AD-A134 598

Noise Levels and Data Analyses for Small Prop-Driven Aircraft

U.S. Department of Transportation

Federal Aviation Administration

By: J. Steven Newman Tyrone L. Bland Sharon A. Daboin

Report No. EE-83-1

DISTRIBUTION STATEMENT A

Approved for public releases
Distribution Unlimited

OTIC FILE COPY

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the object of this report.

FAA-EE-83-1	2. Government Accession No.	3. Recipient's Catalog No.	•
4. Title and Subtitle		5. Report Date	
	lyses for Small Prop-Driven	August 1983 6. Performing Organization	Codo
Aircraft		e. Performing Organization	
7. Author's)		8. Performing Organization	Report No.
	C A DAROTN		
J. S. NEWMAN, T. L. BLAND, 9. Performing Organization Name and Addre		10. Work Unit No. (TRAIS)	
	ation, Office of Environment		•
	t Division, Noise Technology	11. Contract or Grant No.	
Branch, 800 Independence Av			
Washington, D.C. 20591		13. Type of Report and Per	ried Covered
12. Sponsoring Agency Name and Address			
	ation, Office of Environment		
	t Division, Noise Technology	14. Sponsoring Agency Coo	4.
Branch, 800 Independence Av	ve., SW	14. Sponsoring Agency Cod	G V
Washington, D.C. 20591 15. Supplementery Notes		<u> </u>	
revisions of International a propeller-driven aircraft. propeller-driven light aircr	ed a noise measurement progra and U.S. noise certification Tests were conducted using b raft. Normally aspirated, to ere both fixed and variable p	standards for ligh both single- and to urbo-charged, and	ht-weight win-engin turboprop
revisions of International apropeller-driven aircraft. propeller-driven light aircrengines were included, as we noise measurements were made of these aircraft (during levelationship of noise level. This report presents noise and cockpit instrument read: 1) corrections to proposed Mach Number and Power Correspropagation, 4) regression and 5) correlation of acoustmetrics. While this report feasible and will provide co	and U.S. noise certification Tests were conducted using braft. Normally aspirated, to ere both fixed and variable pe for eighteen aircraft. Add evel flight) provided suffice versus helical tip Mach Numbreasurements, aircraft positions acquired during the test noise certification reference ction functions, 3) empirical of noise level versus weight tical intensity (AL) and acou- concludes that a takeoff not onsistent results for a given	standards for light both single- and to urbo-charged, and pitch propellers. ditional measurement data to examinate and engine power and engine power and analyses a conditions, 2) do lexamination of second the logarithm ustical dose (SEL) is e certification in aircraft, it remains to the second to the logarithm aircraft, it remains to the second to the logarithm aircraft, it remains to the second to the logarithm aircraft, it remains to the second to the logarithm aircraft, it remains to the second to the logarithm aircraft, it remains to the second to the logarithm aircraft, it remains to the second to the logarithm aircraft, it remains to the second to the logarithm aircraft, it remains to the second to the logarithm aircraft, it remains to the second to the logarithm aircraft.	ht-weight win-engin turboprop Takeoff nts for n ne the er settin ogical da include: evelopmen ound m of weig noise procedure ains
revisions of International apropeller-driven aircraft. propeller-driven light aircrengines were included, as we noise measurements were made of these aircraft (during leastionship of noise level. This report presents noise and cockpit instrument read: 1) corrections to proposed Mach Number and Power Correspropagation, 4) regression and 5) correlation of acoust metrics. While this report feasible and will provide councertain whether or not equal to the service of the	and U.S. noise certification Tests were conducted using braft. Normally aspirated, to ere both fixed and variable per for eighteen aircraft. Add evel flight) provided suffice versus helical tip Mach Numbreasurements, aircraft positions acquired during the test noise certification reference ction functions, 3) empirical of noise level versus weight tical intensity (AL) and acous concludes that a takeoff not onsistent results for a given ual stringency (or even compa	standards for light both single- and to urbo-charged, and pitch propellers. ditional measurement data to examinate and engine power and engine power and engine power and to be analyses a conditions, 2) do lexamination of second the logarithm stical dose (SEL) is a certification in aircraft, it remarks arable stringency)	ht-weight win-engin turboprop Takeoff nts for n ne the er settin ogical da include: evelopmen ound m of weig noise procedure ains can be
revisions of International apropeller-driven aircraft. propeller-driven light aircrengines were included, as we noise measurements were made of these aircraft (during leastionship of noise level. This report presents noise and cockpit instrument read: 1) corrections to proposed Mach Number and Power Correspropagation, 4) regression and 5) correlation of acoustmetrics. While this report feasible and will provide councertain whether or not equachieved between the existing	and U.S. noise certification Tests were conducted using braft. Normally aspirated, to ere both fixed and variable pe for eighteen aircraft. Add evel flight) provided suffice versus helical tip Mach Numbreasurements, aircraft positions acquired during the test noise certification reference ction functions, 3) empirical of noise level versus weight tical intensity (AL) and acou- concludes that a takeoff not onsistent results for a given	standards for light both single- and to urbo-charged, and pitch propellers. ditional measurement data to examinate and engine power and engine power and engine power and to be analyses a conditions, 2) do lexamination of second the logarithm stical dose (SEL) is a certification in aircraft, it remarks arable stringency)	ht-weight win-engin turboprop Takeoff nts for n ne the er settin ogical da include: evelopmen ound m of weig noise procedure ains can be
revisions of International apropeller-driven aircraft. propeller-driven light aircrengines were included, as we noise measurements were made of these aircraft (during leastionship of noise level. This report presents noise and cockpit instrument read: 1) corrections to proposed Mach Number and Power Correspropagation, 4) regression and 5) correlation of acoust metrics. While this report feasible and will provide councertain whether or not equal to the service of the	and U.S. noise certification Tests were conducted using braft. Normally aspirated, to ere both fixed and variable per for eighteen aircraft. Add evel flight) provided suffice versus helical tip Mach Numbreasurements, aircraft positions acquired during the test noise certification reference ction functions, 3) empirical of noise level versus weight tical intensity (AL) and acous concludes that a takeoff not onsistent results for a given ual stringency (or even compa	standards for light both single- and to urbo-charged, and pitch propellers. ditional measurement data to examinate and engine power and engine power and engine power and to be analyses a conditions, 2) do lexamination of second the logarithm stical dose (SEL) is a certification in aircraft, it remarks arable stringency)	ht-weight win-engin turboprop Takeoff nts for n ne the er settin ogical da include: evelopmen ound m of weig noise procedure ains can be
revisions of International apropeller-driven aircraft. propeller-driven light aircrengines were included, as we noise measurements were made of these aircraft (during leastionship of noise level This report presents noise and cockpit instrument read: 1) corrections to proposed mach Number and Power Corrections to propagation, 4) regression and 5) correlation of acoust metrics. While this report feasible and will provide councertain whether or not equachieved between the existing procedure.	and U.S. noise certification Tests were conducted using braft. Normally aspirated, to ere both fixed and variable per for eighteen aircraft. Add evel flight) provided suffice versus helical tip Mach Numbreasurements, aircraft positions acquired during the test ings acquired during the test noise certification reference ction functions, 3) empirical of noise level versus weight tical intensity (AL) and acous concludes that a takeoff not onsistent results for a given ual stringency (or even company ng certification procedure and	standards for light both single- and the propellers. ditional measurement data to examinate and engine power and engine power and engine power and the logarithm of seconditions, 2) do lexamination of second the logarithm astical dose (SEL) is e certification in aircraft, it remarable stringency) and the proposed talknown as the proposed talknow	ht-weight win-engin turboprop Takeoff nts for n ne the er settin ogical da include: evelopmen ound m of weig noise procedure ains can be
revisions of International apropeller-driven aircraft. propeller-driven light aircrengines were included, as we noise measurements were made of these aircraft (during leastionship of noise level This report presents noise and cockpit instrument read: 1) corrections to proposed Mach Number and Power Correspropagation, 4) regression and 5) correlation of acoustmetrics. While this report feasible and will provide councertain whether or not equachieved between the existing procedure.	and U.S. noise certification Tests were conducted using traft. Normally aspirated, to ere both fixed and variable re e for eighteen aircraft. Add evel flight) provided suffice versus helical tip Mach Numb measurements, aircraft posite ings acquired during the test noise certification reference ction functions, 3) empirical of noise level versus weight tical intensity (AL) and acou- concludes that a takeoff not onsistent results for a given ual stringency (or even company ng certification procedure and	standards for light both single- and the propellers. ditional measurement data to examinate and engine power and engine power and engine power and the logarithm of seconditions, 2) do lexamination of second the logarithm astical dose (SEL) is e certification in aircraft, it remarable stringency) and the proposed talknown as the proposed talknow	ht-weight win-engin turboprop Takeoff nts for n ne the er settin ogical da include: evelopmen ound m of weig noise procedure ains can be
revisions of International apropeller-driven aircraft. propeller-driven light aircrengines were included, as we noise measurements were made of these aircraft (during level this report presents noise and cockpit instrument read: 1) corrections to proposed that Mach Number and Power Corrections to proposed that Mach Number and Power Corrections of acoust metrics. While this report feasible and will provide councertain whether or not equachieved between the existing procedure.	and U.S. noise certification Tests were conducted using traft. Normally aspirated, to ere both fixed and variable per for eighteen aircraft. Addevel flight) provided sufficiency versus helical tip Mach Numbersurements, aircraft positings acquired during the test noise certification reference ction functions, 3) empirical of noise level versus weight tical intensity (AL) and acous concludes that a takeoff not onsistent results for a given usl stringency (or even company certification procedure and the propeller, and so the propeller, and the propeller propeller, and the propeller propeller propeller propeller, and the propeller propeller propeller propeller.	standards for light both single- and the propellers. ditional measurement data to examinate and engine power and engine power and engine power and the logarithm of seconditions, 2) do lexamination of second the logarithm astical dose (SEL) is e certification in aircraft, it remarable stringency) and the proposed talknown as the proposed talknow	ht-weight win-engin turboprop Takeoff nts for n ne the er settin ogical da include: evelopmen ound m of weig noise procedure ains can be keoff the U.S.
revisions of International apropeller-driven aircraft. propeller-driven light aircrengines were included, as we noise measurements were made of these aircraft (during leastionship of noise level This report presents noise and cockpit instrument read: 1) corrections to proposed that Mach Number and Power Correspropagation, 4) regression and 5) correlation of acoustmetrics. While this report feasible and will provide councertain whether or not equachieved between the existing procedure. 17. Key Words General Aviation, Noise, Certification, Regulation	and U.S. noise certification Tests were conducted using traft. Normally aspirated, to ere both fixed and variable per for eighteen aircraft. Addevel flight) provided sufficiency versus helical tip Mach Numbersurements, aircraft positings acquired during the test noise certification reference ction functions, 3) empirical of noise level versus weight tical intensity (AL) and acous concludes that a takeoff not onsistent results for a given usl stringency (or even company certification procedure and the propeller, and so the propeller, and the propeller propeller, and the propeller propeller propeller propeller, and the propeller propeller propeller propeller.	standards for light both single- and the propellers. ditional measurement data to examinate and engine power and the logarithm as tical dose (SEL) is e certification in aircraft, it remarks a stringency) and the proposed tales.	ht-weight win-engin turboprop Takeoff nts for n ne the er settin ogical da include: evelopmen ound m of weig noise procedure ains can be keoff the U.S.

Errata

In a recently conducted (July 1983) retest of the identical Cessna 210 Centurion discussed in this report it was determined that a tachometer error existed. While the tachometer read 2700 the actual propeller RPM was 2882.

Accordingly, it is assumed that the tachometer error existed during the 1982 test. Therefore, any reference in the main body of this document to the C-210 or any presentation of C-210 data should be noted as reflecting a propeller speed approximately 182 RPM greater than the stated value. The results of the 1983 retest are presented in Appendix E.

Addenda

Appendix E of this document provides a summary of the 1983 Cessna 210, "retest" measurement program designed to obtain additional data on the relationship between level flyover and takeoff noise levels.

Acknowledgments

The Authors wish to express appreciation to all of those who participated in the measurement program and whose cooperation was instrumental in making the program a success. Thanks to Mr. Neal Phillips for his assistance in preparing this document and to Ms. Loretta Harrison for her typing support.

Our special thanks are extended to the following participating organizations:

- General Aviation Manufacturer's Association
- Aircraft Owners and Pilots Association
- Beech Aircraft Company
- Cessna Aircraft Company
- Piper Aircraft Company

NTTS Lake Unang	sion For WASI TEB Commond File File File File File File File File	
	ibution/	
Dist A-1	lability decos Avail and/or Special	

TABLE OF CONTENTS

SECTI	ON	PAGE
1.0	INTRODUCTION	4
2.0	AIRCRAFT OPERATIONS/REFERENCE CONDITIONS	8
2.1	NORTH OPERATIONS	8
2.2	SOUTH OPERATIONS	8
2.3	LEVEL FLYOVERS	9
2.4	REFERENCE METEROLOGICAL CONDITIONS FOR CALCULATING REFERENCE TAKEOFF ALTITUDES	9
3.0	ACOUSTICAL DATA	10
3.1	MEASUREMENT LOCATIONS	10
3.2	MEASUREMENT INSTRUMENTATION	10
3.3	NOISE DATA/DATA REDUCTION	11
4.0	METEOROLOGICAL DATA	15
5.0	AIRCRAFT POSITION DATA	16
6.0	COCKPIT INSTRUMENT READINGS	19
7.0	PROPAGATION	20
7.1	INTENSITY METRIC: PROPAGATION EFFECTS	20
7.2	ENERGY METRIC: PROPAGATION EFFECTS	20
7.3	RESULTS	21
7.4	EXAMINATION OF OTHER TEST DATA	21
7.5	DISCUSSION	22
8.0	COMPARISON OF SIMPLIFIED AND COMPLEX PROCEDURES FOR CONSIDERING THE EFFECTS OF ATMOSPHERIC ABSORPTION AND SPHERICAL SPREADING	23
8.1	ANALYTICAL PROCESS	23
8.2	A PARAMETRIC ANALYSIS OF COMPLEX VERSUS SIMPLIFIED	
	DIFFERENCES	26

SECTI	ON	PAGI
8.3	ATMOSPHERIC ABSCRPTION VARIATION WITH TEMPERATURE AND RELATIVE HUMIDITY FOR DOMINANT ONE-THIRD OCTAVE BAND	27
9.0	ANALYSIS OF DURATION CORRECTION PROCEDURES	41
9.1	ESTABLISHING THE RELATIONSHIP BETWEEN 10-dB DURATION TIME AND AIRCRAFT TO OBSERVER DISTANCE	41
9.2	ESTABLISHING AN EMPIRICAL RELATIONSHIP BETWEEN SEL, AL, AND 10-dB DURATION TIME	41
9.3	SUMMARY OF OBSERVATIONS/CONCLUSIONS	42
10.0	DEVELOPMENT OF PROPELLER TIP MACH NUMBER CORRECTION FUNCTIONS	45
10.1	INFLUENCES ON HELICAL TIP MACH NUMBER	45
16.2	REMOVING THE INFLUENCE OF OTHER FACTORS	47
10.3	DETERMINATION OF NOISE LEVEL-MACH NUMBER RELATIONSHIPS	48
10.4	NOISE-MACH NUMBER RELATIONSHIPS	50
10.5	DISCUSSION	50
11.0	DEVELOPMENT OF ENGINE POWER CORRECTION FUNCTIONS	55
11.1	INFLUENCES ON ENGINE POWER	55
11.2	ANALYTICAL METHODOLOGY	55
11.3	RESULTS	58
11.4	DISCUSSION	58
12.0	FULLY CORRECTED TAKEOFF NOISE DATA AND A DESCRIPTION OF THE CORRECTION PROCESS	62
12.1	THE NEED FOR CORRECTIONS	62
12.2	REFERENCE TEST - CONDITIONS	62
12.3	REFERENCE TEST PARAMETERS	62
12.4	CORRECTIONS INVOLVING DEVIATIONS FROM REFERENCE ALTITUDE	64
12.5	ATMOSPHERIC ABSORPTION AND SPHERICAL SPREADING	67
12.6	MACH NUMBER CORRECTIONS	67
12.7	POWER CORRECTIONS	67

SECTIO	<u> </u>	PAGE
12.8	DISTANCE - DURATION CORRECTION	68
12.9	VELOCITY - DURATION CORRECTION	68
12.10	FULLY CORRECTED ALM and SEL EQUATIONS	68
13.0	CORRELATION BETWEEN SEL AND ALM	70
13.1	REGRESSION ANALYSIS	70
13.2	DISCUSSION	70
14.0	SUMMARY OF OTHER AVAILABLE NOISE LEVEL DATA ACQUIRED USING THE PROPOSED CERTIFICATION TAKEOFF NOISE TEST	73
15.0	GA REGRESSION ANALYSIS	75
16.0	EQUAL STRINGENCY ANALYSIS	80
17.0	NOISE CERTIFICATION "TEST WINDOWS"	83
17.1	DEVIATIONS FROM REFERENCE FLIGHT PATH	83
17.2	DEVIATIONS FROM REFERENCE AIRSPEED	88
17.3	DEVIATIONS FROM REFERENCE HELICAL TIP MACH NUMBER	90
19 0	FUALISATION OF AIRCRAFT POSITION DETERMINATION SYSTEMS	93

LIST OF FIGURES

FIGUR		PAGE
	SCHEMATIC OF MEASUREMENT ARRAY	
3.2	1988/GLR NOISE MEASUREMENT INSTRUMENTATION	13
3.3	NAGRA TAPE RECORDER NOISE MEASUREMENT INSTRUMENTATION	14
5.1	RADAR PHOTOGRAPH	18
10.1	INFLUENCES ON HELICAL TIP MACH NUMBER AND ENGINE POWER SETTING (SCHEMATIC)	46
13.1	SEL VERSUS AL REGRESSION ANALYSIS	72
15.1	SEL VERSUS LOG, GROSS WEIGHT	78
15.2	ALM VERSUS LOG ₁₀ GROSS WEIGHT	79.
16.1	LEVEL FLYOVER DATA VERSUS TAKEOFF DATA	82
	ALM VERSUS ALTITUDE CORRECTION RATIO	

LIST OF TABLES

TABLE		PAGE
1.1	GA AIRCRAFT PERFORMANCE PARAMETERS	6
1,2	REFERENCE TAKEOFF CONDITION	7
8.1	A-WEIGHTED ACOUSTICAL SPECTRA DOMINANT ONE-THIRD OCTAVE BANDS	39
8.2	ATMOSPHERIC ABSORPTION FOR SELECTED TEMPERATURES AND RELATIVE HUMIDITY	40
9.1	DISTANCE/10 dB DOWN TIME CORRELATION ANALYSIS	43
9.2	DURATION/CORRECTION ANALYSIS SUMMARY	44
10.1	ALM VERSUS LOG MACH NUMBER REGRESSION ANALYSIS	49
10.2	ALM VERSUS MACH NUMBER REGRESSION ANALYSIS	51
10.3	SEL VERSUS LOG MACH NUMBER REGRESSION ANALYSIS	52
10.4	SEL VERSUS MACH NUMBER REGRESSION ANALYSIS	53
11.1	ALM VERSUS LOG POWER	60
11.2	SEL VERSUS LOG POWER	61
12.1	FULLY CORRECTED TAKEOFF NOISE LEVEL (SEL & ALM)	63
12.2	STATISTICAL ANALYSIS OF ACOUSTICAL ANGLE DATA	66
14.1	BRITISH, GERMAN, AND FRENCH AIRCRAFT NOISE LEVELS AND PERFORMANCE PARAMETERS	74
15.1	GA AIRCRAFT NOISE VERSUS GROSS WEIGHT REGRESSION ANALYSIS (FAA DATA)	77
15.2	GA AIRCRAFT NOISE VERSUS GROSS WEIGHT REGRESSION ANALYSIS (FAA, FRENCH, GERMAN, AND BRITISH)	77
17.1	TAKEOFF ALTITUDE CORRECTIONS	86

TABLE		PAGE
17.2	TAKEOFF VELOCITY CORRECTIONS	89
17.3	TAKEOFF MACH NUMBER CORRECTIONS	92
18.1	MEASUREMENT SYSTEM COMPARISON	94
	LIST OF APPENDICES	
Appen	dix	
A	Takeoff Noise Data	
В	Level Flyover Noise Data	
C	Cockpit Instrument Data	
D	Meteorological Data	
E	Cessna 210 Supplemental Noise Measurements	

GLOSSARY

ABS	-	Atmospheric absorption correction applied to each 1/3 octave band of the ALM
ACL	-	Above Ground Level
AL	•	A-Weighted Sound Level, expressed in decibels (See L_A)
ALM	•	Maximum A-weighted Sound Level, expressed in decibels (see $L_{\mbox{AM}}$)
AL _{CX}	-	Maximum A-weighted Sound Level Corrected using complex procedure
AL _C	•	Maximum A-weighted Level corrected using simplified procedures
ALAM	-	As measured maximum A-weighted Level
ALT	•	Aircraft altitude above the microphone location
ALTR	•	Reference Altitude - reference height of aircraft
ALTT	•	Test Altitude - actual height of aircraft directly over noise measurement site
MTA	•	Standard day atmospheric correction
BRC	•	Best Rate of Climb
c	•	Speed of Sound
C2A	-	When used as subscript on refers to distance and Mach number corrected levels
CPA	•	Closest Point of Approach
CR	•	Correction Ratio
dB	•	Decibel
dBA	•	A-Weighted Sound Level expressed in units of decibels (see AL)

df	u	Degree of freedom
đ	-	Distance
d ₅₀	•	Distance from brake release to clear a 50° (15.4m) obstacle
Δ	•	Delta, or Change in Value
Δ1	-	Correction term obtained by correcting SPL values for atmospheric absorption and flight track deviations per FAR 36, Amendment 9, Appendix A, Section A36.11, Paragraph d
Δ2	-	Correction term accounting for changes in event duration with deviations from the reference flight path
EPNL	-	Effective Perceived Noise Level (symbol is $L_{\mbox{\footnotesize EPN}}$)
EV	-	Event, test run number
FAA	-	Federal Aviation Administration
FAR	-	Federal Aviation Regulation
FAR-36	-	Federal Aviation Regulation, Part 36
GA	-	General Aviation
GLR	-	Graphic Level Recorder
TAS	-	Indicated Airspeed
K(A)	-	Propagation constant describing the change in dBA with distance
K(DUR)	=	The constant used to correct SEL for distance and velocity duration effects in \triangle 2
K(S)	M.	Propagation constant describing the change in SEL with distance
K(M) _A	=	Mach Number correction constant for AL
K(M) _S	-	Mach Number correction constant for SEL

K(P)A	-	Power correction constant for the AL
K(P)S	•	Power correction for SEL
Kts	•	Knots
LA	-	Symbol for A-Weighted Sound Level expressed in decibels (see AL)
LAcx	-	Symbol for Maximum A-weighted Sound Level corrected using complex procedure
LAE	-	Symbol for Sound Exposure Level expressed in decibels (see SEL)
LAECS	•	Symbol for Sound Exposure Level corrected with simplified procedure
LAECX	•	Symbol for Sound Exposure Level corrected with complex procedures
LAEAM	-	Symbol for As measured Sound Exposure Level
L _{AM}	=	Symbol for maximum A-weighted Sound Level expressed in decibels (See ALM)
LAM(am)		Symbol for as measured Maximum A-weighted Sound Level expressed in decibels
L _{AM(am)}	-	
	-	Sound Level expressed in decibels
Leq		Sound Level expressed in decibels Symbol for Equivalent Sound Level
Leq LFO	-	Sound Level expressed in decibels Symbol for Equivalent Sound Level Level Flyover operational mode
Leq LFO M _H	-	Sound Level expressed in decibels Symbol for Equivalent Sound Level Level Flyover operational mode Helical Tip Mach number
Leq LFO M _H M _H (T)	- -	Sound Level expressed in decibels Symbol for Equivalent Sound Level Level Flyover operational mode Helical Tip Mach number Test helical tip Mach number
Leq LFO M _H M _H (T) M _H (R)	- -	Sound Level expressed in decibels Symbol for Equivalent Sound Level Level Flyover operational mode Helical Tip Mach number Test helical tip Mach number Reference helical tip Mach number
Leq LFO M _H M _H (T) M _H (R) MTOGW	- -	Sound Level expressed in decibels Symbol for Equivalent Sound Level Level Flyover operational mode Helical Tip Mach number Test helical tip Mach number Reference helical tip Mach number Maximum Takeoff Gross Weight
Leq LFO MH MH(T) MH(R) MTOGW	- -	Sound Level expressed in decibels Symbol for Equivalent Sound Level Level Flyover operational mode Helical Tip Mach number Test helical tip Mach number Reference helical tip Mach number Maximum Takeoff Gross Weight Sample Size
Leq LFO MH MH(T) MH(R) MTOGW N	- -	Sound Level expressed in decibels Symbol for Equivalent Sound Level Level Flyover operational mode Helical Tip Mach number Test helical tip Mach number Reference helical tip Mach number Maximum Takeoff Gross Weight Sample Size Reference engine power
Leq LFO MH MH(T) MH(R) MTOGW N PR PT	- - - -	Sound Level expressed in decibels Symbol for Equivalent Sound Level Level Flyover operational mode Helical Tip Mach number Test helical tip Mach number Reference helical tip Mach number Maximum Takeoff Gross Weight Sample Size Reference engine power Test engine power

SD	•	Standard Deviation
SEL	•	Sound Exposure Level expressed in decibels. The integration of the AL time history, normalized to 1 second (symbol is L_{AE})
SEL _{AM}	=	As measured Sound Exposure Level
SEL _{CX}	-	Sound Exposure Level corrected with complex procedures
SEL _{CS}	•	Sound Exposure Level corrected with simplified procedure
$\mathtt{SEL}_{\mathtt{FC}}$	=	Fully corrected SEL value
SPH	-	Correction added to the 1/3 octave band value to adjust for spherical spreading
SPL	=	Sound Pressure Level
SR	-	Distance from the noise source to receiver
T	-	Ten-dB-down duration time
T/O	=	Takeoff
v	=	Velocity
۷y	-	Velocity for best rate of climb
v_R	=	Rotational Velocity
$v_{\mathbf{T}}$	82	Translational Velocity
Vg	=	Ground speed
VIAS	=	Indicated Air Speed
αi	₽	Atmospheric absorption coefficient for the i-th 1/3 octave Sound Pressure Level
% i	=	SAE ARP-866A absorption coefficient for the i-th 1/3 octave band for the reference conditions of 59°F (15°C) and 70% RH

Executive Summary of Findings

- 1. For the aircraft, groundspeeds, and altitudes tested, a strong correlation is observed between SEL and ALM. ALM and SEL are linearly related, with a coefficient of determination (R^2) of 0.965.
- I. a noise certification scheme the use of ALM is substantially simpler and more direct than SEL because:
 - a. there is no need for tracking information, which is required to measure ground speed;
 - b. measurement instrumentation is far less sophisticated;
 - c. corrections for off-reference test conditions are simpler and less time-consuming; and
 - d. fewer corrections are required.

Based on these observations, it is reasonable to consider use of ALM as the noise evaluation measure for a takeoff noise certification procedure.

2. For ratios of test altitude to reference altitude from 1.2 to
0.8, a comparisons of two methods (i.e., a "simplified" and a "complex) for
correcting nonreference altitudes and nonstandard atmospheric absorption
resulted in an average difference of only 0.2 dB between the two methods.

It is concluded that the less complex correction method is quite acceptable.
Using the "simplified" procedure, measured noise levels (ALM) may be
corrected for altitude by algebraically adding an increment equal to:

Delta-1 = 22 log (ALT_T/ALT_R) dB.

- 3. The results of the helical tip Mach Number (M_H) correlation study suggest that no single function should be universally applied. Test results show that functions for the aircraft tested lie between 20 and 150 times log $(M_{H(R)}/M_{H(T)})$. However, the method of application as a correction function minimizes the net difference in correction value, since, in most cases, the $M_{H(R)}/M_{H(T)}$ was very close to 1.0. On the average there was less than a 1 percent difference over the range of coefficients, primarily due to warmer than standard day temperatures.
- 4. Test results reveal a range of values for the power correction constant $K(P)_A$ between 2 and 30, with an average $K(P)_A = 17$. The relationship $\Delta = K(P)_A \log (P_{(R)}/P_{(T)})$ db is considered a reasonable correction factor for estimating change in noise level with engine power.
- 5. Pilots participating in the FAA tests flew within 5 kts. of the reference airspeed.
- 6. In most cases (11 of 18) the altitude correction ratios (ALT_T/ALT_R) for the test aircraft lie within the limits of 0.7 and 1.4. In a number of cases an unusually high correction ratio is observed, generally associated with winds aloft and/or light weight.
- 7. Linear and logarithmic regression analyses of noise level versus maximum gross takeoff weight failed to reveal any significant trends for the general population of aircraft tested. Subsequent analyses using sub-ground populations made no significant improvement.
- 8. Pilots participating in the FAA test reported difficulty in maintaing the reference heading due to their inability to see the ground while in the climbout flight regime. Typically each pilot would make practice flights

until receiving radio confirmation from ground observers verifying the proper flight track. The pilot would then fly that compass heading for subsequent takeoff events. After having found the right compass heading, pilots typically deviated no more than +10 degrees from the zenith over the microphone location.

1.0 Introduction - During the Summer and Fall of 1982, the Federal Aviation Administration's Office of Environment and Energy, Noise Abatement Division, conducted an extensive propeller-driven aircraft noise measurement program at Dulles International Airport. This program was intended to obtain noise measurement data necessary for analysis of the proposed revision of ICAO Annex 16/FAA FAR Part 36, noise standards for certification of small (less than 12,500 lbs) propeller-driven aircraft.

ICAO and FAA noise standards prescribe procedures for noise certification of small propeller-driven airplanes. The standards require measurement of noise levels associated with 1000 ft (300m) level flyover at not less than the highest power in the normal operating range. The regulations also require application of a general performance correction. This correction considers climb performance capability and the associated effect on noise levels.

Suggested changes to Chapter 6 of ICAO Annex 16 and FAR Part 36

Appendix F would substitute a takeoff test for the current flyover test.

Along with this change comes the need to develop reliable correction procedures for changes in noise level which accompany non-reference helical tip Mach Number, non-reference engine power levels, and non-reference altitudes.

In an effort to assess the proposed revision, takeoff noise measurements were made for 18 aircraft. Additional measurements for nine of these aircraft during level flyover provided sufficient data to examine the relationship of noise levels versus variations in helical tip Mach Number and engine power setting.

Table 1 presents selected physical attributes for each of the test aircraft, while Table 2 lists the reference takeoff performance characteristics for each airplane. The parameters shown in Table 2 are used for normalizing test measurement data to reference takeoff performance and meteorological conditions.

TABLE 1.1

CENERAL AVIATION AIRCRAFT SPECIFICATIONS 1982 HOISE TEST; DULLES INTERNATIONAL AIRPORT

			Engine(s)					Proj	Propeller			WAR	Sear
		Max Cont	Prop Sheft	Mentfold	Maber	Engine	Alr		į	;			Pixed/
Arcreft	Model	Pr (total)	Ę	Press/T	Engines	a vi	Intake		N. Lades	ž	710		Letractable
Cessna 180	Continental 0-470-L	230hp	2550	27.5	_	platon	normally aspirated	McCauley	2	7.2	76.	0. %	-
Archer II PA-28 181	Lycoming 0-360	180hp	2700	fixed		pistos	normally aspirated	Sensesich	~		fixed	35.0	L
Turbo Arrowly PA28RT 201T	Continental TS10-360	200hp	2575	.14	-	piston	turbocharged	Mertsoll	n	76.	ž.	35.4	#
Tosobavk PA-38-112	Lycoming 0-235	112hp	2356	fixed	-	pistos	normally aspirated	Sensenf:h	- 7	72	1	¥.0	•
Cessne 170	Continental 0-300C	145hp	2375	fixed	-	pieton	mormally aspirated	Sensenich	7	*	fi	36.0	b.
King Air 200	PSU PT6A-41	850ehp	2000	2230 (Torque)	7	turboprop	compressor	Wrt zell	6	*	ğ	\$4.5	#
Che yeane PA-42	P&# PT6A-41</td><td>720shp</td><td>2000</td><td>1985 (Torque)</td><td>7</td><th>turboprop</th><th>capressor</th><td>Mart sell</td><td><u> </u></td><td>35.</td><td>į</td><td>47.7"</td><td>=</td></tr><tr><th>Chancellor C-414</th><td>Continental TS10-520</td><td>310</td><td>2700</td><td>39.5°</td><td>7</td><th>piston</th><th>turbocharged</th><td>McCauley</td><td>6</td><td>76.5</td><td>į</td><td>#.7.</td><td>•</td></tr><tr><th>laron 158-P</th><td>Continental TS10-520-48</td><td>325hp</td><td>2700</td><td>39.5</td><td>7</td><th>pleton</th><th>turbocharged</th><td>Mart sell</td><td>m</td><td>75</td><td><u> </u></td><td>37.8</td><td>-</td></tr><tr><th>Centurion C-210</th><td>Continental 10-520-L</td><td>300hp</td><td>2700</td><td>30</td><td>-</td><th>piston</th><th>normally</th><td>McCauley</td><td>m</td><td>\$</td><td>ij</td><td>¥.8.</td><td>•</td></tr><tr><th>Skylane C-182</th><td>Continentel 0-470</td><td>230hp</td><td>2400</td><td>31.</td><td>-</td><th>pietos</th><th>normally aspirated</th><td>McCauley</td><td>m</td><td>*</td><td>*</td><td>35.8</td><td>==</td></tr><tr><th>Skynauk C-172</th><td>Lycoming 0-320</td><td>160hp</td><td>2300</td><td>fixed</td><td>-</td><th>pieton</th><th>normally</th><td>McCauley</td><td>74</td><td>75</td><td></td><td>fixed 36.0°</td><td>•</td></tr><tr><th>Merlin 227-AT</th><td>Gerrett TPE-331-11U</td><td>1000вћр</td><td>1881</td><td>3301 (Torque)</td><td>~</td><th>turboprop</th><th>compressor</th><td>Dovty-local</td><td>4</td><td>18.</td><td>ğ</td><td>57.0</td><td>•</td></tr><tr><th>Commender 900</th><td>Carrett TPE-331-5</td><td>712shp</td><td>1591</td><td>,</td><td>7</td><th>tarboprop</th><th>comprissor stages</th><td>Desty-Recal</td><td><u> </u></td><td>100</td><td>ř</td><td>52.1</td><td>=</td></tr><tr><th>Beach Duchess</th><td>Lycoming 0-360</td><td>160hp</td><td>27.00</td><td>ķ</td><td>7</td><th>piston</th><th>normally aspirated</th><td>Brtsell</td><td>8</td><td>.92</td><td>ř</td><td>.0. M</td><td>4</td></tr><tr><th>Beech BonenzeA-36</th><td>Continental 10-520</td><td>23 Shp</td><td>.700</td><td>.62</td><td>-</td><th>piston</th><th>normally</th><td>HcCauley</td><td>n</td><td>5</td><td>YAF</td><td>33.5</td><td>-</td></tr><tr><th>Piper Mava jo 350</th><td>Lycoming T10-540</td><td>340hp</td><td>2525</td><td>-17</td><td>8</td><th>pleton</th><th>turbocharged</th><td>Mart zel 1</td><td>e .</td><td>ğ</td><td>į</td><td>40.7</td><td>#</td></tr><tr><th>Cessna Conquest I C-425</th><td>RW FT6A-112</td><td>450hp</td><td>0061</td><td>1244 (Torque)</td><td>74</td><th>turboprop</th><th>compressor stages</th><td>McCauley</td><td>n</td><td>3.4</td><td>2</td><td><u>:</u></td><td>~</td></tr></tbody></table>												

TABLE 1.2

REFERENCE TAKEOFF
CONDITIONS

Ref* Alt (ft) (degrees) C11mb 8.2 5.5 5.5 5.6 8.0 7.3 5.5 6.7 5.2 7.3 6.2 11.1 11.4 9.1 12.4 Vy(kt) | Max Climb F.te Sea Level Std Day 76 77.3 88.2 147.0 97.5 D50(i.) T/O Ref Mach No. .7574 .7789 .6637 £901 Max Gross I/O Wt (1bs) 29:00 1.080 Beach BonanzaA-26 Cessna Conquest I C-425 Piper Navajo 350 Chanceilor C414 Centurion C-210 Turbo Arrow IV PA28E: 2017 Cheyenne PA-42 Skylene C-182 Skyhavk C-172 Her11n 227-AT Gulfstream Commander 900 beech Duchess King Air 200 Beron B58-P Cessna 170 Cessna 180 Archer II PA-28 181 Tomohank PA-38 112 Aircraft

#8200 ft (2560m) from breke release

- 2.0 <u>Aircraft Operations: Reference Conditions</u> For purposes of this series of tests, a reference ground track was defined as a line parallel to, and fifty feet west of the edge of Runway 36 at Dulles. The test program was structured to accommodate either a north or a south traffic flow.
- 2.1 North Operations In the case of a northbound traffic flow, it was necessary to use a simulated takeoff procedure. Calculations were made to determine the ground location and altitude to intercept the climbout path. The resulting altitude achieved over the North measurement location (Site 2) theoretically would equal the reference takeoff altitude.
- 2.2 <u>South Operations</u> In the case of southbound traffic flow, a full stop takeoff procedure was utilized with brake release at a point nowinally 8200 feet (2500 meters) from the south measurement location (Site 1). The full stop takeoff procedure has been specified in the proposed noise certification test as follows:

First phase

- a. takeoff power shall be used from the brake release point to the point at which the height of 50 ft (15m) above the runway is reached.
- b. a constant takeoff configuration selected by the applicant shall be maintained throughout this first phase.

Second phase

- a. the beginning of the second phase corresponds to the end of the first phase.
- b. the aircraft shall be in the climb configuration with landing gear up, if retractable, and flap setting corresponding to normal climb throughout this second phase.

- c. the speed shall be the best rate of climb speed Vy.
- d. The maximum continuous power and RPM that can be delivered by the engine or engines in this flight condition shall be maintained throughout the second phase (unless a lower limiting power is established by the certificating authority,.
- 2.3 <u>Level Flyovers</u> In both cases (north or south traffic flow), level flyover operations were conducted in concert with the normal traffic flow. In each level flyover test, target values were specified for altitude, propeller RPM, and engine power.
- 2.4 Reference Meteorological Conditions for Calculating Reference Takeoff

 Altitudes the following paragraph, taken from the proposed takeoff noise
 certification standard, specifies reference meteorological conditions:

The airplane reference flight procedures shall be calculated under the following atmospheric conditions.

- a. sea level atmospheric pressure of 1013.25 hPa (1013.25mb);
- b. ambient air temperature of 15°C;
- c. relative humidity of 70 percent; and
- d. zero wind.

- 3.0 Acoustical Data This section describes the procedures used in measurement, recording and reduction of acoustical data.
- 3.1 Measurement Locations Two noise measurement sites were utilized during takeoff and level flyover conditions. The sites were located on the flight track centerline, 3000 feet (914m) apart on level ground with short clipped grass. The full-stop takeoff measurement site was approximately 9000 feet from the start of takeoff roll. In the case of full stop takeoff and in the case of flight path intercept takeoff, noise data were corrected to values which would be expected at a distance of 8200 feet from brake release. A schematic of the test array is shown in Figure 3.1.
- 3.2 Measurement Instrument Each noise measurement site utilized two identical microphone-preamp systems situated 12" apart. The systems consisted of General Radio one-half inch electret microphones (1962-9610) driving General Radio P-42 Preamplifiers, with the microphones oriented for grazing incidence and mounted 4 feet (1.2m) above the ground. A three-inch windscreen covered each microphone. A 100-foot (30.5m) cable connected one microphone system with a General Radio 1988 Precision Integrating Sound Level Nater driving a Matrosonics Graphic Level Recorder (GLR). The other microphone system was connected by a 100-foot (30.5m) cable to a two-channel Nagra IV-SJ Magnetic Tape Recorder. Amplification was provided by Ithaco Model 451 Amplifier. Data were recorded simultaneously on both channels in the linear mode; however, on windy days, one channel was A-weighted in order to increase the signal-to-noise ratio. Measurement instrumentation schematics are shown in Figures 3.2 and 3.3.

- 3.3 Noise Data/Data Reduction The 1988 system provided ALM, SEL, Equivalent Sound Level (Leq), and the duration of the integration. The 10-dB-down duration time was scaled from the Graphic Level Recorder time history charts. The data from the magnetic tape recorder system were processed using a General Radio 1995 1/3 octave real time analyzer interfaced to a PDP 11/05 computer system. It provided ALM, SEL,
- 10-dB-down duration, time of ALM, one-third octave spectrum for ALM, and one-half second average AL values encompassing the entire 10-dB-down time history.

The 1988 systems were the primary measurement instruments and generated the data presented in the appendices of this report. The magnetic tape recorder systems were deployed selectively on a limited number of days at certain measurement sites. As explained in subsequent sections, the tape recorder systems were utilized for the express purpose of evaluating complex versus simplified data correction procedures to account for non-standard atmospheric absorption.

Summary tables of acoustical measurements data are provided in Appendix A (Takeoff) and Appendix B (Level Flyover).

Microphone and Acoustical Measurement Instrumentation Deployment

A 12 m Manaphone
2-Chemist Resenter
1968 Sound Lovel Manufacture
with Graphic
Level Resenter

FIGURE 3.1

1988/GLR Direct Read

Acoustical Measurement Instrumentation

FIGURE 3.2

NAGRA Tape Recorder

Acoustical Measurement Instrumentation 3 200 EACO Ale 4' (1.2m) 100' (30.5m) Cable OR, 14" electret 18 Micropheno Orlanted for Oracing Indidence GR, P-42 pressip 100' (30.5m) Cable to Inchromentation Vehicle

FIGURE 3.3

4.0 Meteorological Data - On-site measurements were taken approximately every 1/2 hour using a sling-psychrometer to measure air temperature and relative humidity. Wind was monitored constantly using a three-cup anemometer.

The U.S. National Weather Service provided upper air observations from routine Radiosonde launchings at nearby Sterling, Virginia. FAA personnel also monitored the wind information provided by the Dulles Low-Level Wind Shear monitoring system.

A tabulation of meteorological data is provided in Appendix D of this report.

5.0 Aircraft Position Data - Aircraft position relative to the reference flight track and noise measurement sites was determined using three different techniques; radar, photoscaling and transit.

A brief description of each technique is provided below:

<u>Photo-Scaling</u> - 35mm photographs were taken of each aircraft as it passed over the noise site. Each image was measured and compared with an appropriate calibration photograph to determine altitude.

Radar - Aircraft position data were supplied, for some events, by a tracking radar system. A photograph of the radar system is shown in Figure 5.1.

Transit - A surveyor's transit was placed approximately 1500' (457m) abeam (east) of the primary noise site. The observer visually followed the target aircraft through the transic until the aircraft passed over the noise site (transit turnet was blocked from moving beyond the noise site). An elevation reading was taken to determine the aircraft's altitude above the noise site. This method was included in the test program merely to evaluate its feasibility. None of the transit data was used in the analyses presented in this paper.

The three different measurement systems were used, in part, for the purpose of evaluating comparative performance and in part, to maintain back-up tracking capability. A comparative analysis is provided in sections which follow.

The aircraft position data used in level flyover analyses (see Appendix B) were primarily from the photo-scaling systems while radar data were primarily used in evaluating takeoff noise data (see Appendix A). This methodology reflects the timing and sequence of data analysis as well as delays encountered in developing radar data reduction software.

18

6.0 Cockpit Instrument Readings - Cockpit data were logged by an FAA observer for each noise run when the aircraft was approximately over the (proposed) noise certification measurement location. These data were essential for developing and (in the case of takeoff), applying propeller tip speed corrections and power corrections. A tabulation of the acquired cockpit data is presented in Appendix C.

- 7.0 <u>Propagation</u> This section of the report utilizes takeoff noise data from test runs in which aircraft position data were available at both measurement sites. An implicit assumption is that the acoustical emission characteristics of the test aircraft remain constant over the 3000 feet between sites.
- 7.1 Intensity metric: Propagation Effects In the case of the intensity metric, maximum A-weighted Sound Level, the primary considerations are spherical spreading and atmospheric absorption. Adjustment for these factors is referred to as the Delta-1 correction. The Delta-1 process involves application of the spreading law plus absorption to each of the 24 one-third octave Sound Pressure Levels between 44 Hz and 11,200 Hz. The correction for most atmospheres and most spectra is given in simplified format as:

 $\Delta_1 = K(A) \log (^{d}1/_{d_2}) dB$ where K(A) is greater than 20 and generally less than 27.

7.2 <u>Energy Metric: Propagation Effects</u> - In the case of the energy metric, SEL, one observes the same losses described above plus the effects of duration. In the example below we consider only distance-duration effects, assuming no change in ground speed. The change in SEL with distance can be written as:

$$\triangle = K(A) \log (^{d}1/d_{2}) + K(D) \log (^{d}2/d_{1})$$

$$\triangle$$
 - (K(A) - K(D)) log ($^{d}1/d_{2}$)

By defining (K(A) - K(D)) = K(S), the SEL propagation constant, one can write:

$$\Delta = K(S) \log (^{d}1/d_2)$$

or

In summary, the object of this study is to determine empirical values of K(A) and K(S) using takeoff noise measurement data.

7.3 Results - A total of 30 individual takeoff noise events (encompassing six different aircraft types) have been examined. If all data are grouped as a single population, the following overall averages result:

	N	Propagation Constant	u-	90% C.I.	90% C.I. Range for True Value of "K"
K(A)	31	21.1	4.9	1.5	22.6 to 19.6
K(S)	30	15.0	3.4	1.07	16.1 to 13.9

It is seen that a much greater uncertainty exists in the estimate of K(S), while the K(A) estimate appears reasonable within the context of applicable theory. As seen in the next sub-section, the K(A) estimate is largely corroborated by other similar studies.

7.4 Examination of Other Test Data - This section uses values of Delta-1 computed in previous noise tests to determine comparison values of K(A).

Using available information the following calculation was made.

$$K(A) = Delta-1 \rightarrow log \left(\frac{1}{4}\right)$$

Each value of Delta-1 used in this analysis contains three components. The first term accounts for the effects of change in atmospheric sound absorption between actual and reference atmospheres. The second term accounts for the effects of atmospheric sound absorption on the change in sound propagation path length between actual and reference flight path. The third term accounts for the effects of the inverse square law on the change in the sound propagation path length.

The following values of K(A) were obtained using this method for a number of previous helicopter and general aviation aircraft noise tests as described below:

- a. K(A) = 24.38, S.D. = 2.7, Sample size 23 for seven general aviation aircraft tested in 1978.1
- b. K(A) = 21.7, S.D. = 0.6, Sample size 15 for four helicopters tested in 1979.2
- c. K(A) = 23.3, S.D. = 4.0, Sample size = 30 for eight helicopters tested in 1978.3
- 7.5 <u>Diccussion</u> The method of determining K(A) in this paper is strictly empirical, depending entirely on measured data. The comparison technique using previously reported data employs computed values of Delta-1. These computed values are in turn dependent on the accuracy of Society of Automative Engineers Aerospace Recommended Practice -866A. While the two techniques are not strictly comparable, they both provide a means for evaluating propagation decay rate. When considered together they point to the similarity of the results and lead to the conclusion that for small propeller-driven aircraft, the appropriate value of K(A) fails between 20 and 24.

Since experimental values of K(A) determined from the summer 1982 tests are slightly over 20, it can be concluded that there is little absorption taking place. This is not surprising since the test aircraft produce sounds dominant in the low frequency range (i.e., <260 Hz). It is worthwhile to note that some changes in acoustical emission characteristics probably take place between two sites which may account for some of the variability.

- 8.0 Comparison of Simplified and Complex Procedures for Considering the

 Effects of Atmospheric Absorption and Spherical Spreading the new ICAO

 proposal would substitute takeoff noise measurements for the current level

 flyover measurement requirement. This proposal would also incorporate some

 form of combined atmospheric absorption and spherical spreading correction

 similar to that outlined in Annex 16/PAR Part 36 Appendix A. This complex

 correction is referred to as "Delta-1". One option is a "simplified"

 correction concept for atmospheric absorption. In this section simplified

 values are calculated and compared with those of the more complex Delta-1

 correction procedure to determine the magnitude and significances of the

 differences.
- 8.1 Analytical Process Computer software was developed at the FAA's
 Noise Lab for use in this test. One such program accepts noise, position,
 and weather data, calculates corrections, and computes the desired metrics.
 These metrics are described below:
- 1. Determination of As-Measured ALM Using the spectrum of the half-second sample producing the maximum noise level, provided by the "1995" system, this software applies A-weighting constants (unless A-weighting was applied during the test) to each 1/3 octave band sound pressure level and computes the A-weighted value.

$$L_{AM} = 10 \log \left[\sum_{i=1}^{24} \left[ANTILOG \left[SFL_{i} + \left[A-Wt \right] \right] \right] \right]_{M}$$
 (EQUATION 1)

2. Determination of Complex Correction AL (AL cx) - This program calculates "corrected" A-weighted value as it does ALM. However, in this case the program also computes, for each 1/3 octave band, corrections

which are added to the A-weighted SPL's to adjust for effects associated with differences between test and reference conditions.

$$L_{ACX} = 10x \log \left[\sum_{i=1}^{2A} \left[ANTILOG \left[\frac{SPL_1 + [A-Wt]_1 + ATM_1 + ABS_1 + SPR_1}{10} \right] \right]$$
 (EQUATION 2)

The corrections applied (ATM₁, ABS₁, SPH₁) in the above equation are defined as follows:

ATM, represents the standard day atmospheric correction for a particular 1/3 octave band

$$ATH_1 = ((\alpha_1 - \alpha_{-1})/1000^{\circ}) (ALT_T)$$

NOTE: 4: is the SAE-ARP-866A absorption coefficient for the i-th

1/3 octave band for test day temperature and relative humidity.

1: is the SAE-ARP-866A absorption coefficient for the i-th

1/3 octave band for the reference conditions of 59°F (15°C) and

70% RH. All data have been analyzed using the 77°F, 70%RH

reference conditions as well as the 59°F, 70% RH reference values.

Although only the 59°F, 70% RH results are reported herein, the

77°F, 70% RH values are nearly identical.

ALT_T: Test altitude

ALT_R: Reference altitude

ABS₁: is the atmospheric absorption correction applied to each

1/3 octave band of the ALM spectrum.

$$ABS_1 = (a_{01}/1000^{\circ})(ALT_T-ALT_R)$$

SPH;: is the correction added to the 1/3 octave band value to adjust for spherical spreading.

SPH₁ = 20 log (ALT_T/ALT_R)

This correction strictly parallels the "Delta-1" correction process contained in FAR Part 36 and ICAO Annex 16.

3. <u>Determination of Simplified Corrected ALM (AL_{CS})</u> - To "correct the ALM value using the proposed simplified technique, this program adds as a correction factor the product of a constant (24) and the log of the ratio between the test and reference altitudes.

$$LA_{CR} = L_{AM} + 24 \log (ALT_T/ALT_R)$$
 (EQUATION 3)

NOTE: The value 24 has been derived from previous empirical studies of noise propagation characteristics. For further discussion please refer to Section 12.5.

4. "As Measured" Sound Exposure Level (SELAM) - The A-weighted values for each half-second sample (provided by the "1995" system) were used to compute the "as measured" SEL.

$$L_{AE_{AM}} = 10 \log \left[\sum_{i=1}^{n} ANTILOG \left[L_{A_{1}} / 10 \right] \right] = 3dB$$
 (EQUATION 4)

NOTE: The correction of 3 dB normalizes the value to a one-second base.

5. Complex Corrected Sound Exposure Level (SEL $_{\rm CX}$) - The "corrected" SEL was calculated by adding to the AL $_{\rm CX}$ values an "as measured" duration correction (SEL $_{\rm AM}$ -AL $_{\rm AM}$) along with an altitude duration correction, 7 log (ALT $_{\rm R}$ /ALT $_{\rm T}$). In this analysis it is assumed that test and reference velocities are equal.

$$L_{AE_{CX}} = LA_{CX} + (L_{AE_{AM}} - L_{AM(am)}) + 7 \log (ALT_R/ALT_T)$$
 (EQUATION 5)

6. Simplified Corrected Sound Exposure Level (SEL cs) - The simplified version for determining a corrected SEL is the same as the SEL procedure, except the value AL is replaced with the value AL cs

$$L_{AEcs} = L_{A_s} + (L_{AE_{AM}} - L_{AM_{(am)}} + 7 \log (ALT_R/ALT_T)$$
 (EQUATION 6)

NOTE: Use of the constant 7 in the above equations (5 and 6), rather than the value of 10, was found to provide a better fit to the test data. (see Section 9.2).

8.2 A Parametric Analysis of Complex versus Simplified Differences - The "Delta-1" process described above incorporates corrections for the influence of non-reference temperature and relative humidity operating over some finite "Correction Ratio", the test altitude divided by the reference altitude (ALT_T/ALT_R). As discussed in later sections the "Altitude is observed to be approximately equal to the "Closest Point of Approach". Therefore, in subsequent discussion the correction ratio is defined as CPA_T/CPA_R). This chapter attempts to explore the differences between simplified and complex correction procedures taking into account the three variables 1) temperature, 2) relative humidity, and 3) correction ratio.

This analysis uses takeoff noise spectra for test aircraft measured over a wide range of temperature (T) and relative humidity (RH) conditions.

For each spectrum acquired at a given T, RH, and test altitude, the following corrections are developed:

- 1. Correct to 77°,70% using simplified procedures for a series of reference altitudes resulting in Correction Ratios (CR) which span the range 0.5 to 1.5.
- 2. Correct to 77",70% over the same CR range using the complex procedures.

Having exercised both the complex and simplified techniques over the dimensions T,RH,CR, for a variety of representative aircraft spectra, we have plotted the differences in figure 8.1-8.10. It is observed that the complex-minus-simplified differences increase as the CR diverges from 1.0 (as one might expect), with the complex procedure yielding greater corrections (resulting in higher corrected noise levels) when CR is less than 1.0 (CPA_T less than CPA_R). When the CR is greater than 1.0 the simplified technique yields a higher correction value resulting in a lower corrected noise level. In both cases one will find a higher corrected noise level using complex procedures.

The magnitude of this difference, however, is small (generally less than 0.5 dB) with a CR range of 0.7-1.3. As long as allowable deviations from the reference flight path are restricted to CR range of 0.7-1.3, differences between the complex and simplified Delta-1 corrections are so small that the additional time and expense of generating complex correction values is unjustified.

8.3 Atmospheric Absorption Variation with Temperature and Relative

Humidity for Dominant One-Third Octave Bands. - This analysis examines

which one-third octave sound pressure levels dominate the A-weighted

acoustical spectrum for each aircraft. A summary of dominant and second

highest bands is presented in Tabel 8-1 for typical takeoff and level

flyover noise events for test aircraft. As these bands are the most

influential in determining the maximum A-weighted sound level their

sensitivity to atmospheric absorption is an important indicator of the

need for the more rigorous "Delta-1" correction process.

PICURE 8-7

FIGURE 8-9

Having established the dominant bands one can now examine the sensitivity to absorption by inspecting Table 8-2 which provides rates of absorption for the standard acoustical day (77°F,70%) and five other T-RH combinations which encompass a realistic test condition window. In cases where a significant difference (ldB/1000°) exists between the 77°F,70% rate of absorption and a selected test condition, one would expect to see greater sensitivity to atmospheric absorption in the correction process and perhaps a greater need for the complex correction procedure. Accordingly, one would expect to see a greater difference between the results of complex and simplified correction procedures. In cases where very little difference exists between reference and test rates of absorption then the need for complex procedures is diminished and one would expect good agreement between complex and simplified procedures.

This is in fact the case observed for almost all of the aircraft tested with the exception of the Duchess and Archer II which are dominated by acoustical energy in the 1 kHz to 2 kHz range.

TABLE 8-1

A-WEIGHTED ACOUSTICAL SPECTRA

DOMINANT ONE-THIRD OCTAVE BANDS

		TAKEOFF		LE	VEL	FLYOVER	· <u> </u>
AIRCRAFT TYPE	NO. 1 FREQ (Hz)	NO. 2 FREQ (Hz)	db- down	NO. 1 FREQ		NO. 2 FREQ (Hz)	dB DOWN
CESSNA 170	125	315	0.9	125		315	3.3
TURBOW ARROW IV	250	400	0.2	250		125	1.0
TOMOHAWK	160	315	2.3	160		315	1.0
KING AIR 200	400	315	2.3	500		400	1.1
CESSNA 414	125	630	3.6	125		250	6.5
PIPER CHEYENNE	200	315	1.7	315		100	3.8
BARON 58P	400	630	1.6	250		400	2.0
CESSNA 210	800	1000	0.5				
CESSNA 182	125	250	10.3				
CESSNA 172	160	315	2.3				
MERLIN 227AT	20	125	1.8				
GULFSTREAM 900	160	315	8.7				
DUCHESS	1000	800	0.5				
ARCHER II	2000	2500	0.5				
CESSNA 441	200	315	1.8	315		250	3.5
NAVAJO 350	125	400	2.7				
BONANZA A-36	400	250	1.24				
CESSNA 180	315	500	0.4	125		400	1.96

TABLE 8.2

ATMOSPHERIC ABSORPTION FOR SELECTED TEMPERATURES AND RELATIVE HUMIDITY

(dB/1000 ft.)

FREQUENCY (Hz)	77°F 70%	36°F 60%	36°F 95%	45°F 30%	65°F 50%	95°F 20%	95°F 90%
50	0.1	0.1	0.1	0.1	0.1	0.1	0.1
63	0.1	0.1	0.1	0.1	0.1	0.1	0.1
80	0.1	0.1	0.1	0.1	0.1	0.2	0.2
100	0.2	0.1	0.1	0.1	0.2	0.2	0.2
125	0.2	0.1	0.1	0.1	0.2	0.3	0.3
160	0.3	0.2	0.2	0.2	0.2	0.3	0.3
200	0.3	0.2	0.2	0.3	0.3	0.4	0.4
250	0.4	0.3	0.3	0.4	0.4	0.5	0.5
315	0.6	0.4	0.4	0.5	0.5	0.7	0.7
400	0.7	0.5	0.5	0.8	0.6	0.9	0.9
500	0.9	0.7	0.6	1.1	0.8	1.1	1.1
630	1.1	0.9	0.7	1.5	1.0	1.3	1.3
800	1.4	1.3	0.9	2.2	1.2	1.7	1.7
1000	1.8	1.9	1.3	3.1	1.6	2.2	2.2
1250	2.2	2.7	1.7	4.3	2.0	2.7	2.7
1600	2.9	3.9	2.4	6.2	2.6	3.5	3.5
2000	3.6	5.6	3.4	8.5	3.4	4.7	4.4
2500	4.6	7.8	4.8	11.7	4.6	6.2	5.5
3150	5.9	11.1	7.0	16.4	6.3	8.6	7.1.
4000	7.6	16.0	10.2	21.6	9_1	12.2	9.1
5000	8.7	19.0	12.2	24.3	10.9	14.7	10.4
6300	11.0	25.9	17.3	30.1	15.4	20.7	13.2
8000	14.9	36.6	25.0	37.4	22.7	30.5	17.2
10000	20.6	52.0	36.1	45.4	33.1	44.2	22.7

- 9.0 Analysis of Duration Correction Procedures Originally, the proposed metric for evaluating takeoff noise was the Sound Exposure Level, abbreviated SEL (symbol, L_{AE}). This metric considers not only the intensity but also the duration of the noise event. This section develops an empirical approach to evaluating changes in SEL with changes in event duration associated with non-reference testing. However, in light of recent conclusions favoring the use of ALM rather than SEL for certification purposes, this discussion can now be considered moot.
- 9.1 Establishing the Relationship Between 10-dB Duration Time and

 Aircraft-to-Observer Distance In order to develop this relationship it

 was necessary to utilize takeoff data. In this flight condition it is

 assumed that acoustical emission characteristics of the aircraft are

 nominally the same as the aircraft passes over the two measurement locations.

 As the two sites were separated by 3000 feet, the aircraft altitudes differed significantly. Table 9.1 depicts the results of correlation analyses between distance and duration. The high average correlation coefficient indicates that a change in distance is accompanied by a proportional change in duration. These results are consistent with theory and substantiate the assumptions inherent in the ICAO Annex 16, Distance Duration Correction

 Adjustment (\Delta 2) procedure.
- 9.2 Establishing an Empirical Relationship Between SEL, AL, and 10-dB Duration Time In order to investigate this relationship an empirical formula was developed, $L_{AF} = L_A + K(D) \times log$ (T) and evaluated using measurement data. For selected noise events the "duration constant"

K(D) was determined. Table 9.2 is a summary of these results. As the table shows, the values are consistently between 5.7 and 7.2 with the overall average of 6.5. This suggests that the appropriate value should be somewhere in this range. These results are generally consistent with the findings of Reference 2 in which a nominal duration constant K(D) of 7.0 was observed.

This similiarity of results has led to the decision to adopt a duration constant of 7.0 as the appropriate value for duration corrections in this study.

NOTE: It is worthwhile to note that on May 13, 1983, the ICAO

Committee on Aircraft Noise formally endorsed a value of

7.5 as the duration correction constant for use in

aircraft noise certification and noise impact assessment.

9.3 Summary of Observations/Conclusion

- a. Change in distance is proportional to change in 10-dB down duration time.
- b. $L_{AE} = L_A + 7 \log [Duration Time].$
- c. Duration Correction = 7 log $\left[\frac{DUR_1}{DUR_2}\right]$
- d. Distance Duration Correction = 7 log $\left[\frac{\text{Dist}_1}{\text{Dist}_2}\right]$
- e. Assuming that the same physics which govern change in duration with change in distance apply to changes in velocity then the expression $\triangle L_{AE} = 7 \log \left[(Vg_{(T)}/Vg_{(R)}) \right]$ (where $Vg_{(T)}$ is test speed and $Vg_{(R)}$ is reference ground speed) would be appropriate for establishing the velocity duration correction adjustments.

TABLE 9.1

CORRELATION BETWEEN DISTANCE AND 10dB DOWN DURATION TIME

AIRCRAFT	TEST DATE	R	Й
C-180	6-3	.943	4
C-170	6-23	.859	3
PA-38	8-10	.858	7
KING AIR 200	8-31	.956	6
C-414	9–14	.946	6
BEECH 58-P	9-28	.963	2
		R = .92	21

TABLE 9.2
K(DUR) SUMMARY SHEET

AIRCRAFT	TEST DATE	AVG K(DUR)	SAMPLE SIZE
CESSNA 170	6-23-82	7.04	10
Turbow ARROW	7-13-82	6.48	8
KING AIR 200	8-31-82	5.70	7
CESSNA 210	10-5-82	6.3	6
PIPER NAVAJO	10-20-82	7.2	6

AVG K(DUR) - 6.5

10.0 <u>Development of Propeller Tip Mach Number Correction Functions</u> - This section describes the procedures employed in developing propeller tip Mach Number corrections along with derived correction functions for nine test aircraft.

When noise measurement tests are conducted under conditions other than those specified as reference test conditions, corrections are required to account for the resulting changes in the measured noise levels.

There are two categories of factors which significantly influence the noise levels of small propeller-driven aircraft and give rise to the need for corrections: 1) test flight procedures and 2) non-standard environmental conditions.

10.1 Influences on Helical Tip Mach Number - Figure 10.1 shows a schematic representative of the factors which influence helical tip Mach Number (M_{H}) and aircraft power. It is seen that in determining the M_{H} of an aircraft, one has to consider such influences as outside air temperature, propeller RPM, and indicated airspeed (V_{TAS}) .

In general terms, the higher the Mach Number, the higher the noise levels produced. The following equations show the relationship of RPM, $V_{\hbox{\scriptsize IAS}}$, and air temperature in determining aircraft helical tip Mach Number.

(1)
$$M_{H} = (\frac{V_{R}^2 + V_{T}^2}{c})^{1/2}$$
 $V_{T} = V_{IAS}$ (kts.) x 1.689

(2) where
$$V_R = \frac{\text{Prop Dia. (in)} \times \text{RPM}}{229.18}$$

(3)
$$c = 49.02 \times (T^{\circ}F + 459.67)^{1/2}$$

While temperature is an environmental influence, RPM and airspeed are influences governed by test flight procedures. It should be noted that usually the contribution of $V_{\rm T}$ (translational velocity) is small in determining the

CAUSES OF VARIATION OF AIRCRAFT PERFORMANCE

CATEGORY #1
PILOT TEST FLIGHT PROCEDURES

CATEGORY #2
ENVIRONMENTAL CONDITIONS

INFLUENCES ON HELICAL TIP MACH NO. AND ENGINE POWER SETTING

FIGURE 10.1

Mach Number, while the dominant components of Mach Number are the variables V_R (rotational velocity) and C (speed of sound). This shows that both test flight procedures and environmental conditions can affect the noise levels produced, due primarily to an increase or decrease in helical tip Mach Number. 10.2 Removing the Influence of Other Factors — To identify the variation of noise level with Mach Number, the test program included a selected group of flights for which power was held constant while the Mach Number was varied by varying propeller RPM and airspeed.

The first step involves normalizing all variables within the data set except the variable of interest (M_H) . This is accomplished by correcting the "As Measured" metrics for spherical spreading, absorption, and duration differences associated with deviations from a reference altitude of 500 ft.

The intensity metric, AL, was corrected for spherical spreading and atmospheric absorption using the following equation:

$$L_A = L_A$$
 (As Measured) + 24 log $\frac{ALT_T}{ALT_R}$

where:

 ALT_{rr} = measured test altitude.

 ALT_R = reference attitude (typically 500 ft).

The constant 24 accounts for spherical spreading and atmospheric absorption.

(NOTE: Upon analysis of the test data, this constant was found to be closer to the value of 22 as discussed in Section 7.0).

The energy metric, SEL, was corrected for spreading, absorption, distanceduration and velocity-duration effects using the following equation:

$$L_{AE} = L_{AE}$$
 (As Measured) + 17 log $\frac{ALT_T}{ALT_R}$ + 7 log $\frac{Vg}{Vy}$

where: Vg = ground speed determined by radar or consideration of airspeed from cockpit data logs along with radiosonde upper air wind data.

Vy = speed for best rate of climb which is the reference speed for a takeoff operation.

The constant 17 accounts for spreading, absorption and distance-duration and the constant 7 accounts for velocity-duration.

10.3 <u>Determination of Noise Level - MH Relationships</u> - At this point the noise levels have been corrected for all influences except aircraft Mach Number and power setting.

It was assumed that Mach Number is related to noise level in either a linear or logarithmic fashion. The following relationships provide the appropriate mathematical models used in regression analyses.

$$L_A = K(M)_A \log (M_H) + b$$
 or $L_A = K(M)_A \times (M_H) + b$
 $L_{AE} = K(M)_S \log (M_H) + b$ $L_{AE} = K(M)_S \times (M_H) + b$

where $K(M)_A$ and $K(M)_S$ represent the slopes and b represents the y-intercepts of the relationships. Each equation is developed for a specific power setting, and airspeed, depicting variation of noise levels with Mach Number.

The constants $K(M)_A$ and $K(M)_S$ are used in the following manner to correct for influence of M_H variation on noise levels.

$$L_{Aam} = L_{Ac} + K(M)_A \log \frac{M_{H(R)}}{M_{H(T)}}$$

$$L_{AEcm} = L_{AEc} + K(M)_{S} \log \frac{M_{H(R)}}{M_{H(T)}}$$

where L_{AC} and L_{AEC} are the "as-measured" noise metrics corrected for distance and duration. The subscription "cm" refers to distance and duration corrected as well as Mach Number corrected noise levels.

TABLE 10-1

SUMMARY

 $\mathbf{A_L}$ v. BASE 10 LOGARITHM OF HELICAL TIP MACH NUMBER

AIRCRAFT	EQUATION	R	ZPWR	M _H RANGE
c-170	LA = 70.2 log M _H + 86.4	.91	•	.56 – .73
PA-38	$L_{A} = 75.8 \log M_{H} + 83.6$.95	1	.6168
PA-28	LA = 148.2 log M _H + 92.2	.93	75	.7484
	$L_{A} = 114.8 \log M_{H} + 88.0$.70	55	.6975
C-180	$L_{A} = 126.6 \log M_{H} + 91.5$	06.	75	48 67.
	LA = 105.2 log M _H + 87.6	.85	50	.7178
KARON 58P	LA = 143.6 log M _H + 95.4	.95	29	.72 – .86
C-414	LA = 148.9 log M _H + 95.6	.71	89	.8084
	$L_A = 85.8 \log M_H + 89.2$.79	75	.71 – .83
	$L_A = 69.5 \log M_H + 83.7$.61	52	.6875
KING AIR200	LA = 53.7 log M _H + 89.0	61.	85	.7484
PA-42	LA = 76.6 log M _H + 91.8	.92	85	.7282
CONQUEST 441	$L_A = 21.5 \log M_H + 82.1$.36	06	.6876

10.4 Noise-Mach Number Relationships - Table 10-1 represents the results of regression analyses relating AL to the Base 10 logarithm of helical tip Mach Number. The correlation coefficient is displayed along with the equation for the line of regression, percent power (for the sample population) and M_H range. Table 10-2 provides the corresponding results for linear regression analyses of AL versus Mach Number.

Table 10-3 and 10-4 present comparable analyses for the SEL metric.

10.5 <u>Discussion</u> - The first, and most obvious conclusion is that a negligible difference exists between results of linear and log-linear regression of noise level versus Mach Number. Further, results suggest that no single function can be universally applied. It is observed that functions for the aircraft tested lie between 20 log M_H and 150 log M_H. However, the method of application as a correction function minimizes the net difference in correction value: M_H Corr. = k log (M_H ref/M_H test).

For a M_H ratio of 1.001, (0.1 percent) the difference between 20 log (M_H ratio) and 150 log (M_H ratio) is only .05 dB. For a 1 percent ratio the difference increases to .56 dB and for a 10 percent ratio the difference becomes 5.4 dB. In conducting a noise certification test in accordance with acceptable window limits it would be possible to arrive at a 1.4 percent deviation in M_H due to low/high temperature anal/or RPM deviations.

In the absence of suitable level flyover data from which to derive a unique M_H function it may be reasonable (in a conservative sense) to permit correction using the most sensitive function, 150 log M_H when M_H test is less than M_H ref. This will relieve the applicant from the

TABLE 10-2

SUPPLY

A_L vs. HELICAL TIP MACH NUMBER

LINEAR REGRESSION

		LINEAR AEGRESSIUM	TON	
AIRCRAFT	EQUATION	æ	ZPVR	N RANGE
C-170	L _A = 48.06 M _H + 16.95	56*	•	.56 – .73
PA-38	$L_A = 51.44 M_H + 11.64$.91	ı	.6168
PA-28	LA - 84.5 M _H + -7.77	.93	75	.7484
	$_{A} = 69.96 M_{H} + 1.05$.71	55	.69 – .75
c-180	PA 58.04 MH + 17.96	.87	75	.79 – .84
	$L_A = 61.40 M_H + 9.92$.85	95	.7178
BAROH 58P	L _A = 78.79 M _H + 2.32	96.	67	.7286
C-414	LA = 79.26 M _H + 3.11	.71	89	.8084
	$L_{A} = 48.83 \text{ M}_{H} + 23.55$.80	75	.7183
	LA = 50.30 M _H + 16.21	.65	52	.6875
KING AIR200	$L_A = 29.79 M_H + 43.18$.80	85	7484
PA-421	$\bar{L}_{A} = 43.12 M_{H} + 31.06$.93	100	.7282
CONQUEST 441	$L_A = 11.86 M_H + 49.71$.35	06	92 89.
			The second secon	

TABLE 10-3

SUMMARY

SEL v. BASE 10 LOGARITHM OF HELICAL TIP MACH NUMBER

AIRCRAFT	EQUATION	æ	ZPWR	^M H RANGE
C-170	$L_{AZ} = 40.7 \log M_{H} + 87.2$	0.72	•	.5673
PA-38	LAE = 72.9 log H + 90.5	0.88	-	.61 – .68
PA-28		96.0	75	.7485
	= 58	0.42	55	.69 – .75
c-180	$L_{AE} = 75.1 \log M_{H} + 92.2$	78 °	75	.79 - 84
	LAE = 80.4 log M _H + 90.6	.84	50	.7178
BARON 58P	$L_{AE} = 88.9 \log M_{H} + 95.3$	88°	67	.7286
C-414	LAE = 122 log M; + 97.6	.72	68	78. - 08.
	LAE = 43.9 log M + 89.4	69°	75	.7183
	LAE = 40.9 log H + 86.5	.58	52	.68 – .75
KING AIR200	7	740	85	.7484
PA-42	$L_{AE} = 52.1 \log M_{H} + 92.3$.87	85	.72 – .82
CONQUEST I	$L_{AE} = 13.9 \log M + 85.0$	•26	96	92. – 89.

*BOTE - SEL BECOMES LAE

TABLE 10-4

SUPPARY

SEL VS. HELICAL TIP MACH HUBER

LIMPAP PECEPACION

	W ZET 7	LIMEAK KECKESSION		
AIRCRAFT	BQUATION	e	ZPAR	EDRYL E _H
C-170	LAE = 22.8 M _H + 38.54	.61	•	.5673
PA-38	LAE = 52.92 M _H + 15.73	76.		.6168
PA-28	LAE = 62.4 Mg + 12.6	86.	75	.7485
	LAE = 35.9 M + 30.2	.43	55	57 69.
C~150	LAE = 40.00 M + 37.13	38.	75	48 67.
	LAE = 46.97 M _B + 25.45	28.	20	.7178
BARON S&P	LAE 48.90 M _H + 30.44	.88	67	.7286
775	LAE = 67.22 MH + 16.59	.74	89	.8084
	LAE = 25.03 M _H + 45.77	.70	75	.7183
	LAE = 29.26 M _H + 36.15	.62	52	.6875
AIR200	LAE " 19.45 M _H + 53.84	.48	85	.7684
PA-42	LAE 29.52 MH + 44.05	.88	100	.7282
CONQUEST 1	LAE 7.16 MH + 56.09	.24	8	92 89.

burden of additional testing and analysis, while providing motivation to be on target with performance parameters. Any deviations from reference \mathbf{M}_{H} due to test temperature variation higher than reference temperature can also be accounted for using the 150 log \mathbf{M}_{H} relationship. Additional testing should be required to derive a unique \mathbf{M}_{H} function for a particular aircraft when the test \mathbf{M}_{H} is higher than reference \mathbf{M}_{H} as would occur in the case of low temperature testing.

- 11.0 <u>Development of Engine Power Correction Functions</u> This section describes the analytical procedures employed in developing engine power corrections along with the correction values derived for test aircraft.
- 11.1 <u>Influences on Engine Power</u> Aircraft power level is another performance parameter that can have a significant contribution in determining aircraft noise levels. In Figure 10.2 we see that power is a function of temperature, barometric pressure and engine manifold pressure (or torque).

Temperature and barometric pressure fall into Category 2 (environmental conditions) influencing (thermodynamically) the internal combustion process. Engine manifold pressure (or torque) setting can be placed in Category 1, affected by test procedures.

Horsepower is related to temperature as follows:

H.P.
$$= \sqrt{\frac{460 + 59^{\circ}F}{460 + T^{\circ}F}}$$

This equation provides approximately one percent correction for each 10°F variation from 59°F.

In the case of pressure/density effects, a simplified but reasonable approach is to assume that horsepower changes are directly related to changes in density ratio (pressure ratio).

The values can be obtained from typical standard atmosphere tables.

11.2 Analytical Methodology - Two different schemes were employed (as required) in developing Power Correction relationships: 1) using data runs that have the same Mach Number, a constant is derived which relates the change in AL to the log of the power ratio; 2) when two constant-power, noise versus log (M_H) functions overlap, a common Mach Number was evaluated and the change in AL was determined, from which the power correction constant was derived. These two methods are shown in the following example.

Example (Power correction constant determination)

Method 1: Data with same Mach No.

Data

75%pwr 50%pwr $L_{AC} = \frac{1}{85.4} dB$ $L_{AC} = \frac{1}{82.3} dB$ $L_{AEc} = \frac{1}{86.9}$ $V_{S} = \frac{1}{166.4} mph$ $V_{S} = \frac{1}{139.7} mph$ $\Delta L_{A} = L_{A} \cdot 75\% - L_{A} \cdot 50\% = K(P)_{A} \log \frac{P1}{P2}$ $= 85.4 - 82.3 = K(P)_{A} \log \frac{75\%}{50\%}$

$$K(P)_A = 17.60$$

In the case of SEL we must make certain that we consider the effects of velocity on the noise levels, at two different power settings. Therefore, we will normalize the SEL at 50% to the ground speed of the 75% power level, as follows:

SEL(50% normalized to 75% pwr Vg) =
$${}^{L}_{AE c50\%} + 7 \log \frac{139.7}{166.4}$$

= $86.9 + (-.53)$
= 86.4

Then proceed as above

$$\Delta^{L}_{AE} = {}^{L}_{AE75X} - {}^{L}_{AE50Xnorm} = k(P)_{S} \log \frac{P1}{P2}$$

$$= 88.4 - 86.4 = k(P)_{S} \log \frac{75X}{50X}$$

$$K(P)_S = 11.4$$

NOTE: Vg above is the average ground speed for the runs used in the analysis at the particular power setting.

Method 2: Identify two constant power (noise versus log Mg) functions where the Mach numbers are the same.

Data

$$L_{A} = 148.87 \log (M_{H}) + 95.64$$

$$L_{AE} = 122.17 \log (M_H) + 97.67$$

75% pwr

Vg - 156.3 mph

Common Mach Number = .83

 $L_{A} = 85.82 \log (M_{H}) + 89.16$

 $L_{AE} = 43.93 \log (M_H) + 89.13$

Substitute the common Mach Number into each of the above equations and solving yields:

89% pwr
 75% pwr

$$L_A = 83.6$$
 $L_A = 82.2$
 $L_{AE} = 87.8$
 $L_{AE} = 85.9$

Hence now we can derive a power correction constant for AL as in Method 1, as follows:

$$\Delta L_A = L_A 89\chi - L_A 75\chi = K(P)_A \log \frac{P1}{P2}$$

83.6 - 82.2 = K(P)_A \log (89/75)
 $K(P)_A = 18.8$

Again as in Method 1 in correction SEL for power differences, the affects of velocity on the noise levels at different power settings must considered. Hence, normalize the 89% SEL down to the 75% pwr setting as follows:

$$L_{AE892}$$
 normalized to = L_{AE892} + 7 log 170.5
75% Vg = 156.3 = 87.8 + .26 = 88.1

Then we proceed to calculate a correction constant for SEL as before.

$$L_{AE} = L_{AE_{89}Xnorm} - L_{AE_{75}X} = K(P)_{S} \log(\frac{P1}{P2})$$

$$88.1 - 85.9 = K(P)_{S} \log(\frac{89}{75})$$

$$K(P)_{S} - 29.6$$

The resulting power correction equations are as follows:

$$L_{A_{FC}} = L_{A_{mc}} + K(P)_{A} \log \left[\frac{P_{1}}{P_{REF}} \right]$$

$$L_{AE_{FC}} = L_{AE_{mc}} + K(P)_{S} \log \left[\frac{P_{1}}{P_{REF}} \right]$$

where P, is the actual test power.

- 11.3 Results Tables 11-1 and 11-2 show the derived relationships between AL (and SEL) and the base ten logarithm of the power ratios respectively for 7 of the 9 aircraft tested. The reference M_H and power ratio are identified for each equation. In the case of the Cessna 170 and the Piper PA-38 (fixed pitch propeller) the power and M_H wary simultaneously, thus a single relationship is adequate, reflecting both of these influences (see Section 10.0).
- 11.4 <u>Discussion</u> In the case of K(P), power correction constants, once again there is a wide range of values. The range 1.5 to 39.3 has a central tendency toward a value of 17. The method of deriving these values is acutely sensitive to the measured and corrected difference in sound levels between the two power settings. Thus a 0.6 dB change in the difference between noise levels for two different powers (i.e., 1.2 dB rather than 1.8 dB) can result in a difference in K(P), of nearly 8 for a power ratio of (90/75):

$$22.7 = 1.8/\log (90/75)$$

$$15.2 \pm 1.2/\log (90/75)$$

Viewed within this experimental context, the variation in $K(P)_{A}$ is better understood.

While this analysis is by no means definitive, the selection of the average observed $K(P)_A$, = 17 is proposed as an interim factor to be used in adjusting for non-reference engine power. The constant is recommended as applicable to all engine/exhaust combinations.

TABLE 11-1

SUMMARY

AL VARIATION WITH BASE 10 LOGARITHM OF POWER RATIO

	EQUATION	POWER RANGE Z	P
C-170	•	1	ł
PA-38		•	ŧ
PA-28	$L_{A} = 3.2 \log (100/75)$	100-75	.79
	$L_{A} = 1.5 \log (75/75)$	75–55	.735
C-180	$L_{A} = 12 \log (100/75)$	100-75	.85
	$L_{A} = 17 \log (75/50)$	75–50	.78
BARON 58P	$L_{A} = 1.79 \log (67/75)$	75–67	*8*
	$L_A = 17.6 \log (75/50)$	75–50	*8*
CESSNA 414	L _A = 18.8 log (89/75)	89–75	.83
	L _A = 20.1 log (75/50)	75–52	.72
KING AIR 200	$L_{A} = 17.4 \log (95/71)$	95-71	.81
	LA = 5.0 log (71/47)	71-47	.78
PA-42	$L_{A} = 10.5 \log (100/75)$	100-75	Tť.
	L _A = 17.4 log (75/50)	75–50	.76
CONQUEST I	L _A = 39.3 log (100/90)	100~50	.77
	L _A = 12.6 log (90/75)	90–75	.76

TABLE 11-2 SUMMARY

SEL VARIATION WITH BASE 10 LOGARITHM OF POWER RATIO

AIRCRAFT	EQUATION	POWER RANGE Z	X.
C-170	•	•	
PA-38	1	•	ı
PA-28	L_{AE} = 1.6 log (100/75) L_{AE} = 9.9 log (75/55)	100–75 75–55	.735
C-180	$L_{AE} = 10.4 \log (100/75)$ $L_{AE} = 17 \log (75/50)$	100–75 75–50	.85
BARON 58P	L_{AE} = 13.4 log (97/75) L_{AE} = 11.4 log (75/50)	75–67 75–50	¥. ¥.
CESSNA 414	$L_{AE} = 29.6 \log (89/75)$ $L_{AE} = 21.4 \log (75/52)$.89–75 75–52	.83
KING AIR 200	L_{AE} = 16.9 log (95/71) L_{AE} = 5.6 log (71/47)	95-71 71-47	.81
PA-42	$L_{AE} = 30.7 \log (100/75)$ $L_{AE} = 12.2 \log (75/50)$	100-75 75-50	.77
CONQUEST I	$L_{AE} = 30.6 \log (100/90)$ $L_{AE} = 13.9 \log (90/75)$	100–90 92–75	.77

- 12.0 Fully Corrected Takeoff Noise Data and a Description of the

 Correction Process Fully corrected takeoff noise levels are presented
 in Table 12-1 for both SEL and ALM computed for the 18 GA aircraft
 participating in the aircraft noise measurement program. The 90 percent
 confidence interval is also displayed for each aircraft along with
 sample size. All noise levels have been corrected to account for
 nonreference altitude, velocity, Mach Number and power associated with
 actual takeoff operations.
- 12.1 The Need for Corrections When noise measurement tests are conducted under conditions outside those specified as reference test conditions corrections are required to account for the resulting influence on the measured noise level.
- 12.2 Reference Test Conditions The measured noise data obtained during the noise measurement tests conducted by the FAA in the summer and fall of 1982 were corrected to the following reference atmospheric conditions;
 - a. sea level atmospheric pressure of 1013.24 hPa (1013.25),
 - b. ambient air temperature of 15°C(ISA),
 - c. relative humidity of 70 percent; and
 - d. zero wind.
- Note: The acoustic reference day conditions are the same as the airplane reference flight conditions except that the ambient air temperature shall be 25°C (ISA + 10°C).
- 12.3 Reference Test Parameters In addition to these "primary" reference conditions it was necessary to compute three test parameter reference values, based on the reference atmospheric conditions.

TABLE 12-1
FULLY CORRECTED TAKEOFF NOISE LEVEL

AIRCRAFT	MGTOW	SEL _{fc}	90% C.I.	N	AIM fc	90% C.I.	N
C-180	2800	87.5	0.7	5	78.7	.6	5
C=1.70	2000	80.5	1.2	5	71.8	1.8	5
PA-28	2900	82.6	0.7	10	76.5	.9	10
PA-38	1680	80.0	0.5	5	69.9	0.8	5
KING AIR	12,500	86.0	0.5	7	80.0	.8	7
PA-42	11,200	87.1	0.7	6	81.1	.7	6
C-414	6750	88.6	1.1	6	82.4	1.1	6
B58-P	6200	91.0	.4	7	84.8	.5	7
C-210	3800	96.5	0.9	6	92.C	1.1	6
C-182	3100	80.4	1.1	6	72.4	.2	6
C-172	2300	83.0	0.3	6	74.1	.5	6
MERLIN	14,500	85.3	0.3	6	80.6	.5	6
COMMANDER 900	10,700	79.3	0.5	6	70.9	.6	6
DUCRESS	3900	91.6	0.4	7	84.5	.5	7
ARCHER	2550	87.3	0.7	6	78.5	.9	6
BONANZA	3400	93.2	0.3	7	87.3	.5	6
OLAVAN	7000	94.1	0.3	7	87.9	.5	7
C-425	8200	80.7	0.6	7	72.7	.5	7

- 1. Speed of Sound The reference speed of sound (c) used to compute the reference Mach No. was computed using the formula (T°F + 459.67)^{1/2} x 49.02. The reference temperature of 59°F yields the value for c of 1116.4 feet per second
- 2. Reference Helical Tip Mach Number The reference helical tip Mach Number for each aircraft was computed using the specified propeller diameter and rpm along with the manufacturers specification of speed for best rate of climb (Vy) at sea level and at 59°F.
- 3. Reference Altitude The reference altitude was computed for 8200 ft. (2500m) from brake release point (BRP) using the formula (50 + (8200 D₅₀) x Tan θ). The distance to reach 50 ft. in altitude (D₅₀) was obtained from the manufacturer's specification for each aircraft tested. In each case, the climb angle θ was computed using the reference value for Vy and best rate of climb specified in the pilot operating handbook. 12.4 Corrections Involving Deviations from Reference Altitude. Initially, it is helpful to define three terms intimately involved and sometimes confused in considering position deviations.

Closest Point of
Approach (CPA): The distance where a 90-degree angle exists between
the aircraft flight path and a ray between the
aircraft and the microphone.

Slant Range (SR): The distance between the aircraft and the microphone at the time maximum noise level is recorded

Altitude (ALT) : The distance between the aircraft and the microphone at the point where the aircraft is directly overhead (assuming no lateral deviation).

For the test conducted in the FAA noise measurement program, the "as measured" noise values were corrected for spherical spreading, absorption and distance duration using altitude position data as opposed to CFA or Slant Range.

This procedure may be considered a "simplified" method. Prior to using this technique, a careful evaluation was conducted of previous FAA propeller driven aircraft noise tests. It was observed that the CPA, SR, and ALT distances were so close that, from a practicable standpoint, any one of the three could be used as shown in the following synopsis.

A similar trend was also noted in a French technical report abstracted below.

"Measured DeBruit Prodvit Par Les Avions Legers AV Decollage"
Rapport D'eTude No. 283.

This report compares slant range and altitude position correction using the following formulas:

- a. $S_{21} = 20 \log H/H_{ref}$ where: H = altitude
- b. $S_{22} = 20 \log AB/AB_{ref}$ where: AB = slant range

 $S_{21} - S_{22}$ results in a mean average of 0.02 dB which suggests that there is no significant difference between the two methods.

Report AEE-80-26 "Noise Levels and Data Correction Analysis for Seven

General Aviation Propeller Aircraft" - Tracking data were presented in
this report in terms of the average "Acoustical Angle" or angle associated
with the emission of ALM. Table 12-2 lists the aircraft tested, number
of samples, and the mean and standard deviation of the acoustical angle. The
distance from brake release is also provided. The individual mean acoustical
angles range from 70° - 119° with an aggregate average of 88.1°. This
translates to an average acoustical error of less than one tenth of a decibel.

TABLE 12-2

STATISTICAL ANALYSIS OF ACOUSTICAL ANGLE DATA

RPT. (REF. NO. 1) FAA-AEE-80-26, "NOISE LEVELS AND DAIA CORRECTION ANALYSIS FOR SEVEN GENERAL AVIATION PROPELLER AIRCRAFT"

A/C TYPE	NO. SAMPLES*	MEAN ACOUST ANG	S.D. ACOUST ANG	MIC LOCAT
PIPER PA36 375	12	86.4	4.5	3896M(12781') from BRP
PIPER PA31 325	2	6.49	0	3896M(12781') from BRP
	∞	97.4	8.8	5296M(17375') from BRP
	2	93.8	0	5482H(19625') from BRP
CV 580	7	70.1	2.7	5115H(16781') from BRP
	అ	82.2	5.6	6515M(21375') from BRP
CESSNA 421C	7	119	17.3	5296K(17375') from BRP
	7	85.5	3.8	5982H(19625') from BRP
ROCKWELL 590B	7	89	2.3	5982M(19625') from BRP
ROCKWELL 500S	7	80.8	5.7	5296M(17375*) from BRP
	8	82	16.6	5982M(19625') from BRP

*DEPARTURE EVENTS ONLY
**ANGLE OF ALM DURING OVERFLIGHT

- 12.5 Atmospheric Absorption and Spherical Spreading In this report, takeoff noise data were corrected for the effects of absorption and spreading by using a simplified technique. The analysis presented in Section 8.0 shows that the simplified technique is a reasonable correction methodology. The simplified method consists of the formula $\triangle AL = 24 \log (ALT_T/ALT_R), \text{ which was derived from previous studies of noise propagation characteristics.}$
- 12.6 <u>Mach Number Corrections</u> Level Flyover data were used to derive the Mach Number Correction constants $K(M)_S$ and $K(M)_A$ for SEL and AL respectively for use in the following equation $\triangle dB = K \log (M_{H(R)}/M_{H(T)})$. The methodologies used in deriving these formulas (see Table 10.1 and 10.3) are discussed in Section 11.2. The results suggest that in order for the correction to be accurate the formula should be derived for each aircraft under study.
- 12.7 <u>Power Corrections</u> The as measured noise levels AL (AL_{am}) and SEL (SEL_{am}), require a power correction (P-Corr) to account for the differential influences which accompany aircraft power variations due to nonreference environmental and test flight procedures. The first step in computing this correction is to compute the test day power. The formula used to compute the test day power (%pwr) is given as follows:

Percent Power =
$$100 \times \sqrt{\frac{460 + 59^{\circ}F}{460 + T^{\circ}F}} - 27$$

NOTE: The 2% is the power loss computed for the average altitude of 1000 ft AGL. This loss is not applicable to aircraft with a turboprop or a turbocharged engine.

The computed value is then substituted in the formula:

 $P-Corr = K(P)_A log (100/%2Pwr)$

 $P-Corr = K(P)_S log (100/2Pwr)$

in greater detail in Section 9.3.

where: $K(P)_A$ and $K(P)_S$ are the constants derived from the formulas developed using level flyover data (see Table 11.1 and 11.2).

- 12.8 <u>Distance Duration Correction The distance-duration correction</u> accounts for the change in noise levels due to deviation of aircraft test altitude from reference altitude. The theoretical formula for this correction is $\Delta dB = 10 \log (ALT_R/ALT_T)$. However, after extensive analysis, it was observed that the empirical formula $\triangle dB = 7 \log (ALT_p/ALT_p)$ more accurately arcounts for the effects of a change in duration with a change in d in Section 9.2. When this empirical formula is combined with the formula $\Delta dB = 24 \log (ALT_T/ALT_R)$ the equation $\Delta dB = 17 \log (ALT_T/ALT_R)$ is developed. This formula is used to correct the as-measured SEL value for spherical spreading, atmospheric absorption and distance-duration due to nonstandard environmental conditions and nonreference test flight procedures. 12.9 Velocity - Duration Correction - The theoretical equation utilized to correct for the difference in the test ground speed (Vg) and the speed for best rate of climb (Vy) is: \(\Delta\)dB = 10 log (Vg/Vy). However, the formula $\Delta dB = 7 \log (Vg/Vy)$ was used because the assumption was made that the same phenomena which govern a change in duration with a change in distance apply
- 12.10 Fully Corrected AL and SEL Equations All the correction procedures discussed in previous sections are brought together to comprise the fully

to a change in duration with a change in velocity. This concept is discussed

corrected AL (AL fc) equation.

 $L_{\rm Afc} = L_{\rm Aam} + 24 \log (ALT_{\rm R}/ALT_{\rm T}) + {\rm Mach~Corr} + {\rm P-Corr}$ The energy average metric SEL requires the same corrections as the intensity metric AL with the addition of (1) distance-duration and (2) velocity-duration corrections.

 $L_{AEfc} = L_{AEam} + 17 \log(ALT_R/ALT_T) + 7 \log(Vg/Vy) + Mach Corr + P-Corr$

- 13.0 Correlation Between SEL and AL The purpose of this analysis is to examine the correlation between the intensity metric AL and the energy dose metric SEL, using fully corrected takeoff noise levels.
- 13.1 Regression Analysis Results A linear regression of SEL vs ALM was performed (see Figure 13.1) which provided a R² (coefficient of determination) of .96 for the following relation:

$$L_{AE} = .81 \times (L_{AM}) + 22.26$$

This provides the important capability (for test conditions with altitudes in the range of 4000 to 1600 ft and velocities in the range of 64 to 132 kts) to accurately estimate SEL from measured ALM noise level, and conversely ALM from measured SEL.

- 13.2 <u>Discussion</u> Previous discussions within International Civil
 Aeronautical Organization indicated a preference for an energy-based noise
 evaluation measure for the proposed takeoff procedure, specifically the
 A-Weighted Sound Exposure Level, SEL. However, in light of the findings cited
 above it may be appropriate to consider use of maximum AL (ALM) which is a
 substantially simpler and more direct metric to acquire. Advantages of
 using the intensity (ALM) metric include:
 - a. there is no need for tracking information, which is required to measure ground speed;
 - b. measurement instrumentation is far less sophisticated;
 - c. corrections for off-reference test conditions are simpler and less time-consuming; and
 - d. fewer corrections are required.

Inasmuch as the two noise evaluation measures are highly correlated, so that either can be confidently determined from the other, and the observed 90% confidence intervals for the measured values of ALM were somewhat less the ose for SEL in our tests (contrary to previous intuition), it is recommended that the A-weighted maximum sound level, ALM, be used as the noise evaluation measure for any new takeoff noise certification procedure.

SEL Versus ALM

14.0 Summary of Other Available Noise Level Data Acquired Using the Proposed Certification Takeoff Noise Test - This section provides a summary of results obtained from recent noise test programs conducted in Europe. British, German and French authorities were involved in assessing the proposed takeoff noise certification format. These data are presented here in order to expand the population of aircraft used in assessing the implications of the proposed revision. Table 14.1 presents pertinent information available from each report.

	MCTOW	Dso			CLIMB	REFERENCE			
AIRCRAFT	(1bs)	Δ (ft)	Vy(kts)	Vy(kts) BRC(fpm)	ANGLE	ALT (FT)	AIM	90% C.T.	REF #
Sportavia-Putzer RF-5	1433.0	1712.6	59.4	590.5	5.60	364.2	74.5	.38	\$
Robin DR 300-180	2204.6	1952.1	81.0	984.2	6.90	406.8	74.8	.16	2
Cessna 207A	3800.7	1870.1	81.0	905.5	6.30	360.9	83.6	.33	2
Cessna 340	5974.5	2401.5	87.1	1496	10.5	397.0	83.1	57	8
Beech 65 B90	9645.1	2260.5	109.1	1948.3	10.2	528.8	80.0	73	5
R 2160	1763.1	1453.4	78.2	925.2	6.7	705.4	74.1	.4	9
HR 100-250	3086.4	2427.8	94.4	984.2	5.9	928.1	78.7	.7	9
C 310R	5500.5	1837.2	106.8	1578.7	8.4	579.8	80.6	.5	9
110ST	1697.5	1345.1	75.5	629.9	4.7	825.1	71.2	5	9
LB 10	2535.3	1778.2	72 B	750.0	5.8	651.6	75.6	б	9
TB 20	2943.1	1673.2	91.7	1240.1	7.7	973.1	80.5	.2	9
Jet Stream	14,550	NA	123.3	NA	NA	NA	72.3	NA	7
Skwan	12 500	NA	NA	NA	NA	NA	82.3	NA	8
Islander	9099	NA	NA	NA	NA	NA	72.9	NA	6
Firecracker	2840	1230	104	1380	7.5	NA	70.9	NA	10

*NA - Not Available

TABLE 14.1

15.0 <u>GA Regression Analysis</u> - The purpose of this analysis is to determine if there exists a well defined relationship between aircraft noise levels, SEL and ALM, and the base 10 logarithm of gross weight.

To examine this hypothesis numerous linear and logarithmic regression analyses were performed for four different populations: 1) single engine pistons, 2) twin engine pistons, 3) twin engine turboprops and 4) all the aircraft tested.

Table 15-1 shows the results of this analysis for FAA data only.

Figures15.1 and 15.2 provide scatter plots of the noise metrics SEL and ALM versus the logarithm of maximum gross takeoff weight (MGTOW) for the various aircraft types.

Table 15-2 shows the results of this analysis with each population increased using data (ALM only) available from French, German, and British sources, referenced 5, 7, 8, 9, and 10 respectively.

It is seen in Tables 15-1 and 15-2 that this hypothesis seems somewhat reliable for single engine piston aircraft, since Table 15-1 shows an \mathbb{R}^2 (coefficient of determination) of 0.65 and 0.55 for the metrics ALM and SEL respectively, and Table 15-2 shows an \mathbb{R}^2 of 0.47 for the increased single engine piston population for the metric ALM.

In viewing the results of this analysis for the remaining populations, twin engine pistons, twin engine turboprops and the grouped population, it is evident from the low values of \mathbb{R}^2 (coefficient of determination) that there is very little correlation between the noise metrics ALM and SEL

and the base 10 logarithm of gross weight.

While a dependency is evident, it is clear that other factors such as propeller tip Mach Number and engine exhaust configuration play prominent roles in establishing noise levels. Nevertheless the concept of regulating noise level as a function of weight remains viable as a means for balancing increased productivity (weight) versus increased allowable noise level.

ALM VERSUS GROSS WEIGHT

REGRESSION ANALYSIS

FAA DATA

	SINGLE	LINEAR TWIN	TWIN TURBO	SINGLE	LOGARITH	MIC TWIN TURBO
SLOPE	0.01	3.2x10 ⁻⁴	0.00	53.06	3.52	37.22
INTERCEPT	52.63	82.97	60.31	-103.73	71.64	-72.70
R ²	.71	.04	0.49	.65	0.03	.49
R	.84	.20	0.70	.81	0.18	.70
SAMPLE	9	4	5	9	4	5

TABLE 15-1

REGRESSION ANALYSIS

ALM VERSUS GROSS WEIGHT

FAA, FRENCH, GERMAN, BRITISH

	SINGLE	TWIN	TWIN TURBO	SINGLE	TWIN	TWIN TURBO
SLOPE	0.01	-4.4×10^{-4}	4.18x10 ⁻⁴	33.26	-7.11	12.82
INTERCEPT	60.54	84.98	72.72	-36.09	109.14	25.53
R^2	0.55	0.03	0.04	0.47	0.03	0.05
R	.74	0.16	0.20	0.69	0.10	0.23
SAMPLE	17	8	8	17	8	8

TABLE 15-2

16.0 Equal Stringency Analysis - The purpose of this analysis is to examine how the rank-ordering of aircraft already certificated using FAR 36 Appendix F, would be affected if the proposed revision of ICAO Annex 16 is adopted using a takeoff procedure.

The first number indicates the rank ordering using takeoff AIM and the second number represents the rank ordering using their FAR 36 certificated AIM levels. As this figure shows, there would be some change in the ranking of aircraft. This difference is accounted for in part by the fact that the FAR 36 AIM levels were obtained using level flyover data corrected for takeoff performance, whereas the levels for the takeoff procedures were obtained for actual takeoff operations. The remaining differences likely reflect intrinsic differences between acoustical emission characteristics for the level flyover and takeoff flight regimes. The maximum change in pattern is seven places as exhibited by the King Air, and the average change in position is 2.3 for this population.

A linear and logarithmic regression analysis was performed for this population yielding equations of the formula:

Linear

App F L_{AM} = 0.47 (Takeoff L_{AM}) + 37.22 with R^2 (coefficient of determination) = .66 for a sample of 17 GA Aircraft. Logarithmic

App F L_{AM} = 85.96 log (Takeoff L_{AM}) - 88.97 with R^2 (coefficient of determination) = .66 for a sample of 17 GA Aircraft.

Conclusions: The relationship between FAR 36 Appendix F ALM versus takeoff ALM yields a respectable coefficient of determination R² of .66 for both linear and logarithmic regression analyses. This finding coupled with the fact that the average deviation in rank ordering is about 2 positions seems to suggest that certification using takeoff ALM noise levels would be roughly equivalent to certification using level flyover ALM corrected for performance.

- 17.0 Noise Certification "Test Windows" One of the objectives of the 1982 FAA General Aviation Noise Test program was to assess the impact of deviations from prescribed reference conditions. Another objective was to develop a logical structure of permissible deviations from reference test conditions, while quantifying the degree of confidence associated with any given correction procedure. The confidence one places in the correction procedure often plays a prominent role in defining boundaries of the "Test Window".
- 17.1 <u>Deviations from Reference Flight Path</u> The subject of flight path deviations logically divides into separate discussions of vertical deviations and horizontal deviations.
- 17.1-2 <u>Vertical Deviations</u> At the outset it is useful to review the probable causes associated with a vertical deviation from the reference takeoff flight path:
 - head wind (aloft)
 - 2. non-standard day temperatures
 - 3. non-reference weight
 - 4. improper airspeed (not Vy)
 - 5. high altitude testing

A second useful background tool is the concept of "correction ratio", defined herein as the ratio of the test altitude divided by the reference altitude. In Figure 17.1, the correction ratio is shown along the abscissa and corresponding decibel correction to ALM using the relationship

\$\Delta_{\text{AM}} = 22 \log (Corr. Ratio)\$. Using this figure one can select any given allowable correction value in decibels and compute the allowable deviation above and below the reference altitude (note the asymmetry). While this particular figure has been developed for 22 log (Corr. Ratio), a similar graph can be made for any other propagation constant.

For the purpose of this discussion let us assume 1000° is the reference altitude (ALT_{REF}). For a 3 dB limit on the correction ratio we would allow a test window of 1368 feet to 730 feet, permitting 368 feet above or 270 feet below reference altitude.

Another useful perspective is gained by examining the performance of the 18 aircraft in the FAA 1982 test program. Table 17-1 shows that in many cases (12 of 18) the correction ratios lie within the nominal 3 dB ratio limits of 0.7 and 1.4. In a number of cases an unusually high correction ratio is observed, generally associated with winds aloft and/or light weight. From the data in Table I, it appears that, barring anomalous or incorrect testing conditions, a correction ratio window of 0.7 to 1.4 on vertical deviation is realistic and easily attainable.

The correction for non-standard altitude can be constrained (for reasons associated with the observed ability of pilots to perform), within the correction ratio range of 0.7 and 1.4. The limiting factor in this case does not appear to be the correction algorithm itself. In fact the 90% confidence interval on the use of K(A) = 21,

$$L_{AM} = K(A) \log (d_1/d_2)$$

is less than 0.5 dB.

17.1-2 Lateral Deviation - In the case of lateral deviation from reference ground track, one usually thinks in terms of degrees from zenith.

In the case of a 1000-foot reference altitude we, observe the following lateral deviations as a function of deviation angle(s):

TABLE 17.1

I/O CORRECTION(s) ANALYSIS

Deviation Angle 0 (Degrees)	Later 1 Deviation (Tan $\theta \times 1000$), Feet
5	88
10	176
15	268
20	364
25	466
30	577

As a practical matter it was reported by pilots participating in the test that maintaining the reference heading was difficult due to their inability to see the ground while in the climbout flight regime. Typically each pilot would make practice flights until receiving radio confirmation from ground observers verifying the proper flight track. The pilot would then fly that compass heading for subsequent takeoff events. After having found the right compass heading, pilots typically deviated no more than +10 degrees from the zenith.

In establishing a boundary on lateral deviation, it is necessary to consider the effects of exhaust shielding and source directivity. As these effects are largely unquantified and differ from one aircraft to the next, it is deemed inappropriate to allow any unnecessary latitude in this parameter. These concerns, coupled with the known ability to fly repeatedly within ±10 degrees, leads one to the conclusion that 10 degrees be prescribed as the maximum allowable lateral deviation angle.

17.2 <u>Deviations from Reference Airspeed</u> - Maintaining the proper airspeed is one of the most important aspects of the test procedure. Improper airspeed generally results in both a velocity duration correction and the need for an altitude adjustment. The airspeed is a parameter totally within the control of the pilot and governed by visual resolution of the instrument reading. Adherence of pilots participating in the FAA test was, in every case, within 5 kts of the reference airspeed, (see Table 17-2).

In view of observed pilot performance, a limitation of ±5 kts is recommended as an appropriate test window.

TABLE 17.2

I/O CORRECTION ANALYSIS

VELOCITY CORRECTION

AIRCRAFT	Z	Vv(Kts)	Vg(Kts)	V8(Kts) 710g V8/VV		
c-180	5	76	64.3	-0.5		
C-170	5	77.3	69.2	-0.3		
PA-28	10	97	89.8	-0.2		
PA-38	8	70	67.8	-0.1		
KINGAIR 200		126			*NOTE* no vcorr used in	used in 1/0 analytis ground missing
PA-42		120			same as above i.e.,	Vcorr assumed = 0
C-414	9	108	106.1	-0.1		
B58-P	. 4	115	107.6	-0.2		
C-210	7	86	95.4	-0.3		
C-182	6	88.2	84.0	-0.1		
C-172	6	76	78.2	0.1		
MERLIN	9	147.5	132.5	-0-3		
GULFSTREAM 960	6	135.0	118.3	-0.4		
DUCHESS		97.5			*Note no ground speed	
NAVAJO		101.0			same as above	
ARCHER		76.0			same as above	assume V corr = 0
BONANZA		95.0			same as above	
C-441	7	115	91.4	-0-7		

NOTE: N = Vg sample size

- 17.3 Deviations from Reference Helical Tip Mach Number The test belical tip Mach number (HH(T)) may be non-reference due to any of the following influences -
 - 1. non-standard day temperature
 - improper air speed (very minor influence)
 - 3. improper test RPM

First, consider temperature effects, probably the greatest potential cause of off-reference My. A few useful facts are provided below:

- Speed of Sound at 59°F = 1116 feet per second

 Speed of Sound at 95°F = 1154 feet per second

 Speed of Sound at 36°F = 1091 feet per second
- $-M_{H}(95) = 0.967 M_{H}(59)$, 3.3% above reference
- $-M_{\rm H}(36) = 1.023 M_{\rm H}(59)$, 2.3% below reference
- $-\Delta = K \log \frac{M_{H(R)}}{M_{H(T)}} dB$
- K is approximated as equal to 150

For a 36°F test day, one would need to subtract 3.2 dB from the measured data to arrive at a reference sound level, assuming $\Delta = 150 \log (M_{H(R)}/M_{H(T)})$. Conversely a value of 2.2 dB should be added to measured data on a 95°F day, using the same assumptions.

It is clear, that an arbitrary limit on the correction value in decibels will impose a restriction on the allowable test temperature window. This poses quite a predicament as the confidence associated with any generic correction function is generally very low. That is to say, a unique correction function appears necessary for each individual aircraft. This would, of course require a significantly greater amount of testing for each aircraft. In order to avoid or reduce the additional testing burden it may be feasible to establish the following scheme:

- 1. No limit on test temperature related $M_{\rm H}$ corrections
- 2. If the test temperature is greater than 59°F then △ = 150 log M_{H(R)}/M_{H(T)} may be used to correct.
- 3. If the test temperature is less than 59°F then a separate, and independent correction function must be developed.

A comparison is shown in Table 17-3 between test and reference N_H for the aircraft participating in the 1982 FAA test. It is observed that in most cases the $(N_{H(R)}/N_{H(T)})$ ratio is very close to 1.0. On the average there is less than a 1 percent error, primarily due to warmer than standard day temperatures.

TABLE 17.3

TAKEOFF CORRECTION ANALYSIS

MACH NO. CORRECTIONS

		ļ	2	19/1	150100 00	191 contine	
AIRCRAFT	Ж	Mag	"HT		(T) (T) // (T)	/#U(T)	
C-180	9	.8271	.813	1.0	+1.1	+0.1	
C-170	8	\$17.	.702	1.0	:+1.2	+0.1	
PA-28	11	677.	692*	1.0	+0.8	+0.1	
PA-38	8	029*	•658	1.0	+1.2	+0.1	
KINGAIR 200	7	.793	.789	1.0	+0•3	1.0+	
PA-42	9	\$92.	.755	1.0	6.0+	1.0+	
414-2	9	.824	818	1.0	+0.5	+0.1	
158-2	8	,841	.840	1.0	+0.7	40.1	
C-210	4	.857	.853	1.0	+0.3	+0.03	
C-182	9	.753	.747	1.0	+0.5	+0.1	
C-172	9	789.	.673	1.0	+1.1	1.0+	
HERT IN	9	969*	0/9	1.0	+2.5	£. +	
COLESTREAM	9	069.	.692	1.0	-0.2	02	
DUCHESS		.816	.810	0.1	+0.5	50° +	
MAVAJO	8	.820	.808	1.0	+1.0	1.0+	
ARCHER	9	.707	.707	1.0	0	C	
BOHANZA	7	.857	.831	1.0	+0.5	+0.1	
C-441	7	.715	.723	66,	7.0-	-0.1	

H(I) = Average of the takeoff Mach numbers.

- 18.0 Evaluation of Aircraft Position Determination Systems Three position determination systems were evaluated in the course of the measurement program. The first system was a 9.1 GHz primary radar unit which continuously tracked the test aircraft. The second system was a surveyers transit, set up perpendicular to the ground track at a distance of approximately 1500 feet opposite the microphone location. The third system involved a 35 millimeter SLR camera using slide film situated at the primary takeoff measurement location. While no great revelations were uncovered in comparing the three systems, a number of observations may be useful:
 - The photographic system using slide projections was remarkably accurate and easy to use.
 - 2. Although the transit system is potentially prone to large operator error, with practice it constitutes an acceptable method for determining altitude. The transit operator also has the advantage of being able to calculate the altitude immediately.
 - 3. The radar system, the only system capable of providing aircraft ground speed as one might expect, involves considerable expertise to operate and maintain.

Based on the above observations and the comparison of performance provided in Table 18-1 we arrive at the following recommendations:

- The photographic system is recommended as the primary measurement tool. This recommendation is consistent with selection of the ALM metric which does not require consideration of ground speed corrections.
- The transit method of position determination may be permitted,
 with certain cautions spelled out in regard to operator proficiency.

TABLE 18-1
MEASUREMENT SYSTET COMPARISON

	ADVANTAGES	DISADVANTAGES
TRANSIT	Inexpensive	Not capable of obtaining velocity and time data.
	Easily portable Reasonable accuracy when used by a trained operator	Prone to large error in the hands of a novice
RADAR SYSTEM	Capable of obtaining ground speed and complete flight path characteristics. Capable of generating REAL TIME position feed back data	Expensive, complex, requires lengthy learning process, requires external power supply, involved data reduction process including software development.
PHOTOGRAPHIC SYSTEM	Inexpensive, easily portable, accurate	Not capable of obtaining velocity data.

References

- 1. Ford, D. W. and E. J. Rickley, "Noise Levels and Data Correction Analysis for Seven General Aviation Propeller Aircraft," Office of Environment and Energy, Federal Aviation Administration, Department of Transportation, Report No. FAA-EE-80-26, Washington, D.C. June 1980
- 2. Newman, J. S., et al, "Helicopter Noise Definition Report UH-60A, S-76, A-109, 206-L," Office of Environment and Energy, Federal Aviation Administration, Department of Transportation, Report No. FAA-EE-81-16, Washington, D.C., December 1981
- 3. Newman, J. S. and E. J. Rickley, "Noise Levels and Flight Profiles of Eight Helicopters Using Proposed International Certification Procedures," Office of Environment and Energy, Federal Aviation Administration, Department of Transportation, Report No. FAA-EE-79-03, Washington, D.C., March 1979
- 4. Anon, "Standard Values of Atmospheric Absorption As a Function of Temperature and Humidity, Proposed Reissue of SAE Aerospace Recommended Practice ARP 866," Prepared for the Society of Automotive Engineers Committee A-21, revised October 1973
- 5. Heller, H., et al, "Field Evaluation of the Newly Proposed ICAO Annex 16 Takeoff Noise Certification Procedure for Propeller-Driven Aeroplanes Not Exceeding 5700 KG," Report No. IB 128-82/9, DFVLR Technical Acoustics Division, Braunschweig, Germany, December 1982
- 6. Depitre, Alain (Redacteur), "Etude D'une Procedure de Mesure de Bruit Produit Par Les Avions Legers Au Decollage Niveaux Exprimes En Lax" (Measurement of Noise Produced by Light Aircraft on Takeoff), rapport d'etude No 293, Republique Franciase Ministre des Transports, Direction Generale de l'Aviation Civile, Service Technique de la Navigation, Paris, Francaise, December 1982
- 7. Hale, R. T. and K. C. Griffiths, "Propeller Aircraft Noise Trial, Results for the Jetstream Test," Acoustics Report 660, British Aerospace Aircraft Group, Weybridge-Bristol Division, Weybridge, Surrey, England, July 1982
- 8. Hale, R. T., "Propeller Aircraft Noise Trial, Results from Skyvan Test," Acoustics Report 634, British Aerospace Aircraft Group, Weybridge-Bristol Division, Weybridge, Surrey, England, July 1981
- 9. Hale, R. T., "Proller Aircraft Noise Trial, Results from Islander Test," Acoustics Report 635, British Aerospace Aircraft Group, Weybridge-Bristol Division, Weybridge, Surrey, England, January 1982
- 10. Hale, R.T., "Propeller Aircraft Noise Trial Results from Firecracker Test," Acoustics Report 633, British Aerospace Aircraft Group, Weybridge-Bristol Division, Weybridge, Surrey, England, April 1981

Appendix A: Takeoff Noise Data

This appendix contains as measured noise data along with other pertinent information used in arriving at fully corrected takeoff noise levels.

Abbreviations used in Appendix A

RPM: Propeller RPM (revolutions per minute)

M_H: Helical Tip Mach Number

GS: Ground Speed expressed in knots

ALT_m: Observed Test Altitude (Above Ground Level)

SEL am: As measured Sound Exposure Level

ALT Correction to reference altitude

V_{corr}: Correction to reference Velocity

MHcorr: Correction to reference Mach Number

P_{corr}: Correction to reference Power

SEL_{fc}: Fully corrected Sound Exposure Level

AL am: As Measured A-weighted Sound Level

AL_{fc}: Fully Corrected A-weighted Sound Level

APPENDIX A

TABLE A-1

71111111111111111111111111111111111111	TEST DATA THE GS(KTS) ALT (FT SI 813 68.6 1680.2 S13 65.2 164.1 S13 65.2 164.1 S13 67.4 1519.2 S13 67.4 1519.2	TRCEA	AIRCRAFT C-180	80				SITE	#1				TEST	TEST DATE	6-3-82		
RTH Name March	Rich Par GS (KTS) ALT (CT SELiza ALT Corr Par SELiza SEL	Z															
RFM NI CS (UTS) All T (CT STate All ST	RFM NET GS.CKTS) Add. Cyr., St. No. 1		7/Y	nu iesi un	4									,	₹	,	
813 68.6 1680.2 82.9 3.4 3 .6 .2 86.8 72.5 4.9 .9 .3 813 57.3 1432.7 84.9 2.2 8 .6 .2 87.1 73.7 2.7 .9 .3 813 63.0 1617.0 84.7 3.1 6 .6 .2 88.5 73.3 4.9 .9 .3 813 65.2 1664.1 84.9 3.3 7 .6 .2 88.5 73.3 4.9 .9 .3 813 67.4 1519.2 84.0 2.6 4 .6 .2 87.0 74.2 3.5 .9 .3 813 67.4 1519.2 84.0 2.6 4 .6 .2 87.0 74.2 3.5 .9 .3 81 67.4 1519.2 84.0 2.6 4 .6 .2 87.0 74.2 3.5 .9 <t< th=""><th>813 68.6 1680.2 82.9 3.4 3 .6 .2 86.8 72.5 4.9 .9 .3 813 57.3 1432.7 84.9 2.2 8 .6 .2 87.1 73.7 2.7 .9 .3 813 63.0 1617.0 84.9 3.3 5 .6 .2 88.5 73.3 4.9 .9 .3 .813 65.2 1664.1 84.9 3.3 5 .6 .2 88.5 73.3 4.9 .9 .3 .813 65.2 1664.1 84.9 3.3 5 .6 .2 88.5 73.3 4.9 .9 .3 .813 67.4 1519.2 84.0 2.6 4 .6 .2 88.5 73.3 4.2 .9 .3 .813 67.4 1519.2 84.0 2.6 4 .6 .2 87.0 72.5 .9 .3 <!--</th--><th>是</th><th>HAN.</th><th>F</th><th>GS (KTS)</th><th>ALT_T(FT</th><th>1</th><th>ALT c.zr</th><th>1 1</th><th>Hacorr</th><th>Pcorr</th><th>SELfc</th><th>ALan</th><th>ALT corr</th><th>Hacorr</th><th>Pcorr</th><th>AL fc</th></th></t<>	813 68.6 1680.2 82.9 3.4 3 .6 .2 86.8 72.5 4.9 .9 .3 813 57.3 1432.7 84.9 2.2 8 .6 .2 87.1 73.7 2.7 .9 .3 813 63.0 1617.0 84.9 3.3 5 .6 .2 88.5 73.3 4.9 .9 .3 .813 65.2 1664.1 84.9 3.3 5 .6 .2 88.5 73.3 4.9 .9 .3 .813 65.2 1664.1 84.9 3.3 5 .6 .2 88.5 73.3 4.9 .9 .3 .813 67.4 1519.2 84.0 2.6 4 .6 .2 88.5 73.3 4.2 .9 .3 .813 67.4 1519.2 84.0 2.6 4 .6 .2 87.0 72.5 .9 .3 </th <th>是</th> <th>HAN.</th> <th>F</th> <th>GS (KTS)</th> <th>ALT_T(FT</th> <th>1</th> <th>ALT c.zr</th> <th>1 1</th> <th>Hacorr</th> <th>Pcorr</th> <th>SELfc</th> <th>ALan</th> <th>ALT corr</th> <th>Hacorr</th> <th>Pcorr</th> <th>AL fc</th>	是	HAN.	F	GS (KTS)	ALT _T (FT	1	ALT c.zr	1 1	Hacorr	Pcorr	SELfc	ALan	ALT corr	Hacorr	Pcorr	AL fc
2550 .813 57.3 1432.7 84.9 2.2 8 6.6 .2 87.1 73.5 4.2 .9 .3 2550 .813 63.0 1617.0 84.7 3.1 6 .6 .2 88.0 73.5 4.2 .9 .3 2550 .813 65.4 1519.2 84.0 2.6 4 .6 .2 88.0 72.3 4.2 .9 .3 2550 .813 67.4 1519.2 84.0 2.6 4 .6 .2 87.0 74.2 3.5 .9 .3 1	2550 (813) 57.3 1432.7 (84.9) 2.2 -8 (6 2.0 88.0) 73.5 4.2 (9 9 3.3 12.5 1.0 1017.0) 84.7 3.1 -6 (6 2.0 88.0) 73.5 4.2 (9 9 3.3 12.5 1.0 1017.0) 84.7 3.1 -6 (6 2.0 88.0) 73.5 4.2 (9 9 3.3 12.5 1.0 1017.0) 84.7 3.1 -6 (6 2.0 88.0) 73.5 4.2 (9 9 3.3 12.5 1.0 1017.0) 74.2 (9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		2550	.813	68.6		1	3.4		9.	.2	86.8	72.5	4.9	6.	.3	78.6
2550 .813 63.0 1617.0 84.7 3.1 -6.6 .2 88.0 73.3 4.9 .3 .2 88.5 73.3 4.9 .3 .3 .2 88.5 73.3 4.9 .3 .3 .2 88.5 73.3 4.9 .3	2550 813 63.0 1617.0 84.7 3.16 6 .6 8.0 73.5 4.2 99 3.3 1.2 164.1 84.9 3.35 6.0 2 88.5 73.3 4.9 9.9 3.3 1.2 164.1 84.9 3.35 6.0 2 88.5 73.3 4.9 9.9 3.3 1.2 164.1 84.9 3.35 6.0 2 88.5 73.3 4.9 9.9 3.3 1.2 164.1 1319.2 84.0 2.64 6.6 2 87.0 74.2 3.5 9.9 3.3 1.2 16.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1	1	2550	.813	l i	1432.7	84.9	2.2	8	9.	.2	87.1	73.7	2.7	6.	,3	77.6
2550 .813 65.2 1664.1 84.9 3.3 6.6 .2 88.5 73.3 4.9 .9 .3 2550 .813 67.4 1519.2 84.0 2.6 6.6 .2 87.0 74.2 3.5 .9 .3 1	2550 .813 65.2 1664.1 84.9 3.3 6 .2 88.5 73. 4.9 9. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.		2550	.813	1	1617.0	84.7	3.1	9	9.	.2	88.0	73.5	4.2	6.	.3	78.9
2550 .813 67.4 1519.2 84.0 2.64 .6 .2 87.0 74.2 3.5 .9 .9 .3 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9	2550 .813 67.4 1519.2 84.0 2.64 6.6 .2 87.0 74.2 3.5 9.9 .3 .9 8.3 84.0 8.4 84.0 2.64 6.6 8.2 87.0 74.2 3.5 9.9 .3 84.0 8.4 84.0 84.0		2550	.813	65.2	1664.1	84.9	3.3	υ; -	9.	.2	88.5	73.3	4.9	6.	.3	79.4
	#ALL UNITS EXPRESSED IN dB *ALL UNITS EXPRESSED IN		2550	.813	67.4	1519.2	84.0	2.6	4	9.	.2	87.0	74.2	3.5	6.	.3	78.9
	db *ALL UNITS EXPRESSED IN																
	db *ALL UNITS EXPRESSED IN	1															
	db *ALL UNITS EXPRESSED IN	1															
	db *ALL UNITS EXPRESSED IN																
	db *ALL UNITS EXPRESSED IN																
	db *ALL UNITS EXPRESSED IN																
	db *ALL UNITS EXPRESSED IN																
	db *ALL UNITS EXPRESSED IN	1															
	db *ALL UNITS EXPRESSED IN	1															
	db *ALL UNITS EXPRESSED IN																
	db *ALL UNITS EXPRESSED IN																
	db *ALL UNITS EXPRESSED IN																
	db *ALL UNITS EXPRESSED IN																
	db *ALL UNITS EXPRESSED IN	1															
	db *ALL UNITS EXPRESSED IN																
	dB *ALL UNITS EXPRESSED IN																
	dB *ALL UNITS EXPRESSED IN																

74.3 72.2 0.69 21.5 72.0 COTT ₹ N ₹ P N/A N/A ₹ ¥ AL am ALTcorr Mucorr 6-23-82 ¥. -2.3 7 TEST DATE 70.9 70.8 72.5 72.4 SELfc 82.5 78.9 80.3 80.6 80.4 Macorr Poorr #2 ALT corr V corr 7-7 -.4 4 -.4 SITE 8 9:--.32 -1.6 GS(KTS) ALT (FT SEL am 80.7 82.0 81.0 81.6 81.2 536 755 623 613 641 71.2 68.5 9779 72.5 66.2 A/C TEST DATA . 7022 .7022 .7032 .7022 .7022 F AIRCRAFT C-170 EVENT RPH 2375 2375 2375 2375 2375 2

TABLE A-3

		AL fc	77.8	77.9	76.5	76.7	71.8	77.0	76.8	16.9	76.3	77.0		•					
		COLL	0	0 7	0	0 7	0 12	0 7	0 7	0 1	0 7	0 7							
7-13-82	77	"Ecorr	9.	9,	9.	9.	- 9	9.	1.0	1.0	1.0	1.0							1
	AL.	ALTCORT F	1.2	6.1	8.	1.1-	-1.5	3	-2.7		-3.1	-2.3							
TEST DATE		AL.am AI	76.0	77.0	75.1	77.2	72.7	76.9		-	78.4								
•		17	76	77	1 75	7	72	76			78	1 78						_	
		SELfc	83.4	83.5	82.1	82.4	79.1	83.1	82.2	83.2	83.0	83.1							
ŀ		Pcorr	101	101	.01	101	10.	.01	.02	.02	.02	.02				•			
		Mucorr	.5	.5	.5	.5	٠5	.5	.8	.8	8.	.8							
4	SEL	VCOLL	3	3	2	4	3	3	-,2	1	1	2							
SITE	SEL	ALTCORT	6.	.2	9.	8	3	5	-1.9	-1.6	-2.2	-1.6							
		SELam	1	83.0	81.1	83.0	6.62	83.1	84.4	84.0	84.3	84.0							
		ALTUT	768.6	702.8	I	614.1	587.8	651.6	527.6	547.3	508.0	545							
Arrow IV	*	GS (KTS) ALT _{T (FT}	97.6	88.9	89.9	85.5	86.8	89.0	92.1	97.6	93.7	91.6	 						
AIRCRAFT PA-28 Turbo Arrow IV	THUTHUTUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	H _M	.7714	7714	.7714	.7714	.7714	.7714	.7661	.7661	.7661	.7661							
FT PA-2	VIIIII	RPH	2575	2575	2575	2575	2450	2575	2575	2575	2575	2575							
AIRCRA		EVENT	1	2	3	4	5	7	14	15	16	17							

TABLE A-4

-	m 4 d -	80.4	- 1	/crws	¹⁴ H GS(KTS) ALT _{T (FT)} SEL
	11	4 4 4			79.3
-0.6 03		4 7	7	7 08 7 089	70.8 680.4 80.4
+	_	-		9	66.9
1	L	-	 	707 0 00 2	81.7
╁	L	0 08	000	67% 0 80 0	0 8 0 777 0 799
-	;	 	1 55	787 2 70 7	63.0 707.2 70.7
1	1	†	2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 05 7 087	7 67 7 007 7 39
77	9	2.8	- X-X-	8.5/ # 700B	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
-		-	+		
+		1	+	+	
1		+	+		
+		+	+		
		+			
_		-			
		-			
	ļ	-	-		

TABLE A-5

79.3 80.5 79.9 79.1 79.3 82.1 P 507.1 7 ۲. ٦. . 7 ٦. ALTCORY HECOTI ۲: 7 7 ۳. TEST DATE 8-31-82 ¥ -2.6 -5.8 -5.2 -4.2 -3.2 -4.3 -5.7 83.2 AL . 84.3 86.0 85.3 85.1 81.7 85.9 85.5 SELfc 86.2 85.3 87.4 85.8 LCOLL . ۲. 7 ۲. "Hcorr ۲. Ħ. ٦, ~ 7 ۲. <u>SE</u> VCOL 0 0 0 0 0 0 0 SITE ALT COSTS -2.9 -1.8 -4.2 0.4 -2.2 -3.1 -3.7 SEL 89.8 90.0 87.5 4.38 88.4 88.8 GS(KTS) ALT (FT 693 893 656 665 766 762 N/A N/A W/W X/X N/A N/A N/A A/C TEST DATA AIRCRAFT KING AIR 200 .7894 . 7894 . 7894 7894 . 7894 F 2000 RPM 2000 2000 2000 2000 EVENT 9

TAXEOPP DATA

on a superior de la companion de la comp 81.2 79.8 80.8 82.2 COLL ٦. 4 7 ٦: 7 ALTCOTT MEOFF TEST DATE 9-8-82 4. 4. o, 1.0 2.5 2.1 9.-1.6 AL 78.4 79.2 78.4 79.3 7.67 81.3 87.0 88.5 86.0 SELfc 86.6 87.4 87.2 "Hcorr Pcorr .3 .3 .3 .3 6 ú .3 ., ن س س .3 #2 SEL Vcorr 0 0 0 0 0 SITE MITCOTT 9.0 1.5 1.8 1.2 4.-85.4 85.3 85.7 GS(KTS) ALTT(FT SEL 86.1 85.8 85.4 1293 1154 1337 997 1140 1232 PA-42 CHEYENNE श्च सामा द्वा .754? :7546 .7546 .7546 .7546 .7546 F EF 2000 2000 2000 5052 2002 AIRCRAFT EVENT 2 2 2 22 22 22

TABLE A-7

9-14-82 TEST DATE #1 AIRCRAFT C-414 CHANCELLOR

84.0 82.5 8.6/ 82.5 83.0 82.4 COLL .2 7 TOO'S 6 4 ¥ ALT COTT 1.2 -.1 81.2 80.2 82.7 81.4 79.4 81.1 ķ. 88.7 88.5 89.2 90.5 88.5 86.4 PCOLL .3 .3 L. PACOLI VCOUL -.09 -.02 히 -.1 0 ALICOTT .5 ь. 1.2 89.3 85.9 87.2 87.4 87.4 87.5 GS(KTS) ALT (FT SEL as 902.4 833.2 825.2 938.7 876.2 975.1 108.0 104.9 108.3 104.2 164.2 107.1 A/C TEST DATA .8179 8179 .8179 .8185 .8179 .8195 F RPM 2700 2700 2700 2700 2700 2700 EVENT 23 22 27 28 24

TABLE A-8

	THI		AL fc	84.0	84.7	83.7	85.3	85.8	85.1	85.1								Í	
			corr	0 8	0	0	0	0	0	0									1
9-28-82		77		.1	1,	1.	-	-1		.1									1
			ALT corr Macorr	-4.5	-3.0	-5.8	-5.3	-4.0	-2.1	-3.1									
TEST DATE			AL AI	88.4	87.6	89.4	90.5	89.7	87.1	88.1 -							_		-
•	1		7	8	8	8	٥	8	8	8									4
	111111		SELfc	7.06	91.2	90.1	91.5	91.5	91.4	8.06									
1	HIHI		Pcorr	0	0	0	0	0	0	0	,								
	THE STATE OF	· ·	PHCOFF	0	0	.1	0	0	0	0									
2	mm	, SEL	Vcorr		3	03	1	1	4	2									
SITE		•	ALTCORE		-2.1	-4.1	-3.8	-2.8	-1.5	-2.2									
	17		SEL	93.9	93.6	94.1	95.4	94.4	93.3	93.2									
	dinnin			496.2	8.995	435.8	456.3	513.2	620.1	561.8									
	munn	<	CS (KTS) ALT (FT	105.2	106.1	113.4	106.1	112.2	100.0	107.2									
AIRCIAFT R-552 BARON	THE THE PARTY OF T	A/C TEST DATA	H ₂₄	.8404	.8398	.8404	.8404	.8404	.2404	.8404									
35-4- H		V/C	RPH	2700	2700	2700	2700	2700	2700	2700									H
AIRCRAI			EVENT	2	3	7	5	9	-	8									

*MOTE: ACTUAL PROPELLER SPEED = 182 PLUS INDICATED VALUE
TABLE A-9

	111111		II. fc	9.68	92.5	9.06	92.8	94.1	93.1	91.5			•					
			COLL	.1	.1	1,	.1	.1	.1	.1								1
10-5-82		VI.	Leorx	.2	.3	.3	.2	.2	.2	.2								
	HILL	•	ALTCOFF MEOFY	2.4	3.8	2.1	2.4	4.5	4.4	4.3								
TEST DATE			AL.	6.98	88.3	88.2	90.1	89.3	88.4	86.9								
			SELfc	6.46	_	92.6	97.1	97.8	97.4	96.3					ř			
Ì			Pcorr	.1	.1	.1	.1	.1	.1	.1								
	THE THE		Pacorr	.1	.2	.2	.2	.1	.2	.2								
11		SEL	Vcorr	1	0	3	3	2	2	3								
SITE			ALT corr	1.9	2.5	1.3	1.7	3.2	3.1	3.1								
				1	94.5	94.3	95.4	94.6	94.2	93.2								
	B		GS(KTS) ALT _T (FT SEL ₂₀₀	814.7	_	789.3	812	993.8	983.2	978.2								
TRION		5	GS (KTS)	6.68	_	87.3	87.3	92.4	91.4	87.9								
AIRCRAFT C-210 CENTURION		A/C TEST DATA	P.H	.8538	.8530	.8530	.8536	.8538	.8536	.8536								
<u>5</u>		V/C	RPH	2700	2700	2700	2700	2700	2700	2700								
AIRCRA			EVENT	1	2	3	7	5	9	7								

	711111		AL fc	72.4	72.7	72.5	72.2	72.7	72.0			•					
			Pcorr	.1	.1	.1	.1	.1	.1								
10-5-82	711111	ΝΓ	. Macorr	7.	4.	7.	.5	.5	.5								
			ALTCOTT	-1.7	.5	٦.	.2	٤٠	5								
TEST DATE			AL.	73.6	71.7	71.3	71.4	21.8	70.9								
			SELfc	77.6	81.2	81.0	80,9	80.8	81.0								
ì			Pcorr	.1	,1	7	1,	+	1.					•			
			Macorr	.3	.3	.3	.3	.3	.3								
1,7		Tas	Vcorr	.5	.05	.12	.16	03	.2				•				
SITE			ALTcorr	-1.2	7.	٤,	.1	.2	7.								
	пиши		l I	1	80.4	80,0	80.2	80.2	80,0								
			GS (KTS) ALT _T (FT SEL	735	928	953	895	873	883								
	munn	Į.	CS(KTS)	94.3	80.4	82.2	83.2	78.1	85.5								
AIRCRAFT C-182 SKYLANE		A/C TEST DATA	FF.	.7476	7476	.7472	.7470	.7467	.7476								
FT C-18		V/V	RPH	2400	2400	2400	2400	2400	2400								
AIRCRA			EVENT	14	15	15	17	31	19								

TABLE A-11

TAKEOFF DATA

TEST DATE 10-5-82 SITE AIRCRAFT C-172 SKYHAWK

74.3 74.0 AL fc 74.5 75.0 73.2 73.7 Pcorr d 0 PHCOLL 4 ٠. ALT COLL AL 88 72.9 72.5 73.1 13.6 74.3 445 82.6 83.0 82.6 418 SELfc 83.3 83.2 Pcorr þ 4 0 Macorr (4, Vcorr -05 a þ ALTCORT .07 82.0 82.7 82.9 81.9 82.4 GS (KTS) ALT T (FT SEL am 82.5 724 74.5 g 635 677 78.8 81.4 78.0 74.27 78.5 77.8 A/C TEST DATA .6728 6728 6728 6728 6728 .6728 F RPM 2300 2300 2300 2300 2300 2300 EVENT 8 28

TABLE A-12

80.7 80.7 79.5 81.4 1.1 -:1 -.1 -: TEST DATE 10-19-82 ALT COTT HEOFT -----.1 -.1 -: 4.1 4.2 3.9 4.2 4.5 4.8 AL AL 77.0 77.2 74.9 7.97 77.1 85.0 85.9 SELfc 85.4 85.4 85.4 84.7 Pcorr -:1 ----.1 -.1 7 Hacorr , -.1 -:1 -:1 -.1 -.1 -.1 Vcorr #1 -,3 4.--.3 -.2 4.--.3 SITE MITCOTT 3.0 2.9 3.0 3.2 3.4 GS (KTS) ALT (FT SEL AR 83.6 82.9 82.8 87.8 81.8 82.7 1098.9 1127.9 129.9 1113.6 1124.3 1158.2 1138.7 134.6 126.8 134.7 136.4 132.8 ATRCRAPT MERLIN 227-AT 9669. 8669. 8669. .6998 8669. .6998 F RPM 1591 1591 1591 1591 1651 1591 9

65.4 71.0 71.4 COLL 0 0 þ TEST DATE 10-19-82 ALT COTT MEOTE 1:1 --7 , ب ۳. 1.0 0 1.0 င AL. 70.8 70.8 5.07 5.69 6.69 70.2 9.62 80.0 78.7 78.5 79.2 79.7 SELEC PCOLL 0 0 0 TH COLL ۲. ا 7 ۳: -.1 7. -.1 VCOLL 4.4 5.5 4.-4.-MLTcorr SITE 0 • 7. 79.9 79.9 79.0 GS (KTS) ALT (FT SEL am 78.3 79.8 79.1 1591.6 1581.9 1455.4 119.0 1502.1 1539.1 1593.1 AIRCRAFT GHLESTREAM (COMMANDER) 900 125.0 117.7 118.4 113.6 116.1 A/C TEST DATA .6920 .6920 .6920 .6920 .6920 .6920 F RPM 1591 1591 1591 1591 1591 1591 EVENT 18 19 20 57 16 17

			AL fc	1 7	85.3	84.6	84.8	85.1	85.8	83.6								
		:	Pcorr		.1	.1	.1	.1	.1	.1								
10-19-82	711111			5	.5	.5	.5	.5	.5	.5								
TEST DATE 10	THE	*	ALTcorr Mucorr	19	5.3	4.3	5.8	5.8	5.9	5.8								
TEST 1	THILL		AL an	77.0	79.4	79.7	78.4	78.7	77.3	77.2								
			SELfc	91.8	91.8	91.1	92.2	92.2	91.0	91.1								
			Pcorr	3	.3	.3	.3	.3	.3	.3								
			Macorr	7	4.	7.	7.	7.	7.	7.								
#1		SE	Vcorr	q	0	0	0	0	0	0								
SITE			ALT corr	4.8	3.7	3.0	4.1	4.1	4.2	4.1								
			SELam	86.3	87.4	87.4	87.4	7.78	86.1	86.3								
			GS (KTS) ALT _{T (FT}	1575	1372	1245	1432	1432	1454	1438								
		Y 1	GS (KTS)	-	-	-	-	_	_	,								
DUCHESS		A/C TEST DATA	HH	.8091	.8091	.8091	.3091	.8091	.8091	.8091	ì							
	mm	V /C	RPM	2700	2700	2700	2700	2700	2700	2700								
AIRCRAFT			EVENT	29	30	31	32	33	34	35								

TAKEOPP DATA

THITTHITHITHITHITHITHITHITHITHITHITHITHI													ļ		
										1			1111111		
	7/V	A/C TEST DATA	T.A				TAS					•	AL		
Tarana	мая		GS(KTS)	GS (KTS) ALT (FT	SEL	MITCORE	Vcorr	HHCOFF	Pcozr	SELfc	AL.am	ALTcorr	Macorr	Fcorr	AL fc
+	35.35	8005	106		88.6						80.8	-	-	,	
1	27.5	0000	2	1574	89.5	4.7	0	9.	1	64.7	5.67	6.7	.8	0	87.0
1	5252	0000	101	T	20.7	2.7	0	.و	1	93.9	83.7	3.8	6.	0	88.4
1	5252	0000	101	1336	7. 08	3.5	ŀ	٩	-1	93.7	81.6	5.0	6.	0	87.5
1	2525	. susu		2333		7 6	٥	٩	-;	94.3	82.9	4.8	6.	0	88.6
2	2525	//08.	TOO	1121	1 2	,	٥	-	-	94.1	82.2	4.7	6.	0	87.8
9	2525	.8086	103	1299	70.6		, ,			63.7	2 18	9	0	0	87.4
7	2525	.8080	101	1336	89.7	3:5	٥	اء	:				١	6	4 88
8	2525	.8080	101	1349	90.1	3.6	٥	.و	7-	94.2	87.8	7.7	,	۹	
1															
1															
+															
1						1			_						
								1							
												1			
1															
+						-									
1			1						 						
			_			-						_			
							1	1	1	1					
						_				1		1			
												1			
			-			_									
1			-												

TABLE A-16

TEST DATE 10-20-82. SITE #1 AIRCRAFT ARCHER II PA-28 181

		THILL			THITTIE	THILL	HIH								
	V V	A/C TEST DATA	5				SET						7		
			(S/ME)	Ce (ETC) ALTE (gre	1	MLT	Voore	Hucorr	Pcorr	SELfc	ALen	ALTCOTT PHCOLY	F. Corr	Pcorr	AL fc
EVENT	-+	F	To Tay on	12.7			c	-	1	8.98	6.07	6.5	1.	0	77.5
16		.7054	٥	1233	7.70		,	,	c	87.4	72.6	9.9	2	0	79.0
17	2350	:7127	°	1245	82.3	, i,	,	-	c	88.5	73.0	7.1	1.	0	80.2
18	2350	.7054	0	1298	83.1	2.0	,	!	, ,		F	9	-	٥	17.77
19	2350	.7059.	0	1173	82.2	4.2	0		0	36.5	77.0			, ,	0 85
2	2350	7056	0	1271	83.0	4.8	0		٥	87.9	72.0	6.8		٩	19:5
21	2350	.7054	0	1253	81.8	4.6	0		٥	86.5	71.1	6:5		3	
,														_	
									L						
										-					
												1			
						ļ 									
				1			-		_	_					
												_			
								1		<u> </u>					
			-							\downarrow					
			1			_									
					1				_						

TEST DATE 10-20-82 # SITE

86.7 86.7 87.3 88.1 87.9 6.98 COTT 0 0 0 0 ALTCOTT Pacorr ų 4. .3 4. 4. 4.9 5.5 5.3 5.9 5.7 4.1 AL SE 81.5 82.2 80.9 81.6 80.4 83.4 93.6 97.6 93.1 93.1 SELfc 93.2 93.4 Mucorr Pcorr ٦. Ħ. τ. 4 ٦. ٤, .2 7. 7 Vcorr 0 0 0 0 0 ALTCOLL 3.5 3.9 4.2 4.0 2.9 47.68 88.9 88.5 89.3 90.2 88.6 GS (KTS) ALT T (FT SEL am 1270 1243 1192 1217 1062 0 0 0 00 A/C TEST DATA AIRCRAFT BONANZA A-36 .8511 :8519 .8511 .8509 .8511 .8514 F 2700 2700 2700 2700 2700 2700 RPH EVENT 34 32 30 8 35

æ
ᇊ
<
A
_
E
6
A
Ŋ
S
H

			AL fc	73.0	73.4	73.8	72.5	72.4	21.8	72.3					1				1									
1	H			73	73	[73		7	7			ig	L	+	$\frac{1}{2}$	-	-	\vdash	+	+	\dashv	-{	\dashv		-	\dagger	+	-
			Pcorr	2	2	2	2	2	-:2	2																	1	
-26-82		T e	Heorr	1	1	1	1	1	1:-	1																		
TEST DATE 10-26-82		**	ALTcorr Macorr	1.4	1.5	2.2	2.8	1.9	3.1	3.1																		
TEST D		•	AL.as	71.9	72.2	71.9	71.5	71.5	70.7	71.3																		
	111111		SELfc	79.6		T			80.5	81.2																		
1			P COTT	一	T	-	-	1	1	1								1										
	ratum		HH COLL	77	-		-	-:1	-:1	-1			1															\rceil
2	THILL	SEL	Veorr			1	, , ,	-,-	7	9 -			1				1	1							1			
į.			ALT COUT IV	6	╁	\dagger	200	╁╴	T	╁	t	\dagger	†				\dagger								1			
	1111		1	ı	╁	\dagger	T	T	十	t	t	\dagger	+			\dagger	\dagger	+				T	╁	\dagger	†	1		
	E		SEL		3		7 0	9	79.2	10,												_		1	4		<u> </u>	
			ALT, (pr	12%0	250	0077	1349	1303	1464	1777	1047																	
17.		Y	CS(ETS) ALT, (er SEL	00	2 3	* 1	3 3	1 8	a s	; E	2																	
AIRCRAFT C-425 CONQUEST-1		A/C TEST DATA	1	7	777	.7230	.7220	2022	77.78	377/	162/																	
C-425		¥ ¥	3		3	1900	8 8	3 8	3 5	3	3	1						-										
AIRCRAF				╋	7	7	-	†	†	ł	\					1												

APPENDIX B

500 FT. LEVEL FLYOVER DATA

Appendix B: Level Flyover Noise Data

This appendix contains as measured noise data along with other pertinent information used in arriving at fully corrected level flyover noise levels.

Abbreviations used in Appendix B

RPM: Propeller RPM (revolutions per minute)

GS: Ground Speed expressed in knots

IAS: Indicated Air Speed expressed in knots

M_H: Helical Tip Mach Number

ALT_T: Test Altitude (AGL)

AL am: As Measured A-weighted Sound Level

AL_{fc}: Fully corrected A-weighted Sound Level

SEL am: As measured Sound Exposure Level

SEL fc: Fully corrected A-weighted Sound Level

TABLE B-1

TEST DATE 6-23-82

		SELfc	81.8	0 00	80.0	4.08		78.1	78.6		76.6		75.8	76.8		76.8		80.0	79.5	79.4	78.8	78.8	77.9	-	-	-	-	
		SEL	27.78		83.3	81.5		78.7	79.3		17.1		77.5	9 %		78.6		80.0	78.9	79.0	78.7	78.8	78.0	╀	1	_	_	
1531 1416	MOISE DATA SITE 2	ALfc S	75.6		75.0	8.47		71.9	72.8		70.4		63	31.6	3/ /6	7.69		77.1	76.1	76.2	71.4	71.1	ş				_	
F	S	A.E.	ተ	7.5	78.4	76.1		71.9	72.8		70.2		,	7:0/	67.5	70.3		73.0	71 2	71.5	71.2	71.1	5 5					
		ALT, A		710 017	216	797		301	292		306			2772	292	275		44.5	,0,	707	80.3	509		019				
		SEL	_ [81.5 2	81.7 2	82.6 2	-	81.2	4 18	t	T.	T	†	79.2	-	79.5	┢	7 %	╁	7			•	79.8				
		SEL SE		8 2.58	85.1 8	84.5 8		80.8	3		+	+		79.0	79.0	79.2		1, 50		87.0	1	1	1	80.2				
	HOISE DATA SITE 1	_		9.97	77.8	29.0		72.7	+	+ 1:5	+	+	+	68.9	9.69	60 7		1	1:07	78.0	†	1	1	70.9				•
	MOISE		1	80.9 76	81.2	╁	╁	72.9 7	╁	74.4 /	\dagger	+	1	6.69	6.69	╁╌	7	+	14:7	73.8	†	1	•	71.4				-
		AL.	(ftc)	1	\dagger	+	\dagger	+	╁	787	+	279	1	273	200	+	787	+	415+	677	454	009	632	570		 	†	-
		- -	-	725 199	+	-+	77/	756 237	╅	657 29	-+	.620 2		561 2	-	╂┈	290 7	+	720 4	.724	.724	.725 6	.724 6	┢╌	+	\dagger	†	-
		- 1	E C	+	+	+	+	+	; ; ;	1 1	+	85		74	<u> </u>	7	- 77	-	104	104	-	104	102	Ž	-	+	\dagger	-
			4 5 2 7 7 7	; †	2 ; 	51	109	-	-	1	-	_		-	+	+	+	-					-	-	+	1	+	
	AT AT			7	1		_						_	-	+	+	-					-	-	+	+	+	-	
	TEST D		r 19	. l	88	88	88		- 67	69		99	┝	╁-		<u>'</u>	0 59		0 81.1	 —	├	╁	1_	4	50 73	-	_	
C-170	AIRCRAFT TEST DATA			E .	2450	2450	2450		2225	2225		2175				1900	1900	_	2450	2450	2%50		╁	2450	2450	_		_
ATECBART C-170				Z PWR	65	65	65		55	3					45	45	45		3	2 2		3 -	1	1	_		ļ	_
) TALV				SVENT	6	2	==		12	1	1	;	#1		15	16	=		٩	9 9	<u></u>	77	77	23	24			

AIRCRAFT PA-28 Turbo Arrow IV

TABLE B2

7-13-82 and 7-20-82

			SELfc	80.9	80.9	76.8	76.7	76.7	79.5	78.2	76.1	76.1	78.1	78.3									
20-8				┞	-	\vdash	_	-	┡	ļ	 -	<u> </u>	 	-	_	L	L	_	-	L	_	_	L
7 11		5	SEL	80.9	80.9	76.3	76.1	75.6	7.62	78.1	75.5	75.5	78.2	18.3									
TEST DATE 7-20-82		MOISE DATA SITE 2	AL fc	7.47	7.47	70.0	70.4	8.69	72.1	72.5	4.89	68.3	70.8	70.5									
			AL.	74.1	74.0	6.69	70.1	0.69	71.5	71.8	68.2	68.2	70.4	6.69									
			ALT (fee)	532	534	503	513	541	532	536	508	909	521	531									
			SELfc	80.4	80.8	76.1	76.5	76.5	79.3	78.5	7.97	77.0	78.2	78.7									_
			SEL S	80.9	80.8	76.3	76.1	75.6	79.6	78.7	76.2	9.9/	78.6	78.7									
		NOISE DATA SITE 1	ALfc !	74.4	74.7	71.0	71.3	71.8	72.8	72.4	69.4	69.7	9.07	71.0									
		ION S	AL	74.2	74.1	71.7	71.7	71.2	72.7	72.1	69.4	8.69	70.6	70.3									
			ALT (ft)	510	532	467	482	531	504	516	865	867	498	535									
	puni		M _H	.7449	.7458	.7272	.7272	. 7281	.7176	.7176	7669.	.6997	.6893	.6893									
			IAS (KTS).	95	96	120	119	121	86	7.6	120	120	100	86									
:			(KTS) SITE 2	86	98	119	117	121	88	90	120	120	90	90									
O UTILITY OF		EST DAT	SITE 1	83	98	119	119	121	88	88	120	120	91	87									
2011 07-1		AIRCRAFT TEST DAT	RPM	2500	2500	2400	2400	2400	2400	2400	2300	2300	2300	2300									
AIRCRAFT FR-20		AII	Z PWR	55	55	55	55	55	55	5.5	55	55	55	55									
AIR	<i>miniminiminiminiminimini</i>		EVENT	5.8	5.9	6.13	6.14	6.15	5.10	5.11	6.16	6.17	5.12	5.13									

SOO FT. LEVEL MINOVER DATA

TABLE B-2 (CONT)

TEST DATE 7-1328-82nd

AIRCRAFT PA-28 Turbo AITON IV (CONT)

CVENT TEST NATA ALT ALT <th< th=""><th></th><th></th><th></th><th></th><th>777777</th><th></th><th>1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>					777777		1										
X PARR REPH SITE 1 SITE 2 (KTS) HA ALT fet 1 ALT fet 2 ALT fet 3 ALT fet 3		AL	RCRAFT 1	EST DAT	⋖				2	ISE DATI SITE 1					MOISE DATA SITE 2		
T. Parr R.Ph SITE 1 SITE 2 GTS) H Ret TC TC <th></th> <th></th> <th></th> <th></th> <th>(wrc)</th> <th>TAS</th> <th></th> <th>ALT</th> <th></th> <th>AL</th> <th>1</th> <th>T</th> <th>ALT</th> <th>VT.</th> <th>AL fc</th> <th>725</th> <th>SELfc</th>					(wrc)	TAS		ALT		AL	1	T	ALT	VT.	AL fc	725	SELfc
75 2575 133 138 7839 491 - 80.6 80.4 5 75 2575 133 133 138 7839 506 -			766	d -		(KTS)		(ft.)		10	- 1		3			Т	3 08
75 2575 133 138 7839 506 - - 6 5 5 5 5 135 140 7848 467 77.7 77.0 81.1 81.1 6 7 81.1 6 7 7 7 81.1 81.1 6 7 7 7 7 81.1 81.1 6 7 7 7 7 7 81.1 81.1 6 7	EVENT	Z PWK	25.36		133	138		491			9.08	7.08	501	76.4	76.4	80.0	60.5
75 25/5 133 135 130 77.0 77.0 81.1 81.1 41.1 75 2575 133 135 140 .7644 504 75.9 76.0 77.2 79.3 75 2500 136 141 .7635 431 75.4 75.0 77.0 77.2 79.3 75 2500 136 142 .7511 507 74.4 78.0 78.9	6.1	?	6/67		133	138	7839	266 86	,		1		516	1		'	,
75 2575 133 135 140 7540 777 76.0 77.2 78.3 4 75 2500 136 142 7644 504 75.9 76.0 79.2 78.9 4 75 2500 136 141 .7635 481 75.4 75.0 79.2 78.9 76.9 76.0 79.2 78.9 76.9 76.0 78.9	6.2	25	25/5	2	2		10,0	1.67	777	77.0	81.1	81.1	987	76.8	76.5	81.1	80.9
75 2500 136 142 7744 504 75.9 70.0 77.1 75 2500 136 141 .7635 431 75.4 75.0 79.2 76.9 75 2450 140 142 .7511 507 74.3 74.4 78.9 78.9 75 2450 134 136 140 .7522 490 74.2 74.0 78.6 75 2400 137 137 142 .7360 472 73.8 78.0 77.6 75 2400 136 140 .7352 462 73.7 72.9 78.0 77.4 100 2575 149 149 162 .7945 448 79.5 78.4 81.5 100 2575 147 147 160 .7936 448 79.5 78.4 82.3 81.5 1 149 160 .7936 448 79.5 78.4 <	6.3	75	2575	133	135	140	./340	Ì		3	70.7	79.3	481	74.8	74.4	79.2	19.0
75 2500 136 141 .7635 481 75.4 75.0 79.2 78.9 78.	7 9	75	2500	136	142	142	7644	204	75.9	2	;;;			27. 2	2,5	79.2	79.
75 2450 140 142 7511 507 74.4 78.6 78.6 75 2450 140 .7502 490 74.2 74.0 78.7 78.6 75 2450 134 136 140 .7502 490 74.2 74.0 78.7 78.0 77.6 75 2400 137 137 72.9 78.0 77.4 78.6 77.6 0 100 2575 149 149 160 .7936 465 78.7 78.4 82.3 81.5 2 100 2575 147 148 160 .7936 448 79.5 78.4 82.3 81.5 2 100 2575 147 147 160 .7936 448 79.5 78.4 82.3 81.5 3 100 2575 147 160 .7936 448 79.5 78.4 82.3 81.5		ž	25.00	136	136	141	.7635	481	75.4	75.0	79.2	18.9	16,7			,	78 9
75 2450 136 140 .7502 490 74.2 74.0 78.7 78.6 75 2460 137 136 140 .7352 462 73.8 73.2 78.0 77.6 75 2400 136 140 .7352 462 73.7 72.9 78.0 77.4 0 100 2575 149 149 162 .7945 465 78.7 77.5 82.1 81.5 1 100 2575 147 147 160 .7936 448 79.5 78.4 82.3 81.5 2 100 2575 147 147 160 .7936 448 79.5 78.4 82.3 81.5 1	9.3		27,50	1,60	142	142	.7511	507	74.3	74.4	78.6	78.8	Š	73.7		0.07	3.07
75 24,00 137 142 7360 472 73.8 73.2 78.0 77.6 75 2400 136 136 140 .7352 462 73.7 72.9 78.0 77.4 0 100 2575 149 149 162 .7945 432 80.8 79.3 82.6 81.5 1 100 2575 147 148 160 .7936 448 79.5 78.4 82.3 81.5 2 100 2575 147 147 160 .7936 448 79.5 78.4 82.3 81.5 1 100 2575 147 147 160 .7936 448 79.5 78.4 82.3 81.5 1	9.9	2 2	27.50	1 25	136	140	.7502	067	74.2	74.0	78.7	78.6	471	73.4	72.8	/8/	18.5
75 2400 136 140 .7352 462 73.7 72.9 78.0 77.4 0 100 2575 149 149 162 .7945 432 80.8 79.3 82.6 81.5 1 100 2575 147 148 160 .7936 465 78.7 77.9 82.3 81.5 2 100 2575 147 147 160 .7936 448 79.5 78.4 82.3 81.5 1 100 2575 147 160 .7936 448 79.5 78.4 82.3 81.5 1	اة		200	13.	137	142	.7360	472	73.8	73.2	78.0	77.6	482	72.5	72.1	78.0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
75 2400 136 150 150 150 150 179.5 432 80.8 79.3 82.6 81.5 0 100 2575 149 149 162 .7936 465 78.7 77.9 82.1 81.6 1 100 2575 147 147 160 .7936 448 79.5 78.4 32.3 81.5 2 100 2575 147 147 160 .7936 448 79.5 78.4 32.3 81.5 8 100 2575 147 147 160 .7936 448 79.5 78.4 32.3 81.5	6.8	2	7400			97.	725.7	797	73.7	72.9	78.0	77.4	475	72.3	71.8	78.0	77.6
0 100 2575 149 149 162 .7945 432 80.8 79.3 82.6 81.5 1 100 2575 147 148 160 .7936 448 79.5 78.4 82.3 81.5 2 100 2575 147 147 160 .7936 448 79.5 78.4 82.3 81.5 8 100 2575 147 140 .7936 448 79.5 78.4 82.3 81.5 8 100 147 140 .7936 448 79.5 78.4 82.3 81.5 8 100 147 140 .7936 448 79.5 78.4 82.3 81.5 8 100 147 140 .7936 448 79.5 78.4 82.3 81.5 8 100 147 140 .7936 448 79.5 78.4 82.3 81.5 8 100 147 147 160 .7936 448 79.5 78.4 8	6.9	75	2400	2	2												
100 2575 149 162 .7945 432 80.8 79.3 82.6 81.5 100 2575 147 148 160 .7936 465 78.7 77.9 82.1 81.6 100 2575 147 147 160 .7936 448 79.5 78.4 82.3 81.5 100 2575 147 147 160 .7936 448 79.5 78.4 82.3 81.5 100 2575 147 160 .7936 448 79.5 78.4 82.3 81.5 100 100 .7936 448 79.5 78.4 82.3 81.5 100 .8936													;	3,5	11.6	82.6	81.7
100 2575 147 148 160 .7936 465 78.7 77.5 82.1 81.5 100 2575 147 147 160 .7936 448 79.5 78.4 82.3 81.5 100 2575 147 147 160 .7936 448 79.5 78.4 82.3 81.5 100 2575 147 147 160 .7936 448 79.5 78.4 82.3 81.5 100 2575 147 147 160 .7936 448 79.5 78.4 82.3 81.5 100 2575 147 147 160 .7936 448 79.5 78.4 82.3 81.5 100 2575 147 147 160 .7936 448 78.4 82.3 81.5 100 2575 147 160 .7936 448 78.4 82.3 81.5 100 150 160 .7936 448 78.6 78.4 82.3 81.5 <t< td=""><td>100</td><td>100</td><td>2575</td><td>149</td><td>149</td><td>162</td><td>.7945</td><td>432</td><td>80.8</td><td>79.3</td><td>82.6</td><td>212</td><td>7</td><td></td><td></td><td>6</td><td>7 7 8</td></t<>	100	100	2575	149	149	162	.7945	432	80.8	79.3	82.6	212	7			6	7 7 8
100 2575 147 140 .7936 448 79.5 78.4 82.3 81.5	2			1:3:	1,48	160	. 7936	465	78.7	77.5	82.1	81.6	465	78.7	?	17,0	3 10
100 2575 147 147 160530 445	6.11	ž Ž	27/2				7035	377	70 5	78.4	82.3	81.5	458	78.3	77.4	82.3	81.7
	6.12	100	2575	147	147	E P	./330	2									
		_															 -
				_		ļ							1	1		<u> </u>	
			-	-	-	_	_									1	
			-		-		1		_	_							
					-		1			\downarrow				_			<u> </u>
										1	1		+	1	-	-	
		+	-	_		_		 								-	-
			+	+	-	-	-										
			_	_				1	+								
								_	1	1		\downarrow	\downarrow	-		-	-
_		_									_	_	_	_	-	-	•

500 FT. LEVEL PLYOWER DATA

TABLE 1-3

85.0 82.4 82.8 82.0 80.2 79.3 87.2 80.7 88.5 88.3 88.9 87.3 85.1 85.1 TEST DATE 7-20-82 79.0 STL 7.48 80.8 82.2 81.7 80.1 87.9 87.8 88.2 87.1 86.8 86.8 84.4 84.3 82.7 MOISE DATA SITE 2 At fe 6.94 74.6 73.8 72.6 79.3 77.5 82.2 79.5 83.3 83.3 83.8 82.4 79.4 (Z 74.2 73.3 71.8 78.8 75.8 76.6 78.9 78.6 75.3 83.5 82.0 81.9 82.4 83.2 83.2 (Alt. Geo.) 520 525 553 550 539 514 524 527 547 919 519 547 206 204 477 82.0 79.8 78.4 85.8 84.1 80.9 7.67 84.4 87.4 87.4 87.8 85.8 SELfe 86.2 80.5 80.0 78.5 81.4 85.9 84.2 83.9 82.2 81.3 86.2 86.9 87.6 87.6 87.9 86.7 SEL MOISE DATA SITE 1 AL fc 73.6 73.9 71.7 74.8 80.8 77.9 76.5 81.9 82.9 78.4 80.6 82.1 80.7 71.4 77.8 74.7 75.9 74.9 74.4 73.4 78.3 83.0 81.4 1 83.5 82.2 81.1 82.1 82.7 ¥ ALT (ALT) 513 508 530 477 509 503 **206** 505 419 471 432 461 459 471 (2) .76 .71 8. 8 .78 .79 .77 .77 .85 .82 .84 .84 .85 .85 2 ¥ IAS (KTS) 120 119 125 130 131 124 153 148 145 162 160 163 148 151 151 165 104.9 CS (FTS)
E 1 SITE 2 134.6 124.8 92.6 95.6 105.4 134.6 123.9 122.2 125.2 134.6 122.1 134.6 100 103 AIRCRAFT TEST DATA 104.8 93.6 103.3 101.3 93.6 131.2 123.6 118.1 116.1 131.2 SITE 1 131.2 121 120 131. 2350 2300 2200 2450 2450 2425 2400 2600 2550 2600 2600 2425 2450 2600 2600 2600 AIRCRAFT C-180 E Z PAR 20 20 20 20 2 2 a 75 75 75 75 75 100 100 100 EVENT 35 28 30

500 FT. LEVEL FLYOVER DATA

TABLE B-4

22			SEL	1C 78 A	0.0/	13:4		1.0/	,	8 9	2.2/	1:,		75.4	75.7												-
TEST DATE 8-10-82			TAS		· · · · · · · · · · · · · · · · · · ·	7.8/		?	7:,	1 %	; ;	7.0/		74.6	74.9												
TEST: DAT	77111	MOISE DATA SITE 2	AL.		71.0	71.0		70.3	70.2	•	7.60	69.6		68.0	68.0												
				8	70.0	69.7		69.3	69.5	Š	08.0	1.00		66.7	9.99											_	
			ALT	(FEC)	551	569		551	533		553	280		565	571							_					
			1		78.7	79.1		78.2	77.1		75.8	76.8		75.0	75.0									-			
				25 A	78.0	6.77		27.5	76.1		75.5	76.2		74.6	74.4	_								1		-	_
		MOISE DATA SITE 1		ALfc	6.07	71.7		70.0	68.9		67.8	69.3		67.0	67.1					<u></u>	_		1				
				TA T	70.4	70.3		69.2	67.8		67.3	68.2		65.9	65.9			_		 			1	\downarrow	1	_	
				ALT (ft)	975	572		541	554		525	558		555	564			_	-		-	-	1				
	Ħ		Ì	z "	.678	679.		.661	299.		749.	.647		610	.610			_	<u> </u>	-				\ -\	_		
				IAS (KTS)	86	001		95	97		8	06	_	28.	8	_	_		-		-	-	1				_
		€ !		SITE 2		66		96	96		6	87		87	8					<u> </u> -	_	1	 	_			
mahavk		EST DAT		CTTTP 1		86		95	ន្ទ	L	ä	8 8		8	3 8					1				_		_	_
A-38 To		AIRCRAFT TEST DATA		760	2610	2410		2350	2350		3,5	36.5			2170								_				_
AIRCRAFT PA-38 Tomahawk		I W		2	A PHK	1 1		Ç.	2 2			2 5	2	1	2 2		ļ		1	\downarrow						-	
AIR					SVERT	9 :	1	١	2 2			202	77		22	77											

TABLE B-5

(×	I
	Ë	
	TEST DATE	
	IS	
(H	
		i
		ļ
•	2	
000	7	
	A!	١
	섥	١
į	FI King Air 200	١
ļ	ť	ı
	TROPA	
į	IK	
٠	<	

AII	AIRCRAFT King Air 200	King Ai	r 200											TEST DATE	TE 8-31-82	1-82
TITITI	and the commentation of the comments of the co		mann		ппп		muu			шш						
	Υ	RCRAFT	AIRCRAFT TEST DATA	Y.					NOISE DATA SITE 1	•				NOISE DATA SITE 2	⋖	
VENT	Z PWR	RPH	SITE 1	(KTS) SITE 2	IAS (KTS)	Ӊ	ALT (ft)	AL am	oJ TA	SEL	SELfc	ALT (ft)	AL	AL fc	SEL	SELfc
8	85	1700			235	.740	552	81.4	82.4	84.5	85.3	582		82.3	84.7	85.8
9	85	1750			235	.757	488	82.1	81.8	86.0	85.8	564	81.4	82.7	85.5	86.4
10	85	1800			230	.770	490	82.9	82.7	96.0	85.9	524	83.2	83.7	86.9	87.2
11	85	1850			232	.789	557	81.5	82.6	84.7	85.5	578	83.2	84.7	86.8	87.9
12	85	1900			232	.806	572	82.6	84.0	85.6	9.98	597	82.5	84.3	86.0	87.3
13	85	1950			231	.823	455	86.0	85.0	88.4	87.7	504	84.1	84.2	87.5	87.6
14	85	2000			234	.842	453	86.4	85.4	88.7	88.0	506	86.0	86.1	89.1	89.2
15	85	1900			233	.807	995	83.4	82.7	86.6	86.1	554	82.2	83.3	86.2	87.0
16	85	1950			232	.823	510	82.6	82.8	84.7	82.9	909	83.8	83.9	87.3	87.4
17	85	2000			233	.841	519	85.2	85.6	87.1	87.4	578	83.9	85.4	87.3	88.4
18	95	1900			238	.810	490	85.6	85.4	87.9	87.8	617	81.9	84.1	86.1	87.7
19	95	1900			240	.811	488	83.5	83.2	86.4	86.2	552	83.4	84.4	85.9	9 98
20	9.5	1900			239	.810	530	83.0	83.6	86.1	86.5	550	83.1	84.1	87.0	87.7
21	95	1900			239	.810	496	84.4	84.3	87.2	87.1	509	82.8	83.0	86.7	86.8
		•														
	_													_		

500 FT. LEVEL FLYOVER DATA

TABLE B-6

8-31-82

IRCRAFT														
	AIRCRAFT TEST DATA	≪					NOISE DATA SITE 1					NOISE DATA SITE 2	.	
Z PWR RPM	GS SITE 1	(KTS) SITE 2	IAS (KTS)	H.	ALT (fec)	ALes	ALfc	SEL	SELfc	ALT.	AL am	AL fc	SEL	SELfc
1900			214	.795	525	80.7	81.2	83.5	83.9	543	80.7	81.6	86.5	37.1
1900			214	.795	525	81.2	81.7	84.2	84.6	492	81.1	80.9	85.6	85.5
1900			215	.795	493	81.3	81.2	83.6	83.5	520	€.08	80.7	84.3	84.3
1900			214	.795	482	80.9	80.5	84.2	83.9	528	81.9	82.5	85.9	86.3
1900			195	.783	496	81.0	80.9	83.8	83.7	537	80.1	80.8	2.48	85.2
1900			194	.783	505	80.3	80.4	83.8	83.9	556	8.62	6.08	2.48	85.5
1900			194	.783	523	79.1	9.6/	82.9	83.2	999	76.4	90.08	0.48	84.8
1900			195	.783	519	78.3	78.7	81.3	81.6	522	6.08	81.3	85.3	85.6
										_ _				

500 FT. LEVEL FLYOVER DATA

TABLE B-7

9-8-82			SELfc	0 00	87.6	96.4	86.2		85.7	85 5	7 7 8	4.78	00.3	, 30	27.00	0 40	8.00	2000	200				
		5	SEL	_	8 48	85.6	85.0	9 78	84.6	8,4 %	3 3	2 3	*	7 78	85 2	7 7 78	7: 0	7.5	7.78	1		\uparrow	
TEST. DATE		NOISE DATA SITE 2	AL fc		7 78	83.5	83.0	,	87. 1	81.6	81 2	2 - 23	17.6	7 18	87.6	87 7	87,7	3 '8	7		T		
		z	AL		83.6	82.4	81.2	80.7	80.5	90.6	1 08	0 10	3	70.8	80.9	80.6	80.8	, 18					
			ALT	555	551	553	592	ı	580	550	955	2,46		580	588	583	573	2,95					
			SELfc	87.3	87.7	86.4	86.2	-	-	85.2	-	85.5		9.48	86.2	85.4	85.2	86.9					
		4	SEL	86.6	86.9	85.2	85.3	84.6		84.5	1	85.1		87.8	85.1	84.9	85.4	85.1					
	ППП	NOISE DATA SITE 1	AL _{fc}	84.7	84.4	84.0	83.4			81.8	,	81.9		80.5	82.3	81.7	80.8	82.3					
	ПППП		AI.	83.7	83.4	82.2	82.2	81.3	-	80.9	1	81.3		80.1	80.6	80.6	81.3	80.9					
	TITILIT .		ALT. (ft)	548	551	593	561	-	564	548	573	528		522	587	555	478	572					
			, III	.821	.802	.785	769	-769	763	.732	.717	.766		. 769	. 769	. 769	.769	_					
	пппп		IAS (KTS)	240	236	236	236	236	230 -	230	231	231		210	210	210	210	1					
		Y	(KTS) SITE 2	247.1	248.3	240.3	239.9	,	240.2	242.5	241.8	244.3		219.1	217.3	227.5	223.6	238					
eyenne		AIRCRAFT TEST DATA	SITE 1	248.3	252.8	236.2	241.4		238.2	242.1	234.9	238		212	217.3	214.9	221.1	230.2					
PA-42 Cheyenne	TITITI	RCRAFT	RPM	2000	1950	1900	1850	1800	1800	1750	1700	1850		1900	1900	1900	1900	1900			•		 -
AIRCRAFT		V	Z PWR	100	100	100	100	100	100	100	100	100		100	100	100	100	100					
W			VENT	-	2	3	4	2	9	7	8	8		10	11	77	13	14					_

500 FT. LEVEL FLYOVER DATA

TABLE B-7 (CONT)

Notice data	CRAFT	AIRCRAFT P-42 Cheyenne (CONT)	yenne (C	ONT)										TEST. DATE		
Noise Data Matrice Alternation Altern			THITTI			шш	HIH							77777		
No. C. C. C. C. C. C. C.		LIRCRAFT	TEST DAT	.≼				ON CONTRACT	ISE DATA SITE 1					ISE DATA		
RPM SIE 1 SIE 2 CM-D1 C	-	<u> </u>	89	11.	IAS	1	ALT				1	ALT {fec)	14		9	SELfc
1900 212 218 219 210	7	4	SITE	SITE 2	76130	1	155	1	81.0	83.9		541		80.1	83.6	84.2
1906 200 201 210 7.05 584 80.0 81.6 83.8 85.8 592 79.1 80.9 83.1 1906 201 204 205 7.65 584 80.0 -	72	2005	+	218	503		953	0 08	80.2	81.5	81.5	543	79.7	80.6	83.6	84.2
1906 201 204 203	7	1900	-	201	210	60/:	200	0.00	81.6	83.8	85.8	592	79.1	80.9	83.1	84.3
1900	75	1900	201	204	205	(6)	304	200		0 78	,	,	79.1	ı	83.3	
1900 208 210 205 347 77.1 77.0 27.1 77.0 27.1 77.2 77.1 77.2 77.1 77.2 77.1 77.2 77.1 77.2	75	1900	4	-	203	.764	-	200	70.0	83.4	83.9	552	79.1	80.1	83.4	84.1
1900 190 187 183 .753 531 77.3 77.9 82.2 82.6 521 77.5 77.9 82.2 1900 190 187 183 .753 523 76.0 76.5 81.0 81.3 502 77.6 77.6 82.3 1900 187 187 183 .753 523 76.0 76.5 81.0 81.3 502 77.6 77.6 82.3 1900 187 188 183 .753 523 76.0 76.5 81.0 81.3 502 77.6 77.6 82.3 1900 187 188 183 .753 523 76.0 76.5 81.0 81.3 502 77.6 77.6 82.3 1900 187 187 187 187 187 187 187 187 187 187	75	1900	{	210	205	.765	23/	1.27	0.2,							
1900 187 183 .753 531 77.3 17.9 82.1. 02.0 17.6 82.3 1900 187 183 .753 523 76.0 76.5 81.0 81.3 502 77.6 82.3 1900 187 183 .753 523 76.0 1900 18.1.3 19										3	9 60	165	77.5	77.9	82.2	
1900 187 183 .753 523 76.0 81.3 3.00 Miles of the control of the c	50			185	183	.753	531	£	, , , , , , , , , , , , , , , , , , ,	7.70	2,70	3	17.6	77.6	82.3	82.3
	5	-	_	187	183	.753	523	26.0	76.5	81.0	21.5	7000				
	1	╁	╂-	 		ļ	<u></u>									
		+	1													
		+		_					_							
				_												
				_			_					1				
		-	_													
		+		-	_	_										
		-	-	-		_	 									
	_	+	-	-												
	_	-	_		-	-		_	_							
	_	-	-	- }	1	-	1	1								
							_	1	}	\downarrow	-	-				
	1	-			<u> </u>						$\frac{1}{1}$		1	1		
	1	-	-	-		_		ļ				- 	1		1	
	\downarrow	+	+	-	-	-	-					- 	4	\downarrow		
	_	1	-		1	\downarrow	-			_	_					
	-	-	-													

TABLE B-8

								֡				֡			
4	AIRCRAFT TEST DATA	TEST DAT	y	;				NOISE DATA SITE 1	<				NOISE DATA SITE 2	≼	
Z PWR	RPH	GS SITE 1	(FTS) SITE 2	IAS (KTS)	H _H	ALT (ft)	AL	AL fc	SEL	SELfc	ALT (ft)	AL.	Alge	SEL	SELfc
89	2700	166	171	170	.340	522		-	1		498.4	84.1	84.1	88.1	88.0
83	2650	175	170	176	.829	491.3	83.7	83.5	87.6	87.6	498.3	84.3	84.3	87.9	87.8
89	2600	171	188	176	.815	500.5	80.6	80.6	85.5	85.5	564	83.2	84.5	87.5	88.6
89	2550	174	175	175	.801	488.8	80.1	79.9	85.1	85.0	498.2	82.0	82.0	86.2	86.2
89	2700	168	170	175	.842	482.4	83.5	83.1	87.7	87:3	461.9	86.1	85.3	90.4	89.7
75	2600	152	151	154	.805	505.9	78.9	79.0	83.5	83.5	475.4	81.9	81.4	85.9	85.5
75	2500	159	152	160	.779	518.7	79.7	80.1	84.5	84.8	485.4	7.67	79.4	84.5	84.3
7.5	2450	159	155	160	. 765	490.5	77.4	77.2	83.5	83.4	480.7	81.8	81.4	86.1	85.9
75	2300	191	173	162	.724	493	76.5	76.4	83.0	83.0	579.0	78.7	80.2	83.8	85.3
75	2250	162	159	163	. 710	504.4	75.0	75.1	82.0	82.2	697	77.2	76.5	83.0	82.7
75	2700	145	144	147	.830	525.1	83.1	83.6	86.9	87.1	479.4	83.2.	82.8	86.8	86.4
75	2500	156	119	162	. 780	495	78.4	78.3	83.7	83.6	519.4	8.67	80.2	84.8	84.4
	-														
							·								
							_								

500 FT. LEVEL PLYOVER DATA

TABLE B-6 (CONT)

TEST. DATE 9-14-82

RECRAFT C-414 Chancellor (CONT)

AIJ	AIRCRAFT C-414 Chancellor (UURI)	414 CB	ancerror	(Tunny)				1111111		TITITI	THEFT					
								3					×	MOISE DATA	•	
	Ψ	RCRAFT 1	AIRCRAFT TEST DATA	∢					MOISE DATA SITE 1	_				SITE 2		
			95	(rTS)	TAS	X.	ALT.	\$	ALE	SEL	SELfe	ALT	AL.	AL xc	SEL	SELfc
tean.	2 PA.R	RPM		SITE 2	(KTS)		(tec)				- 1				T	
THE A		1		727	120	.734	519.5	75.5	73.4	81.7	81.9	500.4	75.0		81.0	80.9
=	75	2007		, , ,	118	718	8.667	75.3	75.3	81.3	81.2	511.2	72.5		79.7	79.8
77	52	2350	2 5	2 5	118	690	486.3	72.6	72.3	79.5	79.4	564.0	72.1		79.8	80.7
91	52	2250	123	177	977	15	, a,	70 %	7.02	78.7	78.6	519.2	72.0		79.9	80.4
17	52	2200	128	129	133	780	404.7			1 02	7 07	0 775	8.77		80.6	81.2
21	52	2350	123	119	130	.723	514.1	7:7/	4:7/	/2:4		2 55	,		7 62	79.8
22	52	2300	116	116	118	.704	527.7	72.1	72.7	73.7	200	2375	017			
	1		1													
			1		}											
	L	ļ 														
				_		_										
									L							
,																
													1	-	_	
	1			_	ļ 	ļ						-	\downarrow	1	1	
	1			-		_										
	1		1	-											_	
į	-		1	_		\downarrow	-				L					
				-	-	1		1	-				_	_		
	_											\downarrow	\downarrow	1		
	+				_	-	<u></u>						\downarrow		\downarrow	
	+	1	1			_	-							1		
	1		$\frac{1}{1}$	+		-			_	_	<u></u>			_		
			\downarrow		1	1	\downarrow	1		1		_		_		
			_			_	_		_	_	-	-	-		,	

500 FT. LEVEL FLYOVER DATA

TABLE 3-9

		285 280	282											TEST. DATE	rg 9-28-82	-82
			unun		_		HILL		THILL	THEFT	П				TI III	and the second second
	ΠV	RCRAFT 1	AIRCRAFT TEST DATA	Ķ				2	MOISE DATA SITE 1	•				HOISE DATA SITE 2		
			្ត ភ	GS (KTS)	IAS (gree)	7,1	ALT	AI.	AL fc	SEL	SELfc	ALT (fr)	AI.	AL fc	SEL	SELfc
EVENT	Z PWR	E	1	2 2110	7073	957	0 /	84.6	85.7	89.9	90.3	564.6	85.4	36.7	90.7	91.5
8	<u> </u>	2700		1 :	9 5	3,78	95.	2.48	85.3	89.0	89.4	597.1	82.5	84.3	85.9	87.1
9	- 19	2650		155	3 2 2	833	548.6	81.9	82.9	85.2	86.0	579.2	82.9	84.4	86.7	87.8
=======================================		7007	4	707	173	020	5.43.9	81.6	82.5	85.5	86.2	585.4	79.0	80.6	84.8	86.2
77	79		4	8 3	35	700	7.86.5	79.7	80.5	85.2	85.0	553.5	79.3	80.4	85.3	86.1
=	29	2	# a :	13.	163	787	575.5	78.2	7.67	84.5	85.4	540.6	79.2	80.0	85.1	85.7
4	19	74.7			1 1	77.6	527.4	78.8	79.4	84.5	85.2	558.4	77.6	78.8	84.2	85.1
57	19	2400	97	500	20,5		540.1	76.6	77.4	83.7	84.4	542.7	76.1	77.0	83.3	83.9
91	19	2300	200	707		1 2 2	501 1	, 4,	76.2	83.5	83.5	523.4	75.0	75.5	83.3	83.6
77	7.9	2200	797	93.	160	858	525.6	88.1	88.6	91.2	91.5	570.2	86.2	87.6	90.1	91.1
82	29	2/00	ri T	ST.	3						_					
			1					3	8 %	8.7 R	88.6	546.4	85.5	\$.98	88.9	89.6
13	97	2600	8	130	194	-846	785.1	+-	3		8	500 3	8,48	86.5	89.1	90.3
22	9.7	2600	186	185	194	.846	513.3	84.5	20.75	63.5	93.0	7367				
										1	1					
	_	_							1	1						
	·			_			_		\downarrow	1	1					
											1					
	-		_													
	1	1	}	-	_		 	_			-					
	+	1	+	1		-	-	_	_	_						
}	1	1	+	1	1					L	_	_				
	_	_	+	1	1	1		1	1		-			_	_	
i 								_	_	-	_	_	_	_	•	

500 FT. LEVEL FLYOVER DATA

TABLE B-10 (CONT)

SELfc 90.4 88.9 80.6 88.8 87.7 88.2 TEST. DATE 9-28-82 SEL. 88.0 9.98 82.8 9.62 86.5 87.5 NOISE DATA SITE 2 AL_{fc} 86.9 84.7 86.3 84.8 83.4 83.5 AL 91.9 84.9 557.2 83.6 82.5 86.3 81.3 (ALT fee) 577.3 574.6 6.869 531.9 SELfc 87.9 89.2 86.2 85.5 91.3 90.1 SEL 90.5 87.1 85.5 89.1 89.0 85.1 NOISE DATA SITE 1 ALfc. 88.3 84.3 83.0 85.0 80.8 81.6 AL an 84.2 79.8 81.0 87.3 81.7 83.3 ALT (fec) 565.3 591.1 547.9 551.2 529.4 503 .836 .836 .836 .823 IAS (KTS) 176 176 176 176 145 SITE 1 SITE 2 170 .--171 138 168 AIRCRAFT Baron 58P (CONT) AIRCRAFT TEST DATA 172 139 163 161 2600 2600 2600 2600 RPA Z PWR 75 5 5 8 8 20 20 78 23 12

500 FT. LEVEL FLYOVER DATA

TABLE B-11

*Indicates Estimate

6-82		•	SELfc	84.3	83.5	83.1	82.4	82.9	84.7	9.48	83.5	84.1	86.0	85.9	81.7	83.2				
TEST. DATE 10-26-82		⊴	SEL	83.5	83.9	83.7	83.1	84.3	85.7	85.0	84.2	84.2	86.1	85.9	82.7	83.6				
TEST. DA	THILL	NOISE DATA SITE 2	ALfc	80.1	79.3	78.7	77.7	78.7	61.0	80.9	79.0	79.9	82.7	83.4	81.7	83.2				-
			A.L.	79.1	79.7	79.5	78.5	80,5	82.4	81.5	80.0	80.0	82.9	82,4	78.4	79.6				
			ALT (ft)	548	481	462	462	421	436	471	453	496	491	501	436	471				
		!	SELfc	82.7	81.8	82,4	82,8	82.2	82.8	83.0	82.8	83.6	84.0	84.3	83.9	83.2				
	THITT		SELam	84.9	84.4	84.4	84.6	84.2	84.4	85.5	84.7	84.6	85.8	85,8	85.8	84.9				
		NOISE DATA SITE 1	AL _{fc}	78.5	77.8	78.8	79.5	78.5	79.0	79.6	78.9	80.0	80.1	82.3	80.8	79.6				
			AL am	80.8	80.3	80.8	81.2	80.4	9.08	82.1	80.8	81.0	81.9	83.8	82.7	81.3				_
			ALT (ft)	402	395	414	424	417	428	393	418	454	421	434	418	425				
			Ημ	6849	. 7109	.7143	.7443	.7443	2655	.7655	.7588	.7588	.7705	. 7705	.7552	.7552				
			IAS (KTS)	210	200	205	200	200	207	207	205	205	215	215	190	190				
			(KTS) SITE 2	185*	175*	180*	175*	175*	182*	182*	180*	180*	¥061	¥061	165*	165*				
luest-I		AIRCRAFT TEST DATA	SITE 1	85	175	180	175	175	182	182	180	180	190	190	165	165				
425 Conc		CRAFT T	RPM	1650	1750	1750	1850	1850	1900	1900	1875	1875	1900	1900	1900	1900				
AIRCRAFT C- 425 Conquest-I		AII	Z PWR	90	06	06	90	90	90	90	06	90	100	100	75	75				
AIR			VENT	σ.	10	11	12	13	14	15	22	23	20	21	16	17				

500 FT. LEVEL PLYOVER DATA

TABLE B-11 (CONT)

TEST DATE 10-26-82 AIRCRAFT C- 425 Conquest-I (CONT)

		SELfc	80.5	91.0	6140														Ì		
		SET	81.2	Г	0.70	\dagger	+														•
	NOISE DATA SITE 2	AL fc	75.6		2.0																-
		AI,	76.6	ì	8-77																-
		ALT	453		449						L										-
		SELfc	21.8	7	31.5																_
		SEL	83 4	2000	82.7																
	NOISE DATA SITE 1	AL fc	77 8	8177	77.4															_	
THILL	[OM	AL.		1	78.6							_									_
		ALT	(33)	7	777																
77111		× P		0777	.7440														_		
		IAS	OKIS)	17/0	170																_
		(KILS)	SITE 2	145*	145*									_		-		•			
	AIRCRAFT TEST DATA	1 1	SITE 1	145	145																
	CRAFT T		T	1900	1900															1	
AIRCKAPT C-425 CONQUE	IV IV		Z PWR	50	50										-				-		
AIRCRAFT C-423 CONFIDENCE TOWNS			EVENT	18	19																

APPENDIX C

Appendix C: Cockpit Data

This appendix contains various cockpit instrumentation readings logged by a cockpit observer. The readings were logged when the aircraft was approximately over the prime site. Due to the difficulty in seeing the ground from the cockpit during the takeoff operation, it was hard to determine when the aircraft was in fact directly over the site. This will account for the difference between test altitude (ALT $_{\rm T}$) listed in Appendices A and B and the altitude listed in Appendix C.

TABLE C-1

AIRCRAFT C-180	C-180	1				TEST DATE	TEST DATE 6-3-82
EVENT NO.	EVENT TYPE	MANIFOLD PRESS.	TORQUE	PROP RPM	IAS (KTS)	HEADING (DEGREES)	ALTITUDE
-	Teleoff	27.5	N/A	2550	78.3	180	l.
2	Takeoff	27.5	N/A	2550	78.3	190	
, .	Takenff	27.5	N/A	2550	78.3	180	1
7	Takeoff	27.5	N/A	2550	78.3	180	
	Takeoff	27.5	N/A	2550	78.3	180	1
	Takenff	27.5	N/A	2550	78.3	180	
-	Takeoff	27.5	N/A	2550	78.3	180	
			٠				
	+						
	+						
							•

TABLE C-2

EVENT NO.	EVENT TYPE		TORQUE	PROP RPM	IAS (KTS)	HEADING (DEGREES)	ALTITUDE
1	Takeoff	•	N/A	2375	85	360	-
2	Takeoff	_	N/A	2375	85	360	-
3	Takeoff	-	N/A	2375	06	360	-
4	Takeoff	1	N/A	2375	85	360	1
5	Takeoff	-	N/A	2375	85	360	_
9	Takeoff	•	N/A	2375	85	360	_
7	Takeoff	1	N/A	2375	85	360	_
8	Takeoff	-	N/A	2375	06	360	
6	Flyover	-	N/A	2450	125	360	-
70	Flyover	1	N/A	2450	125	360	1
11	Flyover		N/A	2450	125	360	1
12	Flyover	-	N/A	2225	105	360	_
13	Flyover	l	N/A	2225	105	360	1
14	Flyover	1	N/A	2175	86	360	_
. 15	Flyover	١	N/A .	1900	85	360	
16	Flyover	1	N/A	0061	06	360	4
17	Flyover	1	N/A	1700	85	360	
18	Flyover	1	N/A	2450	120	360	-
19	Flyover	-	N/A	2450	120	360	_
21	Flyover	-	N/A	2450	120	360	_
22	Flyover	-	N/A	2450	120	360	_
23	Flyover	1	N/A	2450	117	360	-
24	201		N (A	05%	120	198	-

TABLE C-3

AIRCRAFT	PA-28RT-201T Turbo Arrow IV					TEST DATE	7-13-82
EVENT NO.	EVENT TYPE	MANIFOLD PRESS.	TORQUE	PROP RPM	IAS (KTS)	HEADING (DEGREES)	ALTITUDE
		3:	N/A	2600	97	010	
1	Takeoff	0.14	N/A	2600	97	010	
7	Talanete	0.14	N/A	2600	97	011	
	Takeori	71.0	N/A	2600	26	010	1
4	Takeoff	0.14	N/A	2450	96	800	
5	Takeoff	41.0	N/A	2600	96	600	-
5	Takeoff	41.0	N/A	2600	95	010	
α	Fivorer	26.0	N/A	2500	95		
0	Flyover	26.0	N/A	2500	96	010	
01	Flyover	26.8	N/A	2400	98	010	-
2	Flyover	26.8	N/A	2400	76	800	•
12	Flyover	27.7	N/A	2300	100	900	;
*				0000	80	700	1
13	Flyover	27.7	A/A	2600	96	010	
14	Takeoff	41.0	W/W	00%	00	700	•
15	Takeoff	40.0	N/A	7000	60	010	
16	Takeoff	40.0	N/A	2600	2	900	
17	Takeoff	41.0	N/A	2600	66	900	

TABLE C-4

AIRCRAFT	C-180	1				TEST DATE	TEST DATE 7-20-82
		пишишин					
	EVENT TYPE	MANIFOLD PRESS.	TORQUE	PROP RPM	IAS (KTS)	HEADING (DEGREES)	ALTITUDE
1	Flyover	31.5	N/A	2575	138	005	1
2	Flyover	31.5	N/A	2575	138	185	-
3	Flyover	32.0	N/A	2575	140	005	1
7	Flyover	33.0	N/A	2500	142	185	1
5	Flyover	32.8	N/A	2500	140	005	1
9	Flyover	33.3	N/A	2450	142	185	1
7	Flyover	33.3	N/A	2450	140	005	1
æ	Flyover	33.8	N/A	2400	142	185	
6	Flyover	33.8	N/A	2400	140	005	-
10	Flyover	41.0	N/A	2575	162	185	1
111	Flyover	41.0	N/A	2575	160	900	1
12	Flyover	40.5	N/A	2575	160	500	1
13	Flyover	26.8	N/A	2400	120	900	-
14	Flyover	26.8	N/A	2400	119	800	1
15	Flyover	26.8	N/A	2400	121	800	-
16	Flyover	27.7	N/A	2300	120	800	-
17 53	Flyover	27.5	N/A	2300	120	005	1
21	Flyover	27.0	N/A	2600	165	_	-
22	Flyover	27.0	N/A	2600	162	1	
23	Flyover	27.0	N/A	2600	160	l	1
24	Flyover	27.0	N/A	2550	163	ı	,
25	Flyover	22.0	N/A	2600	148	355	-
26	Flyover	22.0	N/A	2600	145	355	-

TABLE C-4 (CONT)

			COCKPIT DATA	DATA		7-20-82	7-20-82
(TNO) 081-13 mar (L-180)	80 (CONT)					TEST DATE	MILITAL TITLE
AIRCKAPT			THE PART OF THE PA				
			TOPOTE	PROP RPM	IAS (KTS)	HEAD INC (DEGREES)	ALTITUDE
EVENT NO.	EVENT TYPE	MANIFOLD PRESS.	TOMOT		07.5	355	l
		22.0	N/A	2425	140	355	,
27	FIYOVEI	23.0	N/A	2450	151	220	
28	Flyover	23.0	N/A	2450	151	332	
29	Flyover	2:57	A/M	2450	153	355	
30	Flyover	23.0	17 / W	2450	120	355	
31	Flyover	16.8	N/A	24.25	119	355	,
3.5	Flyover	16.8	N/A	2452	125	355	1
7	Fluorer	17.1	N/A	2400	236	355	•
33	Fryon	17.5	N/A	2350	130		
34	Flyover	21.77	* 2	2300	131	355	
35	Flyover	17.2	M/A	0000	124	355	
35	Flyover	18.9	N/A	2077			
or							
				<u></u>			
		1					
	1						
			-				
							+
		•					

ATRCATT	PA-38-112 Tomahawk	¥.				TEST DATE	8-10-82
Tunnunu				THE THE PARTY OF T			MILLION TO THE STATE OF THE STA
EVENT 130.	EVENT TYPE	MANTPOLD PRESS.	TORQUE	PROP RPH	IAS (KTS)	HEADING (DEGREES)	ALTITUDE
1	Takeoff	_	N/A	2350	70	360	
2	Takeoff	_	V/N	2350	70	350	
3	Takeoff	-	N/A	2350	70	350	-
4	Takaoff	_	N/A	2350	70	350	
5	Takeoff	_	N/A	2350	70	352	
9	Takeoff	•	N/A	2350	69	340	•
7	Takeoff	1	N/A	2350	70	3.5	-
8	Takeoff	•	N/A	2350	72	345	
6	Takeoff	-	N/A	2500	95	345	
10	Takeoff	•	N/A	2500	95	340	-
п	Takeoff	1	N/A	2500	06	340	ı
12	Takeoff	1	N/A	2550	98		ė
15	Takeoff	1	N/A	2600	110	345	
14	Takeoff	1	M/A	2600	105	345	•
15	Takeoff	1	N/A	2600	105	345	
16	Flyover	1	N/A	2410	98	360	•
17	Flyover	1	N/A	2410	100	355	
18	Flyover	•	N/A	2350	95	360	ŧ
19	Flvover		N/A	2350	97	355	
20	Plyover	•	N/A	2300	06	350	
. 21	Flyover	3	N/A	2300	90	355	
22	Flyover	-	N/A	2170	85	355	ı
23	Flyover	•	N/A	2170	85	350	1
						•	

TABLE C-6

AIRCRAFT King Air 200	ng Afr 200	I	,			TEST DATE	8-31-82
ON LEADER	EVENT TYPE	MANIFOLD PRESS.	TORQUE	PROP RPM	IAS (KTS)	HEADING (DEGREES)	ALTITUDE (MSL)
EVENT NO.		*/**	2230	2000	126	010	1500
1	Takeoff	N/A	2220	2000	126	010	1000
7	Takeoff	N/A	0577	0007	126	010	1100
3	Takeoff	N/A	2230	2007	201	010	1200
4	Takeoff	N/A	2230	2000	170	310	126.)
5	Takeoff	N/A	2230	2000	126	010	1200
	Takeoff	N/A	2230	2000	126	010	1100
	Tolone	N/N	2230	2000	126	010	1100
,	Igreott	4/N	2230	1700	235	010	
8	Flyover	W/W	2165	1750	235	010	800
σ	Flyover	N/A	2017	1800	230	010	800
10	Plyover	N/A	2105	Tono		95	og e
	Tlumbr	N/A	2050	1850	252	OTO	
	##.	V/X	1995	1900	232	010	38
12	Flyover		5761	1950	231	010	800
13	Flyover	N/R	1805	2000	234	010	800
14	Flyover	N/A	7507	1900	233	010	800
15	Flyover	N/A	1995.	1300		6	80.0
3.5	Flyover	N/A	1945	1950	232	010	800
17	Flyover	N/A	1895	2000	238	010	800
81	Flyover	N/A	2230	1900	200	030	See
3		N/N	2230	1900	240	OTO	
19	FIYOVET	17.50	2230	1900	239	010	800
20	Flyover	N/A	2230	1900	239	010	800
21	Flyover	N/A	25.22	1 900	214	010	800
22	Flyover	N/A	10/2	1900	214	010	800
23	Plyover	N/A	10/2	1300			

TABLE C-6 (CONT)

HEADING (DEGREES) 010 010 010 010 010 010						
Flyover N/A 1672 1900 215 010 Flyover N/A 11672 1900 214 010 Flyover N/A 1115 1900 195 010 Flyover N/A 1115 1900 194 010 Flyover N/A 1115	MANIFOLD PRESS.	TORQUE	PROP RPM	IAS (KTS)	HEADING (DEGREES)	ALTITUDE (MSI)
Elyover N/A 1672 1900 214 010 Flyover N/A 1115 1900 195 010 Flyover N/A 1115 1900 194 1900 Flyover N/A 1115 1900 1900 Flyover N/A 1115 1900 1900 1900 Flyover N/A	N/A	1672	1900	215	010	800
Flyover N/A 1115 1900 195 010 Flyover N/A 1115 1900 194 1900 194 1900 Flyover N/A 1115 1900 194 1900	N/A	1672	1900	214	010	800
Flyover N/A 1115 1900 194 010 Flyover N/A 1115 1900 194 010 Flyover N/A 1115 1900 194 010 Company 1900 194 010 Company <th< td=""><td>N/A</td><td>1115</td><td>1900</td><td>195</td><td>010</td><td>800</td></th<>	N/A	1115	1900	195	010	800
Flyover N/A 1115 1900 194 010 Flyover N/A 1115 1900 194 010 Flyover N/A 1115 1900 194 010	N/A	1115	1900	194	010	800
Elyover N/A 1115 1900 194 010	N/A	1115	1900	194	010	800
	N/A	1115	1900	194	010	800
		٠				

TABLE C-7

ATECEAPT PA	ATECRAFI PA-42 Cheyenne	1				TEST DATE	
					4	1	
THINTING					116 (FTG)	HEADTHG	41 #1411118
FUENT NO.	EVENT TYPE	MANIFOLD PRESS.	TORQUE	PROP RPM	Total Car	(DEGREES)	ALITODE
			1895	2000	240	010	
1	Flyover	N/A	10.5	1950	236	010	
2	Flyover	N/A	1945	2000	236	010	
-	Flyover	N/A	1995	1900	250	010	
	Tlynver	N/A	2050	1850	230	9.5	
*	FLYGGE	N/A	2105	1800	236	010	
J	FLYSVEL	1/2	2105	1750	230	010	
9	Flyover	N/8	2165	1700	230	010	
7	Flyover	N/A	0000	1850	231	010	-
8	Flyover	N/A	0500	1900	231	010	1
6	Flyover	N/A	2050	2000	210	010	•
o.	Flyover	N/A	1995	1900	21,	010	
2	201001	N/A	1995	1900	210		
11	riyover	▼ /№	1995	1900	210	010	
12	Flyover	N/A			010	010	
	Plynoer	N/A	1995	1900		010	
7		V/N	1995	1900	210	010	
14	Flyover	0/N	1493	1900	209	OILO	
15	Flyover	W/W	17.03	1900	210	010	
16	Flyover	N/A	1493	1900	205	010	
17	Flyover	N/A	1493	1000	203	010	•
18	Flyover	N/A	1493	DOCT .	205	010	•
	Tlunver	N/A	1493	1900	SOT .	956	-
19	FIYOVEL	V/"	995	1900	183	OTO	
20	Flyover	N/A	900	1900	183	010	-
21	Flyover	N/A	277	0000	115	010	-
22	Takeoff	N/A	1692	0002	115	010	1
23	Takeoif	N/A	1895	2000			

TABLE C-7 (CONT)

COCKPIT DATA

MILLION TO THE PROPERTY OF THE PARTY OF THE ALTITUDE TEST DATE 9-8-82 HEADING (DEGREES) 010 010 010 010 010 IAS (KTS) 1115 170 115 115 115 171 PROP RPM 2000 2000 2000 2000 1900 1895 1895 995 995 1895 1895 TORQUE MANIFOLD PRESS. N/A N/A N/A N/A N/A N/A AIRCEAPT PA-42 Cheyenne (CONT) EVENT TYPE Takeoff Takeoff Takeoff Takeoff Takeoff Takeoff EVENT NO. 28 56 24 25 53 27

And the second s

TABLE . C-8

					4		
EVENT NO.	EVENT TYPE	MANIFOLD PRESS.	TORQUE	PROP RPM	IAS (KTS)	HEADING (DEGREES)	ALTITUDE
1	Flyover	33.8	N/A	2700	170	180.	
2	Flyover	34.3	N/A	2650	170	175	
3	Flyover	34.8	N/A	2600	176	180	-
4	Flyover	35.5	N/A	2550	176	185	
5	Flyover	27.0	N/6.	2700	145	179	
9	Flynver	28.5	N/A	2600	154	178	1
7	Flyover	30.0	N/A	2500	160	180	
80	Flyover	30.8	N/A	2450	160	187	
6	Flyover	31.5	N/A	2400	162	185	
10	Flyover	32.9	N/A	2300	162	185	ì
11	Flyover	33.7	N/A	2250	163	185	1
12	Flyover	21.7	N/A	2450	120	185	
13	Flyover	22.2	N/A	2400	120	190	ı
14	Flyover	22.6	N/A	2350	118	190	1
15	Flyover	23.1	N/A	2300	120	181	1
16	Flyover	23.5	N/A	2250	118	181	
17	Flyover	24.3	N/A	2200	130	182	1
18	Flyover	33.8	N/A	2700	175	185	=
19	Flyover	27.0	N/A	2700	1	1	
20	Flyover	30.0	N/A	2500	162	185	
21	Flyover	22.6	N/A	2350	130	185	-
22	Flyover	23.1	N/A	2300	118	187	ì
23	Takonff		27.75	,	((,	

TABLE C-8 (CONT)

CRAFT	AIRCRAFT C-414 Chancellor (CONT)	(CONT.)				TEST DATE	TEST DATE 9-14-82
EVENT NO.	EVENT TYPE	MANIFOLD PRESS.	TORQUE	PROP RPM	IAS (KTS)	HEADING (DEGREES)	ALTITUDE
	Takeoff	-	N/A	_	110	187	-
	Takeoff	_	N/A	_	115	187	١
	Takeoff	_	N/A	-	110	187	•
	Takeoff	_	N/A	_	112	187	•
	Takeoff	_	N/A	-	110	187	-
						<u> </u>	

TABLE C-9

EVENT NO.	EVENT HO. EVENT TYPE MANIFOLD PRE		TORQUE	наи вон	IAS (KTS)	HEADING (DEGREES)	ALTITUDE (AGL)
1	Takeoff	39.5	N/A	2700	115	005	_
2	Takeoff	39.5	N/A	2700	115	900	1100
3	Takeoff	39.5	N/A	2700	113	005	1100
4	Takeoff	39.5	N/A	2700	115	010	1000
5	Takeoff	39.5	N/A	2700	115	010	1200
9	Takeoff	39.5	N/A	2700	115	010	1000
7	Takeoff	39.5	N/A	2700	115	010	1100
8	Takeoff	39.5	N/A	2700	115	010	1100
6	Flyover	27.2	N/A	2700	158	010	200
10	Flyover	27.5	N/A	2700	160	010	500
11	Flyover	27.9	N/A	2650	166	010	500
12	Flyover	28.3	N/A	2600	172	010	500
13	Flyover	28.7	N/A	2550	169	010	500
14	Flyover	29.2	N/A	2500	163	010	500
15	Flyover	29.7	N/A ·	2450	166	010	500
16	Flyover	31.0	N/A	2400	164	010	500
17	Flyover	33.0	N/A	2300	164	010	500
18	Flyover	27.2	N/A	2200	160	010	500
19	Flyover	29.5	N/A	2700	194	010	200
20	Flyover	31.8	N/A	7600	176	010	500
21	Flyover	23.5	N/A	2600	145	010	500
22	Flyover	39.5	N/A	2600	194	010	500
23	Flyover	31.8	N/A	0070	7=1		

TABLE C-9 (CONT)

AIRCRAFT B5	AIRCRAFT B58-P Baron (CONT)	i				TEST DATE	TEST DATE 9-28-82
		THE THEORY OF THE PARTY OF THE	пинания				
EVENT NO.	EVENT TYPE	MANIFOLD PRESS.	TORQUE	PROP RPM	IAS (KTS)	Headinc (Degrees)	ALTITUDE (AGL)
76	7] vover	23.5	N/A	2600	145	010	500
25	Flyover	31.8	N/A	2600	176	010	200
26	Flvover	31.8	N/A	2600	176	010	200
	-						

*MOTE: ACTUAL PROPELLER SPEED = 182 PLUS INDICATED VALUE

TABLE C-10

S TANGE AT A	ATECRATE C-210 Centurion					TEST DATE 10-5-82	10-5-82
ALMANAT							
THEFT NO.	EVERT NO. EVENT TYPE MANIFOLD PRESS	MANIFOLD PRESS.	TORQUE	PROP NPM	IAS (KTS)	HEADTHC (DECREES)	ALTITUDE (MSL.)
		4/2		2700	86	180	1100
1	Takeout	W/W	2760	2700	95	185	1200
7	TALOGE	N/A	2700	2700	95	175	1300
	Taken	M/A	2700	2700	26	185	1200
4	Inkeori	7/2	2700	2700	86	180	1300
2	Takeori	1/V	2200	2700	97	190	1300
9	Takeoff	W/W	2017	2700	67	180	1350
7	Takeoff	N/A	2/00	2/00			
	-						
						-	
			A				•

TABLE C-11
COCKPIT DATA

AIRCRAFT C	AIRCRAFT C-182 Skylane	1				TEST DATE 10-5-82	10-5-82
THE STATE OF THE S							
EVENT NO.	EVENT TYPE	MANIFOLD PRESS.	TORQUE	PROP RPM	IAS (KTS)	HEADING (DEGREES)	ALTITUDE (MSL)
14	Takeoff	30.0	N/A	2400	92	180	1250
15	Takeoff	31.0	N/A	2400	92	182	1200
16	Takeoff	31.0	N/A	2400	91	182	1200
. 17	Takeoff	31.0	N/A	2400	90	182	1100
18	Takeoff	31.0	N/A	2400	8 <i>÷</i>	182	1100
19	Takeoff	31.0	N/A	7400	06	182	1150

TABLE C 12

AIRCRAPT C	AIRCRAPT C-172 Skyhawk	ļ					10-5-82
THE PARTY OF THE P							
EVENT NO.	EVENT TYPE	MANIFOLD PRESS.	TORQUE	PROP RPM	IAS (KTS)	HEADING (DEGREES)	ALTITUDE (MSL)
74	Takonff		N/A	2300	75	180	006
7.6	Takeoff	1	N/A	2300	75	180	006
N.	Takeoff		K/A	2300	75	180	900
07	1				7	190	006
29	Takeoff		MA	7.700	7.	00.	OUP
30	Takeoff		N/A	2300	7.5	180	200
31	Takeoff	١	N/A	2300	75	180	00%
				-			
				-			
						,	
						-	
	-						

TABLE C-13 COCKPIT DATA

	AlkCRAFT	TIMESTALL SECTION STREET, SECT					TEST DATE	TEST DATE 10-19-82
Takeoff N/A Takeoff N/A Takeoff N/A Takeoff N/A Takeoff N/A Takeoff N/A	EVERT NO.	EVENT TYPE		TORQUE	PROP RPM	IAS (KTS)	3	ALTITUDE (AGL)
Takeoff N/A Takeoff N/A Takeoff N/A Takeoff N/A	2	Takeoff	N/A	1001	100%	147	180	1300
Takeoff N/A Takeoff N/A Takeoff N/A	3	Takeoff	N/A	100%	1002	147	180	1200
Takeoff N/A Takeoff N/A	4	Takeoff	N/A	100%	1001	147	180	1200
Takeoff N/A Takeoff N/A	5	Takeoff	N/A	1001	100%	147	180	1300
Takeoff N/A	ó	Takeoff	N/A	100%	100%	147	180	1300
	7	Takeoff	N/A	1002	100%	147	180	1300
	,							

TABLE C-14 COCKPIT DATA

					7777777777		
EVENT NO.	EVENT TYFE	HANIFOLD PRESS.	TORQUE	PROP RPM	IAS (KTS)	HEADING (DECREES)	ALTITUDE (MSL)
15	Takeoff	N/A	97.5%	1002	135	180	-
16	Trkeoff	N/A	97.5%	100%	135	185	1500
17	Takeoff	N/A	97.5%	1002	135	185	1700
18	Takeoff	N/A	97.5%	100%	135	185	1900
19	Takeoff	N/A	97.5%	100%	135	185	2000
20	Takeoff	N/A	97.5%	1002	135	185	2200
						·	

TABLE C-15

AIRCRAFT Beech Duchess	ech Ducliess	ļ				TEST DATE	TEST DATE 10-19-82
THUMBING			THE STREET STREET				
EVENT NO.	EVENT TYPE	MANTFOLD PRESS.	TORQUE	PROP RPM	IAS (KTS)	HEADING (DEGREES)	ALTITUDE (MSL.)
96	Tolonge	29.0	N/A	2700	76	185	
29	Takeout	29.0	N/A	2700	76	185	1500
30	Takeott	29.0	N/A	2700	86	180	1600
31	Takeout	79.0	N/A	2700	76	180	1500
32	Takeori	20.02	N/A	2700	16	180	1600
33	Takeoff	73.0	**/\m	2700	96	180	1800
34	Takeoff	29.0	N/A	20/2	97	179	1700
35	Takeoff	29.0	N/A	27.00			
) 		
	1						

TABLE C-16 COCKPIT DATA

AIRCRAFT P1	AIRCRAFT Piper Navajo 350	1				TEST DATE	TEST DATE 10-20-82
The state of the s		THE STATE OF THE S			4	0.00	
EVENT NO.	EVENT TYPE	MANIFOLD PRESS.	TORQUE	PROP RPM	IAS (KTS)	(DECREES)	ALTITUDE
	33	0.14	N/A	2525	106	-	
1	Takeoti	0.14	N/A	2525	101	-	
2	Takeorr	71.0	N/A	2525	101	-	
3	Takeoft	71.0	N/A	2525	101	-	
4	Takeori	41.0	N/A	2525	100		
5	Takeoii	0.14	N/A	2525	103	1	-
9	Iakeoii	0 19	N/A	2525	101	_	-
7	Takoeri		1/2	25.75	101	1	-
8	Takeoff	41.0	N/A	22.73			
					-		
	-						
		<u> </u>		_			
				1			
				-			
				-			

TABLE C-17

VANIFOLD PRESS: TORQUE PROP RPH 1A5 (CTS) READING				THEFT	пининини			
Takeoff - N/A 2350 76 - Takeoff - N/A 2375 76 - Takeoff - N/A 2350 77 - Takeoff - N/A 2350 77 - Takeoff - N/A 2350 76 -	EVENT NO.	EVENT TYPE	MANIFOLD PRESS.	TORQUE	PROP RPM	IAS (KTS)		ALTITUDE
Takeoff N/A 2350 76 Takeoff N/A 2350 76 Takeoff N/A 2350 77 Takeoff N/A 2350 77 Takeoff N/A 2350 76 Takeoff N/A 2350 7	16	Takeoff	-	N/A	2350	76	-	
Takeoff N/A 2350 76 Takeoff N/A 2350 80 Takeoff N/A 2350 77 Takeoff N/A 2350 76 Takeoff N/A 2350 77 Takeoff N/A 2350 7	17	Takeoff	_	N/A	2375	76	1	1
Takeoff - N/A 2350 80 -	18	Takeoff	-	N/A	2350	76	ı	-
Takeoff - N/A 2350 77 - Takeoff - N/A 2350 76 - Takeoff - N/A 2350	19	Takeoff	-	N/A	2350	80	-	•
Takeoff - N/A 2350 76	20	Takeoff	_	N/A	2350	77	1	
	21	Takeoff	1	N/A	2350	76	1	,
		i						

TABLE C-18

ALTITUDE (AGL) TEST DATE 10-20-82 1400 1300 1300 1300 1400 1400 1300 HEADTING (DEGREES) 180 180 182 183 185 180 180 IAS (KTS) 8 97 8 100 97 96 97 PROP RPM 2700 2700 2700 2700 2700 2700 2700 N/A N/A N/A TORQUE N/A ₹ N N/A MANIFOLD PRESS. 29.0 28.5 28.0 28.0 28.0 28.0 28.5 AIRCRAFT Beech Bonanza-36 EVEAT TYPE Takeoff Takeoff Takeoff Takeoff Takeoff Takeoff Takeoff EVENT NO. 띪 35 36 33 34

TABLE C-19

EVENT BO. EVENT TYPE MANIPOLD PR 1 Takeoff N/A 4 Takeoff N/A 5 Takeoff N/A 7 Takeoff N/A 7 Takeoff N/A 7 Takeoff N/A	MANIPOLD PRESS. N/A N/A N/A N/A N/A N/A N/A	TORQUE	700	TAC (FTC)	TRANTING	
	N/A N/ N/A N/A N/A	1244	PROF RFM	TOTAL CAL	(DECREES)	ALTITUDE (MSL)
	N/		1900	115	360	1500
	N/A N/A N/A N/A	1244	1900	119	005	1800
	N/A N/A N/A	1244	1900	115	010	1600
	N/A N/A N/A	1244	1900	116	010	1800
	N/A N/A	1244	1900	115	010	1500
	N/A	1244	1900	117	012	1600
		1244	1900	118	010	1650
						ž

APPENDIX D

METEOROLOGICAL DATA

Appendix D: Meteorological Data

Surface

Surface temperature, relative humidity, and wind data were acquired in the vicinity of the noise measurement array during each test.

Upper Air

On certain test days upper air meteorological data were reported as available from the National Weather Service Radiosonde Launch facility at nearby Sterling Park, Virginia (approx 3 miles away).

TABLE D-1 METEOROLOGICAL DATA

6-3-82	CNIA	DIRECTION	Т		-		+																							
TE 6-3-82		SPEED (KIS)												-										1		_	_	+		•
TEST DATE TITITITITITITITITITITITITITITITITITIT		(%) VITUITA	HOMITATION (%)																			-	1			-	+	+		_
1777 1777 1777 10		(TEMP (OF)																							-		-		_
n		HT. ABOVE	GND (FT.)																	-	+	1			+	-				_
			DIR	150	150	180	160	160	170	150	3/5	140	140	140	170	2/7	170	140		1										
		CNIM	SPEED (KTS)	13	13	12	13	12	12		7.7	12	12	13		14	16	14												
TITITITITI	SUNTACE		HUMIDITY (2)	79	Ş	26.5	58	09	62	3 3	58	35	58	75	,	54	54	53	*					1				-	1	
AIRCRAFT C-180 THEFTHEFTHEFTHEFTHEFTHEFTHEFTHEFTHEFTHEF			TEMP (OF)	†		77	6/	7.7	11	٥/	78	77	76		80	80	78		6/									+	-	
AIRCRAFT			90.	9.56	37.6	10:15	10:30	10:45	10:57	11:17	11:31	11:46	11.55	11:55	12:14	12:31	12.66	75.37	12:54											

TABLE D-2 HETEOROLOGICAL DATA

TEST DATE 6-23-82		WIND	DIRECTION															
ATE 6-23-82		TA	SPEED (KTS															
TEST DATE	UPPER AIR		HUMIDITY (Z)															
	5		TEMP (OF)															
		HT. ABOVE	GND (FT.)															
			DIRECTION	340	300	300	300	310	310	330	-							
		CNIA	SPEED (KTS)	3	8	7	6	8	8	5	•							
	SURPACE		HUMIDITY (2)	84	78	7.0	61	57	52	87	09							
AIRCRAFT C-170			TEMP (OF)	61	59	89	71	73	75	91	11							
AIRCRAFT			TIME	5:53	6:53	7:54	8:51	9:52	10:53	11:53	12:15							

TABLE 15-3 METEOROLOGICAL DATA

TEST DATE 7-13-82		DIESCTION	340					1	1						-					-	-	1					_	
rest pare 7-13-82		WIND OF THE PERSON OF THE PERS	SPEED (A.13)				10											\ \ 	+		1			-	-	+	_	
WE TEST DAY	UFFER MAN	**	E	91	79	59		`									1	1		-				+	+	+	_	
	à		TEM (OF)	68	7.1	75	•														-		+	+	-		-	
		ADUAY	CHO (FT.)	บ	246	709	910																+	-			-	-
	التنبيبية بيسو		JIRECTION																_		1	+				-	+	-
			ONIA (SIX) UAAGS		1																				-		-	_
urbo Arrow IV	STRPACE		•	HUMIDITI CAL		+							1	1														
AIRCRAFT PA-26RI-2011 lurbo Arrow IV	7	5		TEM (OF) H								+	+				-							1				-
AIRCRAFT PA-26RI-201T Turbo Arrow IV				TDG						1	1	1																

TABLE D-4 HETEOROLOGICAL DATA

AIRCEAFT	r c-386	AIRCRAFT C-1.86		מבנים בנו		anzuvan	TEST DATE	TEST DATE 7-20-82	
		SURFACE				ם י	UPPER AIR		
			WIND		HT. ABOVE			GNIM	Q
TIME	TEMP (OF)	HUMIDITY (Z)	SPEED (KTS	DIRECTION	GND (FT.)	TEMP (OF)	HUMLDITY ()	LFEED (KTS)	DIRECTION
5:30	71	97	2	100	0	70	94	0	230
5:44	71	97	0	000	269		93	1	1
5:55	71	76	0	000	620	73	98	1	t
6:13	71	100	2	230	1075	-	-	01	367
6:27	71	100	0	000	1874	70	83		-
6:45	72	97	0	000					
6:54	72	97	0	000					
7:15	73	100	4	310					
7:30	74	76	4	300					
7:46	74	46	7	280					
7:55	75	45	4	270					
8:19	77	75	7	280					
8:32	77	76	9	300					
8:45	7.7	06	. 5	310					
8:57	77	06	9	310					
9:15	78	88	7	290					
9:35	82	82	8	360			,		
9:52	82	85	6	310					
							,	_	

TABLE D-5 METEOROLOGICAL DATA

THE STATE OF THE S			DATEMENTON	DIRECTION	200	•	'			289																				
re 8-10-82			MOLLUZGIG COMA, COME	SPEED (KIS)	0	-				13																				
TEST DATE	UPPER AIR		į	HUMIDITY (Z)	86	001	70	*	82																					
	žn			TIME (OF)	89	25	2/	77	74	-																				-
			ABOVE	GRO (FT.)			154	499	19/	939										-							-			_
				DIRECTION	1	9	0	0	120	210	217	0	250	290	290	200	.520	030	020	25	670	027	028	031	031		-			_
				ONTA (Share)	Fren (A19)	0	0	0		, .	,	0	3	9			7	8	٥	8	æ	6	88	6	ļ.					
nahavk ·		SURFACE	<u> </u>	(HUMIDITY (2)	06	06	,	15	1	-	97	90	87		88	85	79		72	65	63	59.	57	07	40				
PA-38-112 Tomahawk		S			TEMP (OF) H	7.1	71		+	12	l	72	74	11	1	79	90	81	3	82	83	83	84	84		86				
AIRCRAFT					TDGE	5:39	5.53		/n:9	6:22	6:41	6:55	7.10		1:5/	7:50	90.8	33.5	77:0	8:37	8:52	9:10	9:25	0.53	2:5	10:53				

TABLE D-6 METEOROLOGICAL DATA

TABLE D-7 METEOROLOGICAL DATA

TEST DATE 9-8-82	UPPER AIR		HT. ABOVE	(Z) SPEED (KTS) DIRECTION GND (FT.) TEMP (OF) HURLDILL (A)	65 64 6 140 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °		704 0/7	903	270 1005	84 3 260	84 4 260	0 0 78	0 0 82	78 4 180	78 6 140	78 4 140		78 4 TOO						
	STAR STAR	Some	TIM TOTAL	SPEED (KT	-		-					_		-		_	+	+						_
AIRCRAFT PA-42 Cheyenne				TEMP (0F)		99	99	99	99	99	99	99	70	20,	02		0	70						
AIRCRAFT					TIME	97:9	6:54	7:05	7:20	7:47	7:52	8:20	8:53	12.53	1.53	553	2:53	3:53						

TABLE D-8 METEOROLOGICAL DATA

TEST DATE 9-14-82		QNIM	SPEED (KTS) DIRECTION														
TEST DATE	UPPER AIR		HUMIDITY (X) SP														_
ann ann a	lan		TEMP (OF)														
mannan		UT AROUP	GND (FT.)														
			DIRECTION	160	120	130	130	110									
			SPEED (KTS)	5	4	5	5	Š									
ellor TITTITITI	SURFACE		HUMIDITY (2)	19	_	59	57	57									
AIRCRAFTC-414 Chancellor			TEMP (OF)	84	78	78	84	84									
AIRCRAFT			TIME	12:53	1:31	1:54	2:54	3:51									

TABLE D-9
METEOROLOGICAL DATA

		g	DIRECTION	360	1	-	1	140									
VTE 10-5-82		1 14		2	-	-	1	7									
TEST DATE	UPPER AIR		HUMIDITY (X) SPEED (KTS)	97	78	75	90										
TEST DATE 10-5-82	in		TEM (OF)	61	63	63	65										
manana	,	HT. ABOVE	GND (FT.)	0	282	535	820	606									
mannan			DIRECTION	0	010	310	0	340	340								
		QNIA	SPEED (KTS)	0	9	4	0	3	3								
, c-172	SURFACE		HUMIDITY (Z)	87		06	78	76	71								
AIRCRAFT C-210, C-182, C-172			TEM (OF)	63	-	63	99	70	7.4								
AIRCRAFT			TIME	6:53	7:05	7:53	8:53	9:53	10:53								

TABLE D-10
METEOROLOGICAL DATA

12	i	 	i I) I)	1) (ŀi	i	ī	1 1	ı 1	1	1 1		r 1		1	(E	1	1
TITITITI		e	DIRECTION	250	215	205				- - - - -										i		
TEST DATE 10-19-62		WIND	SPEED (KTS)	3	17	22																
TEST DA	UPPER AIR		HUMIDITY (Z)	85	40	41																-
TEST DATE 10-19-82	U		TEMP (OF)	37	51	48																
шишиш		HT. ABOVE		O	1000	2000																-
munum			DIRECTION	190	170	210	170	150														
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		OKIM	SPEED (KTS)	7	9	5	9	10														
stream 900, D	SURFACE		HUMIDITY (2)	86	74	60	46	39.														
AIRCRAFT Merlin, Gulfstream 900, Duches			TEMP (OF)	65 .	55	59	63	67									•					
AIRCRAFT			TIME	7:54	8:53	9:53	10:51	11:51														_

TABLE D-11 METEOROLOGICAL DATA

82			a	DIRECTION	170	•			194												-
TE 10-20-82			TA.	SPEED (KTS)	7	,			21	-											-
TEST DATE		UPPER AIR		HUMIDITY (Z)	98	96	FI I	g		98											
		Б		IDG (of)	69		*	y y		75											
			ABOVE	GEO (FT.)	0		236	423	346	1268											_
	пинини			DIRECTION	130		160	190	170												_
Anza			MIN.	SPEED (KTS)	7		8	12	6												
PA-21-181, Bon	пинини	SURPACE		HUNCOLTY (Z)	1 3	7.7	93	*5	7.5												
AIRCRAFT Navajo 350, PA-21-181, Bonanza				TEM (OF)	T	7	29	25	67												
AIRCRAFT				7.1100		7:55	8:52	9:51	10.50	201.00											

TAKE D-12 METEOMOLOGICAL DATA

12 Teternum			DIRECTION	335	,	354										
AIRCRAFT C-425 Conquest-1		27.0		9	-	25										
TEST DATE	UPPER AIR		HUBITAL (X)	8*	07	-	99									
maninn	D		TEGE (OF)	99	97	-	47									
mannin		ET. ABOVE	(TT.)	0	276	846	1771									
mananan			DIRECTION	320	320	3:0	350									
		QUA	(STA) CEARS	9	13	12	15									
mest-I	SURFACE		HUNCEDITY (Z)	09	52	45	39									
C-425 Conquest-I			TDG (of)	77	67	55	95									_
TANCHAT			TOC	7:52	8:52	9:52	10:50									

APPENDIX E

CESSNA 210 SUPPLEMENTAL NOISE MEASUREMENTS

Appendix E

CESSNA 210 Supplemental Noise Measurements

Introduction - In order to obtain additional data on the relationship between level flyover and takeoff noise levels, additional noise measurements were conducted with a Cessna Model 210 at Dulles International Airport on June 28, 1983.

A specific objective was to obtain data on the effect of angle of attach on noise levels. The same Cessna 210, N6333C, that was used in FAA takeoff measurements during 1982, was flown to provide a direct comparison with the earlier measurements. (see Table 1.1 and Table 1.2).

The noise measurements were conducted over a two-position array separated by 492 feet under the flight path.

The noise measurement systems were identical to the systems used in the test of June 1982.

Following the noise measurement flights, the tachometer was removed from the airplane for calibration. It was determined that the tachometer readings are approximately 180 RPM less than the true RPM's and the data were corrected accordingly.

Summary - The following comments summarize analysis of the data for the Cessna Model 210:

- a. takeoff noise level at maximum continuous power 85.6dBA max
- b. change in noise level with helical tip Mach Number (M_{H}) over a M_{H} range of 0.77 to 0.91; dBA = 98.7 + 226 log (M_{H})
- c. there was no statistically significant change in noise level with engine power over a power range of 68% to 98%

d. the noise level at 98% engine power varied linearly with airspeed from 84.4 dBA in level flight at 150 kts true airspeed to 85.6 dBA in climbing flight at 100 kts TAS, normalised to the reference altitude of 640 feet.

Test Operations

Thirty-one flights were conducted over the measurement sites on a magnetic heading of approximately 300°. Seven different takeoff power-airspeed combinations were flown and flight path intercepts were used on these flights. Seven different power RPM combinations were flown in level flight. All flights were targeted for an altitude of 640 feet AGL over the primary site. All but two flights were within 20% of the target altitude and the average of all of the flights was 23 feet above the target altitude.

Weather conditions during the test period were close to a standard acoustic day. The wind was less than 2 knots; the temperature 82°F to 84°F; and the relative humidity 75% to 80%.

Tachometer Calibration - Following the noise measurement flights, the tachometer was removed from the airplane and calibrated. It was determined that the tachometer readings are approximatel 180 RPM less than the actual RPM's over the test range.

Results - Corrected data for the 31 events are listed in the Table. The noise level data are corrected to a reference altitude of 640 feet using the expression 22 log (Altitude/640). The true airspeed listed for the level flyover is the true airspeed over the primary Site 1. Due to flight pattern constraints, the aircraft was accelerating over the sites during the level flyovers. Speeds over Site 2 were not recorded but are estimated to be on

the order of 10 knots faster for the level flyovers. Speed was stabilized for the takeoff tests.

Linear regressions of the data were calculated with the following results:

Takeoff using 98% power: dBA = 92.67 - 0.02399 (TAS in knots)

Takeoff using 87% power: dBA = 90.03 - 0.04481 (TAS in knots)

For the level flyover data:

 $dBA = 15.97 + 115.9 M_{H}$

 $dBA = 98.70 + 225.9 \log M_{H}$

Quadratic regressions were evaluated and provided very similar correlations. There was no significant change in noise level with engine power over the range measured.

Using the linear regressions, the data was corrected to the reference takeoff conditions, resulting in:

Takeoff noise level at maximum continuous power 85.6 dBA max

TABLE E-1

T			TRUE			TED TO 640 ft)
EVENT	RPM	Z PWR	AIRSPEED KTS	MH	PRIMARY SITE 1	SITE 2
A1	2880	98%	103	.896	90.1	86.4
A2	2880	98%	103	. 896	90.2	89.4
A3	2880	98%	103	.896	91.7	89.5
A4	2880	98%	103	.896	92.6	88.4
C5	2880	95%	84	. 892	93.0	90.3
Có	2880	98%	82	.891	90.8	90.3
D7	2880	98%	92	.894	93.6	89.1
D8	2880	98%	92	.894	91.9	89.1
E9	2880	98%	113	.899	91.6	88.0
E10	2880	98%	'13	.899	91.2	88.4
F11	2880	98%	133	. 905	89.6	88.4
F12	2880	98%	133	.905	88,2	89.3
В13	2770	87%	82	. 858	86.9	85.4
B14	2770	87%	82	.858	87.0	84.8
B15	2770	87%	103	.863	87.3	83.6
B16	2770	87%	103	.863	87.5	85.2

TABLE E-2

LEVEL FLYOVER

			TRUE		LAM (CORRE	CTED TO 640 ft)
EVENT	RPM	% PWR	AIRSPEED	MH	PRIMARY SITE 1	SITE 2
G17	2880	98%	149	.910	88.1	89.5
G18	2880	98%	149	.910	90.2	88.0
G19	2880	98%	149	.910	88.7	90.1
G20	2880	98%	149	.910	89.0	89.7
G21	2880	98%	151	.911	89.8	90.3
G22	2880	98%	154	.912	88.7	89.4
H23	2710	85%	146	.859	84.4	82.3
H24	2710	85%	146	.859	84.7	81.9
125	2830	84%	133	.890	90.2	86.5
126	2830	84%	135	.891	88.5	88.0
127	2830	84%	140	.893	89.3	86.6
K28	2420	62%	131	.768	74.0	73.4
L29	2550	63%	133	.807	77.2	76.2
M30	2670	64%	131	.842		79.9
N31	2770	63%	123	.869	87.1	84.6

☆U.S. GOVERNMENT PRINTING OFFICE: 1983 381 428 3321