TP 3.2 - La réfraction de la lumière

Objectifs:

- Comprendre comment décrire le phénomène de réfraction.
- Découvrir la loi de Snell-Descartes.

Contexte : La lumière se propage en ligne droite dans un même milieu transparent. Lorsque la lumière passe d'un milieu à un autre sa direction de propagation change : c'est le phénomène de **réfraction**.

En arrivant avec certains angles, la lumière peut aussi être **réfléchie**, c'est le phénomène de **réflexion**.

→ Comment décrire mathématiquement le phénomène de réfraction et de réflexion ?

Document 1 - Indice de réfraction

Quand la lumière se propage dans un milieu, sa vitesse est réduite.

La capacité d'un milieu à réduire la vitesse de la lumière est mesurée par un nombre que l'on appelle l'indice de réfraction et que l'on note n_{milieu} .

Dans le milieu, la vitesse de la lumière est

$$c_{
m milieu} = rac{c}{n_{
m milieu}}$$

- Exemple:
 - L'air a un indice de réfraction $n_{\rm air}=1,00$ et donc $c_{\rm air}=c=3,00\times10^8{\rm m\cdot s^{-1}}$.
 - L'eau a un indice de réfraction $n_{\rm eau}=1{,}33$ et donc $c_{\rm eau}=2{,}26\times10^8{\rm m\cdot s^{-1}}$.

Document 2 - Mesure de l'indice de réfraction

Matériel utilisé :

- 1 source de lumière alimentée en 12 V continu;
- 1 demi-cylindre de plexiglas sur son disque-support gradué en degrés.

Votre professeur préféré a réalisé les mesures suivantes avec ce dispositif expérimental :

			Disque gradue tournait									
Angle d'incidence i_1	0	5	10	15	20	30	40	50	60	70	80	90
Angle de réfraction i_2	0	3.3	6.7	9.9	13.2	19.5	25.4	30.7	35.3	38.8	41.0	41.8

 \triangle Pans le programme python refraction_1.py, repérer les lignes correspondant aux angles i_1 et i_2 mesurés. Les remplir avec les valeurs du document 2 et lancer le programme.

Document 3 - La proportionnalité

Deux grandeurs a et b sont **proportionnelles** si le graphique représentant la grandeur a en fonction de la grandeur b est une droite passant par l'origine du repère. Ces deux grandeurs a et b sont alors reliées par l'égalité

$$a = k \times b$$

Dans cette égalité k est une constante. k est le **coefficient directeur** de la droite.

1 — Est-ce que l'on a une relation de proportionnalité entre i_1 et i_2 ? Justifier à partir du graphique obtenu.
 △
Document 4 – Loi de Snell-Descartes
Lorsque la lumière passe d'un milieu d'indice n_1 à un milieu d'indice n_2 , alors
• le rayon incident, le rayon réfracté et la normale sont
•
•
La relation entre l'angle d'incidence i_1 et l'angle de réfraction i_2 s'appelle la loi de Snell-Descartes.
On retrouve bien la relation de proportionnalité mesurée :
$\sin(i_2) = \frac{n_1}{n_2} \times \sin(i_1)n_2\sin(i_2) = n_1\sin(i_1)$
3 - En utilisant la valeur du coefficient directeur $k=n_{\rm air}/n_{\rm plexiglas}$ calculée par le second

programme python, calculer la valeur de l'indice de réfraction $n_{\text{plexiglas}}$.