THE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH4406

Introduction to Partial Differential Equations Tutorial 2

Problem 1. In this problem we consider the following boundary-value problem of ODE:

$$\begin{cases} u'' - 2u' + 2u = 0 \\ u(0) = u'(L) = 0, \end{cases}$$
 (1)

where $u:[0,L]\to\mathbb{R}$ is the unknown, and L>0 is a given constant.

- (i) Find the general solution of u'' 2u' + 2u = 0.
- (ii) Prove that the problem (1) has a unique solution if and only if $L \neq \frac{(4k-1)\pi}{4}$ for any positive integer k.

Problem 2. Given the following second-order linear PDE

$$2\partial_x u + \partial_{xy} u = 0 (2)$$

- (i) solve (2) by rewriting it as $\partial_x (2u + \partial_y u) = 0$ and hence considering $2u + \partial_y u = g(y)$, where g is any arbitrary function.
- (ii) prove or disprove the v defined in each of the cases below satisfies (2):
 - (a) v(x,y) := u(x-1,2y).
 - (b) $v(x,y) := y [\partial_x u(x,y)].$
 - (c) for any $g: \mathbb{R} \to \mathbb{R}$,

$$v(x,y) \coloneqq (u * g)(x,y) \coloneqq \int_{-\infty}^{\infty} u(x-t,y)g(t) \ dt.$$

Problem 3. Solve the following PDE

$$\frac{2}{y+1}\partial_x u + \partial_{xy} u = \frac{e^y}{(y+1)^2}$$

subject to the conditions

$$u|_{x=0} = u|_{y=0} = 0.$$

(Hint: let $v := \partial_x u$.)

Problem 4. Given the following PDE

$$\partial_{xx}u + \partial_{tt}u = 0$$
 for $0 < x < 1$ and $t > 0$

subject to the initial and boundary value conditions

$$\begin{cases} u|_{x=0} = u|_{x=1} = 0 \\ u|_{t=0} = f \text{ and } \partial_t u|_{t=0} = 0. \end{cases}$$

(i) Verify that for any positive integer n, the function

$$u_n(t,x) \coloneqq \frac{1}{n} \cosh(n\pi t) \sin(n\pi x)$$

is a solution to the initial and boundary value problem with the initial data

$$f_n(x) \coloneqq \frac{1}{n}\sin(n\pi x).$$

(ii) Let the sup norm be defined by $||g||_{\sup} := \sup_{x \in [0,1]} |g(x)|$. Prove that

$$\lim_{n \to +\infty} \|f_n\|_{\sup} = 0 \text{ and } \lim_{n \to +\infty} \|u_n(T, \cdot)\|_{\sup} = +\infty \text{ for any } T > 0.$$

Problem 5. Consider the following heat equation:

$$\partial_t u - \partial_{xx} u = 0, \quad (t, x) \in [0, \infty) \times \mathbb{R}.$$
 (3)

(i) (Invariant Transformation/Symmetries)

Let u := u(t, x) be a C^2 solution to (3). Show that the $u_k(t, x) := u(k^2t, kx)$ is also a solution.

(ii) (Linearity and Principle of Superposition)

Let u_1, u_2 be C^2 solutions to (3). Show that any linear combination of u_1, u_2 is also a solution, i.e., $(\alpha u_1 + \beta u_2)$ is also a solution for any constant $\alpha, \beta \in \mathbb{R}$.

Problem 6. Let $u = u(y_1, y_2)$ be a differentiable function of independent variables y_1 and y_2 . Suppose that $y_1 = y_1(x_1, x_2)$ and $y_2 = y_2(x_1, x_2)$ are differentiable functions of independent variables x_1 and x_2 .

(i) Using the chain rule, for i = 1, 2, show that

$$\begin{split} \partial_{x_i}^2 u &= \partial_{y_1}^2 u \cdot \left(\partial_{x_i} y_1\right)^2 + \partial_{y_1} u \cdot \partial_{x_i}^2 y_1 + 2 \partial_{y_1 y_2} u \cdot \partial_{x_i} y_1 \cdot \partial_{x_i} y_2 \\ &+ \partial_{y_2}^2 u \cdot \left(\partial_{x_i} y_2\right)^2 + \partial_{y_2} u \cdot \partial_{x_i}^2 y_2. \end{split}$$

(ii) Given

$$\left[\begin{array}{c} y_1 \\ y_2 \end{array}\right] = \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right]$$

if $\partial_{y_1}^2 u + \partial_{y_2}^2 u = 1$, calculate $\partial_{x_1}^2 u + \partial_{x_2}^2 u$.