

13th SDL Forum, Sep 2007, Paris

MARTE Tutorial

An OMG UML profile to develop Real-Time and Embedded systems

Sébastien Demathieu

(sebastien.demathieu@thalesgroup.com)

Thales Research & Technology

Acknowledgment

- This presentation reuses and extends material prepared by the ProMARTE partners for the OMG RTESS PTF meeting in San Diego, on March 28th 2007
- The initial presentation (realtime/07-03-14) is available to OMG members

Modeling Real-Time and **Embedded systems in UML**

- UML is emerging as a possible solution to address the Real-Time and Embedded domain
 - A large audience in the Software Engineering community
 - Steady semantic foundations
 - Extension capabilities through UML profiles (e.g. SysML)
 - But lacks key notions to fully address RTE specifics (time, resource, scheduling)
- Previous attempts to adapt UML to the RTE domain
 - Academic initiatives (e.g. ACCORD, GASPARD)
 - Commerical Tools: ARTiSAN, ROSE RT (ROOM), Rhapsody (Real-Time UML)
 - UML profile for Scheduling, Performance and Time (SPT)
 - The first OMG adopted specification in this domain
 - Defines annotation mechanisms to perform quantitative analysis
 - Required major improvements over time

In 2005, OMG called for a new UML profile for Modeling and Analysis of Real-Time and Embedded systems (MARTE)

Introducing MARTE

 "The UML profile for MARTE addresses modeling and analysis of real-time and embedded systems, including their software and hardware aspects"

Key features

- Provides support for non-functional property modeling
- Adds rich time and resource models to UML
- Defines concepts for software and hardware platform modeling
- Defines concepts for allocation of applications on platforms
- Provides support for quantitative analysis (e.g. scheduling, performance)
- Complies with UML 2.1 and other existing OMG standards
- Replaces the UML SPT profile 1.1

MARTE specification adopted in June 2007

- Alpha document available: http://www.omg.org/cgi-bin/doc?ptc/2007-08-04
- Finalization Task Force comment deadline: December 22nd 2007

The ProMARTE partners

Tool vendors

- ARTiSAN Software Tools*
- International Business Machines*
- Mentor Graphics Corporation*
- Softeam*
- Telelogic AB (I-Logix*)
- Tri-Pacific Software
- No Magic
- The Mathworks

Industrial companies

- Alcatel*
- France Telecom
- Lockheed Martin*
- Thales*

Academics

- Carleton University
- Commissariat à l'Energie Atomique
- ESEO
- ENSIETA
- INRIA
- INSA from Lyon
- Software Engineering Institute (Carnegie Mellon University)
- Universidad de Cantabria

^{*} Submitters to the OMG UML for MARTE RFP

Relationships with other OMG standards

Relationships with generic OMG standards

- Profiles the UML 2 superstructure meta-model
- Uses OCL 2 for description of domain constraints

Relationships with RTE specific OMG standards

- The UML profile for Modeling QoS and FT Characteristics and Mechanisms
 - Addressed through MARTE NFP package
- The UML profile for SoC
 - More specific than MARTE purpose
- The Real-Time CORBA profile
 - Real-Time CORBA based architecture can be annotated for analysis with MARTE
- The UML profile for Systems Engineering (SysML)
 - Specialization of SysML allocation concepts and reuse of flow-related concepts
 - Ongoing discussion to include VSL in next SysML version
 - Overlap of team members

Architecture of the MARTE specification

Non-Functional Properties (NFP)

- Formalize a number of ideas existing in SPT and QoS&FT
 - From the SPT profile
 - e.g. Tag Value Language (variables, math. expressions) and timerelated values
 - From the QoS&FT profile
 - e.g. Property Qualifiers
- Add new modeling constructs required for MARTE
 - e.g. tuple and choice values, time expressions and unit measurements conversion
- NFP modeling required general extensions to UML tools
 - e.g. value expressions editing and data type checking
 - → This is a key feature in DRES modeling that UML lacks

Organization of NFP constructs

Examples of textual expressions

Value Spec.	Examples			
Real Number	1.2E-3 //scientific notation			
DateTime	#12/01/06 12:00:00# //calendar date time			
Collection	<pre>{1, 2, 88, 5, 2} //sequence, bag, ordered set {{1,2,3}, {3,2}} //collection of collections</pre>			
Tuple and choice	<pre>(value=2.0, unit= ms) //duration tuple value periodic(period=2.0, jitter=3.3) //arrival pattern</pre>			
Interval	[1251[//upper closed interval between integers [@A1@A2] //interval between variables			
Variable declaration & Call	<pre>io@var1</pre>			
Arithmetic Operation Call	+(5.0,var1) //"add" operation on Real datatypes 5.0+var1 //infix operator notation			
Conditional Expression	((\$var1<6.0)?(10^6):1) //if true return 10 exp 6,else 1			

+ additional constructs to reference UML properties and time observations

Examples of NFP annotations

Use of NFPs as M1 level properties:

Time modeling

- The Time model introduced in MARTE completes the features provided by the SimpleTime package of UML 2
- Basic ideas
 - Any thing related to time may explicitly refer to a clock
 - Time is multiform (not limited to "physical" time)
 - Support distribution, clock uncertainties
 - Design vs. Runtime clocks
- What are the domain concepts?
 - Events → TimedEvent
 - Behaviors and Actions → TimedProcessing
 - Constraints → TimedConstraint
 - Observations → TimedObservation

Time modeling (cont'd)

- Time Structure
 - Made of several <u>clocks</u>
- Clock
 - A totally ordered set of <u>instants</u>
 - Access to instant value and duration with <u>units</u>
- Relations on Clocks
 - Expression → ClockConstraint
 - Reflect causality (from algorithm and allocations)

nature isLogical	discrete	dense		
true	Logical clock	Not used		
false	Chronom discrete	Chronometric clock discrete dense		

- + optional
- set of properties
- set of operations

Example of a time constraint

General Resource Modeling

Resource offers Services and may have NFPs for its definition and usage

A rich categorization is provided: Storage, Synchronization, Concurrency, Communication, Timing, Computing, and Device Resources may be defined. Shared resources, scheduling strategies and specific usages of resources (like memory consumption, computing time and energy) may be annotated.

MARTE Tutorial - 13th SDL Forum, Sep 2007, Paris

Example of resource modeling

General Component Model

- Introduced to cope with various component-based models
 - UML2, SysML, Spirit, AADL, Lightweight-CCM, EAST-ADL2, Autosar...
- Relies mainly on UML structured classes, on top of which a support for SysML blocks has been added
 - Atomic and non-atomic flow ports
 - Flow properties and flow specifications
- But also providing a support for Lightweight-CCM, AADL and EAST-ADL2, Spirit and Autosar

Example of component definition

Allocation modeling

Basic ideas

- Allocate an application element to an execution platform element
- Refine a general element into specific elements
- Inspired by the SysML allocation
 - Can only allocate application to execution platform
 - Can attach NFP constraints to the allocation

inpC	4	6	true
outpW	4		true
outpZ		6	true
oper1	10		true
_			

Unique Alloc

Example of allocation

Architecture of the MARTE specification

RTE Model of Computation and Communication

- Provides high-level concepts for modeling qualitative real-time features
 - Real-Time Unit (RTUnit)
 - Generalization of the Active Objects of the UML 2
 - Owns at last one schedulable resource
 - Resources are managed either statically (pool) or dynamically
 - May have operational mode description (similar to AADL concept)
 - Protected Passive Unit (PPUnit)
 - Generalization of the Passive Objects of the UML2
 - Requires schedulable resources to be executed
 - Supports different concurrency policies (e.g. sequential, guarded)
 - Policies are specified either locally or globally
 - Execution is either immediateRemote or deferred

RTE Model of Computation and Communication (cont'd)

- Provides high-level concepts for modeling quantitative real-time features
 - Real-Time Behavior (RtBehavior)
 - Message Queue size and policy bound to a provided behavior
 - Real-Time Feature (RTF)
 - Extends UML Action, Message, Signal, BehavioralFeature
 - Relative/absolute/bound deadlines, ready time and miss ratio
 - Real-Time Connector (RteConnector)
 - Extends UML Connector
 - Throughput, transmission mode and max blocking/packet Tx time

Usage examples of the RTEMoCC extensions

Outline of the Software Resource Model

Concurrent execution contexts:

- Schedulable Resource (Task)
- Memory Partition (Process)
- Interrupt Resource
- Alarm

Interactions between concurrent contexts:

- Communication (Data exchange)
 - ✓ Shared data
 - ✓ Message (Message queue)
- Synchronization
 - ✓ Mutual Exclusion (Semaphore)
 - ✓ Notification (Event mechanism)

Hardware and software resources brokering:

- Drivers
- Memory management

OSEK/VDX modeled with SRM

MARTE Tutorial - 13th SDL Forum, Sep 2007, Paris

SRM Usage example

Hardware Resource Model

- Logical view (functional modeling)
 - Provides a description of functional properties
 - Based on a functional classification of hardware resources:
 - HwComputing resources
 - HwStorage resources
 - HwCommunication resources
 - HwTiming resources
 - HwDevice resources
- Physical view
 - Provides a description of physical properties
 - Based on both following packages:
 - HwLayout
 - HwPower

HRM usage example: Logical View

HRM usage example: Physical View

Architecture of the profile

General Quantitative Analysis Model

GQAM updates SPT

- Alignment on UML2
- Harmonization between two SPT subprofiles: sched. and perf.
- Extension of timing annotations expressiveness
 - Overheads (e.g. messages passing)
 - Response times (e.g. BCET & ACET)
 - Timing requirements (e.g. miss ratios and max. jitters)

Main concepts common for quantitative analysis

- Resources
- Behavior
- Workload
- All embedded in an analysis context (may have analysis parameters)

Dependencies and architecture of GQAM

- GQAM
 - Common concepts to be used by analysis sub-profiles
- SAM
 - Modeling support for schedulability analysis techniques.
- PAM
 - Modeling support for performance analysis techniques.

Processing schema for modelbased analysis

Schedulability Analysis Model

- Modeling for analysis techniques taking into account scheduling aspects
- **Provides high-level analysis constructs**
 - Sensitivity analysis, parametric analysis
 - Observers for time constraints and time predictions at analysis context level
- Supports most common sched. analysis techniques

RMA-based, holistic techniques and modular techniques

THALES

Resources Platform Modeling Example

Sched. Analysis Context Example

MARTE Tutorial - 13th SDL Forum, Sep 2007, Paris

Performance Analysis Model

- Specializes some GQAM stereotypes and reuses others
 - Workload
 - specialized: PaRequestEventStream, PaWorkloadGenerator, PaEventTrace
 - Behaviour
 - reused: BehaviorScenario, AcqStep, RelStep
 - specialized: PaStep, PaExecStep, PaCommStep, ResPassStep, RequestedService
 - Resources
 - Reused: ExecHost, CommHost, CommChannel
 - Specialized: PaProcess
- Supports most common performance analysis techniques
 - Queueing Networks and extensions, Petri Nets, simulation
- UML + MARTE models should contain
 - Structural view: software architecture and deployment
 - Behavioral view: key performance scenarios

Example: deployment

Example: simple scenario

MARTE Annexes

- Repetitive Structure Modeling
- Guidance for use of MARTE
 - e.g. AADL-like models with MARTE
- Value Specification Language (VSL)
- Clock Handling Facilities
 - Clock Value Specification Language (CVSL)
 - Clock Constraint Specification Language (CCSL)
- MARTE Library

AADL-like models with MARTE

UML + MARTE

AADL

```
Length_Unit : type units ( mm, cm => mm
* 10, m => cm * 100 km => m * 1000 );

OnOff : type aadlboolean;

Speed_Range : type range of aadlreal 0
.. 250 units ( kph );

mass_t: type aadlreal units mass_u;

mass_u: type units (g, kg => g*1000, t
=> kg*1000);
```

```
Wheel_speed: aadlinteger 0 rpm .. 5000 rpm units ( rpm applies to (system);

allowed_mass: mass_range_t applies to memory, processor, bus, device, system);

actual_mass: mass_t applies to (memory, processor, bus, device, system);
```


Conclusion

- MARTE is the new OMG specification for Modeling and Analysis Real-Time and Embedded systems
 - Specification adopted in June 2007
- MARTE provides extensions to UML for modeling non-functional properties, time and resource, software and hardware execution platforms and allocations
- MARTE enables model-based quantitative analysis, including schedulability and performance
- A first Eclipse-based open-source implementation is available
 - Papyrus for MARTE (http://www.papyrusuml.org)
- Ongoing discussions to align parts of MARTE and SysML

References

- OMG MARTE web site
 - http://www.omgmarte.org
- UML profile for MARTE (alpha)
 - http://www.omg.org/cgi-bin/doc?ptc/2007-08-04
- UML profile for MARTE RFP
 - http://www.omg.org/cgi-bin/doc?realtime/2005-2-6
- UML 2 Superstructure
 - http://www.omg.org/cgi-bin/doc?formal/07-02-05

