PHYS 20323/60323: Fall 2023 - LaTeX Example

1. The following questions refer to stars in the Table below.

Note: There may be multiple answers.

Name	Mass	Luminosity 3	Lifetime	Temperature	Radius
η Car.	$60.~M_{\odot}$	$10^6~L_{\odot}$	8.0×10^5 years		
ϵ Eri.	$6.0~M_{\odot}$	10^3L_\odot		20,000 K	
δ Scu.	$2.0~M_{\odot}$		5.0×10^8 years		$2\mathrm{R}_\odot$
β Cyg.	1.3 <i>M</i> _☉	$3.5L_{\odot}$			
α Cen.	$1.0~M_{\odot}$				$1~{ m R}_{\odot}$
γ Del.	$0.7~M_{\odot}$		$4.5 \times 10^{10} \text{ years}$	5000 K	

- (a) (4 points) Which of these stars will produce a planetary nebula.
- (b) (4 points) Elements heavier than Carbon will be produced in which stars.
- 2. An electron is found to be in the spin state (in the z-basis): $\chi = A \binom{3i}{4}$
 - (a) (5 points) Determine the possible values of A such that the state is normalized.
 - (b) (5 points) Find the expectation values of the operators S_x , S_y , S_z and \vec{S}^2 .

The matrix representations in the z-basis for the components of electron spin operators are given by:

$$\mathbf{S}_{x} = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \qquad \mathbf{S}_{y} = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}; \qquad \mathbf{S}_{z} = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

3. The average electrostatic field in the earth's atmosphere in fair weather is approximately given:

$$\vec{E} = E_0 \left(A e^{-\alpha z} + B e^{-\beta z} \right) \hat{z},\tag{1}$$

where A,B, α , β are positive constants and z is the height above the (locally flat) earth surface.

- (a) (5 points) Find the average charge density in the atmosphere as a function of height
- (b) (5 points) Find the electric potential as a function height above the earth.

Latex Example 31