Bias vs. Variance

Week 04 - Day 04

Interesting Concept

Complete different approach!

Overfitting WS. Underfitting

Underfitting = ???

Overfitting = ???

Underfitting = model is too simple

Overfitting = model is too complex

Under- and Over-fitting examples

predictor too inflexible: cannot capture pattern

M = 9 -1 0 x = 1

predictor too flexible: fits noise in the data

Overfitting

- 1. Model is good at describing the data
- 2. Model is terrible at predicting new unseen data

<u>Overfitting</u>

- 1. Model is good at describing the data
- 2. Model is terrible at <u>predicting</u> new unseen data

generalising

We want: model the signal

We don't want: learn the noise

Linear Regression Vs.

Polynom. Regression

https://arachnoid.com/polysolve/

Different Samples

(e.g. polls in different countries)

++ Error
-- Variance

-- Error++ Variance

Bias vs. Variance

Variance = error because the model is too

Bias = error because the model is too easy

complex

model is too

Mathematical Decomposition

$Error = Bias^2 + Variance + Irreducible Error$

 $E\left[\left(\hat{f}(x) - f(x)\right)^{2}\right] = \left(E\left[\hat{f}(x)\right] - f(x)\right)^{2} + E\left[\left(\hat{f}(x) - E\left[\hat{f}(x)\right]\right)^{2}\right] + E\left[\left(y - f(x)\right)^{2}\right]$

Practical Meaning?

Interesting Concept

Complete different approach!

Interesting Concept

Complete different approach!

Trivial practical meaning

1) Always use cross validation!

2) Try different models