

Side 1 av 21

Faglig kontakt under eksamen:

Navn: Bjarne E. Helvik

Tlf: 92667

EKSAMEN I EMNE SIE5015 PÅLITELIGHET OG YTELSE MED SIMULERING

Lørdag 15. desember 2001 Kl. 0900 - 1300

BOKMÅL UTGAVE

Hjelpemidler:

B2-Typegodkjent kalkulator, med tomt minne, i henhold til utarbeidet liste.

Graham Birtwisle: DEMOS - A system for Discrete Event Modelling on Simula. (Personlige annotering i DEMOS bok er tillatt)

Formelsamling i fag SIE5015 Pålitelighet og ytelse med simulering.

NB! Formelsamlingen er vedlagt på side 8.

Sensuren faller i uke 2.

En nettoperatør tilbyr en leid linje gjennom sitt nett. En skisse av nettet er gitt i figur 1 under. Tjenesten er tilgjengelig så lenge det er forbindelse ende-til-ende, altså mellom brukerne i figuren.

Figur 1 Tjenestekvalitet i et nett.

Brukerne, eller kundene, er tilkoplet nettet via aksesslinje L_i direkte til (ingress) nettelement NE_i . Informasjonen overføres som pakker fra bruker A-> bruker B (og C og D likeså). Kvaliteten på tjenesten som brukerne opplever vil være gitt av bla. tilgang på transportkapasitet, forsinkelsen gjennom nettet, tilgjengeligheten til aksesspunktene, nettelementene (ruterne), og linkene.

Nettet består av 4 nettelementer og har en dual-ring topologi. I ordinær operasjon, dvs. ingen feil i nettet, vil all trafikk bruke primær-ringen mens sekundær-ringen vil være en reserve-ring som kan benyttes hvis feil i nettelementer eller linkene mellom disse har inntruffet. I figur 2 er det vist hvordan trafikken rutes fra bruker A til C i normal operasjon og når linken, L_{23} , mellom nett-element 2 og 3 er brutt. Merk at tjenesten leid linje mellom A og C er tilgjengelig i begge tilfeller.

Figur 2 "Loop" rundt linkfeil.

I det etterfølgende skal vi se nærmere på ulike aspekter ved kvaliteten til dette nettet og særlig med hensyn på ende-til-ende leid linje tjenesten.

Oppgave 1 Ytelse i ett nettelement

Først skal vi se nærmere på ett nettelement, NE_i , i = 1, 2, 3, 4 for figur 1. I figur 3 er mer detaljer i ett nettelement gjengitt.

Som nevnt i innledningen vil normalt all trafikk føres på primær-ringen mens sekundærringen vil kun være en reserve-ring. Trafikk er informasjon overført som pakker. I nettelementet er det buffer som kan lagre *B* pakker. Pakker som ankommer når bufferet er fullt vil bli kastet. Pakkeintensiteten er ikke følsom for pakketap og variable bufferforsinkelse.

Figur 3 Håndetering i ett knutepunkt

Anta at bruker X genererer pakker med intensitet λ pluss at nettelement oppstrøms

genererer pakker med intensitet α inn til NE_i . Begge prosessene antas å være Poisson prosesser. Videre, anta at betjeningen i NE_i er negativt eksponensialfordelt med intensitet μ_i .

- a) Beskriv systemet ved Kendalls notasjon og lag en Markov modell av NE_i hvor kun én pakke kan betjenes ad gangen og bufferet har uendelig kapasitet, $B = \infty$. Beregn avviklet trafikk og forventet antall i kø når $\lambda = 10$, $\alpha = 30$ og $\mu_i = 50$ [pakker/sekund].
- Anta nå at bufferets kapasitet settes til B=3. Tegn opp fullstendig tilstandsdiagram for dette systemet og sett opp ligninger som bestemmer tilstandssannsynlighetene i dette diagrammet. Løs ligningsettet med verdier $\lambda=10$, $\alpha=30$ og $\mu_i=50$ [pakker/sekund]. Beregn avviklet trafikk og andel pakker avvist fra bruker X.
- c) Anta at systemet er som i oppgave b) med unntak av at siste køplass er forbeholdt pakker som allerede er på ringen, dvs. som kommer fra oppstrømsnettelementet. Når vil pakker fra bruker *X* bli avvist da?

For å utnytte ressursene i nettet bedre endres konfigurasjonen slik at pakker fra bruker X vil sendes ut på sekundær-ringen hvis primær-ringen er opptatt ved ankomst. Er begge ringene opptatt legges pakken fra bruker X i bufferet mot primær-ringen og deretter sendes pakken ut på primær-ringen når denne blir ledig. Pakker fra oppstrømsnettelement bruker primær-ringen og hvis denne er opptatt legges pakken i bufferet. Siste køplass er, som i oppgave c), forbeholdt pakker som allerede er på primær-ringen. Det er intet buffer på sekundær-ringen. Anta som en forenking at det ikke er innkommende trafikk fra sekundær-ringen.

d) Lag en ny Markov modell av NE_i i henhold til beskrivelsen over. Spesifiser tydelig hvordan du har definert tilstandsvariablen(e) din(e). Betjeningsintensiteten er μ_i for hver av ringene. Bufferkapasiteten reduseres til B=2, mens intensitetene er som før.

Oppgave 2 Pålitelighet til tjenester og nettelement

Oppgaven omhandler nettet beskrevet innledningsvis og vist i figur 1. Anta at når en link mellom to nettelementer feiler så feiler begge retningene, dvs. en feil berører både linken i primær- og sekundærringen. Ved en feil på en link langs ringen $(L_{ij} \text{ og } L_{ji})$ eller i et nettelement (NE_i) så vil de tilstøtende nettelementene "loope" trafikken over på sekundærringen. Se f. eks figur 2.

Betegn feilintensiteten og tilgjengeligheten til et nettelement med hhv. λ_{NE} og A_{NE} , feilintensiteten og tilgjengeligheten til en link langs ringen (begge retninger) med hhv. λ_L og A_L og en aksesslinje til nettet med hhv. λ_l og A_l . Feilintensitetene er identiske med feilratene og konstante. Bruker-nodene anses for å være feilfrie.

- a) Tegn opp et pålitelighetsblokkskjema som kan benyttes for å bestemme tilgjengelighet og funksjonsannsynlighet for overføringstjenesten mellom bruker A og bruker C. Hvilke antagelser og forutsetninger må vi gjøre for å kunne bruke blokkskjemaet for å bestemme hhv.
 - Tilgjengeligheten mellom bruker A og bruker C;
 - Funksjonsannsynligheten mellom bruker A og bruker C?
- b) Finn et uttrykk for tilgjengeligheten mellom bruker A og bruker C, A_{AC} , fra blokkskjemaet og med de forutsetningene som settes i punkt a). Hvis midlere nedetid i forbindelsen mellom bruker A og bruker C, \mathbf{MDT}_{AC} , er kjent, finn et uttrykk for midlere tid mellom feil, \mathbf{MTBF}_{AC} .
- c) Finn et uttrykk for funksjonssannsynligheten mellom bruker A og bruker C, $R_{AC}(t)$, fra blokkskjemaet og de forutsetningene som settes i punkt a).
- d) Antar at linkene langs ringen har så mye større feilintensitet enn nettelementene og aksesslinjene at vi kan sette $\lambda_{NE} \approx \lambda_l \approx 0$ og at ingen feil repareres før forbindelsen mellom bruker A og bruker B feiler. Under disse forutsetningene, finn midlere tid til første feil (**MTFF**_{AB}) fra systemet er helt intakt til forbindelsen mellom bruker A og bruker B feiler.

I siste del av oppgaven betraktes kun ett nettelement. Når dette nettelementet feiler så er det med sannsynlighet p_{perm} en permanent feil som krever inngripen av en reparatør. Reparasjonstiden er i dette tilfellet negativt eksponensialfordelt med forventning $1/\mu_{\text{perm}}$. I de resterende tilfellene er feilen transient og kan avhjelpes med en omstart. Varigheten av denne er negativt eksponensialfordelt med forventning $1/\mu_{\text{trans}}$. Påfølgende feil inntreffer uavhengig av hverandre og kun én feil inntreffer ad gangen.

- e) Bestem tilgjengeligheten til nettelementet, A_{NE} , som inngår i resultatet i punkt a) uttrykt ved λ_{NE} , p_{perm} , μ_{perm} og μ_{trans} .
- f) Finn MTBF_{NE}, MUT_{NE}, MDT_{NE}, MTFF_{NE} og MTTF_{NE} for nettelementet uttrykt ved λ_{NE} , p_{perm} , μ_{perm} og μ_{trans} . Hva er sannsynligheten for at nedetiden for nettelementet, $T_{D,\,NE}$ overstiger tiden τ , dvs. $P(T_{D,\,NE} > \tau)$, uttrykt ved de samme størrelsene?

Oppgave 3 Simularing av link brudd og reparasjon

I denne oppgaven skal vi se på hvor mange pakker som blir berørt av et linkbrudd. Til dette skal det utvikles en simuleringsmodell av nettet fra figur 1, en dual-ring topologi med 4 nett-elementer som kan betjene en strøm av pakker fra f.eks. bruker A til bruker C.

Link-brudd kan inntreffe mellom nettelement-par og vil berøre begge retningene, dvs. både primær- og sekundær-linken. Reparasjon av en link vil tilsvarende reparere begge retningene mellom et nettelement par. Det er antatt at reparasjon av link-feil tar en tid T som er Weibull-fordelt, se tabell i formelsamlingen vedlagt for fordelingsfunksjonen.

a) Beskriv i detalj hvordan du kan lage en effektiv trekningsalgoritme ved bruk av invers-transform metoden til å generere T variater som er Weibull-fordelte. Anta at simuleringsspråket/verktøyet kan trekke U variater som er kontinuerlig, uniformfordelte mellom 0 og 1. Hvorfor er invers-transform metoden den mest effektive for Weibull-fordelte variater?

Sluttrapporten i figur 4 viser resultatet for *X* av en lengre DEMOS simulering. Vi kan anta at de ulike observasjonene av *X* er uavhengige og identisk fordelte.

H I S T O G R A M S **************							
S U M M A R Y							
TITLE X	/	(RE)SET 0.000			GE/EST.ST.DV/ STD.ERR./ MINIMUM/ MAXIMUM 88 50.165 0.502 -81.936 294.938		
CELL/	LOWER LIM/	N/	FREQ/	CUM :	T		
0	-INFINITY	239	0.02	2.39	T******		
1	0.000	112	0.01	3.51	T****		
2	10.000	187	0.01	5.38	T*****		
3	20.000	243	0.02	7.81	T******		
4	30.000	356	0.04	11.37	T********		
5	40.000	428	0.04	15.65	T*********		
6	50.000	513	0.05	20.78			
7	60.000	657	0.07	27.35	I******		
8	70.000	685	0.07	34.20	I * * * * * * * * * * * * * * * * * * *		
9	80.000	792	0.08	42.12	I*******		
10	90.000	808	0.08	50.20	I*******		
11	100.000	814	0.08	58.34	I * * * * * * * * * * * * * * * * * * *		
12	110.000	736	0.07	65.70	I * * * * * * * * * * * * * * * * * * *		
13	120.000	678	0.07	72.48	I * * * * * * * * * * * * * * * * * * *		
14	130.000	613	0.06	78.61	I********		
15	140.000	528	0.05	83.89	I*********		
16	150.000	469	0.05	88.58	I*********		
17	160.000	333	0.03	91.91	I * * * * * * * * * * * *		
18	170.000	255	0.03	94.46	I * * * * * * * *		
19	180.000	170	0.02	96.16	I * * * * * *		
20	190.000	124	0.01	97.40	I****		
21	200.000	102	0.01	98.42	I****		
22	210.000	74	0.01	99.16	I * * *		
23	220.000	84	0.01	100.00	I * * *		
					I		

Figur 4 Simuleringsresultat for observatoren X.

b) Hva er sannsynligheten for at $X \ge 200$? Beregn et 95% konfidensintervall for \underline{X} (kvantiler i normal-fordelingen finner du i tabell 3.1). Hvorfor kan vi anta at X er normalfordelt?

P(U > u)	u_{α}) = α
α	u_{α}
0.100	1.282
0.050	1.645
0.025	1.960
0.010	2.326
0.005	2.576
0.001	3.090

Tabell 3.1 Kvantiler i Normal-fordelingen N(0,1)

I figur 5 er det laget en skisse av en simuleringsmodell bestående av 3 entitetsklasser: nettelement, bruker, og linkfeil/reparasjon. Følgende forutsetninger kan antas (disse kan gjøres mindre begrensende (mer generelle) ved behov, husk da å beskrive disse endringene):

- Aksesslinjene er alltid feilfrie.
- Propagasjonsforsinkelsen mellom to nett-elementer er null.
- Pakker leses fra innbufferne i nettelementet.
- Med sannsynlighet p_i skal pakken som ankommer et nettelement ikke sendes videre men til den mottakeren som er tilkoplet NE_i .

Figur 5 Modell av dual-ring topologien

- Pakker som skal til en bruker som ikke er tilknyttet nettelement NE_i og:
 - ankommer på primær-linken sendes videre på neste primær-link hvis denne ikke er brutt, ellers sendes disse på sekundær-linken. Dersom det er brudd på både sekundær og primær linkene kastes pakkene.
 - ankommer på sekundær-linken rutes videre på neste sekundær-link hvis ikke denne er brutt, ellers kastes pakkene.
- Primær- og sekundær-linkene mellom et nett-element par feiler og repareres samtidig.
- Feiling av linker mellom par av nett-elementer skjer uavhengig av hverandre. Det samme gjelder også reparasjon.

Bruker-entitetsklassen som sender pakker til primær-linkens inn-buffer i nærmeste nettelement skal ikke beskrives i denne oppgaven. Entitetsklassene for nett-element og linkfeil og reparasjon skal beskrives ved hjelp av aktivitetsdiagram eller (demos) kvasikode.

- c) Lag en modell av et nett-element som kan lese pakker fra et innkommende buffer (sekundær eller primær link) og sende pakker til utgående buffer (primær- eller sekundær-link), eller til mottaker. Vurder om det er hensiktsmessig med en eller to entitetsklasser for nettelementmodellen.
- d) Lag en entitetsklasse som modellerer både feiling- og reparasjon av linker med antakelsene som gitt over. Hvordan vil du modellere at et nett-element har feilet?