Podstawy Fizyki

dla Informatyki

Stanisław Drożdż Instytut Informatyki PK

Prędkość

Zależność przemieszczenia od czasu x(t)

Definicje

Prędkość średnia:

$$v_{\text{sr}} = \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1}$$

Prędkość chwilowa:

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

Definicja i interpretacja pochodnej

Interpretacja geometryczna pochodnej funkcji y = f(x): $f'(x_0) = \operatorname{tg} \alpha$

Definicja

Pochodna f' funkcji f(x) w punkcie x_0 jest granicą ilorazu różnicowego:

$$f'(x_0) = \frac{df}{dx}(x_0) = \lim_{x \to x_0} \frac{\Delta f}{\Delta x}$$

Oznaczenia

$$f(x)$$
 — funkcja

$$\Delta f$$
, Δx — różnice

Podstawowe wzory pochodnych

funkcja	pochodna
stała <i>C</i>	0
e^{x}	e^{x}
x ⁿ	nx^{n-1}
ln x	χ^{-1}
sin x	COS X
cos X	— sin <i>x</i>
C f(x)	C f'(x)
f(x) + g(x)	f'(x) + g'(x)
f(x)g(x)	f'(x)g(x) + f(x)g'(x)
f[g(x)]	f'[g(x)]g'(x)

Obliczenia pochodnych

Przykład

$$f(x) = ax^n = \frac{5}{\sqrt{x}} = 5x^{-1/2}$$

$$f'(x) = anx^{n-1} = 5(-\frac{1}{2})x^{-3/2} = -\frac{5}{2}x^{-3/2}$$

Przykład

$$f(x)g(x) = \sin(ax)e^{-bx}$$

$$[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)$$

$$= a\cos(ax)e^{-bx} + \sin(ax)(-b)e^{-bx}$$

$$= [a\cos(ax) - b\sin(ax)]e^{-bx}$$

Ruch przyspieszony

Przyspieszenie średnie:

$$a_{\mathsf{sr}} = \frac{\Delta v}{\Delta t} = \frac{v_2 - v_1}{t_2 - t_1}$$

Przyspieszenie chwilowe:

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt}$$

 Przyspieszenie jest drugą pochodną przemieszczenia względem czasu:

$$a = \frac{d}{dt}v = \frac{d}{dt}\left(\frac{dx}{dt}\right) = \frac{d^2x}{dt^2}$$

• Jednostka:
$$[a] = m/s^2$$

Ruch ze stałym przyspieszeniem

Zakładamy, że w chwili t = 0 $v = v_0$. Zatem:

$$a = a_{\text{sr}} = \frac{V - V_0}{t}$$

i stąd

$$v = v_0 + at$$

Ruch ze stałym przyspieszeniem

Zakładając, że położenie $x = x_0$ w chwili t = 0, z definicji prędkości średniej otrzymujemy:

$$x = x_0 + v_{sr}t$$

Dla prędkości zmieniającej się liniowo w czasie mamy:

$$v_{\mathsf{\acute{s}r}} = \frac{1}{2}(v_0 + v)$$

Z powyższych równań i wzoru 1 wynika:

Wzór 2
$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$

Sprawdzenie poprzez użycie pochodnych:

$$v = \frac{dx}{dt} = 0 + v_0 + \frac{1}{2}2at = v_0 + at$$

Równania ruchu ze stałym przyspieszeniem

Eliminując różne wielkości w poprzednich równaniach otrzymujemy:

Równanie	
$v = v_0 + at$	
$x - x_0 = v_0 t + \frac{1}{2} a t^2$	
$v^2 = v_0^2 + 2a(x - x_0)$	
$x - x_0 = \frac{1}{2}(v_0 + v)t$	
$x - x_0 = vt - \frac{1}{2}at^2$	

"Brakująca" wielkość		
$x-x_0$		
V		
t		
а		
<i>v</i> ₀		

Spadek swobodny

Wartość bezwzględna przyspieszenia ziemskiego przy powierzchni Ziemi jest równa $g = 9.8 \text{ m/s}^2$

- Ciała poruszają się z tym samym przyspieszeniem, jeśli wyeliminować opór powietrza
- $x = x_0 + v_0 t \frac{1}{2}gt^2$