

人人都爱 DataFrame

Pandas 到 Mars 的进阶之路

何开圣

Python 数据科学生态

Pandas under the hood

更高效的 Pandas

更大规模的数据分析

1 Python 数据科学生态

Google Trends

Python 数据科学栈

Pythonic

完善的 API

数据分析

DataFrame

开源

强大的社区

数据清洗

什么是 Pandas

PYTHON 30tl

Series

- 一维数组数据
- 一个与数组关联的 数据标签(索引)

DataFrame

- 表格数据
- 二维有标签的数据

```
In [12]: s = pd.Series([1, 3, 5, np.nan, 6, 8], name='col')
In [13]: s
Out[13]:
0    1.0
1    3.0
2    5.0
3    NaN
4    6.0
5    8.0
Name: col, dtype: float64
```

```
In [8]: df
Out[8]:

A B C D

2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
2013-01-06 -0.673690 0.113648 -1.478427 0.52498
```

 看作是一个Series的字典 (所有Series共享一个索引)

Pandas 可以做什么

IO tools

- CSV & text files
- JSON
- HTML
- Excel files
- OpenDocument Spreadsheets
-

Group By: split-apply-combine

- Splitting an object into groups
- · Iterating through groups
- Selecting a group
- Aggregation
- Transformation
-

Computational tools

- Statistical functions
- Window Functions
- Aggregation
- · Expanding windows
- · Exponentially weighted windows

Indexing and selecting data

- Attribute access
- Slicing ranges
- Selection by label
- Selection by position
- Selection by callable
-

Merge, join, and concatenate

- Concatenating objects
- Database-style DataFrame or named Series joining/merging
- · Timeseries friendly merging
 - Visualization
 - Working with text data
 - Working with missing data
 - Sparse data structure

创建对象

```
In [1]: import pandas as pd
In [2]: import numpy as np
In [3]: dates = pd.date range('20191019', periods=6)
In [4]: df = pd.DataFrame(np.random.rand(6, 4), index=dates,
columns=list('abcd'))
In [5]: df
Out[5]:
                            b
                  a
                                     C
2019-10-19 0.343870 0.597608
                              0.873940 0.419012
2019-10-20 0.760962 0.296669
                              0.315243 0.836361
2019-10-21 0.294613 0.652080
                              0.534011 0.484261
2019-10-22 0.728239 0.928620
                              0.595617 0.557358
2019-10-23 0.031837 0.029126
                              0.982403 0.459137
2019-10-24 0.290760 0.936916
                              0.416385 0.646032
```


PYTHON 30tl

查看数据

```
In [8]: df.head(3)
Out[8]:
                           b
                                              d
                  a
                                     C
2019-10-19 0.343870
                    0.597608 0.873940 0.419012
2019-10-20 0.760962 0.296669 0.315243 0.836361
2019-10-21 0.294613 0.652080 0.534011 0.484261
In [9]: df.tail(3)
Out[9]:
                           b
                                              d
                  a
                                     C
2019-10-22 0.728239 0.928620 0.595617 0.557358
2019-10-23 0.031837 0.029126 0.982403 0.459137
2019-10-24 0.290760
                    0.936916
                              0.416385
                                       0.646032
```

```
In [10]: df.index
Out[10]:
DatetimeIndex(['2019-10-19',
'2019-10-20', '2019-10-21',
'2019-10-22'.
               '2019-10-23',
'2019-10-24'],
dtype='datetime64[ns]', freq='D')
In [11]: df.columns
Out[11]: Index(['a', 'b', 'c',
'd'], dtype='object')
In [12]: df.dtypes
Out[12]:
     float64
     float64
    float64
     float64
dtype: object
```


查看数据

```
In [13]: df.describe()
Out[13]:
                        b
              a
                                  C
       6.000000
                 6.000000
count
                           6.000000
                                     6.000000
       0.408380
                0.573503
                          0.619600
                                     0.567027
mean
       0.282612
                 0.357188
                          0.260056
std
                                     0.154451
min
      0.031837
                0.029126 0.315243
                                     0.419012
25%
      0.291723 0.371904 0.445792
                                    0.465418
50%
      0.319242
                 0.624844
                          0.564814
                                     0.520810
75%
      0.632147
                 0.859485
                          0.804359
                                     0.623863
       0.760962
                 0.936916
                          0.982403
                                     0.836361
max
```

```
In [14]: df.sort_values(by='c')
Out[14]:
                              b
                                                   d
                                         C
                    a
2019-10-20
            0.760962
                       0.296669
                                 0.315243
                                            0.836361
2019-10-24
            0.290760
                       0.936916
                                 0.416385
                                            0.646032
2019-10-21
            0.294613
                       0.652080
                                 0.534011
                                            0.484261
2019-10-22
            0.728239
                       0.928620
                                 0.595617
                                            0.557358
2019-10-19
            0.343870
                       0.597608
                                 0.873940
                                            0.419012
2019-10-23
            0.031837
                       0.029126
                                 0.982403
                                            0.459137
```


2019-10-20 0.760962

0.296669 0.315243

选择数据

```
In [17]: df.loc['2019-10-20':'2019-10-22', ['b', 'c']]
                              Out[17]:
                                                  b
                                           0.296669
                                                     0.315243
                              2019-10-20
                              2019-10-21
                                           0.652080
                                                     0.534011
                              2019-10-22
                                           0.928620
                                                     0.595617
In [15]: df['a']
                              In [18]: df.iloc[3:5,0:2]
Out[15]:
                              Out[18]:
2019-10-19
            0.343870
2019-10-20
                                                             b
           0.760962
                                                  a
2019-10-21 0.294613
                              2019-10-22
                                           0.728239
                                                     0.928620
2019-10-22 0.728239
                              2019-10-23
                                           0.031837
                                                     0.029126
2019-10-23 0.031837
2019-10-24
            0.290760
Freq: D, Name: a, dtype: float64
In [16]: df[:2]
Out[16]:
                          b
                 а
                                   C
                                            d
2019-10-19 0.343870
                   0.597608 0.873940
                                     0.419012
```

0.836361

选择数据

```
In [19]: df[df['a'] > 0.5]
Out[19]:
                             b
                                       C
                                                  d
                   a
2019-10-20 0.760962
                     0.296669
                                0.315243 0.836361
2019-10-22 0.728239
                     0.928620 0.595617 0.557358
In [20]: df[df < 0.1]
Out[20]:
                                 C
                                     d
                   a
2019-10-19
                 NaN
                           NaN NaN NaN
2019-10-20
                 NaN
                           NaN NaN NaN
2019-10-21
                 NaN
                           NaN NaN NaN
2019-10-22
                 NaN
                           NaN NaN NaN
2019-10-23 0.031837
                      0.029126 NaN NaN
2019-10-24
                 NaN
                           NaN NaN NaN
```


PYTHON 30tl

一些计算

```
In [21]: df.mean()
Out[21]:
    0.408380
a
h
    0.573503
  0.619600
C
d
    0.567027
dtvpe: float64
In [22]: df.mean(axis=1)
Out[22]:
2019-10-19
             0.558608
2019-10-20
             0.552309
2019-10-21 0.491241
2019-10-22
             0.702459
2019-10-23
             0.375626
2019-10-24
             0.572523
Freq: D, dtype: float64
```

```
In [29]: s = pd.Series([1, 2, 3],
index=df.index[2:5])
In [30]: s
Out[30]:
2019-10-21
              1
2019-10-22
              2
2019-10-23
Freq: D, dtype: int64
In [31]: df.add(s, axis='index')
Out[31]:
                             b
                                                 d
                   a
                                      C
2019-10-19
                 NaN
                           NaN
                                     NaN
                                               NaN
2019-10-20
                NaN
                          NaN
                                               NaN
                                     NaN
2019-10-21 1.294613
                     1.652080
                                1.534011
                                          1.484261
2019-10-22
           2.728239
                     2.928620
                                2.595617
                                          2.557358
2019-10-23 3.031837
                     3.029126
                                3.982403
                                          3.459137
2019-10-24
                 NaN
                           NaN
                                     NaN
                                               NaN
```


合并 (SQL join)

```
In [32]: left = pd.DataFrame({'key':
['foo', 'foo'], 'lval': [1, 2]})
In [33]: right = pd.DataFrame({'key':
['foo', 'foo'], 'rval': [4, 5]})
In [34]: left
Out[34]:
  key lval
foo
1 foo 2
In [35]: right
Out[35]:
  kev rval
foo
1 foo
In [36]: pd.merge(left, right, on='key')
Out[36]:
  key lval rval
  foo
  foo
2
  foo
3
  foo
```

```
In [37]: left = pd.DataFrame({'key':
['foo', 'bar'], 'lval': [1, 2]})
In [38]: right = pd.DataFrame({'key':
['foo', 'bar'], 'rval': [4, 5]})
In [39]: left
Out[39]:
  key lval
foo
1 bar 2
In [40]: right
Out[40]:
  key rval
foo
1 bar
In [41]: pd.merge(left, right, on='key')
Out[41]:
  key lval rval
foo
1 bar 2
```

PyConChina 2019

分组 (groupby)

```
In [42]: df
Out[42]:
           В
0
  foo
      one -0.449026 0.642683
1
  bar
       one -0.074552 -0.410214
  foo
       two -0.102928 -1.136713
3
  bar
       three 0.102498 0.836924
4
  foo
         two -0.543563 -0.322754
  bar
       two 0.648193 -0.510235
  foo
       one 0.311538 -0.064786
7
  foo three -1.135822 -1.399072
In [43]: df.groupby('A').sum()
Out[43]:
            \mathsf{C}
                     D
Α
               -0.083525
bar
     0.676139
foo
     -1.919801
               -2.689642
```

- 分组
- 每个分组应用某个 function
- 融合最后的结果

Pandas 周边生态 —— Pandas profiling

describe() 实现了基础的统计信息, pandas-profiling 是数据分析的神器,满足了大部分的统计需求

不再需要纠结使用什么函数,分析哪些数据,直接在网站展示

```
import pandas as pd
import pandas_profiling
data = pd.read_csv("")
profile = pandas_profiling.ProfileReport(data)
profile.to_file('report.html')
```

Pandas profiling

Overview: 数据量,数据类型,warning(缺失值以及零值)

Dataset info

Number of variables	14
Number of observations	45726
Missing cells	29703 (4.6%)
Duplicate rows	0 (0.0%)
Total size in memory	4.6 MiB
Average record size in memory	105.0 B

Variables types

Numeric	4
Categorical	5
Boolean	1
Date	1
URL	0
Text (Unique)	1
Rejected	2
Unsupported	0

Warnings

```
GeoLocation has a high cardinality: 17101 distinct values GeoLocation has 7315 (16.0%) missing values mass_(g) is highly skewed (\gamma1 = 76.91847245) recclass has a high cardinality: 466 distinct values reclat has 6438 (14.1%) zeros reclat has 7315 (16.0%) missing values reclat_city is highly correlated with reclat (\rho = 0.9942518712) reclong has 6214 (13.6%) zeros reclong has 7315 (16.0%) missing values source has constant value "NASA"
```

Missing
Skewed
Warning
Zeros
Missing
Rejected
Zeros
Missing
Rejected

Pandas profiling

Variables: 每个变量的统计信息

Distinct count 466 L6 8287 recclass H5 7143 1.0% Unique (%) Categorical 4797 Missing (%) L5 0.0% Other values (463) Missing (n) 0 更详细的信息 Toggle details Distinct count 12739 Mean -39.10709514 reclat Unique (%) 27.9% Minimum -87.36667 Numeric Missing (%) 16.0% Maximum 81.16667 Missing (n) 7315 Zeros (%) 14.1% Infinite (%) 0.0% Infinite (n) 0 Toggle details 强相关的会忽略并且提示

reclat_city
Highly correlated

This variable is highly correlated with reclat and should be ignored for analysis

Correlation 0.9942518712

reclone
Numeric

Distinct count	14641
Unique (%)	32.0%
Missing (%)	16.0%
Missing (n)	7315
Infinite (%)	0.0%
Infinite (n)	0

 Mean
 61.05259359

 Minimum
 -165.43333

 Maximum
 354.47333

 Zeros (%)
 13.6%

Pandas profiling

相关性

First rows

	boolean	fall	GeoLocation	id	mass_(g)	mixed	name	nametype	recclass	reclat
0	True	Fell	(50.775, 6.08333)	1	21.0	1	Aachen	Valid	L5	50.77500
1	False	Fell	(56.18333, 10.23333)	2	720.0	Α	Aarhus	Valid	H6	56.18333
2	False	Fell	(54.21667, -113.0)	6	107000.0	1	Abee	Valid	EH4	54.21667
3	True	Fell	(16.88333, -99.9)	10	1914.0	Α	Acapulco	Valid	Acapulcoite	16.88333
4	False	Fell	(-33.16667, -64.95)	370	780.0	1	Achiras	Valid	L6	-33.16667
5	False	Fell	(32.1, 71.8)	379	4239.0	Α	Adhi Kot	Valid	EH4	32.10000
6	False	Fell	(44.83333, 95.16667)	390	910.0	Α	Adzhi-Bogdo (stone)	Valid	LL3-6	44.83333
7	False	Fell	(44.21667, 0.61667)	392	30000.0	Α	Agen	Valid	H5	44.21667
8	False	Fell	(-31.6, -65.23333)	398	1620.0	1	Aguada	Valid	L6	-31.60000
9	False	Fell	(-30.86667, -64.55)	417	1440.0	Α	Aguila Blanca	Valid	L	-30.86667

前十行数据

2 Pandas under the hood

Python vs NDArray

Python list

```
In [18]: import sys
In [19]: lst = list(range(1000))
In [20]: sys.getsizeof(lst)
Out[20]: 9112
```

size

speed

```
In [30]: lst = list(range(100000))

In [31]: %timeit sum((l + 1) for l in lst)
7.9 ms ± 128 μs per loop
```

Numpy NDArray

size

```
In [24]: import numpy as np
In [25]: arr = np.arange(1000,
dtype=np.int32)
In [26]: sys.getsizeof(arr)
Out[26]: 4096
```

speed

```
In [32]: arr = np.arange(100000, dtype=np.int32)

In [33]: %timeit (arr + 1).sum()

121 μs ± 2.32 μs per loop
```

Python vs NDArray

Why python is slow

BlockManager

根据不同的数据类型分成不同的块 (讲解一下 bytes)

	DataFrame											
	date	number_of_game	day_of_week	v_name	v_league	v_game_number	h_name	h_league	h_game_number	v_score	h_score	length_outs
0	01871054	0	Thu	CL1	na	1	FW1	na	1	0	2	54.0
1	18710505	0	Fri	BS1	na	1	WS3	na	1	20	18	54.0
2	18710506	0	Sat	CL1	na	2	RC1	na	1	12	4	54.0

IntBlock

	0	1	2	3	4	5
0	01871054	0	1	1	0	2
1	18710505	0	1	1	20	18
2	18710506	0	2	1	12	4

ObjectBlock FloatBlock

	0	1	2	3	4
0	Thu	CL1	na	FW1	na
1	Fri	BS1	na	WS3	na
2	Sat	CL1	na	RC1	na

	0
0	54.0
1	54.0
2	54.0

BlockManager

	name	id	score
0	wang	0	90.0
1	zhao	1	99.9
2	he	2	60.0

```
In [6]: df._data.blocks
Out[6]:
(FloatBlock: slice(2, 3, 1), 1 x 3, dtype: float64,
   IntBlock: slice(1, 2, 1), 1 x 3, dtype: int64,
   ObjectBlock: slice(0, 1, 1), 1 x 3, dtype: object)
In [7]: type(df._data.blocks[1].values)
Out[7]: numpy.ndarray
In [8]: df._data.blocks[1].values
Out[8]: array([[0, 1, 2]])
```


High level API

Translate

Storing data

3 更高效的 Pandas

任务: 收集了县级城市的经纬度, 计算他们与杭州的距离。

```
In [3]: df
Out[3]:
       行政代码
                      地名
                            longitude latitude
                河北省涉县
     130426
                          113.742914
                                     36.598105
0
           河北省孟村回族自治县 117.159538 38.091265
1
     130930
                山西省平遥县
2
     140728
                           112.265493
                                    37.148090
                内蒙古林西县 118.110216 43.771462
3
     150424
             辽宁省大连市中山区 121.677966 38.900436
4
     210202
        . . .
             甘肃省陇南市市辖区 104.934573 33.394480
3516
    621201
             甘肃省陇南市武都区 105.134553
3517
     621202
                                       33.293917
                甘肃省成县
3518
     621221
                          105.688289
                                     33.747297
                甘肃省文县 104.784206 32.947265
3519
    621222
               甘肃省宕昌县 104.452827 34.013489
    621223
3520
[3521 rows x 4 columns]
```


haversine 公式:

```
# 杭州的经纬度为 (120.2E ,30.3N), 计算距离调用如下 distance_hangzhou = haversine(lat, lon, 30.3, 120.2)
```


从循环开始说起


```
In [8]: %%timeit
   ...: haversine distances = []
   ...: for _, row in df.iterrows()
           distance = haversine(row['latitude'], row['longitude'], 30.3, 120.2)
   ...: haversine distances.append(distance)
```

```
471 ms \pm 24.8 ms per loop (mean \pm std. dev. of 7 runs, 1 loop each)
```


Tip1: 避免循环

Apply

```
In [12]: %%timeit
    ...: haversine_distances = df apply(lambda row: haversine(row['latitude'],
                                        row['longitude'], 30.3, 120.2), axis=1)
```

146 ms \pm 4.21 ms per loop (mean \pm std. dev. of 7 runs, 10 loops each \pm

加速你的 Pandas

```
In [12]: %%timeit
    ...: haversine distances = df.apply(lambda row: haversine(row['latitude'],
                                        row['longitude'], 30.3, 120.2), axis=1)
146 ms \pm 4.21 ms per loop (mean \pm std. dev. of 7 runs, 10 loops each)
```


Tip2: 直接对列操作

精通面向数组的编程和思维方式是成为 Python 科学计算牛人的一大关键步骤 —— Wes McKinney

```
In [19]: %%timeit
    ...: df['dis'] = haversine(df['latitude'], df['longitude'], 30.3, 120.2)
```

2.62 ms \pm 286 μ s per loop (mean \pm std. dev. of 7 runs, 100 loops ea

加速你的 Pandas

还不够快?

```
376 \mus \pm 7.55 \mus per loop (mean \pm std. dev. of 7 runs, 1000 loops each)
```

```
471 ms \pm 24.8 ms per loop
```


Tip3:数组计算直接使用 numpy

Categorical data

• 颜色: Red, Black, White, Green, ...

• 性别: Male, Female

• 星期日期: Monday, Tuesday, Wednesday, ...

•

绝大部分分类数据是字符串

Object 类型意味着大内存与低效


```
In [28]: df['省份']
Out[28]:
0 河北
1 河北
2 山西
...
3518 甘肃
3519 甘肃
3520 甘肃
Name: 省份, Length: 3521, dtype: object
```

用 category 表示省份

```
In [29]: df['省份'] = df['省份'].astype('category')
In [30]: df['省份']
Out[30]:
      河北
1
      河北
      山西
2
      甘肃
3518
      甘肃
3519
3520
      甘肃
Name: 省份, Length: 3521, dtype: category
Categories (33, object): [上海,云南,内蒙,北京,...,陕西,青海,香港特别行政区,黑龙江]
```



```
In [29]: series as category = df['省份']
Out[29]:
      河北
0
      河北
1
      山西
2
    甘肃
3518
3519
    甘肃
3520
     甘肃
Name: 省份, Length: 3521, dtype: category
Categories (33, object): [上海,云南,内蒙,北京,...,陕西,青海,香港特别行政区,黑龙江]
```

实际上已经映射成整型 (int8)

```
In [66]: series as category.cat.codes
Out[66]:
0
        16
1
        16
2
        10
        . .
3518
        23
3519
     23
3520
        23
Length: 3521, dtype: int8
```


Tip4: 使用 category 类型

• 内存节约 (~5.4 x)

```
In [49]: series = df['省份']
In [50]: series.memory_usage()
Out[50]: 28296
In [51]: series_as_category = series.astype('category')
In [52]: series_as_category.memory_usage()
Out[52]: 5193
```

• 性能 (~1.8 x), 数据量很大时性能会有大幅提升

```
In [58]: %timeit df.groupby('省份')['dis'].max()  
913 \mus \pm 18.3 \mus per loop (mean \pm std. dev. of 7 runs, 1000 loops each)

In [59]: %timeit df_category.groupby('省份')['dis'].max()  
510 \mus \pm 15.8 \mus per loop (mean \pm std. dev. of 7 runs, 1000 loops each)
```


当数据规模来到了 100G, 所有的优化都是白费,

求助 SQL? Spark?

不,我们需要并行的、分布式的 Pandas!

4 更大规模的数据分析

PYTHON 30

Mars: 一个统一的分布式计算框架,将 Python 科学技术栈应用到大数据中

- Numpy
- Pandas
- Scikit-learn

```
In [1]: import pandas as pd
In [2]: import numpy as np
In [3]: df =
pd.DataFrame(np.random.rand(10, 10))
In [4]: df.sum()
Out[4]:
     4.639573
1
     5.552392
    4.974636
3
    3,709493
4
    3.886881
    4.640418
6
    5.660901
  5.748306
    4.227453
     5.897225
dtype: float64
```

```
相同的 API
```

```
In [1]: import mars.tensor as mt
In [2]: import mars.dataframe as md
In [3]: df =
md.DataFrame(mt.random.rand(10, 10))
In [4]: df.sum() execute()
Out[4]:
    4.657526
    6.373730
     5.526396
3
    3.830616
     5.070046
    4.986147
    5.586429
    4.408413
    4.461475
```

4.800761

dtype: float64


```
In [5]: df1 = pd.DataFrame(np.random.rand(10, 3))
In [6]: df2 = pd.DataFrame(np.random.rand(10, 3),
index=[4, 1, 3, 2, 10, 5, 9, 8, 6, 7])
In [7]: df1 + df2
Out[7]:
                      1
                                2
           0
         NaN
                    NaN
                              NaN
    0.523616
              0.877549
                         1.129148
    1.420484
              1.176361
                         1.504610
3
    1.137251
              0.582319
                         0.545606
4
    1.433731
              1.271197
                         1.069266
5
    1.573455
              1.078515
                         1.509255
6
    0.916412
              0.511708
                         0.741676
    1.284630
              0.579828
                         1.366145
8
    1.283414
              0.677225
                         0.136293
9
    0.453015
              1.801961
                         1.358312
10
         NaN/
                    NaN
                              NaN
```

```
In [5]: df1 = md.DataFrame(mt.random.rand(10, 3))
In [6]: df2 = md.DataFrame(mt.random.rand(10, 3),
index=[4, 1, 3, 2, 10, 5, 9, 8, 6, 7])
In [7]: (df1 + df2).execute()
Out[7]:
                     1
           0
         NaN
                   NaN
                              NaN
    0.342513
              0.458722
                        1.106504
1
    0.776831
              0.549000
                        1.187729
              0.564384
    0.483544
                        0.245915
    0.993470
              0.102466
                        1.615469
    0.744108
              1.019650
                        1.522074
    0.671610
              0.820533
                        1.150278
    0.826367
              0.872842
                        0.877645
    0.503570
              1.328384
                        0.987532
    1.654519
              1.026768
                        1.456997
10
         NaM
                   NaN
                              NaN
```

一致的行为,自动索引对齐


```
In [10]: %%time
    ...: df = pd.DataFrame(np.random.rand(100000000, 4))
    ...: df.sum()
    ...:
    ...:
CPU times: user 12 s, sys: 3.6 s, total: 15.6 s
Wall time: 12.8 s
Out[10]:
0    4.999985e+07
1    4.999891e+07
2    4.999715e+07
3    5.000027e+07
dtype: float64
```

```
In [4]: %%time
    ...: df = md.DataFrame(mt.random.rand(100000000, 4))
    ...: df.sum().execute()
    ...:
    ...:
CPU times: user 19.3 s, sys: 5.14 s, total: 24.4 s
Wall time: 4.27 s
Out[4]:
0     4.999827e+07
1     5.000004e+07
2     4.999853e+07
3     4.999748e+07
dtype: float64
```

运行时间: 12.8s

内存峰值: 3430.29M

单机上,自动利用多核,加速计算

运行时间: 4.27s

内存峰值: 2007.92M

分布式

```
部署 Mars 集群, 通过
RESTful API 提交任务

In [5]: from mars.session import new_session

In [6]: sess = new_session('http://127.0.0.1:40002').as_default()

In [7]: df = md.DataFrame(mt.random.rand(100000000, 4))

In [8]: df.sum().execute()
```



```
import numpy as np
def haversine(lat1, lon1, lat2, lon2):
   # Lat1, Lon1 为位置 1 的经纬度坐标
   # Lat2, Lon2 为位置 2 的经纬度坐标
   dlon = np.radians(lon2 - lon1)
   dlat = np.radians(lat2 - lat1)
    a = np.sin(dlat / 2) ** 2 +
np.cos(np.radians(lat1)) * \
       np.cos(np.radians(lat2)) * np.sin(dlon / 2)
** )
   c = 2 * np.arcsin(np.sqrt(a))
   r = 6371 # 地球平均半径,单位为公里
   return c * r
%time haversine(latitude, longitude, 30.3, 120.2)
CPU times: user 11.5 s, sys: 9.6 s, total: 21 s
Wall time: 22 s
```

```
import mars.tensor as np
def haversine(lat1, lon1, lat2, lon2):
    # Lat1, Lon1 为位置 1 的经纬度坐标
    # Lat2, Lon2 为位置 2 的经纬度坐标
    dlon = np.radians(lon2 - lon1)
    dlat = np.radians(lat2 - lat1)
    a = np.sin(dlat / 2) ** 2 +
np.cos(np.radians(lat1)) * \
       np.cos(np.radians(lat2)) * np.sin(dlon / 2)
** 7
    c = 2 * np.arcsin(np.sqrt(a))
    r = 6371 # 地球平均半径,单位为公里
    return (c * r).execute()
%time haversine(latitude, longitude, 30.3, 120.2)
CPU times: user 20.4 s, sys: 19.2 s, total: 39.5 s
Wall time: 13.2 s
```


Tip5: 使用 Mars

如何并行计算

c5	26	c5	22
с6	19	с6	30
с7	29	c7	20
с8	17	с8	18
с9	27	c9	13

c0	36
c1	50
c2	40
c3	38
с4	59
c5	48
с6	49
c 7	49
c8	35
c9	40

	0	1	
с0	14	22	
c1	22	28	
c2	24	16	
с3	21	17	
c4	28	31	
c5	26	22	
с6	19	30	
с7	29	20	
с8	17	18	
с9	27	13	

如何并行计算

分而治之

```
In [1]: import mars.tensor as mt
In [2]: import mars.dataframe as md
In [3]: a = mt.ones((10, 10),
chunk size=5)
In [4]: df = md.DataFrame(a)
In [5]: s = df.sum()
In [6]: s.execute()
Out[6]:
     10.0
     10.0
1
2
     10.0
3
     10.0
4
     10.0
5
    10.0
     10.0
7
     10.0
     10.0
8
     10.0
9
dtype: float64
```


分而治之

PyConChina

分布式执行

Mars DataFrame

- 实现的接口
 - 创建 DataFrame: DataFrame、from records
 - Basic arithmetic: 基本算数运算
 - Math: 数学运算
 - Indexing: 索引
 - iloc
 - 列选择
 - set Index
 - Reduction: 聚合
 - Groupby: 分组聚合
 - merge/join
- Roadmap: https://github.com/mars-project/mars/issues/495

Mars 现状及方向

- pip install pymars
- Mars 开源地址: https://github.com/mars-project/mars
- Mars 文档: https://docs.mars-project.io/zh CN/latest/
- 双版本发布
- 方向:
 - 社区是重点
 - 技术:
 - Roadmap 和 Enhancement Proposal: <u>https://github.com/mars-project/mars/issues/537</u>
 - 丰富 DataFrame、learn 和 Tensor 的接口
 - 更好的算子融合
 - Mars actors 层优化,支持更高效的执行和网络效率
 - 支持更多调度

THANK YOU

