Lezioni di Termodinamica per LT Informatica Università di Ferrara

Lucia Del Bianco

Dip.to di Fisica e Scienze della Terra

Lavoro in una trasformazione termodinamica

Trasformazioni termodinamiche: processi che possono cambiare lo stato di un sistema. Tutti i processi che tratteremo sono supposti **QUASI STATICI.**

Forza esterna agisce sul pistone per una distanza $dy\hat{j}$

Lavoro fatto sul gas dalla forza esterna

$$dW = \vec{F}_{ext} \cdot dy\hat{j}$$

La forza esterna ha lo stesso modulo della forza esercitata dal gas sul pistone, ma verso opposto.

$$\vec{F}_{ext} = -\vec{F}_{gas}$$

$$\vec{F}_{ext} = -\vec{F}_{gas} = -PA\hat{j}$$

$$dW = -PA\hat{j} \cdot dy\hat{j} = -PAdy$$

dW = -PdV

Lavoro fatto sul gas

Se gas si comprime \Rightarrow dV è negativo \Rightarrow lavoro fatto sul gas è POSITIVO Se gas si espande \Rightarrow dV è positivo \Rightarrow lavoro fatto sul gas è NEGATIVO Se gas si comprime \Rightarrow dV è negativo \Rightarrow lavoro fatto sul gas è POSITIVO Se gas si espande \Rightarrow dV è positivo \Rightarrow lavoro fatto sul gas è NEGATIVO

Questa scelta è convenzionale

Esiste un'altra convenzione in cui il lavoro W è definito come il lavoro fatto dal gas e secondo la quale:

Se il sistema trasferisce energia meccanica all'ambiente ⇒ il lavoro è positivo Il gas che si espande fa un lavoro positivo

Se si trasferisce energia meccanica dall'esterno al sistema ⇒ il lavoro è negativo Il gas che si comprime fa un lavoro negativo

In pratica, bisogna ricordare che:

$$W_{sul\ gas} = -W_{dal\ gas}$$

Lavoro totale fatto sul gas quando il suo volume varia da V_i a V_f

$$W = -\int_{V_i}^{V_f} P dV$$

Un gas viene compresso in modo quasi-statico (lentamente) dallo stato *i* allo stato *f*. Il lavoro compiuto sul gas è uguale al valore dell'area sottesa dalla curva *PV* cambiato di segno. Ma il volume diminuisce, e quindi l'area è negativa e il lavoro compiuto sul gas è positivo. Un operatore esterno deve compiere un lavoro positivo per comprimere il gas. Piano PV di Clapeyron. Ogni stato che il sistema assume durante la trasformazione è un punto in questo spazio

Lavoro compiuto dipende dal tipo di trasformazione eseguita

$$W = -P_i(V_f - V_i)$$

$$W = -P_i(V_f - V_i) \qquad W = -P_f(V_f - V_i)$$

Primo principio della termodinamica

Affermazione della conservazione della energia

$$\Delta E_{\rm int} = Q + W$$

La variazione della energia interna di un sistema è uguale alla somma delle energia trasferita attraverso il contorno del sistema tramite il calore e tramite il lavoro.

Attenzione ai segni!!!!!

Primo principio della termodinamica

$$\Delta E_{\rm int} = Q + W$$

E_{int} dipende solo dallo stato del sistema e non da come quello stato sia stato raggiunto (nel caso di gas perfetto, dipende solo dalla temperatura).

E_{int} è una funzione di stato: dipende solo dallo stato del sistema e non da come quello stato sia stato raggiunto

W e Q non sono funzioni di stato: dipendono dal tipo di trasformazione termodinamica in cui sono stati coinvolti

Primo principio della termodinamica

$$\Delta E_{\rm int} = Q + W_{sul\ gas}$$

Noi lo scriviamo così!!!

$$W_{sul\ gas} = -W_{dal\ gas}$$

$$\Delta E_{\rm int} = Q - W_{dal\ gas}$$

Ma si può scrivere anche così

Trasformazioni termodinamiche

$$\Delta E_{\rm int} = Q + W$$

Identifichiamo 4 trasformazioni modello:

- ISOBARA
- ISOCORA
- ISOTERMA
- ADIABATICA

Trasformazioni termodinamiche: trasformazione isobara (pressione costante)

Formula generale per il lavoro nelle trasformazioni termodinamiche

$$W = -\int\limits_{V_i}^{V_f} P dV$$

V_f

pressione

$$\Delta E_{\rm int} = Q + W$$

isòbara p = costante

Il primo principio diventa:

volume V

$$W = -P\left(V_f - V_i\right)$$

$$\Delta E_{\rm int} = Q - P \Delta V$$

Trasformazioni termodinamiche: trasformazione isocora (volume costante)

Nella trasformazione graficata sopra la T e la P del gas aumentano

$$PV = nRT$$

$$W = 0$$

$$\Delta E_{\rm int} = Q$$

Se si fornisce calore al sistema, tutta l'energia va ad aumentare l'energia interna del sistema (e viceversa)

Trasformazioni termodinamiche: trasformazione isoterma (temperatura costante)

Nella trasformazione graficata, il gas si espande ⇒ il W è negativo e il calore è positivo (cioè, entra nel sistema)

$$\Delta E_{\rm int} = 0$$

$$W = -Q$$

Se energia entra nel sistema tramite il **lavoro** (il gas si comprime), lascia il gas tramite **calore**, in modo che E_{int} rimanga costante.
Vale anche il viceversa.

$$W=-nRT\ln\!\left(rac{V_f}{V_i}
ight)$$
 Lavoro in una trasformazione isoterma per un gas perfetto

Dimostrazione:

$$P = \frac{nRT}{V} \qquad W = -\int_{V_i}^{V_f} PdV$$

$$W = -\int_{V_i}^{V_f} \frac{nRT}{V} dV = -nRT \int_{V_i}^{V_f} \frac{1}{V} dV = -nRT \ln \frac{V_f}{V_i}$$

Trasformazioni termodinamiche: trasformazione adiabatica (variano P, V e T)

$$Q = 0$$

$$\Delta E_{\rm int} = W$$

Compressione (volume diminuisce): sia W che ΔE_{int} sono positivi pressione e temperatura aumentano

Espansione (volume aumenta): sia W che ΔE_{int} sono negativi pressione e temperatura diminuiscono

L'espansione libera è una particolare trasformazione adiabatica in cui non viene compiuto lavoro sul gas

$$Q = 0$$
 $W = 0 \Rightarrow \Delta E_{int} = 0$

Trasformazione ciclica

Il lavoro complessivo è rappresentato dall'area racchiusa nel ciclo.

Il lavoro fatto sul gas è positivo se il verso di percorrenza del ciclo è antiorario ed è negativo se il verso è orario.

Il lavoro fatto dal gas è positivo se il verso di percorrenza del ciclo è orario (come nel caso in figura) ed è negativo se il verso è antiorario.

Calori specifici molari dei gas perfetti

$$c = \frac{Q}{m\Delta T}$$

Calore specifico [J/kg K]

Ora consideriamo dei gas perfetti misurati in moli n

$$Q = \Delta E_{\rm int} - W$$

In figura, Q è diverso per cammini diversi perché W è diverso.

L'energia necessaria per produrre una data variazione di T non assume sempre lo stesso valore.

Figure 21.3 An ideal gas is taken from one isotherm at temperature T to another at temperature $T + \Delta T$ along three different paths.

$$Q = nc_v \Delta T$$

c_V = calore specifico molare a
volume costante

$$Q = nc_p \Delta T$$

c_p = calore specifico molare a
pressione costante

TABELLA 12.1 Calori specifici molari di alcuni gas

Gas	C _p [J /mol K]	C _V [J /mol K]	$c_p - c_V$	$\gamma = c_p/c_V$
	Gas mono	oatomici	[J /mol K]	
He	20.8	12.5	8.33	1.67
Ar	20.8	12.5	8.33	1.67
Ne	20.8	12.7	8.12	1.64
Kr	20.8	12.3	8.49	1.69
	Gas bia	tomici		
H_2	28.8	20.4	8.33	1.41
N_2	29.1	20.8	8.33	1.40
O_2	29.4	21.1	8.33	1.40
CO	29.3	21.0	8.33	1.40
Cl ₂	34.7	25.7	8.96	1.35

Mazzoldi, Nigro, Voci

Elementi di fisica. Meccanica e Termodinamica. III ed.

EdiSES Edizioni

ESERCIZIO

Un cilindro contiene 3.00 mol di gas elio alla temperatura di 300 K.

(A) Quanta energia si deve trasferire al gas sotto forma di calore per aumentare la sua temperatura fino a 500 K se il gas è riscaldato a volume costante?

$$Q_1 = nC_V \Delta T$$

Sostituiamo i valori dati:

$$Q_1 = (3.00 \text{ mol}) (12.5 \text{ J/mol} \cdot \text{K}) (500 \text{ K} - 300 \text{ K})$$

= $7.50 \times 10^3 \text{ J}$

(B) Quanta energia deve essere trasferita sotto forma di calore al gas a pressione costante per portare la temperatura a 500 K?

$$Q_2 = nC_P \Delta T$$

Sostituiamo i valori dati:

$$Q_2 = (3.00 \text{ mol}) (20.8 \text{ J/mol} \cdot \text{K}) (500 \text{ K} - 300 \text{ K})$$

= $12.5 \times 10^3 \text{ J}$

ESERCIZIO

Un recipiente contiene n = 4 moli di neon a temperatura $T_{amb} = 300$ K. Calcolare il calore necessario per portarlo alla temperatura T = 500 K operando a volume costante e a pressione costante.

volume costante

$$Q_V = nc_V (T - T_{amb}) = 10.16 \text{ kJ}$$

pressione costante

$$Q_p = nc_p(T - T_{amb}) = 16.64 \text{ kJ}.$$