[Aula 06] Linguagem regular: Expressão regular

Prof. João F. Mari joaof.mari@ufv.br

[AULA 05] LR – Expressão regular

SIN 131 – Introdução à Teoria da Computação (PER-3)

ROTEIRO

- Expressão regular (ER)
- [EX] Expressão regular
- Expressão regular → Linguagem regular
- [EX] AFNε a partir de a*(aa + bb)

Expressão regular (ER)

- Toda linguagem regular pode ser descrita por uma:
 - Expressão Regular.
- Formalismo denotacional (ou gerador).
- Definida a partir de:
 - Conjuntos básicos (linguagens);
 - Operações de concatenação e união.
- Adequadas para a comunicação:
 - Humano × humano;
 - Humano × máquina.

Prof. João Fernando Mari (joaof.mari@ufv.br)

8

[AULA 05] LR – Expressão regular

SIN 131 – Introdução à Teoria da Computação (PER-3)

Expressão regular (ER)

- Base de Indução:
 - ØéER
 - denota a linguagem vazia: Ø
 - εéER
 - denota a linguagem $\{ \epsilon \}$
 - x é ER (para qualquer x ∈ Σ)
 - denota a linguagem { x }
- Passo de Indução: se r e s são ER e denotam as ling. R e S, então:
 - União: (r + s) é ER
 - Denota a linguagem R U S
 - Concatenação: (rs) é ER
 - Denota a linguagem R S = { uv | u ∈ R e v ∈ S }
 - Concatenação Sucessiva: (r*) é ER
 - Denota a linguagem R*

Expressão regular (ER)

- Se r é ER, a linguagem gerada é dita:
 - Linguagem Gerada por r:

L(r) ou GERA(r)

- Omissão de parênteses em uma ER é usual:
 - Concatenação sucessiva:
 - Precedência sobre concatenação e união.
 - Concatenação:
 - Precedência sobre união.

Prof. João Fernando Mari (joaof.mari@ufv.br)

[AULA 05] LR – Expressão regular

SIN 131 – Introdução à Teoria da Computação (PER-3)

[EX] Expressão regular

ER	Linguagem Gerada		
aa ba*	somente a palavra aa todas as palavras que iniciam por b, seguido por zero ou mais a		
a*ba*ba*	todas as palavras sobre { a, b } todas as palavras contendo aa como subpalavra todas as palavras contendo exatamente dois b todas as palavras que terminam com aa ou bb todas as palavras que não possuem dois a consecutivos		

[EX] Expressão regular

- Linguagem gerada pela ER: (a + b)*(aa + bb)
 - a e b denotam { a } e { b }, respectivamente
 - a + b denota { a } U { b } = { a, b }
 - (a + b)* denota { a, b }*
 - aa e bb denotam { a } { a } = { aa } e { b } { b } = { bb }
- Respectivamente:
 - (aa + bb) denota { aa } ∪ { bb } = { aa, bb }
 - (a + b)*(aa + bb) denota { a, b }* { aa, bb }
- Portanto, GERA((a + b)*(aa + bb)) é:

{ <u>aa</u>, <u>bb</u>, a<u>aa</u>, a<u>bb</u>, b<u>aa</u>, b<u>bb</u>, aaaa, aabb, abaa, abbb, baaa, babb, bbaa, bbbb,... }

- Toda palavra sobre o alfabeto {a, b} cujo sufixo é aa ou bb.

Prof. João Fernando Mari (joaof.mari@ufv.br)

Ę

[AULA 05] LR – Expressão regular

SIN 131 – Introdução à Teoria da Computação (PER-3)

Expressão Regular → Linguagem Regular

- Se r é ER, então GERA(r) é uma linguagem regular (LR).
- Prova (por indução):
- Uma linguagem é regular sse é possível construir um:
 - AFD, AFN ou AFNε que reconheça a linguagem.
- Para isso, é necessário mostrar que:
 - Dada uma ER r qualquer...
 - é possível construir um autômato finito M tal que ACEITA(M) = GERA(r)
- Demonstração: indução no número de operadores.

Expressão regular -> Linguagem regular

- Base de indução:
 - Seja r uma ER com zero operadores.
 - r = Ø
 - Autômato???
 - r = ε
 - Autômato???
 - $\mathbf{r} = \mathbf{x} \ (\mathbf{x} \in \Sigma)$
 - Autômato???

Prof. João Fernando Mari (joaof.mari@ufv.br)

c

[AULA 05] LR – Expressão regular

SIN 131 – Introdução à Teoria da Computação (PER-3)

Expressão regular → Linguagem regular

- Base de indução:
 - r é uma ER com zero operadores:
 - $r = \emptyset$. Autômato: $M_1 = (\emptyset, \{q_0\}, \delta_1, q_0, \emptyset)$

• $r = \epsilon$. Autômato: $M_2 = (\emptyset, \{q_f\}, \delta_2, q_f, \{q_f\})$

• $r = x (x \in \Sigma)$. Autômato: $M_3 = (\{x\}, \{q_0, q_f\}, \delta_3, q_0, \{q_f\})$

Expressão regular → Linguagem regular

- Hipótese de Indução:
 - r é uma ER com até n operadores (n > 0);
 - Suponha que é possível definir um AF que aceita GERA(r).
- Passo de Indução:
 - r é uma ER com n + 1 operadores;
 - r pode ser representada por (r₁ e r₂ possuem conjuntamente no máximo n operadores)
 - $r = r_1 + r_2$
 - $r = r_1 r_2$
 - r = r₁*
 - Por hipótese de indução, existem:

$$M_1 = (\Sigma_1, Q_1, \delta_1, q_{01}, \{ q_{f1} \}) \rightarrow ACEITA(M_1) = GERA(r_1)$$

 $M_2 = (\Sigma_2, Q_2, \delta_2, q_{02}, \{ q_{f2} \}) \rightarrow ACEITA(M_2) = GERA(r_2)$

Prof. João Fernando Mari (joaof.mari@ufv.br)

11

[AULA 05] LR – Expressão regular

SIN 131 – Introdução à Teoria da Computação (PER-3)

Expressão regular → Linguagem regular

- $r = r_1 + r_2$
 - Autômato M = $(\Sigma_1 \cup \Sigma_2, Q_1 \cup Q_2 \cup \{q_0, q_f\}, \delta, q_0, \{q_f\})$

Expressão regular → Linguagem regular

- $r = r_1 r_2$
 - Autômato M = $(\Sigma_1 \cup \Sigma_2, Q_1 \cup Q_2, \delta, q_{01}, \{q_{f2}\})$

Prof. João Fernando Mari (joaof.mari@ufv.br)

1:

[AULA 05] LR – Expressão regular

SIN 131 – Introdução à Teoria da Computação (PER-3)

Expressão regular → Linguagem regular

- $r = r_1^*$
 - Autômato (suponha $q_0 \notin Q_1$, $q_f \notin Q_1$)
 - $M = (\Sigma_1, Q_1 \cup \{ q_0, q_f \}, \delta, q_0, \{ q_f \})$

[EX] AFNε a partir de a*(aa + bb)

ER	AFNε	ER	AFNε
а	→ ○ a → ○	bb	→ ○ b → ○ b → ○
b	→ ○ b	(aa + bb)	$\bigcirc^{a} \blacktriangleright \bigcirc^{\epsilon} \blacktriangleright \bigcirc^{a} \blacktriangleright \bigcirc$
a*	$\begin{array}{c c} & & & & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline \end{array}$		
aa	<u>a</u> → ○ (a)		

Prof. João Fernando Mari (joaof.mari@ufv.br)

15

[AULA 05] LR – Expressão regular

SIN 131 – Introdução à Teoria da Computação (PER-3)

[EX] AFNε a partir de a*(aa + bb)

Linguagem Regular → Expressão Regular

• Se L é linguagem regular, então existe uma ER r tal que:

$$GERA(r) = L$$

Prof. João Fernando Mari (joaof.mari@ufv.br)

17

[AULA 05] LR – Autômato Finito com movimentos vazios

SIN 131 – Introdução à Teoria da Computação (PER-3)

BIBLIOGRAFIA

- MENEZES, P. B. Linguagens formais e autômatos,
 6. ed., Bookman, 2011.
 - Capítulo 3.
 - + Slides disponibilizados pelo autor do livro.

[FIM]

- FIM:
 - [AULA 06] LINGUAGENS REGULARES Expressão regular
- Próxima aula:
 - [AULA 07] LINGUAGENS REGULARES Gramática regular

Prof. João Fernando Mari (joaof.mari@ufv.br)