Correction du DM

Exercice 1. 1) L'aire d'un parallélogramme est le produit de la base par la hauteur. Les parallélogrammes ont la même base a_1 et une hauteur identique; donc la même aire, voir dessin au tableau

2) Observer que si $D = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} = |ad|$ et |ad| est clairement l'aire du rectangle associé.

Ensuite par une transformation comme en 1), on peut se ramener d'une matrice triangulaire T à une matrice diagonale D, alors l'aire du parallélogramme correspondant à $\det(T)$ est l'aire du rectangle $\det(D)$. Puis, on peut de la même manière passer d'une matrice quelconque $A = \begin{pmatrix} u_1 & v_1 \\ u_2 & v_2 \end{pmatrix}$ à une matrice triangulaire supérieure ou inférieure, et alors $\det(A)$ l'aire du parallélogramme engendré par u, v est la même que l'aire du parallélogramme engendré par u', v' correspondant à la matrice triangulaire, donc égale à $\det(T)$.

Exercice 2. Les points M appartenant à l'intersection de P et P' sont les points dont le triplet de coordonnées $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ est solution du système : $S = \begin{cases} 2x + y + -2z - 3 = 0 \\ x + y + 3z - 2 = 0 \end{cases}$

Comme le déterminant $\det\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$) n'est pas nul, on peut exprimer x et y en fonction de z:

$$S' = \begin{cases} x = 5z + 1\\ y = -8z + 1 \end{cases}$$

et le système S' est equivalent au système S. Il en résulte que l'ensemble des triplets de solutions du système S est l'ensemble des triplets (x,y,z) tel que :

$$\begin{cases} x = 1 + 5t \\ y = 1 - 8t \\ z = 0 + 1t \end{cases}$$

lorsque t décrit l'ensemble $\mathbb R$ Autrement dit, ce sont les points de la droite D contenant le point $A:\begin{pmatrix}1\\1\\0\end{pmatrix}$ et admettant le vecteur directeur $\vec{U}=\begin{pmatrix}5\\-8\\1\end{pmatrix}$ comme vecteur directeur.

Exercice 3. voir correction au tableau

Exercice 4. voir correction au tableau

Exercice 5. 1) Le développement de $|z|(\cos(\theta)+i\sin(\theta))$ donne : $|z|(\cos(\theta)+i|z|\sin(\theta))$ qui est la forme algébrique de z. L'unicité de cette forme implique : $|z|(\cos(\theta) = -1, |z|\sin(\theta) =$ $\sqrt{3}$; d'où $\cos(\theta) = \frac{-1}{|z|}, \sin(\theta) = \frac{\sqrt{3}}{|z|}$ ce qui permet de trouver $\cos(\theta), \sin(\theta)$ donc θ . En effet $|z|^2=(-1)^2+\sqrt{3}^2$. Ainsi |z|=2, $\cos(\theta)=\frac{-1}{2}$, $\sin(\theta)=\frac{\sqrt{3}}{2}$; nous trouvons donc $\theta=\frac{2\pi}{3}$. La forme trigonométrique de z est donc $z=2(\cos(\frac{2\pi}{3})+i\sin(\frac{2\pi}{3}))$. Une forme exponentielle est $z = 2e^{\frac{2\pi}{3}i}$.

2) Lorsque Z est écrit sous la forme $re^{i\theta}$ avec r>0 alors r est le module de Z et θ un argument. Mais ce n'est pas le cas lorsque r < 0. Il faut donc s'assurer du signe $1 - \sqrt{2}$. Or $1-\sqrt{2}<0$. Pour obtenir la forme exponentielle de Z, nous écrivons : $Z=-(1-\sqrt{2})(-e^{i\frac{\pi}{4}})$ donc $Z = -(1-\sqrt{2})(-\cos(\frac{\pi}{4})-i\sin(\frac{\pi}{4}))$ et nous savons que $-\cos(\theta)=\cos(\theta+\pi)$ et $-\sin(\theta) = \sin(\theta + \pi) \text{ d'où } Z = -(1 - \sqrt{2})(\cos(\frac{5\pi}{4}) + i\sin(\frac{5\pi}{4})) = -(1 - \sqrt{2})(e^{i\frac{5\pi}{4}})$ Le module de Z est $-1 + \sqrt{2}$ et un argument $\frac{5\pi}{4}$.

Exercice 6. La méthode consiste à multiplier dénominateur et numérateur par le conjugué du dénominateur.

 θ est différent de π , modulo 2π , donc $e^{i\theta}$ est différent de -1, donc $z=1+e^{i\theta}$ n'est pas

Le conjugué de $e^{i\theta}$ est $e^{-i\theta}$, le conjugué de 1 est 1, donc le conjugué de $1 + e^{i\theta}$ est $1 + e^{-i\theta}$

(le conjugué d'une somme est la somme des conjugués) Donc $Z=\frac{(1-e^{i\theta})1+e^{-i\theta}}{(1+e^{i\theta})(1+e^{-i\theta})}$ Le dénominateur est $z\overline{z}=|z|^2$ Et on remarque que $|z|^2=2(1+e^{i\theta})(1+e^{-i\theta})$ $\cos(\theta)$

Ainsi

$$Z = \frac{-i\sin(\theta)}{1 + \cos(\theta)}$$

Exercice 7. 1) On a

$$z_C = e^{\frac{i\pi}{2}} z_D = i \times 2i = -2$$

- 2) dessin.
- 3) a)

$$\frac{z_F - z_C}{z_E - z_C} = \frac{1 - i\sqrt{3} + 2}{1 + i\sqrt{3} + 2} = \frac{(3 - i\sqrt{3})^2}{(3 + i\sqrt{3})(3 - i\sqrt{3})} = \frac{6 - 6i\sqrt{3}}{12} = \frac{1 - i\sqrt{3}}{2} = e^{-\frac{i\pi}{3}}$$

c'est-à-dire que l'angle défini par le couple de vecteurs $(\overrightarrow{CE},\overrightarrow{CF})$ est $-\frac{\pi}{2}$ et que CE=CF.

- b) Le triangle est donc équilatéral.
- c) Par conséquent, le centre de son cercle circonscrit est son centre de gravité G (on rappelle que les droites remarquables (médianes, médiatrices) sont confondues). L'affixe

de
$$G$$
 est $\frac{z_E + z_F + z_C}{3} = \frac{1 + i\sqrt{3} + 1 - i\sqrt{3} - 2}{3} = 0$ donc $G = O$.
Le rayon du cercle circonscrit est $OC = |z_C| = 2$.

4) a) r fixe son centre F et (d'après les questions 3.a et 3.b) envoie E sur C, donc $z_{F'}=z_F$ et $z_{E'} = z_C$.

$$z_{C'} = e^{\frac{i\pi}{3}} (z_C - z_F) + z_F$$

$$= \frac{1 + i\sqrt{3}}{2} (-2 - 1 + i\sqrt{3}) + 1 - i\sqrt{3}$$

$$= -3 - i\sqrt{3} + 1 - i\sqrt{3}$$

$$= -2 - 2i\sqrt{3}.$$

On peut remarquer que l'image (E'F'C') = (CFC') du triangle équilatéral (EFC) par la rotation r reste un triangle équilatéral.

b) L'image dun cercle par une rotation est un cercle de même rayon. L'image de Γ par la rotation r est donc le cercle de rayon 2 et de centre le point d'affixe

$$e^{\frac{i\pi}{3}}(z_O - z_F) + z_F = \dots$$

ou plus simplement:

$$\frac{z_{E'} + z_{F'} + z_{C'}}{3} = \frac{-2 + 1 - i\sqrt{3} - 2 - 2i\sqrt{3}}{3} = -1 - i\sqrt{3}$$

c) L'image réciproque de Γ par r est égale à son image directe par r^{-1} , c'est-à-dire le cercle de rayon 2 et de centre le point d'affixe

$$e^{-\frac{i\pi}{3}}(z_O - z_F) + z_F = \left(\frac{1 - i\sqrt{3}}{2} - 1\right)(-1 + i\sqrt{3}) = \frac{\left(-1 - i\sqrt{3}\right)\left(-1 + i\sqrt{3}\right)}{2} = 2$$