Tutorial 8 (Wk9): kNN and SVM

k-Nearest Neighbours (kNN) Algorithm

To compute kNN classification for a new data point, follow these steps:

- 1. **Compute distances**: Calculate the distance between the new data point and all training samples. For this task, we will use both *Euclidean distance* and *Manhattan distance*:
 - Euclidean distance formula:

$$d = \sqrt{\sum_{i=1}^{n} (a_i - b_i)^2}$$

• Manhattan distance formula:

$$d = \sum_{i=1}^{n} |a_i - b_i|$$

- 2. **Identify nearest neighbours**: Determine the k-th nearest neighbours based on their distance values.
- 3. **Predict the class**: Gather the classes of these neighbours and use a simple majority vote to predict the class for the new instance.

kNN Example

Consider the following quantitative data and corresponding classifications:

(strength, thickness) \rightarrow classification

$$(0,1) \to \text{Bad}$$

$$(13,1) \rightarrow \text{Bad}$$

$$(2,5) \to Good$$

$$(10,6) \rightarrow Good$$

Predict the class for the new data point (6, 1) using:

- 1. k = 3 (number of neighbours) and Euclidean distance
- 2. k = 3 (number of neighbours) and Manhattan distance.

Does the choice of distance metric change the prediction? Consider why this might happen.

Exercise: k-Nearest Neighbours

Given the training data below, predict the class of the following new example using k-Nearest Neighbours for k = 5: $age = \le 30$, income = medium, student = yes, $credit_rating = fair$. For distance measure between neighbours use a simple match of attribute values:

$$distance(A, B) = \frac{\sum_{i=1}^{4} w_i \cdot \delta(a_i, b_i)}{4}$$

where $\delta(a_i, b_i)$ is 1 if a_i equals b_i and 0 otherwise. a_i and b_i are either **age**, **income**, **student**, or **credit_rating**. Weights are all 1 except for **income**, where it is 2.

RID	age	income	student	$\operatorname{credit_rating}$	Class: buys_computer
1	≤ 30	high	no	fair	no
2	≤ 30	high	no	excellent	no
3	$31 \dots 40$	high	no	fair	yes
4	> 40	medium	no	fair	yes
5	> 40	low	yes	fair	yes
6	> 40	low	yes	excellent	no
7	$31 \dots 40$	low	yes	excellent	yes
8	≤ 30	medium	no	fair	no
9	≤ 30	low	yes	fair	yes
10	> 40	medium	yes	fair	yes
11	≤ 30	medium	yes	excellent	yes
12	$31 \dots 40$	medium	no	excellent	yes
13	$31 \dots 40$	high	yes	fair	yes
14	> 40	medium	no	excellent	no

Support Vector Machines

Go over the following SVM examples (skipping Section 3 if necessary):

 ${
m SVM}$ example.pdf