Large scale machine learning

1 Learning with large datasets

Machine learning and data Classify between confusable words. E.g., {to, two, too}, {then, than}. For breakfast I ate two eggs.

"It's not who has the best algorithm that wins.
It's who has the most data."

Learning with large datasets

2 Stochastic gradient descent

Linear regression with gradient descent

Linear regression with gradient descent

Batch gradient descent

Stochastic gradient descent

Stochastic gradient descent

 1. Randomly shuffle (reorder) training examples

3 Mini-batch gradient descent

Mini-batch gradient descent

- → Batch gradient descent: Use all m examples in each iteration
- Stochastic gradient descent: Use 1 example in each iteration

Mini-batch gradient descent: Use b examples in each iteration

b = Mini-batch size.
$$b = 10.$$
 $\frac{2-100}{100}$

Gret $\frac{1}{5} = \frac{1}{100}$ examples $(x^{(i)}, y^{(i)}), \dots (x^{(i+q)}, y^{(i+q)})$
 $y = 0; y = 0; y$

Mini-batch gradient descent

Say
$$b = 10$$
, $m = 1000$.

Repeat $\{ ^{\kappa} \}$

Repeat {
$$^{\kappa}$$
 \rightarrow for $i=1,11,21,31,\ldots,991$ { \rightarrow $\theta_j:=\theta_j-\sqrt{\frac{1}{10}\sum_{k=i}^{i+9}(h_{\theta}(x^{(k)})-y^{(k)})x_j^{(k)}}$ (for every $j=0,\ldots,n$) }

M=300,000,000

4 Stochastic gradient descent convergence

Checking for convergence

- Batch gradient descent:
 - \rightarrow Plot $J_{train}(\theta)$ as a function of the number of iterations of

$$\Rightarrow \boxed{J_{train}(\theta)} = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\underline{\qquad \qquad } = 3 \circ \circ,$$

- - \rightarrow Every 1000 iterations (say), plot $cost(\theta, (x^{(i)}, y^{(i)}))$ averaged over the last 1000 examples processed by algorithm.

Andrew Ng

Checking for convergence

Plot $cost(\theta,(x^{(i)},y^{(i)}))$, averaged over the last 1000 (say) examples

Stochastic gradient descent

Learning rate α is typically held constant. Can slowly decrease α over time if we want θ to converge. (E.g. α

5 Online learning

Online learning

Shipping service website where user comes, specifies origin and destination, you offer to ship their package for some asking price, and users sometimes choose to use your shipping service ($\underline{y}=1$), sometimes not ($\underline{y}=0$).

Features x capture properties of user, of origin/destination and asking price. We want to learn $p(y=1|x;\theta)$ to optimize price.

Other online learning example:

Product search (learning to search)

User searches for "Android phone 1080p camera" — Have 100 phones in store. Will return 10 results.

- → x = features of phone, how many words in user query match name of phone, how many words in query match description of phone, etc.
- $\Rightarrow y = 1$ if user clicks on link. y = 0 otherwise.
- \Rightarrow Learn $p(y=1|x;\theta)$. \leftarrow predicted CTR
- → Use to show user the 10 phones they're most likely to click on.

Other examples: Choosing special offers to show user; customized selection of news articles; product recommendation; ...

Andrew Ng

6 Map-reduce and data parallelism

Map-reduce and summation over the training set

Many learning algorithms can be expressed as computing sums of functions over the training set.

E.g. for advanced optimization, with logistic regression, need:

$$\frac{J_{train}(\theta)}{\Rightarrow} \frac{J_{train}(\theta)}{\frac{\partial}{\partial \theta_{j}} J_{train}(\theta)} = \frac{1}{m} \sum_{i=1}^{m} \underbrace{y^{(i)} \log h_{\theta}(x^{(i)}) - (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))}_{=}$$

$$\frac{\partial}{\partial \theta_{j}} J_{train}(\theta) = \frac{1}{m} \sum_{i=1}^{m} \underbrace{(h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_{j}^{(i)}}_{=}$$

$$+ \underbrace{(h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_{j}^{(i)}}_{=}$$

Andrew Ng

