Conferencia 4 - Grafo Hamiltoniano

18 de abril de 2025

Definición (Cadena Hamiltoniana). Una cadena en un grafo G se dice Hamiltoniana si contiene a todos los vértices del grafo.

Definición (Ciclo Hamiltoniano). Un ciclo c en un grafo G se dice Hamiltoniano si contiene a todos los vértices del grafo.

Definición (Grafo Hamiltoniano). Un grafo G es un grafo Hamiltoniano si tiene un ciclo de Hamilton

Lema. Todo grafo completo G, |V(G)| > 2, es Hamiltoniano.

Demostración (Demostración por Inducción del Lema).

Caso base: para n=3 se tiene el ciclo $< v_1, v_2, v_3, v_1>$ que es Hamiltoniano.

Hipótesis: Si se cumple que K_n es Hamiltoniano entonces K_{n+1} es Hamiltoniano.

Paso inductivo: Como se cumple para K_n existe un ciclo Hamiltoniano $\langle v_1, v_2, \ldots, v_n, v_1 \rangle$, entonces si añade el vértice v_{n+1} a K_n de modo que como grafo resultante se tenga K_{n+1} (v_{n+1} enlazado a todos los vértices de K_n) entonces se puede tener el ciclo $\langle v_1, v_2, \ldots, v_n, v_{n+1}, v_1 \rangle$ que es un ciclo Hamiltoniano \blacksquare .

Teorema (Teorema de Dirac). Sea G un grafo con |V(G)| = n, $n \ge 3$, si para todo $v, v \in V(G)$ se tiene que $deg(v) \ge \frac{n}{2}$ entonces G es Hamiltoniano.

Teorema (Teorema de Ore). Sea G un grafo con |V(G)| = n, $n \geq 3$, si para todo par v, w de vértices no adayacentes se cumple que $deg(v) + deg(w) \geq n$ entonces G es Hamiltoniano.

Demostración (Demostración del Teorema de Dirac).

Vea que si $deg(v) \geq \frac{n}{2}$ para todo v de G, entonces

$$deg(v) + deg(w) \ge \frac{n}{2} + \frac{n}{2} = n$$

y si se cumpliera el **Teorema de Ore**, como ya se tiene su condición, entonces sería Hamiltoniano. Luego, solo habría que demostrar el **Teorema de Ore**.

Para demostrar el **Teorema de Ore** se utilizarán la definición de clausura y el **Teorema de Bondy-Chvátal**:

Definición. Dado G, |V(G)| = n se define inductivamente la secuencia G_0, G_1, \ldots, G_k de grafos donde $G_0 = G$ y $G_{i+1=G_i+\{x,y\}}$ donde x,y son vértices no adyacentes en G_i tal $deg(x) + deg(y) \ge n$, entonces G_k es la clausura ge G

O escrita de otra forma:

Definición. Dado un grafo G con n vértices, la clausura de G es el grafo que tiene los mismos vértices que G y que aparece al agregar todas las aristas de la forma $\{u,v\}$ para cualquier par de vértices u y v que no sean advacentes y cumplan que $deg(v) + deg(u) \ge n$.

Teorema (Teorema de Bondy-Chvátal). *G es Hamiltoniano si y solo si su clausura es Hamiltoniana.*

Demostración (Demostración del Teorema de Bondy-Chvátal).

En el sentido directo, G es Hamiltoniano ⇒ su clausura es Hamiltoniana, la demostración es obvia. Si G es Hamiltoniano entonces cualquier ciclo Hamiltoniano sigue existiendo en la clausura de G porque las aristas que se añaden al grafo original no afectan el ciclo (solo conectan vértices no adyacentes).

En el otro sentido, si la clausura de G es Hamiltoniana \Rightarrow G es Hamiltoniano, si se parte de $G = G_0$ hasta llegar a G_k , clausura de G, bastaría con demostrar que G_i es Hamiltoniano ssi G_{i+i} también lo es.

Luego, si G_i es Hamiltoniano es obvio que G_{i+1} también lo es.

Ahora, veamos que pasa si G_{i+1} es Hamiltoniano.

Si en G_{i+1} hay un ciclo de Hamilton que no contiene a la arista $\{x, y\}$ (la agregada que no estaba en G_i), entonces este ciclo también aparecía en G_i .

Suponga que $\{x, y\}$ si aparece en el ciclo, por tanto en el grafo G_i , como no está $\{x, y\}$ habrá un ciclo Hamiltoniano:

```
c = \langle v_0, v_1, \dots, v_{n-1} \rangle donde v_0 = x y v_{n-1} = y
```

obviamente todos los vértices que son adaycentes a x o a y aparecen en el camino puesto que este contiene a todos los vértices del grafo.

Suponga que no existe un vértice v_i de camino que sea adyacente a y, y que v_{i+1} sea adyacente a x.

Luego, se conoce que $deg(y) \le n-1$ y, además, sabemos que y al menos no tiene de vértices adyacentes la misma cantidad de vértices que son adyacentes a x (por cada vértice en el camino a x se sabe que el anterior no es adyacente a y) por tanto $deg(y) \le n-1 - deg(x)$ luego $deg(y) + deg(x) \le n-1$. Y esto es una contradicción!!

(como se añadió $\{x,y\}$ a G_{i+1} entonces $deg(x) + deg(y) \ge n$)

Entonces lo supuesto es falso, por tanto existe v_i en c
 tal que v_i es adyacente a y, y v_{i+1} es adyacente a x.

Por tanto se puede tomar el ciclo $< v_0 = x, v_{i+1}, \dots, v_{n-1} = y, v_i, v_{i-1}, \dots, v_1, v_0 = x >$ que es un ciclo Hamiltoniano.

Luego G es Hamiltoniano si y solo si su clausura lo es■.

Demostración (Demostración del Teorema de Ore).

Note que si G cumple las condiciones de Ore entonces la clausura es K_n y todo grafo completo es claramente Hamiltoniano, luego por el lema G es Hamiltoniano.

Corolario (Corolario del Teorema de Ore). Si G es un grafo conexo, simple y sin lazos con n vértices, con $n \geq 3$, en el cual $deg(u) + deg(v) \geq n-1$ para todo par de vértices no adyacentes u, v, entonces G posee un camino Hamiltoniano.

Demostración (Demostración del Corolario del Teorema de Ore).

Como G es conexo, sin lazos, y con n vértices, entonces no contiene un ciclo Hamiltoniano. Ahora, si creamos el grafo G' a partr de añadir el vértice w y conectarlo con todos los vértices existentes se cumpliría ahora que

 $deg(u)+deg(v)\geq n-1+2=n+1$ para todo par de vértices u, v no adyacentes, luego G' es Hamiltoniano por el **Teorema de Ore**.

Entonces existe un ciclo Hamiltoniano en G' y este tiene que pasar por el vértice w, porque si no pasara por w significaría que existían un ciclo en G y este, por definición, no lo tenía. Entonces como hay un ciclo Hamiltoniano en G' que pasa por w, basta con eliminar este vértice y se tendría para G un camino Hamiltoniano \blacksquare .