WSPOMAGANIE DECYZJI – ĆWICZENIA V – ZBIORY PRZYBLIŻONE

I. Tabela decyzyjna. Atrybut decyzyjny K. Atrybuty warunkowe P={X1,X2}.

Obiekt	X1	X2	K
A1	8	4	Р
A2	5	7	Р
A3	2	3	Р
A4	5	7	R
A5	2	5	S
A6	8	5	S

$$P(P) = \{A1, A3\}, \overline{P}(P) = \{A1, A2, A3, A4\}$$

$$P(R) = \emptyset, \overline{P}(R) = \{A2, A4\}$$

$$P(S) = \{A5, A6\}, \overline{P}(S) = \{A5, A6\}$$

$$P(P) = \{A2, A4\}$$

$$\alpha_{P}(P) = \frac{|P(P)|}{|\overline{P}(P)|} = 2/4$$

$$\gamma_{P}(P) = \frac{|P(P)|}{|P|} = 2/3$$

$$\gamma_{P}(Cl) = \frac{|P(P)| + |P(R)| + |P(S)|}{|U|} = 4/6$$

```
jeżeli X1=5 to P
     \sup = 1, \sigma = 1/6, cer = 1/2, cov = 1/3
jeżeli X2=5 to S
     \sup = 2, \sigma = 2/6, cer = 2/2, cov = 2/2
jeżeli X1=2 i X2=5 to S
       \sup = 1, \sigma = 1/6, cer = 1/1, cov = 1/2
Redukty: {X1} - NIE (bo A3-A5),
         {X2} – TAK
         {X1,X2} – NIE (bo X2 jest reduktem)
Rdzeń: {X2}
```

II. Dana jest tablica decyzyjna P={C1,C2,C3} to zbiór atrybutów warunkowych; D to atrybut decyzyjny. Wyznacz dolne i górne przybliżenia oraz brzegi klas A i B. Podaj dokładność i jakość przybliżenia klas. Oblicz jakość klasyfikacji. Wskaż redukty i rdzeń.

Obiekt	C1	C2	C3	D
01	а	1	+	В
O2	а	3	-	Α
О3	а	2	+	Α
O4	b	1	-	В
O5	а	2	+	Α
O6	b	3	+	В
07	а	1	+	Α

$$\frac{P(A) = \{O2, O3, O5\}}{\overline{P}(A) = \{O2, O3, O5, O1, O3, O5, O1, O4\}}$$

$$Bn_{P}(A) = \{O1, O7\}$$

$$\alpha_{P}(A) = \frac{|\underline{P}(A)|}{|\overline{P}(A)|} = \frac{3}{5}$$

$$\gamma_{P}(A) = \frac{|\underline{P}(A)|}{|A|} = \frac{3}{4}$$

$$\gamma_P(Cl) = \frac{|\underline{P}(A) + \underline{P}(B)|}{|U|} = \frac{5}{7}$$
 Redukty:
$$\{\text{C1,C2}\}, \{\text{C2,C3}\}$$
 Core (rdzeń):
$$\{\text{C2}\}$$

III. Wyznacz dolne i górne przybliżenia klas \otimes , \oplus , \varnothing . Oblicz jakość klasyfikacji. Wyindukuj minimalne reguły indukcyjne dla dolnych przybliżeń (reguły pewne) i dla brzegów klas (reguły przybliżone). Dla otrzymanych reguł podaj wsparcie, siłę, współczynnik pewności i pokrycia.

Obiekt	X1	X2	Х3	Klasa
I	С	В	В	8
II	Α	Α	В	8
III	Α	Α	Α	\oplus
IV	Α	Α	Α	\oplus
V	Α	Α	В	\oplus
VI	С	С	В	Ø
VII	C	Α	Α	Ø

$$\begin{array}{ll} \underline{P}(\otimes) = \{I\} & \overline{P}(\otimes) = \{I, II, V\} \\ \underline{P}(\oplus) = \{III, IV\} & \overline{P}(\oplus) = \{III, |V, |I, |V\} \\ \underline{P}(\emptyset) = \{VI, VII\} & \overline{P}(\emptyset) = \{VI, |V|\} \end{array}$$

Reguła pewna dla ⊗: jeżeli X2=B to ⊗

 $\sup = 1, \sigma = 1/7, cer = 1/1, cov = 1/2$

Reguła pewna dla ⊕: jeżeli X3=A oraz X1=A to ⊕

 $\sup = 2$, $\sigma = 2/7$, cer = 2/2, cov = 2/3

Reguly pewne dla \emptyset :

jeżeli X1=C oraz X2=C to ∅ jeżeli X1=C oraz X3=A to ∅

 $\sup = 1, \sigma = 1/7, cer = 1/1, cov = 1/2$

 $\sup = 1$, $\sigma = 1/7$, cer = 1/1, cov = 1/2