#### Cognome e Nome:

Lo studente risponda alle seguenti domande:

- 1. Completare l'affermazione segnando la risposta giusta (va segnata con una X). Inoltre, motivare esaurientemente la risposta. **Nel protocollo TCP/IP, il livello di rete** 
  - implementa politiche di controllo di flusso, e comunque questo viene gestito anche dal livello di trasporto.
  - implementa politiche di controllo di flusso, per cui questo non viene gestito dal livello di trasporto.
  - non implementa alcuna politica di controllo di flusso e comunque questo non viene gestito dal livello di trasporto.
  - non implementa alcuna politica di controllo di flusso, per cui questo viene gestito dal livello di trasporto.
- 2. Completare l'affermazione segnando la risposta giusta (va segnata con una X). Inoltre, motivare esaurientemente la risposta. Il livello applicazione di un servizio con architettura client server prevede
  - che ci sia sempre un host attivo.
  - che ci siano sempre due host attivi.
  - che ci siano sempre tre host attivi.
  - che non ci siano host sempre attivi.
- 3. Completare l'affermazione segnando la risposta giusta (va segnata con una X). Inoltre, motivare esaurientemente la risposta.

### Nel meccanismo Stop-and-Wait se il timer scade

- non viene inviato nulla finchè non arriva un ACK
- viene reinviato l'ultimo pacchetto inviato quindi il timer viene inizializzato
- viene inviato un ACK quindi il timer viene inizializzato
- viene inviato un nuovo pacchetto quindi il timer viene inizializzato
- 4. Completare l'affermazione segnando la risposta giusta (va segnata con una X). Inoltre, motivare esaurientemente la risposta.
  - Tipicamente, il Network Address
  - non si trova nelle tabelle di routing dei router ma si trova nell'intestazione di un pacchetto IP
  - non si trova nell'intestazione di un pacchetto IP ma si trova nelle tabelle di routing dei router
  - non si trova nell'intestazione di un pacchetto IP ne tanto meno nelle tabelle di routing dei router
  - si trova nell'intestazione di un pacchetto IP e nelle tabelle di routing dei router
- 5. Completare l'affermazione segnando la risposta giusta (va segnata con una X). Inoltre, motivare esaurientemente la risposta.

# Con il paradigma Link State, un router

- invia le tabelle in broadcast ai router vicini, ovvero quelli distanti 1 hop;
- invia le tabelle in broadcast ai router vicini, ovvero quelli distanti al massimo 2 hop;
- invia le tabelle in flooding all'intera rete;
- non invia le tabelle.
- 6. Completare l'affermazione segnando la risposta giusta (va segnata con una X). Inoltre, motivare esaurientemente la risposta.

### Il protocollo ALOHA slotted

- prevede le stazioni possono trasmettere solo alla fine degli slot;
- prevede le stazioni possono trasmettere solo all'esterno degli slot;
- prevede le stazioni possono trasmettere solo all'inizio degli slot;
- prevede le stazioni possono trasmettere solo all'interno degli slot;
- 7. Determinare il Codice di Hamming del seguente byte: 00**0**01000. Una volta determinato il Codice di Hamming, dimostrare come viene rilevato l'errore se a destinazione arriva come terzo bit del messaggio (evidenziato in grassetto) 1 invece che 0.

| pos<br>1 | pos<br>2       | pos<br>3 | pos<br>4       | pos<br>5 | pos<br>6 | pos<br>7       | pos<br>8 | pos<br>9 | pos<br>10 | pos<br>11      | pos<br>12      |
|----------|----------------|----------|----------------|----------|----------|----------------|----------|----------|-----------|----------------|----------------|
| 0001     | 0010           | 0011     | 0100           | 0101     | 0110     | 0111           | 1000     | 1001     | 1010      | 1011           | 1100           |
| $h_1$    | h <sub>2</sub> | $m_1$    | h <sub>3</sub> | $m_2$    | $m_3$    | m <sub>4</sub> | h 4      | $m_5$    | $m_6$     | m <sub>7</sub> | m <sub>8</sub> |
| 20=1     | 21=0           | 0        | 22=0           | 0        | 0        | 0              | 23=1     | 1        | 0         | 0              | 0              |

```
h_1 = m_1 \oplus m_2 \oplus m_4 \oplus m_5 \oplus m_7 = 0 \oplus 0 \oplus 0 \oplus 1 \oplus 0 = 1
```

 $h_2 = m_1 \oplus m_3 \oplus m_4 \oplus m_6 \oplus m_7 = 0 \oplus 0 \oplus 0 \oplus 0 \oplus 0 = 0$ 

 $h_3 = m_2 \oplus m_3 \oplus m_4 \oplus m_8 = 0 \oplus 0 \oplus 0 \oplus 0 = 0$   $h_4 = m_5 \oplus m_6 \oplus m_7 \oplus m_8 = 1 \oplus 0 \oplus 0 \oplus 0 = 1$ 

 $h_4 = m_5 \oplus m_6 \oplus m_7 \oplus m_8 = 1 \oplus 0 \oplus 0 \oplus 0$ Il Codice di Hamming è, dunque:

1 0 0 0 0 0 0 1 1 0 0 0

Se cambia m<sub>3</sub>, vuol dire che il bit in posizione 6 varia da 0 a 1; ovvero vuol dire che è arrivato il seguente codice di Hamming:

Per cui a destinazione succede il controllo dà il seguente esito:

 $h_1 \oplus m_1 \oplus m_2 \oplus m_4 \oplus m_5 \oplus m_7 = 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 \oplus 0 = 0$ 

 $h_2 \oplus m_1 \oplus m_3 \oplus m_4 \oplus m_6 \oplus m_7 = 0 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 = 1$ 

 $h_3 \oplus m_2 \oplus m_3 \oplus m_4 \oplus m_8 = 0 \oplus 0 \oplus 1 \oplus 0 \oplus 0 = 1$ 

 $h_4 \oplus m_5 \oplus m_6 \oplus m_7 \oplus m_8 = 1 \oplus 1 \oplus 0 \oplus 0 \oplus 0 = 0$ 

Il controllo, dunque, evidenzia che il bit errato è quello nella posizione 0110, ovvero proprio il bit m<sub>3</sub> che verrà complementato per ottenere il valore esatto del bit.

#### Cognome e Nome:

Lo studente risponda alle seguenti domande:

8. Sul disco fisso abbiamo le seguenti directory:



Dati i seguenti due comandi si vuol sapere quali sono giusti e quali sono sbagliati. Per i comandi sbagliati si vuol sapere qual è l'errore, mentre per i comandi giusti si vuol sapere la funzione svolta:

- C:\WEB>COPY IMG\\*.\* \LECCE
  - Comando Esatto. Copia tutti i file di C:\WEB\IMG in C:\LECCE
- C:\WEB>COPY \IMG\\*.\* ..
  - Comando Esatto. Copia tutti i file di C:\IMG in C:\ (la root di C:)

Inoltre, dato il prompt C:\WEB\IMG> si vogliono conoscere i comandi che consentono di (utilizzare path relativi):

- copiare tutti i file dalla directory attiva alla directory EA figlia di \WEB
  - C:\WEB\IMG>COPY . ..\EA
- copiare tutti i file dalla root di C: alla directory IMG figlia della directory attiva

C:\WEB\IMG>COPY \ IMG

- 9. Nell'indirizzamento senza classi, dato l'indirizzo IP 200.129.37.0/15 si determini il numero di indirizzi IP del blocco, il network address ed il broadcast address.
  - Indirizzi IP del blocco 32-15=17 → 2<sup>17</sup>
  - Network Address = 200.128.0.0/15
  - Broadcast Address = 200.129.255.255/15
- 10. Ad un'organizzazione viene assegnato il seguente blocco di indirizzi 209.76.32.0/19. L'organizzazione ha bisogno di creare le seguenti 3 sottoreti. Si progettino le sottoreti utilizzando il subnetting.
  - Sottorete1 con 1200 indirizzi IP
  - Sottorete2 con 506 indirizzi IP
  - Sottorete3 con 3200 indirizzi IP

## Soluzione:

| Alla Sottorete1 saranno assegnati 2048 indirizzi quindi 211=2048 | $\rightarrow$ | /21 |
|------------------------------------------------------------------|---------------|-----|
| Alla Sottorete2 saranno assegnati 512 indirizzi quindi 29=512    | $\rightarrow$ | /23 |
| Alla Sottorete3 saranno assegnati 4096 indirizzi quindi 212=4096 | $\rightarrow$ | /20 |

# Quindi (in rosso la parte host):

| Sottorete3 | da: | 209.76.00100000.0 | 0000000/20 | a | 209.76. 00101111.11111111/20 |  |
|------------|-----|-------------------|------------|---|------------------------------|--|
|------------|-----|-------------------|------------|---|------------------------------|--|

Ovvero da: 209.76.32.0/20 a 209.76.47.255/20

Sottorete1 da: 209.76.00110000.00000000/21 a 209.76.00110111.11111111/21

Ovvero da: 209.76.48.0/21 a 209.76.55.255/21

Sottorete2 da: 209.76.00111000.00000000/23 a 209.76.00111001.11111111/23

Ovvero da: 209.76.56.0/23 a 209.76.57.255/23