Sous-groupes distingués et table de caractères

Leçons: 103, 104, 107

Théorème 1

Soit G un groupe fini et χ_1, \ldots, χ_m ses caractères irréductibles. Alors les sous-groupes distingués de G sont les $\bigcap_{j \in J} \ker \chi_j$ quand $J \subset [\![1,m]\!]$.

Démonstration. Étape 1 : le noyau d'un caractère est le noyau de la représentation associée.

En effet, soit (V, ρ) représentation de G de caractère χ . Comme G est fini, on sait que $\rho(g)$ est diagonalisable de valeurs propres $\lambda_1, \ldots, \lambda_r$ où $r = \dim V$ de module 1 (ce sont des racines du polynôme annulateur $X^{|G|} - 1$ donc des racines de l'unité).

Par suite, $|\chi(g)| = \left|\sum_{i=1}^r \lambda_i\right| \stackrel{INT}{\leqslant} \sum_{i=1}^r |\lambda_i| = \dim V = \chi(e)$ avec égalité si et seulement si il y a égalité dans l'égalité triangulaire, c'est-à-dire si les λ_i sont deux à deux colinéaires de même sens, donc si elles sont égales puisqu'elles sont toutes de même module. Donc $\chi(g) = \chi(e) \Leftrightarrow \rho(g) = \mathrm{id} \Leftrightarrow g \in \ker \rho$.

Étape 2 : construction d'une représentation associée à H.

Soit H un sous-groupe distingué de G et $\pi: G \mapsto G/H$ le morphisme (surjectif) quotient. On sait selon le théorème de Cayley qu'il existe un morphisme injectif $\psi: G/H \to \mathfrak{S}_{(G:H)}$ et de plus la représentation régulière de $\mathfrak{S}_{(G:H)}$ fournit un morphisme injectif θ de $\mathfrak{S}_{(G:H)}$ dans $\mathrm{GL}_{(G:H)}(\mathbb{C})$. Ainsi par composition, on obtient un morphisme $\rho: G \to \mathrm{GL}_{(G:H)}(\mathbb{C})$ de noyau H.

Selon l'étape 1, on a donc $H = \ker \rho = \ker \chi$ où χ est le caractère de ρ .

Étape 3 : décomposons la représentation (V, ρ) précédemment obtenue en une somme directe de représentations irréductibles $V = \bigoplus_{i=1}^r V_i$, où χ_i est le caractère de V_i .

Selon l'étape 1, si
$$g \in G$$
, $g \in \ker \rho \iff \chi(g) = \chi(e) = \dim V = \sum_{i=1}^r \chi_i(g)$.

Or,

$$\left| \sum_{i=1}^{r} \chi_{i}(g) \right| \leq \sum_{i=1}^{r} |\chi_{i}(g)| \leq \sum_{i=1}^{r} |\chi_{i}(e)| = \sum_{i=1}^{r} |\chi_{i}(e)| = \dim V$$

donc $\sum_{i=1}^{r} |\chi_i(g)| = \sum_{i=1}^{r} |\chi_i(e)|$ avec pour tout i, l'inégalité $|\chi_i(g)| \le |\chi_i(e)|$ de sorte que $\forall i \in \mathbb{R}$

$$[\![1,r]\!]$$
, $g \in \ker \chi_i$. Ainsi, $\ker \rho = H = \bigcap_{i=1}^r \ker \chi_i$.

Proposition 2

Les sous-groupes distingués du groupe diédral $D_6 = \langle r,s \mid r^5 = e, s^2 = e, srs = r^{-1} \rangle$ sont $\{e\}$, $\langle s \rangle$, $\langle r^2, s \rangle$, $\langle r^2, sr \rangle$, $\langle r^2 \rangle$, $\langle r^3 \rangle$ et D_6

Démonstration. Tout d'abord, on sait que D_6 a 6 classes de conjugaison donc il y a 6 caractères irréductibles.

- Un caractère χ de degré 1 est déterminé par χ(r) et χ(s). Comme 1 = χ(s²) = χ(s)², on a χ(s) ∈ {±1}. De plus, rs est une symétrie donc χ(rs) = χ(r)χ(s) ∈ {±1} d'où χ(r) ∈ {±1}. Ceci fournit 4 caractères linéaires de D₆ (il n'est pas difficile de se convaincre que ce sont effectivement des morphismes de groupes de D₆ dans C*).
- Selon la formule de Burnside, si χ_1 et χ_2 sont les deux caractères restants de degrés d_1 et d_2 , alors $4 \times 1^2 + d_1^2 + d_2^2 = |D_6| = 12$ donc $d_1 = d_2 = 1$.

Introduisons $\omega = e^{i\frac{\pi}{3}}$ et pour $h \in \{1, 2\}, \, \rho_h : D_6 \to \operatorname{GL}_2(C)$ tel que $\rho_h(s) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ et

$$\rho_h(r) = \begin{pmatrix} \omega^h & 0 \\ 0 & \omega^{-h} \end{pmatrix}$$
. On a donc pour $k \in [0, 5]$, $\rho_h(sr^k) = \begin{pmatrix} 0 & \omega^{-hk} \\ \omega^{hk} & 0 \end{pmatrix}$ qui est de trace nulle.

Ainsi, pour le produit scalaire $\langle \cdot, \cdot \rangle$ classique sur l'espace des fonctions centrales, on a

$$\begin{split} \langle \chi_h, \chi_h \rangle &= \qquad \frac{1}{12} \Biggl(\sum_{k=0}^5 (\omega^{hk} + \omega^{-hk})^2 \Biggr) = \frac{1}{12} \Biggl(12 + \sum_{k=0}^5 \omega^{2hk} + \omega^{-2hk} \Biggr) \\ &= \qquad \qquad 1 + \frac{1}{12} \Biggl(\frac{\omega^{12h} - 1}{\omega^{2h} - 1} + \frac{\omega^{-12h} - 1}{\omega^{-2h} - 1} \Biggr) = 1, \end{split}$$

ce qui prouve que χ_h est un caractère irréductible ¹.

• Ceci nous fournit la « table de caractères » suivante (qui n'en est pas une puisqu'on ne donne pas les valeurs sur les classes de conjugaison), à laquelle on adjoint la liste des noyaux des caractères.

	$ \psi_1 $	ψ_2	ψ_3	ψ_4	χ_1	χ_2
r^k	1	$(-1)^k$	$(-1)^k$	1	$2\cos\left(\frac{k\pi}{3}\right)$	$2\cos\left(\frac{2k\pi}{3}\right)$
sr^k	1	$(-1)^{k}$	$(-1)^{k+1}$	-1	0	0
Noyau	D_6	$\langle r^2, s \rangle$	$\langle r^2, sr \rangle$	$\langle s \rangle$	{e}	$\langle r^3 \rangle$

On constate à l'œil nu que les intersections des 6 noyaux de caractères irréductibles ne fournissent pas d'autres sous-groupes de D_6 qu'eux-mêmes et $\langle r^2 \rangle = \ker \psi_2 \cap \ker \psi_3$, donc on a bien établi la liste voulue.

Références:

- Felix Ulmer (2012). *Théorie des groupes*. Ellipses, p. 158 pour le théorème.
- Gabriel Peyré (2004). *L'algèbre discrète de la transformée de Fourier*. Ellipses, p. 227 pour la table de caractères.

^{1.} Variante : une sous-représentation de degré 1 de ρ_h serait une droite stable ; or une droite stable par $\rho_h(r)$ est soit l'axe (Ox) soit l'axe (Oy), lesquels ne sont pas stables par la symétrie $\rho_h(r)$.