STOR 455 STATISTICAL METHODS I

Jan Hannig

Final Exam

- Held Thursday, December 16 at 4pm 6pm.
- Facts
 - Cumulative
 - Multiple choice
 - Slightly more emphasis on material after exam 2
- Closed book/notes. No computer.
- You can bring two REGULAR (letter) sheets of paper with formulas, etc.
 - Two sided
 - You must prepare the sheets yourself.

Final Exam

- Bring your calculator, #2 pencil, scantron sheet.
- Office hours
 - Today and tomorrow at usual times
 - Next week:
 - Wednesday and Thursday 10:30-11:30am
 - You can also post question to blackboard

Grading Scheme

Recall:

- Homework sets 20%
- Midterm Exams (exam 1 20%, exam 2 20%, diamond project – 10%)
- Final exam 30%
- The multiple choice midterms are curved (I use the boxcox variance stabilizing transformation on the percentage)
- The letter grade will be computed from the total score using the usual cutoffs (approximately 90%A, 80%B,70%C,60%D,...)

Blood Pressure Example

- Y is diastolic blood pressure
- X is age
- n = 54 healthy adult women aged 20 to 60 years old
- Scatter plot show non-constant variance

Do it in SAS

Weighted Least Squares (Section 8.2)

- Transformation may create other problems
- Generalize regression model: relax the assumption to allow different variances
- LS estimators still unbiased and consistent, but no longer have minimum variance
- WLS: minimize the the sum of weighted squared residuals

Weighted Least Squares

OLS minimize

$$SSE = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_{1,i} + \dots + b_{p-1} x_{p-1,i})^2 = (Y - \mathbf{X}b)'(Y - \mathbf{X}b)$$

WLS minimize

$$WSSE = \sum_{i=1}^{n} w_i (y_i - b_0 - b_1 x_{1,i} + \dots + b_{p-1} x_{p-1,i})^2 = (Y - \mathbf{X}b)' W (Y - \mathbf{X}b)$$

This gives
$$\mathbf{b_w} = (\mathbf{X'WX})^{-1}(\mathbf{X'WY})$$

$$= \begin{pmatrix} w_1 & 0 & \dots & 0 \\ 0 & w_2 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & w_n \end{pmatrix}$$

- Confidence intervals and tests are similar to before (see the book for formulas)
- W and cW give the same results

Weighted Least Squares

- If the model is $Yi = \beta_0 + b_1 x_{1i} + ... + b_{p-1} x_{p-1i} + g_i \xi_i \quad \xi_i \text{ iid } N(0, \sigma^2)$
- Optimal weights: proportional to inverse variance $w_i=1/g_i^2$
- Often g_i themselves are related to the x_i and can be estimated from the residuals.

Determine the weights

- Method I: find a relationship between the absolute/ squared residuals and another variable and use this as a model for the standard deviation/variance
- Method II: use grouped data or approximately grouped data to estimate the variance
- Method III: use nonparametric method to estimate variance function
- Weights are proportional to the inverse of the estimated variance

Do it in SAS

```
* Output residuals from
  proc reg;
proc reg data=dias;
  model bp = age / clb;
  output out=d1
  r=residual;
run;
* transform residuals;
data d1; set d1;
  absr = abs(residual);
run;
```

```
* estimate the s.d. using
  LS;
proc reg data = d1;
  model absr = age;
  output out = d2 p = s;
run;
* Weights correspond to
  inverse variance;
data d2;
  set d2;
  W = 1/(s**2);
run;
```

Do it in SAS


```
*regression with
 weights;
proc reg data =
 d2;
 weight w;
    model bp =
 age / clb;
run;
```

Do it in SAS: OLS

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Valu	ue Pr	> F
Model	1	2374.96833	2374.968	333	35.79	<.0001
Error	52	3450.36501	66.3531	.7		
Corrected Total	53	5825.33333				

Root MSE 8.14575 R-Square 0.4077 Dependent Mean 79.11111 Adj R-Sq 0.3963 Coeff Var 10.29659

Parameter Estimates

	1	Parameter	Standard				
Variable	DF	Estimate	Error t	Value	Pr > t	95% Confide	nce Limits
Intercept	1	56.15693	3.99367	14.06	<.0001	48.14304	64.17082
age	1	0.58003	0.09695	5.98	<.0001	0.38548	0.77458

Do it in SAS: WLS

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1	83.34082	83.34082	56.64	<.0001
Error	52	76.51351	1.47141		
Corrected Total	53	159.85432			

Root MSE 1.21302 R-Square 0.5214

Dependent Mean 73.55134 Adj R-Sq 0.5122

Coeff Var 1.64921

Parameter Estimates

	Parameter		Standard				
Variable	DF	Estimate	Error	t Value	Pr > t	95% Confide	nce Limits
Intercept	1	55.56577	2.52092	22.04	<.0001	50.50718	60.62436
age	1	0.59634	0.07924	7.53	<.0001	0.43734	0.75534

Review

- How to study?
 - Go over the lecture notes
 - Go over the homework & old exams
 - Make sure you really understand the project
- Book coverage
 - Chapters 1, 2, 3, 4 (except 4.10), 5, 7 (except 7.5), 8 (except 8.3).
 - Additional topics not in the book (polynomial regression, interactions, boxcox)
- The book has a number of extra exercises in the last section of each chapter

Topics

- Fundamental concepts (population, sample, model, parameter, statistic, normal distribution, mean, standard deviation, correlation)
- Inferential procedures (point estimate ubiased, confidence interval, hypothesis testing – p-value, bonferroni adjustment)
- Matrices (basic operations, inverse)

Review

- Regression (basic concepts, population, linear vs non-linear regression)
- Simple linear regression (model, least square estimation, prediction, CIs – parameters & predicted values, hypothesis tests, residual analysis – studentized residual, normal QQ plot, SAS)

Review

- Multiple linear regression (similar to SLR, additionally matrix calculations, ANOVA- sum of squares, extra sum of squares – type 1 and type 2, partial correlations, F tests, multicolinearity, interactions)
- Model Selection (R², adjusted R², C_p, Press_p; all subsets, forward backward stepwise; boxcox transformations)
- Lack of fit (DFFIT, DFBETA, Cook's D, studentized deleted residuals, influential observations, added variables plot)
- Weighted least squares

Evaluations

- UNC is using on-line evaluations for the first time this year!
- https://www.digitalmeasures.com/login/unc/ user/authentication/ authenticateShibboleth.do
- Happy evaluating!