Piles, Critère d'évolution spontanée, Électrolyse

Chapitre 5

I. Critère d'évolution spontanée d'un système chimique

- Si Q_{r,i} = K, le système n'évolue pas car il est déjà dans son état d'équilibre
- Si $Q_{r,i}$ < K : le système évolue dans le sens direct de l'équation chimique
- Si Q_{r,i} > K : le système évolue dans le sens inverse de l'équation chimique

II. La pile

1. La pile

On calcule $Q_{r,i}$ et on le compare à $Q_{r,\acute{e}q}$ (K) afin de connaître le sens d'évolution de la pile.

Ce dispositif qui permet de produire du courant électrique porte le nom de générateur électrochimique ou pile.

2. Notion de demi-pile

Une lame de métal plongeant dans une solution contenant les cations métalliques correspondant constitue une **demi-pile**.

Une pile est constituée de 2 demi-piles reliées électriquement par un pont salin.

3. Étude qualitative de la pile en fonctionnement

La borne \oplus (cathode) est l'électrode où a lieu une réduction (Cation + ne = Métal). La borne \ominus (anode) est l'électrode où a lieu une oxydation (Métal = Cation + ne).

Chaîne électrochimique : \bigcirc Red₂ / Ox₂ // Ox₁ / Red₁ \oplus

4. Étude quantitative de la pile en fonctionnement

a. Quantité d'électricité débitée par la pile (Q)

Cette quantité (Q) est égale à la valeur absolue de la charge totale des électrons échangés.

Le **Faraday** (\mathcal{F}) est la charge d'une mole d'électrons.

b. Intensité du courant délivré par la pile (I)

 $I = \frac{Q}{\Delta t}$

I (A) : intensité entre les bornes de la pile

Q (C) : quantité d'électricité Δt (s) : durée d'utilisation

v4

Piles, Critère d'évolution spontanée, Électrolyse

c. Relation entre avancement, intensité et durée de fonctionnement Exemple de la pile cuivre/aluminium

Chaîne électrochimique : Θ Al_(s) / Al³⁺_(aq) // Cu²⁺_(aq) / Cu_(s) \oplus

Anode $\Theta: Al = Al^{3+} + 3e^{-}$ Cathode \oplus : $Cu^{2+} + 2e^{-} = Cu$

	$3Cu^{2+}_{(aq)}$	$+$ $2Al_{(s)}$ =	$=$ $3Cu_{(s)}$ -	+ $2Al^{3+}(aq)$
État initial	$n_{\mathcal{C}u_i^{2+}}$	n_{Al_i}	n_{Cu_i}	$n_{Al_i^{3+}}$
At	$n_{Cu_i^{2+}} - 3x$	$n_{Al_i}-2x$	$n_{Cu_i} + 3x$	$n_{Al_i^{3+}} + 2x$

La consommation d'une mole d'aluminium s'accompagne de la libération de 3 moles d'électrons. D'après le tableau d'avancement, à t, 2x moles d'aluminium sont consommées d'où la libération de 6x moles d'électrons.

$$n(e^{-}) = 6x$$

 $Q = n(e^{-}) \times \mathcal{F} = 6x\mathcal{F} = I\Delta t$
 $I\Delta t = 6x\mathcal{F}$
 $x = \frac{I\Delta t}{6\mathcal{F}}$

L'électrolyse, exemple de transformation forcée III.

1. Définition

Lorsqu'un générateur de tension continue impose à un système chimique un courant de sens inverse à celui qui serait observé lorsque le système évolue spontanément, il peut imposer à ce système d'évoluer dans le sens inverse : cette transformation forcée constitue une électrolyse (le quotient de réaction du système s'éloigne de sa constante d'équilibre).

2. Description

Symbole:

Caractéristique de l'électrolyseur :

$$u = E' - r'I$$
 E' (V) : Tension de seuil r' (Ω) : Résistance interne

3. Réactions aux électrodes

La borne ⊕ (anode) est l'électrode où a lieu une réduction (Cation + ne = Métal). La borne Θ (cathode) est l'électrode où a lieu une oxydation (Métal = Cation + ne $^{-}$).