Lecture 6

Linear stability of parallel shear flows III

AE209 Hydrodynamic stability

Dr Yongyun Hwang

Lecture outline 2/19

- 1. Eigenspectra and eigenfunctions
- 2. Neutral stability curve
- 3. Spatial stability analysis and vibrating ribbon problem

Lecture outline 3/19

- 1. Eigenspectra and eigenfunctions
- 2. Neutral stability curve
- 3. Spatial stability analysis and vibrating ribbon problem

Orr-Sommerfeld equation (for wall-normal velocity):

$$\left[\left(-i\omega + i\alpha U \right) \left(D^2 - k^2 \right) - i\alpha D^2 U - \frac{1}{\text{Re}} \left(D^2 - k^2 \right)^2 \right] \widetilde{v} = 0$$

Squire equation (for wall-normal vorticity):

$$\left[\left(-i\omega + i\alpha U \right) - \frac{1}{\text{Re}} \left(D^2 - k^2 \right) \right] \widetilde{\eta} = -i\beta DU \widetilde{v}$$

where $k^2 = \alpha^2 + \beta^2$ with boundary conditions:

Eigenspectra of plane Poiseulle flow

FIGURE 3.1 Orr-Sommerfeld spectrum of plane Poiseuille flow for Re = 10000 (a) wave numbers $\alpha = 1, \beta = 0$. (b) wave numbers $\alpha = 0, \beta = 1$

Schmid & Henningson (2001)

Eigenfunctions of plane Poiseulle flow ($\alpha = 1, \beta = 1$, and Re = 5000)

Schmid & Henningson (2001)

Eigenspectra of Blasius boundary layer $(\alpha = 0.2, \beta = 0, \text{ and } \text{Re} = 500)$

Schmid & Henningson (2001)

Eigenfunction of Blasius boundary layer ($\alpha = 0.2, \beta = 0$, and Re = 500)

FIGURE 3.5 Eigenfunctions for Blasius boundary layer flow. (a,b) Eigenfunction of the discrete spectrum, vertical (a) and streamwise (b) velocity component for $\alpha = 0.2$, Re = 500 The thick line represents the absolute value of v or u, the thin lines represent the real and imaginary part

Lecture outline 9/19

- 1. Eigenspectra and eigenfunctions
- 2. Neutral stability curve
- 3. Spatial stability analysis and vibrating ribbon problem

Schematic structure of neutral stability curve for Poiseulle flow

$$\omega_i(\alpha, \beta = 0, \text{Re}) = 0$$

Neutral stability curve of Poiseulle flow

FIGURE 3.8 Neutral curve for plane Poiseuille flow (a) contours of constant growth rate c_i , (b) contours of constant phase velocity c_r . The shaded area represents the region of parameter space where unstable solutions exist

Neutral stability curve of Blasius boundary layer

FIGURE 3.9 Neutral curve for Blasius boundary layer flow (a) contours of constant growth rate c_i , (b) contours of constant phase velocity c_r . The shaded area represents the region in parameter space where unstable solutions exist

Critical Reynolds numbers and streamwise wavenumbers

Linear stability analysis

Flow configurations	Critical Re (Linear stability)	Transition Re	Critical wavenumber	Critical phase speed
Couette flow	∞	350-400	-	-
Poiseulle flow	5772.2	1000-2000	1.02	0.2639
Pipe flow	∞	2000-2500	-	-
Boundary layer	519.4	Depends on dist. env.	0.303	0.3935

Remark

Linear stability analysis does **not provide a full explanation** for the onset of **transition**.

Lecture outline 14/19

- 1. Eigenspectra and eigenfunctions
- 2. Neutral stability curve
- 3. Spatial stability analysis and vibrating ribbon problem

Normal mode solution (2D case) revisited

$$v'(x, y, t) = \widetilde{v}(y)e^{i\alpha x - i\omega t} + c.c$$

So far, $\alpha \in R$ is given and $\omega \in C$ unknown

 $\omega_{i} > 0$ Linearly unstable $\omega_{i} < 0$ Linearly stable

Now, consider $\omega \in R$ is given and $\alpha \in C$ unknown

 $\alpha_i < 0$ Linearly unstable $\alpha_i > 0$ Linearly stable

Temporal stability analysis

Spatial stability analysis

Eigenspectra of Poiseulle flow and Blasius boundary layer

Schmid & Henningson (2001)

Neutra stability curve of Blasius boundary layer

FIG. 1. Comparison between the neutral stability curves based on parallel and nonparallel stability theories and experimental data—o, data of Schubauer and Skramstad, o, •, data of Ross et al.

 $\operatorname{Re} \left(= \frac{U_{\infty} \delta}{V} \right)$

Summary 19/19

- 1. Eigenspectra and eigenfunctions
- 2. Neutral stability curve
- 3. Spatial stability analysis and vibrating ribbon problem