GEOMETRICKÁ POSTUPNOSŤ

Geometrická postupnosť

- $\bullet \quad \left\{a_n\right\}_{_{n=1}}^{^{\infty}} \Longleftrightarrow \, \forall n \! \in N; \exists q \! \in R \! \left\{\pm\infty\right\}, \, a_{n+1} \! \! = a_n.q$
- Nech $\{a_n\}_{n=1}^{\infty}$ je postupnosť reálnych čísel a nech existuje kvocient $q \in R$ tak, že pre všetky $n \in N$ platí: $a_{n+1} = a_n.q$. Takáto postupnosť sa nazýva geometrická.

Vzťahy pre geometrickú postupnosť:

$$\begin{array}{ll} \bullet & a_n = a_1.q^{n\text{-}1} \\ \bullet & a_r = a_s.q^{r\text{-}s} \end{array}$$

•
$$a_r = a_s.q^{r-}$$

•
$$s_n = a_1$$
. $\frac{q^n - 1}{q - 1}$; $q \ne 1$

•
$$s_n = a_1.n; q=1$$

$$\bullet \quad |\mathbf{a}_{\mathbf{n}}| = \sqrt{a_{n-1}.a_{n+1}}$$

→ pre každý člen (okrem prvého člena) platí, že n-tý člen je geometrickým priemerom predchádzajúceho a nadchádzajúceho člena

Typy geometrickej postupnosti:

- $q = 1 \rightarrow stacionárna$
- $q = 0 \land a_1 \neq 0 \rightarrow je$ skoro stacionárna

- $q > 1 \land a_1 > 0 \rightarrow je \text{ rastúca}$
- $q > 1 \land a_1 < 0 \rightarrow je klesajúca$

MO 17: GEOMETRICKÁ POSTUPNOSŤ • 1 > q > 0 ∧ $a_1 > 0$ → je klesajúca

• $1 > q > 0 \land a_1 < 0 \rightarrow je \text{ rastúca}$

 $q < 0 \rightarrow je$ oscilujúca

Tri za sebou idúce členy GP:

$$\rightarrow \frac{a}{q}$$
; a; a.q

Vzťahy pre výpočet nárastu a úbytku:

• nárast:
$$N_n = N_0 \cdot \left(1 + \frac{p}{100}\right)^n$$

• úbytok:
$$N_n = N_0 \cdot \left(1 - \frac{p}{100}\right)^n$$