Übung 05 Trigonometrie Teil 2

Vom 17.1.2024

Vorbereitung zur Aufnahme auf das Studienkolleg

Organisation

Januar 2024

Kalender**pedia**

KW	Montag	Dienstag	Mittwoch	Donnerstag	Freitag	Samstag	Sonntag
1	1	2	3	4	5	6	7
2	8	9	10	11	12	13	14
3	15	16	17	18	19	20	21
4	22	23	24	25	26	27	28
5	29	30	31	1	2	3	4

- Wir bleiben im Online Format im neuen Jahr!
- Montag & Mittwoch
- Uhrzeit 16.00 17.30 Uhr
- Letzte Session am 31.1
- Übungen von nun an:
 - Gemeinsam Lösungen finden
- Muster Tests 1x die Woche:
 - Besprechung im Anschluss

Aufnahmeprüfung

Deutsch und Mathematik

05.02.2024

Montag den

München

um 9:00 Uhr

https://studienkolleg-münchen.de/bewerben/aufnahme-in-

Themen-Gebiete Gesamt

- Vereinfachung von Bruchtermen
- Polynomdivision
- Wurzelgleichungen Ungleichungen
- Exponentialgleichungen & Logarithmusgleichungen
- Trigonometrischen Funktionen
- Erkennen von Funktionsgraphen
- Geometrie ; vor allem Satzgruppe des Pythagoras, Strahlensätze, Kreisberechnungen, Flächen- und Volumenberechnungen

Das Wichtigste auf einem Blick

- Sin & Cos graphische Herleitung am Einheitskreis
- Funktionsverlauf von y=Sin(x) und y=Cos(x)
- Wertetabelle und Vorzeichen innerhalb einer **Periode 2** π
- Satz des Pythagoras: $Sin^2(\alpha) = 1 Cos^2(\alpha)$

Wertetabelle:

Winkel in Grad	0 °	30°	45°	60 °	90°	180°	270°	360°
Winkel in Bogenmaß	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3}{2}\pi$	2π
$\sin (\alpha) = y$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
$\cos (\alpha) = y$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1

Weitere Eigenschaften von Sin & Cos

- Verschiebung um **90 Grad** = $\frac{\pi}{2}$
 - $\sin(x \pi/2) = \cos(x)$
 - $\bullet \sin(x + \pi/2) = -\cos(x)$
 - $cos(x \pi/2) = -sin(x)$
 - $cos(x + \pi/2) = sin(x)$
- Verschiebung um 2π
 - $sin(x + 2\pi) = sin(x)$
 - $cos(x + 2\pi) = cos(x)$
- Symmetrie:

Weitere Eigenschaften von Sin & Cos

- Symmetrie:
 - sin(x) = -sin(-x)
 - Sin ist Punktsymmetrisch zum Ursprung
 - cos(x) = cos(-x)
 - Cos ist Spiegelsymmetrisch zur y-Achse

y=sin(X) Punktsymmetrie

Der Sinus ist:

o Punktsymmetrisch sin(x) = -sin(-x)

Tangens y=tan(x)

$$Tan(x) = \frac{Sin(x)}{Cos(x)}$$

Der Tangens ist der Quotient von Sin und Cos

Tangens ist π -Periodisch

$$\tan(x + \pi) = \tan(x)$$

Bei $\frac{\pi}{2} \pm k$, ke \mathbb{Z} , nicht definiert

Tangens y=tan(x)

Der Tangens ist der Quotient von Sin und Cos

$$Tan(x) = \frac{Sin(x)}{Cos(x)}$$

Tangens ist π -Periodisch

$$\tan(x + \pi) = \tan(x)$$

$$Tan(-x) = -Tan(x)$$

Bei $\frac{\pi}{2} \pm k$, k∈ \mathbb{Z} , nicht definiert

• Alle/Vispingta in Test kommen in $\frac{\pi}{3}, \frac{\pi}{2} \pm \frac{\pi}{2} * k$ vor wobei $k \in \mathbb{Z}$

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π
α°	0°	30°	45°	60°	90°	120°	135°	150°	180°	210°	225°	240°	270°	300°	315°	330°	360°
sin α	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0
cos a	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$tan(\alpha)$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	-	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	-	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0

Wertetabelle

- Alle Lösungen im Test kommen innerhalb dies
- Wenn ich die Verte von Sin im Bereich von 0 bi auch eintragen, kennen!

	$\sin(x)_{\uparrow}$				
	1				
					→
$-2\pi -\frac{3}{2}\pi -\pi$	$-\frac{1}{2}\pi$	$\frac{1}{2}\pi$	$\pi \frac{3}{2}$	π 2π	x
o , kemie, kami ien a					

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π
α°	0°	30°	45°	60°	90°	120°	135°	150°	180°	210°	225°	240°	270°	300°	315°	330°	360°
sin α	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0
cos a	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
tg α	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	-	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	-	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0
ctg a	-	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	$-\frac{1}{\sqrt{3}}$	-1	$-\sqrt{3}$	-	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	$-\frac{1}{\sqrt{3}}$	-1	$-\sqrt{3}$	-

$$tan(\alpha)=$$

- $y = A * \sin(bx c)$
- A ist die Amplitude, sie ändert die Höhe der Welle

- Beispiel 1:
- $y = 5 * \sin(x)$

- $y = A * \sin(bx c)$
- A ist die Amplitude, sie ändert die Höhe der Welle

- Beispiel 2:
- $y = -2 * \sin(x)$

- $y = A * \sin(bx c)$
- b beeinflusst die Perioden Dauer oder b bestimmt wie viele Wellen innerhalb von 2π vorkommen
- (**Merke**: Es kommen b mal so viele Wellen in 2π vor!

- Beispiel 1:
- $y = \sin(2x)$
- Eine Periode ist nun $\frac{2\pi}{2} = \pi$

- $y = A * \sin(bx c)$
- b beeinflusst die Perioden Dauer oder b bestimmt wie viele Wellen innerhalb von 2π vorkommen
- (**Merke**: Es kommen b mal so viele Wellen in 2π vor!
- Beispiel 2:
- $y = \sin(3x)$
- Eine Periode ist nun $\frac{2\pi}{3}$

- $y = A * \sin(bx c)$
- c ist eine Verschiebung des Nullpunktes!
- Merke: Was muss ich für x einsetzen damit

(bx-c)=0! Dieses x ist mein neuer Startpunkt der gewohnten Funktion

- Beispiel:
- $y = \sin(x \frac{\pi}{3})$

- $y = A * \sin(bx c) + d$
- A ist die Amplitude, sie ändert die Höhe der Welle

(**Merke** meine Welle ist A mal so groß)

• b beeinflusst die Perioden Dauer oder **b** bestimmt wie viele Wellen innerhalb von 2π vorkommen

(**Merke**: Es kommen b mal so viele Wellen in 2π vor!

• **c** ist eine Verschiebung des Nullpunktes!

Merke: Was muss ich für x einsetzen damit **(bx-c)=0!** Dieses x ist mein **neuer Startpunkt** der gewohnten Funktion

• **d** ist eine konstante Verschiebung der Y-Achse **Merke:** Die x-Achse schneidet die y-Achse jetzt bei d

Harmonische Funktionen Beispiele

Betragsfunktion $|\sin(x)|$ & Das Quadrat $\sin^2(x)$

Besprechung der Aufgaben

- Aus dem Übungsaufgaben_für_Mathematiktest_Sep_2016
- https://de.serlo.org/mathe/16245/trigonometrie
- Falls Sie sich einen Graphen nicht vorstellen können, oder wissen wollen, wie eine Funktion aussieht:
- https://www.wolframalpha.com/input?i=%7Ctan%28x%29%7C+
- Aufnahmetest Muster(verschiedene Bundesländer:
- https://studienkollegs-in.de/aufnahmetest/beispiele

$Tan^2(x)$

Übung für euch!

a) $\sin x = \sin 2x$

$$\cos^2 x - \sin x = \frac{1}{4}$$

Übung für euch!

Übung für euch!

