Finite Volume Method

By Evgeny Podryabinkin Lecturer Prof. Shapeev

Outline

- Finite Volume Method Overview
- Grid issues
- Discretization of the transport equation
 - Discretization of diffusive term
 - Discretization of convective term
 - TVD schemes
 - Discretization of temporal term
 - Discretization of the source term
- Interpolation and calculation of the gradient
- Boundary conditions
- SLAE formation
- Implementation issues

Applications

- ▶ The mainstream approach in CFD
 - ANSYS Fluent, CFX
 - OpenFOAM
 - Many others
- Incompressible flows
- Gas dynamics (subsonic, supersonic)
- Heat transfer

FDM vs. FVM

Finite Difference Method

Use equation in differential form

$$\frac{\partial \varphi}{\partial t} = \Gamma \left(\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} \right) + q(x, y, t)$$

Approximate differential operators

Finite Volume Method

Use equation in integral form

$$\frac{\partial}{\partial t} \int_{\Omega} \varphi d\omega = \int_{\partial \Omega} \Gamma \nabla \varphi \cdot \mathbf{n} ds + \int_{\Omega} q(x, y, t) d\omega$$

Approximate integral operators

Finite volume: basic methodology

Divide the domain into control volumes

- Integrate the differential equation over the control volume and apply the divergence theorem
- To evaluate derivative terms, values at the control volume faces are needed: have to make an assumption about how the value varies
- Result is a set of linear algebraic equations: one for each control volume
- Solve iteratively or simultaneously

FVM features

- Mass, momentum and energy are always conserved even on coarse grids
- Works well if variables may not be continuously differentiable across shocks and other discontinuities
- Applicable for unstructured grids with variable shape nodes and faces count
- The method is applicable to both steady-state and transient calculations
- Efficient, iterative solvers well developed
- The most spread and well-developed in CFD

Grid issues

- Stepwise boundary approximation
- Body fitted grids
 - Orthogonal
 - Non-orthogonal
- Block structured grids
- Unstructured grids

Discretization of transport equation

lacktriangleright Consider generalized transport equation for quantity ϕ

$$\frac{\partial \rho \varphi}{\partial t} + div(\rho \varphi \mathbf{v}) = div(\Gamma \nabla \varphi) + q$$

$$\begin{pmatrix} Rate\ of\ local \\ change\ of\ \varphi \end{pmatrix} + \begin{pmatrix} Net\ rate\ of\ advection\ of\ \varphi \\ by\ transport\ field\ \mathbf{v} = \mathbf{v}(\mathbf{x},t) \end{pmatrix} = \begin{pmatrix} Rate\ of\ change\ of \\ \varphi\ due\ to\ diffusion \end{pmatrix} + \begin{pmatrix} Rate\ of\ change\ of \\ \varphi\ due\ to\ sources \end{pmatrix}$$

$$Unsteady\ term\ + \quad Convection\ term\ = \quad Diffusion\ term\ + \quad Source\ term$$

 Integrate over Control Volume Ω and apply Gauss divergence theorem

$$\int_{\Omega} \frac{\partial \rho \varphi}{\partial t} + \int_{S} \rho \varphi \, \mathbf{v} \cdot d\mathbf{S} = \int_{S} \Gamma \nabla \varphi \cdot d\mathbf{S} + \int_{\Omega} q d\Omega$$

$$\begin{pmatrix} \textit{Rate of change} \\ \textit{of } \varphi \textit{ in } \textit{CV} \end{pmatrix} + \begin{pmatrix} \textit{Convective flux of } \varphi \\ \textit{through } \textit{CV boundary} \end{pmatrix} = \begin{pmatrix} \textit{Diffusive flux of } \varphi \\ \textit{through } \textit{CV boundary} \end{pmatrix} + \begin{pmatrix} \textit{Generation of } \varphi \\ \textit{in } \textit{CV by sources} \end{pmatrix}$$

Discretization of transport equation

- Method accuracy is determined by approximation of surface and volume integrals
- If function is assumed to be constant over CV (Control Volume) and CF (CF - Cell Face) we obtain first order of accuracy
- Linear variation of function in CV and CF

$$\varphi(\mathbf{r}) = \varphi_P + (\mathbf{r} - \mathbf{r}_P) \cdot (\nabla \varphi)_P, \quad \varphi_P = \varphi(\mathbf{r}_P),$$

enables to construct the second order approximation schemes. Here P or \mathbf{r}_P is a gravity center of CV/CF

$$\int_{\Omega_P} (\mathbf{r} - \mathbf{r}_P) \cdot (\nabla \varphi)_P = 0$$

Discretization of transport equation

Approximation of volume and surface integrals yields

$$\int_{\Omega} \frac{\partial \rho \varphi}{\partial t} + \int_{S} \rho \varphi \, \mathbf{v} \cdot d\mathbf{S} = \int_{S} \Gamma \nabla \varphi \cdot d\mathbf{S} + \int_{\Omega} q d\Omega$$

$$\frac{\partial}{\partial t} (\rho_P \varphi_P \Omega_P) + \sum_f \varphi_f (\rho_f \mathbf{v}_f \cdot \mathbf{S}_f) = \sum_f \Gamma_f (\nabla \varphi_f \cdot \mathbf{S}_f) + q_P \Omega_P$$

- Required approximation of convective and diffusive fluxes through CF
- We know values of φ at CV centers. How to calculate values at center of CF?

Values at CF interpolation

Simple linear interpolation:

$$\varphi_f = \lambda_{Pf} \varphi_P + (1 - \lambda_{Pf}) \varphi_N$$

$$\lambda = \frac{\left|\mathbf{r}_{f} - \mathbf{r}_{N}\right|}{\left|\mathbf{r}_{f} - \mathbf{r}_{P}\right| + \left|\mathbf{r}_{f} - \mathbf{r}_{N}\right|}$$

▶ 1-st order in general case

Linear interpolation with gradient:

$$\varphi_f = \lambda \left[\varphi_P + (\mathbf{r}_f - \mathbf{r}_P) \cdot (\nabla \varphi)_P \right] + (1 - \lambda) \left[\varphi_F + (\mathbf{r}_f - \mathbf{r}_F) \cdot (\nabla \varphi)_F \right]$$

- ▶ 2-nd order
- ightharpoonup Requires grad(φ) to be known

Gradients approximation

Gauss method:

$$(\nabla \varphi)_P = \frac{1}{\Omega} \int_{S} \varphi \, \mathbf{n} dS \approx \frac{1}{\Omega} \sum_{f} \varphi_f \mathbf{S}_f$$

So S_f and grad (φ) are found iteratively

Least squares method:

$$L(\nabla \varphi)_{P} = \sum_{N} w_{f}^{2} \{ \varphi_{N} - [\varphi_{P} + (\nabla \varphi)_{P} (\mathbf{r}_{N} - \mathbf{r}_{P})] \}^{2} \rightarrow$$

$$\left(\sum_{f} w_{f}^{2} \Delta \mathbf{r}_{f}^{i} \cdot \Delta \mathbf{r}_{f}^{j}\right) (\nabla_{i} \phi)_{P} = \sum_{f} w_{f}^{2} \Delta \mathbf{r}_{f}^{j} (\phi_{S} - \phi_{P})$$

Weight options

$$w_f^2 = 1; w_f^2 = 1/(\mathbf{r}_N - \mathbf{r}_P)^2;$$

 $w_f^2 = \lambda_f S_f / \Omega_P (\mathbf{r}_N - \mathbf{r}_P)^2$

Gradients approximation

Comparison of Gauss and Least squares method on

unstructured grids

Discretization of the diffusive term

Option 1: Using values in fictive points

$$\Gamma_f \left(\nabla \varphi_f \cdot \mathbf{S}_f \right) = \Gamma_f S_f \left(\partial \varphi / \partial \mathbf{n} \right)_f$$

$$(\partial \varphi/\partial \mathbf{n})_f \approx (\varphi_{N'} - \varphi_{P'})/|\mathbf{r}_{N'} - \mathbf{r}_{P'}|$$

$$\varphi_{P'} = \varphi_P + (\nabla \varphi)_P \cdot (\mathbf{r}_{P'} - \mathbf{r}_P),$$

$$\varphi_{N'} = \varphi_N + (\nabla \varphi)_N \cdot (\mathbf{r}_{N'} - \mathbf{r}_N)$$

$$\mathbf{r}_{P'} = (\mathbf{r}_f - \mathbf{r}_P) - \mathbf{n}((\mathbf{r}_f - \mathbf{r}_P) \cdot \mathbf{n}),$$

$$\mathbf{r}_{N'} = (\mathbf{r}_f - \mathbf{r}_N) - \mathbf{n}((\mathbf{r}_f - \mathbf{r}_N) \cdot \mathbf{n})$$

$$\Gamma_{f}\left(\nabla \varphi_{f} \cdot \mathbf{S}_{f}\right) = \Gamma_{f} S_{f} \frac{\varphi_{N} - \varphi_{P}}{\left|\mathbf{r}_{N'} - \mathbf{r}_{P'}\right|} + \Gamma_{f} S_{f} \left[\frac{\left(\nabla \varphi\right)_{N} \cdot \left(\mathbf{r}_{N'} - \mathbf{r}_{N}\right) - \left(\nabla \varphi\right)_{P} \cdot \left(\mathbf{r}_{P'} - \mathbf{r}_{P}\right)}{\left|\mathbf{r}_{N'} - \mathbf{r}_{P'}\right|}\right]$$

Discretization of the diffusive term

Option 2: Interpolation of gradient

$$(\nabla \varphi)_f = \lambda (\nabla \varphi)_P + (1 - \lambda)(\nabla \varphi)_N, \ \lambda = \frac{|\mathbf{r}_f - \mathbf{r}_P|}{|\mathbf{r}_f - \mathbf{r}_P| + |\mathbf{r}_f - \mathbf{r}_N|}$$

$$\nabla \varphi_f \cdot \mathbf{S}_f = \nabla \varphi_f \cdot \Delta + \nabla \varphi_f \cdot (\mathbf{S}_f - \Delta)$$

$$\nabla \varphi_f \cdot \Delta = \nabla \varphi_f \cdot k(\mathbf{r}_N - \mathbf{r}_P), \ k = \frac{\mathbf{S}_f \cdot \mathbf{S}_f}{(\mathbf{r}_N - \mathbf{r}_P) \cdot \mathbf{S}_f}$$

$$(\nabla \varphi)_f \cdot \mathbf{S}_f = k(\varphi_N - \varphi_P) + k \left[(\nabla \varphi)_N \cdot (\mathbf{r}_{Nf} - \mathbf{r}_N) - (\nabla \varphi)_P \cdot (\mathbf{r}_{Pf} - \mathbf{r}_P) \right]$$

$$\mathbf{r}_{Nf} - \mathbf{r}_{N} = (\mathbf{r}_{f} - \mathbf{r}_{P}) - \mathbf{n}((\mathbf{r}_{f} - \mathbf{r}_{P}) \cdot \mathbf{n}),$$

$$\mathbf{r}_{Pf} - \mathbf{r}_{P} = (\mathbf{r}_{f} - \mathbf{r}_{N}) - \mathbf{n}((\mathbf{r}_{f} - \mathbf{r}_{N}) \cdot \mathbf{n})$$

Convective term approximation

$$\int_{S} \rho \varphi \, \mathbf{v} \cdot d\mathbf{S} \approx \sum_{f} \varphi_{f} \left(\rho_{f} \mathbf{v}_{f} \cdot \mathbf{S}_{f} \right)$$

- The role of the convection differencing scheme is to determine the value of φ_f at the CF from the values in the CV centers
- lacktriangle The main problem is calculation of ϕ_f at CF's and its convective flux across CF

Convective term approximation: CD and UD schemes

Central Difference (CD) scheme

$$\varphi_{f}(\rho \mathbf{v} \cdot \mathbf{S})_{f} = \lambda \varphi_{P}(\rho \mathbf{v} \cdot \mathbf{S})_{f} + (1 - \lambda)\varphi_{N}(\rho \mathbf{v} \cdot \mathbf{S})_{f}$$

$$\downarrow \mathbf{r}_{f} - \mathbf{r}_{P}$$

$$\downarrow \mathbf{r}_{f} - \mathbf{r}_{P}$$

$$\lambda = \frac{\left|\mathbf{r}_{f} - \mathbf{r}_{P}\right|}{\left|\mathbf{r}_{f} - \mathbf{r}_{P}\right| + \left|\mathbf{r}_{f} - \mathbf{r}_{N}\right|}$$

Upwind Difference (UD) scheme

$$\varphi_f(\rho \mathbf{v} \cdot \mathbf{S})_f = \begin{cases} \varphi_P(\rho \mathbf{v} \cdot \mathbf{S})_f, & (\mathbf{v} \cdot \mathbf{S}) \ge 0 \\ \varphi_N(\rho \mathbf{v} \cdot \mathbf{S})_f, & (\mathbf{v} \cdot \mathbf{S}) < 0 \end{cases}$$

or
$$\varphi_f(\rho \mathbf{v} \cdot \mathbf{S})_f = \varphi_P m_f^+ + \varphi_N m_f^-$$

where $m_f^+ = \max(0, (\rho \mathbf{v} \cdot \mathbf{S})_f), m_f^- = \min(0, (\rho \mathbf{v} \cdot \mathbf{S})_f)$

Convective term approximation: UD and CD scheme features

Advection of stepwise profile

Properties of discretization scheme

Conservativeness

- To ensure conservation of φ for the whole solution domain the flux of φ leaving a CV across a certain face must be equal to the flux of φ entering the adjacent CV through the same face adjacent CV through the same face.
- To achieve this the flux through a common face must be represented in a consistent manner (by one and the same expression) in adjacent CV's.

Boundedness

In the absence of sources the internal nodal values of φ should be bounded by its boundary values.

Transportiveness

No influence of downstream nodal values of φ in absence of diffusion

Convective term approximation: Comparison of CD and UD schemes

- CD scheme
 - Conservative
 - Conditionally bounded
 - Not transportive
 - Has 2-nd order of accuracy
 - May generate oscillations
- ▶ UD scheme has 1-nd order of accuracy
 - Conservative
 - Bounded
 - Transportive
 - Has 1-nd order of accuracy
 - Smooths the solution
- How to combine best properties of these scheme?

Convective term approximation: Blended Differencing Scheme

Linear combination of CD and UD yields

$$\varphi_f (\rho \mathbf{v} \cdot \mathbf{S})_f = (\varphi_f)_{UD} (\rho \mathbf{v} \cdot \mathbf{S})_f + \widetilde{\gamma} [(\varphi_f)_{CD} - (\varphi_f)_{UD} (\rho \mathbf{v} \cdot \mathbf{S})_f = (\varphi_f)_{UD} (\rho \mathbf{v} \cdot \mathbf{S})_f = (\varphi_f)_{UD} (\varphi_f)$$

- \nearrow is switcher between UD and CD.
- $\widetilde{\gamma} = 0 \implies UD,$ $\widetilde{\gamma} = 1 \implies CD$
- ullet $ar{\gamma}$ determines how much numerical diffusion will be introduced
- \triangleright Different functions γ corresponds to different schemes
- Rewrite in more common form

$$\varphi_f(\rho \mathbf{v} \cdot \mathbf{S})_f = \left[\varphi_P + \frac{\psi}{2} (\varphi_N - \varphi_P)\right] (\rho \mathbf{v} \cdot \mathbf{S})_f$$

Convective term approximation: 2-nd order Linear Upwind (LUD) scheme

lacktriangle Linear extrapolation of ϕ from upstream CV center yields

$$\varphi_f(\rho \mathbf{v} \cdot \mathbf{S})_f = \varphi_f^+ m_f^+ + \varphi_f^+ m_f^-$$

$$egin{aligned} oldsymbol{arphi}_f^+ &= oldsymbol{arphi}_P + \left(\mathbf{r}_f - \mathbf{r}_P \right) \cdot \left(
abla oldsymbol{arphi}_P
ight) \ oldsymbol{arphi}_f^- &= oldsymbol{arphi}_N + \left(\mathbf{r}_f - \mathbf{r}_N \right) \cdot \left(
abla oldsymbol{arphi}_N
ight) \end{aligned}$$

This scheme can be considered as 2-nd order correction for UD

Convective term approximation: LUD features

- LUD properties
 - Conservative
 - Conditionally bounded
 - Transportive
 - Has 2-nd order of accuracy
 - May generate oscillations
- For constant γ effect of such combination is restricted by Godunov theorem: Linear numerical schemes, having the property of not generating new extrema (monotone scheme), can be at most first-order accurate.

Monotonic and oscillating schemes

- Linear schemes produce either oscillation or smooths the solution
- There is no monotonic scheme of 2-nd order
- Combining good properties of schemes in non-Linear manner
- Flux limiter is required

$$\varphi_f (\rho \mathbf{v} \cdot \mathbf{S})_f = \left[\varphi_P + \frac{\psi}{2} (\varphi_N - \varphi_P) \right] (\rho \mathbf{v} \cdot \mathbf{S})_f$$

- UD scheme is the most stable scheme (no wiggles)
- CD and LUD have higher order accuracy but give rise wiggles under certain conditions
- Our aim is to find a convection scheme with higher-order accuracy but without wiggles
- The desirable property for a stable, non-oscillatory, higher order scheme is monotonicity preserving
- For scheme to preserve monotonicity
 - It must not create local extrema
 - The value of an existing local minimum must not decrease, and value of local maximum must not increase
- Monotonicity preserving schemes do not create new undershoots and overshoots

Consider the discrete data set shown in the figure

The total variation of this data is

$$TV(\varphi) = |\varphi_2 - \varphi_1| + |\varphi_3 - \varphi_2| + |\varphi_4 - \varphi_3| + |\varphi_5 - \varphi_4| = |\varphi_3 - \varphi_1| + |\varphi_5 - \varphi_3|$$

For monotonicity TV must not increase with time

- In other words TV must diminish in time
- Hence, the term Total Variation Diminishing or TVD
- Originally TVD was developed for time-dependent flows
- ▶ For TVD:

$$TV(\varphi^{n+1}) \le TV(\varphi^n)$$

Let

$$W$$
 W P e E

$$\gamma_f = \frac{\left(\partial \varphi/\partial x\right)_{fw}}{\left(\partial \varphi/\partial x\right)_{fe}} = \frac{(\varphi_W - \varphi_P)/(x_W - x_P)}{(\varphi_P - \varphi_E)/(x_P - x_E)} - \text{ratio of upwind gradient to downwind gradient}$$

$$\varphi_f(\rho \mathbf{v} \cdot \mathbf{S})_f = \left[\varphi_P + \frac{\psi(\gamma_f)}{2}(\varphi_N - \varphi_P)\right](\rho \mathbf{v} \cdot \mathbf{S})_f$$

- Necessary and sufficient condition for scheme to be TVD:
 - For $0 < r < 1 \psi(r) \le 2r$
 - For $r \ge 1 \ \psi(r) \le 2$

- ▶ UD scheme is TVD
- LUD scheme isn't TVD for r>2
- CD scheme isn't TVD for r<0.5</p>
- QUICK scheme isn't TVD for r<3/7 and r>5

- ▶ For second order accuracy flux limiter function should pass through (1,1)
- Range of possible second-order schemes is bounded by the CD and LUD schemes:
 - For 0 < r < 1 $r \le \psi(r) \le 1$
 - For $r \ge 1.1 \le \psi(r) \le r$
- Symmetry property for limiter function

$$\psi(r)/r = \psi(1/r)$$

ensures that backward and forward facing gradients are treated in the same fashion

Name	Limiter function
Van Leer	$\frac{r+ r }{1+r}$
Van Albada	$\frac{r+r^2}{1+r^2}$
Min-Mod	$\psi(r) = \begin{cases} \min(r,1) & \text{if } r > 0 \\ 0 & \text{if } r \le 0 \end{cases}$
	$0 if r \le 0$
SUPERBEE	$\max[0,\min(2r,1),\min(r,2)]$
Sweby	$\max[0,\min(\beta r,1),\min(r,\beta)]$
QUICK	$\max[0, \min(2r, (3+r)/4, 2)]$
UMIST	$\max[0, \min(2r, (1+3r)/4, (3+r)/4, 2)]$

Source

Van Leer (1974)

Van Albada et al. (1982)

Roe (1985)

Roe (1985)

Sweby (1984)

Leonard (1988)

Lien and Leschziner (1993)

Discretization of the convective term TVD approach in case of unstructured grids

$$\varphi_{f}(\rho \mathbf{v} \cdot \mathbf{S})_{f} \approx m_{f}^{+} \left[\varphi_{P} + \frac{d_{f}(\gamma_{f+})}{2} (\varphi_{N} - \varphi_{P}) \right] + m_{f}^{-} \left[\varphi_{N} + \frac{d_{f}(\gamma_{f-})}{2} (\varphi_{P} - \varphi_{N}) \right]$$

$$\gamma_f = (\partial \varphi / \partial \xi)_{f^*} / (\partial \varphi / \partial \xi)_f$$

$$\left(\partial \varphi/\partial \xi\right)_f pprox \left(\varphi_N - \varphi_P\right) / \left|\mathbf{r}_N - \mathbf{r}_P\right|$$

Unsteady term discretization

Integrate transport equation over time

$$\int_{t}^{t+\Delta t} \left(\frac{\partial}{\partial t} \int_{\Omega_{P}} \rho \varphi dV + \int_{S} \rho \mathbf{v}_{f} \varphi_{f} \cdot \mathbf{n} dS - \int_{S} \Gamma_{f} (\nabla \varphi)_{f} dS \right) dt = \int_{t}^{t+\Delta t} \left(\int_{\Omega_{P}} q_{P} dV \right) dt$$

Rewrite in semidiscretized form

$$\int_{t}^{t+\Delta t} \left[\left(\frac{\partial \rho \varphi}{\partial t} \right)_{P} \Omega_{P} \right] dt = \int_{t}^{t+\Delta t} \left[\sum_{f} \Gamma_{f} \left(\nabla \varphi_{f} \cdot \mathbf{S}_{f} \right) - \sum_{f} \varphi_{f} \left(\rho \mathbf{v}_{f} \cdot \mathbf{S}_{f} \right) + q_{P} \Omega_{P} \right] dt$$

 $L(\varphi,t)$

Time derivative approximation

$$\left(\frac{\partial \rho \varphi}{\partial t}\right)_{-} \approx \frac{\left(\rho_{P} \varphi_{P}\right)^{n+1} - \left(\rho_{P} \varphi_{P}\right)^{n}}{\Delta t}$$

Unsteady term discretization: Explicit scheme

▶ 1. Explicit scheme:

$$\int_{t}^{t+\Delta t} \varphi(t)dt \approx \varphi^{n} \Delta t$$

$$\frac{\left(\rho_{P} \varphi_{P}\right)^{n+1} - \left(\rho_{P} \varphi_{P}\right)^{n}}{\Delta t} \Omega_{P} = L(\varphi^{n}, t)$$

$$\frac{\left(\rho_{P}\varphi_{P}\right)^{n+1}-\left(\rho_{P}\varphi_{P}\right)^{n}}{\Delta t}\Omega_{P}=\left[\sum_{f}\Gamma_{f}\left(\nabla\varphi_{f}\cdot\mathbf{S}_{f}\right)-\sum_{f}\varphi_{f}\left(\rho\mathbf{v}_{f}\cdot\mathbf{S}_{f}\right)+q_{P}\Omega_{P}\right]^{n}$$

Conditionally stable

$$CFL = \max_{f} |\mathbf{v}|_{f} \frac{\Delta t}{\min_{P,N} |\mathbf{r}_{N} - \mathbf{r}_{P}|} < 1$$

- Has 1-st order of accuracy in time
- Easy for implementation

Unsteady term discretization: Implicit scheme

2. Implicit scheme:

$$\int_{t}^{t+\Delta t} \varphi(t)dt \approx \varphi^{n+1} \Delta t$$

$$\frac{\left(\rho_{P} \varphi_{P}\right)^{n+1} - \left(\rho_{P} \varphi_{P}\right)^{n}}{\Delta t} \Omega_{P} = L(\varphi^{n+1}, t + \Delta t)$$

$$\frac{\left(\rho_{P}\varphi_{P}\right)^{n+1}-\left(\rho_{P}\varphi_{P}\right)^{n}}{\Delta t}\Omega_{P}=\left[\sum_{f}\Gamma_{f}\left(\nabla\varphi_{f}\cdot\mathbf{S}_{f}\right)-\sum_{f}\varphi_{f}\left(\rho\mathbf{v}_{f}\cdot\mathbf{S}_{f}\right)+q_{P}\Omega_{P}\right]^{n+1}$$

- Unconditionally stable and bounded
- ▶ 1-st order of accuracy in time
- RHS-term is non-linear in general case => requires internal iterations

Unsteady term discretization: Crank-Nicholson scheme

3. Crank-Nicholson scheme :

$$\int_{t}^{t+\Delta t} \varphi(t)dt \approx \frac{1}{2} \left(\varphi^{n+1} + \varphi^{n} \right) \Delta t$$

$$\frac{\left(\rho_{P} \varphi_{P} \right)^{n+1} - \left(\rho_{P} \varphi_{P} \right)^{n}}{\Delta t} \Omega_{P} = \frac{L(\varphi^{n}, t) + L(\varphi^{n+1}, t + \Delta t)}{2}$$

$$\begin{split} \frac{\left(\rho_{P}\varphi_{P}\right)^{n+1}-\left(\rho_{P}\varphi_{P}\right)^{n}}{\Delta t}\Omega_{P} &= \frac{1}{2}\Bigg[\sum_{f}\Gamma_{f}\Big(\nabla\varphi_{f}\cdot\mathbf{S}_{f}\Big)-\sum_{f}\varphi_{f}\Big(\rho\mathbf{v}_{f}\cdot\mathbf{S}_{f}\Big)+q_{P}\Omega_{P}\Bigg]^{n}+\\ &\frac{1}{2}\Bigg[\sum_{f}\Gamma_{f}\Big(\nabla\varphi_{f}\cdot\mathbf{S}_{f}\Big)-\sum_{f}\varphi_{f}\Big(\rho\mathbf{v}_{f}\cdot\mathbf{S}_{f}\Big)+q_{P}\Omega_{P}\Bigg]^{n+1} \end{split}$$

- Unconditionally stable
- Has 2-nd order of accuracy in time
- RHS-term is non-linear in general case => requires internal iterations

Discretization of the source term

Simplest way

$$\int_{\Omega} q d\Omega = q_P \Omega_P$$

However if q depends on φ and (semi)implicit scheme is used it is beneficial to linearize it making the scheme more "implicit" and enforcing diagonal domination of resulting SLAE

$$\int_{\Omega_p} q(\varphi) d\Omega = \int_{\Omega_p} [q_0 + \varphi q_1 + q_2(\varphi)] d\Omega = [q_0(\varphi) + \varphi q_1(\varphi)]^{n+1} \Omega_P + q_2(\varphi)^n \Omega_P$$

Cell properties calculation

- In 3D general case of unstructured grid CV's are convex polyhedrons
 - CF square

$$S_f = \frac{1}{2} \sum_{i=3}^{Nv} \left[\left(\mathbf{r}_{v_{i-1}} - \mathbf{r}_{v_1} \right) \times \left(\mathbf{r}_{v_i} - \mathbf{r}_{v_1} \right) \right]$$

CF center (center of gravity)

$$\mathbf{r}_{f} = \frac{1}{6S_{f}} \sum_{i=3}^{Nv} \left[\left(\mathbf{r}_{v_{i-1}} - \mathbf{r}_{v_{1}} \right) \times \left(\mathbf{r}_{v_{i}} - \mathbf{r}_{v_{1}} \right) \right] \left(\mathbf{r}_{v_{i}} + \mathbf{r}_{v_{i-1}} + \mathbf{r}_{v_{i-2}} \right)$$

CV volume

$$\Omega = \frac{1}{3} \sum_{f} (\mathbf{r}_f \cdot \mathbf{n}_f) S_f$$

CV center (center of gravity)

$$\int_{\Omega} (\mathbf{r} - \mathbf{r}_P) d\Omega = 0$$

Boundary conditions Boundary cells

- ▶ There are two ways of defining CV's in unstructured grids:
 - Cell-centerd CV
 - Vertex centered CV

We consider cell-centered cell volumes

Boundary conditions

- Prescribed value φ_b :
 - Diffusive flux

$$\Gamma_b \left(\nabla \varphi_b \cdot \mathbf{S}_b \right) = \Gamma_b S_b \left(\partial \varphi / \partial \mathbf{n} \right)_b = \Gamma_b S_b \frac{\varphi_b - \varphi_P}{|\mathbf{r}_b - \mathbf{r}_{P'}|} - \Gamma_b S_b \left[\frac{(\nabla \varphi)_P \cdot (\mathbf{r}_{P'} - \mathbf{r}_P)}{|\mathbf{r}_b - \mathbf{r}_{P'}|} \right]$$

Convective flux

$$\varphi_b(\mathbf{v}\cdot\mathbf{S})_b$$

- Prescribed gradient grad(φ)_b:
 - $ightharpoonup \phi$ value is computed as

$$\varphi_b = \varphi_P + (\mathbf{r}_b - \mathbf{r}_P) \cdot (\nabla \varphi)_b$$

- Convective flux $\varphi_b(\mathbf{v}\cdot\mathbf{S})_b$

SLAE formation

- Gathering approximations for the all terms can produce nonlinear system of equations. Internal iterations or differed correction approach are able to resolve it
- ▶ To enforce convergence rate and stability we need to make method as "implicit" as possible. Non-linear terms and accuracy correction terms are in the right part

$$\left[\frac{\rho_{P}\Omega}{\tau} + \sum_{f} \left(m_{f}^{+} + \frac{\Gamma_{f}S_{f}}{|\mathbf{r}_{F'} - \mathbf{r}_{P'}|}\right)\right]^{m} \varphi_{P}^{m+1} + \sum_{f} \left(m_{f}^{-} - \frac{\Gamma_{f}S_{f}}{|\mathbf{r}_{F'} - \mathbf{r}_{P'}|}\right)^{m} \varphi_{F}^{m+1} = \left(\frac{\rho_{P}\Omega\varphi_{P}}{\tau}\right)^{old} + Q_{expl}^{m}$$

$$Q_{expl} = \left[m_f^+ \frac{d_f(\gamma_{f+})}{2} - m_f^- \frac{d_f(\gamma_{f-})}{2} \right] (\varphi_P - \varphi_F) - \Gamma_f S_f \left[\frac{(\nabla \varphi)_F \cdot (\mathbf{r}_{F'} - \mathbf{r}_F) - (\nabla \varphi)_P \cdot (\mathbf{r}_{P'} - \mathbf{r}_P)}{|\mathbf{r}_{F'} - \mathbf{r}_{P'}|} \right] + (q)_P \Omega$$

Add $\left[\varphi_P^{m+1} - \varphi_P^m\right] \sum_f \left(-c_f^m\right)$ to left part to enforce diagonal domination

SLAE formation

We obtain SLAE of the form

$$A_{P}^{m}\varphi_{P}^{m+1} + \sum_{f} A_{F}^{m}\varphi_{F}^{m+1} = Q_{P}^{m}$$

with coefficients

$$\begin{split} A_{P} &= \frac{\rho_{P}\Omega}{\tau} - \sum_{f} A_{F} \quad A_{F} = m_{f}^{-} + \frac{\Gamma_{f}S_{f}}{\left|\mathbf{r}_{F'} - \mathbf{r}_{P'}\right|} \\ Q_{P}^{m} &= \left(\frac{\rho_{P}\Omega\varphi_{P}}{\tau}\right)^{old} + Q_{expl}^{m} - \varphi_{P}^{m}\sum_{f} \left(m_{f}\right)^{m} \end{split}$$

 Diagonal dominant sparse matrix can be solved by iteration methods

Implementation issues Performance improvement

- Representation of the grid as graph
- There is no need to store two copies of face objects (for back and front CV)
- Loops over CFs instead of loops over CVs while calculating CF fluxes prevents double calculation of the flux for neighboring cells
- All geometrical and prescribed quantities in SLAE coefficients should be precalculated
- Use methods for sparse SLAE (in particular those which support graph representation of the grid and variables)
- ▶ Time step reduction is better than increase of number of internal iterations while solving time-dependent problems

