Question 1

What is the optimal value of alpha for ridge and lasso regression? What will be the changes in the model if you choose double the value of alpha for both ridge and lasso? What will be the most important predictor variables after the change is implemented?

Ans.

Ridge: Optimal value of alpha: 0.3

Lasso: Optimal value of alpha: 0.01

If we double the value of alpha, the complexity of the model will reduce which may over simplify the model and it will not perform well for train or test data and may not capture the important trends. Specifically for this case, when I doubled the alpha for both ridge and lasso regression and checked the R2 score, there was a slight decline in accuracy for both train and test data.

The most important variable after the changes has been implemented for ridge regression are as follows:-

- 1. MSZoning FV
- 2. MSZoning_RL
- 3. Neighborhood_Crawfor
- 4. MSZoning RH
- 5. MSZoning_RM
- 6. SaleCondition_Partial
- 7. Neighborhood_StoneBr
- 8. GrLivArea
- SaleCondition_Normal
- 10. Exterior1st_BrkFace

The most important variable after the changes has been implemented for lasso regression are as follows:-

- 1. GrLivArea
- 2. OverallQual
- 3. OverallCond
- 4. TotalBsmtSF
- 5. BsmtFinSF1
- 6. GarageArea
- 7. Fireplaces
- 8. LotArea
- 9. LotArea
- 10. LotFrontage

Question 2

You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

Ans:

It is important to regularize coefficients and improve the prediction accuracy also with the decrease in variance, and making the model interpretably.

Ridge regression, uses a tuning parameter called lambda as the penalty is square of magnitude of coefficients which is identified by cross validation. Residual sum or squares should be small by using the penalty. The penalty is lambda times sum of squares of the coefficients, hence the coefficients that have greater values gets penalized. As we increase the value of lambda the variance in model is dropped and bias remains constant. Ridge regression includes all variables in final model unlike Lasso Regression.

Lasso regression, uses a tuning parameter called lambda as the penalty is absolute value of magnitude of coefficients which is identified by cross validation. As the lambda value increases Lasso shrinks the coefficient towards zero and it make the variables exactly equal to 0. Lasso also does variable selection. When lambda value is small it performs simple linear regression and as lambda value increases, shrinkage takes place and variables with 0 value are neglected by the model.

I chose to apply the Lasso regression because the performance of both ridge and lasso are quite similar in terms of R2_score. Lasso has some advantages over ridge like feature selection and ease of understanding due to less number of features. Hence, I chose Lasso.

Question 3

After building the model, you realised that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

Those 5 most important predictor variables that will be excluded are :-

- 1. GrLivArea
- 2. OverallQual
- 3. OverallCond
- 4. TotalBsmtSF
- 5. GarageArea

I removed the above from the dataset and create the model again using Lasso, now the top five important features are:

BsmtFinSF1

Fireplaces

LotArea

LotFrontage

BsmtFullBath

Question 4

How can you make sure that a model is robust and generalisable? What are the implications of the same for the accuracy of the model and why?

Ans:

The model should be as simple as possible, though its accuracy will decrease but it will be more robust and generalisable. It can be also understood using the Bias-Variance trade-off. The simpler the model the more the bias but less variance and more generalizable. Its implication in terms of accuracy is that a robust and generalisable model will perform equally well on both training and test data i.e. the accuracy does not change much for training and test data.