

Mod 2 indecomposable orthogonal invariants

M. Domokos ^a * and P. E. Frenkel ^b †

^a Rényi Institute of Mathematics, Hungarian Academy of Sciences,
P.O. Box 127, 1364 Budapest, Hungary, E-mail: domokos@renyi.hu

^b Institute of Mathematics, Budapest Technical University,
P.O.B. 91, 1521 Budapest, Hungary,
E-mail: frenkelp@renyi.hu

Abstract

Over an algebraically closed base field k of characteristic 2, the ring R^G of invariants is studied, G being the orthogonal group $O(n)$ or the special orthogonal group $SO(n)$ and acting naturally on the coordinate ring R of the m -fold direct sum $k^n \oplus \cdots \oplus k^n$ of the standard vector representation. It is proved for $O(n)$ ($n \geq 2$) and for $SO(n)$ ($n \geq 3$) that there exist m -linear invariants with m arbitrarily large that are indecomposable (i. e., not expressible as polynomials in invariants of lower degree). In fact, they are explicitly constructed for all possible values of m . Indecomposability of corresponding invariants over \mathbb{Z} immediately follows. The constructions rely on analysing the Pfaffian of the skew-symmetric matrix whose entries above the diagonal are the scalar products of the vector variables.

2000 Mathematics Subject Classification: 13A50; 15A72; 20G05

Keywords: orthogonal group, quadratic form, invariants of a system of vectors, multi-linear polynomial invariants, Pfaffian

1 Introduction and notation

1.1 The orthogonal group

Let F stand for an algebraically closed field of arbitrary characteristic. Denote coordinates in F^n by $x_1, y_1, \dots, x_\nu, y_\nu$ if $n = 2\nu$ or by $x_1, y_1, \dots, x_\nu, y_\nu, z$ if $n = 2\nu + 1$. The *standard quadratic form* $q : F^n \rightarrow F$ is

$$q \stackrel{\text{def}}{=} x_1y_1 + \cdots + x_\nu y_\nu \text{ when } n = 2\nu,$$

*Corresponding author. Supported through a European Community Marie Curie Fellowship, held at the University of Edinburgh. Partially supported by OTKA grants No. T 34530 and T 046378.

†Supported through a European Union Marie Curie Studentship held at the University of Warwick. Partially supported by OTKA grants T 042769 and T 046365.

and

$$q \stackrel{\text{def}}{=} x_1 y_1 + \cdots + x_\nu y_\nu + z^2 \text{ when } n = 2\nu + 1.$$

The *orthogonal group* $O(n, F)$ is defined as the group of linear isomorphisms of F^n that leave the quadratic form q invariant. The *special orthogonal group* $SO(n, F)$ is defined as the component of $O(n, F)$ containing the identity. Recall that the polar form β of q is the symmetric bilinear form on F^n given by

$$\beta(v^{(1)}, v^{(2)}) \stackrel{\text{def}}{=} q(v^{(1)} + v^{(2)}) - q(v^{(1)}) - q(v^{(2)}).$$

The non-degeneracy of q means that $\beta(v, \cdot) = 0$ and $q(v) = 0$ together imply $v = 0$. Note that up to base change, q is the only non-degenerate quadratic form on F^n .

Throughout this paper k stands for an algebraically closed field of characteristic 2, and we write just $O(n)$ and $SO(n)$ when k is to be understood. All elements of $O(n)$ have determinant 1. The algebraic group $O(n)$ is connected for odd n and has two components for even n . Thus, $SO(2\nu + 1) = O(2\nu + 1)$, whereas $SO(2\nu)$ is a subgroup of index 2 in $O(2\nu)$.

1.2 Invariants

We write R or $R_{n \times m}$ for the F -algebra of polynomials in the coordinates of the indeterminate n -dimensional vectors $v^{(1)}, \dots, v^{(m)}$. A letter G in the superscript indicates the subalgebra formed by the polynomials invariant under the group $G = O(n, F)$ or $G = SO(n, F)$ acting on m -tuples of vectors in the obvious way.

Next we recall from [2] some distinguished elements in R . Set

$$Q^{(i)} \stackrel{\text{def}}{=} q(v^{(i)}) \text{ and } B^{(ij)} \stackrel{\text{def}}{=} \beta(v^{(i)}, v^{(j)})$$

for $1 \leq i, j \leq n$. More explicitly, for $n = 2\nu$ we have

$$B^{(ij)} = x_1^{(i)} y_1^{(j)} + y_1^{(i)} x_1^{(j)} + \cdots + x_\nu^{(i)} y_\nu^{(j)} + y_\nu^{(i)} x_\nu^{(j)},$$

whereas for $n = 2\nu + 1$ we have

$$B^{(ij)} = x_1^{(i)} y_1^{(j)} + y_1^{(i)} x_1^{(j)} + \cdots + x_\nu^{(i)} y_\nu^{(j)} + y_\nu^{(i)} x_\nu^{(j)} + 2z^{(i)} z^{(j)}.$$

Let

$$D^{(i_1, \dots, i_n)} \stackrel{\text{def}}{=} \det[v^{(i_1)}, \dots, v^{(i_n)}]$$

be the determinant of the matrix that has $v^{(i_1)}, \dots, v^{(i_n)}$ as its columns. Then $Q^{(i)}$ and $B^{(ij)}$ are orthogonal invariants, and $D^{(i_1, \dots, i_n)}$ is a special orthogonal invariant.

The classical “first fundamental theorem” for the (special) orthogonal group asserts that when F is of characteristic zero, the algebra $R^{O(n, F)}$ is generated by the scalar products $B^{(ij)}$ of the indeterminate vectors under consideration, and the algebra $R^{SO(n, F)}$ is generated by the scalar products and the determinants. This has been discussed along with the analogous results for the other classical groups by Hermann Weyl in [7]. De Concini and Procesi [1] gave a characteristic free treatment to the subject, in particular, they proved that the first fundamental theorem for the (special) orthogonal group remains unchanged in

odd characteristic. Concerning characteristic 2, Richman [5] proved later that the algebra R^G for the group G preserving the bilinear form $x_1^{(1)}x_1^{(2)} + \cdots + x_n^{(1)}x_n^{(2)}$ is generated in degree 1 and 2. However, though this group preserves the quadratic form $x_1^2 + \cdots + x_n^2$, it is not the so-called ‘orthogonal group’ in characteristic 2: the quadratic form $x_1^2 + \cdots + x_n^2$ is the square of a linear form, hence is degenerate. So in characteristic 2 the question about vector invariants of the orthogonal group remains open, and was addressed in [2] (motivated by an observation from [3]). In particular, it was shown in [2] that the field of rational $O(n)$ -invariants is generated by the obvious quadratic invariants in characteristic 2 as well. However, the behaviour of polynomial invariants turned out to be very much different, see Section 2.

2 Constructing indecomposable invariants

An element of the polynomial algebra R is called *m-linear* if it is multilinear in the vector variables $v^{(1)}, \dots, v^{(m)}$. An element of the algebra R^G of invariants is said to be an *indecomposable* element if it is not contained in the subalgebra of R^G generated by the elements of lower degree. When $F = \mathbb{C}$, we write $R(\mathbb{Z}) = R_{n \times m}(\mathbb{Z})$ for the subring of R consisting of polynomials with integer coefficients, and $R^G(\mathbb{Z})$ for the ring $R^G \cap R(\mathbb{Z})$ of G -invariants with integer coefficients (note that G here is still the complex group $O(n, \mathbb{C})$ or $SO(n, \mathbb{C})$). In this case we say that an element of $R^G(\mathbb{Z})$ is an indecomposable element if it is not contained in the subring of $R^G(\mathbb{Z})$ generated by the elements of lower degree.

Let $n = 2\nu$ or $n = 2\nu + 1$. Over an algebraically closed base field k of characteristic 2, we construct an indecomposable *m-linear* $O(n)$ -invariant if $m > 2\nu \geq 2$ and an indecomposable *m-linear* $SO(n)$ -invariant if $m \geq n \geq 3$, except when n is even and m is odd (in which case there are no $SO(n)$ -invariants of degree m at all — either see [2, Theorem 4.5(ii)] or just consider the action of the ν -dimensional torus $SO(2)^\nu$ whose elements are the diagonal matrices in $SO(2\nu)$). All shall be constructed as modulo 2 images of invariants with integer coefficients, which therefore have the above indecomposability properties over \mathbb{Z} .

This proves our conjecture formulated in [2]. Constructions for $n \leq 4$ were given there. The paper [3] contained a more sophisticated proof of the existence of high-degree indecomposable invariants in the $SO(4)$ case.

We shall use the symbol $*$ to mean any one of the two letters x and y . We define the sign $\text{sgn } \rho$ of an *m-linear* monomial

$$\rho = z^{(i_{01})} \cdots z^{(i_{0m_0})} *_1^{(i_{11})} \cdots *_1^{(i_{1m_1})} \cdots \cdots *_\nu^{(i_{\nu 1})} \cdots *_\nu^{(i_{\nu m_\nu})} \quad (1)$$

with $i_{r1} < \cdots < i_{rm_r}$ for each r to be the sign of the permutation $i_{01}, \dots, i_{0m_0}, i_{11}, \dots, i_{1m_1}, \dots, i_{\nu 1}, \dots, i_{\nu m_\nu}$ of the indices $1, \dots, m$.

In our first two propositions, which form the technical heart of the paper, we shall be

working over \mathbb{Z} . We write

$$Pf^{(i_1, \dots, i_{2\mu})} = \text{Pf} \begin{pmatrix} 0 & B^{(i_1 i_2)} & B^{(i_1 i_3)} & \dots & B^{(i_1 | i_{2\mu})} \\ & 0 & B^{(i_2 i_3)} & \dots & B^{(i_2 | i_{2\mu})} \\ & & 0 & \dots & B^{(i_3 | i_{2\mu})} \\ & & & \ddots & \vdots \\ & & & & 0 \end{pmatrix} \in R^{O(n, \mathbb{C})}(\mathbb{Z})$$

for the Pfaffian of the $2\mu \times 2\mu$ skew-symmetric matrix whose upper half consists of the B 's corresponding to the indices $i_1, \dots, i_{2\mu}$. It is invariant under $O(n, \mathbb{C})$. It is multilinear in the vectors $v^{(i_1)}, \dots, v^{(i_{2\mu})}$ if there is no repetition in the upper indices. (See e. g. [4, Appendix B.2] for the definition and basic properties of Pfaffians.)

Proposition 1 *The coefficient in $Pf^{(1, \dots, 2\mu)}$ of a 2μ -linear monomial ρ as in (1) above is zero unless, for each r , $m_r = 2\mu_r$ is even and the x_r and the y_r occur in an alternating order. In this case, the coefficient is*

$$2^{\mu - |\{r > 0 : \mu_r \geq 1\}|} \text{sgn } \rho.$$

Proof. The coefficient of ρ is given by substituting the corresponding vectors of the standard basis into $Pf^{(1, \dots, 2\mu)}$. This amounts to calculating the Pfaffian of the skew-symmetric matrix given by the B 's of these vectors. Permuting rows and columns turns it into a direct sum of matrices and shows that the Pfaffian is $\text{sgn } \rho$ times a product of $m_r \times m_r$ Pfaffians, one factor for each index r . So, assuming that ρ has a non-zero coefficient, each m_r must be even. Set $\mu_r = m_r/2$.

If, for some $r > 0$, we have two occurrences of x_r with no y_r in between (or *vice versa*), then the r th Pfaffian has two identical (adjacent) rows, which makes it zero. So the x_r and y_r must occur in an alternating order for each $r > 0$. Therefore, the r th Pfaffian, for $r > 0$, is that of the $m_r \times m_r$ checkerboard matrix with entries $b^{(ij)} = \text{sgn}(j - i)$ for odd $j - i$ and zero otherwise. Expanding by the first row and using induction on μ_r shows that this is $2^{\mu_r - 1}$ if $\mu_r \geq 1$. It is 1 = 2^{μ_r} if $\mu_r = 0$.

For odd n and $r = 0$, we have the Pfaffian of the $m_0 \times m_0$ matrix with entries $b^{(ij)} = 2\text{sgn}(j - i)$. Expanding by the first row and using induction on μ_0 shows that this is 2^{μ_0} .

Adding up the exponents of 2 yields the result. \square

Proposition 2 *Let $m \geq n$ with $m \equiv n \pmod{2}$, and set $\mu = \lfloor m/2 \rfloor$. Consider the m -linear polynomial*

$$\sum \text{sgn } \pi \cdot D^{(\pi(1), \dots, \pi(n))} Pf^{(\pi(n+1), \dots, \pi(m))}, \quad (2)$$

the sum being extended over those permutations $\pi \in \mathfrak{S}_m$ that satisfy $\pi(1) < \dots < \pi(n)$ and $\pi(n+1) < \dots < \pi(m)$. The coefficient in (2) of an m -linear monomial ρ as in (1) above is zero unless, for each $r > 0$, m_r is even and strictly positive, and the x_r and the y_r occur in an alternating order. In this case, the coefficient is

$$2^{\mu - \nu} (-1)^{|\{r > 0 : *_r^{(i_{r1})} = y_r^{(i_{r1})}\}|} \text{sgn } \rho.$$

Proof. Assuming that ρ has a non-zero coefficient, it follows trivially that for each $r > 0$, m_r must be even and strictly positive. Set $\mu_r = m_r/2$. We call a choice of one x_r and one y_r from ρ a *good* choice if the remaining $2(\mu_r - 1)$ of the x_r and y_r occur in an alternating order. Any choice of one z from ρ shall be called a good choice. Now Proposition 1 shows that the terms in the sum (2) in which ρ has non-zero coefficients correspond to the simultaneous good choices (for each r) of one of each letter from ρ , and the coefficient of ρ in such a term is

$$2^{\mu-\nu-|\{r>0:\mu_r\geq 2\}|} \operatorname{sgn} \rho \cdot \prod_r \pm 1,$$

where the r th ± 1 is the sign of that permutation of the letters x_r and y_r in ρ (resp. the letters z in ρ) which puts the chosen one(s) in front and in alphabetical order, leaving the rest in the order they had in ρ .

It follows that the coefficient of ρ in (2) is

$$2^{\mu-\nu-|\{r>0:\mu_r\geq 2\}|} \operatorname{sgn} \rho \cdot \prod_r \sum \pm 1,$$

where the r th summation is over the good choices of one x_r and one y_r (resp. one z) from ρ .

If we have two occurrences of x_r with no y_r in between (or *vice versa*), then the r th sum is zero, for we can pair off the choices by interchanging the rôle of the two adjacent x_r 's, and the two ± 1 's in each pair will cancel. So the x_r and y_r must occur in an alternating order for each $r > 0$. In this case, the r th sum is ± 1 if $\mu_r = 1$ and $\pm \left(1 + \sum_{j=1}^{m_r-1} (-1)^{j-1}\right) = \pm 2$ if $\mu_r \geq 2$. The sign is $+$ if x_r comes first and $-$ if y_r comes first.

For odd n , the 0th sum is $\sum_{j=1}^{m_0} (-1)^{j-1} = 1$.

Adding up the exponents of 2 and (-1) respectively, we arrive at the result. \square

For $\mu \geq \nu$, divide the Pfaffian in Proposition 1 by $2^{\mu-\nu}$ to get a 2μ -linear $O(n, \mathbb{C})$ -invariant with integer coefficients, call it $\tilde{g} = \tilde{g}_{n \times 2\mu} \in R_{n \times 2\mu}^{O(n, \mathbb{C})}(\mathbb{Z})$. View \tilde{g} modulo 2 to get a 2μ -linear $O(n)$ -invariant with coefficients in the prime subfield \mathbb{F}_2 of k , call it $g = g_{n \times 2\mu} \in R_{n \times 2\mu}^{O(n)}$. Analogously, for $m \geq n$ with $m \equiv n \pmod{2}$, divide the sum (2) of Proposition 2 by $2^{\mu-\nu}$ to get an m -linear $SO(n, \mathbb{C})$ -invariant with integer coefficients, call it $\tilde{h} = \tilde{h}_{n \times m} \in R_{n \times m}^{SO(n, \mathbb{C})}(\mathbb{Z})$. View \tilde{h} modulo 2 to get an m -linear $SO(n)$ -invariant with coefficients in \mathbb{F}_2 , call it $h = h_{n \times m} \in R_{n \times m}^{SO(n)}$. Note that invariance over k in both cases follows from that over \mathbb{C} by [2, Lemma 3.2].

By Proposition 1, g is the sum of those m -linear monomials ρ that, when written in the form (1), have strictly positive and even m_r for all $r > 0$, and the x_r and y_r occur in an alternating order. By Proposition 2, the same holds for h . This shows in particular that for $m \geq n$ both even, $g = h$. It follows that h is an $O(n)$ -invariant whenever defined — remember that $SO(2\nu + 1) = O(2\nu + 1)$.

For odd n and any $m \geq n$, exactly one of g and h is defined. We shall prove that it is an indecomposable $SO(n)$ -invariant if $n \geq 3$. We define the *multiplicity in x, y* of a polynomial to be the minimum of the total degrees of its monomials in the x, y variables. (For a homogeneous polynomial, this is the difference between the degree and the degree

in the z variables.) We observe that g and h have the smallest possible multiplicity in x , y . Indeed, their multiplicity in x , y is 2ν , and we have

Lemma 3 *The multiplicity in x , y of any m -linear $SO(2\nu + 1)$ -invariant is at least $\min(m, 2\nu)$.*

Proof. For $m \leq 2\nu$ we have [2, Theorem 4.9] that says that the algebra $R_{(2\nu+1) \times m}^{SO(2\nu+1)}$ is generated by the $Q^{(i)}$ and the $B^{(ij)}$, which do not involve the z variables, so the multiplicity in x , y of any m -linear invariant is m . The case $m \geq 2\nu$ is reduced to this as follows.

Indirectly assume that an m -linear $SO(2\nu + 1)$ -invariant has a monomial of the form $*_{r_1}^{(1)} \cdots *_{r_d}^{(d)} z^{(d+1)} \cdots z^{(m)}$ with $0 \leq d < 2\nu$. Recall that the z axis in the space $k^{2\nu+1}$ is the radical of the symmetric bilinear form β , so its unit vector e is stabilised by $SO(2\nu + 1)$. It follows that substituting e for the vector variables $v^{(d+2)}, \dots, v^{(m)}$ in our $SO(2\nu + 1)$ -invariant yields a $(d + 1)$ -linear $SO(2\nu + 1)$ -invariant, having a monomial of the form $*_{r_1}^{(1)} \cdots *_{r_d}^{(d)} z^{(d+1)}$. But $d + 1 \leq 2\nu$, so we have a contradiction. \square

Since the multiplicity in x , y of a product of homogeneous polynomials is the sum of the multiplicities of the factors, it follows for $\nu \geq 1$ that the multiplicity in x , y of any decomposable m -linear invariant with $m > 2\nu$ is strictly greater than 2ν , so we get

Theorem 4 *Let $n \geq 3$ be odd and $m \geq n$. Then the m -linear $SO(n)$ -invariant g or h (whichever one is defined) is indecomposable.*

Corollary *Let $n \geq 3$ be odd and $m \geq n$. Then the m -linear invariant \tilde{g} or \tilde{h} (whichever one is defined) is indecomposable in the ring $R^{SO(n, \mathbb{C})}(\mathbb{Z})$. When m is even, \tilde{g} is, a fortiori, indecomposable also in the ring $R^{O(n, \mathbb{C})}(\mathbb{Z})$.*

Another, independent proof of Theorem 4 for $m > n$ will be given in a remark following the discussion of the $O(2\nu)$ case. Note that the case $m = n$ is immediate from [2, Theorem 4.9] cited in the proof above.

We now wish to prove for $n = 2\nu$ and $\mu > \nu$ that the $O(2\nu)$ -invariant g is indecomposable. We pass to the new linear coordinates $t_r = x_r$ and $s_r = x_r + y_r$ ($r = 1, \dots, \nu$). We define the *multiplicity in s* of a polynomial to be the minimum of the total degrees of its monomials in the s variables, and we observe that g has the smallest possible multiplicity in s . Indeed, we have

Lemma 5 *The multiplicity in s of any 2μ -linear $O(2\nu)$ -invariant $p = p(v^{(1)}, \dots, v^{(2\mu)})$ is at least $\min(\mu, \nu)$.*

Proof. For $\mu \leq \nu$ we have [2, Theorem 4.9] that says that the algebra $R_{2\nu \times 2\mu}^{O(2\nu)}$ is generated by the $Q^{(i)}$, which are quadratic in the corresponding $v^{(i)}$, and by the

$$B^{(ij)} = \sum_{r=1}^{\nu} (t_r^{(i)} (t_r^{(j)} + s_r^{(j)}) + (t_r^{(i)} + s_r^{(i)}) t_r^{(j)}) = \sum_{r=1}^{\nu} (t_r^{(i)} s_r^{(j)} + s_r^{(i)} t_r^{(j)}),$$

which are bilinear in $v^{(i)}$, $v^{(j)}$ and have multiplicity 1 in s , so the multiplicity in s of any 2μ -linear invariant p is μ .

Now let $\mu \geq \nu$. It suffices to prove that if $0 \leq d < \nu$, then the coefficient in p of the monomial

$$s_{r_1}^{(1)} \cdots s_{r_d}^{(d)} t_{r_{d+1}}^{(d+1)} \cdots t_{r_{2\mu}}^{(2\mu)} \quad (3)$$

is zero. This coefficient, expressed using the original x , y coordinates, is the sum of the coefficients in p of the $2^{2\mu-d}$ monomials $y_{r_1}^{(1)} \cdots y_{r_d}^{(d)} *_{r_{d+1}}^{(d+1)} \cdots *_{r_{2\mu}}^{(2\mu)}$. If $\{r_{d+1}, \dots, r_{2\mu}\} \not\subseteq \{r_1, \dots, r_d\}$, say $r_{d+1} \notin \{r_1, \dots, r_d\}$, then these monomials can be paired off via the reflection $x_{r_{d+1}} \leftrightarrow y_{r_{d+1}}$, and the two coefficients in each pair are equal due to the $O(2\nu)$ -invariant property of p .

Now suppose that $\{r_{d+1}, \dots, r_{2\mu}\} \subseteq \{r_1, \dots, r_d\}$. Since $d < 2\mu - d$, the number of occurrences of at least one of the indices $1, \dots, \nu$ among r_1, \dots, r_d is less than among $r_{d+1}, \dots, r_{2\mu}$. We may assume

$$r_1 = \cdots = r_a = 1 \neq r_{a+1}, \dots, r_d$$

and

$$r_{d+1} = \cdots = r_{d+a+1} = 1.$$

Consider the $O(2\nu)$ -invariant

$$p(u^{(r_1)}, \dots, u^{(r_d)}, v^{(d+1)}, \dots, v^{(d+a+1)}, w^{(r_{d+a+2})}, \dots, w^{(r_{2\mu})})$$

depending on a new set of vector variables whose cardinality is

$$|\{r_1, \dots, r_d\}| + a + 1 + |\{r_{d+a+2}, \dots, r_{2\mu}\}| \leq d - a + 1 + a + 1 + d = 2(d + 1) \leq 2\nu.$$

By [2, Theorem 4.9] again, this invariant must be a polynomial in the q 's and β 's of its vector variables. As it is linear in each of $v^{(d+1)}, \dots, v^{(d+a+1)}$, these can be involved only via their β 's with each other or with the u 's and w 's. To get the coefficient of the monomial (3), we substitute 1 for the s_r coordinate of each $u^{(r)}$, for the $t_{r_{d+1}}$ coordinate of $v^{(d+1)}, \dots$, for the $t_{r_{d+a+1}}$ coordinate of $v^{(d+a+1)}$, and for the t_r coordinate of each $w^{(r)}$, and we substitute zero for all other s and t coordinates. After this substitution, each of $v^{(d+1)}, \dots, v^{(d+a+1)}$ will be β -orthogonal to all substituted vectors except $u^{(1)}$, but our polynomial has only degree a in $u^{(1)}$, so the value we get is zero. \square

Since the multiplicity in s of a product of polynomials is the sum of the multiplicities of the factors, it follows for $\nu \geq 1$ that the multiplicity in s of any decomposable 2μ -linear invariant with $\mu > \nu$ is strictly greater than ν . On the other hand, the multiplicity of g in s is exactly ν , since the 2μ -linear monomial $s_1^{(1)} \cdots s_\nu^{(\nu)} t_1^{(\nu+1)} \cdots t_\nu^{(2\nu)} t_1^{(2\nu+1)} \cdots t_1^{(2\mu)}$ occurs with coefficient 1. We arrive at

Theorem 6 *Let $m > n \geq 2$ both be even. Then the m -linear $O(n)$ -invariant g is indecomposable.*

Corollary *Let $m > n \geq 2$ both be even. Then the m -linear $O(n, \mathbb{C})$ -invariant \tilde{g} is indecomposable in the ring $R^{O(n, \mathbb{C})}(\mathbb{Z})$.*

Remark Theorem 4 for $m > n$ follows from Theorem 6. Indeed, identify $O(n-1)$ with the subgroup of $O(n)$ acting on the x, y coordinate hyperplane in the standard way and fixing z . Then any $O(n)$ -invariant polynomial may be viewed as an $O(n-1)$ -invariant polynomial in just the x and y variables (regarding the z variables as constants). View g or h that way, and break it up into its multi-homogeneous components. One of these is $g_{(n-1) \times m}$ or $g_{(n-1) \times (m-1)} z^{(m)}$, which is an indecomposable $O(n-1)$ -invariant by Theorem 6. It follows that $g_{n \times 2\mu}$ and $h_{n \times (2\mu+1)}$ are not in the subalgebra of $R^{SO(n)}$ generated by the elements of degree less than 2μ . Since no $SO(n)$ -invariants of degree 1 exist, indecomposability follows for h as well as g .

We now turn to the construction of an indecomposable m -linear special orthogonal invariant for $m \geq n \geq 4$ both even. Subtract the sum (2) of Proposition 2 from the Pfaffian in Proposition 1 and divide by $2^{\mu-\nu+1}$ to get an m -linear $SO(n, \mathbb{C})$ -invariant with integer coefficients. Call it $\tilde{f} = \tilde{f}_{n \times m} \in R_{n \times m}^{SO(n, \mathbb{C})}(\mathbb{Z})$, noting that $\tilde{f} = \frac{1}{2}(\tilde{g} - \tilde{h})$. View \tilde{f} modulo 2 to get an m -linear $SO(n)$ -invariant $f = f_{n \times m} \in R_{n \times m}^{SO(n)}(\mathbb{F}_2)$ with coefficients in \mathbb{F}_2 that is the sum of those m -linear monomials ρ that, when written in the form (1), have even m_r for all r , with the x_r and y_r occurring in an alternating order, and either all m_r being strictly positive and y_r coming first for an odd number of lower indices r , or a unique m_r being zero. Invariance of f again follows from that of \tilde{f} by [2, Lemma 3.2].

Theorem 7 *Let $m \geq n \geq 4$ both be even. Then the m -linear $SO(n)$ -invariant f is indecomposable.*

Corollary *Let $m \geq n \geq 4$ both be even. Then the m -linear $SO(n, \mathbb{C})$ -invariant \tilde{f} is indecomposable in the ring $R^{SO(n, \mathbb{C})}(\mathbb{Z})$.*

Proof. Substituting z for x_ν and y_ν in an $SO(2\nu)$ -invariant yields an $O(2\nu-1)$ -invariant — this follows easily from Witt's Theorem [6, Theorem 7.4]. Degrees are not increased. The image of $f = f_{n \times m}$ is $g = g_{(n-1) \times m}$, which is of the same degree and is indecomposable by Theorem 4. The image of a non-trivial decomposition of f would be a non-trivial decomposition of g , so f must also be indecomposable. \square

References

- [1] C. De Concini and C. Procesi, A characteristic free approach to invariant theory, *Adv. Math.* 21 (1976), 330–354.
- [2] M. Domokos, P. E. Frenkel, On orthogonal invariants in characteristic 2, *J. Algebra*, in press. Published online: <http://authors.elsevier.com/sd/article/S0021869303005131>. ArXiv preprint RA/0303106.
- [3] M. Domokos, S. G. Kuzmin, A. N. Zubkov, Rings of matrix invariants in positive characteristic, *J. Pure Appl. Alg.* 176 (2002), 61–80.

- [4] R. Goodman, N. R. Wallach, *Representations and Invariants of the Classical Groups*, Cambridge University Press, 1998.
- [5] D. R. Richman, The fundamental theorems of vector invariants, *Adv. Math.* 73 (1989), 43–78.
- [6] D. E. Taylor, *The Geometry of the Classical Groups*, Heldermann Verlag, Berlin, 1992.
- [7] H. Weyl, *The Classical Groups — Their Invariants and Representations*, Princeton University Press, 1946.