

00/913767

JC03 Rec'd PCT/PTO
PCT/EP00/01397

17 AUG 2001

WO 00/49152

1

SEQUENZPROTOKOLL

<110> Frommer, Wolf G.

<120> Pflanzlicher Nukleobasentransporter

<130> PCT1134

<140>

<141>

<160> 13

<170> PatentIn Ver. 2.1

<210> 1

<211> 1225

<212> DNA

<213> Arabidopsis thaliana

<400> 1

aaaacagcaa gcagcaagaa gaagatgaag aatggttga taatcataaa ctgtattatc 60
ctcactatag gaacatgtgg aggtcccttg ttaactcgtc tctacttcac caatggcgg 120
aaacgaatct ggttcatgag cttccatata accgcgtgg ttccaatcat cctcatccct 180
ctcttggct cttccctcag ccgtcgccgc ggcaaccgca accctaacaa cggggaaaaac 240
aaggcgaaaa caaagcttt cctcatggaa actcctctgt ttatcgccctc cattgtcata 300
gggttgccta caggacttga caactactta tattcttacg gattagcata tctgccagt 360
tcaacttcat cgctcataat cggaactcaa ctatgtttca acgctctt cgtttctt 420
ttagtcaagc aaaagttcac tccgttctcc ataaaacgccc tcgttttgtt gacgggttgt 480
atcgggatcc ttgcgttaca cagtgtatgga gacaaaccgg ctaaggagag caagaaagag 540
tatgtgggtt ggttcttgc gactgtgggtt gcagctttc tctatgttt tatattaccg 600
ctcggtgagc taacttacaa gaaagctcgt caagaaatca ctttccact tttgttgc 660
attcagatgg tcatgtgcct tgctgtact ttttctgtg tcattggcat gtcatcggt 720
ggagattta aggtgatagc aagagaagca agagagttca agattggagg atcagtgttt 780
tactatgcat tgatgtatgat cacaggaata atatggcaag gtttcttctt aggagccata 840
gggattgtt tttgtgcattt atcacttagct tctgggttgc tgataagtgt tctgcttccg 900
gtgactgaag ttttcgcgtt cgtttgttgc cgggagaagt ttcaggcaga gaaagggtgtc 960
tctctacttc tttctcttttgc gggattttgtc tcttacttct acggcgagtt taaatccggc 1020
aagaaagggtt ttgataaaacc tcaaccgcgc gagacagaac tgcctattct tccagtttagt 1080
gattatgtt cttaatttct ataactctat acgattataa cagagcatta ctgttatgtt 1140
ttgttcctaa atattatgtg tgattgtgtt tttttgttgc ttttctgtg tataagtatg 1200
aataaaatgtt gaaagatatt gagct 1225

<210> 2

<211> 1049

<212> DNA

<213> Arabidopsis thaliana

<400> 2

aagatgaaga tgaagacagt tcttgtaatc ataaactgtt tattcttggc cattggaaac 60
tgtggaggcc ctctaattgtat gcgtctctac ttccaaaatg gtggcgaaag gatctggttt 120
ccaagcttcc ttcaaaccgt tgggtgttcca ctatcttct tccctcttct ctatcttcc 180
ctccgcgcgtc gtgttgcct tgaagaacaa gaaacgactc cattttctt catgaaacct 240
cctctcttta tcggcgctat cgttgggttgc ttgtctgtgg gatttgcacaa ttacctctac 300
tcttacgggt tagtttatat ccctgtttctt actgcgttctt tgatcatctc cgcccaatattt 360
ggcttcactg ctctcttgc atttttatgt gtgaagcaaa agttcacacc tttcactata 420
aacgctatcg ttttgctcac tgggtgggcc gtagtccttgc cccttaactc tgatagtac 480

aagcttgcaa acgagacaca caaggaatat gttgtgggt tcatacatgac tcttggtgca 540
 getcttcct atgggtttat attgccactt gtcgagctt cttacaagaa atctggtcag 600
 cgaatcacgt atacgctcgc gctcgagttc cagatggtct tatgcttgc tgccacttgt 660
 gtctgcctcg tggggatgct agccgctggc gatttcaagg tgatagcagg agaagcaaga 720
 gatttaagc ttggagagtc ttgtactat gtggtgattg tgttcacggc cataatctgg 780
 caagcatttt ttgtggagc tattgggttg atcttctgtg catcgctct ggtctctgga 840
 attatggtca gtgctctgct tccggtgacg gtatcttgg ccgtcatttg ctccaggag 900
 aagttcagg cggggaaagg tgcgctttg gctctctccc tctgggatc agtctttat 960
 ttctatggac aggttaatc cgaggagaag actaaggctc aggatacaca actgtctcag 1020
 cttccagttt ctgattatgt agctaaaaa 1049

<210> 3

<211> 1145

<212> DNA

<213> *Arabidopsis thaliana*

<400> 3

ctgtttcatg tggatggt agaacctgaa gggaaatttt caacagaaga gagaagtac 60
 aagtactctt ggaggtaag agtgtctctc tatgtcaact tcctcttagc tggagagaca 120
 atagccactc tcttaggtag actttactac gaaaaaggcg gtaaaaagcac atggctcgaa 180
 accttggttc agctttagg gtttcctta acccttcctt gctattatta cttaaagcct 240
 gagccgtcca agactaaaac cattacaaa aaaactactt ctcccttctt gacactatct 300
 ttagtgtata ttggacttgg ctgcttgtt gctggacatt gtatTTTgtt ctcatTTTggg 360
 ctactttacc ttctgtctc aactttctt ttgatctctg cgtcgcaatt ggcttttaac 420
 gccgtcttctt cttaacttctt aaactcaca aaaatcacac catttataact caattcaactt 480
 gttctcttaa ccatatcttc tacacttctt gttatccaac atgaaccaga atctccctct 540
 tctacttcaa agtccgcagc caagtccaaag tatgtgattt gatacatctg cgcggcgggt 600
 agctcagctg gttattctt ggtgctttt ttaacagatt acgcgttcga aaagaticta 660
 aagaaataca cattcaaggc tatttttagac atggccacat atccgtctat ggtagctact 720
 tggtagtttgg tggtagact ttttggaaat ggtgggtggg aaaagctgag tacagaaatg 780
 gaagagtttca aacttagggaa aagctcatac attttgcataa acatcggttc aacgatata 840
 tggcaagctt gttgatttgg aagtgttggg ttgattatcg aagtttcatc gctttttcc 900
 aatgtcataa gcacttttg ttaccagtt gtgcctgttc ttgctgttgc ctcttccgt 960
 gatgagatga gtgaaatcaa gttgggttca atgtttttgg ccattttggg atttgcatttct 1020
 tatggttatc agcattatgt caatgataga aagccagaag aagaccaaga gcttcctcag 1080
 tctaaagaag aagaagaaca aaaacaagta gataccattt atgtccaaagc ttaggcaaaag 1140
 atcca 1145

<210> 4

<211> 1293

<212> DNA

<213> *Arabidopsis thaliana*

<400> 4

ggaagtccctc ttagagttggt catggaaata actcaagtaa tctatgtcaa tggtaagcaa 60
 gatgcatctc gtatgtaga ttacttgatt ctttcgcta acctgtttttt tttgtatgttt 120
 tcagatcata acaacataga agcaaaaccta acaggtcagg aggaatgaa taccaccatg 180
 gaaatcaaat cttcgtccgt acctcaatcg aagaactata agaaatggct tcgtattttcc 240
 atttacgtgt tctttgtctt tgcttgccaa gcactttctt caattttggg cagagttac 300
 tatgaaaatg gtggaaagag tacatggatg ggaacacttg tccaaactaat cggcttccct 360
 gttctgttcc tctccgtt cttttcccaa accaaaaatc ccaaaaccaac agaagcagat 420
 ttcagaaagt tctttccctt caccattttt ggatcagttt acatcggttac tggactatta 480
 gtgtctgtca acttttat gtcctctgtt ggttactat acttaccagt ttctactttc 540
 tccctcatct tggccatca attggcccttc actgccttct tctcatatctt tctaaactcg 600
 cagaagttca cacccatcat tggatatttctt ctgtttctcc ttactatttcc ctctgcccctc 660
 ctcgtggtca acactgattc ggaaaacaca gcaaaaagtgtt ctagataaa atatgtata 720
 gggataatat gtaccatttgg tgcttctgtt gggattttggat tgctgctatc cctggtaaaaa 780

ctgatcctca ggaaggttt aaagaagcaa acattctcaa cggtaactga ctggtcgct 840
 taccaatctc tagttgcag ctgtgtggc ttcataaggac ttttcgcaga cggggagtgg 900
 aaaactttaa caagttagat ggaaaaactac aaactgggg aagtgcata cgttatgact 960
 ttggcctcga tagctatttc ctggcaagtc tacaccattt gcgtcggtgg actgatctt 1020
 gagtcatctt ctgtgttctc caattccata actgctgtgg gattgcctat agtccagtt 1080
 gtagcagtga ttgtttcca tgataaaaatg aaccgcgtcaa agatcttctc catcatttt 1140
 gctatctggg gattcatttc atttgcttat cagcaactacc tcgacgaaaa gaagttgaag 1200
 actagccaca caagtccgtt aggagatcct catctactac ctgctgagga aggtcacaca 1260
 aacatacata gtgtatgatc aaaacatatt tcc 1293

<210> 5
<211> 1194
<212> DNA
<213> *Arabidopsis thaliana*

<400> 5
 tcatgagata taataaaacat gagtgtaat ttttcagggt accagaactt agaagcaaac 60
 cttatagatc atgaggtgg aactgaatca tcatcatcag ctgtgcctca aaccgagaac 120
 tataaaaagggt ggcttcgtgt ctccatatac gtaatctttt tcctctttt ccagccacta 180
 gctacaattc tggtagatt gtactatgaa aatggaggaa atagcacata tggtaaca 240
 cttcttcaac tcattggctt ccctgtactg gttctgttcc gcttctttt tcgaatcagg 300
 caacccaaat caacagatac aaatttcagt cagccccctt cttcaccac cttgcacatcg 360
 gtttacttgt gcaactggact gctagtgtcc gcttatgctt atttgcgtgc agtagggttt 420
 ctctacttac cagtcctac tttctccctc atttggcctt cacagttggc cttcaactgcc 480
 ttttctcat atttccttaa ctcgaaaag ttcaactcctt tgatagtcag ttctttgctt 540
 ctccctcaactg tattctctgc tcttctgtg gtcaacactg attcagaaaa ctcaactaat 600
 gtatcttagag tacagtagtgc gatcggttcc atatgtacca tcggtgctt cgctgggatt 660
 ggactgttac tattctctgat acaaattgtc ttccaggaaag ttttcacgaa gcatacatcc 720
 tcagcagtca cggacttggc catttaccag tctctagttt cgagttgtgt agttctcata 780
 ggactttttt caagtggaga gtggaaact ttgccaagtg agatgagaaa ctacaaactc 840
 gggaaaagtgt catatgtttt gacttttagcc tcggcagctt tttcttggca agtctacact 900
 cttggctttg tgggattgtat ttccgagtca tcctctgtgt tctccaattt cataacagct 960
 gtgggatttgc ctatagttcc agtttgcggca gtgatagttt tccatgatag aatggacgca 1020
 tcaaaaatct tctccattat tttagctatc tgcggcttcc tttcattcgt ctatcagcac 1080
 tacctcgacg aaaagaagtgtt gaataacttagc cacacaagtg ctgttaggaga tcttcattcta 1140
 cctgttggagg aaggtcacac aaacatacaa agtgtgtgat caaagcatat ttcc 1194

<210> 6
<211> 1081
<212> DNA
<213> *Arabidopsis thaliana*

<400> 6
 caaatccaaac agttcaagat gaaagaaaatt cagtcagtag cagccaaagca gaagtatctc 60
 actctaaacac atacaaaacgg tggctcagga gtatactatg acaacggagg aaacagtaaa 120
 tggcttagcaa cggtagttca acttgggtgc tttctgtgc tacttcata ttatatctt 180
 tcattttaaaa cacatgcaac aactgtataga gatggaaaaaa gaacctcacc taggaaccgt 240
 gtattggttt acgtatgtct tggacttctt gttagggcag attgctatct gtactccatt 300
 ggacttctttt acttaccctgt ttctacccat tccctgtatct gtgcacatc gttagccttc 360
 aatgctttct tctcttattt tcttaactca caaaaactta cccctatcat tttaattct 420
 ctttcctcc taactatatac ttccacccata cttgcattca ataatgagga gacagactcc 480
 acaaaaaggta caaaaaggaga gtatgtcaaa ggtttcatat gcaccgttgc tgcgtctgct 540
 ggttatggtc tagtcttatac cttacaacag ctggcttcc taaaagtccct aaagaagcaa 600
 aatttctcag aagttatggat tatgataatc tacgtgagtc tagtggccag ttgtgttagc 660
 gtggtggggc ttttgcttag cagtggatgg aaaactttga gcagtggaaat ggataactac 720
 aaacatggga aggtatccata cattatgaac ctgtgtggc cagctgttac ctggcaggta 780
 ttctccatcg gtggcacagg actgatcttc gagctcttcc ctctattctc aaatgcaata 840

2000-07-10 10:20:00

agcgtttgg gactcccagt ggtcctatac ttggctgtaa tcatttcca tgacaaaatg 900
 aatgggttaa agtgatttc tatgatccata gctatttggg gtttcacttc ctatgtctac 960
 caacaatatac ttgatgacaa aaacttgaag aaaaatcatg aaatcacaac aacagaatcc 1020
 cctgaccac cagaaggcaga agagtcaact tggcaatcaa aataagctga tattttgaaa 1080
 g 1081

<210> 7 -

<211> 1071

<212> DNA

<213> Arabidopsis thaliana

<400> 7

gagggggatt ccacatctac tatgaagggg gatcaagaag tacaagtcat tggccaatca 60
 gttgctacaa ttctggcag actatactat gaaaatggag gaaacagcaa atggctagca 120
 acggtagttc agctttagg ctttcattt ctacttccat atcatcttt gtcagtcaaa 180
 acacatacaa caactcagag agatggcaaa ttaacctcac ttaggaaccg tgcattagtt 240
 tacatagtgc ttggacttct tgttaggagca gcttgcattc tatattccat tggactgctt 300
 tacctacctg ttcttaccct ttccctgatc tttgcacatc agttacccctt caccgcttc 360
 ttcttcttatt tactcaactc acaaaaactt actcctatca ttttgaatcc tctttccctc 420
 ctcactatac ctccacccct cttgcattt aataacgagg aatcagattc caaaaaagtt 480
 acaaaaaggag agtatgtcaa aggttcgta tgcaccgtt gtgcacatgc tgggtttgg 540
 ctactcttacccatccatca aactttctca 600
 gaagttataa atatgataat ctacatgagt ctatggcca gttgtttag cgtgggggg 660
 cttttgcta gtacgagtg gaaaactttt acagtgaaa tggaaaacta caaacttggg 720
 aaggtagttt atgtcatgaa cctagtggtt acagctgtt cctggcaggatttccatc 780
 ggttgcacag gactgatctt cgagcttcc tccctattct caaatgcaat aagcgcttt 840
 ggactccccg tgttcctat cctggctgtc atcatttcc atgacaaaat gaaacggctta 900
 aaggtagttt ctatgattct agtatttttgg gtttcgtat cctatgtcta ccaacaatat 960
 cttgatgaaa caaacattgaa gaaaagtaat gaaataccaa caacagaatc ccctgaccga 1020
 ccagaaggcag aagggtcaag tgagcaatca aaataagctg ttacttcaaa g 1071

<210> 8

<211> 356

<212> PRT

<213> Arabidopsis thaliana

<400> 8

Met	Lys	Asn	Gly	Leu	Ile	Ile	Ile	Asn	Cys	Ile	Ile	Leu	Thr	Ile	Gly
1															15

Thr	Cys	Gly	Gly	Pro	Leu	Leu	Thr	Arg	Leu	Tyr	Phe	Thr	Asn	Gly	Gly
															30
				20				25							

Lys	Arg	Ile	Trp	Phe	Met	Ser	Phe	Leu	Ser	Thr	Ala	Gly	Phe	Pro	Ile
															45
					35			40							

Ile	Leu	Ile	Pro	Leu	Leu	Val	Ser	Phe	Leu	Ser	Arg	Arg	Gly	Asn
											50	55	60	

Arg	Asn	Pro	Asn	Asn	Ala	Glu	Asn	Lys	Arg	Lys	Thr	Lys	Leu	Phe	Leu
															80
											65	70	75		

Met	Glu	Thr	Pro	Leu	Phe	Ile	Ala	Ser	Ile	Val	Ile	Gly	Leu	Leu	Thr
															95
											85	90			

Gly	Leu	Asp	Asn	Tyr	Leu	Tyr	Ser	Tyr	Gly	Leu	Ala	Tyr	Leu	Pro	Val
															110
											100	105			

DRAFT Sequence Database

Ser Thr Ser Ser Leu Ile Ile Gly Thr Gln Leu Ala Phe Asn Ala Leu
 115 120 125

Phe Ala Phe Leu Leu Val Lys Gln Lys Phe Thr Pro Phe Ser Ile Asn
 130 135 140

Ala Val Val Leu Leu Thr Val Gly Ile Gly Ile Leu Ala Leu His Ser
 145 150 155 160

Asp Gly Asp Lys Pro Ala Lys Glu Ser Lys Lys Glu Tyr Val Val Gly
 165 170 175

Phe Leu Met Thr Val Val Ala Ala Leu Leu Tyr Ala Phe Ile Leu Pro
 180 185 190

Leu Val Glu Leu Thr Tyr Lys Lys Ala Arg Gln Glu Ile Thr Phe Pro
 195 200 205

Leu Val Leu Glu Ile Gln Met Val Met Cys Leu Ala Ala Thr Phe Phe
 210 215 220

Cys Val Ile Gly Met Phe Ile Val Gly Asp Phe Lys Val Ile Ala Arg
 225 230 235 240

Glu Ala Arg Glu Phe Lys Ile Gly Gly Ser Val Phe Tyr Tyr Ala Leu
 245 250 255

Ile Val Ile Thr Gly Ile Ile Trp Gln Gly Phe Phe Leu Gly Ala Ile
 260 265 270

Gly Ile Val Phe Cys Ala Ser Ser Leu Ala Ser Gly Val Leu Ile Ser
 275 280 285

Val Leu Leu Pro Val Thr Glu Val Phe Ala Val Val Cys Phe Arg Glu
 290 295 300

Lys Phe Gln Ala Glu Lys Gly Val Ser Leu Leu Ser Leu Trp Gly
 305 310 315 320

Phe Val Ser Tyr Phe Tyr Gly Glu Phe Lys Ser Gly Lys Lys Val Val
 325 330 335

Asp Lys Pro Gln Pro Pro Glu Thr Glu Leu Pro Ile Leu Pro Val Ser
 340 345 350

Asp Tyr Val Ala
 355

<210> 9
 <211> 352
 <212> PRT
 <213> Arabidopsis thaliana

<400> 9
 Met Val Lys Ala Leu Val Ile Ile Asn Cys Ile Ile Leu Ala Ile Gly
 1 5 10 15
 Asn Cys Gly Gly Pro Leu Ile Met Arg Leu Tyr Phe Asn Asn Gly Gly
 20 25 30
 Lys Arg Ile Trp Phe Ser Thr Phe Leu Glu Thr Ala Gly Phe Pro Val
 35 40 45
 Ile Phe Ile Pro Leu Leu Phe Ser Tyr Ile Thr Arg Arg Arg Ser Asn
 50 55 60
 Asn Val Gly Asp Ser Thr Ser Phe Phe Leu Ile Lys Pro Arg Leu Leu
 65 70 75 80
 Ile Ala Ala Val Ile Val Gly Ile Leu Ser Gly Phe Asp Asn Tyr Leu
 85 90 95
 Tyr Ala Tyr Gly Ile Ala Tyr Leu Pro Val Ser Thr Ala Ala Leu Ile
 100 105 110
 Ile Ala Ser Gln Leu Ala Phe Ile Ala Ile Phe Ser Phe Phe Met Val
 115 120 125
 Lys His Lys Phe Thr Pro Phe Thr Ile Asn Ala Val Val Leu Leu Thr
 130 135 140
 Val Gly Ala Ala Val Leu Gly Met His Thr Glu Thr Asp Lys Pro Val
 145 150 155 160
 His Glu Thr His Lys Gln Tyr Ile Thr Gly Phe Leu Ile Thr Val Ala
 165 170 175
 Ala Ala Val Met Tyr Ala Phe Ile Leu Pro Leu Val Glu Leu Ala Tyr
 180 185 190
 Gln Lys Ala Lys Gln Thr Met Ser Tyr Thr Leu Val Leu Glu Phe Gln
 195 200 205
 Leu Ile Leu Cys Leu Leu Ala Ser Ile Val Ser Val Ile Gly Met Phe
 210 215 220
 Ile Ala Gly Asp Phe Lys Gln Ala Leu Pro Lys Glu Ala Arg Glu Phe
 225 230 235 240
 Lys Leu Gly Glu Ala Leu Phe Tyr Val Val Ala Val Phe Ser Ala Ile
 245 250 255
 Ile Trp Gln Gly Phe Phe Leu Gly Ala Ile Gly Leu Ile Phe Ser Thr
 260 265 270
 Ser Ser Leu Val Ser Gly Ile Met Ile Ser Val Leu Leu Pro Ile Thr
 275 280 285
 Glu Val Leu Ala Val Ile Phe Tyr His Glu Lys Phe Gln Ala Glu Lys
 290 295 300

DRAFT - NOT FOR FILING

Gly Leu Ser Leu Ala Leu Ser Leu Trp Gly Phe Val Ser Tyr Phe Tyr
 305 310 315 320

Gly Glu Ile Lys Ser Gly Glu Asp Lys Arg Arg Ile Gln Gln Glu Glu
 325 330 335

Ser Gln Glu Thr Glu Gln Ser Ser Leu Ser Arg Pro Ile Ser Glu Cys
 340 345 350

<210> 10

<211> 1067

<212> DNA

<213> Arabidopsis thaliana

<400> 10

agacaagaat ggtgaaggct cttgtgatca taaactgcat aattctagcc ataggaaaact 60
 gtggagggtcc ttgttattatc cgtctctact tcaacaatgg cggttaaaagg atttggttct 120
 ctacgtttct tggaaactgca ggctttctcg ttatcttcat tcctctgttc ttctcttaca 180
 ttaccggcg cagaagcaac aatgtgggtg atagtacaag ttctttctt atcaaaccgc 240
 gtcttcttat cgccgctgtt attgttaggca ttctctcagg gtttgataac tacttgtatg 300
 catatggtat agcttatctt ccagttctca cagctgctct tatcatgtct tcacagtttag 360
 cttttatacg tatcttctca ttcttcatgg taaaacataa gttcactcct ttaccatca 420
 atgctgttgt gttgttact gttgggtctcg cggtttggg aatgcataacc gaaactgata 480
 agccagttca tgagactcac aagcagtaca taactggttt ctgtattact gttagcagcag 540
 ctgttatgtt tgctttcatc ttgccattag tgaacttgc ttaccagaaa gctaagcaaa 600
 ccatgagcta tacccttggc ctcgagttcc agttgatttt gtgtctctt gcttctattg 660
 tcagcgcat cgttatgttc atcgctggtg atttcaagca ggccttacca aaagaagcaa 720
 gagagtccaa gcttggagag gcattgtct atgtgggtgc tgtgtttca gccatcatat 780
 ggcaaggctt ctcttggga gccattggat taatcttctc cacatgtct ctcgtctcgg 840
 gtattatgtt atcagtgctt ttgccaattt cagaggtttt agctgttata ttctaccatg 900
 aaaagttca agctgagaag ggactttctc ttgctctctc ccttggggc ttgtctctt 960
 acttttatgg tgagataaaag tctggcgagg ataaaaaggag aattcagcag gaggagagtc 1020
 aggagacaga acaatcttctt tgtaaagac ccataagtga gtgttaa 1067

<210> 11

<211> 29

<212> PRT

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz: Motif 1

<220>

<221> SITE

<222> (4)

<223> Xaa= G, A, I, V, L, M, Y, F, W, P, S oder T

<220>

<221> SITE

<222> (7)

<223> Xaa= G, A, I, V, L, M, Y, F, W, P, S oder T

<220>
<221> SITE
<222> (14)
<223> Xaa= beliebige Aminosäure

<220>
<221> SITE
<222> (18)..(20)
<223> Xaa= beliebige Aminosäure

<220>
<221> SITE
<222> (25)
<223> Xaa= T oder N

<220>
<221> SITE
<222> (27)
<223> Xaa= I oder F

<400> 11
Leu Tyr Ala Xaa Gly Leu Xaa Tyr Leu Pro Val Ser Thr Xaa Ser Leu
1 5 10 15

Ile Xaa Xaa Xaa Gln Leu Ala Phe Xaa Ala Xaa Phe Ser
20 25

<210> 12
<211> 25
<212> PRT
<213> Künstliche Sequenz

<220>
<223> Beschreibung der künstlichen Sequenz:Motif 2

<220>
<221> SITE
<222> (3)
<223> Xaa= G, A, I, V, L, M, Y, F, W, P, S oder T

<220>
<221> SITE
<222> (9)
<223> Xaa= L oder E

<220>
<221> SITE
<222> (10)
<223> Xaa= beliebige Aminosäure

<220>
<221> SITE
<222> (16)
<223> Xaa= G oder N

WO 00/49152

<220>
<221> SITE
<222> (18) .. (22)
<223> Xaa= G, A, I, V, L, M, Y, F, W, P, S oder T

<400> 12
Leu Gly Xaa Val Gly Leu Ile Phe Xaa Xaa Ser Ser Leu Phe Ser Xaa
1 5 10 15

Val Xaa Xaa Xaa Xaa Xaa Leu Pro Val
20 25

<210> 13
<211> 14
<212> PRT
<213> Künstliche Sequenz

<220>
<223> Beschreibung der künstlichen Sequenz: Motif 3

<220>
<221> SITE
<222> (4)
<223> Xaa= S oder A

<220>
<221> SITE
<222> (9)
<223> Xaa= G, A, I, V, L, M, Y, F, W, P, S oder T

<220>
<221> SITE
<222> (12)
<223> Xaa= G, A, I, V, L, M, Y, F, W, P, S oder T

<220>
<221> SITE
<222> (14)
<223> Xaa= Q oder S

<400> 13
Leu Leu Leu Xaa Ile Trp Gly Phe Xaa Ser Tyr Xaa Tyr Xaa
1 5 10