KARSTEN SILZ
15 MAY 2020
HTTPS://BPF.LI

GOOGLE JIB: SMALLER & FASTER DOCKER IMAGES FOR JAVA APPLICATIONS

SLIDES & SOURCE CODE

HTTPS://BPF.LI/PGJD

DO YOU CREATE JAVA DOCKER IMAGES BY COPYING JAR FILES INTO THE IMAGE?

DO YOU WANT TO SAVE TIME & NETWORK BANDWIDTH?

CAN YOU CHANGE YOUR GRADLE/MAVEN BUILD?

GOOGLEJIB

SMALLER JAVA DOCKER IMAGES FASTER DOCKER PUSHES

DOCKERFILES & LAYERS

Dockerfile create Docker Images

Docker Images have multiple layers

Most Dockerfile lines create new layer

Docker stores & caches layers individually, both locally and when pushing to/pulling from Docker repository

When one layer changes, then all following layers also get rebuilt

PUT THINGS THAT CHANGE MOST OFTEN AT THE END OF DOCKERFILE

SAMPLE DOCKERFILE

```
FROM adoptopenjdk/openjdk11-openj9:x86 64-
debianslim-jre-11.0.7 10 openj9-0.20.0
RUN mkdir -p /usr/app
WORKDIR /usr/app
ENV JHIPSTER SLEEP=0
COPY entrypoint.sh /usr/app/entrypoint.sh
COPY simple-shop-1.0.0.jar /usr/app/simple-shop.jar
ENTRYPOINT ["sh", "-c", "chmod +x /usr/app/
entrypoint.sh && cd /usr/app && ./entrypoint.sh"]
```

YOUR MACHINE

DOCKER REPOSITORY

DOCKER IMAGE

LAYER 1

LAYER 2

LAYER 3

LAYER 4

LAYER 5

LAYER 6

LAYER 7

LAYER 1
LAYER 2
LAYER 3
LAYER 4
LAYER 5

LAYER 6

LAYER 7

DOCKER IMAGE

ALL 7 LAYERS GET PUSHED

YOU CHANGE YOUR APPLICATION

YOU CHANGE ONE JAVA CLASS

= ONE CLASS FILE & RESOURCES (BUILD INFO, WEB APP) CHANGE

- NEW JAR FILE

```
FROM adoptopenjdk/openjdk11-openj9:x86 64-
debianslim-jre-11.0.7 10 openj9-0.20.0
RUN mkdir -p /usr/app
WORKDIR /usr/app
ENV JHIPSTER SLEEP=0
COPY entrypoint.sh /usr/app/entrypoint.sh
COPY simple-shop-1.0.1.jar /usr/app/simple-shop.jar
ENTRYPOINT ["sh", "-c", "chmod +x /usr/app/
entrypoint.sh && cd /usr/app && ./entrypoint.sh"]
```

YOUR MACHINE

DOCKER REPOSITORY

DOCKER IMAGE*

LAYER 1

LAYER 2

LAYER 3

LAYER 4

LAYER 5

LAYER 6*

LAYER 7*

LAYER 1

LAYER 2

LAYER 3

LAYER 4

LAYER 5

LAYER 6*

LAYER 7*

DOCKER IMAGE*

2 CHANGED LAYERS GET PUSHED

EVERY CHANGE: NEW JAR FILE = NEW LAYER

PUSHING THAT NEW LAYER WASTES TIME & BANDWIDTH

GOOGLE JIB UNPACKS JAR

Open source <u>Docker image build tool</u> by Google

Gradle & Maven plugins, Java library

Jib configuration instead of Dockerfile

Minimizes Docker image layer changes

Bonus: Build Docker image without Docker

daemon

SAMPLE DOCKER IMAGE

```
adoptopenjdk/openjdk11-openj9:x86 64-debianslim-
jre-11.0.7 10 openj9-0.20.0
                 Dependency JAR files
/app/libs
                 Resource files
/app/resources
                 Your classes
/app/classes
                 Extra files
```

ALL 5 LAYERS GET PUSHED

YOU CHANGE YOUR APPLICATION

YOU CHANGE ONE JAVA CLASS

= ONE CLASS FILE & RESOURCES (BUILD INFO, WEB APP) CHANGE

= 2 DIRECTORIES CHANGE

```
FROM adoptopenjdk/openjdk11-openj9:x86 64-
debianslim-jre-11.0.7 10 openj9-0.20.0
                 Dependency JAR files
/app/libs
                 Resource files
/app/resources
                 Your classes
/app/classes
                 Extra files
```

3 CHANGED LAYERS GET PUSHED

BUT THEY ARE MUCH SMALLER!

HOW MUCH DO YOU SAVE WITH JIB?

SMALL SPRING BOOT ANGULAR WEB APPLICATION

Class or Resource Dependency Data to JAR Changes Changes Push: Dockerfile 61.4 MB 61.4 MB Jib 4.7 MB 64.5 MB Jib savings 92% -5%

PRE-PRODUCTION SPRING BOOT ANGULAR WEB APPLICATION

Class or Resource Dependency Data to JAR Changes Push: Changes Dockerfile 124 MB 124 MB 128.5 MB Jib 7.5 MB Jib savings 94% -4%

DOCKER USUALLY PUSHES 90%+ LESS DATA WITH JIB

CHANGED LAYERS ARE SMALLER IN JIB

= DOCKER PUSHES FASTER

GOOGLEJIB

SMALLER JAVA DOCKER IMAGES FASTER DOCKER PUSHES

SLIDES & SOURCE CODE

HTTPS://BPF.LI/PGJD