

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

pose the second and fourth to be taken somewhere upon the lines BC and EF, respectively.

Put OC=a, OA=x, OD=y, $\angle OAC=\theta$, $\angle IOC=\phi$, $\angle ODK=\psi$, and $\angle KOF=\omega$.

Then $a\cos\phi = x\sin\theta$, and $a\cos\omega = y\sin\psi$.

If either E or F is upon the arc HG, the quadrilateral formed by joining the extremities of the chords will contain the center of the circle.

Since the arc HG=the arc CB, the probability of this is $(\phi + \omega)/\pi$.

If x>0 and < a the chance that the first point is taken between x and x+dx is $2\pi x dx/a^2\pi = 2x dx/a^2$.

If $\theta > 0$ and $< \frac{1}{2}\pi$ the chance that the second point is taken between the line BC and a second line making at A the angle $d\theta$ is $\frac{1}{2}(AC^2 + AB^2)d\theta/\frac{1}{2}a^2\pi = 2[a^2 + x^2(1 - 2\sin^2\theta)]d\theta/a^2\pi = 2(1 - 2\cos^2\phi + \cos^2\phi \csc^2\theta)d\theta/\pi$.

If $\psi > 0$ and $< \frac{1}{2}\pi$ the chance that the fourth point is taken between the line EF and a second line making at D the angle $d\psi$ is $2(1-2\cos^2\omega+\cos^2\omega\csc^2\psi)d\psi/\pi$.

If we suppose θ constant while x and ϕ vary, $xdx = -a^2 \sin\phi \cos\phi \csc^2\theta d\phi$. When x = 0, $\phi = \frac{1}{2}\pi$, and when x = a, $\phi = \frac{1}{2}\pi - \theta$. Hence the limits of integration for ϕ are $\frac{1}{2}\pi - \theta$ and $\frac{1}{2}\pi$. If we integrate first with respect to θ , the limits for θ are $\frac{1}{2}\pi - \phi$ and $\frac{1}{2}\pi$, while for ϕ they are 0 and $\frac{1}{2}\pi$.

In like manner we may substitute $-a^2\sin\omega\cos\omega\csc^2\psi d\omega$ for ydy and integrate between limits $\frac{1}{2}\pi - \omega$ and $\frac{1}{2}\pi$ for ψ , and between 0 and $\frac{1}{2}\pi$ for ω .

Hence the required probability is

$$P = \frac{16}{\pi^3} \int_0^{\frac{1}{2}\pi} \int_0^{\frac{1}{2}\pi} \int_{-\frac{1}{2}\pi-\phi}^{\frac{1}{2}\pi} \int_{-\frac{1}{2}\pi-\omega}^{\frac{1}{2}\pi} (\phi + \omega) (1 - 2\cos^2\phi + \cos^2\phi \csc^2\theta) \times \frac{16}{\pi^3} \int_0^{\frac{1}{2}\pi} \int_0^{\frac{1}{2}\pi} \int_0^{\frac{1}{2}\pi} \int_0^{\frac{1}{2}\pi} \int_0^{\frac{1}{2}\pi} \int_0^{\frac{1}{2}\pi} (\phi + \omega) (1 - 2\cos^2\phi + \cos^2\phi \csc^2\theta) \times \frac{16}{\pi^3} \int_0^{\frac{1}{2}\pi} \int_0^{\frac{1}{2}\pi} \int_0^{\frac{1}{2}\pi} (\phi + \omega) (1 - 2\cos^2\phi + \cos^2\phi \csc^2\theta) \times \frac{16}{\pi^3} \int_0^{\frac{1}{2}\pi} (\phi + \omega) (1 - 2\cos^2\phi + \cos^2\phi + \cos$$

 $(1-2\cos^2\omega+\cos^2\omega\csc^2\psi)\sin\phi\cos\phi\csc^2\theta\sin\omega\cos\omega\csc^2\psi d\phi d\omega d\theta d\psi$

$$= \frac{256}{9\pi^3} \int_0^{\frac{1}{2}\pi} \int_0^{\frac{1}{2}\pi} (\phi + \omega) \sin^4 \phi \sin^4 \omega \, d\phi \, d\omega$$

$$= \frac{4}{9\pi^3} \int_0^{\frac{1}{2}\pi} (12\pi\phi + 3\pi^2 + 16) \sin^4 \phi \, d\phi = \frac{1}{2} + (8/3\pi^2) = .77019.$$

MISCELLANEOUS.

55. Proposed by J. M. COLAW, A. M., Monterey, Va.

Multiply 6 by 4. Is the problem legitimate when both symbols represent pure number?

[Note. "A measured or numbered quantity may be divided into a number of parts, or taken a number of times; but no number can be multiplied or divided into parts."—McLellan and Dewey's Psychology of Number. "The astounding thesis is maintained that number is not a magnitude, does not possess quantity at all, and that 'no number can be multiplied or divided into parts'."—Lefevre's Number and Its Algebra.]

I. Comment by DAVID EUGENE SMITH, Ph. D., Professor of Mathematics, Michigan State Normal School, Ypsilanti, Mich.

This question seems to me to have no interest to mathematicians. It simply means that somebody has set up a narrow definition of multiplication and has then said, "Your work is not multiplication because it does not fit my definition." I expressed my humble opinion in the Monthly some time ago when the antiquated definition of division was brought up to prove that it was impossible to divide \$10 by 2. Such narrow limitations seem to me utterly nonsensical.

In a similar sense we cannot multiply by -1, and we cannot have "imaginary numbers," and 1 is not a number, etc., etc. Mathematical progress has always been made the more difficult because somebody has insisted on hanging on to some antiquated definition.

What do these people who say that we cannot multiply 2 by 3 say to some such simple formula as $e^{\pi i} = -1$? I suppose they say that e, π , i, and -1 have no existence.

II. Comment by G. B. M. ZERR, A. M., Ph. D., President and Professor of Mathematics, The Russell College, Lebanon, Va.

There may be a modern idea that since neither 6 nor 4 is a numbered quantity, the operation is impossible. If it were possible to get the evidence of all the mathematicians, I am sure not one could be found who did not learn his multiplication table, in fact, get his aptness in numbers by the same process as given in the problem. There may be some who claim otherwise but I would even doubt their claim.

 $6\times4=24$ is good arithmetic. It seems a pity that vandals should make incursions upon the sacred shrines of Newton, La Place, Pierce, and other noted men of numbers, and so desecrate their immortal works, as to try and mistify their teachings. The God of Mathematics will not permit it.

III. Remarks by J. K. ELLWOOD, A. M., Principal of the Colfax School, Pittsburg, Pa.

Do $4 \times 6 = 24$? Can 6 be multiplied by 4? Six what? If 6 units of quantity, yes; but if not a magnitude,—well, what then is it? "Six" apart from the universe of space, time, and matter, suggests to the mind—what? The "how many"? The ratio of the "how many" to the unit? Six in the abstract—a pure number—can not, in an arithmetical sense, be multiplied by any abstraction. In an algebraic sense, $4 \times 6 = 24$, just as $x \times x = x^2$. That is, we operate with symbols, neglecting the realities represented. If two abstract numbers can be multiplied one by the other, why not two concrete numbers, as feet × feet = square feet?

42. Proposed by E. B. ESCOTT, Cambridge, Mass.

To find triangles whose sides and median lines are commensurable.

II. Solutions communicated to "L' Intermediaire des Mathematiciens" (January, 1898) by the PROPOSER. Selected and translated by J. M. COLAW, A. M., Monterey, Va.

First Solution. By Chas. Gill (New York, 1848).

 $x=t[1-(\cos A+\sin A)(\cos B+\sin B)], \ y=t[\cos B-\sin B+(\cos A-\sin A)(\cos B+\sin B)], \ z=t[\cos A-\sin A+(\cos B-\sin B)(\cos A+\sin A), \ \text{whence there exists one of the four relations following:}$