

- 1.0 Motivation why to use tensor networks
- 1.1. Building block vectors matrices tensors and their contractions in Penrose notation
- 1.2 The idea of data compression
 - Counting strings of bits
 - Counting strings of bits with constraints
- 1.3 From strings of bits to probability distributions of classical spins
- 1.4 Tensor networks for the many body problem
- 1.5 Defining many body systems
 - Without interaction, the product states
 - With interactions, strongly interacting problems in physics
 - The exponential scaling
- 1.6 Classes of states that can be represented efficiently

1.0 Introduction

Tensor networks

tensors networks represent set of correlated data, they are mostly used for

- quantum many body systems, wave-functions operators
- path integrals in field theories (space-time?)
- statistical mechanics, probabilities of configurations (canonical distributions, partition functions)
 - big data, any field in which data have some correlations, or specific origin that allow to compress them.

Why do we use them

- provide a compressed data-set
- provide clear characterization of the structure, visually and computationally of correlation, bunching together more correlated local structure
- provide a distributed representation in terms of individual tensors (subset of the data)
 - provide a unified framework
 - robust to noise and missing data

1.1 Introduction

$$A = \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_m \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} B_{11} & \cdots & B_{1n} \\ \vdots & \ddots & \vdots \\ B_{m1} & \cdots & B_{mn} \end{bmatrix}$$

Building blocks
$$B = \begin{bmatrix} B_{11} & \cdots & B_{1n} \\ \vdots & \ddots & \vdots \\ B_{m1} & \cdots & B_{mn} \end{bmatrix} \quad C = \begin{bmatrix} C_{111} & \cdots & C_{1n1} \\ \vdots & \ddots & \vdots \\ C_{m11} & \cdots & C_{mn1} \end{bmatrix}^{1} \begin{bmatrix} C_{111} & \cdots & C_{1n1} \\ \vdots & \ddots & \vdots \\ C_{m11} & \cdots & C_{mn1} \end{bmatrix}^{2}$$

$$A_i \Leftrightarrow A$$

$$B_{ij} \Leftrightarrow \overbrace{b}_{i}$$

Operations

1.2 Data compression

Counting

- Counting the number of the sequences of L bits that do not contain two consecutive ones
- How many are they?
- In order to create them sequentially what is the relevant information?

1.3 Probability distributions

Probablility distribution

 Encoding the probability distribution for a sequence of L bits that is uniform if there are no two adjacent ones 0 otherwise

1.4 Many-body problem

Tensor Network for many body

Many body systems are systems described by several constituents

Luca Tagliacozzo, IFF-CISC

Quantum Systems

Hamiltonian, wave-functions

Hydrogen atom

Free fermions

$$\left\{c_i^{\dagger}, c_j^{\dagger}\right\} = 0$$

The Coulomb potential

At low energies interaction between photons and electrons

$$\alpha = 1/137$$

$$V \propto rac{1}{r}$$

1.5 Many-body systems

Many body non-interacting

Luca Tagliacozzo, IFF-CISC

E.g. Band theory

Not all fermions are "free"

Quarks, are confined

Exotic Emerging phenoma

Superconductor

Super-fluid

Super-solid

E.g. compounds of transition metals

21 44.956 SC Scandium [Ar]3d ¹ 4s ²	22 Ti Titanium	23 50.942 V Vanadium [Ar]3d ³ 4s ²	24 51.996 Cr Chromium [Ar]3d ⁵ 4s ¹	25 54.938 M n Manganese [Ar]3d ⁵ 4s ²	26 55.933 Fe Iron [Ar]3d ⁶ 4s ²	27 58.933 CO Cobalt [Ar]3d ⁷ 4s ²	28 58.693 Ni Nickel [Ar]3d ⁸ 4s ²	29 63.546 Cu Copper [Ar]3d ¹⁰ 4s ¹	30 65.39 Zn Zinc [Ar]3d ¹⁰ 4s ²
39 Yttrium [Kr]4d ¹ 5s ²	40 91.224 Zr Zirconium [Kr]4d ² 5s ²	41 92.906 Nb Niobium [Kr]4d ⁴ 5s ¹	42 95.95 MO Molybdenum [Kr]4d ⁵ 5s ¹	43 98.907 TC Technetium [Kr]4d ⁵ 5s ²	44 101.07 Ru Ruthenium [Kr]4d ⁷ 5s ¹	45 102.906 Rh Rhodium _{[Kr]4d⁸5s¹}	46 106.42 Pd Palladium	47 107.868 Ag Silver [Kr]4d ¹⁰ 5s ¹	48 112.411 Cd Cadmium [Kr]4d105s2
57-71	72 178.49 Hf Hafnium [Xe]4f ¹⁴ 5d ² 6s ²	73 180.948 Ta Tantalum [Xe]4f ¹⁴ 5d ³ 6s ²	74 ^{183.85} W Tungsten _{[Xe]4f145d46s2}	75 186.207 Re Rhenium [Xe]4f ¹⁴ 5d ⁵ 6s ²	76 190.23 OS Osmium [Xe]4f ¹⁴ 5d ⁶ 6s ²	77 ^{192.22} r Iridium _{[Xe]4f¹⁴5d⁷6s²}	78 195.08 Pt Platinum [Xe]4f ¹⁴ 5d ⁹ 6s ¹	79 ^{196.967} Au Gold _{[Xe]4f¹⁴5d¹⁰6s¹}	80 200.59 Hg Mercury [Xe]4f ¹⁴ 5d ¹⁰ 6s ²
89-103	104 [261] Rf Rutherfordium	105 [262] Db Dubnium	106 [266] Sg Seaborgium	107 [264] Bh Bohrium	108 ^[269] HS Hassium	109 [268] Mt Meitnerium	110 [269] DS Darmstadtium	111 [272] Rg Roentgenium	112 [277] Cn

The phase diagram of cuprates

Exotic emerging phenomena

- Spin Liquid
- Fractional quantum Hall
- High temperature superconductors
- Quark confinement

• ...

Model Hamiltonians, Hubbard

- Tight binding...
- Single band...

• Screening...
$$H = -t \sum_{\langle i,j \rangle,\sigma} (c_{i,\sigma}^\dagger c_{j,\sigma} + c_{j,\sigma}^\dagger c_{i,\sigma}) + U \sum_{i=1}^N n_{i\uparrow} n_{i\downarrow},$$

$$H = J \sum_{\langle i,j \rangle} \sigma_i \sigma_j$$
$$|0\rangle, |\uparrow\rangle, |\downarrow\rangle$$

Quantum many body problem

A state of a many body systems

$$|\psi
angle = \sum_{i_1\cdots i_N} c^{i_1\cdots i_N} |i_1\cdots i_N
angle \ \mathcal{H} = \mathcal{H}_1\otimes \mathcal{H}_2\cdots\otimes \mathcal{H}_N \ |i_1
angle \quad |i_2
angle \quad |i_N
angle \ |i_1
angle \quad |i_2
angle \quad |i_N
angle \ |i_N
a$$

 $c^{i_1\cdots i_N}$

contains d^N parameters

Exponential complexity

•
$$2^2 = 4$$

•
$$2^3 = 8$$

•
$$2^5 = 32$$

•
$$2^6 = 64$$

•

•
$$2^{40} = 1.0995116e + 12$$

1.6 Classes of states that can be represented

Special states

• Special case, product sates.

Summary

- Tensor networks try to extract structure from data and put it into structure
- They provide a computational representation of data
- There are special classes of counting problems, probabilities distributions, quantum states that can be represented