Toward Enhancing Vehicle Color Recognition in Adverse Conditions: A Dataset and Benchmark

Gabriel E. Lima¹, Rayson Laroca², Eduardo Santos^{1,3}, Eduil Nascimento Jr.³, and David Menotti¹

¹Federal University of Paraná
²Pontifical Catholic University of Paraná
³Paraná Military Police

October 2, 2024

Summary

1. Introduction

2. The UFPR-VCR dataset

3. Experiments

4. Conclusion

Introduction

Scope: Vehicle Color Recognition (VCR).

Problem: Lack of adverse conditions in datasets.

Approach: UFPR Vehicle Color Recognition (UFPR-VCR) dataset.

Figure: Images in the proposed dataset (b) depict significantly more challenging scenes than those in (a).

The UFPR-VCR dataset

Data: 10,039 images; 9,502 unique vehicles; 11 colors.

Figure: Distribution of vehicle colors in the UFPR-VCR dataset.

The UFPR-VCR dataset

Table: ALPR datasets used to create UFPR-VCR dataset.

Dataset	Year	Images	Resolution	Viewpoint
UFOP	2011	377	800 × 600	Frontal/Rear
SSIG-SigPlate	2016	2,000	1920×1080	Frontal
OpenALPR-BR	2016	115	Various	Frontal/Rear
UFPR-ALPR	2018	4,500	1920×1080	Frontal/Rear
Vehicle-Rear*	2021	445*	1280×720	Rear
RodoSol-ALPR	2022	20,000	1280×720	${\sf Frontal/Rear}$

^{*}We used only the portion of Vehicle-Rear that includes labels for the license plates.

The UFPR-VCR dataset

Development: I) preprocessing; II) image selection; and III) annotations.

Figure: Examples of discarded images due to inability to recognize the vehicle color. The accurate color annotation is displayed bellow each image.

Description: evaluate four deep learning models on the proposed dataset and on Chen et al. dataset.

Methodology:

- Models;
- Split;
- Data augmentation;
- Training protocols;
- Evaluation metrics.

Table: Global metrics (%) on Chen et al. dataset (averaged over five runs).

Model	Top-1	Top-2	Precision	Recall	F1
EfficientNet-V2 [5]	84.6	93.4	84.5	84.6	84.4
MobileNet-V3 [4]	90.6	96.7	91.7	90.6	91.0
ResNet-34 [3]	89.0	95.6	91.1	89.0	89.9
ViT b16 [2]	92.8	98.0	95.3	92.8	93.9

Table: Global metrics (%) on UFPR-VCR dataset (averaged over five runs).

Model	Top-1	Top-2	Precision	Recall	F1
EfficientNet-V2 [5]	51.2	65.3	65.2	51.2	53.5
MobileNet-V3 [4]	50.5	65.4	65.8	50.5	53.1
ResNet-34 [3]	49.1	60.3	64.3	49.1	52.4
ViT b16 [2]	59 .2	71.3	76 .0	59 .2	62.8
EfficientNet-V2 [5]	55.4	69.5	43.5	55.4	44.6
MobileNet-V3 [4]	59.3	73.3	42.6	59.4	45.2
ResNet-34 [3]	59.3	72.9	47.8	59.3	49.9
ViT b16 [2]	66.2	79.7	55.7	66.2	57.8
	EfficientNet-V2 [5] MobileNet-V3 [4] ResNet-34 [3] ViT b16 [2] EfficientNet-V2 [5] MobileNet-V3 [4] ResNet-34 [3]	EfficientNet-V2 [5] 51.2 MobileNet-V3 [4] 50.5 ResNet-34 [3] 49.1 ViT b16 [2] 59.2 EfficientNet-V2 [5] 55.4 MobileNet-V3 [4] 59.3 ResNet-34 [3] 59.3	EfficientNet-V2 [5] 51.2 65.3 MobileNet-V3 [4] 50.5 65.4 ResNet-34 [3] 49.1 60.3 ViT b16 [2] 59.2 71.3 EfficientNet-V2 [5] 55.4 69.5 MobileNet-V3 [4] 59.3 73.3 ResNet-34 [3] 59.3 72.9	EfficientNet-V2 [5] 51.2 65.3 65.2 MobileNet-V3 [4] 50.5 65.4 65.8 ResNet-34 [3] 49.1 60.3 64.3 ViT b16 [2] 59.2 71.3 76.0 EfficientNet-V2 [5] 55.4 69.5 43.5 MobileNet-V3 [4] 59.3 73.3 42.6 ResNet-34 [3] 59.3 72.9 47.8	EfficientNet-V2 [5] 51.2 65.3 65.2 51.2 MobileNet-V3 [4] 50.5 65.4 65.8 50.5 ResNet-34 [3] 49.1 60.3 64.3 49.1 ViT b16 [2] 59.2 71.3 76.0 59.2 EfficientNet-V2 [5] 55.4 69.5 43.5 55.4 MobileNet-V3 [4] 59.3 73.3 42.6 59.4 ResNet-34 [3] 59.3 72.9 47.8 59.3

Colors consistently identified: yellow, white and red.

Colors that posed challenges: brown, blue, green and gray.

Nighttime images: 32.4% top-1 errors.

GT: White Pred: Silver

GT: Red Pred: White

GT: Black Pred: Gray

Figure: Examples of nighttime images that were misclassified.

Conclusions

Observed: shortcomings in existing Vehicle Color Recognition (VCR) datasets.

Main contribution: UFPR-VCR proposal and benchmark.

Future work: I) improve nighttime scene performance; and II) enrich the dataset for fine-grained vehicle classification.

Acknowledgments

Toward Enhancing Vehicle Color Recognition in Adverse Conditions: A Dataset and Benchmark

Gabriel E. Lima¹, Rayson Laroca², Eduardo Santos^{1,3}, Eduil Nascimento Jr.³, and David Menotti¹

¹Federal University of Paraná ²Pontifical Catholic University of Paraná ³Paraná Military Police

October 2, 2024

