Ind 1 1) Vi ska bevisa $2i^2 = \frac{n(n+1)(2n+1)}{6}$ för $n \ge 1$ Bassteg: n=1 VL: $\frac{1}{6}i^2 = 1^2 = 1$ HL: $\frac{1}{(1+1)(2(1)+1)} = \frac{6}{6} = 1$ Induktionsantagandet: Vi gör antagandet att likheten gäller för D=KDet ger: K : 2 = K(K+1)(2K+1) $K \ge 1$ Induktionssteg: Vi vill visa att likheten gäller för n=k+1 Vi har: $\frac{k}{2}i^{2} + (k+1)^{2} = (k+1)(k+2)(2k+3)$ Enligt induktions antagan det: $\frac{k(k+1)(2k+1)}{(2k+1)} + \frac{k(k+1)^2}{(k+1)(k+2)(2k+3)}$ For enkla VL: $VL = (\frac{k^2t}{k})(\frac{2k+1}{k+1}) + \frac{6(k+1)^2}{6}$ $= 2k^3 + k^2 + 2k^2 + k + 6k^2 + 12k + 6$ $= 2k^{3} + 9k^{2} + 13k + 6$ Forenkla HL; HL = $(\kappa^2 + 2\kappa + \kappa + 2)(2\kappa + 3) = (\kappa^2 + 3\kappa + 2)(2\kappa + 3)$ $= 2k^3 + 3k^2 + 6k^2 + 9k + 4k + 6 = 2k^3 + 9k^2 + 13k + 6$ Saledes, VL=HL för n=k+1

Enligt induktions principen gäller likheten för alla n≥1

Ind 1 2) Vi ska bevisa $\frac{2}{j=1}(2j-1) = n^2$ for $n \ge 1$ Bassteg: N=1 $VL=\frac{1}{2}(2j-1)=2-1=1$ $HL = (1)^2 = 1$ VL=HL sã basfullet guller Induktions antagandet: Vi gör antagandet att likheten gäller for n=k Det ger: $\frac{k}{2}(2j-1) = k^2 \quad k \ge 1$ Induktionssteg: Vi vill visa att likheten gäller för n=k+1 V_i^o har: k+1 $(2j-1) = (k+1)^2$ j=1 \Rightarrow $(2j-1) + 2(k+1)+1 = k^2+2k+1$ Enligt induktions antagundet: $k^2 + (2k+2-1) = k^2 + 2k+1$ Forenkla: k2+2k+1 = k2+2k+1 Saledes VL=HL for n=K+1

Enligt induktionsprincipen gäller likheten för alla N≥1