tópicos de matemática discreta - MIEInf

carla mendes | cláudia m. araújo $UM \mid 2017/2018$

exemplo 3.1

Consideremos a afirmação "Para qualquer natural n, $n^2 - n + 41$ é primo".

Atribuindo valores a n, podemos verificar a veracidade das proposições correspondentes obtidas a partir do predicado p(n): "o número $n^2 - n + 41$ é primo".

n	1	2	3	4	5	6	 40	41	
$n^2 - n + 41$	41	43	47	53	61	71	 1601	41 ²	

- 41 é um número primo, pelo que p(1) é verdadeira.
- 43 é um número primo, pelo que p(2) é verdadeira.
- 47 é um número primo, pelo que p(3) é verdadeira.
- 53 é um número primo, pelo que p(4) é verdadeira.
- 61 é um número primo, pelo que p(5) é verdadeira.
- 71 é um número primo, pelo que p(6) é verdadeira.

(...)

1601 é um número primo, pelo que p(40) é verdadeira.

Poderemos, assim, concluir que p(n) é verdadeira para todo $n \in \mathbb{N}$?

 41^2 não é um número primo, pelo que p(41) é falsa!

Para provarmos que uma determinada propriedade é válida para todo o número natural, precisamos de um método de prova adequado. Como o exemplo anterior o ilustra, não basta verificar a veracidade da propriedade para um número finito de naturais para podermos concluir a validade da propriedade em \mathbb{N} .

A definição indutiva de $\mathbb N$ através das seguintes regras

- $i \mid 1 \in \mathbb{N};$
- ii | se $n \in \mathbb{N}$, então $n+1 \in \mathbb{N}$,

justifica a adoção do método de prova que iremos estudar. Comecemos por apresentar o conceito de predicado hereditário.

definição 3.2

Um predicado p(n), com $\mathbb N$ como universo de variação da variável n, diz-se **hereditário** quando, para todo $k \in \mathbb N$, se a proposição p(k) é verdadeira, então a proposição p(k+1) é verdadeira.

exemplo 3.3

- $1 \mid "2n \text{ \'e par" \'e um predicado heredit\'ario pois se } 2k \text{ \'e par para algum } k \in \mathbb{N}$, então 2(k+1) = 2k+2 também é par (por ser a soma de 2 números pares).
- $2\mid$ "n é par" não é um predicado hereditário pois se k é par para algum $k\in\mathbb{N}$, então k+1 é ímpar.
- $3 \mid (2n+1 \text{ \'e par" \'e um predicado heredit\'ario pois se } 2k+1 \text{ \'e par para algum} k \in \mathbb{N}$, então 2(k+1)+1=2k+2+1=(2k+1)+2 também é par (por ser a soma de 2 números pares).

Consideremos os predicados em $1\mid e \mid 0$ do exemplo anterior, denotando por p(n) o predicado "2n é par." e por q(n) o predicado "2n+1 é par" . Ambos são hereditários, mas apenas um é verdadeiro para todo $n\in\mathbb{N}$.

É claro que p(1) é verdadeira pois $2 \times 1 = 2$ é par. A hereditariedade de p(n) permite-nos induzir que a propriedade é válida para todo o número natural.

Por outro lado, a hereditariedade de q(n) não é suficiente para concluir que a propriedade é verdadeira para todo o número natural, uma vez que nos falta um ponto de partida.

teorema 3.4 [princípio de indução (simples) para N]

Seja p(n) um predicado sobre \mathbb{N} . Se

- $1 \mid p(1)$ é verdadeira e
- $2\mid p(n)$ é hereditário, ou seja, para todo $k\in\mathbb{N}$, se p(k) é verdadeira, então p(k+1) é verdadeira,

então p(n) é verdadeira para todo $n \in \mathbb{N}$.

demonstração Admitamos que as condições $1 \mid e 2 \mid$ são satisfeitas para o predicado p(n) e mostremos que, para qualquer natural n, p(n) é verdadeira. Nesse sentido, consideremos o conjunto X dos números naturais que não satisfazem p(n), ou seja,

$$X = \{n \in \mathbb{N} : \neg p(n)\}.$$

Suponhamos, no intuito de uma redução ao absurdo, que $X \neq \emptyset$. Seja m o menor número natural que pertence a X. Por $1 \mid$, $1 \notin X$ e, portanto, m > 1. Logo, m = k + 1 para algum $k \in \mathbb{N}$.

Uma vez que m é o menor natural que pertence a X, sabemos que m-1=(k+1)-1=k não pertence a X, isto é, k satisfaz o predicado p(n). Ora, por $2\mid p(n)$ é hereditário e, portanto, k+1 satisfaz o predicado p(n), ou seja, m satisfaz p(n), o que contradiz o facto de m pertencer a X. Logo, X tem de ser vazio e, assim, p(n) é verdadeira para todo $n\in\mathbb{N}$.

A condição $1 \mid$ do teorema anterior é designada por **base de indução** e a condição $2 \mid$ por **passo de indução**.

Na aplicação da condição 2 \mid , chamamos **hipótese de indução** a "p(k) é verdadeira"

Dado um predicado p(n) sobre \mathbb{N} , uma aplicação deste princípio para provar que a proposição $\forall n \ p(n)$ é verdadeira diz-se uma **prova por indução nos naturais**.

exemplo 3.5

Mostremos que n^3-n é divisível por 3, para todo o natural $n\in\mathbb{N}$, pelo método de indução nos naturais.

Representemos por p(n) o predicado " $n^3 - n$ é divisível por 3".

i | base de indução | Para n = 1, temos $n^3 - n = 1^3 - 1 = 0$.

Como 0 é divisível por 3, p(1) é verdadeira.

ii | passo de indução | Seja $k \in \mathbb{N}$ tal que p(k) é verdadeira, ou seja, $k^3 - k$ é divisível por 3.

Então, existe $q \in \mathbb{N}_0$ tal que $k^3 - k = 3q$.

Assim,

$$(k+1)^3 - (k+1) = (k^3 + 3k^2 + 3k + 1) - (k+1)$$

$$= k^3 + 3k^2 + 3k - k$$

$$= (k^3 - k) + (3k^2 + 3k)$$

$$= 3q + (3k^2 + 3k)$$

$$= 3(q + k^2 + k).$$

Logo,
$$(k+1)^3 - (k+1) = 3(q+k^2+k)$$
, pelo que $p(k+1)$ é verdadeira.

Pelo Princípio de Indução para ℕ e por i | e ii |, podemos concluir que

$$\forall_{n\in\mathbb{N}} \ n^3 - n$$
 é divisível por 3.

exemplo 3.6

Mostremos que a soma dos n primeiros números naturais ímpares é igual a n^2 , para todo o natural $n \in \mathbb{N}$, pelo método de indução nos naturais.

Representemos por
$$q(n)$$
 o predicado " $1 + 3 + 5 + \cdots + (2n - 1) = n^2$ ".

i | base de indução | Para n = 1, temos $1 = 1^2$, pelo que q(1) é verdadeira.

ii | passo de indução | Seja
$$k \in \mathbb{N}$$
 tal que $q(k)$ é verdadeira, ou seja, $1+3+5+\cdots+(2k-1)=k^2$. Então.

$$1+3+5+\cdots+(2k-1)+(2(k+1)-1)$$
=\((1+3+5+\cdot\)+(2k-1))+(2k+1)
=\(k^2+(2k+1)\)
=\(k^2+2k+1\)
=\((k+1)^2\),

pelo que q(k+1) é verdadeira.

Pelo Princípio de Indução para $\mathbb N$ e por i \mid e ii \mid , podemos concluir que

$$\forall n \in \mathbb{N}, 1+3+5+\cdots+(2n-1)=n^2.$$

exemplo 3.7

Mostremos que para todo $n \in \mathbb{N}$,

$$\left(1+\frac{1}{3}\right)^n \geq 1+\frac{n}{3},$$

pelo método de indução nos naturais.

Representemos por h(n) o predicado " $(1+\frac{1}{3})^n \ge 1+\frac{n}{3}$ ".

i | base de indução | Para n=1, temos $\left(1+\frac{1}{3}\right)^n=\left(1+\frac{1}{3}\right)^1=1+\frac{1}{3}\geq 1+\frac{1}{3}=1+\frac{n}{3}$, pelo que h(1) é verdadeira.

ii | passo de indução | Seja $k \in \mathbb{N}$ tal que h(k) é verdadeira, ou seja,

$$\left(1+\frac{1}{3}\right)^k \ge 1+\frac{k}{3}.$$

Então,

$$(1 + \frac{1}{3})^{(k+1)} = (1 + \frac{1}{3})^k (1 + \frac{1}{3})$$

$$\geq (1 + \frac{k}{3}) (1 + \frac{1}{3})$$

$$= 1 + \frac{k}{3} + \frac{1}{3} + \frac{k}{9}$$

$$= 1 + \frac{k+1}{3} + \frac{k}{9}$$

$$\geq 1 + \frac{k+1}{2} .$$

Assim, $\left(1+\frac{1}{3}\right)^{(k+1)} \geq 1+\frac{k+1}{3}$, pelo que h(k+1) é verdadeira.

Pelo Princípio de Indução para $\mathbb N$ e por i \mid e ii \mid , podemos concluir que para todo $n \in \mathbb N$, $\left(1+\frac{1}{3}\right)^n \geq 1+\frac{n}{3}$.

Como já referimos, é necessário que se verifiquem simultaneamente a base e o passo de indução para que se possa induzir a validade da propriedade em causa para todo o número natural.

Consideremos o predicado p(n): " $n^2 > 2n + 1$ ".

Facilmente se verifica que p(1) é falsa: $1^2 = 1 \geqslant 3 = 2 \times 1 + 1$.

No entanto, o passo de indução verifica-se, ou seja, o predicado p(n) é hereditário. De facto, dado $k \in \mathbb{N}$ tal que $k^2 > 2k + 1$,

$$(k+1)^{2} = k^{2} + 2k + 1$$

$$= k^{2} + (2k+1)$$

$$> (2k+1) + (2k+1)$$

$$= 2k + 2 + 2k$$

$$> 2k + 2 + 1$$

$$= 2(k+1) + 1.$$

Na verdade, p(n) é válida para todos os naturais maiores ou iguais a 3.

A prova deste resultado pode ser feita recorrendo a uma variante do Princípio de Indução, considerando para base de indução o elemento de $\mathbb N$ a partir do qual se pode provar a validade da propriedade

teorema 3.8 [princípio de indução (simples) para \mathbb{N} de base n_0]

Sejam p(n) um predicado sobre \mathbb{N} e $n_0 \in \mathbb{N}$. Se

- $1 \mid p(n_0)$ é verdadeira e
- $2 \mid$ para todo $k \in \mathbb{N}$ tal que $k \geq n_0$, se p(k) é verdadeira, então p(k+1) é verdadeira,

então p(n) é verdadeira para todo $n \in \mathbb{N}$ tal que $n \ge n_0$.

exemplo 3.9

Verifiquemos, então, que para todo $n \ge 3$, $n^2 > 2n + 1$.

i | base de indução | Para n=3, temos $n^2=3^2=9>7=2\times 3+1$, pelo que p(3) é verdadeira.

ii | passo de indução | Mostrámos há pouco que p(n) é hereditário. Assim, dado $k \in \mathbb{N}$ tal que $k \geq 3$, p(k+1) é verdadeira sempre que p(k) é verdadeira.

Pelo Princípio de Indução para $\mathbb N$ de base 3 e por i | e ii |, podemos concluir que para todo $n\geq 3, n^2>2n+1.$

exemplo 3.10

Mostremos que para todo $n \ge 5$, $2^n > n^2$, pelo método de indução para $\mathbb N$ de base 5.

Representemos por p(n) o predicado " $2^n > n^2$ ".

i | base de indução | Para n = 5, temos $2^n = 2^5 = 32 > 25 = 5^2$, pelo que p(5) é verdadeira

ii | passo de indução | Seja $k \in \mathbb{N}$ tal que $k \ge 5$ e p(k) é verdadeira, ou seja, $2^k > k^2$. Então,

$$2^{k+1} = 2 \times 2^{k}$$
>2×k²
= k² + k²
>k²+2k + 1 (pelo exemplo 3.9)
= (k + 1)².

pelo que p(k+1) é verdadeira.

Pelo Princípio de Indução para $\mathbb N$ de base 5 e por i \mid e ii \mid , podemos concluir que para todo $n \geq 5, \, 2^n > n^2$.

Na prova de certas propriedades sobre os naturais, a aplicação do Princípio de Indução Simples não é fácil. Nestes casos, torna-se mais conveniente optar por um outro método de prova, o chamado **Princípio de Indução Completa** (ou **Princípio de Indução Forte**).

teorema 3.11 [princípio de indução completa para N]

Seja p(n) um predicado sobre \mathbb{N} . Se

- $1 \mid p(1)$ é verdadeira e
- $2 \mid$ para todo $k \in \mathbb{N}$, se, para todo $j \in \{1, \dots, k\}$, p(j) é verdadeira, então p(k+1) é verdadeira,
- então p(n) é verdadeira para todo $n \in \mathbb{N}$.

Este princípio parece ser mais geral do que o Princípio de Indução Simples, mas prova-se serem equivalentes: toda a prova que possa ser feita pelo Princípio de Indução Simples pode ser feita pelo Princípio de Indução Completa e vice-versa.

À semelhança do que acontece com o Princípio de Indução Simples, podemos enunciar o **Princípio de Indução Completa de base** n_0 .

teorema 3.12 [princípio de indução completa para \mathbb{N} de base n_0]

Sejam p(n) um predicado sobre \mathbb{N} e $n_0 \in \mathbb{N}$. Se

- $1 \mid p(n_0)$ é verdadeira e
- 2 | para todo $k \in \mathbb{N}$ tal que $k \ge n_0$, se, para todo $j \in \{n_0, \dots, k\}$, p(j) é verdadeira, então p(k+1) é verdadeira,

então p(n) é verdadeira para todo $n \in \mathbb{N}$ tal que $n \ge n_0$.

exemplo 3.13

Recorrendo ao Princípio de Indução Completa de base 2, mostremos que todo o número natural diferente de 1 é primo ou é um produto de números primos.

Representemos por p(n) o predicado "n é primo ou n é um produto de primos.".

i | base de indução | 2 é primo e, portanto, p(2) é verdadeira.

ii | passo de indução | Seja $k \in \mathbb{N}$ tal que $k \ge 2$ e admitamos que p(j) é verdadeira para todo $j \in \{2, \dots, k\}$.

Se k + 1 é primo, então p(k + 1) é verdadeira.

Se k+1 não é primo, então existem $a,b \in \mathbb{N}$ tais que 1 < a,b < k+1 e k+1=ab.

Por hipótese de indução, como $a, b \in \{2, \dots, k\}$, sabemos que a é primo ou um produto de primos e b é primo ou um produto de primos.

Logo, k + 1 = ab é um produto de primos, pelo que p(k + 1) é verdadeira.

Por $1 \mid e \mid 2 \mid e$ pelo Princípio de Indução Completa de base 2, mostrámos que todo o número natural diferente de 1 é primo ou é um produto de primos.