MAT02036 - Amostragem 2

Aula 04 - Amostragem Estratificada - Propriedades e Alocação de amostras

Markus Stein

Departamento de Estatística, IME/UFRGS

2022/2

Housekeeping

- Aproveitem o momento presencial para tirar dúvidas
- Se estivéssemos no ensino remoto ou à distância
 - o vocês poderiam estar somente ouvindo, sem interação
 - o u assistindo vídeos e material em outro momento
- Depois das aulas, rever material da aula passada
 - fazer exercícios
 - se preparar para a próxima aula

Aula passada 💿

Parâmetros no estrato h

- Total $T_h = \sum_{i \in U_h} y_i$
- Média $\overline{Y_h} = T_h/N_h = rac{1}{N_h} \sum_{i \in U_h} y_i$
- ullet Variância $S_h^2=rac{1}{N_h-1}\sum_{i\in U_h}(y_i-\overline{Y_h})^2$ ou $Var_h=Var_{h,y}=rac{N_h-1}{N_h}S_h^2$

Parâmetros globais

- Total $T = \sum_{h=1}^H T_h = \sum_{h=1}^H N_h \overline{Y_h}$
- Média $\overline{Y} = T/N = \frac{1}{N} \sum_{h=1}^H N_h \overline{Y_h} = \sum_{h=1}^H W_h \overline{Y}_h, W_h = N_h/N$
- ullet Variância $S^2=rac{1}{N-1}\sum_{h=1}^H\sum_{i\in U_h}\left(y_i-\overline{Y}
 ight)^2$ ou $Var_y=rac{1}{N}\sum_{h=1}^H(N_h-1)S_h^2$

Decomposição da variância populacional

$$S_y^2 = rac{1}{N-1} \sum_{h=1}^H (N_h - 1) S_h^2 + rac{1}{N-1} \sum_{h=1}^H N_h \Big(\overline{Y_h} - \overline{Y} \Big)^2 = S_D^2 + S_E^2$$
 ou $Var_y = \sum_{h=1}^H W_h Var_h + \sum_{h=1}^H W_h \Big(\overline{Y_h} - \overline{Y} \Big)^2 = Var_D + Var_E.$

Aula passada 💿

Estimadores no estrato h

Estimadores AASc	Estimadores AASs
$\widehat{T}_h = rac{N_h}{n_h} \sum_{i \in s_h} y_i = N_h \overline{y}_h$	$\widehat{T}_h = rac{N_h}{n_h} \sum_{i \in s_h} y_i = N_h \overline{y}_h$
$\overline{y}_h = rac{1}{n_h} \sum_{i \in s_h} y_i$	$\overline{y}_h = rac{1}{n_h} \sum_{i \in s_h} y_i$
$Var_{AESc}\left(\widehat{T}_{h} ight) =N_{h}^{2}Var_{AESc}\left(\overline{y}_{h} ight)$	$Var_{AES}\left(\widehat{T}_{h} ight) =N_{h}^{2}Var_{AES}\left(\overline{y}_{h} ight)$
$Var_{AESc}\left(\overline{y}_{h} ight)=rac{1}{n_{h}}Var_{h}$	$Var_{AES}\left(\overline{y}_{h} ight) =\left(rac{1}{n_{h}}-rac{1}{N_{h}} ight) S_{h}^{2}$
$\widehat{Var}_{AESc}\left(\widehat{T}_{h} ight)=N_{h}^{2}\widehat{Var}_{AESc}\left(\overline{y}_{h} ight)$	$\widehat{Var}_{AES}\left(\widehat{T}_{h} ight)=N_{h}^{2}\widehat{Var}_{AES}\left(\overline{y}_{h} ight)$
$\widehat{Var}_{AESc}\left(\overline{y}_{h} ight)=rac{1}{n_{h}}{\widehat{S}}_{h}^{2}$	$\widehat{Var}_{AES}\left(\overline{y}_{h} ight)=\left(rac{1}{n_{h}}-rac{1}{N_{h}} ight)\widehat{S}_{h}^{2}$

em que
$$Var_h=Var_h(y)=rac{N_h-1}{N_h}S_h^2$$
 e $\widehat{S}_h^2=rac{1}{n_h-1}\sum_{i\in s_h}ig(y_i-\overline{y}_hig)^2.$

Aula passada 📀

Estimadores globais

- Do total T: $\widehat{T}_{AES} = \sum_{h=1}^{H} \widehat{T}_h = \sum_{h=1}^{H} N_h \overline{y}_h$.
- Da média \overline{Y} : $\overline{y}_{AES} = \sum_{h=1}^{H} W_h \overline{y}_h = \sum_{h=1}^{H} \frac{N_h}{N} \overline{y}_h.$

Variância do estimador e seu estimador

Sob AASc	Sob AASs
$Var_{AES}\left(\widehat{T}_{AES} ight) = \sum_{h=1}^{H} N_h^2 rac{Var_h}{n_h}$	$Var_{AES}\left(\widehat{T}_{AES} ight) = \sum_{h=1}^{H} N_h^2 \left(rac{1}{n_h} - rac{1}{N_h} ight) S_h^2$
$Var_{AES}\left(\overline{y}_{AES} ight) = \sum_{h=1}^{H} W_{h}^{2} rac{Var_{h}}{n_{h}}$	$Var_{AES}\left(\overline{y}_{AES} ight) = \sum_{h=1}^{H} W_{h}^{2}\left(rac{1}{n_{h}} - rac{1}{N_{h}} ight) S_{h}^{2}$
$\widehat{Var}_{AES}\left(\widehat{T}_{AES} ight) = \sum_{h=1}^{H} N_h^2 rac{\widehat{S}_h^2}{n_h}$	$\widehat{Var}_{AES}\left(\widehat{T}_{AES} ight) = \sum_{h=1}^{H} N_h^2 \left(rac{1}{n_h} - rac{1}{N_h} ight) {\widehat{S}}_h^2$
$\widehat{Var}_{AES}\left(\overline{y}_{AES} ight) = \sum_{h=1}^{H} W_{h}^{2} rac{\widehat{S}_{h}^{2}}{n_{h}}$	$\widehat{Var}_{AES}\left(\overline{y}_{AES} ight) = \sum_{h=1}^{H} W_{h}^{2}\left(rac{1}{n_{h}} - rac{1}{N_{h}} ight) \widehat{S}_{h}^{2}$

Ainda aula passada 🏦

Tarefa para casa:

Seja \widehat{T}_h um estimador não viesado (**ENV**) para T_h , o total do estrato h, segundo um plano amostral A, ou seja, $E_A(\widehat{T}_h) = T_h$, $\forall h = 1, \ldots, H$. De acordo com o plano amostral estratificado simples **AES** responda:

- **1**. Mostrar $E_{AES}\left(\widehat{T}_{AES}\right)=T$, em que $\widehat{T}_{AES}=\sum_{h=1}^{H}N_{h}^{2}\widehat{T}_{h}$;
- 2. Encontre $Var_{AES}\left(\widehat{T}_{AES}\right)$, tanto para **AASs** quanto para **AASc**.

Alguém tentou ???

Ainda aula passada 🏂

Exercício: Para os dados do exemplo da aula passada (ver abaixo);

- 1. selecione uma amostra asumindo o plano AASc em cada estrato;
- 2. construa um intervalo de 99% de confiança para a renda média global dos domicílios;
- **3**. construa um intervalo de 99% de confiança para a renda média dos domicílios por estrato.

Iremos explorar os ICs nas próximas aulas 🌡

Alocação da amostra pelos estratos

Exemplo aula passada 🏂 Alocação UNIFORME

Considere uma pesquisa feita em uma população de 8 domicílios, onde são conhecidas as variáveis renda familiar (Y) e local do domicílio (L), com os códigos A para região alta e B para baixa (B).

```
N <- 8
domicilio <- 1:N
y <- c( 13, 17, 6, 5, 10, 12, 19, 6)
l <- c( "B", "A", "B", "B", "B", "A", "B")
```

- **1**. Calcule $Var(\overline{y})$ sob AASc, para estimar $\overline{Y} = \frac{T}{N} = \frac{\sum_i \in Uy_i}{N}$, com n=4.
- 2. Calcule $Var(\bar{y}_{AES})$, para $\bar{y}_{AES}=\frac{N_A \, \bar{y}_A+N_B \, \bar{y}_B}{N}$ (usando L como variável estratificadora), com amostra $n_h=2$ por estrato.
- **3**. Compare as variâncias dos dois planos (Efeito do Plano Amostral *EPA*).

Exemplo aula passada 💝 Alocação UNIFORME

```
Resolução no \mathbf{Q}: N=8 domicílios, N_A=3, N_B=8; L: localidade domicílio, H=2; Y: renda familiar.
```

1. Sob AASc $Var(\overline{y}_{AASc}) = Var_y/n$,

```
n <- 4
Ybarra <- mean(y)  # media populacional
vary <- sum((y-Ybarra)^2) / N  # variancia de Y_U
varybarra <- vary / n  # variancia da media amostral</pre>
```

2. $Var(\overline{y}_{AES}) = \sum_{h=1}^H W_h^2 Var(\overline{y}_h)$, então precisamos $Var(\overline{y}_A)$ e $Var(\overline{y}_B)$,

```
yA <- y[l=="A"]

N_A <- length(yA)

nA <- 2

YbarraA <- mean(yA)

varyA <- sum((yA-YbarraA)^2)/N_A

varybarraA <- varyA / nA
```

```
yB <- y[l=="B"]

N_B <- length(yB)

nB <- 2

YbarraB <- mean(yB)

varyB <- sum((yB-YbarraB)^2)/N_E

varybarraB <- varyB / nB 10/26
```

Exemplo aula passada 🏂 Alocação UNIFORME

Resolução no 😱:

Combinando as estimativas dos estratos, $Var(\overline{y}_{AES_{un}}) = \sum_{h=1}^2 \left(rac{N_h}{N}
ight)^2 \overline{y}_h =$

(varybarraAES <-
$$(N_A/N)^2$$
 * varybarraA + $(N_B/N)^2$ * varybarraB)

[1] 2.40625

$$oxed{3}$$
 Então $EPA=rac{Var(ar{y}_{AES})}{Var(ar{y}_{AASc})}=$

(EPA <- varybarraAES / varybarra)</pre>

[1] 0.4010417

Portanto, a **variância** do estimador foi **reduzida em mais da metade**, com o **mesmo tamanho amostral**

(cont.) Exemplo aula passada 🏂

"Alocação PROPORCIONAL"

Com os mesmos dados do exemplo da aula passada, definimos outra estratégia de AES tal que os tamanhos amostrais são diferentes. Assuma agora que $n_A = 1$ e $n_B = 3$, com **AASc** dentro de cada estrato.

- **1**. Encontre $Var_{AES}(\overline{y}_{AES})$.
- 2. Compare com os resultados de $Var(\bar{y})$ baseados nas estratégias anteriores, **AASc** com n=4 e **AES** com $n_A = n_B = 2$.
- **3**. Como ficaria $Var_{AES}(\widehat{T})$ para o plano AASs dentro de cada estrato?

(cont.) Exemplo aula passada 💪

Alocação "PROPORCIONAL"

Resolução no 😱:

1. Vimos que $Var(\overline{y}_{AES}) = \sum_{h=1}^H W_h^2 Var(\overline{y}_h)$, então precisamos $Var(\overline{y}_A)$ e $Var(\overline{y}_B)$,

```
yA <- y[l=="A"]
N_A <- length(yA)
nA <- 1
YbarraA <- mean(yA)
varyA <- sum((yA-YbarraA)^2)/N_A
varybarraA <- varyA / nA
```

```
yB <- y[l=="B"]
N_B <- length(yB)
nB <- 3
YbarraB <- mean(yB)
varyB <- sum((yB-YbarraB)^2)/N_E
varybarraB <- varyB / nB</pre>
```

Combinando as estimativas em cada estrato, $Var(\overline{y}_{AES_{pr}}) = \sum_{h=1}^2 \left(rac{N_h}{N}
ight)^2 \overline{y}_h =$

```
(varybarraAESpr \leftarrow (N_A/N)^2 * varybarraA + (N_B/N)^2 * varybarraB)
```

Exemplo aula passada 📅

Alocação "PROPORCIONAL"

Resolução no 😱:

2. Então
$$EPA = rac{Var(\overline{y}_{AES_{pr}})}{Var(\overline{y}_{AES_{un}})} =$$

(EPA <- varybarraAESpr / varybarraAES)</pre>

[1] 1.004329

Nesse caso parece não haver grande diferença na redução da variância comparando os planos AES_{un} e AES_{pr} , mas ambos mostram que a variância do estimador foi **reduzida em mais da metade**, em relação a uo plano AASc, com o **mesmo tamanho amostral**

Note que não usamos exatamente um plano proporcional, $\frac{n_A}{n}=\frac{1}{4}\neq \frac{3}{8}=\frac{N_A}{N}$.

3....continuar...

Alocação da amostra nos estratos

- Uma decisão importante é a forma pela qual o tamanho total da amostra será alocado ou distribuído nos estratos.
- Em *estratos naturais* pode ser de **interesse calcular tamanhos de amostra** para que a estimação de parâmetros dos estratos tenham precisão controlada.
 - O tamanho total da amostra é obtido somando os tamanhos de amostra calculados para os estratos,
 - a alocação nos estratos vem antes da obtenção do tamanho total da amostra.
- Se **não há interesse específico na estimação** de parâmetros dos **estratos** e um tamanho total de amostra foi calculado, é necessário distribuir esse tamanho entre os estratos definidos na população.
- Há duas maneiras principais de alocação da amostra, que pode ser feita de forma proporcional ou desproporcional aos tamanhos N_h dos estratos.

Amostragem estratificada simples com alocação proporcional- AESpr\$

- A fração amostral em cada estrato, $f_h = n_h/n$, é constante e igual à fração amostral da amostra inteira, $f = N_h/N$.
 - Estratos maiores ficam com amostras maiores.
- A **Alocação Proporcional** implica tentar implementar

$$rac{n_h}{n} = rac{N_h}{N} \Rightarrow n_h = nrac{N_h}{N} = nW_h, \ \ orall h = 1, 2, \ldots, H.$$

- Os tamanhos de amostra calculados provavelemente não serão números inteiros.
 - Na prática **arredondar** para cima os tamanhos de amostra calculados implica um pequeno aumento em n.
- A amostra sorteada será auto-ponderada e o procedimento de estimação poderá ser simplificado.
 - Todas as outras formas de alocação vão resultar em uma alocação desproporcional da amostra nos estratos.

ullet Com $n_h=nW_h$, temos que $\overline{y}_{AES_m}=\overline{y}$ é **ENV** da média populacional,

$$ar{y}_{AES_{pr}} = \sum_{h=1}^{H} W_h ar{y}_h = \sum_{h=1}^{H} W_h rac{1}{n_h} \sum_{i \in s_h} y_i = rac{1}{n} \sum_{h=1}^{H} \sum_{i \in s_h} y_i = ar{y}_h$$

- Na **AESpr** Sob **AASs** a **variância** de $\overline{y}_{AES_{vr}}$ simplifica para

$$Var_{AES_{pr}}(\overline{y}_{AES_{pr}}) \doteq \left(rac{1}{n} - rac{1}{N}
ight)S_D^2$$

- A expressão aproximada tem a mesma forma que no caso da **AASs**, com S_y^2 substituído por S_D^2 .
 - o Como $(S_D^2 < S_y^2)$, a AES_{pr} geralmente reduz a variância do estimador se comparada com **AASs** de igual tamanho.
- Ou, na **AASc** temos

$$Var_{AES_{pr}}\left(\overline{y}_{AES_{pr}}
ight)=rac{1}{n}\sum_{h=1}^{H}W_{h}Var_{h}=rac{1}{n}Var_{D}.$$

Podemos verificar que
$$\frac{W_h^2}{n_h}=\frac{W_h^2}{nW_h}=\frac{W_h}{n}$$
 e $\frac{W_h^2}{N_h}=\frac{W_h^2}{NW_h}=\frac{W_h}{N}$

• Então na AASs temos

$$egin{aligned} Var_{AES_{pr}}(\overline{y}_{AES_{pr}}) &= Var_{AES_{pr}}\left[\sum_{h=1}^{H}W_{h}\overline{y}_{h}
ight] \ &oldsymbol{2} &= \sum_{h=1}^{H}W_{h}^{2}Var_{AES_{pr}}\left(\overline{y}_{h}
ight) \ &(ext{def. }\overline{y}_{h} ext{ na AASs}) &= \sum_{h=1}^{H}W_{h}^{2}\left(rac{1}{n_{h}} - rac{1}{N_{h}}
ight)S_{h}^{2} \ &(ext{igualdades acima}) &= \left(rac{1}{n} - rac{1}{N}
ight)\sum_{h=1}^{H}W_{h}S_{h,y}^{2} \ &= \left(rac{1}{n} - rac{1}{N}
ight)S_{D}^{2}, \end{aligned}$$

onde a aproximação no último termo decorre de usar pesos N_h/N em lugar dos pesos $(N_h-1)/(N-1)$ como na definição de S_D^2 .

Alocação Uniforme

Alocação Uniforme

Amostragem estratificada uniforme- AESun

- O tamanho amostral em cada estrato é constante.
- Procedimento indicado quando se pretende **apresentar estimativas separadas** para cada estrato.
- Na Alocação Uniforme temos

$$n_h = rac{n}{H} = k \;\;\; \mathrm{e} \;\;\; f_h = rac{k}{N_h}$$

assim

$$\overline{y}_{AES_{un}} = \sum_{h=1}^{H} W_h \overline{y}_h = \sum_{h=1}^{H} W_h rac{1}{k} \sum_{i \in s_h} y_i = rac{1}{k} \sum_{h=1}^{H} W_h \sum_{i \in s_h} y_i.$$

Questões

- ullet O estimador da média $\overline{y}_{AES_{un}}$ é **ENV** para \overline{Y} $oldsymbol{?}$
 - \circ Note que $\overline{y}_{AES_{un}} \neq \overline{y}$, a média amostral \overline{y} é **ENV** para \overline{Y} na **AESun**?

Alocação Uniforme

Com
$$n_h=rac{n}{H}=k$$
 e $f_h=rac{n_h}{N_h}=rac{k}{N_h}$ temos $N_h=rac{kN_h}{n_h}$

• sob AASs temos

$$egin{aligned} Var_{AES_{un}}(\overline{y}_{AES_{un}}) &= Var_{AES_{pr}}\left[\sum_{h=1}^{H}W_{h}\overline{y}_{h}
ight] \ egin{aligned} igglet &= \sum_{h=1}^{H}W_{h}^{2}Var_{AES_{un}}\left(\overline{y}_{h}
ight) \ & ext{(def. }\overline{y}_{h} ext{ na AASs)} &= \sum_{h=1}^{H}W_{h}^{2}\left(rac{1}{n_{h}} - rac{1}{N_{h}}
ight)S_{h}^{2} \ & ext{(igualdades acima)} &= \sum_{h=1}^{H}W_{h}^{2}\left(rac{1}{k} - rac{1}{rac{kN_{h}}{n_{h}}}
ight)S_{h}^{2} \ &= \sum_{h=1}^{H}W_{h}^{2}\left(1 - rac{n_{h}}{N_{h}}
ight)rac{S_{h}^{2}}{k}, \end{aligned}$$

- Na AASc $Var_{AES_{un}}(\overline{y}_{AES_{un}}) = \sum_{h=1}^{H} W_h^2 rac{Var_h}{k}$
 - Sabemos mostrar ? ? ?

Para casa 🏠

- Continuar o Exemplo.
- ullet Mostrar $E_{AES}\left(\widehat{T}_{AES}
 ight)=T.$
- Fazer exercícios 11.1 e 11.2 do livro 'Amostragem: Teoria e Prática Usando R' https://amostragemcomr.github.io/livro/estrat.html#exerc11
- Fazer exercício 1 da lista 1.
- Rever os slides.
- Ler a partir da seção 11.3 do livro 'Amostragem: Teoria e Prática Usando R'.

Próxima aula IIII

- Amostragem Estratificada
 - continuação alocação de amostras

Muito obrigado!

Fonte: imagem do livro *Combined Survey Sampling Inference: Weighing of Basu's Elephants: Weighing Basu's Elephants.*

Resumo da notação

• Tamanho da amostra no estrato h

$$\circ$$
 Proporcional, $n_h=nW_h$ \circ **Uniforme**, $n_h=n/H$

• Estimadores da média

Alocação	média
Proporcional	$\overline{y}_{AES_{pr}}=\overline{y}$
Uniforme	$\overline{y}_{AES_{un}} = rac{1}{k} \sum_{h=1}^{H} W_h \sum_{i \in s_h} y_i$

• Suas variâncias

Alocação	Sob AASc	Sob AASs
Proporcional	$Var\left(\overline{y}_{AES_{pr}} ight)=rac{1}{n}\sum_{h=1}^{H}W_{h}Var_{h}$	$Var(\overline{y}_{AES_{pr}}) = \left(rac{1}{n} - rac{1}{N} ight) \sum_{h=1}^{H} W_h S_h^2$
Uniforme	$Var(\overline{y}_{AES_{un}}) = rac{1}{k} \sum_{h=1}^{H} W_h^2 Var_h$	$Var(\overline{y}_{AES_{un}}) = rac{1}{k} \sum_{h=1}^{H} W_h^2 \left(1 - rac{n_h}{N_h} ight) S_h^2$

Referências

Slides baseados no Capítulo 11 do livro

• Amostragem: Teoria e Prática Usando o R

Citações do Capítulo

- Horsfield(2017)
- IBGE(2000)