CNN CLASSIFICATION OF WET SNOW BY PHYSICAL SNOWPACK MODEL LABELLING

Matthieu Gallet¹, Abdourrahmane Atto¹, Fatima Karbou² Emmanuel Trouvé¹ ¹ LISTIC – University Savoie Mont Blanc, ² CEN – National Centre for Meteorological Research

Introduction: In this work, we propose a new approach for wet snow detection in Synthetic Aperture Radar (SAR) images by using a convolutional neural network (CNN) designed to learn with respect to snowpack outputs from the state-of-the-art snow model Crocus. The CNN was trained to classify the wet snow states based on features extracted from the SAR images, using 2 polarimetrics channel (VV, VH) and the ratio of these channels with those obtained with a snow-free reference image acquired in summer.

Dataset

Localisation Legend Beaufortain Bauges Vanoise Chartreuse Belledonne Grandes-Rousses

Fig 1: Localisation and repartition of the train/test area. Overview of the SAR image

Description

SAR data: Sentinel-1 Ground Range Detected (GRD)

- 69 images (2020-2021) with 2 polarisations (VV, VH)
- Nagler features: polarimetric ratio with a reference image (09/08/2020)
- Sample size: 16 x 16 x 4 pixels
- 18659 samples with wet label and 472696 with not wet label
- Balanced subset for the evaluation

Labelling rule

Crocus physical snowpack model Wet Snow = $Tn \ge 0$ and $Hs \ge 0.4$, Tn = minimal temperature of the snowpack Hs = height of the snowpack

Methodology

CNN architecture

Fig 2: Convolutional Neural Network (CNN) architecture

- Conv2D: 2-dimensional feature extractor
- Maxpooling2D: reduction of the number of learning variables
- ReLu: non-linearity, induces model complexity to the learning process
- Dense layer: learns the optimal combination of the learned features
- Drop-out layer: avoid overfitting (drop 75% of the features randomly during the training)

Random Forest (RF) architecture

Fig 3: Random Forest general architecture

Results

Wet Snow Maps of 31st March 2021

Fig 4: Comparison between the Fractionnal Snow Cover (FSC) and the two algorithms (RF & CNN)

SWS RF BOTH ■ SWS ■ CNN ■ BOTH Fig 5: Comparison between the SAR Wet Snow (SWS) and the two algorithms (RF & CNN)

We see that the 2 algorithms trained on the Crocus-labelled data produce maps close to the existing Copernicus products, with better definition than the SAR SWS product. The RF tends to overestimate the zones compared with the CNN but gives more homogenous results.

Quantitative results

FCROC: Threshold on the output probability, learned on train data for a constant (5%) False Positive Rate (rather than the traditional threshold at 0,5)

	F1	AUC	K	FRCOC
RF	75.2 +/- 0.2	83.6 +/- 0.1	50.6 +/- 0.4	68.8 +/- 0.4
CNN	76.3 +/- 1.8	83.9 +/- 0.6	52.8 +/- 3.2	69.3 +/- 0.9

Confusion matrices

FCROC CNN (%)			FCROC RF (%)			
Not Wet	47.5	2.5		Not Wet	47.6	2.4
Wet	28.2	21.8		Wet	29.1	20.9
	Not Wet	Wet			Not Wet	Wet

Conclusion: We compare models on a study area at a given date. The wet snow map obtained by CNN and RF are compared with the existing Copernicus products (FSC and SWS). This evaluation allowed us to assess the relatively **good** correspondence between the 2 results and the 2 products. The main limitation of this machine learning approach is the reliability of the physical model used to determine the labels of the samples. The codes are available on **Github**.

References:

- [1] R.Nijhawan, J.Das, and B.Raman, "A hybrid of deep learning and hand-crafted features based approach for snow cover mapping," International Journal of Remote Sensing (2019).
- [2] T.Nagler, H.Rott, E.Ripper& al"Advancements for snowmelt monitoring by means of Sentinel-1 SAR" (2016).
- [3] Tsai, Dietz, Oppelt, and Kuenzer, "Wet and dry snow detection using Sentinel-1 SAR data for mountainous areas with a machine learning technique," Remote Sensing (2021). [4] V. Vionnet, E. Brun, S. Morin & al, "The detailed snowpack scheme Crocus and its implementation in
- surfexv7.2," Geoscientific Model Development (2012). Acknowledgements: The authors would like to acknowledge the support from the National Centre for Space

Studies (CNES) in providing computing facilities and access to SAR images via the PEPS platform. The authors would like to deeply thank Mathieu Fructus for running the Crocus simulations.

Contact: matthieu.gallet@univ-smb.fr

