Formal Languages and Automata Theory

Prof. Dr.-Ing. Sebastian Schlesinger

Berlin School for Economics and Law

October 9, 2024

Outline

Formal Languages

Let Σ be an alphabet. A *formal language* over Σ is a subset of Σ^* , the set of all strings over Σ .

Example

 $\Sigma=\{(,),+,-,*,/,a\}$. Then we can define the correctly formed arithmetic expressions as the formal language $EXPR\subseteq \Sigma^*$. For example, a+(a*a) is in EXPR, but a+*a is not.

Grammars

A *grammar* is a set of rules for generating strings in a formal language. Formally, it is a 4-tuple $G = (V, \Sigma, P, S)$ such that

- V is a finite set of variables or non-terminal symbols.
- Σ is a finite set of terminal symbols. It must hold $V \cap \Sigma = \emptyset$.
- P is a finite set of production rules. Formally, P is a finite set of pairs $(V \cup \Sigma)^+ \times (V \cup \Sigma)^*$.
- $S \in V$ is the start symbol.

Productions are usually written in the form $u \to v$ where $u \in (V \cup \Sigma)^+$ and $v \in (V \cup \Sigma)^*$.

Formal Languages

Let $u,v\in (V\cup\Sigma)^*$. We define a relation $u\Rightarrow_G v$ (in words: u derives v immediately in G) if u and v have the form u=xyz and v=xy'z for

 $x,z\in (V\cup\Sigma)^*$ and $y\to y'$ is a production rule in P. If G is clear, we may also just write $u\Rightarrow v.$ The language generated by a grammar G is

 $L(G) = \{w \in \Sigma^* \mid S \Rightarrow_G^* w\}$ where \Rightarrow_G^* is the reflexive transitive closure of \Rightarrow_G .

Example

$$G=(\{E,T,F\},\{(,),a,+,*\},P,E)$$
 where $P=\{E o T,E o E+T,T o F,T o T*F,F o (E),F o a\}.$ This yields the language of arithmetic expressions.

Example

$$G = (V, \Sigma, P, S) \text{ where } V = \{S, B, C\}, \ \Sigma = \{a, b, c\}, \ P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}. \text{ In this language, for instance}$$

$$S \Rightarrow aSBC \Rightarrow aaSBCBC \Rightarrow aaaBCBCBC \Rightarrow aaaBBCCBC \Rightarrow aaaBBCCBC \Rightarrow aaaBBCCCC \Rightarrow aaabBBCCC \Rightarrow aaabbb$$

Chomsky Hierarchy

- Type 0: Recursively enumerable languages every language without
- Type 1: Context-sensitive languages: if for all productions $w_1 \to w_2$ it holds $|w_1| \le |w_2|$.
- Type 2: Context-free languages: if for all productions $w_1 \to w_2$ it holds $w_1 \in V$ (meaning it is just a variable on the left side).
- Type 3: Regular languages: if for all productions $w_1 \to w_2$ it holds $w_1 \in V$ and $w_2 \in \Sigma \cup \Sigma V$, i.e., the right sides are either terminals or a terminal followed by a variable.

A language $L\subseteq \Sigma^*$ is of type i if there exists a grammar of type i that generates L.

ε rule

For type 1,2,3 grammars, because of $|w_1| \leq |w_2|$, the empty word ε could not be generated. However, if $\varepsilon \in L(G)$ is desired, we allow the rule $S \to \varepsilon$ where S is the start symbol. This is called the ε rule.

The languages of the Chomsky hierarchy form a strict hierarchy, i.e., there are languages that are of type i but not of type j for i < j. For example, the language $L = \{a^nb^n \mid n \geq 1\}$ is context-free but not regular.

Example

 $L=\{a^nb^n|n\geq 1\}$ is of type 2 but not of type 3. $L=\{a^nb^nc^n|n\geq 1\}$ is of type 1 but not of type 2. L=H is of type 0 but not of type 1. Here, H is the language of the halting problem.

Languages of types 1,2,3 are decidable, i.e., there exists an algorithm that decides whether a given word is in the language or not. For type 0, this is not the case. They are semi-decidable, i.e., there exists an algorithm that decides whether a given word is in the language, but it may not terminate if the word is not in the language. Another term for type 0 languages is recursively enumerable languages.

Word Problem

The word problem is the problem of deciding whether a given word $w \in \Sigma^*$ is in a given language, i.e. $w \in L(G)$ or $w \notin L(G)$. For regular languages, this is decidable. For context-free languages, this is also decidable. For context-sensitive languages, this is also decidable. For recursively enumerable languages, this is semi-decidable.

Finite Automata

A finite automaton is a 5-tuple $M=(Q,\Sigma,\delta,q_0,F)$ where

- Q is a finite set of states.
- Σ is the input alphabet. It holds $Q \cap \Sigma = \emptyset$.
- $\delta: Q \times \Sigma \to Q$ is the transition function.
- $q_0 \in Q$ is the start state.
- $F \subseteq Q$ is the set of accepting states.

An automaton can be drawn as a graph.

Accepted Languages

A language $L\subseteq \Sigma^*$ is accepted by an automaton M if there is a sequence of states q_0,q_1,\ldots,q_n such that q_0 is the start state, q_n is an accepting state, i.e., $q_n\in F$, and for all $i=0,\ldots,n-1$, $\delta(q_i,w_{i+1})=q_{i+1}$ where w_{i+1} is the i+1-th symbol of the word w.

Example

 $Q = \{q_0, q_1, q_2, q_3\}, \Sigma = \{a, b\}, F = \{q_3\}, \ q_0 \ \text{is the start state}.$ $delta(q_0, a) = q_1, \ delta(q_1, b) = q_2, \ delta(q_2, a) = q_3.$ This automaton accepts the language $\{ab^na \mid n \geq 0\}.$