## Capstone Project 2

# **Consolidated Report**



## **Recommend Products To Instacart Customers**

- Oindrila Sen

### Introduction:

**Problem Statement:** 

**Data Source:** 

**Data Wrangling:** 

Data Model:

Prepare Dataset:

**Data Cleaning:** 

**Feature Extraction:** 

#### **Exploratory Data Analysis:**

#### **Recommendation Model:**

Basic Recommendations:

**Trending Products at Instacart** 

Recommendations from appropriate Departments

Recommendations of reorder products

<u>Recommendations of Unique Products:</u>

Recommendation Using Machine Learning Algorithms:

**Cosine Similarity Model:** 

Alternating Least Square Model(ALS):

Customer Classification using KMeans, KMode and KPrototype:

## **Analysis and Conclusion:**

**Evaluation Metrics:** 

# Introduction:

Online Shopping is a boon to many people. No more makeup, no more worries about the bad hair day and no more looking for a parking spot - The entire Retail World is just a click away. Receiving all your groceries at your doorstep on the same day is Fun.

Instacart is the name who offers this service.

## **Problem Statement:**

In this project, I want to explore customer shopping behavior by analyzing their previous purchases and build a shopping Recommendation Engine that could give them a tailored shopping experience to drive engagement. In this Dataset, we do not have any Feedback/Rating for any of the items brought by the customer. That means, we have Implicit Data and Recommendation Engine has to be built only focusing on user's purchase history.

## **Data Source:**

For this project, I am using the Dataset from "The Instacart Online Grocery Shopping Dataset 2017", Accessed from

https://www.instacart.com/datasets/grocery-shopping-2017 on 07/10/2019.

This anonymized dataset contains a sample of over 3 million grocery orders from more than 200,000 Instacart users. For each user, the dataset provides between 4 and 100 of their orders, with the sequence of products purchased in each order. It also provides the week and hour of day the order was placed, and a relative measure of time between the orders.

# **Data Wrangling:**

Before starting to talk about the different Data Wrangling method, let's take a look at the Data Model in Detail:

#### Data Model:



Now, Let's checkout the data:

### 1. Orders:

|   | order_id | user_id | eval_set | order_number | order_dow | order_hour_of_day | days_since_prior_order |
|---|----------|---------|----------|--------------|-----------|-------------------|------------------------|
| 0 | 2539329  | 1       | prior    | 1            | 2         | 8                 | NaN                    |
| 1 | 2398795  | 1       | prior    | 2            | 3         | 7                 | 15.0                   |
| 2 | 473747   | 1       | prior    | 3            | 3         | 12                | 21.0                   |
| 3 | 2254736  | 1       | prior    | 4            | 4         | 7                 | 29.0                   |
| 4 | 431534   | 1       | prior    | 5            | 4         | 15                | 28.0                   |
| 5 | 3367565  | 1       | prior    | 6            | 2         | 7                 | 19.0                   |
| 6 | 550135   | 1       | prior    | 7            | 1         | 9                 | 20.0                   |
| 7 | 3108588  | 1       | prior    | 8            | 1         | 14                | 14.0                   |
| 8 | 2295261  | 1       | prior    | 9            | 1         | 16                | 0.0                    |
| 9 | 2550362  | 1       | prior    | 10           | 4         | 8                 | 30.0                   |
| 0 | 1187899  | 1       | train    | 11           | 4         | 8                 | 14.0                   |

# 2. Prior Order

|          | order_id | product_id | add_to_cart_order | reordered |
|----------|----------|------------|-------------------|-----------|
| 24076664 | 2539329  | 196        | 1                 | 0         |
| 24076665 | 2539329  | 14084      | 2                 | 0         |
| 24076666 | 2539329  | 12427      | 3                 | 0         |
| 24076667 | 2539329  | 26088      | 4                 | 0         |
| 24076668 | 2539329  | 26405      | 5                 | 0         |

# 3. Train Order

| II autaut a | order_id | product_id | add_to_cart_order | reordered |
|-------------|----------|------------|-------------------|-----------|
| 484420      | 1187899  | 196        | 1                 | 1         |
| 484421      | 1187899  | 25133      | 2                 | 1         |
| 484422      | 1187899  | 38928      | 3                 | 1         |
| 484423      | 1187899  | 26405      | 4                 | 1         |
| 484424      | 1187899  | 39657      | 5                 | 1         |
| 484425      | 1187899  | 10258      | 6                 | 1         |
| 484426      | 1187899  | 13032      | 7                 | 1         |
| 484427      | 1187899  | 26088      | 8                 | 1         |
| 484428      | 1187899  | 27845      | 9                 | 0         |
| 484429      | 1187899  | 49235      | 10                | 1         |
| 484430      | 1187899  | 46149      | 11                | 1         |
|             |          |            |                   |           |

# 4. Products

| pro | oduct_id | product_name               | aisle_id | department_id |
|-----|----------|----------------------------|----------|---------------|
| 0   | 1        | Chocolate Sandwich Cookies | 61       | 19            |
| 1   | 2        | All-Seasons Salt           | 104      | 13            |

# 2. Department

| depai        | rtment_id       | department  |
|--------------|-----------------|-------------|
| 0            | 1               | frozen      |
| 1            | 2               | other       |
| roll output; | double click to | hide bakery |
| 3            | 4               | produce     |
| 4            | 5               | alcohol     |

# 3. Aisle

| aisle                      | aisle_id |   |
|----------------------------|----------|---|
| prepared soups salads      | 1        | 0 |
| specialty cheeses          | 2        | 1 |
| energy granola bars        | 3        | 2 |
| instant foods              | 4        | 3 |
| marinades meat preparation | 5        | 4 |

After loading all the data, here is a snapshot:

Total Aisles: 134

Total Departments: 21

Total Products Count: 49688

Total Users/Customers: 206209

Total Orders: 3421083

Apparently, it is a huge Dataset.

## **Prepare Dataset:**

- 1. Combine aisles, departments and products
- 2. Combine Prior Orders and Products
- 3. Combine Train Orders and Products¶¶
- 4. Combine Prior orders and Order Details
- 5. Combine Train Orders and Order Details
- 6. Merge The Train and Prior Dataset

## **Data Cleaning:**

- 1. Convert NAN values to Zero¶
- 2. Change the below Column's DataTypes
- Change Eval\_set to Category
- Change Department name Data type to Category
- Change Aisle name to Category

- Change Reordered column to Boolean
- 3. Sort the Data

#### **Feature Extraction:**

The below new features are extracted from the existing data and added as a new column.

- 1. **Size of the Order:** How many Items are added per order?
- 2. **Total Orders per Customer**: How many transactions are done by the Customer?
- 3. **Loyal Customer:** Potential Customers are those customers who have ordered more than 32 times (The Average Order Counts)
- 4. **Order Span:** For how long the Customer is doing transactions?
- 5. **Customer Department Count**: How many times a customer bought a product from a particular department group?
- 6. **Customer Item Count**: How many times a customer bought a product?
- 7. **Weekend Customer:** Does the customer prefer to buy on weekends or a week day?
- 8. **Shopping Hour:** Does the customer prefers to shop at morning or evening or at mid night?
- 9. **Is Organic:** The products with Organic In the Name are the Organic Products
- 10. **Prefers Organic**: Does the Customer prefers organic products?

# **Exploratory Data Analysis:**

Now, let's take a look at the visual aides:



# Departments distribution





















# **Recommendation Model:**

### **Basic Recommendations:**

## 1. Trending Products at Instacart

Produce Items are the most popular products at Instacart. Here, we are recommending the most bought items in general.

## 2. Recommendations from appropriate Departments

Recommending the most popular products from the Department in which the customer is browsing.

# 3. Recommendations of reorder products

There are some products that the customer buys often or regularly. Recommending the products that the customers do reorder.

# 4. Recommendations of Unique Products:

There are some products which the customers do not buy regularly or even not aware that they are being sold at Instacart. This is the Opposite of Popular Products.

## **Recommendation Using Machine Learning Algorithms:**

## **Cosine Similarity Model:**

**Cosine similarity** is a measure of similarity between two non-zero vectors by calculating the cosine of the angle between them. In simple words, we can use the Cosine Similarity algorithm to find similarity between two things. In this scenario, we can find similar **Users** or similar **Products**.

In this project, I have found similar users. The cosine of a o degree angle is 1. Therefore, if the value is closer to 1, the more similar the users are. Finally I have recommended items based on similar profiles that have similar purchase history as our target customer.

For Example:

### **Recommended Products for Customer# 90**

| Recom | mended Products for User: 90                  |          |
|-------|-----------------------------------------------|----------|
|       | product_name                                  | value    |
| 922   | Flax Plus Organic Pumpkin Flax Granola        | 1.986900 |
| 228   | Sweet & Salty Nut Almond Granola Bars         | 1.519338 |
| 998   | Peach-Pear Sparkling Water                    | 1.411001 |
| 022   | Sparkling Water, Natural Mango Essenced       | 1.347096 |
| 147   | Organic Heritage Flakes Cereal                | 1.336255 |
| 505   | Healthy Grains Granola Bar, Vanilla Blueberry | 1.219491 |
| 355   | Organic Pink Lemonade Bunny Fruit Snacks      | 1.102062 |
| 560   | Dark Chocolate Minis                          | 1.000000 |
| 39    | Banana                                        | 0.753806 |
| 923   | Lemon Sparkling Water                         | 0.480727 |

## **Alternating Least Square Model(ALS):**

Alternating Least Squares (ALS) is a model I have used to fit our data and find similarities. ALS uses Matrix Factorization method for recommendations. The idea is to take a large matrix and factor it into some smaller representation of the original matrix.

For the same Customer# 90, below are the recommendations from ALS Model:

```
Recommended Prodcucts for user_id 90

['Organic Reduced Fat 2% Milk',
   'Uncured Genoa Salami',
   'Organic Large Brown Grade AA Cage Free Eggs',
   'Organic Whole String Cheese',
   'Organic Milk',
   'Milk, Organic, Vitamin D',
   'Hass Avocados',
   'Mini Original Babybel Cheese',
   'Organic Raspberries',
   'Organic Half & Half']
```

## **Customer Classification using KMeans, KMode and KPrototype:**

My idea was to classify the customers based on their shopping behavior and then recommend products based on their cluster. But it turned out that the current dataset is not appropriate for this method. In this Dataset, most of the customer buy some food products or Beverages or similar products. It is difficult to distinguish Customers based on the items bought. Thus Recommendations turns out difficult using this method.

But I have used and learnt PCA, t-SNE, Elbow Method and Shilhoute Method to get an idea of the data or the cluster size.

# **Analysis and Conclusion:**

The objective of this project is to understand the behavior of different customer, the shopping trend and then finally recommend products to customers based on the Purchase History. I have applied different recommendation algorithm and have grouped Customers based on their behavior. Let's take a look at a particular customer and see

how the recommendations are:

### **Compare & Analyze Recommendation Results**

| Model2_Recommendations                      | Model1_Recommendations                        | Actual Purchase                                |
|---------------------------------------------|-----------------------------------------------|------------------------------------------------|
| Organic Reduced Fat 2% Milk                 | Organic Heritage Flakes Cereal                | Organic Graham Crunch Cereal                   |
| Organic Milk                                | Flax Plus Organic Pumpkin Flax Granola        | Organic Heritage Flakes Cereal                 |
| Milk, Organic, Vitamin D                    | Healthy Grains Granola Bar, Vanilla Blueberry | Gluten Free Honey Almond Granola               |
| Hass Avocados                               | Dark Chocolate Minis                          | Sea Salt Soiree Intense Dark Chocolate Squares |
| Organic Raspberries                         | Organic Pink Lemonade Bunny Fruit Snacks      | Annie's Bunny Fruit Snacks Variety             |
| Organic Large Brown Grade AA Cage Free Eggs | Sparkling Water, Natural Mango Essenced       | NULL                                           |
| Organic Whole String Cheese                 | Sweet & Salty Nut Almond Granola Bars         | NULL                                           |
| Mini Original Babybel Cheese                | Lemon Sparkling Water                         | NULL                                           |
| Uncured Genoa Salami                        | Banana                                        | NULL                                           |
| Organic Half & Half                         | Peach-Pear Sparkling Water                    | NULL                                           |

In the above table, we can see the Actual Purchase of Customer# 90 and the Recommendations from Model1(Cosine Similarity) and Model2(Alternating Least Squares).

The Customer seems to buy Cereals and Granola and some Chocolates and fruit snacks.

**Model1** has recommended some other variety of cereals and granolas and even some chocolate and fruit snacks which seems quite appropriate.

Interestingly, **Model2** has recommended different varieties of Milk which goes perfectly with the Cereals and Granolas and some other breakfast items like eggs, salami and fruits.

Thus, in my opinion both the recommendations are appropriate. Now, let's see if we can evaluate the performance of both the Models with some Metrics.

#### **Evaluation Metrics:**

Evaluating implicit feedback based recommendations is always tricky. Below is the approach that I have followed here:

- Used the high volume dataset (products that users reordered more than once)
- Got the top 20 recommendations using both the models
- Calculated Recall by using # of user actions (products bought) that were captured by the top 20 recommendations.
- Calculated these for all the users and average them.

As per the above metrics, it seems like the **ALS Model** did a little better than the **Cosine Similarity Model**. The score of Cosine Similarity Model is **0.122** and that of ALS Model is **0.220**.