# MTE544 Assignment 1

Christopher Chung, 20883463

01

To prove  $G^{-1} = \begin{bmatrix} R^T & -R^T q \\ 0 & 1 \end{bmatrix}$ , we know that to represent a point,  $p^B$ , in the reference frame {B} in the reference frame {A}, we need the transformation matrix  $G^A_B = \begin{bmatrix} R^A_B & q^A \\ 0 & 1 \end{bmatrix}$  which consist of the rotation matrix  $R^A_B$  and the vector q pointing from {A} to {B}.

To do the opposite, represent a point in the reference frame {A} in the reference frame {B}, then we would need the transformation matrix  $G_A^B = \begin{bmatrix} R_A^B & q^B \\ 0 & 1 \end{bmatrix}$ .

Form this, we know from class that

$$R_A^B = \left(R_B^A\right)^{-1} = \left(R_B^A\right)^T$$

Additionally, since we know  $q^A$  goes from {A} to {B} then simply multiplying it by -1 and applying the rotation matrix  $R_A^B$  to it would result in  $q^B$  which is a vector from {B} to {A}:

$$q^B = -R_A^B q^A = -\left(R_B^A\right)^T q^A$$

Therefore

$$G_A^B = \begin{bmatrix} R_A^B & q^B \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \left( R_B^A \right)^T & -\left( R_B^A \right)^T q^A \\ 0 & 1 \end{bmatrix}$$

If we multiply  $G_A^B$  by  $G_A^B$  we get the identity matrix:

$$G_A^B G_A^B = \begin{bmatrix} R_B^A & q^A \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R_A^B & q^B \\ 0 & 1 \end{bmatrix} = I$$

This means

$$G_A^B = (G_A^B)^{-1} = G_A^B$$

And so, in general

$$G^{-1} = \begin{bmatrix} R^T & -R^T q \\ 0 & 1 \end{bmatrix}$$

#### Q2a

The transformation matrix for each reference frame is as follows:

$$G_{e}^{3} = \begin{bmatrix} R_{e}^{3} & q^{e} \\ 0 & 1 \end{bmatrix}, R_{e}^{3} = \begin{bmatrix} \sin(\psi) & -\sin(\psi) \\ \sin(\psi) & \cos(\psi) \end{bmatrix}, q^{e} = \begin{bmatrix} l_{3} \\ 0 \end{bmatrix}$$

$$G_{3}^{2} = \begin{bmatrix} R_{3}^{2} & q^{3} \\ 0 & 1 \end{bmatrix}, R_{3}^{2} = \begin{bmatrix} \sin(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}, q^{3} = \begin{bmatrix} l_{2} \\ 0 \end{bmatrix}$$

$$G_{2}^{1} = \begin{bmatrix} R_{2}^{1} & q^{2} \\ 0 & 1 \end{bmatrix}, R_{2}^{1} = \begin{bmatrix} \sin(\gamma) & -\sin(\gamma) \\ \sin(\gamma) & \cos(\gamma) \end{bmatrix}, q^{2} = \begin{bmatrix} l_{1} \\ 0 \end{bmatrix}$$

$$G_{1}^{s} = \begin{bmatrix} R_{1}^{s} & q^{1} \\ 0 & 1 \end{bmatrix}, R_{1}^{s} = \begin{bmatrix} \sin(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{bmatrix}, q^{1} = \begin{bmatrix} x \\ y \end{bmatrix}$$

Then, transformation matrix from {e} to {s} is as follows:

$$\begin{aligned} G_e^s &= G_1^s G_2^1 G_3^2 G_e^3 \\ &= \begin{bmatrix} \cos(\psi + \theta + \gamma + \alpha) & -\sin(\psi + \theta + \gamma + \alpha) & y \cos(\psi + \theta + \gamma) - x \sin(\psi + \theta + \gamma) + l_3 + l_2 \cos(\psi) + l_1 \cos(\psi + \theta) \\ \sin(\psi + \theta + \gamma + \alpha) & \cos(\psi + \theta + \gamma + \alpha) & y \sin(\psi + \theta + \gamma) + x \cos(\psi + \theta + \gamma) + l_2 \sin(\psi) + l_1 \sin(\psi + \theta) \\ 0 & 0 & 1 \end{bmatrix} \end{aligned}$$

#### Q2b

At the configuration of the robot specified in the question, the coordinates of the points  $p_1^e$  and  $p_2^e$  in spatial frame  $\{s\}$  would be:

$$p_1^s = p_1^e G_e^s = \begin{bmatrix} 0.8411 \\ -2.7247 \\ 1 \end{bmatrix}$$
$$p_2^s = p_2^e G_e^s = \begin{bmatrix} 3.0731 \\ -2.5908 \\ 1 \end{bmatrix}$$

#### Q2c

If the robot is located at the base at (0,0), the following equation applies:

$$\dot{\bar{p}}^{s} = \dot{G}_{2}^{s} \bar{p}^{2} = \begin{bmatrix} \widehat{\omega} R_{2}^{s} & v \\ 0 & 0 \end{bmatrix} \begin{bmatrix} p^{2} \\ 1 \end{bmatrix}$$

To calculate  $R_2^s$ :

$$R_{2}^{s} = R_{1}^{s} R_{2}^{1}$$

$$R_{1}^{s} = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{bmatrix}$$

$$R_{2}^{1} = \begin{bmatrix} \cos(\gamma) & -\sin(\gamma) \\ \sin(\gamma) & \cos(\gamma) \end{bmatrix}$$

$$R_{2}^{s} = \begin{bmatrix} \cos(\alpha + \gamma) & -\sin(\alpha + \gamma) \\ \sin(\alpha + \gamma) & \cos(\alpha + \gamma) \end{bmatrix}$$

$$\rightarrow \dot{\bar{p}}^{s} = \begin{bmatrix} \omega \cos(\alpha + \gamma) & -\omega \sin(\alpha + \gamma) & v_{x} \\ \omega \sin(\alpha + \gamma) & \omega \cos(\alpha + \gamma) & v_{y} \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} x'\omega \cos(\alpha + \gamma) - y'\omega \sin(\alpha + \gamma) + v_{x} \\ x'\omega \sin(\alpha + \gamma) + y'\omega \cos(\alpha + \gamma) + v_{y} \\ 0 \end{bmatrix}$$

# Q3

# Q3a

The simulation was programmed in Python.

For 
$$\begin{bmatrix} v \\ \omega \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
:



For 
$$\begin{bmatrix} v \\ \omega \end{bmatrix} = \begin{bmatrix} 0 \\ 0.3 \end{bmatrix}$$
:



For 
$$\begin{bmatrix} v \\ \omega \end{bmatrix} = \begin{bmatrix} 1 \\ 0.3 \end{bmatrix}$$
:



For 
$$\begin{bmatrix} v(t) \\ \omega(t) \end{bmatrix} = \begin{bmatrix} 1 + 0.1\sin(t) \\ 0.2 + 0.5\cos(t) \end{bmatrix}$$
:



## Q3b

If T = 0.2m and r = 0.1m, then

$$u_r = \frac{1}{r} \left( v + \frac{T\omega}{2} \right)$$
$$u_l = \frac{1}{r} \left( v - \frac{T\omega}{2} \right)$$

For v = 1 m/s and  $\omega = 0$  m/s:

$$\begin{split} u_r &= \frac{1}{0.1} \bigg( 1 + \frac{0.2(0)}{2} \bigg) = 10 \ rad/s \\ u_l &= \frac{1}{0.1} \bigg( 1 - \frac{0.2(0)}{2} \bigg) = 10 \ rad/s \end{split}$$

For v=0 m/s and  $\omega=0.3$  m/s:

$$\begin{split} u_r &= \frac{1}{0.1} \bigg( 0 + \frac{0.2(0.3)}{2} \bigg) = 0.03 \ rad/s \\ u_l &= \frac{1}{0.1} \bigg( 0 - \frac{0.2(0.3)}{2} \bigg) = -0.03 \ rad/s \end{split}$$

For v=1 m/s and  $\omega=0.3$  m/s:

$$u_r = \frac{1}{0.1} \left( 1 + \frac{0.2(0.3)}{2} \right) = 10.3 \ rad/s$$
$$u_l = \frac{1}{0.1} \left( 1 - \frac{0.2(0.3)}{2} \right) = 9.7 \ rad/s$$

If the input control parameters were wheel speeds, the simulation could simply be modified to calculate linear velocity v, and angular velocity  $\omega$  first by using equations for  $u_r$  and  $u_l$ .

#### Q4a

To derive the equation of motion for the omnidirectional wheeled robot with three wheels, we can use the general equations derived in class:

$$u_i = \frac{1}{r_i} [1 \quad \tan(\gamma_i)] g(\theta) \dot{q}$$

Where  $g(\theta)$  is defined by:

$$g(\theta) = \begin{bmatrix} \cos(\theta + \beta_i) & \sin(\theta + \beta_i) & x_i \sin(\beta_i) - y_i \cos(\beta_i) \\ -\sin(\theta + \beta_i) & \cos(\theta + \beta_i) & x_i \cos(\beta_i) + y_i \sin(\beta_i) \end{bmatrix}$$

We know  $\gamma_i = 0$ , so  $\tan(\gamma_i) = 0$ :

$$u_i = \frac{1}{r_i} [1 \quad 0] g(\theta) \dot{q}$$

The following constants can be derived from the figure provided:

$$\beta_1 = \frac{\pi}{2}, \beta_2 = \frac{7\pi}{6}, \beta_3 = \frac{11}{6}\pi$$

$$x_1 = l, \ x_2 = -l\sin\left(\frac{\pi}{6}\right), x_3 = -l\sin\left(\frac{\pi}{6}\right)$$

$$y_1 = 0, \ y_2 = l\cos\left(\frac{\pi}{6}\right), \ y_3 = -l\cos\left(\frac{\pi}{6}\right)$$

The following results from the derived constants:

$$u_{i} = \frac{1}{r} \begin{bmatrix} \cos(\theta + \beta_{1}) & \sin(\theta + \beta_{1}) & x_{1}\sin(\beta_{1}) - y_{1}\cos(\beta_{1}) \\ \cos(\theta + \beta_{2}) & \sin(\theta + \beta_{2}) & x_{2}\sin(\beta_{2}) - y_{2}\cos(\beta_{2}) \\ \cos(\theta + \beta_{3}) & \sin(\theta + \beta_{3}) & x_{3}\sin(\beta_{3}) - y_{3}\cos(\beta_{3}) \end{bmatrix} \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix}$$
$$u_{i} = G(\theta)\dot{q}$$

# Q4bi

For wheel speeds of  $u_1=-2$ ,  $u_2=1.0$ , and  $u_3=1.0$ , we can determine  $\dot{x}$ ,  $\dot{y}$ ,  $\dot{\theta}$  by the following equation:

$$\dot{q} = G^{-1}(\theta)u_i$$

The plot below shows the variables against time and the x and y trajectory.



### Q4bii1

To design  $u_1, u_2, u_3$  for the robot to move in a straight line with a slope of 60 degrees, we need to determine  $\dot{x}, \dot{y}, \dot{\theta}$  accordingly.

Based on the slope of  $60^{\circ} = \frac{\pi}{3}$ , we know that the relationship between  $\dot{x}$  and  $\dot{y}$ :

$$\dot{y} = \dot{x} \tan\left(\frac{\pi}{3}\right)$$

If we choose  $\dot{x}=1$ , then  $\dot{y}=\tan\left(\frac{\pi}{3}\right)$ . We can set  $\dot{\theta}=0$ . If we apply the equation for  $u_i$ , we can determine  $u_1,u_2,u_3$  and use these as inputs to the simulation in part a.

The plot below shows the variables against time and the x and y trajectory.



### Q4bii2

To design  $u_1, u_2, u_3$  for the robot to move in a 2-meter diameter circle, we need to determine  $\dot{x}, \dot{y}, \dot{\theta}$  accordingly.

Since this robot does not need to rotate to travel in a circle, we will set  $\dot{\theta}=0$ . Then, based on the equation of a circle of  $\sin^2(t)+\cos^2(t)=1$ , then we can set  $\dot{x}=\sin(t)$  and  $\dot{y}=\cos(t)$  for a circle of diameter of 2m.

The plot below shows the variables against time and the x and y trajectory.

