Feuille de note normalisation

Réflexivité

Soit X et Y deux ensembles d'attributs, alors

Si
$$Y \subseteq X$$
 alors $X \to Y$

Exemples:

$$A \to A$$
 $A, B \to A, B$
 $A, B \to A$ $A, B \to B$

Augmentation

Soit X, Y, Z trois ensembles d'attributs, alors

$$X \to Y \Rightarrow XZ \to YZ$$

Exemples:

$$A \rightarrow B \Rightarrow A, C \rightarrow B, C$$

$$B, C \rightarrow A \Rightarrow B, C, E \rightarrow A, E$$

Transitivité

Soit X,Y,Z trois ensembles d'attributs, alors

$$X \to Y$$
 et $Y \to Z \Rightarrow X \to Z$

 ${\bf Exemples}:$

$$A \to B \text{ et } B \to C \Rightarrow A \to C$$

$$B, C \to C, E \text{ et } C, E \to D \Rightarrow B, C \to D$$

Décomposition

Soit X,Y,Z trois ensembles d'attributs, alors

$$X \to YZ \Rightarrow X \to Y$$
 et $X \to Z$

 ${\bf Exemple}:$

$$A,B\to C,D\Rightarrow A,B\to C$$
 et $A,B\to D$

Composition

Soit X, Y, A, B quatre ensembles d'attributs, alors

$$X \to Y$$
 et $A \to B \Rightarrow XA \to YB$

Exemple:

$$A \to B \text{ et } C \to D \Rightarrow AC \to BD$$

Union

Soit X, Y, Z trois ensembles d'attributs, alors

$$X \to Y$$
 et $X \to Z \Rightarrow X \to YZ$

Pseudo-transitivité

Soit X, Y, Z, W quatre ensembles d'attributs, alors

$$X \to Y$$
 et $YZ \to W \Rightarrow XZ \to W$

Exemple:

$$A \to B \text{ et } BC \to D \Rightarrow AC \to D$$

Détermination de soi (Self-determination)

$$I \to I \quad \forall I$$

Extensivité

Soit X, Y, Z trois ensembles d'attributs, alors

$$X \to Y \Rightarrow X \to XY$$

Fermeture de F

Soit ${\mathscr F}$ un ensemble de dépendances fonctionnelles, alors

$$\mathscr{F}^+ = \{ f \text{ tel que } \mathscr{F} \models f \}$$

Autrement dit, \mathscr{F}^+ est l'ensemble de toutes les dépendances fonctionnelles qui sont logiquement impliquées par \mathscr{F} en utilisant les axiomes d'Armstrong.

Fermeture de X

Soit X un ensemble d'attributs et ${\mathscr F}$ un ensemble de dépendances fonctionnelles, alors

$$X^+ = \{A \text{ tel que } X \to A \text{ est dérivable de } \mathscr{F} \}$$

Clés et superclés

Soit X un ensemble d'attributs et $\mathscr F$ un ensemble de dépendances fonctionnelles

Superclé :

X est une superclé ssi

$$X^+ = R$$

Clé:

X est une clé ssi

$$X^+ = R$$
 et $\nexists Y \subset X$ tel que $Y^+ = R$

DF triviale

Une dépendance fonctionnelle est triviale si elle est de la formes suivante :

$$X \to Y$$
où $Y \subseteq X$

Dépendance fonctionnelle élémentaire

Soit X un ensemble d'attributs et A un attribut, alors $X \to A$ est élémentaire ssi

- 1. $A \notin X$,
- 2. $\nexists X' \subset X$ tel que $X' \to Y$, c-à-d, que on ne peut pas trouver un sous-ensemble de X qui détermine Y.

Note : La partie de droite ne peut pas être un groupe d'attributs.

Couverure minimale

Soit \mathscr{F} un ensemble de dépendances fonctionnelles, alors \mathscr{F} est minimale ssi on ne peut pas enlever une dépendance fonctionnelle sans perdre de l'information.

Calculer la couverture minimale

- 1. Décomposer chaque DF de type $X \to Y, Z$ en $X \to Y$ et $X \to Z$.
- 2. Enlever les DF non-élémentaires.
- 3. Enlever les DF redondantes. (Les DF qui peuvent être déduites des autres DF)

Forme normale de Boyce-Codd (BCNF)

Définition 1 :

Un schéma relationnel R(U) avec ensemble F de DF est en forme BCNF ssi pour chaque dépendance élémentaire $X \to A$ dans \mathscr{F}^+ , on a que

X est une clé (candidate)

Définition 2:

Un schéma relationnel R(U) avec ensemble \mathscr{F} de DF est en forme BCNF ssi pour chaque DF non triviale $X\to A$ de \mathscr{F} , on a que :

X est une superclé de R

1FN,2FN,3FN

1FN:

Chaque attribut est atomique, c-à-d, chaque attribut ne contient qu'une seule valeur.

2FN:

Pour être en 2FN, il faut que :

- 1. Il faut être en 1FN
- 2. Chaque attribut non-clé ne dépend d'une partie de la clé.

3FN:

Pour être en 3FN, il faut que :

- 1. Il faut être en 2FN
- Chaque attribut non-clé ne dépend pas d'un attribut non-clé.

Algo-BCNF

Entrée:

Un schéma $R(U, \mathscr{F})$ où U est l'ensemble des attributs et \mathscr{F} est l'ensemble des dépendances fonctionnelles.

Sortie:

Une décomposition $D = \{R_1(U_1, \mathscr{F}_1), \dots, R_n(U_n, \mathscr{F}_n)\}$ sans perte d'information avec $R_i(U_i, \mathscr{F}_i)$ en BCNF pour tout i (mais perte possible de dépendances).

- 1. Initialiser $D \leftarrow \{R(U, \mathcal{F})\}$
- 2. Tant qu'il existe $R'(U', \mathscr{F}') \in D$ qui n'est pas en BCNF
 - (a) Trouver une DF non triviale $X \rightarrow Y \in \mathscr{F}'$ to $X \neq X^+$ et $X^+ \neq U'$
 - (b) Poser $U_1'=X^+$ et $U_2'=X\cup (U'-X^+)$, \mathscr{F}_1' les dépendances sur U_1' et \mathscr{F}_2' celles sur U_2'
 - (c) Poser $U_1' = X^+$, $U_2' = X \cup (U' X^+)$, \mathscr{F}_1' les dépendances sur U_1' et \mathscr{F}_2' celles sur U_2'
 - (d) Remplacer R'(U') par ses projections sur U'_1 et U'_2 : $R'_1(U'_1, \mathscr{F}'_1)$ et $R'_2(U'_2, \mathscr{F}'_2)$ $(R' = R'_1 \bowtie R'_2$ par Heath avec X déterminant, $X^+ X$ déterminé et $U' X^+$ résidu)

Le calcul de \mathscr{F}'_1 et \mathscr{F}'_2 à partir de \mathscr{F}' doit se faire avec l'algorithme de projection des dépendances

Projection des dépendances fonctionnelles

Entrée : Un schéma $R(U, \mathscr{F})$ et $U_1 \subset U$

Sortie : Les dépendances \mathscr{F}_1 induites sur $R_1(U_1)=\pi_{U_1}(R)$

- 1. $\mathscr{F}_1 \leftarrow \emptyset$ (initialisation)
- 2. Pour chaque $X \subseteq U_1$
 - (a) Calculer X^+ (par rapport à \mathscr{F})
 - (b) Ajouter à \mathscr{F}_1 toutes les $X \to \{A\}$ t.q. $A \in (X^+ X) \cap U_1$ (optionnel : et t.q. on n'a pas déjà $Y \to \{A\} \in \mathscr{F}_1$ avec $Y \subset X$)
- 3. (optionnel) enlever de \mathscr{F}_1 les dépendances redondantes
- 4. retourner \mathscr{F}_1

Algo de Bernstein

Entrée : Un schéma R (arbitraire) et un ensemble $\mathscr F$ de DF qui soit en 1NF.

Sortie : Projections donnant des schémas R_i en 3-NF pour tout i sans perte d'information et préservant les dépendances.

- 1. Initialiser P (ensemble de projections) à l'ensemble vide (et i=1)
- 2. Fixer $\mathscr G$ une couverture minimale de $\mathscr F$
- 3. Pour chaque X distinct d'une partie gauche d'une DF de ${\mathcal G}$
 - (a) Faire la réunion Y de tous les $\{A\}$ tels que $X \to \{A\} \in \mathscr{G}$
 - (b) Ajouter à P la projection de R sur X,Y (donne $R_i(\underline{X},Y)=\pi_{XY}(R)$, avec clé primaire X)
 - (c) i = i + 1
- 4. Si aucune des projections dans P ne contient une clé candidate de R, ajouter à P la projection de R sur une clé candidate. $(R_i(K) = \pi_K(R))$ pour K clé candidate).

 ${\cal R}$ est alors la jointure naturelle des projections obtenues. La décomposition est sans perte.