Notes of Mathematics

${\bf Masato~Nakata}^*$

* Department of Science, Kyoto University

Since Aug 27, 2017

Contents

1	MANIFOLDS		1
	1.1	Manifolds on Euclidean Spaces	1
		Manifolds	
2	P-ADIC NUMBERS		
	2.1	Foundations	18
3	LIE ALGEBRAS 2		
	3.1	Foundations	23
	3.2	Solvable and Nilpotent Lie algebras	26
4	CATEGORIES		
	4.1	Foundations	29
5	FUNCTIONAL ANALYSIS		32
	5.1	Hahn-Banach Theorems	32
6	REAL ANALYSIS AND PROBABILITY		37
	6.1	Set Theory	37
7	HOMOLOGICAL ALGEBRA 38		
	7.1	Chain Complexes	38

1 Manifolds

[6]

1.1 Manifolds on Euclidean Spaces

Theorem 1.1.1 Taylor's theorem with remainder

A smooth function f on an open ball $U \in \mathcal{O}_n$ can be written as

$$f(x) = f(p) + \sum_{i} (x^{i} - p^{i})g_{i}(x)$$

where $p \in U$ and $g_i \in C^{\infty}(U)$ with $g_i(p) = (\partial f/\partial x^i)(p)$.

Adapting this to g_i repeatedly gives the Taylor's expansion of f.

Definition 1.1.2 Tangent vector as an arrow from a point

The **tangent space** $T_p(\mathbb{R}^n)$ at $p \in \mathbb{R}^n$ is the set of arrows from p.

Definition 1.1.3 Directional derivative

The **directional derivative** of a smooth function f in the direction $v \in T_p(\mathbb{R}^n)$ at $p \in \mathbb{R}^n$ is

$$D_{v}f = \lim_{t \to 0} \frac{f(c(t)) - f(p)}{t} = \left. \frac{d}{dt} \right|_{t=0} f(c(t))$$

with $c^i(t) = p^i + tv^i$.

By the chain rule,

$$D_{v}f = \sum \frac{dc^{i}}{dt}(0)\frac{\partial f}{\partial x^{i}}(p) = \sum v^{i}\frac{\partial f}{\partial x^{i}}(p).$$

Definition & Proposition 1.1.4 Derivation at a point

A linear map $D: C_p^{\infty} \to R$ satisfying the Leibniz rule (i.e., D(fg) = (Df)g(p) + f(p)Dg for any $f, g \in C_p^{\infty}$) is called a **derivation** at p or a **point-derivation** of C_p^{∞} .

The set of all derivations at p denoted by $\mathcal{D}_p(\mathbf{R}^n)$ is a real vector space, and a map $\phi \colon \mathcal{T}_p(\mathbf{R}^n) \to \mathcal{D}_p(\mathbf{R}^n)$ assigning \mathcal{D}_v to each v is a linear map.

Lemma 1.1.5 Point-derivation of a constant is zero

If *D* is a point-derivation of C_p^{∞} , then D(c) = 0 for any constant function *c*.

Theorem 1.1.6 Tangent space is isomorphic to the set of point-derivations

The linear map $\phi \to T_p(\mathbf{R}^n) \to \mathcal{D}_p(\mathbf{R}^n)$ in [Definition & Proposition 1.1.4] is an isomorphism of vector spaces.

Definition 1.1.7 Tangent vector as a derivation

By [Theorem 1.1.6], $v \in T_p(\mathbf{R}^n)$ is identified as

$$v = \sum v^i \left. \frac{\partial}{\partial x^i} \right|_{\mathcal{D}} \in \mathcal{D}_p(\mathbf{R}^n).$$

Definition 1.1.8 Vector fields on an open set

A **vector field** on $U \in \mathcal{O}_n$ is a map $X: U \to T_p(\mathbb{R}^n)$. $X = \sum a^i \partial/\partial x^i$ means

$$X(p) = X_p = \sum a^i(p) \left. \frac{\partial}{\partial x^i} \right|_p$$
 with $a^i(p) \in R$

X is said to be C^{∞} if all a^i s are C^{∞} on U. The set of all smooth vector fields on U is denoted by $\mathfrak{X}(U)$.

Definition & Proposition 1.1.9 Multiplication of a smooth vector field and function

For $X \in \mathfrak{X}(U)$ and $f \in C^{\infty}(U)$, define $fX \in \mathfrak{X}(U)$ and $Xf \in C^{\infty}(U)$ as follows:

$$(fX)_{p} = f(p)X_{p} = \sum_{i} (f(p)a^{i}(p)) \left. \frac{\partial}{\partial x^{i}} \right|_{p},$$
$$(Xf)(p) = X_{p}f = \sum_{i} a^{i}(p) \frac{\partial f}{\partial x^{i}}(p).$$

Proposition 1.1.10 Leibniz rule for a vector field

For any $X \in \mathfrak{X}(U)$, $f, g \in C^{\infty}(U)$,

$$X(fg) = (Xf)g + fXg.$$

Proposition 1.1.11 Derivations one-to-one-correspond to smooth vector fields

 $\varphi \colon \mathfrak{X}(U) \ni X \mapsto (f \mapsto Xf) \in \mathsf{Der}\,(C^\infty(U))$ is an linear isomorphism.

Definition 1.1.12 k-tensor on a vector space

A k-linear function $f: V^k \to R$ on a vector space V is called a k-**tensor** on V. The vector space of all k-tensors on V is denoted by $L_k(V)$. k is called the degree of f.

Definition 1.1.13 Permutation action on k-tensors

For $f \in L_k(V)$ on a vector space V and $\sigma \in \mathfrak{S}_n$, an action of σ on f is defined by

$$(\sigma f)(v_1,\ldots,v_k)=f(v_{\sigma(1)},\ldots,v_{\sigma(k)}).$$

Definition 1.1.14 Symmetric and alternating k-tensor

A k-tensor $f: V^k \to R$ is **symmetric** if

$$\forall \sigma \in \mathfrak{S}_k, \ \sigma f = f$$

and f is **alternating** if

$$\forall \sigma \in \mathfrak{S}_k, \ \sigma f = (\operatorname{sgn} \sigma) f.$$

Definition 1.1.15 The set of all alternating k-tensors

An alternating k-tensor on a vector space V is also called a k-covector or a **multicov**-ector of degree k on V. The set of all k-covectors on V is denoted by $A_k(v)$ for k > 0; for k = 0, $A_0(V) = R$.

Definition & Proposition 1.1.16 Symmetrizing and alternating operators on k-covectors

For a $f \in A_k(V)$ on a vector space V,

$$Sf = \sum_{\sigma \in \mathfrak{S}_n} \sigma f$$

is symmetric, and

$$Af = \sum_{\sigma \in \mathfrak{S}_n} (\operatorname{sgn} \sigma) \sigma f$$

is alternating.

Definition 1.1.17 Tensor product of two multilinear functions

For $f \in L_k(V)$, $g \in L_\ell(V)$ on a vector space V, the **tensor product** $f \otimes g \in L_{k+\ell}(V)$ is defined by

$$(f \otimes g)(v_1, \ldots, v_{k+\ell}) = f(v_1, \ldots, v_k)g(v_{k+1}, \ldots, v_{k+\ell}).$$

Example 1.1.18 Bilinear map as a tensor product

Let e_1, \ldots, e_n be a basis for a vector space $V, \alpha^1, \ldots, \alpha^n$ the dual basis in V^* , and $\langle , \rangle : V \times V \to R$ a bilinear map on V. Then,

$$\langle \; , \;
angle = \sum g_{ij} lpha^i \otimes lpha^j,$$

where $g_{ij} = \langle e_i, e_i \rangle$.

Definition 1.1.19 Wedge product of two multilinear functions

For $f \in A_k(V)$, $g \in A_\ell(V)$ on a vector space V, their **wedge product** or **exterior product** is

$$f \wedge g = \frac{1}{k! \, \ell!} A(f \otimes g).$$

 $f \wedge g$ is alternating.

Explicitly,

$$(f \wedge g)(v_1, \dots, v_{k+\ell}) = \frac{1}{k! \, \ell!} \sum_{\substack{\sigma \in \mathfrak{S}_{k+\ell} \\ \sigma}} (\operatorname{sgn} \sigma) f(v_{\sigma(1)}, \dots, v_{\sigma(k)}) g(v_{\sigma(k+1)}, \dots, v_{\sigma(k+\ell)})$$

$$= \sum_{\substack{(k,\ell) \text{-shuffle} \\ \sigma}} (\operatorname{sgn} \sigma) f(v_{\sigma(1)}, \dots, v_{\sigma(k)}) g(v_{\sigma(k+1)}, \dots, v_{\sigma(k+\ell)}),$$

where a (k, ℓ) -shuffle means $\sigma(1) < \cdots < \sigma(k)$ and $\sigma(k+1) < \cdots < \sigma(k+\ell)$.

Proposition 1.1.20 Wedge product is anticommutative

For $f \in A_k(V)$, $g \in A_\ell(V)$ on a vector space V,

$$f \wedge q = (-1)^{k\ell} q \wedge f$$
.

If the degree of f is odd, then $f \wedge f = 0$.

Lemma 1.1.21 Properties of nesting alternating operators

For $f \in L_k(V)$ and $g \in L_\ell(V)$ on a vector space V,

i)
$$A(A(f) \otimes g) = k! A(f \otimes g)$$
,

ii)
$$A(f \otimes A(q)) = \ell! A(f \otimes q)$$
.

Proposition 1.1.22 Associativity of the wedge product

For $f \in A_k(V)$, $g \in A_\ell(V)$, $h \in A_m(V)$ on a real vector space V,

$$(f \wedge g) \wedge h = f \wedge (g \wedge h).$$

Similarly, for $f_i \in A_{d_i}(V)$ (i = 1, ..., r),

$$f_1 \wedge \cdots \wedge f_r = \frac{1}{(d_1)! \cdots (d_r)!} A(f_1 \otimes \cdots \otimes f_r).$$

Proposition 1.1.23 Wedge product of covectors is the determinant

For covectors $\alpha^1, \ldots, \alpha^k$ on a vector space V,

$$(\alpha^1 \wedge \cdots \wedge \alpha^k)(v_1, \ldots, v_k) = \det(\alpha^i(v_i))_{ii}$$

Definition 1.1.24 Graded algebra over a field

An algebra A over a field K is said to be **graded** if $A = \bigoplus_{k=0}^{\infty} A^k$ is a direct sum of vector spaces over K such that the multiplication sends $A^k \times A^\ell$ to $A^{k+\ell}$. $A = \bigoplus_{k=0}^{\infty} A^k$ means each nonzero $a \in A$ is a unique finite sum $a = a_{i_1} + \cdots + a_{i_m}$ with nonzero $a_{i_j} \in A^{i_j}$.

A is **anticommutative** or **graded commutative** if $\forall a \in A^k, b \in A^\ell$, $ab = (-1)^{k\ell}ba$.

A **homomorphism** of graded algebras is an algebra homomorphism that preserves the degree.

Definition & Proposition 1.1.25 Grassmann algebra of multicovectors on a vector space

For a vector space V of degree $n < \infty$, the **exterior algebra** or the **Grassmann algebra** of multicovectors on V is the anticommutative graded algebra

$$A_*(V) = \bigoplus_{k=0}^{\infty} A_k(V) = \bigoplus_{k=0}^{n} A_k(V)$$

with the wedge product of multicovectors as multiplication.

Lemma 1.1.26 Wedge product of the dual basis applying to a basis

Let e_1, \ldots, e_n be a basis for a vector space V and $\alpha^1, \ldots, \alpha^n$ the dual basis in V^* . For $I = (i_1, \ldots, i_k)$, $J = (j_1, \ldots, j_k)$ with $1 \le i_1 < \cdots < i_k \le n$, $1 \le j_1 < \cdots < j_k \le n$,

$$\alpha'(e_J) = \delta'_J$$
.

Proposition 1.1.27 Wedge products of the dual basis form a basis for multicovectors

Let V be a vector space and $\alpha^1, \ldots, \alpha^n$ the dual basis in V^* . Then, α^I , $I = (i_1 < \cdots < i_k)$ form a basis for $A_k(V)$.

Therefore,

$$\dim A_k(V) = \binom{n}{k},$$

which implies

if
$$k > \dim V$$
, then $A_k(V) = 0$.

Definition 1.1.28 Cotangent space to an Euclidean space at a point

The **cotangent space** to R^n at p is $T_p^*(R^n) = (T_p(R^n))^*$.

Definition 1.1.29 Differential 1-form on an open subset of an Euclidean space

A **covector field** or a **differential** 1-**form** on $U \in \mathcal{O}_n$ is $\omega \colon U \to \bigcup_{p \in U} T_p^*(\mathbf{R}^n)$ that maps $U \ni p \mapsto \omega_p \in T_p^*(\mathbf{R}^n)$.

Definition 1.1.30 Differential of a smooth function

For $f \in C^{\infty}(U)$ on $U \in \mathcal{O}_n$, the **differential** df of f is a differential 1-form defined by

$$(df)_p(X_p) = X_p f.$$

In the expression

$$\langle , \rangle : \mathcal{T}_p(\mathbf{R}^n) \times C_p^{\infty}(\mathbf{R}^n) \ni (X_p, f) \mapsto \langle X_p, f \rangle = X_p f \in \mathbf{R},$$

a tangent vector is considered as $\langle X_p, \cdot \rangle$; a differential at p as $df|_p = (df)_p = \langle \cdot, f \rangle$.

Proposition 1.1.31 Differentials of coordinates is the dual basis for the cotangent space

For $p \in \mathbb{R}^n$, $\{(dx^1)_p, \dots, (dx^n)_p\}$ is the dual basis for $T_p^*(\mathbb{R}^n)$ to $\{\partial/\partial x^1|_p, \dots, \partial/\partial x^n|_p\} \subset T_p(\mathbb{R}^n)$, where x^1, \dots, x^n are the standard coordinates on \mathbb{R}^n .

For any differential 1-form ω on $U \in \mathcal{O}_n$ and $p \in U$,

$$\omega_p = \sum a_i(p)(dx^i)_p$$

for some $a_i(p)$. In this case, ω is written as $\omega = \sum a_i dx^i$.

Definition 1.1.32 Smoothness of a differential 1-form

A differential 1-form $\omega = \sum a_i dx^i$ on $U \in \mathcal{O}_n$ is **smooth** if all $a_i : U \to R$ are smooth.

Proposition 1.1.33 Differentials can be written in terms of partial derivatives

For $f \in C^{\infty}(U)$ on $U \in \mathcal{O}_n$,

$$df = \sum \frac{\partial f}{\partial x^i} dx^i.$$

Smoothness of f implies that of df.

Definition 1.1.34 Differential k-forms on an Euclidean space

A differential k-form or differential form of degree k on $U \in \mathcal{O}_n$ is $\omega \colon U \ni p \mapsto \omega_p \in A_k(T_p(\mathbb{R}^n))$.

Definition & Proposition 1.1.35 Basis for differential forms

Since $\{dx_p^I \mid I = (1 \le i_1 < \dots < i_k \le n)\}$ is a basis for $A_k(T_p(\mathbb{R}^n))$, for a differential k-form ω on $U \in \mathcal{O}_n$ and $p \in U$,

$$\omega_p = \sum a_I(p) dx_p^I, \quad \omega = \sum a_I dx^I.$$

 ω is **smooth** if all $a_l: U \to R$ are smooth. The vector space of C^{∞} differential k-forms on U is denoted by $\Omega^k(U)$. If k = 0, $\Omega^0(U) = C^{\infty}(U)$.

Definition 1.1.36 Wedge product of differential forms

For differential k-form ω and ℓ -form τ on $U \in \mathcal{O}_n$, their **wedge product** $\omega \wedge \tau$ is a differential $(k + \ell)$ -form defined by

$$(\omega \wedge \tau)_p = \omega_p \wedge \tau_p$$
.

If $\omega = \sum a_I dx^I$, $\tau = \sum b_J dx^J$,

$$\omega \wedge \tau = \sum_{I,J} (a_I b_J) dx^I \wedge dx^J$$
$$= \sum_{\text{disjoint } I,J} (a_I b_J) dx^I \wedge dx^J.$$

For $\omega \in \Omega^k(U)$, $\tau \in \Omega^\ell(U)$, the wedge product is a bilinear map

$$\wedge: \Omega^k(U) \times \Omega^\ell(U) \to \Omega^{k+\ell}(U).$$

In particular, if $f \in C^{\infty}(U)$ and $\omega \in \Omega^k(U)$, then $f \wedge \omega = f\omega$.

Definition 1.1.37 Graded algebra with smooth differential forms

For $U \in \mathcal{O}_n$, the direct sum $\Omega^*(U) = \bigoplus_{k=0}^n \Omega^k(U)$ is an anticommutative graded algebra over R with the wedge product as multiplication, which is also a module over $C^{\infty}(U)$.

Definition 1.1.38 Differential forms as linear maps on a vector field

For a differential k-form ω on $U \in \mathcal{O}_n$ and $X_1, \ldots, X_k \in \mathfrak{X}(U)$, define $\omega(X_1, \ldots, X_k) \in C^{\infty}(U)$ by

$$(\omega(X_1,\ldots,X_k))_p=\omega_p((X_1)_p,\ldots,(X_k)_p).$$

The map

$$\mathfrak{X}^k(U) \ni (X_1, \dots, X_k) \mapsto \omega(X_1, \dots, X_k) \in C^{\infty}(U)$$

is *k*-linear over $C^{\infty}(U)$.

Definition 1.1.39 Exterior derivatives of differential forms

For $k \ge 1$ and $\omega = \sum a_I dx^I \in \Omega^k(U)$, the **exterior derivative** of ω is

$$d\omega = \sum_{I} da_{I} \wedge dx^{I} = \sum_{I,j} \frac{\partial a_{I}}{\partial x^{j}} dx^{j} \wedge dx^{I} \in \Omega^{k+1}(U);$$

for k = 0 and $f \in C^{\infty}(U)$, its exterior derivative is

$$df = \sum \frac{\partial f}{\partial x^i} dx^i \in \Omega^1(U).$$

Definition 1.1.40 Antiderivation of a graded algebra

An **antiderivation** of a graded algebra $\mathbf{A} = \bigoplus_{k=0}^{\infty} A^k$ is a linear map $D \colon \mathbf{A} \to \mathbf{A}$ such that for $a \in A^k$, $b \in A^\ell$,

$$D(ab) = D(a)b + (-1)^k aD(b).$$

If m is an integer such that D sends A^k to A^{k+m} for all k, then m is called the **degree** of D.

Proposition 1.1.41 Properties of the exterior differentiation

i) The exterior differentiation $d: \Omega^*(U) \to \Omega^*(U)$ on $U \in \mathcal{O}_n$ is an antiderivation of degree 1:

$$d(\omega \wedge \tau) = (d\omega) \wedge \tau + (-1)^{\deg \omega} \omega \wedge d\tau.$$

- **ii**) $d^2 = 0$.
- **iii**) For $f \in C^{\infty}(U)$ and $X \in \mathfrak{X}(U)$, (df)(X) = Xf.

Proposition 1.1.42 Characterization of the exterior differentiation

The exterior differentiation $d: \Omega^*(U) \to \Omega^*(U)$ on $U \in \mathcal{O}_n$ is the only antideriavtion of $\Omega^*(U)$.

Definition 1.1.43 Closed and exact forms

A differential k-form ω on $U \in \mathcal{O}_n$ is said to be **closed** if $d\omega = 0$, and said to be **exact** if $\omega = d\tau$ for some (k-1)-form τ on U.

Every exact form is closed.

Definition 1.1.44 Cochain complex and de Rham complex

A collection of vector spaces $\{V^k\}_{k=0}^{\infty}$ with linear maps $d_k \colon V^k \to V^{k+1}$ such that $d_{k+1} \circ d_k = 0$ is called a **cochain complex** or a **differential complex**.

The **de Rham complex** of $U \in \mathcal{O}_n$ is a cochain complex

$$0 \to \Omega^0(U) \xrightarrow{d} \Omega^1(U) \xrightarrow{d} \Omega^2(U) \xrightarrow{d} \cdots$$

The closed forms are the elements of ker d, and the exact forms are the elements of im d.

Proposition 1.1.45 Vector calculus as differential forms

Under the identifications, for $U \in \mathcal{O}_3$, $f \in C^{\infty}(U)$ and $X = [P \ Q \ R] \in \mathfrak{X}(U)$,

1-form
$$Pdx + Qdy + Rdz \longleftrightarrow X$$
,
2-form $Pdy \land dz + Qdz \land dx + Rdx \land dy \longleftrightarrow X$,
3-form $fdx \land dy \land dz \longleftrightarrow f$,

there are correspondences between the exterior derivatives and grad, rot, and div:

$$df \longleftrightarrow \operatorname{grad} f,$$

$$d(Pdx + Qdy + Rdz) \longleftrightarrow \operatorname{rot} X,$$

$$d(Pdy \land dz + Qdz \land dx + Rdx \land dy) \longleftrightarrow \operatorname{div} X.$$

Definition 1.1.46 k-th de Rham cohomology

For $U \in \mathcal{O}_n$, the k-th **de Rham cohomology** of U is the quotient vector space

$$H^{k}(U) = \frac{\{\text{closed } k\text{-forms on } U\}}{\{\text{exact } k\text{-forms on } U\}}.$$

Proposition 1.1.47 Poincaré lemma

For $k \ge 1$, every closed k-form on \mathbb{R}^n is exact, i.e., $H^k(\mathbb{R}^n)$ vanishes.

1.2 Manifolds

Definition 1.2.1 Locally Euclidean space

A topological space M is **locally Euclidean of dimension** n if $\forall p \in M, \exists (U, \phi)$, with a neighborhood U at p and a homeomorphism $\phi: U \to V \in \mathcal{O}_n$, called a **chart**, a **coordinate neighborhood** or a **coordinate open set**, and ϕ a **coordinate map** or a **coordinate system** on U.

A chart (U, ϕ) is said to be **centered** at $p \in U$ if $\phi(p) = 0$.

Definition 1.2.2 Topological manifold

A **topological manifold of dimension** n is a Hausdorff, second countable, locally Euclidean space of dimension n.

Definition 1.2.3 Compatible chart

Two charts $(U, \phi: U \to \mathbb{R}^n)$, $(V, \psi: V \to \mathbb{R}^n)$ of a topological manifold are said to be \mathbb{C}^{∞} -compatible or simply **compatible** if

$$\phi \circ \psi^{-1} : \psi(U \cap V) \to \phi(U \cap V), \quad \psi \circ \phi^{-1} : \phi(U \cap V) \to \psi(U \cap V)$$

called the **transition functions** between charts are C^{∞} . If $U \cap V = \emptyset$, they are C^{∞} -compatible.

Definition 1.2.4 Atlas on a locally Euclidean space

A C^{∞} **atlas** or simply an **atlas** on a locally Euclidean space M is a collection $\mathfrak{U} = \{(U_{\alpha}, \phi_{\alpha})\}$ of pairwise compatible charts that cover M.

Definition 1.2.5 Compatibility of a chart with an atlas

For a locally Euclidean space, a chart (V, ψ) is compatible with an atlas $\{(U_\alpha, \phi_\alpha)\}$ if all charts (U_α, ϕ_α) are compatible with (V, ψ) .

Lemma 1.2.6 Charts compatible with the same atlas are compatible with each other

For a locally Euclidean space, charts (V, ψ) , (W, σ) , and an atlas $\{(U_\alpha, \phi_\alpha)\}$ on it, if (V, ψ) and (W, σ) are both compatible with $\{(U_\alpha, \phi_\alpha)\}$, then they are compatible with each other.

Definition 1.2.7 Maximal Atlas on a locally Euclidean space

An atlas $\mathfrak M$ on a locally Euclidean space is **maximal** if for another atlas $\mathfrak U$, $\mathfrak M \subset \mathfrak U$ implies $\mathfrak M = \mathfrak U$.

Definition 1.2.8 Smooth manifold

A **smooth** or C^{∞} **manifold** is a topological manifold M with a maximal atlas called a **differentiable structure** on M. M is said to be of dimension n if all of its connected components are of dimension n, and then M is called a **n-manifold**. A 1-manifold is also called a **curve**, a 2-manifold a **surface**.

Proposition 1.2.9 A locally Euclidean space with an atlas has a maximal atlas

In a locally Euclidean space, any atlas is contained in a unique maximal atlas.

Definition 1.2.10 Conventions of manifold

- i) A manifold means a smooth manifold.
- **ii**) The standard coordinates on \mathbb{R}^n is denoted by r^1, \dots, r^n .
- **iii**) For a chart (U, ϕ) of a manifold, let $x^i = r^i \circ \phi$ the *i*-th component of ϕ , and write $\phi = (x^1, \dots, x^n)$ and $(U, \phi) = (U, x^1, \dots, x^n)$. x^1, \dots, x^n are called **coordinates** or **local coordinates** on U.
- **iv**) The notation $(x^1, ..., x^n)$ means alternately the local coordinates on U and a point in \mathbb{R}^n
- **v**) A **chart** (U, ϕ) **about** p in a manifold M means a chart in the differentiable structure of M such that $p \in U$.

Proposition 1.2.11 Product manifold

For a *m*-manifold *M* and *n*-manifold *N*, and atlases $\{(U_{\alpha}, \phi_{\alpha})\}$ of *M* and $\{(V_{\alpha'}, \psi_{\alpha'})\}$ of *N*, the collection

$$\{(U_{\alpha} \times V_{\alpha'}, \phi_{\alpha} \times \psi_{\alpha'}: U_{\alpha} \times V_{\alpha'} \rightarrow \mathbf{R}^m \times \mathbf{R}^n)\}$$

is an atlas on $M \times N$, and therefore $M \times N$ is a manifold of dimension m + n.

Definition 1.2.12 Smooth function on a manifold

For a smooth n-manifold M, a function $f: M \to R$ is said to be C^{∞} or **smooth at a point** $p \in M$ if, for some chart (U, ϕ) about $p, f \circ \phi^{-1} : \phi(U) \to R^n$ is C^{∞} at $\phi(p)$; C^{∞} **on** M if it is smooth at every point.

Proposition 1.2.13 Smoothness of real-valued functions

For a *n*-manifold M and a function $f: M \to R$, the following are equivalent:

- i) f is C^{∞} .
- **ii**) There exists an atlas \mathfrak{U} for M, for any $(U, \phi) \in \mathfrak{U}$, $f \circ \phi^{-1}$ is C^{∞} .
- **iii**) For any chart (U, ϕ) on M, $f \circ \phi^{-1}$ is C^{∞} .

Definition 1.2.14 Pullback of a function by a map

For manifolds M, N, the **pullback** of $h: M \to R$ by $F: N \to M$ is $F^*h = h \circ F$.

Definition 1.2.15 Smooth map between manifolds

For a *m*-manifold M and n-manifold N, a continuous map $F: N \to M$ is C^{∞} **at a point** $p \in N$ if, for some chats (U, ϕ) about p and (V, ψ) about F(p), $\psi \circ F \circ \phi^{-1}$ is C^{∞} at $\phi(p)$; C^{∞} if it is C^{∞} at every point.

Proposition 1.2.16 Smoothness of maps is independent of charts

Let M be a m-manifold, N a n-manifold, and $F: N \to M$ be C^{∞} at $p \in N$. Then, for any charts (U, ϕ) about p and (V, ψ) about F(p), $\psi \circ F \circ \phi^{-1}$ is C^{∞} at $\phi(p)$.

Proposition 1.2.17 Smoothness of a map in terms of charts

For a *m*-manifold *M* and *n*-manifold *N*, and a continuous map $F: N \to M$, the following are equivalent:

- i) F is C^{∞} .
- **ii**) There exists at lases $\mathfrak U$ for N and $\mathfrak V$ for M, for any $(U,\phi)\in \mathfrak U$ and $(V,\psi)\in \mathfrak V$, $\psi\circ F\circ \phi^{-1}$ is C^∞ .
- **iii**) For any chart (U, ϕ) on N and (V, ψ) on M, $\psi \circ F \circ \phi^{-1}$ is C^{∞} .

Proposition 1.2.18 Composite of smooth maps is also smooth

For manifolds M, N, P and C^{∞} maps $F: N \to M$, $G: M \to P$, $G \circ F: N \to P$ is also C^{∞} .

Definition 1.2.19 Diffeomorphism of manifolds

A **diffeomorphism** of manifolds is a bijective C^{∞} map whose inverse is also C^{∞} .

Proposition 1.2.20 Coordinate map is a diffeomorphism

A coordinate map $\phi: U \to \phi(U) \subset \mathbb{R}^n$ for a manifold with a chart (U, ϕ) is a diffeomorphism.

Proposition 1.2.21 Diffeomorphism into an Euclidean space is a coordinate map

For an open subset U of a manifold M with the differentiable structure \mathfrak{U} , if $F:U\to F(U)$ is a diffeomorphism, then $(U,F)\in\mathfrak{U}$.

Proposition 1.2.22 Smoothness of a vector-valued function

For a continuous map $F: N \to \mathbb{R}^m$ on a manifold M, the following are equivalent:

- i) F is C^{∞} .
- **ii**) There exists an atlas $\mathfrak U$ for M, for any $(U,\phi)\in \mathfrak U$, $F\circ \phi^{-1}$ is C^{∞} .
- **iii**) For any chart (U, ϕ) on $M, F \circ \phi^{-1}$ is C^{∞} .

Proposition 1.2.23 Vector-valued function is smooth iff its components are all smooth

For a vector-valued function $F = (F^1, \dots, F^m) \colon M \to \mathbb{R}^m$ on a manifold M, F is C^{∞} iff F^1, \dots, F^m are all C^{∞} .

Proposition 1.2.24 Smoothness of a map in terms of vector-valued functions

For a continuous map $F: N \to M$ between a m-manifold M and n-manifold N, the following are equivalent:

- i) F is C^{∞} .
- **ii**) There exists an atlas \mathfrak{U} for M, for any $(U, \phi) \in \mathfrak{U}$, $\phi \circ F$ is C^{∞} .

iii) For any chart (U, ϕ) on $M, \phi \circ F$ is C^{∞} .

Proposition 1.2.25 Smoothness of a map in terms of components

For a continuous map $F: N \to M$ between a m-manifold M and n-manifold N, the following are equivalent:

- i) F is C^{∞} .
- **ii**) There exists an atlas $\mathfrak U$ for M, for any $(U, \phi^1, \dots, \phi^m) \in \mathfrak U$, the components $\phi^i \circ F$ of F relative to the chart are all C^{∞} .
- **iii**) For any chart $(U, \phi^1, \dots, \phi^m)$ on M, the components $\phi^i \circ F$ of F relative to the chart are al C^{∞} .

2 P-ADIC NUMBERS

[4]

2.1 Foundations

Definition 2.1.1 Absolute value on a field

An **absolute value** on a field K is a function $| : K \to R_{\geq 0}$ that satisfies:

i)
$$|x| = 0$$
 iff $x = 0$

ii)
$$\forall x, y \in K$$
, $|xy| = |x||y|$

iii)
$$\forall x, y \in K$$
, $|x + y| \le |x| + |y|$.

An absolute value that satisfies the condition

iv)
$$\forall x, y \in K$$
, $|x + y| \le \max\{|x|, |y|\}$

is said to be **non-archimedean**; otherwise, it is said to be **archimedean**.

Definition 2.1.2 Trivial absolute value

The **trivial absolute value** on a field *K* is a absolute value on *K* such that

$$|x| = \begin{cases} 1 & \text{for } x \neq 0 \\ 0 & \text{for } x = 0 \end{cases}$$

An absolute value on a finite field must be trivial.

Definition 2.1.3 Valuation on a field

A function $v : A^{\times} \to R$ with an integral domain A is called a **valuation** on A if it satisfies the following conditions:

i)
$$\forall x, y \in \mathbf{A}^{\times}$$
, $v(xy) = v(x) + v(y)$

ii)
$$\forall x, y \in \mathbf{A}^{\times}$$
, $v(x+y) \ge \min\{v(x), v(y)\}$

2 P-ADIC NUMBERS 2.1 Foundations

Definition & Proposition 2.1.4 Value group of a valuation

The image of a valuation v on a field is an additive subgroup of R. im v is called the **value group** of v.

Proposition 2.1.5 Correspondence between valuations and nonarchimedean absolute values

Let **A** be an integral domain and $K = \operatorname{Frac} A$. Let $v : A^{\times} \to R$ be a valuation on **A** and extend v to K by setting v(a/b) = v(a) - v(b), then the function $|\cdot|_{v} : K \to R_{\geq 0}$ defined by

$$|x|_{v} = \begin{cases} e^{-v(x)} & \text{for } x \neq 0\\ 0 & \text{for } x = 0 \end{cases}$$

is a non-archimedean absolute value on K. Conversely, $-\log | |$ is a valuation on K for a non-archimedean absolute value | | on K.

Definition 2.1.6 p-adic valuation

The *p*-adic valuation on Q with a prime p is a valuation $v_p : Q^{\times} \to R$ defined as follows: for each $n \in Z^{\times}$, let $v_p(n)$ be the greatest integer such that $p^{v_p(n)} \mid n$, and for each $x = a/b \in Q^{\times}$, $v_p(x) = v_p(a) - v_p(b)$.

We often set $v_p(0) = \infty$.

Definition 2.1.7 p-adic absolute value

The *p*-adic absolute value $| \ |_p \colon Q \to R_{\geq 0}$ with a prime *p* is defined as

$$|x|_p = p^{-v_p(x)}, \quad |0| = 0.$$

The usual absolute value is looked as $| = | = |_{\infty}$.

Definition 2.1.8 Absolute values on a field of rational functions

Here are some absolute values on a field F(t) of rational functions over a field F.

i) For $f(t) \in \mathbf{F}[t]$, $v_{\infty}(f) = -\deg f$, and for $f(t)/g(t) \in \mathbf{F}(t)$, $v_{\infty}(f/g) = v_{\infty}(f) - v_{\infty}(g)$ with $v_{\infty}(0) = \infty$. Then,

$$|f(t)|_{\infty} = e^{-v_{\infty}(f)}$$
.

ii) For an irreducible polynomial $p(t) \in F[t]$, define the p(t)-adic valuation and absolute value.

Lemma 2.1.9 Properties of absolute values on fields

For an absolute value | | on a field *K*,

- i) |1| = 1,
- **ii**) $\forall x \in K$, $|x^n| = 1 \Rightarrow |x| = 1$,
- **iii**) $\forall x \in K$, |-x| = |x|,
- iv) If K is finite, then | | is trivial.

Theorem 2.1.10 Necessary and sufficient conditions of a non-archimedean absolute value

Let K be a field, | | an absolute value on K. Then,

| | is non-archimedean
$$\iff \forall n = 1 + \dots + 1 \in K, |n| \le 1$$

 $\iff \sup\{|n| \mid n \in Z\} = 1.$

Furthermore, $\sup\{|n| \mid n \in \mathbb{Z}\} = \infty$ if $|\cdot|$ is archimedean.

Definition 2.1.11 Distance induced from an absolute value on a field

Given a field K with an absolute value $|\cdot|$, define the distance $d: K \times K \to R$ by d(x, y) = |x - y|, which makes K into a metric space.

Proposition 2.1.12 Field can be a topological field with the induced distance

2 P-ADIC NUMBERS 2.1 Foundations

For a field K with the distance $d: K \times K \to R$ induced from an absolute value on K, addition, multiplication and taking inverse are all continuous: fix points $x_0, y_0 \in K$, then

$$\mathscr{Q} \ \forall \epsilon > 0, \exists \delta > 0, \forall x, y \in K, \ d(x, x_0), d(y, y_0) < \delta \Longrightarrow d(x + y, x_0 + y_0) < \epsilon,$$

$$\mathscr{Q} \ \forall \epsilon > 0, \exists \delta > 0, \forall x, y \in K, \ d(x, x_0), d(y, y_0) < \delta \Longrightarrow d(x - y, x_0 - y_0) < \epsilon,$$

$$\mathscr{Q} \ \forall \epsilon > 0, \exists \delta > 0, \forall x \in \mathbf{K}, \ d(x, x_0) < \delta \Longrightarrow d(1/x, 1/x_0) < \epsilon.$$

Definition & Proposition 2.1.13 Ultrametric space with a non-archimedean absolute value

For a field K with the distance d induced from an absolute value | | on K, | | is non-archimedean iff $d(x,y) \le \max\{d(x,z),d(z,y)\}$. This inequality is called the **ultrametric inequality**, a metric which holds the ultrametric inequality an **ultrametric**, and a space with an ultrametric an **ultrametric** space.

Proposition 2.1.14 Non-archimedean absolute value of a sum is the max of the two

For a field K with a non-archimedean absolute value $|\cdot|$ on K, and $x, y \in K$ with $|x| \neq |y|$, $|x + y| = \max\{|x|, |y|\}$.

Corollary 2.1.15 Triangle on an ultrametric space is isosceles

In an ultrametric space, all triangles are isosceles.

Definition 2.1.16 Open ball and closed ball on a field with an absolute value

In a field K with an absolute value $| \cdot |$, an **open ball** of radius r > 0 and center $a \in K$ is

$$B(a, r) = \{x \in \mathbf{K} \mid |x - a| < r\};$$

a closed ball is

$$\overline{B}(a,r) = \{x \in \mathbf{K} \mid |x - a| \le r\}.$$

2 P-ADIC NUMBERS 2.1 Foundations

Proposition 2.1.17 Properties of an open ball and closed ball with a non-archimedean absolute value

Let K be a field with a non-archimedean absolute value, and $a, b \in K$, r, s > 0.

- i) $b \in B(a,r) \Longrightarrow B(a,r) = B(b,r)$,
- **ii**) $b \in \overline{B}(a, r) \Longrightarrow \overline{B}(a, r) = \overline{B}(b, r)$,
- iii) B(a, r) is clopen,
- **iv**) $\overline{B}(a, r)$ is clopen,
- **v**) $B(a,r) \cap B(b,s) \iff B(a,r) \subset B(b,s) \text{ or } B(a,r) \supset B(b,s).$
- **vi**) $\overline{B}(a,r) \cap \overline{B}(b,s) \iff \overline{B}(a,r) \subset \overline{B}(b,s) \text{ or } \overline{B}(a,r) \supset \overline{B}(b,s).$

3 Lie Algebras

[5]

3.1 Foundations

Definition 3.1.1 Lie algebra

A vector space \mathfrak{g} over a field K with the Lie bracket satisfying the conditions

- i) Lie bracket is bilinear
- **ii**) $\forall x \in \mathfrak{g}, [x, x] = 0$
- **iii**) $\forall x, y, z \in \mathfrak{g}$, [[x, y], z] + [[y, z], x] + [[z, x], y] = 0

is called a **Lie algebra** over **K**.

Definition 3.1.2 General linear Lie algebra

 $\mathfrak{gl}_n(\mathbf{R})$ is the Lie algebra $M_n(\mathbf{R})$ with the Lie bracket [x, y] = xy - yx.

Definition 3.1.3 Derivation algebra

A linear endomorphism D of an algebra A over R satisfying D(xy) = D(x)y + xD(y) is called a **derivation** of A. The set of all derivations Der A with the addition, scaler multiplication, and lie bracket defined as follows:

i)
$$(D + D')(x) = D(x) + D'(x)$$

ii)
$$(\alpha D)(x) = \alpha D(x)$$

iii)
$$[D, D'](x) = D(D'(x)) - D'(D(x))$$

is a Lie algebra called the **derivation algebra** of **A**.

Definition 3.1.4 Lie subalgebra

3 Lie Algebras 3.1 Foundations

A linear subspace $\mathfrak{h} \subset \mathfrak{g}$ of a Lie algebra \mathfrak{g} is a **Lie subalgebra** of \mathfrak{g} if $\forall x, y \in \mathfrak{h}$, $[x, y] \in \mathfrak{h}$.

For linear subspaces $\mathfrak{a}, \mathfrak{b} \subset \mathfrak{g}$, $[\mathfrak{a}, \mathfrak{b}]$ denotes the subspace generated by [x, y] with $x \in \mathfrak{a}, y \in \mathfrak{b}$.

Definition & Proposition 3.1.5 Special linear Lie algebra

 $\mathfrak{sl}_n(\mathbf{R}) = \{x \in \mathfrak{gl}_n(\mathbf{R}) \mid \text{tr } x = 0\} \text{ is a Lie subalgebra of } \mathfrak{gl}_n(\mathbf{R}).$

Definition & Proposition 3.1.6 Orthogonal Lie algebra

 $\mathfrak{o}(n) = \{x \in \mathfrak{gl}_n(\mathbf{R}) \mid {}^t x = -x \}$ is a Lie subalgebra of $\mathfrak{sl}_n(\mathbf{R})$.

Definition & Proposition 3.1.7 Ideal of a Lie algebra

A linear subspace $\mathfrak{h} \subset \mathfrak{g}$ of a Lie algebra \mathfrak{g} is an **ideal** of \mathfrak{g} if $\forall x \in \mathfrak{g}, y \in \mathfrak{h}$, $[x, y] \in \mathfrak{h}$. For ideals $\mathfrak{a}, \mathfrak{b} \subset \mathfrak{g}, [\mathfrak{a}, \mathfrak{b}]$ is also an ideal.

Definition 3.1.8 Derived ideal of a Lie algebra

For a Lie algebra \mathfrak{g} , $D\mathfrak{g} = [\mathfrak{g}, \mathfrak{g}]$ is an ideal of \mathfrak{g} called the **derived ideal** of \mathfrak{g} . If $\mathfrak{g} = \mathfrak{gl}_n(R)$, $D\mathfrak{g} = \mathfrak{sl}_n(R)$.

Definition & Proposition 3.1.9 Homomorphism of Lie algebras

For Lie algebras \mathfrak{g} , \mathfrak{h} , a linear map $\varphi \colon \mathfrak{g} \to \mathfrak{h}$ is called a **homomorphism** if $\forall x, y \in \mathfrak{g}$, $\varphi([x,y]) = [\varphi(x), \varphi(y)]$. A homomorphism φ is an **isomorphism** if it is bijective. Lie algebras between which there exists an isomorphism are said to be **isomorphic** to each other, written $\mathfrak{g} \cong \mathfrak{h}$.

A composite of homomorphisms is also a homomorphism, and that of isomorphisms is also an isomorphism.

The kernel ker $\varphi = \{x \in \mathfrak{g} \mid \varphi(x) = 0\}$ of a homomorphism φ is an ideal of \mathfrak{g} while the

3 LIE ALGEBRAS 3.1 Foundations

image im $\varphi = \varphi(\mathfrak{g})$ of φ is a Lie subalgebra of \mathfrak{h} .

Definition 3.1.10 Representation of a Lie algebra on a vector space

For a Lie algebra \mathfrak{g} and a vector space V, a homomorphism $\rho \colon \mathfrak{g} \to \mathfrak{gl}(V)$ is called a **representation** of \mathfrak{g} on V.

Definition & Proposition 3.1.11 Adjoint representation of a Lie algebra

For a Lie algebra \mathfrak{g} and $x \in \mathfrak{g}$, define a derivation $\operatorname{ad}(x) \colon \mathfrak{g} \to \mathfrak{g}$ by $\operatorname{ad}(x)(y) = [x, y]$. A representation $\operatorname{ad} \colon \mathfrak{g} \ni x \mapsto \operatorname{ad}(x) \in \mathfrak{gl}(\mathfrak{g})$ is called the **adjoint representation** of \mathfrak{g} . The **center** of \mathfrak{g} is $\mathfrak{z} = \ker(\operatorname{ad})$, which is a commutative ideal. $\operatorname{im}(\operatorname{ad})$ is an ideal of $\operatorname{Der} \mathfrak{g}$. A derivation $\operatorname{ad}(x)$ is called a **inner derivation** of \mathfrak{g} .

Definition 3.1.12 Quotient algebra for Lie algebras

For a Lie algebra g and an ideal $\mathfrak{a} \subset \mathfrak{g}$, the **quotient algebra** is

$$\mathfrak{g}/\mathfrak{a} = \{\overline{x} = x + \mathfrak{a} \mid x \in \mathfrak{g}\}\$$

with canonical operations, where $\overline{x} = \{y \in \mathfrak{g} \mid x \equiv y \pmod{\mathfrak{a}}\} = \{x + a \mid a \in \mathfrak{a}\}$ called the *class* of x. The homomorphism $\varphi \colon \mathfrak{g} \ni x \mapsto \overline{x} \in \mathfrak{g}/\mathfrak{a}$ is called the *canonical homomorphism*.

Theorem 3.1.13 The first isomorphism theorem for Lie algebras

For Lie algebras \mathfrak{g} , \mathfrak{h} and a homomorphism $\varphi \colon \mathfrak{g} \to \mathfrak{h}$,

$$\mathfrak{g}/\ker\varphi\cong\operatorname{im}\varphi$$
.

Theorem 3.1.14 The second isomorphism theorem for Lie algebras

For a Lie algebra \mathfrak{g} , an ideal $\mathfrak{a} \subset \mathfrak{g}$, a Lie subalgebra $\mathfrak{h} \subset \mathfrak{g}$ and the canonical homomor-

phism $\varphi \colon \mathfrak{g} \to \mathfrak{g}/\mathfrak{a}$,

$$\mathfrak{h}/(\mathfrak{h}\cap\mathfrak{a})\cong(\mathfrak{h}+\mathfrak{a})/\mathfrak{a}.$$

3.2 Solvable and Nilpotent Lie algebras

Definition 3.2.1 Solvable Lie algebra

Let g be a Lie algebra, and

$$D^0 \mathfrak{g} = \mathfrak{g}$$
, $D^k \mathfrak{g} = D(D^{k-1} \mathfrak{g})$, $k = 1, 2, ...$

 \mathfrak{g} is said to be **solvable** if $D^r\mathfrak{g} = \{0\}$ for some r called the **length** of \mathfrak{g} .

Example 3.2.2 Lie algebra of triangular matrices is solvable

Let

$$\mathfrak{g}_0 = \{ \xi = (\xi_{ij}) \in \mathfrak{gl}_n(\mathbf{R}) \mid \xi \text{ is upper triangular} \},$$

 $\mathfrak{g}_k = \{ \xi = (\xi_{ij}) \in \mathfrak{gl}_n(\mathbf{R}) \mid \xi_{ij} = 0 \text{ for } j - i < k \}.$

Then, $[\mathfrak{g}_0,\mathfrak{g}_0]\subset\mathfrak{g}_1$, $[\mathfrak{g}_k,\mathfrak{g}_\ell]\subset\mathfrak{g}_{k+\ell}$, $k,\ell=0,1,\ldots$, and \mathfrak{g}_0 is a solvable Lie algebra of length $\leq n$.

Theorem 3.2.3 Lie subalgebra of a solvable Lie algebra is also solvable

For a solvable Lie algebra \mathfrak{g} , its Lie subalgebra $\mathfrak{h} \subset \mathfrak{g}$ is also solvable, and if \mathfrak{h} is an ideal, $\mathfrak{g}/\mathfrak{h}$ is also solvable.

Theorem 3.2.4 Lie algebra whose ideal and quotient algebra over it are solvable is solvable

For a Lie algebra g and its ideal $\alpha \subset g$, if α and g/α are both solvable, then g is also solvable.

Definition 3.2.5 Nilpotent Lie algebra

Let g be a Lie algebra, and

$$C^0 \mathfrak{g} = \mathfrak{g}, \quad C^k \mathfrak{g} = [\mathfrak{g}, C^{k-1} \mathfrak{g}], \quad k = 1, 2, \dots$$

 \mathfrak{g} is said to be **nilpotent** if $C^s\mathfrak{g} = \{0\}$ for some s called the **length** of \mathfrak{g} . Since $D^k\mathfrak{g} \subset C^k\mathfrak{g}$, a nilpotent Lie algebra is solvable.

Example 3.2.6 Lie algebra of strictly triangular matrices is nilpotent

 g_1 in [Example 3.2.2] is nilpotent while g_0 there is not.

Theorem 3.2.7 Lie subalgebra of a nilpotent Lie algebra is also nilpotent

For a nilpotent Lie algebra \mathfrak{g} , its Lie subalgebra $\mathfrak{h} \subset \mathfrak{g}$ is also nilpotent, and if \mathfrak{h} is an ideal, $\mathfrak{g}/\mathfrak{h}$ is also nilpotent.

Theorem 3.2.8 Center of a nilpotent Lie algebra is nontrivial

For a Lie algebra $\mathfrak g$ and its center $\mathfrak z, \mathfrak z \neq \{0\}$ if $\mathfrak g$ is nilpotent while $\mathfrak g$ is nilpotent if $\mathfrak g/\mathfrak z$ is nilpotent.

Lemma 3.2.9 Adjoint representation in a nilpotent Lie algebra is nilpotent

For a nilpotent Lie algebra \mathfrak{g} and $x \in \mathfrak{g}$, ad x is nilpotent. (i.e., $(\operatorname{ad} x)^s = 0$ for some s).

Theorem 3.2.10 Engel's Theorem

For a Lie algebra g, if ad x is nilpotent for any $x \in g$, then g is nilpotent.

Theorem 3.2.11 Matrix of a representation of a Lie algebra whose representations are all nilpotent is strictly upper triangular

For a representation $\rho: \mathfrak{g} \to \mathfrak{gl}(V)$ of a Lie algebra \mathfrak{g} on a vector space V, if $\rho(x)$ is nilpotent

3 Lie Algebras

for any $x \in \mathfrak{g}$, then a matrix of $\rho(x)$ is strictly upper triangular for some basis for V.

4 CATEGORIES

[1]

4.1 Foundations

Definition 4.1.1 Category

A **category** consists of the followings:

- Objects A, B, C, . . .
- \mathcal{P} **Arrows** f, g, h, ... with the objects called the domain dom f and the codomain cod f.
- **Composites** $g \circ f : A \to C$ for given arrows $f : A \to B$ and $g : B \to C$.
- *B* **Identity arrow** 1_A of each object A.

satisfying the following laws:

- **i**) \forall arrows $f: A \rightarrow B, g: B \rightarrow C, h: C \rightarrow D, h \circ (g \circ f) = (h \circ g) \circ f$
- **ii**) \forall arrow $f: A \rightarrow B$, $f \circ 1_A = f = 1_B \circ f$.

Definition 4.1.2 Functor between categories

A **functor** $F: \mathscr{A} \to \mathscr{B}$ between categories \mathscr{A} and \mathscr{B} is a mapping between objects and between arrows in the following ways:

- i) $F(f: A \rightarrow B) = F(f): F(A) \rightarrow F(B)$,
- **ii**) $F(1_A) = 1_{F(A)}$,
- **iii**) $F(g \circ f) = F(g) \circ F(f)$.

Definition 4.1.3 Isomorphism between categories

4 CATEGORIES 4.1 Foundations

In a category \mathscr{C} , an arrow $f: A \to B$ is called an **isomorphism** if

$$\exists g = f^{-1} \colon B \to A, \ g \circ f = 1_A, \ f \circ g = 1_B.$$

If there is an isomorphism between objects A and B, A is said to be **isomorphic** to B, written $A \cong B$.

Theorem 4.1.4 Category is isomorphic to its Cayley representation

For a category $\mathscr C$ with a set of arrows, the Cayley representation $\overline{\mathscr C}$ of $\mathscr C$, consisting of

$$\mathscr{Q}$$
 object $\overline{C} = \{ f \in \mathscr{C} \mid \operatorname{cod} f = C \}$ for an object $C \in \mathscr{C}$,

$$\mathscr{Q}$$
 arrow $\overline{g} \colon \overline{C} \to \overline{D}$ for an arrow $g \colon C \to D$ such that $\overline{g}(f) = g \circ f$,

is isomorphic to \mathscr{C} .

Definition 4.1.5 Product of two categories

The **product** $\mathscr{C} \times \mathscr{D}$ of categories \mathscr{C} and \mathscr{D} consists of

 \mathscr{D} object (C, D) for objects $C \in \mathscr{C}$, $D \in \mathscr{D}$,

$$\mathscr{D}$$
 arrow $(f,g):(C,D)\to(C',D')$ for arrows $f:C\to C',g:D\to D'$,

with composition $(f, g) \circ (f', g') = (f \circ f', g \circ g')$ and units $1_{(C,D)} = (1_C, 1_D)$.

The **projection functors** $\pi_1: \mathscr{C} \times \mathscr{D} \to \mathscr{C}$ and $\pi_2: \mathscr{C} \times \mathscr{D} \to \mathscr{D}$ is defined by $\pi_1(\mathcal{C}, \mathcal{D}) = \mathcal{C}$ and $\pi_1(f, g) = f$, and similarly for π_2 .

Definition 4.1.6 Dual category

For a category \mathscr{C} , its **dual** or **opposite category** \mathscr{C}^{op} consists of

 \mathscr{D} object $C^* = C$ for an object $C \in \mathscr{C}$,

 \mathscr{D} arrow $f^*: D^* \to C^*$ for an arrow $f: C \to D$,

with composition $f^* \circ g^* = (g \circ f)^*$ and units $1_{C^*} = (1_C)^*$.

4 CATEGORIES 4.1 Foundations

Definition 4.1.7 Arrow category

For a category \mathscr{C} , its **arrow category** $\mathscr{C}^{\rightarrow}$ consists of

 \mathscr{Q} object $f: C \to D$ for an arrow f in \mathscr{C} ,

 \mathscr{Q} arrow (g_1, g_2) : $f \to f'$, where $f: A \to B$, $f': A' \to B'$, $g_1: A \to A'$, $g_2: B \to B'$ in \mathscr{C} , such that $g_2 \circ f = f' \circ g_1$,

with composition $(g_1, g_2) \circ (h_1, h_2) = (g_1 \circ h_1, g_2 \circ h_2)$ and units $1_f = (1_A, 1_B)$.

There are two functors dom, cod: $\mathscr{C}^{\rightarrow} \rightarrow \mathscr{C}$.

Definition 4.1.8 Slice category

For a category \mathscr{C} , its **slice category** \mathscr{C}/C over $C \in \mathscr{C}$ consists of

 \varnothing object $f: X \to C$,

 \mathscr{Q} arrow $a: X \to X'$ for arrows $f: X \to C$, $f': X' \to C$ such that $f' \circ a = f$,

with composition and units from those of \mathscr{C} .

 $U: \mathscr{C}/C \to \mathscr{C}$ with $U(f: X \to C) = X$ and $U(a: X \to X') = a$ is a functor.

5 Functional Analysis

[2]

5.1 Hahn-Banach Theorems

Theorem 5.1.1 Hahn-Banach of analytic form

Let $p: E \to \mathbf{R}$ be a sublinear function on a vector space E (i.e., $\forall \lambda > 0, x, y \in E$, $p(\lambda x) = \lambda p(x), p(x+y) \le p(x) + p(y)$), $G \subset E$ a linear subspace, and $g: G \to \mathbf{R}$ a linear functional such that $\forall x \in G$, $g(x) \le p(x)$. Then, \exists a linear functional $f: E \to \mathbf{R}$ that extends g and that $\forall x \in E$, $f(x) \le p(x)$.

Definition 5.1.2 Norm on the dual space of a normed space

For a normed space E, the **dual norm** on E^* is defined by

$$||f||_{E^*} = \sup_{\substack{||x|| \le 1 \\ x \in E}} |f(x)| = \sup_{\substack{||x|| \le 1 \\ x \in E}} f(x).$$

Definition 5.1.3 Scalar product for the duality

For a vector space E and its dual space E^* , $\langle , \rangle : E^* \times E \to R$ defined by $\langle f, x \rangle = f(x)$ is called the **scalar product for the duality** E, E^* .

Definition 5.1.4 Strictly convex normed space

A normed space *E* is said to be **strictly convex** if $\forall t \in (0, 1), x, y \in E$ with ||x|| = ||y|| = 1, ||tx + (1 - t)y|| < 1 except for x = y.

Corollary 5.1.5 Hahn-Banach of alternate form

For a continuous linear functional $g: G \to R$ on a linear subspace $G \subset E$ of a normed space $E, \exists f \in E^*$ that extends g and that $\|f\|_{E^*} = \|g\|_{G^*}$.

In the case when $G = \mathbf{R}x_0$ and $g(tx_0) = t \|x_0\|^2$ for a given $x_0 \in E$, $\exists f_0 \in E^*$ such that $\|f_0\| = \|x_0\|$ and $\langle f_0, x_0 \rangle = \|x_0\|^2$. If E^* is strictly convex, then f_0 is unique.

Definition 5.1.6 Duality map from a normed space into its dual space

For a normed space E and $x_0 \in E$, define

$$F(x_0) = \{f_0 \in E^* \mid ||f_0|| = ||x_0||, \langle f_0, x_0 \rangle = ||x_0||^2\}.$$

The **duality map** from E into E^* is a multivalued map $x_0 \mapsto F(x_0)$.

Corollary 5.1.7 Norm of a vector is the max of its scalar product

For a normed space E and $x \in E$,

$$||x|| = \sup_{\substack{f \in E^* \\ ||f|| < 1}} |\langle f, x \rangle| = \max_{\substack{f \in E^* \\ ||f|| \le 1}} |\langle f, x \rangle|.$$

Definition 5.1.8 Affine hyperplane of a normed space

For a normed space E and a linear functional $f: E \to R$, an affine **hyperplane** is a subset $H = \{x \in E \mid f(x) = \alpha\} \subset E$ with $\alpha \in R$, written $H = [f = \alpha]$. $f = \alpha$ is called the **equation**.

Proposition 5.1.9 Linear functional is continuous iff its hyperplane is closed

For a linear functional $f: E \to R$ on a normed space E and $\alpha \in R$, $[f = \alpha]$ is closed iff f is continuous.

Definition 5.1.10 Separation by a hyperplane

For two subsets $A, B \subset E$ of a normed space E, the hyperplane $[f = \alpha] \subset E$ **separates** A and B if

$$\forall x \in A, y \in B, f(x) \le \alpha \le f(y);$$

strictly separates if

$$\exists \epsilon > 0, \forall x \in A, y \in B, f(x) \le \alpha - \epsilon < \alpha + \epsilon \le f(y).$$

Definition 5.1.11 Convex subset of a normed space

A subset $A \subset E$ of a normed space E is said to be **convex** if

$$\forall t \in [0, 1], x, y \in A, tx + (1 - t)y \in A.$$

Theorem 5.1.12 Hahn-Banach of first geometric form

For two disadjoint nonempty convex subsets $A, B \subset E$ of a normed space E with one of them open, \exists a closed hyperplane that separates A and B.

Definition & Proposition 5.1.13 Minkowski functional of an open convex set

Let $C \subset E$ be an open convex subset of a normed space E with $0 \in C$, and for $x \in E$

$$p(x) = \inf\{\alpha > 0 \mid \alpha^{-1}x \in C\},\$$

called the **gauge** or the **Minkowski functional** of *C*. Then, *p* satisfies the following properties:

- **i**) *p* is sublinear,
- **ii**) $\exists M, \forall x \in E, \ 0 \le p(x) \le M ||x||,$
- **iii**) $C = \{x \in E \mid p(x) < 1\}.$

Lemma 5.1.14 There exists a hyperplane that separates an open convex and outside point

For a nonempty open convex $C \subset E$ of a normed space E and $x \in E \setminus C$, $\exists f \in E^*$ such that $\forall x \in C$, $f(x) < f(x_0)$. In particular, the hyperplane $[f = f(x_0)]$ separetes $\{x_0\}$ and C.

Theorem 5.1.15 Hahn-Banach of second geometric form

For two disadjoint nonempty convex subsets A, $B \subset E$ of a normed space E with A closed and B compact, \exists a closed hyperplane that strictly separates A and B.

Corollary 5.1.16 Some linear functional can vanish on a linear subspace

For a linear subspace $F \subset E$ of a normed space E with $\overline{F} \neq E$, $\exists f \in E^*$ such that

$$\forall x \in F, \langle f, x \rangle = 0, \quad f \not\equiv 0.$$

Definition 5.1.17 Notation of a bidual space

Let *E* be a normed space, and *J*: $E \ni x \mapsto Jx \in E^{**}$ a **canonical injection** (i.e., $Jx: f \mapsto \langle f, x \rangle$, or $\langle Jx, f \rangle = \langle f, x \rangle$). Then, *J* is an **isometry**:

$$||Jx||_{E^{**}} = \sup_{\substack{f \in E^* \\ ||f|| \le 1}} |\langle Jx, f \rangle| = \sup_{\substack{f \in E^* \\ ||f|| \le 1}} |\langle f, x \rangle| = ||x||_E.$$

J can be not surjective; if J is surjective, E is said to be **reflexive**.

Definition 5.1.18 Orthogonal complement

For a linear subspace $M \subset E$ of a normed space E and a linear subspace $N \subset E^*$, their **orthogonal complements** are

$$M^{\perp} = \{ f \in E^* \mid \forall x \in M, \ \langle f, x \rangle = 0 \} \subset E^*$$
$$N^{\perp} = \{ x \in E \mid \forall f \in N, \ \langle f, x \rangle = 0 \} \subset E,$$

respectively.

Proposition 5.1.19 Relation between a linear subspace and its orthogonal complement

For a linear subspace $M \subset E$ of a normed space E and a linear subspace $N \subset E^*$,

$$(M^{\perp})^{\perp} = \overline{M}, \quad (N^{\perp})^{\perp} \supset \overline{N}.$$

If *E* is reflexive, then $(N^{\perp})^{\perp} = \overline{N}$.

6 REAL ANALYSIS AND PROBABILITY

[3]

6.1 Set Theory

7 HOMOLOGICAL ALGEBRA

[7]

7.1 Chain Complexes

Definition 7.1.1 Chain complex of R-modules

A **chain complex** C. of R-modules is a family $\{C_n\}_{n\in\mathbb{Z}}$ of R-modules with R-module maps $d_n\colon C_n\to C_{n-1}$ such that $d_{n-1}\circ d_n=0$, called the **differential**. $Z_n=Z_n(C_n):=\ker d_n$ is the module of n-**cycles** of C., and $B_n=B_n(C_n):=\operatorname{im} d_{n+1}$ is the module of n-**boundaries** of C. The n-th **homology module** of C is $H_n(C_n):=Z_n/B_n$.

A **chain complex map** $u: C_{\cdot} \to D_{\cdot}$ is a family of *R*-module homomorphisms $u_n: C_n \to D_n$ commuting with d (i.e., $u_{n-1}d_n = d_nu_n$).

Definition & Proposition 7.1.2 A category of chain complexes of R-modules

Ch(**mod**- R) is a category whose objects are chain complexes of (right) R-modules and whose arrows are chain complex maps. An arrow $u: C. \to D$. of **Ch**(**mod**- R) sends boundaries to boundaries and cycles to cycles. $H_n:$ **Ch**(**mod**- R) \to **mod**- R is a functor.

Proposition 7.1.3 Split exact sequence of vector spaces

For a family $\{B_n, H_n\}$ of vector spaces, $\{C_n = B_n \oplus H_n \oplus B_{n-1}\}$ with projection-inclusions $\pi_n \colon C_n \to B_{n-1} \subset C_{n-1}$ is a chain complex. Every chain complex of vector spaces is isomorphic to such a complex.

Definition 7.1.4 Quasi-isomorphism between chain complexes

A chain map $C. \to D$. between chain complexes C., D. is called a **quasi-isomorphism** if the maps $H_n(C.) \to H_n(D.)$ are all isomorphisms.

Definition 7.1.5 Cochain complex of R-modules

A **cochain complex** C of R-modules is a family $\{C^n\}$ of R-modules with R-module maps $d^n \colon C^n \to C^{n+1}$ such that $d^{n+1}d^n = 0$. $Z^n(C) := \ker d^n$ is the module of n-**cocycles**, and $B^n(C) := \operatorname{im} d^{n-1}$ is the module of n-**coboundaries**. The n-th **cohomology module** of C is $H^n(C) := Z^n/B^n$.

References References

References

[1] Steve Awodey. Category Theory, Second Edition. Oxford University Press, 2010.

- [2] Haim Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, 2010.
- [3] R. M. Dudley. *Real Analysis and Probability, Second Edition*. Cambridge University Press, 2010.
- [4] Fernando Q. Gouvêa. p-adic Numbers An Introduction, Second Edition. Springer, 1997.
- [5] 佐武一郎. リー環の話. 日本評論社, 1987.
- [6] Loring W. Tu. An Introduction to Manifolds, Second Edition. Springer, 2011.
- [7] Charles A. Weibel. An Introduction to Homological Algebra. Cambridge University Press, 1994.