Devoir surveillé n°01

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1 – D'après E3A Maths 1 MP 2018

Pour tout entier naturel n dans \mathbb{N}^* , on note

$$h_n = \sum_{k=1}^n \frac{1}{k}, \ f_n = h_n - \ln(n)$$

On considère les suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ définies par :

$$u_1 = 1$$
 et pour $n \ge 2$, $u_n = \frac{1}{n} + \ln(1 - \frac{1}{n})$, $v_n = \frac{1}{n} - \ln(1 + \frac{1}{n})$

- Rappeler le domaine de définition de la fonction $(x \mapsto x + \ln(1-x))$. Préciser son développement de Taylor à l'ordre 2 en 0.
- 2 Soit n un entier naturel. Quel est le signe de u_n ?
- 3 Justifier que la série $\sum_{n>1} u_n$ est convergente.
- 4 Etudier la fonction $(f: x \mapsto x \ln(1+x))$ sur [0,1].
- **5** Justifier que la série $\sum_{n\geq 1} v_n$ est convergente.
- Soit n un entier naturel non nul. Exprimer en fonction de n, $v_n u_n$.

 En déduire une expression de $\sum_{n=1}^{N} (v_n u_n)$ en fonction de N pour tout entier naturel N supérieur ou égal à n.
- 7 Que peut-on dire des suites $(\sum_{n=1}^{N} v_n)_{N \in \mathbb{N}^*}$ et $(\sum_{n=1}^{N} u_n)_{N \in \mathbb{N}^*}$? Justifier que $\sum_{n=1}^{+\infty} v_n = \sum_{n=1}^{+\infty} u_n$.

Dans la suite de l'exercice, on note γ la somme des séries $\sum_{n\geq 1} v_n$ et $\sum_{n\geq 1} u_n$.

- **8** Démontrer que γ est dans l'intervalle]0, 1[.
- **9** Soit n un entier naturel non nul. Justifier que:

$$\ln(n+1) \le h_n \le 1 + \ln(n)$$

1

10 Justifier que la suite $(f_n)_{n\in\mathbb{N}^*}$ est décroissante.

11 Démontre que la suite $(f_n)_{n\in\mathbb{N}^*}$ est convergente et de limite γ .

Indication: exprimer les sommes partielles de la série $\sum_{n>1}^{N} u_n$ en fonction des termes de la suite (f_n) .

- 12 Soit r un entier naturel > 1.
 - **12.a** Dessiner le graphe de la fonction $(x \mapsto 1/x^r)$ sur \mathbb{R}_+^* .
 - **12.b** Soit a un nombre réel > 0. Exprimer en fonction de a et r:

$$I(a) = \int_{a}^{+\infty} \frac{\mathrm{d}t}{t^r}$$

12.c Montrer que pour tout entier *k* supérieur ou égal à 2,

$$\int_{k}^{k+1} \frac{\mathrm{d}t}{t^r} \le \frac{1}{k^r} \le \int_{k-1}^{k} \frac{\mathrm{d}t}{t^r}$$

- **12.d** En déduire un équivalent simple de $\sum_{k=n}^{+\infty} \frac{1}{k^r}$ lorsque n tend vers $+\infty$.
- 12.e Soit (w_n) une suite de nombres réels qui converge vers 0. On suppose que la suite $(n^r(w_{n+1}-w_n))_{n\in\mathbb{N}}$ est convergente vers une limite ℓ telle que $\ell>0$. Démontrer que la suite $(n^{r-1}w_n)_{n\in\mathbb{N}}$ est convergente et expliciter en fonction de ℓ et r sa limite.
- 13 Démontrer qu'il existe un nombre réel α que l'on explicitera tel que :

$$\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + \frac{\alpha}{n} + o\left(\frac{1}{n}\right)$$

Indication : on appliquera les résultats de la question 12 à une suite bien choisie.

Exercice 1 ★★

Sommation d'Abel (d'après CCP MP 2014)

Soient $(a_n)_{n\geq n_0}$ et $(B_n)_{n\geq n_0}$ deux suites complexes. On définit alors deux suites $(A_n)_{n\geq n_0}$ et $(b_n)_{n\geq n_0}$ de la manière suivante :

$$\forall n \ge n_0, \ \mathbf{A}_n = \sum_{k=n_0}^n a_k$$

$$\forall n \ge n_0, \ b_n = \mathbf{B}_{n+1} - \mathbf{B}_n$$

- 1. Montrer que $\sum_{k=n_0}^n a_k B_k = A_n B_n \sum_{k=n_0}^{n-1} A_k b_k$ pour tout entier $n \ge n_0$.
- 2. Dans cette question, on suppose que la suite (A_n) est bornée et que (B_n) est une suite réelle décroissante de limite nulle.
 - **a.** Montrer que la série $\sum_{n>n_0} b_n$ converge.
 - **b.** En déduire que la série $\sum_{n\geq n_0} a_n \mathbf{B}_n$ converge.
 - c. En déduire en particulier que la série $\sum_{n>n_0} (-1)^n B_n$ converge.
- 3. Soient $\theta \in \mathbb{R} \setminus 2\pi\mathbb{Z}$ et $\alpha \in \mathbb{R}$.
 - **a.** Soit $n \in \mathbb{N}^*$. Calculer $\sum_{k=1}^n e^{ik\theta}$. On donnera le résultat sous la forme $re^{i\varphi}$ où $(r,\varphi) \in \mathbb{R}^2$.
 - **b.** Discuter en fonction du réel α la nature de la série $\sum_{n \in \mathbb{N}^*} \frac{e^{n i \theta}}{n^{\alpha}}$. On précisera notamment dans les cas de convergence s'il s'agit ou non de convergence absolue. De même, dans les cas de divergence, on précisera s'il s'agit ou non de divergence grossière.
 - **c.** En déduire la nature des séries $\sum_{n \in \mathbb{N}^*} \frac{\cos(n\theta)}{n^{\alpha}}$ et $\sum_{n \in \mathbb{N}^*} \frac{\sin(n\theta)}{n^{\alpha}}$.
- **4.** Montrer que si la suite (B_n) converge vers 0, si la suite (A_n) est bornée et si la série $\sum_{n\geq n_0}b_n$ est absolument convergente, alors la série $\sum_{n\geq n_0}a_nB_n$ est convergente.

Exercice 2

BECEAS 2021 – Un calcul de $\zeta(2)$

On pose, pour tout entier naturel n,

$$C_n = \int_0^{\frac{\pi}{2}} (\cos x)^{2n} dx$$
 et $D_n = \int_0^{\frac{\pi}{2}} x^2 (\cos x)^{2n} dx$

1. Etablir, pour tout $n \in \mathbb{N}^*$, l'égalité

$$C_n = (2n-1)(C_{n-1} - C_n)$$

2. Etablir, pour tout $n \in \mathbb{N}^*$, les égalités

$$\int_0^{\frac{\pi}{2}} (\sin x)^2 (\cos x)^{2n-2} dx = \frac{C_n}{2n-1} = \frac{C_{n-1}}{2n}$$

3. Etablir, pour tout $n \in \mathbb{N}^*$, l'égalité

$$C_n = (2n-1)nD_{n-1} - 2n^2D_n$$

4. Etablir, pour tout $n \in \mathbb{N}^*$, l'égalité

$$\frac{1}{n^2} = 2\left(\frac{\mathbf{D}_{n-1}}{\mathbf{C}_{n-1}} - \frac{\mathbf{D}_n}{\mathbf{C}_n}\right)$$

5. a. Justifier, pour tout réel $x \in \left[0, \frac{\pi}{2}\right]$, la minoration $\sin x \ge \frac{2}{\pi}x$.

b. En déduire, pour tout $n \in \mathbb{N}$, la majoration

$$D_n \le \frac{\pi^2}{4} \cdot \frac{C_n}{2n+2}$$

6. Prouver l'égalité

$$\sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$$