Math 620: §4.3 Existence of Roots

Due on Monday, December 7, 2015

Boynton 10:00

Kailee Gray

Exercise 4.3.5: Let $\phi: F_1 \to F_2$ be an isomorphism of fields. Prove that $\phi(1) = 1$. That is, prove that ϕ must map the multiplicative identity of F_1 to the multiplicative identity of F_2 .

Proof. Let $\phi: F_1 \to F_2$ be an isomorphism of fields. Since F_1, F_2 are fields they contain a multiplicative and additive identity. Let 1_1 , 1_2 denote the multiplicative identities in F_1, F_2 , respectively; let 0_1 and 0_2 be the additive identities of F_1 and F_2 , respectively. First, to show $\phi(1_1)$ has a multiplicative inverse in F_2 we will show that $\phi(1_1) \neq 0_2$:

Since F_1, F_2 are fields, there exists an additive inverse of every element in F_1, F_2 . Note that ϕ is an isomorphism so it preserves addition; also, F_1, F_2 are fields so addition and multiplication are associative. Then:

$$\phi(0_1) = \phi(0_1) + 0_2$$

$$= \phi(0_1) + \phi(0_1) - \phi(0_1)$$

$$= \phi(0_1 + 0_1) - \phi(0_1)$$

$$= \phi(0_1) - \phi(0_1)$$

$$= 0_2.$$

Since ϕ is a bijection, if $\phi(0_1) = 0_2$, $\phi(1_1) \neq 0_2$ so $\phi(1_1)$ has a multiplicative inverse in F_2 , denote by $\phi(1_1)^{-1}$. Following a similar process and justifications as above, we have:

$$\phi(1_1) = \phi(1_1) \cdot 1_2
= \phi(1_1) \cdot (\phi(1_1) \cdot \phi(1_1)^{-1})
= (\phi(1_1) \cdot \phi(1_1)) \cdot \phi(1_1)^{-1}
= \phi(1_1 \cdot 1_1) \cdot \phi(1_1)^{-1}
= \phi(1_1) \cdot \phi(1_1)^{-1}
= 1_2.$$

Exercise 4.3.6: Let F be a field, let p(x) be an irreducible polynomial in F[x], and let $E = \{[a] \in F[x]/\langle p(x)\rangle | a \in F\}$. Show that E is a subfield of $F[x]/\langle p(x)\rangle$.

(prove E is a subfield). First, since p(x) is irreducible, note that $F[x]/\langle p(x)\rangle$ is a field by theorem 4.3.6. Given the definition of E, it is clear E is a subset of $F[x]/\langle p(x)\rangle$; also $F \neq \emptyset$ so $E \neq \emptyset$. Thus, by exercise 4.3.4, it suffices to show E is closed under addition, subtraction, multiplication, and division of E.

(addition, subtraction) Consider any $[a], [b] \in E$. Then, using the definition of \boxplus given in theorem 5 of Boynton, $[a] \boxplus [b] = [a+b] \in E$ since F is closed under +. If $[a], [b] \in E$, then $a, b \in F$ so a, b have additive inverses in F, denote -a, -b. Thus

$$[a] - [b] = [a] \boxplus [-b] = [a-b] = [a+(-b)] \in E$$
 since F is closed under $+$ and

$$[b]-[a]=[b]\boxplus [-a]=[b-a]=[b+(-a)]\in E \text{ since } F \text{ is closed under } +.$$

(multiplication, division) Consider any $[a], [b] \in E, [a], [b] \neq 0$. Then, using the definition of \Box given in theorem 5 of Boynton,

 $[a] ext{ } ext{$ = $} ext{$ [a], [b] $ \in E$, then $a,b \in F$ and $[a], [b] $ \ne 0$}$ so a,b have multiplicative inverses in F, denote a^{-1},b^{-1} . Note

$$[a] \div [b] = [a] \boxdot [b]^{-1} = [a] \boxdot [b^{-1}] = [a \cdot b^{-1}] \in E$$
 since F is closed under \cdot . Also,

$$[b] \div [a] = [b] \boxdot [a]^{-1} = [b] \boxdot [a^{-1}] = [b \cdot a^{-1}] \in E \text{ since } F \text{ is closed under } \cdot.$$

Hence, E is a subfield of F.

Prove $\phi: F \to E$ defined by $\phi(a) = [a]$ is an isomorphism of fields.

Proof. (well-defined) Consider $a_1, a_2 \in F$ with $a_1 = a_2$. Then, $a_1 - a_2 = 0$ so $p(x)|(a_1 - a_2)$. Hence $[a_1] = [a_2]$.

(one to one) Suppose $\phi(a_1) = \phi(a_2)$ for some $a_1, a_2 \in F$. Then, $[a_1] = [a_2]$ and $[a_1], [a_2] \in F[x]/\langle p(x) \rangle$ imply $p(x) \mid a_1 - a_2$. So there exists some $q(x) \in F[x]/\langle p(x) \rangle$ such

that $a_1 - a_2 = p(x)q(x)$. Since $\deg(a_1 - a_2) = 0$, $\deg(p(x)q(x)) = 0$ and so $\deg(p(x)) + \deg(q(x)) = 0$. But $\deg(p(x)) \ge 1$ so $\deg(q(x)) < 0$ and q(x) = 0, $a_1 = a_2$.

(onto) Consider any $[a] \in E$. Then, $a \in F$ and so $\phi(a) = [a]$.

(preserves +) Let $a_1, a_2 \in F$. Then, Let $a_1, a_2 \in F$. Then, $\phi(a_1 + a_2) = [a_1 + a_2] = [a_1] + [a_2] = \phi(a_1) + \phi(a_2)$.

(preserves ·) Let $a_1, a_2 \in F$. Then, $\phi(a_1 \cdot a_2) = [a_1 \cdot a_2] = [a_1] \cdot [a_2] = \phi(a_1) \cdot \phi(a_2)$.

Exercise 4.3.8: Prove that $\mathbb{R}[x]/\langle x^2+2\rangle$ is isomorphic to \mathbb{C} .

Thus, by definition 4.3.7, ϕ is an isomorphism of fields.

Proof. By proposition 4.3.3 in Beachy, all elements in $\mathbb{R}[x]/\langle x^2+2\rangle$ are of the form [a+bx]. Define $\phi: \mathbb{R}[x]/\langle x^2+2\rangle \to \mathbb{C}$ by $\phi([a+bx]) = a+bi\sqrt{2}$. We will show ϕ is an isomorphism.

(well-defined) Consider $[a_1 + b_1 x], [a_2 + b_2 x] \in \mathbb{R}[x]/\langle x^2 + 2 \rangle$ with $[a_1 + b_1 x] = [a_2 + b_2 x]$. Then, by definition 4.3.2, $(x^2 + 2) \mid (a_1 + b_1 x - (a_2 + b_2 x))$ and so $(x^2 + 2) \mid (a_1 - a_2 + (b_1 - b_2)x)$. Thus, there exists q(x) such that $a_1 - a_2 + (b_1 - b_2)x = (x^2 + 2)q(x)$. Since $\deg(a_1 - a_2 + (b_1 - b_2)x) = 1$ and $\deg(x^2 + 2) = 2$, $\deg(q(x)) < 0$. Thus, q(x) = 0 and so $a_1 - a_2 + (b_1 - b_2)x = 0$ which implies $a_1 - a_2 = 0$ and $b_1 - b_2 = 0$. Thus, $a_1 + b_1 i \sqrt{2} = a_2 + b_2 i \sqrt{2}$ which implies $\phi([a_1 + b_1 x]) = \phi([a_2 + b_2 x])$. (one to one) Suppose $\phi([a_1 + b_1 x]) = \phi([a_2 + b_2 x])$ for some $[a_1 + b_1 x], [a_2 + b_2 x] \in \mathbb{R}[x]/\langle x^2 + 2 \rangle$. Then, $a_1 + b_1 i \sqrt{2} = a_2 + b_2 i \sqrt{2}$; equivalently $a_1 = a_2$ and $b_1 = b_2$. Thus, $a_1 + b_1 x = a_2 + b_2 x$ and so $[a_1 + b_1 x] = [a_2 + b_2 x]$. (onto) Consider any $a + bi \in \mathbb{C}$. Then, $a, b \in \mathbb{R}$ and so

$$\phi\left(\left[a + \frac{b}{\sqrt{2}} x\right]\right) = a + \frac{b}{\sqrt{2}}i\sqrt{2} = a + bi.$$

(preserves addition, multiplication) Let $[a_1 + b_1 x]$, $[a_2 + b_2 x] \in \mathbb{R}[x]/\langle x^2 + 2 \rangle$. Then, $\phi([a_1 + b_1 x] + [a_2 + b_2 x]) = \phi[a_1 + b_1 x + a_2 + b_2 x] = \phi[a_1 + a_2 + (b_1 + b_2)x] =$ $a_1 + a_2 + (b_1 + b_2)i\sqrt{2} = a_1 + b_1i\sqrt{2} + a_2 + b_2i\sqrt{2} = \phi([a_1 + b_1 x]) + \phi([a_2 + b_2 x]). \text{ Next, notice}$ $\phi([a_1 + b_1 x] \cdot [a_2 + b_2 x]) = \phi([(a_1 + b_1 x) \cdot (a_2 + b_2 x)]) = \phi(a_1 a_2 + (a_2 b_1 + a_1 b_2)x + b_1 b_2 x^2). \text{ In}$ $\mathbb{R}[x]/\langle x^2 + 2 \rangle, [x^2 + 2] = 0 \text{ so } [x]^2 = -[2]. \text{ Thus, } b_1 b_2 x^2 = -2b_1 b_2 \text{ so we have}$

$$\phi(a_1a_2 + (a_2b_1 + a_1b_2)x + -2b_1b_2) = \phi((a_1a_2 - 2b_1b_2) + (a_2b_1 + a_1b_2)x)$$

$$= (a_1a_2 - 2b_1b_2) + (a_2b_1 + a_1b_2)i\sqrt{2}$$

$$= (a_1 + b_1i\sqrt{2})(a_2 + b_2i\sqrt{2})$$

$$= \phi([a_1 + b_1x]) \cdot \phi([a_2 + b_2x])$$

By definition 4.3.7, ϕ is an isomorphism; hence $\mathbb{R}[x]/\langle x^2+2\rangle$ is isomorphic to \mathbb{C} .

Exercise 4.3.9: Prove that $\mathbb{R}[x]/\langle x^2+x+1\rangle$ is isomorphic to \mathbb{C} .

Proof. By proposition 4.3.3 in Beachy, all elements in $\mathbb{R}[x]/\langle x^2+x+1\rangle$ are of the form [a+bx]. Define $\phi:\mathbb{R}[x]/\langle x^2+x+1\rangle\to\mathbb{C}$ by $\phi([a+bx])=a-\frac{b}{2}+\frac{b\sqrt{3}}{2}i$. We will show ϕ is an isomorphism.

(well-defined) Consider $[a_1 + b_1 x], [a_2 + b_2 x] \in \mathbb{R}[x]/\langle x^2 + x + 1 \rangle$ with $[a_1 + b_1 x] = [a_2 + b_2 x]$. Then, by definition 4.3.2, $(x^2 + x + 1) \mid (a_1 + b_1 x - (a_2 + b_2 x))$ and so $(x^2 + x + 1) \mid (a_1 - a_2 + (b_1 - b_2)x)$. Thus, there exists q(x) such that $a_1 - a_2 + (b_1 - b_2)x = (x^2 + x + 1)q(x)$. Since $\deg(a_1 - a_2 + (b_1 - b_2)x) = 1$ and $\deg(x^2 + x + 1) = 2$, $\deg(q(x)) < 0$. Thus, q(x) = 0 and so $a_1 - a_2 + (b_1 - b_2)x = 0$ which implies $a_1 - a_2 = 0$ and $b_1 - b_2 = 0$. Thus, $a_1 + b_1 \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = a_2 + b_2 \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)$ which implies $\phi([a_1 + b_1 x]) = \phi([a_2 + b_2 x])$.

(one to one) Suppose $\phi([a_1 + b_1 x]) = \phi([a_2 + b_2 x])$ for some $[a_1 + b_1 x], [a_2 + b_2 x] \in \mathbb{R}[x] / \langle x^2 + x + 1 \rangle$. Then,

$$a_1 - \frac{b_1}{2} + \frac{b_1\sqrt{3}}{2}i = a_2 - \frac{b_2}{2} + \frac{b_2\sqrt{3}}{2}i$$
 and $a_1 - a_2 + \frac{b_2 - b_1}{2} + (b_1 - b_2)\frac{\sqrt{3}}{2}i = 0$.

Therefore, $b_1 - b_2 = 0$ so $b_1 = b_2$ and $b_2 - b_1 = 0$. Also, $a_1 - a_2 + \frac{b_2 - b_1}{2} = 0$ so $a_1 - a_2 = 0$. Thus, $a_1 = a_2$. Therefore, $a_1 + b_1 x = a_2 + b_2 x$ and so $[a_1 + b_1 x] = [a_2 + b_2 x]$. (onto) Consider any $a + bi \in \mathbb{C}$. Then, $a, b \in \mathbb{R}$ so $a + \frac{b}{\sqrt{3}}, \frac{2b}{\sqrt{3}} \in \mathbb{R}$ and

$$\phi\left(\left[a + \frac{b}{\sqrt{3}} + \frac{2b}{\sqrt{3}} \ x\right]\right) = a + \frac{b}{\sqrt{3}} - \frac{1}{2}\frac{2b}{\sqrt{3}} + \frac{2b}{\sqrt{3}}\frac{\sqrt{3}}{2}i = a + bi.$$

(preserves addition, multiplication) Let $[a_1 + b_1 x], [a_2 + b_2 x] \in \mathbb{R}[x] / \langle x^2 + x + 1 \rangle$.

Then,
$$\phi([a_1 + b_1 x] + [a_2 + b_2 x]) = \phi([a_1 + a_2 + (b_1 + b_2)x])$$

$$= a_1 + a_2 + -\frac{b_1 + b_2}{2} + \frac{(b_1 + b_2)\sqrt{3}}{2}$$

$$= a_1 - \frac{b_1}{2} + \frac{b_1\sqrt{3}}{2}i + a_2 - \frac{b_2}{2} + \frac{b_2\sqrt{3}}{2}i$$

$$= \phi([a_1 + b_1 x]) + \phi([a_2 + b_2 x]). \text{ Next, notice}$$

 $\phi([a_1 + b_1 x] \cdot [a_2 + b_2 x]) = \phi([(a_1 + b_1 x) \cdot (a_2 + b_2 x)]) = \phi(a_1 a_2 + (a_2 b_1 + a_1 b_2) x + b_1 b_2 x^2).$ In $\mathbb{R}[x]/\langle x^2 + x + 1 \rangle$, $[x^2 + x + 1] = 0$ so $[x]^2 = -[x] - [1]$. Thus, $x^2 b_1 b_2 = -(x + 1) b_1 b_2$ so we have $\phi((a_1 a_2 - b_1 b_2) + (a_2 b_1 + a_1 b_2 - b_1 b_2) x) =$

$$= (a_1a_2 - b_1b_2) + \frac{a_2b_1 + a_1b_2 - b_1b_2}{2} + \frac{\sqrt{3}}{2}(a_2b_1 + a_1b_2 - b_1b_2)i$$

$$= \left(a_1 + \frac{b_1}{2} + b_1i\frac{\sqrt{3}}{2}\right) \left(a_2 + \frac{b_2}{2} + b_2i\frac{\sqrt{3}}{2}\right) = \phi([a_1 + b_1x]) \cdot \phi([a_2 + b_2x])$$

By definition 4.3.7, ϕ is an isomorphism; hence $\mathbb{R}[x]/\langle x^2+x+1\rangle$ is isomorphic to \mathbb{C} . \square

Exercise 4.3.10: Is $\mathbb{Q}[x]/\langle x^2+2\rangle$ isomorphic to $\mathbb{Q}[x]/\langle x^2+1\rangle$?

Proof. No. By proof similar to 4.3.8, 4.3.9, 4.3.13 and by Jason's approval to use, $\mathbb{Q}[x]/\langle x^2+2\rangle \text{ is isomorphic to } \mathbb{Q}(i\sqrt{2}) \text{ and } \mathbb{Q}[x]/\langle x^2+1\rangle \text{ is isomorphic to } \mathbb{Q}(i). \text{ Thus } \mathbb{Q}[x]/\langle x^2+2\rangle \text{ is isomorphic to } \mathbb{Q}[x]/\langle x^2+1\rangle \text{ if and only if } \mathbb{Q}(i\sqrt{2}) \text{ is isomorphic to } \mathbb{Q}(i). \text{ So, suppose } \mathbb{Q}(i\sqrt{2}) \text{ is isomorphic to } \mathbb{Q}(i). \text{ First, note that the polynomial } x^2+2 \text{ has a root in } \mathbb{Q}(i\sqrt{2}), i\sqrt{2} \in \mathbb{Q}(i\sqrt{2}) \text{: } (i\sqrt{2})^2+2=-2+2=0.$ Suppose the polynomial x^2+2 has a root in $\mathbb{Q}(i)$. Then, there would be some $a,b\in\mathbb{Q}$ such that $(a+bi)^2+2=0$. Equivalently, $a^2-b^2+2=-2abi$. But, $a^2-b^2+2\in\mathbb{R}, \notin\mathbb{C}$ and $-2abi\in\mathbb{C}$ so this is a contradiction. Thus, x^2+2 does not have a root in $\mathbb{Q}(i)$. Now, we assumed that $\mathbb{Q}(i\sqrt{2})$ is isomorphic to $\mathbb{Q}(i)$ so there is an isomorphism $\phi: \mathbb{Q}(i\sqrt{2}) \to \mathbb{Q}(i)$. Let $x \in \mathbb{Q}(i\sqrt{2})$ be a root of x^2+2 . Then, $x^2+2=0$ and so $\phi(x^2+2)=\phi(0)$. $\phi(0)=0$ and ϕ preserves multiplication and addition so $\phi(x)^2+\phi(2)=0$. Also, $\phi(2)=\phi(1+1)=\phi(1)+\phi(1)=1+1=2$ which implies there is some $\phi(x)\in\mathbb{Q}(i)$ with $\phi(x)^2+2=0$ and so $\phi(x)$ is a root of x^2+2 . This is a contradiction since we proved $\mathbb{Q}(i)$ does not contain a root of x^2+2 .

Exercise 4.3.13: Prove that $\mathbb{Q}[x]/\langle x^2-3\rangle$ is isomorphic to $\mathbb{Q}(\sqrt{3})$.

Proof. Define By proposition 4.3.3 in Beachy, all elements in $\mathbb{Q}[x]/\langle x^2 - 3 \rangle$ are of the form [a+bx]. Define $\phi: \mathbb{Q}[x]/\langle x^2 - 3 \rangle \to \mathbb{Q}(\sqrt{3})$ by $\varphi([a+bx]) = a+b\sqrt{3}$. We will show ϕ is an isomorphism.

(well-defined) Consider $[a_1 + b_1 x]$, $[a_2 + b_2 x] \in \mathbb{Q}[x]/\langle x^2 - 3 \rangle$ with $[a_1 + b_1 x] = [a_2 + b_2 x]$. Then, by definition 4.3.2, $(x^2 - 3) \mid (a_1 - a_2 + (b_1 - b_2)x)$. Thus, there exists q(x) such that $a_1 - a_2 + (b_1 - b_2)x = (x^2 - 3)q(x)$. Since $\deg(a_1 - a_2 + (b_1 - b_2)x) = 1$ and $\deg(x^2 - 3) = 2$, $\deg(q(x)) < 0$. Thus, q(x) = 0 and so $a_1 - a_2 + (b_1 - b_2)x = 0$ which implies $a_1 - a_2 = 0$ and $b_1 - b_2 = 0$. Thus, $a_1 + b_1\sqrt{3} = a_2 + b_2\sqrt{3}$ which implies $\phi([a_1 + b_1x]) = \phi([a_2 + b_2x])$. (one to one) Suppose $\phi([a_1 + b_1x]) = \phi([a_2 + b_2x])$ for some $[a_1 + b_1x]$, $[a_2 + b_2x] \in \mathbb{Q}[x]/\langle x^2 - 3 \rangle$. Then, $a_1 + b_1\sqrt{3} = a_2 + b_2\sqrt{3}$; because $a_1, a_2, b_1, b_1 \in \mathbb{Q}$ this is equivalent to $a_1 = a_2$ and $b_1 = b_2$. Thus, $a_1 + b_1x = a_2 + b_2x$ and so $[a_1 + b_1x] = [a_2 + b_2x]$. (onto) Consider any $a + b\sqrt{3} \in \mathbb{Q}(\sqrt{3})$. Then, $a, b \in \mathbb{Q}$ and so $\phi([a + bx]) = a + b\sqrt{3}$. (preserves addition, multiplication) Let $[a_1 + b_1x]$, $[a_2 + b_2x] \in \mathbb{Q}[x]/\langle x^2 - 3 \rangle$. Then, $\phi([a_1 + b_1x] + [a_2 + b_2x]) = \phi[a_1 + b_1x + a_2 + b_2x] = \phi[a_1 + a_2 + (b_1 + b_2)x] = a_1 + a_2 + (b_1 + b_2)\sqrt{3} = a_1 + b_1\sqrt{3} + a_2 + b_2\sqrt{3} = \phi([a_1 + b_1x]) + \phi([a_2 + b_2x])$. Next, notice $\phi([a_1 + b_1x] \cdot [a_2 + b_2x]) = \phi([(a_1 + b_1x) \cdot (a_2 + b_2x)]) = \phi(a_1a_2 + (a_2b_1 + a_1b_2)x + b_1b_2x^2)$. In $\mathbb{Q}[x]/\langle x^2 - 3 \rangle$, $[x^2 - 3] = 0$ so $[x]^2 = [3]$. Thus, $b_1b_2x^2 = 3b_1b_2$ so we have

$$\phi(a_1a_2 + (a_2b_1 + a_1b_2)x + 3b_1b_2) = \phi((a_1a_2 + 3b_1b_2) + (a_2b_1 + a_1b_2)x)$$

$$= (a_1a_2 + 3b_1b_2) + (a_2b_1 + a_1b_2)\sqrt{3}$$

$$= (a_1 + b_1\sqrt{3})(a_2 + b_2\sqrt{3})$$

$$= \phi([a_1 + b_1x]) \cdot \phi([a_2 + b_2x])$$

By definition 4.3.7, ϕ is an isomorphism; hence $\mathbb{Q}[x]/\langle x^2-3\rangle$ is isomorphic to $\mathbb{Q}(\sqrt{3})$.

Exercise 4.3.14: Show that the polynomial $x^2 - 3$ has a root in $\mathbb{Q}(\sqrt{3})$ but not in $\mathbb{Q}(\sqrt{2})$. Explain why this implies $\mathbb{Q}(\sqrt{3})$ is not isomorphic to $\mathbb{Q}(\sqrt{2})$.

Proof. First, show $x^2 - 3$ has a root in $\mathbb{Q}(\sqrt{3})$ but not in $\mathbb{Q}(\sqrt{2})$. Notice $\sqrt{3} \in \mathbb{Q}(\sqrt{3})$ and $\sqrt{3}^2 - 3 = 0$ so $x^2 - 3$ has a root in $\mathbb{Q}(\sqrt{3})$. Suppose $x^2 - 3$ has a root in $\mathbb{Q}(\sqrt{2})$. Then, there exists some $a + b\sqrt{2}$, with $a, b \in \mathbb{Q}$, such that $(a + b\sqrt{2})^2 - 3 = 0$. Simplifying,

$$(a+b\sqrt{2})^2 - 3 = a^2 + 2b^2 + 2ab\sqrt{2} - 3 = (a^2 + 2b^2 - 3) + 2ab\sqrt{2}.$$

If
$$(a^2 + 2b^2 - 3) + 2ab\sqrt{2} = 0$$
, $a^2 + 2b^2 - 3 = 0$ and $2ab = 0$. Thus, $a = 0$ or $b = 0$.

Suppose b=0. Then, $a^2+2\cdot 0^2-3=0$ implies $a^2=3$ and so $a=\pm\sqrt{3}\not\in\mathbb{Q}$. Thus, $b\neq 0$. Suppose a=0, then $0^2+2\cdot b^2-3=0$ implies $2b^2=3$ and so $b=\pm\sqrt{\frac{3}{2}}\not\in\mathbb{Q}$. Thus, $a\neq 0$. Hence, x^2-3 does not have a root in $\mathbb{Q}(\sqrt{2})$.

Next, show $\mathbb{Q}(\sqrt{2})$ is not isomorphic to $\mathbb{Q}(\sqrt{3})$. Suppose $\mathbb{Q}(\sqrt{2})$ is isomorphic to $\mathbb{Q}(\sqrt{3})$. Then, there exists a bijective map $\phi: \mathbb{Q}(\sqrt{3}) \to \mathbb{Q}(\sqrt{2})$ that preserves multiplication and addition. From above we know there is $x \in \mathbb{Q}(\sqrt{3})$ with $x^2 - 3 = 0$, then $\phi(x^2 - 3) = \phi(0)$. ϕ is an isomorphism so $\phi(0) = 0$. Also,

$$\phi(x^2-3) = \phi(x^2) + \phi(-3) = \phi(x)\phi(x) - \phi(3) = \phi(x)^2 - \phi(1+1+1) = \phi(x)^2 - (\phi(1) + \phi(1) + \phi(1)).$$

Hence there must be an element in $\mathbb{Q}(\sqrt{2})$, $\phi(x)$ with $\phi(x)^2 - 3 = 0$. From above, no such element exists in $\mathbb{Q}(\sqrt{2})$. Thus, $\mathbb{Q}(\sqrt{2})$ is not isomorphic to $\mathbb{Q}(\sqrt{3})$.

Exercise 4.3.17: Find an irreducible polynomial p(x) of degree 3 over \mathbb{Z}_2 , and list all elements of $\mathbb{Z}_2[x]/\langle p(x)\rangle$. Give the identities necessary to multiply elements.

Proof. From section 4.2 homework, number 12, the polynomial $x^3 + x + 1$ is irreducible over \mathbb{Z}_2 . Then, by theorem 9 of Boynton, all elements in $\mathbb{Z}_2[x]/\langle x^3 + x + 1 \rangle$ can be represented by some polynomial of the form $ax^2 + bx + c$ for some $a, b, c \in \mathbb{Z}_2$. By statement on page 209 of Beachy, $\mathbb{Z}_2[x]/\langle x^3 + x + 1 \rangle$ has $2^3 = 8$ polynomials of degree less than 3. There are 8 polynomials of degree 2 or less in $\mathbb{Z}_2[x]/\langle x^3 + x + 1 \rangle$, so we have the following elements:

$$[0], [1], [x], [x+1], [x^2], [x^2+1], [x^2+x], [x^2+x+1]$$

The identities necessary to multiply elements are $[x]^3 = [-x-1]$ and $[x]^4 = [-x^2-x]$.

Exercise 4.3.18: Give addition and multiplication tables for the field $\mathbb{Z}_3[x]/\langle x^2+x+2\rangle$.

Let $p(x) = x^2 + x + 2$ with $p(x) \in \mathbb{Z}_3$. Then, p(0) = 2, p(1) = 1, p(2) = 2 so by proposition 4.2.7, p(x) is irreducible in \mathbb{Z}_3 . By theorem 9 of Boynton, all elements in $\mathbb{Z}_3[x]/\langle x^2 + x + 2 \rangle$ can be represented by a polynomial of the form a + bx with $a, b \in \mathbb{Z}_3$. Then, by page 209 of Beachy, $\mathbb{Z}_3[x]/\langle x^2 + x + 2 \rangle$ has $3^2 = 9$ elements. To simplify the table, brackets have been omitted in listing the congruence classes. We will use the identity $[x]^2 = [2x + 1]$ to multiply these elements.

+	0	1	2	x	2x	x+1	x+2	2x+1	2x+2
0	0	1	2	x	2x	x+1	x+2	2x+1	2x+2
1	1	2	0	x+1	2x+1	x+2	x	2x+2	2x
2	2	0	1	x+2	2x+2	x	x+1	2x	2x+1
x	x	x+1	x+2	2x	0	2x+1	2x+2	1	2
2x	2x	2x+1	2x+2	0	x	1	2	x+1	x+2
x+1	x+1	x+2	x	2x+1	1	2x+2	2x	2	0
x+2	x+2	x	x+1	2x+2	2	2x	2x+1	0	1
2x+1	2x+1	2x+2	2x	1	x+1	2	0	x+2	x
2x+2	2x+2	2x	2x+1	2	x+2	0	1	x	x+1

	0	1	2	x	2x	x+1	x+2	2x+1	2x+2
0	0	0	0	0	0	0	0	0	0
1	0	1	2	x	2x	x+1	x+2	2x+1	2x+2
2	0	2	1	2x	x	2x+2	2x+1	x+2	x+1
\overline{x}	0	x	2x	2x+1	x+2	1	x+1	2x+2	2
$\overline{2x}$	0	2x	x	x+2	2x+1	2	2x+2	x+1	1
x+1	0	x+1	2x+2	1	2	x+2	2x	x	2x+1
x+2	0	x+2	2x+1	x+1	2x+2	2x	2	1	x
2x + 1	0	2x+1	x+2	2x+2	x+1	x	1	2	2x
2x + 2	0	2x+2	x+1	2	1	2x+1	x	2x	x+2

Exercise 4.3.19: Find a polynomial of degree 3 irreducible over \mathbb{Z}_3 , and use it to construct a field with 27 elements. List the elements of the field; give the identities necessary to multiply elements.

From exercise 13 in section 4.2 homework, the polynomial $x^3 + 2x + 1$ is irreducible over \mathbb{Z}_3 . By theorem 4.3.6 of Beachy, $\mathbb{Z}_3/\langle x^3 + 2x + 1 \rangle$ is a field. Also, by page 209 of Beachy, $\mathbb{Z}_3/\langle x^3 + 2x + 1 \rangle$ contains $3^3 = 27$ elements. Notice there are 27 possible polynomials of degree ≤ 2 over \mathbb{Z}_3 , so we have the following elements in $\mathbb{Z}_3/\langle x^3 + 2x + 1 \rangle$

$$[0], [1], [2], [x], [2x], [x+1], [x+2], [2x+1], [2x+2], [x^2], [2x^2], [x^2+1], [x^2+2], [2x^2+1], [2x^2+2], [2x^2+1], [2x^2+2], [2x^2$$

$$[x^{2} + x], [x^{2} + x + 1], [x^{2} + x + 2], [x^{2} + 2x], [x^{2} + 2x + 1], [x^{2} + 2x + 2]$$

$$[2x^{2} + x], [2x^{2} + x + 1], [2x^{2} + x + 2], [2x^{2} + 2x], [2x^{2} + 2x + 1], [2x^{2} + 2x + 2]$$

We will need the identities $[x]^3 = [x+2]$ and $[x]^4 = [x^2+2x]$ to multiply these elements.

Exercise 4.3.21: Find multiplicative inverses of the elements in the given fields.

(a) [a+bx] in $\mathbb{R}[x]/\langle x^2+1\rangle$

If a = 0, b = 0, the element [0] does not have a multiplicative inverse.

If $a \neq 0, b = 0$, then the inverse of [a] is just $\frac{1}{a}$.

Now suppose $b \neq 0$. Use the division algorithm to divide $x^2 + 1$ by a + bx:

$$x^{2} + 1 = (a + bx)\left(\frac{1}{b}x - \frac{a}{b^{2}}\right) + \frac{b^{2} + a^{2}}{b^{2}}.$$

Equivalently,
$$\frac{b^2}{b^2+a^2}(x^2+1) = \frac{b^2}{b^2+a^2}(a+bx)\left(\frac{1}{b}x-\frac{a}{b^2}\right)+1. \text{ Thus, in } \mathbb{R}[x]/\left\langle x^2+1\right\rangle,$$

$$1 = \frac{-b^2}{b^2 + a^2} \left(\frac{1}{b} x - \frac{a}{b^2} \right) (a + bx) = \frac{(-bx + a)}{b^2 + a^2} (a + bx). \text{ Hence, } [a + bx]^{-1} = \frac{(-bx + a)}{b^2 + a^2}.$$

(b) [a+bx] in $\mathbb{Q}[x]/\langle x^2-2\rangle$

If a = 0, b = 0, the element [0] does not have a multiplicative inverse.

If $a \neq 0, b = 0$, then the inverse of [a] is $\frac{1}{a}$.

Now suppose $b \neq 0$. Use the division algorithm to divide $x^2 - 2$ by a + bx:

$$x^{2}-2=(a+bx)\left(\frac{1}{b}x-\frac{a}{b^{2}}\right)+\frac{a^{2}-2b^{2}}{b^{2}}$$
. First, consider $a^{2}-2b^{2}\neq0$.

Then,
$$\frac{b^2}{a^2-2b^2}(x^2-2) = \frac{b^2}{a^2-2b^2}(a+bx)\left(\frac{1}{b}x-\frac{a}{b^2}\right) + 1$$
. Thus, in $\mathbb{Q}[x]/\left\langle x^2-2\right\rangle$,

$$1 = \frac{b^2}{2b^2 - a^2} \left(\frac{1}{b}x - \frac{a}{b^2} \right) (a + bx) = \frac{(bx - a)}{2b^2 - a^2} (a + bx). \text{ Hence, } [a + bx]^{-1} = \frac{(bx - a)}{2b^2 - a^2}.$$

Now, if $a^2 - 2b^2 = 0$, we'll have $a^2 = 2b^2$ so

$$\left(\frac{a}{b}\right)^2 = 2$$
 therefore $\frac{a}{b} = \pm\sqrt{2}$.

However, $a, b \in \mathbb{Q}$, $b \neq 0$ implies $\frac{a}{b} \in \mathbb{Q}$ so $a^2 - 2b^2 \neq 0$.

(c)
$$[x^2 - 2x + 1]$$
 in $\mathbb{Q}[x]/\langle x^3 - 2\rangle$

The extended Euclidean algorithm yields

$$1 = (-5x + 6)(x^3 - 2) + (5x^2 + 4x + 13)(x^2 - 2x + 1).$$

However, after expanding $(5x^2+4x+13)(x^2-2x+1)$ and reducing mod x^3-2 using the identities $x^3\equiv 2$ and $x^4\equiv 2x$, we do not get 1. So, knowing that the multiplicative inverse is likely of the form ax^2+bx+c , solve for a,b,c: $1=(ax^2+bx+c)(x^2-2x+1)=ax^4+(b-2a)x^3+(a-2b+c)x^2+(b-2c)x+c=(a-2b+c)x^2+(2a+b-2c)x+(2b-4a+c)$. Thus, a,b,c must satisfy a-2b+c=0, 2a+b-2c=0, and 2b-4a+c=1. So, we will row reduce to solve

this system of equations and obtain:

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 2 & 1 & -2 & 0 \\ -4 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 5 \end{bmatrix}$$

So, $[x^2 - 2x + 1]^{-1} = 3x^2 + 4x + 5$. Now, check this inverse works:

$$(3x^2 + 4x + 5)(x^2 - 2x + 1) = 3x^4 - 2x^3 - 6x + 5 \equiv 3 \cdot 2x - 2 \cdot 2 - 6x + 5 = 1.$$

Thus, $[x^2 - 2x + 1]^{-1} = 3x^2 + 4x + 5$.

(d)
$$[x^2 - 2x + 1]$$
 in $\mathbb{Z}_3[x]/\langle x^3 + x^2 + 2x + 1\rangle$

Use the Euclidean Algorithm to find $gcd(x^2 - 2x + 1, x^3 + x^2 + 2x + 1)$:

$$x^{3} + x^{2} + 2x + 1 = (x^{2} - 2x + 1)(x) + x + 1$$

 $x^{2} - 2x + 1 = (x + 1)x + 1$

Next, back substitute and simplify to find the multiplicative inverse:

$$1 = (x^{2} - 2x + 1) - (x + 1)x$$

$$= (x^{2} - 2x + 1) - x(x^{3} + x^{2} + 2x + 1 - (x^{2} - 2x + 1)(x))$$

$$= (1 + x^{2})(x^{2} - 2x + 1) + (-x)(x^{3} + x^{2} + 2x + 1)$$

Thus, $[x^2 - 2x + 1]^{-1} = 1 + x^2$.

(e) [x] in $\mathbb{Z}_5[x]/\langle x^2+x+1\rangle$ Use the Division Algorithm to find $\gcd(x,x^2+x+1)$:

$$x^{2} + x + 1 = (x)(x+1) + 1$$
. Thus, $x^{2} + x + 1 - (x)(x+1) = 1$

In
$$\mathbb{Z}_5$$
, $-x - 1 \equiv 4x + 4$ so $[x]^{-1} = 4x + 4$.

(f)
$$[x+4]$$
 in $\mathbb{Z}_5[x]/\langle x^3 + x + 1 \rangle$

Use the division algorithm to find $gcd(x+4, x^3+x+1)$:

$$x^3 + x + 1 = (x+4)(x^2 + x + 2) + 3$$
. Equivalently, $x^3 + x + 1 - (x+4)(x^2 + x + 2) = 3$.

In \mathbb{Z}_5 , $3^{-1}=2$, so we can multiply the last equation by 2 to obtain:

$$2(x^3 + x + 1) - 2(x + 4)(x^2 + x + 2) = 1$$
. Also, $-2 \mod 5 = 3$, so

$$[x+4]^{-1} = 3(x^2+x+2) = 3x^2+3x+6 = 3x^2+3x+1.$$