

Interro 2B solutions Maths pour l'Info L2 le 8 avril 2016

Exercice 1

Voici un automate fini non déterministe :

	Etat	a	b
S	A	-	A
Е	В	-	D,E
	C	B,C,D	A
	D	-	B,C,D
E/S	Е	В	C,E

a) Obtenir l'automate fini déterministe complet minimal équivalent à cet automate **Solution**

Il faut déterminiser et compléter d'abord :

	a	b
BE	В	CDE
В	Р	DE
CDE	BCD	ABCDE
DE	В	BCDE
BCD	BCD	ABCDE
ABCDE	BCD	ABCDE
BCDE	BCD	ABCDE
Р	Р	Р
	B CDE DE BCD ABCDE BCDE	BE B B P CDE BCD DE B BCD BCD ABCDE BCD BCDE BCD

Puis on minimise:

 Θ_0 ={T,NT}, T={BE, CDE, DE, BCDE, ABCDE}, NT={B, BCD, P}

				sous Θ_0	
		a	b	a	b
	BE	В	CDE	NT	Т
	CDE	BCD	ABCDE	NT	Т
Т	DE	В	BCDE	NT	Т
	ABCDE	BCD	ABCDE	NT	Т
	BCDE	BCD	ABCDE	NT	T
	В	Р	DE	NT	Т
NT	BCD	BCD	ABCDE	NT	Т
	Р	Р	Р	NT	NT

Seul l'état P se sépare du groupe NT à cette itération.

 $\Theta_1 = \{T,(P),I\}, I = \{B, BCD\}$

				sous Θ_1		
		a	b	a	b	
	BE	В	CDE	I	Т	
	CDE	BCD	ABCDE		Т	
Т	DE	В	BCDE		Т	
	ABCDE	BCD	ABCDE		Т	
	BCDE	BCD	ABCDE		Т	
ı	В	Р	DE	Р	Т	
	BCD	BCD	ABCDE	Ī	T	

 $\Theta_2 = \{T,(P),(B),(BCD)\}$

Interro 2B solutions

Maths pour l'Info

L2 le 8 avril 2016

				sous Θ2	
		a	b	a	b
	BE	В	CDE	В	Т
	CDE	BCD	ABCDE	BCD	Т
Т	DE	В	BCDE	В	Т
	ABCDE	BCD	ABCDE	BCD	Т
	BCDE	BCD	ABCDE	BCD	Т

 $\Theta_3 = \{II,III,(P),(B),(BCD)\}$ où $II=\{BE,DE\}$, $III=\{CDE,ABCDE,BCDE\}$

				sous ⊖3	
		a	b	a	b
	BE	В	CDE	В	П
"	DE	В	BCDE	В	П
	CDE	BCD	ABCDE	BCD	Ξ
III	ABCDE	BCD	ABCDE	BCD	Ξ
	BCDE	BCD	ABCDE	BCD	Ξ

Aucune séparation ne se produit, $\Theta_4 = \Theta_{13} = \Theta_{fin}$, et l'AM consiste en 5 états. L'entrée est en II car il contient BE. Les sorties sont en II et III car ils descendent du groupe T. La table des transitions :

	a	b			a	b
BE	В	CDE		Ш	В	III
В	Р	DE		В	Р	=
CDE	BCD	ABCDE		Ш	BCD	II
DE	В	BCDE	devient	Ш	В	III
BCD	BCD	ABCDE		BCD	BCD	III
ABCDE	BCD	ABCDE		III	BCD	III
BCDE	BCD	ABCDE		Ш	BCD	III
Р	Р	Р		Р	Р	Р

où les lignes en vert ont déjà été prises en compte.

b) Obtenir l'automate fini déterministe complet minimal reconnaissant le langage complémentaire à celui que reconnait l'automate initial.

Interro 2B solutions Maths pour l'Info L2 le 8 avril 2016

Exercice 2.

 a) construire, suivant les règles données en cours, un automate asynchrone reconnaissant le langage qu'on peut exprimer par l'expression rationnelle suivante : L=a + (ab)*b.

b) Déterminiser cet automate asynchrone.

		a	b
Ε	0'	2'5'	8'
S	2'5'	Р	6'
S	8'	Р	Р
	6'	5'	8'
	5'	Р	6'
	Р	Р	Р

