Quantitative Analytics. Lectures. Week 3-4. Interest rates. Процентные ставки.

Kamenskaya Elizaveta

17 октября 2022 г.

Contents

1	Будущая стоимость и начисление процентов	2
2	Доходность за период владения	2
3	Сравнение ставок с разной частотой начислений	2
4	Непрерывное накопление	3
5	Кривая спот-ставок (spot rate)	3
6	Форвардные ставки	5
7	Номинальные ставки	5
8	Сравнение спот-ставок, форвардных и номинальных ставок	5
9	Эффект от приближения к погашению	6
10	LIBOR и Overnight	7
11	Свопы и своп-ставки	7
12	Получение дисконт факторов из IRS	8
13	Overnight index swaps (OIS)	9
14	Процентные кривые и их изменения	9

1 Будущая стоимость и начисление процентов

Найдем будущую стоимость облигации, используя два разных способа начисления процентов:

$$FV_N = PV_0 \times (1 + \frac{r}{m})^{n \times m}$$

В этой модели:

- FV_N будущая стоимость
- PV_0 текущая стоимость
- m число периодов в году, за которые мы получаем выплаты
- n количество лет
- r ставка процента

Пример: Пусть PV = 100, n = 4, r = 10%

$$m = 1 : FV_n = 100 \times \left(1 + \frac{10\%}{1}\right)^{4 \times 1} = 146.41$$

 $m = 2 : FV_n = 100 \times \left(1 + \frac{10\%}{2}\right)^{4 \times 2} = 147.75$

2 Доходность за период владения

То же самое, что и первое уравнение, решенное относительно ставки:

$$r = m[(\frac{FV_n}{PV_0})^{\frac{1}{n \times m}} - 1]$$

В этой модели:

- FV_N будущая стоимость
- PV_0 текущая стоимость
- т число периодов в году, за которые мы получаем выплаты
- n количество лет
- r ставка процента

Пример: Пусть PV = 100, FV = 147.75, n = 4, m = 2%

$$2 \times \left[\left(\frac{147.75}{100} \right)^{\frac{1}{4 \times 2}} - 1 \right] = 10\%$$

3 Сравнение ставок с разной частотой начислений

Частота накоплений не всегда совпадает с частотой платежей. Например, ставка процента по канадской ипотеке с фиксированной процентной ставкой начисляется каждые полгода, хотя выплаты по ней совершаются ежемесячно или каждые две недели.

Можно преобразовывать ставки с одной частотой начислений к ставкам с другой:

$$PV_0 \times (1 + \frac{r_1}{m})^{n \times m_1} = PV_0 \times (1 + \frac{r_2}{m})^{n \times m_2}$$

$$r_2 = \left[(1 + \frac{r_1}{m_1})^{\frac{m_1}{m_2}} - 1 \right] m_2$$

Frequency	Number of periods	FV of USD 100, 8%
Annual	1	108
Semi-annual	2	108.16
Quarterly	4	108.24
Monthly	12	108.30
Weekly	52	108.32
Daily	365	108.33

4 Непрерывное накопление

Если процент начисляется непрерывно (ежедневно), текущая и будущая стоимость связаны этой формулой:

$$FV_N = PV_0 \times e^{rT}$$

В этой модели:

- FV_N будущая стоимость
- PV_0 текущая стоимость
- \bullet e константа
- \bullet T время в годах

Можно преобразовать ставку с непрерывным накоплением к ставке с дискретным накоплением и наоборот:

$$PV_0 \times (1 + \frac{r_m}{m})^{n \times m} = PV_0 \times e^{r_c T}$$
$$r_c = m \times \ln(1 + \frac{r_m}{m})$$
$$r_m = m \times (e^{r_c/m} - 1)$$

5 Кривая спот-ставок (spot rate)

Спот-ставка z(t) - доходность к погашению бескупонной облигации, которая будет погашена через t лет.

Кривая спот-ставок - это набор спот-ставок с разными датами погашения. Приняв m=2, используем формулу:

$$r = m[(\frac{FV_n}{PV_0})^{\frac{1}{n \times m}} - 1]$$

Maturity (years)	STRIPS Price		Discount Factor
0.5	99.2556	\Rightarrow	0.992556
1.0	97.8842	\Rightarrow	0.978842
1.5	96.2990	\Rightarrow	0.962990
2.0	94.3299	\Rightarrow	0.943299
2.5	92.1205	\Rightarrow	0.921205
3.0	89.7961	\Rightarrow	0.897961

Fig. 1: Пример: подсчет спот-ставок

Получаем:

$$\begin{split} t &= 0.5: 2 \times [(\frac{100}{99.2556})^{\frac{1}{0.5 \times 2}} - 1] = 1.50\% \\ t &= 1.0: 2 \times [(\frac{100}{97.8842})^{\frac{1}{1 \times 2}} - 1] = 2.15\% \\ t &= 1.5: 2 \times [(\frac{100}{96.2990})^{\frac{1}{1.5 \times 2}} - 1] = 2.53\% \\ t &= 2.0: 2 \times [(\frac{100}{94.3299})^{\frac{1}{2 \times 2}} - 1] = 2.94\% \\ t &= 2.5: 2 \times [(\frac{100}{92.1205})^{\frac{1}{2.5 \times 2}} - 1] = 3.31\% \\ t &= 3.0: 2 \times [(\frac{100}{89.7961})^{\frac{1}{3 \times 2}} - 1] = 3.62\% \end{split}$$

6 Форвардные ставки

Форвардная ставка - это спот-ставка, которая, по мнению рынка, будет действовать через какое-то время. Эти ставки определяются текущими ожиданиями рынка, которые можно выразить через кривую спот-ставок.

Пример: Найдем форвардную ставку. Пусть z(1.0) = 2.15%, z(1.5) = 2.53%

$$(1 + \frac{0.0253}{2})^3 = (1 + \frac{0.0215}{2})^2 \times (1 + \frac{f(1.5)}{2})^1 \Rightarrow f(1.5) = 3.29\%$$

7 Номинальные ставки

Номинальная ставка - это ставка периодического платежа, которая уравновешивает номинальную и текущую стоимость инструмента.

$$\frac{parrate}{m}(d(\frac{1}{m})+d(\frac{2}{m})+\ldots+d(\frac{n\times m}{m}))+100d(\frac{n\times m}{m})=100$$

 $\overline{\text{Пример:}}$ Расчет номинальной ставки. Пусть m=2, d(0.5)=0.9968, d(1.0)=0.9920, d(1.5)=0.9848, d(2.0)=0.9771

$$\frac{parrate}{m}(0.9968 + 0.9920 + 0.9848 + 0.9771) + 100 \times 0.9771 = 100 \Rightarrow parrate = 1.16\%$$

8 Сравнение спот-ставок, форвардных и номинальных ставок

Попробуем выполнить прайсинг однолетней казначейской облигации, которая каждые полгода выплачивает купон по 4%.

• Подсчет с помощью дисконт факторов:

$$P = 2 \times 0.992556 + 102 \times 0.978842 = 101.83$$

• Подсчет с помощью спот-ставок:

$$P = \frac{2}{(1 + \frac{0.0150}{2})^1} + \frac{102}{(1 + \frac{0.0215}{2})^2} = 101.83$$

• Подсчет с помощью форвардных ставок:

$$P = \frac{2}{(1 + \frac{0.0150}{2})^1} + \frac{102}{(1 + \frac{0.0150}{2})^1 \times (1 + \frac{0.0280}{2})^1} = 101.83$$

Maturity	Discount Factor	Spot Rate	6-Month Forward Rate	Par Rates
0.5	0.992556	1.50%	1.50%	1.5000%
1.0	0.978842	2.15%	2.80%	2.1465%
1.5	0.962990	2.53%	3.29%	2.5225%
2.0	0.943299	2.94%	4.18%	2.9245%
2.5	0.921205	3.31%	4.80%	3.2839%
3.0	0.897961	3.62%	5.18%	3.5823%

• Подсчет с помощью номинальных ставок:

$$P = 0.978842 \times 100 + \frac{0.04}{2}(0.992556 + 0.978842) \times 100(1)$$

$$100 = 0.978842 \times 100 + \frac{0.021465}{2}(0.992556 + 0.978842) \times 100(2)$$

$$(1) - (2): P - 100 = \frac{0.04 - 0.021465}{2}(0.992556 + 0.978842) \times 100$$

$$\Rightarrow P = 101.83$$

ЗАМЕЧАНИЕ:

Каждая спот-ставка примерно равна среднему арифметическому форвардных ставок с такой же и более низкой датой погашения:

$$2.53\% \approx \frac{1.50\% + 2.80\% + 3.29\%}{3}$$

ЗАМЕЧАНИЕ:

Спотовые ставки растут с увеличением времени до погашения, значит, форвардные ставки должны быть больше, чем спот-ставки.

ЗАМЕЧАНИЕ:

Номинальные ставки немного ниже спот ставок.

SUMMARY:

Если структура ставок прямая (все ставки равны), то номинальные и форвардные ставки будут равны спотовым.

Если ставки растут по мере увеличения даты погашения, номинальная ставка для каждого срока всегда чуть ниже спотовой, а форвардная наоборот выше спотовой.

Если ставки снижаются по мере увеличения даты погашения, номинальная ставка для каждого срока всегда чуть выше спотовой, а форвардная будет ниже.

9 Эффект от приближения к погашению

По мере того, как облигация приближается к погашению, у нее остается все меньше невыплаченных платежей, а оставшиеся приближаются:

Разница между стоимостью облигации сейчас и через 6 месяцев:

$$-100 \times (1 + f_T) + 100 + \frac{c}{2}$$

Поэтому эффект от приближения к погашению зависит от форвардной и купонной ставок.

Стоимости облигаций:

- растут при приближении к погашению, если купонные ставки выше форвардных
- убывают при приближении к погашению, если купонные ставки ниже форвардных

Time	0.5	1	1.5	 T-1	T-0.5	Т
(+) Cash Flows starting today	c/2	c/2	c/2	 c/2	c/2	100+c/2
(-) Cash Flows starting in 6M	c/2	c/2	c/2	 c/2	100+c/2	
Difference					-100	100+c/2

10 LIBOR и Overnight

LIBOR (London Interbank Offered Rate) - ставка по которой банки в теории обмениваются между собой необеспеченными займами. Котируется в нескольких валютах и для разных сроков. Является преференсной ставкой для большого количества сделок.

Каждый день Британская Банковская Ассоциация (ВВА) опрашивает набор самых крупных банков, по какой ставке те думают смогут получить фондирование у другого банка около 11АМ (GМТ). Далее отсекаются 25% самых низких и 25% самых высоких показателей, чтобы снизить уровень манипулирования ставкой банками. Оставшиеся показатели усредняются - это и есть LIBOR.

LIBOR не идеален

- Это субъективная оценка банков.
- Банки могут пытаться манипулировать ставкой.

Overnight rate

- По ней так же необеспеченно кредитуются банки в конце каждого дня.
- Банки с излишком средств относительно требуемых резервов могут одолжить деньги банкам с недостатком средств с помощью брокеров.
- В Амреике средняя ставка всех таких операций называется effective federal funds rate, то есть в отличие от LIBOR, ставка Overnight является продуктом реальных сделок.

11 Свопы и своп-ставки

Самый распространенный инструмент свопов процентных ставок - это plain vanilla interest rate swap (IRS).

- Сторона 1 по этому контракту соглашается платить стороне 2 периодический фиксированный платеж, равный фиксированной ставке, умноженной на номинал сделки.
- Сторона 2 обязуется платить стороне 1 периодический плавающий платеж, который определяется как плавающая ставка, умноженная на номинал сделки.
- Все платежи в одной валюте.
- Обмен происходит только разницей в стоимостях.

Большинство IRS используют LIBOR в качестве референса для плавающей ставки.

12 Получение дисконт факторов из IRS

Можно представить fixed leg и floating leg в виде облигаций. Единственная разница - нет обмена номиналом.

Тот, кто выплачивает фиксированную ставку и получает плавающую, "купил" облигацию с плавающей ставкой. Тот, кто получает фиксированную ставку и выплачивает плавающую, "покупает" облигацию с фиксированной ставкой.

 \Rightarrow

Своповые ставки = купонные платежи

Номинал свопа = номинал облигации

Фиксированная ставка - аналог номинальной ставки облигации

Пример: Расчет дисконт ставок из ставок свопов. Номинал = 100

Maturity (years)	Swap rates
0.5	0.65%
1.0	0.80%
1.5	1.02%
2.0	1.16%

Решение: считаем фиксированную ставку свопа как номинальную ставку облигации

$$100 = (100 + \frac{0.65}{2}) \times d(0.5) \Rightarrow d(0.5) = 0.9968$$

$$100 = (100 + \frac{0.8}{2}) \times d(1) + (\frac{0.8}{2}) \times d(0.5) \Rightarrow d(1) = 0.9920$$

$$d(0.5) = 0.9968$$

$$d(1.0) = 0.9920$$

$$d(1.5) = 0.9848$$

$$d(2.0) = 0.9771$$

13 Overnight index swaps (OIS)

OIS в качестве референсного значения, вместо LIBOR, использует геометрическое среднее Overnight ставок.

Ставки по фиксированной ноге в OIS называются OIS rates.

14 Процентные кривые и их изменения

