松坂「代数系入門」

2023年3月2日

主に問題の解答. 価値があると思った補足も少し.

- 1 整数
- 2 群
- 2.1 写像

略.

2.2 群とその例

2. まず右逆元も存在して、それが左逆元と一致することを示す。ba = e、cb = e とすると、

$$ab=eab=cbab=ceb=cb=e\\$$

従って

$$\forall a \in G, \exists b \in G, ab = ba = e$$

がわかる. 次に左単位元が右単位元でもあることを示す.

$$ae = aba = ea = a$$

これで単位元、逆元の存在が言えたのでGは群である.

3. まず単位元の存在を示す. ある元 $a_0 \in G$ について, $a_0x = a_0$ とする. このとき $\forall a \in G$ について,

$$\exists v \in G, a = va_0 = va_0x = ax$$

がわかる. $ya_0 = a_0$ についても同様で、これより

$$\forall a \in G, a = ax = ya$$

特に a=x,y としたときに x=y がわかる. これは単位元なので e と表す. 次に逆元の存在を示す.

$$\exists x, y \in G, ax = ya = e$$

より,

$$y = ye = yax = ex = x$$

従って逆元が一意に定まる. これより G は群である.

4. $a \in G$ を固定して得られる G から G への写像 $x \mapsto ax$, $x \mapsto xa$ は条件より単射である. G は有限集合なのでこれらは全射でもある. 従って, 前問の結果より G は群である.

- 5. a を固定して得られる写像は単射だが,G が無限集合の場合全射とは限らなくなる.例えば $\mathbb Z$ に乗法を与えたものがある (この場合逆元が存在しないことがある).
- 6. o(G) = n とすると、 $\{e, a, a^2, \dots a^n\}$ の各要素はいずれも G の元だが、どこかに被りがある。 $a^k = a^l(k < l)$ とすると、 $a^{l-k} = e$. したがってある $m \in \mathbb{N}$ で $a^m = e$ が成り立つ.
- 7. $a = a^{-1} \, \, \sharp \, \, \flat \, , \, ab = a^{-1}b^{-1} = (ba)^{-1} = ba.$

$$(ab)^{n+2} = a^{n+2}b^{n+2}$$

$$a(ba)^{n+1}b = a(a^{n+1}b^{n+1})b$$

$$(ba)^{n+1} = a^{n+1}b^{n+1} = (ab)^{n+1} = (ab)^n ab$$

ここで左辺は

$$(ba)^{n+1} = a^{-1}abab \cdots aba = a^{-1}(ab)^{n+1}a = a^nb^{n+1}a = (ab)^nba$$

より,

$$(ab)^n ab = (ab)^n ba$$
 : $ab = ba$

9. 明らかに \triangle は可換で、結合的. 空集合 \emptyset が単位元、逆元は A 自身として、P(S) は可換群をなす。

2.3 部分群と生成系

- 1. 明らか.
- 2. m と n の最小公倍数を l として $l\mathbb{Z}$.
- 3. ある $a \in H \subset G$ を固定すれば, $H \to H$ の写像 $x \mapsto ax$ は全単射.簡約律が成り立つことと単射であることは同値なので,2 節問題 4 の結果が使えて,H < G が成り立つ.
- 4. 置換であること ($\mathbb{R} \to \mathbb{R}$ の全単射であること) は明らか.この形の置換全体は S(X) の部分群をなすことは、

$$\sigma_{a,b}(\sigma_{a',b'}(x)) = a(a'x + b') + b = aa'x + (ab' + b)$$

- と、単位元が $\sigma_{1.0}$ 、 $\sigma_{a,b}$ の逆元が $\sigma_{1/a,-b/a}$ で与えられることからわかる.
- 5. G が有限群だから, $\forall x \in S$ について,ある $n \in \mathbb{N}$ で $x^n = e, x^{n-1} = x^{-1}$ となる.したがって S^{-1} の 任意の元は S の元の有限個の積で表されるから,S によって生成される G も S の元の有限個の積で表される.
- 6. S^{-1} の元と S'^{-1} の元も可換であるから, $S \cup S^{-1}$ の元の積で表される H と $S' \cup S'^{-1}$ の元の積で表される H' の任意の元も可換である.
- 7. 明らか.
- 8.2次元平面上で、x軸とy軸に関する鏡映操作

$$\sigma = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \tau = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad e = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

は条件を満たす. このとき自明でない部分群は

$$\{e,\sigma\},\{e,\tau\},\{e,\sigma\tau\}$$

9. σ を正 n 角形の $2\pi/n$ 回転, τ をある対称軸に関する鏡映操作とすると,これは条件を満たす.別の対称軸に関する鏡映操作 τ' は,図形的な考察により $\tau' = \sigma^{2m}\tau$ のように表せる.したがってこの正 n 角

形のシンメトリー全体からなる群は σ と τ により生成され、すべての元は σ ^{i τ j}と表される.

$$\sigma = R(2\pi/n), \quad \tau = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

と行列で表すとわかりやすい.

- 10. $o(D_4)=8$ だから,真部分群の位数の候補は 2,4.位数が 2 の部分群は $\{e,\tau\}$, $\{e,\sigma^2\}$, $\{e,\sigma\tau\}$, $\{e,\sigma^2\tau\}$, $\{e,\sigma^3\tau\}$.位数が 4 の部分群は $\{e,\sigma,\sigma^2,\sigma^3\}$, $\{e,\tau,\sigma^2,\sigma^2\tau\}$, $\{e,\sigma\tau,\sigma^2,\sigma^3\tau\}$.
- 11. #(大変そうなため)
- 12. 四元数.

$$i = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, \quad j = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \quad k = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}, \quad e = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad m = -e$$

とすれば、与えられた関係式を全て満たす. このとき

$$ji = -k$$
, $kj = -i$, $ik = -j$

である. e,m は全ての元と可換なので、e,m をそれぞれ 1,-1 で表すと、i,j,k の逆元は -i,-j,-k になる. 真部分群は $\{\pm 1\}$ 、 $\{\pm 1,\pm i\}$ 、 $\{\pm 1,\pm i\}$ 、 $\{\pm 1,\pm k\}$.

2.4 剰余類分解

- 1. $Q_l \to Q_r$ の写像 $aH \mapsto Ha^{-1}$ の well-defined 性を確認する. $aH = bH \Leftrightarrow \forall h \in H, \exists h' \in H, ah = bh' \Leftrightarrow \forall h \in H, \exists h' \in H, ha^{-1} = h'b^{-1} \Leftrightarrow Ha^{-1} = Hb^{-1}$ 全単射であることは明らか.
- 2. G の H に関する左剰余類を $\{a_1H, \cdots, a_rH\}$, H の K に関する左剰余類を $\{b_1K, \cdots, b_sK\}$ とする. このとき任意の $x \in G$ は,まずある $a_i(i=1,\cdots,r)$ と $h \in H$ によって $x=a_ih$ と書かれる.次に h はある $b_j(j=1,\cdots,s)$ と $k \in K$ によって $h=b_jk$ と書かれる.従って $x=a_ib_jk$.これより G の K に関する左剰余類は $\{a_ib_jK\}(1 \le i \le r, 1 \le j \le s)$ である.

図 1 2-4-2

- 3. 任意の $a,b \in H$ について, $a^{-1}b \in H \cap K \subset K$ より, $a \equiv b \pmod{H \cap K} \Rightarrow a \equiv b \pmod{K}$. #また, $a \not\equiv b \pmod{H \cap K}$ のとき $a^{-1}b \not\in H \cap K$ だが, $a,b \in H$ なので, $a^{-1}b \not\in K$,つまり $a \not\equiv b \pmod{K}$. 従って H の $H \cap K$ による異なる剰余類は必ず G の K による異なる剰余類の中に含まれるから, $(H:H \cap K) \leq (G:K)$.
- 4. 2, 3 問で得られた結果を用いていく. $H^{(n)}=H_1\cap\cdots\cap H_n$ とすると, $(G:H^{(n)})=(G:H_n)(H_n:H^{(n)})\leq (G:H_n)(G:H^{(n-1)})$. これを繰り返し適用すれば得られる.

2.5 正規部分群と商群

- 1. 明らか.
- 2. HK の任意の元は $hk(h \in H, k \in K)$ と表されるが,これの逆元は $k^{-1}h^{-1} \in KH$ である.したがって,HK が部分群になることの必要十分条件は HK = KH になることである.
- 3. #
- 4. 前問を使えばすぐわかる.
- 5. aHa^{-1} の任意の元は $\sigma_a(x)$ (共役) の形に表される. したがって $\sigma_a(x)\sigma_a(y) = \sigma_a(xy) \in aHa^{-1}$, $\sigma_a(e) = e, \ \sigma_a(x)^{-1} = \sigma_a(x^{-1})$ より aHa^{-1} は部分群.
- 6. N が正規だから HN=NH である. したがって問題 2 から HN< G. また $\sigma_a(hn)=\sigma_a(h)\sigma_a(n)$ だから、H が正規ならば HN も正規になる.
- 7. 明らか.
- 8. 左剰余類と右剰余類の数はどちらも 2 で,そのうちの一つは N なので,任意の $a \notin N$ をとれば $aN = Na \neq N$. したがって N は正規.
- 9. 任意の $x \in N$ について, $a \sim a$ を $e \sim x$ の左辺からかけて $a \sim ax$. $a^{-1} \sim a^{-1}$ を右辺からかけて $e \sim axa^{-1}$ より, $axa^{-1} \in N$. したがって N は正規.このとき $a \sim b \Leftrightarrow a^{-1}b \sim e \Leftrightarrow a^{-1}b \in N$ より, $a \sim b \Leftrightarrow a \equiv b \pmod{N}$.
- 10. 四元数群がその例.
- 11. $a,b \notin H$ をとる. (aH)(bH) = cH とすると、任意の $h,h' \in H$ についてある $h'' \in H$ が存在し、ahbh' = ch''. ここで h = h' = e ととると ab = ch'' より $c^{-1}ab \in H$. つまり $ab \equiv c \pmod{H}$ なので、(aH)(bH) = abH. したがって ahbh' = abh'' で、これを整理すると、任意の $h \in H$ について hb = bh' をみたす $h' \in H$ が存在することがわかる.つまり bH = Hb.これより H は正規である.
- 14. 任意の $x \in N_1, y \in N_2$ の交換子は, $[x,y] = xyx^{-1}y^{-1} = (xyx^{-1})y^{-1} = x(yx^{-1}y^{-1})$ より, $[x,y] \in N_1 \cap N_2 = \{e\}$. したがって xy = yx.

2.6 準同型写像

- 1. 全射であることに注意するとできる.
- 2. 単位元が $\sigma_{1,0}$, $\sigma_{a,b}\sigma_{c,d}=\sigma_{ac,ad+b}$ より, $\sigma_{a,b}^{-1}=\sigma_{1/a,-b/a}$ であることに注意すると確認できる.
- 3. $f:\mathbb{C}^*\to\mathbb{T}$ を $z\mapsto z/|z|$ で定義すると、全射準同型になっている.Ker $f=\mathbb{R}^+$ だから、準同型定理より $\mathbb{C}^*/\mathbb{R}^+\simeq\mathbb{T}$.

- $4. f: X \to X'$ (全単射) として、 $\phi: S(X) \to S(X')$ を $\varphi \mapsto f \circ \varphi \circ f^{-1}$ で定義する. これは同型写像.
- 5. #
- 6. # $g:G/N \to G'$ を $aN \mapsto f(a)$ と定義する。 $aN = bN \Leftrightarrow a^{-1}b \in N \Rightarrow a^{-1}b \in N_0 \Leftrightarrow a \equiv b \pmod{N_0} \Rightarrow g(a) = g(b)$ より、well-defined である。準同型になっていることもすぐ確かめられる。これより $f = g \circ \varphi$ なる g が存在する。一意性は、 $g':G/N \to G'$ で、ある $aN \in G/N$ について $g(aN) \neq g'(aN)$ とすると、 $g \circ \varphi(a) \neq f(a)$ となって矛盾。したがって g = g'.
- 7 まず G' が可換群だから $f(aba^{-1}b^{-1})=f(a)f(b)f(a^{-1})f(b^{-1})=e'$ である. つまり $D\subset {\rm Ker}\ f$. したがって前問より $f=g\circ\varphi$ なる準同型 g が一意的に存在する.

8.

2.7 自己同型写像,共役類

- 1. 任意の $x, y \in G$ について $(xy)^{-1} = x^{-1}y^{-1} = (yx)^{-1}$ より、G は可換.
- 2. $\sigma_a \sigma_b = \sigma_{ab}$, 単位元は σ_e , σ_a の逆元は $\sigma_{a^{-1}}$ で部分群になる. 任意の $f \in \operatorname{Aut}(G)$ について $f \sigma_a f^{-1}(x) = f(af^{-1}(x)a^{-1}) = f(a)xf(a)^{-1} = \sigma_{f(a)}(x)$ より正規.
- 3. 内部自己同型群を H として $\varphi: G \to H$ を $a \mapsto \sigma_a$ とすると、これは準同型、 $\sigma_a = I_G \Leftrightarrow \forall x \in G, \sigma_a(x) = axa^{-1} = x$ より ax = xa. つまり $a \in Z$. したがって $\text{Ker } \varphi = Z$ で、準同型定理より $G/Z \simeq H$.
- 4. $f \in \text{Aut}(\mathbb{Z})$ は f(n) = nf(1) をみたす. f(1) = m とすると f(n) = mn. これが全単射になるには $m = \pm 1$ でなければならない. したがって $\text{Aut}(\mathbb{Z}) = \{I_{\mathbb{Z}}, -I_{\mathbb{Z}}\}$.
- 5. $f \in \operatorname{Aut}(\mathbb{Q})$ は $a, b \in \mathbb{Z}$ について f(a/b) = af(1/b) をみたすから、任意の $n \in \mathbb{Z}$ について f(1/n) を 求めればよい。 f(1+1/n) = f(1) + f(1/n) = (n+1)f(1/n) より、f(1/n) = f(1)/n. したがって $f(1) = \alpha$ とすれば $f(1/n) = \alpha/n$ と表される。これより $\operatorname{Aut}(\mathbb{Q}) = \{(x \mapsto \alpha x) | \alpha \in \mathbb{Q}\}$.
- 6. $aSa^{-1} = bSb^{-1} \Leftrightarrow Sa^{-1}b = a^{-1}bS \Leftrightarrow a^{-1}b \in N(S) \Leftrightarrow a \equiv b \pmod{N(S)}$. 最後は左合同. したがって S に共役な G の異なる部分集合の個数は (G:N(S)).
- 7. H の共役部分群は位数が o(H) と変わらないから,仮定より任意の $a \in G$ について $\sigma_a(H) = H$. したがって H は正規.
- 8. 任意の $x,y \in N$ は任意の $a \in G$ とある $h,h' \in H$ によって $x = \sigma_a(h), y = \sigma_a(h')$ と表されるから, $xy = \sigma_a(h)\sigma_a(h') = \sigma_a(hh')$. 当然 $e \in N$ かつ任意の $a,b \in G$ について $\sigma_a(h) = \sigma_b(h')$ ⇔ $\sigma_a(h^{-1}) = \sigma_b(h'^{-1})$ より, $\sigma_a(h) \in N$ ⇔ $\sigma_a(h)^{-1} = \sigma_a(h^{-1}) \in N$. これで N は部分群.次に N が正規であることは, $N = \bigcap_{a \in G} \sigma_a(H)$ から $\sigma_b(N) = \bigcap_{a \in G} \sigma_{ba}(H)$ となるが, $\sigma_b(N) = N$ より示される. $\sigma_b(N) \in S$ とすると $S = \bigcap_{a \in G} \sigma_a(S)$ で,各 $\sigma_b(N) \in S$ について $\sigma_a(S) \subset \sigma_a(H)$ だから $S \subset N$.

2.8 巡回群

- 1. a を生成元とすると $f(a^k) = f(a)^k$ より準同型像は f(a) を生成元とする巡回群.
- $2. \ a^{n/d}$ を生成元とする巡回群.
- $3. \ (k,n)=d, \ m=n/d$ とすると mk は n の倍数になるから、 $a^{mk}=e$ より a^k によって生成される部分

群の位数は m になる. したがって a^k が G の生成元になるのは m=n,つまり (k,n)=1 のときで,その逆も然り.

- $4. \ a = e$ または b = e のときや,a = b のときは明らかなので, $a \neq b, a \neq e, b \neq e$ を考える.o(ab) = n とすると, $(ab)^n = e$. $(ba)^n = a^{-1}(ab)^{n+1}b^{-1} = a^{-1}abb^{-1} = e$ より, $o(ba) \leq n$. ここで $(ab)^m \neq e(1 \leq m \leq n-1)$ より, $(ba)^m = a^{-1}(ab)^{m+1}b^{-1} = e$ とすると $(ab)^{m+1} = ab$,つまり $(ab)^m = e$ となって矛盾.したがって o(ba) = o(ab).
- 5. k,l を自然数とし, $a^k = b^l$ とすると, $e = a^{mk} = b^{ml}$ だが,n|ml となるので,(m,n) = 1 より n|l. このとき $b^l = e$ だから $a^k = e$. つまり n|k. これより $a^k = b^l$ をみたす最小の k,l は n,m. したがって $(ab)^k = a^k b^k = e$ をみたす k は $a^k = b^k = e$ をみたし,このうち最小なものは mn となる.

6.

- 7. 部分群の位数は 1 か p なので真部分群は持たない.したがって G はある $a \in G$ によって生成される群 そのもので,それは a の巡回群である.
- 8. 可換群の部分群は常に正規なので、ここでは単純群を真部分群を持たない群とする。このとき任意の $a\in G(a\neq e)$ は G の生成元になるので、G は巡回群。一つ $a\in G$ を固定して o(G)=n とすると、ど の $k=1,2,\cdots,n-1$ についても a^k が G の生成元になる必要があるが、これは問題 3 より (k,n)=1 と同値である。したがって n は素数。

9.

2.9 置換群

- 1. S_3 の部分群は $\{e\}$, $\{e$, $\{e$, $\{12\}$ }, $\{e$, $\{13\}$ }, $\{e$, $\{23\}$ }, $\{e$, $\{123\}$, $\{132\}$ }, $\{132\}$,
- 2. (a) r. (b) $\sigma = (i_1 i_r)(i_1 i_{r-1}) \cdots (i_1 i_2) \ \ \sharp \ \ \ \ \ \varepsilon(\sigma) = (-1)^{r-1}$.
- 3. (a) r_1, \dots, r_k の最小公倍数. (b) $(-1)^{r_1+\dots+r_k-k}$.

4

- 5.(a) (1 3 6 7 2)(4 5).
- 5.(b) (1356)(24).
- $6.(a,b) \ [1,1,1,1] : e. \ [2,1,1] : (1\ 2), (1\ 3), (1\ 4), (2\ 3), (2\ 4), (3\ 4). \ [2,2] : (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3). \\ [3,1] : (1\ 2\ 3), (1\ 3\ 2), (1\ 2\ 4), (1\ 4\ 2), (1\ 3\ 4), (1\ 4\ 3), (2\ 3\ 4), (2\ 4\ 3). \\ [4] : (1\ 2\ 3\ 4), (1\ 2\ 4\ 3), (1\ 3\ 2\ 4), (1\ 3\ 4\ 2), (1\ 4\ 2\ 3), (1\ 4\ 3\ 2).$
 - 6.(c) $o(S_4)=24$ より,部分群の位数としてあり得るのは 24 の約数のうち,共役類の元の数 1,6,3,8,6 をたかだか一つずつ使う和で表現できるもの.これに従って確かめると, $\{e\}$, $\{e,[2,2]\}$, $A_4=\{e,[2,2],[3,1]\}$, S_4 が正規.

2.10 置換表現,群の集合への作用

- 2. $aH \mapsto Ha^{-1}$ は G 同型写像で,G の G/H における表現と $G\backslash H$ における表現は同値になる (well-defined 性などを確認すること).

- 3. #定理 16 を使う。 $aH \in G/H$ の安定部分群は $\{x \in G | xaH = aH\}$ で $xaH = aH \Leftrightarrow x \in aHa^{-1}$. したがって $K = aHa^{-1}$ と表されるならば (つまり H,K が共役ならば) 定理 16 より G/H と G/K における表現は同値になる。逆は難しい。G 同型写像を φ として, $\varphi(K) = aH$ とする。このとき $\varphi(xK) = xaH$ で, $x \in K$ のときに限り $\varphi(xK) = \varphi(K) = aH$. したがって $x \in K \Leftrightarrow aH = xaH \Leftrightarrow x \in aHa^{-1}$ より, $K = aHa^{-1}$.
- 4. X を推移的 G 集合とする. ある $x \in X$ についての安定部分群を H とする. このとき X と G/H における表現は同値. X における表現が忠実なので,G/H における表現も忠実. これは定理 17 の系により H が単位群以外に G の正規部分群を含まないことと同値だが,G は可換群なので任意の部分群は正規. したがって H は単位群以外の部分群を含まない,つまり H は単位群である.これより G/H における表現は G の左正則表現であり,X における表現と同値.
- 5. H < G, o(H) = p とする。H は真部分群をもたない巡回群である。また (G:H) = m で,m! は p で割り切れないので,H は単位群以外の G の正規部分群を含む。つまり H 自身が G の正規部分群である。
- 6. #まず次の補題を示す:H < G として, $N \triangleleft G, N \triangleleft H$ とする.このとき $H/N \triangleleft G/N \Leftrightarrow H \triangleleft G$.(証明): $aNxN(aN)^{-1} = axa^{-1}N$ より, $aNxN(aN)^{-1} \in H/N$ が成り立つのは $axa^{-1} \in H$ が成り立つとき,またそのときに限る.

まず n=1 のときは明らか. n>1 で、 $o(G)=p^n, o(H)=p^{n-1}$ とすると (G:H)=p. p! は p^n で割り切れないので,H は単位群以外の G の正規部分群を含む.これは当然 H の正規部分群でもある.これを N として $o(N)=p^m$ とすると,H/N,G/N はそれぞれ位数 $o(H/N)=p^{n-m-1}$, $o(G/N)=p^{n-m}$ だから,帰納法の仮定により $H/N \triangleleft G/N$. したがって補題より $H \triangleleft G$.

2.11 直積

- 1.(a) $\mathbb{R}^* = \pm \mathbb{R}^*_>$. \mathbb{R}^* は可換群で, $\mathbb{R}^*_>$ と $\{\pm 1\}$ はどちらも \mathbb{R}^* の部分群なので正規. $\mathbb{R}^*_> \cap \{\pm 1\} = \{1\}$ なので, \mathbb{R}^* はこれらの直積に分解される.
- 1.(b) \mathbb{C}^* の任意の元が $re^{i\theta}$ と表されることから $\mathbb{C}^* = \mathbb{R}_>^*\mathbb{T}$. \mathbb{C}^* は可換群で, $\mathbb{R}_>^*$ と \mathbb{T} はどちらも \mathbb{C} の部分群なので正規. $\mathbb{R}_>^* \cap \mathbb{T} = \{1\}$ なので, \mathbb{C}^* はこれらの直積に分解される.
 - 2. $\varphi_1:G\to N_1$ を $xy\mapsto x(x\in N_1,y\in N_2)$ とすれば、 φ_1 は全射準同型で、 $\mathrm{Ker}\ \varphi_1=N_2$. したがって 準同型定理より $G/N_2\simeq N_1$.
 - 3. 明らか.
 - 4.~G は位数 pq の巡回群. 真部分群の位数は p,q で、それぞれ G_1,G_2 のみが対応する.
 - 5. $G \times G$ の位数は p^2 だから、真部分群の位数としてあり得るのは p. a を G の生成元とする. このとき $\langle (a,e) \rangle, \langle (a,a) \rangle, \langle (a,a^2) \rangle, \cdots, \langle (a,a^{p-1}) \rangle, \langle (e,a) \rangle$ は部分群になる. 部分群は p+1 個存在する. $\langle (a^n,a) \rangle$ は、 $\langle (a,a^m) \rangle$ と同じになってしまうので重複に注意.
 - 6. 「G が N_1, \cdots, N_n の直積に分解される $\Leftrightarrow N_i \triangleleft G$ で (1),(2) をみたす」を示す.まず (\Rightarrow) を示す. (1) が成り立つのは明らか.まず $N_i \triangleleft G$ を示す.任意の $x \in G$ は $x = x_1x_2 \cdots x_n(x_i \in N_i)$ と一意に表されるから,任意の $y \in N_i$ について $xyx^{-1} = x_1 \cdots x_{i-1}x_{i+1} \cdots x_nx_iyx_i^{-1}x_n^{-1} \cdots x_{i+1}^{-1}x_{i-1}^{-1} \cdots x_1^{-1} = x_iyx_i^{-1} \in N_i$.したがって $N_i \triangleleft G$.次に (2) を示す. $x \in (N_1 \cdots N_{i-1}N_{i+1} \cdots N_n) \cap N_i$ とすると, $x \in N_i$ より $x = e \cdots x \cdots e(i$ 番目が x), $x \in N_1 \cdots N_{i-1}N_{i+1} \cdots N_n$ より $x = x_1 \cdots x_{i-1}x_{i+1} \cdots x_n$

のように表されるが,一意性より両者は一致しなければならないので, $x=x_j=e$. したがって(2)も成り立つ.次に(\Leftarrow)を示す.(1)より $G=N_1\cdots N_n$ は明らかなので, N_i,N_j が可換なことと,表示が一意なことが言えればよい.まず可換であることは問題 2.5.14 と同様にしてわかる.一意性を示す. $x=x_1\cdots x_n=y_1\cdots y_n$ とすると, $(x_1^{-1}y_1)\cdots (x_n^{-1}y_n)=e$ より $(x_1^{-1}y_1)\cdots (x_{i-1}^{-1}y_{i-1})(x_{i+1}^{-1}y_{i+1})\cdots (x_n^{-1}y_n)=x_iy_i^{-1}$.これより両辺はe に等しく,これが任意のi で成り立つので $x_i=y_i$,つまり表示は一意である.

2.12 Sylow **の定理**

3 環と多項式

3.1 環とその例

非可換環の例 1 加法群 \mathbb{Z}^2 は可換群で,自己準同型写像全体は要素が整数の 2 次正方行列で表せる.つまり $\operatorname{End}(\mathbb{Z}^2)=M(2,\mathbb{Z})$ である.これは一般に非可換である. $\operatorname{End}(\mathbb{Z}^2)=M(2,\mathbb{Z})$ となることを示す.任 意の $x\in\mathbb{Z}^2$ は $m,n\in\mathbb{Z}$ によって

$$x = m \begin{bmatrix} 1 \\ 0 \end{bmatrix} + n \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

と表せる. *1 したがって任意の自己準同型写像 f による像は

$$f(x) = mf\left(\begin{bmatrix} 1\\0\end{bmatrix}\right) + nf\left(\begin{bmatrix} 0\\1\end{bmatrix}\right)$$

のようになる. ここで

$$\begin{bmatrix} f \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \end{pmatrix} & f \begin{pmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{pmatrix} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} & \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \quad (a_{ij} \in \mathbb{Z})$$

のように基底が移り変わるとすると、右辺の行列を A として

$$f(x) = A \begin{bmatrix} m \\ n \end{bmatrix}$$

と表せる.従って任意の自己準同型写像は $M(2,\mathbb{Z})$ の元で表せる.逆は明らかなので, $\operatorname{End}(\mathbb{Z}^2)=M(2,\mathbb{Z})$ が示された.

1. 単位元は R の単位元への定値写像。 M(S,R) が可換なとき、任意の $f,g \in M(S,R)$ について、

$$\forall x \in S, (fg)(x) = (gf)(x) : f(x)g(x) = g(x)f(x)$$

ここで f(x),g(x) は、f,g を動かすと R の元全体を取りうるので、M(S,R) が可換になるのは R が可換なときのみ.

- 2. 明らか.
- 3. 明らか.
- 4. 前問の結果を使えばすぐわかる.
- 5. 公式

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$$

 $^{^{*1}}$ \mathbb{Z}^2 だから基底を整数回足し合わせて任意の元を作れるが、 \mathbb{R}^2 ではそれができないことに注意.

を用いて、数学的帰納法によって示せる(可換環なので特に気にすることもない).

- 6. 明らか.
- 7. 任意の $x, y \in R$ について

$$(x + y)^2 = (x + y)(x + y) = x^2 + xy + yx + y^2$$

 $x + y = x + y + xy + yx$
 $xy = -yx$

特に y=1 としたら x=-x だから,xy=-yx=yx より,R は可換環. $n\in\mathbb{Z}$ について $nx=(n \mod 2)x$ となり,たしかに Boole らしい.

8. 環になることを示す. 積に関して、結合律・単位元Sの存在はすぐわかる. 分配法則に関しては、

$$A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$$

などがわかる (図を描くと良い). これより P(S) は環になって, $A \cap A = A$ なので Boole 環である.

3.2 整域,体

整域の性質についての補足

•

$$ab = 1 \Rightarrow ba = 1$$

証明:

$$ab = 1 \Rightarrow b = bab$$
 $\therefore (1 - ba)b = 0$ $\therefore 1 = ba$

• $a \in R(a \neq 0)$ を固定した写像 $x \mapsto ax$ は単射である:

$$ax = ay \Leftrightarrow a(x - y) = 0$$
 : $x = y$

問題解答.

- 1. $a \in R$ を単元とする. a が零因子でもあると仮定すると、ある $b \in R, b \neq 0$ が存在して、ab = 0. この両辺に a^{-1} を左からかければ b = 0 となり、矛盾. したがって a は零因子ではない.
- 2. $f \in M(S,R)$ \mathcal{C} , \mathcal{B} \mathcal{C} \mathcal{C}

$$g(x) = \begin{cases} 0 & (x \neq c) \\ 1 & (x = c) \end{cases}$$

とすれば fg=0 となる. したがって f は零因子である. 一方全ての $x\in S$ で $f(x)\neq 0$ ならば, R が体だから f(x) の逆元が存在するので, $f^{-1}(x)=f(x)^{-1}$ とすれば $f^{-1}f=ff^{-1}=1$.

- 3. 例えば $f(m,n)=(m+n,m+n),\ g(m,n)=(m+n,-(m+n))$ とすれば、fg=0 になる (3.1 節で与えた例のように行列で考えるとよい).
- 4. #a が左右どちらの零因子でないとする.このとき写像 $x\mapsto ax$ は単射である: $ax=ay\Leftrightarrow a(x-y)=0$ のとき,a は零因子でないから x=y. 同様に $x\mapsto xa$ も単射.R が有限集合だからどちらも全射でもあるので,逆写像,つまり逆元が存在する.
- 5. (i) \Rightarrow (ii): $b \neq b'$, ab' = 1 とすると $1 = ab = ab' \Leftrightarrow a(b b') = 0$ より,a は左零因子.(ii) \Rightarrow (i):単元 だとすると矛盾(1 でやった).(iii) \Rightarrow (i):a が単元でないとすると $ba \neq 1$ なので, $\#ba = 1 + u(u \neq 0)$ と表せる.この両辺に a を左からかけると aba = a + au となるが,aba = a なので au = 0.したがっ

- 6. 零元は 0. 逆元は -(a+bi). 単位元は 1. a+bi に乗法の逆元が存在すれば,それは $(a-bi)/(a^2+b^2)$ の形.整数範囲ならば $a=0,b=\pm 1,\ a=\pm 1,b=0$ のときのみ逆元が存在する.つまり単元は $\pm 1,\pm i$ のみ.
- 7. たとえば $\sqrt{2}$ は単元ではない.

8.

3.3 イデアルと商環

- 1~4. 容易に確認できる.
 - 5. #
- 6~8. 容易に確認できる.
- 9,10. $x^m=0, y^n=0 (m\leq n)$ とする.このとき $(x+y)^{2n}=0, \ \forall r\in R, (rx)^n=r^nx^n=0$ より N はイデアル.R/N の元で \bar{a} をべき零元とすると, $\bar{a}^n\Leftrightarrow a^n\equiv 0 (\mathrm{mod}\ N)\Leftrightarrow a\in N$ より, $\bar{a}=\bar{0}$.
 - 11. 容易に確認できる.

3.4 ℤ の商環

- 1. \mathbb{Z}_p は真部分群を持たないので、取りうるイデアルは $\{0\}, \mathbb{Z}_p$ のいずれか. したがって \mathbb{Z}_p は体である.
- 2. a を G の生成元とする.任意の $f \in \operatorname{Aut}(G)$ について, $f(a^m) = f(a)^m$ だから,f(a) は G の生成元になっていなければならない.2 章 8 節問題 3 により,これは (k,n) = 1 なる自然数 k によって $f_k(a) = a^k$ と表されることを意味する.したがって $\operatorname{Aut}(G)$ は n と互いに素な n 未満の自然数 k によって f_k と表される自己同型写像全体で位数は $\varphi(n)$.これは法 n に関する $\mathbb Z$ の既約剰余類群と同型.
- 3. # $m=a^n-1$ とする. (a,m)=1 だから \bar{a} は法を m とする既約剰余類群に含まれる. また $a^n\equiv 1 \pmod{m}$ だから $\bar{a}^n=\bar{1}$ で, $a^n=m+1$ だから n が $\bar{a}^k=1$ をみたす k のうちで最小である. したがって \bar{a} を生成元とする巡回群の位数は n だから, $n|\varphi(m)$.
- 4. #問題は,法をn とする既約剰余類群から位数p の部分群を取り出せるか,に言い換えられる.素数位数の部分群は巡回群である.したがってその生成元を \bar{a} とすれば $\bar{a}^p=1$ となる.そしてこれは Sylowの定理により肯定される.