Cours 5

Functio uniform continue.

Definitie. Fie (X, d_1) , i (Y, d_2) două spații metrice. O funcție $f:X\to Y$ se numește uniform continuă dacă $+ \varepsilon > 0$, $\exists f_{\varepsilon} > 0$ a-z. $+ x, x' \in X$ tu proprietatia că $d_1(x, x') < f_{\varepsilon}$, avem $d_2(f(x), f(x')) < \varepsilon$.

Propozitie. Fie (X, d1) și (Y, d2) două spații metrice și f: X-> Y & funcție uniform -continuă. Atanci f este continuă.

Observatie. Reciproca propozitiei precedente mu este, M ogneral, adevarata.

Testema. Fie (X, d1) și (Y, d2) două spații metice a. r. X este multime compactă (ne referim la topologia G1) și f: X->Y o funcție continuă.

Attanci f este uniform continuà. Propozitie. Fie ICR un interval nedegement (i.e. I + ø jû I mu se reduce la un junct) ji f: I -> R o functie derivabilà cu derivata marginità. Attinci f este uniform continuà. Ropozitie. Fie f:ACR>R (A ru este neaparat interval). Sunt echivalente: 1) f uniform continuo. 2) $\forall (x_n)_n \subset A$, $\forall (y_n)_n \subset A$ a.r. $\lim_{n\to\infty} (x_n - y_n) = 0$, aven lim (f(xn)-f(yn))=0. Propositie. Fie f: ACR > R. Sunt echivalente: 1) funiform continua (pe A). 2) 7 ac A a.a. f este uniform continua pe Anton, a] (i.e. flanton, a) este uniform contionua) si f este uniform continua pe AN[a, n) (i.e. flan[a, n) este uniform continua).

Propozitie. Fie f: (a, b) -> R. Yunt achivalente:	
1) funiform continua.	
2) F F: [a,b] >R, f continuà a.r. F/(a,b]=f	
(7 pelungire continuà a lui f).	
Definiție. Fie (X, d) un spațiu metric și (Xn)n CX.	
Definitie. Fie (X, d) un spatiu metric si (xn) CX. Spunem cà (xm) este sir bauchy in raport cu	
metrica d'daca + E>O, IngeH a.R. + m, meH,	
$\lfloor m \geq m_{\epsilon}, n \geq m_{\epsilon}, \text{ aven } d(x_{m}, x_{n}) < \epsilon.$	
Observatie. Sintagma, în raport cu metrica d' por te fi înlocuită cu sintagma, în spațiul metric	t
te fi inhouità cu sintagma, in spațiul metric	•
$(\mathcal{N}, \mathcal{M})$.	
Ropozitie. Fie (X, d1) si (Y, d2) două spații metrice, f:X>	Y
ofunctie uniform continua și (xn)n CX un șir	
Cauchy în raport en metrica de Atunci (flxm) n	_
este sir bauchy în raport cu metrica de.	

Functii derivabile

Definitie. Fie f: ACR > R si aE ANA!

1) Spunem cà f are derivatà în a dacă există în \mathbb{R} limita $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$.

2) Spunem cà f este duivabilà în a dacă excistă în R limita $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$.

Notatie. În ipsterele definiției precedente, dacă f are derivată în a, notam $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ (derivata lui f în a)

Definitie. Fie $f:A\subset R\to R$ si $B\subset A\cap A'$. Daca f este derivabilà în toate punetele din B, spunem ca f este derivabila pe multimea B si putem defini $f':B\to R$, $X\longrightarrow f'(X)$.

Definitie. Functia l' din definitia precedentà se

L'umeste derivata functiei f. Teorema. Orice functie derivabilà într-un punct este continuà în aul junct. Observation. Reciproca teoremei precedente mu este, in general, ordevarata. Propozitie. Fie ACR, a EANA', f, g:A-> R dona functii derivabile în a și x ER. Atani: a) f+g este derivabilà în a și (f+g)'(a) = $= f'(\mathbf{a}) + g'(\mathbf{a}).$ b) af este derivabilà în a și (af) (a) = $= \angle f'(\mathbf{A}).$ c) f.g este derivabilà în a si (f.g)'(a) = = f'(a) g(a) + f(a) g'(a).d) Daca g(a) \po (rezultà cà escistà VEVa a.?. g(x) ≠0 +x∈VnA), atunci & este derivabilà

$$\left| \hat{a} \right| = \frac{f'(a)g(a) - f(a)g'(a)}{g^2(a)}.$$

Twoma. Fie $I \subset \mathbb{R}$, $J \subset \mathbb{R}$ doua intervale <u>nedegene-</u>

<u>note</u> (i.e. nevide i nu se reduc la un singur

punct), $f: I \to J$, $g: J \to \mathbb{R}$ si $a \in I$.

Daca f este derivabila în a și g este derivavabilă în f(a), atanci $g \circ f: I \to \mathbb{R}$ este derivabilă în $g \circ f: I \to \mathbb{R}$

Testema. Fie $I \subset \mathbb{R}$, $J \subset \mathbb{R}$ douà intervale neolegenerate, $f: I \to J$ o funcție continuă și bijectivă

si $A \in I$.

Daca f este derivabilà în a și f'(a) +0,

atanci funcția inversă $f^{-1}: \mathcal{J} \to I$ este derivabilă în punctul b = f(a) și $(f^{-1})'(b) = \frac{1}{f'(a)}$.

Definitie. Fie f: ACR > R si ac A (A mu este neaparat interval).

- 1) Spunem cà a este junct de minim local al lui f dacā ∃ V ∈ Va a.r. f(a) ≤ f(x) + x ∈ V ∧ A.
- 2) Junem cà a este punet de maxim bocal al lui f dacă FVE Va a.z. f(x) > f(x) > f(x) + XEVNA.
- 3) Bunctele de minim local și punctele de ma-Fim local ale lui f se numero puncte de extem local ale lui f.

Jeorema (Jeorema lui Fermat). Fie f: ACR > PR si aeA a. î,:

i) acă.

ii) a este punct de extrem local al lui f. iii) f este derivabilà în a.

Ittunci f'(a) = 0.

Demonstratie. Jutem presupune, fara pierderea generalitation ca a este punct de maxim bocal al lui f. Deci existà 5>0 a.r. f(a) > f(x) pentru sice $X \in (\alpha - S, \alpha + \overline{S}) \subset A$. Asador $\frac{f(x) - f(\alpha)}{x - \alpha} \leq 0$

pentru vice $x \in (a, a+5)$ si $\frac{f(x)-f(a)}{x-a} \ge 0$ pentru sice x∈ (a-5, a).

Din numare $0 \le \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a) =$

= $\lim_{x\to a} \frac{f(x)-f(a)}{x-a} \le 0$, deci f'(a)=0. \square

Itorema (Itorema lui Rolle). Fie a, b∈R, a<b

ji f: [a,b] → R avand proprietatile: i) f continua pe [a,b]. ii) f derivabila pe (a,b),

iii) f(a) = f(b).

Attenci existà ce(a,b) a.r. f'(c)=0.

Demonstrație. Printr-o eventuală înlocuire a lui f en f-f(a), putern persupurne coi f(a)=f(b)=0. De asemenea, putern persupurne coi f nu este identic nula (altfel concluzia este evidenta) și că ia și valori strict pozitive (print-o eventuală înlocuire a lui f cu-f). Conferm Teoremei privind mărginirea funcțiilor continue (vezi Curul 4), există $c \in [a,b]$ a. \bar{c} . f(c) = $= \max f(x)$. Aratam că $c \in (a,b)$. $x \in [a,b]$

Daca $c \in \{a,b\}$, attenci o = f(a) = f(b) =

= f(c)= max $f(x) > f(x) + x \in [a,b]$, where $f(x) > f(x) + x \in [a,b]$

contrazice faptul cà f ia si valori strict pozitive.

Deci $-C \in (a, b)$. Bonform Teoremei lui Furnat avem că f'(c) = 0.

Terema (Terema lui Lagrange). Fie a, b∈R,

a

b si f: [a,b] → R având urmātoarele propriotāţi:

i)
$$f$$
 continuà pe $[a,b]$.

ii) f derivabilà pe (a,b) .

Ittunci existà $c \in (a,b)$ a.r. $f(b)-f(a) = f'(c)$.

Demonstrație. Fie $f: [a,b] \rightarrow \mathbb{R}$, $f(x) = f(x) - f(a) - f(b) - f(a)$.

Atvern: 1) I continua je [a,b].

2) I derivabila je (a,b).

3)
$$f(a) = f(a) - f(a) - \frac{f(b) - f(a)}{b - a} (a - a) = 0.$$
 $f(b) = f(b) - f(a) - \frac{f(b) - f(a)}{b} \cdot \frac{(b - a)}{a} = 0.$

$$= f(b) - f(a) - \frac{f(b) - f(a)}{b} \cdot \frac{(b - a)}{a} = 0.$$

bonform Teoremei lui Rolle existà c∈(A,b) a. 2. P(c)=0.

$$Y'(x) = f'(x) - \frac{f(b) - f(a)}{b - a} + x \in (a, b).$$

Itradar
$$\exists c \in (a,b)$$
 a.r. $f'(c) = \frac{f(b) - f(a)}{b-a}$.

Propozitie. Fie ICR un interval nedegenerat si f: I → R » funcție duivabilă. 1) Daca f'(x)=0+xEI, atunci feste constantà. 2) Daca f'(x)≥0+x∈I, atunci f este rescatoure. 3) Daca f'(X) SO + XEI, atunci f este descrescatione. Itstema (Iestema him bauchy). Fie a, b∈R, a<b si f, g: [a,b] > R avand proprietatile:

1) f si g sunt continue pe [a,b].

2) f si g sunt derivabile pe (a,b). Ittunci existà $c \in (a,b)$ a.r. (f(b)-f(a)) g'(c) =

Tedemā (Tedema lui Darboux). Fie ICR un interval nedegenerat și $f: I \to \mathbb{R}$ o functie derivabilă. Atunci, pentru sice interval $J \subset I$, ovem că f'(J) este interval (i.e. f' ore proprietatea lui Darboux).