Special Topics on Basic EECS I VLSI Devices Lecture 6

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Fermi level in extrinsic silicon

- Charge neutrality
 - For an n-type bulk material at equilibrium,

$$p - n + N_d - N_d f_D(E_d) = 0$$

- It is known that

$$f(E_d) = \frac{1}{1 + \frac{1}{2} \exp\left(\frac{E_d - E_f}{k_B T}\right)}$$

Due to the spin degeneracy

Taur, Eq. (2.17)

Taur, Eq. (2.18)

Discussion

- Let me try to explain the reason.
 - We must start from the Fermi-Dirac distribution...

GIST Lecture

Equation for the Fermi level

• Assume N_d and E_d are given. Then,

Assume
$$N_d$$
 and E_d are given. Then,
$$N_v \exp\left(\frac{E_v - E_f}{k_B T}\right) - N_c \exp\left(-\frac{E_c - E_f}{k_B T}\right) + \frac{N_d}{1 + 2 \exp\left(-\frac{E_d - E_f}{k_B T}\right)}$$

= 0

Taur, Eq. (2.19)

- For shallow donor impurities,

$$-N_c \exp\left(-\frac{E_c - E_f}{k_B T}\right) + N_d = 0$$

$$E_c - E_f = k_B T \ln \frac{N_c}{N_d}$$

Taur, Eq. (2.20)

– Hole density, $p = \frac{n_i^2}{N}$

Consider a deep donor state.

	N_c (cm ⁻³)	N_v (cm ⁻³)
Silicon	2.8x10 ¹⁹	1.04x10 ¹⁹

- Assume N_d is 10^{17} cm⁻³ and T is 300 K.
 - Now, draw E_f and $(1 f_D(E_d))$ as a function of E_d .

Ionization ratio

GIST Lecture

Incomplete dopant ionization

• @ high dopant densities

doping concentration (cm⁻³)
Ionization ratio for P, B, and As
(Schenk et al., SISPAD 2006) GIST Lecture

Dopant freeze-out

• @ low temperatures

Comparison of the incomplete ionization models at various temperatures (Jin et al., SISPAD 2021)

Drift

- Net movement of charge due to an electric field
 - Since electrons/holes are charged particles, they are accelerated by an electric field. (V/cm)
 - For electrons, $\mathbf{F} = -q\mathbf{E}$ (For holes, $\mathbf{F} = +q\mathbf{E}$.)
 - According to Newton's 2nd law, the velocity satisfies $\frac{d\mathbf{v}}{dt} = -\frac{q\mathbf{E}}{m_n}$
 - Here, m_n is the conductivity effective mass of electrons.
 - -Then, $\mathbf{v}(t) = \mathbf{v}(0) \frac{q\mathbf{E}}{m_n}t$ (Right?)

Scattering

- The velocity of the carriers...
 - Does not increase indefinitely under the field acceleration. Why?
 - They are scattered frequently and lose the momentum.

Velocity of an electron as a function of time.
When scattering is considered.

A simple game (1)

- We have ten players.
 - Initially, each of them has an integer velocity, [-5, 5]. (Uniform distribution)
 - After one time step, 1 is added to the velocity.
 - Randomly select a player. Then, the player's velocity is again randomly distributed over [-5,5].

A simple game (2)

A realization

Blue: Ten trajectories

- Red: Average

Average velocity

- The velocity of each carrier
 - An indivisual electron exhibits sharp transitions.
- The average velocity
 - However, the average velocity follows a much smoother trajectory.
 - Therefore, it would be better to write

$$\frac{d\langle \mathbf{v} \rangle}{dt} = -\frac{q\mathbf{E}}{m_n} - \frac{\langle \mathbf{v} \rangle}{\tau_n}$$

– Here, τ_n is the mean time between collisions.

Mobility

μ_n μ_p Si 1350 480 GaAs 8500 400 Ge 3900 1900

Negative sign

due to polarity

Mobility

- Conduction currents are the result of the drift motion of charge carriers under the influence of an applied electric field.
- Average drift velocity is directly proportional to the electric field intensity:

$$\langle \mathbf{v} \rangle = -\frac{q \tau_n}{m_n} \mathbf{E} = -\mu_n \mathbf{E}$$
 Taur, Eq. (2.26)

- $-\mu_n$: Electron mobility in (cm²/V/sec)
- When the above relation is used, the drift current density becomes

$$\mathbf{J} = q(\mu_n n + \mu_p p)\mathbf{E} = \sigma \mathbf{E}$$
 Taur, Eq. (2.28) and Eq. (2.30)

Example 2-2 of Hu's book

- Hole mobility, $\mu_p = 470 \ {\rm cm^2 V^{-1} s^{-1}}$
 - When the electric field is 10^3 V cm⁻¹, the drift velocity is 4.7×10^5 cm s⁻¹.
 - Momentum relaxation time (with $m_p=0.39\ m_0$) is 0.1 psec.

Phonon scattering

- Various phonon modes
 - Acoustic phonon : Low energy
 - Optical phonon : High energy, often treated as dispersion-less

"Selection rule" matters. Intravalley / f-process / gprocess

Reduced wavenumber k/k_{max} Reduced wavenumber k/k_{max}

Typical parameters

- Various phonon modes
 - Acoustic phonon : Low energy

Mode	$D_t K (10^8 \text{eV/cm})$	$\hbar\omega$ (meV)	Туре
TA	0.470	12.1	g-type
LA	0.740	18.5	g-type
LO	10.23	62.0	g-type
TA	0.280	19.0	f-type
LA	1.860	47.4	f-type
LO	1.860	58.6	f-type

Parameters for inelastic phonon scatterings in the Si conduction band

Temperature & doping

(Neamen's book)

Impurity concentration

It is modeled as an elastic scattering process.

(Neamen's book)

Which one is dominant? Phonon or impurity?

– Matthiessen's rule,
$$\frac{1}{\mu} = \frac{1}{\mu_I} + \frac{1}{\mu_L}$$

Taur, Eq. (2.27)

Matthiessen's rule

- When there are multiple contributions to the mobility,
 - (For example, phonon-limited mobility / impurity-limited mobility)
 - The overall collision rate is given by sum of all contributions.

$$-\frac{1}{\tau_m} = \frac{1}{\tau_{mL}} + \frac{1}{\tau_{mI}} + \cdots$$

- (The above relation holds exactly only in the microscopic level.)
- When recalling $\mu=\frac{q\tau_m}{m_n}$, it means $\frac{1}{\mu_m}=\frac{1}{\mu_{mL}}+\frac{1}{\mu_{mI}}+\cdots$
- It is very useful.

Thank you!