MATH 600 Homework 8

Sam Hulse

December 5, 2017

Problem 1

Let $C_b(\mathbb{R})$ be the space of real-valued continuous and bounded function on \mathbb{R} endowed with the sup-norm $\|\cdot\|_{\infty}$. Let $B \subset C_b(\mathbb{R})$ be

$$B = \{ f \in C_b(\mathbb{R}) \mid 0 < f(x) < 2, \forall x \in \mathbb{R} \}$$

.

Let (f_n) be a convergent sequence of functions which converges to f_* such that $f_*(x) = 2 \forall x \in \mathbb{R}$. Then $f_* \notin B$, thus B does not contain all of it's limit points, therefore B is not closed.

Let $B^c := \{ f \in C_b(\mathbb{R}) \mid f(x) \leq 0 \text{ or } f(x) \geq 2 \}$. Let (f_n) be a convergent sequence in B^c which converges to f_* where $f_n \leq 0 \ \forall x \in \mathbb{R}$ and every $n \in \mathbb{N}$. Since each f_n in (f_n) is continuous, and (f_n) converges uniformly, then $f_* \leq 0 \ \forall x \in \mathbb{R}$.

Problem 2

Let C([0,1]) be the space of real-valued continuous functions on [0,1] endowed with the sup-norm $\|\cdot\|_{\infty}$. Let $B \subset C([0,1])$ be

$$B = \{ f \in C([0,1]) \mid 0 < f(x) < 2, \forall x \in [0,1] \}$$

.

Let (f_n) be a convergent sequence of functions in B which converges to f_* . Since (f_n) is uniformly convergent, then f_* is continuous. Then for every $n \in \mathbb{N}$ and every $x \in [0,1]$, $0 \le f_n(x) \le 2$. Therefore $0 \le f_*(x) \le 2$ for any fixed $x \in [0,1]$. Therefore $f_* \in B$, thus B is closed.

To show that B is not compact, I will demonstrate that it is not necessarily equi-continuous. Since compactness is equivalent to being closed, bounded, and equi-continuous, showing that B is not equicontinuous is sufficient to show that it is not compact. Let $f_n: [0,1] \to \mathbb{R}$ be $f_n(x) = x^n$. Since f_n is an exponential function, it is continuous, and since $0 \le f_n(x) \le 1 < 2$, $(f_n) \subseteq B$. However, we demonstrated in class that (f_n) is not equi-continuous. Therefore, there exits an $\epsilon > 0$, two sequences (x_n) , $(y_n) \in [0,1]$, and a sequence $(f_n) \in B$ such that $|x_n - y_n| \to 0$ as $n \to \infty$ and $||f_n(x) - f_n(y)|| \ge \epsilon$. Therefore B is not equi-continuous. This shows that B is not compact.

Problem 3

Let $A \subset \mathbb{R}$ be a bounded set, and the set $B \subset C(A, \mathbb{R})$ be

$$B = \{ \frac{x^2}{\alpha^2 + x^2} : A \to \mathbb{R} | \alpha \ge 1 \}.$$

To show that B is equi-continuous, we must show that for every $\epsilon > 0$, there exists a $\delta > 0$ such that $||f_{\alpha}(x) - f_{\alpha}(y)|| < \epsilon$ for every $x, y \in A$ where $d(x, y) < \delta$. Then for any $f_{\alpha} \in B$ and $x, y \in A$, we have

$$||f_{\alpha}(x) - f_{\alpha}(y)|| = \left\| \frac{x^2}{\alpha^2 + x^2} - \frac{y^2}{\alpha^2 + y^2} \right\|_{\infty} < f'(z)|x - y|$$

For some x < z < y from the mean value theorem. $f'(z)|x-y| = \frac{2z\alpha^2}{(\alpha^2+z^2)}|x-y|$. Since A is bounded, there exits a constant N such that $|z| \le N$ for every $x,y \in A$. Therefore the expression $\frac{2z\alpha^2}{(\alpha^2+z^2)}$ is bounded by some contant M. We can then say f'(z)|x-y| < M|x-y| for some constant M. Combining these statements gives us $||f_{\alpha}(x)-f_{\alpha}(y)|| < M|x-y|$. Let $\delta = \frac{\epsilon}{M}$, then when $|x-y| < \delta$, $||f_{\alpha}(x)-f_{\alpha}(y)|| < M|x-y| < M\frac{\epsilon}{M} = \epsilon$. Therefore B is equi-continuous.

Problem 4

Consider the space C([0,1]) of real-valued continuous functions on [0,1] endowed with the sup-norm $\|\cdot\|_{\infty}$. Let $B \subset C([0,1])$ be

$$B = \{ f \in C([0,1]) \mid f \text{ is differentiable on } [0,1], -1 \le f'(x) \le 2, \forall x \in [0,1], f(0) = 0 \}$$

(1): From the fundamental theorem of calculus, we have

$$f(x) = \int_0^1 f'(x)dx \le \int_0^1 2dx = 2 + a$$

For some constant a, and similarly

$$f(x) = \int_0^1 f'(x)dx \ge \int_0^1 -1dx = -1 + b$$

For some constant b. Since we know f(0) = 0, we can set a and b equal to 0. Thus $-1 \le f(x) \le 2$, so that f(x) is bounded. Therefore $||f(x)||_{\infty} \le 2$. This shows that for any $f \in B$, f(x) is bounded under the sup-norm.

Let g be a limit point of B. Then for every $\epsilon > 0$, there exists an $f_0 \in B$ such that $||f_0(x) - g(x)||_{\infty} < \epsilon$. Since B is bounded, $||f_0||_{\infty} < M$ for some constant M. Therefore, using the triangle inequality, we have $||f_0 - g||_{\infty} \le ||f_0||_{\infty} + ||f - g||_{\infty} < M + \epsilon$. Since ϵ can be arbitrarily small, $M + \epsilon$ is a bound for cl B, thus cl B is bounded.

(2): From the intermediate value theorem, we have $||f(x)-f(y)|| \le |f'(z)|x-y|$ for some $z \in [0,1]$ such that x < z < y. Since $-1 \le f'(z) \le 2$, then $||f'(z)||_{\infty} < M$ for some constant M. Let $\delta = \frac{\epsilon}{M}$, then when $|x-y| < \delta$, $||f_{\alpha}(x)-f_{\alpha}(y)|| < M|x-y| < M \frac{\epsilon}{M} = \epsilon$. Therefore B is equi-continuous. Since cl B is bounded by necesity, cl B is bounded, closed, and equi-continuous, and thus compact.

Problem 5

Let $\mathbb{R}_+ := \{x \in \mathbb{R} | x \geq 0\}$, and consider the sequence of functions $f_n : \mathbb{R}_+ \to \mathbb{R}$ defined by

Let $\delta = \epsilon$. Then, if $|x - y| < \delta$, $|\frac{x - y}{n}| < \delta = \epsilon$ since $n \ge 1$. Therefore for every $\epsilon > 0$ there exits a $\delta > 0$ such that $|x - y| < \delta$ implies that $|f_n(x) - f_n(y)| < \epsilon \ \forall n \in \mathbb{N}$. This shows that (f_n) is equi-continuous. since, $\max f(x) > 1$, then f is bounded.

Let x = 1. Then $B_x = \{f(x) : f \in (f_n)\} = 1, \frac{1}{2}, \frac{1}{3}$... Since $0 \notin B_x$, but is a limit point, then B_x is open, which means it is not compact. Therefore (f_n) is not pointwise compact, which by the Azela-Ascoli Theorem tells us that (f_n) is not compact.

Problem 6

Let (f_n) be an equi-continuous sequence of functions $f_n:(M,d)\to\mathbb{R}$, where (M,d) is compact. Suppose that (f_n) converges pointwise to f_* on M.

Since (f_n) is equi-continuous, then for every $\epsilon > 0$, there exists a $\delta > 0$ such that $|f_n(x), f_n(y)| < \epsilon$ for every $x, y \in M$ where $d(x, y) < \delta$. Since (f_n) is pointwise convergent, for every fixed $x \in M$, and any $\epsilon > 0$, there exists a $K(\epsilon, x) \in \mathbb{N}$ such that $d(f_n(x), f_*(x)) < \epsilon$ for every $n \geq K(\epsilon, x)$. Let $\epsilon > 0$ be arbitrary. Then there exists a $K \in \mathbb{N}$. Since M is compact, then $\min(f(x))$

Therefore, for every $\epsilon > 0$, there exists a $\delta > 0$ such that $|f_n(x) - f_n(y)| < \epsilon$ for every $x, y \in M$ where $d(x, y) < \delta$.