Discrete Mathematics, Section 001, Fall 2016

Lecture 16: Composition of functions, Operations, Symmetries

Zsolt Pajor-Gyulai

zsolt@cims.nyu.edu

Courant Institute of Mathematical Sciences

November 7, 2016

Outline

- Composition
- Operations
- 3 Symmetries

The natural operation to combining functions

Definition

Let A, B, and C be sets and let $f : A \to B$ and $g : B \to C$. Then $g \circ f : A \to C$ is defined by

$$(g \circ f)(a) = g[f(a)], \quad a \in A.$$

The function $g \circ f$ is called **the composition** of g and f.

For example, let

$$A = \{1,2,3,4,5\} \qquad B = \{6,7,8,9\} \qquad C = \{10,11,12,13,14\}.$$

Let
$$f = \{(1,6), (2,6), (3,9), (4,7), (5,7)\}$$

 $g = \{(6,10), (7,11), (8,12), (9,13)\}.$

Then
$$(g \circ f) = \{(1,10), (2,10), (3,13), (4,11), (5,11)\}.$$

Further example

Let $f: \mathbb{Z} \to \mathbb{Z}$ and $g: \mathbb{Z} \to \mathbb{Z}$ defined by

$$f(x) = x^2 + 1,$$
 $g(x) = 2x - 3$

Then

$$(g \circ f)(x) = g[f(x)] = g(x^2 + 1) =$$

= $2(x^2 + 1) - 3 = 2x^2 + 2 - 3 = 2x^2 - 1.$

Remarks:

- Note the order in $(g \circ f)(a)$. f is closer and hits a first.
- $Dom(g \circ f) = Dom f$.

$$f: A \to B$$
, $g: B \to C$ \to $Im f \subseteq B = Dom g$

Q: Is
$$f \circ g = g \circ f$$
?

- This only makes sense in the first place if $f: A \rightarrow A$ and $g: A \rightarrow A$.
- Even then, this is not true in general!

For example, let $A = \{1, 2, 3, 4, 5, 6\}$ and $f : A \rightarrow A$, $g : A \rightarrow A$ defined by

$$f = \{(1,1), (2,1), (3,1), (4,1), (5,1)\},$$

$$g = \{(1,5), (2,4), (3,3), (4,2), (5,1)\}.$$

Then

$$g \circ f = \{(1,5), (2,5), (3,5), (4,5), (5,5)\},\$$

 $f \circ g = \{(1,1), (2,1), (3,1), (4,1), (5,1)\}.$

Thus

$$g \circ f \neq f \circ g$$

Another example, $f, g : \mathbb{Z} \to \mathbb{Z}$

$$f(x) = x^2 + 1,$$
 $g(x) = 2x - 3$

Then

$$(g \circ f)(x) = g[f(x)] = g[x^2 + 1] = 2(x^2 + 1) - 3 = 2x^2 - 1$$

$$(f \circ g)(x) = f[g(x)] = f[2x - 3] = (2x - 3)^2 + 1 = 4x^2 - 12x + 10$$

Once again

$$g \circ f \neq f \circ g$$

Composition is not commutative!

Do Problem 1 on the WS!

What about associativity?

Proposition

Let A,B,C, and D be sets and let $f:A\rightarrow B,g:B\rightarrow C$, and $h:C\rightarrow D$. Then

$$h \circ (g \circ f) = (h \circ g) \circ f$$

To prove this we need to prove the equality of functions.

Proving two functions are equal

Let f and g be functions. To prove f = g, do the following:

- Prove that Dom f = Dom g.
- Prove that for all x in the common domain, f(x) = g(x).

Proposition

Let A,B,C, and D be sets and let $f:A\rightarrow B,g:B\rightarrow C$, and $h:C\rightarrow D$. Then

$$h \circ (g \circ f) = (h \circ g) \circ f$$

Proof.

We first check that the domains are the same.

$$Dom[h \circ (g \circ f)] = Dom(g \circ f) = Domf = A$$

$$Dom[(h \circ g) \circ f] = Dom f = A$$

Then we check that they have the same values. For $a \in A$,

$$[h\circ (g\circ f)](a)=h[(g\circ f)(a)]=h[g(f(a))]$$

$$[(h \circ g) \circ f](a) = (h \circ g)[f(a)] = h[g(f(a))]$$

This finishes the proof of the proposition.

Identity function

Definition

Let A be a set. The **identity function** on A is the function $id_A : A \rightarrow A$, defined by $id_A(a) = a$. In other words,

$$id_A = \{(a, a) : a \in A\}.$$

If composition is the analogue of a product, then id_A is the analogue of 'one'.

Proposition

Let A and B be sets. Let $f: A \rightarrow B$. Then

$$f \circ \mathrm{id}_A = \mathrm{id}_B \circ f = f$$

Identity function

Proposition

Let *A* and *B* be sets. Let $f: A \rightarrow B$. Then

$$f \circ \mathrm{id}_A = \mathrm{id}_B \circ f = f$$

Proof.

We first show they have the same domain:

$$Dom(f \circ id_A) = Dom(id_A) = A$$

$$Dom(id_B \circ f) = Dom f = A$$

Second, observe

$$(f \circ \mathrm{id}_A)(a) = f(\mathrm{id}_A(a)) = f(a),$$

and $(id_B \circ f)(a) = f(a)$ similarly and the claim is proved.

Do Problem 2 on the WS!

Outline

- Composition
- Operations
- 3 Symmetries

General notion of an operation

Abstract algebra is the study of structures and operations.

Definition

Let A be a set. A **binary operation** on A is a function whose domain is $A \times A$.

For example,

- \bullet + : $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$, +(a, b) = a + b.
- $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, f(x, y) = |x y|$

Commonly used symbol for operations: *

Notation: *(a, b) = a * b.

When we want to emphasize what the set A is, we use the notation (A, *). The two above examples then are

$$(\mathbb{R},+),$$
 (\mathbb{Z},f)

Other examples

- + is an operation on $\mathbb N$ and $a+b\in \mathbb N$ whenever $a,b\in \mathbb N$. (closure property)
- – is an operation on $\mathbb N$ but a-b might not be a natural for every $a,b\in\mathbb N$.
- ullet is an operation on $\mathbb N$ and the closure property holds.
- / is not an operation on $\mathbb N$ as e.g. (2,0) is not in its domain.
- / is, however, a relation on the positive integers.
- o is an operation on the set of functions from A^A (set of functions from A to A).

This week, we are going to learn about another interesting examples: permutations.

Composition

Properties of operations

Commutative property

Let * be an operation on a set A. We say that * is **commutative** on A provided

$$\forall a, b \in A, a * b = b * a$$

- ullet + is commutative on $\mathbb Z$
- \circ is not commutative on A^A .
- \bullet is not commutative on \mathbb{Z} .

Closure property

Let * be an operation on a set A. We say that * is closed on A provided

$$\forall a, b \in A, a * b \in A$$

- ullet · is closed on $\mathbb N$
- ullet is not closed on $\mathbb N$
- ullet is closed on \mathbb{Z} .

Associative property

Let * be an operation on a set A. We say that * is **associative** on A provided

$$\forall a, b, c \in A, (a*b)*c = a*(b*c).$$

- ullet + and \cdot are associative on $\mathbb Z$
- is not as e.g.

$$(3-4)-7=-8\neq 6=3-(4-7)$$

Identity element

Let * be an operation on a set A. An element $e \in A$ is called an **identity** for * provided

$$\forall a \in A, a * e = e * a = a$$

- ullet 0 is an identity element for + on $\mathbb Z$
- 1 is an identity element for \cdot on \mathbb{Z} .
- ullet does not have an identity element on $\mathbb Z$ as

$$a-0=a$$
, but $0-a=-a\neq a$

Identity element

Let * be an operation on a set A. An element $e \in A$ is called an **identity** for * provided

$$\forall a \in A, a * e = e * a = a$$

Proposition

Let * be an operation defined on a set A. Then * can have at most one identity elements.

FTSC, suppose there are two identities e and e' in A with $e \neq e'$.

- On one hand e * e' = e as e' is an identity.
- On the other hand e * e' = e' as e is an identity.

Therefore e = e' contradicting $e \neq e'$. $\Rightarrow \Leftarrow$

Inverses

Let * be an operation on a set A and suppose A has an identity e. For an element $a \in A$, we call an element $b \in A$ an **inverse** of a provided a*b=b*a=e.

For example,

- In $(\mathbb{Z}, +)$, the inverse of $a \in \mathbb{Z}$ is (-a).
- In (\mathbb{Q}, \cdot) , the inverse of $x \in \mathbb{Q}$ is $\frac{1}{x}$ when $x \neq 0$. However x = 0 does not have an inverse!
- Consider the following relation on {e, a, b, c}:

*	е	а	b	С
е	е	а	b	С
а	а	а	е	е
b	b	е	b	е
С	С	е	е	С

Both b and c are inverses of a:

$$a*b = b*a = e,$$
 $a*c = c*a = e$

The inverse might not be unique.

Do Problem 3 on the WS!

Outline

- Composition
- Operations
- 3 Symmetries

Symmetries of the square

Intuitively

A **symmetry** of a figure is a motion that, when applied to an object, results in a figure that looks exactly the same as the original

 Rotating a square counterclockwise about its center through an angle of 90° is a symmetry.

 However, rotating by 30°, denoted by R₃₀ is not a symmetry.

Symmetries of the square

• In the same vein, R_{180} , R_{270} , and R_{360} are also symmetries. E.g.:

 However, we would rather like to say that R₃₆₀ does not do anything, and we are going to call it I for identity.

With this, we have the following symmetries:

Symmetries of the square

With this, we have the following symmetries:

However, we have more symmetries: reflections.

 For example, reflection through the horizontal axis and the SW – NE diagonal:

Of course we have to more axis to reflect about: ___, ___

- Have we repeated ourselves? No, notice that no two corner label arrangements are the same.
- **Did we find all symmetries?** Yes, we exhausted all possible $2 \cdot 4 = 8$ label arrangements. (Label 1 can go to four places, after which for label 2, we have two choices, after which 3, 4 are fixed.)

Combining symmetries

Applying symmetries consecutively, the result will also be a symmetry. For example,

Since the result is a symmetry it must be one of the 8 ones that we have listed!

$$R_{90}\circ F_H=F_I$$

where the left hand side means applying F_H first and then R_{90} .

'Multiplication table for the symmetries of squares'

If we figure out all the combinations:

0	I	R_{90}	R_{180}	R_{270}	F_H	F_V	$F_{/}$	F_{\setminus}
I	I	R_{90}	R_{180}	R ₂₇₀	F_H	F_V	<i>F</i> /	F_{\setminus}
R_{90}	R_{90}	R_{180}	R_{270}	I	$F_{/}$	F_{\setminus}	F_V	F_H
R_{180}	R_{180}	R_{270}	I	R_{90}	F_V	F_H	F_{\setminus}	$F_{/}$
R ₂₇₀	R_{270}	I	R_{90}	R_{180}	F_{\setminus}	$F_{/}$	F_H	F_V
F_H	F_H	F_{\setminus}	F_V	$F_{/}$	I	R_{180}	R_{270}	R_{90}
F_V	F_V	$F_{/}$	F_H	F_{\setminus}	R_{180}	I	R_{90}	R_{270}
<i>F</i> /	$F_{/}$	F_H	F_{\setminus}	F_V	R_{90}	R_{270}	I	R_{180}
F_{\setminus}	F_{\setminus}	F_V	$F_{/}$	F_H	R_{270}	R_{90}	R_{180}	I

- Note that, $R_{90} \circ F_H = F_/ \neq F_{\setminus} = F_H \circ R_{90}$, and therefore \circ is not commutative.
- I is the identity element for ∘.
- Every element has an inverse.

Symmetries as permutations

- Note that if I tell you where the labels 1, 2, 3, 4 go, you can identify the symmetry!
- For example, R₉₀ can be represented as a function

$$R_{90}:\{1,2,3,4\}\to\{1,2,3,4\}$$

$$R_{90}(1)=2, \qquad R_{90}(2)=3, \qquad R_{90}(3)=4, \qquad R_{90}(4)=1$$

Symmetries as permutations

Symmetry	1	2	3	4
name	go to positions			
I	1	2	3	4
R_{90}	2	3	4	1
R_{180}	3	4	1	2
R_{270}	4	1	2	3
F_H	2	1	4	3
F_V	4	3	2	1
$F_{/}$	3	2	1	4
F_{\setminus}	1	4	3	2

Convenient notation:

$$R_{90} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{bmatrix} \qquad F_H = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{bmatrix}$$

$$F_H = \left[\begin{array}{ccccc} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{array} \right]$$