Assignment -2

Data Visualization and Pre-processing

Assignment Date	30 September 2022
Student Name	A.Ganeshkumar
Student Roll Number	CS19011
Maximum Marks	2 Marks

```
In []:
# Importing required libraries
import numpy as np import
pandas as pd
In []:
# Reading the dataset
df = pd.read_csv('/content/Churn_Modelling.csv')
In []:
# Visualizing 1st 50 data
df.head()
Out[]:
```

1 15634602 Hargrave RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCar

619

France Female

42

0.00

_		1	2 1564/311	J	HIII 6	08	Spain	remaie	41 1	83807.	86	1
3 2	3	15619304	Onio	502	Franc	e Fema	ile 42	8	159660.80		3	
4	5	15737888	Mitchell	850	Spai	n Fema	ale 43	2	125510.82		1	
		4	15701354]	Boni 6	99	France	Female	39	1	0.00	2

In []:

Checking for null values

df.isnull().sum() Out[
]:

RowNumber 0 CustomerId 0 0 Surname CreditScore 0 Geography 0 Gender 0 0 Age Tenure 0 Balance 0 NumOfProducts 0 HasCrCard 0 IsActiveMember 0 0 EstimatedSalary Exited dtype: 0

In []:

int64

df.dtypes

Out[]:

RowNumber int64

CustomerId int64

Surname object

CreditScore int64

Geography object

Gender object

Age int64

Tenure int64
Balance float64

NumOfProducts int64

HasCrCard int64

IsActiveMember int64
EstimatedSalary float64 Exited

int64

dtype: object

```
import matplotlib.pyplot as plt
import seaborn as sns
```

In [47]:

Univariate Analysis

```
sns.histplot(data["CreditScore"],color='darkorange')
```

In [48]:

Out[48]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f831677f6d0>

sns.displot(data['Age'], kde=True)

In [49]:

Out[49]:

<seaborn.axisgrid.FacetGrid at 0x7f831661b210>

Bi - Variate Analysis

sns.barplot(data=data.head(50), x="Geography", y="CreditScore")

In [50]:

Out[50]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f8313ce63d0>

sns.catplot(x='Gender', y='CreditScore', hue='HasCrCard', data=data)

In [51]:

Out[51]:

<seaborn.axisgrid.FacetGrid at 0x7f8317198a90>

Multi - Variate Analysis

```
sns.jointplot(
    x='CreditScore',
    y='Age',
    data=data.head(100),
    palette='bright',
    hue='Geography');
```

In [52]:

sns.pairplot(data)

In [53]:

Out[53]:

<seaborn.axisgrid.PairGrid at 0x7f8313a71390>

Perform descriptive statistics on the dataset

data.describe()

In [54]:

Out[54]:

RowNum CustomerI CreditScor Age Tenure Balance NumOfProd HasCrCa I ber d e ucts rd s count 10000.000 1.000000e 10000.000 10000.000 10000.000 10000.0000 10000.0000 10000.000 00 +04 000 000 000 00 00

mean 5	5000.5000	1.569094e 65 +07	0.528800	38.921800	5.012800	76485.8892 88		0.70550
std 2	2886.8956	7.193619e 96.653 +04	3299	10.487806	2.892174	62397.4052 02		0.45584
min	1.00000	1.556570e 35 +07	0.000000	18.000000	0.000000	0.000000	1.000000	0.00000
25% 2	2500.7500 0	1.562853e 58 +07	4.000000	32.000000	3.000000	0.000000	1.000000	0.00000
50% 5	5000.5000	1.569074e 65 +07	2.000000	37.000000	5.000000	97198.5400 00		1.00000
75% 7	7500.2500 0	1.575323e 71 +07	8.000000	44.000000	7.000000	127644.240	2.000000	1.00000
max 10	000.000	1.581569 +07 00		00 92.000000	10.000000	250898.090	4.000000	1.00000

Handle the Missing values

data.isnull().sum()

In [55]:

Out[55]:

RowNumber 0 CustomerId 0 Surname 0 CreditScore 0 Geography 0 Gender 0 Age Tenure 0 Balance 0 NumOfProducts HasCrCard 0

IsActiveMember

EstimatedSalary

Exited 0

0

0

0

dtype: int64

Find the outliers and replace the outliers

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result

```
import seaborn as sns
sns.boxplot(data['CreditScore'])
```

in an error or misinterpretation.

In [56]:

FutureWarning

Out[56]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f8310b82990>


```
import numpy as np
Q1 = np.percentile(data['CreditScore'], 25,
                       interpolation = 'midpoint')
Q3 = np.percentile(data['CreditScore'], 75,
                       interpolation = 'midpoint')
IQR = Q3 - Q1
#Upper bound
upper = np.where(data['CreditScore'] >= (Q3+1.5*IQR))
#Lower bound
lower = np.where(data['CreditScore'] <= (Q1-1.5*IQR))</pre>
print("Q3: ",Q3)
print("Q1: ",Q1)
print("IQR: ",IQR)
mean = data["CreditScore"].mean()
data["CreditScore"] = np.where(data["CreditScore"] > 850, mean, data['CreditScore'])
data["CreditScore"] = np.where(data["CreditScore"] < 400, mean, data['CreditScore'])</pre>
sns.boxplot(data['CreditScore'])
```

In [57]:

Q3: 718.0

Q1: 584.0

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. FutureWarning

IQR: 134.0 Out[57]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f83177a7310>

Check for Categorical columns and perform encoding

```
from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()
data['Geography'] = le.fit_transform(data['Geography'])
data['Gender'] = le.fit_transform(data['Gender'])

data.head()
```

In [58]:

Out[58]:

R	owNu	ı <u>mb</u> e	r Custom	erId Suri	name Credi	tScore	Geogr	aphy	Gende	r Age [Fenure Balance
Nu	ımOfl	Produ	ucts1 15634	602 HasCr	Car ^{619.0}	0	0	42	2	0.00	1
Hargr	ave										
1	2	1	5647311	Hill	608.0	2	0	41	1 83	807.86	1
2		3	15619304	Onio	502.0	0	0	42	8 159	660.80	3
4		5	15737888	Mitchell	850.0	2	0	43	2 125	510.82	1
•		4	1570125	4 D		0	0	20	1	0.00	2
3		4	15701354	4 BC	ni 699.0	0	0	39	1	0.00	2
1											

Split the data into dependent and independent variables

```
y = data['CreditScore'] #dependent
x = data.drop(columns = ['CreditScore'],axis = 1) #independent
x.head()
```

In [59]:

Out[59]:

	RowNumber Custome	er Surna	a Geograp	Ger	nde Ag	Te	nu Balance	NumOfProd	HasCrC IsActive
	Id	me	hy	r	e	re		ucts	ard Me
0	1 15634602	Hargra ve	0	0	42	2	0.00	1	1
1	2 15647311	Hill	2	0	41	1	83807.8	1	0
2	3 15619304	Onio	0	0	42	8	159660. 80	3	1
3	4 15701354	Boni	0	0	39	1	0.00	2	0
4	5 15737888 Mitchel	1	2	0	43	2	125510. 82	1	1

Scale the independent variables

```
names = ['RowNumber','CustomerId','Geography','Gender','Age','Tenure','Balance','NumOfPro
```

In [60]:

ducts', 'HasCrCard', 'IsActiveMember', 'EstimatedSalary', 'Exited']

In [61]:

from sklearn.preprocessing import scale

```
x = scale(x[names]) x
                    Out[61]:
array([[-1.73187761,
                     -0.78321342, -0.90188624,
                                                              0.97024255,
          0.02188649, 1.97716468],
            [-1.7315312, -0.60653412, 1.51506738,
                                                              0.97024255,
          0.21653375, -0.50577476],
          [-1.73118479, -0.99588476, -0.90188624,
                                                       ..., -1.03067011,
         0.2406869, 1.97716468],
          [1.73118479, -1.47928179, -0.90188624,
                                                              0.97024255,
          -1.00864308, 1.97716468],
            [ 1.7315312 , -0.11935577, 0.30659057,
                                                       ..., -1.03067011,
          -0.12523071, 1.97716468],
```

[1.73187761, -0.87055909, -0.90188624, ..., -1.03067011, -1.07636976, -0.50577476]])

In [62]: x = pd.DataFrame(x,columns = names)x

.head()

Out[62]:

RowNum Cu	stom	er Geogr	ap	Gende A	ge T			NumOfProd HasCrCa	
ber	Id	hy	r			ucts rd			mbe
	-					-			0.97024
-1.731878 -0.783213	-	- 1.0959 0	0.29351	1.0417		1.2258	-0	0.911583 0.646092	
	0.90)1886 88	7 (50		48			
	-	-							
1 -1.7	7315	31 -0.606	534 1.5	15067 1.09	59 0.1	19816 1.	3875	0.1173 -0.911583	- 0.97024
			88	4 38	50	1.54	7768		
				-					
2 -1.731185 -0.995	885		- 1.0	0959 0.293	51 1.0	329 1	.3330	2.527057 0.646092	-1.03067
		0.90188	86 88	7	08	53			
	-		_						
3 -1.7	3083	8 0.14476	67	- 1.0959	0.007	45 1.38	75	1.2258 0.807737	-1.03067
		0.90188	86 88	7 38	48	1.54	7768		
		-	-						0.97024
4 -1.730492 0.6526	559 1	.515067 1	1.0959 (0.38887 1.0)417	0.7857	7	-0.911583 0.646092	
					88	1 60	28		

Split the data into training and testing

In [69]:

from sklearn.model_selection import train_test_split

Split training and testing data

xtrain,xtest,ytrain,ytest = train_test_split(x,y,test_size=0.20,random_state=0)

```
In [70]:
# Checking shape of data
xtrain.shape,xtest.shape Out[70]:
```

((8000, 12), (2000, 12))