MATH 220 — Assignment 2

Stephanie Knill 54882113

Due: January 12, 2015

Question 1

Let $U = \{1, 3, 5, ..., 15\}$ be the universal set, $A = \{1, 5, 9, 13\}$, and $B = \{3, 9, 15\}$.

(a)
$$A \cup B = \{1, 3, 5, 9, 13, 15\}$$

(b)
$$A \cap B = \{9\}$$

(c)
$$A - B = \{1, 5, 13\}$$

(d)
$$B - A = \{3, 15\}$$

(e)
$$\overline{A} = U - A = \{3, 7, 11, 15\}$$

(f) Since
$$\overline{B} = \{1, 5, 7, 11, 13\}$$
, then $A \cap \overline{B} = \{1, 5, 13\}$

Question 2

Let U be the universal set and let A, B be two subsets of U. Then we can express the following sets as Venn diagrams:

(a)
$$\overline{A \cup B}$$

(b) $\overline{A} \cap \overline{B}$

Since $\overline{A \cup B} = \overline{A} \cap \overline{B}$, the Venn Diagram is identical to that in part a).

(c) $\overline{A \cap B}$

(d) $\overline{A} \cup \overline{B}$

Since $\overline{A \cap B} = \overline{A} \cup \overline{B}$, the Venn Diagram is identical to that in part c).

Question 3

The power set of $\{1,2,3\}$ is given by

$$\mathcal{P}(\{1,2,3\}) = \{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$$

Looking at the possible permutations for the subsets A and B, we can immediately discard any set of subsets where A=B or when one of the subsets is the empty set. Through some experimentation, we find that all eight set operations are unique if |A|=|B|=1. Without loss of generality, let $A=\{1\}$ and $B=\{2\}$.

While we may be tempted to stop here, upon closer examination of the set operations we can see another pair of subsets C and D. Let $C = \overline{A}$ and $D = \overline{B}$. Then the set operation $A \cup B$ can be rewritten as $\overline{A} \cup \overline{B}$, the set operation $A \cup \overline{B}$ as $\overline{A} \cup B$, and so forth. Thus, we are simply swapping the order of the conditions for the sets A and B. The values for the subset pair $A = \{1\}$ and $B = \{2\}$ and the subset pair $\overline{A} = \{2,3\}$ and $\overline{B} = \{1,3\}$ are given in Table 1.

	$A = \{1\}, B = \{2\}$	$\overline{A} = \{2, 3\}, \overline{B} = \{1, 3\}$
$A \cup B$	$\{1, 2\}$	$\{1, 2, 3\}$
$A \cup \overline{B}$	$\{1, 3\}$	$\{2,3\}$
$\overline{A} \cup B$	$\{2, 3\}$	$ \{1,3\}$
$\overline{A} \cup \overline{B}$	$\{1, 2, 3\}$	$\{1,2\}$
$A \cap B$	Ø	{3}
$A \cap \overline{B}$	{1}	{2}
$\overline{A} \cap B$	{2}	{1}
$\overline{A} \cap \overline{B}$	{3}	\emptyset

Table 1: Set operations performed on A and B, and \overline{A} and \overline{B} .

Question 4

For a real number r, define S_r to be the interval [r-1, r+2]. Let $A = \{1, 3, 4\}$. Then

$$\bigcup_{\alpha \in A} S_{\alpha} = S_1 \cup S_3 \cup S_4$$

$$= [(1) - 1, (1) + 2] \cup [(3) - 1, (3) + 2] \cup [(4) - 1, (4) + 2]$$

$$= [0, 3] \cup [2, 5] \cup [3, 6]$$

$$= [0, 6]$$

and

$$\bigcap_{\alpha \in A} S_{\alpha} = S_1 \cap S_3 \cap S_4$$

$$= [(1) - 1, (1) + 2] \cap [(3) - 1, (3) + 2] \cap [(4) - 1, (4) + 2]$$

$$= [0, 3] \cap [2, 5] \cap [3, 6]$$

$$= [3]$$

Question 5

Let $A_n = \{n, n-1\}$ for every $n \in \mathbb{N}$. Then

$$\bigcup_{n \in \mathbb{N}} A_n = \{1, 0\} \cup \{2, 1\} \cup \{3, 2\} \cup \dots$$
$$= \{0\} \cup \mathbb{N}$$

and

$$\bigcap_{n\in\mathbb{N}} A_n = \{1,0\} \cap \{2,1\} \cap \{3,2\} \cap \dots$$
$$= \emptyset$$

Question 6

For $A = \{1, 2\}$ and $B = \{1\}$, the cartesian product $A \times B$ is given by

$$A \times B = \{(1,1),(2,1)\}$$

Thus we can compute the power set of $A \times B$ to be

$$\mathcal{P}(A\times B) = \{\emptyset, \{(1,1)\}, \{(2,1)\}, \{(1,1), (2,1)\}\}$$

Question 7

For $A = \{a \in \mathbb{R} : |a| \le 1\}$ and $B = \{b \in \mathbb{R} : |b| = 1\}$, we can geometrically describe the points in the xy-plane belonging to $(A \times B) \cup (B \times A)$ as the disk C of radius 1 centered at the origin in the xy-plane. In other words, $x^2 + y^2 \le 1$, where $x, y \in \mathbb{R}^2$.