RESEARCH PLANS

ALEXEI LATYNTSEV

This is under construction!

See the following sections (with clickable links) for explanations of the projects and connections between them.

Contents

1.	Summar	y of projects	2
2.	Backgro	und	4
3.	Details o	of projects	9
	3.1.	70 Algebraic structures attached to Calabi-Yau-threefolds (CV, CY3, FJ)	9
	3.2.	45 The structure of factorisation quantum groups (FCG, Bos, CD, Stab)	12
	3.3.	80 Orthosymplectic structures (OSp, SA, AGT)	14
	3.4.	70 <i>q</i> -vertex algebras (qVA, KL)	19
	3.5.	60 Sheaf methods (Con, Loc, Eu)	21
	3.6.	100 Liouville quantum gravity to vertex algebras (LCG)	22

1. Summary of projects

The summary of projects (see §3 for a more detailed summary):

Project	Description	What existed before
CV	Dimension 1 CoHAs form vertex quantum	
CV	groups (VQGs)	
	CoHAs for deformed CY3 categories form	
CY3 ¹²	VQGs Recover Drinfeld/Davison	
CYS	coproducts on Yangians	
	Configuration-to-Ran construction	
	factorisation stacks \mathcal{M}_S^f over the canonical	The Jordan moduli stack $\mathfrak{M}_{\mathbf{A}^2}^f$ insantiating
	bundle K_S of more general algebraic	Davison's localised coproduct; ³
FJ ¹	surfaces; show its critical cohomology forms	generators-and-relations definition of
LJ	a S -vertex algebra; configuration-to-Ran space	W-algebra $\mathcal{W}(S)$ for algebraic surfaces $S; ^4$
	comparison, obtaining vertex algebra	cohomological Hall algebras as factorisation
	structures	algebras over the configuration space ⁵
FCG	Develop the theory of factorisation quantum	
FCG	groups	

¹Joint with S. Kaubrys.

²Joint with S. Jidnal.

³B. Davison, The integrality conjecture and the cohomology of preprojective stacks J. Reine Angew. Math. 804, 105–154 (2023)

⁴A. Mellit, A. Minets, O. Schiffmann, and E. Vasserot, "Coherent sheaves on surfaces, COHAs and deformed $W_{1+\infty}$ -algebras," Preprint, arXiv:2311.13415 [math.AG] (2023).

⁵Y. Yang and G. Zhao, "Quiver varieties and elliptic quantum groups", Preprint, arXiv:1708.01418 [math.RT] (2017)

Bos	Study factorisation algebras and quantum	
DUS	groups in the context of bosonisation	
CD	Study the relation between chiral doubling	
	and vertex algebras	
OSp ⁶	Generalise orthosymplectic CoHAs to	
OSP	arbitrary Dynkin-like spacetimes	
	Operadic definition of ordinary shuffle	
	algebras, extending to arbitrary ' Dykin '	
	systems of Kac-Moody groups; define Dynkin	Shuffle algebra formulas for CoHAs; ⁷
SA ⁶	vertex algebras and give examples (type F, G ,	orthosymplectic 4d Chern-Simons and twisted
3A *	multiplicative, elliptic); Dynkin shuffle	Yangians ³⁶ ; orthosymplectic Joyce vertex
	structure on loop spaces and Dynkin multiple	bialgebras; boundary KZ equations
	zeta values; producing examples using	
	deformation quantisation of on orbifolds	
AGT ⁶	Study orthosymplectic AGT and stable	
AG1	envelopes	
Eu		
Loc ⁸		
Con ⁸		
qVA	Develop the theory of q -vertex algebras and	
9 77	Study q -vertex algebras and q WZW models	
	Uplift the Zhu algebra (M6.1) and	
	Huang-Lepowsky fusion product (M6.2) to the	factorisation proof [CF] of Kazhdan-Lusztig
KL	level of factorisation and q -vertex algebras,	New Kazhdan-Lusztig equivalences [BCDN]
	recover [CF]'s proof of KL using q -WZW, and	rew razhaan Baszag equivalences [BSB11]
	extend to <i>new</i> examples	
		Rigorous construction of Liouville Quantum
LCG ⁹	Segal CFT to Virasoro and Heisenberg VOA	
	_	measures [DS] DOZZ formula proof [KRV]
	sent to affine and W vertex algebras	Proof of Segal axioms [GKRV]

⁶Joint with S. de Hority.

⁷Y. Yang and G. Zhao, Proc. Lond. Math. Soc. (3) 116, No. 5, 1029–1074 (2018)

 $^{^8\}mathrm{Joint}$ with A. Khan, D. Aranha, H. Park, and C. Ravi.

 $^{^9}$ Joint with V. Giri.

2. Background

Formalising quantum field theory: factorisation algebras. The task of axiomatising topological QFTs was completed by Atiyah¹⁰, as a functor from a *cobordism* category,

Next, the theory of *vertex* and *chiral algebras* were developed by Borcherds¹¹ and Beilinson-Drinfeld¹² to axiomatise 2d conformal QFTs, where the spacetimes above have *holomorphic* structure, the former earning Borcherds a Fields medal and resolving the Moonshine Conjecture on modularity of monster group representations. In recent years, there has been a flurry¹³¹⁴ of activities related to *factorisation algebras* and *factorisation homology* as a way to understand *local operators* in a quantum field theory; formed by considering only cobordisms contained *within* a *fixed* manifold M; for instance, this was used to prove¹⁵ a geometric analogue of *Weil's conjecture* for function fields.

However, despite recent progress on *axiomatising* quantum field theories, very few *examples* of (nontopological) quantum fields theories beyond dimension two have been constructed; mathematicians still must rely on (nonrigorous) QFT computations by physicists (e.g. based on *string theory*), which are turned into *provable conjectures*. Much of our proposed work concerns *extending* the range of rigorous mathematics further into physics; some of it concerns *proving* relations between mathematical structures (e.g. *CoHAs*, *vertex algebras*) conjectured by physics.

Cohomological Hall algebras and W-algebras. Cohomological Hall algebras (**CoHAs**) are a mathematical shadow of four-dimensional supersymmetric QFTs \mathcal{T} ; as these QFTs are not yet rigorously defined, this is currently one of the best handles we have on their structure.

In *physics*, the study of CoHAs began with the space of *BPS states* of $\mathcal T$ was shown 16 to carry an *associative algebra* structure. Examples of $\mathcal T$ are given by compatifying an 11-dimensional string theory on

¹⁰Atiyah, M.F., 1988. Topological quantum field theory. Publications Mathématiques de l'IHÉS, 68, pp.175-186.

¹¹Borcherds, R. (1986), "Vertex algebras, Kac-Moody algebras, and the Monster", Proceedings of the National Academy of Sciences of the United States of America.

¹²A. Beilinson and V. Drinfeld, Chiral algebras. Providence, RI: American Mathematical Society.

¹³Lurie, J., 2008. On the classification of topological field theories. Current developments in mathematics, 2008(1), pp.129-280.

¹⁴Costello, K. and Gwilliam, O., 2021. Factorization algebras in quantum field theory (Vol. 2). Cambridge University Press.

¹⁵Gaitsgory, D. and Lurie, J., 2014. Weil's conjecture for function fields. preprint.

¹⁶Harvey, J.A. and Moore, G., 1998. On the algebras of BPS states. Communications in Mathematical Physics, 197, pp.489-519.

a torically-compact Calabi-Yau threefold X, relating the subject to mirror symmetry and the *Geometric Langlands program*.¹⁷

Kontsevich-Soibelman¹⁸ then discovered an algebra structure on the *critical cohomology*

$$H^*(\mathcal{M}_A, \varphi)$$

of certain moduli stacks $\mathcal{M}_{\mathcal{A}}$ of CY3 categories (specifically, Jacobi algebras of quivers with potential), which locally models coherent sheaves on CY3s¹⁹, and related their graded dimensions to *Donaldson-Thomas* enumerative invariants. Recently, **Safronov** co-authored a breakthough paper²⁰ constructing cohomological Hall algebras for *arbitrary* CY3 categories, which will lead to a flurry of research activity in the near future.

Instantons and AGT. The breakthroughs of Grojnowski²¹ and Nakajima²² proved that the Hilbert scheme of points on a smooth surface S carries an action of the Heisenberg vertex algebra on its cohomology. Later generalisations were conjectured by Alday-Gaiotto-Tachikawa²³ and proved by Braverman-Finkelberg-Nakajima^{24 25 26} to arbitrary surfaces and gauge groups with an action of W-vertex algebras, which were then realised as quotients of cohomological Hall algebras²⁷. This begun the connection between cohomological Hall algebras, vertex algebras and quantum groups.

¹⁷Witten, E., 2009. Geometric Langlands from six dimensions. arXiv:0905.2720. (2009)

¹⁸M. Kontsevich and Y. Soibelman, Commun. Number Theory Phys. 5, No. 2, 231–352 (2011)

¹⁹Ben-Bassat, Oren; Brav, Christopher; Bussi, Vittoria; Joyce, Dominic A 'Darboux theorem' for shifted symplectic structures on derived Artin stacks, with applications. Geom. Topol. 19, No. 3, 1287-1359 (2015).

²⁰injo, T., Park, H. and Safronov, P., 2024. Cohomological Hall algebras for 3-Calabi-Yau categories. arXiv preprint arXiv:2406.12838.

²¹Grojnowski, I., 1997. Instantons and affine algebras. I. The Hilbert scheme and vertex operators, Math. Res. Lett. 3 (1996)

²²Nakajima, H., 1997. Heisenberg algebra and Hilbert schemes of points on projective surfaces. Annals of mathematics, 145(2), pp.379-388.

²³Alday, L.F., Gaiotto, D. and Tachikawa, Y., 2010. Liouville correlation functions from four-dimensional gauge theories. Letters in Mathematical Physics,

 $^{^{24}}$ Nakajima, H., Towards a mathematical definition of Coulomb branches of 3-dimensional $\mathcal{N}=4$ gauge theories,I, Adv. Theor. Math. Phys. (2016)

²⁵ Braverman, A., Finkelberg, M., and Nakajima, H., Towards a mathematical definition of Coulomb branches of 3-dimensional $\mathcal{N}=4$ gauge theories, II, Adv. Theor. Math. Phys. (2018)

²⁶Braverman, A., Finkelberg, M. and Nakajima, H., 2014. Instanton moduli spaces and W-algebras. arXiv preprint arXiv:1406.2381.

²⁷Rapcák, M., Soibelman, Y., Yang, Y. and Zhao, G., Cohomological Hall algebras, vertex algebras, and instantons, in Comm. Math. Phys.

Quantum groups and the Kazhdan-Lusztig equivalence. The theory of quantum groups (**QGs**) was preceded in the statistical physics literature by studies of integrable systems²⁸ and spin chains, e.g. studying formation of ice crystals.²⁹ In the 1986 ICM address Drinfeld^{??} developed the mathematical theory of quasitriangular Hopf algebras to formalise this, and proved a fundamental result about existence-uniqueness of QGs $U_q(\mathfrak{g})$ deforming Lie bialgebras \mathfrak{g} .

Since then QGs have taken a central place in mathematics: they were connected to *Chern-Simons* and *knot theory* by Witten, ³⁰ which predicted the famous *Kazhdan-Lusztig equivalence* ³¹

$$(\operatorname{Rep}_k \hat{\mathfrak{g}})^{G(\mathfrak{O})} \simeq \operatorname{Rep} U_q(\mathfrak{g})$$

relating representations of quantum groups to integrable representations of *vertex algebras* via the *KZ equations*,⁶⁷ more generally they relate to 3d *TQFTs* and *mirror symmetry*,^{??32} generalisations appear as *Yangians* and *affine/elliptic quantum groups* in Maulik-Okounkov's seminal work,⁶⁸ and more recently as *cohomological Hall algebras*.³³³⁴ The modern physics explanation is that QGs representations give *line operators* for certain QFTs;^{37,38} thus the task of understanding/organising these different structures is crucial to understanding QFT and string theory.

There is a long *historical* connection between geometric representation theory and physics sketched in \S ??, two decades-long examples of the two-way exchange includes the Geometric Langlands programme³⁵ and Mirror Symmetry.

In WP1, we use work³⁶ on 4d Chern-Simons on orbifolds. Our results on quantum factorisation algebras for WP3 are informed by work on 4d and 5d Chern-Simons theory³⁷³⁸ In WP3 is related to physics-informed conjectures on the q-Langlands correspondence³⁹, and new *holomorphic-topological*

²⁸Yang, C.N., 1967. Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Physical Review Letters, 19(23), p.1312.

²⁹Lieb, E.H., 1967. Exact solution of the problem of the entropy of two-dimensional ice. Physical Review Letters, 18(17), p.692.

³⁰Witten, E., 1989. Quantum field theory and the Jones polynomial. Communications in Mathematical Physics, 121(3), pp.351-399.

³¹David Kazhdan and George Lusztig. "Tensor structures arising from affine Lie algebras. I-IV". In: Journal of the American Mathematical Society 6.4 (1993-1994).

³²Creutzig, T., Lentner, S. and Rupert, M., 2021. Characterizing braided tensor categories associated to logarithmic vertex operator algebras. arXiv preprint arXiv:2104.13262.

³³Yang, Y. and Zhao, G., 2018. The cohomological Hall algebra of a preprojective algebra. Proceedings of the London Mathematical Society, 116(5), pp.1029-1074.

³⁴Latyntsev, A., 2021. Cohomological Hall algebras and vertex algebras. arXiv preprint arXiv:2110.14356.

³⁵Witten, E., 2009. Geometric Langlands from six dimensions. arXiv preprint arXiv:0905.2720.

³⁶R. Bittleston and D. Skinner, J. High Energy Phys. 2019, No. 5, Paper No. 195, 53 p. (2019; Zbl 1416.81106)

³⁷Costello, K., Witten, E. and Yamazaki, M., 2017. Gauge theory and integrability, I. arXiv preprint arXiv:1709.09993.

³⁸ Costello, K., Witten, E. and Yamazaki, M., 2018, Gauge theory and integrability. II. arXiv preprint arXiv:1802.01579.

 $^{^{39}}$ Aganagic, M., Frenkel, E. and Okounkov, A., 2018. Quantum q-Langlands correspondence. Transactions of the Moscow Mathematical Society, 79, pp.1-83.

structures we wish to define will be informed by physics papers ⁴⁰⁴¹ on wide generalisations of Kontesevich's deformation quantisation. The deliverable on q-vertex algebras will be informed by Costello's ⁴² application of Nekrasov's Ω -background to 5d Chern-Simons theory.

At this point, the theory of quantum groups $U_q(\mathfrak{g})$ is well-developed:

- (1) There are basis-free constructions [Ga] of $U_q(\mathfrak{g})$ -Mod,
 - (a) by working in the category $\operatorname{Perv}(\operatorname{Conf}_{\Lambda}(\mathbf{A}^1))$ of perverse sheaves on the configuration spaces,
 - (b) by double-bosonisation [**Ma**].
- (2) There is a "geometric" proof [CF] of the Kazhdan-Lusztig equivalence $U_q(\mathfrak{g})$ -Mod $^{ren} \simeq \hat{\mathfrak{g}}$ -Mod I_k

Background. A main theme of geometric representation theory/enumerative geometry is: attached to certain Calabi-Yau-threefolds Y or categories \mathcal{C} , it has long been conjectured [**KS**] (now proven [**KPS**]) a "cohomological Hall" algebra structure on

$$H^{\bullet}(\mathcal{M}_{\mathcal{C}}, \mathcal{P})$$
 (1)

where \mathcal{P} is Joyce's DT sheaf (reference), and

- structure thing one
- two

From the physics perspective, the algebra structure is explained by (1) arising from an 11-dimensional "M" theory compactified on Y, which gives a 5d theory, then taking its algebra of BPS states [\mathbf{Mo}] gives a q-deformed algebra structure. The other structures then arise from varying Y, to get an Alg-valued factorisation algebra over it; the analogy in the trivial toy model where Y is a 6d topological manifold is

$$\begin{array}{ccc} \operatorname{TQFT}_{11d} & \xrightarrow{\int_{\mathbb{R}^4 \times S^1}} \operatorname{TQFT}_{6d}(\operatorname{Alg}) \\ \downarrow^{\int_Y} & \xrightarrow{\int_{\mathbb{R}^4 \times S^1}} \operatorname{Alg} \end{array}$$

The motivating example is when $Y = K_S$ for a smooth algebraic surface S; then in FJ we expect a vertex algebra structures in the fibres of $K_S \to S$; this is proven in some 2CY cases in CY3.

⁴⁰Gaiotto, D., Kulp, J. and Wu, J., 2024. Higher Operations in Perturbation Theory. arXiv preprint arXiv:2403.13049.

⁴¹Balduf, P.H. and Gaiotto, D., 2024. Combinatorial proof of a Non-Renormalization Theorem. arXiv preprint arXiv:2408.03192.

⁴²Costello, K., 2016. M-theory in the Omega-background and 5-dimensional non-commutative gauge theory. arXiv preprint arXiv:1610.04144.

 K_S

- . Explanation: standard and nonstandard coproduct on $Y_{\hbar}(\mathfrak{g}_Q).$
- . Define CoHAs

3. Details of projects

3.1. 70 Algebraic structures attached to Calabi-Yau-threefolds (CV, CY3, FJ)

CoHAs as vertex quantum groups. One aim of project CY3⁴³ and project Bos⁴⁴ is to push the analogy between CoHAs and finite quantum groups:

$$\frac{\operatorname{Rep}_q T \quad U_q(\mathfrak{n}) \quad U_q(\mathfrak{b}) \quad U_q(\mathfrak{g})}{\operatorname{RepH}^{\bullet}_{\mathbf{G}_m}(\mathfrak{M}) \operatorname{H}^{\bullet}_{\mathbf{G}_m}(\mathfrak{M},\varphi) \operatorname{H}^{\bullet}_{\mathbf{G}_m}(\mathfrak{M},\varphi)_{bos}} \text{c.f. CD}$$

To begin with, whereas $U_q(\mathfrak{n})$ a braided cocommutative bialgebra inside the braided monoidal category $\operatorname{Rep}_q T$,

Theorem A. [CY3] For any deformed CY3 category (e.g. coherent sheaves on local curve $K_{T^*\Sigma}$, quiver with potential) there is a vertex coproduct on the CoHA

$$H^{\bullet}(\mathcal{M}, \varphi) \to H^{\bullet}(\mathcal{M}, \varphi) \hat{\otimes} H^{\bullet}(\mathcal{M}, \varphi)((z^{-1}))$$

making it into a braided colocal vertex bialgebra inside the braided factorisation category $\operatorname{Rep}(\operatorname{H}^{\bullet}(\mathfrak{M}), \cup)$.

We sanity-check that this is an interesting structure:

Theorem B. [CY3; CV for W=0] For any quiver Q, the vertex coproduct on the preprojective CoHA $H^{\bullet}_{\mathbf{G}_m}(\mathcal{M}_{Q^{(3)}}, \varphi_{W^{(3)}}) \simeq Y_{\hbar}(\mathfrak{n}_Q)$ agrees with the Davison/Yang-Zhao localised coproduct, and (when defined) Drinfeld's meromorphic coproduct.

Next, $U_q(\mathfrak{b})$ is constructed by Tannakian reconstruction on $U_q(\mathfrak{b})$ -Mod(Rep_qT), and in Bos we develop a factorisable analogue of this. This results in a vertex bialgebra structure on the extended CoHA $H^{\bullet}_{\mathbf{G}_m}(\mathfrak{M},\varphi)_{bos}=H^{\bullet}(\mathfrak{M},\varphi)\otimes H^{\bullet}(\mathfrak{M})$,

$$\mathrm{H}^{\bullet}_{\mathbf{G}_{m}}(\mathcal{M},\varphi)_{bos}\text{-}\mathrm{Mod}\ =\ \mathrm{H}^{\bullet}_{\mathbf{G}_{m}}(\mathcal{M},\varphi)\text{-}\mathrm{Mod}(\mathrm{RepH}^{\bullet}_{\mathbf{G}_{m}}(\mathcal{M}))$$

which in the preprojective case recovers (Soibelman-Rapcak)-Yang-Zhao's construction on $Y_{\hbar}(\mathfrak{b}_Q)$. This "automates" difficult generating-series definitions of CoHA extensions: they follow as a consequence of factorisable Tannakian reconstruction. (give more evidence/details)

Vertex coalgebras from configuration spaces. (recall what localised (bi)algebras are!) To compare localised and vertex coproducts in CY3, we introduce a Ran-to-Conf construction: taking localised terms 1/x, pulling back by a $H^{\bullet}(BG_m)$ -coaction and taking a power seires expansion in z^{-1}

$$\frac{1}{x+nz} = \frac{1}{nz} \left(\frac{x}{nz} - \left(\frac{x}{nz} \right)^2 + \cdots \right)$$

defines a functor from localised coalgebras to vertex coalgebras.

⁴³Joint with S. Jidnal and S. Kaubrys.

⁴⁴Joint with S. de Hority.

⁴⁵The formalism of braided factorisation categories is developed in FQG.

Conjecture C. The Ran-to-Conf construction lifts to a functor $FactCoAlg(ConfA^1) \rightarrow VertexCoAlg$.

We notice as an aside that the

Conjecture D. (Properadic vertex algebra-coalgebras) Vertex coalgebras from factorisation algebras

3.1.1. *FJ.* we will define *factorisable* versions of Joyce's vertex algebras for *dimension zero coherent* sheaves over canonical bundles of arbitrary algebraic surfaces S^{46} to give a sheaf over S of S-vertex algebras which are Morita equivalent on intersections, and relate this to existing presentations of cohomological Hall W-algebras;⁴⁷ the more conceptual (i.e. operadic) nature of this novel approach to constructing vertex structures for non-Calabi-Yau surfaces will allow for easier generalisation, e.g. to multiplicative/elliptic cases, or to more general CY threefolds, as it makes visible structure not accessible to the explicit generators-and-relations approach.

TM: *virtual torus localisation*⁴⁸⁴⁹ for cohomological computations, the *stable envelope* construction to produce factorisation quantum groups. **C**: \mathcal{M}_S^f is *not a global critical locus* over $\operatorname{Ran} K_S$, and so the results of of will not apply. **S**: It will only be a vertex algebra *relative* to S: we will get a *sheaf* of factorisation categories; alternatively, use techniques in S0.

Lift to factorisation algebra. To finish the analogy with [Ga], it remains to construct the Yangian factorisably, which we plan to do in FJ^{51}

Conjecture E. Construction of $Y_h(\mathfrak{g})$ factorisably. (finish)

In the case of quivers Q, we have an action of the torus $T_d = \prod T_{d_i}$ on the stack of representations, and

$$\mathcal{M}^f = \{(m, \lambda) : \lambda \in \mathfrak{t}^*, m \in \mathcal{M}^\lambda\} \xrightarrow{\pi} \operatorname{colim}(\mathfrak{t}_d)$$

defines a factorisation space over the Q_0 -coloured Ran space.

Conjecture F. The relative critical cohomology $A = \pi_* \varphi_W$ defines a $\mathbf{G}_a^{Q_0}$ -equivariant factorisation algebra over the coloured Ran space. Moreover, restricting to the colour-diagonal

$$Ran \mathbf{A}^1 \subseteq Ran_{O_0} \mathbf{A}^1$$

recovers the Joyce-CoHA vertex bialgebra structure on the nilpotent CoHA $H^{BM}_{\bullet}(\mathcal{M}_{nilp})$ of [SV].

⁴⁶B. Davison, The integrality conjecture and the cohomology of preprojective stacks J. Reine Angew. Math. 804, 105–154 (2023)

 $^{^{47}}$ A. Mellit, A. Minets, O. Schiffmann, and E. Vasserot, "Coherent sheaves on surfaces, COHAs and deformed $W_{1+\infty}$ -algebras," Preprint, arXiv:2311.13415 [math.AG] (2023).

⁴⁸Atiyah, M.F. and Bott, R., 1984. The moment map and equivariant cohomology. Topology, 23(1), pp.1-28.

⁴⁹Aranha, D., Khan, A.A., Latyntsev, A., Park, H. and Charanya, R., 2022. Virtual localization revisited. arXiv preprint arXiv:2207.01652.

⁵⁰Kaubrys, S., Jidnal, S., Latyntsev, A., Vertex bialgebras for Calabi-Yau-three categories. In preparation

⁵¹Joint with S. Kaubrys.

Only the last part is nontrivial. This would be interesting for the following reasons:

- This should relate to Yang-Zhao's proof [YZ] that CoHAs form a localised factorisation bialgebra over Conf_Λ(E). We expect that the relation should be a factorisation space version of the Conf-to-Ran construction in CY3.
- This should relate to Maulik-Okounkov's stable envelope construction [MO] of Yangians.
- This construction makes the role of the torus t_d clear, and therefore in (ref) we may generalise it to arbitrary Kac-Moody groups.

Crucially, having repackaged the vertex bialgebra structure as a factorisation algebra, we can consider applying them to more general CY3 categories.

Davison-Kinjo have defined similar structures on analytic moduli stacks (upcoming work), and the above should be an algebraic analogue of their construction.

Relation to W-algebras.

Conjecture G. When A is the category of zero-dimensional coherent sheaves on a surface S, A is equivalent to the factorisation bialgebra $W^+(S)$ of [MMSV].

This could give a coceptual explanation for the "off-local" terms in [MMSV]

(write),

i.e. \mathcal{A} will be braided colocal for the factorisation category (\mathcal{B}, \cup) -Mod, where $\mathcal{B} = \pi_* k$. Moreover, one might expect that the techniques in CD may explain how to form doubles of these algebras.

Shows that W(S) locally in (certain) S forms a sheaf of factorisation algebras over K_S , i.e. "S-vertex algebras", which are Morita equivalent on intersections. Gives an example of the M2-M5 brane construction.

Joyce factorisable W(S)-algebras. Define factorisable moduli stacks of coherent sheaves over canonical bundles of algebraic curves and a sheaf of critical charts⁵² (M1.1), glue Joyce-Liu's vertex algebras⁵³⁵⁴ factorisably over canonical bundles of algebraic surfaces (M1.2), give a new construction of W-algebras⁵⁵ W(S) (M1.3);

⁵²B. Davison, The integrality conjecture and the cohomology of preprojective stacks J. Reine Angew. Math. 804, 105–154 (2023)

⁵³Joyce, D., 2018. Ringel–Hall style vertex algebra and Lie algebra structures on the homology of moduli spaces. Incomplete work.

⁵⁴Liu, H., 2022. Multiplicative vertex algebras and quantum loop algebras. arXiv preprint arXiv:2210.04773.

 $^{^{55}}A$. Mellit, A. Minets, O. Schiffmann, and E. Vasserot, "Coherent sheaves on surfaces, COHAs and deformed $W_{1+\infty}$ -algebras," Preprint, arXiv:2311.13415 [math.AG] (2023).

Factorisable stable envelopes. Give a Tannakian (factorisation category) reformulation of the stable envelope construction over the Ran space (M2.1), obtain give a vertex bialgebra action of W(S) and factorisation bialgebra structure on the nilpotent CoHA⁵⁶⁵⁷ (M2.2), generalise to the elliptic/multiplicative case (M2.3).

Relation to stable envelopes. (write)

3.2. 45 The structure of factorisation quantum groups (FCG, Bos, CD, Stab)

History. A collection of structures all loosely called "quantum groups" have been some of the main objects in mathematical physics and geometric representation theory since the 80s:

- (1) It is well-known that the representation categories of $U_q(\hat{\mathfrak{g}})$, $Y_{\hbar}(\mathfrak{g})$, $\mathcal{E}_{\hbar,\tau}(\mathfrak{g})$ should be controlled by "spectral" analogues R(z) of R-matrices [CWY; GTW].
- (2) The affine case has recently been understood much better: the algebras $Y_{\hbar}(\hat{\mathfrak{g}}), \mathcal{W}_{1+\infty}(\mathfrak{g})$ in [GRZ]
- (3) In [MO] Maulik-Okounkov define a bialgebra $Y_h(\mathfrak{g}_Q)$ attached to any quiver Q.
- (4) Understanding stability conditions/derived CoHA

Historically these definitions were (ingeniously) made very explicitly using generators and relations/RTT definitions, e.g. [**Dr**; **MO**], still much of the modern (e.g. CoHA) literature is based on explicit shuffle computations, e.g. [**MMSV**; **SV**; **YZ**].

The point of this series of projects is to first give a more conceptual definition of these structures, second to recover the above formulas as a consequence of this definition, and third to generalise them to more general structures.

Understanding the precise factorisation algebra structure we expect will ultimately help us understand the SCFTs $\int_Y \mathcal{M}$. We use these techniques in FJ.

Factorisation quantum groups. In FCG we answer question ??: they

We then show that the structure

developed the theory of factorisation quantum groups to capture the above structures.

Theorem H. If A is a factorisation bialgebra, braided factorisation structures on A-Mod are equivalent to factorisation R-matrices $R: A \otimes_2 A \to A \otimes_2 A$. (fix notation)

For instance, in this language, the structure [**GTW**] on $Y_{\hbar}(\mathfrak{g})$ -Mod is the following:

⁵⁶O. Schiffmann and E. Vasserot, J. Reine Angew. Math. 760, 59–132 (2020; Zbl 1452.16017)

⁵⁷Y. Yang and G. Zhao, "Quiver varieties and elliptic quantum groups", Preprint, arXiv:1708.01418 [math.RT] (2017)

$$V_1 \otimes V_2((z))$$

Moreover, we show that we indeed recover standard structures:

Theorem I. In the case of Ran A^1 , a factorisation R-matrix induces an endomorphism

$$R(z): V \otimes V((z)) \to V \otimes V((z))$$

satisfying the spectral hexagon relations.

Likewise, in the case of $Conf A^1$ where factorisation bialgebras are precisely localised bialgebras V of (ref), we get a factorisation R-matrix induces an endomorphism

$$R: (V \otimes V)_{loc} \to (V \otimes V)_{loc}$$

of the localised bialgebra V, satisfying the hexagon relations.

For instance, (give example of $Y_{\hbar}(\mathfrak{g})$ with two coproducts) (ref GTW)

Factorisation bosonisation. In project Bos⁵⁸

Factorisation Drinfeld doubling. In project CD⁵⁹

Work out how to take Drinfeld centres of chiral categories. Recovers notions of doubling chiral bialgebras, bubble Grassmannians (when applied to $Repg(\mathfrak{O})$), Yangians. Generalises BZFN's derivd loop spaces and centres construction.

Stable envelopes. Give a "Ran space" version of Maulik-Okounkov construction that includes all generalisations, e.g. the dynamical R-matrices.

⁵⁸Joint with S. de Hority.

⁵⁹Ioint with W. Niu.

3.3. 80 Orthosymplectic structures (OSp, SA, AGT)

Physics heuristic. In project OSp^{60} we make a mathematical theory of boundary 4d Chern-Simons [BS] on $\mathbf{R} \times (\mathbf{R} \times \mathbf{C})/\pm$, for instance our structures structures satisfy boundary Yang-Baxter/Cherednik reflection equations. More generally, we define boundary versions of compactifications of 4d SCFTs $\int_Y \mathcal{M}$ attached to a CY3 Y - at least, those for which non-boundary versions have been defined. It should relate to Finkelberg-Hanany-Nakajima's ongoing work on orthosymplectic Coulomb branches (see AGT).

⁶⁰Joint with S. de Hority.

15

Details. Attached to an abelian category \mathcal{A} , ⁶¹ we construct the *orthosymplectic moduli stack* $\mathcal{M}_{\mathcal{A}}^{\mathrm{OSp}}$: a fixed point stack whose points are objects with a symmetric pairing $a \simeq a^*$.

Theorem J. [OSp] For A in CY3 or examples below, the vertex quantum group $H^{\bullet}(\mathcal{M}, \varphi)$ "acts" on $H^{\bullet}(\mathcal{M}^{OSp}, \varphi^{OSp})$:

- (1) there is a left module action a of the CoHA respecting the involution, 62 compatible with
- (2) its **symplectic vertex algebra** structure: it is a factorisation coalgebra over symplectic Ran space $\operatorname{Ran}_{\operatorname{Sp}} \mathbf{A}^1 = \operatorname{colimt}_{\operatorname{sp}_{2n}}$ (coming from a localised structure over $\operatorname{Conf}_{\operatorname{Sp}} \mathbf{A}^1 = \operatorname{Spec} H^{\bullet}(\operatorname{BSp})$).

Data (1) and (2) are equivalent to a topological and holomorphic factorisation algebra over \mathbf{R}/\pm and \mathbf{C}/\pm , respectively. We give an equivalent definition of the latter in terms of fields $A\otimes M\to M((z))$, etc.

To give examples, we construct an **invariants** functor involving restricting along $\mathfrak{t}_{\mathfrak{sp}_{2n}} \hookrightarrow \mathfrak{t}_{\mathfrak{gl}_{2n}}$

$$\iota \ : \ \mathsf{FactAlg}_{\mathsf{GL}}(\mathbf{A}^2) \ \to \ \mathsf{FactAlg}_{\mathsf{Sp}}(\mathbf{A}^1), \qquad \qquad (\mathcal{A}, \tau) \ \mapsto \ (\mathcal{A}, \mathcal{A}^\tau)$$

where \mathcal{A} is a factorisation algebra with involution τ ; we expect Theorem J may also be proved by applying ι to the factorisable moduli stack \mathcal{M}^f from FJ. See also the link to stable envelopes (ref), and:

Conjecture K. The **boundary KZ equations** may be derived by applying ι to the BD Grassmannian, taking distributions supported at the identity, and taking conformal blocks over Ran_{Sp} A^1 .

⁶¹More generally abelian category with involution (A, τ) , e.g. $\tau = (-)^*$.

 $^{^{62}}$ i.e. the left action a and the right action $a\cdot(\mathrm{id}\otimes\tau)$ commute, where τ is the involution.

Examples include B**Z**/2 orbifold quivers with potential,⁶³ or orthosymplectic perverse-coherent sheaves on surfaces, e.g. orthosymplectic ADHM quiver/perverse-coherent sheaves on A^2 :

$$\mathcal{E} \simeq \mathrm{RHom}(\mathcal{E}, \mathcal{O})$$

Theorem L. [OSp] In the quiver with potential case, an explicit shuffle formula for the CoHA action.

We end with a conjecture:

Conjecture M. The orthosymplectic CoHA for the "folded" linear quiver A_{2n}^{64} is isomorphic to the twisted Yangian $Y_h(\mathfrak{gl}_n)^{tw}$ of [BR].

- 3.3.1. Dynkin QFTs. Develop the theory of analogues of Ran space, loop spaces, quiver varieties, MZVs, vertex algebras and KZ equations attached to Coxeter/Kac-Moody data (M3.1), give affine examples of associated vertex algebras, quantum groups (using a variant of Kontsevich formality??) and Yangians (M3.2); compute the generalised KZ equations on their conformal blocks, formulate analogue of Drinfeld's conjecture (M3.3).
- 3.3.2. *SA*. is to generalise key objects in geometric representation theory to live on *Dynkin* spacetimes, then use this as a method to prove new relations between these objects. I will extend my previous work on orthosymplectic CoHAs⁶⁵ to *arbitrary* Dynkin-like spacetimes, and prove/contruct analogues of *Chen's Theorem*⁶⁶ on the cohomology of loop spaces and *multiple zeta values* (**MZVs**), variants of *vertex algebras* and *boundary KZ equations* (generalising/help understanding *Drinfeld's conjecture*⁶⁷ on the relation to MZVs), and *Nakajima quiver varieties*, and Maulik-Okounkov's *stable envelopes* and *Yangians*; simultaneously generalising these topics will make new *connections* between them more apparent. Finally, we will prove an analogue of *Kontsevich's formality* theorem, with \mathbf{E}_n -algebras replaced by factorisation algebras over Dynkin spacetimes.

Nonlocal QFT and shuffle structures. project SA begun by noticing the following interesting pattern in structures considered project OSp.

$$\mathsf{BGL} \, \, \leadsto \, \, \mathsf{BSp}, \qquad \mathsf{Conf}(\mathbf{A}^1) \, \, \leadsto \, \, \mathsf{Conf}(\mathbf{A}^1), \qquad \mathsf{VA} \, \, \leadsto \, \, \mathsf{OSpVA}, \qquad \mathsf{etc.}$$

 $^{^{63}}$ i.e. either an ordinary quiver with involution, or an orbifold-valued quiver.

⁶⁴i.e. with the involution being reflection in the linear direction.

⁶⁵ deHority, S. and Latyntsev, A., Orthosymplectic boundary cohomological Hall algebras, in preparation.

⁶⁶Chen, K.T., 1973. Iterated integrals of differential forms and loop space homology. Annals of Mathematics, 97(2), pp.217-246.

⁶⁷Etingof, P.I. and Schiffmann, O., 1998. Lectures on quantum groups.

⁶⁸D. Maulik and A. Okounkov, Quantum groups and quantum cohomology. Paris: Société Mathématique de France (SMF) (2019)

Namely, *all* the structures (moduli stacks, Hall algebras and its realisation as shuffle algebras, vertex coalgebra structure, (conjecturally, see AGT) action on Nakajima quiver varieties, (KZ equations)) simultaneously generalise - this points towards this being a shadow of a more general theory.

The starting observation is this - the definition (ref) a shuffle algebra is equivalent to a monoidal functor $A: GL \to Vect$ from the category GL whose objects are finite products of the groups GL_n for $n \ge 0$, and the morphisms are parabolics between them. Indeed, the parabolics

$$\begin{array}{cccc}
P_{n,m}(\sigma) & & \xrightarrow{A} & A_n \otimes A_m & \xrightarrow{m(\sigma)} & A_{n+m} \\
GL_n \times GL_m & GL_{n+m} & & & & & & & & \\
\end{array}$$

are labelled by shuffles $\sigma \in \mathfrak{S}_{n+m}/\mathfrak{S}_n \times \mathfrak{S}_m = \mathrm{Sh}(n,m)$.

The motivating idea of SA is **replace** GL with the category KM of **arbitrary Kac-Moody groups** [**Ku**]. For convenience we often pass to full subcategories generated by a fixed set of generalised Cartan matrices/Dykin diagrams, e.g.

To summarise:

- We get analogues of shuffle algebras.
- We get new configuration and Ran spaces

$$\mathsf{Conf}_{\mathsf{KM}}(\mathbf{A}^1) \ = \ {\textstyle\coprod}_{G} \mathsf{Spec} \, \mathsf{H}^{\bullet}(\mathsf{B}G), \qquad \qquad \mathsf{Ran}_{\mathsf{KM}}(\mathbf{A}^1) \ = \ \mathsf{colim}_{G} \mathfrak{t}_{G}^*,$$

where \mathfrak{t}_G is the Cartan of Kac-Moody group G, so can define generalised *localised* and *vertex* algebras (and as in CY3 a Conf-to-Ran construction relating them). We expect to recover *boundary KZ* equations by taking conformal blocks (i.e. cohomology over $\operatorname{Ran}_{KM} \mathbf{A}^1$).

- Topological case topological sheaves on $Ran_{KM}\mathbf{C}$ gives analogues of \mathbf{E}_2 -algebras, then by considering $FactAlg^{top}(Ran_{KM}\mathbf{C}, Cat)$ we get analogues of the notion of *braided monoidal categories*.
- Generalised quivers and quiver varieties. A quiver representation we can view as being attached to the groups

where $P_{n,m} \to U_{n,m}$ is a unipotent. We can define the stack of KM-quiver representations as

$$\mathcal{M}_Q = \int [\mathfrak{u}_e/G_i]$$

the product over all maps $(G_i): Q_0 \to \mathrm{KM}$ and U_e is a choice if unipotent for each edge e.

Relation to orbifolding.

- Stable envelope construction.
- Chen's [Ch] shuffle structure on cochains $C^{\bullet}(LX)$ of the loop space may be deduced from a shuffle structure on the spaces $L_nX = \operatorname{Maps}(\Delta^n, X)$, where $\Delta^n = T^n/\mathfrak{S}_n$; in the general case we may replace this with the quotient $\Delta_G = T_G/\mathfrak{W}_G$ by the Weyl group of G.
- Iterated integrals.

For the orthosymplectic example $KM_{SO(2n),Sp(2n),SO(2n+1)}$, many of these structures are considered in OSp. Let us consider K_{G_2}

Example: G_2 . For K_{G_2} , factorisation algebras consist of ordinary factorisation algebras but for any triple of points there is in addition equivariance with respect to the group $W_{G_2} \simeq D_{12} \supseteq \mathfrak{S}_3$ acting on \mathbb{C}^3 , in which the element

$$\tau(z_1) = z_3 + \sqrt{3}(z_1 + z_2 - 2z_3)$$

$$\tau(z_2) = z_1 + \sqrt{3}(z_2 + z_3 - 2z_1)$$

$$\tau(z_3) = z_2 + \sqrt{3}(z_3 + z_1 - 2z_2)$$

squares to $\tau^2=(231)$. Thus for instance a G_2 vertex algebra is a vertex algebra V with an (copy-paste from notes), and a topological G_2 factorisation category is a braided monoidal category ${\mathfrak C}$ along with (copy-paste from notes; G_2 reflection equations)

Relation to folding. We expect there to be a folding construction of G_2 structures. (reference conjecture on twisted Yangians)

3.3.3. *free field realisations*⁶⁹ for producing actions of W-algebras in proving a Dynkin AGT Theorem, the theory of *Coxeter groups* to organise our combinatorial definitions,⁷⁰ the theory of qKZ and KZB^{71} equations which we hope to generalise in the multiplicatie/elliptic case, and *quiver varieties*⁷². **C**: The

⁶⁹Frenkel, E. and Ben-Zvi, D., 2004. Vertex algebras and algebraic curves (No. 88). American Mathematical Soc..

⁷⁰Björner, A. and Brenti, F., 2005. Combinatorics of Coxeter groups (Vol. 231, pp. xiv+-363). New York: Springer.

⁷¹G. Felder, in: Quantum symmetries/ Symétries quantiques. Proceedings of the Les Houches summer school (1995)

⁷²Hiraku Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras. Duke Math. J. 76 (1994)

good moduli spaces are *no longer smooth*. **S**: Use *intersection homology*, 73 adapt the *fixed point* techniques in my upcoming collaboration 65 which resolves these issues in the orthosymplectic case.

A twisted AGT correspondence. In the finite type case, define an action of twisted CoHA on the quiver varieties (**M4.1**), prove an AGT result: that this is a Verma module for a twisted affine W-algebra, which we define (**M4.2**). 24,25

After OSp, one natural next step (project AGT) is to construct a boundary version [**BFN**]:

Conjecture N. [AGT] The equivariant intersection homology of the invariant locus $\mathcal{U}_{\mathbf{P}^2,GL_n}^{\mathbf{Z}/2}$ in the Uhlenbeck space is a Verma module for an orthosymplectic analogue of the vertex W-algebra $\mathcal{W}^k(\mathfrak{gl}_n)$.

We expect the proof should proceed in much the same way as in [**BFN**], but with the parabolic induction data replaced by

(write OSp correspondence)

Likewise, we expect a generalisation of [**RSYZ**] for instantons on A^3 :

Conjecture O. [AGT] There is vertex algebra structure on the the orthosymplectic CoHA of the Jordan quiver, which acts on the equivariant critical cohomology of $\mathfrak{M}^{\mathbf{Z}/2}$, the invariant locus in the quiver variety.

and likewise for arbitrary quivers with potential. We expect this CoHA should be equal to (W algebra thing), which admits $\mathcal{W}^{k_n}(\mathfrak{gl}_n)^{\mathrm{OSp}}$ as quotients

(nonabelian stable envelopes)

3.4. 70 q-vertex algebras (qVA, KL)

is focussed on developing the machinery of q-vertex algebras, then applying it to prove Kazhdan-Lusztig equivalences. I will give a definition of q-vertex algebras, generalising factorisation algebras to live on noncommtutative spacetimes; note that such factorisation algebras are new; this requires giving a sufficiently functorial modern definition of q-D-modules. I will then use it to give a new proof of the Kazhdan-Lusztig equivalence and recent generalisations, giving an uniform explanation.

The q-WZW vertex algebra. Build a theory of q-D modules/D-modules on noncommutative schemes and prestacks, then apply it to define/prove structural results on q-vertex algebras (M5.1), use q-affine Grassmannians and q-coordinate bundles to define q-WZW and q-Virasoro vertex algebras (M5.2).

It has been long expected that one may define a q-analogue of the Kazhdan-Lusztig equivalence, but this has been hampered by the lack of a good definition of q-WZW algebras: currently, the available definition is an RTT-style definition from $[\mathbf{EK}]$.

⁷³Goresky, M. and MacPherson, R., 1983. Intersection homology 11. Inc. Mat, 71, pp.77-129.

⁷⁴Majid, S. and Simão, F., 2023. Quantum jet bundles. Letters in Mathematical Physics, 113(6), p.120.

q-vertex algebras. The main goal of project qVA is:

Conjecture P. There is a factorisation category over the noncommutative space A_q^2 , such that any

$$\mathcal{A} \in \operatorname{FactAlg}^{st}(\mathcal{D}\operatorname{-Mod}_{\operatorname{Ran}\mathbf{A}_a^2})$$

defines a q-vertex algebra.

Moreover, for any complex finite-dimensional simple Lie algebra g, we may ask

Question Q. Is there an analogue of the Beilinson-Drinfeld Grassmannian $Gr_{G,q} \to Ran A_q^2$?

Such a factorisation space would for free by Conjecture P define for us a q-vertex algebra $V_q^k(\mathfrak{g})$, by the same construction as for the affine WZW vertex algebra (and which we expect it would be is a q-deformation of) and we expect should agree with $[\mathbf{EK}]$ when $\mathfrak{g}=\mathfrak{sl}_n$. We expect there to be an algebra of modes fucntor A(-), and we propose to finish with a sanity-check of our definitions by showing $A(V^k(\mathfrak{g})) \simeq U_q(\hat{\mathfrak{g}})$.

We spell out evidence for Conjecture P, first from physics, then give explicit mathematical details.

Physics: 5d *Chern-Simons.* Our guiding heuristic from physics is the following: much as $V^k(\mathfrak{g})$ and $U_{\hbar}(\mathfrak{g})$ have module categories giving line operators for "3d Chern-Simons with boundary" on

$$\mathbf{C} \times \mathbf{R}_{\geq 0}$$

or more cleanly, on the suspension $S(\mathbf{CP}^1)$, so then module categories for $V_{\hbar}^k(\mathfrak{g})$ and $Y_{\hbar}(\hat{\mathfrak{g}})$ should define line operators for "5d Chern-Simons theory with boundary" on

$$(\mathbf{C} \times \mathbf{C})_{nc} \times \mathbf{R}_{\geqslant 0}$$

where $\mathbf{A}_q^2=(\mathbf{C}\times\mathbf{C})_{nc}$ is the noncommutative plane with ring of functions $\mathbf{C}[x,y]/(xy-qyx)$. Thus by analogy with the 3d case, to search for $V_q^k(\mathfrak{g})$ we need to understand factorisation algebras over \mathbf{A}_q^2 .

Mathematical details. (copy-paste from the notes)

One can interpret the ordinary KZ equations as (factorisation stuff), much like (drinfeld kohno). Thus, a natural question is:

Question R. Can we recover the qKZ equations by taking (i.e. q-confomal blocks)?

quantum jet spaces? and *de Rham* definition of D-modules via *crystals*⁷⁵; vertex algebras as factorisation/chiral algebras; non-operadic definition of deformed vertex algebras ⁷⁶ | KZ equations and fusion product of vertex modules ⁷⁷ | Chen-Fu's proof of Kazhdan-Lusztig equivalence; new Kazhdan-Lusztig equivalences from 3*d mirror symmetry* and new *quantum groups*/vertex algebras ⁷⁸

de Rham definition of q-D-modules and their functoriality; q-vertex algebras as factorisation algebras on noncommutative schemes; q-affine and q-Virasoro factorisation algebras | factorisation category explanation of KZ equations, Zhu algebra and fusion product

Kazhdan-Lusztig. One ultimate goal of projects FJ and qVA is to understand Kazhdan-Lusztig equivalences: potentially, our above techniques may be used to either:

- give an affine analogue of the factorisable proof [CF] of the Kazhdan-Lusztig equivalence, or
- proving a Zhu/ $q \rightarrow 1$ correspondence to obtain Chen-Fu's proof from q-affine vertex algebras; generalising to give a blanket proof of the new Kazhdan-Lusztig equivalences

Question S. Is there a Riemann-Hilbert functor RH: FactCat(\mathbf{A}_q^2) \rightarrow FactCat $^{QCoh}(\mathbf{C}_q^2)$, which sends the category $V_q^k(\mathfrak{g})$ -Mod to $Y_\hbar(\mathfrak{g})$ -Mod? (too vague)

(need to write down what topological factorisation algebras on ${\bf C}_q^2$ are)

3.5. 60 Sheaf methods (Con, Loc, Eu)

Localisation methods. In projects Con and Loc

Localisation. Proved a localisation formula for arbitrary quasismooth derived schemes, relating the pushforward and pullback to a closed substack to the virtual Euler class.

Concentration. Gave a sufficient condition for the Chow homology to be concentrated on a closed substack.

Virtual Euler classes and shuffle structures. In project Eu, we prove Atiyah-Bott torus localisation formulas on vanishing cycle cohomology, for certain non-quasismooth closed embeddings $\mathcal{Z} \hookrightarrow \mathcal{X}$ of Artin stacks. This gives a unified torus localisation way to compute cohomological Hall type products. As a result, we recover shuffle descriptions of CoHAs and a new proof of compatibility between them and Davison's localised coproduct

⁷⁵D. Gaitsgory and N. Rozenblyum, Pure Appl. Math. Q. 10, No. 1, 57–154 (2014; Zbl 1327.14013)

⁷⁶E. Frenkel and N. Reshetikhin, "Towards Deformed Chiral Algebras", Preprint, arXiv:q-alg/9706023 (1997)

⁷⁷Y.-Z. Huang, J. Pure Appl. Algebra 100, No. 1–3, 173–216 (1995)

⁷⁸The following paper, and upcoming work by the authors along with *C. Beem: A. Ballin, T. Creutzig, T. Dimofte, W. Niu,* "3d mirror symmetry of braided tensor categories", Preprint, arXiv:2304.11001 [hep-th] (2023)

Theorem T. For any "split locus" map $M^s \to M$, we get a diagram

$$\begin{array}{cccc}
\mathbf{C}^{\bullet}(\mathcal{M}^{s} \times \mathcal{M}^{s}, \varphi^{s} \boxtimes \varphi^{s}) & \xrightarrow{-1/e(\mathbf{N}_{i})_{\mathrm{loc}}} & \mathbf{C}^{\bullet}(\mathcal{M}^{s} \times \mathcal{M}^{s}, \varphi^{s} \boxtimes \varphi^{s}) & \xrightarrow{p_{*}^{s}q^{s,*}} & \mathbf{C}^{\bullet}(\mathcal{M}^{s}, \varphi^{s}) \\
& & & & & & & \\
(\pi \times \pi)^{*} \uparrow & & & & & & \\
\mathbf{C}^{\bullet}(\mathcal{M} \times \mathcal{M}, \varphi \boxtimes \varphi) & \xrightarrow{p_{*}q^{*}} & & & & & \\
\mathbf{C}^{\bullet}(\mathcal{M}, \varphi) & & & & & & \\
\end{array}$$

$$(2)$$

saying that up to an Euler class term, the pullback map intertwines the CoHA and the split locus CoHA.

Two consequences of this are:

- If we take M^s to be a *shuffle space*⁷⁹ given by products of "simple" moduli stacks, e.g. rank one quiver representations, then (2) recovers shuffle formulas for CoHAs.
- If we take $M^s = M \times M$ together with its direct sum map to M, (2) recovers the compatibility between Davison/Yang-Zhao/Joyce localised/vertex coproducts and the CoHA.

The first we plan to use in SA to give more general shuffle-style products.

3.6. 100 Liouville quantum gravity to vertex algebras (LCG)

History. In recent years, probabilists have increasingly understood quantum field theory, giving rigorous definitions of Feynman measures for 2d CFTs, e.g. [CRV; DS; Sh] whose "holomorphic part" are expected to be W-algebras, Virasoro, and Heisenberg vertex algebras.

This approach is very different to the factorisation/vertex algebra/functorial QFT approach in the above projects, e.g. it can directly study level sets of fields as SLE curves [MS; SS], there is a rigorous connection to combinatorial toy models like the discrete Gasussian Free Field [BPR], and it is able to access the *full* CFT, not just the chiral part as we are in geometric representation theory, e.g. [KRV] proves the *DOZZ* formula for full OPEs in the Liouville CFT.

However, there is currently not much interaction between the two approaches, and this project aims to build a bridge between the two so that techniques/results/heuristics can move between subjects more easily (then give a simple example of this).

 $\it Goal. \, \, {\rm In} \, {\rm LCG^{80}}$ we aim to define a functor from Segal-style $\it 2d$ conformal field theories to vertex algebras

$$CFT \xrightarrow{(-)^{ch}} CFT^{hol} \xrightarrow{Res} FactAlg(\mathbf{C})^{hol}_{CMC^{\times}} \xrightarrow{[\mathbf{CG}]} VertexAlg, \tag{3}$$

then show that the Gaussian Free Field and Liouville Quantum Gravity Segal CFTs are sent to the Heisenberg and Virasoro vertex algebras, repectively.

⁷⁹i.e. shuffle algebra in the category of spaces, see SA.

⁸⁰Ioint with V. Giri.

Details. We will need to upgrade $\mathcal{Z} \in \operatorname{CFT}$ to a definition that remembers the geometric structure on the category Cob_2 of conformal cobordisms. Namely, consider a complex vector bundle \mathcal{V} with connection over the Teichmuller space $\mathcal{T}_{g,n}$ satisfying a factorisation condition, and with a section ψ . The fibre of this data over Σ is the vector space $\mathcal{Z}(\partial \Sigma)$ and $\mathcal{Z}(\Sigma) : \mathbf{C} \to \mathcal{Z}(\partial \Sigma)$.

The induced factorisation algebra over \mathbb{C} is automatically smoothly translation and rotation equivariant, so if it is *holomorphic* (i.e. $\partial_{\bar{z}}\psi=0$) then it is by $[\mathbb{C}\mathbb{G}]$ a vertex algebra; these are the last two maps in (3). The equivariance comes from a G-action on $\mathfrak{T}_{0,n}$, since then the Lie algebra \mathfrak{g} acts on \mathcal{V} by the connection, e.g. the vertex algebras in the image of (3) will automatically have an action by vector fields on \mathbb{P}^1 , so we expect they are VOAs.

The main task is to define a chiralisation functor $(-)^{ch}$ to holomorphic CFTs, and prove that [**GKRV**]'s LQG Segal CFT (upgraded appropriately in the above sense) is sent by (3) to the Virasoro vertex algebra, and relate the DOZZ formula [**KRV**] to the Virasoro OPE. Having done this, we plan to do the same for the GFF, and finally to give a new example of these methods, construct a probability measure in the domain of (3) recovering the affine vertex algebra, e.g. by using the free field embedding [**FBZ**] to a direct sum of Heisenberg algebras.