Class Test n°4

Name:	First Name :	Class:
Question from the less	son (2 points)	
Let E be a vector space over \mathbb{R} and \mathscr{C} is a spanning family of E .	d $S = (e_1, \ldots, e_n)$ be a family of vectors of E . Give the pr	recise mathematical definition of
Exercise 1 (2 points)		
Let $E = \{(u_n) \in \mathbb{R}^{\mathbb{N}} \text{ such that } (u_n) \in \mathbb{R} \}$ Are E and F some \mathbb{R} -vector spaces) is bounded} and $F = \{(u_n) \in \mathbb{R}^{\mathbb{N}} \text{ such that } (u_n) \text{ is divers} \}$? Justify your answer.	rgent}.
		,

Exercise 2 (3 points)

Let u = (2, 2, 6), v = (3, 1, -3) and w = (7, 5, 9). Is $\{u, v, w\}$ a linearly independent set of \mathbb{R}^3 ? Justify your answer.

Exercise 3 (3 points)

Let $E = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \text{ such that } \middle| \begin{array}{rcl} x - 2y - z & = & 0 \\ 2x - 3y - 2z & = & 0 \\ -2x + 2y + 2z & = & 0 \end{array} \right\}$. Write E as a spanned subspace, using the Span notation.