

What's new on Azure IaaS for SQL VMs

Agenda

What's new on Azure IaaS for SQL VMs

• IaaS??? Is it still worth?

Performance guidelines

HA and networking

- Geek to the bone ©
- Advisory Engineer @ SoftJam S.p.A.

@OmegaMadLab

- Azure Solution Architect Expert
- @OmegaMadLab
- marco.obinu@omegamadlab.com
- http://www.omegamadlab.com
 - https://github.com/OmegaMadLab
- in https://www.linkedin.com/in/marco-obinu-omegamadlab/
- https://www.youtube.com/channel/UCpkBeQSscC1iBvpNP4VNTKQ

IaaS??? Is it still worth?

SQL Server on Azure: proposition

Azure SQL Database

Business continuity

High availability

Automated backups

Long term backup retention

Geo-replication

Scale

Advanced security

Automatic tuning

Built-in monitoring

Built-in intelligence

Azure SQL VMs

Everything configurable

SQL Server on Azure VMs

SQL Server 2017 Enterprise (Windows) on Azure and AWS

- SQL Server on Azure includes Azure Hybrid Benefit
- SQL Server on AWS includes license mobility

SQL Server on Azure VMs

Secure and compliant

Most compliant cloud

Seamless cloud migration

100% SQL Server compatibility and only cloud with preconfigured Developer edition

Leading TCO

Save up to 43% vs. AWS EC2 with Azure Hybrid Benefit

Flexibility and control with automation

Easier to maintain than EC2 with automated security patches and automated backup

SQL Server on Azure VMs

Secure and compliant

Most compliant cloud

Seamless cloud migration

100% SQL Server compatibility and only cloud with preconfigured Developer edition

Leading TCO

Save up to 43% vs. AWS EC2 with Azure Hybrid Benefit

Flexibility and control with automation

Easier to maintain than EC2 with automated security patches and automated backup

Performance guidelines

Family	Series	Optimized for	
General purpose	B, Dsv3, Dv3, Dasv4, Dav4, DSv2, Dv2, Av2, DC, DCv2	Balanced CPU-to-memory ratio. Ideal for testing and development, small to medium databases, and low to medium traffic web servers.	
<u>Compute</u> <u>optimized</u>	Fsv2	High CPU-to-memory ratio. Good for medium traffic web servers, network appliances, batch processes, and application servers.	
Memory optimized	Esv3, Ev3, Easv4, Eav4, Mv2, M, DSv2, Dv2	High memory-to-CPU ratio. Great for relational database servers, medium to large caches, and in-memory analytics.	
Storage optimized	Lsv2	High disk throughput and IO ideal for Big Data, SQL, NoSQL databases, data warehousing and large transactional databases.	
<u>GPU</u>	NC, NCv2, NCv3, ND, NDv2 (Preview), NV, NVv3, NVv4	Specialized virtual machines targeted for heavy graphic rendering and video editing as well as model training and inferencing (ND) with deep learning. Available with single or multiple GPUs.	
High performance compute	HB, HBv2, HC, H	Our fastest and most powerful CPU virtual machines with optional high-throughput network interfaces (RDMA).	

Family	Series	Optimized for	
General purpose	B, Dsv3, Dv3, Dasv4, Dav4, DSv2, Dv2, Av2, DC, DCv2	Balanced CPU-to-memory ratio. Ideal for testing and development, small to medium databases, and low to medium traffic web servers.	
<u>Compute</u> <u>optimized</u>	Fsv2	High CPU-to-memory ratio. Good for medium traffic web servers, network appliances, batch processes, and application servers.	
Memory optimized	Esv3, Ev3, Easv4, Eav4, Mv2, M, DSv2, Dv2	High memory-to-CPU ratio. Great for relational database servers, medium to large caches, and in-memory analytics.	
Storage optimized	Lsv2	High disk throughput and IO ideal for Big Data, SQL, NoSQL databases, data warehousing and large transactional databases.	
<u>GPU</u>	NC, NCv2, NCv3, ND, NDv2 (Preview), NV, NVv3, NVv4	Specialized virtual machines targeted for heavy graphic rendering and video edition as well as model training and inferencing (ND) with deep learning. Available with single or multiple GPUs.	
High performance compute	HB, HBv2, HC, H	Our fastest and most powerful CPU virtual machines with optional high-throughput network interfaces (RDMA).	

Family	Series	Optimized for
General purpose	B, Dsv3, Dv3, Dasv4, Dav4, DSv2, Dv2, Av2, DC, DCv2	Balanced CPU-to-memory ratio. Ideal for testing and development, small to medium databases, and low to medium traffic web servers.
Memory optimized	Esv3, Ev3, Easv4, Eav4, Mv2, M, DSv2, Dv2	High memory-to-CPU ratio. Great for relational database servers, medium to large caches, and in-memory analytics.

Family	Series	Optimized for
General purpose	B, Dsv3, Dv3, Dasv4, Dav4, DSv2, Dv2, Av2, DC, DCv2	Balanced CPU-to-memory ratio. Ideal for testing and development, small to medium databases, and low to medium traffic web servers.
Memory optimized	Esv3, Ev3, Easv4, Eav4, Mv2, M, DSv2, Dv2	High memory-to-CPU ratio. Great for relational database servers, medium to large caches, and in-memory analytics.

What you're looking for:

Family	Series	Optimized for
General purpose	B, Dsv3 , Dv3, Dasv4 , Dav4, DSv2 , Dv2, Av2, DC, DCv2	Balanced CPU-to-memory ratio. Ideal for testing and development, small to medium databases, and low to medium traffic web servers.
Memory optimized	Esv3, Ev3, Easv4, Eav4, Mv2, M, DSv2, Dv2	High memory-to-CPU ratio. Great for relational database servers, medium to large caches, and in-memory analytics.

What you're looking for:

- ACU value
- CPU to RAM ratio
- At least 4 cores
- Premium Storage

Family	Series	Optimized for
General purpose	B, Dsv3 , Dv3, Dasv4 , Dav4, DSv2 , Dv2, Av2, DC, DCv2	Balanced CPU-to-memory ratio. Ideal for testing and development, small to medium databases, and low to medium traffic web servers.
Memory optimized	Esv3, Ev3, Easv4, NEW Eav4, Mv2, M, DSv2, Dv2	High memory-to-CPU ratio. Great for relational database servers, medium to large caches, and in-memory analytics.

What you're looking for:

- ACU value
- CPU to RAM ratio
- At least 4 cores
- Premium Storage
- Disk and network throughput

DS12v2 - 4 core 28 GB

Cached tp. 16000/128 (144)

Uncached tp. 12800/192

NIC/Mbps 4/3000

DS13v2 - 8 core 56 GB

Cached tp. 32000/256 (288)

Uncached tp. 25600/384

NIC/Mbps 8/6000

Easy4 – 8 core 64 GB

Cached tp. 16000/128 (200)

Uncached tp. 12800/192

NIC/Mbps 4/4000

The size of the VM also affects:

- Disk throughput
- Cache and Temporary disk size & throughput
- Network bandwidth
- Accelerated Network availability

The size of the VM also affects:

- Disk throughput
- Cache and Temporary disk size & throughput
- Network bandwidth
- Accelerated Network availability

The size of the VM also affects:

- Disk throughput
- Cache and Temporary disk size & throughput
- Network bandwidth
- Accelerated Network availability

DS12v2 – 4 core 28 GB

Cached tp. 16000/128 (144)

Uncached tp. 12800/192

NIC/Mbps 4/3000

DS13v2 - 8 core 56 GB

Cached tp. 32000/256 (288)

Uncached tp. 25600/384

NIC/Mbps 8/6000

Easy4 – 8 core 64 GB

Cached tp. 16000/128 (200)

Uncached tp. 12800/192

NIC/Mbps 4/4000

The size of the VM also affects:

- Disk throughput
- Cache and Temporary disk size & throughput
- Network bandwidth
- Accelerated Network availability

DS12v2 - 4 core 28 GB

Cached tp. 16000/128 (144)

Uncached tp. 12800/192

NIC/Mbps 4/3000

DS13v2 - 8 core 56 GB

Cached tp. 32000/256 (288)

Uncached tp. 25600/384

NIC/Mbps 8/6000

Easv4 - 8 core 64 GB

Cached tp. 16000/128 (200)

Uncached tp. 12800/192

NIC/Mbps 4/4000

DS13-2v2 - 2 core 56 GB

Cached tp. 32000/256 (288)

Uncached tp. 25600/384

NIC/Mbps 8/6000

DS13-4v2 - 4 core 56 GB

Cached tp. 32000/256 (288)

Uncached tp. 25600/384

NIC/Mbps 8/6000

DS13v2 - 8 core 56 GB

Cached tp. 32000/256 (288)

Uncached tp. 25600/384

NIC/Mbps 8/6000

The size of the VM also affects:

- Disk throughput
- Cache and Temporary disk size & throughput
- Network bandwidth
- Accelerated Network availability

Need more of these, but have to contain licensing costs???

Go for Constrained vCPU!

Choosing the right disks

	Ultra SSD	Premium SSD	Standard SSD	Standard HDD
Disk type	SSD	SSD	SSD	HDD
Scenario	IO-intensive workloads such as SAP HANA, top tier databases, and other transaction-heavy workloads.	Production and performance sensitive workloads	Web servers, lightly used enterprise applications and dev/test	Backup, non-critical, infrequent access
Disk size	65,536 gibibyte (GiB)	32,767 GiB	32,767 GiB	32,767 GiB
Max throughput	2,000 MiB/s	900 MiB/s	750 MiB/s	500 MiB/s
Max IOPS	160,000	20,000	6,000	2,000
Latency	1 ms	5-10 ms	Variable	Variable

- ✓ Separate disks for data and logs
- ✓ Pay Attention to cache settings!
- ✓ Use Temporary disk for TempDB NEW

- ✓ Use striping to achieve more
 - Columns = # of disks
 - Interleave = 64KB for OLTP, 256KB for DWH
- ✓ Format with allocation unit size = 64 KB

Apply the right configurations

- Enable database page compression.
- Enable instant file initialization for data files.
- Limit autogrowth of the database.
- Disable autoshrink of the database.
- Move all databases to data disks, including system databases.
- Move SQL Server error log and trace file directories to data disks.
- Configure default backup and database file locations.
- Enable locked pages in memory.
- Apply SQL Server performance fixes.

Apply the right configurations

- Back up directly to blob storage
- Use file snapshot backups for databases larger than 12 TB
- Use multiple Temp DB files, 1 file per core, up to 8 files
- Set max server memory at 90% or up to 50 GB left for the Operating System. **№**
- Enable soft NUMA NEW

Keep it easy

Key benefits of Resource Provider (RP) on self-installations **™**

Comprehensive feature set

Self-installed VMs registered with RP now can access automation features in Azure Marketplace images

Leverage auto-backup and autopatching to avoid time-consuming admin and VM customization

Dashboard view for VM awareness

Azure VMs are now discoverable on the new Azure SQL blade in Azure Marketplace

Easily manage your SQL VM and SQL PaaS deployments from one central location

Simple license conversions

Self-installed VMs with RP can be easily converted to PAYG images

Save money by converting variable workloads with Software Assurance to PAYG images

Straightforward compliance

Self-installed VMs with RP automatically indicate usage of Azure Hybrid Benefit

Ensure compliance with
Azure terms and conditions without
any extra effort

SQL Server 2019 licensing rights

Keep it simple

How to take advantage of Resource Provider

1. Register the resource provider to your subscription (one-time only) via the Azure Portal or Azure CLI below:

```
# Register the new SQL resource provider to your subscription
az provider register --namespace Microsoft.SqlVirtualMachine
```

2. Once **subscription registration is complete**, register your VM with the SQL VM Resource Provider:

```
# Register your existing SQL Server VM with the new resource provider
az sql vm create -n <VMName> -g <ResourceGroupName> -l <VMLocation>
```

Ways to get Resource Provider*

Recommended approach

Full version

Get full access to auto-patching, Always On, auto-backup and other features.

Note: Requires full SQL Server restart.

Lightweight version NEW

Speed your provision of Resource Provider with a lightweight process which does not require restarting your VMs.

Note: Does not enable full functionality.

Learn more aka.ms/sqlvm rp and aka.ms/sqlvm rp documentation

^{*}If you're unable to select Full or Lightweight RP, choose an Agentless approach. Note this option does not enable verification of Resource Provider.

HA and networking

VMs and SLA

STANDARD STORAGE

No SLA ⊗

PREMIUM STORAGE

99.5%

AVAILABILITY SET

99.95%

AVAILABILITY ZONE

99.99%

Proximity placement groups w

- © Reduce latency to μs
- Possible allocation issues

Native HA technologies

Always On Availability Groups

SQL2012+ Enterprise Edition

SQL Failover Cluster Instance with S2D

Windows Server 2016, SQL 2016+ Standard Edition

Native HA technologies

Always On Availability Groups

SQL2012+ Enterprise Edition

SQL Failover Cluster Instance with S2D

Windows Server 2016, SQL 2016+ Standard Edition

While waiting for shared disks...

• SQL Failover Cluster Instance with PFS Windows Server 2012 R2+, SQL 2012+ Standard

Azure Premium File Share

PREMIUM	RANGE	CALCULATED AS
Provisioned share size (GiB)	100 - 102,400 (in increments of 1 GiB)	Specified by share quota
Baseline IOPS	100 - 100,000	1 * provisioned GiB
Burst IOPS (on a best effort basis)	300 - 100,000	3 * Baseline IOPS
Egress rate (MiB/s)	66 - 6,204	60 MiB/s + 0.06 * provisioned GiB
Ingress rate (MiB/s)	44 - 4,136	40 MiB/s + 0.04 * provisioned GiB
Price	West Europe, as of 23/04/2020	0,243€ GB

Example for a 2TB share:

Baseline IOPS 2048
Burst IOPS 6144
Egress 182,88 MB/s
Ingress 121,92 MB/s
Price 497 €/month

Resources

- Demo repository
 https://github.com/OmegaMadLab/SqlIaasVmPlayground
- Optimized ARM Template
 https://github.com/OmegaMadLab/OptimizedSqlVm-v2
- Official documentation <u>http://aka.ms/SQLIaaSPerf</u>
- DbaTools module <u>https://dbatools.io</u>

Thanks

Questions?

©OmegaMadLab

- @OmegaMadLab
- marco.obinu@omegamadlab.com
- http://www.omegamadlab.com
- https://github.com/OmegaMadLab
- https://www.linkedin.com/in/marco-obinu-omegamadlab/
- https://www.youtube.com/channel/UCpkBeQSscC1iBvpNP4VNTKQ