

Defining the Accuracy of Eyewall Radius of Maximum Wind Dropwindsondes

Joe Hesse-Withbroe NOAA Ernest Hollings Scholar August 3rd, 2021

Cyclone Overview

What is a Cyclone?

Heat Engine: Produces Energy (Wind) from Temperature Gradient

Cyclone Overview

Eye:

- Very low atmospheric pressure
- Winds fall off very quickly
- Calmest area of storm environment

Eyewall:

- Strongest winds in cyclone Large wind shears, steep wind gradients
- Most violent part of storm

Mature Cyclone Structure

Hurricane Reconnaissance

NOAA Lockheed WP-3D Orion

- Flies through storm ~10,000' MSL, penetrates eyewall several times during flight
- Instruments aboard aircraft measure atmospheric conditions at flight level and sea level, providing radial profile of storm conditions
 - Stepped Frequency Microwave Radiometer (SFMR) estimates surface wind speed directly beneath aircraft by measuring microwave signal associated with breaking waves
- GPS dropsondes deployed off aircraft measure atmospheric conditions over course of fall, providing vertical profile of storm conditions

Hurricane Reconnaissance

SFMR Surface Wind Speed Estimates

- 6 microwave bands between 4.6-7.2 GHz
 - No major atmospheric or cloud absorptions in this range
 - Absorptions by liquid rain, strong frequency-dependence
- Sea foam coverage increases monotonically with surface wind speed (Barrick and Swift 1980)
- Sea foam ~ blackbody emitter @ microwave freqs. More foam = more microwave emissions (Webster et. al. 1976)
 - ~constant emission between SFMR's 4.6-7.2 GHz range
- Algorithm to subtract emissions due to rain, leaves only emissions associated w/ sea foam (Klotz & Ulhorn 2017)
- Use results of Webster, Barrcik & Swift to convert foam microwave emissions into surface wind speed estimate

Hurricane Reconnaissance

Eyewall Penetration:

As aircraft passes through eyewall, operators drop sondes targeting key features of the cyclone: cyclone center and radius of maximum wind (RMW)

Eyewall flares outward → Flight level RMW occurs at a larger radius than surface RMW

Chaotic winds near eyewall often displace sonde significantly off intended trajectory

Goal: Analyze historical RMW sonde data to improve the success of future RMW sonde deployments

Datasets

Dataset 1

- 947 Vortex Data Messages (VDMs):
 - High-level overview of one complete pass through storm
 - Basic information on storm structure and conditions
 - From NOAA & Air Force Hurricane
 Hunters 2018-2020 hurricane seasons

Dataset 2

- 172 RMW Sonde drops:
 - Sondes specifically identified as targeting eyewall RMW
 - Contains high-resolution sonde data along with associated flight-level and VDM data
 - From NOAA 2015-2020 hurricane seasons and Air Force 53rd Weather Reconnaissance Squadron 2017-2018 hurricane seasons

'Ideal' Cyclone & RMW Sonde

90% 80%

70%

10.0

Distance from center (nm)

60%

12.5

Height (Surface or FL)

SFC

0.0

2.5

< 60%

17.5

15.0

0.9

9.0 Fraction of Max WS

- 0.5

0.0

Slow buildup of FL and SFMR wind speeds outside peak

Steep falloff of wind speeds inside peak

'Ideal' Cyclone & RMW Sonde

Ideal Sonde:

Actual Cyclones and RMW Sondes

Unpredictable Displacements

Disorganized system (SF RMW > FL RMW)

Cat: 3 Basin: EP

Sonde Launch: 2018-08-20 05:07:57

Eye Shape: C Eye Diam: 15 nm Advection: -0.9 nm Circulation: 23.0 deg

Bandwidth 90% SFMR WS: 3.5 nm

Bandwidth 90% FL WS: 3.7 nm

- Sonde Drop
- Sonde Splash
- 90% FL WS Band
- 90% SFMR WS Band
- **Drop Radius**
- Flight Path
 - Sonde Trajectory

VdmFile: NOAA2 0214E0B.txt FIFile: 20180820H1 AC.nc FrdFile: D20180820 0507580C.frd

DO PANOLIZA DE LA PROPINCIA DE

N=169 Avg=5.30 StDev=3.72

SFMR 90% WS Width (nm)

Band Width (nm)

SFMR 90% Wind Speed Band Width (nm) by Category

20

StDev=5.39

Avg=9.86

Cat 2 N = 30Avg=5.85 StDev=2.98

Cat 4 N = 36Avg=4.05 StDev=2.95

Cat 1 N=20 Avg=10.46 StDev=6.13

Cat 3 N=48 Avg=4.12 StDev=2.41

Cat 5 N=22 Avg=3.47 StDev=2.31

Cat: 3 Basin: EP

Sonde Launch: 2018-08-20 05:07:57

Eye Shape: C Eye Diam: 15 nm Advection: -0.9 nm Circulation: 23.0 deg

Bandwidth 90% SFMR WS: 3.5 nm Bandwidth 90% FL WS: 3.7 nm

VDM FL Max Wind
VDM SF Max Wind

Sonde Drop

Sonde Splash

90% FL WS Band

90% SFMR WS Band

:::::: Drop Radius

Flight Path

Sonde Trajectory

VdmFile: NOAA2_0214EOB.txt FlFile: 20180820H1_AC.nc FrdFile: D20180820_050758OC.frd

SFMR RMW-Outer 90% Separation (nm) ("Outbound Buffer")

N=170 Avg=2.89 nm StDev=2.69 nm

SFMR RMW-Outer 90% Separation (nm) by Category

Cat 1 N=20 Avg=5.05 StDev=4.60

Cat: 3 Basin: EP

Sonde Launch: 2018-08-20 05:07:57

Eye Shape: C Eye Diam: 15 nm Advection: -0.9 nm Circulation: 23.0 deg

Bandwidth 90% SFMR WS: 3.5 nm Bandwidth 90% FL WS: 3.7 nm

VDM FL Max Wind
VDM SF Max Wind
X Sonde Drop

× Sonde Splash

90% FL WS Band

90% SFMR WS Band

::::::: Drop Radius

Flight Path

Sonde Trajectory

VdmFile: NOAA2_0214EOB.txt FlFile: 20180820H1_AC.nc FrdFile: D20180820_050758OC.frd

SFMR RMW-Inner 90% Separation (nm) ("Inbound Buffer")

N=169 Avg=1.74 nm StDev=1.60 nm

THOOLEN LEADING THE PARTY OF COMPANY OF COMP

SFMR RMW-Inner 90% Separation (nm) by Category

T.S. N=16 Avg=2.43 StDev=2.31

Cat 1 N=19 Avg=2.93 StDev=2.47

Cat 3 N=48 Avg=1.37 StDev=1.27

Cat 5 N=22 Avg=1.15 StDev=0.88

Sonde Normalized r coordinate (nm) vs Altitude (m)

N=172 Avg=-0.105 nm StDev=1.43 nm

Sonde Normalized r coordinate (nm) vs Altitude (m) by Category

Conclusions

Takeaways:

- Relatively large buffers between surface RMW and R-90%
- No consistent patterns in sonde radial displacement – unexpected
- No single crutch for Flight Directors to rely upon – "art vs science" of drops

Future Work:

- Time series analysis of wind speed transects – examine correlations between FL and SFMR wind speeds to predict locations of wind maxima
- Expand dataset to incorporate more RMW sondes (legwork)

Unused slides

Cyclone Overview

Key Ingredients

Tropical Perturbation: Preexisting area of low atmospheric pressure

Vertical Temperature Gradient: Permits extraction of useful work from ocean

Angular Momentum: Rotational motion provides stability to system. Latitude >~ 4° (Coriolis)

Mild Winds: Strong winds overpower newborn convective structures

FL-SFC RMW Separation (nm)

Dataset 2 Example RMW Plots

Dataset 2 Example RMW Plots

N=171 Avg=4.76 StDev=3.57

FL 90% Wind Speed Band Width (nm) by Category

