SIMULACIÓN DE SISTEMAS TRABAJO PRÁCTICO Nº4

Matías Ezequiel Daneri, María Mercedes Baron, Thomás Germán Busso Zungri

INTRODUCCIÓN

SISTEMAS

Oscilador puntual amortiguado

Osciladores acoplados y forzados

SISTEMA 1

SIMULACIÓN

OBSERVABLES

ERROR CUADRÁTICO MEDIO

- n = cantidad total de pasos
- x_i = posición analítica en el i-ésimo paso
- x'_{i} = posición calculada en el i-ésimo paso

RESULTADOS

Método Verlet con $\Delta t = 10^{-2}$

Método Beeman con $\Delta t = 10^{-2}$

Método Gear con $\Delta t = 10^{-2}$

Tabla con el ECM en función del paso

	Verlet	Beeman	Gear
10^{-6}	4,814	2, 631 ⁻¹⁹	2,069
10^{-5}	4,814	1, 079 ⁻¹⁷	2, 228 -20
10^{-4}	4,820	4, 251	2,409
10^{-3}	4,885	4, 267 -10	8,748
10^{-2}	5,575	4,422 ⁻⁶	4,049 -12

ECM en función del paso temporal

SISTEMA 2

FUNDAMENTOS

ECUACIONES

$$F(t) = A \cos(\omega t)$$
 Fuerza armónica

$$F_i = -k(y_i - y_{i-1}) - k(y_i - y_{i+1})$$

IMPLEMENTACIÓN

DIAGRAMA UML

PSEUDOCÓDIGO PSEUDOCÓDIGO PSEUDOCÓDIGO POR PROPERTIENTA DE LA COMPANIA DEL COMPANIA DE LA COMPANIA DE LA COMPANIA DEL COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DE LA COMPANIA DEL COMPANIA D

Algorithm 1 Método next para la simulación de partículas con método de Verlet

- Entrada: Lista de estados stateList, paso de tiempo Δt, amplitud A, frecuencia w_f, número de partículas n
- 2: Salida: Nuevo estado newState
- 3: if primera ejecución then
- 4: Aplicar el método de Euler
- 5: return estado calculado por el método de Euler
- 6: end if
- Obtener el estado actual y anterior stateList[-1] y stateList[-2]
- Inicializar new Particles como lista vacía

▶ Actualizar la última partícula

- 9: lastParticle = currentState.particles[n-1]
- 10: Clonar lastParticle
- 11: Actualizar posición: $lastParticle.position = A \cdot sin(w_f \cdot nextTime)$
- 12: Agregar lastParticle a newParticles

→ Actualizar partículas intermedias (i = n-2 hasta i = 1)

- 13: **for** i = n 2 hasta i = 1 **do**
- 14: Calcular force = getForce(particles[i-1], particles[i], particles[i+1])
- 15: $newPosition = 2 \cdot cp.position pp.position + \frac{\Delta t^2}{cp.mass} \cdot force$
- 16: $newVelocity = \frac{newPosition-centerParticle.position}{2 \cdot \Delta t}$
- Clonar centerParticle y actualizar su posición y velocidad.
- 18: Agregar la partícula clonada a newParticles
- 19: end for

→ Actualizar la primera partícula (i = 0)

- 20: Clonar currentState.particles[0] y agregar la primer partícula clonada a newParticles
- 21:

- ▶ Crear el nuevo estado y actualizar la lista de estados
- 22: Crear newState = State(nextTime, newParticles)
- 23: Agregar newState a stateList
- 24: return newState

SIMULACIONES

VARIABLES Y PARÁMETROS

PARÁMETROS FIJOS

- Cantidad de partículas (N)
- Masa de la partícula (m)
- Distancia entre partículas (l_0)
- Amplitud de la fuerza externa (A)

PARÁMETROS VARIABLES

- Frecuencia angular externa (w)
- Paso temporal (△t)
- Constante del resorte (k)

Nota: Las simulaciones están hechas en una única corrida.

OBSERVABLES

$$siendo\ w_0 \sim sin\left(\frac{\pi}{(n+1)}\right).\ \sqrt{\frac{k}{m}}$$

RESULTADOS

ANIMACIÓN

Parámetros utilizados

k = 100 N/m, w = 10 rad/s

https://youtu.be/dvMZ7dh-4eU

k = 100 N/m, w = 6 rad/s

https://youtu.be/zSSNnsk1u04

Parámetros utilizados

k = 100 N/m

ANIMACIÓN

Parámetros utilizados

k = 6400 N/m, w = 80 rad/s

https://youtu.be/PlbgKUVSBWg

k = 6400 N/m, w = 76 rad/s

https://youtu.be/mZYscnKqvNE

Parámetros utilizados

k = 6400 N/m

Parámetros utilizados

k = 100 N/m

k = 400 N/m

Parámetros utilizados

k = 900 N/m

k = 1600 N/m

Parámetros utilizados

k = 2500 N/m

k = 6400 N/m

Parámetros utilizados

k = 10000 N/m

W EN FUNCIÓN DE k^(1/2)

∆t varía según w

ECM = 0.286

CONCLUSIONES

CONCLUSIONES

La frecuencia de resonancia en amplitud aumenta significativamente el valor de la amplitud máxima con respecto a las demás frecuencias.

Se cumple la relación $w_0 \sim \sqrt{k}$

GRACIAS POR ESCUCHAR