The American Express Campus Challenge 2024

Utkarsh Raj Md Atif Husain Indian Institute of Technology, Roorkee

Pi-Thons

Summary of the Final Solution

Objective Function/Dependent Variable

Objective:

Build the best ML model using boosting algorithms to accurately predict the "Winning Team" for a T20 match.

Based on a detailed batsmen & bowlers scorecard for each match a dependent categorical variable "winner_01" is predicted. (0 if the team1 wins, else 1)

Along with 5 ready-to-use features, 19 other independent features were created for building the models.

Feature Engineering

Performed the following major feature engineering steps:

- Aggregated historical performance statistics for teams and players.
- Calculated recent form metrics such as win percentages and average scores.
- Incorporated venue-specific statistics to account for home-ground advantage.
- Performed feature selection techniques based on feature importance.
- Incorporated domain knowledge by including cricket-specific features such as the impact of player roles on the match outcome

Modeling Technique

Reviewed multiple modelling techniques including:

- 1. GBM
- 2. LightGBM
- 3. XGBoost
- 4. CatBoost
- 5. Ensemble Method

LightGBM was selected as the final solution based on its superior performance on the accuracy metric, achieving the highest cross-validation scores.

Model Performance (Accuracy) – All Iterations

Model Architecture

Detailed overview of the Modeling Technique

Model Technique Details

Detailed overview of the Modeling Technique

The following key features were instrumental in shaping the independent variable:

1. Team Performance Metrics: Included metrics to capture overall performance of the teams in their recent matches, such as:

- team performance last15.
- team_run_rate_last15.
- team_avg_wicket_last15.

- ground avg runs last15.
- ground_favorability_bat_first.
- 3. Captaincy and Player Composition: The role of leadership and team composition was captured through features like:

- captain_impact_team1
- team_count_3W_bowler_last15.
- ✓ LightGBM gave the best R1 accuracy score and was used as the final modelling technique in Round 2.
- ✓ "Winner Prediction In One Day International Cricket Matches Using ML" a paper that used this technique.

Feature Engineering & Selection

✓ Some important engineered features and their description:

S. No.	Feature	Feature Description	
1	team1_per_total_bowling_economy_last15	Average Bowler Economy of Team 1 bowler with respect to Team 2 in the last 15 games	
2	team_performance_last15	Performance value of the team in their last 15 games, considering the strength of their opponent and the outcome of those matches before the current match date	
3	team1_avg_per_total_bowl_AVG_last15	Bowling Average of Team 1 bowler with respect to Team 2 in the last 15 games	
4	ground_avg_runs_last15	Average runs scored in the ground in the last 15 games	
5	team1_avg_per_total_batting_AVG_last15	Batting Average of Team 1 batsman with respect to Team 2 in the last 15 games	
6	team_run_rate_last15	Ratio of run rate of Team 1 compared to Team 2 in the last 15 matches	
7	team_avg_economy_last15	Average economy of Team 1 compared to Team 2 in the last 15 matches	
8	team_avg_wicket_last15	Average wickets taken by Team 1 compared to Team 2 in the last 15 matches	
9	team_run_per_wicket_last15	Ratio of runs per wicket of Team 1 to Team 2 in the last 15 matches	
10	team_average_last15_ratio	Ratio of average runs of Team 1 and Team 2 in the last 15 matches	
11	team1_avg_per_total_bat_SR_last15	Average Strike rate of Team 1 batsman with respect to Team 2 in the last 15 games	
12	team_boundary_rate_last15	Average boundary rate of Team 1 compared to Team 2 in the last 15 matches	
13	captain_impact_team1	Impact of the captain of Team 1 with respect to Team 2 by win ratio in the last 15 matches	
14	team_count_3W_bowler_last15	Ratio of the number of 3W+ taken by players in Team 1 to the number of 3W+ taken by players in Team 2 in the last 15 games	
15	ground_favorability_team_last15	Ratio of ground favorability of Team 1 compared to Team 2 in the last 15 matches	

Feature Engineering & Selection

Top 10 Features in the Final Solution

Rank	Feature	Imp
1	team1_per_total_bowling_economy_last15	7.33%
2	team_performance_last15	7.25%
3	team1_avg_per_total_bowl_AVG_last15	7.16%
4	ground_avg_runs_last15	6.71%
5	team1_avg_per_total_batting_AVG_last15	6.53%
6	team_run_rate_last15	6.53%
7	team_avg_economy_last15	6.44%
8	team_avg_wicket_last15	6.35%
9	team_run_per_wicket_last15	6.17%
10	team_average_last15_ratio	5.90%

Feature Selection

Initial Feature Creation:

 Along with 5 ready-to-use features, 19 other independent features were created for building the models based on domain knowledge of cricket.

Feature Importance Analysis:

 Analyzed feature importance of all the features used for our various boosting algorithms.

Final Feature Selection:

- Selected 19 features that provided the best scores for final model training.
- These 19 features were chosen because they resulted in the best performance for the model.

Data Insights and Prediction Analysis

Higher win performance values are indicative of a higher chance of winning.

A smooth estimate of Team 1's win prediction scores (0 to 1) shows score distribution.

A more economical team in bowling, allowing fewer runs per ball, is likely to win matches.

Shows total vs correct win predictions in three score ranges (< 0.4, 0.4-0.6, > 0.6) on a 0-1 scale, highlighting prediction accuracy.

More Potential to Improve

✓ We continuously strive for excellence and have explored various facets of model enhancement. However, there is always scope for further improvements, and we see opportunities in the following areas:

1 ML Enhancements

- 1. Experiment with advanced algorithms like Neural Networks.
- 2. Implement more sophisticated ensemble methods.
- 3. Conduct extensive hyperparameter tuning and feature selections.

2 Feature Engineering

- 1. Interaction features that capture relationships between two or more variables.
- 2. Incorporate detailed weather conditions such as temperature, wind speed, etc.
- 3. Calculate and include features that reflect the current form of key players.

3 Psychological Factors

- 1. Create features that capture how players & teams perform under high pressure.
- Develop features that track player fatigue and recovery periods.

Thank You