o sumatoris i productoris

$$\frac{n}{\sum_{i=m}^{n}} f(i) = f(m) + f(m+1) \dots + f(n)$$

$$\prod_{i=m}^{n} f(i) = f(m) \cdot f(m+1) \dots f(n-1) \cdot f(n)$$

0.1. Propietats

$$\sum_{i=m}^{n} (f(i) + g(i)) = \sum_{i=m}^{n} f(i) + \sum_{i=m}^{n} g(i)$$

$$\sum_{i=m}^{n} c \cdot f(i) = c \cdot \sum_{i=m}^{n} f(i)$$

1. Lógica i demostracions

1.1. Lógica proposicional

ų	Ψ	٨		->	\longleftrightarrow
0	О	O	О	1	$+\iota$
0	1	o	— 	1	0
	0	0	-+	0	0
-	++	-+	-1	+	1

12 Equivaléncia de fórmules

DIST
$$\forall \land (\forall \lor \theta) = (\forall \land \forall) \lor (\forall \land \theta)$$

 $mo2G.$ $\neg (\forall \land \forall) = \neg \forall \lor \neg \forall$
 $ABS.$ $\forall \land (\forall \lor \forall) = \forall$
 $DEM.$ $\forall \land \forall = \forall \land \forall$
 $ASSO$ $\forall \land (\forall \land \theta) = (\forall \land \forall) \land \theta$
 $NEU.$ $\forall \land \vdash = \forall ; \forall \lor 0 = \forall$
 $E.ABS.$ $\forall \lor \vdash = \vdash; \forall \land 0 = 0$
 $COMP.$ $\forall \lor \vdash = \vdash; \forall \land \neg \forall = 0$
 $\neg \forall \land \forall = \forall \lor \forall; \neg (\forall \neg \forall) = \forall \land \neg \forall$
 $T. \rightarrow \forall \rightarrow \forall = \neg \forall \lor \forall; \neg (\forall \neg \forall) = \forall \land \neg \forall$
 $T. \leftrightarrow \forall \leftrightarrow \forall = (\forall \neg \forall) \land (\forall \neg \forall)$
 $\neg (\forall \leftrightarrow \forall) = (\forall \land \neg \forall) \lor (\forall \land \neg \forall)$
 $\neg (\forall \leftrightarrow \forall) = (\forall \land \neg \forall) \lor (\forall \land \neg \forall)$
 $\neg (\forall \leftrightarrow \forall) = (\forall \land \neg \forall) \lor (\forall \land \neg \forall)$

1.3. Lògica de primer ordre

4 = 14 - 0

(4 + B) N(4 + A) = 4 + (BVA)

RA

V. Anī.

02. Progressions aritmétiques

[ai =
$$a_0 + id$$
] - cada terme a_{i+1} , s'obté de l'anterior + una quantitat d. $a_{i+1} = a_i + d$.

0.3. Progressions geométriques

1.3.1. Equivaléncies

$$\begin{array}{rcl}
 & \nabla \Gamma_{\times} & F & = & \gamma_{\times} & \nabla \Gamma_{\times$$

1.4. Demostracions

* DIRECTA
$$A \Rightarrow B$$

* CONTEARECÍPACC $P \rightarrow q = \neg q \rightarrow \neg P$

* REDUCCIÓ A L'ABSURD

$$\begin{bmatrix}
P = \neg P \rightarrow 0 \\
\neg A \Rightarrow ... \Rightarrow contradicció
\\
P \rightarrow q = (P \land \neg q) \rightarrow 0 \\
A, \neg B \Rightarrow ... \Rightarrow contradicció

* PROVA D'UNA DISJUNCIÓ
$$(q \lor r) = (\neg q \rightarrow r) \\
B \lor C; \neg B \Rightarrow ... \Rightarrow C$$
- consequent:
$$P \rightarrow (q \lor r) = (P \land \neg q \rightarrow r) \\
A, \neg B \Rightarrow ... \Rightarrow C$$
- Antecedent:
$$(q \lor r) \rightarrow P = (q \rightarrow P) \land (r \rightarrow P) \\
B \Rightarrow ... \Rightarrow A \\
C \Rightarrow ... \Rightarrow A$$$$

1. Inducció simple

∀n ≥no P(n)

- * PAS BASE : P(no)
- * PAS INDUCTIU:
 - Hipòtesi : P(n)
 - Tesi: P(n+1)

3. Conjunts i relación

 $A = \{ \times | P(x) \} \rightarrow \forall x \in A \Leftrightarrow P(x)$ $A = \{ \times \in B | P(x) \} \rightarrow \forall x \in B \Rightarrow x \in A \Leftrightarrow P(x)$ $\mathcal{S} = \{ \} = \{ \times | x \mid x \neq x \}$

3 1. Igualtat

 $A = B \Leftrightarrow \forall x (x \in A \mapsto x \in B)$

3.2. Incurió (E)

 $A \subseteq B \Leftrightarrow \forall \times (\times \in A \rightarrow \times \in B)$

A=B \Leftrightarrow A \leq B ; B \leq A

3.1.1. Propietats

* Ø C A

 $A \supseteq A \downarrow$

* A CB A B C = A CC

3.3. Unió (U)

AVB = {XIX EA V X EBY XEAVB \ XEAV Y EB

3.3.1. Propietats

A = AUA ¥

* AUØ = A

AUB = BUA *

+ AU(BUC) = (AUB)UC

* A CAUB, B C AUB

* ALB & AUB=B

* AUB C C ASC, BCC

3.4 Intersecció (n)

 $A \cap B = \left\{ \times \mid \times \in A \land \times \in B \right\}$ $\times \in A \cap B \Leftrightarrow \times \in A \land \times \in B$

3.4.1. Propietats

* A A A = A

* AND = D

+ ANB - BNA

 \star An $(B \cap C) = (A \cap B) \cap C$

* ANB SA; ANB SB

* A S B C A A A B = A

+ C CANB ⇔ C CA I C CB

3.5. Resta

A-B = { x | x ∈ A ∧ x ∉ B } x ∈ A - B ⇔ x ∈ A (x ∈ B

3.5.1. Propietats

* A-A = Ø

+A-Ø=A

* Ø - A = Ø

* A-B & A

+ (A-B) \B = Ø

 $+ A \subseteq B \Leftrightarrow A - B = \emptyset$

¥ C ⊆ A - B ← C ⊆ A , CNB =Ø

3.6. complementari (7A)

 $A^{c} = \Omega - A = \{ x \in \Omega \mid x \notin A \}$ $X \in A^{c} \Leftrightarrow x \in \Omega \land x \notin A$ $\forall x \in \Omega \Rightarrow (x \in A^{c} \Leftrightarrow x \notin A)$

3.7. Parts d'un conjunt

 $P(A) = \{ \times | \times \subseteq A \}$ $\times \in P(A) \Leftrightarrow \times \subseteq A$

3.8. Parella ordenada

 $(a,b) = (c,a) \Leftrightarrow a=c,b=d$

3 9 Producte cartesia

 $A \times B = \{ (a,b) \mid a \in A, b \in B \}$ $(a,b) \in A \times B \iff a \in A \land b \in B$ $|A \times B| = |A| \cdot |B|$

3.10. Demostracions

A = B $A \subseteq B$; $B \subseteq A$ $A \subseteq B$ $A \subseteq B$ $A \subseteq B$

3.11. R (equivaténcia)

Reflex: VXEA X RX

simétrica: ∀x,y ∈ A (xRy - yRx)

Transitiva: Yx, y, t GA (xRy 1 YRt + XRt)

3.12. Clases

 $A/a = \{x \mid x = \bar{a} \text{ per un cert } a \in A\} = \{\bar{a} = a \in A\}$

5. Divisibilitat

TEOREMA D'EUCLIDES

mcd(a,b) = mcd(a-ub,b)DIVISIÓ EUCLIDIANA

dividend - a | b ← divisor residu? 9 ~ quocient

ID. DE BEZOUT

LEMA DE GAUSS

a,b primers $\Rightarrow a|c$ entre si

LEMA DE EUCUDES

Si a primer $\langle \Rightarrow a | b \vee a | c$ albc

A = { a, b, c, a, e }

4 Functions

INJECTIVA

$$f(x) = f(x') \Rightarrow x = x'$$

EXHAUSTIVA

Y=(x) + pt xEy

BIJECTIVA

inj + exhaustiva

6. Congruencias

$$a = b \pmod{m} \Leftrightarrow \begin{cases} 1. & a \stackrel{m}{\bigcirc} & i & b \stackrel{m}{\bigcirc} \\ 2. & a - b = m \end{cases}$$

TEOREMA PETIT FERMAT

$$\bar{1} = \overline{a^{P-1}} \text{ en } \mathbb{Z}_P$$

INVERSA

$$\bar{a} \cdot \bar{a}^{-1} = \bar{1}$$