Systemy wejścia-wyjścia

Systemy wejścia-wyjścia (I/O)

- Sprzęt wejścia-wyjścia (I/O)
- Użytkowy interfejs wejścia-wyjścia (I/O)
- Podsystem I/O w jądrze S.O.
- Zamiana żądań operacji I/O na operacje sprzętowe
- Wydajność

Tematyka wykładu

- Prezentacja struktury podsystemu wejścia wyjścia (I/O)
- Omówienie zasad sprzętu I/O i jego złożoności
- Przedstawienie aspektów wydajności sprzętu i oprogramowania wejścia-wyjścia

Sprzęt I/O

- Duża różnorodność urządzeń I/O
- Podstawowe pojęcia
 - Port
 - Magistrala (daisy chain lub dzielony dostęp bezpośredni)
 - Sterownik (host adapter)
- I/O instructions control devices
- Urządzenia posiadają adresy używane przez
 - Instrukcje bezpośredniego dostępu I/O
 - Wejście- wyjcie Odwzorowane do pamięci (Memorymapped)

Typowa struktura struktura z magistralą

Wybrany zestaw portów urządzeń w PC

zakres adresów I/O (heksadecymalnie)	urządzenie	
000-00F	kontroler DMA	
020–021	kontroler przerwań	
040–043	timer	
200–20F	kontroler gier	
2F8–2FF	port szeregowy (dodatkowy)	
320–32F	kontroler dysku twardego	
378–37F	port równoległy	
3D0-3DF	kontroler grafiki	
3F0-3F7	kontroler stacji dyskietek	
3F8-3FF	port szeregowy (podstawowy)	

Odpytywanie –aktywne czekanie

- Określa stan urządzenia
 - gotowy (command-ready)
 - zajęty
 - Error
- Wykorzystanie cyklu "Busy-wait" do oczekiwania na zakończenie pracy przez urządzenia we/wy

Przerwania

- Linia żądania przerwanie Procesora (CPU Interrupt-request line) aktywowana przez urządzenie I/O
- Program obsługi przerwania (Interrupt handler) przejmuje przerwanie
- Przerwanie maskowalne to przerwanie, którego zgłoszenie można zablokować programowo (może służyć do ignorowani lub opóźniania przerwań)
- Wektor Przerwań (Interrupt vector) przekazuje przerwanie właściwemu programowy obsługi przerwania
 - Bazujący na priorytetach przerwania
 - Niektóre przerwania są niemaskowalne
- Mechanizm przerwań wykorzystywany jest także dla obsługi wyjątków (exceptions)

Przerwanie -cykl I/O

Wektor zdarzeń w procesorze Intel Pentium

vector number	description	
0	divide error	
1	debug exception	
2	null interrupt	
3	breakpoint	
4	INTO-detected overflow	
5	bound range exception	
6	invalid opcode	
7	device not available	
8	double fault	
9	coprocessor segment overrun (reserved)	
10	invalid task state segment	
11	segment not present	
12	stack fault	
13	general protection	
14	page fault	
15	(Intel reserved, do not use)	
16	floating-point error	
17	alignment check	
18	machine check	
19–31	(Intel reserved, do not use)	
32–255	maskable interrupts	

Bezpośredni dostęp do pamięci (Direct Memory Access)

- Używany do uniknięcia programowej obsługi operacji we/wy przesyłających duże porcje danych
- Wymaga kontrolera DMA
- Omija procesor aby przenieść dane bezpośrednio pomiędzy we/wy a pamięcią

6 kroków procesu przesyłu DMA

Użytkowy (aplikacje) interfejs I/O

- Systemowe wywołania we/wy uogólniają zachowanie [sposób działania] różnych fizycznych urządzeń [enkapsułują]
- Warstwa sterowników urządzeń ukrywa przed jądrem różnice pomiędzy różnymi kontrolerami we/wy
- Urządzenia różnią się w wielu aspektach
 - Znakowe lub blokowe
 - Sekwencyjne lub o swobodnym dostępie
 - Dzielone lub dedykowane
 - Szybkość operacji
 - Zapisująco-odczytujące, tylko do odczytu, tylko do zapisu

Struktura jądra I/O

Charakterystyka urządzeń I/O

cecha	wariant	przykład
sposób przesyłu danych	znakowy blokowy	terminal dysk
metoda dostępu	sekwencyjny bezpośredni	modem CR-ROM
transfer schedule	synchroniczny asynchroniczny	taśma klawiatura
typ dostępu	dedykowany dzielony	taśma klawiatura
szybkość urządzenia	opóżnienie czas szukania szybkość transmisji opóżnienie między operacjami	
kierunek I/O	tylko odczyt tylko zqpis odczyt - zapis	CD-ROM kontroler grafiki dysk

Urządzenia blokowe i znakowe

- Urządzenia blokowe zawierają sterowniki dysków
 - komendy: czytaj, pisz, szukaj
 - surowe we/wy lub dostęp poprzez system plików
 - możliwy dostęp do pliku odwzorowania pamięci
- Urządzenia znakowe to m.in. klawiatury, myszki, porty szeregowe
 - komendy: pobranie, przekazanie (get, put)
 - biblioteki wyższych warstw umożliwiają edycję całej linii

Urządzenia sieciowe

- Różnią się zdecydowanie od urządzeń blokowych i znakowych poprzez posiadanie własnego interfejsu
- Unix i Windows/NT posiadają interfejs gniazd
 - rozdzielenie protokołów sieciowych od operacji sieciowych
 - umożliwiają funkcjonalność select
- Bardzo różne podejścia [filozofie] (potoki, kolejki FIFO, strumienie, kolejki, skrzynki pocztowe)

Zegary i Timery

- Podawanie bieżącego czasu, podawanie czasu jaki upłynął ,timer
- Programowalny timer interwałowy wykorzystywany do taktowania (timing), periodycznych przerwań
- ioctl (w UNIXie) funkcja umożliwia komunikację na niższym poziomie abstrakcji z urządzeniem np.zegar, timer

I/O z blokowaniem i bez blokowania

- Blokowanie proces jest zawieszony do zakończenia operacji I/O
 - Łatwe w użyciu i do zrozumienia
 - Niewystarczające w pewnych przypadkach potrzeb
- Bez blokowania I/O call returns as much as available
 - Interfejs użytkownika, kopiowanie danych (buforowane I/O)
 - Implementacja poprzez wielowątkowość
 - Szybki powrót z liczbą przeczytanych lub zapisanych bajtów
- Asynchronicznie proces jest wykonywany współbieżnie z operacją we/wy
 - trudny w użyciu
 - podsystem we/wy sygnalizuje [wysyła sygnał] procesowi zakończenie operacji we/wy

Dwie metody I/O

Synchroniczny

Asynchroniczny

Podsystem wejścia-wyjścia w jądrze

- Szeregowanie
 - niektóre żądania wykonania operacji we/wy są porządkowane poprzez zastosowanie kolejek dedykowanych dla każdego urządzenia
 - niektóre systemy operacyjne próbują ...
- Buforowanie zapamiętywanie danych w pamięci podczas przesyłania pomiędzy urządzeniami
 - rozwiązuje problemy z niedopasowaniem prędkości poszczególnych urządzeń
 - rozwiązuje problemy z niedopasowaniem rozmiaru pakietów danych między poszczególnymi urządzeniami
 - utrzymuje [wspiera] "semantykę kopiowania"

Jądro podsystemu I/O

- Caching szybka pamięć utrzymująca kopię danych
 - Zawsze tylko kopia
 - Kluczowa dla wydajności
- Spooling utrzymywanie danych wyjściowych dla urządzenia
 - stosowane, gdy urządzenie może obsłużyć tylko jedno zadanie naraz
 - np., drukowanie
- Rezerwacja urządzeń umożliwia wyłączny dostęp do urządzenia
 - wywołania systemowe dla alokacji i dealokacji [rezerwacji i zwalniania]
 - możliwość wystąpienia deadlocków

Obsługa błędów

- Systemy operacyjne mogą odzyskiwać dane z dysku, urządzenia niedostępnego i chwilowych błędów zapisu
- Większość operacji we/wy zwraca w wyniku numer lub kod błędu w wypadku niepowodzenia
- Logi systemowe utrzymują raporty o błędach

Struktura danych jądra

- Jądro utrzymuje stan informacji o składnikach we/wy, w tym tabel otwartych plików, połączeń sieciowych, stanu urządzeń znakowych
- Wiele złożonych struktur danych dla śledzenia buforów, alokacji pamięci, "brudnych" bloków
- Zdarza się użycie metod obiektowych i przesyłania komunikatów do zaimplementowania we/wy

Przekształcenie zamówień wejściawyjścia na operacje sprzętowe

- Analiza odczytu pliku z dysku dla procesu:
 - określ urządzenie, na którym znajduje się plik
 - przetłumacz nazwę pliku na reprezentację sprzętową
 - fizycznie odczytaj dane z dysku do bufora
 - udostępnij dane żądającemu procesowi
 - zwróć sterowanie do procesu

Cykl obsługi żądania I/O

Systemy Operacyjne

13.26

Wydajność

- Operacje we/wy jako podstawowy czynnik wydajności systemu:
 - wymaga zaangażowania procesora do wykonania kodu sterownika i operacji w trybie jądra
 - przełączanie kontekstu dla obsługi przerwania
 - kopiowanie danych
 - ruch sieciowy szczególnie wpływa na wydajność

Komunikacja międzykomputerowa

Poprawa wydajności

- Ogranicz liczbę przełączeń kontekstu
- Ogranicz liczbę kopiowań danych
- Ogranicz przerwania poprzez stosowanie dużych transferów danych, inteligentnych kontrolerów, aktywnych odpytywań
- Użyj DMA
- Wyważ i zbalansuj [dostrój] użycie CPU, pamięci, magistrali i wydajności we/wy dla największej przepustowości

Koniec