Spatial Data

R for Advanced Stata Users

Luiza Andrade, Rob Marty, Rony Rodriguez-Ramirez, Luis Eduardo San Martin, Leonardo Viotti DIME |The World Bank

23 March 2021

Table of contents

- 1. Quick summary statistics
- 2. Descriptive statistics tables
- 3. Exporting descriptive statistics tables
- 4. Formatting tables
- 5. Aggregating observations
- 6. Running regressions
- 7. Exporting regression tables

Setting the stage

Setting the stage

Install new packages

And load them

```
library(tidyverse)
library(sf)
library(rworldmap)
library(ggmap)
```

Setting the stage

Folder paths

Datasets we will use today

```
# Load data
whr_panel <- readRDS(file.path(finalData, "whr_panel.RDS"))
wb_projects <- read_csv(file.path(finalData, "wb_projects.csv"))</pre>
```

Introduction

Introduction

There are two main types of spatial data: vector and raster data.

- Raster: spatially-referenced grids where each cell has one value.
- **Vectors or shapefiles:** spatial-referenced objects consisting of points, lines and polygons. These shapes are attached to a dataframe, where each row corresponds to a different spatial element.

Introduction

- This session could be a whole course on its own, but we only have an hour and half.
- To narrow our subject, we will focus on only one type of spatial data, shapefiles.
- This is the most common type of spatial data that non-GIS experts will encounter in their work.
- We will focus mostly on how to visualize spatial data, although we will also cover some simple geometry operations.
- We will use the sf package, which is the tidyverse-compatible package for geospatial data in R.
- If you want to know more about geospatial data in R, we recommend the book https://geocompr.robinlovelace.net/, by Robin Lovelace, Jakub Nowosad, and Jannes Muenchow.

Loading a shapefile with sf

The first thing we will do in this session is to recreate this data set:

```
worldmap <-
   st read(file.path(finalData,
                     "worldmap.shp"))
## Reading layer `worldmap' from data source `D:\Documents\RA Jobs\DIME\trainings\dime-r-training\DataWork\DataSets\Fina
## Simple feature collection with 244 features and 15 fields
## geometry type: MULTIPOLYGON
## dimension:
                  XΥ
                  xmin: -180 ymin: -89.9989 xmax: 180 ymax: 83.5996
## bbox:
## geographic CRS: WGS 84
plot(worldmap)
```

Exploring the data

Creating a polygon shapefile

Loading spatial data

Load a built-in map using the rworldmap package

```
worldmap <- getMap(resolution="low")</pre>
```

Look at the data structure

```
View(worldmap)
```

This object is a list with three main components:

- Data
- Polygons
- Projection

- The data portion of a shapefile is a data frame like any other in R.
- To access it, we need to refer to the data element in our list by typing objectname@data.

Exercise Explore the dataset in worldmap using the functions head() and names().

names()

- The data portion of a shapefile is a data frame like any other in R.
- To access it, we need to refer to the data element in our list by typing objectname@data.

Exercise ==

Explore the dataset in worldmap using the functions head() and names().

names(worldmap@data)

```
[1] "ScaleRank"
                        "LabelRank"
                                        "FeatureCla"
                                                                         "SOV A3"
                                                         "SOVEREIGNT"
    [6] "ADM0 DIF"
                        "LEVEL"
                                         "TYPE"
                                                         "ADMIN"
                                                                         "ADM0 A3"
  [11] "GEOU_DIF"
                        "GEOUNIT"
                                        "GU A3"
                                                         "SU DIF"
                                                                         "SUBUNIT"
## [16] "SU A3"
                        "NAME"
                                        "ABBREV"
                                                         "POSTAL"
                                                                         "NAME FORMA"
## [21] "TERR_"
                        "NAME SORT"
                                        "MAP COLOR"
                                                         "POP EST"
                                                                         "GDP MD EST"
## [26] "FIPS_10_"
                        "ISO A2"
                                        "ISO A3"
                                                         "ISO N3"
                                                                         "ISO3"
## [31] "LON"
                        "LAT"
                                        "ISO3.1"
                                                         "ADMIN.1"
                                                                         "REGION"
## [36] "continent"
                        "GEO3major"
                                        "GE03"
                                                         "IMAGE24"
                                                                         "GLOCAF"
## [41] "Stern"
                         "SRESmajor"
                                         "SRES"
                                                         "GBD"
                                                                         "AVOIDnumeric"
```

head(worldmap@data)

##		CanlaDank	labolDar	J. F	aa+ura[]a	cov	EDETCNT	COV AS	л пма	DIE LE	VEL	
##	1	ScaleRank	Labetkar		eatureCla		EREIGNT	_	_	_		
	_	3		3 Admin-0			erlands	NL1		1	2	
##	_	1		1 Admin-0		_	anistan			0	2	
##	_	1		1 Admin-0			Angola	AGC		0	2	
##	-	1		1 Admin-0			_			1	2	
##	_	1		1 Admin-0			Albania			0	2	
##	6	3		3 Admin-0			Finland			1	2	
##			TYPE		N ADM0_A3			EOUNIT		SU_DIF		
##	_		Country	Arub			0	Aruba	ABW	0		
		_		Afghanista	n AFG		0 Afghai			0		
##	3	Sovereign	country	Angol	a AGO		0 /	Angola	AGO	0		
##	4	Dep	pendency	Anguill	a AIA		0 Ang	guilla	AIA	0		
##	5	Sovereign	country	Albani	a ALB		0 A	lbania	ALB	0		
##	6		Country	Alan	d ALD		0	Aland	ALD	0		
##		SUBUNIT SU_A3		NAME ABBREV P		POSTAL			NAM	NAME_FORMA		
##	1	Arub	oa ABW	Arub	a Aruba	AW				<na< th=""><th>></th></na<>	>	
##	2	Afghanistan AFG		Afghanistan Afg. AF			slamic State of Afghanistan					
##	3	Ango	La AGO	Angol	a Ang.	AO		Repub	olic of	Angol	a	
##	4	Anguil	la AIA	Anguill	a Ang.	ΑI				<na< th=""><th>></th></na<>	>	
##	5	Albani	ia ALB	Albani	a Alb.	AL		Republ	ic of	Albani	a	
##	6	Alar	nd ALD	Alan	d Aland	ΑI			Eland	Island	5	
##		TERR_ NA	AME_SORT	MAP_COLOR	POP_EST	GDP_MD_E	ST FIPS	_10_ IS	O_A2 I	SO_A3	ISO_N3	
	1	Neth.	۸ ــ ـ ـ ـ	9	103065	2258	α.	<na></na>	AW	ABW	533	
##		Welli.	Aruba	9	103003	2230	. 0	NA-	AW			
## ##	2	<na> Afgl</na>		=	28400000	22270		<na></na>	AF	AFG	4	
##	_			7			.0		AF		4 24	
##	3	<na> Afgh</na>	nanistan	7	28400000	22270	.0	<na></na>	AF	AFG	-	
##	3	<na> Afgh</na>	nanistan Angola	7	28400000 12799293	22270 110300	.0 ·	<na></na>	AF AO	AFG AGO	24	
##	3 4 5	<na> Afgh <na> U.K.</na></na>	nanistan Angola Anguilla	7 1 3	28400000 12799293 14436	22270 110300 108 21810	.0 .0 .9 .0	<na> <na> <na></na></na></na>	AF AO AI	AFG AGO AIA	24 660	

We can treat the data in a geospatial object just like any other data frame

Exercise =

Use the command <code>select()</code> from tidyverse's <code>dplyr</code> package to keep only the following variables in the <code>worldmap</code> data: <code>ADMIN, REGION, continent, POP_EST, GDP_MD_EST</code>.

dplyr::select(variables)

Why do we need to use dyplr::?

We can treat the data in a geospatial object just like any other data frame

Exercise =

Use the command <code>select()</code> from tidyverse's <code>dplyr</code> package to keep only the following variables in the <code>worldmap</code> data: <code>ADMIN, REGION, continent, POP_EST, GDP_MD_EST</code>.

```
worldmap@data <-
worldmap@data %>%
dplyr::select(ADMIN, REGION, continent, POP_EST, GDP_MD_EST)
```

We can treat the data in a geospatial object just like any other data frame

```
Exercise Explore the worldmap data using summary().

summary()
```

We can treat the data in a geospatial object just like any other data frame

Exercise Explore the worldmap data using summary().

```
summary(worldmap@data)
```

```
ADMIN
                             REGION
                                             continent
Afghanistan : 1
                   Europe
                                :65
                                     Africa
                                                  : 57
Aland
                   Africa
                               : 57
                                     Antarctica
Albania
                   Asia
                                :45 Australia
                                                 : 26
                   South America:44
                                     Eurasia
                                                  :110
Algeria
American Samoa: 1
                   Australia
                               : 26
                                     North America: 3
                   (Other)
Andorra
             : 1
                                     South America: 44
(Other)
             : 238
                   NA's
                               : 3
                                     NA's
   POP EST
                    GDP MD EST
Min. :0.000e+00
                  Min. :
1st Qu.:2.507e+05
                  1st Qu.:
                              2329
Median :4.489e+06
                  Median :
                             20775
Mean :2.793e+07
                  Mean : 292888
3rd Qu.:1.557e+07
                  3rd Qu.: 116050
      :1.339e+09
                         :14260000
                   Max.
      :1
                   NA's
                         : 6
```

Spatial data structure: polygons

plot(worldmap)

Spatial data structure: projection

worldmap@proj4string

```
## CRS arguments:
## +proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs
```


Click here to see why Josh and CJ are confused

Spatial data structure: projection

Coordinate reference systems map pairs of numbers to a location.

- **Geographic Coordinate Systems** live on a sphere; here, the units are in decimal degrees (latitude = angle from equator; longitude = angle from prime meridian)
 - Using the WGS84 coordinate system the World Bank MC building is located at 38.89 degrees latitude and -77.04 degrees longitude.
- **Projected Coordinate Systems** project the earth onto a flat surface (units here are typically in meters from some reference point).
 - Using to the World Mercator projection, the World Bank is located 4680364.64 meters north and -8576320.73 meters east.

Spatial data structure: projection

Projecting the earth onto a flat surface distorts distorts the earth in some way (shape, area, distance or direction).

Projections are also the main source of error when plotting spatial data: if two spatial objects have different reference systems, plotting them together will result in quite weird maps

Projecting spatial data in sf

The sf package deals with spatial data in a special way: it allows as to treat it as a regular data frame, while maintaining its spatial component.

st_as_sf(x)

Transforms objects into sf objects

• ...: the object to be transformed

Exercise ==

Turn the worldmap object into an sf object.

The sf package deals with spatial data in a special way: it allows as to treat it as a regular data frame, while maintaining its spatial component.

st_as_sf(x)

Transforms objects into sf objects

• ...: the object to be transformed

Exercise =

Turn the worldmap object into an sf object.

```
worldmap <-
  st_as_sf(worldmap)</pre>
```

Mean :2.793e+07

3rd Ou.:1.557e+07

##

##

Mean : 292888

3rd Qu.:

116050

```
class(worldmap)
## [1] "sf"
                 "data.frame"
summary(worldmap)
##
             ADMIN
                               REGION
                                              continent
   Afghanistan: 1
                                  :65
                                       Africa
                                                   : 57
                      Europe
##
   Aland
                      Africa
                                  : 57
                                       Antarctica : 1
   Albania
                                  : 45
##
                      Asia
                                       Australia : 26
   Algeria
           : 1
                      South America:44
                                       Eurasia
                                               :110
   American Samoa: 1
                     Australia
                                : 26
                                       North America: 3
                      (Other) : 4 South America: 44
   Andorra
           : 1
##
   (Other)
          : 238
                      NA's
                           : 3
                                       NA's
                       GDP_MD_EST
##
     POP EST
                                              geometry
                     Min. :
   Min. :0.000e+00
                                      MULTIPOLYGON : 244
##
                                   0
   1st Ou.:2.507e+05
                     1st Qu.: 2329
                                      epsg:NA
                    Median :
                                      +proj=long...: 0
   Median :4.489e+06
                               20775
```

plot(worldmap)

Here are two useful sf commands:

Displays the current projection of an sf object

st_transform(x, crs)

Projects object **x** using projection **crs**

Exercise ==

Create two objects derived from worldmap, but with different projections:

- Use the Mollweid projection (crs = "+proj=moll") to create worldmap_moll
- Use the Mercator projection (crs = "EPSG:3857") to create worldmap_mercator

```
worldmap_moll <-
worldmap_mercator <-</pre>
```

Exercise ==

Create two objects derived from worldmap, but with different projections:

- Use the Mollweid projection (crs = "+proj=moll") to create worldmap_moll
- Use the Mercator projection (crs = "EPSG:3857") to create worldmap_mercator

```
worldmap_moll <-
  worldmap %>%
  st_transform("+proj=moll")

worldmap_mercator <-
  worldmap %>%
  st_transform("EPSG:3857")
```

```
worldmap_moll %>%
  select(REGION) %>%
  plot()

worldmap_mercator %>%
  select(REGION) %>%
  filter(REGION != "Antarctica") %>%
  plot()
```

Why did I use select above?

Visualizing polygons

Combining non-spatial and spatial data

• To create the worldmap shapefile that you have in your finalData folder, we combined the data in whr_panel and the polygon in worldmap. Given what we have seen, this is as

We need to make a few adjustment to the data so the join works:

Then we can join them:

```
worldmap <-
worldmap %>%
left_join(whr_panel)
```

- ggplot has a special geometry for sf: geom_sf
- geom_sf takes into account the spatial features to maintain proportions

```
ggplot(worldmap) +
  geom_sf()
```

Exercise =

Use the **fill** aesthetics inside **geom_sf** to show the happiness score in the map.

```
ggplot(worldmap) +
  geom_sf()
```

Exercise =

Use the fill aesthetics inside geom_sf to show the happiness score in the map.

```
ggplot(worldmap) +
  geom_sf(aes(fill = happiness_score))
```

Exercise ==

Use the fill aesthetics inside geom_sf to show the happiness score in the map.

When you have GPS coordinates, using ggplot to map them is very easy: use geom_points and link x to the longitude variable and y to the latitude variable.

Exercise ==

Create a scatter plot of the projects in the wb_projects dataset.

```
ggplot() +
geom_point(aes(x = ,
y = )
```

When you have GPS coordinates, using <code>ggplot</code> to map them is very easy: use <code>geom_points</code> and link <code>x</code> to the longitude variable and <code>y</code> to the latitude variable.

Exercise ==

Create a scatter plot of the projects in the wb_projects dataset.

Adding a basemap

The package ggmap allows us to layers as a basemap. The code is the same as ggplot, except here we start the code with ggmap() instead of gplot().

Here is how we can retrieve basemaps:

```
# Create an object with Africa only
africa <-
 worldmap %>%
 filter(REGION == "Africa")
# Calculate which part of the world we want images for
# (this is called a bounding box)
africa box <-
  st_bbox(africa)
# Save the basemap
africa basemap <-
  get_stamenmap(as.vector(africa_box),
                zoom = 3, # The higher the zoom, the more details you get
                maptype = "watercolor")
```

Adding a basemap

ggmap(africa_basemap)

Customizing basemaps

- You can also use other image sources than Stamen Maps with the get_map function:
 - Google Maps ("google"), OpenStreetMap ("osm"), Stamen Maps ("stamen")
- Here are a few other map types you can use with get_stamenmap:
 - "terrain", "terrain-background", "terrain-labels", "terrain-lines", "toner", "toner-2010", "toner-2011", "toner-background", "toner-hybrid", "toner-labels", "toner-lines", "toner-lite", "watercolor")
- Finally, you can use the options color and alpha to change from black and white to color and increase transparency of the basemap.

Adding layers on top of a basemap

Note that with ggmap we don't need the option coord_quickmap

Adding layers on top of a basemap

Combining our two maps

Now, instead of a basemap, let's layer these points on top of our hapiness score map.

Combining our two maps

Why projections matter

Why projections matter

```
# Use a different projection for our Africa map
africa moll <-
  st transform(africa,
             "+proj=moll")
# And create the same graph from the last slide
ggplot() +
  geom_sf(data = africa_moll,
          aes(fill = happiness_score)) +
  geom_point(data = wb_projects,
              aes(x=longitude,
                  y=latitude)) +
  labs(fill="Happiness\nScore") +
  scale_fill_gradient(low = "blue",
                        high = "yellow") +
  theme_void()
```

Why projections matter

Transforming GPS data into a shapefile

- As we saw earlier, shapefiles can contain poins, polygons or lines.
- So far, we have only use the wb_projects coordinates as if they were numbers like any others.
- To be able to change the projection of wb_projects, we need to convert it into a spatial object.

st_as_sf(x, coords, crs)

Transforms objects into sf objects

- ...: the object to be transformed
- coords: a vector with the names of the variables in the data that indicate longitude and latitude, in this order
- crs: the coordinate reference system of the points in the data

Transforming GPS data into a shapefile

Exercise ==

Turn the wb_projects object into an sf object.

```
st_as_sf(x,
     coords = c("longitude_variable", "latitude_variable"),
     crs = 4326) # Shortcut to WGS84, the coordinate reference system used by most GPS
```

Transforming GPS data into a shapefile

Exercise ==

Turn the wb_projects object into an sf object.

Matching projections

Exercise =

Change the projection of the wb_projects object to Mollweid.

Tip: use the CRS shortcut "+proj=moll"

wb_projects_moll <-

Matching projections

Exercise =

Change the projection of the wb_projects object to Mollweid.

Tip: use the CRS shortcut "+proj=moll"

Combining plots with the same projection

Combining plots with the same projection

Basic geometry operations

Basic geometry operations

Here are some of the most common shapefile operations and their corresponding sf commands:

Final challenge

Exercise =

Create a map of the World Bank projects in Mozambique

Here's some pseudo code:

```
# 1 Create a polygon of Mozambique by subsetting the worldmap sf
# 2 Make sure the Moz polygon and the wb_projects shapefile have the same projection
# 3 Create a shapefile containing only Moz projects using one of the sf functions in the previous image
# 4 Create a map with the resulting data and customize as you like
```

Final challenge

Useful Resources

- Rspatial provides tutorials for many topics in GIS.
- Nick Eubank Tutorials -- another great set of tutorials.
- This provides useful links to a bunch of other resources.
- Visualizing geospatial data
- Geocomputation with R

Thank you!