

Mecanismos de atención Fernando Berzal, berzal@acm.org

Motivación

seq2seq

Motivación

Soft attention

Soft attention

Score-based attention

Score name	Score description	Parameters
Concat (additive)	$score(\mathbf{s}_j, \mathbf{h}_i) =$	\mathbf{v}_a and \mathbf{W}_a trainable
	$\mathbf{v}_a^{T} \tanh(\mathbf{W}_a[\mathbf{s}_j; \mathbf{h}_i])$	
Linear (additive)	$score(\mathbf{s}_j, \mathbf{h}_i) =$	$\mathbf{v}_a, \mathbf{U}_a, \text{ and } \mathbf{W}_a$
	$\mathbf{v}_a^{T} \tanh(\mathbf{W}_a \mathbf{s}_j + \mathbf{U}_a \mathbf{h}_i)$	trainable
Bilinear (multiplicative)	$score(\mathbf{s}_j, \mathbf{h}_i) = \mathbf{h}_i^T \mathbf{W}_a \mathbf{s}_j$	\mathbf{W}_a trainable
Dot (multiplicative)	$score(\mathbf{s}_j, \mathbf{h}_i) = \mathbf{h}_i^T \mathbf{s}_j$	No parameters
Scaled dot (multiplicative)	$score(\mathbf{s}_j, \mathbf{h}_i) = \frac{\mathbf{h}_i^{T} \mathbf{s}_j}{\sqrt{n}}$	No parameters
Location-based	$\operatorname{score}(\mathbf{s}_j, \mathbf{h}_i) = \operatorname{softmax}(\mathbf{W}_a \mathbf{h}_i^{T})$	\mathbf{W}_a trainable

Variantes

Selecciona puntos concretos en lugar de ir acumulando la secuencia de entrada en un vector de contexto...

- Pointer networks
- Hard attention
- Local attention (combinación soft&hard)

Variantes

Atención jerárquica

Sentencias/palabras para clasificación de documentos

Variantes

Self-attention / intra-attention

Transformer networks

Aplica el mecanismo de atención directamente sobre la entrada, reduciendo o incluso eliminando la necesidad de conexiones recurrentes en la red neuronal

Scaled dot-product & multihead attention

Transformer networks

- BERT, Google, 2018 340M parameters
 [Bidirectional Encoder Representations from Transformers]
- GPT, OpenAI, 2018 110M parameters [Generative Pre-trained Transformer]
- MT-DNN, Microsoft, 2019[MultiTask Deep Neural Network]
- Transformer ELMo, AI2, 2019 465M parameters
- GPT-2, OpenAI, 2019 1.5B parameters
- MegatronLM, NVIDIA, 2019 8.3B parameters
- T5, Google, 2020 11B parameters [Text-to-Text Transfer Transformer]
- Turing-NLG, Microsoft, 2020 17B parameters
- GPT-3, OpenAI, 2020 175B parameters !!!

Transformer networks

1 petaflop/s·day = 10^{15} ops/s for 1 day $\approx 10^{20}$ ops

Total Compute Used During Training

