

Selective Area Growth in Gallium Nitride

By Jose Barcenas

Overview

- Introduction to GaN
 - Crystal Structure
 - Advantages over silicon
 - HFET and HEMTS
 - Challenges in fabrication and performance
- GaN fabrication
 - Substrates
 - Epitaxy
 - Plasma Treatment
 - Dry etching, fluoride-based plasma,
- Selective Area Growth
 - Growth parameters
 - Gas flow
 - Epitaxial Lateral Overgrowth
 - HEMTS
 - Nanostructures

Introduction to GaN

- Wurtzite or Zinc Blende structure
 - Wurtzite structure primarily used for high performance devices due to wide band gap
- High frequency and high power applications
 - High Electric field tolerated
- Used for military and space applications
 - Sensors, radar systems, missile defense

GaN fabrication

- GaN typically grown on Sapphire, SiC, or Silicon
 - Czochralski method not possible with GaN
 - MBE, MOCVD, MOVPE commonly used to form epitaxial layers
 - 3-5 semiconductors typically grown by heteroepitaxy
- Defects in GaN Heteroepitaxy
 - Lattice mismatch
 - Threading dislocations
 - Screw dislocation, mixed dislocation, edge dislocation
 - Defect density range between 10^9 cm-2 to 10^11 cm-2

Substrate Solutions

- Sapphire Substrate
 - Used due to low cost, availability, and compatibility to GaN growth process
 - Lattice mismatch 13%
- SiC lattice mismatch 3.4%
- Lithium Gallate
 - Lattice mismatch .19%
 - Dislocation density decreases
 - Thermal stability an issue in MOVPE growth environment
- Diamond Substrate
 - Lattice mismatch 11%
 - High thermal conductivity, nearly 5 times more than SiC
 - GaN thickness can be reduced

Selective Area Growth(SAG)

- Combination of lithography and MOVPE growth
 - Dielectric mask deposited and etched to expose areas for selective growth
 - Allows for spatially controlled growth of epitaxial layer
 - Growth rate depends primarily on:
 - Temperature
 - Pressure
 - Molar fraction of reactive species

Growth Parameters

- Various growth parameters effect the morphology of GaN SAG
 - Temperature
 - Low growth temperatures result in poor surface morphology
 - Higher temperatures lead to formation of favorable crystal orientation
 - 3-5 ratios
 - Depending on crystal orientation, low 3/5 ratio is the most stable
 - 3/5 ratio increases with lateral growth extending over mask
 - Normal orientation experienced enhanced growth rate due to increased diffusing to the growth site

L.E Rodak et al. 2007

Epitaxial Lateral Overgrowth (ELO)

- Dependent process on SAG, reduces dislocation density
- Implemented only using vapor phase epitaxy systems
 - a) Thin layer formed
 - b) Mask deposited into wide mask strips
 - c) SAG
 - d) Lateral growth
- Useful for achieving long lifetime GaN LEDs

GaN HEMTS

- D or E mode HEMTS
- Recessed-Gate Structure
 - Shift the gate threshold voltage toward positive voltage
 - Device is normally on
 - Small on-resistance expected by the reduction of the 2DEG
 - Gate typically etched by electron cyclotron resonance reactive ion beam etching(ECR-RIBE)
 - Plasma treatment unavoidably introduces damage to the active region of the device
 - Reduces reliability and stability of the device

SAG-HFET

Fluoride-Based Plasma Treatment

- Similar to Recessed gate structure
 - goal is to shift the threshold voltage to change device to normally off
- No change in physical thickness of active region
 - Modulation of energy band by Fluoride ions implanted in the AlGaN heterostructure during plasma treatment
- Plasma Induced damages

Improvements in HEMTS using SAG

SiO₂ protection layer for regrowth
SiO₂ mask
AlGaN

- Significant improvements in current density and on-state resistance were observed
 - Favorable characteristics for HEMTS with high current density and low on-state resistance
- Suppresses drain leakage current and improves breakdown behavior
- Etched using Inductively Coupled Plasma Reactive Ion Etcher
- Ti/Al/Ti/Au then deposited on doped GaN Source Drain
- HEMT device with SAG resulted in a higher maximum current, due to better ohmic contacts

Optical Nanostructures

- High material quality is needed
 - Very strong internal polarization fields
 - Quantum-Confined Stark Effect
 - Very thin layers of 3-5 materials change the optical absorption spectrum due to quantum confinement of carriers
 - Decreased quantum efficiency
- Nanodots/nanocolumns grown by SAG
 - Growth has high selectivity
 - Smooth morphology and homogenous
 - Quantum efficiency increased

Conclusion

- SAG is only one improvement in GaN Devices
 - Promising technique for nanowires/nanodots
 - Does not completely eliminate defects in the epilayer
 - ammono-thermal GaN substrate has dislocation densities around 10^4cm-2

Questions?

