





## Topics to be covered

- Comparing several means:
  - □ Factorial ANOVA
  - Main and interaction effects
  - ☐ Post-hoc tests
  - ☐ Factorial ANOVA as a regression model



School of IT & Mathematical Sciences

3



## Factorial designs

- In one-way ANOVA, we have considered only the case of investigating whether and how one categorical variable affects a continuous response variable.
  - ☐ In many situations, there are at least two categorical variables that could be considered as explanatory variables.
- One of the most important questions is to consider whether and how explanatory variables interact in their effects:
  - □ Does the effect of one changes as the other changes?
  - ☐ It is poor practice just to consider the effects of possible explanatory variables one at a time.

School of IT & Mathematical Sciences



## Factorial designs

- Independent factorial designs:
  - ☐ There are several independent variables or predictors and each has been measured using different subjects.
  - ☐ Between groups design.
- Repeated measures (related) factorial design:
  - □ Several independent variables or factors have been measures, but the same subjects have been used in all conditions.
- Mixed design:
  - ☐ Several independent variables have been measured, some for the same subjects and some for different subjects.

School of IT & Mathematical Sciences





### Main and interaction effects

- A two-way ANOVA is used to examine how two categorical explanatory variables affect the mean of a continuous variable.
- When there is an interaction between two explanatory variables, the effect on the response variable of one explanatory variable depends on the specific value or level of the other explanatory variable.
- The term main effect describes the mean effect of a single explanatory variable, averaged over other explanatory variables.
- It is usually the interactions between variables that are most interesting in a two-way (or a more general factorial) design.

School of IT & Mathematical Sciences



# **Example: Electronics sales**

■ The data set store contains the following variables:

| Variable name     | Description                                      |
|-------------------|--------------------------------------------------|
| Region            | Region of the country (North, East, South, West) |
| Advertising       | Advertising (Yes or No)                          |
| Gender            | Gender of shopper (M or F)                       |
| Book_Sales        | Amount spent on books                            |
| Music_Sales       | Amount spent on music                            |
| Electronics_Sales | Amount spent on electronics                      |
| Total_Sales       | Total sales                                      |

School of IT & Mathematical Sciences



## **Example: Electronics sales**

- Suppose we want to determine whether the mean of electronics sales varies by region and gender.
- We will check the assumptions and then conduct factorial ANOVA using PROC GLM.





School of IT & Mathematical Sciences



# **Example: Electronics sales**

#### **Descriptive Statistics**

| Analysis Variable : Electronics_Sales |        |       |    |         |         |         |         |  |
|---------------------------------------|--------|-------|----|---------|---------|---------|---------|--|
| Region                                | Gender | N Obs | N  | Mean    | Std Dev | Minimum | Maximum |  |
| East                                  | Female | 22    | 22 | 364.545 | 63.526  | 270.000 | 480.000 |  |
|                                       | Male   | 14    | 14 | 457.143 | 45.814  | 400.000 | 570.000 |  |
| North                                 | Female | 39    | 39 | 339.231 | 62.634  | 220.000 | 480.000 |  |
|                                       | Male   | 30    | 30 | 398.000 | 76.852  | 250.000 | 550.000 |  |
| South                                 | Female | 23    | 23 | 321.739 | 53.653  | 250.000 | 450.000 |  |
|                                       | Male   | 22    | 22 | 369.545 | 66.725  | 250.000 | 510.000 |  |
| West                                  | Female | 26    | 26 | 422.308 | 72.350  | 270.000 | 550.000 |  |
|                                       | Male   | 24    | 24 | 483.750 | 68.513  | 380.000 | 610.000 |  |

There appear to be some differences by gender across the four regions. Are these differences statistically significant?

School of IT & Mathematical Sciences





School of IT & Mathematical Sciences





**Example: Interaction plot** 

The interaction plot illustrates interactions between factors.

It plots the different means for each group formed by the combinations of genders and regions.

Means for males and for females are connected across regions.

The interaction plot confirms that while there are significant main effects for gender and region, there is no significant interaction. Means for females are lower than for males in all regions, by a similar amount.

School of IT & Mathematical Sciences



# Interaction plots – a few observations

- Significant interactions correspond to non-parallel lines on an interactions graph:
  - ☐ This does not mean that non-parallel lines automatically mean the interaction is significant.
  - ☐ Significance depends on the degree to which the lines are not parallel.
- If the lines on an interaction graph cross, then they are obviously not parallel which means there may be a significant interaction:
  - ☐ It is however not always the case that if the lines cross then the interaction is significant.

School of IT & Mathematical Sciences









## **Example:** Post-hoc comparisons

- The Tukey-Kramer post-hoc test reveals a statistically significant difference in means by gender (P-value < 0.0001).
- The only non-significant regional difference is between North and South (P-value = 0.2675).
- All other pairwise comparisons between regions are statistically significant at 5% level.
- As the interaction term was not significant, we disregard the corresponding post-hoc tests results in this scenario.

School of IT & Mathematical Sciences

21



## **Example: Simple effects**

The GLM Procedure Least Squares Means

Region\*Gender Effect Sliced by Gender for Electronics\_Sales

Gender DF Sum of Squares Mean Square F Value Pr > F
Female 3 151877 50626 11.74 <.0001

Male 3 186505 62168 14.42 <.0001

- This comparison is for the effect of region sliced by gender.
- For both males and females, the effect of region is highly statistically significant, P-value < 0.0001.</li>
  - □ Differences in mean electronic sales by region are statistically significant for each gender.

School of IT & Mathematical Sciences



## **Example: Simple effects**

The GLM Procedure Least Squares Means

| Region | DF | Sum of Squares | Mean Square | F Value | Pr > F |
|--------|----|----------------|-------------|---------|--------|
| East   | 1  | 73358          | 73358       | 17.01   | <.0001 |
| North  | 1  | 58565          | 58565       | 13.58   | 0.0003 |
| South  | 1  | 25699          | 25699       | 5.96    | 0.0156 |
| West   | 1  | 47114          | 47114       | 10.92   | 0.0011 |

- This comparison is for the effect of gender sliced by region.
- For all regions, the effect of gender is statistically significant, all P-values are less than 0.02.
  - □ Differences in mean electronic sales by gender are statistically significant for each region.

School of IT & Mathematical Sciences

23

24



## Example: SAS code for factorial ANOVA

School of IT & Mathematical Sciences



# Example: Music sales

■ The data set store contains the following variables:

| Variable name     | Description                                      |
|-------------------|--------------------------------------------------|
| Region            | Region of the country (North, East, South, West) |
| Advertising       | Advertising (Yes or No)                          |
| Gender            | Gender of shopper (M or F)                       |
| Book_Sales        | Amount spent on books                            |
| Music_Sales       | Amount spent on music                            |
| Electronics_Sales | Amount spent on electronics                      |
| Total_Sales       | Total sales                                      |

School of IT & Mathematical Sciences

25



# **Example:** Music sales

- Suppose we want to determine whether the mean of music sales varies by region and gender.
- We will check the assumptions and then conduct factorial ANOVA using PROC GLM.



School of IT & Mathematical Sciences



# Example: Music sales

#### **Descriptive Statistics**

| Analysis Variable : Music_Sales |        |             |        |         |         |         |         |  |
|---------------------------------|--------|-------------|--------|---------|---------|---------|---------|--|
| Region                          | Gender | N Obs       | N      | Mean    | Std Dev | Minimum | Maximum |  |
| East                            | Female | 22 22 77.04 | 77.045 | 16.450  | 50.000  | 110.000 |         |  |
|                                 | Male   | 14          | 14     | 103.571 | 11.507  | 85.000  | 125.000 |  |
| North                           | Female | 39          | 39     | 76.282  | 11.105  | 55.000  | 95.000  |  |
|                                 | Male   | 30          | 30     | 79.000  | 11.250  | 55.000  | 100.000 |  |
| South                           | Female | 23          | 23     | 73.261  | 16.488  | 45.000  | 100.000 |  |
|                                 | Male   | 22          | 22     | 76.136  | 11.226  | 60.000  | 100.000 |  |
| West                            | Female | 26          | 26     | 56.346  | 13.308  | 25.000  | 80.000  |  |
|                                 | Male   | 24          | 24     | 73.958  | 12.422  | 55.000  | 95.000  |  |

There appear to be some differences by gender across the four regions. Are these differences statistically significant?

School of IT & Mathematical Sciences





















School of IT & Mathematical Sciences









### **Example:** Contrasts

- In factorial ANOVA, we can estimate differences of interest using contrasts, according to the same rules as for one-way ANOVA:
  - ☐ It does however get quite complicated with more than one factor! Other approaches may be a better way to go.
- Suppose we wish to compare music sales in the East to other regions:
  - ☐ Weights for this comparison are 3 -1 -1 -1.
- Suppose also that we are interested in the difference in mean music sales between males and females in the East:
  - □ Weights for this comparison are -1 1 on Gender, and -1 1 0 0 0 0 0 on interactions.

School of IT & Mathematical Sciences

4



## **Example: Contrasts**

| Parameter                     | Estimate   | Standard Error | t Value | Pr >  t |
|-------------------------------|------------|----------------|---------|---------|
| East vs other regions         | 53.4334388 | 7.34435498     | 7.28    | <.0001  |
| Gender difference in the East | 26.5259740 | 4.43871617     | 5.98    | <.0001  |

- There is a highly statistically significant difference between mean music sales between East and the other regions (P-value < 0.0001).</li>
- There is also a highly statistically significant difference between mean music sales for males and females in the East (P-value < 0.0001).
  - ☐ Mean music sales for males are significantly higher than for females in that region.

School of IT & Mathematical Sciences

## **Example: SAS code for PROC GLM**

```
ods graphics on;
proc glm data=store;
    class Region Gender;
       /* model Music_Sales=Region | Gender / ss3; */
    model Music_Sales=Region | Gender / ss3 solution;
    estimate 'East vs other regions' Region 3 -1 -1 -1;
    estimate 'Gender difference in the East' Gender -1 1
                     Region*Gender -1 1 0 0 0 0 0;
       lsmeans Region / adjust=tukey;
    lsmeans Region | Gender / pdiff adjust=tukey;
    lsmeans Gender*Region / slice=Region;
    lsmeans Gender*Region / slice=Gender;
    run;
quit;
ods graphics off;
                      School of IT & Mathematical Sciences
                                                               43
```

#### Factorial ANOVA as a GLM

- Is there a relationship between a numerical variable and categorical variables of interest?
- Recall from linear regression:

$$\hat{y} = b_0 + b_1 x_1 + \dots + b_p x_p + error$$
 Multiple linear regression

- In the music sales example:
  - ☐ The response variable is music sales.
  - ☐ Predictors are dummy variables representing gender, region and interactions between groups formed by regions and gender.

School of IT & Mathematical Sciences

## Example: SAS code for dummy variables

```
data work.store_dummies;
    set work.store;

if Gender='Female' then Female=1; else Female=0;

if Region='North' then North=1; else North=0;
    if Region='South' then South=1; else South=0;
    if Region='East' then East=1; else East=0;

if Region='East' and Gender='Female' then East_Female = 1;
    else East_Female = 0;
    if Region='North' and Gender='Female' then North_Female = 1;
    else North_Female = 0;
    if Region='South' and Gender='Female' then South_Female = 1;
    else South_Female = 0;

run;
```



### Example: SAS code for regression

```
ods graphics on;

proc reg data=work.store_dummies plots=diagnostics;
    model Music_Sales=Female East North South
        East_Female North_Female South_Female;
    run;
quit;

ods graphics off;
```

School of IT & Mathematical Sciences

23





