Title

D. Zack Garza

Friday 16th October, 2020

Contents

1 Friday, October 16		ay, October 16	1
	1.1	Example: Weyl's Character Formula	1
	1.2	Strong Linkage Principle	3
		1.2.1 Linkage in Category O	4

1 | Friday, October 16

1.1 Example: Weyl's Character Formula

Review: suppose the following is invariant under the Weyl group, so $\sum a_{\mu}e^{\mu} \in \mathbb{Z}[X(T)]^{W}$. In this case, we have an equality

$$\sum a_{\mu}e^{\mu} = \sum a_{\mu}\chi(\mu),$$

where $\chi(\mu) = \sum_{i \geq 0} (-1)^i \text{char } H^i(\mu)$. We also had a relation

$$\chi(w \cdot \mu) = (-1)^{\ell(w)} \chi(\mu) = \operatorname{sgn}(w) \chi(\mu).$$

Now let $\lambda \in X(T) \otimes \mathbb{Q}$, then we defined

$$A(\lambda) = \sum_{w \in W} \operatorname{sgn}(w) e^{w\lambda} \in \mathbb{Z}[X(T) \otimes \mathbb{Q}].$$

We obtain

- 1. $w'A(\lambda) = \operatorname{sgn}(w')A(\lambda)$
- 2. $A(\mu)A(\lambda) = \mathbb{Z}[X(T) \otimes \mathbb{Q}]^W$.

Theorem 1.1.1 (Weyl's Character Formula).

$$\lambda \in X(T) \implies \chi(\lambda) = \frac{A(\lambda + \rho)}{A(\lambda)}.$$

As a special case when $\lambda \in X(T)_+$, all higher sheaf cohomology vanishes and thus

$$char H^0(\lambda) = \frac{A(\lambda + \rho)}{A(\lambda)}.$$

Proof.

We first perform a reindexing step:

$$\begin{split} \sum_{w,w'} \operatorname{sgn}(w \cdot w') e^{w(\lambda + \rho) + w'\rho} &= \sum_{w,w'} \operatorname{sgn}(w^{-1}w') e^{w(\lambda + \rho) + w'\rho} \\ &= \sum_{w,y} \operatorname{sgn}(y) e^{w(\lambda + \rho) + wy\rho} \qquad \qquad y = w^{-1}w' \implies w' = wy \\ &= \sum_{w,y} \operatorname{sgn}(y) e^{w(\lambda + \rho + y\rho)}. \end{split}$$

Now let $\lambda \in X(T)$, we then compute

$$\begin{split} A(\lambda+\rho)A(\rho) &= \sum_{w} \operatorname{sgn}(w)e^{w(\lambda+\rho)} + \sum_{w'} \operatorname{sgn}(w')e^{w'(\lambda+\rho)} \\ &= \sum_{w,w'} \operatorname{sgn}(ww')e^{w(\lambda+\rho)+w'\rho} \\ &= \sum_{w,w'} \operatorname{sgn}(w')e^{w(\lambda+\rho+w'\rho)} & \text{from reindexing above, setting } y \coloneqq w' \\ &= \sum_{w,w'} \operatorname{sgn}(w')\chi\big(w(\lambda+\rho+w'\rho)\big) \\ &= \sum_{w,w'} \operatorname{sgn}(w')\chi\big(w\cdot(\lambda+w'\rho+w^{-1}\rho)\big) & \text{definition of dot action} \\ &= \sum_{w,w'} \operatorname{sgn}(ww')\chi\big(\lambda+w'\rho+w\rho\big) & \text{swapping } w\leadsto w^{-1}. \end{split}$$

Note that χ can be introduced since $A(\lambda + \rho)A(\rho) \in \mathbb{Z}[X(T) \otimes \mathbb{Q}]^{W}$.

Not sure, double check

We can now conclude that

$$A(\rho)^{2} = \sum_{w,w'} \operatorname{sgn}(ww') e^{w\rho + w'\rho}.$$

Since this quantity is W-invariant, since it's a square, we can move the χ inside:

$$\chi(\lambda) \left(\sum a_{\mu} e^{\mu} \right) = \sum a_{\mu} \chi(\lambda + \mu)$$

$$\implies \chi(\lambda) A(\rho)^{2} = \sum_{w,w'} \operatorname{sgn}(ww') \chi(\lambda + w\rho + w'\rho),$$

which is exactly what the first calculation resulted in. So we can conclude

$$A(\lambda + \rho)A(\rho) = \chi(\lambda)A(\rho)^2$$

Note that $A(\rho) \neq 0$ since $w\rho \neq \rho$ unless w = id. Thus we are actually working in $\mathbb{Z}[X(T) + \mathbb{Z}\rho]$, which is an integral domain, and thus we can apply cancellation laws to obtains

$$A(\lambda + \rho) = \chi(\lambda)A(\rho).$$

Example 1.1.1.

Let $G = GL_3(k)$, which has a natural 3-dimensional representation V. Let $\lambda = (1,0,0)$, so L(1,0,0) = V. This is a polynomial representation, so by permuting we can obtain

char
$$V = e^{(1,0,0)} + e^{(0,1,0)} + e^{(0,0,1)} = \chi(1,0,0),$$

where the last equality holds since λ is dominant.

We can write $\rho = (2, 1, 0)$, since the fundamental weights are given by $w_1 = (1, 0, 0)$ and $w_2 = (1, 1, 0)$ (since we're in an SL₂ and/or A_2 situation). We then obtain $\lambda + \rho = (3, 1, 0)$, and since $W = S_3$,

$$A(\lambda + \rho) = \sum_{w \in W} \operatorname{sgn}(w) e^{w(\lambda + \rho)} = e^{(3,1,0)} - e^{(1,3,0)} + e^{(1,0,3)} - e^{(0,1,3)} + e^{(0,3,1)} - e^{(3,0,1)}.$$

Thus

$$A(\rho) = e^{(2,1,0)} - e^{(1,2,0)} + e^{(1,0,2)} - e^{(0,1,2)} + e^{(0,2,1)} - e^{(2,0,1)}.$$

We can then compute

$$\chi(1,0,0)A(\rho) = e^{(3,1,0)} - e^{(2,2,0)} + e^{(2,0,2)} - e^{(1,1,2)} + e^{(1,2,1)} - e^{(3,0,1)} + e^{(2,2,0)} - e^{(1,3,0)} + e^{(1,1,2)} - e^{(0,2,2)} + e^{(0,3,1)} - e^{(2,1,1)} + e^{(2,1,1)} - e^{(1,2,1)} + e^{(1,0,3)} - e^{(0,1,3)} + e^{(0,2,2)} - e^{(2,0,2)}.$$

After cancellation, you'll find that this expression is equal to $A(\lambda + \rho)$.

1.2 Strong Linkage Principle

We'll consider representations in characteristic zero, so we can take $k = \mathbb{C}$. Let G bet a complex simple group, $\mathfrak{g} = \text{Lie}(G)$, t a maximal torus, X the weights, and X_+ the dominant weights. We have a correspondence

$$\{(g,t)\} \iff \{(\Phi,W)\}$$

where Φ is an irreducible root system and W is the Weyl group. We'll have a set of simple roots $\Delta \subseteq \Phi^+$. For $\lambda \in X$, we have

$$Z(\lambda) = U(\mathfrak{g}) \otimes_{U(\mathfrak{h}^+)} \lambda \twoheadrightarrow L(\lambda).$$

Then $\lambda \in X_+ \iff L(\lambda)$ is finite dimensional. We have W acting on X via reflections, which we can extend to a dot action

$$w \cdot \lambda = w(\lambda + \rho) - \rho,$$
 $\rho = \frac{1}{2} \sum_{\alpha \in \Phi^+} \alpha.$

We define Category \mathcal{O} which has objects \mathfrak{g} -modules with a weight space decomposition which is locally finite wrt \mathfrak{n}^+ .

1.2.1 Linkage in Category $\mathcal O$

Set $Z(\lambda) = \Delta(\lambda)$, then

$$[Z(\lambda):L(\mu)] \neq 0 \implies \lambda \in W \cdot \mu.$$

The LHS is computed by evaluating certain Kazhdan-Lusztig polynomials at x = 1.

Example 1.2.1.

Let $\Phi = A_2$, then

Figure 1: Image

 \mathcal{O}_0 is the principal block, and the irreducibles correspond to $\{L(w \cdot 0) \mid w \in W\}$, and the number of irreducibles in given by |W|. In this case, there is only 1 finite-dimensional module in any given block of category \mathcal{O} .

Example 1.2.2.

For $\Phi = A_1$, we have the following situation:

Figure 2: Image

In \mathcal{O}_0 , there are two irreducible representations given by the Verma modules L(0), L(-2), and we find that

Figure 3: Image

In this case, the projectives are given by

Figure 4: Image