a.

$$U(1,1) = -0.04 + \gamma * (0.8 * U(2,1) + 0.1 * U(1,2) + 0.1 * U(1,1))$$

$$U(1,2) = -0.04 + \gamma * (0.8 * U(1,1) + 0.1 * U(1,2) + 0.1 * U(1,2))$$

$$U(1,3) = -0.04 + \gamma * (0.8 * U(1,2) + 0.1 * U(2,3) + 0.1 * U(1,3))$$

$$U(2,1) = -0.04 + \gamma * (0.8 * U(3,1) + 0.1 * U(2,1) + 0.1 * U(2,1))$$

$$U(2,3) = -0.04 + \gamma * (0.8 * U(1,3) + 0.1 * U(2,3) + 0.1 * U(2,3))$$

$$U(3,1) = -0.04 + \gamma * (0.8 * 1 + 0.1 * U(2,1) + 0.1 * U(3,1))$$

	0	1	2	3	4	5
Iteration	U(1, 1)	U(1, 2)	U(1, 3)	U(2, 1)	U(2, 3)	U(3, 1)
0	0	0	0	0	0	0
1	-0.04	-0.04	-0.04	-0.04	-0.04	0.68
2	-0.08	-0.08	-0.08	0.44	-0.08	0.74
3	0.26	-0.11	-0.11	0.57	-0.11	0.79
4	0.38	0.13	-0.14	0.63	-0.14	0.8
5	0.46	0.26	0.03	0.65	-0.17	0.81

b.

Iteration	Q(1, 1, right)	Q(2, 1, right)	Q(3, 1, up)
0	0	0	0
1	-0.04	-0.04	0.77
2	-0.07	0.58	0.85
3	0.43	0.71	0.86
4	0.58	0.73	0.86
5	0.61	0.73	0.86
6	0.62	0.73	0.86
7	0.62	0.73	0.86

2.

a. P("the wumpus smells the gold")

= P(wumpus|the)P(smells|wumpus)P(the|smells)P(gold|the)

$$= \frac{P(\textit{the wumpus})}{P(\textit{the})} * \frac{P(\textit{wumpus smells})}{P(\textit{wumpus})} * \frac{P(\textit{smells the})}{P(\textit{smells})} * \frac{P(\textit{the gold})}{P(\textit{the})}$$

$$= 0.5 * 0.45 * 0.67 * 0.13$$

$$= 0.02$$

b. P("the wumpus is dead")

= P(wumpus|the)P(is|wumpus)P(dead|is)

$$= \frac{P(the\ wumpus)}{P(the)} * \frac{P(wumpus\ is)}{P(wumpus)} * \frac{P(is\ deas)}{P(is)}$$

$$= 0.5 * 0.55 * 1$$

$$= 0.28$$

a. "the wumpus smells the gold"

Only have one parse tree

b. "the wumpus smells the gold in 23"

Have two possible parse trees:

- 1. "in 23" refers to the wumpus
- 2. "in 23" refers to the gold

c. "the wumpus is dead"

a.

b.

c.

5.

	0	1	2	3	4	5
Iteration	U(1, 1)	U(1, 2)	U(1, 3)	U(2, 1)	U(2, 3)	U(3, 1)
6	0.49	0.34	0.13	0.66	-0.05	0.81
7	0.51	0.37	0.21	0.66	0.04	0.81
8	0.51	0.39	0.25	0.66	0.12	0.81
9	0.52	0.4	0.27	0.66	0.16	0.81
10	0.52	0.41	0.29	0.66	0.18	0.81
11	0.52	0.41	0.3	0.66	0.2	0.81

12	0.52	0.41	0.3	0.66	0.21	0.81
13	0.52	0.41	0.3	0.66	0.21	0.81

The final utility values for the 6 non-terminal states are:

0.52, 0.41, 0.3, 0.66, 0.21, 0.81