah

1	Výr	oková logika: syntax a sémantika výrokových formulí	2
	1.1	Prvotní výrok a formule	2
	1.2	Negace	4
	1.3	Konjunkce	4
	1.4	Disjunkce	4
	1.5	Implikace	4
	1.6	Formule výrokové logiky	4
		1.6.1 Jazyk výrokové logiky	4
		1.6.2 Formule výrokové logiky	4
	1.7		2
2	Pra	vdivostní ohodnocení	2
3	Log	rický důsledek	•
J		Vztah logického důsledku a logické ekvivalence	٠
4		vivalence a jejich zjišťování	•
	4.1	Zjišťování	•
5	Uni	iversální systém logických spojek	•
6	\mathbf{Dis}^{2}	junktivní a konjunktivní normální tvary	•
	6.1		
	6.2	KNT - konjunktivní normální tvar	
	6.3	POZOR	2
	6.4	Existence DNT a KNT	4
7	Úpl	lné a minimální tvary	_
•	7.1	·	
		7.1.1 Úkázka převodu na ÚDNT	
	7.2	Ekvivalence ÚDNT a ÚKNT	
		Logický důsledek a ÚDNT/ÚKNT	

1 Výroková logika: syntax a sémantika výrokových formulí

1.1 Prvotní výrok a formule

Prvotní výrok je jednoduchá oznamovací věta, u které má smysl se ptát, zda je či není pravdivá. Prvotní výrok se označuje velkým tiskacím písmenem A, B..., kterým se říká **prvotní formule**.

1.2 Negace

(¬) - negace formule je pravdivá, právě když je formule nepravdivá.

1.3 Konjunkce

(∧) - konjunkce dvou formulí je pravdivá tehdy, když jsou obě formule pravdivé.

1.4 Disjunkce

(V) - disjunkce dvou formulí je pravdivá, právě když alespoň jedna z nich je pravdivá.

1.5 Implikace

 (\Rightarrow)

- implikace je nepravdivá tehdy, když předpoklad je pravdivý a závěr nepravdivý
- implikace je pravdivá tehdy, když neplatí předpoklad nebo platí závěr

1.6 Formule výrokové logiky

1.6.1 Jazyk výrokové logiky

- symboly pro prvotní formule A, B, ...
- logické spojky $\neg, \land, \lor, \Rightarrow, \Leftarrow$
- závorky ()

1.6.2 Formule výrokové logiky

Je definovaná:

- prvotní formule je výroková formule
- jsou-li A a B výrokové formule, pak jsou i $\neg A, (A \land B), (A \lor B), (A \Rightarrow B)$ výrokové formule
- formule je řetězec symbolů sestavený podle předchozích 2 pravidel v konečně mnoha krocích

1.7 Ekvivalence

 (\Leftrightarrow) - ekvivalence dvou formulí je pravdivá právě tehdy, když obě mají stejnou pravdivostní hodnotu

2 Pravdivostní ohodnocení

Pravdivostní ohodnocení množiny prvotních výroků je funkce v z množiny prvotních formulí do množiny $\{0,1\}$.

$$v: \{A_1, ..., A_n\} \to \{0, 1\}$$

```
Je-li v(A) = 1, řekne se, že A je pravdivý při ohodnocení v. Je-li v(A) = 0, řekne se, že A je nepravdivý při ohodnocení v.
```

3 Logický důsledek

Formule B je logickým důsledkem formule A, právě když pro každé ohodnocení v, pro které v(A) = 1, je i v(B) = 1. Píše se $A \models B$.

3.1 Vztah logického důsledku a logické ekvivalence

Pro každé dvě formule výrokové logiky A, B platí:

- $A \models B \land B \models A$ právě, když $A \Leftrightarrow B$ je tautologie
- $A \models B$ právě, když $A \Rightarrow B$ je tautologie
- $A \models B$ právě, když $A \land \neg B$ je kontradikce

4 Ekvivalence a jejich zjišťování

Formule A a B jsou **logicky ekvivaletní** právě tehdy, když pro každé ohodnocení v je v(A) = v(B). Píšeme $A \models B \land B \models A$

4.1 Zjišťování

- pomocí porovnání pravdivosti výroků
- úpravou formulí, převedením na sebe

5 Universální systém logických spojek

Množina logických spojek tvoří universální systém, právě když ke každé formuli existuje logicky ekvivaletní formule, která obsahuje pouze tyto spojky. Například:

- {¬, ∨}
- $\{\neg, \wedge\}$
- $\{\neg, \Rightarrow\}$
- NAND $\{\uparrow\} = \neg(A \land B)$
- NOR $\{\downarrow\} = \neg(A \lor B)$

6 Disjunktivní a konjunktivní normální tvary

6.1 DNT - disjunktivní normální tvar

- literál je prvotní formule nebo negace prvotní formule
- implikant je literál nebo konjunkce několika literálů
- $\bullet\,$ formule je v $\mathbf{DNT},$ jestliže je implikant nebo disjunkce několika implikantů

ukázka:

- A, $\neg B$ literál
- $A \wedge B$, $A \wedge \neg B$, $\neg B$ implikant
- A, $(A \land \neg B) \lor (A \land C)$, $A \lor \neg B$, $A \land \neg B$ DNT

6.2 KNT - konjunktivní normální tvar

- literál je prvotní formule nebo negace prvotní formule
- klausule je literál nebo disjunkce několika literálů
- formule je v KNT, jestliže je klausulí nebo konjunkce několika klausulí

ukázka:

- A, ¬B literál
- $A \lor B$, $A \lor \neg B$, $\neg B$ klausule
- A, $(A \vee \neg B) \wedge (A \vee C)$, $A \vee \neg B$, $A \wedge \neg B$ KNT

6.3 POZOR

Některé vybrané KNT jsou i DNT (a obráceně)! Například:

- A
- A∧B
- A∨B

6.4 Existence DNT a KNT

Ke každé formuli existuje formule logicky ekvivalentní, která je v DNT, a formule logicky ekvivaletní, která je v KNT. (Důkaz na slidu 11 přednáška 3 - BI-MLO)

7 Úplné a minimální tvary

- Minterm formule A je implikant, který obsahuje všechny prvotní formule vyskytující se v A
- Maxtern formule A je klausule, která obsahuje všechny prvotní formule, vyskytující se v A
- formule je v úplném disjunktivním normálním tvaru, jestliže je disjukcí mintermů.
- formule je v **úplném konjunktivním normálním tvaru**, jestliže je konjunkcí maxtermů.

7.1 Existence úplného DNT a KNT

Ke každé formuli existuje formule logicky ekvivaletní, která je v úplném DNT, a formule logicky ekvivaletní, která je v úplném KNT.

Úplný KNT i DNT libovolné formule je dán jednoznačně až na pořadí (literálů, mintermů, maxtermů). Pokud má formule n prvotních formulí, pak součet mintermů a maxtermů je 2^n .

7.1.1 Úkázka převodu na ÚDNT

(Na ÚKNT se to udělá obdobně, jediné co se liší jsou ty konjunkce a disjunkce)

• $(A \wedge B) \vee C$

- $((C \vee \neg C) \wedge (A \wedge B)) \vee C$
- $(C \land A \land B) \lor (\neg C \land A \land B) \lor C$
- $(C \land A \land B) \lor (\neg C \land A \land B) \lor (C \land (\neg A \lor A)$
- $(C \land A \land B) \lor (\neg C \land A \land B) \lor (C \land \neg A) \lor (C \land A)$
- $(C \land A \land B) \lor (\neg C \land A \land B) \lor (C \land \neg A \land (\neg B \lor B)) \lor (C \land A \land (\neg B \lor B))$
- $(C \land A \land B) \lor (\neg C \land A \land B) \lor (C \land \neg A \land \neg B) \lor (C \land \neg A \land B) \lor (C \land A \land \neg B) \lor (C \land A \land B)$

7.2 Ekvivalence ÚDNT a ÚKNT

Následující tvrzení jsou ekvivaletní:

- $A \models B \land B \models A$
- ÚDNT obsahují stejné mintermy
- ÚKNT obsahují stejné maxtermy

7.3 Logický důsledek a ÚDNT/ÚKNT

Vezmou se dvě formule A a B, které obsahují stejné prvotní formule. A_d, A_k, B_d, B_d jsou jejich ÚDNT a ÚKNT. Následující tvrzení jsou ekvivaletní

- $A \models B$
- Všechny mintermy A_d jsou obsaženy v B_d
- Všechny maxterny B_k jsou obsaženy v A_k