Struck: Structured Output Tracking with Kernels

Sam Hare, Amir Saffari, And Philip H. S. Torr International Conference On Computer Vision (ICCV), 2011

Motivations

Problem: tracking-by-detection

Input: target

Output: locations over times

Performance summary

Figure 6. Performance summary for the trackers initialized with different size of bounding box. AVG (the last one) illustrates the average performance over all trackers for each scale.

Y Wu, J Lim, MH Yang "Online Object Tracking: A Benchmark", Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on

Outline

Previous works

- Tracking-by-detection
- Adaptive tracking-by-detection

Methods

- Structured output tracking
- Online optimization and budget mechanism

Experiments and results

Previous Works

Tracking problem as a detection task applied over time

S. Avidan. Support Vector Tracking. IEEE Trans. on PAMI, 26:1064–1072, 2004.

Previous Works

Tracking problem as a detection task applied over time

look for the image region with the highest SVM score

S. Avidan. Support Vector Tracking. IEEE Trans. on PAMI, 26:1064–1072, 2004.

Previous Works

Adaptive tracking-by-detection

Adaptive tracking-by-detection

Tracking: A classification task

Learning: A update the object model.

B. Babenko, M. H. Yang, and S. Belongie. Visual Tracking with Online Multiple Instance Learning. In Proc. CVPR, 2009.

Main Idea

Main Contributions

Structured output tracking

Avoid the intermediate classification step

Online learning and budgeting mechanism Prevents too many training data

Outline

Previous work

- Tracking-by-detection
- Adaptive tracking-by-detection

Methods

- Structured output tracking
- Online optimization and budget mechanism

Experiments and results

M. B. Blaschko and C. H. Lampert. Learning to Localize Objects with Structured Output Regression. In Proc. ECCV, 2008.

The output space is all transformations instead of the binary labels.

$$\mathbf{y}_{t} = f(\mathbf{x}_{t}^{\mathbf{p}_{t-1}}) = \arg\max_{\mathbf{y} \in \mathcal{Y}} F(\mathbf{x}_{t}^{\mathbf{p}_{t-1}}, \mathbf{y})$$

Structured SVM Model

The SVM score should correlate with overlapping size with the best tracking bounding box.

Algorithm 2 Struck: Structured Output Tracking

```
Require: f_t, p_{t-1}, S_{t-1}
 1: Estimate change in object location
 2: \mathbf{y}_t = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{arg\,max}} F(\mathbf{x}_t^{\mathbf{P}_{t-1}}, \mathbf{y})
 3: \mathbf{p}_t = \mathbf{p}_{t-1} \circ \mathbf{y}_t
 4: Update discriminant function
 5: (i, y_+, y_-) \leftarrow PROCESSNEW(\mathbf{x}_t^{\mathbf{P}t}, \mathbf{y}^0)
 6: SMOSTEP(i, y_+, y_-)
 7: BUDGETMAINTENANCE()
 8: for j = 1 to n_R do
 9: (i, y_+, y_-) \leftarrow PROCESSOLD()
        SMOSTEP(i, y_+, y_-)
10:
        BUDGETMAINTENANCE()
11:
        for k = 1 to n_O do
12:
        (i, y_+, y_-) \leftarrow \text{OPTIMIZE}()
            SMOSTEP(i, y_+, y_-)
14:
15:
        end for
16: end for
17: return \mathbf{p}_t, \mathcal{S}_t
```


Algorithm 2 Struck: Structured Output Tracking

```
Require: f_t, p_{t-1}, S_{t-1}
  1: Estimate change in object location
 2: \mathbf{y}_t = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{arg max}} F(\mathbf{x}_t^{\mathbf{P}_{t-1}}, \mathbf{y})
 3: \mathbf{p}_t = \mathbf{p}_{t-1} \circ \mathbf{y}_t
 4: Update discriminant function
 5: (i, \mathbf{y}_+, \mathbf{y}_-) \leftarrow \text{PROCESSNEW}(\mathbf{x}_t^{\mathbf{p}_t}, \mathbf{y}^0)
 6: SMOSTEP(i, y_+, y_-)
 7: BUDGETMAINTENANCE()
 8: for j = 1 to n_R do
         (i, y_+, y_-) \leftarrow PROCESSOLD()
         SMOSTEP(i, y_+, y_-)
10:
         BUDGETMAINTENANCE()
11:
         for k = 1 to n_O do
12:
          (i, \mathbf{y}_+, \mathbf{y}_-) \leftarrow \mathsf{OPTIMIZE}()
13:
             SMOSTEP(i, y_+, y_-)
14:
         end for
15:
16: end for
17: return p_t, S_t
```


Learner

Algorithm 2 Struck: Structured Output Tracking

Require: f_t , p_{t-1} , S_{t-1}

- 1: Estimate change in object location
- 2: $\mathbf{y}_t = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{arg\,max}} F(\mathbf{x}_t^{\mathbf{P}_{t-1}}, \mathbf{y})$
- 3: $\mathbf{p}_t = \mathbf{p}_{t-1} \circ \mathbf{y}_t$
- 4: Upaate aiscriminant junction
- 5: $(i, \mathbf{y}_+, \mathbf{y}_-) \leftarrow \text{PROCESSNEW}(\mathbf{x}_t^{\mathbf{p}_t}, \mathbf{y}^0)$

Come back

- 6: SMOSTEP (i, y_+, y_-)
- 7: BUDGETMAINTENANCE()
- 8: **fo**1
- 9:
- 10:
- 11:
- 12:
- 13:
- $SMOSTEP(i, y_+, y_-)$ 14:

later

- end for 15:
- 16: end for
- 17: **return** p_t , S_t

Structured output SVM

$$\mathbf{y}_t = f(\mathbf{x}_t^{\mathbf{p}_{t-1}}) = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{arg max}} F(\mathbf{x}_t^{\mathbf{p}_{t-1}}, \mathbf{y})$$

Learner

$$\min_{\mathbf{w}} \quad \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$$

s.t.
$$\forall i: \xi_i \geq 0$$

$$\forall i, \forall y \neq y_i : \langle w, \delta \Phi_i(y) \rangle \geq \Delta(y_i, y) - \xi_i$$

Efficient SMO optimization (CS229, EE364) Kernels (CS229)

Structured output SVM

Gaussian kernel between image feature vectors (CS229)

$$k(\mathbf{x}, \bar{\mathbf{x}}) = \exp(-\sigma \|\mathbf{x} - \bar{\mathbf{x}}\|^2),$$

Haar-like features (CS231A, CS232)

The responses of the Haar features are the input vectors of the kernel

Online optimization

Learner

Algorithm 2 Struck: Structured Output Tracking

Require: f_t, p_{t-1}, S_{t-1}

- 1: Estimate change in object location
- 2: $\mathbf{y}_t = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{arg\,max}} F(\mathbf{x}_t^{\mathbf{P}_{t-1}}, \mathbf{y})$
- 3: $\mathbf{p}_t = \mathbf{p}_{t-1} \circ \mathbf{y}_t$
- 4: Upaate aiscriminant function
- 5: $(i, y_+, y_-) \leftarrow PROCESSNEW(\mathbf{x}_t^{\mathbf{p}_t}, \mathbf{y}^0)$
- 6: SMOSTEP (i, y_+, y_-)
- 7: BUDGETMAINTENANCE()
- 8: for j = 1 to n_R do
- 9: $(i, y_+, y_-) \leftarrow PROCESSOLD()$
- 10: SMOSTEP (i, y_+, y_-)
- 11: BUDGETMAINTENANCE()
- 12: **for** k = 1 to n_O **do**
- 13: $(i, y_+, y_-) \leftarrow OPTIMIZE()$
- 14: SMOSTEP (i, y_+, y_-)
- 15: end for
- 16: end for
- 17: **return** p_t , S_t

Outline

Previous work

- Tracking-by-detection
- Adaptive tracking-by-detection

Methods

- Structured output tracking
- Online optimization and budget mechanism

Experiments and results

Online optimization

PROCESSNEW():

Processes a new example

PROCESSOLD():

Processes an existing support pattern

OPTIMIZE():

 Processes an existing support pattern chosen at random

Learner

Budget mechanism

The number of support vectors increase over time.

Computational and storage costs grow linearly with the number of support vectors.

Incorporating a budget

A budget (limit) of the number of supporting vectors.

Remove the support vector which results in the smallest change to the weight vector

Outline

Previous works

- Tracking-by-detection
- Adaptive tracking-by-detection

Methods

- Structured output tracking
- Online optimization and budget mechanism

Experiments and results

Experiments

- Haar-like features
 - 6 different types arranged on a grid at 2 scales on a 4 x 4 grid, resulting in 192 features
- Search radius 60, 5 radial and 16 angular divisions.
- Budget size is as low as B = 20, 50, 100, inf.

Dataset

http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml;
B. Babenko, M. H. Yang, and S. Belongie. Visual Tracking with Online Multiple Instance Learning. In Proc. CVPR, 2009.

Overlap criterion

Jaccard similarity of bounding boxes

$$s_{\mathbf{p}_t}^o(\mathbf{y}_t^i, \mathbf{y}_t^j) = \frac{(\mathbf{p}_t \circ \mathbf{y}_t^i) \cap (\mathbf{p}_t \circ \mathbf{y}_t^j)}{(\mathbf{p}_t \circ \mathbf{y}_t^i) \cup (\mathbf{p}_t \circ \mathbf{y}_t^j)}$$

Metric 2: Jaccard Similarity

$$100 \cdot \frac{\sum_{i=1}^{n} [\alpha_i = 1 \land f_i = 1]}{\sum_{i=1}^{n} [\alpha_i = 1 \lor f_i = 1]}$$

 α_i : estimated foreground/background label

 f_i : ground truth foreground/background label

Results

http://www.samhare.net/research/struck

Visualization of the support vector set

(a) girl (b) david

Comparison

http://www.samhare.net/research/struck

Results

Struck with the smallest budget size (B = 20) outperforms the state-of-the-art.

Average frames per second: 12 - 21.

Extensions

- Used more objection representations
 - Haar-like features
 - Raw pixel features
 - Histogram features
- Combining multiple kernels seems to improve results, but not significantly.
- Use key points and associated descriptors for object detection.
- Consider other machine learning algorithms.

Main Contributions

Structured output tracking

Avoid the intermediate classification step

Online learning and budgeting mechanism Prevents too many training data

References

- Sam Hare, Amir Saffari Philip H. S. Torr Struck: Structured Output Tracking with Kernels International Conference on Computer Vision (ICCV), 2011
- A. Bordes, L. Bottou, P. Gallinari, and J. Weston. Solving multiclass support vector machines with LaRank. In Proc. ICML, 2007.
- I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large Margin Methods for Structured and Interdependent Output Variables. JMLR, 6:1453–1484, Dec. 2005.
- K. Crammer, J. Kandola, R. Holloway, and Y. Singer. Online Classification on a Budget. In NIPS, 2003.
- P. Viola and M. J. Jones. Robust real-time face detection. IJCV, 57:137–154, 2004.

Thank you!