DS N°4 (le 28/11/2009)

PROBLÈME I : ENDOMORPHISMES CYCLIQUES (d'après EPITA 2002)

Dans ce problème, on désigne par E un \mathbb{K} -espace vectoriel de dimension finie $n \ge 2$. On dira qu'un endomorphisme f de E est *cyclique* s'il existe un vecteur x_0 de E tel que :

$$E = Vect(\{f^k(x_0), k \in \mathbb{N})\}$$
 ou encore $E = Vect(\{x_0, f(x_0), f^2(x_0), f^3(x_0), \ldots\})$.

Dans la partie I, on donne quelques exemples d'endomorphismes cycliques. Dans la partie II, on procède à une étude plus générale des endomorphismes cycliques.

PARTIE I

1. Deux exemples d'endomorphismes cycliques en dimension n=3

Dans cette question seulement, l'espace E est de dimension 3 et rapporté à une base (e_1, e_2, e_3) .

a) On considère l'endomorphisme a dont la matrice dans la base (e_1, e_2, e_3) est :

$$A = \begin{pmatrix} 0 & 0 & 6 \\ 1 & 0 & -11 \\ 0 & 1 & 6 \end{pmatrix}.$$

Exprimer $a(e_1)$ et $a^2(e_1)$ dans la base (e_1, e_2, e_3) et en déduire que a est cyclique.

Déterminer les valeurs propres de l'endomorphisme a.

Pour chacune des trois valeurs propres possibles, déterminer un vecteur propre dont la troisième composante est égale à 1. En déduire une matrice inversible P telle que $P^{-1}AP$ soit une matrice diagonale qu'on explicitera (on ne demande pas de calculer P^{-1}).

b) On considère l'endomorphisme b dont la matrice dans la base (e_1, e_2, e_3) est :

$$B = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}.$$

Exprimer $b(e_1)$ et $b^2(e_1)$ dans la base (e_1, e_2, e_3) et en déduire que b est cyclique.

Déterminer les valeurs propres de l'endomorphisme b et étudier si l'endomorphisme b est ou non diagonalisable.

2. Un exemple d'endomorphisme cyclique en dimension $\,n\,$

Dans cette question, on note c un endomorphisme de E admettant n valeurs propres distinctes $\lambda_1, \ldots, \lambda_n$ et x_1, \ldots, x_n n vecteurs propres associés à ces n valeurs propres $\lambda_1, \ldots, \lambda_n$ et on pose alors $x_0 = x_1 + \cdots + x_n$.

- a) Exprimer $c(x_1+\cdots+x_n)$, $c^2(x_1+\cdots+x_n)$, ..., $c^n(x_1+\cdots+x_n)$ en fonction de x_1 , ..., x_n et λ_1 , ..., λ_n , puis établir que la famille $(x_0, c(x_0), \ldots, c^{n-1}(x_0))$ est libre dans E.
- **b)** En déduire que l'endomorphisme *c* est cyclique.

PARTIE II

Dans cette partie II, on note f un endomorphisme cyclique de l'espace vectoriel E (dim E=n), autrement dit un endomorphisme f pour lequel existe un vecteur x_0 de E tel que :

$$E = Vect(\{f(k(x_0), k \in \mathbb{N})\})$$
 ou encore $E = Vect(\{x_0, f(x_0), f^2(x_0), f^3(x_0), \ldots\})$.

Si $Q(X) = q_m X^m + q_{m-1} X^{m-1} + ... + q_1 X + q_0$ désigne un polynôme de $\mathbb{K}[X]$, on pose :

$$Q(f) = q_m f^m + q_{m-1} f^{m-1} + ... + q_1 f + q_0 Id_E$$
 (Id_E endomorphisme identité de E).

3. Une base adaptée de E

On désigne par m le plus grand nombre entier naturel tel que :

$$(x_0, f(x_0), f^2(x_0), ..., f^{m-1}(x_0))$$
 est libre et $(x_0, f(x_0), f^2(x_0), ..., f^m(x_0))$ est liée.

- a) Justifier l'existence d'un tel nombre entier naturel m, puis montrer par récurrence sur k que les vecteurs $f^{m+k}(x_0)$ appartiennent à Vect $\{x_0, f(x_0), f^2(x_0), ..., f^{m-1}(x_0)\}$.
- **b)** En déduire que la famille $(x_0, f(x_0), f^2(x_0), ..., f^{m-1}(x_0))$ est une base de E, puis que m = n.

Dans toute la suite de ce problème, on convient de poser :

$$f^{n}(x_{0}) = p_{n-1} f^{n-1}(x_{0}) + ... + p_{1} f(x_{0}) + p_{0} x_{0}$$

et on désigne alors par P le polynôme de $\mathbb{K}[X]$ défini par $P(X) = X^n - p_{n-1}X^{n-1} - \dots - p_1X - p_0$.

4. Matrice et polynôme annulateur de f

- a) Écrire la matrice M de f dans la base $(x_0, f(x_0), f^2(x_0), ..., f^{n-1}(x_0))$.
- **b)** Montrer que les n endomorphismes Id_{E} , f, f^2 , ..., f^{n-1} sont indépendants, puis en déduire qu'il n'existe aucun polynôme Q non nul de degré strictement inférieur à n tel que $\mathrm{Q}(f)=0$.
- c) Déterminer l'image par l'endomorphisme $P(f) = f^n p_{n-1}f^{n-1} \dots p_1f p_0 Id_E$ des vecteurs de la base $(x_0, f(x_0), f^2(x_0), \dots, f^{n-1}(x_0))$, puis en déduire que P(f) = 0.

5. Caractérisation des endomorphismes cycliques diagonalisables

- a) On considère une valeur propre λ de f et un vecteur propre associé x. Calculer $f^k(x)$ pour $k \in \mathbb{N}$ et en déduire que $P(\lambda) = 0$.
- **b)** On considère une valeur propre λ de f. Déterminer le rang de l'endomorphisme $f \lambda \operatorname{Id}_E$ à l'aide de sa matrice, puis en déduire la dimension du sous-espace propre associé à λ .
- c) Établir que l'endomorphisme cyclique f est diagonalisable si et seulement s'il possède n valeurs propres distinctes.

6. Étude du commutant de f lorsque f est cyclique

- a) Montrer que le commutant $C(f) = \{g \in L(E) \text{ tq } g \circ f = f \circ g\}$ est une sous-algèbre de L(E).
- **b)** Soient deux endomorphismes u et v appartenant à C(f). Montrer que, si $u(x_0) = v(x_0)$, alors u = v.
- c) Soit g un endomorphisme pour lequel on pose $g(x_0) = a_{n-1}f^{n-1}(x_0) + ... + a_1f(x_0) + a_0x_0$. En déduire, si g appartient à C(f), que $g = a_{n-1}f^{n-1} + ... + a_1f + a_0Id_E$.
- **d)** En déduire que le commutant C(f) est de dimension n et démontrer qu'il admet pour base $(\mathrm{Id}_{\mathrm{E}}, f, f^2, ..., f^{n-1})$.

PROBLÈME II: UTILISATIONS DES MATRICES COMPAGNON (d'après CCP MP 2001)

La partie IV ne fait pas partie du DS!

C'est pour votre culture personnelle...

Notations et définitions :

Dans tout le problème \mathbb{K} désigne \mathbb{R} ou \mathbb{C} et n est un entier naturel.

Si u est un endomorphisme d'un \mathbb{K} -espace vectoriel E, on note $u^0 = Id_E$ et $\forall n \in \mathbb{N}, u^{n+1} = u^n \circ u$.

On note $\mathbb{K}_n[X]$ la \mathbb{K} -algèbre des polynômes de degré inférieur ou égal à n, $\mathcal{M}_n(\mathbb{K})$ la \mathbb{K} -algèbre des matrices carrées de taille n à coefficients dans \mathbb{K} , de matrice unité I_n et $GL_n(\mathbb{K})$ le groupe des matrices inversibles de $\mathcal{M}_n(\mathbb{K})$; les éléments de $\mathcal{M}_n(\mathbb{K})$ sont notés $M = (m_{i,i})$.

Pour une matrice A de $\mathcal{M}_n(\mathbb{K})$, on note tA la transposée de la matrice A, $\operatorname{rg}(A)$ son rang, $\chi_A = \det(A - \operatorname{XI}_n)$ son polynôme caractéristique et SpA l'ensemble de ses valeurs propres.

Si $P = X^n + a_{n-1}X^{n-1} + ... + a_1X + a_0$ est un polynôme unitaire (=normalisé) de $\mathbb{K}_n[X]$ on lui associe

la matrice compagnon
$$C_P = \begin{pmatrix} 0 & 0 & . & . & 0 & -a_0 \\ 1 & 0 & . & . & 0 & -a_1 \\ 0 & 1 & 0 & . & 0 & -a_2 \\ . & . & . & . & . & . \\ 0 & . & 0 & 1 & 0 & -a_{n-2} \\ 0 & . & . & 0 & 1 & -a_{n-1} \end{pmatrix} \in \mathcal{M}_n(\mathbb{K})$$

(c'est-à-dire la matrice $C_P = (c_{i,j})$ est définie par $c_{i,j} = 1$ pour i - j = 1, $c_{i,n} = -a_{i-1}$ et $c_{i,j} = 0$ dans les autres cas).

Les parties II. III. et IV. utilisent les résultats de la partie I. et sont indépendantes entre elles.

I. Propriétés générales

Dans cette partie on considère le polynôme $P = X^n + a_{n-1}X^{n-1} + ... + a_1X + a_0$ de $\mathbb{K}_n[X]$ et C_P sa matrice compagnon associée.

- 1. Montrer que C_P est inversible si et seulement si $P(0)\neq 0$.
- 2. Calculer le polynôme caractéristique de la matrice C_P et déterminer une constante k telle que $\chi_{C_p} = kP$.
- **3.** Soit Q un polynôme de $\mathbb{K}_n[X]$, déterminer une condition nécessaire et suffisante pour qu'il existe une matrice A de $\mathcal{M}_n(\mathbb{K})$ telle que $\chi_A = Q$.
- **4.** On note tC_P la transposée de la matrice C_P .
 - a) Justifier la proposition : $Sp(C_P) = Sp({}^tC_P)$.
 - **b)** Soit λ élément de Sp(tC_P), déterminer le sous-espace propre de tC_P associé à λ .
 - c) Montrer que tC_P est diagonalisable si et seulement si P est scindé sur \mathbb{K} et a toutes ses racines simples.
 - **d)** On suppose que P admet n racines λ_1 , λ_2 , ..., λ_n deux à deux distinctes. Montrer que tC_P est diagonalisable et en déduire que le déterminant de Vandermonde

$$\begin{vmatrix} 1 & 1 & \dots & 1 \\ \lambda_1 & \lambda_2 & \dots & \lambda_n \\ \lambda_1^2 & \lambda_2^2 & \dots & \lambda_n^2 \\ \dots & \dots & \dots & \dots \\ \lambda_1^{n-1} & \lambda_2^{n-1} & \dots & \lambda_n^{n-1} \end{vmatrix}$$
 est non nul.

- **5.** Exemples:
 - a) Déterminer une matrice A (dont on précisera la taille n) vérifiant :

$$A^{2002} = A^{2001} + A^{2000} + 1999I_n$$
.

b) Soit E un \mathbb{K} -espace vectoriel de dimension n et f un endomorphisme de E vérifiant : $f^{n-1} \neq 0$ et $f^n = 0$; montrer que l'on peut trouver une base de E dans laquelle la matrice de f est une matrice compagnon que l'on déterminera.

II. Localisation des racines d'un polynôme

Soit $A = (a_{i,j})$ une matrice de $\mathcal{M}_n(\mathbb{C})$, on pose pour tout entier $i \in [1, n]$:

$$r_i = \sum_{j=1}^n \left| a_{i,j} \right| \text{ et } D_i = \{z \in \mathbb{C}, |z| \leq r_i\}.$$

Pour
$$X = \begin{pmatrix} x_1 \\ x_2 \\ \cdot \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{C})$$
, on note $||X||_{\infty} = \max_{1 \le i \le n} |x_i|$.

6. Soit
$$\lambda \in \operatorname{Sp} A$$
 et $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ un vecteur propre associé à λ .

Montrer que pour tout entier $i \in [1, n] : |\lambda x_i| \le r_i ||X||_{\infty}$.

- 7. Démontrer que $SpA \subset \bigcup_{k=1}^{n} D_k$.
- **8.** Soit $P = X^n + a_{n-1}X^{n-1} + ... + a_1X + a_0$ un polynôme de $\mathbb{C}[X]$. Établir que toutes les racines de P sont dans le disque fermé de centre 0 et de rayon $R = \max\{|a_0|, 1 + |a_1|, 1 + |a_2|, ..., 1 + |a_{n-1}|\}$.
- **9.** Application:

Soit a, b, c et d quatre entiers naturels distincts et non nuls, montrer que l'équation d'inconnue n:

$$n^a + n^b = n^c + n^d$$

n'admet pas de solution dans $\mathbb{N} \setminus \{0, 1\}$.

III. Suites récurrentes linéaires

On note $E = \mathbb{C}^{\mathbb{N}}$ l'espace vectoriel des suites de complexes et si u est une suite de E, on écrira u(n) à la place de u_n pour désigner l'image de n par u.

On considère le polynôme $P = X^p + a_{p-1}X^{p-1} + ... + a_0$ de $\mathbb{C}[X]$ avec $a_0 \neq 0$ et on lui associe le sous-espace vectoriel F de E formé des éléments u vérifiant la relation :

$$\forall n \in \mathbb{N} : u(n+p) = -a_{p-1}u(n+p-1) - \dots - a_0u(n).$$

- **10.** Montrer que si λ est racine de P alors la suite $n \mapsto \lambda^n$ est élément de F.
- 11. Soit φ l'application de F vers \mathbb{C}^p définie par : $u \mapsto (u(0), u(1), ..., u(p-1))$, montrer que φ est un isomorphisme d'espaces vectoriels. Quelle est la dimension de F?
- **12.** Pour tout entier $i \in [0, p-1]$ on définit les éléments e_i de F par :

$$e_i(i) = 1$$
 et, lorsque $j \in [0, p-1]$ et $j \neq i$, $e_i(j) = 0$.

- **a)** Déterminer $e_i(p)$ pour $i \in [0, p-1]$.
- **b)** Montrer que le système de vecteurs $(e_0, e_1, ..., e_{p-1})$ est une base de F.
- c) Soit u un élément de F ; établir que $u = \sum_{i=0}^{p-1} u(i)e_i$.
- **13.** Si u est un élément de E, on définit l'élément f(u) de E par : f(u) : $n \mapsto u(n+1)$. Montrer que l'application f ainsi définie est un endomorphisme de E et que F est stable par f.

- **14.** Si g est l'endomorphisme de F induit par f, montrer que la matrice de g dans la base $(e_0, e_1, ..., e_{p-1})$ est tC_P .
- **15.** On suppose que P admet p racines non nulles et deux à deux distinctes : λ_0 , λ_1 , ..., λ_{p-1} .
 - a) Déterminer une base de F formée de vecteurs propres de g.
 - **b)** En déduire que, si u est élément de F, il existe des constantes complexes $k_0, k_1, ..., k_{p-1}$ telles que : $\forall n \in \mathbb{N}, u(n) = k_0 \lambda_0^n + k_1 \lambda_1^n + ... + k_{p-1} \lambda_{p-1}^n$.
- **16.** Exemple: (On revient à la notation usuelle u_n)

Soit a, b et c trois réels distincts.

Déterminer une base de l'espace vectoriel des suites définies par u_0 , u_1 et u_2 et par la relation de récurrence valable pour tout $n \in \mathbb{N}$:

$$u_{n+3} = (a+b+c)u_{n+2} - (ab+ac+bc)u_{n+1} + abc$$
.

IV. Matrices vérifiant : rg(U - V) = 1

Dans cette partie, pour une matrice A, on notera C_A la matrice compagnon du polynôme $(-1)^n \chi_A$.

17. Une matrice A est-elle nécessairement semblable à la matrice compagnon C_A ?

Pour tout couple (U,V) de matrices de $GL_n(\mathbb{K})$, on considère les deux propositions suivantes, que l'on identifie chacune par un symbole :

- (*) : rg(U-V)=1
- (**) : Il existe une matrice inversible P telle que $U = P^{-1}C_UP$ et $V = P^{-1}C_VP$.
- **18.** Montrer qu'un couple (U,V) de matrices distinctes de $GL_n(\mathbb{K})$ vérifiant (**) vérifie (*).
- **19.** Déterminer un couple (U, V) de matrices de $GL_2(\mathbb{K})$ (n = 2) vérifiant (*) mais ne vérifiant pas (**).

Dans la suite de cette partie, (U,V) est un couple de matrices de $GL_n(\mathbb{K})$ vérifiant (*) et tel que χ_U et χ_V sont deux polynômes premiers entre eux.

Soit E un \mathbb{K} -espace vectoriel de dimension n et de base \mathcal{B} , on désigne par u et v les automorphismes de E tels que U (respectivement V) soit la matrice de u (respectivement v) dans la base \mathcal{B} .

Enfin on pose H = Ker(u - v).

- **20.** Montrer que H est un hyperplan vectoriel de E.
- **21.** Soit $F \neq \{0\}$ un sous-espace vectoriel de E stable par u et par v c'est-à-dire :

$$u(F) \subset F$$
 et $v(F) \subset F$.

On notera u_F (respectivement v_F) l'endomorphisme induit par u (respectivement v) sur F.

On rappelle que χ_{u_F} divise χ_u .

- a) Montrer que F n'est pas inclus dans H.
- **b)** On suppose que $F \neq E$, montrer que F + H = E puis que l'on peut compléter une base \mathcal{B}_F de F par des vecteurs de H pour obtenir une base \mathcal{B}' de E.

En utilisant les matrices de u et v dans la base \mathcal{B}' montrer que l'on aboutit à une contradiction.

- c) Quels sont les seuls sous-espaces stables à la fois par u et par v?
- **22.** Pour $j \in \mathbb{N}$, on note $G_i = \{x \in E, u^j(x) \in H\}$.
 - a) Montrer que les sous-espaces G_i sont des hyperplans vectoriels de E.
 - **b)** Montrer que $\bigcap_{j=0}^{n-2} G_j \neq \{0\}$.

c) Soit y un vecteur non nul de $\bigcap_{j=0}^{n-2} G_j$, on pose pour $j \in [0, n-1]$: $e_j = u^j(y)$.

Montrer que $\mathcal{B}'' = (e_0, e_1, ..., e_{n-1})$ est une base de E.

(On pourra considérer $F = \text{Vect}\{y, u(y), ..., u^{p-1}(y)\}$ où p est le plus grand entier naturel non nul pour lequel la famille $(y, u(y), ..., u^{p-1}(y))$ est libre).

- **d)** Montrer que la matrice de u (respectivement v) dans \mathcal{B}'' est C_U (respectivement C_V).
- e) Conclure.

