Lecture-14

LATCHES: The latch is a type of bistable storage device

The S-R Latch:

Fig : Active High input S-R Lateh

Fig: Logic symbol for Active-High input S-R Latch

Truth table for active-High input S-R Latch

	In S	puts R	Ontp	uto Q	Comments
	0	0	NC	VIC	No change Latch
	0		0 40	1	Latch Reset
	1	0		0	Latch Set
	1		0	ø	Invalid condition.
-port	(Au)	ו מוכאפונ	Flam oC	Jovil	we will never operate latch in this condition

A Grated SR Lateh:

Fig. Logic symbol

Truth table for gated SR Latch						
EN	S	R	Q	Q	Comments	
0	×	X	NC	NC	No change . Latch remaine in	
	0	0	NC	NC	previous state	
10/00	0	Dipl	0	1	Latch Reset	
1	otet	0	1	0	Latch Set Notal 9-2	
-		1	To assess		Invalid condition (Device is not operated in this	
Determine a if the gated S-R Latch is imitially						
RESET.						
S - 0 $1 $ $0 $ 1						

Fig:Logie symbol

Treath	i tab	le forc	D Latel	The Edge-Triggered ,
4np EN	D D	Q Outp	outs Q	Comments
0	X	NC	NC	No Change
1	<u> </u> _		0	SET
1	0	0	Fist	RESET SIND (2 N.T.

The gated latches control the flow of information from the input to the output, based upon the level of the enable pin (EN). If the EN=0, the output of the device does not change. If EN=1, the output changes based upon the values from truthtable.

Determine Q if the D-Latch is initially Reset.

EDGE-TRLGGERED FLIR-FLORS

A flip-flops is a synchronous bistable An edge-triggered flip-flops changes state either at the positive edge (resing edge) on at the negative edge (falling edge) of the clock pulse and is sensitive to its inputs only at this transition of the clock.

Positive edge traggered

Determine a it the a Flip-Flop in initially at Repet

The Edge-Triggered S-R Flip-Flops:

Fig: Logic symbol of positive edge traggered S-R Flip-Flop

Fig: Logic symbol of negative edge triggened S-R Flip-Flop.

	41	npute	2	Outp	uto	V
-	S	R	cik	Q	Q	Comments
	0	0	χ	NC	NC	No change
(0	1	1	0	1	Reset
	1 209	0	1	iaiN	oto 1-0	Set is a programation
	1	01	1	?	?	Invalid

The rising edge of the clock is when the clock signal is going from low to high condition

Determine a if the n Flip-Flop in initially at Renet state

A method of Edge-Trieggering

Fig: Pulse transition detector

atates as does the

S-R Flip-Flop

olabol

The job of the pulse transition detector is to convert the level sensitivity of the EN pin of a gated S-R latch to edge sensitivity and convert the system to a S-R Flip-flop