1. Derive the formula for worst-case complexity

| Deriving formula for worst-case con                                                                                                     | mplexity           |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| $T(n) = T(n_1) + T(n_2) + Cn$ $N_1 + N_2 + 1 = N \longrightarrow N_1 \approx N_2$ World cose $(O(n_2))$ - when you have a sorted array. | general<br>formola |
|                                                                                                                                         | or arready         |
| $T(n) = T(0) + T(n1) + Cn$ $0 > n - 1 \longrightarrow Cn$                                                                               |                    |
| $0/n-1 \rightarrow cn$ $0/n-2 \rightarrow c(n-1)$ $0/n-3 \rightarrow c(n-2)$                                                            |                    |
| 1 -> (2)                                                                                                                                |                    |
| $C\{n+(n-1)+(n-2)++1\}$ $C(n(n+1))$                                                                                                     |                    |
| = O(n <sup>2</sup> )                                                                                                                    |                    |

2. Come up with a vector of 16 elements which incurs worst-case complexity. Manually show the workings of the algorithm until the vector is sorted.

| [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]                       |
|----------------------------------------------------------------|
| no matter what I choose as the pirot it will land in           |
| the same spot and parithion to left and right orde.            |
| let's say the pivot is the last element; pivot =16.            |
| (if the pivot is larger from pu i term at index), then nothing |
| ( 023 0 5 0 7 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0          |
| 1 3 TO                     |
| ( 123 4 5 C7 (8) (9) (1) (13 (4) (5) (16)                      |
| here 16 (the pivot) is charled with every dement and           |
| ustry prappare since it's in the right spot in the array       |
| The proves It is worst case since the pivot areased a very     |
| unerea partition with almost the entire array on the left      |
| and an ampty array on the right.                               |
|                                                                |

