

Development and Verification of Rule Based Systems - a Survey of Developers

> Valentin Zacharias FZI

Karlsruhe, Germany

Results from an Online Survey about Rule Base Development

Agenda

- Participants
- Development
 Methodology
- Tools
 - Development
 - Debugging
 - V&V
- Comparison to OO
 Development & Issues
 Hindering Dev.

- Comparison to last surveys (from 18 years ago)
 - Hamilton, D., Kelley, K.:
 State-of-the-practice in knowledge-based system verication and validation.
 - O'Leary, D. In: Design,
 Development and Validation
 of Expert Systems: A Survey
 of Developers.

76 Participants

Languages and Systems?

Size

	Mean	Median	Standard Deviation
PM for entire software	59	15	148
PM for rule base	9	5,5	15
Number of rules	1969	120	8693
Size of average rule	9,3	5	17
Size of largest rule	24	11	39
Rule developers	3	2	4
Other software developers	3	1	8
Domain experts that created rules	1,5	1	2
Domain experts as consultants	1,9	1	2,5
Domain experts for V&V	1,7	1	2,4
Others	0,6	0	1,6

	•		
		7	
J		Z	て

	Size	100 PM to	
	Mean	system determines	- Aion
PM for entire software	59	paramete)-TO
PM for rule base	9	medical i	4 =
Number of rules	1969	120	8693
Size of average rule	9,3	65000 learne	ed 17
Size of largest rule	24	rules for 'disease eve analysis'	39
Rule developers	3	2	4
Other software developers	3	1	8
Domain experts that created rules	1,5	1	2
Domain experts as consultants	1,9	1	2,5
Domain experts for V&V	1,7	1	2,4
Others	0,6	0	1,6

Methodologies

"CommonKADS is *the* methodology to build rule based systems"

Methodology

Methodology – only 10PM+

Methodology – only 10PM+

Prototype driven (e.g. MOKA)

Knowledge engineering (e.g. CommonKADS)

Other Iterative and Incremental processes (e.g. RUP)

Waterfall model / Specification driver

Agile (e.g. ABRD, Xtreme Programmir

Did not use a specific development process

Methodology – only 10PM+

Prototype driven (e.g. MOKA)

Knowledge engineering (e.g. CommonKADS)

Other Iterative and Incremental processes (e.g. RUP)

Waterfall model / Specification driven

Agile (e.g. ABRD, Xtreme Programm

Did not use a specific development process

18 Years Ago:

"The most frequent (40%)
life cycle model used was
the cyclic model [...].
However 22% of the
respondents stated that
no model was followed"

Tools used for Development

"I doubt that manually created rule bases will serve as the basis for the semantic web or other application areas"

Verification & Debugging

"The correctness of rule bases is ensured with formal verification"

Debugging Paradigms for Rule Based Systems

- Procedural Debugging
 - Stepwise execution of inference engine
- Algorithmic Debugging
 - System identifies fault by asking user (oracle) about correctness of results of subcomputations

- Explanations
 - Concise NL or graphical representation of justification for a result
- Why-Not Explanations
 - Explanation also for missing conclusions
- Automatic Theory Revision
 - Automatic correction of rule base

Valentin Zacharias: **The Debugging of Rule Bases, to appear in** Handbook of Research on Emerging Rule-Based Languages and Technologies, IGI Global, Hershey (USA) 2009.

Debugging Tools

Verification and Validation Tools and Methods

Verification and Validation Tools and Methods

Comparison To
'Conventional
Programming' and
Issues Hindering
Development

"Runtime Performance and Expressivity are the problems hindering the development of rule based systems"

Comparison – Question

- How does the rule base and its development process compare to a 'conventional' program (created with procedural/object oriented languages) of similar size?
 - Ease of change and maintenance
 Rule base superior; Comparable; Conventional program superior; Don't know
 - 2. [...]

Computer average with:

- * Rule base superior = 1
- * Comparable = 0
- * Conventional program sup= -1
- * Ignore 'Don't know'

Comparison

Issues Hindering Development – Question

- What were the most important issues in the development of the rule base?
 - Rule expressivity could not (easily) represent what was needed Not an issue; Annoyance; Hindered development
 - 2. [...]

Computer average with:

- * Not an issue = 0
- * Annoyance = 1
- * Hindered development = 2

Issues Hindering Development

	Average	Not an Issue	Annoyance	Hinderance
Debugging	1	12	28	12
Determining completeness	0,76	18	27	6
Supporting tools missing/immature	0,67	26	17	9
Editing of rules	0,66	24	23	6
Determining test coverage	0,65	25	19	7
Inexperienced developers	0,58	31	13	9
Rule expressivity	0,5	33	12	7
Keeping rules base up to date	0,5	30	19	4
Understanding the rule base	0,47	31	19	3
Runtime performance	0,41	35	14	4
Organizing collaboration	0,41	35	14	4

Issues Hindering Development

Debugging
Determining c
Supporting too
Editing of rule
Determining te
Inexperienced
Rule expressiv
Keeping rules
Understanding
Runtime perfo
Organizing col

18 Years Ago:

erance

- 1. Completeness of Knowledge Base
- 2. Correctness of Knowledge Base
- 3. System does not present possible opportunities to the user
- 4. System is hard to use
- 5. Results difficult to interpret
- 6. Systems presents incorrect opportunities to the user
- 7. Difficult to sequence rules correctly

Conclusions

Meta Conclusion

"This paper is not a (normal) scientific paper, it summarizes a survey [...]"

- Little empirical data about the challenges facing actual rule base developers
- Little interest in the academic rule community at identifying and tackling practical problems?

Conclusion

- Little academic interest in relevant (in particular agile) rule base development methodologies
- Debugging and finding faults as *the challenge*
- Tool support found wanting, possible motivation for rule interchange
- still most rules created manually, text editors widespread

Thanks for your Attention

Valentin Zacharias zach@fzi.de http://vzach.de

Attribution

- Pool Rules by Joe Shlabotnik on Flickr
- Waterfall by Sachman75 on Flickr
- Tools by docman on Flickr
- Bug by Chewy Chua on Flickr
- Obstacle by Guillaume Lemoine on Flickr
- Sun Conclusion by ecstaticist on Flickr
- End by bondywhat on Flickr