Package 'RChronoModel'

October 12, 2022

Type Package

Title Post-Processing of the Markov Chain Simulated by ChronoModel or Oxcal
Version 0.4
Date 2017-01-10
Author Anne Philippe and Marie-Anne Vibet
Maintainer Anne Philippe <anne.philippe@univ-nantes.fr></anne.philippe@univ-nantes.fr>
Description Provides a list of functions for the statistical analysis and the post-processing of the Markov Chains simulated by ChronoModel (see http://www.chronomodel.fr for more information). ChronoModel is a friendly software to construct a chronological model in a Bayesian framework. Its output is a sampled Markov chain from the posterior distribution of dates component the chronology. The functions can also be applied to the analyse of mcmc output generated by Oxcal software.
License GPL
Depends R (>= 2.10)
Imports stats, utils, graphics, grDevices, hdrcde
<pre>URL http://www.chronomodel.fr</pre>
RoxygenNote 5.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2017-01-12 15:42:28
R topics documented:
CreateMinMaxGroup 2 CredibleInterval 3 DatesHiatus 4 Events 5 ImportCSV 5 MarginalPlot 6

Creat	eMinMaxGroup	Constru dates(p	_	the	mir	iimu	т а	and	the	e mo	axim	ит	for	a	gro	ир	of
Index																	28
	remportot			• •		• •	• •		• •		• •	• •	• •	•	•		. 21
	TempoPlot																
	TempoActivityPlot																
	SuccessionPlot																
	PhaseTimeRange .																
	PhaseStatistics PhasesTransition .																
	PhaseStatistics																
	Phases Con																
	PhasePlot																
	PhaseDurationPlot																
	MultiSuccessionPlot																
	MultiPhaseTimeRan	_															
	MultiPhasesTransitio																
	MultiPhasesGap																
	MultiPhasePlot																
	MultiHPD																
	MultiDatesPlot																
	MultiCredibleInterva																
	MarginalStatistics .																
	MarginalProba																. 1

Description

Constructs a dataframe containing the output of the MCMC algorithm corresponding to the minimum and the maximum of a group of dates (phase)

Usage

CreateMinMaxGroup(data, position, name ="Phase", add=NULL, exportFile=NULL)

Arguments

	data	dataframe containing the output of the MCMC algorithm
chains of all dates included in the phase of interest	position	numeric vector containing the position of the column corresponding to the MCMC chains of all dates included in the phase of interest
name of the current group of dates or phase	name	name of the current group of dates or phase
add the name of the dataframe in which the current minimum and maximum show be added. Null by default.	add	the name of the dataframe in which the current minimum and maximum should be added. Null by default.
exportFile the name of the final file that will be saved if chosen. Null by default.	exportFile	the name of the final file that will be saved if chosen. Null by default.

CredibleInterval 3

Value

A dataframe containing the minimum and the maximum of the group of dates included in the phase of interest. These values may be added to an already existing file "add" if given.

Author(s)

```
Anne Philippe «Anne.Philippe@univ-nantes.fr» and Marie-Anne Vibet «Marie-Anne.Vibet@univ-nantes.fr»
```

Examples

```
data(Events)
Temp = CreateMinMaxGroup(Events, c(2,4), "Phase2")
Temp = CreateMinMaxGroup(Events, c(3,5), "Phase1", Temp)
```

CredibleInterval

Bayesian credible interval

Description

Computes the shortest credible interval at the desired level.

Usage

```
CredibleInterval(a_chain, level = 0.95)
```

Arguments

a_chain numeric vector containing the output of the MCMC algorithm for a one-parameter level probability corresponding to the level of confidence used for the credible interval

Details

A (100 * level) % credible intervalgives the shortest interval, whose posterior probability is equal to the desired level. This interval is approximated by constructing the shortest interval such that N*(1-level) elements of the sample are outside the interval.

Value

Returns a vector of values containing the level of confidence and the endpoints of the shortest credible interval.

Author(s)

```
Anne Philippe «Anne.Philippe@univ-nantes.fr» and Marie-Anne Vibet «Marie-Anne.Vibet@univ-nantes.fr»
```

4 DatesHiatus

Examples

```
data(Events); attach(Events)
CredibleInterval(Event.1)
CredibleInterval(Event.12, 0.50)
```

DatesHiatus

Test for the existence of a hiatus between two parameters

Description

Finds if it exists a gap between two dates that is the longest interval that satisfies : $P(a_chain < IntervalInf < IntervalSup < b_chain | M) = level$

Usage

```
DatesHiatus(a_chain, b_chain, level=0.95)
```

Arguments

a_chain	numeric vector	containing the	output of the M	ICMC algorithm	for the first one-

parameter (date) a

b_chain numeric vector containing the output of the same MCMC algorithm for the sec-

ond one-parameter (date) b

level probability corresponding to the level of confidence used for the credible interval

and the highest density region

Value

Returns the endpoints of the longest hiatus between two parameters

Author(s)

```
Anne Philippe «Anne.Philippe@univ-nantes.fr» and
Marie-Anne Vibet «Marie-Anne.Vibet@univ-nantes.fr»
```

```
data(Events); attach(Events)
DatesHiatus(Event.1, Event.12)
DatesHiatus(Event.1, Event.12, level = 0.5)
```

Events 5

Events Events

Description

Contains the output of the MCMC algorithm for four events modelled by ChronoModel.

Usage

```
data(Events)
```

Format

A data frame with 30000 observations on the following 5 variables.

iter a numeric vector corresponding to iteration number

Event .1 a numeric vector containing the output of the MCMC algorithm for the parameter Event

Event .12 a numeric vector containing the output of the MCMC algorithm for the parameter Event 12

Event . 2 a numeric vector containing the output of the MCMC algorithm for the parameter Event 2

Event .22 a numeric vector containing the output of the MCMC algorithm for the parameter Event 22.

Author(s)

Anne Philippe «Anne.Philippe@univ-nantes.fr» and Marie-Anne Vibet «Marie-Anne.Vibet@univ-nantes.fr»

Examples

```
data(Events)
summary(Events)
```

ImportCSV

Importing a CSV file containing the output of the MCMC algorithm

Description

Use of the read.csv with th default values for CSV files extracted from ChronoModel software

Usage

```
ImportCSV(file, dec = '.', sep=',', comment.char='#', header = TRUE)
```

6 MarginalPlot

Arguments

the name of the CSV file containing the output of the MCMC algorithm dec the character used in the file for decimal points for the use of read.csv()

sep the field separator character for the use of read.csv()

comment.char a character vector of length one containing a single character or an empty string

for the use of read.csv()

header a logical value indicating whether the file contains the names of the variables as

its first line.

Value

Returns a dataframe containing a representation of the data in the file.

Author(s)

```
Anne Philippe «Anne.Philippe@univ-nantes.fr» and Marie-Anne Vibet «Marie-Anne.Vibet@univ-nantes.fr»
```

Examples

```
data(Events)
write.csv(Events, "data.csv", row.names=FALSE)
ImportCSV("data.csv")
ImportCSV("data.csv", dec = '.', sep=',', comment.char='#', header = TRUE)
```

MarginalPlot

Plot of a marginal posterior density

Description

This function draws the density of a one-parameter and adds summary statistics.

Usage

```
MarginalPlot(a_chain, level = 0.95, title = "Marginal posterior density",
  colors = T, GridLength = 1024)
```

Arguments

	a_chain	numeric vector containing the output of the MCMC algorithm for a one-parameter
--	---------	--

level probability corresponding to the level of confidence

title label of the title

colors if TRUE -> use of colors in the graph

GridLength length of the grid used to estimate the density

MarginalProba 7

Details

The density is estimated using density() function with n=GridLength.

Value

Draws a plot of the estimated marginal posterior density for the one-parameter and adds the mean and the credible interval at the desired level

Author(s)

```
Anne Philippe «Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet «Marie-Anne.Vibet@univ-nantes.fr>
```

Examples

```
data(Events); attach(Events)

MarginalPlot(Event.1, 0.95)

MarginalPlot(Event.1, 0.50)

MarginalPlot(Event.2, 0.95, title="Marginal density plot of Event 2")
MarginalPlot(Event.2, 0.95, colors = FALSE)
```

MarginalProba

Bayesian test for anteriority / posteriority between two parameters

Description

This function estimates the posterior probability that event 'a' is older than event 'b' using the output of the MCMC algorithm. This provides a bayesian test for checking the following assumption: "Event a is older than event b"

Usage

```
MarginalProba(a_chain, b_chain)
```

Arguments

a_chain	numeric vector containing the output of the MCMC algorithm for the first one-parameter (date) a
b_chain	numeric vector containing the output of the same MCMC algorithm for the second one-parameter (date) b

Details

For a given output of MCMC algorithm, this function estimates the posterior probability of the event 'a' < 'b' by the relative frenquency of the event "the value of event 'a' is lower than the value of event 'b'" in the simulated Makov chain.

8 Marginal Statistics

Value

Returns the posterior probability of the following assumption: "Event a is older than event b"

Author(s)

```
Anne Philippe «Anne.Philippe@univ-nantes.fr» and Marie-Anne Vibet «Marie-Anne.Vibet@univ-nantes.fr»
```

Examples

```
data(Events); attach(Events)

# Probability that Event.1 is older than Event.12
MarginalProba(Event.1, Event.12)
# Probability that Event.1 is older than Event.2
MarginalProba(Event.1, Event.2)

# Probability that the beginning of the phase 1 is older than the end of the phase 1
# Should always be 1 for every phase
data(Phases); attach(Phases)

MarginalProba(Phase.1.alpha, Phase.1.beta)
```

MarginalStatistics

Marginal summary statistics

Description

Gives a list of summary statistics resulting from the output of the MCMC algorithm for a one-parameter.

Usage

```
MarginalStatistics(a_chain, level = 0.95, max_decimal = 0)
```

Arguments

a_chain numeric vector containing the output of the MCMC algorithm for a one-parameter level probability corresponding to the level of confidence used for the credible interval and the highest density region

max_decimal maximum number of decimal

Details

The 100*level % HPD (highest posterior density) region is estimated using HDR function from Package 'hdrcde'.

MultiCredibleInterval 9

Value

A matrix of values corresponding to the following summary statistics

title The title of the summary statistics

mean The mean of the MCMC chain. Use of "mean" function.

map The maximum a posteriori of the MCMC chain. Use of "hdr" function.

sd The standard deviation of the MCMC chain. Use of "sd" function.

Q1, median, Q3 The quantiles of the MCMC chain corresponding to 0.25, 0.50 and 0.75. Use of

"quantile" function.

CI The credible interval corresponding to the desired level. Use of "CredibleInter-

val" function.

HPDR The highest posterior density regions corresponding to the desired level. Use of

"hdr" function.

Author(s)

Anne Philippe <Anne.Philippe@univ-nantes.fr> and

Marie-Anne Vibet <Marie-Anne.Vibet@univ-nantes.fr>

References

Hyndman, R.J. (1996) Computing and graphing highest density regions. American Statistician, 50, 120-126.

Examples

```
data(Events); attach(Events)

MarginalStatistics(Event.1)
MarginalStatistics(Event.2, level = 0.90)
```

MultiCredibleInterval Bayesian credible intervals for a series of dates

Description

Estimation of the shorest credible interval for each variables of simulated Markov chain.

Usage

```
MultiCredibleInterval(data, position, level = 0.95)
```

10 MultiDatesPlot

Arguments

dataframe containing the output of the MCMC algorithm data

numeric vector containing the position of the column corresponding to the MCMC position

chains of interest

level probability corresponding to the level of confidence used to estimate the credible

interval

Value

Returns a matrix of values containing the level of confidence and the endpoints of the shortest credible interval for each variable of the MCMC chain. The name of the resulting rows are the positions of the corresponding columns in the CSV file.

Author(s)

```
Anne Philippe <Anne.Philippe@univ-nantes.fr> and
Marie-Anne Vibet <Marie-Anne.Vibet@univ-nantes.fr>
```

Examples

```
data(Events)
MultiCredibleInterval(Events, c(2,4,3), 0.95)
```

MultiDatesPlot Plot of the endpoints of credible intervals or HPD intervals of a series

of dates

Description

Draws a plot of segments corresponding to the endpoints of the intervals (CI or HPD) of each selected date.

Usage

```
MultiDatesPlot(data, position, level = 0.95, intervals = c("CI", "HPD"),
title = "Plot of intervals")
```

Arguments

data	dataframe containing the output of the MCMC algorithm
position	numeric vector containing the position of the column corresponding to the MCMC chains of interest
level	probability corresponding to the level of confidence used to estimate the credible interval
intervals	"CI" corresponds to the credible intervals, "HPD" to the highest density regions
title	title of the graph

MultiHPD 11

Author(s)

```
Anne Philippe «Anne.Philippe @univ-nantes.fr» and
Marie-Anne Vibet «Marie-Anne.Vibet @univ-nantes.fr»
```

Examples

```
data(Events)
MultiDatesPlot(Events, c(2,4,3), level = 0.95, intervals ="CI", title = "Plot of CI intervals")
MultiDatesPlot(Events, c(2,4,3), level = 0.95, intervals ="HPD", title = "Plot of HPD intervals")
```

MultiHPD Bayesian highest posterior density regions for a series of MCMC chains

Description

Estimation of the highest posterior density regions for each variables of simulated Markov chain. This function uses the "hdr" function oincluded in the package "hdrcde.

Usage

```
MultiHPD(data, position, level=0.95)
```

Arguments

data dataframe containing the output of the MCMC algorithm

position numeric vector containing the position of the column corresponding to the MCMC

chains of interest

level probability corresponding to the level of confidence

Value

Returns a matrix of values containing the level of confidence and the endpoints of each interval for each variable of the MCMC chain. The name of the resulting rows are the positions of the corresponding columns in the CSV file.

Author(s)

```
Anne Philippe «Anne.Philippe@univ-nantes.fr» and Marie-Anne Vibet «Marie-Anne.Vibet@univ-nantes.fr»
```

References

Hyndman, R.J. (1996) Computing and graphing highest density regions. American Statistician, 50, 120-126.

12 MultiPhasePlot

Examples

```
data(Events)
MultiHPD(Events, c(2,4,3), 0.95)
```

MultiPhasePlot

Plot of the marginal posterior densities of several phases

Description

Draws a plot with the marginal posterior densities of the minimum and the maximum of the dates included in each phase. No temporal order between phases is required.

Usage

```
MultiPhasePlot(data, position_minimum, position_maximum = position_minimum+1,
level = 0.95, title = "Phases marginal posterior densities")
```

Arguments

data dataframe containing the output of the MCMC algorithm position_minimum

numeric vector containing the column number corresponding to the minimum of the dates included in each phase

position_maximum

numeric vector containing the column number corresponding to the maximum of the dates included in each phase. By default, position_maximum = posi-

 $tion_minimum + 1.$

level probability corresponding to the level of confidence

title title of the graph

Value

Draws a plot with the marginal posterior densities of the minimum and the maximum of the dates included in each phase and adds the time range of each phase.

Author(s)

Anne Philippe <Anne.Philippe@univ-nantes.fr> and

Marie-Anne Vibet <Marie-Anne.Vibet@univ-nantes.fr>

MultiPhasesGap 13

Examples

```
# Data extracted from ChronoModel software
data(Phases)

# List of the name of the phases
names(Phases)

# Stipulating position_maximum
MultiPhasePlot(Phases, c(4,2), c(5,3), title = "Succession of phase 1 and phase 2")

# In this case, equivalent to
MultiPhasePlot(Phases, c(4,2), title = "Succession of phase 1 and phase 2")
```

MultiPhasesGap

Gap/Hiatus between a succession of phases (for phases in temporal order constraint)

Description

This function finds, if it exists, the gap between two successive phases. This gap or hiatus is the longest interval [IntervalInf, IntervalSup] that satisfies: P(Phase1Max < IntervalInf < IntervalSup < Phase2Min | M) = level for each successive phase.

Usage

```
MultiPhasesGap(data, position_minimum, position_maximum = position_minimum+1,
  level = 0.95, max_decimal = 0)
```

Arguments

data

dataframe containing the output of the MCMC algorithm

position_minimum

numeric vector containing the column number corresponding to the minimum of the dates included in each phase

position_maximum

numeric vector containing the column number corresponding to the maximum of the dates included in each phase. By default, position_maximum = posi-

 $tion_minimum + 1.$

level probability corresponding to the level of confidence

max_decimal maximum number of decimal

Details

For each i, MultiPhasesGap computes the gap interval for the phase defined by its minimum position_minimum[i] and its maximum position_maximum[i]. The default value of position_maximum corresponds to CSV files exported from ChronoModel software.

14 MultiPhasesTransition

Value

Returns a matrix of values containing the level of confidence and the endpoints of the gap for each pair of successive phases

Author(s)

```
Anne Philippe «Anne.Philippe@univ-nantes.fr» and Marie-Anne Vibet «Marie-Anne.Vibet@univ-nantes.fr»
```

Examples

```
# Data extracted from ChronoModel software
data(Phases)

# List of the name of the phases
names(Phases)

# Stipulating position_maximum
MultiPhasesGap(Phases, c(4,2), c(5,3))

# In this case, equivalent to
MultiPhasesGap(Phases, c(4,2))
```

MultiPhasesTransition Transition range for a succession of phases (for phases in temporal order constraint)

Description

Finds if it exists the shortest interval [TransitionRangeInf, TransitionRangeSup] that satisfies : P(TransitionRangeInf < Phase1Max < Phase2Min < TransitionRangeSup | M) = level for each phase

Usage

```
MultiPhasesTransition(data, position_minimum, position_maximum = position_minimum+1,
level = 0.95, max_decimal = 0)
```

Arguments

data dataframe containing the output of the MCMC algorithm position_minimum

numeric vector containing the column number corresponding to the minimum of the dates included in each phase

position_maximum

numeric vector containing the column number corresponding to the maximum of the dates included in each phase. By default, position_maximum = position_minimum + 1.

level probability corresponding to the level of confidence

max_decimal maximum number of decimal

MultiPhaseTimeRange 15

Details

For each i, MultiPhasesTransition computes the transition interval for the phase defined by its minimum position_minimum[i] and its maximum position_maximum[i]. The default value of position_maximum corresponds to CSV files exported from ChronoModel software.

Value

Returns a matrix of values containing the level of confidence and the endpoints of the transition interval for each pair of successive phases

Author(s)

```
Anne Philippe «Anne.Philippe@univ-nantes.fr» and

Marie-Anne Vibet «Marie-Anne.Vibet@univ-nantes.fr»
```

Examples

```
# Data extracted from ChronoModel software
data(Phases)
# List of the name of the phases
names(Phases)
# Stipulating position_maximum
MultiPhasesTransition(Phases, c(4,2), c(5,3))
# In this case, equivalent to
MultiPhasesTransition(Phases, c(4,2))
```

 ${\tt MultiPhaseTimeRange}$

Phase Time Range for multiple phases

Description

Computes the shortest interval that satisfies : P(PhaseMin < IntervalInf < IntervalSup < PhaseMax | M) = level

Usage

```
MultiPhaseTimeRange(data, position_minimum, position_maximum = position_minimum+1,
  level = 0.95, max_decimal = 0)
```

Arguments

data dataframe containing the output of the MCMC algorithm

position_minimum

numeric vector containing the column number corresponding to the minimum of the dates included in each phase

position_maximum

numeric vector containing the column number corresponding to the maximum of the dates included in each phase. By default, position_maximum = posi-

 $tion_minimum + 1.$

level probability corresponding to the desired level of confidence

max_decimal maximum number of decimal

Details

For each i, MultiPhaseTimeRange computes the time range interval for the phase defined by its minimum position_minimum[i] and its maximum position_maximum[i]. The default value of position_maximum corresponds to CSV files exported from ChronoModel software.

Value

Returns a matrix of values containing the level of confidence and the endpoints of the shortest time range associated with the desired level

Author(s)

Anne Philippe <Anne.Philippe@univ-nantes.fr> and

Marie-Anne Vibet <Marie-Anne.Vibet@univ-nantes.fr>

```
# Data extracted from ChronoModel software
data(Phases)

# List of the name of the phases
names(Phases)

# Stipulating position_maximum
MultiPhaseTimeRange(Phases, c(4,2), c(5,3))

# In this case, equivalent to
MultiPhaseTimeRange(Phases, c(4,2))
```

MultiSuccessionPlot 17

MultiSuccessionPlot	Successive Phases Density Plots (for phases in temporal order constraint)
---------------------	---

Description

This functions draws a plot of the densities of several successive phases and adds several statistics (mean, CI, HPDR)

Usage

```
MultiSuccessionPlot(data, position_minimum, position_maximum = position_minimum+1,
  level = 0.95, title = "Characterisation of a succession of phases")
```

Arguments

data dataframe containing the output of the MCMC algorithm position_minimum

numeric vector containing the column number corresponding to the minimum

of the dates included in each phase

position_maximum

numeric vector containing the column number corresponding to the maximum of the dates included in each phase. By default, position_maximum = posi-

 $tion_minimum + 1$.

level probability corresponding to the level of confidence

title title of the graph

Details

Curves represent the density of the minimum (oldest dates) and the maximum (youngest dates) of the dates included in each phase. Curves of the same color refer to the same phase. When there is only one curve of one color, it means that there is only one event in the corresponding phase and then the minimum equals the maximum. Time range intervals are symbolised by segments above the curves drawn using the same color as the one of the curves of the associated phase. Transition and gap range intervals are represented by two-coloured segments using the colors of successive phases. If the gap between the successive phases does not exist, a cross is drawn instead of a segment.

Value

Returns a plot of all densities and adds several summary statistics

Author(s)

Anne Philippe «Anne.Philippe@univ-nantes.fr» and Marie-Anne Vibet «Marie-Anne.Vibet@univ-nantes.fr»

PhaseDurationPlot

Examples

```
# Data extracted from ChronoModel software
data(Phases)

# List of the name of the phases
names(Phases)

# Stipulating position_end
MultiSuccessionPlot(Phases, c(4,2), c(5,3), title = "Succession of phase 1 and phase 2")

# In this case, equivalent to
MultiSuccessionPlot(Phases, c(4,2), title = "Succession of phase 1 and phase 2")
```

PhaseDurationPlot

Plot of the marginal posterior densities of the duration of a phase

Description

This function draws the marginal posterior densities of the time elapsed between the minimum and the maximum of the dates included in a phase, and adds summary statistics (mean, CI)

Usage

```
PhaseDurationPlot(PhaseMin_chain, PhaseMax_chain, level=0.95, title = "Duration of the phase", colors = T, GridLength=1024)
```

Arguments

PhaseMin_chain numeric vector containing the output of the MCMC algorithm for the minimum

of the dates included in the phase

PhaseMax_chain numeric vector containing the output of the MCMC algorithm for the maximum

of the dates included in the phase

level probability corresponding to the level of confidence used for the credible interval

and the time range

title title of the graph

colors if TRUE -> use of colors in the graph

GridLength length of the grid used to estimate the density

Value

A plot with the marginal posterior densities of the duration of a phase and adds several summary statistics (mean, Credible interval, Time range)

Author(s)

```
Anne Philippe <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet <Marie-Anne.Vibet@univ-nantes.fr>
```

PhasePlot 19

Examples

```
data(Phases); attach(Phases)

PhaseDurationPlot(Phase.1.alpha, Phase.1.beta, 0.95, "Duration of Phase 1")
PhaseDurationPlot(Phase.2.alpha, Phase.2.beta, 0.95, "Duration of Phase 2",colors = FALSE)
```

PhasePlot.

Plot of the marginal posterior densities of a phase

Description

This function draws the marginal posterior densities of the minimum and the maximum of the dates included in the phase

Usage

```
PhasePlot(PhaseMin_chain, PhaseMax_chain, level = 0.95,
   title = "Characterisation of a phase", colors = T,
   GridLength = 1024)
```

Arguments

PhaseMin_chain numeric vector containing the output of the MCMC algorithm for the minimum

of the dates included in the phase

PhaseMax_chain numeric vector containing the output of the MCMC algorithm for the maximum

of the dates included in the phase

level probability corresponding to the level of confidence used for the credible interval

and the time range

title title of the graph

colors if TRUE -> use of colors in the graph

GridLength length of the grid used to estimate the density

Value

A plot with the marginal posterior densities of the minimum and the maximum of the dates included in the phase and adds several summary statistics (mean, Credible interval, Time range)

Author(s)

```
Anne Philippe «Anne.Philippe@univ-nantes.fr» and Marie-Anne Vibet «Marie-Anne.Vibet@univ-nantes.fr»
```

```
data(Phases); attach(Phases)
PhasePlot(Phase.1.alpha, Phase.1.beta, 0.95, "Densities of Phase 1")
PhasePlot(Phase.2.alpha, Phase.2.beta, 0.95, "Densities of Phase 2",colors = FALSE)
```

20 Phases

Phases Phases

Description

Contains the output of the MCMC algorithm for all the phases (beginning and end) of two successive phases modelled in ChronoModel. Phase 1 is assued to be older than Phase 2.

Usage

```
data(Phases)
```

Format

A data frame with 30000 observations on the following 5 variables.

iter a numeric vector corresponding to iteration number

- Phase.1.alpha a numeric vector containing the output of the MCMC algorithm for the beginning of the phase "Phase 1"
- Phase . 1 . beta a numeric vector containing the output of the MCMC algorithm for the end of the phase "Phase 1"
- Phase . 2 . alpha a numeric vector containing the output of the MCMC algorithm for the the beginning of the phase "Phase 2"
- Phase . 2 . beta a numeric vector containing the output of the MCMC algorithm for the end of the phase "Phase 2"

Author(s)

Anne Philippe <Anne.Philippe@univ-nantes.fr> and

Marie-Anne Vibet <Marie-Anne.Vibet@univ-nantes.fr>

```
data(Phases)
attach(Phases)
PhasePlot(Phase.1.alpha, Phase.1.beta)
PhaseTimeRange(Phase.1.alpha, Phase.1.beta)
PhasesGap(Phase.1.beta, Phase.2.alpha)
PhasesTransition(Phase.1.beta, Phase.2.alpha)
```

PhasesGap 21

PhasesGap	Gap or Hiatus between two successive phases (for phases in temporal order constraint)

Description

This function finds, if it exists, the gap between two successive phases. This gap or hiatus is the longest interval [IntervalInf; IntervalSup] that satisfies: $P(Phase1Max_chain < IntervalInf < IntervalSup < Phase2Min_chain | M) = level.$

Usage

```
PhasesGap(Phase1Max_chain, Phase2Min_chain, level = 0.95,
  max_decimal = 0)
```

Arguments

Phase1Max_chain

numeric vector containing the output of the MCMC algorithm for the maximum of the dates included in the oldest phase

Phase2Min_chain

numeric vector containing the output of the MCMC algorithm for the minimum

of the dates included in the youngest phase

level probability corresponding to the level of confidence

max_decimal maximum number of decimal

Value

Returns a vector of values containing the level of confidence and the endpoints of the gap between the successive phases

Author(s)

```
Anne Philippe «Anne.Philippe@univ-nantes.fr» and Marie-Anne Vibet «Marie-Anne.Vibet@univ-nantes.fr»
```

```
data(Phases); attach(Phases)
PhasesGap(Phase.1.beta, Phase.2.alpha, 0.95)
PhasesGap(Phase.1.beta, Phase.2.alpha, 0.50)
```

22 PhaseStatistics

PhaseStatistics	Summary statistics for a phase	

Description

Estimation of several summary statistics of the minimum, the maximum and the duration of the dates included in the phase.

Usage

```
PhaseStatistics(PhaseMin_chain, PhaseMax_chain, level = 0.95,
    max_decimal = 0)
```

Arguments

PhaseMin_chain numeric vector containing the output of the MCMC algorithm for the minimum

of the dates included in the phase

PhaseMax_chain numeric vector containing the output of the MCMC algorithm for the maximum

of the dates included in the phase

level probability corresponding to the level of confidence used for the credible interval

and the highest density region

max_decimal maximum number of decimal

Details

The summary statistics are those given by MarginalStatistics function. The time range is given by PhaseTimeRange function. The duration is computed as follow duration = maximum - minimum at each iteration of the MCMC output.

Value

Returns a list of values corresponding to the summary statistics:

1	Statistics of the minimum of the dates included in the phase
2	Statistics of the maximum of the dates included in the phase
3	Statistics of the duration of the dates included in the phase
4	The endpoints of the phase time range

Author(s)

```
Anne Philippe «Anne.Philippe@univ-nantes.fr» and Marie-Anne Vibet «Marie-Anne.Vibet@univ-nantes.fr»
```

```
data(Phases); attach(Phases)
PhaseStatistics(Phase.1.alpha, Phase.1.beta, 0.95, 0)
PhaseStatistics(Phase.2.alpha, Phase.2.beta, 0.95, 0)
```

PhasesTransition 23

PhasesTransition	Transition range between two successive phases (for phases in temporal order constraint)

Description

Finds if it exists the shortest interval [TransitionRangeInf , TransitionRangeSup] that satisfies : $P(TransitionRangeInf < Phase1Max_chain < Phase2Min_chain < TransitionRangeSup | M) = level$

Usage

```
PhasesTransition(Phase1Max_chain, Phase2Min_chain, level = 0.95,
   max_decimal = 0)
```

Arguments

Phase1Max_chain

numeric vector containing the output of the MCMC algorithm for the maximum of the dates included in the oldest phase

Phase2Min_chain

numeric vector containing the output of the MCMC algorithm for the minimum

of the dates included in the youngest phase

level probability corresponding to the level of confidence

max_decimal maximum number of decimal

Value

Returns a vector of values containing the level of confidence and the endpoints of the transition interval between the successive phases

Author(s)

```
Anne Philippe «Anne.Philippe@univ-nantes.fr» and
Marie-Anne Vibet «Marie-Anne.Vibet@univ-nantes.fr»
```

```
data(Phases); attach(Phases)
PhasesTransition(Phase.1.beta, Phase.2.alpha, 0.95)
PhasesTransition(Phase.1.beta, Phase.2.alpha, 0.50)
```

24 SuccessionPlot

PhaseTimeRange	Phase Time Range	

Description

Computes the shortest interval [IntervalInf; IntervalSup] that satisfies: P(PhaseMin_chain = < IntervalInf < IntervalSup = < PhaseMax_chain | M) = level.

Usage

```
PhaseTimeRange(PhaseMin_chain, PhaseMax_chain, level = 0.95,
  max_decimal = 2)
```

Arguments

PhaseMin_chain numeric vector containing the output of the MCMC algorithm for the minimum

of the dates included in the phase

PhaseMax_chain numeric vector containing the output of the MCMC algorithm for the maximum

of the dates included in the phase

level probability corresponding to the desired level of confidence

max_decimal maximum number of decimal

Value

A vector of values containing the desired level of confidence and the endpoints of the shortest time range associated with this desired level.

Examples

```
data(Phases); attach(Phases)
PhaseTimeRange(Phase.1.alpha, Phase.1.beta, 0.95)
PhaseTimeRange(Phase.2.alpha, Phase.2.beta, 0.95, 0)
```

SuccessionPlot Density Plots of two successive phases (for phases in temporal order constraint)

Description

Plot of the densities of the minimum and the maximum of the dates included in each phase and adds several summary statistics (mean, CI, HPDR)

SuccessionPlot 25

Usage

```
SuccessionPlot(Phase1Min_chain, Phase1Max_chain, Phase2Min_chain,
   Phase2Max_chain, level = 0.95,
   title = "Characterisation of several phases", GridLength = 1024)
```

Arguments

Phase1Min_chain

numeric vector containing the output of the MCMC algorithm for the minimum of the dates included in the oldest phase

Phase1Max_chain

numeric vector containing the output of the MCMC algorithm for the maximum of the dates included in the oldest phase

Phase2Min_chain

numeric vector containing the output of the MCMC algorithm for the minimum of the dates included in the youngest phase

Phase2Max_chain

numeric vector containing the output of the MCMC algorithm for the maximum

of the dates included in the youngest phase

level probability corresponding to the level of confidence

title title of the graph

GridLength length of the grid used to estimate the density

Details

Curves represent the density of the minimum (oldest dates) and the maximum (youngest dates) of the dates included in each phase. Curves of the same color refer to the same phase. Time range intervals are symbolised by segments above the curves drawn using the same color as the one of the curves of the associated phase. Transition and gap range intervals are represented by two-coloured segments using the colors of the both phases in succession. If the gap between the successive phases does not exist, a cross is drawn instead of a segment.

Value

Plot of the densities of the minimum and the maximum of the dates included in each phase

Author(s)

```
Anne Philippe <Anne.Philippe@univ-nantes.fr> and
Marie-Anne Vibet <Marie-Anne.Vibet@univ-nantes.fr>
```

```
data(Phases); attach(Phases)
SuccessionPlot(Phase.1.alpha, Phase.1.beta, Phase.2.alpha, Phase.2.beta, 0.95)
```

26 TempoActivityPlot

|--|

Description

A statistical graphic designed for the archaeological study of rhythms of the long term that embodies a theory of archaeological evidence for the occurrence of events.

Usage

```
TempoActivityPlot(data, position, level=0.95, count = TRUE,
title = "Activity plot")
```

Arguments

data	dataframe containing the output of the MCMC algorithm
position	numeric vector containing the position of the column corresponding to the MCMC chains of interest
level	probability corresponding to the level of confidence used for the credible interval
count	if TRUE the counting process is given as a number, otherwise it is a probability
title	title of the graph

Value

It calculates the cumulative frequency of specified events by calculating how many events took place before each date in a specified range of dates.

Author(s)

```
Anne Philippe «Anne.Philippe@univ-nantes.fr», Thomas S. Dye <TSD@tsdye.com> and Marie-Anne Vibet «Marie-Anne.Vibet@univ-nantes.fr»
```

References

Dye, T.S. (2016) Long-term rhythms in the development of Hawaiian social stratification. Journal of Archaeological Science, 71, 1–9.

```
data(Events);
TempoActivityPlot(Events[1:1000,], c(2:5))
TempoActivityPlot(Events[1:1000,], c(2:5), count = TRUE)
```

TempoPlot 27

TempoPlot Plot of the occurence of events

Description

A statistical graphic designed for the archaeological study of rhythms of the long term that embodies a theory of archaeological evidence for the occurrence of events.

Usage

```
TempoPlot(data, position, level=0.95, count = TRUE, Gauss=FALSE, title = "Tempo plot")
```

Arguments

data	dataframe containing the output of the MCMC algorithm
position	numeric vector containing the position of the column corresponding to the MCMC chains of interest
level	probability corresponding to the level of confidence used for the credible interval
count	if TRUE the counting process is given as a number, otherwise it is a probability
Gauss	if TRUE, the Gaussian approximation of the CI is used
title	title of the graph

Value

It calculates the cumulative frequency of specified events by calculating how many events took place before each date in a specified range of dates.

Author(s)

```
Anne Philippe «Anne.Philippe@univ-nantes.fr», Thomas S. Dye <TSD@tsdye.com> and Marie-Anne Vibet «Marie-Anne.Vibet@univ-nantes.fr»
```

References

Dye, T.S. (2016) Long-term rhythms in the development of Hawaiian social stratification. Journal of Archaeological Science, 71, 1–9.

```
data(Events);
TempoPlot(Events[1:1000,], c(2:5))
TempoPlot(Events[1:1000,], c(2:5), count = TRUE)
```

Index

* Bayesian test	SuccessionPlot, 24
MarginalProba, 7	* highest posterior density regions
* CSV file	MultiDatesPlot, 10
<pre>ImportCSV, 5</pre>	MultiHPD, 11
* ChronoModel	* highest posterior density
Events, 5	MarginalStatistics, 8
Phases, 20	PhaseDurationPlot, 18
* Hiatus between two dates	PhasePlot, 19
DatesHiatus, 4	PhaseStatistics, 22
* MCMC output	* individual phase
Events, 5	PhaseDurationPlot, 18
Phases, 20	PhasePlot, 19
* Maximum of a group of dates	PhaseStatistics, 22
CreateMinMaxGroup, 2	PhaseTimeRange, 24
* Minimum of a group of dates	* marginal posterior density
CreateMinMaxGroup, 2	MarginalPlot, 6
* anteriority / posteriority	MultiPhasePlot, 12
MarginalProba, 7	MultiSuccessionPlot, 17
* bayesian statistics	PhaseDurationPlot, 18
MultiPhasesGap, 13	PhasePlot, 19
PhaseDurationPlot, 18	SuccessionPlot, 24
PhasePlot, 19	* maximum a posteriori
* credible interval	MarginalStatistics, 8
CredibleInterval, 3	PhaseStatistics, 22
MarginalPlot, 6	* mean
MarginalStatistics, 8	MarginalPlot, 6
MultiCredibleInterval, 9	MarginalStatistics, 8
MultiDatesPlot, 10	PhaseDurationPlot, 18
PhaseDurationPlot, 18	PhasePlot, 19
PhasePlot, 19	PhaseStatistics, 22
PhaseStatistics, 22	TempoActivityPlot, 26
TempoPlot, 27	TempoPlot, 27
* datasets	* phase time range
Events, 5	MultiPhasePlot, 12
Phases, 20	MultiPhaseTimeRange, 15
* gap between two phases	MultiSuccessionPlot, 17
MultiPhasesGap, 13	PhaseStatistics, 22
MultiSuccessionPlot, 17	PhaseTimeRange, 24
PhasesGap, 21	SuccessionPlot, 24
, .	,

INDEX 29

* succession of phases	Phases, 20
MultiPhasesGap, 13	PhasesGap, 21
MultiPhasesTransition, 14	PhaseStatistics, 22
MultiSuccessionPlot, 17	PhasesTransition, 23
PhasesGap, 21	PhaseTimeRange, 24
PhasesTransition, 23	riaser imenange, 21
SuccessionPlot, 24	SuccessionPlot, 24
* summary statistics	,
MarginalStatistics, 8	TempoActivityPlot, 26
PhaseStatistics, 22	TempoPlot, 27
* tempo activity plot	, ,
TempoActivityPlot, 26	
* tempo plot	
TempoPlot, 27	
* temporal order	
MultiPhasesGap, 13	
MultiPhasesTransition, 14	
MultiSuccessionPlot, 17	
PhasesGap, 21	
PhasesTransition, 23	
SuccessionPlot, 24	
* transition between two phases	
MultiPhasesTransition, 14	
MultiSuccessionPlot, 17	
PhasesTransition, 23	
SuccessionPlot, 24	
200000000000000000000000000000000000000	
CreateMinMaxGroup, 2	
CredibleInterval, 3	
,	
DatesHiatus, 4	
_	
Events, 5	
ImportCSV 5	
ImportCSV, 5	
MarginalPlot, 6	
MarginalProba, 7	
MarginalStatistics, 8	
MultiCredibleInterval, 9	
MultiDatesPlot, 10	
MultiHPD, 11	
MultiPhasePlot, 12	
MultiPhasesGap, 13	
MultiPhasesTransition, 14	
MultiPhaseTimeRange, 15	
MultiSuccessionPlot, 17	
PhaseDurationPlot, 18	
PhasePlot, 19	