Automatentheorie und ihre Anwendungen Teil 5: Alternierung

Wintersemester 2018/19 Thomas Schneider

AG Theorie der künstlichen Intelligenz (TdKI)

http://tinyurl.com/ws1819-autom

Warum Alternierung?

- Starke Beziehungen zwischen Logik und Automaten, z. B.:
 - NBAs ↔ LTL (Teil 3 dieser Vorlesung)
 - NEAs \leftrightarrow S1S (Satz von Büchi-Elgot-Trakhtenbrot, VL Logik)
- In Logiken kann man aber Sprachen oder Eigenschaften oft deutlich kürzer ausdrücken, z. B.:
 - LTL-Formel → NBA: exponentielle Explosion
 - ullet S1S-Formel o NEA: sogar nicht-elementare Explosion
- Verkleinern dieser Lücke:

Erlaube in Automaten nicht nur **existenzielle** (= nichtdeterm.) "Verzweigungen", sondern auch **universell**e.

Warum Alternierung?

- "Alternierung" heißt also, dass ein Maschinenmodell (abwechselnd) existenzielle und universelle Entscheidungen treffen kann.
- Alternierende Varianten gibt es für alle Automatentypen aus dieser Vorlesung (auf endlichen oder unendlichen Objekten, Wörtern oder Bäumen) und für andere Maschinenmodelle (z. B. Turingmaschinen).
- Für alternierende Automaten ist Komplementierung besonders leicht zu erreichen.
- Wir beschränken uns im Folgenden auf ω -Wortautomaten, also auf alternierende Büchi-Automaten.

Überblick

Einführung und Grundbegriffe

2 Von LTL zu alternierenden Automaten

3 Komplementierung

Und nun ...

1 Einführung und Grundbegriffe

2 Von LTL zu alternierenden Automaten

3 Komplementierung

Alternierung: Grundidee

- Nichtdeterministischer Automat \mathcal{A} akzeptiert eine Eingabe, wenn ein akzeptierender Run existiert.
 - d. h.: falls (q, a, q'), $(q, a, q'') \in \Delta$, kann \mathcal{A} in Situation (q, a) "entscheiden", wie der Run fortgesetzt wird.

Mindestens eine dieser Entscheidungen muss zum Ziel führen.

- Alternierung erlaubt auch universelle Entscheidungen, in beliebiger Kombination mit existenziellen.
- "Beliebige Kombination" wird realisiert durch positive Boolesche Formel, d. h. aussagenlogische Formel ohne ¬.
- Statt eines Runs (Zustandsfolge) gibt es nun einen Run-Baum, der alle universellen Entscheidungen berücksichtigt.

Positive Boolesche Formeln

Definition 5.1 (Syntax)

Die Menge der positiven Booleschen Formeln (PBFs) über einer Menge X, geschrieben $B^+(X)$, ist die kleinste Menge, für die gilt:

- Jedes Element $x \in X$ ist eine PBF.
- Die Konstanten 0, 1 sind PBFs.
- Wenn φ, ψ PBFs sind, dann auch $\varphi \wedge \psi$ und $\varphi \vee \psi$.

Positive Boolesche Formeln

Definition 5.1 (Syntax)

Die Menge der positiven Booleschen Formeln (PBFs) über einer Menge X, geschrieben $B^+(X)$, ist die kleinste Menge, für die gilt:

- Jedes Element $x \in X$ ist eine PBF.
- Die Konstanten 0, 1 sind PBFs.
- $\bullet \ \ \mathsf{Wenn} \ \varphi, \psi \ \mathsf{PBFs} \ \mathsf{sind,} \ \mathsf{dann} \ \mathsf{auch} \ \varphi \wedge \psi \ \mathsf{und} \ \varphi \vee \psi.$

Definition 5.2 (Semantik)

Jede Menge $Y \subseteq X$ definiert eine Belegung $V_Y : X \to \{0, 1\}$: $V_Y(x) = 1$, falls $x \in Y$; $V_Y(x) = 0$ sonst.

Eine Menge $Y \subseteq X$ erfüllt eine PBF $\varphi \in B^+(X)$, geschrieben $Y \models \varphi$, wenn $V_Y \models \varphi$ (nach Standard-Semantik AL).

T 5.1

Alternierende Automaten

Definition 5.3

Ein alternierender Büchi-Automat auf ω -Wörtern (ABA) ist ein 5-Tupel $\mathcal{A}=(Q,\Sigma,\delta,I,F)$, wobei

- Q eine endliche nichtleere Zustandsmenge ist,
- ullet E eine Alphabet (endliche nichtleere Menge von Zeichen) ist,
- $\delta: Q \times \Sigma \to \mathsf{B}^+(Q)$ die Überführungsfunktion ist,
- $I \subseteq Q$ die Menge der Anfangszustände ist,
- $F \subseteq Q$ die Menge der akzeptierenden Zustände ist.

Alternierende Automaten

Definition 5.3

Ein alternierender Büchi-Automat auf ω -Wörtern (ABA) ist ein 5-Tupel $\mathcal{A} = (Q, \Sigma, \delta, I, F)$, wobei

- Q eine endliche nichtleere Zustandsmenge ist,
- Σ eine Alphabet (endliche nichtleere Menge von Zeichen) ist,
- $\delta: Q \times \Sigma \to B^+(Q)$ die Überführungsfunktion ist,
- $I \subseteq Q$ die Menge der Anfangszustände ist,
- $F \subseteq Q$ die Menge der akzeptierenden Zustände ist.

Wir nehmen wieder o. B. d. A. $I = \{q_I\}$ an.

Alternative Akzeptanzbedingungen (Muller, Parität usw.) sind auch möglich.

Run-Bäume

Betrachten Baum mit Verzweigungsgrad $\leq n$, für festes $n \in \mathbb{N}$

- ullet Positionen: Menge $P\subseteq\{1,\ldots,n\}^*$, präfix-abgeschlossen
- Kinder eines Knotens p: Kinder $(p) \subseteq \{p1, \ldots, pn\}$
- Tiefe, Ebene, Nachfolger, Pfad: wie gehabt

Run-Bäume

Betrachten Baum mit Verzweigungsgrad $\leq n$, für festes $n \in \mathbb{N}$

- ullet Positionen: Menge $P\subseteq\{1,\ldots,n\}^*$, präfix-abgeschlossen
- Kinder eines Knotens p: Kinder $(p) \subseteq \{p1, \ldots, pn\}$
- Tiefe, Ebene, Nachfolger, Pfad: wie gehabt

Pfad in P: endliche oder unendliche Folge $\pi = \pi_0 \pi_1 \pi_2 \cdots$ von Positionen $\pi_i \in P$ mit

- $\pi_0 = \varepsilon$ und
- $\pi_{i+1} \in \mathsf{Kinder}(\pi_i)$ für alle $i \geq 0$

Run-Bäume

Betrachten Baum mit Verzweigungsgrad $\leq n$, für festes $n \in \mathbb{N}$

- ullet Positionen: Menge $P\subseteq\{1,\ldots,n\}^*$, präfix-abgeschlossen
- Kinder eines Knotens p: Kinder $(p) \subseteq \{p1, \ldots, pn\}$
- Tiefe, Ebene, Nachfolger, Pfad: wie gehabt

Pfad in P: endliche oder unendliche Folge $\pi = \pi_0 \pi_1 \pi_2 \cdots$ von Positionen $\pi_i \in P$ mit

- $\pi_0 = \varepsilon$ und
- $\pi_{i+1} \in \mathsf{Kinder}(\pi_i)$ für alle $i \geq 0$

Σ-Baum (P, t) (Alphabet Σ):

- P wie oben
- $t: P \to \Sigma$ ist Markierungsfunktion

T 5.2

Berechnungen und Akzeptanz

Definition 5.4

Ein Run eines ABA $\mathcal{A} = (Q, \Sigma, \delta, \{q_i\}, F)$ auf einem Wort $\alpha = \alpha_0 \alpha_1 \alpha_2 \cdots \in \Sigma^{\omega}$ ist ein **Q-Baum** (P, r), so dass:

- $r(\varepsilon) = q_I$
- für alle $p \in P$: wenn r(p) = q, dann

$$\left\{r(p')\mid p'\in\mathsf{Kinder}(p)\right\}\;\models\;\delta(q,\alpha_{|p|})\,.$$
 T5.3

(für andere Akzeptanzbedingungen analog)

Berechnungen und Akzeptanz

Definition 5.4

Ein Run eines ABA $\mathcal{A} = (Q, \Sigma, \delta, \{q_i\}, F)$ auf einem Wort $\alpha = \alpha_0 \alpha_1 \alpha_2 \cdots \in \Sigma^{\omega}$ ist ein **Q-Baum** (P, r), so dass:

- $r(\varepsilon) = q_I$
- für alle $p \in P$: wenn r(p) = q, dann

$$\left\{r(p') \mid p' \in \mathsf{Kinder}(p)\right\} \models \delta(q, \alpha_{|p|}).$$
 T5.3

Run (P, r) ist erfolgreich, wenn für jeden unendlichen Pfad $\pi = \pi_0 \pi_1 \pi_2 \dots$ in P gilt:

$$Inf(r,\pi)\cap F\neq\emptyset$$

T 5.3 Forts.

(für andere Akzeptanzbedingungen analog)

Berechnungen und Akzeptanz

Definition 5.4

Ein Run eines ABA $\mathcal{A} = (Q, \Sigma, \delta, \{q_i\}, F)$ auf einem Wort $\alpha = \alpha_0 \alpha_1 \alpha_2 \cdots \in \Sigma^{\omega}$ ist ein **Q-Baum** (P, r), so dass:

- $r(\varepsilon) = q_I$
- für alle $p \in P$: wenn r(p) = q, dann

$$\left\{r(p') \mid p' \in \mathsf{Kinder}(p)\right\} \models \delta(q, \alpha_{|p|}).$$
 T5.3

Run (P, r) ist erfolgreich, wenn für jeden unendlichen Pfad $\pi = \pi_0 \pi_1 \pi_2 \dots$ in P gilt:

$$Inf(r,\pi) \cap F \neq \emptyset$$

T 5.3 Forts.

$$L_{\omega}(A) = \{ \alpha \in \Sigma^{\omega} \mid A \text{ hat einen erfolgr. Run auf } \alpha \}$$
 T 5.3 Forts.

(für andere Akzeptanzbedingungen analog)

Und nun ...

Einführung und Grundbegriffe

2 Von LTL zu alternierenden Automaten

3 Komplementierung

Übersetzung logischer Formeln in alternierende Automaten ist oft einfacher als in nichtdeterministische Automaten.

Hier am Beispiel LTL \rightarrow ABA

Übersetzung logischer Formeln in alternierende Automaten ist oft einfacher als in nichtdeterministische Automaten.

Hier am Beispiel LTL \rightarrow ABA

Erinnerung an LTL:
$$\varphi ::= x \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid X\varphi \mid \varphi U \varphi$$

mit $x \in AV$ (Aussagenvariablen)

Übersetzung logischer Formeln in alternierende Automaten ist oft einfacher als in nichtdeterministische Automaten.

Hier am Beispiel LTL \rightarrow ABA

Erinnerung an LTL: $\varphi ::= x \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid X\varphi \mid \varphi \ U \varphi$ mit $x \in AV$ (Aussagenvariablen)

$$s,i \models \varphi \ U \ \psi, \quad \text{falls } s,j \models \psi \ \text{für ein } j \geqslant i \\ \quad \text{und } s,k \models \varphi \ \text{für alle } k \ \text{mit } i \leqslant k < j$$

Übersetzung logischer Formeln in alternierende Automaten ist oft einfacher als in nichtdeterministische Automaten.

Hier am Beispiel LTL \rightarrow ABA

Erinnerung an LTL: $\varphi ::= x \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid X\varphi \mid \varphi \ U \varphi$ mit $x \in AV$ (Aussagenvariablen)

$$s, i \models \varphi \ U \ \psi, \quad \text{falls } s, j \models \psi \ \text{für ein } j \geqslant i$$
 und $s, k \models \varphi \ \text{für alle } k \ \text{mit } i \leqslant k < j$

$$F\varphi \equiv (x \lor \neg x) U \varphi$$
$$G\varphi \equiv \neg F \neg \varphi$$

Üborcotzung logic

Vorbetrachtungen

Übersetzung logischer Formeln in alternierende Automaten ist oft einfacher als in nichtdeterministische Automaten.

Hier am Beispiel LTL \rightarrow ABA

Erinnerung an LTL: $\varphi ::= x \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid X\varphi \mid \varphi U \varphi$ mit $x \in AV$ (Aussagenvariablen)

$$s, i \models \varphi \ U \ \psi, \quad \text{falls } s, j \models \psi \ \text{für ein } j \geqslant i$$
 und $s, k \models \varphi \ \text{für alle } k \ \text{mit } i \leqslant k < j$

$$F\varphi \equiv (x \lor \neg x) U \varphi$$
$$G\varphi \equiv \neg F \neg \varphi$$

Expansionsgesetz:

$$s, i \models \varphi \ U \psi \ \text{gdw}. \ s, i \models \psi \ \text{oder} \ (s, i \models \varphi \ \text{und} \ s, i+1 \models \varphi \ U \psi)$$

Intuitionen der Konstruktion

Seien φ eine LTL-Formel und ψ eine beliebige Teilformel.

$$\sim \psi = \begin{cases} \vartheta & \text{falls } \psi = \neg \vartheta \\ \neg \psi & \text{sonst} \end{cases}$$

$$\operatorname{cl}(\varphi) = \{\psi, \sim \psi \mid \psi \text{ ist Teilformel von } \varphi\}$$

Intuitionen der Konstruktion

Seien φ eine LTL-Formel und ψ eine beliebige Teilformel.

$${\sim}\psi = \begin{cases} \vartheta & \text{falls } \psi = \neg \vartheta \\ \neg \psi & \text{sonst} \end{cases}$$

$$\operatorname{cl}(\varphi) = \{\psi, \sim \psi \mid \psi \text{ ist Teilformel von } \varphi\}$$

Bestandteile des ABA \mathcal{A}_{φ}

- Eingabealphabet: $\Sigma = 2^{AV}$ wie gehabt
- ullet Zustände: für jede Formel $\psi \in \operatorname{cl}(\varphi)$ ein q_{ψ} ; Startzustand q_{φ}

Intuitionen der Konstruktion

Seien φ eine LTL-Formel und ψ eine beliebige Teilformel.

$${\sim}\psi = \begin{cases} \vartheta & \text{falls } \psi = \neg \vartheta \\ \neg \psi & \text{sonst} \end{cases}$$

$$\operatorname{cl}(\varphi) = \{\psi, \sim \psi \mid \psi \text{ ist Teilformel von } \varphi\}$$

Bestandteile des ABA \mathcal{A}_{φ}

- Eingabealphabet: $\Sigma = 2^{AV}$ wie gehabt
- Zustände: für jede Formel $\psi \in \operatorname{cl}(\varphi)$ ein q_{ψ} ; Startzustand q_{φ}
- Übergänge:
 - für ∧, ∨: mittels PBF
 - für ¬: per "Negation" der PBF
 - für $X\psi$: schicke q_{ψ} zur nächsten Position
 - für *U*: per Expansionsgesetz

Seien φ eine LTL-Formel und ψ eine beliebige Teilformel.

$${\sim}\psi = \begin{cases} \vartheta & \text{falls } \psi = \neg \vartheta \\ \neg \psi & \text{sonst} \end{cases}$$

Intuitionen der Konstruktion

$$\operatorname{cl}(\varphi) = \{\psi, \sim \psi \mid \psi \text{ ist Teilformel von } \varphi\}$$

Bestandteile des ABA \mathcal{A}_{φ}

- Eingabealphabet: $\Sigma = 2^{AV}$ wie gehabt
- Zustände: für jede Formel $\psi \in \mathsf{cl}(\varphi)$ ein q_{ψ} ; Startzustand q_{φ}
- Übergänge:
 - für ∧, ∨: mittels PBF
 - für ¬: per "Negation" der PBF
 - für $X\psi$: schicke q_{ψ} zur nächsten Position
 - für *U*: per Expansionsgesetz
- *F* verhindert unendliches "Aufschieben" von *U*-Teilformeln!

"Negation von PBFs"

Idee: Nutzen stattdessen Dualität von \land , \lor (de Morgan), um Negation nach innen zu ziehen.

Negation eines Atoms q_{ψ} ist dann $q_{\sim \psi}$.

Genauer: mittels Operator — wie folgt:

$$\frac{\overline{\zeta_1} \wedge \overline{\zeta_2}}{\overline{\zeta_1} \vee \overline{\zeta_2}} = \frac{\overline{\zeta_1}}{\overline{\zeta_1}} \vee \frac{\overline{\zeta_2}}{\overline{\zeta_2}}$$

$$\frac{\overline{q_{\psi}}}{\overline{1}} = q_{\sim \psi}$$

$$\overline{1} = 0$$

$$\overline{0} = 1$$

Konstruktion des ABA

- $Q = \{q_{\psi} \mid \psi \in \mathsf{cl}(\varphi)\}, \quad q_I = q_{\varphi}$
- $\Sigma = 2^{AV}$
- $\delta: Q \times \Sigma \to B^+(Q)$ wie folgt:

$$\delta(q_{\times},a) = egin{cases} 1 & \text{falls } x \in a \ 0 & \text{sonst} \end{cases}$$
 $\delta(q_{\sim \psi},a) = \overline{\delta(q_{\psi},a)}$ $\delta(q_{\psi \wedge \vartheta},a) = \delta(q_{\psi},a) \wedge \delta(q_{\vartheta},a)$ $\delta(q_{\psi \vee \vartheta},a) = \delta(q_{\psi},a) \vee \delta(q_{\vartheta},a)$ $\delta(q_{\chi \psi},a) = q_{\psi}$ $\delta(q_{\psi \cup \vartheta},a) = \delta(q_{\vartheta},a) \vee (\delta(q_{\psi},a) \wedge q_{\psi \cup \vartheta})$

•
$$F = \{q_{\neg(\psi U\vartheta)} \mid \neg(\psi \ U \ \vartheta) \in cl(\varphi)\}$$

T 5.4

Komplementierung

Vergleich mit Konstruktion LTL \rightarrow (G)NBA aus Teil 3

Auffällige Unterschiede

- ABA hat linear viele Zustände, GNBA exponentiell viele.
- ullet Hier wird die Bedeutung aller Operatoren in δ kodiert.

Gemeinsamkeiten

- Beide Konstruktionen verwenden das Expansionsgesetz.
- Beide Akzeptanzbedingungen verfolgen denselben Zweck: verbieten, die Erfüllung von U-Formeln ∞ weit hinauszuzögern.
- 1. Punkt bedeutet natürlich, dass es zu einem ABA im Allg. keinen polynomiell großen äquivalenten NBA geben kann.

Und nun ...

1 Einführung und Grundbegriffe

2 Von LTL zu alternierenden Automaten

Somplementierung

... ist für ABA-erkennbare Sprachen besonders leicht zu zeigen.

Für eine PBF φ definieren wir dual(φ) als die PBF, die durch "Umdrehen" von \wedge und \vee entsteht, z. B.: dual($(q_1 \wedge q_2) \vee q_3$) = $(q_1 \vee q_2) \wedge q_3$

Wir betrachten zur weiteren Erleichterung jetzt AMAs (alternierende Muller-Aut., Akzeptanzkomp. $\mathcal{F} \subset 2^Q$ wie gehabt)

Satz 5.5

Die Klasse der AMA-erkennbaren ω -Sprachen ist unter Komplement abgeschlossen.

Satz 5.5

Die Klasse der AMA-erkennbaren ω -Sprachen ist unter Komplement abgeschlossen.

Beweis. Sei $\mathcal{A} = (Q, \Sigma, \delta, \{q_I\}, \mathcal{F})$ ein AMA.

Satz 5.5

Die Klasse der AMA-erkennbaren ω -Sprachen ist unter Komplement abgeschlossen.

Beweis. Sei $\mathcal{A} = (Q, \Sigma, \delta, \{q_I\}, \mathcal{F})$ ein AMA.

Konstruiere AMA $\mathcal{A}' = (Q, \Sigma, \delta', \{q_I\}, \mathcal{F}')$ wie folgt:

• Für alle $q \in Q$ und $a \in \Sigma$, setze $\delta'(q, a) = \text{dual}(\delta(q, a))$.

Satz 5.5

Die Klasse der AMA-erkennbaren ω -Sprachen ist unter Komplement abgeschlossen.

Beweis. Sei $\mathcal{A} = (Q, \Sigma, \delta, \{q_I\}, \mathcal{F})$ ein AMA.

Konstruiere AMA $\mathcal{A}' = (Q, \Sigma, \delta', \{q_I\}, \mathcal{F}')$ wie folgt:

- Für alle $q \in Q$ und $a \in \Sigma$, setze $\delta'(q, a) = \text{dual}(\delta(q, a))$.
- $\mathcal{F}' = 2^Q \setminus \mathcal{F}$

T 5.5

Satz 5.5

Die Klasse der AMA-erkennbaren ω -Sprachen ist unter Komplement abgeschlossen.

Beweis. Sei $\mathcal{A} = (Q, \Sigma, \delta, \{q_I\}, \mathcal{F})$ ein AMA.

Konstruiere AMA $\mathcal{A}' = (Q, \Sigma, \delta', \{q_I\}, \mathcal{F}')$ wie folgt:

- Für alle $q \in Q$ und $a \in \Sigma$, setze $\delta'(q, a) = \text{dual}(\delta(q, a))$.
- $\mathcal{F}' = 2^Q \setminus \mathcal{F}$

T 5.5

Dann gilt: $L_{\omega}(\mathcal{A}') = \overline{L_{\omega}(\mathcal{A})}$ (Beweis mittels Spielen)

Satz 5.5

Die Klasse der AMA-erkennbaren ω -Sprachen ist unter Komplement abgeschlossen.

Beweis. Sei $\mathcal{A} = (Q, \Sigma, \delta, \{q_I\}, \mathcal{F})$ ein AMA.

Konstruiere AMA $\mathcal{A}' = (Q, \Sigma, \delta', \{q_I\}, \mathcal{F}')$ wie folgt:

- Für alle $q \in Q$ und $a \in \Sigma$, setze $\delta'(q, a) = \text{dual}(\delta(q, a))$.
- $\mathcal{F}' = 2^Q \setminus \mathcal{F}$

T 5.5

Dann gilt: $L_{\omega}(\mathcal{A}') = \overline{L_{\omega}(\mathcal{A})}$ (Beweis mittels Spielen)

Insbesondere ist \mathcal{A}' (bis auf \mathcal{F}') nicht größer als \mathcal{A} !

Alternierende vs. nichtdeterministische Automaten

Satz 5.6 (Miyano & Hayashi 1984)

Für jeden ABA \mathcal{A} gibt es einen NBA \mathcal{A}' mit $L_{\omega}(\mathcal{A}) = L_{\omega}(\mathcal{A}')$.

Alternierende und nichtdeterministische Büchi-Automaten sind also gleichmächtig.

Beweisskizze: Siehe Folien aus dem letzten Jahr

http://tinyurl.com/ws1718-automaten

Fast fertig für dieses Semester . . .

Pythagoras-Baum. Quelle: Wikipedia, User Gjacquenot (Lizenz CC BY-SA 3.0)

Danke für Eure Aufmerksamkeit!

Literatur für diesen Teil

Bernd Finkbeiner.

Automata, Games, and Verification.

Vorlesungsskript, Universität des Saarlandes, SoSe 2015.

Kap. 8: Alternating Büchi Automata.

https://www.react.uni-saarland.de/teaching/automata-games-verification-15/lecture-notes.html

https://www.react.uni-saarland.de/teaching/automata-games-verification-15/downloads/notes.pdf