In vino veritas

GA Data Science Class Final Project Wen Lu Mar 16 2016

About the Data

- ▷ Two datasets Red & White Wine
- Source: UCI Machine Learning Repository
- ▶ 11 physiochemical attributes
- No missing values
- Description
 ▷ In different units of measurement

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.000000	0.270000	0.360000	20.700000	0.045000	45.000000	170.000000	1.001000	3.000000	0.450000	8.800000	6
1	6.300000	0.300000	0.340000	1.600000	0.049000	14.000000	132.000000	0.994000	3.300000	0.490000	9.500000	6
2	8.100000	0.280000	0.400000	6.900000	0.050000	30.000000	97.000000	0.995100	3.260000	0.440000	10.100000	6
3	7.200000	0.230000	0.320000	8.500000	0.058000	47.000000	186.000000	0.995600	3.190000	0.400000	9.900000	6
4	7.200000	0.230000	0.320000	8.500000	0.058000	47.000000	186.000000	0.995600	3.190000	0.400000	9.900000	6

Looking into the features

Findings

Outliers

Expected levels for some of the physiochemical attributes

1,500 - 14,500 mg/L tartaric acid; 0 - 500 mg/L citric acid; 0 - 3 g/L volatile acid; 10 - 350 mg/L sulphates;

Overlapping features

"The predominant fixed acids found in wines are tartaric, malic, citric, and succinic."

total SO_2 = free SO_2 + bound SO_2

What I did

Drop 'citric acid' and 'free sulfur dioxide'

Replace with a binary column for quality

Feature Standardiza tion

Attribute Analysis using Box Plot

Feaure Correlation

- In red wine dataset, fixed acidity is correlated to a certain degree with density.
- In white wine dataset, there is strong correlation between residual sugar and density.

Feature Comparison

Apply Both Supervised and Unsupervised Learning Models

Using Dummy Classifier

Process

Dummy Classifier

→ Benchmark

	dummy_r
precision	0.556150
recall	0.611765
fscore	0.582633
accuracy	0.456250
time	0.000099

	dummy_w	
precision	0.528244	
recall	0.667954	
fscore	0.589940	
accuracy	0.496939	
time	0.000194	

Logistic Regression

L2 - Ridge Regularization

GridSearchCV

K-Means Clustering

Logistic Regression Performance

	dummy_r	logreg_r
precision	0.545455	0.775401
recall	0.618182	0.796703
fscore	0.579545	0.785908
accuracy	0.450000	0.753125
time	0.000103	0.002057

	dummy_w	logreg_w
precision	0.471756	0.883969
recall	0.657447	0.793151
fscore	0.549333	0.836101
accuracy	0.481633	0.768367
time	0.000184	0.006731

Logistic Regression Learning Curve for White Wine

	coefs	features	
8	0.803582	alcohol	
7	0.471617	sulphates	
0	0.211676	fixed acidity	
2	0.157982	residual sugar	
6	-0.035926	рН	
3	-0.230476	chlorides	
5	-0.252267	density	
4	-0.428496	total sulfur dioxide	
1	-0.432927	volatile acidity	

	coefs	features
8	0.918485	alcohol
2	0.834318	residual sugar
7	0.216049	sulphates
6	0.140600	рН
4	0.017512	total sulfur dioxide
3	0.007249	chlorides
0	-0.017643	fixed acidity
1	-0.643736	volatile acidity
5	-0.754739	density

Randome Forest Performance

	Features	Importance Score	
8	alcohol	0.207927	
1	volatile acidity	0.137989	
7	sulphates	0.134596	
4	total sulfur dioxide	0.118812	
5	density	0.097026	
3	chlorides	0.093855	
0	fixed acidity	0.078134	
6	рН	0.071055	
2	residual sugar	0.060607	

Random Forest Learning Curve for Red Wine

	Features	Importance Score
8	alcohol	0.182059
1	volatile acidity	0.145844
5	density	0.109994
2	residual sugar	0.108244
4	total sulfur dioxide	0.107128
3	chlorides	0.103770
6	рН	0.088545
0	fixed acidity	0.077955
7	sulphates	0.076462

Random Forest Learning Curve for White Wine

K-Means Clustering

StandardScaler

- On both datasets

Visualize

- Parallel coordinates

Create a 'Type' column

- To distinguish red and white wines after they are concatenate
- Type 1 is White Wine; Type 2 is Red Wine.

Inertia and silhouette score

- Determine the best n_clusters
- N=2

Concatenate

- Into a master 'Wine' dataset

Clustering Result

1 = White Wine 2 = Red Wine

Clustering Result

	0	1
fixed acidity	8.887	7.879
volatile acidity	0.541	0.521
residual sugar	3.479	1.814
chlorides	0.104	0.074
total sulfur dioxide	66.404	31.383
density	0.998	0.995
рН	3.267	3.346
sulphates	0.669	0.649
alcohol	9.666	11.005
type	0.914	0.915

Limitations and Extensions

Limitations:

- Production year and evaluation year
- White wine data size is 3X of red wine
- 5 cut-off line (most wines get scores 5 and 6)

Extended Project:

- Predict wine geographic orgins based on both physiochemical characters and chemical components

Questions

Data science is hard. Science is a wesome!

