WebAssign CH24-HW02-FALL2010 (Homework)

Current Score: 16 / 16

Due: Friday, December 7 2012 11:59 PM EST

Yinglai Wang PHYS 272-FALL 2012, Fall 2012 Instructor: Virendra Saxena

1. 1/1 points | Previous Answers MI3 24.3.X.033

A proton is accelerated in the direction shown by the arrow labeled \vec{a} . You want to calculate the magnitude and direction of the radiative electric field which will be observed at the location shown by the vector \vec{r} . In which of the following diagrams is the vector \vec{a}_{\perp} correctly shown by the red arrow?

- Read the eBook
- Section 24.3

2. 1/1 points | Previous Answers

MI3 24.3.X.006

An electric field of 10^6 N/C acts on an electron, resulting in an acceleration of 1.6×10^{17} m/s² for a short time. What is the magnitude of the radiative electric field observed at a location a distance of 4 cm away along a line perpendicular to the direction of the acceleration?

6.4e−8 **N/**C

- Read the eBook
- Section 24.3

3. 5/5 points | Previous Answers

MI3 24.3.X.030

A proton is briefly accelerated in the direction of the arrow labeled \vec{a} . At an observation location indicated by the vector \vec{r} on the diagram, \vec{a}_{\perp} is shown in red.

(a) If $\theta = 64$ degrees, and the magnitude of the acceleration is 1.8e+17 m/s², what is the magnitude of \vec{a}_1 ?

1.62e17 / m/s²

(b) What is the magnitude of the *radiative* electric field at the indicated observation location, if the magnitude of \vec{r} is 0.018 m?

1.44e-7 N/C (c) What is the direction of the *radiative* electric field at the observation location?

- opposite to \vec{r}
- ্র same direction as র
- \bigcirc same direction as \vec{r}
- opposite to वे

(d) What is the direction of the *ordinary Coulomb* electric field at the observation location, due to the proton?

- \bigcirc same direction as \vec{a}
- opposite to a⊥
- same direction as r
 ົ
- same direction as all
- opposite to \vec{r}
- opposite to \vec{a}

(e) What is the direction of the radiative magnetic field at the observation location?

- Read the eBook
- <u>Section 24.3</u>

4. 6/6 points | Previous Answers MI3 24.5.P.041

An accelerated electron

An electron is initially at rest. At time $t_1 = 0$ it is accelerated upward with an acceleration of $a = 1 \times 10^{18}$ m/s² for a very short time (this large acceleration is possible because the electron has a very small mass). We make observations at location A, x = 16 meters from the electron (see the figure).

(a) At time $t_2 = 6$ ns (10⁻⁹ s), what is the magnitude and direction of the electric field at location A due to the electron?

magnitude: 5.625e-12 V/C

(b) At what time t_3 does the electric field at location A change?

(c) What is the direction of the electric field at location A at time t_3 ?

(d) What is the magnitude of this electric field?

	•	
1e-9	✓ N/0	С

(e) A positively charged particle was initially at rest at location A. It is released from rest just after time t_3 . Which of the following are true just after time t_3 ? (Select all that apply.)

- ▼ There is a magnetic force to the right on the positive charge.
- The positive charge begins to move because there is a force on it due to the radiative electric field.
- ✓ The radiative magnetic field at location A is out of the page.
- ☐ The electric force on the positive charge is toward the electron.
- □ The positive charge will never be affected by the radiative magnetic field, since the positive charge is always at rest.
- ▼ The electric force on the positive charge due to the radiative electric field is upward.

- Read the eBook
- <u>Section 24.5</u>

5. 3/3 points | Previous Answers

MI3 24.3.X.034

A proton located at the origin is accelerated in the -y direction for a brief time.

(a) How much time passes before a detector located at <0.25, 0, 0> m detects a radiative electric field?

8.33e-10 🕜 S

(b) What is the direction of the radiative electric field observed at this location?

(c) If the accelerated particle had been an electron instead of a proton, what would have been the direction of the radiative electric field at this location?

- Read the eBook
- <u>Section 24.3</u>