NO	ANSWER SCHEME				
1 (a) (i)	Average atomic mass = $\frac{\sum (\% \text{ relative abundannce x isotopic mass})}{\sum (\text{relative abundance})}$				
		(4.05 (@) _ (05.15 - 7.)		1
		$=\frac{(4.85 \times 6)}{4.0}$	$\frac{(0)}{(0)^{2} + (95.15 \times 7)}$ $\frac{(0)^{2} + (95.15 \times 7)}{(0.5)^{2} + (95.15 \times 7)}$		1
		4.0	5 + 95.15		
		= 6.95 amu			1
	Relative atomic mass = $\frac{6.95 \text{ amu}}{\frac{1}{12} \times 12 \text{ amu}}$				
			= 6.95		1
1 (a) (ii)	Lithium @ Li				1
1 (b)	Mass of Oxygen = $31.64 - 7.85 - 10.98 = 12.81 \text{ g}$				1
	Element	K	Mn	O	
	Mass (g)	7.85	10.98	12.81	
	Mole (mol)	7.85/39.1 =	10.98/54.9 =	12.81/16 =	
	36.1	0.2008	0.2000	0.8006	1
	Mole ratio	$0.2008/0.2000 = 1.004 \approx 1.0$	0.2000/0.2000 = 1.0	$0.8006/0.2000 = 4.003 \approx 4.0$	1
	Empirical formula = KMnO ₄				
1 (c)	V solution = 1 L = 1000 mL Mass $Mg(NO_3)_2 = 292 g$				1
	No. of mole of Mg(NO ₃) ₂ = $\frac{292 \text{ g}}{148.3 \text{ g/mol}} = 1.969 \text{ mol}$ Mass of solution = 1.18 g mJ ⁻¹ x 1000 mJ = 1180 g				
	Mass of solution = 1.18 g mL ⁻¹ x 1000 mL = 1180 g Mass of solvent = 1180 g - 292 g = 888 g = 0.888 kg Molality = $\frac{Mole\ of\ Mg\ (NO_3)_2}{Mass\ of\ solvent\ (kg)}$ = $\frac{1.969\ mol}{0.888\ kg}$ = 2.22 m				_
					1
					1
					1

	% w/w = $\frac{\text{Mass of } Mg \ (NO_3)_2}{\text{Mass of solution}} \times 100$ = $\frac{292 \text{ g}}{1180 \text{ g}} \times 100$ = 24.75 %	1
1 (d) (i)	No. of mole of NaHCO ₃ = $\frac{1.0 \text{ g}}{84 \text{ g/mol}}$ = 0.0119 mol No. of mole of H ₃ C ₆ H ₅ O ₇ = $\frac{1.0 \text{ g}}{192 \text{ g/mol}}$ = 5.208 x 10 ⁻³ mol	1
	3 mol NaHCO ₃ = 1 mol H ₃ C ₆ H ₅ O ₇ 0.0119 mol NaHCO ₃ = $3.9667 \times 10^{-3} \text{ mol H}_3\text{C}_6\text{H}_5\text{O}_7$	1
	Moles of H ₃ C ₆ H ₅ O ₇ needed < moles of H ₃ C ₆ H ₅ O ₇ given H ₃ C ₆ H ₅ O ₇ is excess reactant NaHCO ₃ is limiting reactant	1
	$3 \text{ mol NaHCO}_3 \equiv 3 \text{ mol CO}_2$ $0.0119 \text{ mol NaHCO}_3 \equiv 0.0119 \text{ mol CO}_2$	1
	Mass of $CO_2 = 0.0119 \text{ mol } x \text{ 44 g/mol} = 0.5236 \text{ g}$	1
	Alternative Answer	
	$3 \text{ mol NaHCO}_3 \equiv 3 \text{ mol CO}_2$ $0.0119 \text{ mol NaHCO}_3 \equiv 0.0119 \text{ mol CO}_2$ $1 \text{ mol H}_3\text{C}_6\text{H}_5\text{O}_7 \equiv 3 \text{ mol CO}_2$ $5.208 \times 10^{-3} \text{ mol H}_3\text{C}_6\text{H}_5\text{O}_7 \equiv 0.0156 \text{ mol CO}_2$	1
	NaHCO ₃ produce less product. NaHCO ₃ is limiting reactant	1
	Mass of $CO_2 = 0.0119 \text{ mol } x 44 \text{ g/mol}$ = 0.5236 g	1 1
1 (d) (ii)	Moles of $H_3C_6H_5O_7$ in excess = 5.208 x 10^{-3} mol - 3.9667 x 10^{-3} mol = 1.2413 x 10^{-3} mol	1 1
	Mass of $H_3C_6H_5O_7$ in excess = 1.2413 x 10^{-3} mol x $192g/mol$ = 0.2383 g	1
	TOTAL MAX	22 21

NO	ANSWER SCHEME		
2 (a) (i)	The line B of electron transition from $\mathbf{n} = 8$ to $\mathbf{n} = 4$	1	
(ii)	$\frac{1}{\lambda} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right), n_1 < n_2$		
	@		
	$\frac{1}{\lambda} = 1.097 \times 10^7 \left(\frac{1}{4^2} - \frac{1}{8^2} \right)$	1	
	$\lambda = 1.944 \times 10^{-6} m$	1	
(iii)	Energy		
	↑ ↑ · · · · · · · · · · · · · · · · · ·		
		Axis –	
	n = 8	1	
	n = 7	Energy	
	n=6	level –	
	n=5		
	n = 4	Line ABCD	
	n=3	- 1	
	n=2		
	n=1		
(b)(i)	expected configuration 24Cr: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁴	1	
	actual configuration 24Cr: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ⁵	1	
(ii)	The reason for anomaly: Half-filled 3d orbitals (3d ⁵) are stable compared with partially filled 3d orbitals.		
(iii)	(n,l,m,s) = (4, 0, 0, +1/2) or (4, 0, 0, -1/2)	1	
	TOTAL	10	

NO	ANSWER SCHEME	MARK
1.	H _{104.5°} H :CI: CI:	1 + 1
	PCI ₃ has lone pair - bonding pair repulsion while and H ₂ O has lone pair - lone pair repulsion Lone pair - lone pair repulsion is stronger than lone pair - bonding pair repulsion	1
	Thus, H ₂ O has bond angle lesser than PCI ₃ .	1
2.i		
	$ \begin{bmatrix} : \circ = : c - : N : \\ (+1) (0) (-2) \end{bmatrix}^{-} \longleftrightarrow \begin{bmatrix} : \circ = : c = : N : \\ (0) (0) (-1) \end{bmatrix}^{-} \longleftrightarrow \begin{bmatrix} : \circ = : c = : N : \\ (-1) (0) (0) \end{bmatrix}^{-} $	
	I II III	
	OR	4 (3 structures + 1 formal
	-2 0 +1 -1 0 0 0 0 -1 N-C=0 N=C-0	charge)
	I II III	
ii.	III	1
	Reason: negative formal charge is at the highly electronegative atom which is O.	1
3.i	Electron groups: 2 Type of hybridization: sp	1
ii.	Valence electron of C	
	Ground state:	

Promotion of electron: T T T T T Z D T T T T T T T T T T T T	1
sp hybridization: Sp unhybridized 2p orbitals	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1
Shape and sp linear	1
Correct σ and π bonds	1
Label all orbitals	1
TOTAL	17

NO	ANSWER SCHEME	MARK
4(a)(i)	$P_1V_1 = nRT_1$	
	$V_1 = \frac{0.35 \times 0.08206 \times 286.15}{0.747}$	
	= 11.0 L	1
	$P_2V_2 = nRT_2$	
	$V_2 = \frac{0.35 \times 0.08206 \times 329.15}{1.18}$	
	= 8.0 L	1
	$\Delta V = 11.0 - 8.0 = 3.0 L$	1
4(a)(ii)	At low temperature, average kinetic energy decreases. Argon gas particles move at low speed and the intermolecular forces become significant. Therefore, it deviates from the ideal gas behaviour.	1
4(b)	Diethyl ether is the most volatile liquid. It has the weakest intermolecular forces between its molecules and the higher the vapor pressure. Less energy is needed to break the bond and turn into gaseous. Therefore, diethyl ether has the lowest boiling point at 760 torr.	1 1
4(c)(i)	Pressure (atm) critical point solid triple point gas -78 -57 31 Temperature (°C)	Axis and label – 1 Curve (positive slope) – 1
4(c)(ii)	Water (liquid state) has higher density because the melting point of ice decreases with pressure and occupied smaller volume than the ice (solid state)	1
	TOTAL	9

NO	ANSWER SCHEME	MARK
5 (a)	$K_p = K_c (RT)^{\Delta n}$ @ = $5(0.08206 \times 373)^{-1}$	1
	$\mathbf{K}_{p} = 0.163$	1
(b)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1
	$Kc = \frac{[N_2 O_4]}{[NO_2]^2} \textcircled{a}$	1
	$5 = \frac{x}{(1-2x)^2}$ $5 - 21x + 20x^2 = 0$ $x = 0.685 \text{ (neglected)}$	
	x = 0.365 $[N_2O_4] = 0.365 M$	1
(c)		Axis - 1
	1.00	Curve N ₂ O ₄ and NO ₂ - 1
		Equilibrium line: 1
	O.365 N ₂ O ₄	
	0.27 NO ₂	
	Time	
(d)	- the temperature is increased , the system will reduce the disturbance by decreasing the temperature @ favour endothermic ,	1
	- hence the equilibrium position will shift to the left	1
	TOTAL MAX	10

NO	ANSWER SCHEME				MARK	
6(a)(i)	$C_5H_5N \text{ (aq)} + H_2O \text{ (l)} \rightleftharpoons C_5H_5NH^+ \text{ (aq)} + OH^-$					
	(aq)					
	[] _, /M	0.60	-	0	0	
	Δ[]/Μ	-X	-	+ x	+ _X	
	[] / M	0.60 - x	-	X	X	1
	$K_b = \frac{[C_5 H_5]}{[a]}$		1			
	Assume x i	s very small, the	erefore 0.60	$0-x \approx 0.60$		
	$x = [OH^{-}] = 3.1937 \text{ x } 10^{-5} \text{ M}$					1
	pOH = - lo					
	pH = 14 - 4.50 = 9.50					1
(ii)	Dissociation of salt: C_5H_6NCl (aq) $\rightarrow C_5H_6N^+$ (aq) + Cl^- (aq)				1	
	Cl ⁻ is anion from a strong acid, HCl. Cl ⁻ cannot hydrolyzed in water.				1	
	The conjugate acid, $C_5H_6N^+$, is cation from a weak base, C_5H_5N , which can hydrolyze in water to form H_3O^+ @ $C_5H_6N^+ (aq) + H_2O (l) \Rightarrow C_5H_5N (aq) + H_3O^+ (aq)$ The presence of H_3O^+ ion makes the solution acidic. So, the pH of the salt is less than 7 and C_5H_6NCl is an acidic salt.					1
						1

(b)	pH ↑	Axis + shape
	11.00 — — — — — — — — — — — — — — — — — —	- 1 Equivalence point - 1 (Volume insist)
	Acidic buffer region	Buffer region - 1
	Volume of KOH (mL) 8.3 mL	
(c)	$CaF_{2}(s) \rightleftharpoons Ca^{2+}(aq) + 2F^{-}(aq)$ []i/M 0.5 0.1	
	$Q_{sp} = [Ca^{2+}][F^{-}]^{2}$ $= (0.5)(0.1)^{2}$ $= 5 \times 10^{-3}$	1
	$Q_{\rm sp}$ (5 x 10 ⁻³) > $K_{\rm sp}$ (3.9 x 10 ⁻¹¹)	1
	Supersaturated solution Solution will precipitate out until Q _{sp} =K _{sp}	1
	TOTAL	14