wiki.t-of.info

<u>Arduino</u> > Exemple Mutliplexeur d'entrées numériques 74HC165

Contents (hide)

- 1. Tutoriel Arduino
- 2. Description
- 3. Un seul multiplexeur
 - 3.1 Circuit
 - 3.2 <u>Code</u>
- 4. Cascade de multiplexeurs
 - 4.1 Circuit
 - 4.2 Code

1. Tutoriel Arduino

• http://arduino.cc/en/Tutorial/ShiftIn

2. Description

Le 74HC165 est multiplexeur d'entrées numériques.

BROCHE	NOM		FONCTION
3-6,11-14	А-Н	D0-D7	Entrées numériques
9	QH	Q7	DATA (sortie numérique)
2	CLK	СР	CLOCK (horloge/impulsion)
15	INH	CE	Brancher au GND
1	SH/LD	PL	LATCH (active la sortie Q7 lorsque HIGH)
10	SER	DS	Brancher au Q7 d'un autre 74HC165 si plusieurs sont enchaînés
8	GND		Brancher au GND
16	VCC		Brancher au 5V

3. Un seul multiplexeur

3.1 Circuit

multiplexer.sch

3.2 Code

```
// HARDWARE CONNECTIONS
int LATCH = 11;
int CLOCK = 10;
int DATA = 9;

byte a=0;

void setup() {
    Serial.begin(57600);

    pinMode(LATCH, OUTPUT);
    pinMode(CLOCK, OUTPUT);
    pinMode(DATA, INPUT);

    digitalWrite(CLOCK, LOW);
    digitalWrite(LATCH, LOW);
}

void loop() {
    digitalWrite(LATCH, HIGH);
```

```
byte a temp = shiftInFixed(DATA,CLOCK);
        digitalWrite(LATCH, LOW);
        // Envoie la valeur lue si elle change
        if ( a temp != a ) {
                 a = a temp;
                 Serial.print("A ");
                 Serial.println(a,DEC);
}
byte shiftInFixed(byte dataPin, byte clockPin) {
        byte value = 0;
        for (byte i = 0; i < 8; ++i) {</pre>
                                 (digitalRead(dataPin) << i);</pre>
                 value = value |
                 digitalWrite(clockPin, HIGH);
                 digitalWrite(clockPin, LOW);
        return value;
}
```

4. Cascade de multiplexeurs

4.1 Circuit

multiplexer_cascade.sch

4.2 Code

```
// HARDWARE CONNECTIONS
int LATCH = 11;
int CLOCK = 10;
int DATA = 9;
#define NUM OF 74HC165 2
byte received[NUM OF 74HC165];
byte previous[NUM_OF_74HC165];
void setup() {
        Serial.begin(57600);
        pinMode(LATCH, OUTPUT);
        pinMode(CLOCK, OUTPUT);
        pinMode(DATA, INPUT);
        digitalWrite(CLOCK, LOW);
        digitalWrite(LATCH, LOW);
}
void loop() {
        digitalWrite(LATCH, HIGH);
        for (byte i=0; i < NUM OF 74HC165; i++) {
                received[i] = shiftInMSBFirst(DATA,CLOCK);
        digitalWrite(LATCH, LOW);
        // Envoie la valeur si elle a changé
        for (byte i=0; i < NUM OF 74HC165; i++) {
                if ( previous[i] != received[i] ) {
                         previous[i] = received[i];
                         Serial.print(i,DEC);
                         Serial.print(' ');
                         Serial.print(received[i], DEC);
                         Serial.println();
                 }
        }
byte shiftInMSBFirst(byte dataPin, byte clockPin) {
        byte value = 0;
        for (byte i = 0; i < 8; ++i) {</pre>
                value = value | digitalRead(dataPin) << (7 - i);</pre>
                digitalWrite(clockPin, HIGH);
                digitalWrite(clockPin, LOW);
        return value;
}
```