Bitmap Display Controller (BDC)

Overview

The Aves bitmap display controller generates an 800×512 monochrome display on an SVGA compatible monitor.

Initial Prototype Features

• Standard: VESA SVGA

• Resolution: 800 x 512

• Pixel clock 20MHz (Pixel data rate ⇒ 20MHz)

 $\circ~1~x~74AC163~Sync~Counter$

2.5MHz 'Character Clock'

• 10MHz Phi2 for CPU main clock

• MC6845 CRTC

• Display Buffer: 2 x 32KB SRAM

• 2 X 74HC245 octal bus transceiver

• 15 Bit video address (VA0-VA14)

 \circ VA0-VA6 \Rightarrow CRTC MA0-MA6

∘ VA7 ⇒ CRTC RA0

 \circ VA8-VA14 \Rightarrow CRTC MA7-MA13

• 2 x 74HC541 octal tristate buffer

· Horizontal scrolling register

• 1 x 74HC273 8 bit latch

• 2 x 74HC283 4 bit adder

• Display Timing and Control

· 1 x ATF22V10-10

• 1 x 74AC74

• 1 x 74AC02

· 2 x 74HC166

• 1 x 74AC157

RGB Outputs

[2R]	[2R]	[2R] [150]
R0,	R1,	R2, GND
G0,	G1,	G2,
B0	B1	

VGA Signal Requirements:

0.7V peak-to-peak

 75Ω termination impedance

Current required for 0.7V into 75 Ω :

 $I = 0.7V/75\Omega = 9.33mA$

NOTE

For 5V TTL/CMOS input:

Total resistance = $5V/9.33mA = 536\Omega$

1% E96 Series Values:

 $R = 270\Omega$

 $2R = 549\Omega$

Actual output:

 $V = 9.29 \text{mA} * 75\Omega = 0.697 \text{V}$

CPLD Implementation

Primary CPLD (ATF1508)

Core Functionality (20MHz)

- Address generation (17-bit)
- Memory interface (256KB/128KW)
- Horizontal/Vertical scroll
- Bank switching
- Hardwired timing generation (replacing MC6845)

Memory Organization

- · 256KB frame buffer
- Accessible as 128K words
- Supports both display modes
- · Real-time mode switching
- Multiple screen buffers

Secondary CPLD

Core Functionality

- Mode switching control
- Palette RAM interface
- Shift register implementation
- RGB output generation

Display Modes

Monochrome Mode (800x512)

- 1 bit per pixel
- Uses lower two palette registers (PR0b, PR1b)
- 128 bytes per line
- Full screen requires 64KB

Color Mode (400x300)

- 2 bits per pixel
- 4 colors per pixel
- 16 palette registers
 - 8-bit RGB values per register (3:3:2 format)
- 128 bytes per line
- Full screen requires 37.5KB

Features

- Real-time mode switching
- Independent palette updates
- · Scanline boundary switching
- Special effects capability
- 20MHz input clock

Common Features

- · Identical memory interface
- Compatible timing generation
- Shared scroll logic

- Bank switching support
- Flexible display options

BDC Clock Timing

BDC Timing

```
010101010101010101010101010101 => PXCK: Pixel clock (20MHz)
0011001100110011001100110011 => Phi2: CPU master clock (10MHz)
000011110000111100001111 => CLK/4: Clock / 4 (5MHz)
0000000011111111100000000011111111 => CLK/8: Clock / 8 (2.5MHz)
000000000000000111111111111111 => CLK/16: Clock / 16 (1.25MHz)
0011111111111111111111111 => SRLDb: Shift register Load
```

BDC Timing Diagram

PXCK	_0000000000000000000000000000000000000
Phi2	00000000000000000000000000000000000000
CLK/4	00000000000000000000000000000000000000
CLK/8	00000000000000000000000000000000000000
CLK/16	00000000000000000000000000000000000000
SRLDb	OODDOODDOODDOODDOODDOO Active Low

Palette Decode

Table 1. BDC Palette Decode

Mono	PXC	PX1	PX0	\Rightarrow	PR0b	PR1b	PR2b	PR3b
0	X	0	0	\Rightarrow	0	1	1	1
0	X	0	1	\Rightarrow	1	0	1	1
0	X	1	0	\Rightarrow	1	1	0	1
0	X	1	1	\Rightarrow	1	1	1	0
1	0	X	0	\Rightarrow	1	0	1	1
1	0	X	1	\Rightarrow	0	1	1	1
1	1	0	X	\Rightarrow	1	0	1	1
1	1	1	X	\Rightarrow	0	1	1	1