COMPLEX NUMBERS

Week 23

I M A G I N A R Y N U M B E R

It was **Rafael Bombelli** who defined the imaginary number $i = \sqrt{-1}$ in 1572.

The **imaginary number** is defined as $i = \sqrt{-1}$ with the property that $i \times i = \sqrt{-1} \times \sqrt{-1} = -1$.

It is called "imaginary" because we cannot place it on the real number line.

RECALL AND SIMPLIFY:

WRITE IN TERMS OF i:

$$=-\sqrt{3}$$

$$=\sqrt{5}$$

•
$$-\sqrt{36}$$

•
$$\sqrt{\frac{1}{4}}$$

$$=\frac{1}{2}$$

$$=9i$$

•
$$-\sqrt{-3}$$

$$=-\sqrt{3} i$$

$$=\sqrt{5}\,\,\boldsymbol{i}$$

•
$$-\sqrt{-36}$$

$$=-6i$$

$$\bullet$$
 $\sqrt{-\frac{1}{4}}$

$$=\frac{1}{2}i$$

COMPLEX NUMBERS

The solutions to quadratic equations with $\Delta < 0$ have the form x = a + bi, where a and b are real.

Any number of the form a + bi where $a, b \in \mathbb{R}$ and $i = \sqrt{-1}$, is called a **complex number**.

REAL AND IMAGINARY PARTS

If z = a + bi where $a, b \in \mathbb{R}$, then:

- a is the **real part** of z, written $\Re(z)$
- b is the imaginary part of z, written $\mathfrak{Im}(z)$.

For example:

- If z = 2 + 3i, then $\Re(z) = 2$ and $\Im(z) = 3$.
- If $z = -\sqrt{2}i$, then $\Re(z) = 0$ and $\Im(z) = -\sqrt{2}$.

COMPLEX CONJUGATES

Suppose z = a + bi where $a, b \in \mathbb{R}$.

The complex conjugate of z is $z^* = a - bi$.

$$\operatorname{Re}\left(z^{*}\right)=\operatorname{Re}\left(z\right) \ \ \text{and} \ \ \operatorname{Im}\left(z^{*}\right)=-\operatorname{Im}\left(z\right)$$

Suppose z = a + bi where $a, b \in \mathbb{R}$. The **complex conjugate** of z is $z^* = a - bi$. $\operatorname{Re}(z^*) = \operatorname{Re}(z)$ and $\operatorname{Im}(z^*) = -\operatorname{Im}(z)$

COMPLEX CONJUGATES

z	$\operatorname{Re}\left(z ight)$	${\it Im}(z)$	z^*
3+2i	3	2	3 - 2 <i>i</i>
5-i	5	-1	5 + <i>i</i>
3	3	0	3
4i	0	4	- 4 <i>i</i>
0	0	0	0

z	$\operatorname{Re}\left(z ight)$	${\it Im}(z)$	z^*
-3 + 4i	-3	4	-3 - 4 <i>i</i>
-7 - 2i	-7	-2	-7 + 2i
-11i	0	-11	11 <i>i</i>
$i\sqrt{3}$	0	$\sqrt{3}$	$-i\sqrt{3}$
$1-i\sqrt{2}$	1	$-\sqrt{2}$	$1 + i\sqrt{2}$

OPERATIONS WITH COMPLEX NUMBERS

$$\begin{array}{ll} (a+bi)+(c+di)=(a+c)+(b+d)i & \textbf{addition} \\ (a+bi)-(c+di)=(a-c)+(b-d)i & \textbf{subtraction} \\ (a+bi)(c+di)=ac+adi+bci+bdi^2 & \textbf{multiplication} \\ \\ \frac{a+bi}{c+di}=\left(\frac{a+bi}{c+di}\right)\left(\frac{c-di}{c-di}\right)=\frac{ac-adi+bci-bdi^2}{c^2+d^2} & \textbf{division} \end{array}$$

The complex conjugate of the denominator

GDC

- Run Math Mode
- Press Shift + Menu (Do this to Set Up your GDC for the use of complex numbers)
- Browse down (Until you see the "complex Mode" on the screen)
- Press F2 (a + bi button)
- Exit and try

*Note: the imaginary number symbol, i, is found by pressing shift + 0

EXAMPLES (ANSWER IN EXACT (FRACTION) FORM)

Use technology to calculate:

$$\frac{1}{(1+2i)^3}$$

$$\frac{(2+5i)^4}{1-i}$$

$$\frac{1}{(1+2i)^3} = -\frac{11}{125} + \frac{2}{125}i$$

$$\frac{(2+5i)^4}{1-i} = \frac{881}{2} - \frac{799}{2}i$$

REAL QUADRATICS WITH DISCRIMINANT < 0

If $ax^2 + bx + c = 0$, $a \neq 0$ and $a, b, c \in \mathbb{R}$, then the solutions or roots are found using the formula $x = \frac{-b \pm \sqrt{\Delta}}{2a}$ where $\Delta = b^2 - 4ac$ is known as the **discriminant**.

EXAMPLE: SOLVE FOR X: $x^2 - 10x + 29 = 0$

The roots are: 5 + 2i and 5 - 2i

What does this mean?

If the discriminant is < 0, the equation has no real solutions.

MORE EXAMPLES

Solve for x using the quadratic formula:

$$x^2 - 10x + 29 = 0$$

b
$$x^2 + 6x + 25 = 0$$

$$x^2 + 14x + 50 = 0$$

$$x^2 - 3x + 5 = 0$$

$$x^2 + 4 = x$$

$$3x^2 + 6x + 5 = 0$$

SEATWORK

• Exam.net key code: NAB562

Use your GDC to answer the questions correctly.