~ Shubham Lohiya, 18D100020

$$Y = \sum_{i=1}^{n} (X_{i} - \mu)$$

$$= \left[\sum_{i=1}^{n} (X_{i} - \mu) \right] = \left[\sum_{i=1}^{n} (X_{i} - \mu) \right$$

Results of analysis in Excel

		U			
Original Data					
	104	109	111	109	87
	86	80	119	88	122
	91	103	99	108	96
	104	98	98	83	107
	79	87	94	92	97
Sorted					
	79	80	83	86	87
	87	88	91	92	94
	96	97	98	98	99
	103	104	104	107	108
	109	109	111	119	122
Sample Mean	98.04				
Sample Variance	133.707				
Sample Std. Dev	11.5632				
Range	43				
Median	98	←			
Lower Quartile	87.5				
Upper Quartile	107.5				

Ex-3 fiven 25 observations from a population of 25 values.

formulas & Calculation
1) Mean =
$$\sum_{i=1}^{25} \frac{X_i}{25} = \frac{2451}{25} = 98.04$$

2) S. Variance =
$$\sum_{i=1}^{25} \frac{(x_i - 98.04)^2}{24} = \frac{3208.96}{24}$$

4) Range =
$$Max-Min = 122-79$$

= 43

5) 6) 7) Calculation of Quartiles using convention is displayed above. Based on formulas in slides, Lower I Quartile is 87 & upper quartile is 108.

Source for lookup table: https://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf

Ex-4 leiven, Population I: Sample Size n_1 , unknown mean μ_1 , Variance σ_1^2 Population I: Sample Size n_2 , unknown mean μ_1 , Variance σ_2^2 We know from CLT that Sample means $\overline{X_1}$ & $\overline{X_2}$ follow: $\overline{X_1} \sim N\left(\mu_1, \frac{\sigma_1}{n_1}\right)$ & $\overline{X_2} \sim N\left(\mu_2, \frac{\sigma_2^2}{n_1}\right)$ But we have $n_2 = 2n_1$ & $\sigma_2 = 2\sigma_1$ $\sigma_3 = 2\sigma_1$ $\sigma_4 = 2\sigma_1$ $\sigma_5 = 2\sigma_1$ $\sigma_5 = 2\sigma_1$ $\sigma_6 = 2\sigma_1$ $\sigma_6 = 2\sigma_1$ $\sigma_6 = 2\sigma_1$ $\sigma_6 = 2\sigma_1$

We expect the sample mean to be a more accurate population mean estimator when it comes from a distribution with lower variance. Since we have seen that $Var(\bar{X_1}) \prec Var(\bar{X_2})$, we expect the estimate for $\bar{X_1}$ to be more accurate.

Ex-5 We have X_1 , X_2 sampled from $N(0, \sigma^2)$ first order statistic $X_{(1)} = \min(X_1, X_2)$ let $Z = \min(X_1, X_2)$. Let's look at the CDF of Z

```
P(z \le z) = 1 - P(Z > z) = 1 - P(x,>z)P(x,>z) = 1 - (1 - \overline{D}(z))^{2}
where \Phi(x) = P(X_i \leq x). Thus we have F_2 = 1 - (1 - \Phi(2))^2
f_2 = \frac{\partial}{\partial z} F_z = 2 (1 - \Phi(z)) \Phi'(z) dz = 2 f(z) (1 - \Phi(z))
Now that we have f_z, we know E[z] = \int x f_z(x) dx
                                                 Substitute P = \overline{\Phi}(n)
 = \int \mathcal{R} 2 f_{x}(x) (1 - \Phi(x)) dx
                                                               dp = f_X(x) dx
                                                      Limits: lower ->
= \( 2 \overline{\P}^{-1}(P) (1-P) dp
 Thus Ez[z] = Freen (1,2) [$\bar{P}$(p)]
 Crude Approximation:
\Rightarrow E_{Z}[z] \simeq \Phi^{-1}\left(E_{P^{N}Beta(1,2)}[P]\right) we know from delta method, E[f(n)] \simeq f(E(n)) for a
                                                       " well - behaved " function .
                                                           ( which $ -1 is)
= \Phi^{-1}(\frac{1}{2}) = \sigma \cdot F_{N \setminus N(0,1)}^{-1}(\frac{1}{2}) \simeq -0.431\sigma
  Since X ~ N (0,02), We have the relation \Phi^{-1}(P) = \sigma \cdot F_{N(0,1)}^{-1}(P)
This is only an approximation, and a botter estimate con
        achieved using a Monte Carlo simulation
 from tqdm import tqdm
  import numpy as np
  from scipy.stats import norm
  expectation = norm.ppf(np.random.beta(1,2))
 for i in tqdm(range(1, 1000000)):
     expectation = (expectation*i + norm.ppf(np.random.beta(1,2)))/(i+1)
 expectation
```

Thus by doing a monte-carlo simulation & looking at 1 million observations, we estimate the following $E[z] \simeq -0.565 = 0$ one does the integral in 0, it yields 0 = 0.565 = 0 which is very close to our approximation

-0.5649986107955756

999999/999999 [02:38<00:00, 6309.06it/s]

 $\frac{[x-6]}{[x-1]} = \frac{1}{[x-1]} = \frac{\pi}{[x-2]} = \frac{\pi}{[x-2]$

Sample std. der = $\sqrt{s^2}$ = S. To check bias in S: Bias (S) = E[S] - σ

Let's assume $\sigma > 0$ as $\sigma = 0$ case is trivial ξ all sample-based methods will yield exact 0 estimates As $f(n) = \sqrt{n}$ is a strictly concave function, we have using the Jensen's inequality that: $E[\sqrt{3^2}] < \int E[S^2]$

but we know $E[s^2] = \sigma^2$ as it is an unbrased estimater. $\Rightarrow E[s] < \sigma$ i.e. $E[s] - \sigma < 0 \Rightarrow Bias(s) < 0$

i.e. $E[S] - \sigma < 0 \Rightarrow Bias(s) < 0$ As the bias is non-zero, 8 is a belased estimator of sample standard deviation.

$$Ex-7 P = \begin{cases} 3/5 \theta & , n=0 \\ 2/5 \theta & , n=1 \\ 3/5 (1-\theta) & , n=2 \\ 2/5 (1-\theta) & , n=2 \end{cases}$$

$$2/5 (1-\theta) & , n=2 \\ 2/5 (1-\theta) & , n=3 \end{cases}$$

$$2/5 (1-\theta) & , n=3$$

As the observations are independent, we have the likelihood: $L(\theta) = \left(\frac{3}{5}\right)^{n_1+n_2} \left(\frac{2}{5}\right)^{n_1+n_3} \theta^{n_0+n_1} (1-\theta)^{n_2+n_3}$ $= \left(\frac{6}{25}\right)^5 \theta^5 (1-\theta)^5$

MLE:
$$l(\theta) = ln l(\theta) = 5 ln(\frac{6}{25}) + 5 ln \theta + 5 ln(1-\theta)$$

$$l'(\hat{\theta}) = \frac{5}{\hat{\theta}} - \frac{5}{1-\hat{\theta}} = 0 \implies \hat{\theta} = \frac{1}{2}$$

$$l''(\hat{\theta}) = -\frac{5}{\hat{\theta}^2} - \frac{5}{(1-\hat{\theta})^2} \iff 0 \implies \hat{\theta} \text{ is vided}$$

$$\frac{E_{X}-8}{E_{X}-8} = \begin{cases} \frac{0}{(1+\kappa)^{8+1}}, & 0 < \kappa < \infty \\ 0 & 0 / \omega \end{cases}, \quad 0 > 0$$

For the generalized case, assume n independent observations from this distribution: X_1, X_2, \dots, X_n $L(\theta) = \prod_{i=1}^{n} \frac{\theta}{(1+X_i)^{n+1}} \, \mathbf{1}(X_i > 0)$

$$\underline{\underline{MLE}}: 0 = \ell'(\hat{\theta}) = \underline{\underline{n}} - \underline{\underline{\tilde{z}}} \ln (1 + \chi_i)$$

$$\Rightarrow \qquad \widehat{\Theta} = \frac{n}{\sum_{i=1}^{\infty} \ln(i+X_i)} \qquad ; \quad L^{(i)}(\widehat{\Theta}) = -\frac{n}{\widehat{\Theta}^2} < 0$$

$$L(0) = \frac{0}{(1+2\epsilon)^{0+1}} \mathcal{I}(2\epsilon) \quad \mathcal{A} \quad \text{MLE} : \hat{\theta} = \frac{1}{\ln(1+2\epsilon)}$$

$$Ex-9 \quad f(x|\theta) = \theta x^{\theta-1} \quad \text{1} \quad (0 \le x \le 1)$$

For n observations X,, X2 ... Xn:

MLE:
$$0 = \ell'(\hat{0}) = \frac{n}{\hat{0}} + \sum_{i=1}^{\infty} ln(X_i)$$

$$\Rightarrow \qquad \hat{\theta} = \frac{-n}{\sum_{i=1}^{n} \ln(x_i)}$$

To calculate estimator variance, we can use Fisher information: Fisher Information $(I(\theta)) = -E[L'(\theta)]$

where log likelihood is w.r.t. 1 observation.

=>
$$l(\theta) = ln(0) + (\theta-1) ln(x)$$

 $l'(\theta) = \frac{1}{\theta} + ln(x) \xi l''(\theta) = -\frac{1}{\theta^2}$

Thus
$$I(\theta) = E[-l''(\theta)] = \frac{1}{\theta^2}$$

We know that MLE is an asymptotically normal estimator with asymptotic variance equal to inverse Fisher info ie. $\sqrt{n}(\hat{\theta}-\theta) \sim N(0, \pm 1)^{-2}$ for large

 \Rightarrow $\hat{\theta} \sim N(\theta, \frac{\theta^2}{n})$, for large n

Thus for large n, $\text{Var}(\hat{\theta}) \simeq \frac{\theta^2}{n}$ $\Rightarrow \lim_{n \to \infty} \frac{\text{Var}(\hat{\theta}) = \lim_{n \to \infty} \frac{\theta^2}{n} = 0$

Thus with more number of samples, our variance converges to 0 in the limit, & hence MLE is a consistent estimator of 0.

Ex-10 liven Y, ···· Ym ~ Bernoulli (0)

Likelihood ratio test: Calc 7 = Sup (L(O(x))
super (L(O(x)))

We know L(0) for bernoulli trials has single peok at MLE. $\hat{\theta}_{MLE} = \underbrace{\Sigma Y_i}_{m}$ is a well known result

We know superson, org (L(0) x)) = L(OHLE 1x)

Case 1: ô MLE (00 => sup_OE 0 (L(O(x)) = L(ÔMLE (N)

Thus $\lambda = 1$ & since we reject when $\exists x st \cdot \lambda(x) \leq c$ for some $c \in (0, 1)$, we can never reject in this case.

Case 2: $\theta_0 < \hat{\theta}_{MLE} \Rightarrow \sup_{\theta \in \Theta_0} (L(\theta|x)) = L(\theta_0|x)$ $\text{Lift } y = \sum Y_i$

Thus,
$$\lambda(n) = \left(\frac{\theta_0}{y \, lm}\right)^{3} \left(\frac{1-\theta_0}{1-y \, lm}\right)^{m-y}$$
 for rejection we need $\lambda(n) \leq c$ for some threshold c substitute $t = \frac{1}{m\theta_0}$. Thus we are inspecting only for $t \neq 1$ in this case.

$$\lambda(t) = \left(\frac{1}{t}\right)^{m} \cdot \left(\frac{1-\theta_0}{1-\theta_0t}\right)$$

$$\lambda(t) = \left(\frac{1}{t}\right)^{m} \cdot \left(\frac{1-\theta_0}{1-\theta_0t}\right)$$

$$\lambda(t) = -m\theta_0t \, lnt + (m-m\theta_0t) \left(\ln(1-\theta_0) - \ln(1-\theta_0t)\right)$$

$$+ (m-m\theta_0t) \left(\frac{\theta_0}{1-\theta_0t}\right)$$

$$+ (m-m\theta_0t) \left(\frac{\theta_0}{1-\theta_0t}\right)$$