11.11.5.3

Lokesh Surana

CLASS 11, CHAPTER 11, EXERCISE 5.3

Q. The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle.

Solution: Uniformly loaded suspension bridge cable hangs in the form of a parabola facing upwards.

О	Lowest point of cable	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
A	End point of cable	$\binom{-50}{24}$
В	End point of cable	$\binom{50}{24}$
1	Ground level line	$\mathbf{x} = \begin{pmatrix} 0 \\ -6 \end{pmatrix}$

TABLE I: points

This will give us a setup similar to figure 1, Here A and B are the points on the parabola where the cable is attached to the roadway, i.e. longest wire is attached at this points. And vertex of parabola O is point where shortest wire is attached, which is 6m from the ground.

With the assumption of point O being $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, we'll

get Point $A = \begin{pmatrix} 50 \\ 24 \end{pmatrix}$ and Point $B = \begin{pmatrix} -50 \\ 24 \end{pmatrix}$. The generic equation of conic is

$$g(\mathbf{x}) = \mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0 \tag{1}$$

1

Fig. 1: Representation of parabola with vertex at origin.

Point
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 is on conic, so $\implies f = 0$ (2)

As conic is upward facing parabola,

$$\mathbf{V} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}. \tag{3}$$

As points A and B are on parabola

$$\implies (50 \quad 24) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 50 \\ 24 \end{pmatrix} + 2\mathbf{u}^{\mathsf{T}} \begin{pmatrix} 50 \\ 24 \end{pmatrix} = 0 \quad (4)$$

$$\implies \mathbf{u}^{\mathsf{T}} \begin{pmatrix} 50 \\ 24 \end{pmatrix} = -1250 \quad (5)$$

and

$$\implies (-50 \quad 24) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} -50 \\ 24 \end{pmatrix} + 2\mathbf{u}^{\mathsf{T}} \begin{pmatrix} -50 \\ 24 \end{pmatrix} = 0$$

$$\implies \mathbf{u}^{\mathsf{T}} \begin{pmatrix} -50 \\ 24 \end{pmatrix} = -1250$$

$$\tag{7}$$

From (5) and (7), we get

$$\mathbf{u}^{\mathsf{T}} \begin{pmatrix} 50 & -50 \\ 24 & 24 \end{pmatrix} = \begin{pmatrix} -1250 & -1250 \end{pmatrix} \tag{8}$$

$$\implies \mathbf{u} = \begin{pmatrix} 0 \\ -\frac{625}{12} \end{pmatrix} \tag{9}$$

we get parabola

$$\mathbf{x}^{\mathsf{T}} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \mathbf{x} + 2 \begin{pmatrix} 0 & -\frac{625}{12} \end{pmatrix} \mathbf{x} = 0 \tag{10}$$

At a point 18*m* from middle, let's call it $D = \begin{pmatrix} 18 \\ x_2 \end{pmatrix}$.

$$(18 \quad x_2) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 18 \\ x_2 \end{pmatrix} + 2 \begin{pmatrix} 0 & -\frac{625}{12} \end{pmatrix} \begin{pmatrix} 18 \\ x_2 \end{pmatrix} = 0$$
 (11)

$$\implies x_2 = \frac{1944}{625}$$
 (12)

 \implies Length of a supporting wire attached to the roadway 18m from the middle is

$$= x_2 + 6 = \frac{1944}{625} + 6 = \frac{5694}{625}m \tag{13}$$

Fig. 2: Parabola