Lecture 9 Miller – Rabin Primality Test

This lecture gives an algorithm for determining whether or not a positive integer is a prime number.

We first need a variation of Fermat's Little Theorem

Fermat's Little Theorem Version 2

If p is prime the for every integer a we have $a^p \equiv a \pmod{p}$.

Proof: If $p \nmid a$ then $a^{p-1} \equiv 1 \pmod{p}$ (by the first version of Fermat's Little Theorem). Hence $a^p \equiv a \pmod{p}$.

If $p \mid a$ then $0 \equiv a^p \equiv a \pmod{p}$.

Note: the converse of this theorem is **not** true! For example, $2^{341} \equiv 2 \pmod{341}$. But 341 is not prime (341 = 11*31). We say that 341 is a 2 pseudoprime.

Def. In general if n is a composite number and $a^n \equiv a \pmod{n}$ for a specific integer a then we say n is an a – pseudoprime.

Def. If *n* is a composite number and for every integer *a* we have $a^p \equiv a \pmod{n}$ then we say that *n* is a **Carmichael number**.

(Note: it suffices to prove that n is a Carmichael number it suffices to show that $a^{p-1} \equiv 1 \pmod{n}$ for every a relatively prime to n)

The following version of the Chinese Remainder Theorem is often useful in proving a number is a Carmichael number.

Chinese Remainder Theorem (Version 2) Assume that $n_1, n_2, ..., n_k$ are pairwise relatively prime. Let $n = n_1 * n_2 * \cdots * n_k$. Then there is a ring isomorphism $\mathbb{Z}_n \to \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_k}$

Pf: Define a function $f: \mathbb{Z}_n \to \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_k}$ by $f(x) = (x \mod n_1, x \mod n_2, ..., x \mod n_k)$

(1) f is a one-to-one function.

Assume that f(x) = f(y). Then $x \equiv y \pmod{n_1}, x \equiv y \pmod{n_2}, \dots, x \equiv y \pmod{n_k} \Rightarrow n_1 \mid (x - y), n_2 \mid (x - y), \dots, n_k \mid (x - y) \Rightarrow n \mid (x - y) \Rightarrow x \equiv y \pmod{n}$

(2) f is an onto function

Let $(a_1,a_2,...,a_k) \in \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_k}$. By the first version of the Chinese Remainder Theorem there is an x, which is unique mod n, such that $x \equiv a_1 \pmod{n_1}$, $x \equiv a_2 \pmod{n_2}$, ..., $x \equiv a_k \pmod{n_k}$. So we have $f(x) = (a_1,a_2,...,a_k)$.

(3) Addition and multiplication

$$f(x+y) = ((x+y) \bmod n_1, (x+y) \bmod n_2, ..., (x+y) \bmod n_k)$$

$$= (x \bmod n_1, x \bmod n_2, ..., x \bmod n_k) + (y \bmod n_1, y \bmod n_2, ..., y \bmod n_k)$$

$$= f(x) + f(y)$$

```
f(xy) = (xy \mod n_1, xy \mod n_2, ..., xy \mod n_k)
= (x \mod n_1, x \mod n_2, ..., x \mod n_k) * (y \mod n_1, y \mod n_2, ..., y \mod n_k)
= f(x) * f(y)
```

Theorem: 561 is a Carmichael number.

Pf: First note that 561 is so composite: 561 = 3*11*17. Let a be relatively prime to 561, we need to prove that $a^{560} \equiv 1 \pmod{561}$

By Fermat's Little Theorem $a^2 \equiv 1 \pmod{3}$, $a^{10} \equiv 1 \pmod{11}$, $a^{16} \equiv 1 \pmod{17}$. Since 80 is a common multiple of 2,5,16 we then have $a^{80} \equiv 1 \pmod{3}$, $a^{80} \equiv 1 \pmod{11}$, $a^{80} \equiv 1 \pmod{17}$

By the second version of the Chinese Remainder Theorem these congruences imply that $a^{80} \equiv 1 \pmod{561} \Rightarrow a^{560} \equiv 1 \pmod{561}$. This proves that 561 is a Carmichael number.

The Miller Rabin test is based on the following theorem.

Theorem: Let p be an odd prime and write $p-1=2^kq$ (where q is odd). Let a be an integer not divisible by p. Then one of the following two conditions must be true:

- (i) $a^q \equiv 1 \pmod{p}$
- (ii) One of the numbers $a^q, a^{2q}, ..., a^{2^{k-1}q}$ is $\equiv -1 \pmod{p}$

Pf: By Fermat's Little Theorem $a^{p-1} \equiv 1 \pmod{p} \Rightarrow a^{2^k q} \equiv 1 \pmod{p}$. Consider the following sequence: $a^q, a^{2q}, ..., a^{2^{k-1}q}, a^{2^k q}$

Since the last number in the list is congruent to $1 \mod p$ and each number is the square of the previous number in the sequence, there are two possibilities:

 $a^q \equiv 1 \pmod{p}$ or some number in the sequence is not congruent to $1 \mod p$ but its square is congruent to $1 \mod p$. The only way this can happen is that this number is $\equiv -1 \pmod{p}$.

Def. A number a is called a Miller – Rabin witness for n if $a^q \not\equiv 1 \pmod p$ and $a^{2^i q} \equiv -1 \pmod p$ for all $i = 0, 1, ..., 2^{k-1}q$.

Miller – Rabin Test:

Let n be a positive integer and a be a possible witness for n.

Note: the following test will determine either that a is a witness for n in which case n is composite or the test fails in which case one can check another value of a for possibly being a witness.

Step 1: If *n* is even or $1 < \gcd(a,n) < n$ then *n* is composite.

Step 2: Write $n-1=2^k q$ where q is odd.

Step 3: Set $a = a^q \pmod{n}$

Step 4: For i = 0, 1, ..., k - 1

Step 5: If $a \equiv -1 \pmod{n}$ then test fails

Step 6: Set $a = a^2 \mod n$

Step 7: n is composite.

Examples:

(1)
$$n = 561$$
. $n - 1 = 2^4 * 35$. So $k = 4, q = 35$

Try a = 2 as a possible witness.

$$2^{35} \equiv 263 \not\equiv 1 \pmod{561}$$

$$2^{35} \not\equiv -1 \pmod{561}$$

$$2^{2*35} \equiv 263^2 \equiv 166 \not\equiv -1 \pmod{561}$$

$$2^{2^2*35} \equiv 166^2 \equiv 67 \not\equiv -1 \pmod{561}$$

$$2^{2^3*35} \equiv 67^2 \equiv 1 \not\equiv -1 \pmod{561}$$

So 2 is a witness for 561, hence 561 is composite.

(2)
$$n = 172947529 \cdot n - 1 = 2^3 * 21618441$$
. So $k = 3, q = 21618441$

$$2^{21618441} \equiv 40063806 \not\equiv 1 \pmod{n}$$

$$2^{21618441} \not\equiv -1 \pmod{n}$$

$$2^{2^{2}21618441} \equiv 40063806^{2} \equiv 2257065 \not\equiv -1 \pmod{n}$$

$$2^{2^{2}21618441} \equiv 2257065^{2} \equiv 1 \not\equiv -1 \pmod{n}$$

So 2 is a witness for n, hence n is composite.

(3)
$$n = 32789$$
. $n - 1 = 2^2 * 8197$. So $k = 2, q = 8197$

Try a = 2 as a possible witness.

$$2^{8197} \equiv 6087 \not\equiv 1 \pmod{32789}$$
$$2^{8197} \equiv 6087 \not\equiv -1 \pmod{32789}$$
$$2^{2^{*8197}} \equiv 6087^2 \equiv 32788 \equiv -1 \pmod{32789}$$

2 is not a witness. Try a = 3 as a possible witness.

$$3^{8197} \equiv 26702 \not\equiv 1 \pmod{32789}$$

 $3^{8197} \equiv 26702 \not\equiv -1 \pmod{32789}$
 $3^{2^{*}8197} \equiv 26702^2 \equiv 32788 \equiv -1 \pmod{32789}$

3 is not a witness. Try a = 5 as a possible witness.

$$5^{8197} \equiv 1 \pmod{32789}$$

5 is not a witness. Try a = 7 as a possible witness.

$$7^{8197} \equiv 32788 \not\equiv 1 \pmod{32789}$$

 $7^{8197} \equiv 32788 \equiv -1 \pmod{32789}$

7 is not a witness. Try a = 11 as a possible witness.

$$11^{8197} \equiv 1 \pmod{32789}$$

11 is not a witness. Try a = 13 as a possible witness.

$$13^{8197} \equiv 1 \pmod{32789}$$

13 is not a witness. Conclude that 32789 is probably a prime (in fact it is a prime).