3. Wyznaczyć wartości:

$$|F(x_i)-F_n(x_i)|, i=1, ..., n,$$

gdzie $F(x_i)$ jest wartością dystrybuanty rozkładu normalnego $N(\bar{x}; s)$.

4. Spośród obliczonych modułów różnic wybrać największą:

$$D'_{n} = \max_{1 \le i \le n} |F(x_{i}) - F_{n}(x_{i})|. \tag{6.47}$$

5. Porównać wartości D'_n z wartością krytyczną $D'_{n\alpha}$ odczytaną z tablicy 7, zamieszczonej na końcu książki, dla przyjętego poziomu istotności α . Jeżeli $D'_n > D'_{n\alpha}$, to hipotezę H_0 odrzucamy.

6.3.5. Test normalności Shapiro-Wilka

Przyjmijmy założenia o badanej populacji i postaci hipotez H_0 i H_1 takie jak w teście Kołmogorowa–Lillieforsa. W teście Shapiro–Wilka [1965] funkcja testowa określona jest wzorem:

$$W = \frac{\left[\sum_{i=1}^{\left[\frac{n}{2}\right]} a_{n,i} (x_{(n-i-1)} - x_{(i)})\right]^{2}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}},$$
(6.48)

gdzie $a_{n,i}$ są stałymi zależnymi od (n, i). Zapis $\left[\frac{n}{2}\right]$ oznacza część całkowitą liczby $\frac{n}{2}$.

Wartość współczynników $a_{n,i}$ oraz wartości krytyczne zostały stablicowane przez Shapiro-Wilka [1965] dla $n \le 50$. Dla n > 50 współczynniki i wartości krytyczne zostały przedstawione przez Domańskiego, Gadeckiego, Wagnera [1989] (por. tablica 9 zamieszczona na końcu książki).

Hipotezę H_0 o normalności odrzuca się na poziomie istotności α , jeżeli zachodzi $W \leq W_{\alpha}$. Wartości stałych podane zostały w tablicy 8 zamieszczonej na końcu książki.

6.3.6. Test Davida-Hellwiga

Załóżmy, że z populacji badanej ze względu na zmienną X o ciągłej dystrybuancie F została wylosowana próba o elementach $(X_1, X_2, ..., X_n)$ i chcemy zweryfikować hipotezę H_0 , że próba ta pochodzi z populacji generalnej

o hipotetycznej dystrybuancie F_0 , tzn. hipotezę H_0 : $F=F_0$, wobec hipotezy alternatywnej H_1 : $F \in \mathcal{F}$, gdzie $F_0 \notin \mathcal{F}$. Możemy wykorzystać do tego celu test Davida-Hellwiga.

Sprawdzianem testu jest statystyka postaci:

$$K_n = \text{card } \{j: m_i = 0\},$$
 (6.49)

gdzie m_j $(j=1,\,2,\,...,\,m)$ oznacza liczbę elementów należących do celi, czyli zbioru $M_j = (z_{j-1};\,z_j)$, przy czym $P(z_{j-1} < X < z_j) = \frac{1}{m}$ przy założeniu prawdziwości hipotezy H_0 , a m jest liczbą cel, czyli zbiorów, na jakie został podzielony zbiór liczb rzeczywistych \mathcal{R} . Symbol card (C) oznacza moc (liczebność) zbioru C.

Statystyka (6.49) testu Davida-Hellwiga ma rozkład nazywany rozkładem pustych cel (por. prace Davida [1950] i Hellwiga [1965]).

Tablice niektórych kwantyli rozkładu pustych cel dla n=2, 3, ..., 100

zostały/podane w tablicy 12 zamieszczonej na końcu książki.

Przedstawimy też modyfikację testu Davida-Hellwiga stosowaną do weryfikacji H_0 : $F \in \mathcal{F}$, gdzie \mathcal{F} jest dystrybuantą rozkładu normalnego o nieznanych parametrach.

- 1. Wyznaczyć przedziały M_j (j=1, 2, ..., n) zwane celami, dzieląc przedział $(-\infty, \infty)$ na m części.
- 2. Uporządkować w kolejności niemalejącej wyniki próby. Niech tworzą one ciąg $x_{(1)}, ..., x_{(n)}$.
- 3. Wyznaczyć wartości $u_{(i)} = (x_{(i)} \overline{x})/\hat{s}$ dla i = 1, ..., n, gdzie \overline{x} i \hat{s} oznaczają średnią arytmetyczną i odchylenie standardowe dla wyników próby.
- 4. Odczytać wartość dystrybuanty rozkładu normalnego N(0; 1) dla $u_{(i)}$, czyli $\Phi(u_{(i)})$ dla i=1, ..., n.
- 5. Obliczyć l_i = entier $[m\Phi(u_{(i)})]+1$ dla i=1, ..., n oraz m_j = card $\{i: l_i=j\}$ dla i=1, ..., m.
- 6. Wyznaczyć wartość statystyki testu, która przyjmuje postać:

$$K_n^* = \text{card} \{j: m_j = 0\}.$$
 (6.50)

- 7. Wyznaczyć z tablicy 12 rozkładu K_n^* , zamieszczonej na końcu książki, wartość krytyczną K_n dla danego poziomu istotności α .
- 8. Hipotezę H_0 odrzucić, gdy zachodzi nierówność $K_n^* \leq K_\alpha$, w przeciwnym przypadku podjąć decyzję: nie ma podstaw do odrzucenia hipotezy H_0 .

Jeśli chcemy zweryfikować hipotezę H_0 , że rozkład populacji generalnej jest normalny oraz znamy parametry rozkładu, to posłużymy się wartościami krytycznymi z tablicy 12.

Zauważmy, że niektórzy badacze wykorzystując materiał statystyczny, nie zwracają uwagi na formalne założenia dotyczące każdej metody statystycz-

nej. Prześledźmy te niebezpieczeństwa na przykładzie statystyki K_n Davida [1950], która została zdefiniowana przy założeniu, że obserwacje w próbie są generowane niezależnie ze znanego rozkładu. Przedmiotem naszych rozważań jest test Davida-Hellwiga dla złożonej hipotezy o normalności rozkładu. Oznacza to, że nie znamy parametrów rozkładu, więc szacujemy je z próby, a w konsekwencji, zgodnie z procedurą przedstawioną wcześniej, otrzymamy statystkę K_n^* , która oznacza również liczbę pustych cel, ale mającą inny rozkład niż statystyka K_n dana wzorem (6.49). Wniosek ten udowodniony został metodą Monte Carlo w pracy Domańskiego i Tomaszewicza [1989].

Niech n=m, tzn. liczebność próby równa jest liczbie cel.

Dla każdego n=m=5, 6, ..., 100 zostało wygenerowanych 10 000 n-elementowych prób z rozkładu normalnego. Dla każdej próby została wyznaczona liczba pustych cel. W ten sposób dla każdego n (n=m) otrzymano empiryczny rozkład prawdopodobieństwa:

$$\hat{p}(n, k) \approx P(K_{\pi}^* = k), \text{ gdzie } k = 0, 1, ..., n-1.$$
 (6.51)

Na tej podstawie ustosunkowano się do problemu, czy kwantyle statystyki K_n można stosować do tworzenia obszaru krytycznego przy zastosowaniu testu, którego sprawdzianem jest statystyka K_n^* . Analizę przeprowadzono, opierając się na testach zrandomizowanych oraz na kwantylach interpolowanych. Interpolowane (prawostronne) kwantyle statystyki K_n definiuje się następująco:

$$k_{r}^{d}(n, \alpha) = k^{d}(n, \alpha) - p_{r}^{d}(n, \alpha),$$
 (6.52)

gdzie:

$$k^{d}(n, \alpha) = \min \left\{ h: P(K_{n} \geqslant h) \leqslant \alpha \right\}$$
(6.53)

jest kwantylem całkowitym, natomiast:

$$p_r^d(n, \alpha) = \frac{\alpha - P(K_n \geqslant k^d(n, \alpha))}{P(K_n = k^d(n, \alpha) - 1)}$$

$$(6.54)$$

prawdopodobieństwem randomizacyjnym.

Rozmiar zrandomizowanego testu Davida-Hellwiga znajduje się na podstawie kwantyli (6.52):

$$\alpha^{d}(n, \alpha) = P(K_{n}^{*} \geqslant k^{d}(n, \alpha)) + p_{r}(n, \alpha)P(K_{n}^{*} = k^{d}(n, \alpha) - 1). \tag{6.55}$$

Dobrą oceną rozmiaru tego testu jest:

$$\hat{\alpha}(n, \alpha) = \sum_{h=k^d(n, \alpha)}^{n-1} \hat{p}(n, h) + \hat{p}_r(n, \alpha) \hat{p}(n, k^d(n, \alpha) - 1), \tag{6.56}$$

gdzie p_r i \hat{p}_r są prawdopodobieństwami randomizacyjnymi odpowiednio dla dokładnego i empirycznego rozkładu.

Na podstawie przeprowadzonych badań okazuje się, że zastosowanie kwantyli rozkładu zmiennej K_n do budowy obszaru krytycznego dla K_n^* jest niezasadne. Błędy są dość duże i dochodzą do 20% dla n bliskiego 100.

Podjęta została zatem próba wyznaczenia obszaru krytycznego testu ze sprawdzianu K_n^* w inny sposób. Empiryczne kwantyle interpolowane z rozkładu (6.51) są następujące:

$$k_i^e(n, \alpha) = k^e(n, \alpha) - p_r^e(n, \alpha), \tag{6.57}$$

gdzie:

$$k^{e}(n, \alpha) = \min \{h: \sum_{j=h}^{n-1} \widehat{p}(n, j) \leq \alpha \},$$

$$\alpha = \sum_{j=h}^{n-1} \widehat{p}(n, j)$$

$$p_r^{e}(n, \alpha) = \frac{\alpha - \sum_{j=k'(n, \alpha)}^{n-1} \widehat{p}(n, j)}{\widehat{p}(n, k^{e}(n, \alpha) - 1)}.$$

Ciąg kwantyli rozkładu zmiennej K_n^* jest dość "gładki", wyrównane kwantyle wydają się zatem być bardziej użyteczne niż empiryczne (6.57). Aproksymowane kwantyle interpolowane określone są za pomoca wzoru:

$$k_i^{\alpha}(n, \alpha) = \gamma_{-2}(\alpha)n^{-2} + \gamma_{-1}(\alpha)n^{-1} + \gamma_0(\alpha) + \gamma_1(\alpha)n + \gamma_2(\alpha)n^2, \tag{6.58}$$

gdzie współczynniki $\gamma_j(\alpha)$ zostały wyznaczone za pomocą metody najmniejszych kwadratów na podstawie (6.57) dla n=5, 6, ..., 100.

Współczynniki $\gamma_j(\alpha)$ są podane w tablicy 6.5.

Tablica 6.5 Współczynniki γ_i(α)

$\gamma_j(\alpha)$	j=-2	j=-1	j=0	j=1	j=2
$\gamma_j(0,01)$	0,11131	-0,15444	1,80138	4,51059	-0,02985
$\gamma_{j}(0,05)$	-0,03547	-0,22875	1,41346	4,19997	-0,01436
$\gamma_j(0,10)$	-0,07374	-0,50914	1,34094	4,02583	-0,00727

Wykorzystując wielkości współczynników $\gamma_j(\alpha)$, zbudowane zostały tablice wartości krytycznych dla testu Davida–Hellwiga w przypadku złożonych hipotez normalności (por. tablica 11 zamieszczona na końcu książki). W świetle przeprowadzonych badań dla małych i średnich prób ($n \le 100$) można sformułować następujące wnioski.

1. W przypadku testowania złożonych hipotez o normalności rozkładu zmiennej losowej nie można stosować kwantyli rozkładu statystyki K.