ml_study_0902

Self Organizing Map (Kohonen Network)

자기 조직화 지도(Self-Organizing Map, SOM)는 신경 생리학적 시스템을 모델링한 것으로, 입력 패턴에 대해 정확한 정답을 주지 않고 스스로 학습을 하여 클러스터링(clustering) 하는 알고리즘.

- 고차원 데이터 → 저차원 뉴런으로 정렬해서 지도의 형태로 형상화 (차원 축소)
- 데이터 분포에 대한 시각적인 이해가 쉬워짐, 유사한 데이터끼리 지도상에 가깝게 표현 (클러스터링)

입력층(input layer): 입력 벡터를 입력받는 층

경쟁층(competitive layer): 입력 벡터의 특성에 따라 입력 벡터가 한 점으로 클러스터 링 되는 층

가중치(weight): input vector와 node 사이의 입력 가중치

노드(node): 경쟁층에서 입력 벡터들이 서로의 유사성에 의해 모이는 하나의 영역

학습방법

1. Competition

$$D_{ij} = \sum_{i=1}^{n} (W_{ij} - X_i)^2$$

/n: 입력 벡터 크기 W_{ij} : 가중치 테이블에서 i행j열의 값 X_{i} : 입력 벡터의 i번째 값

*가중치: 연결 강도 (0~1 normalized)

- 연결 강도 벡터가 입력 벡터와 얼마나 가까운지 계산 (D ii)
- 가장 가까운 뉴런이 승리하여 새로운 값으로 업데이트

0

$$W_{ij}(new) = W_{ij}(old) + \alpha(X_i - W_{ij}(old))$$

 $igg(W_{ij}(old): 입력 벡터가 들어오기 전 연결 강도 <math>X_i$: 입력 벡터 $W_{ij}(new): 새로운 연결 강도 <math>a:$ 화슈류

2. Cooperation

이전 단계에서 하나의 노드 weight를 업데이트 한 후, 이웃 노드 또한 업데이트 해야 하는데, 어떤 기준으로 업데이트 해야 할까?

• Competition 단계에서 업데이트 된 노드의 이웃 노드를 결정

$$\sigma(t) = \sigma_0 exp(-\frac{t}{\lambda})$$

 σ_0 : 시점 t_0 에서 격자의 너비, λ : 시간 상수, t : 현재 시간 단계

• 결정된 이웃 노드에 대해 weight 업데이트

$$w(t+1) = w(t) + \alpha(t)(x(t) - w(t))$$

New Weights = Old Weights + Learning Rate (Input Vector — Old Weights)

학습 진행시 변화 과정

SOM의 장점

- 이 network 는 backpropagation 모델과는 달리 여러 단계의 피드백이 아닌 단 하나의 전방 패스 (feedforward flow) 를 사용한다.
- 연속적인 학습 가능 ⇒ 입력 데이터의 통계적 분포가 시간에 따라 변하면 자동적으로 적 응하도록 실시간으로 학습 가능함

Example

(X ₁) (X ₂) (X ₃)	Node1: (W _{1,1} :W _{1,2} :W _{1,3})	$W_{1,1} = 0.31$	$W_{1,2} = 0.22$	$W_{1,3} = 0.10$
	Node2: (W ₂₁ :W ₂₂ :W ₂₃)	$W_{2,1} = 0.21$	$W_{2,2} = 0.34$	$W_{2,3} = 0.19$
	Node3: (W _{3.1} :W _{3.2} :W _{3.3})	$W_{3,1} = 0.39$	$W_{3,2} = 0.42$	$W_{3,3} = 0.45$
	Node4: (W _{4,1} :W _{4,2} :W _{4,3})	$W_{4,1} = 0.25$	$W_{4,2} = 0.32$	$W_{4,3} = 0.62$
	Node5: (W _{5,1} ;W _{5,2} ;W _{5,3})	$W_{5,1} = 0.24$	$W_{5,2} = 0.31$	$W_{5,3} = 0.16$
	Node6: (W _{6,1} :W _{6,2} :W _{6,3})	$W_{6,1} = 0.52$	$W_{6,2} = 0.33$	$W_{6,3} = 0.42$
	Node7: (W _{7,1} ;W _{7,2} ;W _{7,3})	$W_{7,1} = 0.31$	$W_{7,2} = 0.22$	$W_{7,3} = 0.10$
	Node8: (W _{8.1} :W _{8.2} :W _{8.3})	$W_{8,1} = 0.12$	$W_{8,2} = 0.41$	$W_{8,3} = 0.19$
	Node9: (W _{9,1} :W _{9,2} :W _{9,3})	$W_{9,1} = 0.34$	$W_{9,2} = 0.40$	$W_{9,3} = 0.51$

• X1 = 0.7, X2 = 0.6, X3 = 0.9 일 경우, 3번째 노드가 가장 가까운 거리의 노드로 결정

 $W_{3,1} = 0.39$

 $W_{3,2} = 0.42$

 $W_{3,3} = 0.45$

Input Vector: $X_1 = 0.7$

 $X_2 = 0.6$

 $X_3 = 0.9$

 $W_{3,1}$: 0.39 + 0.5 (0.7 – 0.39) = 0.545

 $W_{3,2}$: 0.42 + 0.5 (0.6 – 0.42) = 0.51

 $W_{3,3}$: 0.45 + 0.5 (0.9 – 0.45) = 0.675