

Introduction to

IPSO Smart Objects

Jaime Jiménez, Ericsson Research, IPSO Smart Objects co-chair.

June 15th, 2015

Problems to solve in IoT

Interoperability

- Software's interaction with physical resources.
- Device independence from software management and vendors.
- -Discovery, Management, Reporting, Security, Authorization.

Scalability

- -Billions of devices, users, connections...
- Billions of interactions.

> Reusability and modularity

- -Software, networks, protocols, data models.
- In a vertical segment, across vendors.
- Across diverse vertical segments.

> Permissionless Innovation

-Enable anyone to participate and innovate.

- Developed by IP for Smart Objects (IPSO) Alliance. In the Smart Objects Working Group.
- Semantic Interoperability across IoT devices and applications.
- > Based on LWM2M Object Model.
- > Reusable Object IDs and Resource IDs.
- > Transport Protocol Independent (CoAP, LWM2M, MQTT, HTTP...) if support addressing, content formats and data types.
- > Encoding Independent (JSON, TLV, SenML...)
- > Basic Objects represent simple sensors and actuators.
- > Basic Starter Pack published on 2014 (Expansion Pack upcoming).
- > Tested during IPSO Interoperability test on May 2015 (ARM, Ericsson, Intel, SICS, Yanzi, TUT ...).

IPSO Smart Object Structure

- > Reusable resource and object IDs
 - Common definitions for concepts
 - Map to semantic terms e.g. temperature, currentValue
 - IDs are registered with the OMNA
- Usable in different transport protocols that support
 - -URI Addressing
 - (/home/weather/3303/0/5700)
 - Data Types
 - Content Formats
 - –RWX Operations

Example: IPSO Humidity Sensor

Object	Object ID	Object URN	Multiple Instances?	Description
IPSO Humidity	3304	urn:oma:lwm2m:ext:3304	Yes	Relative humidity sensor, example units = %

Resource Name	Resource ID	Access Type	Multiple Instances?	Mandatory	Туре	Range or Enumeration	Units	Descriptions
Sensor Value	5700	R	No	Mandatory	Float			Last or Current Measured Value from the Sensor
Units	5701	R	No	Optional	String			Measurement Units Definition e.g. "Cel" for Temperature in Celsius.
Min Measured Value	5601	R	No	Optional	Float	Same as Measured Value	Same as Measured Value	The minimum value measured by the sensor since power ON or reset
Max Measured Value	5602	R	No	Optional	Float	Same as Measured Value	Same as Measured Value	The maximum value measured by the sensor since power ON or reset
Min Range Value	5603	R	No	Optional	Float	Same as Measured Value	Same as Measured Value	The minimum value that can be measured by the sensor
Max Range Value	5604	R	No	Optional	Float	Same as Measured Value	Same as Measured Value	The maximum value that can be measured by the sensor
Reset Min and Max Measured Values	5605	Е	No	Optional	Opaque			Reset the Min and Max Measured Values to Current Value

- > UPnP refactoring from SOAP to REST.
- > IETF 93 Bits and Bites.
- ✓ Draft Smart Object Data Model Design Guide @done (15-03-30)
- ✓ Draft Smart Object Expansion Pack for Basic Objects @done (15-04-30)
- ✓ Set up test servers for IPSO objects (LWM2M + TLV payload) @done (15-06-15)
- ☐ Draft Domain Specific Objects reference designs @due (mid 2015)
- ☐ Publish Smart Object Data Model Design Guided @due(15-07-31)
- ☐ Publish Smart Object Expansion Pack for Basic objects @due(15-07-31)
- ☐ Publish Smart Object Expansion Pack for Composite Objects @due(15-07-31)
- ☐ Publish Smart Object Expansion Pack for Reference Devices @due(15-07-31)

Next Steps

Activities

- -Continue Working with Smart Objects: Expansion Pack, Composite Objects, Linked Objects.
- -Collaboration with other IoT Interest Groups like UPnP, IIC, OIC.
- –Work on related Standards organizations: IETF CoRE CoAP, OMA DM -LWM2M.
- -Prototyping and testing (IETF 93, Bits and Bites, 2nd IPSO Interop, ...)

> Focus Area

-IPSO Smart Objects are meant to be very generic.

