El plano complejo 1 / 5

El plano complejo

2015-01-22 15:00

2 Argumento de un número complejo.

• Cada número complejo z=(x,y)=x+iy se puede describir en un plano por el punto con coordenadas x,y. En este plano complejo el eje horizontal se llama eje real y el vertical se llama eje imaginario.

- Cada número complejo z=(x,y)=x+iy se puede describir en un plano por el punto con coordenadas x,y. En este plano complejo el eje horizontal se llama eje real y el vertical se llama eje imaginario.
- En este plano, z y \overline{z} son reflejados por el eje real. También |z| representa la distancia al origen.

- Cada número complejo z = (x, y) = x + iy se puede describir en un plano por el punto con coordenadas x, y.
 En este plano complejo el eje horizontal se llama eje real y el vertical se llama eje imaginario.
- En este plano, z y \overline{z} son reflejados por el eje real. También |z| representa la distancia al origen.
- Todo complejo distinto de cero se puede escribir como producto de un número real y un complejo de módulo uno, a saber: $z=|z|\frac{z}{|z|}$.

- Cada número complejo z=(x,y)=x+iy se puede describir en un plano por el punto con coordenadas x,y. En este plano complejo el eje horizontal se llama eje real y el vertical se llama eje imaginario.
- En este plano, z y \overline{z} son reflejados por el eje real. También |z| representa la distancia al origen.
- Todo complejo distinto de cero se puede escribir como producto de un número real y un complejo de módulo uno, a saber: $z = |z| \frac{z}{|z|}$.
- Los complejos de módulo uno se dibujan en el plano complejo en la circunferencia unitaria: $\{z \in \mathbb{C} \mid |z| = 1\}$.

- Cada número complejo z=(x,y)=x+iy se puede describir en un plano por el punto con coordenadas x,y. En este plano complejo el eje horizontal se llama eje real y el vertical se llama eje imaginario.
- En este plano, z y \overline{z} son reflejados por el eje real. También |z| representa la distancia al origen.
- Todo complejo distinto de cero se puede escribir como producto de un número real y un complejo de módulo uno, a saber: $z=|z|\frac{z}{|z|}$.
- Los complejos de módulo uno se dibujan en el plano complejo en la circunferencia unitaria: $\{z\in\mathbb{C}\mid |z|=1\}.$
- Si θ es un ángulo tal que $\cos \theta = \frac{x}{|z|}$ y $\sin \theta = \frac{y}{|z|}$, entonces el complejo $z \neq 0$ se escribe como:

$$z = |z|(\cos\theta + i\sin\theta)$$

llamada forma polar del número complejo.

Puntos en la circunferencia unitaria

Cualquier ángulo θ que cumpla que $z = \cos \theta + i \sin \theta$ se llama argumento de z.

Para un complejo $z \neq 0$, definimos su argumento arg z como el argumento de $\frac{z}{|z|}$. Por ejemplo:

• arg $i = 90^{\circ} = \frac{\pi}{2}$,

Para un complejo $z \neq 0$, definimos su argumento arg z como el argumento de $\frac{z}{|z|}$. Por ejemplo:

- arg $i = 90^{\circ} = \frac{\pi}{2}$,
- $arg(i+1) = \frac{\pi}{4}$,

Para un complejo $z \neq 0$, definimos su argumento arg z como el argumento de $\frac{z}{|z|}$. Por ejemplo:

- arg $i = 90^{\circ} = \frac{\pi}{2}$,
- $arg(i+1) = \frac{\pi}{4}$,
- $arg(-1) = \pi$.

Para un complejo $z \neq 0$, definimos su argumento arg z como el argumento de $\frac{z}{|z|}$. Por ejemplo:

- arg $i = 90^{\circ} = \frac{\pi}{2}$,
- $arg(i+1) = \frac{\pi}{4}$,
- $arg(-1) = \pi$.
- También 3π , $-\pi$, etc. son valores de arg(-1).

Propiedades del argumento

• Si $z_1=\cos\theta+i\sin\theta$ y $z_2=\cos\psi+i\sin\psi$, entonces $z_1z_2=\cos(\theta+\psi)+i\sin(\theta+\psi).$

Propiedades del argumento

• Si $z_1=\cos\theta+i\sin\theta$ y $z_2=\cos\psi+i\sin\psi$, entonces $z_1z_2=\cos(\theta+\psi)+i\sin(\theta+\psi).$

Por lo tanto, se obtiene la fórmula de DeMoivre:

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

Propiedades del argumento

• Si $z_1 = \cos \theta + i \sin \theta$ y $z_2 = \cos \psi + i \sin \psi$, entonces

$$z_1 z_2 = \cos(\theta + \psi) + i \sin(\theta + \psi).$$

Por lo tanto, se obtiene la fórmula de DeMoivre:

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

 La fórmula de DeMoivre se puede usar además para extraer raíces a números complejos.