Homework Sorting 2

Plasencia Palacios Milton Nicolás

1. Select algorithm that deals with repeated values still belongs to O(n)? Given the code:

```
int * new_partition(void *A, const size_t elem_size, size_t i,
       size_t j ,size_t p, total_order_type leq)
3 {
    swap(A+i*elem_size, A+p*elem_size, elem_size);
4
    int* k= malloc(sizeof(int)*2);
    unsigned int c = 0;
6
    p = i;
    i++;
9
    j -
10
    while ( i <= j ) {
       if (leq(A+p*elem_size, A+i*elem_size) && leq(A+i*elem_size, A+p*
       elem_size)){
        c++;
        swap(A+(p+c)*elem_size , A+i*elem_size , elem_size);
13
14
       } else if (leq(A+p*elem_size, A+i*elem_size)){
        swap(A+i*elem_size, A+j*elem_size, elem_size);
       }else{
18
         i++;
19
20
21
    for (unsigned int count = 0; count <=c; count++){
22
      swap(A+(p+count)*elem_size, A+(j-count)*elem_size, elem_size);
23
24
    k[0] = j-c;
25
26
    k[1] = j;
    return k;
27
28 }
```

As we can see we have a generalized partition in which we are dealing also with elements that are equal to pivot. Since it works in the same way of the original partition code (it adds only a third clause to the if statement which costs $\Theta(1)$ and deals with equal elements). So the "while loop" will have the same complexity as in the first "partition" function, that is, $\Theta(n)$ (n is the length of the array). We know also that the complexity of "Select" depends on the "partition" function, so its complexity does not change and remains O(n).

2. Draw the curve: Quick sort vs Quick sort + Select:

In this first graph we look at the difference in performance between Quick sort and Quick sort + select with a range of values between $2^2 - 2^1 3$. We can see that for this input size the naive Quick sort algorithm outperforms its variant with select.

If we consider bigger values for the input size (until 2^20) we can clearly see that the implementation of Quick sort + select has a better asymptotic behaviour.

3. If we divide the input elements into chunks made up by 7 elements we

will get:

$$4\left(\left\lceil\frac{1}{2}\left\lceil\frac{n}{7}\right\rceil\right\rceil-2\right)\geq\frac{2n}{7}-8$$

which is a lower bound on the number of elements that are greater than the pivot (medians of medians). We can compute also the upper bound for the elements smaller than it:

$$n - \left(\frac{2n}{7} - 8\right) = \frac{5n}{7} + 8$$

This help us to build the recursive equation:

$$T_s(n) = T_s\left(\left\lceil \frac{n}{7}\right\rceil\right) + T_s\left(\frac{5n}{7} + 8\right) + \Theta(n)$$

To solve it we take cn and c'n as representatives (for O(n) and $\Theta(n)$).

$$T(n) \le c \left\lceil \frac{n}{7} \right\rceil + c \left(\frac{5n}{7} + 8 \right) + c'n$$
$$\le c \left(\frac{6n}{7} \right) + 9c + c'n$$

here we can take $c \geq 28c'$ because $\frac{5n}{7} + 8 \leq n \rightarrow n \geq 28$ and so:

$$c\frac{6n}{7} + 9c + \frac{cn}{28} \le cn \to n > 84$$

In conclusion, by induction, $T_s(n) \in O(n)$

If we divide in chunks with 3 elements we have that:

$$2\left(\left\lceil \frac{1}{2} \left\lceil \frac{n}{3} \right\rceil \right\rceil - 2\right) \ge \frac{n}{3} - 4$$
$$n - \left(\frac{n}{3} - 4\right) = \frac{2n}{3} + 4$$

Hence

$$T_s(n) = T_s\left(\left\lceil \frac{n}{3}\right\rceil\right) + T_s\left(\frac{2n}{7} + 4\right) + \Theta(n)$$

By guessing that $T_s(n) > cn$ for some c > 0 and taking as other representative c'n with c' > 0, we obtain:

$$T_s(n) = T_s\left(\left\lceil \frac{n}{3}\right\rceil\right) + T_s\left(\frac{2n}{7} + 4\right) + \Theta(n) \ge c\left(\frac{n}{3}\right) + c\left(\frac{4n}{6} + 4\right) + c'n \ge cn$$

$$\ge cn + 4c + c'n > cn$$

So we end up in $T_s(s) > cn$ which means that it grows faster than a linear function.

4.

Algorithm 1: Exercise 4: Selection

Which is basically the same algorithm we have seen during lectures and have complexity O(n) if the function that looks for the median (black-box()) is O(n) (and that is a hypothesis).

5a.
$$T_1(n) = 2T_1(n/2) + O(n)$$

Recursion Tree

The height of the tree will be $h = \log_2(n)$ and the number of nodes at the i-th level is 2^i so:

$$T_1(n) \le \sum_{i=0}^h 2^i c \frac{n}{2^i} = cn \sum_{i=0}^h 1 = cn \log_2(n) \in O(n \log_2(n))$$

Substitution Method

Guess that $T_1(n) \in O(n \log_2(n))$. So $cn \log_2(n)$ is the representative and c'n as the one for O(n). Assuming that $\forall m < n$ holds our guess, we can compute:

$$T_2(n) \le 2T_2(n/2) + c'n \le 2c\frac{n}{2}\log\left(\frac{n}{2}\right) + c'n$$
$$\le cn\log(n) - cn\log(2) + c'n \le cn\log(n)$$

The last inequality holds when $c'n - cn \log 2 \le 0 \leftrightarrow c \ge c'$

$$\mathbf{5b}.T_2(n) = T_2(\lceil n/2 \rceil) + T_2(\lfloor n/2 \rfloor) + \Theta(1)$$
 Recursion Tree

We can observe that the recursion tree will have height $h_1 = \log(\frac{n}{2})$ if we consider the rightmost branch, and height $h_2 = \log(2n)$ if we consider the leftmost one. So we consider two equations:

$$T_2(n) \ge 2T_2(\frac{n}{2}) + \Theta(1)$$

 $T_2(n) \le 2T_2(\frac{n}{2}) + \Theta(1)$

And choosing "c" as a representative for $\Theta(1)$, we obtain:

$$T_2(n) \ge \sum_{i=0}^{h_1} c2^i \ge c \frac{2^{\log_2(\frac{n}{2})+1} - 1}{2-1} \ge cn - c \in \Omega(n)$$

$$T_2(n) \le \sum_{i=0}^{h_2} c2^i \le c \frac{2^{\log_2(2n)+1}-1}{2-1} \le 4cn-c \in O(n)$$

and so we can conclude that $T_2(n) \in \Theta(n)$

Substitution Method

First we assume that $T_2(n) \in \Theta(n)$ and we choose cn as representative of it and 1 as a representative for $\Theta(1)$. Assuming that $\forall m < n \to T_2(m) \ge cm$:

$$T_2(n) \ge c(\lceil n/2 \rceil) + c(\lceil n/2 \rceil) + 1 \ge cn \forall c \ge 0$$

So $T_2(n) \in \Omega(n)$. Now we assume that $\forall m < n \to T_2(m) \le cm$ but we take as a representative for O(n) cn - d:

$$T_2(n) \le c(\lceil n/2 \rceil) - d + c(\lceil n/2 \rceil) - d + 1 \le cn - 2d + 1$$

And that's true for $d \ge 1$, so $T_2(n) \in (n)$, which means that $T_2(n) \in \Theta(n)$ **5c.** $T_3(n) = 3T_3(n/2) + O(n)$

Recursion Tree

The recursion three has height $h = \log_2(n)$ and at i-th level it will have $3^i c \frac{n}{2^i}$ nodes with cost $\frac{n}{3^i}$. Thus:

$$T_3(n) \le \sum_{i=0}^h \left(\frac{3}{2}\right)^i cn = cn(3n^{\log_2 3 - 1} - 1) \in O(n^{\log_2 3})$$

Substitution Method

This time our guess will be $T_3(n) \in O(n^{\log_2 3})$, $cn^{\log_2 3} - c$ " n as its representative and c'n as the representative for O(n). Assuming that $\forall m \leq n$ holds $T_3(m) \leq cm^{\log_2 3}$, we can compute:

$$T_3(n) \le 3\left(c\left(\frac{n}{2}\right)^{\log_2 3} - c^{\frac{n}{2}}\right) + c'n = cn^{\log_2 3} - \frac{3}{2}c^{\frac{n}{2}}n + c'n \le cn^{\log_2 3} - c^{\frac{n}{2}}n$$

and last inequality holds when $\frac{3}{2}c" \geq c'$.

5d.
$$T_4(n) = 7T_4(n/2) + \Theta(n^2)$$

Recursion Tree

The height of the recursion tree is $h = \log_2(n)$ and the nodes at the i-th level are 7^i and the cost on that level is $7^i c \left(\frac{n}{2^i}\right)^2$. The complexity will be:

$$T_4(n) \le \sum_{i=0}^h 7^i c\left(\frac{n}{2^i}\right) = cn^2 \sum_{i=0}^h \left(\frac{7}{4}\right)^i =$$

$$= \frac{4}{3} cn^2 \left(\frac{7}{4} n^{\log_2 7 - \log_2 4} - 1\right) = \frac{4}{3} cn^2 \left(\frac{7}{4} n^{\log_2 7 - 2} - 1\right) \in O(n^{\log_2 7})$$

Substitution Method

Our guess will be $T_4(n) \in O(n^{\log_2 7})$. We choose as a representative $cn^{\log_2 7} - c"n^2$ and $c'n^2$ as a representative of $\Theta(n^2)$. We assume that $\forall m < n$ it holds $T_4(m) \leq cm^{\log_2 7} - c"m^2$. We can compute:

$$T_4(n) \le 7\left(c\left(\frac{n}{2}\right)^{\log_2 7} - c^{\frac{n^2}{2}}\right) + c'n^2 = cn^{\log_2 7} - \frac{7}{4}c^{\frac{n^2}{2}} + c'n^2 \in O(n^{\log_2 7})$$

Ant last step is true when $c" \ge \frac{4}{3}c'$.