中山大学本科生期末考试

考试科目:《概率论与数理统计》(模拟卷)

学年学期: 20xx 学年第 x 学期	姓	名:		
开课单位: 计算机学院	学	号:		
考试方式: 闭卷	年	级:		
考试时长: 120 分钟	院	系:		
警示《中山大学授予学士学位工作细》 位。"	則》第 <i>l</i>	\条: "	'考试作弊者,	不授予学士学

一、计算题(共 3 小题,每小题 5 分,共 15 分)

某人共买了11个水果,其中有3个是二级品,8个是一级品,随机地将水果分给A、 B、C三个人,各人分得4个、6个、1个

-----以下为试题区域, 共8道大题, 总分100分,考生请在答题纸上作答------

(1) 求C未拿到二级品的概率。

- (2) 已知C未拿到二级品,求A,B均拿到二级品的概率。
- (3) 求A, B均拿到二级品而C未拿到二级品的概率。

二、计算题(共 2 小题,每小题 5 分,共 10 分)

- 一批鸡蛋,优良品种占三分之二,一般品种占三分之一,优良品种蛋重(单位:
- 克) X₁ ~ N(55,5²), 一般品种蛋重 X₂ ~ N(45,5²)。
 - (1) 从中任取一个, 求其重量大于50克的概率。
 - (2) 从中任取两个, 求它们的重量都小于50克的概率。

三、计算题(共 3 小题,每小题 5 分,共 15 分)

设随机变量X,Y的概率密度为

$$f(x,y) = \begin{cases} be^{-(x+y)}, & 0 < x < 1, 0 < y < +\infty \\ & 0, \text{ #...} \end{cases}$$

- (1) 试确定常数b.
- (2) 求两边缘概率密度.
- (3) 求函数 $U = \max\{X,Y\}$ 的分布函数.

四、证明题(共1小题,共10分)

连续型随机变量X具有数学期望 $E(X) = \mu$,方差 $D(X) = \delta^2$,则对于任意正数 ε ,证明

$$P\{|X - \mu| \geqslant \varepsilon\} \le \frac{\sigma^2}{\varepsilon^2}$$

五、计算题(共2小题,每小题5分,共10分)

某校区共有8000名学生,每名学生在周六早上独立地选择出门或者不出门,出门的概率为0.1。学生出门时,会优先选择共享单车出行。

- (1) 假设每次使用共享单车花费1.5元, 求该校区学生周六早上在共享单车上的总花费超过1300元概率
- (2) 该校区需要部署多少台共享单车,能以 90% 的概率保证所有出门学生都可以找到 共享单车?

六、计算题(共3小题,每小题5分,共15分)

在总体 N(12.4) 中随机抽一容量为5的样本 X_1, X_2, X_3, X_4, X_5 .

- (1) 求样本均值 \overline{X} 落在11.2到13.2之间的概率.
- (2) 求概率 $P(\max\{X_1, X_2, X_3, X_4, X_5\} > 14)$ 和 $P(\min\{X_1, X_2, X_3, X_4, X_5\} < 9)$.
- (3) 求 X_1 与样本均值之差的绝对值的期望 $E(|X_1-\overline{X}|)$ 和方差 $D(|X_1-\overline{X}|)$

七、计算题(共3小题,每小题5分,共15分)

设 $X_1, X_2, ..., X_n$ 为总体的一个样本, $x_1, x_2, ..., x_n$ 为相应的样本值. 总体的概率密度为

$$f(x;\theta) = \begin{cases} \frac{1}{\theta} x^{\frac{1-\theta}{\theta}}, & 0 < x < 1 \\ 0, & \text{identity} \end{cases}, \quad 0 < \theta < \infty,$$

其中 θ 为待估参数.

- (1) 求 θ 的矩估计量
- (2) 求 θ 的最大似然估计量
- (3) 判别(2)得到的估计量是否为无偏估计量。

八、计算题(共2小题,每小题5分,共10分)

某项产品的重量 X (以 kg 计) 服从正态分布 $N(\mu, \sigma^2)$ 。 现测得 16 件产品的重量依次如下:

222	362	168	250	149	260	485	170
159	280	101	212	224	379	179	264

问在下列两种情况下,是否有理由认为该产品的平均重量大于200kg? (取 $\alpha = 0.05$)

- 1) μ 未知, $\sigma^2 = 10000$
- 2) μ , σ^2 均未知

Table 1: Standard Normal Curve Areas

$$p(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx, \quad z \ge 0$$

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9278	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9430	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9648	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9700	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9762	0.9767
2.0	0.0772	0.0770	0.0703	0.0700	0.0702	0.0700	0.0002	0.0000	0.0012	0.0017
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9874	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
2.)	0.5501	0.5502	0.5502	0.5703	0.550 F	0.550 F	0.7703	0.7703	0.5500	0.7700
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
	0.,,,,	V-2271	V-2271	V-2271	V-2271	V-2271	V-227	V-2271	V-2271	0.,,,,

Table 2: *t* distribution

