Cecha X ma rozkład normalny $N(\mu, \sigma^2)$ Średnia μ oraz wariancja σ^2 są nieznane

$$H_0: \mu = \mu_0$$

Test Studenta (poziom istotności α) Próba: X_1, \dots, X_n

$$\bar{X}, S^2$$

Statystyka testowa

$$t_{\rm emp} = \frac{\bar{X} - \mu_0}{S} \sqrt{n} \ .$$

Wartość krytyczna $t(\alpha; n-1)$ Jeżeli $|t_{\rm emp}| > t(\alpha; n-1)$, to hipotezę $H_0: \mu = \mu_0$ odrzucamy.

Inny sposób wnioskowania (pakiety statystyczne)

Próba
$$x_1, \ldots, x_n \longrightarrow t_{\text{emp}}$$

 t_{n-1} — zmienna losowa o rozkładzie t-Studenta z n-1 stopniami swobody (rozkład statystyki testowej przy prawdziwości $H_0: \mu = \mu_0$)

$$P\{|t_{n-1}| > t_{\rm emp}\}$$

Interpretacja:

prawdopodobieństwo "uzyskania" próby x_1, \ldots, x_n , gdy $H_0: \mu = \mu_0$ jest prawdziwa

Wnioskowanie:

Jeżeli $P\{|t_{n-1}| > t_{\rm emp}\} < \alpha$, to hipotezę odrzucamy Jeżeli $P\{|t_{n-1}| > t_{\rm emp}\} > \alpha$, to hipotezy nie odrzucamy

Przykład. Przypuszczenie: maszyna pakująca kostki masła nastawiona na jednostkową masę 250 g uległa po pewnym czasie rozregulowaniu.

Cecha X — masa kostki masła $(X \sim N(\mu, \sigma^2))$

$$H_0: \mu = 250$$

Test Studenta; poziom istotności $\alpha = 0.05$

Próba:

254, 269, 254, 248, 263, 256, 258, 261, 264, 258.

Obliczenia:

$$\bar{x} = 258.5, \ s^2 = 36.05, \ t_{\rm emp} = 4.47$$

Wnioskowanie:

Wartość krytyczna: $t_{0.05,9} = 2.2622$.

4.47 > 2.2622: odrzucamy hipotezę

Stwierdzamy, że maszyna rozregulowała się

Wnioskowanie (pakiety):

 $P\{|t_9| > 4.47\} \approx 0.00005$

0.00005 < 0.05: odrzucamy hipotezę

Moc testu

 $Moc testu = 1 - P\{błąd II rodzaju\}$

 $Moc testu = P\{odrzucenie nieprawdziwej H_0\}$

Moc testu Studenta hipotezy $H_0: \mu = \mu_0$

$$\mathcal{M}(\mu) = P\{|t_{\text{emp}}| > t(\alpha; n-1)|X \sim N(\mu, \sigma^2)\}$$
$$\mathcal{M}(\mu_0) = \alpha$$

Przedział ufności a test hipotezy $H_0: \mu = \mu_0$ Cecha $X \sim N(\mu, \sigma^2)$

$$H_0: \mu = \mu_0$$

 H_0 nie odrzucamy na poziomie istotności α

$$|t_{\text{emp}}| < t(\alpha; n - 1)$$

$$\updownarrow$$

$$-t(\alpha; n - 1) < \frac{\bar{X} - \mu_0}{S} \sqrt{n} < t(\alpha; n - 1)$$

$$\updownarrow$$

$$\mu_0 \in (\bar{X} - t(\alpha; n - 1) \frac{S}{\sqrt{n}}, \bar{X} + t(\alpha; n - 1) \frac{S}{\sqrt{n}})$$

$$\updownarrow$$

 μ_0 należy do przedziału ufności na poziomie ufności $1-\alpha$

Cecha X ma rozkład normalny $N(\mu, \sigma^2)$ Średnia μ oraz wariancja σ^2 są nieznane

$$H_0: \mu \leq \mu_0$$

Test Studenta (poziom istotności α) Próba: X_1, \dots, X_n

$$\bar{X}, S^2$$

Statystyka testowa

$$t_{\rm emp} = \frac{\bar{X} - \mu_0}{S} \sqrt{n} \ .$$

Wartość krytyczna $t(2\alpha; n-1)$ Jeżeli $t_{\rm emp} > t(2\alpha; n-1)$, to hipotezę $H_0: \mu \leq \mu_0$ odrzucamy.

Przykład. Przypuszczenie: worki nawozów mineralnych pakowanych przez maszynę są niedoważone do nominalnej wartości $50\ kg$.

Cecha X — masa worka $(X \sim N(\mu, \sigma^2))$

$$H_0: \mu \le 50 \ kg$$

Test Studenta ($\alpha = 0.05$)

Obliczenia na podstawie próby $n = 20, \ \bar{x} = 48, \ s^2 = 6.2, \ t_{\rm emp} = -2.54.$

Wnioskowanie:

Wartość krytyczna t(2*0.05,19) = 1.729-2.54 < 1.729: nie odrzucamy hipotezy

Stwierdzenie, że maszyna pakująca worki nawozów mineralnych nie doważa do nominalnej wagi $50\ kg$ możemy uznać za uzasadnione.