- · If $A \times b$ is inconstruct, we can't find a solution sine b is not in the column space of A
- . Instead, we can find \hat{b} , which $\underline{\dot{u}}$ in the column space of A , which is closest to b
- · b is an orthogonal projector of b onto column space of A
- . The orthogonal projectus of 6 and column space of A, is most often called b, and is called the least squares solution

If $\exists \hat{x}$ such that $A\hat{x} = \hat{b}$, we can find it through the following formula: $A^TA x = A^Tb$

The matrix equation represents a system of equations called the normal equations for Ax = b

The solution to this equation is denoted \hat{x} , and represent the centary vector, which multiplies by A, gets us equal to \hat{b} , the projects b

- 14) Let A be an mxn matrix. The following exaterments are logically equivaled:
 - a) The equation Ax = b has a unique least squares solution for each $b \in \mathbb{R}^m$ o) The column of A are linearly independed
 - C) ATA is invenith

 \hat{X} is given by $(A^TA)^{-1}A^Tb$

In general, the process of finding & is to find your quantity:

- · ATA and AT b and then we these to solve for x
- · Remember, 20 get 6, re mut multiple by the matria A,

 This is our close approximate 70 6
- ' Least squares Error: 116-611=116-Ax11

Theorem 15: Given an max matrix A with lineary independent columns, not A = QR be a QR factorization of A. Then, for each b is IR^m , $A_{X} = b$ has a unique least square column, given by $\hat{X} = R^{-1}Q^Tb$

If columns of A are arroyal, this reduces to First projects of to only each one of the column rection in A (This is our b), and then we can pluy and they from there,