T.D. 1: Formas diferenciales. Integral de linea.

Ejercicio 1

Calcular el trabajo hecho por una fuerza $\vec{F} = x^2 \vec{j}$ cuyo punto de suporte se desplaza sobre el arco Γ_{AB} de la parábola $y^2 = 1 - x$ de A(1,0) hacía B(0,1).

Ejercicio 2

Encontrar el trabajo de la fuerza \vec{F} que se desplaza de un punto M hacía un punto N en una curva C en los casos siguientes :

- 1. $\vec{F}(x, y) = (x^2 2y)\vec{i} + (y^2 2x)\vec{j}$ con C es el segmento [MN] con M(-4; 0) y N(0; 2).
- 2. $\vec{F}(x,y) = (x+y)\vec{i} + 2x\vec{j} \cos C : x^2 + y^2 = 4; (y \ge 0) \text{ y } M(2;0); N(-2;0).$

Ejercicio 3

Consideramos la forma diferencial $\omega = \frac{x \, dy - y \, dx}{x^2 + y^2}$ definida en el semi-plano $U = \{(x; y) \in \mathbb{R}^2; x > 0\}$. Demostrar que w es exacta. Buscar sus primitivas en U.

Ejercicio 4

Se considera la 1-forma diferencial ω tal que :

$$\omega = \frac{2x}{y} \, dx - \frac{x^2}{y^2} \, dy$$

definida en $U = \{(x; y) \in \mathbb{R}^2; y > 0\}.$

- 1. Demostrar que ω es cerrada en U.
- 2. Demostrar de dos maneras distintas que ω es exacta.
- 3. Calcular la integral de linea $\int_C \omega$ donde C es una curva de clase C^1 de origen A(1;2) y de punto final B(3;8).

Ejercicio 5

Consideramos ω la forma diferencial definida en \mathbb{R}^2 por :

$$\omega = (x^2 + y^2 - a^2) dx - 2ay dy$$

donde $a \in \mathbb{R}^*$.

- 1. Demostrar que ω no es exacta.
- 2. Sea $f \in C^1(\mathbb{R})$ con valores en \mathbb{R} . Sea $\alpha(x,y) = f(x).\omega(x,y)$. ¿Que condición debe cumplir f para que α sea exacta? ¿Es una condición suficiente? Determinar una función f que cumpla la condición anterior.
- 3. Determinar una primitiva de α en \mathbb{R}^2 .
- 4. Sea Γ el círculo de radio R y de centro (0; 0). Calcular $\int_{\Gamma} \alpha$.

Ejercicio 6

Calcular la integral de linea de $\omega = x^2 dx - xy dy$ en las curvas siguientes

- 1. el segmento $C_1 = [OB]$ con O(0; 0) y B(1; 1).
- 2. el arco de parábola $C_2: x = y^2; \ 0 \le x \le 1$ orientado en el sentido que x tome valores crecientes. ¿Que se puede deducir respeto a la forma diferencial ω ? Encontrar este resultado usando otro método.

Ejercicio 7

Se considera Γ el arco de la hélice orientado por :

$$x = R\cos(t), y = R\sin(t), z = ht$$

para $t \in [0; 2\pi]$. Calcular :

$$I = \int_{\Gamma} (y - z) \, dx + (z - x) \, dy + (x - y) \, dz.$$

Ejercicio 8

Calcular la integral de linea $\int_{\Gamma} y^2 dx + x^2 dy$ cuando Γ es la curva de ecuación $\frac{x^2}{a^2} + \frac{y^2}{b^2} - 2\frac{x}{a} - 2\frac{y}{b} = 0$ orientada en el sentido trigonométrico positivo.

Ejercicio 9

Calcular $\int_C \omega$ donde ω es la forma diferencial definida por :

$$\omega = \frac{x \, dy - y \, dx}{x^2 + y^2}$$

y C es el cuadrado orientado con vértices consecutivos A(a;a), B(-a;a), C(-a;-a) y D(a;-a). Deducir que la forma diferencial no es exacta.

Ejercicio 10

Calcular la integral de linea de $\omega = y dx + 2x dy$ sobre el borde del dominio definido por :

$$x^{2} + y^{2} - 2x \le 0$$
 y $x^{2} + y^{2} - 2y \le 0$

descrito una vez en el sentido directo.

Ejercicio 11

Calcular la integral de linea de $\omega = (x + y) dx + (x - y) dy$ en la semi-cardoide C de ecuación polar $\rho = a(1 + \cos(\theta)) \cos a > 0$ fijo y $\theta \in [0, \pi]$.