

電子電路實習 實驗報告

實驗名稱:主動濾波電路實驗

系別:電子工程系 (第一)

班級:電子系二甲

組別:5

姓名:謝亞倫、王冠中

學號: C111112104、C111112168

任課老師:林俊宏

評分:A□ B□ C□

濾波器:

濾波器被廣泛運用在通訊、音頻分音與測量儀器上,是一個對頻率有**選擇性之電路**如果電路中只有**電阻 R、電容 C、電感 L**,沒有放大器,則稱為**被動濾波器**。如果**加上放大器**,被稱為**主動濾波器**

1. 實驗項目名稱: 二次正迴授低通主動濾波電路實驗

● 實驗原理與相關應用

高頻率時,容抗會下降,所以電壓會改變,所以這個實驗室透過改變頻率,去測量輸出電壓。

相關應用:分頻器

是一種可以把輸入訊號的頻率產生多個與基準參考頻率有相同精度 和穩定度的頻率訊號。

● 實驗材料

外觀	規格	備註
R E	$R_1 = 10k\Omega \pm 5\%$	藍灰橙金
	$R_2 = 10k\Omega \pm 5\%$	藍灰橙金
電容	$C_1 = 0.1 \mu F$	
	$C_2 = 0.1 \mu F$	
8 7 6 5 NE5532	NE5532	線性 IC 8 7 6 5 V+ 1 2 3 4
The state of the s		

● 實驗結果與討論

輸入頻率	輸入電壓	Q=0.5	Q = 0.707
0	3	3	3
50	3	2.67	2.79
100	3	2.05	2.13
150	3	1.57	1.51
200	3	1.25	1.09
250	3	1.01	0.82
300	3	0.82	0.66
350	3	0.68	0.56
400	3	0.6	0.48
450	3	0.54	0.44
截止頻率(理論值)		159. 1549Hz	112. 5395Hz
截止頻率(實際值)		150hz	100hz

結論:低通頻率越高電壓越低

2. 實驗項目名稱: 二次正迴授高通主動濾波電路實驗

● 實驗原理與相關應用

高通濾波採用 R 與 C 構成,配合 OPA 放大器電路可以提高 Q 值,並引響頻率與電壓的關係

● 實驗材料

外觀	規格	備註
R E	$R_1 = 10k\Omega \pm 5\%$	藍灰橙金
	$R_2 = 10k\Omega \pm 5\%$	藍灰橙金
電容	$C_1 = 0.1 \mu F$	
	$C_2 = 0.1 \mu F$	
NE5532	NE5532	線性IC 8 7 6 5 V+ V- 1 2 3 4

● 實驗結果與討論

結論:高通頻率越低電壓越低

輸入頻率	輸入電壓	Q=0.5	Q = 0.707
0	3	0	0
100	3	0.28	0.36
200	3	0.46	0.78
300	3	0.74	1.39
400	3	1.03	2.01
500	3	1.35	2.45
600	3	1.59	2.73
700	3	1.79	2.89
800	3	1.99	2.95
900	3	2.15	3.02
1000	3	2.27	3.04
1500	3	2.68	3.1
2000	3	2.83	3.12
2500	3	2.89	3.12
3000	3	3	3.12
截止頻率(理論值)		611.3815Hz	430.6099Hz
截止頻率(實際值)		600hz	400hz