

Höhere Ableitungen

Ist die erste Ableitungsfunktion f'(x) differenzierbar, so ist ihre Ableitung die zweite Ableitung der Funktion f und man schreibet f''(x).

Ist die zweite Ableitung von f differenzierbar, so ist ihre Ableitung die dritte Ableitung der Funktion f und man schreibt f'''(x).

Übungsaufgabe

Bestimmen Sie die Funktionsgleichung von f'.

a)
$$f(x) = 3x^2$$

b)
$$f(x) = 4x^2$$

c)
$$f(x) = 5x^2$$

d)
$$f(x) = -3x^2 - x$$

e)
$$f(x) = -4x^2 + 2x$$

f)
$$f(x) = -5x - 2x$$

Bestimmung der Ableitung mit Ableitungsregeln

Gerade für längere und komplexere Funktionen ist es sehr aufwendig, die Ableitungsfunktion mit Hilfe der h-Methode zu bestimmen.

Stattdessen kommen Ableitungsregeln zum Einsatz.

Sie lernen im Folgenden drei Ableitungsregeln kennen. Diese werden selbstverständlich auch in Kombinatnion angewendet.

Die Potenzregel

Für jede natürliche Zahl n als Exponent ist die Potenfunktion $f(x)=x^n$ differenzierbar und die Ableitung ist $f'(x) = n \cdot x^{n-1}$.

Beispiele:

$$-f(x)=x^3$$
: $f'(x)=$

$$-f(x)=x^8$$
: $f'(x)=$

$$-f(x)=x$$
: $f'(x)=$

$$-f(x) = 5$$
: $f'(x) =$ ______

Merke: Die Ableitung einer **Konstanten** ist immer _____

Mathematik Seite 7/8

Die Faktorregel

Für jede natürliche Zahl n ist die Funktion $f(x) = a \cdot x^n$ differenzierbar und für die Ableitung f' gilt: $f'(x) = a \cdot n \cdot x^{n-1}$.

Der konstante Faktor a bleibt also beim Ableiten erhalten.

Alternative Formulierung: Für $f(x) = a \cdot g(x)$ gilt $f'(x) = a \cdot g'(x)$

Beispiele:

$$-f(x)=3\cdot x^{12}$$
: $f'(x)=$ _______

$$-f(x) = -2 \cdot x^3$$
: $f'(x) =$

$$-f(x)=4x$$
: $f'(x)=$ _______

Die Summenregel

Sind die ganzrationalen Funktionen g und h differenzierbare Funktionen, so ist auch die Funktion f mit f(x)=g(x)+h(x) differenzierbar und es gilt:

$$f'(x) = g'(x) + h'(x).$$

Eine ganzrationale Funktion wird also **summandenweise** abgeleitet.

Die Ableitungen der einzelnen Summanden werden dabei mit der Potenz- und Faktorregel bestimmt.

Beispiele:

$$f(x) = x^3 - x^2$$
: $f'(x) =$

$$^{ullet} \ f(x) = 2x^5 + 7x^4$$
: $f'(x) =$

$$f(x) = 8x^3 - 4x^2 + 3x - 9$$
: $f'(x) =$

Berechnen Sie den Wert der Ableitung an der Stelle x₀.

a)
$$f(x) = x^5; x_0 = 2$$

a)
$$f(x) = x^5$$
; $x_0 = 2$
b) $f(x) = 4x^{10}$; $x_0 = \frac{1}{2}$
c) $f(x) = -6x^6$; $x_0 = -1$
d) $f(x) = \frac{1}{4}x$; $x_0 = 1$
e) $f(x) = \frac{1}{2}x^4$; $x_0 = \frac{3}{2}$
f) $f(x) = \frac{3}{8}x^8$; $x_0 = 1$

c)
$$f(x) = -6x^6$$
; $x_0 = -1$

d)
$$f(x) = \frac{1}{4}x$$
; $x_0 = 1$

e)
$$f(x) = \frac{1}{2}x^4$$
; $x_0 = \frac{3}{2}$

f)
$$f(x) = \frac{3}{8}x^8$$
; $x_0 = 1$

6 Bestimmen Sie alle Stellen, an denen die Funktion f die Steigung m hat.

a)
$$f(x) = \frac{1}{5}x^2$$
; $m = 10$ b) $f(x) = 8x$; $m = 8$ c) $f(x) = 4x^3$; $m = 12$

b)
$$f(x) = 8x; m = 8$$

c)
$$f(x) = 4x^3$$
; $m = 12$

d)
$$f(x) = \frac{3}{2}x^4$$
; $m = 48$ e) $f(x) = \frac{1}{2}x^5$; $m = \frac{5}{2}$ f) $f(x) = x$; $m = 1$

e)
$$f(x) = \frac{1}{2}x^5$$
; $m = \frac{5}{2}$

f)
$$f(x) = x; m = 1$$