PARAMETRIZACION PASOS HARTENBERG

Flavio Antonio vazquez

UPZMG cinemática de robots

Los pasos del algoritmo genérico para la obtención de los parámetros DH se detallan a continuación (ver [1]):

Numerar los eslabones: se llamará "0" a la "tierra", o base fija donde se ancla el robot. "1" el primer eslabón móvil, etc.

Numerar las articulaciones: La "1" será el primer grado de libertad, y "n" el último.

Localizar el eje de cada articulación: Para pares de revolución, será el eje de giro. Para prismáticos será el eje a lo largo del cuál se mueve el eslabón.

Ejes Z: Empezamos a colocar los sistemas XYZ. Situamos los (Z_{i-1}) en los ejes de las articulaciones i, con i=1,...,n. Es decir, (Z_0) va sobre el eje de la 1ª articulación, (Z_1) va sobre el eje del 2º grado de libertad, etc.

Sistema de coordenadas 0: Se sitúa el punto origen en cualquier punto a lo largo de (Z_0) . La orientación de (X_0) e (Y_0) puede ser arbitraria, siempre que se respete evidentemente que XYZ sea un sistema dextrógiro.

Resto de sistemas: Para el resto de sistemas i=1,...,N-1, colocar el punto origen en la intersección de (Z_i) con la normal común a (Z_i) y (Z_{i+1}) . En caso de cortarse los dos ejes Z, colocarlo en ese punto de corte. En caso de ser paralelos, colocarlo en algún punto de la articulación i+1.

Ejes X: Cada (X_i) va en la dirección de la normal común a (Z_{i-1}) y (Z_i) , en la dirección de (Z_{i-1}) hacia (Z_i) .

Ejes Y: Una vez situados los ejes Z y X, los Y tienen su direcciones determianadas por la restricción de formar un XYZ dextrógiro.

Sistema del extremo del robot: El n-ésimo sistema XYZ se coloca en el extremo del robot (herramienta), con su eje Z paralelo a \(Z_{n-1}\) y X e Y en cualquier dirección válida.

Distancias d: Cada \(d_i\) es la distancia desde el sistema XYZ i-1 hasta la intersección de las normales común de z-1 hacia a lo largo de z

Distancias a: Cada x es la longitud de dicha normal común.

Ángulos alfa: Ángulo que hay que rotar para llegar a rotando alrededor de

Matrices individuales: Cada eslabón define una matriz de transformación

Transformación total: La matriz de transformación total que relaciona la base del robot con su herramienta es la encadenación (multiplicación) de todas esas matrices:

Dicha matriz T permite resolver completamente el problema de cinemática directo en robots manipuladores, ya que dando valores concretos a cada uno de los grados de libertad del robot, obtenemos la posición y orientación 3D de la herramienta en el extremo del brazo.

