Independent Component Analysis

What the hell is this?

Identifying independent components – How?

Definition

• A technique used in signal processing to extract independent sources that are **linearly combined** across multiple sensors

How does this apply with EEG?

- EEG → Multiple signals combined → problem
- ICA → untangle original signals
 - Separate artifacts embedded in the data
 - Artifacts usually independent of each other

Independent Components in EEG

eeg_ica = eeg.copy()
ica = mne.preprocessing.ICA(n_components=0.99,
method='fastica', random_state=99)
ica.fit(eeg_ica)

ica.plot_components()

mne.Epochs(eeg, reject_by_annotation=True)

Independent Components in EEG

ica.plot_sources(eeg_ica)
ica.apply_ica(eeg_ica)

The three main characteristics of ICA

- Source Separation → distinguish and isolate independent sources from a mixed signal
- Independence → each signal component occurs independently → they do not influence each other
- Non-Gaussian → sudden and unpredictable, rare event
 - Data distribution does not follow the normal bellshaped curve
 - Irregularity in EEG signals

ICA steps: it is all about matrix transformations!

- EEG Data → amplitude changes over time, across all 64 electrodes → a matrix
- · Pre-processing:
 - Centering
 - Data whitening (equalizing signal importance)
- Applying ICA:
 - · Component extraction
 - Component selection
- Reconstruction of signal (blending the components)

Essence of linear algebra by 3Blue1Brown

Applying ICA

- PCA to identify spatial patterns
- Linear decomposition of signal

$$X = egin{bmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 9 \end{bmatrix}$$
 $W = egin{bmatrix} 0.5 & 0.3 & 0.2 \ 0.1 & 0.7 & 0.4 \ 0.4 & 0.6 & 0.8 \end{bmatrix}$

- Maximization of independence

 using a demixing matrix
- Component identification
 - Non Gaussian
 - Each component has its own
- Reconstruction of signal

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \cdot \begin{pmatrix} 0.5 & 0.3 & 0.2 \\ 0.1 & 0.7 & 0.4 \\ 0.4 & 0.6 & 0.8 \end{pmatrix} = \begin{pmatrix} \frac{19}{10} & \frac{7}{2} & \frac{17}{5} \\ \frac{49}{10} & \frac{83}{10} & \frac{38}{5} \\ \frac{79}{10} & \frac{131}{10} & \frac{59}{5} \end{pmatrix}$$