$\mathrm{CO}450$ - Combinatorial Optimization

Contents

1	Intr	roduction
	1.1	Overview of the Course
	1.2	Review of LP theory
		1.2.1 Duality
		1.2.2 Duality Theorems
	1.3	Geometry of LPs

1 Introduction

1.1 Overview of the Course

Combinatorial optimization leverages tools from: combinatorics, linear programming theory and algorithms to *efficiently* solve optimization problems on discrete structures (e.g. graphs)

The course will covering the following topics:

- Spanning frees
- Max flow, Min cut
- Matroids and matroid optimization
- Matchings and related problems
- Approximation algorithms

1.2 Review of LP theory

A linear program (LP) is an optimization problem of the form:

$$\begin{array}{ll}
\max & c^{\mathsf{T}} x \\
\text{s.t.} & Ax \le b \\
& x \ge 0
\end{array} \tag{1.1}$$

where $x \in \mathbb{R}^n$, $A \in M_{m \times n}(\mathbb{R})$, and the objective function and constraints are linear. We must also require that:

- There are a finite number of variables and constraints
- The inequalities are non-strict

Any LP has 3 possible outcomes:

- 1. The LP is infeasible
- 2. The LP is <u>unbounded</u>, i.e. We can achieve feasible solutions of arbitrarily "good" objective value. (For Equation (1.1), this means that $\forall v \in \mathbb{R}$ there exists a feasible solution x s.t $c^{\mathsf{T}}x > v$)
- 3. The LP has an optimal solution. (For Equation (1.1), this means there is a feasible solution x^* such that $c^{\mathsf{T}}x^* \geq c^{\mathsf{T}}x \; \forall$ feasible solutions x)

Theorem 1.1: Fundamental Theorem of Linear Programming

There are only these 3 possible outcomes

Theorem 1.2

LPs can be solved efficiently

1.2.1 Duality

Question: How do we prove bounds on the optimal value <u>OR</u> justify that a solution is optimal?

Idea: We can prove bounds by taking a suitable linear combination of constraints of the LP.

For example, we can multiply the constraints of Equation (1.1) by some vector $y \ge 0$. This gives:

$$y^{\mathsf{T}}Ax \le y^{\mathsf{T}}b \quad (y \ge 0)$$

Notice that if we require that $c^{\intercal} \leq y^{\intercal}A$, then since $x \geq 0$, we get the following chain of inequalities:

$$c^{\mathsf{T}}x \leq y^{\mathsf{T}}Ax \leq y^{\mathsf{T}}b$$

And this is precisely the <u>dual LP</u>.

min
$$b^{\mathsf{T}}y$$

s.t. $A^{\mathsf{T}}y \ge c$
 $y \ge 0$ (1.2)

We call the original LP the primal:

- Every constraint of the primal is a variable in the dual
- Every variable of the dual is a constraint in the dual

Remark 1.1. The dual of a dual gives us back the primal

1.2.2 Duality Theorems

We'll use (P) and (D) to denote the primal and dual, respectively.

Weak Duality: If x is feasible for (P) and y is feasible for (D), then $c^{\dagger}x \leq b^{\dagger}y$

Note. We can already infer things from this. For example, if (D) is unbounded, then $c^{\dagger}x$ is unable to obtain any solution. So, it must be infeasible

Strong Duality: If (P) has an optimal solution, then so does (D).

Suppose x^* is a feasible solution for (P) and y^* is a feasible solution for (D).

 x^*, y^* are optimal for (P), (D) respectively if and only if $c^{\mathsf{T}}x = b^{\mathsf{T}}y$ if and only if

- $x_i^* \neq 0 \Rightarrow$ corresponding dual constraint is tight at y^* (i.e. $(A^{\mathsf{T}}y^*)_j = c_j$)
- $y_i^* \neq 0 \Rightarrow$ corresponding primal constraint is tight at y^* (i.e. $(Ax^*)_i = b_i$)

These two conditions are known as the complementary slackness (CS) conditions.

1.3 Geometry of LPs

A feasible region of an LP is called a <u>polyhedron</u>, i.e. $P \subseteq \mathbb{R}^n$ is a polyhedron if it can be written as $\{x \in \mathbb{R}^n : Ax \leq b\}$

A polyhedron is a <u>convex set</u>. (A convex set is a a set $S \subseteq \mathbb{R}^n$ where $\forall x, y \in S, \forall \lambda \in [0, 1], \lambda x + (1 - \lambda)y \in S$)

We say that $x \in \mathbb{R}^n$ is a convex combination of points $p^{(1)}, \ldots, p^{(k)} \in \mathbb{R}^k$ if $\exists \lambda_1, \ldots, \lambda_k \geq 0, \sum_{i=1}^k = 1$, such that:

$$x = \sum_{i=1}^{k} \lambda_i p^{(i)}$$

An extreme point of a convex set $S \subseteq \mathbb{R}^n$ is a point \hat{x} such that \hat{x} cannot be written as a convex combination of 2 distinct points of S.

A polyhedron has a finite number (possibly zero) of extreme points.

 \hat{x} is an extreme point of a polyhedron $P \subseteq \mathbb{R}^n$ if and only if $\exists c \in \mathbb{R}^n$ such that \hat{x} is a unique optimal solution to the LP: $\{\max c^{\intercal}x \text{ s.t. } x \in P\}$

Theorem 1.3

Consider the (LP): $\{\max c^{\intercal}x \text{ s.t. } x \in P\}$ where $P \subseteq \mathbb{R}^n$ is a polyhedron. If (LP) has an optimal solution and P has extreme points, then there is always an optimal solution that is an extreme point of P.

Definition 1.1: Convex Hull

Let $S \subseteq \mathbb{R}^n$, the <u>convex hull</u> of S, denoted conv(S) is the smallest convex set containing S. Equivalently:

 $conv(S) := \{x \in \mathbb{R}^n : x \text{ is a convex combination of a <u>finite</u> number of points of S}$

Definition 1.2: Polytope

A <u>polytope</u> is a bounded polyhedron, i.e. $\exists \gamma \in \mathbb{R}$ such that $\forall x \in \text{polytope}, |x_i| \leq \gamma \forall \text{coordinates } i$.

Remark 1.2.

- 1. A polytope is the convex hull of its extreme points
- 2. $P \subseteq \mathbb{R}^n$ is a polytope if and only if P = conv(S) for a finite set $S \subset \mathbb{R}^n$