Chapter 1

1 What is an algorithm

An algorithm is a sequence of computational steps that transforms an input into an output, generally to solve a well-defined computational problem.

What is a data structure

Data structures are a way to store and organize data in memory to facilitate efficient access and modification (e.g., to enhance the speed of an algorithm).

3 How to quantitatively measure algorithm efficiency

Intuitively, it takes c units of time to perform a given computational operation. Typically the number of operations required by an algorithm corresponds to the size of the input n; therefore, algorithmic efficiency is expressed as a function of input size.

For instance, to sort n integers in increasing order, the *insertion sort* algorithm takes $c \cdot n^2$ units time, whereas the *merge sort* takes $c \cdot n \lg n$. Comparably speaking then, the $n \lg n$ algorithm will outperform the n^2 algorithm for large input sizes n.

There's an entire mathematical notation for identifying and comparing these input-efficiency functions for algorithms, called *asymptotic notation*; it's discussed at length in chapter 3.

	1 second	1 minute					1 century
$\lg n$	2^{10^6}	2^{10^7}	2^{10^9}	$2^{10^{10}}$	$2^{10^{12}}$	$2^{10^{13}}$	$2^{10^{15}}$
\sqrt{n}							
n							
$n \lg n$							
n^2							
n^3							
2^n							
n!							