TOÁN RỜI RẠC

Chương 5

Số NGUYÊN

Nội dung

Chương 5. SỐ NGUYÊN

- Phép chia
- Ước chung lớn nhất và bội chung nhỏ nhất
- Số nguyên tố

Định nghĩa. Cho hai số nguyên a và $b \neq 0$.

Định nghĩa. Cho hai số nguyên a và $b \neq 0$. Ta nói a chia hết cho b

Định nghĩa. Cho hai số nguyên a và $b \neq 0$. Ta nói a chia hết cho b nếu tồn tại số nguyên m sao cho a = mb,

Định nghĩa. Cho hai số nguyên a và $b \neq 0$. Ta nói a chia hết cho b nếu tồn tại số nguyên m sao cho a = mb, ký hiệu a : b.

• a được gọi là **bôi** của b,

Định nghĩa. Cho hai số nguyên a và $b \neq 0$. Ta nói a chia hết cho b nếu tồn tại số nguyên m sao cho a = mb, ký hiệu a : b. Khi đó

Định nghĩa. Cho hai số nguyên a và $b \neq 0$. Ta nói a **chia hết cho** b nếu tồn tại số nguyên m sao cho a = mb, ký hiệu a : b. Khi đó

- \bullet a được gọi là $b\hat{\rho}i$ của b,
- \bullet bđược gọi là $\pmb{u\acute{o}c}$ của a, ký hiệu $\pmb{b} \mid \pmb{a}$

Định nghĩa. Cho hai số nguyên a và $b \neq 0$. Ta nói a chia hết cho b nếu tồn tại số nguyên m sao cho a = mb, ký hiệu a : b. Khi đó

- \bullet a được gọi là $\pmb{b\hat{\wp}i}$ của b,
- \bullet bđược gọi là $\pmb{u\acute{o}c}$ của a, ký hiệu $\pmb{b} \mid \pmb{a}$

Ví dụ. 12:3,

Định nghĩa. Cho hai số nguyên a và $b \neq 0$. Ta nói a chia hết cho b nếu tồn tại số nguyên m sao cho a = mb, ký hiệu a : b. Khi đó

- \bullet a được gọi là $b\hat{\rho}i$ của b,
- ullet b được gọi là $oldsymbol{u}$ ớc của a, ký hiệu $oldsymbol{b} \mid oldsymbol{a}$

Ví dụ. 12:3, 15/2,

Định nghĩa. Cho hai số nguyên a và $b \neq 0$. Ta nói a chia hết cho b nếu tồn tại số nguyên m sao cho a = mb, ký hiệu a : b. Khi đó

- \bullet a được gọi là $b\hat{\rho}i$ của b,
- ullet b được gọi là $oldsymbol{u}$ ớc của a, ký hiệu $oldsymbol{b} \mid oldsymbol{a}$

Ví dụ. 12:3, 15/2, 4 | 20,

Định nghĩa. Cho hai số nguyên a và $b \neq 0$. Ta nói a chia hết cho b nếu tồn tại số nguyên m sao cho a = mb, ký hiệu a : b. Khi đó

- \bullet a được gọi là $b\hat{\rho}i$ của b,
- ullet b được gọi là $oldsymbol{u}$ ớc của a, ký hiệu $oldsymbol{b} \mid oldsymbol{a}$

Ví dụ. $12 \vdots 3$, $15 \not/ 2$, $4 \mid 20$, $5 \not/ 21$.

Định nghĩa. Cho hai số nguyên a và $b \neq 0$. Ta nói a chia hết cho b nếu tồn tại số nguyên m sao cho a = mb, ký hiệu a : b. Khi đó

- \bullet a được gọi là $b\hat{\rho}i$ của b,
- ullet b được gọi là $oldsymbol{u}$ ớc của a, ký hiệu $oldsymbol{b} \mid oldsymbol{a}$

Ví dụ. $12 \vdots 3$, $15 \not / 2$, $4 \mid 20$, $5 \not / 21$.

Định nghĩa. Cho hai số nguyên a và $b \neq 0$. Ta nói a chia hết cho b nếu tồn tại số nguyên m sao cho a = mb, ký hiệu a : b. Khi đó

- \bullet a được gọi là $b\hat{\rho}i$ của b,
- ullet b được gọi là $oldsymbol{u}$ ớc của a, ký hiệu $oldsymbol{b} \mid oldsymbol{a}$

Ví dụ. $12 \vdots 3$, $15 \not/ 2$, $4 \mid 20$, $5 \not/ 21$.

Định lý. Cho $a \neq 0, b$ và c là các số nguyên. Khi đó

Định nghĩa. Cho hai số nguyên a và $b \neq 0$. Ta nói a chia hết cho b nếu tồn tại số nguyên m sao cho a = mb, ký hiệu a : b. Khi đó

- \bullet a được gọi là $b\hat{\rho}i$ của b,
- ullet b được gọi là $oldsymbol{u}$ ớc của a, ký hiệu $oldsymbol{b} \mid oldsymbol{a}$

Ví dụ. $12 \vdots 3$, $15 \not/ 2$, $4 \mid 20$, $5 \not/ 21$.

Định lý. Cho $a \neq 0, b$ và c là các số nguyên. Khi đó

Định nghĩa. Cho hai số nguyên a và $b \neq 0$. Ta nói a chia hết cho b nếu tồn tại số nguyên m sao cho a = mb, ký hiệu a : b. Khi đó

- \bullet a được gọi là $b\hat{\rho}i$ của b,
- ullet b được gọi là $oldsymbol{u}$ ớc của a, ký hiệu $oldsymbol{b} \mid oldsymbol{a}$

Ví dụ. $12 \vdots 3$, $15 \not / 2$, $4 \mid 20$, $5 \not / 21$.

Định nghĩa. Cho hai số nguyên a và $b \neq 0$. Ta nói a chia hết cho b nếu tồn tại số nguyên m sao cho a = mb, ký hiệu a : b. Khi đó

- \bullet a được gọi là $b\hat{\rho}i$ của b,
- ullet b được gọi là $u\acute{o}c$ của a, ký hiệu $b \mid a$

Ví dụ. $12 \vdots 3$, $15 \not/ 2$, $4 \mid 20$, $5 \not/ 21$.

- \bullet $N\acute{e}u \ a \mid b \ và \ a \mid c, \ thì \ a \mid (b+c);$

Định nghĩa. Cho hai số nguyên a và $b \neq 0$. Ta nói a chia hết cho b nếu tồn tại số nguyên m sao cho a = mb, ký hiệu a : b. Khi đó

- \bullet a được gọi là $b\hat{\rho}i$ của b,
- \bullet b được gọi là $\pmb{w\acute{o}c}$ của a, ký hiệu $\pmb{b} \mid \pmb{a}$

Ví dụ. $12 \vdots 3$, $15 \not / 2$, $4 \mid 20$, $5 \not / 21$.

- \bullet $N\acute{e}u \ a \mid b \ va \ b \mid c$,

Định nghĩa. Cho hai số nguyên a và $b \neq 0$. Ta nói a chia hết cho b nếu tồn tại số nguyên m sao cho a = mb, ký hiệu a : b. Khi đó

- \bullet a được gọi là $b\hat{\rho}i$ của b,
- \bullet b được gọi là $\boldsymbol{u\acute{o}c}$ của a, ký hiệu $\boldsymbol{b} \mid \boldsymbol{a}$

Ví dụ. 12:3, 15/2, 4 | 20, 5/21.

- \bullet $N\acute{e}u \ a \mid b \ v\grave{a} \ a \mid c, \ th\grave{a} \mid (b+c);$
- \bullet Nếu $a \mid b$, thì $a \mid bc$;
- \bullet Nếu $a \mid b$ và $b \mid c$, thì $a \mid c$.

Định nghĩa. Cho hai số nguyên a và $b \neq 0$. Ta nói a **chia hết cho** b nếu tồn tại số nguyên m sao cho a = mb, ký hiệu a : b. Khi đó

- \bullet a được gọi là $\pmb{b\hat{\wp}i}$ của b,
- \bullet b được gọi là $\pmb{w\acute{o}c}$ của a, ký hiệu $\pmb{b} \mid \pmb{a}$

Ví dụ. $12 \vdots 3$, $15 \not/ 2$, $4 \mid 20$, $5 \not/ 21$.

Dịnh lý. Cho $a \neq 0, b$ và c là các số nguyên. Khi đó

- \bullet Nếu $a \mid b$ và $b \mid c$, thì $a \mid c$.

Hệ quả. Cho $a \neq 0, b$ và c là các số nguyên thỏa $a \mid b$ và $a \mid c$.

Định nghĩa. Cho hai số nguyên a và $b \neq 0$. Ta nói a **chia hết cho** b nếu tồn tại số nguyên m sao cho a = mb, ký hiệu a : b. Khi đó

- \bullet a được gọi là $\pmb{b\hat{\wp}i}$ của b,
- \bullet b được gọi là $\pmb{w\acute{o}c}$ của a, ký hiệu $\pmb{b} \mid \pmb{a}$

Ví dụ. $12 \vdots 3$, $15 \not/ 2$, $4 \mid 20$, $5 \not/ 21$.

Định lý. Cho $a \neq 0, b$ và c là các số nguyên. Khi đó

Hệ quả. Cho $a \neq 0, b$ và c là các số nguyên thỏa $a \mid b$ và $a \mid c$. Khi đó $a \mid mb + nc$ với m, n là số nguyên.

 $\mathbf{B}\hat{\mathbf{o}}$ $\mathbf{d}\hat{\mathbf{e}}$. Cho hai số nguyên a và d với d > 0.

$$\mathbf{a} = \mathbf{q}\mathbf{d} + \mathbf{r} \ v\acute{\sigma}i \ 0 \le r < d.$$

$$\mathbf{a} = \mathbf{q}\mathbf{d} + \mathbf{r} \ v\acute{o}i \ 0 \le r < d.$$

Ví dụ. Cho a = -102 và d = 23.

$$\mathbf{a} = \mathbf{q}\mathbf{d} + \mathbf{r} \ v\acute{\sigma}i \ 0 \le r < d.$$

Ví dụ. Cho a = -102 và d = 23. Khi đó $-102 = -5 \times 23 + 13$

$$\mathbf{a} = \mathbf{q}\mathbf{d} + \mathbf{r} \ v\acute{\sigma}i \ 0 \le r < d.$$

Ví dụ. Cho
$$a = -102$$
 và $d = 23$. Khi đó $-102 = -5 \times 23 + 13$

Ví dụ.(tự làm) Làm tương tự như ví dụ trên trong trường hợp

- a = 121; d = 15
- a = 214; d = 23

$$\mathbf{a} = \mathbf{q}\mathbf{d} + \mathbf{r} \ v \acute{\sigma} i \ 0 \le r < d.$$

Ví dụ. Cho
$$a = -102$$
 và $d = 23$. Khi đó $-102 = -5 \times 23 + 13$

Ví dụ.(tự làm) Làm tương tự như ví dụ trên trong trường hợp

- a = 121; d = 15
- a = 214; d = 23

Định nghĩa. Trong bổ đề trên, q được gọi là $ph \hat{a} n \ thương$, r được gọi là $ph \hat{a} n \ d u$.

$$\mathbf{a} = \mathbf{q}\mathbf{d} + \mathbf{r} \ v \acute{\sigma} i \ 0 \le r < d.$$

Ví dụ. Cho
$$a = -102$$
 và $d = 23$. Khi đó $-102 = -5 \times 23 + 13$

Ví dụ.(tự làm) Làm tương tự như ví dụ trên trong trường hợp

- a = 121; d = 15
- a = 214; d = 23

Định nghĩa. Trong bổ đề trên, q được gọi là $phần\ thương$, r được gọi là $phần\ dw$. Ký hiệu $q=a\ {
m div}\ d$,

$$\mathbf{a} = \mathbf{q}\mathbf{d} + \mathbf{r} \ v \acute{\sigma} i \ 0 \le r < d.$$

Ví dụ. Cho
$$a = -102$$
 và $d = 23$. Khi đó $-102 = -5 \times 23 + 13$

Ví dụ.(tự làm) Làm tương tự như ví dụ trên trong trường hợp

- a = 121; d = 15
- a = 214; d = 23

Định nghĩa. Trong bổ đề trên, q được gọi là $phần\ thương$, r được gọi là $phần\ dw$. Ký hiệu $q=a\ {
m div}\ d,\ r=a\ {
m mod}\ d.$

$$\mathbf{a} = \mathbf{q}\mathbf{d} + \mathbf{r} \ v\acute{o}i \ 0 \le r < d.$$

Ví dụ. Cho a = -102 và d = 23. Khi đó $-102 = -5 \times 23 + 13$

Ví dụ.(tự làm) Làm tương tự như ví dụ trên trong trường hợp

- a = 121; d = 15
- a = 214; d = 23

Định nghĩa. Trong bổ đề trên, q được gọi là $ph \hat{a} n \ thương$, r được gọi là $ph \hat{a} n \ d u$. Ký hiệu $q=a \ {
m div} \ d$, $r=a \ {
m mod} \ d$.

Ví du.

• 13 div 4

$$\mathbf{a} = \mathbf{q}\mathbf{d} + \mathbf{r} \ v\acute{\sigma}i \ 0 \le r < d.$$

Ví dụ. Cho
$$a = -102$$
 và $d = 23$. Khi đó $-102 = -5 \times 23 + 13$

Ví dụ.(tự làm) Làm tương tự như ví dụ trên trong trường hợp

- a = 121; d = 15
- a = 214; d = 23

Định nghĩa. Trong bổ đề trên, q được gọi là $ph \hat{a} n \ thương$, r được gọi là $ph \hat{a} n \ d u$. Ký hiệu $q=a \ {
m div} \ d$, $r=a \ {
m mod} \ d$.

Ví du.

• 13 div 4 = 3,

 $13 \mod 4$

$$\mathbf{a} = \mathbf{q}\mathbf{d} + \mathbf{r} \ v\acute{\sigma}i \ 0 \le r < d.$$

Ví dụ. Cho
$$a = -102$$
 và $d = 23$. Khi đó $-102 = -5 \times 23 + 13$

Ví dụ.(tự làm) Làm tương tự như ví dụ trên trong trường hợp

- a = 121; d = 15
- a = 214; d = 23

Định nghĩa. Trong bổ đề trên, q được gọi là $ph \hat{a} n \ thương$, r được gọi là $ph \hat{a} n \ d u$. Ký hiệu $q=a \ {
m div} \ d$, $r=a \ {
m mod} \ d$.

Ví du.

• 13 div 4 = 3.

 $13 \mod 4 = 1.$

$$\mathbf{a} = \mathbf{q}\mathbf{d} + \mathbf{r} \ v\acute{o}i \ 0 \le r < d.$$

Ví dụ. Cho
$$a = -102$$
 và $d = 23$. Khi đó $-102 = -5 \times 23 + 13$

Ví dụ.(tự làm) Làm tương tự như ví dụ trên trong trường hợp

- a = 121; d = 15
- a = 214; d = 23

Định nghĩa. Trong bổ đề trên, q được gọi là $phần\ thương$, r được gọi là $phần\ dw$. Ký hiệu $q=a\ {
m div}\ d,\ r=a\ {
m mod}\ d.$

Ví du.

• 13 div 4 = 3.

 $13 \mod 4 = 1.$

• -23 div 5

$$\mathbf{a} = \mathbf{q}\mathbf{d} + \mathbf{r} \ v\acute{o}i \ 0 \le r < d.$$

Ví dụ. Cho
$$a = -102$$
 và $d = 23$. Khi đó $-102 = -5 \times 23 + 13$

Ví dụ.(tự làm) Làm tương tự như ví dụ trên trong trường hợp

- a = 121; d = 15
- a = 214; d = 23

Định nghĩa. Trong bổ đề trên, q được gọi là $ph \hat{a}n$ thương, r được gọi là $ph \hat{a}n$ dư. Ký hiệu q=a div d, r=a mod d.

Ví du.

• 13 div 4 = 3,

 $13 \mod 4 = 1.$

• -23 div 5 = -5,

 $\mathbf{B} \hat{\mathbf{o}} \, \mathbf{d} \hat{\mathbf{e}}$. Cho hai số nguyên a và d với d > 0. Khi đó tồn tai duy nhất $c\breve{a}p \ q, \ r \in \mathbb{Z} \ sao \ cho$

$$\mathbf{a} = \mathbf{q}\mathbf{d} + \mathbf{r} \ v\acute{\sigma}i \ 0 \le r < d.$$

Ví dụ. Cho
$$a = -102$$
 và $d = 23$. Khi đó $-102 = -5 \times 23 + 13$

Ví du. (tự làm) Làm tương tự như ví dụ trên trong trường hợp

- \bullet a = 121; d = 15
- a = 214; d = 23

Đinh nghĩa. Trong bổ đề trên, q được gọi là phần thương, r được gọi là **phần dư**. Ký hiệu $q = a \operatorname{div} d$, $r = a \operatorname{mod} d$.

Ví du.

• 13 div 4 = 3.

- $13 \mod 4 = 1$.
- $-23 \text{ div } 5 = -5, \qquad -23 \text{ mod } 5$

 $\mathbf{B} \hat{\mathbf{o}} \, \mathbf{d} \hat{\mathbf{e}}$. Cho hai số nguyên a và d với d > 0. Khi đó tồn tai duy nhất $c\breve{a}p \ q, \ r \in \mathbb{Z} \ sao \ cho$

$$\mathbf{a} = \mathbf{q}\mathbf{d} + \mathbf{r} \ v\acute{\sigma}i \ 0 \le r < d.$$

Ví dụ. Cho
$$a = -102$$
 và $d = 23$. Khi đó $-102 = -5 \times 23 + 13$

Ví du. (tự làm) Làm tương tự như ví dụ trên trong trường hợp

- \bullet a = 121; d = 15
- a = 214; d = 23

Đinh nghĩa. Trong bổ đề trên, q được gọi là phần thương, r được gọi là **phần dư**. Ký hiệu $q = a \operatorname{div} d$, $r = a \operatorname{mod} d$.

Ví du.

• 13 div 4 = 3.

 $13 \mod 4 = 1$.

- \bullet -23 div 5 = -5, -23 mod 5 = 2.

Định lý. Cho b là số nguyên lớn hơn 1. Khi đó mọi số nguyên dương n đều được biểu diễn duy nhất dưới dạng

$$n = a_k b^k + a_{k-1} b^{k-1} + \ldots + a_1 b + a_0$$

Định lý. Cho b là số nguyên lớn hơn 1. Khi đó mọi số nguyên dương n đều được biểu diễn duy nhất dưới dạng

$$n = a_k b^k + a_{k-1} b^{k-1} + \ldots + a_1 b + a_0$$

trong đó k là số nguyên không âm và a_i là số nguyên thỏa $0 \le a_i < b$.

Định lý. Cho b là số nguyên lớn hơn 1. Khi đó mọi số nguyên dương n đều được biểu diễn duy nhất dưới dạng

$$n = a_k b^k + a_{k-1} b^{k-1} + \ldots + a_1 b + a_0$$

trong đó k là số nguyên không âm và a_i là số nguyên thỏa $0 \le a_i < b$.

Dạng biểu diễn này được gọi là **dạng biểu diễn theo cơ số** b **của** n.

Định lý. Cho b là số nguyên lớn hơn 1. Khi đó mọi số nguyên dương n đều được biểu diễn duy nhất dưới dạng

$$n = a_k b^k + a_{k-1} b^{k-1} + \ldots + a_1 b + a_0$$

trong đó k là số nguyên không âm và a_i là số nguyên thỏa $0 \le a_i < b$.

Dạng biểu diễn này được gọi là dạng biểu diễn theo cơ số b của n. và được ký hiệu $n = (a_k a_{k-1} \dots a_1 a_0)_b$.

Định lý. Cho b là số nguyên lớn hơn 1. Khi đó mọi số nguyên dương n đều được biểu diễn duy nhất dưới dạng

$$n = a_k b^k + a_{k-1} b^{k-1} + \ldots + a_1 b + a_0$$

trong đó k là số nguyên không âm và a_i là số nguyên thỏa $0 \le a_i < b$.

Dạng biểu diễn này được gọi là dạng biểu diễn theo cơ số b của n. và được ký hiệu $n = (a_k a_{k-1} \dots a_1 a_0)_b$.

Một số dạng biểu diễn:

Định lý. Cho b là số nguyên lớn hơn 1. Khi đó mọi số nguyên dương n đều được biểu diễn duy nhất dưới dạng

$$n = a_k b^k + a_{k-1} b^{k-1} + \ldots + a_1 b + a_0$$

trong đó k là số nguyên không âm và a_i là số nguyên thỏa $0 \le a_i < b$.

Dạng biểu diễn này được gọi là dạng biểu diễn theo cơ số b của n. và được ký hiệu $n = (a_k a_{k-1} \dots a_1 a_0)_b$.

Một số dạng biểu diễn: nhị phân (b=2),

Định lý. Cho b là số nguyên lớn hơn 1. Khi đó mọi số nguyên dương n đều được biểu diễn duy nhất dưới dạng

$$n = a_k b^k + a_{k-1} b^{k-1} + \ldots + a_1 b + a_0$$

trong đó k là số nguyên không âm và a_i là số nguyên thỏa $0 \leq a_i < b.$

Dạng biểu diễn này được gọi là dạng biểu diễn theo cơ số b của n. và được ký hiệu $n = (a_k a_{k-1} \dots a_1 a_0)_b$.

Một số dạng biểu diễn: nhị phân (b=2), bát phân (b=8),

Định lý. Cho b là số nguyên lớn hơn 1. Khi đó mọi số nguyên dương n đều được biểu diễn duy nhất dưới dạng

$$n = a_k b^k + a_{k-1} b^{k-1} + \ldots + a_1 b + a_0$$

trong đó k là số nguyên không âm và a_i là số nguyên thỏa $0 \leq a_i < b$.

Dạng biểu diễn này được gọi là dạng biểu diễn theo cơ số b của n. và được ký hiệu $n = (a_k a_{k-1} \dots a_1 a_0)_b$.

Một số dạng biểu diễn: nhị phân (b=2),
bát phân (b=8), thập phân (b=10),

Định lý. Cho b là số nguyên lớn hơn 1. Khi đó mọi số nguyên dương n đều được biểu diễn duy nhất dưới dạng

$$n = a_k b^k + a_{k-1} b^{k-1} + \ldots + a_1 b + a_0$$

trong đó k là số nguyên không âm và a_i là số nguyên thỏa $0 \leq a_i < b$.

Dạng biểu diễn này được gọi là dạng biểu diễn theo cơ số b của n. và được ký hiệu $n = (a_k a_{k-1} \dots a_1 a_0)_b$.

Một số dạng biểu diễn: nhị phân (b=2), bát phân (b=8), thập phân (b=10), thập lục phân (b=16).

Định lý. Cho b là số nguyên lớn hơn 1. Khi đó mọi số nguyên dương n đều được biểu diễn duy nhất dưới dạng

$$n = a_k b^k + a_{k-1} b^{k-1} + \ldots + a_1 b + a_0$$

trong đó k là số nguyên không âm và a_i là số nguyên thỏa $0 \le a_i < b$.

Dạng biểu diễn này được gọi là dạng biểu diễn theo cơ số b của n. và được ký hiệu $n = (a_k a_{k-1} \dots a_1 a_0)_b$.

Một số dạng biểu diễn: nhị phân (b=2), bát phân (b=8), thập phân (b=10), thập lục phân (b=16).

Ví dụ. Tìm số nguyên có dạng biểu diễn nhị phân là (101 1111)₂

Định lý. Cho b là số nguyên lớn hơn 1. Khi đó mọi số nguyên dương n đều được biểu diễn duy nhất dưới dạng

$$n = a_k b^k + a_{k-1} b^{k-1} + \ldots + a_1 b + a_0$$

trong đó k là số nguyên không âm và a_i là số nguyên thỏa $0 \leq a_i < b$.

Dạng biểu diễn này được gọi là dạng biểu diễn theo cơ số b của n. và được ký hiệu $n = (a_k a_{k-1} \dots a_1 a_0)_b$.

Một số dạng biểu diễn: nhị phân (b=2), bát phân (b=8), thập phân (b=10), thập lục phân (b=16).

 \mathbf{V} í dụ. Tìm số nguyên có dạng biểu diễn nhị phân là $(101\ 1111)_2$

Giải.

$$(1011111)_2 = 1 \cdot 2^6 + 0 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$$

Định lý. Cho b là số nguyên lớn hơn 1. Khi đó mọi số nguyên dương n đều được biểu diễn duy nhất dưới dạng

$$n = a_k b^k + a_{k-1} b^{k-1} + \ldots + a_1 b + a_0$$

trong đó k là số nguyên không âm và a_i là số nguyên thỏa $0 \leq a_i < b$.

Dạng biểu diễn này được gọi là dạng biểu diễn theo cơ số b của n. và được ký hiệu $n = (a_k a_{k-1} \dots a_1 a_0)_b$.

Một số dạng biểu diễn: nhị phân (b=2), bát phân (b=8), thập phân (b=10), thập lục phân (b=16).

 \mathbf{V} í dụ. Tìm số nguyên có dạng biểu diễn nhị phân là $(101\ 1111)_2$

Giải.

$$(1011111)_2 = 1 \cdot 2^6 + 0 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 95.$$

 $\mathbf{V}\mathbf{\acute{i}}$ dụ. Tìm số nguyên có dạng biểu diễn bát phân là $(7016)_8$

Đáp án. 3598

Đáp án. 3598

Lưu ý. Đối với hệ thập lục phân, chữ A đến F dùng thay thế cho 10 đến 15.

Đáp án. 3598

Lưu ý. Đối với hệ thập lục phân, chữ A đến F dùng thay thế cho 10 đến 15.

 \mathbf{V} í dụ. Tìm số nguyên có dạng biểu diễn bát phân là $(2\text{AE}0\text{B})_{16}$

Đáp án. 3598

Lưu ý. Đối với hệ thập lục phân, chữ A đến F dùng thay thế cho 10 đến 15.

 \mathbf{V} í dụ. Tìm số nguyên có dạng biểu diễn bát phân là $(2AE0B)_{16}$

Giải. $(2AE0B)_{16} = 2 \cdot 16^4 + 10 \cdot 16^3 + 14 \cdot 16^2 + 0 \cdot 16 + 11$

Đáp án. 3598

Lưu ý. Đối với hệ thập lục phân, chữ A đến F dùng thay thế cho 10 đến 15.

 \mathbf{V} í dụ. Tìm số nguyên có dạng biểu diễn bát phân là $(2AE0B)_{16}$

Giải. $(2AE0B)_{16} = 2 \cdot 16^4 + 10 \cdot 16^3 + 14 \cdot 16^2 + 0 \cdot 16 + 11 = 175627.$

Đáp án. 3598

Lưu ý. Đối với hệ thập lục phân, chữ A đến F dùng thay thế cho 10 đến 15.

Ví dụ. Tìm số nguyên có dạng biểu diễn bát phân là $(2AE0B)_{16}$

Giải.
$$(2AE0B)_{16} = 2 \cdot 16^4 + 10 \cdot 16^3 + 14 \cdot 16^2 + 0 \cdot 16 + 11 = 175627.$$

Tìm dạng biểu diễn theo cơ số b của n

Đáp án. 3598

Lưu ý. Đối với hệ thập lục phân, chữ A đến F dùng thay thế cho 10 đến 15.

 \mathbf{V} í dụ. Tìm số nguyên có dạng biểu diễn bát phân là $(2\text{AE0B})_{16}$

Giải.
$$(2AE0B)_{16} = 2 \cdot 16^4 + 10 \cdot 16^3 + 14 \cdot 16^2 + 0 \cdot 16 + 11 = 175627.$$

Tìm dạng biểu diễn theo cơ số b của n

Chia n cho b ta được

$$n = q_0 b + a_0$$

Đáp án. 3598

Lưu ý. Đối với hệ thập lục phân, chữ A đến F dùng thay thế cho 10 đến 15.

 \mathbf{V} í dụ. Tìm số nguyên có dạng biểu diễn bát phân là $(2AE0B)_{16}$

Giải. $(2AE0B)_{16} = 2 \cdot 16^4 + 10 \cdot 16^3 + 14 \cdot 16^2 + 0 \cdot 16 + 11 = 175627.$

Tìm dạng biểu diễn theo cơ số b của n

Chia n cho b ta được

$$n = q_0 b + a_0$$

Khi đó số dư a_0 chính là ký tự cuối cùng trong dạng biểu diễn.

Đáp án. 3598

Lưu ý. Đối với hệ thập lục phân, chữ A đến F dùng thay thế cho 10 đến 15.

 \mathbf{V} í dụ. Tìm số nguyên có dạng biểu diễn bát phân là $(2AE0B)_{16}$

Giải. $(2AE0B)_{16} = 2 \cdot 16^4 + 10 \cdot 16^3 + 14 \cdot 16^2 + 0 \cdot 16 + 11 = 175627.$

Tìm dạng biểu diễn theo cơ số b của n

Chia n cho b ta được

$$n = q_0 b + a_0$$

Khi đó số dư a_0 chính là ký tự cuối cùng trong dạng biểu diễn. Ta tiếp tục chia q_0 cho b, ta được $q_0=q_1b+a_1$

Đáp án. 3598

Lưu ý. Đối với hệ thập lục phân, chữ A đến F dùng thay thế cho 10 đến 15.

Ví dụ. Tìm số nguyên có dạng biểu diễn bát phân là $(2AE0B)_{16}$

Giải. $(2AE0B)_{16} = 2 \cdot 16^4 + 10 \cdot 16^3 + 14 \cdot 16^2 + 0 \cdot 16 + 11 = 175627.$

Tìm dạng biểu diễn theo cơ số b của n

Chia n cho b ta được

$$n = q_0 b + a_0$$

Khi đó số dư a_0 chính là ký tự cuối cùng trong dạng biểu diễn. Ta tiếp tục chia q_0 cho b, ta được $q_0=q_1b+a_1$

Tiếp tục thực hiện quá trình này cho đến khi phần thương bằng 0,

Đáp án. 3598

Lưu ý. Đối với hệ thập lục phân, chữ A đến F dùng thay thế cho 10 đến 15.

 \mathbf{V} í dụ. Tìm số nguyên có dạng biểu diễn bát phân là $(2\text{AE0B})_{16}$

Giải. $(2AE0B)_{16} = 2 \cdot 16^4 + 10 \cdot 16^3 + 14 \cdot 16^2 + 0 \cdot 16 + 11 = 175627.$

Tìm dạng biểu diễn theo cơ số b của n

Chia ncho bta được

$$n = q_0 b + a_0$$

Khi đó số dư a_0 chính là ký tự cuối cùng trong dạng biểu diễn. Ta tiếp tục chia q_0 cho b, ta được $q_0=q_1b+a_1$

Tiếp tục thực hiện quá trình này cho đến khi phần thương bằng 0, $q_{k-1} = 0 \cdot b + a_k$.

Đáp án. 3598

Lưu ý. Đối với hệ thập lục phân, chữ A đến F dùng thay thế cho 10 đến 15.

 \mathbf{V} í dụ. Tìm số nguyên có dạng biểu diễn bát phân là $(2AE0B)_{16}$

Giải. $(2AE0B)_{16} = 2 \cdot 16^4 + 10 \cdot 16^3 + 14 \cdot 16^2 + 0 \cdot 16 + 11 = 175627.$

Tìm dạng biểu diễn theo cơ số b của n

Chia n cho b ta được

$$n = q_0 b + a_0$$

Khi đó số dư a_0 chính là ký tự cuối cùng trong dạng biểu diễn. Ta tiếp tục chia q_0 cho b, ta được $q_0=q_1b+a_1$

Tiếp tục thực hiện quá trình này cho đến khi phần thương bằng 0, $q_{k-1} = 0 \cdot b + a_k$.

Khi đó $(a_k a_{k-1} \dots a_1 a_0)_b$ là dạng biểu diễn theo cơ số b của n.

$$12345 = 1543 \cdot 8 + 1$$

Giải.
$$12345 = 1543 \cdot 8 + 1$$
$$1543 = 192 \cdot 8 + 7$$

Giải.
$$12345 = 1543 \cdot 8 + 1$$
$$1543 = 192 \cdot 8 + 7$$
$$192 = 24 \cdot 8 + 0$$

Giải.
$$12345 = 1543 \cdot 8 + 1$$
$$1543 = 192 \cdot 8 + 7$$
$$192 = 24 \cdot 8 + 0$$
$$24 = 3 \cdot 8 + 0$$

$$12345 = 1543 \cdot 8 + 1$$

$$1543 = 192 \cdot 8 + 7$$

$$192 = 24 \cdot 8 + 0$$

$$24 = 3 \cdot 8 + 0$$

$$3 = \mathbf{0} \cdot 8 + 3$$

Giải.
$$12345 = 1543 \cdot 8 + 1$$
$$1543 = 192 \cdot 8 + 7$$
$$192 = 24 \cdot 8 + 0$$
$$24 = 3 \cdot 8 + 0$$
$$3 = \mathbf{0} \cdot 8 + 3$$

Như vậy $12345 = (30071)_8$

Giải.
$$12345 = 1543 \cdot 8 + 1$$
$$1543 = 192 \cdot 8 + 7$$
$$192 = 24 \cdot 8 + 0$$
$$24 = 3 \cdot 8 + 0$$
$$3 = \mathbf{0} \cdot 8 + 3$$

Như vậy $12345 = (30071)_8$

Ví dụ. Tìm dạng biểu diễn thập lục phân của 177130.

Giải.
$$12345 = 1543 \cdot 8 + 1$$
$$1543 = 192 \cdot 8 + 7$$
$$192 = 24 \cdot 8 + 0$$
$$24 = 3 \cdot 8 + 0$$
$$3 = \mathbf{0} \cdot 8 + 3$$

Như vậy $12345 = (30071)_8$

Giải.
$$177130 = 11070 \cdot 16 + 10$$

Giải.
$$12345 = 1543 \cdot 8 + 1$$

$$1543 = 192 \cdot 8 + 7$$

$$192 = 24 \cdot 8 + 0$$

$$24 = 3 \cdot 8 + 0$$

$$3 = \mathbf{0} \cdot 8 + 3$$

Như vậy $12345 = (30071)_8$

Giải.
$$177130 = 11070 \cdot 16 + 10$$
$$11070 = 691 \cdot 16 + 14$$

Giải.
$$12345 = 1543 \cdot 8 + 1$$
$$1543 = 192 \cdot 8 + 7$$
$$192 = 24 \cdot 8 + 0$$
$$24 = 3 \cdot 8 + 0$$
$$3 = \mathbf{0} \cdot 8 + 3$$

Như vậy $12345 = (30071)_8$

Giải.
$$177130 = 11070 \cdot 16 + 10$$
$$11070 = 691 \cdot 16 + 14$$
$$691 = 43 \cdot 16 + 3$$

Giải.
$$12345 = 1543 \cdot 8 + 1$$
$$1543 = 192 \cdot 8 + 7$$
$$192 = 24 \cdot 8 + 0$$
$$24 = 3 \cdot 8 + 0$$
$$3 = \mathbf{0} \cdot 8 + 3$$

Như vậy $12345 = (30071)_8$

Giải.
$$177130 = 11070 \cdot 16 + 10$$
$$11070 = 691 \cdot 16 + 14$$
$$691 = 43 \cdot 16 + 3$$
$$43 = 2 \cdot 16 + 11$$

Giải.
$$12345 = 1543 \cdot 8 + 1$$
$$1543 = 192 \cdot 8 + 7$$
$$192 = 24 \cdot 8 + 0$$
$$24 = 3 \cdot 8 + 0$$
$$3 = \mathbf{0} \cdot 8 + 3$$

Như vậy $12345 = (30071)_8$

Giải.
$$177130 = 11070 \cdot 16 + 10$$

$$11070 = 691 \cdot 16 + 14$$

$$691 = 43 \cdot 16 + 3$$

$$43 = 2 \cdot 16 + 11$$

$$2 = \mathbf{0} \cdot 16 + 2$$

Giải.
$$12345 = 1543 \cdot 8 + 1$$
$$1543 = 192 \cdot 8 + 7$$
$$192 = 24 \cdot 8 + 0$$
$$24 = 3 \cdot 8 + 0$$
$$3 = \mathbf{0} \cdot 8 + 3$$

Như vậy $12345 = (30071)_8$

Ví dụ. Tìm dạng biểu diễn thập lục phân của 177130.

Giải.
$$177130 = 11070 \cdot 16 + 10$$
$$11070 = 691 \cdot 16 + 14$$
$$691 = 43 \cdot 16 + 3$$
$$43 = 2 \cdot 16 + 11$$
$$2 = \mathbf{0} \cdot 16 + 2$$

Như vậy $177130 = (2B3EA)_{16}$.

 $\operatorname{\bf Dinh}$ nghĩa. Cho m là số nguyên dương.

Định nghĩa. Cho m là số nguyên dương. Hai số nguyên a và b được gọi $d \hat{o} n g \ d u'$ với nhau theo modulo m,

Định nghĩa. Cho m là số nguyên dương. Hai số nguyên a và b được gọi $d\hat{o}ng$ du với nhau theo modulo m, nếu a và b chia m có cùng phần dư.

Định nghĩa. Cho m là số nguyên dương. Hai số nguyên a và b được gọi $d\hat{o}ng\ dw$ với nhau theo modulo m, nếu a và b chia m có cùng phần dư. Ký hiệu $a \equiv b \pmod{m}$

Định nghĩa. Cho m là số nguyên dương. Hai số nguyên a và b được gọi $d \hat{o} n g \ d u$ với nhau theo modulo m, nếu a và b chia m có cùng phần dư. Ký hiệu $a \equiv b \pmod{m}$

Ví dụ. $27 \equiv 43 \pmod{4}$;

Định nghĩa. Cho m là số nguyên dương. Hai số nguyên a và b được gọi $d \hat{o} n g \ d u$ với nhau theo modulo m, nếu a và b chia m có cùng phần dư. Ký hiệu $a \equiv b \pmod{m}$

Ví dụ. $27 \equiv 43 \pmod{4}$; $47 \equiv 92 \pmod{5}$;

Định nghĩa. Cho m là số nguyên dương. Hai số nguyên a và b được gọi $d \hat{o} n g \ d u$ với nhau theo modulo m, nếu a và b chia m có cùng phần dư. Ký hiệu $a \equiv b \pmod{m}$

Ví dụ. $27 \equiv 43 \pmod{4}$; $47 \equiv 92 \pmod{5}$; $124 \equiv 58 \pmod{6}$.

Định nghĩa. Cho m là số nguyên dương. Hai số nguyên a và b được gọi $d \hat{o} n g d u$ với nhau theo modulo m, nếu a và b chia m có cùng phần dư. Ký hiệu $a \equiv b \pmod{m}$

Ví dụ.
$$27 \equiv 43 \pmod{4}$$
; $47 \equiv 92 \pmod{5}$; $124 \equiv 58 \pmod{6}$.

Bổ đề. Ta có $a \equiv b \pmod{m}$ khi và chỉ khi a - b chia hết cho m.

Định nghĩa. Cho m là số nguyên dương. Hai số nguyên a và b được gọi $d \hat{o} n g d u$ với nhau theo modulo m, nếu a và b chia m có cùng phần dư. Ký hiệu $a \equiv b \pmod{m}$

Ví dụ.
$$27 \equiv 43 \pmod{4}$$
; $47 \equiv 92 \pmod{5}$; $124 \equiv 58 \pmod{6}$.

Bổ đề. Ta có $a \equiv b \pmod{m}$ khi và chỉ khi a - b chia hết cho m. Nghĩa là tồn tại số nguyên k sao cho a = b + km.

Định nghĩa. Cho m là số nguyên dương. Hai số nguyên a và b được gọi $d \hat{o} n g d u$ với nhau theo modulo m, nếu a và b chia m có cùng phần dư. Ký hiệu $a \equiv b \pmod{m}$

Ví dụ.
$$27 \equiv 43 \pmod{4}$$
; $47 \equiv 92 \pmod{5}$; $124 \equiv 58 \pmod{6}$.

Bổ đề. Ta có $a \equiv b \pmod{m}$ khi và chỉ khi a - b chia hết cho m. Nghĩa là tồn tại số nguyên k sao cho a = b + km.

Tính chất.

Định nghĩa. Cho m là số nguyên dương. Hai số nguyên a và b được gọi $d \hat{o} n g d u$ với nhau theo modulo m, nếu a và b chia m có cùng phần dư. Ký hiệu $a \equiv b \pmod{m}$

Ví dụ.
$$27 \equiv 43 \pmod{4}$$
; $47 \equiv 92 \pmod{5}$; $124 \equiv 58 \pmod{6}$.

Bổ đề. Ta có $a \equiv b \pmod{m}$ khi và chỉ khi a - b chia hết cho m. Nghĩa là tồn tại số nguyên k sao cho a = b + km.

Tính chất.

- \bigcirc Với mọi số nguyên a, ta có $a \equiv a \pmod{m}$

Định nghĩa. Cho m là số nguyên dương. Hai số nguyên a và b được gọi $d \hat{o} n g d u$ với nhau theo modulo m, nếu a và b chia m có cùng phần dư. Ký hiệu $a \equiv b \pmod{m}$

Ví dụ.
$$27 \equiv 43 \pmod{4}$$
; $47 \equiv 92 \pmod{5}$; $124 \equiv 58 \pmod{6}$.

Bổ đề. Ta có $a \equiv b \pmod{m}$ khi và chỉ khi a - b chia hết cho m. Nghĩa là tồn tại số nguyên k sao cho a = b + km.

Tính chất.

- \bigcirc Với mọi số nguyên a, ta có $a \equiv a \pmod{m}$

Tính chất. Cho $a \equiv b \pmod{m}$ và $c \equiv d \pmod{m}$.

Tính chất. Cho $a \equiv b \pmod{m}$ và $c \equiv d \pmod{m}$. Khi đó

$$a+c \equiv b+d \pmod m$$

Tính chất. Cho $a \equiv b \pmod{m}$ và $c \equiv d \pmod{m}$. Khi đó

$$a + c \equiv b + d \pmod{m}$$
 $v \grave{a} \ ac \equiv bd \pmod{m}$

 \mathbf{V} í dụ. Tìm số nguyên a sao cho

 $a \equiv 43 \pmod{23}$ và $-22 \le a \le 0$.

 \mathbf{V} í dụ. Tìm số nguyên a sao cho

- $a \equiv 43 \pmod{23}$ và $-22 \le a \le 0$.
- **b** $a \equiv 17 \pmod{23}$ và $-14 \le a \le 14$.

 \mathbf{V} í dụ. Tìm số nguyên a sao cho

- $a \equiv 43 \pmod{23}$ và $-22 \le a \le 0$.
- $a \equiv 17 \pmod{23}$ và $-14 \le a \le 14$.
- $a \equiv -11 \pmod{23}$ và $90 \le a \le 110$.

 \mathbf{V} í dụ. Tìm số nguyên a sao cho

- $a \equiv 43 \pmod{23}$ và $-22 \le a \le 0$.
- $a \equiv 17 \pmod{23}$ và $-14 \le a \le 14$.
- $a \equiv -11 \pmod{23}$ và $90 \le a \le 110$.

Ví dụ. Cho a và b là số nguyên và $a \equiv 4 \pmod{13}$ và $b \equiv 9 \pmod{13}$.

 \mathbf{V} í \mathbf{d} \mathbf{u} . Tìm số nguyên a sao cho

- $a \equiv 43 \pmod{23}$ và $-22 \le a \le 0$.
- $a \equiv 17 \pmod{23}$ và $-14 \le a \le 14$.
- $a \equiv -11 \pmod{23}$ và $90 \le a \le 110$.

Ví dụ. Cho a và b là số nguyên và $a \equiv 4 \pmod{13}$ và $b \equiv 9 \pmod{13}$. Tìm số nguyên c với $0 \le c \le 12$ sao cho

 $c \equiv 9a \pmod{13}.$

 \mathbf{V} í dụ. Tìm số nguyên a sao cho

- $a \equiv 43 \pmod{23}$ và $-22 \le a \le 0$.
- $a \equiv 17 \pmod{23}$ và $-14 \le a \le 14$.
- $a \equiv -11 \pmod{23}$ và $90 \le a \le 110$.

Ví dụ. Cho a và b là số nguyên và $a \equiv 4 \pmod{13}$ và $b \equiv 9 \pmod{13}$. Tìm số nguyên c với $0 \le c \le 12$ sao cho

 \mathbf{V} í \mathbf{d} \mathbf{u} . Tìm số nguyên a sao cho

- $a \equiv 43 \pmod{23}$ và $-22 \le a \le 0$.
- **b** $a \equiv 17 \pmod{23}$ và $-14 \le a \le 14$.
- $a \equiv -11 \pmod{23}$ và $90 \le a \le 110$.

Ví dụ. Cho a và b là số nguyên và $a \equiv 4 \pmod{13}$ và $b \equiv 9 \pmod{13}$. Tìm số nguyên c với $0 \le c \le 12$ sao cho

- $c \equiv a + b \pmod{13}.$

 \mathbf{V} í dụ. Tìm số nguyên a sao cho

- $a \equiv 43 \pmod{23}$ và $-22 \le a \le 0$.
- $a \equiv 17 \pmod{23}$ và $-14 \le a \le 14$.
- $a \equiv -11 \pmod{23}$ và $90 \le a \le 110$.

Ví dụ. Cho a và b là số nguyên và $a \equiv 4 \pmod{13}$ và $b \equiv 9 \pmod{13}$. Tìm số nguyên c với $0 \le c \le 12$ sao cho

 $c \equiv 2a + 3b \pmod{13}.$

- $c \equiv 11b \pmod{13}.$
- $c \equiv a + b \pmod{13}.$

 \mathbf{V} í dụ. Tìm số nguyên a sao cho

- $a \equiv 43 \pmod{23}$ và $-22 \le a \le 0$.
- $a \equiv 17 \pmod{23}$ và $-14 \le a \le 14$.
- $a \equiv -11 \pmod{23}$ và $90 \le a \le 110$.

Ví dụ. Cho a và b là số nguyên và $a \equiv 4 \pmod{13}$ và $b \equiv 9 \pmod{13}$. Tìm số nguyên c với $0 \le c \le 12$ sao cho

 $c \equiv 2a + 3b \pmod{13}$.

 $c \equiv 11b \pmod{13}$.

 $c \equiv a^2 + b^2 \pmod{13}$.

 $c \equiv a + b \pmod{13}.$

 \mathbf{V} í \mathbf{d} \mathbf{u} . Tìm số nguyên a sao cho

- $a \equiv 43 \pmod{23}$ và $-22 \le a \le 0$.
- $a \equiv 17 \pmod{23}$ và $-14 \le a \le 14$.
- $a \equiv -11 \pmod{23}$ và $90 \le a \le 110$.

Ví dụ. Cho a và b là số nguyên và $a \equiv 4 \pmod{13}$ và $b \equiv 9 \pmod{13}$. Tìm số nguyên c với $0 \le c \le 12$ sao cho

 $c \equiv 2a + 3b \pmod{13}$.

 $c \equiv 11b \pmod{13}$.

 $c \equiv a^2 + b^2 \pmod{13}$.

 $c \equiv a + b \pmod{13}$.

 $c \equiv a^3 - b^3 \pmod{13}$.

Định nghĩa. Số nguyên U > 0 được gọi là **ước chung lớn nhất** (ký hiệu **UCLN**) của hai số nguyên a, b nếu thỏa hai điều kiện sau:

Định nghĩa. Số nguyên U > 0 được gọi là **ước chung lớn nhất** (ký hiệu **UCLN**) của hai số nguyên a, b nếu thỏa hai điều kiện sau:

 $\mbox{\Large 0}$ U là một ước chung của a,b;

Định nghĩa. Số nguyên U > 0 được gọi là **ước chung lớn nhất** (ký hiệu **UCLN**) của hai số nguyên a, b nếu thỏa hai điều kiện sau:

- lacktriangle U là một ước chung của a, b;
- ${\color{red} 2}$ Nếu số nguyên V là một ước chung của a,b thì V là ước của U.

Định nghĩa. Số nguyên U > 0 được gọi là **ước chung lớn nhất** (ký hiệu **UCLN**) của hai số nguyên a, b nếu thỏa hai điều kiện sau:

- lacktriangle U là một ước chung của a, b;
- $oldsymbol{2}$ Nếu số nguyên V là một ước chung của a,b thì V là ước của U.

Định nghĩa. Số nguyên B>0 được gọi là *bội chung nhỏ nhất* (ký hiệu **BCNN**) của hai số nguyên a,b nếu thỏa hai điều kiện sau:

Định nghĩa. Số nguyên U > 0 được gọi là **ước chung lớn nhất** (ký hiệu **UCLN**) của hai số nguyên a, b nếu thỏa hai điều kiện sau:

- lacktriangle U là một ước chung của a, b;
- ullet Nếu số nguyên V là một ước chung của a,b thì V là ước của U.

Định nghĩa. Số nguyên B > 0 được gọi là *bội chung nhỏ nhất* (ký hiệu **BCNN**) của hai số nguyên a, b nếu thỏa hai điều kiện sau:

lacksquare B là một bội chung của a,b;

Định nghĩa. Số nguyên U > 0 được gọi là **ước chung lớn nhất** (ký hiệu **UCLN**) của hai số nguyên a, b nếu thỏa hai điều kiện sau:

- lacktriangle U là một ước chung của a, b;
- f 2 Nếu số nguyên V là một ước chung của a,b thì V là ước của U.

Định nghĩa. Số nguyên B > 0 được gọi là *bội chung nhỏ nhất* (ký hiệu **BCNN**) của hai số nguyên a, b nếu thỏa hai điều kiện sau:

- lacksquare B là một bội chung của a, b;
- ${\color{red} 2}$ Nếu số nguyên V là một bội chung của a,b thì V là bội của B.

Định nghĩa. Số nguyên U > 0 được gọi là **ước chung lớn nhất** (ký hiệu **UCLN**) của hai số nguyên a, b nếu thỏa hai điều kiện sau:

- lacktriangle U là một ước chung của a, b;
- f 2 Nếu số nguyên V là một ước chung của a,b thì V là ước của U.

Định nghĩa. Số nguyên B > 0 được gọi là *bội chung nhỏ nhất* (ký hiệu **BCNN**) của hai số nguyên a, b nếu thỏa hai điều kiện sau:

- \bullet B là một bội chung của a, b;
- ${\color{red} f 2}$ Nếu số nguyên V là một bội chung của a,b thì V là bội của B.

Ví du. UCLN của 15 và 25 là 5,

Định nghĩa. Số nguyên U > 0 được gọi là **ước chung lớn nhất** (ký hiệu **UCLN**) của hai số nguyên a, b nếu thỏa hai điều kiện sau:

- lacktriangle U là một ước chung của a, b;
- $oldsymbol{2}$ Nếu số nguyên V là một ước chung của a,b thì V là ước của U.

Định nghĩa. Số nguyên B > 0 được gọi là *bội chung nhỏ nhất* (ký hiệu **BCNN**) của hai số nguyên a, b nếu thỏa hai điều kiện sau:

- \bullet B là một bội chung của a, b;
- ${\color{red} f 2}$ Nếu số nguyên V là một bội chung của a,b thì V là bội của B.

Ví dụ. UCLN của 15 và 25 là 5, BCNN của chúng là 75.

Định nghĩa. Số nguyên U > 0 được gọi là **ước chung lớn nhất** (ký hiệu **UCLN**) của hai số nguyên a, b nếu thỏa hai điều kiện sau:

- \bullet U là một ước chung của a, b;
- ${f 2}$ Nếu số nguyên V là một ước chung của a,b thì V là ước của U.

Định nghĩa. Số nguyên B > 0 được gọi là *bội chung nhỏ nhất* (ký hiệu **BCNN**) của hai số nguyên a, b nếu thỏa hai điều kiện sau:

- $lackbox{0}$ B là một bội chung của a, b;
- ${\color{red} \bullet}$ Nếu số nguyên V là một bội chung của a,b thì V là bội của B.

Ví dụ. UCLN của 15 và 25 là 5, BCNN của chúng là 75.

Định lý. Ước chung lớn nhất (tương ứng bội chung nhỏ nhất) của a, b là duy nhất,

Định nghĩa. Số nguyên U > 0 được gọi là **ước chung lớn nhất** (ký hiệu **UCLN**) của hai số nguyên a, b nếu thỏa hai điều kiện sau:

- \bullet U là một ước chung của a, b;
- ${f 2}$ Nếu số nguyên V là một ước chung của a,b thì V là ước của U.

Định nghĩa. Số nguyên B > 0 được gọi là *bội chung nhỏ nhất* (ký hiệu **BCNN**) của hai số nguyên a, b nếu thỏa hai điều kiện sau:

- \bullet B là một bội chung của a, b;
- ${\color{red} \bullet}$ Nếu số nguyên V là một bội chung của a,b thì V là bội của B.

Ví dụ. UCLN của 15 và 25 là 5, BCNN của chúng là 75.

Định lý. Ước chung lớn nhất (tương ứng bội chung nhỏ nhất) của a, b là duy nhất, ký hiệu (a, b), (tương ứng [a, b]).

Nhận xét.

1
$$(a,b) = (\pm a, \pm b)$$
 và $[a,b] = [\pm a, \pm b]$.

Nhận xét.

 \bullet $(a,b)=(\pm a,\pm b)$ và $[a,b]=[\pm a,\pm b].$ Do đó, từ đây về sau ta giả sử $a,b\geq 0.$

Nhận xét.

- ${\color{red} 2} \ \mbox{Nếu} \ a \, | \, b \ \mbox{thì} \ (a,b) = a \ \mbox{và} \ [a,b] = b.$

Nhận xét.

- $\bullet \ (a,b)=(\pm a,\pm b)$ và $[a,b]=[\pm a,\pm b].$ Do đó, từ đây về sau ta giả sử $a,b\geq 0.$
- $\ \ \, \mathbf{2} \ \, \mathbf{N} \hat{\mathbf{e}} \mathbf{u} \; a \, | \, b \ \mathbf{th} \mathbf{i} \; (a,b) = a \ \mathbf{va} \; [a,b] = b.$

Ví dụ.

•
$$(15,20) = (-15,20) = (-15,-20) = (15,-20) = 5$$

Nhận xét.

- \bullet $(a,b)=(\pm a,\pm b)$ và $[a,b]=[\pm a,\pm b].$ Do đó, từ đây về sau ta giả sử $a,b\geq 0.$
- ② Nếu $a \mid b$ thì (a, b) = a và [a, b] = b.

Ví dụ.

- (15,20) = (-15,20) = (-15,-20) = (15,-20) = 5
- [15, 20] = [-15, 20] = [-15, -20] = [15, -20] = 60

Nhận xét.

- \bullet $(a,b)=(\pm a,\pm b)$ và $[a,b]=[\pm a,\pm b].$ Do đó, từ đây về sau ta giả sử $a,b\geq 0.$
- $\ \ \, \mathbf{2} \ \, \mathbf{N\acute{e}u} \,\, a \, | \, b \,\, \mathbf{thì} \,\, (a,b) = a \,\, \mathbf{v\grave{a}} \,\, [a,b] = b.$

Ví dụ.

- (15,20) = (-15,20) = (-15,-20) = (15,-20) = 5
- [15, 20] = [-15, 20] = [-15, -20] = [15, -20] = 60
- \bullet (15,60) = 15, [15,60] = 60

 \bullet Nếu b là ước của a,

• Nếu b là ước của a, thì d = b;

- Nếu b là ước của a, thì d = b;
- Nếu không, ta lần lượt thực hiện các phép chia:

- Nếu b là ước của a, thì d = b;
- Nếu không, ta lần lượt thực hiện các phép chia:

$$a = q_1 b + r_1 \qquad 0 \le r_1 < b$$

- Nếu b là ước của a, thì d = b;
- Nếu không, ta lần lượt thực hiện các phép chia:

$$a = q_1 b + r_1 \qquad 0 \le r_1 < b$$

$$b = q_2 r_1 + r_2 \qquad 0 \le r_2 < r_1$$

- Nếu b là ước của a, thì d = b;
- Nếu không, ta lần lượt thực hiện các phép chia:

$$a = q_1b + r_1$$
 $0 \le r_1 < b$
 $b = q_2r_1 + r_2$ $0 \le r_2 < r_1$
 $r_1 = q_3r_2 + r_3$ $0 \le r_3 < r_2$

- Nếu b là ước của a, thì d = b;
- Nếu không, ta lần lượt thực hiện các phép chia:

$$a = q_1b + r_1$$
 $0 \le r_1 < b$
 $b = q_2r_1 + r_2$ $0 \le r_2 < r_1$
 $r_1 = q_3r_2 + r_3$ $0 \le r_3 < r_2$

Do $b>r_1>r_2>\cdots\geq 0$ nên phép chia như trên sẽ dừng sau một số hữu hạn bước.

- Nếu b là ước của a, thì d = b;
- Nếu không, ta lần lượt thực hiện các phép chia:

$$a = q_1b + r_1$$
 $0 \le r_1 < b$
 $b = q_2r_1 + r_2$ $0 \le r_2 < r_1$
 $r_1 = q_3r_2 + r_3$ $0 \le r_3 < r_2$

Do $b>r_1>r_2>\cdots\geq 0$ nên phép chia như trên sẽ dừng sau một số hữu hạn bước. Gọi r_{n+1} là số dư đầu tiên bằng 0.

- Nếu b là ước của a, thì d = b;
- Nếu không, ta lần lượt thực hiện các phép chia:

$$a = q_1b + r_1$$
 $0 \le r_1 < b$
 $b = q_2r_1 + r_2$ $0 \le r_2 < r_1$
 $r_1 = q_3r_2 + r_3$ $0 \le r_3 < r_2$

Do $b>r_1>r_2>\cdots\geq 0$ nên phép chia như trên sẽ dừng sau một số hữu hạn bước. Gọi r_{n+1} là số dư đầu tiên bằng 0. Ta có

$$r_{n-2} = q_n r_{n-1} + r_n$$
 $0 \le r_n < r_{n-1}$
 $r_{n-1} = q_{n+1} r_n + 0$

- Nếu b là ước của a, thì d = b;
- Nếu không, ta lần lượt thực hiện các phép chia:

$$a = q_1b + r_1$$
 $0 \le r_1 < b$
 $b = q_2r_1 + r_2$ $0 \le r_2 < r_1$
 $r_1 = q_3r_2 + r_3$ $0 \le r_3 < r_2$

Do $b>r_1>r_2>\cdots\geq 0$ nên phép chia như trên sẽ dừng sau một số hữu hạn bước. Gọi r_{n+1} là số dư đầu tiên bằng 0. Ta có

$$r_{n-2} = q_n r_{n-1} + r_n$$
 $0 \le r_n < r_{n-1}$
 $r_{n-1} = q_{n+1} r_n + 0$

Khi đó r_n là UCLN của a và b.

$$2322 = 3 \times 654 + 360$$

$$2322 = 3 \times 654 + 360$$
$$654 = 1 \times 360 + 294$$

$$2322 = 3 \times 654 + 360$$

$$654 = 1 \times 360 + 294$$

$$360 = 1 \times 294 + 66$$

$$2322 = 3 \times 654 + 360$$

$$654 = 1 \times 360 + 294$$

$$360 = 1 \times 294 + 66$$

$$294 = 4 \times 66 + 30$$

Giải. Ta có

$$2322 = 3 \times 654 + 360$$

$$654 = 1 \times 360 + 294$$

$$360 = 1 \times 294 + 66$$

$$294 = 4 \times 66 + 30$$

$$66 = 2 \times 30 + 6$$

Giải. Ta có

$$2322 = 3 \times 654 + 360$$

$$654 = 1 \times 360 + 294$$

$$360 = 1 \times 294 + 66$$

$$294 = 4 \times 66 + 30$$

$$66 = 2 \times 30 + 6$$

$$30 = 5 \times 6$$

$$2322 = 3 \times 654 + 360$$

$$654 = 1 \times 360 + 294$$

$$360 = 1 \times 294 + 66$$

$$294 = 4 \times 66 + 30$$

$$66 = 2 \times 30 + 6$$

$$30 = 5 \times 6$$

Như vậy
$$(2322, 654) = 6$$

$$2322 = 3 \times 654 + 360$$

$$654 = 1 \times 360 + 294$$

$$360 = 1 \times 294 + 66$$

$$294 = 4 \times 66 + 30$$

$$66 = 2 \times 30 + 6$$

$$30 = 5 \times 6$$

Như vậy (2322,654) = 6 và
$$[2322,654] = \frac{2322 \times 654}{6}$$

$$2322 = 3 \times 654 + 360$$

$$654 = 1 \times 360 + 294$$

$$360 = 1 \times 294 + 66$$

$$294 = 4 \times 66 + 30$$

$$66 = 2 \times 30 + 6$$

$$30 = 5 \times 6$$

Như vậy (2322,654) = 6 và [2322,654] =
$$\frac{2322 \times 654}{6}$$
 = 253098.

$$2322 = 3 \times 654 + 360$$

$$654 = 1 \times 360 + 294$$

$$360 = 1 \times 294 + 66$$

$$294 = 4 \times 66 + 30$$

$$66 = 2 \times 30 + 6$$

$$30 = 5 \times 6$$

Như vậy
$$(2322,654)=6$$
 và $[2322,654]=\frac{2322\times654}{6}=253098.$

Ví dụ. (tự làm) Tìm UCLN và BCNN 1638 và 16457?

$$2322 = 3 \times 654 + 360$$

$$654 = 1 \times 360 + 294$$

$$360 = 1 \times 294 + 66$$

$$294 = 4 \times 66 + 30$$

$$66 = 2 \times 30 + 6$$

$$30 = 5 \times 6$$

Như vậy
$$(2322,654)=6$$
 và $[2322,654]=\frac{2322\times654}{6}=253098.$

Ví dụ.(tự làm) Tìm UCLN và BCNN 1638 và 16457?

Đáp án. (1638, 16457) = 7

Ví dụ. Tìm UCLN và BCNN của a = 2322, b = 654.

$$2322 = 3 \times 654 + 360$$

$$654 = 1 \times 360 + 294$$

$$360 = 1 \times 294 + 66$$

$$294 = 4 \times 66 + 30$$

$$66 = 2 \times 30 + 6$$

$$30 = 5 \times 6$$

Như vậy (2322,654) = 6 và [2322,654] =
$$\frac{2322 \times 654}{6}$$
 = 253098.

Ví dụ.(tự làm) Tìm UCLN và BCNN 1638 và 16457?

Đáp án. (1638, 16457) = 7 và [1638, 16457] = 3850938.

Định lý. Giả sử d là UCLN của a và b.

Định lý. Giả sử d là UCLN của a và b. Khi đó tồn tại $m, n \in \mathbb{Z}$ sao cho: $\mathbf{d} = m\mathbf{a} + n\mathbf{b}.$

Ví dụ. Tìm UCLN d và BCNN e của a=114 và b=51? Từ đó tìm:

- hai số $m, n \in \mathbb{Z}$ sao cho d = ma + nb?
- \bullet hai số $u, v \in \mathbb{Z}$ sao cho $\frac{1}{e} = \frac{u}{a} + \frac{v}{b}$?

Ví dụ. Tìm UCLN d và BCNN e của a=114 và b=51? Từ đó tìm:

- hai số $m, n \in \mathbb{Z}$ sao cho d = ma + nb?

Giải. Ta có

$$114 = 2 \times 51 + 12$$

Ví dụ. Tìm UCLN d và BCNN e của a=114 và b=51? Từ đó tìm:

- hai số $m, n \in \mathbb{Z}$ sao cho d = ma + nb?
- hai số $u, v \in \mathbb{Z}$ sao cho $\frac{1}{e} = \frac{u}{a} + \frac{v}{b}$?

Giải. Ta có
$$114 = 2 \times 51 + 12$$
$$51 = 4 \times 12 + 3$$

Ví dụ. Tìm UCLN d và BCNN e của a=114 và b=51? Từ đó tìm:

- hai số $m, n \in \mathbb{Z}$ sao cho d = ma + nb?
- hai số $u, v \in \mathbb{Z}$ sao cho $\frac{1}{e} = \frac{u}{a} + \frac{v}{b}$?

$$114 = 2 \times 51 + 12$$

$$51 = 4 \times 12 + 3$$

$$12 = 4 \times 3.$$

Ví dụ. Tìm UCLN d và BCNN e của a=114 và b=51? Từ đó tìm:

- hai số $m, n \in \mathbb{Z}$ sao cho d = ma + nb?
- hai số $u, v \in \mathbb{Z}$ sao cho $\frac{1}{e} = \frac{u}{a} + \frac{v}{b}$?

Giải. Ta có
$$114 = 2 \times 51 + 12$$
$$51 = 4 \times 12 + 3$$
$$12 = 4 \times 3.$$

Suy ra (114, 51) = 3.

Ví dụ. Tìm UCLN d và BCNN e của a=114 và b=51? Từ đó tìm:

- hai số $m, n \in \mathbb{Z}$ sao cho d = ma + nb?
- hai số $u, v \in \mathbb{Z}$ sao cho $\frac{1}{e} = \frac{u}{a} + \frac{v}{b}$?

Giải. Ta có
$$114 = 2 \times 51 + 12$$
$$51 = 4 \times 12 + 3$$
$$12 = 4 \times 3.$$

Suy ra (114, 51) = 3. Hơn nữa

$$3 = 51 - 4 \times 12$$

Ví dụ. Tìm UCLN d và BCNN e của a=114 và b=51? Từ đó tìm:

- hai số $m, n \in \mathbb{Z}$ sao cho d = ma + nb?
- hai số $u, v \in \mathbb{Z}$ sao cho $\frac{1}{e} = \frac{u}{a} + \frac{v}{b}$?

Giải. Ta có
$$114 = 2 \times 51 + 12$$
$$51 = 4 \times 12 + 3$$
$$12 = 4 \times 3.$$

Suy ra (114, 51) = 3. Hơn nữa

$$3 = 51 - 4 \times 12$$
$$= 51 - 4 \times (114 - 2 \times 51)$$

Ví dụ. Tìm UCLN d và BCNN e của a=114 và b=51? Từ đó tìm:

- hai số $m, n \in \mathbb{Z}$ sao cho d = ma + nb?

Giải. Ta có
$$114 = 2 \times 51 + 12$$
$$51 = 4 \times 12 + 3$$
$$12 = 4 \times 3.$$

Suy ra (114, 51) = 3. Hơn nữa

$$3 = 51 - 4 \times 12$$

= 51 - 4 \times (114 - 2 \times 51)
= -4 \times 114 + 9 \times 51.

Ta có $e = \frac{ab}{d} = 1938.$

Ta có
$$e = \frac{ab}{d} = 1938$$
. Như vậy

$$m = -4, n = 9$$

Ta có
$$e=\frac{ab}{d}=1938.$$
 Như vậy

$$m = -4, n = 9$$

• Ta có
$$d = ma + nb$$
.

Ta có
$$e = \frac{ab}{d} = 1938$$
. Như vậy

$$m = -4, n = 9$$

 \bullet Ta có d = ma + nb. Chia 2 vế cho ab, ta được

Ta có
$$e = \frac{ab}{d} = 1938$$
. Như vậy

$$m = -4, n = 9$$

• Ta có d = ma + nb. Chia 2 vế cho ab, ta được

$$\frac{d}{ab} = \frac{m}{b} + \frac{n}{a}$$

Ta có
$$e = \frac{ab}{d} = 1938$$
. Như vậy

$$m = -4, n = 9$$

• Ta có d = ma + nb. Chia 2 vế cho ab, ta được

$$\frac{d}{ab} = \frac{m}{b} + \frac{n}{a} \iff \frac{1}{e} = \frac{n}{a} + \frac{m}{b} \quad (\text{vì } ab = de).$$

Ta có
$$e = \frac{ab}{d} = 1938$$
. Như vậy

$$m = -4, n = 9$$

 \bullet Ta có d = ma + nb. Chia 2 vế cho ab, ta được

$$\frac{d}{ab} = \frac{m}{b} + \frac{n}{a} \iff \frac{1}{e} = \frac{n}{a} + \frac{m}{b} \quad (\text{vì } ab = de).$$

Như vậy u = 9, v = -4.

Ta có
$$e = \frac{ab}{d} = 1938$$
. Như vậy

$$m = -4, n = 9$$

• Ta có d = ma + nb. Chia 2 vế cho ab, ta được

$$\frac{d}{ab} = \frac{m}{b} + \frac{n}{a} \iff \frac{1}{e} = \frac{n}{a} + \frac{m}{b} \quad (\text{vì } ab = de).$$

Như vậy u = 9, v = -4.

Ví dụ.(tự làm) Tìm UCLN d và BCNN e của a=1638 và b=16457? Từ đó tìm:

- hai số $m, n \in \mathbb{Z}$ sao cho d = ma + nb?

Định nghĩa. Một số nguyên n lớn hơn 1 được gọi là số nguyên tố nếu chỉ có hai ước số dương là 1 và chính nó.

Định nghĩa. Một số nguyên n lớn hơn 1 được gọi là số nguyên tố nếu chỉ có hai ước số dương là 1 và chính nó. Ngược lại n được gọi là hợp số.

Định nghĩa. Một số nguyên n lớn hơn 1 được gọi là số nguyên tố nếu chỉ có hai ước số dương là 1 và chính nó. Ngược lại n được gọi là hợp số.

Mệnh đề. Nếu n là hợp số thì n có ước số nguyên tố nhỏ hơn hay bằng \sqrt{n}

$5.3.~{ m S\^o}~{ m nguy\^en}~{ m t\^o}^{\dagger}$

Định nghĩa. Một số nguyên n lớn hơn 1 được gọi là số nguyên $t\acute{o}$ nếu chỉ có hai ước số dương là 1 và chính nó. Ngược lại n được gọi là hợp số.

Mệnh đề. Nếu n là hợp số thì n có ước số nguyên tố nhỏ hơn hay bằng \sqrt{n}

Định nghĩa. Một số nguyên n lớn hơn 1 được gọi là số nguyên tố nếu chỉ có hai ước số dương là 1 và chính nó. Ngược lại n được gọi là hợp số.

Mệnh đề. Nếu n là hợp số thì n có ước số nguyên tố nhỏ hơn hay bằng \sqrt{n}

Mệnh đề. Cho p nguyên dương lớn hơn 1. Khi đó các phát biểu sau là tương đương

• p là số nguyên tố.

Định nghĩa. Một số nguyên n lớn hơn 1 được gọi là số nguyên tố nếu chỉ có hai ước số dương là 1 và chính nó. Ngược lại n được gọi là hợp số.

Mệnh đề. Nếu n là hợp số thì n có ước số nguyên tố nhỏ hơn hay bằng \sqrt{n}

- p là số nguyên tố.

Định nghĩa. Một số nguyên n lớn hơn 1 được gọi là số nguyên $t\acute{o}$ nếu chỉ có hai ước số dương là 1 và chính nó. Ngược lại n được gọi là hợp số.

Mệnh đề. Nếu n là hợp số thì n có ước số nguyên tố nhỏ hơn hay bằng \sqrt{n}

- p là số nguyên tố.

Định nghĩa. Một số nguyên n lớn hơn 1 được gọi là số nguyên tố nếu chỉ có hai ước số dương là 1 và chính nó. Ngược lại n được gọi là hợp số.

Mệnh đề. Nếu n là hợp số thì n có ước số nguyên tố nhỏ hơn hay bằng \sqrt{n}

- p là số nguyên tố.

Định nghĩa. Một số nguyên n lớn hơn 1 được gọi là số nguyên tố nếu chỉ có hai ước số dương là 1 và chính nó. Ngược lại n được gọi là hợp số.

Mệnh đề. Nếu n là hợp số thì n có ước số nguyên tố nhỏ hơn hay bằng \sqrt{n}

- p là số nguyên tố.

- \bullet $\forall a, b \in \mathbb{N}^*$, $n \in \mathbb{N}^*$ $p \nmid a \ v \nmid a \ p \nmid b \ th \mid p \mid ab$.

Định lý. [Định lý căn bản của số học]

Định lý. [Định lý căn bản của số học] Mọi số nguyên dương đều được phân tích thành tích hữu hạn những thừa số nguyên tố.

Ví dụ. 72600

Ví dụ. $72600 = 2^3 \times 3 \times 5^2 \times 11^2$.

Ví dụ.
$$72600 = 2^3 \times 3 \times 5^2 \times 11^2$$
.

Định lý. Tập hợp các số nguyên tố là vô hạn.

Ví du.
$$72600 = 2^3 \times 3 \times 5^2 \times 11^2$$
.

Định lý. Tập hợp các số nguyên tố là vô hạn.

Chứng minh. Giả sử chỉ có hữu hạn các số nguyên tố là: p_1, p_2, \ldots, p_n .

Ví du.
$$72600 = 2^3 \times 3 \times 5^2 \times 11^2$$
.

Định lý. Tập hợp các số nguyên tố là vô hạn.

Chứng minh. Giả sử chỉ có hữu hạn các số nguyên tố là: p_1, p_2, \ldots, p_n . Ta xét

$$Q = p_1 p_2 \dots p_n + 1.$$

Ví du.
$$72600 = 2^3 \times 3 \times 5^2 \times 11^2$$
.

Định lý. Tập hợp các số nguyên tố là vô hạn.

Chứng minh. Giả sử chỉ có hữu hạn các số nguyên tố là: p_1, p_2, \ldots, p_n . Ta xét

$$Q = p_1 p_2 \dots p_n + 1.$$

Theo định lý trên ta c
óQ là số nguyên tố hoặc có ước là số nguyên tố.

Ví du.
$$72600 = 2^3 \times 3 \times 5^2 \times 11^2$$
.

Định lý. Tập hợp các số nguyên tố là vô hạn.

Chứng minh. Giả sử chỉ có hữu hạn các số nguyên tố là: p_1, p_2, \ldots, p_n . Ta xét

$$Q = p_1 p_2 \dots p_n + 1.$$

Theo định lý trên ta có Q là số nguyên tố hoặc có ước là số nguyên tố. Vì $Q-p_1p_2\dots p_n=1$

Ví du.
$$72600 = 2^3 \times 3 \times 5^2 \times 11^2$$
.

Định lý. Tập hợp các số nguyên tố là vô hạn.

Chứng minh. Giả sử chỉ có hữu hạn các số nguyên tố là: p_1, p_2, \ldots, p_n . Ta xét

$$Q = p_1 p_2 \dots p_n + 1.$$

Theo định lý trên ta có Q là số nguyên tố hoặc có ước là số nguyên tố. Vì $Q-p_1p_2\dots p_n=1$ nên không có số nguyên tố nào là ước của Q.

Ví du.
$$72600 = 2^3 \times 3 \times 5^2 \times 11^2$$
.

Định lý. Tập hợp các số nguyên tố là vô hạn.

Chứng minh. Giả sử chỉ có hữu hạn các số nguyên tố là: p_1, p_2, \ldots, p_n . Ta xét

$$Q = p_1 p_2 \dots p_n + 1.$$

Theo định lý trên ta có Q là số nguyên tố hoặc có ước là số nguyên tố. Vì $Q-p_1p_2\dots p_n=1$ nên không có số nguyên tố nào là ước của Q. Vậy Q là số nguyên tố.

Ví du.
$$72600 = 2^3 \times 3 \times 5^2 \times 11^2$$
.

Định lý. Tập hợp các số nguyên tố là vô hạn.

Chứng minh. Giả sử chỉ có hữu hạn các số nguyên tố là: p_1, p_2, \ldots, p_n . Ta xét

$$Q = p_1 p_2 \dots p_n + 1.$$

Theo định lý trên ta có Q là số nguyên tố hoặc có ước là số nguyên tố. Vì $Q-p_1p_2\dots p_n=1$ nên không có số nguyên tố nào là ước của Q. Vậy Q là số nguyên tố. Nhưng Q không nằm trong tập hợp các số nguyên tố (vì $Q>p_i$).

Ví du.
$$72600 = 2^3 \times 3 \times 5^2 \times 11^2$$
.

Định lý. Tập hợp các số nguyên tố là vô hạn.

Chứng minh. Giả sử chỉ có hữu hạn các số nguyên tố là: p_1, p_2, \ldots, p_n . Ta xét

$$Q = p_1 p_2 \dots p_n + 1.$$

Theo định lý trên ta có Q là số nguyên tố hoặc có ước là số nguyên tố. Vì $Q-p_1p_2\dots p_n=1$ nên không có số nguyên tố nào là ước của Q. Vậy Q là số nguyên tố. Nhưng Q không nằm trong tập hợp các số nguyên tố (vì $Q>p_i$). Điều này mâu thuẫn với giả thiết chỉ có hữu hạn các số nguyên tố p_1, p_2, \dots, p_n .

Ví du.
$$72600 = 2^3 \times 3 \times 5^2 \times 11^2$$
.

Định lý. Tập hợp các số nguyên tố là vô hạn.

Chứng minh. Giả sử chỉ có hữu hạn các số nguyên tố là: p_1, p_2, \ldots, p_n . Ta xét

$$Q = p_1 p_2 \dots p_n + 1.$$

Theo định lý trên ta có Q là số nguyên tố hoặc có ước là số nguyên tố. Vì $Q-p_1p_2\dots p_n=1$ nên không có số nguyên tố nào là ước của Q. Vậy Q là số nguyên tố. Nhưng Q không nằm trong tập hợp các số nguyên tố (vì $Q>p_i$). Điều này mâu thuẫn với giả thiết chỉ có hữu hạn các số nguyên tố p_1,p_2,\dots,p_n . Vậy tập hợp các số nguyên tố là vô hạn.

Mệnh đề. Cho a, b, c là số nguyên dương sao cho $a \mid bc$ và (a, b) = 1.

Mệnh đề. Cho a, b, c là số nguyên dương sao cho $a \mid bc$ và (a, b) = 1. Khi đó $a \mid c$.

Mệnh đề. Cho a, b, c là số nguyên dương sao cho $a \mid bc$ và (a, b) = 1. Khi đó $a \mid c$.

Mệnh đề. Cho a, b, c là số nguyên dương sao cho (a, b) = 1 và (a, c) = 1.

Mệnh đề. Cho a, b, c là số nguyên dương sao cho $a \mid bc$ và (a, b) = 1. Khi đó $a \mid c$.

Mệnh đề. Cho a, b, c là số nguyên dương sao cho (a, b) = 1 và (a, c) = 1. Khi đó (a, bc) = 1

Mệnh đề. Cho a, b, c là số nguyên dương sao cho $a \mid bc$ và (a, b) = 1. Khi đó $a \mid c$.

Mệnh đề. Cho a, b, c là số nguyên dương sao cho (a, b) = 1 và (a, c) = 1. Khi đó (a, bc) = 1

Mệnh đề. Cho $a = p_1^{t_1} p_2^{t_2} \dots p_n^{t_n}$.

Mệnh đề. Cho a, b, c là số nguyên dương sao cho $a \mid bc$ và (a, b) = 1. Khi đó $a \mid c$.

Mệnh đề. Cho a, b, c là số nguyên dương sao cho (a, b) = 1 và (a, c) = 1. Khi đó (a, bc) = 1

Mệnh đề. Cho $a=p_1^{t_1}p_2^{t_2}\dots p_n^{t_n}$. Khi đó ước số dương của a có dạng

$$d = p_1^{s_1} p_2^{s_2} \dots p_n^{s_n}$$

Mệnh đề. Cho a, b, c là số nguyên dương sao cho $a \mid bc$ và (a, b) = 1. Khi đó $a \mid c$.

Mệnh đề. Cho a, b, c là số nguyên dương sao cho (a, b) = 1 và (a, c) = 1. Khi đó (a, bc) = 1

Mệnh đề. Cho $a = p_1^{t_1} p_2^{t_2} \dots p_n^{t_n}$. Khi đó ước số dương của a có dạng

$$d = p_1^{s_1} p_2^{s_2} \dots p_n^{s_n}$$

 $v\acute{\sigma}i \ 0 \le s_i \le t_i.$

Mệnh đề. Cho a, b, c là số nguyên dương sao cho $a \mid bc$ và (a, b) = 1. Khi đó $a \mid c$.

Mệnh đề. Cho a, b, c là số nguyên dương sao cho (a, b) = 1 và (a, c) = 1. Khi đó (a, bc) = 1

Mệnh đề. Cho $a = p_1^{t_1} p_2^{t_2} \dots p_n^{t_n}$. Khi đó ước số dương của a có dạng

$$d = p_1^{s_1} p_2^{s_2} \dots p_n^{s_n}$$

 $v\acute{o}i \ 0 \le s_i \le t_i$. Do đó số ước số dương của a là

$$(t_1+1)(t_2+1)\dots(t_n+1).$$

Giải. Ta có $72600 = 2^3 \times 3 \times 5^2 \times 11^2$

Giải. Ta có $72600 = 2^3 \times 3 \times 5^2 \times 11^2$ nên số ước số dương của 72600 là

Giải. Ta có
$$72600 = 2^3 \times 3 \times 5^2 \times 11^2$$
 nên số ước số dương của 72600 là $(3+1)(1+1)(2+1)(2+1) = 72$.

\mathbf{V} í dụ. Tìm số ước số dương của 72600?

Giải. Ta có $72600 = 2^3 \times 3 \times 5^2 \times 11^2$ nên số ước số dương của 72600 là (3+1)(1+1)(2+1)(2+1) = 72.

 $\bf V \hat{\bf i}$ dụ. (tự làm) Phân tích các số sau ra thừa số nguyên tố và tìm số ước số dương , số ước số của chúng

84500; 664048; 743091250.

Giải. Ta có $72600 = 2^3 \times 3 \times 5^2 \times 11^2$ nên số ước số dương của 72600 là (3+1)(1+1)(2+1)(2+1) = 72.

 $\bf V \acute{\bf i}$ dụ. (tự làm) Phân tích các số sau ra thừa số nguyên tố và tìm số ước số dương , số ước số của chúng

84500; 664048; 743091250.

Mệnh đề. Cho $a = p_1^{t_1} p_2^{t_2} \dots p_n^{t_n}$ và $b = p_1^{s_1} p_2^{s_2} \dots p_n^{s_n}, t_i, s_i \ge 0.$

\mathbf{V} í dụ. Tìm số ước số dương của 72600?

Giải. Ta có $72600 = 2^3 \times 3 \times 5^2 \times 11^2$ nên số ước số dương của 72600 là (3+1)(1+1)(2+1)(2+1) = 72.

 $\bf V í ~d \mu. (tự ~làm)$ Phân tích các số sau ra thừa số nguyên tố và tìm số ước số dương , số ước số của chúng

84500; 664048; 743091250.

Mệnh đề. Cho $a = p_1^{t_1} p_2^{t_2} \dots p_n^{t_n}$ và $b = p_1^{s_1} p_2^{s_2} \dots p_n^{s_n}, t_i, s_i \ge 0$. Khi đó

 $a \mid b \Leftrightarrow t_i \leq s_i, \forall i = 1 \dots n$

Giải. Ta có $72600 = 2^3 \times 3 \times 5^2 \times 11^2$ nên số ước số dương của 72600 là (3+1)(1+1)(2+1)(2+1) = 72.

 $\bf V \acute{\bf 1}$ dụ. (tự làm) Phân tích các số sau ra thừa số nguyên tố và tìm số ước số dương , số ước số của chúng

84500; 664048; 743091250.

Mệnh đề. Cho $a = p_1^{t_1} p_2^{t_2} \dots p_n^{t_n}$ và $b = p_1^{s_1} p_2^{s_2} \dots p_n^{s_n}, t_i, s_i \ge 0$. Khi đó

- $(a,b) = p_1^{l_1} p_2^{l_2} \dots p_n^{l_n} \ v \acute{\sigma}i \ l_i = \min\{t_i, s_i\}$

Giải. Ta có $72600 = 2^3 \times 3 \times 5^2 \times 11^2$ nên số ước số dương của 72600 là (3+1)(1+1)(2+1)(2+1) = 72.

 $\bf V í ~d \mu. (tự ~làm)$ Phân tích các số sau ra thừa số nguyên tố và tìm số ước số dương , số ước số của chúng

84500; 664048; 743091250.

Mệnh đề. Cho $a = p_1^{t_1} p_2^{t_2} \dots p_n^{t_n}$ và $b = p_1^{s_1} p_2^{s_2} \dots p_n^{s_n}, t_i, s_i \ge 0$. Khi đó

- $a \mid b \Leftrightarrow t_i \leq s_i, \forall i = 1 \dots n$
- $(a,b) = p_1^{l_1} p_2^{l_2} \dots p_n^{l_n} v \acute{\sigma} i l_i = \min\{t_i, s_i\}$

Giải. Ta có $72600 = 2^3 \times 3 \times 5^2 \times 11^2$ nên số ước số dương của 72600 là (3+1)(1+1)(2+1)(2+1) = 72.

 $\bf V \acute{a}$ dụ. (tự làm) Phân tích các số sau ra thừa số nguyên tố và tìm số ước số dương , số ước số của chúng

84500; 664048; 743091250.

Mệnh đề. Cho $a = p_1^{t_1} p_2^{t_2} \dots p_n^{t_n}$ và $b = p_1^{s_1} p_2^{s_2} \dots p_n^{s_n}, t_i, s_i \ge 0$. Khi đó

- $a \mid b \Leftrightarrow t_i \leq s_i, \forall i = 1 \dots n$
- **1** $(a,b) = p_1^{l_1} p_2^{l_2} \dots p_n^{l_n} \text{ v\'oi } l_i = \min\{t_i, s_i\}$

Ví dụ. Cho a = 1815000 và b = 234000. Hãy tìm (a, b) và [a, b]?

• $1815000 = 2^3 \times 3 \times 5^4 \times 11^2$.

- $1815000 = 2^3 \times 3 \times 5^4 \times 11^2$.
- $234000 = 2^4 \times 3^2 \times 5^3 \times 13$.

- $1815000 = 2^3 \times 3 \times 5^4 \times 11^2$.
- $234000 = 2^4 \times 3^2 \times 5^3 \times 13$.

Khi đó

• $(1815000, 234000) = 2^3 \times 3 \times 5^3$.

- $1815000 = 2^3 \times 3 \times 5^4 \times 11^2$.
- $234000 = 2^4 \times 3^2 \times 5^3 \times 13$.

Khi đó

- $(1815000, 234000) = 2^3 \times 3 \times 5^3$.
- $\bullet \ [1815000, 234000] = 2^4 \times 3^2 \times 5^4 \times 11^2 \times 13.$

- $1815000 = 2^3 \times 3 \times 5^4 \times 11^2$.
- $234000 = 2^4 \times 3^2 \times 5^3 \times 13$.

Khi đó

- $(1815000, 234000) = 2^3 \times 3 \times 5^3$.
- $[1815000, 234000] = 2^4 \times 3^2 \times 5^4 \times 11^2 \times 13.$

Ví du. Phân tích các số sau thành tích các số nguyên tố

36, 120, 720, 5040.

- $1815000 = 2^3 \times 3 \times 5^4 \times 11^2$.
- $234000 = 2^4 \times 3^2 \times 5^3 \times 13$.

Khi đó

- $(1815000, 234000) = 2^3 \times 3 \times 5^3$.
- $[1815000, 234000] = 2^4 \times 3^2 \times 5^4 \times 11^2 \times 13.$

Ví dụ. Phân tích các số sau thành tích các số nguyên tố

36, 120, 720, 5040.

Ví dụ. Tìm ước chung lớn nhất và bội chung nhỏ nhất bằng phương pháp phân tích ra thừa số nguyên tố của

12250 và 1575;

794750 và 19550

Ví dụ. Dùng thuật chia Euclid, tìm d=(a,b) và $m,n\in\mathbb{Z}$ sao cho d=ma+nb. Sau đó tìm e=[a,b] và $u,v\in\mathbb{Z}$ sao cho $\frac{1}{e}=\frac{u}{a}+\frac{v}{b}$?

a = 116; b = -84.

 \bullet a = 414; b = 662.

 \bullet a = 72; b = 26.

a = 123; b = 277.