Batch: A2 Experiment Number:8

Roll Number: 16010421063 Name: Arya Nair

Aim of the Experiment: To implement Decision Tree Algorithm (ID3 using library)

Program/ Steps:

In [1]:	<pre>import df = po df.head</pre>	.read_		anic_da	ta.csv")								
Out[1]:	Pass	engerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarke
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/02. 3101282	7.9250	NaN	
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	


```
In [8]: from sklearn.tree import DecisionTreeClassifier
             #splitting up the dataset
from sklearn.model_selection import train_test_split
X_train2, X_test2, y_train2, y_test2 = train_test_split(df1,target,test_size=0.2)
             #Training the decision tree classifier
m2 = DecisionTreeClassifier(criterion='gini')
m2.fit(X_train2,y_train2)
            #Predicting the response for test data
y_pred2 = m2.predict(X_test2)
            #Classification Report
from sklearn.metrics import classification_report
print(classification_report(y_test2,y_pred2))
                                  precision
                                                    recall f1-score support
                             0
                                                        0.67
                                         1.00
                                                                        0.80
                                                                                            6
                                                         1.00
                                                                        0.80
                                                                        0.80
                                                                                          10
                  accuracy
            macro avg
weighted avg
                                         0.83
                                                         0.83
                                                                        0.80
                                                                                          10
                                        0.87
                                                        0.80
                                                                        0.80
                                                                                         10
In [9]: #Accuracy
print("accuracy: ", m2.score(X_test2,y_test2))
```

accuracy: 0.8

In [11]: #Confusion Matrix from sklearn.metrics import confusion_matrix print(confusion_matrix(y_test2,y_pred2)) [[4 2] [0 4]] In [14]: target = target.astype('str') The Edit View Mater and Widgets Mater and Profess 2 Confusion and Profess 3 Confusion and Profess 4 Confusion and Profess 3 Confusion and Profess

```
In [17]: #Example 1
import pandas as pd
df = pd.read_csv("titanic_data.csv")
df2 = df.head(50).drop('Cabin', axis = 1)
df2
```

Out[17]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	s
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	s
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	S
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	Q
6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	s
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	S
8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	S
9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708	C
10	11	1	3	Sandstrom, Miss. Marguerite Rut	female	4.0	1	1	PP 9549	16.7000	S
11	12	1	1	Bonnell, Miss. Elizabeth	female	58.0	0	0	113783	26.5500	s
12	13	0	3	Saundercock, Mr. William Henry	male	20.0	0	0	A/5. 2151	8.0500	s
13	14	0	3	Andersson, Mr. Anders Johan	male	39.0	1	5	347082	31.2750	S

```
In [18]: from sklearn import preprocessing
label_encoder = preprocessing.LabelEncoder()

#Label Encoding

df2.loc[:,('Name')] = label_encoder.fit_transform(df2['Name'])

df2.loc[:,('Sex')] = label_encoder.fit_transform(df2['Sex'])

df2.loc[:,('Ticket')] = label_encoder.fit_transform(df2['Ticket'])

#Handling Null Values

df2.loc[:,('Age')] = df2.Age.fillna(df2.Age.mean())

em_dummies = pd.get_dummies(df2['Embarked'], drop_first=True)

df2[['Embarked_Q','Embarked_S']] = em_dummies

df2.head()
```

Out[18]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked	Embarked_Q	Embarked_S
0	1	0	3	7	1	22.0	1	0	38	7.2500	S	0	1
1	2	1	1	9	0	38.0	1	0	42	71.2833	С	0	0
2	3	1	3	16	0	26.0	0	0	48	7.9250	S	0	1
3	4	1	1	13	0	35.0	1	0	3	53.1000	S	0	1
4	5	0	3	1	1	35.0	0	0	34	8.0500	S	0	1

```
In [19]: df2.drop(['Embarked'],axis=1,inplace=True)
          df2.head()
Out[19]:
             Passengerld Survived Pclass Name Sex Age SibSp Parch Ticket
                                                                              Fare Embarked_Q Embarked_S
                                                   22.0
                                                                           7.2500
                                                                                                        1
                      2
                                                 0 38.0
                                                                        42 71.2833
                                                                                             0
                                                                                                         0
           1
                                                 0 26.0
                                                                            7.9250
                      4
                                           13
                                                 0 35.0
                                                            1
                                                                  0
                                                                         3 53.1000
                                                                                             0
```

```
In [20]: #Getting the target column
         target1 = df2.Survived
         df2 = df2.drop('Survived', axis='columns')
In [21]: target1 = target1.astype('float')
In [22]: from sklearn.tree import DecisionTreeClassifier
         #Splitting up the dataset
         from sklearn.model_selection import train_test_split
        X_train1, X_test1, y_train1, y_test1 = train_test_split(df2,target1,test_size=0.2)
         #Training the decision tree classifier
         m1 = DecisionTreeClassifier(criterion='entropy')
         m1.fit(X_train1,y_train1)
         #Predicting the response for test data
        y_pred1 = m1.predict(X_test1)
         #Classification Report
         from sklearn.metrics import classification_report
         print(classification_report(y_test1,y_pred1))
                      precision recall f1-score support
                 0.0
                           0.88
                                    0.88
                                              0.88
                                                          8
                 1.0
                           0.50
                                    0.50
                                              0.50
                                                          2
                                              0.80
            accuracy
                                                         10
           macro avg
                           0.69
                                    0.69
                                              0.69
                                                         10
        weighted avg
                           0.80
                                    0.80
                                              0.80
                                                         10
     In [23]:
                    #Accuracy
                    print("accuracy: ", m1.score(X_test1,y_test1))
```

accuracy: 0.8

In [24]: #Confusion Matrix from sklearn.metrics import confusion matrix print(confusion matrix(y test1,y pred1))

[[7 1] [1 1]]

```
target1 = target1.astype('str')

from sklearn import tree
%matplotlib inline
from matplotlib import pyplot as plt
fig1,axes1 = plt.subplots(nrows=1,ncols=1,figsize=(4,4),dpi=400)
tree.plot_tree(m1,feature_names=df2.columns,class_names=target1,filled=True, fontsize=2)
```


KJSCE/TI/SYBTECH/SEM

ADDRESS OF PERSON

```
In [26]: #Example3
```

```
df3 = pd.read_csv("titanic_data.csv")
df3.head()
X = df3.drop(['Fare','Age','Cabin'], axis=1)
X['Family'] = X['SibSp'] + X['Parch']
X = X.drop(['SibSp', 'Parch'], axis = 1)
X.head()
```

Out[26]:

	Passengerld	Survived	Pclass	Name	Sex	Ticket	Embarked	Family
0	1	0	3	Braund, Mr. Owen Harris	male	A/5 21171	S	1
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	PC 17599	С	1
2	3	1	3	Heikkinen, Miss. Laina	female	STON/02. 3101282	S	0
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	113803	S	1
4	5	0	3	Allen, Mr. William Henry	male	373450	S	0

```
In [27]: def weclass(x):
    if x==1:
        return x*2
    elif x==2:
        return x*3
    else:
        return x*4

X['Weighted_class'] = X['Pclass'].apply(weclass)
X.head()
```

Out[27]:

	Passengerld	Survived	Pclass	Name	Sex	Ticket	Embarked	Family	Weighted_class
0	1	0	3	Braund, Mr. Owen Harris	male	A/5 21171	S	1	12
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	PC 17599	С	1	2
2	3	1	3	Heikkinen, Miss. Laina	female	STON/O2. 3101282	S	0	12
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	113803	S	1	2
4	5	0	3	Allen, Mr. William Henry	male	373450	S	0	12

In [28]: newdf=X.drop(['Pclass'], axis = 1)
 newdf.head()

Out[28]:

	Passengerld	Survived	Name	Sex	Ticket	Embarked	Family	Weighted_class
0	1	0	Braund, Mr. Owen Harris	male	A/5 21171	S	1	12
1	2	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	PC 17599	С	1	2
2	3	1	Heikkinen, Miss. Laina	female	STON/O2. 3101282	S	0	12
3	4	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	113803	S	1	2
4	5	0	Allen, Mr. William Henry	male	373450	S	0	12

```
In [29]: from sklearn import preprocessing
label_encoder = preprocessing.LabelEncoder()

#Label Encoding
newdf.loc[:,('Name')] = label_encoder.fit_transform(newdf['Name'])
newdf.loc[:,('Sex')] = label_encoder.fit_transform(newdf['Sex'])
newdf.loc[:,('Ticket')] = label_encoder.fit_transform(newdf['Ticket'])

em_dummies = pd.get_dummies(X['Embarked'], drop_first=True)
newdf[['Embarked_Q','Embarked_S']] = em_dummies
newdf = newdf.drop(['Embarked'], axis =1)
newdf.head()
```

Out[29]:

	Passengerld	Survived	Name	Sex	Ticket	Family	Weighted_class	Embarked_Q	Embarked_S
0	1	0	108	1	523	1	12	0	1
1	2	1	190	0	596	1	2	0	0
2	3	1	353	0	669	0	12	0	1
3	4	1	272	0	49	1	2	0	1
4	5	0	15	1	472	0	12	0	1

```
In [31]:
         y = newdf.Survived
         y = y.astype('float')
In [32]: from sklearn.tree import DecisionTreeClassifier
         #Splitting up the dataset
         from sklearn.model_selection import train_test_split
         X_train1, X_test1, y_train1, y_test1 = train_test_split(newdf,y,test_size=0.2)
         #Training the decision tree classifier
         m1 = DecisionTreeClassifier(criterion='entropy')
         m1.fit(X_train1,y_train1)
         #Predicting the response for test data
         y_pred1 = m1.predict(X_test1)
         #Classification Report
         from sklearn.metrics import classification_report
         print(classification_report(y_test1,y_pred1))
                       precision recall f1-score support
                  0.0
                            1.00
                                      1.00
                                                1.00
                                                           100
                                               1.00
                  1.0
                            1.00
                                      1.00
                                                           79
             accuracy
                                                1.00
                                                           179
                            1.00
                                      1.00
                                                1.00
                                                           179
            macro avg
         weighted avg
                            1.00
                                      1.00
                                                1.00
                                                          179
```


Outcomes:CO 5: Understand fundamentals of learning in Al

Conclusion:

We learnt how to make a decision tree and test data and accuracy of that decision tree

References:

Stuart Russell and

PeterNorvig,ArtificialIntelligence:AModernApproach,Se cond Edition, PearsonPublication

ElaineRich,KevinKnight,ArtificialIntelligence, TataMcGrawHill,1999