Intuition of the math behind Laplacian & Laplacian Matrix

Overview

Laplacian of a function, f is defined as:

$$\Delta f = div(grad(f)) = \nabla \cdot \nabla f$$

Referring left image, **positive** divergence diverges **out**, whereas **negative** divergence **converges** to a point.

Referring right image, a **positive** divergence appears as **valley** in topology, whereas **negative** divergence appears as **mountaintop**.

Laplacian Graph

Laplacian kinda measures how **"smooth"** the function is over its domain. On graphs, a smooth function:

connected vertices -> changes slightly unconnected vertices -> changes significantly

Therefore, representation in mathematical way:

$$\sum_{u,v} w_{uv} (f(u)-f(v))^2$$

u, v are the vertices w is the weight of the edge between node u and v

More formally:.

$$rac{1}{2}\sum_{u.v}w_{uv}(f(u)-f(v))^2=f^TLf$$

- Minimizing the equation's left part = minimizing distance between connected(neighbouring) nodes
- **Minimizing** the equation's *right* part = eigenvectors the the Laplacian (Refer PCA note)

Laplacian Matrix

Given L as Laplacian Matrix, D as Degree Matrix, W as adjacency matrix

$$L = D - W$$

Example:

Labelled graph	Degree matrix						Adjacency matrix							Laplacian matrix						
6	$\begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}$	0	0	0	0	1	0	1	0	0	1	0		$\binom{2}{1}$	-1	0	0	-1	0	
(5)	$\begin{bmatrix} 0 & 3 \\ 0 & 0 \end{bmatrix}$	0	0	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$		1	0	1	0	1	0		-1	3 _1	-1	0 _1	-1 0	0	
Y YU		0	3	0	0		0	0	1	0	1	1		0	0	-1	$\frac{-1}{3}$	-1	$\begin{bmatrix} 0 \\ -1 \end{bmatrix}$	
(3)-(2)	0 0	0	0	3	0		1	1	0	1	0	0		-1	-1	0	-1	3	0	
	0 0	0	0	0	1/	/	0	0	0	1	0	0/		0 /	0	0	-1	0	1/	

As show in table, in Laplacian Matrix,

diagonal value = degree of a node sum of number of "-1" in row/column = degree of the node

Reference

- Quora-Laplacian Matrix Intuition
- Youtube-Khan Academy
- 2.3.2 Laplacian Introduction

Author

Author: Lee Zhicheng Date: 30/04/2020