

Лабораторная работа №1

по дисциплине: Системы автоматизированного проектирования

Вариант: 19(1)

Выполнил: Неграш Андрей, Р33301

Преподаватель: Поляков Владимир Иванович

Оглавление

Задание	3
Ход работы	3
Оптимальное удельное поверхностное сопротивление	3
Выбор материала резистивной плёнки	
Определение коэффициента формы	4
Определение ширины прямоугольных резисторов	
Определение длины прямоугольных резисторов	5
Расчёт геометрических размеров резистора	5
Слои	5
Схема	6

Задание

Спроектировать собственную плату гибридной микросхемы согласно варианту:

R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇
1500m ±10%	500Ом ±10%	1кОм ±20%	5.4кОм ±20%	20кОм ±10%	30кОм ±10%	14кОм ±10%
0.01 Вт	0.02 Вт	0.01 Вт	0.01 Вт	0.003 Вт	0.003 Вт	0.001 Вт

Ход работы

Оптимальное удельное поверхностное сопротивление

Оптимальное удельное поверхностное сопротивление рассчитывается по формуле:

$$\rho_{\text{oht}} = \sqrt{\frac{\sum_{i=1}^{n} R_i}{\sum_{i=1}^{n} R_i^{-1}}}$$

Для моих исходных данных:

$$\rho_{\text{опт}} = \sqrt{\frac{150 + 500 + 1000 + 5400 + 20000 + 30000 + 14000}{\frac{1}{150} + \frac{1}{500} + \frac{1}{1000} + \frac{1}{5400} + \frac{1}{20000} + \frac{1}{30000} + \frac{1}{14000}}} = \sqrt{\frac{71050}{0.010007}} = 2664.64$$

Выбор материала резистивной плёнки

На основе данных приведённой ниже таблицы, в качестве материала для резистивной плёнки был выбран ближайший по вычисленному ранее оптимальному удельному поверхностному сопротивлению. Этим материалом является Сплав РС – 3001.

		Диапазон	Удельная	
Наименование	$oldsymbol{ ho}_{\square}, \mathrm{Om}/_{\square}$	значений	мощность	
материала		сопротивления,	рассеяния W_0 ,	
		Ом	B_T/c_M^2	
Сплав РС - 3001	800 - 3000	50 - 30000	2	
Сплав РС - 3710	100 - 2000	10 - 20000	2	
Кермет К-50С	1000 - 10000	100 - 100000	2	
Специальный	350 - 500	100 - 50000	2	
сплав №3	330 300	100 30000	2	
Тантал ТВЧ	10 - 100	1 - 1000	3	
Нихром	50 - 300	5 - 3000	1	
Хром	500	50 - 30000	1	

Определение коэффициента формы

Определим коэффициент формы для каждого резистора по формуле: $k_{\Phi i} = R_i/
ho_{ ext{ont}}$

Результаты представлены в виде таблицы:

R_i	$R_i/ ho_{ ext{ont}}$	$k_{\Phi i}$	Форма
R_1	150 / 2664.64	0.056	прямоуг., l < b
R_2	500 / 2664.64	0.188	прямоуг., l < b
R_3	1000 / 2664.64	0.375	прямоуг., l < b
R_4	5400 / 2664.64	2.027	прямоуг., l > b
R_5	20000 / 2664.64	7.506	прямоуг., I > b
R_6	30000 / 2664.64	11.259	меандр
R_7	14000 / 2664.64	5.254	прямоуг., l > b

Определение ширины прямоугольных резисторов

Расчетное значение ширины прямоугольного резистора b является максимальным из $b_{\text{точн}}$, определяемого заданной точностью изготовления и b_W , высчитываемого по формуле:

$$b_W = \sqrt{\frac{\rho_{\text{ont}} * W}{R * W_0}}$$

Значение b_W округляется в большую сторону до десятых.

Результаты вычислений для резисторов из задания представлены в таблице:

R_i	$b_{ m \scriptscriptstyle TOYH}$	b_W	b
R_1	0.3 мм	0.3 mm	0.3 мм
R_2	0.3 мм	0.3 mm	0.3 мм
R_3	0.2 mm	0.2 mm	0.2 мм
R_4	0.2 мм	0.1 mm	0.2 мм
R_5	0.3 мм	0.1 mm	0.3 мм
R_7	0.3 мм	0.1 mm	0.3 мм

Определение длины прямоугольных резисторов

Высчитаем длину I для резисторов и проверим их погрешность. Результаты вычислений приведены в таблице:

R_i	$l_{ m pac4}$	$\Delta R'$	ΔR
R_1	0.1 mm	0%	10%
R_2	0.1 mm	0%	10%
R_3	0.1 mm	0%	20%
R_4	0.2 mm	0%	20%
R_5	0.8 мм	0%	10%
R_7	0.5 mm	0%	10%

Все длины резисторов не требуют пересчётов.

Расчёт геометрических размеров резистора

Резистор R_6 имеет коэффициент формы 11.259, что больше 10, а значит он имеет форму меандра и требует расчёта своих параметров.

$$R_6 = 30000 \ \mathrm{Om}$$

$$R_{\mathrm{yro}\pi} = 2,\!55 * 2664,\!64 = 6794,\!831 \ \mathrm{Om}$$

$$R = R_{\mathrm{yro}\pi} * n_{\mathrm{yro}\pi} + \rho_{\mathrm{oht}} * \frac{l_{\Sigma}}{b} = 6794,\!831 * n + 26646,\!4 * l = 30000$$

Пусть количество углов будет равно 3, тогда суммарная длина меандра без учёта углов должна составлять 0.36 мм, что округлим до 0.4 мм.

Таким образом наш резистор в форме меандра будет выглядеть так:

Слои

В связи с отсутствием на моей схеме конденсаторов, всего будет 2 слоя – резистивный и защитный.

Схема

