Session 7: GIS applications, Evolutionary Biology

Outline:

- 1. Review and brief overview of some applications to Evolutionary Biology
- 2. Case study: Guiding field surveys, species discovery
- 3. Case study: Range expansions
- 4. Case study: Evolutionary Processes

1

(J. Silverman)

Ecological niche models for species delimitation

Wiens & Graham 2005 Ann Rev Ecol Evol Syst

3

Species Delimitation Example: Phelsuma madagascariensis subspecies

Phelsuma madagascariensis 'subspecies' are paraphyletic!

=> 3 subspecies elevated to species rank

Raxworthy et al. *Systematic Biology* **56**:907-923

5

Niche-based modeling of species' invasion potential

Thuiller et al. 2006 Global Change Biology

7

Mapping risk of invasibility

Sum of probability surfaces for 96 taxa, rescaled to a range of 0–1

Thuiller et al. 2006 Global Change Biology

Mapping risk: incorporating propagule pressure

Arrows indicate propagule pressure increase in thickness with increasing tourism, and range from grey to black with increasing trade in live plant products. Numbers indicate the number of South African plant species recorded as invasive

Thuiller et al. 2006 Global Change Biology

9

Other interesting recent examples

- Chiarenza et al. 2019 SDMs show that
 Maastrichtian North American dinosaur diversity
 decline is not due to a climatically-driven decrease in
 habitability but probably a product of sampling bias
 in the fossil record.
- Hallfors et al. 2016 Using SDMs to predict local adaptation

Case study: Guiding AMNH herpetological surveys in Madagascar

11

Species' occurrence records (vector point data)

Environmental layers (raster data)

Source: WorldClim

Source: NOAA FEWS

Source: USGS Hydro1k

13

Ecological niche models

Maximum Entropy (Maxent) Phillips et al. in press. Ec. Mod. www.cs.princeton.edu/~schapire/maxent/

GARP Stockwell and Peters 1999 Int. J. GIS http://www.lifemapper.org/desktopgarp/

Selecting decision thresholds

15

Model evaluation with small numbers of presence-only records

A niche-based distribution model should:

- 1. Successfully predict a high proportion of test localities
- 2. Not predict as suitable such a large proportion of the study area as to make the model statistically indistinguishable from a random prediction

Species	Locality sample size		
U. malahelo	4		
undescribed	5		
undescribed	6		
U. malama	6		
U. guentheri	7		
U. lineatus	10		
U. ebenaui	11		
U. henkeli	13		
undescribed	13		
U. fimbriatus	15		
U. phantasticus	15		
U. sameiti	16		
U. sikorae	23		

=> Use jackknife approach (Pearson et al. 2007 J. Biogeog.)

Results: Niche model predictions

Example modeled distributions, using Maxent and applying a decision threshold of 10

17

Results: Jackknife evaluation

	Locality	Maxent (t10)		GARP (t1)	
Species	sample size	Successes	<i>p</i> -value	Successes	<i>p</i> -value
U. malahelo	4	2	0.0481	0	1.0
undescribed	5	5	4.72e-09	2	1.00e-04
undescribed	6	5	2.53e-05	2	0.0092
U. malama	6	6	2.71e-05	1	0.0227
U. guentheri	7	7	2.04e-05	2	0.0019
U. lineatus	10	10	1.32e-06	6	1.38e-06
U. ebenaui	11	10	1.57e-08	11	1.02e-07
U. henkeli	13	10	1.76e-04	9	1.50e-04
undescribed	13	10	1.97e-06	9	8.35e-09
U. fimbriatus	15	13	2.09e-07	11	2.22e-07
U. phantasticus	15	13	5.31e-09	12	1.28e-08
U. sameiti	16	15	8.57e-10	13	4.28e-08
U. sikorae	23	21	1.45e-10	18	1.05e-06

Results: comparison of modeling methods and thresholds

Modeled distributions for *U. lineatus* using both algorithms and two decision thresholds

19

Application of models to guide field surveys in Madagascar

GIS overlay of predictions for multiple species

Overlay map correctly identifies well-known areas of local endemism

23

But other areas were poorly studied, and subjected to survey 2006-2009

Results: New Species of *Calumma* chameleon

Calumma sp. 1

Calumma sp. 2

25

Results: New Species of Oplurus, Liophidium

Oplurus sp.

Liophidium sp.

and others...

Doucs (Pygathrix)

Douc complex

Joyce A. Powzyk

Kevin Koy/CBC-AMNH

27

Range Expansion Discovery: Greyshanked Doucs

- •Identifying areas with long-term conservation value
- •Identifying areas where species could be - to direct surveys, monitoring

Grey-shanked douc *Pygathrix cinerea* MaxEnt model 2012

29

Ecological niche evolution and speciation processes

31

Acknowledgements

 Co-authors: Eleanor Sterling, Richard Pearson, Chris Raxworthy, Matt Dusch

- Also: Y. Wyner, A. Yoder, R. DeSalle, J. Tinsman, and the New York Regional Species Distribution Modeling discussion group for valuable discussion
- This project was partly funded by the U.S. National Science Foundation (DEB 0423286, DEB 0641023, CHE 1313908).

Can Niches Evolve? Ecological Niche Evolution Differences

33

Hypotheses for endemism

Case Studies

- Built ecological niche models (ENMs) for lemurs (*Eulemur*) in Madagascar
- Test sister taxa for:

- niche divergence; niche conservatism, or null

Parapatric ecological speciation

Allopatric speciation (e.g. Wiens et al. 2004, Losos 2008)

35

Eulemur Sister taxa

- Tree based on:
 - Horvath *et al.* 2008
 - Gudde et al. 2013
 - Johnson *et al.* 2008
 - Pastorini et al. 2003
 - Wyner et al. 1999

MaxEnt ENMs (Phillips et al. 2006)

Climate Variables at 30 arc-second resolution (Hijmans et al. 2005 WorldClim)

Lemurs:
Isothermality
Temp annual range
Temp seasonality
Min temp coldest month
Precip driest quarter
Precip coldest quarter

Correlations among variables r<0.67

Blair et al. J. Evolutionary Biology 2013

37

MaxEnt ENMs (Phillips et al. 2006)

- Lemur distribution data from Wilmé *et al.* (2006)
 - Corrected with more recent survey data
 - 10-86 records per species
- Regularization = 1
- 4-fold cross-validation
- All models showed strong predictive ability
 - AUC values all >0.85, most >0.90

Blair et al. J. Evolutionary Biology 2013

Testing for Niche Divergence and Conservatism:

ENMTools (Warren et al. 2008, 2010)

- 1. Measure overlap (Schoener's *D* and Hellinger's *I*, 0->1)
- 2. Background Test
- Better statistical rigor to infer niche conservatism or divergence than previous methods - null model and test of significance

39

Testing for Niche Divergence and Conservatism:

ENMTools (Warren et al. 2008, 2010)

- 1. Measure overlap (Schoener's *D* and Hellinger's *I*, 0->1)
- 2. Background Test

X 100 ENMs

X 100 ENMs

AMERICAN MUSEUM & NATURAL HISTORY CENTER FOR BIODIVERSITY AND CONSERVATION

E. flavifrons (CR) - E. macaco (VU)

- Elevated to species in 2008
- No natural barrier
- Precipitation ecotone
- Possible hybrid zones*
- Also: morphological differences that might facilitate assortative mating

E. flavifrons (flickr)

Hybrid zones

- Secondary contact or primary speciation process?
 - ENMs are a useful tool

45

Conclusions and Future Work

- Multiple divergence processes
 - Landscapes facilitate speciation through both population isolation and ecotone adaptation
- Conservation efforts should focus on ecotones and incorporate river barriers into planning as a means to maintain evolutionary processes
- Future work:
 - Landscape genomics along ecotones
 - Projecting ENMs to the past and into the future
 - Adding other environmental data (land cover) to ENMs
 - Look across many other taxonomic groups

Cryptic species

- Identity test (ENMTools)
- Non-equivalent niches
- Lack of ecological exchangeability

47

ENMTools: pros and cons

- Pros:
 - Null model for statistical significance
- Cons: (Pyron et al. 2015 Biological Reviews)
 - Relatively easy to reject null hypothesis
 - Brownian motion appropriate?
 - Weird results sometimes (not sensitive to gradients, depends on scale, background, fit)
 - Carries over uncertainty of Maxent model algorithm (can be difficult to incorporate model tuning)
- Alternative approach: Broenniman et al. 2011

NY Species Distribution Modeling Discussion Group @ AMNH

Contact: pgalante@amnh.org