Risk-Neutral Pricing in the Black-Scholes Model

Ray Otsuki

August 10, 2020

Contents

1	Risk	Risk Neutral Measures		
	1.1	Girsanov's Theorem	1	
	1.2	Risk-Neutral Pricing	4	
	1.3	Risk-Neutral Pricing Formula	5	
	1.4	Numéraire Pairs and Change of Numéraire Formula	5	
			7	
2	Pric	ricing Options in the Black-Scholes world		
	2.1	European Options and The Black-Scholes Formula	8	

1 Risk Neutral Measures

For this chapter, we shall adorn measure-specific objects with a superscript of the measure that they are taken with respect to. Thus, $P^{\mathbb{P}}(A)$ denotes the probability of event A occurring under the measure \mathbb{P} , $\mathbb{E}^{\mathbb{P}}[f(X)]$ denotes the expectation under f(X) under the measure \mathbb{P} and $W^{\mathbb{P}}$ denotes a Brownian motion under the measure \mathbb{P} .

1.1 Girsanov's Theorem

Definition 1. Two probability measures \mathbb{P} and \mathbb{Q} are said to be equivalent if they agree on the null set of events: $P^{\mathbb{P}}(A) = 0$ if, and only if, $P^{\mathbb{Q}}(A) = 0$ for all $A \in \mathcal{F}$.

Let $\mathcal Z$ be a r.v. such that $\mathbb E^{\mathbb P}[\mathcal Z]=1$ and $\mathcal Z>0$. Let

$$P^{\mathbb{Q}}(A) := \mathbb{E}^{\mathbb{P}}[\mathcal{Z}\mathbf{1}_A] = \int_A \mathcal{Z}d\mathbb{P}, \qquad A \in \mathcal{F}.$$
 (1)

Remark 1. The requirement $\mathbb{E}^{\mathbb{P}}[\mathcal{Z}] = 1$ is to ensure that $P^{\mathbb{Q}}(\Omega) = 1$.

Since $P^{\mathbb{Q}}(A) \equiv \int_A d\mathbb{Q}$, this can be written as

$$d\mathbb{Q} = \mathcal{Z}d\mathbb{P}$$
 or $\mathcal{Z} = \frac{d\mathbb{Q}}{d\mathbb{P}}$, (2)

and \mathcal{Z} is called the *Radon-Nikodym derivative* (or *density*) of \mathbb{Q} with respect to \mathbb{P} .

Theorem 1. (Radon-Nikodym) Two measures \mathbb{P} and \mathbb{Q} are equivalent if, and only if, there exists a random variable \mathcal{Z} such that $\mathbb{E}[\mathcal{Z}] = 1$, $\mathcal{Z} > 0$ and \mathbb{Q} is given by (1).

Proof. The proof is beyond the scope of these notes but the theorem above will be used extensively in pricing options. \Box

Let that \mathcal{Z} is a martingale. Define a new measure for some fixed T>0 by

$$d\mathbb{Q} = \mathcal{Z}(T)d\mathbb{P}. \tag{3}$$

The expectations with respect to the two measures are related as follows:

$$\mathbb{E}^{\mathbb{Q}}[X] = \int X d\mathbb{Q} = \int \mathcal{Z}(T) X d\mathbb{P} = \mathbb{E}^{\mathbb{P}}[\mathcal{Z}(T)X]. \tag{4}$$

Similarly, given a σ -algebra \mathcal{F} , we define the conditional expectation $\mathbb{E}^{\mathbb{Q}}[X|\mathcal{F}]$ as the unique \mathcal{F} -measurable r.v. such that

$$\int_{A} \mathbb{E}^{\mathbb{Q}}[X|\mathcal{F}] d\mathbb{Q} = \int_{A} X d\mathbb{Q} \qquad \forall A \in \mathcal{F}.$$
 (5)

The remainder of this section will be devoted to proving Girsanov's theorem.

Theorem 2. (Girsanov) Let $b(t) = (b_1(t), b_2(t), \dots, b_d(t))$ be a d-dimensional adapted process, $W^{\mathbb{P}}(t)$ be a d-dimensional Brownian motion with respect to measure \mathbb{P} and let

$$W^{\mathbb{Q}}(t) = W^{\mathbb{P}}(t) + \int_0^t b(s)ds.$$
 (6)

Let \mathcal{Z} be the exponential process induced by b(t):

$$\mathcal{Z}(t) = \exp\left(-\frac{1}{2} \int_0^t |b(s)|^2 ds - \int_0^t b(s) \cdot dW^{\mathbb{P}}(s)\right). \tag{7}$$

Define a new measure $d\mathbb{Q} = \mathcal{Z}(T)d\mathbb{P}$. If \mathcal{Z} is a martingale with respect to \mathbb{P} , then $W^{\mathbb{Q}}$ is a Brownian motion under \mathbb{Q} up to time T.

Remark 2. Note that

$$b(s) \cdot dW^{\mathbb{P}}(s) = \sum_{i=1}^{d} b_i(s) dW_i^{\mathbb{P}}(s), \quad and \quad |b(s)|^2 = \sum_{i=1}^{d} b_i(s)^2,$$
 (8)

and that the differential form of the relation between $W^{\mathbb{Q}}$ and $W^{\mathbb{P}}$ is given by

$$dW_i^{\mathbb{Q}}(t) = dW_i^{\mathbb{P}}(t) + b_i(t). \tag{9}$$

Remark 3. The processes $W_i^{\mathbb{Q}}$ are not Brownian motions under \mathbb{P} and the processes $W_i^{\mathbb{P}}$ are not Brownian motions under \mathbb{Q} ; they are only Brownian motions under their respective measures.

Before giving the proof, we first give two lemmas.

Lemma 1. Let $0 \le s \le t \le T$ and let \mathbb{P} and \mathbb{Q} be two measures related by a martingale density $\mathcal{Z}(T)$. If X is a \mathcal{F}_t -measurable random variable, then

$$\mathbb{E}^{\mathbb{Q}}[X|\mathcal{F}_s] = \frac{1}{\mathcal{Z}(s)} \mathbb{E}^{\mathbb{P}}[\mathcal{Z}(t)X|\mathcal{F}_s].$$
 (10)

Proof. Let $A \in \mathcal{F}_s$ (and hence $A \in \mathcal{F}_t$ for $t \geq s$). Then,

$$\int_{A} \mathbb{E}^{\mathbb{Q}}[X \mid \mathcal{F}_{s}] d\mathbb{Q} = \int_{A} \mathbb{E}^{\mathbb{Q}}[X \mid \mathcal{F}_{s}] \mathcal{Z}(T) d\mathbb{P}$$
(11)

$$= \int_{A} \mathbb{E}^{\mathbb{P}} \left[\mathbb{E}^{\mathbb{Q}}[X \mid \mathcal{F}_{s}] \mathcal{Z}(T) \mid \mathcal{F}_{s} \right] d\mathbb{P}$$
(12)

$$= \int_{A} \mathbb{E}^{\mathbb{Q}}[X \mid \mathcal{F}_{s}] \mathbb{E}^{\mathbb{P}}[\mathcal{Z}(T) \mid \mathcal{F}_{s}] d\mathbb{P}$$
(13)

$$= \int_{A} \mathbb{E}^{\mathbb{Q}}[X \mid \mathcal{F}_{s}] \mathcal{Z}(s) d\mathbb{P}, \qquad (14)$$

where the second line treats $\mathbb{E}^{\mathbb{Q}}[X \mid \mathcal{F}_s]\mathcal{Z}(T)$ as a single r.v. and replaces it with a conditional expectation and the fourth line follows from the martingale assumption of $\mathcal{Z}(t)$. On the other hand, using the fact that X is \mathcal{F}_t -measurable and that $\mathcal{Z}(T)$ is a martingale, we have

$$\int_{A} \mathbb{E}^{\mathbb{Q}}[X \mid \mathcal{F}_{s}] d\mathbb{Q} = \int_{A} X d\mathbb{Q} = \int_{A} X \mathcal{Z}(T) d\mathbb{P}$$
(15)

$$= \int_{A} \mathbb{E}^{\mathbb{P}} \left[X \mathcal{Z}(T) \, | \, \mathcal{F}_{t} \right] d\mathbb{P} \tag{16}$$

$$= \int_{A} X \mathbb{E}^{\mathbb{P}} \left[\mathcal{Z}(T) \mid \mathcal{F}_{t} \right] d\mathbb{P}$$
 (17)

$$= \int_{A} X \mathcal{Z}(t) d\mathbb{P}$$
 (18)

$$= \int_{A} \mathbb{E}^{\mathbb{P}} \left[X \mathcal{Z}(t) \, | \, \mathcal{F}_{s} \right] d\mathbb{P} \,. \tag{19}$$

The integrands in both expressions are \mathcal{F}_s -measurable and thus must be equal.

Lemma 2. An adapted process M is a martingale under \mathbb{Q} if, and only if, $M\mathcal{Z}$ is a martingale under \mathbb{P} .

Proof. Suppose, first, that MZ is a martingale with respect to \mathbb{P} . Then, using the previous lemma, we have

$$\mathbb{E}^{\mathbb{Q}}[M(t) \mid \mathcal{F}_s] = \frac{1}{\mathcal{Z}(s)} \mathbb{E}^{\mathbb{P}}[\mathcal{Z}(t)M(t) \mid \mathcal{F}_s] = \frac{1}{\mathcal{Z}(s)} \mathcal{Z}(s)M(s) = M(s), \qquad (20)$$

and so M is a martingale under \mathbb{Q} . Instead, assume that M is a martingale under \mathbb{Q} . Then,

$$\mathbb{E}^{\mathbb{P}}[M(t)\mathcal{Z}(t) \mid \mathcal{F}_s] = \mathcal{Z}(s)\mathbb{E}^{\mathbb{Q}}[M(t) \mid \mathcal{F}_s] = \mathcal{Z}(s)M(s)$$
(21)

and so $\mathcal{Z}(s)M(s)$ is a martingale under \mathbb{P} .

We now turn to the proof of Girsanov's theorem.

Proof. Clearly, $W^{\mathbb{Q}}$ is continuous and the quadratic variation between two components of the d-dimensional process is given by

$$d[W_i^{\mathbb{Q}}, W_i^{\mathbb{Q}}] = d[W_i^{\mathbb{P}}, W_i^{\mathbb{P}}](t) = \mathbf{1}_{i=j} dt,$$
(22)

since the two processes differ only by a deterministic function which has vanishing quadratic variation. We first compute $d\mathcal{Z}(t)$ from Itô's formula:

$$d\mathcal{Z}(t) = -\frac{1}{2}|b(t)|^2\mathcal{Z}(t)dt - \mathcal{Z}(t)b(t) \cdot dW^{\mathbb{P}}(t) + \frac{1}{2}\mathcal{Z}(t)|b(t)|^2dt = -\mathcal{Z}(t)b(t) \cdot dW^{\mathbb{P}}(t).$$
 (23)

Although Itô integrals with respect to Brownian motions are only guaranteed to be local martingales, we shall assume that the square-integrable condition $\mathbb{E}^{\mathbb{P}}\left[\int_0^T |\mathcal{Z}(s)b(s)|^2 \mathrm{d}s\right] < \infty$ holds such that $\mathcal{Z}(t)$ is a full martingale (see remark below). Then,

$$d(\mathcal{Z}W_i^{\mathbb{Q}}) = \mathcal{Z}dW_i^{\mathbb{Q}} + W_i^{\mathbb{Q}}d\mathcal{Z} + d[\mathcal{Z}, W_i^{\mathbb{Q}}]$$
(24)

$$= \mathcal{Z} dW_i^{\mathbb{P}} + \mathcal{Z} b_i dt - W_i^{\mathbb{Q}} \mathcal{Z} b \cdot dW^{\mathbb{P}} - b_i \mathcal{Z} dt = \mathcal{Z} dW_i^{\mathbb{P}} - W_i^{\mathbb{Q}} \mathcal{Z} b \cdot dW^{\mathbb{P}}.$$
 (25)

Integrating both sides, the two terms on the right hand side are Itô integrals with respect to Brownian motions, and are thus local martingales. Square-integrability follows from the Cauchy-Schwarz inequality, making $\mathcal{Z}W_i^{\mathbb{Q}}$ a martingale under \mathbb{P} . The previous lemma then gives that $W_i^{\mathbb{Q}}$ is a martingale under \mathbb{Q} . Together with (22), Lévy's characterisation ensures that each $W_i^{\mathbb{Q}}(t)$ is a Brownian motion under \mathbb{Q} .

Remark 4. The process \mathcal{Z} is actually guaranteed to be a supermartingale $\mathbb{E}^{\mathbb{P}}[\mathcal{Z}] \leq 1$. However, for the present context, we require that \mathcal{Z} is moreover a martingale. The Novikov condition or Kazamaki condition

$$\mathbb{E}\left[\exp\left(\frac{1}{2}\int_0^t |b(s)|^2 ds\right)\right] < \infty, \qquad or \qquad \mathbb{E}\left[\exp\left(\frac{1}{2}\int_0^t b(s) \cdot dW^{\mathbb{P}}(s)\right)\right] < \infty \tag{26}$$

give sufficient conditions for Z to be a martingale. However, in many practical situations, it turns out that these conditions do not hold and so the martingale property of Z must be checked manually.

1.2 Risk-Neutral Pricing

Consider a stock price following a generalised geometric Brownian motion:

$$dS(t) = \alpha(t)S(t)dt + \sigma(t)S(t)dW^{\mathbb{P}}(t), \qquad (27)$$

where $\alpha(t)$ and $\sigma(t)$ are mean returns and volatilities respectively. They need not be constants, unlike in a conventional geometric Brownian motion, but must be adapted processes. We shall, however, assume that $\sigma(t) > 0$. The measure \mathbb{P} here is called the *physical measure* and is the one dictated by the observed values in the stock market.

Suppose an investor places money in a risk-free account with variable interest rate R(t) (again an adapted process). We define the discount process D by

$$D(t) = \exp\left(-\int_0^t R(s)ds\right) \qquad \Leftrightarrow \qquad dD(t) = -D(t)R(t)dt. \tag{28}$$

In this notation, the discounted stock price is given by DS.

Definition 2. A risk-neutral measure is a measure \mathbb{Q} that is equivalent to \mathbb{P} and under which the discounted stock price process D(t)S(t) is a martingale.

Consider the dynamics of the discounted process (note that D is deterministic and so has vanishing quadratic covariance with S):

$$d(D(t)S(t)) = D(t)dS(t) + S(t)dD(t) = (\alpha - R)DSdt + DS\sigma dW^{\mathbb{P}}(t).$$
(29)

Define the market price of risk $\theta(t)$ by

$$\theta(t) := \frac{\alpha(t) - R(t)}{\sigma(t)} \tag{30}$$

and let

$$dW^{\mathbb{Q}}(t) = \theta(t)dt + dW^{\mathbb{P}}(t).$$
(31)

One may verify that

$$d(D(t)S(t)) = \sigma(t)D(t)S(t)dW^{\mathbb{Q}}(t).$$
(32)

By Girsanov's theorem, $W^{\mathbb{Q}}(t)$ must be a Brownian motion with respect to the measure $d\mathbb{Q} = \mathcal{Z}(T)d\mathbb{P}$, where the Radon-Nikodym derivative (in this case) is the exponential process induced by the market price of risk¹:

$$\mathcal{Z}(t) = \exp\left(-\int_0^t \theta(s) dW^{\mathbb{P}}(s) - \frac{1}{2} \int_0^t \theta(s)^2 ds\right). \tag{33}$$

¹As per Remark 4, one should really check that \mathcal{Z} is a martingale. This is evidently dependent on the functional form of all of the processes and so leave this computation for the application to the Black-Scholes model later.

Then, (32) tells us that the discounted stock price DS is a martingale under \mathbb{Q} , making \mathbb{Q} a risk-neutral measure. Note that, under \mathbb{Q} , the dynamics of the stock price are given by

$$dS(t) = R(t)S(t)dt + \sigma(t)S(t)dW^{\mathbb{Q}}(t);$$
(34)

the mean return function $\alpha(t)$ has been replaced with the riskless rate R(t) and so this measure has made the process risk-neutral.

In fact this idea of risk-neutrality holds more generally. Suppose that the value of a derivative on the stock is C(t). We construct a replicating portfolio $\Pi(t)$ (whose value is equal to the value of the derivative C(t) for all t) from $\Delta(t)$ units of stock and the remainder of the value held in a money market account. If we demand that the portfolio is self-financing, we have

$$d\Pi(t) = \Delta(t)dS(t) + R(t)\left(\Pi(t) - \Delta(t)S(t)\right)dt.$$
(35)

Consider, now, the discounted portfolio value. After some algebra, and using the risk-neutral form of the stock price (34), we obtain

$$d(D(t)\Pi(t)) = \Pi(t)dD(t) + D(t)d\Pi(t) = \sigma(t)\Delta(t)D(t)S(t)dW^{\mathbb{Q}}$$
(36)

and so the discounted replicating portfolio of a derivative on the stock is also a martingale under the same measure \mathbb{Q} that made the discounted stock a martingale.

Remark 5. In the above, we have assumed the existence of a replicating portfolio for the security C(t). This is justified by the martingale representation theorem which states that any martingale can be expressed as an Itô integral with respect to a Brownian motion (recall we already know that Itô integrals are martingales; the martingale representation theorem provides a partial converse).

1.3 Risk-Neutral Pricing Formula

A particularly important application of the risk-neutral measure is the following theorem:

Theorem 3. Let C(T) be a \mathcal{F}_T -measurable random variable, representing the payoff of a derivative security with maturity T, and let \mathbb{Q} be the risk-neutral measure. The arbitrage-free price at time t is given by the discounted measure under the risk-neutral measure:

$$C(t) = \mathbb{E}^{\mathbb{Q}} \left[\exp\left(-\int_{t}^{T} R(s) \, ds \right) C(T) \, \middle| \, \mathcal{F}_{t} \right] \,. \tag{37}$$

Proof. We shall price the derivative through a replicating portfolio $\Pi(t)$ which we showed was a martingale under the risk-neutral measure.

$$C(t) = \frac{1}{D(t)}D(t)\Pi(t) = \frac{1}{D(t)}\mathbb{E}^{\mathbb{Q}}\left[D(T)\Pi(T) \mid \mathcal{F}_t\right] = \mathbb{E}^{\mathbb{Q}}\left[\frac{D(T)}{D(t)}C(T) \mid \mathcal{F}_t\right]. \tag{38}$$

1.4 Numéraire Pairs and Change of Numéraire Formula

The risk-neutral pricing method above can be extended by introducing the notion of numéraires.

Definition 3. A numéraire is a process N(t) that is a.s. strictly positive for all $t \in [0, T]$.

Remark 6. An almost surely strictly positive process is a process that can, in principle, hit zero but for which the probability of occurrence of such events is zero. The restriction ensures that the division of a process by a numéraire remains well-defined. In this context, we talk of pricing an object 'in terms of' (or 'in units of') the numéraire.

Definition 4. A numéraire pair $(N(t), \mathbb{Q})$ consists of a probability measure \mathbb{Q} , equivalent to \mathbb{P} , such that the process $\Pi(t)/N(t)$ is a local martingale under \mathbb{Q} for any portfolio processes $\Pi(t)$.

5

The utility of being able to do such a transformation hinges on the following:

Proposition 1. Let $(N(t), \mathbb{Q})$ be a numéraire pair and let $\Pi(t) = \sum_{i=1}^{n} w_i(t) S_i(t)$ be the value of a self-financing portfolio holding weights $w_i(t)$ in basic assets $S_i(t)$. Then, the process $\Pi(t)/N(t)$ is also self-financing.

Proof. Recall that a self-financing portfolio satisfies

$$d\Pi(t) = \sum_{i=1}^{n} w_i(t) dS_i(t).$$
(39)

From Itô's lemma² we have

$$d\left(\frac{\Pi(t)}{N(t)}\right) = \frac{1}{N(t)}d\Pi(t) - \frac{\Pi(t)}{N(t)^2}dN(t) - \frac{1}{N(t)^2}d[\Pi, N](t) + \frac{\Pi(t)}{N(t)^3}d[N, N](t)$$

$$= \frac{\sum_{i=1}^n w_i(t)dS_i(t)}{N(t)} - \frac{\sum_{i=1}^n w_i(t)S_i(t)}{N(t)^2}dN(t) - \frac{\sum_{i=1}^n w_i(t)}{N(t)^2}d[S_i, N](t)$$

$$+ \frac{\sum_{i=1}^n w_i(t)S_i(t)}{N(t)^3}d[N, N](t)$$
(42)

$$= \sum_{i=1}^{n} w_i(t) \left(\frac{\mathrm{d}S_i(t)}{N(t)} - \frac{S_i(t)\mathrm{d}N(t)}{N(t)^2} - \frac{\mathrm{d}[S_i, N](t)}{N(t)^2} + \frac{S_i(t)\mathrm{d}[N, N](t)}{N(t)^3} \right). \tag{43}$$

One may verify (again using Itô's lemma) that each summand on the right is equal to $d(S_i(t)/N(t))$ and so we obtain

$$d\left(\frac{\Pi(t)}{N(t)}\right) = \sum_{i=1}^{n} w_i(t) d\left(\frac{S_i(t)}{N(t)}\right)$$
(44)

The above result means that we do not need to worry that a choice of numéraire might affect the self-financing property of a portfolio. We now close with the main result of this section:

Lemma 3. Let (N,\mathbb{Q}) be a numéraire pair and let \tilde{N} be a second numéraire. If

$$\mathbb{E}^{\mathbb{Q}}\left[\frac{\tilde{N}(T)}{N(T)}\right] = 1, \tag{45}$$

then $(\tilde{N}, \tilde{\mathbb{Q}})$ is also a numéraire pair, where $\tilde{\mathbb{Q}}$ is defined by the Radon-Nikodym derivative

$$\mathcal{Z}(T) = \frac{d\tilde{\mathbb{Q}}}{d\mathbb{Q}} = \frac{\tilde{N}(T)}{N(T)}.$$
 (46)

Proof. By definition of a numériare pair, $\tilde{N}(T)/N(T)$ is a \mathbb{Q} -martingale. Recall that a process Y(t) is a local \mathbb{Q} -martingale if, and only if, $Y(t)\mathcal{Z}$ is a local \mathbb{Q} -martingale. Parametrising $Y(t)=X(t)/\tilde{N}(t)$ for any portfolio process X(t), then $Y(t)\mathcal{Z}=X(t)/N(t)$ which is indeed a \mathbb{Q} -martingale. Thus, any process of the form $X(t)/\tilde{N}(t)$ is a local \mathbb{Q} -martingale and so (\tilde{N}, \mathbb{Q}) is a numéraire pair. \square

$$df(X(t)) = \sum_{i=1}^{n} \partial_i f(X(t)) dX_i(t) + \frac{1}{2} \sum_{i,j=1}^{n} \partial_i \partial_j f(X(t)) d[X_i, X_j](t).$$

$$(40)$$

Recall, if $X(t) = (X_1(t), \dots, X_n(t))$ be a n-dimensional continuous stochastic semimartingales and f(X(t)) be a function of it. Then,

Remark 7. More generally, since (N, \mathbb{Q}) is a numéraire pair, the process $\tilde{N}(t)/N(t)$ is a local martingale and so

$$\mathbb{E}^{\mathbb{Q}}\left[\frac{\tilde{N}(t)}{N(t)} \middle| \mathcal{F}_s\right] = \frac{\tilde{N}(s)}{N(s)} \qquad \Rightarrow \qquad \mathbb{E}^{\mathbb{Q}}\left[\frac{\tilde{N}(t)/\tilde{N}(s)}{N(t)/N(s)} \middle| \mathcal{F}_s\right] = 1 \tag{47}$$

for $0 \le s \le t \le T$. Taking the expectation of both sides, and using the law of total expectation, we see that

$$\mathcal{Z} = \frac{\tilde{N}(t)/\tilde{N}(s)}{N(t)/N(s)} \tag{48}$$

has expectation 1 and can thus be interpreted as a density for a new numéraire pair. In this setup, our starting numéraire pair is $(N(t)/N(s), \mathbb{Q})$. Parametrise any portfolio process Y(t) as

$$Y(t) = \frac{X(t)}{\tilde{N}(t)/\tilde{N}(s)}.$$
(49)

Since $Y(t)\mathcal{Z} = \frac{X(t)}{N(t)/N(s)}$ is a local martingale by definition of the numéraire pair, this means that Y(t) is a local martingale under the measure defined by $d\tilde{\mathbb{Q}} = \mathcal{Z} d\mathbb{Q}$ and so $(\tilde{N}(t)/\tilde{N}(s), \tilde{\mathbb{Q}})$ is also a numéraire pair.

The result of this is that once we have obtained a numéraire pair (N, \mathbb{Q}) , we can essentially switch to the most convenient numéraire pair $(\tilde{N}, \tilde{\mathbb{Q}})$ at will by the prescription above. The crucial point to note is that the risk-neutral pricing formula precisely gives us a numéraire pair (B, \mathbb{Q}) , where \mathbb{Q} in the present context is precisely the risk-neutral measure, that we may use as the starting point of a change of numéraire. In more detail, we rephrase the risk-neutral pricing formula in terms of the bank account B(t) rather than the discount process and this will allow us to exploit the results above. We first rewrite (37) as

$$\frac{C(t)}{B(t)} = \mathbb{E}^{\mathbb{Q}} \left[\frac{C(T)}{B(T)} \, \middle| \, \mathcal{F}_t \right] \qquad \forall \, t \le T \,, \tag{50}$$

where

$$B(t) = e^{\int_0^t R(s)ds} = \frac{1}{D(t)}$$
 (51)

is the risk-free bank account. This demonstrates that the process C(t)/B(t) is a martingale under \mathbb{Q} and so $(B(t), \mathbb{Q})$ is a numéraire pair. By the previous lemma, if there exists an alternate numéraire $\tilde{N}(t) \neq B(t)$ such that

$$\mathbb{E}^{\mathbb{Q}}\left[\frac{\tilde{N}(t)}{B(t)}\right] = 1, \tag{52}$$

then $(\tilde{N}, \tilde{\mathbb{Q}})$, with $\tilde{\mathbb{Q}}$ defined by $\mathcal{Z} = \tilde{N}(t)/B(t)$, is also a numéraire pair and it follows that

$$\frac{C(t)}{\tilde{N}(t)} = \mathbb{E}^{\tilde{\mathbb{Q}}} \left[\frac{C(T)}{\tilde{N}(T)} \, \middle| \, \mathcal{F}(t) \right] \,. \tag{53}$$

2 Pricing Options in the Black-Scholes world

In the Black-Scholes worlds, we assume that $\sigma(t) = \sigma$, $\alpha(t) = \mu$ and R = r are constants and that the dynamics of the stock price are given by

$$dS_t = S_t(\mu dt + \sigma dW^{\mathbb{P}}(t)), \qquad (54)$$

where \mathbb{P} is the physical measure and $W^{\mathbb{P}}$ is a martingale under \mathbb{P} . As before, we define the market price of risk (here a constant)

$$\theta = \frac{\mu - r}{\sigma} \,. \tag{55}$$

We define the new process (which a priori is not know to be a Brownian motion)

$$W^{\mathbb{Q}} = W^{\mathbb{P}} + \int_0^t \theta ds = W^{\mathbb{P}} + \theta t, \qquad (56)$$

and also the exponential process generated by $b(t) = \theta$:

$$\mathcal{Z}(T) = \exp\left(-\frac{1}{2}\theta T^2 - \theta W_T\right). \tag{57}$$

Since $b(t) = \theta$ satisfies the Novikov condition, \mathcal{Z} is a martingale and so Girsanov's theorem holds and $W^{\mathbb{Q}}$ is a Brownian motion under the (risk-neutral) measure $d\mathbb{Q} = \mathcal{Z}(T)d\mathbb{P}$. The dynamics of the stock price under \mathbb{Q} are given by

$$dS(t) = S(t) \left(r dt + \sigma dW^{\mathbb{Q}}(t) \right).$$
(58)

2.1 European Options and The Black-Scholes Formula

The risk-neutral pricing formula implies that the arbitrage-free price of a European call option is given by the discounted price under the risk-neutral measure \mathbb{Q} :

$$C_t = \mathbb{E}^{\mathbb{Q}} \left[e^{-\int_t^T r ds} (S_T - K)^+ \, | \, \mathcal{F}_t \right] = e^{-r(T-t)} \mathbb{E}^{\mathbb{Q}} \left[(S_T - K) \mathbf{1}_{S_T > K} \, | \, \mathcal{F}_t \right]. \tag{59}$$

The indicator function can be imposed in the limits in the integral, taken with respect to the stock price:

$$C_t = e^{-r(T-t)} \mathbb{E}^{\mathbb{Q}} \left[S_T \mathbf{1}_{S_T > K} \mid \mathcal{F}_t \right] - K e^{-r(T-t)} \mathbb{E}^{\mathbb{Q}} \left[\mathbf{1}_{S_T > K} \mid \mathcal{F}_t \right]$$

$$(60)$$

$$=c_1+c_2 \tag{61}$$

The second term is easier to evaluate; it is simply the probability that the terminal price is greater than the strike K under the risk-neutral measure:

$$c_2 = -Ke^{-r(T-t)} \int_{\Omega} \mathbf{1}_{S_T > K} d\mathbb{Q} = -Ke^{-r(T-t)} \int_K^{\infty} d\mathbb{Q} = -Ke^{-r(T-t)} P^{\mathbb{Q}}(S_T > K).$$
 (62)

To evaluate this probability, note that the dynamics of the terminal stock price under \mathbb{Q} is given by

$$\ln S_T = \ln S_t + \left(r - \frac{\sigma^2}{2}\right)(T - t) + \sigma W_{T - t}^{\mathbb{Q}}, \tag{63}$$

where the process $W_t^{\mathbb{Q}}$ is a Brownian motion with respect to \mathbb{Q} . Since $W_{T-t}^{\mathbb{Q}} \sim N(0, T-t)$, we have

$$\ln S_T \sim N \left(\ln S_t + \left(r - \frac{\sigma^2}{2} \right) (T - t), \sigma^2 (T - t) \right) , \tag{64}$$

and use this to define the standard Gaussian variate

$$Z = \frac{\ln|S_T/S_t| - \left(r + \frac{\sigma^2}{2}\right)(T - t)}{\sigma\sqrt{T - t}} \sim N(0, 1).$$

$$(65)$$

Then, we have

$$P^{\mathbb{Q}}(S_T > K) = 1 - P^{\mathbb{Q}}(S_T \le K) = 1 - P^{\mathbb{Q}}(\ln S_T \le \ln K)$$
(66)

$$=1-P^{\mathbb{Q}}\left(Z\leq -\frac{\ln|S_t/K|+\left(r-\frac{\sigma^2}{2}\right)(T-t)}{\sigma\sqrt{T-t}}\right)$$
(67)

$$=1-\Phi\left(-\frac{\ln|S_t/K|+\left(r-\frac{\sigma^2}{2}\right)(T-t)}{\sigma\sqrt{T-t}}\right). \tag{68}$$

The first term c_1 is more difficult but can be simplified by a change of numéraire. Recall that, by using the risk-neutral measure \mathbb{Q} , we are implicitly using the bank account $B(t) = \exp(rt)$ as the numéraire³. Here, we shall change numéraires to use the stock price instead $\tilde{N}(t) = S(t)$ and denote the associated measure as \mathbb{Q} . The Radon-Nikodym derivative describing this change of measure is

$$\mathcal{Z} = \frac{S(T)/S(t)}{B(T)/B(t)} = e^{-r(T-t)} e^{\left(r - \frac{\sigma^2}{2}\right)(T-t) + \sigma W_{T-t}^{\mathbb{Q}}} = e^{-\frac{\sigma^2}{2}(T-t) + \sigma W_{T-t}^{\mathbb{Q}}}.$$
 (69)

Then,

$$c_1 = \mathbb{E}^{\mathbb{Q}} \left[\frac{1}{B(T)/B(t)} S_T \mathbf{1}_{S_T > K} | \mathcal{F}_t \right]$$
(70)

$$= \mathbb{E}^{\mathbb{Q}} \left[\mathcal{Z} S_t \mathbf{1}_{S_T > K} \, | \, \mathcal{F}_t \right] \tag{71}$$

$$= S_t \mathbb{E}^{\mathbb{Q}} \left[\mathcal{Z} \mathbf{1}_{S_T > K} \, \middle| \, \mathcal{F}_t \right] \tag{72}$$

$$= S_t \mathbb{E}^{\tilde{\mathbb{Q}}} \left[\mathbf{1}_{S_T > K} \, | \, \mathcal{F}_t \right] = \int_K^{\infty} d\tilde{\mathbb{Q}} \,, \tag{73}$$

which is the probability of the terminal stock price exceeding the strike under this new measure \mathbb{Q} . To evaluate this, we compare (69) to the exponential process to determine that $b(t) = -\sigma$. This evidently satisfies the Novikov condition and so \mathcal{Z} is a martingale and Grisanov's theorem holds. It follows that the process

$$dW^{\tilde{\mathbb{Q}}}(t) = dW^{\mathbb{Q}}(t) - \sigma dt \tag{74}$$

is a Brownian motion under $d\tilde{\mathbb{Q}} = \mathcal{Z}d\mathbb{Q}$. The dynamics of the stock price under this measure is given by

$$dS_t = S_t \left((r + \sigma^2) dt + dW^{\tilde{\mathbb{Q}}}(t) \right), \qquad (75)$$

i.e. the stock price is still log-normally distributed under this new measure \mathbb{Q} (albeit with a different drift). We proceed as before. Noting that

$$\ln S_T \sim N \left(\ln S_t + \left(r + \frac{\sigma^2}{2} \right) (T - t), \sigma^2 (T - t) \right) , \tag{76}$$

we define the standard Gaussian variate

$$\tilde{Z} = \frac{\ln|S_T/S_t| - \left(r + \frac{\sigma^2}{2}\right)(T - t)}{\sigma\sqrt{T - t}} \sim N(0, 1).$$

$$(77)$$

Then,

$$P^{\tilde{\mathbb{Q}}}(S_T > Q) = 1 - P^{\tilde{\mathbb{Q}}}(S_T \le K) = 1 - P^{\tilde{\mathbb{Q}}}(\ln S_T \le \ln K)$$
(78)

$$=1-P^{\tilde{\mathbb{Q}}}\left(\tilde{Z}\leq -\frac{\ln|K/S_t|+\left(r+\frac{\sigma^2}{2}\right)(T-t)}{\sigma\sqrt{T-t}}\right)$$
(79)

$$=1-\Phi\left(-\frac{\ln|K/S_t|+\left(r+\frac{\sigma^2}{2}\right)(T-t)}{\sigma\sqrt{T-t}}\right). \tag{80}$$

³Or rather $B(T)/B(t) = e^{r(T-t)}$ as numéraire.

Finally, we use the fact that $1 - \Phi(-x) = \Phi(x)$ in both c_1 and c_2 to obtain the Black-Scholes formula

$$C_t(t, S_t) = S_t \Phi(d_+) - K e^{-r(T-t)} \Phi(d_-), \qquad (81)$$

where

$$d_{\pm} = \frac{\ln|S_t/K| + \left(r \pm \frac{\sigma^2}{2}\right)(T-t)}{\sigma\sqrt{T-t}}.$$
(82)

For completeness, we shall demonstrate how c_1 can also be computed by directly. Note that

$$c_1 = e^{-r(T-t)} \mathbb{E}^{\mathbb{Q}}[e^{\ln S_T} \mathbf{1}_{S_T > K} | \mathcal{F}_t], \qquad (83)$$

where $\mathbb{E}^{\mathbb{Q}}[e^{\ln S_T}]$ looks like the moment-generating function of a Gaussian variate $\ln S_T$ (note that the indicator function only affects the limits of integration). To this end, we make use of the following lemma:

Lemma 4. Let $X \sim N(\mu, \sigma^2)$. Then, the truncated moment-generating function for $X \in [A, B]$ is given by

$$\mathbb{E}[e^{tX}\mathbf{1}_{A \le X \le B}] = e^{t\mu + \frac{t^2\sigma^2}{2}} \left[\Phi\left(\frac{B - (\mu + t\sigma)}{\sigma}\right) - \Phi\left(\frac{A - (\mu + t\sigma)}{\sigma}\right) \right]. \tag{84}$$

Proof. The proof is entirely analogous to the standard calculation of the m.g.f. and will thus be omitted. $\hfill\Box$

For our purposes, we have $A = \ln K$, $B = \infty$ and t = 1 giving

$$c_{1} = e^{-r(T-t)}e^{\ln S_{t} + \left(r - \frac{\sigma^{2}}{2}\right)(T-t) + \frac{\sigma^{2}(T-t)}{2}}$$

$$\times \left(\Phi(\infty) - \Phi\left(\frac{\ln K - \left(\ln S_{t} + \left(r - \frac{\sigma^{2}}{2}\right)(T-t) + \sigma^{2}(T-t)\right)}{\sigma\sqrt{T-t}}\right)\right)$$

$$= S_{t}\left(1 - \Phi\left(-\frac{\ln |S_{t}/K| + \left(r - \frac{\sigma^{2}}{2}\right)(T-t)}{\sigma\sqrt{T-t}}\right)\right).$$
(85)

We see that there are two probabilities in the expression for the call option. The first turns out to be the delta of the option; using $d_{-} = d_{+} - \sigma \sqrt{T - t}$, we obtain

$$\Delta_t = \frac{\partial C_t}{\partial S_t} = \Phi(d_+) + S_t \frac{\partial \Phi(d_+)}{\partial S_t} - Ke^{-r(T-t)} \frac{\partial \Phi(d_-)}{\partial S_t}$$
(87)

$$= \Phi(d_{+}) + \frac{\phi(d_{+})}{\sigma\sqrt{T-t}} - Ke^{-r(T-t)} \frac{\phi(d_{-})}{S_{t}\sigma\sqrt{T-t}}$$
(88)

$$=\Phi(d_{+}) + \frac{1}{\sigma\sqrt{T-t}} \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{d_{+}^{2}}{2}} - \frac{K}{S_{t}} e^{-r(T-t)} \frac{1}{\sqrt{2\pi}} e^{-\frac{(d_{+}-\sigma\sqrt{T-t})^{2}}{2}} \right)$$
(89)

$$= \Phi(d_{+}) + \frac{1}{\sigma\sqrt{T-t}} \frac{1}{\sqrt{2\pi}} e^{-\frac{d_{+}^{2}}{2}} \left(1 - \frac{K}{S_{t}} e^{-r(T-t)} e^{d_{+}\sigma\sqrt{T-t} - \frac{\sigma^{2}(T-t)}{2}} \right)$$
(90)

$$=\Phi(d_{+}). \tag{91}$$

The second probability $\Phi(d_{-})$ was the probability of $S_T > K$ under the risk-neutral measure and is thus, equivalently, the risk-neutral probability of exercise of the option.