

CONSTANTS

E: 210000

nu: 0.3

f_y: 235

G: 81000

gamma_M1: 1.05

INPUT DATA

b_sup: 4000

t_deck: 5
b_inf: 3000
t_bottom: 5
h: 1500
t_side: 5
a: 10000
L_e: 15000
bending type: sagging bending
cs position: neither
Buckling Proof according to EC 1993 Part 1-5
3.2 Effective width for elastic shear lag
Shear lag reduction for flange 1
Shear Lag is not neglectable
Beta: 0.6161387625504372
Shear lag reduction for flange 3
Shear Lag is not neglectable
Beta: 0.9173257837904699
4.4 Plate elements without longitudinal stiffeners
Iteratively changing the widths until M_Rd_el_eff converges to a limit of 0.005
4.5 Stiffened plate elements with longitudinal stiffeners

Side 2 4.5.2 Plate type behaviour $sigma_cr = 5124.082221497298$ Lambda: 0.1832298453092058 Rho_Global: 1.0 4.5.3 Column type buckling behaviour Column number 8 A_sl=6846.73, A_sl_eff=5877.73, I_sl=13615748.13 sigma_cr_c=412170.52 e1=73.34, e2=59.32 All tension =False **Buckling Values 8** beta_A_c =0.8584724015842313 lambda_c_bar =0.022123744423738656 Phi_c =0.4651388293645379 Chi_c = 1.0755565381154082 Critical buckling values Chi_c: 1.0755565381154082 sigma_cr_c: 412170.52797394566 4.5.4 Interaction between plate and column buckling all_tension: False rho_c = 1.0755565381154082 Side 3

4.5.2 Plate type behaviour

 $sigma_cr = 372.38017999795767$ Lambda: 0.5548580478713641 Rho_Global: 1.0 4.5.3 Column type buckling behaviour Column number 9 A_sl=11311.55, A_sl_eff=5518.29, I_sl=13625049.83 sigma_cr_c=249651.92 e1=96.75, e2=35.9 All tension =False **Buckling Values 9** beta_A_c = 0.48784569221598767 lambda_c_bar =0.02142928655464255 Phi_c =0.4669902232800209 Chi_c = 1.0712504611120048 Critical buckling values Chi_c: 1.0712504611120048 sigma_cr_c: 249651.9209402946 4.5.4 Interaction between plate and column buckling all_tension: False rho_c = 1.0712504611120048 Side 4 4.5.2 Plate type behaviour sigma_cr = 3081.582298338016 Lambda: 0.23627478384308065

Rho_Global: 1.0

4.5.3 Column type buckling behaviour

Column number 10

A_sl=6846.73, A_sl_eff=5877.73, I_sl=13615748.13

sigma_cr_c=412170.52

e1=73.34, e2=59.32

All tension =False

Buckling Values 10

beta_A_c =0.8584724015842313

lambda_c_bar =0.022123744423738656

Phi_c =0.4651388293645378

Chi_c =1.0755565381154082

Critical buckling values

Chi_c: 1.0755565381154082

sigma_cr_c: 412170.5279739457

4.5.4 Interaction between plate and column buckling

all_tension: False

rho_c = 1.0755565381154082

Resistance to shear and interaction shear force and bending moment for side 1

5. Resistance to shear

stiffened plate; EBPlate

k_tau: 9487.522589138234

eta_3: 0.01570734171978963

7.1 Interaction between shear force, bending moment and axial force

Deck plate is ignored, as it is dimensioned with EC 3-2

Resistance to shear and interaction shear force and bending moment for side 2

5. Resistance to shear

stiffened plate; EBPlate

k_tau: 41.426315789473676

eta_3: 0.0816291510727169

7.1 Interaction between shear force, bending moment and axial force

Web -> (7.1) without iterating

eta_3 <= 0.5; no interaction needed

utilisation: -1

Resistance to shear and interaction shear force and bending moment for side 3

5. Resistance to shear

stiffened plate; EBPlate

k_tau: 35.49886177282086

eta_3: 0.06486794273746313

7.1 Interaction between shear force, bending moment and axial force

Flange -> (7.1), comment (5)

eta_3 <= 0.5; no interaction needed

utilisation: -1

Proofing Resistance to shear for each subpanel

5. Resistance to shear

unstiffened plate; (A.5)
k_tau: 5.795625
eta_3: 0.07289806485816812
eta_3_panel < 1: pass subpanel
5. Resistance to shear
unstiffened plate; (A.5)
k_tau: 5.3625
eta_3: 0.0018349196792190317
eta_3_panel < 1: pass subpanel
5. Resistance to shear
unstiffened plate; (A.5)
k_tau: 5.795625
eta_3: 0.07289806485816812
eta_3_panel < 1: pass subpanel

Resistance to shear and interaction shear force and bending moment for side 4

5. Resistance to shear

stiffened plate; EBPlate

k_tau: 41.426315789473676

eta_3: 0.0816291510727169

7.1 Interaction between shear force, bending moment and axial force

Web -> (7.1) without iterating

eta_3 <= 0.5; no interaction needed

utilisation: -1

Results:

EI: 3701005Nm^2

interaction side 2: -1

interaction side 3: -1

interaction side 4: -1

cost: 2193CHF/m

