What is claimed is:

1	1. An amplified laser comprising			
2	a substrate,			
3	a semiconductor optical amplifier (SOA), coupled to the substrate and			
4	including an amplifier anode electrode and an amplifier cathode electrode, and			
5	a semiconductor laser, coupled to the substrate and including a			
6	semiconductor laser anode electrode and a semiconductor laser cathode electrode,			
7	wherein;			
8	the semiconductor laser and the SOA are configured on the substrate			
9	so that the laser is optically coupled to the SOA; and			
10	at least one of the semiconductor laser anode electrode and			
11	semiconductor laser cathode electrode is electrically coupled to at least one of the			
12	amplifier anode electrode and amplifier cathode electrode to receive operational power.			
1	2. The amplified laser of claim 1, further comprising an electro-			
2	absorption modulated laser (EML) package that encloses the semiconductor laser and the			
3	SOA, the EML package including:			
4	a first electrical contact electrically coupled to at least one of the anode			
5	electrode of the SOA and the anode electrode of the semiconductor laser;			
6	a second electrical contact electrically coupled to at least one of the cathode			
7	electrode of the SOA and the cathode electrode of the semiconductor laser; and			
8	an optical output port configured to provide an output amplified optical			
9	signal.			

TNT-114US PATENT

- 17 -

	3. The amplified laser of claim 2, further comprising at least one of.
2	a thermo-electric cooler (TEC) thermally coupled to the substrate, the TEC
3	electrically coupled to a third electrical contact and a fourth electrical contact of the EML
ļ	package;
5	a feedback monitor optically coupled to the semiconductor laser, the
ó	feedback monitor being electrically coupled to a fifth electrical contact and a sixth electrical
7	contact of the EML package; and
3	an optical modulator optically coupled to the SOA, the optical modulator
•	being electrically coupled to a seventh electrical contact of the EML package.
1	4. The amplified laser of claim 1, wherein the cathode electrode of the
2	semiconductor laser is electrically coupled to the anode electrode of the SOA whereby the
3	semiconductor laser and SOA are connected in series.
1	5. The amplified laser of claim 4, further comprising an electronic
2	component electrically coupled in parallel to at least one of the semiconductor laser and
3	the SOA.
1	6. The amplified laser of claim 5, wherein the electronic component
2	includes at least one of a resistor, a capacitor, an inductor, and an integrated circuit.
1	7. The amplified laser of claim 1, wherein the anode electrode of the
2	semiconductor laser is electrically coupled to the cathode electrode of the SOA whereby
3	the semiconductor laser and the SOA are connected in series.
1	8. The amplified laser of claim 7, further comprising an electronic
2	component electrically coupled in parallel to one of the semiconductor laser and the SOA.
1	9. The amplified laser of claim 8, wherein the electronic component
2	includes at least one of a resistor, a capacitor, an inductor, and an integrated circuit.

1	10. The amplified laser of claim 1, wherein;
2	the cathode electrode of the semiconductor laser is electrically coupled to
3	the cathode electrode of the SOA; and
4	the anode electrode of the semiconductor laser is electrically coupled to the
5	anode electrode of the SOA, whereby the semiconductor laser and the SOA are connected
6	in parallel.
1	11. The amplified laser of claim 10, further comprising an electronic
2	component electrically coupled in series to one of the semiconductor laser and the SOA.
1	12. The amplified laser of claim 11, wherein the electronic component
2	includes at least one of a resistor, a capacitor, an inductor, and an integrated circuit.
1	13. A monolithic amplified semiconductor laser comprising:
2	a substrate including a distributed feedback laser (DFB) portion and a
3	semiconductor optical amplifier (SOA) portion, the DFB portion including a diffraction
4	grating;
5	an active layer formed on the substrate extending over the DFB portion and
6	the SOA portion, the active layer further including a first end and a second end,
7	a semiconductor layer formed on the active layer, and
8	an electrical contact layer formed on the semiconductor layer, the electrical
9	contact layer including a DFB electrode portion, an SOA electrode portion, and a resistive
10	coupler electrically coupled between the DFB electrode portion and SOA electrode portion
11	to control current division between the DFB portion and the SOA portion.
12	wherein;

13	the first end of the active layer is located proximate to the SOA		
14	portion of the substrate and is substantially transparent; and		
15	the second end of the active layer is located proximate to the DFB		
16	portion of the substrate and is substantially reflective.		
1	14. The monolithic amplified semiconductor laser of claim 13, further		
2	comprising an electro-absorption modulated laser (EML) package that encloses the DFB		
3	portion and the SOA portion, the EML package including:		
	position and the compensation, and area passings measures.		
4	a first electrical pin electrically coupled to the electrical contact layer;		
5	a second electrical pin electrically coupled to the substrate; and		
6	an optical output port configured to provide an output amplified optical		
7	signal.		
1	15. The monolithic amplified semiconductor laser of claim 14, comprising		
2	at least one of:		
-	· ·		
3	a thermo-electric cooler (TEC) thermally coupled to the substrate, the TEC		
4	electrically coupled to a third electrical contact and a fourth electrical contact of the EML		
5	package;		
6	a feedback monitor optically coupled to the semiconductor laser, the		
7	feedback monitor electrically coupled to a fifth electrical contact and a sixth electrical		
8	contact of the EML package; and		
9	an optical modulator optically coupled to the SOA, the optical modulator		
10	electrically coupled to a seventh electrical contact of the EML package.		
1	16. The monolithic amplified semiconductor laser of claim 13, wherein;		

2	the substrate includes a first III/V material having a first conductivity type;		
3	and		
4	the semiconductor layer includes a second III/V material having a second		
5	conductivity type, the second conductivity type being different that the first conductivity		
6	type.		
1	17. The monolithic amplified semiconductor laser of claim 16, wherein:		
2	the first III/V material is selected from a group consisting of InP, GaAs,		
3	InSb, AlGaAs, and InGaAsP; and		
4	the second III/V material is selected from a group consisting of InP, GaAs,		
5	InSb, AlGaAs, and InGaAsP.		
1	18. The monolithic amplified semiconductor laser of claim 13, wherein		
2	the active layer includes at least one of a bulk gain material and a quantum well structure.		
1	19. The monolithic amplified semiconductor laser of claim 13, wherein		
2	the substantially transparent first end includes at least one of a tilted surface, an		
3	antireflective surface coating, and a buried facet.		
1	20. The monolithic amplified semiconductor laser of claim 13, wherein		
2	the substantially reflective second end includes at least one of a cleaved facet, a dielectric		
3	mirror, and a reflective surface coating.		
1	21. A method for forming a monolithic amplified semiconductor laser,		
2	comprising the steps of:		
3	a) providing a substrate base including a first end, a second end, and a		
4	substrate base index of refraction;		
5	b) forming a grating layer over the substrate base, the grating layer		
6	having a grating index of refraction different from the substrate base index of refraction;		

/	C	defining and etching the gracing layer to form a gracing base section			
8	proximate to the first end of the substrate base, the grating base section having a grating				
9	period;				
	puriou				
10	ď) forming a top substrate layer over the substrate base and the grating			
11	base section, the top substrate layer having a substrate index of refraction different from				
12	the grating inde	x of refraction;			
	5 5	,			
		Source and active law on the tan authorized law on bassing a			
13	e	· · · · · · · · · · · · · · · · · · ·			
14	waveguide inde	x of refraction different from the substrate index of refraction;			
15	f)	forming a semiconductor layer on the active layer, the semiconductor			
	•	a semiconductor layer index of refraction different from the waveguide			
16					
17	index of refracti	on;			
18	g) defining and etching the semiconductor layer and the active layer to			
19	_	ructure, the mesa structure having a rear end adjacent to the first end of			
20	the substrate ba	ase and an output end adjacent to the second end of the substrate base			
21	h) forming an electrode layer on the semiconductor layer, the electrode			
22	layer including	two separate electrodes sections electrically coupled by a resistive coupler.			
	,				
	• • • • • • • • • • • • • • • • • • • •	Constitution of the Atlanta and a Cale			
23	i)	forming a substantially transparent facet at the output end of the			
24	mesa structure;	; and			
25	j	forming a substantially reflective facet at the rear end of the mesa			
26	structure.				
1	2	2. The method of claim 19, wherein;			
2	0	ne or more of steps b, d, e, and f use metal organic chemical vapor			
3	deposition (MO	υνυ);			
4	S	tep c uses at least one of phase mask lithography and anisotropic etching.			