A Generalization of Teicher's Poisson Tail Inequality

Greg Leo*

October 21, 2017

Abstract

Teicher [1955] proved that the probability a Poisson distribution with mean k takes on a value of k or less is monotonically decreasing in k. I extend this inequality by proving that the probability a Poisson distribution with mean zk takes on a value of k or less is monotonically decreasing for $z \geq 1$.

Let X_{λ} be a Poisson distributed random variable with mean λ . This note concerns the monotonicity of $P(X_{zk} \leq k)$ in k. Teicher [1955] proves the following [see also: Adell and Jodra, 2005]:

(1)
$$P(X_k \le k) > P(X_{(k+1)} \le k+1)$$

Proposition. $P(X_{zk} \le k) > P(X_{z(k+1)} \le k)$ for $z \ge 1$.

Proof. Let $G_k(z) \equiv P(X_{zk} \leq k) - P(X_{z(k+1)} \leq k)$. The proposition is equivalent to $G_k(z) > 0$ for $z \geq 1$. Note that $G_k(1)$ by Adell, Jodra (2005).

^{*}Leo: Vanderbilt University Department of Economics. Station B #351819 2301 Vanderbilt Place Nashville, TN 37235-1819. I thank Pedro Sant'anna for helpful comments.g.leo@vanderbilt.edu.

Furthermore, $\lim_{z\to\infty}G_k(z)=0$. Note that $G_k(z)$ can be rewritten by the following steps:

(2)
$$G_k(z) = P(X_{zk} \le k) - P(X_{z(k+1)} \le k+1) = P(X_{zk} \le k+1) - P(X_{z(k+1)} \le k+1) - P(X_{zk} = k+1)$$

By the Gamma-Poission relationship, the lower tail of X_{λ} can be written as the upper-tail of a random variable with distribution $\Gamma(k+1,1)$. Thus, $P(X_{\lambda} \leq k) = P(Y > \lambda) = \frac{\int_{\lambda}^{\infty} u^k e^{-u} du}{k!}$. Using this relationship, 2 can be written:

(3)
$$G_k(z) = \frac{\int_{zk}^{\infty} u^{(k+1)} e^{-u} du}{(k+1)!} - \frac{\int_{z(k+1)}^{\infty} u^{(k+1)} e^{-u} du}{(k+1)!} - \frac{(zk)^{k+1} e^{-(zk)}}{(k+1)!}$$

The first two terms have the same integrand but different bounds. The expression can be re-written as:

(4)
$$G_k(z) = \frac{\int_{zk}^{z(k+1)} u^{(k+1)} e^{-u} du}{(k+1)!} - \frac{(zk)^{k+1} e^{-(zk)}}{(k+1)!}$$

The derivative of $(k+1)!G_k(z)$ with respect to z is:

(5)
$$(k+1)!G'_k(z) = (k+1)(z(k+1))^{(k+1)}e^{-z(k+1)} - (k)(zk)^{k+1}e^{-zk}$$

 $-k(k+1)(zk)^ke^{-zk} + k(zk)^{k+1}e^{-zk}$
 $= (k+1)(z(k+1))^{(k+1)}e^{-z(k+1)} - k(k+1)(zk)^ke^{-zk}$

Thus $G'_{k}(z) > 0$ iff:

(7)
$$\left(\frac{k+1}{k}\right)^{(k+1)} > \frac{1}{z}e^z$$

For z=1 this is $\left(\frac{k+1}{k}\right)^{(k+1)}>e$ which is true for all k>0. Thus, $G_k'(1)>0$. This together with 1 imply that $G_k'(z)$ is initially positive and increasing on $z\in[1,\infty)$. Furthermore, there is a single stationary point since the equation $\left(\frac{k+1}{k}\right)^{(k+1)}=\frac{1}{z}e^z$ has only one solution for $z\geq 1$ which is given by the lower branch of the Lambert-W function:

(8)
$$z^* = -W\left(-\left(\frac{k}{k+1}\right)^{(k+1)}\right)$$

Thus, $G_k(z)$ is strictly positive at z=1, increases for $z \leq z^*$ and then decreases for $z \geq z^*$ approaching 0. This implies that $G_k(z) > 0$ for $z \geq 1$.

References

J. A. Adell and P. Jodra. The Median of the Poisson Distribution. Metrika, 61(3):337-346, June 2005. ISSN 0026-1335, 1435-926X. doi: 10.1007/s001840400350. URL http://link.springer.com/article/10. 1007/s001840400350.

Henry Teicher. An inequality on poisson probabilities. The Annals of Mathematical Statistics, 26(1):147–149, 1955.