

How to Develop a Computational Model?

"All models are wrong, but some are useful" George E. P. Box

What we will cover:

- → An example for how to select the proper model with respect to a specific task design
- → The Rescorla Wagner model
- → The concept of learning rate
- → The concept of temperature
- → What is a "softmax" function

Developing a computational model

Developing a computational model

2-arm bandit

Experimental task -

How do you maximise reward if you do not know which slot machine is better?

- → Learn expected value of each slot machine
- → Make the next choice based on values learnt

Trial	Choice	Outcome
1	Right	0
2	Left new choice	+1
3	Left	+1
4	Right	0
5	Left past experience	+1

$$V_t = V_{t-1} + \alpha(R_t - V_{t-1})$$

$$V_t = V_{t-1} + \alpha(R_t - 0.5)$$

$$V_t = V_{t-1} + \alpha(1-0.5)$$

0.5
$$V_{t}=V_{t-1}+\alpha(1-0.5)$$

$$V_t = V_{t\text{-}1} + \quad \alpha \quad \left(R_t\text{-}V_{t\text{-}1}\right)$$
 Value on (of the slot machine) = Value on previous trial


```
Value Value on Learning (Reward - previous trial + rate (Reward - previous trial )
```



```
Value Value on Learning ( Reward - Value on (of the slot machine) = previous trial + rate ( Reward - previous trial )
```


Prediction error
what you received - what you expected

Value Value on Learning (Reward - previous trial + rate (Reward - previous trial)

Trial	?		
1			

Trial

Prediction error

what you received - what you expected

learning - Value on

Value Value on Learning (Reward - previous trial)

Trial	1	0.5	+	0.5
1				

Prediction error
what you received - what you expected
Learning / Dawned Value on

Value	Value on		Learning (Reward	Value	on
		, +	Reward	- previous	trial)
(of the slot machine)	previous tria	T	rate (Table 1	previous	criat)

Trial 1	1	0.5	+	0.5
Trial 2		1	+	7

Prediction error what you expected

Trial 1	1	0.5	+	0.5	
Trial 2		1	+	1	1

Prediction error what you received - what you expected

Value Value on Learning (Reward - previous trial + rate (Reward - previous trial)

Trial 1	1	0.5	+	0.5
Trial 2		1	+	(1 - 1)

Trial 1	1	0.5	+	0.5
Trial 2		1	+	0

Trial 1	1	0.5	+	0.5
Trial 2	1	1	+	0

Trial 1	1	0.5	+	0.5
Trial 2	1	1		0

Modelling behaviour with RL

what you received - what you expected

Value

Value on + Learning (Reward - previous trial)

Trial 1	1	0.5	+	0.5
Trial 2	1	1	+	0
Trial 3		1	+	1

Prediction error what you expected

Value Value on Cof the slot machine) = Value on Previous trial + Compared (Neward - Previous trial)

Trial 1	1	0.5	+	0.5
Trial 2	1	1	+	0
Trial 3		1	+	0 1

Trial 1	1	0.5	+	0.5
Trial 2	1	1	+	0
Trial 3		1	+	-1

Prediction error what you received - what you expected

Value Value on Cof the slot machine) = Value on Previous trial + Compared (Neward - Previous trial)

Trial 1	1	0.5	+	0.5
Trial 2	1	1	٠	0
Trial 3	0	1	+	-1

HARILEY LA

How much should we learn?

What happens if we manipulate learning rate?

How much should we learn?

What happens if we manipulate learning rate?

How much should we learn?

What happens if we manipulate learning rate?

Is low learning rate always better?

$$V_{t}=V_{t-1}+\alpha(R_{t}-V_{t-1})$$

- → Depend on the statistics of the environment
 - Low volatility-> low a is better
 - High volatility-> high a is better

What did we learn so far

- → What are multi arm bandit tasks
- → How RL and, specifically Rescorla Wagner model can help us to 'solve' such problems
- → Expected value
- → Prediction error
- → High vs low learning rate

20% reward

80% reward

← learnt via trial and error ← (value function)

80% reward

Maximise rewards

- → Pick slot machine with largest likelihood of reward
- → Exploit

Exploit

→ Choose slot machine when reward is better than the other

Try other options

- → Sample the outcomes of the other slot machine
- **→** Explore

20% reward

Explore

→ Choose slot machine equally

Exploit — an individual difference — Explore we can model as a free parameter

Temperature (τ) : parameter that determines the extent to which value estimates influence choice behaviour

Temperature (τ) : parameter that determines the extent to which value estimates influence choice behaviour

Low temperature

→ Choices are less noisy

Temperature (τ) : parameter that determines the extent to which value estimates influence choice behaviour

Low temperature

- → Choices are less noisy
- → More affected by value
- → More deterministic

Temperature (τ) : parameter that determines the extent to which value estimates influence choice behaviour

High temperature

- → Choices are more noisy
- → Less affected by value
- → Less deterministic

Temperature (τ) : parameter that determines the extent to which value estimates influence choice behaviour

→ Let's assume that if we don't pick purple we will pick orange; and vice versa

Temperature (τ) : parameter that determines the extent to which value estimates influence choice behaviour

Softmax equation:

 $\exp([V_{\text{purple}}]/\tau)$

P(purple) =

SUM[exp($\begin{bmatrix} V_{purple} \\ V_{orange} \end{bmatrix} / \tau$)]

Let's assume that if we don't pick purple we will pick orange; and vice versa

Temperature (τ) : parameter that determines the extent to which value estimates influence choice behaviour

Softmax equation:

$$\exp([V_{purple}]/\tau)$$

P(purple) =

Probability of choosing purple

 \rightarrow P(orange) = 1 - P(purple)

→ Let's assume that if we don't pick purple we will pick orange; and vice versa

Temperature (τ) : parameter that determines the extent to which value estimates influence choice behaviour

Softmax equation:

Value of machines

 $\exp([V_{purple}]/\tau)$

Probability of choosing purple

→ P(orange) = 1 - P(purple)

→ Let's assume that if we don't pick purple we will pick orange; and vice versa

Temperature (τ) : parameter that determines the extent to which value estimates influence choice behaviour

Softmax equation:

Value of machines

 $\exp([V_{purple}]/\tau)$

Probability of choosing purple

→ P(orange) = 1 - P(purple)

Free parameter temperature

Let's assume that if we don't pick purple we will pick orange; and vice versa

$$P(purple) = \frac{\exp([V_{purple}]/\tau)}{SUM[\exp([V_{orange}]/\tau)]}$$

Exploit

→ Choose slot machine when reward is better than the other

$$P(purple) = \frac{\exp([V_{purple}]/\tau)}{SUM[\exp([V_{orange}]/\tau)]}$$

Exploit

→ Choose slot machine when reward is better than the other

$$P(purple) = \frac{\exp([V_{purple}]/\tau)}{SUM[\exp([V_{orange}]/\tau)]}$$

Exploit

→ Choose slot machine when reward is better than the other

Temperature is low

- → Choices are less noisy
- → More affected by value
- → More deterministic

Developmental Computational Psychiatry lab

$$P(purple) = \frac{\exp([V_{purple}]/\tau)}{SUM[\exp([V_{orange}]/\tau)]}$$

Explore

→ Random choice

$$P(purple) = \frac{\exp([V_{purple}]/\tau)}{SUM[\exp([V_{orange}]/\tau)]}$$

Explore

→ Random choice

$$P(purple) = \frac{\exp([V_{purple}]/\tau)}{SUM[\exp([V_{orange}]/\tau)]}$$

Explore

→ Random choice

Temperature is high

- → Choices are more noisy
- → Less affected by value
- → More random

Developmental Computational Psychiatry lab HARTLEY LAB

How should we choose?

$$P(purple) = \frac{\exp([V_{purple}]/\tau)}{V_{orange}}$$

$$SUM[exp([V_{orange}]/\tau)]$$

Temperature is low

- → Choices are less noisy
- → More affected by value
- → More deterministic

Temperature is high

- → Choices are more noisy
- → Less affected by value
- → Less deterministic

$$P(purple) = \frac{\exp([V_{purple}]/\tau)}{SUM[\exp([V_{orange}]/\tau)]}$$

Temperature is low

- → Choices are less noisy
- → More affected by value
- → More deterministic

Temperature is high

- → Choices are more noisy
- → Less affected by value
- → Less deterministic

Softmax

$$P(purple) = \frac{\exp([V_{purple}]/\tau)}{SUM[\exp([V_{orange}]/\tau)]}$$

What does the exponential (exp) do?

Softmax

$$P(purple) = \frac{\exp([V_{purple}]/\tau)}{SUM[\exp([V_{orange}]/\tau)]}$$

What does the exponential (exp) do?

- → Deals with negative values
- → Non-linear transformation of value

Softmax

$$P(purple) = \frac{\exp([V_{purple}]/\tau)}{SUM[\exp([V_{orange}]/\tau)]}$$

What does the exponential (exp) do?

- → Deals with negative values
- → Non-linear transformation of value

What does the division by SUM do?

→ Normalizes values to between 0 to 1

$$P(purple) = \frac{\exp([V_{purple}])}{SUM[\exp([V_{orange}])]}$$

Softmax

→ Transforms value input into values between 0 to 1

Assume temperature = 1

$$P(purple) = \frac{\exp([V_{purple}])}{SUM[\exp([V_{orange}])]}$$

Softmax

→ Transforms value input into values between 0 to 1

Assume temperature = 1

For my next slot machine play...

$$V_{\text{purple}} = [60] V_{\text{orange}} = [40]$$

$$P(purple) = \frac{\exp([V_{purple}])}{SUM[exp([V_{orange}])]}$$

$$= \frac{exp([V_{purple}])}{SUM[exp([G_{orange}])]}$$

$$= \frac{exp([G_{orange}])}{SUM[exp([G_{orange}])]}$$

Softmax

→ Transforms value input into values between 0 to 1

Assume temperature = 1

For my next slot machine play...

$$V_{\text{purple}} = [60] V_{\text{orange}} = [40]$$

$$P(purple) = \frac{\exp([V_{purple}])}{SUM[exp([V_{orange}])]}$$

$$= \frac{exp([60])}{SUM[exp([60])]}$$

$$= \frac{e^{60}}{e^{60} + e^{40}}$$

$$= 1$$

Softmax

→ Transforms value input into values between 0 to 1

Assume temperature = 1

For my next slot machine play...

$$V_{\text{purple}} = [60] V_{\text{orange}} = [40]$$

$$P(purple) = \frac{\exp([V_{purple}])}{SUM[exp([V_{purple}])]}$$

$$= \frac{exp([60])}{SUM[exp([60])]}$$

$$= \frac{e^{60}}{e^{60} + e^{40}}$$

$$= 1$$

Softmax

→ Transforms value input into values between 0 to 1

$$V_{\text{purple}} = [60] V_{\text{orange}} = [40]$$

$$P(purple) = \frac{\exp([V_{purple}])}{SUM[\exp([V_{orange}])}$$

$$= \frac{\exp([60])}{SUM[\exp([60])]}$$

$$= \frac{e^{60}}{e^{60} + e^{40}}$$

$$= 1$$

Softmax

→ Transforms value input into values between 0 to 1

$$P(orange) = \frac{\exp([V_{orange}])}{SUM[\exp([V_{orange}])}$$

$$V_{\text{purple}} = [60] V_{\text{orange}} = [40]$$

$$P(purple) = \frac{\exp([V_{purple}])}{SUM[\exp([V_{orange}])]}$$

$$= \frac{\exp([60])}{SUM[\exp([60])]}$$

$$= \frac{e^{60}}{e^{60} + e^{40}}$$

$$= 1$$

Softmax

→ Transforms value input into values between 0 to 1

P(orange) =
$$\frac{\exp([V_{orange}])}{SUM[\exp([V_{orange}])}$$
$$= \frac{e^{40}}{e^{60} + e^{40}}$$
$$= 0$$

$$V_{\text{purple}} = [60] V_{\text{orange}} = [40]$$

$$P(purple) = \frac{\exp([V_{purple}])}{SUM[\exp([V_{purple}])]}$$

$$= \frac{\exp([60])}{SUM[\exp([60])]}$$

$$= \frac{\exp([60])}{[60]}$$

$$= \frac{e^{60}}{e^{60} + e^{40}}$$

probability equals to 1

Tricia Seow | Samuel Hewitt | Noam Goldway

$$V_{\text{purple}} = [60] V_{\text{orange}} = [40]$$

Softmax

$$P(purple) = \frac{\exp([V_{purple}]/\tau)}{SUM[\exp([V_{orange}]/\tau)]}$$

Temperature (τ)

→ how much value affects choices

$$V_{\text{purple}} = [60] V_{\text{orange}} = [40]$$

P(purple) =
$$\frac{\exp([V_{purple}]/\tau)}{SUM[\exp([V_{orange}]/\tau)]}$$
$$= \frac{\exp([60]/15)}{SUM[\exp([60]/15)]}$$

Temperature (τ)

→ how much value affects choices

$$V_{\text{purple}} = [60] V_{\text{orange}} = [40]$$

$$P(purple) = \frac{\exp([\frac{V_{purple}}{V_{purple}}]/\tau)}{SUM[\exp([\frac{V_{purple}}{V_{orange}}]/\tau)]}$$

$$= \frac{\exp([\frac{60}{V_{purple}}]/\tau)}{SUM[\exp([\frac{60}{40}]/15)]}$$

$$= \frac{e^{60/15}}{e^{60/15} + e^{40/15}}$$

$$= 0.79$$

Temperature (τ)

→ how much value affects choices

$$V_{\text{purple}} = [60] V_{\text{orange}} = [40]$$

$$P(purple) = \frac{\exp([V_{purple}]/\tau)}{SUM[\exp([V_{orange}]/\tau)]}$$

$$= \frac{\exp([60]/15)}{SUM[\exp([60]/15)]}$$

$$= \frac{e^{60/15}}{e^{60/15} + e^{40/15}}$$

$$= 0.79$$

Temperature (τ)

→ how much value affects choices

$$V_{\text{purple}} = [60] V_{\text{orange}} = [40]$$

$$P(purple) = \frac{\exp([V_{purple}]/\tau)}{SUM[\exp([V_{orange}]/\tau)]}$$

$$= \frac{1}{\text{SUM}[\exp(\left[\frac{60}{40}\right]/15)]}$$

$$= \frac{e^{60/15}}{e^{60/15} + e^{40/15}}$$

Temperature (τ)

→ how much value affects choices

Assume temperature = 15

P(orange) =
$$\frac{\exp([V_{orange}]/\tau)}{SUM[\exp([V_{orange}]/\tau)]}$$
$$= \frac{e^{40/15}}{e^{60/15} + e^{40/15}}$$
$$= 0.21$$

probability equals to 1

Tricia Seow | Samuel Hewitt | Noam Goldway

$$V_{\text{purple}} = [60] V_{\text{orange}} = [40]$$

What have we learnt about choice?

Softmax equation:

$$P(purple) = \frac{exp([V_{purple}]/\tau)}{SUM[exp([V_{purple}]/\tau)]}$$

$$V_{orange}$$

Temperature (τ): parameter that determines the extent to which value estimates influence choice behaviour

Exploit or Explore

What have we learnt about choice?

Exploit versus Explore:

- → Discover "what works" by alternating between exploration and exploitation
- → In uncertain environments, more exploration could be useful

Summary

Task	Trial and error learning	Reinforcement Learning
Value Function	Subjective value from objective outcomes	Rescorla-Wagner
Choice Function	Choice probabilities from value	Softmax

