§ 6.

Differenzierbarkeitseigenschaften reellwertiger Funktionen

Definition

- (1) Seien $a, b \in \mathbb{R}^n$; $S[a, b] := \{a + t(b a) : t \in [0, 1]\}$ heißt **Verbindungsstrecke** von a und b
- (2) $M \subseteq \mathbb{R}^n$ heißt **konvex** : \iff aus $a, b \in M$ folgt stets: $S[a, b] \subseteq M$
- (3) Sei $k \in \mathbb{N}$ und $x^{(0)}, \dots, x^{(k)} \in \mathbb{R}^n$. $S[x^{(0)}, \dots, x^{(k)}] := \bigcup_{j=1}^k S[x^{(j-1)}, x^{(j)}]$ heißt **Streckenzug** durch $x^{(0)}, \dots, x^{(k)}$ (in dieser Reihenfolge!)
- (4) Sei $G \subseteq \mathbb{R}^n$. G heißt **Gebiet**: \iff G ist offen und aus $a, b \in G$ folgt: $\exists x^{(0)}, \dots, x^{(k)} \in G : x^{(0)} = a, x^{(k)} = b$ und $S[x^{(0)}, \dots, x^{(k)}] \subseteq G$.

Vereinbarung: Ab jetzt in diesem Paragraphen: $\emptyset \neq D \subseteq \mathbb{R}^n$, D offen und $f: D \to \mathbb{R}$ eine Funktion.

Satz 6.1 (Der Mittelwertsatz)

 $f:D\to\mathbb{R}$ sei differenzierbar auf D, es seien $a,b\in D$ und $S[a,b]\subseteq D$. Dann:

$$\exists \ \xi \in S[a,b] : f(b) - f(a) = f'(\xi) \cdot (b-a)$$

Beweis

Sei
$$g(t) := a + t \cdot (b - a)$$
 für $t \in [0, 1]$. $g([0, 1]) = S[a, b] \subseteq D$. $\Phi(t) := f(g(t))(t \in [0, 1])$ 5.4 $\Longrightarrow \Phi$ ist differenzierbar auf $[0, 1]$ und $\Phi'(t) = f'(g(t)) \cdot g'(t) = f'(a + t(b - a)) \cdot (b - a)$. $f(b) - f(a) = \Phi(1) - \Phi(0) \xrightarrow{\text{MWS, AI}} \Phi'(\eta) = f'(\underbrace{a + \eta(b - a)}_{=:\xi \in S}) \cdot (b - a), \eta \in [0, 1]$

Folgerungen 6.2

Sei D ein **Gebiet** und $f, g: D \to \mathbb{R}$ seien differenzierbar auf D.

- (1) Ist $f'(x) = 0 \ \forall x \in D \implies f$ ist auf D konstant.
- (2) Ist $f'(x) = g'(x) \forall x \in D \implies \exists c \in \mathbb{R} : f = g + c \text{ auf } D$.

Beweis

(2) folgt aus (1). (1) Seien
$$a, b \in D$$
. Z.z.: $f(a) = f(b)$. $\exists x^{(0)}, \dots, x^{(k)} \in D, x^{(0)} = a, x^{(k)} = b$: $S[x^{(0)}, \dots, x^{(k)}] \subseteq D \ \forall j \in \{1, \dots, k\}$ ex. nach 6.1 ein $\xi_j \in S[x^{(j-1)}, x^{(j)}] : f(x^{(j)}) - f(x^{(j-1)}) = b$

$$\underbrace{f'(\xi_j)}_0 \cdot (x^{(j)} - x^{(j-1)}) = 0 \implies f(x^{(j)}) = f(x^{(j-1)}) \implies f(a) = f(x^{(0)}) = f(x^{(1)}) = f(x^{(2)}) = \dots = f(x^{(k)}) = f(b).$$

Satz 6.3 (Bedingung für Lipschitzstetigkeit)

Dsei konvex und $f:D\to\mathbb{R}$ sei differenzierbar auf D. Weiter sei f' auf Dbeschränkt. Dann ist f auf D Lipschitzstetig.

Beweis

$$\exists L \geq 0: \|f'(x)\| \leq L \forall x \in D. \text{ Seien } u, v \in D. D \text{ konvex} \implies S[u, v] \subseteq D. 6.1 \implies \exists \xi \in S[u, v]:$$
$$f(u) - f(v) = f'(\xi) \cdot (u - v) \implies |f(u) - f(v)| = |f'(\xi) \cdot (u - v)| \stackrel{CSU}{\leq} \|f'(\xi)\| \|u - v\| \leq L \|u - v\|. \blacksquare$$

Satz 6.4 (Linearität)

Sei $\Phi : \mathbb{R}^n \to \mathbb{R}^m$ eine Funktion.

 Φ ist linear $\iff \Phi \in C^1(\mathbb{R}^n, \mathbb{R}^m)$ und $\Phi(\alpha x) = \alpha \Phi(x) \ \forall x \in \mathbb{R}^n \ \forall \alpha \in \mathbb{R}$.

Beweis

Die Richtungsableitung Sei $\emptyset \neq D \subseteq \mathbb{R}^n$, D offen, $f: D \to \mathbb{R}$ und $x_0 \in D$. Ist $a \in \mathbb{R}^n$ und ||a|| = 1, so heißt a eine Richtung (oder ein Richtungsvektor).

Sei $a \in \mathbb{R}^n$ eine Richtung. D offen $\Longrightarrow \exists \delta > 0 : U_{\delta}(x_0) \subseteq D$. Gerade durch x_0 mit Richtung $a : \{x_0 + ta : t \in \mathbb{R}\}$. $||x_0 + ta - x_0|| = ||ta|| = |t|$. Also: $x_0 + ta \in D$ für $t \in (-\delta, \delta)$, $g(t) := f(x_0 + ta)$ $(t \in (-\delta, \delta))$.

f heißt in x_0 in Richtung a db, gdw. der Grenzwert

$$\lim_{t \to 0} \frac{f(x_0 + ta) - f(x_0)}{t}$$

existiert und $\in \mathbb{R}$ ist. In diesem Fall heißt

$$\frac{\partial f}{\partial a}(x_0) := \lim_{t \to 0} \frac{f(x_0 + ta) - f(x_0)}{t}$$

die Richtungsableitung von f in x_0 in Richtung a.

Beispiele:

(1) f ist in x_0 partiell db nach $x_j \iff f$ ist in x_0 db in Richtung e_j . In diesem Fall gilt: $\frac{\partial f}{\partial x_j}(x_0) = \frac{\partial f}{\partial e_j}(x_0)$.

(2)

$$f(x,y) := \begin{cases} \frac{xy}{x^2 + y^2} & \text{, falls } (x,y) \neq (0,0) \\ 0 & \text{, falls } (x,y) = (0,0) \end{cases}$$

 $x_0 = (0,0)$. Sei $a = (a_1,a_2) \in \mathbb{R}^2$ eine Richtung, also $a_1^2 + a_2^2 = 1$; $\frac{f(ta) - f(0,0)}{t} = \frac{1}{t} \frac{t^2 a_1 a_2}{t^2 a_1^2 + t^2 a_2^2} = \frac{a_1 a_2}{t}$. D.h.: $\frac{\partial f}{\partial a}(0,0)$ ex. $\iff a_1 a_2 = 0 \iff a \in \{(1,0), (-1,0), (0,1), (0,-1)\}$. In diesem Fall: $\frac{\partial f}{\partial a}(0,0) = 0$.

(3)

$$f(x,y) := \begin{cases} \frac{xy^2}{x^2 + y^4} & \text{, falls } (x,y) \neq (0,0) \\ 0 & \text{, falls } (x,y) = (0,0) \end{cases}$$

 $x_0 = (0,0). \text{ Sei } a = (a_1,a_2) \in \mathbb{R} \text{ eine Richtung. } \frac{f(ta)-f(0,0)}{t} = \frac{1}{t} \frac{t^3 a_1 a_2^2}{t^2 a_1^2 + t^4 a_2^4} = \frac{a_1 a_2^2}{a_1^2 + t^2 a_2^4} \stackrel{t \to 0}{\to} \begin{cases} 0 & \text{, falls } a_1 = 0 \\ \frac{a_2^2}{a_1} & \text{, falls } a_1 \neq 0 \end{cases}$

D.h. $\frac{\partial f}{\partial a}(0,0)$ existiert für jede Richtung $a \in \mathbb{R}^2$. Z.B.: $a = \frac{1}{\sqrt{2}}(1,1) : \frac{\partial f}{\partial a}(0,0) = \frac{1}{\sqrt{2}}$.

 $f(x,\sqrt{x}) = \frac{x^2}{2x^2} = \frac{1}{2} \ \forall x > 0 \implies f \text{ ist in } (0,0) \text{ nicht stetig.}$

Satz 6.5 (Richtungsableitungen)

Sei $x_0 \in D$, $a \in \mathbb{R}^n$ eine Richtung, $f: D \to \mathbb{R}$.

(1) $\frac{\partial f}{\partial a}(x_0)$ existiert $\iff \frac{\partial f}{\partial (-a)}(x_0)$ existiert. In diesem Fall ist:

$$\frac{\partial f}{\partial (-a)}(x_0) = -\frac{\partial f}{\partial a}(x_0)$$

- (2) f sei in x_0 db. Dann:
 - (i) $\frac{\partial f}{\partial a}(x_0)$ existiert und

$$\frac{\partial f}{\partial a}(x_0) = a \cdot \operatorname{grad} f(x_0).$$

(ii) Sei grad $f(x_0) \neq 0$ und $a_0 := \|\operatorname{grad} f(x_0)\|^{-1} \cdot \operatorname{grad} f(x_0)$. Dann:

$$\frac{\partial f}{\partial (-a_0)}(x_0) \le \frac{\partial f}{\partial a}(x_0) \le \frac{\partial f}{\partial a_0}(x_0) = \|\operatorname{grad} f(x_0)\|.$$

Weiter gilt: $\frac{\partial f}{\partial a}(x_0) < \frac{\partial f}{\partial a_0}(x_0)$, falls $a \neq a_0$; $\frac{\partial f}{\partial (-a_0)}(x_0) < \frac{\partial f}{\partial a}(x_0)$, falls $a \neq -a_0$.

Beweis

- (1) $\frac{(f(x_0+t(-a))-f(x_0))}{t} = -\frac{(f(x_0+(-t)a)-f(x_0))}{-t} \implies \text{Beh.}$
- (2) (i) $g(t) := f(x_0 + ta)$ (|t| hinreichend klein). Aus Satz 5.4 folgt: g ist db in t = 0 und $g'(0) = f'(x_0) \cdot a \implies \frac{\partial f}{\partial a}(x_0)$ existiert und ist $= g'(0) = \operatorname{grad} f(x_0) \cdot a$

(ii)
$$\left| \frac{\partial f}{\partial a}(x_0) \right| \stackrel{\text{(i)}}{=} |a \cdot \operatorname{grad} f(x_0)| \stackrel{\text{CSU}}{\leq} ||a|| \cdot || \operatorname{grad} f(x_0)|| = || \operatorname{grad} f(x_0)|| = \frac{1}{|| \operatorname{grad} f(x_0)||} \operatorname{grad} f(x_0) \cdot \operatorname{grad} f(x_0) = a_0 \cdot \operatorname{grad} f(x_0) \stackrel{\text{(i)}}{=} \frac{\partial f}{\partial a_0}(x_0)$$

$$\implies \frac{\partial f}{\partial (-a_0)}(x_0) \stackrel{\text{(1)}}{=} -\frac{\partial f}{\partial a_0}(x_0) \leq \frac{\partial f}{\partial a}(x_0) \leq \frac{\partial f}{\partial a_0}(x_0) = || \operatorname{grad} f(x_0)||$$

$$\operatorname{Sei} \frac{\partial f}{\partial a}(x_0) = \frac{\partial f}{\partial a_0}(x_0) \stackrel{\text{(i),(ii)}}{\Longrightarrow} a \cdot \operatorname{grad} f(x_0) = || \operatorname{grad} f(x_0)|| \implies a \cdot a_0 = 1 \implies ||a - a_0||^2 = (a - a_0)(a - a_0) = a \cdot a - 2a \cdot a_0 + a_0 \cdot a_0 = 1 - 2 + 1 = 0 \implies a = a_0 \cdot \blacksquare$$

Der Satz von Taylor Im Folgenden sei $f: D \to \mathbb{R}$ zunächst "genügend oft partiell db", $x_0 \in D$ und $h = (h_1, \dots, h_n) \in \mathbb{R}^n$. Wir führen folgenden Formalismus ein.

$$\nabla := \left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right) \text{ (,,Nabla``)}; \ \nabla f := \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right) = \operatorname{grad} f; \ \nabla f(x_0) := \operatorname{grad} f(x_0)$$

$$(h \cdot \nabla) := h_1 \frac{\partial}{\partial x_1} + \ldots + h_n \frac{\partial}{\partial x_n}; \ (h \cdot \nabla) f := h_1 \frac{\partial f}{\partial x_1} + \ldots + h_n \frac{\partial f}{\partial x_n} = h \operatorname{grad} f; \ (h \cdot \nabla) f(x_0) := h \cdot \operatorname{grad} f(x_0)$$

$$(h \cdot \nabla)^{(0)} f(x_0) := f(x_0)$$
. Für $k \in \mathbb{N} : (h \cdot \nabla)^{(k)} := \left(h_1 \frac{\partial}{\partial x_1} + \ldots + h_n \frac{\partial}{\partial x_n}\right)^k$

$$(h \cdot \nabla)^{(2)} f(x_0) = \sum_{j=1}^n \sum_{k=1}^n h_j h_k \frac{\partial^2 f}{\partial x_j \partial x_k}(x_0)$$

$$(h \cdot \nabla)^{(3)} f(x_0) = \sum_{j=1}^n \sum_{k=1}^n \sum_{l=1}^n h_j h_k h_l \frac{\partial^3 f}{\partial x_i \partial x_k \partial x_l}(x_0)$$

Beispiel

$$(n=2): h=(h_1,h_2).$$

$$(h \cdot \nabla)^{(0)} f(x_0) = f(x_0), \ (h \cdot \nabla)^{(1)} f(x_0) = h \cdot \operatorname{grad} f(x_0) = h_1 f_x(x_0) + h_2 f_y(x_0).$$

$$(h \cdot \nabla)^{(2)} f(x_0) = \left(h_1 \frac{\partial f}{\partial x} + h_2 \frac{\partial f}{\partial y}\right)^2 (x_0) = h_1^2 \frac{\partial^2 f}{\partial x^2}(x_0) + h_1 h_2 \frac{\partial^2 f}{\partial x \partial y}(x_0) + h_2 h_1 \frac{\partial^2 f}{\partial y \partial x}(x_0) + h_2^2 \frac{\partial^2 f}{\partial x^2}(x_0) + h_2^2 \frac{\partial^2 f}{\partial x^2}(x_0) + h_2^2 \frac{\partial^2 f}{\partial x^2}(x_0) + h_2^2 \frac{\partial^2 f}{\partial y^2}(x_0) + h_2^2 \frac{\partial^2 f}{\partial y^2}($$

Satz 6.6 (Der Satz von Taylor)

Sei $k \in \mathbb{N}, f \in C^{k+1}(D, \mathbb{R}), x_0 \in D, h \in \mathbb{R}^n$ und $S[x_0, x_0 + h] \subseteq D$. Dann:

$$f(x_0 + h) = \sum_{j=0}^{k} \frac{(h \cdot \nabla)^{(j)} f(x_0)}{j!} + \frac{(h \cdot \nabla)^{(k+1)} f(\xi)}{(k+1)!}$$

wobei $\xi \in S[x_0, x_0 + h]$

Beweis

$$\Phi(t) := f(x_0 + th) \text{ für } t \in [0, 1]. \ 5.4 \Longrightarrow \ \Phi \in C^{k+1}[0, 1], \ \Phi'(t) = f'(x_0 + th) \cdot h = (h \cdot \nabla) f(x_0 + th)$$

Induktiv: $\Phi^{(j)}(t) = (h \cdot \nabla)^{(j)} f(x_0 + th) \ (j = 0, \dots, k+1, t \in [0, 1]). \ \Phi(0) = f(x_0), \ \Phi(1) = f(x_0 + th)$

h);
$$\Phi^{(j)}(0) = (h \cdot \nabla)^{(j)} f(x_0)$$
. Analysis 1 (22.2) $\implies \Phi(1) = \sum_{j=0}^{k} \frac{\Phi^{(j)}(0) f(x_0)}{j!} + \frac{\Phi^{(k+1)} f(\eta)}{(k+1)!}$, wobei $\eta \in [0,1] \implies f(x_0 + h) = \sum_{j=1}^{k} \frac{(h \cdot \nabla)^{(j)} f(x_0)}{j!} + \frac{(h \cdot \nabla)^{(k+1)} f(x_0 + \eta h)}{(k+1)!}$, $\xi := x_0 + \eta h$

Spezialfall 6.7 Sei $f \in C^2(D,\mathbb{R}), x_0 \in D, h \in \mathbb{R}^n, S[x_0, x_0 + h] \subseteq D$. Dann:

$$f(x_0 + h) = f(x_0) + \operatorname{grad} f(x_0) \cdot h + \frac{1}{2} \sum_{j,k=1}^n h_j h_k \frac{\partial^2 f}{\partial x_j \partial x_k} (x_0 + \eta h)$$