Computer Network Laboratory Overview of OSI and Introduction of SDN

Jiawei Chang

Dept. of Computer Science and Information Engineering National Taichung University of Science and Technology

OVERVIEW OF OPEN SYSTEM INTERCONNECTION REFERENCE MODEL (OSI)

• 不同的網路架構必須要有一個共通的技術 標準,因而於1978年,ISO (International Standardization Organization) 開始發展 一套標準架構,定義了一個網路通訊的標 準架構模型,稱為「開放系統互連參考模 型 (Open Systems Interconnection Reference Model)」,簡稱「OSI/RM」 參考模型,它被用來描述多層通訊架構。

• 模型中將網路的架構定義成7個層次,每一層皆定義了該層使用的協定,協定用來提供該層特有的服務,並且透過位於其下層的協定與對方相同的協定溝通,即所稱的「對等通訊(peer-to-peer)」,這種堆疊式的多層模型稱為「協定堆疊(protocol stack)」。

- OSI模型可分成為兩組:
 - 位於下層稱為「網路群組」(第1層至第3層), 分別對應至實體層、數據鏈路層和網路層;
 - 位於上層的稱為「使用者群組」(第4層至第7層),分別對應至傳輸層、交談層、表現層和應用層,如圖3-1所示。

使用者群組

網路群組

表3-1 OSI各層功能

1	實體	層	此層為最低層,定義傳輸媒介的機械、電氣、功能與程序特性。
2	數據鏈路層		提供實際鏈路之間可靠的資訊傳輸服務,包含同步、錯誤控制及流量控制。
3	網路	層	負責網路建立、維護、結束(終止)連接及路徑選擇等功能。
4	傳輸	層	提供端至端間(end-to-end)可靠又透通的資料傳送服務,包括提供端點間錯誤回復與流量控制。
5	交 談	層	提供兩應用程式之間的交談建立、管理及終止。
6	表現	層	提供應用層不同資料表示方式,例如資料框的語法、格式與語意、資料壓縮、加密轉換等。
7	應用	層	為最高層,主要功能是提供網路服務給用戶,例如檔案傳送、電子郵 件等服務。

- 一般在討論Internet上的協定堆疊仍然包含5個層,除實體層仍沿用協定資料單元(Protocol Data Unit; PDU)外,其他4層的封包由最上層往下算下去,PDU所對應的名稱分別為訊息(message)、區段(segment)、資料包(datagram)及訊框(frame),如圖3-3所示。
- 當發送端由上而下方向送出訊息,每經一層就增加一標頭,這種方式也是所謂「封裝(encapsulation)」概念;接收端剛好相反,每經一層就棄除一標頭,稱為「解封裝(decapsulaion)」。

●圖3-3 網際網路協定堆疊

●圖3-4 封裝的概念(包含路由器的網際網路協定堆疊)

- 圖3-4指出封裝的概念,包含路由器的 Internet協定堆疊及與它對應的層通訊架構 流程(注意:資料封包傳送方向是依據箭頭 方向)。
- 各協定層有的僅用軟體來實現或僅用硬體 完成,當然有的層會利用軟硬體一起來實 現層功能。

- 就以應用層來說,如SMTP或HTTP就只以 軟體實現於端系統上,同樣情形也發生在 傳輸層。相反地,實體層和數據鏈路層可 只以硬體(如網路介面卡)實現在特定鏈路上 的通訊。
- 至於網路層則常由軟硬體互相搭配實現層功能。

應用層

此層主要負責支撐整個網路的應用及服務,例如最典型的應用就屬全球資訊網(World Wide Web; WWW),它允許瀏覽器(Browser)從Web伺服器擷取特別的格式檔,檔案中的格式命令不但讓瀏覽器顯示出所要的文字、圖形外,同時也允許文件連結至其他格式之文件。

傳輸層

- 此層主要提供在不同主機上執行應用程式之間的邏輯通訊。
 - 發送端會將應用層的訊息加上標頭,形成區段,也 是所謂的傳輸層的封包;若應用層的訊息太長時, 必須先分割成較小的區段,此區段往下傳送到網路 層,並加上標頭,形成網路層的封包。
 - 接收端再將收到的資料區段重組成訊息至應用層。
 - 當應用層訊息要在伺服器/客戶端(Server/Client) 兩端之間傳送時,就是由傳輸層提供這樣服務。

傳輸層

- Internet最典型的傳輸層協定為TCP及UDP (User Datagram Protocol)。
- TCP提供連接導向服務,它可保證應用層訊息送達目的端;TCP也提供多工、流量控制及壅塞控制,為了使錯誤能有效控制,TCP將利用順序號碼(sequence number;簡稱序號)、逾時(timeout)和重傳(retransmission)功能來達成。

傳輸層

• TCP/UDP最典型的應用就屬WWW,其最基本要求就是檔案傳輸,為了得一可靠通訊,TCP連線是最佳選擇;然而,對於即時影音之多媒體服務,一般仍採用UDP連線。

網路層(IP層)

- Internet的網路層主要有兩種成分:
 - 一是用來對資料包(或稱IP封包)內的欄位做定義
 - 另一是欄位也會顯示路由器與主機之間的關係。
- Internet 上的網路層使用的繞送協定 (routing protocol),像資源資訊協定 (Resource Information Protocol; RIP)或開放最短路徑優先(Open Shortest Path First),其用來決定來源端和目的端之間的對包路由。

數據鏈路層

網路層將封包從來源端送至目的端之前,可能需經過一連串的節點(如交換器或路由器),而在節點之間的IP封包移動均需仰賴數據鏈路層所提供之服務。

數據鏈路層

- 在不同的鏈路有可能由不同的數據鏈路層 協定所處理。
- 例如,某一鏈路採用Ethernet、ATM、訊框傳送(Frame Relay; FR)或WiFi;而下一鏈路可能採用 PPP(Point-to-Point Protocol)協定,IP層可從不同的數據鏈路層協定得到不同的服務。

數據鏈路層

注意,前面提到的TCP協定為一可靠傳送服務,但並不是以鏈路為基準,而是提供從一端系統至另一端系統的可靠傳送服務。

實體層

- 當數據鏈路層正處理從網路元件至另一網路元件上的訊框時,實體層的任務則用來處理這些訊框中的位元。
- 此層的協定也依鏈路所用的實體媒介而有不同。
- 例如,實體媒介可能會用雙絞線、同軸電 續或光纖。

INTRODUCTION OF SOFTWARE-DEFINED NETWORKING (SND)

新一代的SDN網路

為了要實現各種網路協定,交換器或是路由器必須不斷的拆分及重組封包,導致傳輸效率不佳,無法有效發揮網路頻寬;因此有SDN的架構被發展起來。現有網路與SDN機制比較如下:

新一代的SDN網路

- 現有龐大的Internet基礎設施已極難發展進步。
- 現有網路管理控制和性能調整總是帶有挑戰威 脅性並容易出錯。
- 現有網路的控制邏輯與網路設備(如乙太網交換器)很緊密, SDN則轉變集中至控制器。
- 可程式設計網路的概念是一種促進網路進化所提出的,特別是SDN新的網路模式,把執行轉送(forwarding)的硬體部分,例如專用的轉送引擎從控制決策部分,如協定和控制軟體中分離出來。

- SDN的網路架構是由美國史丹佛大學Nick Mckeown提出Clean Slate方案。
- 利用OpenFlow協定,如圖1-16所示把路由器的控制面(control plane)從資料面(data plane)中分離出來,以軟體方式實現,其特點如下:

- SDN架構可以讓網路管理員,在不更動硬體裝置的前提下,以集中控制方式,用程式重新規劃網路,為控制網路流量提供了新的方法,也提供了核心網路及應用創新的一種平台。
- -網管人員只需在控制器上下達指令就可以進行 自動化設定,無須逐一進行個別的設定,也避 免人為錯誤疏失。

- 透過SDN, 虛擬化原則可應用於網路資源、抽象化、建立自動化作業上, 超越實體架構的限制。
- -指派網路服務至各個應用程式,並繼續提供服務,彈性適應其變動的需求。
- 更簡化的佈建作業。
- 更強大的延展性。
- 可以簡化管理。
- 較低的營運成本。

- SDN可以可程式化(programmable)的方式來控制,一旦控制權從個別的網路設備上脫離,然後轉移到SDN控制器(Controller)後,這樣會使底層的網路基礎架構抽象化,這樣的結果,網路基礎架構就能變得非常的動態、容易管理。

SDN網路架構就是為了要解決傳統網路的一些問題,它的特色是改變了傳統網路架構的控制模式,將網路分為控制層(即控制面)與資料層(即資料面),將網路的管理權限交由控制層的控制器軟體負責,採用集中控管的方式。

OpenFlow技術則是SDN網路採用的一項通訊協定,用於控制層和資料層間建立傳輸通道,就像是人類的神經系統,負責大腦與四肢的溝通,所以OpenFlow協定也是實現SDN架構最主流的技術。

- Application:決定使用者資料流的方向及去處,並加以記錄以提供給下一個程式來應用。
- 控制器:承接來自北向(介面)應用層所決定的 結果,並以此指揮南向(介面)的設備,使用的 協定為OpenFlow。
- 硬體: Forwarding hardware 包括 flow table(由match rules和flow actions等組成)以及新項目(entry)利用傳輸層與控制器之間的安全通訊。

• 由OpenFlow技術所打造的SDN架構,除了可解決現今網路架構的一些問題,在控制器軟體上也將提供API讓第三方使用者可依據企業政策及需求來網路安全管理、負載平衡、頻寬管理QoS開發相關的應用程式,像是等,也就是說,SDN是個可程式化的開放網路架構。

 德國2013年4月工業4.0工作小組提出透過數位化資訊整合物聯網、大數據(Big Data)、 感應器、互聯網路等科技,提供更智慧化 及自動化的生產與供應鏈能力,並提出資 料安全和資料保護相關的策略。

- 當工業3.0朝向工業4.0時,管理階層會要求 把公司資料、軟體開發的服務及相關資料 庫放置於雲端且虛擬化。
- 由於一個安裝虛擬化作業系統的實體伺服器,可能有多個虛擬主機與多種應用程式, 受限於VM頻寬無法保證,也無法自由更動, 除非把另一個實體伺服器網路設定完全才 能進行VM遷移作業,這將限制了新的雲端 應用服務的部署。

 解決方式是採用稱為下一代新網路 SDN/OpenFlow架構,換言之,軟體定義網路(Software-Defined Networking; SDN)成為唯一解決方案。

• 現階段要開發SDN應用程式的門檻較高, 但對於硬體設備廠商來說,將會是一大衝 墼, 交換器的重要性再也不如以往那麼重 要,未來客製化的軟體就可以提供各項硬 體設備的功能,而網路硬體設備的廠商是 否會因為SDN架構的出現就可能不進則退, 這也是自SDN被提出後,備受關注的議題

 不可諱言,很多專家皆認為,SDN開放API 將會在市場上帶來一波新的商機,也就是 說,SDN在市場上的競爭相當具有發展的 潛力,網路設備大廠HP則預測在2016年市 場價值則將達到20億美元,而依據IDC預測, SDN的市場將從2017年成長到37億美元以 上。

延伸閱讀

- 1. 談傳統網路架構的毛病、SDN 又是如何改善善傳統複雜網絡架構? [link]
- 2. 聚焦傳統網路,學習SDN基礎和案例 [link]
- 3. SDN與NFV的區別和關係 [link]

Resource is available by https://jiaweichang.github.io/biography/

THANKS