ICE for PDE

Problem 1.

L=0.1m, k=200 W/(m.K), $\rho = 10000 \, kg/m^3$, $c_p = 500 \, J/(kg.K)$, $q'' = 1 \times 10^6 \, W/m^2$.

Problem 2

 $T_{bulk} = 20$ °C, $h = 1 \times 10^4 W/m^2 K$.

Problem 3

The advection-diffusion equation is used to compute the distribution of concentration along the length of a rectangular chemical reactor.

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} - U \frac{\partial c}{\partial x} - kc$$

where c=concentration (mg/m³), t=time(min), D= a diffusion

coefficient (m²/min), x=distance along the tank's longitudinal axis (m) where x=0 at the tank's inlet, U=velocity in the x direction (m/min), and k=a reaction rate (min⁻¹) whereby the chemical decays to another form. Develop an explicit scheme to solve this equation numerically. Test it for k=0.15, D=100, and U=1 for a tank of length 10 m. Use a $\Delta x = 1$ m, and a step size $\Delta t = 0.005$. Assume that the inflow concentration is 100 and that the initial concentration in the tank is zero. Perform the simulation from t=0 to 100 and plot the final resulting concentration versus x.