Algebraic Number Theory

tuyaux.winak.be/index.php/Algebraic_Number_Theory

Algebraic Number Theory

Richting	<u>Wiskunde</u>
Jaar	<u>MWIS</u>

November 2017

- 1. Prove or give a counterexample:
 - An integrally closed domain is also factorial.
 - Assume AA a Dedekind domain. Every nonzero element of AA is contained in only finitely many ideals of AA.
 - A ZZ-submodule of QQ is also a fractional ideal of ZZ.
- 2. Which of the following rings are Dedekind domains?

$$Z[X],C,Z[5-\sqrt{1},Z[6-\sqrt{1}],R[X2,X3]$$

- 3. Consider the equation x2+y2=7z2x2+y2=7z2. Show that it has no nontrivial integer solution.
- 4. Assume $\omega \in C\omega \in C$ such that $\omega 5=1(\neq \omega)\omega 5=1(\neq \omega)$ and let $K=Q(\omega)K=Q(\omega)$. What is the discriminant of KK? Furthermore, prove that $(1,\omega,\omega 2,\omega 3)(1,\omega,\omega 2,\omega 3)$ is an integral basis of KK.

Categorieën:

- Wiskunde
- MWIS