班级:	学号:	姓名:	
	成绩.	教师签名:	

Altium Designer 应用——印刷电路板设计

1. 将自己绘制出来的 Double 12V DC Power 电路的原理图粘贴到下表中,图中 须附学号+姓名。

2. 生成材料清单,并粘贴到下表中。

Comment	Description	Designator	Footprint	LibRef	Quantity
1000uF	Polarized Capacitor	C1, C2	RB5-10.5	Cap Pol2	
220uF	Polarized Capacitor	C3, C4	RB5-10.5	Cap Pol2	
0.1uF	Capacitor	C5, C6	RAD-0.1	CAP	
1N4007	Default Diode	D1, D2	DIODE-0.4	Diode	
Bridge1	Full Wave Diode Bri	D3	E-BIP-P4/D10	Bridge1	
Header 3	Header, 3-Pin	P1	HDR1X3	Header 3	
Trans CT	Center-Tapped Tran	T1	TRF_5	Trans CT	
7812	3-Terminal Positive	U1	221A-04	MC7812CT	
7912	**	U2	221A-04	7912	0

3. 生成网络表, 并粘贴到下表中。

```
[
C1
RB5-10.5
1000uF
]
[
RB5-10.5
1000uF
]
RB5-10.5
220uF
]
[
RB5-10.5
220uF
]
[
RAD-0.1
0.1uF
]
С6
RAD-0.1
0.1uF
```

```
]
[
D1
DIODE-0.4
1N4007
]
[
D2
DIODE-0.4
1N4007
]
[
D3
E-BIP-P4/D10
Bridge1
]
[
P1
HDR1X3
Header 3
]
[
Т1
TRF_5
Trans CT
]
[
221A-04
7812
```

```
]
[
U2
221A-04
7912
]
(
+12V
C3-1
C5-2
D1-1
P1-1
U1-3
-12V
C4-2
C6-1
D2-2
P1-3
U2-3
(
GND
C1-2
C2-1
C3-2
C4-1
C5-1
C6-2
T1-4
U1-2
U2-1
)
NetC1_1
C1-1
D1-2
D3-1
U1-1
)
```

```
(
NetC2_2
C2-2
D2-1
D3-3
U2-2
)
(
NetD3_2
D3-2
T1-5
)
(
NetD3_4
D3-4
T1-3
)
```

4. 绘制 Double 12V DC Power 电路的 PCB 图(手动布局),并粘贴到下表中。

5. 绘制 Double 12V DC Power 电路的 PCB 图(自动布线),粘贴到下表中。

6. 将上图添加敷铜后的 PCB 图 (敷铜网络选择 GND,实体),粘贴到下表中。

7. 简述如何设置布线规则?

①间距规则

a.整板间距 ALL-ALL,一般密度的板子 6mil 间距即可。如果有 BGA 封装最小间距最好也不要小于 4mil。

b.整板铜皮间距 POLY-ALL, 一般铜皮到所有的间距会设置如 10mil 或者 12mil、15mil 间距。

c.铜皮到过孔的间距 POLY-VIA,为了防止过孔太多而破坏平面完整性,一般铜皮到过孔的间距与整板的间距保持一致。

②线宽规则

整板线宽一般 6mil 即可。有 BGA 器件或者需要控制阻抗的最小线宽最好也不要小于 4mil。

(电源类走线线宽需要考虑载流,一般都要走粗一些。电源类的线宽大小就看板子需要的载流情况了。)

③差分线规则

差分线一般都需要控制阻抗,需要通过 SI9000 软件计算出线宽和线距的大小后,根据计算结果进行规则的设置。

④过孔大小规则

一般过孔的选择是孔的大小为 8、10、12mil,然后盘的大小比孔大一倍,也可以是一倍之后小 2 个 mil 或大 2 个 mil。即 8/16 \pm 2;10/20 \pm 2;12/24 \pm 2。没有 BGA 的、密度较低的板子,一般选择 12/24 \pm 2 的孔。

⑤焊盘的阻焊层外扩大小规则

这个规则指的是焊盘的阻焊层,会比焊盘本身的大小外扩一定的大小。一般外扩的大小 设置成 2.5mil 即可。

⑥铜皮连接方式规则

这里设置的是正片层(PCB 还有负片层的概念)的铜皮连接方式。所有焊盘的连接方式都设置成十字连接即可,连接的大小可以设置成 20mil,或者 15mil。

8. 简述 PCB 板设计的流程?

前期准备、PCB 结构设计、PCB 布局设计、PCB 布线设计、布线优化和丝印摆放、网络 DRC 检查及结构检查、PCB 制板。