IV.
$$(1+x)^m = 1 + mx + \frac{m(m-1)}{21}x^2 + \dots$$

 $\dots + \frac{m(m-1)\dots(m-n+1)}{n!}x^n + \dots (-1 \le x \le 1).$
V. $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1}\frac{x^n}{n} + \dots$
 $(-1 < x \le 1).$

 4° . Действия со степенными рядами. Внутри общего интервала сходимости |x-a| < R имеем:

a)
$$\sum_{n=0}^{\infty} a_n (x-a)^n \pm \sum_{n=0}^{\infty} b_n (x-a)^n = \sum_{n=0}^{\infty} (a_n \pm b_n) (x-a)^n;$$

6)
$$\sum_{n=0}^{\infty} a_n (x-a)^n \sum_{n=0}^{\infty} b_n (x-a)^n = \sum_{n=0}^{\infty} c_n (x-a)^n,$$

FIRE $c_n = a_0b_n + a_1b_{n-1} + \ldots + a_nb_0$;

B)
$$\frac{d}{dx} \left[\sum_{n=0}^{\infty} a_n (x-a)^n \right] = \sum_{n=0}^{\infty} (n+1) a_{n+1} (x-a)^n$$

r)
$$\int \left[\sum_{n=0}^{\infty} a_n (x-a)^n \right] dx = C + \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x-a)^{n+2}.$$

5°. Степенные ряды комплексной области. Рассмотрим ряд

$$\sum_{n=0}^{\infty} c_n (z-a)^n,$$

где

$$c_n = a_n + ib_n$$
, $a = \alpha + i\beta$, $z = x + iy$, $i^2 = -1$.

Для каждого такого ряда имеется замкнутый круг сходимости $|z-a| \leqslant R$, внутри которого данный ряд сходится (и притом абсолютио), а вне расходится. Радиус сходимости R равен рацусу сходимости степенного ряда

$$\sum_{n=0}^{\infty} |c_n| r^n$$

в действительной области.

Определить радиус и интервал сходимости и исследовать поведение в граничных точках интервала сходимости следующих степенных рядов:

2812.
$$\sum_{n=1}^{\infty} \frac{x^n}{n^p}.$$
 2813.
$$\sum_{n=1}^{\infty} \frac{3^n + (-2)^n}{n} (x+1)^n.$$