【証明】

 $a_1 \vee a_2 \vee ... \vee a_k$ を c と記す。 $1 \leq i \leq k$ に対して, $a_i \leqslant b$ であるから, $c \leqslant b$ となる。 $b \wedge \overline{c} \neq 0$ と仮定する。この場合,原子 a があり, $a \leqslant b \wedge \overline{c}$ が成り立つ。推移律により, $a \leqslant b$ かつ $a \leqslant \overline{c}$ である。 $a \leqslant b$ であるから,a は $a_1, a_2, ..., a_k$ のどれか一つと一致する。したがって, $a \leqslant c$ となる。 $a \leqslant \overline{c}$ と $a \leqslant c$ より, $a \leqslant \overline{c} \wedge c$ である。すなわち, $a \leqslant 0$ である。これはa が原子であることと矛盾する。よって $b \wedge \overline{c} = 0$ でなければならない。補題 2.1 により, $b \leqslant c$ となる。関係 \leqslant の反対称律により, $b = c = a_1 \vee a_2 \vee ... \vee a_k$ である。