Midterm 1 Review Sheet

Fundamental Constants:

- Boltzmann constant
- Planck's constant
- Free electron mass
- Electron-volt/Joule Conversion
- Speed of light
- Stefan-Boltzmann constant
- Avogadro's number
- Ideal gas constant
- Vacuum permittivity/permeability
- Mass of proton

Chapter 1: Introduction

- Gases
 - a. Mean free path
 - b. Ideal gas law
 - c. Maxwell distribution
- Kinetic theory
 - a. Thermal conductivity/dynamic viscosity/mass diffusivity
 - b. Methodology in derivation
- Quantum effects
 - a. Relaxation time
 - b. de Broglie relation

Chapter 2: Material Waves and Energy Quantization

- Waves
 - a. Wave vector
 - b. Units: wavenumber, wavelength, frequency relations
 - c. Particle-wave duality
 - i. Energy
 - ii. Momentum
- Quantum Mechanics
 - a. Schrodinger's equation
 - b. Solutions to Schrodinger's equation
 - i. Free particle
 - ii. 1D infinite well Energy levels
 - iii. Harmonic oscillator
 - iv. Rigid rotor
 - v. Electronic energy levels (Hydrogen)

Chapter 3: Energy States in Solids

- Crystal Structure
 - a. Common crystal lattice structures (FCC, BCC, etc.) Number of atoms per unit cell

- b. Miller indices
- c. Reciprocal lattice/Brillouin zone
- d. Lennard-Jones potential
- Energy Quantization
 - a. Kronig-Penney model (electrons)
 - b. 1D chain of atoms monatomic, diatomic, etc. (phonons)
- Density of States
 - a. Electrons (3D,2D,1D)
 - b. Phonons
 - i. Polarization (3)
 - ii. Debye model
 - iii. Einstein model
 - c. Photons

Chapter 4: Statistical Thermodynamics and Thermal Energy Storage

- Ensembles
 - a. Microcanonical
 - i. Entropy
 - b. Canonical
 - i. Helmholtz free energy
 - ii. Partition functions
 - iii. Thermal de Broglie wavelength
 - c. Grand canonical
- Probability Distribution
 - a. Boltzmann
 - b. Fermi-Dirac
 - c. Bose-Einstein
- Internal Energy and Specific Heat
 - a. Gases
 - i. Translation, rotation, vibration, electronic
 - ii. Equipartition theorem
 - b. Electrons
 - i. Fermi energy/chemical potential
 - ii. Carrier concentration
 - iii. Boltzmann approximation
 - c. Phonons
 - i. Debye model
 - ii. Einstein model
 - d. Photons
 - i. Emissive power

Chapter 5: Energy Transfer by Waves

- Wave properties
 - a. Electrons
 - i. Wavefunction
 - ii. Wavevector k

- iii. Particle flux
- b. Photons
 - i. Intensity profile for normal incidence (Poynting vector)
 - ii. Absorption coefficient/skin depth
 - iii. Refractive index/permittivity
- c. Phonons
 - i. Atom displacement
- Interface reflection and refraction
 - a. Electrons
 - i. Reflection/transmission coefficients
 - ii. Reflectivity/transmissivity
 - iii. Evanescent waves
 - b. Photons
 - i. Fresnel coefficients
 - ii. Reflectivity/transmissivity for TE/TM polarization
 - iii. Snell's law of reflection/refraction
 - iv. Critical angle
 - v. Brewster angle
 - c. Phonons
 - i. SH wave
 - ii. Reflectivity/Transmissivity
- Multiple interface systems
 - a. Transfer matrix method
 - b. Reflection/transmission coefficients for single film
 - c. Reflectivity/transmissivity for single film
- Evanescent waves/tunneling

2.57 / 2.570 Nano-to-Macro Transport Processes Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.