Constrained optimization: indirect methods

Slides by

Jussi Hakanen Post-doctoral researcher

<u>jussi.hakanen@jyu.fi</u>

Presented by

Mohammad Tabatabaei Post-doctoral researcher mohammad.tabatabaei@jyu.fi

Classification of the methods

- Indirect methods: the constrained problem is converted into a sequence of unconstrained problems whose solutions will approach to the solution of the constrained problem, the intermediate solutions need not to be feasible
- Direct methods: the constraints are taking into account explicitly, intermediate solutions are feasible

Transforming the optimization problem

- Constraints of the problem can be transformed if needed
- $g_i(x) \le 0 \Leftrightarrow g_i(x) + y_i^2 = 0$, where y_i is a slack variable; constraint is active if $y_i = 0$
 - By adding y_i^2 no need to add $y_i \ge 0$
 - If $g_i(x)$ is linear, then linearity is preserved by $g_i(x) + y_i = 0, y_i \ge 0$
- $g_i(x) \ge 0 \iff -g_i(x) \le 0$
- $h_i(x) = 0 \Leftrightarrow h_i(x) \le 0 \& -h_i(x) \le 0$

Examples of indirect methods

- Penalty function methods
- Barrier function methods

Penalty and barrier function methods

- Include constraints into the objective function with the help of an axulary function.
- Penalty function: penalizes for constraint violations
- Barrier function: prevents leaving the feasible region
- Resulting unconstrained problems can be solved by using the methods presented earlier in the course

Penalty function methods

- Generate a sequence of points that approach the feasible region from outside
- Constrained problem is converted into $\min_{x \in R^n} f(x) + r \alpha(x)$, where $\alpha(x)$ is a *penalty function* and r is a *penalty parameter*
- Requirements: $\alpha(x) \ge 0 \ \forall \ x \in \mathbb{R}^n$ and $\alpha(x) = 0$ if and only if $x \in S$

On convergence

- When $r \to \infty$, the solutions x^r of penalty function problems converge to a constrained minimizer $(x^r \to x^* \text{ and } r\alpha(x^r) \to 0)$
 - All the functions should be continuous
 - For each r, there should exist a solution for penalty functions problem and $\{x^r\}$ belongs to a compact subset of \mathbb{R}^n

Examples of penalty functions

- Can you give an example of a penalty function α(x)?
- For equality constraints

$$-h_i(x) = 0 \rightarrow \alpha(x) = \sum_{i=1}^l (h_i(x))^2 \text{ or }$$

 $\alpha(x) = \sum_{i=1}^l |h_i(x)|^p, p \ge 2$

For inequality constraints

$$-g_i(x) \le 0 \longrightarrow \alpha(x) = \sum_{i=1}^m \max[0, g_i(x)] \text{ or }$$

 $\alpha(x) = \sum_{i=1}^m \max[0, g_i(x)]^p, p \ge 2$

How to choose r?

- Should be large enough in order for the solutions be close enough to the feasible region
- If r is too large, there could be numerical problems in solving the penalty problems
- For large values of r, the emphasis is on finding feasible solutions and, thus, the solution can be feasible but far from optimum
- Typically r is updated iteratively
- Different parameters can be used for different constraints (e.g. $g_i \rightarrow r_i, g_j \rightarrow r_j$)
 - For the sake of simplicity, same parameter is used here for all the constraints

Algorithm

- 1) Choose the final tolerance $\epsilon > 0$ and a starting point x^1 . Choose $r^1 > 0$ (not too large) and set h = 1.
- Solve

$$\min_{x \in \mathbb{R}^n} f(x) + r^h \alpha(x)$$

 $\min_{x \in R^n} f(x) + r^h \alpha(x)$ with some method for unconstrained problems (x^h as a starting point). Let the solution be $\dot{x}^{h+1} = x(r^h).$

3) Test optimality: If $r^h \alpha(x^{h+1}) < \epsilon$, stop. Solution x^{h+1} is close enough to optimum. Otherwise, set $r^{h+1} > r^h$ (e.g. $r^{h+1} = \kappa r^h$, where κ can be initialized to be e.g. 10). Set h = h + 1 and go to 2).

Barrier function method

- Prevents leaving the feasible region
- Suitable only for problems with inequality constraints
 - Set $\{x \mid g_i(x) < 0 \ \forall i\}$ should not be empty
- Problem to be solved is

$$\min_{x} f(x) + r\beta(x) \text{ s. t. } r \ge 0,$$
where:

■ β is a barrier function: $\beta(x) \ge 0$ when $g_i(x) < 0 \ \forall i$ and $\beta(x) \to \infty$ when x approaches boundary of S.

On convergence

- Denote $\Theta(r) = f(x^r) + r\beta(x^r)$
- Under some assumptions, the solutions x^r of barrier problems converge to a constrained minimizer $(x^r \to x^* \text{ and } r\beta(x^r) \to 0)$ when $r \to 0^+$
 - All functions should be continuous

$$- \{x \mid g_i(x) < 0 \ \forall i\} \neq \emptyset$$

Properties of barrier functions

- Nonnegative and continuous in $\{x \mid g_i(x) < 0 \ \forall i\}$
- Approaches ∞ when the boundary of the feasible region is approached from inside
- Ideally: $\beta = 0$ in $\{x \mid g_i(x) < 0 \ \forall i\}$ and $\beta = \infty$ in the boundary
 - Guarantees staying in the feasible region
- Examples of barrier functions

$$\geqslant \beta(x) = \sum_{i=1}^{m} -\frac{1}{g_i(x)}$$

$$> \beta(x) = -\sum_{i=1}^{m} \ln \left(\min[1, -g_i(x)] \right)$$

Algorithm

- 1) Choose the final tolerance $\epsilon > 0$ and a starting point x^1 s.t. $g_i(x) < 0 \ \forall i$. Choose $r^1 > 0$, not too small (and a parameter $0 < \tau < 1$ for reducing r). Set h = 1.
- 2) Solve

$$\min_{x} f(x) + r^h \beta(x)$$

by using the starting point x^h . Let the solution be x^{h+1} .

1) Test optimality: If $r^h \beta(x^{h+1}) < \epsilon$, stop. Solution x^{h+1} is close enough to optimum. Otherwise, set $r^{h+1} < r^h$ (e.g. $r^{h+1} = \tau r^h$). Set h = h+1 and go to 2).

Summary: penalty and barrier function methods

- Penalty and barrier functions are usually differentiable
- Minimum is obtained
 - Penalty function: $r^h \rightarrow \infty$
 - Barrier function: $r^h \rightarrow 0$
- Choosing the sequence r^h essential for convergence
 - If $r^h \to \infty$ or $r^h \to 0$ too slowly, a large number of unconstrained problems need to be solved
 - If $r^h \to \infty$ or $r^h \to 0$ too fast, solutions of successive unconstrained problems are far from each other and solution time increases

