МИНИСТЕРСТВО ЦИФРОВОГО РАЗВИТИЯ, СВЯЗИ И МАССОВЫХ КОММУНИКАЦИЙ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный университет телекоммуникаций им. проф. М. А. Бонч-Бруевича»

им. проф. м. л. дон т-друсын тал				
Кафедра Защищенных систем связи Дисциплина «Основы криптографии с открытыми ключами»				
Лабораторная работа № 11				
СИСТЕМА ЭЛЕКТРОННОГО ГОЛОСОВАНИЯ НА ОСНОВЕ ГОМОМОРФНЫХ СВОЙСТВ КРИПТОСИСТЕМЬ ПЭЙЕ				
Выполнил: ст. г. ИКТЗ-8				
Миколаени М. С				

Яковлев В. А.

Проверил:

Цель лабораторной работы:

Изучение принципов построения системы электронного голосования на основе криптосистемы Пэйе и анализ выполнения требований по обеспечению ее безопасности.

Исходные данные:

Вариант 15

Избиратель	B1	B2	В3	B4	В5	Голос (m)
	(10°)	(10¹)	(10²)	(10³)	(104)	
A1			V			m=100
A2	V				V	m=10001
A3	V				V	m=10001
A4	V			V		m=1001
A5	V			V		m=1001
A6			V			m=100
Итог:	4	0	2	2	2	

$$Nv = 6$$
, $Nc = 5$

Основание системы счисления b = Nv + 1 = 7

Выполнение работы:

Генерация ключей:

Максимальное число сообщений, которые можно зашифровать

$$m_{max} = 10^4 + 10^3 = 11000$$

Следовательно, максимально возможная сумма всех голосов

$$T_{max} = Nv * m_{max} = 6 * 11000 = 66000$$

По условию
$$n > T_{\text{max}}$$
; $n > 66000$

Для генерации ключа выберем случайным образом 2 простых больших числа

$$p = 263$$
 и $q = 433$, где $gcd(pq, (p-1)(q-1)) = 1$

Вычисляем
$$n = 263 \times 433 = 113879$$
, $n^2 = 12968426641$

$$\lambda = lcm(p-1, q-1) = lcm(262,432) = 56592$$

Пусть
$$\alpha = 13$$
, $\beta = 11$

$$g = (\alpha n + 1)\beta^{n} mod n^{2} = (13 * 113879 + 1)11^{113879} mod 113879^{2}$$
$$= 2714779336$$

$$\mu = \left(L(g^{\lambda} mod \ n^2)\right) - 1 \ mod \ n = \quad ((2714779336^{56592} \ mod \ 12968426641 - 1/113879)^{-1} mod \ 113879 = 52422$$

Шифрование:

Зашифруем сообщения, содержащие выбор избирателей: $E(m_i)=c_i=g^{mi}\times r_i^n mod\ n^2=2714779336^{mi}\times r_i^{113879} mod\ 12968426641\ r\in Z_n^*$

Избиратель	Случайное	Голос (m)	Зашифрованное значение
	число		голоса (c _i)
	(r _i)		
A1	7	100	2056971025
A2	16	10001	882704169
A3	13	10001	12874601278
A4	21	1001	5239906734
A5	11	1001	7131914147
A6	9	100	574084670
Подсчет:		22204	

 $\begin{array}{l} c_1 = 2714779336^{100} * 7^{113879} mod \ 12968426641 = 2056971025 \\ c_2 = 2714779336^{10001} * 16^{113879} mod \ 12968426641 = 882704169 \\ c_3 = 2714779336^{10001} * 13^{113879} mod \ 12968426641 = 12874601278 \\ c_4 = 2714779336^{1001} * 21^{113879} mod \ 12968426641 = 5239906734 \\ c_5 = 2714779336^{1001} * 11^{113879} mod \ 12968426641 = 7131914147 \\ \end{array}$

 $c_6 = 2714779336^{100} * 9^{113879} mod 12968426641 = 574084670$

Вычислим произведение криптограмм:

$$T = \prod_{i=1}^{Nv} c_i mod n^2$$

$$= (2056971025 * 882704169 * 12874601278 * 5239906734$$

$$* 7131914147 * 574084670) mod 12968426641$$

$$= 8859988450$$

Дешифрование:

$$(T) = L(T^{\lambda} \mod n^{2}) \times \mu \mod n$$

$$= \left(\frac{\left(8859988450^{56592} \mod 12968426641\right) - 1}{113879}\right)$$

$$*52422 \mod 113879 = 22204$$

Таким образом, подсчет зашифрованных голосов дает сумму всех голосов. Для определения победителя голосования необходимо преобразовать получившееся значение в числовую форму, представленную в начале выборов. В данном случае сервер для подсчетов голосов работает с десятичными числами, поэтому перевод не обязателен.

$$22204 = 2 * 10^4 + 2 * 10^3 + 2 * 10^2 + 0 * 10^1 + 4 * 10^0.$$

В силу гомоморфности криптосистемы индекс максимального элемента результирующего вектора и будет индексом победившего кандидата. Следовательно, можно сделать вывод о том, что победителем электронных выборов является кандидат В1.

Вывод:

В ходе выполнения данной лабораторной работы был изучен алгоритм электронного голосования на основе КС Пэйе и определен победитель электронного голосования.