An Introduction to Model Checking

Nuno Macedo

Model Checking

- A classic method to check whether a property holds in a reactive system
- System as a finite-state machine: all states exhaustively explored
- Provided in a higher-level description (design model, implementation, ...)
- Requires a **bound** on the universe of discourse
- Properties in some kind of propositional temporal logic
- More expressive logics unfolded to propositional version within universe
- Counter-examples for unsatisfiable properties

System Model

- A model *M* is a transition system formalised as a Kripke structure (*S*,*I*,*R*,*L*), over a set of atomic propositions *P*:
 - S is a finite set of states
 - /⊆S is the set of initial states
 - R⊆S×S is a left-total transition relation
 - $L:S \rightarrow 2^P$ is a function assigning atomic propositions to each state

System Paths

- A path π is an infinite sequence of states $s_0s_1s_2...$ where $\forall i \geq 0$: $(s_i,s_{i+1}) \in R$
- For $i \ge 0$, π_i is the *i*-th state of the path, π^i is the suffix starting in *i*-th state
- We abuse notation and say $\pi \in M$ for any path in model M

Model example: Mutex

```
while true:
   n1: // noncritical actions
   w1: request semaphore
   c1: // critical section
    release semaphore
```

```
while true:
    n2: // noncritical actions
    w2: request semaphore
    c2: // critical section
    release semaphore
```


 $P = \{n1,n2,w1,w2,c1,c2,sem\}$

Temporal Logic

- Some properties can be checked by directly inspecting the Kripke structure (e.g., absence of deadlocks, or simple safety properties)
- However, to check more complex behaviours, relating multiple states, we need general-purpose temporal logics
- Standard temporal logics are **state-oriented** and **propositional**: they only consider the atomic propositions that are true in each state
- Two alternative models of time, supported by different logics:
 - Linear Time, the behaviour of a system is the set of all paths
 - Branching Time, the behaviour of the system is a set of computation trees

n1 n2

sem

CTL

- Computational Tree Logic (CTL) is a branching time logic
- Besides the logical operators, CTL also has:
 - Path quantifiers
 - Temporal operators

CTL Syntax

- X (or ○), G (or □), F (or ◊) and U are temporal operators:
 - $\mathbf{X}\phi$ ϕ holds in the neXt state
 - $\mathbf{G}\phi$ ϕ always (or **G**lobally) holds
 - $\mathbf{F}\phi$ ϕ eventually (or in the Future) holds
 - $\phi \mathbf{U} \psi$ eventually holds and ϕ holds **U**ntil then
- **E** (or ∃) **A** (or ∀) are path quantifiers:
 - $\mathbf{A}\phi$ ϕ holds in **all** computation paths starting in the current state
 - $\mathbf{E}\phi$ ϕ holds in **some** computation path starting in the current state
- Path quantifiers must always be followed by a temporal operator (path formula)

CTL Syntax

```
\phi, \psi ::= AX \phi \mid EX \phi
\mid AG \phi \mid EG \phi
\mid AF \phi \mid EF \phi
\mid A[\phi \cup \psi] \mid E[\phi \cup \psi]
\mid p \mid \phi \land \psi \mid \phi \lor \psi \mid \phi \to \psi \mid \neg \phi \mid \top \mid \bot
with p \in P atomic propositions
```


 $\mathsf{AF} \phi$

 $\mathbf{EG} \phi$

 $\mathsf{AF} \phi$

$A[\phi U\psi]$

 $\mathsf{E}[\phi\mathsf{U}\psi]$

• If a CTL formula ϕ holds for a Kripke structure M = (S,I,R,L) we say

$$M \models \phi$$

- $M \models \phi$ iff for all initial states $s \in I$ we have $M, s \models \phi$
- Minimal CTL subset: ⊤, ∨, ¬, EG, EU, EX
 - $\mathsf{EF}\phi$ \equiv $\mathsf{E}[\top\mathsf{U}\phi]$
 - $AX\phi$ $\equiv \neg EX(\neg \phi)$
 - $AG\phi \equiv \neg EF(\neg \phi)$
 - $AF\phi \equiv \neg EG(\neg \phi)$
 - $A[\phi U\psi] \equiv \neg (E[(\neg \psi)U\neg (\phi \lor \psi)] \lor EG(\neg \psi))$

```
\equiv p \in L(s)
M,s \models p
M,s \vDash \top
                                   ■ ⊤
M,s \models \neg \phi
                                   = M,s \not\models \phi
M,s \models \phi \lor \psi
                                  = M, s \models \phi \text{ or } M, s \models \psi
M,s \models \mathbf{EX}\phi
                                   \equiv \exists \pi \in M . \pi_0 = s \text{ and } M, \pi_1 \models \phi
M,s \models \mathbf{EG}\phi
                                   \equiv \exists \pi \in M . \ \pi_0 = s \ \text{and} \ \forall i \geq 0 . \ M, \pi_i \models \phi
M,s \models \mathbf{E}[\phi \mathbf{U}\psi] \equiv \exists \pi \in M . \pi_0 = s \text{ and } \exists i \geq 0 . (M,\pi_i \models \psi \text{ and } \forall 0 \leq j < i M . \pi_j \models \phi)
```

CTL Examples

Mutual exclusion: AG ¬(c1 ∧ c2)

No starvation: AG (w1 \rightarrow AF c1)

Reversibility: AG EF (n1 \(\) n2 \(\) sem)

- - -

- Linear Temporal Logic (CTL) is a linear time logic
- LTL only has temporal operators

LTL Syntax

- X (or ○), G (or □), F (or ⋄), U and R are temporal operators:
 - $\mathbf{X}\phi$ ϕ holds in the neXt state
 - $\mathbf{G}\phi$ ϕ always (or **G**lobally) holds
 - $\mathbf{F}\phi$ ϕ eventually (or in the Future) holds
 - $\phi \mathbf{U} \psi$ ψ eventually holds and ϕ holds \mathbf{U} ntil then
 - $\phi \mathbf{R} \psi$ ψ always holds or until and ϕ holds (or **R**eleases)

LTL Syntax

```
\phi, \psi ::= \mathbf{X} \phi \mid \mathbf{G} \phi \mid \mathbf{F} \phi
\mid \phi \mathbf{U} \psi \mid \phi \mathbf{R} \psi
\mid \rho \mid \phi \land \psi \mid \phi \lor \psi \mid \phi \rightarrow \psi \mid \neg \phi \mid \top \mid \bot
```

with $p \in P$ atomic propositions

Χφ

 $\mathbf{G} \phi$

 $\mathsf{F} \phi$

 ϕ U ψ

LTL Semantics

 $\phi R \psi$

LTL Semantics

• If an LTL formula ϕ holds for a Kripke structure M = (S,I,R,L) we say

$$M \models \phi$$

- $M \models \phi$ iff for all paths $\pi \in M$ such that $\pi_0 \in I$ we have $M, \pi \models \phi$
- Minimal CTL subset: ⊤, ∨, ¬, U, X
 - $\mathbf{F}\phi$ $\equiv \top \mathbf{U}\phi$
 - $G\phi \equiv \neg F(\neg \phi)$
 - $\phi \mathbf{R} \psi \equiv \neg ((\neg \phi) \mathbf{U}(\neg \psi))$

LTL Semantics

$$M, \pi \vDash \rho$$
 $\equiv \rho \in L(\pi_0)$
 $M, \pi \vDash \tau$ $\equiv \tau$
 $M, \pi \vDash \neg \phi$ $\equiv M, \pi \nvDash \phi$
 $M, \pi \vDash \phi \lor \psi$ $\equiv M, \pi \vDash \phi \text{ or } M, \pi \vDash \psi$
 $M, \pi \vDash \mathbf{X}\phi$ $\equiv M, \pi^1 \vDash \phi$
 $M, \pi \vDash \phi \mathbf{U}\psi$ $\equiv \exists i \geq 0 . (M, \pi^i \vDash \psi \text{ and } \forall 0 \leq j < i M, \pi^j \vDash \phi)$

LTL Examples

Mutual exclusion: G ¬(c1 ∧ c2)

No starvation: $G(w1 \rightarrow Fc1)$

Reversibility: NA

LTL VS. CTL

- Many properties are expressible both in LTL and CTL
- LTL tends to be more intuitive, but CTL model checking is more efficient
- However, the two logics are **incomparable**: there are LTL properties not expressible in CTL, and vice-versa

LTL VS. CTL

- The CTL property **AG EF** ϕ is not expressible in LTL
- The LTL property **FG** ϕ (needed for *fairness*) is not expressible in CTL
- In general it is not sufficient to just add A quantifiers, e.g., AF AG a:

Model Checking Algorithms

- Two approaches to model checking:
 - Complete: considers paths of arbitrary length
 - Bounded: considers paths up to a certain length
- The latter may miss certain counter-examples but is more efficient
- We will focus on algorithms for model checking LTL

LTL Complete Model Checking

- The common approach is automata-based
- Create an automaton A_M whose language are the paths acceptable by M

$$L(A_M) = \{ w \mid w \in M \}$$

• Create an automaton A_{ϕ} whose language are the paths valid under ϕ

$$L(A_{\phi}) = \{ \pi \mid \pi \models \phi \}$$

• $M \models \phi$ iff $L(A_M) \subseteq L(A_{\phi})$, or, more easily checked, iff

$$L(A_M) \cap L(A_{\neg \phi}) = \emptyset$$

Büchi Automata

- Finite-state automata cannot process infinite computations
- We need the notion of non-deterministic Büchi automata (NBA)
- An NBA $A = (Q, \Sigma, \delta, q_0, F)$ is:
 - Q is a set of states
 - Σ is the alphabet
 - $\delta: Q \rightarrow 2^Q$ is the transition function
 - $q_0 \in Q$ is the initial state
 - F ⊆ Q is the set of accepting states
- A run is accepted by A if an accepting state is visited infinitely often

From M to Büchi Automata

- Construct A_M from M:
 - $\Sigma = 2^P$, conjunctions of atomic propositions
 - Add an initial state to the existing Kripke structure M
 - $s_1 \in \delta(s_2, w)$ iff in $M(s_1, s_2) \in R$ and $L(s_2) = w$
 - F = Q, all states are accepting

From ϕ to Büchi Automata

- Construct A_{ϕ} from ϕ :
 - $\Sigma = 2^p$, conjunctions of atomic propositions
 - Inductively create the states and transitions from ϕ (process omitted)

Checking for emptiness

- To test whether languages are disjoint, check whether the product automaton is empty
 - $M \models \phi$ iff $L(A_M) \cap L(A_{\phi}) = \emptyset$ iff $L(A_M \otimes A_{\phi}) = \emptyset$
- For $A_M = (Q_M, \Sigma, \delta_M, q_{0M}, Q_M)$ and $A_{\neg \phi} = (Q_{\neg \phi}, \Sigma, \delta_{\neg \phi}, q_{0\neg \phi}, F_{\neg \phi})$ we have
 - $A_M \otimes A_{\phi} = (Q_M \times Q_{\neg \phi}, \Sigma, \delta, q_{0M} \times q_{0\neg \phi}, Q_M \times F_{\neg \phi})$
 - $(s_2,q_2) \in \delta((s_1,q_1),w)$ iff $s_2 \in \delta(s_1,w)$ and $q_2 \in \delta(q_1,w)$

Checking for emptiness

 $M \models \mathbf{Fb}$ iff $L(A_M \otimes A_{\mathbf{G} \neg \mathbf{b}}) = \emptyset$

$$a, \neg b$$
 s_0, q_0
 s_1, q_0
 s_2, q_0
 a, b
 s_3, q_1
 s_4, q_1
 s_4, q_1
 s_5, q_1
 s_6, q_1
 s_6, q_1
 s_7, q_1
 s_8, q_1
 s_8, q_1

Checking for emptiness

- Compute Strongly Connected Components (SCC) and check if there is one with accepting state (reachable from initial state)
 - Requires creating the complete automaton
- Determine reachable states with Depth-First Search (DFS), and then do a nested DFS to check whether there is a cycle
 - Can be performed on-the-fly
- Use a fair CTL model checker and test for EGT
 - Benefit from advances in CTL model checkers (e.g., symbolic)

LTL Bounded Model Checking

- Checking a property for paths with a fixed length k simplifies the problem
 - We know exactly the size of the counter-examples ($k \times \text{size}$ of each state), so **SAT solvers** can be used
- To be sound, process should consider prefixes with lassos
- Some optimisations may ignore lassos, but adapted semantics:
 - $\mathbf{X}\phi$ false in last state
 - $G\phi$ always false
 - for $\mathbf{F}\phi$, ϕ must occur in prefix

SAT Solving

- Procedures to solve the Boolean satisfiability problem (SAT)
- Is there a valuation for a set of Boolean variables that make a proposition true?
- Very low-level, problems in conjunctive normal form.
- Constant advances, techniques often use such solvers in the backend

From M to SAT

- For a length k
 - For each atomic proposition in $p \in P$ and each $0 \le i < k$, create a Boolean variable p_i
 - Create a variable l_i for $0 \le i < k$, to represent possible lassos
 - Let I(s) be a predicate that holds when s is initial and T(s_1 , s_2) when there is a transition between s_1 and s_2 in R.
 - *M can* be encoded for a lasso *l* as:

$$[M]_{l} = I(s_{0}) \wedge \bigwedge_{i=0}^{k-2} T(s_{i}, s_{i+1}) \wedge T(s_{k-1}, s_{l})$$

From M to SAT

- For k = 3, variables are a_0 , a_1 , a_2 , b_0 , b_1 , b_2 (since $P = \{a,b\}$)
- $I(s_0) = a_0 \land \neg b_0$
- $T(s_i,s_{i+1}) = (a_i \wedge \neg b_i \wedge \neg a_{i+1} \wedge b_{i+1}) \vee (\neg a_i \wedge b_i \wedge \neg a_{i+1} \wedge b_{i+1})$
- For a particular lasso I, [M], will be

$$(a_0 \wedge \neg b_0)$$

$$\wedge$$

$$((a_0 \wedge \neg b_0 \wedge \neg a_1 \wedge b_1) \vee (\neg a_0 \wedge b_0 \wedge \neg a_1 \wedge b_1))$$

$$\wedge$$

$$((a_1 \wedge \neg b_1 \wedge \neg a_2 \wedge b_2) \vee (\neg a_1 \wedge b_1 \wedge \neg a_2 \wedge b_2))$$

$$\wedge$$

$$((a_2 \wedge \neg b_2 \wedge \neg a_1 \wedge b_1) \vee (\neg a_2 \wedge b_2 \wedge \neg a_1 \wedge b_1))$$

From \$\phi\$ to SAT

- For a length k, particular lasso l, translate ϕ for a state i as:
 - i[p]/=pi
 - $i[\neg p]_i = \neg p_i$
 - $i[\phi \lor \psi]_I = i[\phi]_I \lor i[\psi]_I$
 - $i[\mathbf{G}\boldsymbol{\phi}]/=i[\boldsymbol{\phi}]/\wedge \operatorname{succ}(i)[\mathbf{G}\boldsymbol{\phi}]/$
 - $i[\mathbf{F}\phi]/=i[\phi]/\vee \operatorname{succ}(i)[\mathbf{F}\phi]/$
 - $i[\phi \mathbf{U}\psi]_I = i[\psi]_I \vee (i[\phi]_I \wedge \text{succ}(i)[\phi \mathbf{U}\psi]_I)$
- where succ(i) = i+1 if l < k, and l otherwise

From \$\phi\$ to SAT

• For a particular lasso I, $_0[G(b\rightarrow Xa)]_I$ will be

$$(\neg b_0 \lor a_1) \land (\neg b_1 \lor a_2) \land (\neg b_2 \lor a_l)$$

• Putting it all together, $M \models \phi$ would be translated as:

$$\bigvee_{l=0}^{l< k} ([M]_l \wedge o[\neg \phi]_l)$$