ASSIGNMENT 2

- 1. (a) (mop)(x) = m(p(x))
 - (b) nothing! the product of our increasing and a decreasing fruition does not have be on increasing or a decreasing fruition.

mote: could be constant: fix1= = (decreasing), g(x)=x whereasing - fix1:g(x)=1 (neither increasing nor decreasing)

(c) to figure ut whether a given further (its graph) has an inverse

HLT: if every hiritarial line crosses the graph of y=fix) at most once, then fix) has an inverse fruction

- (d) If f is a fraction with domain D and range R, then f-1 has domain R and variety D and $f^{-1}(b) = a$ if f(a) = b
- (e) $f^{-1}(f(x)) = x$ for all x in domain of $f^{-1}(x) = x$ for all x in domain of $f^{-1}(x) = x$
- 2. algebraic friction: obtained from polynomials using elementary algebraic operations (+,-,*, ÷) and book frictions

transcendental: all other frations (cè mot algebraic)

6. (a)

(b)

reflect w.r. b x-axis

(c) stretch ventically by factor of 2

(d)

 $\frac{1}{x} \sim \frac{1}{x-4} \sim \frac{1}{x-4} + 7$

so 4 units right 7 units up

7. (a) $(f \circ g)(x) = f(g(x)) = f(x^2 - 1) = 2(x^2 - 1) + 3$ $= 2x^2 + 1$

$$(gof)(x) = g(f(x)) = g(2x+3) = (2x+3)^{2}-1$$

= 4x² +12x+8

(b)
$$g(h(x)) = g(\frac{1}{x-2}) = (\frac{1}{x-2})^2 - 1 = \frac{1}{(x-2)^2} - 1$$

 $h(g(x)) = h(x^2 - 1) = \frac{1}{x^2 - 1 - 2} = \frac{1}{x^2 - 3}$

goh + hog

8. (a)
$$f(g(x)) = f(\frac{1}{(x^2-1)^3}) = \frac{1}{(x^2-1)^3} = (x^2-1)^3$$

$$g(f(x)) = g(\frac{1}{x}) = ((\frac{1}{x})^2 - 1)^{-3} = \frac{1}{(\frac{1}{x^2} - 1)^3}$$

(b)
$$g(f(x)) = g(\sqrt{2-x}) = \sqrt{\sqrt{2-x}-2}$$

(c)
$$f(g(x)) = f(4) = 12-4^2 = -4$$

 $g(f(x)) = g(12-x^2) = 4$

9. (a)
$$\frac{x}{x} = \frac{F(x)}{4} + \frac{F(x)}{x} = \frac{x^2 + 1}{x^2 + 1}$$
-2 5 3 8 $\frac{F(x)}{x} = -x + 1$
-1 2 2 4
0 1 1 2 2
1 2 0 4

(b)	Χ,	fix)	h(x)	foxi. hox
	-2		-6	6
	-1	<u> </u>	-9	-9
	O	3	- 42	-36
. ,	7	5	-15	-75
	2_	1 7	-78	-126

$$f(x) = -3x-15$$

10, fr, f2, f5, f6, f8, fg

11. (a) $y = \sqrt{x} + 4 - \sqrt{x} = y - 4$, $x = (y - 4)^2$

(b) $y = \frac{1-x}{2+x} \rightarrow 2y + xy = 1-x$ xy + x = 1-2y $x(y+1) = 1-2y \rightarrow x = \frac{1-2y}{y+1}$ $f^{-1}(x) = \frac{1-2x}{x+4}$

(c) $y = (x-4)^{7} \rightarrow x-4 = y^{1/7}, x = y^{1/7} + 4$ $f^{-1}(x) = x^{1/7} + 4$

(d) reflect across y=x

12. (a) no value of m is repeated

m-1 = time when there was certain number

of monteys

(n instruce m²(41)=4 à there were 41 monteup in year 4 (=2004)

c(m(t)) is the number of coconuts

eaten by all monteeps in year t
