# Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 5: Richiami di algebra lineare e forma di Jordan

Corso di Laurea Magistrale in Ingegneria Meccatronica A.A. 2020-2021



### In questa lezione

- ▶ Richiami di algebra lineare
- ▶ Calcolo dell'esponenziale di matrice tramite diagonalizzazione
- ▶ Forma di Jordan

### Vettori e basi in $\mathbb{R}^n$

- 1. L'insieme (di vettori)  $\mathbb{R}^n$  con campo (di scalari)  $\mathbb{R}$  dotato delle consuete operazioni di somma tra vettori e prodotto di vettore per scalare, è uno spazio vettoriale.
- **2.** I vettori  $v_1, \ldots, v_k \in \mathbb{R}^n$  sono detti linearmente indipendenti (dipendenti) se

$$\alpha_1 \mathbf{v}_1 + \cdots + \alpha_k \mathbf{v}_k = 0, \ \alpha_i \in \mathbb{R} \implies (\clubsuit) \ \alpha_1 = \cdots = \alpha_k = 0.$$

- **3.** I vettori  $v_1, \ldots, v_k \in \mathbb{R}^n$  formano una base di  $\mathbb{R}^n$  se:
  - (i) generano  $\mathbb{R}^n$ :  $\forall v \in \mathbb{R}^n$ ,  $\exists \alpha_i \in \mathbb{R}$  t.c.  $v = \alpha_1 v_1 + \cdots + \alpha_k v_k$
  - (ii) sono linearmente indipendenti

### Trasformazioni lineari

- **1.** Una trasformazione  $f: \mathbb{R}^m \to \mathbb{R}^n$  si dice lineare se
  - (i)  $f(v_1 + v_2) = f(v_1) + f(v_2), \quad \forall v_1, v_2 \in \mathbb{R}^m$
  - (ii)  $f(\alpha \mathbf{v}) = \alpha f(\mathbf{v}), \quad \forall \mathbf{v} \in \mathbb{R}^m, \ \forall \alpha \in \mathbb{R}$
- **2.** Una trasformazione lineare  $f: \mathbb{R}^m \to \mathbb{R}^n$  è univocamente individuata dalla sua restrizione ai vettori di una qualsiasi base  $\mathcal{B}$  di  $\mathbb{R}^m$ .

G. Baggio

Lez. 5: Richiami di algebra lineare e forma di Jordan

8 Marzo 2021 5 / 18

### Trasformazioni lineari e rappresentazione matriciale

1. Fissata una base  $\mathcal{B}_1$  di  $\mathbb{R}^m$  e una base  $\mathcal{B}_2$  di  $\mathbb{R}^n$  è possibile rappresentare una trasformazione lineare  $f: \mathbb{R}^m \to \mathbb{R}^n$  con una matrice  $F \in \mathbb{R}^{n \times m}$  che descrive come le coordinate (rispetto a  $\mathcal{B}_1$ ) di vettori di  $\mathbb{R}^m$  vengono mappate da f in coordinate di vettori (rispetto a  $\mathcal{B}_2$ ) di  $\mathbb{R}^n$ .

**2.** Fissata una base  $\mathcal{B}$  di  $\mathbb{R}^n$ , sia  $F \in \mathbb{R}^{n \times n}$  la matrice che rappresenta la trasformazione lineare  $f: \mathbb{R}^n \to \mathbb{R}^n$ . Sia  $T \in \mathbb{R}^{n \times n}$  la matrice di cambio di base da  $\mathcal{B}$  di  $\mathbb{R}^n$  ad una "nuova" base  $\mathcal{B}'$  di  $\mathbb{R}^n$ . La matrice che rappresenta f nella nuova base è

$$F'=T^{-1}FT$$
.

### Matrici: fatti base

**1.** Sia  $F \in \mathbb{R}^{n \times m}$ 

$$\ker F \triangleq \{ v \in \mathbb{R}^m : Fv = 0 \},$$

$$\operatorname{im} F \triangleq \{ w \in \mathbb{R}^n : w = Fv, \exists v \in \mathbb{R}^m \},$$

rank  $F \triangleq \#$  righe (o colonne) lin. indipendenti di F

- **2.** Sia  $F \in \mathbb{R}^{n \times n}$ , un vettore  $v \in \mathbb{C}^n$  tale che  $Fv = \lambda v$ ,  $\lambda \in \mathbb{C}$ , è detto autovettore di F corrispondente all'autovalore  $\lambda$ .
- **3.** Gli autovalori  $\{\lambda_i\}_{i=1}^k$ di  $F\in\mathbb{R}^{n\times n}$  sono le radici del polinomio caratteristico

$$\Delta_F(\lambda) = \det(\lambda I - F) = (\lambda - \lambda_1)^{\nu_1} (\lambda - \lambda_2)^{\nu_2} \cdots (\lambda - \lambda_k)^{\nu_k},$$

dove  $\nu_i$  è la molteplicità algebrica dell'autovalore  $\lambda_i$ .

G. Baggio

Lez. 5: Richiami di algebra lineare e forma di Jordan

8 Marzo 2021 7 / 18

### Matrici: fatti base

**4.** Ogni autovettore  $\nu$  relativo all'autovalore  $\lambda_i$  di  $F \in \mathbb{R}^{n \times n}$  soddisfa

$$(\lambda_i I - F)v = 0.$$

**5.** La molteplicità geometrica  $g_i$  dell'autovalore  $\lambda_i$  di  $F \in \mathbb{R}^{n \times n}$  è il numero massimo di autovettori linearmente independenti associati a  $\lambda_i$  e coincide con

$$g_i = \dim \ker(\lambda_i I - F) = n - \operatorname{rank}(\lambda_i I - F).$$

**6.** Se  $\nu_i = g_i$  per ogni autov esiste una matrice di camb

| $mker(\lambda_iI-F)=n-rank(\lambda_iI-F).$                                                 |  |
|--------------------------------------------------------------------------------------------|--|
| $\lim_{n\to\infty} (\lambda q_1 - 1) = n - \lim_{n\to\infty} (\lambda q_1 - 1).$           |  |
| valore $\lambda_i$ di $F \in \mathbb{R}^{n \times n}$ allora $F$ è diagonalizzabile, i.e., |  |
| pio di base $T \in \mathbb{R}^{n \times n}$ tale che                                       |  |
|                                                                                            |  |
| $F_D \triangleq T^{-1}FT$ è diagonale.                                                     |  |
|                                                                                            |  |
|                                                                                            |  |
| .ez. 5: Richiami di algebra lineare e forma di Jordan 8 Marzo 2021 8 / 18                  |  |
|                                                                                            |  |
|                                                                                            |  |

### Esempio: diagonalizzazione

 $F = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ , F diagonalizzabile? Se sì, calcolare T.

 $\lambda_1=$  i,  $\nu_1=$  1,  $g_1=$  1,  $\lambda_2=$  -i,  $\nu_2=$  1,  $g_2=$  1  $\implies$  F diagonalizzabile  $\checkmark$ 

$$T = \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix} \implies F_D = T^{-1}FT = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$$

G. Baggio

Lez. 5: Richiami di algebra lineare e forma di Jordan

8 Marzo 2021 9 / 18

# Calcolo di $e^{Ft}$ tramite diagonalizzazione

 $F \in \mathbb{R}^{n \times n}$  diagonalizzabile  $(\nu_i = g_i \text{ per ogni autovalore } \lambda_i)$ 



Esiste  $T \in \mathbb{R}^{n \times n}$  tale che  $F_D = T^{-1}FT$  diagonale

Come ci aiuta questo nel calcolo di  $e^{Ft}$ ?

# Calcolo di $e^{Ft}$ tramite diagonalizzazione

 $F \in \mathbb{R}^{n \times n}$  diagonalizzabile  $(\nu_i = g_i \text{ per ogni autovalore } \lambda_i)$ 

$$F = TF_DT^{-1} \implies e^{Ft} = e^{TF_DT^{-1}t}$$

$$(TF_DT^{-1}t)^n = T(F_Dt)^nT^{-1} \implies e^{Ft} = Te^{F_Dt}T^{-1}$$

G. Baggio

Lez. 5: Richiami di algebra lineare e forma di Jordan

#### 8 Marzo 2021 11 / 18

# Calcolo di $e^{Ft}$ tramite diagonalizzazione: esempio

 $F = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ , calcolare  $e^{Ft}$  tramite diagonalizzazione di F.

$$T = \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}$$
,  $F_D = T^{-1}FT = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$ 

$$e^{Ft} = Te^{F_D t} T^{-1} = \begin{bmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{bmatrix}$$

G. Baggio

Lez. 5: Richiami di algebra lineare e forma di Jordan

8 Marzo 2021 12 / 18

### Come calcolare $e^{Ft}$ ?

Calcolare  $e^{Ft}$ ,  $F \in \mathbb{R}^{n \times n}$ 

Trovare una matrice  $T \in \mathbb{R}^{n \times n}$  tale che  $T^{-1}FT$  diagonale

Non sempre possibile!!! Che fare quando non esiste una tale T?

Trovare una matrice  $T \in \mathbb{R}^{n \times n}$  tale che  $T^{-1}FT$  "quasi" diagonale!

G. Baggio

Lez. 5: Richiami di algebra lineare e forma di Jordan

8 Marzo 2021

### Esempi

**1.** 
$$F = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \implies \lambda_1 = 1$$
,  $\nu_1 = 2$ ,  $g_1 = 2 \implies \nu_1 = g_1$  diagonalizzabile  $\checkmark$ 

**2.** 
$$F = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \implies \lambda_1 = 2$$
,  $\nu_1 = 1$ ,  $g_1 = 1$ ,  $\lambda_2 = 0$ ,  $\nu_2 = 1$ ,  $g_2 = 1$   $\implies \nu_i = g_i$  diagonalizzabile  $\checkmark$ 

**3.** 
$$F = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \implies \lambda_1 = 1$$
,  $\nu_1 = 2$ ,  $g_1 = 1 \implies \nu_1 > g_1$  non diagonalizzabile!  $\times$ 

### Forma di Jordan: idea generale

 $F \in \mathbb{R}^{n \times n}$  con autovalori  $\{\lambda_i\}_{i=1}^k$ 

 $\nu_i = \text{molteplicità algebrica } \lambda_i$ 

 $g_i = \mathsf{molteplicita}$  geometrica  $\lambda_i$ 

Caso 1:  $\nu_i = g_i$  per ogni  $i \implies F$  diagonalizzabile  $\checkmark$ 

Caso 2: Esiste i tale che  $\nu_i > g_i \implies F$  non diagonalizzabile  $\times$ 

possiamo trasformare la matrice in una forma a blocchi diagonali o "quasi" diagonali (forma di Jordan)

...e i blocchi "quasi" diagonali hanno una forma ben nota !!

G. Baggio

Lez. 5: Richiami di algebra lineare e forma di Jordan

8 Marzo 2021

15 / 18

#### Forma di Jordan: teorema

**Teorema:** Siano  $\{\lambda_i\}_{i=1}^k$  gli autovalori di  $F \in \mathbb{R}^{n \times n}$ . Esiste una  $T \in \mathbb{R}^{n \times n}$  tale che

$$F_{J} \triangleq T^{-1}FT = \begin{bmatrix} \frac{J_{\lambda_{1}}}{0} & 0 & \cdots & 0 \\ 0 & J_{\lambda_{2}} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \hline 0 & \cdots & 0 & J_{\lambda_{k}} \end{bmatrix}, J_{\lambda_{i}} = \begin{bmatrix} \frac{J_{\lambda_{i},1}}{0} & 0 & \cdots & 0 \\ 0 & J_{\lambda_{i},2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \hline 0 & \cdots & 0 & J_{\lambda_{i},g_{i}} \end{bmatrix}, J_{\lambda_{i},j} = \begin{bmatrix} \lambda_{i} & 1 & \cdots & 0 \\ 0 & \lambda_{i} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & \lambda_{i} \end{bmatrix} \in \mathbb{R}^{r_{ij} \times r_{ij}}.$$

Inoltre  $F_J$  è unica a meno di permutazioni dei blocchi  $\{J_{\lambda_i}\}$  e miniblocchi  $\{J_{\lambda_i,j}\}$ .

 $F_I =$  forma canonica di Jordan di F

### Forma di Jordan: osservazioni

- **1.** Esiste una procedura algoritmica per il calcolo della trasformazione  $\mathcal{T}$  (cf. §1.5-1.6 del testo di riferimento)
- **2.** dim. blocco  $J_{\lambda_i}$  associato a  $\lambda_i =$  molteplicità algebrica  $\nu_i$
- **3.** # miniblocchi  $\{J_{\lambda_i,j}\}$  associati a  $\lambda_i$  = molteplicità geometrica  $g_i$
- **4.** In generale, per determinare  $F_J$  non è sufficiente conoscere gli autovalori  $\{\lambda_i\}$  e i valori di  $\{\nu_i\}$ ,  $\{g_i\}$ , ma bisogna anche conoscere i valori di  $\{r_{ij}\}$ !
- **5.** Se  $g_i = 1 \ \forall i$  o se n = 1, 2, 3 si può ricavare  $F_J$  calcolando solo  $\{\lambda_i\}$ ,  $\{\nu_i\}$ ,  $\{g_i\}$ !

G. Baggio

Lez. 5: Richiami di algebra lineare e forma di Jordan

8 Marzo 2021

17 / 18

### Forma di Jordan: esempi

**1.** 
$$F = \begin{bmatrix} 3 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \implies \lambda_1 = 2, \ \nu_1 = 2, \ g_1 = 1 \\ \lambda_2 = 1, \ \nu_1 = 1, \ g_1 = 1 \implies F_J = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

2. 
$$F = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & \alpha \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ \alpha = 0, 1 \implies \lambda_1 = 1, \ \nu_1 = 4, \ g_1 = 2$$

$$\implies F_J = \begin{cases} \begin{bmatrix} \frac{1}{0} & \frac{1}{0} & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \alpha = 0$$

$$\begin{bmatrix} \frac{1}{0} & \frac{1}{0} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \alpha = 1$$

G. Baggio

Lez. 5: Richiami di algebra lineare e forma di Jordan

8 Marzo 2021

18 / 1

| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |