Ermittlung Atomarer Zusammensetzung durch multispektrales Röntgen

Tobias Kienzler

21.09.2018

Motivation

- Unterstützung der Röntgendiagnostik: Atomare Zusammensetzung
- Gängige Detektoren: Komplettes Spektrum absorbiert (Ausnahme: DXA)
- Untersuchung möglicher Adaption existierender Aufbauten

Grundlagen: Absorption I

► Absorption elektromagnetischer Strahlung **exponentiell** in Dicke *d*, Lambert-Beersches Gesetz:

$$I = I_0 \cdot \exp\left(-\mu \cdot d\right)$$

Zusammengesetztes Material: Integration (vgl. Hounsfield-Skala im CT)

$$I = I_0 \cdot \exp\left(\int \mu(x) \, dx\right)$$

Massenschwächungskoeffizient μ/ρ abhängig von Photonenenergie

Grundlagen: Absorption II

► Tabelliert, z.B. https://www.nist.gov/pml/x-ray-massattenuation-coefficients

Grundlagen: Röhrenspektrum & Detektor

 Emittiertes Spektrum kontinuierlich, abhängig von Anodenmaterial, Filter und Beschleunigungsspannung

▶ Detektor registriert alle Photonen, kein monochromatisches Abfahren einzelner Wellenlängen möglich

Dual-Röntgen-Absorptiometrie (DXA)

Subtraktion zweier Aufnahmen bei unterschiedlicher Energie

[http://www.upstate.edu/radiology/education/rsna/radiography/dual.php]

Anwendung z.B. Knochendichtemessung

Triple-Röntgen-Absorptiometrie

► Analog mit dritter Energie

Multispektrale Röntgen-Absorptiometrie

Alternative: Filtervariation

Abschätzung Patientendosis

Ausblick

► Kombination CT oder Parallaxenverschiebung