МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЁТ

по лабораторной работе №1

по дисциплине «Организация ЭВМ и систем»

TEMA: ТРАНСЛЯЦИИ, ОТЛАДКА И ВЫПОЛНЕНИЕ ПРОГРАММ НА ЯЗЫКЕ ASSEMBLER.

Студент гр. 1303	Кузнецов Н.А.
Преподаватель	Ефремов М.А.

Санкт-Петербург

2022

Цель работы.

Изучить основные принципы трансляции, отладки и выполнения программ на языке ассемблера процессора Intel x86.

Задание.

- 1. Просмотреть программу hello1.asm.
- 2. Разобраться в структуре и реализации каждого сегмента программы. Строку-приветствие преобразовать в соответствии со своими личными данными.
 - 3. Загрузить файл hello1.asm из каталога Задания в каталог Masm.
- 4. Протранслировать программу с созданием объектного файла и файла диагностических сообщений (файла листинга). Объяснить и исправить синтаксические ошибки, если они будут обнаружены транслятором. Повторить трансляцию программы до получения объектного модуля.
- 5. Скомпоновать загрузочный модуль с созданием карты памяти и исполняемого файла hello1.exe.
- 6. Выполнить программу в автоматическом режиме, убедиться в корректности ее работы и зафиксировать результат выполнения в протоколе.
- 7. Запустить выполнение программы под управлением отладчика. Записать начальное содержимое сегментных регистров CS, DS, ES и SS. Выполнить программу в пошаговом режиме с фиксацией используемых регистров и ячеек памяти до и после выполнения каждой команды.

Выполнить пункты 1 - 7 части 1 настоящего задания применительно к программе hello2.asm, приведенной в каталоге Задания, которая выводит на экран приветствие пользователя с помощью процедуры WriteMsg, а также использует полное определение сегментов. Сравнить результаты прогона под управлением отладчика программ hello1 и hello2 и объяснить различия в размещении сегментов.

Выполнение работы

- 1. Просмотрена программа hello1.asm.
- 2. Разобрана структура и реализация каждого сегмента программы. Строка-приветствие преобразована в соответствии с личными данными.
 - 3. Загружен файл hello1.asm из каталога Задания в каталог Masm.
 - 4. Протранслирована программа с помощью команды
- > masm hello1.asm
- с созданием объектного файла (hello1.obj) и файла диагностических сообщений (файла листинга).
- 5. Скомпонован загрузочный модуль с помощью строки> link hello1.obj
- с созданием карты памяти и исполняемого файла hello1.exe.
- 6. Выполнена программа в автоматическом режиме, результат корректен

```
C:\>HELLO1.EXE
Student Kuznetsov N.A. from 1303 greeting u!
```

- 7. Запущено выполнение программы под управлением отладчика с помощью команды
- > afd hello1.exe

Последовательность команд и состояний hello1.exe представлена в таблице 1.

Таблица 1:

No	Адрес	Символический	16-ричный код	Содержимое регистров и	
	команды	код команды	команды	ячеек памяти	
				До	После
1.	0010	MOV AX,1A07	B8071A	AX = 0000	AX = 1A07
				IP = 0010	IP = 0013
2.	0013	MOV DS,AX	8ED8	DS = 19F5	DS = 1A07
				IP = 0013	IP = 0015

3.	0015	MOV DX,0000	BA0000	IP = 0015 DX = 0000	IP = 0018 DX = 0000
4.	0018	MOV AH,09	B409	AX = 1A07	AX = 0907
5.	0001A	INT 21	CD21	IP = 0018 $IP = 001A$	IP = 001A $IP = 001C$
6.	0001C	MOV AH,4C	B44C	AX = 0907 IP = 001C	AX = 4C07 $IP = 001E$
7.	0001E	INT 21	CD21	AX = 4C07	AX = 0000
				IP = 001E $CX = 0052$	IP = 0010 CX = 0000
				DS = 1A07	DS = 19F5

- 1. Просмотрена программа hello2.asm.
- 2. Разобрана структура и реализация каждого сегмента программы. Строка-приветствие преобразована в соответствии с личными данными.
 - 3. Загружен файл hello2.asm из каталога Задания в каталог Masm.
 - 4. Протранслирована программа с помощью команды
- > masm hello1.asm
- с созданием объектного файла (hello2.obj) и файла диагностических сообщений (файла листинга).
 - 5. Скомпонован загрузочный модуль с помощью строки
- > link hello2.obj
- с созданием карты памяти и исполняемого файла hello2.exe.
- 6. Выполнена программа в автоматическом режиме, результат корректен

```
C:\>HELLO2.EXE
Hello Worlds!
Student from 1303 - Kuznetsov Nick
```

- 7. Запущено выполнение программы под управлением отладчика с помощью команды
- > afd hello2.exe

Последовательность команд и состояний hello2.exe представлена в таблице 2.

Таблица 2:

Л прос	Символический	16 punni iğ roji	Содоржимое п	AODHOTAON II GUOOK
Адрес		16-ричный код	Содержимое регистров и ячеек	
команды	код команды	команды	памяти	
			До	После
0005	PUSH DS	1E	SP = 0018	SP = 0016
			IP = 0005	IP = 0006
			Stack +0 0000	Stack +0 19F5
0006	SUB AX,AX	2BC0	IP = 0006	IP = 0008
0008	PUSH AX	50	IP = 0008	IP = 0009
			SP = 0016	SP = 0014
			Stack +0 19F5	Stack +0 0000
			+2 0000	+2 19F5
0009	MOV AX,1A07	B8071A	AX = 0000	AX = 1A07
			IP = 0009	IP = 000C
000C	MOV DS,AX	8ED8	DS = 19F5	DS = 1A07
			IP = 000C	IP = 000E
000E	MOV DX,0000	BA0000	IP = 000E	IP = 0011
			DX = 0000	DX = 0000
0011	CALL 0000	E8ECFF	SP = 0014	SP = 0012
			IP = 0011	IP = 0000
			Stack +0 0000	Stack +0 0014
			+2 19F5	+2 0000
			+4 0000	+4 19F5
0000	MOV AH,09	B409	AX = 1A07	AX = 0907
			IP = 0000	IP = 0002
0002	INT 21	CD21	IP = 0002	IP = 0004
0004	RET	C3	IP = 0004	IP = 0014

			SP = 0012	SP = 0014
			Stack +0 0014	Stack +0 0000
			+2 0000	+2 19F5
			+4 19F5	+4 0000
0014	MOV DX,0010	BA1000	DX = 0000	DX = 0010
			IP = 0014	IP = 0017
0017	CALL 0000	E8E6FF	IP = 0017	IP = 0000
			SP = 0014	SP = 0012
			Stack +0 0000	Stack +0 001A
			+2 19F5	+2 0000
			+4 0000	+4 19F5
0000	MOV AH,09	B409	AX = 0907	AX = 0907
			IP = 0000	IP = 0002
0002	INT 21	CD21	IP = 0002	IP = 0004
0004	RET	C3	IP = 0004	IP = 0014
			SP = 0012	SP = 0014
			Stack +0 001A	Stack +0 0000
			+2 0000	+2 19F5
			+4 19F5	+4 0000
001A	RET far	СВ	SP = 0014	SP = 0018
			IP = 001A	IP = 0000
			CS = 1A0B	CS = 19F5
			Stack +0 0000	Stack +0 0000
			+2 19F5	+2 0000
			+4 0000	+4 0000
0000	INT 20	CD 20	AX = 0907	AX = 0000
			CX = 007B	CX = 0000
			DX = 0010	DX = 0000
			CS = 19F5	CS = 1A0B
			DS = 1A07	DS = 19F5
			IP = 0000	IP = 0005

Выводы

В ходе данной работы была разобрана структура и реализация каждого сегмента программ. Были изучены процессы трансляции, отладки и выполнения программ на языке Ассемблера.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: hello1.asm

```
; HELLO1.ASM - упрощенная версия учебной программы лаб.раб. N1
              по дисциплине "Архитектура компьютера"
 *****************
 Назначение: Программа формирует и выводит на экран приветствие
            пользователя с помощью функции ДОС "Вывод строки"
             (номер 09 прерывание 21h), которая:
             - обеспечивает вывод на экран строки символов,
               заканчивающейся знаком "$";
             - требует задания в регистре ah номера функции=09h,
               а в регистре dx - смещения адреса выводимой
               строки;
             - использует регистр ах и не сохраняет его
               содержимое.
DOSSEG
                                          ; Задание сегментов под
ДОС
  .MODEL SMALL
                                           ; Модель памяти-
SMALL (Малая)
  .STACK 100h
                                          ; Отвести под Стек 256
байт
  .DATA
                                          ; Начало сегмента
данных
Greeting LABEL BYTE
                                          ; Текст приветствия
  DB 'Student Kuznetsov N.A. from 1303 greeting u!',13,10,'$'
  .CODE
                                    ; Начало сегмента кода
  mov ax, @data
                                     ; Загрузка в DS адреса начала
  mov ds, ax
                                     ; сегмента данных
  mov dx, OFFSET Greeting
                                    ; Загрузка в dх смещения
                                    ; адреса текста приветствия
DisplayGreeting:
  mov ah, 9
                                     ; # функции ДОС печати строки
  int 21h
                                    ; вывод на экран приветствия
  mov ah, 4ch
                                     ; # функции ДОС завершения
программы
```

```
int 21h
                                       ; завершение программы и выход
в ДОС
  END
     Название файла: hello2.asm
     ; HELLO2 - Учебная программа N2 лаб.раб.#1 по дисциплине
"Архитектура компьютера"
               Программа использует процедуру для печати строки
        ТЕКСТ ПРОГРАММЫ
     EOFLine EQU '$'
                              ; Определение символьной константы
                                    "Конец строки"
     ; Стек программы
     ASSUME CS:CODE, SS:AStack
             SEGMENT STACK
     AStack
              DW 12 DUP('!') ; Отводится 12 слов памяти
     AStack ENDS
     ; Данные программы
     DATA
             SEGMENT
     ; Директивы описания данных
              DB 'Hello Worlds!', OAH, ODH, EOFLine
     HELLO
     GREETING DB 'Student from 1303 - Kuznetsov Nick$'
     DATA
             ENDS
     ; Код программы
     CODE
              SEGMENT
     ; Процедура печати строки
     WriteMsg PROC NEAR
              mov AH, 9
               int 21h ; Вызов функции DOS по прерыванию
```

ret

WriteMsg ENDP

; Головная процедура

Main PROC FAR

push DS ;\ Сохранение адреса начала PSP в стеке

sub AX,AX ; > для последующего восстановления по

push AX ;/ команде ret, завершающей процедуру.

mov AX, DATA ; Загрузка сегментного

mov DS, AX ; регистра данных.

mov DX, OFFSET HELLO ; Вывод на экран первой

call WriteMsg ; строки приветствия.

mov DX, OFFSET GREETING ; Вывод на экран второй

call WriteMsg ; строки приветствия.

ret ; Выход в DOS по команде,

; находящейся в 1-ом слове

PSP.

Main ENDP

CODE ENDS

END Main