1) A developer of food for pigs wishes to determine what relationship exists among 'age of a pig' when it starts receiving a newly developed food supplement, the initial weight of the pig and the amount of weight it gains in a week period with the food supplement. The following information is the result of study of eight piglets.

Piglet No.	Initial Weight (x1)	Initial age (x2)	Weight Gain (y)
1	39	8	7
2	52	6	6
3	49	7	8
4	46	12	10
5	61	9	9
6	35	6	5
7	25	7	3
8	55	4	4

Solution:

// don't copy this

- First go to ANALYZE and hover on regression and on left click on linear regression
- On that linear regression window, keep the value of y in Depended Variable and all other value in independent, and click OK.
- Click on statistics and tick all the first four options in the left and click Ok
- All the output are the answer which are given below

```
DATASET NAME DataSet2 WINDOW=FRONT.

REGRESSION

/MISSING LISTWISE

/STATISTICS COEFF OUTS R ANOVA

/CRITERIA=PIN(.05) POUT(.10)

/NOORIGIN

/DEPENDENT WeightGain

/METHOD=ENTER InitialWieght InitalAge.
```

/RESIDUALS NORMPROB(ZRESID) /SAVE PRED RESID.

Variables Entered/Removeda

	Variables	Variables	
Model	Entered	Removed	Method
1	x2, x1 ^b		Enter

- a. Dependent Variable: y
- b. All requested variables entered.
 - 1) Determine the least square equation that best describes these three variables. Ans:

Coefficients^a

Unstandardized Coefficients		Standardized Coefficients			C	Correlations			
Mod	lel	В	Std. Error	Beta	t	Sig.	Zero-order	Partial	Part
1	(Constant)	-4.192	1.888		-2.220	.077			
	x1	.105	.032	.501	3.247	.023	.514	.824	.500
	x2	.807	.158	.786	5.097	.004	.794	.916	.786

a. Dependent Variable: y

From above table,

$$Y = 0.105x_1 + 0.807x_2 - 4.192$$

is the required least square equation.

2) Calculate the standard error.

Ans:

Model Summary

					Change Statistics				
			Adjusted R	Std. Error of	R Square				
Model	R	R Square	Square	the Estimate	Change	F Change	df1	df2	Sig. F Change
1	.939ª	.881	.834	.999	.881	18.539	2	5	.005

a. Predictors: (Constant), x2, x1

Hence, the standard error is 0.999.

3) Determine coefficient of multiple determination. Interpret.

Ans:

Correlations

		on order of the		
		у	x1	x2
Pearson Correlation	у	1.000	.514	.794
	x1	.514	1.000	.017
	x2	.794	.017	1.000
Sig. (1-tailed)	у		.096	.009
	x1	.096		.484
	x2	.009	.484	
N	у	8	8	8
	x1	8	8	8
	x2	8	8	8

From above table,

Partial correlation coefficients

- The correlation coefficient between x_1 and x_2 keeping y constant, $r_{x_1x_2.y}$ = .017.
- The correlation coefficient between x_1 and y keeping x_2 constant, $r_{x_1,y,x_2} = 0.514$
- The correlation coefficient between y and x_2 keeping x_1 constant, $r_{x_2,y,x_1} = 0.794$

Coefficient of multiple determination

- $r_{x_1x_2,y^2} = 0.000289$; 0.0289% of variation in x_1 has been explained by x_2 when y is constant.
- $r_{x_1,y.x_2}^2 = 0.264$; 26.4% of variation in x_1 has been explained by y when x_2 is constant.
- $r_{x2,y.x1}^2 = 0.63$; 63% of variation in x_2 has been explained by y when x_1 is constant.

4) Test the significance of regression coefficients and overall fit of the regression equation Ans:

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	-4.192	1.888		-2.220	.077
	x1	.105	.032	.501	3.247	.023
	x2	.807	.158	.786	5.097	.004

Decision

For testing null hypothesis, $B_0=0$,

Since, p= $0.077 > \alpha = 0.05$; there is linear relationship between weight gain and For testing null hypothesis, B₁=0,

Since, p= $0.023 > \alpha = 0.05$; there is a linear relationship between weight gain and initial weight.

For testing null hypothesis, B₂=0,

Since, p= $0.004 < \alpha = 0.05$; there is no linear relationship between weight gain and initial age.

5) How much gain in weight of a pig in a week can we expect with the food supplement if it were 9 weeks old and weighed 48 pounds?

If
$$x_1 = 48$$
 and $x_2 = 9$,
 $Y = 0.105x_1 + 0.807x_2 - 4.192$

$$=(0.105*48) + (0.807*9) - 4.192$$

= 8.111

We can expect 8.111 pounds weight gain.

2.

Steps in SPSS: //don't copy

- Go to Analyze and hover on Compare Mean and click on One Way Anova
- Drag value in dependent and treatment in independent and click on Post Hoc and Enable LSD and Click Ok

Solution

Problem to test

 H_{0T} : There is no significant difference between the treatments.

 H_{1T} : There is at least one significant difference between the treatments.

ONEWAY value BY treatment /MISSING ANALYSIS.

value

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	190336.850	3	63445.617	1.362	.295
Within Groups	652267.150	14	46590.511		
Total	842604.000	17			

ONEWAY value BY treatment /STATISTICS DESCRIPTIVES /MISSING ANALYSIS /POSTHOC=LSD ALPHA(0.05).

Multiple Comparisons

Dependent Variable: value

LSD

LOD						
		Mean			95% Confidence Interval	
(I) treatment	(J) treatment	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
T1	T2	-17.250	152.628	.912	-344.60	310.10
	Т3	-122.650	144.795	.411	-433.21	187.91
	T4	151.150	144.795	.314	-159.41	461.71
T2	T1	17.250	152.628	.912	-310.10	344.60
	Т3	-105.400	144.795	.479	-415.96	205.16
	T4	168.400	144.795	.264	-142.16	478.96
T3	T1	122.650	144.795	.411	-187.91	433.21
	T2	105.400	144.795	.479	-205.16	415.96
	T4	273.800	136.514	.065	-18.99	566.59
T4	T1	-151.150	144.795	.314	-461.71	159.41
	T2	-168.400	144.795	.264	-478.96	142.16
	Т3	-273.800	136.514	.065	-566.59	18.99

- Decision
 - $p = 0.295 > \alpha = 0.05$; Accept H_{0T} at 0.05 level of significance.
- Conclusion

There is no significant difference between the treatments.