STAT 509 R COMMANDS

Here are the R commands to find probabilities and quantiles for the "named" distributions we will talk about in STAT 509.

DISCRETE MODELS: Binomial, geometric, negative binomial, hypergeometric, Poisson.

Model	$p_Y(y) = P(Y = y)$	$F_Y(y) = P(Y \le y)$
$Y \sim b(n,p)$	dbinom(y,n,p)	<pre>pbinom(y,n,p)</pre>
$Y \sim \text{geom}(p)$	dgeom(y-1,p)	pgeom(y-1,p)
$Y \sim \mathrm{nib}(r,p)$	dnbinom(y-r,r,p)	<pre>pnbinom(y-r,r,p)</pre>
$Y \sim \text{hyper}(N, n, r)$	dhyper(y,r,N-r,n)	phyper(y,r,N-r,n)
$Y \sim \text{Poisson}(\lambda)$	$\texttt{dpois}(\texttt{y},\lambda)$	$\texttt{ppois}(\texttt{y}, \lambda)$

Continuous models: Normal, exponential, gamma, χ^2 , Weibull, lognormal, $t,\,F.$

Model	$F_Y(y) = P(Y \le y)$	ϕ_p
$Y \sim \mathcal{N}(\mu, \sigma^2)$	$\texttt{pnorm}(\texttt{y},\mu,\sigma)$	$\mathtt{qnorm}(\mathtt{p},\mu,\sigma)$
$Y \sim \text{exponential}(\lambda)$	$\mathtt{pexp}(\mathtt{y},\lambda)$	$\operatorname{qexp}(\mathtt{p},\lambda)$
$Y \sim \operatorname{gamma}(\alpha, \lambda)$	$\texttt{pgamma(y,}\alpha,\lambda)$	$\operatorname{\tt qgamma}(\operatorname{\tt p}, lpha, \lambda)$
$Y \sim \chi^2(\nu)$	$\texttt{pchisq}(\texttt{y},\nu)$	${\tt qchisq(p,}\nu)$
$Y \sim \text{Weibull}(\beta, \eta)$	pweibull(y, eta , η)	qweibull(p, eta , η)
$Y \sim \text{lognormal}(\mu, \sigma^2)$	$\mathtt{plnorm}(\mathtt{y},\mu,\sigma)$	$\mathtt{qlnorm}(\mathtt{p},\mu,\sigma)$
$Y \sim t(\nu)$	$pt(\mathtt{y}, \nu)$	$\operatorname{qt}(\mathtt{p}, u)$
$Y \sim F(\nu_1, \nu_2)$	$\texttt{pf}(\texttt{y,}\nu_1,\nu_2)$	$\mathtt{qf}(\mathtt{p},\nu_1,\nu_2)$

Note: In continuous distributions, the pth quantile ϕ_p satisfies

$$F_Y(\phi_p) = P(Y \le \phi_p) = p.$$

Note that 0 .