

Description

The VSM70P04 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge .This device is well suited for high current load applications.

General Features

- V_{DS} =-40V, I_{D} =-70A $R_{DS(ON)}$ <10m Ω @ V_{GS} =-10V
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switch
- Load switch in high current applications
- DC/DC converters

TO-252

Schematic Diagram

Package Marking and Ordering Information

_			<u> </u>			
	Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
	VSM70P04-T2	VSM70P04	TO-252	330mm	-	2500PCS

Absolute Maximum Ratings (T_c=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	-40	V	
Gate-Source Voltage	V _G S	±20	V	
Drain Current-Continuous	I _D	-70	А	
Drain Current-Continuous(T _C =100°C)	I _D (100℃)	-49.5	А	
Pulsed Drain Current	I _{DM}	-200	А	
Maximum Power Dissipation	P _D	130	W	
Derating factor		1.04	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	1012	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	$^{\circ}$	

Thermal Characteristic

ı	Thermal Resistance, Junction-to-Case ^(Note 2)	R _{eJC}	0.96	°C/W

Shenzhen VSEEI Semiconductor Co., Ltd

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250μA	-40	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-40V,V _{GS} =0V	-	-	-1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=-250\mu A$	-1.2	-1.9	-2.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-10V, I _D =-20A	-	7.5	10	mΩ
Forward Transconductance	g FS	V _{DS} =-10V,I _D =-20A	-	50	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	\/ 00\/\/ 0\/	-	5380	-	PF
Output Capacitance	Coss	V_{DS} =-20V, V_{GS} =0V, F=1.0MHz	-	570	-	PF
Reverse Transfer Capacitance	C _{rss}	F-1.0IVITZ	-	500	-	PF
Switching Characteristics (Note 4)			•			
Turn-on Delay Time	t _{d(on)}		-	15	-	nS
Turn-on Rise Time	t _r	V_{DD} =-20V, R_L =2 Ω ,	-	12	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =-10 V , R_{G} =1 Ω	-	70	-	nS
Turn-Off Fall Time	t _f		-	18	-	nS
Total Gate Charge	Q_g	.,	-	106		nC
Gate-Source Charge	Q_{gs}	V_{DS} =-20, I_{D} =-20A, V_{GS} =-10V	-	22		nC
Gate-Drain Charge	Q_{gd}	V _{GS} 10V	-	27		nC
Drain-Source Diode Characteristics		•	•			
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-70A	-		-1.2	V
Diode Forward Current (Note 2)	Is		-	-	-70	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF =- 70A	-	53		nS
Reverse Recovery Charge	Qrr	di/dt = -100A/µs ^(Note3)	-	50		nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- $\textbf{1.} \ \textbf{Repetitive Rating: Pulse width limited by maximum junction temperature}.$
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production

Test Circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 2 Transfer Characteristics

Rdson On-Resistance(()

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 9 BV_{DSS} vs Junction Temperature

Figure 10 ID Current Derating vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance