- (1) Let X be a set, and (f_n) be a sequence of functions $f_n: X \to \mathbb{R}$.
 - (a) Suppose that (f_n) converges to $f\colon X\to\mathbb{R}$ uniformly and each (f_n) is bounded. Prove that f is also bounded.
 - (b) Find an example of (f_n) converges to $f: X \to \mathbb{R}$ pointwisely and each (f_n) is bounded, but f is unbounded.
- (a) . YETO, 3NYO Sit. [fn(x)-fu)] < E. YMTN, x e X.
 - · Take 2=1, 3 n>0 sit. Ifn x)-fx) < 1 YxeX.
 - · for is bounded, i.e. JM >0 sit. |fox1 | < M. YxeX.
 - Hence $|f(x)| \leq |f(x)-f_n(x)| + |f_n(x)| < M+1$. $\forall x \in X$.
- (b) Consider X = (0,1).

$$\begin{cases} n & \text{if } \times \epsilon (0, \frac{1}{3}) \\ \frac{1}{3} & \text{if } \times \epsilon [\frac{1}{3}, 1) \end{cases}$$

Then fr. -> f(x)= /x.

pointwise on (0,1)

Each for is bounded on (0,1).

but f is not.

- (2) Let X be a set, and (f_n) be a sequence of functions $f_n \colon X \to \mathbb{R}$. Prove that if (f_n) converges to some function $f \colon X \to \mathbb{R}$ uniformly, then (f_n) is uniformly Cauchy.
- * Stree fn → f uniformly, YEZO, JNZO SIL.

 I fn x) fx1 | < €/2 YnZN, xeX.
- Hence, $|f_n(x)-f_m(x)| \leq |f_n(x)-f_n(x)| + |f_m(x)-f_n(x)| < \epsilon$ $\forall n \neq N, x \in X. T$

(3) Let X be a set. Consider the set $\mathcal{B}(X)$ consisting of real-valued bounded functions $f\colon X\to\mathbb{R}$. For $f_1,f_2\in\mathcal{B}(X)$, define

$$d(f_1, f_2) := \sup_{x \in X} |f_1(x) - f_2(x)|.$$

Prove that $(\mathcal{B}(X), d)$ is a metric space.

It's clear that $d(f_1, f_2) \ge D$ and $d(f_1, f_2) = D$ If and only if $f_1 = f_2$. It's also clear that $d(f_1, f_2) = d(f_2, f_1)$.

Claim d(fi, fr) + d(fr, fr) > d(fi, fr). Y fi, fr, fr & B(X).

Pf: 4270, 3 xeX sit. [fix)-f3(x)] > d(f1,f3) - E

Hence $d(f_1, f_3) - \varepsilon \leq |f_1(x) - f_3(x)| \leq |f_1(x) - f_2(x)| + |f_2(x) - f_3(x)|$ $\leq d(f_1, f_2) + d(f_2, f_3),$

holds 4270.

Hence d(f1, f3) = d(f1, f2) + d(f2, f3). D

- (4) Consider the sequence of functions (f_n) defined by $f_n(x) = \frac{nx}{1+nx}$ for $x \ge 0$.
 - (a) Find the pointwise limit $f(x) = \lim_{n \to \infty} f_n(x)$ for $x \ge 0$.
 - (b) Let a > 0. Prove or disprove: (f_n) converges uniformly to f on $[a, \infty)$.
 - (c) Prove or disprove: (f_n) converges uniformly to f on $[0,\infty)$.

(a)
$$f(x) = \begin{cases} 0 & \text{if } x = 0. \\ 1 & \text{if } x > 0. \end{cases}$$

(b) Yes. 4270, take N>0 large sit. $\frac{1}{1+Na} < \epsilon$. Then $4 \times \epsilon [a, \infty)$, n > N, we have:

$$|f_n(x)-f_{(x)}|=|\frac{nx}{(+nx)}-1|=\frac{1}{(+nx)}\leq \frac{1}{(+nx)}<\epsilon.$$

(c) No. If $f_n \to f$ uniformly, then f should be continuous. \square

- (5) Let X be a compact metric space, and (f_n) be a sequence of continuous functions $f_n \colon X \to \mathbb{R}$. Suppose that
 - (f_n) converges pointwisely to a continuous function $f: X \to \mathbb{R}$.
 - $f_{n+1}(x) \le f_n(x)$ for any $x \in X$ and $n \in \mathbb{N}$.

Prove that (f_n) converges uniformly to f on X.

(Hint: Define $g_n := f_n - f$. Consider the set $E_n := \{x \in X : g_n(x) < \epsilon\}$. Show that $E_1 \subset E_2 \subset E_3 \subset \cdots$ and that $X = \cup E_n$.)

- $\forall x \in X$, $(f_n(x))$ is decreasing and conv. to f(x), hence $f(x) = \inf_{n \ge 1} \{f_n(x)\}$.
- Define $g_n := f_n f$. Then $g_n(x) \ge g_{n+1}(x) \ge o$. $\forall n, \forall x \in X$.
- · \$ 270, define

$$E_n := \{x \in X \mid g_n(x) < \xi\} \subseteq X.$$

- · En is open; since gn is conti, and En = gn ((-00, E)).
 - $X = \bigcup_{n=1}^{\infty} E_n$: Since $\lim_{n \to \infty} g_n(x) = 0$ $\forall x \in X$.
- · Since X is cpt., the open cover {En} has a finite subcover.
- · Since gn(X) > gnn(X) > 0 Yn, Yx EX, we have:

$$E_1 \subseteq E_2 \subseteq E_3 \subseteq \cdots$$