Analysis of the effect of the parameter: param_type in Forceeps

Clémentine de Montgolfier

2025-07-17

```
library(tidyverse)
library(fs)
library(gridExtra)
library(grid)
library(knitr)
library(patchwork)
opts_chunk$set(echo=FALSE)
```

Abstract

This report presents an in-depth analysis of the effect of the param_type parameter on the probability of being cut and on the cutting score in the Forceps model. The study combines a theoretical approach based on the model's equations and a practical application on simulated data. The results provide a better understanding of how this parameter influences stand structure and cutting dynamics.

Introduction

Forest management relies on cutting decisions influenced by parameters such as tree diameter and selection indices. The Forceps model formalizes the probability of cutting as a function of a cutting type parameter (param_type), which modulates randomness and selectivity in harvesting. This report details the effect of this parameter through a theoretical study and a practical simulation.

Theoretical study: Effect of the param_type parameter

In the Forceps model, the probability that a tree is cut depends on its diameter (or circumference, denoted c_i) and the cutting type parameter p (param_type in the code). The following equations govern the calculation:

Definition of variables: - c_{Min} : minimum circumference (here 0) - c_{Max} : maximum circumference (here 200) - c_i : circumference of tree i - p: cutting type parameter, between 0 and 1

Calculation of randomness:

randomness =
$$\begin{cases} 2p & \text{if } p \le 0.5\\ 2 - 2p & \text{if } p > 0.5 \end{cases}$$

Calculation of the circumference of maximum probability:

$$c_{\text{maxProba}} = p \times (c_{\text{Max}} - c_{\text{Min}}) + c_{\text{Min}}$$

Calculation of the range (rangeMax):

$$rangeMax_1 = c_{maxProba} - c_{Min} + 1$$

$$rangeMax_2 = -c_{maxProba} + c_{Max} + 1$$
$$rangeMax = max(rangeMax_1, rangeMax_2)$$

Probability of being cut:

probaOfBeingCut =
$$1 - \frac{|c_i - c_{\text{maxProba}}|}{\text{rangeMax}}$$

Cutting score (weighting between randomness and selectivity):

 $score = randomness \times uniform Proba + (1 - randomness) \times probaOfBeingCut$

where uniformProba is set to 0.5 for visualization.

These equations express the trade-off between random cutting (high randomness value) and selective cutting centered on a diameter class (low randomness value). The parameter p modulates this trade-off.

Visualisation of effects

The following plots illustrate the evolution of the probability of being cut and the score as a function of p and tree diameter.

- ## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
- ## i Please use `linewidth` instead.
- ## This warning is displayed once every 8 hours.
- ## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
- ## generated.

Evolution of probaOfBeingCut vs param_type

Parameter Type

Practical application: Simulation on a Fagus sylvatica forest

A simulation is performed on a beech forest (FSyl), with a 12-year rotation, target basal area of $15~\mathrm{m^2/ha}$, initial basal area of $34~\mathrm{m^2/ha}$, and $20~\mathrm{trees}$ uniformly distributed between 0 and 80 cm in diameter. For each trajectory we use one and the same param_type value (0 to 1) for every cutting action during the 80 years of simulation.

Analysis of results

The results are analyzed according to several indicators: - Mean basal area and stem density in each trajectory - Gini coefficient (diameter structure) - Distribution of diameter classes before and after cutting

Mean basal area by species (and total) 0 0.2 0.4 3.0 -2.5 -2.0 -speciesShortName 0.6 8.0 FSyl 3.0 -2.5 -2.0 1.5 1.0 -2020204020602080210020204020602080210020202040206020802100 Date Mean density by species 0 0.2 0.4 100 -Mean density (trees/ha) 50 speciesShortName 0.6 0.8 FSyl 100 -50 -Date

`summarise()` has grouped output by 'date'. You can override using the

`.groups` argument.

Diameter class distribution in 2021 and just after cutting

Diameter class distribution by species (2021 before and after cutting)

Conclusion

The study shows that the param_type parameter plays a key role in modulating cutting selectivity. A low value (close to 0) favors cutting the smallest trees with strong selectivity. As param_type approaches 0.5, both the average diameter of cut trees increases and the randomness of selection rises, resulting in less precise targeting. At param_type = 0.5, cutting is totally random. A high value (close to 1) targets the largest trees.

References

• Forceps model code