PROXIMAL GRADIENT ALGORITHM IN THE PRESENCE OF ADJOINT MISMATCH

Emilie Chouzenoux⁽¹⁾ (joint work with M. Savanier^(1,2), J.-C. Pesquet⁽¹⁾, C. Riddell⁽²⁾ and Y. Trousset⁽²⁾)

(1) Université Paris-Saclay, Inria, CentraleSupélec, Centre de Vision Numérique, Gif-sur-Yvette, France.
(2) GE Healthcare, Buc, France.

February 2nd, 2021

Introduction

INVERSE PROBLEM FORMULATION

Large panel of applications:

medical imaging, fluorescence microscopy, astronomy, image restoration, etc.

Object of interest $\bar{x} \in \mathbb{R}^N$ System Observation $y = H\bar{x} + b \in \mathbb{R}^M$

 $\underset{x \in \mathbb{R}^N}{\text{minimize}} \quad \underbrace{f_1(x)}_{\text{Datafit}} + \underbrace{f_2(x)}_{\text{Regularization}}$

INVERSE PROBLEM FORMULATION

Large panel of applications:

medical imaging, fluorescence microscopy, astronomy, image restoration, etc.

Object of interest $\bar{x} \in \mathbb{R}^N$ System Observation $y = H\bar{x} + b \in \mathbb{R}^M$

$$\underset{\mathbf{x} \in \mathbb{R}^{N}}{\text{minimize}} \quad \underbrace{f_{1}(\mathbf{x})}_{\text{Datafit}} + \underbrace{f_{2}(\mathbf{x})}_{\text{Regularization}}$$

ITERATIVE APPROACHES FOR PENALIZED LEAST-SQUARES

• Tikhonov problem:

$$\underset{\mathbf{x} \in \mathbb{R}^{N}}{\text{minimize}} \quad \underbrace{\frac{1}{2} \|\mathbf{y} - \mathbf{H}\mathbf{x}\|^{2}}_{f_{1}(\mathbf{x})} + \underbrace{\frac{\kappa}{2} \|\mathbf{x}\|^{2}}_{f_{2}(\mathbf{x})}, \tag{P0}$$

where $\kappa \in [0, +\infty[$

• Gradient algorithm:

$$\mathbf{x}_{n+1} = (1 - \gamma \kappa) \mathbf{x}_n - \gamma \mathbf{H}^{\top} (\mathbf{H} \mathbf{x}_n - \mathbf{y})$$
 (A0)

⇒ Linear iteration

- Only differentiable regularization can be added
- Variants: Algebraic iterative methods (SIRT, SART, etc)

Iterative approaches for penalized least-squares

Penalized least-squares:

$$\underset{\mathbf{x} \in \mathbb{R}^{N}}{\text{minimize}} \quad \underbrace{\frac{1}{2} \|\mathbf{y} - \mathbf{H}\mathbf{x}\|^{2}}_{f_{1}(\mathbf{x})} + \underbrace{g(\mathbf{x}) + \frac{\kappa}{2} \|\mathbf{x}\|^{2}}_{f_{2}(\mathbf{x})}, \tag{P1}$$

where g convex possibly non-smooth regularization function and $\kappa \in [0, +\infty[$. \Rightarrow Embed more sophisticated priors (e.g., range constraint, ℓ_1 , total variation)

• Simple yet efficient approach = Proximal Gradient Algorithm (PGA)

$$\mathbf{x}_{n+1} = \mathbf{x}_n + \theta_n \left(\text{prox}_{\gamma \mathbf{g}} ((1 - \gamma \kappa) \mathbf{x}_n - \gamma \mathbf{H}^\top (\mathbf{H} \mathbf{x}_n - \mathbf{y})) - \mathbf{x}_n \right)$$
(A1)

 \Rightarrow reduces to (A0) when g=0 and $heta_n\equiv 1$

Proposition (Convergence of PGA)

- $\gamma \in]0, 2/(|||\mathbf{H}|||^2 + \kappa)[$,
- $\theta_n \in [\epsilon, 1]$ with $\epsilon \in]0, 1[$

Then the sequence $(x_n)_{n\in\mathbb{N}}$ generated by Algorithm (A1) converges to a solution to Problem (P1) when such a solution exists.

ITERATIVE APPROACHES FOR PENALIZED LEAST-SQUARES

Penalized least-squares:

$$\underset{\mathbf{x} \in \mathbb{R}^{N}}{\text{minimize}} \quad \underbrace{\frac{1}{2} \|\mathbf{y} - \mathbf{H}\mathbf{x}\|^{2}}_{f_{1}(\mathbf{x})} + \underbrace{g(\mathbf{x}) + \frac{\kappa}{2} \|\mathbf{x}\|^{2}}_{f_{2}(\mathbf{x})}, \tag{P1}$$

where g is a suitable convex possibly non-smooth regularization function and $\kappa \in [0, +\infty[$.

Simple yet efficient approach = Proximal Gradient Algorithm (PGA)

$$\mathbf{x}_{n+1} = \mathbf{x}_n + \theta_n \left(\text{prox}_{\gamma g} ((1 - \gamma \kappa) \mathbf{x}_n - \gamma \mathbf{K} (\mathbf{H} \mathbf{x}_n - \mathbf{y})) - \mathbf{x}_n \right), \tag{A2}$$

QUESTION

What can be said about the sequence $(x_n)_{n\in\mathbb{N}}$ generated by Algorithm (A2)? \Rightarrow when $g\equiv 0$ see [EH18, ZG00, DHHBR19, LRS18].

 This talk: Characterization of PGA convergence and limit points in the general case of a convex function g in the presence of an adjoint mismatch.

MOTIVATION: IMAGE RECONSTRUCTION IN X-RAY TOMOGRAPHY

Hardware optimization

GPU-friendly implementation (ASTRA Toolbox), limited memory budget

Different discretizations to cope with changes in sampling rates

Rotation in tomographic reconstruction (parallel and divergent geometry) ⇒ different strategies suitable for iterative and analytical reconstruction

Improved conditioning of KH

SPECT (attenuation not modeled in the backprojector), embedding of the ramp filter

PROPOSED STABILITY ANALYSIS

MATHEMATICAL BACKGROUND

DEFINITION (PROXIMITY OPERATOR)

Let $\Gamma_0(\mathbb{R}^N)$ be the set of functions which take values in $\mathbb{R} \cup \{+\infty\}$ and are proper convex, lower semicontinuous on \mathbb{R}^N . The proximity operator of $g \in \Gamma_0(\mathbb{R}^N)$ at $\mathbf{x} \in \mathbb{R}^N$ is defined as

$$\operatorname{prox}_{g}(\mathbf{x}) = \underset{\mathbf{z} \in \mathbb{R}^{N}}{\operatorname{argmin}} \quad \left(g(\mathbf{z}) + \frac{1}{2} \|\mathbf{x} - \mathbf{z}\|^{2} \right).$$

• $\mathbf{p} = \operatorname{prox}_{\mathbf{g}}(\mathbf{x}) \Leftrightarrow \mathbf{x} - \mathbf{p} \in \partial \mathbf{g}(\mathbf{p}).$

NOTATION

Let $\mathbf{L} = \mathbf{KH} + \kappa \mathbf{Id}$ with $\kappa > 0$.

Let λ_{\min} (resp. λ_{\max}) be the minimum (resp. maximum) eigenvalue of $(\mathbf{L} + \mathbf{L}^{\top})/2$.

Let λ_{\min}^+ be the minimum positive eigenvalue of $(\mathbf{L} + \mathbf{L}^\top)/2$ and let $\beta = |||\mathbf{L} - \mathbf{L}^\top|||/2$.

Let T_{γ} be the operator defined as

$$T_{\gamma} : \mathbb{R}^{N} \to \mathbb{R}^{N}$$

 $\mathbf{x} \mapsto \operatorname{prox}_{\gamma g} ((1 - \gamma \kappa) \mathbf{x} - \gamma \mathbf{K} (\mathbf{H} \mathbf{x} - \mathbf{y}))$

FIXED POINT ALGORITHM

EQUIVALENT FORMULATION

Proximal Gradient Algorithm (PGA):

$$\begin{aligned} \mathbf{x}_{n+1} &= \mathbf{x}_n + \theta_n \left(\text{prox}_{\gamma g} ((1 - \gamma \kappa) \mathbf{x}_n - \gamma \mathbf{K} (\mathbf{H} \mathbf{x}_n - \mathbf{y})) - \mathbf{x}_n \right) \\ &= \mathbf{x}_n + \theta_n \left(T_{\gamma} (\mathbf{x}_n) - \mathbf{x}_n \right) \end{aligned}$$

FIXED POINT OPERATOR

Analysis of the properties of:

$$egin{aligned} \mathcal{T}_{\gamma} \colon \mathbb{R}^{N} & \to \mathbb{R}^{N} \ & \mathbf{x} \mapsto \mathrm{prox}_{\gamma \mathbf{g}}((\mathbf{1} - \gamma \kappa)\mathbf{x} - \gamma \mathbf{K}(\mathbf{H}\mathbf{x} - \mathbf{y})) \end{aligned}$$

or, equivalently,

$$T_{\gamma} : \mathbb{R}^{N} \to \mathbb{R}^{N}$$

 $\mathbf{x} \mapsto \mathrm{prox}_{\gamma \mathbf{g}}(\mathbf{x} - \gamma \mathbf{L} \mathbf{x} + \gamma \mathbf{K} \mathbf{y})$

METHODOLOGY

Non-linear iteration

- ⇒ tools from convex analysis, monotone operators and fixed point theory.
- ⇒ Proposed analysis pipeline:
 - Cocoercivity of L?
 - Existence and uniqueness of the fixed points of T_{γ} ?

Definition (Cocoercivity)

Operator $A: \mathbb{R}^N \to \mathbb{R}^N$ is η -cocoercive with $\eta \in [0, +\infty[$ if, for every $(\mathbf{x}, \mathbf{y}) \in (\mathbb{R}^N)^2$,

$$\eta \| A\mathbf{x} - A\mathbf{y} \|^2 \leqslant \langle \mathbf{x} - \mathbf{y}, A\mathbf{x} - A\mathbf{y} \rangle.$$

Example: the gradient of a η -Lipschitz differentiable function is a η -cocoercive operator.

RECOVER THE COCOERCIVITY OF L

Proposition

• L is η -cocoercive with $\eta \in]0, +\infty[$ if and only if $\lambda_{\min} \geqslant 0$, $\operatorname{Ker}(\mathbf{L} + \mathbf{L}^{\top}) = \operatorname{Ker} \mathbf{L}$, and

$$\eta \leqslant \overline{\eta} = \frac{2}{|||(\mathsf{Id} + (\mathsf{L} - \mathsf{L}^\top)(\mathsf{L} + \mathsf{L}^\top)^{-1})(\mathsf{L} + \mathsf{L}^\top)^{1/2}|||^2}.$$

• Assume that $\lambda_{\min} \geqslant 0$. If $\operatorname{Ker}(\mathbf{L} + \mathbf{L}^{\top}) = \operatorname{Ker} \mathbf{L}$, then \mathbf{L} is η -cocoercive with

$$\underline{\eta} = 1/\Big(\sqrt{\lambda_{\max}} + \frac{\beta}{\sqrt{\lambda_{\min}^+}}\Big)^2.$$

If $\beta = 0$, then **L** is $(1/\lambda_{max})$ -cocoercive.

EXAMPLE

A simple condition for ensuring that λ_{\min} is positive is to choose $\kappa > -\widetilde{\lambda}_{\min}$ where $\widetilde{\lambda}_{\min}$ is the minimum eigenvalue of $(\mathbf{K}\mathbf{H} + \mathbf{H}^{\top}\mathbf{K}^{\top})/2$. In this case, $\lambda_{\min}^{+} = \lambda_{\min} > 0$, while $\mathrm{Ker}(\mathbf{L} + \mathbf{L}^{\top})$ and $\mathrm{Ker}\,\mathbf{L}$ reduce to the null space.

Fixed points of \mathcal{T}_{γ}

Let $\gamma \in]0, +\infty[$ and let $\widetilde{\mathbf{x}} \in \mathbb{R}^N$. We have $\widetilde{\mathbf{x}} \in \operatorname{Fix} \mathcal{T}_{\gamma}$ if and only if $\widetilde{\mathbf{x}}$ belongs to

$$\mathcal{F} = \big\{ \mathbf{x} \in \mathbb{R}^N \ \big| \ 0 \in \mathbf{K}(\mathbf{H}\mathbf{x} - \mathbf{y}) + \partial g(\mathbf{x}) + \kappa \mathbf{x} \big\}.$$

Proposition (Existence)

- If $\lambda_{\min} \ge 0$, then \mathcal{F} is a closed and convex set.
- ullet Assume that ullet is cocoercive. ${\mathcal F}$ is nonempty if one of the following condition holds:
 - ullet dom $\partial g = \mathbb{R}^N$ and

$$\mathbf{x} \mapsto \frac{1}{2} \langle \mathbf{x} \mid \mathbf{L} \mathbf{x} \rangle + g(\mathbf{x})$$

is coercive;

• dom g is bounded.

Fixed points of \mathcal{T}_{γ}

Let $\gamma \in]0, +\infty[$ and let $\widetilde{\mathbf{x}} \in \mathbb{R}^N$. We have $\widetilde{\mathbf{x}} \in \operatorname{Fix} \mathcal{T}_{\gamma}$ if and only if $\widetilde{\mathbf{x}}$ belongs to

$$\mathcal{F} = \{ \mathbf{x} \in \mathbb{R}^N \mid 0 \in \mathbf{K}(\mathbf{H}\mathbf{x} - \mathbf{y}) + \partial g(\mathbf{x}) + \kappa \mathbf{x} \}.$$

Proposition (Uniqueness)

 \mathcal{F} is a singleton if $\lambda_{min} \geqslant 0$ and one of the following condition holds:

- $\lambda_{\min} \neq 0$;
- g is strongly convex.

Convergence results

Assume that the following hold.

- (i) L is cocoercive.
- (ii) Let $\nu \in [0, +\infty[$ be the strong convexity modulus of g. Either $\nu > 0$ or $\lambda_{\min} \neq 0$.
- (iii) $\hat{\mathbf{x}} = \operatorname{argmin} \ \frac{1}{2} \|\mathbf{y} \mathbf{H}\mathbf{x}\|^2 + g(\mathbf{x}) + \frac{\kappa}{2} \|\mathbf{x}\|^2$

Then there exists a unique solution $\tilde{x} \in \mathcal{F}$ and:

$$\|\widetilde{\mathbf{x}} - \widehat{\mathbf{x}}\| \leqslant \chi \left| \left| \left| \mathbf{H}^\top - \mathbf{K} \right| \right| \right| \left\| \mathbf{H} \widehat{\mathbf{x}} - \mathbf{y} \right\|$$

where
$$\chi = (\nu + 2\lambda_{\min})^{-1}$$
.

⇒ Trade-off between fidelity and bias.

Assume that **L** is η -cocoercive. Let $\gamma \in]0, 2\eta[$ and $\delta = 2 - \gamma/(2\eta)$. Let $(\theta_n)_{n \in \mathbb{N}}$ be a sequence in $[0,\delta]$ such that $\sum_{n\in\mathbb{N}}\theta_n(\delta-\theta_n)=+\infty$. Suppose that $\mathcal{F}\neq\emptyset$.

Then, the sequence $(x_n)_{n\in\mathbb{N}}$ generated by Algorithm (A2) converges to a point $\widetilde{x}\in\mathcal{F}$. In addition, if $\lambda_{\min} \neq 0$ and, for every $n \in \mathbb{N}$, $\theta_n \in [\underline{\theta}, 1]$ with $\underline{\theta} \in]0, +\infty[$, then $(\mathbf{x}_n)_{n \in \mathbb{N}}$ converges linearly.

Numerical experiment

Tomographic reconstruction

 $\mathbf{b} \sim \mathcal{N}(\mathbf{0}, \mathbf{0}, \mathbf{2})$

ORIGIN OF THE MISMATCH

ORIGIN OF THE MISMATCH

• Zoom on the backprojection of a uniform view:

$$\mathbf{H}^{\top}$$
 (sparsity $s = |||\mathbf{H}|||_0/MN = 1.0778\%$)

K (sparsity
$$s = |||\mathbf{K}|||_0/MN = 0.89\%$$
)

$$\mu = \langle \mathrm{Hu}, \mathrm{v} \rangle / \langle \mathrm{u}, \mathrm{Kv} \rangle \approx 1.0076$$

$$|||\mathbf{K}|||_0 = \sum_{i=1}^N \sum_{j=1}^M \mathbb{I}(K_{ij} \neq 0)$$

Modeling and parameterization

$$\underset{\mathbf{x} \in \mathbb{R}^N}{\text{minimize}} \ \frac{1}{2}\|\mathbf{y} - \mathbf{H}\mathbf{x}\|^2 + \underbrace{\lambda\|\mathbf{W}\mathbf{x}\|_1}_{g(\mathbf{x})} + \frac{\kappa}{2}\|\mathbf{x}\|^2,$$

where **W** being the orthogonal Symlet 2 wavelet transform, $\lambda = 0.45$, $\kappa = \{\kappa_1, \kappa_2\}$ with $\kappa_1 = 0.01, \ \kappa_2 = 6.5.$

L is cocoercive for:

Χ κ₁

Settings:

 $\gamma = 1.9/(|||\mathbf{H}|||^2 + \kappa),$

 $\theta_n \equiv 1$.

Distribution of the negative eigenvalues of $(KH + H^{T}K^{T})/2$

RESULTS

Decay of the error along iterations for Algorithms (A1) and (A2) and two choices of κ parameter.

Decay of the distance to the optimum along iterations for Algorithms (A2) with $\kappa = \kappa_2$.

RESULTS

Original phantom (top left), and reconstruction results using Algorithm (A2) with κ_1 (top right), Algorithm (A1) with κ_2 (bottom left) and Algorithm (A2) with κ_2 (bottom right)

κ	$\mathbf{H}^{\top}\mathbf{H}$	KH
κ_1	24.41	22.32
κ_2	26.02	25.06

SNR (dB) over central ROI

CONCLUSION AND PERSPECTIVES

- Characterization of the fixed points of PGA in the presence of an adjoint mismatch.
- Conditions of convergence with new bounds on the gradient step-size and on the regularization parameters.
- Characterization of the distance from the generated fixed point of the algorithm to a "true" minimizer of the original objective function.
- Validation of these results on an image reconstruction task.
- ⇒ reconcile theory with practical implementations of PGA iteration in the context of X-ray tomographic imaging.

Future work:

• Extend our analysis to other types of data fidelity: convex ℓ_1 or more robust non-convex ℓ_p potentials (p < 1).

Thank You!

References

Emilie Chouzenoux, Jean-Christophe Pesquet, Cyril Riddell, Marion Savanier, and Yves Trousset, *Convergence of proximal gradient algorithm in the presence of adjoint mismatch*, Inverse Problems (to appear) (2021).

Yiqiu Dong, Per Christian Hansen, Michiel E. Hochstenbach, and Nicolai André Brogaard Riis, *Fixing nonconvergence of algebraic iterative reconstruction with an unmatched backprojector*, SIAM Journal on Scientific Computing **41** (2019), no. 3, A1822–A1839.

Tommy Elfving and Per Christian Hansen, *Unmatched projector/backprojector pairs: Perturbation and convergence analysis*, SIAM Journal on Scientific Computing **40** (2018), no. 1, A573–A591.

Dirk A. Lorenz, Sean Rose, and Frank Schöpfer, *The randomized Kaczmarz method with mismatched adjoint*, BIT Numerical Mathematics **58** (2018), 1079–1098.

Gengsheng L. Zeng and Grant T. Gullberg, *Unmatched projector/backprojector pairs in an iterative reconstruction algorithm*, IEEE Transactions on Medical Imaging (2000).