# APPROXIMATION COMPLEXITY OF MAP INFERENCE IN SUM-PRODUCT NETWORKS



**Diarmaid Conaty** Queen's University Belfast, UK

**Denis D. Mauá** Universidade de São Paulo, Brazil



Cassio P. de Campos Queen's University Belfast, UK

# **Sum-Product Networks**

Efficient representation of the arithmetic expression describing probability function

#### SUM-PRODUCT NETWORK

- ▶ Rooted DAG with internal nodes + and ×, and univariate distributions on leaves
  - Product nodes have disjoint scope
  - Sum nodes have identical scope
- Represents rich mixture probability distribution (with exponentially many components)
- Allows efficient marginal inference; usually learned from data



# **SUM-PRODUCT NETWORK**



$$S(X_1, X_2) = 0.2 \textcolor{red}{P_1(X_1)P_2(X_2)} + 0.5 \textcolor{red}{P_1(X_1)P_2(X_2)} + 0.3 \textcolor{red}{P_1(X_1)P_2(X_2)}$$



# MAXIMUM A POSTERIORI INFERENCE

#### MAP

Given a sum-product net S specified with rational weights and an assignment e, find  $x^*$  such that  $S(x^*) = \max_{x \sim e} S(x)$ 





## COMPLEXITY OF MAXIMUM A POSTERIORI INFERENCE

### Previously known:

- Peharz (2015) proved NP-hardness from MAXSAT
- Peharz et al. (2016) adapted NP-hardness of MAP in Naive-Bayes BN (de Campos, 2011)
- ► Is tractable when supports of children of sum node are disjoint (Peharz et al. 2016)
- ▶ In practice: Max-Product Algorithm (Poon & Domingos 2011)























maxprod(
$$S$$
) = (0,0)  $S(X_1 = 0, X_2 = 0) = 0.3$ 





## COMPLEXITY OF APPROXIMATE MAP

#### This work:

- New proof of NP-hardness
- Establish approximation complexity of MAP
- Worst-case bounds for Max-Product quality
- Improved approximate algorithm: ArgMax-Product
- Empirical results comparing both algorithms



#### **THEOREM**

MAP in sum-product networks is NP-complete even if there is no evidence, and the underlying graph is a tree of height 2

Proof: Reduction from maximum independent set:







#### **COROLLARY**

Unless P=NP, there is no  $(m-1)^{\epsilon}$ -approximation algorithm for MAP in sum-product networks for any  $0 \leqslant \epsilon < 1$ , where m is the number of internal nodes of the networks, even if there is no evidence and the underlying graph is a tree of height 2



#### COROLLARY

Unless P = NP, there is no  $(m-1)^{\epsilon}$ -approximation algorithm for MAP in sum-product networks for any  $0 \leqslant \epsilon < 1$ , where m is the number of internal nodes of the networks, even if there is no evidence and the underlying graph is a tree of height 2

#### **THEOREM**

Max-Product returns a (m-1)-approximation for sum-product networks whose underlying graph has height at most 2, where m is the number of internal nodes.



#### THEOREM

Unless P=NP, there is no  $2^{s^{\epsilon}}$ -approximation algorithm for MAP in sum-product-networks for any  $0 \leqslant \epsilon < 1$ , where s is the size of the input, even if there is no evidence and the underlying graph is a tree of height 3

Proof: Reduction from SAT using a polynomial number of "independent" copies of SAT-solving network.





#### **THEOREM**

Let  $S^+$  denote the sum nodes in sum-product network S, and  $d_i$  be the number of children of sum node  $S_i \in S^+$ . Then Max-Product finds an  $(\prod_{S_i \in S^+} d_i)$ -approximation

#### **COROLLARY**

Max-Product returns a  $2^{\epsilon \cdot s}$ -approximation for some  $0 < \epsilon < 1$ , where s is the size of the network



## So FAR...

- Max-Product is optimal (in the worst-case)
- Can we find an algorithm with same worst-case performance but better average-case performance?



## So FAR...

- Max-Product is optimal (in the worst-case)
- Can we find an algorithm with same worst-case performance but better average-case performance?
- Yes, if we admit quadratic runtime

Argmax-Product Algorithm: Single upward pass propagating (partial) configurations and selecting best configuration at sum nodes





$$\operatorname{amap}(S) = \operatorname{arg\,max}_{x \in \{x^1, \dots, x^t\}} \sum_{j=1}^t w_j S_j(x)$$





$$\operatorname{amap}(S) = \operatorname{arg\,max}_{x \in \{x^1, \dots, x^t\}} \sum_{j=1}^t w_j S_j(x)$$





$$\operatorname{amap}(S) = \operatorname{arg\,max}_{x \in \{x^1, \dots, x^t\}} \sum_{j=1}^t w_j S_j(x)$$





$$\operatorname{amap}(S) = \operatorname{arg\,max}_{x \in \{x^1, \dots, x^t\}} \sum_{j=1}^t w_j S_j(x)$$





$$\operatorname{amap}(S) = \operatorname{arg\,max}_{x \in \{x^1, \dots, x^t\}} \sum_{j=1}^t w_j S_j(x)$$



#### **THEOREM**

Argmax-Product always finds a configuration that is at least as good as the configuration found by MaxProduct:

$$S(\mathsf{amap}(S, e)) \geqslant S(\mathsf{maxprod}(S, e))$$

► There is a network such that Argmax-Product returns an exponentially better configuration than Max-Product:

$$S(\mathsf{amap}(S, e)) > 2^m S(\mathsf{maxprod}(S, e))$$
,

where m is the number of sum nodes in S



## EXPERIMENTS: ARGMAX-PRODUCT Vs. MAX-PRODUCT

| Vertices | % Edges | Nodes | Ratio | StDev |
|----------|---------|-------|-------|-------|
| 10       | 10      | 111   | 1.89  | 0.95  |
| 10       | 20      | 111   | 2.16  | 1.09  |
| 10       | 40      | 111   | 2.12  | 1.01  |
| 10       | 60      | 111   | 2.04  | 0.89  |
| 20       | 10      | 421   | 1.94  | 0.88  |
| 20       | 20      | 421   | 2.89  | 1.72  |
| 20       | 40      | 421   | 3.02  | 1.24  |
| 20       | 60      | 421   | 2.60  | 1.04  |
| 40       | 10      | 1641  | 2.64  | 1.42  |
| 40       | 20      | 1641  | 3.37  | 1.45  |
| 40       | 40      | 1641  | 2.33  | 0.73  |
| 40       | 60      | 1641  | 2.27  | 0.76  |
| 80       | 10      | 6481  | 3.96  | 1.81  |
| 80       | 20      | 6481  | 2.10  | 0.49  |
| 80       | 40      | 6481  | 1.07  | 0.26  |
| 80       | 60      | 6481  | 1.04  | 0.20  |

Table: SPNs encoding randomly generated instances of the maximum independent set problem

## EXPERIMENTS: ARGMAX-PRODUCT Vs. MAX-PRODUCT

| Dataset        | No. of variables | No. of samples | Height | No Evidence<br>Ratio | 50% Ev | /idence<br>StDev |
|----------------|------------------|----------------|--------|----------------------|--------|------------------|
|                | variables        | Jampics        |        | Tiatio               | Tiatio | OIDCV            |
| audiology      | 70               | 204            | 12     | 1.0000               | 1.0029 | 0.0133           |
| breast-cancer  | 10               | 258            | 24     | 1.1572               | 1.1977 | 0.1923           |
| car            | 7                | 1556           | 3      | 1.1028               | 1.0514 | 0.0514           |
| cylinder-bands | 33               | 487            | 62     | 1.1154               | 1.1185 | 0.0220           |
| flags          | 29               | 175            | 26     | 1.3568               | 1.3654 | 0.0363           |
| ionosphere     | 34               | 316            | 42     | 1.1176               | 1.1109 | 0.0273           |
| nursery        | 9                | 11665          | 3      | 1.6225               | 1.2060 | 0.2926           |
| primary-tumor  | 18               | 306            | 114    | 1.0882               | 1.0828 | 0.0210           |
| sonar          | 61               | 188            | 26     | 1.2380               | 1.2314 | 0.0261           |
| vowel          | 14               | 892            | 3      | 1.0751               | 1.0666 | 0.0229           |

Table: SPNs learned using LearnSPN from UCI datasets



## Conclusion

| HEIGHT | LOWER BOUND           | UPPER BOUND           |
|--------|-----------------------|-----------------------|
| 1      | 1                     | 1                     |
| 2      | $(m-1)^{\varepsilon}$ | m - 1                 |
| ≥ 3    | $2^{s^{\varepsilon}}$ | <b>2</b> <sup>s</sup> |

- MAP is hard even to approximate in SPNs
- Max-Product performance is optimal in worst-case
- Simple modification to algorithm can significantly improve quality (with a decrease in runtime performance)
- ► Goal: quality of Argmax-Product with runtime of Max-Product

