CLAIMS

1	1	A system comprising:
2		a processor with an adjustable supply voltage;
3		at least one temperature sensor, coupled to the processor to sense a temperature of the
4		processor;
5		the system to adjust the processor's supply voltage to an acceptably low supply voltage
6		based at least in part on the processor's sensed temperature and a sensed clock frequency
7		of the processor; and
8		a flash memory to store a plurality of the acceptably low supply voltages for the
9		processor based at least in part on the processor's sensed clock frequency and the
0		processor's sensed temperature
1	2	The system of claim 1 wherein the system is coupled to a nower source integrated with a

- 2. The system of claim 1 wherein the system is coupled to a power source integrated with a power controller.
- 3. The system of claim 1 wherein the temperature sensor is integrated with the processor.
- 1 4. The system of claim 1 wherein the temperature sensor is attached to a ceramic package of
- 2 the processor.
- 5. The system of claim 1 wherein the temperature sensor is located within zero to seven centimeters
- 2 of the processor.

1

- 1 6. The system of claim 1 wherein the system comprises at least one of a personal digital
 2 assistant, a cell phone, an Internet tablet, or a personal computer.
 - 7. An article comprising:
- a storage medium having stored thereon instructions, that, when executed by a computing
- platform, result in execution of adjusting a supply voltage to a system's processor by:
- 4 sensing the system processor's temperature;
- storing a plurality of acceptably low supply voltages based at least in part on the processor's
- sensed temperature and the processor's sensed clock frequency; and
 - generating a command to adjust the system's supply voltage to approximately the acceptably
 - low supply voltage.
 - 8. The article of claim 7, wherein said storing the plurality of acceptably low supply voltages comprises writing the acceptably low supply voltage to a flash memory.
 - 9. The article of claim 7, wherein said generating a command comprises transmitting the
- 2 command from the system processor to a power source.
- 1 10. The article of claim 7, wherein said generating a command comprises transmitting the
- 2 command from a power controller to a power source.
- 1 11. The article of claim 7, wherein the system comprises at least one of a personal digital
- 2 assistant, a cell phone, an Internet tablet, or a personal computer.

- 1 12. A method of adjusting a voltage level to a processor comprising:
- sensing a temperature and a clock frequency of the processor;
- comparing the processor's sensed temperature and the processor's clock frequency to a
- 4 table of data of an acceptably low voltage level for a plurality of processor's sensed
- temperatures and processor's sensed clock frequencies; and
- adjusting the voltage level of the processor to the acceptably low voltage level based at
- least in part on the processor's sensed temperature and the processor's sensed clock
- 8 frequenc
 - 13. The method of claim 12 further comprising storing the table of data in a flash memory.
 - 14. The method of claim 12 wherein adjusting the voltage level comprises generating a set voltage command.
 - 15. The method of claim 14 wherein generating the set voltage command comprises transmitting the set voltage command to a power source.