Równania i układy równań nieliniowych

Martyna Olszewska

Treść zadania

Stosując metodę Newtona oraz metodę siecznych wyznacz pierwiastki równania f(x)=0 w zadanym przedziale [-1.7, 0.8]. Dla metody Newtona wybierać punkty startowe rozpoczynając od wartości końców przedziału, zmniejszając je o 0.1 w kolejnych eksperymentach numerycznych. Odpowiednio dla metody siecznej jeden z końców przedziału stanowić powinna wartość punktu startowego dla metody Newtona, a drugi – początek, a następnie koniec przedziału [-1.7, 0.8].

Porównać liczbę iteracji dla obu tych metod dla różnych dokładności stosując, jako kryterium stopu:

$$\left| x^{(i+1)} - x^{(i)} \right| < \rho$$

$$\left| f(x^i) \right| < \rho$$

SPECYFIKACJE

Do obliczeń użyłam języka python, na systemie operacyjnym Ubuntu 20.04.4 LTS. Procesor komputera to Intel Core i3-4030U CPU @ 1.90GHz × 4 , RAM: 8GB. Do generowania wykresów użyłam biblioteki matplotlib, a dokładniej narzędzia pyplot. Do wyznaczenia równoodległych punktów użyłam narzędzia linspace z biblioteki numpy. Korzystam również z biblioteki math.

BADANA FUNKCJA

$$f(x) = x^2 - 35(sinx)^{11}$$

x jest z przedziału [-1.7, 0.8]

WYNIKI

Aby uzyskać wyniki dla metody Newtona, zmniejszałam przedział co 0.1 zaczynając od wartości -1,7 w kolejnych eksperymentach numerycznych. Następnie dla każdego z tych punktów obliczałam miejsce zerowe uwzględniając dwa warunki stopu. Również brałam pod uwagę różne wartości wartości ρ . Dla metody siecznych wybierałam punkty zaczynając również od początku przedziału i przesuwając je o 0.1. Warunek stopu i wartość ρ uwzględniane jak w metodzie Newtona.

METODA NEWTONA

Metoda Newtona inaczej metoda stycznych.

W pierwszym kroku wybieramy punkt startowy x1 z którego wyprowadzamy styczną. Położenie punktu x2 przecięcia stycznej z osią x jest pierwszym przybliżeniem rozwiązania. Jeśli przybliżenie nie jest dostateczne punkt x2 jest wybierany jako nowy punkt startowy i czynności są powtarzane do momentu uzyskania satysfakcjonującego wyniku. Kolejne przybliżenia dane są wzorem :

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Poniższe tabele zawierają obliczone miejsca zerowe dla różnych przedział jak i warunku stopu oraz ρ. Zawierają również numer iteracji w której otrzymano wynik.

Warunek stopu 1 -
$$\left|x^{(i+1)} - x^{(i)}\right| < \rho$$

Warunek stopu 2 -
$$|f(x^i)| < \rho$$

Wyniki dla $\rho = 0.000001$:

	Warunek stopu 1		Warune	ek stopu 2
Przedział	Wynik	Ilość iteracji	Wynik	Ilość iteracji
[-1.7,0.8]	-0.00000	24	-0.00053	14
[-1.6.0.8]	-0.00000	26	-0.00065	16
[-1.5,0.8]	-0.00000	20	-0.00076	10
[-1.4,0.8]	-0.00000	23	-0.00085	13
[-1.3,0.8]	-0.00000	24	-0.00059	14
[-1.2,0.8]	-0.00000	24	-0.00055	14
[-1.1,0.8]	-0.00000	23	-0.00087	13
[-1.0,0.8]	-0.00000	23	-0.00061	13
[-0.9,0.8]	-0.00000	22	-0.00077	12
[-0.8,0.8]	-0.00000	21	-0.00092	11
[-0.7,0.8]	-0.00000	21	-0.00054	11
[-0.6,0.8]	-0.00000	20	-0.00069	10
[-0.4,0.8]	-0.00000	19	-0.00094	9
[-0.3,0.8]	-0.00000	19	-0.00068	9
[-0.2,0.8]	-0.00000	18	-0.00094	8
[-0.1,0.8]	-0.00000	18	-0.00054	8
[-0.0,0.8]	-0.0000	16	-0.00052	6
[0.1,0.8]	0.00000	17	0.00055	7
[0.2,0.8]	0.00000	18	0.00068	8
[0.3,0.8]	0.00000	19	0.00054	9
[0.4,0.8]	0.00000	19	0.00073	9
[0.5,0.8]	0.00000	19	0.00079	9
[0.6,0.8]	-0.00000	21	-0.00073	11
[0.7,0.8]	0.75941	6 200001 i dayésh war	0.75941	5

Tabela 1. Wyniki dla $\rho = 0.000001$ i dwóch warunków stopu

Wyniki dla $\rho = 0.0001$:

	Warunek stoj	pu 1	Warunek sto	pu 2
Przedział	Wynik	Ilość iteracji	wynik	ilość iteracji
[-1.7,0.8]	-0,00007	17	-0.00851	10
[-1.6.0.8]	-0,00008	19	-0.00522	13
[-1.5,0.8]	-0.0001	13	-0.00608	7
[-1.4,0.8]	-0,00005	17	-0.00681	10
[-1.3,0.8]	-0,00007	17	-0.00948	10
[-1.2,0.8]	-0,00007	17	-0.00881	10
[-1.1,0.8]	-0,00005	17	-0.00693	10
[-1.0,0.8]	-0,00008	16	-0.00974	9
[-0.9,0.8]	-0.0001	15	-0.00617	9
[-0.8,0.8]	-0,00006	15	-0.00732	8
[-0.7,0.8]	-0,00007	14	-0.00869	7
[-0.6,0.8]	-0,00009	13	-0.0055	7
[-0.4,0.8]	-0,00006	13	-0.00752	6
[-0.3,0.8]	-0,00009	12	-0.00545	6
[-0.2,0.8]	-0,00006	12	-0.00756	5
[-0.1,0.8]	-0,00007	11	-0.00859	4
[-0.0,0.8]	-0,00007	9	-0.00833	2
[0.1,0.8]	0,00007	10	0.00885	3
[0.2,0.8]	0,00009	11	0.00547	5
[0.3,0.8]	0,00007	12	0.00871	5
[0.4,0.8]	0,00009	12	0.00587	6
[0.5,0.8]	0.0001	12	0.0063	6
[0.6,0.8]	-0,00009	14	-0.00586	8
[0.7,0.8]	0.75941	5	0.75941	4

Tabela 2. Wyniki dla $\rho = 0.0001$ i dwóch warunków stopu

Wyniki dla $\rho = 0.01$:

Warunek stopu 1		Warunek sto	pu 2	
Przedział	Wynik	Ilość iteracji	wynik	ilość iteracji
[-1.7,0.8]	-0.00851	10	-0.06806	7
[-1.6.0.8]	-0.00522	13	-0.08345	9
[-1.5,0.8]	-0.00608	7	-0.09733	3
[-1.4,0.8]	-0.00681	10	-0.05446	7
[-1.3,0.8]	-0.00948	10	-0.07587	7
[-1.2,0.8]	-0.00881	10	-0.07045	7
[-1.1,0.8]	-0.00693	10	-0.05543	7
[-1.0,0.8]	-0.00974	9	-0.07789	6
[-0.9,0.8]	-0.00617	9	-0.09878	5
[-0.8,0.8]	-0.00732	8	-0.05859	5
[-0.7,0.8]	-0.00869	7	-0.06952	4
[-0.6,0.8]	-0.0055	7	-0.08799	3
[-0.4,0.8]	-0.00752	6	-0.06014	3
[-0.3,0.8]	-0.00545	6	-0.08719	2
[-0.2,0.8]	-0.00756	5	-0.06044	2
[-0.1,0.8]	-0.00859	4	-0.06875	1
[-0.0,0.8]	-0.00833	2	-0.03333	0
[0.1,0.8]	0.00885	3	0.07083	0
[0.2,0.8]	0.00547	5	0.0875	1
[0.3,0.8]	0.00871	5	0.0697	2
[0.4,0.8]	0.00587	6	0.09385	2
[0.5,0.8]	0.0063	6	0.05039	3
[0.6,0.8]	-0.00586	8	-0.0937	4
[0.7,0.8]	0.75983	3	0.75983	3

Tabela 3. Wyniki dla $\rho = 0.01$ i dwóch warunków stopu

Analizując powyższe tabele można dostrzec, że wyniki są podobne dla każdej z wartości ρ. Oczywistą jest, że program potrzebował mniej iteracji do wyznaczenia wyniku z mniejszą dokładnością dla obydwu warunków stopu. Można zauważyć również, że przy drugim warunku stopu czyli przy module z wartości w znalezionym punkcie program potrzebował zdecydowanie mniej iteracji do znalezienia satysfakcjonującego wyniku w porównaniu do warunku pierwszego czyli modułu z różnicy. Warunki stopu dla różnej wartości ρ dawały wyniki niekiedy różniące się o jeden lub dwa rzędy wielkości.

METODA SIECZNYCH

Metoda ta zakłada, że na odpowiednio małym odcinku funkcja zmienia się w sposób liniowy zatem można ją zastąpić na tym odcinku sieczną. Punkt przecięcia siecznej z osią X przyjmuje się za przybliżoną wartość miejsca zerowego tej funkcji.

Poniższe tabele zawierają obliczone miejsca zerowe dla różnych przedział jak i warunku stopu oraz ρ. Zawierają również numer iteracji w której otrzymano wynik.

Wyniki dla $\rho = 0.000001$:

	Warunek stoj	Warunek stopu 1		pu 2
Przedział	Wynik	Ilość iteracji	wynik	ilość iteracji
[-1.7,0.8]	0.75941	22	0.75941	27
[-1.6.0.8]	0.75941	25	0.75941	31
[-1.5,0.8]	0.75941	25	0.75941	31
[-1.4,0.8]	0.75941	22	0.75941	27
[-1.3,0.8]	0.75941	17	0.75941	21
[-1.2,0.8]	0.75941	11	0.75941	12
[-1.1,0.8]	0.75941	8	0.75941	8
[-1.0,0.8]	0.75941	9	0.75941	10
[-0.9,0.8]	0.75941	10	0.75941	10
[-0.8,0.8]	0.75941	11	0.75941	11
[-0.7,0.8]	0.75941	12	0.75941	12
[-0.6,0.8]	0.75941	14	0.75941	14
[-0.4,0.8]	0.75941	17	0.75941	17
[-0.3,0.8]	0.75941	50	0.75941	50
[-0.2,0.8]	-0.00304	100	-0.00304	100
[-0.1,0.8]	-0.00308	100	-0.00308	100
[-0.0,0.8]	-0.00293	100	-0.00293	100
[0.1,0.8]	0.75941	17	0.75941	18
[0.2,0.8]	0.75941	13	0.75941	14
[0.3,0.8]	0.75941	12	0.75941	12
[0.4,0.8]	0.75941	11	0.75941	11
[0.5,0.8]	0.75941	10	0.75941	10
[0.6,0.8]	0.75941	10	0.75941	10
[0.7,0.8]	0.75941	9	0.75941	9

Tabela 4. Wyniki dla $\rho = 0.000001$ i dwóch warunków stopu

Wyniki dla $\rho = 0.0001$:

	Warunek sto	pu 1	Warunek stoj	pu 2
Przedział	Wynik	Ilość iteracji	wynik	ilość iteracji
[-1.7,0.8]	0.75953	12	0.75942	17
[-1.6.0.8]	0.75958	13	0.75942	19
[-1.5,0.8]	0.75959	13	0.75942	19
[-1.4,0.8]	0.75954	12	0.75942	17
[-1.3,0.8]	0.75948	10	0.75942	13
[-1.2,0.8]	0.75946	6	0.75941	8
[-1.1,0.8]	0.75939	5	0.7594	6
[-1.0,0.8]	0.75938	6	0.7594	7
[-0.9,0.8]	0.75939	7	0.75939	7
[-0.8,0.8]	0.75939	8	0.75939	8
[-0.7,0.8]	0.75939	9	0.7594	10
[-0.6,0.8]	0.7594	11	0.7594	11
[-0.4,0.8]	0.7594	14	0.7594	14
[-0.3,0.8]	0.7594	47	0.7594	47
[-0.2,0.8]	-0.0056	51	-0.0099	26
[-0.1,0.8]	-0.00562	52	-0.00998	27
[-0.0,0.8]	-0.00559	47	-0.00986	22
[0.1,0.8]	0.75938	14	0.7594	15
[0.2,0.8]	0.75938	10	0.7594	11
[0.3,0.8]	0.7594	9	0.7594	9
[0.4,0.8]	0.75939	8	0.75939	8
[0.5,0.8]	0.75939	7	0.7594	8
[0.6,0.8]	0.7594	7	0.7594	7
[0.7,0.8]	0.7594	6	0.7594	6

Tabela 5. Wyniki dla $\rho = 0.0001$ i dwóch warunków stopu

Wyniki dla $\rho = 0.01$:

Warunek stopu 1		Warunek sto	pu 2	
Przedział	Wynik	Ilość iteracji	wynik	ilość iteracji
[-1.7,0.8]	0.77202	2	0.76126	6
[-1.6.0.8]	0.77418	2	0.76125	7
[-1.5,0.8]	0.77431	2	0.7613	7
[-1.4,0.8]	0.77237	2	0.76067	7
[-1.3,0.8]	0.76823	2	0.7608	5
[-1.2,0.8]	0.76232	2	0.76048	3
[-1.1,0.8]	0.75733	2	0.75896	3
[-1.0,0.8]	0.75696	3	0.75888	4
[-0.9,0.8]	0.75757	4	0.75757	4
[-0.8,0.8]	0.75781	5	0.75781	5
[-0.7,0.8]	0.75737	6	0.75897	7
[-0.6,0.8]	0.75834	8	0.75834	8
[-0.4,0.8]	0.75843	11	0.09578	1
[-0.3,0.8]	0.01031	2	0.01001	1
[-0.2,0.8]	-0.04484	2	-0.05415	1
[-0.1,0.8]	-0.0398	4	-0.0753	1
[-0.0,0.8]	-0.02709	2	-0.02987	1
[0.1,0.8]	0.75674	11	0.08433	1
[0.2,0.8]	0.75715	7	0.75892	8
[0.3,0.8]	0.75828	6	0.75828	6
[0.4,0.8]	0.75809	5	0.75809	5
[0.5,0.8]	0.75736	4	0.75897	5
[0.6,0.8]	0.75871	4	0.75871	4
[0.7,0.8]	0.75863	3	0.75863	3

Tabela 6. Wyniki dla $\rho = 0.01$ i dwóch warunków stopu

Analizując powyższe tabele można zauważyć, że w tej metodzie program potrzebował zdecydowanie więcej iteracji do znalezienia pierwiastka przy drugim warunku stopu. W porównaniu do poprzedniej metody Newtona w ogólności potrzeba mniej iteracji dla obydwu warunków stopu. Dla tej metody wyniki dla obydwu warunków stopu są praktycznie takie same dla każdej z wartości ρ .

WNIOSKI

- Metoda siecznych lepiej sobie radzi kiedy lewy punkt znajduje się bliżej oczekiwanego wyniku
- Metoda Newtona i siecznych jest zbieżna lokalnie, więc może się zdarzyć, że wartość wyznaczona oddala się od rzeczywistego miejsca zerowego przy złym doborze przedziału
- Metoda Newtona może mieć problemy przy wyznaczaniu więcej niż jednego miejsca zerowego
- Metoda siecznych jest efektywniejsza od metody Stycznych.
- Metoda siecznych jest mniej złożona obliczeniowo- nie wymaga obliczania pochodnej funkcji.

ROZWIĄZANIE UKŁADU RÓWNAŃ METODĄ NEWTONA

Rozwiązać układ równań metodą Newtona:

$$\begin{cases} x_1^2 - 4x_2^2 + x_3^3 = 1 \\ 2x_1^2 + 4x_2^2 - 3x_3 = 0 \\ x_1^2 - 2x_2 + x_3^2 = 1 \end{cases}$$

Przeprowadzić eksperymenty dla różnych wektorów początkowych. Sprawdzić ile rozwiązań ma układ oraz przy jakich wektorach początkowych metoda nie zbiega do rozwiązania. Sprawdzić jakie wektory doprowadzając do jakiego rozwiązania.

Należy zastosować dla równe kryteria stopu.

Za pomocą kalkulatora wolfram znalazłam cztery oczekiwane rzeczywiste rozwiązania:

- x1 = -1 x2 = 0.5 x3 = 1
- x1 = 1 x2 = 0.5 x3 = 1
- $x1 = 0.917716 \ x2 = 0.084068 \ x3 = 0.57089$
- $x1 = -0.917716 \ x2 = 0.084068 \ x3 = 0.57089$

Eksperyment został przeprowadzony dla dwóch różnych warunków stopu oraz trzech różnych wartości $\rho = \{0.01, 0.0001, 0.000001\}$. Wektory początkowe wybierałam w sposób losowy z przedziału [-1, 2] korzystając z funkcji bibliotecznej numpy random.uniform.

Poniższe tabele zawierają wyniki z kryterium stopu pierwszym czyli kiedy moduł z różnicy każdego z x był mniejszy od wartości ρ.

	Wynik	Liczba iteracji
Wektor Początkowy	[0.564 0.6291 0.7803]	
epsilon = 0.01	1.00015, 0.5, 1.0	3
epsilon = 0.0001	1.0, 0.5, 1.0	4
epsilon = 0.000001	1.0, 0.5, 1.0	4

Wektor Początkowy	[-0.0234 0.5966 0.5652]	
epsilon = 0.01	-1.00004, 0.5, 1.0	8
epsilon = 0.0001	-1.0, 0.5, 1.0	9
epsilon = 0.000001	-1.0, 0.5, 1.0	9

Wektor Początkowy	[-0.7914 0.3007 -0.5588]	
epsilon = 0.01	-0.917621, 0.083683, 0.570508	9
epsilon = 0.0001	-0.917716, 0.084058, 0.570889	10
epsilon = 0.000001	-0.917716, 0.084058, 0.570889	10

Wektor Początkowy	[0.5058 0.5306 -0.8088]	
epsilon = 0.01	0.916196, 0.078834, 0.565498	7
epsilon = 0.0001	0.917716, 0.084058, 0.570889	9
epsilon = 0.000001	0.917716, 0.084058, 0.570889	9

Wektor Początkowy	[1, 1, 1]	
epsilon = 0.01	1.00061, 0.502398, 1.002387	3
epsilon = 0.0001	1.000003, 0.500011, 1.000011	4
epsilon = 0.000001	1.0, 0.5, 1.0	5

Wektor Początkowy	[-1, -1, -1]	
epsilon = 0.01	0.917722, 0.084058, 0.570889	9
epsilon = 0.0001	-0.917722, 0.084058, 0.570889	9
epsilon = 0.000001	-0.917716, 0.084058, 0.570889	10

Poniższe tabele zawierają wyniki z wykorzystaniem kryterium stopu drugiego czyli, kiedy wartość każdego z równań mniejsza od ρ .

	Wynik	Liczba iteracji
Wektor Początkowy	[0.5481 -0.9849 -0.8598]	
epsilon = 0.01	0.916433, 0.079577, 0.566285	7
epsilon = 0.0001	0.917703, 0.084003, 0.570834	8
epsilon = 0.000001	0.917716, 0.084058, 0.570889	9

Wektor Początkowy	[-0.6344 0.2614 0.9264]	
epsilon = 0.01	-0.925542, 0.064392, 0.551383	-1
epsilon = 0.0001	-0.917715, 0.084056, 0.570886	4
epsilon = 0.000001	-0.917716, 0.084058, 0.570889	5

Wektor Początkowy	[0.5672 0.8489 0.1101]	
epsilon = 0.01	1.000173, 0.500085, 1.000085	4
epsilon = 0.0001	1.0, 0.5, 1.0	5
epsilon = 0.000001	1.0, 0.5, 1.0	5

Wektor Początkowy	[-0.5996 0.9274 0.5171]	
epsilon = 0.01	-1.001562, 0.500453, 1.000454	3
epsilon = 0.0001	-1.000001, 0.5, 1.0	4
epsilon = 0.000001	-1.0, 0.5, 1.0	5

WNIOSKI

- Napisany program znalazł wszystkie możliwe rzeczywiste rozwiązania
- Rozwiązania są bardzo dokładne dla każdego z ρ, jednakże dla najmniejszej wartości wynik jest praktycznie bezbłędny.
- Program potrzebuje mniej iteracji kiedy wektor początkowy jest bliżej najbliższego rozwiązania.
- Dla zbyt dużych wartości wartości początkowych program nie znajdował żadnego z rozwiązań
- Przy użyciu obu kryteriów stopu udało się znaleźć wszystkie wyniki i dla obu z nich ilość iteracji potrzebna do znalezienia satysfakcjonującego wyniku jest podobna.