SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

NEIZRAZITO, EVOLUCIJSKO I NEURO RAČUNARSTVO

6. Domaća zadaća - Sustav ANFIS (engl. *Adaptive Neuro-Fuzzy Inference System*)

0036506587 Darijo Brčina

Zagreb, prosinac 2020.

SADRŽAJ

1.	Zadatak 1	1
2.	Zadatak 3	5
3.	Zadatak 4	6
	3.1. Jedno pravilo	6
	3.2. Dva pravila	7
	3.3. Prikladan broj pravila - sedam	8
4.	Zadatak 5	9
5.	Zadatak 7	12
6.	Zadatak 8	13
7.	Literatura	14

Funkcija pogreške za *k*-ti uzorak:

$$E_k = \frac{1}{2}(y_k - o_k)^2,$$

gdje y_k predstavlja željeni izlaz za k-ti uzorak, dok o_k predstavlja stvarni izlaz neurofuzzy sustava.

Ažuriranje parametara u skladu s algoritmom gradijentnog spusta:

$$\psi(t+1) = \psi(t) - \eta \cdot \frac{\partial E_k}{\partial \psi}.$$

Promatrat ćemo ANFIS koji koristi zaključivanje tipa 3 (metodu Takagi-Sugeno-Kang). Neuro-fuzzy sustav će imati dva ulaza i jedan izlaz čime će obavljati preslikavanje $\mathbb{R}^2 \to \mathbb{R}$. U općem slučaju, neuro-fuzzy sustav će raspolagati s m pravila:

$$\mathbb{R}_1$$
: Ako x je A_1 i y je B_1 tada $z = p_1 x + q_1 y + r_1$

$$\mathbb{R}_2$$
: Ako x je A_2 i y je B_2 tada $z = p_2x + q_2y + r_2$

. . .

$$\mathbb{R}_m$$
: Ako x je A_m i y je B_m tada $z=p_mx+q_my+r_m$

Uz zadani skup pravila od m pravila, temeljem primjera za učenje sustav treba naučiti ukupno $2 \cdot m$ neizrazitih skupova koji se nalaze u antecedent dijelu pravila i $3 \cdot m$ parametara koji određuju m funkcija u konzekvens dijelovima pravila.

Neizraziti skupovi *A* i *B* su definirani sljedećim funkcijama pripadnosti:

$$\alpha_i = A_i(x) = \frac{1}{1 + e^{b_i(x - a_i)}},$$

$$\beta_i = B_i(y) = \frac{1}{1 + e^{d_i(y - c_i)}}.$$

Iz navedenog se može zaključiti da je potrebno naučiti sveukupno $7 \cdot m$ parametara sustava.

Stvarni izlaz neuro-fuzzy sustava je definiran na sljedeći način:

$$o_k = \frac{\sum_{i=1}^m \pi_i z_i}{\sum_{i=1}^m \pi_i},$$

gdje je $\pi_i = \alpha_i \cdot \beta_i$. Sada kada znamo kako je sve definirano, možemo izvesti formule za ažuriranje svih parametara tijekom učenja algoritmom gradijenti spust, pa krenimo:

$$\frac{\partial E_k}{\partial a_i} = \frac{\partial E_k}{\partial o_k} \frac{\partial o_k}{\partial \pi_i} \frac{\partial \alpha_i}{\partial \alpha_i} \frac{\partial \alpha_i}{\partial a_i}$$

$$\frac{\partial E_k}{\partial o_k} = \frac{\partial}{\partial o_k} (\frac{1}{2} (y_k - o_k)^2) = 2 \cdot \frac{1}{2} (y_k - o_k) \cdot (-1) = -(y_k - o_k)$$

$$\frac{\partial o_k}{\partial \pi_i} = \frac{\partial}{\partial \pi_i} (\frac{\sum_{j=1}^m \pi_j z_j}{\sum_{j=1}^m \pi_j}) = \frac{z_i \sum_{j=1, j \neq i}^m \pi_j - \sum_{j=1, j \neq i}^m \pi_j z_j \cdot 1}{(\sum_{j=1}^m \pi_j)^2} = \frac{\sum_{j=1, j \neq i}^m \pi_j (z_i - z_j)}{(\sum_{j=1}^m \pi_j)^2}$$

$$\frac{\partial \pi_i}{\partial a_i} = \frac{\partial}{\partial a_i} (\alpha_i \cdot \beta_i) = \beta_i$$

$$\frac{\partial \alpha_i}{\partial a_i} = \frac{\partial}{\partial a_i} (\frac{1}{1 + e^{b_i(x - a_i)}}) = (-1) \cdot \frac{1}{(1 + e^{b_i(x - a_i)})^2} \cdot e^{b_i(x - a_i)} \cdot (-b_i) = \alpha_i (1 - \alpha_i) \cdot b_i$$

$$\frac{\partial E_k}{\partial a_i} = -(y_k - o_k) \frac{\sum_{j=1, j \neq i}^m \pi_j (z_i - z_j)}{(\sum_{j=1}^m \pi_j)^2} \beta_i \alpha_i (1 - \alpha_i) b_i$$

$$\implies a_i (t + 1) = a_i (t) + \eta \cdot (y_k - o_k) \frac{\sum_{j=1, j \neq i}^m \pi_j (z_i - z_j)}{(\sum_{j=1}^m \pi_j)^2} \beta_i \alpha_i (1 - \alpha_i) b_i$$

2.

$$\frac{\partial E_k}{\partial b_i} = \frac{\partial E_k}{\partial o_k} \frac{\partial o_k}{\partial \pi_i} \frac{\partial \alpha_i}{\partial \alpha_i} \frac{\partial \alpha_i}{\partial b_i}$$

$$\frac{\partial E_k}{\partial o_k} = -(y_k - o_k)$$

$$\frac{\partial o_k}{\partial \pi_i} = \frac{\sum_{j=1, j \neq i}^m \pi_j (z_i - z_j)}{(\sum_{j=1}^m \pi_j)^2}$$

$$\frac{\partial \pi_i}{\partial b_i} = \beta_i$$

$$\frac{\partial \alpha_i}{\partial b_i} = \frac{\partial}{\partial b_i} (\frac{1}{1 + e^{b_i(x - a_i)}}) = (-1) \cdot \frac{1}{(1 + e^{b_i(x - a_i)})^2} \cdot e^{b_i(x - a_i)} \cdot (x - a_i) = \alpha_i (1 - \alpha_i) \cdot (a_i - x)$$

$$\frac{\partial E_k}{\partial b_i} = -(y_k - o_k) \frac{\sum_{j=1, j \neq i}^m \pi_j (z_i - z_j)}{(\sum_{j=1}^m \pi_j)^2} \beta_i \alpha_i (1 - \alpha_i) (a_i - x)$$

$$\implies b_i(t + 1) = b_i(t) + \eta \cdot (y_k - o_k) \frac{\sum_{j=1, j \neq i}^m \pi_j (z_i - z_j)}{(\sum_{j=1}^m \pi_j)^2} \beta_i \alpha_i (1 - \alpha_i) (a_i - x)$$

3. Po uzoru na ažuriranje parametra a uz $\frac{\partial \pi_i}{\partial \beta_i} = \alpha_i$:

$$\implies c_i(t+1) = c_i(t) + \eta \cdot (y_k - o_k) \frac{\sum_{j=1, j \neq i}^m \pi_j(z_i - z_j)}{(\sum_{j=1}^m \pi_j)^2} \alpha_i \beta_i (1 - \beta_i) d_i$$

4. Po uzoru na ažuriranje parametra b uz $\frac{\partial \pi_i}{\partial \beta_i} = \alpha_i$:

$$\implies d_i(t+1) = d_i(t) + \eta \cdot (y_k - o_k) \frac{\sum_{j=1, j \neq i}^m \pi_j(z_i - z_j)}{(\sum_{j=1}^m \pi_j)^2} \alpha_i \beta_i (1 - \beta_i) (c_i - y)$$

$$\frac{\partial E_k}{\partial p_i} = \frac{\partial E_k}{\partial o_k} \frac{\partial o_k}{\partial p_i}$$

$$\frac{\partial E_k}{\partial o_k} = -(y_k - o_k)$$

$$\frac{\partial o_k}{\partial p_i} = \frac{\partial}{\partial p_i} \left(\frac{\sum_{j=1}^m \pi_j z_j}{\sum_{j=1}^m \pi_j}\right) = \frac{\partial}{\partial p_i} \left(\frac{\sum_{j=1}^m \pi_j (p_j x + q_j y + r_j)}{\sum_{j=1}^m \pi_j}\right) = \frac{\pi_i}{\sum_{j=1}^m \pi_j} x$$

$$\frac{\partial E_k}{\partial p_i} = -(y_k - o_k) \frac{\pi_i}{\sum_{j=1}^m \pi_j} x$$

$$\implies p_i(t+1) = p_i(t) + \eta \cdot (y_k - o_k) \frac{\pi_i}{\sum_{j=1}^m \pi_j} x$$

6.

$$\frac{\partial E_k}{\partial q_i} = \frac{\partial E_k}{\partial o_k} \frac{\partial o_k}{\partial q_i}$$

$$\frac{\partial E_k}{\partial o_k} = -(y_k - o_k)$$

$$\frac{\partial o_k}{\partial q_i} = \frac{\partial}{\partial q_i} \left(\frac{\sum_{j=1}^m \pi_j z_j}{\sum_{j=1}^m \pi_j}\right) = \frac{\partial}{\partial q_i} \left(\frac{\sum_{j=1}^m \pi_j (p_j x + q_j y + r_j)}{\sum_{j=1}^m \pi_j}\right) = \frac{\pi_i}{\sum_{j=1}^m \pi_j} y$$

$$\frac{\partial E_k}{\partial q_i} = -(y_k - o_k) \frac{\pi_i}{\sum_{j=1}^m \pi_j} y$$

$$\implies q_i(t+1) = q_i(t) + \eta \cdot (y_k - o_k) \frac{\pi_i}{\sum_{j=1}^m \pi_j} y$$

7.

$$\frac{\partial E_k}{\partial r_i} = \frac{\partial E_k}{\partial o_k} \frac{\partial o_k}{\partial r_i}$$

$$\frac{\partial E_k}{\partial o_k} = -(y_k - o_k)$$

$$\frac{\partial o_k}{\partial r_i} = \frac{\partial}{\partial r_i} \left(\frac{\sum_{j=1}^m \pi_j z_j}{\sum_{j=1}^m \pi_j}\right) = \frac{\partial}{\partial q_i} \left(\frac{\sum_{j=1}^m \pi_j (p_j x + q_j y + r_j)}{\sum_{j=1}^m \pi_j}\right) = \frac{\pi_i}{\sum_{j=1}^m \pi_j}$$

$$\frac{\partial E_k}{\partial r_i} = -(y_k - o_k) \frac{\pi_i}{\sum_{j=1}^m \pi_j}$$

$$\implies r_i(t+1) = r_i(t) + \eta \cdot (y_k - o_k) \frac{\pi_i}{\sum_{j=1}^m \pi_j}$$

Napomena: Ažuriranje parametara je izvedeno za *online* tip učenja, dok bi se za pravi gradijent morala uzimati suma pogrešaka svih uzoraka za učenje tijekom pronalaska parcijalnih derivacija, tj.

$$E = \sum_{k=1}^{N} E_k.$$

Slika 2.1: Graf generirajuće funkcije

3.1. Jedno pravilo

Slika 3.1: Grafovi aproksimirane generirajuće funkcije

Slika 3.2: Grafovi pogrešaka

3.2. Dva pravila

Slika 3.3: Grafovi aproksimirane generirajuće funkcije

Slika 3.4: Grafovi pogrešaka

3.3. Prikladan broj pravila - sedam

Slika 3.5: Grafovi aproksimirane generirajuće funkcije

Slika 3.6: Grafovi pogrešaka

Slika 4.1: Funkcije pripadnosti za prvo pravilo

Slika 4.2: Funkcije pripadnosti za drugo pravilo

Slika 4.3: Funkcije pripadnosti za treće pravilo

Slika 4.4: Funkcije pripadnosti za četvrto pravilo

Slika 4.5: Funkcije pripadnosti za peto pravilo

10

Slika 4.6: Funkcije pripadnosti za šesto pravilo

Slika 4.7: Funkcije pripadnosti za sedmo pravilo

11

Slika 5.1

Slika 5.2

Možemo vidjeti da *online* učenje puno brže konvergira nego li grupno, no valja uzeti u obzir i stope učenja. U ovom eksperimentu za *online* učenje su korištene stope učenja 10^{-3} i 30^{-4} , dok za grupno 10^{-4} i 30^{-5} . Dakle, razlika u redu veličina je 10.

Slika 6.1

Što je stopa učenja manja, to algoritam sporije konvergira, ali konvergira, dok što je stopa učenja veća, algoritam divergira. Također, optimalni iznosi stopa učenje za *online* i grupno učenje razlikuju se za 10 puta.

7. Literatura

M. Čupić, B. Dalbelo Bašić, i M. Golub. *Neizrazito, evolucijsko i neuroračunarstvo*, kolovoz 2013. URL http://java.zemris.fer.hr/nastava/nenr/knjiga-0.1.2013-08-12.pdf. [Pristupljeno 15-Prosinac-2020.].