المعادلات التفاضلية

I- تقدىم

1- تؤدي دراسة بعض الظواهر الفيزيائية و البيولوجية و الاقتصادية و غيرها إلى معادلات يكون فيها المجهول دالة وتحتوي على مشتقة او مشتقات هذه الدالة.

هذا النوع من المعادلات يسمى المعادلات التفاضلية.

يرمز عادة إلَى الدالة المجهولة بالرمز y) وقد يرمز لها بأي حرف آخر مثل u , z , f) حل المعادلة التفاضلية يعني إيجاد جميع الدوال y التي تحقق هده المعادلة , و مجموعة هده الدوال تسمى الحل العام للمعادلة ، كل عنصر من هده المجموعة يسمى حلا خاصا للمعادلة , كل حل يسمى كذلك تكاملا.

هى معادلة تفاضلية v'=0

الدالة y المعرفة على \mathbb{R} بـ y حل خاص للمعادلة

. y'=0 مجموعة الدوال الثابتة على \mathbb{R} هي الحل العام للمعادلة

($y'(x) = x^2 - 1$ هي معادلة تفاضلية ذات المجهول y (يمكن أن نكتب $y' = x^2 - 1$. $\mathbb R$ على $x o x^2 - 1$ على الدوال الأصلية للدالة

 $x o rac{1}{2} x^2 - x + k$ أي الحل العام لهذه المعادلة هي مجموعة الدوال المعرفة على $\mathbb R$ بما يلي

. حيث k عدد حقيقي اعتباطي

y'=ay+b حل المعادلة التفاضلية - II

y'=ay المعادلة التفاضلية y'=ay المعادلة التفاضلية y'=0 فان a=0 فان y'=0 أن الحل العام هو مجموعة الدوال الثابتة على *

$$y$$
'- $ay=0$ نعلم أن $x o e^{ax}$ ادن $x o e^{ax}$ ادن $\forall x \in \mathbb{R}$ $(e^{ax})' = ae^{ax}$ نعلم أن

$$y(x) = z(x)e^{ax}$$
 نضع $y' - ay = 0$ ليكن y حلا اعتباطيا للمعادلة

$$y'(x) = z'(x)e^{ax} + az(x)e^{ax}$$
 ومنه

$$y'(x) - ay(x) = z'(x)e^{ax} = 0$$
 و بالتالي $y'(x) = z'(x)e^{ax} + ay(x)$

و منه
$$z'(x)=0$$
 و بالتالي $z'(x)=0$ حيث $z'(x)=0$

اذن
$$y(x) = \lambda e^{ax}$$
 حيث λ عدد حقيقي اعتباطي

. نلاحظ أن الحالة a=0 هي ضمن الحالة العامة a=0

 $x o \lambda e^{ax}$ ب \mathbb{R} على عادلة التفاضلية y' = ay تقبل ما لانهاية من الحلول و هي الدوال حيث λ عدد حقيقي اعتباطي.

 $x o y_0 e^{a(x-x_0)}$ يوجد حل وحيد للمعادلة y' = ay يحقق الشرط $y(x_0) = y_0$ يوجد حل وحيد للمعادلة يحقق الشرط

الشرط $y(x_0) = y_0$ يسمى الشرط البدئي

y' = 2y نحل المعادلة التفاضلية -1

حلول المعادلة التفاضلية y'=2y هي الدوال المعرفة على $\mathbb R$ بـ حيث y'=2y حيث عدد حقيقي

$$y(1) = 2$$
 ; $y' = \frac{1}{3}y$ نحل المعادلة التفاضلية -2

 $x o 2e^{rac{1}{3}(x-1)}$ حل المعادلة التفاضلية y(1)=2 ; $y'=rac{1}{3}y$ هي الدالة المعرفة على y

2/ حل المعادلة التفاضلية av+b

f(x) = bx + c فان y' = b ومنه حلول المعادلة التفاضلية هي الدوال y' = b فان a = 0

$$y' = ay + b \Leftrightarrow y' = a\left(y + \frac{b}{a}\right)$$
 فان $a \neq 0$ اذا کان

$$z'=y'$$
 نضع $z=y+\frac{b}{a}$ نضع

$$y' = ay + b \Leftrightarrow z' = az \Leftrightarrow z(x) = \lambda e^{ax}$$
 $/\lambda \in \mathbb{R} \Leftrightarrow y(x) + \frac{b}{a} = \lambda e^{ax}$ $/\lambda \in \mathbb{R} \Leftrightarrow y(x) = \lambda e^{ax} - \frac{b}{a}$ $/\lambda \in \mathbb{R}$ وبالتالي

a
eq 0 لیکن a
eq 0 عددین حقیقین حیث a
eq a

 $x o \lambda e^{ax} - rac{b}{a}$ ب \mathbb{R} على على المعادلة التفاضلية y' = ay + b تقبل ما لانهاية من الحلول و هي الدوال المعادلة التفاضلية

حيث λ عدد حقيقي اعتباطي.

$$x o \left(y_0 + \frac{b}{a}\right) e^{a(x-x_0)} - \frac{b}{a}$$
 و هي الدالة $y(x_0) = y_0$ يحقق الشرط $y' = ay + b$

الشرط البدئي $y(x_0) = y_0$ الشرط البدئي

y' = -3y + 2 نحل المعادلة التفاضلية

حلول المعادلة التفاضلية y'=-3y+2 هي الدوال المعرفة على \mathbb{R} بـ حيث $x \to \lambda e^{-3x}+rac{2}{3}$ عدد حقيقي اعتباطي.

III- حل المعادلات التفاضلية v"+ay'+by=0

تسمى معادلات تفاضلية خطية من الرتبة $\mathbf{y"+ay'+by=0}$ تسمى معادلات تفاضلية خطية من الرتبة $\mathbf{v"+ay'+by=0}$

الثانية ذات المعاملات الثابتة

2- بعض الحالات الخاصة

$$y$$
" = 0 فان $a = b = 0$ -*

$$y'' = 0 \Leftrightarrow \exists k \in \mathbb{R}$$
 $y'(x) = k \Leftrightarrow \exists (k; k') \in \mathbb{R}^2$ $y(x) = kx + k'$

 $(k;k') \in \mathbb{R}^2$ بحيث $x \to kx + k'$ الحل العام للمعادلة y'' = 0 هي مجموعة الدوال

$$y$$
"+ ay ' = 0 فان b = 0 -*

$$z'+az=0$$
 ومنه $y''+ay'=0 \Leftrightarrow (y')'+ay'=0$

و بالتالي
$$y'(x) = \lambda e^{-ax}$$
 عدد حقیقي اعتباطي

 $x \to \lambda e^{-ax}$ اذن الحل العام للمعادلة y "+ ay ' = 0 اذن

$$(\lambda;\mu)\in\mathbb{R}^2$$
 $x o rac{-\lambda}{a}e^{-ax}+\mu$ أي الدوال

 $(a;b) \neq (0;0)$; E:y"+ay'+by=0 حل المعادلة التفاضلية – 3

$$r\in\mathbb{R}$$
 ; $y:x o e^{rx}$ لنبحث عن حلول من نوع $r^2+ar+b=0\Leftrightarrow r^2e^x+are^x+be^x=0\Leftrightarrow E$ حل للمعادلة y

E خل للمعادلة $x
ightharpoonup e^{rx}$ فان الدالة $r^2 + ar + b = 0$ حل للمعادلة r

 $(a;b) \in \mathbb{R}^2$; E:y"+ay'+by=0 تسمى المعادلة المميزة للمعادلة التفاضلية $r^2+ar+b=0$

$a^2 - 4b$ مميز هذه المعادلة هو

$$(E_1)$$
 و استنتج حلين للمعادلة $y''+3y'-4y=0$ و استنتج حلين للمعادلة -1

$$(lpha;eta)\in\mathbb{R}^2$$
 حيث (E_1) حيث ان الدوال المعرفة على $x olpha e^x+eta e^{-4x}$ بين ان الدوال المعرفة على \mathbb{R}

$$(E_2)$$
: $y'' - 6y' + 9y = 0$ أ/ حل المميزة للمعادلة -2

$$(lpha;eta)\in\mathbb{R}^2$$
 بين ان الدوال المعرفة على \mathbb{R} ب \mathbb{R} بين ان الدوال المعرفة على $x o(lpha+eta x)e^{3x}$ بين ان الدوال المعرفة على المعادلة التفاضلية $x o(lpha+eta x)e^{3x}$

 (E_3) : y'' + 4y' + 13y = 0 - أ/ حل المميزة للمعادلة

بربين ان الدالتين المعرفتين على $g:x \to e^{-2x} \sin 3x$ و $f:x \to e^{-2x} \cos 3x$ بربين ان الدالتين المعرفتين على ال (E_3) التفاضلية

 $(\alpha; \beta) \in \mathbb{R}^2$ حيث (E_1) حيث $x \to \alpha f + \beta g$ ج/ بين ان الدوال المعرفة على \mathbb{R} بين ان الدوال المعرفة على

لتكن المعادلة التفاضلية $r^2+ar+b=0$ المعادلة المميزة $(a;b)\in\mathbb{R}^2$; E:y"+ay'+by=0 :E لتكن المعادلة التفاضلية

 r_2 ; r_1 فان المعادلة المميزة لها جدرين مختلفين $a^2 - 4b > 0$ خاذا كان -*

و حلول المعادلة التفاضليةeta هي الدوال eta الدوال عددان اعتباطيان lpha و lpha حيث lpha و حلول المعادلة التفاضلية

. r فان المعادلة المميزة تقبل حل مزدوج * فان المعادلة المميزة . $a^2 - 4b = 0$

و حلول المعادلة التفاضلية E هي الدوال $x \to (\alpha + \beta x)e^{rx}$ حيث α و حلول المعادلة التفاضلية

 $r_2=p-iq$ و $r_1=p+iq$ و $r_1=p+iq$ و $r_2=p-iq$ و حلول المعادلة التفاضلية E هي الدوال و حلول المعادلة التفاضلية E و و و و و و عددان

$$y'(x_0) = y'_0$$
 ; $y(x_0) = y_0$ الحل الذي يحقق

 $y'(x_0) = y'_0$; $y(x_0) = y_0$ يوجد حل وحيد للمعادلة التفاضلية E يحقق الشرطين

. يسميان الشرطين البدئيين $y'(x_0) = y'_0$; $y(x_0) = y_0$

 $= y_0^*$ ىمكن إعطاء شرطين بدئيين آخرين. ملاحظة

 $\alpha \cos qx + \beta \sin qx = k \left(\frac{\alpha}{k} \cos qx + \frac{\beta}{k} \sin qx \right) = k \left(\cos \varphi \cos qx + \sin \varphi \sin qx \right) = k \cos \left(qx - \varphi \right)$ لدينا

$$\cos \varphi = \frac{\alpha}{k}$$
 ; $\sin \varphi = \frac{\beta}{k}$; $k = \sqrt{\alpha^2 + \beta^2}$ بوضع

تستنتج اذا کان $(qx-\varphi)$ فان $a^2-4b \prec 0$ حیث $x \to ke^{px}\cos(qx-\varphi)$ نان

 $y_1'(0) = -1$; $y_1(0) = 1$ حيث $y_1(0) = 1$ و حدد الحل الخاص $y_1''(0) = -1$ و حدد الحل الخاص $y_1''(0) = -1$

y'' + 4y' + 4y = 0 حل المعادلة -2

v'' + 2v' + 5v = 0 حل المعادلة -3

بما \mathbb{R} بما الدوال المعرفة على y"+ ay=0 بما *- اذا كان $a\succ 0$ بالدوال المعرفة على $a\succ 0$ بما $(\alpha; \beta) \in \mathbb{R}^2$ حیث $x \to \alpha \cos \sqrt{a}x + \beta \sin \sqrt{a}x$ یلي

بما \mathbb{R} بما المعرفة على y"+ ay=0 بما أخان $a\prec 0$ باذا كان $a\prec 0$ بما $(\alpha; \beta) \in \mathbb{R}^2$ پلي $x \to \alpha e^{\sqrt{-a}x} + \beta e^{-\sqrt{-a}x}$ پلي

y''-4y=0 ; y''+2y=0 مثال حل المعادلتين

 $(\alpha; \beta) \in \mathbb{R}^2$ حيث $x \to \alpha \cos \sqrt{2} x + \beta \sin \sqrt{2} x$ حيول المعادلة y"+ 2y = 0 حيث

 $(\alpha;\beta)\in\mathbb{R}^2$ حيث $x olpha e^{2x}+eta e^{-2x}$ حيول المعادلة y"+2y=0 هي الدوال المعادلة المعادلة المعادلة عنوان المعادلة ا