Diagnosing the Offset

September 23, 2020

Last Week Recap

- Using the Inversion technique (flipping the 0s with 1s and vice versa), we tried to exploit the asymmetry
- However, this technique did not work, since inverting the circuit did nothing to energy computed by the noise model.
- Possible Issues:
 - The offset between noisy energy and ideal energy is caused by a different source of noise. Why should this noise be asymmetrical though?
 - 2. The inversion technique may work but number of gates in VQE circuit for H2 atom is too small

Gate Inversion of VQE Optimized Circuit for H2 molecule Optimized on Noise Model

Issue 1: Coherent Errors and Incoherent Errors

Issue 1: Readout Errors

- After adding in all 3 kind of errors, we do get close to the noise model's energy calculation.
- Clearly, readout errors cause the greatest deviation.
- Something Interesting: the measurement error rates are asymmetric
- What happens when we switch them? Do we get the same results, for example, if for qubit 0, P(0|1) = 0.05 and P(1|0) = 0.05?
 - Let's call this Issue 1.1: Measurement Assymetry

Issue 1.1: Measurement Asymmetry

- Reversing the qubit error rates, however, does nothing to the energy value
- Possible Explanation?

Issue 1.2: Incoherent Errors Asymmetry

- Lets try to see if we invert our circuit, does the energy change if our noise model is made of purely incoherent errors?
- The purple and cyan points are slightly off balance but no significant shift in energy.
- Failure to get any change in energy ties into issue 2--- is the gate length the reason why we don't get this shift?

Issue 1.2: Incoherent Errors Asymmetry

- Let's invert a 1 qubit circuit by changing sign of angles of U3 gates and inserting 2 X gates, one before and after the circuit
- Also, suppose our original circuit is equivalent to identity (so we should get a 0 state at the end)
- Figure shows that inverting a circuit as described doesn't change decay rate.
- Possible Issue: Maybe measurement error asymmetry interfering?

Ran on Armonk Device since 1 qubit circuits

Issue 1.2: Incoherent Errors Asymmetry

- Repeat previous procedure but in the end of inverted circuit, don't insert the X gate
- So for inverted circuit, on ideal quantum computer, we should get only 1 state
- We do so to avoid the measurement error interfering with results
- Result: What is happening?!!?!?!?!

