import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

##Creates df with first data

Out[2]:		Year	Winner	Dogs eaten	Country	New record
_	0	1980	Paul Siederman & Joe Baldini	9.10	United States	0
	1	1981	Thomas DeBerry	11.00	United States	0
	2	1982	Steven Abrams	11.00	United States	0
	3	1983	Luis Llamas	19.50	Mexico	0
	4	1984	Birgit Felden	9.50	Germany	0
	5	1985	Oscar Rodriguez	11.75	United States	0
	6	1986	Mark Heller	15.50	United States	0
	7	1987	Don Wolfman	12.00	United States	0
	8	1988	Jay Green	14.00	United States	0
	9	1989	Jay Green	13.00	United States	0
	10	1990	Mike DeVito	16.00	United States	0
	11	1991	Frank Dellarosa	21.50	United States	1
	12	1992	Frank Dellarosa	19.00	United States	0
	13	1993	Mike DeVito	17.00	United States	0
	14	1994	Mike DeVito	20.00	United States	0
	15	1995	Edward Krachie	19.50	United States	0
	16	1996	Edward Krachie	22.25	United States	1
	17	1997	Hirofumi Nakajima	24.50	Japan	1
	18	1998	Hirofumi Nakajima	19.00	Japan	0
	19	1999	Steve Keiner	20.25	United States	0
	20	2000	Kazutoyo "The Rabbit" Arai	25.13	Japan	1
	21	2001	Takeru Kobayashi	50.00	Japan	1
	22	2002	Takeru Kobayashi	50.50	Japan	1
	23	2003	Takeru Kobayashi	44.50	Japan	0

24	2004	Takeru Kobayashi	53.50	Japan	1
25	2005	Takeru Kobayashi	49.00	Japan	0
26	2006	Takeru "Tsunami" Kobayashi	53.75	Japan	1
27	2007	Joey Chestnut	66.00	United States	1
28	2008	Joey Chestnut	59.00	United States	0
29	2009	Joey Chestnut	68.00	United States	1
30	2010	Joey Chestnut	54.00	United States	0

```
In [3]:
    winner= df['Winner']
    eat = df['Dogs eaten']
```

```
plt.figure(figsize=(20, 6))
  plt.bar(winner, eat, color='blue')
  plt.xlabel("Winners each year")
  plt.ylabel("How many dogs eaten")
  plt.title("How many hot dogs eaten by each winner")
  plt.show()
```



```
In [5]: df1=pd.read_excel("obama-approval-ratings.xls")
    df1
```

Out[5]:		Issue	Approve	Disapprove	None
	0	Race Relations	52	38	10
	1	Education	49	40	11
	2	Terrorism	48	45	7
	3	Energy Policy	47	42	11
	4	Foreign Affairs	44	48	8
	5	Environment	43	51	6
	6	Situation in Iraq	41	53	6
	7	Taxes	41	54	5
	8	Healthcare Policy	40	57	3
	9	Economy	38	59	3
	10	Situation in Afghanistan	36	57	7
	11	Federal Budget Deficit	31	64	5
	12	Immigration	29	62	9
In [7]:	ap da	ssue=df1['Issue'] p=df1['Approve'] ap=df1['Disapprove'] a=df1['None']			
In [14]:	pl pl pl	t.figure(figsize=(2 t.bar(issue, ap, co t.bar(issue, dap, k t.bar(issue, nn, bo t.xlabel("Issues ir t.ylabel("Approval	olor='r', oottom=ap ottom=np. questic	o, color='b array(ap)+ on")	,labe

plt.legend()
plt.show()

plt.title("Obama's approval rating for key issues")


```
Energy Policy Foreign Affairs Environment Situation in Iraq
Issues in question
In [17]:
            us=0
            ger=0
           mex=0
            jap=0
            arr= df['Country']
            for i in arr:
                if i== "United States":
                     us=us+1
                elif i=="Germany":
                     ger=ger+1
                elif i=="Mexico":
                     mex=mex+1
                elif i== "Japan":
                     jap=jap+1
            print(us)
           print(ger)
            print(mex)
           print(jap)
           20
           1
           1
In [18]:
            country=["United States", "Germany", "Mexico", "Japan"]
            count=[us,ger,mex,jap]
            plt.pie(count, labels = country)
           plt.legend(title = "Winner's Countries")
            plt.show()
```



```
In [19]: # Create a circle at the center of the plot
    my_circle = plt.Circle((0,0), 0.7, color='white')
    #Plot pie chart
    plt.pie(count, labels = country)
    plt.legend(title = "Winner's Countries")
    #Add circle in center
    p = plt.gcf()
    p.gca().add_artist(my_circle)
    # Show the graph
    plt.show()
```



```
In [20]: df.to_csv("Winners_HD")
    df1.to_csv("Obama_approval")
```

In []: