Conteo de vehículos usando YOLO - You Only Look Once

FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA

Departamento de Ingeniería de Sistemas

Docente:

David Stephen Fernandez Mc Cann

david.fernandez@udea.edu.co

Semestre 2021-1

Alejandro Gallego Durango

wildey.gallego@udea.edu.co

Lina María Uribe

<u>lina.uribem@udea.edu.co</u>

Descripción del Problema

- **Problema humano:** Presentar un video en el que se realice un conteo de los vehículos que allí aparecen de forma automática y novedosa.
- **Problema técnico:** Detección de objetos usando el algoritmo YOLO para realizar el conteo de vehículos.
- Trabajos relacionados:
 - ➤ The PASCAL Visual Object Classes (VOC) Challenge [1]
 - ➤ Deep Residual Learning for Image Recognition [2]
 - ➤ Feature Pyramid Networks for Object Detection [3]
 - ➤ Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks [4]

Propuesta de Solución: Ruta a seguir

Propuesta de Solución: Conceptos

Propuesta de Solución: Arquitectura YOLO

YOLO v3 network Architecture

Propuesta de Solución: Conceptos

• Técnica 1: Bloques residuales

• Técnica 1: Bloques residuales

$$score_{c,i} = p_c \times c_i$$

• Técnica 2: Regresión del cuadro delimitador

Técnica 3: Intersección sobre unión (IOU)

 Técnica 4: Supresión no máxima (Non-Max Suppression)

Before non-max suppression

Non-Max Suppression

After non-max suppression

Solución

Se ingresa el comando en la consola:

```
python3 yolo_video.py --input <PathVideoEntrada> --output <PathVideoSalida> --yolo yolo-coco
```

```
a.a.gallego@AMAC02FPGMSMD6M Yolo-Vehicle-Counter % python3 yolo_video.py --input input/3.mp4 --output output/3Count.avi --yolo yolo-coco
```

Solución

• Se inicia el procesamiento del vídeo.

 Al finalizar, se obtiene el vídeo procesado con el conteo de vehículos en la ruta que se especificó al inicio.

Solución

Cronograma de actividades

Actividades	Tiempo						
	Semana 1	Semana 2	Semana 3	Semana 4	Semana 5	Semana 6	Semana 7
Elección de proyecto							
Descripción del problema							
Consultar YOLO							
Investigación, estado del arte							
Identificación técnicas					2-		
Utilizacion técnicas con YOLO							
Toma de video							
Desarrollo y refinamiento							
Entrega final							

Resultados, Líneas Futuras

En este proyecto, se realizó un proceso de investigación y exploración del algoritmo YOLO -You Only Look Once-. Se utilizaron los modelos entrenados por el algoritmo YOLO y su implementación para identificar objetos predefinidos, además, se incluyó en el algoritmo un contador de objetos, en este caso en particular, vehículos. Todo esto es posible gracias a las técnicas del procesamiento digital de imágenes. Cabe aclarar, que tanto la identificación como el conteo de dichos objetos no es óptimo, especialmente al momento de identificar motocicletas.

A futuro se podría mejorar y añadir nuevas funcionalidades como:

- > Perfeccionar el algoritmo de conteo para que sea más preciso.
- Crear un aplicativo que permita subir un vídeo de una carretera con vehículos y retorne el total de vehículos que transitaron.
- > Identificar la velocidad aproximada de un vehículo.
- Instalación de cámaras en puntos fijos, para el registro de información vehicular y así predecir flujos viales.
- Identificar elementos obligatorios, como el casco, en motociclistas.

Referencias

- [1] Everingham, M., Van Gool, L., Williams, CKI y col. El desafío PASCAL Visual Object Classes (VOC). Int J Comput Vis 88, 303–338 (2010). Recuperado el 07 de agosto de 2021, de: https://doi.org/10.1007/s11263-009-0275-4
- [2] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). Recuperado el 09 de agosto de 2021, de: https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
- [3] Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2117-2125). Recuperado el 09 de abril de 2021, de: https://openaccess.thecvf.com/content_cvpr 2017/papers/Lin Feature Pyramid Networks CVPR 2017 paper.pdf
- [4] Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, 28, 91-99. Recuperado el 09 de agosto de 2021, de: https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
- [5] Redmon, J., & Farhadi, A. (2017). YOLO9000: better, faster, stronger. In Proceedings of the IEEE conference on computer vision recognition 7263-7271). Recuperado 09 and pattern (pp. el de agosto de 2021. de: https://openaccess.thecvf.com/content_cvpr_2017/papers/Redmon_YOLO9000_Better_Faster_CVPR_2017_paper.pdf
- [6] Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767. Recuperado el 09 de agosto de 2021, de: https://arxiv.org/pdf/1804.02767.pdf
- [7] Apple detection during different growth stages in orchards using the improved YOLO-V3 model. Recuperado el 09 de agosto de 2021, de: https://www.sciencedirect.com/science/article/abs/pii/S016816991831528X