- 1 -

概述

TM1639是一种带键盘扫描接口的LED(发光二极管显示器)驱动控制专用IC,内部集成有MCU 数字接口、数据锁存器、LED驱动、键盘扫描等电路。本产品质量可靠、稳定性好、抗干扰能力强。 主要适用于家电设备(智能热水器、微波炉、洗衣机、空调、电磁炉)、机顶盒、电子称、智能电 表等数码管或LED显示设备。

二、 特性说明

- · 采用CMOS 工艺
- 显示模式 8段×8 位
- 键扫描 (4×2bit)
- 辉度调节电路(占空比8 级可调)
- 串行接口 (CLK, STB, DIO)
- 振荡方式: 内置RC振荡
- 内置上电复位电路
- 内置数据锁存电路
- 抗干扰能力强
- 内置针对LED反偏漏电导致暗亮问题优化电路
- 封装形式: SOP24、DIP24

三、、 管脚定义:

GRID4	1		24		GRID5
GRID3	2		23		GRID6
GND	3	1	22		GND
GRID2	4		21		GRID7
GRID1	5		20		GRID8
DIO	6		19		SEG12
CLK	7	TM1639	18		SEG11
STB	8	(TOP VIEW)	17		SEG10
КО	9		16		SEG9
K1	10		15		KS4/SEG4
VDD	11		14		KS3/SEG3
SEG1/KS1	12		13		KS2/SEG2
				J	

四、管脚功能说明:

符号	管脚名称	管脚号	说明
DIO	数据输出输入	6	在时钟上升沿输入串行数据,从低位 开始。在时钟下降沿输出串行数据,从 低位开始。输出时为N管开漏输出,外 部需要接1-10KΩ上拉电阻到VCC
CLK	时钟输入	7	在上升沿读取串行数据,下降沿输出 数据。
STB	片选输入	8	在下降沿初始化串行接口,随后等待接收指令。STB为低后的第一个字节作为指令,当处理指令时,当前其它处理被终止。当STB为高时,CLK被忽略。
K0∼K1	键扫信号输入	9~10	输入该脚的数据在显示周期结束后被 锁存,内置7.3KΩ下拉电阻
SGE1/KS1∼ SEG4/KS4	输出(段)	12~15	段输出(也用作键扫描),P管开漏输 出,内置3.6KΩ下拉电阻
GRID1∼GRID8	输出(位)	$1\sim5$ $20\sim24$	位输出, N管开漏输出, 内置2. 8KΩ上 拉电阻
SEG9 ~SEG12	输出(段)	16~19	段输出, P管开漏输出, 内置3. 6KΩ下 拉电阻
VDD	逻辑电源	11	接电源正
GND	逻辑地	3、22	接系统地

▲ 注意: DIO口输出数据时为N管开漏输出,在读键的时候需要外接1K-10K的上拉电阻。本公司推荐10K的上拉 电阻。DIO在时钟的下降沿控制N管的动作,此时读数时不稳定,在时钟的上升沿读数才时稳定。

©Titan Micro Electronics www.titanmec.com

五、指令说明:

在STB下降沿后由DIO输入的第一个字节作为一条指令。经过译码,取最高B7、B6两位比特位以区别不同的 指令。

В7	В6	指令						
0	1	数据命令设置						
1	0	显示控制命令设置						
1	1	地址命令设置						

如果在指令或数据传输时STB被置为高电平,串行通讯被初始化,并且正在传送的指令或数据无效(之前传 送的指令或数据保持有效。

5. 1 数据命令设置

该指令用来设置数据写和读,B1和B0位不允许设置01或11。

MSB						I	LSB		
В7	В6	В5	В4	ВЗ	В2	B1	ВО	功能	说明
0	1					0	0	数据读写模式	写数据到显示寄存器
0	1					1	0	设置	读键扫数据
0	1	无关	项,		0			地址增加模式	自动地址增加
0	1	填	ίO		1			设置	固定地址
0	1			0				测试模式设置	普通模式
0	1			1				(内部使用)	测试模式

5. 2 地址命令设设置

该指令用来设置显示寄存器的地址。最多有效地址为16位(COH-CFH),如果地址设为DOH或更高,数据被 忽略,直到有效地址被设定。上电时,地址默认设为COH。

MSB	LSB

				1				
В7	B6	В5	B4	ВЗ	B2	B1	В0	显示地址
1	1			0	0	0	0	СОН
1	ľ			0	0	0	1	C1H
1	1			0	0	1	0	C2H
1	1			0	0	1	1	СЗН
1	1			0	1	0	0	C4H
1	1			0	1	0	1	С5Н
1	1			0	1	1	0	С6Н
1	1	无关	项,	0	1	1	1	С7Н
1	1	填	0	1	0	0	0	C8H
1	1			1	0	0	1	С9Н
1	1			1	0	1	0	САН
1	1			1	0	1	1	СВН
1	1			1	1	0	0	ССН
1	1			1	1	0	1	CDH
1	1			1	1	1	0	СЕН
1	1			1	1	1	1	CFH

5. 3 显示控制

该指令用来设置显示的开关以及显示亮度调节。共有8级辉度可供选择进行调节。

MSB				LSB

В7	В6	В5	В4	ВЗ	B2	В1	ВО	功能	说明
1	0				0	0	0		设置脉冲宽度为 1/16
1	0				0	0	1		设置脉冲宽度为 2/16
1	0				0	1	0		设置脉冲宽度为 4/16
1	0				0	1	1	消光数量设置	设置脉冲宽度为10/16
1	0	无关	项,		1	0	0		设置脉冲宽度为 11/16
1	0	填	0		1	0	1		设置脉冲宽度为 12/16
1	0				1	1	0		设置脉冲宽度为13/16
1	0				1	1	1		设置脉冲宽度为 14/16
1	0			0				显示开关设置	显示关
1	0			1				业小月大以且	显示开

六、显示寄存器地址:

该寄存器存储通过串行接口从外部器件传送到TM1639的数据,地址从COH-CFH共16字节单元,分别与芯片SEG 和GRID管脚所接的LED灯对应,分配如下图:

写LED显示数据的时候,按照从显示地址从低位到高位,从数据字节的低位到高位操作。

	X	X	Х	X	SEG12	SEG11	SEG10	SEG9	X	X	X	Х	SEG4	SEG3	SEG2	SEG1
1		5四位	₩(唐	xxI)	低四位)	xxHL (1	2	()	高四位	xHU(清	Х		&四位	HL(们	XX
	В7	В6	В5	В4	В3	В2	B1	В0	В7	В6	В5	В4	В3	В2	B1	В0
GRID1		C1HU			C1HL			СОНИ					HL	CO		
GRID2		HU	C3]			BHL	C3		С2НИ					HL	C2	
GRID3		HU	C5]		C5HL				HU	C4			HL	C4		
GRID4		C7HU			C7HL			С6НИ					HL	С6		
GRID5		СЭНИ			C9HL			C8HU					HL	C8		
GRID6		СВНИ			CBHL			САНИ					HL	CA		
GRID7		CDHU				OHL	CI		ССНИ					HL	CC	
GRID8		ΗU	CF.			FHL	CI			HU	CE			HL	CE	

图 (2)

▲注意: 芯片显示寄存器在上电瞬间其内部保存的值可能是随机不确定的,此时客户直接发送开屏命令, 将有可能出现显示乱码。所以我司建议客户对显示寄存器进行一次上电清零操作,即上电后向16位显存地址 (COH-CFH) 中全部写入数据0x00。

©Titan Micro Electronics www.titanmec.com

七、显示

1、驱动共阴数码管:

图 (7)

图7给出共阴极数码管的连接示意图,如果让该数码管显示"0",只需要向COH(GRID1)地址中从低位开 始写入0x3F数据即可,此时COH对应每一个SEG1-SEG8的数据如下表格。

SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	
0	0	1	1	1	1	1	1	GRID1 (COH)
В7	В6	В5	B4	В3	B2	B1	В0	

2、驱动共阳数码管:

图 (8)

图8给出共阳极数码管的连接示意图,如果让该数码管显示"0",需要向地址单元COH(GRID1)、C2H(GRID2)、 C4H(GRID3)、C6H(GRID4)、C8H(GRID5)、CAH(GRID6)里面分别写数据01H, 其余的地址CCH(GRID7)、 CEH(GRID8) 单元全部写数据00H。每一个SEG1-SEG8对应的数据如下表格。

SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	
0	0	0	0	0	0	0	1	GRID1 (COH)
0	0	0	0	0	0	0	1	GRID2 (C2H)
0	0	0	0	0	0	0	1	GRID3 (C4H)
0	0	0	0	0	0	0	1	GRID4 (C6H)
0	0	0	0	0	0	0	1	GRID5 (C8H)

©Titan Micro Electronics www.titanmec.com V2.2

0	0	0	0	0	0	0	1	GRID6 (CAH)
0	0	0	0	0	0	0	0	GRID7 (CCH)
0	0	0	0	0	0	0	0	GRID8 (CEH)
В7	В6	В5	В4	В3	B2	B1	В0	

▲注意: 无论是驱动共阴极数码管还是驱动共阳极数码管,SEG引脚只能接LED的阳极,GRID只能接LED的阴极,不 可反接。

键扫描和按键复用: 八、

键扫矩阵为4×2bit,如图(3)所示:

键扫数据储存地址如图(4)所示,先发读键命令后,开始读取按键数据BYTE1一BYTE2字节,读数据从 低位开始输出,芯片K和KS引脚对应的按键按下时,相对应的字节内的 BIT位为1。

В0	B1	В2	В3	B4	В5	В6	В7	
X	X	K1	КО	X	X	K1	KO	
	KS1				KS	52		BYTE1
	KS3	3			KS	54		BYTE2

图 (4)

▲注意: 1、TM1639最多可以读2个字节,不允许多读。

2、读数据字节只能按顺序从BYTE1-BYTE2读取,不可跨字节读。例如:硬件上的K1与KS4对应按键按下 时,此时想要读到此按键数据,必须需要读到第2个字节的第6BIT位,才可读出数据;当K1与KS4,K0与KS4两个 按键同时按下时,此时BYTE2所读数据的B6,B7位均为1。

按键扫描与组合按键:

(1) 按键扫描:按键扫描由TM1639自动完成,不受用户控制,用户只需要按照时序读键值。完成一次键扫 需要1个显示周期,一个显示周期大概需要T=4.7ms,在4.7ms内先后按下了2个不同的按键,2次读到的键值都是先 按下的那个按键的键值。

(2) 组合按键

复合按键的问题异常: SEG1/KS1-SEG8/KS8是显示和按键扫描复用的。以图(12)为例,显示需要D1亮,D2 灭,需要让SEG1为"0",SEG2为"1"状态,如果S1,S2同时被按下,相当于SEG1,SEG2被短路,这时D1,D2都被点亮。

©Titan Micro Electronics www.titanmec.com

- 7 -

解决方案:

1、在硬件上,可以将需要同时按下的键设置在不同的K线上面如图(13)所示,

2、串联二极管如图(14)所示。

▲注意:建议使用同一个KS不同的K键作为复合按键。

©Titan Micro Electronics www.titanmec.com V2.2

九、串行数据传输格式:

读取和接收1个BIT都在时钟的上升沿操作。

▲注意: 1、读取数据时,从串行时钟CLK的第8个上升沿开始设置指令到CLK下降沿读数据之间需要一个等 待时间Twait(最小2μS)。具体参数见时序特性表。

©Titan Micro Electronics www.titanmec.com V2.2 - 8 -

一、 应用时串行数据的传输:

(1) 地址增加模式

使用地址自动加1模式,设置地址实际上是设置传送的数据流存放的起始地址。起始地址命令字发送完毕, "STB"不需要置高紧跟着传数据,最多16BYTE,数据传送完毕才将"STB"置高。

CLK								
DIO	Command1	Command2	Data1	Data2	*****	Data n	Command3	
STB								

Command1: 设置数据命令 Command2: 设置显示地址

Data1~n: 传输显示数据至Command2地址和后面的地址内(最多16bytes)

Command3:显示控制命令

(2) 固定地址模式

使用固定地址模式,设置地址其实际上是设置需要传送的1BYTE数据存放的地址。地址发送完毕,"STB"不 需要置高, 紧跟着传1BYTE数据, 数据传送完毕才将"STB"置高。然后重新设置第2个数据需要存放的地址, 最多 16BYTE数据传送完毕, "STB" 置高。

	ΨH I (~) L I)	PID TIME						
CLK								
DIO	Command1	Command2	Data1	Command3	Data2	*****	Command4	
STB] [
								_

Command1: 设置数据命令 Command2: 设置显示地址1

Data1: 传输显示数据1至Command2地址内

Command3: 设置显示地址2

Data2: 传输显示数据2至Command3地址内

Command4:显示控制命令

(3) 读按键时序

Command1: 设置读按键命令 Data1~2:读取按键数据

-9-

(4) 采用地址自动加一和固定地址方式的程序设计流程图: 采用地址自动加一程序设计流程图:

采用固定地址的程序设计流程图:

十一. 应用电路:

LED 驱动控制专用电路

TM1639

▲注意:

- 1、VDD、GND之间滤波电容在PCB板布线应尽量靠近TM1639芯片放置,加强滤波效果。
- 2、连接在DIO、CLK、STB通讯口上三个100P电容可以降低对通讯口的干扰。
- 3、因蓝光数码管的导通压降压约为3V,因此TM1639供电应选用5V。

©Titan Micro Electronics www.titanmec.com

- 13 -

十二、 电气参数:

极限参数 (Ta = 25℃, Vss = 0 V)

参数	符号	范围	单位
逻辑电源电压	VDD	-0.5 ∼+7.0	V
逻辑输入电压	VI1	$-0.5 \sim \text{VDD} + 0.5$	V
LED Seg 驱动输出电流	I01	-50	mA
LED Grid 驱动输出电流	102	+200	mA
功率损耗	PD	400	mW
工作温度	Topt	-40 ∼ +80	°C
储存温度	Tstg	−65 ~+150	$^{\circ}$

正常工作范围 (Ta = -20 ~ +70℃, Vss = 0 V)

参数	符号	最小	典型	最大	单位	测试条件
逻辑电源电压	VDD	3	5	6	V	-
高电平输入电压	VIH	0.7 VDD	_	VDD	V	-
低电平输入电压	VIL	0	-	0.3 VDD	V	-

电气特性 (Ta = -20 \sim +70°C, VDD = 4.5 \sim 5.5 V, Vss = 0 V

参数	符号	最小	典型	最大	单位	测试条件
SEG驱动拉电流	Ioh1	20	25	40	mA	SGE1∼SEG12 Vo = VDD-2V
	Ioh2	20	30	50	mA	SGE1∼SEG12 Vo = VDD-3V
GRID驱动灌电流	IOL1	80	140	-	mA	GRID1-GRID8 Vo=0.3V

©Titan Micro Electronics www.titanmec.com V2.2 - 14 -

	输出下拉电阻	RL		10		ΚΩ	K0∼K1
	输入电流	II	_	-	±1	μА	VI = VDD / VSS
7	高电平输入电压	VIH	0. 7 VDD	_		V	CLK, DIO, STB
ſ	低电平输入电压	VIL	_	-	0.3 VDD	V	CLK, DIO, STB
	滞后电压	VH	-	0.35	-	V	CLK, DIO, STB
	动态电流损耗	IDDdyn	_	_	5	mA	无负载,显示关

开关特性 (Ta = -20 ~ +70℃, VDD = 4.5 ~ 5.5 V)

参数	符号	最小	典型	最大	单位	测试条件
振荡频率	fosc	ı	500	I	KHz	$R = 16.5 \text{ K}\Omega$
	tPLZ	ı	I	300	ns	CLK → DIO
传输延迟时间	tPZL	I	I	100	ns	CL = 15pF, RL = 10K Ω
上升时间	TTZH 1	-		2	μs	CL = 300p F SEG1~SEG12
下降时间	TTHZ	-	-	120	μs	CL = 300pF, SEGN, GRIDN
最大时钟频率	Fmax	-	-	1	MHz	占空比50%
输入电容	CI		_	15	pF	-

©Titan Micro Electronics www.titanmec.com V2.2 - 15 -

时序特性 (Ta = -20 ~ +70℃, VDD = 4.5 ~ 5.5 V)

参数	符号	最小	典型	最大	单位	测试条件
时钟脉冲宽度	PWCLK	400	I	l	ns	-
选通脉冲宽度	PWSTB	1	-	_	μs	-
数据建立时间	tSETUP	100	-	_	ns	-
数据保持时间	tHOLD	100	-	-	ns	-
CLK →STB 时间	tCLK STB	1	_	_	μs	CLK↑→STB↑
等待时间	tWAIT	1	-	ı	μs	CLK ↑ → CLK ↓

时序波形图:

十三、 封装尺寸

Symbol	Dimensions	In Millimenters	Dimensions	In Inches
Jymot	Min	Max	Min	Max
A	2,280	2,630	0.090	0.104
A1	0.100	0.300	0.004	0.012
A2	2.180	2,330	0.086	0.092
В	0.350	0.510	0.014	0.020
С	0.204	0.360	0.008	0.014
D	15.200	15,600	0.598	0.614
E	7.400	7,600	0,291	0,299
E1	10.000	10.650	0.394	0.419
е	1.27	O(TYP)	0,050	(TYP)
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°

DIP24 封装尺寸:

Symbol	Dimensions In	Millimeters	Dimensions	In Inches	
Symbol	Min	Max	Min	Max	
A	3. 710	4. 310	0. 146	0. 170	
À1	0. 510		0. 020		
A2	3. 200	3. 600	0. 126	0. 142	
В	0. 380	0. 570	0. 015	0. 022	
B1	1. 270	(BSC)	0. 050 (BSC)		
C	0. 204	0. 360	0.008	0. 014	
D	29. 250	29. 850	1. 152	1. 175	
E	6. 200	6. 600	0. 244	0. 260	
E1	7. 320	7. 920	0. 288	0. 312	
e	2. 540 (BSC)		0. 100	(BSC)	
L	3. 000	3. 600	0. 118	0. 142	
E2	8. 400	9. 000	0. 331	0. 354	

All specs and applications shown above subject to change without prior notice. (以上电路及规格仅供参考,如本公司进行修正,恕不另行通知)