Atom

Horizontally Scaling Strong Anonymity

Albert Kwon H

MIT

Srinivas Devadas

MIT

Henry Corrigan-Gibbs

Stanford

Bryan Ford

EPFL

10/30/17, SOSP'17

Motivation

Anonymous bulletin board (broadcast) in the face of global adversary

Anonymous communication networks

Existing systems vs. Atom

Properties	Tor [USENIX Sec'04]	Riposte [Oakland'15]	Atom
Scaling	Horizontal	Vertical	Horizontal
Latency (1 million users)	< 10s	11 hrs	28min
Anonymity against global adversaries	Vulnerable	Secure	Secure

Deployment and threat model

- Global network adversary
- A large number of users are malicious
- Constant fraction of the servers are malicious
 - 20%

Atom overview

Atom overview

Horizontally scalability

Depth

Fixed (Independent of the width)

Width

More servers => Larger width

1. Guaranteeing anytrust property

1. Guaranteeing anytrust property

2. Group mixing and routing protocol

1. Guaranteeing anytrust property

2. Group mixing and routing protocol

3. Active adversaries

Active attacks

- 1. Guaranteeing anytrust property
- 2. Group mixing and routing protocol
- 3. Active adversaries
- 4. Tolerating server churn

- 1. Guaranteeing anytrust property
- 2. Group mixing and routing protocol
- 3. Active adversaries
- 4. Tolerating server churn

Generating anytrust groups

Pr[group is fully malicious] = 0.2^k Pr[any group is fully malicious] < (# of groups) • $0.2^k < 2^{-64}$

Idea: use verifiable trap messages

Handling actively malicious servers

Trusted third party

Send trap and real messages in a random order

TTP checks for the traps

: encrypted for TTP

What happens when a trap message is dropped?

What happens when a real message is dropped?

Improving the trap messages

- Distributing the trust in the third party
- Distributing the trap verification and decryption

Properties of trap-based defense

- If the adversary tampers with any trap, then no plaintext revealed
- Can remove 1 message with probability ½
 - Remove t messages with probability 2^{-t}
 - Realistically remove < ~64 msgs
- Reactive

Two modes of operation

	Trap messages	Zero-knowledge Proof	
Idea	Verify untamperable traps	Verify protocol with ZKP	
Anonymity set size	N - t	N	
Defense type	Reactive	Proactive	
Latency	1x	4x	

Implementation

- ~4000 lines of Go
- Both trap and ZKP based defenses
- Code available at github.com/kwonalbert/atom

Evaluation setup

- Heterogenous set of 1024 EC2 servers
 - 80% of the servers were 4-core machines
- 20% malicious servers
- Trap messages
- 160-byte msgs

Latency is inversely proportional to the number of servers

Latency scales linearly with the number of users

Limitations

- Medium to high latency
- Denial-of-service

Related work

- Strong anonymity but veritically scaling
 - Dissent[OSDI'12], Riffle [PETS'16], Riposte [Oakland'15], ...
- Horizontally scaling systems but weaker anonymity
 - Crowds [ACM'99], Mixminion [Oakland'03], Tor [USENIX Sec'04],
 Aqua [SIGCOMM'13], Loopix [USENIX Sec'17], ...
- Distributed mixing
 - Parallel mix-net [CCS'04], matrix shuffling [Håstad'06], random switching networks [SODA'99, CRYPTO'15], ...
- Private point-to-point messaging
 - Vuvuzela [SOSP'15], Pung [OSDI'16], Stadium [SOSP'17]

Conclusion

- Atom provides horizontally-scaling strong anonymity
 - Global anonymity set
 - Latency is inversely proportional to the number of servers
- Supports 1 million users with 160 byte msgs in 28min

github.com/kwonalbert/atom

These icons were acquired from thenounproject.com, and are under <u>CC BY 3.0 US</u>

Created by H Alberto Gongora

Created by H Alberto Gongora

Created by Anil

Created by Andre Luiz Gollo

Created by Creative Stall