

Laboratório de IOT - Exercício02

Submetido por: Wellington Vieira

Prof. Dro. Paulo Pires

1 de Maio de 2019

Conteúdo

1	Objetivo do Exercício		1			
2	Materiais e Métodos					
	2.1	Materiais	2			
	2.2	Métodos	2			
Li						
Lis	ista de Tabelas					
Re	eferêr	ncias	5			

1 Objetivo do Exercício

Implementar um Servidor Coap com seus recusos e um observador, monitorando a temperatura e umidade do ambiente, utilizando um sensor DHT modelo 11 integredo com circuito de controle de dois LED's um vermelho para acionar quando a temperatura estive acima do padrão, definido inicialmente pela aplicação e posteriormente configurável pelo usuário e o outro verde para ser acionado quando a umidade estiver acima do padrão. Para controlar o LED's deve ser implementar usar a classe controladora da interface GPIO.

2 Materiais e Métodos

Foram utilizando os seguintes (materiais) listados no subtópico de materiais gerando evidências e a conclusão do exercício 2, proposto em sala de aula com a supervisão do professor.

2.1 Materiais

Os materiais utilizados em sala:

Quantidade	Materiais
1	Placa Raspberry Pi 3 Modelo B V1.2
1	Placa ProtoBoard
3	Resistores de 330R
1	Switch de 3 pinos
2	Led
12	cabos

Tabela 1: Materiais utilizados.

2.2 Métodos

Após motado o esquema elétrico, foi conectado os cabos na GPIO da placa Raspberry na porta 1 3.3v indo para (+) da placa ProtoBoard possibilitando a coluna (+) de toda ProtoBoard uma energia de 3,3v.

Na GPIO da placa Raspberry na porta 6 (Ground 0v) indo para (-) da placa ProtoBoard possibilitando a coluna (-) se torne um Ground de 0v.

Na ProtoBoard a coluna (-) em qualquer posição pode conectar um cabo de qualquer cor com às duas pontas de conector macho na coluna central da própria ProtoBoard em conjunto com o LED na ponta **CATHODE**, a figura 1 ajuda a compreender o esquema dessa ligação.

Na GPIO da placa Raspberry na porta 1(3.3v) indo para qualquer coluna(+) ligando qualquer coluna no centro da ProtoBoard representadas as letras [a até j], que são as linhas e as colunas são representadas pelos números de [1 até 30], com dois resistor de 330R ligado em cada LED, interligados com seus respectivos cabos que possui um

Figura 1: Ligação entre GROUND e ProtoBoard

conector macho nas duas pontas, serve como uma ponte entre a acionar LED's ligados na ProtoBoard. A figura 2 ajuda a compreender o esquema dessa ligação.

Figura 2: Ligação entre GPOI1, GPIO4 e ProtoBoard

A parte da (estrutura) do código e sua análise está sendo exemplificado no próprio código. Fazendo um breve comentário em cada linha de código mostrando o que cada linha faz.

Lista de Figuras

1	Ligação entre GROUND e ProtoBoard	3
2	Ligação entre GPOI1, GPIO4 e ProtoBoard	3
Lista	de Tabelas	
1	Materiais utilizados	2

Referências