МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е.АЛЕКСЕЕВА

Институт радиоэлектроники и информационных технологий Кафедра вычислительные системы и технологии

> Лабораторная работа № 1 Программная модель процессора Вариант №13

ОТЧЕТ

по лабораторной работе

по дисциплине

Принципы и методы организации системных программных средств

РУКОВОДИТЕЛЬ:	
	Викулова Е.Н.
СТУДЕНТ:	
	Сапожников В.О.
	19-ИВТ-3
Работа защищена «_	<u></u> »
Сопенкой	

1. Цель работы

- 1. Освоить систему меню отладчика Turbo Debugger (td.exe)
- 2. Изучить рамки окна СРU и локальные меню.
- 3. Научиться управлять отображением и редактированием информации в рамках окна CPU
- 4. Научится сохранять информацию, отображаемую в окне CPu в виде текстовых (в журнале отладчика Log) и бинарных файлов.
- 5. Составить в кодах, ввести и выполнить в отладчике несколько команд перессылки с различными метолами адрессации, команды условного перехода и цикла.
- 6. Написать программу. Ввести программу в отладчике, записать в память необходимые данные, выполнить программу в отладчике. Получить распечатки программы, дампов до и после выполнения программы.

2. Задание

Подготовить средствами отладчика в памяти данные для задачи: исходный массив кодов $\{a(1),a(2),...,a(n)\}$. Адрес массива и число элементов выбрать самостоятельно. Написать программу, выполняющую пересылку элементов исходного массива (или преобразование и пересылку), удовлетворяющих некоторому условию в другую область памяти.

13 вариант: переслать слова, в которых число сброшенных битов больше половины.

3. Блок-схема.

4. Дампы памяти

Входные данные:

 $1111\ 0000\ 1110\ 0000b \rightarrow E0\ F0h$ $1001\ 1001\ 1001\ 1111b \rightarrow 9F\ 99h$ $1000\ 1000\ 1000\ 1000b \rightarrow 88\ 88h$ $1111\ 1100\ 0011\ 1111b \rightarrow 3F\ FCh$

Выходные данные:

 $1111\ 0000\ 1110\ 0000b \rightarrow E0\ F0h$ $1000\ 1000\ 1000\ 1000b \rightarrow 88\ 88h$