Solutions Excercise 1

Maksimov, Dmitrii dmitrii.maksimov@fau.de Ilia, Dudnik ilia.dudnik@fau.de

November 2, 2021

Exercise 1

(a) State the dual program corresponding to the following linear programs:

max
$$c^{T}x + d^{T}y$$

s.t. $Ax \ge b$
 $g^{T}y = f$
 $x, y \ge 0$

Here, $f \in \mathbb{R}$, $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $d, g \in \mathbb{R}^l$ and $A \in \mathbb{R}^{m \times n}$.

Following to the general rules for finding the dual of a given linear program, the corresponding dual program:

min
$$b^{T}u + f \cdot v$$

s.t. $A^{T}u \ge c$
 $g \cdot v \ge d$
 $u \le 0$

(b) Use Part (a) in order to show or disprove that $(x^*, y^*) = (\frac{13}{3}, 0, \frac{5}{3}, 1, 0)^T$ is an optimal solution for

max
$$(6, -1, -3)x + (4, -6)y$$

s.t. $\begin{pmatrix} -2 & -1 & \frac{17}{5} \\ -1 & 1 & -1 \end{pmatrix} x \ge \begin{pmatrix} -3 \\ -6 \end{pmatrix}$
 $(2, -3)y = 2$
 $x, y, \ge 0$

Using python and SciPy check whether $(x^*, y^*) = (\frac{13}{3}, 0, \frac{5}{3}, 1, 0)^T$ is an optimal solution and $W^* = Z^*$. The code implementation can be founded here Code. Due to SciPy restrictions linear function to be minimized: $-Z = -c^T x - d^T y$

```
con: array([0.])
  fun: -25.0
message: 'Optimization terminated successfully.'
  nit: 3
  slack: array([0., 0.])
  status: 0
  success: True
     x: array([4.33333333, 0. , 1.66666667, 1. , 0. ])
```

Figure 1: Solution of primal problem

As we can see $x = (4.3, 0, 1.6, 1., 0.)^T = (x^*, y^*) = (\frac{13}{3}, 0, \frac{5}{3}, 1, 0)^T$ and $Z^* = 25$. Now, solve the dual problem

Figure 2: Solution of dual problem

Since $W^* = Z^*$ and all above mentioned $(x^*, y^*) = (\frac{13}{3}, 0, \frac{5}{3}, 1, 0)^T$ is an optimal solution.

Exercise 2

Consider the following program:

$$\max \quad 7x_1 + 6x_2 + 5x_3 - 2x_4 + 3x_5$$
s.t.
$$x_1 + 3x_2 + 5x_3 - 2x_4 + 2x_5 \le 4$$

$$4x_1 + 2x_2 - 2x_3 + x_4 + x_5 \le 3$$

$$2x_1 + 4x_2 + 4x_3 - 2x_4 + 5x_5 \le 5$$

$$3x_1 + x_2 + 2x_3 - x_4 - 2x_5 \le 1$$

$$x_1, \dots, x_5 \ge 0$$

(a) Formulate the corresponding dual program

Following to the general rules for finding the dual of a given linear program, the corresponding dual program:

min
$$4y_1 + 3y_2 + 5y_3 + y_4$$

s.t. $y_1 + 4y_2 + 2y_3 + 3y_4 \ge 7$
 $3y_1 + 2y_2 + 4y_3 + y_4 \ge 6$
 $5y_1 - 2y_2 + 4y_3 + 2y_4 \ge 5$
 $-2y_1 + y_2 - 2y_3 - y_4 \ge -2$
 $2y_1 + y_2 + 5y_3 - 2y_4 \ge 3$
 $y_1, \dots, y_4 \ge 0$

(b) Check if $x^* = (0, \frac{4}{3}, \frac{2}{3}, \frac{5}{3}, 0)^T$ is an optimal solution via the complementary slackness theorem.

• 1 constraint:
$$0 + 4 + \frac{10}{3} - \frac{10}{3} + 0 \le 4 \implies 4 \le 4 \longrightarrow \text{tight}$$

• 2 constraint:
$$0 + \frac{8}{3} - \frac{4}{3} + \frac{5}{3} + 0 \le 3 \implies 3 \le 3 \longrightarrow \text{tight}$$

• 3 constraint:
$$0 + \frac{16}{3} + \frac{8}{3} - \frac{10}{3} + 0 \le 5 \Longrightarrow \frac{14}{3} \le 5 \longrightarrow \text{slack}$$

• 4 constraint:
$$0 + \frac{4}{3} + \frac{4}{3} - \frac{5}{3} + 0 \le 1 \implies 1 \le 1 \longrightarrow \text{tight}$$

•
$$x_i^* \ge 0$$
 for $i \in [1, \dots, 5]$

Hence,
$$y_1, y_2, y_4 \ge 0, y_3 = 0$$
.

Since x_2 , x_3 , $x_4 > 0$, complementary slackness demand that the corresponding constraints should be tight. Putting this together:

$$\begin{cases} 3y_1^{\star} + 2y_2^{\star} + y_4^{\star} = 6 \\ 5y_1^{\star} - 2y_2^{\star} + 2y_4^{\star} = 5 \\ -2y_1^{\star} + y_2^{\star} - y_4^{\star} = -2 \end{cases}$$

 $y^* = (1, 1, 0, 1)$. Check whether y^* satisfies the dual feasibility conditions:

•
$$y_i^* \ge 0 \text{ for } i \in [1, ..., 4]$$

• 1 constraint:
$$1 + 4 + 3 \ge 7$$
 - yes

• 5 constraint:
$$2 + 1 - 2 \ge 3 - no$$

It is, so (1, 1, 0, 1) is infeasible $\Rightarrow x^*$ is not an optimal primal solution.

3