A PROJECT REPORT

on

DIGITAL WATERMARKING OF AUDIO SIGNALS FOR ENHANCED SIGNAL PROTECTION

Submitted in partial fulfillment for the award of the degree

of

BACHELOR OF TECHNOLOGY

in

ELECTRICAL AND ELECTRONICS ENGINEERING

by

Gautam Nag (RA1811005010278) Shruti Srivastava (RA1811005010271)

Under the guidance of

Dr. C. Naveen

(Assistant Professor, Department of Electrical and Electronics Engineering)

FACULTY OF ENGINEERING AND TECHNOLOGY

SRM Nagar, Kattankulathur- 603 203 Kancheepuram Dist.

MAY 2022

BONA FIDE CERTIFICATE

Certified that this project report titled "DIGITAL WATERMARKING OF AUDIO SIGNALS FOR ENHANCED SIGNAL PROTECTION" is the bonafide work of Gautam Nag (RA1811005010278) and Shruti Srivastava (RA1811005010271) who carried out the project work under my supervision. Certified further, that to the best of my knowledge the work reported herein does not form part of any other project report or dissertation on the basis of which a degree or award was conferred on an earlier occasion of this or any other candidate.

Signature of the Guide Signature of the HOD

Dr. C. NAVEEN Dr.K.VIJAYAKUMAR,M.E.,Ph.D

Assistant Professor Professor and Head

Department of EEE Department of EEE

SRM IST SRM IST

Internal Examiner External Examiner

Date:

ACKNOWLEDGEMENT

We would like to extend our gratitude to the many people who helped to bring this project to fruition. First, we would like to thank the management for the academic and technical support. We are also thankful to our Vice Chancellor, **Dr. C. Muthamizhchelvan** and our Dean (CET) **Dr. T. V. Gopal.**

We take this opportunity to acknowledge our Head of the department, **Dr. K. Vijayakumar** for being a constant source of inspiration and encouragement.

Above all, we would like to express our gratitude to our project guide **Dr. C. Naveen.**We are deeply grateful for his help, valuable guidance and support. We would also like to thank our project Coordinators, **Dr. U. Sowmmiya and Dr. R. Brinda** and project evaluators, **Dr.C.S.Boopathi and Dr. J. Preetha Roselyn** for their support and inputs throughout our project with whom this project would have never taken place. Their in-depth knowledge and vast experience proved to be the guiding light throughout the course of our project. We also offer our thanks to our project coordinators.

Finally, we express our very profound gratitude to our parents for providing us with unfailing support and continuous encouragement throughout the process of researching and writing this thesis. This accomplishment would not have been possible without them.

(GAUTAM NAG)

(SHRUTI SRIVASTAVA)

ABSTRACT

In today's world we know the importance of encryption and privacy and with data being the most prized possession it is more important than ever to protect that data. Therefore for our project we are aiming at using this as our principal objective for protecting signal and audio during transmission.

To do this will use digital watermarking and using a digital image/unique code superimposing the signal and then transposing that image as a watermark on the audio signal.

Watermarking is a technique used to label digital media by hiding copyright or other information into the underlying data. The aim is to create a watermark that must be imperceptible or undetectable by the user and should be robust to attacks and other types of distortion. In our method, the watermark is kept as a digital image or if contingency arises a masked signal copy.

It is then weighted in the time domain to account for temporal masking. We discuss the detection of the watermark and assess the robustness of our watermarking approach to attacks and various signal manipulations.

We believe that doing so will uniquely enhance security of the audio signal.

TABLE OF CONTENTS

	TITLE	PAGE NO.
LIST	OF TABLES	vi
LIST	OF FIGURES	vii
1.	INTRODUCTION	1
	1.1. GENERAL	1
	1.2. NEED FOR DIGITAL WATERMARKING	2
	1.3. PRINCIPLE OF DIGITAL WATERMARKING	3
	1.4. MAJOR ISSUES IN CURRENT ENCRYPTION	3
2.	LITERATURE ANALYSIS	4
	2.1. OBJECTIVE	4
	2.2. LITERATURE REVIEW	5
	2.3. INFERENCE FROM LITERATURE	7
3.	APPROACH AND METHODOLOGY	8
	3.1. ALGORITHMIC APPROACH	8
	3.2. ABIDING SERVICES	10
	3.3. ADVANTAGES	11
	3.4. IMPLEMENTATION	12
	3.5. TOOLS AND MECHANISMS	13
4.	WORKING AND ANALYSIS	14
	4.1. PLANNING	14
	4.2. ENCRYPTION METHODS	16
	4.2.1. Using overlapping	16
	4.2.2. Using waveform variation	17
	4.2.3. Using linear regression	20
	4.3. CODING	22
	4.3.1. Inserting watermark	23
	4.3.2. Extracting watermark	24
	4.4. ANALYSIS	26
5.	FINAL RESULT	27
	5.1. RESULT DISCUSSION	27
6.	CONCLUSION	28
	6.1. FUTURE SCOPE	28
7	REFERENCES	29

LIST OF TABLES

TABLE NO.	TITLE	PAGE NO.
3.1	Qos Parameter Testing	10
4.1	Parameter Specifications	15
4.2	Parameter Value Set	15
4.3	Regression based results	22
5.1	Result Comparison	27

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE NO.
3.1	Algorithmic Implementation	12
4.1	Working flowchart	14
4.2	Audacity homepage	16
4.3	Audacity editables	16
4.4	Audacity audio channel	16
4.4.1	Overlapped audio	17
4.5	Audacity toolbar	17
4.6	Sine wave overlapping	18
4.7	Square wave overlapping	18
4.8	Sawtooth wave overlapping	19
4.9	Triangle wave overlapping	19
4.9.1	Audio Segmentation Stage 1	21
4.9.2	Audio Segmentation Stage 2	21
4.9.3	Inserting watermark code	23
4.9.4	Watermark	24
4.9.5	Extracting watermark	24
4.9.6	Extracted watermark	25
4.9.7	Folder screenshot	25
4.9.7	HTML output	26