ՅԱՅԱՍՏԱՆԻ ՅԱՆՐԱՊԵՏՈͰԹՅԱՆ ԿՐԹՈͰԹՅԱՆ ԵՎ ԳԻՏՈͰԹՅԱՆ ՆԱԽԱՐԱՐՈͰԹՅՈՒՆ ՅԱՅԱՍՏԱՆԻ ՊԵՏԱԿԱՆ ճԱՐՏԱՐԱԳԻՏԱԿԱՆ ՅԱՄԱԼՍԱՐԱՆ (ՊՈԼԻՏԵԽՆԻԿ)

ԿԻՐԱՌԱԿԱՆ ՄԵԽԱՆԻԿԱ

"ՅԱՐԹ ԼԾԱԿԱՎՈՐ ՄԵԽԱՆԻՋՄՆԵՐԻ ԴԻՆԱՄԻԿ ՎԵՐԼՈԻԾՈԻԹՅՈԻՆԸ" թեմայով կուրսային աշխատանքի առաջադրանքներ և կատարման մեթոդական ցուցումներ

3ԱՅԱՍՏԱՆԻ 3ԱՆՐԱՊԵՏՈͰԹՅԱՆ ԿՐԹՈͰԹՅԱՆ ԵՎ ԳԻՏՈͰԹՅԱՆ ՆԱԽԱՐԱՐՈͰԹՅՈՒՆ 3ԱՅԱՍՏԱՆԻ ՊԵՏԱԿԱՆ ճԱՐՏԱՐԱԳԻՏԱԿԱՆ 3ԱՄԱԼՍԱՐԱՆ (ՊՈԼԻՏԵԽՆԻԿ)

Մեխանիկամեքենագիտական ֆակուլտետ Կիրառական մեխանիկայի ամբիոն

Ա.ՔԱՌՅԱՆ, Կ.ԱՐՋՈՒՄԱՆՅԱՆ

ԿԻՐԱՌԱԿԱՆ ՄԵԽԱՆԻԿԱ

"ጓԱՐԹ ԼԾԱԿԱՎՈՐ ՄԵԽԱՆԻՋՄՆԵՐԻ ԴԻՆԱՄԻԿ ՎԵՐԼՈԻԾՈԻԹՅՈԻՆԸ" թեմայով կուրսային աշխատանքի առաջադրանքներ և կատարման մեթոդական ցուցումներ

> ԵՐԵՎԱՆ ճԱՐՏԱՐԱԳԵՏ 2012

ጓSԴ 531/534 ዓሆԴ 22.2 Կ 530

Տպագրված է համաձայն 2009թ. հրատարակչական պլանի հաստատված (20.12.08) ԳԽ նիստով

Կազմողներ՝ Ա. Քառյան Կ. Արցումանյան

Կ 530 Կիրառական մեխանիկա։ «Յարթ լծակավոր մեխանիզմների դինամիկ վերլուծությունը» թեմայով կուրսային աշխատանքի առաջադրանքներ և կատարման մեթոդական ցուցումներ.-Եր.։ Ծարտարագետ, 2012.-92 էջ։

Ձեռնարկում ներկայացված են «Կիրառական մեխանիկա» դասընթացի «Յարթ լծակավոր մեխանիզմների դինամիկ վերլուծությոքւնը» թեմայով կուրսային աշխատանքի առաջադրանքները և կատարման մեթոդական ցուցումներ։ Նախատեսվում է ճարտարագիտության բակալավրի և կրտսեր ճարտարագետի ծրագրերով սովորող ոչ մեխանիկական մասնագիտությունների ուսանողների համար։ Նկ.՝ 12, աղյուսակ՝ 14։ Գրակ՝ 2 անուն։

Գրախոս՝ Մ.Յարությունյան Խմբագիր՝ Ն. Խաչատրյան

ՆԱԽԱԲԱՆ

ժամանակակից մեքենաներում, հատկապես ավտոմատներում, կիրառվում են մեխանիկական, կիբեռնետիկական, հաշվիչ և այլ տիպի մեխանիկական սարքեր։ Նման սարքեր նախագծող կամ կիրառող ճարտարագետը պետք է տիրապետի վերջիններիս ստեղծման և հետազոտման սկզբունքներին և մեթոդներին։ Կուրսային աշխատանքի թեման է՝ «Յարթ լծակավոր մեխանիզմների դինամիկ վերլուծությունը»։ Նրա կատարման ընթացքում ապագա ճարտարագետը ձեռք է բերում մեխանիկական սարքերի հետազոտման ունակություն, ինչը նպաստում է տեսական գիտելիքների ամրապնդմանն ու խորացմանը, զարգացնում է ստեղծագործական ինքնուրույնությունը։

Սույն մեթոդական ցուցումները կազմված են «Կիրառական մեխանիկա» դասընթացի ծրագրին համապատասխան, նախատեսված են ճարտարագիտության բակալավրի և կրտսեր ճարտարագետի ծրագրերով սովորող ոչ մեխանիկական մասնագիտությունների ուսանողների համար։ Մեթոդական ցուցումների նպատակն է ծանոթացնել ուսանողներին կուրսային աշխատանքում առաջարկվող խնդիրների լուծման մեթոդների հետ։ Դրա համար դիտարկված են երկու սկզբունքորեն տարբեր մոտեցում պահանջող սխեմաներ, որոնք պայմանականորեն նշանակված են առաջադրանք Ա (մուտքի օղակը կատարում է պատական շարժում) և առաջադրանք Բ (մուտքի օղակը կատարում է համընթաց շարժում)։

Յեղինակները խորին շնորհակալություն են հայտնում **Կ.Ստեփանյանին, է.Յակոբյանին** և **Յ.Ահարոնյանին**, որոնց դիտողությունները թույլ տվեցին էապես բարելավել մեթոդական ցուցումների շարադրումը, ինչպես նաև **Վ.Սարոյանին** և **Վ.Ղուկասյանին**՝ ձեռնարկի տեխնիկական ձևավորման համար։

1. บะคนอกหลงกหน

1.1. Կուրսային աշխատանքի կատարման և հանձնման գործընթացների կազմակերպումը

Կուրսային աշխատանքը ուսանողները կատարում են դասախոսի ղեկավարմամբ՝ օգտվելով համապատասխան գրականությունից [1, 2]։ Առաջադրանքի տվյալները ուսանողները վերցնում են ըստ գրանիշի, իսկ հաշվարկները կատարվում են ամբիոնի կողմից առաջարկվող հաշվեբացատրագրի ձևում։ Աշխաատանքի բովանդակությունը և կատարման պլանը բերված են աղյուսակ 1.1-ում, իսկ ռեյտինգային միավորների բաշխումը ըստ բաղադրիչների՝ աղյուսակ 1.2-ում։

Աուուսաև 1.1

Թ ԻՎ	ԲՈՎԱՆԴԱԿՈՒԹՅՈՒՆ	%
1	2	3
1	Յամաձայն անհատական գրանիշի ստանալ աշխատանքը կատարելու համար անհրաժեշտ տվյալները և նկարագրել տվյալ մեխանիզմի աշխատանքի սկզբունքը։	5
2	Կատարել տրված մեխանիզմի կառուցվածքային վերլու- ծությունը և ընտրված μ , մասշտաբով կառուցել դիրքերի պլանը 8 (երբ մուտքի օղակը շուռտվիկ է) կամ 6 (մնացած բոլոր դեպքերում) դիրքերում (տես կետեր 3.1 և 3.2 -ը)։	10
3	Մեխանիզմի բոլոր դիրքերի համար կառուցել արագու- թյունների պլանները (տես կետ 3.3 -ը)։	15
4	Որոշել մեխանիզմի օղակների վրա ազդող արտաքին ուժերը և մոմենտները (տես կետ 3.4 -ը)։	5
5	Մեխանիզմի բոլոր դիրքերի համար որոշել դիմադրության ուժերից բերված $\mathbf{M_r}$ մոմենտի (կամ $\mathbf{F_r}$ ուժի) մեծությունները ու կառուցել $\mathbf{M_r} = \mathbf{M_r}(\mathbf{\phi})$ (կամ $\mathbf{F_r} = \mathbf{F_r}(\mathbf{s})$) ֆունկցիայի գրաֆիկը ընտրված $\mathbf{\mu_M}$ (կամ $\mathbf{\mu_F}$) և $\mathbf{\mu_{\phi}}$ (կամ $\mathbf{\mu_S}$) մասշտաբներով (տես կետ 3.5 -ը):	10
6	Կառուցել դիմադրող ուժերի կատարած աշխատանքի ${\bf A_r} = {\bf A_r}({\bf \phi})$ (կամ ${\bf A_r} = {\bf A_r}({\bf s})$) ֆունկցիայի գրաֆիկը և որոշել վերջինիս ${\bf \mu}_{\rm A}$ մասշտաբը (բացի առաջադրանք ${\bf 22}$ -ը), (տես կետ 3.6 -ը):	5
7	${f MO}{\phi}$ (կամ ${f FOS}$) կոօրդինատային համակարգում կառուցել շարժիչային ուժերի բերված ${f M_m}$ մոմենտի (կամ ${f F_m}$ ուժի), իսկ ${f AO}{\phi}$ (կամ ${f AOS}$) համակարգում շարժիչային ուժերի կատարած ${f A_m}$ աշխատանքի գրաֆիկները (տես կետ 3.7 -ը)։	5

Աղյուսակ 1.1-ի շարունակությունը

	Աղյուսավ 1.1 -ի շարուսավությ	
1	2	3
8	AOφ կամ AOS կոօրդինատային համակարգում կառուցել ΔΕ կինետիկ էներգիայի աճի, իսկ առաջադրանքներ թիվ 1, 2, 4, 5, 6, 7, 8-ում Ε կինետիկ էներգիայի գրաֆիկը և որոշել նրա արժեքները մեխանիզմի բոլոր դիրքերի համար (տես կետ 3.8 -ը)։	5
9	Մեխանիզմի բոլոր դիրքերի համար որոշել I բերված իներցիայի մոմենտի (կամ m բերված զանգվածի) մեծությունները և կառուցել նրա գրաֆիկը IO φ (կամ mOS) կոօրդինատային համակարգում ընտրված μ _I (կամ μ _m) և μ _φ (կամ μ _S) մասշտաբներով (տես կետ 3.9 -ը):	10
10	Մեխանիզմի բոլոր դիրքերի համար որոշել բերման օղակի ω անկյունային (կամ բերման կետի V գծային) արագության մեծությունները և կառուցել $\omega = \omega(\phi)$ (կամ $V = V(S)$) ֆունկցիայի փոփոխման գրաֆիկը ընտրված μ_{ω} (կամ μ_{V}) և μ_{ω} (կամ μ_{S}) մասշտաբներով (տես կետ 3.10 -ը):	5
11	Մեխանիզմի բոլոր դիրքերի համար որոշել արագություն- ների պլանների μ_V մասշտաբային գործակիցները (տես կետ 3.11 -ը)։	5
12	Մեխանիզմի բոլոր դիրքերի համար որոշել բերման օղակի արագության հակադարձ մեծությունները և կառուցել $\frac{1}{\omega} = \frac{1}{\omega}(\phi) \left(\text{կամ} \qquad \frac{1}{V} = \frac{1}{V}(S) \right) \qquad \text{ֆունկցիայի} \qquad \text{գրաֆիկը}$ ընտրված $\mu_{\text{I/}\omega}$ (կամ $\mu_{\text{I/}V}$) և μ_{ϕ} (կամ μ_{S}) մասշտաբներով (տես կետ 3.12 -ը):	5
13	Կառուցել մեխանիզմի շարժման ժամանակի $\mathbf{t} = \mathbf{t}(\phi)$ (կամ $\mathbf{t} = \mathbf{t}(S)$) գրաֆիկը $\mathbf{t}O\phi$ (կամ $\mathbf{t}OS$) կոօրդինատային համակարգում և որոշել նրա $\mathbf{\mu_t}$ մասշտաբը ու մեխանիզմի աշխատանքի \mathbf{T} ժամանակամիջոցը (տես կետ 3.13 -ը):	5
14	Կառուցել մեխանիզմի շարժման օրենքը ներկայացնող $\phi = \phi(t)$ (կամ $S = S(t)$) ֆունկցիայի գրաֆիկը μ_{ϕ} (կամ μ_{S}) ու μ_{t} մասշտաբներով (տես կետ 3.14 -ը)։	5
15	Որոշել մեխանիզմի մյուս օղակների շարժման օրենքները (տես կետ 3.15 -ը)։ Աշխատանքը վերջնական ձևավորել և այն ներկայացնել	5
16	գշլսասասքը՝ զորջսավան ժապորով և այն սորգայացավ դասախոսին ստուգման և գնահատման։	

Աղյուսակ 1.2.

Որակի համար	Կիսամ. համաչ. աշխ.	Պաշտ. պատասխ.
5 + 5 = 10	30	60

Աշխատանքն ավարտելուց հետո ուսանողն այն ներկայացնում է դասախոսին ստուգման։ Վերջինս ստորագրում է ճիշտ կատարված աշխատանքը և գնահատում ուսանողի գիտելիքները "5" միավորանոց համակարգով, ինչպես նաև նրա կիսամյակում համաչափ աշխատանքը։ Վերջինիս միավորները ձևավորվում են (աղյուսակ 1.3) կիսամյակի ընթացքում (5, 9 և 13-րդ շաբաթներում) ամբիոնի կողմից վերահսկվող կատարողականի արդյունքների հիման վրա (տես աղ. 1.1-ը)։ Ընդ որում յուրաքանչյուր փուլի միավորները գումարվում են նախորդին։ Այնուհետև աշխատանքը ստորագրվում է ամբիոնի վարիչի կողմից և գնահատվում է նրա որակը "5" միավորանոց համակարգով։ Ամբիոնի վարիչի և դասախոսի գնահատականների գումարը կազմում է կուրսային աշխատանքի որակի համար հատկացված միավորները։

Աղյուսակ 1.3

%-	10%	20 %	30 %	40 %	50%	60%	70%	80%	90%	100 %	
ում					ՄԻԱՎՐ	<u> Դ</u>)				
ı	3	6	8 9 10 11 30								
- II	1	2	3	6	7	8	9	1	0	19	
III	0	1	2	3	4	5	6	7	8	9	

Կուրսային աշխատանքների պաշտպանությունները սկսաց 11-րդ շաբաթից կազմակերպվում են ամբիոնի վարիչի կողմից։ Դասախոսը չի մասնակցում իր ուսանողների աշխատանքների պաշտպանությանը։ Աշխատանքների պաշտպանության գնահատումը իրականացվում է ըստ աղյուսակ 1.4-ի, որտեղ առաջին տողում բերված են "5" միավորանոց համակարգի գնահատականները, իսկ երկրորդում՝ նրանց համապատասխանող ռեյտինգային միավորների բաշխումը։

Աղյուսակ 1.4

					Divisional III
5+	5	5-	4+	4	4-
58-60	57-53	52-48	47-43	42-38	37-33
3+	3	3-	2	1	
32-29	28-25	24-20	19-10	9-0	

Կուրսային աշխատանքը չհանձնած ուսանողները չեն մասնակցում տեսական դասընթացի եզրափակիչ հարցմանը։

1.2. Կուրսային աշխատանքի խնդիրը

Կուրսային աշխատանքում պահանջվում է լուծել մեխանիզմների դինամիկայի հակադարձ խնդիրը՝ *վերջիններիս օղակների վրա ազդող արտաքին հայտնի ուժերի դեպքում որոշել նրանց շարժման օրենքները*։ Այս խնդրի լուծումը կապված է ոչ գծային դիֆերենցյալ հավասարումների լուծման, ինչպես նաև կինեմատիկական զույգերում առաջացած անհայտ հակազդեցության ուժերի արտաքսման հետ։ Սակայն մեկ ազատության աստիճան ունեցող մեխանիզմների համար որոշակի պայմանական հասկացությունների ներմուծումը այդ խնդրի լուծումը հանգեցնում է միայն մեկ օղակի շարժման ուսումնասիրմանը, իսկ մյուս օղակների շարժման օրենքները որոշվում են կինեմատիկայի մեթոդներով [1]։ Նշված հասկացություններն են. բերման օղակը, բերված զանգվածը (կամ բերված իներցիայի մոմենտը), բերված ուժը (կամ բերված մոմենտր)։

Բերման օղակ է կոչվում կանգնակի հետ կինեմատիկ զույգ կազմող այն պայմանական օղակը, որն օժտված է պայմանական զանգվածով (իներցիայի մոմենտով) և որի վրա կիրառված են պայմանական ուժեր (ուժի մոմենտներ), որոնց ազդեցության տակ այդ օղակը կատարում է այնպիսի շարժում, ինչպիսին այն կկատարեր գտնվելով մեխանիզմի կազմում։

Պայմանական զանգվածը (կամ իներցիայի մոմենտը), որով օժտված է բերման օղակը, կոչվում է *բերված զանգված* (*բերված իներցիայի մոմենտ*), ընդ որում` անհրաժեշտ է և բավարար, որ ժամանակի ցանկացած պահին բերման օղակի կինետիկ էներգիան հավասար լինի մեխանիզմի բոլոր օղակների կինետիկ էներգիաների գումարին։

Պայմանական ուժերը (ուժի մոմենտները), որոնք կիրառվում են բերման օղակի վրա, անվանվում են բերված ուժեր (բերված մոմենտ-ներ), ընդ որում անհրաժեշտ է և բավարար, որ ժամանակի ցանկացած պահին բերված ուժի (բերված ուժի մոմենտի) զարգացրած ակնթարթային հզորությունը կամ կատարած տարրական աշխատանքը հավասար լինի մեխանիզմի օղակների վրա ազդող բոլոր ուժերի և ուժի մոմենտների զարգացրած ակնթարթային հզորությունների կամ կատարած տարրական աշխատանքների հանրահաշվական գումարին։

Վերը բերված պայմանական մեծությունները որոշվում են հետևյալ արտահայտություններից՝

$$F = \sum_{i=1}^{n} \left(F_i \frac{V_i}{V} \cos \alpha_i + M_i \frac{\omega_i}{V} \cos \beta_i \right), \tag{1.1}$$

$$M = \sum_{i=1}^{n} \left(F_i \frac{V_i}{\omega} \cos \alpha_i + M_i \frac{\omega_i}{\omega} \cos \beta_i \right), \quad (1.2)$$

$$\mathbf{m} = \sum_{i=1}^{n} \left[\mathbf{m}_{i} \left(\frac{\mathbf{V}_{S_{i}}}{\mathbf{V}} \right)^{2} + \mathbf{I}_{S_{i}} \left(\frac{\boldsymbol{\omega}_{i}}{\mathbf{V}} \right)^{2} \right], \tag{1.3}$$

$$I = \sum_{i=1}^{n} \left[m_i \left(\frac{V_{S_i}}{\omega} \right)^2 + I_{S_i} \left(\frac{\omega_i}{\omega} \right)^2 \right], \tag{1.4}$$

որտեղ ${\bf F}$, ${\bf M}$, ${\bf m}$ և ${\bf I}$ -ն՝ համապատասխանաբար, բերված ուժը, բերված ուժի մոմենտը, բերված զանգվածը և բերված իներցիայի մոմենտն են, ${\bf F}_i$, ${\bf M}_i$, ${\bf m}_i$ և ${\bf I}_{{\bf S}_i}$ -ն՝ համապատասխանաբար, ${\bf i}$ -րդ օղակի վրա ազդող արտաքին ուժերի գլխավոր վեկտորը, գլխավոր մոմենտը, զանգվածը և առանցքային իներցիայի մոմենտն են, ${\bf V}_i$ և ${\bf V}_{{\bf S}_i}$ -ին՝ համապատասխանաբար, ${\bf F}_i$ ուժի կիրառման կետի և ${\bf i}$ -րդ օղակի զանգվածների կենտրոնի արագություներն են, ${\bf \omega}_i$ -ն՝ ${\bf i}$ -րդ օղակի անկյունային արագությունն է, ${\bf \alpha}_i$ և ${\bf \beta}_i$ -ն՝ համապատասխանաբար, ${\bf F}_i$ և ${\bf V}_i$ ու ${\bf M}_i$ և ${\bf \omega}_i$ վեկտորների կազմած անկյուններն են, ${\bf n}$ -ը՝ մեխանիզմի շարժական օղակների թիվն է, ${\bf V}$ -ն՝ համընթաց շարժում կատարող բերման օղակի արագությունն է, իսկ ${\bf \omega}$ -ն՝ պտտական շարժում կատարող բերման օղակի անկյունային արագությունը։

(1.3) և (1.4) արտահայտությունների վերլուծությունը ցույց է տալիս, որ բերված զանգվածը և բերված իներցիայի մոմենտը ընդհանուր
դեպքում փոփոխական մեծություններ են և կախված են արագությունների հարաբերություններից, որոնք իրենց հերթին կախված են
մեխանիզմի դիրքից։ Ընդհանուր դեպքում մեխանիզմի օղակների վրա
ազդող $\mathbf{F_i}$ ուժերը և $\mathbf{M_i}$ մոմենտները կարող են կախված լինել մեխանիզմի դիրքից, արագությունից և ժամանակից։ Մասնավոր դեպքում
նրանք հաստատուն են կամ կախված են միայն մեխանիզմի դիրքից, և
քանի որ արագությունների հարաբերությունները նույնպես կախված են
մեխանիզմի դիրքից, հետևաբար,

$$m = m(S), I = I(\phi), F = F(S), M = M(\phi),$$
 (1.5)

որտեղ S-ը և ϕ -ն` մեխանիզմի ընդհանրացված կոօրդինատներն են։

Այսպիսով, եթե որպես բերման օղակ ընտրվում է մեխանիզմի պտտական շարժում կատարող օղակը (ընդհանրացված կոորդինատը φ-ն է), ապա նպատակահարմար է օգտվել բերված ուժի մոմենտ (\mathbf{M}) և բերված իներցիայի մոմենտ (\mathbf{I}) հասկացություններից։ Եթե որպես բերման օղակ ընտրված է մեխանիզմի համընթաց շարժում կատարող օղակը (ընդհանրացված կոորդինատը \mathbf{S} -ն է), ապա օգտվում են բերված ուժ (\mathbf{F}) և բերված զանգված (\mathbf{m}) հասկացություններից։ Բերված հասկացությունների մեծությունները որոշելու համար կառուցվում է արագությունների պլան և արագությունների հարաբերությունները ($\mathbf{1.1}$) - ($\mathbf{1.4}$) բանաձևերում փոխարինվում են արագությունների պլանի համապատասխան հատվածների հարաբերությամբ։

Կուրսային աշխատանքի առաջադրանքներում բերման օղակի ընտրությունը ուսանողի կողմից չի կատարվում և այն պարզապես առաջարկվում է մեխանիզմի մուտքի օղակի տեսքով։ Այսպիսով, խնդիրր հանգում է բերման օղակի շարժման օրենքի որոշմանը։

- (1.1) (1.4) բանաձևերից որոշելով բերված ուծերի (ուժի մոմենտների) և բերված զանգվածների (իներցիայի մոմենտների) մեծությունները և ներկայացնելով նրանց կախումը ընդհանրացված կոօրդինատից համապատասխան դիագրամների տեսքով, բերման օղակի շարժման հետագա ուսումնասիրությունը կատարվում է գրաֆիկ եղանակով համաձայն հետևյալ ալգորիթմի:
- 1. Կինետիկ էներգիայի փոփոխման հավասարման տեսքով գրված հայտնի շարժման հավասարումը [1] ներկայացվում է հետևյալ տեսքով՝

Յիմնվելով այս բանաձևերի վրա կառուցվում է կինետիկ էներգիայի փոփոխման $\Delta E = \Delta E(S)$ կամ $\Delta E = \Delta E(\phi)$ դիագրամը, գրաֆիկորեն ինտեգրելով համապատասխանաբար բերված ուժերի կամ բերված ուժի մոմենտների դիագրամները։

2. Եթե հայտնի են, առաջին դեպքում շարժման սկզբնական t_0 , S_0 և V_0 , իսկ երկրորդ՝ t_0 , ϕ_0 և ω_0 պայմանները, ապա (1.6)-ից կորոշվեն բերման օղակի գծային արագության կամ անկյունային արագության ընթացիկ արժեքները՝

$$V_{i} = \sqrt{2 \cdot \frac{\Delta E_{i}}{m_{i}} + m_{0} \cdot \frac{V_{0}^{2}}{m_{i}}},$$
 (1.7)

կամ

$$\omega_{i} = \sqrt{2 \cdot \frac{\Delta E_{i}}{I_{i}} + I_{0} \cdot \frac{\omega_{0}^{2}}{I_{i}}}, \qquad (1.8)$$

Rամաձայն որոշված V_i և ω_i արժեքների՝ կառուցվում է V=V(S) կամ $\omega=\omega(\varphi)$ ֆունկցիայի դիագրամը։

 ${f 3}$. Բերման օղակի շարժման ժամանակը որոշվում է ${f dt}={f dS}/{f V}$ արտահայտությունից՝

Յամանմանորեն, բերման օղակի պտտական շարժման դեպքում, կունենանք՝

Այսպիսով շարժման t ժամանակը որոշելու համար անհրաժեշտ է կառուցել $\frac{1}{V} = \frac{1}{V}(S)$ կամ $\frac{1}{\omega} = \frac{1}{\omega}(\phi)$ ֆունկցիայի գրաֆիկը և այն գրաֆիկորեն ինտեգրել։

- **4**. Ունենալով բերման օղակի շարժման ժամանակի դիագրամը, դժվար չէ ստանալ նրա շարժումը բնութագրող S=S(t) կամ $\phi=\phi(t)$ որոնելի շարժման օրենքը։
- 5. Օգտվելով բերման օղակի շարժման օրենքից, մեխանիզմի մյուս օղակների շարժումը կարելի է որոշել կինեմատիկայի հայտնի մեթոդներով:

2.ԿՈՒՐՍԱՅԻՆ ԱՇԽԱՏԱՆՔԻ ԱՌԱՋԱԴՐԱՆՔՆԵՐԸ

Յուրաքանչյուր ուսանողին տրվող առաջադրանքի համարը կազմված է երկու թվերից (օրինակ 17-15), որոնցից առաջինը համապատասխանում է առաջադրանքի սխեմայի համարին (աղյուսակ 2.1), իսկ երկրորդը` տվյալ սխեմային համապատասխանող թվային արժեքների համապատասխան տողին։

Կուրսային աշխատանքի առաջադրանքները անհրաժեշտ է կատարել ելնելով հետևյալ ընդհանուր պայմաններից.

1. Օղակների կենտրոնական իներցիայի մոմենտները որոշել հետևյալ բանաձևով

$$I_{si} = 0.1 \text{ m}_{i} \ell_{i}^{2}$$

որտեղ m_i -ն i-րդ օղակի զանգվածն է, իսկ ℓ_i -ն այդ օղակի երկարությունը։

- 2. Յամարելով բոլոր լծակատիպ օղակները համասեռ ձողեր, իսկ համասեռ ձողի զանգվածների կենտրոնը գտնվում է նրա համաչափության կենտրոնում, ընդունել, որ այդ տիպի օղակների զանգվածների կենտրոնը համընկնում է իրենց համաչափության կենտրոնի հետ։
- **3**. Օղակների համար, որոնց գծամետրի կշիռը տրված չէ, ծանրության ուժր ընդունել հավասար 0-ի։
- **4**. Բոլոր տարբերակներում մեխանիզմի մուտքի օղակը ընտրել որպես բերման օղակ։

Առաջադրանք 1

Մեկուսիչ ուլունքների տեղափոխման մեխանիզմի կառուցվածքային սխեման

- $\ell_{CD} = L_1 = 5\ell_{CE}$, $\ell_{EF} = 2.25\ell_{FG} = 4.5\ell_{FH}$:
- 3 և 4 օղակների գծամետրի կշիռը` q = 50 Ն/մ։

Մեխանիզմի կիրառումը և աշխատանքի սկզբունքը

Մեխանիզմը ծառայում է էլեկտրամեկուսիչ կերամիկական ուլունքները լարի վրա անցկացնելու նպատակին։ Այն կազմված է ABCD հոդակապային քառօղակից և նրան միացված 4-5 կառուցվածքային խմբից։

Մեխանիզմն աշխատում է հետևյալ կերպ՝ 1 օղակը շարժիչային M_m մոմենտի ազդեցության տակ կատարում է պտտական շարժում, որը 2 և 4 շարժաթևերի և 3 ճոճալծակի օգնությամբ շարժումը փոխանցում է 5 ճոճալծակին։ Կերամիկական ուլունքները, որոնք ամրացված են H կետում, հատուկ պահող կեռիկներով տեղափոխվում են

ծայրային դիրքին, որի ժամացույցի սլաքի ընթացքին հակառակ ուղղությամբ պտույտի ընթացքում հաղթահարվում է օգտակար դիմադրության F_{re} հաստատուն ուժը, իսկ հակառակ ուղղությամբ

հավաքման գծի վրա։ Մեխանիզմի սկզբնական դիրքը համապատասխանում է 5 ճոճալծակի աջ

պտույտի դեպքում նշված ուժը չի ազդում: Մեխանիզմի շարժման հետազոտությունը կատարել AB շուռտվիկի շարժման կայունացված փուլում ընդունելով M_m = const:

<u> Առաջադրանք 1</u>

	L ₁	L ₂	L ₃	ℓ_{AB}	ℓ_{BC}	ℓ_{FG}	ω_0	F_{re}		L ₁	L ₂	L ₃	ℓ_{AB}	ℓ_{BC}	ℓ_{FG}	ω_0	F_{re}
			×10	⁻³ វេ			վ ⁻¹	Ն				×10) ⁻³ ប			վ ⁻¹	Ն
1	250	330	180	62	255	132	16	80	22	350	400	300	90	350	160	23	90
2	265	310	190	66	270	124	15	85	23	300	400	200	74	310	150	22	80
3	280	360	200	70	285	144	17	80	24	200	350	150	50	205	140	24	85
4	290	340	210	72	295	136	16	85	25	400	600	350	102	400	200	23	90
5	370	370	220	88	395	148	17	90	26	200	310	180	50	200	105	25	90
6	325	360	230	80	335	144	17	95	27	210	310	185	54	210	110	15	95
7	340	400	240	84	350	160	16	90	28	215	315	190	54	215	115	19	90
8	360	460	280	90	365	184	18	85	29	220	320	200	56	220	120	14	85
9	350	420	250	86	360	168	16	82	30	225	330	210	58	225	120	25	88
10	330	450	260	84	335	180	15	88	31	230	340	210	58	230	125	23	90
11	370	480	270	92	380	192	17	98	32	235	350	220	60	235	125	24	90
12	380	500	280	94	390	200	21	80	33	240	350	225	62	240	130	25	92
13	390	510	290	98	400	204	22	95	34	245	360	225	62	245	135	22	95
14	400	490	300	100	410	196	22	80	35	250	365	230	64	250	140	22	98
15	410	520	310	102	415	208	15	82	36	255	365	235	66	255	145	20	70
16	420	530	320	104	425	212	15	85	37	260	370	235	66	260	145	25	72
17	430	540	330	108	435	216	16	80	38	270	375	240	68	270	150	21	74
18	440	550	340	110	445	220	17	85	39	275	380	240	70	275	155	15	76
19	450	560	320	112	465	224	18	90	40	280	380	245	72	280	160	25	78
20	470	580	350	118	480	232	17	70	41	285	390	245	72	285	165	20	80
21	280	350	150	66	305	145	18	90	42	290	395	250	58	360	165	15	85

Առաջադրանք 2 Մատուցման մեխանիցմի կառուցվածքային սխեման M_{m} G Н F_{re}

- $\ell_{CF} = 1.1(L_1 + \ell_{AB}) = 2.5 \cdot \ell_{EH}, \ \ell_5 = \ell_{EG} + \ell_{EH},$ $\ell_{EG} = 0.8L_2$:
- 3 և 5 օղակների գծամետրի կշիռը` q = 50 Ն/մ։

Մեխանիզմի կիրառումը և աշխատանքի սկզբունքը

Մեխանիզմը ծառայում է ավտոմատ սարքերում դետալների բեռնավորման համար։ Այն կազմված է ABC կուլիսային մեխանիզմից և նրան միացված 4-5 կառուցվածքային խմբից։ Մեխանիզմն աշխատում է հետևյալ կերպ՝ 1

շուռտվիկը շարժիչային M_m մոմենտի ազդեցության տակ պտտվում է սխեմայում նշված ուղղությամբ (նկարում պատկերված մեխանիզմի ծայրային դիրքը ընդունել որպես սկզբնական)։ Շարժումը 2 օղակի միջոցով փոխանցվում է 3 կուլիսին, իսկ վերջինիս շարժումը 4 օղակի օգնությամբ փո-

խանցվում է 5 ձողին, որը դեպի աջ շարժվելիս

հաղթահարում է օգտակար դիմադրության F_{re} հաստատուն ուժը։ Յակառակ ուղղությամբ շարժվելիս նշված ուժը չի ազդում։ Մեխանիզմի շարժման հետազոտությունը կատարել AB շուռտվիկի շարժման կայունացված փուլում ընդունելով M_m = const։

<u> Առաջադրանք 2</u>

	L ₁	L ₂	ℓ_{AB}	ℓ_{CD}	ω_0	F_{re}		L ₁	L ₂	ℓ_{AB}	ℓ_{CD}	ω_0	F_{re}
		×10	⁻³ ប៍		վ ⁻¹	Ն			×10) ⁻³ ប៍		վ ⁻¹	Ն
1	170	100	45	90	48	80	22	170	105	36	95	45	83
2	190	105	42	95	50	82	23	175	110	38	100	50	84
3	175	110	36	98	52	84	24	170	110	32	102	42	82
4	165	105	34	93	54	83	25	190	115	40	104	45	83
5	195	110	40	100	45	82	26	150	115	30	105	45	80
6	185	115	38	102	48	84	27	155	100	32	90	44	80
7	175	115	34	100	52	80	28	160	105	34	94	44	82
8	200	125	42	110	48	82	29	165	105	35	96	43	85
9	155	130	30	120	45	85	30	170	110	38	98	53	84
10	170	140	35	130	54	84	31	175	110	40	100	52	85
11	195	135	42	125	42	83	32	180	115	42	105	52	86
12	180	132	40	120	50	80	33	185	115	44	108	51	88
13	180	130	38	120	50	82	34	190	120	45	110	41	88
14	190	135	44	124	44	83	35	195	120	42	112	50	87
15	165	135	32	126	48	85	36	200	124	44	115	40	88
16	150	110	30	100	52	84	37	195	125	42	118	50	85
17	160	115	34	104	52	82	38	190	125	40	115	41	85
18	155	115	33	105	46	80	39	185	118	38	110	42	84
19	180	120	36	108	45	83	40	180	115	36	106	43	83
20	200	120	45	110	42	82	41	175	97	34	90	54	85
21	180	125	40	115	44	80	42	170	100	32	92	45	82

Առաջաղոանք 3 Տպագրական մեխանիզմի կառուցվածքային սխեման Ł.U.

- $\ell_{\text{FH}} = \ell_{\text{FM}} = \ell_{\text{AB}}, \ \ell_{\text{CD}} = \ell_{\text{CE}} = L_2, \ \ell_{\text{KD}} = 1.5\ell_{\text{CD}},$ 4 և 5 օղակների գծամետրի կշիռը՝ q = 20 Ն/մ։
- Ձսպանակի սկզբնական ձգվածության $F_0 = 4$ Ն, իսկ կոշտությունը c = 200 Ն/մ:

ուժը

Մեխանիզմի կիրառումը և աշխատանքի սկզբունքը

Մեխանիցմը օգտագործվում է էլեկտրամեխա-

նիկական տպող սարքերում։ Այն կազմված է ABCD հոդակապային քառօղակից և նրան միացված 4-5 կառուցվածքային խմբից։

Մեխանիզմը աշխատում է հետևյալ կերպ՝ օպերատորի հրահանգով էլեկտրամագնիսը ձգում է 1 օղակը, որն իր վերին ծայրային դիրքից շարժվում է մինչև ստորին հորիզոնական դիրք, պտտվելով

և 4 օղակների միջոցով շարժումը փոխանցվում է 5 օղակին, որի սկզբնական դիրքը ուղղաձիգ է։ Աշխատանքային ընթացքի վերջում 5 օղակը հաղթահարելով օգտակար դիմադրող F_{re} ուժը, М կետով հարվածում է ռետինապատված լիսեռի վրա

գտնվող տպագրական թղթին (նկարում պատկեր-

α_{max} անկյան տակ (աշխատանքային ընթացք)։ 2, 3

ված չէ), տպելով համապատասխան նիշը։ Այնուհետև էլեկտրամագնիսը հոսանքացրկվում է և 3 օղակի K կետում ամրացված զսպանակի առաձգականության ուժի շնորհիվ մեխանիզմի օդակներր վերադառնում են սկզբնական դիրքերը։

Մեխանիզմի շարժման ուսումնասիրությունը կատարել նրա աշխատանքային ընթացքի համար, րնդունելով $M_m = |M_{r,max}| = const պայմանը:$

<u> Առաջադրանք 3</u>

	L ₁	L ₂	ℓ_{AB}	ℓ_{BC}	$\ell_{\sf EF}$	F_{re}	α_{max}		L ₁	L ₂	ℓ_{AB}	ℓ_{BC}	$\ell_{\sf EF}$	F_{re}	α_{max}
			×10 ⁻³ ป			Ն	աստ				×10 ⁻³ ເ	រ		Ն	աստ
1	20	30	50	60	40	3.2	20	22	15	45	70	80	55	4.8	15
2	22	33	54	65	45	3.0	19	23	12	38	58	67	46	3.0	16
3	30	40	60	80	50	3.5	18	24	14	41	64	73	50	3.1	17
4	32	42	62	83	53	3.4	16	25	12	35	54	62	42	3.2	18
5	24	35	59	70	48	3.1	21	26	11	32	50	57	39	3.3	17
6	27	37	55	73	45	4.0	17	27	10	30	47	53	37	3.4	14
7	18	27	45	55	36	4.1	16	28	9	28	44	50	35	3.5	15
8	29	38	57	76	48	4.2	15	29	9	26	41	47	33	3.6	20
9	26	39	65	78	52	4.4	18	30	8	25	39	44	30	3.7	20
10	16	25	42	50	34	4.2	20	31	16	49	77	88	61	3.7	22
11	28	42	70	84	55	4.3	16	32	16	47	74	84	58	3.5	20
12	33	44	66	88	55	3.8	17	33	18	54	84	96	65	3.9	21
13	25	33	50	66	42	3.1	19	34	20	75	80	70	45	3.5	20
14	32	48	80	96	65	3.7	15	35	18	68	72	64	41	4.1	18
15	48	64	96	128	80	3.6	16	36	17	63	67	58	38	4.3	17
16	23	31	46	62	39	4.5	20	37	15	58	62	54	35	4.3	15
17	22	29	43	57	36	4.4	15	38	14	54	57	50	32	4.1	14
18	20	26	40	53	33	4.0	21	39	13	50	53	47	30	3.0	15
19	18	25	38	50	33	4.3	16	40	12	47	50	44	28	3.5	16
20	16	23	40	47	31	4.1	18	41	12	44	47	41	26	3.7	14
21	36	54	90	108	72	3.0	18	42	11	42	44	39	25	3.6	17

Առաջադրանք 4 Մատուցման մեխանիզմի կառուցվածքային սխեման Ε Fre M_m,

- 3 և 4 օդակների գծամետրի կշիռը` q = 50 Ն/մ։

 $\ell_{\mathsf{FF}} = 3 \cdot \ell_{\mathsf{DE}}$:

Մեխանիզմի կիրառումը և աշխատանքի սկզբունքը

Մեխանիցմը օգտագործվում է ավտոմատ մեքենաներում դետալների մատուցման համար։ Այն կազմված է ABC կուլիսային մեխանիզմից և նրան

միացված 4-5 կառուցվածքային խմբից։ Մեխանիզմն աշխատում է հետևյալ կերպ՝ օղակը շարժիչային M_m մոմենտի ազդեցության տակ շարժաբերից ստանում է սխեմայում նշված ուղղությամբ պտտական շարժում, որը 2 օղակի, 3 կուլիսի և 4 շարժաթևի օգնությամբ փոխանցվում է 5 ձողին։ Աշխատանքային շարժման ընթացքում,

որի սկիզբը համապատասխանում է 5 օղակի ձախ ծայրային դիրքին (նկարում պատկերված է մեխանիզմի սկզբնական դիրքը), հաղթահարվում է օգտակար դիմադրության F_{re} հաստատուն ուժը։ 5 օղակի հակառակ ուղղությամբ շարժվելիս F_{re} ուժր չի ազդում։ Մեխանիցմի շարժման հետացոտությունը կա-

տարել AB շուռտվիկի շարժման կայունացված

փուլում` ընդունելով $M_m = const$:

<u> Առաջադրանք 4</u>

	L ₁	L ₂	ℓ_{AB}	ℓ_{CD}	ℓ_{DE}	ω_0	F_{re}		L ₁	L ₂	ℓ_{AB}	ℓ_{CD}	$\ell_{\sf DE}$	ω_0	F_{re}
		:	×10 ⁻³ ເ	i		վ ⁻¹	Ն				×10 ⁻³ ເ	រ		վ ⁻¹	Ն
1	50	115	20	100	50	12	4.2	22	110	195	38	185	65	18	4.9
2	60	130	22	110	55	10	4.1	23	100	180	30	160	68	16	4.6
3	55	130	24	115	60	14	4.1	24	60	150	25	130	70	12	4.5
4	70	150	26	130	65	20	4.2	25	70	135	24	125	70	12	4.2
5	60	140	28	120	70	16	4.3	26	75	150	25	130	70	12	4.3
6	75	160	30	140	63	18	4.4	27	80	160	25	140	75	12	4.4
7	65	140	32	125	67	15	4.4	28	85	160	30	145	80	11	4.4
8	90	160	34	145	53	20	4.5	29	90	170	34	150	80	12	4.5
9	75	163	36	150	57	17	4.5	30	95	190	35	170	85	11	4.7
10	80	165	38	150	59	19	4.6	31	50	100	22	85	50	20	4.0
11	95	180	30	160	72	13	4.5	32	55	110	25	95	50	19	4.0
12	90	170	32	155	64	14	4.7	33	60	110	20	100	55	18	4.1
13	120	200	34	185	68	15	4.8	34	65	120	23	110	60	17	4.2
14	110	205	26	190	70	11	4.8	35	70	135	25	120	65	16	4.2
15	100	180	28	165	75	10	4.6	36	75	140	25	125	70	15	4.3
16	80	160	30	145	67	16	4.5	37	80	150	24	130	75	14	4.4
17	70	145	30	130	55	18	4.2	38	85	150	26	135	80	13	4.4
18	75	165	35	150	70	15	4.5	39	90	170	30	150	85	12	4.5
19	100	185	30	170	72	20	4.7	40	95	170	32	150	90	11	4.5
20	60	130	22	110	60	17	4.2	41	100	185	30	175	95	10	4.7
21	70	150	34	140	60	15	4.4	42	110	195	32	185	95	10	4.8

Առաջադրանք 5 Մատուցման մեխանիզմի կառուցվածքային սխեման F_{re}∤ $F_{\text{re}}^{\text{max}}$ S_5

- $\ell_{\rm DE} = 1.2 \ell_{\rm DC}, \ \ell_{\rm EE} = 1.3 \ell_{\rm DE}$:
- 2 և 4 օդակների գծամետրի կշիռը՝ q = 500 U/մ:

Մեխանիզմի կիրառումը և աշխատանքի սկզբունքը

Մեխանիցմը օգտագործվում է ավտոմատ մե-

քենաներում մատուցման գործողություններ կատարելու նպատակով։ Այն կազմված է ABCD hnդակապային քառօղակից և նրան միացված 4-5 կառուցվածքային խմբից։

Մեխանիզմն աշխատում է հետևյալ կերպ՝ 1 օղակը շարժիչային M_m մոմենտի ազդեզության տակ շարժաբերից ստանում է պտտական շարժում, որը 2, 3 և 4 օղակների միջոցով փոխակերպ-

վում է 5 սողնակի հետադարձ-համընթաց շարժմանր։ Վերջինիս ձախից աջ շարժման ընթացքում (աշխատանքային ընթացք) հաղթահարվում է օգտակար դիմադրության F_{re} ուժը, որի փոփոխությունը ըստ 5 սողանի S տեղափոխության տրված է գրաֆիկով։ Յակառակ ուղղությամբ շարժվելիս նշված ուժը չի ազդում։ Մեխանիզմի սկզբնական դիրքը համապատասխանում է 5 օղակի ձախ ծայրային դիրքին, որի դեպքում AB և BC օդակները

Մեխանիցմի շարժման հետացոտությունը կատարել AB շուռտվիկի շարժման կայունացված

դասավորվում են մեկ ուղղի վրա։

փուլում ընդունելով M_m = const:

<u> Առաջադրանք 5</u>

	L ₁	L ₂	ℓ_{AB}	ℓ_{BC}	ℓ_{CD}	ω_0	F _{re} max		L ₁	L ₂	ℓ_{AB}	ℓ_{BC}	$\ell_{\sf CD}$	ω_0	F _{re} max
		×	10 ⁻³ น์			վ ⁻¹	Ն				×10 ⁻³	ប		վ ⁻¹	Ն
1	275	105	72	295	230	7.0	400	22	270	100	70	290	225	9.8	400
2	265	110	73	290	235	6.8	410	23	290	110	75	310	235	9.5	410
3	260	100	74	295	245	6.6	420	24	310	120	78	330	250	9.2	420
4	265	105	80	305	270	6.4	430	25	330	130	86	350	270	9.0	430
5	270	110	82	315	280	6.2	440	26	250	130	88	375	280	8.8	440
6	275	110	72	295	225	6.0	450	27	260	100	70	280	225	9.8	450
7	280	115	74	300	235	5.7	460	28	280	100	74	305	235	9.5	460
8	280	115	77	305	245	5.5	470	29	300	110	78	325	245	9.3	470
9	285	120	80	315	260	5.3	480	30	320	110	80	350	260	9.0	480
10	285	120	80	310	260	5.0	490	31	340	120	82	360	260	9.2	490
11	290	125	83	320	270	6.8	500	32	360	120	86	385	270	8.7	500
12	290	125	86	325	280	6.5	400	33	370	130	90	395	280	8.5	400
13	295	125	86	330	280	6.4	410	34	380	130	90	400	280	8.3	410
14	300	130	88	335	290	6.2	420	35	390	140	94	410	290	8.2	420
15	305	130	93	350	315	6.0	430	36	400	140	98	430	315	8.0	430
16	300	120	84	330	270	5.8	440	37	370	125	86	390	270	8.3	440
17	305	120	81	330	260	5.7	450	38	350	125	83	370	260	8.5	450
18	310	125	79	330	250	5.5	460	39	330	120	82	350	260	9.0	460
19	315	125	76	330	236	5.5	470	40	310	115	78	330	245	9.5	470
20	320	130	74	330	225	5.2	480	41	290	100	74	315	235	9.8	480
21	325	135	78	340	235	5.2	490	42	300	105	72	320	230	9.7	490

Առաջադրանք 6 Մատուցման մեխանիզմի կառուցվածքային սխեման D٥ F_{re}^{max} 0.25S₅ 0.75S₅ S₅

3 և 4 օղակների գծամետրի կշիռը՝ q = 100 Ն/մ։

 $\ell_{\text{FF}} = \ell_{\text{DF}} = 2\ell_{\text{CD}}$:

Մեխանիզմի կիրառումը և աշխատանքի սկզբունքը

Մեխանիզմը ծառայում է ավտոմատ սարքերում դետալների մատուզման համար։ Այն

րում դետալների մատուցման համար։ Այն կազմված է ABCD հոդակապային քառօղակից և նրան միազված 4-5 կառուզվածքային խմբից։

նրան միացված 4-5 կառուցվածքային խմբից։
Մեխանիզմն աշխատում է հետևյալ կերպ՝ 1
օղակը շարժիչային M_m մոմենտի ազդեցության
տակ շարժաբերից ստանում է պտտական շարժում, որը 2, 3 և 4 օղակների միջոցով փոխակերպ-

ժում, որը 2, 3 և 4 օղակների միջոցով փոխակերպվում է 5 օղակի հետադարձ-համընթաց շարժման։ Վերջինս տեղափոխվելով ձախից աջ, հաղթահարում է օգտակար դիմադրության F_{re} ուժը, որի փոփոխությունը ըստ 5 օղակի S_5 տեղափոխության տրված է գրաֆիկով։ Յակառակ ուղղությամբ շարժվելիս նշված ուժը չի ազդում։ Մեխանիզմի սկզբնական դիրքը համապատասխանում է 5

օղակի ձախ ծայրային դիրքին, որի դեպքում AB և BC օղակները դասավորվում են մեկ ուղղի վրա։ Մեխանիզմի շարժման հետազոտությունը կա-

Մեխանիզմի շարժման հետազոտությունը կատարել AB շուռտվիկի շարժման կայունացված փուլում ընդունելով M_m = const:

<u> Առաջադրանք 6</u>

	L ₁	L ₂	ℓ_{AB}	ℓ_{BC}	$\ell_{\sf DE}$	ω_0	F _{re} max		L ₁	L ₂	ℓ_{AB}	ℓ_{BC}	$\ell_{\sf DE}$	ω_0	F _{re} max
			×10 ⁻³ ι	វ		վ ⁻¹	Ն				×10 ⁻³	³ ប		վ ⁻¹	Ն
1	250	170	45	370	500	6.8	150	22	205	140	38	300	400	9.8	150
2	260	175	46	385	520	6.5	160	23	210	145	40	305	405	9.5	160
3	270	180	48	390	530	6.1	170	24	215	150	41	310	410	9.2	170
4	280	190	51	400	540	5.8	180	25	220	150	42	315	420	9.0	180
5	290	195	50	445	600	5.5	190	26	225	155	43	320	430	9.9	190
6	220	160	42	345	450	5.3	200	27	230	155	44	325	435	9.8	200
7	230	165	44	360	470	5.1	210	28	235	160	45	330	440	9.5	210
8	250	165	45	370	500	4.8	220	29	240	160	46	335	450	9.3	220
9	270	175	46	400	550	5.8	230	30	245	165	47	340	460	9.0	230
10	280	180	50	410	560	5.6	240	31	250	170	47	350	480	9.2	240
11	220	150	41	320	430	5.0	250	32	255	170	47	370	500	8.7	250
12	230	160	43	340	450	6.5	150	33	260	175	48	370	500	8.5	150
13	240	165	43	375	500	5.7	160	34	265	180	49	380	510	8.3	160
14	245	170	45	385	510	5.5	170	35	270	180	50	385	520	8.2	170
15	275	180	46	420	570	5.2	180	36	275	185	51	395	530	8.0	180
16	285	185	51	400	545	7.0	190	37	280	190	52	400	540	7.8	190
17	295	200	54	410	550	7.5	200	38	285	190	53	410	550	7.5	200
18	300	200	54	415	560	7.2	210	39	290	195	54	415	560	7.2	210
19	305	205	56	415	560	7.2	220	40	295	195	55	420	570	7.0	220
20	280	195	51	400	530	8.0	230	41	300	200	56	430	580	8.0	230
21	200	140	36	315	420	9.0	240	42	310	205	58	435	590	7.5	240

Առաջադրանք 7 Մատուցող մեխանիզմի կառուցվածքային սխեման F_{re}∤ ۱F_{re}max $\overline{S_5}$ 5 $\overline{\mathsf{F}}_{\mathsf{re}}$

 $\ell_{CE} = \ell_{CD}$

Մեխանիզմի կիրառումը և աշխատանքի սկզբունքը

Մեխանիզմը օգտագործվում է ավտոմատ մեքենաներում մատուցման գործողություն կատարելու համար։ Այն կազմված է ABCD հոդակապային քառօղակից և նրան միացված 4-5 կառուցվածքային խմբից։

Մեխանիզմն աշխատում է հետևյալ կերպ՝ շարժիչային M_m մոմենտի ազդեցության տակ շարժաբերից 1 օղակը ստանում է պտտական շարժում, որը 2, 3 և 4 օղակների միջոցով փոխակերպվում է

որը 2, 3 և 4 օղակների միջոցով փոխակերպվում է 5 օղակի հետադարձ-համընթաց շարժման։ Վերջինս, մեխանիզմի աշխատանքային ընթացքում (5 սողանի վերին դիրքից ստորինի տեղափոխությունը), հաղթահարելով օգտակար դիմադրության F_{re} ուժը, որի փոփոխությունը ըստ 5 ձողի S տեղափոխության տրված է գրաֆիկով, կատարում է մատուցման գործողությունը։ Յակառակ ուղղու-

թյամբ շարժվելիս (պարապ ընթացք) նշված ուժը չի ազդում։ Մեխանիզմի սկզբնական դիրքը համապատասխանում է 5 օղակի վերին ծայրային դիրքին, որի դեպքում AB և BC օղակները դասավորվում են մեկ ուղղի վրա։ Մեխանիզմի շարժման հետացոտությունը կա-

3 և 4 օղակների գծամետրի կշիռը՝ q = 950 Ն/մ։ տարել AB շուռտվիկի շարրժման կայունացված փուլում՝ ընդունելով M_m = const:

<u> Առաջադրանք 7</u>

	L ₁	L ₂	ℓ_{AB}	ℓ_{BC}	ℓ_{CD}	ω_0	F _{re} max		L ₁	L ₂	ℓ_{AB}	ℓ_{BC}	$\ell_{\sf CD}$	ω_0	F _{re} ^{max}
		×	10 ⁻³ մ			վ ⁻¹	Ն				×10 ⁻³ ı	រ		վ ⁻¹	Ն
1	300	240	21	220	210	80	8000	22	220	180	17	160	155	98	6500
2	320	250	22	230	220	60	9200	23	225	182	18	160	160	95	6800
3	310	260	27	225	230	75	8100	24	230	185	17	165	162	92	7000
4	330	270	27	240	235	65	8700	25	235	185	16	170	165	90	7000
5	340	280	29	250	240	70	8400	26	240	190	17	170	168	88	7100
6	280	220	18	205	190	70	7900	27	245	190	17	175	170	86	7200
7	300	250	27	215	225	65	8300	28	250	200	19	185	170	85	7250
8	260	210	19	190	185	75	7800	29	255	210	20	190	172	84	7300
9	360	280	27	250	250	60	9100	30	260	210	20	190	175	82	7350
10	340	270	28	240	240	80	8800	31	265	215	20	200	175	80	7400
11	330	275	32	235	245	80	8500	32	270	220	21	200	180	78	7450
12	350	285	31	250	250	60	9000	33	275	220	20	200	185	75	7500
13	310	265	31	225	235	75	8200	34	280	225	21	205	190	72	7550
14	320	275	32	235	240	65	8600	35	285	225	20	205	195	70	7600
15	270	200	14	190	180	70	7700	36	290	230	21	210	195	68	7650
16	290	220	17	205	200	75	8000	37	295	230	20	210	200	65	7700
17	295	230	20	210	205	78	8200	38	300	235	22	215	205	62	7750
18	300	240	25	210	220	72	8400	39	310	240	21	225	205	60	7800
19	310	250	26	215	230	71	8500	40	320	260	25	240	215	60	7850
20	320	260	28	225	240	70	9000	41	330	265	25	245	220	58	7900
21	325	260	24	230	245	68	8700	42	340	270	26	245	230	55	8000

Առաջառոանք 8 Մամլիչ մեխանիզմի կառուցվածքային սխեման L_3 F Вò F_{re}∤ $F_{\rm re}$ _max $\mathsf{F}_{\mathsf{rel}}$ 0.5S₅

- օղակների գծամետրի
- q=350 Ն/մ։

 $\ell_{\rm DF} = 2 \cdot \ell_{\rm CD}, \ L_3 = 1.15 \cdot \ell_{\rm DF}$:

Մեխանիզմի կիրառումը և աշխատանքի սկզբունքը

Մեխանիցմը օգտագործվում է մեխանիկական մամլիչներում մամլման գործողություն կատարելու

hամար։ Այն կազմված է ABCD հոդակապային քառօղակից և նրան միացված 4-5 կառուցվածքային խմբից: Մեխանիցմն աշխատում է հետևյալ կերպ՝ 1

օղակը շարժիչային M_m մոմենտի ազդեզությամբ շարժաբերից ստանում է պտտական շարժում, որը 2, 3 և 4 օդակների միջոցով փոխակերպվում է 5 օրակի հետադարձ-համընթաց շարժման։ Վերջինս

տեղափոխվելով վերին ծայրային դիրքից ստորին դիրք (աշխատանքային ընթացք), հաղթահարում է օգտակար դիմադրության F_{re} ուժը, որի փոփոխությունը ըստ 5 օղակի S₅ տեղափոխության տրված է գրաֆիկով։ Յակառակ ուղղությամբ շարժվելիս

դասավորվում են մեկ ուղղի վրա։ Մեխանիցմի շարժման հետացոտությունը կատարել AB շուռտվիկի կայունացված փուլում՝ րնդունելով $M_m = const$:

նշված ուժը չի ազդում։ Մեխանիզմի սկզբնական դիրքը համապատասխանում է 5 օղակի վերին

ծայրային դիրքին, որի դեպքում AB և BC օղակները

կշիռը՝

<u> Առաջադրանք 8</u>

	L ₁	L ₂	ℓ_{AB}	ℓ_{BC}	ℓ_{CD}	ℓ_{EF}	ω_0	F _{re} ^{max}		L ₁	L ₂	ℓ_{AB}	ℓ_{BC}	ℓ_{CD}	$\ell_{\sf EF}$	ω_0	F _{re} ^{max}
	×10 ⁻³ น์							Ն		×10 ⁻³ น์						վ ⁻¹	Ն
1	72	135	22	140	120	195	80	2300	22	60	110	19	115	100	175	95	2500
2	70	120	21	130	115	190	75	2500	23	65	115	20	120	105	178	92	2550
3	65	110	20	120	112	185	85	2000	24	70	118	20	125	105	180	90	2600
4	60	105	18	115	110	185	90	2700	25	75	125	21	130	110	180	88	2650
5	58	95	17	105	105	180	95	2600	26	80	130	21	135	120	185	85	2700
6	65	100	18	110	108	180	87	2850	27	85	135	22	140	125	185	82	2750
7	68	105	19	115	112	190	82	3000	28	90	140	23	145	125	190	80	2800
8	70	115	20	125	115	195	78	1900	29	87	135	22	140	120	190	83	2800
9	75	130	22	135	118	195	85	2200	30	82	135	22	145	125	195	85	300
10	78	140	23	145	125	200	70	2700	31	78	130	21	135	120	195	87	2950
11	72	125	21	135	120	200	75	2300	32	72	125	20	130	110	180	90	2900
12	70	110	20	115	108	170	85	2100	33	67	120	20	125	110	185	92	2850
13	65	100	19	110	105	165	87	2000	34	62	120	20	120	105	180	94	2800
14	62	100	18	105	100	160	90	2650	35	58	115	19	125	105	175	95	2750
15	60	95	17	100	95	155	95	2800	36	55	105	19	115	100	170	97	2700
16	80	130	22	140	130	200	92	300	37	60	110	18	115	100	165	97	2800
17	85	130	23	140	135	205	90	2900	38	65	115	18	120	105	165	95	2850
18	82	125	22	135	130	210	85	2350	39	68	120	20	125	105	170	92	2900
19	75	120	21	130	125	200	85	3000	40	73	125	20	130	110	175	90	3000
20	70	110	20	120	115	190	98	2500	41	77	125	21	130	110	180	88	3100
21	72	120	20	130	125	200	90	2800	42	80	128	22	135	115	185	85	3200

- 1 և 2 օդակների գծամետրի կշիռը՝ գ է։
- Ձսպանակի սկզբնական ձգվածության ուժը՝ F_o է, իսկ կոշտությունը՝ c = 80 Ն/մ։
 - Օգտակար դիմադրող ուժը ` F_{re}=4Ն:

Մեխանիզմի կիրառումը և աշխատանքի սկզբունքը

Մեխանիցմը ծառայում է էլեկտրամեխանիկա-

կան սարքերում հպակների պարբերաբար կրկնվող

անջատումների համար։ Այն կազմված է ABCD հոդակապային քառօղակից և նրան միացված 4-5 կառուցվածքային խմբից։

Մեխանիզմն աշխատում է հետևյալ կերպ. AB ճոճալծակը էլեկտրամագնիսի շարժիչային M_m մոմենտի ազդեցության տակ սկզբնական ստորին ծայրային դիրքից պտտվում է սխեմայում նշված

ուղղությամբ φ_{max} անկյունով (աշխատանքային րնթացք)։ 2 և 4 շարժաթևերի ու 3 ճոճալծակի միջոցով շարժումը փոխանցվում է 5 օղակին։ Մեխանիզմի վերջնական դիրքում 4 օղակի K կետում ամրացված հարմարանքը անջատում է հպակները։

կան դիրքերին են վերադառնում զսպանակի առաձգականության ուժի շնորհիվ: Մեխանիզմի շարժման հետազոտությունը կատարել նրա աշխատանքային ընթացքի համար,

ընդունելով $M_m = |M_{r,max}| = const$ պայմանը։

Նշված դիրքում ազդում է F_{re} օգտակար դիմադրության ուժը։ Մեխանիզմի օղակները իրենց սկզբնա-

<u> Առաջադրանք 9</u>

	L ₁	L_2	ℓ_{AB}	ℓ_{BC}	ϕ_{max}	F_0	q		L ₁	L ₂	ℓ_{AB}	ℓ_{BC}	ϕ_{max}	F_0	q
		×10	⁻³ វេ		աստ.	Ն	Ն/մ			×10) ⁻³ น์	աստ.	Ն	Ն/մ	
1	100	40	50	60	24	0.25	8	22	125	50	62	75	24	0.22	8
2	105	43	54	63	26	0.27	9	23	131	54	68	79	26	0.23	10
3	150	60	76	92	28	0.29	10	24	188	75	95	115	28	0.25	11
4	130	52	65	79	24	0.31	11	25	162	65	81	99	24	0.24	13
5	172	70	85	102	26	0.33	12	26	215	88	106	128	26	0.22	15
6	190	76	96	114	28	0.28	11	27	238	95	120	143	28	0.26	12
7	202	81	101	122	30	0.32	10	28	253	101	126	153	30	0.28	15
8	121	49	61	72	32	0.30	13	29	151	61	76	90	32	0.19	14
9	111	45	56	67	30	0.22	11	30	139	56	70	84	30	0.18	13
10	115	46	59	70	24	0.23	10	31	144	58	73	88	24	0.30	12
11	210	84	105	126	26	0.29	14	32	262	105	131	158	26	0.31	10
12	85	40	50	63	22	0.20	10	33	106	50	63	79	22	0.25	9
13	127	61	76	95	32	0.20	12	34	159	76	95	119	32	0.25	8
14	144	68	85	107	24	0.35	14	35	180	85	106	134	24	0.30	10
15	161	76	95	120	32	0.36	14	36	201	95	119	150	32	0.28	12
16	178	84	105	132	30	0.36	13	37	222	105	131	165	30	0.29	13
17	94	44	56	70	34	0.18	10	38	118	55	70	88	34	0.19	13
18	111	52	65	82	32	0.25	9	39	139	65	81	102	32	0.20	15
19	102	48	60	76	28	0.26	9	40	128	60	75	95	28	0.22	12
20	120	56	70	88	26	0.27	12	41	150	70	88	110	26	0.25	10
21	187	88	111	139	24	0.35	13	42	234	110	139	174	24	0.30	10

- 2 օղակի գծամետրի կշիռը՝ q=250 Ն/մ։
- 3 օղակի ծանրության ուժը՝ $G_3=3\cdot G_2$:
- Օդի ճակատային դիմադրության
- ուժը՝ $F=F_0\cdot cos\phi_3$:

Մեխանիզմի կիրառումը և աշխատանքի սկզբունքը

Մեխանիցմը ծառայում է ինքնաքիռի անիվի բացման և հավաքման համար։ Այն կացմված է

ABCD հոդակապային քառօղակից։ Մեխանիզմը աշխատում է հետևյալ կերպ՝ նախ 2 ու 3 օդակների և 4 անիվի ծանրության G_2 , G_3 , G_4 ուժերի շնորհիվ նրա օղակները շարժման մեջ են դրվում մինչև 1 օղակր հասնում է իր ճոճման անկյան 1/4 մասր։ Որից հետո միանում է շարժաբերը **A** լիսեռի վրա առաջացնելով M_m հաստատուն մոմենտ։ 1 օդակի պտույտր 2 շարժաթևի օգնությամբ փոխանցվում է 3 ճոճոլծակին, որը պտտվելով ժամսլաքի շարժման ուղղությամբ, գրավում է իր վերջնական ուղղաձիգ դիրքը։ Մեխանիզմի շարժման հետացոտությունը կատարել 1 մուտքի օղակի պտույտի ընթացքում, երբ տեղի է ունենում անիվի իջեցումը իր սկզբնական E' դիրթից։ M_m շարժիչային մոմենտի մեծությունը որոշվում է համաձայն հետևյալ պայմանների՝ մեխանիզմի վերջին դիրքի համար մուտքի օղակի արագությունը զրո է (ա₁=0) և շարժման ամբողջ միջակալքում $A_m > A_r$:

<u> Առաջադրանք 10</u>

	ℓ_{AD}	ℓ_{AB}	ℓ_{BC}	ℓ_{CD}	$\ell_{\sf CE}$	G ₄	F ₀		ℓ_{AD}	ℓ_{AB}	ℓ_{BC}	$\ell_{\sf CD}$	$\ell_{\sf CE}$	G ₄	F ₀
	ប៍						J				វ			Ն	
1	1.32	1.00	0.40	0.64	0.30	600	4000	22	1.58	1.08	0.45	0.82	0.33	700	4750
2	1.45	1.12	0.44	0.71	0.33	620	4250	23	1.71	1.15	0.51	0.90	0.36	720	5000
3	1.58	1.20	0.47	0.76	0.36	640	4500	24	1.84	1.26	0.52	0.97	0.39	750	5250
4	1.71	1.30	0.51	0.83	0.39	660	4750	25	1.98	1.36	0.56	0.65	0.43	600	5500
5	1.84	1.44	0.57	0.89	0.43	680	5000	26	1.42	0.90	0.61	0.71	0.46	620	5750
6	1.98	1.47	0.62	0.96	0.46	700	5250	27	1.54	1.06	0.50	0.70	0.37	640	6000
7	1.42	1.08	0.49	0.75	0.37	720	5500	28	1.68	0.91	0.60	0.80	0.40	660	4000
8	1.54	1.15	0.54	0.82	0.30	750	5750	29	1.41	0.97	0.55	0.97	0.43	680	4250
9	1.68	1.26	0.59	0.90	0.40	600	6000	30	1.60	1.15	0.47	0.65	0.50	700	4500
10	1.81	1.36	0.64	0.97	0.41	620	4000	31	1.74	1.26	0.51	0.71	0.41	720	4750
11	1.26	0.90	0.39	0.65	0.35	640	4250	32	1.63	1.10	0.50	0.70	0.40	750	5000
12	1.37	1.02	0.39	0.71	0.36	660	4500	33	1.87	1.35	0.35	0.65	0.45	600	5250
13	1.41	0.91	0.38	0.70	0.37	680	4750	34	1.91	1.30	0.31	0.90	0.50	620	5500
14	1.52	1.15	0.60	0.95	0.38	700	5000	35	1.44	0.91	0.54	0.81	0.36	640	5750
15	1.74	1.21	0.51	0.90	0.42	720	5250	36	1.98	1.45	0.35	0.65	0.40	660	6000
16	1.63	1.11	0.52	0.81	0.43	750	5500	37	1.42	0.91	0.51	0.76	0.43	680	4000
17	1.87	1.40	0.56	0.92	0.50	600	5750	38	1.82	1.40	0.48	0.83	0.46	700	4250
18	1.91	1.40	0.61	0.95	0.41	620	6000	39	1.68	1.20	0.62	0.89	0.37	720	4500
19	1.44	1.00	0.70	0.98	0.40	640	4000	40	1.81	1.20	0.49	0.96	0.42	750	4750
20	1.66	1.20	0.60	0.85	0.31	660	4250	41	1.26	0.85	0.54	0.75	0.40	600	5000
21	1.55	1.18	0.52	0.82	0.35	680	4500	42	1.37	1.00	0.45	0.82	0.41	620	5250

Առաջառոանք 11 Անջատիչ մեխանիզմի կառուցվածքային սխեման $\overline{\mathsf{F}}_{\mathsf{re}}$, $\alpha_{\,\text{max}}$

• 4 և 5 օդակների գծամետրի կշիռը՝ q = 40 U/մ:

• $\ell_{CB} = \ell_3 \ \ell_{ED} = \ell_{EF} = 1.5 \cdot \ell_{CD}, \ \ell_5 = 1.3 \cdot L_3$

Ձսպանակի սկզբնական ձգվածության ուժը՝ F_0 =1 Ն, իսկ կոշտությունը c = 50 Ն/մ:

Մեխանիզմի կիրառումը և աշխատանքի սկզբունքը

Մեխանիցմը ծառայում է բարձր լարման ցան-

ցում կոնտակտների միացման համար։ Այն կազմված է ABCD հոդակապային քառօղակից և նրան միազված 4-5 կառուզվածքային խմբից։ Մեխանիզմը աշխատում է հետևյալ կերպ. AB ճոճալծակո էլեկտրամագնիսի շարժիչային M_m մոմենտի ազդեցության տակ սկզբնական վերին ծայրային դիրքից պտտվում է սխեմայում նշված ուղղությամբ α_{max} անկյունով (աշխատանքային ընթացք)։ 2 և 4 շարժաթևերի ու 3 ճոճալծակի միջոցով շարժումը փոխանցվում է 5 օդակին,որը ստորին ծալրային դիրքից տեղափոխվում է վերին դիրք, միացնելով հպակները (գծագրում պատկերված չեն), որտեղ հաղթահարվում է օգտակար դիմադրության F_{re} ուժը։ էլեկտրամագնիսը հոսանքազրկվելուց հետո զսպանակի առաձգական ուժի շնորհիվ մեխանիցմի օղակները վերադառնում են սկզբնական դիրքերը։ 1 ճոճալծակի ծայրային դիրքերը համաչափ են հորիզոնական

Մեխանիզմի շարժման հետազոտությունը կատարել նրա աշխատանքային ընթացքի համար, րնդունելով $M_m = |M_{r \text{ max}}| = \text{const}$ պայմանը։

գծի նկատմամբ։

<u> Առաջադրանք 11</u>

	L ₁	L ₂	L ₃	ℓ_{AB}	ℓ_{CD}	α_{max}	F_{re}		L ₁	L ₂	L ₃	ℓ_{AB}	ℓ_{CD}	α_{max}	F_{re}
		>	<10 ⁻³ វេ			աստ.	Ն					wum.	Ն		
1	60	55	70	23	28	45	10	22	45	70	110	30	40	43	8
2	91	83	105	35	42	42	11	23	68	105	165	45	60	41	8
3	66	61	77	25	31	40	12	24	50	77	121	33	45	38	10
4	96	88	112	37	45	38	11	25	72	112	176	48	65	35	9
5	114	105	134	44	53	47	13	26	86	133	209	57	76	45	11
6	102	94	120	39	48	35	12	27	77	120	187	51	68	50	12
7	121	111	141	46	57	45	14	28	91	141	220	61	82	52	10
8	108	99	126	42	50	48	10	29	81	126	198	54	72	55	10
9	78	72	91	30	36	50	8	30	59	91	143	39	52	53	9
10	126	116	147	48	59	51	12	31	95	147	231	63	84	42	14
11	50	60	100	20	30	40	8	32	65	75	50	35	45	46	8
12	60	73	120	24	36	42	9	33	78	90	60	42	54	40	9
13	75	90	150	30	45	43	10	34	98	113	75	53	68	36	10
14	55	67	11	22	34	45	11	35	72	83	55	39	50	38	11
15	80	96	160	32	48	47	12	36	104	120	80	56	72	42	12
16	95	114	190	38	57	52	13	37	124	142	95	67	86	46	13
17	85	102	170	34	51	50	14	38	110	128	85	60	77	45	11
18	101	120	201	41	60	40	12	39	131	151	110	70	92	50	14
19	90	108	181	36	55	47	11	40	117	135	90	63	81	55	12
20	65	78	130	26	40	45	8	41	85	98	65	46	59	53	8
21	105	126	210	42	63	50	13	42	137	158	105	74	95	55	14

<u> Առաջադրանք 12</u>

Տպագրական մեխանիզմի կառուցվածքային սխեման

- ℓ_{AK} = ℓ_{BC} = ℓ_{DE} = 2·ℓ_{DC} = ℓ_{AB}, ℓ_{GL} = 1.5·ℓ_{FG}:
 1 և 4 օղակների գծամետրի կշիռը` q =20 Ն/մ:
- Զսպանակի սկզբնական ձգվածության ուժը`
 F_o = 0.8 Ն, իսկ կոշտությունը` c = 20 Ն/մ:
- Օգտակար դիմադրության ուժը` F_{re} = 2.5 Ն։

Մեխանիզմի կիրառումը և աշխատանքի սկզբունքը

Մեխանիզմը կիրառվում է էլեկտրամեխանիկական տպող սարքերում։ Այն կազմված է ABCD

հոդակապային քառօղակից և նրան միացված 4-5 կառուցվածքային խմբից։

պառուցվածքայրս ըսբրց։

Մեխանիզմը աշխատում է հետևյալ կերպ՝ AB ճոճալծակը էլեկտրամագնիսի շարժիչային M_m մոսնենտի ազդեցության տակ սկզբնական դիրքից, որին համապատասխանող 5 օղակի դիրքը հորիզոնական է, պտտվում է սխեմայում նշված ուղղությամբ։ 2 և 4 շարժաթևերի ու 3 ճոճալծակի միջոցով շարժումը փոխանցվում է ելքի 5 ձողին, որը պտտվում է տրված α_{max} անկյունով (աշխատանքային ընթացք)։ Աշխատանքային ընթացքի վեր-

ջում 5 ձողի L կետում ամրացված նիշը, հաղթահարելով օգտակար դիմադրության F_{re} հաստատուն ուժը (այդ դիրքում այն ուղղահայաց է GL-ին), տպվում է թղթի վրա։ էլեկտրամագնիսը

զսպանակի առաձգական ուժի ազդեցության տակ մեխանիզմի օղակները վերադառնում են սկզբնական դիրքերը։

hոսանքացրկելուց հետո C կետում ամրացված

Մեխանիզմի շարժման հետազոտությունը կատարել նրա աշխատանքային ընթացքի համար, որտեղ տեղի ունի M_m = | M_{r max} |= const պայմանը։

<u> Առաջադրանք 12</u>

	L_1	L ₂	L ₃	L ₄	ℓ_{AB}	ℓ_{FG}	$\ell_{\sf EF}$	α_{max}		L ₁	L ₂	L ₃	L_4	ℓ_{AB}	ℓ_{FG}	$\ell_{\sf EF}$	α_{max}
				×10 ⁻³	វ			wum.			աստ.						
1	70	15	8	52	56	14	42	60	22	94	19	32	64	74	22	55	75
2	74	14	10	54	59	15	44	62	23	98	18	33	66	76	26	60	78
3	72	16	12	53	58	14	43	64	24	95	17	35	70	78	28	65	81
4	75	17	14	56	60	15	45	66	25	96	16	34	68	80	30	70	84
5	77	18	13	58	62	16	46	68	26	60	12	12	40	48	15	45	60
6	78	19	12	60	63	15	47	70	27	65	14	12	40	50	18	48	60
7	80	20	10	62	64	16	48	72	28	70	18	15	45	50	20	50	60
8	81	22	14	60	65	17	49	74	29	72	20	15	48	52	22	52	55
9	82	24	16	64	67	17	50	75	30	74	25	20	50	54	23	54	55
10	83	23	15	65	66	16	50	78	31	76	25	22	52	56	25	55	55
11	85	25	17	63	68	17	51	80	32	78	28	23	54	60	25	57	60
12	86	28	18	66	69	18	52	82	33	80	30	25	55	62	28	58	60
13	88	30	20	68	71	19	53	84	34	85	35	28	58	62	30	60	60
14	87	31	19	70	70	20	52	86	35	90	35	30	60	65	30	62	60
15	90	33	18	72	72	19	54	88	36	95	38	30	62	65	32	64	55
16	91	35	20	74	75	21	55	90	37	97	38	32	62	68	32	65	55
17	89	34	21	70	76	21	56	92	38	80	35	28	52	60	25	55	55
18	92	36	22	75	78	22	55	95	39	85	30	25	55	60	28	62	50
19	94	38	23	76	80	23	57	98	40	90	32	28	58	62	30	65	50
20	95	40	25	78	82	24	58	100	41	95	35	30	60	64	32	68	50
21	90	20	30	60	72	20	50	72	42	98	35	32	60	65	35	70	55

Առաջառոանք 13 Տպագրական մեխանիզմի կառուցվածքային սխեման d_{max} S_{5} C,S₃ 120°

 $\ell_{\text{EF}} = \ell_{\text{EG}} = 1.4 \cdot L_2, \ \ell_{\text{ES}_5} = 0.25 \cdot \ell_{\text{EF}}$:

 $\ell_{AB} = 2\ell_{AK} = \ell_{CN} = L_1$

- 3 և 5 օղակների գծամետրի կշիռը՝ $\mathbf{q} = \mathbf{6}$ Ն/մ, իսկ նրանց երկարությունները՝ $\ell_3 = \ell_{CN} + \ell_{CD}$, $\ell_5 = \ell_{EG} + \ell_{EF}$:

Մեխանիզմի կիրառումը և աշխատանքի սկզբունքը

Մեխանիզմը կիրառվում է էլեկտրամեխանիկական տպող սարքերում։ Այն կազմված է երկկուլիսային ABCDEF մեխանիզմից։ Մեխանիզմը աշխատում է հետևյալ կերպ՝ էլեկ-

տրամագնիսի հաստատուն շարժիչային M_m մոմենտի ազդեցության տակ 1 ճոճալծակը սկզբնական դիրքից, որի դեպքում EF ձողի դիրքը հորիզոնական է, պտտվում է ժամացույցի սլաքի պտտման հակառակ ուղղությամբ։ 2 և 4 օղակների ու 3 ճոճալծակի միջոցով շարժումը փոխանցվում է ելքի 5 ձողին, որը պտտվում է տրված α_{max} ան-

կյունով (աշխատանքային ընթացք)։ Աշխատանքային ընթացքի վերջում 5 ձողի F կետում ամրացված նիշը, հաղթահարելով օգտակար դիմադրության F_{re} հաստատուն ուժը (այդ դիրքում այն ուղղահայաց է EF-ին), տպվում է թղթի վրա։ էլեկտրամագնիսը հոսանքազրկելուց հետո B կետում ամրացված զսպանակի առաձգական ուժի շնորհիվ մեխանիզմի օղակները վերադառնում են

Մեխանիզմի շարժման հետազոտությունը կատարել նրա աշխատանքային ընթացքի համար, որտեղ տեղի ունի $M_m = |M_{r \; max}| = const պայմանը։$

սկզբնական դիրքերը։

<u> Առաջադրանք 13</u>

	L ₁	L ₂	L ₃	ℓ_{CD}	α_{max}	β	F_{re}		L ₁	L ₂	L ₃	ℓ_{CD}	α_{max}	β	F_{re}
		×10) ⁻³		เ	ım.	Ն			×10) ⁻³		เมน	ım.	Ն
1	50	20	10	35	56	130	2.0	22	75	35	20	60	55	136	2.0
2	53	22	12	38	58	132	2.1	23	80	40	30	65	60	138	2.1
3	55	24	14	40	60	134	2.2	24	70	42	20	54	65	140	2.2
4	54	26	16	39	62	136	2.3	25	90	45	30	75	70	130	2.3
5	56	28	15	41	64	138	2.4	26	50	22	12	33	60	132	2.4
6	58	30	17	43	66	140	2.5	27	55	25	13	39	60	134	2.5
7	60	30	18	45	68	130	2.6	28	60	28	16	45	60	136	2.6
8	62	33	20	47	70	132	2.7	29	65	30	18	48	50	138	2.7
9	65	35	21	50	72	134	2.8	30	70	35	22	54	50	140	2.8
10	68	37	23	53	74	136	2.9	31	75	40	28	60	50	130	2.9
11	70	40	25	55	70	138	3.0	32	80	40	27	64	55	132	3.0
12	72	41	26	57	68	140	2.9	33	85	45	30	70	55	134	2.9
13	73	43	15	58	60	130	2.8	34	90	45	32	74	55	136	2.8
14	75	45	20	60	72	132	2.7	35	95	48	32	78	60	140	2.7
15	78	48	32	63	64	134	2.6	36	58	30	18	42	65	130	2.6
16	80	46	24	65	66	136	2.5	37	62	32	20	46	65	132	2.5
17	75	47	20	60	68	138	2.4	38	67	35	20	52	60	134	2.4
18	70	44	40	55	70	140	2.3	39	72	38	23	56	75	136	2.3
19	65	43	15	58	72	130	2.2	40	77	40	24	60	75	140	2.2
20	85	50	28	52	64	132	2.1	41	82	45	25	66	75	130	2.1
21	80	45	15	70	50	134	2.0	42	88	45	28	72	75	132	2.0

Առաջառոանք 14 Տպագրական մեխանիզմի կառուցվածքային սխեման F_{re} Ł.U. $M_{\rm m}$ α_{max}

- ℓ_{DL}=1.3·ℓ_{DC}, ℓ_{GN}=0.6·ℓ_{GH}, ℓ_{DE}=0.5·ℓ_{CD}:
 2 և 5 օդակների գծամետրի կշիռը` q = 40 Ն/մ:
- Ձսպանակի սկզբնական սեղմվածության
- ուժը` F₀=0.5Ն, իսկ կոշտությունը` c=100 Ն/մ։
- Օգտակար դիմադրության ուժը` F_{re} = 8Ն։

Մեխանիզմի կիրառումը և աշխատանքի սկզբունքը

Մեխանիզմը նախատեսված է տպագրական մեքենայի սայլակի տեղափոխման համար։ Այն կազմված է ABCD հոդակապային քառօղակից և նոան միազված 4-5 կառուցվածքային խմբից։

Մեխանիզմը աշխատում է հետևյալ կերպ՝ էլեկտրամագնիսի հաստատուն շարժիչային M_m մոմենտի ազդեցության տակ 1 ճոճալծակը պտտվում է ժամացույցի սլաքի պտտման հակառակ ուղղությամբ α_{max} անկյունով (աշխատանքային ընթացք): 2 և 4 շարժաթևերի ու 3 ճոճալծակի օգնությամբ շարժումը փոխանցվում է ելքի 5 ճոճալծակին, որի N կետը տեղափոխում է տպագրական մեքենայի սայլակը (նկարում պատկերված չէ), հաղթահարելով օգտակար դիմադրության F_{re} հաստատուն ուժը։

վերադառնում են սկզբնական դիրքերը։ Մեխանիզմի շարժման հետազոտությունը կատարել նրա աշխատանքային ընթացքի համար, որտեղ տեղի ունի M_m = | M_{r max} |= const պայմանը։

Սկզբնական պահին մուտքի 1 ճոճայծակը ունի

հորիզոնական դիրք։ էլեկտրամագնիսը հոսանքա-

զրկվելուց հետո L կետում ամրացված զսպանակի առածգական ուժի շնորհիվ մեխանիցմի օրակները

<u> Առաջադրանք 14</u>

	L ₁	L ₂	L ₃	L_4	ℓ_{AB}	ℓ_{BC}	ℓ_{CD}	ℓ_{EH}	ℓ_{HG}	α_{max}		L ₁	L ₂	L ₃	L_4	ℓ_{AB}	ℓ_{BC}	ℓ_{CD}	ℓ_{EH}	ℓ_{HG}	α_{max}
				×	:10 ⁻³	វ				աստ.					×	:10 ⁻³	វ				աստ.
1	0	30	120	10	44	120	55	63	54	38	22	30	60	220	30	90	180	140	140	140	45
2	25	45	130	5	50	120	80	60	75	36	23	10	42	120	10	35	130	65	60	55	45
3	30	54	156	6	60	144	96	72	90	36	24	12	50	144	12	42	156	78	72	66	45
4	35	63	182	7	70	168	112	84	105	36	25	14	59	168	14	49	182	91	84	77	45
5	40	72	208	8	80	192	128	96	120	36	26	16	67	192	16	56	208	104	96	88	45
6	45	81	234	9	90	216	144	108	135	36	27	0	54	216	18	79	216	99	113	97	38
7	0	36	144	12	53	144	66	76	65	38	28	18	76	216	18	63	234	117	108	99	45
8	50	90	260	10	100	240	160	120	150	36	29	20	84	240	20	70	260	130	120	110	45
9	14	50	120	8	45	130	70	72	80	40	30	16	55	145	18	45	140	65	60	65	46
10	17	60	144	9.6	54	156	84	86	96	40	31	19	66	174	22	54	168	78	72	78	46
11	20	70	168	11	63	182	98	101	112	40	32	22	77	203	25	63	196	91	84	91	46
12	22	80	192	13	72	208	112	115	128	40	33	26	88	232	29	72	224	104	96	104	46
13	0	42	168	14	62	168	77	88	76	38	34	0	60	240	20	88	240	110	126	108	38
14	25	90	216	14	81	234	126	130	144	40	35	29	99	261	32	81	252	117	108	117	46
15	28	100	240	16	90	260	140	144	160	40	36	32	110	290	36	90	280	130	120	130	46
16	15	30	110	15	45	90	70	70	70	45	37	20	30	140	10	50	130	65	80	70	40
17	18	36	132	18	54	108	84	84	84	45	38	24	36	168	12	60	156	78	96	84	40
18	21	42	154	21	63	126	98	98	98	45	39	28	42	196	14	70	182	91	112	98	40
19	24	48	176	24	72	144	112	112	112	45	40	32	48	224	16	80	208	104	128	112	40
20	0	48	192	16	70	192	88	101	86	38	41	36	54	252	18	90	234	117	144	126	40
21	27	54	198	27	81	162	126	126	126	45	42	40	60	280	20	100	260	130	160	140	40

Առաջառոանք 15 Տպագրական մեխանիզմի կառուցվածքային

- $\ell_{GN} = 1.5 \cdot \ell_{AB}, \ \ell_{DI} = 0.75 \cdot \ell_{DF}, \ \ell_{DK} = L_1 + 0.005 \ \text{û}$ $3 \, \text{և} \, 4$ օդակների գծամետրի կշիռը՝ q = $50 \, \text{U/d}$:
- Ձսպանակի սկզբնական ձգվածության ուժը՝
- $F_0 = 1.0 \, \text{U}$, իսկ կոշտությունը՝ $c = 50 \, \text{U/U}$:

Մեխանիզմի կիրառումը և աշխատանքի սկզբունքը

Մեխանիզմը նախատեսված է տպագրական մեքենայի սայլակի տեղափոխման համար։ Այն կազմված է ABD կուլիսային մեխանիզմից և նրան

միացված 4-5 կառուցվածքային խմբից։ Մեխանիզմը աշխատում է հետևյալ կերպ սկզբնական դիրքում 1 օղակր հորիզոնի նկատմամբ թեքված է $lpha_{\max}$ անկյունով։ Էլեկտրամագնիսի հաստատուն շարժիչային M_m մոմենտի ազդեցու-

թյան տակ մեխանիզմի 1 ճոճալծակը պտտվում է α_{max} անկյունով սխեմայում նշված ուղղությամբ։ 2 օղակի, 3 կուլիսի և 4 շարժաթևի միջոցով շարժումը հաղորդվում է ելքի 5 ճոճայծակին և վերջինիս N կետր տեղափոխում է տպագրական մեքենայի սայլակը (նկարում պատկերված չէ), հաղթահարելով օգտակար դիմադրության հաստա-

տուն F_{re} ուժը (աշխատանքային ընթացք)։ էլեկտրամագնիսը հոսանքագրկվելուց հետո, L կետում ամրացված զսպանակի առաձգական ուժի շնորհիվ, մեխանիցմի օղակները վերադառնում են սկզբնական դիրքերը:

Մեխանիզմի շարժման հետազոտությունը կատարել նրա աշխատանքային ընթացքի համար, որտեղ տեղի ունի $M_m = |M_{r,max}| = const պայմանը:$

<u> Առաջադրանք 15</u>

	L_1	L_2	L ₃	ℓ_{AB}	ℓ_{DE}	ℓ_{EF}	ℓ_{FG}	α_{max}	F_{re}		L ₁	L ₂	L ₃	ℓ_{AB}	$\ell_{\sf DE}$	ℓ_{EF}	ℓ_{FG}	α_{max}	F_{re}
				×10 ⁻³	វ			wum.	Ն				>	√10 ⁻³ ι	រ			աստ.	Ն
1	48	15	50	20	25	46	20	65	3.8	22	40	15	65	24	30	60	30	75	3.5
2	38	12	38	18	22	37	20	75	4.0	23	70	26	75	35	40	60	35	60	3.0
3	40	20	62	24	30	58	30	55	3.0	24	50	18	65	24	25	45	26	50	4.5
4	50	18	60	22	28	45	25	60	4.0	25	40	17	60	26	30	60	30	50	4.0
5	60	19	62	27	32	57	26	70	5.0	26	75	20	80	30	40	70	32	48	3.5
6	60	20	70	30	34	53	26	65	5.5	27	80	25	84	34	45	72	35	52	3.2
7	65	22	68	29	35	68	25	45	3.9	28	85	26	90	36	46	80	35	55	3.0
8	70	25	75	30	35	70	33	54	4.5	29	90	28	93	37	46	85	37	58	3.2
9	48	18	60	23	28	48	27	52	3.8	30	95	25	94	40	50	90	40	60	2.8
10	60	20	60	25	30	60	30	58	4.4	31	100	27	98	38	47	90	40	64	3.6
11	60	10	60	24	28	49	30	60	5.2	32	105	30	110	44	55	100	40	68	4.2
12	65	20	65	25	32	70	29	65	5.8	33	110	34	115	45	60	110	44	70	4.0
13	40	17	68	27	30	57	70	30	4.0	34	102	30	100	40	52	94	37	72	4.5
14	45	10	50	25	20	49	25	75	4.5	35	100	22	94	35	42	85	37	68	4.0
15	50	15	70	20	25	46	28	50	3.3	36	93	22	90	37	48	87	37	65	4.6
16	55	15	65	24	26	47	26	55	3.7	37	90	25	90	34	42	80	32	62	3.6
17	45	16	55	20	26	50	25	60	3.6	38	87	24	84	32	44	75	32	60	3.4
18	50	16	65	25	25	45	26	70	4.5	39	85	22	86	32	42	74	33	58	3.2
19	48	17	52	25	28	45	25	75	4.6	40	82	25	80	30	42	70	32	55	3.0
20	60	12	60	25	30	60	29	70	5.0	41	80	21	80	32	42	70	34	50	4.2
21	50	15	50	20	27	42	28	60	5.0	42	76	18	78	28	46	67	30	48	4.6

Առաջառոանք 16 Դակող մեխանիզմի կառուցվածքային սխեման F_{re}≬ \overline{F}_{re} S_5 $0.75S_5 S_5$ έE ϕ_{max} $M_{\rm m}$ $\ell_{CF} = L_1 + L_2 + 0.5 \ell_{AB}, \ \ell_{AK} = \ell_{AB}, \ \ell_{DF} = 0.5 \ell_{CF}$

- 3 և 5 օդակների գծամետրի կշիռը՝ q =15 Ն/մ։
- Ձսպանակի սկզբնական սեղմվածության ուժր F_o է, իսկ կոշտությունը՝ c = 70 Vմ:

Մեխանիզմի կիրառումը և աշխատանքի սկզբունքը

Մեխանիցմը օգտագործվում է մեխանիկական սարբերում դակման գործողություն կատարելու

համար։ Այն կացմված է ABC կուլիսային մեխանիզմից և նրան միացված 4-5 կառուցվածքային խմբից: Մեխանիցմը աշխատում է հետևյալ կերպ՝ աշխատանքային ընթացքի սկզբում 1 օղակը հորի-

զոնի նկատմամբ թեքված է φ_0 անկյունով, իսկ 5-ը գտնվում է ստորին ծայրային դիրքում։ Էլեկտրամազնիսը ձգում է 1 օղակը և նրա պտտական շարժումը 2, 3 և 4 օղակների միջոցով փոխանցվում է 5-ին։ Այն տեղաշարժվելով դեպի վեր կատարում է դակման գործողությունը, հարթահարելով օգտակար դիմադրության F_{re} ուժը, որի փոփոխությունը ըստ 5 ձողի S₅ տեղափոխության տրված է գրաֆիկով։ Աշխատանքային ընթացքի վերջում, երբ 1

րը վերադառնում են սկզբնական դիրքերը: Մեխանիցմի շարժման հետացոտությունը կատարել նրա աշխատանքային ընթազքի համար, որտեղ տեղ ունի $M_m = |M_{r,max}| = const պայմանը:$

օղակը թեքվում է φ_{max} անկյունով, էլեկտրամագնիսը հոսանքազրկվում է և զսպանակի առաձգականության ուժի շնորհիվ մեխանիզմի օղակնե-

<u> Առաջադրանք 16</u>

	L ₁	L ₂	ℓ_{AB}	φ ₀	ϕ_{max}	F_0	F _{re} max		L ₁	L ₂	ℓ_{AB}	φ ₀	φ _{max}	F ₀	F _{re} ^{max}
		×10 ⁻³ ເ	រ	ш	ıտ.	ι	J			×10⁻³ ι	រ	เมเ	ım.		Ն
1	50	35	28	6	38	0.5	3.70	22	55	35	32	7	36	0.5	2.60
2	55	37	30	18	36	0.6	3.00	23	58	38	34	6	38	0.8	2.80
3	53	38	32	18	40	0.5	3.80	24	52	42	27	11	40	0.7	2.60
4	58	42	25	17	36	0.7	3.60	25	54	45	34	12	37	0.4	2.80
5	60	45	27	16	38	8.0	3.50	26	58	40	30	15	40	0.5	2.70
6	52	46	26	8	40	0.5	3.60	27	60	42	32	15	45	0.6	2.60
7	50	38	28	10	42	0.55	3.65	28	62	45	35	14	44	0.7	2.50
8	55	45	32	11	44	0.5	3.90	29	65	48	38	15	38	8.0	2.40
9	57	48	30	12	40	0.5	3.85	30	68	50	40	18	42	0.75	2.45
10	60	37	27	13	38	0.6	3.95	31	70	52	4 0	10	45	0.7	2.30
11	54	41	32	9	36	0.45	3.00	32	72	55	38	6	50	0.65	2.35
12	58	46	31	18	34	0.35	3.70	33	74	58	42	7	48	0.6	2.40
13	62	42	26	12	32	0.55	3.75	34	75	56	40	13	45	0.55	2.45
14	52	49	25	11	34	0.5	3.85	35	78	55	45	14	50	0.5	3.0
15	58	47	28	7	32	0.6	3.80	36	80	60	40	18	45	0.6	3.10
16	60	38	30	12	36	0.7	3.65	37	85	62	42	12	48	0.65	3.15
17	56	40	24	6	38	0.8	2.78	38	88	65	45	6	36	0.7	3.20
18	50	44	27	13	40	0.7	2.20	39	90	70	45	10	40	0.75	3.25
19	57	35	26	10	42	0.6	2.75	40	92	72	42	7	42	8.0	3.30
20	50	46	29	9	40	0.5	2.10	41	95	75	45	15	45	0.85	3.50
21	50	40	30	8	35	0.6	2.50	42	100	80	50	10	40	0.6	3.60

Առաջադրանք 17 Տպագրական մեխանիզմի կառուցվածքային սխեման α_{max}

 $\ell_{\text{OC}} = 3 \cdot L_1$, $L_3 = \ell_{\text{CF}} = 2.5 \cdot L_1$, $\ell_{\text{DH}} = 1.25 \cdot \ell_{\text{DF}}$: 4 և 5 օղակների գծամետրի կշիռը՝ q = 20 U/u:

Ł.U.

- Ձսպանակի սկզբնական սեղմվածության
- ուժը՝ $F_o = 0.5 \, U$, իսկ կոշտությունը՝ $C = 80 \, U/U$:

Մեխանիզմի կիրառումը և աշխատանքի սկզբունքը

Մեխանիցմը կիրառվում է էլեկտրամեխանիկական տպող սարքերում։ Այն կազմված է ABO կուլի-

սային մեխանիզմից և նրան միազված 4-5 կառուցվածքային խմբից։ Մեխանիզմը աշխատում է հետևյալ կերպ՝ օպերատորի հրահանգով էլեկտրամագնիսը ձգում է 1 օղակը, որը իր վերին ծայրային դիրքից շարժվում է մինչև ստորին՝ հորիզոնական դիրքը, պտտվելով

 α_{max} անկյունով (աշխատանքային ընթացք): 2, 3 և 4 օղակների միջոցով շարժումը հաղորդվում է 5 օղակին, որի սկզբնական դիրքը ուղղաձիգ է։ Աշխատանքային ընթացքի վերջում 5 օղակը հաղքահարելով օգտակար դիմադրության F_{re} հաստատուն ուժը, H կետով հարվածում է ռետինեպատված լիսեռի վրա գտնվող տպագրական բղբին (նկարում պատկերված չէ), տպելով համապատասխան նիշը։ Այնուհետև էլ եկտրամագնիսը հոսան-

դիրքերը։ Մեխանիզմի շարժման հետազոտությունը կատարել նրա աշխատանքային ընթացքի համար, որտեղ տեղի ունի $M_m = |M_{r,max}| = const պայմանը:$

քացրկվում է և 1 օդակի F կետում ամրացված

զսպանակի առաձգականության ուժի շնորհիվ մեխանիզմի օղակները վերադառնում են սկզբնական

<u> Առաջադրանք 17</u>

	L ₁	L ₂	ℓ_{OB}	$\ell_{\sf DE}$	α	F_{re}		L ₁	L ₂	ℓ_{OB}	$\ell_{\sf DE}$	α	F_{re}
		×1	0 ⁻³ វេ		wum.	Ն			×10) ⁻³		աստ.	Ն
1	10	15	40	18	14	3.40	22	18	25	70	35	13	3.70
2	12	18	50	22	15	4.45	23	20	35	80	40	14	2.00
3	14	21	60	25	15	3.50	24	23	40	90	50	15	3.00
4	16	24	60	29	14	3.60	25	25	42	100	50	16	3.40
5	18	27	70	32	13	3.55	26	20	32	76	36	18	3.5
6	20	30	75	36	14	2.65	27	26	40	96	46	20	3.6
7	22	33	95	40	15	3.70	28	28	44	120	50	22	3.2
8	24	36	100	43	15	2.70	29	30	46	125	52	18	3.8
9	26	39	105	47	14	3.60	30	35	50	145	60	16	3.5
10	28	42	115	50	13	2.00	31	37	56	150	60	15	3.2
11	30	45	120	50	16	3.60	32	40	62	165	75	14	3.0
12	33	50	130	60	16	3.70	33	42	65	170	75	16	3.4
13	35	53	140	60	15	3.80	34	45	68	180	76	17	3.5
14	40	60	150	70	14	3.00	35	48	72	190	85	18	3.4
15	43	65	160	77	12	3.95	36	50	75	210	85	20	3.6
16	40	75	180	90	16	2.10	37	52	78	210	88	22	3.8
17	48	72	180	80	18	3.20	38	55	82	220	92	20	3.0
18	55	82	200	90	16	2.00	39	40	77	200	80	20	3.0
19	60	90	240	100	15	3.00	40	40	65	170	75	18	4.0
20	65	90	250	100	12	2.10	41	30	55	150	65	16	4.2
21	15	22	55	30	12	3.80	42	35	52	142	60	15	4.5

- 2 և 5 օղակների գծամետրի կշիռը` q = 10 Ն/մ։
- Ձսպանակի սկզբնական սեղմվածության ուժը՝ F_{o} է, իսկ կոշտությունը c = 300 Ն/մ։

Մեխանիզմի կիրառումը և աշխատանքի սկզբունքը

Մեխանիզմը կիրառվում է մեխանիկական սարքերում դակման գործողություն կատարելու համար։ Այն կազմված է ABCD հոդակապային քառօղակից և նրան միացված 4-5 կառուցվածքային խմբից։

Մեխանիզմը աշխատում է հետևյալ կերպ՝ աշխատանքային ընթացքի սկզբում 1 օղակը ունի հորիզոնական դիրք, իսկ 5-ը գտնվում է ձախ ծայրային դիրքում։ էլեկտրամագնիսը ձգում է 1 օղակր որի պտտական շարժումը 2, 3 և 4 օդակների միջոցով փոխանցվում է 5 օղակին։ Այն տեղաշարժվելով դեպի աջ կատարում է դակման գործողությունը, հաղթահարելով օգտակար դիմադրությшն F_{re} ուժը, որի փոփոխությունը ըստ 5 ձորի S տեղափոխության տրված է գրաֆիկով։ Աշխատանքային ընթացքի վերջում, երբ 1 օղակր թեքվում է _{Փաx} անկյունով, էլեկտրամագնիսը hnսանքազրկվում է և զսպանակի առաձգականության ուժի շնորհիվ մեխանիզմի օղակները վերա-

դառնում են սկզբնական դիրքերը: Մեխանիցմի շարժման հետացոտությունը կատարել նրա աշխատանքային ընթացքի համար, որտեղ տեղի ունի $M_m = |M_{r,max}| = const պայմանը:$

<u> Առաջադրանք 18</u>

	L ₁	L ₂	ℓ_{AB}	ℓ_{BC}	$\ell_{\sf DE}$	ϕ_{max}	F。	F _{re} ^{max}		L ₁	L ₂	ℓ_{AB}	ℓ_{BC}	ℓ_{DE}	ϕ_{max}	F。	F _{re} max
			×10 ⁻³	វ		աստ.		Ն				×10 ⁻³	វ		աստ.		Ն
1	40	70	20	50	30	80	1.2	10	22	60	120	30	80	50	80	1.3	10
2	45	80	25	60	35	70	1.3	16	23	70	130	25	85	50	70	1.4	10
3	50	85	30	65	38	90	1.4	20	24	80	150	40	100	70	60	1.5	20
4	55	90	35	70	40	60	1.5	11	25	50	90	30	70	40	90	1.2	15
5	60	100	40	70	45	80	1.2	15	26	55	90	32	68	38	75	1.3	13
6	65	100	45	80	38	70	1.3	13	27	60	90	45	70	40	100	1.4	15
7	60	90	20	75	40	90	1.4	13	28	65	105	48	75	45	110	1.5	12
8	48	80	30	50	35	70	1.5	10	29	68	110	35	85	50	120	1.2	11
9	50	85	20	70	38	75	1.2	12	30	70	115	30	90	50	120	1.3	20
10	70	110	25	80	50	90	1.3	18	31	75	140	40	95	65	100	1.4	19
11	75	160	20	90	75	80	1.4	18	32	80	145	45	100	67.5	90	1.5	14
12	55	95	30	65	43	60	1.5	12	33	85	135	40	95	60	80	1.2	20
13	60	100	20	80	43	70	1.2	16	34	90	140	45	100	65	90	1.3	17
14	80	130	30	90	60	100	1.3	15	35	95	135	45	130	60	85	1.4	16
15	90	140	50	100	65	80	1.4	11	36	100	140	50	140	65	75	1.5	16
16	85	130	40	95	60	90	1.5	14	37	95	140	40	120	65	60	1.2	12
17	70	160	30	85	75	70	1.2	14	38	90	135	35	100	60	90	1.3	11
18	75	110	45	95	50	85	1.3	10	39	85	130	40	100	60	100	1.4	10
19	95	130	50	150	60	80	1.4	20	40	80	135	35	90	62	110	1.5	17
20	100	160	60	150	75	65	1.5	19	41	75	130	35	110	60	120	1.2	18
21	50	80	25	70	40	90	1.2	19	42	70	110	30	95	50	100	1.3	18

Առաջառոանք 19 Դակող մեխանիզմի կառուցվածքային սխեման F_{re} ≰ F_{re}max ϕ_{max}

- ℓ_{BC} = ℓ_{DE} =1.5 ℓ_{CD} :
- 2 և 4 օղակների գծամետրի կշիռը` q =10 Ն/մ։
- Ձսպանակի սկզբնական ձգվածության ուժը՝ F_0 =1.5 Ն, իսկ կոշտությունը c = 250 Ն/մ:

2

Մեխանիզմի կիրառումը և աշխատանքի սկզբունքը

Մեխանիցմը օգտագործվում է մեխանիկական սարքերում դակման գործողություն կատարելու

համար։ Այն կազմված է ABCD հոդակապային pառօղակից և նրան միացված 4-5 կառուցվածքային խմբից։ Մեխանիցմը աշխատում է հետևյալ կերպ՝ աշխատանքային ընթացքի սկզբում 1 օղակը հորիզոնի նկատմամբ թեքված է 🚓 անկյունով, իսկ 5-ր գտնվում է վերին ծայրային դիրքում։ Էլեկտրա-

ժումը 2, 3 և 4 օղակների միջոցով փոխանցվում է 5 օղակին։ Այն տեղաշարժվելով դեպի ներքև կատարում է դակման գործողությունը, հաղթահարելով օգտակար դիմադրության F_{re} ուժը, որի փոփոխությունը ըստ 5 ձողի S₅ տեղափոխության տրված է գրաֆիկով։ Աշխատանքային ընթացքի վերջում, երբ 1 օղակր պտտվում է _{Փաax} անկյունով, էլեկտրամագնիսը հոսանքացրկվում է և զսպանակի առաձգականության ուժի շնորհիվ մեխանիզմի օղակները վերադառնում են սկզբնական դիրքերը։ Մեխանիցմի շարժման հետացոտությունը կա-

տարել նրա աշխատանքային ընթացքի համար,

որտեղ տեղի ունի $M_m = |M_{r,max}| = const պայմանը:$

մագնիսը ձգում է 1 օղակին, որի պտտական շար-

<u> Առաջադրանք 19</u>

	L	ℓ_{AB}	ℓ_{CD}	$\ell_{\sf EF}$	φο	ϕ_{max}	α	F _{re} ^{max}		L	ℓ_{AB}	ℓ_{CD}	$\ell_{\sf EF}$	φο	φ _{max}	α	F _{re} max
		×10 ⁻	³ វេ		ı	աստ.		Ն			×1	0 ⁻³ វ		ι	uum.		Ն
1	35	22	42	90	54	36	18	10	22	77	48	94	195	42	38	20	15
2	40	16	48	109	58	32	16	15	23	80	55	98	210	50	36	18	13
3	45	28	54	118	64	26	13	15	24	37	25	44	95	52	35	15	11
4	50	34	60	126	60	30	15	12	25	40	30	50	105	56	34	18	10
5	55	32	66	148	50	40	20	13	26	45	30	52	110	60	34	16	10
6	60	36	72	156	52	38	19	10	27	50	36	64	130	62	30	18	12
7	65	40	78	164	54	36	18	10	28	53	30	62	150	64	32	20	14
8	70	42	84	182	56	34	17	15	29	57	35	68	155	66	34	16	15
9	75	46	90	155	60	30	15	14	30	60	40	75	160	60	36	20	15
10	80	52	96	204	64	26	13	14	31	63	42	75	165	56	34	20	12
11	37	23	45	90	52	38	18	11	32	66	45	80	170	52	40	18	13
12	42	30	50	120	56	34	19	11	33	70	45	86	190	50	45	15	14
13	40	22	44	105	60	30	16	10	34	75	50	95	190	50	42	15	14
14	47	28	56	110	62	28	14	12	35	70	40	82	180	46	34	20	15
15	52	35	60	130	58	32	15	15	36	67	50	75	170	44	38	15	13
16	50	32	64	140	50	40	17	13	37	37	24	40	95	54	36	15	10
17	57	30	66	170	54	36	20	12	38	40	28	50	115	56	36	20	10
18	75	47	94	190	64	26	18	12	39	42	25	50	120	58	38	18	10
19	67	49	78	174	62	28	16	14	40	50	32	64	115	60	34	15	11
20	70	40	80	180	60	30	13	14	41	55	35	68	154	55	35	20	11
21	73	45	85	185	40	40	15	14	42	60	38	75	162	57	40	15	12

Առաջադրանք 20 Մատուցման մեխանիզմի կառուցվածքային սխեման lt.U. **∦** F_m

- $\ell_{AB} = 0.7 L_2$, $\ell_{EK} = 0.5 L_1$:
 - 4 և 5 օղակների գծամետրի կշիռը q = 20 Ն/մ։

դետայ

Ձսպանակի սկզբնական սեղմվածության ուժը՝

 F_0 է, իսկ կոշտությունը՝ c = 40 Ն/մ։

Մեխանիզմի կիրառումը և աշխատանքի սկզբունքը

Մեխանիզմը ծառայում է դետայներ տեղափոխելու համար։ Այն կազմված է ABC կուլիսային

մեխանիցմից և նրան միացված 4-5 կառուցված**բային խմբից**։

Մեխանիզմը աշխատում է հետևյալ կերպ՝ օպե-

րատորի հրահանգով 1 օղակը ձգվում է էլեկտրամագնիսի կողմից (աշխատանքային ընթացք), որի

համընթաց շարժումը 2, 3 և 5 օդակների միջոցով փոխակերպվում է 4 օդակի հարթ շարժման։ Այդ շարժման ընթացքում շարժաթևի K կետում ամրացված հարմարանքի օգնությամբ (նկարում չի

պատկերված) կատարվում է դետալի տեղափո-

խություն՝ հաղթահարելով օգտակար դիմադրության F_{re} հաստատուն ուժը։ Աշխատանքային րնթացքի վերջում, երբ 3 կուլիսը ընդունում է հորիզոնական դիրք, էլեկտրամագնիսը հոսանքազրկվում է և զսպանակի առաձգական ուժի

սկզբնական դիրքերը: Մեխանիզմի շարժման հետազոտությունը կատարել նրա աշխատանքային ընթացքի համար, որտեղ տեղի ունի $F_m = |F_{r,max}| = const պայմանը:$

շնորհիվ մեխանիցմի օղակները վերադառնում են

<u> Առաջադրանք 20</u>

	S ₁	L ₁	L ₂	ℓ_{CD}	$\ell_{\sf DE}$	ℓ_{EF}	F _o	F_{re}		S ₁	L ₁	L_2	ℓ_{CD}	$\ell_{\sf DE}$	ℓ_{EF}	Fo	F _{re}
			×10	⁻³ វេ			l	J				×10	³ វេ			l	J
1	30	100	68	50	75	70	0.25	4.50	22	34	124	79	51	77	70	0.55	3.60
2	31	102	70	52	75	72	0.30	4.25	23	32	120	77	49	74	68	0.45	3.50
3	32	98	66	50	70	70	0.35	4.75	24	30	116	75	47	71	66	0.35	3.40
4	33	110	75	55	82	74	0.40	3.00	25	28	112	73	45	68	64	0.25	3.30
5	34	105	72	53	80	73	0.45	3.75	26	26	90	66	43	72	65	0.5	3.4
6	28	100	70	45	78	65	0.50	3.50	27	28	98	70	49	72	68	0.4	3.5
7	29	100	65	45	72	64	0.50	3.25	28	30	105	72	43	78	70	0.6	3.6
8	27	98	68	42	74	62	0.60	3.00	29	32	104	70	43	74	65	0.6	3.8
9	26	95	65	41	70	60	0.65	3.20	30	34	108	76	51	84	76	0.6	3.7
10	25	92	63	40	68	58	0.70	3.15	31	36	115	80	67	90	80	0.5	3.5
11	26	94	64	43	72	62	0.65	3.30	32	38	120	85	63	95	85	0.4	3.7
12	27	102	72	45	80	65	0.60	3.65	33	36	112	75	63	85	88	0.5	3.5
13	28	105	75	50	80	70	0.55	3.80	34	34	125	80	51	78	75	0.4	3.8
14	29	110	73	40	85	60	0.50	4.00	35	32	110	70	45	70	62	0.6	4.0
15	30	115	80	35	87	56	0.45	4.30	36	30	110	70	43	68	64	0.6	4.1
16	31	120	82	40	90	60	0.40	4.45	37	32	115	70	45	68	62	0.5	3.6
17	32	125	85	55	92	75	0.35	4.60	38	34	120	85	55	82	75	0.4	3.8
18	33	118	80	50	86	70	0.30	4.80	39	36	130	90	60	85	80	0.4	3.5
19	34	122	84	55	89	75	0.25	4.50	40	33	110	75	45	80	67	0.5	3.8
20	35	130	88	60	98	80	0.20	4.00	41	28	95	68	47	75	64	0.6	4.0
21	36	128	81	53	80	72	0.65	4.70	42	25	90	60	37	62	54	0.5	4.2

Առաջառոանք 21

Տպագրական մեխանիզմի կառուցվածքային

սխեման

- $\ell_{\text{MH}} = 2 \cdot \ell_{\text{FH}}$:

4 և 5 օդակների գծամետրի կշիռը q = 10 U/մ:

Չսպանակի սկզբնական ձգվածության ուժր $F_o = 3$ Ն, իսկ կոշտությունը c = 250 Ն/մ:

Մեխանիզմի կիրառումը և աշխատանքի սկզբունքը

Մեխանիցմը կիրառվում է էլեկտրամեխանիկական տպող սարքերում։ Այն կազմված է ACB

շուռտվիկ սողնակային մեխանիզմից և նոան միացված 4-5 կառուցվածքային խմբից։

Մեխանիզմը աշխատում է հետևյալ կերպ՝ օպերատորի հրահանգով էլեկտրամագնիսը ձգում է 1 օղակը, որը շարժվելով իր ձախ եզրային դիրքից աջր (աշխատանքային ընթացք) 2, 3

օղակների միջոցով շարժումը հաղորդում է 5 օղակին, որի սկզբնական դիրքը ուղղաձիգ է։ Աշխատանքային ընթացքի վերջում 5 օղակը հաղ-

թահարելով օգտակար դիմադրության F_{re} ուժր, М կետով հարվածում է ռետինապատված լիսեռի վրա գտնվող տպագրական թղթին (նկարում

պատկերված չէ), տպելով համապատասխան նիշը։ Այնուհետև էլեկտրամագնիսը հոսանքացրկվում է և 1 օդակի C կետում ամրացված ցսպանակի առաձգականության ուժի շնորհիվ մեխանիզմի օղակները վերադառնում են սկզբնական

դիրքերը: Մեխանիզմի շարժման ուսումնասիրությունը կատարել նրա աշխատանքային ընթացքի համար, որտեղ տեղի ունի $M_m = |M_{r,max}| = const պայմանը:$

<u> Առաջադրանք 21</u>

	α_{max}	L ₁	L ₂	ℓ_{BC}	ℓ_{AC}	ℓ_{AD}	$\ell_{\sf DE}$	ℓ_{EH}	F_{re}		α_{max}	L ₁	L ₂	ℓ_{BC}	ℓ_{AC}	ℓ_{AD}	$\ell_{\sf DE}$	ℓ_{EH}	F_{re}
	աստ			×	:10 ⁻³ น	į			Ն		աստ			×	<10 ⁻³ ι	វ			Ն
1	50	14	50	60	40	70	75	30	3.0	22	50	20	40	50	30	45	55	35	3.2
2	43	13	45	54	38	68	68	27	3.5	23	48	22	44	56	34	50	61	39	3.3
3	40	13	47	57	38	66	71	28	4.0	24	43	30	60	76	48	68	83	53	3.5
4	52	12	42	50	33	58	63	25	4.5	25	40	25	49	61	37	55	67	43	2.5
5	42	13	44	52	35	61	65	28	3.6	26	46	28	56	70	43	63	77	50	2.2
6	37	11	38	46	31	54	58	23	3.8	27	40	32	65	80	48	72	123	56	2.8
7	43	10	36	43	28	50	54	22	2.9	28	52	34	68	86	50	77	94	53	2.9
8	60	15	55	66	44	77	83	33	2.5	29	43	41	80	102	62	92	112	72	2.7
9	45	17	60	72	48	84	90	36	2.2	30	40	38	77	95	57	86	105	67	2.9
10	38	18	65	78	52	90	98	40	3.2	31	44	36	73	90	54	81	100	64	3.7
11	40	19	70	84	55	98	105	42	3.4	32	45	25	30	55	35	50	45	40	3.8
12	45	45	40	80	40	60	50	35	3.6	33	48	27	33	61	39	55	50	45	3.9
13	40	38	33	67	34	50	42	29	4.1	34	42	33	40	72	46	65	59	52	3.6
14	41	41	36	73	37	55	46	32	3.5	35	44	30	36	66	42	60	55	48	3.5
15	38	35	31	62	32	46	39	27	3.3	36	46	38	45	83	53	75	68	60	4.2
16	48	32	29	58	30	43	36	25	3.8	37	48	45	54	99	63	90	81	72	4.1
17	50	50	44	89	45	66	56	32	3.2	38	47	54	51	94	60	85	77	68	4.4
18	45	54	48	96	49	72	60	42	4.2	39	52	51	42	80	50	70	63	56	3.3
19	42	58	52	104	53	78	65	46	4.1	40	45	42	48	88	56	80	72	64	4.5
20	52	68	60	120	62	90	75	53	3.4	41	40	48	57	104	67	95	86	76	4.3
21	55	72	64	128	66	96	80	56	3.1	42	50	57	61	112	72	100	91	80	4.5

Առաջադրանք 22

Տպագրական մեխանիզմի կառուցվածքային սխեման

- $\ell_{\text{FK}} = 2\ell_{\text{EF}} = 2\ell_{\text{FN}}, \ \ell_{\text{DE}} = L_2, \ \ell_{\text{CD}} = L_3$: 4 և 5 օղակների գծամետրի կշիռը՝ q=25 Ն/մ։
 - Շարժիչային ուժի մեծությունը որոշվում է
 - $F_{mi} = 2.25(F_{re} + F_{rci}) \ell_{FN} / L_1 [U]$ պայմանից:

 F_0 t, hul μηςιπηιρηπιώη c = 80 U/ω:

Ձսպանակի սկզբնական ձգվածության ուժր

Մեխանիզմի կիրառումը և աշխատանքի սկզբունքը

Մեխանիցմը կիրառվում է էլեկտրամեխանիկական տպող սարքերում։ Այն կազմված է ABC կուլի-

սային մեխանիզմից և նրան միացված 4-5

կառուցվածքային խմբից։ Մեխանիզմը աշխատում է հետևյալ կերպ՝ աշխատանքային ընթացքի սկզբում 1 օղակը գտնըվում է ձախ ծալրային, իսկ 5 օդակը՝ ուղղաձիգ դիրքից թեքված է _{Փաх} անկյունով։ Կառավարման համակարգի հրահանգով 1 օղակր ձգվում է էլեկտրամագնիսի կողմից, որի համընթաց շար-

ժումը 2, 3 և 4 օդակների միջոցով փոխանցվում է 5 օղակին, որը պտտվելով ժամացույցի սլաքի հակառակ ուղղությամբ ընդունում է ուղղաձիգ դիրք։ K կետում ամրացված նիշը, հաղթահարելով նշված դիրքում օգտակար դիմադրության Fre huuտատուն ուժը, տպվում է թղթի վրա։ Աշխատան-

քային ընթագքի վերջում էլեկտրամագնիսը hnսանքագրկվում է և 5 օղակի N կետում ամրացված զսպանակի առաձգականության ուժի շնորհիվ մեխանիցմի օրակները վերադառնում են սկզբնական դիրքերը։

Մեխանիզմի շարժման հետացոտությունը կատարել նրա աշխատանքային ընթացքի համար։

<u> Առաջադրանք 22</u>

	L ₁	L ₂	L ₃	$\ell_{\sf EF}$	φ _{max}	α	F _o	F_{re}		L ₁	L ₂	L ₃	$\ell_{\sf EF}$	φ _{max}	α	F _o	F_{re}
		×10	⁻³ វេ		ши	ım.		Ն			×10	⁻³ ប		ш	ım.	Ն	ı
1	40	55	15	25	15	20	0.5	3.0	22	131	155	72	80	30	40	2.0	2.5
2	48	66	18	30	15	20	0.4	3.5	23	148	175	81	90	30	40	1.5	3.0
3	56	77	21	35	15	20	0.5	3.0	24	164	194	90	100	30	40	2.0	3.5
4	64	88	24	40	15	20	0.4	3.5	25	48	65	25	23	20	35	2.5	4.0
5	72	99	27	45	15	20	0.5	3.0	26	58	78	30	28	20	35	0.6	3.5
6	80	110	30	50	15	20	0.6	2.5	27	67	91	35	32	20	35	0.4	3.3
7	40	57	25	23	20	35	0.5	2.0	28	77	104	40	37	20	35	0.5	3.1
8	48	68	30	28	20	35	0.3	3.5	29	86	117	45	41	20	35	0.6	2.8
9	56	80	35	32	20	35	0.5	4.0	30	96	130	50	46	20	35	0.5	2.6
10	64	91	40	37	20	35	0.4	3.5	31	50	65	20	27	22	30	0.6	2.5
11	72	103	45	41	20	35	0.5	4.0	32	60	78	24	32	22	30	0.5	2.3
12	80	114	50	46	20	35	0.4	3.5	33	70	91	28	38	22	30	0.6	3.0
13	60	74	30	35	25	25	0.5	4.0	34	80	104	32	43	22	30	0.7	3.5
14	72	89	36	42	25	25	0.4	3.5	35	90	117	36	49	22	30	0.7	3.6
15	84	104	42	49	25	25	0.5	4.0	36	100	130	40	54	22	30	8.0	3.8
16	96	118	48	56	25	25	0.6	2.5	37	70	85	38	45	24	35	0.7	4.0
17	108	133	54	63	25	25	0.5	4.0	38	84	102	46	54	24	35	0.6	4.2
18	120	148	60	70	25	25	0.7	3.5	39	98	119	53	63	24	35	0.8	4.0
19	82	97	45	50	30	40	0.5	4.0	40	112	136	61	72	24	35	0.9	4.2
20	98	116	54	60	30	40	0.4	3.5	41	126	153	68	81	24	35	0.8	4.3
21	115	136	63	70	30	40	0.5	4.0	42	140	170	76	90	24	35	1.0	4.5

3. ԿՈԻՐՍԱՅԻՆ ԱՇԽԱՏԱՆՔԻ ԿԱՏԱՐՄԱՆ ՕՐԻՆԱԿՆԵՐ

3.1. Մեխանիզմի կառուցվածքային վերլուծությունը

Խնդրի լուծումը դիտարկենք երկու մեխանիզմների օրինակի համար, որոնք պայմանականորեն նշանակված են *առաջադրանք Ա*, երբ մուտքի օղակը կատարում է պտտական շարժում (**աղյուսակ 3.1**) և *առաջադրանք Բ*, երբ մուտքի օղակը կատարում է համընթաց շարժում (աղյուսակ 3.2)։

- $\ell_{FF} = 2L_1, L_3 = 1.2\ell_{DE}, \ell_{CD} = 0.75\ell_{DE}, \ell_{DS_3} = 0.4\ell_{DE}$:
- 1, 3 և 5 օղակների գծամետրի կշիռը` ${\bf q_1}=40$ ****/\mathbf{\u00ed}, իսկ 2-րդ օղակի գծամետրի կշիռը` ${\bf q_2}=20$ ****/\mathbf{\u00ed}:

L_1	L_2	$\ell_{ m AB}$	$\ell_{ m BC}$	$\ell_{ m DE}$	ω_0	F _{re} max
		×10 ⁻³ น์			վ ⁻¹	Ն
120	30	38	130	102	18	14

Մեխանիզմի կիրառումը և աշխատանքի սկզբունքը

Մեխանիզմը կարող է օգտագործվել մեխանիկական սարքերում դետալների մատուցման համար։ Այն կազմված է **ABCD** հոդակապա-յին քառօղակից և նրան միացված **4-5** խմբից։

Մեխանիզմը աշխատում է հետևյալ կերպ՝ 1 օղակը շարժիչային $M_{\rm m}$ մոմենտի ազդեցության տակ շարժաբերից ստանում է պտտական շարժում, որը 2, 3 և 4 օղակների միջոցով փոխակերպվում է ելքի 5 օղակի հետադարձ-համընթաց շարժմանը։ Երբ այն տեղափոխվում է ձախից դեպի աջ՝ հաղթահարվում է $F_{\rm re}$ ուժը, որի փոփոխությունը ըստ 5 օղակի S_5 տեղափոխության տրված է գրաֆիկով ։ Յակառակ ուղղությամբ շարժվելիս նշված ուժը չի ազդում։ Մեխանիզմի սկզբնական դիրքը համապատասխանում է DE օղակի ձախ ծայրային դիրքին, երբ AB և BC օղակները դասավորվում են մեկ ուղղի վրա։

Մեխանիզմի շարժման հետազոտությունը կատարել $\mathbf{A}\mathbf{B}$ շուռտվիկի շարժման կայունացված փուլում` ընդունելով $\mathbf{M}_{\mathrm{m}}=\mathbf{const}$:

- $\ell_{CD} = 0.45 \cdot L_1$, $\ell_{CP} = 1.5 \cdot L_1$, $\ell_{AB} = 0.3 \cdot L_1$:
- 1, 3, 4 և 5 օղակների գծամետրի կշիռը **զ** է։
- Ձսպանակի սկզբնական ձգվածության ուժի մոմենտը \mathbf{M}_{o} է, իսկ կոշտությունը $\mathbf{c} = \mathbf{0.002}$ **Նմ / աստ**:

L_1	L_2	$\ell_{ m DE}$	$\ell_{ ext{EF}}$	φ	M_0	M_{re}	q
	×10) ⁻³ ប		աստ	Ն	វ	Ն/մ
80	85	110	102	25	0.15	0.28	10

Մեխանիցմի կիրառումը և աշխատանքի սկզբունքը

Մեխանիզմը կարող է օգտագործվել մեխանիկական սարքերում հիմնական կամ օժանդակ գործողություններ կատարելու նպատակով։ Այն կազմված է ABC կուլիսային մեխանիզմից և նրան միացված 4-5 խմբից։

Մեխանիզմը աշխատում է հետևյալ կերպ` աշխատանքային ընթացքի սկզբում 1 օղակը գտնվում է իր վերին ծայրային, իսկ 5 օղակը՝ հորիզոնական դիրքում։ Կառավարման համակարգի հրահանգով 1 օղակը ձգվում է էլեկտրամագնիսի կողմից, որի համընթաց շարժումը 2, 3 և 4 օղակների միջոցով փոխանցվում է 5 օղակին, որը պտտվելով տրված ϕ անկյան տակ, կատարում է դետալների մատուցում՝ հաղթահարելով օգտակար դիմադրության $M_{\rm re}$ հաստատուն մոմենտը (աշխատանքային ընթացք)։ Աշխատանքային ընթացքի վերջում էլեկտրամագնիսը հոսանքազրկվում է և զսպանակի առաձգական մոմենտի ազդեցության տակ մեխանիզմի օղակները վերադառնում են իրենց սկզբնական դիրքերը։

Մեխանիզմի շարժման հետազոտությունը կատարել նրա աշխատանքային ընթացքի համար, երբ տեղ ունի $\mathbf{F}_m = |\mathbf{F}_{r \, max}| = const$ պայմանը:

Մեխանիզմի կառուցվածքային վերլուծության համար անհրաժեշտ է նրա կառուցվածքային սխեմայի վրա նշել բոլոր կինեմատիկ զույգերը և շարժական օղակները, ամփոփելով արդյունքները **աղյուսակ 3.3**-ում (առաջադրանք Ա) կամ աղյուսակ 3.4-ում (առաջադրանք Բ), որից հետո օգտվելով $\mathbf{W} = 3\mathbf{n} - 2\mathbf{P}_5 - \mathbf{P}_4$ բանաձևից, որտեղ \mathbf{n} -ը շարժական օղակնե-

				arpriedad 0.0
Կին. զույգի տառանշումը	Կին. զույգ կազմող օղակ- ների թվանշերը	Կին. զույգի շարժունու- թյունը	Կին. զույգի դասը	Կին. զույգի անվանումը
A	0 - 1	միաշարժ	٧	ጣ
В	1 - 2	միաշարժ	V	Ф
C	2 - 3	միաշարժ	٧	ጣ
D	0 - 3	միաշարժ	٧	ዋ
E	3 - 4	միաշարժ	V	ጣ
E'	4 - 5	միաշարժ	V	7
F	0 - 5	միաշարժ	V	7
$W = 3n - 2P_5 - P_4 = 3 \cdot 5 - 2 \cdot 7 - 0 = 1$				

րի թիվն է, P_{5} -ը V դասի (միաշարժ), իսկ P_{4} -ը IV դասի (երկշարժ) կինեմատիկ զույգերի թվերն են, որոշվում է մեխանիզմի ազատության աստիճանների թիվո։

Աղյուսակ 3.4

Կին. զույգի տառանշումը	Կին. զույգ կազմող օղակ- ների թվանշերը	Կին. զույգի շարժունու- թյունը	Կին. զույգի դասը	Կին. զույգի անվանումը
A	0 – 1	միաշարժ	٧	7
В	1-2	միաշարժ	٧	ጣ
B'	2-3	միաշարժ	٧	7
C	0-3	միաշարժ	V	П
D	3 – 4	միաշարժ	٧	ጣ
E	4 – 5	միաշարժ	>	ጣ
F	0 – 5	միաշարժ	V	ጣ
$W = 3n - 2P_5 - P_4 = 3 \cdot 5 - 2 \cdot 7 - 0 = 1$				

Քանի որ ուսումնասիրվող մեխանիզմների ազատության աստիճանների թիվը մեկ է, հետևաբար նրանց դինամիկ վերլուծության համար կարող ենք օգտվել բերված պարամետրերի հասկացություններից և խնդիրը բերել մեխանիզմի մեկ օղակի շարժման որոշմանը։

3.2. Մեխանիզմի դիրքերի պլանի կառուցումը

Դիրքերի պլանի կառուցման համար անհրաժեշտ է ունենալ մեխանիզմի օղակների երկարությունների գծագրական չափերը, նախորոք ընտրելով երկարության մասշտաբային μ_{ℓ} գործակիցը։ Դրա համար անհրաժեշտ է որևէ օղակի հայտնի գծային չափ (սովորաբար առավելագույնը) բաժանել այդ չափը պատկերող հատվածի վրա (ընտրվում է գծագրի համար նախատեսված դաշտի չափերից)։

Առաջադրանքներ \mathbf{U} և \mathbf{P} -ում պատկերված մեխանիզմների դիրքերի պլանների կառուցման համար անհրաժեշտ հաշվարկները զետեղված են **աղյուսակ 3.5**-ում։ Այստեղ ինդեքսավորված \mathbf{L} և ℓ -ով նշանակված են համապատասխան հեռավորությունները կամ օղակների իրական մեծությունները \mathbf{U} -ով, իսկ $\mathbf{A}\mathbf{B}$, $\mathbf{B}\mathbf{C}$ և նման նշանակումներով. մեխանիզմի դիրքի պլանի գծագրում այդ մեծությունները պատկերող հատվածների երկարությունները մմ-ով։ Ընդ որում, առաջադրանք \mathbf{U} -ում $\mathbf{L}_1^* = \mathbf{40}$ մմ և առաջադրանք \mathbf{P} -ում $\mathbf{D}\mathbf{E} = \mathbf{55}$ մմ գծագրական չափերը վերցված են կամայական` ելնելով գծագրի համար նախատեսված չափերից։

Աղյուսակ 3.5

Առաջադրանք U	Առաջադրանք Բ
$\mu_{\ell} = \frac{L_1}{L_1^*} = \frac{0.120}{40} = 0.003 \frac{\text{u}}{\text{u}\text{u}},$	$\mu_{\ell} = \frac{\ell_{\rm DE}}{DE} = \frac{0.11}{55} = 0.002 \frac{\mbox{s}}{\mbox{s}} ,$
$L_2^* = \frac{L_2}{\mu_\ell} = \frac{0.03}{0.003} = 10 \text{ dd},$	$L_1^{ullet} = rac{L_1}{\mu_\ell} = rac{0.08}{0.002} = 40$ úú ,
$L_3^* = \frac{L_3}{\mu_\ell} = \frac{0.122}{0.003} = 41$ vs ,	$L_2^* = \frac{L_2}{\mu_\ell} = \frac{0.085}{0.002} = 42.5 \text{ dd},$
$AB = rac{\ell_{AB}}{\mu_{\ell}} = rac{0.038}{0.003} = 12.6 \mbox{ dd}$,	$\mathrm{EF} = \frac{\ell_{\mathrm{EF}}}{\mu_{\ell}} = \frac{0.102}{0.002} = 51 \text{ss} ,$
$BC = \frac{\ell_{BC}}{\mu_{\ell}} = \frac{0.13}{0.003} = 43.3 \text{ úű},$	$CD = 0.45 \cdot L_1^* = 0.45 \cdot 40 = 18$ ຜູ້ນໍ້,
$\mathrm{DE} = rac{\ell_{\mathrm{DE}}}{\mu_\ell} = rac{0.102}{0.003} = 34\mathrm{dd}$,	$CP = 1.3 \cdot L_1^* = 1.3 \cdot 40 = 52 \text{ ss}$:
$CD = 0.75 \cdot DE = 0.75 \cdot 34 = 25.5 \text{ us}$:	

Բոլոր օղակների գծագրական չափերը որոշելուց հետո կառուցվում է մեխանիզմի դիրքերի պլանը։

*Առաջադրանք Ա-*ում անհրաժեշտ է նախ և առաջ կառուցել մեխանիզմը երկու ծայրային դիրքերում։ Այդ նպատակով կամայական $\bf A$ կետից ($\bf Gu$, $\bf 3.1, \bf w$) տեղադրելով $\bf L_1^*$ և $\bf L_2^*$ չափերը որոշվում է $\bf D$ կետի դիրքը։ $\bf C$ կետի $\bf C'$ և $\bf C''$ դիրքերը որոշվում են որպես $\bf A$ կետից համապատասխանաբար $\bf R_1=(\bf AB+BC)$ և $\bf R_2=(\bf BC-\bf AB)$ շառավիղներով և $\bf D$ կետից $\bf DC$ շառավղով տարված շրջանագծերի հատման կետեր։ Քանի որ մեխանիզմի աշխատանքային ընթացքը համապատասխանում է $\bf DC$ օղակի տեղափոխմանը $\bf DC'$ դիրքից՝ $\bf DC''$ -ը, ուստի $\bf AB$ շուռտվիկի $\bf AB'$ դիրքը ընդունելով որպես սկզբնական, նրա լրիվ պտույտի անկյունը բաժանվում է $\bf 8$ հավասար մասերի և $\bf B$ կետի դիրքերը նշանակվում են $\bf i=1,2,...,8$ ինդեքսներով հաշվի առնելով նրա պտույտի ուղղությունը ($\bf \phi_{\bf wzh...\bf 10p},=\bf \phi_{\bf B'AB''}>\bf \phi_{\bf wwn...\bf 10p},=\bf \phi_{\bf B''AB''}$: $\bf C_i$ ($\bf i=1...8$) կետերի դիրքերը որոշվում են իբրև $\bf B_i$ կետերից $\bf BC$ շառավղով և $\bf D$ կետից $\bf DC$ շառավղով տա-

^{*} Եթե մեխանիզմի սկզբնական օղակը լրիվ պտույտ չի կատարում, ապա նրա ճոճի անկյունը բաժանվում է մոտավոր 5 հավասար մասերի։

րած շրջանագծային աղեղների հատման կետեր։ Այնուհետև որոշվում են ${\sf E}$ և ${\sf F}$ կետերի ${\sf E}_{\sf i}$ և ${\sf F}_{\sf i}$ դիրքերը։

Առաջադրանք \mathbf{P} -ում մեխանիզմի դիրքերի պլանի կառուցումը նույնպես անհրաժեշտ է սկսել նրա երկու ծայրային դիրքերից, որոնք համապատասխանում են $\mathbf{5}$ -րդ օղակի ճոճի $\mathbf{\phi}$ անկյան առավելագույն և նվազագույն արժեքներին։ Այդ նպատակով կամայական \mathbf{F} կետից ($\mathbf{6}\mathbf{4}$, $\mathbf{3}$, $\mathbf{2}$, \mathbf{w}) տեղադրելով \mathbf{L}_1^* և \mathbf{L}_2^* չափերը՝ որոշվում է \mathbf{C} կետի դիրքը։ $\mathbf{5}$ -րդ օղակի սկզբնական դիրքը հորիզոնական է, ուստի \mathbf{F} կետից տարված հորիզոնականի վրա տեղադրվում է $\mathbf{E}\mathbf{F}$ չափը և որոշվում \mathbf{E} կետի \mathbf{E}_0 դիրքը։ $\mathbf{F}\mathbf{E}_0$ -ի նկատմամբ $\mathbf{\phi}$ անկյան տակ կառոըցվում է $\mathbf{5}$ -րդ օղակի մյուս $\mathbf{F}\mathbf{E}_5$ ծայրային դիրքը։ \mathbf{D} կետի համապատասխան \mathbf{D}_0 և \mathbf{D}_5 դիրքերը որոշվում են որպես \mathbf{E}_0 և \mathbf{E}_5 կետերից $\mathbf{E}\mathbf{D}$ շառավղով և \mathbf{C} կետից $\mathbf{C}\mathbf{D}$ շառավղով տարված շրջանագծերի հատման կետեր։ $\mathbf{3}$ -րդ օղակի ծայրային դիրքերի հատումը $\mathbf{A}\mathbf{B}$ օղակի շարժման առանցքի հետ կորոշեն $\mathbf{1}$ օղակի վերին և ստորին ծայրային դիրքերը բնութագրող

 ${f B}_0$ և ${f B}_5$ կետերը։ Քանի որ մուտքի օղակը **1**-ին օղակն է, ապա ${f B}_0{f B}_5$ հատվածը բաժանելով **5** հավասար մասերի` կորոշվեն ${f B}$ կետի մյուս դիրքերը։ ${f B}$ կետի որոշված ${f B}_i$ դիրքերի համար կառուցվում են մեխանիզմի մյուս օղակների համապատասխան դիրքերը։

Մեխանիզմի աշխատանքային ընթացքին համապատասխանող ոչ ծայրային դիրքերից մեկը մգացվում է, որի համար նշվում են մեխանիզմի օղակների վրա ազդող բոլոր արտաքին ուժերը և մոմենտները։

3.3. Արագությունների պլանների կառուցումը

Յամածայն վերը շարադրվածի (տես կետ 1.2-ը), մեխանիզմի յուրաքանչյուր դիրքում բերված պարամետրերի մեծությունները որոշելու համար անհրաժեշտ է նշված դիրքերում կառուցել արագությունների պլաններ և (1.1) - (1.4) բանաձևերում արագությունների հարաբերությունները փոխարինել արագությունների պլանի համապատասխան հատվածների հարաբերությամբ։

Արագությունների պլանի կառուցման հիմք են հանդիսանում մեխանիզմի օղակների առանձին կետերի արագությունների միջև կապ հաստատող վեկտորական հավասարումները։ Քանի որ կուրսային աշխատանքի առաջադրանքներում տեղ գտած մեխանիզմները ունեն երկու կառուցվածքային խմբեր, ապա արագությունների պլանների կառուցումը կատարվում է այդ խմբերի միացման հերթականությամբ։

Ստորև բերված են առաջադրանքներ **Ա** և **Բ**-ի մեխանիզմների առանձին կետերի արագությունների միջև կապ հաստատող վեկտորական հավասարումները և այդ հավասարումներին համապատասխան նկարագրված են արագությունների պլանների կառուցումը համապատասխանաբար **նկ.3.1,ա** և **նկ.3.2,ա**-ում մուգ գծերով պատկերված դիրքերի համար։ Մնացած դիրքերի համար արագությունների պլանները կառուցված են հավելվածում։

<u> Առաջադրանք Ա</u>

 ${f 2}$ -րդ օղակը կատարում է հարթ շարժում։ Նրան պատկանող ${f C}$ կետի \overline{V}_C արագությունը կարելի է որոշել որպես բևեռ ընտրած ${f B}$ կետի \overline{V}_B արագության և օղակի հետ միասին այդ բևեռի շուրջը ${f C}$ կետի պտտական շարժման \overline{V}_{CB} արագության վեկտորական գումարից`

$$\overline{V}_{C}$$
 = \overline{V}_{B} + \overline{V}_{CB} : nւղղпւթյունը - $\bot CD$ $\bot AB$ $\bot BC$

Յավասարումը լուծվում է գրաֆիկ եղանակով` արագությունների պլանի օգնությամբ։ Կամայական ընտրված ${\bf p}$ բևեռից (${\bf Gu}$.3.1, ${\bf p}$) պետք է տանել $\overline{{\bf pb}}$ \bot ${\bf AB}$ -ին վեկտորը, որն արտահայտում է ${\bf B}$ կետի $\overline{{\bf V}}_{\bf B}$ արագությունը։ Դրա գծագրական չափը ընտրվում է կամայական, ելնելով արագությունների պլանի կառուցման համար հատկացված դաշտի չափերից (${\bf Gu}$.3.1, ${\bf p}$ -ում ${\bf pb}$ = 27 ${\bf du}$)։ Պլանի ${\bf b}$ կետից պետք է տանել ուղղահայաց ${\bf BC}$ -ին, իսկ ${\bf p}$ բևեռից՝ ${\bf CD}$ -ին։ Դրանց հատման ${\bf c}$ կետը միանշանակ կորոշի $\overline{{\bf V}}_{\bf C}$ և $\overline{{\bf V}}_{\bf CB}$ վեկտորների ${\bf pc}$ և ${\bf bc}$ գծագրական պատկերները, որոնց ուղղությունները որոշվում են ըստ վեկտորական հավասարման։

Քանի որ մեխանիզմի **A** և **D** կետերն անշարժ են, ուստի արագությունների պլանի վրա այդ կետերը կպատկերվեն **p** բևեռով։

 ${f 3}$ -րդ օղակին պատկանող ${f E}$ կետը գտնվում է ${f DC}$ հատվածի շարունակության վրա, ուստի ըստ նմանության հատկության արագությունների պլանի ${f e}_3$ կետը պետք է գտնվի ${f pc}$ հատվածի շարունակության վրա, իսկ $\overline{{f V}}_{{f E}_3}$ արագության ${f pe}_3$ գծագրական պատկերի չափը կորոշվի

$$\frac{DC}{DE} = \frac{pc}{pe_2},$$

պայմանից, որտեղից

$$pe_3 = pc \cdot \frac{DE}{DC} = 25 \cdot \frac{34}{25.5} = 33.4 \text{ dd}$$
:

Քանի որ **4** և **3** օղակները միմյանց միացված են հոդակապով, ապա $\overline{V}_{E_4} = \overline{V}_{E_3}$, իսկ **5**-րդ օղակին պատկանող ուղղագիծ շարժում կատարող E_5 կետի արագությունը զուգահեռ է X-X ուղղորդին, որի մեժությունը որոշվում է հետևյալ վեկտորական հավասարումից`

$$\overline{\mathbf{V}}_{\mathbf{E}_5}$$
 = $\overline{\mathbf{V}}_{\mathbf{E}_4}$ + $\overline{\mathbf{V}}_{\mathbf{E}_5\mathbf{E}_4}$ підпірыній - $\parallel \mathbf{X}$ + $\parallel \mathbf{F}\mathbf{E}$

Այս հավասարումը լուծելու համար արագությունների պլանի e_3 կետից անհրաժեշտ է տանել զուգահեռ FE-ին, իսկ p բևեռից՝ զուգահեռ X-X-ին։ Դրանց հատման e_5 կետը միանշանակ կորոշի \overline{V}_{E_5} և $\overline{V}_{E_5E_4}$ վեկտորների pe_5 և e_4e_5 գծագրական պատկերները, որոնց ուղղություն-

ները որոշվում են ըստ վեկտորական հավասարման։ Ընդ որում $\overline{V}_F = \overline{V}_{E_5}$, քանի որ $\mathbf{5}$ -րդ օղակը կատարում է համընթաց շարժում ։

Յամածայն օղակի և արագությունների պլանի համապատասխան պատկերների նմանության հատկության 2-րդ և 3-րդ օղակների զանգվածների S_2 և S_3 կենտրոնների դիրքը արագությունների պլանում համապատասխանաբար պատկերվում է s_2 և s_3 կետերով և որոշվում է

$$\frac{BS_2}{BC} = \frac{bs_2}{bc} \qquad u \qquad \frac{DS_3}{DE} = \frac{ps_3}{pe_3}$$

պայմաններից, որտեղից

$$bs_2 = bc \cdot \frac{BS_2}{BC} = 4 \cdot \frac{21.6}{43.3} = 2 \text{ dd,}$$

 $ps_3 = pe_3 \cdot \frac{DS_3}{DE} = 40 \cdot \frac{13.6}{34} = 16 \text{ dd:}$

<u> Առաջադրանք Բ</u>

1-ին, 2-րդ և 3-րդ օղակներին պատկանող B կետերի արագությունների միջև կապը հաստատվում է հետևյալ վեկտորական հավասարումներով.

$$\overline{V}_{B_2} = \overline{V}_{B_1}$$
,
$$\overline{V}_{B_3} = \overline{V}_{B_2} + \overline{V}_{B_3B_2} :$$
 nιηηπιρjnιώς - \bot BC $B \rightarrow A^* \parallel BC$

Յավասարումը լուծվում է գրաֆիկ եղանակով` արագությունների պլանի օգնությամբ։ Կամայական ընտրված ${\bf p}$ բևեռից (${\bf Gl}.3.2,{\bf p}$) պետք է տանել $\overline{{\bf pb}_1}\parallel {\bf AB}$ -ին (${\bf B}$ -ից ուղղված դեպի ${\bf A}$) վեկտորը, որն արտահայտում է ${\bf 1}$ -ին օղակին համապատասխանող ${\bf B}_1$ կետի $\overline{{\bf V}}_{{\bf B}_1}$ արագությունների պլանի կառուցման համար հատկացված դաշտի չափերից (${\bf Gl}.3.1,{\bf p}$ -ում ${\bf pb}_1=30$ մմ)։ Պլանի ${\bf b}_1$ կետից անհրաժեշտ է տանել զուգահեռ ${\bf BC}$ -ին, իսկ ${\bf p}$ բևեռից` ուղղահայաց ${\bf BC}$ -ին։ Վերջիններիս հատման ${\bf b}_3$ կետը միանշանակ կորոշի $\overline{{\bf V}}_{{\bf B}_3}$ և $\overline{{\bf V}}_{{\bf B}_3{\bf B}_2}$ վեկտորների ${\bf pb}_3$ և ${\bf b}_2{\bf b}_3$ գծագրական պատկերները, որոնց ուղղությունները որոշվում են ըստ վեկտորական հավասարման։

-

^{*} Պետք է կարդալ` B կետից ուղղված դեպի A-ն։

Քանի որ մեխանիզմի C և F կետերն անշարժ են, ուստի արագությունների պլանի վրա այդ կետերը կպատկերվեն **p** բևեռով։

3-րդ օղակին պատկանող D կետը գտնվում է BC հատվածի շարունակության վրա, ուստի ըստ նմանության հատկության արագությունների պլանի d կետը պետք է գտնվի b_3p հատվածի շարունակության վրա, իսկ \overline{V}_D արագության pd գծագրական պատկերի չափը կորոշվի

$$\frac{CD}{CB_3} = \frac{pd}{pb_3},$$

պայմանից, որտեղից $pd = pb_3 \cdot \frac{CD}{CB_2} = 29 \cdot \frac{18}{40} = 13$ մմ:

4-րդ օղակը կատարում է հարթ շարժում, որին պատկանող ${f E}$ կետի ${f \overline V}_E$ արագությունը կարելի է որոշել որպես բևեռ ընտրած ${f D}$ կետի ${f \overline V}_D$ արագության և օղակի հետ միասին այդ բևեռի շուրջը ${f E}$ կետի պտտական շարժման ${f \overline V}_{ED}$ արագության վեկտորական գումարից`

$$\overline{V}_{E}$$
 = \overline{V}_{D} + \overline{V}_{ED} : nւղղпւթյունը - $\bot EF$ + $\bot ED$

Այս հավասարումը լուծելու համար արագությունների պլանի ${f d}$ կետից պետք է տանել ուղղահայաց ${f ED}$ -ին, իսկ ${f p}$ բևեռից՝ ուղղահայաց ${f EF}$ -ին։ Դրանց հատման ${f e}$ կետը միանշանակ կորոշի ${f \overline V}_E$ և ${f \overline V}_{ED}$ վեկտորների ${f pe}$ և ${f de}$ գծագրական պատկերները, որոնց ուղղությունները որոշվում են ըստ վեկտորական հավասարման։

Յամածայն օղակի և արագությունների պլանի համապատասխան պատկերների նմանության հատկության 3-րդ, 4-րդ և 5-րդ օղակների զանգվածների S_3 , S_4 և S_5 կենտրոնների դիրքը արագությունների պլանում համապատասխանաբար պատկերվում է s_3 , s_4 և s_5 կետերով և որոշվում է

$$\frac{CS_3}{CB_3} = \frac{ps_3}{pb_3}$$
, $\frac{DS_4}{DE} = \frac{ds_4}{de}$ u $\frac{FS_5}{FE} = \frac{ps_5}{pe}$

պայմաններից, որտեղից

$$ps_3 = pb_3 \cdot \frac{CS_3}{CB_3} = 29 \cdot \frac{17}{40} = 12.3 \text{ úú},$$

$$ds_4 = de \cdot \frac{DS_4}{DE} = 6 \cdot \frac{27.5}{55} = 3 \text{ LL}, \qquad ps_5 = pe \cdot \frac{FS_5}{FE} = 12 \cdot \frac{25.5}{51} = 6 \text{ LL}.$$

Աղյուսակ 3.6-ում բերված են տարբեր կառուցվածքային խմբերի արագությունների պլանները և նրանց կառուցումը հիմնավորող վեկ-տորոկան հավասարումները, ընդ որում սխեմաների \mathbf{D} և \mathbf{C}_0 կետերը անշարժ են, որի պատճառով նշված չեն այդ կետերի արագությունների ուղղությունները։

Աղյուսակ 3.6 Արագությունների միջև կապ Արագությունների Կառուցվածհաստատող վեկտորական քային խումբ պլան հավասարումները $\overline{V}_{C} = \overline{V}_{B} + \overline{V}_{CB} \rightarrow$ P(d) $\int \overline{V}_{C} = \overline{V}_{D} + \overline{V}_{CD}$ $\overline{V}_{R} + \overline{V}_{CR} = \overline{V}_{D} + \overline{V}_{CD}$ nlηη, ⊥AB ⊥CB - ⊥CD $\overline{\mathbf{V}}_{\mathbf{C}_2} = \overline{\mathbf{V}}_{\mathbf{C}_3} = \begin{cases} \overline{\mathbf{V}}_{\mathbf{C}_2} = \overline{\mathbf{V}}_{\mathbf{B}} + \overline{\mathbf{V}}_{\mathbf{C}_2\mathbf{B}} \\ \overline{\mathbf{V}}_{\mathbf{C}_3} = \overline{\mathbf{V}}_{\mathbf{C}_0} + \overline{\mathbf{V}}_{\mathbf{C}_3\mathbf{C}_0} \end{cases} \Rightarrow$ $\overline{\mathbf{V}}_{\mathbf{B}}$ + $\overline{\mathbf{V}}_{\mathbf{C}_{2}\mathbf{B}}$ = $\overline{\mathbf{V}}_{\mathbf{C}_{0}}$ + $\overline{\mathbf{V}}_{\mathbf{C}_{3}\mathbf{C}_{0}}$ $P(c_0)$ $P(c_0)$ $b_4(b_3)$ $\overline{\mathbf{V}}_{\mathbf{B_2}}$ + $\overline{\mathbf{V}}_{\mathbf{B_4B_2}}$ = $\overline{\mathbf{V}}_{\mathbf{C_0}}$ + $\overline{\mathbf{V}}_{\mathbf{B_4C_0}}$ b_2 b_4 $\overline{\mathbf{V}}_{\mathbf{B_3}} + \overline{\mathbf{V}}_{\mathbf{B_4}\mathbf{B_3}} = \overline{\mathbf{V}}_{\mathbf{C_0}} + \overline{\mathbf{V}}_{\mathbf{B_4}\mathbf{C_0}}$ п∟ηη. ⊥АВ | | ҮҮ - | | СС′ $b_2(b_3)$

3.4. Մեխանիզմի օղակների վրա ազդող արտաքին ուժերի և մոմենտների որոշումը

• Օղակների *ծանրության* G_i *ուժերը* կիրառված են համապատասխան օղակների երկրաչափական կենտրոններում և որոշվում են $G_i = q_i \cdot \ell_i$ արտահայտությունից, որտեղ q_i -G i-րդ օղակի գծամետրի կշիռն է, իսկ ℓ_i -ը՝ նրա երկարությունը։ Առաջադրանքներ \mathbf{U} և \mathbf{P} -ի համար ծանրության ուժերի հաշվարկը բերված է **աղյուսակ 3.7**-ում, իսկ այդ ուժերի կիրառման կետերը ցույց են տրված **նկ.3.1,ա** և **3.2,ա**-ում։

Աղյուսակ 3.7

	B 1
Առաջադրանք U	Առաջադրանք Բ
$G_1 = q_1 \cdot \ell_{AB} = 40 \cdot 0.038 = 1.52 \text{ U}$ $G_2 = q_2 \cdot \ell_{BC} = 20 \cdot 0.13 = 2.6 \text{ U}$ $G_3 = q_1 \cdot \ell_{DE} = 40 \cdot 0.102 = 4.08 \text{ U}$	$G_1 = \mathbf{q} \cdot \ell_{AB} = 10 \cdot 0.024 = 0.24 \text{ U}$ $G_3 = \mathbf{q} \cdot \ell_{DP} = 10 \cdot 0.156 = 1.56 \text{ U}$ $G_4 = \mathbf{q} \cdot \ell_{DE} = 10 \cdot 0.110 = 1.1 \text{ U}$
$G_5 = q_1 \cdot \ell_{F'F''} = 40 \cdot 0.24 = 9.6 \text{ U}$	$G_5 = q \cdot \ell_{EF} = 10 \cdot 0.102 = 1.02 \text{ U}$

$$\mu_{S_F} = \frac{S_F}{X_F^*} \qquad \qquad \text{L} \qquad \qquad \mu_{F_{re}} = \frac{F^{\frac{max}{re}}}{y_{max}} \,, \label{eq:mus_fit}$$

որտեղ \mathbf{X}_F^* -ը և \mathbf{y}_{max} -ը համապատասխան ֆիզիկական մեծությունների կամայական ընտրված գծագրական մեծություններն են։ Այսպիսով, \mathbf{F}_{re} ուժի մեծությունը մեխանիզմի առանձին դիրքերում կարելի է որոշել հետևյալ արտահայտությունից.

$$\mathbf{F}_{rei} = \mathbf{y}_i \cdot \boldsymbol{\mu}_{\mathbf{F}_m}$$
:

Նշված մասշտաբային գործակիցների և \mathbf{F}_{re} ուժի հաշվարկները առաջադրանք \mathbf{U} -ի համար բերված են աղյուսակ $\mathbf{3.8}$ -ում:

					ուլյուսակ 5.0
$S_F = 0.105 \text{u},$		$X_F^* = 62 \text{ dd}, \qquad \mu_{S_F} = \frac{0.105}{62} = 0.0017 [\text{d/dd}]$			7 [นี/นีนี]
$y_{max} = 14 \text{ dd}, \qquad \qquad \mu_{F_{re}} = \frac{14}{14} = 1 \text{ [U/dd]}$					
մ-զմի դիրքը	0 (8)	1	2	3	4 - 7
y _i [մմ]	0	8	14	6.5	0
F _{re} [U]	0	8	14	6.5	0

Առաջադրանք \mathbf{P} -ում պատկերված մեխանիզմի $\mathbf{5}$ -րդ օղակի վրա բոլոր դիրքերում ազդում է օգտակար դիմադրության \mathbf{M}_{re} մոմենտը (տես $\mathbf{6}\mathbf{l}_1.3.2,\mathbf{w}$), որն ուղված է այդ օղակի շարժման ուղղությանը հակառակ։ Այն հաստատուն է և բոլոր դիրքերում ունի միևնույն $\mathbf{M}_{re} = \mathbf{0.28}$ [$\mathbf{b}\mathbf{d}$] արժեքը։

• Ձսպանակի առածգականության F_{rc} ուժն առաջանում է այն մեխանիզմներում, որտեղ օղակներն իրենց սկզբնական դիրքերը վերադառնում են զսպանակի առաձգականության ուժի շնորհիվ և որոշվում է համաձայն **Յուկի** օրենքի՝

$$\mathbf{F}_{rci} = \mathbf{F}_0 + \mathbf{C} \cdot \Delta \mathbf{X}_{in}$$

որտեղ` F_0 -ն զսպանակի նախնական ձգվածության (կամ սեղմվածության) ուժն է, C-ն` նրա կոշտությունը, իսկ ΔX_i -ն` զսպանակի բացարձակ դեֆորմացիան է:

եթե զսպանակը միացված է համընթաց շարժում կատարող օղակին (**նկ.3.3,ա**), ապա

$$\Delta X_i = (E_i E_0) \cdot \mu_{\ell}$$
:

Օղակի պտտական շարժման դեպքում (նկ.3.3,բ)`

$$\Delta \mathbf{X}_i = (\mathbf{B}_i \mathbf{B}_0) \cdot \boldsymbol{\mu}_\ell$$
:

Ձսպանակի առածգականության \mathbf{F}_{rc} ուժը ուղղված է միացման կետի շարժման ուղղությանը հակառակ։ Երկու դեպքում էլ $\boldsymbol{\mu_\ell}$ -ը` մեխանիզմի դիրքերի պլանի մաշտաբային գործակիցն է։

• Ձսպանակի առածգականության ուժի \mathbf{M}_{rc} մոմենտի հաշվարկը դիտարկենք առաջադրանք \mathbf{P} -ի օրինակով (տես \mathbf{G} կ.3.2,ա-ն)՝ որտեղ \mathbf{M}_{rc} -ի արժեքներն որոշվում են համաձայն

$$\mathbf{M}_{\mathrm{rci}} = \mathbf{M}_0 + \mathbf{C} \cdot \Delta \boldsymbol{\varphi}_i$$

բանաձևի, որտեղ \mathbf{M}_0 -ն` զսպանակի նախնական ձգվածության (կամ սեղմվածության) ուժի մոմենտն է, իսկ $\Delta \phi_i$ -ն` զսպանակի անկյունային դեֆորմացիան է սկզբնական դիրքի նկատմամբ։ Այլ կերպ ասած, դա 5-րդ օղակի պտտման անկյունն է սկզբնական դիրքի նկատմամբ։ Առաջադրանք Բ-ի տվյալներով զսպանակի առաձգականության ուժի \mathbf{M}_{rc} մոմենտի հաշվարկը բերված է աղյուսակ 3.9-ում։

Աղյուսակ 3.9

Դիրքը	Յաշվարկը
$0. \Delta \phi_0 = 0^{\circ}$	M_{rc0} = M_0 + C \cdot $\Delta \phi_0$ = 0.15 + 0.002 \cdot 0 = 0.15 ป น์
1. $\Delta \varphi_1 = 5^{\circ}$	M_{rc1} = M_0 + $C \cdot \Delta \phi_1$ = $0.15 + 0.002 \cdot 5 = 0.16$ ៤វ
2. $\Delta \phi_2 = 10^{\circ}$	M_{rc2} = M_0 + $C \cdot \Delta \phi_2$ = $0.15 + 0.002 \cdot 10 = 0.17$ ប់បំ
3. $\Delta \phi_3 = 15^{\circ}$	M_{rc3} = M_0 + $C \cdot \Delta \phi_3$ = $0.15 + 0.002 \cdot 15 = 0.18$ ប់បំ
4. $\Delta \phi_4 = 20^{\circ}$	M_{rc4} = M_0 + $C\cdot\Delta\phi_4$ = 0.15 + $0.002\cdot20$ = 0.19 ៤វ
5. $\Delta \phi_5 = 25^{\circ}$	M_{re5} = M_0 + $C \cdot \Delta \phi_5$ = $0.15 + 0.002 \cdot 25$ = 0.20 ៤វ

• *Շարժիչային F_m ուժի* կամ *ուժազույգի M_m մոմենտի* որոշման եղանակները, կախված խնդրի դրվածքում վերջիններիս վերաբերյալ տրված պայմանների, շարադրված են կետ **3.7**-ում։

3.5. Դիմադրության ուժերից բերված M_r մոմենտի (կամ F_r ուժի) որոշումը և փոփոխման գրաֆիկի կառուցումը

Դիմադրության ուժերից բերված \mathbf{M}_r մոմենտի կամ \mathbf{F}_r ուժի որոշումը դիտարկենք, համապատասխանաբար, **առաջադրանքներ Ա** (բերման օղակը կատարում է պտտական շարժում) և \mathbf{P} -ի (բերման օղակը կատարում է համընթաց շարժում) օրինակների վրա:

<u> Առաջադրանք Ա</u>

Բերված $\mathbf{M_r}$ *մոմենտը* որոշելու համար անհրաժեշտ է բանաձև (1.2)-ում $\mathbf{F_i}$ և $\mathbf{M_i}$ -ի փոխարեն տեղադրել մեղանիզմի օղակների վրա ազդող բոլոր արտաքին ուժերը և ուժազույգերի մոմենտները, $\mathbf{V_i}$ և $\mathbf{\omega_i}$ -ի փոխարեն` համապատասխանաբար $\mathbf{F_i}$ ուժերի կիրառման կետերի արագությունները և $\mathbf{M_i}$ մոմենտների կիրառման օղակների անկյունային արագությունները, $\mathbf{\omega}$ -ի փոխարեն` բերման օղակի անկյունային արագությունը, $\mathbf{\alpha_i}$ և $\mathbf{\beta_i}$ -ի` համապատասխանաբար, $\mathbf{\overline{F_i}}$ և $\mathbf{\overline{V_i}}$ ու $\mathbf{\overline{M_i}}$ և $\mathbf{\overline{\omega_i}}$ սեկտոոների կազմած անկյունները։ Ընդ որում, արագությունների հա-

րաբերությունները փոխարինվում են արագությունների պլանի համապատասխան հատվածների հարաբերություններով։

$$\begin{split} M_r &= G_1 \frac{V_{S_1}}{\omega_1} \cos \left(\overline{G}_1 \overset{\wedge}{\overline{V}}_{S_1}\right) + G_2 \frac{V_{S_2}}{\omega_1} \cos \left(\overline{G}_2 \overset{\wedge}{\overline{V}}_{S_2}\right) + \\ &+ G_3 \frac{V_{S_3}}{\omega_1} \cos \left(\overline{G}_3 \overset{\wedge}{\overline{V}}_{S_3}\right) + G_5 \frac{V_{S_5}}{\omega_1} \cos \left(\overline{G}_5 \overset{\wedge}{\overline{V}}_{S_5}\right) + F_{re} \frac{V_F}{\omega_1} \cos \left(\overline{F}_r \overset{\wedge}{\overline{V}}_F\right) \colon \quad (3.1) \\ &+ \operatorname{Suzylp} \text{ unfilting, np'} \quad \omega_1 = V_B / \ell_{AB} \,, \quad V_{S_1} = V_A = 0, \\ &+ \operatorname{cos} \left(\overline{G}_5 \overset{\wedge}{\overline{V}}_{S_5}\right) = \cos 90^\circ = 0 \quad \text{l.} \quad \cos \left(\overline{F}_{re} \overset{\wedge}{\overline{V}}_F\right) = \cos 180^\circ = -1 \end{split}$$

(3.1) հավասարումը բերվում է հետևյալ տեսքի՝

$$\begin{split} M_{r} &= G_{2}\left(\frac{V_{S_{2}}}{\omega_{1}}\right)\cos\left(\overline{G}_{2}\overset{\wedge}{\overline{V}_{S_{2}}}\right) + G_{3}\cdot\left(\frac{V_{S_{3}}}{\omega_{1}}\right)\cdot\cos\left(\overline{G}_{3}\overset{\wedge}{\overline{V}_{S_{3}}}\right) - F_{re}\cdot\left(\frac{V_{F}}{\omega_{1}}\right) = \\ &= G_{2}\left(\frac{(ps_{2})\cdot\mu_{V}}{(pb)\cdot\mu_{V}/\ell_{AB}}\right)\cdot\cos\left(\overline{G}_{2}\overset{\wedge}{\overline{V}_{S_{2}}}\right) + G_{3}\left(\frac{(ps_{3})\cdot\mu_{V}}{(pb)\cdot\mu_{V}/\ell_{AB}}\right)\cdot\cos\left(\overline{G}_{3}\overset{\wedge}{\overline{V}_{S_{3}}}\right) - \\ &- F_{re}\cdot\left(\frac{(pf)\cdot\mu_{V}}{(pb)\cdot\mu_{V}/\ell_{AB}}\right) = G_{2}\left(\frac{ps_{2}}{pb}\right)\cdot\ell_{AB}\cdot\cos\left(\overline{G}_{2}\overset{\wedge}{\overline{V}_{S_{2}}}\right) + G_{3}\left(\frac{ps_{3}}{pb}\right)\cdot\ell_{AB}\cdot\\ &\cdot\cos\left(\overline{G}_{3}\overset{\wedge}{\overline{V}_{S_{3}}}\right) - F_{re}\cdot\left(\frac{pf}{pb}\right)\cdot\ell_{AB}, \end{split} \tag{3.2}$$

որտեղ \mathbf{pS}_2 , \mathbf{pS}_3 , \mathbf{pf} և \mathbf{pb} հատվածները համապատասխանաբար \mathbf{S}_2 , \mathbf{S}_3 , \mathbf{F} և \mathbf{B} կետերի արագությունների գծագրական մեծություններն են արագությունների պլանների վրա (տես $\mathbf{G}\mathbf{u},\mathbf{3},\mathbf{p}$)։ Քանի որ \mathbf{G}_2 , \mathbf{G}_3 , ℓ_{AB} և \mathbf{pb} մեծությունները հաստատուն են մնում մեխանիզմի բոլոր դիրքերի համար, ապա (3.2) հավասարումը կարելի է բերել հետևյալ տեսքի՝

$$\mathbf{M}_{ri} = \mathbf{C}_1 \cdot (\mathbf{p}\mathbf{s}_2)_i \cdot \mathbf{cos} (\overline{\mathbf{G}}_2 \overset{\wedge}{\mathbf{V}}_{\mathbf{S}_2})_i + \mathbf{C}_2 \cdot (\mathbf{p}\mathbf{s}_3)_i \cdot \mathbf{cos} (\overline{\mathbf{G}}_3 \overset{\wedge}{\mathbf{V}}_{\mathbf{S}_3})_i - \mathbf{C}_3 \cdot (\mathbf{F}_{re})_i \cdot (\mathbf{p}\mathbf{f})_i, (3.3)$$

որտեղ՝
$$C_1 = G_2 \cdot \left(\frac{\ell_{AB}}{pb}\right)$$
, $C_2 = G_3 \cdot \left(\frac{\ell_{AB}}{pb}\right)$, $C_3 = \left(\frac{\ell_{AB}}{pb}\right)$ hաստատուններ են,

իսկ $\cos{(\overline{G}_2 \overset{\wedge}{\nabla}_{S_2})_i}$, $\cos{(\overline{G}_3 \overset{\wedge}{\nabla}_{S_3})_i}$ մեծությունները որոշվում են համապա-

տասխան արագությունների պլանից՝ չափելով \overline{G}_2 և $\overline{ps_2}$; \overline{G}_3 և $\overline{ps_3}$ վեկտորների կազմած β և γ անկյունները (**նկ.3.4; 3.5**) * :

Այժմ համապատասխան դիրքերի արագությունների պլաններից (տես **հավելվածը**) և **աղյուսակ 3.10**-ից, (**3.3**) արտահայտության մեջ տեղադրելով փոփոխականները՝ կորոշվեն բերված \mathbf{M}_{ri} մոմենտի արժեքները մեխանիզմի հետազոտվող դիրքերում։

	Աղյուսակ 3.1						ակ 3.10	
	0 (8)	1	2	3	4	5	6	7
ps ₂ [մմ]	13.5	23	27	21	13	16	25	21
ps ₃ [մմ]	0	11	15	10	2.5	7	14	14
pf [մմ]	0	27	33	22	6	15	30	33
F _{re} [b]	0	6	14	3	0	0	0	0
M _r [Նմ]	-0.06	-0.18	-0.54	-0.13	0.05	0.05	-0.01	-0.057
$\mu_{\rm M} = {\bf M}_{\rm rmax} /{\bf y}_{\rm max}, {\bf y}_{\rm i} = {\bf M}_{\rm i}/\mu_{\rm M}, {\bf y}_{\rm max}$ -ը կամայական է (ընդ. ${\bf y}_{\rm max} = 45$ մմ)								
y _i [մմ]	-5	-15	-45	-11	3	3	-1	-5

 $^{^*}$ Պրոյեկտելով ps_2 վեկտորը Oy առանցքի վրա` կորոշվի $ps_2 \cdot cos(\overline{G}_2 \overset{\wedge}{\overline{V}}_{S_2})$ արտահայտության h_2 արժեքը գրաֆիկորեն։

Որոշված y_i -ի արժեքներով կառուցվում է $M_r = M_r(\phi)$ ֆունկցիայի գրաֆիկը (**նկ. 3.6**), նախապես աբսցիսների առանցքի վրա վերցված կամայական L հատվածը բաժանելով 8 հավասար մասերի, ընդ որում`

$$μ_{\phi} = φ_{max} \cdot \frac{\pi}{180} / L = 360^{\circ} \cdot \frac{3.14}{180} / 65 = 0.096 [nun/úú]:$$

<u>Առաջադրանք Բ</u> (բացի առաջադրանք թիվ **22**-ի, որտեղ \mathbf{F}_r ուժի փոխարեն որոշվում է \mathbf{F} բերված ուժը շարժիչային և դիմադրող ուժերից միաժամանակ)։ Բերված \mathbf{F}_r ուժը որոշելու համար անհրաժեշտ է բանաձև (**1.1**)-ում \mathbf{F}_i և \mathbf{M}_{ir} ի փոխարեն տեղադրել մեղանիզմի օղակների վրա ազդող բոլոր արտաքին ուժերը և ուժազույգերի մոմենտները, \mathbf{V} -ի փոխարեն՝ բերման օղակի գծային արագությունը, α_i և β_{ir} -ի՝ համապատասխանաբար, $\overline{\mathbf{F}}_i$ և $\overline{\mathbf{V}}_i$ ու $\overline{\mathbf{M}}_i$ և $\overline{\omega}_i$ վեկտորների կազմած անկյունները։ Ընդ որում, արագությունների հարաբերությունները փոխարինվում են արագությունների պլանի համապատասխան հատվածների հարաբերություններով։

$$\begin{split} F_r &= G_1 \cdot \frac{V_{S_1}}{V_{B_1}} \cdot \cos(\overline{G}_1 \dot{\overline{V}}_{S_1}) + G_3 \cdot \frac{V_{S_3}}{V_{B_1}} \cdot \cos(\overline{G}_3 \dot{\overline{V}}_{S_3}) + G_4 \cdot \frac{V_{S_4}}{V_{B_1}} \cdot \cos(\overline{G}_4 \dot{\overline{V}}_{S_4}) + \\ &+ G_5 \cdot \frac{V_{S_5}}{V_{B_1}} \cdot \cos(\overline{G}_5 \dot{\overline{V}}_{S_5}) + M_{rc} \cdot \frac{\omega_5}{V_{B_1}} \cdot \cos(\overline{M}_{rc} \dot{\overline{\omega}}_5) + M_{re} \cdot \frac{\omega_5}{V_{B_1}} \cdot \cos(\overline{M}_{re} \dot{\overline{\omega}}_5) : \end{split}$$

Կամ որոշ ձևափոխություններից հետո՝

$$\begin{split} F_r &= G_1 + G_3 \cdot \left(\frac{ps_3}{pb_1}\right)_i \cdot \cos\left(\overline{G}_3 \overset{\wedge}{\overline{V}}_{S_3}\right)_i + G_4 \cdot \left(\frac{ps_4}{pb_1}\right)_i \cdot \cos\left(\overline{G}_4 \overset{\wedge}{\overline{V}}_{S_4}\right)_i + G_5 \cdot \left(\frac{ps_5}{pb_1}\right)_i \cdot \\ &\cdot \cos\left(\overline{G}_5 \overset{\wedge}{\overline{V}}_{S_5}\right)_i - (M_{rc} + M_{re})_i \cdot \left(\frac{pe}{\ell_{EF} \cdot pb_1}\right)_i : \end{split} \tag{3.4}$$

3.6. Դիմադրող ուժերի կատարած աշխատանքի գրաֆիկի կառուցումը

Գրաֆիկորեն ինտեգրելով $\mathbf{M_r} = \mathbf{M_r}(\phi)$ կամ $\mathbf{F_r} = \mathbf{F_r}(\mathbf{S})$ ֆունկցիայի գրաֆիկը` կառուցվում է դիմադրության ուժերի և մոմենտների կողմից կատարված աշխատանքի գրաֆիկը (տես **նկ.3.6**-ը և **նկ.3.7**-ը), որի մասշտաբային գործակիցը որոշվում է

$$\mu_A = \mu_M \cdot \mu_m \cdot OP_1 = 0.012 \cdot 0.096 \cdot 25 = 0.029 \, \Omega/\text{dd}$$
:

Բերված ուժի դեպքում պետք է օգտվել $\mu_A = \mu_F \cdot \mu_S \cdot OP_1$ բանաձևից:

3.7. Շարժիչային մոմենտի (ուժի) կատարած աշխատանքի գրաֆիկի կառուցումը

Քանի որ առաջադրանքներում շարժիչային մոմենտի (ուժի) որոշման համար նշված են միմյանցից սկզբունքորեն տարբեր պայմաններ, ուստի այդ մեխանիզմներից յուրաքանչյուր տիպի համար վերը նշված մեծությունները կորոշվեն տարբեր մոտեցումներով։

^{*} F_{ri}-ի արժեքների որոշման համար պետք է օգտվել (3.3) հավասարման վերը պարզաբանված օրինակից, որի արդյունքները զետեղված են աղյուսակ 3.10-ում։

- 1. Առաջադրանքներ, որտեղ մեխանիզմի մուտքի օղակը շուռտվիկ է և կատարում է կայունացված շարժում (առաջադրանք 1, 2, 4, 5, 6, 7, 8)։
- Շուռտվիկի կայունացված շարժման փուլի սկզբում և վերջում տեղի ունի $|\mathbf{A}_{\mathrm{m}}| = |\mathbf{A}_{\mathrm{r}}|$ պայմանը։ Յետևաբար փուլի վերջում պետք է տեղադրել $|\mathbf{y}_{\mathrm{Am}}| = |\mathbf{y}_{\mathrm{Ar}}|$ հատվածը, ստանալ a կետը և այն ուղիղ գծով (քանի որ $\mathbf{M}_{\mathrm{m}} = \mathbf{const}$) միացնել 0 սկզբնակետի հետ (տես **նկ.3.7**)։
- Գրաֆիկորեն ածանցելով $A_m=A_m(\phi)$ ֆունկցիան՝ ստացվում է $\mathbf{M}_m=\mathbf{M}_m(\phi)$ -ի գրաֆիկը։
- 2. Առաջադրանքներ, որտեղ շարժիչային մոմենտի կամ ուժի համար տրված են $\mathbf{M}_{m} = |\mathbf{M}_{r\,max}|$ կամ $\mathbf{F}_{m} = |\mathbf{F}_{r\,max}|$ պայմանները (առաջադրանք 3, 9, 11...21)։
- Գծագրից չափելով y_{Mr}^{max} (կամ y_{Fr}^{max}) հատվածը, այն անհրաժեշտ է տեղադրել օրդինատների առանցքի դրական ուղղությամբ և ստացված կետից տանել զուգահեռ աբսցիսների առանցքին։
- Գրաֆիկորեն ինտեգրելով $\mathbf{M}_m = \mathbf{M}_m(\phi)$ կամ $\mathbf{F}_m = \mathbf{F}_m(S)$ ֆունկցիան՝ կառուցվում է $\mathbf{A}_m = \mathbf{A}_m(\phi)$ կամ $\mathbf{A}_m = \mathbf{A}_m(S)$ -ի գրաֆիկը։
- 3. Առաջադրանք (թիվ 10), որտեղ մեխանիզմի վերջին դիրքի համար մուտքի օղակի արագությունը զրո է։
- Տրված պայմանից հետևում է, որ մեխանիզմի վերջին դիրքի համար տեղի ունի ${\bf A}_m+{\bf A}_r={\bf 0}$ ակնհայտ պայմանը, ինչը հանգում է $|{\bf y}_{Am}|=|{\bf y}_{Ar}|$ հավասարությանը:

- Մեխանիզմի վերջին դիրքի համար պետք է չափել y_{Ar} հատվածը և այն տեղադրել օրդինատների առանցքի դրական ուղղությամբ:
- Ստացված կետը ուղիղ գծով միացնել աբսցիսների առանցքի **0.25**L-ր կազմող կետի հետ։
- Գրաֆիկորեն ածանցելով $A_m=A_m(\phi)$ ` կառուցվում է $M_m=M_m(\phi)$ -ի գրաֆիկը։
- 4. Առաջադրանք (թիվ 22), որտեղ \mathbf{F}_{m} շարժիչային ուժը որոշվում է տրված բանաձևով :
- F բերված ուժի արժեքները որոշվում են շարժիչ և դիմադրող ուժերից միաժամանակ և գրաֆիկ ինտեգրումով կառուցվում է A աշխատանքի գրաֆիկը։

3.8 Կինետիկ էներգիայի աճի (կինետիկ էներգիայի) գրաֆիկի կառուցումը

Կինետիկ էներգիայի աճի ΔE ֆունկցիան որոշվում է $\Delta E = A_m + A_r$ հավասարությունից, որտեղ A_m և A_r համապատասխանաբար շարժիչ և դիմադրող ուժերի կատարած աշխատանքներն են, որոնց ֆունկցիաների գրաֆիկները կառուցված են կետ ${\bf 3.7}$ -ում և ${\bf 3.6}$ -ում։

Այստեղ նույնպես պետք է առաջնորդվել կետ **3.7**-ում բերված մեխանիզմների պայմանական դասակարգման չորս տիպերով։

2-րդ և 3-րդ տիպի մեխանիզմներում $\Delta E = A_m + A_r$ հավասարման գրաֆիկ լուծումը իրենից ներկայացնում է $\Delta E = \Delta E(\phi)$ կամ $\Delta E = \Delta E(S)$ ֆունկցիայի տեսքը։ Օգտվելով ΔE -ի գրաֆիկից դժվար չէ որոշել նրա իրական արժեքները մեխանիզմի բոլոր դիրքերի համար՝

$$\Delta E_i = y_{_{\Delta E_i}} \cdot \mu_{_{\Delta E}} = y_{_{\Delta E_i}} \cdot \mu_{_{A}}$$
 ,

որտեղ $\mathbf{y}_{\Delta E_i}$ -ն տվյալ դիրքում կինետիկ էներգիայի աճի գծագրական չափն է և $\mathbf{\mu}_{\Delta E} = \mathbf{\mu}_{\Delta}$:

4-րդ տիպի մեխանիզմում կառուցված A աշխատանքի գրաֆիկը միաժամանակ հանդիսանում է նաև ΔΕ կինետիկ էներգիայի աճի գրաֆիկ։

3.9 Բերված իներցիայի մոմենտի (բերված զանգվածի) որոշումը և գրաֆիկի կառուցումը

Բերված իներցիայի I մոմենտի կամ բերված m զանգվածի որոշ-ման խնդիրը դիտարկենք համապատասխանաբար առաջադրանքներ **U** և **P** օրինակների վրա։

<u> Առաջադրանք Ա</u>

I բերված իներցիայի մոմենսող որոշելու համար (տես նկ.3.1, ա) անհրաժեշտ է (1.4)-ում \mathbf{m}_i և $\mathbf{I}_{\mathbf{S}_i}$ փոխարեն տեղադրել համապատասխան օղակների զանգվածները և առանցքային իներցիայի մոմենտները, $\mathbf{V}_{\mathbf{S}_i}$ և $\mathbf{\omega}_i$ փոխարեն՝ i-րդ օղակի զանքվածների կենտրոնի և նրա անկյունային արագությունները, իսկ $\mathbf{\omega}$ -ի փոխարեն՝ բերման օղակի անկյունային արագությունը։ Ընդ որում, արագությունների հարաբերությունները փոխարինվում են արագությունների պլանի համապատասխան հատվածների հարաբերություններով։

$$\begin{split} I &= I_{S_1} \cdot \left(\frac{\omega_1}{\omega_1}\right)^2 + m_2 \cdot \left(\frac{V_{S_2}}{\omega_1}\right)^2 + I_{S_2} \cdot \left(\frac{\omega_2}{\omega_1}\right)^2 + m_3 \cdot \left(\frac{V_{S_3}}{\omega_1}\right)^2 + \\ &\quad + I_{S_3} \cdot \left(\frac{\omega_3}{\omega_1}\right)^2 + m_5 \cdot \left(\frac{V_F}{\omega_1}\right)^2, \end{split} \tag{3.5}$$
 nowhigh $\omega_1 = \frac{V_B}{\ell_{AB}} = \frac{(pb) \cdot \mu_v}{\ell_{AB}}, \quad m_5 = \frac{G_5}{g} = \frac{9.6}{9.8} = 0.98 \; \text{Lg.}, \\ I_{S_1} &= 0.1 \cdot m_1 \cdot \ell_{AB}^2 = 0.1 \cdot \frac{G_1}{g} \cdot \ell_{AB}^2 = 0.1 \cdot \frac{1.52}{9.8} \cdot (0.038)^2 = 2.2 \cdot 10^{-5} \; \text{Lg.}^2, \\ I_{S_2} &= 0.1 \cdot m_2 \cdot \ell_{BC}^2 = 0.1 \cdot \frac{G_2}{g} \cdot \ell_{BC}^2 = 0.1 \cdot \frac{2.6}{9.8} \cdot (0.13)^2 = 4.2 \cdot 10^{-4} \; \text{Lg.}^2, \\ I_{S_3} &= 0.1 \cdot m_3 \cdot \ell_{DE}^2 = 0.1 \cdot \frac{G_3}{g} \cdot \ell_{DE}^2 = 0.1 \cdot \frac{4.08}{9.8} \cdot (0.102)^2 = 1.1 \cdot 10^{-3} \; \text{Lg.}^2, \end{split}$

իսկ փակագծերի մեջ բերված մեծությունները որոշվում են արագությունների պլանի միջոցով՝

$$\begin{split} \left(\frac{V_{S_2}}{\omega_1}\right)^2 &= \left(\frac{(ps_2) \cdot \mu_v}{(pb) \cdot \mu_V / \ell_{AB}}\right)^2 = \left(\frac{\ell_{AB}}{pb}\right)^2 \cdot (ps_2)^2 = \left(\frac{0.038}{27}\right)^2 \cdot (ps_2)^2 = \\ &= 2 \cdot 10^{-6} \cdot (ps_2)^2, \\ \left(\frac{\omega_2}{\omega_1}\right)^2 &= \left(\frac{V_{CB} / \ell_{BC}}{V_B / \ell_{AB}}\right)^2 = \left(\frac{(cb) \cdot \mu_v \cdot \ell_{AB}}{(pb) \cdot \mu_v \cdot \ell_{BC}}\right)^2 = \left(\frac{\ell_{AB}}{(pb) \cdot \ell_{BC}}\right)^2 \cdot (cb)^2 = \\ &= \left(\frac{0.038}{27 \cdot 0.13}\right)^2 \cdot (bc)^2 = 1.2 \cdot 10^{-4} \cdot (bc)^2, \\ \left(\frac{V_{S_3}}{\omega_1}\right)^2 &= \left(\frac{(ps_3) \cdot \mu_v}{(pb) \cdot \mu_V / \ell_{AB}}\right)^2 = \left(\frac{\ell_{AB}}{pb}\right)^2 \cdot (ps_3)^2 = \left(\frac{0.038}{27}\right)^2 \cdot (ps_3)^2 = \\ &= 2 \cdot 10^{-6} \cdot (ps_2)^2, \\ \left(\frac{\omega_3}{\omega_1}\right)^2 &= \left(\frac{V_C / \ell_{CD}}{V_B / \ell_{AB}}\right)^2 = \left(\frac{(pc) \cdot \mu_v \cdot \ell_{AB}}{(pb) \cdot \mu_v \cdot \ell_{CD}}\right)^2 = \left(\frac{\ell_{AB}}{(pb) \cdot \ell_{CD}}\right)^2 \cdot (pc)^2 = \\ &= \left(\frac{0.038}{27 \cdot 0.0765}\right)^2 \cdot (pc)^2 = 3.2 \cdot 10^{-4} \cdot (pc)^2, \\ \left(\frac{V_F}{\omega_1}\right)^2 &= \left(\frac{(pf) \cdot \mu_v}{(pb) \cdot \mu_v / \ell_{AB}}\right)^2 = \left(\frac{\ell_{AB}}{pb}\right)^2 \cdot (pf)^2 = \left(\frac{0.038}{27}\right)^2 \cdot (pf)^2 = 2 \cdot 10^{-6} \cdot (pf)^2. \end{split}$$

Յաշվի առնելով վերը կատարված ձևափոխությունները (**3.5**) հավասարումը կնդունի հետևյալ տեսքը`

$$\begin{split} I_{i} &= 2.2 \cdot 10^{.5} + C_{4} \cdot (ps_{2})_{i}^{2} + C_{5} \cdot (cb)_{i}^{2} + C_{6} \cdot (ps_{3})_{i}^{2} + C_{7} \cdot (pc)_{i}^{2} + C_{8} \cdot (pf)_{i}^{2} \;, \; \text{(3.6)} \\ &\text{nputh η'$ C_{4}} = m_{2} \cdot \left(\frac{\ell_{AB}}{pb}\right)^{2} \;, \quad C_{5} = I_{S_{2}} \cdot \left(\frac{\ell_{AB}}{(pb) \cdot \ell_{BC}}\right)^{2} \;, \quad C_{6} = m_{3} \cdot \left(\frac{\ell_{AB}}{pb}\right)^{2} \;, \\ &C_{7} = I_{S_{3}} \cdot \left(\frac{\ell_{AB}}{(pb) \cdot \ell_{CD}}\right)^{2} \;, \quad C_{8} = m_{5} \cdot \left(\frac{\ell_{AB}}{pb}\right)^{2} \;. \end{split}$$

Այժմ (3.6) հավասարման մեջ տեղադրելով հաստատուն գործակիցները և արագությունների պլաններից (տես **հավելվածը**) վերցված $(\mathbf{ps_2})_i$, $(\mathbf{cb})_i$, $(\mathbf{ps_3})_i$, $(\mathbf{pc})_i$, և $(\mathbf{pf})_i$ մեծությունները կորոշվեն \mathbf{I}_i -ի արժեքները և դրանց համապատասխանող \mathbf{y}_i հատվածները (**աղյուսակ 3.11**)։

Աղյուսակ 3.11

	0 (8)	1	2	3	4	5	6	7	
ps ₂ [մմ]	15	24	28	23	14	17	27	22	
cb [ប៍ប័]	27	11	4	15	25	24	5	29	
ps₃ [ជ៍ប័]	0	12	15	11	2.5	8	14	15	
pc [մմ]	0	21	28	19	6	13	25	26	
pf [մմ]	0	29	35	24	7	16	30	33	
I _၊ [կգմ²]	0.0026	0.013	0.029	0.017	0.0039	0.015	0.035	0.018	
μ _Ι = I _{max} / y _{max} = 0.035 / 35 = 0.001 [կգմ²/մմ] y _i =I _i /μ _Ι , y _{max} -ը կամայական է									
y _i [մմ]	3	13	30	18	5	16	35	19	

Πրոշված y_i օրդինատներով կառուցվում է $I=I(\phi)$ ֆունկցիայի գրաֆիկը նախապես ընտրված μ_i և μ_ϕ մասշտաբային գործակիցներով (Gկ.3.8)։ Յարկ է նշել, որ գործնականում կիրառվող մեխանիզմները առավելապես կատարում են պարբերական բնույթի շարժում և նրանց շուռտվիկ հանդիսացող մուտքի օղակի լիսեռի վրա տեղակայվում է I_c հաստատուն իներցիայի մոմենտով թափանիվ։ I_c -ի մեծությունը որոշվում է $\Delta E = \Delta E(I)$ ֆունկցիայի գրաֆիկի օգնությամբ, հաշվի առնելով մուտքի օղակի ընթացքի անհավասարաչափության δ գործակցի թույլատրելի [δ] սահմանային արժեքները։ Կուրսային աշխատանքի կատարման ծրագիրը չի հետապնդում I_c -ի δ շգրիտ որոշումը, ուստի այստեղ առաջարկվում է մեկ այլ մոտեցում, ինչը հենվում է այն պարզ

տրամաբանության վրա, որ թափանիվի ու լծակային մեխանիզմի կինետիկ էներգիան շարժման փուլի սկզբում պետք է լինի մեծ կամ հավասար կինետիկ էներգիայի աճի առավելագույն բացարձակ արժեքից, այսինքն` $E_0 \geq \left|\Delta E_{max}\right|$: Քանի որ ընդունվել է $E_0 = 2 \cdot \left|\Delta E_{max}\right|$ պայմանը, ապա

$$\begin{split} \mathbf{E}_{0} &= 2 \cdot \left| \; (\mathbf{y}_{\Delta E})_{max} \cdot \boldsymbol{\mu}_{\Delta E} \; \right| = 2 \cdot \left| \frac{\mathbf{y}_{E_{0}}}{2} \cdot \boldsymbol{\mu}_{\Delta E} \; \right| = \left| \; \; \mathbf{y}_{E_{0}} \cdot \boldsymbol{\mu}_{\Delta E} \; \right| \quad \text{that} \\ & \frac{(\mathbf{I}_{C} + \mathbf{I}_{0}) \cdot \boldsymbol{\omega}_{0}^{2}}{2} \geq \left| \mathbf{y}_{E_{0}} \cdot \boldsymbol{\mu}_{\Delta E} \; \right| \Rightarrow \frac{(\mathbf{y}_{C} + \mathbf{y}_{0}) \cdot \boldsymbol{\mu}_{1} \boldsymbol{\omega}_{0}^{2}}{2} \geq \left| \mathbf{y}_{E_{0}} \cdot \boldsymbol{\mu}_{\Delta E} \; \right| \; . \end{split} \tag{3.7}$$

(**3.7**) արտահայտության մեջ տեղադրելով $\mathbf{y}_{\mathrm{E}_0}$ -ն, որոշվում է \mathbf{y}_{C} -ի

մեծությունը, իսկ այնուհետև համաձայն $\mathbf{I}_C = \mathbf{y}_C \cdot \mathbf{\mu}_I$ բանաձևի՝ թափանվի հաստատուն իներցիայի \mathbf{I}_C մոմենտը: $\mathbf{I} = \mathbf{I}(\phi)$ գրաֆիկի աբսցիսների առանցքը անհրաժեշտ է զուգահեռ տեղափոխել \mathbf{y}_C չափով օրդինատների առանցքի բացասական ուղղությամբ՝ ստանալով $\mathbf{O}'\phi'$ առանցքը։ Այժմ, հետազոտվող մեխանիզմի բերված իներցիայի մոմենտն իրենից կներկայացնի լծակային մեխանիզմի բերված \mathbf{I} իներցիայի մոմենտի և \mathbf{I}_C հաստատուն իներցիայի մոմենտի գումարը $\mathbf{I}_\Sigma = \mathbf{I} + \mathbf{I}_C^*$:

Առաջադրանք Բ

m pերված զանգվածը որոշելու համար (տես **նկ.3.2, ա**) անհրաժեշտ է (**1.3**)-ում **m i** և \mathbf{I}_{S_i} փոխարեն տեղադրել համապատասխան օղակների զանգվածները և առանցքային իներցիայի մոմենտները, \mathbf{V}_{S_i} և $\mathbf{\omega}_i$ փոխարեն` **i**-րդ օղակի զանքվածների կենտրոնի և նրա անկյունային արագությունները, իսկ \mathbf{V} -ի փոխարեն` բերման կետի արագությունը։ Ընդ որում, արագությունների հարաբերությունները փոխարինվում են արագությունների պլանի համապատասխան հատվածների հարաբերություններով։

$$\begin{split} m &= m_1 \cdot \left(\frac{V_{S_1}}{V_{B_1}}\right)^2 + m_3 \cdot \left(\frac{V_{S_3}}{V_{B_1}}\right)^2 + I_{S_3} \cdot \left(\frac{\omega_3}{V_{B_1}}\right)^2 + m_4 \cdot \left(\frac{V_{S_4}}{V_{B_1}}\right)^2 \\ &+ I_{S_4} \cdot \left(\frac{\omega_4}{V_{B_1}}\right)^2 + m_5 \cdot \left(\frac{V_{S_5}}{V_{B_1}}\right)^2 + I_{S_5} \cdot \left(\frac{\omega_5}{V_{B_1}}\right)^2 : \end{split}$$

.

եթե բերման օղակը ճոճալծակ է, ապա որոշվում է միայն լծակային մեխանիզմի I բերված իներցիայի մոմենտը:

Որոշ ձևափոխություններից հետո կունենանք՝

$$\begin{split} \mathbf{m} &= \mathbf{m}_{1} + \mathbf{m}_{3} \cdot \left(\frac{\mathbf{p}\mathbf{s}_{3}}{\mathbf{p}\mathbf{b}_{1}}\right)^{2} + \mathbf{I}_{\mathbf{S}_{3}} \cdot \left(\frac{\mathbf{p}\mathbf{c}}{\mathbf{p}\mathbf{b}_{1} \cdot \ell_{\mathbf{CD}}}\right)^{2} + \mathbf{m}_{4} \cdot \left(\frac{\mathbf{p}\mathbf{s}_{4}}{\mathbf{p}\mathbf{b}_{1}}\right)^{2} + \\ &+ \mathbf{I}_{\mathbf{S}_{4}} \cdot \left(\frac{\mathbf{e}\mathbf{d}}{\mathbf{p}\mathbf{b}_{1} \cdot \ell_{\mathbf{DE}}}\right)^{2} + \mathbf{m}_{5} \cdot \left(\frac{\mathbf{p}\mathbf{s}_{5}}{\mathbf{p}\mathbf{b}_{1}}\right)^{2} + \mathbf{I}_{\mathbf{S}_{5}} \cdot \left(\frac{\mathbf{p}\mathbf{e}}{\mathbf{p}\mathbf{b}_{1} \cdot \ell_{\mathbf{EF}}}\right)^{2} : \end{split} \tag{3.8}$$

m_i արժեքների որոշման համար կարող ենք օգտվել (**3.5**) հավասարման ձևափոխման մոտեցումից, բերելով (**3.8**)-ը (**3.6**) հավասարման տեսքի և ստացված արդյունքները գրանցել **աղյուսակ 3.11**-ի տեսքով:

3.10. Բերման օղակի արագության որոշումը կախված մեխանիզմի ընդհանրացված կոորդինատից

Բերման օղակի շարժման օրենքը՝ կախված է մեխանիզմի վրա ազդող ուժերից։ Ընդհանուր դեպքում այդ ուժերը կախված են ընդհանրացված կոորդինատից (φ կամ s), արագությունից (φ կամ V) և ժամանակից (t), որի հետևանքով բերված մոմենտները կամ ուժերը նույնպես կախված են լինում այդ պարամետրերից՝ M=M (φ , φ , t), F=F (s, V, t)։ Այդ իսկ պատճառով բերման օղակի շարժումը նկարագրող հավասարումը ստացվում է ոչ գծային։

Սակայն գործնականում մեխանիզմի վրա ազդող արտաքին ուժերը հաճախ կախված են լինում ընդհանրացված կոորդինատից՝ $\mathbf{F}_e = \mathbf{F}_e(\mathbf{\phi})$ կամ $\mathbf{F}_e = \mathbf{F}_e(\mathbf{s})$ ։ Յետևաբար այդ ուժերից բերված մոմենտը կամ բերված ուժը նույնպես կախված է միայն այդ պարամետրերից՝ $\mathbf{M} = \mathbf{M}(\mathbf{\phi})$ կամ $\mathbf{F} = \mathbf{F}(\mathbf{s})$, ինչը հնարավորություն է տալիս որոշ դեպքերում շարժման դիտարկվող խնդիրը լուծել վերլուծական եղանակով։

<u> Առաջադրանք Ա</u>

Բերման օղակի անկյունային արագության կախումը մեխանիզմի ընդհանրացված կոորդինատից որոշվում է (1.8) բանաձևով`

$$\omega_i = \sqrt{2 \cdot \frac{\Delta E_i}{I_i} + I_0 \cdot \frac{\omega_0^2}{I_i}} \ ,$$

որտեղ ΔE_{i} -ի և I_{i} -ի արժեքները որոշվել են համապատասխանաբար կետ 3.8 և 3.9-ում։

Շուռտվիկ հանդիսացող մուտքի օղակի համար (1.8) բանաձևում ${\bf I}_{i}$ -ի փոխարեն անհրաժեշտ է տեղադրել ${\bf I}_{\Sigma}$ -ի արժեքները, որոնք որոշվում են ${\bf I}_{\Sigma}={\bf I}_{\Sigma}({\bf p}')$ կորի գրաֆիկից վերցված ${\bf y}_i$ օրդինատների և ${\bf \mu}_i$ գործակցի արտադրյալով (տես ${\bf G}{\bf l}_i$ -, իսկ ${\bf \Delta}{\bf E}_i$ -ի փոխարեն ${\bf E}{\bf O}'{\bf p}'$ հա-

մակարգում (տես **նկ. 3.7**) որոշել $\mathbf{E_i} = \mathbf{y}_{\mathbf{E_i}} \cdot \boldsymbol{\mu}_{\mathbf{AE}}$ կինետիկ էներգիայի արժեջները, այսինքն (**1.8**) բանաձևը կընդունի հետևյալ տեսքը

$$\omega_{i} = \sqrt{\frac{2 \cdot E_{i}}{I_{\Sigma i}}} : \qquad (3.9)$$

Տիպային օրինակի համար (տես. $\mathbf{G}\mathbf{u}$, $\mathbf{3.1}$, \mathbf{u}) համաձայն ($\mathbf{3.9}$) բանաձևի որոշվում են $\mathbf{\omega}_i$ արժեքները և համաձայն **աղյուսակ 3.12**-ի կառուցվում է $\mathbf{\omega} = \mathbf{\omega}(\mathbf{\phi})$ ֆունկցիայի գրաֆիկը ($\mathbf{G}\mathbf{u}$, $\mathbf{3.9}$):

Արյուսակ 3.12

	0(8)	1	2	3	4	5	6	7	
ω _i [վ ⁻¹]	18	13.2	6.8	2.9	7.7	9.1	9.4	11.8	
μ_{ω} = (ω_{i}) $_{max}$ / y $_{max}$; y $_{i}$ = ω_{i} / μ_{ω} , որտեղ y $_{max}$ = 30մմ (կամայական է)									
y _i [մմ]	30	20	11	5	13	15	16	18	

Յարկ է նշել, որ ω -ի արժեքների նկատելի չափով շեղումը նրա ω_m միջին արժեքից բացատրվում է նրանով, որ նախագծումը չի կատարվել ըստ մուտքի օղակի ընթացքի անհավասարաչափության δ գործակցի [δ] սահմանային արժեքի։ Ուսումնասիրվող տիպի գործադիր մեխանիզմների համար [δ] = 0.03...0.05:

<u>Առաջադրանք Բ</u>

Բերման կետի գծային արագության փոփոխությունը` կախված մեխանիզմի ընդհանրացված կոորդինատից որոշվում է (1.7) բանաձևով`

$$V_i = \sqrt{2 \cdot \frac{\Delta E_i}{m_i} + m_0 \cdot \frac{V_0^2}{m_i}} ,$$

որտեղ $\Delta \mathbf{E}_{\Gamma}$ ի և \mathbf{m}_{i} -ի արժեքները որոշվել են համապատասխանաբար կետ $\mathbf{3.8}$ և $\mathbf{3.9}$ -ում։

3.11. Արագությունների պլանների մասշտաբային գործակիցների որոշումը

Առաջադրանք Ա

$$\mu_{V_i} = \frac{V_{B_i}}{pb} = \frac{\omega_i \cdot \ell_{AB}}{pb}$$

որտեղ ω_i - բերման օղակի անկյունային արագությունն է։

$$\begin{split} &\mu_{V_0} = \frac{18 \cdot 0.038}{27} = 0.025 \ \frac{\vec{\text{u}} \cdot \vec{\text{u}}^{-1}}{\vec{\text{u}}\vec{\text{u}}} \,, \qquad \quad \mu_{V_1} = \frac{13.2 \cdot 0.038}{27} = 0.018 \ \frac{\vec{\text{u}} \cdot \vec{\text{u}}^{-1}}{\vec{\text{u}}\vec{\text{u}}} \,, \\ &\mu_{V_2} = \frac{6.8 \cdot 0.038}{27} = 0.009 \ \frac{\vec{\text{u}} \cdot \vec{\text{u}}^{-1}}{\vec{\text{u}}\vec{\text{u}}} \,, \qquad \quad \mu_{V_3} = \frac{2.9 \cdot 0.038}{27} = 0.004 \ \frac{\vec{\text{u}} \cdot \vec{\text{u}}^{-1}}{\vec{\text{u}}\vec{\text{u}}} \,, \\ &\mu_{V_4} = \frac{7.7 \cdot 0.038}{27} = 0.011 \ \frac{\vec{\text{u}} \cdot \vec{\text{u}}^{-1}}{\vec{\text{u}}\vec{\text{u}}} \,, \qquad \quad \mu_{V_5} = \frac{9.1 \cdot 0.038}{27} = 0.013 \ \frac{\vec{\text{u}} \cdot \vec{\text{u}}^{-1}}{\vec{\text{u}}\vec{\text{u}}} \,, \\ &\mu_{V_6} = \frac{9.4 \cdot 0.038}{27} = 0.013 \ \frac{\vec{\text{u}} \cdot \vec{\text{u}}^{-1}}{\vec{\text{u}}\vec{\text{u}}} \,, \qquad \quad \mu_{V_7} = \frac{11.8 \cdot 0.038}{27} = 0.016 \ \frac{\vec{\text{u}} \cdot \vec{\text{u}}^{-1}}{\vec{\text{u}}\vec{\text{u}}} \,. \end{split}$$

<u> Առաջադրանք Բ</u>

$$\mu_{V_i} = \frac{V_{B_i}}{pb_1},$$

որտեղ թե 1-ը բերման կետի արագությունն է։

3.12. Բերման օղակի արագության հակադարձ ֆունկցիայի որոշումը

Յայտնի ω_i ու V_i մեծություններով որոշվում են նրանց հակադարձ արժեքները **(աղյուսակ 3.13**) և կառուցվում $\frac{1}{\omega} = \frac{1}{\omega}(\phi)$ (նկ. 3.10) կամ

$$\frac{1}{V} = \frac{1}{V}(S)$$
 ֆունկցիայի գրաֆիկը։

Արյուսակ 3.13

	0 (8)	1	2	3	4	5	6	7	
1/ω [վրկ]	0.055	0.075	0.147	0.344	0.13	0.11	0.106	0.085	
$\mu_{1/\omega} = \frac{(1/\omega)_{max}}{y_{max}} = \frac{0.344}{25} = 0.013$ [վ/մմ], որտեղ y_{max} -ը կամայական է									
y _i [մմ]	4	6	11	25	10	8	8	6	

3.13. Մեխանիզմի շարժման ժամանակամիջոցի որոշումը

Յամածայն (1.9) և (1.10) արտահայտությունների, մեխանիզմի շարժման ժամանակի որոշման խնդիրը հանգում է արագության հակադարձ ֆունկցիայի ինտեգրմանը, ինչը կատարվում է գրաֆիկորեն ($\mathbf{0}\mathbf{u}$, 3.11), ընդ որում մասշտաբային $\mathbf{\mu}_t$ գործակիցը որոշվում է հետևյալ բանաձևով՝

$$\mu_{t} = \mu_{\frac{1}{m}} \cdot \ \mu_{\!\varphi} \cdot (\mathrm{OP}_{2}) = 0.013 \cdot 0.096 \cdot 15 = 0.018 \ [\text{u/dd}],$$

որտեղ \mathbf{OP}_2 -ը \mathbf{P}_2 ինտեգրման բևեռի հեռավորությունն է (կամայական չափի հատված է)։

Մեխանիզմի շարժման T ժամանակամիջոցը որոշելու համար անհրաժեշտ է մեխանիզմի վերջին դիրքի y_t հատվածի չափը բազմապատկել μ_t գործակցով՝ $T=y_t\cdot \mu_t=32\cdot 0.018=0.57$ վրկ։

<u>Առաջադրանք Բ</u>-ի դեպքում μ_t մասշտաբային գործակիցը կորոշվի հետևյալ բանաձևով` $\mu_t = \mu_{\frac{1}{V}} \cdot \mu_8 \cdot (\mathsf{OP_2})$ ։

3.14. Բերման օղակի շարժման օրենքի որոշումը

Բերման օղակի շարժման օրենքը ներկայացվում է $\varphi = \varphi(t)$ (առաջադրանք \mathbf{U}) կամ $\mathbf{S} = \mathbf{S}(t)$ (առաջադրանք \mathbf{P}) ֆունկցիայի տեսքով։ Որոնելի ֆունկցիան որոշվում է գրաֆիկորեն, օգտվելով $\mathbf{t} = \mathbf{t}(\varphi)$ կամ $\mathbf{t} = \mathbf{t}(\mathbf{S})$ ֆունկցիայի գրաֆիկից համապատասխանության մեջ դնելով \mathbf{t} ժամանակի տվյալ պահին φ կամ \mathbf{S} ընդհանրացված կոորդինատը (նկ. 3.12)։

Նկ.3.12

3.15. Այլ օղակների շարժման օրենքները

Ինչպես նշվեց կետ **1.2**-ում, մեխանիզմի օղակների շարժման օրենքները որոշելու համար նախ անհրաժեշտ է որոշել բերման օղակի շարժման օրենքը և օգտվելով մեխանիզմի կինեմատիկայից՝ գտնել նրա մյուս օղակների շարժման օրենքները։ Օղակի շարժման օրենքը կարելի է ներկայացնել ժամանակից կախված նրա տեղափոխության, արագության կամ արագացման փոփոխությունը նկարագրող ֆունկցիաներից որևէ մեկի տեսքով։ Քանի որ կառուցված են մեխանիզմի արագությունների պլանները՝ ընդհանրացված կոորդինատի տարբեր արժեքների համար, ուստի մյուս օղակների շարժման օրենքները նպատակահարմար է ներկայացնել նրանց արագությունների ֆունկցիաների տեսքով։

Մեխանիզմի **2**-րդ օղակը (տես **նկ.3.1**) կատարում է հարթ շարժում, ուստի նրա շարժման օրենքը կարելի է ներկայացնել **B** կետի մեխանիզմի տվյալ դիրքում ունեցած V_B արագությամբ և օղակի պտույտը այդ կետի նկատմամբ նկարագրող $\omega_2 = \frac{V_{CB}}{l_{BC}}$ անկյունային արագությամբ։ Ակնհայտ է, որ **3**-րդ օղակի շարժման օրենքը ներկայացվում է նրա $\omega_3 = \frac{V_{CD}}{l_{CD}}$ անկյունային արագությամբ։ Ինչ վերաբերվում է **4**-րդ օղակին, ապա նրա համընթաց շարժումը ներկայացվում է E_4 կետի E_4 արագությամբ։ Մեխանիզմի ելքի օղակի շարժման օրենքը ներկայացվում է նրա E_4 կետի E_5 0 արագությամբ։

Մեխանիզմի **2**-րդ դիրքի համար որոշվում են բնութագրիչ կետերի արագությունները և օղակների անկյունային արագությունները.

$$\begin{split} V_B &= (pb) \cdot \mu_{V_2} = 27 \cdot 0.009 = 0.243 \text{ d/d,} \\ V_C &= (pc) \cdot \mu_{V_2} = 27 \cdot 0.009 = 0.243 \text{ d/d,} \\ V_{E_3} &= (pe_3) \cdot \mu_{V_2} = 36 \cdot 0.009 = 0.324 \text{ d/d,} \\ V_F &= (pf) \cdot \mu_{V_2} = 35 \cdot 0.009 = 0.315 \text{ d/d,} \\ \omega_2 &= \frac{V_{CB}}{\ell_{CB}} = \frac{(bc) \cdot \mu_{V_2}}{\ell_{CB}} = \frac{4 \cdot 0.009}{0.129} = 0.28 \text{ d}^{-1}, \\ \omega_3 &= \frac{V_C}{\ell_{CD}} = \frac{0.243}{0.0765} = 3.17 \text{ d}^{-1} \end{split}$$

Նույն կերպ որոշվում են վերը նշված մեծությունների արժեքները մեխանիզմի մյուս դիրքերի համար և գրանցվում **աղյուսակ 3.14**-ում։

Արյուսակ 3.14

	0 (8)	1	2	3	4	5	6	7
V_{B}	0.68	0.5	0.24	0.11	0.28	0.34	0.35	0.44
V_{C}	0	0.38	0.24	0.07	0.05	0.15	0.32	0.4
ω_2	5.23	1.67	0.28	0.46	2.13	2.41	0.604	3.72
ω_3	0	4.94	3.17	1.07	0.862	2.22	4.24	5.43
$\mathbf{V}_{\mathbf{E}_3} = \mathbf{V}_{\mathbf{E}_4}$	0	0.54	0.324	0.11	0.088	0.234	0.455	0.576
$V_{\rm F}$	0	0.51	0.315	0.104	0.077	0.206	0.416	0.56

Յավելված

ԳՐԱԿԱՆՈՒԹՅՈՒՆ

- 1. Կիրառական մեխանիկա։ Դասախոսությունների տեքստեր։ Կ.Արզումանյան, Մ.Յարությունյան, Ա.Քառյան, Է.Յակոբյան, Ռ.Բարսեղյան, Ա.Կարապետյան, Կ.Յովհաննիսյան, Դ.Ղազարյան, <mark>Մ.Գասպարյան</mark>։ Յայաստանի պետական ճարտարագիտական համալսարան։ Երևան, 2006թ., 287 էջ։
- 2. Մեխանիզմների և մեքենաների տեսություն։ Կուրսային նախագծի կատարման մեթոդական ցուցումներ։ Երևանի պոլիտեխնիկական ինստիտուտ։ Կազմ. **Կ.Գ.Ստեփանյան**։ Երևան, 1990թ., 21 էջ։

ԲՈՎԱՆԴԱԿՈՒԹՅՈՒՆ

		ţρ
	Նախաբան	3
1.	Ներածություն	4
1.1.	Կուրսային աշխատանքի կատարման և հանձնման	
	գործընթացների կազմակերպումը	4
1.2.	Կուրսային աշխատանքի խնդիրը	7
<i>2</i> .	Կուրսային աշխատանքի առաջադրանքները	11
<i>3</i> .	Կուրսային աշխատանքի կատարման օրինակներ	56
3.1.	Մեխանիզմի կառուցվածքային վերլուծությունը	56
3.2.	Մեխանիզմի դիրքերի պլանի կառուցումը	59
3.3.	Արագությունների պլանների կառուցումը	63
3.4.	Մեխանիզմի օղակների վրա ազդող արտաքին ուժերի և	67
	մոմենտների որոշումը	07
3.5.	Դիմադրության ուժերից բերված \mathbf{M}_{r} մոմենտի (կամ \mathbf{F}_{r}	70
	ուժի) որոշումը և փոփոխման գրաֆիկի կառուցումը	70
3.6.	Դիմադրող ուժերի կատարած աշխատանքի գրաֆիկի	74
	կառուցումը	/4
3.7.	Շարժիչային մոմենտի (ուժի) կատարած աշխատանքի	74
	գրաֆիկի կառուցումը	/ 4
3.8.	Կինետիկ էներգիայի աճի (կինետիկ էներգիայի)	76
	գրաֆիկի կառուցումը	70
3.9.	Բերված իներցիայի մոմենտի (բերված զանգվածի)	77
	որոշումը և գրաֆիկի կառուցումը	′′
3.10.	Բերման օղակի արագության որոշումը կախված	81
	մեխանիզմի ընդհանրացված կոորդինատից	01
3.11.	Արագությունների պլանների մասշտաբային	83
	գործակիցների որոշումը	00
3.12.	Բերման օղակի արագության հակադարձ ֆունկցիայի	83
	որոշումը	00
3.13.	Մեխանիզմի շարժման ժամանակամիջոցի որոշումը	84
3.14.	Բերման օղակի շարժման օրենքի որոշումը	85
3.15.	Այլ օղակների շարժման օրենքները	85
	<i>Դավելված</i>	87
	Գրականություն	88