

Xiaowei Jiang

Senior Director

Alibaba

/\u00e4 1.7B Events/sec

Real-Time Personalization

Large Scale: 100 Millions of Events, 100 Billions of Features

Low Latency: Second Latency from End to End

Complex Logic: Real-Time Training, Feature/Model Update

What is Flink

An open source stream processing framework that unifies real-time event-driven applications and real-time analytics.

Flink Program

Flink DAG

Flink Runtime Improvements

Distributed Architecture

Rework Cluster Management [FLIP-6/FLINK-4319]

Fault Tolerance

JobManager Failover [FLINK-4911]
Region-based Task Failover [FLIP1/FLINK-4256]

Performance

Incremental Checkpoint [FLINK-5053]
Async I/O [FLIP12/FLINK-4391]
Credit-based Flow Control [FLINK-7282]

Flink SQL Improvements

Semantics

Functionality

Agg/w Retraction
Window
UDX Support
DDL Support
Connector Support

Index Pipelines for Search

Development Efficiency: Full/Incremental Index Build

Challenge: Consistency

Stream Job

Batch Job

Batch as Special Case of Streaming

Result of sorting 80GB/node (3.2TB)

Flink is the fastest due to its pipelined execution

Tez and Spark do not overlap 1st and 2nd stages

MapReduce is slow despite overlapping stages

Old Design

DataStream API TableAPI Relational SQL Relational

Query Processor Query Optimization & Query Execution

Runtime DAG API & Stream Operators

Local Single JVM Cluster Standalone/YARN Cloud ECS/EC2

New Design

Improvements in New Design

Runtime

New Operator Framework
Customizable Scheduling
Flexible Chaining

Expression Optimizations
Performant Operators
Resource Optimizations

Cost Based
Advanced Rules
Rich Stats

TPC-DS Performance (the Lower, the Better)

Search's Algorithm Platform

Unified Pipeline for Batch & Streaming Streaming: 100M QPS, 100B features Batch: Over 400TB in a single job

MicroService

Event Driven/Async Processing Back Pressure & Flow Control Auto-Scaling State-Management & Atomicity

Apache Flink – Streaming Technology Redefining Computation

