5.3 The Mean Value Theorem

May 21, 2018

Exercise 5.3.3. Let h be a differentiable function defined on the interval [0,3], and assume that h(0) = 1, h(1) = 2, and h(3) = 2.

a) Argue that there exists a point $d \in [0,3]$ where h(d) = d.

Proof: Take the function g(x) = h(x) - x. Given that g(1) = 1 and g(3) = -1, then by the Intermediate Value Theorem, g(d) = 0 for some d which implies that h(d) = d as desired.

b) Argue that at some point c we have $h'(c) = \frac{1}{3}$. **Proof:** By the Mean Value Theorem we have $h'(c) = \frac{h(3) - h(0)}{3 - 0} = \frac{2 - 1}{3} = \frac{1}{3}$ for some $c \in [0, 3]$.

c) Argue that $h'(x) = \frac{1}{4}$ at some point in the domain.

Proof: By Rolle's Theorem we know that g'(c) = 0 for some $c \in [1,3]$ and by **b**) we know that $g'(d) = \frac{1}{3}$ for some $d \in [0,3]$. Now, by Darboux's Theorem on the interval [0,3], we can conclude that $h'(t) = \frac{1}{4}$ for some $t \in [0,3]$.

Exercise 5.3.5. A fixed point of a function f is a value x where f(x) = x. Show that if f is differentiable on an interval with $f'(x) \neq 1$, then f can have at most one fixed point.

Proof: Assume that f has two fixed points $(x_1, f(x_1))$ and $(x_2, f(x_2))$. By the Mean Value Theorem we have $f'(c) = \frac{f(x_1) - f(x_2)}{x_1 - x_2} = 1$ which leads to a contradiction. Thus, f can have at most one fixed point.

Exercise 5.3.7. a) Recall that a function $f:(a,b) \to \mathbb{R}$ is increasing on (a,b) if $f(x) \le f(y)$ whenever x < y in (a,b). Assume f is differentiable on (a,b). Show that f is increasing on (a,b) if and only if $f'(x) \ge 0$ for all $x \in (a,b)$.

Proof: \Longrightarrow Assume that f is increasing. Now, suppose that for some c in the domain we have f'(c) < 0. By the Mean Value Theorem we know that $f'(c) = \frac{f(e) - f(d)}{e - d}$ for some $a \le d < e \le b$. We now have f(e) - f(d) < 0, but this is a contradicition since that'd imply f(e) < f(d). Thus, if f(x) is increasing then $f'(x) \ge 0$.

 \Leftarrow Assume that $f'(x) \geq 0$ for all $x \in (a,b)$. Now suppose that f(e) < f(d)

for some $a \leq d < e \leq b$. By employing the technique shown in the previous direction, we can easily see that this would imply f'(c) < 0 for some $c \in (a, b)$, which is a contradiction. Thus, we can see that if $f'(x) \geq 0$ then $f(x) \leq f(y)$ for all $a \leq x < y \leq b$. This completes from the other direction and we can now conclude that f is increasing on (a, b) if and only if $f'(x) \geq 0$ for all $x \in (a, b)$.

b) Show that the function

$$g(x) = \begin{cases} \frac{x}{2} + x^2 \sin(\frac{1}{x}) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

is differentiable on \mathbb{R} and satisfies g'(0) > 0. Now, prove that g is not increasing over any open interval containing 0.

Proof: By the definition of the derivative, we have $g'(0) = \lim_{x\to 0} \frac{g(x)-g(0)}{x-0} = \lim_{x\to 0} \frac{g(x)}{x} = \lim_{x\to 0} \frac{1}{2} + x\sin(\frac{1}{x})$. Now, by the Algebraic Limit Theorem, we can see that $g'(0) = \frac{1}{2}$. For $x \neq 0$ we have $g'(x) = \frac{1}{2} - \cos(\frac{1}{x}) + 2x\sin(\frac{1}{x})$. Now, we need to

For $x \neq 0$ we have $g'(x) = \frac{1}{2} - \cos(\frac{1}{x}) + 2x\sin(\frac{1}{x})$. Now, we need to find a sequence (x_n) converging to 0 such that $g'(x_n) < 0$, the sequence $x_n = \frac{1}{2n\pi}$ satisfies this. Thus, there is no open interval around 0 where $g'(x) \geq 0$, and by the previous proof, g' is not increasing on any interval containing 0.