

001 - INTRODUÇÃO AOS MICROCONTROLADORES

Programação em seu nível mais alto e voltada para a prática.

Automação e Controle

- As experimentações efetuadas com um projeto eletromecânico devem levar a uma configuração final totalmente automatizada
- As leituras dos parâmetros de entrada e saída e seu armazenamento também devem ser automatizadas, para descarregamento em ferramenta de análise operacional e gerencial

O que automatizar ?

- Processos perigosos para o ser humano
- Processos repetitivos
- Processos que exigem precisão
- Processos com muitas etapas
- Processos que envolvem produtos personalizados para os clientes

PCB - Printed Circuit Board

CPU – Central Processing Unit

- Velocidades no patamar de GHz
- Necessitam de SO para operar
- Consomem muita energia e precisam de resfriamento
- Conectam-se a vários tipos de dispositivos, incluindo os de alta velocidade

Microcontrolador

- Velocidades no patamar de MHz
- Não necessitam de SO para operar
- Consomem pouca energia, assim não precisam de resfriamento
- Requer menos componentes adicionais
- Seu uso é restrito a aplicações específicas

Oscilador

- Controla o passo temporal da sucessão de ações provocadas pelas instruções do microcontrolador ou microprocessador
- Possui uma frequência nominal
- Constituído de um cristal de quartzo e de um circuito divisor de frequência

LEDs

- Sinaliza um estado dos dispositivos
- Pode ser observado à distância
- Demonstra estados estáticos e dinâmicos
- Varia a natureza da informação de acordo com a cor

Potenciômetro

- Equivale a uma resistência variável
- Possibilita a experimentação dinâmica do potencial e propriedades de um circuito
- Provê o conceito de regulagem, ajuste e equilíbrio das características de um projeto, para uma etapa posterior de automação

Capacitor Eletrolítico

- Seleciona o tipo de corrente alternada nos nós adjacentes do circuito
- Provê o acúmulo e o descarregamento harmônico de cargas no circuito
- Suaviza os impactos de variações de corrente

Push button

- Provê o corte absoluto de corrente em um trecho do circuito
- Possibilita a experimentação de parâmetros críticos como correntes e temperatura dos componentes
- Possibilita a experimentação do balanço do circuito, quando ainda não se fez a completa automação

Servo motor

- Provê o controle de ajuste fino para o sincronismo entre os passos de um processo mecânico
- Fornece a precisão observada nos projetos de automação
- Possibilita aquilo que compreendemos como robótica
- Característica mais marcante da automação industrial

Resistor

- Balanceia potencial e corrente nos circuitos eletrônicos
- Atenua a corrente sobre um componente, reduzindo o seu aquecimento e, consequentemente, preservando-o do desgaste e dos consequentes defeitos

Aplicação dos Microcontroladores:

- Controle de acesso à empresa e departamentos
- Controle de temperatura (INDÚSTRIA)
- Controle de dispositivos com servomotores
- Controle de drones (CIVIL e MILITAR)
- Controle remoto
- Controle de eletrônicos automotivos
- Controle dos HDs de computadores
- Controle de câmeras de vigilância
- Robótica

002 – PCBs Arduino no Mercado e componentes

O Arduino é um só, mas são muitos.

Cópia chinesa (TQFP-32)

O legítimo já é reconhecido automaticamente por PnP. A cópia necessita da instalação do driver CH340.

Gerenciador de dispositivos

→ # thor Adaptadores de rede Adaptadores de vídeo Computador Controladores de armazenamento Controladores de som, vídeo e jogos Controladores IDE ATA/ATAPI Controladores USB (barramento serial universal) Dispositivos de Interface Humana Dispositivos de Mídia Digital Dispositivos de sistema Dispositivos do software Entradas e saídas de áudio > 🛅 Filas de impressão Leitores de cartões inteligentes Mouse e outros dispositivos apontadores USB-SERIAL CH340 (COM3) > Processadores Teclados Unidades de disco

Gerenciador de dispositivos do Windows mostrando a cópia chinesa com driver USB instalado.

Gerenciador de dispositivos

Gerenciador de dispositivos do Windows mostrando o Arduino legítimo com driver USB PnP reconhecido automaticamente.

Placa com chip SMD (chinesa)

Placa com chip DIP (italiana)

USB to serial interface, automaticamente reconhecido pelo Windows

Pinos SDA e SCL (italiana)

Esse esquema se aplica aos Arduinos italianos sem pinos separados SDA e SCL.

Comparação características

Clock Frequency (MHz)	20 max.	Clock frequency (MHz)	48 max.
Flash size (KB)	32	Flash size (KB)	32
SRAM size (Bytes)	2048	SRAM size (Bytes)	4096
EEPROM SIZE (Bytes)	1024	EEPROM SIZE (Bytes)	None.
UART	1	USART	î
SPI	2	SPI	ï
I ² C	1	J ² C	1
Timers	1 x 16-bit, 2 x 8-bit	Timers	4 x 16-bit
ADC	8 x 10bit (TQFP Package)	ADC	10 x 12-bit
GPIO	23 (shared with other peripherals)	GPIO	26 (shared with other peripherals)
Internal ADC reference	Yes	Internal ADC reference	Yes

Table 1 - Major features of the ATmega328

Table 2 – Major features of the STM32F030K6T6

UART e USART UART:

Universal Asynchronous Receiver/Transmitter Circuito simples Full duplex Taxa de transmissão variável

USART:

Universal Synchronous/Asynchronous Receiver/Transmitter Circuito complexo Half duplex Taxa de transmissão definida Mais veloz.