第 28 讲 边界延拓定理

1. 利用 Schwarz 反射原理和边界延拓定理证明:单位圆盘到自身的双全纯映射必为

$$f(z) = e^{i\theta} \frac{z - a}{1 - \bar{a}z}, \ a \in \mathbb{D}, \theta \in \mathbb{R}.$$

注: 之前利用 Schwarz 引理证明过此事,此处方法不同.

2. 假设 $D,\Omega \neq \mathbb{C}$ 都是平面上的单连通区域, 边界都为简单闭曲线. 任取 ∂D 上正向排列的三点 z_1,z_2,z_3 , $\partial \Omega$ 上正向排列的三点 w_1,w_2,w_3 . 证明存在唯一双全纯映射 $\phi:D\to\Omega$, 满足边界点对应:

$$\phi(z_k) = w_k, k = 1, 2, 3.$$

3. 记圆环 $A(R) = \{1 < |z| < R\}$. 假设 $f: A(R_1) \to A(R_2)$ 双全纯,证明 f 可以延拓为同胚 $f: \overline{A(R_1)} \to \overline{A(R_2)}$.