PC 3 – Random vectors & Convergence

Probability distributions

Exercise 1

(Uniform distribution). Let X be a random variable with uniform distribution on [0,1]. We define $Y = \min(X, 1-X)$ and $Z = \max(X, 1-X)$. Determine the distributions of Y and Z. Compute $\mathbb{E}[YZ]$.

Exercise 2

One says that $X \in (0, +\infty)$ follows the log-normal distribution if $\log(X) \sim \mathcal{N}(0, 1)$. What is the density of X?

Exercise 3

Consider a random variable X having exponential distribution with parameter 1 . Let a>0 be a positive real number.

- 1. Compute the cumulative distribution function of $Y = \min(X, a)$. Plot the function.
- 2. What can you say about the existence of a density for the distribution of Y?
- 3. Compute $\mathbb{E}[Y]$. Hint: Use $Y = X \mathbb{1}_{X < a} + a \mathbb{1}_{X > a}$.

Exercise 4

Let V be a random variable with uniform distribution on $[0, \pi/2]$. Define the random variable $W = \sin(V)$.

- 1. Determine the distributions of W.
- 2. How does the distribution of W change when V has uniform distribution on $[0,\pi]$?

Exercise 5

(Cauchy distribution). Let X be a random variable with Cauchy distribution whose density is given by $f(x) = (\pi (1 + x^2))^{-1}$. Determine the distribution of 1/X using a change of variables.

Exercise 6

* Let p > 0 and an integer n such that n > p. Consider random variables Y_n such that nY_n has a geometric distribution $\text{Geo}\left(\frac{p}{n}\right)$ with parameter $\frac{p}{n}$. Show that the characteristic function of Y_n tends to the characteristic function of an exponentially distributed random variable with parameter p.

Exercise 7

Let $\alpha > 1$ be fixed. Consider the random variable X with density given by

$$f(x) = c_{\alpha} x^{-\alpha} \mathbb{1}_{x > 1}$$

- 1. Determine the constant c_{α} .
- 2. For which values of p we have X belongs to L^p ?

Exercise 8

Let X and Y be two independent random variables such that X (resp. Y) has geometric distribution with parameter p (resp. q).

- 1. Compute $\mathbb{P}(X > n)$ for any $n \in \mathbb{N}$.
- 2. What is the distribution of the random variable $Z = \min(X, Y)$?

Exercise 9

Assume that $X \sim \mathcal{N}(\mu, \sigma^2)$.

- 1. Show that $Y = (X \mu)/\sigma$ has standard normal distribution $\mathcal{N}(0,1)$.
- 2. Compute $\mathbb{E}[|Y|]$ and $\mathbb{E}[Y^{2019}]$.

Gamma distribution

Exercise 10

(Gamma distribution). One says that X has Gamma distribution with parameters p > 0 et $\theta > 0$, denoted by $\gamma(p,\theta)$, if its density is given by

$$f(x) = \frac{\theta^p}{\Gamma(p)} \exp(-\theta x) x^{p-1} \mathbb{1}_{[0, +\infty[}(x).$$

The associated characteristic function is given by

$$\Phi_X(t) = \frac{1}{(1 - it/\theta)^p}, \quad t \in \mathbb{R}.$$

Here $\Gamma(\cdot)$ denotes the Gamma function defined as

$$\forall \alpha > 0, \quad \Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} \exp(-x) dx, \quad \Gamma(\alpha + 1) = \alpha \Gamma(\alpha), \quad \Gamma(1/2) = \sqrt{\pi}.$$

- 1. Compute $\mathbb{E}[X^k]$ for $k \geq 1$. Deduce that $\mathbb{E}[X] = p/\theta$ and $\text{Var}(X) = p/\theta^2$.
- 2. Let a > 0. Show that $X/a \sim \gamma(p, a\theta)$.
- 3. Let X and Y be two independent random variables with Gamma distribution $\gamma(p_1, \theta)$ and $\gamma(p_2, \theta)$, respectively. Show that $X + Y \sim \gamma(p_1 + p_2, \theta)$.
- 4. Let Z have standard normal distribution $\mathcal{N}(0,1)$. What is the distribution of \mathbb{Z}^2 ?
- 5. Let X_1, \ldots, X_n be n i.i.d. random variables aléatoires with exponential distribution $\text{Exp}(\theta)$. Determine the distribution of the sum $S_n = X_1 + \ldots + X_n$. Compute $\mathbb{E}[S_n]$ and $\text{Var}(S_n)$.
- 6. Let X_1, \ldots, X_n be n i.i.d. random variables aléatoires with standard normal distribution $\mathcal{N}(0,1)$. Determine the distribution of the sum $S'_n = X_1^2 + \ldots + X_n^2$. Compute $\mathbb{E}[S'_n]$ and $\text{Var}(S'_n)$.

Random vectors

Exercise 11

Denote

$$f(x,y) = ce^{-x} \mathbb{1}_{|y| \le x}.$$

- 1. Find c such that f is a probability density function of a pair (X,Y) of random variables.
- 2. Compute the marginal distributions of X and Y.
- 3. Conclude on the independence of X and Y.

Exercise 12

Let X and Y be two random variables taking their values in \mathbb{N} . Consider the joint probability mass function of (X,Y) given by

$$\mathbb{P}(X=i,Y=j) = \frac{a}{2^{i+j}}, i,j \in \mathbb{N}, a \in \mathbb{R}.$$

- 1. Compute a.
- 2. Give the marginal distributions of X and Y.
- 3. Are X and Y independent?

Exercise 13

Denote

$$f(x,y) = a(x^2 + y^2) \mathbb{1}_{(x,y) \in [-1,1]^2}.$$

- 1. Find a such that f is a probability density. We denote (X,Y) the pair of random variables with joint distribution f.
- 2. Compute the marginal distributions of X and Y.
- 3. Compute the covariance of X and Y.
- 4. Are X and Y independent?

Exercise 14

Let $\mathbf{X} = (X_1, X_2, X_3)$ be a random vector with the following covariance matrix

$$Cov(\mathbf{X}) = \begin{pmatrix} 2 & 1 & 3 \\ 1 & 5 & 6 \\ 3 & 6 & 9 \end{pmatrix}$$

- 1. Give the variance of X_2 and the covariance between X_1 and X_3 .
- 2. Compute the variance of $Z = X_3 \alpha_1 X_1 \alpha_2 X_2$ for $\alpha_1, \alpha_2 \in \mathbb{R}$.
- 3. Deduce that X_3 is almost surely a linear combination of X_1 and X_2 .
- 4. More generally, let **Y** be a random vector. Give a necessary and sufficient condition on the covariance matrix of **Y** ensuring that one of the components of **Y** is almost surely a linear combination of the components of **Y**.