Answer all the questions.

- 1. Two of the most common computer operations are *sorting* and *searching*.
 - (a) Explain what is meant by sorting. [2 marks]
 - (b) Explain what is meant by searching. [2 marks]
 - (c) State **one** example of internal sort method and state its efficiency in *BigO notation*. [2 marks]
 - (d) State **one** example of search method and state its efficiency in BigO notation. [2 marks]
 - (e) Sorts are time consuming and it may be a good policy to avoid them where possible. Explain how this could be done. [2 marks]

4. The linked list is held in memory in a table, which has room for 100 entries. The first item on the list is pointed to by the pointer start.

All free locations in the table are linked and nextAvailable is a pointer to the next free location in the table.

Each node consists of a student's name and a pointer to the next item in the list. Pointer –1 is the sentinel value.

The table currently holds four entries in such a way that they can be retrieved in alphabetical order

		STUDENT'S	NEXT
start " 0		NAME	STUDENT
	0	Adams, Jose	3
nextAvailable 4	1	Turner, Ivor	-1
	2	Kliss, Mary	1
	3	Brown, Charlie	2
	4		5
	5		6
	6		7
	•		
	98		99
	99		-1

(a) Determine the new state of the table and pointers start and nextAvailable after name Lohy, Ann has been inserted in the list given above.

[3 marks]

(b) Determine the new state of the table and the pointers start and nextAvailable after name Kliss, Mary has been deleted from the **original** list.

[3 marks]

(c) Describe, by means of diagrams, or otherwise, how this list can be held in a memory as a dynamic data structure.

[4 marks]

1. (a) Putting a list;

in (ascending or descending) order;

[2 marks]

(b) Locating a specific value (target); in a list of values;

[2 marks]

(c) Award [2 marks], [1 mark] for name, [1 mark] for BigO notation. possible answers (sorts listed in the syllabus, accept other sorts): bubble sort $O(n^2)$;

selection sort $O(n^2)$; quick sort $O(n \log_2 n)$;

[2 marks max]

(d) Award [2 marks], [1 mark] for name, [1 mark] for BigO notation. possible answers(algorithms listed in the syllabus); linear/sequential search O(n); binary search O(log₂n);

[2 marks]

(e) Award [2 marks] for correct explanation, [1 mark] for vague answer. example answer:

sorts can be avoided by maintaining the data in correct order all the time (example linked list) or

sorts can be avoided by keeping the items in a data structure such as a BST. [2 marks]

2. (a) Award [1 mark] for correct column STUDENT'S NAME, [2 marks] for correct column NEXTSTUDENT ([1 mark] for each changed link), [1 mark] for correct pointer nextAvailable. [3 marks max]

		STUDENT'S NAME	NEXT STUDENT
start 0	0	Adams, Jose	3
		Turner, Ivor	-1
nextAvailable 5	2	Kliss, Mary	4
	3	Brown, Charlie	2
	4	Lohy, Ann	1
	5		6
	6		7
	99		-1

(b) Award [1 mark] for correct column STUDENT'S NAME (name Kliss Mary may not appear on the list).

Award [2 marks] for correct column NEXTSTUDENT (award [1 mark] for each changed link).

Award [1 mark] for correct pointer nextAvailable).

[3 marks max]

		STUDENT'S NAME	NEXT
start 0			STUDENT
Start 0	0	Adams, Jose	3
nextAvailable 2	1	Turner, Ivor	-1
	2	Kliss, Mary	4
	3	Brown, Charlie	1
	4		5
	5		6
	6		7
	99		-1

(c)

Award [1 mark] for any.

pointer to the first node in the list;

correct node contents (data and link);

correct order of nodes;

all correct links and null;

although pointer nextAvailable is not needed in dynamic representations, marks are to be awarded for the following statements.

stating that nextAvailable could be a a pointer to last node;

or if ADT linked list is used-add a node at the end of the list is available method so pointer nextAvailable is not needed; [4 marks max]