1. Solutions live in a specified set of numbers

An equation is a statement. It is either true or false. If the equation contains a variable or variables, the truth or falsity of the equation may depend on the value(s) of the variable(s).

Consider an equation with a single variable x. To solve this equation in a given set of numbers means to find all numbers in that set which, when plugged in for x, make the equation true. Such an x is said to satisfy the equation. Whether or not an equation has a solution may depend on what type of solution we are looking for. We may be looking for a positive integer as a solution, or we may be happy to find an integer, rational, or real solution.

We give examples. The equation x+3=5 has a solution (which is x=2) in $\mathbb N$. The equation x+5=3 has no solution in $\mathbb N$, but does have a solution (which is x=-2) in $\mathbb Z$. The equation 2x=1 has no solution in $\mathbb Z$, but does have a solution (which is $x=\frac12$) in $\mathbb Q$. The equation $x^2-2=0$ has no solution in $\mathbb Q$, but has two solution in $\mathbb R$, those being $x=\sqrt{2}$ or $x=-\sqrt{2}$. Does the equation $x^2+2=0$ have a solution?

2. Linear Equations

A linear equation is an equation that can be put in the form

$$ax + b = 0$$

where a and b are numbers, and x is a variable.

We solve some of these.

Example 1. Solve the equation 3x + 8 = 17.

Solution. First subtract 8 from both sides to get 3x = 9. Then, divide by 3 to get x = 3. Write your work by lining up the equal signs:

$$3x + 8 = 17$$
$$3x = 9$$
$$x = 3$$

When you subtract 8 from both sides, don't write -8 and -8 under both sides of the equation. Just subtract 17-8=9 in your head.

Example 2. Find all $x \in \mathbb{Z}$ such that 5x - 3 = 9x + 10.

Solution. This is still a linear equation, because it can be put in the form ax + b = 0 (even though it isn't in that form yet). The variable is x; the numbers 5, -3, 9, and 10 are called *coefficients*.

$$5x - 3 = 9x + 10$$

 $9x + 10 = 5x - 3$ switch sides to get the bigger
 $4x + 10 = -3$ subtract $5x$ from both sides
 $4x = -7$ subtract 10 from both sides
 $x = -\frac{7}{4}$ divide both sides by 4

We found the only solution to be $-\frac{7}{4}$, which is rational but is not an integer; thus, there are no solutions in \mathbb{Z} (but there is one in \mathbb{Q}).

A linear equation with real coefficients always has exactly one solution in \mathbb{R} . We solve a general linear equation.

Example 3. Solve ax + b = 0.

Solution. Subtract b from both sides to get ax = -b. Divide both sides by a to get $x = -\frac{b}{a}$. You may write this as a sequence of equations if you wish.

$$ax + b = 0$$

$$ax = -b$$
 subtract b from both sides
$$x = -\frac{b}{a}$$
 divide both sides by a

If the coefficients of a linear equation are rational, then the solution is also rational.

If the coefficients of a linear equation are integers, the solution may be a fraction.

Example 4. For each linear equation, solve it, and determine the smallest set among \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} in which the solution resides.

- (a) 3x 5 = 1. Then 3x = 6, so x = 2. Then $x \in \mathbb{N}$.
- (b) x + 8 = 3. Then x = -11, so $x \in \mathbb{Z}$, but $x \notin \mathbb{N}$.
- (c) 7x + 2 = x + 5. Then 6x + 2 = 5, so 6x = 3, whence $x = \frac{3}{6} = \frac{1}{2}$. Thus $x \in \mathbb{Q}$, but $x \notin \mathbb{Z}$.

3. Exercises

Problem 1. For each linear equation, solve it, and determine the smallest set among \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} in which the solution resides.

- (a) 4x + 8 = 0
- (b) 3x + 3 = 2x 6
- (c) 5x + 101 = 7x + 57
- (d) $\pi x = \pi^2$