数季电路与逻辑设计

Digital circuit and logic design

● 第七章 中规模通用集成电路及其应用

主讲教师 何云峰

■提纲

多谐振荡器

施密特触发器

单稳态触发器

■ 5G555应用

单稳态触发器

只有一个稳态

在触发条件下, 电路翻转到暂稳态

一段时间后,电路自动返回到稳态

■ 单稳态触发器

输入			比较器输出		输 出	
V_{TH}	$V_{\overline{TR}}$	$\overline{R_D}$	$R(C_1)$	$S(C_2)$	OUT	放电三 极管T
d	d	0	d	d	0	导通
$<\frac{2}{3}V_{CC}$	$<\frac{1}{3}V_{CC}$	1	1	0	1	截止
$<\frac{2}{3}V_{CC}$	$>\frac{1}{3}V_{CC}$	1	1	1	不变	不变
$>\frac{2}{3}V_{CC}$	$>\frac{1}{3}V_{CC}$	1	0	1	0	导通

输入			比较器	翻出	出 输出	
V_{TH}	$V_{\overline{TR}}$	$\overline{R_D}$	$R(C_1)$	$S(C_2)$	OUT	放电三 极管T
d	d	0	d	d	0	导通
$<\frac{2}{3}V_{CC}$	$<\frac{1}{3}V_{CC}$	1	1	0	1	截止
$<\frac{2}{3}V_{CC}$	$>\frac{1}{3}V_{CC}$	1	1	1	不变	不变
$>\frac{2}{3}V_{CC}$	$>\frac{1}{3}V_{CC}$	1	0	1	0	导通

V_i 输入高电平

三极管原来是导通状态

输出为0

C放电, Vc下降

电路保持状态不变

输入			比较器	器输出 输出		出
V_{TH}	$V_{\overline{TR}}$	$\overline{R_D}$	$R(C_1)$	$S(C_2)$	OUT	放电三 极管T
d	d	0	d	d	0	导通
$<\frac{2}{3}V_{CC}$	$<\frac{1}{3}V_{CC}$	1	1	0	1	截止
$<\frac{2}{3}V_{CC}$	$>\frac{1}{3}V_{CC}$	1	1	1	不变	不变
$>\frac{2}{3}V_{CC}$	$>\frac{1}{3}V_{CC}$	1	0	1	0	导通

V_i 输入高电平

三极管原来是截止状态

C充电,C上电压上升

 $V_{\rm c} > \frac{2}{3} V_{\rm CC}$ 时,输出变为0,C开始放电

C上电压下降, 电路保持状态不变

输入			比较器输出		输 出	
V_{TH}	$V_{\overline{TR}}$	$\overline{R_D}$	$R(C_1)$	$S(C_2)$	OUT	放电三 极管T
d	d	0	d	d	0	导通
$<\frac{2}{3}V_{CC}$	$<\frac{1}{3}V_{CC}$	1	1	0	1	截止
$<\frac{2}{3}V_{CC}$	$>\frac{1}{3}V_{CC}$	1	1	1	不变	不变
$>\frac{2}{3}V_{CC}$	$>\frac{1}{3}V_{CC}$	1	0	1	0	导通

V_i 持续输入低电平

$$V_{\overline{TR}} < \frac{1}{3} V_{CC}$$
, S=0

C充电,C上电压上升

$$V_{TH} > \frac{2}{3} V_{CC}$$
, R=0

数字电路 与逻辑设计

单稳态触发器

输入			比较器	器输出 输出		出
V_{TH}	$V_{\overline{TR}}$	$\overline{R_D}$	$R(C_1)$	$S(C_2)$	OUT	放电三 极管T
d	d	0	d	d	0	导通
$<\frac{2}{3}V_{CC}$	$<\frac{1}{3}V_{CC}$	1	1	0	1	截止
$<\frac{2}{3}V_{CC}$	$>\frac{1}{3}V_{CC}$	1	1	1	不变	不变
$>\frac{2}{3}V_{CC}$	$>\frac{1}{3}V_{CC}$	1	0	1	0	导通

工作原理

	稳态	暂稳态
$V_{ m i}$		
V_{C}		
$V_{\rm O}$		
放电三极管		

脉冲宽度

脉冲宽度的计算和调整

暂稳态持续时间,输出脉冲宽度tw

 $t_W \approx 1.1RC$

脉冲宽度可以从几微秒到几分钟

用于脉冲整形、定时和延迟

数季电路与逻辑设计

Digital circuit and logic design

● 谢谢,祝学习快乐!

主讲教师 何云峰

