留数定理と級数求和

Theorem. $z \in \mathbb{C}$ とする. 有理関数 $R(z) = \frac{P(z)}{Q(z)}$ が、 $\deg P \leq \deg Q - 2$, $Q(m) \neq 0$ $(m \in \mathbb{Z})$ をみたすとき、次の (1)、(2) が成り立つ.

(1) ξ を R(z) の極とするとき

$$\sum_{n=-\infty}^{\infty} R(n) = -\sum_{\xi} \operatorname{Res} \left(R(z) \cdot \pi \cot \pi z; \xi \right)$$

が成り立つ.

(2) ξ を R(z) の極とするとき

$$\sum_{n=-\infty}^{\infty} (-1)^n R(n) = -\sum_{\xi} \operatorname{Res} \left(R(z) \cdot \pi \csc \pi z; \xi \right)$$

が成り立つ.

Proof. (1), (2) は同様に示すことができる.

積分路 $\Gamma_m \ (m \in \mathbb{N})$ を

$$\Gamma_m = \left\{ z \in \mathbb{C} \mid |\operatorname{Re} z| = m + \frac{1}{2}, |\operatorname{Im} z| = m + \frac{1}{2} \right\}$$

とする.

(1) $s(z) = \pi \cot \pi z$ とすると, $z = k \in \mathbb{Z}$ は 1 位の極で留数 1 をもつ. また, Γ_m が R の極をすべて含むようにとると, 留数定理より

$$\frac{1}{2\pi i} \int_{\Gamma_m} R(z) s(z) dz = \sum_{n=-m}^m R(n) + \sum_{\xi} \operatorname{Res} \left(R(z) s(z); \xi \right)$$

が成り立つ. ここで

$$|R(z)| \le \frac{C}{m^2}, |s(z)| \le 2\pi \ (z \in \Gamma_m)$$

となるから, Γ_m の周長が 4(2m+1) であることを踏まえると左辺の積分は m^{-1} の定数倍で上から評価され, $m\to\infty$ のとき 0 に近づく. よって

$$\sum_{n=-\infty}^{\infty} R(n) + \sum_{\xi} \operatorname{Res}\left(R(z)s(z);\xi\right) = 0$$

となる.

(2) (1) と同様に考える.

 $s(z)=\pi\csc\pi z$ とすると, $z=k\in\mathbb{Z}$ は 1 位の極で留数 $(-1)^k$ をもつ. また, Γ_m が R の極をすべて含むようにとると, 留数定理より

$$\frac{1}{2\pi i} \int_{\Gamma_m} R(z) s(z) \, dz = \sum_{n=-m}^m (-1)^n R(n) + \sum_{\xi} \mathrm{Res} \left(R(z) s(z); \xi \right)$$

が成り立つ. ここで

$$|R(z)| \le \frac{C}{m^2}, |s(z)| \le 2\pi \ (z \in \Gamma_m)$$

となるから, Γ_m の周長が 4(2m+1) であることを踏まえると左辺の積分は m^{-1} の定数倍で上から評価され, $m\to\infty$ のとき 0 に近づく. よって

$$\sum_{n=-\infty}^{\infty} (-1)^n R(n) + \sum_{\xi} \operatorname{Res} (R(z)s(z); \xi) = 0$$

となる.

以上により,定理が示された. ■