OVIR-3D: Open-Vocabulary 3D Instance Retrieval Without Training on 3D Data

t = 0

Region

Proposals

3D Projection

Instance Fusion

Shiyang Lu, Haonan Chang, Eric Pu Jing, Abdeslam Boularias, Kostas Bekris Computer Science @ Rutgers University

Motivation

Open-Vocabulary Closed-Set Pretty much New area with Instance Segmentation exciting progress solved e.g., MaskRCNN, e.g., Detic, (ECCV'22) (ICCV'17) Towards mature e.g., Mask3D (ICRA'23) Missing

Problem Formulation

Input: a 3D point cloud reconstructed from an RGB-D video and a language query. Output: a ranked set of 3D instance segments

Frame T

Frame

a) Original scan

b) Top 2 instances retrieved given the query: "bed"

c) Top 3 instances retrieved given the query: "lamp"

Key Takeaways

Annotated 3D data with sufficient object diversity is hard to acquire. This problem could instead be viewed as 3D fusion problem from text-aligned 2D region proposals, which can make use of pretrained 2D models.

Overall Pipeline

t = T

a) Text-aligned 2D Region **Proposal Generation**

2D region proposals with text-aligned features

Post-processing

b) 2D-to-3D **Instance Fusion**

Inference

Query: "Sofa"

Top 1 is shown in blue.

Quantitative Results

Memory Bank of Queryable 3D Instances

Periodic filtering and merging of instances in the memory bank

The proposed method outperforms existing methods on both ScanNet200 (200 classes) and YCB-Video (21 classes) using mAP metric.

	ScanNet200 [25]		YCB-Video [29]	
Method	mAP_{50}	mAP	mAP_{50}	mAP
OpenScene [23]	0.190	0.089	0.333	0.116
Fusion++ [19]	0.253	0.094	0.464	0.120
PanopticFusion [21]	0.370	0.150	0.803	0.393
Ours	0.443	0.211	0.848	0.465

Table 1: Results on ScanNet200 [25] and YCB-Video [29]

Ablation Studies

	COCO	ScanNet200	LVIS	ImageNet21k		
mAP_{50}	0.228	0.419	0.429	0.443		
	ImageNet21k - ScanNet200					
mAP_{50}	0.410					

Table 2: Results on ScanNet200 [25] with different input queries to the region proposal network.

	Average	KMeans(16)	KMeans(64)		
mAP_{50}	0.428	0.429	0.443		
	Feature from largest 2D detection				
mAP_{50}	0.380				

Table 3: Results on ScanNet200 [25] with different feature ensemble strategies