

Computer Vision

Content

- Introduction
- Two-Stage Approaches (lecture 9)
 - Sliding window approach
 - R-CNN
 - Fast R-CNN
 - Faster R-CNN
- One-Stage Approaches (lecture 10)

Segmentation Tasks

Input Image

Object Detection

Semantic Segmentation

Instance Segmentation

Source: https://www.v7labs.com/blog/instance-segmentation-guide

Object Detection

- Also called "Localization"
- Task A:
 - Predict the location of bounding boxes (4 real numbers)
- Task B:
 - Predict the classes of each detected bounding boxes

Image and Bounding Box coordinates

A simple case: only one object

A simple case: only one object

A simple case: only one object

Which objective function should be trained?

Approach A: Loss of head 1 + loss of head 2

Approach B: Fix backbone + classification head, only train localization head

8

2

Real case: multiple objects in an image

https://en.wikipedia.org/wiki/O bject_detection

Sliding window approach

Idea 1: Sliding Window Approach [1]

- Step 1:
 - Generate candidate windows, which are evenly distributed in the original image
 - In [1], different scales of the original image are used

Idea 1: Sliding Window Approach [1]

- Step 2:
 - Classification prediction of each window (by e.g. ResNet)
 - Remove "background" windows

Idea 1: Sliding Window Approach [1]

- Step 3 (Post-precessing):
 - Combine and merge of resulted windows

Sliding Window Approach: Not effizient

- Step 1: Window Generation
- Step 2: Class prediction on each window (Inefficient)
- Step 3: Merge results

- 4 Windows ⇒ 4 Predictions
- Calling Deep NN 4 times (inefficient)

Window 4

What to do?

Reduce the number of calling Deep NN

Recall: Represent Fully Connected Layers by Convolutions

Recall: Represent Fully Connected Layers by Convolutions

- By selecting proper kernel sizes, fully connected layers can be represented by convolutions equivalently
- Mathematically, there is no difference between fully connected layers and convolution layers
- Classification networks, e. g. VGG16, AlexNet, can be viewed as fully convolutional networks (only convolutions, no fully connected layers)

Sliding Window Approach: Not effizient

- Idea to reduce the total number of calling Deep NN
 - Replace classical classification network (with fully connected layers) by fully convolutional network
 - Do not call classification network for multiple times. But call the transformed fully convolutional network only once
 - It is called "Convolution Implementation of Sliding Window"

Convolution Implementation of Sliding Window

One Window:

Input Image:

Convolution Implementation of Sliding Window

Input Image:

Correspond to 36 Windows

In Sum:

- ☐ Calculate the class predictions of all windows by calling a single convolution network for only once
- ☐ No need to call deep NN for multiple times

Sliding Window Approach: Summary

- Utilizing classification networks
- Efficient implementation exists (Convolution Implementation of Sliding Window)
- No explicit prediction of the coordinates of bounding boxes
- Bounding boxes are generated in post-processing step (no regression task is solved)

Content

- Introduction
- Sliding window approach
- Region-proposal network
 - R-CNN
 - Fast R-CNN
 - Faster R-CNN

R-CNN[2]

Region proposal

~2000 Region proposals

Algorithm:

- Find image regions which are likely to contain objects (no AI)
- Feed each region proposal: classification + Bbox regression
- Post-processing: merge results

R-CNN[2]

Bounding box classification by SVM Bounding box regression by Linear Regression

Computation of **feature maps**

Feed each region to network

Resize proposals

Region proposal

R-CNN: Bounding Box Regression

For each region, train a linear regression model to predict its offsets to the GT bounding box

Training Regions (Inputs)

Regression Targets (dx, dy, dw, dh)

GT=(0, 0, 0, 0) Proposal is good

R-CNN: Region Proposal Methods

Method	Approach	Outputs	Outputs	Control	Time	Repea-	Recall	Detection
		Segments	Score	#proposals	(sec.)	tability	Results	Results
Bing [18]	Window scoring		✓	✓	0.2	* * *	*	•
CPMC-[1 9]	Grouping	\checkmark	\checkmark	\checkmark	250	-	**	*
EdgeBoxes [20]	Window scoring		\checkmark	\checkmark	0.3	**	***	***
- Endres [21] -	Grouping	\checkmark	\checkmark	\checkmark	100	-	***	**
Geodesic [22]	Grouping	\checkmark		\checkmark	1	*	***	**
MCG [23]	Grouping	\checkmark	\checkmark	\checkmark	30	*	***	***
Objectness [24]	Window scoring		\checkmark	\checkmark	3		*	
Rahtu [25]	Window scoring		\checkmark	✓	3			*
RandomizedPrim's [26]	Grouping	\checkmark		✓	1	*	*	**
Rantalankila [27]	Grouping	\checkmark		\checkmark	10	**		**
Rigor_[28]	Grouping	\checkmark		\checkmark	10	*	**	**
SelectiveSearch [29]	Grouping	\checkmark	\checkmark	\checkmark	10	**	***	***
Gaussian				✓	0	•	•	*
SlidingWindow				✓	0	* * *		
Superpixels		\checkmark			1	*		
Uniform				\checkmark	0	•		

R-CNN: Summary

Improvements (compared with Sliding Window Approach):

- Reduced number of "candidate windows"
- Classification + Bounding box regression

R-CNN: Problems

- 1. Performance inefficiency
 - Each image has 2000 proposals.
 - CNN must be runned for 2000 times!
- 2. Only classification & regression layers are trained
 - Feature maps are computed by CNN. They are inputs for SVM or regression layers
 - CNN is **not** trained together with classification & regression layers (suboptimal)
- 3. A complex system
 - Complicated to train them together ("end"-to-"end")

Fast R-CNN

Fast R-CNN[4]

"Region of Interest" (RoI) (Its location is determined by region proposals)

- Idea & Motivation:
 - Feature maps of each region do not need to be computed repeatedly
 - Apply CNN once

Fast R-CNN[4]

Method:

- Step 1: Apply CNN to get a feature map of the whole original image (saves time!)
- Step 2: Compute region proposals by non-Al algorithms
- Step 3: Crop features in the feature map ("Rol")
- Step 4: Feed each "Rol" to classificatin & regression layers

Fast R-CNN[4]

- Feature map of the entire image is cropped using the projected "Rol".
- The network has two heads. One for classification, the other for bbox regression.

Fast R-CNN [4]: Summary

- Improvements (Compared to R-CNN):
 - No need to run CNN for 2000 times for a single image

- Disadvantage:
 - The method's performance depends on the proposed regions and region proposal methods
 - Generating region proposals slows down the prediction during test time
 - Not "End-to-End" trainable. Why?

"End-To-End" Trainable

 An end-to-end trainable neural network is one, where all parameters of the network can simultaneously updated, when optimizing one loss function.

Classical deep CNN can be denoted as:

$$y = f(x, \theta)$$

x: input image

 θ : parameters of all layers

f: mapping of all layers

■ Training process (= "updating θ ", "process of optimization"):

$$\theta_{k+1} = \theta_k + \lambda \frac{\partial f}{\partial \theta}$$

k: training step

 λ : learning rate

 $\frac{\partial f}{\partial \theta}$: gradients

Network is "end-to-end" trainable, if gradients $\frac{\partial f}{\partial \theta}$ are available

Fast R-CNN: "End-To-End" Trainable?

- Input image: $x \in \mathbb{R}^{H imes W}$
- Feature map of the entire image: $F = f_{cnn}(x, \theta_{cnn})$ $\in \mathbb{R}^{A \times B}$
- Coordinates of Rol: $(o_x, o_y, w, h) = \varphi(x) \in \mathbb{R}^4$
- Cropped features of Rol: $\rho(F, \varphi(x)) \in \mathbb{R}^{w \times h}$
- Output of Network:

$$y = f_{head}(\rho(F, \varphi(x), \theta_{head})$$
$$= f_{head}\{\rho[f_{cnn}(x, \theta_{cnn}), \varphi(x)], \theta_{head}\}$$

Fast R-CNN: "End-To-End" Trainable?

- = $\frac{\partial y}{\partial \theta_{cnn}}$ is unavailable, therefore the backbone CNN is not "end- to-end" trainable (from image x to heads' output y)
- \blacksquare $\frac{\partial y}{\partial \theta_{head}}$ is available, therefore heads can be "end-to-end" trained
- The network is not "end-to-end" trainable, because the partial gradients of the cropping function $\rho(F,\varphi(x))$ with respect to the feature map F can not be obtained
- Fast R-CNN is a "two-stage" approach

Faster R-CNN

Faster R-CNN^[5]

- Idea
 - Module 1: Use Region Proposal Network (RPN) to propose region's coordinates
 - Much faster than region proposal algorithms. Why?

 Module 2: Use classifier (the same as R-CNN) to classify each region

- Propose "Anchor box"
 - an influential idea!

Anchor Box

Definition:

"Anchor boxes are bounding boxes, whose scale (height, width) and position is specified and fixed."

Examples:

- Anchor boxes are usually determined and fixed before training (Model's hyper-parameter)
- Firstly, introduced in [5]
- Simple, but a very import concept

Anchor Boxes of an Image: example

An Image

- The position, shape and dimension of anchor boxes are fixed in an image, which are design's hyperparameter
- An image may have multiple anchor boxes
- Anchor boxes are usually placed in subgroups. Each subgroup has the same center (left figure).
- They usually cover the whole image, so that objects at different places of an image can be detected.

Anchor Boxes: Why need?

Why need?

- We do not want to predict the absolute coordinates of bbox, but their offsets to some reference boxes (="anchor box")
- Anchor boxes are locational references for the ground-truth and predicted bounding boxes

Region Proposal Network (RPN)

- Idea: Multi-scale anchors as regression's reference
- Consider that in each subgroup/window K anchor boxes are selected
- Region Proposal Network:
- contains only convolutions predicts object existence and offsets to each anchor boxes Feature Map Max 1×1 1×1 5×5 pooling $2 \times 2 \times 400$ $2 \times 2 \times 400$ $2 \times 2 \times 6K$ $12 \times 12 \times 16$ $6 \times 6 \times 16$ $16 \times 16 \times 3$

Region Proposal Network

Output of Region Proposal Network

Region Proposal Network

The position of 4 windows and the corresponded anchor boxes of each window

- Anchor boxes are centered in each window
- Their positions and dimension are fixed
- In this figure, #Window=4, K=3
- In [5], #Window=2400 (?), K=9

ratio (Figure 3, left). By default we use 3 scales and 3 aspect ratios, yielding k=9 anchors at each sliding position. For a convolutional feature map of a size $W \times H$ (typically $\sim 2,400$), there are WHk anchors in total.

Region Proposal Network (RPN): Ground Truth

☐ RPN takes an input image and outputs a tensor:

- What do we need to train RPN?
- \Rightarrow GT value of tensor $2 \times 2 \times 6K$
- ☐ Classical dataset contains only the GT location of bounding boxes (right figure)
- ⇒ How to get the GT value of this tensor from the dataset?

Dateset

Recall: Intersection-over-Union (IoU)

- IoU is a number that quantifies the degree of overlap between two boxes
- IoU can be used to evaluate e.g. the overlap of the GT box and prediction region, the overlap
 of GT box and anchor box
- $IoU \in [0, 1]$

Region Proposal Network (RPN): GT Creation

- To train RPN, each anchor is assigned with 6 positions in the output tensor
- The values of these 6 positions are calculated based on **IoU**

Region Proposal Network (RPN): Different Situations

Single anchor (for each window), multiple objects

Multiple anchors, single Objects

Region Proposal Network (RPN): Different Situations

- Multiple anchors, multiple Objects
 - Real case

- ☐ There is no unique and 100% correct solution to create GT tensor.
- ☐ Creating GT tensor for anchor boxes is an "engineering" process
- ☐ Different solutions / steps exist

Region Proposal Network (RPN): Training

Element-by-element:

Region Proposal Network (RPN): Training

GT Prediction Notation: For example:

- $Objective\ function = loss_{classification} + loss_{regression}$
- $loss_{class.} = \sum e_{gt} log e_p + (1 n_{gt}) log n_p$

- Binary classification
- Cross-entropy
- Regression
 - Mean-Squared-Error

value of bounding box is considered!

Why use anchor boxes?

- Anchors exist in different scale, i.e. size, height-width ratio
- Objects in different scales can be detected.
 - Big anchors responsible for big objects
 - Small anchors responsible for small objects
- Avoid pyramid of scaled images [6], avoid sliding windows with different sizes
 - → more efficient

Anchor box: Limitations

- Total number of detected objects is limited to (#anchors × #windows)
 - In previous case, total objects $\leq K \times 4$
- Parameters of anchor box (K, size, ratio, ...) and #windows are design hypermeters
 - Too many
 - Hard to tune

Hundreds of anchor boxes are needed!

Faster R-CNN Overview: Two-stage Approach

1*1*C

Faster R-CNN Overview: Training steps

- Training steps:
 - Step 1: Train RPN
 - Step 2: Train Classifier
 - RPN is called to generate region proposals
 - Repeat step 1 and 2 ("alternating training" [5])

Faster R-CNN Overview: Two-stage Approach

- Question: Can we train RPN + Classifier together ("end-to-end")?□Not trivial□Why?
- ☐ Therefore, faster R-CNN is a "two-stage" approach

Faster R-CNN^[5]: Summary

- Two modules: RPN, classifier/regression
- Firstly introduced "Anchor" (promising!)
- RPN
 - Predicts the existence of objects and their coordinates
 - A fully convolutional network (FCN)
 - Can run on GPU. Faster than region proposal method (run on CPU)
 - Can be trained "end-to-end"
- A two-stage method
 - Two modules (RPN & Classifier) can not be trained "end-to-end"

Reference

- [1] Sermanet, et al., OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks, ICLR, 2014
- [2] Girshick, et al., Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation, CVPR, 2014
- [3] Hosang, et al., What Makes for Effective Detection Proposals?, PAMI, 2015
- [4] Girshick, Fast R-CNN, ICCV, 2015
- [5] Ren, et al., Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, NIPS, 2015
- [6] Sermant, et al., Overfeat: Integrated recognition, localization and detection using convolutional networks, ICLR, 2014

Resource

- Faster R-CNN
 - https://blog.paperspace.com/faster-r-cnn-explained-object-detection/