

UZUPEŁNIA ZDAJĄCY		
KOD	PESEL	miejsce na naklejkę

EGZAMIN MATURALNY Z MATEMATYKI

DATA: **5 maja 2017 r.**GODZINA ROZPOCZĘCIA: **9:00**CZAS PRACY: **170 minut**

LICZBA PUNKTÓW DO UZYSKANIA: 50

POZIOM PODSTAWOWY

UZUPEŁNIA ZESPÓŁ NADZORUJĄCY Uprawnienia zdającego do: dostosowania kryteriów oceniania nieprzenoszenia zaznaczeń na kartę dostosowania w zw. z dyskalkulią

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 26 stron (zadania 1–34). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1–25) zaznacz na karcie odpowiedzi, w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (26–34) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 5. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki, a także z kalkulatora prostego.
- 9. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 10. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

MMA-P1_**1**P-172

NOWA FORMULA

W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0–1)

Liczba 58 · 16⁻² jest równa

A.
$$\left(\frac{5}{2}\right)^{8}$$

B.
$$\frac{5}{2}$$

C.
$$10^8$$

Zadanie 2. (0-1)

Liczba $\sqrt[3]{54} - \sqrt[3]{2}$ jest równa

A.
$$\sqrt[3]{52}$$

C.
$$2\sqrt[3]{2}$$

Zadanie 3. (0–1)

Liczba 2 log₂ 3 – 2 log₂ 5 jest równa

A.
$$\log_2 \frac{9}{25}$$
 B. $\log_2 \frac{3}{5}$

B.
$$\log_2 \frac{3}{5}$$

C.
$$\log_2 \frac{9}{5}$$

D.
$$\log_2 \frac{6}{25}$$

Zadanie 4. (0–1)

Liczba osobników pewnego zagrożonego wyginięciem gatunku zwierząt wzrosła w stosunku do liczby tych zwierząt z 31 grudnia 2011 r. o 120% i obecnie jest równa 8910. Ile zwierząt liczyła populacja tego gatunku w ostatnim dniu 2011 roku?

Zadanie 5. (0-1)

Równość $(x\sqrt{2}-2)^2 = (2+\sqrt{2})^2$ jest

A. prawdziwa dla $x = -\sqrt{2}$.

B. prawdziwa dla $x = \sqrt{2}$.

C. prawdziwa dla x = -1.

D. fałszywa dla każdej liczby x.

Zadanie 6. (0-1)

Do zbioru rozwiązań nierówności $(x^4+1)(2-x)>0$ <u>nie należy</u> liczba

- **A.** -3
- **B.** −1
- **C.** 1
- **D.** 3

Zadanie 7. (0–1)

Wskaż rysunek, na którym jest przedstawiony zbiór wszystkich rozwiązań nierówności $2 - 3x \ge 4$.

A. \boldsymbol{x}

 $\frac{\diamondsuit}{2}$

C. \boldsymbol{x}

Zadanie 8. (0-1)

Równanie $x(x^2-4)(x^2+4)=0$ z niewiadomą x

A. nie ma rozwiązań w zbiorze liczb rzeczywistych.

ma dokładnie dwa rozwiązania w zbiorze liczb rzeczywistych.

C. ma dokładnie trzy rozwiązania w zbiorze liczb rzeczywistych.

D. ma dokładnie pięć rozwiązań w zbiorze liczb rzeczywistych.

Zadanie 9. (0–1)

Miejscem zerowym funkcji liniowej $f(x) = \sqrt{3}(x+1) - 12$ jest liczba

- **A.** $\sqrt{3} 4$
- **B.** $-2\sqrt{3}+1$ **C.** $4\sqrt{3}-1$
- **D.** $-\sqrt{3} + 12$

Zadanie 10. (0-1)

Na rysunku przedstawiono fragment wykresu funkcji kwadratowej $f(x) = ax^2 + bx + c$, której miejsca zerowe to: -3 i 1.

Współczynnik c we wzorze funkcji f jest równy

A. 1

- **B.** 2
- **C.** 3
- **D.** 4

Zadanie 11. (0-1)

Na rysunku przedstawiono fragment wykresu funkcji wykładniczej f określonej wzorem $f(x) = a^x$. Punkt A = (1, 2) należy do tego wykresu funkcji.

Podstawa a potęgi jest równa

- **A.** $-\frac{1}{2}$
- **B.** $\frac{1}{2}$
- **C.** –2
- **D.** 2

Zadanie 12. (0-1)

W ciągu arytmetycznym (a_n) , określonym dla $n \ge 1$, dane są: $a_1 = 5$, $a_2 = 11$. Wtedy

A.
$$a_{14} = 71$$

B.
$$a_{12} = 71$$
 C. $a_{11} = 71$ **D.** $a_{10} = 71$

C.
$$a_{11} = 71$$

D.
$$a_{10} = 71$$

Zadanie 13. (0-1)

Dany jest trzywyrazowy ciąg geometryczny (24, 6, a-1). Stąd wynika, że

A.
$$a = \frac{5}{2}$$

C.
$$a = \frac{3}{2}$$

D.
$$a = \frac{2}{3}$$

Zadanie 14. (0-1)

Jeśli $m = \sin 50^{\circ}$, to

$$\mathbf{A.} \quad m = \sin 40^{\circ}$$

B.
$$m = \cos 40^{\circ}$$

C.
$$m = \cos 50^{\circ}$$

D.
$$m = \text{tg} \, 50^{\circ}$$

Zadanie 15. (0-1)

Na okręgu o środku w punkcie O leży punkt C (zobacz rysunek). Odcinek AB jest średnicą tego okręgu. Zaznaczony na rysunku kąt środkowy α ma miarę

- **A.** 116°
- **B.** 114°
- **C.** 112°
- **D.** 110°

Zadanie 16. (0-1)

W trójkącie \overrightarrow{ABC} punkt D leży na boku BC, a punkt E leży na boku AB. Odcinek DE jest równoległy do boku AC, a ponadto |BD| = 10, |BC| = 12 i |AC| = 24 (zobacz rysunek).

Długość odcinka DE jest równa

- **A.** 22
- **B.** 20
- **C.** 12
- **D.** 11

Zadanie 17. (0-1)

Obwód trójkąta ABC, przedstawionego na rysunku, jest równy

$$\mathbf{A.} \left(3 + \frac{\sqrt{3}}{2} \right) a$$

$$\mathbf{B.}\left(2+\frac{\sqrt{2}}{2}\right)a$$

C.
$$(3+\sqrt{3})a$$

D.
$$(2+\sqrt{2})a$$

Zadanie 18. (0-1)

Na rysunku przedstawiona jest prosta k, przechodząca przez punkt A = (2, -3) i przez początek układu współrzędnych, oraz zaznaczony jest kąt α nachylenia tej prostej do osi Ox.

Zatem

Więcej arkuszy znajdziesz na stronie: arkusze.pl

$$\mathbf{A.} \quad \mathbf{tg} \, \alpha = -\frac{2}{3}$$

A.
$$tg\alpha = -\frac{2}{3}$$
 B. $tg\alpha = -\frac{3}{2}$ **C.** $tg\alpha = \frac{2}{3}$ **D.** $tg\alpha = \frac{3}{2}$

C.
$$tg\alpha = \frac{2}{3}$$

D.
$$tg\alpha = \frac{3}{2}$$

Zadanie 19. (0-1)

Na płaszczyźnie z układem współrzędnych proste k i l przecinają się pod kątem prostym w punkcie A = (-2,4). Prosta k jest określona równaniem $y = -\frac{1}{4}x + \frac{7}{2}$. Zatem prostą lopisuje równanie

A.
$$y = \frac{1}{4}x + \frac{7}{2}$$

A.
$$y = \frac{1}{4}x + \frac{7}{2}$$
 B. $y = -\frac{1}{4}x - \frac{7}{2}$ **C.** $y = 4x - 12$ **D.** $y = 4x + 12$

C.
$$y = 4x - 12$$

D.
$$y = 4x + 12$$

Zadanie 20. (0-1)

Dany jest okrąg o środku S = (2,3) i promieniu r = 5. Który z podanych punktów leży na tym okręgu?

A.
$$A = (-1, 7)$$

A.
$$A = (-1,7)$$
 B. $B = (2,-3)$ **C.** $C = (3,2)$ **D.** $D = (5,3)$

C.
$$C = (3,2)$$

D.
$$D = (5,3)$$

Zadanie 21. (0-1)

Pole powierzchni całkowitej graniastosłupa prawidłowego czworokatnego, w którym wysokość jest 3 razy dłuższa od krawędzi podstawy, jest równe 140. Zatem krawędź podstawy tego graniastosłupa jest równa

A.
$$\sqrt{10}$$

B.
$$3\sqrt{10}$$

C.
$$\sqrt{42}$$

D.
$$3\sqrt{42}$$

Promień AS podstawy walca jest równy wysokości OS tego walca. Sinus kąta OAS (zobacz rysunek) jest równy

- **A.** $\frac{\sqrt{3}}{2}$
- **B.** $\frac{\sqrt{2}}{2}$
- C. $\frac{1}{2}$
- **D.** 1

Zadanie 23. (0-1)

Dany jest stożek o wysokości 4 i średnicy podstawy 12. Objętość tego stożka jest równa

- **A.** 576π
- **B.** 192π
- C. 144π
- **D.** 48π

Zadanie 24. (0-1)

Średnia arytmetyczna ośmiu liczb: 3, 5, 7, 9, x, 15, 17, 19 jest równa 11. Wtedy

- **A.** x = 1
- **B.** x = 2
- **C.** x = 11
- **D.** x = 13

Zadanie 25. (0-1)

Ze zbioru dwudziestu czterech kolejnych liczb naturalnych od 1 do 24 losujemy jedną liczbę. Niech A oznacza zdarzenie, że wylosowana liczba będzie dzielnikiem liczby 24. Wtedy prawdopodobieństwo zdarzenia A jest równe

A. $\frac{1}{4}$

- **B.** $\frac{1}{3}$
- C. $\frac{1}{8}$
- **D.** $\frac{1}{6}$

Zadanie 26. (0-2)

Rozwiąż nierówność $8x^2 - 72x \le 0$.

Odpowiedź:

Zadanie 27. (0–2) Wykaż, że liczba $4^{2017} + 4^{2018} + 4^{2019} + 4^{2020}$ jest podzielna przez 17.

	Nr zadania	26.	27.
Wypełnia egzaminator	Maks. liczba pkt	2	2
	Uzyskana liczba pkt		

Zadanie 28. (0-2)

Dane są dwa okręgi o środkach w punktach P i R, styczne zewnętrznie w punkcie C. Prosta AB jest styczna do obu okręgów odpowiednio w punktach A i B oraz $| \not < APC | = \alpha$ i $| \not < ABC | = \beta$ (zobacz rysunek). Wykaż, że $\alpha = 180^{\circ} - 2\beta$.

Zadanie 29. (0-4)

Funkcja kwadratowa f jest określona dla wszystkich liczb rzeczywistych x wzorem $f(x) = ax^2 + bx + c$. Największa wartość funkcji f jest równa 6 oraz $f(-6) = f(0) = \frac{3}{2}$.

Oblicz wartość współczynnika a.

Odpowiedź:

Wypełnia egzaminator	Nr zadania	28.	29.
	Maks. liczba pkt	2	4
	Uzyskana liczba pkt		

Zadanie 30. (0-2)

Przeciwprostokątna trójkąta prostokątnego ma długość 26 cm, a jedna z przyprostokątnych jest o 14 cm dłuższa od drugiej. Oblicz obwód tego trójkąta.

Odpowiedź:

Zadanie 31. (0-2)

W ciągu arytmetycznym (a_n) , określonym dla $n \ge 1$, dane są: wyraz $a_1 = 8$ i suma trzech początkowych wyrazów tego ciągu $S_3 = 33$. Oblicz różnicę $a_{16} - a_{13}$.

Odpowiedź:

	Nr zadania	30.	31.
Wypełnia egzaminator	Maks. liczba pkt	2	2
	Uzyskana liczba pkt		

Zadanie 32. (0–5)

Dane są punkty A = (-4,0) i M = (2,9) oraz prosta k o równaniu y = -2x + 10. Wierzchołek B trójkąta ABC to punkt przecięcia prostej k z osią Ox układu współrzędnych, a wierzchołek C jest punktem przecięcia prostej k z prostą AM. Oblicz pole trójkąta ABC.

Odpowiedź:

Strona 22 z 26 MMA_1P

Zadanie 33. (0-2)

Ze zbioru wszystkich liczb naturalnych dwucyfrowych losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia, że wylosujemy liczbę, która jest równocześnie mniejsza od 40 i podzielna przez 3. Wynik zapisz w postaci ułamka zwykłego nieskracalnego.

Odpowiedź:

	Nr zadania	32.	33.
Wypełnia	Maks. liczba pkt	5	2
egzaminator	Uzyskana liczba pkt		

Zadanie 34. (0-4)

W ostrosłupie prawidłowym trójkątnym wysokość ściany bocznej prostopadła do krawędzi podstawy ostrosłupa jest równa $\frac{5\sqrt{3}}{4}$, a pole powierzchni bocznej tego ostrosłupa jest równe $\frac{15\sqrt{3}}{4}$. Oblicz objętość tego ostrosłupa.

Odpowiedź:....

	Nr zadania	34.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Strona 26 z 26 MMA_1P