

Toxicologia Forense

*Prof. Ms. Adalberto de Oliveira Gonçalves
(Farmacêutico Bioquímico)*

Diretor do Núcleo de Criminalística de Ribeirão Preto

E.mail: goncalvesao@baraodemaua.br

Toxicologia Forense

História da Toxicologia – História das civilizações

Toxicologia Forense

- Mesopotamia, Egito e Índia – Efeitos tóxicos de alguns produtos naturais e minerais
- *Papiro de Ebers* (1500 a.C) – antimônio, cobre, chumbo, ópio,...
- *Charaka Samhita* e *Susruta* (600-100 a.C. - Índia) – Cobre, ouro, ferro, chumbo, prata e estanho. Toxicologia dos alimentos, venenos vegetais e animais
- Grecia – ação de alguns venenos – Hipocrates (460-370 a.C) – envenenamentos por plantas e alimentos. Sócrates – envenenado 399 a.C.
- Roma (331 a.C) – primeiros relatos de envenenamentos criminais
- 364 d.C – Renascença – envenenamento de 7 imperadores romanos (364 – 1453), 9 sucessores (877-1453) e 5 papas (984 – 1471)
- Papa Alexander VI – envenenamento de bispos e cardeais
- 1503 – Papa Alexander morre envenenado
- Idade Média – Paracelsus “*Qualquer substância pode ser um veneno, depende da dose*”

Toxicologia Forense

- Após o período da renascença – envenenamentos eram comuns na Inglaterra, França e Itália
- Itália – “*Aqua della Toffanina*” – arsênico, envenenamento de 600 pessoas
- 1765 – Fontana – descarta conceitos antigos da toxicologia
- 1781 – Plenck – rejeita antigas superstições - Livro “*Elementa Medicine et Chirurgiae*” – “*O único sinal seguro de uma intoxicação é a determinação do agente intoxicante no organismo*” - Início de uma nova era na Toxicologia
- 1814 – M.J.B. Orfila – estudo sistemático e categorizado de venenos – isolamento de arsênico em amostras *postmortem*. O primeiro a observar que uma substância tem que ser absorvida ou entrar no sangue para manifestar seus efeitos tóxicos

Porque as análises toxicológicas são importantes?

Mito:

- Todo caso de *overdose* terá como evidência fragmentos da droga no estômago.

Fato:

- A maioria dos casos fatais por consumo de drogas/venenos não apresentam nenhum sinal específico durante o exame necroscópico.

Toxicologia Forense

Definição:

Aplicação da Toxicologia para elucidação de casos jurídicos.

Classificação:

- Toxicologia para verificação de xenobióticos de interesse médico legal
- Toxicologia forense *postmortem*
- Toxicologia para verificação de xenobióticos – ambiente de trabalho, doping no esporte, etc

Toxicologia Forense

Toxicologia forense *postmortem*

“O único sinal seguro de intoxicação é a identificação da substância no corpo”

Plenck - *Elementa Medicine et Chirurgiae*, 1781

Toxicologista forense

- 1) Existe droga envolvida no caso?
 - Toxicologia analítica e farmacocinética (amostra e tempo após o uso)
- 2) Qual foi a quantidade utilizada?
- 3) Quando foi utilizada a droga?
 - Farmacocinética
- 4) A droga pode ter causado a morte (ou, em casos não fatais, pode ter afetado o comportamento)?
 - Farmacodinâmica

Toxicologia forense - Substâncias

- Álcool (*Etanol*)
- Barbitúricos (*Fenobarbital, Tiopental*)
- Benzodiazepínicos (*Diazepam, Oxazepam*)
- Cocaína (*Base livre/Crack*)
- Anfetaminas (*Anfetamina e Metanfetamina (Ecstasy)*)
- Canabinóides - Maconha ($\Delta^9\text{THC}$)
- Monóxido de carbono/Cianeto
- Inalantes (*Éter, Tolueno, Acetona, Cloreto de etila*)
- Alucinógenos (*LSD, PCP*)
- Antidepressivos tricíclicos (*Amitriptilina, Imipramina*)
- Opiáceos/Opióides (*Morfina e Heroína*)
- *Metais Pesados*
- *Pesticidas*

Limite máximo permitido no Brasil = 0,2g/L

Bebida	Dose	60 Kg	80 Kg
Cerveja	1 copo	0,27g/L	0,19g/L
Whiski	2 doses	0,54g/L	0,38g/L
Vinho	2 taças	0,54g/L	0,38g/L
Cachaça	3 doses	0,81g/L	0,57g/L

Intoxicação aguda do álcool

Álcool no sangue (g/L)	Estágios	Sintomas clínicos
0,1-0,5	Subclínico	Normal
0,3-1,2	Euforia	Relaxamento, alegria, pele ruborizada
0,9-2,5	Excitação	Instabilidade emocional, redução da acuidade visual, tonturas
1,8-3,0	Confusão	Desorientação, confusão mental, distúrbios visuais, aumento do limiar da dor, apatia
2,5-4,0	Estupor	Inéria geral, diminuição de resposta a estímulos, descoordenação muscular, incapacidade de ficar em pé e andar, vômitos
3,5-5,0	Coma	Inconsciência, coma, anestesia, incontinencia urinária/fecal, temperatura subnormal, possível morte
4,5+	Morte	Morte por parada respiratória

Menina de Programa e a vítima

Assalto facilitado por drogas

- Homem foi a uma festa com amigos.
- Deixou a festa e no caminho se encontrou com uma menina de programa.
- Foi para seu apartamento com ela.
- Homem ingeriu vários drinques e pegou no sono.
- Amigos retornaram para o apartamento repentinamente e conversaram com a menina de programa.
- Menina de programa deixou o apartamento, amigos foram dormir e deixaram o homem dormindo no sofá.
- Homem foi encontrado morto no dia seguinte de manhã.
- Não foi encontrado a causa da morte durante o exame necroscópico.

Análises toxicológicas

Etanol: sangue 1,30; vítreo 1,70; urina 2,40 g/L

Triazolam: sangue 4 µg/L

Níveis de referências:

Triazolam: aprox. 1-5 µg/L; ocasionalmente até 10 µg/L

Análises toxicológicas

Etanol: sangue 1,30; vítreo 1,70; urina 2,40 g/L

Triazolam: sangue 4 µg/L

Níveis de referências:

Triazolam: aprox. 1-5 µg/L; ocasionalmente até 10 µg/L

Conclusão:

- Combinacão de etanol e triazolam foi suficiente para causar a morte.

+

Overdose de cocaína

Overdose de cocaína

Cocaína – “corpo embalagem”

✓ Confirmação de Drogas

Heroína – 10 anos

Monóxido de carbono - CO

Inalantes

Determinação de resíduos de pesticidas

Amostras postmortem para análise toxicológica

Amostra convencionais

- Sangue
- Urina
- Conteúdo gástrico
- Fígado

Amostras alternativas

- Bile
- Humor vítreo
- Cabelo
- Dente
- Unha
- Osso

❖ Postmortem - cadáver putrefeito

➤ Amostras

- ✓ Tecidos moles
- ✓ Ossos
- ✓ Cabelo
- ✓ Dente
- ✓ Larvas

➤ Entomotoxicologia

- análise de drogas na fauna cadavérica (larvas)

Amostras de exumação

Amostras

- Ossos
- Cabelos
- Unhas
- Outras (alças e tecidos do caixão)

Análise toxicológica

- Teste para triagem
- Análises confirmatórias – identificação e quantificação

Instrumentação e metodologias analíticas avançadas

- Imunoensaios
- GC/MS
- LC/MS
- ICP/MS
- SPE
- SPME
- LLE

➤ Análise das Amostras

GC – FID - HS

Erros no laboratório – fase pré-analítica

- Solicitação de amostras
- Coleta das amostras biológicas
- Armazenamento
- Transporte
- Identificação
- Preparação das amostras (congelamento, descongelamento e retirada de aliquotas)

Jansch (1922) – Suspeita de envenenamento – coleta de quantidades insuficientes de amostras, armazenamento em frasco inadequado e transporte para longas distâncias sem cuidados – **resultados não confiáveis**

➤ Armazenamento do Material para Exame

Depois

Antes

20 1

20 11:18

LEGAL MEDICINE

