Contents

	3
	15

1

CONTENTS

Chapter 1

Real Analysis

```
(1.5)
                              \mathbf{y}(<, S) := \forall_{x,y \in S} (x < y \lor x = y \lor y < x)
                               \mathbf{y}(<, S) := \forall_{x, y, z \in S} ((x < y \land y < z) \implies x < z)
           (<,S) := OrderTrichotomy(<,S) \land OrderTransitivity(<,S)
(1.7)
                          \rho(E, S, <) := \underbrace{Order}(<, S) \land E \subset S \land \exists_{\beta \in S} \forall_{x \in E} (x \le \beta)
                           (E, S, \lessdot) := \underbrace{Order}(\lessdot, S) \land E \subset S \land \exists_{\beta \in S} \forall_{x \in E} (\beta \leq x)
                      (\beta, E, S, <) := Order(<, S) \land E \subset S \land \beta \in S \land \forall_{x \in E} (x \le \beta)
                      I(\beta, E, S, <) := Order(<, S) \land E \subset S \land \beta \in S \land \forall_{x \in E} (\beta \le x)
         \forall (\alpha, E, S, <) := UpperBound(\alpha, E, S, <) \land \forall_{\gamma} (\gamma < \alpha \implies \neg UpperBound(\gamma, E, S, <))
GLP(\alpha, E, S, <) := LowerBound(\alpha, E, S, <) \land \forall_{\beta} (\alpha < \beta \implies \neg LowerBound(\beta, E, S, <))
(1.10)
                perty(S,<) := \forall_E \Big( (\emptyset \neq E \subset S \land Bounded Above(E,S,<) \Big) \implies \exists_{\alpha \in S} \Big( LUB(\alpha,E,S,<) \Big) \Big)
GLBProperty(S,<) := \forall_E \Big( \big( \emptyset \neq E \subset S \land Bounded Below(E,S,<) \big) \implies \exists_{\alpha \in S} \big( GLB(\alpha,E,S,<) \big) \Big)
                                                                      LUBProperty(S, <) \implies GLBProperty(S, <)
   (1.1) \quad (\emptyset \neq B \subset S \land Bounded Below(B, S, <)) \implies \dots
       (1.1.1) Order(\langle S \rangle \land \exists_{\delta' \in S} (LowerBound(\delta', B, S, \langle S \rangle))
       (1.1.2) |B| = 1 \Longrightarrow \dots
           (1.1.2.1) \quad \exists_{u'}(u' \in B) \quad \blacksquare \ u := choice(\{u'|u' \in B\}) \quad \blacksquare \ B = \{u\}
           (1.1.2.2) \quad \mathbf{GLB}(u, B, S, <) \quad \blacksquare \quad \exists_{\epsilon_0 \in S} \left( \mathbf{GLB}(\epsilon_0, B, S, <) \right)
       (1.1.3) \quad |B| = 1 \implies \exists_{\epsilon_0 \in S} \left( \mathbf{GLB}(\epsilon_0, B, S, <) \right)
       (1.1.4) |B| \neq 1 \implies \dots
          (1.1.4.1) \quad \forall_E \Big( \big( \emptyset \neq E \subset S \land Bounded Above(E, S, <) \big) \implies \exists_{\alpha \in S} \big( LUB(\alpha, E, S, <) \big) \Big)
           (1.1.4.2) L := \{s \in S | LowerBound(s, B, S, <)\}
           (1.1.4.3) \quad |B| > 1 \land OrderTrichotomy(<, S) \quad \blacksquare \quad \exists_{b_1' \in B} \exists_{b_0' \in B} (b_0' < b_1')
           (1.1.4.4) \quad b_1 := choice\Big(\{b_1' \in B | \exists_{b_0' \in B}(b_0' < b_1')\}\Big) \quad \blacksquare \neg LowerBound(b_1, B, S, <)
           (1.1.4.5) b_1 \notin L \square L \subset S
           (1.1.4.6) \quad \delta := choice(\{\delta' \in S | LowerBound(\delta', B, S, <)\}) \quad \blacksquare \quad \delta \in L \quad \blacksquare \quad \emptyset \neq L
                                                                                                                                                                                                                 from: 1.1.4.5, 1.1.4.6
           (1.1.4.7) \emptyset \neq L \subset S
```

```
from: LowerBound, 1.1.4.2
wts: 1.1.4.10
           (1.1.4.8) \quad \forall_{y \in L} \left( \underbrace{LowerBound}(y_0, B, S, <) \right) \quad \blacksquare \quad \forall_{y \in L} \forall_{x \in B} (y_0 \le x)
           (1.1.4.9) \quad \forall_{x \in B} \left( x \in S \land \forall_{y \in L} (y_0 \le x) \right) \quad \blacksquare \quad \forall_{x \in B} \left( U pper Bound(x, L, S, <) \right)
           (1.1.4.10) \quad \exists_{x \in S} (UpperBound(x, L, S, <)) \quad \blacksquare \quad Bounded Above(L, S, <)
                                                                                                                                                                                                                                     from: 1.1.4.7, 1.1.4.10
           (1.1.4.11) \emptyset \neq L \subset S \land Bounded Above(L, S, <)
           (1.1.4.12) \quad \exists_{\alpha' \in S} \left( LUB(\alpha', L, S, <) \right) \quad \blacksquare \quad \alpha := choice \left( \left\{ \alpha' \in S \mid \left( LUB(\alpha', L, S, <) \right) \right\} \right)
           (1.1.4.13) \quad \forall_{x} (x \in B \implies UpperBound(x, L, S, <))
           (1.1.4.14) \quad \forall_x (\neg UpperBound(x, L, S, <) \implies x \notin B)
           (1.1.4.15) \gamma < \alpha \implies \dots
               (1.1.4.15.1) \quad \neg UpperBound(\gamma, L, S, <) \quad \boxed{\gamma \notin B}
           (1.1.4.16) \quad \gamma < \alpha \implies \gamma \notin B \quad \boxed{\hspace{-0.1cm} \mid} \quad \gamma \in B \implies \gamma \ge \alpha
                                                                                                                                                                                                                                       from: Lower Bound
           (1.1.4.17) \quad \forall_{\gamma \in B} (\alpha \leq \gamma) \quad \blacksquare \quad LowerBound(\alpha, B, S, <)
           (1.1.4.18) \alpha < \beta \implies \dots
              (1.1.4.18.1) \quad \forall_{v \in L} (y_0 \le \alpha < \beta) \quad \blacksquare \quad \forall_{v \in L} (y_0 \ne \beta)
                                                                                                                                                                                                                                             from: 1.1.4.2
               (1.1.4.18.2) \beta \notin L \square \neg LowerBound(\beta, B, S, <)
           (1.1.4.19) \quad \alpha < \beta \implies \neg LowerBound(\beta, B, S, <) \quad \blacksquare \quad \forall_{\beta \in S} \left( \alpha < \beta \implies \neg LowerBound(\beta, B, S, <) \right)
           (1.1.4.20) \quad LowerBound(\alpha, B, S, <) \land \forall_{\beta \in S} (\alpha < \beta \implies \neg LowerBound(\beta, B, S, <))
           (1.1.4.21) \quad GLB(\alpha, B, S, <) \quad \blacksquare \quad \exists_{\epsilon_1 \in S} \left( GLB(\epsilon_1, B, S, <) \right)
       (1.1.5) |B| \neq 1 \implies \exists_{\epsilon_1 \in S} (GLB(\epsilon_1, B, S, <))
       (1.1.6) \quad \left( |B| = 1 \implies \exists_{\epsilon_0 \in S} \left( GLB(\epsilon_0, B, S, <) \right) \right) \land \left( |B| \neq 1 \implies \exists_{\epsilon_1 \in S} \left( GLB(\epsilon_1, B, S, <) \right) \right)
       (1.1.7) \quad (|B| = 1 \lor |B| \ne 1) \implies \exists_{\epsilon \in S} (GLB(\epsilon, B, S, <)) \quad \blacksquare \quad \exists_{\epsilon \in S} (GLB(\epsilon, B, S, <))
   (1.2) \quad (\emptyset \neq B \subset S \land Bounded Below(B, S, <)) \implies \exists_{\varepsilon \in S} (GLB(\varepsilon, B, S, <))
   (1.3) \quad \forall_{B} \big( \big( \emptyset \neq B \subset S \land Bounded Below(B, S, <) \big) \implies \exists_{\epsilon \in S} \big( GLB(\epsilon, B, S, <) \big) \big)
   (1.4) GLBProperty(S, <)
(2) LUBProperty(S, <) \Longrightarrow GLBProperty(S, <)
```

(1.12)

(1.14) $(x + y = x + z) \implies y = z$

 $(x + y = x) \implies y = 0$

(1)
$$x + y = x = 0 + x = x + 0$$

from: AdditiveCancellati (2) y = 0

 $(x + y = 0) \implies y = -x$

x = -(-x)

(1) $0 = x + (-x) = (-x) + x \quad \blacksquare \quad 0 = (-x) + x$

(2) x = -(-x)

(1.15)

 $(x \neq 0 \land x * y = x * z) \implies y = z$

 $(x \neq 0) \implies x = 1/(1/x)$

(1.16)

0*x=0

(1) 0 * x = (0 + 0) * x = 0 * x + 0 * x 0 * x = 0 * x + 0 * x

(2) 0 * x = 0

on Domination $(x \neq 0 \land y \neq 0) \implies x * y \neq 0$

(1) $(x \neq 0 \land y \neq 0) \implies \dots$

 $(1.1) \quad (x * y = 0) \implies \dots$

 $(1.1.1) \quad \mathbb{1} = \mathbb{1} * \mathbb{1} = \left(x * (1/x)\right) * \left(y * (1/y)\right) = (x * y) * \left((1/x) * (1/y)\right) = \mathbb{0} * \left((1/x) * (1/y)\right) = \mathbb{0}$

 $(1.1.2) \quad \mathbb{1} = \mathbb{0} \land \mathbb{1} \neq \mathbb{0} \quad \blacksquare \perp$

 $(1.2) \quad (x * y = 0) \implies \bot \quad \blacksquare \quad x * y \neq 0$

(2) $(x \neq 0 \land y \neq 0) \implies x * y \neq 0$

(1) x * y + (-x) * y = (x + -x) * y = 0 * y = 0 x * y + (-x) * y = 0

 $(2) \quad (-x) * y = -(x * y)$

(3) $x * y + x * (-y) = x * (y_0 + -y) = x * 0 = 0$ x * y + x * (-y) = 0

 $(4) \quad x * (-y) = -(x * y)$

(1.17)

 $\forall_{x,y,z \in F} (y_0 < z \implies x + y < x + z) \land$ $\forall_{x,y,z \in F} (y_0 < z \implies x + y < x + z) \land$ $\forall_{x,y \in F} ((x > 0 \land y > 0) \implies x * y > 0)$

(1.18)

 $\overline{(1)} \ x > 0 \implies \dots$


```
(1.19)
                                          OrderedField(\mathbb{Q}, +, *, <)
                    K(K, F, +, *) := Field(F, +, *) \land K \subset F \land Field(K, +, *)
                                       (K, F, +, *, <) := OrderedField(F, +, *, <) \land K \subset F \land OrderedField(K, +, *, <)
          (\alpha) := \emptyset \neq \alpha \subset \mathbb{Q}
             \begin{array}{l} \textbf{II}(\alpha) := \forall_{p \in \alpha} \forall_{q \in \mathbb{Q}} (q 
     := \{ \alpha \in \mathbb{Q} | CutI(\alpha) \wedge CutII(\alpha) \wedge CutIII(\alpha) \}
                            ryI \mid (\alpha \in \mathbb{R} \land p \in \alpha \land q \in \mathbb{Q} \land q \notin \alpha) \implies p < q 
(1) \quad (\alpha \in \mathbb{R} \land p \in \alpha \land q \in \mathbb{Q} \land q \notin \alpha) \implies \dots
   (1.1) \quad \forall_{p' \in \alpha} \forall_{q' \in \mathbb{Q}} (q' < p' \implies q' \in \alpha)
    (1.2) \quad q 
    (1.3) \quad (q \notin \alpha) \implies \dots
       (1.3.1) q \ge p
        (1.3.2) \quad (q = p) \implies (p \in \alpha \land p \notin \alpha) \implies \bot \quad \blacksquare \quad q \neq p
        (1.3.3) \quad q \ge p \land q \ne p \quad \blacksquare \quad p < q
    (1.4) \quad q \notin \alpha \implies p < q \quad \blacksquare \quad p < q
(2) \quad (\alpha \in \mathbb{R} \land p \in \alpha \land q \in \mathbb{Q} \land q \notin \alpha) \implies p < q
                                          (\alpha \in \mathbb{R} \land r, s \in \mathbb{Q} \land r < s \land r \notin \alpha) \implies s \notin \alpha
(1) \quad (\alpha \in \mathbb{R} \land r, s \in \mathbb{Q} \land r < s \land r \notin \alpha) \implies \dots
   (1.1) \quad \forall_{s' \in \alpha} \forall_{r' \in \mathbb{Q}} (r' < s' \implies r' \in \alpha)
   (1.2) \quad s \in \alpha \implies (r \in \mathbb{Q} \implies (r < s \implies r \in \alpha)) \quad \blacksquare \quad s \in \alpha \implies r \in \alpha
    (1.3) \quad r \notin \alpha \implies s \notin \alpha \quad \blacksquare \quad s \notin \alpha
(2) \quad (\alpha \in \mathbb{R} \land r, s \in \mathbb{Q} \land r < s \land r \notin \alpha) \implies s \notin \alpha
<_{\mathbb{R}}(\alpha,\beta) := \alpha,\beta \in \mathbb{R} \land \alpha \subset \beta
           \overline{\text{erTrichotomyOf } R} OrderTrichotomy(\mathbb{R}, <_{\mathbb{R}})
(1) (\alpha, \beta \in \mathbb{R}) \implies \dots
   (1.1) \quad \neg(\alpha <_{\mathbb{R}} \beta \lor \alpha = \beta) \implies \dots
        (1.1.1) \alpha \not\subset \beta \land \alpha \neq \beta
        (1.1.2) \quad \exists_{p'}(p' \in \alpha \land p' \notin \beta) \quad \blacksquare \quad p := choice(\{p' | p' \in \alpha \land p' \notin \beta\})
        (1.1.3) q \in \beta \implies ...
         (1.1.3.1) \quad p, q \in \mathbb{Q}
                                                                                                                                                                                                                                                                       from: CutCorollaryI
            (1.1.3.2) q < p
             (1.1.3.3) q \in \alpha
        (1.1.4) \quad q \in \beta \implies q \in \alpha
       (1.1.5) \quad \forall_{q \in \beta} (q \in \alpha) \quad \blacksquare \quad \beta \subseteq \alpha
        (1.1.6) \quad \beta \subset \alpha \quad \blacksquare \quad \beta <_{\mathbb{R}} \quad \alpha
    (1.2) \quad \neg(\alpha <_{\mathbb{R}} \beta \lor \alpha = \beta) \implies \beta <_{\mathbb{R}} \alpha
    (1.3) \quad \neg(\alpha <_{\mathbb{R}} \beta \lor \alpha = \beta) \lor (\alpha <_{\mathbb{R}} \beta \lor \alpha = \beta) \quad \blacksquare (\beta <_{\mathbb{R}} \alpha) \lor (\alpha <_{\mathbb{R}} \beta \lor \alpha = \beta)
    (1.4) \quad \alpha = \beta \implies \neg (\alpha <_{\mathbb{R}} \beta \lor \beta <_{\mathbb{R}} \alpha)
    (1.5) \quad \alpha <_{\mathbb{R}} \beta \implies \neg (\alpha = \beta \lor \beta <_{\mathbb{R}} \alpha)
   (1.6) \quad \beta \mathrel{<_{\mathbb{R}}} \alpha \implies \neg(\alpha = \beta \lor \alpha \mathrel{<_{\mathbb{R}}} \beta)
    (1.7) \quad \alpha <_{\mathbb{R}} \beta \underline{\vee} \alpha = \beta \underline{\vee} \alpha <_{\mathbb{R}} \beta
(2) \quad (\alpha, \beta \in \mathbb{R}) \implies (\alpha <_{\mathbb{R}} \beta \veebar \alpha = \beta \veebar \alpha <_{\mathbb{R}} \beta)
```

 $(3) \quad \forall_{\alpha,\beta \in \mathbb{R}} (\alpha <_{\mathbb{R}} \beta \vee \alpha = \beta \vee \alpha <_{\mathbb{R}} \beta)$ (4) $OrderTrichotomy(\mathbb{R}, <_{\mathbb{R}})$ $OrderTransitivity(\mathbb{R}, <_{\mathbb{R}})$ $\overline{(1)} \ (\alpha, \beta, \gamma \in \mathbb{R}) \implies \dots$ $(1.1) \quad (\alpha <_{\mathbb{R}} \beta \wedge \beta <_{\mathbb{R}} \gamma) \implies \dots$ $(1.1.1) \quad \alpha \subset \beta \land \beta \subset \gamma$ $(1.1.2) \quad \forall_{a \in \alpha} (a \in \beta) \land \forall_{b \in \beta} (b \in \gamma)$ $(1.1.3) \quad \forall_{\alpha \in \alpha} (\alpha \in \gamma) \quad \blacksquare \ \alpha \subset \gamma \quad \blacksquare \ \alpha <_{\mathbb{R}} \gamma$ $(1.\overline{2}) \quad (\alpha <_{\mathbb{R}} \beta \land \beta <_{\mathbb{R}} \gamma) \implies \alpha <_{\mathbb{R}} \gamma$ $(2) \quad (\alpha, \beta, \gamma \in \mathbb{R}) \implies \left((\alpha <_{\mathbb{R}} \beta \land \beta <_{\mathbb{R}} \gamma) \implies \alpha <_{\mathbb{R}} \gamma \right)$ $(3) \quad \forall_{\alpha,\beta,\gamma\in\mathbb{R}} \left((\alpha <_{\mathbb{R}} \beta \land \beta <_{\mathbb{R}} \gamma) \implies \alpha <_{\mathbb{R}} \gamma \right)$ (4) $OrderTransitivity(\mathbb{R}, <_{\mathbb{R}})$ $Order(<_{\mathbb{R}},\mathbb{R})$ $LUBProperty(\mathbb{R}, <_{\mathbb{R}})$ $(1) \quad (\emptyset \neq A \subset \mathbb{R} \land Bounded Above(A, \mathbb{R}, <_{\mathbb{R}})) \implies \dots$ $(1.1) \quad \gamma := \{ p \in \mathbb{Q} | \exists_{\alpha \in A} (p \in \alpha) \}$ $(1.2) \quad A \neq \emptyset \quad \blacksquare \quad \exists_{\alpha} (\alpha \in A) \quad \blacksquare \quad \alpha_0 := choice(\{\alpha \mid \alpha \in A\})$ $(1.3) \quad \alpha_0 \neq \emptyset \quad \blacksquare \ \exists_a (a \in \alpha_0) \quad \blacksquare \ a_0 := choice(\{a | a \in \alpha_0\}) \quad \blacksquare \ a_0 \in \gamma \quad \blacksquare \ \gamma \neq \emptyset$ (1.4) Bounded Above $(A, \mathbb{R}, <_{\mathbb{R}})$ $\blacksquare \exists_{\beta} (Upper Bound(\beta, A, \mathbb{R}, <_{\mathbb{R}}))$ $(1.5) \quad \beta_0 := choice(\{\beta | UpperBound(\beta, A, \mathbb{R}, <_{\mathbb{R}})\})$ $(1.6) \quad \underline{UpperBound}(\beta_0, A, \mathbb{R}, <_{\mathbb{R}}) \quad \blacksquare \quad \forall_{\alpha \in A} (\alpha \leq_{\mathbb{R}} \beta_0) \quad \blacksquare \quad \forall_{\alpha \in A} (\alpha \subseteq \beta_0) \quad \blacksquare \quad \forall_{\alpha \in A} \forall_{\alpha \in A} (\alpha \in \beta_0)$ $(1.7) \quad (\alpha \in A \land a \in \alpha) \iff a \in \gamma \quad \blacksquare \quad \forall_{a \in \gamma} (a \in \beta_0) \quad \blacksquare \quad \gamma \subseteq \beta_0$ $(1.8) \quad \beta_0 \subset \mathbb{Q} \quad \blacksquare \quad \gamma \subseteq \beta_0 \subset \mathbb{Q} \quad \blacksquare \quad \gamma \subset \mathbb{Q}$ $(1.9) \quad \emptyset \neq \gamma \subset \mathbb{Q} \quad \blacksquare \quad CutI(\gamma)$ $(1.10) \quad (p \in \gamma \land q \in \mathbb{Q} \land q < p) \implies \dots$ $(1.10.1) \quad p \in \gamma \quad \blacksquare \ \exists_{\alpha \in A} (p \in \alpha) \quad \blacksquare \ \alpha_1 := choice(\{\alpha \in A | p \in \alpha\})$ $(1.10.2) \quad p \in \alpha_1 \land q \in \mathbb{Q} \land q$ $(1.11) \quad (p \in \gamma \land q \in \mathbb{Q} \land q < p) \implies q \in \gamma \quad \blacksquare \quad \forall_{p \in \gamma} \forall_{q \in \mathbb{Q}} (q < p \implies q \in \gamma) \quad \blacksquare \quad CutII(\gamma)$ $(1.12) \quad p \in \gamma \implies \dots$ $(1.12.1) \quad \exists_{\alpha \in A} (p \in \alpha) \quad \blacksquare \quad \alpha_2 := choice(\{\alpha \in A | p \in \alpha\})$ $(1.12.2) \quad \alpha_2 \in \mathbb{R} \quad \blacksquare \quad CutII(\alpha_2) \quad \blacksquare \quad \exists_{r \in \alpha_2} (p < r) \quad \blacksquare \quad r_0 := choice(\{r \in \alpha_2 | p < r\})$ (1.12.3) $r_0 \in \alpha_2 \ \blacksquare \ r_0 \in \gamma$ $(1.1\overline{2.4}) \quad p < r_0 \quad \blacksquare \quad p < r_0 \land r_0 \in \gamma \quad \blacksquare \quad \exists_{r \in \gamma} (p < r)$ $(1.13) \quad p \in \gamma \implies \exists_{r \in \gamma} (p < r) \quad \blacksquare \quad \forall_{p \in \gamma} \exists_{r \in \gamma} (p < r) \quad \blacksquare \quad CutIII(\gamma)$ $(1.14) \quad CutI(\gamma) \wedge CutII(\gamma) \wedge CutIII(\gamma) \quad \blacksquare \quad \gamma \in \mathbb{R}$ $(1.15) \quad \forall_{\alpha \in A} (\alpha \subseteq \gamma) \quad \blacksquare \quad \forall_{\alpha \in A} (\alpha \leq_{\mathbb{R}} \gamma)$ $(1.16) \quad \forall_{\alpha \in A} (\alpha \leq_{\mathbb{R}} \gamma) \land \gamma \in \mathbb{R} \quad \blacksquare \quad UpperBound(\gamma, A, \mathbb{R}, <_{\mathbb{R}})$ $(1.17) \quad \delta <_{\mathbb{R}} \gamma \implies \dots$ $(1.17.1) \quad \delta \subset \gamma \quad \blacksquare \ \exists_s (s \in \gamma \land s \notin \delta) \quad \blacksquare \ s_0 := choice(\{s \in \mathbb{Q} | s \in \gamma \land s \notin \delta\})$ $(1.17.2) \quad s_0 \in \gamma \quad \blacksquare \ \exists_{\alpha \in A} (s_0 \in \alpha) \quad \blacksquare \ \alpha_3 := choice(\{\alpha \in A | s_0 \in \alpha\})$ $(1.17.3) \quad s_0 \in \alpha_3 \land s_0 \notin \delta \quad \blacksquare \quad \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta)$ (1.17.4) $\delta \geq_{\mathbb{R}} \alpha_3 \implies \dots$ $(1.17.4.1) \quad \alpha_3 \subseteq \delta \quad \blacksquare \quad \forall_{s \in \mathbb{Q}} (s \in \alpha_3 \implies s \in \delta) \quad \blacksquare \quad \neg \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta)$ $(1.17.4.2) \quad \neg \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta) \land \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta) \quad \blacksquare \ \bot$ $(1.17.5) \quad \delta \geq_{\mathbb{R}} \alpha_3 \implies \bot \quad \blacksquare \quad \delta <_{\mathbb{R}} \alpha_3 \quad \blacksquare \quad \exists_{\alpha \in A} (\delta <_{\mathbb{R}} \alpha) \quad \blacksquare \quad \exists_{\alpha \in A} (\neg (\alpha \leq_{\mathbb{R}} \delta))$

 $(1.17.6) \quad \neg \forall_{\alpha \in A} (\alpha \leq_{\mathbb{R}} \delta) \quad \blacksquare \quad \neg UpperBound(\delta, A, \mathbb{R}, <_{\mathbb{R}})$

```
(1.18) \quad \overline{\delta} <_{\mathbb{R}} \gamma \implies \neg \overline{U} \operatorname{pperBound}(\delta, \overline{A}, \overline{\mathbb{R}}, <_{\mathbb{R}})) \quad \blacksquare \quad \forall_{\delta} \left( \overline{\delta} <_{\mathbb{R}} \gamma \implies \neg \overline{U} \operatorname{pperBound}(\delta, \overline{A}, \overline{\mathbb{R}}, <_{\mathbb{R}}) \right)
        (1.19) \quad UpperBound(\gamma, A, \mathbb{R}, <_{\mathbb{R}}) \land \forall_{\delta} \left(\delta <_{\mathbb{R}} \gamma \implies \neg UpperBound(\delta, A, \mathbb{R}, <_{\mathbb{R}})\right)
        (1.20) \quad LUB(\gamma, A, \mathbb{R}, <_{\mathbb{R}}) \quad \blacksquare \quad \exists_{\gamma \in S} \left( LUB(\gamma, A, \mathbb{R}, <_{\mathbb{R}}) \right)
(2) \quad (\emptyset \neq A \subset \mathbb{R} \land Bounded Above(A, \mathbb{R}, <_{\mathbb{R}})) \implies \exists_{\gamma \in S} (LUB(\gamma, A, \mathbb{R}, <_{\mathbb{R}}))
(3) \quad \forall_{A} \left( \left( \emptyset \neq A \subset \mathbb{R} \land Bounded Above(A, \mathbb{R}, <_{\mathbb{R}}) \right) \implies \exists_{\gamma \in S} \left( LUB(\gamma, A, \mathbb{R}, <_{\mathbb{R}}) \right) \right) \quad \blacksquare \quad LUBProperty(\mathbb{R}, <_{\mathbb{R}})
          (\alpha, \beta) := \alpha, \beta \in \mathbb{R} \land (\alpha +_{\mathbb{R}} \beta) = \{r + s | r \in \alpha \land s \in \beta\}
         \mathbf{x} := \{x \in \mathbb{Q} | x < 0\}
    0InR \mid 0_{\mathbb{R}} \in \mathbb{R}
(1) \quad -1 \in 0_{\mathbb{R}} \land 1 \notin 0_{\mathbb{R}} \quad \blacksquare \emptyset \neq 0_{\mathbb{R}} \subseteq \mathbb{Q} \quad \blacksquare \quad CutI(0_{\mathbb{R}})
(2) \quad (x \in \mathbb{O}_{\mathbb{R}} \land y \in \mathbb{Q} \land y < x) \implies y < x < 0 \implies y < 0 \implies y \in \mathbb{O}_{\mathbb{R}} \quad \blacksquare \quad \forall_{x \in \mathbb{O}_{\mathbb{R}}} \forall_{y \in \mathbb{Q}} (y_0 < x \implies y \in \mathbb{O}_{\mathbb{R}}) \quad \blacksquare \quad CutII(\mathbb{O}_{\mathbb{R}})
(3) \quad y := x/2 \quad \blacksquare \quad (x \in 0_{\mathbb{R}}) \implies (x < y < 0) \implies \exists_{y \in 0_{\mathbb{D}}} (x < y) \quad \blacksquare \quad \forall_{x \in 0_{\mathbb{D}}} \exists_{y \in 0_{\mathbb{D}}} (x < y) \quad \blacksquare \quad CutIII(0_{\mathbb{R}})
(4) CutI(0_{\mathbb{R}}) \wedge CutII(0_{\mathbb{R}}) \wedge CutIII(0_{\mathbb{R}}) \parallel 0_{\mathbb{R}} \in \mathbb{R}
                                                                                                                                (\alpha, \beta \in \mathbb{R}) \implies ((\alpha +_{\mathbb{R}} \beta) \in \mathbb{R})
(1) (\alpha, \beta \in \mathbb{R}) \implies \dots
        (1.1) \quad (\alpha +_{\mathbb{R}} \beta) = \{r + s | r \in \alpha \land s \in \beta\}
        (1.2) \quad \emptyset \neq \alpha \subset \mathbb{Q} \land \emptyset \neq \beta \subset \mathbb{Q}
        (1.3) \quad \exists_a (a \in \alpha) \; ; \; \exists_b (b \in \beta) \quad \blacksquare \; a_0 \mathrel{\mathop:}= choice(\{a \mid a \in \alpha\}) \; ; \; b_0 \mathrel{\mathop:}= choice(\{b \mid b \in \beta\}) \quad \blacksquare \; a_0 + b_0 \in \alpha +_{\mathbb{R}} \beta = a_0 + b_0 = a_0 +_{\mathbb{R}} \beta = 
        (1.4) \quad \exists_{x}(x \notin \alpha) \; ; \; \exists_{y}(y_{0} \notin \beta) \quad \blacksquare \; x_{0} \mathrel{\mathop:}= choice(\{x \mid x \notin \alpha\}) \; ; \; y_{0} \mathrel{\mathop:}= choice(\{y \mid y \notin \beta\})
        (1.5) \quad \forall_{r \in \alpha}(r < x_0) \; ; \; \forall_{s \in \beta}(s < y_0) \quad \blacksquare \quad \forall_{r \in \alpha} \forall_{s \in \beta}(r + s < x_0 + y_0) \quad \blacksquare \quad x_0 + y_0 \notin \alpha +_{\mathbb{R}} \beta
         (1.6) \quad \emptyset \neq \alpha +_{\mathbb{R}} \beta \subset \mathbb{Q} \quad \blacksquare \quad CutI(\alpha +_{\mathbb{R}} \beta)
         (1.7) \quad (p \in \alpha +_{\mathbb{R}} \beta \wedge q \in \mathbb{Q} \wedge q < p) \implies \dots
               (1.7.1) \quad \exists_{r \in \alpha} \exists_{s \in \beta} (p = r + s) \quad \blacksquare (r_0, s_0) := choice((r, s) \in \alpha \times \beta | p = r + s)
               (1.7.2) \quad q 
                (1.7.3) \quad s_0 \in \beta \quad \blacksquare \quad q = (q - s_0) + s_0 \in \alpha +_{\mathbb{R}} \beta \quad \blacksquare \quad q \in \alpha +_{\mathbb{R}} \beta
         (1.8) \quad (p \in \alpha +_{\mathbb{R}} \beta \land q \in \mathbb{Q} \land q < p) \implies q \in \alpha +_{\mathbb{R}} \beta \quad \blacksquare \quad \forall_{p \in \alpha +_{\mathbb{R}} \beta} \forall_{q \in \mathbb{Q}} (q < p \implies q \in \alpha +_{\mathbb{R}} \beta) \quad \blacksquare \quad CutII(\alpha +_{\mathbb{R}} \beta)
        (1.9) p \in \alpha \implies ...
               (1.9.1) \quad \exists_{r \in \alpha} \exists_{s \in \beta} (p = r + s) \quad \blacksquare (r_1, s_1) := choice(\{(r, s) \in \alpha \times \beta | p = r + s\})
               (1.9.2) \quad r_1 \in \alpha \quad \blacksquare \quad \exists_{t \in \alpha} (r_1 < t) \quad \blacksquare \quad t_0 := choice(\{t \in \alpha | r_1 < t\})
                (1.9.3) \quad \overline{s_1 \in \beta} \quad \blacksquare \quad t + s_1 \in \overline{\alpha} +_{\mathbb{R}} \beta \land p = r_1 + \overline{s_1} < t + s_1 \quad \blacksquare \quad \exists_{r \in \alpha +_{\mathbb{R}} \beta} (p < r)
         (1.10) \quad p \in \alpha \implies \exists_{r \in \alpha +_{\mathbb{R}} \beta} (p < r) \quad \blacksquare \quad \forall_{p \in \alpha +_{\mathbb{R}} \beta} \exists_{r \in \alpha +_{\mathbb{R}} \beta} (p < r) \quad \blacksquare \quad CutIII(\alpha +_{\mathbb{R}} \beta)
         (1.11) \quad CutI(\alpha +_{\mathbb{R}} \beta) \wedge CutII(\alpha +_{\mathbb{R}} \beta) \wedge CutIII(\alpha +_{\mathbb{R}} \beta) \quad \blacksquare \quad \alpha +_{\mathbb{R}} \beta \in \mathbb{R}
 (2) \quad (\alpha, \beta \in \mathbb{R}) \implies ((\alpha +_{\mathbb{R}} \beta) \in \mathbb{R})
```

Field Addition Commutativity Of R $(\alpha, \beta \in \mathbb{R}) \implies (\alpha +_{\mathbb{R}} \beta = \beta +_{\mathbb{R}} \alpha)$

(1) $\alpha +_{\mathbb{R}} \beta = \{r + s | r \in \alpha \land s \in \beta\} = \{s + r | s \in \beta \land r \in \alpha\} = \beta +_{\mathbb{R}} \alpha$

- (1) $(\alpha, \beta, \gamma \in \mathbb{R}) \implies \dots$
 - $(1.1) \quad (\alpha +_{\mathbb{R}} \beta) +_{\mathbb{R}} \gamma = \{(a+b) + c \mid a \in \alpha \land b \in \beta \land c \in \gamma\} = \dots$
 - $(1.2) \quad \{a + (b+c) | a \in \alpha \land b \in \beta \land c \in \gamma\} = \alpha +_{\mathbb{R}} (\beta +_{\mathbb{R}} \gamma)$
- $(2) \quad (\alpha, \beta, \gamma \in \mathbb{R}) \implies (\alpha +_{\mathbb{R}} \beta) +_{\mathbb{R}} \gamma = \alpha +_{\mathbb{R}} (\beta +_{\mathbb{R}} \gamma)$

Field Addition I dentity $Of R \mid (\alpha \in \mathbb{R}) \implies 0_{\mathbb{R}} +_{\mathbb{R}} \alpha = \alpha$

```
\overline{(1) \quad \alpha \in \mathbb{R} \implies \dots}
    (1.1) (r \in \alpha \land s \in 0_{\mathbb{R}}) \implies \dots
        (1.1.1) \quad s < 0 \quad \blacksquare \quad r + s < r + 0 = r \quad \blacksquare \quad r + s < r \quad \blacksquare \quad r + s \in \alpha
    (1.2) \quad (r \in \alpha \land s \in 0_{\mathbb{R}}) \implies r + s \in \alpha \quad \blacksquare \quad \forall_{r \in \alpha} \forall_{s \in 0_{\mathbb{D}}} (r + s \in \alpha)
    (1.3) \quad (r \in \alpha \land \overline{s} \in 0_{\mathbb{R}}) \iff (r + s \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}}) \quad \blacksquare \quad \forall_{p \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}}} (p \in \alpha) \quad \boxed{\blacksquare} \quad \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \subseteq \alpha
    (1.4) p \in \alpha \implies \dots
        (1.4.1) \quad \exists_{r \in \alpha} (p < r) \quad \blacksquare \quad r_2 := choice(\{r \in \alpha | p < r\})
        (1.4.2) \quad p < r_2 \quad \blacksquare \quad p - r_2 < r_2 - r_2 = 0 \quad \blacksquare \quad (p - r_2) < 0 \quad \blacksquare \quad (p - r_2) \in 0_{\mathbb{R}}
        (1.4.3) \quad r_2 \in \alpha \quad \blacksquare \quad p = r_2 + (p - r_2) \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \quad \blacksquare \quad p \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}}
     (1.5) \quad p \in \alpha \implies p \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \quad \blacksquare \quad \forall_{p \in \alpha} (p \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}}) \quad \blacksquare \quad \alpha \subseteq \alpha +_{\mathbb{R}} 0_{\mathbb{R}}
    (1.6) \quad \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \subseteq \alpha \wedge \alpha \subseteq \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \quad \blacksquare \quad 0_{\mathbb{R}} +_{\mathbb{R}} \alpha = \alpha
(2) \quad \alpha \in \mathbb{R} \implies 0_{\mathbb{R}} +_{\mathbb{R}} \alpha = \alpha
                                                                        (\alpha \in \mathbb{R}) \implies \exists_{-\alpha \in \mathbb{R}} (\alpha +_{\mathbb{R}} (-\alpha) = 0_{\mathbb{R}})
(1) \alpha \in \mathbb{R} \implies \dots
    (1.1) \quad \beta := \{ p \in \mathbb{Q} | \exists_{r > 0} (-p - r \notin \alpha) \}
    (1.2) \quad \alpha \subset \mathbb{Q} \quad \blacksquare \quad \exists_{s \in \mathbb{Q}} (s \notin \alpha) \quad \blacksquare \quad s_0 := choice(\{s \mid s \notin \alpha\}) \quad \blacksquare \quad p_0 := -s_0 - 1
    (1.3) \quad -p_0 \overline{-1} = -(-s_0 - 1) - 1 = s_0 \not \in \alpha \quad \blacksquare \quad -p_0 - 1 \not \in \alpha \quad \blacksquare \quad \exists_{r > 0} (-p_0 - r \not \in \alpha) \quad \blacksquare \quad p_0 \in \beta
    (1.4) \quad \emptyset \neq \alpha \quad \blacksquare \quad \exists_{q \in \alpha} \quad \blacksquare \quad q_0 := choice(\{q \in \mathbb{Q} | q \in \alpha\})
    (1.5) r > 0 \Longrightarrow \dots
        (1.5.1) \quad q_0 \in \alpha \quad \blacksquare \quad -(-q_0) - r = q_0 - r < q_0 \quad \blacksquare \quad -(-q_0) - r < q_0 \quad \blacksquare \quad -(-q_0) - r \in \alpha
    (1.6) \quad \forall_{r>0} \left( -(-q_0) - r \in \alpha \right) \quad \blacksquare \quad \neg \exists_{r>0} \left( -(-q_0) - r \notin \alpha \right) \quad \blacksquare \quad -q_0 \notin \beta
    (1.7) \quad \emptyset \neq \beta \subset \mathbb{Q} \quad \blacksquare \quad CutI(\beta)
     (1.8) \quad (p \in \beta \land q \in \mathbb{Q} \land q < p) \implies \dots
        (1.8.1) \quad p \in \beta \quad \blacksquare \quad \exists_{r>0} (-p-r \notin \alpha) \quad \blacksquare \quad r_0 := choice(\{r>0|-p-r \notin \alpha\})
         (1.8.2) \quad q 
         (1.8.3) \quad -q - r \notin \alpha \quad \blacksquare \quad q \in \beta
     (1.9) \quad (p \in \beta \land q \in \mathbb{Q} \land q < p) \implies q \in \beta \quad \blacksquare \quad \forall_{p \in \beta} \forall_{q \in \mathbb{Q}} (q < p \implies q \in \beta) \quad \blacksquare \quad CutII(\beta)
     (1.10) p \in \beta \implies \dots
         (1.10.1) \quad p \in \beta \quad \blacksquare \quad \exists_{r>0} (-p-r \notin \alpha) \quad \blacksquare \quad r_1 := choice(\{r>0|-p-r \notin \alpha\})
         (1.10.2) \quad t_0 := p + (r_1/2)
         (1.10.3) r_1 > 0   r_1/2 > 0
         (1.10.4) \quad t_0 > t_0 - (r_1/2) = p \quad \blacksquare \quad t_0 > p
         (1.10.5) \quad -t_0 - (r_1/2) = -(p + (r_1/2)) - (r_1/2) = -p - r_1
         (1.10.6) \quad -p - r_1 \notin \alpha \quad \blacksquare \quad -t_0 - (r_1/2) \notin \alpha \quad \blacksquare \quad \exists_{r>0} (-t_0 - r \notin \alpha) \quad \blacksquare \quad t_0 \in \beta
         (1.10.7) \quad t_0 > p \land t_0 \in \beta \quad \blacksquare \quad \exists_{t \in \beta} (p < t)
     (1.11) \quad p \in \beta \implies \exists_{t \in \beta} (p < t) \quad \blacksquare \quad \forall_{p \in \beta} \exists_{t \in \beta} (p < t) \quad \blacksquare \quad CutIII(\beta)
     (1.12) \quad CutI(\beta) \wedge CutII(\beta) \wedge CutIII(\beta) \quad \blacksquare \quad \beta \in \mathbb{R}
     (1.13) \quad (r \in \alpha \land s \in \beta) \implies \dots
         (1.13.1) \quad s \in \beta \quad \blacksquare \ \exists_{t>0} (-s-t \notin \alpha) \quad \blacksquare \ t_1 := choice(\{t>0|-s-t \notin \alpha\}) \quad \blacksquare \ -s-t_1 < -s
         (1.13.2) \quad \alpha \in \mathbb{R} \land s, t_1 \in \mathbb{Q} \land -s - t_1 < -s \land -s - t_1 \notin \alpha \quad \blacksquare \quad -s \notin \alpha
         (1.13.3) \quad \alpha \in \mathbb{R} \land r \in \alpha \land -s \notin \alpha \quad \blacksquare \quad r < -s \quad \blacksquare \quad r + s < 0 \quad \blacksquare \quad r + s \in 0_{\mathbb{R}}
     (1.14) \quad (r \in \alpha \land s \in \beta) \implies r + s \in 0_{\mathbb{R}} \quad \blacksquare \quad \forall_{(r,s) \in \alpha \times \beta} (r + s \in 0_{\mathbb{R}}) \quad \blacksquare \quad \alpha +_{\mathbb{R}} \quad \beta \subseteq 0_{\mathbb{R}}
     (1.15) \quad v \in 0_{\mathbb{R}} \implies \dots
         (1.15.1) v < 0 \quad w_0 := -v/2 \quad w > 0
                                                                                                                                                                                                                                               from: ARCHIMEDEANPROPERTYOFQ + LUB??
         (1.15.2) \quad \exists_{n \in \mathbb{Z}} (nw_0 \in \alpha \land (n+1)w_0 \notin \alpha) \quad \blacksquare \quad n_0 := choice(\{n \in \mathbb{Z} | nw_0 \in \alpha \land (n+1)w_0 \notin \alpha\})
         (1.15.3) \quad p_0 := -(n_0 + 2)w_0 \quad \blacksquare \quad -p_0 - w_0 = (n_0 + 2)w_0 - w_0 = (n_0 + 1)w_0 \notin \alpha \quad \blacksquare \quad -p_0 - w_0 \notin \alpha \quad \blacksquare \quad p_0 \in \beta
         (1.15.4) \quad n_0 w_0 \in \alpha \land p_0 \in \beta \quad \blacksquare \quad n_0 w_0 + p_0 = n_0 (-v/2) + -(n_0 + 2) - v/2 = v \in \alpha +_{\mathbb{R}} \beta
```

```
(1.16) \quad v \in \mathbb{O}_{\mathbb{R}} \implies v \in \alpha +_{\mathbb{R}} \beta \quad \blacksquare \quad \forall_{v \in \mathbb{O}_{\mathbb{R}}} (v \in \alpha +_{\mathbb{R}} \beta) \quad \blacksquare \quad \mathbb{O}_{\mathbb{R}} \subseteq \alpha +_{\mathbb{R}} \beta
    (1.17) \quad \alpha +_{\mathbb{R}} \beta \subseteq 0_{\mathbb{R}} \wedge 0_{\mathbb{R}} \subseteq \alpha +_{\mathbb{R}} \beta \quad \blacksquare \quad \alpha +_{\mathbb{R}} \beta = 0_{\mathbb{R}}
    (1.18) \quad \beta \in \mathbb{R} \land \alpha +_{\mathbb{R}} \beta = 0_{\mathbb{R}} \quad \blacksquare \quad \exists_{-\alpha \in \mathbb{R}} (\alpha +_{\mathbb{R}} (-\alpha) = 0_{\mathbb{R}})
(2) \quad \alpha \in \mathbb{R} \implies \exists_{-\alpha \in \mathbb{R}} \left( \alpha +_{\mathbb{R}} (-\alpha) = 0_{\mathbb{R}} \right)
     (\alpha, \beta) :=
                \begin{bmatrix} ot0 & 0_{\mathbb{R}} \neq 1_{\mathbb{R}} \end{bmatrix}
                     1_{\mathbb{R}} \in \mathbb{R}
                                                                                           (\alpha, \beta \in \mathbb{R}) \implies ((\alpha *_{\mathbb{R}} \beta) \in \mathbb{R})
                                                                                                          (\alpha, \beta \in \mathbb{R}) \implies (\alpha *_{\mathbb{R}} \beta = \beta *_{\mathbb{R}} \alpha)
                                                                                                        (\alpha, \beta, \gamma \in \mathbb{R}) \implies \left( (\alpha *_{\mathbb{R}} \beta) *_{\mathbb{R}} \gamma = \alpha *_{\mathbb{R}} (\beta *_{\mathbb{R}} \gamma) \right)
                                                                                             (\alpha \in \mathbb{R}) \implies 1_{\mathbb{R}} *_{\mathbb{R}} \alpha = \alpha
                                                                                           (\alpha \in \mathbb{R}) \implies \exists_{1/\alpha \in \mathbb{R}} (\alpha *_{\mathbb{R}} (1/\alpha) = 1_{\mathbb{R}})
                                                                          (\alpha,\beta,\gamma\in\mathbb{R})\implies\gamma\ast_{\mathbb{R}}(\alpha+_{\mathbb{R}}\beta)=\gamma\ast_{\mathbb{R}}\alpha+\gamma\ast_{\mathbb{R}}\beta
                                         Field(\mathbb{R}, +_{\mathbb{R}}, *_{\mathbb{R}})
                                                           OrderedField(\mathbb{R}, +_{\mathbb{R}}, *_{\mathbb{R}}, <_{\mathbb{R}})
|OfR| Ordered Subfield (\mathbb{Q}_{\mathbb{R}},\mathbb{R},+_{\mathbb{R}},*_{\mathbb{R}},<_{\mathbb{R}})
                                              \exists_{\mathbb{R}} (LUBProperty(\mathbb{R}, <_{\mathbb{R}}) \land OrderedSubfield(\mathbb{Q}, \mathbb{R}, +_{\mathbb{R}}, *_{\mathbb{R}}, <_{\mathbb{R}}))
                                                OrderedField(\mathbb{R}, +_{\mathbb{R}}, *_{\mathbb{R}}, <_{\mathbb{R}})
(1.20)
                                                                           \forall_{x,y \in \mathbb{R}} (x > 0 \implies \exists_{n \in \mathbb{N}^+} (nx > y))
(1) (x, y \in \mathbb{R} \land x > 0) \Longrightarrow \dots
    (1.1) \quad A := \{ nx | n \in \mathbb{N}^+ \} \quad \blacksquare \emptyset \neq A \subset \mathbb{R}
    (1.2) \quad \neg \exists_{n \in \mathbb{N}^+} (nx > y) \implies \dots
         (1.2.1) \quad \neg \exists_{n \in \mathbb{N}^+} (nx > y) \quad \blacksquare \quad \forall_{n \in \mathbb{N}^+} (nx \le y)
         (1.2.2) UpperBound(y_0, A, \mathbb{R}, <) \mid Bounded Above(A, \mathbb{R}, <)
         (1.2.3) \quad LUBProperty(\mathbb{R},<) \land \emptyset \neq A \subset \mathbb{R} \land Bounded Above(A,\mathbb{R},<) \quad \blacksquare \ \exists_{\alpha \in \mathbb{R}} (LUB(\alpha,A,\mathbb{R},<))
         (1.2.4) \quad \alpha_0 := choice(\{\alpha \in \mathbb{R} | LUB(\alpha, A, \mathbb{R}, <)\})
         (1.2.6) \quad LUB(\alpha_0, A, \mathbb{R}, <) \land \alpha_0 - x < \alpha_0 \quad \blacksquare \quad \neg UpperBound(\alpha_0 - x, A, \mathbb{R}, <)
         (1.2.7) \quad \exists_{c \in A} (\alpha_0 - x < c) \quad \blacksquare \ c_0 := choice(\{c \in A | \alpha_0 - x < c\})
         (1.2.8) \quad c_0 \in A \quad \blacksquare \ \exists_{m \in \mathbb{N}^+} (mx = c_0) \quad \blacksquare \ m_0 \ := \underline{choice} (\{m \in \mathbb{N}^+ | \underline{m}\underline{x} = c_0\})
         (1.2.9) \quad \alpha_0 - x < c_0 = m_0 x \quad \blacksquare \quad \alpha_0 - x < m_0 x \quad \blacksquare \quad \alpha_0 < (m_0 + 1)x
         (1.2.10) \quad m_0 + 1 \in \mathbb{N}^+ \quad \blacksquare \quad (m_0 + 1)x \in A
         (1.2.11) \quad \alpha_0 < (m_0 + 1)x \land (m_0 + 1)x \in A \quad \blacksquare \ \exists_{c \in A} (\overline{\alpha_0 < c})
         (1.2.12) \quad LUB(\alpha_0, A, \mathbb{R}, <) \quad \blacksquare \quad UpperBound(\alpha_0, A, \mathbb{R}, <) \quad \blacksquare \quad \forall_{c \in A} (c \leq \alpha_0) \quad \blacksquare \quad \neg \exists_{c \in A} (\alpha_0 < c)
         (1.2.13) \quad \exists_{c \in A} (\alpha_0 < c) \land \neg \exists_{c \in A} (\alpha_0 < c) \quad \blacksquare \perp
    (1.3) \quad \neg \exists_{n \in \mathbb{N}^+} (nx > y) \implies \bot \quad \blacksquare \quad \exists_{n \in \mathbb{N}^+} (nx > y)
(2) \quad (x, y \in \mathbb{R} \land x > 0) \implies \exists_{n \in \mathbb{N}^+} (nx > y) \quad \blacksquare \quad \forall_{x, y \in \mathbb{R}} \left( x > 0 \implies \exists_{n \in \mathbb{N}^+} (nx > y) \right)
                    einr \forall_{x,y \in \mathbb{R}} \left( x < y \implies \exists_{p \in \mathbb{Q}} (x < p < y) \right)
```

```
(1) \quad (x, y \in \mathbb{R} \land x < y) \implies \dots
```

$$(1.1) \quad x < y \quad \blacksquare \quad y - x > 0 \quad \blacksquare \quad \exists_{n \in \mathbb{N}^+} (n(y_0 - x) > 1) \quad \blacksquare \quad n_0 := choice(\{n \in \mathbb{N}^+ | n(y_0 - x) > 1\}) \quad \blacksquare \quad n_0(y_0 - x) > 1$$

$$(1.2) \quad 1 > 0 \quad \blacksquare \ \exists_{m \in \mathbb{N}^+}(m(1) > n_0 x) \quad \blacksquare \ m_1 := choice(\{m \in \mathbb{N}^+ | m(1) > n_0 x\}) \quad \blacksquare \ m_1 > n_0 x$$

$$(1.3) \quad 1 > 0 \quad \blacksquare \ \exists_{m \in \mathbb{N}^+} (m(1) > -n_0 x) \quad \blacksquare \ m_2 \ := \ choice(\{m \in \mathbb{N}^+ | m(1) > -n_0 x\}) \quad \blacksquare \ m_2 > -n_0 x \quad \blacksquare \ -m_2 < n_0 x > -n_0 x$$

$$(1.4) \quad -m_2 < n_0 x < m_1$$

$$(1.5) \quad m_1, m_2 \in \mathbb{N}^+ \quad || |m_1 - (-m_2)| \ge 2$$

$$(1.6) \quad -m_2 < n_0 x < m_1 \wedge |m_1 - (-m_2)| \geq 2 \quad \blacksquare \quad \exists_{m \in \mathbb{Z}} (-m_2 < m < m_1 \wedge m - 1 \leq n_0 x < m)$$

$$(1.7) \quad m_0 := choice(\{m \in \mathbb{Z} \mid -m_2 < m < m_1 \land m - 1 \le n_0 x < m\}) \quad \blacksquare \quad -m_2 < m_0 < m_1 \land m_0 - 1 \le n_0 x < m_0 < m_1 \land m_0 < m_0 < m_1 \land m_0 < m_1 \land m_0 < m_1 \land m_0 < m_1 \land m_0 < m_0 < m_1 \land m_0 < m_1 \land m_0 < m_0$$

$$(1.8) \quad (n_0(y_0 - x) > 1) \land (m_0 - 1 \le n_0 x < m_0) \quad \blacksquare \quad n_0 x < m_0 \le 1 + n_0 x < n_0 y \quad \blacksquare \quad n_0 x < m_0 < n_0 y$$

$$(1.9) \quad n_0 \in \mathbb{N}^+ \quad \blacksquare \quad n_0 > 0 \quad \blacksquare \quad x < m_0/n_0 < y$$

$$(1.10)$$
 $m_0, n_0 \in \mathbb{Z} \mid m_0/n_0 \in \mathbb{Q}$

$$(1.11) \quad m_0/n_0 \in \mathbb{Q} \land x < m_0/n_0 < y \quad \blacksquare \ \exists_{p \in \mathbb{Q}} (x < p < y)$$

$$(2) \quad (x, y \in \mathbb{R} \land x < y) \implies \exists_{p \in \mathbb{Q}} (x < p < y) \quad \blacksquare \quad \forall_{x, y \in \mathbb{R}} \exists_{p \in \mathbb{Q}} (x < p < y)$$

(1.21)

Root Existence InR Lemma
$$(0 < a < b) \implies b^n - a^n \le (b - a)nb^{n-1}$$

$$(1) \quad (0 < a < b) \implies \dots$$

$$(1.1) \quad b^n - a^n = (b - a) \sum_{i=1}^n (b^{n-i} a^{i-1})$$

$$(1.2) \quad 0 < a < b \quad b/a > 1$$

$$(1.3) \quad \sum_{i=1}^{n} (b^{n-i}a^{i-1}) \le \sum_{i=1}^{n} (b^{n-i}a^{i-1}(b/a)^{i-1}) \le \sum_{i=1}^{n} (b^{n-1}) = nb^{n-1}$$

$$(1.4) \quad b^n - a^n = (b - a) \sum_{i=1}^n (b^{n-i}a^{i-1}) \le (b - a)nb^{n-1} \quad \blacksquare \quad b^n - a^n \le (b - a)nb^{n-1}$$

(2)
$$(0 < a < b) \implies b^n - a^n \le (b - a)nb^{n-1}$$

$\boxed{ Root Existence InR } \quad \forall_{0 < x \in \mathbb{R}} \forall_{0 < n \in \mathbb{Z}} \exists !_{0 < y \in \mathbb{R}} (y_0^n = x)$

$$\overline{(1) \ (0 < x \in \mathbb{R} \land 0 < n \in \mathbb{Z}) \implies \dots}$$

$$(1.1) \quad E := \{ t \in \mathbb{R} | t > 0 \land t^n < x \}$$

$$(1.2) \quad t_0 := x/(1+x)$$

(1.3)
$$1 + x > x > 0 \quad \blacksquare \quad t_0 = x/(1+x) > 0 \quad \blacksquare \quad t_0 > 0$$

$$(1.4) \quad 1 = (1+x)/(1+x) > x/(1+x) = t_0 \quad \blacksquare \quad 1 > t_0$$

$$(1.5) \quad 0 < t_0 < 1 \quad \blacksquare \quad t_0^n \le t_0$$

(1.6)
$$x < 0 \quad \blacksquare \quad 1 + x > 1 \quad \blacksquare \quad x > x/(1+x) = t_0 \quad \blacksquare \quad x > t_0$$

$$(1.7) \quad t_0^n \le t_0 < x \quad \blacksquare \quad t_0^n < x$$

$$(1.8) t_0 > 0 \wedge t_0^n < x | \mathbf{I} t_0 \in E | \mathbf{I} \emptyset \neq E$$

$$(1.9) \quad t_1 := choice(\{t \in \mathbb{R} | t > 1 + x\}) \quad \blacksquare t_1 > 1 + x$$

$$(1.10) \quad t_1 > 1 + x \quad \blacksquare \ t_1^n \ge t_1 > 1 + x > x \quad \blacksquare \ t_1^n > x \quad \blacksquare \ \neg (t_1^n < x) \quad \blacksquare \ t_1 \notin E \quad \blacksquare \ E \subset \mathbb{R}$$

$$(1.11) \quad \emptyset \neq E \land E \subset \mathbb{R} \quad \blacksquare \quad \emptyset \neq E \subset \mathbb{R}$$

$$(1.12)$$
 $t \in E \implies ...$

$$(1.12.1) \quad t^n < x \wedge t_1^n > x \quad \blacksquare \quad t^n < x < t_1^n \quad \blacksquare \quad t < t_1$$

$$(1.13) \quad t \in E \implies t < t_1 \quad \blacksquare \quad \forall_{t \in E} (t \le t_1) \quad \blacksquare \quad UpperBound(t_1, E, \mathbb{R}, <) \quad \blacksquare \quad Bounded Above(E, \mathbb{R}, <)$$

$$(1.14) \quad LUBProperty(\mathbb{R},<) \land \emptyset \neq E \subset \mathbb{R} \land Bounded Above(E,\mathbb{R},<) \quad \blacksquare \ \exists_{y \in \mathbb{R}} (LUB(y_0,E,\mathbb{R},<))$$

$$(1.15) \quad y_0 := choice(\{y \in \mathbb{R} | LUB(y, E, \mathbb{R}, <)\})$$

(1.16)
$$LUB(y_0, E, \mathbb{R}, <) \land t_0 \in E \quad 0 < t_0 < y_0 \quad y_0 > 0$$

$$(1.17) \quad y_0^n < x \implies \dots$$

$$(1.17.1) \quad k_0 := \frac{x - y_0^n}{n(y_0 + 1)^{n - 1}} \quad \blacksquare \quad k_0 \in \mathbb{R}$$

$$(1.17.2) \quad y_0^n < x \quad \blacksquare \quad 0 < x - y_0^n$$

$$(1.17.3) \quad n > 0 \land y_0 > 0 \quad \blacksquare \quad 0 < n(y_0 + 1)^{n-1}$$

$$(1.17.4) \quad 0 < x - {y_0}^n \wedge 0 < n(y_0 + 1)^{n - 1} \quad \blacksquare \quad 0 < \frac{x - {y_0}^n}{n(y_0 + 1)^{n - 1}} = k_0 \quad \blacksquare \quad 0 < k_0$$

```
(1.17.5) \quad \forall_{x',y' \in \mathbb{R}} \left( x' < y' \implies \exists_{p' \in \mathbb{Q}} (x' < p' < y') \right) \land 0, \min(1,k_0) \in \mathbb{R} \land 0 < \min(1,k_0)
             (1.17.6) \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \blacksquare \ h_0 \ := choice(\{h \in \mathbb{Q} | 0 < h < \min(1, k_0)\})
             (1.17.7) \quad 0 < h_0 < 1 \land h_0 < k_0 = \frac{x - y_0^n}{n(y_0 + 1)^{n-1}}
             (1.17.8) \quad 0 < n(y_0 + 1)^{n-1} \land h_0 < k_0 = \frac{x - y_0^n}{n(y_0 + 1)^{n-1}} \quad \blacksquare \quad h_0 n(y_0 + 1)^{n-1} < x - y_0^n
             (1.17.10) \quad (y_0 + h_0)^n - y_0^n < (y_0 + h_0 - y_0)n(y_0 + h_0)^{n-1} = h_0 n(y_0 + h_0)^{n-1} < h_0 n(y_0 + 1)^{n-1} < x - y_0^n + x 
             (1.17.11) \quad (y_0 + h_0)^n - y_0^n < x - y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x
             (1.17.12) \quad y_0 > 0 \land h_0 > 0 \quad \blacksquare \quad (y_0 + h_0) > h_0 > 0
             (1.17.13) \quad (y_0 + h_0) > 0 \land (y_0 + h_0)^n < x \quad \blacksquare \quad (y_0 + h_0)^n \in E
             (1.17.14) \quad (y_0 + h_0)^n \in E \land y_0 + h_0 > y_0 \quad \blacksquare \quad \exists_{e \in E} (e > y_0)
             (1.17.15) \quad \overline{LUB(y_0, E, \mathbb{R}, <)} \quad \boxed{U} \quad \overline{UpperBound(y_0, E, \mathbb{R}, <)} \quad \boxed{U} \quad \forall_{e \in E} (e \leq y_0) \quad \boxed{UpperBound(y_0, E, \mathbb{R}, <)} \quad \boxed{UpperBound(y_0, E, \mathbb{
             (1.17.16) \quad \exists_{e \in E} (e > y_0) \land \neg \exists_{e \in E} (e > y_0) \quad \blacksquare \ \bot
       (1.18) \quad y_0^n < x \implies \bot \quad \blacksquare \quad y_0^n \ge x
      (1.19) \quad y_0^n > x \implies \dots
             (1.19.1) \quad k_1 := \frac{y_0^{n} - x}{ny_0^{n-1}} \quad \blacksquare \quad k_1 \in \mathbb{R} \land k_1 n y_0^{n-1} = y_0^{n} - x
             (1.19.2) \quad 0 < x \in \mathbb{R} \land 0 < n \in \mathbb{Z} \quad \blacksquare \quad y_0^n - x < y_0^n \le ny_0^n \quad \blacksquare \quad y_0^n - x < ny_0^n
             (1.19.3) \quad k_1 = \frac{y_0^n - x}{ny_0^{n-1}} < \frac{ny_0^n}{ny_0^{n-1}} = y_0 \quad \blacksquare \quad k_1 < y_0
             (1.19.4) \quad y_0^n > x \quad || y_0^n - x > 0
             (1.19.5) \quad n > 0 \land y_0 > 0 \quad \blacksquare \quad 0 < ny_0^{n-1}
             (1.19.6) \quad 0 < y_0^n - x \wedge 0 < ny_0^{n-1} \quad \blacksquare \quad 0 < \frac{y_0^{n-x}}{ny_0^{n-1}} = k_1 \quad \blacksquare \quad 0 < k_1
             (1.19.7) k_1 < y_0 \land 0 < k_1 \quad \blacksquare \quad 0 < k_1 < y_0
             (1.19.8) t \ge y_0 - k_1 \implies \dots
                     (1.19.8.1) \quad t \ge y_0 - k_1 \quad \blacksquare \quad t^n \ge (y_0 - k_1)^n \quad \blacksquare \quad -t^n \le -(y_0 - k_1)^n \quad \blacksquare \quad y_0^n - t^n \le y_0^n - (y_0 - k_1)^n 
                      (1.19.8.2) \quad y_0^n - (y_0 - k_1)^n < (y_0 - y_0 + k_1)ny_0^{n-1} = k_1ny_0^{n-1} = y_0^n - x
                    (1.19.8.3) \quad y_0^n - t^n < y_0^n - x \quad \blacksquare - t^n < -x \quad \blacksquare t_n > x \quad \blacksquare \neg (t_n < x) \quad \blacksquare t \notin E
             (1.19.9) \quad t \ge y_0 - k_1 \implies t \notin E \quad \blacksquare \quad t \in E \implies t < y_0 - k_1
             (1.19.10) \quad \forall_{t \in E} (t \le y_0 - k_1) \quad \blacksquare \quad UpperBound(y_0 - k_1, E, \mathbb{R}, <)
             (1.19.11) \quad \underline{LUB}(y_0, E, \mathbb{R}, <) \quad \blacksquare \quad \forall_{z \in \mathbb{R}} (z < y_0 \implies \neg UpperBound(z, E, \mathbb{R}, <))
              (1.19.12) \quad k_1 > 0 \quad \blacksquare \quad y - k_1 < y_0 \quad \blacksquare \quad \neg UpperBound(y_0 - k_1, E, \mathbb{R}, <)
             (1.19.13) UpperBound(y_0 - k_1, E, \mathbb{R}, <) \land \neg UpperBound(y_0 - k_1, E, \mathbb{R}, <) 
      (1.20) \quad y_0^n > x \implies \bot \quad \blacksquare \quad y_0^n \le x
      (1.21) \quad (y_0^n < x \lor y_0^n = x \lor x < y_0^n) \land (y_0^n \ge x) \land (y_0^n \le x) \quad \blacksquare y_0^n = x
      (1.22) \quad y_0^n = x \land y_0 \in \mathbb{R} \quad \blacksquare \quad \exists_{y \in \mathbb{R}} (y^n = x)
      (1.23) \quad y_1, y_2 := choice(\{y \in \mathbb{R} | y^n = x\}) \quad \blacksquare \quad y_1 \neq y_2 \implies \dots
            (1.23.1) \quad (y_1 < y_2) \veebar (y_2 < y_1) \quad \blacksquare \quad (x = y_1^n < y_2^n = x) \veebar (x = y_2^n < y_1^n = x) \quad \blacksquare \quad (x < x) \veebar (x > x) \quad \blacksquare \quad \bot \veebar \bot \quad \blacksquare \quad \bot
      (1.24) \quad y_1 \neq y_2 \implies \bot \quad \blacksquare \quad y_1 = y_2 \quad \blacksquare \quad \forall_{a,b \in \mathbb{R}} ((a^n = x \land b^n = x) \implies a = b)
      (1.25) \quad \exists_{y \in \mathbb{R}} (y^n = x) \land \forall_{a,b \in \mathbb{R}} ((a^n = x \land b^n = x)) \implies a = b) \quad \blacksquare \quad \exists!_{y \in \mathbb{R}} (y^n = x)
(2) \quad (0 < x \in \mathbb{R} \land 0 < n \in \mathbb{Z}) \implies \exists!_{y \in \mathbb{R}} (y^n = x) \quad \blacksquare \quad \forall_{0 < x \in \mathbb{R}} \forall_{0 < n \in \mathbb{Z}} \exists!_{0 < y \in \mathbb{R}} (y_0^n = x)
                                                                                                                          \forall_{0 < a \in \mathbb{R}} \forall_{0 < b \in \mathbb{R}} \forall_{0 < n \in \mathbb{Z}} ((ab)^{1/n} = a^{1/n} b^{1/n})
```

Extended Real System
$$(\bar{\mathbb{R}}, +, *, <) :=$$

$$\begin{cases} \bar{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\} & \wedge & -\infty < x < \infty & \wedge \\ x + \infty = +\infty & \wedge & x - \infty = -\infty & \wedge \frac{x}{+\infty} = \frac{x}{-\infty} = 0 & \wedge \\ (x > 0) \implies (x * (+\infty) = +\infty \wedge x * (-\infty) = -\infty) \wedge \\ (x < 0) \implies (x * (+\infty) = -\infty \wedge x * (-\infty) = +\infty) \end{cases}$$

 $\mathbb{C} := \{ \langle a, b \rangle \in \mathbb{R} \times \mathbb{R} \}$

```
\begin{aligned} &+_{\mathbb{C}}(\langle a,b\rangle,\langle c,d\rangle) := \langle a+_{\mathbb{R}} c,b+_{\mathbb{R}} d\rangle \\ &*_{\mathbb{C}}(\langle a,b\rangle,\langle c,d\rangle) := \langle a*_{\mathbb{R}} c-b*_{\mathbb{R}} d,a*_{\mathbb{R}} d+b*_{\mathbb{R}} c\rangle \\ \hline &FieldC \quad Field(\mathbb{C},+_{\mathbb{C}},*_{\mathbb{C}}) \qquad \qquad \\ \hline &RSubfieldC \quad Subfield(\mathbb{R},\mathbb{C},+,*) \qquad \qquad - \end{aligned}
```

 $i := \langle 0, 1 \rangle \in \mathbb{C}$

iProperty
$$i^2 = -1$$
 —

CProperty $(a, b \in \mathbb{R}) \implies (\langle a, b \rangle = a + bi)$ —

 $Conjugate(\overline{a+bi}) := a - bi$

Conjugate Properties
$$(w, z \in \mathbb{C}) \implies \dots$$

- $(1) \quad \overline{z+w} = \overline{z} + \overline{w}$
- (2) $\overline{z*w} = \overline{z}*\overline{w}$
- $(3) \quad Re(z) = (1/2)(z+\overline{z}) \wedge Im(z) = (1/2)(z-\overline{z})$
- $(4) \quad 0 \le z * \overline{z} \in \mathbb{R}$

Absolute
$$V$$
 alue $C(|z|) = (z * \overline{z})^{1/2}$
Absolute V alue P roperties $(z, w \in \mathbb{C}) \implies \dots$ —

(1) 123123

TODO: - MORE EXPLICIT MODUS PONENS ON OrderTrichotomyR ??? - name all properties - hyperlink all definitions ???

Chapter 2

Abstract Algebra

 $\mathbf{D}(a,b,c) := a,b,c \in \mathbb{Z} \land a|b \land a|c|$

123123

 $(a, b, c) := CD(a, b, c) \land \forall_d ((d|b \land d|c) \implies d|a)$

```
Relation(f, X) := f \subseteq X
Function(f, X, Y) := X \neq \emptyset \neq Y \land Relation(f, X \times Y) \land \forall_{x \in X} \exists!_{y \in Y} ((x, y) \in f)
(Function(f, X, Y) \land A \subseteq X \land B \subseteq Y) \implies \dots
(1) Domain(f) := X; Codomain(f) := Y
(2) Image(f, A) := \{f(a) | a \in A\}; Preimage(f, B) := \{a | f(a) \in B\}
(3) Range(f) := Image(Domain(f))
\begin{split} &Injective(f,X,Y) := Function(f,X,Y) \land \forall_{x_1,x_2 \in X} (x_1 \neq x_2 \implies f(x_1) \neq f(x_2)) \\ &Surjective(f,X,Y) := Function(f,X,Y) \land \forall_{y \in Y} \exists_{x \in X} (y_0 = f(x)) \end{split}
Bijective(f, X, Y) := Injective(f, X, Y) \land Surjective(f, X, Y)
                                     (Range(f) = Codomain(f)) \implies Surjective(f)
(Function(f, X, Y) \land Function(g, Y, Z)) \implies (f \circ g)(x) := f(g(x)); Function(f \circ g, X, Z)
                                       (Function(f, A, B) \land Function(g, B, C) \land Function(h, C, D)) \implies \dots
(1) h \circ (g \circ f) = (h \circ g) \circ f
(2) \quad (Injective(f) \land Injective(g)) \implies Injective(g \circ f)
(3) (Surjective(f) \land Surjective(g)) \implies Surjective(g \circ f)
\overline{(4) \ (\textit{Bijective}(f,A,B))} \implies \exists_{f^{-1}}(Function(f^{-1},B,A) \land \forall_{a \in A}(f^{-1}(f(a)) = a) \land \forall_{b \in B}(f(f^{-1}(b)) = b))
 (a,b) := a, b \in \mathbb{Z} \land a \neq 0 \land \exists_{c \in \mathbb{Z}} (b = ac)
                                    (a, b, c, m, x, y \in \mathbb{Z}) \implies \dots
(1) (a|b) \Longrightarrow a|bc
(2) \quad (a|b \wedge b|c) \implies a|c
(3) (a|b \wedge b|c) \implies a|(bx + cy)
(4) \quad (a|b \wedge b|a) \implies a = \pm b
(5) (a|b \land a > 0 \land b > 0) \implies (a \le b)
(6) (a|b) \iff (m \neq 0 \land ma|mb)
                                 (a, b \in \mathbb{Z} \land a > 0) \implies \exists !_{q,r \in \mathbb{Z}} (b = aq + r)
```

Chapter 3

Linear Algebra

```
EquivalentSystem() ...
(AB)^T = B^T A^T
Sym(A) := A^T = A
Skew(A) := A^T = -A
(B = A + A^T) \implies Sym(B)
(B = A - A^T) \implies Skew(B)
A = (1/2)(A + A^{T}) + (1/2)(A - A^{T}) = Sym(B_{1}) + Skew(B_{2})
Invertible(A) := \exists_{A^{-1}}(AA^{-1} = I = A^{-1}A)
(Invertible(A) \land Invertible(B)) \implies (Invertible(AB) \land (AB)^{-1} = B^{-1}A^{-1})
(Invertible(A)) \implies (Invertible(A^{-1}) \land (A^{-1})^{-1} = A)
(Invertible(A)) \implies (Invertible(A^T) \land (A^T)^{-1} = (A^{-1})^T)
RREF(A) := (Definition 1.18)
ElementaryRowOperation(\phi) := (Definition 1.19)
RowEquivalent(A,B) := \exists_{\Phi}(\forall_{\phi \in \Phi}(ElementaryRowOperation(\phi)) \land |\Phi| \in \mathbb{N} \land \Phi(A) = B)
By Gauss-Jordan Elimination: NonZero(A) \implies \exists_{R}(RREF(B) \land RowEquivalent(A, B))
\left(AX = B \land CX = D \land RowEquivalent([A|B], [C|D])\right) \implies ([A\overline{X} = B] \equiv [CX = D])
(RowEquivalent(A, B)) \implies ([AX = \mathbb{O}] \equiv [BX = \mathbb{O}])
```