Algorithm 2013 Fall 期中考

解答與配分

解答 解答

```
f(n) = \theta(g(n)) if and only if 存在三正數c_1, c_2和n_o, 使得c_1 \times g(n) \le f(n) \le c_2 \times g(n), for all n \ge n_o. f(n) = o(g(n)) if and only if 對任何正數c \cdot 會存在一個正數n_o, 使得f(n) < c \times g(n), for all n \ge n_o. f(n) = \omega(g(n)) if and only if對任何正數c \cdot 會存在一個正數n_o, 使得f(n) > c \times g(n), for all n \ge n_o.
```

- ▶ 配分(10%)
- ▶ 扣分方式

```
θ 4分 οω 3分正數c -1分n≥n₀ -1分<,≤ -1分</li>
```

解答 解答

利用recursive tree method

$$T(n) = 2T(\sqrt{n}) + \lg n = \lg n + \lg n + \dots = O(\log \log n \cdot \lg n)$$

▶ 配分(10%)

答案錯不給分

解答 解答

Draw the recursion tree

Shortest path to leaf: $n \leq 3^k$ or $k \geq \lg_3 n$

longest path to leaf: $n \le (3/2)^k$ or $k \ge \lg_{3/2} n$

題目要我們SHOW出T(n)= Ω(nIgn)所以我們直接找Iower bound

 $T(n) \ge n \log n = \Omega(n \lg n)$

▶ 解答

- ▶ 令樹高為h,高度從1開始,Heap中node個數介於 $2^h \le n \le 2^{h+1} 1$ (第h+1層最少 node數~最多node數)
- ► 各邊取 \log 後 => $\log 2^h \le \log n \le \log(2^{h+1} 1) < \log 2^{h+1}$ => $h \le \log n < h + 1$ => $h = \lfloor \log n \rfloor$
- ▶ 配分(10%)
- ▶ 扣分方式
 - ▶ 最多node和最少node case都要考慮進去,只寫一半扣3~5分

- ▶ 解答
 - ▶ Not a max heap beacause A[9]=7 is bigger than its parents A[4]=6
- ▶ 配分(10%)
- ▶ 扣分方式
 - ▶ 答案錯全錯

解答 解答

- Heap sort: Build a heap out the first element from all k streams. Remove the min and insert the next element into the heap from the stream to which min belongs. Keep repeating this till we run out of all streams
- Merge sort: Arrange these k lists by pairwise merging. It needs O(n) to merge k lists. Merging needs lgk times so the height is lgk. So the answer is O(n*lgk)
- ▶ 配分(10%)
- ▶ 扣分方式
 - ▶ 使用heap sort 或merge sort皆可
 - ▶ 需簡單說明此algo為何是O(n*lgk) time,只寫出algo扣3~5分
 - ▶ 只畫簡圖沒有簡單說明扣3~5分

解答 解答

```
Quicksort (A, p, r) Partition (A, p, r) if p < r x \leftarrow A[r] then q \leftarrow \text{Partition}(A, p, r) if i \leftarrow p - 1 Quicksort (A, p, q - 1) for j \leftarrow p to r - 1 Quicksort (A, q + 1, r) do if A[j] \leq x then i \leftarrow i + 1 Initial call is Quicksort (A, 1, n). exchange A[i] \leftrightarrow A[j] exchange A[i] \leftrightarrow A[j] return i + 1
```

- ▶ 配分(10%)
- ▶ 扣分方式

有寫即得2分 依完整度斟酌扣分 QuickSort(佔2分) Partiton(佔6分)

解答 解答

寫出linear sort algo.的作法,再針對題目給的條件進行策略:

1) Radix Sort

策略重點: 為了 達到linear time的時間複雜度,勢必要以越大的基底k(空間換取時間),可自己假設基底k大小,已知 $d = log_k(n^3)$,時間複雜度為 $O(d^*(n+k))$,為了讓d視為一個常數,可假設k=n,則時間複雜度為 $O(3^*(n+n))$,即為O(n)。

1) Counting Sort

策略重點:已知key range k為n^3,故時間複雜度為O(n+k),為了讓k達到linear time,可以將每個元素實施[key¡%n]作為排序依據,則key range 為0~n-1,代表只需O(n),此題為n^3,可做3個回合:Pass1-[key¡%n]實施Counting Sort後將結果帶入Pass2-[(key¡/n)%n]、Pass2做完結果再帶入Pass3-[(key¡/(n^2))%n]做Counting Sort,即可得結果,故時間複雜度為O(n+O(n)+O(n)+O(n)),即為O(n)。

- ▶ 配分(10%)
- ▶ 扣分方式

寫出linear sort algo.的作法即得4分

未說明出針對題目給的n個integers 和 range:0~n^3 - 1的策略 扣4~6分

- ▶ 解答
 - $(n-1)+[\log n]-1 = (n-2) + [\log n]$
- ▶ 配分(10%)
- ▶ 扣分方式
 - ▶ 未寫出高斯符號扣兩分
 - ▶ 只寫答案無過程扣五分
 - ▶ 證明過程不完整斟酌扣分

- ▶ 解答
 - Consider a decision tree of height h with l reachable leaves corresponding to a comparison sort on n elements. Because each of the n! permutations of the input appears as some leaf, we have $n! \le l$. Since a binary tree of height h has no more than 2^h leaves, we have $n! \le l \le 2^h$.
 - ▶ By taking logarithms, Implies $h \ge \log(n!) = \Omega(n\log n)$
- ▶ 配分(10%)
- ▶ 扣分方式
 - ▶ 證明過程小錯誤扣兩~三分
 - ▶ 證明不完整扣五分
 - ▶ 未使用決策樹(Decision Tree)證明全錯