

软件测试基础与实践 实验报告

实验名称:	黑盒测试实验一
实验地点:	机房 268
实验日期:	2018/11/15
学生姓名:	张睦婕
学生学号:	71117133

东南大学 软件学院 制

一、实验目的

- (1) 能熟练应用黑盒测试中的等价类划分方法设计测试用例;
- (2) 能熟练应用黑盒测试中的边界值分析方法设计测试用例;
- (3) 能数量综合使用等价类划分和边界值分析解决黑盒测试需求;
- (4) 能够在黑盒测试用例设计中同时考虑正面测试和负面测试;
- (5) 学习测试用例的书写。

二、实验内容

实验 1: NextDate 问题的黑盒测试

实验背景:

日期是软件中被频繁处理的信息之一,软件开发人员有必要了解的一些公历历法的相关知识。公历的前身是古罗马凯撒修订的儒略历。根据儒略历的规定,每 4 年有 1 个闰年,闰年为 366 日,其余 3 年(称 为平年)各有 365 日。公元年数能被 4 除得尽的是闰年。儒略历 1 年平均长 365.25 日,比实际公转周期的 365.2422 日长 11 分 14 秒,即每 400 年约长 3 日。这样到公元 16 世纪时已经积累了有 10 天误差。可以明显感觉到两至两分 提 前了。在此情况下,教皇格列高里十三世于 1582 年宣布改历。先是一步到位把儒略历 1582 年 10 月 4 日的下一 天定为格列历 10 月 15 日,中间跳过 10 天。同时修改了儒略历置闰法则。除了保留儒略历年数被 4 除尽的是闰年外。增加了被 100 除得尽而被 400 除不尽的则不是闰年的规定。这样的做法可在 400 年中减少 3 个闰年。在格列高 里历历法里,400 年中有 97 个闰年(每年 366 日)及 303 个平年(每年 365 日),所以每年平均长 365.2425 日,与 公 转周期的 365.2422 日十分接近。可基本保证到公元 5000 年前误差不超过 1 天。

实验要求:

NextDate 程序中有 3 个输入,分别对应一个日期的年、月、日,程序能输出给定日期的下一天。程序能接收的日期输入范围为 1582 年 1 月 1 日到 3000 年 12 月 31 日。

综合使用等价类划分和边界值分析方法对该程序进行黑盒测试;设计的测试用例都要有充分的设计理由。

实验内容:

1. 等价类划分

编号		等价类		等价类类型
	年	月	日	
01	<1582	1-12	1-28	无效等价类
02	1582	1, 3, 5, 7, 8, 12	1-31	有效等价类
03	1582	10	1-4	有效等价类
04	1582	10	15-31	有效等价类
05	1582	10	5-14	无效等价类
06	1582-3000	4、6、9、11	1-30	有效等价类
07	1583-3000	1, 3, 5, 7, 8, 10, 12	1-31	有效等价类
08	1582-3000 中的闰年	2	1-29	有效等价类
09	1582-3000 中的平年	2	1-28	有效等价类
10	1582-3000	1, 3, 5, 7, 8, 10, 12	>31	无效等价类
11	1582-3000	4、6、9、11	>30	无效等价类
12	1582-3000 中的闰年	2	>29	无效等价类
13	1582-3000 中的平年	2	>28	无效等价类
14	>3000	1-12	1-28	无效等价类
15	1582-3000	>12	1-28	无效等价类
16	0	1-12	1-28	无效等价类
17	1582-3000	0	1-28	无效等价类
18	1582-3000	1-12	0	无效等价类
19	输入中存在非数字的	无效等价类		
	字符 (如字母)			
20		其中一项或多项是负数		无效等价类
21		存在一项或多项不输入		无效等价类

测试用例

编号		输入		箱	等价类类型	
	年	月	日	预期输出	实际输出	
01	1581	2	2	Error: date out of	Error: date out of	无效等价类
				range	range	
02	1582	1	1	1582-1-2	1582-1-2	有效等价类
03	1582	10	4	1582-10-15	1582-10-15	有效等价类
04	1582	10	15	1582-10-16	1582-10-16	有效等价类

7

东南大学国家示范性软件学院

College of Software Engineering Southeast University

05	1582	10	5	Error: wrong input	Error: wrong input	无效等价类
06	2008	4	29	2008-4-30	2008-4-30	有效等价类
07	2008	1	29	2008-1-30	2008-1-30	有效等价类
08	2008	2	29	2008-3-1	2008-3-1	有效等价类
09	2018	2	28	2018-3-1	2018-3-1	有效等价类
10	1582	1	32	Error: wrong input	Error: wrong input	无效等价类
11	1582	4	31	Error: wrong input	Error: wrong input	无效等价类
12	2008	2	30	Error: wrong input	Error: wrong input	无效等价类
13	2009	2	30	Error: wrong input	Error: wrong input	无效等价类
14	4000	2	2	Error: date out of	Error: date out of	无效等价类
				range	range	
15	2000	36	12	Error: wrong input	不输出/输出仍未上	无效等价类
					一个输入的结果	
16	0	2	2	Error: wrong input	Error: wrong input	无效等价类
17	2000	0	2	Error: wrong input	Error: wrong input	无效等价类
18	2000	12	0	Error: wrong input	Error: wrong input	无效等价类
19	y	m	d	无法输入		无效等价类
20	-1	-1	0	无法	法输入	无效等价类
21		1		无法		无效等价类

2. 边界值分析法

边界值分析

参数: 年月日 n=3 确定边界条件:

编号		边界参数	
	年	月	日
01	1582	1-12	1-28
02	3000	1-12	1-28
03	闰年	2	1
04	闰年	2	29
05	非闰年	2	1
06	非闰年	2	28
07	1582-3000	1	1-28
08	1582-3000	12	1-28
09	1582-3000	30 天的月	1
10	1582-3000	30 天的月	30

College of Software Engineering Southeast University

11	1582-3000	31 天的月	1
12	1582-3000	31 天的月	31
13	1582	1	1
14	3000	12	31
15	1582	10	5
16	1582	10	14

测试用例

采用边界条件方法,共3*16个测试用例

71471414	271 2011	73147 /	3 10	`测试用	נע	
用例	边界		输入		输	出
编号	编号	年	月	目	预期输出	实际输出
01	01	2000	0	1	Error: wrong input	Error: wrong input
02		2000	1	1	2000-1-2	2000-1-2
03		2000	2	1	2000-2-2	2000-2-2
04	02	2000	11	1	2000-11-2	2000-11-2
05		2000	12	1	2000-12-2	2000-12-2
06		2000	13	1	Error: wrong input	不输出/输出仍未上
						一个输入的结果
07	03	2000	4	0	Error: wrong input	Error: wrong input
08		2000	4	1	2000-4-2	2000-4-2
09		2000	4	2	2000-4-3	2000-4-3
10	04	2000	4	29	2000-4-30	2000-4-30
11		2000	4	30	2000-5-1	2000-5-1
12		2000	4	31	Error: wrong input	Error: wrong input
13	05	2000	1	0	Error: wrong input	Error: wrong input
14		2000	1	1	2000-1-2	2000-1-2
15		2000	1	2	2000-1-3	2000-1-3
16	06	2000	1	30	2000-1-31	2000-1-31
17		2000	1	31	2000-2-1	2000-2-1
18		2000	1	32	Error: wrong input	Error: wrong input
19	07	1581	1	1	Error: wrong input	Error: wrong input
20		1582	1	1	1582-1-2	1582-1-2
21		1583	1	1	1583-1-2	1583-1-2
22	08	2999	1	1	2999-1-2	2999-1-2
23		3000	1	1	3000-1-2	3000-1-2
24		3001	1	1	Error: date out of	Error: date out of
					range	range
25	09	2000	2	0	Error: wrong input	Error: wrong input
26		2000	2	1	2000-2-2	2000-2-2

200

东南大学国家示范性软件学院

College of Software Engineering Southeast University

27		2000	2	2	2000-2-3	2000-2-3
28	10	2000	2	28	2000-2-29	2000-2-29
29		2000	2	29	2000-3-1	2000-3-1
30		2000	2	30	Error: wrong input	Error: wrong input
31	11	2001	2	0	Error: wrong input	Error: wrong input
32		2001	2	1	2001-2-2	2001-2-2
33		2001	2	2	2001-2-3	2001-2-3
34	12	2001	2	27	2001-2-28	2001-2-28
35		2001	2	28	2001-3-1	2001-3-1
36		2001	2	29	Error: wrong input	Error: wrong input
37	13	1582	1	0	Error: wrong input	
38		1582	1	1	1582-1-2	1582-1-2
39		1582	1	2	1582-1-3	1582-1-3
40	14	3000	12	30	3000-12-31	3000-12-31
41		3000	12	31	3001-1-1	3001-1-1
42		3000	12	32	Error: wrong input	Error: wrong input
43	15	1582	10	4	1582-10-15	1582-10-15
44		1582	10	5	Error: wrong input	Error: wrong input
45		1582	10	6	Error: wrong input	Error: wrong input
46	16	1582	10	13	Error: wrong input	Error: wrong input
47		1582	10	14	Error: wrong input	Error: wrong input
48		1582	10	15	1582-10-16	1582-10-16

3. 结合边界条件和等价类划分设计测试用例

测试用例

用例	边界编号	等价类编号		输入		输	出
编号			年	月	日	预期输出	实际输出
01	01	17	2000	0	1	Error: wrong input	Error: wrong input
02		07	2000	1	1	2000-1-2	2000-1-2
03		08	2000	2	1	2000-2-2	2000-2-2
04	02	06	2000	11	1	2000-11-2	2000-11-2
05		07	2000	12	1	2000-12-2	2000-12-2
06		15	2000	13	1	Error: wrong input	不输出/输出仍未上
							一个输入的结果
07	03	18	2000	4	0	Error: wrong input	Error: wrong input
08		06	2000	4	1	2000-4-2	2000-4-2
09		06	2000	4	2	2000-4-3	2000-4-3

College of Software Engineering Southeast University

10	04	06	2000	4	29	2000-4-30	2000-4-30
11		06	2000	4	30	2000-5-1	2000-5-1
12		11	2000	4	31	Error: wrong input	Error: wrong input
13	05	18	2000	1	0	Error: wrong input	Error: wrong input
14		07	2000	1	1	2000-1-2	2000-1-2
15		07	2000	1	2	2000-1-3	2000-1-3
16	06	07	2000	1	30	2000-1-31	2000-1-31
17		07	2000	1	31	2000-2-1	2000-2-1
18		10	2000	1	32	Error: wrong input	Error: wrong input
19	07	01	1581	1	1	Error: date out of	Error: date out of
						range	range
20	07、13	02	1582	1	1	1582-1-2	1582-1-2
21	07	07	1583	1	1	1583-1-2	1583-1-2
22	08	07	2999	1	1	2999-1-2	2999-1-2
23		07	3000	1	1	3000-1-2	3000-1-2
24		14	3001	1	1	Error: date out of	Error: date out of
						range	range
25	09	18	2000	2	0	Error: wrong input	Error: wrong input
26		08	2000	2	1	2000-2-2	2000-2-2
27		08	2000	2	2	2000-2-3	2000-2-3
28	10	08	2000	2	28	2000-2-29	2000-2-29
29		08	2000	2	29	2000-3-1	2000-3-1
30		12	2000	2	30	Error: wrong input	Error: wrong input
31	11	18	2001	2	0	Error: wrong input	Error: wrong input
32		09	2001	2	1	2001-2-2	2001-2-2
33		09	2001	2	2	2001-2-3	2001-2-3
34	12	09	2001	2	27	2001-2-28	2001-2-28
35		09	2001	2	28	2001-3-1	2001-3-1
36		13	2001	2	29	Error: wrong input	Error: wrong input
37	13	18	1582	1	0	Error: wrong input	Error: wrong input
38		02	1582	1	2	1582-1-3	1582-1-3
39	14	07	3000	12	30	3000-12-31	3000-12-31
40		07	3000	12	31	3001-1-1	3001-1-1
41		10	3000	12	32	Error: wrong input	Error: wrong input
42	15	03	1582	10	4	1582-10-15	1582-10-15
43		05	1582	10	5	Error: wrong input	Error: wrong input
44		05	1582	10	6	Error: wrong input	Error: wrong input
45	16	05	1582	10	13	Error: wrong input	Error: wrong input
46		05	1582	10	14	Error: wrong input	Error: wrong input
47		04	1582	10	15	1582-10-16	1582-10-16
48		16	0	2	2	Error: wrong input	Error: date out of
							range

东南大学国家示范性软件学院 College of Software Engineering Southeast University

49	19	y	m	d	Error: wrong input	无法输入
50	20	-1	-1	0	Error: wrong input	无法输入
51	21		1		Error: wrong input	无法输入

(二) 题目 2: 四边形覆盖问题的黑盒测试

问题描述

- (1)程序输入: 2 个四边形: (X1Coord, Y1Coord, Width1, Height1) 和 (X2Coord, Y2Coord, Width2, Height2), 其中前 2 个参数是四边形左上角坐标,后 2 个参数指四边形的宽和高;
- (2) 程序输出:两个四边形的覆盖关系。
- (3) 四边形覆盖: 判断 2 个四边形在平面上的覆盖关系。

实验要求

- (1)利用等价类划分和边界值分析方法,设计四边形覆盖问题的测试用例。请给出测试用例的具体设计思路。
- (2) github 上有一个少有人关注的项目 https://github.com/cuthullu/box-black-box,(可从 FTP 上下载到该项目的源码 box-black-box-gh-pages.zip,解压后可运行 index.html)。这个项目中,给出了四边形问题的可视化测试界面,其中还 包含 5 种判断四边形关系的函数。
- (3)请利用(1)中设计的测试用例来对 box-black-box 项目进行黑盒测试,通过黑盒测试,分析该项目给出的 6 种函数中是否存在 BUG。

实验内容

1. 等价类划分

假设两个四边形在描述中等价,即 x1 和 x2, y1 和 y2 可以互换。

编号	等价类描述	等价类类型
01	存在一个输入的顶点坐标<0	无效等价类
02	存在一个输入的边长<=0	无效等价类
03	$(x1,y1)=(x2,y2) \parallel$	有效等价类
	$(x1,y1+height1)=(x2,y2+height2) \parallel$	
	$(x1+width1,y1)=(x2+wigth2,y2) \parallel$	
	(x1+width1,y1+height1)=(x2+width2,y2+height2)	
04	(x1+width1=x2 && y2<=y1+height1 && y2+height2>=y1)	有效等价类
	(y1+height1=y2 && x2<=x1+width1 && x2+width2>=x1)	
05	两个四边形没有边重合,且一个四边形至少存在一个顶点在	有效等价类

东南大学国家示范性软件学院 College of Software Engineering Southeast University

	另一个四边形内	
06	两个四边形没有边重合,且不存在其中一个的顶点在另一个	有效等价类
	四边形内	
07	存在顶点或边的值大于 99999999999999934463	无效等价类

测试用例

			输入输出			等价										
编号	编四边形(1)					四	边形(2)			类编					
3	X	y	width	height	X	у	width	height	预期输出	a	b	c	d	e	f	号
01	-1	0	1	1	0	0	1	1	error			无法	输入			01
02	0	0	0 0 0 0 1 1 error 无法输入						02							
03	1	1	1	2	1	1	1	2	√	√	√	√	X	√	√	03
04	1	1	3	3	4	4	1	1	×	×	×	√	X	X	×	04
05	0	0	5	5	3	3	5	5	√	√	√	√	√	√	√	05
06	0	0	1	1	4	4	1	1	√	X	×	X	X	X	×	06
07			全取	99999999	9999	9999	34464		error	数值越界						07
08	0	0	1	1	-1	0	1	1	error			无法	输入			01
09	0	0	1	1	0	0	0	0	error			无法	输入			02
10	1	1	1	2	1	1	1	2	√	√	√	√	X	√	√	03
11	4	4	1	1	1	1	3	3	×	×	×	√	X	X	×	04
12	3	3	5	5	0	0	5	5	√	√	√	√	√	√	√	05
13	4	4	1	1	0	0	1	1	√	×	×	×	×	×	×	06

2. 边界值分析

MAX_NUM=9999999999999934463

编号	x	у	width	height
01	0	0- MAX_NUM	1- MAX_NUM	1- MAX_NUM
02	0- MAX_NUM	0	1- MAX_NUM	1- MAX_NUM
03	MAX_NUM	0- MAX_NUM	1- MAX_NUM	1- MAX_NUM
04	0- MAX_NUM	MAX_NUM	1- MAX_NUM	1- MAX_NUM
05	0- MAX_NUM	0- MAX_NUM	1	1- MAX_NUM
06	0- MAX_NUM	0- MAX_NUM	MAX_NUM	1- MAX_NUM
07	0- MAX_NUM	0- MAX_NUM	1- MAX_NUM	1
08	0- MAX_NUM	0- MAX_NUM	1- MAX_NUM 34463	MAX_NUM

这里的 x2 和 y2 并不代表一定是第二个四边形

编号	x2	y2	width	height
09	x1	y1	1- MAX_NUM	1- MAX_NUM
10	x1+height1	y1	1- MAX_NUM	1- MAX_NUM
11	x1	y1+height1	1-MAX_NUM	1-MAX_NUM
12	x1+height1	y1+height1	1-MAX_NUM	1-MAX_NUM

测试用例

编号	X	у	width	height	预期输 出	实际输 出	边界
1	MAX_NUM-1	1	1	1	√or×	√or×	
2	MAX_NUM	1	1	1	√ or ×	√ or ×	03
3	MAX_NUM+1	1	1	1	error	error	
4	1	MAX_NUM-1	1	1	√or×	√or×	
5	1	MAX_NUM	1	1	√or×	√or×	04
6	1	MAX_NUM+1	1	1	error	error	
7	1	1	MAX_NUM-1	1	√ or ×	√or×	
8	1	1	MAX_NUM	1	√ or ×	√or×	06
9	1	1	MAX_NUM+1	1	error	error	
10	1	1	1	MAX_NUM-1	√or×	√or×	
11	1	1	1	MAX_NUM	√or×	√or×	08
12	1	1	1	MAX_NUM+1	error	error	

编号									输出							边界 编号
J		四	边形(1)		四	边形(2	(,)	预期输出			实际	输出			3m J
	X	у	width	height	X	у	width	height		a	b	с	d	e	f	
01	-1	0	1	1	0	0	1	1	error			无法	输入			
02	0	0	1	1	0	0	1	1	√	√	√	√	X	√	√	
03	1	0	1	2	0	0	1	2	√	√	√	X	√	√	√	01
04	0	0	1	1	-1	0	1	1	error			无法	输入			01
05	0	0	1	1	0	0	1	1	√	√	√	√	X	√	√	
06	0	0	1	2	1	0	1	2	√	√	√	×	√	~	~	
07	0	-1	1	1	0	0	1	1	error	无法输入						
08	0	0	1	1	0	0	1	1	√	√	√	√	X	√	√	02
09	0	1	1	1	0	0	1	1	√	√	√	X	√	√	√	

College of Software Engineering Southeast University

10	0	0	1	1	0	-1	1	1	error			无法	输入			
11	0	0	1	1	0	0	1	1	√	√	√	√	×	√	√	
12	0	0	1	1	0	1	1	1	√	√	√	X	√	√	√	
13	1	1	1	2	1	1	1	2	√	√	√	√	X	√	√	
14	1	1	1	2	1	1	0	2	error			无法	输入			
15	1	1	1	2	1	1	2	2	√	√	√	√	√	√	√	05
16	1	1	1	2	1	1	1	2	√	√	√	√	X	√	√	05
17	1	1	0	2	1	1	1	2	error			无法	输入			
18	1	1	2	2	1	1	1	2	√	√	√	√	√	√	√	
19	1	1	1	1	1	1	1	1	√	√	√	√	X	√	√	
20	1	1	1	0	1	1	1	1	error			无法	输入			
21	1	1	1	2	1	1	1	1	√	√	√	√	√	√	√	07
22	1	1	1	1	1	1	1	1	√	√	√	√	×	√	√	07
23	1	1	1	1	1	1	1	0	error			无法	输入			
24	1	1	1	1	1	1	1	2	√	√	√	√	√	√	√	
25	1	1	1	1	2	1	1	1	×	X	X	√	X	X	X	
26	1	1	1	1	1	1	1	1	×	X	×	X	√	X	X	
27	1	1	1	1	3	1	1	1	×	X	X	X	X	X	X	10
28	2	1	1	1	1	1	1	1	×	X	X	√	X	X	X	10
29	1	1	1	1	1	1	1	1	×	X	X	X	√	X	X	
30	3	1	1	1	1	1	1	1	×	X	√	X	X	X	X	
31	1	1	1	1	1	2	1	1	×	X	X	√	X	X	X	
32	1	1	1	1	1	1	1	1	×	X	X	X	√	X	X	
33	1	1	1	1	1	3	1	1	×	×	X	×	×	X	X	11
	1	2	1	1	1	1	1	1	×	×	X	√	×	X	X	11
	1	1	1	1	1	1	1	1	×	X	X	X	√	X	X	
	1	3	1	1	1	1	1	1	×	×	X	×	×	X	X	
	1	1	3	3	1	1	3	3	√	√	√	√	X	√	√	
	1	1	3	3	0	1	3	3	√	√	X	√	√	√	√	
	1	1	3	3	2	1	3	3	√	√	√	√	√	√	√	
	1	1	3	3	1	0	3	3	√	√	×	√	√	√	√	
	1	1	3	3	1	2	3	3	√	√	√	√	√	√	√	09
	0	1	3	3	1	1	3	3	√	√	√	√	√	√	√	
	2	1	3	3	1	1	3	3	√	√	×	√	√	√	√	
	1	0	3	3	1	1	3	3	√	√	√	√	√	√	√	
	1	2	3	3	1	1	3	3	√	√	×	√	√	√	√	
	1	1	1	1	2	2	1	1	×	×	×	√	×	×	×	
	1	1	1	1	1	2	1	1	×	×	×	√	×	×	×	
	1	1	1	1	3	2	1	1	×	×	×	×	×	×	×	12
	1	1	1	1	2	1	1	1	X	×	×	√	×	×	×	
	1	1	1	1	2	3	1	1	×	×	×	×	×	×	×	

College of Software Engineering Southeast University

2	2	1	1	1	1	1	1	×	×	×	√	×	X	×
1	2	1	1	1	1	1	1	X	×	×	√	×	×	×
3	2	1	1	1	1	1	1	×	×	×	×	×	×	×
2	1	1	1	1	1	1	1	×	×	×	√	×	X	×
2	3	1	1	1	1	1	1	×	X	X	X	×	×	X

三、实验体会

1. 在程序中发现的 bug

NextDate

当输入的年份和日期符合标准,但月份大于 12 时,程序不报任何错误,有时输出结果仍保留为上一个输出。

box-black-box-gh-pages

b,c,d 三个函数存在问题,无法正确判别覆盖。

2. 对黑盒测试的理解

在黑盒测试中,测试用例的设计实际上是一件非常具有挑战性的工作。

比如等价类的划分,对于四边形的覆盖问题。我一开始将有效等价类划分为三类,即是否有顶点重合,和顶点是否落在另一个四边形内部。但是我在设计用例的过程中发现顶点的重合问题并不是等价类,当左上角和左上角重合时,两个四边形一定有重叠的部分;但是当四边形 1 的左上角和四边形 2 的右下角重合时,这两个四边形是不重合的。于是我将顶点重合这一等价类再进行细分,分成对应顶点重合,和非对应顶点重合。但此时我又发现有一类特殊的情况我没有考虑,那就是有一条边重合,但四个顶点都不重合的情况,于是我将分类条件改为按边进行分类,得到最终的等价类划分。

现在企业内大量的项目主要采用黑盒测试,而比较少而且有限的使用白盒测试。我认为是因为黑盒测试相比于白盒测试更容易,尤其是当大型的程序中代码数量庞大的时候,而且测试的目的是用来用来满足用户需求,不满足需求的程序是肯定不能发布的。

但很明显这样做存在很大的危害,不仅代码质量难以保证,而且黑盒测试不能很好的发现程序中的代码逻辑错误。