# Verteilung mehrerer Zufallsvariablen

Peter Pickl

Mathematisches Institut, Universität Tübingen

5. Juni 2024

#### Mehrere Zufallsvariablen

- ▶ Gegeben mehrere Zufallsvariablen  $X_i$  mit  $i \in I$  für eine Indexmenge I.
- ► Wir möchten die Wahrscheinlichkeiten von Ereignissen behandeln, die sich durch die X<sub>i</sub> ausdrücken lassen
- ▶ Zum Beispiel  $\cap_{i \in \mathbb{N}} X_i \in B_i$ , wobei die  $B_i$  Elemente der Borel'schen  $\sigma$ -Algebra sind.
- So lange wir nur Verknüpfungen zwischen den Ereignissen zulassen, die nach den Axiomen der  $\sigma$ -Algebra legitim sind, erhalten wir so jeweils ein Ereignis.
- Legitim sind natürlich abzählbare Schnitte und Vereinigung, Differenz- und Komplementbildung.

### Verteilungsfunktion

Es seien nun zwei Zufallsvariablen X, Y gegeben (folgende Betrchtungen gehen für mehr als 2 Zufallsvariablen analog).

Wir möchten das entsprechende Wahrscheinlichkeitsmass für durch X und Y ausdrückbare Ereignisse zusammenfassen.

Dies machen wir wieder mit Hilfe der Verteilungsfunktion

**Definition**: Seien X, Y Zufallsvariablen. Die Funktion  $V_{X,Y}: \mathbb{R}^2 \to [0,1]$  gegeben durch

$$V_{X,Y}(a,b) := \mathbb{P}\left(X \leq a \text{ und } Y \leq b\right)$$

nennt man gemeinsame Verteilungsfunktion von X und Y.

## Eindeutigkeit des Masses

**Satz:** Durch  $V_{X,Y}$  sind für beliebige Ereignisse  $(X,Y) \in \mathcal{B}(\mathbb{R}^2)$  die Wahrscheinlichkeiten eindeutig festgelegt.

**Beweis:** Wir benutzen den Eindeutigkeitssatz. Dazu brauchen wir nur zu zeigen, dass die Mengen  $\mathcal{E}:=\left\{]-\infty,a]\times]-\infty,b]$  für  $(a,b)\in\mathbb{R}^2\right\}$  die Borel'sche- $\sigma$ -Algebra erzeugen. Das Mengensystem  $\mathcal{E}$  ist nämlich schnittstabil, dadurch greift der Eindeutigkeitssatz!

Durch  ${\mathcal E}$  lassen sich zunächst alle Mengen der Form

$$ightharpoonup$$
 ]  $-\infty$ ,  $a$ ]  $\times$  ]  $-\infty$ ,  $b$ [

$$ightharpoonup$$
 ]  $-\infty$ ,  $a[\times]-\infty$ ,  $b$ ]

▶ und ] 
$$-\infty$$
,  $a[\times]-\infty$ ,  $b[$ 

erzeugen. Zum Beispiel

$$]-\infty, a[\times]-\infty, b[=\bigcup_{n\in\mathbb{N}}]-\infty, a-\frac{1}{n}]\times]-\infty, b-\frac{1}{n}]$$



### Eindeutigkeit des Masses

**Satz:** Durch  $V_{X,Y}$  sind für beliebige Ereignisse  $(X,Y) \in \mathcal{B}(\mathbb{R}^2)$  die Wahrscheinlichkeiten eindeutig festgelegt.

**Beweis:** Wir benutzen den Eindeutigkeitssatz. Dazu brauchen wir nur zu zeigen, dass die Mengen  $\mathcal{E}:=\left\{]-\infty,a]\times]-\infty,b]$  für  $(a,b)\in\mathbb{R}^2\right\}$  die Borel'sche- $\sigma$ -Algebra erzeugen. Das Mengensystem  $\mathcal{E}$  ist nämlich schnittstabil, dadurch greift der Eindeutigkeitssatz!

Durch  ${\mathcal E}$  lassen sich zunächst alle Mengen der Form

$$ightharpoonup$$
 ]  $-\infty$ ,  $a$ ]  $\times$  ]  $-\infty$ ,  $b$ [

$$ightharpoonup ]-\infty,a[\times]-\infty,b]$$

▶ und 
$$]-\infty, a[\times]-\infty, b[$$

erzeugen. Zum Beispiel

] 
$$-\infty$$
,  $a[\times] - \infty$ ,  $b[=\bigcup_{n\in\mathbb{N}}] - \infty$ ,  $a - \frac{1}{n}] \times ] - \infty$ ,  $b - \frac{1}{n}$ ] Es gilt

$$[a, b[\times]c, d[=] - \infty, b[\times] - \infty, d[\times] - \infty, d[\times$$



#### Eindeutigkeit des Masses

**Satz:** Durch  $V_{X,Y}$  sind für beliebige Ereignisse  $(X,Y) \in \mathcal{B}(\mathbb{R}^2)$  die Wahrscheinlichkeiten eindeutig festgelegt.

#### **Beweis:**

Die von  $\mathcal E$  erzeugte  $\sigma$ -Algebra enthält also die von den offenen Rechtecken erzeugte  $\sigma$ -Algebra.

ŽDass sich durch die offenen Rechtecke alls offenen Mengen erzeugen lassen, geht identisch wie der entsprechende Beweis in  $\mathbb R$  Wähle eine beliebige offene Teilmenge A von  $\mathbb R^2$ . Für jedes  $(a,b)\in\mathbb Q^c\cap A$  bilde das größtmögliche offene Rechteck, welches (a,b)

enthält.

Die Vereinigung all dieser Rechtecke ist dann gleich der Menge A