Aspect énergétique & transformation de la matière Physique — Chapitre 12

1 Changements d'états

1.1 Les différents changements d'états

Dû à une agitation des molécules (et donc à une chaleur) plus élevée

Changements d'états

Départ \downarrow Arrivée \rightarrow	Solide	Liquide	Gazeux
Solide	/	Fusion	Sublimation
Liquide	Solidification	/	Vaporisation
Gazeux	Condensation	Liquéfaction	/

Ce qui rend le changement d'état "positif" plus couteux:

- $\bullet\,$ Nb de C \to Nb d'interactions de Van der Waals
- Présence de liaisons hydrogènes

Les alcools demandent plus d'énergie que les alcanes car ils possèdent les liaisons hydrogène

1.2 Énergies requises

1.2.1 Énergie massique de changement d'état L

$$\underbrace{E}_{J} = \underbrace{m}_{g} \cdot \underbrace{L_{\acute{e}tat}}_{g \cdot J^{-1}}$$

$$E = m \underbrace{c}_{J \cdot \circ C^{-1} \cdot g^{-1}} (\theta_i - \theta_f)$$

$$E = \underbrace{C}_{J \cdot {}^{\circ}C^{-1}} \cdot \underbrace{(\theta_f - \theta_i)}_{{}^{\circ}C}$$

Une L de changement d'état "inverse" est égal à l'opposé de l'autre:

$$\underbrace{L_{sol}}_{\text{solidification}} = -\underbrace{L_{fus}}_{\text{fusion}}$$

E et L sont du même signe

1.3 Chaleur

La chaleur n'augmente pas pendant un changement d'état

2 Miscibilité dans l'eau

2.1 Hydrophilie/phobie

Un alcool est hydrophile s'il présente ce schéma:

$$R - OH$$

(avec R une chaine carbonnée)

Sinon, il est hydrophobe.

2.1.1 Endothermie & Exothermie

Quand on passe à un état plus désordonné, il faut apporter de l'énergie: c'est endothermique

Quand on passe à un état moins désordonné, ça **dégage** de l'énergie: c'est exothermique

2.2 Miscibilité

Un alcool **hydrophile** est miscible dans l'eau. Un alcool **hydrophobe** ne l'est pas.

3 Distillation fractionnée

3.1 But

Séparer un mélange de liquides en espèces pures.

3.2 Matériel

- Colonne de Vigreux
- \bullet Ballon
- ullet Chauffe-ballon

(Support élévateur

- Réfrigérant droit
- \bullet Erlenmeyer