

Lecture 12: Digital Control System Design II

ELEN 472: Introduction to Digital Control

Lingxiao Wang, Ph.D.

Assistant Professor of Electrical Engineering Louisiana Tech University

A Quick Recap

A closed-loop digital control system can be presented as:

To design a digital control system, we aim to find

C(z)

- The **z-domain transfer function** of **the controller** that meets given design specifications.
- There are two ways to get the desired controller C(z):
 - Design the digital controller that meets the design requirement directly.

OR

 Design an analog controller that meets the design requirement, then convert it into digital domain.

Digital Implementation of Analog Controller Design

- This section introduces an indirect approach to digital controller design.
 - The approach is based on designing an **analog controller** for the analog subsystem and then obtaining an **equivalent digital controller** and using it to digitally implement the desired control.

- General procedures to obtain a digital controller using analog design:
 - 1. Design a controller $C_a(s)$ for the analog subsystem to meet the desired design specifications.
 - 2. Map the analog controller to a digital controller $\mathcal{C}(z)$ using a **suitable** transformation.

Differencing Methods

- We first introduce two approximations methods based on differencing:
 - Forward differencing and
 - Backward differencing
- Forward Difference:
 - Forward Differencing approximates the following equation:

$$\dot{y}(k) \cong \frac{1}{T} [y(k+1) - y(k)]$$

Derivative (continuous) \approx Difference (discrete)

$$s \to \frac{z-1}{T}$$

Example

• Apply the **forward difference** approximation to the second-order analog controller with $T=0.1~\rm s$:

$$C_a(s) = \frac{5}{s+5}$$

- Solution:
 - We can obtain the transfer function of the **digital controller** using the simple **forward difference** transformation:

$$s \to \frac{z-1}{T}$$

• Thus, we have:

$$C(z) = \frac{5}{\frac{z-1}{T}+5} = \frac{0.5}{z-1+0.5} = \frac{0.5}{z-0.5}$$

Backward Differencing

The backward differencing approximation of the derivative is

$$\dot{y}(k) \cong \frac{1}{T} [y(k) - y(k-1)]$$

Derivative (continuous) \approx Difference (discrete)

Example Question

• Apply the **backward difference** approximation of the derivative to the second-order analog controller with $T=0.1~\rm s$:

$$C_a(s) = \frac{5}{s+5}$$

- Solution:
 - We obtain the transfer function of the **digital controller** using $s \to \frac{z-1}{zT}$

$$C(z) = \frac{5}{\frac{z-1}{zT} + 5} = \frac{0.5z}{z-1 + 0.5z} = \frac{0.5z}{1.5z - 1}$$

Pole-zero Matching

- Another way to convert $C(s) \to C(z)$ is **Pole-zero Matching.**
 - An s-plane pole/zero at $p_{\scriptscriptstyle S}$ can be mapped to a z-plane pole/zero p_z via: $p_z = e^{p_S T}$
- If an Analog Controller has n poles and m zeros:

$$G_a(s) = K \frac{\prod_{i=1}^{m} (s - a_i)}{\prod_{j=1}^{n} (s - b_j)}$$

• The corresponding **Digital Controller** based on **Pole-zero Matching** is:

Adding
$$n-m-1$$
 zeros at $z=-1$
$$G(z)=\alpha K\frac{(z+1)^{n-m-1}\prod_{i=1}^m(z-e^{a_iT})}{\prod_{j=1}^m(z-e^{b_jT})}$$

- where α is a constant, selected for equal filter gains.
- To determine α , use $G_a(0) = G(1)$

Example

 Find a Pole-zero Matched Digital Controller approximation for the Analog Controller

$$G_a(s) = \frac{5}{s+5}$$

• Determine the transfer function of the digital filter for a sampling period of T = 0.1 s.

Solution:

- The Analog Controller has none zero, i.e., m=0, and one pole, i.e., n=1
 - The pole is at p=-5
- We apply the pole-zero matching transformation to obtain

$$G_{a}(s) = K \frac{\prod_{i=1}^{m} (s - a_{i})}{\prod_{j=1}^{n} (s - b_{j})} \qquad G(z) = \alpha K \frac{(z+1)^{n-m-1} \prod_{i=1}^{m} (z - e^{a_{i}T})}{\prod_{j=1}^{m} (z - e^{b_{j}T})}$$

$$G_{a}(s) = 5 \frac{1}{(s - 5)} \qquad G(z) = \alpha \times 5 \times \frac{(z+1)^{1-0-1}}{(z - e^{p_{1}T})}$$

$$G(z) = \alpha \times 5 \times \frac{(z+1)^0}{(z-e^{pT})}$$

$$p = -5, T = 0.1$$

$$G(z) = \alpha \times 5 \times \frac{1}{(z-0.607)} = \frac{5\alpha}{(z-0.607)}$$

• To determine the value of α , we have:

$$G(z = 1) = G_a(s = 0)$$

$$G(z) = \frac{5\alpha}{(1 - 0.607)}$$

$$G_a(s) = \frac{5}{(0 + 5)}$$

$$G_a(s) = \frac{5}{(0 + 5)}$$

$$G_a(s) = \frac{5}{(0 + 5)}$$

• Thus,
$$\frac{5\alpha}{0.393} = 1$$
 $\alpha = 0.079$ $G(z) = \frac{0.393}{(z - 0.607)}$

MATLAB Verification

 In MATLAB, you can use the following code to perform Pole-zero matching

The frequency responses are almost identical in the **low frequency** range but become different at **high frequencies**.

Bilinear Transformation

• Another way to convert $C_a(s) \to C(z)$ is **Bilinear Transformation**:

$$s = c \frac{z - 1}{z + 1}$$

- c is a constant, usually c=2/T, T is the sampling time.
- A digital filter C(z) is obtained from an analog filter $C_a(s)$ by the substitution:

$$C(z) = C_a(s) \Big|_{s=c\left[\frac{z-1}{z+1}\right]}$$

- Example:
 - Design a digital filter by applying the bilinear transformation to the analog filter:

$$C_a(s) = \frac{1}{0.1s+1}$$

- With $T = 0.1 \, \text{s}$
- Solution:
 - By applying the bilinear transformation, $s = c \frac{z-1}{z+1}$, c = 2/T, we obtain:

$$C(z) = \frac{1}{0.1 \cdot \frac{2}{0.1} \cdot \frac{z-1}{z+1} + 1} = \frac{z+1}{3z-1}$$

Bilinear Transformation With Pre-wrapping

• When we compare the frequency response between $C_a(s)$ and C(z)

$$C_a(s) = \frac{1}{0.1s+1}$$

$$C(z) = \frac{1}{0.1\frac{2}{0.1}\frac{z-1}{z+1}+1} = \frac{z+1}{3z-1}$$

Bilinear Transformation:

$$s = c \frac{z - 1}{z + 1}$$
$$c = 2/T$$

- We can observe that $C_a(s)$ and C(z) are different in frequency response.
- This is called distortion.
 - The distortion can be mitigated via using **Pre-wrapping**:
 - Simply use $c = \frac{\omega_0}{\tan(\frac{\omega_0 T}{2})}$
 - ω_0 is the ± 3 -dB frequency

Bilinear Transformation With Pre-wrapping (Continued)

$$C_a(s) = \frac{1}{0.1s + 1}$$

$$C(z) = \frac{1}{0.1 \frac{10}{\tan(\frac{10 \cdot 0.1}{2})} \frac{z - 1}{z + 1} + 1} \cong \frac{0.35z + 0.35}{z - 0.29}$$

Bilinear Transformation with Pre-wrapping:

$$s = c \frac{z - 1}{z + 1}$$
$$c = \frac{a_0}{\tan(\frac{\omega_0 T}{2})}$$

Summary of All Mapping Methods

Mapping Methods	Mapping Equation
Forward Differencing	$s \to \frac{z-1}{T}$
Backward Differencing	$s \to \frac{z-1}{zT}$
Pole-zero Matching	$G_{a}(s) = K \frac{\prod_{i=1}^{m} (s - a_{i})}{\prod_{j=1}^{m} (s - b_{j})}$ $G(z) = \alpha K \frac{(z+1)^{n-m-1} \prod_{i=1}^{m} (z - e^{a_{i}T})}{\prod_{j=1}^{m} (z - e^{b_{j}T})}$ $z - 1$
Bilinear Transformation	$s = c \frac{z-1}{z+1}$ $c = \frac{2}{T}$, T is the sampling time
Bilinear Transformation with Pre-wrapping:	$s = c \frac{z-1}{z+1}$ $c = \frac{\omega_0}{\tan(\frac{\omega_0 T}{2})}, \ \omega_0 \ \text{is the 3-db frequency}$

Example

 Design a digital controller for a DC motor speed control system where the analog plant has the transfer function

$$G(s) = \frac{1}{(s+1)(s+10)}$$

To obtain:

- Zero steady-state error due to a unit step
- A damping ratio of 0.7
- A settling time of about 1 s.

Solution:

- We follow the procedures in page 3 to design a digital controller.
- Procedure 1: Design an analog controller to meet the requirements.
 - The given analog system is a type 0 system, the steady state error for a step input is $\frac{1}{1+K_n}$.
 - Thus, to make the steady-state error zero, the system type must be increased by one.

Control Requirements:

- zero steady-state error due to a unit step;
- a damping ratio of 0.7;
- a settling time of about 1 s
- A PI controller can increase system type by 1 (since its transform function contains 1/s)
- The PI controller's transform function is $C_a(s) = K \frac{s+1}{s}$, and the corresponding loop gain is $C_a(s)G(s) = \frac{K}{s(s+10)}$.
- Hence, the closed-loop characteristic equation of the system is:

$$s^2 + 10s + K = s^2 + 2\zeta \omega_n s + \omega_n^2$$

• Equating coefficients gives $\zeta \omega_n = 5$ rad/s and the settling time can be calculated by using

$$T_s = \frac{4}{\zeta \omega_n} = \frac{4}{5} = 0.8s$$

- We can see that T_s is less than the required 1 s.
- Also, from $\zeta \omega_n = 5$ and $\zeta = 0.7$, we can get $\omega_n = \frac{5}{0.7} = 7.142$ rad/s
- Thus, the corresponding analog gain is $K=\omega_n^2=51.02$
- We therefore have the analog controller:

$$C_a(s) = 51.02 \frac{s+1}{s}$$

$$C_a(s) = 51.02 \frac{s+1}{s}$$

• Let's verify this controller using MATLAB to plot the system response.

Control Requirements:

- zero steady-state error due to a unit step -> final value = 1
- a damping ratio of 0.7;
- a settling time of about 1 s > **0.83 s** ✓

- Procedure 2: Map the analog controller to a digital controller
 - We first select a suitable sampling period *T*.
 - According to the sampling theorem, the sampling frequency should be $\omega_s > k\omega_n$, $35 \le k \le 70$.
 - In this example, we can select k=40. In addition, $\omega_n=7.12$ rad/s based on previous calculation.
 - Thus, $\omega_{\scriptscriptstyle S}=40*7.12$. The sampling period $T=\frac{2\pi}{\omega_{\scriptscriptstyle S}}=0.02$ s
 - Next, we map the analog PI controller TF into the digital PI controller TF using bilinear transform:

$$s = c\frac{z-1}{z+1}$$

$$c = \frac{2}{T}$$
, T is the sampling time
$$c_a(s)$$

$$= 51.02 \frac{s+1}{s}$$

$$c(z)$$

$$= 51.53 \frac{z-0.98}{z-1}$$

- MATLAB Verification
 - Generate the step response of the discrete-time closed loop system in MATLAB, we have:

Practice Question

Design a digital PD controller for an analog system

$$G(s) = \frac{1}{s(s+1)(s+10)}$$

To obtain the settling time of about 1 second and a damping ratio of 0.7.

Solution:

- **Procedure 1**: Since the question provides the controller's type, i.e., PD controller, we can skip procedure 1 here.
- **Procedure 2**: Convert $C_a(s)$ into C(z)
 - Analog PD controller TF: $C_a(s) = K(s+1)$
 - Loog Gain: $C_a(s)G(s) = \frac{K}{s(s+10)}$
 - Characteristic Equation: $1 + C_a(s)G(s) = s(s+10) + K$ $s^2 + 10s + K = s^2 + 2\zeta\omega_n s + \omega_n^2$
- Equating coefficients gives $\zeta \omega_n = 5$ rad/s and the settling time can be calculated by using

$$T_s = \frac{4}{\zeta \omega_n} = \frac{4}{5} = 0.8s$$

Control Requirements:

- a settling time of about 1 s
- a damping ratio of 0.8

Solution:

- Also, from $\zeta \omega_n = 5$ and $\zeta = 0.8$, we can get $\omega_n = \frac{5}{0.8} = 6.25$ rad/s.
- Thus, the corresponding analog gain is $K=\omega_n^2=39.06$
- We have the analog controller:

$$C_a(s) = K(s+1) = 39.06(s+1)$$

Let's see its response in MATLAB

Settling Time: 0.6 s

Solution:

- Then, map this analog controller into the digital controller.
- First, determine the sampling time: $\omega_n=6.25$ rad/s, k=40

$$\omega_{\scriptscriptstyle S} = k\omega_n = 250 \ {
m rad/s}$$
 $T = \frac{2\pi}{\omega_{\scriptscriptstyle S}} = 0.03 \ {
m s}$

Use Bilinear Mapping to get the digital controller

$$s = c\frac{z-1}{z+1}$$

$$c = \frac{2}{T}$$
, T is the sampling time
$$C_a(s) = 39.06(s+1)$$

$$C_z = \frac{2643z - 2565}{z+1}$$

$$C_a(s) = 39.06(s+1)$$

$$C_z = \frac{2643z - 2565}{z + 1}$$

• Solution:

• MATLAB verify:

