ATOMIC STRUCTURE – 03

COMPUTER SCIENCE (SECTION – B)

 $10 - 03 - 2021 (4^{TH} PERIOD)$

Planck's Quantum Theory: Max Planck in 1900 forwarded a theory regarding black body radiations which later amended by Einstein. The amended theory are following.

- 1. Black body radiates energy discontinuously.
- 2. The emission or absorption of energy takes place in the form of small packets.
- 3. These small energy packets are called 'quanta'.
- 4. Each quantum is associated with a fixed amount of energy.
- 5. The energy associated with one quantum is given as:

 $E = h\nu$

where, E = Energy associated with one quantum

v = Frequency of radiation

h = Planck's constant

 $= 6.625 \times 10^{-27} erg.sec$

 $= 6.625 \times 10^{-34} J.sec$

From wave motion we have,

 $v = f\lambda$

where, v = Velocity of the wave

f = Frequency of the wave

 $\lambda = Wave\ length$

For electromagnetic radiations we can have,

$$c = \nu \lambda$$

or, $v = \frac{c}{\lambda}$

Therefore, $E = \frac{hc}{\lambda}$

Also, the energy associated with 'n' quanta can be given as:

$$E = nhv$$

$$E = \frac{nhc}{\lambda}$$

Bohr's Atomic Model: In order to overcome the limitations of Rutherford's atomic model, Bohr forwarded his model of atom in 1913 making use of plank's quantum theory. According to his model of atom:

- 1. Electron revolve around the nucleus in certain selected fixed circular orbits only.
- 2. During revolution in these fixed orbits, electrons neither emit nor absorb energy.
- 3. These circular orbits are called stationary states.
- 4. Stationary does not mean that the electrons are stationary rather the orbits are stationary.
- 5. These circular orbits are represented by K, L, M, N ----- or by numerals 1, 2, 3, 4,----.

6. Only those orbits are permissible for which the angular momentum of the electron is an integral multiple of $^{h}/_{2\pi}$.

i.e.,
$$mvr = \frac{nh}{2\pi}$$

where, $m = Mass \ of \ electron$
 $v = Velocity \ of \ electron$
 $r = Radius \ of \ orbit$
 $h = Planck's \ constant$
 $n = Orbit \ number \ such \ as \ 1, \ 2, \ 3, \ 4, \ ----$

- 7. These circular orbits are quantized i.e. associated with a fixed amount of energy and are called as energy states or quantum states.
- 8. The electrons can jump from one energy state to another.
- 9. During these jumping energy is either released or absorbed.
- 10. The amount of energy absorbed or released during these jumping can be given from Planck's quantum theory as:

$$E_2 \sim E_1 = h\nu$$

where, $E_2 = Energy$ of orbit where the electron jumps.

 $E_I = Energy of orbit from where the electron jumps.$

h = Planck's constant

v = Frequency of radiation