Taller Primer Corte

Santiago Lozano-Fulanito González
21 de marzo de 2020

Punto 1

Numeral (a)

En el numeral (a), lo primero que hacer es trael la base datos

data(mtcars)
mtcars

```
##
                        mpg cyl disp hp drat
                                                        qsec vs am gear carb
                                                    wt
## Mazda RX4
                        21.0
                               6 160.0 110 3.90 2.620 16.46
                               6 160.0 110 3.90 2.875 17.02
                                                                       4
                                                                            4
## Mazda RX4 Wag
                        21.0
                                                               0
## Datsun 710
                        22.8
                               4 108.0 93 3.85 2.320 18.61
## Hornet 4 Drive
                        21.4
                               6 258.0 110 3.08 3.215 19.44
                                                                       3
                                                                            1
## Hornet Sportabout
                        18.7
                               8 360.0 175 3.15 3.440 17.02
                                                                       3
                                                                            2
## Valiant
                                                                       3
                        18.1
                               6 225.0 105 2.76 3.460 20.22
                                                                            1
## Duster 360
                        14.3
                               8 360.0 245 3.21 3.570 15.84
                                                                       3
                                                                            4
## Merc 240D
                        24.4
                                        62 3.69 3.190 20.00
                                                                       4
                                                                            2
                               4 146.7
                                                               1
                                        95 3.92 3.150 22.90
                                                                            2
## Merc 230
                        22.8
                               4 140.8
## Merc 280
                        19.2
                               6 167.6 123 3.92 3.440 18.30
                                                                       4
                                                                            4
## Merc 280C
                        17.8
                               6 167.6 123 3.92 3.440 18.90
## Merc 450SE
                        16.4
                               8 275.8 180 3.07 4.070 17.40
                                                                       3
                                                                            3
                                                                  0
## Merc 450SL
                        17.3
                               8 275.8 180 3.07 3.730 17.60
                                                               0
                                                                       3
                                                                            3
                                                                       3
## Merc 450SLC
                        15.2
                               8 275.8 180 3.07 3.780 18.00
                                                                            3
## Cadillac Fleetwood 10.4
                               8 472.0 205 2.93 5.250 17.98
                                                                       3
                                                                            4
## Lincoln Continental 10.4
                               8 460.0 215 3.00 5.424 17.82
                                                                       3
                                                                            4
## Chrysler Imperial
                        14.7
                               8 440.0 230 3.23 5.345 17.42
                                                                       3
                                                                            4
## Fiat 128
                        32.4
                                  78.7
                                        66 4.08 2.200 19.47
## Honda Civic
                        30.4
                               4
                                  75.7
                                        52 4.93 1.615 18.52
                                                                       4
                                                                            2
## Toyota Corolla
                        33.9
                                  71.1
                                        65 4.22 1.835 19.90
                                                                       4
                                                                            1
## Toyota Corona
                        21.5
                               4 120.1
                                        97 3.70 2.465 20.01
                                                                       3
                                                                            1
## Dodge Challenger
                        15.5
                               8 318.0 150 2.76 3.520 16.87
                                                                       3
                                                                            2
## AMC Javelin
                                                                       3
                                                                            2
                        15.2
                               8 304.0 150 3.15 3.435 17.30
## Camaro Z28
                        13.3
                               8 350.0 245 3.73 3.840 15.41
                                                                       3
                                                                            4
                                                                       3
## Pontiac Firebird
                        19.2
                               8 400.0 175 3.08 3.845 17.05
                                                              0
                                                                            2
## Fiat X1-9
                        27.3
                               4 79.0
                                        66 4.08 1.935 18.90
                                                                            1
                                       91 4.43 2.140 16.70
                                                                            2
## Porsche 914-2
                        26.0
                               4 120.3
                                                              0
                                                                       5
                                                                  1
                                                                       5
                                                                            2
## Lotus Europa
                        30.4
                               4 95.1 113 3.77 1.513 16.90
## Ford Pantera L
                               8 351.0 264 4.22 3.170 14.50
                                                                       5
                                                                            4
                        15.8
                                                                            6
## Ferrari Dino
                        19.7
                               6 145.0 175 3.62 2.770 15.50
                                                                       5
                                                                       5
## Maserati Bora
                        15.0
                               8 301.0 335 3.54 3.570 14.60
                                                              0
                                                                            8
## Volvo 142E
                        21.4
                               4 121.0 109 4.11 2.780 18.60
```

veamos que tipo de dato es la variable am

```
attach(mtcars)
class(am)
```

[1] "numeric"

mtcars[am==1,]

```
##
                 mpg cyl disp hp drat
                                         wt qsec vs am gear carb
## Mazda RX4
                21.0 6 160.0 110 3.90 2.620 16.46
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1
## Datsun 710
                22.8 4 108.0 93 3.85 2.320 18.61
## Fiat 128
                32.4 4 78.7 66 4.08 2.200 19.47
                                                              1
                                                 1 1
## Honda Civic
                30.4 4 75.7 52 4.93 1.615 18.52 1 1
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1
                                                              1
## Fiat X1-9
                27.3 4 79.0 66 4.08 1.935 18.90
                                                  1 1
                                                              1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1
                                                              2
## Lotus Europa
                30.4 4 95.1 113 3.77 1.513 16.90 1 1
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1
## Ferrari Dino
                19.7 6 145.0 175 3.62 2.770 15.50 0 1
                                                              6
                                                              8
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1
## Volvo 142E
                21.4 4 121.0 109 4.11 2.780 18.60 1 1
                                                              2
```

Numeral (b)

llamamos la base de datos iris

```
data("iris")
iris
```

##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
##	1	5.1	3.5	1.4	0.2	setosa
##	2	4.9	3.0	1.4	0.2	setosa
##	3	4.7	3.2	1.3	0.2	setosa
##	4	4.6	3.1	1.5	0.2	setosa
##	5	5.0	3.6	1.4	0.2	setosa
##	6	5.4	3.9	1.7	0.4	setosa
##	7	4.6	3.4	1.4	0.3	setosa
##	8	5.0	3.4	1.5	0.2	setosa
##	9	4.4	2.9	1.4	0.2	setosa
##	10	4.9	3.1	1.5	0.1	setosa
##	11	5.4	3.7	1.5	0.2	setosa
##	12	4.8	3.4	1.6	0.2	setosa
##	13	4.8	3.0	1.4	0.1	setosa
##	14	4.3	3.0	1.1	0.1	setosa
##	15	5.8	4.0	1.2	0.2	setosa
##	16	5.7	4.4	1.5	0.4	setosa
##	17	5.4	3.9	1.3	0.4	setosa
##	18	5.1	3.5	1.4	0.3	setosa
##	19	5.7	3.8	1.7	0.3	setosa
##	20	5.1	3.8	1.5	0.3	setosa
##	21	5.4	3.4	1.7	0.2	setosa
##	22	5.1	3.7	1.5	0.4	setosa
##	23	4.6	3.6	1.0	0.2	setosa
##	24	5.1	3.3	1.7	0.5	setosa
##	25	4.8	3.4	1.9	0.2	setosa
##	26	5.0	3.0	1.6	0.2	setosa
##	27	5.0	3.4	1.6	0.4	setosa
##	28	5.2	3.5	1.5	0.2	setosa

## 29	5.2	3.4	1.4	0.2	setosa
## 30	4.7	3.2	1.6	0.2	setosa
## 31	4.8	3.1	1.6	0.2	setosa
## 32	5.4	3.4	1.5	0.4	setosa
## 33	5.2	4.1	1.5	0.1	setosa
## 34	5.5	4.2	1.4	0.2	setosa
## 35	4.9	3.1	1.5	0.2	setosa
## 36	5.0	3.2	1.2	0.2	setosa
## 37	5.5	3.5	1.3	0.2	setosa
## 38	4.9	3.6	1.4	0.1	setosa
## 39	4.4	3.0	1.3	0.2	setosa
## 40	5.1	3.4	1.5	0.2	setosa
## 41	5.0	3.5	1.3	0.3	setosa
## 42	4.5	2.3	1.3	0.3	setosa
## 43	4.4	3.2	1.3	0.2	setosa
## 44	5.0	3.5	1.6	0.6	setosa
## 45	5.1	3.8	1.9	0.4	setosa
## 46	4.8	3.0	1.4	0.3	setosa
## 47	5.1	3.8	1.6	0.2	setosa
## 48	4.6	3.2	1.4	0.2	setosa
## 49	5.3	3.7	1.5	0.2	setosa
## 50	5.0	3.3	1.4	0.2	setosa
## 51	7.0	3.2	4.7	1.4 ve	rsicolor
## 52	6.4	3.2	4.5	1.5 ve	rsicolor
## 53	6.9	3.1	4.9	1.5 ve	rsicolor
## 54	5.5	2.3	4.0	1.3 ve	rsicolor
## 55	6.5	2.8	4.6	1.5 ve	rsicolor
## 56	5.7	2.8	4.5	1.3 ve	rsicolor
## 57	6.3	3.3	4.7	1.6 ve	rsicolor
## 58	4.9	2.4	3.3	1.0 ve	rsicolor
## 59	6.6	2.9	4.6	1.3 ve	rsicolor
## 60	5.2	2.7	3.9	1.4 ve	rsicolor
## 61	5.0	2.0	3.5	1.0 ve	rsicolor
## 62	5.9	3.0	4.2	1.5 ve	rsicolor
## 63	6.0	2.2	4.0	1.0 ve	rsicolor
## 64	6.1	2.9	4.7	1.4 ve	rsicolor
## 65	5.6	2.9	3.6	1.3 ve	rsicolor
## 66	6.7	3.1	4.4	1.4 ve	rsicolor
## 67	5.6	3.0	4.5	1.5 ve	rsicolor
## 68	5.8	2.7	4.1	1.0 ve	rsicolor
## 69	6.2	2.2	4.5	1.5 ve	rsicolor
## 70	5.6	2.5	3.9	1.1 ve	rsicolor
## 71	5.9	3.2	4.8	1.8 ve	rsicolor
## 72	6.1	2.8	4.0	1.3 ve	rsicolor
## 73	6.3	2.5	4.9	1.5 ve	rsicolor
## 74	6.1	2.8	4.7	1.2 ve	rsicolor
## 75	6.4	2.9	4.3	1.3 ve	rsicolor
## 76	6.6	3.0	4.4	1.4 ve	rsicolor
## 77	6.8	2.8	4.8	1.4 ve	rsicolor
## 78	6.7	3.0	5.0		rsicolor
## 79	6.0	2.9	4.5		rsicolor
## 80	5.7	2.6	3.5		rsicolor
## 81	5.5	2.4	3.8		rsicolor
## 82	5.5	2.4	3.7		rsicolor

## 83	5.8	2.7	3.9	1.2 versicolor
## 84	6.0	2.7	5.1	1.6 versicolor
## 85	5.4	3.0	4.5	1.5 versicolor
## 86	6.0	3.4	4.5	
		3.4		1.6 versicolor
## 87	6.7		4.7	1.5 versicolor
## 88	6.3	2.3	4.4	1.3 versicolor
## 89	5.6	3.0	4.1	1.3 versicolor
## 90	5.5	2.5	4.0	1.3 versicolor
## 91	5.5	2.6	4.4	1.2 versicolor
## 92	6.1	3.0	4.6	1.4 versicolor
## 93	5.8	2.6	4.0	1.2 versicolor
## 94	5.0	2.3	3.3	1.0 versicolor
## 95	5.6	2.7	4.2	1.3 versicolor
## 96	5.7	3.0	4.2	1.2 versicolor
## 97	5.7	2.9	4.2	1.3 versicolor
## 98	6.2	2.9	4.3	1.3 versicolor
## 99	5.1	2.5	3.0	1.1 versicolor
## 100	5.7	2.8	4.1	1.3 versicolor
## 101	6.3	3.3	6.0	2.5 virginica
## 102	5.8	2.7	5.1	1.9 virginica
## 103	7.1	3.0	5.9	2.1 virginica
## 104	6.3	2.9	5.6	1.8 virginica
## 105	6.5	3.0	5.8	2.2 virginica
## 106	7.6	3.0	6.6	2.1 virginica
## 107	4.9	2.5	4.5	1.7 virginica
## 108	7.3	2.9	6.3	1.8 virginica
## 109	6.7	2.5	5.8	1.8 virginica
## 110	7.2	3.6	6.1	2.5 virginica
## 111	6.5	3.2	5.1	2.0 virginica
## 112	6.4	2.7	5.3	1.9 virginica
## 113	6.8	3.0	5.5	2.1 virginica
## 114	5.7	2.5	5.0	2.0 virginica
## 115	5.8	2.8	5.1	2.4 virginica
## 116	6.4	3.2	5.3	2.3 virginica
## 117	6.5	3.0	5.5	1.8 virginica
## 118	7.7	3.8	6.7	2.2 virginica
## 119	7.7	2.6	6.9	2.3 virginica
## 120	6.0	2.2	5.0	1.5 virginica
## 121	6.9	3.2	5.7	2.3 virginica
## 122	5.6	2.8	4.9	2.0 virginica
## 123	7.7	2.8	6.7	2.0 virginica
## 124	6.3	2.7	4.9	1.8 virginica
## 125	6.7	3.3	5.7	2.1 virginica
## 126	7.2	3.2	6.0	1.8 virginica
## 127	6.2	2.8	4.8	1.8 virginica
## 128	6.1	3.0	4.9	1.8 virginica
## 129	6.4	2.8	5.6	2.1 virginica
## 130	7.2	3.0	5.8	1.6 virginica
## 131	7.4	2.8	6.1	1.9 virginica
## 132	7.9	3.8	6.4	2.0 virginica
## 133	6.4	2.8	5.6	2.2 virginica
## 134	6.3	2.8	5.1	1.5 virginica
## 135	6.1	2.6	5.6	1.4 virginica
## 136	7.7	3.0	6.1	2.3 virginica
				•

##	137	6.3	3.4	5.6	2.4	virginica
##	138	6.4	3.1	5.5	1.8	virginica
##	139	6.0	3.0	4.8	1.8	virginica
##	140	6.9	3.1	5.4	2.1	virginica
##	141	6.7	3.1	5.6	2.4	virginica
##	142	6.9	3.1	5.1	2.3	virginica
##	143	5.8	2.7	5.1	1.9	virginica
##	144	6.8	3.2	5.9	2.3	virginica
##	145	6.7	3.3	5.7	2.5	virginica
##	146	6.7	3.0	5.2	2.3	virginica
##	147	6.3	2.5	5.0	1.9	virginica
##	148	6.5	3.0	5.2	2.0	virginica
##	149	6.2	3.4	5.4	2.3	virginica
##	150	5.9	3.0	5.1	1.8	virginica

contando las cantidades en Species

```
attach(iris)
table(Species)
```

```
## Species
## setosa versicolor virginica
## 50 50 50
```

Entonces hay 50 de setosa, 50 de versicolor y 50 de virginica