Cluster Analysis: Basic Concepts and Algorithms

- What does it mean clustering?
 - Applications
- > Types of clustering
- **K-means**
 - Intuition
 - Algorithm
 - Choosing initial centroids
 - Bisecting K-means
 - Post-processing
- > Strengths and weaknesses
- **▶** What's next?

TNM033: Introduction to Data Mining

Sections 2.4, 8.1, 8.2 of course book

What is Cluster Analysis?

• Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

TNM033: Introduction to Data Mining

Applications of Cluster Analysis

Understanding

 Group related documents for browsing, group genes and proteins that have similar functionality, or group stocks with similar price fluctuations

	Discovered Clusters	Industry Group	
1	Applied-Matl-DOWN, Bay-Network-Down, 3-COM-DOWN, Cabletron-Sys-DOWN, CISCO-DOWN, HP-DOWN, DSC-Comm-DOWN, HP-DOWN, SC-Comm-DOWN, Micron-Tech-DOWN, Texas-Inst-Down, Tellabs-Inc-Down, Natl-Semiconduct-DOWN, Oracl-DOWN, SGI-DOWN, Sun-DOWN	Technology1-DOWN	
2	Apple-Comp-DOWN, Autodesk-DOWN, DEC-DOWN, ADV-Mictor-Device-DOWN, Andrew-Corp-DOWN, Computer-Assoc-DOWN, Circuit-City-DOWN, Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, Motorola-DOWN, Microsoft-DOWN, Scientific-AdI-DOWN	Technology2-DOWN	
3	Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, MBNA-Corp-DOWN,Morgan-Stanley-DOWN	Financial-DOWN	
4	Baker-Hughes-UP, Dresser-Inds-UP, Halliburton-HLD-UP, Louisiana-Land-UP, Phillips-Petro-UP, Unocal-UP, Schlumberger-UP	Oil-UP	

Summarization

Reduce the size of large data sets

TNM033: Introduction to Data Mining

3

What is not Cluster Analysis?

- Supervised classification
 - Have class label information
- Simple segmentation
 - Dividing students into different registration groups alphabetically, by last name
- Results of a query
 - Groupings are a result of an external specification

```
SELECT dept, division, AVG(salary)
FROM Table
GROUP BY dept, division
```

TNM033: Introduction to Data Mining

Example: Churn problem

- **Problem**: Predict whether a customer is like to churn
 - Attributes: international plan, voice mail, number of voice mail messages, total day minutes, total evening minutes, ...
 - Class attribute: Churn (yes, no)
- **Model 1:** build a classifier that predicts **Churn** attribute in terms of the other attributes
 - E.g. decision trees, rule based classifiers

TNM033: Introduction to Data Mining

-

Churn Problem with Data Segmentation

- Model 2:
 - Segment the customers in order to get groups of customers with similar use of company services
 - ➤ Use clustering a new attribute Cluster is added to each record indicating its cluster
 - > In Weka, you can get class to clusters evaluation
 - Describe the clusters: set the class attribute to Cluster and build a classifier that predicts the cluster in terms of the other attributes (do not use Churn)
 - Use the data enriched with the Cluster attribute to build a classifier predicting Churn
 - > Do we get a better classifier than in Model 1?

TNM033: Introduction to Data Mining

Attribute	Full Data (3333)	C = 0 (1221)	C = 1 (1190)	C = 2 (922)
Inter Plan	no	no	no	no
no	3010 (90%)	1117 (91%)	1063 (89%)	830 (90%)
yes	323 (9%)	104 (8%)	127 (10%)	92 (9%)
VoiceMail Plan	no	no	no	yes
yes	922 (27%)	0 (0%)	0 (0%)	922 (100%)
no	2411 (72%)	1221 (100%)	1190 (100%)	0 (0%)
No of Vmail Mes	sgs (0.1588	0	0	0.5741
	+/-0.2684	+/-0	+/-0	+/-0.1482

Types of Clusterings

- A clustering is a set of clusters
- Important distinction between **hierarchical** and **partitional** sets of clusters
- Partitional Clustering
 - A division data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset
- Hierarchical clustering
 - A set of nested clusters organized as a hierarchical tree

TNM033: Introduction to Data Mining

ç

Partitional Clustering

•

Original Points

A Partitional Clustering

TNM033: Introduction to Data Mining

Hierarchical Clustering P1 p2 p3 p4 P1 p2 p3 p4 Dendrogram P1 p2 p3 p4 Dendrogram Dendrogram Dendrogram Dendrogram

How to Define a Cluster

• But, what is a cluster?

TNM033: Introduction to Data Mining

- There are different ways to answer to this question

Types of Clusters: Center-Based

Center-based

- A cluster is a set of objects such that an object in a cluster is closer (more similar) to the "center" of its cluster, than to the center of any other cluster
- The center of a cluster is often a centroid, the average of all the points in the cluster, or a medoid, the most "representative" point of a cluster

4 center-based clusters

TNM033: Introduction to Data Mining

13

Types of Clusters: Density-Based

Density-based

- A cluster is a dense region of points, which is separated by lowdensity regions, from other regions of high density.
- Used when the clusters are irregular or intertwined, and when noise and outliers are present.

6 density-based clusters

TNM033: Introduction to Data Mining

Clustering Algorithms

- K-means and its variants
 - K-means is available in Weka
 - > **Parameters**: Distance function (e.g. Euclidian, Manhattan) and number of clusters
- Hierarchical clustering
- Density-based clustering (**DBSCAN**)
 - Available in Weka

TNM033: Introduction to Data Mining

15

K-means: intuition

- K = number of clusters
- K is a user-specified parameter

TNM033: Introduction to Data Mining

Clustering and Objective Functions

- Clusters defined by an objective function
 - Finds clusters that minimize (or maximize) an objective function.
 - Most common measure is Sum of Squared Error (SSE)

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

- For each point, the error is the distance to the nearest centroid
- To get SSE, we square these errors and sum them.
- x is a data point in cluster C_i and m_i is the centroid for cluster C_i
 - \triangleright can show that m_i corresponds to the center (mean) of the cluster
- How to compute?
 - Enumerate all possible ways of dividing the points into clusters and evaluate the `goodness' of each potential set of clusters by using the given objective function.

➤ Not feasible : problem is NP Hard!!!

TNM033: Introduction to Data Mining

K-means Clustering

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The basic algorithm is very simple
- Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: until The centroids don't change

TNM033: Introduction to Data Mining

19

K-means Clustering – Details

- Initial centroids are often chosen randomly
 - Clusters produced vary from one run to another.
- The centroid is (typically) the mean of the points in the cluster
- 'Closeness' is measured by Euclidean distance, cosine similarity, correlation, etc
- K-means will converge for common similarity measures mentioned above
- Most of the convergence happens in the first few iterations
 - Often the stopping condition is changed to 'Until relatively few points change clusters'
- Complexity is O(n * K * d * I)
 - n = number of points, K = number of clusters,
 I = number of iterations, d = number of attributes

TNM033: Introduction to Data Mining

Getting K Right

- Try different k, looking at the change in the average distance to centroid, as k increases.
- Average falls rapidly until right k, then changes little.

TNM033: Introduction to Data Mining

Solutions to Initial Centroids Problem

- Multiple runs
 - Select the set of clusters with least SSE
 - May not help!
- Select a first point as the centroid of all points. Then, select (K-1) most widely separated points
 - **Problem**: can select outliers
 - **Solution**: Use a sample of points
- Post-processing
- Bisecting K-means
 - Not as susceptible to initialization issues

TNM033: Introduction to Data Mining

31

Pre-processing and Post-processing

- Pre-processing
 - Normalize the data
 - > Attribute values fall roughly into the same range
 - Eliminate outliers
 - > Centroids may not be good representatives
 - > SSE will be also higher
- Post-processing
 - Eliminate small clusters that may represent outliers
 - Split 'loose' clusters, i.e., clusters with relatively high SSE or high standard deviation for an attribute
 - Merge clusters that are 'close' and that have relatively low SSE

TNM033: Introduction to Data Mining

Bisecting K-means

• Bisecting K-means algorithm

- Variant of K-means that can produce a partitional or a hierarchical clustering
- 1: Initialize the list of clusters to contain the cluster containing all points.
- 2: repeat
- 3: Select a cluster from the list of clusters
- 4: for i = 1 to $number_of_iterations$ do
- 5: Bisect the selected cluster using basic K-means
- 6: end for
- 7: Add the two clusters from the bisection with the lowest SSE to the list of clusters.
- 8: until Until the list of clusters contains K clusters

TNM033: Introduction to Data Mining

33

Bisecting K-means Example

TNM033: Introduction to Data Mining

Strengths and Weaknesses of K-means

Strengths

- Efficient for medium size data
 - > BIRCH and CURE for very large data sets
- Bisecting K-means not so susceptible to initialization problems

Weaknesses

- Not suitable for all data types
 - > Clusters are of differing sizes
 - Densities
 - ➤ Non-globular shapes
- Outliers are a problem
- Choice of seeds (initial centroids)

TNM033: Introduction to Data Mining

34

Limitations of K-means: Differing Sizes

Original Points

K-means (3 Clusters)

TNM033: Introduction to Data Mining

Next ...

- Similarity measures
 - Is Euclidian distance appropriate for all types of problems?
- Hierarchical clustering
- DBSCAN algorithm
- Cluster validation

TNM033: Introduction to Data Mining