

НЕЛИНЕАРНИ ДИНАМИЧКИ СТРУКТУРИ

АЛГОРИТМИ И ПОДАТОЧНИ СТРУКТУРИ

- предавања -

- сложени динамички структури
 - листи во кои јазелот покажува кон нова листа

- сложени динамички структури
 - листи во кои јазелот покажува кон нова листа
- пример: структура на книга (хиеарахија)

 структури кои дозволуваат повеќе врски да покажуваат (да делат) на еден јазел

- □ Операции за работа со комплексните листи:
 - внесување на јазел
 - бришење на јазел
 - изминување на листата

- Изминувањето на хиерархиските сложени листи може да се опише на следниот начин:
 - Пристапи до првиот јазел (доколку постои)
 - Процесирај го јазелот до кој си пристапил
 - Доколку јазелот е комплексен, измини ја листата (односно листите) кон која тој покажува.
 - Пристапи кон следниот јазел (доколку постои)

- хиерархиска колекција на елементи
- □ Дрвото е:
 - колкеција од елементи јазли
 - еден јазел е специјален корен
 - релација "е родител на"
 - секој јазел има точно еден родител
 - секој јазел чува податоци од било кој податочен тип

- Формална дефиниција на дрво:
 - Јазел сам за себе претставува дрво. Тогаш, јазелот е и корен на дрвото
 - Нека n е јазел и Т1, Т2, ..., Тк се дрва со корени n1, n2, ..., nk соодветно. Тогаш дрво може да се конструира ако јазелот n го направиме корен на дрвото што ги содржи поддрвата Т1, Т2, ..., Тк. Јазлите n1, n2, ..., nk ги нарекуваме деца на јазелот n

- □ Рекурзивна дефиниција на дрво:
- Дрво е конечно множество Т со еден или повеќе елементи наречени јазли што ги задоволува следниве правила:
 - Постои еден јазел наречен корен на дрвотот
 - Останатите јазли (без коренот) се групирани во k ≥ 0 дисјунктни множества Т1, Т2, ..., Тk, од кои секое е дрво. Овие дрва се нарекуваат поддрва на дрвото Т

- секој внатрешен јазел во дрвото е корен на некое поддрво
- бројот на поддрва на еден јазел се нарекува степен на јазелот
 - Кога овој број е 0, јазелот се нарекува краен (терминален) јазел или лист
- □ сите јазли (освен коренот) имаат свој родител

- □ Слични дрва се дрвата кои имаат иста структура, т.е. чии јазли и врски се соодветни (ако јазелот во едното дрво има две деца, и соодветниот јазел на другото дрво две деца, а и бројот на нивните деца е ист)
- Еквивалентни дрва се дрва кои се слични, но кои носат и иста информација во секој јазел.

Шума од дрва

- Множество (обично подредено) на различни (дисјунктни) дрва се нарекува шума
- Ако од едно дрво го избришеме коренот, се добива шума
- Ако пак во една шума додадеме само еден јазел и го поврземе со корените на дрвата, од шумата добиваме едно дрво

Патека во дрво

- Ако n₁, n₂, ..., n_k е низа на јазли во дрво така да n_i е родител на n_{i+1}, 1 ≤i < n, тогаш низата се нарекува патека од јазелот n₁ до n_k
- Должина на патека претставува број на врски меѓу два јазла, односно е за еден помала од бројот на јазли во патеката
- Предок и наследник на јазел

- □ Поддрво на даден јазел во дрво е јазелот дете со сите свои наследници
- Бројот на поддрва на еден јазел се нарекува степен на јазелот
- Висина на јазел во стебло е должината на најдолгата патека од јазелот до листовите
- Длабочина на јазел е должината на единствената патека од коренот до јазелот

патека од А до м: А Б Д м

патека од А до м: А Б Д м

наследници на Б: Джмн њ

патека од А до м: А Б Д м

наследници на Б: Джмн њ

предци на м: ДБА

патека од А до м: А Б Д м

наследници на Б: Джмн њ

предци на м: ДБА

степен на А: 4

патека од А до м: А Б Д м

наследници на Б: Джмн њ

предци на м: ДБА

степен на А: 4

степен на Г: 5

патека од А до м: А Б Д м

наследници на Б: Джмнњ

предци на м: ДБА

степен на А: 4

степен на Г: 5

степен на дрвото:

5

 Родителскиот јазел да содржи покажувачи кон своите деца јазли

 Родителскиот јазел да содржи покажувачи кон своите деца јазли

Проблем: Секој корен на подстеблата во едно дрво може да има произволен број на деца!

 Родителскиот јазел да содржи покажувачи кон своите деца јазли

Проблем: Секој корен на подстеблата во едно дрво може да има произволен број на деца!

Решение1: Предвидлив број на покажувачи во секој од јазлите на дрвото!

 Родителскиот јазел да содржи покажувачи кон своите деца јазли

Проблем: Секој корен на подстеблата во едно дрво може да има произволен број на деца!

Решение1: Предвидлив број на покажувачи во секој од јазлите на дрвото!

Решение2: Структура каде што бројот на покажувачи е најмногу два!

Подредени дрва

 Кога редоследот на поддрвата во едно дрво е важен, дрвото се нарекува подредено дрво

Подредени дрва

 Кога редоследот на поддрвата во едно дрво е важен, дрвото се нарекува подредено дрво

Бинарни дрва

- □ секој јазел може да има најмногу две поддрва
 - лево поддрво
 - десно поддрво
- степенот на дрвото изнесува два
- □ јазлите во бинарното стебло може да:
 - немаат наследници
 - имаат еден или
 - најмногу два наследници

Бинарни дрва

- □ Доколку се земе дека коренот на едно бинарно дрво е на ниво 1, а на секое наредно ниво бројот на јазли е поголем два пати, тогаш максималниот број на јазли на ниво *i* кај бинарните дрва е 2ⁱ⁻¹, *i*>=1
- Максималниот вкупен број *п* на јазли во бинарното дрво (број на јазли за максимално пополнето дрво) со длабочина *d* изнесува 2^d-1, *d*>=1. Тоа се добива од равенката:

$$n = \sum_{i=1}^{d} 2^{i-1} = 2^{d} - 1$$

Бинарни дрва

- □ Од претходната равенка следи дека: $n \le 2^d 1$
- □ Од тука, ако е познат вкупниот број на јазли, за длабочината на дрвото се добива дека $d \ge \log_2(n+1)$
- Кога стеблото е максимално пополнето, тоа има најмала длабочина од сите можни бинарни дрва со вкупен број на јазли n, и таа длабочина изнесува

$$d = \lceil \log_2(n+1) \rceil$$

Полно (full) бинарно дрво

- □ Полно бинарно дрво е бинарно дрво во кое сите јазли имаат или 0 или 2 деца.
- Полно бинарно дрво е бинарно дрво во кое сите јазли, освен јазлите на листовите, имаат две деца.

Комплетно (complete) бинарно дрво

□ Кога сите нивоа на бинарното дрво се целосно пополнети, освен последното ниво, кое може да содржи 1 или 2 деца и е исполнето од лево, се вели дека е комплетно бинарно дрво.

Какви се следните бинарни дрва?

Примери

Трансформација на дрво во бинарно дрво

- Секое дрво може да се трансформира во бинарно дрво, така што еден од јазлите кои се наоѓаат на исто ниво ќе стане родител на сите останати.
- "десен брат лево дете" трансформација

Репрезентација на едноставни дрва со бинарно дрво

Трансформација на дрво во бинарно дрво - пример

Трансформација на дрво во бинарно дрво - пример

Трансформација на дрво во бинарно дрво - пример

Трансформација на шума од дрва во бинарно дрво

□ Нека T₁, ..., T₂ е шума на дрва, тогаш бинарното дрво кое се добива со трансформацијата на оваа шума може да се означи со В(Т₁, ..., T₂) и за него важи:

- \Box B(T₁, ..., T_n)
 - е празно ако n = 0;
 - има корен еднаков со коренот (T₁);
 - има лево поддрво В(T₁₁,T₁₂, ...,T_{1m}) каде Т₁₁, ..., Т_{1m} се поддрва на коренот (Т₁);
 - има десно поддрво В(T₂, ..., T_n)

Трансформација на шума од дрва во бинарно дрво

Трансформација на шума од дрва во бинарно дрво

- Постојат три основни начини на кои може да се изминат сите јазли во едно бинарно дрво:
 - inorder
 - preorder
 - postorder

Inorder изминување на бинарно дрво

- Изминете го левото поддрво, т.е. повикајте Inorder(лево дете->поддрво)
- □ Посетете го коренот.
- Изминете го десното поддрво, т.е. повикајте Inorder(десно дете-> поддрво)

Preorder изминување на бинарно дрво

- □ Посетете го коренот.
- □ Изминете го левото поддрво, т.е., повикајте Preorder(лево дете-> поддрво)
- Изминете го десното поддрво, т.е. повикајте
 Preorder(десно дете-> поддрво)

Postorder изминување на бинарно дрво

- □ Изминете го левото поддрво, т.е., повикајте го Postorder(лево дете -> поддрво)
- □ Изминето го десното поддрво, т.е., повикајте го Postorder(десно дете -> поддрво)
- □ Посетете го коренот

- Постојат три основни начини на кои може да се изминат сите јазли во едно бинарно дрво:
 - inorder
 - preorder
 - postorder

- Постојат три основни начини на кои може да се изминат сите јазли во едно бинарно дрво:
 - inorder

$$a - b * c / d + e * f$$

- preorder
- postorder

Постојат три основни начини на кои може да се изминат сите јазли во едно бинарно дрво:

inorder

$$a - b * c / d + e * f$$

preorder

postorder

Постојат три основни начини на кои може да се изминат сите јазли во едно бинарно дрво:

inorder

$$a - b * c / d + e * f$$

preorder

$$/ - a * b c + d * e f$$

postorder

a b c * - d e f * + /

Рекурзивните реализации на овие изминувања се тривијални!!


```
void vmetni levo(nodep p, info t x)
   nodep q=NEW(node);
   q->info=x;
   q->left= p->left;
   q->right=NULL;
  p->left=q;
                                            В
```



```
void vmetni levo(nodep p, info t x)
   nodep q=NEW(node);
   q->info=x;
   q->left= p->left;
   q->right=NULL;
  p->left=q;
                                            В
```



```
void vmetni levo(nodep p, info t x)
   nodep q=NEW(node);
   q->info=x;
   q->left= p->left;
   q->right=NULL;
   p->left=q;
                                            В
```



```
void vmetni levo(nodep p, info t x)
   nodep q=NEW(node);
   q->info=x;
   q->left= p->left;
   q->right=NULL;
   p->left=q;
                                            В
```



```
void vmetni desno(nodep p, info t y)
void vmetni levo(nodep p, info t x)
                                                 nodep q=NEW(node);
                                                 q->info=y;
                                                 q->right = p->right;
   nodep q=NEW(node);
                                                 q->left=NULL;
   q->info=x;
                                                 p->right=q;
   q->left= p->left;
   q->right=NULL;
   p->left=q;
                                            В
```



```
void vmetni desno(nodep p, info t y)
void vmetni levo(nodep p, info t x)
                                                 nodep q=NEW(node);
                                                 q->info=y;
   nodep q=NEW(node);
                                                 q->right = p->right;
                                                 q->left=NULL;
   q->info=x;
                                                 p->right=q;
   q->left= p->left;
   q->right=NULL;
   p->left=q;
                                            В
```



```
void vmetni desno(nodep p, info t y)
void vmetni levo(nodep p, info t x)
                                                 nodep q=NEW(node);
                                                 q->info=y;
   nodep q=NEW(node);
                                                 q->right = p->right;
                                                 q->left=NULL;
   q->info=x;
                                                 p->right=q;
   q->left= p->left;
   q->right=NULL;
   p->left=q;
                                            B
```



```
void vmetni desno(nodep p, info t y)
void vmetni levo(nodep p, info t x)
                                                nodep q=NEW(node);
                                                 q->info=y;
   nodep q=NEW(node);
                                                 q->right = p->right;
                                                 q->left=NULL;
   q->info=x;
                                                p->right=q;
   q->left= p->left;
   q->right=NULL;
   p->left=q;
                                           B
```


□ Бришење на јазел во бинарно дрво

□ Бришење на јазел во бинарно дрво

Проблем: Што ќе дојде на местото на избришаниот јазел за да имаме повторно структура на бинарно дрво?

Решение: избришаниот јазел треба да биде заменет со друг јазел (најчесто некој од неговото поддрво). Кога јазелот што се брише нема деца или пак има само едно дете, алгоритамот е тривијален.