Parallel Programming
Optimization: Practical
Applications in
Bioinformatics

Prerequisites

- ▶ Proficient in C++
 - ► Modern C++
- Data structure and algorithm
- Interest in Bioinformatics
- Strong motivation to learn

Topics

- Quick review of modern C++ features and software development process
- Introduction to parallel computing
- Introduction to modern Bioinformatics

- Applications in Bioinformatics
 - Algorithms and practical guide for some parallel techniques
 - Parallel techniques (in modern C++)
 - Multithreading
 - **▶** GPGPU
 - **►** SIMD
 - ▶ MPI
 - ▶ Parallelized sequence analysis algorithms
- Collaborative Team Project

Bioinformatics

- ▶ Basic molecular biology
 - ▶ Transcription
 - ▶ Translation
- Sequencing technology
 - Next generation sequencing
 - ▶ Third generation sequencing
- Applications
 - Genotyping
 - ▶ Gene expression
 - Epigenetics

Algorithms

- ► Biological sequence sorting
- ► FM-index / FM tree
- ▶ Graphical FM-index
- ► Pairwise Sequence alignment
- Sequence-to-graph alignment
- ▶ De Bruijn graph
- **...**

Parallel programming

- Multithreading
 - ► C++11 thread
 - ► C++17 Parallel Algorithms
- ▶ GPGPU
 - ▶ CUDA
- ► SIMD
 - ► Boost::SIMD / simdpp
- ▶ MPI
 - ▶ OpenMPI

What will you need to do for this class

- 3-4 Coding homework in two months
- Team work project
 - 2-4 people / team (at most 2 members from the same lab)
 - ► Everyone will need to do the presentation
 - Project proposal (literature summary)
 - ▶ Progress report and Panel discussion
 - Github project scheduling and load sharing
 - Commit history
- Demo and final presentation

Project topics (TBD)

- Wavefront algorithm
- ► sBWT/KISS
- ▶ BWA -mem
- ► Graphical FM index (HISAT2)
- ► GATK
- ▶ Minimap2
- Cache-Oblivious parallel SIMD Viterbi HMM / HH-suite3
- Other topics can be proposed to me before execution

Important changes

- ▶ No physical class on Friday
 - Online prerecorded class between classes (limited access time)
- Github project scheduling and load sharing
 - ▶ Commit history
 - ► Final demo and presentation slides

Questions?