Computer Problem set 5.

Yassine EL MAAZOUZ

October 2018

The objective of this CPS is to explore different techniques of Monte-Carlo estimation, and to compare the efficiency of the usual naive Monte-Carlo method with the *Importance sampling* method which is based om probability change via Girsanov's theorem.

Question 3

In this question we are required to run many estimations of the probability: $\mathbb{P}(S_T \geq K) = \mathbb{E}_{\mathbb{P}}(1_{S_T \geq K})$ and to compare the errors of the estimations. The plot is the following (Figure 1):

Figure 1: Estimation errors for different values of θ

This graph in only a plot of estimations errors, and these estimations are random as well. The graph produced is only then one trajectory of estimation errors for different values of θ which should be thought of as some kind of random process in θ . Ploting many trajectories of this process produces a graph similar to the following:

Figure 2: Estimation errors for different values of θ

Theses results give us an idea on the variance of the estimators that correspond to different values of θ . And we observe that this variance is pretty high for values of that arround -2 and tends decreases when θ increasing.

Figure 3: histograms of estimations for different θ values

Question 5

In order to choose a value of θ that is optimal in the sens that the estimator of Δ_0 associated to θ is more precise we need to study the variance of that estimator and it's behaviour when θ changes.

The optimal value for θ will then be the value that minimizes that variance. We estimate the variance using the provided formula:

$$V^{\theta} = \mathbb{E}^{\mathbb{Q}^{\theta}}[(Z^{\theta})^{-2}.1_{S_T \ge K}] - \Delta_0$$

The resulting graph is the following:

Figure 4: Estimated Variance for M = 1000

Figure 5: Estimated Variance for M = 100000

This shoes that the result is stable when M changes, and when the simulation effort M increases the estimation of the variance is more precise. we also notice that

the variance of the estimator dramatically increases when θ is less that -1 which explains the results of the figures 1 and 2. And the optimal value of θ is around 1.5 because the minimum of the variance is between 1.0 and 2.0.