Math 110B Homework 8

Tom Slavonia

May 31, 2024

1.

Proof. Consider the Sylow 3-subgroup of S_4 ((123)). We need to find the normalizers of the subgroup in order to have that the conjugacy class is preverved using the definition of conjugacy class. Note that if we have $x \in G$ such that the conjugacy class is preserved, by the second Sylow theorem we have that all Sylow p-subgroups are conjugate to one another. Therefore, every other Sylow 3-subgroup is conjugate to this Sylow 3-subgroup. The identity element can be trivially included in the conjugates as well.

2.

Proof. For $C_a = \{gag^{-1} : g \in G\}$ take $b \in C_a$. We then have $b = gag^{-1}$ for some $g \in G$. Therefore, $f(b) = f(gag^{-1}) = f(g)f(a)f(g^{-1}) = f(g)f(a)f(g)^{-1} \in f(C_a)$ and thus $f(C_a)$ is also a conjugacy class of G.

3.

Proof. Let G be an infinite group and $H \subset G$ be all elements that have finite conjugates. Consider $a, b \in H$. Then, if a in H implies that a has finite conjugates and therefore every conjugate of a can be written gag^{-1} , so every conjugate of a^{-1} is $(gag^{-1})^{-1} = ga^{-1}g$ and therefore $a^{-1} \in H$. The product ab has conjugates $gabg^{-1} = gag^{-1}gbg^{-1} = (gag^{-1})(gbg^{-1})$ and a, b have finite conjugates, so ab has finite conjugate as we can write it in terms of conjugates of a and b. Thus, H is closed under inverses and multiplication and is thus a subgroup.

4.

Proof. Let H be a proper subgroup of G. By theorem 9.25 we know that the number of H conjugates of G must divide the order of G. Therefore, if H is a proper subset of G, then since H is a normal subgroup of N(H), then $[H: H \cap N(H)]$ is strictly less than the order of G implying G cannot be the union of all the conjugates of H.

5.

Proof. To begin, by viewing the multiplication table we can see that there are exactly 2 generators, same as in D_4 , then we can see that all elements correspond to multiplication just as the same as in D_4 . Similarly the claim holds for G_2 and G_3 . Hence, we get the desired result.

6.

Proof. Take $(n_1, k_1), (n_2, k_2), (n_3, k_3) \in N \rtimes_{\phi} K$. We then have

$$((n_1, k_1)(n_2, k_2))(n_3, k_3) = ((n_1\phi_{k_1}(n_2), k_1k_2))(n_3, k_3)$$

$$= (n_2\phi_{k_1}(n_2), k_1k_2)(n_3, k_3)$$

$$= (n_3\phi_{k_1k_2}(n_3)\phi_{k_1}(n_2), k_1k_2k_3)$$

$$= (n_1\phi_{k_1}(n_2\phi_{k_2}(n_3)), k_1k_2k_3)$$

$$= (n_1, k_1)(n_2\phi_{k_2}(n_3), k_2k_3)$$

$$= (n_1, k_1)((n_2\phi_{k_2}(n_3), k_2k_3))$$

$$= (n_1, k_1)((n_2, k_2)(n_3, k_3))$$

using that automorphisms are themselves group homomorphisms. Thus, we have the associative property and the semidirect product is a group. \Box