

Homework 2: Sections 3 & 4

Algebra

Author

Paul Beggs BeggsPA@Hendrix.edu

Instructor

Dr. Christopher Camfield, Ph.D.

Due

 $\overline{\text{SEPTEMEBER } 11, 20}25$

Section 3

6. $\langle \mathbb{Q}, \cdot \rangle$ with $\langle \mathbb{Q}, \cdot \rangle$ where $\phi(x) = x^2$ for $x \in \mathbb{Q}$.

Solution. The binary operation ϕ is not an isomorphism because it is not onto. A counterexample is that ϕ is not one-to-one because $\phi(1) = 1$ and $\phi(-1) = 1$.

7. $\langle \mathbb{R}, \cdot \rangle$ with $\langle \mathbb{R}, \cdot \rangle$ where $\phi(x) = x^3$ for $x \in \mathbb{R}$.

Solution. The binary operation ϕ is an isomorphism because it has the following properties:

- One-to-one: If $\phi(x) = \phi(y)$, then $x^3 = y^3$. Taking the cube root of both sides, we have x = y. Thus, ϕ is one-to-one.
- Onto: For any $z \in \mathbb{R}$, we can find an $x \in \mathbb{R}$ such that $\phi(x) = z$. Specifically, we can choose $x = \sqrt[3]{z}$. Therefore, ϕ is onto.
- Homomorphism: For any $x, y \in \mathbb{R}$, we have

$$\phi(x \cdot y) = (x \cdot y)^3 = x^3 \cdot y^3 = \phi(x) \cdot \phi(y).$$

Therefore, ϕ preserves the binary operation.

11. $\langle F, + \rangle$ with $\langle F, + \rangle$ where $\phi(f) = f'$, the derivative of f.

Solution. The binary operation ϕ is not an isomorphism because it is not one-to-one. A counterexample is that $\phi(f) = \phi(g)$ for $f(x) = x^2$ and $g(x) = x^2 + 1$, but $f \neq g$.

12. $\langle F, + \rangle$ with $\langle \mathbb{R}, + \rangle$ where $\phi(f) = f'(0)$.

Solution. Similarly to the previous problem, the binary operation ϕ is not an isomorphism because it is not one-to-one. A counterexample is that $\phi(f) = \phi(g)$ for $f(x) = \frac{x}{2}$ and $g(x) = x^2 + \frac{x}{2}$, but $f \neq g$.

Section 4

3. Let * be defined on \mathbb{R}^+ by letting $a * b = \sqrt{ab}$.

Solution. The binary operation * does not give a group structure on \mathbb{R}^+ because it fails \mathcal{G}_1 . A counterexample is that $(1*2)*3 = \sqrt{2}*3 = \sqrt{3\sqrt{2}}$, but $1*(2*3) = 1*\sqrt{6} = \sqrt{\sqrt{6}}$. Since $\sqrt{3\sqrt{2}} \neq \sqrt{\sqrt{6}}$, the operation is not associative.

12. All $n \times n$ diagonal matrices under matrix multiplication.

Solution. The set of all $n \times n$ diagonal matrices under matrix multiplication does not form a group because it fails \mathcal{G}_3 . A counterexample is the diagonal matrix

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix},$$

which is not invertible since det(A) = 0.

- **19**. Let S be the set of all real numbers except -1. Define * on S by a*b=a+b+ab.
 - **a.** Show that * gives a binary operation on S.

Solution. Let $a, b \in S$. Assume, for the sake of contradiction, that a*b = -1. Then,

$$a * b = -1$$

$$a + b + ab = -1$$

$$ab + a + b + 1 = 0$$

$$(a + 1)(b + 1) = 0.$$

Notice this equation is only true if a=-1 and b=-1, which contradicts our assumption that $a,b\in S$. Thus, $a*b\neq -1$ and so $a*b\in S$. Therefore, * is a binary operation on S.

b. Show that (S, *) is a group.

Solution. We will verify that (S, *) satisfies the group axioms:

• \mathcal{G}_1 (Associativity): Let $a, b, c \in S$. Then,

$$(a*b)*c = (a+b+ab)*c$$

= $(a+b+ab)+c+(a+b+ab)c$
= $a+b+ab+c+ac+bc+abc$.

Similarly,

$$a * (b * c) = a * (b + c + bc)$$

= $a + (b + c + bc) + a(b + c + bc)$
= $a + b + c + bc + ab + ac + abc$.

Since both expressions are equal, we have (a*b)*c = a*(b*c), confirming associativity.

• \mathcal{G}_2 (Identity Element): We need to find an element $e \in S$ such that for all $a \in S$, a * e = e * a = a. Let e = 0. Then,

$$a * 0 = a + 0 + a(0) = a$$

and

$$0 * a = 0 + a + 0(a) = a$$
.

Since $0 \in S$, it serves as the identity element.

• \mathcal{G}_3 (Inverse Element): For each $a \in S$, we need to find an element $a' \in S$ such that a * a' = a' * a = e, where e is the identity element found above. We want to solve for a' in the equation:

$$a*a'=0$$

This gives us:

$$a + a' + aa' = 0.$$

Rearranging, we have:

$$aa' + a' = -a$$
.

or

$$a'(a+1) = -a.$$

Since $a \in S$, we have $a + 1 \neq 0$, and thus we can divide by a + 1 to find:

$$a' = \frac{-a}{a+1}.$$

With candidate a' identified, we can plug in to verify:

$$a * a' = a + \frac{-a}{a+1} + a\left(\frac{-a}{a+1}\right) = 0,$$

and

$$a' * a = \frac{-a}{a+1} + a + \left(\frac{-a}{a+1}\right)a = 0.$$

Since $a' \neq -1$, we have $a' \in S$. Therefore, every element in S has an inverse in S.

c. Find the solution of the equation 2 * x * 3 = 7 in S.

Solution. Since we are working with an expression in S, we have to be mindful of the order of operations. Since we don't have a nice way to "decouple" x from its coefficient, we'll have to work from the outside in. First, we must use the inverses (and Theorem 4.15) to get rid of the 2 and 3 from the left side:

$$2*(x*3) = 7 \Rightarrow 2'*(2*x*3)*3' = 2'*7*3'.$$

Using the associative property, we can rewrite the left side as:

$$(2'*2)*x*(3*3') = 2'*7*3'.$$

Since 2' * 2 = 0 and 3 * 3' = 0:

$$0 * x * 0 = 2' * 7 * 3'.$$

The identity property tells us that 0 * x = x and x * 0 = x, so:

$$x = 2' * 7 * 3'$$

Using the formula for inverses found in part (b), we have:

$$2' = \frac{-2}{2+1} = -\frac{2}{3}, \quad 3' = \frac{-3}{3+1} = -\frac{3}{4}.$$

Substituting these values back into our equation for x, we have:

$$x = \left(-\frac{2}{3}\right) * 7 * \left(-\frac{3}{4}\right).$$

Thus, we can expand the right side:

$$x = \left[\left(-\frac{2}{3} \right) + 7 + \left(-\frac{2}{3} \right) (7) \right] * \left(-\frac{3}{4} \right)$$

$$= \frac{5}{3} * \left(-\frac{3}{4} \right)$$

$$= \frac{5}{3} + \left(-\frac{3}{4} \right) + \left(\frac{5}{3} \right) \left(-\frac{3}{4} \right)$$

$$= -\frac{1}{3}.$$

41. Let G be a group and let g be one fixed element of G. Show that the map i_g , such that $i_g(x) = gxg^{-1}$ for $x \in G$, is an isomorphism of G with itself.

Solution. We will verify that i_q satisfies the properties of an isomorphism:

• One-to-one: Assume $i_g(x) = i_g(y)$ for some $x, y \in G$. Then,

$$gxg^{-1} = gyg^{-1}.$$

Utilizing Theorem 4.15, we can multiply both sides on the left by g^{-1} and on the right by g, revealing:

$$g^{-1}(gxg^{-1})g = g^{-1}(gyg^{-1})g,$$

which we can rearrange using the associative property to get:

$$(g^{-1}g)x(g^{-1}g) = (g^{-1}g)y(g^{-1}g).$$

Since $g^{-1}g = e$, the identity element of G, we have:

$$x = y$$
.

Thus, i_g is one-to-one.

• Onto: Let $y \in G$. We need to find an $x \in G$ such that $i_g(x) = y$. Consider the element $x = g^{-1}yg$. Since $g, y \in G$, it follows that $g^{-1} \in G$, and by the closure property of the group, $x = g^{-1}yg \in G$. Now we can verify that this choice of x maps to y:

$$i_g(x) = i_g(g^{-1}yg) = g(g^{-1}yg)g^{-1} = (gg^{-1})y(gg^{-1}) = y.$$

Therefore, i_g is onto.

• Homomorphism: Let $x, y \in G$. Then,

$$i_g(x)i_g(y) = gxg^{-1}gyg^{-1} = gx(g^{-1}g)yg^{-1} = gxyg^{-1} = i_g(xy).$$

Therefore, i_g preserves the group operation.

Since i_g is a bijection and a homomorphism, it is an isomorphism of G with itself.