Análisis de sensibilidad en Filas de Espera Rodrigo Maranzana

Repaso: costos en filas de espera

Costo de oportunidad (C_O): costo por no despachar unidades y tenerlas dentro del sistema.

$$C_O = \lambda * W_S * e$$
$$= L_S * e$$

 λ : Tasa de arribos.

 W_s : Tiempo de espera en el sistema.

 L_s : Cantidad de agentes en el sistema.

e: Costo por no despachar (o ganancia obtenida por cada despacho)

Costo operativo (C_E): costo por mantener la infraestructura de filas de espera.

$$C_E = M * C_m$$

M: Cantidad de servidores.

 C_m : Costo de operación de cada servidor.

Repaso: costos en filas de espera

Ambos componentes forman parte de una función de costo total:

$$C_T = C_O + C_E$$

Tasa de servicio (μ) del sistema

Repaso: costos en filas de espera

Análisis de sensibilidad de costos

Cambio del óptimo si cada una de las variables se modifican:

- Cambio de costo operativo C_m .
- Cambio de dinámica de servicio μ .
- Cambio de dinámica de arribos λ .

Cambio de costo operativo : ¿Qué pasa si aumenta?

$$C_E = M * C_m$$

Cambio de costo operativo : ¿Qué pasa si aumenta?

El costo operativo es la pendiente de la recta C_E .

$$C_E = M * C_m$$

Si aumenta costo operativo.

El óptimo lo encontramos:

- Aumentando el costo total.
- Bajando la cantidad de servidores.

Cambio de tasa de servicio: ¿Qué pasa si aumenta?

$$C_O = \lambda * W_S * e$$

Tasa de servicio en fórmulas M/M/S

$$C_O = \lambda * W_S * e$$

$$W_s = \frac{L_q}{\lambda} + \frac{1}{\mu}$$

$$W_{s} = \frac{L_{q}}{\lambda} + \frac{1}{\mu}$$
 Siendo $L_{q} = \frac{P_{0}(\frac{\lambda}{\mu})^{M} \frac{\lambda}{\mu M}}{M! (1 - \frac{\lambda}{\mu M})^{2}}$

El aumento de la tasa de servicio produce la caída del tiempo de espera en el sistema.

Cambio de tasa de servicio : ¿Qué pasa si aumenta?

La tasa de servicio afecta inversamente al costo de oportunidad C_O .

$$C_O = \lambda * W_S * e$$

Si aumenta la tasa de servicio.

El óptimo lo encontramos:

- Disminuyendo el costo total.
- Disminuyendo la cantidad de servidores.

IMPORTANTE: este caso tiene en cuenta que el costo operativo no se ve afectado por μ . ¡No siempre es así!

Cambio de tasa de arribos : ¿Qué pasa si aumenta?

$$C_O = \lambda * W_S * e$$

Tasa de arribos en fórmulas M/M/S

$$C_O = \frac{\lambda}{\lambda} * \frac{W_S}{W_S} * e$$

$$C_O = L_q + \frac{\lambda}{\mu}$$

Siendo
$$L_q = \frac{P_0 \left(\frac{\lambda}{\mu}\right)^M \frac{\lambda}{\mu M}}{M! \left(1 - \frac{\lambda}{\mu M}\right)^2}$$

El aumento de la tasa de arribos produce el aumento del tiempo de espera en el sistema.

Cambio de tasa de arribos

La tasa de arribos afecta directamente al costo de oportunidad C_O .

$$C_O = \lambda * W_S * e$$

Si aumenta la tasa de arribos.

El óptimo lo encontramos:

- Aumentando el costo total.
- Aumentando la cantidad de servidores.

Casos particulares: costo operativo piecewise

Las fórmulas de costos deben ser adaptadas al caso de estudio.

Por ejemplo: En el caso de modificación de tasa de servicio μ

- En una implementación real, el costo operativo se mueve dentro de un márgen.
- Significa "aumentar la cadencia del sistema actual"
- ¿Cuanto se puede aumentar?

Casos particulares: costo operativo piecewise

Se puede aumentar hasta una capacidad máxima.

 Una vez alcanzada, una mayor tasa se alcanza con una mejora del sistema, e impacta en C_m

Casos particulares: costo operativo variable

Existen sistemas donde el costo operativo no es solo variable por "M", sino también por μ .

Casos particulares: costo operativo variable

Existen sistemas donde el costo operativo no es solo variable por "M", sino también por μ .

Ej: Una web proyecta ventas de vendedores independientes. Cada vez que un vendedor utiliza la plataforma, se envía el cálculo a un servidor que ejecuta un modelo de forecast y regresa la respuesta.

Existe una fila de espera en las peticiones, para mantener controlado el gasto de cómputo en la nube.

Se utiliza *Google Cloud* para el cálculo, particularmente el módulo *Vertex Al Forecast*.

Casos particulares: costo operativo variable

En este caso el costo es por punto calculado del forecast.

Por lo tanto, la función de C_E debe afectarse por μ .

Dentro de cada rango de "puntos", la función es lineal.

Fuente: https://cloud.google.com/vertex-ai/pricing?hl=es-419#automl

