Tutorial solutions for Chapter 6

Sometimes there are other correct answers.

6.1. (a)

(b) Yes, this R is an equivalence relation: as one can verify exhaustively, it is reflexive, symmetric, and transitive.

The equivalence classes are $\{a, b, c\}$ and $\{d\}$ and $\{e\}$.

(c) No, this R is **not a partial order**. It is not antisymmetric because, for example, we have $(a, b) \in R$ and $(b, a) \in R$, but $a \neq b$. As R is not antisymmetric, it cannot be a partial order.

No, this R is **not a total order**, because it is not even a partial order.

Moral. It is often helpful to draw a diagram.

6.2. (a) R is **reflexive** because $xx = x^2 \ge 0$ for all $x \in \mathbb{Q}$.

R is **symmetric** because $xy \ge 0$ implies $yx \ge 0$ for all $x, y \in \mathbb{Q}$.

R is **not antisymmetric** because $1 \times 2 \ge 0$ and $2 \times 1 \ge 0$ but $1 \ne 2$, for instance. R is **not transitive** because $1 \times 0 \ge 0$ and $0 \times (-1) \ge 0$ but $1 \times (-1) = -1 < 0$, for instance.

(b)

S is **reflexive** because $x \leq x$ and $y \leq y$ for all $(x, y) \in \mathbb{R}^2$.

S is **not symmetric** because (1,1) S (2,2) but (2,2) \mathcal{S} (1,1), for instance.

S is **antisymmetric**. To see this, let $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$ such that (x_1, y_1) S (x_2, y_2) and (x_2, y_2) S (x_1, y_1) . The former implies $x_1 \leqslant x_2$ and $y_2 \leqslant y_2$, while the latter implies $x_2 \leqslant x_1$ and $y_2 \leqslant y_1$. Thus $x_1 = x_2$ and $y_1 = y_2$. Hence $(x_1, y_1) = (x_2, y_2)$.

S is **transitive**. To see this, let $(x_1, y_1), (x_2, y_2), (x_3, y_3) \in \mathbb{R}^2$ such that (x_1, y_1) S (x_2, y_2) and (x_2, y_2) S (x_3, y_3) . These imply $x_1 \leqslant x_2 \leqslant x_3$ and $y_1 \leqslant y_2 \leqslant y_3$. Thus $x_1 \leqslant x_3$ and $y_1 \leqslant y_3$. Hence (x_1, y_1) S (x_3, y_3) .

6.3.

(a) (Reflexivity) Let $(x, y) \in \mathbb{R}^2$. Then $3(x-x) = 3 \times 0 = 0 = y-y$. So (x, y) R(x, y). (Symmetry) Let $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$ such that $(x_1, y_1) R(x_2, y_2)$. In view of the definition of R, this means $3(x_1 - x_2) = y_1 - y_2$. Thus $3(x_2 - x_1) = y_2 - y_1$. So $(x_2, y_2) R(x_1, y_1)$ by the definition of R.

(Transitivity) Let $(x_1, y_1), (x_2, y_2), (x_3, y_3) \in \mathbb{R}^2$ such that $(x_1, y_1) R (x_2, y_2)$ and $(x_2, y_2) R (x_3, y_3)$. In view of the definition of R, this means $3(x_1 - x_2) = y_1 - y_2$ and $3(x_2 - x_3) = y_2 - y_3$. Thus

$$3(x_1 - x_3) = 3(x_1 - x_2) + 3(x_2 - x_3) = (y_1 - y_2) + (y_2 - y_3) = y_1 - y_3.$$

So $(x_1, y_1) R (x_3, y_3)$ by the definition of R.

As R is reflexive, symmetric and transitive, it is an equivalence relation.

(b) [(u,v)] is the straight line with slope 3 passing through the point (u,v) in the plane \mathbb{R}^2 .

Explanations.

$$\begin{split} [(u,v)] &= \{(x,y) \in \mathbb{R}^2 : (u,v) \; R \; (x,y)\} & \text{by the definition of } [(u,v)]; \\ &= \{(x,y) \in \mathbb{R}^2 : 3(u-x) = v - y\} & \text{by the definition of } R; \\ &= \{(x,y) \in \mathbb{R}^2 : y = 3x + (v-3u)\}. \end{split}$$

From this, we see that [(u, v)] is a straight line with slope 3. We know $(u, v) \in [(u, v)]$ by Lemma 6.3.5(1).

(c) Let $(u,v) \in \mathbb{R}^2$. Define c = v - 3u. Then v - c = v - (v - 3u) = 3u = 3(u - 0). So the definition of R tells us (u,v) R (0,c). Hence $(0,c) \in [(u,v)]$ by the definition of [(u,v)].

How one may find this c. Unravelling the definitions, we see that we want $c \in \mathbb{R}$ such that (u,v) R (0,c). This means 3(u-0)=v-c. Solving gives c=v-3u. What we showed here is that the only $c \in \mathbb{R}$ that can possibly make $(0,c) \in [(u,v)]$ is v-3u. As verified above, this choice of c actually works.

Additional comment. We do not need to explain how we found our c in a proof that such a c exists.

- 6.4. (\Rightarrow) Suppose $x \sim y$. We want to show [x] = [y].
 - $([x] \subseteq [y])$ Take $z \in [x]$. This means $x \sim z$ by the definition of [x]. As $x \sim y$, the symmetry of \sim tells us $y \sim x$. In view of the transitivity of \sim , having both $y \sim x$ and $x \sim z$ implies $y \sim z$. So $z \in [y]$ by the definition of [y].
 - $([y] \subseteq [x])$ This is essentially the same as the proof of the converse, except that we interchange x and y. Take $z \in [y]$. This means $y \sim z$ by the definition of [y]. In view of the transitivity of \sim , having both $x \sim y$ and $y \sim z$ implies $x \sim z$. So $z \in [x]$ by the definition of [x].
 - (\Leftarrow) Suppose [x] = [y]. Note $y \sim y$ by the reflexivity of \sim . So the definition of [y] tells us $y \in [y] = [x]$. So $x \sim y$ by the definition of [x].

Alternative proof using Lemma 6.3.5 and Lemma 6.3.6. (\Rightarrow) Suppose $x \sim y$. Then $y \in [x]$ by the definition of [x]. We also know $y \in [y]$ by Lemma 6.3.5(1). These tell us $y \in [x] \cap [y]$ and thus $[x] \cap [y] \neq \emptyset$. Hence [x] = [y] by Lemma 6.3.6.

- (\Leftarrow) Suppose [x] = [y]. Then Lemma 6.3.5(1) implies $y \in [y] = [x]$. So $x \sim y$ by the definition of [x].
- 6.5. (a) The symmetry of a relation R on A states that $\forall x, y \in A \ (x R y \Rightarrow y R x)$. The attempt claims that this implies $\forall x, y \in A \ (x R y \land y R x)$. This is not justified (and actually not true).
 - (b) One counterexample is the relation $R = \{(0,0)\}$ on the set $A = \{0,1\}$.

Explanation. The given proposition can be written semi-symbolically as

$$\forall$$
set $A \forall$ relation R on $A (Sym(A, R) \wedge Tran(A, R) \rightarrow Refl(A, R)),$

where $\operatorname{Sym}(A,R)$ stands for "R is a symmetric relation on A", etc. So a counterexample consists of a set A and a relation R on A which makes the conditional proposition

$$\operatorname{Sym}(A,R) \wedge \operatorname{Tran}(A,R) \to \operatorname{Refl}(A,R)$$

false. According to Example 1.4.23, the negation of this conditional proposition is

$$\operatorname{Sym}(A,R) \wedge \operatorname{Tran}(A,R) \wedge \neg \operatorname{Refl}(A,R).$$

The relation given above satisfies this: it is symmetric and transitive, as one can verify exhaustively, but it is not reflexive because $1 \in A$ but $(1,1) \notin R$.

Moral. The compound expressions $p \to q$ and $p \wedge q$, where p, q are propositional variables, are *not* equivalent, as one can verify using a truth table.

- 6.6. (a) This proposition is **false**. One counterexample is the relation $R = \{(0,0), (1,1)\}$ on the set $A = \{0,1\}$. It is both symmetric and antisymmetric, as one can verify exhaustively.
 - (b) This proposition is also **false**. One counterexample is the divisibility relation on \mathbb{Z} from Example 6.1.8 and Example 6.4.5.

Moral. Antisymmetry is not the negation of symmetry. In fact, it is neither a necessary nor a sufficient condition for the negation of symmetry.

6.7. Let P(n) be the predicate

there exist no $x_1, x_2, \ldots, x_n \in A$ satisfying $x_1 \neq x_2$ and

$$x_1 R x_2$$
 and $x_2 R x_3$ and ... and $x_{n-1} R x_n$ and $x_n R x_1$

over $\mathbb{Z}_{\geqslant 2}$.

- (Base step) The antisymmetry of R tells us there exist no $x_1, x_2 \in A$ satisfying $x_1 \neq x_2$ and $x_1 R x_2$ and $x_2 R x_1$. So P(2) is true.
- (Induction step) Let $k \in \mathbb{Z}_{\geqslant 2}$ such that P(k) is true, i.e., there exist no $x_1, x_2, \ldots, x_k \in A$ satisfying $x_1 \neq x_2$ and
 - $x_1 R x_2$ and $x_2 R x_3$ and ... and $x_{k-1} R x_k$ and $x_k R x_1$.

Suppose P(k+1) is false. This gives $x_1, x_2, \ldots, x_k, x_{k+1} \in A$ satisfying $x_1 \neq x_2$ and

 $x_1 R x_2$ and $x_2 R x_3$ and ... and $x_{k-1} R x_k$ and $x_k R x_{k+1}$ and $x_{k+1} R x_1$.

In view of the transitivity of R, the last two conditions imply x_k R x_1 . This, together with the rest of the conditions above, contradict the induction hypothesis. So P(k+1) is true.

Hence $\forall n \in \mathbb{Z}_{\geq 2}$ P(n) is true by MI.

Extra exercises

6.8. (a) R is **not reflexive** because $0 \times 0 = 0 \le 0$.

R is symmetric because xy > 0 implies yx >for all $x, y \in \mathbb{Q}$.

R is **not antisymmetric** because $1 \times 2 > 0$ and $2 \times 1 >$ but $1 \neq 2$, for instance. R is **transitive**. To see this, suppose $x, y, z \in \mathbb{Q}$ such that xy > 0 And yz > 0. As xy > 0, either x, y are both positive, or x, y are both negative.

- Suppose x > 0 and y > 0. Then z > 0 too as yz > 0. It follows that xz > 0.
- Suppose x < 0 and y < 0. Then z < 0 too as yz > 0. It follows that xz > 0.
- (b) S is **not reflexive** because $x \neq x + 1$ for all $x \in \mathbb{Z}$.

S is **not symmetric** because y = x + 1 implies $x = y - 1 \neq y + 1$ for all $x, y \in \mathbb{Z}$. S is **antisymmetric** vacuously because if y = x + 1 and x = y + 1, then $x = y + 1 = (x + 1) + 1 = x + 2 \neq x$, which is a contradiction.

S is **not transitive** because if y = x + 1 and z = y + 1, then $z = (x + 1) + 1 = x + 2 \neq x + 1$.

- 6.9. $R = R^{-1}$
 - $\Leftrightarrow \forall (x,y) \in A^2 \ \left((x,y) \in R \Leftrightarrow (x,y) \in R^{-1} \right) \ \text{as } R, R^{-1} \subseteq A^2;$
 - $\Leftrightarrow \forall (x,y) \in A^2 \ ((x,y) \in R \Leftrightarrow (y,x) \in R)$ by the definition of R^{-1} ;
 - $\Leftrightarrow \forall (x,y) \in A^2 \ ((x,y) \in R \Rightarrow (y,x) \in R)$ by Exercise 3.3;
 - \Leftrightarrow R is symmetric by the definition of symmetry.
- 6.10. (a) (Reflexivity) Let $a \in \mathbb{Z}$. Note that $a a = 0 = 2 \times 0$, where $0 \in \mathbb{Z}$. So a a is even, and thus a R a by the definition of R.

(Symmetry) Let $a, b \in \mathbb{Z}$ such that a R b. Then a - b is even by the definition of R. Use the definition of even integers to find $x \in \mathbb{Z}$ such that a - b = 2x. Then b - a = 2(-x), where $-x \in \mathbb{Z}$. So b - a is even, and thus b R a by the definition of R.

(Alternative proof of symmetry) Let $a,b\in\mathbb{Z}$ such that $a\ R\ b$. Then a-b is even by the definition of R. So Exercise 3.2.6(1) implies b-a=-(a-b) is also even. Thus $b\ R\ a$ by the definition of R.

(Yet another proof of symmetry) We know $R^{-1} = R$ from Tutorial Exercise 5.4(a) So R is symmetric by Tutorial Exercise 6.9.

(Transitivity) Let $a,b,c\in\mathbb{Z}$ such that $a\ R\ b$ and $b\ R\ c$. Then a-b and b-c are both even by the definition of R. Use the definition of even integers to find $x,y\in\mathbb{Z}$ such that a-b=2x and b-c=2y. Then a-c=(a-b)+(b-c)=2x+2y=2(x+y), where $x+y\in\mathbb{Z}$. So a-c is even, and thus $a\ R\ c$ by the definition of R.

(Alternative proof of transitivity) We know $R \circ R = R \subseteq R$ from Tutorial Exercise 5.4(b) and Remark 4.2.4(3). So R is transitive by Exercise 6.1.10.

As R is reflexive, symmetric, and transitive, it is an equivalence relation. \Box

(b)
$$[0] = \{\dots, -4, -2, 0, 2, 4, \dots\} = [2] = [-2] = [4] = [-4] = \cdots$$

$$[1] = {\ldots, -3, -1, 1, 3, 5, \ldots} = [-1] = [3] = [-3] = [5] = \cdots$$