שיעור 15 סכום ישר

דוגמה 15.1 סכום ישר

נניח ש

$$U_1 = \left\{ \begin{pmatrix} 0 \\ y \\ z \end{pmatrix} \middle| y, z \in \mathbb{R} \right\}$$

תת מרחב של \mathbb{R}^3 ו

$$U_2 = \left\{ \begin{pmatrix} x \\ 0 \\ z \end{pmatrix} \middle| x, z \in \mathbb{R} \right\}$$

 \mathbb{R}^3 תת מרחב של . $\dim\left(U_1
ight)=\dim\left(U_2
ight)=2$ אז

$$U_1 \cap U_2 = \left\{ \begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix} \middle| z \in \mathbb{R} \right\} , \dim (U_1 \cap U_2) = 1 .$$

$$U_1 + U_2 = \left\{ \begin{pmatrix} 0 \\ y_1 \\ z_1 \end{pmatrix} + \begin{pmatrix} x_2 \\ 0 \\ z_2 \end{pmatrix} \middle| y_1, z_1, x_2, z_2 \in \mathbb{R} \right\} = \left\{ \begin{pmatrix} x_2 \\ y_1 \\ z_1 + z_2 \end{pmatrix} \middle| x_2, y_1, z_1 + z_2 \in \mathbb{R} \right\} = \mathbb{R}^3.$$

: ניתן להציג כסכום של וקטורים של U_1 ו ו עו להציג כסכום של ניתן להציג ניתן להציג כסכום של וקטור ו ניתן להציג כסכום של וקטור ו אז כל ניתן להציג כסכום של ו

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ y \\ z \end{pmatrix} + \begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix} ,$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ y \\ z - z_0 \end{pmatrix} + \begin{pmatrix} x \\ 0 \\ z_0 \end{pmatrix}$$

 $.z_0\in\mathbb{R}$ לכל

דוגמה 15.2

$$U_{1} = \left\{ \begin{pmatrix} 0 \\ y \\ z \end{pmatrix} \middle| y, z \in \mathbb{R} \right\}$$
$$U_{2} = \left\{ \begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix} \middle| x \in \mathbb{R} \right\}$$

 $.U_2$, U_1 תת מרחבים של U_2 , U_1

$$\dim(U_1) = 2 , \qquad \dim(U_2) = 1 .$$

$$U_1 \cap U_2 = \{\bar{0}\}\ ,$$

$$U_1 + U_2 = \mathbb{R}^3 .$$

 $:U_2$ ו U_1 יש דרך יחידה להציג אותו כסכום של וקטורים של $egin{pmatrix} x \ y \ z \end{pmatrix} \in \mathbb{R}^3$ ולכל וקטור

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ y \\ z \end{pmatrix} + \begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix} .$$

דוגמה ?? היא דוגמה של סכום ישר של תת מרחבים.

הגדרה 15.1 סכום ישר

 \mathbb{F} מעל שדה V מעל מרחבים של מרחבים שני תת ו U_1 ו ו U_1 ו ו יהיו יהיו של מרחב של מרחב של מרחב על נקרא של מרחב על מרחב V נקרא וV מרחב של מרחב של על מרחב על U_1

$$W=U_1+U_2$$
 (x

 $.U_2$ בו U_1 ב וקטורים של וקטורים ב על יש הצגה יחידה כסכום אל יש לכל וקטור של W

:סימון

$$W = U_1 \oplus U_2$$

 $.U_2$, U_1 של הסכום הישר

משפט 15.1

יהי $V=U\oplus W$ אז אז V=Uו תת מרחבים של עדה V=Uאם ורק אם יהי על מרחב וקטורי מעל שדה עדה או ת

$$V = U + W$$
 (x

$$.U\cap W=\{ar{0}\}$$
 (2

הוכחה:

 $U\cap W=\{ar{0}\}$ נניח כי $V=U\oplus W$. נשאר להוכיח כי $V=U\oplus W$. נניח כי $v\in U$ אז לפי הגדרה $v\in U$ נניח עי עי איז $v\in U$ נניח עי איז עי איז עי איז עי איז עי איז פער לרשום

$$\mathbf{v} = \begin{array}{ccc} \in U & \in W \\ \mathbf{v} = & \mathbf{v} & + & \bar{\mathbf{0}} \end{array}$$

וגם

$$\mathbf{v} = \begin{array}{ccc} \in U & & \in W \\ \bar{\mathbf{0}} & + & \mathbf{v} \end{array}$$

 $\mathbf{v}=ar{\mathbf{0}}$ כסכום של וקטורים של U ו U ו אישר, יש רק דרך יחידה לרשום את אישר מכיוון שהסכום הוא ישר, יש רק דרך יחידה לרשום

 $U\cap W=\{ar{0}\}$ נניח כי V=U+W נניח כי

 $.V=U\oplus W$ נוכיח כי

 $.w_1,w_2\in W$, $u_1,u_2\in U$ כאשר $\mathbf{v}=u_2+\mathbf{w}_2$ וגם $\mathbf{v}=u_1+\mathbf{w}_1$ נניח כי $\mathbf{v}\in V$

אז

$$u_1 + w_1 = u_2 + w_2 \qquad \Rightarrow \qquad u_1 - u_2 = w_2 - w_1$$

לכן $.w_2-w_1\in W$ ו $u_1-u_2\in U$ לכן

$$u_1 - u_2 = w_2 - w_1 \in U \cap W = \{\bar{0}\}\ .$$

$$w_2-w_1=ar{0}$$
 מכאן, $u_1-u_2=ar{0}$ מכאן,

 $.w_1 = w_2$ וגם $u_1 = u_2$ לכן

דוגמה 15.3

נסמן

$$U = \left\{ \begin{pmatrix} a & b \\ b & c \end{pmatrix} \middle| a, b, c \in \mathbb{F} \right\}$$
$$W = \left\{ \begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix} \middle| b \in \mathbb{F} \right\}$$

, 2×2 קבוצת קבוצת המטריצות הסימטריות ל

2 imes 2 קבוצת כל המטריצות האנטי-סימטריות מסדר W

 $\mathbb{F}^{2 imes2}=U\oplus W$ תת מרחבים של מרחב וקטורי וקטורי מרחבים של מרחב W ,U

הוכחה:

$$U\cap W=\{ar{0}\}$$
 צריך להוכיח: (1

$$\Leftarrow$$
 .v $\in U \cap W$ נניח

$$\mathbf{v} = \begin{pmatrix} a_1 & b_1 \\ b_1 & c_1 \end{pmatrix} = \begin{pmatrix} 0 & b_2 \\ -b_2 & 0 \end{pmatrix}$$

$$.b_1=-b_2$$
 ו $b_1=b_2$, $c_1=0$, $a_1=0$ מכאן,

$$.b_1 = b_2 = 0$$
 לכן

$$v = \bar{0}$$
 א"א

 $\mathbb{F}^{2 imes2}=U+W$ נוכיח כי: (2

לכל מטריצה א"ל,
$$C=A-A^t$$
 ו $B=A+A^t$ מטריצה גדיר מטריצה . $\begin{pmatrix} a & b \\ c & d \end{pmatrix}=A\in \mathbb{F}^{2 imes 2}$ לכל

$$B = \begin{pmatrix} 2a & b+c \\ c+b & 2d \end{pmatrix} \in U$$

$$C = \begin{pmatrix} 0 & b - c \\ c - b & 0 \end{pmatrix} \in W$$

$$A = \frac{1}{2}B + \frac{1}{2}C \in U + W .$$

XI

משפט 15.2

n-m נניח שV מרחב וקטורי ממיד M תת מרחב של V ממימד תת מרחב ע ממימד תת מרחב V ממימד V כך ש $V=U\oplus W$

:U נבחר בסיס כלשהו של

 u_1,\ldots,u_m

:V ונשלים אותו לבסיס של

 $u_1,\ldots,u_m,u_{m+1},\ldots,u_n$

と

$$U=\mathrm{span}(u_1,\ldots,u_m)$$

$$V = \operatorname{span}(u_1, \dots, u_n)$$

נגדיר

$$W = \mathrm{span}(u_{m+1}, \dots, u_n)$$

 $.V=U\oplus W$ נוכיח כי

כך ש $k_1,\ldots,k_n\in\mathbb{F}$ כך סקלרים קיימים קיימים ע

$$v = k_1 u_1 + \ldots + k_m u_m + k_{m+1} u_{m+1} + \ldots + k_n u_n$$

נסמן

$$u = k_1 u_1 + \ldots + k_m u_m \in U$$
, $w = k_{m+1} u_{m+1} + \ldots + k_n u_n \in W$.

$$V = U + W \Leftarrow \mathbf{v} = u + w$$
 א

$$.U\cap W=\{ar{0}\}$$
 נוכיח כי: (2

$$\mathbf{v} \in W$$
 ו $\mathbf{v} \in U \Leftarrow \mathbf{v} \in U \cap W$ נניח

לכן

$$\mathbf{v} = k_1 u_1 + \ldots + k_m u_m$$

וגם

$$\mathbf{v} = k_{m+1}u_{m+1} + \ldots + k_n u_n$$

:מכאן

$$k_1u_1 + \ldots + k_mu_m - k_{m+1}u_{m+1} - \ldots - k_nu_n = \bar{0}$$
.

בת"ל לכן u_1,\ldots,u_n

$$k_1=0,\ldots,k_n=0.$$

 $\mathbf{v}=ar{\mathbf{0}}$ מכאן מקבלים כי

משל.