

РусКрипто'2018 21-22 марта Россия

Их нравы. Некоторые особенности применения криптографии в Intel ME 11

ptsecurity.com

Максим Горячий

MGoryachy@ptsecurity.com

Марк Ермолов

MErmolov@ptsecurity.com

Дмитрий Скляров

DSklyarov@ptsecurity.com

Положение МЕ в компьютерной системе

Архитектура Intel ME 6+

Контроль целостности прошивки МЕ

Аппаратные устройства, связанные с Security

Особенности доступа к устройствам в МЕ

- Отображены в адресное пространство МЕ
- Доступны из режима ядра (ROM, rbe, kernel)

• Доступны приложениям ME, если в их манифесте прописаны соответствующие разрешения (доступ к RSA/AES/HMAC/SKS только у модулей bup и crypto)

Запуск модулей

SPI Flash

• Содержит разделы BIOS/UEFI, GbE, ME, ...

• Хранит исполняемый код и настройки

• Может отображаться в память

• Имеет встроенный Huffman Decompressor (для кода модулей ME)

Secure Key Storage (SKS)

• Слоты 1..11 для 128-битовых, 12..21 для 256-битовых ключей

• Ключ может быть задан явно или взят из результата AES/HMAC

- Сохраненный ключ не может быть извлечен (только использован в связке с AES/HMAC)
- Существуют политики ключей (результат AES Encrypt можно положить в память, результат AES Decrypt только в SKS)

AES Engine

- Поддерживаются ключи размером 128 и 256 бит
- Поддерживаются режимы ECB, CBC, CTR
- Ключ шифрования может быть задан явно или взят из SKS

• Данные могут передаваться явно или через DMA

SHA/HMAC Engine

• Умеет вычислять SHA-1, SHA-256, SHA-384, SHA-512

• Поддерживаются ключи НМАС размером 128 и 256 бит

• Ключ HMAC может быть задан явно или взят из SKS

- Данные могут передаваться явно или через DMA
- Может работать в связке с AES

RSA Engine

• Умеет выполнять модульное экспоненцирование

• Применяется в ROM (и не только) для проверки цифровой подписи

• Вероятно, используется приложениями МЕ

RC4 Engine

• Точно присутствует, но не исследовался нами

• Не используется для обеспечения безопасности собственно МЕ

• Вероятно, используется приложениями МЕ (для поддержки протоколов WiFi, SSL и т.п.)

Security Fuses

- Инициализируются в процессе производства
- Не могут быть перезаписаны

- Доступны для чтения (после сброса платформы) только заданное число раз (обычно – 1)
- Частично блокируются в случае активации JTAG

Security Fuses (GEN)

Ключи для безопасности файловой системы

Для обеспечения безопасности FS используется до 10 ключей

Intel	Non-Intel
Integrity	Integrity
Текущи	е ключи
(для теку	щего SVN [†])
Intel	Non-Intel
Confidentiality	Confidentiality

RPMC RPMC HMAC #0 HMAC #1

Replay-Protected Monotonic Counter (RPMC) может быть реализован в SPI Flash chip

Intel	Non-Intel
Integrity	Integrity
Предыдуц	цие [*] ключи
(если существуют)	
Intel	Non-Intel
Confidentiality	Confidentiality

*Предыдущие ключи вычисляются если SVN > 1 и раздел PSVN содержит валидные данные. Эти ключи используются для миграции файлов, созданных до обновления SVN.

†Secure Version Number (SVN) увеличивается в случае исправления серьезных уязвимостей для препятствования откату к уязвимой версии

Генерация ключей файловой системы (ROM)

Генерация ключей файловой системы (bup)

