Unit 5: Multilayer Perceptron

Nonlinear Filtering in Neural Networks: From Static to Dynamic Pattern Recognition

Kiran Bagale

St. Xavier's College

August 4, 2025

Pattern Recognition Types

Structural Pattern Recognition

- Static neural networks
- Multilayer perceptrons
- Time-independent processing
- Response depends only on current input

Temporal Pattern Recognition

- Dynamic neural networks
- Nonlinear filtering
- Time-dependent processing
- Response depends on current and past inputs

Key Insight

Time is an ordered quantity that constitutes an important ingredient of the learning process in temporal-pattern-recognition tasks.

Requirements for Dynamic Networks

Add Memory

Static Neural Network

Dynamic Neural Network

Current Input Only

Current + Past Inputs

Essential Component: Short-term Memory

A neural network must be given **short-term memory** in one form or another to become dynamic.

Implementation Method: Time Delays

- At the synaptic level (inside the network)
- At the input layer (external to the network)
- Neurobiologically motivated signal delays are omnipresent in the brain

Two Basic Approaches

Implicit Representation

- Time represented by its effect on signal processing
- Digital implementation approach:
 - Uniform sampling of input signal
 - Convolution of synaptic weights with input samples
 - Temporal structure → Spatial structure

Explicit Representation

- Time has its own particular representation
- Example: Bat echolocation system
 - FM signal emission
 - Multiple frequency comparisons
 - Delay line matching for range estimation

Implicit vs Explicit: Visual Comparison

Biological Motivation

Neurobiological Foundation

Signal Delays in the Brain

- Signal delays are omnipresent in biological neural systems
- Play an important role in neurobiological information processing
- Well-established research foundation (Braitenberg, 1967, 1977, 1986; Miller, 1987)

Case Study:

Bat Echolocation

- Bat emits short frequency-modulated (FM) signal
- Same intensity maintained for each frequency channel
- Multiple frequency comparisons via auditory receptor array
- Oblay line matching provides range estimation
- \odot Unknown echo delay \rightarrow matching neuron responds

Bat Echolocation System

Nonlinear Filter Structure

Figure: Nonlinear filter built on a static neural network.

Key Components

- Cascade connection of two subsystems
- Clear separation of processing roles:
 - a. Static network: accounts for nonlinearity b. Memory: accounts for time
- SIMO structure: Single-input, multiple-output memory

Discrete-Time Memory Structure

Figure: Caption

Tapped-Delay-Line Memory

- p identical sections connected in cascade
- Each section characterized by impulse response h(n)
- Memory order: *p* (number of sections)
- Output terminals: p + 1 (including direct connection)

Theorem Properties and Applications

Key Properties

- Shift-invariant: Output shift corresponds to input shift
- Myopic: "Uniformly fading memory" distant past has less influence
- **Causal**: Output at time $n \ge 0$ only depends on inputs at n = 0
- Universal approximation: Any such map can be approximated

Practical Applications

- Time series prediction: Build predictive models using y(n) = f(x(n-1), x(n-2), ...)
- System identification: Model underlying nonlinear physical laws
- Stability guarantee: Structure is inherently stable if linear filters are stable
- Linear output neurons: Recommended to avoid amplitude limitations

Tapped-Delay-Line Memory

Generating Kernel

$$h(n) = \delta(n) = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$$

Overall Impulse Response

$$h_{\mathsf{overall}}(n) = \delta(n-p) = egin{cases} 1, & n=p \ 0, & n
eq p \end{cases}$$

Characteristics

- Memory depth: D = p
- Memory resolution: R=1
- Depth-resolution product: $D \times R = p$
- High resolution, finite depth

Gamma Memory

Generating Kernel

$$h(n) = \mu(1-\mu)^{n-1}, \quad n \ge 1$$
 where $0 < \mu < 2$ for stability.

Overall Impulse Response

$$h_{\mathsf{overall}}(n) = \binom{n-1}{p-1} \mu^p (1-\mu)^{n-p}, \quad n \geq p$$

Characteristics

- Memory depth: $D = p/\mu$
- Memory resolution: $R = \mu$
- Depth-resolution product: $D \times R = p$
- Tunable depth-resolution tradeoff

Universal Dynamic Mapper

Figure: Structure of Myopic Mapping

Universal Myopic Mapping Theorem

Any shift-invariant myopic dynamic map can be uniformly approximated arbitrarily well by a structure consisting of two functional blocks: a bank of linear filters feeding a static neural network.

Kiran Bagale (St. Xavier's College)

Unit 5: Multilayer Perceptron

August 4, 2025

12/25

NETtalk System Architecture

Figure: Schematic diagram of the NETtalk network architecture.

NETtalk Specifications

- Architecture: 203 input nodes, 80 hidden neurons, 26 output neurons
- Task: Convert English text to phonemes
- Context window: 7 letters (target letter ± 3 context)
- Training: Backpropagation with 18,629 weights

NETtalk Performance Characteristics

Human-Like Learning Patterns

- Power law learning: Training followed a power law progression
- Generalization: Better performance with more training words
- Graceful degradation: Slow performance decline with damaged connections
- Fast relearning: Recovery after damage was faster than original training

Significance

NETtalk was the **first demonstration** of a massively parallel distributed network that:

- Successfully converted English speech to phonemes
- Started with "innate" knowledge of input patterns
- Gradually acquired competence through practice
- Exhibited human-like learning characteristics

Key Takeaways

Nonlinear Filter Architecture

- **Cascade structure**: Short-term memory + static neural network
- Clear role separation: Memory handles time, network handles nonlinearity
- SIMO configuration: Multiple delayed versions of input signal

Universal Myopic Mapping Theorem

- Theoretical foundation: Any shift-invariant myopic map can be approximated
- Practical structure: Bank of linear filters + static nonlinear network
- Stability guarantee: Inherently stable if linear components are stable

Memory Structures

- **Tapped-delay-line**: High resolution, finite depth $(D \times R = p)$
- Gamma memory: Tunable depth-resolution tradeoff (parameter)
 - Design choice. Depends on application requirements

15 / 25

5.8 Small-Scale versus Large-Scale Learning Problems

Statistical and Computational Distinctions in Supervised Learning

- Statistical issues: Structural Risk Minimization (SRM)
- Computational issues: Time complexity constraints
- Trade-offs between approximation, estimation, and optimization errors

The Fundamental Question

Key Question in Supervised Learning

Does a training sample consisting of N independent and identically distributed examples

$$(x_1, d_1), (x_2, d_2), \ldots, (x_N, d_N)$$

contain sufficient information to construct a learning machine capable of good generalization performance?

- Answer lies in **Structural Risk Minimization** (Vapnik, 1982, 1998)
- Distinguishes between different scales of learning problems
- Determines appropriate optimization strategies

Definitions: Problem Scale Classification

Definition I: Small-Scale Learning (Bottou, 2007)

A supervised-learning problem is said to be of a **small-scale** kind when the **size of the training sample** (i.e., the number of examples) is the active budget constraint imposed on the learning process.

Definition II: Large-Scale Learning (Bottou, 2007)

A supervised-learning problem is said to be of a **large-scale** kind when the **computing time** is the active budget constraint imposed on the learning process.

The active budget constraint distinguishes one learning problem from the other.

Illustrative Examples

Small-Scale Example

Adaptive Equalizer

- Compensates for channel distortion
- Uses LMS algorithm
- Based on stochastic gradient descent
- Limited by training data size

Large-Scale Example

Check Reader System

- Processes {image, amount} pairs
- Field & character segmentation
- Character recognition
- Syntactical interpretation
- Uses convolutional networks
- Deployed since 1996 (billions of checks)

Small-Scale Learning Problems

Available Design Variables

Three variables available to the designer:

- Number of training examples, N
- $oldsymbol{\circ}$ Permissible size K of the family of approximating network functions $\mathcal F$
- $oldsymbol{\circ}$ Computational error ϵ introduced in optimization

Design Options (Active constraint: training sample size)

- Reduce estimation error: Make N as large as budget permits
- Reduce optimization error: Set $\epsilon \to 0$ (i.e., $\mathbf{w} \to \hat{\mathbf{w}}_N$)
- Adjust family size: Set $|\mathcal{F}|$ to reasonable extent

Solution: Structural Risk Minimization with approximation-estimation tradeoff

Large-Scale Learning Problems

Active Budget Constraint

Computing time T is the limiting factor, leading to **more complicated trade-offs**

Excess Error Decomposition

$$J(\mathbf{w}) - J(\hat{f}^*) = \underbrace{J(\mathbf{w}) - J(\hat{\mathbf{w}}_N)}_{\text{Optimization error}} + \underbrace{J(\hat{\mathbf{w}}_N) - J(\mathbf{w}_N^*)}_{\text{Estimation error}} + \underbrace{J(\mathbf{w}_N^*) - J(\hat{f}^*)}_{\text{Approximation error}}$$

- **New term:** Optimization error (related to computational error ϵ)
- Last two terms common to both problem scales
- Must account for computing time T in all decisions

Trade-offs in Large-Scale Problems

Optimization Challenge

Minimize the sum of three error terms by adjusting:

- Number of examples, N
- ullet Permissible size K of approximating functions, \mathcal{F}_K
- Computational error ϵ (no longer zero)

Complexity

Computing time T depends on all three variables $(N, \mathcal{F}, \epsilon)$

Consequence

Reducing ϵ (to decrease optimization error) requires increasing N or $\mathcal F$ or both, which adversely affects approximation and estimation errors.

Optimization Algorithm Categories

Algorithm Classification

Performance characterized by log ϵ versus log T plots:

Category	Algorithm Type	Example
Bad	Stochastic Gradient Descent	On-line learning
Mediocre	Gradient Descent	Batch learning
Good	Second-order methods	BFGS, Quasi-Newton

- Algorithm choice determines final trade-offs
- Second-order methods offer better computational efficiency
- Stochastic methods may be preferred for very large datasets

Analysis Approach: Bounds vs Convergence Rates

Small-Scale Problems

- VC theory provides bounds
- Approximation error bounds well understood
- Constants in formulas are reasonable
- Structural Risk Minimization adequate

Large-Scale Problems

- VC theory constants are poor
- Bounds less practical
- Convergence rates more productive
- Focus on exponents of error decrease

Key Insight

For large-scale problems, analyze how errors decrease as ϵ decreases and both \mathcal{F} and N increase, considering computational time T growth.

Summary and Current State

Key Distinctions

- Small-scale: Limited by training data size
- Large-scale: Limited by computational resources
- Different optimization strategies required
- Trade-offs become more complex for large-scale problems

Current Research Status

"Whereas the study of small-scale learning problems is well-developed, the study of large-scale learning problems is in its early stages of development."

- Small-scale: Mature theory (SRM, VC theory)
- Large-scale: Emerging field with active research
- Algorithm choice crucial for large-scale success