Eine Grenzfunktion mit interessanten Eigenschaften

Jubiläumsvorlesung am 1. Oktober 2019 von Univ.Prof. em. Roman Schnabl für den Studienjahrgang 1989 "Technische Mathematik" anlässlich 30 Jahre Studienbeginn

Wolfgang Stöcher

10. Dezember 2022

Aufbauend auf der parametrischen reellwertigen Funktionenfamilie

$$m_h(x) := \begin{cases} \frac{1}{2h} & |x| < h \\ \frac{1}{4h} & |x| = h \\ 0 & |x| > h \end{cases}$$

wird mittels Faltung die Folge von Funktionen

$$s_n := m_{2^0} * \cdots * m_{2^{-n}}, n \ge 1,$$

definiert, die für $n\to\infty$ gleichmäßig gegen eine Grenzfunktion s(x) konvergiert, die wir nach ihrem Entdecker SSchnabl-Funktion"nennen wollen.

Die gleichmäßige Konvergenz erschließt sich z.B. aus den einfach zu zeigenden Eigenschaften wie Geradheit $(s_n(x)=s_n(-x))$, Beschränktheit $(0 \le s_n(x) \le \frac{1}{2})$, Beschränktheit der Ableitung $(|s_n'(x)| \le s_n'(-1) = \frac{1}{2})$ und

$$\begin{split} |s_n(x) - s_{n-1}(x)| &= \left| \int_{-\infty}^{\infty} m_{2^{-n}}(t) s_{n-1}(x-t) dt - s_{n-1}(x) \right| = \\ &= \left| \int_{-2^{-n}}^{2^{-n}} 2^{n-1} s_{n-1}(x-t) dt - \int_{-2^{-n}}^{2^{-n}} 2^{n-1} s_{n-1}(x) dt \right| = \\ &= \left| 2^{n-1} \int_{-2^{-n}}^{2^{-n}} (s_{n-1}(x-t) - s_{n-1}(x)) dt \right| < \\ &< 2^{n-1} (2^{-n} - (-2^{-n})) \max_{|t| \le 2^{-n}} |s_{n-1}(x-t) - s_{n-1}(x)| < \\ &< 2^{n-1} 2^{-n+1} 2^{-n} s'_{n-1}(-1) = 2^{-n-1} \end{split}$$

Die Folgenglieder s_n sind stetige Funktionen, die sich aus stückweisen Polynomfunktionen zusammensetzen. Hier die ersten beiden Folgenglieder:

$$s_1(x) = \int_{-\infty}^{\infty} m_1(t) m_{\frac{1}{2}}(x-t) dt = \begin{cases} \frac{1}{2}x + \frac{3}{4} & -\frac{3}{2} \le x \le -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \le x \le \frac{1}{2} \\ -\frac{1}{2}x + \frac{3}{4} & \frac{1}{2} \le x \le \frac{3}{2} \\ 0 & \text{sonst} \end{cases}$$

Abbildung 1: Basisfunktion m_1 und die Funktionen s_1 , s_2 and s_6

$$s_{2}(x) = \int_{-\infty}^{\infty} s_{1}(t) m_{\frac{1}{4}}(x-t) dt = \begin{cases} \frac{1}{2}x^{2} + \frac{7}{4}x + \frac{49}{32} & -\frac{7}{4} \le x \le -\frac{5}{4} \\ \frac{1}{2}x + \frac{3}{4} & -\frac{5}{4} \le x \le -\frac{3}{4} \\ -\frac{1}{2}x^{2} - \frac{1}{4}x + \frac{15}{32} & -\frac{3}{4} \le x \le -\frac{1}{4} \\ \frac{1}{2} & -\frac{1}{4} \le x \le \frac{1}{4} \\ -\frac{1}{2}x^{2} + \frac{1}{4}x + \frac{15}{32} & \frac{1}{4} \le x \le \frac{3}{4} \\ -\frac{1}{2}x + \frac{3}{4} & \frac{3}{4} \le x \le \frac{5}{4} \\ \frac{1}{2}x^{2} - \frac{7}{4}x + \frac{49}{32} & \frac{5}{4} \le x \le \frac{7}{4} \\ 0 & \text{sonst} \end{cases}$$

Die Funktionen konvergieren sehr schnell, wie man der Abbildung 1 entnehmen kann.

Die Funktionen s_n haben ein paar weitere schöne Eigenschaften, die sie über die Faltung von den Basisfunktionen erben und die an die Grenzfunktion weiter vererbt werden:

• Alle Funktionswerte sind nicht negativ. Außerhalb des Intervalls [-2,2] sind die Funktionswerte 0.

- Die Graphen aller Funktionen laufen durch die Punkte $(\pm 2, 0), (\pm 1, \frac{1}{4}), (0, \frac{1}{2})$ und haben dort jeweils die Ableitungen $0, \pm \frac{1}{2}, 0$.
- Die Funktionen sind nicht nur gerade, sondern in der Umgebung von $(\pm 1, \frac{1}{4})$ auch ungerade, soll heißen:

$$s_n(-1-t) + s_n(-1+t) = s_n(1-t) + s_n(1+t) = \frac{1}{2}, \quad t \in [-1,1].$$

Die Graphen der Funktionen s_n und der Funktion s über dem Interval [-2,2] bestehen also aus je 4 identischen Kurvenabschnitten.

• Die Fläche unter jeder der Kurven ist 1.

Die Grenzfunktion hat eine zusätzliche schöne Eigenschaft: die fraktale Struktur in den Ableitungen. Aus

$$s'_{n+1}(x) = \begin{cases} 2s_n(2x+2) & x < 0\\ -2s_n(2x-2) & x \ge 0 \end{cases}$$

ergibt sich

$$\frac{s^{(k)}(x)}{2^k} = \begin{cases} s^{(k-1)}(2x+2) & x < 0\\ -s^{(k-1)}(2x-2) & x \ge 0 \end{cases}$$

In Abbildung 2 ist diese Eigenschaft beispielhaft an s_6 illustriert.

Abbildung 2: Die Funktion s_6 (die der Grenzfunktion s schon sehr nahe ist) und ihre ersten 3 Ableitungen (geeignet skaliert), um die fraktale Struktur der Ableitungen der Grenzfunktion zu illustrieren