

Sistemas Urbanos Inteligentes

Control de agentes basado en aprendizaje

Hans Löbel

https://www.youtube.com/watch?v=P7xx9uH2i7w

Para esto, utilizaremos aprendizaje reforzado

Aprendizaje reforzado es:

- Formalismo matemático para la toma de decisiones basada en aprendizaje
- Enforque para aprender a tomar decisiones y controlar agentes basado en la experiencia

- Acciones: movimientos musculares
- Observaciones (estado): vista, olfato, tacto, oído, gusto
- Recompensa: comida

- Acciones: qué y cuánto comprar
- Observaciones (estado): niveles de inventario
- Recompensa: ganancia

Dificultad y técnicas a usar tienen que ver principalmente con el nivel de estructura del ambiente/entorno

Entorno altamente estructurados: *feature engineering* para caracterizar el estado del mundo. Problema se remite "solo" a aprender a elegir la mejor acción dado el estado.

En entornos no estructurados: además de aprender a elegir la mejor acción, es necesario aprender a percibir el mundo.

Reinforcement Learning

Deep Reinforcement Learning

En un entorno urbano, generalmente carecemos de estructura

sensorimotor loop Action (green)

Antes de empezar con las técnicas, un poco de notación...

La recompensa actúa como una especia de supervisión

which action is better or worse?

 $r(\mathbf{s}, \mathbf{a}, \mathbf{s}')$: reward function \longrightarrow tells us which states and actions are better

high reward

low reward

s, a, r(s, a, s') y p(s'|s, a) definen un proceso de decisión markoviano (MDP)

En (D)RL, buscamos la política que maximiza la recompensa esperada

$$\underbrace{p_{\theta}(\mathbf{s}_1, \mathbf{a}_1, \dots, \mathbf{s}_T, \mathbf{a}_T)}_{p_{\theta}(\tau)} = p(\mathbf{s}_1) \prod_{t=1}^{T} \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$$

$$\theta^* = \arg \max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}_{t+1}) \right]$$

Todos los algoritmos siguen la misma estructura básica

Por ejemplo, si queremos optimizar directamente la política...

Este último esquema no es el único que se puede tomar

Este último esquema no es el único que se puede tomar

$$\pi$$
:

$$max_{\pi} \mathbb{E}\left[\sum_{t=0}^{H} \gamma^{t} R(S_{t}, A_{t}, S_{t+1}) | \pi\right]$$

Esta idea se puede formalizar a través de la función de valor

$$V^*(s) = \max_{\pi} \mathbb{E} \left[\sum_{t=0}^{H} \gamma^t R(s_t, a_t, s_{t+1}) \mid \pi, s_0 = s \right]$$

 $V^*(s)$ = suma de las recompensas con descuento al empezar en el estado s y actuar óptimamente

Supongamos acciones siempre exitosas, $\gamma=1, H=100$

$$V^*(4,3) =$$

$$V^*(3,3) =$$

$$V^*(2,3) =$$

$$V^*(1,1) =$$

$$V^*(4,2) =$$

Esta idea se puede formalizar a través de la función de valor

$$V^*(s) = \max_{\pi} \mathbb{E} \left[\sum_{t=0}^{H} \gamma^t R(s_t, a_t, s_{t+1}) \mid \pi, s_0 = s \right]$$

 $V^*(s)$ = suma de las recompensas con descuento al empezar en el estado s y actuar óptimamente

Supongamos acciones siempre exitosas, $\gamma = 0.9$, H = 100

$$V^*(4,3) =$$

$$V^*(3,3) =$$

$$V^*(2,3) =$$

$$V^*(1,1) =$$

$$V^*(4,2) =$$

Esta idea se puede formalizar a través de la función de valor

$$V^*(s) = \max_{\pi} \mathbb{E} \left[\sum_{t=0}^{H} \gamma^t R(s_t, a_t, s_{t+1}) \mid \pi, s_0 = s \right]$$

 $V^*(s)$ = suma de las recompensas con descuento al empezar en el estado s y actuar óptimamente

Supongamos acciones con P = 0.8, $\gamma = 0.9$, H = 100

$$V^*(4,3) =$$

$$V^*(3,3) =$$

$$V^*(2,3) =$$

$$V^*(1,1) =$$

$$V^*(4,2) =$$

$$V_0^*(s)$$
 = optimal value for state s when H=0

$$V_0^*(s)$$
 = optimal value for state s when H=0

$$V_0^*(s) = 0 \quad \forall s$$

$$V_0^*(s)$$
 = optimal value for state s when H=0

$$V_0^*(s) = 0 \quad \forall s$$

 $V_1^*(s)$ = optimal value for state s when H=1

 $V_0^*(s)$ = optimal value for state s when H=0

$$V_0^*(s) = 0 \quad \forall s$$

 $V_1^*(s)$ = optimal value for state s when H=1

$$V_1^*(s) = \max_a \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_0^*(s'))$$

 $V_0^*(s)$ = optimal value for state s when H=0

$$V_0^*(s) = 0 \quad \forall s$$

 $V_1^*(s)$ = optimal value for state s when H=1

$$V_1^*(s) = \max_a \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma V_0^*(s'))$$

 $V_2^*(s)$ = optimal value for state s when H=2

$$V_2^*(s) = \max_a \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_1^*(s'))$$

 $V_0^*(s)$ = optimal value for state s when H=0

$$V_0^*(s) = 0 \quad \forall s$$

 $V_1^*(s)$ = optimal value for state s when H=1

$$V_1^*(s) = \max_a \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_0^*(s'))$$

 $V_2^*(s)$ = optimal value for state s when H=2

$$V_2^*(s) = \max_a \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_1^*(s'))$$

 $V_k^*(s)$ = optimal value for state s when H = k

$$V_k^*(s) = \max_a \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_{k-1}^*(s'))$$

Este simple algoritmo es conocido como Value Iteration

Start with $V_0^*(s) = 0$ for all s.

For k = 1, ..., H:

For all states s in S:

$$V_k^*(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) \left(R(s, a, s') + \gamma V_{k-1}^*(s') \right)$$

$$\pi_k^*(s) \leftarrow \arg\max_{a} \sum_{s'} P(s'|s, a) \left(R(s, a, s') + \gamma V_{k-1}^*(s') \right)$$

$$V_0(s) \leftarrow 0$$

$$k = 0$$

0.00	0.00	0.00	0.00	
0.00		0.00	0.00	
0.00	0.00	0.00	0.00	
VALUES AFTER 0 ITERATIONS				

$$V_1(s) \leftarrow \max_{a} \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma V_0(s'))$$

$$k = 0$$

$$V_2(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_1(s'))$$

$$k = 1$$

$$V_2(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_1(s'))$$

$$k = 2$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma V_k(s'))$$

$$k = 3$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma V_k(s'))$$

$$k = 4$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_k(s'))$$

$$k = 5$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_k(s'))$$

$$k = 12$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_k(s'))$$

$$k = 100$$

Sistemas Urbanos Inteligentes

Control de agentes basado en aprendizaje

Hans Löbel