Bancos de Dados

Prof. Leandro Correia

Novembro, 2020

Arquiteturas de Sistemas de Bancos

de Dados

Arquitetura dividida em 3 níveis: interno, conceitual e externo. Permite ao usuário interagir com o SGBD em diferentes níveis de abstração, ocultando seus detalhes de implementação.

Nível Externo

Visões individuais dos usuários

Nível Conceitual

Visão comum aos usuários

Nível Interno

Visão do armazenamento físico

Nível Externo:

- O nível mais próximo do usuário final.
- Visões individuais das informações do banco de dados.
- Maior abstração em relação ao nível interno.

Nível Conceitual:

- Nível intermediário entre o interno e o externo.
- Visão de todo o conteúdo do banco de dados.
- Dados, regras de segurança e integridade.
- Encapsula os detalhes de implementação do nível interno.

Nível Interno:

- Nível mais próximo do armazenamento físico e mais afastado do usuário final.
- Define COMO os dados serão armazenados e recuperados.
- Estruturas de dados e métodos de acesso são descritos em detalhes nesse nível.

- Host Language (Linguagem Hospedeira): linguagem utilizada para desenvolvimento de aplicações (C++, Java, Python, etc).
- DSL (Data Sublanguage): linguagem utilizada especificamente para definir e manipular os objetos do banco de dados (SQL, Cypher, etc).
- Mapeamento Externo/Conceitual: define a correspondência entre uma visão particular externa e a visão conceitual do banco de dados (Visões, Funções, Permissões, etc).
- Mapeamento Conceitual/Interno: define a correspondência entre a visão conceitual e o banco de dados armazenado (Tablespaces, Filegroups, etc).

- Arquitetura na qual a funcionalidade do sistema e seu processamento são divididos entre o cliente (front-end) e o servidor (back-end).
- As funcionalidades do sistema, lógica de programação, regras de negócios e gerenciamento de dados são segregados entre as máquinas do cliente e do servidor. Formada por processos distintos cliente e servidor.
- A parte cliente e a parte servidor geralmente (mas nem sempre) operam em diferentes plataformas de computador.

- Tanto a máquina do cliente como a do servidor podem ser atualizadas independentemente, sem que seja necessário atualizar a outra.
- O servidor pode atender a vários clientes simultaneamente, e os clientes podem acessar vários servidores.
- Os sistemas cliente/servidor incluem algum tipo de capacidade para operar em rede.

 ODBC (Open Database Connectivity): interface para acesso a dados em ambientes heterogêneos de Sistemas Gerenciadores de Banco de Dados (SGBD).

Arquitetura Baseada em ODBC

Arquitetura Baseada em Acesso Nativo

Acesso via ODBC

- Padronização
- Encapsulamento
- Portabilidade entre bancos de dados

Acesso Nativo

- Performance
- API proprietária (específica para cada banco de dados)
- Maior complexidade na implementação

Arquiteturas de Banco de Dados

Exemplo 1:

• Linguagem: Python

• Banco de dados: MySQL

• Conexão via ODBC

Arquiteturas de Banco de Dados

Exemplo 2:

- Linguagem: Python
- Banco de dados: MySQL
- Conexão via acesso nativo

