Controle de Prioridade

Versão 2020

INTRODUÇÃO

Esta experiência tem como principal objetivo desenvolver um circuito digital que aciona relógios com frequências diferentes conforme a prioridade dos eventos do ambiente.

OBJETIVO

Ao fim desta experiência, os seguintes tópicos devem ser conhecidos pelos alunos:

• Desenvolver interfaces de um circuito digital com o meio externo.

1. PARTE EXPERIMENTAL

A maioria dos circuitos digitais são acionados por eventos externos. A cada tipo de evento reconhecido, o circuito digital executa uma função específica. Algumas funções são mais prioritárias que outras e assim, o circuito digital deve ser implementado para tratar adequadamente esses eventos.

Uma aplicação desse tipo de circuito é o acionamento de alarmes sonoros diferentes de acordo com a sua prioridade. Sistemas de controle de reatores nucleares, trens, prédios etc. são exemplos onde os alarmes fazem parte da sua implementação.

1.1. Projeto do Sistema Digital

Um diagrama de blocos parcial de um circuito de controle de alarmes sonoros por prioridade é ilustrado na Figura 1.

Figura 1 – Diagrama de blocos de controle de alarmes sonoros por prioridade.

O **Codificador de Prioridade** reconhece, entre as N **Entradas** binárias, qual é a entrada de maior prioridade para gerar o **Código** binário correspondente, quando existirem mais de uma entrada. Uma entrada corresponde a um evento acionado externamente. Os **Relógios** geram *clocks* com frequências distintas que serão selecionados pelo **Seletor** conforme o **Código** gerado pelo **Codificador de Prioridade**. Uma frequência corresponde a um tipo de alarme sonoro.

- a) Projete o codificador de prioridade e o seletor com circuitos integrados (CIs). Os relógios devem ser projetados em VHDL com 4 frequências diferentes (20Hz, 200Hz, 2000Hz e 20000Hz). Use o *clock* da FPGA como referência para gerar os *clocks* de saída.
- b) Elabore um diagrama lógico (use o padrão) com codificador de prioridade e seletor. Inclua os CIs para ligação do FPGA com o Painel de Montagens.

- c) Elabore um Plano de Testes para verificar o funcionamento de cada um dos blocos separados e do circuito completo.
- d) Realize uma simulação de funcionamento dos relógios no Intel Quartus Prime. Anexe as formas de onda no Planejamento.
 - **DICA:** Acrescente sinais de depuração, caso algum resultado não seja satisfatório. Corrija e simule novamente.
- e) Faça uma tabela de designação de pinos e prepare a síntese dessa parte do circuito para a placa FPGA DE0-CV com Cyclone V 5CEBA4F23C7N.
- f) Submeta o arquivo QAR dessa parte do circuito do Intel Quartus Prime junto com o Planejamento

1.2. Implementação do Sistema Digital

- a) Implemente o codificador de prioridade e o seletor no painel de montagens.
- b) Realize os testes conforme definidos no Plano de Testes.
- c) Programe a placa FPGA DE0-CV com o projeto sintetizado o item anterior.
- d) Execute os testes contidos no Plano de Testes;
- e) Integre as duas partes do projeto e realize o teste final.
- f) Acrescente sinais de depuração, caso algum teste não apresente resultado satisfatório, e repita os testes.

1.3. Desafio

O professor irá propor um desafio sobre esta experiência.

2. BIBLIOGRAFIA

- Apostilas do Laboratório de Sistemas Digitais.
- Texas Instruments. **TTL Logic Data Book**, 1994.
- WAKERLY, John F. **Digital Design Principles & Practices**. 4th edition, Prentice Hall, 2006.

3. MATERIAL DISPONÍVEL

Circuitos integrados:

7404, 7408, 7432, 7474, 74138, 74151, 74163, 74164, 74174, 74194, 74365, 744050.

4. EQUIPAMENTOS NECESSÁRIOS

- 1 painel de montagens experimentais.
- 1 placa FPGA DE0-CV.
- 1 fonte de alimentação fixa, 5V \pm 5%, 4A.
- 1 osciloscópio digital.
- 1 multímetro digital.

Histórico de Revisões

Profs. Kechi Hirama, Jorge Rady de Almeida, Sérgio Roberto de Mello Canovas - versão 2020