

### From VP9 to AV1 and Beyond

Debargha Mukherjee Google

### Outline

- Alliance for Open Media and AV1
- Selected Coding Tools
- Latest Coding Results
- AV1 Deployment
- Beyond AV1

### Outline

- Alliance for Open Media and AV1
- Selected Coding Tools
- Latest Coding Results
- AV1 Deployment
- Beyond AV1

# Alliance for Open Media and AV1 Projections

#### Video Is Changing How Internet Tech Is Evolving





Fast advances in video compression technology is essential to cope with the ongoing explosion in Internet video

# Alliance for Open Media and AV1 Towards royalty-free codecs

- Open technologies have aided innovation and fueled Internet growth over the last few decades.
  - Content that consumes bulk of its bandwidth (video), should be open/free too.
- Video patent landscape has been stifling innovation
  - HEVC-patent pool mess
- Google launched WebM project in 2010
  - o To develop open royalty-free formats for the web
- Codecs from the WebMProject
  - VP8 2010 (Hangouts)
  - VP9 2013 (YouTube)
    - First serious challenge to an MPEG codec
  - VP10 2014-2016, morphed into AV1



# Alliance for Open Media and AV1 Founding Members

- Many other companies began to see eye-to-eye with Google after VP9
- AOM: Industry consortium to build royalty-free codecs formed in 2015

#### **FOUNDING MEMBERS**



Apple





















### Alliance for Open Media and AV1

### Promoter Members

#### PROMOTER MEMBERS





















































### Alliance for Open Media and AV1

- AV1 the first video codecfrom Alliance for Open Media
  - Goal to achieve about 30% bitrate reduction over VP9 with royalty-free technologies
- Starting point was VP9+
- Tools proposed from:
  - o VP10 (Google)
  - o Daala (Mozilla)
  - Thor(Cisco)
  - New tools ...



# Alliance for Open Media and AV1 Workgroups









### Outline

- Alliance for Open Media and AV1
- Coding Tools
- Latest Coding Results
- AV1 Deployment
- Beyond AV1

### Selected Coding tools

### Prediction Framework



## Selected Coding tools Partition Structure

 10-way recursive partition



### Selected Coding Tools Intra Prediction

- DC Mode
- Directional Modes
- Paeth Mode
- Smooth/Smooth\_h/Smooth\_v Modes
- Chroma from Luma
- Recursive Intra Filter
- Intra block copy Mode
- Palette Mode

### Selected Coding Tools Intra Prediction - Chroma from Luma

- Mechanism for INTRA chroma prediction
  - Use reconstructed luma to predict chroma components



 $<sup>\</sup>alpha_{Cb}$ ,  $\alpha_{Cr}$  signaled in bit-stream

<sup>&</sup>lt;sup>1.</sup> Luma average computed over the luma transform block

<sup>&</sup>lt;sup>2.</sup> Chroma DC\_PRED computed over prediction block

### Selected Coding Tools

### Intra Prediction - Recursive Intra Prediction

#### Recursive Intra

#### Prediction

- Predict in batches of 4x2 pixels blocks
- Apply eight 7-tap filters to get prediction
   for each of the 8 pixels
  - 5 sets of filters for5 modes
- Apply recursively using the predicted pixels as neighbors for adjacent blocks.





### Selected Coding Tools Inter Prediction

- Expand reference frames (up to 7 / frame) used for prediction
- Dynamic Motion Vector Referencing
  - Spatial neighborhood and Temporal neighborhood candidates
- Subpel filtering
  - Dual Switchable Subpel filters
  - High intermediate precision for filtering and compounding
- Scaled Inter Prediction
- Compound Inter-Inter prediction
- Compound Inter-Intra prediction
- Overlapped Block Motion Compensation
- Affine warp
  - Global warp and Local warp

### Selected Coding Tools Scaled INTER Prediction

- AV1 can predict from references at different resolution (limit: ½ to 2)
- Relative pixel positions hor (vert) are the same in each row (col)
  - Implies scaling can be implemented as separable filtering where step-sizes between pixels in hor (vert) directions are same
  - Need higher precision for starting offset and steps, but the same 1/16th pel filters as in unscaled prediction can be used.



# Selected Coding Tools Compound Inter Prediction

- Compound = combine two INTER predictors
  - Average weighted
  - Distance weighted
    - Uniform weight based on distance of ref frame from current frame
  - Difference weighted
    - Weight depends on difference of two prediction values per pixel
    - Average when pixel values are close, prefer one when they are different.
  - Wedge weighted
    - Wedge codebook index provides the weights

### Selected Coding Tools

### Compound Inter Prediction - Wedge Compound Prediction

### Wedge codebook:

#### Inter-Inter

4-bit shape 1-bit sign

5 bits total

Used for 8x8 up to 32x32 sizes



## Selected Coding Tools Compound Inter Prediction - Wedge Weighted



### Selected Coding Tools

### Inter-Intra Prediction



### Selected Coding Tools Variable block-size OBMC



- Create predictions from neighbors' MVs
- Mitigate the effect of discontinued motion field
- 2-sided causal overlapped predictor (top/left halves)
- Blend with 1-D smooth filters

# Selected Coding Tools Affine warps

- True motion is never translational
- More complex motion models have not traditionally been used in video codecs
  - Parameter cost
  - Computation complexity
- AV1
  - Introduces an efficient affine motion compensation technique



## Selected Coding Tools Affine Warps - Global and Local

- Global warp mode
  - Estimate and send affine parameters for every frame per reference
  - Invoke Global warp with GLOBALMV mode



#### Local warp mode

 Estimate affine parameters from neighborhood of current block



Blocks 1, 3, 4 have same reference as current block

## Selected Coding Tools Switchable Transforms

#### Expanded transforms

- 16 possible transform kernels
- Separable kernels where in each direction one of {DCT, ADST, FlipADST, IDTX} can be selected
- Larger transforms reduce the number of possible transforms



### Selected Coding Tools Transform Partitions

AV1 64x64, 64x32, 32x64, 64x16, 16x64 32x32, 32x16, 16x32, 32x8, 8x32 16x16, 16x8, 8x16, 16x4, 4x16 8x8, 8x4, 4x8 4x4



# Selected Coding Tools Transform Summary



# Selected Coding Tools In-loop filtering and postfilter

- AV1 pushes the envelope in in-loop filtering
  - Deblocking
  - CDEF (Constrained Directional Enhancement Filter)
  - Upscaling
  - Loop-restoration
- Also adds an out-of-loop filter
  - Film Grain Synthesis



**CDEF** 

Frame upscaling

Loop restoration filter

Film grain synthesis

# Selected Coding Tools In-loop filtering / postfilter - CDEF

#### CDEF:

- Combination of Daala Deringing filter and Cisco's Constrained Low Pass Filter
- Adapts filtering to direction of edges and patterns in an image
- Direction estimation:
  - Conducted at 8x8 level by minimizing variances along predefined lines
- Use a nonlinear directional filter
  - 5x5 support region
  - Combined Primary + Secondary filter



### Selected Coding Tools

In-loop filtering / postfilter - Loop Restoration

- Switchable restoration filter in blocks referred to as Loop-restoration unit (LRU)
  - Filter type and corresponding parameters







# Selected Coding Tools In-loop filtering / postfilter - Frame superresolution

- AV1 supports predicting blocks from references at different resolutions
- Loop-restoration filter can super-resolve
- Frame-superresolution depends on the above two properties
  - Only horizontal upscaling supported to control line-buffer



# Selected Coding Tools In-loop filtering / postfilter - Film Grain Synthesis

- Film-grain is hard to compress, but present in most commercial content.
  - Need to be preserved as part of creative intent
- AV1 supports film grain synthesis via a normative post-processing outside the coding loop.



# Selected Coding Tools In-loop filtering / postfilter - Film Grain Synthesis

- Generate WGN sequence
  - Generated by taking random samples from a 2048-ary predefined Gaussian noise sequence
- Generate Film-grain template
  - Filter AWGN sequence with autoregressive parameters sent in the bitstream
- For each 32x32 block:
  - Take pseudo random offsets from the Film-grain template
  - Scale based on intensity of reconstruction using piecewise Lut specified in the bitstream
  - Add scaled grain to reconstruction and clip
  - 2-line overlapped grain addition to prevent sudden changes in grain



**WGN** 

### Outline

- Alliance for Open Media and AV1
- Coding Tools
- Latest Coding Results
- AV1 Deployment
- Beyond AV1

### Latest Coding Results AWCY

- www.arewecompressedyet.com
  - Official test infrastructure for AV1
  - Test set Objective-1-fast, constant quality encoding, 60 frames, resolutions 360p-1080p
- Compare VP9 vs. HEVC vs. AV1
  - VP9-tip-of-tree Oct 6, 2018, hash 4a47ef814b57d16787e6331e4ac1bd9dc093459e
  - AV1 -tip-of-tree Oct 6, 2018, hash 9b21428c86af1c081ae87cc546a360eaefa8ba8a
  - HEVC X.265 hash e293b13373b72dfd88a91e196fbb595b027da3a3; HM 16.17

## Latest Coding Results Constant Quality BDRATE - AWCY Objective-1-Fast

- VP9 vs. X.265 vs. AV1
  - Testset: Objective-1-Fast on www.arewecompressedyet.com;
    - 60 frames, single keyframe, constant quality
  - o Baseline: VP9 (libvpx); Tests: X.265 (--preset placebo --no-wpp --tune psnr), AV1 (libaom)

| Codec               | PSNR-Y | PSNR-HVS | SSIM   | CIEDE2000 | PSNR-Cb | PSNR-Cr |
|---------------------|--------|----------|--------|-----------|---------|---------|
| <u>X.265</u>        | -4.04  | -1.35    | +7.34  | +10.76    | +20.51  | +19.70  |
| AV1<br>(cpu-used=0) | -30.16 | -29.70   | -30.46 | -31.85    | -33.01  | -34.67  |
| AV1<br>(cpu-used=1) | -28.75 | -28.40   | -29.21 | -30.94    | -32.76  | -34.16  |
| AV1<br>(cpu-used=2) | -26.10 | -25.68   | -26.67 | -28.54    | -30.61  | -31.77  |

### Latest Coding Results Constant Quality BDRATE - AWCY Objective-1-Fast

- After recent VP9 improvements with pyramid structure
- Baseline VP9\* (--auto-alt-ref=5); Tests: X.265, AV1

| Codec               | PSNR-Y | PSNR-HVS | SSIM   | CIEDE2000 | PSNR-Cb | PSNR-Cr |
|---------------------|--------|----------|--------|-----------|---------|---------|
| <u>X.265</u>        | -1.60  | +1.92    | +7.74  | +10.12    | +18.20  | +17.21  |
| AV1<br>(cpu-used=0) | -27.74 | -26.88   | -29.28 | -31.68    | -33.58  | -35.25  |
| AV1<br>(cpu-used=1) | -26.31 | -25.55   | -28.03 | -30.78    | -33.28  | -34.76  |
| AV1<br>(cpu-used=2) | -23.55 | -22.69   | -25.41 | -28.33    | -31.11  | -32.31  |

### Latest Coding Results Constant Quality BDRATE - Google testsets

- HM16.17 vs. VP9 vs. AV1
  - Testset Google's internal (Lowres, Midres, Hdres), 120frames
    - Single keyframe, constant quality mode
  - o Baseline: HM16.17 (-ip -1 --ConformanceWindowMode=1); Tests: VP9 (libvpx), AV1 (libaom)

|                          | Av. PSNR | SSIM     |  |
|--------------------------|----------|----------|--|
| Lowres (120 frames), VP9 | +10.448% | +5.437%  |  |
| Lowres (120 frames), AV1 | -19.578% | -22.703% |  |
| Midres (120 frames), VP9 | +12.215% | +7.477%  |  |
| Midres (120 frames), AV1 | -19.840% | -23.015% |  |
| Hdres (120 frames), VP9  | +7.637%  | +5.240%  |  |
| Hdres (120 frames), AV1  | -23.979% | -26.152% |  |

### Latest Coding Results Tested by third-parties

Facebook: "AV1 beats x264 and libvpx-vp9 in practical use case"



[1]. https://code.fb.com/video-engineering/av1-beats-x264-and-libvpx-vp9-in-practical-use-case/

## Latest Coding Results Tested by third-parties

MSU Video codec comparison



## Latest Coding Results Tested by third-parties

Bitmovin: "AV1 is able to outperform VP9 and even HEVC by up to 40%"





[1]. https://bitmovin.com/av1-multi-codec-dash-dataset/

#### Outline

- Alliance for Open Media and AV1
- Coding Tools
- Latest Coding Results
- AV1 Deployment
- Beyond AV1

#### **AV1 Deployment**

#### Phases

- Codec Deployment Phases
  - o Bit-stream freeze is simply phase 1
- Productization (phase 2) efforts in full swing
  - Encoder/Decoder speed-ups, encoder advancements



#### **AV1 Deployment**

#### Adoption Timeline



### AV1 Deployment Rollout plans in Google

AV1 Rollout plans in Google



#### **AV1 Deployment**

#### Software speed-ups

- Early deployment of AV1 to depend on SW decode and encode
- SW Encoder speed-up
  - Encoder was very slow 6 months ago 1000x of VP9 cpu-used=0
  - Substantially faster today
    - AV1 cpu-used=0 (libaom): 40x of VP9 encode time at cpu-used=0 (libvpx)
    - AV1 cpu-used=1 (libaom): 16x of VP9 encode time at cpu-used=0 (libvpx) +1.5% PSNR
    - AV1 cpu-used=2 (libaom): 10x of VP9 encode time at cpu-used=0 (libvpx) +4.0% PSNR
  - Extensive use of machine learning based mode/partition decisions, early terminations, etc.
- SW Decoder speed-up
  - SIMD optimizations
  - Today 3.4x of VP9 decoder (single-threaded)
- Ongoing work ...more speed-ups expected by end of the year.

## AV1 Deployment Software Encoder speed progression



## AV1 Deployment Software Decoder Speed Progression



# AV1 Deployment Quality Improvements

- Improvement in frame management
  - Better hierarchical arrangement and quality control
  - 2+% gain beyond the bit-stream freeze.
- Adaptive quantization
  - Perceptual quality improvement validated with perceptual tests
- Forward reference keyframe implementation
  - Substantial improvement in short key-frame interval scenarios for trick-play
  - 4+% improvement for 30-frame key frame interval.
- Coming:
  - o Intelligent use of superresolution mode
    - Already shows gains at low bitrate for key-frames.

#### Outline

- Alliance for Open Media and AV1
- Coding Tools
- Latest Coding Results
- AV1 Deployment
- Beyond AV1

#### Beyond AV1 Trend

- AV1 is undoubtedly the most advanced video codec in the world today
  - ~30% better than VP9, and no slower than ~3x of VP9 decoding
  - ~20% better than HEVC
- May not remain the best in a couple of years with VVC coming
  - A 2-horse race?
- Advancement in codec technology will continue
  - o AV2

### Beyond AV1 Promising areas

- Traditional better prediction modes, transforms, etc.
- Motion
  - Non-translational motion models
- Restoration for coding
  - Throw away information that can be restored
  - Multiple restoration modes
  - Joint search among prediction, transform, restoration modes for a block
- Learned image compression
  - Can yield nonlinear transforms, can inform us on the best non-linear processing to compress and reconstruct
  - May be too complex for practical use.

#### Questions

Questions?