Algebra I BLATT 1

Jendrik Stelzner

23. April 2014

Aufgabe 1

Wir betrachten zunächst $H=\mathrm{SL}_2(\mathbb{C})$. Es ist klar, dass $H.0=\{0\}$. Wir behaupten, dass $H.x = K^2 \smallsetminus \{0\}$ für alle $x \in K^2 \smallsetminus \{0\}$. Da Bahnen entweder disjunkt oder gleich sind, reicht es hierfür zu zeigen, dass $H.e_1=K^2\smallsetminus\{0\}$. Es sei $x=(x_1,x_2)^T\in K^2\smallsetminus\{0\}$. Ist $x_1\neq 0$ so gilt für die Matrix

$$A = \begin{pmatrix} x_1 & 0 \\ x_2 & x_1^{-1} \end{pmatrix},$$

dass det A=1, also $A\in H$, und $Ae_1=x$. Ist $x_2\neq 0$ so gilt für die Matrix

$$B = \begin{pmatrix} x_1 & -x_2^{-1} \\ x_2 & 0 \end{pmatrix},$$

dass det B=1, also $B\in H$, und $Be_1=x$. Da $x\neq 0$ muss $x_1\neq 0$ oder $x_2\neq 0$, also $x\in H.e_1$. Die Beliebigkeit von $x\in K^2\smallsetminus\{0\}$ zeigt, dass $H.e_1=K^2\smallsetminus\{0\}$. Für die natürliche Darstellung von $G=\operatorname{GL}_2$ auf K^2 ergibt sich, dass $G.0=\{0\}$.

 Da $H \leq G$ eine Untergruppe ist, so dass die Aktion von H auf K^2 durch die von Ginduziert wird, ist für alle $x \in K^2 \setminus \{0\}$

$$K^2 \setminus \{0\} = H.x \subseteq G.x \subseteq K^2 \setminus \{0\},\$$

also $G.x = K^2 \setminus \{0\}.$

Für eine Matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in H_{e_1}$$

muss

$$\begin{pmatrix} a \\ c \end{pmatrix} = Ae_1 = e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix},$$

sowie daher $1=\det A=d$. Also ist $H_{e_1}\subseteq U$. Es ist aber auch klar, dass $U\subseteq H_{e_1}$, denn es ist det B=1 und $Be_1=e_1$ für alle $B\in U$. Daher ist $U=H_{e_1}$.

Dass für jedes $x \in K^2 \setminus \{0\}$ die Stabilisatorgruppe H_x zu U konjugiert ist, folgt direkt daraus, dass x und e_1 die gleiche Bahn und damit konjugierte Stabilisatorgruppen haben.