DAILY ASSESSMENT FORMAT

Date:	27-05-2020	Name:	Sahana S R
Course:	Digital signal processing	USN:	4al17ec083
Topic:	•Fourier Transform	Semester	6 th sem
	•FFT	& Section:	B sec
	•FFT Fast Fourier transform matlab		
	•FIR and IIR Filter		
	•Study and analysis FIR and IIR using		
	FDA tool in matlab		
	•Introductions to WT		
	●CWT and DWT		
	 Implementation of signal filtering 		
	signal using WT in matlab		
	•Short time Fourier transform and		
	spectogram		
	Welch's method and windowing		
	 ECG signal analysis using matlab 		
Github	sahanasr-course		
Repository:			

Report – Report can be typed or hand written for up to two pages.

A direct form discrete-time FIR filter of order N. The top part is an N-stage delay line with N+1 taps. Each unit delay is a z^{-1} operator in Z-transform notation.

A lattice-form discrete-time FIR filter of order N. Each unit delay is a z^{-1} operator in Z-transform notation.

For a causal discrete-time FIR filter of order *N*, each value of the output sequence is a weighted sum of the most recent input values:

$$egin{aligned} y[n] &= b_0 x[n] + b_1 x[n-1] + \dots + b_N \ &= \sum_{i=0}^N b_i \cdot x[n-i], \end{aligned}$$

A function $\psi \in L^2(\mathbb{R})$ is called an **orthonormal** wavelet if it can be used to define a Hilbert basis, that is a complete orthonormal system, for the Hilbert space $L^2(\mathbb{R})$ of square integrable functions.

The Hilbert basis is constructed as the family of functions $\{\psi_{jk}\colon j,\,k\in\mathbb{Z}\}$ by means of dyadic translations and dilations of ψ ,

$$\psi_{jk}(x)=2^{rac{j}{2}}\psi\left(2^{j}x-k
ight)$$

for integers $j, k \in \mathbb{Z}$.

If under the standard inner product on $L^2(\mathbb{R})$,

$$\langle f,g
angle = \int_{-\infty}^{\infty} f(x) \overline{g(x)} dx$$

this family is orthonormal, it is an orthonormal system:

$$egin{aligned} \langle \psi_{jk}, \psi_{lm}
angle &= \int_{-\infty}^{\infty} \psi_{jk}(x) \overline{\psi_{lm}(x)} dx \ &= \delta_{jl} \delta_{km} \end{aligned}$$

where δ_{jl} is the Kronecker delta.

