05.06.00 JP00/3639

日 庁 PATENT OFFICE JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

- 000 27 JUL 2000 1999年 6月 09/920964 4日

出 願 番 号 Application Number:

平成11年特許顯第158637号

出 顧 人 Applicant (s):

梶 昭

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2000年 6月29日

特許庁長官 Commissioner, Patent Office

出証番号 出証特2000-3052010

【書類名】 特許願

【整理番号】 PP-1741KJ

【提出日】 平成11年 6月 4日

【あて先】 特許庁長官 殿

【国際特許分類】 C07K 14/37

C30B 7/00

【発明者】

【住所又は居所】 東京都東久留米市大門町1丁目1番9号

【氏名】 梶昭

【発明者】

【住所又は居所】 スウェーデン国 ルンド、S-221、ルンド大学生物

物理学部、ボックス124

【氏名】 アンダース・リルジャス

【特許出願人】

【識別番号】 591188479

【住所又は居所】 東京都東久留米市大門町1丁目1番9号

【氏名又は名称】 梶 昭

【代理人】

【識別番号】 100102842

【弁理士】

【氏名又は名称】 葛和 清司

【選任した代理人】

【識別番号】 100098844

【弁理士】

【氏名又は名称】 川上 宣男

【手数料の表示】

【予納台帳番号】 058997

【納付金額】 21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 リボソームリサイクリング因子 (RRF) タンパクの結晶及び該結晶から得られる三次元構造情報に基づく応用

【特許請求の範囲】

【請求項1】 RRFタンパクの活性部位又は補助的結合部位と結合し得る化合物を設計する方法であって、RRFタンパク結晶から得られる構造座標に基づき、その化学的実体をコンピューター評価してなる、前記方法。

【請求項2】 RRFタンパク結晶が、RRFタンパク自体の結晶、RRFタンパク変 異体の結晶、RRFタンパクホモログの結晶及びRRFタンパクの共複合体の結晶のい ずれかである、請求項1に記載の方法。

【請求項3】 RRFタンパク結晶が、bipyramid系である、請求項1又は2に記載の方法。

【請求項4】 RRFタンパク結晶が、空間群 $P4_12_12_1$ 又は空間群 $P4_32_12$ を有する、請求項 $1\sim3$ のいずれかに記載の方法。

【請求項5】 RRFタンパク結晶が、 $0.3 \times 0.3 \times 0.5$ mmの大きさを有する、請求項 $1 \sim 4$ のいずれかに記載の方法。

【請求項6】 RRFタンパク結晶が、a=b=47.3Å、c=297.6Åの大きさの各単位格子を有する、請求項1~5のいずれかに記載の方法。

【請求項7】 RRFタンパク結晶が、表7による構造座標により特徴づけられる、請求項1~6のいずれかに記載の方法。

【請求項8】 RRFタンパク結晶が、Thermotoga Maritima由来のものである、請求項1~7のいずれかに記載の方法。

【請求項9】 RRFタンパク結晶が、斜方晶系である、請求項1又は2に記載の方法。

【請求項11】 RRFタンパク結晶が、 $30 \times 50 \times 250 \mu$ mの大きさを有する、請求項1~2及び9~10のいずれかに記載の方法。

【請求項12】 RRFタンパク結晶が、菌X由来のものである、請求項1~2及び

9~11のいずれかに記載の方法。

【請求項13】 RRFタンパク結晶が、滴状蒸気拡散法により結晶化されている、請求項1~12のいずれかに記載の方法。

【請求項14】 RRFタンパク結晶が重原子誘導体であって、該結晶がRRFタンパク自体の結晶、RRFタンパク変異体の結晶、RRFタンパクホモログの結晶及びRR Fタンパクの共複合体の結晶のいずれかである、請求項1~13のいずれかに記載の方法。

【請求項15】 重原子誘導体が、チロメサール、チオリンゴ酸金、酢酸ウラニル及び塩化鉛からなる群より選択される化合物との反応により形成されている、請求項1~14のいずれかに記載の方法。

【請求項16】 RRFタンパク結晶が、白金又は水銀による重原子誘導体である、請求項1、2及び9~12のいずれかに記載の方法。

【請求項17】 RRFタンパクがモノマーである、請求項1~16のいずれかに記載の方法。

【請求項18】 RRFタンパクが、表5又は表6によるアミノ酸変位により特徴づけられる、請求項1~8、13~15及び17のいずれかに記載の方法。

【請求項19】 活性部位又は補助的結合部位に結合する化学的実体により特徴づけられる化合物が、RRFタンパクの阻害物質であることを特徴とする、請求項1~18のいずれかに記載の方法。

【請求項20】 前記阻害物質がRRFの競合的、非競合的又は不競合的阻害物質であることを特徴とする、請求項1~19のいずれかに記載の方法。

【請求項21】 RRFタンパクの活性部位又は補助的結合部位におけるリガンドの配向を決定することを含む、請求項1~20のいずれかに記載の方法。

【請求項22】 構造座標が表7による、RRFタンパクの構造座標であることを 特徴とする、請求項1~8、13~15及び17~21のいずれかに記載の方法。

【請求項23】 RRFタンパクの変異体、ホモログ又は共複合体の結晶形態を 分子置換により解明することを含む、RRFタンパクの3次元構造を決定する方法。

【請求項24】 斜方晶系のRRFタンパク結晶。

【請求項25】 空間群P2₁2₁2を有する、請求項24に記載のRRFタンパク結晶

【請求項26】 30×50×250μ mの大きさを有する、請求項24又は25に記載の RRFタンパク結晶。

【請求項27】 RRFが菌X由来のものである、請求項24~26のいずれかに記載のRRFタンパク結晶。

【請求項28】 bipyramid系である、RRFタンパク結晶。

【請求項29】 空間群P4₁2₁2₁又は空間群P4₃2₁2を有する、請求項28に記載のRRFタンパク結晶。

【請求項30】 0.3×0.3×0.5mmの大きさを有する、請求項28又は29に記載のRRFタンパク結晶。

【請求項31】 a=b=47.3Å、c=297.6Åの大きさの各単位格子を有する、請求項28~30のいずれかに記載のRRFタンパク結晶。

【請求項32】 表5又は表6によるアミノ酸変位により特徴づけられる、請求 項28~31のいずれかに記載のRRFタンパク結晶。

【請求項33】 表7による構造座標により特徴づけられる、請求項28~32のいずれかに記載のRRFタンパク結晶。

【請求項34】 Thermotoga Maritima由来のものである、請求項28~33のいずれかに記載のRRFタンパク結晶。

【請求項35】 滴状蒸気拡散法により結晶化された、請求項24~34のいずれかに記載のRRFタンパク結晶。

【請求項36】 結晶がRRFタンパク自体の結晶、RRFタンパク変異体の結晶、RRFタンパクホモログの結晶及びRRFタンパクの共複合体の結晶のいずれかである、請求項24~35のいずれかに記載のRRFタンパク結晶。

【請求項37】 活性部位のアミノ酸が、配列番号1のArg 110、Arg 129及びArg 132からなる群から選択される、RRFタンパク。

【請求項38】 活性部位又は補助的活性部位中の1つ以上のアミノ酸が、天然に存在するアミノ酸、非天然アミノ酸、セレノシステイン及びセレノメチオニンからなる群から選択される1つ以上のアミノ酸により置換されている、請求項37に記載のRRFタンパク。

【請求項39】 活性部位又は補助的活性部位中の親水性アミノ酸及び疎水性アミノ酸が置換されている、請求項37に記載のRRFタンパク。

【請求項40】 少なくとも1つのシステインアミノ酸が、セレノシステイン 又はセレノメチオニンからなる群から選択されるアミノ酸により置換されている 、請求項37に記載のRRFタンパク。

【請求項41】 少なくとも1つのメチオニンアミノ酸が、セレノシステイン 又はセレノメチオニンからなる群から選択されるアミノ酸により置換されている 、請求項37に記載のRRFタンパク。

【請求項42】 結晶形態である、請求項37~38のいずれかに記載のRRFタンパク。

【請求項43】 野生型酵素より高いか、又は低い比活性を有する、請求項37 に記載のRRFタンパク。

【請求項44】 変化した基質特異性を有する、請求項37に記載のRRFタンパク。

【請求項45】 化合物とRRFタンパクとの結合相互作用を測定するための、 請求項37に記載のRRFタンパクの使用。

【請求項46】 RRFタンパクの表面上、表面又はその近傍の少なくとも1個の アミノ酸残基が置換されており、表面荷電の1以上の荷電単位の変化が生じてい る、請求項37に記載のRRFタンパク。

【請求項47】 請求項19~23のいずれかに記載の方法により得られる、RRF タンパクの阻害物質。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、リボソームリサイクリング因子(Ribosome recycling factor,以下RRF)の結晶に関する。また本発明は、該結晶のX線回折により得られるRRFタンパクの立体構造に関する。さらに本発明は、RRFタンパクの構造情報を応用した、RRF変異体、ホモログ等の構造決定、そして次世代抗菌剤、抗力ビ剤、除草剤を開発する技術に関する。

[0002]

【従来の技術】

蛋白質生合成は、すべての細胞の生命活動において必要不可欠な機能であり、「開始」、「伸展」、「終結」及び「リボソームリサイクリング」の四段階から成り立っている。蛋白質生合成における最終的なステップ(第4ステップ)は、次の「開始」段階へリボソームを再利用する為に、メッセンジャーRNA、転移RNA、リボソームからなる終結複合体を各々遊離、解離させることにより終了する。原核生物である大腸菌においては、このリボソームの「再利用」はリボソームリサイクリング因子(Ribosome recycling factor,以下RRF)とエロンゲーション因子G(elongation factor G、以下EFG)又は解離因子3(Release factor3)により触媒されることが分かっている。このリボソーム「再利用」の過程はJanosi博士らによる総説(1996 Adv. Biophys. 32:121-201)及び梶らの総説(Biochem, Biophys, Res Communs.250 1-4、蛋白質 核酸 酵素、44巻7号 83-84 (1999))において紹介されている。

真核生物において蛋白質翻訳終結複合体の解離はRRFではない他の因子により 触媒される可能性が示唆されており、真核生物のmRNAはモノシストロニックで原 核生物のそれはポリシストロニックである(Kozak 1987, Mol. Cell. Biol. 7:3 438-3445; Dasら 1984, Nucleic Acids Res. 12:4757-4768; Schonerら 1986 Pro c. Natl. Acad. Sci. U.S.A. 83:8506-8510; Sprengelら 1985 Nucleic Acids R es. 13:893-909)ことから、真核生物においてリボソームのmRNAよりの解離が阻 害されても下流のシストロンを影響することはない。このように真核生物における蛋白質生合成の最終段階にあたる蛋白質翻訳終結複合体の解離という第4段階 が原核生物のものと異なると考えられるので、特に新しい型の抗生物質のターゲットとして期待されている。

[0003]

一方、現在では数多くの抗菌剤が開発されており、この中には非常に高い殺菌 作用を示すものも存在している。しかし、このようにして得られた抗菌剤には、 その作用部位が不明なままのものが数多く存在する。これまでは、これらの活性 を示す抗菌剤をランダムスクリーニングの材料として用い、構造活性関係を樹立

[0004]

そこで近年、この問題を排除し能率良く阻害剤の発見が行われることを目的としてデータベース化が図られている。それを基本にしてラシヨナルドラグデザイン法が検討され開発されつつある。この例として、最近上市された抗HIV剤であるプロテアーゼの阻害剤が挙げられる。HIVのプロテアーゼは結晶化され、その立体構造が知られている。この構造と活性部位の三次元構造アミノ酸配列を基にしてコンピューターより既知の化合物からこの部位に最も親和性の高いものを選び、その阻害活性が測定されている。活性の出たものと標的蛋白の共結晶を作り、三次元構造の測定を行うことによりさらによりよく結合する化合物を予測できるので、これを合成しその阻害活性が測定されている。そして再びこの物質と標的蛋白との共結晶を作り、上記の過程を繰り返すことにより極めて有効な物質を得ることができる。

[0005]

ところで、上記のような従来の抗生物質への耐性獲得菌株が数多く報告されてきており、細菌の発育を直接的に制限し得る部位を標的とする、新たな抗生物質の開発が早急に必要とされている。そこで本発明者らは前記RRFが抗菌剤の新たなターゲットとなり得ることに着目し鋭意研究を進めてきたが、この着想が近年脚光を浴びつつある。

[0006]

【発明が解決しようとする課題】

RRFに関して、本発明者らはこれまでに大腸菌を始め、原核生物のみに留まらず真核生物に関するものまで数種の遺伝子配列を決定した(特開平3-200797、PC T/JP98/00734、特願平10-150493)。従って、そこから得られるアミノ酸配列によりその二次構造までが推定可能ではある。しかしながら、現在の技術水準においては、この二次構造から実際の立体構造を同定するまでには至っていない。実際のタンパクにおいては各アミノ酸残基が相互的に作用しており、また場合によってはさまざまな修飾を受けてその立体構造を形成している。従ってタンパクの

立体構造が分れば、そのリガンドとなりうる物質を創製することが可能であり、 この意味で有用な抗生物質を創製するためには、結晶化による三次元構造の決定 がきわめて重大な意義を有することとなる。

従って本発明の課題は、RRFの立体構造を解明し、種々の抗菌剤、抗力ビ剤及 び除草剤の開発に寄与することにある。

[0007]

【課題を解決するための手段】

本発明者らは上記の現状を踏まえ、RRFに関し研究を進める中で、RRFの結晶を 得てその立体構造を同定することに初めて成功し、さらに研究を進めた結果、本 発明を完成するに至った。

即ち本発明は、RRFタンパクの結晶及びその製法と立体構造に関する。

より具体的には、RRFタンパクの活性部位又は補助的結合部位と結合し得る化合物を設計する方法であって、RRFタンパク結晶から得られる構造座標に基づき、その化学的実体をコンピューター評価してなる、前記方法に関する。

また本発明は、RRFタンパク結晶が、RRFタンパク自体の結晶、RRFタンパク変 異体の結晶、RRFタンパクホモログの結晶及びRRFタンパクの共複合体の結晶のい ずれかである、前記方法に関する。

本発明はまた、RRFタンパク結晶が、bipyramid系である、前記方法に関する。 さらに本発明は、RRFタンパク結晶が、空間群 $P4_12_12_1$ 又は空間群 $P4_32_12$ を有する、前記方法に関する。

また本発明は、RRFタンパク結晶が、 $0.3 \times 0.3 \times 0.5$ mmの大きさを有する、前記方法に関する。

本発明はまた、RRFタンパク結晶が、a=b=47.3Å、c=297.6Åの大きさの各単位格子を有する、前記方法に関する。

さらに本発明は、RRFタンパク結晶が、表7による構造座標により特徴づけられる、前記方法に関する。

また本発明は、RRFタンパク結晶が、Thermotoga Maritima由来のものである、 前記方法に関する。

本発明はまたRRFタンパク結晶が、斜方晶系である、前記方法に関する。

さらに本発明は、RRFタンパク結晶が、空間群 $P2_12_1$ 2を有する、前記方法に関する。

[0008]

また本発明は、RRFタンパク結晶が、 $30 \times 50 \times 250 \,\mu$ mの大きさを有する、前記方法に関する。

本発明はまた、RRFタンパク結晶が、菌X由来のものである、前記方法に関する

さらに本発明は、RRFタンパク結晶が、滴状蒸気拡散法により結晶化されている、前記方法に関する。

また本発明は、RRFタンパク結晶が重原子誘導体であって、該結晶がRRFタンパク自体の結晶、RRFタンパク変異体の結晶、RRFタンパクホモログの結晶及びRRF タンパクの共複合体の結晶のいずれかである、前記方法に関する。

本発明はまた、重原子誘導体が、チロメサール、チオリンゴ酸金、酢酸ウラニル及び塩化鉛からなる群より選択される化合物との反応により形成されている、 前記方法に関する。

さらに本発明は、RRFタンパク結晶が、白金又は水銀による重原子誘導体である、前記方法に関する。

本発明はまた、RRFタンパクがモノマーである、前記方法に関する。

また本発明は、RRFタンパクが、表5又は表6によるアミノ酸変位により特徴づけられる、前記方法に関する。

さらに本発明は、活性部位又は補助的結合部位に結合する化学的実体により特徴づけられる化合物が、RRFタンパクの阻害物質であることを特徴とする、前記方法に関する。

[0009]

また本発明は、前記阻害物質がRRFの競合的、非競合的又は不競合的阻害物質であることを特徴とする、前記方法に関する。

本発明はまた、RRFタンパクの活性部位又は補助的結合部位におけるリガンドの配向を決定することを含む、前記方法に関する。

さらに本発明は、構造座標が表7による、RRFタンパクの構造座標であることを

特徴とする、前記方法に関する。

また本発明は、RRFタンパクの変異体、ホモログ又は共複合体の結晶形態を分子置換により解明することを含む、RRFタンパクの3次元構造を決定する方法に関する。

本発明はまた、斜方晶系のRRFタンパク結晶に関する。

また本発明は、空間群P2₁2₁2を有する、前記RRFタンパク結晶に関する。

さらに本発明は、 $30 \times 50 \times 250 \mu$ mの大きさを有する、前記RRFタンパク結晶に関する。

本発明はまた、RRFが菌X由来のものである、前記RRFタンパク結晶に関する。 また本発明は、bipyramid系である、RRFタンパク結晶に関する。

さらに本発明は、空間群 $P4_12_12_1$ 又は空間群 $P4_32_12$ を有する、前記RRFタンパク結晶に関する。

[0010]

本発明はまた、 $0.3 \times 0.3 \times 0.5$ mmの大きさを有する、前記RRFタンパク結晶に関する。

また本発明は、a=b=47.3Å、c=297.6Åの大きさの各単位格子を有する、前記R RFタンパク結晶に関する。

本発明はまた、表5又は表6によるアミノ酸変位により特徴づけられる、前記RR Fタンパク結晶に関する。

さらに本発明は、表7による構造座標により特徴づけられる、前記RRFタンパク 結晶に関する。

また本発明は、Thermotoga Maritima由来のものである、前記RRFタンパク結晶に関する。

本発明はまた、滴状蒸気拡散法により結晶化された、前記RRFタンパク結晶に 関する。

さらに本発明は、結晶がRRFタンパク自体の結晶、RRFタンパク変異体の結晶、RRFタンパクホモログの結晶及びRRFタンパクの共複合体の結晶のいずれかである、前記RRFタンパク結晶に関する。

また本発明は、活性部位のアミノ酸が、配列番号1のArg 110、Arg 129及びArg

132からなる群から選択される、RRFタンパクに関する。

本発明はまた、活性部位又は補助的活性部位中の1つ以上のアミノ酸が、天然に存在するアミノ酸、非天然アミノ酸、セレノシステイン及びセレノメチオニンからなる群から選択される1つ以上のアミノ酸により置換されている、前記RRFタンパクに関する。

さらに本発明は、活性部位又は補助的活性部位中の親水性アミノ酸及び疎水性 アミノ酸が置換されている、前記RRFタンパクに関する。

[0011]

また本発明は、少なくとも1つのシステインアミノ酸が、セレノシステイン又はセレノメチオニンからなる群から選択されるアミノ酸により置換されている、 前記RRFタンパクに関する。

本発明はまた、少なくとも1つのメチオニンアミノ酸が、セレノシステイン又はセレノメチオニンからなる群から選択されるアミノ酸により置換されている、前記RRFタンパクに関する。

さらに本発明は、結晶形態である、前記RRFタンパクに関する。

本発明はまた、野生型酵素より高いか、又は低い比活性を有する、前記RRFタンパクに関する。

また本発明は、変化した基質特異性を有する、前記RRFタンパクに関する。

さらに本発明は、化合物とRRFタンパクとの結合相互作用を測定するための、 前記RRFタンパクの使用に関する。

さらに本発明は、RRFタンパクの表面上、表面又はその近傍の少なくとも1個の アミノ酸残基が置換されており、表面荷電の1以上の荷電単位の変化が生じてい る、前記RRFタンパクに関する。

本発明はまた、前記方法により得られる、RRFタンパクの阻害物質に関する。

[0012]

RRFが理想的な抗菌剤の標的であることが推定される現在、本発明により解明されたRRFの三次元構造は、抗菌剤などの開発に直結しているので、産業上極めて重要である。しかも多くの病原菌のRRFの一次構造が酷似していることが知られていることから(例えば緑膿菌のRRFは大腸菌のそれと60%の相同性を有する)

、本発明によるRRFの三次元構造のデータにより、他の病原菌のRRFの三次元構造についてもその解明が極めて容易になる。従って、種特異性の抗菌剤を開発するためにも、本発明は、RRF阻害による次世代抗生物質、抗カビ剤及び除菌剤開発に、特にラシヨナルドラグデザインにより抗菌剤を開発する際の一つの指標として極めて有用である。

[0013]

本明細書中で使用される用語を以下のように定義する;

「RRFタンパク」とは、通常の状態で酵素活性を有するRRFタンパク質を意味する。

「天然に存在するアミノ酸」とは、天然に存在するアミノ酸のL-異性体を意味する。天然に存在するアミノ酸は、グリシン、アラニン、バリン、ロイシン、イソロイシン、セリン、メチオニン、トレオニン、フェニルアラニン、チロシン、トリプトファン、システイン、プロリン、ヒスチジン、アスパラギン酸、アスパラギン、グルタミン酸、グルタミン、ィーカルボキシグルタミン酸、アルギニン、オルニチン及びリジンである。特に断りがない限り、本明細書中のアミノ酸はL体である。

「非天然アミノ酸」とは、タンパク質中で天然には見出されないアミノ酸を意味する。本明細書で使用される非天然アミノ酸の例として、セレノシステイン及びセレノメチオニンのラセミ混合物が挙げられる。さらに非天然アミノ酸として、ノルーロイシン、パラーニトロフェニルアラニン、ホモフェニルアラニン、パラーフルオロフェニルアラニン、3-アミノー2-ベンジルプロピオン酸、ホモアルギニンのD又はL体及びD-フェニルアラニンが挙げられる。

[0014]

「正に荷電したアミノ酸」とは、正常な生理学的条件下で正に帯電した側鎖を 有する任意の天然に存在するアミノ酸又は非天然アミノ酸を包含する。正に荷電 した天然アミノ酸の例としては、アルギニン、リジン及びヒスチジンが挙げられ る。

「負に荷電したアミノ酸」とは、正常な生理学的条件下で負に帯電した側鎖を 有する任意の天然に存在するアミノ酸又は非天然アミノ酸を包含する。負に荷電 した天然アミノ酸の例としては、アスパラギン酸及びグルタミン酸が挙げられる

[0015]

「疎水性アミノ酸」とは、比較的水に不溶性である非荷電の非極性側鎖を有する任意のアミノ酸を意味する。天然に存在する疎水性アミノ酸の例は、アラニン、ロイシン、イソロイシン、バリン、プロリン、フェニルアラニン、トリプトファン及びメチオニンである。

「親水性アミノ酸」とは、比較的水に可溶性である非荷電の極性側鎖を有する 任意のアミノ酸を意味する。天然に存在する親水性アミノ酸の例は、セリン、ト レオニン、チロシン、アスパラギン、グルタミン及びシステインである。

[0016]

「変異体」とは、野生型E. ColiのRRF配列の少なくとも1つのアミノ酸の置換により特徴づけられるRRFポリペプチド(即ち、野生型RRFの生物学的活性を示すポリペプチド)をいう。このような変異体は、例えばオリゴヌクレオチド特異的誘発によりそのコード配列中で変異したRRFのcDNAの発現により得ることができる。またRRF変異体は、非天然アミノ酸のRRFタンパクへの部位特異的取り込みにより、Noren, C. J.等(Science, 224, p182-188 (1989))による一般的な生合成方法により得ることができる。

セレノシステイン又はセレノメチオニンは、栄養要求性E. Coli株におけるRRFをコードするcDNAの発現により、野生型又は変異型RRF中に取り込まれる。この方法において、野生型又は変異型RRF cDNAは、天然システイン又は天然メチオニンのいずれか(又は両方)を含有せず、セレノシステイン又はセレノメチオニン(又は両方)が富化されている増殖培地上の宿主中で発現させることができる。さらにセレノメチオニンは、野生型又は変異型RRF中にメチオニン代謝阻害法(Van Dyne G. D.等によるJ. M. B, 229 pp105(1993))により取り込むことができる。

[0017]

「表面荷電の変化」とは、野生型RRFと比較した生理学的pHでの変異体ポリペプチドの1つ以上の荷電単位の変化を意味する。これは、好ましくは少なくとも1つ以上の野生型RRFのアミノ酸における生理学的pHでの野生型側鎖と異なる荷電

を有する側鎖を含むアミノ酸への変異により得ることができる。表面荷電の変化は、置換されたアミノ酸を有するポリペプチドの等電点を測定し、これを野生型RRF分子の等電点と比較することにより決定される。

[0018]

「基質特異性の変化」とは、野生型RRFと比較した変異型RRFの基質の変化をいう。基質特異性(種特異性)は、リボゾーム、tRNA、EF-Gを病原菌から分離し、それらがE. ColiのRRF及びRRF変異種の基質となり得るかにより決定する。

「キネティック形態」とは、遊離形態又は非結合形態の酵素の状態あるいはそ の活性部位又は補助的活性部位のいずれかで化学的実体と結合した酵素の状態を いう。

[0019]

「競合」インヒビターは、RRFの基質が結合するのと同じRRFのキネティック形態に結合すること、従ってRRFの活性部位と直接競合することにより、RRF活性を阻害するインヒビターである。

「不競合」インヒビターは、基質が結合するのと異なるRRFのキネティック形態に結合することによりRRFを阻害するインヒビターである。

「非競合」インヒビターは、RRFの遊離形態又は基質結合形態のいずれかに結合するインヒビターである。

[0020]

「ホモログ」とは、RRF又はRRFの任意の機能ドメインと少なくとも30%のアミノ酸配列の相同性を有するタンパク質を意味する。

「共複合体」とは、化学的実体又は化合物と共有結合又は非共有結合したRRF 又はRRFの変異体又はホモログを意味する。

「β-シート」とは、拡大ジグザグコンホメーションにのびるポリペプチド鎖 のコンホメーションをいう。平行にのびるポリペプチドポリペプチド鎖部分は全 て同じ方向にのびる。逆平行にのびるポリペプチド鎖は、平行線とは反対方向に のびる。

[0021]

「活性部位」又は「活性部位部分」とは、RRF内の以下の任意の部位又は全て

の部位をいう。基質結合部位は、リボソーム及びその複合体が結合する部位及び 基質の分解がおこる部位であり、活性部位は、配列番号1を用いて、少なくとも アミノ酸残基110、129、132の近辺である。

「構造座標」とは、結晶形態におけるRRF分子の原子(分散中心)によるX線単色ビームの回折で得られるパターンに関する数式から得られる数学的座標をいう。分散データは、結晶の反復単位の電子密度地図を計算するために使用され、電子密度地図は、結晶の単位格子内のそれぞれの原子の位置を確立するために使用される。

「重原子誘導体」とは、RRFタンパク結晶の化学的に修飾された形態をいう。 その作製には実際には、結晶を通って拡散することができ、そしてタンパク質の 表面に結合することができる重金属原子塩又は有機金属化合物(例えば塩化鉛、 チオマレイン酸金、チロメサール又は酢酸ウラニル)を含有する溶液中に浸され る。結合した重金属原子(単数又は複数)の位置(単数又は複数)は、浸漬した結晶 のX線回折分析により決定することができる。次にこの情報を用いて、酵素の3次 元構造を構築するために使用される位相情報が作成される。X線結晶学により決 定された構造座標のセットは、標準誤差を有することが当業者に理解されよう。 本発明の目的のために、表7に列挙した構造座標に重ね合わせた場合に、0.75A 未満のタンパク質骨格原子(N、Ca、C及び0)の二乗平均平方根偏差を有するRRF 又はRRFホモログ又はRRF変異体の構造座標の任意のセットは同一であると考えら れるべきである。

[0022]

「単位格子」とは、基本的な平行6面体形のブロックをいう。結晶の全容積は、このようなブロックの規則的な積み重ねの反復により構築することができる。「空間群」とは、結晶の対象要素の配置をいう。

「分子置換」とは、観察された未知結晶の回折パターンを説明するのに最適なように、未知結晶の単位格子内で、その構造座標(例えば表7の構造座標)が他の公知である分子を方向付けし、位置付けすることにより、構造座標が知られていないRRF結晶の仮のモデルを作成する工程を含む方法をいう。次いで、位相がこのモデルより算定され、そして観察された振り幅と合成して、その座標が知られ

ていない構造の近似フーリエ合成を得る。次いで精製物質に適用して、最終的に 正確な未知結晶の構造を得ることができる。本発明によるRRFの構造座標を用い て、分子置換を使用することによりRRFの変異体、ホモログ、共複合体又は異な る結晶構造の構造座標を決定することができる。

本発明の実施例においては、X菌由来RRF及びThermotoga Maritima由来RRFを用いて結晶化し、構造解析を行ったが、その他のRRFについても同様に実施することができる。また結晶化に際してはRRFタンパク自体のみならず、RRFタンパク変異体、RRFタンパクホモログ、RRFタンパク共複合体を結晶化し、それぞれ構造解析することも可能である。

[0023]

本発明は、X菌のRRF及びThermotoga Maritima RRFの結晶及びそれから決定されるRRFの構造を初めて提供する。一方Thermotoga Maritima RRFの結晶は硫安溶液から形成された。結晶はbipyramid型の空間群P43212を有する。この結晶の単位格子はa=b=47.3Å、c=297.6Åを有する。

RRFの構造座標を表7に示す。結晶パッキングは、RRFがモノマーであることを示している。

[0024]

図3は、Thermotoga Maritima RRFのリボンによる描画を示す。ヘリックスA、B、C、D、E、FはN末端よりC末端に向けて存在するヘリックスを示す。 β -シート1、2、3、4、5、6はN末端からC末端にかけて存在する β -シートの番号である。図に示されるようにRRFは、2ドメインからなり、1つは3つのヘリックスからなり、2つめのドメインは β -シートコイル、ヘリックスの複合体である。そして活性部位は図のE、Fヘリックスにまたがり、又活性の維持にヘリックスB、C、D、 β -シート1、2、3、4、5を含むドメインの3次元構造の保持が重要である。

図4は、Thermotoga Maritima RRFの空間充填モデルを表し、N及びCはそれぞれN末端、C末端を示す。灰色は炭素、赤は酸素、紫はN原子を表し、数字はアミノ酸配列の番号を示し、1はN末端である。

このように本発明者らにより解明されたRRFの3次元構造に関する情報に基づき、酵素の活性部位及び補助的結合部位の同定が初めて可能になった。そして活性

部位部分は、後述するRRF遺伝変異の結果と併せて、少なくとも配列番号1のアミノ酸残基Arg 110, Arg 129, Arg 132を含む可能性が大きいことがわかった。

[0025]

本発明は、化学的実体及び化合物を設計、選択及び合成する分子設計技術の使用をRRFに関して初めて可能にする。化学的実体及び化合物には、RRFの活性部位又は補助的結合部位の全て又は一部分に結合することができる阻害性化合物を含む。本発明により可能なアプローチの際に、酵素に結合する化合物を設計し、そして種々の方法において、化合物の物理的特性(例えば可溶性)を改変するためにRRFの構造座標が使用される。例えば本発明は、RRFの活性部位の全て又は一部分に結合することにより、RRFの競合阻害剤として作用する化合物の設計を可能にする。本発明はまた、RRFの不競合阻害剤として作用する化合物の設計を可能にする。これらの阻害剤は、基質にすでに結合したRRFの補助的結合部位の全て又は一部分に結合することができ、そしてRRF活性部位に対してのみ結合する競合阻害剤よりも強力であり、かつより非特異的であることができる。同様にRRFに結合して阻害する非競合阻害剤は、別の化学的実体に結合していてもいなくても、本発明により得られた構造座標を用いて設計することができる。

[0026]

第二の設計アプローチは、RRF阻害剤候補とRRFとの間の相互作用のための最適部位を決定するために、RRF結晶を種々の化学的実体からなる分子で確認することである。例えば溶媒で飽和された結晶から回収された高分解能のX線回折データは、各型の溶媒分子の位置の決定を可能にする。次いで、これらの部位に強く結合する小さな分子を設計、合成することができ、そして阻害剤活性について試験することができる(Travis, J., Science, 262, p1374 (1993))。

[0027]

本発明はまた基質又はRRFに結合する他の化合物のRRFとの反応において、RRF インヒビターの改良アナログの設計又はRRF及びRRFインヒビター共複合体の反応 中間体に基づく新規なクラスのインヒビターの設計に有用である。これは、高い 特異性及び高い安定性の両方を有するRRFインヒビターを設計するための新規な 手段を提供する。 本発明により可能となり、容易となる別のアプローチとしては、RRFに全体的に又は部分的に結合し得る化学的実体又は化合物について、コンピュータでスクリーニングすることである。このスクリーニングにおいて、結合部位に対するこのような実体又は化合物の適合の特性は、形状相補性又は見積もられた相互作用エネルギーのいずれかによって判断され得る(Meng, E. C. et al J. Comp. Chem, 13, 505-524 (1992))。

[0028]

RRFが1つより多くの結晶形態で結晶化することができる場合、本発明により提供されるようなRRFの構造座標又はその一部は、RRFの他の結晶形態の構造を解析するために特に重要である。RRFの構造座標又はその一部は、RRF変異体の構造、RRF共複合体の構造、又はRRFの任意の機能ドメインに有意に相同なアミノ酸配列を有する任意の他のタンパク質の結晶形態の構造を解析するために使用することもできる。

[0029]

この目的に使用することができる方法の1つに、分子置換がある。この方法では、未知の結晶構造がRRFの別の形態、RRF変異体又はRRF共複合体又はRRFの任意の機能ドメインに有意に相同なアミノ酸配列を有する任意の他のタンパク質の結晶形態であるかどうかを表7に提供するような本発明のRRFの構造座標を用いて決定することができる。この方法は、未知の結晶についての正確な構造形態をこのような情報を最初から決定しようとするよりも、より迅速かつ効率よく提供する

[0030]

さらに本発明によると、RRF変異体は、公知のRRF阻害剤との共複合体で結晶化することができる。次いでこのような複合体の一連の結晶構造は、分子置換によって解析することができ、そして野生型RRFの結晶構造と比較することができる。従って、酵素の種々の結合部位内の改変するのに有力な部位を同定することができる。この情報により、RRFと化学的実体又は化合物との間の最も有効な結合相互作用(例えば増加した疎水性相互作用)を決定する手段を提供する。

[0031]

上記の全ての複合体は、公知のX線回折技術を用いて研究することができ、そしてコンピューターソフトウェア(例えばX-POLAR、Yale University, 1992, Molecular Simulation, Incにより配布)を用いて2~3Å分解能X線データを対照に約0.20以下のR値に精密化することができる(例えばBlundel & Johnson, Protein C rystallography, Academic Press (1976)、Methods in Enzymology, Vol114,115、H. W. Wycoff et al, Academic Press (1985)。従ってこの情報は、RRF阻害剤を最適化するために使用することができ、さらに重要なことに、新規なRRF阻害剤を設計し、そして合成するために使用することができる。本発明で提供されるRRFの構造座標は又、機能、構造、あるいはその両方においてRRFに類似の関連タンパク質又は酵素の同定を容易にする。これにより、新たな抗菌剤、除草剤又は抗力ビ剤につながる。

[0032]

本発明のRRFに結合又は阻害する化合物の設計には、一般に、2つの要素を考慮する必要がある。第一に、化合物は物理的に、構造的にRRFに結合することができなくてはならない。RRFのその基質との結合に重要な非共有結合分子間相互作用には、水素結合、ファンデルワールス力及び疎水性相互作用が挙げられる。

第二に、化合物はRRFとの結合を可能にするコンホメーションを想定することができなくてはならない。化合物の特定の部分は、このRRFとの結合に直接的には関与しないが、それらの部分はそれでも分子のコンホメーション全体にわたって影響し得る。このことはまた有効性に顕著な影響を及ぼす。このようなコンホメーションの必要条件としては、全ての又は一部の結合部位(例えばRRFの活性部位又は補助的結合部位)に関する化学的実体あるいは化合物の三次元構造及び配向全体、又はRRFと直接相互作用するいくらかの化学的実体を含む化合物の官能基間の間隔が挙げられる。

[0033]

RRFに対する化学化合物の潜在的阻害効果又は結合効果は、それが実際に合成される前に分析することができ、そしてコンピュータモデリング技術を使用して、試験することができる。所定の化合物の理論的構造が、その化合物とRRFとの間に不十分な相互作用及び結合があることを示唆する場合、その化合物の合成及

び試験は回避できる。しかし、コンピュータモデリングが強い相互作用を示唆する場合には、その分子を合成し、そして平島と梶の方法(Biochemistry, 11, 4037, (1972))又はオリゴヌクレオチドを用いる方法及びインビボでのスクリーニング(特願平10-158643)により阻害する能力について試験することができる。この方法により効果のない化合物の合成を回避することができる。

[0034]

RRFの阻害性化合物又はRRFの他の結合化合物は、コンピュータで評価することができ、そして化学的実体又はフラグメントが、RRFの個々の結合ポケット又は他の領域と結合するそれらの能力についてスクリーニング及び選択される一連の工程の手段により設計することができる。

化学的実体又はフラグメントをRRF、より詳細にはRRFの結合部位又は補助的結合部位の個々の結合ポケットと結合するそれらの能力についてスクリーニングするいくつかの方法の1つを使用することができる。このプロセスは、例えば表7のRRF座標に基づくコンピュータスクリーニングの際に、活性部位の視覚的検討により開始することができる。次いで選択されたフラグメント又は化学的実体は、種々の配向で位置づけられることができ、又はRRFの個々の結合ポケットに連結することができる。連結はQuanta及びSybylのようなソフトウェアを使用して達成することができ、その後標準的な分子機構力場(例えばCHARMM, AMBER)を用いて、エネルギーの最小化及び分子動力学を行う。

[0035]

専門化されたコンピュータプログラムは、フラグメント又は化学的実体を選択 するプロセスを補助することができる。これらのプログラムの例には以下が挙げ られる:

GRID(Goodford, P. J., "A Computational Procedure for Determining Energet ically Favorable Binding Sites on Biologically Important Macromolecules", J. Med. Chem., 28, pp. 849-857 (1985))、これはOxford University, oxford, UKより利用可能である。MCSS(Miranker, A及びM. Karplus, "Functionality Map of Binding Sites: A Multiple C py Simulataneous Search Method.", Proteins: Structure, Function and Genetics, 11, pp. 29-34 (1991))、これはMo

lecular Simulations, Burlington, MAから入手可能である。AUTODOCK (Goodsell, D. S. 及びA. J. Olsen, "Automated Docking of of Substrates to Proteins by Simulated Annealing", Proteins: Structure, Function and Genetics, 8, pp. 195-202 (1990))、これはScripps Research Institute, La Jolla, CAから入手可能である。DOCK (Kuntz, I. D. et al, "A Geometric Approach to Macrom olecule-Ligand Interactions", J. Mol. Biol., 161, pp. 269-288 (1982))、これはUniversity of Carifornia, San Francisco, CAから利用可能である。

[0036]

一度、適切な化学的実体又はフラグメントが選択されると、化学的実体又はフラグメントは、単一の化合物又は阻害剤に組み立てることができる。組み立てはRRFの構造座標に関してコンピュータースクリーン上に示される三次元画像でのフラグメントの相互関係の視覚的検討により行うことができる。次いでQuanta又はSybylのようなソフトウェアを用いて、マニュアルによるモデル構築を行う。

[0037]

個々の化学的実体又はフラグメントを接触させる場合に、当業者を補助することができる有用なプログラムの例には以下が挙げられる:

CAVEAT (Bartlett, P. A. et al, "CAVEAT: A Program to Facilitate the Struc ture-Derived Design of Biologically Active Molecules", Molecular Recogn ition in Chemical and Biological Problems", Royal Chem. Soc.,78, pp. 182 -196 (1989))、これはthe University of Carifornia, Berkeley, CAから入手可能である。MACCS-3D(MDL Information Systems, San Diego, CAのような3D Data base systems、この領域は、Martin, Y. C.,"3D Database Searching in Drug Design", J. Med. Chem., 35, pp. 2145-2154 (1992)に概説される。HOOK(Molecular Simulations, Burlington, MAから入手可能である)。

[0038]

上記のように一度に1つのフラグメント又化学的実体から段階様式でRRF阻害剤を構築するかわりに阻害化合物又は他のRRF結合化合物は、RRFからの活性部位(又は必要に応じて公知の阻害剤のいくつかの部分を含む)を用いて全体的に、又 は新しく設計することができる。これらの方法には以下が挙げられる: LUDI (Bohm, H. J.,"The Computer Program LUDI: A New Method for the de nov o Design of Enzyme Inhibitors", J. Comp, Aid, Molec, Design, 6 pp. 61-78 (1992)、これはBiosym Technologies, San Diego, CAより入手可能である。LEG END(Nishibata, Y.及びA. Itai, Tetrahedron, 47, p. 8985 (1991)、これはMolecular Simulations, Burlington, MAより入手可能である。LeapFrog(Tripos Associates, St. Louis, MOから利用可能である。

[0039]

他の分子モデリングを本発明において使用することができる。例えばCohen, N. C. 等によるMolecular Modeling Software and Methods for Medicinal Chemistry, J. Med. Chem., 33, p883-894 (1990)を参照されたい。又Navia, M. A. 及びM. A. Murcko, The Use of Structural Information in Drug Design, Current Opinions in Structural Biology, 2, p. 202-210 (1992)も参照されたい。

[0040]

一度、化合物が上記の方法により、設計又は選択されると化合物がRRFに結合することが可能な有効性は、コンピュータ評価により試験することができ、そして最適化することができる。例えばRRF阻害剤として機能するように設計又は選択された化合物は、天然の基質に結合する場合に、活性部位により占有される容量に重複しない容量を、好ましくは検討すべきである。有効なRRF阻害剤は、好ましくはその結合状態と遊離状態との間のエネルギー(即ち、小さな結合のひずみ力において、比較的小さな相違を示すべきである。従って最も有効なRRF阻害剤は、約10kcal/molを超えない、好ましくは約7kcal/molを超えない結合のひずみ力を伴って設計されるべきである。RRF阻害剤は、全体にわたる結合エネルギーが類似の1より多いコンホメーションで、酵素と相互作用し得る。それらの場合、結合のひずみ力は、遊離化合物のエネルギーと阻害剤が酵素に結合する場合に観察されるコンホメーションの平均エネルギーとの間の相違になる。

[0041]

RRFに結合するように設計又は選択された化合物は、その結合状態において、 好ましくは標的酵素との反発する静電相互作用を有さないようにコンピュータに より最適化される。このような非相補的(例えば静電気)相互作用として反発する 、荷電-荷電相互作用、双極子-双極子相互作用及び荷電-双極子相互作用が挙げられる。具体的には、阻害剤がRRFに結合した場合の阻害剤と酵素との間の全ての静電気相互作用を総合すると、結合のエンタルピーに対して中立的又は好適な貢献がなされる。

[0042]

化合物のひずみ力及び静電相互作用を評価する特定のコンピュータソフトウェアが、当該分野で利用可能である。このような用途のために設計されたプログラムの例として、Gaussian 92 C, M. J. Frisch, Gaussian, Inc., Pittsburgh, PA 1992; AMBER, version 4.0 P. A. Kollman, University of California, San F rancisco, 1994; QUANTA/CHARMM Molecular Simulations, Inc, San Diego, CA 1994等が挙げられる。これらのプログラムは、Silicon Graphics IRIS 4d/35又はIBM RISC/6000 Model550等の汎用コンピュータを用いて実行することができる。他のハードウェア及びソフトウェアは、当業者に公知である。

[0043]

一度、RRF結合化合物が上記のように最適に選択又は設計されると、次にその結合特性を改善又は改変するためにその化合物の原子又は側鎖のいくつかについて、置換が行われる。一般に、最初の置換は保存的である。即ち置換基は元の基とほぼ同じ大きさ、形状、疎水性及び荷電を有する。当該分野でコンホメーションを変えることが公知である化合物はさけるべきである。このように置換された化学的化合物は、次いで上記のコンピュータによる方法と同様にしてRRFに適合する効力について分析される。

[0044]

本発明はまた、RRFの変異体を可能にし、そしてそれらの結晶構造の解明を可能にする。より詳細には、本発明により、RRFの結晶構造に基づくRRFの活性部位、補助的結合部位及び界面の位置により、変異のための所望の部位の同定が可能となる。

例えば変異は、野生型のRRFの部位、即ち活性部位又は補助的結合部位のみのうち、特定の部位又は組み合わせを指向することができる。あるいは変異誘発のために、界面部位上の位置が選択される。同様に、酵素表面上又は近傍の位置の

みが置換され、野生型酵素と比較して1以上の荷電単位の表面荷電の変化を生じさせることができる。あるいはRRFのアミノ酸残基は、その親水性又は疎水性の特徴に基づいて選択され得る。

[0045]

このような変異体は、野生型RRFと比較したいくつかの異なる特性のいずれかにより特徴づけられる。例えばこのような変異体は、1以上の荷電単位の表面荷電の変化を有し得るか、又はサブユニット解離に対する安定性の増加を有し得る。あるいはこのような変異体は、野生型RRFと比較して基質特異性の変化を有し得るか、あるいは野生型RRFよりも高いか、又は低い比活性を有し得る。

[0046]

本発明により調製されるRRF変異体は、多くの方法により調製することができる。例えば野生型RRF配列は、本発明を利用して、変異に望ましいと同定された部位において、オリゴヌクレオチド特異的変異誘発又は他の従来の技術(例えば欠失等)手段により変異させることができる。あるいはRRFの変異体は、特定のアミノ酸の天然に存在しないアミノ酸での部位特異的置換により作成することができる。さらにRRF変異体は、アミノ酸残基、即ち特定のシステイン又はメチオニン残基のセレノシステイン又はセレノメチオニンとの置換により作製することができる。これは天然メチオニン又はセレノメチオニンとの置換により作製することができる。これは天然メチオニン又はセレノシステインのいずれか(あるいは両方)を含まないが、セレノメチオニン又はセレノシステイン(あるいは両方)を富化した増殖培地上で野生型ポリペプチド又は変異体ポリペプチドのいずれかを発現することができる宿主生物を増殖させることにより達成される。

[0047]

変異は、合成オリゴヌクレオチドを用いて、RRFをコードするDNA配列中に導入することができる。これらのオリゴヌクレオチドは、所望の変異部位に隣接するヌクレオチド配列を含む。変異は、RRFの完全長DNA配列、他の生物のRRF又はRRF配列を短くしたり、長く(欠失又は付加)したものの配列中に作製することができる。

[0048]

本発明に従って、上記の方法又は当該分野で公知の代替方法により作製される

変異RRF DNA配列は、発現ベクターを用いて発現させることができる。当該分野で周知のように、発現ベクターは典型的には宿主ゲノムから独立した宿主細胞中での自己複製を可能にするエレメント、及び選択目的のための1つ以上の表現型マーカーを含む。発現ベクターはまた、所望のRRF変異体コード配列を囲むDNA配列のインサートの前又は後に、プロモーター、オペレーター、リボソーム結合部位、翻訳開始シグナル及び必要に応じてリプレッサー遺伝子ならびに終止シグナルをコードする調節配列を含む。いくつかの実施態様において、産生された変異体の分泌が求められる場合、シグナル配列をコードするヌクレオチドをRRF変異体コード配列の前に挿入することができる。調節配列の制御下での発現のためには、所望のDNA配列を調節配列に作動可能に連結させなければならない。即ち、RRF変異体をコードし、かつ調節配列の制御下のこの配列の発現及びこのRRF配列によりコードされる所望の産物の産生を可能にする適切なリーディングフレームを維持するDNA配列の前に適切な開始シグナルを有さねばならない。

[0049]

広範な周知の利用可能な発現ベクターが、いずれも本発明の変異したRRFコード配列を発現するのに有用である。これらは例えばSV40の種々の公知の誘導体、公知の細菌プラスミド(例えばcol E1、pCR1、pBR322、pMB9及びそれらの誘導体を包含するE. Coli由来のプラスミド)、より広い宿主域のプラスミド(例えばRP4、ファージDNA(例えば多くの2ファージの誘導体(例えばNM989)及び他のDNAファージ(例えばM13及び繊維状1本鎖DNAファージ))、2μプラスミド又はそれらの誘導体のような酵母プラスミドならびにプラスミド及びファージDNAの組み合わせから得られるベクター(例えばファージDNA又は他の発現コントロール配列を利用するために改変されているプラスミド)のような染色体DNA配列、非染色体DNA配列及び合成DNA配列のセグメントからなるベクターを包含する。本発明の好適な実施態様において、本発明者らはE. Coliベクターを利用している。

[0050]

さらに、DNA配列に作動的に連結した場合、その発現を制御する、任意の広範 な発現調節配列が、本発明による変異したDNA配列を発現するためにこれらのベ クター中で使用される。このような有用な発現調節配列として、例えば動物細胞 用SV40の初期プロモーター及び後期プロモーター、lac系、trp系、TAC系又はTRC系、fdコートタンパク質のλファージ調節領域の主要なオペレーター領域及びプロモーター領域(全てE. Coli用)、3-ホスホグリセレートキナーゼ又は他の糖分解酵素のプロモーター、酸性ホスファターゼのプロモーター(例えばPho5)、酵母用酵母α-交配因子のプロモーター及び原核生物細胞又は真核生物細胞あるいはウイルスの遺伝子発現を制御することが公知である他の配列及びこれらの組み合わせが挙げられる。本発明の好適な実施態様において、本発明者らは、E. Coli発現を利用する。

[0051]

広範な種の宿主が又、本発明による変異RRFの産生に有用である。これらの宿主として、例えばE. Coli, Bacillus及びStreptomycesのような細菌、酵母のような真菌、CHO細胞及びCOS-1細胞のような動物細胞、植物細胞及びトランスジェニック宿主細胞が挙げられる。好適な実施態様において、宿主細胞はE. Coliである。

[0052]

全ての発現ベクター及び発現系が、本発明の変異DNA配列を発現し、そして改変RRF又はRRF変異体を産生するのに、同じ様式で機能するとは限らないことを理解すべきである。全ての宿主が同一の発現系を用いて等しく良好に機能するわけではない。しかし、当業者は、実験を行うことなく、そして本発明の範囲を逸脱することなく、これらのベクター、発現調節配列及び宿主から選択することができる。例えば、ベクターの選択の際に重要な考慮事項は、所定の宿主におけるベクターの複製能力である。ベクターのコピー数、コピー数の制御能力及び抗生物質マーカーのような、ベクターによりコードされる他のタンパク質の発現も又考慮しなくてはならない。

[0053]

発現調節配列の選択の際、種々の要因も考慮に入れるべきである。これらは、例えば系の相対的強度、その制御能力、本発明の改変RRFをコードするDNA配列の適合性、特に潜在的二次構造に関する適合性である。

宿主は、選択されたベクターとの適合性、宿主に対する改変RRFの毒性、成熟

産物を分泌する能力、タンパク質を適切に折り畳む能力、発酵要求性、宿主からの改変RRFの精製の容易さ及び安全性の考察により選択されるべきである。これらのパラメータ内で、当業者は有用な量の変異RRFを産生することができる、種々のベクター/発現調節系/宿主の組み合わせを選択することができる。

これらの系で産生される変異RRFは、野生型RRFを精製するために使用される工程及びストラテジーを包含する種々の従来の工程及びストラテジーにより精製することができる。

[0054]

一度、RRF変異が所望の位置(即ち、活性部位又は補助的結合部位)で作製されると、変異体を目的のいくつかの特性いずれかについて試験することができる。

例えば変異体は、生理学的pHにおける荷電の変化についてスクリーニングすることができる。これは野生型親の等電点(pI)と比較した変異RRFの等電点を測定することにより決定される。等電点は、Wellner, D. Analyt. Chem. 43. p597 (1971)の方法によるゲル電気泳動により測定される。表面荷電が変化した変異体は、本発明の構造情報により提供されるように、酵素の表面に位置する置換アミノ酸及び変化したpIを有するRRFポリペプチドである。

[0055]

さらに変異体は、野生型RRFと比較して高いか、又は低い比活性についてスクリーニングすることができる。変異体は、平島及び梶の方法及びオリゴヌクレオチドを用いるアッセイ(前出)を用いて活性測定される。変異体は上記のようにRRF反応を測定することにより、RRF基質特異性の変化を試験することができる。

さらに本発明の目的は、安定性の上昇した変異体を包含する。安定性が上昇したRRF変異体は、酵素活性の喪失を示さないものも含む。

以下、実施例により本発明をより詳細に示す。以下に示す実施例はあくまでその詳細な解説を目的とするものであり、他の方法を制限するものではない。

[0056]

【実施例】

例1. 滴状蒸気拡散法 (hanging drop vapour diffusion technique) による菌XのRRFタンパクの結晶化

菌XのRRFタンパク4mg/mlから8mg/ml、トリス塩酸 50mM pH8.5、硫酸塩 70-100 mM、ポリエチレングリコール14%から18%を含む5μlの溶液を液滴化し、液滴よりも高い濃度の結晶化試薬を含有する液だまりで平衡化した。平衡化は揮発性媒体(水又は有機溶媒)の拡散により、液滴の蒸気圧が液だまりの蒸気圧に等しくなるまで行った。平衡化が水交換(液滴から液だまりへ)によりおきると、液滴の容量は変化する。その結果、液滴中の全ての媒体の濃度は変化する。水よりも高い蒸気圧を有する媒体には、液だまりから液滴への変換が生起する。本例においてRRFタンパク溶液が接触するガラス容器は、その表面を疎水化処理して用いられる。トリス塩酸 100mM pH8.5硫酸塩150mMから200mM、ポリエチレングリコール28%から36%の緩衝液へ透析してXRRF結晶を得た。結晶は、1から3週間で30×50×250μmの大きさに成長した。その結果を図1に示す。

[0057]

例2.X線回折解析によるRRFの三次元構造

RRF三次元構造決定の手段として、複合同位体置換法 (multiple isomorphous replacement procedure) を用いた。これは、重原子による同位体タンパク結晶からの拡散データを得るのに必要な標準的な方法である。重原子の位置より、未置換のものと同位体との差をパッターソン・マップへ計算した。タンパクモデル作成にあたり電子密集度図の計算に必要な初期タンパク相のデータは、数種の誘導体を用いて計算された。

この凍結結晶のX線回折のデータは、MaxII synchrotron (Sweden, Lund) によりBL71へ集めた。

[0058]

そのネイティブな結晶は2.6Åの解像度で回折した。1.5以上のモザイシティの 問題の為に、現在までの所2.9Åの解像度までを用いた。この典型的な回折像を 図2に示す。

このネイティブデータ解析は終了しており、Rsymが1.0である。この統計データを表1に示す。

この結晶は、a=98.5Å、b=106.7Å、c=66.7Åを有し、P2₁2₁2に属している。 この非対称のユニットは2から4分子を含んでおり、各分子間には0.5、0.33 、0.5のトランスレーションが存在する。2つの誘導体のデータが得られ、プラチナの誘導体は4.0Åに回折し、水銀の誘導体は3.8Åに回折した。 ネイティブデータの統計学的検討

回折強度の要約とR-因子をシェルの大きさ(解像度)により示した表Rの値(一次関数として)=3D SUM (ABS(I - <I>>)) / SUM (I) Rの値(二次関数として)=3D SUM ((I - <I>)) ** 2) / SUM (I ** 2) カイ自乗=3D SUM ((I - <I>)) ** 2) / (エラー** 2 * N / (N-1))) 全ての和の計算には二度以上測定した値についてのみ行った。

[0059]

【表1】

表1

ノエバ	レの下層	艮及び上限	回折	強度の	平均の	正常の 一次	乗数のこ	二次乗数の
オ	ングス	トローム	平均	誤差	stat. 值	カイ自乗値	<u>R-因子</u>	<u>R-因子</u>
•	下限	<u>上限</u>						
	30. 0	7. 12	814.6	36.6	18. 5	0.709	0.033	0. 032
	7. 12	5. 67	227. 1	16.7	13. 5	1.012	0.084	0.072
	5. 67	4. 95	266. 0	19.0	15. 3	0.983	0.083	0.075
	4. 95	4. 50	417.3	25.3	18. 4	1.052	0.070	0.064
	4. 50	4. 18	394.0	25.5	19. 6	1. 239	0.087	0.086
	4. 18	3. 93	330. 4	24.4	19. 7	1.064	0.093	0.088
	3. 93	3. 74	296. 1	24.6	20.9	1.286	0. 125	0. 219
	3. 74	3. 58	283.8	25. 5	22. 0	1.275	0.142	0. 221
	3. 58	3. 44	207.5	23. 2	21. 2	1.314	0. 170	0. 192
	3. 44	3. 32	173. 2	22.5	21 . 1	1.278	0. 193	0. 298
	3. 32	3. 22	151.8	22. 1	20. 9	1.414	0. 222	0. 231
	3. 22	3. 12	130. 4	21.7	20.8	1.560	0. 265	0. 280
	3. 12	3. 04	108.3	20.6	19. 9	1.552	0. 306	0. 307
	3. 04	2. 97	92. 2	19.9	19. 2	1.655	0. 334	0. 315
	2.97	2. 90	74. 9	19.2	18. 7	1.632	0.411	0.416
	全ての)反射	268. 4	23. 2	19. 3	1. 259	0.119	0. 102

[0060]

例3.Thermotoga MaritimaのRRFの結晶構造

Thermotoga MaritimaのRRF cDNAを発現ベクター(PET1650)にクローン化し、IP TG添加によりE. Coliで発現させた。結果として宿主細胞中にThermotoga Maritima RRFが高レベルで蓄積した。細胞を機械的に破壊し、平島と梶の方法(Biochemistry, 11, 4037, (1972))を改変した方法で精製し、Thermotoga Maritima RRF を得た。RRFの結晶を蒸気拡散により成長させた。5-10μlのRRF溶液を同量のreservoir液(00.1M 酢酸ナトリウム、(pH5.5)2.0M 硫安、5mM DTT、10%グリセロール)と混合し、600μlの上記reservoir液と25℃で平衡化し、24時間この液をストリークして、結晶形成を促進すると、結晶が15時間後には見られる。そして3日後には、0.3×0.3×0.5mmのbipyramid型の結晶に成長した。

当業者にとって、上述の結晶化条件を適宜改変することが可能である。

[0061]

全てのX線データセット(2.55Å分解能)をビームラインBL711において、MAXIIシンクロトロンを用いてMar345イメージプレートディテクターに集めた。データのマージ、スケール、インデックス化及び積分は、VDS及びXscale(Kabsch, W. J. Appl. Crystallography 26 795 (1993))のプログラムを用いて行った。MADデータ(multiwarelength anomalous dispersion data)は、波長0.9184~0.978及び0.9788Åにおいて、ビームラインBM14 ESRFにて行い、Mar345イメージプレートディテクターを用いて集めた。このデータをMosflm(Leslie, A. G. W. in Crystallographic computing Oxford Univ Press (1990))を用いて処理し、スケール、マージはScala(CCP4)中にて行った。

[0062]

セレニウム原子のRRF中における位置は、shelxプログラム(sheldrick, G. M. Acta Cryst. A46 P467 (1998))を用い、normalizeされた構造因子を用いた。重原子(セレニウム)パラメーターは、MIphase(CCP4)を用いて精密化した。電子密度地図を空間群 $P4_12_12$ 及び $P4_32_12$ の両方で求めてみたところ、正しい空間群は、 $P4_32_12$ であることが明らかとなった。平均メリット値は、0.66Å~4.0Åの分解能を示した。表2はThermotoga Maritima RRFの結晶データを示す。

[0063]

【表2】

表2

データコレクション

最高分解能シェル2.65 - 2.55 Åに関する値

分解能

30-2.55

全測定回数

79947 (7119)

特異的反射屈折

11927 (1261)

平均反復数

6.7 (5.6)

R_{sva} (%)

0.049 (0.156)

データの完成度(%)

99.8 (99.1)

I/sigma(I)

26.4 (8.9)

 $R_{merge} = (\sum |I-I_0|/\sum I)$ 式中、Iは観察された強度であり、 $\langle I_0 \rangle$ は中心対称性反射の平均強度である。 カッコ内はmaximum resolutionの場合の値を示す。

[0064]

溶媒平滑化(solvent flattering)及び位相拡張(CCD4-collaborative conputir y project #4, A suite of program for protein crystallography Daiesburg L aboratory, Warrington, WA4 4. AD UK (1979)により、マップを改良し、完全なポリペプチド鎖をトレースすることに成功した。モデル構築プログラム(Jones, A. T et al Acta. Cryst. A47 PP110(1991))位置の精密化((CNS)Branger A. T et al Acta Cryst D54 p905 (1998))及び位相の積分(phase combination)を繰り返し、全ての側鎖をモデルに導入することができた。rigid body及び位置の(positional)精密化を行い、さらに擬似アニーリング(simulated annealing)を行った。このモデルを結晶データ(Native Data)と照合してモデルの位相のみを用いて最終モデルに到達した。

[0065]

本発明によるRRFのモデルは、全てのX及びY軸の観察されたデータに対してR因子(25.3%)を有する。理想結合長及び結合角からの二乗平均平方根は偏差は0.01 A及び2.0Åである。

[0066]

表3は、Thermotoga Maritima RRF結晶データの統計学的処理結果を示す。

【表3】

表3

トータコングンコノ		١	
データセット (波長A)	ピーク (0.9786)	インフレクション (0.9788)	リモート (0.9184)
分解能 (A)	2.9	2.9	2.9
完成度 (%)	66	86	86
Rsym (%)	7.0	7.0	7.2
Cullis R-centric	29.0	95'0	•
Cullis R-anomalous	09.00	0.77	0.78

[0067]

表4は、Thermotoga Maritima RRFのPhasingを示す。

【表4】

表4

分解能						
レエージン						
*(Phasing)	•					
解像度bin	30-11.5	11.5 - 8.1	8.1 - 6.2	6.2 - 5.1	解像度bin 30-11.5 11.5-8.1 8.1-6.2 6.2-5.1 5.1-4.3 4.3-3.7	4.3 - 3.7
(V)		١				
FOM	0.704	0.732	0.745	0.683	0.623	0.58
Mean FOM 0.66	99.0					
	•••					

[0068]

2.RRFの活性部位の推定

RRF分子中の活性部位の位置を推定するために、一連のRRF変異体を生成した。

変異誘発を誤りの多いPCR法を用いて、変異を導入した(Janosi et al EMBO J. <u>1</u>7 1141 (1998))。

[0069]

致死遺伝子変異を有するfrr(RRFをコードする遺伝子)を持つプラスミドの分離は次のようにして行った。Janosi等によるEMBO J. 17 1141 (1998)に記載されているpMIXを用いた。簡単に説明するとpMIXは、frrに様々な遺伝変異を起こさせ、それをクロラムフェニコール耐性のプラスミドに導入させたものである。この実施例では、大腸菌のLJ4(recA-)を宿主として用いた。この菌はクロモゾーム上のfrrがフレームシフトのために不活性化されているため、大腸菌はpPEN(1560)(JanosiらEMBO J 17 1141 (1998))上にある野生型frrにより生命を保っている。pPEN(1560)は、カナマイシン耐性因子及びショ糖過敏遺伝子(sucrose sensitivity gene)を含む。

[0070]

この大腸菌をpMIXでトランスフォームし、クロラムフェニコール耐性をマーカーとして選別した。frrは細菌にとって不可欠であるので、pMIXの中に致死変異のあるfrrを持った菌は、上記pPEN1560を持たないと生きて行けない。従ってpMIXとpPEN1560の両方のプラスミドを有する菌を探した。因みにpMIXとpPEN1560の両プラスミドは、通常はincompatibleなので共棲しないが、上記のように必要に迫られれば(抗生物質マーカー及びfrrの必要性)共棲する。

[0071]

このような大腸菌を選択するために、トランスフォーマントをCM及びショ糖を含むプレート上にまき、さらにCMとKMを含むプレートにレプリカフレイティングする。後者に生育し、前者に生育しない菌を選択するとpPEN1560とpMIX中のlethal frrを持っている菌を選べる。この菌はpPEN1560を有するからショ糖を含むプレートには生えない。かくして得られた153個のトランスフォーマントからそれぞれのプラスミドを純化し、それを用いて大腸菌DH5α(wild type frrを有する)をトランスフォームした。この菌は上述のごとく野生型のfrrを有するのでpPEN1560(カナマイシン耐性)を必要としない。従ってクロラムフェニコール、カナマイシン感受性の大腸菌DH5αを選べば、lethal mutationを持ち、pMIXを有する大

腸菌を選択することができる。

[0072]

かくして得られた大腸菌からプラスミドを単離し、KpnI-HindIIIフラグメント (0.9kb,frr)を取り出して常法によるDNA配列決定を行った。その結果を表5に示す。

[0073]

【表5】

表5

RRFを不活化する遺伝変異	トる遺伝	変異						
変異型	Allele	分し株離た数	ヌクレオチド変異	オチド強		RRFのプライマリー配列中の変異	コの変異	멅
1アミノ酸変化	fr 146 fr 160		T(152)C T(161)C		Leu(51)Pro Leu(54)Pro Leu(64)Pro			
	1109 11106 1110	e		T(194)C G(329)A C(385)T	Leu(63)Fro Arg(110)His Arg(129)Cys			Ser(33)サイレント Val(41)サイレント ブロモーターを合む
A77X	fr:114 fr:132 fr:133 fr:138	7			Arg(132)Gly Arg(132)Cys Arg(132)His Arg(132)Gln Leu(175)Pro			
2アミノ酸変化	frr149 frr165	7 -	C(447)T T(524)C G(28)A A(490)C	T(524)C A(490)C		Thr(164)Pro		Ser(149)サイ アント
り Bクラス	fre113 (fre112 fre116 fre118		G(28)C G(162)A A(490)C T(38)C T(512)C T(107)A C(317)A A(269)G G(329)A	3(162)A A T(51 2)C C(317)A G(329)A	(490)C Glu(10)Lys Met(13)Thr Leu(36)Gln Asn(90)Ser	Thr(164)Pro 1le(171)Thr Thr(106)Lys Arg(110)His		Leu(154)サイレント - -
37ミノ酸変化 Cクジス	frr134 frr141		T(14)C G(88)A	4	A(103)G T(194)Alle(5)Thr T(97)C C(394)TGly(30)Ser	Ser(35)Gly Ser(33)Pro	Leu(65)Glu Arg(132)Cys	
C未婚が知く なったもの	fr 127 fr 123 fr 123		G(52)T A(76)T C(135)G	T(416)C	Glu(18)stop Lys(26)stop Tyr(45)stop	Glu(18)stop (17 AA long RRF) Lys(26)stop (25 AA long RRF) Tyr(45)stop (44 AA long RRF)		+mutation beyond stop
D077	f#125 f#162 f#140 f#110 f#131			C(157)T T(206)C C(218)A	Gin(53)stop (52 AA long RRF) C(157)T Gin(53)stop (52 AA long RRF) T(206)C G(309)TLys(66)stop (65 AA long RRF) Ser(73)stop (72 AA long RRF) C(218)A Ser(73)stop (72 AA long RRF)	Gin(53)stop (52 AA long RRF) Gin(53)stop (52 AA long RRF) Lys(66)stop (65 AA long RRF) Ser(73)stop (72 AA long RRF) Ser(73)stop (72 AA long RRF)		・ Asp(8)サイレント +2 mutations beyond stop - SD-開始スペーサーを含む
	frr 108	_	G(364)T A(540)G	A(540)G	Glu(122)stop	Glu(122)stop (121 AA long RRF)		•

表5の続き

	frr117	_	A(430)T	Lys(144)stop (14;	3 AA long RRF)	•
	frr136	-	T(336)C A(430)T	Lys(144)stop (143 AA long RRF)	3 AA long RRF)	Asp(112)サイレント
	frr159	_	T(-46)C A(508)T	Lys(170)stop (169 AA long RRF)	9 AA long RRF)	+プロモーター及びSD間の称単
	frr142	3	G(514)T	Glu(172)stop (171 AA long RRF)	1 AA long RRF)	KK CHICAGO
C末婚が短く	fre115	2	A(103)G C(157)T	Ser(35)Gly	Glu(53)stop (\$2 AA long RRF)	
なったもの及び	frr151		(A11)G G(364)T	Asp(4)Gly	Glu(122)stop (121 AA long RRF)	
1アミノ酸変化	frr140	_	A(61)G C(367)T	_	Glu(123)stop (122 AA long RRF)	
	frr166	-	A(61)G G(162)A C(Gln(123)stop (122 AA long RRF)	LeuC1347キノフント
Eクラス	frr121	_	A(445)G C(469)T	_	Gln(157)stop (156 AA long RRF)	
	frr152		C(467)T C(469)T	Ser(156)Phe	Gln(157)stop (156 AA long RRF)	•
	frr139	-	C(467)T C(469)T C	C(555)T Ser(156)Phe	Gin(157)stop (156 AA long RRF)	mutation beyond stop
フレームシント	frr170		T(5)del	Stop at nt 50-52	(16 AA long RRF)	Ser(3) to (Cvs(16) changed
によりC末端が	frr101	_	G(40)del	Stop at nt 50-52	(16 AA long RRF)	Asp(14) to Cvs(16) changed
短くなったもの	frr169		A(70)del	Stop at nt 170-172		Ile(24) to Ser(56) changed
	frr143	_	A(79)del	Stop at nt 170-172		Ile(27) to Ser(56) changed
	frr129	_	C(75)del	Stop at nt 170-172		Ser(25) to Ser(56) changed
	frr126		C(101)del A(419)T	Stop at nt 170-172		Ser(35) to Ser(56) changed
						+mutation beyond stop
トクラス	frr105	-	T(170)del A(359)TT(0)del A(359)TT(492)C Stop at nt 176-178	(58 AA long RRF)	Val(57) to Thr(58) changed
						+2 mutations beyond stop
	frr147	 4	CG(82-83)del	Stop at nt 210-212	_	Arg(28) to Val(69) changed
	frr153		AT(199-200)C	Stop at nt 266-268		Ile(67) to Gly(88) changed
	frr107		A(333)del	Stop at nt 338-340		Asp(112) changed
	£103		C(362)del	Stop at nt 416-418	Ĭ	Ala(121) to Lys(138) changed
	frr137	_	A(346)del A(363)GA(6)del A(363)GA(501)GStop at nt 416-418		Ile(116) to Lys(138) changed
				٠		+mutation in shifted sequence
	,					+mutation beyond stop
	frr145		A(389)del	Stop at nt 416-418	(138 AA long RRF)	Asn(130) to Lys(138) changed
	frr135		A(511)del	Stop at nt 545-547	(181 AA long RRF)	He(168) to Glu(181) changed

ヌクレオチド変異及びアミノ酸変異:変異部位は野生型ヌクレオチド又はアミノ酸の位置番号により示した。アミノ酸は 3文字表記で示した。略号:AA=アミノ酸、del=欠失

[0074]

この表に示すように61個の株が得られ、これは53個の異なったゲノタイプを有した。かくして分離された致死遺伝子を有するプラスミドは、frrとして機能しないことを温度感受性RRFを有するLJ4(JanosiらEMBO J <u>17</u> 1141 (1998))を用いて確認した。得られた全てのプラスミドはLJ4の生育を42℃で支持できなかった

[0075]

次にfrrの構造遺伝子のうち、frrの機能に影響を与えないアミノ酸変異の分離 法を記述する。この目的のために宿主としてLJ4を用いた。この宿主は、前述の ごとくクロモゾーム上のfrrは機能しないので、frr14を有するプラスミドpKH6に より27℃で存在し得る。

この大腸菌は、frr14(温度感受性のRRFをコードする)により存命しているので 当然温度感受性である。この大腸菌を自然のreversion rateにまかせて27℃で生 育すると4.2×10⁻⁶の割合で42℃に生育するものが得られた。この大腸菌のうち 、プラスミドをtsfrr(pKH6)を有するものに置き換えると再び温度感受性になる ものを選び、常法によりfrr部分のDNA配列を決定した。得られた全てのfrrでは 、frrの遺伝変異Val 117 Aspは、野生型のバリンに戻っていたがそのうち数種は 、117位以外のアミノ酸部位に変異が見られた。これらの変異はfrrの機能に全く 影響が見られなかった。この変異を表6に示す。

[0076]

【表6】

表6

RRF	RRF遺伝子の温度感受性をもとに	感受性を		戻寸遺伝変	7変異				1			
Allele	表現型質	分離	ヌクロ	レオチド	の位置			7:1	ノ酸基の位置			
		した										
		茶教	350	457	458	511	513	117	153	171		
fr	W	AN	F	0	4	4	H	Vai	Asp	Ile Ile	(222)	
fr14	ts	NA A	4	G	<	<	⊢	Asp	Asp	[]e	(2785)	
frr201	tr revertant	71	۲	Ö	∢	∢	[\ Is\	Asp	92		
frr206	tr revertant	٣	H	₽	∢	[-	H	Val	Ţ	Phe	•	
frr204	tr revertant	-	-	Ŧ	4	۲	4	Vaí	, F	Len	•	
fr.202	tr revertant	m	H	Ü	∢	₽	∢	Val	Asp	Ę	•	
frr203	tr revertant	-	H	Ö	4	∢	∢	Val	Asp	fie	[le(17]) サインソト	
frr205	tr revertant	4	T	ن	ပ	H	₽	Val	Ala	Phe	-	

アミノ酸は3文字表記とした。略号:NA=一、w=野牛型、t8=温度感受性、tr=温度耐性

[0077]

表7

RRFの構造座標

	原子ター	イプ	<u>残基</u>	<u>#</u>	<u>X</u>	<u>Y</u>	<u>Z</u>	<u>0CC</u>	<u>B</u>
原子	1	CB	VAL	2	10.355	24.444	73.500	1.00	50.36
原子	2	CG1	VAL	2	11.185	25.300	72.669	1.00	50.36
原子	3	CG2	VAL	2	9.102	25.267	74.125	1.00	50.36
原子	4	С	VAL	2	8.502	23.777	72.304	1.00	83.11
原子	5	0	VAL	2	8.267	24.906	71.890	1.00	83.11
原子	6	N	VAL	2	10.415	23.206	71.242	1.00	83.11
原子	7	CA	VAL	2	9.881	23.282	72.625	1.00	83.11
原子	8	N	ASN	3	7.567	22.901	72.348	1.00	72.42
原子	9	CA	ASN	3	6.364	23.543	72.193	1.00	72.42
原子	10	CB	ASN	3	5.458	22.851	71.191	1.00	77.31
原子	11	CG	ASN	3	4.541	23.842	70.630	1.00	77.31
原子	12	OD1	ASN	3	3.368	23.859	70.934	1.00	77.31
原子	13	ND2	ASN	3	5.109	24.802	69.910	1.00	77.31
原子	14	С	ASN	3	6.085	23.280	73.622	1.00	72.42
原子	15	0	ASN	3	6.652	22.357	74.186	1.00	72.42
原子	16	N	PRO	4	5.407	24.244	74.267	1.00	41.97
原子	17	CD	PRO	4	4.846	25.501	73.729	1.00	61.56
原子	18	CA	PRO	4	5.121	24.010	75.681	1.00	41.97
原子	19	СВ	PRO	4	3.981	24.999	75.973	1.00	61.56
原子	20	CG	PRO	4	3.931	25.973	74.808	1.00	61.56
原子	21	С	PRO	4	4.632	22.521	75.634	1.00	41.97
原子	22	0	PRO	4	4.781	21.774	76.617	1.00	41.97
原子	23	N	PHE	5	4.080	22.114	74.491	1.00	37.43
原子	24	CA	PHE	5	3.593	20.751	74.270	1.00	37.43
原子	25	СВ	PHE	5	2.898	20.648	72.912	1.00	36.55

原子	26	CG	PHE	5	1.608	21.414	72.832	1.00 36.55
原子	27	CD1	PHE	5	1.285	22.160	71.693	1.00 36.55
原子	28	CD2	PHE	5	0.697	21.370	73.868	1.00 36.55
原子	29	CE1	PHE	5	0.081	22.866	71.612	1.00 36.55
原子	30	CE2	PHE	5	-0.505	22.072	73.792	1.00 36.55
原子	31	CZ	PHE	5	-0.815	22.815	72.652	1.00 36.55
原子	32	С	PHE	5	4.720	19.724	74.322	1.00 37.43
原子	33	0	PHE	5	4.603	18.687	74.974	1.00 37.43
原子	34	N	ILE	6	5.812	19.998	73.620	1.00 41.88
原子	35	CA	ILE	6	6.946	19.073	73.616	1.00 41.88
原子	36	СВ	ILE	6	7.997	19.477	72.561	1.00 41.38
原子	37	CG2	ILE	6	9.276	18.658	72.740	1.00 41.38
原子	38	CG1	ILE	6	7.410	19.266	71.162	1.00 41.38
原子	39	CD1	ILE	6	8.209	19.943	70.059	1.00 41.38
原子	40	C	ILE	6	7.585	19.045	74.997	1.00 41.88
原子	4 1	0	ILE	6	7.926	17.982	75.516	1.00 41.88
原子	42	N	LYS	7	7.738	20.222	75.592	1.00 47.17
原子	43	CA	LYS	7	8.309	20.333	76.923	1.00 47.17
原子	44	CB	LYS	7	8.293	21.792	77.371	1.00 68.01
原子	45	CG	LYS	7	8.925	22.024	78.727	1.00 68.01
原子	46	CD	LYS	7	8.706	23.444	79.215	1.00 68.01
原子	47	CE	LYS	7	9.525	23.709	80.466	1.00 68.01
原子	48	NZ	LYS	7	8.752	24.480	81.480	1.00 68.01
原子	49	C	LYS	7	7.451	19.496	77.872	1.00 47.17
原子	50	0	LYS	7	7.963	18.740	78.701	1.00 47.17
原子	51	N	GLU	8	6.137	19.639	77.732	1.00 39.77
原子	52	CA	GLU	8	5.175	18.920	78.555	1.00 39.77
原子	53	СВ	GLU	8	3.758	19.392	78.230	1.00 50.17
原子	54	CG	GLU	8	2.678	18.705	79.047	1.00 50.17

原子	55	CD	GLU	8	1.291	18.857	78.443	1.00 50.17
原子	56	OE1	GLU	8	0.319	18.370	79.058	1.00 50.17
原子	57	0E2	GLU	8	1.170	19.456	77.351	1.00 50.17
原子	58	С	GLU	8	5.269	17.406	78.349	1.00 39.77
原子	59	0	GLU	8	5.227	16.637	79.311	1.00 39.77
原子	60	N	ALA	9	5.385	16.979	77.095	1.00 39.35
原子	61	CA	ALA	9	5.487	15.558	76.790	1.00 39.35
原子	62	CB	ALA	9	5.452	15.336	75.294	1.00 32.04
原子	63	C	ALA	9	6.764	14.965	77.375	1.00 39.35
原子	64	0	ALA	9	6.751	13.859	77.905	1.00 39.35
原子	6 5	N	LYS	10	7.872	15.690	77.285	1.00 37.72
原子	66	CA	LYS	10	9.120	15.182	77.840	1.00 37.72
原子	67	CB	LYS	10	10.277	16.113	77.514	1.00 61.11
原子	68	CG	LYS	10	10.990	15.829	76.231	1.00 61.11
原子	69	CD	LYS	10	12.171	16.770	76.124	1.00 61.11
原子	70	CE	LYS	10	12.574	17.020	74.678	1.00 61.11
原子	71	NZ	LYS	10	13.323	18.307	74.569	1.00 61.11
原子	72	С	LYS	10	9.037	15.051	79.358	1.00 37.72
原子	73	0	LYS	10	9.508	14.073	79.939	1.00 37.72
原子	74	N	GLU	11	8.462	16.064	79.996	1.00 33.88
原子	7 5	CA	GLU	11	8.310	16.076	81.445	1.00 33.88
原子	76	CB	GLU	11	7.601	17.353	81.879	1.00 67.13
原子	77	CG	GLU	.11	8.505	18.337	82.587	1.00 67.13
原子	78	CD	GLU	11	8.166	19.783	82.266	1.00 67.13
原子	79	0E1	GLU	11	6.969	20.147	82.296	1.00 67.13
原子	80	0E2	GLU	11	9.107	20.558	81.989	1.00 67.13
原子	81	С	GLU	11	7.529	14.860	81.929	1.00 33.88
原子	82	0	GLU	11	7.989	14.119	82.792	1.00 33.88
原子	83	N	LYS	12	6.349	14.648	81.365	1.00 39.27

原子	84	CA	LYS	12	5.528	13.518	81.766	1.00 39.27
原子	85	CB	LYS	12	4.137	13.637	81.143	1.00 39.81
原子	86	CG	LYS	12	3.424	14.898	81.559	1.00 39.81
原子	87	CD	LYS	12	2.028	14.985	80.996	1.00 39.81
原子	88	CE	LYS	12	1.299	16.195	81.576	1.00 39.81
原子	89	NZ	LYS	12	-0.138	16.215	81.177	1.00 39.81
原子	90	C	LYS	12	6.140	12.168	81.415	1.00 39.27
原子	91	0	LYS	12	6.132	11.245	82.230	1.00 39.27
原子	92	N	MET	13	6.680	12.054	80.206	1.00 33.90
原子	93	CA	MET	13	7.278	10.794	79.780	1.00 33.90
原子	94	CB	MET	13	7.651	10.852	78.307	1.00 28.84
原子	95	CG	MET	13	6.478	10.988	77.344	1.00 28.84
原子	96	SD	MET	13	6.965	10.623	75.666	1.00 28.84
原子	97	CE	MET	13	5.331	10.780	74.827	1.00 28.84
原子	98	C	MET	13	8.508	10.455	80.620	1.00 33.90
原子	99	0	MET	13	8.751	9.289	80.918	1.00 33.90
原子	100	N	LYS	14	9.266	11.468	81.007	1.00 36.32
原子	101	CA	LYS	14	10.454	11.270	81.829	1.00 36.32
原子	102	CB	LYS	14	11.207	12.592	81.957	1.00 65.45
原子	103	CG	LYS	14	12.582	12.500	82.550	1.00 65.45
原子	104	CD	LYS	14	12.746	13.568	83.609	1.00 65.45
原子	105	CE	LYS	14	14.212	13.894	83.838	1.00 65.45
原子	106	NZ	LYS	14	14.426	14.645	85.109	1.00 65.45
原子	107	С	LYS	14	10.008	10.798	83.206	1.00 36.32
原子	108	0	LYS	14	10.636	9.943	83.824	1.00 36.32
原子	109	N	ARG	15	8.911	11.358	83.681	1.00 38.00
原子	110	CA	ARG	15	8.416	10.992	84.979	1.00 38.00
原子	111	СВ	ARG	15	7.311	11.927	85.390	1.00 88.37
原子	112	CG	ARG	15	7.456	12.225	86.815	1.00 88.37

原子	113	CD	ARG	15	6.197	11.885	87.496	1.00 88.37
原子	114	NE	ARG	15	5.468	13.131	87.703	1.00 88.37
原子	115	CZ	ARG	15	4.230	13.240	88.152	1.00 88.37
原子	116	NH1	ARG	15	3.586	12.163	88.540	1.00 88.37
原子	117	NH2	ARG	15	3.650	14.435	88.213	1.00 88.37
原子	118	С	ARG	15	7.932	9.557	85.018	1.00 38.00
原子	119	0	ARG	15	8.193	8.825	85.982	1.00 38.00
原子	120	N	THR	16	7.236	9.156	83.963	1.00 33.54
原子	121	CA	THR	16	6.738	7.794	83.844	1.00 33.54
原子	122	CB	THR	16	6.013	7.603	82.499	1.00 26.11
原子	123	OG1	THR	16	4.716	8.216	82.562	1.00 26.11
原子	124	CG2	THR	16	5.899	6.117	82.148	1.00 26.11
原子	125	C	THR	16	7.931	6.841	83.902	1.00 33.54
原子	126	0	THR	16	7.956	5.911	84.704	1.00 33.54
原子	127	N	LEU	17	8.932	7.102	83.067	1.00 33.14
原子	128	CA	LEU	17	10.119	6.269	83.019	1.00 33.14
原子	129	CB	LEU	17	11.101	6.824	81.990	1.00 34.14
原子	130	CG	LEU	17	12.339	5.962	81.742	1.00 34.14
原子	131	CD1	LEU	17	11.951	4.644	81.086	1.00 34.14
原子	132	CD2	LEU	17	13.301	6.728	80.857	1.00 34.14
原子	133	С	LEU	17	10.783	6.171	84.390	1.00 33.14
原子	134	0	LEU	17	11.261	5.107	84.779	1.00 33.14
原子	135	N	GLU	18	10.802	7.268	85.135	1.00 32.45
原子	136	CA	GLU	18	11.419	7.237	86.454	1.00 32.45
原子	137	CB	GLU	18	11.607	8.661	86.990	1.00 59.96
原子	138	CG	GLU	18	12.984	9.224	86.630	1.00 59.96
原子	139	CD	GLU	18	13.076	10.747	86.698	1.00 59.96
原子	140	OE1	GLU	18	12.049	11.401	86.979	1.00 59.96
原子	141	0E2	GLU	18	14.185	11.287	86.460	1.00 59.96

原子	142	С	GLU	18	10.617	6.370	87.427	1.00 32.45
原子	143	0	GLU	18	11.190	5.687	88.282	1.00 32.45
原子	144	N	LYS	19	9.295	6.370	87.279	1.00 28.05
原子	145	CA	LYS	19	8.453	5.563	88.149	1.00 28.05
原子	146	CB	LYS	19	6.976	5.900	87.953	1.00 77.52
原子	147	CG	LYS	19	6.557	7.201	88.607	1.00 77.52
原子	148	CD	LYS	19	5.099	7.151	89.044	1.00 77.52
原子	149	CE	LYS	19	4.700	8.412	89.804	1.00 77.52
原子	150	NZ	LYS	19	3.354	8.277	90.440	1.00 77.52
原子	151	C	LYS	19	8.673	4.085	87.883	1.00 28.05
原子	152	0	LYS	19	8.729	3.275	88.813	1.00 28.05
原子	153	N	ILE	20	8.797	3.732	86.608	1.00 37.89
原子	154	CA	ILE	20	9.015	2.343	86.236	1.00 37.89
原子	155	CB	ILE	20	9.029	2.170	84.707	1.00 33.33
原子	156	CG2	ILE	20	9.407	0.744	84.348	1.00 33.33
原子	157	CG1	ILE	20	7.665	2.572	84.131	1.00 33.33
原子	158	CD1	ILE	20	6.488	1.863	84.752	1.00 33.33
原子	159	C	ILE	20	10.339	1.851	86.799	1.00 37.89
原子	160	0	ILE	20	10.406	0.793	87.421	1.00 37.89
原子	161	N	GLU	21	11.392	2.628	86.583	1.00 35.03
原子	162	CA	GLU	21	12.708	2.250	87.075	1.00 35.03
原子	163	CB	GLU	21	13.729	3.337	86.732	1.00 30.62
原子	164	CG	GLU	21	13.803	3.617	85.237	1.00 30.62
原子	165	CD	GLU	21	14.648	4.828	84.908	1.00 30.62
原子	166	0E1	GLU	21	14.706	5.755	85.736	1.00 30.62
原子	167	0E2	GLU	21	15.239	4.866	83.815	1.00 30.62
原子	168	С	GLU	21	12.628	2.055	88.578	1.00 35.03
原子	169	0	GLU	21	13.327	1.228	89.154	1.00 35.03
原子	170	N	ASP	22	11.746	2.821	89.206	1.00 38.35

原子	171	CA	ASP	22	11.560	2.756	90.643	1.00	38.35
原子	172	CB	ASP	22	10.706	3.946	91.088	1.00	38.81
原子	173	CG	ASP	22	10.825	4.230	92.567	1.00	38.81
原子	174	0 D1	ASP	22	11.961	4.281	93.066	1.00	38.81
原子	175	0D2	ASP	22	9.784	4.416	93.230	1.00	38.81
原子	176	С	ASP	22	10.888	1.427	90.999	1.00	38.35
原子	177	0	ASP	22	11.355	0.698	91.875	1.00	38.35
原子	178	N	GLU	23	9.804	1.104	90.302	1.00	29.14
原子	179	CA	GLU	23	9.094	-0.142	90.546	1.00	29.14
原子	180	СВ	GLU	23	7.875	-0.235	89.633	1.00	47.44
原子	181	CG	GLU	23	6.846	0.839	89.933	1.00	47.44
原子	182	CD	GLU	23	5.624	0.775	89.039	1.00	47.44
原子	183	0E1	GLU	23	4.619	1.425	89.368	1.00	47.44
原子	184	0E2	GLU	23	5.654	0.085	88.005	1.00	47.44
原子	185	С	GLU	23	10.008	-1.349	90.338	1.00	29.14
原子	186	0	GLU	23	10.007	-2.283	91.142	1.00	29.14
原子	187	N	LEU	24	10.796	-1.327	89.266	1.00	38.04
原子	188	CA	LEU	24	11.716	-2.423	88.981	1.00	38.04
原子	189	CB	LEU	24	12.360	-2.229	87.614	1.00	26.06
原子	190	CG	LEU	24	11.366	-2.262	86.456	1.00	26.06
原子	191	CD1	LEU	24	12.097	-1.999	85.165	1.00	26.06
原子	192	CD2	LEU	24	10.657	-3.604	86.415	1.00	26.06
原子	193	C	LEU	24	12.805	-2.520	90.039	1.00	38.04
原子	194	0	LEU	24	13.360	-3.586	90.288	1.00	38.04
原子	195	N	ARG	25	13.097	-1.393	90.666	1.00	38.24
原子	196	CA	ARG	25	14.117	-1.324	91.690	1.00	38.24
原子	197	СВ	ARG	25	14.552	0.128	91.846	1.00	32.35
原子	198	CG	ARG	25	15.401	0.400	93.059	1.00	32.35
原子	199	CD	ARG	25	15.612	1.890	93.266	1.00	32.35

原子	200	NE	ARG	25	15.485	2.205	94.680	1.00 32.35
原子	201	CZ	ARG	25	14.386	2.692	95.246	1.00 32.35
原子	202	NH1	ARG	25	13.310	2.945	94.516	1.00 32.35
原子	203	NH2	ARG	25	14.352	2.872	96.557	1.00 32.35
原子	204	С	ARG	2 5	13.648	-1.884	93.036	1.00 38.24
原子	205	0	ARG	25	14.452	-2.427	93.795	1.00 38.24
原子	206	N	LYS	26	12.352	-1.762	93.323	1.00 37.23
原子	207	CA	LYS	26	11.792	-2.239	94.590	1.00 37.23
原子	208	СВ	LYS	26	10.685	-1.287	95.047	1.00 39.64
原子	209	CG	LYS	26	11.150	0.165	95.116	1.00 39.64
原子	210	CD	LYS	26	10.163	1.079	95.826	1.00 39.64
原子	211	CE	LYS	26	8.877	1.234	95.054	1.00 39.64
原子	212	NZ	LYS	26	8.005	2.257	95.699	1.00 39.64
原子	213	C	LYS	26	11.258	-3.672	94.522	1.00 37.23
原子	214	0	LYS	26	10.856	-4.257	95.529	1.00 37.23
原子	215	N	MET	27	11.270	-4.218	93.318	1.00 33.15
原子	216	CA	MET	27	10.814	-5.566	93.008	1.00 33.15
原子	217	CB	MET	27	11.078	-5.799	91.535	1.00 37.03
原子	218	CG	MET	27	9.999	-6.456	90.761	1.00 37.03
原子	219	SD	MET	27	10.710	-6.822	89.162	1.00 37.03
原子	220	CE	MET	27	10.529	-8.604	89.133	1.00 37.03
原子	221	C	MET	27	11.586	-6.625	93.797	1.00 33.15
原子	222	0	MET	27	12.817	-6.535	93.910	1.00 33.15
原子	223	N	ARG	28	10.891	-7.632	94.332	1.00 34.95
原子	224	CA	ARG	28	11.600	-8.700	95.047	1.00 34.95
原子	225	CB	ARG	28	10.653	-9.617	95.831	1.00 37.05
原子	226	CG	ARG	28	11.379	-10.784	96.563	1.00 37.05
原子	227	CD	ARG	28	11.935	-11.825	95.587	1.00 37.05
原子	228	NE	ARG	28	12.853	-12.803	96.172	1.00 37.05

原子	229	CZ	ARG	28	12.485 -13.830	96.935	1.00 37.05
原子	230	NH1	ARG	28	11.205 -14.023	97.227	1.00 37.05
原子	231	NH2	ARG	28	13.397 -14.685	97.381	1.00 37.05
原子	232	C	ARG	28	12.284 -9.524	93.976	1.00 34.95
原子	233	0	ARG	28	11.663 -9.932	92.999	1.00 34.95
原子	234	N	THR	29	13.560 -9.792	94.176	1.00 38.90
原子	235	CA	THR	29	14.324 -10.557	93.211	1.00 38.90
原子	236	СВ	THR	29	15.137 -9.563	92.332	1.00 35.61
原子	237	0 G1	THR	29	14.492 -9.442	91.059	1.00 35.61
原子	238	CG2	THR	29	16.569 -9.974	92.161	1.00 35.61
原子	239	C	THR	29	15.184 -11.578	93.952	1.00 38.90
原子	240	0	THR	29	15.051 -11.739	95.164	1.00 38.90
原子	241	N	GLY	30	16.041 -12.288	93.233	1.00 39.05
原子	242	CA	GLY	30	16.877 -13.287	93.870	1.00 39.05
原子	243	С	GLY	30	17.824 -12.818	94.961	1.00 39.05
原子	244	0	GLY	30	18.097 -13.571	95.894	1.00 39.05
原子	245	N	LYS	31	18.327 -11.591	94.864	1.00 44.38
原子	246	CA	LYS	31	19.276 -11.095	95.859	1.00 44.38
原子	247	СВ	LYS	31	20.463 -10.413	95.166	1.00 96.17
原子	248	CG	LYS	31	20.425 -8.883	95.169	1.00 96.17
原子	249	CD	LYS	31	19.350 -8.309	94.249	1.00 96.17
原子	250	CE	LYS	31	19.212 -6.796	94.447	1.00 96.17
原子	251	NZ	LYS	31	20.346 -6.211	95.237	1.00 96.17
原子	252	С	LYS	31	18.665 -10.138	96.876	1.00 44.38
原子	253	0	LYS	31	17.769 -9.360	96.553	1.00 44.38
原子	254	N	PRO	32	19.162 -10.176	98.121	1.00 38.22
原子	255	CD	PRO	32	20.333 -10.942	98.583	1.00 38.30
原子	256	CA	PRO	32	18.663 -9.308	99.190	1.00 38.22
原子	257	СВ	PRO	32	19.512 -9.720	100.391	1.00 38.30

原子	258	CG	PRO	32	20.805	-10.115	99.765	1.00 38.30
原子	259	С	PRO	32	18.823	-7.833	98.853	1.00 38.22
原子	260	0	PRO	32	19.905	-7.386	98.482	1.00 38.22
原子	261	N	SER	33	17.734	-7.082	98.981	1.00 37.83
原子	262	CA	SER	33	17.753	-5.655	98.705	1.00 37.83
原子	263	СВ	SER	33	17.385	-5.392	97.245	1.00 42.16
原子	264	OG	SER	33	17.475	-4.009	96.959	1.00 42.16
原子	265	C	SER	33	16.785	-4.914	99.626	1.00 37.83
原子	266	0	SER	33	15.588	-5.189	99.634	1.00 37.83
原子	267	N	PRO	34	17.302	-3.967	100.425	1.00 31.79
原子	268	CD	PRO	34	18.736	-3.767	100.705	1.00 21.38
原子	269	CA	PRO	34	16.450	-3.202	101.343	1.00 31.79
原子	270	CB	PRO	34	17.413	-2.226	102.022	1.00 21.38
原子	271	CG	PRO	34	18.762	-2.426	101.353	1.00 21.38
原子	272	С	PRO	34	15.304	-2.485	100.653	1.00 31.79
原子	273	0	PRO	34	14.306	-2.134	101.285	1.00 31.79
原子	274	N	ALA	35	15.435	-2.301	99.346	1.00 38.20
原子	275	CA	ALA	35	14.432	-1.607	98.561	1.00 38.20
原子	276	CB	ALA	35	14.956	-1.386	97.157	1.00 17.23
原子	277	С	ALA	35	13.072	-2.287	98.506	1.00 38.20
原子	278	0	ALA	35	12.067	-1.630	98.221	1.00 38.20
原子	279	N	ILE	36	13.024	-3.593	98.765	1.00 43.48
原子	280	CA	ILE	36	11.751	-4.315	98.723	1.00 43.48
原子	281	СВ	ILE	36	11.950	-5.840	98.563	1.00 35.86
原子	282	CG2	ILE	36	12.611	-6.150	97.237	1.00 35.86
原子	283	CG1	ILE	36	12.815	-6.383	99.691	1.00 35.86
原子	284	CD1	ILE	36	13.127	-7.851	99.539	1.00 35.86
原子	285	С	ILE	36	10.902	-4.072	99.962	1.00 43.48
原子	286	0	ILE	36	9.721	-4.402	99.979	1.00 43.48

原子	287	N	LEU	37	11.502	-3.493	100.995	1.00	45.44
原子	288	CA	LEU	37	10.775	-3.214	102.222	1.00	45.44
原子	289	CB	LEU	37	11.697	-3.364	103.431	1.00	37.85
原子	290	CG	LEU	37	12.257	-4.779	103.613	1.00	37.85
原子	291	CD1	LEU	37	13.166	-4.833	104.832	1.00	37.85
原子	292	CD2	LEU	37	11.108	-5.760	103.761	1.00	37.85
原子	293	C	LEU	37	10.169	-1.822	102.205	1.00	45.44
原子	294	0	LEU	37	9.378	-1.474	103.075	1.00	45.44
原子	295	N	GLU	38	10.533	-1.029	101.206	1.00	35.29
原子	296	CA	GLU	38	10.024	0.327	101.086	1.00	35.29
原子	297	СВ	GLU	38	10.727	1.047	99.938	1.00	35.02
原子	298	CG	GLU	38	12.126	1.507	100.291	1.00	35.02
原子	299	CD	GLU	38	12.859	2.111	99.118	1.00	35.02
原子	300	OE1	GLU	38	12.198	2.705	98.240	1.00	35.02
原子	301	0E2	GLU	38	14.103	2.005	99.084	1.00	35.02
原子	302	С	GLU	38	8.525	0.376	100.881	1.00	35.29
原子	303	0	GLU	38	7.898	1.409	101.088	1.00	35.29
原子	304	N	GLU	39	7.940	-0.744	100.485	1.00	43.94
原子	305	CA	GLU	39	6.503	-0.787	100.259	1.00	43.94
原子	306	CB	GLU	39	6.211	-1.291	98.846	1.00	81.69
原子	307	CG	GLU	39	6.456	-0.239	97.771	1.00	81.69
原子	308	CD	GLU	39	5.420	0.872	97.802	1.00	81.69
原子	309	0E1	GLU	39	4.242	0.586	97.505	1.00	81.69
原子	310	OE2	GLU	39	5.777	2.027	98.125	1.00	81.69
原子	311	C	GLU	39	5.783	-1.642	101.289	1.00	43.94
原子	312	0	GLU	39	4.582	-1.860	101.187	1.00	43.94
原子	313	N	ILE	40	6.519	-2.130	102.279	1.00	39.98
原子	314	CA	ILE	40	5.914	-2.929	103.332	1.00	39.98
原子	315	СВ	ILE	40	6.874	-4.032	103.844	1.00	36.67

原子	316	CG2	ILE	40	6.193	-4.855	104.920	1.00	36.67
原子	317	CG1	ILE	40	7.284	-4.952	102.694	1.00	36.67
原子	318	CD1	ILE	40	6.116	-5.618	102.010	1.00	36.67
原子	319	С	ILE	40	5.591	-1.969	104.478	1.00	39.98
原子	320	0	ILE	40	6.490	-1.467	105.153	1.00	39.98
原子	321	N	LYS	41	4.305	-1.705	104.682	1.00	42.16
原子	322	CA	LYS	41	3.877	-0.797	105.732	1.00	42.16
原子	323	СВ	LYS	41	2.794	0.146	105.205	1.00	51.75
原子	324	CG	LYS	41	3.189	0.926	103.966	1.00	51.75
原子	325	CD	LYS	41	1.962	1.566	103.350	1.00	51.75
原子	326	CE	LYS	41	2.274	2.250	102.032	1.00	51.75
原子	327	NZ	LYS	41	3.149	3.440	102.204	1.00	51.75
原子	328	С	LYS	41	3.346	-1.535	106.954	1.00	42.16
原子	329	0	LYS	41	2.775	-2.625	106.861	1.00	42.16
原子	330	N	VAL	42	3.527	-0.902	108.104	1.00	36.81
原子	331	CA	VAL	42	3.099	-1.440	109.377	1.00	36.81
原子	332	CB	VAL	42	4.351	-1.856	110.199	1.00	34.57
原子	333	CG1	VAL .	42	4.204	-1.477	111.654	1.00	34.57
原子	334	CG2	VAL	42	4.578	-3.349	110.051	1.00	34.57
原子	335	C	VAL	42	2.313	-0.330	110.067	1.00	36.81
原子	336	0	VAL	42	2.684	0.836	109.975	1.00	36.81
原子	337	N	ASP	43	1.218	-0.676	110.734	1.00	42.28
原子	338	CA	ASP	43	0.416	0.329	111.424	1.00	42.28
原子	339	CB	ASP	43	-1.006	-0.189	111.671	1.00	62.32
原子	340	CG	ASP	43	-1.902	0.849	112.335	1.00	62.32
原子	341	OD1	ASP	43	-2.036	1.970	111.797	1.00	62.32
原子	342	OD2	ASP	43	-2.484	0.547	113.398	1.00	62.32
原子	343	С	ASP	43	1.099	0.650	112.743	1.00	42.28
原子	344	0	ASP	43	0.885	-0.027	113.744	1.00	42.28

原子	345	N	TYR	44	1.927	1.686	112.729	1.00	35.94
原子	346	CA	TYR	44	2.673	2.111	113.908	1.00	35.94
原子	347	СВ	TYR	44	4.131	2.369	113.524	1.00	28.29
原子	348	CG	TYR	44	5.058	2.554	114.707	1.00	28.29
原子	349	CD1	TYR	44	5.766	3.746	114.883	1.00	28.29
原子	350	CE1	TYR	44	6.611	3.920	115.961	1.00	28.29
原子	351	CD2	TYR	44	5.230	1.533	115.650	1.00	28.29
原子	352	CE2	TYR	44	6.081	1.699	116.738	1.00	28.29
原子	353	CZ	TYR	44	6.769	2.893	116.881	1.00	28.29
原子	354	ОН	TYR	44	7.623	3.064	117.938	1.00	28.29
原子	355	С	TYR	44	2.069	3.372	114.511	1.00	35.94
原子	356	0	TYR	44	2.100	4.439	113.898	1.00	35.94
原子	357	N	TYR	4 5	1.528	3.240	115.718	1.00	38.53
原子	358	CA	TYR	45	0.889	4.347	116.424	1.00	38.53
原子	359	CB	TYR	4 5	1.935	5.289	117.025	1.00	41.05
原子	360	CG	TYR	45	2.617	4.715	118.244	1.00	41.05
原子	361	CD1	TYR	45	3.728	3.879	118.120	1.00	41.05
原子	362	CE1	TYR	45	4.337	3.317	119.241	1.00	41.05
原子	363	CD2	TYR	45	2.144	4.998	119.532	1.00	41.05
原子	364	CE2	TYR	45	2.745	4.438	120.662	1.00	41.05
原子	365	CZ	TYR	4 5	3.851	3.610	120.506	1.00	41.05
原子	366	ОН	TYR	45	4.461	3.056	121.610	1.00	41.05
原子	367	С	TYR	45	-0.086	5.148	115.573	1.00	38.53
原子	368	0	TYR	4 5	0.015	6.370	115.489	1.00	38.53
原子	369	N	GLY	46	-1.028	4.449	114.945	1.00	42.43
原子	370	CA	GLY	46	-2.034	5.107	114.128	1.00	42.43
原子	371	С	GLY	46	-1.673	5.501	112.705	1.00	42.43
原子	372	0	GLY	46	-2.542	5.949	111.957	1.00	42.43
原子	373	N	VAL	47	-0.416	5.327	112.313	1.00	41.54

原子	374	CA	VAL	47	0.010	5.700 110.969	1.00 41.54
原子	375	CB	VAL	47	0.992	6.898 111.037	1.00 35.99
原子	376	CG1	VAL	47	1.674	7.109 109.689	1.00 35.99
原子	377	CG2	VAL	47	0.237	8.148 111.451	1.00 35.99
原子	378	C	VAL	47	0.663	4.580 110.155	1.00 41.54
原子	379	0	VAL	47	1.623	3.958 110.604	1.00 41.54
原子	380	N	PRO	48	0.146	4.309 108.943	1.00 40.25
原子	381	CD	PRO	48	-1.000	4.969 108.294	1.00 34.00
原子	382	CA	PRO	48	0.709	3.259 108.080	1.00 40.25
原子	383	CB	PRO	48	-0.119	3.372 106.804	1.00 34.00
原子	384	CG	PRO	48	-1.437	3.928 107.293	1.00 34.00
原子	385	С	PRO	48	2.156	3.665 107.849	1.00 40.25
原子	386	0	PRO	48	2.420	4.700 107.237	1.00 40.25
原子	387	N	THR	4 9	3.096	2.855 108.316	1.00 32.23
原子	388	CA	THR	49	4.495	3.232 108.207	1.00 32.23
原子	389	CB	THR	49	5.047	3.475 109.622	1.00 26.24
原子	390	0G1	THR	49	4.090	4.237 110.368	1.00 26.24
原子	391	CG2	THR	49	6.375	4.212 109.574	1.00 26.24
原子	392	С	THR	49	5.434	2.271 107.485	1.00 32.23
原子	393	0	THR	49	5.561	1.108 107.867	1.00 32.23
原子	394	N	PRO	50	6.086	2.742 106.407	1.00 39.12
原子	395	CD	PRO	50	5.650	3.818 105.506	1.00 28.33
原子	396	CA	PRO	50	6.999	1.833 105.718	1.00 39.12
原子	397	CB	PR0	50	7.593	2.691 104.595	1.00 28.33
原子	398	CG	PRO	50	6.843	3.998 104.624	1.00 28.33
原子	399	С	PRO	50	8.045	1.349 106.709	1.00 39.12
原子	400	0	PRO	50	8.515	2.111 107.545	1.00 39.12
原子	401	N	VAL	51	8.404	0.076 106.603	1.00 34.69
原子	402	CA	VAL	51	9.356	-0.539 107.511	1.00 34.69

原子	403	СВ	VAL	51	9.576	-2.006	107.122	1.00	36.79
原子	404	CG1	VAL	51	10.622	-2.623	108.005	1.00	36.79
原子	405	CG2	VAL	51	8.264	-2.773	107.254	1.00	36.79
原子	406	C	VAL	51	10.714	0.138	107.685	1.00	34.69
原子	407	0	VAL	51	11.158	0.336	108.817	1.00	34.69
原子	408	N	ASN	52	11.375	0.493	106.585	1.00	43.32
原子	409	CA	ASN	52	12.694	1.124	106.670	1.00	43.32
原子	410	CB	ASN	52	13.256	1.391	105.274	1.00	45.16
原子	411	CG	ASN	52	12.336	2.247	104.434	1.00	45.16
原子	412	OD1	ASN	52	11.261	1.808	104.033	1.00	45.16
原子	413	ND2	ASN	52	12.747	3.475	104.172	1.00	45.16
原子	414	С	ASN	52	12.698	2.423	107.458	1.00	43.32
原子	415	0	ASN	52	13.754	3.003	107.684	1.00	43.32
原子	416	N	GLN	53	11.522	2.883	107.868	1.00	41.50
原子	417	CA	GLN	53	11.415	4.120	108.635	1.00	41.50
原子	418	CB	GLN	53	10.109	4.841	108.305	1.00	32.22
原子	419	CG	GLN	53	10.163	5.659	107.035	1.00	32.22
原子	420	CD	GLN	53	8.818	6.244	106.664	1.00	32.22
原子	421	OE1	GLN	53	8.030	6.641	107.531	1.00	32.22
原子	422	NE2	GLN	53	8.551	6.320	105.363	1.00	32.22
原子	423	C	GLN	53	11.465	3.823	110.118	1.00	41.50
原子	424	0	GLN	53	11.719	4.713	110.937	1.00	41.50
原子	425	N	LEU	54	11.230	2.559	110.454	1.00	35.24
原子	426	CA	LEU	54	11.230	2.113	111.842	1.00	35.24
原子	427	CB	LEU	54	9.949	1.328	112.132	1.00	27.96
原子	428	CG	LEU	54	8.637	2.050	111.839	1.00	27.96
原子	429	CD1	LEU	54	7.462	1.130	112.101	1.00	27.96
原子	430	CD2	LEU	54	8.555	3.294	112.702	1.00	27.96
原子	431	С	LEU	54	12.427	1.223	112.144	1.00	35.24

原子	432	0	LEU	54	12.525	0.660 113.238	1.00 35.24
原子	433	N	ALA	55	13.341	1.091 111.188	1.00 26.03
原子	434	CA	ALA	55	14.481	0.218 111.411	1.00 26.03
原子	435	СВ	ALA	5 5	14.038	-1.244 111.294	1.00 26.69
原子	436	С	ALA	55	15.638	0.457 110.479	1.00 26.03
原子	437	0	ALA	55	15.495	1.068 109.422	1.00 26.03
原子	438	N	THR	56	16.798	-0.025 110.897	1.00 37.20
原子	439	CA	THR	56	17.994	0.075 110.087	1.00 37.20
原子	440	СВ	THR	56	19.261	0.167 110.946	1.00 41.17
原子	441	0G1	THR	56	19.399	-1.027 111.726	1.00 41.17
原子	442	CG2	THR	56	19.177	1.357 111.879	1.00 41.17
原子	443	C	THR	56	18.009	-1.238 109.317	1.00 37.20
原子	444	0	THR	56	17.785	-2.313 109.890	1.00 37.20
原子	445	N	ILE	57	18.244	-1.160 108.017	1.00 53.27
原子	446	CA	ILE	57	18.268	-2.364 107.214	1.00 53.27
原子	447	CB	ILE	57	17.193	-2.321 106.131	1.00 37.44
原子	448	CG2	ILE	57	17.215	-3.612 105.330	1.00 37.44
原子	449	CG1	ILE	57	15.828	-2.101 106.789	1.00 37.44
原子	450	CD1	ILE	57	14.665	-2.037 105.810	1.00 37.44
原子	451	С	ILE	57	19.632	-2.521 106.579	1.00 53.27
原子	452	0	ILE	57	20.124	-1.626 105.899	1.00 53.27
原子	453	N	SER	58	20.248	-3.668 106.820	1.00 58.33
原子	454	CA	SER	58	21.571	-3.954 106.287	1.00 58.33
原子	455	CB	SER	58	22.609	-3.776 107.395	1.00 54.61
原子	456	0G	SER	58	22.130	-4.320 108.610	1.00 54.61
原子	457	C	SER	58	21.619	-5.371 105.735	1.00 58.33
原子	458	0	SER	58	20.691	-6.142 105.952	1.00 58.33
原子	459	N	ILE	59	22.696	-5.719 105.047	1.00 52.33
原子	460	CA	ILE	59	22.809	-7.036 104.463	1.00 52.33

tert ⇒t	401	CD.	** F	F0	00 045	C 000	100 000	1 00	A1 9E
原子	461	CB	ILE	59	23.345	-6.880	103.002		41.35
原子	462	CG2	ILE	59	23.395	-8.205	102.308	1.00	41.35
原子	463	CG1	ILE	59	22.416	-5.923	102.242	1.00	41.35
原子	464	CD1	ILE	59	22.248	-6.171	100.721	1.00	41.35
原子	465	С	ILE	59	23.718	-7.878	105.353	1.00	52.33
原子	466	0	ILE	59	24.936	-7.696	105.361	1.00	52.33
原子	467	N	SER	60	23.109	-8.762	106.143	1.00	60.00
原子	468	CA	SER	60	23.886	-9.591	107.064	1.00	60.00
原子	469	СВ	SER	60	23.010	-10.539	107.912	1.00	60.63
原子	470	0G	SER	60	22.600	-11.739	107.279	1.00	60.63
原子	471	С	SER	60	24.778	-10.428	106.252	1.00	60.00
原子	472	0	SER	60	25.950	-10.189	106.125	1.00	60.00
原子	473	N	GLU	61	24.235	-11.488	105.732	1.00	87.30
原子	474	CA	GLU	61	25.102	-12.210	104.852	1.00	87.30
原子	475	СВ	GLU	61	25.179	-13.704	105.187	1.00	88.30
原子	476	CG	GLU	61	23.932	-14.400	105.050	1.00	88.30
原子	477	CD	GLU	61	24.112	-15.569	104.196	1.00	88.30
原子	478	0E1	GLU	61	23.382	-15.647	103.202	1.00	88.30
原子	479	0E2	GLU	61	24.982	-16.404	104.514	1.00	88.30
原子	480	С	GLU	61	24.601	-11.951	103.471	1.00	87.30
原子	481	0	GLU	61	23.600	-11.303	103.276	1.00	87.30
原子	482	N	GLU	62	25.450	-12.404	102.552	1.00	61.89
原子	483	CA	GLU	62	25.257	-12.362	101.100	1.00	61.89
原子	484	CB	GLU	62	26.426	-13.116	100.473	1.00	60.63
原子	485	CG	GLU	62	27.704	-12.340	100.884	1.00	60.63
原子	486	CD	GLU	62	28.278	-12.647	102.306	1.00	60.63
原子	487	0E1	GLU	62	27.634	-13.284	103.188	1.00	60.63
原子	488	0E2	GLU	62	29.433	-12.215	102.521	1.00	60.63
原子	489	С	GLU	62	23.847	-12.744	100.622	1.00	61.89

原子	490	0	GLU	62	23.455 -12.418 99.550 1.00 61.89
原子	491	N	ARG	63	23.074 -13.357 101.491 1.00 43.14
原子	492	CA	ARG	63	21.691 -13.788 101.154 1.00 43.14
原子	493	СВ	ARG	63	21.592 -15.314 101.038 1.00 76.81
原子	494	CG	ARG	63	22.506 -15.940 100.016 1.00 76.81
原子	495	CD	ARG	63	21.645 -16.662 99.020 1.00 76.81
原子	496	NE	ARG	63	22.409 -17.245 97.930 1.00 76.81
原子	497	CZ	ARG	63	21.892 -17.540 96.743 1.00 76.81
原子	498	NH1	ARG	63	20.610 -17.305 96.498 1.00 76.81
原子	499	NH2	ARG	63	22.663 -18.049 95.793 1.00 76.81
原子	500	C	ARG	63	20.705 -13.359 102.198 1.00 43.14
原子	501	0	ARG	63	19.544 -13.764 102.165 1.00 43.14
原子	502	N	THR	64	21.161 -12.500 103.109 1.00 37.34
原子	503	CA	THR	64	20.310 -12.052 104.183 1.00 37.34
原子	504	СВ	THR	64	20.799 -12.615 105.553 1.00 39.55
原子	505	0 G1	THR	64	20.904 -14.040 105.505 1.00 39.55
原子	506	CG2	THR	64	19.819 -12.237 106.662 1.00 39.55
原子	507	C	THR	64	20.118 -10.553 104.378 1.00 37.34
原子	508	0	THR	64	21.053 -9.760 104.271 1.00 37.34
原子	509	N	LEU	65	18.880 -10.188 104.695 1.00 39.85
原子	510	CA	LEU	65	18.516 -8.812 104.998 1.00 39.85
原子	511	CB	LEU	65	17.236 -8.403 104.271 1.00 33.79
原子	512	CG	LEU	65	17.295 -7.751 102.896 1.00 33.79
原子	513	CD1	LEU	65	15.874 -7.601 102.368 1.00 33.79
原子	514	CD2	LEU	65	17.989 -6.408 102.997 1.00 33.79
原子	515	С	LEU	65	18.225 -8.806 106.489 1.00 39.85
原子	516	0	LEU	65	17.402 -9.585 106.956 1.00 39.85
原子	517	N	VAL	66	18.902 -7.950 107.238 1.00 42.65
原子	518	CA	VAL	66	18.649 -7.864 108.666 1.00 42.65

原子	519	СВ	VAL	66	19.958	-7.878	109.478	1.00 46.94
原子	520	CG1	VAL	66	19.654	-7.792	110.951	1.00 46.94
原子	521	CG2	VAL	66	20.718	-9.152	109.203	1.00 46.94
原子	522	C	VAL	66	17.904	-6.558	108.909	1.00 42.65
原子	523	0	VAL	66	18.366	-5.487	108.514	1.00 42.65
原子	524	N	ILE	67	16.740	-6.669	109.543	1.00 31.17
原子	525	CA	ILE	67	15.890	-5.526	109.844	1.00 31.17
原子	526	CB	ILE	67	14.441	-5.790	109.421	1.00 22.89
原子	527	CG2	ILE	67	13.618	-4.516	109.546	1.00 22.89
原子	528	CG1	ILE	67	14.401	-6.336	107.987	1.00 22.89
原子	529	CD1	ILE	67	13.024	-6.819	107.571	1.00 22.89
原子	530	C	ILE	67	15.888	-5.308	111.345	1.00 31.17
原子	531	0	ILE	67	15.204	-6.032	112.073	1.00 31.17
原子	532	N	LYS	68	16.639	-4.309	111.806	1.00 42.20
原子	533	CA	LYS	68	16.719	-4.005	113.229	1.00 42.20
原子	534	CB	LYS	68	18.180	-3.819	113.623	1.00 56.36
原子	535	CG	LYS	68	18.405	-3.640	115.105	1.00 56.36
原子	536	CD	LYS	68	19.850	-3.923	115.458	1.00 56.36
原子	537	CE	LYS	68	20.079	-3.792	116.952	1.00 56.36
原子	538	NZ	LYS	68	19.129	-4.626	117.749	1.00 56.36
原子	539	С	LYS	68	15.913	-2.768	113.634	1.00 42.20
原子	540	0	LYS	68	16.306	-1.636	113.360	1.00 42.20
原子	541	N	PRO	69	14.763	-2.970	114.283	1.00 39.13
原子	542	CD	PRO	69	14.029	-4.240	114.428	1.00 36.24
原子	543	CA	PRO	69	13.936	-1.837	114.709	1.00 39.13
原子	544	СВ	PRO	69	12.530	-2.410	114.649	1.00 36.24
原子	545	CG	PRO	69	12.750	-3.805	115.143	1.00 36.24
原子	546	С	PRO	69	14.320	-1.409	116.123	1.00 39.13
原子	547	0	PRO	69	14.665	-2.247	116,950	1.00 39.13

原子	548	N	TRP	70	14.274	-0.112 116.406	1.00 35.31
原子	549	CA	TRP	70	14.625	0.359 117.742	1.00 35.31
原子	550	СВ	TRP	70	14.990	1.843 117.719	1.00 54.18
原子	551	CG	TRP	70	14.618	2.524 116.449	1.00 54.18
原子	552	CD2	TRP	70	13.375	3.187 116.177	1.00 54.18
原子	553	CE2	TRP	70	13.461	3.663 114.844	1.00 54.18
原子	554	СЕЗ	TRP	70	12.220	3.423 116.922	1.00 54.18
原子	555	CD1	TRP	70	15.371	2.620 115.312	1.00 54.18
原子	556	NE1	TRP	70	14.671	3.305 114.345	1.00 54.18
原子	557	CZ2	TRP	70	12.400	4.366 114.251	1.00 54.18
原子	558	CZ3	TRP	70	11.174	4.121 116.329	1.00 54.18
原子	559	CH2	TRP	70	11.276	4.587 115.003	1.00 54.18
原子	560	C	TRP	70	13.477	0.111 118.713	1.00 35.31
原子	561	0	TRP	70	13.690	0.011 119.913	1.00 35.31
原子	562	N	ASP	7 1	12.259	0.018 118.194	1.00 38.62
原子	563	CA	ASP	71	11.097	-0.252 119.036	1.00 38.62
原子	564	CB	ASP	7 1	9.897	0.580 118.587	1.00 33.95
原子	565	CG	ASP	71	8.667	0.323 119.436	1.00 33.95
原子	566	0D1	ASP	71	8.604	-0.741 120.086	1.00 33.95
原子	567	0D2	ASP	71	7.754	1.174 119.445	1.00 33.95
原子	568	С	ASP	71	10.785	-1.740 118.869	1.00 38.62
原子	569	0	ASP	71	10.037	-2.142 117.972	1.00 38.62
原子	570	N	LYS	72	11.361	-2.553 119.741	1.00 42.47
原子	571	CA	LYS	72	11.190	-3.990 119.661	1.00 42.47
原子	572	СВ	LYS	72	11.903	-4.650 120.843	1.00 41.13
原子	573	CG	LYS	72	13.420	-4.457 120.777	1.00 41.13
原子	574	CD	LYS	72	13.964	-5.079 119.500	1.00 41.13
原子	575	CE	LYS	72	15.041	-4.235 118.810	1.00 41.13
原子	576	NZ	LYS	72	16.328	-4.168 119.527	1.00 41.13

原子	577	С	LYS	72	9.774	-4.530 1	19.516	1.00	42.47
原子	578	0	LYS	72	9.600	-5.690 1	19.148	1.00	42.47
原子	579	N	SER	73	8.759	-3.719 1	19.781	1.00	36.48
原子	580	CA	SER	73	7.390	-4.212 1	19.631	1.00	36.48
原子	581	СВ	SER	73	6.401	-3.336 1	20.403	1.00	49.51
原子	582	OG	SER	73	6.288	-2.045 1	19.832	1.00	49.51
原子	583	C	SER	73	7.030	-4.206 1	18.153	1.00	36.48
原子	584	0	SER	73	6.006	-4.745 1	17.750	1.00	36.48
原子	585	N	VAL	74	7.891	-3.593 1	17.352	1.00	41.78
原子	586	CA	VAL	74	7.690	-3.487 1	15.910	1.00	41.78
原子	587	CB	VAL	74	8.562	-2.340 1	15.332	1.00	35.01
原子	588	CG1	VAL	74	8.640	-2.425 1	13.811	1.00	35.01
原子	589	CG2	VAL	74	7.982	-1.009 1	15.754	1.00	35.01
原子	590	С	VAL	74	7.997	-4.791 1	15.176	1.00	41.78
原子	591	0	VAL	74	7.475	-5.032 1	14.085	1.00	41.78
原子	592	N	LEU	75	8.842	-5.626 1	115.778	1.00	35.5 5
原子	593	CA	LEU	7 5	9.212	-6.914 1	115.191	1.00	35.55
原子	594	CB	LEU	7 5	10.063	-7.707 1	116.180	1.00	30.58
原子	595	CG	LEU	7 5	11.420	-7.091 1	116.509	1.00	30.58
原子	596	CD1	LEU	7 5	12.024	-7.786 1	117.707	1.00	30.58
原子	597	CD2	LEU	7 5	12.338	-7.213	115.288	1.00	30.58
原子	598	С	LEU	7 5	7.968	-7.725 1	114.828	1.00	35.55
原子	599	0	LEU	7 5	7.830	-8.220	113.714	1.00	35.55
原子	600	N	SER	76	7.057	-7.850]	115.777	1.00	35.44
原子	601	CA	SER	76	5.843	-8.601	115.540	1.00	35.44
原子	602	СВ	SER	76	4.954	-8.545	116.782	1.00	41.93
原子	603	OG	SER	76	3.829	-9.382	116.623	1.00	41.93
原子	604	С	SER	76	5.087	-8.062	114.321	1.00	35.44
原子	605	0	SER	76	4.649	-8.831	113.462	1.00	35.44

原子	606	N	LEU	77	4.951	-6.738	114.251	1.00	39.58
原子	607	CA	LEU	77	4.246	-6.078	113.152	1.00	39.58
原子	608	CB	LEU	77	4.097	-4.577	113.446	1.00	32.60
原子	609	CG	LEU	77	3.248	-4.216	114.681	1.00	32.60
原子	610	CD1	LEU	77	3.301	-2.715	114.936	1.00	32.60
原子	611	CD2	LEU	77	1.808	-4.676	114.476	1.00	32.60
原子	612	С	LEU	77	4.941	-6.277	111.805	1.00	39.58
原子	613	0	LEU	77	4.288	-6.510	110.787	1.00	39.58
原子	614	N	ILE	78	6.263	-6.181	111.792	1.00	38.16
原子	615	CA	ILE	78	6.996	-6.362	110.553	1.00	38.16
原子	616	СВ	ILE	78	8.501	-6.146	110.753	1.00	31.39
原子	617	CG2	ILE	78	9.240	-6.525	109.478	1.00	31.39
原子	618	CG1	ILE	7 8	8.773	-4.691	111.153	1.00	31.39
原子	619	CD1	ILE	78	10.212	-4.413	111.518	1.00	31.39
原子	620	C	ILE	78	6.779	-7.774	110.031	1.00	38.16
原子	621	0	ILE	78	6.590	-7.985	108.833	1.00	38.16
原子	622	N	GLU	79	6.802	-8.737	110.942	1.00	34.51
原子	623	CA	GLU	79	6.618	-10.136	110.599	1.00	34.51
原子	624	CB	GLU	79	6.802	-10.982	111.857	1.00	43.51
原子	625	CG	GLU	7 9	6.587	-12.471	111.665	1.00	43.51
原子	626	CD	GLU	79	6.869	-13.261	112.931	1.00	43.51
原子	627	0E1	GLU	79	6.782	-14.505	112.889	1.00	43.51
原子	628	0E2	GLU	79	7.178	-12.642	113.972	1.00	43.51
原子	629	C	GLU	79	5.243	-10.387	109.987	1.00	34.51
原子	630	0	GLU	79	5.115	-11.058	108.961	1.00	34.51
原子	631	N	LYS	80	4.215	-9.846	110.625	1.00	41.03
原子	632	CA	LYS	80	2.845	-9.994	110.153	1.00	41.03
原子	633	CB	LYS	80	1.905	-9.247	111.090	1.00	63.82
原子	634	CG	LYS	80	0.758	-10.055	111.630	1.00	63.82

特平11-158637

原子	635	CD	LYS	80	1.056 -10.548 113.035 1.00 63.82
原子	636	CE	LYS	80	-0.230 -10.873 113.785 1.00 63.82
原子	637	NZ	LYS	80	0.064 -11.206 115.204 1.00 63.82
原子	638	С	LYS	80	2.695 -9.401 108.753 1.00 41.03
原子	639	0	LYS	80	2.128 -10.022 107.847 1.00 41.03
原子	640	N	ALA	81	3.198 -8.177 108.601 1.00 39.91
原子	641	CA	ALA	81	3.131 -7.437 107.351 1.00 39.91
原子	642	CB	ALA	81	3.738 -6.065 107.535 1.00 28.92
原子	643	С	ALA	81	3.831 -8.161 106.216 1.00 39.91
原子	644	0	ALA	81	3.358 -8.145 105.077 1.00 39.91
原子	645	N	ILE	82	4.966 -8.782 106.516 1.00 31.35
原子	646	CA	ILE	82	5.691 -9.509 105.490 1.00 31.35
原子	647	CB	ILE	82	7.103 -9.899 105.959 1.00 31.86
原子	648	CG2	ILE	82	7.746 -10.830 104.943 1.00 31.86
原子	649	CG1	ILE	82	7.948 -8.634 106.151 1.00 31.86
原子	650	CD1	ILE	82	9.372 -8.905 106.571 1.00 31.86
原子	651	С	ILE	82	4.919 -10.759 105.095 1.00 31.35
原子	652	0	ILE	82	4.763 -11.041 103.904 1.00 31.35
原子	653	N	ASN	83	4.420 -11.503 106.080 1.00 44.39
原子	654	CA	ASN	83	3.660 -12.712 105.778 1.00 44.39
原子	655	CB	ASN	83	3.253 -13.449 107.064 1.00 33.35
原子	656	CG	ASN	83	4.427 -14.137 107.747 1.00 33.35
原子	657	0D1	ASN	83	5.289 -14.727 107.092 1.00 33.35
原子	658	ND2	ASN	83	4.454 -14.078 109.075 1.00 33.35
原子	659	С	ASN	83	2.411 -12.393 104.949 1.00 44.39
原子	660	0	ASN	83	1.936 -13.236 104.186 1.00 44.39
原子	661	N	ALA	84	1.888 -11.178 105.086 1.00 41.69
原子	662	CA	ALA	84	0.698 -10.777 104.334 1.00 41.69
原子	663	CB	ALA	84	-0.061 -9.684 105.090 1.00 35.44

原子	664	С	ALA	84	1.026 -10.294 102.919 1.00 41.69
原子	665	0	ALA	84	0.147 -10.231 102.059 1.00 41.69
原子	666	N	SER	85	2.285 -9.945 102.673 1.00 47.02
原子	667	CA	SER	85	2.681 -9.478 101.346 1.00 47.02
原子	668	СВ	SER	85	3.952 -8.645 101.439 1.00 37.52
原子	669	OG	SER	85	5.037 -9.457 101.836 1.00 37.52
原子	670	С	SER	85	2.931 -10.663 100.421 1.00 47.02
原子	671	0	SER	85	2.773 -11.815 100.820 1.00 47.02
原子	672	N	ASP	86	3.330 -10.380 99.188 1.00 55.10
原子	673	CA	ASP	86	3.600 -11.438 98.226 1.00 55.10
原子	674	СВ	ASP	86	2.856 -11.159 96.913 1.00 66.61
原子	675	CG	ASP	86	3.232 -9.821 96.292 1.00 66.61
原子	676	OD1	ASP	86	4.108 -9.119 96.841 1.00 66.61
原子	677	OD2	ASP	86	2.647 -9.468 95.244 1.00 66.61
原子	678	С	ASP	86	5.093 -11.593 97.955 1.00 55.10
原子	679	0	ASP	86	5.492 -12.136 96.921 1.00 55.10
原子	680	N	LEU	87	5.916 -11.127 98.889 1.00 40.02
原子	681	CA	LEU .	87	7.368 -11.201 98.741 1.00 40.02
原子	682	CB	LEU	87	8.056 -10.528 99.931 1.00 53.14
原子	683	CG	LEU	87	7.867 -9.019 100.053 1.00 53.14
原子	684	CD1	LEU	87	8.549 -8.512 101.314 1.00 53.14
原子	685	CD2	LEU	87	8.446 -8.348 98.815 1.00 53.14
原子	686	С	LEU	87	7.924 -12.612 98.596 1.00 40.02
原子	687	0	LEU	87	8.967 -12.812 97.967 1.00 40.02
原子	688	N	GLY	88	7.233 -13.588 99.176 1.00 39.77
原子	689	CA	GLY	88	7.722 -14.951 99.109 1.00 39.77
原子	690	С	GLY	88	8.924 -15.046 100.028 1.00 39.77
原子	691	0	GLY	88	9.905 -15.733 99.740 1.00 39.77
原子	692	N	LEU	89	8.848 -14.319 101.138 1.00 36.60

ᄧᄼ	cos	CA	I DU	90	9.907 -14.303 102.124 1.00 36.60
原子	693	CA	LEU	89	
原子	694	CB	LEU	89	10.522 -12.909 102.221 1.00 41.00
原子	695	CG	LEU	89	11.343 -12.412 101.033 1.00 41.00
原子	696	CD1	LEU	89	11.804 -10.996 101.312 1.00 41.00
原子	697	CD2	LEU	89	12.539 -13.321 100.797 1.00 41.00
原子	698	C	LEU	89	9.348 -14.720 103.477 1.00 36.60
原子	699	0	LEU	89	8.186 -14.464 103.792 1.00 36.60
原子	700	N	ASN	90	10.185 -15.368 104.275 1.00 32.75
原子	701	CA	ASN	90	9.774 -15.834 105.585 1.00 32.75
原子	702	СВ	ASN	90	9.973 -17.343 105.682 1.00 37.39
原子	703	CG	ASN	90	9.128 -18.104 104.682 1.00 37.39
原子	704	OD1	ASN	90	7.902 -18.176 104.813 1.00 37.39
原子	705	ND2	ASN	90	9.776 -18.671 103.670 1.00 37.39
原子	706	С	ASN	90	10.593 -15.141 106.651 1.00 32.75
原子	707	0	ASN	90	11.804 -15.323 106.731 1.00 32.75
原子	708	N	PRO	91	9.941 -14.330 107.484 1.00 35.24
原子	709	CD	PRO	91	8.503 -14.012 107.514 1.00 26.32
原子	710	CA	PRO	91	10.657 -13.620 108.543 1.00 35.24
原子	711	СВ	PRO	91	9.597 -12.670 109.088 1.00 26.32
原子	712	CG	PRO	91	8.339 -13.443 108.899 1.00 26.32
原子	713	С	PRO	91	11.212 -14.545 109.621 1.00 35.24
原子	714	0	PRO	91	10.577 -15.528 110.004 1.00 35.24
原子	715	N	ILE	92	12.406 -14.224 110.099 1.00 39.44
原子	716	CA	ILE	92	13.050 -14.988 111.156 1.00 39.44
原子	717	СВ	ILE	92	14.442 -15.457 110.736 1.00 30.73
原子	718	CG2	ILE	92	15.044 -16.318 111.833 1.00 30.73
原子	719	CG1	ILE	92	14.357 -16.256 109.440 1.00 30.73
原子	720		ILE	92	15.720 -16.628 108.899 1.00 30.73
原子			ILE	92	13.199 -14.016 112.323 1.00 39.44
L 11/1		5			

原子	722	0	ILE	92	14.117 -13.200 112.347 1.00 39.44
原子	723	N	ASN	93	12.291 -14.109 113.287 1.00 37.86
原子	724	CA	ASN	93	12.275 -13.220 114.441 1.00 37.86
原子	725	СВ	ASN	93	10.818 -12.947 114.804 1.00 26.31
原子	726	CG	ASN	93	10.660 -11.871 115.856 1.00 26.31
原子	727	OD1	ASN	93	11.627 -11.440 116.482 1.00 26.31
原子	728	ND2	ASN	93	9.426 -11.431 116.059 1.00 26.31
原子	729	C	ASN	93	13.015 -13.760 115.668 1.00 37.86
原子	730	0	ASN	93	12.538 -14.690 116.321 1.00 37.86
原子	731	N	ASP	94	14.166 -13.174 115.995 1.00 43.86
原子	732	CA	ASP	94	14.926 -13.613 117.167 1.00 43.86
原子	733	CB	ASP	94	16.429 -13.647 116.866 1.00 48.91
原子	734	CG	ASP	94	17.003 -12.274 116.625 1.00 48.91
原子	735	OD1	ASP	94	18.236 -12.162 116.455 1.00 48.91
原子	736	OD2	ASP	94	16.220 -11.305 116.603 1.00 48.91
原子	737	С	ASP	94	14.661 -12.696 118.366 1.00 43.86
原子	738	0	ASP	94	15.416 -12.690 119.339 1.00 43.86
原子	739	N	GLY	95	13.589 -11.914 118.286 1.00 38.45
原子	740	CA	GLY	95	13.233 -11.031 119.381 1.00 38.45
原子	741	С	GLY	95	14.025 -9.743 119.451 1.00 38.45
原子	742	0	GLY	95	13.756 -8.886 120.293 1.00 38.45
原子	743	N	ASN	96	15.008 -9.606 118.569 1.00 49.36
原子	744	CA	ASN	96	15.841 -8.410 118.525 1.00 49.36
原子	745	CB	ASN	96	17.296 -8.751 118.860 1.00 40.40
原子	746	CG	ASN	96	18.208 -7.532 118.808 1.00 40.40
原子	747	OD1	ASN	96	19.369 -7.620 118.399 1.00 40.40
原子	748	ND2	ASN	96	17.686 -6.388 119.232 1.00 40.40
原子	749	С	ASN	96	15.789 -7.849 117.116 1.00 49.36
原子	750	0	ASN	96	15.489 -6.679 116.901 1.00 49.36

原子	751	N	VAL	97	16.079 -8.716 116.158 1.00 44.00
原子	752	CA	VAL	97	16.105 -8.340 114.759 1.00 44.00
原子	753	CB	VAL	97	17.561 -8.390 114.253 1.00 36.85
原子	754	CG1	VAL	97	17.828 -9.690 113.506 1.00 36.85
原子	755	CG2	VAL	97	17.843 -7.197 113.413 1.00 36.85
原子	7 56	С	VAL	97	15.223 -9.276 113.923 1.00 44.00
原子	757	0	VAL	97	14.713 -10.279 114.422 1.00 44.00
原子	7 58	N	ILE	98	15.033 -8.938 112.653 1.00 37.43
原子	759	CA	ILE	98	14.240 -9.772 111.758 1.00 37.43
原子	760	CB	ILE	98	12.936 -9.084 111.332 1.00 38.61
原子	761	CG2	ILE	98	12.439 -9.659 110.012 1.00 38.61
原子	762	CG1	ILE	98	11.885 -9.281 112.420 1.00 38.61
原子	763	CD1	ILE	98	10.495 -8.910 111.987 1.00 38.61
原子	764	С	ILE	98	15.036 -10.105 110.515 1.00 37.43
原子	765	0	ILE	98	15.270 -9.236 109.677 1.00 37.43
原子	766	N	ARG	99	15.458 -11.365 110.410 1.00 30.52
原子	767	CA	ARG	99	16.232 -11.822 109.263 1.00 30.52
原子	768	CB	ARG	99	17.137 -13.004 109.625 1.00 50.62
原子	769	CG	ARG	99	18.429 -12.643 110.328 1.00 50.62
原子	770	CD	ARG	99	19.445 -13.758 110.162 1.00 50.62
原子	771	NE	ARG	99	18.996 -15.003 110.777 1.00 50.62
原子	772	CZ	ARG	99	19.434 -16.213 110.440 1.00 50.62
原子	773	NH1	ARG	99	20.340 -16.363 109.479 1.00 50.62
原子	774	NH2	ARG	99	18.962 -17.277 111.074 1.00 50.62
原子	775	С	ARG	99	15.307 -12.244 108.151 1.00 30.52
原子	776	0	ARG	99	14.242 -12.809 108.385 1.00 30.52
原子	777	N	LEU	100	15.729 -11.957 106.932 1.00 33.80
原子	778	CA	LEU	100	14.973 -12.307 105.743 1.00 33.80
原子	779	СВ	LEU	100	14.399 -11.042 105.117 1.00 34.63

原子	780	CG	LEU	100	12.890 -10.941	104.938	1.00 34.63
原子	781	CD1	LEU	100	12.167 -11.437	106.178	1.00 34.63
原子	782	CD2	LEU	100	12.542 -9.493	104.636	1.00 34.63
原子	783	С	LEU	100	16.011 -12.928	104.829	1.00 33.80
原子	784	0	LEU	100	16.829 -12.225	104.247	1.00 33.80
原子	785	N	VAL	101	16.006 -14.248	104.725	1.00 40.27
原子	786	CA	VAL	101	16.989 -14.911	103.887	1.00 40.27
原子	787	CB	VAL	101	17.377 -16.271	104.470	1.00 42.80
原子	788	CG1	VAL	101	18.462 -16.902	103.621	1.00 42.80
原子	789	CG2	VAL	101	17.867 -16.097	105.888	1.00 42.80
原子	790	С	VAL	101	16.481 -15.087	102.467	1.00 40.27
原子	791	0	VAL	101	15.288 -15.295	102.248	1.00 40.27
原子	792	N	PHE	102	17.396 -14.988	101.506	1.00 42.62
原子	793	CA	PHE	102	17.065 -15.120	100.091	1.00 42.62
原子	794	CB	PHE	102	17.504 -13.870	99.325	1.00 35.61
原子	795	CG	PHE	102	16.807 -12.614	99.755	1.00 35.61
原子	796	CD1	PHE	102	17.012 -12.089	101.026	1.00 35.61
原子	797	CD2	РНЕ	102	15.936 -11.955	98.889	1.00 35.61
原子	798	CE1	PHE	102	16.365 -10.926	101.427	1.00 35.61
原子	799	CE2	PHE	102	15.286 -10.793	99.284	1.00 35.61
原子	800	CZ	PHE	102	15.498 -10.280	100.553	1.00 35.61
原子	801	С	PHE	102	17.758 -16.330	99.481	1.00 42.62
原子	802	0	PHE	102	18.853 -16.210	98.938	1.00 42.62
原子	803	N	PRO	103	17.123 -17.509	99.542	1.00 35.91
原子	804	CD	PRO	103	15.787 -17.769	100.101	1.00 36.33
原子	805	CA	PRO	103	17.710 -18.739	98.983	1.00 35.91
原子	806	CB	PRO	103	16.665 -19.811	99.313	1.00 36.33
原子	807	CG	PRO	103	15.900 -19.221	100.488	1.00 36.33
原子	808	С	PRO	103	17.961 -18.650	97.472	1.00 35.91

-	000		DDA	1.00	17 970 17 000	06 790	1 00 95 01
原子	809	0	PRO	103	17.379 -17.803	96.789	1.00 35.91
原子	810	N	SER	104	18.833 -19.516	96.958	1.00 42.91
原子	811	CA	SER	104	19.119 -19.556	95.524	1.00 42.91
原子	812	CB	SER	104	19.973 -20.773	95.166	1.00 41.87
原子	813	OG	SER	104	21.321 -20.599	95.559	1.00 41.87
原子	814	С	SER	104	17.779 -19.663	94.820	1.00 42.91
原子	815	0	SER	104	16.993 -20.575	95.089	1.00 42.91
原子	816	N	PRO	105	17.494 -18.735	93.905	1.00 35.96
原子	817	CD	PRO	105	18.214 -17.490	93.571	1.00 31.16
原子	818	CA	PRO	105	16.195 -18.829	93.228	1.00 35.96
原子	819	CB	PRO	105	16.084 -17.493	92.488	1.00 31.16
原子	820	CG	PRO	105	17.542 -17.062	92.303	1.00 31.16
原子	821	С	PRO	105	15.989 -20.037	92.322	1.00 35.96
原子	822	0	PRO	105	16.929 -20.569	91.726	1.00 35.96
原子	823	N	THR	106	14.740 -20.472	92.249	1.00 50.79
原子	824	CA	THR	106	14.354 -21.596	91.410	1.00 50.79
原子	825	CB	THR	106	13.050 -22.237	91.919	1.00 55.41
原子	826	OG1	THR	106	11.965 -21.318	91.742	1.00 55.41
原子	827	CG2	THR	106	13.166 -22.582	93.399	1.00 55.41
原子	828	С	THR	106	14.110 -21.029	90.015	1.00 50.79
原子	829	0	THR	106	13.845 -19.833	89.865	1.00 50.79
原子	830	N	THR	107	14.187 -21.871	88.990	1.00 61.13
原子	831	CA	THR	107	13.973 -21.366	87.643	1.00 61.13
原子	832	СВ	THR	107	14.421 -22.403	86.562	1.00 71.51
原子	833	OG1	THR	107	15.405 -21.800	85.707	1.00 71.51
原子	834	CG2	THR	107	13.244 -22.863	85.713	1.00 71.51
原子	835	С	THR	107	12.515 -20.960	87.454	1.00 61.13
原子	836	0	THR	107	12.166 -20.321	86.471	1.00 61.13
原子	837	N	GLU	108	11.663 -21.311	88.405	1.00 63.04

原子	838	CA	GLU	108	10.262 -20.940	88.297	1.00 63.04
原子	839	CB	GLU	108	9.377 -21.956	89.023	1.00 93.70
原子	840	CG	GLU	108	8.021 -22.149	88.359	1.00 93.70
原子	841	CD	GLU	108	7.250 -23.329	88.922	1.00 93.70
原子	842	OE1	GLU	108	6.636 -23.184	90.001	1.00 93.70
原子	843	OE2	GLU	108	7.266 -24.406	88.286	1.00 93.70
原子	844	\mathbf{C}	GLU	108	10.077 -19.544	88.891	1.00 63.04
原子	845	0	GLU	108	9.144 -18.822	88.526	1.00 63.04
原子	846	N	GLN	109	10.968 -19.173	89.808	1.00 42.84
原子	847	CA	GLN	109	10.924 -17.854	90.429	1.00 42.84
原子	848	CB	GLN	109	11.763 -17.824	91.710	1.00 42.35
原子	849	CG	GLN	109	11.132 -18.557	92.890	1.00 42.35
原子	850	CD	GLN	109	11.971 -18.472	94.156	1.00 42.35
原子	851	OE1	GLN	109	13.094 -18.964	94.204	1.00 42.35
原子	852	NE2	GLN	109	11.423 -17.842	95.186	1.00 42.35
原子	853	С	GLN	109	11.473 -16.836	89.434	1.00 42.84
原子	854	0	GLN	109	10.866 -15.794	89.200	1.00 42.84
原子	855	N	ARG	110	12.624 -17.148	88.846	1.00 37.85
原子	856	CA	ARG	110	13.237 -16.258	87.873	1.00 37.85
原子	857	CB	ARG	110	14.464 -16.909	87.244	1.00 51.08
原子	858	CG	ARG	110	15.598 -17.191	88.202	1.00 51.08
原子	859	CD	ARG	110	16.692 -17.973	87.495	1.00 51.08
原子	860	NE	ARG	110	17.755 -18.390	88.405	1.00 51.08
原子	861	CZ	ARG	110	18.663 -17.569	88.927	1.00 51.08
原子	862	NH1	ARG	110	18.644 -16.275	88.629	1.00 51.08
原子	863	NH2	ARG	110	19.592 -18.042	89.751	1.00 51.08
原子	864	С	ARG	110	12.224 -15.946	86.783	1.00 37.85
原子	865	0	ARG	110	11.986 -14.782	86.457	1.00 37.85
原子	866	N	ALA	111	11.623 -16.992	86.224	1.00 49.18

原子	867	CA	ALA	111	10.634 -16.817	85.168	1.00 49.18
原子	868	CB	ALA	111	10.130 -18.172	84.682	1.00 35.40
原子	869	С	ALA	111	9.473 -15.978	85.689	1.00 49.18
原子	870	0	ALA	111	8.913 -15.158	84.961	1.00 49.18
原子	871	N	LYS	112	9.119 -16.175	86.954	1.00 39.11
原子	872	CA	LYS	112	8.023 -15.416	87.545	1.00 39.11
原子	873	CB	LYS	112	7.687 -15.945	88.940	1.00 85.43
原子	874	CG	LYS	112	6.573 -15.162	89.618	1.00 85.43
原子	875	CD	LYS	112	6.468 -15.473	91.105	1.00 85.43
原子	876	CE	LYS	112	5.400 -14.606	91.768	1.00 85.43
原子	877	NZ	LYS	112	5.303 -14.821	93.242	1.00 85.43
原子	878	С	LYS	112	8.380 -13.936	87.642	1.00 39.11
原子	879	0	LYS	112	7.586 -13.076	87.268	1.00 39.11
原子	880	N	TRP	113	9.578 -13.649	88.146	1.00 31.83
原子	881	CA	TRP	113	10.042 -12.274	88.299	1.00 31.83
原子	882	CB	TRP	113	11.368 -12.237	89.075	1.00 25.54
原子	883	CG	TRP	113	11.256 -12.810	90.459	1.00 25.54
原子	884	CD2	TRP	113	12.278 -13.490	91.203	1.00 25.54
原子	885	CE2	TRP	113	11.711 -13.879	92.434	1.00 25.54
原子	886	CE3	TRP	113	13.618 -13.816	90.945	1.00 25.54
原子	887	CD1	TRP	113	10.149 -12.803	91.253	1.00 25.54
原子	888	NE1	TRP	113	10.411 -13.443	92.439	1.00 25.54
原子	889	CZ2	TRP	113	12.434 -14.574	93.412	1.00 25.54
原子	890	CZ3	TRP	113	14.342 -14.510	91.927	1.00 25.54
原子	891	CH2	TRP	113	13.744 -14.881	93.140	1.00 25.54
原子	892	С	TRP	113	10.202 -11.542	86.966	1.00 31.83
原子	893	0	TRP	113	9.883 -10.362	86.868	1.00 31.83
原子	894	N	VAL	114	10.694 -12.235	85.944	1.00 37.08
原子	895	CA	VAL	114	10.873 -11.619	84.631	1.00 37.08

原子	896	CB	VAL	114	11.568 -12.588	83.636	1.00 25.80
原子	897	CG	VAL	114	11.544 -12.001	82.229	1.00 25.80
原子	898	CG2	2 VAL	114	13.006 -12.844	84.067	1.00 25.80
原子	899	С	VAL	114	9.504 -11.247	84.078	1.00 37.08
原子	900	0	VAL	114	9.323 -10.198	83.456	1.00 37.08
原子	901	N	LYS	115	8.540 -12.122	84.314	1.00 37.76
原子	902	CA	LYS	115	7.177 -11.911	83.861	1.00 37.76
原子	903	СВ	LYS	115	6.345 -13.151	84.189	1.00 60.43
原子	904	CG	LYS	115	5.206 -13.437	83,232	1.00 60.43
原子	905	CD	LYS	115	3.844 -13.292	83.904	1.00 60.43
原子	906	CE	LYS	115	2.935 -14.479	83.591	1.00 60.43
原子	907	NZ	LYS	115	1.512 -14.209	83.953	1.00 60.43
原子	908	С	LYS	115	6.613 -10.682	84.580	1.00 37.76
原子	909	0	LYS	115	5.863 -9.895	83.999	1.00 37.76
原子	910	N	LYS	116	6.988 -10.519	85.847	1.00 44.68
原子	911	CA	LYS	116	6.528 -9.392	86.649	1.00 44.68
原子	912	CB	LYS	116	6.848 -9.639	88.124	1.00 47.83
原子	913	CG	LYS	116	6.427 -8.510	89.052	1.00 47.83
原子	914	CD	LYS	116	6.846 -8.804	90.480	1.00 47.83
原子	915	CE	LYS	116	6.582 -7.623	91.400	1.00 47.83
原子	916	NZ	LYS	116	7.136 -7.862	92.768	1.00 47.83
原子	917	С	LYS	116	7.174 -8.081	86.184	1.00 44.68
原子	918	0	LYS	116	6.527 -7.029	86.162	1.00 44.68
原子	919	N	ALA	117	8.450 -8.142	85.816	1.00 31.99
原子	920	CA	ALA	117	9.152 -6.959	85.345	1.00 31.99
原子	921	CB	ALA	117	10.615 -7.272	85.121	1.00 21.76
原子	922	С	ALA	117	8.525 -6.491	84.043	1.00 31.99
原子	923	0	ALA	117	8.311 -5.302	83.832	1.00 31.99
原子	924	N	LYS	118	8.222 -7.443	83.173	1.00 40.71

原子	925	CA	LYS	118	7.632	-7.137	81.883	1.00 40.71
原子	926	CB	LYS	118	7.499	-8.421	81.063	1.00 61.77
原子	927	CG	LYS	118	7.281	-8.200	79.577	1.00 61.77
原子	928	CD	LYS	118	7.510	-9.495	78.812	1.00 61.77
原子	929	CE	LYS	118	7.974	-9.237	77.381	1.00 61.77
原子	930	NZ	LYS	118	8.495	-10.490	76.749	1.00 61.77
原子	931	С	LYS	118	6.271	-6.474	82.027	1.00 40.71
原子	932	0	LYS	118	5.953	-5.529	81.312	1.00 40.71
原子	933	N	GLU	119	5.462	-6.956	82.956	1.00 33.86
原子	934	CA	GLU	119	4.140	-6.377	83.111	1.00 33.86
原子	935	CB	GLU	119	3.274	-7.279	83.991	1.00 64.63
原子	936	CG	GLU	119	1.788	-7.224	83.639	1.00 64.63
原子	937	CD	GLU	119	1.530	-7.160	82.133	1.00 64.63
原子	938	0E1	GLU	119	0.818	-6.227	81.703	1.00 64.63
原子	939	0E2	GLU	119	2.032	-8.028	81.381	1.00 64.63
原子	940	С	GLU	119	4.245	-4.962	83.674	1.00 33.86
原子	941	0	GLU	119	3.429	-4.095	83.362	1.00 33.86
原子	942	N	ILE	120	5.270	-4.730	84.487	1.00 30.00
原子	943	CA	ILE	120	5.500	-3.420	85.063	1.00 30.00
原子	944	CB	ILE	120	6.656	-3.458	86.100	1.00 30.15
原子	945	CG2	ILE	120	7.168	-2.049	86.372	1.00 30.15
原子	946	CG1	ILE	120	6.176	-4.116	87.398	1.00 30.15
原子	947	CD1	ILE	120	7.292	-4.435	88.385	1.00 30.15
原子	948	С	ILE	120	5.882	-2.461	83.935	1.00 30.00
原子	949	0	ILE	120	5.408	-1.325	83.882	1.00 30.00
原子	950	N	VAL	121	6.741	-2.927	83.035	1.00 35.95
原子	951	CA	VAL	121	7.188	-2.105	81.923	1.00 35.95
原子	952	СВ	VAL	121	8.459	-2.707	81.278	1.00 26.65
原子	953	CG1	VAL	121	8.765	-2.014	79.968	1.00 26.65

原子	954	CG2	VAL	121	9.636	-2.547	82.230	1.00 26.65
原子	955	С	VAL	121	6.094	-1.913	80.869	1.00 35.95
原子	956	0	VAL	121	6.014	-0.854	80.230	1.00 35.95
原子	957	N	GLU	122	5.261	-2.934	80.674	1.00 34.93
原子	958	CA	GLU	122	4.169	-2.822	79.718	1.00 34.93
原子	959	СВ	GLU	122	3.357	-4.114	79.647	1.00 40.08
原子	960	CG	GLU	122	3.868	-5.140	78.652	1.00 40.08
原子	961	CD	GLU	122	3.852	-4.634	77.226	1.00 40.08
原子	962	0E1	GLU	122	4.946	-4.398	76.666	1.00 40.08
原子	963	0E2	GLU	122	2.747	-4.469	76.667	1.00 40.08
原子	964	C	GLU	122	3.260	-1.697	80.191	1.00 34.93
原子	965	0	GLU	122	2.807	-0.877	79.397	1.00 34.93
原子	966	N	GLU	123	2.992	-1.665	81.491	1.00 32.96
原子	967	CA	GLU	123	2.138	-0.630	82.043	1.00 32.96
原子	968	CB	GLU	123	1.928	-0.843	83.547	1.00 59.85
原子	969	CG	GLU	123	0.992	-1.999	83.912	1.00 59.85
原子	970	CD	GLU	123	-0.405	-1.850	83.318	1.00 59.85
原子	971	0E1	GLU	123	-0.950	-0.726	83.334	1.00 59.85
原子	972	0E2	GLU	123	-0.970	-2.860	82.843	1.00 59.85
原子	973	С	GLU	123	2.732	0.753	81.785	1.00 32.96
原子	974	0	GLU	123	2.006	1.695	81.462	1.00 32.96
原子	975	N	GLY	124	4.052	0.870	81.920	1.00 39.02
原子	976	CA	GLY	124	4.707	2.147	81.690	1.00 39.02
原子	977	С	GLY	124	4.549	2.599	80.249	1.00 39.02
原子	978	0	GLY	124	4.365	3.783	79.972	1.00 39.02
原子	979	N	LYS	125	4.620	1.643	79.328	1.00 35.24
原子	980	CA	LYS	125	4.474	1.925	77.909	1.00 35.24
原子	981	СВ	LYS	125	4.620	0.661	77.098	1.00 34.74
原子	982	CG	LYS	125	5.913	-0.048	77.285	1.00 34.74

原子	983	CD	LYS	125	5.958	-1.196	76.321	1.00 34.74
原子	984	CE	LYS	125	7.363	-1.576	76.003	1.00 34.74
原子	985	NZ	LYS	125	7.313	-2.617	74.961	1.00 34.74
原子	986	C	LYS	125	3.097	2.466	77.638	1.00 35.24
原子	987	0	LYS	125	2.926	3.440	76.893	1.00 35.24
原子	988	N	ILE	126	2.104	1.794	78.215	1.00 32.74
原子	989	CA	ILE	126	0.725	2.208	78.047	1.00 32.74
原子	990	CB	ILE	126	-0.219	1.320	78.864	1.00 29.38
原子	991	CG2	ILE	126	-1.642	1.859	78.801	1.00 29.38
原子	992	CG1	ILE	126	-0.154	-0.112	78.335	1.00 29.38
原子	993	CD1	ILE	126	-1.019	-1.088	79.110	1.00 29.38
原子	994	С	ILE	126	0.628	3.650	78.522	1.00 32.74
原子	995	0	ILE	126	-0.019	4.475	77.885	1.00 32.74
原子	996	N	ALA	127	1.302	3.956	79.626	1.00 29.45
原子	997	CA	ALA	127	1.284	5.309	80.166	1.00 29.45
原子	998	CB	ALA	127	2.028	5.356	81.501	1.00 24.11
原子	999	С	ALA	127	1.922	6.273	79.170	1.00 29.45
原子	1000	0	ALA	127	1.434	7.386	78.978	1.00 29.45
原子	1001	N	ILE	128	3.013	5.847	78.536	1.00 32.93
原子	1002	CA	ILE	128	3.691	6.687	77.552	1.00 32.93
原子	1003	CB	ILE	128	4.936	5.983	76.957	1.00 23.94
原子	1004	CG2	ILE	128	5.442	6.742	75.725	1.00 23.94
原子	1005	CG1	ILE	128	6.031	5.871	78.021	1.00 23.94
原子	1006	CD1	ILE	128	6.454	7.190	78.612	1.00 23.94
原子	1007	С	ILE	128	2.732	7.015	76.413	1.00 32.93
原子	1008	0	ILE	128	2.524	8.173	76.077	1.00 32.93
原子	1009	N	ARG	129	2.142	5.985	75.826	1.00 31.09
原子	1010	CA	ARG	129	1.221	6.190	74.731	1.00 31.09
原子	1011	CB	ARG	129	0.764	4.844	74.183	1.00 31.49

EE 7	1010	00	400	100				
原子	1012	CG	ARG	129	1.917	3.977	73.731	1.00 31.49
原子	1013	CD	ARG	129	1.471	2.930	72.738	1.00 31.49
原子	1014	NE	ARG	129	2.600	2.124	72.292	1.00 31.49
原子	1015	CZ	ARG	129	2.977	0.984	72.858	1.00 31.49
原子	1016	NH1	ARG	129	2.300	0.510	73.894	1.00 31.49
原子	1017	NH2	ARG	129	4.040	0.326	72.396	1.00 31.49
原子	1018	С	ARG	129	0.016	7.040	75.110	1.00 31.09
原子	1019	0	ARG	129	-0.590	7.665	74.242	1.00 31.09
原子	1020	N	ASN	130	-0.348	7.069	76.389	1.00 30.83
原子	1021	CA	ASN	130	-1.489	7.881	76.786	1.00 30.83
原子	1022	CB	ASN	130	-1.981	7.517	78.193	1.00 39.26
原子	1023	CG	ASN	130	-2.935	6.328	78.185	1.00 39.26
原子	1024	OD1	ASN	130	-3.616	6.075	77.188	1.00 39.26
原子	1025	ND2	ASN	130	-3.005	5.610	79.301	1.00 39.26
原子	1026	С	ASN	130	-1.083	9.340	76.732	1.00 30.83
原子	1027	0	ASN	130	-1.826	10.185	76.230	1.00 30.83
原子	1028	N	ILE	131	0.108	9.627	77.247	1.00 30.20
原子	1029	CA	ILE	131	0.635	10.981	77.229	1.00 30.20
原子	1030	CB	ILE	131	2.061	11.008	77.807	1.00 27.12
原子	1031	CG2	ILE	131	2.740	12.339	77.485	1.00 27.12
原子	1032	CG1	ILE	131	2.003	10.728	79.310	1.00 27.12
原子	1033	CD1	ILE	131	3.357	10.540	79.955	1.00 27.12
原子	1034	C	ILE	131	0.655	11.475	75.780	1.00 30.20
原子	1035	0	ILE	131	0.271	12.607	75.493	1.00 30.20
原子	1036	N	ARG	132	1.094	10.610	74.869	1.00 30.22
原子	1037	CA	ARG	132	1.149	10.943	73.452	1.00 30.22
原子	1038	CB	ARG	132	1.653	9.744	72.649	1.00 38.82
原子	1039	CG	ARG	132	1.395	9.844	71.152	1.00 38.82
原子	1040	CD	ARG	132	1.837	8.584	70.433	1.00 38.82

原子	1041	NE	ARG	132	1.578	8.664	69.003	1.00 38.82
原子	1042	CZ	ARG	132	0.370	8.586	68.441	1.00 38.82
原子	1043	NH1	ARG	132	-0.718	8.412	69.185	1.00 38.82
原子	1044	NH2	ARG	132	0.245	8.714	67.125	1.00 38.82
原子	1045	С	ARG	132	-0.221	11.359	72.926	1.00 30.22
原子	1046	0	ARG	132	-0.356	12.389	72.271	1.00 30.22
原子	1047	N	ARG	133	-1.236	10.549	73.213	1.00 41.63
原子	1048	CA	ARG	133	-2.593	10.829	72.757	1.00 41.63
原子	1049	СВ	ARG	133	-3.498	9.635	73.059	1.00 50.13
原子	1050	CG	ARG	133	-4.978	9.972	73.139	1.00 50.13
原子	1051	CD	ARG	133	-5.837	8.757	72.843	1.00 50.13
原子	1052	NE	ARG	133	-5.188	7.531	73.287	1.00 50.13
原子	1053	CZ	ARG	133	-5.005	7.195	74.560	1.00 50.13
原子	1054	NH1	ARG	133	-5.432	7.992	75.537	1.00 50.13
原子	1055	NH2	ARG	133	-4.373	6.066	74.854	1.00 50.13
原子	1056	С	ARG	133	-3.209	12.105	73.328	1.00 41.63
原子	1057	0	ARG	133	-3.878	12.844	72.611	1.00 41.63
原子	1058	N	GLU	134	-2.989	12.366	74.612	1.00 37.67
原子	1059	CA	GLU	134	-3.550	13.559	75.234	1.00 37.67
原子	1060	CB	GLU	134	-3.257	13.580	76.738	1.00 95.55
原子	1061	CG	GLU	134	-1.777	13.566	77.082	1.00 95.55
原子	1062	CD	GLU	134	-1.425	14.478	78.245	1.00 95.55
原子	1063	OE1	GLU	134	-0.804	13.991	79.218	1.00 95.55
原子	1064	0E2	GLU	134	-1.763	15.682	78.179	1.00 95.55
原子	1065	С	GLU	134	-2.996	14.826	74.594	1.00 37.67
原子	1066	0	GLU	134	-3.747	15.736	74.254	1.00 37.67
原子	1067	N	ILE	135	-1.678	14.874	74.431	1.00 35.92
原子	1068	CA	ILE	135	-1.016	16.031	73.850	1.00 35.92
原子	1069	СВ	ILE	135	0.513	15.905	73.985	1.00 39.63

原子	1070	CG2	ILE	135	1.200	17.111	73.381	1.00	39.63
原子	1071	CG1	ILE	135	0.875	15.794	75.464	1.00	39.63
原子	1072	CD1	ILE	135	2.359	15.720	75.741	1.00	39.63
原子	1073	С	ILE	135	-1.382	16.183	72.386	1.00	35.92
原子	1074	0	ILE	135	-1.687	17.281	71.920	1.00	35.92
原子	1075	N	LEU	136	-1.354	15.072	71.665	1.00	41.46
原子	1076	CA	LEU	136	-1.682	15.081	70.254	1.00	41.46
原子	1077	СВ	LEU	136	-1.679	13.655	69.711	1.00	34.36
原子	1078	CG	LEU	136	-0.757	13.364	68.526	1.00	34.36
原子	1079	CD1	LEU	136	0.525	14.169	68.631	1.00	34.36
原子	1080	CD2	LEU	136	-0.460	11.869	68.494	1.00	34.36
原子	1081	С	LEU	136	-3.030	15.745	70.004	1.00	41.46
原子	1082	0	LEU	136	-3.172	16.506	69.056	1.00	41.46
原子	1083	N	LYS	137	-4.020	15.484	70.850	1.00	45.83
原子	1084	CA	LYS	137	-5.318	16.109	70.634	1.00	45.83
原子	1085	CB	LYS	137	-6.449	15.330	71.326	1.00	74.57
原子	1086	CG	LYS	137	-6.404	15.320	72.835	1.00	74.57
原子	1087	CD	LYS	137	-7.364	14.283	73.409	1.00	74.57
原子	1088	CE	LYS	137	-8.739	14.854	73.707	1.00	74.57
原子	1089	NZ	LYS	137	-9.587	13.839	74.405	1.00	74.57
原子	1090	С	LYS	137	-5.311	17.559	71.087	1.00	45.83
原子	1091	0	LYS	137	-6.112	18.355	70.611	1.00	45.83
原子	1092	N	LYS	138	-4.421	17.911	72.008	1.00	38.48
原子	1093	CA	LYS	138	-4.343	19.298	72.434	1.00	38.48
原子	1094	СВ	LYS	138	-3.485	19.450	73.689	1.00	46.05
原子	1095	CG	LYS	138	-4.322	19.614	74.943	1.00	46.05
原子	1096	CD	LYS	138	-3.486	19.890	76.177	1.00	46.05
原子	1097	CE	LYS	138	-2.736	18.654	76.639	1.00	46.05
原子	1098	NZ	LYS	138	-2.026	18.906	77.934	1.00	46.05

原子	1099	С	LYS	138	-3.751	20.104	71.278	1.00 38.48
原子	1100	0	LYS	138	-4.104	21.266	71.070	1.00 38.48
原子	1101	N	ILE	139	-2.859	19.476	70.518	1.00 31.21
原子	1102	CA	ILE	139	-2.255	20.128	69.366	1.00 31.21
原子	1103	СВ	ILE	139	-1.038	19.329	68.845	1.00 30.83
原子	1104	CG2	ILE	139	-0.604	19.859	67.490	1.00 30.83
原子	1105	CG1	ILE	139	0.124	19.430	69.840	1.00 30.83
原子	1106	CD1	ILE	139	1.240	18.448	69.571	1.00 30.83
原子	1107	С	ILE	139	-3.311	20.222	68.264	1.00 31.21
原子	1108	0	ILE	139	-3.432	21.249	67.600	1.00 31.21
原子	1109	N	LYS	140	-4.077	19.147	68.081	1.00 37.01
原子	1110	CA	LYS	140	-5.129	19.105	67.068	1.00 37.01
原子	1111	СВ	LYS	140	-5.858	17.765	67.111	1.00 60.99
原子	1112	CG	LYS	140	-6.134	17.149	65.751	1.00 60.99
原子	1113	CD	LYS	140	-4.888	16.462	65.195	1.00 60.99
原子	1114	CE	LYS	140	-5.206	15.633	63.949	1.00 60.99
原子	1115	NZ	LYS	140	-4.049	14.793	63.505	1.00 60.99
原子	1116	С	LYS	140	-6.136	20.223	67.322	1.00 37.01
原子	1117	0	LYS	140	-6.665	20.828	66.383	1.00 37.01
原子	1118	N	GLU	141	-6.402	20.485	68.599	1.00 32.47
原子	1119	CA	GLU	141	-7.335	21.527	68.994	1.00 32.47
原子	1120	СВ	GLU	141	-7.497	21.545	70.512	1.00 56.18
原子	1121	CG	GLU	141	-8.789	20.933	71.011	1.00 56.18
原子	1122	CD	GLU	141	-8.646	20.300	72.394	1.00 56.18
原子	1123	0E1	GLU	141	-8.088	20.951	73.310	1.00 56.18
原子	1124	0E2	C GLU	141	-9.102	19.146	72.562	1.00 56.18
原子	1125	С	GLU	141	-6.797	22.862	68.527	1.00 32.47
原子	1126	0	GLU	141	-7.491	23.630	67.860	1.00 32.47
原子	1127	N	ASP	142	-5.548	23.135	68.887	1.00 43.49

原子	1128	CA	ASP	142	-4.911	24.379	68.504	1.00 43.49
原子	1129	CB	ASP	142	-3.510	24.449	69.105	1.00 40.36
原子	1130	CG	ASP	142	-3.523	24.880	70.557	1.00 40.36
原子	1131	OD1	ASP	142	-4.599	24.852	71.180	1.00 40.36
原子	1132	OD2	ASP	142	-2.455	25.246	71.082	1.00 40.36
原子	1133	С	ASP	142	-4.860	24.497	66.987	1.00 43.49
原子	1134	0	ASP	142	-5.002	25.592	66.443	1.00 43.49
原子	1135	N	GLN	143	-4.667	23.374	66.302	1.00 38.41
原子	1136	CA	GLN	143	-4.634	23.401	64.848	1.00 38.41
原子	1137	CB	GLN	143	-4.197	22.045	64.270	1.00 36.16
原子	1138	CG	GLN	143	-4.584	21.868	62.799	1.00 36.16
原子	1139	CD	GLN	143	-4.063	20.585	62.152	1.00 36.16
原子	1140	0E1	GLN	143	-3.863	19.562	62.814	1.00 36.16
原子	1141	NE2	GLN	143	-3.869	20.632	60.843	1.00 36.16
原子	1142	С	GLN	143	-6.025	23.757	64.329	1.00 38.41
原子	1143	0	GLN	143	-6.161	24.502	63.362	1.00 38.41
原子	1144	N	LYS	144	-7.060	23.238	64.981	1.00 41.80
原子	1145	CA	LYS	144	-8.428	23.511	64.549	1.00 41.80
原子	1146	CB	LYS	144	-9.405	22.591	65.283	1.00 70.22
原子	1147	CG	LYS	144	-10.807	22.637	64.711	1.00 70.22
原子	1148	CD	LYS	144	-11.689	21.509	65.226	1.00 70.22
原子	1149	CE	LYS	144	-13.040	21.518	64.514	1.00 70.22
原子	1150	NZ	LYS	144	-13.922	20.387	64.915	1.00 70.22
原子	1151	С	LYS	144	-8.840	24.982	64.730	1.00 41.80
原子	1152	0	LYS	144	-9.540	25.542	63.885	1.00 41.80
原子	1153	N	GLU	145	-8.404	25.616	65.814	1.00 32.59
原子	1154	CA	GLU	145	-8.753	27.020	66.029	1.00 32.59
原子	1155	CB	GLU	145	-8.406	27.480	67.435	1.00 54.82
原子	1156	CG	GLU	145	-8.937	26.652	68.554	1.00 54.82

原子	1157	CD	GLU	145	-8.574	27,273	69.878	1.00	54.82
原子	1158	0E1	GLU	145	-8.448	26.529	70.874	1.00	54.82
原子	1159	0E2	GLU	145	-8.418	28.515	69.915	1.00	54.82
原子	1160	C	GLU	145	-7.997	27.933	65.078	1.00	32.59
原子	1161	0	GLU	145	-8.346	29.108	64.938	1.00	32.59
原子	1162	N	GLY	146	-6.938	27.406	64.463	1.00	27.98
原子	1163	CA	GLY	146	-6.153	28.200	63.539	1.00	27.98
原子	1164	C	GLY	146	-4.874	28.738	64.154	1.00	27.98
原子	1165	0	GLY	146	-4.094	29.421	63.487	1.00	27.98
原子	1166	N	LEU	147	-4.654	28.437	65.429	1.00	31.04
原子	1167	CA	LEU	147	-3.451	28.896	66.108	1.00	31.04
原子	1168	СВ	LEU	147	-3.506	28.528	67.590	1.00	33.77
原子	1169	CG	LEU	147	-4.561	29.240	68.439	1.00	33.77
原子	1170	CD1	LEU	147	-4.518	28.698	69.852	1.00	33.77
原子	1171	CD2	LEU	147	-4.293	30.738	68.437	1.00	33.77
原子	1172	С	LEU	147	-2.211	28.269	65.481	1.00	31.04
原子	1173	0	LEU	147	-1.216	28.947	65.227	1.00	31.04
原子	1174	N	ILE	148	-2.285	26.965	65.239	1.00	38.27
原子	1175	CA	ILE	148	-1.182	26.213	64.658	1.00	38.27
原子	1176	CB	ILE	148	-0.917	24.931	65.461	1.00	29.04
原子	1177	CG2	ILE	148	0.141	24.102	64.778	1.00	29.04
原子	1178	CG1	ILE	148	-0.503	25.287	66.884	1.00	29.04
原子	1179	CD1	ILE	148	-0.470	24.104	67.811	1.00	29.04
原子	1180	С	ILE	148	-1.517	25.811	63.236	1.00	38.27
原子	1181	0	ILE	148	-2.359	24.936	63.021	1.00	38.27
原子	1182	N	PRO	149	-0.872	26.446	62.243	1.00	34.71
原子	1183	CD	PRO	149	0.123	27.528	62.327	1.00	39.35
原子	1184	CA	PRO	149	-1.157	26.094	60.849	1.00	34.71
原子	1185	СВ	PRO	149	-0.294	27.079	60.053	1.00	39.35

原子	1186	CG	PRO	149	0.821	27.421	60.993	1.00 39.35
原子	1187	С	PRO	149	-0.806	24.633	60.592	1.00 34.71
原子	1188	0	PRO	149	0.086	24.083	61.236	1.00 34.71
原子	1189	N	GLU	150	-1.518	24.010	59.657	1.00 45.51
原子	1190	CA	GLU	150	-1.319	22.602	59.315	1.00 45.51
原子	1191	CB	GLU	150	-1.953	22.304	57.960	1.00 61.98
原子	1192	CG	GLU	150	-1.981	20.829	57.631	1.00 61.98
原子	1193	CD	GLU	150	-2.892	20.505	56.460	1.00 61.98
原子	1194	0E1	GLU	150	-2.978	19.313	56.086	1.00 61.98
原子	1195	0E2	GLU	150	-3.524	21.438	55.915	1.00 61.98
原子	1196	C	GLU	150	0.127	22.106	59.316	1.00 45.51
原子	1197	0	GLU	150	0.452	21.141	60.001	1.00 45.51
原子	1198	N	ASP	151	0.994	22.753	58.549	1.00 41.19
原子	1199	CA	ASP	151	2.392	22.340	58.486	1.00 41.19
原子	1200	CB	ASP	151	3.152	23.242	57.517	1.00 62.06
原子	1201	CG	ASP	151	2.710	23.042	56.088	1.00 62.06
原子	1202	OD1	ASP	151	3.050	23.886	55.232	1.00 62.06
原子	1203	OD2	ASP	151	2.025	22.033	55.817	1.00 62.06
原子	1204	С	ASP	151	3.096	22.322	59.845	1.00 41.19
原子	1205	0	ASP	151	3.879	21.416	60.131	1.00 41.19
原子	1206	N	ASP	152	2.825	23.316	60.683	1.00 40.51
原子	1207	CA	ASP	152	3.461	23.366	61.998	1.00 40.51
原子	1208	CB	ASP	152	3.259	24.736	62.642	1.00 57.97
原子	1209	CG	ASP	152	3.931	25.841	61.865	1.00 57.97
原子	1210	OD1	ASP	152	3.460	26.168	60.760	1.00 57.97
原子	1211	OD2	ASP	152	4.942	26.379	62.354	1.00 57.97
原子	1212	С	ASP	152	2.908	22.282	62.910	1.00 40.51
原子	1213	0	ASP	152	3.598	21.794	63.799	1.00 40.51
原子	1214	N	ALA	153	1.656	21.907	62.678	1.00 34.68

原子	1215	CA	ALA	153	1.012	20.881	63.472	1.00 34.68
原子	1216	СВ	ALA	153	-0.485	20.867	63.185	1.00 29.15
原子	1217	С	ALA	153	1.633	19.532	63.130	1.00 34.68
原子	1218	0	ALA	153	1.885	18.707	64.010	1.00 34.68
原子	1219	N	LYS	154	1.895	19.314	61.848	1.00 39.97
原子	1220	CA	LYS	154	2.484	18.057	61.424	1.00 39.97
原子	1221	CB	LYS	154	2.539	17.971	59.899	1.00 79.16
原子	1222	CG	LYS	154	1.176	17.724	59.270	1.00 79.16
原子	1223	CD	LYS	154	1.238	17.768	57.753	1.00 79.16
原子	1224	CE	LYS	154	-0.150	17.675	57.135	1.00 79.16
原子	1225	NZ	LYS	154	-0.105	17.865	55.654	1.00 79.16
原子	1226	С	LYS	154	3.861	17.813	62.014	1.00 39.97
原子	1227	0	LYS	154	4.124	16.716	62.498	1.00 39.97
原子	1228	N	ARG	155	4.740	18.813	62.005	1.00 39.62
原子	1229	CA	ARG	155	6.075	18.588	62.560	1.00 39.62
原子	1230	CB	ARG	155	7.053	19.698	62.160	1.00 60.09
原子	1231	CG	ARG	155	6.945	20.956	62.975	1.00 60.09
原子	1232	CD	ARG	155	8.256	21.723	62.990	1.00 60.09
原子	1233	NE	ARG	155	8.047	23.093	63.448	1.00 60.09
原子	1234	CZ	ARG	155	7.654	23.432	64.674	1.00 60.09
原子	1235	NH1	ARG	155	7.434	22.501	65.594	1.00 60.09
原子	1236	NH2	ARG	155	7.447	24.709	64.972	1.00 60.09
原子	1237	C	ARG	155	6.028	18.462	64.081	1.00 39.62
原子	1238	0	ARG	155	6.890	17.831	64.693	1.00 39.62
原子	1239	N	LEU	156	5.014	19.067	64.686	1.00 37.71
原子	1240	CA	LEU	156	4.840	19.002	66.131	1.00 37.71
原子	1241	CB	LEU	156	3.717	19.951	66.556	1.00 41.73
原子	1242	CG	LEU	156	3.959	20.955	67.691	1.00 41.73
原子	1243	CD1	LEU	156	5.447	21.194	67.929	1.00 41.73

特平11-15863

原子	1244	CD2	2 LEU	156	3.258	22.257	67.324	1.00 41.73
原子	1245	С	LEU	156	4.473	17.558	66.471	1.00 37.71
原子	1246	0	LEU	156	4.996	16.982	67.420	1.00 37.71
原子	1247	N	GLU	157	3.578	16.981	65.673	1.00 38.40
原子	1248	CA	GLU	157	3.140	15.606	65.867	1.00 38.40
原子	1249	CB	GLU	157	2.013	15.278	64.885	1.00 42.33
原子	1250	CG	GLU	157	0.741	16.056	65.182	1.00 42.33
原子	1251	CD	GLU	157	-0.137	16.281	63.961	1.00 42.33
原子	1252	0E1	GLU	157	-1.113	17.060	64.072	1.00 42.33
原子	1253	0E2	GLU	157	0.145	15.690	62.896	1.00 42.33
原子	1254	С	GLU	157	4.312	14.644	65.687	1.00 38.40
原子	1255	0	GLU	157	4.451	13.682	66.443	1.00 38.40
原子	1256	N	ASN	158	5.157	14.912	64.694	1.00 42.65
原子	1257	CA	ASN	158	6.323	14.072	64.437	1.00 42.65
原子	1258	CB	ASN	158	7.060	14.549	63.187	1.00 53.78
原子	1259	CG	ASN	158	6.273	14.298	61.923	1.00 53.78
原子	1260	OD1	ASN	158	6.565	14.868	60.868	1.00 53.78
原子	1261	ND2	ASN	158	5.268	13.432	62.016	1.00 53.78
原子	1262	C	ASN	158	7.274	14.100	65.627	1.00 42.65
原子	1263	0	ASN	158	7.824	13.068	66.021	1.00 42.65
原子	1264	N	GLU	159	7.468	15.282	66.203	1.00 41.03
原子	1265	CA	GLU	159	8.352	15.400	67.350	1.00 41.03
原子	1266	CB	GLU	159	8.517	16.865	67.760	1.00 80.12
原子	1267	CG	GLU	159	9.384	17.043	68.999	1.00 80.12
原子	1268	CD	GLU	159	10.772	16.430	68.852	1.00 80.12
原子	1269	0E1	GLU	159	11.367	16.051	69.889	1.00 80.12
原子	1270	0E2	GLU	159	11.270	16.337	67.708	1.00 80.12
原子	1271	С	GLU	159	7.803	14.579	68.516	1.00 41.03
原子	1272	0	GLU	159	8.551	13.882	69.200	1.00 41.03

1273	N	ILE	160	6.49	6 14.656	68.737	1.00 37.16
1274	CA	ILE	160	5.87	8 13.896	69.810	1.00 37.16
1275	СВ	ILE	160	4.36	9 14.254	69.961	1.00 41.43
1276	CG2	ILE	160	3.54	8 13.011	70.247	1.00 41.43
1277	CG1	ILE	160	4.17	3 15.224	71.130	1.00 41.43
1278	CD1	ILE	160	4.86	7 16.538	70.976	1.00 41.43
1279	С	ILE	160	6.04	0 12.413	69.502	1.00 37.16
1280	0	ILE	160	6.32	0 11.607	70.386	1.00 37.16
1281	N	GLN	161	5.87	5 12.056	68.236	1.00 40.44
1282	CA	GLN	161	6.00	7 10.667	67.824	1.00 40.44
1283	СВ	GLN	161	5.64	2 10.518	66.348	1.00 47.39
1284	CG	GLN	161	5.63	9.082	65.878	1.00 47.39
1285	CD	GLN	161	4.72	8.211	66.716	1.00 47.39
1286	0E1	GLN	161	5.11	6 7.136	67.178	1.00 47.39
1287	NE2	GLN	161	3.48	89 8.667	66.914	1.00 47.39
1288	C	GLN	161	7.43	35 10.171	68.064	1.00 40.44
1289	0	GLN	161	7.64	13 9.034	68.498	1.00 40.44
1290	N	ALA	162	8.41	6 11.029	67.785	1.00 32.94
1291	CA	ALA	162	9.81	10.670	67.986	1.00 32.94
1292	СВ	ALA	162	10.7	11.759	67.434	1.00 30.93
1293	С	ALA	162	10.05	66 10.465	69.478	1.00 32.94
1294	0	ALA	162	10.73	33 9. 511	69.876	1.00 32.94
1295	N	LEU	163	9.49	92 11.350	70.299	1.00 31.29
1296	CA	LEU	163	9.6	29 11.256	71.759	1.00 31.29
1297	CB	LEU	163	8.9	52 12.438	72.446	1.00 44.08
1298	CG	LEU	163	9.7	56 13.730	72.562	1.00 44.08
1299	CD1	LEU	163	8.8	99 14.794	73.242	1.00 44.08
1300	CD2	LEU	163	11.0	26 13.467	73.362	1.00 44.08
1301	С	LEU	163	9.0	16 9.970	72.298	1.00 31.29
	1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300	1274 CA 1275 CB 1276 CG2 1277 CG1 1278 CD1 1279 C 1280 O 1281 N 1282 CA 1283 CB 1284 CG 1285 CD 1286 OE1 1287 NE2 1288 C 1290 N 1291 CA 1292 CB 1293 C 1294 O 1295 N 1296 CA 1297 CB 1298 CG 1299 CD1 1300 CD2	1274 CA ILE 1275 CB ILE 1276 CG2 ILE 1277 CG1 ILE 1278 CD1 ILE 1280 C ILE 1281 N GLN 1282 CA GLN 1284 CG GLN 1285 CD GLN 1286 OE1 GLN 1288 C GLN 1289 O GLN 1290 N ALA 1291 CA ALA 1292 CB ALA 1293 C ALA 1294 O ALA 1295 N LEU 1296 CA LEU 1297 CB LEU 1298 CG LEU 1299 CD1 LEU 1299 CD1 LEU 1299 CD1 LEU 1299 CD1 LEU 1290 CD2	1274 CA ILE 160 1275 CB ILE 160 1276 CG2 ILE 160 1277 CG1 ILE 160 1278 CD1 ILE 160 1279 C ILE 160 1280 O ILE 160 1281 N GLN 161 1282 CA GLN 161 1283 CB GLN 161 1284 CG GLN 161 1285 CD GLN 161 1286 OE1 GLN 161 1287 NE2 GLN 161 1288 C GLN 161 1289 O GLN 161 1289 O GLN 161 1290 N ALA 162 1291 CA ALA 162 1292 CB ALA 162 1293 C ALA 162 1294 O </td <td>1274 CA ILE 160 5.87 1275 CB ILE 160 4.36 1276 CG2 ILE 160 3.54 1277 CG1 ILE 160 4.17 1278 CD1 ILE 160 4.86 1279 C ILE 160 6.04 1280 O ILE 160 6.32 1281 N GLN 161 5.87 1282 CA GLN 161 5.63 1283 CB GLN 161 5.63 1284 CG GLN 161 5.63 1285 CD GLN 161 5.63 1286 OE1 GLN 161 5.11 1287 NE2 GLN 161 7.43 1288 C GLN 161 7.43 1289 O GLN 161 7.64 1290 N ALA 162 9.81 1291 CA ALA 162 9.81 1292 CB ALA 162 10.73 1293 C ALA 162 10.73 1294 O ALA 162 10.73 1295 N LEU 163 9.43 1296 CA LEU 163 9.63 1298 CG LEU 163 9.73 1299 CD1 LEU 163 9.75 1299 CD1 LEU 163 9.75 1299 CD1 LEU 163 9.75</td> <td>1274 CA ILE 160 5.878 13.896 1275 CB ILE 160 4.369 14.254 1276 CG2 ILE 160 3.548 13.011 1277 CG1 ILE 160 4.173 15.224 1278 CD1 ILE 160 4.867 16.538 1279 C ILE 160 6.040 12.413 1280 O ILE 160 6.320 11.607 1281 N GLN 161 5.875 12.056 1282 CA GLN 161 5.642 10.518 1283 CB GLN 161 5.642 10.518 1284 CG GLN 161 5.636 9.082 1285 CD GLN 161 5.636 9.082 1285 CD GLN 161 7.435 10.171 1286 OEI GLN 161</td> <td>1274 CA ILE 160 5.878 13.896 69.810 1275 CB ILE 160 4.369 14.254 69.961 1276 CG2 ILE 160 3.548 13.011 70.247 1277 CG1 ILE 160 4.173 15.224 71.130 1278 CD1 ILE 160 4.867 16.538 70.976 1279 C ILE 160 6.040 12.413 69.502 1280 O ILE 160 6.320 11.607 70.386 1281 N GLN 161 5.875 12.056 68.236 1282 CA GLN 161 5.636 9.082 65.878 1283 CB GLN 161 5.636 9.082 65.878 1284 CG GLN 161 4.721 8.211 66.716 1285 CD GLN 161 7.435 10.17</td>	1274 CA ILE 160 5.87 1275 CB ILE 160 4.36 1276 CG2 ILE 160 3.54 1277 CG1 ILE 160 4.17 1278 CD1 ILE 160 4.86 1279 C ILE 160 6.04 1280 O ILE 160 6.32 1281 N GLN 161 5.87 1282 CA GLN 161 5.63 1283 CB GLN 161 5.63 1284 CG GLN 161 5.63 1285 CD GLN 161 5.63 1286 OE1 GLN 161 5.11 1287 NE2 GLN 161 7.43 1288 C GLN 161 7.43 1289 O GLN 161 7.64 1290 N ALA 162 9.81 1291 CA ALA 162 9.81 1292 CB ALA 162 10.73 1293 C ALA 162 10.73 1294 O ALA 162 10.73 1295 N LEU 163 9.43 1296 CA LEU 163 9.63 1298 CG LEU 163 9.73 1299 CD1 LEU 163 9.75 1299 CD1 LEU 163 9.75 1299 CD1 LEU 163 9.75	1274 CA ILE 160 5.878 13.896 1275 CB ILE 160 4.369 14.254 1276 CG2 ILE 160 3.548 13.011 1277 CG1 ILE 160 4.173 15.224 1278 CD1 ILE 160 4.867 16.538 1279 C ILE 160 6.040 12.413 1280 O ILE 160 6.320 11.607 1281 N GLN 161 5.875 12.056 1282 CA GLN 161 5.642 10.518 1283 CB GLN 161 5.642 10.518 1284 CG GLN 161 5.636 9.082 1285 CD GLN 161 5.636 9.082 1285 CD GLN 161 7.435 10.171 1286 OEI GLN 161	1274 CA ILE 160 5.878 13.896 69.810 1275 CB ILE 160 4.369 14.254 69.961 1276 CG2 ILE 160 3.548 13.011 70.247 1277 CG1 ILE 160 4.173 15.224 71.130 1278 CD1 ILE 160 4.867 16.538 70.976 1279 C ILE 160 6.040 12.413 69.502 1280 O ILE 160 6.320 11.607 70.386 1281 N GLN 161 5.875 12.056 68.236 1282 CA GLN 161 5.636 9.082 65.878 1283 CB GLN 161 5.636 9.082 65.878 1284 CG GLN 161 4.721 8.211 66.716 1285 CD GLN 161 7.435 10.17

原子	1302	0	LEU	163	9.566	9.337	73.197	1.00	31.29
原子	1303	N	THR	164	7.867	9.601	71.746	1.00	30.16
原子	1304	CA	THR	164	7.17 5	8.389	72.147	1.00	30.16
原子	1305	CB	THR	164	5.812	8.280	71.431	1.00	32.81
原子	1306	OG1	THR	164	4.972	9.360	71.849	1.00	32.81
原子	1307	CG2	THR	164	5.125	6.972	71.766	1.00	32.81
原子	1308	C	THR	164	8.033	7.163	71.825	1.00	30.16
原子	1309	0	THR	164	8.212	6.290	72.674	1.00	30.16
原子	1310	N	ASP	165	8.567	7.093	70.609	1.00	36.74
原子	1311	CA	ASP	165	9.405	5.954	70.237	1.00	36.74
原子	1312	CB	ASP	165	9.809	6.009	68.764	1.00	43.20
原子	1313	CG	ASP	165	8.627	6.038	67.838	1.00	43.20
原子	1314	OD1	ASP	165	7.598	5.410	68.157	1.00	43.20
原子	1315	OD2	ASP	165	8.733	6.683	66.781	1.00	43.20
原子	1316	С	ASP	165	10.669	5.957	71.081	1.00	36.74
原子	1317	0	ASP	165	11.175	4.910	71.468	1.00	36.74
原子	1318	N	GLU	166	11.180	7.148	71.360	1.00	35.71
原子	1319	CA	GLU	166	12.379	7.271	72.159	1.00	35.71
原子	1320	CB	GLU	166	12.782	8.744	72.247	1.00	54.57
原子	1321	CG	GLU	166	13.811	9.057	73.318	1.00	54.57
原子	1322	CD	GLU	166	14.165	10.542	73.381	1.00	54.57
原子	1323	0E1	GLU	166	14.607	11.010	74.458	1.00	54.57
原子	1324	0E2	GLU	166	14.010	11.233	72.346	1.00	54.57
原子	1325	С	GLU	166	12.131	6.678	73.549	1.00	35.71
原子	1326	0	GLU	166	12.978	5.958	74.083	1.00	35.71
原子	1327	N	PHE	167	10.966	6.957	74.128	1.00	32.84
原子	1328	CA	PHE	167	10.664	6.437	75.455	1.00	32.84
原子	1329	CB	PHE	167	9.675	7.349	76.181	1.00	33.04
原子	1330	CG	PHE	167	10.337	8.524	76.824	1.00	33.04

原子	1331	CD1	PHE	167	10.602	9.677	76.093	1.00	33.04
原子	1332	CD2	PHE	167	10.806	8.435	78.127	1.00	33.04
原子	1333	CE1	PHE	167	11.330	10.732	76.650	1.00	33.04
原子	1334	CE2	РНЕ	167	11.536	9.483	78.695	1.00	33.04
原子	1335	CZ	PHE	167	11.802	10.633	77.949	1.00	33.04
原子	1336	С	PHE	167	10.205	4.992	75.492	1.00	32.84
原子	1337	0	РНЕ	167	10.456	4.295	76.471	1.00	32.84
原子	1338	N	ILE	168	9.534	4.536	74.439	1.00	29.66
原子	1339	CA	ILE	168	9.129	3.141	74.378	1.00	29.66
原子	1340	CB	ILE	168	8.321	2.835	73.090	1.00	23.21
原子	1341	CG2	ILE	168	8.154	1.336	72.914	1.00	23.21
原子	1342	CG1	ILE	168	6.956	3.527	73.151	1.00	23.21
原子	1343	CD1	ILE	168	6.045	3.006	74.261	1.00	23.21
原子	1344	С	ILE	168	10.441	2.357	74.333	1.00	29.66
原子	1345	0	ILE	168	10.576	1.314	74.963	1.00	29.66
原子	1346	N	GLU	169	11.409	2.876	73.584	1.00	31.65
原子	1347	CA	GLU	169	12.714	2.233	73.460	1.00	31.65
原子	1348	CB	GLU	169	13.622	3.015	72.512	1.00	93.52
原子	1349	CG	GLU	169	13.972	2.279	71.237	1.00	93.52
原子	1350	CD	GLU	169	15.263	2.784	70.617	1.00	93.52
原子	1351	OE1	GLU	169	16.259	2.029	70.623	1.00	93.52
原子	1352	OE2	GLU	169	15.287	3.936	70.133	1.00	93.52
原子	1353	С	GLU	169	13.399	2.133	74.811	1.00	31.65
原子	1354	0	GLU	169	13.927	1.084	75.166	1.00	31.65
原子	1355	N	LYS	170	13.397	3.233	75.557	1.00	29.27
原子	1356	CA	LYS	170	14.020	3.262	76.869	1.00	29.27
原子	1357	СВ	LYS	170	13.933	4.665	77.479	1.00	37.44
原子	1358	CG	LYS	170	14.604	5.778	76.681	1.00	37.44
原子	1359	CD	LYS	170	14.878	6.964	77.592	1.00	37.44

原子	1360	CE	LYS	170	15.005	8.291	76.849	1.00 37.44
原子	1361	NZ	LYS	170	16.177	8.363	75.931	1.00 37.44
原子	1362	С	LYS	170	13.345	2.258	77.799	1.00 29.27
原子	1363	0	LYS	170	13.999	1.647	78.646	1.00 29.27
原子	1364	N	LEU	171	12.034	2.090	77.651	1.00 41.19
原子	1365	CA	LEU	171	11.309	1.134	78.481	1.00 41.19
原子	1366	CB	LEU	171	9.802	1.224	78.237	1.00 27.02
原子	1367	CG	LEU	171	8.903	1.952	79.251	1.00 27.02
原子	1368	CD1	LEU	171	9.643	2.164	80.555	1.00 27.02
原子	1369	CD2	LEU	171	8.446	3.275	78.696	1.00 27.02
原子	1370	С	LEU	171	11.789	-0.271	78.153	1.00 41.19
原子	1371	0	LEU	171	12.092	-1.059	79.048	1.00 41.19
原子	1372	N	ASP	172	11.872	-0.577	76.863	1.00 35.05
原子	1373	CA	ASP	172	12.321	-1.890	76.435	1.00 35.05
原子	1374	CB	ASP	172	12.324	-2.001	74.907	1.00 41.75
原子	1375	CG	ASP	172	10.923	-2.075	74.324	1.00 41.75
原子	1376	OD1	ASP	172	10.790	-2.135	73.080	1.00 41.75
原子	1377	OD2	ASP	172	9.954	-2.077	75.111	1.00 41.75
原子	1378	С	ASP	172	13.711	-2.152	76.962	1.00 35.05
原子	1379	0	ASP	172	14.037	-3.283	77.336	1.00 35.05
原子	1380	N	GLU	173	14.533	-1.110	77.003	1.00 32.93
原子	1381	CA	GLU	173	15.892	-1.278	77.491	1.00 32.93
原子	1382	СВ	GLU	173	16.706	-0.007	77.306	1.00 41.86
原子	1383	CG	GLU	173	18.142	-0.213	77.734	1.00 41.86
原子	1384	CD	GLU	173	18.999	1.008	77.563	1.00 41.86
原子	1385	OE1	GLU	173	18.671	1.847	76.688	1.00 41.86
原子	1386	OE2	GLU	173	20.009	1.112	78.294	1.00 41.86
原子	1387	С	GLU	173	15.873	-1.630	78.965	1.00 32.93
原子	1388	0	GLU	173	16.495	-2.601	79.400	1.00 32.93

原子	1389	N	VAL	174	15.160	-0.811	79.726	1.00	31.38
原子	1390	CA	VAL	174	15.023	-0.990	81.156	1.00	31.38
原子	1391	СВ	VAL	174	14.087	0.108	81.715	1.00	34.37
原子	1392	CG1	VAL	174	13.572	-0.277	83.053	1.00	34.37
原子	1393	CG2	VAL	174	14.846	1.426	81.815	1.00	34.37
原子	1394	С	VAL	174	14.506	-2.401	81.488	1.00	31.38
原子	1395	0	VAL	174	14.896	-2.997	82.492	1.00	31.38
原子	1396	N	PHE	175	13.631	-2.943	80.648	1.00	32.64
原子	1397	CA	PHE	175	13.136	-4.290	80.895	1.00	32.64
原子	1398	CB	PHE	175	11.999	-4.661	79.947	1.00	30.70
原子	1399	CG	PHE	175	11.718	-6.133	79.920	1.00	30.70
原子	1400	CD1	PHE	175	11.187	-6.770	81.038	1.00	30.70
原子	1401	CD2	PHE	175	12.056	-6.898	78.810	1.00	30.70
原子	1402	CE1	PHE	175	11.001	-8.159	81.056	1.00	30.70
原子	1403	CE2	PHE	175	11.878	-8.280	78.811	1.00	30.70
原子	1404	CZ	PHE	175	11.348	-8.916	79.938	1.00	30.70
原子	1405	С	PHE	175	14.262	-5.296	80.695	1.00	32.64
原子	1406	0	PHE	175	14.444	-6.196	81.509	1.00	32.64
原子	1407	N	GLU	176	15.002	-5.150	79.597	1.00	36.36
原子	1408	CA	GLU	176	16.120	-6.039	79.290	1.00	36.36
原子	1409	CB	GLU	176	16.826	-5.595	78.011	1.00	49.35
原子	1410	CG	GLU	176	16.862	-6.649	76.921	1.00	49.35
原子	1411	CD	GLU	176	17.554	-7.935	77.348	1.00	49.35
原子	1412	OE1	GLU	176	18.722	-7.869	77.793	1.00	49.35
原子	1413	0E2	GLU	176	16.929	-9.015	77.232	1.00	49.35
原子	1414	С	GLU	176	17.125	-6.050	80.428	1.00	36.36
原子	1415	0	GLU	176	17.603	-7.110	80.832	1.00	36.36
原子	1416	N	ILE	177	17.444	-4.866	80.942	1.00	35.83
原子	1417	CA	ILE	177	18.398	-4.740	82.033	1.00	35.83

原子	1418	СВ	ILE	177	18.606	-3.259	82.422	1.00	29.26
原子	1419	CG2	2 ILE	177	19.370	-3.163	83.737	1.00	29.26
原子	1420	CG1	ILE	177	19.358	-2.525	81.303	1.00	29.26
原子	1421	CD1	ILE	177	20.851	-2.863	81.233	1.00	29.26
原子	1422	C	ILE	177	17.936	-5.5 13	83.265	1.00	35.83
原子	1423	0	ILE	177	18.738	-6.162	83.946	1.00	35.83
原子	1424	N	LYS	178	16.643	-5.448	83.554	1.00	34.13
原子	1425	CA	LYS	178	16.112	-6.147	84.707	1.00	34.13
原子	1426	CB	LYS	178	14.687	-5.684	85.003	1.00	28.12
原子	1427	CG	LYS	178	14.188	-6.109	86.376	1.00	28.12
原子	1428	CD	LYS	178	15.059	-5.482	87.469	1.00	28.12
原子	1429	CE	LYS	178	14.588	-5.848	88.857	1.00	28.12
原子	1430	NZ	LYS	178	15.375	-5.118	89.878	1.00	28.12
原子	1431	С	LYS	178	16.117	-7.645	84.444	1.00	34.13
原子	1432	0	LYS	178	16.470	-8.440	85.325	1.00	34.13
原子	1433	N	LYS	179	15.719	-8.028	83.232	1.00	34.54
原子	1434	CA	LYS	179	15.682	-9.435	82.865	1.00	34.54
原子	1435	CB	LYS	179	15.233	-9.610	81.419	1.00	32.56
原子	1436	CG	LYS	179	15.201	-11.056	80.963	1.00	32.56
原子	1437	CD	LYS	179	14.889	-11.124	79.487	1.00	32.56
原子	1438	CE	LYS	179	14.908	-12.551	78.949	1.00	32.56
原子	1439	NZ	LYS	179	14.654	-12.572	77.478	1.00	32.56
原子	1440	С	LYS	179	17.064	-10.035	83.044	1.00	34.54
原子	1441	0	LYS	179	17.202	-11.146	83.554	1.00	34.54
原子	1442	N	GLU	180	18.085	-9.297	82.623	1.00	32.37
原子	1443	CA	GLU	180	19.455	-9.765	82.765	1.00	32.37
原子	1444	CB	GLU	180	20.427	-8.792	82.106	1.00	44.31
原子	1445	CG	GLU	180	20.288	-8.756	80.608	1.00	44.31
原子	1446	CD	GLU	180	21.035	-7.609	79.980	1.00	44.31

原子	1447	OE1	GLU	180	20.809 -7.366	78.779	1.00 44.31
原子	1448	0E2	GLU	180	21.841 -6.951	80.677	1.00 44.31
原子	1449	С	GLU	180	19.793 -9.908	84.232	1.00 32.37
原子	1450	0	GLU	180	20.371 -10.898	84.635	1.00 32.37
原子	1451	N	GLU	181	19.422 -8.920	85.035	1.00 35.90
原子	1452	CA	GLU	181	19.708 -8.966	86.465	1.00 35.90
原子	1453	CB	GLU	181	19.124 -7.738	87.160	1.00 47.46
原子	1454	CG	GLU	181	19.444 -7.662	88.642	1.00 47.46
原子	1455	CD	GLU	181	18.738 -6.511	89.342	1.00 47.46
原子	1456	0E1	GLU	181	17.501 -6.522	89.412	1.00 47.46
原子	1457	0E2	GLU	181	19.419 -5.589	89.823	1.00 47.46
原子	1458	C	GLU	181	19.125 -10.230	87.096	1.00 35.90
原子	1459	0	GLU	181	19.771 -10.892	87.910	1.00 35.90
原子	1460	N	ILE	182	17.899 -10.555	86.709	1.00 38.32
原子	1461	CA	ILE	182	17.210 -11.717	87.243	1.00 38.32
原子	1462	CB	ILE	182	15.724 -11.673	86.870	1.00 31.34
原子	1463	CG2	ILE	182	15.056 -13.010	87.194	1.00 31.34
原子	1464	CG1	ILE	182	15.051 -10.513	87.595	1.00 31.34
原子	1465	CD1	ILE	182	13.680 -10.173	87.047	1.00 31.34
原子	1466	С	ILE	182	17.798 -13.040	86.773	1.00 38.32
原子	1467	0	ILE	182	17.841 -13.997	87.541	1.00 38.32
原子	1468	N	MET	183	18.249 -13.094	85.520	1.00 47.57
原子	1469	CA	MET	183	18.819 -14.318	84.957	1.00 47.57
原子	1470	CB	MET	183	18.614 -14.370	83.444	1.00 45.73
原子	1471	CG	MET	183	17.174 -14.221	82.994	1.00 45.73
原子	1472	SD	MET	183	16.076 -15.382	83.795	1.00 45.73
原子	1473	CE	MET	183	16.837 -16.936	83,323	1.00 45.73
原子	1474	С	MET	183	20.299 -14.434	85.261	1.00 47.57
原子	1475	0	MET	183	20.777 -15.516	85.583	1.00 47.57

原子	1476	N	GLU	184	21.026 -13.325	85.128	1.00 64.62
原子	1477	CA	GLU	184	22.455 -13.295	85.437	1.00 64.62
原子	1478	СВ	GLU	184	23.104 -12.016	84.885	1.00100.23
原子	1479	CG	GLU	184	22.781 -11.669	83.422	1.00100.23
原子	1480	CD	GLU	184	23.213 -12.733	82.429	1.00100.23
原子	1481	0E1	GLU	184	24.282 -13.344	82.642	1.00100.23
原子	1482	0E2	GLU	184	22.490 -12.945	81.426	1.00100.23
原子	1483	С	GLU	184	22.528 -13.313	86.974	1.00 64.62
原子	1484	0	GLU	184	23.295 -12.582	87.596	1.00 64.62
原子	1485	N	PHE	185	21.677 -14.170	87.538	1.00 64.82
原子	1486	CA	PHE	185	21.470 -14.427	88.968	1.00 64.82
原子	1487	CB	PHE	185	21.845 -15.885	89.308	1.00100.63
原子	1488	CG	PHE	185	23.303 -16.226	89.133	1.00100.63
原子	1489	CD1	PHE	185	24.222 -15.967	90.146	1.00100.63
原子	1490	CD2	PHE	185	23.744 -16.877	87.984	1.00100.63
原子	1491	CE1	PHE	185	25.554 -16.363	90.018	1.00100.63
原子	1492	CE2	PHE	185	25.074 -17.272	87.854	1.00100.63
原子	1493	CZ	PHE	185	25.975 -17.015	88.872	1.00100.63
原子	1494	С	PHE	185	22.019 -13.492	90.040	1.00 64.82
原子	1495	0	PHE	185	21.202 -13.108	90.910	1.00 64.82
原子	1496	OT	PHE	185	23.222 -13.161	90.023	1.00100.63
原子	1497	0H2	WAT	1	7.314 -7.392	118.599	1.00 28.51
原子	1498	0H2	WAT	2	20.141 -10.167	116.646	1.00 41.71
原子	1499	ОН2	WAT	3	-0.839 7.103	71.695	1.00 38.40
原子	1500	ОН2	WAT	4	20.724 -12.318	113.141	1.00 36.06
原子	1501	ОН2	WAT	5	13.214 7.193	109.995	1.00 34.42
原子	1502	0Н2	WAT	6	-4.563 25.067	61.299	1.00 35.61
				_			

15.821

9.162 -10.160 92.783 1.00 40.02

7.078 82.761 1.00 45.31

原子

原子

1503 OH2 WAT

1504 OH2 WAT

7

8

原子	1505	OH2 WAT	9	15.568 0.183 88.102	1.00 24.68
原子	1506	OH2 WAT	10	17.031 -3.108 93.557	1.00 33.93
原子	1507	OH2 WAT	11	-5.066 12.003 70.605	1.00 31.32
原子	1508	OH2 WAT	12	17.672 -16.020 114.048	1.00 36.87
原子	1509	OH2 WAT	13	7.862 -1.817 71.942	1.00 33.70
原子	1510	OH2 WAT	14	8.138 -13.701 94.980	1.00 33.33
原子	1511	OH2 WAT	15	11.279 0.783 115.697	1.00 32.56
原子	1512	OH2 WAT	16	16.003 6.468 88.212	1.00 29.59
原子	1513	OH2 WAT	17	8.553 -16.970 109.277	1.00 43.42
原子	1514	OH2 WAT	18	18.461 -2.485 119.281	1.00 42.15
原子	1515	OH2 WAT	19	6.746 -17.081 107.102	1.00 37.19
原子	1516	OH2 WAT	20	2.389 -1.792 87.493	1.00 33.97
原子	1517	OH2 WAT	21	16.366 -2.230 89.109	1.00 26.69
原子	1518	OH2 WAT	22	5.158 -12.795 87.845	1.00 43,81
原子	1519	OH2 WAT	23	5.761 7.139 104.779	1.00 36.64
原子	1520	OH2 WAT	24	10.078 -21.141 83.981	1.00 45.96
原子	1521	OH2 WAT	25	1.702 29.020 57.574	1.00 39.21
原子	1522	OH2 WAT	26	21.863 -2.142 99.878	1.00 44.34
原子	1523	OH2 WAT	27	17.198 13.784 85.530	1.00 51.52
原子	1524	OH2 WAT	28	-0.400 2.402 82.821	1.00 35.70
原子	1525	OH2 WAT	29	13.686 5.872 89.473	1.00 44.84
原子	1526	OH2 WAT	30	17.457 -13.476 113.108	1.00 33.62
原子	1527	OH2 WAT	31	16.228 -0.207 73.422	1.00 40.99
原子	1528	OH2 WAT	32	19.350 1.763 107.228	1.00 41.09
原子	1529	OH2 WAT	33	21.908 -12.207 93.466	1.00 47.34
原子	1530	OH2 WAT	34		
原子	1531	OH2 WAT	35	-2.900 25.786 57.810	1.00 32.08
原子	1532	OH2 WAT	36	9.098 -15.151 82.349	1.00 38.27
原子	1533	OH2 WAT	37	-12.293 25.412 66.878	1.00 41.13

原子	1534	OH2 WAT	38	15.500 -8.451 95.623 1.00 36.30
原子	1535	OH2 WAT	39	-2.144 0.572 109.124 1.00 41.18
原子	1536	OH2 WAT	40	1.366 0.844 117.806 1.00 43.55
原子	1537	OH2 WAT	41	-3.862 8.488 66.607 1.00 42.64
原子	1538	OH2 WAT	42	14.848 -25.238 90.334 1.00 44.95
原子	1539	OH2 WAT	43	21.959 -4.948 118.899 1.00 44.58
原子	1540	OH2 WAT	44	8.447 -16.493 95.999 1.00 57.34
原子	1541	OH2 WAT	45	-3.320 18.594 80.730 1.00 44.65
原子	1542	OH2 WAT	46	4.042 3.465 70.117 1.00 42.29
原子	1543	OH2 WAT	47	0.370 -3.250 110.892 1.00 34.03
原子	1544	OH2 WAT	48	1.694 -13.510 110.447 1.00 43.12
原子	1545	OH2 WAT	49	16.216 -2.085 84.867 1.00 29.17
原子	1546	OH2 WAT	50	15.797 -7.322 122.289 1.00 49.41
原子	1547	OH2 WAT	51	18.922 -12.474 79.878 1.00 42.31
原子	1548	OH2 WAT	52	-5.107 22.838 73.181 1.00 38.51
原子	1549	OH2 WAT	53	14.563 4.864 98.821 1.00 32.28
原子	1550	OH2 WAT	54	13.994 -16.023 105.563 1.00 44.24
原子	1551	OH2 WAT	55	-4.133 13.720 66.033 1.00 53.29
原子	1552	OH2 WAT	56	10.183 28.544 75.646 1.00 56.33
原子	1553	OH2 WAT	57	-3.774 -9.836 113.284 1.00 59.77
原子	1554	OH2 WAT	58	17.629 0.775 96.137 1.00 37.95
原子	1555	OH2 WAT	59	6.043 1.046 121.396 1.00 35.94
原子	1556	OH2 WAT	60	4.946 -12.576 116.234 1.00 49.56
原子	1557	OH2 WAT	61	-4.890 3.540 80.417 1.00 46.86
原子	1558	OH2 WAT	62	-1.025 -13.655 106.259 1.00 39.99
原子	1559	OH2 WAT	63	10.494 2.348 70.136 1.00 40.25
原子	1560	OH2 WAT	64	0.561 -14.185 101.707 1.00 47.94
原子	1561	OH2 WAT	65	4.913 -11.710 91.331 1.00 52.16
原子	1562	OH2 WAT	66	3.448 29.483 61.850 1.00 33.98

原子	1563	0H2	WAT	67	2.424	5.726	69.262	1.00 57.07
原子	1564	ОН2	WAT	68	24.893	-19.561	96.089	1.00 55.67
原子	1565	OH2	WAT	69	-0.538	31.270	63.339	1.00 29.89
原子	1566	0H2	WAT	70	-4.67 1	6.956	69.710	1.00 49.13
原子	1567	ОН2	WAT	71	16.579	2.427	107.056	1.00 41.13
原子	1568	он2	WAT	72	16.449	-0.978	120.834	1.00 51.89
原子	1569	ОН2	WAT	73	3.860	-5.877	90.214	1.00 44.03
	[00	78	1					

【配列表】

- 〈110〉出願人氏名又は名称:梶 昭(KAJI Akira)
- <120> 発明の名称:リボソームリサイクリング因子(RRF)タンパクの結晶及び
- 該結晶から得られる三次元構造情報に基づく応用
- ⟨130⟩ 整理番号: PP-1741KJ
- 〈160〉配列の総数:1
- 〈170〉 ソフトウェア:パテントイン バージョン2.0
- 〈210〉配列番号1
- 〈211〉配列の長さ:185アミノ酸
- 〈212〉配列の型:PRT
- 〈213〉生物名:Thermotoga Maritima

5

〈400〉配列:配列番号1

1

Met Val Asn Pro Phe Ile Lys Glu Ala Lys Glu Lys Met Lys Arg Thr

10

Leu Glu Lys Ile Glu Asp Glu Leu Arg Lys Met Arg Thr Gly Lys Pro

30 25 20

Ser Pro Ala Ile Leu Glu Glu Ile Lys Val Asp Tyr Tyr Gly Val Pro

45 40 35

Thr Pro Val Asn Gln Leu Ala Thr Ile Ser Ile Ser Glu Glu Arg Thr

55 60 50

Leu Val Ile Lys Pro Trp Asp Lys Ser Val Leu Ser Leu Ile Glu Lys

15

65 70 75 80

Ala Ile Asn Ala Ser Asp Leu Gly Leu Asn Pro Ile Asn Asp Gly Asn
85 90 95

Val Ile Arg Leu Val Phe Pro Ser Pro Thr Thr Glu Gln Arg Glu Lys

100 105 110

Trp Val Lys Lys Ala Lys Glu Ile Val Glu Glu Gly Lys Ile Ala Ile
115 120 125

Arg Asn Ile Arg Arg Glu Ile Leu Lys Lys Ile Lys Glu Asp Gln Lys

130 135 140

Glu Gly Leu Ile Pro Glu Asp Asp Ala Lys Arg Leu Glu Asn Glu Ile 145 150 155 160

Gln Lys Leu Thr Asp Glu Phe Ile Glu Lys Leu Asp Glu Val Phe Glu
165 170 175

Ile Lys Lys Glu Glu Ile Met Glu Phe

180 185

【図面の簡単な説明】

【図1】は、XRRFタンパク結晶を示す写真図である。

【図2】は、XRRFタンパク結晶のX線回折像を示す写真図である。

回折像の詳細: xfl to 1200 of 1200, yf l to 1200 of 1200

回折像の方向: xf to the right, yf up

データのファイル順: -xf + yf

最大ピクセル値: 65535

スケールの限界:最小=1、最大=1200、黒は回折強度の高い価を示す。

【図3】は、RRFのリボンによる描画の写真図である。図に示されるように2ドメインからなり、1つは3つのヘリックスからなり、2つめのドメインは、 β -シート、コイルヘリックスの複合体である。

【図4】は、RRFの空間充填モデルの写真図である。

【書類名】 図面

【図1】

【図4】

【要約】

【課題】 RRFの3次元構造を解明し、種々の抗菌剤、抗カビ剤及び除草剤等の開発に寄与する。

【解決手段】 RRFタンパクの活性部位又は補助的結合部位と結合し得る化合物を設計する方法であって、RRFタンパク結晶から得られる構造座標に基づき、その化学的実体をコンピューター評価してなる、前記方法。

【選択図】 図3

出願人履歴情報

識別番号

[591188479]

1. 変更年月日

1991年 5月22日

[変更理由]

新規登録

住 所

東京都東久留米市大門町1丁目1番9号

氏 名

梶 昭