Дискретни структури

план на упражненията КН 1.1, зимен семестър 2023/2024

Kалоян Цветков kaloyants250gmail.com

ФМИ, СУ 2.3

Ресурси (теория и задачи) по Дискретни структури

- теория
- задачи
- ____ теория + задачи
 - сайт на Скелета (задачи от минали години)
 - записки на Мария Соскова
 - записки на Ангел Димитриев
 - лични записки (по упражненията)

Съдържание

1	Във	ведение 5
	1.1	Съждения
	1.2	Логически операции
	1.3	Квантори
		1.3.1 За всеобщност - ∀
		1.3.2 За екзистенциалност - Э
	1.4	Множества и операции над тях
		1.4.1 Множества
		1.4.2 Дефиниране на множества
		1.4.3 Операции над множества
		1.4.4 мултимножество
		1.4.5 разбиване
		1.4.6 покритие
		1.4.7 разкрояване
2	Инд	дукция 12
	2.1	Стандартна индукция
	2.2	Силна индукция
3	Рел	ации 13
	3.1	Наредена двойка
	3.2	Декартово произведение
	3.3	Релация
	3.4	Домейн и кодомейн
	3.5	Свойства
		3.5.1 рефлексивност
		3.5.2 антирефлексивност
		3.5.3 симетричност
		3.5.4 антисиметричност
		3.5.5 силна антисиметричност
		3.5.6 транзитивност
	3.6	Интерпретации
		3.6.1 Матрица
		3.6.2 Граф (диаграма на Xace)
	3.7	Релации на еквивалентност
	-	3.7.1 Примери с модулна аритметика
		3.7.2 Модифициране на ред. на екв
		3.7.3 Брой ред. на екв
	3.8	Наредби
		▲ 1.1.1

	$7.1 \\ 7.2$	Хомогенни линейни рекурентни уравнения	
7		урсия	32
6	Зад	ачи	30
	5.4	Принцип за включване и изключване	27
	5.3	принцип на Дирихле	
	F 0	5.2.1 Нютонов бином	
	5.2	Свойства на биномния коефициент	
	5.1	Теория и примери	
5		ибинаторика	24
	4.9	Затвореност на изброимите множество относно някои операции	21
	4.0	$4.8.3 \mathbb{R} \sim \mathbb{R} \times \mathbb{R} \dots \dots$	
		$4.8.2 \mathbb{R} \sim (0,1) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	
		$4.8.1 \mathbb{N} \sim \mathbb{N} \times \mathbb{N} \dots \dots$	
	4.8	Примери за биекции	
	4.7	Теорема на Кантор	
	4.6	Изброимо множество	
	4.5	Крайно и безкрайно множество	
	4.4	Обратна функция	
	4.3	Композиция	
	4.2	Образ на множество	
	4.1	Свойства	
4	_	нкции $/\mathbf{H}$ зброимост	19
		оло-т трапоитивно	10
		3.10.4 транзитивно	
		3.10.2 рефлексивно	
		3.10.1 Операции с релации	
	5.10	Затваряне на релации	
	2 10	3.9.5 Пример:	
		3.9.4 Най-голям	
		3.9.3 Максимален	
		3.9.2 Най-малък	
		3.9.1 Минимален	
	3.9	Специални елементи	
		3.8.3 Линейна наредба	
		3.8.2 Строга частична наредба	
		3.8.1 (Нестрога) частична наредба	

8	Γ pa	ри 3	5
	8.1	Дефиниции	5
	8.2	Задачи	6
	8.3	Планарност на графи	9
		8.3.1 Дефиниция	9
		8.3.2 Примери	:0
		8.3.3 Теорема на Куратовски	:0
	8.4	Обхождане на графи	.0
		8.4.1 BFS (в широчина) (опашка (FIFO))	.0
		8.4.2 DFS (в широчина) (стек (LIFO))	
	8.5	граф на Петерсен	
9		Beta 4	
	9.1	Дефиниция за дърво	
	9.2	Задачи	2
10	Пок	риващи дървета 4	5
		MST	5
		10.1.1 Дефиниция	
		10.1.2 Алгоритми	
		10.1.3 Prim	
		10.1.4 Kruskal	
		10.1.5 Dijkstra	
			Ŭ
11		еркуб 4	
	11.1	Дефиниция	8:
	11.2	Задачи	8:
12	Бул	еви функции 5	O
	•	СДНФ	
		12.1.1 Теорема на Boole	
	12.2	МДНФ	
		12.2.1 Алгоритъм за намиране	
		12.2.2 Покритие на аргументите с образ 1	
	12.3	Полином на Жегалкин	
	12.0	12.3.1 определяне	
		12.3.2 Теорема на Жегалкин	
	19 /	Критерий на Пост-Яблонски	
		•	
	1⊿.⊍		
	19.6		
	12.0	Задачи	
		12.6.1 критерий	J

1 Въведение

1.1 Съждения

Изреченията, съдържащи информация, която може да се оцени като вярна и невярна, наричаме **съждения**.

Частта от съждението, която приписва признак, е предикат.

Предикатът може да бъде пресметнат като верен или грешен при прилагането му върху **субект**.

Пример:

"Този химикал е син." е вярно/грешно съждение, получено от пресмятането на предиката "Х е син." върху субекта "този химикал".

"Съществува просто число с 100,000,000 цифри"е съждение, но не знаем как да оценим като вярно или грешно все още.

(Най-голямото открито просто число има около 24,800,000 цифри $)^1$

1.2 Логически операции

Дефиниции чрез вектор/таблица от стойности и на интуитивно ниво.

• логическо отрицание

p	$\neg p$
0	1
1	0

• дизюнкция V

p	\overline{q}	$p \lor q$
0	0	0
0	1	1
1	0	1
1	1	1

p	q	$p \wedge q$
0	0	0
0	1	0
1	0	0
1	1	1

• изключващо или

 $^{^{1}}$ Към датата 17 януари 2024 г.!

p	\overline{q}	$p \oplus q$		
0 0		0		
0	1	1		
1	0	1		
1	1	0		

 \bullet импликация (ако..., то...) \rightarrow

p	q	$p \to q$		
0	0	1		
0 1		1		
1 0		0		
1	1	1		

• биимпликация (еквивалентност)

p	q	$p \leftrightarrow q$
0	0	1
0	1	0
1	0	0
1	1	1

Свойства:

комутативност

$$p \wedge q \equiv q \wedge p$$
 $p \vee q \equiv q \vee p$ $p \oplus q \equiv q \oplus p$

асоциативност

$$p \vee (q \vee r) \equiv (p \vee q) \vee r \qquad p \wedge q) \wedge r) \equiv (p \wedge q) \wedge r$$

дистрибутивност

$$p \vee (q \wedge r) \equiv (p \vee q) \wedge (q \vee r) \qquad p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$

закон за контапозицията

$$p \to q \equiv \neg q \to \neg p$$

закони на Де Морган

$$\neg (p \ \& \ q) \equiv \neg p \lor \neg q \qquad \neg (p \ \lor \ q) \equiv \neg p \ \& \ \neg q$$

Задача 1.1. Нека p, q, r, s и t са следните съждения:

р: Ще разходя кучето преди обяд.

q: Сутринта ще спортувам.

r: Следобяд ще спортувам.

s: Днес времето е хубаво.

t: Днес влажността на въздуха е ниска.

Напишете логически изрази, съответстващи са следните изречения.

- 1. Няма да разходя кучето преди обяд.
- 2. Ще разходя кучето преди обяд и следобяд ще спортувам.
- 3. Днес ще спортувам или сутринта, или следобяд.
- 4. Днес ще спортувам сутринта или следобяд.
- 5. Ако днес времето е хубаво, следобяд ще спортувам.
- 6. Необходимо условие, за да спортувам днес следобяд е, времето да е хубаво.
- 7. Достатъчно условие, за да спортувам днес е времето да е хубаво и влажността да е ниска.

1.3 Квантори

1.3.1 За всеобщност - ∀

 $\forall x \in A: P(x)$ - предикатът P се оценява като истина за всеки/за произволен елемент от множеството A.

1.3.2 За екзистенциалност - Э

 $\exists x \in A : P(x)$ - предикатът P се оценява като истина за някой (поне 1) от всички елементи на множеството A.

Кванторите са дуални: отрицанието на единия поражда другия.

$$\neg \exists x \in A : P(x) \longleftrightarrow \forall x \in A : \neg P(x)$$

$$\neg \forall x \in A : P(x) \longleftrightarrow \exists x \in A : \neg P(x)$$

Задача 1.2. R(x) - "x е в стая < номер на стая > ";

C(x) - "x следва KH";

F(x,y) - "x е приятел на y";

 \mathcal{A} а се изразят твърденията чрез квантори и предикатите R,C,F.

"Някой следва КН."

 $\exists x : C(x);$

"Всеки е приятел на себе си."

 $\forall x : F(x, x);$

"Приятелството и неприятелството са взаимни."

 $\forall x : \forall y : F(x,y) \to F(y,x); (защо \longleftrightarrow не е необходимо)$

"Всеки има приятел."

 $\forall x : \exists y : F(x,y);$

"Всички в стая <номер на cтая> cледват KH."

 $\forall x : R(x) \to C(x);$

"Всеки в тази стая има приятел от КН, който не е в стаята."

 $\forall x : R(x) \to (\exists y : F(x,y) \land C(y) \land \neg R(y));$

"Хората в стаята, които не следват КН, имат приятел в стаята."

 $\forall x : R(x) \land \neg C(x) \rightarrow \exists y : R(y) \land F(x,y)$

"Да нямаш приятели е достаточно условие да не следваш КН."

 $\forall x : (\forall y : \neg F(x, y)) \rightarrow \neg C(x)$. (контрапозиция?)

"Двама души са приятели тогава и само тогава, когато имат общ приятел от КН."

$$\forall x : \forall y : F(x,y) \longleftrightarrow \exists z : F(x,z) \land F(y,z) \land C(x)$$

1.4 Множества и операции над тях

1.4.1 Множества

Множество - няма дефиниция; интуитивно: колекция от неща; всички математически обекти са изградени от множества.

1.4.2 Дефиниране на множества

- чрез изброяване
- чрез предикат
- празно множество: $(\exists \emptyset :) \forall x : x \notin \emptyset$.

Дефиниции за равенство на множества, подмножество, строго подмножество.

$$A = B \stackrel{def}{\longleftrightarrow} \forall x : x \in A \longleftrightarrow x \in B$$
$$A \subseteq B \stackrel{def}{\longleftrightarrow} \forall x : x \in A \to x \in B$$
$$A \subset B \stackrel{def}{\longleftrightarrow} A \subseteq B \land A \neq B$$
$$\forall A : \emptyset \subseteq A \land \emptyset \subset A$$

Примери за равни множества (повторението и редът на елементите не е от значение) и подмножества.

$$\{1, 2, \emptyset\} = \{\emptyset, 1, 2\} = \{\emptyset, \emptyset, 1, 2, 1, 1\}$$
$$\{x, 1, y\} \subseteq \{2, y, 1, 5, z, x\}$$
$$\{x, 1, y\} \subset \{2, y, 1, 5, z, x\}$$
$$\{x, 1, y, z, 5, 2\} \subset \{2, y, 1, 5, z, x\}$$

1.4.3 Операции над множества

таблици (за произволен елемент "смятаме" резултат спрямо предикатите $x \in A$ и $x \in B$) Аналогии с логическите операции.

обединение

$$A \cup B := \{x | x \in A \lor x \in B\}$$

сечение

$$A\cap B:=\{x|x\in A\wedge x\in B\}$$

разлика

$$A \backslash B := \{x | x \in A \land x \not \in B\}$$

симетрична разлика

$$A\Delta B:=\{x|x\in A\oplus x\in B\}$$

Доказателство, че:

•
$$A\Delta B = (A \cup B) \setminus (A \cap B)$$

A	B	$A \cup B$	$A \cap B$	$(A \cup B) \setminus (A \cap B)$	$A\Delta B$
0	0	0	0	0	0
0	1	1	0	1	1
1	0	1	0	1	1
1	1	1	1	0	0

$$\implies \forall x : x \in (A \cup B) \setminus (A \cap B) \leftrightarrow x \in A\Delta B \implies (A \cup B) \setminus (B \cap A) = A\Delta B$$

•
$$A\Delta B = (A\backslash B) \cup (B\backslash A)$$
.

A	B	$A \backslash B$	$B \backslash A$	$(A \backslash B) \cup (A \backslash B)$	$A\Delta B$
0	0	0	0	0	0
0	1	0	1	1	1
1	0	1	0	1	1
1	1	0	0	0	0

$$\implies \forall x : x \in (A \backslash B) \cup (A \backslash B) \leftrightarrow x \in A \Delta B \implies (A \backslash B) \cup (A \backslash B) = A \Delta B$$

Допълнение на множество

Универсално множество - съдържа всички разглеждани множества; определя се от контекста.

$$\overline{A} := U \backslash A; \qquad \overline{\overline{A}} = A.$$

Свойства:

• комутативност

$$A \cap B = B \cap A$$
 $A \cup B = B \cup A$ $A \triangle B = B \triangle A$

• асоциативност

$$A \cup (B \cup C) = (A \cup B) \cup C$$
 $A \cap (B \cap C) = (A \cap B) \cap C$ Обединение на няколко множества: $\bigcup_{i \in I} A_i := \{x | \exists i \in I : x \in A_i\}$ Сечение на няколко множества: $\bigcap_{i \in I} A_i := \{x | \forall i \in I : x \in A_i\}$

• дистрибутивност

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \qquad A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

празно множество

$$A \cup \emptyset = A$$
 $A \cap \emptyset = \emptyset$ $A \setminus \emptyset = A$

закони на Де Морган

$$\overline{A \cap B} = \overline{A} \cup \overline{B} \qquad \overline{A \cup B} = \overline{A} \cap \overline{B}$$

степенно множество

$$\mathcal{P}(A) = 2^A := \{x | x \subseteq A\}$$

Примери за степенни множества.

$$\mathcal{P}(\{1,2,3\}) = \{\emptyset, \{1\} \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}\}$$

$$\mathcal{P}(\{\emptyset, \{1,2\}, 7\}) = \{\emptyset, \{\emptyset\} \{\{1,2\}\}, \{7\}, \{\emptyset, \{1,2\}\}, \{\emptyset, 7\}, \{\{1,2\}, 7\}, \{\emptyset, \{1,2\}, 7\}\}\}$$

Задача 1.3. Вярно ли е, че

$$A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C) \ (ne)$$
$$(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C) \ (\partial a)$$

1.4.4 мултимножество

Множество, в което броя на повторенията на елементите е от значение.

$$\{1,3,3,2,1\}=\{1,2,3\}\,$$
 разглеждани като множества $\{1,3,3,2,1\}
eq \{1,2,3\}\,$ разглеждани като мултимножества

1.4.5 разбиване

$$F=\{A_i|i\in I\}$$
 е разбиване на $A \stackrel{def}{\longleftrightarrow} Vi\in I: A_i
eq \emptyset$
$$\bigcup_{i\in I} A_i = A$$
 $\forall i,j\in I: i
eq j
ightarrow A_i \cap A_j = \emptyset$

 $\{S\}$ разбиване ли е на S? (да $\longleftrightarrow S \neq \emptyset$)

1.4.6 покритие

$$F=\{A_i|i\in I\}$$
 е покритие на $A\stackrel{def}{\longleftrightarrow}$ $orall i\in I:A_i
eq \emptyset$ $A\subseteq \bigcup_{i\in I}A_i$

1.4.7 разкрояване

$$F=\{A_i|i\in I\}$$
 е разкрояване на $A\overset{def}{\longleftrightarrow}$ $\forall i\in I:A_i\neq\emptyset$
$$\bigcup_{i\in I}A_i\subseteq A$$
 $\forall i,j\in I:i\neq j\to A_i\cap A_j=\emptyset$

2 Индукция

Плочки домино:

Бутнали сме първата плочка и знаем, че ако падне n-тата ще падне и n+1-вата. Тогава ще паднат всички плочки.

2.1 Стандартна индукция

$$P(0) \land (\forall n \in \mathbb{N} : (P(n) \to P(n+1))) \to \forall n \in \mathbb{N} : P(n)$$

Принцип на индукцията

- Проверяваме верността на твърдението за n = 0 (P(0));
- Допускаме, че твърдението е вярно за някое n (P(n));
- Доказваме, че твърдението е вярно и за n+1 $(P(n) \to P(n+1)).$
- Тогава $\forall n \geq 0 : P(n)$.

Задача 2.1. Да се докаже, че $|2^A| = 2^{|A|}$.

Упътване:.
$$|A| = n + 1 \ge 1 \implies |A \setminus \{a\}| = n \ge 0 \implies |2^{A \setminus \{a\}}| = 2^n$$

 \implies Подмножествата на A не съдържащи a са 2^n . Подмножествата на A са тези, несъдържащи a, и същите, обединени c $\{a\}$ \implies

$$\mathcal{P}(A) = \{x | x \subseteq A \land a \notin x\} \cup \{x | x \subseteq A \land a \in x\}$$

 $|\mathcal{P}(A)| = |\{x | x \subseteq A \land a \notin x\}| + |\{x | x \subseteq A \land a \in x\}|$ (since they have no intersection)

$$|\mathcal{P}(A)| = |\mathcal{P}(A \setminus \{a\})| + |\{x | x \in \mathcal{P}(A \setminus \{a\}) \land a \in x\}|$$

 $me \ ca \ 2.2^n = 2^{n+1}.$

Обобщен принцип на индукцията

$$P(n_0) \land (\forall n \ge n_0 : (P(n) \to P(n+1))) \to \forall n \ge n_0 : P(n)$$

- Проверяваме верността на твърдението за $n = n_0$ $(P(n_0));$
- Допускаме, че твърдението е вярно за някое n (P(n));
- Доказваме, че твърдението е вярно и за n+1 $(P(n) \to P(n+1)).$
- Тогава $\forall n \geq n_0 : P(n)$.

2.2 Силна индукция

$$P(0) \land (\forall n \in \mathbb{N} : ((\forall k \le n : P(k)) \to P(n+1))) \to \forall n \in \mathbb{N} : P(n)$$

3 Релации

3.1 Наредена двойка

$$(a,b) \stackrel{\text{def}}{=} \{a, \{a,b\}\}\$$
$$(a,b) = (c,d) \leftrightarrow a = c \land b = d$$

3.2 Декартово произведение

$$A \times B \stackrel{\mathrm{def}}{=} \{ (a, b) \mid a \in A \land b \in B \}$$

Пример:

$$\{1, 3, 5\} \times \{2, 4\} = \{(1, 2), (1, 4), (3, 2), (3, 4), (5, 2), (5, 4)\}\$$
 $\emptyset \times \{0, 2\} = \emptyset$

няма комутативност: $A \times B \neq B \times A$

Мощност на декартово произведение: $|A \times B| = |A|.|B|$ (доказателство с индукция по |A|)

3.3 Релация

релация е всяко подможество на декартово произведение

 $R \subseteq A_1 \times A_2 \times ... \times A_n$ - n-местна релация

при n=2: бинарна релация $R\subseteq A\times A$ - бинарна релация над A Пример за 3-местна релация:

 $(a,b,c) \in R \stackrel{def}{\Longleftrightarrow} a,b,c$ са страни на триъгълник.

Ако |A| = n, то колко са бинарните релации над $A(2^n)$

3.4 Домейн и кодомейн

$$dom\left(R
ight)=\{a|\exists b\in A:(a,b)\in R\}$$
 - домейн
$$range\left(R
ight)=\{b|\exists a\in A:(a,b)\in R\}\text{ - кодомейн, range}$$

3.5 Свойства

$$R \subseteq A \times A$$

3.5.1 рефлексивност

$$\forall a \in A : (a, a) \in R$$

3.5.2 антирефлексивност

$$\forall a \in A : (a, a) \notin R$$

3.5.3 симетричност

$$\forall a, b \in A : (a, b) \in R \to (b, a) \in R$$

3.5.4 антисиметричност

$$\forall a,b \in A: a \neq b \to ((a,b) \in R \to (b,a) \not\in R)$$
 (възможно е да има и несравними елементи) \longleftrightarrow

$$\forall a, b \in A : (a, b) \in R \land (b, a) \in R \rightarrow a = b$$

3.5.5 силна антисиметричност

$$\forall a, b \in A : (a, b) \in R \oplus (b, a) \in R$$

3.5.6 транзитивност

$$\forall a, b, c \in A : (a, b) \in R \land (b, c) \in R \rightarrow (a, c) \in R$$

3.6 Интерпретации

$$R = \{(1, 2), (1, 3), (1, 4), (3, 1), (2, 4), (3, 3), (2, 5), (5, 4), (5, 2)\}$$

3.6.1 Матрица

	1	2	3	4	5	6
1		X	X	х		
2				х	х	
3	Х		X			
4						
5		X		х		
6						

3.6.2 Граф (диаграма на Хасе)

Интерпретация на свойствата с матрица и граф.

Задача 3.1. Какви свойства притежават релациите:

- $R \subseteq \mathbb{R} \times \mathbb{R}, R = \{(a, b) | a b \in \mathbb{Z}\}$
- $R \subseteq \mathbb{R} \times \mathbb{R} : \{(a,b) | a+b \ge 5\}$
- $R \subseteq 2^{\mathbb{N}} \times 2^{\mathbb{N}}, R = \{(a, b) | a \cap b \neq \emptyset\}$
- $R \subseteq \{0, 1, 2\}^2, R = \{(a, b) | a + b \ge 5\}$

3.7 Релации на еквивалентност

R е релация на еквивалентност $\stackrel{def}{\longleftrightarrow} R$ е рефлексивна, симетрична и транзитивна. Примери: равенство на числа, еднаквост и подобие на триъгълници.

$$[x]_{R} \stackrel{\mathrm{def}}{=} \{ y | (x, y) \in R \}$$

Теорема: (лекции и изпит)

$$R \subseteq A \times A$$

$$F_R:=\{[x]_R\,|x\in A\}\,$$
е разбиване на A

3.7.1 Примери с модулна аритметика

$$R \subseteq \mathbb{N} \times \mathbb{N}$$

$$aRb \leftrightarrow 4 \mid a-b$$

Да се докаже, че R е релация на еквивалентност. $R \subseteq \mathbb{Z} \times \mathbb{Z}$

$$xRy \leftrightarrow 2 \mid 2x - 5y$$

Да се докаже, че R е релация на еквивалентност.

3.7.2 Модифициране на рел. на екв.

Нека R_1, R_2 са релации на еквивалентност над A. Релации на еквивалентност ли са релациите:

- $R_1 \cup R_2$ (не)
- $R_1 \cap R_2$ (да)
- $R_1 \Delta R_2$ (не)

3.7.3 Брой рел. на екв.

Колко са релациите на еквивалентност над $A = \{1, 2, 3, 4\}$? (брой разбивания на 4-елементно множество)

3.8 Наредби

3.8.1 (Нестрога) частична наредба

R е частична наредба, когато е рефлексивна, антисиметрична и транзитивна.

Примери: \geq , \leq , \subseteq .

3.8.2 Строга частична наредба

R е строга частична наредба, когато е антирефлексивна, антисиметрична и транзитивна.

Примери: $>, <, \subset$.

3.8.3 Линейна наредба

R е линейна (пълна) наредба, когато е рефлексивна, силно антисиметрична и транзитивна.

Въпрос 3.1. Колко елемента има линейна наредба над n-елементно множество? $\left(\frac{n^2+n}{2}\right)$

3.9 Специални елементи

$$R \subseteq A \times A$$

3.9.1 Минимален

$$a$$
е минимален $\stackrel{def}{\longleftrightarrow} \forall b \in A: b \neq a \to (b,a) \not \in R$

след обръщане на кванторите - "няма по-малък от него".

3.9.2 Най-малък

$$a$$
 е най-малък $\stackrel{def}{\longleftrightarrow} \forall b \in A: b \neq a \to (a,b) \in R$

"по-малък от всички други"

3.9.3 Максимален

$$a$$
 е максимален $\stackrel{def}{\longleftrightarrow} \forall b \in A : b \neq a \to (a,b) \not\in R$

след обръщане на кванторите - "няма по-голям от него".

Въпрос 3.2. Възможено ли е да има 0,1,>1 минимален/максимален елемент в частична наредба? (0 - не (ако R е частична наредба, то R има минимален и максимален елемент (теорема)), 1 - да, 2 - да)

A в линейна? (0 - не (линейната наредба е и частична), 1 - $\partial a, 2$ - не)

3.9.4 Най-голям

$$a$$
 е най-голям $\stackrel{def}{\longleftrightarrow} \forall b \in A: b \neq a \to (b,a) \in R$

"по-голям от всички други"

Въпрос 3.3. Възможно ли е да има повече от 1 най-малък/най-голям елемент в наредба? (не)

3.9.5 Пример:

Да се посочат минимални, максимални, най-големи и най-малки елементи

	1	2	3	$\mid 4 \mid$	5	6	7	8
1			X	X				X
2	X	X	Х	X	X	X	Х	X
3							X	
4				х			Х	
5								
6					X			X
7						х		X
8								

(При наличие на най-малък/най-голям, наличието на друг минимален/максимален е изключено.)

3.10 Затваряне на релации

3.10.1 Операции с релации

- Обратна релация: $R^{-1} = \{(b, a) \mid (a, b) \in R\}$
- Допълнение на релация: $\overline{R} = \{(a,b) \mid (a,b) \not\in R\}$
- Композиция на релации: $S \circ R = \{(a,c) \mid \exists b \in A : (a,b) \in R \land (b,c) \in S\}$ $R \subseteq A \times A$

3.10.2 рефлексивно

$$refl(R) = R \cup \{(a, a) | a \in A\}$$

3.10.3 симетрично

$$sym(R) = R \cup R^{-1}$$

3.10.4 транзитивно

$$R^1=R; R^n=R\circ R^{n-1}$$
 при $n>1$ $trans(R)=\bigcup_{n\in\mathbb{N}^+}R^n$

Да се намери рефлексивното, симетричното и транзитивното затваряне на $R = \{(0,1), (0,2), (3,4), (3,5), (4,5), (6,7)\}$

(Получаваме релация на еквивалентност с класове $\mathcal{F}_R = \{\{0,1,2\},\{3,4,5\},\{6,7\}\}$)

Задача 3.2. Да се докаже, че релацията | - "дели"е частична наредба над \mathbb{N} . Да се посочат (или да се докаже, че такива няма) най-голям, най-малък, минимален и максимален елемент.

Задача 3.3 (свеждане до умножение на матрици). $He\kappa a |A| = n$.

 $Heкa\ S = \{x | xA\}.$

 $Heкa\ R \subseteq S \times S.$

 $R_1RR_2 \stackrel{\overline{def}}{\longleftrightarrow} R_1 \circ R_2 = R_2 \circ R_1$. Релация на еквивалентност ли е R? Докажете.

Задача 3.4. Нека $R \subseteq A \times A$ е рефлексивна и транзитивна релация.

 $He\kappa a \sim \subseteq A \times A : a \sim b \leftrightarrow aRb \wedge bRa.$

Докажете, че \sim е релация на еквивалентност.

 $F := \{ [x]_{\sim} \mid x \in A \}$

 $\langle \subseteq F \times F : [a]_{\sim} \langle [b]_{\sim} \leftrightarrow \exists x \in [a]_{\sim} \exists y \in [b]_{\sim} : xRy$

 \mathcal{A} а се докаже, че \langle е частична наредба.

4 Функции/Изброимост

$$f$$
 е (тотална) функция $\stackrel{def}{\longleftrightarrow} f \subseteq A \times B \wedge \forall a \in A: \exists! b \in B: (a,b) \in f$ (точно 1 образ)
$$f(x) = y \longleftrightarrow (x,y) \in f$$

$$f$$
 е частична функция $\stackrel{def}{\longleftrightarrow}$
$$f \subseteq A \times B \wedge \forall a \in A: \forall b_1 \in B: \forall b_2 \in B: (a,b_1) \in f \wedge (a,b_2) \in f \implies b_1 = b_2$$
 (най-много 1 образ)
$$f$$
 е функция и $f \subseteq A \times B$ - записваме $f: A \longrightarrow B$

Въпрос 4.1. Кои са релациите на еквивалентност $R \subseteq A \times A$, които са функции?

Упътване:. Допускаме, че R има клас на еквивалентност с поне 2 елемента $a \neq b \implies aRb \land aRa \implies a = b \implies npomusopeчue \implies само идентитетт е релация на еквивалентност и функция едновременно.$

4.1 Свойства

$$f:A\longrightarrow B$$

- инекция: $\forall a_1 \in A : \forall a_2 \in A : a_1 \neq a_2 \longrightarrow f(a_1) \neq f(a_2)$ f е инекция $\longrightarrow |A| \leq |B|$ (необходимо условие за инекция) Примери: $f : \mathbb{R} \longrightarrow \mathbb{R}; f(x) = x \backslash 2^x$ са инекции Примери: $f : \mathbb{R} \longrightarrow \mathbb{R}; f(x) = x^2 \backslash sin(x) \backslash x^2 3x + 2$ не са инекции
- сюрекция: $\forall b \in B : \exists a \in A : f(a) = b$ f е сюрекция $\longrightarrow |A| \ge |B|$ Примери: $f : \mathbb{R} \longrightarrow \mathbb{R}; f(x) = x$ $f : \mathbb{R} \longrightarrow (0,1); f(x) = \frac{1}{x}$ са сюрекции Примери: $f : \mathbb{R} \longrightarrow \mathbb{R}; f(x) = x^2 \backslash \sin(x) \backslash x^2 3x + 2$ не са сюрекции
- биекция инекция и сюрекция (необходимо условие за сюрекция) $\forall b \in B: \exists ! a \in A: f(a) = b$ f е биекция $\longrightarrow |A| = |B|$ (необходимо условие за биекция) Примери: $f: \mathbb{R} \longrightarrow \mathbb{R}; f(x) = x^{2n+1}$ е биекции $\forall n \in \mathbb{N}$

Ако има инекция $A \longrightarrow B$, то има сюрекция $B \longrightarrow A$.

4.2 Образ на множество

Нека
$$f:A\longrightarrow B$$
 и $X\subseteq A$ $f(X)=\{f(x)|x\in X\}$

4.3 Композиция

Нека
$$f: A \longrightarrow B, g: B \longrightarrow C$$

 $g \circ f: A \longrightarrow C, (g \circ f)(x) = g(f(x))$

4.4 Обратна функция

Нека $f:A\longrightarrow B$ е биекция (при инекция обратната функция е частична). $f^{-1}:B\longrightarrow A,\ f^{-1}(y)=x\stackrel{def}{\longleftrightarrow}f(x)=y$

4.5 Крайно и безкрайно множество

A е крайно $\stackrel{def}{\longleftrightarrow} \exists n \in \mathbb{N} : \exists f : I_n \longrightarrow A : f$ е биекция. A е безкрайно $\stackrel{def}{\longleftrightarrow} A$ не е крайно. (с квантори?)

4.6 Изброимо множество

A е изброимо $\stackrel{def}{\longleftrightarrow} \exists f: \mathbb{N} \longrightarrow A: f$ е биекция. изброимост на $\mathbb{N} \times \mathbb{N}, \mathbb{Z}, \mathbb{Q}$ (диагонален метод на Кантор)

4.7 Теорема на Кантор

 $\forall A: \neg \exists f: A \longrightarrow 2^A: f$ е биекция. неизброимост на $2^{\mathbb{N}}, \mathbb{R}$

4.8 Примери за биекции

4.8.1 $\mathbb{N} \sim \mathbb{N} \times \mathbb{N}$

• "обхождане на безкрайна таблица"

$$f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$
 $i(\text{ред}), j(\text{стълб}) \in \mathbb{N}: f(i,j) = rac{(i+j)(i+j+1)}{2} + j$

• алгебрично

$$f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$

$$\forall i, j \in \mathbb{N}: f(i, j) = 2^{i}(2j + 1) - 1$$

4.8.2 $\mathbb{R} \sim (0,1)$

• тригонометрично

$$f: \mathbb{R} \to (0,1)$$
$$f(x) = \frac{1}{\pi} \arctan(x) + \frac{1}{2}$$

• експонента

$$f: \mathbb{R} \to (0,1)$$
$$f(x) = \frac{1}{1 + e^x}$$

• геометрично

$$f: (0,1) \to \mathbb{R}$$
$$f(x) = \frac{\frac{2x-1}{\sqrt{1-(2x-1)^2}} + 1}{2}$$

Геометрична интерпретация:

4.8.3 $\mathbb{R} \sim \mathbb{R} \times \mathbb{R}$

Минава например през $(0,1)^2 \sim (0,1)$

$$f: (0,1)^2 \to (0,1)$$

 $f(0.a_0a_1a_2..., 0.b_0b_1b_2...) = 0.a_0b_0a_1b_1a_2b_2...$

Композиция на биекции води до $\mathbb{R} \sim \mathbb{R} \times \mathbb{R}$.

4.9 Затвореност на изброимите множество относно някои операции

- × Декартово произведение на изброими е изброимо
- U Обединение на изброими е изброимо, нещо повече: обединение на изброим брой изброими множества е изброимо

Задача 4.1. Композиция на инекции е инекция.

Доказателство. Нека $f:A\to B$ и $g:B\to C$ са инекции.

Допускаме, че $a \neq b \in A$.

$$\implies f(a) \neq f(b) \in B \implies g(f(a)) \neq g(f(b)) \implies g \circ f$$
 е инекция. \square

Задача 4.2. Композиция на сюрекции е сюрекция.

 \mathcal{A} оказателство. Нека $f:A \to B$ и $g:B \to C$ са сюрекции.

Нека
$$z \in C \implies \exists y \in B : g(y) = z \implies \exists x \in A : f(x) = y. \implies g(f(x)) = g(y) = z \implies g \circ f$$
 е сюрекция.

Задача 4.3. Изследвайте за инективност/сюрективност функциите:

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}: f(x,y) = \sqrt{x^2 + y^2}$$

$$f: \mathbb{N} \longrightarrow \mathbb{N}: f(x) = \begin{cases} x+1 & \text{,ако } x \text{ е четно} \\ x-1 & \text{,ако } x \text{ е нечетно} \end{cases}$$

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2: f(x,y) = (2x-y, -x+2y) \quad (\text{домашна})$$

$$f: \mathbb{R} \setminus \{1\} \longrightarrow \mathbb{R} \setminus \{1\}: f(x) = \frac{x+1}{x-1}$$

$$f: \mathbb{R} \longrightarrow \mathbb{R}: f(x) = \frac{x}{x^2+1}$$

Задача 4.4 (Конструиране на биекция). Да се построи биекция $f: \mathbb{N} \longrightarrow \mathbb{N}$, че $\forall n \in \mathbb{N}: n \mid \sum_{i=1}^n f(i)$.

Задача 4.5 (Биекциите се различават поне в две двойки). *Нека* $f: A \longrightarrow A$ u $g: A \longrightarrow A$ са биекции $u \exists x_1 \in A: f(a_1) \neq g(a_1)$. Да се докаже, че $\exists x_2 \in A: x_1 \neq x_2 \land f(x_2) \neq g(x_2)$.

Задача 4.6. Да се докаже, че множеството на булевите вектори (крайни редици от 0,1) е изброимо.

Да се докаже, че множеството на думите над азбуката $\{a,b\}$ е изброимо. (същата $\mathit{задачa?}$)

Задача 4.7. Да се докаже, че множеството на крайните редици от естествени числа са изброимо много.

 $\left(\partial a\ ce\ направи\ cравнение\ между\ 2^{\mathbb{N}}\ u\ \bigcup_{i\in\mathbb{N}}\mathbb{N}^i\right)$

Задача 4.8. Да се докаже, че A и B са изброими множества, то $A \cup B$ е изброимо.

Доказателство. БОО разглеждаме случая $A \cap B = \emptyset$. Другият случай $A \cap B \neq \emptyset$ се свежда до обединението $A \cup B = A \cup (B \backslash A)$, които са непресичащи се. Тогава за $B \backslash A$ има 2 случая:

 $B \setminus A$ е крайно. Нека $|B \setminus A| = \{c_0, c_1, ..., c_{k-1}\}$. Тогава

$$h: \mathbb{N} \longrightarrow A \cup B: h(n) = \begin{cases} c_n & \text{,ako } n < k \\ g(n-k) & \text{,ako } n \ge k \end{cases}$$

 $B \backslash A$ е безкрайно. Имаме, че $B \backslash A \subseteq B \implies |B \backslash A| \leq \mathbb{N}$ и е безкрайно $\implies |B \backslash A| = \mathbb{N} \iff B \backslash A$ е изброимо и използваме аргумента за непресичащи се множества.

 $\exists f: \mathbb{N} \longrightarrow A$ - биекция и $\exists g: \mathbb{N} \longrightarrow B$ - биекция. Разглеждаме $h: \mathbb{N} \longrightarrow A \cup B: h(n)$

$$h:\mathbb{N}\longrightarrow A\cup B: h(n)=\left\{egin{array}{ll} f\left(rac{n}{2}
ight) & \text{,ако } n \text{ е четно} \\ g\left(rac{n-1}{2}
ight) & \text{,ако } n \text{ е нечетно} \end{array}
ight.$$

h е биекция?

5 Комбинаторика

5.1 Теория и примери

Принципи на събирането и умножението

(Не се използват в теретичния си вид; описват бройката на събитията в зависимост от зависимостта между тях.)

1. на събирането

Нека $R = \{S_i | i \in I\}$ е разбиване на .

Тогава
$$|A| = \sum_{i \in I} |S_i|$$
.

2. на умножението

Нека
$$|X| = n, |Y| = m$$
. Тогава $|X \times Y| = |X| \cdot |Y| = nm$.

Основни комбинаторни конфигурации (колко варианта има (рекурсивно разсъждение?)):

1. с наредба и без повторение

броят на наредените k-орки без повторение от n-елементно множество начините да изберем и подредим k души от n в редица

$$V_n^k = \frac{n!}{(n-k)!}$$

при
$$k = n : V_n^n = P_n = n!$$
 - пермутация

2. с наредба и с повторение

броят на функциите $I_k \longrightarrow I_n$

по колко начина можем да си купим k-неща измежду асортимент от n.

$$n^k$$

3. без наредба и без повторение

вариация пермутация

$$C_n^k = \frac{n!}{k! (n-k)!} =: \binom{n}{k}$$
 - биномен коефициент

Да се докаже, че $\binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n}{k}$. (алгебрично)

Смята броя на k-елементните подмножества на n-елементно множество (да се докаже с индукция с използване на основното свойство).

Идея за рекурсивна дефиниция на биномния коефициент чрез свойството.

Триъгълник на Паскал.

Да се докаже, че $|2^A|=2^{|A|}$ (комбинаторно с използване на горното твърдение).

4. без наредба и с повторение

броят на начините да приберем k еднакви топчета в n чекмеджета броят на решенията на $x_1+x_2+\ldots+x_k=n; \forall i\in I_k: x_i\geq 0$

$$S_n^k = C_{n+k-1}^k = \binom{n+k-1}{k} = \binom{n+k-1}{n-1}$$

броят на k-елементните мултимножества на n-елементно множество.

5.2 Свойства на биномния коефициент

$$\binom{n}{k} = \binom{n}{n-k}$$

$$\sum_{i=0}^{n} \binom{n}{i} = 2^{n}$$

$$\sum_{i=0}^{n} \binom{n}{2i} = \sum_{i=0}^{n} \binom{n}{2i+1} = 2^{n-1}$$

Задача 5.1. Колко са:

- Колко са булевите вектори с дължина n, които започват с 10 и завършват с 1?
- Колко са булевите вектори, които започват и завършват с различна цифра?
- Колко са булевите вектори, които съдържат поне 3 единици и поне 2 нули?
- ullet Колко са четирицифрените числа k, за които е изпълнено, че ако k е печетно, то k съдържа 0

Задача 5.2. Дадена е стандартна колода от 52 карти. По колко начина можем да изберем от тях 13, така че сред тях да има:

- точно 1J
- поне 1A
- ullet не по-малко от 2Q
- ullet точно 3 седмици
- най-много 2💠
- точно 2A и точно 2♠
- точно 2A и не повече от $2\heartsuit$.

Задача 5.3. Колко са булевите вектори с п нули и k единици, в които няма съседни единици?

5.2.1 Нютонов бином

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}$$

Два варианта за доказателство (индукция по n или комбинаторно разсъждение за коефициента пред всеки едночлен отдясно)

Задача 5.4. Колко различни думи могат да се получат, като се разместят буквите в думата:

- "релация"
- "конституционен"

Задача 5.5. Колко правотгълника със страни ≥ 2 има в шахматна дъска 8×8 ?

Задача 5.6. По колко начина могат да седнат:

- п човека на пейка;
- п мъже и п жени на една пейка, като всяка жена седи до мъже, а всеки мъж седи до жени;
- п човека на кръгла маса;
- п мъже и п жени на кръгла маса, като всяка жена седи до мъже, а всеки мъж седи до жени;

Задача 5.7. Колко решения в естествени числа имат уравненията:

$$x_1 + x_2 + x_3 + x_4 = 15$$

$$x_1 + x_2 + x_3 + x_4 = 15, x_2 \ge 3$$

$$x_1 + x_2 + x_3 + x_4 = 15, x_2 \ge 3 \land x_3 \ge 5$$

$$x_1 + x_2 + x_3 + x_4 = 15, x_2 < 7$$

$$x_1 + x_2 + x_3 + x_4 = 15, x_2 < 7 \land x_3 < 6$$

$$x_1 + x_2 + x_3 < 11$$

Задача 5.8. По колко начина може да се размеси колода от 52 карти, така че в нея да има поне 2 последователни карти A?

Задача 5.9. Колко идентификатора с дължина п могат да се съставят в езика Ada? (идентификаторите започват с буква и продължават с буква, цифра или _ , като _ не могат да са съседни или в края на идентификатора)

5.3 принцип на Дирихле

формално

Нека |A| = n и |B| = k. Тогава

$$n>k\longrightarrow \forall f:A\longrightarrow B:f$$
 не е инекция

В контрапозиция води до споменатото НУ за инекция (мин. или по-миналия път). Представен чрез топки в чекмеджета:

n топки трябва да разположим в m чекмеджета. Тогава:

- има чекмедже с поне $\frac{n}{m}$ топки;
- ullet има чекмедже с най-много $rac{n}{m}$ топки.

При n = m + 1: следва, че има чекмедже с поне 2 топки.

Задача 5.10. Да се докаже, че измежду 12 различни двуцифрени числа има 2, чиято разлика е двуцифрено число с еднакви цифри.

Задача 5.11. На избори гласуват 100 души за 3 кандидата. Колко най-малко гласове ще стигнат на победителя да спечели?

Задача 5.12. На банкет има 3 маси и 4 вида питие, по 10 бутилки от всеки вид. Да се докаже, че има маса, на която има поне по 4 бутилки от 2 различни вида питие.

Задача 5.13. Матрица 2022×2022 да се попълни с числата $0, \pm 1$, така че всички сборове по редове, стълбове и диагонали да са различни

Задача 5.14. Точки с цели координати в равнината са оцветени с 8 различни цвата. Да се докаже, че има 2 едноцветни точки на растояния по-малко от 3.

Задача 5.15. 50 точки са разположени във вътрешността на квадрат със страна 35. Да се докаже, че поне 2 точки са на рзстояние по-малко от 8.

5.4 Принцип за включване и изключване

за две множества:
$$|A \cup B| = |A| + |B| - |A \cap B|$$

обобщен принцип:
$$|\bigcup_{i\in I_k}A_i|=\sum_{i=1}^k\left(-1\right)^{i-1}\sum_{1\leq j_1\leq\ldots\leq j_i\leq k}\quad |\bigcap_{p\in I_i}A_{j_p}|=$$

$$=|A_1|+...+|A_k|-(|A_1\cap A_2|+...+|A_{k-1}\cap A_k|)+...+(-1)^{k-1}|A_1\cup A_2\cup...\cup A_k|$$
 Доказателства:

- Комбинаторно: използваме $(1+x)^n = ... = 0$ при x = -1;
- \bullet С индукция по n.

Задача 5.16. В група студенти всеки знае поне един от езиците Java, C++, Python. Java знаят 15 души, C++ знаят 13, а Python - 10. C++ и Java знаят 5 човека, C++ и Python - 5, Java и Python - 3. Трима души знаят и трите езика. Колко души има в групата?

$$(28 = 15 + 13 + 10 - 5 - 5 - 3 + 3)$$

Задача 5.17. $Heka\ |A|=n\ u\ |B|=m.$ Колко са различните сюрекции A o B?

$$\sum_{i=0}^{m-1} (-1)^{i} \binom{m}{i} (m-i)^{n}$$

Задача 5.18.

 $Heкa \; |A| = n \; u \; |B| = m. \; Koлкo \; ca \; paзличните частични функции <math>A o B$?

 $(1+m)^n$ чрез принципа или чрез нов елемент на B

Задача 5.19. Колко са пермутациите на $\{1,2,...,n\}$, такива, че $\forall i \in I_n : i$ не е на позиция i?

$$\sum_{i=0}^{n} (-1)^{i} \binom{n}{i} (n-i)!$$

Задача 5.20.

Дадена е стандартна колода от 52 карти. По колко начина можем да изберем от тях 13, така че сред тях да има:

- точно 1 боя, от която няма карти
- не повече от 2 бои, в които имаме точно 1 карта.

Задача 5.21. Колко цели числа между 1 и 10000 съдържат цифрата 7?

Задача 5.22. Колко думи с дължина 5 над азбуката $\{a,b,c,d,e\}$ имат поне 2 последователни a-та?

Задача 5.23. Колко решения в цели числа има уравнението:

$$x_1 + x_2 + x_3 + x_4 = 15, x_2 < 7 \land x_3 < 6 \land x_4 < 5$$

Задача 5.24. Докажете чрез комбинаторни разсъждения следните твърдения:

1.
$$A\kappa o |A| = n, \ mo |2^A| = 2^n$$

2.

$$\sum_{i=0}^{n} \binom{n}{i}^2 = \binom{2n}{n}$$

$${n \brace k} = {n-1 \brace k-1} + k {n-1 \brace k},$$

където $\binom{n}{k}$ е броят на разбиванията на n-елементно множество на k непразни множества.

Задача 5.25. Heка |A|=n, |B|=m. Колко са функциите $f:A\longrightarrow B,$ които са:

- тотални
- частични
- инекции
- сюрекции

6 Задачи

(решени и нерешени на допълнително упражнение преди семестриално контролно)

Задача 6.1. *Нека* $x \in \mathbb{R}, x > 0$, $a \in \mathbb{N}, n > 0$. Докажете, че $(1+x)^n \ge 1 + nx$

Задача 6.2. Нека а и q са фиксирани реални числа. Докажете, че за всяко естествено число п е изпълнена формулата:

$$\sum_{i=0}^{n} aq^{i} = \frac{aq^{n+1} - a}{q-1}, q \neq 1$$

Задача 6.3. Да се докаже, че за всяко естествено число $n \ge 1$ е в сила равенството:

$$\sum_{\{a_1,\dots,a_k\}\subseteq\{1,2,\dots,n\}} (a_1 \cdot a_2 \cdots a_k) = (n+1)! - 1$$

(Сумирането е по всички непразни подмножества на $\{1, 2, \dots, n\}$.)

Задача 6.4.

Дадена е стандартна колода от 52 карти. По колко начина можем да изберем от тях 13, така че сред тях да има:

- точно 1 боя, от която няма карти
- не повече от 2 бои, в които имаме точно 1 карта.

Задача 6.5. Тази (4.5) задача за биекции.

Задача 6.6. Дадени са естествени числа $a_1, a_2, ..., a_n$. Да се докаже, че има подредица от последователни елементи $a_l, ..., a_r$ на $\{a_i\}_{i=1}^n$, такава, че $\sum_{i=l}^r$ се дели на n.

Задача 6.7. На витрината на магазин са наредени в редица 2 черни, 2 бели, 2 сини и 2 червени молива, различаващи се само по цвета си. По колко начина може да стане това нареждане, ако:

- (а) няма ограничения за реда им;
- (b) няма едноцветни моливи един до друг.

Задача 6.8. По колко начина върху шахматна дъска могат се разположат максимален брой топове, без да се бият взаимно? Обосновете отговора си.

Задача 6.9. По колко начина може да се размеси колода от 52 карти, така че в нея да има поне 2 последователни карти A?

Задача 6.10. Дадена е редица от 12 стола, на 9 от които седят хора. Да се докаже, че има 3 последователни заети стола.

Задача 6.11. Точките в равнината са оцветени в черно и бяло. Да се докаже, че има правоъгълник със само черни или само бели върхове.

Задача 6.12. Механизмът на сейф се състои от седем колелца, всяко от които може да заема десет различни позиции, обозначени с цифрите от 0 до 9.

Когато механизмът работи правилно, само една седемцифрена поредица може да отвори сейфа. Поради повреда в механизма сейфът се отваря, ако поне четири от седемте колелца са в правилно положение. Колко са седемцифрените поредици, от-ключващи повредения сейф?

Задача 6.13. Колко на брой са строго растящите редици от седем цели положителни числа, ако първият член е 1 и разликата на всеки 2 поредни члена не надхвърля 4?

Задача 6.14. В магистърска програма X има 17 студенти, а в магистърска програма Y - 12 студенти. Всеки от тях трябва да избере и посещава точно един от общо 10 избираеми курса. По колко начина студентите могат да направят своя избор, ако:

- няма никакви ограничения при избора;
- няма курс, избран от всеки студент от програмата Y;
- всеки курс е избран от поне един студент.

Задача 6.15. Нека сме избрали n+1 елемента на множеството $S = \{1, 2, 3, ..., 2n\}$. Покажете, че поне едно от избраните числа дели друго от избраните числа.

Задача 6.16. Колко са монотонно растящите редиците от естествени числа x_1, x_2, \ldots, x_n такива че $x_1 \geq 0, x_n \leq m$.

Задача 6.17. Означаваме множеството от реални числа с \mathbb{R} , а рационалните числа с \mathbb{Q} .

Определяме релацията $R = \{(x,y) | x \in \mathbb{R}, y \in \mathbb{R}, x - y \in \mathbb{Q}\}.$

- (а) Докажете, че R е релация на еквивалентност.
- (б) Докажете, че класове на еквивалентност, породени от R, образуват неизброимо множество.

7 Рекурсия

Задача (Фибоначи). Задачата се състои в намиране броя на зайците, които ще се получат от една двойка за една година при следните условия:

- всяка двойка плодоносни зайци дава прираст два заека на месец;
- новите зайци стават плодоносни на едномесечна възраст;
- зайците не умират никога.

7.1 Хомогенни линейни рекурентни уравнения

От ред k с постоянни коефициенти:

$$c_0s_n + c_1s_{n-1} + c_2s_{n-2} + \dots + c_ks_{n-k} = 0$$

Алгоритъм за решаване:

• образуваме характеристично уравнение

$$c_0 x^n + c_1 x^{n-1} + c_2 x^{n-2} + \dots + c_k x_{n-k} = 0$$
$$c_0 x^k + c_1 x^{k-1} + \dots + c_k = 0$$

ullet записваме всичките му k корена в мултимножество

$$M = \{r_1, ..., r_k\}$$

• ако всички корени са различни, то решението на уравнението е

$$a_n = A_1 r_1^n + A_2 r_2^n + \dots + A_n r_k^n$$

където числата A_i се определят от началните условия на рекурентното уравнение.

ullet ако има корен r_i , който се повтаря p пъти, то коефициентът пред r_i^n е

$$(A_{r_i,1}n^{p-1} + A_{r_i,2}n^{p-2} + \dots + A_{r_i,p}n^0)$$

Задача 7.1. Да се реши рекурентното уравнение:

$$s_n = 7s_{n-1} - 10s_{n-2}, n > 1; s_0 = 0; s_1 = 3$$

Задача 7.2. Колко са думите с дължина n от азбуката $\{a,b,c,d,e\}$, в които няма последователни a-та?

7.2 Нехомогенни линейни рекурентни уравнения

От ред k с постоянни коефициенти:

$$c_0s_n + c_1s_{n-1} + c_2s_{n-2} + \dots + c_ks_{n-k} = f(n),$$

където f е от вида:

$$f(n) = Q_1(n)b_1^n + Q_2(n)b_2^n + ... + Q_m(n)b_m^n$$

Алгоритъм за решаване:

• образуваме характеристично уравнение

$$c_0 x^n + c_1 x^{n-1} + c_2 x^{n-2} + \dots + c_k x_{n-k} = 0$$
$$c_0 x^k + c_1 x^{k-1} + \dots + c_k = 0$$

• записваме всичките му k корена, както и $b_1,...,b_m$, съответно по $(deg(Q_1)+1),(deg(Q_2)+1),...,(deg(Q_m)+1)$ пъти в мултимножество

$$M = \{r_1, ..., r_k, b_1, ..., b_1, b_2, ..., b_2, ..., b_m, ..., b_m, \}$$

• ако всички елементи на са различни, то решението на уравнението е

$$a_n = A_1 r_1^n + A_2 r_2^n + \dots + A_p b_m^n,$$

където числата A_i се определят от началните условия на рекурентното уравнение.

ullet ако има елемент q, който се повтаря p пъти, то коефициентът пред q^n е

$$(A_{q,1}n^{p-1} + A_{q,2}n^{p-2} + \dots + A_{q,p}n^0)$$

Задача 7.3. Задачата за ханойските кули се състои от п диска, различни по размер един от друг, и 3 стълба. В началото дисковете са подредени на левия стълб, като най-големият е най-отдолу, а най-малкият - отгоре. Целта е кулата да бъде преместена на десния стълб. Може да се мести само по един диск на ход и не може по-голям диск да бъде поставен върху по-малък. Всеки ход е съставен от взимането на горния диск от даден стълб и в поставянето му най-отгоре на друг стълб. С колко най-малко хода може да се реши задачата?

Задача 7.4. Да се реши рекурентното уравнение:

$$s_n - 3s_{n-1} = 2, n > 1; s_1 = 2$$

Задача 7.5. Да се реши рекурентното уравнение:

$$s_n - 3s_{n-1} = 2, n > 1; s_1 = 2$$

Задача 7.6. Да се реши рекурентното уравнение:

$$s_n - 2s_{n-1} = 5 \cdot 2^n, n > 0; s_0 = 7$$

Задача 7.7. Да се реши рекурентното уравнение:

$$a_{n+3} = -5a_{n+2} - 8a_{n+1} - 4a_n + 2(-1)^n + (-2)^{n+3}$$

Задача 7.8. Колко са булевите вектори с дължина n, които нямат съседни 0? Задача 7.9.

- Да се намери формула за $\sum_{i=0}^{n} i$.
- Да се намери формула за $\sum_{i=0}^{n} i^{3}$.

Задача 7.10. Да се докаже, че $(3+\sqrt{5})^{2022}+(3-\sqrt{5})^{2022}\in\mathbb{Z}$.

8 Графи

8.1 Дефиниции

- Граф наричаме наредена двойка G(V, E), където V е множество на върховете (работим с краен брой), а $E \subseteq V \times V$ множество на ребрата;
- Ако $E = \emptyset$ наричаме G празен граф;
- Ребро от вида $(v, v) \in E$ наричаме примка;
- G(V, E) е неориентиран граф $\stackrel{def}{\longleftrightarrow} E$ е симетрична релация; В такива случаи ще отъждествяваме E с множество от двуелементни подмножества от върхове, като

$$\{u,v\}$$
 e pebpo $\leftrightarrow (u,v) \in E$

и под |E| ще разбираме именно броят на тези подмножества ребра.

- Мултиграф наричаме наредена тройка G(V, E, f), където V е множество на върховете (работим с краен брой), E е множество, а $f: E \to V \times V$ функция, описваща ребрата;
- ullet (неориентирани графи) Степен на $v \in V$ наричаме

$$d(v) \stackrel{\text{def}}{=} |\{(v, u) \mid (v, u) \in E \land u \in V\}|;$$

ullet (ориентирани графи) Полустепен на изхода на $v \in V$ наричаме

$$d^{+}(v) \stackrel{\text{def}}{=} |\{(v, u) \mid (v, u) \in E \land u \in V\}|;$$

• (ориентирани графи) Полустепен на входа на $v \in V$ наричаме

$$d^{-}(v) \stackrel{\text{def}}{=} |\{(u, v) \mid (u, v) \in E \land u \in V\}|;$$

- Графът $G\left(V,E\right)$ е k-регулярен $\stackrel{def}{\longleftrightarrow} \forall v \in V: d(v)=k;$
- G(V, E) е пълният граф с |V| =: n върха $\stackrel{def}{\longleftrightarrow} G$ е n-1 регулярен (игнорираме примките) (има ребро между всеки два различни върха);
- $G_1(V_1, E_1)$ е подграф на $G(V, E) \stackrel{def}{\longleftrightarrow} V_1 \subseteq V_2 \land E_1 \subseteq E_2;$
- G'(V',E') е клика в $G(V,E) \stackrel{def}{\longleftrightarrow} G'$ е подграф на $G \wedge G'$ е пълен граф;
- G'(V', E') е антиклика в $G(V, E) \stackrel{def}{\longleftrightarrow} G'$ е подграф на $G \wedge E' = \emptyset$;
- G(V, E) е двуделен граф $\stackrel{def}{\longleftrightarrow} \exists V_1 \subset V \ \exists V_2 \subset V \ (V_1 \cup V_2 = V \ \& \ V_1 \cap V_2 = \emptyset \ \& \ \forall (u, v) \in E \ (u \in V_1 \leftrightarrow v \in V_2));$

- p е път в $G(V, E) \stackrel{def}{\longleftrightarrow} p = (v_1 v_2 ... v_k)$, където $v_i \in V$ и $(v_i, v_{i+1}) \in E$;
- p е прост път в $G(V,E) \stackrel{def}{\longleftrightarrow} p = (v_1v_2...v_k)$ и $\forall i,j: v_i \neq v_j$ (без повторение на върхове);
- p е цикъл в $G(V, E) \stackrel{def}{\longleftrightarrow}$ р е път в G и $v_1 = v_k$;
- p е Хамилтонов цикъл $\stackrel{def}{\longleftrightarrow} p$ минава през всички върхове и $\forall i,j: v_i=v_j \to i=1 \land j=k;$
- ullet p е Ойлеров цикъл $\stackrel{def}{\longleftrightarrow} p$ минава точно веднъж през всяко ребро;
- G е свързан граф $\stackrel{def}{\longleftrightarrow} \forall u, v \in V : \exists p = (u...v);$ (алтернативна дефиниция чрез релация $\subseteq V \times V$ на достижимост)
- (за ориентирани графи) G е силно свързан граф $\stackrel{def}{\longleftrightarrow} \forall u,v \in V: \exists p = (u...v) \land \exists p = (v...u);$
- Допълнение на G(V, E) наричаме графа $\overline{G}(V, \overline{E})$;

8.2 Задачи

Задача 8.1 (връзка между степените и броя на ребрата). Да се докаже, че

$$\sum_{v \in V} d(v) = 2|E|$$

Доказателство. Всяко ребро е преброено отляво и отдясно по точно 2 пъти.

Задача 8.2 (връзка между полустепените и броя на ребрата). Да се докаже, че

$$\sum_{v \in V} d^{-}(v) = \sum_{v \in V} d^{+}(v) = |E|$$

Задача 8.3 (брой върхове от нечетна степен). Да се докаже, че върховете от нечетна степен в неориентиран граф са четен брой.

Доказателство. Допускаме, че графът G(V, E) съдържа нечетен брой върхове от нечетна степен. Тогава:

$$2|E| = \sum_{v \in V} d(v) = \sum_{v \in V, d(v) \text{ - четно}} d(v) + \sum_{v \in V, d(v) \text{ - нечетно}} d(v)$$
 е нечетно число

⇒ противоречие

Задача 8.4 (The hand-shaking lemma). *Нека* G(V, E) е граф с поне два върха. Тогава $\exists u, v \in V, u \neq v : d(u) = d(v)$.

Задача 8.5 $(d_{min} \geq 2 \implies$ цикъл). Нека G е неориентиран граф, всеки връх на който е от степен ≥ 2 . Да се докаже, че в G има цикъл.

Ако x и y не са инцидентни, то $\exists e=(x,u)\in E:u\not\in p$. Тогава up е по-дълъг от $p\Longrightarrow$ противоречие \implies в G е цикличен.

Задача 8.6 (ДУ за свързаност на граф). Нека G(V, E) е граф с n върха, всеки от които със степен $d(n) \geq \frac{n-1}{2}$. Да се докаже, че G е свързан.

Доказателство.

Допускаме, че G удовлетворява условията и G не е свързан.

Нека $G_1(V_1, E_1)$ е свързана компонента в G. Тогава $G_2(V_2, E_2) := G - G_1$ не е празен.

$$|V_1| + |V_2| = n \implies min(|V_1|, |V_2|) \le \frac{n}{2}$$

Случай 1: $|V_1| \le |V_2|$

 $|V_1| \leq \frac{n}{2} \implies$ най-високата степен на връх в G_1 е $|V_1| - 1 \leq \frac{n-2}{2} < \frac{n-1}{2} \implies$ противоречие Аналогично за Случай 2. \implies G е свързан.

Задача 8.7 (НУ за свързаност на граф). Да се докаже, че

$$G\left(V,E\right)$$
 е свързан $\Longrightarrow |E|\geq |V|-1$

Доказателство.

C индукция по |V|:

- ullet $|V|=2 \implies |E|=1 \implies$ вярно е за 2
- ullet Допускаме, че твърдението е вярно за |V|=n.
- Нека |V| = n+1 Допускаме, че |E| < |V| 1 = n Допускаме, че $\forall v \in V : d(v) \ge 2$. Тогава $\sum_{v \in V} \ge 2n + 2 > 2n > 2|E| \implies$ противоречие.

 $\implies \exists v \in V : d(v) = 1$ (свързаността на G не позволява степен 0)

Знаем, че
$$G-v$$
 е свързан и $|V\setminus\{v\}|=n\xrightarrow{\text{(от хипотезата)}}|E|-1\geq |V\setminus\{v\}|-1=|V|-2$
$$\implies |E|>|V|-1$$

Задача 8.8 (свързаност на допълнението). Да се докаже, че ако G не е свързан, то \overline{G} е свързан.

(Следствие: свързаните графи с п върха са повече от несвързаните.)

Доказателство. Разглеждаме произволните върхове $u, v \in V$.

- u и v са в различни свързани компоненти $\implies (u,v) \notin E \implies (u,v) \in \overline{E} \implies$ има път от u до v в \overline{G} ;
- u и v са в една свързана компонента Тогава $\exists x \in V$, такова че x е в друга свързана компонента $\Longrightarrow (u, x) \notin E \land (v, x) \notin E \implies (u, x) \in \overline{E} \land (v, x) \in \overline{E} \implies p = uxv$ е път от u до v в \overline{G} .

 \Longrightarrow има път между всеки два върха в $\overline{G} \Longrightarrow \overline{G}$ е свързан. \square

Задача 8.9 (два върха с нечетна степен). Да се докаже, че ако в граф има точно 2 върха с нечетна степен, то има път между тях.

(допускане на противното води до свързани компоненти с по 1 връх от нечетна степен)

Задача 8.10 (най-дълги пътища). Да се докаже, че всеки 2 най-дълги пътя в свързан граф имат общ връх.

Доказателство.

Нека $p_1 = v_1 v_2 ... v_k$ and $p_2 = u_1 u_2 ... u_k$ са 2 най-дълги пътя в G(V, E).

Допускаме, че $p_1 \cap p_2 = \emptyset$. G е свързан $\Longrightarrow \exists i, j : \exists p = v_i ... u_j \land p \cap (p_1 \cup p_2) = \{v_i, u_j\}$ БОО $i, j \geq \lceil \frac{k}{2} \rceil$ (чрез обръщане на p_1 и p_2 при необходимост).

Сега пътят $p_3=v_1...\underbrace{v_i...u_j}_{\text{D}}...u_1$ е с дължина $\geq 2\lceil \frac{k}{2} \rceil+1>k \implies$ противоречие.

Задача 8.11 (6 върха \implies 3-(анти)клика). Нека G(V,E) е граф с поне 6 върха. Тоава в G има 3-клика или 3-антиклика.

Доказателство. Разглеждаме графа $G'=G+\overline{G}=K_{|V|}$, в който ребрата от G са оцветени в синьо, а ребрата от \overline{G} са оцветени в червено. Нека $v,x,y,z\in V$. В графа $G':d(v)\geq 5\implies$ има поне 3 едноцветни ребра. БОО нека това са ребрата към x,y,z и те са сини. Разглеждаме следните 2 случая:

- някое от ребрата (x,y), (y,z), (x,z) е синьо. Нека БОО (x,y) е синьо. Тогава v,x,y образуват клика в G;
- никое от ребрата (x,y),(y,z),(x,z) не е синьо \implies те са червени. Тогава x,y,z образуват клика в \overline{G} \implies образуват антиклика в G.

Задача 8.12 (път в регулярен граф). Да се докаже, че в K_n има път с дължина n. (допускане на противното или индукция)

Задача 8.13 (турнир). "Турнир"е ориентиран граф G(V, E), където $E \subseteq V \times V$ е силно антисиметрична релация. Да се докаже, че в всеки турнир има Хамилтонов път.

Доказателство. С индукция по n:=|V|:

- n = 1: всеки турнир с един връх има тривален Хамилтонов път;
- Допускаме, че всеки турнир с п върха има Хамилтонов път;
- Нека G(V, E) е граф с |V| = n + 1 върха и $v \in V$. Тогава G - v е граф с n върха \Longrightarrow има Хамилтонов път $c = v_1 v_2 ... v_n$. E е силно антисиметрична $\Longrightarrow \forall i : (v_i, v) \in E \oplus (v, v_i) \in E$. Разглеждаме следните случаи:
 - $-(v,v_1) \in E \implies c' = vc$ е Хамилтонов път;
 - $-(v_n,v) \in E \implies c' = cv_n$ е Хамилтонов път;
 - $-(v_1,v) \in E \land (v,v_n) \in E$ Допускаме, че $\forall i \in I_{n-1} : \neg((v_i,v) \in E \land (v,v_{i+1}) \in E)$.

 Тогава $(v_1,v) \in E \implies (v,v_2) \in E \implies ...(v,v_n) \in E \implies$ противоречие $\implies \exists i \in I_{n-1} : (v_i,v) \in E \land (v,v_{i+1}) \in E$. Тогава $c' = v_1...v_iv_{i+1}...v_n$ е Хамилтонов път.

Задача 8.14. Нека G(V,E) е несвързан граф. Колко най-много ребра има G?

Доказателство. Нека G(V,E) има 2 свързани компоненти съответно с k и n-k върхове. Тогава G има най-много

$$f(k) = {k \choose 2} + {n-k \choose 2} = \frac{1}{2} (2k^2 - 2nk + n^2 - n)$$

функция на k, която достига максимум при k=1 (или k=n-1):

$$f(1) = f(n-1) = \binom{n-1}{2}$$

8.3 Планарност на графи

8.3.1 Дефиниция

G е планарен $\stackrel{def}{\longleftrightarrow}$ G може да се "нарисува" в равнината без пресичащи се ребра

Едно достатъчно условие за непланарност $|E| \geq 3|V| - 6$ (следствие от формулата на Ойлер за планарни свързани графи)

8.3.2 Примери

Планарни

K₄

Непланарни

• $K_{3,3}$

• K₅

8.3.3 Теорема на Куратовски

Разкъсване на ребро (u, v) наричаме заместването на (u, v) с ребра (u, x) и (x, v), където x е нов връх.

Графът G_1 ще наричаме разкъсване на G_2 , ако G_1 се получава от G_2 чрез последователност от разкъсвания на ребра.

Графите G_1 и G_2 са хомеоморфии, когато има граф G, такъв, че G_1 и G_2 са разкъсвания на G.

Теорема 1 (Kuratowski). G(V, E) е планарен тогава и само тогава, когато не съдържа подграф, хомеоморфен на K_5 или $K_{3,3}$.

8.4 Обхождане на графи

- 8.4.1 BFS (в широчина) (опашка (FIFO))
- 01 Записваме началния връх в опашката и го обяввяваме за обходен.
- 02 Докато опашката не е празна:

- 03 -махаме връх v от опашката;
- 04 -добавяме в опашката всички двойки (v,u), за които u е инцидентен с v, обявявайки u за обходен;

8.4.2 DFS (в широчина) (стек (LIFO))

- 01 Записваме началния връх в стека.
- @2 Докато опашката не е празна:
- 03 -махаме връх v от опашката и го обявяваме за обходен;
- 04 ако v не е обходен: добавяме в опашката всички двойки (v,u), за които u е инцидентен с v и u не е обходен.

8.5 граф на Петерсен

о регулирен

няма цикли с дължина < 5

Задача 8.15. Да се докаже, че графът на Петерсен не е планарен.

Задача 8.16. Да се докаже, че графът на Петерсен не е Хамилтонов. Доказателство.

Допускаме, че графът на Петерсен има Хамилтонов цикъл с дължина 10.

Допускаме, че всеки връх е свързан със срещуположния му в цикъла

 $\implies 1 - 6 - 5 - 10 - 1$ е цикъл с дължина $4 \implies$ противоречие.

Нека Б.О.О. 1 не е свързан с $6 \implies$ е свързан с 5 (иначе има цикъл с дължина < 5) Сега 10 не може да бъде свързан с друг връх,

понеже ще се получи цикъл с дължина < 5.

9 Дървета

9.1 Дефиниция за дърво

 $T\left(V,E\right)$ е гора $\stackrel{def}{\longleftrightarrow} T$ е ацикличен граф $T\left(V,E\right)$ е дърво $\stackrel{def}{\longleftrightarrow} T$ е свързан ацикличен граф

9.2 Задачи

Задача 9.1 (всяко дърво има поне 2 листа). Да се докаже, че G(V, E) е дърво и $|V| \ge 2 \implies \exists u, v \in V : d(u) = d(v) = 1$

Доказателство. Нека (u, ..., v) път в G. Допускаме, че u не е листо $(d(u) \ge 2) \implies \exists w \not\in p : (u, w) \in E$ (ако $w \in p$, то намираме цикъл в G). Сега $|wp| > |p| \implies$ противоречие. Аналогично v е листо.

Задача 9.2 (Премахване на ребро от цикъл в граф). Нека G(V, E) е свързан граф. Нека c е цикъл в G и нека e е ребро от c. Тогава G - e е свързан.

Доказателство. Нека $u, v \in V$ са произволни и p = (u, ..., v) е път в G.

- 1сл. $e \notin p \implies p$ е път от u до v в G e;
- 2сл. $e \in p$: Нека c = (x, ..., y, x) и e = (x, y). Тогава c' = (x, ..., y) е път в G e. $e \in p \implies p = (u, ..., p, x/y, y/x, q, ..., v) \implies p' = (u, ...p, c', q...)$ е път от u до v в G e.

$$\implies G - e$$
 остава свързан.

Задача 9.3 (еквивалентни дефиниции за дърво). Даден е графът $G\left(V,E\right),\left|V\right|=:n,n\geq 2.$

Да се докаже, че следните твърдения са еквивалентни:

- 1. G е дърво;
- 2. G е свързан с n-1 ребра;
- 3. G е свързан, но при премахване на произволно ребро се получава несвързан граф;
- 4. Всяка двойка върхове е свързана с точно 1 прост път
- 5. G няма цикли, но при добавяне на ребро между произволни 2 върха се получава цикъл.

(свързан граф от еквивалентности (интересна рекурсия:))

Доказателство. $\bullet 1 \implies 2$

C индукция по |V|:

- при n=1: всяко дърво с 1 връх е свързано с 0 ребра;

- Допускаме, че всяко дърво с n върха е свързано с n-1 ребра;
- Нека $G\left(V,E\right)$ е дърво с $n+1\geq 2$ върха. Тогава (от предната задача) $\exists u\in V:$ d(u)=1 и нека $(u,x)\in E.$

Разглеждаме G'-u. G' е свързан и ацикличен $\implies G'$ е дърво с n върха $\implies G'$ има n-1 ребра.

Тогава от $d(u) = 1 \implies G$ има n ребра.

 $\bullet 2 \implies 3$

Разглеждаме G' := G - e, където $e \in E$ е произволно ребро. За G' имаме, че $|E'| = n - 2 < n - 1 = |V| - 1 \implies G'$ не е свързан. (от НУ за свързаност).

 $\bullet 3 \implies 4$

Допускаме, че $\exists u,v \in V: \exists p1,p2: p1=(ux_1...x_kv) \land p2=(uy_1...y_lv) \land p1 \neq p2$. Нека $x_i \neq y_i$ е първата двойка различни върхове от p1 и p2, а $x_j \neq y_j$ е последната. Тогава всеки път $p_1=(w,...,x_i,x_{i+1},...,z)$ можем да заменим с $(w,...,x_i,x_{i-1},y_i,...,y_{j+1},x_j,...x_i,...,z)$.

 \Longrightarrow при премахване на (x_{i-1},x_i) G' остава свързан \Longrightarrow противоречие \Longrightarrow всяка двойка върхове е свързана с точно 1 прост път.

- 4 \Longrightarrow 5 $\forall u, v \in V : \exists! p = (u...v) \implies$ при добавяне на реброто (u, v) ще получим цикъл pu = vp:
- $\bullet 5 \implies 1$

В G няма цикли, но ако добавим ребро, получаваме цикъл \implies преди неговото добавяне е имало път между всеки 2 върха $\implies G$ е свързан $\implies G$ е дърво.

Задача 9.4 (п върха с $d \ge 3 \implies$ цикъл). Нека G(V, E), |V| = 2n е такъв, че п от върховете са от степен поне 3. Да се докаже, че в G има цикъл. (допускане на противното)

Задача 9.5 (вътрешните върхове са срязващи). *Нека* T(V,E) *е свързан граф.* Да се докаже, че

$$G\ e\ \partial {\it 5peo} \implies \forall v \in V: d(v) \geq 2 \rightarrow v\ e\ c$$
рязващ връх

Задача 9.6 (висящи върхове). Да се докаже, че ако в граф с n върха има n-1 висящи върха, то графът е или дърво, или не е свързан.

Доказателство. Нека $G\left(V,E\right),\;\left|V\right|=n,\;\exists!v\in V:d\left(v\right)\neq1$

Допускаме противното, а именно, че G не е дърво и е свързан или G е дърво и не е свързан (дясната част на дизюнкцията води до противоречие и не подлежи на разглеждане) $\Longrightarrow G$ съдържа цикъл $\Longrightarrow \exists u,v \in V,\ u \neq v: d(u) \geq 2,\ d(v) \geq 2.$

Доказателство. (2)

$$2|E| = \sum_{v \in V} d(v) = (n-1).1 + k$$
, където $0 \le k \le n-1$

- 1. 1сл. $k=n-1 \implies |E|=n-1=|V|-1$ и G е свързан $\implies G$ е дърво;
- 2. 2сл. $k < n-1 \implies |E| < |V|-1 \implies G$ не е свързан.

10 Покриващи дървета

10.1 MST

Даден е графът G(V, E).

 $T\left(V,E'\right)$ е покриващо дърво на $G\overset{def}{\longleftrightarrow}T$ е дърво и $E'\subseteq E.$

10.1.1 Дефиниция

Нека е дадена теглова функция $c: E \to \mathbb{N}$.

 $T(V, E_T)$ е минимално покриващо дърво (MST) на $G \stackrel{def}{\longleftrightarrow} T$ е покриващо дърво на G и за всяко покриващо дърво T' = (V, E') е изпълнено:

$$\sum_{e \in E_T} c(e) \le \sum_{e \in E'} c(e)$$

10.1.2 Алгоритми

 $G(V, E), c: E \to \mathbb{N}:$

10.1.3 Prim

Визуализация на MST Prim algorithm

Добавяме най-лекото ребро с начало обходен връх и край необходен. Обявяваме необходения за обходен.

10.1.4 Kruskal

Визуализация на MST Kruskal algorithm

Сортираме ребрата според теглото им във възходящ ред и добавяме най-лекото ребро, необразуващо цикъл.

10.1.5 Dijkstra

Визуализация на MST Dijkstra algorithm

Последователно строи най-късите пътища от началния връх до останалите.

11 Хиперкуб

11.1 Дефиниция

п-мерният хиперкуб е графът

$$B_n(V, E)$$

$$V = \mathbb{J}_2^n = \{(a_1, ..., a_n) | a_i \in \mathbb{J}_2\}$$

$$E = \left\{ \left(\tilde{\alpha}^n, \tilde{\beta}^n \right) | \sum_{i=1}^n |\alpha_i - \beta_i| = 1 \right\}$$

наредба на върховете: $\tilde{\alpha} \preceq \tilde{\beta} \iff \forall i : \alpha_i \leq \beta_i$

- *n*-регулярен
- \bullet $|V|=2^n$
- $|E| = \frac{\sum_{\tilde{\alpha}^n \in V} d(v)}{2} = \frac{2^n n}{2} = 2^{n-1} n$
- B_n е двуделен

$$V_1 = \left\{ \alpha | \alpha \in \mathbb{J}_2^n \wedge \sum_{i=1}^n \alpha_i \equiv 0 \, (\mod 2) \right\} \quad V_2 = \left\{ \alpha | \alpha \in \mathbb{J}_2^n \wedge \sum_{i=1}^n \alpha_i \equiv 1 \, (\mod 2) \right\}$$

11.2 Задачи

- 1. Колко са различните максимални вериги в B_n ? (верига е последователност от върхове $\tilde{\alpha}_1, \tilde{\alpha}_2, ..., \tilde{\alpha}_n$, такива че $\forall i : \tilde{\alpha}_i \preceq \tilde{\alpha}_{i+1}$)
- 2. Да се намери броя на върховете в максимална антиклика на B_n . (2^{n-1})
- 3. Да се докаже, че B_n е хамилтонов за $n \geq 2$.
- 4. Да се докаже, че B_n не е планарен за $n \geq 4$.

Решение:

$$\forall n \geq 4 : B_4$$
 е подграф на B_n .

Тогава е достатъчно да покажем, че B_4 не е планарен.

След прилагане на следните премахвания:

- (а) премахваме 1000;
- (б) премахваме 0100;
- (в) премахваме 1100 и добавяме (1110, 1101);
- (г) премахваме 0000;
- (д) премахваме 0001;
- (е) премахваме 1001 и добавяме (1101, 1011);
- (ж) премахваме 1010 и добавяме (1110, 1011);
- (з) премахваме 0101 и добавяме (0111, 1101);
- (и) премахваме 0110 и добавяме (0111, 1110);
- (к) премахваме 0011 и добавяме (0111, 1011);

Получаваме графът K_5 :

12 Булеви функции

Работим с (тотални) функции $f: \mathbb{J}_2^n \to \mathbb{J}_2$

$$\mathbb{F}_2^n = \{ f | f : \mathbb{J}_2^n \to \mathbb{J}_2 \}$$

Задача 12.1. Да се намери броя на булевите функции на п променливи,

- Да се намери броя на булевите функции на n променливи, които зависят от всичките си аргументи.
- Да се намери броя на булевите функции на п променливи, за които:
 - 1. върху k вектора стойността на функцията е фиксирана, а върху останалите е произволна;
 - $2.\ върху точно \ k \ аргумента има стойност \ 0, \ a \ върху останалите \ e \ 1.$
- Да се намери броя на булевите функции на п променливи, за които

$$f(x_1, x_2, ..., x_n) = f(x_2, x_1, ..., x_n)$$

12.1 СДНФ

12.1.1 Теорема на Вооlе

Множеството $\{\neg, \land, \lor\}$ е пълно.

От $x \wedge y \equiv \neg (\neg x \vee \neg y) \implies \{\neg, \vee\}$ е пълно. Аналогично и $\{\neg, \wedge\}$ е пълно.

12.2 МДНФ

12.2.1 Алгоритъм за намиране

- 1. Опростяване на конюнкти от СДНФ (различаващи се по една променлива)
- 2. Определяне на минималния брой необходими опростени конюнкти

12.2.2 Покритие на аргументите с образ 1

Всеки конюнкт "покрива" (имплицира; истинността му гарантира истинността на функцията) определени вектори. Задачата за МДНФ се свежда до търсене на покритие ¹ на всички вектори, за които стойността на функцията е 1.

- 1. дефинираме q_i конюнктът с етикет $i \in I$ (най-удобно с числови индекси) участва във формула;
- 2. образуваме конюнкция на дизюнкции на конюнктите, покриващи всеки ред:

$$\bigwedge_{\tilde{\alpha} \in \left\{\tilde{\beta} | f(\tilde{\beta}) = 1\right\}} \left(\bigvee_{i \in I \land \text{ конюнкт } i \text{ покрива } \tilde{\alpha}} q_i\right)$$

3. след опростяване взимаме конюнктите с най-малка дължина.

¹виж 1.4.6

пример: f = (0110110001011001)

Опростените конюнкти са xzw(1), $\overline{xz}w(2)$, $\overline{yz}w(3)$, $y\overline{zw}(4)$, $\overline{x}y\overline{z}(5)$, $x\overline{y}w(6)$, $\overline{xy}z\overline{w}(7)$.

Кои покриват в този ред 0001,0010,0100,0101,1001,1011,1100,1111:

$$(q_{2} \lor q_{3}) \land (q_{7}) \land (q_{4} \lor q_{5}) \land (q_{2} \lor q_{5}) \land (q_{3} \lor q_{6}) \land (q_{1} \lor q_{6}) \land (q_{4}) \land (q_{1}) =$$

$$= q_{1}q_{4}q_{7} \lor ((q_{2} \lor q_{3}) \land (q_{4} \lor q_{5}) \land (q_{3} \lor q_{6}) \land (q_{1} \lor q_{6}) \land (q_{2} \lor q_{5})) =$$

$$= (q_{1}q_{4}q_{7} \lor (q_{2} \lor q_{5})) \land ((q_{2}q_{4} \lor q_{2}q_{5} \lor q_{3}q_{4} \lor q_{3}q_{5}) \land (q_{3}q_{1} \lor q_{3}q_{6} \lor q_{6}q_{1} \lor q_{6})) =$$

$$= (q_{1}q_{2}q_{4}q_{7}q_{2}q_{4} \lor q_{1}q_{2}q_{4}q_{7}q_{2}q_{5} \lor q_{1}q_{2}q_{4}q_{7}q_{3}q_{4} \lor q_{1}q_{2}q_{4}q_{7}q_{3}q_{5}) \land (q_{3}q_{1} \lor q_{3}q_{6} \lor q_{6}q_{1} \lor q_{6}) \land$$

$$\land (q_{1}q_{5}q_{4}q_{7}q_{2}q_{4} \lor q_{1}q_{2}q_{4}q_{7}q_{2}q_{5} \lor q_{1}q_{2}q_{4}q_{7}q_{3}q_{4} \lor q_{1}q_{2}q_{4}q_{7}q_{3}q_{5}) \land (q_{3}q_{1} \lor q_{3}q_{6} \lor q_{6}q_{1} \lor q_{6}) =$$

$$= q_{1}q_{2}q_{3}q_{4}q_{7} \lor \dots \lor q_{1}q_{2}q_{4}q_{6}q_{7} \lor \dots \lor q_{1}q_{3}q_{4}q_{5}q_{7}$$

 \implies МДНФ се определят от $q_1q_2q_3q_4q_7,\ q_1q_2q_4q_6q_7$ и $q_1q_3q_4q_5q_7$

⇒ МДНФ са

$$xzw \vee \overline{xz}w \vee \overline{yz}w \vee y\overline{zw} \vee \overline{xy}z\overline{w}$$
$$xzw \vee \overline{xz}w \vee y\overline{zw} \vee x\overline{y}w \vee \overline{xy}z\overline{w}$$
$$xzw \vee \overline{yz}w \vee y\overline{zw} \vee \overline{xyz} \vee \overline{xy}z\overline{w}$$

12.3 Полином на Жегалкин

Полином на Жегалкин наричаме формула от вида

$$f(x_1, x_2, ..., x_n) = a_0 \oplus \bigoplus_{1 \le i \le n} a_i x_i \oplus \bigoplus_{1 \le i \le j \le n} a_{ij} x_i x_j \oplus ... \oplus a_{12...n} x_1 x_2 ... x_n$$

12.3.1 определяне

1-ви начин: заместване на \lor с \oplus и $\neg x$ с $1 \oplus x$ в СДН Φ ; опростяване до получване на $\Pi Ж$;

2-ри начин: конструиране на система линейни уравнения по общия вид на ПЖ чрез заместване с всеки възможен аргумент.

12.3.2 Теорема на Жегалкин

Всяка булева функция може да се представи по единствен начин чрез полином на Жегалкин.

(еднакъв брой и сюрекция от полиномите към функциите (заради пълнотата на $\{1,\oplus,\wedge\}))$

12.4 Критерий на Пост-Яблонски

Множеството F е пълно $\iff F \not\subseteq T_0 \land F \not\subseteq T_1 \land F \not\subseteq M \land F \not\subseteq L \land F \not\subseteq S$

12.5 Шеферови функции

12.5.1 Шеферова функция

f е Шеферова функция $\stackrel{def}{\longleftrightarrow} \{f\}$ е пълно.

12.6 Задачи

Задача 12.2. Да се намерят СДНФ, МДНФ и полином на Жегалкин на функциите:

- f = (1010)
- $f = (\overline{x} \to (y \to z) \oplus xz \oplus 1)$
- f = (01101010)
- f = (11011011)

Задача 12.3. Пълно ли е множеството:

- $\{1, \wedge, \oplus\}$
- $\{x \to y, x \oplus y\}$
- $\{f_1 = (10000001), f_2 = (0110), f_3 = (00110111)\}$
- $\{\overline{x}, 1, x (y \leftrightarrow z) \oplus \overline{x} (y \oplus z)\}$

• $\{xy \oplus z, x \oplus y \oplus 1, \overline{x}\}$

Задача 12.4.

Намерете броя на п-местните булеви функции, които са от:

- L
- $L \cap T_0$
- $L \cap T_1$
- $L \cap S$

12.6.1 критерий

f е Шеферова функция $\iff f \notin T_0 \cup T_1 \cup S$.

Доказателство:

Г⇒ Следва от критерия на Пост-Яблонски

 \Leftarrow Нека $f \notin T_0 \cup T_1 \cup S$.

$$\implies f(0,..,0) = 1 \land f(1,..,1) = 0 \implies f \not\in M$$
 Допускаме, че $f \in L \implies f = a_0 \oplus a_1x_1 \oplus a_2x_2 \oplus ... \oplus a_nx_n$
$$f(0,..,0) = 1 = a_0$$

$$f(1,..,1) = 0 = a_0 \oplus a_1 \oplus ... \oplus a_n$$

$$\overline{f}(\overline{x_1},...,\overline{x_n}) = 1 \oplus a_0 \oplus a_1(1 \oplus x_1) \oplus ... \oplus a_n(1 \oplus x_n)$$

$$\overline{f}(\overline{x_1},...,\overline{x_n}) = 1 \oplus a_1 \oplus a_2 \oplus ... \oplus a_n \oplus a_0 \oplus a_1x_1 \oplus ... \oplus a_nx_n$$

 $\overline{f}(\overline{x_1},...,\overline{x_n}) = 0 \oplus a_0 \oplus a_1x_1 \oplus ... \oplus a_nx_n = f(x_1,...,x_n) \implies f \in S \implies$ противоречие $f \notin L \implies f$ е Шеферова.

Критерият е следствие от: $M \cup L \subseteq T_0 \cup T_1 \cup S$

Задача 12.5. Шеферова ли е f = (10101000)

to be continued...