

International Building Performance Simulation Association

Work Package 2.2 - Building Information Modeling (BIM)

Web Meeting, 07 May 2021

Goal

- Development of two main components: 1) Python Kernel as simulation preprocessor
 - 2) C++ Space Boundary Generator
- To complete tool chain, usage of existing tools, e.g., IfcCheckingTool

Progress in several subprocesses of the kernel, e.g.

- Restruction of kernel code to improve readability, modularization and performance
- Improvements in catching IFC-Enumeration types for various objects
- Improvement of data enrichment (e.g. simplification of required user input)
- Usage of space boundaries in TEASER preprocessing
- Verification of generated simulation models
- Intense testing of multiple use case files
- Improved geometric handling of IFC space boundaries in the kernel (e.g. inner loops in slabs)

Progress in several subprocesses of the space boundary generation, e.g.

- Intense testing of multiple use case files
- Increasing performance of space boundary generation
- Extension of attribution for generated space boundaries (IFC4 enumerations as "corresponding" and "parent" boundaries)
- Usage of provided IFC4 enumerations in Kernel preprocessing
- Export of first and second level space boundaries with new IFC4 types
- Simplification of agglomerated building elements

Progress in HVAC

- Further methods in recognition and aggregation of HVAC systems in IFC
 - Expansion tank identification
 - Dead end identification
 - Generator aggregation
 - Consumer aggregation

- Development of module based heat generators in modelica which are not manufacturer dependent
- Based on preprocessed SDF tables to reduce computional effort and cover large range of devices

Toolchain Example

Toolchain Example – Data Requirements

Space boundary generation

- Architectural IFC4 model in Design Transfer View
- Gaps allowed to some extent
- (Spaces)

Preprocessing Kernel

- IFC4
- Geometric representation (mandatory)
- Correct property sets and layer structure (optional)
- IfcSpaces
- Space Boundaries (2nd Level)

Current state

- Space boundary generation relies on few requirements
- Kernel handles IFC4 space boundary data

Further development

 Space boundary generation could include heuristics to decrease requirement level

Toolchain Example – Space Boundary Generation

First level

Second level

Internal 2a

Internal 2b

Boundaries with parents

Related to space

Product level

Current state

- All IFC4 space boundary classes and attributes supported
- Successful generation tested for multiple use case files
- Modular approach allows extension

Further development

- Ensure robustness
- Enhance performance
- Further testing with other use case files
- Allow virtual boundaries using space geometry information

Toolchain Example – Simulation Preprocessing

Load IFC

Inspection

Inspect IFC

Inspect Thermal Zones

Verification and Enrichment

Use Conditions

Material

Building

Finalization

Dissaggreagte building elements

Aggregate thermal zones

Current state

 Modular preprocessing and data enrichment

Further development

- Improve robustness + performance
- Further testing with other use case files
- Consider virtual space boundaries
- Usage of all IFC4 Space Boundary attributes if provided

Toolchain Example – Model Export and Simulation

Current state

- Successful generation tested for multiple use case files
- epJSON Export

Further development

- Ensure robustness
- Enhance performance
- Further testing with other use case files
- Consider Virtual Space Boundaries
- Shadings

Prospect

Goal for autumn meeting 2021

- Space Boundary generation algorithm ready for more building files
- Rework kernel structure to clearly seperate IfcRelatedElements and IfcProducts
- Consider all provided IFC4 Space Boundary attributes in TEASER and EnergyPlus workflows
- Make python code accessible
- Inspection of multiple different building types to verify and enhance toolchain
- Full integrated export of AixLib modelica in HVAC toolchain working for demo cases
- WebUI fully functional