

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 63-017294
(43)Date of publication of application : 25.01.1988

(51)Int.Cl. C30B 25/12
C04B 41/87
C30B 29/06

(21)Application number : 61-158826 (71)Applicant : DENKI KAGAKU KOGYO KK
(22)Date of filing : 08.07.1986 (72)Inventor : TERASAKI RYUICHI
NAKAJIMA MASAHIKO
SATO SHINSEI
OGATA YOICHI

(54) GLASSY CARBON COATED SUSCEPTOR AND PRODUCTION THEREOF**(57)Abstract:**

PURPOSE: To obtain the titled susceptor not staining a product such as silicon substrate, etc., with an impurity element, by calcining a molded article of carbon coated with slurry consisting of a pitch substance obtained from a high-purity organic polymer in a specific atmosphere.

CONSTITUTION: An organic polymer (e.g. PVC or PVA) having ≤20ppm group III and V group elements of the periodic table is heated in an atmosphere consisting of an inert gas having 0.01W0.5atm. partial pressure of a halogenated gas or air at reduced pressure at 250W500° C for 0.5W2hr to give a pitch substance having a ratio of C/O of 0.8W1.5. Then the pitch substance is incorporated with a solvent to give slurry having 200W500g/l concentration, the slurry is applied to the surface of a molded article of carbon obtained by processing a graphite block having 1.7W1.9g/cm³ density. The molded article is dried at low temperature of 50W100° C, calcined in the same atmosphere at 800W1,500° C for ≥30min to give the titled susceptor having ≤1ppm of the above-mentioned group III and V elements.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 特 許 公 報 (B 2)

(11)特許出願公告番号

特公平7-53635

(24) (44)公告日 平成7年(1995)6月7日

(51)Int.Cl. ⁶	識別記号	序内整理番号	F I	技術表示箇所
C 30 B 25/12				
29/06	504 L	8216-4G		
// C 04 B 35/52				
41/87	S			
			C 04 B 35/ 52	G
			発明の数 2 (全 6 頁)	最終頁に続く

(21)出願番号	特願昭61-158826	(71)出願人	99999999 電気化学工業株式会社 東京都千代田区有楽町1丁目4番1号
(22)出願日	昭和61年(1986)7月8日	(72)発明者	寺崎 隆一 東京都町田市旭町3丁目5番1号 電気化 学工業株式会社中央研究所内
(65)公開番号	特開昭63-17294	(72)発明者	中島 征彦 東京都町田市旭町3丁目5番1号 電気化 学工業株式会社中央研究所内
(43)公開日	昭和63年(1988)1月25日	(72)発明者	佐藤 新世 東京都町田市旭町3丁目5番1号 電気化 学工業株式会社中央研究所内
		(72)発明者	尾形 陽一 東京都町田市旭町3丁目5番1号 電気化 学工業株式会社中央研究所内
		審査官	中村 泰三
			最終頁に続く

(54)【発明の名称】 ガラス状炭素被覆サセプター及びその製造方法

1

【特許請求の範囲】

【請求項1】炭素成形体の表面がガラス状炭素で被覆されてなるサセプターにおいて、前記ガラス状炭素中に含まれる周期律表第III族及び第V族元素の濃度が各々1ppma以下であることを特徴とするガラス状炭素被覆サセプター。

【請求項2】有機重合体を不活性ガスまたは減圧空气中で加熱することによって得られたピツチ状物質を溶剤と混合してスラリーとし、そのスラリーで炭素成形体を被覆した後、不活性ガスまたは減圧空气中で焼成してガラス状炭素被覆サセプターを製造する方法において、前記有機重合体として、該有機重合体に含まれる周期律表第III族及び第V族元素の濃度が各々20ppma以下のものを使用し、さらに前記加熱または焼成時の雰囲気中に分圧が0.01~0.5気圧のハロゲンガスまたはハロゲン化ガス

2

を存在させることを特徴とするガラス状炭素中に含まれる周期律表第III族及び第V族元素の濃度が各々1ppma以下とのガラス状炭素被覆サセプターの製造方法。

【発明の詳細な説明】

【産業上の利用分野】

本発明は半導体の製造工程において使用されるサセプター及びその製造方法に関する。

【従来の技術】

サセプターはシリコンなどの半導体基板上に半導体単結晶をエピタキシャル成長する際に使用される。サセプターは高純度のシリコン基板等の製品に接触するためその製品を汚染しないことが要求される。

又、高温に於ける塩化水素雰囲気での耐エッチング性、概略1200°Cまでの繰返し使用に耐える耐熱衝撃性も要求される。

10

この要求にこたえるものとして従来から炭素成形品の上に化学気相蒸着(CVD)法による炭化硅素を被覆した炭化硅素被覆サセプターが使用されている(参考文献例:特開昭56-10921号公報)。しかし、炭化硅素被覆サセプターは炭化硅素皮膜と炭素成形品との熱膨張係数が異なつてゐるため繰返し使用による熱サイクルにより、皮膜にクラックが発生し、そのクラックを通して炭素成形品から不純物が浸み出し製品を汚染すると云う欠点を有していた。

さらに、炭化硅素被膜はCVD法により形成されるため膜の均一性が劣り、ピンホールが発生し易いので、近年とみに要求が高まりつつある、サセプターの大形化に対応することが困難であるという欠点があつた。

これらの欠点を補う手段として、炭素又はセラミツク材料にガラス状炭素を被覆する提案がある(特公昭52-39684号公報)。

この方法で得られるガラス状炭素被覆サセプターは上記炭化硅素サセプターと比較して被膜の均一性が優れており、また被膜の気体通気率が2桁程度炭化硅素よりも小さいので、炭素成形品からの不純物の汚染を減少できると云う利点を有している。

しかしながら、ガラス状炭素を作成する原料として用いられるポリ塩化ビニルなど有機重合体にはシリコン基板などの製品に特に有害となる周期律表第III族及び第V族の元素(以下、III・V族元素といふ)が50ppma(原子数百万分率)程度含まれている。これら不純物は有機重合体がガラス状炭素になつた後も被膜中に10ppmaのオーダーで残存するので、その被膜を有するサセプターを使用した場合、被膜内のIII・V族元素がシリコン基板など製品内に拡散し、製品を汚染するという欠点があつた。

[発明が解決しようとする問題点]

本発明はガラス状炭素被膜中に含まれる不純物を減少させ、不純物元素がシリコン基板など製品を汚染することのないサセプター及びその製造方法を提供することを目的としている。

[問題点を解決するための手段]

本発明者らはガラス状炭素の被膜中に含まれる不純物とくにIII・V族元素の濃度が小さいサセプターの製造法について種々検討した結果、有機重合体を不活性ガスまたは減圧の空気中で加熱するとき、またはピツチ状物質(以下、PC物質といふ)の被膜を設けた炭素成形体を不活性ガスまたは減圧の空気中で焼成するときに、前記雰囲気中にハロゲンガスまたはハロゲン化ガスを適量存在させることによつてガラス状炭素の被膜中に含まれる不純物とくにIII・V族元素の濃度がいちじるしく低くなることを見出した。

さらに本発明者らはガラス状炭素被覆サセプターのガラス状炭素中に含まれるIII・V族元素の許容濃度について確認の実験を行なつたところ、明確な許容限度が存在

すること、すなわちIII・V族元素の濃度が各々1ppma以下であれば、それらの不純物がサセプターの上に載せたシリコン基板など製品の品質に悪影響を与えるほどには拡散しないことを見出した。

すなわち、本発明の第1は炭素成形体の表面がガラス状炭素で被覆されてなるサセプターにおいて、前記ガラス状炭素中に含まれる周期律表第III族及び第V族元素の濃度が各々1ppma以下であることを特徴とするガラス状炭素被覆サセプターである。

10 本発明の第2は、有機重合体を不活性ガスまたは減圧空気中で加熱することによつて得られたピツチ状物質を溶剤と混合してスラリーとし、そのスラリーで炭素成形体を被覆した後、不活性ガスまたは減圧空気中で焼成してガラス状炭素被覆サセプターを製造する方法において、前記有機重合体として、該有機重合体に含まれる周期律表第III族及び第V族元素の濃度が各々20ppma以下のものを使用し、さらに前記加熱または焼成時の雰囲気中に分圧が0.01~0.5気圧のハロゲンガスまたはハロゲン化ガスを存在させることを特徴とするガラス状炭素中に含まれる周期律表第III族及び第V族元素の濃度が各々1ppma以下のガラス状炭素被覆サセプターの製造方法である。

以下、本発明をさらに詳しく述べる。本発明に用いる有機重合体は適當な加熱温度すなわち250~500°Cにおいて熱分解してピツチ状物質に変化するものであるならばとくに制限はないが、取扱い上の容易さの点からはポリ塩化ビニル(以下、PVCといふ)、ポリビニルアルコール(以下、PVAといふ)またはポリ酢酸ビニル(以下、PVACといふ)が好ましく、これらのうちPVCは不純物の面からとくに好ましい。

有機重合体に含まれるホウ素やリンなどのIII・V族元素は本発明の方法により除去されるのであるが、本発明の目的を達成するには有機重合体中のIII・V族元素の濃度は各々20ppma以下でなければならない。20ppmaを越えるとガラス状炭素中に含まれるIII・V族元素の濃度が各々1ppma以下にはならない。

有機重合体中には製造的に使用される触媒などの原材料、反応釜に使われているステンレス鋼などからIII・V族元素が1ppma程度混入するが、触媒などの原材料を厳選すること、反応釜の材料をIII・V族元素を含まないステンレス鋼に取換えることなどの処置によりIII・V族元素が各々20ppma以下の含有量の有機重合体を得ることが可能である。

これら有機重合体の熱分解はその種類を問わず粒状品または粉末を、不活性雰囲気例えは窒素ガス、アルゴンガスまたは減圧空気中で加熱することによつて行なう。

ここで重要なことは上記雰囲気中にハロゲンガスまたはハロゲン化ガスを導入することである。ハロゲンガスとはCl₂、F₂等であり、ハロゲン化ガスとはHCl、CF₄等があげられる。これらのガスの導入量は雰囲気中の分圧を

0.01～0.5気圧にしなければならない。0.01気圧未満では不純物除去の効果がなく、また0.5気圧を越えるとガラス状炭素皮膜にピットが生じ易くなり該ピットを通して炭素基材からの不純物が拡散してくるので好ましくない。

上記加熱の望ましい温度・時間は加熱装置および有機重合体の種類によって異なるが、分解生成物の炭素原子と水素原子の原子比（以下C/H比という）が結果的に0.8～1.5、好ましく0.9～1.2の範囲に入るよう実験により定めればよい。通常は温度250～500°C、時間は0.5～2時間の範囲で行なえばよい。

このようにして得られるPC物質に溶剤を加えて溶解させ、濃度200～500g/のスラリー作る。溶剤は溶解性の点から脂肪族塩素系または芳香族系の溶剤が好ましい。とくに、ひび割れ防止効果を高めたい場合には前記溶液に骨材として炭素、炭化珪素など無機質の粉末または繊維を配合することも好ましい。

前記溶液を炭素成形体の表面に塗布する。炭素成形体は市販の密度1.7～1.9g/cm³の黒鉛ブロックを加工したものがよい。塗布の方法は超音波含浸、はけ塗り、スプレー、浸漬などである。塗布した後に比較的低温（50～100°Cていど）で乾燥することが好ましい。

ついで、窒素ガス、アルゴンガスなどの不活性ガスまたは減圧空気の雰囲気下で800～1500°Cで30分以上の加熱・焼成を行なつて黒鉛部材表面のPC物質をガラス化させる。ここにおいても重要なことは上記雰囲気中にハロゲンガスまたはハロゲン化ガスを導入することである。ガスの種類および導入量は前記有機重合体の熱分解時と同じでよい。

なお、有機重合体中の不純物濃度が比較的小さい場合には、ハロゲンガスまたはハロゲン化ガスの導入は前記熱分解時またはガラス化時のいずれか一方のみでもよい。このようにして得られるサセプターは表面が硬く、開気孔が完全に埋められ、そして緻密なガラス状炭素被膜で覆われるため、黒鉛粉末の離脱がなく、さらにガラス状炭素被膜中のIII・V族元素の濃度がきわめて低いものとなる。

（実施例）

以下、実施例および比較例により説明する。

実施例1～11

有機重合体としてPVC、PVACおよびPVAを用いた。これらの樹脂は次の通り合成したものである。すなわち、PVCは塩化ビニルモノマーを原料とし、懸濁重合法により重合し、濾過、洗浄および乾燥を行なつた（参考文献：古谷正之著「塩化ビニル樹脂」日刊工業新聞社、昭和36年発行、第43～45頁）。PVACは酢酸ビニルモノマーを原料とし、溶液重合により重合し、塩析、水洗および乾燥を行なつた（参考文献：化学工業日報社編「9586の化学商品」昭和61年発行、第649～650頁）。PVAは前記方法で得られたPVACをメタノールに溶解し、アルカリ鹹化法で

鹹化は反応を行ない、洗浄、粉碎および乾燥を行なつた（参考文献：長野浩一、他共著「ポバール」高分子刊行会、昭和45年発行、第70～71頁）。まず、それぞれの樹脂について発行分析によりIII・V族元素の濃度の定量を行なつた。これらの結果は表に示すとおりである。なお、表記していないIII・V族元素の濃度はすべて1ppma未満であり、下記比較例1～6においても同じである。3個の石英ポートにそれぞれ前記3種の樹脂を入れ、表に示すとおり窒素またはアルゴンの雰囲気もしくは減圧（1×10⁻² torr以下）空気にハロゲンまたはハロゲン化ガスを加えた雰囲気中で熱分解を行なつてPC物質を得た。使用したハロゲンまたはハロゲン化ガスの種類、濃度及び熱分解の温度は表に示すとおりである。なお、熱分解時間はいずれも90分である。

PVC、PVAおよびPVACを熱分解して得られたPC物質のC/H比（原子比）をCHNコーダー（柳本（製）MT-3）で測定した所それれ1.1、0.95、1.2であった。

前記各PC物質をベンゼンに300g/の濃度で溶解してスラリーとした。このスラリーを炭素成形体の上にディツピングにより塗布、これを表に示す雰囲気・温度で焼成することによりガラス状炭素被覆サセプターを得た。炭素被膜の厚さはいずれも約10μmであった。

なお、上記炭素成形体は高純度黒鉛（イビデン株式会社製T-6P、密度1.90g/cm³）を機械加工により幅100mm、長さ300mm、厚さ7mmの帯状とし、単結晶板を載せる複数のくぼみをあけたものである。

上記の処理で得られたサセプターのガラス状炭素皮膜中の不純物をイオンマイクロアナライザーにより分析した。これらのサセプターにシリコン基板を載せ、モノシリランを原料として1000°Cの温度でエピタキシャル成長を行なつた。なお、各実施例ともPタイプおよびNタイプの両タイプのシリコン基板について実験を行なつた。

得られた各エピタキシャル膜について4探針法による抵抗率の測定及びシリコン基板のサセプター側に接した面のP/N反転の有無を調べた。これらの結果は表に示すとおりである。すなわち、ガラス状炭素皮膜中のIII・V族元素の濃度がいずれも1ppma以下になり、シリコンエピタキシャル膜の抵抗率は280Ω·cm以上となり、また、サセプターに接したシリコン基板はP型、N型いずれの場合も他方の型に反転するものはなかつた。

比較例1～2

熱分解時およびガラス化時のいずれの環境においてもハロゲンガス、ハロゲン化ガスを使用しなかつた。その他の方法は実施例1～9と同様に行なつた。これらの結果は表に示すとおりである。すなわち、ガラス状炭素皮膜中のIII・V族元素の濃度が2～15ppmaであり、シリコンエピタキシャル膜の抵抗率は10～20Ω·cmと低く、また、サセプターに接したシリコン基板はN型からP型へ、またP型からN型へ反転してしまつた。

比較例3～5

有機重合体中のIII・V族元素のうち、一部の元素の濃度が50ppmaを越える有機重合体を用いた。その他の方法は実施例1～9と同様に行なつた。これらの結果は表に示すとおりである。すなわち、ガラス状炭素皮膜中のII・V族元素の濃度が5ppma以上あり、シリコンエピタキシヤル膜の抵抗率が10～15Ω・cmと低く、また、サセプタに接したシリコン基板はN型からP型へ、またP型からN型へ反転してしまつた。

比較例6

ハロゲン化ガスの濃度を50モル%を越える高濃度にした外は実施例1～9と同様に行なつた。この結果、サセプターの3個所でガラス状炭素皮膜にピンホールが生じ、その個所で炭素成形体が露出していた。表に示すとおり、シリコンエピタキシヤル膜の抵抗率は実施例1～9より低く、また、サセプタに接したシリコン基板の一部はN型からP型に反転していた。

表

有機重合体	有機重合体中のIII・V族元素の濃度(ppma)					熱分解条件			ガラス化条件			ガラス状炭素皮膜中のII・V族元素の濃度(ppma)			ガラス状炭素皮膜中のII・V族元素の濃度(ppma)					
	B	Al	Ca	P	As	温度(°C)	雰囲気	導入ガスの分子量(気圧)	温度(°C)	雰囲気	導入ガスの分子量(気圧)	B	Al	Ca	P	As	Siエビタキル基の抵抗率($\Omega \cdot \text{cm}$)	サセブターに接したシリコン基板のP/N反転の有無		
実施例	1 PVA	20	20	20	10	250	N ₂	HCl 0.01	1500	N ₂	HCl 0.01	0.5	1	1	1	0.5	400	反転なし		
	2 PVC	10	20	10	20	300	減圧	Cl ₂ 0.25	1200	減圧	Cl ₂ 0.25	0.5	1	0.5	1	0.5	400	同上		
	3 同上	10	20	20	10	20	400	減圧	CF ₄ 0.50	1000	Ar	CF ₄ 0.50	0.5	1	1	0.5	1	300	同上	
	4 同上	10	20	20	10	20	400	Ar	Cl ₂ 0.25	1000	減圧	Cl ₂ 0.25	0.5	1	1	0.5	1	280	同上	
	5 同上	10	20	20	10	20	350	Ar	HCl 0.06	800	Ar	HCl 0.06	0.5	1	1	0.5	1	350	同上	
	6 同上	20	20	10	15	20	300	N ₂	-	0	1100	N ₂	Cl ₂ 0.30	1	1	0.5	7	1	350	同上
	7 同上	10	20	10	10	10	350	Ar	HCl 0.45	1050	減圧	-	0	0.7	1	0.5	0.5	400	同上	
	8 PVAc	20	20	20	20	300	N ₂	CF ₄ 0.40	1000	N ₂	CF ₄ 0.40	1	1	1	1	1	400	同上		
	9 同上	15	10	20	10	5	500	減圧	Cl ₂ 0.01	1300	N ₂	Cl ₂ 0.01	0.7	0.5	1	0.5	0	380	同上	
	10 同上	20	15	20	10	400	減圧	HCl 0.30	900	Ar	HCl 0.30	1	0.7	0.7	1	0.5	330	同上		
	11 PVA	20	15	20	5	20	450	Ar	CF ₄ 0.03	850	Ar	CF ₄ 0.03	1	0.8	1	0.2	0.5	420	同上	
比較例	1 同上	20	15	20	5	10	450	減圧	-	0	850	減圧	-	0	10	7	10	2	5	10
	2 同上	10	15	10	20	20	280	N ₂	-	0	1200	減圧	-	0	5	8	5	15	10	P→Nに反転
	3 同上	60	50	40	20	60	300	N ₂	CF ₄ 0.50	1100	N ₂	CF ₄ 0.50	10	5	10	5	10	15	N→Pに反転	
	4 同上	20	10	10	50	60	280	減圧	HCl 0.20	1050	減圧	HCl 0.20	10	5	20	25	10	P→Nに反転		
	5 PVC	60	60	10	20	10	400	Ar	Cl ₂ 0.30	1100	減圧	Cl ₂ 0.30	10	10	5	5	10	10	N→Pに反転	
	6 PVAc	10	10	5	10	5	380	N ₂	HCl 0.35	1100	減圧	HCl 0.55	1	1	0.5	1	0.5	150	一部N→Pに反転	

〔発明の効果〕

以上説明した様に本発明によれば、従来の欠点であつた

ガラス状炭素皮膜に含まれるIII・V族元素の濃度を低

下させたサセブターにより高品質の半導体を得ることが

できる。

更に、上記の不純物量の少ない高品質のサセプターを製

造する実用性の高い方法が提供される。

フロントページの続き

(51)Int.Cl.⁶ 識別記号 庁内整理番号 F I 技術表示箇所
C 2 3 C 16/44

(56)参考文献 特開 昭62-270491 (J P, A)