SERIA 6

Zadanie 1. Zbadać zbieżność jednostajną na przedziale [0, 1] określonych poniżej ciągów funkcyjnych $\{f_n\}$

- (a) $f_n = \frac{1}{1 + (nx 1)^2}$, (b) $f_n(x) = \frac{x^2}{x^2 + (nx 1)^2}$, (c) $f_n(x) = x^n(1 x)$,
- (d) $f_n(x) = nx^n(1-x),$ (e) $f_n(x) = \frac{nx^2}{1+nx}.$

Zadanie 2. Zbadać zbieżność jednostajną na A następujących ciągów $\{f_n\}$:

- (a) $f_n(x) = \operatorname{arctg}\left(\frac{2x}{x^2+n^3}\right), A = \mathbb{R},$
- (b) $f_n(x) = n \ln\left(1 + \frac{x^2}{n}\right), A = \mathbb{R},$ (c) $f_n(x) = \sqrt[2n]{1 + x^{2n}}, A = \mathbb{R},$ (d) $f_n(x) = n(\sqrt[n]{x} 1), A = [1, a].$

Zadanie 3. Niech f będzie dowolną funkcją określoną na odcinku [a,b] i niech $f_n(x) = \frac{\lfloor nf_n(x) \rfloor}{x}$, $x \in [a, b], n \in \mathbb{N}$. Udowodnić, że $f_n \rightrightarrows f$ na [a, b].

Zadanie 4. Załóżmy, że $f: \mathbb{R} \to \mathbb{R}$ ma pochodną f' jednostajnie ciągłą na \mathbb{R} . Wykazać,

$$n\left(f\left(x+\frac{1}{n}\right)-f(x)\right)\to f'(x)$$

jednostajnie na R. Podać przykład wskazujący na to, że założenie jednostajnej ciągłości pochodnej jest istotne.

Zadanie 5. Wykazać, że granicą jednostajnie zbieżnego na \mathbb{R} ciągu wielomianów jest wielomian.