Tutorial 2

Statistical Computation and Analysis
Spring 2024

Skewness

How symmetric is the data?

Skewness =
$$\frac{1}{\sigma^3} E((x_i - \mu)^3)$$

Kurtosis

- Size of tails
- Pointiness of peak

Kurtosis =
$$\frac{1}{\sigma^4} E((x-\mu)^4) - 3$$

Tutorial Outline

- Models
- Examining where data comes from
- Validity and reliability
- Simulation

- A model is a specific idea about the shape of the population
 - A particular distribution
 - With specific parameters
- We can use models to:
 - Express ideas about the population.
 - Check ideas about the population.
 - Provide alternative ideas about the population.
- A good model:
 - Fits the data
 - Simple
 - Expressive

```
heights = np.array([165, 161, 157, 165, 162, 164, 161, 169, 160,
174, 165, 166, 163, 160, 154, 150, 162, 171,
166, 172, 157, 175, 158, 168, 163, 164, 164, 167, 161, 169, 170,
168, 166, 163, 163, 163,
166, 159, 166, 164, 174, 173, 171, 158, 165, 172, 164, 155, 163,
169, 164, 161, 153, 167,
160, 162, 159, 163, 175, 161, 167, 172, 160, 173, 163, 176, 148,
162, 165, 160, 170, 166,
167, 166, 165, 157, 171, 170, 168, 162, 165, 169, 165, 166, 162,
165, 157, 175, 169, 156,
157, 164, 169, 169, 162, 161, 152, 168, 167, 163])
```

Examine the data

Does it make sense that this data came from each model?


```
plt.hist(heights, density = True, bins = 10)
#models
pdf f = stats.norm.pdf(np.linspace(140, 200, 100), np.mean(heights), np.std(heights))
plt.plot(np.linspace(140, 200, 100), pdf f, color = 'red', lw = 3, label =
f'N({round(np.mean(heights), 2)}, {round(np.std(heights), 2)})')
pdf f2 = stats.norm.pdf(np.linspace(140, 200, 100), np.mean(heights) + 10,
np.\overline{s}td(heights)*0.75)
plt.plot(np.linspace(140, 200, 100), pdf f2, color = 'teal', lw = 3, label =
f'N(\{round(np.mean(heights), 2) + 10\}, \{\overline{round(np.std(heights), 2)*0.75})')
plt.ylabel('Probability', fontsize = 12)
plt.xlabel('Height [cm]', fontsize = 12)
plt.xticks(fontsize=12)
plt.yticks(fontsize=12)
plt.legend(fontsize = 12)
```

Self-reported and real weight and height of 200 students – 88 males and 112 females.

	subject	sex	weight	height	repwt	repht
0	1	Μ	77	182	77.0	180.0
1	2	F	58	161	51.0	159.0
2	3	F	53	161	54.0	158.0
3	4	Μ	68	177	70.0	175.0
4	5	F	59	157	59.0	155.0
195	196	Μ	74	175	71.0	175.0
196	197	Μ	83	180	80.0	180.0
197	198	Μ	81	175	NaN	NaN
198	199	Μ	90	181	91.0	178.0
199	200	Μ	79	177	81.0	178.0

[200 rows x 6 columns]

Examine data

Examine data

Compute statistics

Model data

Model data:

- Distribution that fits heights based on sample:
 - female ~ N(165, 5.7)
 - male ~ N(178, 6.4)

Examining Where Data Came From

- Is our data measured in appropriate units (precision)?
 - Weight in kg is good for measuring human weight,
 - Weight in mg is needed for measuring medicine weight.
- What does our data mean?
 - Example: measure effect of medicine what does the measurement mean? Does a high or low measurement value indicate higher success?
 - Examine the data.
- Does vocabulary improve with age?

Does vocabulary improve with age?

- Age (years)
- Vocabulary test score (0 100)

Does vocabulary improve with age?

Does vocabulary improve with age?

■ Read:

```
Ages = np.linspace(0, 60, 200)
Scores = np.linspace(0, 100, 200)
Add noise
```

Does not read:

```
Ages = np.linspace(0, 60, 200)

Scores = np.concatenate((np.linspace(0, 50, 50), 50*np.ones(150))

Add noise
```

```
#define function to add noise to simulated data
def noise(k, noise factor):
   return k + rd.random()*noise factor
#create simulated data to examine the relation between age and
grade on vocubulary test
#reads
Ages1 = np.linspace(0, 60, 200)
Scores1 = np.linspace(0, 100, 200)
Ages11 = np.reshape(np.vectorize(noise)(Ages1, 10),
(\bar{A}ges1.shape[0], \bar{1}))
Scores11 = np.reshape(np.vectorize(noise)(Scores1, 12),
(Scores1.shape[0], 1)
```

```
#correcting scores above 100
Scores11[np.flatnonzero(Scores11 > 100)] =
Scores11[np.flatnonzero(Scores11 > 100)] -
np.vectorize(noise)(5*np.ones like(Scores11[np.flatnonzero
(Scores11 > 100)), 10)
#regression model for this data
regr model = LinearRegression().fit(Ages11, Scores11)
b0 1 = regr model.intercept
b1 1 = regr model.coef
```

```
#doesn't read
Scores2 = np.concatenate((np.linspace(0, 50, 50),
np.vectorize(noise) (50*np.ones(150,), 6))
Scores22 = np.reshape(np.vectorize(noise)(Scores2, 15),
(Scores2.shape[0], 1))
Ages22 = np.reshape(np.vectorize(noise)(Ages1, 10),
(Ages1.shape[0], 1)
#regression model for this data
regr model = LinearRegression().fit(Ages22, Scores22)
b0 2 = regr model.intercept
b1 2 = regr model.coef
```

Validity

- Can the data answer our question?
 - Can grade on reading test be indicative of music ability?
 - Probably not.
 - Is psychometric grade indicative of who would be a good doctor?
 - Maybe.
- What study can test this?
 - Take a group of doctors:
 - Psychometric scores
 - Success metric (e.g., number of successful surgeries, cases solved....)

Validity

Validity

Psychometric scores

```
psychometric = np.linspace(700, 800, 100)
Add noise
```

Success metric:

```
success = 50+np.random.normal(0, 10, 100)
Add noise
```

Reliability

- If we take a measurement, and then we have occasion to do it again, how much would the value change?
- The variability in our sample is due to real differences among people or things, and not due to random error incurred during the measurement process.
 - Run experiment twice.
 - Give test twice.
 - For subjective ratings have several judges and examine variability between their scores.

The probability that a baby is a girl or boy is approximately 48.8% or 51.2%, respectively, and these do not vary much across the world. Suppose that 400 babies are born in a hospital in a given year. How many will be girls?

- What distribution should we use?
 - Binomial

$$P(X = k) = \binom{n}{k} p^{k} (1 - p)^{n-k}$$

girls = np.random.binomial(400, 0.488, 1000)

There is a 1/125 chance that a birth event results in fraternal twins, of which each has an approximate 49.5% chance of being a girl, and a 1/300 chance of identical twins, which have an approximate 49.5% chance of being a pair of girls. Simulate 400 birth events.

```
#brith types (twins and single births)
birth types = np.array([0, 1, 2]) #fraternal twins, identical twins, single births
NumGirls = np.zeros((1000, 1))
for i in range(1000): #1000 repetitions
  #400 births in each simulation
  births = np.random.choice(birth types, 400, replace = True, p = <math>np.array([1/125,
1/300, 1 - 1/125 - 1/300]))
  girlboy = np.zeros((births.shape[0], 1)) #1 = girl, 0 = boy
  for j in range(births.shape[0]):
    if births[j] == 0: #fraternal twins
      girlboy[j] = np.random.binomial(2, 0.495, 1) #there are two born
    if births[j] == 1: #identical twins
      girlboy[j] = 2*np.random.binomial(1, 0.495, 1) #either both are twins or
neither are
    else:
      girlboy[j] = np.random.binomial(1, 0.488, 1)
  NumGirls[i] = np.sum(girlboy)
```


Homework submission guidelines

- Zip file named ex#_######## (exercise number + ID number) must be submitted to the course website
- Zip file should contain:
 - 1. word document with your solution
 - 2. pdf of this document
 - 3. code file .py or .ipynb (with comments)
 - 4. data files
- Every claim or conclusion you make should have an explanation
- Every graph must have a title, axis labels, and legend if there is more than one plot on a graph
- When you display the graph explain its content below
- Code should be annotated
- The homework and the project must be written in English.