vtex
dvifalse vtexpdffalse vtexpsfalse vtexhtmlfalse vtexgexfalse vtex
dvitrue $\,$

0 if tex.enableprimitives then Ωtex.enableprimitives (Ω'pdf@',Ω'primitive', 'ifprimitive', 'pdfdraftitn Livie (a) Sidada abbertanie (a), 'luaescapestring') ΩendΩ 13 de novembro de 2019 Teste 1 de Cálculo I - Agrupamento 2 Duração: 2 horas

Leia com atenção

- <u>Justifique</u> todas as suas respostas, indicando os cálculos efetuados e/ou os conceitos teóricos utilizados.
- Não pode ter consigo telemóvel nem qualquer dispositivo eletrónico (ainda que desligado).
- Se desistir neste teste manter-se-á em avaliação discreta e não pode realizar o exame final.
- 1. (60 pts) Considere a função real de variável real definida por

$$f(x) = \begin{cases} x^2 \ln(-x) & \text{se } x < 0\\ \frac{\pi}{2} & \text{se } x = 0\\ \arctan(\frac{1}{x}) & \text{se } x > 0 \end{cases}$$

- (a) A função f é contínua em x = 0? Justifique.
- (b) A função f é derivável em x = 0? Justifique.
- (c) Indique, caso existam, os extremos de f no intervalo $]-\infty,0[$.
- (d) Seja g a restrição de f a \mathbb{R}^+ . Caracterize a função g^{-1} , indicando expressão analítica, domínio e contradomínio.
- (e) Seja $h(x) = e^x f(x)$ com $x \in [0,1]$. Prove que existe $c \in]0,1[$ tal que $h'(c) = (e-2)\frac{\pi}{4}$.
- 2. (50 pts) Determine as seguintes famílas de primitivas

(a)
$$\int x (x^2 + 2019)^{2020} dx;$$

(b)
$$\int \frac{(1+2\arctan x)^3}{1+x^2} dx;$$

(c)
$$\int \frac{x^2+1}{(x-1)^3} dx$$
.

- 3. (25 pts) Determine a família de primitivas $\int \sqrt{16-4x^2} dx$ usando a substituição $x=2\cos t$, com $t\in[0,\pi]$.
- 4. (25 pts) Determine a expressão analítica da função $f:]0, +\infty[\to \mathbb{R}$ que verifica as condições: $f'(x) = (1 + \ln x)^2$ e f(1) = 5.
- 5. (20 pts) Seja f a função real de variável real definida em \mathbb{R} por

$$f(x) = \sin(x^2 - 1) + 2x^2.$$

Prove que f tem exatamente dois zeros em \mathbb{R} .

6. (20 pts) Determine $a \in \mathbb{R}$ tal que $f(x) = \frac{e^{ax} - e^x - x}{x^2}$ tenha limite finito quando x tende para 0 e calcule esse limite.

Uma ajuda

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\operatorname{sen} x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\operatorname{tg} x$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	ND

$$\sec u = \frac{1}{\cos u}; \quad \csc u = \frac{1}{\sin u}; \quad \cot u = \frac{\cos u}{\sin u}$$

$$\cos^2 u = \frac{1 + \cos(2u)}{2}; \quad \sin^2 u = \frac{1 - \cos(2u)}{2};$$

 $1 + \operatorname{tg}^2 u = \sec^2 u; \quad 1 + \operatorname{cotg}^2 u = \operatorname{cosec}^2 u$

$$sen (u + v) = sen u cos v + sen v cos u$$
$$cos (u + v) = cos u cos v - sen u sen v$$

$$\operatorname{sen} u \operatorname{sen} v = \frac{1}{2}(\cos(u-v) - \cos(u+v))$$
$$\cos u \cos v = \frac{1}{2}(\cos(u-v) + \cos(u+v))$$
$$\operatorname{sen} u \cos v = \frac{1}{2}(\operatorname{sen}(u-v) + \operatorname{sen}(u+v))$$

$(e^u)' = u'e^u$	$(\ln u)' = \frac{u'}{u}$	$(u^r)' = r u^{r-1} u'$
$(a^u)' = a^u \ln a u'(a > 0 \text{ e } a \neq 1)$	$(\log_a u)' = \frac{u'}{u \ln a} \ (a > 0 \ e \ a \neq 1)$	$(\operatorname{sen} u)' = u' \cos u$
$(\cos u)' = -u' \operatorname{sen} u$	$(\operatorname{tg} u)' = u' \sec^2 u$	$(\cot g u)' = -u' \csc^2 u$
$(\sec u)' = \sec u \operatorname{tg} u u'$	$(\csc u)' = -\csc u \cot u u'$	$(\arcsin u)' = \frac{u'}{\sqrt{1 - u^2}}$
$(\arccos u)' = -\frac{u'}{\sqrt{1 - u^2}}$	$(\operatorname{arctg} u)' = \frac{u'}{1 + u^2}$	$(\operatorname{arccotg} u)' = -\frac{u'}{1+u^2}$

$$P(u' \sec u) = \ln|\sec u + \operatorname{tg} u| \quad P(u' \csc u) = -\ln|\csc u + \cot u|$$

$$P - \text{primitiva}$$