University of Illinois

Spring 2020

CS 446/ECE 449 Machine Learning Homework 8: Variational Auto-Encoders

Due on Tuesday April 21 2020, noon Central Time

- 1. [17 points] Variational Auto-Encoders (VAEs)
 - (a) (3 points) We want to maximize the log-likelihood $\log p_{\theta}(x)$ of a model $p_{\theta}(x)$ which is parameterized by θ . To this end we introduce a joint distribution $p_{\theta}(x,z)$ and an approximate posterior q(z|x) and reformulate the log-likelihood via

$$\log p_{\theta}(x) = \log \sum_{z} q(z|x) \frac{p_{\theta}(x,z)}{q(z|x)}.$$

Use Jensen's inequality to obtain a bound on the log likelihood and divide the bound into two parts, one of which is the Kullback-Leibler (KL) divergence

Your answer:			

(b) (2 points) State at least two properties of the KL divergence.

Your answer:

(c) (2 points) Let

$$q(z|x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(z - \mu_q)^2\right).$$

What is the value for the KL-divergence $\mathrm{KL}(q(z|x),q(z|x))$ and why?

Your answer:		

TAT	
1	ame:
Τ.	ame.

(d)	(3	points)	Further,	let

$$p(z) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(z - \mu_p)^2\right).$$

Note the difference of the means for p(z) and q(z|x) while their standard deviation is identical. What is the value for the KL-divergence $\mathrm{KL}(q(z|x),p(z))$ in terms of $\mu_p,\,\mu_q$ and σ ?

mu o .						
Your answer:						
4 points) Now	Let $a(\gamma x)$	and $n(\gamma)$ be	e arhitrary	probability.	distributions	We want

(e) (4 points) Now, let q(z|x) and p(z) be arbitrary probability distributions. We want to find that q(z|x) which maximizes

$$\sum_{z} q(z|x) \log p_{\theta}(x|z) - \text{KL}(q(z|x), p(z))$$

subject to $\sum_{z} q(z|x) = 1$. Ignore the non-negativity constraints. State the Lagrangian and compute its stationary point, *i.e.*, solve for q(z|x) which depends on $p_{\theta}(x|z)$ and p(z). Make sure to get rid of the Lagrange multiplier.

(f) (1 point) Which of the following terms should q(z|x) be equal to: (1) p(z); (2) $p_{\theta}(x|z)$; (3) $p_{\theta}(z|x)$; (4) $p_{\theta}(x,z)$.

Todi diiswei.

Your answer:		

Name: