Université de M'hamedBouguerraBoumerdès Faculté des sciences Département d'Informatique

Module : Théorie des Langages. Année : 2019-2020

Filière : LI- S4 Document : Série 4 (Corrigé)

Chapitre 4 : Langage régulier

Objectif : Comprendre la relation entre les automates à états finis, grammaire régulière, et expression régulière.

Exercice1

a) Déterminer une expression régulière pour l'automate suivant :

On construit le système d'équations (on a 3 états donc 3 équations)

$$\begin{cases} L_0 = a L_0 + b L_1 \\ L_1 = b L_1 + a L_2 \\ L_2 = b L_0 + a L_2 + \epsilon \end{cases}$$

- $\Rightarrow L_2 = a^* (b L_0 + \varepsilon) = (a^* b) L_0 + a^*$
- \Rightarrow L₁ = (b* a) L₂
- \Rightarrow L₁ = b* a (a* b L₀+a*)
- $\Rightarrow L_1 = (b^* a a^* b) L_0 + (b^* a a^*)$
- \Rightarrow L₀ = (a* b) L₁
- $\Rightarrow L_0 = (a^* bb^* aa^* b) L_0 + (a^* bb^* aa^*)$
- \Rightarrow L₀ = (a* bb* aa* b)* a* bb* aa*
- \Rightarrow Ou L₀ = $(a^* b^+ a^+ b)^* a^* b^+ a^+$

b) Construire les AEF correspondants aux expressions régulières suivantes :

Exp 1 = 10 + (0+11)0*1

Etape 1 : construire l'automate indéterministe avec ε-transitions

Remarque : on peut avoir plusieurs automates avec ε-transitions selon votre expérience. Dans cet exemple j'ai donné un automate pas trop détaillé mais vous pouvez détailler plus en rajoutant d'autres ε-transitions (pour 0* ou (0+11)) mais l'automate minimal sera le même quel que soit l'automate de départ (bien sûr s'il est juste)

Etape 2 : déterminiser l'automate

	0	1
ε -f {A}= { A, B, E}	ε -f {G}= { G, H}	ϵ -f {C, F}= { C, F}
{G, H } S2	ε-f {H}= { H } S4	ε-f {I}= { I } S5
{C, F}	ε-f {D}= { D} S6	ε -f {G}= { G, H } S2
{ H} <mark>S4</mark>	ε-f {H}= { H } S4	ε-f {I}= { I } S5
{ I} S5 {D}S6	/	/

Etape 3: minimiser l'automate

Pas d'états inaccessibles β 0 = ({S1, S2, S3, S4}, {S5, S6}) β 1 = ({S1}, {S3}, {S2, S4}, {S5, S6}) β 2 = β 1, on s'arrête.

Donc l'automate d'états finis minimal qui reconnaît cette expression est

2. Exp $2 \equiv (00+01)^* + (10+01)^*$

Etape 1 : construire l'automate indéterministe avec ϵ -transitions

Etape 2 : déterminer l'automate

		T. T.
	0	1
ε -f {A}= { A, B, E, F, I }	ϵ -f {C, D, H}= { C, D, H}	ε -f {G}= { G}
S1 initial et final	S2	S3
{ C, D, H}	ε-f {E}= { B, E }	ε -f {E, I}= {B, E, F,I}
S2	S4	S5
{G}	ε-f {I}= { F, I }	1
S3	S6	
{ B, E }	ε -f {C, D}= { C, D}	1
S4 final	S7	
{B, E, F, I}	ϵ -f {C, D, H}= { C, D, H}	ε -f {G}= { G}
S5 final	S2	S3
{ F, I }	ϵ -f {H}= { H}	ε -f {G}= { G}
S6 final	S8	S3
{ C, D}	ε-f {E}= { B, E }	ε-f {E}= { B, E }
S7	S4	S4
{ H}	/	ε-f {I}= { F, I }
<u>S8</u>		S6

Etape 3: minimiser l'automate

```
Pas d'états inaccessibles  \beta \ 0 \equiv (\{S2, S3, S7, S8\}, \{S1, S4, S5, S6\})   \beta \ 1 \equiv (\{S2, S7\}, \{S3\}, \{S8\}, \{S4\}, \{S1, S5, S6\})   \beta \ 2 \equiv (\{S2\}, \{S7\}, \{S3\}, \{S8\}, \{S4\}, \{S1, S5\}, \{S6\})   \beta \ 3 \equiv \beta \ 2 \ , \ on \ s'arrête.
```

Donc l'automate d'états finis minimal qui reconnaît cette expression est

c) Proposer un automate à états finis et une expression régulière pour les langages suivants :

1. L1= {
$$a^{2n+2}b^p c^{m+1}$$
, $n,m,p \ge 0$ }

On remarque que L1 est la concaténation de 3 langages :

- $L_{1.1}$: le nombre de « a » est pair (2,4,6,...),
- L_{1.2}: le « b » supérieur ou égal à 0 et
- L_{1.3}: le « c » supérieur ou égal à 1.

Après on détermine et on minimise l'automate, on trouve l'automate suivant :

L'expression régulière :

$$\begin{cases} L_1 = a L_2 \\ L_2 = a L_3 \\ L_3 = a L_2 + b L_4 + c L_5 \\ L_4 = b L_4 + c L_5 \\ L_5 = c L_5 + \epsilon \end{cases}$$

- \Rightarrow L₅ = c*
- \Rightarrow L₄= b L₄ + cc*
- \Rightarrow L₄= b*cc*
- \Rightarrow L₃= a L₂ + bb*cc* +cc*
- \Rightarrow L₂= aa L₂ + a (bb*cc*+cc*)
- \Rightarrow L₂= (aa)*a(bb*cc*+cc*)
- \Rightarrow L₁= a(aa)* a (bb*cc* + cc*)

2. L2={ $w c^{2n+1}$, $n \ge 1$ et $w \in \{a, b\}^*$ et |w| = 3m+1, $m \ge 0$ }

L'expression régulière :

$$\begin{cases} & L_1 = (a+b) \ L_2 \\ & L_2 = (a+b) \ L_3 + c \ L_4 \\ & L_3 = (a+b) \ L_1 \\ & L_4 = c \ L_5 \\ & L_5 = c \ L_6 \\ & L_6 = c \ L_5 + \epsilon \end{cases}$$

- \Rightarrow L₆= cc L₆+ ϵ
- \Rightarrow L₆= (cc)*
- \Rightarrow L₅= c (cc)*
- \Rightarrow L₄= cc (cc)*
- $\Rightarrow L_2 = (a+b)^2 L_1 + ccc (cc)^*$
- $\Rightarrow L_1 = (a+b)^3 L_1 + (a+b) \csc (cc)^* \\ \Rightarrow L_1 = ((a+b)^3)^* (a+b) \csc (cc)^*$

Exercice 2 (EXAMEN 2017)

Soient les deux langages suivants :

L1={w∈ {0, 1}* tel que dans chaque mot w de L1, toute sous-chaîne « 11 » est immédiatement suivie par au moins un «0» }

L2= $\{w \in \{0, 1\}^* \text{ tel que chaque w contient au moins la sous séquence } (11 »)$

1. Déterminer un automate à états finis minimal qui accepte le langage L1.

2. Déterminer un automate à états finis minimal qui accepte le langage L2.

3. Déterminer un automate à états finis minimal qui accepte le langage $L1 \cup L2$.

	0	1
{0,1,4} <mark>q0</mark>	{1,4}	{2,5}
{1,4 } <mark>q1</mark>	{1,4}	{2,5}
{2,5} <mark>q2</mark>	{1,4}	{3,6}
{3,6} <mark>q3</mark>	{1,6}	{6}
{6} <mark>q4</mark>	{6}	{6}
{1,6 } <mark>q5</mark>	{1,6}	{2,6}
{2,6} <mark>q6</mark>	{1,6}	{3,6}

Pas d'états inaccessibles

$$\beta \; 0 \equiv (\{q2\}, \, \{q0,\!q1, \, q3, \, q4, \, q5, \, q6\} \;)$$

$$\beta 1 \equiv (\{q2\}, \{q0, q1\}, \{q3, q4, q5, q6\})$$

$$\beta 2 \equiv (\{q2\}, \{q0, q1\}, \{q3, q4, q5, q6\})$$

$$\beta$$
 2 \equiv β 1, on s'arrête.

4. Donner une expression régulière qui dénote le langage L1∪L2.

$$\left\{ \begin{array}{l} L_1 = 0 \ L_1 + 1 \ L_2 + \epsilon \\ L_2 = 0 \ L_1 + 1 \ L_3 \\ L_3 = (0 + 1) \ L_3 + \epsilon \end{array} \right.$$

$$\begin{split} => & L_3 = (0+1)^* \\ => & L_2 = 0 \ L_1 + 1(0+1)^* \\ => & L_1 = 0 \ L_1 + 1 \ (0 \ L_1 + 1(0+1)^*) + \epsilon \\ => & L_1 = (0+10) \ L_1 + 11(0+1)^* + \epsilon \end{split}$$

$$=>$$
L₁= $(0+10)*$ $11(0+1)* + (0+10)*$

Exercice 3 (EXAMEN 2018)

1. Soit l'automate non déterministe M suivant :

a) Construire un automate M' déterministe minimum équivalent à M.

	a	b
0 S0 initial	{1,2,3}	/
{1,2,3} S1 final	0	{0,1,2}
{0,1,2} S2 final	{0,1,2,3}	{1,2}
{0,1,2,3} S3 final	{0,1,2,3}	{0,1,2}
{1,2} <mark>S4</mark> final	0	{1,2}

Minimisation:

Pas d'états inaccessibles

$$\begin{array}{l} \beta \ 0 \equiv (\{S0\}, \ \{S1, S2, S3, S4\} \) \\ \beta \ 1 \equiv (\{S0\}, \ \{S1, S4\}, \ \{S2, S3\} \) \\ \beta \ 2 \equiv (\{S0\}, \ \{S1\}, \ \{S4\}, \ \{S2\}, \ \{S3\} \) \\ On \ s'arrête. \end{array}$$

b) Déterminer une grammaire régulière à droite G1 qui engendre L(M).

$$G1=(\{a,b\},\{S,A,B,C,D\},S,P1)$$

P1 = {
$$S \rightarrow aA$$
, $A \rightarrow aSl bBl \epsilon$, $B \rightarrow aDl bCl \epsilon$, $C \rightarrow aSl bCl \epsilon$, $D \rightarrow aDl bBl\epsilon$ }

- 2. Soit la grammaire G2= ({a,b}, {S,A,B}, S, R) avec R={S \rightarrow abS/aA, A \rightarrow bA/B B \rightarrow aS/ ϵ }
 - a) Quel est le type de G2 et L(G2)?

La grammaire G2 est de type 3 d'après le format de ses règles =>L(G2) est un langage régulier.

c) Comparer L(G1) et L(G2)

On construit l'automate M2 à partir de la grammaire G2

On peut décomposer la règle $S \rightarrow abS$ en $\{S \rightarrow aC, C \rightarrow bS\}$

On remarque qu'on retrouve l'automate M => L(G1) = L(G2)

d) Déterminer une grammaire régulière à gauche G3 qui engendre L(M).

Etape 1 : construire l'automate transposé de M

Etape 2 : déterminer et minimiser

On obtient l'automate suivant :

Etape 3 : construire la grammaire régulière à droite

G3=($\{a,b\}$, $\{A,B,C\}$, $A,\{A\rightarrow bA|aB,B\rightarrow bC|aA|\epsilon,C\rightarrow aB\}$)

Etape 4 : construire la grammaire régulière à gauche (en inversant les symboles)

G3=($\{a,b\}$, $\{A,B,C\}$, A, $\{A \rightarrow Abl Ba, B \rightarrow Cb \mid Aal \varepsilon, C \rightarrow Ba\}$)

Exercice 4

Pour démontrer qu'un langage infini est non régulier, il faut utiliser la contradiction du lemme de pompage.

Pour démontrer qu'un langage est régulier, il faut utiliser l'une des méthodes suivantes :

- Dessiner l'automate
- Donner une grammaire régulière
- Appliquer les opérations de fermeture sur les langages réguliers
- Donner une expression régulière

Parmi les langages suivants quels sont ceux qui sont réguliers ?

1. $L_1 = \{s = a^n : n \text{ est un nombre premier}\}\$

L1 n'est pas régulier et la démonstration se fait par contradiction du lemme de pompage.

 $\forall p \ge 0$, $\exists w \in \sum^* = \{a\}^*$, soit $w = a^i$ avec i nombre premier, $i \ge P$ et $|w| = i \ge P$; et $\forall x; y; z \in \sum^*$, w = xyz avec |y| > 0 et $|xy| \le p$; (Il ne pourra exister qu'un seul découpage au niveau du a) $w = a^{|x|} : a^{|y|} : a^{i-|x|-|y|}$.

Si on calcule w₂ en pompant au niveau de y on obtient :

$$w_2 = w = a^{|x|} a^{2|y|} a^{i-|x|-|y|}$$

 $w_2 = a^{i+1.|y|}$

Si on calcule w_{i+1} en pompant au niveau de y on obtient :

 $W_{i+1}=a^{i+i|y|}=a^{i(1+|y|)}$, l'exposant de a n'est pas nombre premier $\Rightarrow W_{i+1} \notin L$ $\Rightarrow L_1$ est non régulier

2.
$$L_2 = \{a^n b^{2m}, n, m \ge 0\} \cup \{a^n, n \ge 0\}$$

 L_2 est régulier car c'est l'union de deux langage réguliers L_{21} et L_{22} avec $L_{21} = \{a^n b^{2m} n,m>=0\}$ et $L_{22} = \{a^n n>=0\}$ nous remarquons également que $L_{22} \subseteq L_{21}$

3.
$$L_3 = \{s = a^n b^{2n}, n \le 100\}$$

L₃ est régulier car L₃ est un langage fini.

4. L'ensemble des mots ayant autant de zéros que de uns.

L₄ n'est pas régulier, il suffit de démontrer en utilisant lemme du pompage sur le mot w=0ⁿ1ⁿ (même démonstration vue dans le cours).

5. L'ensemble des mots sur {0,1} n'ayant pas 3 zéros consécutifs.

L₅ est régulier, une des démonstrations possibles est l'écriture d'une grammaire G de type 3 qui génère ce langage.

G = avec S axiome, Vn={S,T,V}, Vt={0,1}, P={S
$$\rightarrow$$
1S/0T/ ϵ
T \rightarrow 1T/ 0V/ ϵ
V \rightarrow 1S/ ϵ }

Ou de donner l'automate complément de langage {tous les mots sur {0,1} ayant 3 zéros consécutifs} vu dans le chapitre 3

Exercice 5

Donnez une expression régulière étendue décrivant les langages suivants

- 1. tous les mots sur {a, b} où chaque a est précédé d'un b;
- 2. tous les mots sur {a, b} contenant à la fois les facteurs aa et bb;
- 3. tous les mots sur {a, b} contenant soit aa soit bb mais pas les deux à la fois ;
- 4. tous les mots sur {a, b} ne contenant pas deux a consécutifs ;
- 5. tous les mots sur {a, b, c} où le nombre de a est multiple de 2 ;
- **6.** Tous les entiers (en base dix) multiples de 5.

Solution

- 1. (blba)*
- 2. $[ab]{2,}$
- 3. soit aa soit bb mais pas les deux ab*ab* | ba*ba* ou (ab*| ba*)*
- 4. pas deux a consécutif (b^{*} a ?)*
- 5. a multiple de deux (aalblc)*
- 6. [0-9] *[05]

Devoir (EXAMEN 2017)

Soit la grammaire suivante $G = (\{a, b\}, \{S, A, B, C\}, S, R)$ avec $R : R = \{S \rightarrow Sa \mid Aa \mid Ca\}$

```
A→Bb
B→Ca/ Sa/ Aa
C→ε
```

- 1. Déterminer un automate d'état fini minimal qui accepte le langage engendré par cette grammaire
- 2. Donner une expression régulière (notée EXP1) qui dénote le langage engendré par cette grammaire (noté L(EXP1).
- 3. Soit l'expression régulière EXP2= ((a+ab)*+(a+aa)*)*. Le langage dénoté par cette expression est noté L(EXP2). Déterminer un automate d'état fini minimal qui accepte le langage dénoté par cette expression.
- 4. Comparer L(EXP1) et L(EXP2) : a-t-on L(EXP1)=L(EXP2) ou L(EXP1) \supset L(EXP2) ou L(EXP1) \subset L(EXP2)? Justifier.