Formúlublað - Stærðfræði 2

Heildarafleiða falls $f: \mathbb{R}^n \to \mathbb{R}$ í vigrinum \mathbf{x} er kallaður **stigull** og er gefin með

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f}{\partial x_1}(\mathbf{x}) \ \frac{\partial f}{\partial x_2}(\mathbf{x}) \ \dots \ \frac{\partial f}{\partial x_n}(\mathbf{x})\right)$$

og önnur afleiða f í $\mathbf{x} \in \mathbb{R}^n$ er gefin með Hesse-fylki f í $\mathbf{x} \in \mathbb{R}^n$,

$$H = \begin{pmatrix} \nabla \frac{\partial f}{\partial x_1}(\mathbf{x}) \\ \nabla \frac{\partial f}{\partial x_2}(\mathbf{x}) \\ \vdots \\ \nabla \frac{\partial f}{\partial x_n}(\mathbf{x}) \end{pmatrix} = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1}(\mathbf{x}) & \frac{\partial^2 f}{\partial x_2 \partial x_1}(\mathbf{x}) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_1}(\mathbf{x}) \\ \frac{\partial^2 f}{\partial x_1 \partial x_2}(\mathbf{x}) & \frac{\partial^2 f}{\partial x_2 \partial x_2}(\mathbf{x}) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_2}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_n}(\mathbf{x}) & \frac{\partial^2 f}{\partial x_2 \partial x_n}(\mathbf{x}) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n}(\mathbf{x}) \end{pmatrix}$$

Heildarafleiða falls $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ í vigrinum \mathbf{x} er Jacobi-fylkið

$$D\mathbf{f}(\mathbf{x}) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{x}) & \frac{\partial f_1}{\partial x_2}(\mathbf{x}) & \cdots & \frac{\partial f_1}{\partial x_n}(\mathbf{x}) \\ \frac{\partial f_2}{\partial x_1}(\mathbf{x}) & \frac{\partial f_2}{\partial x_2}(\mathbf{x}) & \cdots & \frac{\partial f_2}{\partial x_n}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(\mathbf{x}) & \frac{\partial f_m}{\partial x_2}(\mathbf{x}) & \cdots & \frac{\partial f_m}{\partial x_n}(\mathbf{x}) \end{pmatrix}.$$

Stefnuafleiða falls $f: \mathbb{R}^n \to \mathbb{R}$ í punktinum **x** í stefnu einingavigursins **u** er

$$D_{\mathbf{u}}f(\mathbf{x}) = \mathbf{u} \bullet \nabla f(\mathbf{x}).$$

Keðjureglan fyrir föll $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ og $\mathbf{g}: \mathbb{R}^m \to \mathbb{R}^p$. Ef \mathbf{f} er diffranlegt í $\mathbf{a} \in \mathbb{R}^n$ og \mathbf{g} er diffranlegt í $\mathbf{f}(\mathbf{a}) \in \mathbb{R}^m$, þá er samskeytta fallið $\mathbf{g} \circ \mathbf{f}: \mathbb{R}^n \to \mathbb{R}^p$, $(\mathbf{g} \circ \mathbf{f})(\mathbf{x}) = \mathbf{g}(\mathbf{f}(\mathbf{x}))$ diffranlegt í $\mathbf{a} \in \mathbb{R}^n$ og heildarafleiðan er

$$[D(\mathbf{g} \circ \mathbf{f})](\mathbf{a}) = [D\mathbf{g}(\mathbf{f}(\mathbf{a}))][D\mathbf{f}(\mathbf{a})].$$

Útgildi falla

Fall $f: \mathbb{R}^n \to \mathbb{R}$ hefur útgildi í $\mathbf{x} \in \mathbb{R}^n$ ef $\nabla f(\mathbf{x}) = \mathbf{0}$. Nú gildir:

- (i) Ef Hesse-fylki f í \mathbf{x} hefur öll eigingildi > 0, þá hefur f staðbundið lággildi í \mathbf{x} .
- (ii) Ef Hesse-fylki f í \mathbf{x} hefur öll eigingildi < 0, þá hefur f staðbundið hágildi í \mathbf{x} .
- (iii) Ef Hesse-fylki f í \mathbf{x} hefur a.m.k. eitt eigingildi < 0 og a.m.k. eitt eigingildi > 0, þá hefur f hvorki staðbundið hágildi né staðbundið lággildi í \mathbf{x} . (hér er \mathbf{x} kallað söðulpunktur (e. saddle point) f).

Snertiplan

Fall z = f(x, y) hefur snertiplanið

$$z = f(a,b) + \frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-b).$$

í punktinum (a, b).

Línuleg nálgun

Besta línulega nálgun við fallið $\mathbf{f}:\mathbb{R}^n\to\mathbb{R}^m$ í nágrenni \mathbf{z} er

$$\mathbf{y}(\mathbf{x}) = [D\mathbf{f}(\mathbf{z})](\mathbf{x} - \mathbf{z}) + \mathbf{f}(\mathbf{z})$$

þar sem $D\mathbf{f}$ er heildarafleiða fallsins \mathbf{f} .

Bogalengd

Lengd ferilsins $\mathcal C$ í $\mathbb R^n$ sem er stikaður með $\mathbf r:[a,b]\to\mathbb R^n$ er

$$|\mathcal{C}| = \int_{a}^{b} ||\mathbf{r}'(t)|| dt.$$

Ferilheildi

Heildi fallsins $f:\mathbb{R}^n \to \mathbb{R}$ eftir ferlinum \mathcal{C} í \mathbb{R}^n sem er stikaður með $\mathbf{r}:[a,b] \to \mathbb{R}^n$ er

$$\int_{\mathcal{C}} f(\mathbf{x}) ds = \int_{a}^{b} f(\mathbf{r}(t)) \|\mathbf{r}'(t)\| dt$$