MIDTERM 2

COLTON GRAINGER (MATH 6130 ALGEBRA)

1. DUE 2018-11-16 AT 9:00AM

1.1. Subgroups of a symmetric group. Find explicit generators for subgroups of the symmetric group S_7 that are isomorphic to each of the groups (a) $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ (b) $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and (c) D_8 . Show also that S_7 has no subgroup isomorphic to $\mathbb{Z}/8\mathbb{Z}$ or Q_8 .

Demonstration. By inspection:

- $C_2 \times C_4 \cong \langle (12), (3456) \rangle$
- $C_2 \times C_2 \times C_2 \cong \langle (12), (34), (56) \rangle$
- $D_8 \cong \langle (1234), (12)(34) \rangle$

The integer partitions of 7 correspond bijectively to the disjoint cycle types (i.e., conjugacy classes) of the 7! elements of S_7 . The order of an element of a given cycle type is the least common multiple of the disjoint cycle lengths. We list the integer partitions of 7 explicitly

integer partition	least common multiple
7	7
6, 1	6
5, 1, 1	5
5, 2	10
4, 1, 1, 1	4
4, 2, 1	4
4,3	12
3, 1, 1, 1, 1	3
3, 2, 1, 1	6
3, 2, 2	6
3, 3, 1	3
2, 1, 1, 1, 1, 1, 1	2
2, 2, 1, 1, 1	2
2, 2, 2, 1	2
1, 1, 1, 1, 1, 1, 1	1

- Because S_7 has no element x of order 8, there cannot exist $H \leq S_7$ such that $H \cong C_8$.
- Q_8 has 3 normal subgroups of order 4 each pairwise incomparable under the relation "is a subgroup of", i.e., " \leqslant ". Since normal subgroups are unions of conjugacy classes, a subgroup H of S_7 could only have 2 normal subgroups of order 4 incomparable under the relation \leqslant . Should an isomorphism from $H \leqslant S_7$ to Q_8 exist, the lattice isomorphism theorem would produce a contradiction, as the relation \leqslant is preserved under isomorphism (as well as the order of subgroups and their embedded normality). \square

Date: 2018-11-15. Compiled: 2018-11-16. 1.2. **Transitive group actions.** Given. Suppose G acts transitively on sets X and Y, where 1 < |X| < |Y| = p and p is prime.

To prove. G is not simple.

Proof. For contradiction, suppose G is a simple group. Since G acts transitively on X, where |X| > 1, there's a nontrivial permutation representation $\pi \colon G \to S_X \cong S_n$. Now $\ker \pi \triangleleft G$ is a proper normal subgroup of the simple group G, so we must have $\ker \pi = \{1\}$. Since π is injective, we identify G with its image as a permutation group:

$$G \leqslant S_n$$
.

Let $y \in Y$. By orbit-stabilizer,

$$|G| = |G(y)| \cdot |Stab_G(y)|$$
.

G acts transitively on Y, so G(y) = Y. Thus

|G| is divisible by |Y|.

Whence the contradiction: |Y| = p is a prime strictly greater than n, yet

 $G \leqslant S_n$ implies, by Lagrange, $p \mid n!$ and this is absurd.

So G cannot be simple. \square

1.3. A homomorphism into a solvable group. Given. Let G be a finite group with a normal subgroup $N \triangleleft G$, and suppose $\theta \colon G \to H$ is a group homomorphism into a solvable group H. Suppose the commutator subgroup of G/N is itself.

To prove. $\theta(G) = \theta(N)$.

Proof. θ induces $\phi \colon G/N \to \theta(g)\theta(N)$ such that

$$gN \mapsto \theta(g)\theta(N)$$
.

Observe:

• ϕ is well defined. Let $g,h\in G$. Say gN=hN. Then $h^{-1}g\in N$. Under the homomorphism θ , we see $\theta(h^{-1}g)\in \theta(N)$,

so
$$\theta(q) \in \theta(h)\theta(N)$$
. Thus

$$\theta(g)\theta(N) = \theta(h)\theta(N)$$
.

• φ is a homomorphism. For each $gN, hN \in G/N$, we have

$$\phi(ghN) = \theta(gh)\theta(N) = \theta(g)\theta(N) \cdot \theta(h)\theta(N) = \phi(gN)\phi(hN).$$

 \bullet ϕ is surjective immediately from its definition.

Now $\theta(G) \leqslant H$ implies $\theta(G)$ is solvable (it's a subgroup of a solvable group). There's a natural epimorphism from $\theta(G)$ to $\theta(G)/\theta(N)$. So

 $\theta(G)/\theta(N)$ is solvable (it's homomorphic image of a solvable group).

Under the hypothesis that [G/N, G/N] = G/N, we have

$$\theta(G)/\theta(N) = \varphi(G/N) = \varphi([G/N, G/N]) = [\varphi(G/N), \varphi(G/N)] = [\theta(G)/\theta(N), \theta(G)/\theta(N)].$$

Since $\theta(G)/\theta(N)$ is solvable, its derived series must stabilize at $\{1\}$. So $\theta(G)/\theta(N)=\{1\}$. Thus $\theta(G)=\theta(N)$. \square

1.4. A semi-direct product. Given. Let $G = H \ltimes U$ be a finite group for groups H and U. Let p be prime.

To prove.

- (a) If $Syl_{\mathfrak{p}}(G) \cap Syl_{\mathfrak{p}}(U) \neq \emptyset$, then $Syl_{\mathfrak{p}}(G) = Syl_{\mathfrak{p}}(U)$.
- (b) If $Syl_{\mathfrak{p}}(G) \cap Syl_{\mathfrak{p}}(U) \neq \emptyset$ and gcd(|H|, |U|) = 1, then:

H acts transitively on $Syl_{\mathfrak{p}}\left(G\right)$ if and only if $Q\triangleleft U$ for some $Q\in Syl_{\mathfrak{p}}\left(G\right)$.

Proof.

(a) Say $P \in Syl_p(G) \cap Syl_p(U)$. Now G acts transitively on its Sylow p-subgroups by conjugation, so

$$Syl_{p}(G) = \{gPg^{-1} : g \in G\}.$$

To argue $\text{Syl}_p(G) \subset \text{Syl}_p(U)$. As $U \triangleleft G$, we know for all $g \in G$ that $gPg^{-1} \cap U \in \text{Syl}_p(U)$. Being conjugates in U, and considering finite order,

$$|gPg^{-1}| = |P| = |gPg^{-1}|.$$

It follows that $gPg^{-1}\cap U=gPg^{-1}$, hence $Syl_p\left(G\right)\subset Syl_p\left(U\right)$. The other inclusion is obvious by recognizing that if $|P|=p^k$, then each $P_i\in Syl_p\left(G\right)$ also has order p^k , and is thus in $Syl_p\left(G\right)$.

(b) (\Leftarrow) If $Q \triangleleft U$, then $1 = n_p(U) = n_p(G)$. We see H acts transitively (trivially) on the singleton set $Syl_p(G)$. (\Rightarrow) Say that H acts transitively on $Syl_p(G)$. It's true as well that U acts transitively on $Syl_p(U)$ (which is identically $Syl_p(U)$).

Let $Q \in \text{Syl}_p(G)$. We compute the cardinal number of the orbit of Q under the action of H and U respectively:

$$n_{\mathfrak{p}}(G) = \frac{|H|}{|N_{H}\left(Q\right)|} \quad \text{and} \quad n_{\mathfrak{p}}(G) = \frac{|U|}{|N_{U}\left(Q\right)|}.$$

So the cardinal number of the orbit of Q (which is the number of Sylow p-subgroups of both U and G) divides both |H| and |U|. Since gcd(|H|,|U|)=1, it must be that Q is the only Sylow p-subgroup in U (and, also, the only one in G). We conclude $Q \triangleleft U$. \square

1.5. **No simple group of order** 120. *Given.* Suppose G is a group of order 120.

To prove. G cannot be simple.

Proof. Suppose for contradiction G is simple. As $|G| = 2^3 \cdot 3 \cdot 5$, by Sylow we have:

- The minimal permissible index of a proper subgroup of G is 5,
 - that is, $5 = min\{k \in \mathbf{N} : |G| \mid k!\};$
- The number of Sylow p-groups must be
 - $n_5 = 6$,
 - $n_3 \in \{10, 40\}$,
 - $n_2 \in \{5, 15\}.$

We consider $n_5=6$ to obtain a contradiction. Let $H_5\in Syl_5\left(G\right)$. Then G acts transitively by conjugation on $G/N_G\left(H_5\right)$. I assert

$$G \leqslant S_6$$

by identifying G with its image in S_6 afforded by the (necessarily injective) permutation representation $G \to S_6$. As G has no subgroup of index 2, $G \leqslant A_6$. Since $|A_6| = 6!/2$, it's the case that Sylow 5-subgroups of G coincide with Sylow 5-subgroups of A_6 . It follows that

$$N_{A_{6}}(H_{5}) \geqslant N_{A_{6}}(H_{5}) \cap G = N_{G}(H_{5})$$
.

Now, the number of Sylow 5-subgroups of S_6 is given by the number of 5-cycles divided by the number of p-cycles in a Sylow p-subgroup. In particular,

$$|N_{A_6}(H_5)| = \frac{1}{2} |N_{S_6}(H_5)| = 10.$$

Yet also $n_5(G) = 6$ is the index of the normalizer of H_5 in G, hence

$$|N_G(H_5)| = 20.$$

But $N_G(H_5)$ of order 20 cannot be contained in a group of order 10—the desired contradiction.

We conclude n_5 cannot be 6 for a simple group G of order 120. So no such simple group G exists. \square

1.6. Comaximal Ideals. Given. Let R = I + J be a commutative ring with identity where I and J are two ideals.

To prove.

- (a) $IJ = I \cap J$.
- (b) There are instances where $I + J \neq R$ and $IJ \neq I \cap J$.

Proof.

- (a) To verify IJ is an ideal contained in $I \cup J$.
 - IJ is nonempty and closed under addition, following immediately from IJ's definition.

• IJ is closed under multiplication, for let
$$\sum_{1}^{n} x_i y_i \in IJ$$
 and $r \in R$.

- Then $r \sum_{1}^{n} x_i y_i \sum_{1}^{n} \underbrace{(rx_i)}_{\in I} y_i \in IJ$.

- So IJ is an ideal.
- As I,J are ideals, we have $\sum_{i=1}^{n}\underbrace{x_{i}y_{i}}_{\in I\cup J}\in I\cup J.$
- Thus $IJ \subset I \cup J$.

To verify that $I \cap J = IJ$, we require the hypotheses that R is a commutative unital ring with comaximal ideals I and J.

- Let $z \in I \cap J$.
- As I+J=R, we may find $e_I\in I$ and $e_J\in J$ such that $e_I+e_J=1$.
- Since I + J contains IJ, $z \in I + J$.
- Then $z = z \cdot 1 = ze_{\mathsf{I}} + e_{\mathsf{I}}z \in \mathsf{IJ}$.
- So $I \cap J \subset IJ$.
- (b) Consider $R=\mathbf{Z}$ and $I=J=n\mathbf{Z}$ for $n\in\mathbf{Z}_{\geqslant 2}$. Since gcd(n,n)=n, we have $n\mathbf{Z}+n\mathbf{Z}=n\mathbf{Z}\neq\mathbf{Z}$. Furthermore $IJ = n^2 \mathbb{Z}$, yet $I \cap J = n \mathbb{Z}$. \square