## Correction du TD d'entraînement



# Oscillateur à deux ressorts

Un mobile supposé ponctuel de masse m est astreint à glisser le long d'une tige horizontale de direction (Ox). Ce mobile est relié par deux ressort linéaires à deux points fixes A et B. On le repère par sa position OM = x.



Les deux ressorts sont identiques : même constante de raideur k et même longueur au repos  $\ell_0$ . Dans la position d'équilibre du système, les longueurs des ressorts sont identiques et valent  $\ell_{\rm eq}$  et le mobile se trouve à l'origine O de l'axe. On se place dans le référentiel terrestre (lié au sol), considérée comme galiléen. À t=0, le mobile est abandonné sans vitesse initiale d'une position  $x_0 \neq 0$ 

- 1) Dans un premier temps, on néglige tout frottement.
  - a) Établir l'équation différentielle vérifiée par x(t).
  - b) Montrer que le système constitue un oscillateur harmonique dont on précisera la pulsation  $\omega_0$  et la période  $T_0$  propres en fonction de k et m.
  - c) Donner l'expression de x(t) en tenant compte des conditions initiales.

- Réponse -

a) Cette fois-ci, on a deux ressorts : le premier tire dans le sens  $-\overrightarrow{u_x}$  et le second dans le sens  $+\overrightarrow{u_x}$ ; ainsi le bilan des forces s'exprime :

Poids 
$$\overrightarrow{P} = -mg \overrightarrow{u_y}$$
  
Support  $\overrightarrow{R} = R \overrightarrow{u_y}$   
Ressort  $\mathbf{1} \overrightarrow{F}_1 = -k(\ell_1(t) - \ell_0) \overrightarrow{u_x} = -k(\ell_{eq} + x(t) - \ell_0) \overrightarrow{u_x}$   
Ressort  $\mathbf{2} \overrightarrow{F}_2 = +k(\ell_2(t) - \ell_0) \overrightarrow{u_x} = +k(\ell_{eq} - x(t) - \ell_0) \overrightarrow{u_x}$ 

On a en effet  $\ell_1(t)$  la longueur du ressort 1 qui s'exprime  $\ell_1 = AM$ . Or, d'après l'énoncé  $\ell_{eq} = AO = OB$ : en décomposant (**puisque les distance sont sur le même axe**), on a donc  $AM = AO + OM = \ell_{eq} + x$ .

Le ressort 2 a comme longueur  $\ell_2(t) = MB = MO + OB$  soit  $\ell_2(t) = \ell_{eq} - x(t)$ .

Ainsi, le PFD donne

$$\begin{split} m \, \overrightarrow{a} &= \overrightarrow{P} + \overrightarrow{R} + \overrightarrow{F}_1 + \overrightarrow{F}_2 \\ \Leftrightarrow m \left( \begin{array}{c} \frac{\mathrm{d}^2 x}{\mathrm{d} t^2} \\ 0 \end{array} \right) &= \begin{pmatrix} -k (\mbox{$\ell_{\rm eq}$} + x - \mbox{$\ell_{\rm oq}$}) + k (\mbox{$\ell_{\rm eq}$} - x - \mbox{$\ell_{\rm oq}$}) \\ -mg + R \end{split}$$

Sur l'axe  $\overrightarrow{u_x}$  on trouve

$$m\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2kx = 0 \Leftrightarrow \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \frac{2k}{m}x = 0$$

La projection sur  $\overrightarrow{u_y}$  montre que la réaction du support compense le poids.

b) Sous forme canonique, cette équation se réécrit

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \omega_0^2 x = 0$$

C'est bien l'équation d'un oscillateur harmonique de pulsation  $\omega_0 = \sqrt{\frac{2k}{m}}$  et donc de période

 $T_0 = \frac{2\pi}{\omega_0} = 2\pi\sqrt{\frac{m}{2k}}$ . Doubler la constante de raideur divise par  $\sqrt{2}$  la période : le ressort oscille plus vite qu'avec un seul ressort.

c) L'expression générale de x(t) est donc  $x(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$ . Or, en t = 0, on a  $x(0) = x_0 = A$ , et  $\frac{dx}{dt} = 0 = \omega_0 B$ ; ainsi

$$x(t) = x_0 \cos(\omega_0 t)$$

- 2) En fait il existe entre le mobile et la tige un frottement de type visqueux linéaire, la force de frottement s'exprime  $\vec{F} = -\alpha \vec{v}$  (avec  $\alpha > 0$  et  $\vec{v}$  la vitesse de la masse m dans le référentiel terrestre).
  - a) Établir l'équation différentielle vérifiée par x(t). On posera  $h = \frac{\alpha}{m}$ .
  - b) Montrer que lorsque  $\alpha < 2^{3/2}\sqrt{km}$ , le mouvement comporte des oscillations amorties. Donner l'expression de x(t) en tenant compte des conditions initiales et exprimer la pseudo-période T en fonction de  $\omega_0$  et h.

#### - Réponse -

a) On ajoute  $\overrightarrow{F}_{\rm frott} = -\alpha v\,\overrightarrow{u_x}$ au PFD, ce qui donne

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + h \frac{\mathrm{d}x}{\mathrm{d}t} + \omega_0^2 x = 0$$

b) On sait qu'on a des oscillations amorties quand le discriminant  $\Delta$  de l'équation caractéristique est négatif :  $\Delta < 0$ . Or ici, l'équation caractéristique est

$$r^{2} + hr + \omega_{0}^{2} = 0 \Rightarrow \Delta = h^{2} - 4\omega_{0}^{2}$$

$$\Delta < 0 \Leftrightarrow \left(\frac{\alpha}{m}\right)^{2} < 4\omega_{0}^{2} \Leftrightarrow \alpha < 2m\sqrt{\frac{2k}{m}}$$

$$\Leftrightarrow \alpha < 2^{3/2}\sqrt{km}$$

Dans ce régime, on aura donc les racines

$$r_{\pm} = -\frac{h}{2} \pm i\sqrt{\omega_0^2 - \frac{h^2}{4}} \Leftrightarrow \boxed{r_{\pm} = -\frac{h}{2} \pm i\omega} \quad \text{avec} \quad \boxed{\omega = \sqrt{\omega_0^2 - \frac{h^2}{4}}}$$

La solution générale est alors

$$x(t) = e^{-ht/2} \left[ D\cos(\omega t) + E\sin(\omega t) \right]$$

On a les mêmes conditions initiales, soit  $x(0) = x_0 = D$  et  $\frac{dx}{dt} = 0 = -\frac{h}{2}x_0 + \omega E$ , d'où  $E = \frac{h}{2\omega}x_0$ . Ainsi,

$$x(t) = x_0 e^{-ht/2} \left[ \cos(\omega t) + \frac{h}{2\omega} \sin(\omega t) \right]$$

On a donc une pseudo-période  $T = \frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{\omega_0^2 - \frac{h^2}{4}}}$ 



## Décrément logarithmique électrique

On étudie la réponse u(t) à un échelon de tension e(t) tel que  $\begin{cases} e(t < 0) = 0 \\ e(t \ge 0) = E \end{cases}$  dans le circuit ci-dessous.



1) Déterminer la valeur  $u_{\infty}$  vers laquelle tend u(t) lorsque  $t \longrightarrow \infty$ .

### - Réponse

 $R_2$  et C sont en parallèle, donc u(t) est à la fois la tension aux bornes de C et de  $R_2$ . De plus, à  $t \to \infty$ , la bobine se comporte comme un fil et le condensateur comme un interrupteur ouvert. Le circuit est donc équivalent à un diviseur de tension avec  $R_1$  et  $R_2$  en série alimentées par la tension e(t), et on a donc

$$u(\infty) = u_{\infty} = \frac{R_2}{R_1 + R_2} E$$





### – Réponse -

On applique les lois de KIRCHHOFF:

Avec une loi des mailles et les relations couranttension :

$$u + L\frac{\mathrm{d}i}{\mathrm{d}t} + R_1 i = E$$

Avec la loi des nœuds :

$$i = i_1 + i_2 = C\frac{\mathrm{d}u}{\mathrm{d}t} + \frac{u}{R_2}$$

En combinant:

$$u + L\frac{\mathrm{d}}{\mathrm{d}t} \left( C\frac{\mathrm{d}u}{\mathrm{d}t} + \frac{u}{R_2} \right) + R_1 C\frac{\mathrm{d}u}{\mathrm{d}t} + R_1 \frac{u}{R_2} = E$$

$$\Leftrightarrow u + LC\frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + \frac{L}{R_2} \frac{\mathrm{d}u}{\mathrm{d}t} + R_1 C\frac{\mathrm{d}u}{\mathrm{d}t} + \frac{R_1}{R_2} u = E$$

$$\Leftrightarrow LC\frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + \left( \frac{L}{R_2} + R_1 C \right) \frac{\mathrm{d}u}{\mathrm{d}t} + \left( \frac{R_1}{R_2} + \frac{1}{\frac{R_2}{R_2}} \right) u = E$$

$$\Leftrightarrow \frac{\mathrm{d}^{2}u}{\mathrm{d}t^{2}} + \left(\frac{1}{R_{2}C} + \frac{R_{1}}{L}\right) \frac{\mathrm{d}u}{\mathrm{d}t} + \left(\frac{R_{1} + R_{2}}{R_{2}}\right) \frac{u}{LC} = \frac{E}{LC}$$

$$\Leftrightarrow \frac{\mathrm{d}^{2}u}{\mathrm{d}t^{2}} + \left(\frac{1}{R_{2}C} + \frac{R_{1}}{L}\right) \frac{\mathrm{d}u}{\mathrm{d}t} + \left(\frac{R_{1} + R_{2}}{R_{2}}\right) \frac{u}{LC} = \left(\frac{R_{1} + R_{2}}{R_{2}}\right) \frac{u_{\infty}}{LC}$$

$$\Leftrightarrow \frac{\mathrm{d}^{2}u}{\mathrm{d}t^{2}} + 2\lambda \frac{\mathrm{d}u}{\mathrm{d}t} + \omega_{0}^{2}u = \omega_{0}^{2}u_{\infty}$$

avec 
$$\omega_0 = \sqrt{\frac{1}{LC} \left( \frac{R_1 + R_2}{R_2} \right)}$$
 et  $\lambda = \frac{1}{2} \left( \frac{1}{R_2C} + \frac{R_1}{L} \right)$ 

- 3) On observe à l'oscilloscope la courbe u(t) ci-contre, avec 1 V/div de calibre vertical.
  - a) Déterminer la valeur numérique de la pseudo-période T.
  - b) Déterminer la valeur numérique du décrément logarithmique

$$\delta = \frac{1}{n} \ln \left( \frac{u(t) - u_{\infty}}{u(t + nT) - u_{\infty}} \right)$$



### Réponse .

- a) On a un régime pseudo-périodique, où on lit que  $T = 600 \, \mu s$
- b) On ne peut calculer  $\delta$  qu'avec une pseudo-période ici. On lit au premier pic à  $t_1$  la valeur de la tension par rapport à la masse :  $u(t_1) = 4 \text{ V}$ . Au second pic à  $t_2 = t_1 + T$  on a :  $u(t_1 + T) = 2.5 \text{ V}$ . De plus,  $u_{\infty} = 2 \text{ V. Ainsi}$ ,

$$\delta = \ln\left(\frac{4-2}{2.5-2}\right) = \ln(4) = 1{,}39$$

4) Exprimer u(t) en fonction de  $u_{\infty}$ ,  $\omega_0$ ,  $\lambda$  et t (sans chercher à déterminer les constantes d'intégration).

### — Réponse

- 🔷

Pour la solution de l'équation homogène, on cherche les racines du polynôme caractéristique de discriminant  $\Delta$ :

$$r^2 + 2\lambda r + \omega_0^2 = 0 \Rightarrow \Delta = 4(\lambda^2 - \omega_0^2)$$

On sait que  $\Delta < 0$  puisqu'on observe des oscillations amorties. On aura donc

$$r_{\pm} = -\frac{2\lambda}{2} \pm j\frac{1}{2}\sqrt{4(\omega_0^2 - \lambda^2)} \Leftrightarrow \boxed{r_{\pm} = -\lambda \pm j\omega} \quad \text{avec} \quad \boxed{\omega = \sqrt{\omega_0^2 - \lambda^2}}$$

La solution particulière étant visiblement  $u_{\infty}$ , on aura la forme générale

$$u(t) = e^{-\lambda t} (A\cos\omega t + B\sin\omega t) + u_{\infty}$$



5) Déterminer la relation entre  $\delta$ ,  $\lambda$  et T. En déduire la valeur numérique de  $\lambda$ .

#### - Réponse -

Avec l'expression de u(t), on peut développer le dénominateur de  $\delta$  :

$$u(t + nT) - u_{\infty} = e^{-\lambda nT} \times e^{-\lambda t} \left( \underbrace{A \underbrace{\cos(\omega t + n\omega t)}_{=\cos \omega t} + B \underbrace{\sin(\omega t + n\omega t)}_{=\sin \omega t}} \right)$$
Ainsi,
$$\frac{u(t) - u_{\infty}}{u(t + nT) - u_{\infty}} = e^{+\lambda nT} \Rightarrow \delta = \frac{1}{n} \ln(e^{\lambda nT})$$

$$\Leftrightarrow \boxed{\delta = \lambda T \Leftrightarrow \lambda = \frac{\delta}{T}} \quad \text{avec} \quad \begin{cases} \delta = 1,39 \\ T = 600 \text{ µs} \end{cases}$$

$$A \text{ N} : \lambda = 2.32 \times 10^3 \text{ s}^{-1}$$

6) Sachant que  $R_1=200\,\Omega,\,R_2=5\,\mathrm{k}\Omega$  et  $L=500\,\mathrm{mH},\,\mathrm{déterminer}$  la valeur de C.

### — Réponse –

 $- \Diamond -$ 

On sait que  $\lambda$  s'exprime en fonction de C, on l'isole donc de son expression :

$$2\lambda = \frac{1}{R_2C} + \frac{R_1}{L} \Leftrightarrow R_2C = \frac{1}{2\lambda - \frac{R_1}{L}}$$

$$\Leftrightarrow C = \frac{1}{2R_2\lambda - \frac{R_1R_2}{L}} \quad \text{avec} \quad \begin{cases} R_1 = 200 \,\Omega \\ R_2 = 5 \,\text{k}\Omega \\ L = 500 \,\text{mH} \\ \lambda = 2{,}32 \times 10^3 \,\text{s}^{-1} \end{cases}$$

$$A.N.: C = 76 \,\mu\text{F}$$



### Interprétation E5.1 : À retenir

En régime pseudo-périodique, l'amortissement du signal est dû à l'exponentielle de la solution générale. En calculant le logarithme du rapport de la solution à un instant t et de la solution à un instant t + nT avec T la période on calcule donc le facteur de l'exponentielle décroissante, ce qui permet de trouver les caractéristiques du circuit.



### Décrément logarithmique mécanique

Une masse m est accrochée à un ressort de raideur  $k=10\,\mathrm{N\cdot m^{-1}}$  et de longueur à vide  $\ell_0=10\,\mathrm{cm}$ , fixé au point O. En plus de son poids et de la force de rappel du ressort, la masse est soumise à une force de frottement fluide  $\overrightarrow{F}=-\alpha \overrightarrow{v}$ . Un capteur fournit l'évolution de  $u(t)=z(t)-z_{\mathrm{eq}}$  au court du temps.



1) Établir l'équation d'évolution de z(t). Quelle est la position d'équilibre  $z_{eq}$  de la masse? En déduire une équation satisfaite par u(t).

#### – Réponse –

On repère par z(t) l'altitude du ressort. Étant donné le système, le mouvement ne s'effectue que selon  $\overrightarrow{u_z}$ , et on a  $v=\frac{\mathrm{d}z}{\mathrm{d}t}$  et  $a=\frac{\mathrm{d}^2z}{\mathrm{d}t^2}$ . De plus, la longueur  $\ell$  du ressort s'identifie à l'altitude z(t) de la masse. On effectue donc le **bilan des forces** en faisant attention au sens de  $\overrightarrow{u_z}$ :

$$\begin{array}{ll} \textbf{Poids} & \overrightarrow{P} = mg\,\overrightarrow{u_z} \\ \textbf{Ressort} & \overrightarrow{F}_{\text{ressort}} = -k(z(t) - \ell_0)\,\overrightarrow{u_z} \\ \textbf{Frottement} \ \overrightarrow{F} = -\alpha\frac{\mathrm{d}z}{\mathrm{d}t}\,\overrightarrow{u_z} \end{array}$$

Ainsi, le **PFD** donne

$$m\frac{\mathrm{d}^2 z}{\mathrm{d}t^2} = mg - k(z(t) - \ell_0) - \alpha \frac{\mathrm{d}z}{\mathrm{d}t} \Leftrightarrow \boxed{m\frac{\mathrm{d}^2 z}{\mathrm{d}t^2} + \alpha \frac{\mathrm{d}z}{\mathrm{d}t} + kz = mg + k\ell_0}$$

À l'équilibre,  $\frac{dz}{dt} = 0$  et  $\frac{d^2z}{dt^2} = 0$ , on trouve donc

$$z_{\rm eq} = \ell_0 + \frac{mg}{k}$$

À cause du poids qui n'est cette fois pas compensé par la réaction du support, la longueur d'équilibre est plus grande que la longueur à vide du ressort. On réexprime l'équation différentielle avec le changement de variable de l'énoncé pour avoir

$$m\frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + \alpha \frac{\mathrm{d}u}{\mathrm{d}t} + ku = 0$$



### 

On met l'équation sous forme canonique et on identifie :

$$\boxed{\frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + \frac{\omega_0}{Q} \frac{\mathrm{d}u}{\mathrm{d}t} + {\omega_0}^2 u = 0} \quad \text{avec} \quad \boxed{\omega_0 = \sqrt{\frac{k}{m}}} \quad \text{et} \quad \boxed{Q = \frac{\sqrt{km}}{\alpha}}$$

3) Résoudre l'équation différentielle. Exprimer la pseudo-période T en fonction de  $T_0 = \frac{2\pi}{\omega_0}$  et de Q.

#### – Réponse -

On exprime l'équation caractéristique de discriminant  $\Delta$ :

$$r^{2} + \frac{\omega_{0}}{Q}r + {\omega_{0}}^{2} = 0 \Rightarrow \Delta = {\omega_{0}}^{2} \left(\frac{1}{Q^{2}} - 4\right)$$

On observe des oscillations, donc  $\Delta < 0$ . Les racines sont donc

$$r_{\pm} = -\frac{\omega_0}{2Q} \pm j\omega$$
 avec  $\omega = \omega_0 \sqrt{1 - \frac{1}{Q^2}}$ 

et les solutions sont de la forme

$$z(t) = e^{-\frac{\omega_0}{2Q}t} \left[ A\cos\omega t + B\sin\omega t \right]$$

Sans conditions initiales, on ne peut déterminer A et B. On peut cependant exprimer T:

$$T = \frac{2\pi}{\omega} = \frac{T_0}{\sqrt{1 - \frac{1}{4Q^2}}}$$



4) Montrer que le décrément logarithmique  $\delta$ , défini par

$$\delta = \frac{1}{n} \ln \left( \frac{u(t) - u_{\text{eq}}}{u(t + nT) - u_{\text{eq}}} \right)$$

est indépendant du temps.

– Réponse -

Par construction,  $u_{eq} = 0$ , et on a

$$u(t+nT) = e^{-n\frac{\omega_0}{2Q}T} \times e^{-\frac{\omega_0}{2Q}t} \left[ \underbrace{A\cos(\omega(t+nT))}_{=\cos\omega t} + \underbrace{B\sin(\omega(t+nT))}_{=\sin\omega t} \right] \Leftrightarrow u(t+nT) = e^{-n\frac{\omega_0}{2Q}T}u(t)$$

Ainsi,

$$\delta = \frac{1}{n} \ln \left( \frac{u(t)}{e^{-n\frac{\omega_0}{2Q}T} u(t)} \right) = \frac{1}{n} \ln \left( e^{n\frac{\omega_0}{2Q}T} \right)$$
$$\Leftrightarrow \delta = \frac{\omega_0}{2Q} T$$

En développant T on trouve

$$\delta = \frac{1}{2Q} \frac{\overline{\omega_0 T_0}}{\sqrt{1 - \frac{1}{4Q^2}}} \Leftrightarrow \delta = \frac{2\pi}{\sqrt{4Q^2 - 1}}$$

ce qui est bien indépendant du temps t.



5) Comparer les données expérimentales à l'affirmation précédente. Commenter.

#### ——— Réponse –

Soit  $t_{\text{max}}$  le temps du premier maximum. On relève les ordonnées des maximums successifs de u(t), c'est-à-dire  $u(t_{\text{max}} + nT)$ , et on calcule le logarithme népérien de deux longueurs successives :

| $\overline{n}$ | $u(t_{\max} + nT)$ | δ        |
|----------------|--------------------|----------|
| 0              | 2,9                | 0,37     |
| 1              | 2,0                | $0,\!29$ |
| 2              | 1,5                | 0,31     |
| 3              | 1,1                | 0,31     |
| 4              | 0,8                | $0,\!29$ |
| 5              | 0,6                |          |
|                |                    |          |

Mise à part la première valeur, les résultats sont assez peu dispersés. Cela valide bien le modèle d'oscillateur amorti pour cette expérience; l'écart de la première valeur est sûrement lié à des non-linéarités du ressort aux longueurs importantes.



#### ——— Réponse –

On peut donc estimer qu'on a  $\delta = 0.30 \pm 0.01$ . On isole Q de son expression :

$$\delta = \frac{2\pi}{\sqrt{4Q^2 - 1}} \Leftrightarrow \sqrt{4Q^2 - 1}^2 = \left(\frac{2\pi}{\delta}\right)^2 \Leftrightarrow 4Q^2 = 1 + \left(\frac{2\pi}{\delta}\right)^2$$

$$\Leftrightarrow \boxed{Q = \sqrt{\frac{\pi^2}{\delta^2} + \frac{1}{4}}}$$
A.N.:  $\boxed{Q \approx 10.5}$ 

On trouve bien  $Q \gg 0.5$  comme le montre l'oscillogramme. Quant à  $\omega$ , on peut estimer T en comptant plusieurs périodes : on a  $t_{\text{max}}=0.2\,\mathrm{s}$  et  $t_{\text{max}}+5T=4.9\,\mathrm{s}$ , donc on a  $5T=4.2\,\mathrm{s}$ , c'est-à-dire  $T \approx 0.95 \,\mathrm{s}$ . Enfin,  $\omega = 2\pi/T$ , donc

$$\omega = 6.6 \, \mathrm{rad \cdot s^{-1}}$$



— Réponse —

Comme  $Q \gg 0.5$ , on a  $\omega \approx \omega_0 = \sqrt{\frac{k}{m}}$ . On a donc

$$m \approx \frac{k}{\omega^2}$$
 avec 
$$\begin{cases} k = 10 \,\text{N} \cdot \text{m}^{-1} \\ \omega = 6.6 \,\text{rad} \cdot \text{s}^{-1} \end{cases}$$
 A.N. :  $m \approx 230 \,\text{g}$ 

Finalement, on a

$$\boxed{\alpha = \frac{\sqrt{km}}{Q}} \quad \text{avec} \quad \begin{cases} k = 10 \,\text{N} \cdot \text{m}^{-1} \\ m = 230 \,\text{g} \\ Q = 10,5 \end{cases}}$$

A.N. :  $\alpha \approx 0.15 \,\mathrm{kg \cdot s^-}$ 

