Analisi II - quarta parte

Teorema di Riesz

Per ogni aplicazione lineare $L\in\mathscr{L}(\mathbb{R}^N,\mathbb{R})$ esiste uno ed un solo $\underline{a}\in\mathbb{R}^n$ t.c. $L(\underline{x})=<\underline{x},\underline{a}>$

Dimostrazione

Sia $L:\mathbb{R}^n o \mathbb{R}$, lineare

• (esistenza di a). Fissiamo $\{\underline{e_1},...,\underline{e_n}\}$ base di \mathbb{R}^n e poniamo $L(\underline{e_1})=a_1,...,L(\underline{e_n})=a_n.$ Definiamo $\underline{a}=(a_1,...,a_n)^T\in\mathbb{R}$. Si ha, $\forall \underline{x}=(x_1,...,x_n)^T=x_1e_1+x_2e_2+...+x_na_n=<\underline{x},\underline{a}>$

Funzioni vettoriali

Derivate direzionali e parziali per funzioni da \mathbb{R}^n in \mathbb{R}^m

Siano $f:A(\subseteq\mathbb{R}^n)\to\mathbb{R}^m$, A aperto e $x_0\in A$ e $\underline{v}\in\mathbb{R}^m$, ||v||=1, si dice che f è dotata di derivata direzionale lungo \underline{v} sul punto x_0 se ogni compontente $f_j:A(\subseteq\mathbb{R}^n)\to\mathbb{R}$ è dotata di derivata direzionale lungo \underline{v} su x_0

 $rac{\partial f}{\partial \underline{v}}(\underline{x_0})=(rac{\partial f_1}{\partial \underline{v}}(\underline{x_0},...,rac{\partial f_m}{\partial \underline{v}}(\underline{x_0}))^T.$ Si dice che f è dotata di derivata parziale i-esima in $\underline{x_0}$ se ogni componente $f_i:A(\subseteq\mathbb{R}^n)\to\mathbb{R}$, per i=1,..,M è dotata di derivata parziale i-esima in x_0

$$rac{\partial f}{\partial x_i}(\underline{x_0}) = (rac{\partial f_1}{\partial x_i}(\underline{x_0}),...,rac{\partial f_m}{\partial x_i}(\underline{x_0}))^T$$
 , per $i=1,..,n$

Matrice Jacobiana

Siano $f:A(\subseteq\mathbb{R}^n) o\mathbb{R}^m$ con A aperto e $\underline{x_0}\in A$. Se $\forall i=1,..,n$ esiste $\frac{\partial f_1}{\partial x_i}(\underline{x_0})$, la matrice

$$egin{pmatrix} rac{\partial f_1}{\partial x_1} ... rac{\partial f_1}{\partial x_n} \ driverontoring & dots & dots \ rac{\partial f_m}{\partial x_1} ... rac{\partial f_m}{\partial x_n} \end{pmatrix} = Jf(\underline{x_0})$$

Si dice matrice Jacobiana di f in $\underline{x_0}$

Esempi

• M=1, campo scalare - $Jf(\underline{x_0})=(\frac{\partial f}{\partial x_1}(\underline{x_0}),...,\frac{\partial f}{\partial x_n}(\underline{x_0}))\in \mathbb{M}(1,n)$, ovvero tutte le n derivate parziali

$$ullet$$
 $N=1$, curva parametrica ($f=\gamma$, $x=t$) - $Jf(t_0)=egin{pmatrix} \gamma_1'(t_0) \ ... \ \gamma_m'(t_0) \end{pmatrix}\in \mathbb{M}(m,1)$

Il concetto di derivabilità per funzioni a più variabili lungo una direzione non è una buona generalizzazione della misura di derivabilità per le funzioni ad una variabile

Riesame del caso unidimensionale

Siano $f:A(\subseteq\mathbb{R}) o\mathbb{R}$, con A aperto, $x_0\in A$. Si ha che f è derivabile in $x_0\Leftrightarrow$ esiste $a\in\mathbb{R}$ t.c.

$$\dfrac{f(x)=f(x_0)+af(x-x_0)+o(|x-x_0|)}{f(x)=f(x_0)+f'(x_0)(x-x_0)}$$
 si dice approssimazione lineare di f in x_0 (polinomio di Taylor di ordine 1)

Osservazione

L'applicazione lineare $L:\mathbb{R}\in\mathbb{R}$ t.c. $L(h)=a\cdot h$ è lineare, cioè $L\in\mathscr{L}(\mathbb{R},\mathbb{R})$. Dunque si ha f derivabile in $x_0\Leftrightarrow$ esiste $L\in\mathscr{L}(\mathbb{R},\mathbb{R})$ t.c. $f(x)=f(x_0)+L(x-x_0)+o(|x-x_0|)$. Questo è il punto di partenza per introdurre la corretta definizione di derivabilità per le funzioni di più variabili.

Differenziale di Frechèt ($N \geq 1$,M=1, campi scalari)

Siano $f:A(\subseteq\mathbb{R}^n)\to\mathbb{R}$, A aperto e $\underline{x_0}\in A$. Si dice che f è differenziabile secondo Frechèt in $\underline{x_0}$ se esiste $L\in\mathcal{L}(\mathbb{R}^n,\mathbb{R})$ t.c. $f(\underline{x})=f(\underline{x_0})+L(\underline{x}-\underline{x_0})+o(||\underline{x}-\underline{x_0}||)$. Inoltre l'applicazione lineare L si dice **differenziale** (o derivata) di Frechèt di f in $\underline{x_0}$ e si scrive $L=df(\underline{x_0})$.

Rappresentazione di ${\cal L}$

Fissata una base $\{\underline{e_1},..,\underline{e_n}\}$ in \mathbb{R}^nL si rappresena per mezzo di una matrice $\mathbb{A}\in\mathbb{M}(1,n)$, con $\mathbb{A}=(a_1,..,a_n)$, mel senso che $L(h)=\mathbb{A}\cdot h=a_1h_1+...+a_nh_n$, $\forall \underline{h}=(h_1,...,h_n)^T\in\mathbb{R}^n$. Posto $\underline{a}=\mathbb{A}^T=(a_1,...,a_n)\in\mathbb{R}^n$, risulta equivalentemente $L(h)=<\underline{h},\underline{a}>$

Approssimazione lineare

Se f è differenziabile in $\underline{x_0}$, allora la funzione $f(\underline{x}) = f(\underline{x_0}) + L(\underline{x} - \underline{x_0}) = f(\underline{x_0}) + df(\underline{x_0})(\underline{x} - \underline{x_0})$ si dice approssimazione lineare di f in $\underline{x_0}$ e si ha $f(\underline{x}) = \overline{f}(\underline{x}) + o(||\underline{x} - \underline{x_0}||) = f(\underline{x_0}) + df(\underline{x_0})(\underline{x} - \underline{x_0}) + o(||\underline{x} - \underline{x_0}||)$

N=2: piano tangente

Se f è differenziabile in $(\underline{x_0},\underline{y_0})^T$, allora il piano di equazione $z=\overline{f}(x,y)$ si dice piano tangente a G(f) nel punto $(x^0,y^0,\overline{f}(x,y))^T$

NB

$$z=\overline{f}(x,y)\Leftrightarrow z=f(x_0,y_0)+a_1(x-x_0)+a_2(y-y_0)$$
, con (a_1,a_2) matrice rappresentativa di $df(x_0,y_0)$

Proprietà delle funzioni differenziabili

Siano $f:A(\subseteq \mathbb{R}^n) \to \mathbb{R}$, A aperto e $\underline{x} \in A$.

Teorema

Se f è differenziabile in x_0 allora f è continua in x_0

Dimostrazione

Si ha
$$f(\underline{x})=f(\underline{x_0})+<\underline{a},\underline{x}-\underline{x_0}>+o(||\underline{x}-\underline{x_0}||)\xrightarrow{\underline{x}\to\underline{x_0}}f(\underline{x_0})+L(\underline{0})+0=f(x_0)\Rightarrow$$
 è continua

Teorema

Se f è differenziabile in $\underline{x_0}$ allora $orall \underline{v} \in \mathbb{R}$, ||v||=1, esiste L t.c. $\frac{\partial f}{\partial \underline{v}}(\underline{x_0})=L(\underline{v})$, con $L=df(\underline{x_0})$

Dimostrazione

Corollario

Se f è differenziabile allora la matrice $Jf(\underline{x_0})$ cioè $L(\underline{h})=df(\underline{x_0})=Jf(\underline{x_0})\cdot h$, $\forall h\in\mathbb{R}^n$

Dimostrazione

Sia {\underline{e_1},...,\underline{e_n}} la base canonica di \mathbb{R}^n , allora $\frac{\partial f}{\partial \underline{e_i}}(\underline{x_0}) = \frac{\partial f}{\partial \underline{x_i}}(\underline{x_0}) = L(\underline{e_i}) = a_i$, $\forall i = 1,...,n$ Pertanto si ha $\mathbb{A} = (a:1,...,a_n) = (\frac{\partial f}{\partial \underline{x_1}}(\underline{x_0}),...,\frac{\partial f}{\partial \underline{x_n}}(\underline{x_0})) = Jf(\underline{x_0})$

Conseguenza

Se la
$$f$$
 è differenziabile in $\underline{x_0}$, allora, $\forall \underline{v} \in \mathbb{R}^n$, con $||\underline{v}|| = 1$, si ha $\frac{\partial f}{\partial \underline{v}}(\underline{x_0}) = L(\underline{v}) = Jf(\underline{x_0}) \cdot \underline{v} = \frac{\partial f}{\partial x_1}(\underline{x_0})v_1 + ... + \frac{\partial f}{\partial x_n}(\underline{x_0})v_n$, con $\underline{v} = (v_1, ..., v_n)^T$

Gradienti di un campo scalare

Se f è differenziabile in $\underline{x_0}$, si definisce **gradiente** di f in $\underline{x_0}$ il vettore colonna associato a $df(\underline{x_0}) \in \mathcal{L}(\mathbb{R}^n,\mathbb{R})$ del teorema di Riesz e si indica con $\nabla f(\underline{x_0}) = (\frac{\partial f}{\partial x_n}(\underline{x_0}),...,\frac{\partial f}{\partial x_n}(\underline{x_0}))^T = (Jf(\underline{x_0}))^T$

Proprietà del gradiente

- 1. Se f è differenziabile in $\underline{x_0}$, allora $f(\underline{x}) = f(\underline{x_0}) + < \nabla f(\underline{x_0}), \underline{x} \underline{x_0} > + o(||\underline{x} \underline{x_0}||)$. Inoltre, $\forall \underline{v} \in \mathbb{R}^n$ con ||v|| = 1, si ha $\frac{\partial f}{\partial \underline{v}}(\underline{x_0}) = < \nabla f(\underline{x_0}), \underline{x} \underline{x_0} >$
- 2. Se f è differenziabile in $\underline{x_0}$ e $\nabla f(\underline{x_0}) \neq \underline{0}$, allora $\frac{\partial f}{\partial \underline{v}}(\underline{x_0})$ è massimo se $\underline{v} = \frac{\nabla f(\underline{x_0})}{||\nabla f(\underline{x_0})||}$ e $\frac{\partial f}{\partial \underline{v}}(\underline{x_0})$ è minimo se $\underline{v} = -\frac{\nabla f(\underline{x_0})}{||\nabla f(\underline{x_0})||}$

Dimostrazione

- 1. Sia $\underline{v} \in \mathbb{R}^n$, con $||\underline{v}|| = 1$. Si ha $\frac{\partial f}{\partial \underline{v}}(\underline{x_0}) = <\nabla f(\underline{x_0}), \underline{v}> \le ||\nabla f(\underline{x_0})|| \cdot ||\underline{v}|| = ||\nabla f(\underline{x_0})||$ de è $0 \Leftrightarrow \underline{v} = \frac{\nabla f(\underline{x_0})}{||\nabla f(\underline{x_0})||}$
- 2. Similmente da $\frac{\partial f}{\partial \underline{v}}(\underline{x_0})=<\nabla f(\underline{x_0}),\underline{v}>\geq -||\nabla f(\underline{x_0})||$, segue la seconda conclusione (---RECUPERA DATA 2019/10/16---)