

Module 5 of Skill Path: Ace the Java Coding Interview

Coding Interview Patterns

Module Overview

This module teaches us the underlying patterns behind common coding interview questions. By learning these essential patterns, we'll be able to assess the problem statement and unpack and answer any problem the right way. This approach was created by FAANG's hiring managers to help us prepare for the typical rounds of interviews at major tech companies like Apple, Google, Meta, Microsoft, and Amazon.

By the end of this module, we'll have the skills we need to unlock even the most challenging questions, grok the coding interview, and level up our career with confidence.

Module Objectives

- Understand the essential patterns behind common coding interview questions without having to go through endless problem sets.
- Identify the underlying pattern of each interview question by assessing the problem statement (and learn the tricks required to solve it).
- ✓ Practice your skills in a hands-on, setup-free coding environment.
- Learn to efficiently evaluate the tradeoffs between time and space complexity in different solutions.
- Develop a flexible conceptual framework for solving any question by connecting problem characteristics, solution techniques, and coding design patterns.

63% completed

Continue Learning

Content (Module 5)

Module 6 →

1. Sliding Window

Sliding Window: Introduction
Repeated DNA Sequences
Solution: Repeated DNA Sequences
Find Maximum in Sliding Window
Solution: Find Maximum in Sliding Window
Minimum Window Subsequence
O Solution: Minimum Window Subsequence
Longest Repeating Character Replacement
O Solution: Longest Repeating Character Replacement
Minimum Window Substring
Solution: Minimum Window Substring
Longest Substring without Repeating Characters
Solution: Longest Substring without Repeating Characters
Minimum Size Subarray Sum
Solution: Minimum Size Subarray Sum
Best Time to Buy and Sell Stock

2. Two Pointers

Two Pointers: Introduction

Valid Palindrome

	Solution: Valid Palindrome	
	Sum of Three Values	
>	Solution: Sum of Three Values	
	Remove nth Node from End of List	
	Solution: Remove nth Node from End of List	
	○ Sort Colors	
	○ Solution: Sort Colors	
	Reverse Words in a String	
	Solution: Reverse Words in a String	
	Valid Palindrome II	
- 1		

3. Fast and Slow Pointer

Fast and Slow Pointers: Introduction	
Happy Number	
Solution: Happy Number	
Linked List Cycle	
Solution: Linked List Cycle	
Middle of the Linked List	
Solution: Middle of the Linked List	
Circular Array Loop	
Solution: Circular Array Loop	
○ Find The Duplicate Number	
O Solution: Find The Duplicate Number	
Palindrome Linked List	
Solution: Palindrome Linked List	

4. Merge Intervals

		Merge Intervals: Introduction
		Merge Intervals
		Solution: Merge Intervals
		Insert Interval
		Solution: Insert Interval
		Interval List Intersections
		Solution: Interval List Intersections
		Employee Free Time
		Solution: Employee Free Time
	\subset	Task Scheduler
	\subset	Solution: Task Scheduler
		Meeting Rooms II
1		

5. In-place Reversal of a Linked List

In-place Reversal of a Linked List: Introduction
Reverse Linked List
Solution: Reverse Linked List
Reverse Nodes in k-Group
Solution: Reverse Nodes in k-Group
Reverse Linked List II
Solution: Reverse Linked List II
Reorder List
Solution: Reorder List
Swapping Nodes in a Linked List

Solution: Swapping Nodes in a Linked List

Reverse Nodes In Even Length Groups

Solution: Reverse Nodes in Even Length Groups

Swap Nodes in Pairs

6. Two Heaps

Two Heaps: Introduction

Maximize Capital

Solution: Maximize Capital

Sliding Window Median

Solution: Sliding Window Median

Find Median from a Data Stream

Solution: Find Median from a Data Stream

Schedule Tasks on Minimum Machines

Solution: Schedule Tasks on Minimum Machines

7. K-way merge

K-way Merge: Introduction

Merge Sorted Array

Solution: Merge Sorted Array

Kth Smallest Number in M Sorted Lists

Solution: Kth Smallest Number in M Sorted Lists

Find K Pairs with Smallest Sums

Solution: Find K Pairs with Smallest Sums

Merge K Sorted Lists

Solution: Merge K Sorted Lists

Kth Smallest Element in a Sorted Matrix

Solution: Kth Smallest Element in a Sorted Matrix

8. Top K Elements

Top K Elements: Introduction

Kth Largest Element in a Stream

Solution: Kth Largest Element in a Stream

Reorganize String

Solution: Reorganize String

K Closest Points to Origin

Solution: K Closest Points to Origin

Top K Frequent Elements

Solution: Top K Frequent Elements

Kth Largest Element in an Array

Solution: Kth Largest Element in an Array

Top K Frequent Words

9. Modified Binary Search

Modified Binary Search: Introduction

Binary Search

Solution: Binary Search

Search in Rotated Sorted Array

Solution: Search in Rotated Sorted Array

First Bad Version

Solution: First Bad Version

Random Pick with Weight

Solution: Random Pick with Weight

Find K Closest Elements

Solution: Find K Closest Elements

Single Element in a Sorted Array

Solution: Single Element in a Sorted Array

Search in Rotated Sorted Array II

10. Subsets

Subsets: Introduction

Subsets

Solution: Subsets

Permutations

Solution: Permutations

Letter Combinations of a Phone Number

Solution: Letter Combinations of a Phone Number

Generate Parentheses

Solution: Generate Parentheses

Find K-Sum Subsets

11. Greedy Techniques

Greedy Techniques: Introduction

Jump Game I

Solution: Jump Game I

Boats to Save People

Solution: Boats to Save People

Gas Stations

Solution: Gas Stations

Two City Scheduling

Solution: Two City Scheduling

Minimum Number of Refueling Stops

Solution: Minimum Number of Refueling Stops

Jump Game II

12. Backtracking

Backtracking: Introduction

N-Queens

Solution: N-Queens

Word Search

Solution: Word Search

House Robber III

Solution: House Robber III

Restore IP Addresses

Solution: Restore IP Addresses

Flood Fill

Solution: Flood Fill

Sudoku Solver

Matchsticks to Square

13. Dynamic Programming

Dynamic Programming: Introduction

0/1 Knapsack

Solution: 0/1 Knapsack

Coin Change

Solution: Coin Change

N-th Tribonacci Number

Solution: N-th Tribonacci Number

Partition Equal Subset Sum

Solution: Partition Equal Subset Sum

Counting Bits

Solution: Counting Bits

01 Matrix

Solution: 01 Matrix

House Robber II

Solution: House Robber II

Maximum Product Subarray

Solution: Maximum Product Subarray

Combination Sum

Solution: Combination Sum

Word Break

Solution: Word Break

Palindromic Substrings

Solution: Palindromic Substrings

Longest Common Subsequence

Solution: Longest Common Subsequence

O Carlie Carta latina di artica
Cyclic Sort: Introduction
○ Solution: Missing Number
First Missing Positive
Solution: First Missing Positive
○ Find The Duplicate Number
Solution: Find The Duplicate Number
○ Find the Corrupt Pair
Solution: Find the Corrupt Pair
○ Find the First K Missing Positive Numbers

15. Topological Sort

Topological Sort: Introduction	
Compilation Order	
O Solution: Compilation Order	
Alien Dictionary	
O Solution: Alien Dictionary	
Verifying an Alien Dictionary	

		O Solution: Verifying an Alien Dictionary
		○ Course Schedule II
>)	O Solution: Course Schedule II
		Ourse Schedule
		O Solution: Course Schedule
		○ Find All Possible Recipes from Given Supplies

16. Matrices

Matrices: Introduction

Set Matrix Zeros

Solution: Set Matrix Zeros

Rotate Image

Solution: Rotate Image

Spiral Matrix

Solution: Spiral Matrix

Where Will the Ball Fall

Solution: Where Will the Ball Fall

17. Stacks

Stacks: Introduction

Basic Calculator

Solution: Basic Calculator

Remove All Adjacent Duplicates In String

Solution: Remove All Adjacent Duplicates In String

Minimum Remove to Make Valid Parentheses

Solution: Minimum Remove to Make Valid Parentheses

Exclusive Execution Time of Functions

Solution: Exclusive Execution Time of Functions

Flatten Nested List Iterator

Solution: Flatten Nested List Iterator

Implement Queue Using Stacks

Solution: Implement Queue Using Stacks

Valid Parentheses

18. Graphs

Graphs: Introduction

Network Delay Time

Solution: Network Delay Time

Paths in Maze That Lead to Same Room

Solution: Paths in Maze That Lead to Same Room

Clone Graph

Solution: Clone Graph

Graph Valid Tree

Solution: Graph Valid Tree

Bus Routes

Solution: Bus Routes

19. Tree Depth First Search

Tree Depth-first Search: Introduction

Flatten Binary Tree to Linked List

Solution: Flatten Binary Tree to Linked List

Diameter of Binary Tree

Solution: Diameter of Binary Tree

Serialize and Deserialize Binary Tree

Solution: Serialize and Deserialize Binary Tree

Invert Binary Tree

Solution: Invert Binary Tree

Binary Tree Maximum Path Sum

Solution: Binary Tree Maximum Path Sum

Convert Sorted Array to Binary Search Tree

Solution: Convert Sorted Array to Binary Search Tree

Solution: Build Binary Tree from Preorder and Inorder Traversal

Build Binary Tree from Preorder and Inorder Traversal

Binary Tree Right Side View

Solution: Binary Tree Right Side View

Lowest Common Ancestor in a Binary Tree

Solution: Lowest Common Ancestor in a Binary Tree

Validate Binary Search Tree

Solution: Validate Binary Search Tree

Maximum Depth of Binary Tree

Kth Smallest Element in a BST

20. Tree Breadth First Search

Tree Breadth-first Search: Introduction

Level Order Traversal of Binary Tree

Solution: Level Order Traversal of Binary Tree

	Binary Tree Zigzag Level Order Traversal
	Solution: Binary Tree Zigzag Level Order Traversal
>)	Populating Next Right Pointers in Each Node
	Solution: Populating Next Right Pointers in Each Node
	Vertical Order Traversal of a Binary Tree
	Solution: Vertical Order Traversal of a Binary Tree
	Symmetric Tree
	Solution: Symmetric Tree
	Word Ladder
	Solution: Word Ladder
	Connect All Siblings of a Binary Tree
- 1	

21. Trie

Trie: Introduction
○ Implement Trie
○ Solution: Implement Trie
Search Suggestions System
Solution: Search Suggestions System
○ Replace Words
○ Solution: Replace Words
Design Add and Search Words Data Structure
Solution: Design Add and Search Words Data Structure
○ Word Search II
○ Solution: Word Search II
○ Lexicographical Numbers

22. Hash Maps

		Hash Maps: Introduction
> T)	Design HashMap
		Solution: Design HashMap
		Fraction to Recurring Decimal
		Solution: Fraction to Recurring Decimal
		Logger Rate Limiter
		Solution: Logger Rate Limiter
		Next Greater Element
		Solution: Next Greater Element
		Isomorphic Strings
		Solution: Isomorphic Strings
		Longest Palindrome

23. Knowing What to Track

	1
Knowing What to Track: Introduction	
O Palindrome Permutation	
O Solution: Palindrome Permutation	
○ Valid Anagram	
O Solution: Valid Anagram	
O Design Tic-Tac-Toe	
O Solution: Design Tic-Tac-Toe	
○ Group Anagrams	
O Solution: Group Anagrams	
Maximum Frequency Stack	

	O Solution: Maximum Frequency Stack	
	First Unique Character in a String	
>	O Solution: First Unique Character in a String	
	Find All Anagrams in a String	
	Solution: Find All Anagrams in a String	
	Longest Palindrome by Concatenating Two-Letter Words	
	Solution: Longest Palindrome by Concatenating Two-Letter Words	
	○ Ransom Note	

24. Union Find

○ Union Find: Introduction
Redundant Connection
Solution: Redundant Connection
○ Number of Islands
O Solution: Number of Islands
Most Stones Removed with Same Row or Column
O Solution: Most Stones Removed with Same Row or Column
Longest Consecutive Sequence
O Solution: Longest Consecutive Sequence
Last Day Where You Can Still Cross
O Solution: Last Day Where You Can Still Cross
Regions Cut by Slashes
O Solution: Regions Cut by Slashes
○ Minimize Malware Spread
O Solution: Minimize Malware Spread
○ Accounts Merge

/14/24, 10:28 PM		Coding Interview Patterns -	- Learn Interactively
Solution: Acco	ounts Merge		
○ Minimize Malv	ware Spread		
Solution: Mini	mize Malware Spread		
○ Evaluate Divis	sion		
25. Custom Data St	ructures		
Custom Data	Structures: Introduction		
○ Snapshot Arra	ау		
O Solution: Sna	oshot Array		
○ Time-Based k	ey-Value Store		
O Solution: Time	e-Based Key-Value Store		
○ Implement LF	U Cache		
Solution: Impl	ement LRU Cache		
○ Insert Delete	GetRandom O(1)		
O Solution: Inse	rt Delete GetRandom O(1)		
○ Min Stack			
O Solution: Min	Stack		
○ LFU Cache			
26. Bitwise Manipu	lation		
○ Bitwise Manip	oulation: Introduction		
○ Find the Diffe	rence		
O Solution: Find	the Difference		
○ Complement	of Base 10 Number		
Solution: Com	plement of Base 10 Numb	per	

	Flipping an Image	
	Solution: Flipping an Image	
>)	Single Number	
	Solution: Single Number	
	○ Two Single Numbers	
	O Solution: Two Single Numbers	
	Encode and Decode Strings	
	Solution: Encode and Decode Strings	
	○ Reverse Bits	

27. Challenge Yourself

- 1	
	Challenge Yourself: Introduction
	○ Shortest Bridge
	Number of Connected Components in an Undirected Graph
	Pacific Atlantic Water Flow
	○ Contains Duplicate
	○ Two Sum
	Find Minimum in Rotated Sorted Array
	Non-overlapping Intervals
	Largest Rectangle in Histogram
	Subtree of Another Tree
	○ Sort List
	○ Number of 1 Bits
	○ Container With the Most Water

	Evaluate Reverse Polish Notation
	○ 4Sum
>)	○ Loud and Rich
	Product of Array Except Self
	Longest Increasing Subsequence
	Sum of Two Integers
	○ Majority Element
	○ Unique Paths
	○ Longest Palindromic Substring
	O Permutations II
	Number of Provinces
	○ Linked List Cycle II
	Minimum Flips to Make the Binary String Alternate
	○ Lemonade Change
	○ House Robber
	○ Find All Numbers Disappeared in an Array
	○ Find All Duplicates in an Array
	○ Same Tree
	O Design In-Memory File System
	O Design File System
	Asteroid Collision
	 Rotting Oranges
	Maximum Subarray
	O Top K Frequent Words
	Multiply Strings

28. Conclusion

Final Remarks	
---------------	--

Learn in-demand tech skills in half the time

PRODUCTS	TRENDING	PRICING
	TOPICS	
Courses		For Individuals
	Learn to Code	
CloudLabs New		Try for Free
	Tech Interview Prep	
Skill Paths		
	Data Science	
Projects		
	Machine Learning	
Assessments		
	GitHub Students	
	Scholarship	
	Early Access Courses	

CONTRIBUTE RESOURCES ABOUT US

Become an Author Blog Our Team

Become an Affiliate Webinars Careers Hiring

Answers

Questions

Frequently Asked

Contact Us

Earn Referral Credits

Press

Privacy Policy

Cookie Policy

Cookie Settings

Terms of Service

Business Terms of

Service

Data Processing

Agreement

Copyright ©2024 Educative, Inc. All rights reserved.