Features vs Targets mounts Features Torget O What is a feature? Customer Dataset index education Gender 10# Pi 20,000 M ا ديم 124 7, 30,000 P3 M 60,000 Masters 99 99 99 99 99 Goal: Given details of a person build ML Model to Recommend Best Pooduct. Fe atures Targets Education Product Grender Theome 37

ML Model

Feat unes

Feature Engineering

Processing Seatures to improve M2 Modely

-> create New Feature

2) Apply transformation on Existing Features

Ex: Given weight and Height of a person product

3	Fit	
70	Yes	
65	ک وی	
80	No.	
90	No	
99	99	
99	99	
	70 65 80 90	

Features = H, w

Tanget = Fit

Can use plat the features against Largets

De Is there anything that we can do to seperate Fit and Non-Fit people clearly?

H	\mathcal{W}	BMI	下計
1+0	P	2	Yes
160	65	N2	40
165	80	h3	200
150	90	יי	20
99	99		99
99	99	97	99

Conclusion

Feature Engineering can Relp build Better ML Models Efficiently

Lets Dive Deeper with Loan Status Care Study in Colab Notebook

Skew ness

Skewness is a measure of Asymmetry

* No Stewness (Symmetric)

D Perfectly Balanced with even spread on both sides o Mean & made & Median

- D Long Tail on Right Side
- 9 Bulk data on Left

* Negative Skew (Left skewed)

- De Long Tail on Left Bide
- 9 Bulk data on Right

The skewness (g_1) of a dataset can be calculated using the formula:

$$g_1 = \frac{n}{(n-1)(n-2)} \sum_{i=1}^n \left(\frac{x_i - \bar{x}}{s}\right)^3$$

Where:

- n = Number of observations
- x_i = Individual data point
- \bar{x} = Mean of the data
- s = Standard deviation of the data

Alternatively, Pearson's moment coefficient of skewness can be simplified as:

$$Skewness = \frac{Mean - Median}{Standard Deviation}$$

Interpreation of Strenger 8

Skewness > 0 Right Skewed (Positive)

Skewness < 0 Left Skewed (Negative)

Skewness = 0 No skew (Symmetric)

Mean 18 Median 18 Mode

Kustozis

Kurtosis recasure Sharperess of Peak of Data Distribution

High Kurtosis

9 High Peak

9 Heavy tails

5 More Outliers

Low Kustoria

D Low Peak

9 Light tails

Ersited RRS Lery

Excess Kuttosis & Measures Kuttosis wort

Normal Distribution (Kurt=3)

1 Leptokustic (EK >0)

→ Mesokyrtic (E-Kyo)

Approx Normal

Q3 3.1 E-k3 0.1

3 Platykurtic (E_k <0)

A dist with negative E-K

What is the relationship between skewness and kurtosis in a normal distribution?

4 options

Active Duration(Most preferred: 30 seconds)

Appears for 60 Secs

Skew=0

K=3 C_K= K-3 3-3=8

New Feature

Feature: Able to Pay EMI

Consider Following two Loan applicants

D PI earns 20L and applies for 50L Loan

D P2 earns 30L and applies for 5 CR Loan

Who is more Likely to Get Loan?