Groups and Group Actions

HT 2020

Jiaming (George) Yu jiaming.yu@jesus.ox.ac.uk

February 7, 2022

Contents

1	Groups	2
	1.1 The Group Axioms	2

1 Groups

1.1 The Group Axioms

Definition 1.1

Let S be a set, a <u>binary operation</u> * on S is a map from $S \times S$ to S, mapping a, b to a * b.

There are a few key properties that a binary operation can have:

Definition 1.2

Let * be a binary operation on a set S.

- * is associative if $\forall a, b, c \in S : (a * b) * c = a * (b * c)$
- * is commutative if $\forall a, b \in S : a * b = b * a$

Definition 1.3

Let * be a binary operation on a set S. We say some $e \in S$ is an identity element if $\forall a \in S : a * e = e * a = a$.

Definition 1.4

Let * be a binary operation on a set S with identity e. Let $a \in S$, then we say $b \in S$ is an <u>inverse</u> of a is a*b=b*a=e. We then write $b=a^{-1}$.

We are now ready to define a group:

Definition 1.5

A group (G,*) consists of a set G and a binary operation * on G such that

- (i) * is associative
- (ii) G has an identity under *
- (iii) for all $a \in G$, the inverse of a exists

Further, a group (G, *) is said to be <u>abelian</u> if * is commutative.