

Leçon 1 Trigonométrie

Le plan \mathbb{R}^2 est muni d'un repère orthonormé $(O,\vec{i},\vec{j}).$

1 Fonctions trigonométriques

1.1 Définition

1.1.1 Premières propriétés

Pour tout $x \in \mathbb{R}$,

$$-1 \le \cos(x) \le 1 \text{ et } -1 \le \sin(x) \le 1$$

Théorème de Thales : pour tout $x \neq \frac{\pi}{2} + k\pi$ $(k \in \mathbb{Z})$,

$$\tan(x) = \frac{\sin(x)}{\cos(x)}.$$

Théorème de Pythagore : pour tout $x \in \mathbb{R}$,

$$\cos^2(x) + \sin^2(x) = 1.$$

1.1.2 Fonctions

Les fonctions trigonométriques sont définies ainsi :

$$\sin, \cos : \mathbb{R} \longrightarrow [-1, 1], \qquad \tan : \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z} \right\} \longrightarrow \mathbb{R}.$$

Pour tout x réel, on a

$$\sin(x + 2\pi) = \sin(x), \qquad \sin(x + 2\pi) = \sin(x),$$

et pour tout x dans le domaine de définition de tan,

$$\tan(x + \pi) = \tan(x).$$

Remarque 1. On dit que cos et sin sont 2π -périodiques et tan est π -périodique.

1.1.3 Valeurs usuelles

	x = 0	$x = \frac{\pi}{6}$	$x = \frac{\pi}{4}$	$x = \frac{\pi}{3}$	$x = \frac{\pi}{2}$
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin(x)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

Les autres valeurs connues se déduisent à partir des valeurs usuelles et des symétries.

1.2 Symétries

Soit $x \in \mathbb{R}$. On a :

$$\cos(-x) = \cos(x), \qquad \sin(-x) = -\sin(x).$$

Remarque 2. On dit que la fonction cos est paire et la fonction sin est impaire.

On a:

$$\cos(\pi + x) = -\cos(x), \qquad \sin(\pi + x) = -\sin(x).$$

On a:

$\cos\left(x + \frac{\pi}{2}\right) = -\sin(x)$	$\sin\left(x + \frac{\pi}{2}\right) = \cos(x)$
$\cos\left(x - \frac{\pi}{2}\right) = \sin(x)$	$\sin\left(x - \frac{\pi}{2}\right) = -\cos(x)$

2 Formules d'addition et duplication

2.1 Formules d'addition

Ce sont les formules trigonométriques les plus importantes : elles permettent de déduire toutes les autres. Soient $x, y \in \mathbb{R}$. On a :

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y) \qquad \sin(x+y) = \sin(x)\cos(y) + \sin(y)\cos(x)$$
$$\cos(x-y) = \cos(x)\cos(y) + \sin(x)\sin(y) \qquad \sin(x+y) = \sin(x)\cos(y) + \sin(y)\cos(x)$$

Exemple 1.

$$\cos\left(x + \frac{\pi}{3}\right) = \frac{1}{2}\cos(x) - \frac{\sqrt{3}}{2}\sin(x)$$

Exemple 2.

$$\sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} - \sqrt{2}}{4}.$$

Remarque 3. Pour calculer $\cos\left(x+\frac{\pi}{2}\right)$, on utilisera plutôt les formules géométriques (de symétrie) vues ci-dessus.

2.2 Formules de duplication

Soient $x, y \in \mathbb{R}$. On a :

$$\cos(2x) = \cos^2(x) - \sin^2(x) = 1 - 2\sin^2(x) = 2\cos^2(x) - 1$$
$$\sin(2x) = 2\sin(x)\cos(x)$$

Exemple 3.

$$\cos\left(\frac{\pi}{8}\right) = \frac{\sqrt{\sqrt{2}+2}}{2}$$

Remarque 4. On peut utiliser les formules d'addition dans $l'autre\ sens$: passer d'une expression avec des \cos^2 ou des \sin^2 à une expression avec des \cos et sin. Cette opération s'appelle la lin'earisation et sera utilisée notamment pour calculer des primitives.

2.3 Autres formules

D'autres formules se déduisent des formules d'addition. Par exemple :

$$\cos(p) + \cos(q) = 2\cos\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$
$$\sin(p) + \sin(q) = \dots$$

3 Equations trigonométriques

3.1 Résolution $\cos() = \cos()$

L'équation $\cos(u) = \cos(\alpha)$ avec α fixé, se traduit :

$$u = \alpha + 2k\pi, \quad k \in \mathbb{Z}, \quad \text{ou} \quad u = -\alpha + 2k\pi, \quad k \in \mathbb{Z}.$$

Exemple 4. L'ensemble des solutions de $cos(2x) = \frac{\sqrt{2}}{2}$ est :

$$S = \left\{ \frac{\pi}{8} + k\pi, -\frac{\pi}{8} + k\pi, \text{ avec } k \in \mathbb{Z} \right\}$$

3.2 Résolution $\sin(\cdot) = \sin(\cdot)$

L'équation $\sin(u) = \sin(\alpha)$ avec α fixé, se traduit :

$$u = \alpha + 2k\pi, \quad k \in \mathbb{Z}, \quad \text{ou} \quad u = \pi - \alpha + 2k\pi, \quad k \in \mathbb{Z}.$$

Exemple 5. L'ensemble des solutions de $\sin(4x) = \frac{1}{2}$ est :

$$S = \left\{ \frac{\pi}{24} + \frac{k}{2}\pi, \ \frac{5\pi}{24} + \frac{k}{2}\pi, \text{ avec } k \in \mathbb{Z} \right\}$$

3.3 Résolution $\cos() = \sin()$

On ne sait pas résoudre directement $\cos(u) = \sin(\alpha)$. Il faut utiliser les formules de symétrie pour changer le cos en sin **ou bien** changer le sin en cos et se ramener à l'un des cas précédent.

Exemple 6. L'ensemble des solutions de cos(2x) = sin(x) est :

$$S = \left\{ \frac{\pi}{2} + 2k\pi, \ \frac{\pi}{6} + \frac{2k}{3}\pi, \text{avec } k \in \mathbb{Z} \right\}$$

Remarque 5. On ne sait pas résoudre directement $\cos(x) = 2\sin(3x)$ à cause du 2 devant le $\sin()$.

Remarque 6. Attention aux points suivants lors de la résolution d'une équation trigonométrique :

- 1. Se ramener à une équation de même type (sans coefficient devant les cos ou sin!)
- 2. Il y a toujours deux sortes de solutions, séparées par un ou
- 3. Les $+2k\pi$ à la fin de chaque sorte subissent aussi les opérations effectuées au cours de la résolution