\sim מכני נתונים \sim תרגיל בית \sim 2025B

שחר פרץ

9 ביולי 2025

ת.ז.: 334558962

shaharperets שם במודל:

ת בארגוריתם MedofMed מחלקים את המערך לתשיעיות, ובמקום לבחור את החציון נבחור את האיבר ה־i בגודלו (כאשר MedofMed נניח שבאלגוריתם i ממצא את ה־i המינימלי כך שזמן הריצה לינארי. $1 \le i \le 9$

פתרון. בהרצאה, צוין ש־ $T(n)=cn+T(\alpha n)+T(\beta n)$ מקיימת מקיימת מחרון. בהרצאה, צוין ש־ $\alpha+\beta<1$ מקיימת מקיימת מקיימת מקיימת מקרים. $\alpha+\beta<1$ אם את בקונטרא־פוזיטיב. נניח בחריב מייח מפרק מקרים.

- $n\log n \neq \mathcal{O}(n)$ מסתיים בזמן merge sort אם זוהי הוכחה אוהי אוהי אוהי הוכחה lpha+eta=1
 - מתקיים: . $\alpha>0.5$ אם $\alpha>0.5$ להניח בה"כ ולכן נוכל $\alpha>0.5$ אז אז $\alpha>0.5$ אז אם •

$$T(n) = cn + T(\alpha n) + T(\beta n) \ge cn + T(\alpha n) > cn + T(0.5n)$$

 $T(n) \neq \mathcal{O}(n)$ ומכאן נסיק ומכאן בפרט $T(n) = \Omega(n \log n)$ ולכן בפרט מקיים ואסיים T(n) = cn + T(0.5n) ומכאן מקיים סה"כ הוכחנו שקילות. נחזור לשאלה עצמה. בדומה להרצאה, סיבוכיות MedofMed ניתנת לחסימה ע"י:

$$T(n) = cn + T\left(n - \frac{ni}{22.5}\right) + T\left(\left\lceil \frac{n}{9}\right\rceil\right)$$

כאשר הביטוי חוסם במדויק שכן גודל המלבן:

width =
$$\left[\frac{1}{(9+1)/i} \left[\frac{i}{9}\right]\right] \stackrel{n \to \infty}{=} \frac{ni}{90}$$
, length = $5 \implies \text{size} = \frac{ni}{90} \cdot 5 - 1 - 5 \stackrel{n \to \infty}{=} \frac{ni}{18}$

ועתה נדרוש ש־: $T(\left\lceil \frac{n}{9} \right\rceil)$ ועלות הקריאה הרקורסיבית למציאת האיבר ה־i בגודלו היא כמובן

$$1 - \frac{i}{18} + \frac{1}{9} < 1 \iff \frac{i}{18} > \frac{1}{9} \iff i > 2$$

.i=3 הטבעי המינימלי שייקים את הוא וה־i

2. נחזור על הסעיף הקודם בעבור חלוקה לשביעיות.

פתרון. בדומה לסעיף הקודם:

width =
$$\left[\frac{1}{(7+1)/i} \left[\frac{i}{7}\right]\right] \stackrel{n \to \infty}{=} \frac{ni}{56}$$
, length = 4 \implies size = $\frac{ni}{56} \cdot 4 - 1 - 4 \stackrel{n \to \infty}{=} \frac{ni}{14}$

כלומר נקבל:

$$T(n) = cn + T\left(n\left(1 - \frac{i}{14}\right)\right) + T\left(\left\lceil\frac{n}{7}\right\rceil\right)$$

ונדרוש:

$$1 - \frac{i}{14} + \frac{1}{7} < 1 \implies \frac{i}{14} > \frac{1}{7} \implies \mathbb{N} \ni i > 2 \implies i = 3$$

גם כאן נקבל ש־i=3 המינימלי. עם זאת, התבקשנו למצוא מקסימלי. משום ברמת הקבועים, מציאת האיבר ה־i=3 המינימלי. עם זאת, התבקשנו למצוא מקסימלי הוא i=3 בגודלו מסמטריה, אז ה־i=3 הטבעי המקסימלי הוא i=3 באודלו מסמטריה, אז ה־i=3 האיבר ה־i=3 בגודלו מסמטריה, אז ה־i=3 האיבר ה־i=3 בגודלו מסמטריה, אז ה־i=3 האיבר ה־i=3 בגודלו מסמטריה, אז ה־i=3 המינימלי הוא באיבר ה־i=3 בגודלו מסמטריה, אז ה־i=3 האיבר ה־i=3 בגודלו מסמטריה, אז ה־i=3 המינימלי הוא באיבר ה־i=3 בגודלו מסמטריה, אז ה־i=3 המינימלי.

 $k\in[n]$ עבור $[i-k,i+k]\cap\mathbb{N}$ המכיל n איברים שונים זה מזה. נתון ששלכל ושלכל , האיבר ה־i בגודלו נמצא בטווח כלשהו.

 $\mathcal{O}(n\log k)$ ימיין את המערך ימיין insertion sort נוכיח.1

$$I(A) \le n(2k-1) = 2nk - n \le 2nk$$

c=2 ואכן הראינו את הדרוש בעבור

ניגש להוכיח את הטענה עצמה. בתרגיל בית 3, הוכחנו בסעיף האחרון ש־merge sort פועל בסיבוכיות:

$$O\left(n\log\left(\frac{I(A)}{n}+2\right)\right) = \operatorname{cost} \stackrel{\forall n \geq n_0}{=} \gamma \cdot n\log\left(\frac{I(A)}{n}+2\right) \leq \gamma n\log\left(\frac{2nk}{n}+2\right) = \gamma n\log(2k+2) \leq \gamma n\log k$$

 $\operatorname{cost} = \mathcal{O}(n \log k)$ כדרוש. כדרוש קבוע ממשי

.2 עבור \sqrt{n} למיון המערך, נוכיח $\Omega(n\log n)$ נוכיח, $n=\sqrt{n}$

 $\Omega(n\log n)
eq n$ אפשר אפשר למיין בסיבוכיות שעבור $n=\sqrt{n}$ אפשר שעבור מניח הוכחה.

נתבונן בבעיה הבאה: יהיו $(A^i)_{i=1}^{\sqrt{n}}$ מערכים מגודל \sqrt{n} . בעזרת אלגו' המיון שהנחנו בשלילה את קיומו, נוכל לקחת את איברי כל המערכים, לסמן כל אחד מהם במספר מהערך שמהם הגיעו, ולשרשר אותם יחדיו, ולקבל $A=\bigoplus_{i=1}^{\sqrt{n}}(\langle i,A_i^i\rangle)_{i=1}^{\sqrt{n}}$ כלומר:

$$A = \langle 1, A_1^1 \rangle \cdots \langle 1, A_{\sqrt{n}}^1 \rangle, \langle 2, A_1^2 \rangle \cdots \langle 2, A_{\sqrt{n}}^2 \rangle \cdots \cdots \langle \sqrt{n}, A_1^{\sqrt{n}} \rangle \cdots \langle \sqrt{n}, A_{\sqrt{n}}^{\sqrt{n}} \rangle$$

נמיין אותם בסדר הלקסיקוגרפי על $\langle i,j \rangle$, ובכך נקבל את \sqrt{n} המערכים שלנו ממויינים כדרוש, בפחות מ־ $(n\log n)$. הפעלת האלגו' שהנחנו בשלילה את קיומו חוקית, כי כל איבר נמצא במרחק \sqrt{n} לכל היותר ממקומו המקורי, במקרה הגרוע בו המערך ה־ A_i הפוך לסדר המסודר שלו (נובע ישירות מהבנייה שלנו ומהגדרת הסדר הלקסיקוגרפי).

לעומת אאת, ידוע שאת בעיית המיון בעבור A_i ניתן לפתור ב־ $\Omega(\sqrt{n}\log\sqrt{n})$. נכפיל אאת בעיית המיון בעבור

$$\sqrt{n}\Omega(\sqrt{n}\log\sqrt{n}) = \Omega((\sqrt{n})^2\log n^{0.5}) = \Omega(0.5n\log n) = \Omega(n\log n)$$

 $oldsymbol{\mathsf{I}}$ כלומר, החסם התחתון לבעיה זו הוא $\Omega(n\log n)$ על אף שתחת הנחת השלילה פתרנו אותה בפחות מכך. סתירה, כדרוש

$\dots \dots $	
--	--

בהינתן A,B מערכים בגודל n, המכילים איברים מתחום סדור כלשהו, נרצה למצוא מערך C כך ש־C הוא מספר האיברים ב־A הקטנים או שוווים ל־B[i].

C א. נמצא אלגו' לחישוב

הבאה: הבאה מכן, נבצע את מכן, נבצע את ההשמה בסיבוכיות merge sort עשונה. ראשית כל, נמיין את A באמצעות

$$\forall i \in [n] : C[i] \leftarrow \mathtt{Search}(A, B[i]) + 1$$

כאשר כאשר מבצע חיפוש בינארי של B[i] ב־B[i] ב-B[i]. עלות החיפוש Search מבצע חיפוש בינארי של $\mathcal{O}(n\log n) + \mathcal{O}(n\log n) + \mathcal{O}(n\log n)$ ואנו מבצעים אותו n פעמים, סה"כ $\mathcal{O}(n\log n)$ לפעולה זו. סיבוכיות כוללת $\mathcal{O}(\log n) + \mathcal{O}(n\log n)$ ואנו מבצעים אותו n פעמים, סה"כ $\mathcal{O}(n\log n)$

ב. נוכיח חסם תחתון הבדוק במודל ההשוואות לבעיה.

הוכחה. ישנו חסם תחתון $\Omega(n\log n)$ לבעיה: משום ש־ $C[i]\in[n-1]$ (לא יכולים להיות יותר מ־n איברים שקטנים או שווים מאיבר נתון, כאשר ישנם רק n איברים), אזי $C[i]\in[n-1]$ ולכן ישנם n^{n-1} אפשרויות ל־output של האלגו'. לכן, יש n^{n-1} עלים n^{n-1} איברים), אזי n^{n-1} אזי n^{n-1} ולכן ישנם n^{n-1} מה שגם מהווה חסם תחתון על זמן הריצה של האלגו'. $\Omega(\log n^{n-1}) = \Omega((n-1)\log n) = \Omega(n\log n)$ בעץ ההשואות, ועומקו n^{n-1} אווים אלגו' במודל ההשואות בסעיף א'.

	(4)
--	-----

מחזיר משפר הגדול מלפחות את בחדריבאות AprroxMedian מחזיר משפר הגדול מלפחות א. (ממש את ה־ADT הבא: ApproxMedian א. נממש את ה־ADT מחזיר משפר הגדול מלפחות א. נממש את ה־ $\frac{n}{4}$ מהם.

פתרון. ניעזר ברשימה מקושרת עצלה. הפעולה Insert תכניס אליה את k למבנה Q הפעולה חמחק את x מהמבנה, בצורה ניעזר ברשימה מקושרת עצלה. הפעולה אלו פועלות אלו פועלות באמורטייז עצלה: כלומר, תסמן אותו כאיבר מחוק, אך לא תזיז את הרשימה בפעבר על איברים מחוקים). (כאשר Insert מסוגל לתקן את הרשימה במעבר על איברים מחוקים).

ננקט בשיטה הבאה כדי לתחזק שדה Median: נחזיק במטחנר מעם שעובר הוקה של שתיים, הוא מחשב Median ננקט בשיטה הבאה כדי לתחזק שדה Median: נחזיק במטחנר מעם המטחנר מעם הוקף שבא אורך לדלג על איגרים מחוקים. נעשה זאת בכל הוספה שבא $\log (0.75n)$ גדל ב־1, ובכל מחיקה שבא $\log (0.75n)$ (הכפל בקבוע נועד כדי למנוע רצף של חיסורים ואז הוספות שבכל אחד מהם מחשבים Median).

- סיבוכיות: הוספת חישוב ב־ $\mathcal{O}(n)$ לפעולה בכל פעם לאחר 2^i ריצות, שקול לחלוטין להעתקת מערכים שמכפילים את עצמם, מה שהוכחנו כבר שלוקח $\mathcal{O}(n)$ אמורטייז. נוכל להוכיח זאת בשיטת הבנק, כאשר מוסיפים מספר קבוע של 2 מטבעות על כל איבר שמוחקים. נשתמש במטבעות שעל המחוקים כדי לעבור עליהם ולהוציא אותם מהרשימה, ומשום שיש לפחות $\frac{n}{2}$ איברים שנוספו מאז הקריאה האחרונה ל־MedofMedians, ועליהם שתי מטבעות, יהיה לנו n מטבעות כדי לחשב את החציון. נשמור אותו בשדה המתאים.
- **תקינות:** משום שהחציון מחושב כל לכל היותר חזקה של שניים, במקרה הגרוע בהוספה הבאה המערך יצטרך לחשב חציון מחדש, כלומר החציון חושב לפני $\frac{n+1}{2}$ הוספות. בפרט, אז היה החציון של $\frac{n+1}{2}$ האיברים, ובמקרה הגרוע שבו כל האיברים שנוספו מאז גדולים ממש או קטנים ממש ממנו, החציון כרגע עם $\frac{n}{4} > \frac{n+1}{4}$ איברים לפניו/אחריו.

לסיום, הקריאה ל־AprroxMedian תחזיר את החציון שחושב ונשמר בשדה.

- תחת מודל ב־($\mathcal{O}(1)$ עם היקיום מימוש ל־Insert(Q,k), Median(Q) עם הפעולות ב-ADT ב. נוכיח אי־קיום מימוש ל-הפעולות.
- פתרון. נניח בשלילה שקיים מבנה מתאים. יהיו $a_1 \dots a_n \in \mathbb{N}$. נעשה Insert (Q,a_i) , Insert $(Q,-a_i)$, נניח בשלילה שקיים מבנה מתאים. יהיו $a_1 \dots a_n \in \mathbb{N}$. עתה, החציון עומד עם המינימום. נמצא את המקסימום $i \in [n]$ הנוכחי m, ונבצע את הסדרה הבאה:

Insert(Q,m+1), $b_1 \leftarrow \operatorname{Median}(Q)$, Insert(Q,m+2), Insert(Q,m+3), $b_2 \leftarrow \operatorname{Median}(Q)$, Insert(Q,m+4), Insert(Q,m+5), $b_3 \leftarrow \operatorname{Median}(Q)$, Insert(Q,m+2n), Insert(Q,m+2n+1), $b_n \leftarrow \operatorname{Median}(Q)$ בסדרה זו ישנן $a_1 \dots a_n$ פעולות שאורכות $a_1 \dots a_n$ אמורטייז, כלומר סה"כ אורכות $a_1 \dots a_n$ הם $a_1 \dots a_n$ הם $a_1 \dots a_n$ הוספות גדולות מהמקסימום) שקולות ללעשות (ובפרט ביצוע הוספות גדולות מהמקסימום) שקולות ללעשות (ובפרט ביצוע הוספות גדולות מבחליון שי $a_1 \dots a_n = a_n$ כמצופה. סה"כ מיינו $a_1 \dots a_n = a_n$ איברים בסיבוכיות ($a_1 \dots a_n = a_n = a_n = a_n = a_n$) בתוך מודל ההשוואות, בסתירה לחסם תחתון $a_1 \dots a_n = a_n =$

א. נתון עץ השוואות המתאים לאלגוריתם הממיין n מספרים. נמצא את העומק המינימלי של עלה בעץ.

n-1 הוכחה. נגיע לעלה כאשר האלגו' ביצע מספיק השוואות כדי להיות בטוח בתוצאה. נוכיח שקיים ומינימלי עלה בעומק

- שמערך n-1, מוכיח לאלגו' שמערך n-1, המתחיל ב־1 ומסתיים ב־n-1, מוכיח לאלגו' שמערך המוץ עבור מערך מסודר, רצף ההשואות שמשווה את האיבר ה־n-1, מעומק המוץ ובכך מאפשר לעשות halting. כלומר, מצאנו מקרה ועלה מעומק n-1.
- מינימליות: נניח בשלילה שקיים מסלול קצר יותר. משום שהאלגו' ממיין את הקלט, אז הוא בפרט מוצא את המינימום בעץ. כלומר, מצאנו את המינימום במערך תוך $a \leq n-2$ השוואות. בפרט, לא השוונו את המינימום לכל האיברים באופן ישיר או עקיף (כלומר, קפלסיבית או טרנזטיבית) וייתכן איבר גדול יותר מהמינימום במערך, מה שמהווה סתירה. לכן אורך מסלול הוא לפחות n-1

.סה"כ הראינו ש־n-1 העומק המינימלי של עלה בעץ, והראנו שחסם זה התחתון ההדוק ביותר שניתן לתת

- ב. נתון אלגו' השוואות המקבל כקלט שתי רשימות ממויינות באורך n כל אחת, וממזג אותן לרשימה ממוינת אחת.
 - $\binom{2n}{n}$ נראה שמספר העלים בעץ הוא לפחות.

הוכחה. כדי להראות שקיימים $\binom{2n}{n}$ עלים בעץ, באופן שקול נוכיח שבהינתן מערכים $(a_i)_{i=1}^n$ ו כלשהם, ישנם $\binom{2n}{n}$ פלטים אפשריים. נתבונן ב־ $(a_i)_{i=1}^n$ – הסדר שלהם מקובע, ובהכרח נצטרך בפלט לשבץ את איברי $(b_i)_{i=1}^n$ בינהם. יש n+1 מקומות בינהם, והבעיה שקולה קומבינטורית לחלוקת n איברים לn+1 דליים, מה שמותיר אותנו עם $\binom{2n}{n}=\binom{2n}{n}=\binom{2n}{n}$ בינהם, והבעיה שקולה קומבינטורית לחלוקת n איברים לי העץ כמספר הפלטים האפשריים מהגדרה.

2. נסיק חסם תחתון לגבי זמן הריצה.

הוכחה. בהרצאה ראינו למה, על־פיה בהינתן ℓ עלים, גובה עץ בינארי הוא בהכרח $h \geq \log \ell$. משום שעץ ההשוואות הוא בפרט עץ בינארי. מתקיים שגובהו:

$$h \ge \log \ell \ge \log \binom{2n}{n} = \log \left((-1)^n 4^n \binom{-1/2}{n} \right) = \log \left(4^n \left| \binom{-1/2}{n} \right| \right) > \log 4^n = n \log 4 = \Omega(n)$$

סה"כ הוכחנו חסם תחתון לינארי. (את הנוסחה לבינום האמצעי רואים בבדידה 2)

 $i,j-i=|A_j-A_i|$ נתון מערך $i,j\in[n]$ כך האם למצוא אלגו' הבודק האם ננסה למצוא שלמים. ננסה למצוא אלגו' הבודק האם

 $. orall i \in [n] \colon A_i \in [-n^2, n^2] \cap \mathbb{Z}$ ה, נניח זה, בסעיף זה.

:פתרון נספק אלגו' דטרמינסטי בסיבוכיות לינארית. ניצור מילון הממומש באמצעות ינישרית, כשערכיו $i\mapsto A_i$ נבחין ש־

$$j - i = |A_j - A_i| \iff \begin{cases} j - i = A_j - A_i \\ j - i = -A_j + A_i \end{cases} \iff \begin{cases} j - A_j = i - A_i \\ A_j + j = A_i + i \end{cases}$$

לכן, נוכל לבדוק באופן שקול שוויון זוגות כמתוארים לעיל. ניצור שני מערכים:

$$\mathcal{A}_1[i] = i - A_i$$
$$\mathcal{A}_2[i] = i + A_i$$

 $j-i=|A_j-A_i|$, או בניסוח שקול, שקול לקיום $A_j-i=|A_j-i|$ או בניסוח שקול, $A_j+j=A_i+i$ או בניסוח שקול, שקול לקיום $A_1-i=A_j-i$ שזה מה שאנו רוצים לבדוק. לשם בדיקת הכפילויות, נמיין את A_1,A_2 באמצעות radix sort על איבריהם בבסיס A_1 , משום שהערכים שהערכים של חוף לשם בדיקת הכפילויות, נמיין את A_1,A_2 במיוח שכמות הספרות של A_1,A_2 , ומתקיים שכמות הספרות של A_1,A_2 היא שכמות A_1,A_2 , ומתקיים שכמות הספרות של A_1,A_2 , ומתקיים שכמות הספרות של A_1,A_2 , ומתקיים שכמות הספרות של A_1,A_2 , במים ולכן ה־radix sort יפעל בסיבוכיות לינארית. לאחר המיון, נותר לבדוק האם להריץ את המיון, נותר לבדוק האם של פעמים ולכן ה־radix sort לעבור עליהם A_1,A_2 , כלומר לעבור עליהם עני איברים עוקבים זהים ב־ A_1,A_2 , כלומר לעבור עליהם A_1,A_2 פעמים, ולבדוק האם A_1,A_2 של היים בי A_1,A_2 .

משום שביצעו פעולות לינאריות בלבד, בסידור, השוואה, ויצירת $\mathcal{A}_1, \mathcal{A}_2$ סיבוכיות האלגו' שלנו לינארית דטרמינסטית במקרה הגרוע.

2. עתה, נוותר על ההנחה, ונפתור בתוחלת.

פתרון. נעזר בשיטה דומה לזו של הסעיף הקודם, כלומר, נוכל לבנות טבלת hash בגודל n בשיטת ה־hash, ולשמור בה את הזוגות הסדורים (i,A_i+i) (יש n כאלו ולכן בתוחלת יקח $\mathcal{O}(n)$ לשמור אותם) כאשר ה־hash מקבל כקלט את i כדי למצוא איברים מגודל זהה, נעבור ב־ $\mathcal{O}(n)$ על כל המספרים ונבדוק האם בתת־הרשימה המקושרת בתא ה־i i יש עוד איבר מלבדם (בתוחלת יהיה שם i איברים, כלומר המעבר יארך i i בעל אותו הערך. באופן דומה נוכל לשמור מערך עם הערכים i האם קיים אחר מלבדו בתא ה־i בעל אותו הערך.

lacktriangle מגודל לינארי. hash־מגודל האבלת המוחלת, וטבלת האמודל לינארי.

שחר פרץ, 2025

קומפל ב־LATEX ונוצר באמצעות תוכנה חופשית כלכד