RomainBlanchotMidTerm

March 5, 2025

1 CPE232: Data Models

1.1 ### Portion 2: Midterm Exam Coding

```
[]: # Run this cell if using Google Colab
# from google.colab import drive
# drive.mount('/content/drive')
```

The provided melb_data.csv dataset contains real estate data for properties sold in Melbourne, Australia. Your task is to perform exploratory data analysis (EDA) based on the following five subtasks.

1.1.1 Subtask #1: Getting to know the dataset

1.1) Determine overview info of the data via NumPy (Total points = 3) [8 points] Use NumPy library to display information of the data: size, shape, and number of dimensions.

```
[3]: import numpy as np data = np.loadtxt('./melb_data.csv', delimiter=",", dtype=str) #TODO: update

→ the filename at this line
```

```
[6]: # Write your code here
print(data.size) # size
print(data.shape) # qhape
print(data.ndim) # number of dimensions
```

285201 (13581, 21) 2

1.2) Get more statistics of the data via Pandas (Total points = 10) Use Pandas to display information in the following cells.

```
[7]: # Load the CSV file
import pandas as pd
df = pd.read_csv('./melb_data.csv') #TODO: update the filename at this line
```

[1 point] The first 9 records of all attributes.

[8]: # Write your code here df.head(9)

[8]:		Suburb	ırb Address		R	Rooms	Туре	Price Method SellerG					
[0]	0	Abbotsford 85 Turner St			-	2	h		000.0	S	Biggin	`	
	1	Abbotsford	25 Bloomburg St			2	h		000.0	S	Biggin		
	2	Abbotsford		arles St		3	h		000.0	SP	Biggin		
	3	Abbotsford	40 Feder			3	h		000.0	PI			
	4	Abbotsford		Park St		4	h		000.0	VB			
	5	Abbotsford		arles St		2	h		000.0	S	Jellis		
	6	Abbotsford		arra St		3	h		000.0	S			
	7	Abbotsford		arles St		2	h		000.0	S			
	8	Abbotsford	6/241 Nich	olson St		1	u		000.0	S	Biggin		
		0, 212 1.2020									00		
		Date	Distance P	ostcode	•••	Batl	nroom	Car	Lands	ize B	uildingAr	ea	\
	0	3/12/2016	2.5	3067.0	•••		1.0	1.0	20	2.0	N	aN	
	1	4/02/2016	2.5	3067.0	•••		1.0	0.0	15	6.0	79	0.0	
	2	4/03/2017	2.5	3067.0	•••		2.0	0.0	13	4.0	150	0.0	
	3	4/03/2017	2.5	3067.0	•••		2.0	1.0	9	4.0	N	aN	
	4	4/06/2016	2.5	3067.0	•••		1.0	2.0	12	0.0	142	2.0	
	5	7/05/2016	2.5	3067.0	•••		1.0	0.0	18	1.0	N	aN	
	6	7/05/2016	2.5	3067.0	•••		2.0	0.0	24	5.0	210	210.0	
	7	8/10/2016	2.5	3067.0	•••		1.0	2.0	25	6.0	107	.0	
	8	8/10/2016	2.5	3067.0			1.0	1.0		0.0	N	aN	
		YearBuilt	CouncilArea	Lattitu	de	Lone	gtitud	.e		Reg	ionname	\	
	0	NaN	Yarra				14.998		rthern	_	politan	•	
	1	1900.0	Yarra				14.993				politan		
	2	1900.0	Yarra				14.994				politan		
	3	NaN	Yarra	-37.79	69	14	14.996				politan		
	4	2014.0	Yarra	-37.80	72	14					politan		
	5	NaN	Yarra	-37.80	41	14	14.995				politan		
	6	1910.0	Yarra	-37.80	24	14	14.999				politan		
	7	1890.0	Yarra	-37.80	60	14	14.995				politan		
	8	NaN	Yarra	-37.80	80	14	14.997				politan		
		Propertycour	n+										
	0	4019											
	1	4019											
	2	4019											
	3	4019											
	4	4019											
	5	4019											
	6	4019											
	7	4019											
	8	4019											
	_		-										

[9 rows x 21 columns]

[1 point] The last 7 records of all attributes.

[9]: # Write your code here df.tail(7)

[9]:		Suburb	Addre	ss Rooms	Туре	Pric	e Method	\	
	13573	Werribee	5 Nuragi	Ct 4	h	635000.	0 S		
	13574	Westmeadows	9 Black	St 3	h	582000.	0 S		
	13575	Wheelers Hill	12 Strada	Cr 4	h	1245000.	0 S		
	13576	Williamstown	77 Merrett	Dr 3	h	1031000.	0 SP		
	13577	Williamstown	83 Power	St 3	h	1170000.	0 S		
	13578	Williamstown	96 Verdon	St 4	h	2500000.	0 PI		
	13579	Yarraville	6 Agnes	St 4	h	1285000.	0 SP		
		SellerG	Date	Distance	Post	code	Bathroom	Car \	
	13573	hockingstuart	26/08/2017	14.7	30	30.0	2.0	1.0	
	13574	Red	26/08/2017	16.5	30	49.0	2.0	2.0	
	13575	Barry	26/08/2017	16.7	31	50.0	2.0	2.0	
	13576	Williams	26/08/2017	6.8	30	16.0	2.0	2.0	
	13577	Raine	26/08/2017	6.8	30	16.0	2.0	4.0	
	13578	Sweeney	26/08/2017	6.8	30	16.0	1.0	5.0	
	13579	Village	26/08/2017	6.3	30	13.0	1.0	1.0	
			•		Counci	lArea Lat		Longtitude	\
	13573	662.0	172.0	1980.0		NaN -37		144.64789	
	13574	256.0	NaN	NaN		NaN -37	.67917	144.89390	
	13575	652.0	NaN	1981.0		NaN -37	.90562	145.16761	
	13576	333.0	133.0	1995.0		NaN -37	.85927	144.87904	
	13577	436.0	NaN	1997.0		NaN -37	.85274	144.88738	
	13578	866.0	157.0	1920.0		NaN -37	.85908	144.89299	
	13579	362.0	112.0	1920.0		NaN -37	.81188	144.88449	
			ъ.	D .					
	10570	11+	Regionname						
	13573		Metropolitan		166.0				
	13574		Metropolitan		474.0				
	13575	South-Eastern			392.0				
	13576		Metropolitan		380.0				
	13577		Metropolitan		380.0				
	13578		Metropolitan		380.0				
	13579	Western	Metropolitan	. 65	543.0				

^{[7} rows x 21 columns]

 $^{[3 \}text{ points}]$ The first 5 records of all attributes with a specific condition: Landsize < 500

```
df[df['Landsize'] < 500].head()</pre>
[10]:
             Suburb
                               Address
                                         Rooms Type
                                                          Price Method SellerG \
         Abbotsford
                          85 Turner St
                                             2
                                                  h
                                                      1480000.0
                                                                     S
                                                                        Biggin
        Abbotsford
                       25 Bloomburg St
                                             2
                                                                        Biggin
      1
                                                      1035000.0
      2 Abbotsford
                          5 Charles St
                                                                         Biggin
                                             3
                                                  h
                                                      1465000.0
                                                                         Biggin
      3 Abbotsford 40 Federation La
                                             3
                                                  h
                                                       850000.0
                                                                    PΙ
                           55a Park St
         Abbotsford
                                                      1600000.0
                                                                         Nelson
                               Postcode
                                                             Landsize
                                                                        BuildingArea
              Date
                    Distance
                                             Bathroom
                                                        Car
        3/12/2016
                                  3067.0
                                                        1.0
                                                                202.0
      0
                          2.5
                                                   1.0
                                                                                 NaN
        4/02/2016
                          2.5
                                 3067.0
                                                   1.0
                                                       0.0
                                                                156.0
                                                                                79.0
      1
      2 4/03/2017
                          2.5
                                  3067.0
                                                   2.0
                                                       0.0
                                                                134.0
                                                                               150.0
      3 4/03/2017
                          2.5
                                  3067.0
                                                   2.0
                                                       1.0
                                                                 94.0
                                                                                 NaN
      4 4/06/2016
                          2.5
                                                        2.0
                                  3067.0
                                                   1.0
                                                                120.0
                                                                               142.0
         YearBuilt
                     CouncilArea Lattitude
                                             Longtitude
                                                                     Regionname \
      0
               NaN
                           Yarra -37.7996
                                               144.9984
                                                          Northern Metropolitan
            1900.0
                           Yarra -37.8079
                                                          Northern Metropolitan
      1
                                               144.9934
      2
            1900.0
                           Yarra
                                  -37.8093
                                               144.9944
                                                          Northern Metropolitan
                           Yarra -37.7969
                                               144.9969 Northern Metropolitan
      3
               NaN
      4
            2014.0
                           Yarra -37.8072
                                               144.9941 Northern Metropolitan
        Propertycount
      0
               4019.0
      1
               4019.0
      2
               4019.0
      3
               4019.0
      4
               4019.0
      [5 rows x 21 columns]
     [1 point] Descriptive statistics of ALL attributes
[12]: # Write your code here
      df.describe()
[12]:
                     Rooms
                                    Price
                                               Distance
                                                              Postcode
                                                                             Bedroom2
             13580.000000
                            1.358000e+04
                                           13580.000000
                                                          13580.000000
                                                                         13580.000000
      count
                            1.075684e+06
                                              10.137776
                                                           3105.301915
                                                                             2.914728
      mean
                  2.937997
      std
                  0.955748
                            6.393107e+05
                                               5.868725
                                                             90.676964
                                                                             0.965921
      min
                  1.000000
                            8.500000e+04
                                               0.000000
                                                           3000.000000
                                                                             0.000000
      25%
                  2.000000
                            6.500000e+05
                                               6.100000
                                                           3044.000000
                                                                             2.000000
      50%
                            9.030000e+05
                  3.000000
                                               9.200000
                                                           3084.000000
                                                                             3.000000
      75%
                  3.000000
                            1.330000e+06
                                              13.000000
                                                           3148.000000
                                                                             3.000000
                            9.000000e+06
                                              48.100000
                                                           3977.000000
                                                                            20.000000
      max
                 10.000000
```

[10]: # Write your code here

```
Bathroom
                                                     BuildingArea
                                                                      YearBuilt
                                Car
                                          Landsize
                      13518.000000
                                                      7130.000000
       13580.000000
                                      13580.000000
                                                                    8205.000000
count
mean
            1.534242
                           1.610075
                                        558.416127
                                                       151.967650
                                                                    1964.684217
std
            0.691712
                           0.962634
                                       3990.669241
                                                       541.014538
                                                                      37.273762
                                                                    1196.000000
min
           0.000000
                          0.000000
                                          0.000000
                                                         0.000000
25%
            1.000000
                           1.000000
                                        177.000000
                                                        93.000000
                                                                    1940.000000
50%
                          2.000000
                                                                    1970.000000
            1.000000
                                        440.000000
                                                       126.000000
75%
           2.000000
                          2.000000
                                        651.000000
                                                       174.000000
                                                                    1999.000000
                                     433014.000000
                                                     44515.000000
           8.000000
                         10.000000
                                                                    2018.000000
max
          Lattitude
                        Longtitude
                                     Propertycount
       13580.000000
                      13580.000000
                                      13580.000000
count
mean
         -37.809203
                        144.995216
                                       7454.417378
std
            0.079260
                          0.103916
                                       4378.581772
         -38.182550
                        144.431810
                                        249.000000
min
25%
         -37.856822
                        144.929600
                                       4380.000000
50%
                        145.000100
                                       6555.000000
         -37.802355
75%
         -37.756400
                        145.058305
                                      10331.000000
         -37.408530
                        145.526350
                                      21650.000000
max
```

[1 point] Descriptive statistics of one selected attribute: Price

```
[14]: # Write your code here
df['Price'].describe()
```

```
[14]: count
               1.358000e+04
      mean
               1.075684e+06
      std
               6.393107e+05
      min
               8.500000e+04
      25%
               6.500000e+05
      50%
               9.030000e+05
      75%
               1.330000e+06
               9.000000e+06
      max
      Name: Price, dtype: float64
```

[3 points] Descriptive statistics of three selected attributes: Distance, Landsize, Propertycount

```
[17]: # Write your code here
df[['Distance', 'Landsize', 'Propertycount']].describe()
```

```
[17]:
                  Distance
                                  Landsize
                                            Propertycount
      count
             13580.000000
                             13580.000000
                                             13580.000000
      mean
                 10.137776
                                558.416127
                                              7454.417378
      std
                  5.868725
                              3990.669241
                                              4378.581772
                  0.00000
                                  0.000000
                                               249.000000
      min
      25%
                  6.100000
                                177.000000
                                              4380.000000
      50%
                  9.200000
                                440.000000
                                              6555.000000
      75%
                                651.000000
                 13.000000
                                             10331.000000
```

1.1.2 Subtask #2: Inspect data

2.1) Find out if there are any missing values (Total points = 7) Use the command below (df.info()).

[16]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 13580 entries, 0 to 13579
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	Suburb	13580 non-null	object
1	Address	13580 non-null	object
2	Rooms	13580 non-null	int64
3	Туре	13580 non-null	object
4	Price	13580 non-null	float64
5	Method	13580 non-null	object
6	SellerG	13580 non-null	object
7	Date	13580 non-null	object
8	Distance	13580 non-null	float64
9	Postcode	13580 non-null	float64
10	Bedroom2	13580 non-null	float64
11	Bathroom	13580 non-null	float64
12	Car	13518 non-null	float64
13	Landsize	13580 non-null	float64
14	BuildingArea	7130 non-null	float64
15	YearBuilt	8205 non-null	float64
16	CouncilArea	12211 non-null	object
17	Lattitude	13580 non-null	float64
18	Longtitude	13580 non-null	float64
19	Regionname	13580 non-null	object
20	Propertycount	13580 non-null	float64
dtyp	es: float64(12)	, int64(1), obje	ct(8)
memo	ry usage: 2.2+ 1	MB	

[2 points] How many attributes contain missing values?

ANS: 4

[5 points] For those attributes answered in 2.1, how many values are missing for each attribute?

ANS:

Car : 13580 - 13518 = Building Area : 13580 - 7130 = Year Built : 13580 - 8205 = Council area : 13580 - 12211 =

1.1.3 Subtask #3: Handle missing data

```
[60]: # copy dataframes
      df_remove_rows = df
      df impute zero = df
```

3.1 Simply remove rows (Total points = 15) [3 points] Use the dataframe df_remove_rows. Remove rows that contain missing values, then display the first 5 rows.

```
[61]: # Write your code here
      df_remove_rows = df_remove_rows.dropna()
      df_remove_rows.head()
```

```
[61]:
             Suburb
                                                       Price Method SellerG
                             Address
                                       Rooms Type
         Abbotsford
                     25 Bloomburg St
                                           2
                                                h
                                                   1035000.0
                                                                  S
                                                                      Biggin
                                                h
      2 Abbotsford
                        5 Charles St
                                           3
                                                   1465000.0
                                                                 SP
                                                                      Biggin
      4 Abbotsford
                         55a Park St
                                           4
                                                                     Nelson
                                                h
                                                   1600000.0
                                                                 VВ
      6 Abbotsford
                        124 Yarra St
                                           3
                                                   1876000.0
                                                                  S
                                                                     Nelson
                                                h
      7 Abbotsford
                       98 Charles St
                                           2
                                                h
                                                   1636000.0
                                                                  S
                                                                     Nelson
              Date Distance Postcode ...
                                            Bathroom
                                                      Car
                                                           Landsize
                                                                     BuildingArea
         4/02/2016
                         2.5
                                3067.0
                                                 1.0
                                                      0.0
                                                              156.0
                                                                              79.0
      2 4/03/2017
                         2.5
                                3067.0
                                                 2.0
                                                      0.0
                                                              134.0
                                                                             150.0
      4 4/06/2016
                         2.5
                                3067.0
                                                 1.0 2.0
                                                              120.0
                                                                             142.0
      6 7/05/2016
                                                 2.0 0.0
                         2.5
                                3067.0
                                                              245.0
                                                                             210.0
      7 8/10/2016
                         2.5
                                3067.0
                                                 1.0 2.0
                                                              256.0
                                                                             107.0
         YearBuilt
                    CouncilArea Lattitude
                                            Longtitude
                                                                   Regionname
            1900.0
                          Yarra
                                 -37.8079
                                              144.9934
                                                        Northern Metropolitan
      1
      2
                          Yarra -37.8093
                                                        Northern Metropolitan
            1900.0
                                              144.9944
      4
            2014.0
                          Yarra -37.8072
                                              144.9941
                                                        Northern Metropolitan
      6
            1910.0
                          Yarra
                                 -37.8024
                                              144.9993 Northern Metropolitan
      7
            1890.0
                          Yarra
                                 -37.8060
                                              144.9954 Northern Metropolitan
        Propertycount
```

```
1
          4019.0
```

4019.0

[5 rows x 21 columns]

[1 point] Display data shape after the removal of missing values.

```
[62]: # Write your code here
      print(df_remove_rows.shape)
```

(6196, 21)

² 4019.0

⁴ 4019.0

⁶ 4019.0

[2 points] Compute average *price* after the removal of missing values.

```
[63]: # Write your code here
df_remove_rows['Price'].mean()
```

[63]: np.float64(1068828.202065849)

[4 points] Compute the difference of the average *price* before and after the removal of missing values.

```
[64]: # Write your code here
df['Price'].mean() - df_remove_rows['Price'].mean()
```

[64]: np.float64(6855.87738923193)

[5 points] Discuss if this method should be used, and why

ANS: We can see, in a small dataset, it's preferable to drop the rows with NA/null data because they can impact significantly and negatively our results

3.2 Replace missing values with zeros (Total points = 14) [3 points] Use the dataframe df_impute_zero. Replace missing values with zeros, then display the first 5 rows.

```
[65]: # Write your code here
df_impute_zero = df_impute_zero.fillna(0)
df_impute_zero.head()
```

[65]:		Suburb		Address	Room	ıs	Туре		Price	Method	SellerG	\	
	0	Abbotsford	85 Tı		2	h	1480000.0		S	Biggin			
	1	Abbotsford	25 Bloom		2	h	1035000.0 1465000.0		S	Biggin			
	2	Abbotsford	5 Cha		3	h			SP	Biggin			
	3	Abbotsford	40 Federa		3	h	850000.0 PI		Biggin				
	4	Abbotsford	55a Park St			4	h	1600000.0		VB	Nelson		
		Date	Distance	${\tt Postcode}$	•••	Ва	athroom	ı Ca	ır La	ndsize	Building	Area	\
	0	3/12/2016	2.5	3067.0	•••		1.0	1.	0	202.0		0.0	
	1	4/02/2016	2.5	3067.0	•••		1.0	0.	0	156.0		79.0	
	2	4/03/2017	2.5	3067.0	•••		2.0	0.	0	134.0	1	50.0	
	3	4/03/2017	2.5 3067.0		•••		2.0	1.	0 94.0		0.0		
	4	4/06/2016	2.5	3067.0	•••		1.0	2.	0	120.0	1	42.0	
		YearBuilt	CouncilAre	ea Lattitu	ude	Longtitude				Regionname \setminus			
	0	0.0	Yarı	ra -37.79	996	144.9984		North	ern Met	ropolitan			
	1	1900.0	Yarı	ra -37.80	079	144.9934		34	4 Northern Met		ropolitan		
	2	1900.0	Yarı	ra -37.80	093		144.99	44					
	3	0.0	Yarı	ra -37.79	969		144.99	69	North	thern Metropolitan			
	4	2014.0	Yarı	ra -37.80	072				North	thern Metropolitan			

Propertycount 0 4019.0

```
1 4019.0
```

- 2 4019.0
- 3 4019.0
- 4 4019.0

[5 rows x 21 columns]

[2 points] Compute an average of the attribute BuildingArea after the data imputation.

```
[73]: # Write your code here

df_impute_zero['BuildingArea'].mean()

# df_impute_zero.groupby('BuildingArea')['Price'].mean()
```

[73]: np.float64(79.78861146539029)

[4 points] Compute the difference of the average BuildingArea before versus after replacing missing values with zeros.

```
[92]: # Write your code here
df_impute_zero['BuildingArea'].mean() - df['BuildingArea'].mean()
```

[92]: np.float64(-72.17903842240776)

[5 points] Discuss if this method should be used, and why

ANS: Both method are ok, there is no significantly differences between null/NA & 0

3.3 Replace missing values with average (Total points = 21) [3 points] Create a new dataframe df_new which contains only these attributes: Rooms, Price, Distance, BuildingArea. Then, likewise, display the first 5 rows.

```
[72]: # Write your code here

df_new= df[['Rooms', 'Price', 'Distance', 'BuildingArea']]

df_new.head()
```

```
[72]:
         Rooms
                    Price Distance BuildingArea
      0
             2 1480000.0
                                2.5
             2 1035000.0
                                2.5
                                             79.0
      1
      2
             3 1465000.0
                                2.5
                                             150.0
      3
                 850000.0
                                2.5
             3
                                               NaN
             4 1600000.0
                                2.5
                                            142.0
```

We are going to replace missing values in the attribute BuildingArea with its average.

[3 points] First, compute average value of the attribute BuildingArea.

```
[83]: # Write your code here
BuildingAreaMean = df_new['BuildingArea'].mean()
print("The mean of the building area is :", BuildingAreaMean)
```

The mean of the building area is : 151.96764988779805

[3 points] Now replace any missing values in BuildingArea with its average. Also display the first 10 rows.

```
[85]: # Write your code here
df_new = df_new.fillna(BuildingAreaMean)
df.head(10)
```

[85]:		Suburb		Addres	s I	Rooms	Туре		Price Meth	nod	SellerG \	
	0	Abbotsford	85 Turner St			2	h	1480000.0 S			Biggin	
	1	Abbotsford	25 Bloomburg St 5 Charles St 40 Federation La 55a Park St			2	h	1035000.0		S	Biggin	
	2	Abbotsford				3	h	1465	000.0	SP	Biggin	
	3	Abbotsford				3	h			ΡI	Biggin	
	4	Abbotsford				4	4 h 1600000		000.0	VВ	Nelson	
	5	Abbotsford	129 C	harles S	t	2	h	941	0.000	S	Jellis	
	6	Abbotsford	124	Yarra S	t	3	h	1876	000.0	S	Nelson	
	7	Abbotsford	98 C	harles S	t	2	h	1636	0.000	S	Nelson	
	8	Abbotsford	6/241 Nic	holson S	t	1	u	300	0.000	S	Biggin	
	9	Abbotsford	10 V	aliant S	t	2	h	1097	1097000.0		Biggin	
		Date	Distance	Postcode	•••	Bath	room	Car	Landsize	Вι	ıildingArea	
	0	3/12/2016	2.5	3067.0			1.0	1.0	202.0		NaN	
	1	4/02/2016	2.5	3067.0	•••		1.0	0.0	156.0		79.0	
	2	4/03/2017	2.5	3067.0	•••		2.0	0.0	134.0		150.0	
	3	4/03/2017	2.5	3067.0	•••		2.0	1.0	94.0		NaN	
	4	4/06/2016	2.5	3067.0	•••		1.0	2.0	120.0		142.0	
	5	7/05/2016	2.5	3067.0	•••		1.0	0.0	181.0		NaN	
	6	7/05/2016	2.5	3067.0	•••		2.0	0.0	245.0		210.0	
	7	8/10/2016	2.5	3067.0	•••		1.0	2.0	256.0		107.0	
	8	8/10/2016	2.5	3067.0	•••		1.0	1.0	0.0		NaN	
	9	8/10/2016	2.5	3067.0	•••		1.0	2.0	220.0		75.0	
		YearBuilt	CouncilAre	a Lattit	ude	Long	gtitud			_	ionname \	
	0	NaN	Yarr	a -37.7	996	14	14.998	4 No	rthern Met	rop	politan	
	1	1900.0	Yarr			14	14.993	4 No	rthern Met	rop	politan	
	2	1900.0	Yarr				14.994		rthern Met	rop	politan	
	3	NaN	Yarr				14.996		rthern Met	-		
	4	2014.0	Yarr				14.994		rthern Met	rop	politan	
	5	NaN	Yarr	a -37.8	041	14	14.995	3 No	rthern Met	rop	politan	
	6	1910.0	Yarr	a -37.8	024	14	14.999	3 No	rthern Met	rop	politan	
	7	1890.0	Yarr	a -37.8	060	14	14.995	4 No	rthern Met	rop	politan	
	8	NaN	Yarr	a -37.8	800	14	14.997	3 No	rthern Met	rop	politan	
	9	1900.0	Yarr	a -37.8	010	14	14.998	9 No	rthern Met	rop	politan	
		Propertycou	nt									

0 4019.0 1 4019.0

```
2
          4019.0
3
          4019.0
4
          4019.0
5
          4019.0
6
          4019.0
7
          4019.0
          4019.0
8
9
          4019.0
```

[10 rows x 21 columns]

[3 points] Now, compute a standard deviation of BuildingArea after the data imputation.

```
[86]: # Write your code here
BuildingAreStandard = df_new['BuildingArea'].std()
print("The standard deviation is:", BuildingAreStandard)
```

The standard deviation is: 392.0029618346695

[4 points] Compute the difference of the BuildingArea standard deviation before versus after replacing missing values with its mean value.

```
[97]: # Write your code here
BuildingAreStandard - df['BuildingArea'].std()
```

[97]: -149.01157579168176

[5 points] From the result, discuss if this method should be used, and why

ANS:

1.1.4 Subtask #4: Create some visualizations

```
[39]: import matplotlib.pyplot as plt
```

4.1 Investigate types of rooms (Total points = 8) [5 points] *Use the original dataframe* df, create a *horizontal* bar chart to present the attributes Rooms. Also display the chart title and data labels.

```
[106]: # Write your code here
    df['Rooms'].value_counts().sort_index().plot(kind='barh')
    plt.title('Distribution of Rooms')
    plt.xlabel('Number of Properties')
    plt.ylabel('Number of Rooms')
    plt.show()
```


[3 points] Briefly describe this visualization in your own words, and does this information help with the decision making?

ANS: in the x axis we have number of properties, and in the y axies we have distribution of rooms, we can se a normal distribution, most diponibility in 3 Rooms and less with 1 and 6

4.2 Investigate types of methods (Total points = 8) [5 points] *Use the original dataframe* df, create a pie chart to present the attributes Method. Also display the chart title and data labels.

```
[105]: # Write your code here

df['Method'].value_counts().sort_index().plot(kind='pie')
plt.title('Distribution of Method')
plt.show()
```

Distribution of Method

[3 points] Briefly describe this visualization in your own words, and does this information help with the decision making?

ANS:

4.3 Investigate council areas (Total points = 8) [5 points] *Use the original dataframe* df, create a bar chart to present the attributes CouncilArea. Also display the chart title and data labels.

```
[104]: # Write your code here

df['CouncilArea'].value_counts().sort_index().plot(kind='bar')
    plt.title('Distribution of Councul Area')
    plt.xlabel('Council Area')
    plt.ylabel('Quantity of rooms')
    plt.show()
```


[3 points] Briefly describe this visualization in your own words, and does this information help with the decision making?

ANS:

1.1.5 Subtask #5: Group the data

[4 points] Group the data by Regionname and Type, then display the *sum* of these attributes: Price, Bedroom2, Bathroom, Car, and Landsize. The expected output looks like the provided snapshot.

[]: # Write your code here

[2 points] Briefly describe your understanding from this output.

ANS: