

Hyperparameter tuning logs

 \nearrow View natively on notion → <u>https://www.notion.so/Hyperparameter-tuning-log-55900faebff8456394cd44a7ea235997</u>

This log accompanies the QGAN.ipynb notebook and was used to keep track of the various hyperparameter configurations attempted and the results they generated. The parameters are in the following order:

- (input_price_data_length, prediction_vector_length)
- num. of gubits
- noise boolean
- num. of layers plus type of ansatz -- SEL: StronglyEntanglingLayers (PL template) ; BEL: BasicEntanglingLayers (PL template)
- data encoding method
- classical discriminator config
- num. of epochs
- num. of data samples learned

QGAN hyperparameter configuration results

Aa Notes/Metric charts	≅ QGenerator size	Noise?	≡ QGenerator ansatz	□ Data embedding	∷ Classical discriminator	# LR	# Epochs	Data pool size	Converge?
<u>#1</u>	(15+4) 15 qubits		3 layers SEL	Amplitude embedding	Adaptive LR CNN ReLU		5,500	1	✓
<u>#2</u>	(15+4) 15 qubits		3 layers SEL	Amplitude embedding	Adaptive LR CNN ReLU		5,500	2	✓
<u>#3</u>	(15+4) 8 qubits		3 layers SEL	Repeat angle embedding	CNN ReLU	0.01	5,500	1	
#4	(15+4) 15 qubits		2 layers SEL	Amplitude embedding	Adam w/ momentum CNN Leaky ReLU	0.0001	1,500	5	
<u>#5</u>	(15+4) 15 qubits		2 layers SEL	Amplitude embedding	Adam w/ momentum CNN Leaky ReLU	0.0001	4,500	1	<u>~</u>
#6	(15+4) 15 qubits		3 layers	Amplitude embedding	Adam w/ momentum Adaptive LR CNN Leaky ReLU			1	
<u>#7</u>	(15+4) 15 qubits		3 layers	Amplitude embedding	Adam w/ momentum CNN Leaky ReLU	0.0001	4,000	2	✓
<u>#8</u>	(8+2) 10 qubits	<u>~</u>	3 layers	Amplitude embedding	Adam w/ momentum CNN Leaky ReLU	0.0001	5,500	1	✓
<u>#9</u>	(15+4) 15 qubits		3 layers BEL	Amplitude embedding	CNN Leaky ReLU	0.0001	5,000	1	✓

This log accompanies the A simple qnn to evaluate capacity of ansatzes.ipynb notebook. Given 3 layers of the SEL ansatz structure, we attempt to evaluate the maximum number of data samples the variational circuit is able to learn. All configurations are initialized as follows:

- (15+4)
- 15 qubits
- no noise
- 3 SEL ansatz - amplitude embeddings

QNN to evaluate ansatz capacity results

Aa Notes/Metric charts	□ Data embedding	# Epochs	Data pool size	✓ Converge?
<u>#1</u>	Amplitude embedding	3,000	1	✓
<u>#2</u>	Amplitude embedding	3,000	2	✓
<u>#3</u>	Amplitude embedding	3,000	3	<u> </u>

Hyperparameter tuning logs