TD série N°3: projet de montage d'un respirateur multi-modules

Christoph Samuel

I-Position du problème :

Le sujet porte sur la gestion de projet pour la **fabrication d'un respirateur** multi-modules dans une **usine du groupe** Industriel Air Liquide. Le projet doit être mené **en urgence** et la fabrication doit être intégralement automatisée. Le processus de fabrication implique **17 tâches** primitives codées A, B, C ... P, Q qui doivent être exécutées dans un i**ntervalle de temps très court**. En examinant le processus **d'exécution du cycle,** il m'est fournit le tableau suivant:

Code tâches	A	В	С	D	E	F	G	Н	I	J	K	L	M	N	0	P	Q
Durée	7	7	10	3	5	1	5	4	8	12	7	1	6	1	5	7	2
Tâches antérieures	G M	Н	E N Q	-	Н	B P	-	G M	«D+3»	A L	«*+2»	K O	I	«J*+3»	G M	E N Q	«H*+2»

« * + n » signifie que la tâche ne peut commencer que n unités de temps après le lancement du cycle
« T* + n » signifie que la tâche ne peut commencer que n unités de temps après le début de T
« T + n » signifie que la tâche ne peut commencer que n unités de temps après la fin de T

L'objectif de ce troisième TD est de résoudre, dans la pratique de certaines techniques de construction de **graphes** introduites en cours, un **problème concret d'ordonnancement.** Ce troisième problème me permet d'aborder la **notion de chemin critique** d'un graphe.

Un chemin critique désigne la **liste ordonnée des opérations** nécessaires pour obtenir le résultat voulu, dont la **durée totale** donne la durée du projet. C'est donc aussi, parmi les **différents chemins** constitués par les tâches, **le plus long chemin obtenu.**

L'un des **problèmes de l'ingénieur** consiste à s'assurer que le **montage respecte** bien la **cohérence d'ordonnancement** du modèle. Dans le cadre de ce TD, j'ai décidé de m'aider de JGraphT, une bibliothèque Java implémentant **l'algorithme PERT** et qui propose une i**nterface de création** et **traitement de graphes.** Elle permet entre autres de **calculer le chemin critique du modèle MPM.** Je me suis également servi de **yEd Graph Editor**, une application me permettant de créé des graphes, pour une représentation graphique plus adéquate **du modèle MPM.**

II-Réalisation:

Lors de la **fabrication en urgence** de respirateur multi modules, il est **primordial** pour l'usine de s'assurer que le temps de **production soit minimum**. Le problème à résoudre est **un problème typique d'ordonnancement.** Ainsi, je privilégierais un **modèle de graphe** permettant d'établir une stratégie de chemin critique. Pour résoudre ce problème, je vais le visualiser à l'aide d'un modèle de **réseau MPM**. Pour cela, je vais réaliser les étapes suivantes:

- 1- Déterminer les différents niveaux de tâches.
- 2- Modéliser le réseau MPM pour le cycle de fabrication.
- 3- Calculer à base de ce modèle la date la plus précoce de démarrage de chaque tâche.
- 4- En déduire de ce qui précède la durée optimale du cycle de fabrication.
- 5- Calculer la date la plus tardive de démarrage de chaque tâche.
- 6- Indiquer les marges totales qu'on peut observer pour chaque tâche.

1-Détermination des différents niveaux de tâches

Afin de déterminer les différents **niveaux de tâches** du **modèle de réseau MPM**, il faut résoudre les problèmes de tâches antérieures des tâches I, K, N et Q. Il en découle la création des nouvelles tâches suivantes ainsi que la création du nouveau tableau de précédence des tâches:

Pour résoudre le problème « *+2 », if faut initialiser la date de début au plus tôt de K à la valeur 2. Pour le problème « D+3 », il faut introduire une tache fictive DI de durée 3 postérieure à D et antérieure à I

nouvelle tâche via « **D+3** »

Pour résoudre le problème « J*+3 », il faut subdiviser la tache J en 2 sous-taches, J1 de durée 3 et J2 qui dure le reste, soit 12-3 = 9. La tache J1 sera antérieure à J2, ce qui était postérieure à J sera maintenant postérieure à J2 et N sera postérieure à J1.

Pour résoudre le problème « H*+2 », il faut subdiviser la tache H en 2 sous-taches, H1 de durée 2 et H2 qui dure le reste, soit 4-2 = 2. La tache H1 sera antérieure à H2, ce qui était postérieure à H sera maintenant postérieure à H2 et Q sera postérieure à H1.

Les différents niveaux sont définis successivement:

Niveau initial H1 H2 J2 M P Code tâches В \mathbf{C} D DI J1 Q *Niveau 1:* **D, G, K** Code tâches В \mathbf{C} DI G | H1 | H2 J1 **J2** Q Niveau 2: **DI** Code tâches В \mathbf{C} D DI \mathbf{E} F | G | H1 | H2 J1 | J2 | K | L M O P Q Niveau 3: I Code tâches В G H1 H2 J1 | J2 | K | L Α C D DI Ε 0 $\mathbf{P} \mid \mathbf{Q}$ Niveau 4: M J2 | K | L M Code tâches В \mathbf{C} D DI Ε F **G** H1 H2 Ι J1 N 0 P Q *Niveau* 5: **A, H1, O** В G H1 H2 I 0 Code tâches C D DI J1 | J2 | K | $L \mid M$ Q *Niveau* 6: **H2, L, Q** Code tâches A В \mathbf{C} D DI G H1 H2 I J1 J2 | K | L M N O P Q \mathbf{E} *Niveau 7:* **B, E, J1** DI G H1 H2 Code tâches \mathbf{B} \mathbf{C} D J1 J2 M O P Q *Niveau* 8: **J2, N** G H1 H2 J2 K Code tâches В \mathbf{C} D DI J1 O Q Niveau 9: C, P **Code tâches** В \mathbf{C} D DI F | G | H1 | H2 J1 **J2** | **K** 0 Q Niveau 10: F Code tâches Α В C D DI E G H1 H2 0 P Q Niveau final Code tâches В C D DI E F G H1 H2 J1 | J2 | K | L | M N O P Q A

Code tâches	A	В	С	D	DI	E	F	G	H1	H2	I	J1	J2	K	L	M	N	О	P	Q
Tâches antérieures	G M	H2	E Q N	-	D	Н2	B P	-	G M	H1	DI	A L	J1	-	K O	I	J1	G M	E N Q	H1
Durée	7	7	10	3	3	5	1	5	2	2	8	3	9	7	1	6	1	5	7	2

2- Modélisation du réseau MPM pour le cycle de fabrication

Le modèle proposé est un **graphe orienté** composé de **20 nœuds et de 33 arcs.** Il est présenté sous la forme d'un **réseau MPM provisoirement incomplet,** tel que:

3- Calcul de la date la plus précoce de démarrage de chaque tâche

Dans le réseau MPM, la **date** de démarrage **au plus tôt** d'une tâche T est obtenue en calculant la **longueur du plus long chemin entre le sommet** représentant la **tâche DEBUT** et le sommet correspondant à une **tâche T.** Les résultats de **l'application de cette méthode** sont résumés dans le tableau suivant:

Code tâches	A	В	С	D	DI	E	F	G	H1	H2	I	J1	J2	K	L	M	N	О	P	Q
Tâches antérieures	G M	H2	E Q N	-	D	Н2	B P	-	G M	H1	DI	A L	J1	-	K O	I	J1	G M	E N Q	H1
Durée	7	7	10	3	3	5	1	5	2	2	8	3	9	7	1	6	1	5	7	2
Date au plus tôt	20	24	31	0	3	24	38	0	20	22	6	27	30	2	25	14	30	20	31	22

Après **ajout des valeurs obtenue,** j'actualise mon **modèle MPM,** en mettant à jour les dates au plus tôt pour chaque tâche, j'obtiens le **nouveau modèle MPM** définit ci-dessous.

modèle MPM date au plus tôt

4- Détermination de la durée optimale du cycle de fabrication

De ce calcul, on peut **déduire la durée optimale** du cycle d'assemblage en calculant **la date au plus tôt de la tache FIN:** date+tôt(FIN) = 41

5- Calcul de la date la plus tardive de démarrage de chaque tâche

Dans le réseau MPM, la **date de démarrage au plus tard** d'une tache T est obtenue en calculant la **différence entre la durée optimale** du cycle et la **longueur du plus long chemin** entre le sommet correspondant à **une tache T et le sommet FIN.** Les résultats de **l'application de cette méthode** sont résumés dans le tableau qui suit:

Code tâches	A	В	С	D	DI	E	F	G	H1	H2	I	J1	J2	K	L	M	N	О	P	Q
Tâches antérieures	G M	H2	E Q N	-	D	Н2	B P	-	G M	H1	DI	A L	J1	-	K O	I	J1	G M	E N Q	H1
Durée	7	7	10	3	3	5	1	5	2	2	8	3	9	7	1	6	1	5	7	2
Date au plus tard	20	33	31	0	3	26	40	15	22	24	6	27	32	19	26	14	30	21	33	26

modèle MPM complet

En effet, après le lancement de **mon programme java** (Montage_respirateur_170423.java), le terminal via ApacheNetBeans m'affiche le **chemin critique du montage** ainsi que la **valeur de la date au plus tard** du cycle de fabrication:

Les **tâches critiques** sont toutes les tâches T telles que : **date+tôt(T) = date+tard(T).** D'après les **résultats obtenus** via les questions précédentes, il en ressort le tableau suivants, parmi lequel, les **tâches critiques sont colorées en rouge.**

Code tâches	DEBUT	A	В	C	D	DI	E	F	G	H1	H2	I	J1	J2	K	L	M	N	0	P	Q	FIN
Durée	0	7	7	10	3	3	5	1	5	2	2	8	3	9	7	1	6	1	5	7	2	0
Date au plus tôt	0	20	24	31	0	3	24	38	0	20	22	6	27	30	2	25	14	30	20	31	22	41
Date au plus tard	0	20	33	31	0	3	26	40	15	22	24	6	27	32	19	26	14	30	21	33	26	41

Une fois la certitude des valeurs fournies par mon programme, codant le **modèle MPM** et le faisant tourner dans **l'algorithme PERT** ainsi que des valeurs de **dates au plus tôt et au plus tard** obtenues, je réalise le graphe avec **le chemin critique** afin de visualiser aux mieux les résultats.

modèle MPM chemin critique

Le **chemin critique** est le chemin traversant les sommets **«tâches critiques».** Dans notre cas le chemin est le suivant: DEBUT \rightarrow D \rightarrow DI \rightarrow I \rightarrow M \rightarrow A \rightarrow J1 \rightarrow N \rightarrow C \rightarrow FIN. Sa longueur détermine **la durée optimale du cycle d'assemblage.**

6- Présentation des marges totales qu'on peut observer pour chaque tâche

On appelle **marge d'une tâche** le **retard** qu'il est **possible de tolérer** dans sa réalisation **sans affecter la durée optimale** prévue du projet. Les marges des tâches composant le **chemin critique sont nécessairement nulles,** il existe **deux types de marges**:

- «Marge Totale» est de mesurer le degré de liberté disponible pour retarder le démarrage d'une tâche, ou allonger sa durée sans affecter la durée optimale du projet.

$$Mt = Date + tard(T) - Date + tôt(T)$$

- «Marge Libre» d'une tâche T et on note ML(T) le retard admissible dans sa réalisation sans modifier les dates au plus tôt des tâches suivantes sans allonger la durée optimale du projet.

$$Ml(T) = min [date+tôt(Si) - date+tôt(T)] - durée(T), avec Si = tâches succédant à T$$

A l'aide des **définitions et des résultats précédents,** j'obtiens le tableau suivant qui me fournis les **marges totales et les marges libre** de toute les **tâches.**

Code tâches	A	В	С	D	DI	E	F	G	H1	H2	I	J1	J2	K	L	M	N	0	P	Q
Tâches antérieures	G M	H2	E Q N	-	D	Н2	B P	-	G M	H1	DI	A L	J1	-	K O	I	J1	G M	E N Q	H1
Durée	7	7	10	3	3	5	1	5	2	2	8	3	9	7	1	6	1	5	7	2
Date au plus tôt	20	24	31	0	3	24	38	0	20	22	6	27	30	2	25	14	30	20	31	22
Date au plus tard	20	33	31	0	3	26	40	15	22	24	6	27	32	19	26	14	30	21	33	26
Marge totale	0	9	0	0	0	2	2	15	2	2	0	0	1	17	1	0	0	1	2	4
Marge libre	0	7	0	0	0	2	2	15	0	0	0	0	2	16	1	0	0	0	0	4

III-Bilan/Conclusion :

Sur le plan de **l'application des modèles** et algorithmes de recherche opérationnelle sur les graphes, ce TD démontre qu'il est aisé de **ramener de nombreux problèmes réels à un problème de recherche opérationnelle,** ici celui de **l'étude d'un chemin critique** au sein d'un **modèle MPM** et la **puissance de ses solutions algorithmiques,** utilisant **l'algorithme PERT** pour résoudre les-dits problèmes. J'ai appris à appliquer mes connaissances **via un problème classique d'ordonnancement.**

Sur le plan de **résolution des problèmes réels,** cet exemple me démontre l'importance du **chemin critique** au sein d'un **problème classique d'ordonnancement** et cela me donne un aperçu d'un futur travail qui m'attend.