

Universidad Autónoma de Querétaro

Facultad de Ingeniería

Ingeniería en Automatización

ADC

M en C. Marcos Romo Avilés

Practica II: Vivado

- Quad SPI Flash es una memoria no volátil que el chip FPGA de Basys3 analiza cada vez que se inicia.
- Si se flashea Quad SPI, el FPGA se programará a sí mismo con el contenido que se encuentra en la memoria flash de Quad SPI.
- Este método de programación de la placa es ideal cuando se tiene un proyecto final que se desea demostrar o mostrar y que no necesita ser editado y, por lo tanto, reprogramado.
 - 1. Asegúrese de que el puente en JP1 esté en la posición QSPI
 - 2. En la ventana del Administrador de hardware, en Hardware, haga clic derecho en su dispositivo y haga clic en Agregar dispositivo de memoria de configuración.

Practica II: Vivado

- 3. Aparecerá esta ventana. Busque "Spansion" y seleccione el dispositivo de 32 bits (resaltado a continuación).
- 4. Haga clic en Aceptar en la siguiente ventana que le preguntará si desea programar el dispositivo de memoria de configuración.

Practica II: Vivado

- 5. Seleccione el archivo .bin donde pide un archivo de configuración y finalmente haga clic en Aceptar.
- Nota: Vivado borrará ahora el archivo de configuración anterior y reprogramará su Basys3 con el archivo de demostración. A partir de ahora, cuando encienda el Basys3, la demostración se cargará al inicio hasta que lo reprograme.

Practica 11: Altera

- Los datos de configuración que se escribirán en CFM formarán parte del archivo de objeto del programador (.pof).
- Estos datos de configuración se cargan automáticamente desde CFM a los dispositivos MAX 10 cuando se enciende la placa.
- Seleccione Convertir archivos de programación en el menú Archivo de Quartus II para abrir una nueva ventana, como se muestra en la Figura.

Practica 11: Altera

- Haga clic en Agregar archivo y seleccione .sof para que sean los datos sof de Page_0.
- Click Generate.

Practica 11: Altera

PIN			
NO.	NAME	I/O	DESCRIPTION
1	CS	1	Chip Select
2	RD	1	Read
3	WR	Ĺ	Write
4	CLK IN	Ĺ	External Clock input or use internal clock gen with external RC elements
5	INTR	О	Interrupt request
6	V _{IN} (+)	1	Differential analog input+
7	V _{IN} (-)	ı	Differential analog input-
8	A GND	I.	Analog ground pin
9	V _{REF} /2	L	Reference voltage input for adjustment to correct full scale reading
10	D GND	1	Digital ground pin
11	DB7	0	Data bit 7
12	DB6	0	Data bit 6
13	DB5	0	Data bit 5
14	DB4	0	Data bit 4
15	DB3	О	Data bit 3
16	DB2	0	Data bit 2
17	DB1	О	Data bit 1
18	DB0 (LSB)	О	Data bit 0
19	CLK R	L	RC timing resistor input pin for internal clock gen
20	V _{CC} (or V _{REF})	I	+5V supply voltage, also upper reference input to the ladder

Practica II: ADC

• El dispositivo tiene tierras separadas para los voltajes Analógicos y digitales

• CS (entrada)

- Cuando está en alto las salidas digitales entran en Hi-Z
- Debe estar en bajo para que las entradas RD y WR tengan efecto.

• RD (entrada)

- Cuando está en bajo las salidas digitales tienen los valores lógicos que representan la última conversión A/D.
- Si está en alto las salidas tienen alta Hi-Z.

• WR (entrada)

• Cuando se aplica un pulso en bajo a esta inicia una nueva conversión (de alto a bajo y de bajo a alto.)

• INTR (salida)

• Se pone en bajo cuando finaliza una conversión y cambia a un nivel alto cuando inicia la conversión

- Diseñar una máquina de estados para el control de ADC.
- No se permite reloj interno del ADC.
- No se permite modo libre.
- Configurar el correctamente el reloj.
- Se debe poder seleccionar cuando leer la salida y cuando convertir la entrada.
- Si no está seleccionado el modo de conversión se debe mantener la última conversión a la salida.
- La descripción se debe cargar a la memoria no volátil de la FPGA.