Simplifications of Context-Free Grammars

A Substitution Rule

A Substitution Rule

$$S \rightarrow aB \mid ab$$

$$A \rightarrow aaA$$

$$A \rightarrow abBc \mid abbc$$

$$B \rightarrow aA$$

Substitute

$$B \rightarrow aA$$

$$S \rightarrow aB \mid ab \mid aaA$$

$$A \rightarrow aaA$$

$$A \rightarrow abBc \mid abbc \mid abaAc$$

Equivalent grammar

In general:

$$A \rightarrow xBz$$

$$B \rightarrow y_1$$

Substitute
$$B \rightarrow y_1$$

$$A \rightarrow xBz \mid xy_1z$$

equivalent grammar

Nullable Variables

$$\lambda$$
 – production:

$$A \rightarrow \lambda$$

$$A \Rightarrow \ldots \Rightarrow \lambda$$

Removing Nullable Variables

Example Grammar:

$$S \to aMb$$

$$M \to aMb$$

$$M \to \lambda$$

Nullable variable

Final Grammar

$$S \to aMb$$

$$M \to aMb$$

$$M \to \lambda$$

Substitute
$$M \rightarrow \lambda$$

$$S \to aMb$$

$$S \to ab$$

$$M \to aMb$$

$$M \to ab$$

Unit-Productions

Unit Production:
$$A \rightarrow B$$

(a single variable in both sides)

Removing Unit Productions

Observation:

$$A \rightarrow A$$

Is removed immediately

Example Grammar:

$$S \rightarrow aA$$
 $A \rightarrow a$
 $A \rightarrow B$
 $B \rightarrow A$
 $B \rightarrow bb$

$$S \to aA$$

$$A \to a$$

$$A \to B$$

$$B \to A$$

$$B \to bb$$

$$S \to aA \mid aB$$

$$A \to a$$

$$B \to A \mid B$$

$$B \to bb$$

$$S \rightarrow aA \mid aB$$
 $A \rightarrow a$
 $B \rightarrow A$
 $B \rightarrow bb$
 $S \rightarrow aA \mid aB \mid aA$
 $Substitute$
 $S \rightarrow aA \mid aB \mid aA$
 $A \rightarrow a$
 $B \rightarrow bb$

Remove repeated productions

$$S \to aA \mid aB \mid aA$$

$$A \to a$$

$$B \to bb$$

Final grammar

$$S \rightarrow aA \mid aB$$

$$A \rightarrow a$$

$$B \rightarrow bb$$

Useless Productions

$$S oup aSb$$

$$S oup \lambda$$

$$S oup A$$

$$A oup aA$$
 Useless Production

Some derivations never terminate...

$$S \Rightarrow A \Rightarrow aA \Rightarrow aaA \Rightarrow ... \Rightarrow aa...aA \Rightarrow ...$$

Another grammar:

$$S o A$$
 $A o aA$
 $A o \lambda$
 $B o bA$ Useless Production

Not reachable from S

In general:

contains only terminals

if
$$S \Rightarrow ... \Rightarrow xAy \Rightarrow ... \Rightarrow w$$

$$w \in L(G)$$

then variable A is useful

otherwise, variable A is useless

A production $A \rightarrow x$ is useless if any of its variables is useless

$$S o aSb$$
 $S o \lambda$ Productions Variables $S o A$ useless useless $A o aA$ useless useless $B o C$ useless useless $C o D$ useless

Removing Useless Productions

Example Grammar:

$$S \rightarrow aS \mid A \mid C$$
 $A \rightarrow a$
 $B \rightarrow aa$
 $C \rightarrow aCb$

First: find all variables that can produce strings with only terminals

$$S
ightharpoonup aS \mid A \mid C$$
 Round 1: $\{A, B\}$

$$S
ightharpoonup a$$

$$S
ightharpoonup A$$

$$B
ightharpoonup aaa$$

$$C
ightharpoonup aCb$$
 Round 2: $\{A, B, S\}$

Keep only the variables that produce terminal symbols: $\{A,B,S\}$

(the rest variables are useless)

$$S \to aS \mid A \mid \otimes$$

$$A \to a$$

$$B \to aa$$

$$C \to aCb$$

$$S \to aS \mid A$$

$$A \to a$$

$$B \to aa$$

Remove useless productions

Second: Find all variables reachable from S

Use a Dependency Graph

$$S \to aS \mid A$$

$$A \to a$$

$$B \to aa$$

not reachable

Keep only the variables reachable from S

(the rest variables are useless)

Final Grammar

$$S \to aS \mid A$$

$$A \to a$$

$$B \to aa$$

$$S \to aS \mid A$$

$$A \to a$$

Remove useless productions

Removing All

Step 1: Remove Nullable Variables

Step 2: Remove Unit-Productions

Step 3: Remove Useless Variables

Normal Forms for Context-free Grammars

Chomsky Normal Form

Each productions has form:

Examples:

$$S \rightarrow AS$$

$$S \rightarrow a$$

$$A \rightarrow SA$$

$$A \rightarrow b$$

Chomsky Normal Form

$$S \rightarrow AS$$

$$S \rightarrow AAS$$

$$A \rightarrow SA$$

$$A \rightarrow aa$$

Not Chomsky Normal Form

Convertion to Chomsky Normal Form

$$S \rightarrow ABa$$

$$A \rightarrow aab$$

$$B \rightarrow Ac$$

Not Chomsky Normal Form

Introduce variables for terminals: T_a, T_b, T_c

Introduce intermediate variable: V_1

$$S \to ABT_{a}$$

$$A \to T_{a}T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

$$S \to AV_{1}$$

$$V_{1} \to BT_{a}$$

$$A \to T_{a}T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

Introduce intermediate variable:

Final grammar in Chomsky Normal Form:

$$S \to AV_1$$

$$V_1 \to BT_a$$

$$A \to T_aV_2$$

$$V_2 \to T_aT_b$$

$$B \to AT_c$$

$$T_a \to a$$

$$T_b \to b$$

$$T_c \to c$$

$$S \rightarrow ABa$$

$$A \rightarrow aab$$

$$B \rightarrow Ac$$

In general:

From any context-free grammar (which doesn't produce λ) not in Chomsky Normal Form

we can obtain:

An equivalent grammar in Chomsky Normal Form

The Procedure

First remove:

Nullable variables

Unit productions

Then, for every symbol a:

Add production
$$T_a \rightarrow a$$

In productions: replace $\,a\,\,$ with $\,T_a\,\,$

New variable: T_a

Replace any production $A \rightarrow C_1 C_2 \cdots C_n$

with
$$A oup C_1 V_1$$
 $V_1 oup C_2 V_2$... $V_{n-2} oup C_{n-1} C_n$

New intermediate variables: $V_1, V_2, ..., V_{n-2}$

Theorem:

For any context-free grammar (which doesn't produce λ) there is an equivalent grammar in Chomsky Normal Form

Observations

 Chomsky normal forms are good for parsing and proving theorems

• It is very easy to find the Chomsky normal form for any context-free grammar

Greibach Normal Form

All productions have form:

Examples:

$$S \to cAB$$

$$A \to aA \mid bB \mid b$$

$$B \to b$$

$$S \to abSb$$
$$S \to aa$$

Not Greibach Normal Form

Conversion to Greibach Normal Form:

$$S o abSb$$
 $S o aa$ $S o aT_bST_b$ $S o aT_a$ $T_a o a$ $T_b o b$ Greibach

Normal Form

Theorem:

For any context-free grammar (which doesn't produce λ) there is an equivalent grammar in Greibach Normal Form

Observations

 Greibach normal forms are very good for parsing

• It is possible to find the Greibach normal form of any context-free grammar

The CYK Parser (Cocke-Younger-Kasami)

The CYK Membership Algorithm

Input:

 \cdot Grammar G in Chomsky Normal Form

String W

Output:

find if $w \in L(G)$

The Algorithm

Input example:

• Grammar $G: S \rightarrow AB$ $A \rightarrow BB$ $A \rightarrow a$ $B \rightarrow AB$ $B \rightarrow b$

• String w: aabbb

aabbb

a

a

ab

b

b

aa

aabb

aabbb

aab

abb

abbb

bbb

bb

bb

47

$S \rightarrow AB$

$$A \rightarrow BB$$

$$A \rightarrow a$$

$$B \to AB$$

$$B \rightarrow b$$

a a b b b A A B B B

aa ab bb bb

aab abb bbb

aabb abbb

aabbb

$$S \rightarrow AB$$

$$A \rightarrow BB$$

$$A \rightarrow a$$

$$B \to AB$$

$$B \rightarrow b$$

a	a	b	b	b
A	A	В	В	В
aa	ab	bb	bb	
	S,B	A	A	

bbb

abbb aabb

abb

aab

aabbb

$$S \rightarrow AB$$

$$A \rightarrow BB$$

$$A \rightarrow a$$

$$B \rightarrow AB$$

$$B \rightarrow b$$

$$A \rightarrow a$$

$$A$$

Therefore: $aabbb \in L(G)$

Time Complexity:
$$|w|^3$$

Observation: The CYK algorithm can be easily converted to a parser (bottom up parser)