New uses for old tools

An introduction to mathematical programming

Dr Gianluca Campanella

29th April 2017

Contents

Mathematical programming

Linear and quadratic programs

Regression problems as LPs and QPs

An application to portfolio theory

Mathematical programming _____

What is mathematical programming?

- Also known as (mathematical) optimisation
- Goal is to select the 'best' element from some set of available alternatives

Typically we have an *objective* function, e.g. $f:\mathbb{R}^p \to \mathbb{R}$, that:

- Takes p inputs as a vector, e.g. $\mathbf{x} \in \mathbb{R}^p$
- Maps the input to some output value $f(\mathbf{x}) \in \mathbb{R}$

We want to find the *optimal* \mathbf{x}^* that minimises (or maximises) f

What is mathematical programming?

• Many ML methods rely on minimisation of cost functions

Linear regression

$$MSE(\hat{\beta}) = \frac{1}{n} \sum_{i} (\hat{y}_i - y_i)^2$$

where
$$\hat{y}_i = \mathbf{x}_i^{\mathsf{T}} \hat{\beta}$$

Logistic regression

$$\mathsf{LogLoss}(\hat{eta}) = -\sum_i \left[y_i \log \hat{p}_i + (1 - y_i) \log (1 - \hat{p}_i) \right]$$

where
$$\hat{p}_i = \operatorname{logit}^{-1}(\mathbf{x}_i^{\mathsf{T}}\hat{eta})$$

Local and global optima

A function may have *multiple* optima

Some will be *local*, some will be *global*

Hard optimisation problems

Consider these three functions:

$$f: \mathbb{R}^{100} \to \mathbb{R}$$

$$g\,:\,[0,1]^{100}
ightarrow\,\mathbb{R}$$

$$h\,:\,\{0,1\}^{100}\to\mathbb{R}$$

Which one is 'harder' to optimise, and why?

Combinatorial optimisation

Combinatorial problems like optimising $h: \{0,1\}^{100} \to \mathbb{R}$ are intrinsically hard

- Need to try all $2^{100} \approx 1.27 \times 10^{30}$ combinations
- Variable selection is a notable example

Side note

If h is continuous and we're actually constraining $\mathbf{x} \in \{0,1\}^{100}$, approximate solutions (relaxations) are normally easier to obtain

Numerical optimisation using directional information

Function is differentiable (analytically or numerically)

.1.

Gradient gives a search direction
and
Hessian can be used to confirm optimality

Convex functions

Function is *convex*

1

Any local minimum is also a global minimum

Constrained optimisation

What about $g:[0,1]^{100}\to\mathbb{R}$?

- Harder than $f: \mathbb{R}^{100} \to \mathbb{R}$... but not much
- Directional information still useful
- Need to ensure search strategy doesn't escape the feasible region

Linear and quadratic programs

Linear programs

$$\label{eq:continuity} \begin{aligned} \max_{\mathbf{x}} \ \mathbf{c}^{\mathsf{T}}\mathbf{x} \\ \text{s.t.} \ \mathbf{A}\mathbf{x} &\leq \mathbf{b} \\ \mathbf{x} &\geq \mathbf{0} \end{aligned}$$

- · Linear objective, linear constraints
- Linear objective is convex \leadsto global maximum
- An optimal solution need not exist:
 - Inconsistent constraints → infeasible
 - Feasible region unbounded in the direction of the gradient of the objective

Linear programs

 $\max_{x,y} 3x + 4y$ s.t. $x + 2y \le 14$ $3x - y \ge 0$ $x - y \le 2$

Linear programs

Linear programs can be solved efficiently using:

- Simplex algorithm
- Interior-point (barrier) methods

Performance is *generally* similar, but might differ drastically for specific problems

Convex quadratic programs

$$\min_{\mathbf{x}} \frac{1}{2} \mathbf{x}^{\mathsf{T}} \mathbf{Q} \mathbf{x} + \mathbf{c}^{\mathsf{T}} \mathbf{x}$$
s.t. $\mathbf{A} \mathbf{x} \leq \mathbf{b}$

$$\mathbf{x} \succeq \mathbf{0}$$

- · Quadratic objective, quadratic constraints
- Are quadratic objectives always convex?
- **Q** must be (semi)definite

Convex quadratic programs

Quadratic programs can be solved efficiently using:

- Active set method
- Augmented Lagrangian method
- Conjugate gradient method
- Interior-point (barrier) methods

LPs and QPs in Python

Many Python libraries exist:

Linear programming

- PuLP
- Google Optimization Tools
- clpy

Convex quadratic programming

- CVXOPT
- CVXPY

Regression problems as LPs and QPs

Linear regression

We can rewrite the least-squares problem

$$\min_{\mathbf{x}} ||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2 = \sum_{i} \varepsilon_i^2$$

as the convex quadratic objective

$$f(\mathbf{x}) = \mathbf{x}^\mathsf{T} \mathbf{A}^\mathsf{T} \mathbf{A} \mathbf{x} - 2 \mathbf{b}^\mathsf{T} \mathbf{A} \mathbf{x} + \mathbf{b}^\mathsf{T} \mathbf{b}$$

Side note

Setting the gradient to 0 and solving for \boldsymbol{x} recovers the normal equations:

$$\nabla f = 2\mathbf{A}^\mathsf{T}\mathbf{A}\mathbf{x} - 2\mathbf{A}^\mathsf{T}\mathbf{b} = 0 \quad \leadsto \quad \mathbf{A}^\mathsf{T}\mathbf{A}\mathbf{x} = \mathbf{A}^\mathsf{T}\mathbf{b} \quad \leadsto \quad \mathbf{x}^\star = (\mathbf{A}^\mathsf{T}\mathbf{A})^{-1}\mathbf{A}^\mathsf{T}\mathbf{b}$$

Regularised linear regression

Let's add a penalisation term:

$$\min_{\mathbf{x}} ||\mathbf{A}\mathbf{x} - \mathbf{b}||_{2}^{2} + \lambda ||\mathbf{x}||_{2}^{2}$$

Our quadratic objective becomes:

$$f(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \left(\mathbf{A}^{\mathsf{T}} \mathbf{A} + \lambda \mathbf{I}_{\boldsymbol{\rho}} \right) \mathbf{x} - 2 \mathbf{b}^{\mathsf{T}} \mathbf{A} \mathbf{x} + \mathbf{b}^{\mathsf{T}} \mathbf{b}$$

Side note

This is a good trick to use when the columns of **A** are not perfectly independent

Constraints on x

Nonnegativity

- $x \ge 0$
- Parameters known to be nonnegative, e.g. intensities or rates

Bounds

- $l \le x \le u$
- Prior knowledge of permissible values

Unit sum

- $\mathbf{x} \geq \mathbf{0}$ and $\mathbf{1}_p^\mathsf{T} \mathbf{x} = \mathbf{1}$
- Useful for proportions and probability distributions

Least squares vs least absolute deviations

Why do we minimise *squared* residuals?

- Stable, unique, analytical solution
- Not very robust!

Least squares vs least absolute deviations

Least absolute deviations

- Predates least squares by around 50 years (Bošković)
- Adopted by Laplace, but shadowed by Legendre and Gauss
- Robust
- Possibly multiple solutions

Robust regression

We can rewrite the LAD problem

$$\min_{\mathbf{X}} \, \left| \left| \, \mathbf{A} \mathbf{X} - \mathbf{b} \, \right| \right|_1 = \sum_i |\varepsilon_i|$$

as the linear program

$$\begin{aligned} & \underset{\mathbf{x}, \mathbf{t}}{\text{min}} \ \mathbf{1}_{n}^{\mathsf{T}} \mathbf{t} & \underset{\mathbf{x}, \mathbf{u}, \mathbf{v}}{\text{min}} \ \mathbf{1}_{n}^{\mathsf{T}} \mathbf{u} + \mathbf{1}_{n}^{\mathsf{T}} \mathbf{v} \\ & \text{s.t.} \ -\mathbf{t} \leq \mathbf{A} \mathbf{x} - \mathbf{b} \leq \mathbf{t} & \text{s.t. } \mathbf{A} \mathbf{x} + \mathbf{u} - \mathbf{v} = \mathbf{b} \\ & \mathbf{t} \in \mathbb{R}^{n} & \mathbf{u}, \mathbf{v} \geq \mathbf{0} \end{aligned}$$

Quantile regression

Let's now introduce a weight $\tau \in [0, 1]$

$$\min_{\mathbf{x},\mathbf{u},\mathbf{v}} \ {}^{\boldsymbol{\tau}} \mathbf{1}_{n}^{\mathsf{T}} \mathbf{u} + (\mathbf{1} - \boldsymbol{\tau}) \mathbf{1}_{n}^{\mathsf{T}} \mathbf{v}$$

s.t.
$$\mathbf{A}\mathbf{x} + \mathbf{u} - \mathbf{v} = \mathbf{b}$$

$$u, v \ge 0$$

This is the τ^{th} quantile regression problem

An application to portfolio theory

Example

- · Consider these two assets:
 - A Equally likely to go up 20% or down 10% in a year
 - A Equally likely to go up 20% or down 10% in a year
- Assume they're perfectly inversely correlated
- How would you allocate your money?

Example

- · Consider these two assets:
 - A Equally likely to go up 20% or down 10% in a year
 - A Equally likely to go up 20% or down 10% in a year
- Assume they're perfectly inversely correlated
- How would you allocate your money?

The portfolio 50% **A** + 50% **B** goes up 5% every year!

Mean-variance approach of Markowitz

Given historical ROIs, denoted $r_i(t)$ for asset i at time $t \leq T$, we can compute:

• The *reward* of asset *i*:

$$\mathsf{reward}_i = \frac{1}{T} \sum_t r_i(t)$$

• The *risk* of asset *i*:

$$risk_i = \frac{1}{T} \sum_{t} [r_i(t) - reward_i]^2$$

We can compute the same quantities for a portfolio $\mathbf{x} \geq \mathbf{0}$, $\mathbf{1}_p^\mathsf{T} \mathbf{x} = \mathbf{1}$

Mean-variance approach of Markowitz

Our objective is to maximise reward and minimise risk

Instead, we solve

$$\max_{\mathbf{x}} \ \text{reward}(\mathbf{x}) - \mu \ \text{risk}(\mathbf{x})$$

for multiple values of the risk aversion parameter $\mu \geq 0$

- Linear constraints: $\mathbf{x} \geq \mathbf{0}, \mathbf{1}_p^\mathsf{T} \mathbf{x} = \mathbf{1}$
- What about the objective function?

Mean-variance approach of Markowitz

Why is variance a reasonable measure of risk?

- · Variance-based measures are not monotonic
- Quantile-based measures (e.g. VaR) are not subadditive
- The loss beyond the VaR is ignored

Other risk measures

Artzner et al. provided a foundation for 'coherent' risk measures:

- Expected shortfall
- Conditional VaR (CVaR)
- α -risk

Other risk measures

Artzner et al. provided a foundation for 'coherent' risk measures:

- · Expected shortfall
- Conditional VaR (CVaR)
- α -risk

Linear programming solutions

- Portfolios with CVaR constraints are linear programs
- lpha-risk models are $lpha^{ ext{th}}$ quantile regression problems

Recap

- Optimisation is at the core of what we do!
- Some problems are much harder than others \leadsto convexity
- LPs and QPs are 'easy', with plenty of tools available
- Different commonly used regression models are actually LPs or QPs
- So are some portfolio allocation models!