Field Measurement of Nanoparticle
Surface Area using the Geometric
Surface Area Monitor by the Weighted
Sum Method

Leo Cao and David Y.H. Pui

Outline

☐Background and objective

■ Methodology

□ Experiments

□Summary

Significance of surface area

- Catalytic activity
- Drug delivery
- Particle reactivity
- Health effect

10,000,000x surface area

Health effect

Oberdörster, G. (2000). Pulmonary effects of inhaled ultrafine particles. International archives of occupational and environmental health, 74(1), 1-8.

Methods for surface area: offline

BET method (gas adsorption):

- Surface area including pores
- Direct (standard)
- Ex situ
- Time consuming
- Costly

Electron microscopy (TEM and SEM):

- 2D projected area
- Ex situ
- Time consuming
- Costly

Methods for surface area: online

Scanning Mobility Particle Sizer (SMPS) Spectrometer:

- Mobility diameter based distribution
- Minutes
- Working fluid
- Minutes
 Bulky
 Working fluid
 Radiation source
- Costly

Fast Mobility Particle Sizer (FMPS) Spectrometer:

- 1 s resolution
- Bulky
- Data inversion
- Costly

Methods for surface area: online 2

Nanoparticle Surface Area Monitor (NSAM):

- Mobility diameter based
- 1 s resolution
- Reasonable size and cost for field measurement
- Only lung-deposited surface area

So far, none quick and easy way to measure the geometric surface area (GSA) of particles

Objective

A cost effective method delivering geometric surface area (GSA) concentration of nanoparticles in real time.

Features:

- Real time, GSA
- Transportation friendly: no working fluid, no radiation source, lightweight, and field portable.

Outline

Rackground and objective

■ Methodology

Experiments

□Summary

Methodology

 Using Nanoparticle Surface Area Monitor (NSAM) as the basic tool

 Linearly combining the signal (under different condition) to fit GSA (geometric surface area) measurement.

NSAM

(Nanoparticle Surface Area Monitor)

Changing voltage of ion trap

Combining electrical current under different voltages

Geometric Surface Area Monitor (GSAM): block-shaped voltage pulse

LabVIEW-controlled voltage pulse makes the continuous sampling.

Outline

Rackground and objective

■Methodology

□ Experiments

□Summary

1. Validation in lab

- The neutralized polydisperse aerosols were measured by GSAM and SMPS in parallel.
- Geometric surface area concentrations were compared to test the accuracy of the GSAM.

Test aerosol from atomizer

- 1. KCl, SiO₂, Au(gold), PSL(Polystyrene Latex), DEHS(Di-Ethyl-Hexyl-Sebacat).
- 2. Surface area distribution: 20-300 nm, range of accurate measurement
- 3. Surface area distribution: >300 nm, outside accurate range
- 4. Multi-modal distribution

SMPS vs. GSAM (spheres)

GSAM works great for 20-300 nm; works fine for >300 nm.

SMPS vs. GSAM (agglomerates)

Data for SMPS are using agglomerate correction with primary particle size: 13.8, 16.2, 19.5 nm with (Wang et al., 2010; Kim et al., 2009; Shin et al., 2010.)

Calibration curve for spheres works fine for agglomerates.

2. Field measurement

- Parallel sampling using GSAM and SMPS
 - SMPS: one sample every 62 s (17.5-532.8 nm)
 - GSAM: one average value for every 50 s. 12 s for sampling and 38 s for stabilizing voltage

 Location or event: lab 4130, outdoor, laser printing, grinding, waterjet cutting, welding

Outdoor

Sampling length: ~6 hours

The trend and concentration were both well captured by GSAM for outdoor aerosol.

Laser printer in computer lab

Sampling length: ~1 hour

- For wide variation of GSA concentrations, GSAM is accurate.
- Large error bars are due to transient emission.

Machine shop

Correlation between GSAM and SMPS

- Overall, both measurements agree well with each other.
- Discrepancy comes from the particle shape and transient emission.

Outline

Rackground and objective

Methodology

■ Experiments

□Summary

Summary

The novel GSAM successfully measures the GSA of both labgenerated and real environment particles with the following features:

- In a wide range: 20 to 530 nm
- Possibly time resolution can be within several seconds
- For the mixture of spheres and agglomerates
- For both indoor and outdoor
- Cost-effective and field-portable
- With simple setup

Thank you

Major reference

- Kaminski, H., Kuhlbusch, T. A. J., Fissan, H., Ravi, L., Horn, H.-G., Han, H.-S., . . . Asbach, C. (2012). Mathematical Description of Experimentally Determined Charge Distributions of a Unipolar Diffusion Charger. *Aerosol Science and Technology*, 46(6), 708-716. doi: 10.1080/02786826.2012.659360
- Lall, A. A., & Friedlander, S. K. (2006). On-line measurement of ultrafine aggregate surface area and volume distributions by electrical mobility analysis: 1. Theoretical analysis. *Journal of Aerosol Science*, 37(3), 260-271. doi: 10.1016/j.jaerosci.2005.05.021
- Li, L., Chen, D.R., & Tsai, P.J. (2009). Use of an electrical aerosol detector (EAD) for nanoparticle size distribution measurement. *Journal of Nanoparticle Research*, 11(1), 111-120. doi: 10.1007/s11051-008-9418-8
- Sorensen, C. M. (2011). The Mobility of Fractal Aggregates: A Review. *Aerosol Science and Technology, 45*(7), 765-779. doi: 10.1080/02786826.2011.560909
- Vosburgh, D. J. H., Ku, B. K., & Peters, T. M. (2014). Evaluation of a Diffusion Charger for Measuring Aerosols in a Workplace. *Annals of Occupational*
- Wei, J.M., Kruis, F.E., & Fissan, H. (2007). A method for measuring surface area concentration of ultrafine particles. *European Aerosol Conference 2007*. Abstract retrieved from abstracts in European Aerosol Conference database. (Accession No. T02A043)

Appendix 1.1 Current, sensitivity, and GSA

$$S(d, v_1, v_2, a) = S(d, v_1) + aS(d, v_2)$$
If $S(d, v_1, v_2, a) = k\pi d^2$
(2)

where k is a constant that can be determined in the instrument calibration.

The total current measured by the electrometer for polydisperse aerosol can be expressed as:

$$I = I(v_1) + aI(v_2)$$

= $\int_{d=0}^{+\infty} S(d, v_1) \frac{dN(d)}{dload} dlogd + \int_{d=0}^{+\infty} aS(d, v_2) \frac{dN(d)}{dload} dlogd$

$$= \int_{d=0}^{+\infty} [S(d, v_1) + aS(d, v_2)] \frac{dN(d)}{d\log d} d\log d$$

$$= \int_{d=0}^{+\infty} S(d, v_1, v_2, a) dN(d).$$
 (3)

where I(v) is the total current measured by the electrometer.

Substituting Eq. 2 into Eq. 3,

$$I = k \int_{d=0}^{+\infty} \pi d^2 dN(d)$$
(4)

where $\int_{d=0}^{+\infty} \pi d^2 dN(d)$ is the total GSA concentration, A_g , in μ m²/cm³ for the polydisperse aerosol, then

$$A_g = \frac{I}{k}. (5)$$

Appendix 1.2 Sensitivity fitting

Appendix 2.1 Sensitivity of the monitor:

electrical current, fA

number concentration, #/cm³

KCl from 21 to 487 nm

Silver agglomerates from 40 to 300 nm

Appendix 2.2 Sensitivity at different voltages

Appendix 3. GSA for agglomerates

Instead of $S(d) \propto d^2$, we need $S(d) \propto GSA$ for agglomerates

GSA of one agglomerate by Sorensen, 2001:

$$\begin{split} \pi N_{pp} d_{pp}^2 &= \pi d_{pp}^{-0.17} d_m^{2.17}, N_{pp} < 100, \\ \pi N_{pp} d_{pp}^2 &= 2.16 \pi d_{pp}^{0.21} d_m^{1.79}, N_{pp} > 100 \end{split}$$

GSA of one agglomerate by Lall & Friedlander, 2006:

$$\pi N_{pp} d_{pp}^2 = \frac{12\pi^2 \lambda d_m}{c^* C_c(d_m)}$$

Where N_{pp} is the number of primary particle, d_{pp} is the diameter of the primary particle, d_m is the mobility diameter, C_c is the slip correction, c^* is the dimensionless drag force and λ is the mean free path of the gas.

University of Minnesota

