

RNS INSTITUTE OF TECHNOLOGY

Autonomous Institution, Affiliated to VTU

2024 Scheme

I Semester B.E. Degree Examination-February 2025 Engineering Mathematics-1(Mechanical Branch)

Time: 3 hrs Max. Marks: 100

Instructions to Candidates:

- 1. Answer any 5 full questions, selecting at least one question from each module.
- 2. Use of handbook is permitted.

Q.N	0.	Module-1	Marks	COs
Q1	a	With usual notion prove that $\tan \phi = r \frac{d\theta}{dr}$.	06	CO1
	b	Find the radius of curvature of the parabola $y^2 = 4ax$ at $(a, 2a)$.	07	CO1
	С	Find the pedal equation of the polar curve $r^n = a^n \cos n\theta$.	07	CO1
		OR		
Q2	a	Find the angle between the radius vector and the tangent to the polar curve $r^m = a^m \cos m\theta$	06	CO1
	b	With usual notation prove that $\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}\right)^2$.	07	CO1
	c	Derive the radius of curvature in Cartesian form as	07	CO1
		$\rho = \frac{(1 + y_1^2)^{3/2}}{y_2}$ Module-2		
		Module-2	<u> </u>	<u>I</u>
Q3	a	Using Maclaurin's series expansion show that		
		$\sqrt{1+\sin 2x} = 1 + x - \frac{x^2}{2} - \frac{x^3}{6} + \frac{x^4}{24} - \cdots$	06	CO2
	b	If $z = e^{ax+by} f(ax - by)$, prove that $b \frac{\partial z}{\partial x} + a \frac{\partial z}{\partial y} = 2abz$.	07	CO2
	С	Find the extreme values of the function		
		$f(x,y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2.$	07	CO2
		OR		
Q4	a	If $u = f(x - y, y - z, z - x)$ then prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.	06	CO2
	b	If $u = x^2 + 3y^2 - z^3$, $v = 4x^2yz$, $w = 2z^2 - xy$, evaluate $\frac{\partial(u,v,w)}{\partial(x,y,z)}$ at		
		(1,-1, 0).	07	CO2
	С	A rectangular box opened at the top is to have volume of 32 cubic ft. Find the dimension of the box requiring least material for its construction.	07	CO2

						ľ	Module	e-3						
Q5	a	Solve: <i>x</i>	$\frac{dy}{dx} + 3$	$y=x^3$	y^6								06	CO3
	b	Show that	at the	family	of para	bolas 3	$v^2 = 4e^{-2}$	a(x +	<i>a</i>) is	self-c	rthogo	onal.	07	CO3
	С	Solve: <i>x</i>	$^{2}p^{2} +$	xyp -	$-6y^2 =$	0.							07	CO3
Q6	a	Solve: (2	x ² 1	,3 6	v) dv 1	221 ² d	$\frac{OR}{OR}$						06	CO3
Ųΰ	<u>a</u>					-					2006		00	CO3
	b	Water at temperat	_							_			07	CO3
	c	Obtain tl	he gen	eral ar	nd singu	lar sol	ution o	f the e	equation	on			07	CO3
					sin <i>px</i> c	os $y =$	cos pa	sin 3	y + p				07	
						ľ	Module	2 -4					Γ	
Q7	a	If P is the linear law following	w of t	the for			•						06	CO4
		P			12		25		21		2.	5		
		W			50		70		100		12	20		
	_	Comput												
	b	If θ is the	e angle	betwe		_	$\frac{\sigma_y}{\sigma_y} \left(\frac{1}{\sigma_y}\right)$			v that			07	CO4
	c	Calculate	the co	oeffici	ent of co	orrelati	on for	the fo	llowir	ng data	a			
		x	1	2	3	4	5	6		7	8	9	07	CO4
		у	9	8	10	12	11	13	3	14	16	15		
							OR							1
Q8	a	By the m			-			aight	line th	at bes	st fits t	he		
		following	g data :		torm y		1						06	CO4
		x		1		2		3		4		5		
		У		14		27	4	.0		55	(68		
	b	b Ten participants in a contest are ranked by two Judges as follows:												
		x	1	6	5	10	3	2	4	9	7	8		
	y 6 4 9 8 1 2 3 10 5 7									07	CO4			
	С	 Calculate the rank correlation between x and y. In a partially destroyed laboratory record, only the lines of regression of y on x and x on y are available as 4x - 5y + 33 = 0 and 20x - 9y = 107 respectively. Calculate x̄, ȳ and the coefficient of correlation between x and y. 								07	CO4			

		Module-5				
Q9	a	Find the rank of a matrix $\begin{pmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{pmatrix}$	06	CO5		
	Solve the system of equations by Gauss-Seidel method $10x + y + z = 12, x + 10y + z = 12, x + y + 10z = 12$					
	c	Find the largest eigen value and the corresponding eigen vector of the matrix $\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$ by taking the initial vector as $X = [1,0,0]^T$ using Rayleigh's power method.	07	CO5		
		OR				
Q10	a	Find the values of λ and μ for which the system				
		$x + y + z = 6$, $x + 2y + 3z = 10$, $x + 2y + \lambda z = \mu$ has (i) unique solution (ii) infinitely many solutions (iii) no solution.	06	CO5		
	b	Apply Gauss Jordan method to solve the system of equations $x + y + z = 10, 2x - y + 3z = 19, x + 2y + 3z = 22$	07	CO5		
	c	Test the following system of equations for consistency and hence solve	07	003		
		5x + 3y + 7z = 4, 3x + 26y + 2z = 9, 7x + 2y + 10z = 5	07	CO5		

RNS INSTITUTE OF TECHNOLOGY

Autonomous Institute Affiliated to VTU

Channsandra, RR Nagar, Bengaluru -560098

Scheme and Solutions

Faculty member's name	Dr. Sampath Kumar R
Signature	R.Saropabio
Scrutinizer's name	Dr. S Padmanabhan
Signature	Pal.
No. of pages submitted: 9	

Fitle: Engineering Mathematics-1(Mechanical Stream) Course Code:BMAT	TM101
Solution	Marks Allocated
Let $P(r, \theta)$ be any point on the polar curve $r = f(\theta)$. Let ψ be the angle from the X axis to the tangent.	Fig-1M
By diagram, $\psi = \theta + \phi \Rightarrow \tan \psi = \tan(\theta + \phi)$ $\tan \psi = \frac{\tan \theta + \tan \phi}{1 - \tan \theta \cdot \tan \phi} (1)$	2M
But $\tan \psi = \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\frac{d}{d\theta}(r\sin\theta)}{\frac{d}{d\theta}(r\cos\theta)} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}$	2M
Divide by $\frac{dr}{d\theta}\cos\theta$ in nu and deno, $\tan\psi = \frac{\tan\theta + r\frac{d\theta}{dr}}{1 - r\frac{d\theta}{dr}\tan\theta}$ (2) Equating components of (1) and (2), $\tan\phi = r\frac{d\theta}{dr}$	1M
$y^2 = 4ax$ Diff w. r. to x, $yy_1 = 2a$ (1)	2M
Diff again w. r. to x, $y_1^2 + yy_2 = 0$ (2)	2M
At $(a, 2a)$, $y_1 = \frac{2a}{2a} = 1$, $y_2 = -\frac{1}{2a}$	2M
Radius of curvature $\rho = \frac{(1+y_1^2)^{3/2}}{y_2} = \frac{(1+1)^{3/2}}{\left(-\frac{1}{2a}\right)} = -2a(2)^{\frac{3}{2}} = -4\sqrt{2}a$ OR $ \rho = 4\sqrt{2}a$	1M
To find: ϕ $r^n = a^n \cos n\theta$ To find: Pedal equation $To find: Pedal equation$	4M
$n \log r = n \log a + \log \cos n\theta \qquad p = r \sin \phi$	+
Differentiate w. r. to θ $\frac{n}{r}\frac{dr}{d\theta} = 0 + \frac{-n\sin n\theta}{\cos n\theta}$ $\frac{1}{r}\frac{dr}{d\theta} = -\tan n\theta$ $\cot \phi = \cot \left(\frac{\pi}{2} + n\theta\right)$ $p = r\sin\left(\frac{\pi}{2} + n\theta\right)$ $p = r\cos n\theta$ $p = r\left(\frac{r^n}{a^n}\right)$ $a^n p = r^{n+1}$	3M
	Solution Let $P(r,\theta)$ be any point on the polar curve $r = f(\theta)$. Let ψ be the angle from the X axis to the tangent. Let p be the per, dis from the origin to the tangent. By diagram, $\psi = \theta + \phi \Rightarrow \tan \psi = \tan(\theta + \phi)$ $\tan \psi = \frac{\tan \theta + \tan \phi}{1 - \tan \theta \tan \phi}$ — (1) But $\tan \psi = \frac{dy}{dx} = \frac{dy}{dx} = \frac{d}{d\theta} = \frac{d\theta}{d\theta} (r \sin \theta) = \frac{dr}{d\theta} \cos \theta - r \sin \theta$ Divide by $\frac{dr}{d\theta} \cos \theta$ in nu and deno, $\tan \psi = \frac{\tan \theta + r \frac{d\theta}{dr}}{1 - r \frac{d\theta}{dr} \tan \theta}$ — (2) Equating components of (1) and (2), $\tan \phi = r \frac{d\theta}{dr}$ $y^2 = 4ax$ Diff w. r. to x, $yy_1 = 2a$ — (1) Diff again w. r. to x, $y_1^2 + yy_2 = 0$ — (2) At $(a, 2a)$, $y_1 = \frac{2a}{2a} = 1$, $y_2 = -\frac{1}{2a}$ Radius of curvature $p = \frac{(1 + y_1^2)^{3/2}}{y_2} = \frac{(1 + 1)^{3/2}}{(-\frac{1}{2a})} = -2a(2)^{\frac{3}{2}} = -4\sqrt{2}a$ OR $ \rho = 4\sqrt{2}a$ To find: ϕ $r^n = a^n \cos n\theta$ Take log on both sides, $n \log r = n \log a + \log \cos n\theta$ Differentiate w. r. to θ Differentiate w. r. to θ Differentiate w. r. to θ $r \frac{d\theta}{r} = 0 + \frac{r \sin n\theta}{r \cos n\theta}$ $r \frac{d\theta}{r} = 0 + \frac{r \sin n\theta}{r \cos n\theta}$ $r \frac{d\theta}{r} = -\tan n\theta$ To find: $\frac{\pi}{a}$ $r \cos n\theta$

Course 7	Citle: Engineering Mathematics-1(Mechanical Stream) Course Code: BMA	TM101
Question Number	Solution	Marks Allocated
Q. 2.a)	$r^m = a^m \cos m\theta$	
	Take log on both sides, we get; $m \log r = m \log a + \log \cos m\theta$	1M
	Differentiate w. r. to θ	
	$\frac{m}{r}\frac{dr}{d\theta} = \frac{-m\sin m\theta}{\cos m\theta} = -m\tan m\theta$	2M
	$\frac{1}{r}\frac{dr}{d\theta} = -\tan m\theta$	2M
	$\cot \varphi = \cot \left(\frac{\pi}{2} + m\theta\right) \Rightarrow \varphi = \frac{\pi}{2} + m\theta$	1M
Q. 2. b)	Let $P(r, \theta)$ — Any point on the polar curve $r = f(\theta)$. Let r and p — Radius vector and perpendicular distance from the origin respectively.	Fig 1M
	By diagram, $\frac{p}{r} = \sin \phi \Rightarrow p = r \sin \phi$.	
	$\frac{1}{p^2} = \frac{1}{r^2} \cos ec^2 \phi = \frac{1}{r^2} (1 + \cot^2 \phi)$	3M
	$=\frac{1}{r^2}\bigg(1+\frac{1}{r^2}\Big(\frac{dr}{d\theta}\Big)^2\bigg)=\frac{1}{r^2}+\frac{1}{r^4}\Big(\frac{dr}{d\theta}\Big)^2$	JIVI
	Therefore, $\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}\right)^2$	2M
Q. 2. c)	$tan\psi = \frac{dy}{dx}$ OR $tan\psi = y_1 \Rightarrow \psi = tan^{-1}(y_1)$	Fig-1M
	Differentiating w. r. to x ,	1M
	$\frac{d\psi}{dx} = \frac{1}{1+y_1^2} \cdot y_2$	2M
	$\therefore \text{ radius of curvature is } \rho = \frac{ds}{d\psi} = \frac{ds}{dx} \cdot \frac{dx}{d\psi} = \sqrt{1 + y_1^2} \cdot \frac{1 + y_1^2}{y_2} \rho = \frac{(1 + y_1^2)^{\frac{3}{2}}}{y_2}$	2M
	$O = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}}{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}}$	1M
	$\frac{d^2y}{dx^2}$	
Q.3. a)	$f(x) = \sqrt{1 + \sin 2x} = \sqrt{1 + 2\sin x \cos x} = \sqrt{\sin^2 x + \cos^2 x + 2\sin x \cos x} = \sqrt{(\sin x + \cos x)^2}$	1M
	$y = \sin x + \cos x$ $y_1 = \cos x - \sin x$ $y_2 = -\sin x - \cos x = -y$ $y_3 = -y_1$ $y_4 = -y_2$ $y_5 = -y_3$ By Maclaurin's series, $y_1(0) = 1$ $y_2(0) = -1$ $y_3(0) = 1$ $y_4(0) = 1$ $y_5(0) = 1$	3M

	$f(x) = f(0) + \frac{x}{1!}f'(0) + \frac{x^2}{2!}f''(0) + \dots = y(0) + \frac{x}{1!}y_1(0) + \frac{x^2}{2!}y_2(0) + \dots$ $\sqrt{1 + \sin 2x} = 1 + \frac{x}{1!}(1) + \frac{x^2}{2!}(-1) + \frac{x^3}{3!}(-1) + \frac{x^4}{4!}(1) + \dots$	1M					
	$\sqrt{1 + \sin 2x} = 1 + \frac{1}{1!}(1) + \frac{2!}{2!}(-1) + \frac{3!}{3!}(-1) + \frac{4!}{4!}(1) + \cdots$ $\Rightarrow \sqrt{1 + \sin 2x} = 1 + x - \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$	1M					
Q.3. b)	$z = e^{ax+by} f(ax - by) (1)$ Differentiate (1) partially w. r. to x $\frac{\partial z}{\partial x} = ae^{ax+by} f'(ax - by) + ae^{ax+by} f(ax - by) = ae^{ax+by} f'(ax - by) + az$ Differentiate (1) partially w. r. to y $\frac{\partial z}{\partial y} = -be^{ax+by} f'(ax - by) + be^{ax+by} f(ax - by) = -be^{ax+by} f'(ax - by) + bz$ $\therefore b \frac{\partial z}{\partial x} + a \frac{\partial z}{\partial y} = abe^{ax+by} f'(ax - by) + abz - abe^{ax+by} f'(ax - by) + abz$ $b \frac{\partial z}{\partial x} + a \frac{\partial z}{\partial y} = 2abz$	2M 2M 3M					
Q.3. c)	$(x,y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2 \Rightarrow \qquad p = \frac{\partial f}{\partial x} = 4x^3 - 4x + 4y,$ $q = \frac{\partial f}{\partial y} = 4y^3 + 4x - 4y; r = \frac{\partial^2 f}{\partial x^2} = 12x^2 - 4, t = \frac{\partial^2 f}{\partial y^2} = 12y^2 - 4, s^2 = \frac{\partial^2 f}{\partial x \partial y} = 4$	3M					
	$rt - s^{2} = (12x^{2} - 4)(12y^{2} - 4) - 16$ $p = 0 \Rightarrow 4x^{3} - 4x + 4y = 0 \Rightarrow x^{3} - x + y = 0 (1)$ $q = 0 \Rightarrow 4y^{3} + 4x - 4y = 0 \Rightarrow y^{3} - y + x = 0 (2)$ $(1) + (2) \Rightarrow y = -x$	1M					
	In (2), $y = -x \Rightarrow -x^3 + x + x = 0$, $x(2 - x^2) = 0$ Therefore, Critical points are (0,0), $(\sqrt{2}, -\sqrt{2}), (-\sqrt{2}, \sqrt{2})$	1M					
	Critical points $rt - s^2 =$ $r =$ Remark $(12x^2 - 4)(12y^2 - 4) - 16$ $12x^2 - 4$ $(0,0)$ 0 Doubtful $(\sqrt{2}, -\sqrt{2})$ 400 - 16, Positive Positive Minimum $(-\sqrt{2}, \sqrt{2})$ 400 - 16, Positive Positive Minimum	1M					
	Minimum value = $f(\sqrt{2}, -\sqrt{2}) = f(-\sqrt{2}, \sqrt{2}) = 4 + 4 - 4 - 8 - 4 = -8$	1M					
Q. 4.a)		2M					
	$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial p} \frac{\partial p}{\partial x} + \frac{\partial u}{\partial q} \frac{\partial q}{\partial x} + \frac{\partial u}{\partial r} \frac{\partial r}{\partial x} = \frac{\partial u}{\partial p} (1) + \frac{\partial u}{\partial q} (0) + \frac{\partial u}{\partial r} (-1) = \frac{\partial u}{\partial p} - \frac{\partial u}{\partial r} \qquad (1)$						
	$\frac{\partial u}{\partial y} = \frac{\partial u}{\partial p} \frac{\partial p}{\partial y} + \frac{\partial u}{\partial q} \frac{\partial q}{\partial y} + \frac{\partial u}{\partial r} \frac{\partial r}{\partial y} = \frac{\partial u}{\partial p} (-1) + \frac{\partial u}{\partial q} (1) + \frac{\partial u}{\partial r} (0) = \frac{\partial u}{\partial q} - \frac{\partial u}{\partial p} \qquad (2)$ $\frac{\partial u}{\partial z} = \frac{\partial u}{\partial p} \frac{\partial p}{\partial z} + \frac{\partial u}{\partial q} \frac{\partial q}{\partial z} + \frac{\partial u}{\partial r} \frac{\partial r}{\partial z} = \frac{\partial u}{\partial p} (0) + \frac{\partial u}{\partial q} (-1) + \frac{\partial u}{\partial r} (1) = \frac{\partial u}{\partial r} - \frac{\partial u}{\partial q} \qquad (3)$ $(1) + (2) + (3) \text{ gives, } \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = \frac{\partial u}{\partial p} - \frac{\partial u}{\partial q} + \frac{\partial u}{\partial q} - \frac{\partial u}{\partial r} + \frac{\partial u}{\partial r} - \frac{\partial u}{\partial p} = 0$	3M 1M					

Q.4. b)		
	$ \begin{array}{c ccc} u = x + 3y^2 - z^3 & v = 4x^2yz & w = 2z^2 - xy \\ \frac{\partial u}{\partial x} = 1 & \frac{\partial v}{\partial x} = 8xyz & \frac{\partial w}{\partial x} = -y \\ \frac{\partial u}{\partial y} = 6y & \frac{\partial v}{\partial y} = 4x^2z & \frac{\partial w}{\partial y} = -x \end{array} $	3M
	$\left \frac{\partial u}{\partial z} \right = -3z^2$ $\left \frac{\partial v}{\partial z} \right = 4x^2y$ $\left \frac{\partial w}{\partial z} \right = 4z$	2M
	$\frac{\partial(u, v, w)}{\partial(x, y, z)} = \begin{vmatrix} u_x & v_x & w_x \\ u_y & v_y & w_y \\ u_z & v_z & w_z \end{vmatrix} = \begin{vmatrix} 1 & 8xyz & -y \\ 6y & 4x^2z & -x \\ -3z^2 & 4x^2y & 4z \end{vmatrix}$	1M
111111111111111111111111111111111111111	At $(1,-1,0)$, $ = \begin{vmatrix} 1 & 0 & 1 \\ -6 & 0 & -1 \\ 0 & -4 & 0 \end{vmatrix} = 20 $	1M
Q. 4. C)	S.A. of the rectangular box open at the top is minimum $\Rightarrow xy + 2yz + 2zx$ is min. Volume of the rectangular box = 32 cubic units. $\Rightarrow xyz = 32$ Auxiliary equation is $F = (xy + 2yz + 2zx) + \lambda(xyz - 32)$	1M
The state of the s	$F_{x} = 0 \Rightarrow y + 2z + yz\lambda = 0 - (1) & F_{y} = 0 \Rightarrow x + 2z + xz\lambda = 0 - (2)$ $F_{z} = 0 \Rightarrow 2y + 2x + xy\lambda = 0 - (3)$	3М
	$x \times (1) - y \times (2) \Longrightarrow 2z(x - y) = 0 \Longrightarrow x = y$ $y \times (2) - z \times (3) \Longrightarrow xy - 2yz + 2yz - 2zx = 0$	1M
	$\Rightarrow x(y - 2z) = 0 \Rightarrow y = 2z$ Therefore, $x = y = 2z$ and $xyz = 32 \Rightarrow 2z$. $2z$. $z = 32$	1M
	$\Rightarrow 4z^3 = 32 \Rightarrow z^3 = 8 \Rightarrow z = 2.$	1M
	Therefore, $x = 4$, $y = 4$, $z = 2$. Dimensions of the rectangular box are 4, 4, 2	1141
Q. 5.a)	Divide the Given DE, by x on both sides, $\frac{dy}{dx} + \left(\frac{1}{x}\right)y = x^2y^6$	2+1M
	Divide by y^6 on both sides, $\frac{1}{y^6} \frac{dy}{dx} + \left(\frac{1}{x}\right) \frac{1}{y^5} = x^2$ (1)	
	$-\frac{1}{5}\frac{dt}{dx} + \frac{t}{x} = x^2$ If $\frac{1}{y^5} = t$ then $-\frac{5}{y^6}\frac{dy}{dx} = \frac{dt}{dx}$	1M
	Multiply by -5 on both sides, Put $\frac{1}{y^5} = t$, $\frac{1}{y^6} \frac{dy}{dx} = -\frac{1}{5} \frac{dt}{dx}$ in (1)	
	$\frac{dt}{dx} - 5\frac{t}{x} = -5x^2$ This is an LDE in t with $P = -5/x$, $Q = -5x^2$	1M
11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	$IF = e^{\int -\frac{5}{x} dx} = e^{-5\log x} = \frac{1}{x^5}$ and General solution is $t.IF = \int Q.IF dx + c$	
	$t\frac{1}{x^5} = \int -5x^2 \frac{1}{x^5} dx + c \Longrightarrow \frac{t}{x^5} = -5 \int x^{-3} dx \Longrightarrow \frac{1}{x^5 y^5} = \frac{5}{2x^2} + c$	1M
Q.5. b)	$y^2 = 4a(x+a)$ (1) Diff. w. r. to x, we get $2y \frac{dy}{dx} = 4a$	
	By substituting in (1), $y^2 = 2y \frac{dy}{dx} \left(x + \frac{y}{2} \frac{dy}{dx} \right)$	211/
	$y^{2} = 2xy\frac{dy}{dx} + y^{2}\left(\frac{dy}{dx}\right)^{2} \implies y = 2xy_{1} + y(y_{1})^{2} - (2)$	3M
	Replace $\frac{dy}{dx}$ by $-\frac{dx}{dy}$ in equation (2), $y = 2x\left(-\frac{dx}{dy}\right) + y\left(-\frac{dx}{dy}\right)^2$	3M
	$y = -2x\left(\frac{dx}{dy}\right) + y\left(\frac{dx}{dy}\right)^2 \Rightarrow y\left(\frac{dy}{dx}\right)^2 = -2x\left(\frac{dy}{dx}\right) + y \Rightarrow y = y(y_1)^2 + 2x(y_1)$ Since (2) = (3), The given family of parabolas is self-orthogonal.	1M

Course T	Title: Engineering Mathematics-1(Mechanical Stream) Course Code: BM	[ATM101
Question Number	Solution	Marks Allocated
Q. 5.c)	$x^{2}p^{2} + xyp - 6y^{2} = 0$ $(xp + 3y)(xp - 2y) = 0$	2M
	$xp + 3y = 0$ $x \frac{dy}{dx} = -3y$ $\frac{1}{y} dy = \frac{-3}{x} dx$ On integrating, $\log y = -3\log x + \log c$ $\log y + 3\log x = \log c$ $\log y x^{3} = 0$ $yx^{3} = c$ $x^{2}y - 2y = 0$ $x \frac{dy}{dx} = 2y$ $\frac{1}{y} dy = \frac{2}{x} dx$ On integrating, $\log y = 2\log x + \log c$ $\log y = \log x^{2} + \log c$ $y = cx^{2}$ $y - cx^{2} = 0$	3M
	Therefore, the general solution is $(x^3y - c)(y - cx^2) = 0$	2M
Q.6.a)	$(x^{2} + y^{3} + 6x) dx + xy^{2} dy = 0(1)$ Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, this is not an exact D.E. $M = x^{2} + y^{3} + 6x N = xy^{2}$ $\frac{\partial M}{\partial y} = 3y^{2} \qquad \frac{\partial N}{\partial x} = y^{2}$	2M
	$\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = 2y^2$, close to N. Therefore, $\frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) = \frac{1}{xy^2} (2y^2) = \frac{2}{x} = f(x)$ [say] 1M
	$I.F = e^{\int f(x) dx} = e^{2\int \frac{1}{x} dx} = x^2$ and Multiply by x^2 on both the sides of equ. (1) $ \left(x^{-3}y^2 - x^{-4}e^{1/x^3}\right) dx - x^{-2}y dy = 0 $ This is an exact D.E.	1M
	G.S is $\int_{y-constant} M dx + \int (Terms \ of \ N \ not \ containing \ x) \ dy = c$	
	$\int_{y-constant} \left(x^{-3} y^2 - x^{-4} e^{1/x^3} \right) dx + \int(0) \ dy = c \Longrightarrow -\frac{y^2}{2x^2} + \frac{e^{\frac{1}{x^3}}}{3} = c$	2M
Q.6. b)	By Newton's law of cooling, $\frac{d\theta}{dt} = -k(\theta - \theta_0) \Rightarrow \frac{d\theta}{\theta - \theta_0} = -k dt$ On integrating, $\log (\theta - \theta_0) = -kt + c' \Rightarrow \theta - \theta_0 = ce^{-kt}$ By data, $\theta_0 = 40^{\circ}C$. Therefore, $\theta - 40 = ce^{-kt}$ (1)	3M
	If $t = 0$, $\theta = 10$ $(1) \Rightarrow 10 - 40 = ce^{0}$ Therefore, $c = -30$ If $t = 5$, $\theta = 20$ $(1) \Rightarrow 20 - 40 = -30e^{-5k}$ $e^{5k} = \frac{30}{20} \Rightarrow 5k = \log \frac{3}{2}$ $k = \frac{1}{5} \log \frac{3}{2} = 0.0811$	2M
	On substituting in (1), $\theta - 40 = -30 e^{-0.0811t}$ Put $t = 20$, $\theta - 40 = -30 e^{-1.622} \Rightarrow \theta - 40 = -5.9251 \Rightarrow \theta = 34.07^{\circ}C$ The temperature of water after 20 minutes is $34.07^{\circ}C$.	2M
Q.6. c)	$\sin(px - y) = p \Rightarrow px - y = \sin^{-1}p \Rightarrow y = px - \sin^{-1}p. \text{ Clairaut's equation.}$	2M
	General solution is $y = cx - \sin^{-1} c$ (1) Differentiate partially w.r.to c, we get $0 = x - \frac{1}{\sqrt{1-c^2}} \Rightarrow \frac{1}{\sqrt{1-c^2}} = x$	2M
	$\sqrt{1-c^2} = \frac{1}{x} \Longrightarrow 1 - c^2 = \frac{1}{x^2} \Longrightarrow c^2 = 1 - \frac{1}{x^2} \Longrightarrow c = \frac{\sqrt{x^2 - 1}}{x}$	2M

				required singula	r solution			
	$y = \sqrt{x^2}$	$1 - \sin^{-1} \frac{\sqrt{x^2 - x^2}}{x}$	<u>-</u>			1M		
Q.7.a)	W	Р	W^2		WP			
	50	12	2500		600			
	70	15	4900		1050			
	100	21	10000		2100	3M		
	120	25	14400		3000			
	$\Sigma W = 340$ $\Sigma P = 73$ $\Sigma W^2 = 31800$ $\Sigma WP = 6750$							
	The normal equa $\sum P = m$ $\sum WP = m\sum$ Solving the norm	$\sum W + nc$ $\sum W^2 + c \sum W$			35	2M 1M		
	Hence the line of When $w = 150$ k	f best fit is $P =$	c + mW = 0.1	879W + 2.2785	5	1171		
Q. 7. b)	The equation to to $y - \bar{y} = r \frac{\sigma_y}{\sigma_x}(x)$ The slope of the	the regression li $-\bar{x}$) comparing line is $m_1 = r \frac{d}{dx}$	ne of y on x is g with $y = mx$	+ <i>c</i>		2M		
	The equ to the re rearranging y — we know that the	$\bar{y} = \frac{\sigma_y}{r\sigma_x} (x - \bar{x})$ e angle between). The slope of the two straight	he line is $m_2 = \frac{1}{2}$. line is given by	$\frac{1}{r}\frac{\sigma_y}{\sigma_x}$	2M		
	$tan\theta = \frac{m_2 - m_2}{1 + m_1 r_1}$	$\frac{1}{n_2} = \frac{r\sigma_x}{1 + \frac{1}{r}\sigma_x} \frac{\sigma_x}{\sigma_x}$	$\frac{1}{\frac{\sigma_x^2}{\sigma_x^2}} = \frac{\frac{r}{\sigma_y^2}}{1 + \frac{\sigma_x^2}{\sigma_x^2}} = \frac{r}{\sigma_y^2}$	$=\frac{\left(\begin{array}{c}r\right)\sigma_{x}}{\sigma_{x}^{2}+\sigma_{y}^{2}}$ $\frac{\sigma_{x}^{2}+\sigma_{y}^{2}}{\sigma_{x}^{2}}$		2M		
	$= \left(\frac{1-r}{r}\right)$	$\left(\frac{\sigma_y}{\sigma_x}\right) \frac{\sigma_y}{\sigma_x} \times \frac{\sigma_x^2}{\sigma_x^2 + \sigma_y^2}$ tan	$= \left(\frac{1-r^2}{r}\right) \times \frac{\epsilon}{\sigma}$ $\theta = \left(\frac{1-r^2}{r}\right) > \epsilon$	$ \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2} < \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2} $		1M		
05				, , , , , , , , , , , , , , , , , , ,				
Q.7.c)	x	у	ху	x^2	y ²			
	1	9	9	1	81			
	3	8	16	4	64			
	4	10 12	30 48	9 16	100 144	474.55		
	5	11	55	25	121	4M		
	6	13	78	36	169			
	7	14	98	49	196			
	8	16	128	64	256			
	$\sum x = 45$	$\sum y = 108$	$\frac{135}{\sum xy = 597}$	$\sum x^2 = 285$	$\sum y^2 = 1356$			
	r = -	$\frac{n\sum xy}{\sqrt{n\sum x^2 - (\sum x)^2}}$		$\frac{513}{(5y)^2} = \frac{513}{\sqrt{540}\sqrt{5}}$		3M		

Course T	Title: Engineering Mathematics-	(Mecha	nical Stream))	Course	Code:BMA	ГМ101
Question Number		Sol	ution				Marks Allocated
Q.8. a)	2 3 4	$ \begin{array}{c cccc} y & & & \\ 4 & & & \\ $	x^{2} 1 4 9 16 25 $\sum x^{2}=55$ $a + 5b$ $a + 15b$ $a + 15b$ and $b = 0$	$\begin{array}{c} 1\\ 5\\ 1\\ 2\\ 3\\ \Sigma xy = 5 \end{array}$	cy 4 54 20 20 40 748		3M 1M 1M 1M
Q. 8. b)	$n = 10$ $d_i = x_i - y_i \qquad -5 \qquad 2$ $d_i^2: \qquad 25 \qquad 4$ $n = 10, \sum d_i^2 = 60.$ Rank correlation coefficient is gifting the constant of the coefficient is gifting the coefficient in the coefficient in the coefficient is gifting the coefficient in the coefficien	16	$ \begin{array}{c ccccc} 2 & 2 & 0 \\ 4 & 4 & 0 \end{array} $ $ = 1 - \frac{6 \sum d^2}{n^3 - n} $	1 1	-1 2 1 4	1 1	4M 1M 2M
Q. 8. c)	Since the regression lines pass the we have $4\bar{x} - 5\bar{y} + 33 = 0$ $20\bar{x} - 9\bar{y} = 107$ Solving the equations (1) and (2) The lines of regression of y on x, Regression coefficient of y on x The lines of regression of x on y, Regression coefficient of x on y, $r = 0$	we get \bar{x} $4x - 5y$ $s b_{yx} = x$ $20x - 9$ $s b_{xy} = x$	$ \begin{array}{ll} - & (1) \\ - & (2) \\ 7 & = 13, \overline{y} = 1 \\ 7 & = 13 \\ 7 &$	$y = \frac{4}{5}x$ $x = \frac{9}{20}y$			1M 2M 1M 2M
Q.9.a)	Let $A = \begin{pmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{pmatrix}$ $R_1 \leftrightarrow R_2$ $\sim \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -3 & -1 \\ 0 & 1 & -3 & -1 \\ 0 & 1 & -3 & -1 \end{pmatrix}$ $R_3 \rightarrow R_3 - R_2, R_4 \rightarrow R_4 - R_2$	$ \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 3 & 1 \\ 1 & 1 \end{bmatrix} $ $ \sim \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} $	$ \begin{pmatrix} 1 & 1 \\ -3 & -1 \\ 0 & 2 \\ -2 & 0 \end{pmatrix} $ $ R_3 \to R_3 $ $ \begin{pmatrix} 0 & 1 & 1 \\ 1 & -3 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} $	$-3R_1, I$		•	1M 3M
	This is an echelon form. The no. The given system of equations is di				k of the n	natrix is 2.	2M

Q. 9.b)	$x = \frac{1}{10}(12 - y - z);$ $y = \frac{1}{10}(12 - z - x)$ and $z = \frac{1}{10}(12 - x - y)$	1M
	Consider the initial approximations as $x_0 = 0$, $y_0 = 0$, $z_0 = 0$.	11.1
	First iteration: $x_1 = \frac{1}{10}(12 - y_0 - z_0) = \frac{1}{10}(12 - 0 - 0) = 1.2$	
	$y_1 = \frac{1}{10}(12 - z_0 - x_1) = \frac{1}{10}(12 - 0 - 1.2) = 1.32$	1 M
	$z_1 = \frac{1}{10}(12 - x_1 - y_1) = \frac{1}{10}(12 - 1.2 - 1.32) = 1.452$	
	Second iteration: $x_2 = \frac{1}{10}(12 - y_1 - z_1) = \frac{1}{10}(12 - 1.32 - 1.452) = 1.2$	2M
	$y_2 = \frac{1}{10}(12 - z_1 - x_2) = \frac{1}{10}(12 - 1.452 - 1.2) = 0.9348$	
	$z_2 = \frac{1}{10}(12 - x_2 - y_2) = \frac{1}{10}(12 - 1.2 - 0.9348) = 0.9865$	
	Third iteration: $x_3 = \frac{1}{10}(12 - y_2 - z_2) = \frac{1}{10}(12 - 0.9348 - 0.9865) = 1.0079$	2M
	$y_3 = \frac{1}{10}(12 - z_2 - x_3) = \frac{1}{10}(12 - 0.9865 - 1.0079) = 1.0005$	
	$z_3 = \frac{1}{10}(12 - x_3 - y_3) = \frac{1}{10}(12 - 1.0079 - 1.0005) = 0.9992$	
	\therefore approx. solu of the given system of equs is $x = 1.0079, y = 1.0005, z = 0.9992$	2M
Q. 9. c)	Take $(1 0 0)^T$ as an initial eigen vector.	1M
	$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ -0.5 \end{pmatrix}$	1M
	$ \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ -0.5 \\ 0 & 5 \end{pmatrix} = \begin{pmatrix} 2.5 \\ -2 \\ 0.5 \end{pmatrix} = 2.5 \begin{pmatrix} 1 \\ -0.8 \\ 0.3 \end{pmatrix} $	1M
	$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ -0.8 \\ 0.2 \end{pmatrix} = \begin{pmatrix} 2.8 \\ -2.8 \\ 1.2 \end{pmatrix} = 2.8 \begin{pmatrix} 1 \\ -1 \\ 0.43 \end{pmatrix}$	1M
	(0 -1 2) (0.2) (1.2)	1M
	$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 0.43 \end{pmatrix} = \begin{pmatrix} 3 \\ -3.43 \\ 1.86 \end{pmatrix} = 3.43 \begin{pmatrix} 0.87 \\ -1 \\ 0.54 \end{pmatrix}$	
	(2 -1 0 \ (0.87) (2.74 \ (0.76)	1M
	$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} 0.87 \\ -1 \\ 0.54 \end{pmatrix} = \begin{pmatrix} 2.74 \\ -3.41 \\ 2.08 \end{pmatrix} = 3.41 \begin{pmatrix} 0.76 \\ -1 \\ 0.65 \end{pmatrix}$	
	After 5 iterations, largest eigen value is 3.41	
	The corresponding eigen vector is $\begin{pmatrix} 0.76 \\ -1 \end{pmatrix}$.	1M
	\0.65/	
Q. 10.a)	Augmented matrix is	
	$ (A,B) = \begin{pmatrix} 1 & 1 & 1 & 6 \\ 1 & 2 & 3 & 10 \\ 1 & 2 & \lambda & \mu \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & 4 \\ 0 & 1 & \lambda - 1 & \mu - 6 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & -3 \\ 0 & -2 & -5 & 7 \\ 0 & 0 & \lambda - 3 & \mu - 10 \end{pmatrix} $	
	$R_2 \rightarrow R_2 - R_1$, $R_3 \rightarrow R_3 - R_2$ This is in echelon form.	3M

T	$R_3 \rightarrow R_3 - R_1$	
	(i) If $\lambda \neq 3$, then $\rho(A) = \rho(A, B) = 3$. Gives unique solution.	
	(ii) If $\lambda = 3$, $\mu = 10$ then $\rho(A) = \rho(A, B) = 2$. infinitely many solutions.	
	(iii) If $\lambda = 3$, $\mu \neq 10$ then $\rho(A) \neq \rho(A, B)$. has no solution.	
	(iii) if $\lambda = 3, \mu \neq 10$ then $p(A) \neq p(A, B)$. has no solution.	
Q. 10. b)	The augmented matrix associated to the given system of equations is	3M
A CALLED TO THE	$(A:B) = \begin{pmatrix} 1 & 1 & 1 & 10 \\ 2 & -1 & 3 & 19 \\ 1 & 2 & 3 & 22 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 10 \\ 0 & -3 & 1 & -1 \\ 0 & 1 & 2 & 12 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 10 \\ 0 & 1 & -1/3 & 1/3 \\ 0 & 1 & 2 & 12 \end{pmatrix}$	
	$R_2 \to R_2 - 2R_1, R_3 \to R_3 - R_1$ $R_2 \to \frac{R_2}{-3}$ $R_3 \to R_3 - R_2, R_1 \to R_1 - R_2$	3M
	$ \sim \begin{pmatrix} 1 & 0 & 4/3 & 29/3 \\ 0 & 1 & -1/3 & 1/3 \\ 0 & 0 & 7/3 & 35/3 \end{pmatrix} \qquad \sim \begin{pmatrix} 1 & 0 & 4/3 & 29/3 \\ 0 & 1 & -1/3 & 1/3 \\ 0 & 0 & 1 & 5 \end{pmatrix} $	3M
	$R_3 ightharpoonup rac{3}{7} R_3$ $R_2 ightharpoonup R_2 + rac{1}{3} R_3$, $R_1 ightharpoonup R_1 - rac{4}{3} R_3$	
	$\sim \begin{pmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 5 \end{pmatrix}$ Therefore, $x = 3$, $y = 2$, $z = 5$.	1M
Q.10.c)	$(A,B) = \begin{pmatrix} 5 & 3 & 7 & 4 \\ 3 & 26 & 2 & 9 \\ 7 & 2 & 10 & 5 \end{pmatrix} \qquad R_2 \to 5R_2 - 3R_1, R_3 \to 5R_3 - 7R_1$	
	$ \begin{vmatrix} 5 & 3 & 7 & 4 \\ 0 & 121 & -11 & 33 \\ 0 & -11 & 1 & -3 \end{vmatrix} R_3 \to 11R_3 + R_2 $	3M
	This is in echelon form. Number of non-zero rows is 2. $\rho(A) = \rho(A, B) = 2$.	
	Therefore, the given system of equations is consistent and has an infinite no. of	
	solutions.	
	Reduced system of equations is $5x + 3y + 7z = 4$ (1)	2M
	121y - 11z = 33 (2)	
The same of the sa	Choose $z = k$ then $y = \frac{3+k}{11}$ and $x = \frac{7-16k}{11}$.	2M
	Therefore, $x = \frac{7-16k}{11}$, $y = \frac{3+k}{11}$, $z = k$.	The state of the s

NOTE: Marks can be awarded for alternate methods.