04.05.2023

אוטומציה וייצור ממוחשב

ותיאורטי (1) בנושא לוגיקה PLC תרגיל בית משולב- מעשי

<u>קבוצה 15</u>

322217688 - סיואר עיסא איתי פרסקי - 212941397 אלון זהר - 308418060 רומי זרדון - 206124687

מטרת הפרויקט

מטרת פרויקט הינה לצבור ניסיון מעשי בתכנות של בקר באמצעות דיאגרמת סולם המבוססת על תוכנת WORKS GX2 וזאת כדאי ליישם את החומר התיאורטי הנלמד בהרצאות ובמעבדות ליישום מעשי. בנוסף, הפגנת הבנה של העקרונות ולוגיקה בסולם דיאגרמה ויכולת לתרגם סט דרישות נתון לתוכנית מתפקדת.

הפרויקט מדמה מערכת אוטומטית לייצור חבילות קרבו עפ"י תהליך ייצור המחולק ל-4 שלבים מדורגים. שלבי הייצור הם: זילוף קצפת על תחתיות הביסקוויט במכונה א', שינוע הקרמבו ממכונה א' למכונה ב', טבילת הקרמבו בשוקולד במכונה ב', אריזת הקרמבו המוכנים ולבסוף הצגת כמות היצור היומית. באמצעות פרויקט זה, הצלחנו לפתח מיומנויות בתכנות ופתרון בעיות.

הנחות יסוד בפיתוח המערכת (מעבר להגדרות התרגיל)

- 1. לא ניתן להתחיל יום עבודה באמצע היום העבודה, כלומר חייב לסיים יום עבודה לפני שמתחילים יום עבודה חדש.
- 2. יש להזין ערכים עבור כמויות המלאי לכל חומר גלם לפני תחילת יום העבודה באופן ידני בתחילת החובנית
 - 3. ניתן ללחוץ על X7 על מנת לאתחול מחדש את כלל המכלים לתחילת יום העבודה.
 - 4. סדר הפעולות של הפעלת המכונה מוכרות למשתמש.מכך שהמשתמש לא ישבש סדר הפעולות של ייצור הקרמבו בכל איטרציה.
 - .5. לא ניתן לעבור לשלב האריזה ללא סיום שלב הציפוי (טבילה בשוקולד).
- 6. שים לב להדלקה וכבוי המתגים המצוינים בהוראות המפעלים על מנת שהשלבים יקרו בסדרם. למשל לפני לחיצה על X11 יש להוריד את כל שאר הכפתורים הפיזיים בשביל לא לפגוע באיטרציה. לאחר מכן לפני התחלת האיטרציה הבאה יש להוריד את כפתורX11 גם כן.
 - 7. בשלב מעבר השוקולד : המרנו את הקלט למספר שלם בכדי לקבוע ללא עוררין את מספר השכבות לציפוי הקרבו.
 - עבור תנאי הכמות לשוקולד קבענו כי הכמות המינימלית היא עבור שכבת ציפוי עבה 8 כלומר 240 גרם.

תיאור מצבי קיצון ושיטות הפתרון

- 1. התמודדות עם הטווחים של הקלט: הקלט מה- Analog Input עובר המרה אוטומטית למספר שלם, היחס של המרה זו הינו 390 . לכן, לאחר שקלטנו אותו חילקנו ב- 390 כדי שנקבל את הקלט המקורי שרצינו להזין.
 - 2. המרת הפלט לפורמט הדרוש: (analog_output). השתמשנו בפונקציית REAL_TO_INT_E על מנת להחזיר את הפלט בפורמט הדרוש.
- מעקב אחרי תקינות חומרי הגלם:
 לאחר שימוש במלאי חיסרנו את הכמויות המשומשות בהתאמה לסוג החומר גלם.
 כאשר בעת הבדיקה של תקינות חומרי הגלם הוספנו תנאי של פלוס בירידה Y2 המסמן סיום אריזה,
 מכך שבסוף כל יצור חבילה של 6 קרבו, נבדקת תקינות כמות חומרי הגלם.

- מניעת מעבר לשלב השינוע לפני שלב הזילוף:
 הוספנו פונקציה המכילה את כל התנאים לסיום שלב הזילוף, שבסופה קיימת נורה (M130) שמציינת
 סיום השלב (בלוק 10). על ידי ההוספת הנורה כתנאי לתחילת תהליך השינוע נמנע התחלת תהליך
 טבילה לפני תהליך זילוף (בלוק 12).
- 5. תקינות כמות השוקולד לצפוי הקרבו: מכיוון שאין לדעת מה תהיה הבקשה לעובי הציפוי, הנחנו (הנחה 8) שכמות הציפוי המינימלית הדרושה הינה 240 וכך מנענו את האופציה שנקבל כמות שלילית במיכל השוקולד.

טבלת תיאור משתנים

נורות			נורות
Label Name	Data Type	Device	Comment
			נורה מהבהבת לסירוגין (עם Y1) כחיווי לזמן השינוע ממכונה A למכונה
transport_A2B1	BOOL	Y000	.B
	5001	1/00/	נורה מהבהבת לסירוגין (עם Y0) כחיווי לזמן השינוע ממכונה A למכונה
transport_A2B2	BOOL	Y001	.B
lamp_finish_notice	BOOL	Y002	נורה המסמנת שקרבו מספר חמש נארז מתוך שש היחידות באריזה.
dipping_lamp	BOOL	Y003	נורה המסמנת שפעולת הטבילה בשוקולד פועלת (5 שניות)
Y_4	BOOL	Y004	נורה המסמנת שפעולת זילוף הקצפת פועלת
			נורות המסמנת שיום העבודה התחיל ונמשך ,בנוסף כחיווי לסוף יום
start_work_day_lamp	BOOL	Y007	העבודה תהבהב במשך 3 שניות.
end_work_day	BOOL	M20	נורת עזר המסמנת שיום העבודה הופסק עקב אי עמידה בדרישות
lamp_blinking1	BOOL	M30	נורת עזר לביצוע תזמון הבהוב סיום יום העבודה (3 שניות עבור Y7)
lamp_blinking2	BOOL	M40	נורת עזר לביצוע הבהוב סיום יום העבודה (3 שניות עבור Y7)
cream_suitable_amount	BOOL	M50	נורת עזר כחיווי לחוסר בקצפת כחומר גלם להמשך יום העבודה
			נורת עזר כחיווי לחוסר בתחתיות ביסקוויט כחומר גלם להמשך יום
biscuit_suitable_amount	BOOL	M60	העבודה
chocolate_suitable_amount	BOOL	M70	נורת עזר כחיווי לחוסר בשוקולד כחומר גלם להמשך יום העבודה
stop_blink_lamp	BOOL	M80	נורת עזר לביצוע הבהוב סיום יום העבודה (3 שניות עבור Y7)
MachineA_Status	BOOL	M100	נורת עזר כחיווי למצב פעולה של מוכנה A
			נורת עזר לביצוע הבהוב כחיווי עבור פעולת השינוע (4 שניות עבור
blink_continue	BOOL	M110	(Y0/1
			נורת עזר לביצוע הבהוב כחיווי עבור פעולת השינוע (4 שניות עבור
lamp_help	BOOL	M120	(Y0/1
end_sprinkling	BOOL	M130	נורת עזר כחיווי לסוף פעולת זילוף הקצפת
analog_lamp	BOOL	M150	נורת עזר כחיווי לקבלת קלט לקביעת כמות שכבות ציפוי.

	מונים				
	Data				
Label Name	Туре	Device	Comment		
TC_1	BOOL	TC1	מונה את זמן הבהוב סוף היום (Y7)		
TS_1	BOOL	TS1	הפלט של TC1		
TC_3	BOOL	TC3	מונה את זמן הבהוב של פעולת השינוע (4 שניות-עבור נורה Y0/1)		
TS_3	BOOL	TS3	הפלט של TC3		
TC_4	BOOL	TC4	מאפשר הבהוב פעולת השינוע (עבור נורה Y0)		
TS_4	BOOL	TS4	TC4 הפלט של		
TC_5	BOOL	TC5	מאפשר הבהוב פעולת השינוע (עבור נורה Y1)		
TS_5	BOOL	TS5	TC5 הפלט של		
TC_6	BOOL	TC6	מונה את זמן הטבילה בשוקולד (5 שניות)		
TS_6	BOOL	TS6	TC6 הפלט של		
TC_7	BOOL	TC7	מאפשר הבהוב סוף יום (עבור נורה Y7)		
TS_7	BOOL	TS7	TC7 הפלט של		
TC_8	BOOL	TC8	מאפשר הבהוב סוף יום (עבור נורה Y7)		
TS_8	BOOL	TS8	TC8 הפלט של		
CC_0	BOOL	CC0	מונה עד 5 יחידות קרבו שנארזו (עבור נורה Y2)		
CS_0	BOOL	CS0	CC0 הפלט של		
CC_1	BOOL	CC1	מונה עד 6 יחידות קרבו שנארזו עבור סיום אריזת חבילה של קרבו.		
CS_1	BOOL	CS1	CC1 הפלט של		

		גים	מת
Label Name	Data Type	Device	Comment
krembo_wrapping	BOOL	X000	מתג לביצוע אריזת יחידת קרבו
camaraSensor	BOOL	X001	מתג לקבלת אות מחיישן המצלמה לסיום פעולת הזילוף
			מתג לקבלת אות כי הטמפ' בפועלת הזילוף מעל 30
TempSensorAbove30	BOOL	X002	מעלות
			מתג לקבלת אות מחיישן המגע כי משטח קרבו הגיע
TouchSensor	BOOL	X003	למכונה A
			מתג לקבלת אות כי הטמפ' בפועלת הזילוף מתחת ל 15
TempSensorBelow15	BOOL	X004	מעלות
MachineA_Stop	BOOL	X005	מתג חירום עבור מכונה A אשר מפסיק כל פעילות במכונה
start_dipping	BOOL	X006	מתג להפעלת פעולת ציפוי השוקולד
start_work_day	BOOL	X007	מתג להתחלה יום העבודה ואתחול המכילים לחומרי הגלם.
StartMachineA	BOOL	X010	מתג להפעלת מכונה A
start_sprinkling	BOOL	X011	מתג להפעלת פעולת זילוף הקצפת

3

רג'יסטרים			רג'יסטרים
	Data		
Label Name	Type	Device	Comment
cream_container	REAL	D1100	שומר את מלאי כמות הקצפת במיכל עדכני
chocolate_container	REAL	D1200	שומר את מלאי כמות השוקולד במיכל עדכני
biscuit_container	REAL	D1300	שומר את מלאי כמות הביסקוויטים במיכל עדכני
cream_amount	REAL	D1400	קלט כמות הקצפת בתחילת יום העבודה
chocolate_amount	REAL	D1500	קלט כמות השוקולד בתחילת יום העבודה
biscuit_amount	REAL	D1600	קלט כמות הביסקוויטים בתחילת יום העבודה
sprinkling_container	REAL	D1700	שומר את כמות הקפצת המעוברת למיכל הזילוף
dipping_container	REAL	D1800	שומר את כמות השוקולד המעובר למיכל הטבילה
krembo_container	REAL	D1900	שומר את כמות יחידות הקרבו שהוכנו ביום העבודה
analog_input1	INT	D8280	הערך שהוכנס עבור תנאי כמות שכבות הציפוי (טווח בין 0 ל-10)
input_2_int	INT	D2010	העברת הקלט למשתנה מסוג מספר (INT)
int_input	INT	D2020	חילוק הערך ב390 עבור קבלת הקלט שהוכנס ושמירתו
analog_output	INT	D8282	מציג את מספר יחידות הקרמבו שיצרו
total_krembo	REAL	D2030	שומר את מלאי יחידות הקרבו שיצרו עדכני

תיעוד קוד התוכנית

'תיאורטי חלק א

א. הגדרת משתני הקלט והפלט:

מצב כאשר ערכו 1	תפקיד	כניסה/יציאה	משתנה
המכונה נדלקת	לחיצה על כפתור זה מפעילה את מכונה A	כניסה	X10
המכונה נעצרת	הרמת מתג זה עוצרת את מכונה A מיד	כניסה	X5
המשטח נמצא במצב הרצוי לזילוף	מזהה מתי משטח הקרמבו מגיע למיקום הרצוי לזילוף	כניסה	TouchSensor
הזילוף בוצעה על פני השטח	שולח אות המציין שהזילוף בוצעה על פני השטח	כניסה	CameraSignal
הטמפרטורה נמוכה מ-15 מעלות	מזהה כאשר הטמפרטורה נמוכה מ-15 מעלות	כניסה	TempSensorBelow15
הטמפרטורה מעל 30 מעלות	מזהה כאשר הטמפרטורה היא מעל 30 מעלות	כניסה	TempSensorAbove30
הנורה נדלקת	אות שפעולת הזילוף מתבצעת	יציאה	Y4

ב. <u>טבלת אמת ומפת קרנו למציאת הביטוי המינימלי עבור פעולת הזילוף.</u>

ראשית נתבסס על הדרישות שסופקו בסיפור, כך נוכל לפרק את הבעיה (הטבלה) ולהגדיר את הכללים הלוגיים למשתנים.

: CameraSignal ,TouchSensor ,X5 ,X10 : נתבונן על המשתנים הבאים

פעולת הזילוף יכולה להתחיל רק אם כפתור X10 נלחץ וה-TouchSensor מזהה שמשטח הקרמבו נמצא במיקום הרצוי לזילוף.

לכן, Y4 נכון - אם גם X10 וגם TouchSensor נכונים.

בנוסף, פעולת הזילוף מסתיימת כאשר CameraSignal או X5 מופעלים.

לכן, Y4 נכון - רק אם גם X5 או CameraSignal מכובים.

מכך במצב זה נורת הזילוף תהיה כבויה:

Y4	X10	X5	TouchSensor	CameraSignal
0	0	1	0	1

כעת נבדוק מה קורה במצב שהמכונה פעולת, מתג חירום מכובה, TouchSensor פועל (כלומר (כלומר משטח ממקומם) ו- CameraSignal מכובה כלומר אין אות לסיום פעולת הזילוף.

X10	X5	TouchSensor	CameraSignal
1	0	1	0

X10 * NOT X5 * TouchSensor * NOT CameraSignal

במצב זה הנורה (Y4) תפעל בהתאם לטמפרטורה, כמתואר בטבלה הבאה:

TempSensorBelow15	TempSensorAbove30	$Y4_t$	$Y4_{t+1}$	הסבר
				הטמפרטורה מעל 15 ומתחת ל30 אך המנורה כבויה, לכן ניתן להניח שפעולת הקירור מופעלת והמנורה
0	0	0	0	כבויה.
0	0	1	1	הטמפרטורה מעל 15 ומתחת ל30 אך המנורה מופעלת לכן ניתן להניח שפעולת הקירור כבויה והמנורה דלוקה.
0	1	0	0	הטמפרטורה מעל 15 ומעל ל30 - מכך פעולת קירור חייבת לפעול והמנורה כבויה
0	1	1	0	הטמפרטורה מעל 15 ומעל ל30 - מכך פעולת קירור חייבת לפעול והמנורה כבויה
1	0	0	1	הטמפרטורה מתחת 15 ומתחת ל30 אך המנורה מכובה (כנראה בדיוק הופסקה פעולת הקירור) ולכן נפעיל את המנורה.
4	0	1	4	הטמפרטורה מתחת 15 ומתחת ל30 והמנורה מופעלת לכן ניתן להניח שפעולת הקירור כבויה והמנורה
1	1	0	1	דלוקה. הטמפרטורה מתחת 15 ומעל ל30 - אפשרות לא הגיונית
1	1	1	N/A	הטמפרטורה מתחת 15 ומעל ל30 - אפשרות לא הגיונית

כעת נוכל לבצע מפת קרנו כדי למצוא את הביטי המינימלי:

TempSensor Below15 /TempSensor Above30	00	01	11	10
$Y4_t$				
0	0	0	N/A	1
1	1	0	N/A	1

$$Y4_{t+1} = X10 * NOT X5 * TouchSensor * NOT CameraSignal * $(Y4_t \cdot NOT \text{ TempSensorAbove30} + \text{TempSensorBelow15} * NOT \text{ TempSensorAbove30})$$$

$$Y4_{t+1} = X10 * NOT X5 * TouchSensor * NOT CameraSignal * NOT TempSensorAbove30 * $(Y4_t + TempSensorBelow15)$$$

ג. תיעוד מימוש הביטוי בדיאגרמת הסולם וממוש כחלק התלוי בתהליך הכולל של ייצור הקרבו. (הסבר מצורף בתיעוד הקוד - בלוק 8-10)

'תיאורטי חלק ב

:הסיפור

ג'ון היה נרגש לקחת את המכונית החדשה שלו לסיבוב על הכביש הפתוח. תוך כדי נסיעה הבחין שהוא מכוון כל הזמן את מהירותו כדי לשמור על מרחק בטוח ממכוניות אחרות ולהימנע מכרטיסי מהירות. אז הוא נזכר שבמכונית שלו יש בקרת שיוט, שתאפשר לו להגדיר את המהירות הרצויה ולהירגע תוך כדי נסיעה.

הוא לחץ מתג X10 כדי להפעיל את בקרת השיוט, ולוח המחוונים של המכונית נדלק בשלושה אורות שונות: Y1. Y2 ו-Y3.

Y1 מציינת שבקרת השיוט מופעלת, Y2 מהבהבת כדי להזכיר לו שהוא עדיין בבקרת שיוט, ו-Y3 מציינת שבקרת השיוט מופעלת ומתבצעת בלימה.

תוך כדי נסיעה, ג'ון שם לב שמהירות המכונית גדלה מעט עקב שיפוע קל בירידה. אבל מערכת בקרת השיוט התאימה במהירות את המהירות חזרה להגדרה הרצויה, תוך שימוש בבלמים כדי להאט את המכונית.

ג'ון התרשם עד כמה המערכת הייתה חלקה ויעילה. (רגיש ברמת ה-1 קמ"ש)

עם זאת, כשהמשיך בנסיעה, הבחין שגלגלי המכונית החלו להחליק על כתם קרח על הכביש שזוהו על ידי חיישן ההחלקה של הרכב. הוא בלם באופן אינסטינקטיבית ולקח בחזרה את השליטה על הרכב. מכך הבין שבקרת השיוט נכבת על ידי שימוש בחיישן שנמצא על דוושות הרכב שזיהה לחיצה על בלימה. (כלומר בזמן זה לא יהיה ניתן ללחוץ על כפתור X10 - בקרת שיוט). ג'ון הבין שהמערכת תוכננה לתת עדיפות לבטיחות ולמנוע תאונות.

כשהמשיך בנסיעה, ג'ון התקרב למכונית שנסעה לאט ממנו. הוא רצה לעקוף את המכונית, אבל הוא לא היה בטוח אם זה בטוח לעשות זאת. אז הוא הבחין שבמכונית יש שני חיישנים שיכולים לזהות את המרחק מהעצמים שלפניו.

חיישן אחד מציין אם אובייקט נמצא במרחק של יותר מ-5 מטרים, ואילו החיישן השני מציין אם אובייקט נמצא במרחק של יותר מ-3 מטרים. ג'ון ידע שבטוח לעקוף את המכונית האיטית יותר כאשר החיישנים הצביעו על כך שהמרחק פנוי.

כלומר במידה והמכונית קרובה ביותר מ-3 מטר לאובייקט שלפנינו נורה Y4 תידלק והמכונית תתחיל לבלום עד אשר יגיע למרחק של 5 מטר מאותו אובייקט.

בסך הכל, ג'ון התרשם ממערכת בקרת השיוט ומהחיישנים והמחוונים השונים שהפכו את הנהיגה לבטוחה ונוחה יותר. הוא הרגיש רגוע יותר ובעל שליטה בזמן הנהיגה והיה אסיר תודה על הטכנולוגיה המתקדמת שהייתה מובנית במכוניתו.

<u>הגדרת משתני הקלט והפלט:</u>

		I	
מצב כאשר ערכו 1	תפקיד	כניסה / יציאה	משתנה
הכפתור נלחץ הרכב אמור להיכנס לבקרת השיוט	כפתור הפעלת בקרת השיוט	כניסה	X10
הנהג לחץ על דוושת הגז או הבלמים ובקרת השיוט מפסיקה לפעול	חיישן על הדוושות לבדוק האם הנהג ניסה לבלום או להאיץ	כניסה	SEN_T
האוטו מחליק ולא ניתן להיכנס לבקרת שיוט	חיישן המזהה האם הרכב מחליק ואז לא יהיה אפשר להיכנס לבקרת שיוט	כניסה	SEN_W
האוטו נוסע במהירות גבוהה יותר ב-1 ביחס למהירות כאשר לחצנו על X1	חיישן המודד האם המהירות גבוהה ביותר ב-1 ביחס למהירות שהיה כאשר הופעלה בקרת השיוט	כניסה	SEN_SP1
הרכב נוסע במהירות נמוכה יותר ב1 ביחס למהירות כאשר לחצנו על X1	חיישן המודד האם המהירות נמוכה ביותר ב1 ביחס למהירות שהיינו כאשר נכנסו לבקרת השיוט	כניסה	SEN_SM1
אנחנו במרחק של יותר מ3 מטר מהאובייקט שלפנינו	חיישן אולטרסוני הבודק האם אנחנו במרחק גדול מ3 מטר מהאובייקט שלפנינו	כניסה	SEN_D3
אנחנו במרחק של יותר מ5 מטר מהאובייקט שלפנינו	חיישן אולטרסוני הבודק האם אנחנו במרחק גדול מ3 מטר מהאובייקט שלפנינו	כניסה	SEN_D5
הגיע ל2 שניות	טיימר של 2 שניות	כניסה	T1
הגיע ל2 שניות	טיימר של 2 שניות	כניסה	T2
בקרת השיוט מופעלת ברכב	נורה עבור בקרת השיוט לראות שמופעל	יציאה	Y1
בקרת השיוט עובדת והמנורה מהבהבת כדי להתריע	נורה שמהבהבת כדי להזכיר שבקרת השיוט בפעולה	יציאה	Y2
הרכב בבקרת שיוט והוא בולם לבד במקרה הצורך	נורת בלימה בכל פעם שהרכב בולם	יציאה	Y3
הרכב ברחק של פחות מ3 מטר ממה שלפניו	נורת אזהרה שהרכב קרוב יותר מאשר 3 מטר לאובייקט שלפניו	יציאה	Y4
הנורה דולקת	נורת עזר עבור הטיימר על מנת שנורה Y2 תהבהב	יציאה	MO

<u>טבלת אמת ומפת קרנו למציאת הביטוי המינימלי</u>

ים: שיעבוד הם: Y1 - התנאים ההכרחיים בכדי שיעבוד הם:

נורה Y1 תידלק רק אם בזמן שכפתור X10 לחוץ וחיישן SEN_W יהיה שווה

במקרה ו- Y1 כבר דולק : אם SEN_W שווה 1, לא יהיה ניתן להפעיל את בקרת השיוט,

ומכך שהתהליך יתבצע כל עוד SEN_T יהיה שווה 0.

משמע הנהג לא נוגע בדוושות ולקוח שליטה על הרכב.

לכן הביטוי המינימלי:

$$Y1_{t+1} = (X1 * \overline{Sen - w} + Y1 t) * \overline{Sen - t} t + 1$$

$$Y2 = Y1_{t+1} * (\overline{TS1} + \overline{TS2}A)$$

<u>עבור Y3:</u>

Sen_sp1	Sen_sm1	Y3 t	Y3 t+1	המצב
0	0	0	0	המהירות לא גדולה יותר- לכל הפחות ב1 ולא קטנה יותר- לכל הפחות ב1 מה שאומר שאנו בדיוק במהירות שקבענו וגם הבלמים לא בפעולה והנורה תשאר כבויה
0	0	1	0	המהירות לא גדולה יותר לכל הפחות ב1 ולא קטנה יותר לכל הפחות ב1 מה שאומר שאנו בדיוק במהירות שקבענו וגם הבלמים כן בפעולה מה שאומר שאפשר להפסיק להשתמש בהם והנורה צריכה להכבות
0	1	0	0	המהירות נמוכה יותר מכל הפחות ב1 והבלמים לא בפעולה וזה צריך להישאר ככה כדי שהרכב יגביר מהירות ויחזור למהירות שלו
0	1	1	0	המהירות נמוכה יותר מכל הפחות ב1 והבלמים בפעולה וזה אומר שצריך להפסיק להשתמש בבלמים כדי שהרכב יגביר מהירות ויחזור למהירות שלו
1	0	0	1	המהירות גבוהה יותר בלכל הפחות 1 מה שאומר שצריך להתחיל לבלום ואז הנורה צריכה לדלוק
1	0	1	1	המהירות גבוהה יותר בלכל הפחות 1 וגם הבלמים פועלים מה שאומר שהם צריכים להמשיך לפעול והנורה צריכה להמשיך לדלוק
1	1	0	N/A	לא יכול להיות שהמהירות גם גבוהה יותר ב1 או יותר וגם נמוכה יותר ב1 או יותר

1	1	1	N/A	לא יכול להיות שהמהירות גם גבוהה יותר ב1 או יותר וגם נמוכה יותר ב1 או
				יותר

<u>מפת קרנו:</u>

Sen_sp1/Sen_sm1	00	01	11	10
Y3 t				
0	0	0	0	1
1	0	0	0	1

<u>: הביטוי המינימלי</u>

$$Y3 t+1 = (X1 * \overline{sen-w} + Y_1t) * \overline{sen-t} t + 1 * (sen-sp1 * \overline{sen-sm1} + Y4)$$

<u>עבור Y4:</u>

Sen_d3	Sen_d5	Y4 t	Y4 t+1	המצב
0	0	0	1	הרכב במרחק קרוב יותר מ5 מטר וגם קרוב יותר מ3 מטר לכן הנורה צריכה להתחיל לדלוק והאוטו צריך להתחיל לבלום
0	0	1	1	הרכב במרחק קרוב יותר מ5 מטר וגם קרוב יותר מ3 מטר לו והנורה כבר דולקת וצריכה להמשיך לדלוק והרכב ממשיך לבלום
0	1	0	N/A	המרחק בין הרכב לאובייקט גדול מ5 אך קטן מ3 לא יכול להיות
0	1	1	N/A	המרחק בין הרכב לאובייקט גדול מ5 אך קטן מ3 לא יכול להיות
1	0	0	0	המרחק בין הרכב לאובייקט בין 3 ל5 מטר והנורה לא דולקת מה שאומר שנורה שעדיין לא התקרבנו יותר מ3 מטר ואין סיבה לבלום
1	0	1	1	המרחק בין הרכב לאובייקט בין 3 ל5 מטר והנורה דולקת לכן אנחנו בולמים כדי להגיע למרחק של 5 מטרים ביננו
1	1	0	0	המרחק בין הרכב לאובייקט גדולים מ3 מטר ומ5 מטר לכן אין סיבה לבלום
1	1	1	0	המרחק בין הרכב לאובייקט גדולים מ3 ומ5 והנורה דלקה מה שאומר שהגענו למרחק הרצוי ואפשר לכבות את הנורה

מפת קרנו:

Sen_d3/ Sen_d5	00	01	11	10
Y4 t				
0	1	0	0	0
1	1	0	0	1

$$Y4t + 1 = \overline{Sen - d3} * \overline{Sen - d5} + \overline{Sen - d5} * Y4t$$

הוספנו את Y4 מפני שגם אם הוא בקרת שיוט, כאשר הרכב קרוב יותר מאשר 3 מטרים לאובייקט האוטו יתחיל לבלום לבד ואז הנורה של הבלמים בזמן בקרת השיוט גם תדלוק.

דיאגמת סולם:

הסבר: כדי שמנורה Y1 תדלוק צריכים לקרות 3 דברים: צריך של sen_t יהיה שווה 0 כלומר הנהג לא נוגע בדוושות. שX10 יהיה שווה 1 כלומר הכפתור נוגע בדוושות. שX10 יהיה שווה 1 כלומר הכפתור X10 נלחץ . בנוסף, בזמן שהנהג לוחץ על הכפתור Y1 החיישן sen_w יהיה שווה 0. לאחר מכן כל עוד Y1 דולקת היא תכבה רק כאשר הנהג יגע בדוושות ואז הוא זה ששולט לגמרי במכונית.

<u>הסבר</u>: Y4 תידלק רק כאשר הרכב קרוב יותר מאשר 3 מטרים לאובייקט שלפניו. לכן אם הוא קרוב יותר מאשר 3 מטרים, זה אומר שהוא גם קרוב יותר מאשר 5 מטרים ואז הנורה Y4 תידלק.

גם לאחר שאנחנו רחוקים יותר מ3 מטרים, זה לא אומר שהגענו ל5 מטרים מרחק בין הרכב לאובייקט כמו שרצינו.

לכן הנורה תמשיך לעבוד עד שהגענו למרחק של 5 מטרים בין הרכב לאובייקט ואז Y4 תיכבה

<u>הסבר:</u> כדי שנורה Y3 תידלק, שזוהי הנורה שנדלקת כאשר הרכב משתמש בבלמים בזמן שהוא בבקרת שיוט. Y1 בריך ש- Y1 הנורה שמסמנת לנו שאנו נמצאים במצב של בקרת שיוט תדלוק ואז יש שני רק שני מקרים שבגללם הרכב יתחיל לבלום. הראשון הוא שעלינו מעל המהירות שקבענו והשני הוא שהאוטו קרוב יותר מאשר 3 מטרים מהאובייקט שלפניו. לכן אם המהירות גדולה יותר ממה שקבענו או שאנחנו קרובים מדי לאובייקט שלפנינו, הנורה Y3 תדלוק וכל זה כל עוד Y1 דולקת והנהג לא נגע בדוושות והחליט שהוא שולט לגמרי על הרכב, כי זה אומר שהרכב כבר לא בקרת שיוט.

הסבר: הבהוב מנורה Y2 תפעל רק כאשר בקרת השיוט עובדת.

כלומר הנורה Y1 דולקת, לאחר מכן הטיימר T1 יתחיל כאשר יגיע ל2 שניות . ערך TS1 יהיה שווה 1 ואחת הנורות Y2 תיכבה.

לאחר מכן T2 תתחיל את הטיימר שלה של 2 שניות.

בהמשך TS2 יהיה שווה 1 וזה יכבה את נורת Y2 השנייה מה שיגרום ל Y2 להיכבות לגמרי . מכאן שגם M0 תיכבה ,ובמקביל TS1 יהיה שווה 0 וזה יתחיל את כל התהליך מחדש

<u>:(readme file) הוראות למפעיל חלק תיאורטי ב'</u>

- מטר X2 ו5 מטר X2. לפני שהינך מתחיל את התהליך הרם את X1 וX2 המסמנים שאנחנו רחוקים יותר 3 ו5 מטר מהאובייקט שלפנינו
 - 2. לחץ על כפתור X10 כדי להיכנס למצב בקרת שיוט
- 3. במקרה וחיישן Sen_w שווה 1 כלומר X3 מורם לא יהיה ניתן להיכנס למצב בקרת שיוט ויהיה צורך להוריד את כפתור X3
 - 42. במידה וכפתור X10 נלחץ וX3 למטה ושווה 0 נורה Y1 תידלק לסמן שבקרת השיוט עובדת A תהבהב כדי להזכיר שבקרת השיוט עובדת
 - יכבו Y2 Y1 אזהו בעצם Sen_t שאומר האם הנהג נגע בדוושות X6 אזהו בעצם 5. מיד מפני שהם כולם קשורות לבקרת השיוט
- אומר שעברנו את המהירות שהגדרנו עבור בקרת X4 שאומר שעברנו את המהירות שהגדרנו עבור בקרת X6 השיוט ונורה Y3 תידלק עד אשר נוריד בחזרה את
- גם ידלקו מפני שאנו קרובים מדי לאובייקט שלפנינו X2 גם ידלקו מפני שאנו קרובים מדי לאובייקט שלפנינו X2. במידה ומורידים את X1 ואז את X2 והיא תמשיך לדלוק עד אשר נרים את X1 ואז את

סיכום ומסקנות

לסיכום, זהו היה פרויקט שכלל בתוכו הרבה חשיבה, תכנון ויצירתיות, האינטראקציה עם בקר חיצוני ומוחשי הייתה חדשה ומעניינת. לפעמים תגובות הסימולטור היו שונות מתגובות הבקר וזה בהתאם לזמן הריצה של כל אחד מהם. למדנו הרבה על הלוגיקה של תכנות בקרים, על מושגים כמו פולס בעליה, רגיסטרים, NC וNO.

בנוסף הפעלנו מחשבה רבה כיצד לממש את הדרישות בצורה הגנרית ביותר כך שיהיה מימוש כללי שייתן מענה על דרישות המופיעות בחלקים שונים בפרויקט.

המסקנה העולה מפרויקט זה היא שכאשר לוקחים עקרונות שמלווים אותנו בתואר בעוד קורסים רבים של מודולריות ועבודה מסודרת לתוך עולם של plc אפשר לתת מענה לדרישות מורכבות לוגית ומשימות רלוונטיות בתעשייה.

נספח – הוראות למפעיל (README FILE)

- . Works2 Gx 2 בתוכנת "TOPIC_GROUP15" בתוכנת 1.1 (1
 - PLC. הפעל את בקר ה
 - : בתחילת כל יום עבודה מחק את זיכרון הבקר
 - Online → PLC Memory Operations → Clear PLC Memory
 - טען את התוכנית אל זיכרון הבקר (1.4
 - 1.5) הורדת וכבה את כלל הכפתורים והמתגים בבקר.
 - 1.6) פעולות ההפעלה:

- 1. Compile -> Rebuild All
- 2. Online -> Remote Operation(s)
- 3. STOP -> yes -> ok
- 4. Online -> Write to PLC
- 5. Press on Parameters + Program
- 6. Press Execute q. Online -> Remote Operation(s)
- 7. RUN -> yes -> ok
- 8. Start Monitoring (All Windows)
 - 2) הכנסת מלאי חומרי הגלם ההתחלתי לרגיסטרים המתאימים דרך 1watch.
 - א. cream_amount כמות הקצפת בתחילת יום העבודה.
 - ב. chocolate_amount כמות השוקולד בתחילת יום העבודה.
 - ג.biscuit_amount כמות הביסקוויטים בתחילת יום העבודה.
- 3) לאתחול חומרי הגלם ותחילת יום העבודה לחץ על כפתור X7 וראה כי נורה Y7 דולקת ללא הבהוב (סימן שהכמויות תקינות ונתחיל והתחיל יצור).
 - 4) ניתן לצפות ב 1watch כי כמות חומרי הגלם אתחלו כראוי.

- 5) להתחלת שלב הזילוף לחץ על X11 (נורת כפתור X11 תישאר דולקת עד סיום תהליך זה).
 - 6) ניתן לצפות ב 1watch כי כמות הקצפת הועברה כראוי למיכל הזילוף.
- 7) להפעלת מכונה A לחץ על X10 (כפתור קפיצי לכן הנורה תדלק ותתכבה ישר לאחר הלחיצה).
 - 8) לסימון הגעת משטח הקרבו למכונה הרם את מתג TouchSensor X3)
- 9) לסימון כי טמפרטורת המכונה נמוכה מ 15 מעלות הרם את מתג X4 TempSensorBelow15.
 - 10)ראה כי נורה Y4 נדלקת כאות לכך שפועלת הזיוף פועלת.
 - camaraSensor -X1 קבלת אות מהמצלמה כי פעולת הזילוף הסתיימה הרם את מתג (11
 - 12)הורדת מתג TouchSensor X3 כאות לקח שמשטח העבודה עובר לשלב הבא.
 - 13) הורדת את מתג TempSensorBelow15 X4 על מנת שיאופס למשטח הבא.
 - 14) לחץ על כפתור X11 סיום שלב הזילוף.
 - 15) הורדת את מתג camaraSensor X1 כאות לסיום פעולת הזילוף ואיפוס למשטח הבא.
 - 16)ניתן לצפות ב 1watch כי מיכל הזילוף רוקן בסוף התהליך.
 - על X5 אם ברצונך לכבות את מכונה A ולהפסיק את פעולת הזילוף לחץ על (1) -MachineA_Stop
- ו-X3 , X1 במקרה והתהליך התחיל על מנת לאפס את X3 , X1 ו-X3 במקרה והתהליך התחיל על מנת לאפס את המכונה.
 - (3) לאחר תיקון התקלה הורד את מתג X5.
 - (4) חזור לשלב 7 לביצוע תהליך חוזר.
 - ראה כי נורות Y0 ו- Y1 מהבהבות לסירוגין במשך 4 שניות כאות לתהליך השינוע של המשטח (17 מהכונה B.
 - analog_input1 את טווח לכמות שכבות השוקולד לציפוי.
 - . זהו ציפוי כפול איפוי $6 \le input \le 10$ זהו ציפוי כפול $0 \le input \le 5$
 - 19) הרם את מתג X6 לקבלת הקלט וביצוע תהליך הטבילה.
 - 20)ניתן לצפות ב 1watch כי כמות השוקולד הרצוי הועבר כרצוי על פי הטווח למיכל הטבילה.
 - 21)ראה כי נורה Y3 דולקת למשך 5 שניות כאות למשך תהליך הטבילה.
 - 22) הורד את מתג X6 כאות לסיום התהליך.
 - 23)התחל את תהליך האריזה והרם והורד את מתג X0 חמש פעמיים.
 - 24)ראה כי נורה Y2 נדלקת כאות להתראה כי תהליך האריזה בסופו.
 - 25) הרם והורדת את מתג X0 פעם נוספת.
 - (סיום שלב האריזה) Y2 נכבתה. (סיום שלב האריזה)
 - 27)ניתן לצפות ב 1watch כי כמות יחדות הקרבו המוכנים עד כה הועברו למיכל הקרבו.
 - 28)לייצור חבילת קרבו נוסף חזור לשלב 5.

- 29) בעת סיום העבודה עקב חוסר בחומר גלם:
- (1) ראה כי נורה Y7 מהבהבת למשך 3 שניות ונכבת.
- (2) יופיע פלט בלוח בקרה עם כמות הקרבו שיצרו באותו יום עבודה.
- 30) לאתחול יום עבודה חדש עם כמויות חומרי גלם שונים חזור לשלב 1.3. לאתחול יום עבודה חדש עם אותם כמויות חומרי גלם כבה את כלל הכפתורים בבקר וחזור לשלב 3.
 - נכתב בלשון זכר מטעמי נוחות בלבד ,אך מיועד לנשים וגברים כאחד.