Álgebra Linear e Geometria Analítica

Exame final - 07/01/2013

Duração: 2h30

Nome: ______ N.º mecanográfico: _____

Declaro que desisto \square ________ N.º de folhas suplementares: __

	Grupo I
Cotação	50

Questões	1	2	3	4	5	Total
Cotação	26	48	36	18	22	150
Classificação						

Grupo I

As questões do grupo I encontram-se na folha em anexo que será recolhida após 45 minutos.

Grupo II

Justifique convenientemente todas as suas respostas e indique os cálculos que efetuar.

1. Considere em
$$\mathbb{R}^3$$
 o ponto $A=(2,0,3)$ e o plano \mathcal{P} definido por $\begin{vmatrix} x+1 & y & z \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{vmatrix}=0$.

- (a) Escreva uma equação geral do plano \mathcal{P} .
- (b) Determine uma equação vetorial da reta ortogonal ao plano \mathcal{P} e que passa pelo ponto A.
- (c) Calcule a distância do ponto A ao plano \mathcal{P} .

2. Seja A a matriz dos coeficientes do sistema de equações lineares

$$\left\{ \begin{array}{l} x-az=b\\ y-ax=0\\ z-ay=b \end{array} \right.,$$

com a e b parâmetros reais.

- (a) Escreva a matriz A e calcule o seu determinante.
- (b) Discuta o sistema em função dos parâmetros $a \in b$.
- (c) Considere a = 1 e
 - i. verifique se as três colunas de A formam um conjunto linearmente independente;
 - ii. verifique se (1,0,1) pertence ao espaço das colunas de A;
 - iii. indique a dimensão do espaço das colunas de A.

3. Considere a matriz

$$A = \left[\begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array} \right].$$

- (a) Determine os valores próprios e os subespaços próprios de A.
- (b) Determine uma equação reduzida e identifique a cónica de equação $2x^2 + 2y^2 2xy + 2x + 2y = 1$.

- 4. Considere as bases S=((1,0,0),(0,1,0),(1,1,1)) e T=((1,1),(0,1)) de \mathbb{R}^3 e \mathbb{R}^2 , respetivamente. Seja $L:\mathbb{R}^3\to\mathbb{R}^2$ uma aplicação linear definida por L(x,y,z)=(y+2z,x+2y).
 - (a) Determine a matriz representativa de L relativamente às bases S e T.
 - (b) Sabendo que $[X]_S = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$, calcule $[L(X)]_T$.

- 5. Considere os vetores X=(1,2,3), Y=(1,1,1) de \mathbb{R}^3 e \mathcal{W} o subespaço de \mathbb{R}^3 gerado por Y.
 - (a) Calcule a projeção ortogonal de X sobre \mathcal{W} .
 - (b) Escreva X como soma de um vetor do subespaço $\mathcal W$ com um vetor ortogonal a Y.