Project Euler #124: Ordered radicals

This problem is a programming version of Problem 124 from projecteuler.net

The radical of n, $\mathrm{rad}(n)$, is the product of the distinct prime factors of n. For example, $504 = 2^3 \times 3^2 \times 7$, so $\mathrm{rad}(504) = 2 \times 3 \times 7 = 42$.

If we calculate rad(n) for $1 \le n \le 10$, then sort them on rad(n), and sorting on n if the radical values are equal, we get:

${\bf Unsorted}$			Sorted	
\boldsymbol{n}	$\mathrm{rad}(n)$	\boldsymbol{n}	$\mathrm{rad}(n)$	\boldsymbol{k}
1	1	1	1	1
2	2	2	2	2
3	3	4	2	3
4	2	8	2	4
5	5	3	3	5
6	6	9	3	6
7	7	5	5	7
8	2	6	6	8
9	3	7	7	9
10	10	10	10	10

Let E(k) be the kth element in the sorted n column; for example, E(4)=8 and E(6)=9.

Given L and k, if $\operatorname{rad}(n)$ is sorted for $1 \leq n \leq L$, find E(k).

Input Format

The first line of input contains T, the number of test cases.

Each test case consists of a single line containing two integers, $m{L}$ and $m{k}$.

Constraints

$$1 \le T$$
 $1 \le k \le L$

For the first few test files worth 30% of the total points:

 $T \leq 20$

 $L \leq 200000$

For the next few test files worth 30% of the total points:

 $T \leq 100000$

 $L \leq 200000$

For the last few test files worth 40% of the total points:

 $T \leq 20$

 $L \leq 10^{18}$

 $k \le 200000$

Output Format

For each test case, output a single line containing a single integer, the requested value E(k).

Sample Input

3 10 4 10 6 12 9				
---------------------------	--	--	--	--

Sample Output

```
8
9
12
```

Explanation

The first two cases can be answered by consulting the table in the problem statement. For the third test case, L=12 so the new table is:

${\bf Unsorted}$			Sorted	
\boldsymbol{n}	$\mathrm{rad}(n)$	n	$\mathrm{rad}(n)$	${m k}$
1	1	1	1	1
2	2	2	2	2
3	3	4	2	3
4	2	8	2	4
5	5	3	3	5
6	6	9	3	6
7	7	5	5	7
8	2	6	6	8
9	3	12	6	9
10	10	7	7	10
11	11	10	10	11
12	6	11	11	12

In this case, $\emph{E}(9)$ is now 12.