

MOOC Econometrics

Training Exercise 2.3

Questions

In economic and business applications, the variables (x_{1i},\ldots,x_{ki}) usually do not have natural measurement units. Personal income, for example, can be measured in units or thousands of local currency or US dollars, and per month or per year. A change of measurement scale of the j-th variable corresponds to a transformation $\tilde{x}_{ji} = a_j x_{ji}$ (with a_j fixed for $i=1,\ldots,n$). Let $A=\mathrm{diag}(a_1,\ldots,a_k)$ and let $\tilde{X}=XA$. We even allow for non-diagonal A and define $\tilde{X}=XA$ where A is any invertible $(k\times k)$ matrix. As before, let $\hat{y}=Xb$ be the predicted values of y.

- (a) Prove that \hat{y} , e, s^2 , and R^2 do not depend on A (that is, are invariant under linear transformations).
- (b) Prove that $\tilde{b} = A^{-1}b$ and provide an intuitive interpretation.

Ezafus,