פתרון ממ"ן 12

שאלה 1

.א. יהיו A,B,C,D קבוצות

 $A\Delta C\subseteq D$ אז $B\Delta C\subseteq D$ ו- $A\Delta B\subseteq D$ הוכיחו שאם

 $A,B \in \mathcal{P}(\{1,2,3\})$ על הקבוצה $\mathcal{P}(\{1,2,3\})$ נתונים שני יחסים $\mathcal{P}(\{1,2,3\})$ המוגדרים כך: לכל

 $A\Delta\{1,2\}\subset B\Delta\{1,2\}$ אם ורק אם ASB ו- $A\Delta B\subseteq\{1,2\}$ אם ורק אם ARB

- ב. קבעו אם אחד מהיחסים הוא יחס שקילות ואם התשובה חיובית, נמקו מדוע ומיצאו את מחלקות השקילות שלו.
 - ג. קבעו אם אחד היחסים הוא יחס סדר חלקי או מלא. נמקו את התשובה.

תשובה

 $x \in C$ או $x \notin A$ או $x \notin C$ או $x \in A$ או $x \in A$ או $x \in A \triangle C$ או $x \in A \triangle C$

 $oldsymbol{x}$ נבחין בין שני המצבים הבאים המכסים את כל האופציות עבור

 $x\in A\Delta B$ או $x\in B\Delta C$ -שוע נקבל איז $x\notin A$ או $x\notin C$ מצב $x\in B$ או $x\in B$ או מצב $x\in B$ ולפי הנתון נקבל ש- $x\in D$

ושוב $x\in B\Delta C$ או $x\in A\Delta B$ נקבל ש- $x\in C$ או $x\in A$ מצב $x\in B$ ושוב מצב $x\in B$ או $x\in B$ ושוב מצב $x\in B$

 $A\Delta C \subseteq D$ ולכן $x \in D$ מתקיים $x \in A\Delta C$ ולכן לסיכום מצאנו שלכל

אז גם ההפרש הסימטרי ברך אחרת לקבוצה שתי קבוצות שתי קבוצות שתי קבוצות שתי לב

D שלהן חלקי לקבוצה D (שכן ההפרש הסימטרי של הקבוצות חלקי לאיחוד, שחלקי ל-

 $A\Delta B$ ור $A\Delta B$ ($B\Delta C$) C -ש נובע ש- $B\Delta C$ ובע $A\Delta B$ C - $A\Delta B$

 $(A\Delta B)\Delta(B\Delta C)=A\Delta(B\Delta B)\Delta C=(A\Delta\varnothing)\Delta C=A\Delta C$, לפי התכונות של ההפרש הסימטרי, $A\Delta C \subset D$ - מכאן ש

: היחס R הוא יחס שקילות. נוכיח זאת ב.

ARA לכן $A\Delta A = \emptyset \subseteq \{1,2\}$ $A \in \mathcal{P}(\{1,2,3\})$ לכן R

נסיק $A\Delta B=B\Delta A$ ומפני ש- $A\Delta B\subseteq\{1,2\}$ אם ARB אז $ARB\subseteq\{1,2,3\}$ ומפני ש- $AB=B\Delta A$ נסיק R ש- $BAA\subseteq\{1,2\}$ ולכן $B\Delta A\subseteq\{1,2\}$

. $B\Delta C\subseteq\{1,2\}$ ו- $A\Delta B\subseteq\{1,2\}$ אז BRC ו- ARB ו- ARB ו- ARB ו- $ARC\subseteq\{1,2,3\}$ ו- $A\Delta B\subseteq\{1,2\}$ מסעיף אי נקבל שגם $B\Delta C\subseteq\{1,2\}$ כלומר ARC

. רפלקסיבי, סימטרי וטרנזיטיבי ולכן הוא יחס שקילות R

נמצא כעת את מחלקות השקילות של R. כל איבר של $\mathcal{P}(\{1,2,3\})$ שייך למחלקת שקילות מסויימת והמחלקה שלה הוא שייך מורכבת מכל האיברים הנמצאים ביחס אתו. המחלקה שבה נמצאת \emptyset היא:

$$S_{\varnothing} = \{X \in \mathcal{P}(\{1,2,3\}) \mid XR\varnothing\} = \{X \in \mathcal{P}(\{1,2,3\}) \mid X\Delta\varnothing \subseteq \{1,2\}\}$$

 $S_{\varnothing}=\{\varnothing,\{1\},\{2\},\{1,2\}\}$ לכן: $X\subseteq\{1,2\}$ אם ורק אם אם $XR\varnothing$ נובע ש- $X\Delta\varnothing=X$ נובער כעת איבר מחוץ ל- S_{\varnothing} , למשל את S_{\varnothing} , למשל את ל-

.
$$S_{\{3\}} = \{X \in \mathcal{P}(\{1,2,3\}) \mid XR\{3\}\} = \{X \in \mathcal{P}(\{1,2,3\}) \mid X\Delta\{3\} \subseteq \{1,2\}\}$$

 $S_{\{3\}} = \{\{3\},\{1,3\},\{2,3\},\{1,2,3\}\}$ לכן X לכן שקול לכך ש- 3 שקול לכך ש- 3 התנאי X שקול מכסות את X לכן אלה הן כל מחלקות השקילות של X שתי המחלקות שמצאנו מכסות את Y ($\{1,2,3\}$) לכן אלה הן כל מחלקות מגדירות חלוקה של Y ($\{1,2,3\}$) (הן לא ריקות, הן זרות זו לזו והאיחוד שלהן שווה ל- Y

: גוכיח זאת. $\mathcal{P}(\{1,2,3\})$ נוכיח זאת. S

 $A\Delta\{1,2\}=A\Delta\{1,2\}$ מתקיים $A\in\mathcal{P}(\{1,2,3\})$ ולא ייתכן שS אנטי רפלקסיבי : לכל $A\Delta\{1,2\}=A\Delta\{1,2\}$ מתקיים $A\Delta\{1,2\}\subset A\Delta\{1,2\}$

רו- $A\Delta\{1,2\}\subset B\Delta\{1,2\}$ אז BSC ו- ASB ו- ASB ו- ASB ו- ASC אז ASC אז ברור שגם $A\Delta\{1,2\}\subset C\Delta\{1,2\}$ ולכן $A\Delta\{1,2\}\subset C\Delta\{1,2\}$

לכן $\{2\}$ וגם $\{2\}$ וגם $\{2\}$ שכן אכן איחס סדר. הוא לא סדר מלא מפני שלמשל איחס סדר. הוא לכן איחס סדר. הוא לא

$$\begin{array}{ll} . \{2\}\Delta\{1,2\} \not\subset \{1\}\Delta\{1,2\} & \text{ (1)} \\ =\{1\} & =\{2\} & =\{2\} & =\{1\} \end{array}$$

שאלה 2

: כך: R,T כך: מגדירים שני יחסים $A=\{\langle a,b
angle | a,b\in {f N}\setminus\{0\}\}$ כך: על הקבוצה $\{a_1,b_1
angle T\langle a_2,b_2
angle$ ו- $\{a_1,b_1
angle T\langle a_2,b_2
angle$ ו- $\{a_1,b_1
angle T\langle a_2,b_2
angle$, $\{a_1,b_1
angle T\langle a_2,b_2
angle T\langle a_2,b_2
angle$, $\{a_1,b_1
angle T\langle a_2,b_2
angle T$

- א. הוכיחו שאחד היחסים הוא יחס שקילות והאחר הוא יחס סדר.
- ב. לכל $\{0\}\setminus m\in \mathbb{N}$ נסמן ב- $S_{(n,1)}$ את מחלקת השקילות של $\{n,1\}$ (לפי יחס השקילות מסעיף אי) ב. לכל $\{S_{(n,1)}\mid n\in \mathbb{N}\setminus \{0\}\}$ הוא $\{S_{(n,1)}\mid n\in \mathbb{N}\setminus \{0\}\}$ האם אוסף הקבוצות $\{S_{(n,1)}\mid n\in \mathbb{N}\setminus \{0\}\}$ הוא האם $\{S_{(n,1)}\mid n\in \mathbb{N}\setminus \{0\}\}$ האם אוסף הקבוצות $\{S_{(n,1)}\mid n\in \mathbb{N}\setminus \{0\}\}$ הוא התשובות.
- ג. קבעו אם יחס הסדר שמצאתם בסעיף א' הוא סדר מלא והאם קיימים איברים מינימליים או מקסימליים. נמקו את התשובה.

תשובה

: או יחס שקילות על A נוכיח זאת R . א

 $a_1b_1=a_1b_1$ שכן , $\langle a_1,b_1
angle R\langle a_1,b_1
angle$ מתקיים $\langle a_1,b_1
angle \in A$ שכן R

 $a_1b_2=a_2b_1$ אז $\langle a_1,b_1
angle R\langle a_2,b_2
angle$ אם $\langle a_1,b_1
angle ,\langle a_2,b_2
angle \in A$ סימטרי ואז מתקיים גם R . $\langle a_2,b_2
angle R\langle a_1,b_1
angle$ לכן $\langle a_2,b_2
angle R\langle a_1,b_1
angle$ לכן $\langle a_2,b_2
angle R\langle a_1,b_1
angle$

: את נוכיח A את סדר על T

ab < ab -ש ייתכן ש- $\langle a,b \rangle$ עם $\langle a,b \rangle$ מנט ייתכן ש- $\langle a,b \rangle \in A$ אנטי רפלקסיבי: כל $\langle a_1,b_2 \rangle T \langle a_3,b_3 \rangle$ ו- $\langle a_1,b_1 \rangle T \langle a_2,b_2 \rangle$, אם $\langle a_1,b_1 \rangle T \langle a_2,b_2 \rangle$, וכ $\langle a_3,b_3 \rangle \in A$ יום אוז $\langle a_1,b_1 \rangle T \langle a_2,b_2 \rangle$, כל המספרים חיוביים, מכפלת האגפים השמאליים קטנה $\langle a_1b_3 \rangle = a_1b_2 \langle a_2b_1 \rangle$ נצמצם ב- $\langle a_1b_2 \rangle = a_1b_2 \langle a_2b_1 \rangle$ לכן ממכפלת האגפים הימניים כן ש- $\langle a_1b_2 \rangle = a_1b_2 \langle a_2b_1 \rangle$ ונקבל $\langle a_1,b_1 \rangle = a_1b_2 \langle a_2b_1 \rangle$ הוכחנו אם כן ש- $\langle a_1,b_1 \rangle = a_1b_2 \langle a_2,b_3 \rangle$

. $\langle a,b \rangle R \langle n,1 \rangle$ וגם $\langle a,b \rangle R \langle m,1 \rangle$ ב. נניח ש- $\langle a,b \rangle R \langle n,1 \rangle$ וגם $\langle a,b \rangle \in S_{\langle n,1 \rangle} \cap S_{\langle m,1 \rangle}$ וגם $\langle a,b \rangle \in A$ אז מהגדרת $\langle a,b \rangle R$ מקבלים ש- $\langle a,b \rangle R$ וגם $\langle a,b \rangle R$ אבל מכאן נקבל ש- $\langle a,b \rangle R$ מקבלים ש- $\langle a,b \rangle R$ ואז מהגדרת $\langle a,b \rangle R$ מקבלים ש- $\langle a,b \rangle R$ ושל $\langle a,b \rangle R$ מכאן ש- $\langle a,b \rangle R$ מכאן ש- $\langle a,b \rangle R$ כלומר המחלקות של $\langle a,b \rangle R$ ושל $\langle a,b \rangle R \langle a,b \rangle R$ הן זרות זו לזו כאשר $\langle a,b \rangle R \langle a,b \rangle R$ אז מראך $\langle a,b \rangle R \langle a,b \rangle R$ מקבלים ש- $\langle a,b \rangle R \langle a,b \rangle R$ מקבלים ש- $\langle a,b \rangle R \langle a,b \rangle R$ מקבלים ש- $\langle a,b \rangle R \langle a,b \rangle R$ מקבלים ש- $\langle a,b \rangle R \langle a,b \rangle R$ מקבלים ש- $\langle a,b \rangle R \langle a,b \rangle R$ מקבלים ש- $\langle a,b \rangle R \langle a,b \rangle R$ מקבלים ש- $\langle a,b \rangle R \langle a,b \rangle R$ מקבלים ש- $\langle a,b \rangle R \langle a,b \rangle R$ מקבלים ש- $\langle a,b \rangle R \langle a,b \rangle R$ מקבלים ש- $\langle a,b \rangle R \langle a,b \rangle R$ מקבלים ש- $\langle a,b \rangle R \langle a,b \rangle R$ מקבלים ש- $\langle a,b \rangle R \langle a,b \rangle R$ מקבלים ש- $\langle a,b \rangle R \langle a,b \rangle R$ מקבלים ש- $\langle a,b \rangle R \langle a,b \rangle R$ מקבלים ש- $\langle a,b \rangle R \langle a,b \rangle R$ מקבלים ש- $\langle a,b \rangle R \langle a,b \rangle R \langle a,b \rangle R$ מקבלים ש- $\langle a,b \rangle R \langle a,b \rangle R \langle a,b \rangle R$ מקבלים ש- $\langle a,b \rangle R \langle a,b \rangle R \langle a,b \rangle R$ מכאן ש- $\langle a,b \rangle R \langle a,b \rangle R \langle a,b \rangle R$ מקבלים ש- $\langle a,b \rangle R \langle a,b \rangle R \langle a,b \rangle R \langle a,b \rangle R$ מקבלים ש- $\langle a,b \rangle R \langle a,b \rangle R$

. $A=igcup_{\mathbf{N}\setminus\{0\}}S_{\langle n,1\rangle}$ -ש בנוסף של Aצריך אוסף יהיה והיה $\{S_{\langle n,1\rangle}|\ n\in\mathbf{N}\setminus\{0\}\}$ כדי שאוסף הקבוצות

 $\langle 1,2 \rangle \in S_{\langle n,1 \rangle}$ -ע כך ח $\in \mathbf{N} \setminus \{0\}$ ונניח שקיים ונניח אבל אם נסתכל למשל על הזוג אבל אם n=1/2 כלומר n=1/2 נקבל ער הזוג לומר וואת סתירה.

ג. אבל לא מתקיים $\langle 1,2 \rangle T \langle 2,4 \rangle$ וגם לא מפני שלמשל הוא לא סדר מלא מפני שלמשל הוא לא סדר מלא מפני מתקיים $\langle 2,4 \rangle T \langle 1,2 \rangle$ וגם לא מתקיים $\langle 2,4 \rangle T \langle 1,2 \rangle$.

. (ab < 2ab (כי $(a,2b)T\langle a,b\rangle$ (גם $(a,b)T\langle 2a,b\rangle$ מתקיים ($(a,b)T\langle 2a,b\rangle$ וגם $(a,b)\in A$ איברים מינימליים או לכן לא מינימלי ולא מקסימלי ומכאן שאין ב- (a,b) איברים מינימליים או מקסימליים.

שאלה 3

את $g:\mathcal{P}(B)\to\mathcal{P}(A)$ נסמן ב- $f:A\to B$ ולכל פונקציה A,B ולכל שתי קבוצות בשאלה זו, לכל שתי קבוצות . $g(D)=f^{-1}[D]\ ,\ D\in\mathcal{P}(B)$ לכל

- א. הוכיחו ש- f היא על אם ורק אם g היא חד-חד ערכית. (אפשר להיעזר בשאלה 16 בספר)
 - f(0)=0 -ו n>0 לכל f(n)=n-1 ב. בסעיף זה נניח ש- $f:\mathbf{N}\to\mathbf{N}$ מוגדרת על-ידי $g:\mathcal{P}(\mathbf{N})\to\mathcal{P}(\mathbf{N})$ היא חד-חד ערכית הוכיחו שבמקרה זה הפונקציה $g:\mathcal{P}(\mathbf{N})\to\mathcal{P}(\mathbf{N})$ ו- $g(\mathbf{N}\setminus\{0\})$ ו- $g(\mathbf{N}\setminus\{0\})$ ו- $g(\mathbf{N}\setminus\{0\})$ ו
 - g מסעיף בי היא עלg נמקו את התשובה.

תשובה:

-ש א. נניח ש- p היא על ונראה ש- g היא חד-חד ערכית. לשם כך נבחר אי. f היא על ונראה ש- f א. נניח ש- f . עלינו להראות ש- f . עלינו להראות ש- g .

 $f[f^{-1}[X]] = f[f^{-1}[Y]]$ אכן, אם $f^{-1}[X] = f^{-1}[Y]$ אז g(X) = g(Y) אכן, אם

 $[f(f^{-1}[D])] = D$ מתקיים $D \in \mathcal{P}(B)$ מפני ש- f היא על לפי שאלה 16, לכל

ערכית. g -ש ומכאן ש- $f[f^{-1}[X]] = f[f^{-1}[Y]]$ נובע ש- $f[f^{-1}[X]] = f[f^{-1}[Y]]$ לכן מהשוויון פרית ש- f היא על.

. f(x) = y -כך ש- כך כלשהו אינים לינו להראות עלינו $y \in B$ כלשהו כל כלשהו לשם כך נבחר איבר כלשהו

-ש ומאחר שר $\mathcal{P}(B)$ היא איבר של $\mathcal{P}(B)$ ושונה מ- $\mathcal{P}(B)$ שהיא גם איבר של $\{y\}$ היא איבר של

 $f^{-1}[\{y\}]
eq f^{-1}[\varnothing]$ ולכן ולכן $g(\{y\}) \neq g(\varnothing)$ -ש נקבל ער תרכית ערכית נקבל א

כידוע $x\in f^{-1}[\{y\}]$ ומכאן ש- $f^{-1}[\{y\}]\neq\varnothing$ כלומר קיים איבר $f^{-1}[\varnothing]=\varnothing$. לפי הגדרת התמונה ההפוכה של קבוצה, f

ב. לפי סעיף א', כדי להוכיח ש- g היא חד-חד ערכית מספיק להראות ש- f היא על וזה אכן g היא על וזה אכן . f(x)=x-1=y אם נבחר g אם נבחר g אם נבחר g ולפי הגדרת לכעת ניעזר בהגדרות של g ושל g ושל g ושל g ושל פעת ניעזר בהגדרות של g ושל g ושל g ושל g ושל פעת ניעזר בהגדרות של g ושל g ושל g ונקבל:

 $g(\{0,1,2,...,n\}) = f^{-1}[\{0,1,2,...,n\}] = \{x \in \mathbb{N} | f(x) \in \{0,1,2,...,n\}\} = \{0,1,...,n,n+1\}$

(זה נובע מכך ש- f היא על) $g(\mathbf{N}) = f^{-1}[\mathbf{N}] = \mathbf{N}$

 $. \ g(\mathbf{N} \setminus \{0\}) = f^{-1}[\mathbf{N} \setminus \{0\}] = \{x \in \mathbf{N} | \ f(x) \in \mathbf{N} \setminus \{0\}\} = \{x \in \mathbf{N} | \ f(x) \ge 1\} = \mathbf{N} \setminus \{0,1\}$

. על. g אינה על פרך וכך נקבל ש- אינה על. $g(D) \neq \mathbf{N} \backslash \{0\}$, $D \in \mathcal{P}(\mathbf{N})$ אינה על.

. $f^{-1}[D]=\mathbf{N}\backslash\{0\}$ - נקבל ש- $g(D)=\mathbf{N}\backslash\{0\}$ כך ש- $D\in\mathcal{P}(\mathbf{N})$ נקבל ש- אכן, אם נניח שקיימת קבוצה $D\in\mathcal{P}(\mathbf{N})$

אז נקבל ש- $f(0)=0\in D$ אבל מפני שגם . $f(1)=0\in D$ לכן $1\in f^{-1}[D]$ אז נקבל ש- אז נקבל ש- $0\in \mathbb{N}\setminus\{0\}$ וזו כמובן סתירה. מכאן ש- $0\in f^{-1}[D]$

שאלה 4

 $f,g\colon \mathbf{N} imes \mathbf{Z} o \mathbf{N} imes \mathbf{Z}$ המוגדרת כך

. $g\langle m,n\rangle=\langle m,m-2n\rangle$ רי $f\langle m,n\rangle=\langle m,2m-n\rangle$, $m\in {\bf N}$, $n\in {\bf Z}$ לכל

- א. הוכיחו ש- f היא הפיכה ומיצאו את הפונקציה ההפכית שלה. נמקו את התשובה.
 - ב. הוכיחו ש- g אינה הפיכה. נמקו את התשובה.
 - $g^{-1}[\mathbf{N} \times \{0\}]$ ואת $g[\mathbf{N} \times \{0\}]$.

תשובה

א. ננסה תחילה למצוא נוסחה לפונקציה שיכולה להיות הופכית ל- f , על ידי חיפוש מקור א. נרסה תחילה לאיבר איבר $\mathbf{N} \times \mathbf{Z}$ על-ידי לאיבר כלשהו

. $f\langle m,n \rangle = \langle m,2m-n \rangle = \langle x,y \rangle$ כך ש- $\langle m,n \rangle \in \mathbf{N} \times \mathbf{Z}$ יהי נחפש . $\langle x,y \rangle \in \mathbf{N} \times \mathbf{Z}$ יהי $\langle x,y \rangle \in \mathbf{N} \times \mathbf{Z}$ נחפש . $\langle x,y \rangle \in \mathbf{N} \times \mathbf{Z}$ (צריכים להביע את $\langle m,n \rangle$ באמצעות

מתוך $(x,y)=\langle x,y\rangle$ נקבל ש- $(x,y)=\langle x,y\rangle$ מתוך המועמדת נקבל ש- $(x,y)=\langle x,y\rangle$ מתוך המועמדת נקבל היא $(x,y)=\langle x,2x-y\rangle$ המוגדרת כך: $(x,y)=\langle x,2x-y\rangle$ נשים לב שבעצם הופכית ל- $(x,y)=\langle x,2x-y\rangle$ המוגדרת להיות $(x,y)=\langle x,2x-y\rangle$ מורה להיות $(x,y)=\langle x,2x-y\rangle$ אמורה להיות $(x,y)=\langle x,2x-y\rangle$ מתוך ההפכית של $(x,y)=\langle x,2x-y\rangle$ אמורה להיות $(x,y)=\langle x,2x-y\rangle$ מתוך להיות $(x,y)=\langle x,2x-y\rangle$ מתוך להיות $(x,y)=\langle x,2x-y\rangle$ מתוך להיות $(x,y)=\langle x,2x-y\rangle$ מתוך להיות פונקציה

: מתקיים $\langle m,n \rangle \in \mathbf{N} \times \mathbf{Z}$ ואכן לכל

$$f(f\circ f)\langle m,n\rangle=(f(f\langle m,n\rangle))=f(\langle m,2m-n\rangle)=\langle m,2m-(2m-n)\rangle=\langle m,n\rangle$$
 . $f^{-1}=f$ לכן $f\circ f=I_{\mathbf{N}\times\mathbf{Z}}$

- ב. נשים לב שלכל \mathbf{Z} הם שניהם זוגיים $m \in \mathbf{N}$, $n \in \mathbf{Z}$ הם שניהם זוגיים ב. נשים לב שלכל \mathbf{Z} שני הרכיבים בזוג $m \in \mathbf{N}$, $m \in \mathbf{Z}$ הם שניהם זוגיים או שניהם אי-זוגיים. לכן אם ננסה למצוא $\mathbf{Z} \times \mathbf{N} \times \mathbf{Z}$ כך ש-m = 1 וזו סתירה. $m = 1/2 \notin \mathbf{Z}$ וזו סתירה. $m = 1/2 \notin \mathbf{Z}$ וזו סתירה. $m = 1/2 \notin \mathbf{Z}$ אינה על ולכן לא הפיכה.
 - $g[\mathbf{N} \times \{0\}] = \{ g\langle m, 0 \rangle | m \in \mathbf{N} \} = \{ \langle m, m 2 \cdot 0 \rangle | m \in \mathbf{N} \} = \{ \langle m, m \rangle | m \in \mathbf{N} \}$ $g^{-1}[\mathbf{N} \times \{0\}] = \{ \langle m, n \rangle \in \mathbf{N} \times \mathbf{Z} | g\langle m, n \rangle \in \mathbf{N} \times \{0\} \}$ $= \{ \langle m, n \rangle \in \mathbf{N} \times \mathbf{Z} | \langle m, m 2n \rangle \in \mathbf{N} \times \{0\} \}$

התנאי $m\in {\bf Z}$ ו $m\in {\bf N}$ כאשר m=2n שקול לכך ש- m,m-2n פחוזה רו $m\in {\bf N}$ התנאי $m\in {\bf N}$ ווה כמובן $m\in {\bf N}$ כאשר m=2n ומכאן ש- מחייב גם את m=2n להיות טבעי. לכן m,m-2n

$$g^{-1}[\mathbf{N} \times \{0\}] = \{\langle 2n, n \rangle \mid n \in \mathbf{N}\}\$$