

Predicting Social Media Behavior Based on Weather Patterns

The Earth is Flat

Eating sugar causes a "sugar-rush"

Bulls get angry when they see red

Eating sugar causes a "sugar-rush"

Bulls get angry when they see red

Better weather makes people happier (on twitter)

Better weather makes people happier (on twitter)

Problem Overview

- Is social media sentiment influenced by weather patterns?
- Can we measure the impact of weather on the mood of a city by observing sentiment on social media

DATA COLLECTION AND ANALYSIS

Data Collection Overview

Data Augmentation Overview

Data Cleaning

Training Data Set Creation:

- 1. Collect 37 days of tweets
- 2. Add weather
- 3. Add sentiment
- 4. Clean
 - a. Non-neutral sentiment
 - b. Weather data available
 - c. Augment weather data
- 5. Group by hour
- 6. Average sentiment by hour
- 7. Enrich tweets with weather data

Data Grouping

- We aggregated our data into a single point for each hour for each city
- In aggregating the data, we calculated the average sentiment and % positive sentiment
- In order for these statistics to be valid, we need enough tweet in each hour for the average to be close to the actual average
- If we had more data we may have excluded any data points with less than ~20 tweets

Look at all the weather parameters!

Twitter Sentiment Analysis

Twitter Cities' Average Temperature

Twitter Data Insights

Average Sentiment across America

Twitter Usage during an Average American Day

Twitter Correlation Analysis - Average Sentiment

Twitter Correlation Analysis - % Positive

MACHINELEARNING

Machine Learning Overview

Twitter N-value Optimization

Machine Learning Overview

Twitter Parameter Optimization

Machine Learning Overview

Twitter Feature Importance (Random Forest)

Twitter Machine Learning Results

Algorithm	R2 Train	R2 Test
RandomForest	0.0424	0.0203
K-Neighbors	0.0419	0.0322
Stochastic Gradient	-0.1220	-0.1619
Bagging	0.1000	0.0042

Twitter Machine Learning Results

OTHER CONSIDERATIONS

Reddit Sentiment Analysis Extension

8 Cities

3.4M
Comments

Reddit Comments

 $r^2 = .002$

Twitter % Positive Sentiment

 $r^2 = .03$

Conclusion

$$H_0: r^2 > 0$$

$$H_A: r^2 \leq 0$$

We **reject** the null hypothesis that we can predict sentiment using weather forecasts.

Conclusion

$$H_0: r^2 > 0$$

 $H_A: r^2 \leq 0$

that we can predict entiment using leader forecase.

Reflection and Next Steps

Reconsiderations

- More data (Year-round Twitter data)
- Explore "change in weather" rather than absolute weather
- Filter tweets for specific topics (i.e. tweets about weather)
- Other than weather, what else could impact sentiment?

Controlled Experiment

- Have a group of people tweet 5 times a day at pre-set times
- Clean data!

