主管 领 核 签字

哈尔滨工业大学(深圳)2017/2018 学年春季学期

高等数学 B 试题

题号	_	Ш	四	五	六	七	八	九	+	总分
得分										
阅卷人										

注意行为规范

遵守考场纪律

李忠

一、填空题(每小题2分,共5小题,满分10分)

1. 设 L 为连接 (1,0) 及 (0,1) 两点的直线段,则对弧长的曲线积分 $\int_{L} (x+y) ds = ____.$

2. 向量函数 $\mathbf{F}(x, y, z) = x^2 y \mathbf{i} + y^2 z \mathbf{j} + z^2 x \mathbf{k}$ 在点 (1, 2, -1) 处的散度

div $\mathbf{F}|_{(1,2,-1)} = \underline{\hspace{1cm}}$.

3. 设质量密度为常数 ρ 的均质立体由下半球面 $z = -\sqrt{1 - x^2 - y^2}$ 与平面 z = 0所围成, 其质心坐标是 $(0,0,\bar{z})$,则 $\bar{z} = \underline{\hspace{1cm}}$.

4. 若二元函数 u = u(x, y) 的全微分 $du = (x^4 + 4xy^3)dx + (6x^2y^2 - 5y^4)dy$,则 $u = ______$.

5. 设幂级数 $\sum_{n=0}^{\infty} a_n (x-1)^n$ 在 x=-3 处条件收敛,则幂级数 $\sum_{n=0}^{\infty} a_n x^{2n}$ 的收敛半

径*R*=_____

二、选择题(每小题 2 分, 共 5 小题, 满分 10 分, 每小题中给出的四个选项中只有一个是符合题目要求的, 把所选项的字母填在题后的括号内)

1. 已知 $\alpha > 0$,级数 $\sum_{n=1}^{\infty} (-1)^n \sqrt{n} \sin \frac{1}{n^{\alpha}}$ 绝对收敛,级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{2-\alpha}}$ 条件收敛,

则α的范围为()

(A)
$$0 < \alpha \le \frac{1}{2}$$
; (B) $\frac{1}{2} < \alpha \le 1$; (C) $1 < \alpha \le \frac{3}{2}$; (D) $\frac{3}{2} < \alpha < 2$.

2. 函数 $f(x) = \frac{1}{2-x}$ 展开为 x 的幂级数的表达式为()

(A)
$$\sum_{n=0}^{\infty} \frac{x^n}{2^{n+1}}$$
, $-2 \le x < 2$; (B) $\sum_{n=1}^{\infty} \frac{x^n}{2^{n+1}}$, $-2 < x < 2$;

(B)
$$\sum_{n=1}^{\infty} \frac{x^n}{2^{n+1}}, -2 < x < 2$$

(C)
$$\sum_{n=0}^{\infty} \frac{x^n}{2^{n+1}}$$
, $-2 < x < 2$; (D) $\sum_{n=0}^{\infty} \frac{x^{n+1}}{2^n}$, $-2 < x < 2$.

(D)
$$\sum_{n=0}^{\infty} \frac{x^{n+1}}{2^n}$$
, $-2 < x < 2$.

- 3. 设 L 为 平 面 内 光 滑 的 简 单 闭 曲 线 , 并 取 正 向 , 则 对 坐 标 的 曲 线 积 分 $\oint_{L} (y^{3} - y + \sin x^{2}) dx + (-x^{3} + e^{y^{2}}) dy$ 的最大值为()

 - (A) $\frac{\pi}{6}$; (B) $\frac{3\sqrt{3}}{4}$; (C) $\frac{7\pi}{12}$; (D) $\frac{2\pi}{3}$.
- 4. 设 Σ 是空间光滑的有向曲面片,其边界曲线L的正向与 Σ 的侧符合右手规则,则由斯托克 斯公式,对坐标的曲线积分 $\int_L (2xz+y)dx + (xy+z^2)dy + (z+x^2)dz$ 等于(

 - (A) $\iint_{\Sigma} 2z dy dz + x dz dx + dx dy;$ (B) $\iint_{\Sigma} -2z dy dz + (y-1) dx dy;$

 - (C) $\iint_{\Sigma} (2z+x+1)dS;$ (D) $\iint_{\Sigma} (2x-z)dydz + (y-x)dzdx zdxdy.$
- 5. 设 Σ 是 抛 物 面 $z=2-x^2-y^2$ ($z\geq 0$) 的 上 侧 , 则 由 两 类 曲 面 积 分 的 关 系 , $\iint_{\Sigma} P(x, y, z) dydz + Q(x, y, z) dzdx + R(x, y, z) dxdy \stackrel{\text{special}}{=} ($

 - (A) $\iint_{\Sigma} \left(P \cdot 2x + Q \cdot 2y + R \right) dS;$ (B) $\iint_{\Sigma} \frac{-P \cdot 2x Q \cdot 2y + R}{\sqrt{1 + 4\left(x^2 + y^2\right)}} dS;$

 - (C) $\iint_{\Sigma} \frac{P \cdot 2x + Q \cdot 2y + R}{\sqrt{1 + 4(x^2 + y^2)}} dS;$ (D) $\iint_{\Sigma} \frac{P \cdot 2x + Q \cdot 2y + R \cdot z}{\sqrt{z^2 + 4(x^2 + y^2)}} dS.$
- 三、(5 分) 计算对面积的曲面积分 $\iint_{\Sigma} (xy+yz+zx) dS$,其中 Σ 是圆锥面 $z=\sqrt{x^2+y^2}$ 被圆柱面 $x^2 + y^2 = 2ax(a > 0)$ 所割下的部分.

六、(7分) 求幂级数 $\sum_{n=2}^{\infty} \frac{2n+3}{n(n-1)} x^n$ 的收敛半径,收敛域及和函数.

七、(6 分) 将函数 $f(x) = \begin{cases} x+1, 0 < x \le \frac{\pi}{2}, \\ 0, \frac{\pi}{2} < x \le \pi \end{cases}$ 展开成正弦级数,并写出和函数在区间 $[0, \pi]$ 上的

表达式.