AoPS Community

2020 Romanian Master of Mathematics

12th RMM 2020

www.artofproblemsolving.com/community/c3724802

by oVlad, pinetree1, magicarrow, Ankoganit

Day 1 February 28

Let ABC be a triangle with a right angle at C. Let I be the incentre of triangle ABC, and let D be the foot of the altitude from C to AB. The incircle ω of triangle ABC is tangent to sides BC, CA, and AB at A_1 , B_1 , and C_1 , respectively. Let E and E be the reflections of E in lines E0 and E1, respectively. Let E3 and E3 in lines E4, respectively.

Prove that the circumcircles of triangles A_1EI , B_1FI , and C_1KL have a common point.

Let $N \geq 2$ be an integer, and let $\mathbf{a} = (a_1, \dots, a_N)$ and $\mathbf{b} = (b_1, \dots b_N)$ be sequences of non-negative integers. For each integer $i \notin \{1, \dots, N\}$, let $a_i = a_k$ and $b_i = b_k$, where $k \in \{1, \dots, N\}$ is the integer such that i - k is divisible by n. We say \mathbf{a} is \mathbf{b} -harmonic if each a_i equals the following arithmetic mean:

$$a_i = \frac{1}{2b_i + 1} \sum_{s=-b_i}^{b_i} a_{i+s}.$$

Suppose that neither a nor b is a constant sequence, and that both a is b-harmonic and b is a-harmonic.

Prove that at least N+1 of the numbers $a_1, \ldots, a_N, b_1, \ldots, b_N$ are zero.

Let $n \geq 3$ be an integer. In a country there are n airports and n airlines operating two-way flights. For each airline, there is an odd integer $m \geq 3$, and m distinct airports c_1, \ldots, c_m , where the flights offered by the airline are exactly those between the following pairs of airports: c_1 and c_2 ; c_2 and c_3 ; \ldots ; c_{m-1} and c_m ; c_m and c_1 .

Prove that there is a closed route consisting of an odd number of flights where no two flights are operated by the same airline.

Day 2 February 29

Let $\mathbb N$ be the set of all positive integers. A subset A of $\mathbb N$ is $\mathit{sum-free}$ if, whenever x and y are (not necessarily distinct) members of A, their $\mathit{sum}\,x+y$ does not belong to A. Determine all surjective functions $f:\mathbb N\to\mathbb N$ such that, for each $\mathit{sum-free}$ subset A of $\mathbb N$, the image $\{f(a):a\in A\}$ is also $\mathit{sum-free}$.

[i]Note: a function $f: \mathbb{N} \to \mathbb{N}$ is surjective if, for every positive integer n, there exists a positive integer m such that f(m) = n.[/i]

AoPS Community

2020 Romanian Master of Mathematics

- A *lattice point* in the Cartesian plane is a point whose coordinates are both integers. A *lattice polygon* is a polygon all of whose vertices are lattice points.
 - Let Γ be a convex lattice polygon. Prove that Γ is contained in a convex lattice polygon Ω such that the vertices of Γ all lie on the boundary of Ω , and exactly one vertex of Ω is not a vertex of Γ .
- For each integer $n \ge 2$, let F(n) denote the greatest prime factor of n. A strange pair is a pair of distinct primes p and q such that there is no integer $n \ge 2$ for which F(n)F(n+1) = pq.
 - Prove that there exist infinitely many strange pairs.