Lineare Algebra

Vorlesung WiSe 23 Prof. Dr. Alexander Engel

November 1, 2023

Mittwoch, 18.10.23 1

1 Grundlagen

1.1 Aussagenlogik

Definition 1.1

Eine Aussage ist ein Satz, der entweder wahr oder falsch ist. Beispiele:

- "8 ist eine gerade Zahl." (wahre Aussage)
- "4 ist eine Primzahl." (falsche Aussage)
- "Es gibt unendlich viele Primzahlzwillinge." (bei dieser Aussage ist der Wahrheitsgehalt unbekannt. Nur weil wir den Wahrheitsgehalt noch nicht kennen heißt das nicht, dass es keine Aussge ist.)
- "Heute ist ein schöner Tag." (keine Aussage, da der Wahrheitsgehalt von der Person abhängt, die die Aussage macht.)

Aus schon gegebenen Aussagen können wir neue Aussagen bilden.

Definition 1.2

Es seien A und B Aussagen.

Α	В	$\neg A$	$A \wedge B$	$A \vee B$	$A \to B$	$A \leftrightarrow B$
W	w	f	W	W	W	W
w	f	f	f	w	f	f
f	w	w	f	w	W	f
f	f	w	f	f	W	W

 $^{^{1}\}mathrm{Die}$ Inhalte dieser Vorlesung beziehen sich ungefähr auf Seite 1 bis 3 aus Baer.

Bemerkung

- 1. $\neg A$ wird gesprochen 'nicht A'.
- 2. $A \wedge B$ wird gesprochen 'A und B'.
- 3. $A \vee B$ wird gesprochen 'A oder B'.
- 4. $A \Rightarrow B$ wird gesprochen 'A impliziert B', 'Aus A folgt B', 'A ist hinreichend für B', 'B ist notwendig für A', 'Wenn A dann B'.
- 5. $A \Leftrightarrow B$ wird gesprochen 'A äquivalent B', 'A ist notwendig und hinreichend für B', 'A genau dann wenn B'

Bemerkung

Warum folgt aus einer falschen Aussage etwas Wahres? ¹

In Beweisen müssen wir zeigen, dass etwas immer wahr ist. Wenn zum Beispiel n gerade ist, dann n^2 gerade. Wenn n ungerade, dann müssten wir diesen Fall im Beweis auch abdecken. Durch die Definition der Implikation können wir diesen Fall aber ignorieren, da die Aussage dann automatisch wahr ist.

Lemma 1.3

Sei A eine Aussage. Dann ist $A \vee \neg A$ wahr.

Beweis

Wir untersuchen die zwei Fälle für A: A ist wahr oder A ist falsch. Wir betrachten die Wahrheitstabelle von $A \vee \neg A$

A	¬ A	$A \lor \neg A$
W	f	W
f	w	w

Hinweis: Ein Beweis per Wahrheitstafel ist eine valide Beweismethode.

Hinweis: Eine Tautologie ist eine Aussage, die immer wahr ist.

Bemerkung

Das ¬ (Negation) Zeichen bindet stärker als die anderen Verknüpfungen. Beispiel: ¬ $A \vee B$ ist äquivalent zu (¬A) $\vee B$

Außerdem gibt es die Konvention, dass das 'und' und das 'oder' stärker bindet als die Implikation.

Die Reihenfolge der Stärke der Bindung ist also: $\neg, \wedge, \vee, \rightarrow$

 $^{^{1}{}m Wikipedia}$

Lemma 1.4

Es seien $A,\ B$ und C Aussagen. Dann sind die folgenden Aussagen jeweils äquivalent:

- 1. $A \to B$ und $\neg A \lor B$
- 2. $A \leftrightarrow B \text{ und } (A \to B) \land (B \to A)$
- 3. A und $\neg \neg A$
- 4. A und $\neg A \rightarrow$ falsch
- 5. $A \to B$ und $\neg B \to \neg A$
- 6. $A \wedge B$ (Konjunktion) und $B \wedge A$
- 7. $A \vee B$ (Disjunktion) und $B \vee A$
- 8. $(A \wedge B) \wedge C$ und $A \wedge (B \wedge C)$
- 9. $(A \vee B) \vee C$ und $A \vee (B \vee C)$
- 10. $A \wedge (B \vee C)$ und $(A \wedge B) \vee (A \wedge C)$
- 11. $A \vee (B \wedge C)$ und $(A \vee B) \wedge (A \vee C)$
- 12. $\neg (A \land B)$ und $\neg A \lor \neg B$
- 13. $\neg (A \lor B)$ und $\neg A \land \neg B$

Bemerkungen

Die linke Aussage ist äquivalent \leftrightarrow zur rechten Aussage und damit immer wahr.

zu 1: Man kann in a und b auch statt \rightarrow und \leftrightarrow auch \lor und \land nutzen.

zu 4: Aufbau eines ${\it Widerspruchsbeweises}.$ d rechtfertigt also den Widerspruchsbeweis.

zu 5: Kontraposition von a.

zu 6 und 7: Kommutativit at von \wedge .

zu 8 und 9: Assoziativität von \land und \lor . Wenn ich mehrere Aussagen mit \land oder \lor verknüpfe, dann ist es egal in welcher Reihenfolge man die Klammern setzt (und ob man sie setzt).

zu 10 und 11: Distributivit "at" von \wedge und \vee .

zu 12 und 13: De Morgan'sche Regel (oder 'Gesetze').

Beweis (Aussage 1)

Beweis per Wahrheitstafel.

Α	В	¬ A	$A \to B$	$\neg A \lor B$
w	w	f	W	W
w	f	f	f	f
f	w	w	W	w
f	f	w	W	w

Wenn wir die letzten beiden Spalten vergleichen, sehen wir, dass die Aussagen äquivalent sind.

Damit ist die Aussage bewiesen. \square

Donnerstag, $19.10.23^{2}$

1.2 Mengenlehre

Definition 1.5

Nach Cantor 1895: "Unter einer Menge versteht man jede Zusammenfassung von bestimmten wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens (welche die Elemente der Menge genannt werden) zu einem Ganzen." 3

Hinweis: diese Definition wäre heute nicht mehr zulässig, da sie zu ungenau ist. Intuitiv: Eine Menge ist ein Sack, in dem Dinge sind. Notation: $a \in M$ bedeutet, dass a ein Element von M ist. Andernfalls schreiben wir $a \notin M = \neg (a \in M)$.

Beispiele

- 1. $\mathbb{N} = \{1, 2, 3, 4, 5, ...\}$ (Menge der natürlichen Zahlen)
- 2. $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$ (Menge der ganzen Zahlen)
- 3. $\emptyset = \{\}$ (leere Menge)
- 4. $A = \{N, 1, \emptyset\}$

Hinweis: die letzte Menge hat 3 Elemente. Außerdem: nutzt man die 'Sack Analogie' wird auch klar, wieso die leere Menge ein Element einer Menge sein kann. Man stellt sich einen Sack vor, der in einem anderen Sack liegt.

Wichtig: In Beispiel A gilt: $1 \in A$ und $N \in A$ aber $2 \notin A$. Man muss klar zwischen Elementen einer Menge und Mengen unterscheiden.

Man beachte außerdem:

- 1. Für $M:=\{1,2,3\}$ und $N:=\{1,2,3\}$ gilt M=N. Die Reihenfolge der Elemente ist egal.
- 2. Für $M := \{1, 1\}$ und $N := \{1\}$ gilt M = N.

Aussagen über Mengen werden oft über Quantoren ausgeführt.

²vgl. S. 11 - 18 aus Baer.

³Cantor

Definition 1.7

Der Allquantor:

 $\forall m \in M : A(m)$ bedeutet: Für alle m in M gilt A(m).

Der Existenzquantor:

 $\exists m \in M : A(m)$ bedeutet: Es gibt mindestens ein m in M mit A(m).

 $\exists ! m \in M : A(m)$ bedeutet: Es gibt genau ein m in M mit A(m).

Hinweis: \exists ! hat keine eigene Bezeichnung.

Beispiel 1.8

- 1. $\exists_n \in \mathbb{Z} : n^2 = 25 \text{ (wahr)}$
- 2. $\exists_n! \in \mathbb{Z} : n^2 = 25 \text{ (falsch)}$
- 3. $\forall_q \in \mathbb{Q} \exists_n \in \mathbb{N} : q \leq n \text{ (wahr)}$
- 4. $\exists_n \in \mathbb{N} \forall_q \in \mathbb{Q} : q \leq n \text{ (falsch)}$

In 3 und 4 sieht man: die Reihenfolge der Quantoren ist wichtig. Beim Vertauschen können komplett andere Aussagen entstehen.

Regel 1.9

- 1. $\neg(\forall m \in M : A(m))$ ist äquivalent zu $\exists m \in M : \neg A(m)$
- 2. $\neg(\exists m \in M : A(m))$ ist äquivalent zu $\forall m \in M : \neg A(m)$

Das heißt um eine Aussage zu negieren, muss man den Quantor wechseln und die Aussage negieren!

Definition 1.10

Es seien M und N Mengen. Dann ist $M \subset N$ (M ist Teilmenge von N) wenn folgendes gilt:

$$m \in M \Rightarrow m \in N$$

$$\forall m \in M : m \in N$$

Beispiel 1.11

Es gilt $\mathbb{N} \subset \mathbb{Z}$.

Lemma 1.12

Für jede Menge M gilt $\emptyset \subset M$.

Beweis

Wir müssen die Aussage $x \in \emptyset \Rightarrow x \in M$ als immer wahr einsehen (Tautologie). Da $x \in \emptyset$ immer falsch ist, ist die Implikation $x \in \emptyset \Rightarrow x \in M$ immer wahr. \square

Anmerkung

 $\emptyset \in M$ gilt nicht unbedingt. Das hängt von der Menge M ab, aber die leere Menge ist immer Teilmenge von M. Hier sieht man erneut die Wichtigkeit der Unterscheidung von Mengen und Elementen.

Bemerkung 1.13

Zwei Mengen M und N sind gleich, wenn folgendes gilt:

$$(M \subset N) \land (N \subset M)$$

Das wird sehr häufig in Beweisen benutzt um die Gleichheit von Mengen zu zeigen.

Beispiel

Die Gleichungen $x^2 = 4$ und |x| = 2 haben die gleiche Lösungsmenge. Schritt 1: Sei x eine Lösung von $x^2 = 4$. Dann ist |x| = 2. Schritt 2: Sei x eine Lösung von |x| = 2. Dann ist $x^2 = 4$.

Definition 1.14

Es seien M und N Mengen. Wir definieren die folgenden Mengen:

$$M \cup N \leftrightarrow x \in M \lor x \in N \ (Vereinigung)$$

 $M \cap N : \leftrightarrow x \in M \land x \in N \ (Durchschnitt)$
 $M \setminus N : \leftrightarrow x \in M \land x \notin N \ (Differenz)$

Konvention: bei Aussagen sagt man eher, dass sie äquivalent sind. \leftrightarrow kann aber durch := ersetzt werden ohne falsch zu sein.

Lemma 1.15

Es seien M und N Mengen. Dann gilt:

$$M \cap (N_1 \cup N_2) = (M \cap N_1) \cup (M \cap N_2)$$

$$M \cup (N_1 \cap N_2) = (M \cup N_1) \cap (M \cup N_2)$$

$$M \setminus (N_1 \cup N_2) = (M \setminus N_1) \cap (M \setminus N_2)$$

$$M \setminus (N_1 \cap N_2) = (M \setminus N_1) \cup (M \setminus N_2)$$

Es sind also eine Art Distributivgesetze.

Beweis

Wir beweisen nur die erste Aussage. Der Rest wird in der Übung gemacht. Es gilt folgende Kette von Äquivalenzen:

$$x \in M \cap (N_1 \cup N_2) \overset{1.14b}{\Leftrightarrow} x \in M \wedge x \in (N_1 \vee N_2)$$

$$\overset{1.14a}{\Leftrightarrow} x \in M \wedge (x \in N_1 \vee x \in N_2)$$

$$\overset{1.4j}{\Leftrightarrow} (x \in M \wedge x \in N_1) \vee (x \in M \wedge x \in N_2)$$

$$\overset{1.14b}{\Leftrightarrow} (x \in M \cap N_1) \vee (x \in M \cap N_2)$$

$$\overset{1.14a}{\Leftrightarrow} x \in (M \cap N_1) \cup x \in (M \cap N_2)$$

Mittwoch, 25.10.23 ⁴

Definition 1.16

Sei M
 eine beliebige Menge. Die Potenzmenge $\mathcal{P}(M)$ ist die Menge aller Teilmengen von M, d.h.

$$\mathcal{P}(M) := \{U : U \subset M\}$$

Hinweis: die Formel ist nicht notwendiger Teil der Definition. Der Satz davor würde als Definition ausreichen.

Bemerkung und Beispiele 1.17

a) in Lemma 1.12 haben wir gezeigt, dass $\emptyset \subset M$ für jede Menge M gilt. Es ist also immer $\emptyset \in \mathcal{P}(M)$.

Hinweis: man beachte den Unterschied zwischen dem Symbol \subset und \in . Im ersten Fall ist es eine Teilmenge, im zweiten Fall ist es ein Element aber auch eine Teilmenge.

b) Für
$$M = \{1, 2\}$$
 gilt $\mathcal{P}(M) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$
Hinweis: anstatt von $\{1, 2\}$ kann man auch M schreiben.

Frage: Wie lautet die Potenzmenge von \emptyset ?

$$\mathcal{P}(\emptyset) = \{\emptyset\}$$

Erklärung: die Frage ist, für welche U gilt $U\subset\emptyset$. Die Antwort ist: nur für \emptyset , denn für $U\subset\emptyset$ gilt:

$$x \in U \Rightarrow x \in \emptyset$$

 $^{^4\}mathrm{vgl.}$ S. 11 - 18 aus Baer.

Da U aber die Leere Menge ist, ist die Implikation nur wahr, wenn $x \in U$ falsch ist ('aus Falschem folgt Wahres'). Das ist aber nur für $x \in \emptyset$ der Fall. Also ist die Aussage nur für $U = \emptyset$ wahr. Damit ist die einzige Teilmenge von \emptyset die leere Menge.

Definition 1.18

Es seien M und N Mengen. Dann ist das $Kartesische Produkt <math>M \times N$ die Menge aller geordneten Paare (a,b) mit $a \in M$ und $b \in N$:

$$M \times N := \{(a, b) : a \in M \land b \in N\}$$

Bemerkung und Beispiele 1.19

a) in der Regel gilt $(a, b) \neq (b, a)$ es sei denn a = b.

Hinweis: (a, b) ist keine Menge, sondern ein geordnetes Paar. Diese Notation bezeichnet ein eigenständiges Objekt.

b) Sei
$$M = \{1, 2, 3\}$$
 und $N = \{a, b\}$. Dann ist $M \times N = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$

c) Sei $M = \{1\}$ und $N = \{1, 2\}$. Dann ist $M \times N = \{(1, 1), (1, 2)\}$ Man beachte: in der Regel gilt $M \times N \neq N \times M$. In Beispiel c) gilt:

$$N \times M = \{(1,1),(2,1)\}$$

Gilt M = N, dann ist natürlich $M \times N = N \times M$.

Aufgabe: Es sei M eine Menge. Was ist das Kartesische Produkt $M \times \emptyset$?

Lösung: $M \times \emptyset = \emptyset$

Begründung: $M \times \emptyset = \{(a,b) : a \in M \land b \in \emptyset\}$. Da $b \in \emptyset$ immer falsch ist, ist die gesamte Aussage immer falsch. Damit ist die Menge leer. Der Teil hinter dem : wird als *membership test* bezeichnet. Wenn dieser falsch ist, ist ein Element kein Element der Menge. In unserem Beispiel ist dieser Test immer falsch. Also ist das Kartesische Produkt leer.

Hinweis: Wenn das karthesische Produkt in dem Beispiel undefiniert wäre, dann wäre die Definition nicht korrekt und müsste die leere Menge als Ausnahme beinhalten.

d) Es gilt immer $M \times \emptyset = \emptyset$ und $\emptyset \times M = \emptyset$.

Anmerkung 1.20

Man kann auch ebenso $M \times N \times Q$ definieren als die Menge aller Tripel (a, b, c) mit $a \in M$, $b \in N$ und $c \in Q$. Ebenso natürlich auch $M_1 \times M_2 \times ... \times M_n$ für n-viele Mengen $M_1, M_2, ..., M_n$. In der linearen Algebra begegnet uns oft \mathbb{R}^n

was eine Notationsabkürzung für $\mathbb{R} \times \mathbb{R} \times ... \times \mathbb{R}$ (n-mal) ist. Aus der Schule kennen wir bereits das kartesische Koordinatensystem. Dieses ist nichts anderes als \mathbb{R}^2 .

Definition 1.21

Unter der $M\ddot{a}chtigkeit$ bzw. der $Kardinalit\ddot{a}t$ einer Menge M verstehen wir die Anzahl der Elemente von M.

Notation: |M|

Beispiele 1.22

- a) Für $M := \{a, b, Blauer Elefant\}$ gilt |M| = 3.
- b) Für $M = \emptyset$ gilt |M| = 0.
- c) $|\mathbb{N}| = \infty$ und ebenso $|\mathbb{R}| = \infty$.

Hinweis: eigentlich sind es 2 unterschiedliche Unendlichkeiten.

Lemma 1.23

a) Für jede Menge M gilt $|\mathcal{P}(M)| = 2^{|M|}$.

Das ist auch der Grund, warum Potenzmenge Potenzmenge heißt. Die Anzahl der Elemente der Potenzmenge ist die Potenz von 2.

b) Für Mengen M und N gilt $|M \times N| = |M| \cdot |N|$.

Beweis

Salopp: wir müssen für alle Teilmengen zeigen, dass sie entweder in der Potenzmenge sind oder nicht, d.h. wir haben für jede denkbare Kombination der Elemete der einzelnen Teilmengen zwei Möglichkeiten: entweder ist das Element in der Menge oder nicht.

Das heißt wir haben $2 \times 2 \times ... \times 2$ viele Möglichkeiten. Also $2^{|M|}$ viele. Der komplette korrekte Beweis ist wesentlich länger.

1.3 Abbildungen

Definition 1.24

Es seien M und N Mengen. Eine Abbildung (oder auch Funktion) $f: M \to N$ ist eine Vorschrift, die jedem Element $x \in M$ genau ein Element $f(x) \in N$ zuordnet.

M heißt Definitionsbereich und N heißt Zielbereich oder auch Wertebereich. Hinweis: diese Definition ist nicht ganz korrekt, da wir noch nicht wissen, was eine Vorschrift ist.

Bemerkungen

Zu dem Datum (?) einer Funktion f gehört nicht nur die Vorschrift, sondern auch ihr Definitionsbereich und ihr Zielbereich.

Die Funktionen $f: \mathbb{N} \to \mathbb{N}, n \mapsto n^2$ und $g: \mathbb{N} \to \mathbb{R}, n \mapsto n^2$ sind nicht gleich, da sie unterschiedliche Zielbereiche haben.

Eine Vorschrift kann alles mögliche sein.

Beispiele 1.25

a)
$$f: \mathbb{R} \to \mathbb{R}, (x, y) \mapsto x + y$$

b)
$$f: \mathbb{R} \to \mathbb{N}, x \mapsto \begin{cases} 1 & \text{falls } x \in Q \\ 0 & \text{sonst} \end{cases}$$

c) $f: M \to M, x \mapsto x$

Diese Abbildung heißt Identität von M oder auch identische Abbildung.

Beispiel und Nicht-Beispiel 1.26

Bemerkung 1.27

Eine Abbildung $f:M\to N$ ist eine Teilmenge des kartesischen Produktes $M\times N$ mit

$$\forall_x \in M \exists_y \in N : (x, y) \in f$$

Hinweis: Wenn ich ein geordnetes Paar habe wird der erste Eintrag x auf den zweiten Eintrag y abgebildet.

Donnerstag, 26.10.23 ⁵

Definition 1.28

Es sei $f:M\to N$ eine Abbildung und $M'\subset M$ eine Teilmenge von M. Dann ist das Bild von M' unter f definiert als

$$f(M') := \{ f(x') : x' \in M' \} \subset N$$

Bemerkung 1.29

im Falle M' = M heißt f(M') auch Bild von f.

Definition 1.30

Es sei $f:M\to N$ eine Abbildung und $N'\subset N$ eine Teilmenge von N. Dann ist das Urbild von N' unter f definiert als

$$f^{-1}(N') := \{x \in M : f(x) \in N'\} \subset M$$

Hinweis: $f^{-1}(N)$ hat 3 Bedeutungen: das Urbild, die Umkehrfunktion (falls f umkehrbar) und manchmal wird es benutzt um das Reziproke zu bezeichnen.

 $^{^5}$ vgl. S. 19 - 23 aus Baer.

Beispiele 1.31

a) Für $f: \mathbb{N} \to \mathbb{N}, n \mapsto n^2$ ist das Bild von f die Menge aller Quadratzahlen. Hinweis: das Bild kann man sich vorstellen als all das, was f produziert, also den Output von f.

b) Für $f: \mathbb{R} \to \mathbb{R}, (x,y) \mapsto x+y$ ist beispielsweise $f^{-1}(\{0\}) = \{(x,-x): x \in \mathbb{R}\}$ Hinweis: dies ist die Addition in \mathbb{R} . Außerdem muss die 0 in $\{0\}$ stehen, da wir in das Urbild eine Menge geben müssen und nicht ein einzelnes Element.

c) Für $f: \mathbb{N} \to \mathbb{N}, n \mapsto 2n$ ist $f^{-1}(\{3, 5, 7\}) = \emptyset$

Lemma 1.32

Es sei $f:A\to B$ eine Abbildung.

a) Es seien ferner $A_1, A_2 \subset A$ Teilmengen von A. Dann gilt:

i)
$$f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$$

ii)
$$f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2)$$

b) Es seien ferner $B_1, B_2 \subset B$ Teilmengen von B. Dann gilt:

i)
$$f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$$

ii)
$$f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$$

Beweis

Wir beweisen exemplarisch nur i) von a).

Schritt 1: Wir zeigen

$$f(A_1 \cup A_2) \subset f(A_1) \cup f(A_2)$$

Sei also $x \in f(A_1 \cup A_2)$. Wir müssen zeigen, dass $x \in f(A_1) \cup f(A_2)$ gilt. Es ist

$$f(A_1 \cup A_2) = \{ f(x') : x' \in A_1 \cup A_2 \}$$

(Definition 1.28). Für unser x heißt das

$$\exists x' \in A_1 \cup A_2 : x = f(x')$$

Für dieses x' gilt $x' \in A_1$ oder $x' \in A_2$.

Fall 1: $x' \in A_1$.

Wegen x = f(x') gilt $x \in f(A_1)$. Dann gilt ebenso

$$x \in f(A_1) \lor x \in f(A_2), \text{ d.h. } x \in f(A_1) \cup f(A_2)$$

Fall 2: $x' \in A_2$.

Wegen x = f(x') gilt $x \in f(A_2)$. Dann gilt ebenso

$$x \in f(A_1) \lor x \in f(A_2), \text{ d.h. } x \in f(A_1) \cup f(A_2)$$

Schritt 2: Wir führen diesen Schritt weniger ausführlich durch. Zu zeigen ist also

$$f(A_1) \cup f(A_2) \subset f(A_1 \cup A_2)$$

Sei $x \in f(A_1) \cup f(A_2)$. Dann gibt es ein $x' \in A_1$ mit x = f(x') oder ein $x' \in A_2$ mit x = f(x'). In beiden Fällen gilt dann $x \in f(A_1 \cup A_2)$. \square

1.4 Surjektiv und Injektiv

Definition 1.33

Eine Abbildung $f: M \to N$ heißt *surjektiv*, wenn gilt:

$$\forall y \in N \exists x \in M : f(x) = y$$

Anders ausgedrückt: f(M) = N. Das Bild der Funktion ist also die gesamte Zielmenge. Nochmal anders ausgedrückt:

$$\forall y \in N : |f^{-1}(\{y\})| \ge 1$$

Beispiele 1.34

- a) Die Abbildung $f: \mathbb{Z} \to \mathbb{N}, m \mapsto |m|$ ist surjektiv.
- b) Die Abbildung $f: \mathbb{Z} \to \mathbb{Z}, m \mapsto |m|$ ist nicht surjektiv.

Hier sieht man wie wichtig der Zielbereich für die Surjektivität ist.

Definition 1.35

Eine Abbildung $f: M \to N$ heißt *injektiv*, wenn gilt:

$$\forall x_1, x_2 \in M : (f(x_1) = f(x_2) \Rightarrow x_1 = x_2)$$

Die Kontraposition der Definition macht die Aussage etwas anschaulicher:

$$\forall x_1, x_2 \in M : (x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2))$$

Anders ausgedrückt:

$$\forall y \in N : |f^{-1}(\{y\})| \le 1$$

Hinweis zu den Klammern: alles was nach einem Doppelpunkt kommt kann man sich als geklammert vorstellen. Vor dem Doppelpunkt stehen Quantoren, welche für die Aussagen hinter dem Doppelpunkt gelten.

Beispiele 1.36

- a) Die Abbildung $f: \mathbb{N} \to \mathbb{N}, m \mapsto m^2$ ist injektiv.
- b) Die Abbildung $f: \mathbb{Z} \to \mathbb{N}, m \mapsto m^2$ ist nicht injektiv.

Definition 1.37

Eine Abbildung heißt bijektiv, wenn sie injektiv und surjektiv ist.

Beispiele 1.38

- a) Für eine Menge M ist die Identität $id_M: M \to M$ bijektiv (siehe Beispiel 1.25c)
- b) Die Abbildung $f: \mathbb{Z} \to \mathbb{Z}, m \mapsto m^3$ ist injektiv aber nicht surjektiv und somit nicht bijektiv. Auch hier haben wir wieder ein Beispiel dafür, dass bei gleicher Vorschrift sowohl Definitions- als auch Zielbereich wichtig sind. Das Arbeiten mit Injektivität und Surjektivität ist zu Beginn schwierig. Die Begriffe sind aber sehr wichtig.

Lemma 1.39

Sei $f: X \to Y$ eine Abbildung und $A \subset X, B \subset Y$ Teilmengen. a) Es gilt stets $f^{-1}(f(A)) \supset A$.

b) Es ist f injektiv genau dann, wenn:

$$\forall_A\subset X: f^{-1}(f(A))=A$$

- c) Es gilt stets $f(f^{-1}(B)) \subset B$.
- d) Es ist f surjektiv genau dann, wenn:

$$\forall_B \subset Y : f(f^{-1}(B)) = B$$

Beweis

Hier nur a). Sei also $x \in A$. Es ist $f^{-1}(f(A)) = \{x \in X : f(x) \in f(A)\}$ laut Definition des Urbilds 1.38. Wegen $x \in A$ gilt $f(x) \in f(A)$, d.h. $x \in f^{-1}(f(A))$.

Mittwoch, $01.11.23^{6}$

Definition 1.40

Es seien $g:X\to Y$ und $f:Y\to Z$ Abbildungen. Dann heißt:

$$f \circ g: X \to Z, x \mapsto f(g(x))$$

die Komposition oder Verkettung von f mit g. Hinweis: wenn "f nach g" gesagt wird, ist $f \circ g$ gemeint, nicht $g \circ f$.

⁶vgl. S. ? aus Baer.

Beispiele 1.41

a) Sei $g: \mathbb{R} \to \mathbb{R}, x \mapsto x+2$ und $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$. Dann ist

$$(f \circ g)(x) = f(g(x)) = f(x+2) = (x+2)^2$$

andererseits: $(g \circ f)(x) = g(f(x)) = g(x^2) = x^2 + 2$

Hinweis: wir könnten auch $f: \mathbb{R} \to \mathbb{R}, f(a) = a^2$ definieren. Trotz verändertem Variablen Namen handelt es sich nach wie vor um die gleiche Funktion. Durch das Ändern des Variablen Namens wird alles etwas übersichtlicher.

b) Sei
$$g: \mathbb{R}_{\infty} \to \mathbb{R}$$
, $g(x) = \frac{x}{x+1}$ und $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x-1$. Dann ist
$$f \circ g: \mathbb{R}_{\infty} \to \mathbb{R}$$
, $x \mapsto \frac{x}{x+1} - 1$

Bemerkung 1.42

Es ist $f \circ g$ nur dann definiert, wenn der Zielbereich von g <u>exakt</u> mit dem Definitionsbereich von f übereinstimmt (Beispiel 1.41b).

Sind sowohl $f \circ g$ als auch $g \circ f$ definiert, brauchen sie in der Regel nicht übereinstimmen. (Beispiel 1.41a)

Bemerkung 1.43

(Hinweis: Die Klammern bei den folgenden Dreier-Kompositionen fehlen, weil wir die Komposition von 2 Abbildungen definiert haben, nicht aber von 3.) Seien $h:A\to B,g:B\to C$ und $f:C\to D$ Abbildungen. Es kann dann $f\circ (g\circ h)$ interpretiert werden als $(f\circ g)\circ h$ oder $f\circ g\circ h$. Das ist aber dasselbe: Für $a\in A$ gilt:

$$((f \circ g) \circ h)(a) = (f \circ g)(h(a)) = f(g(h(a)))$$

und auch

$$(f \circ (g \circ h))(a) = f((g \circ h)(a)) = f(g(h(a)))$$

Die beiden Klammerungen produzieren dasselbe, ähnlich wie beim Asoziaitivgesetz.

Hinweis: Wenn wir 2 Abbildungen klammern, erhalten wir eine neue Abbildung.

Lemma 1.44

Es seien $g: X \to Y$ und $f: Y \to Z$ Abbildungen.

- a) Ist $f \circ g$ surjektiv, so ist f surjektiv.
- b) Ist $f \circ g$ injektiv, so ist g injektiv.

Beweis

- a) Sei $z \in Z$. Da $f \circ g$ surjektiv ist, gibt es ein $x \in X$ mit $(f \circ g)(x) = z$. Das heißt aber f(g(x)) = z, d.h. z ist im Bild von f. \square
- b) Seien $x_1, x_2 \in X$ mit $g(x_1) = g(x_2)$. Dann ist auch $f(g(x_1)) = f(g(x_2))$, d.h. $(f \circ g)(x_1) = (f \circ g)(x_2)$. Da $f \circ g$ injektiv ist, folgt $x_1 = x_2$. Das bedeutet, dass g injektiv ist. Hinweis: Auf Grund der Definition von Injektiv sieht man sofort, dass aus $(f \circ g)(x_1) = (f \circ g)(x_2)$ folgt, dass $x_1 = x_2$ gilt. \square

Lemma 1.45

Es sei $f: M \to N$ eine Abbildung.

- a) f ist surjektiv genau dann, wenn es eine Abbildung $g:N\to M$ gibt (man beachte, dass sich Ziel- und Definitionsbereich gedreht haben), mit $f\circ g=id_N$. Hier sagt man g ist die Rechtsinverse von f.
- b) f ist injektiv genau dann, wenn es eine Abbildung $g: N \to M$ gibt, mit $g \circ f = id_M$. Hier sagt man g ist die *Linksinverse* von f.
- c) f ist bijektiv genau dann, wenn es eine Abbildung $g:N\to M$ gibt, mit $f\circ g=id_N$ und $g\circ f=id_M$. Man sagt hier auch g ist die *Umkehrabbildung* oder *Inverse* von f. Vor allem dieses c) wird häufig benutzt.

Beweis

a)

Hinweis: wir starten mit der "schnellen" Richtung.

Beweisschritt 1:

Es existiere ein $g: N \to N$ mit $f \circ g = id_N$ (da id_N bijektiv ist, ist f nach 1.44b surjektiv ist und f injektiv ist, was aber irrelevant ist). Da id_N surjektiv ist, ist f nach 1.44a surjektiv.

 $Beweisschritt\ 2:$

Sei f surjektiv. Wir konstruieren g wie folgt (Hinweis: das Problem ist, dass einige Elemente in N von mehreren Elementen aus M getroffen werden können. Da wir in einer "Rückwärts" Abbildung g, die etwas mit f zu tun haben muss, nicht ein Element aus N auf mehrere Elemente aus M abbilden können, müssen wir uns für eines entscheiden. Das machen wir mit der Auswahl von g):

Für $y \in N$ existiert ein (von y abhängiges) Element $x_y \in M$ mit $f(x_y) = y$ da f surjektiv ist. Wir definieren dann $g(y) := x_y$ für jedes $y \in N$. Damit ist dei Abbildung g definiert. (Hinweis: wir wissen eigentlich nicht was g macht, aber wir wissen, dass g existiert. Das ist ein wichtiger Unterschied.) Dann gilt:

$$(f \circ q)(y) = f(q(y)) = f(x_y) = y = id_N(y)$$

b)

Beweisschritt 1:

Es existiere ein $g: N \to N$ mit $g \circ f = id_M$. Da id_M injektiv ist, ist f nach 1.44b injektiv.

Beweisschritt 2:

(Hinweis: auch hier ist wieder die Idee, dass wir die Pfeile, die von M nach N gehen, umdrehen. Das Problem ist hier, dass wir alle Elemente aus N abbilden müssen. Bisher werden durch f nicht alle Elemente in N getroffen. Unsere Lösung ist, dass wir die bisher von f nicht getroffenen Elemente auf Elemente in M abbilden, die bereits durch f nach N abbilden. Wir treffen diese Elemente also mehrmals.)

Sei f injektiv. Wir wählen ein $x_0 \in M$. Dieser Schritt funktioniert nur, wenn $M \neq \emptyset$. Die Abbildung $q: N \to M$ definieren wir als:

$$g(y) := \begin{cases} (\text{eindeutiges}) \ x \in M \ \text{mit} \ f(x) = y & \text{falls} \ y \in f(M) \\ x_0 & \text{sonst} \end{cases}$$

Dann gilt für $x \in M$:

$$(g \circ f)(x) = g(f(x)) = g(y) = x$$
 (der 1. Fall in der Definition von g)
 $(id_M(x) = x)$?

c)

Beweisschritt 1:

Es existiere ein $g: N \to M$ mit $f \circ g = id_N$ und $g \circ f = id_M$. Dann ist f nach a) und b) surjektiv und injektiv, also bijektiv.

Beweisschritt 2:

Hinweis: hier könnte man auch auf die Idee kommen a) und b) zu benutzen. Das Problem ist jedoch, dass wir verschiedene g erhalten könnten. Wir wissen nicht, ob die g aus a) und b) gleich sind.

Sei f bijektiv. Aus a) folgt die Existenz eines $g_1: N \to M$ mit $f \circ g_1 = id_N$. Aus b) folgt die Existenz eines $g_2: N \to M$ mit $g_2 \circ f = id_M$. Wir zeigen, dass $g_1 = g_2$ gilt:

$$g_1 = id_M \circ g_1 = (g_2 \circ f) \circ g_1 = g_2 \circ (f \circ g_1) = g_2 \circ id_N = g_2$$

Bemerkung 1.46

Aus dem Beweis von Lemma 1.45c) folgt, dass die Umkehrabbildung f^{-1} einer bijektiven Abbildung eindeutig ist.

Die Rechts- bzw. Linksinverse einer Abbildung ist im Allgemeinen nicht eindeutig. Das sieht man auch in den Beweisen. In a) sieht man Beispielsweise, dass die Eindeutigkeit schief geht, da wir uns für ein Element entscheiden mussten.

References

 $[1] \ \ \text{Baer, Christian}, \ \textit{Lineare Algebra und analytische Geometrie}, \ \text{Springer 2018}.$