

What is claimed is:

1. A compound of formula I:

5

or a pharmaceutically acceptable salt thereof, wherein
 R_2 is hydrogen, or

R_2 is $(\text{C}_3\text{-}\text{C}_7$ cycloalkyl) $_{0\text{-}1}$ ($\text{C}_1\text{-}\text{C}_6$ alkyl)-, $(\text{C}_3\text{-}\text{C}_7$ cycloalkyl) $_{0\text{-}1}$ ($\text{C}_2\text{-}\text{C}_6$ alkenyl)-, $(\text{C}_3\text{-}\text{C}_7$ cycloalkyl) $_{0\text{-}1}$ ($\text{C}_2\text{-}\text{C}_6$ alkynyl)- or $(\text{C}_3\text{-}\text{C}_7$ cycloalkyl)-, wherein each of said groups is optionally substituted with 1, 2, or 3 R_2 groups, wherein 1 or 2 methylene groups within said $(\text{C}_3\text{-}\text{C}_7$ cycloalkyl) $_{0\text{-}1}$ ($\text{C}_1\text{-}\text{C}_6$ alkyl)-, $(\text{C}_3\text{-}\text{C}_7$ cycloalkyl) $_{0\text{-}1}$ ($\text{C}_2\text{-}\text{C}_6$ alkenyl)-, $(\text{C}_3\text{-}\text{C}_7$ cycloalkyl) $_{0\text{-}1}$ ($\text{C}_2\text{-}\text{C}_6$ alkynyl)- or $(\text{C}_3\text{-}\text{C}_7$ cycloalkyl)- groups are optionally replaced with $-(\text{C}=\text{O})-$;

10 R_2 at each occurrence is independently halogen (in one aspect, F or Cl), -OH, -SH, -CN, -CF₃, -OCF₃, C₁-C₆ alkoxy, C₃-C₇ cycloalkyl, C₃-C₇ cycloalkoxy or -NR₁₀₀R₁₀₁;

15 R₁₀₀ and R₁₀₁ at each occurrence are independently H, C₁-C₆ alkyl, phenyl, CO(C₁-C₆ alkyl) or SO₂C₁-C₆ alkyl;

20 X' is $-(\text{C}=\text{O})-$ or $-(\text{SO}_2)-$;

25 Y is absent or is $-(\text{CH}_2)_n-$, where n = 1, 2, or 3 and where up to 3 hydrogens of $-(\text{CH}_2)_n-$ are optionally replaced with one, two or three substituents selected from

20 C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, -COOH, -COO(C₁-C₆ alkyl), -N(COR)R', -CONRR' or -NRR' where R and R' independently are -H or C₁-C₁₀ alkyl;

30 R₁ is H, $-(\text{CH}_2)_{1\text{-}2}\text{-S(O)}_{0\text{-}2}\text{-}(\text{C}_1\text{-}\text{C}_6$ alkyl), or

C₁-C₁₀ alkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, =O, -SH, -C≡N, -CF₃, -COOR, C₁-C₃ alkyl, -C₁-C₃ alkoxy, amino, monoalkylamino, dialkylamino, -CONRR', -N(R)C(O)R'-, -OC(=O)-amino, -OC(=O)-monoalkylamino, and -OC(=O)-dialkylamino or

5 C₂-C₆ alkenyl or C₂-C₆ alkynyl, each of which is optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, amino, and mono- or dialkylamino, or

10 -C₁-C₆ alkyl-(C₃-C₇)cycloalkyl where cycloalkyl can be optionally substituted with C₁-C₃ alkyl, halogen, -OH, -SH, -C≡N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, -CO₂H, -CO₂-(C₁-C₄ alkyl), or -NRR', or

15 aryl, heteroaryl, heterocyclyl, -C₁-C₆ alkyl-aryl, -C₁-C₆ alkyl-heteroaryl, or -C₁-C₆ alkyl-heterocyclyl, where the ring portions of each are optionally substituted with 1, 2, 3, or 4 of

halogen, -OH, -SH, -C≡N, -NRR', -CO₂R, -20 N(R)COR', or -N(R)SO₂R', -C(=O)-(C₁-C₄) alkyl, -SO₂-amino, -SO₂-mono or dialkylamino, -C(=O)-amino, -C(=O)-mono or dialkylamino, -SO₂-(C₁-C₄) alkyl, or -C₁-C₆ alkoxy optionally substituted with 1, 2, or 3 independently selected halogens, or

25 C₃-C₇ cycloalkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, amino, -C₁-C₆ alkyl and mono- or dialkylamino, or

C₁-C₁₀ alkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C≡N, -CF₃, -C₁-C₃ alkoxy, amino, mono- or dialkylamino and -C₁-C₃ alkyl, or

30 C₂-C₁₀ alkenyl or C₂-C₁₀ alkynyl each of which is optionally substituted with 1, 2, or 3 groups

independently selected from halogen, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, amino, C₁-C₆ alkyl and mono- or dialkylamino;

R and R' are independently -H or C₁-C₁₀ alkyl;

- 5 R₃ and R_{3'} at each occurrence are independently H, C₁-C₆ alkyl, -CO₂-C₁-C₆ alkyl, or -CO-O-(CH₂)_n-phenyl where n is 0, 1 or 2 and phenyl is optionally substituted with C₁-C₆ alkyl;
- 10 R₄ and R₅ are independently H or C₁-C₆ alkyl optionally substituted with one, two or three substituents independently selected from C₁-C₃ alkoxy, halogen, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, and -NR'R';

X is absent or is:

- 15 R₇ is H, C₁-C₆ alkyl, -CO-O-C₁-C₆ alkyl, or -CO-O-(CH₂)_n-phenyl where n is 0, 1 or 2 and phenyl is optionally substituted with C₁-C₆ alkyl, and wherein each C₁-C₆ alkyl is optionally independently substituted with one, two or three substituents independently selected from C₁-C₃ alkoxy, halogen, -OH, -SH, -C≡N, -CF₃, C₁-C₆ alkoxy, -NR₁₀₂R'₁₀₂,
- 20 Z is H, C₁-C₆ alkyl, CN, -O-C₁-C₆ alkyl, or NO₂;
- R₁₀₂ and R'₁₀₂ independently are hydrogen, or C₁-C₁₀ alkyl optionally substituted with 1, 2, or 3 groups that are independently halogen, or aryl, wherein aryl is optionally with 1 or 2 R₁₂₅ groups;
- 25 R₁₂₅ at each occurrence is independently halogen, amino, mono- or dialkylamino, -OH, -C≡N, -SO₂-NH₂, -SO₂-NH-C₁-C₆ alkyl, -SO₂-N(C₁-C₆ alkyl)₂, -SO₂-(C₁-C₄ alkyl), -CO-NH₂, -CO-NH-C₁-C₆ alkyl, or -CO-N(C₁-C₆ alkyl)₂, or

C_1-C_6 alkyl, C_2-C_6 alkenyl or C_2-C_6 alkynyl, each of which is optionally substituted with 1, 2, or 3 groups that are independently selected from C_1-C_3 alkyl, halogen, -OH, -SH, -C≡N, -CF₃, C_1-C_3 alkoxy, amino, and mono- and dialkylamino, or

5 C_1-C_6 alkoxy optionally substituted with one, two or three of halogen;

R_6 is - (CR₂₄₅R₂₅₀)₀₋₄-aryl, - (CR₂₄₅R₂₅₀)₀₋₄-heteroaryl, - (CR₂₄₅R₂₅₀)₀₋₄-heterocyclyl, - (CR₂₄₅R₂₅₀)₀₋₄-aryl-heteroaryl, - (CR₂₄₅R₂₅₀)₀₋₄-aryl-heterocyclyl, - (CR₂₄₅R₂₅₀)₀₋₄-aryl-aryl, - (CR₂₄₅R₂₅₀)₀₋₄-heteroaryl-aryl, - (CR₂₄₅R₂₅₀)₀₋₄-heteroaryl-heterocyclyl, - (CR₂₄₅R₂₅₀)₀₋₄-heteroaryl-heteroaryl, - (CR₂₄₅R₂₅₀)₀₋₄-heterocyclyl-heteroaryl, - (CR₂₄₅R₂₅₀)₀₋₄-heterocyclyl-aryl, - [C(R₂₅₅)(R₂₆₀)]₁₋₃-CO-N-(R₂₅₅)₂, - CH(aryl)₂, - CH(heteroaryl)₂, - CH(heterocyclyl)₂, - CH(aryl)(heteroaryl), - (CH₂)₀₋₁-CH((CH₂)₀₋₆-OH)-(CH₂)₀₋₁-aryl, - (CH₂)₀₋₁-CH((CH₂)₀₋₆-OH)-(CH₂)₀₋₁-heteroaryl, - CH(-aryl or -heteroaryl)-CO-O(C₁-C₄ alkyl), - CH(-CH₂-OH)-CH(OH)-phenyl-NO₂, - (C₁-C₆ alkyl)-O-(C₁-C₆ alkyl)-OH; - (C₁-C₆ alkyl)-O-(C₁-C₆ alkenyl); - (C₁-C₆ alkyl)-O-(C₁-C₆ alkyl)-O-(C₁-C₆ alkyl); - (C₁-C₆ alkyl)-O-(C₀-C₆ alkyl)-aryl; - (C₁-C₆ alkyl)-O-(C₀-C₆ alkyl)-cycloalkyl; - CH₂-NH-CH₂-CH(-O-CH₂-CH₃)₂, - (CH₂)₀₋₆-C(=NR₂₃₅)(NR₂₃₅R₂₄₀), - (C₂-C₆ alkenyl)-heteroaryl, - (CR₂₄₅R₂₅₀)₁₋₄-N(R₂₃₅)-C(=O)-O-(C₁-C₃ alkyl)-aryl, - (CR₂₄₅R₂₅₀)₁₋₄-N(R₂₃₅)-C(=O)-(C₀-C₃ alkyl)-aryl, - (CR₂₄₅R₂₅₀)₁₋₄-N(R₂₃₅)-C(=O)-(C₀-C₃ alkyl)-heteroaryl, - (CR₂₄₅R₂₅₀)₁₋₄-C(=O)-aryl, - (CR₂₄₅R₂₅₀)₁₋₄-C(=O)-heteroaryl, or

30 C_1-C_{10} alkyl optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of R₂₀₅, cyclopentenyl, -OC=ONR₂₃₅R₂₄₀, -S(=O)₀₋₂(C₁-C₆ alkyl), -SH, -NR₂₃₅C=ONR₂₃₅R₂₄₀, -C=ONR₂₃₅R₂₄₀, -NR₂₃₅-

C(=O)-O-R₂₀₅, and -S(=O)₂NR₂₃₅R₂₄₀, -NR₂₃₅C(=O)-(C₁-C₆ alkyl), =O, or

5 - (CH₂)₀₋₃₋(C₃-C₈) cycloalkyl wherein the cycloalkyl is optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of R₂₀₅, -CO₂H, -CO₂-(C₁-C₄ alkyl), -CO-NH₂, -CO-NH(C₁-C₆ alkyl) and -CO-N-(C₁-C₆ alkyl)(C₁-C₆ alkyl), or cyclopentyl, cyclohexyl, or cycloheptyl ring fused to aryl, heteroaryl, or heterocyclyl wherein one, two or three carbons of the cyclopentyl, cyclohexyl, or cycloheptyl is optionally replaced with a heteroatom independently selected from NH, NR₂₁₅, O, and S(=O)₀₋₂, and wherein the cyclopentyl, cyclohexyl, or cycloheptyl group is optionally substituted with one or two groups that are independently R₂₀₅, =O, -CO-NR₂₃₅R₂₄₀, or -SO₂-(C₁-C₄ alkyl), or

10 C₂-C₁₀ alkenyl or C₂-C₁₀ alkynyl, each of which is optionally substituted with 1, 2, or 3 independently selected R₂₀₅ groups, wherein

15 each aryl and heteroaryl is optionally substituted with 1, 2, or 3 R₂₀₀, and wherein each heterocyclyl is optionally substituted with 1, 2, 3, or 4 independently selected R₂₁₀, and each cycloalkyl is optionally substituted with 1 or 2 R₂₀₅ groups;

20 R₂₀₀ at each occurrence is independently selected from -OH, -NO₂, halogen, -CF₃, -CO₂H, C≡N, -(CH₂)₀₋₄-CO-NR₂₂₀R₂₂₅, -(CH₂)₀₋₄-CO-(C₁-C₁₂ alkyl), -(CH₂)₀₋₄-CO-(C₂-C₁₂ alkenyl), -(CH₂)₀₋₄-CO-(C₂-C₁₂ alkynyl), -(CH₂)₀₋₄-CO-(C₃-C₇ cycloalkyl), -(CH₂)₀₋₄-CO-aryl, -(CH₂)₀₋₄-CO-heteroaryl, -(CH₂)₀₋₄-CO-heterocyclyl, -(CH₂)₀₋₄-CO-O-R₂₁₅, -(CH₂)₀₋₄-SO₂-NR₂₂₀R₂₂₅, -(CH₂)₀₋₄-SO-(C₁-C₈ alkyl), -(CH₂)₀₋₄-SO₂-(C₁-C₁₂ alkyl), -(CH₂)₀₋₄-SO₂-(C₃-C₇ cycloalkyl), -(CH₂)₀₋₄-N(H or R₂₁₅)-CO-O-R₂₁₅, -(CH₂)₀₋₄-N(H or R₂₁₅)-CO-N(R₂₁₅)₂, -(CH₂)₀₋₄-N-CS-N(R₂₁₅)₂, -(CH₂)₀₋₄-N(-H or R₂₁₅)-CO-R₂₂₀, -(CH₂)₀₋₄-NR₂₂₀R₂₂₅, -(CH₂)₀₋₄-O-CO-(C₁-C₆ alkyl), -(CH₂)₀₋₄-O-P(O)-

25

30

35

(OR₂₄₀)₂, -(CH₂)₀₋₄-O-CO-N(R₂₁₅)₂, -(CH₂)₀₋₄-O-CS-N(R₂₁₅)₂, -(CH₂)₀₋₄-O-(R₂₁₅), -(CH₂)₀₋₄-O-(R₂₁₅)-COOH, -(CH₂)₀₋₄-S-(R₂₁₅), -(CH₂)₀₋₄-O-(C₁-C₆) alkyl optionally substituted with 1, 2, 3, or 5 -F, C₃-C₇ cycloalkyl, -(CH₂)₀₋₄-N(H or R₂₁₅)-SO₂-R₂₂₀, -(CH₂)₀₋₄-C₃-C₇ cycloalkyl,
5 C₁-C₁₀ alkyl optionally substituted with 1, 2, or 3 independently selected R₂₀₅ groups,
C₂-C₁₀ alkenyl and C₂-C₁₀ alkynyl, each of which is
10 optionally substituted with 1 or 2 independently selected R₂₀₅ groups, wherein
the aryl and heteroaryl groups at each occurrence are
optionally substituted with 1, 2, or 3 groups that
are independently R₂₀₅, R₂₁₀, or
C₁-C₆ alkyl substituted with 1, 2, or 3 groups that
15 are independently R₂₀₅ or R₂₁₀, and wherein
the heterocyclyl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R₂₁₀;
R₂₀₅ at each occurrence is independently selected from C₁-C₆
20 alkyl, halogen, -OH, -COOH, -O-phenyl, -SH, -S-C₁-C₆ alkyl, -C≡N, -CF₃, C₁-C₆ alkoxy, NH₂, NH(C₁-C₆ alkyl) or N-(C₁-C₆ alkyl)(C₁-C₆ alkyl);
R₂₁₀ at each occurrence is independently selected from halogen,
25 C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, -NR₂₂₀R₂₂₅, OH, C≡N, -CO-(C₁-C₄ alkyl), -SO₂-NR₂₃₅R₂₄₀, -CO-NR₂₃₅R₂₄₀, -C(=O)-(C₁-C₆ alkyl)-NR₂₃₅-C(=O)-O-R₂₀₅, -C(=O)-(C₁-C₄ alkyl)-OH, -C(=O)-(C₁-C₆ alkyl)-NR₂₃₅R₂₄₀, -C(=O)-(C₁-C₆ alkyl)-imidazolyl, -SO₂-(C₁-C₄ alkyl), -CO₂-(C₁-C₄ alkyl), =O, or
30 C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl or C₃-C₇ cycloalkyl, each of which is optionally substituted with 1, 2, or 3 R₂₀₅ groups;
R₂₁₅ at each occurrence is independently selected from C₁-C₆ alkyl, -(CH₂)₀₋₂-(aryl), C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₇ cycloalkyl, and -(CH₂)₀₋₂-(heteroaryl), -(CH₂)₀₋₂-(heterocyclyl), wherein
35

the aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R₂₀₅ or R₂₁₀, and wherein

5 the heterocyclyl and heteroaryl groups at each occurrence are optionally substituted with 1, 2, or 3 independently selected R₂₁₀;

R₂₂₀ and R₂₂₅ at each occurrence are independently selected from -H, -C₃-C₇ cycloalkyl, -(C₁-C₂ alkyl)-(C₃-C₇ cycloalkyl), -(C₁-C₆ alkyl)-O-(C₁-C₃ alkyl), -C₂-C₆ alkenyl, -C₂-C₆ 10 alkynyl, -C₁-C₆ alkyl chain with one double bond and one triple bond, -aryl, -heteroaryl, and -heterocyclyl, and -C₁-C₁₀ alkyl optionally substituted with -OH, -NH₂ or halogen, wherein

15 the aryl, heterocyclyl and heteroaryl groups at each occurrence are optionally substituted with 1, 2, or 3 independently selected R₂₇₀ groups

R₂₃₅ and R₂₄₀ at each occurrence are independently H, or C₁-C₆ alkyl;

20 R₂₄₅ and R₂₅₀ at each occurrence are independently selected from -H, halogen, -CF₃, -OH, -NH₂, -NR₂₃₅-C(=O)-O-R₂₀₅, C₁-C₄ alkyl, C₁-C₄ alkylaryl, C₁-C₄ alkylheteroaryl, C₁-C₄ hydroxyalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, -(CH₂)₀₋₄-C₃-C₇ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, and phenyl; or

25 R₂₄₅ and R₂₅₀ are taken together with the carbon to which they are attached to form a carbocycle of 3, 4, 5, 6, or 7 carbon atoms, where one carbon atom is optionally replaced by a heteroatom selected from -O-, -S-, -SO₂-, and -NR₂₂₀-;

30 R₂₅₅ and R₂₆₀ at each occurrence are independently selected from -H, -(CH₂)₁₋₂-S(O)₀₋₂-(C₁-C₆ alkyl), -(C₁-C₄ alkyl)-aryl, -(C₁-C₄ alkyl)-heteroaryl, -(C₁-C₄ alkyl)-heterocyclyl, -aryl, -heteroaryl, -heterocyclyl, -(CH₂)₁₋₄-R₂₆₅-(CH₂)₀₋₄-aryl, -(CH₂)₁₋₄-R₂₆₅-(CH₂)₀₋₄-heteroaryl, -(CH₂)₁₋₄-R₂₆₅-(CH₂)₀₋₄-heterocyclyl, and

C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl and -(CH₂)₀₋₄-C₃-C₇
 cycloalkyl, each of which is optionally substituted
 with 1, 2, or 3 groups independently selected from
 R₂₀₅, -COOH, -COO(C₁-C₄ alkyl), -CO-NH₂, -CO-NH(C₁-C₆
 alkyl), -CO-N-(C₁-C₆ alkyl)(C₁-C₆ alkyl), wherein
 5 each aryl or phenyl is optionally substituted with 1, 2,
 or 3 groups that are independently R₂₀₅, R₂₁₀, or
 C₁-C₆ alkyl substituted with 1, 2, or 3 groups that
 are independently R₂₀₅ or R₂₁₀, and wherein
 10 each heterocyclyl is optionally substituted with 1, 2, 3,
 or 4 R₂₁₀;
 R₂₆₅ at each occurrence is independently -O-, -S- or -N(C₁-C₆
 alkyl)-; and
 R₂₇₀ at each occurrence is independently R₂₀₅, halogen C₁-C₆
 15 alkoxy, C₁-C₆ haloalkoxy, NR₂₃₅R₂₄₀, -OH, -C≡N, -CO-(C₁-C₄
 alkyl), -SO₂-NR₂₃₅R₂₄₀, -CO-NR₂₃₅R₂₄₀, -SO₂-(C₁-C₄ alkyl), =O,
 or
 C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl or -(CH₂)₀₋₄-C₃-C₇
 cycloalkyl, each of which is optionally substituted
 20 with 1, 2, or 3 R₂₀₅ groups.

2. A compound according to claim 1 wherein

wherein X is

3. A compound according to claim 1 wherein

25 R₁ and Y together form aryl, heteroaryl, heterocyclyl, -C₁-C₆
 alkyl-aryl, -C₁-C₆ alkyl-heteroaryl, or -C₁-C₆ alkyl-
 heterocyclyl, where the ring portions of each are
 optionally substituted with 1, 2, 3, or 4 groups
 independently selected from halogen, -OH, -SH, -C≡N,
 -NO₂, -NRR', -CO₂R, -N(R)COR', or -N(R)SO₂R',
 30 -C(=O)-(C₁-C₄) alkyl, -SO₂-amino, -SO₂-mono or
 dialkylamino, -C(=O)-amino, -C(=O)-mono or
 dialkylamino, -SO₂-(C₁-C₄) alkyl, or

C_1-C_6 alkoxy optionally substituted with 1, 2, or 3 groups which are independently selected from halogen, or

5 C_3-C_7 cycloalkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C≡N, -CF₃, C_1-C_3 alkoxy, amino, - C_1-C_6 alkyl and mono- or dialkylamino, or

10 C_1-C_{10} alkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C≡N, -CF₃, - C_1-C_3 alkoxy, amino, mono- or dialkylamino and - C_1-C_3 alkyl, or

15 C_2-C_{10} alkenyl or C_2-C_{10} alkynyl each of which is optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, -SH, -C≡N, -CF₃, C_1-C_3 alkoxy, amino, C_1-C_6 alkyl and mono- or dialkylamino; and the heterocyclyl group is optionally further substituted with oxo.

20 4. A compound according to claim 1 wherein

R_1 and Y together form -(CH₂)_n-aryl, wherein n is 1, 2 or 3 and wherein 1, 2, or 3 hydrogens of -(CH₂)_n- are replaced with one, two or three groups independently selected from F, Cl, Br, I, OH, C_1-C_3 alkoxy, -N(COR)R', and -NRR'.

25 More preferably, n is 1.

5. A compound according to claim 1 wherein

X' is -(C=O)-, and

30 R_2 is C_1-C_6 alkyl optionally substituted with 1 or 2 groups independently selected from halogen (in one aspect, F or Cl), -OH, -SH, -CN, -CF₃, -OCF₃, C_1-C_6 alkoxy, C_3-C_7 cycloalkyl, C_3-C_7 cycloalkoxy or -NR₁₀₀R₁₀₁.

6. A compound according to claim 1 wherein

R₆ is -(CR₂₄₅R₂₅₀)₁₋₄-aryl, -(CR₂₄₅R₂₅₀)₁₋₄-heteroaryl, -(CR₂₄₅R₂₅₀)₁₋₄-heterocyclyl, -(C₁-C₆ alkyl)-O-(C₁-C₃ alkyl)-aryl; -(C₂-C₆ alkenyl)-heteroaryl; or

5 C₁-C₁₀ alkyl optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of halogen, -OH, -O-phenyl, -C₁-C₆ alkoxy, and -NR₂₃₅-C(=O)-O-R₂₀₅, or

10 -(CH₂)₁₋₃-(C₃-C₇) cycloalkyl wherein the cycloalkyl is optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of C₁-C₆ alkyl, halogen, -OH, -C≡N, -CF₃, C₁-C₆ alkoxy, NH₂, or

15 C₂-C₁₀ alkenyl or C₂-C₁₀ alkynyl, each of which is optionally substituted with 1, 2, or 3 independently selected R₂₀₅ groups, wherein

each aryl and heteroaryl is optionally substituted with 1, 2, or 3 of OH, -NO₂, halogen, -CF₃, -CO₂H, C≡N, or C₁-C₆ alkoxy, and wherein each heterocyclyl is optionally substituted with 1, 2, or 3 groups independently selected from -C(=O)-(C₁-C₆ alkyl)-NR₂₃₅-C(=O)-O-R₂₀₅, -C(=O)-(C₁-C₄ alkyl)-OH, and -CO₂-(C₁-C₄ alkyl); and

20 R₂₄₅ and R₂₅₀ at each occurrence are independently selected from -H, halogen, -CF₃, -OH, -NH₂, -C₁-C₄ alkyl, C₁-C₄ alkoxy, and C₁-C₄ haloalkoxy.

25

7. A compound according to claim 1 selected from the group consisting of:

N-[(3S,4S)-4-(acetylamino)-5-(3,5-difluorophenyl)-3-hydroxy-1-methylpentyl]-4-methylpentanamide;

N-[(3S,4S)-4-(acetylamino)-5-(3,5-difluorophenyl)-1-ethyl-3-hydroxypentyl]-4-methylpentanamide;

N-[(3S,4S)-4-(acetylamino)-5-(3,5-difluorophenyl)-3-hydroxy-1-propylpentyl]-4-methylpentanamide;

2-(acetylamino)-1,2,4,5-tetraideoxy-1-(3,5-difluorophenyl)-5-[(4-methylpentanoyl)amino]-L-threo-hexitol;

2-(acetylamino)-1,2,4,5,6-pentadeoxy-1-(3,5-difluorophenyl)-5-[(4-methylpentanoyl)amino]-L-threo-heptitol;

N-[(3S,4S)-4-(acetylamino)-5-(3,5-difluorophenyl)-3-hydroxy-1-methylpentyl]-4-phenylbutanamide;

N-[(3S,4S)-4-(acetylamino)-5-(3,5-difluorophenyl)-1-ethyl-3-hydroxypentyl]-4-phenylbutanamide;

N-[(3S,4S)-4-(acetylamino)-5-(3,5-difluorophenyl)-3-hydroxy-1-propylpentyl]-4-phenylbutanamide;

2-(acetylamino)-1,2,4,5-tetraideoxy-1-(3,5-difluorophenyl)-5-[(4-phenylbutanoyl)amino]-L-threo-hexitol;

2-(acetylamino)-1,2,4,5,6-pentadeoxy-1-(3,5-difluorophenyl)-5-[(4-phenylbutanoyl)amino]-L-threo-heptitol;

N-[(3S,4S)-4-(acetylamino)-5-(3,5-difluorophenyl)-3-hydroxy-1-methylpentyl]-2-(benzyloxy)acetamide;

N-[(3S,4S)-4-(acetylamino)-5-(3,5-difluorophenyl)-1-ethyl-3-hydroxypentyl]-2-(benzyloxy)acetamide;

N-[(3S,4S)-4-(acetylamino)-5-(3,5-difluorophenyl)-3-hydroxy-1-propylpentyl]-2-(benzyloxy)acetamide;

2-(acetylamino)-5-{[(benzyloxy)acetyl]amino}-1,2,4,5-tetraideoxy-1-(3,5-difluorophenyl)-L-threo-hexitol;

2-(acetylamino)-5-{[(benzyloxy)acetyl]amino}-1,2,4,5,6-pentadeoxy-1-(3,5-difluorophenyl)-L-threo-heptitol;

N-[(3S,4S)-4-(acetylamino)-5-(3,5-difluorophenyl)-3-hydroxy-1-methylpentyl]-3-cyclopentylpropanamide;

N-[(3S,4S)-4-(acetylamino)-5-(3,5-difluorophenyl)-1-ethyl-3-hydroxypentyl]-3-cyclopentylpropanamide;

N-[(3*S*,4*S*)-4-(acetylamino)-5-(3,5-difluorophenyl)-3-hydroxy-1-propylpentyl]-3-cyclopentylpropanamide;
2-(acetylamino)-5-[(3-cyclopentylpropanoyl)amino]-1,2,4,5-tetraideoxy-1-(3,5-difluorophenyl)-L-threo-hexitol;
2-(acetylamino)-5-[(3-cyclopentylpropanoyl)amino]-1,2,4,5,6-pentadeoxy-1-(3,5-difluorophenyl)-L-threo-heptitol;
N-[(3*S*,4*S*)-4-(acetylamino)-5-(3,5-difluorophenyl)-3-hydroxy-1-methylpentyl]-2-ethoxyacetamide;
N-[(3*S*,4*S*)-4-(acetylamino)-5-(3,5-difluorophenyl)-1-ethyl-3-hydroxypentyl]-2-ethoxyacetamide;
N-[(3*S*,4*S*)-4-(acetylamino)-5-(3,5-difluorophenyl)-3-hydroxy-1-propylpentyl]-2-ethoxyacetamide;
2-(acetylamino)-1,2,4,5-tetraideoxy-1-(3,5-difluorophenyl)-5-[(ethoxyacetyl)amino]-L-threo-hexitol;
2-(acetylamino)-1,2,4,5,6-pentadeoxy-1-(3,5-difluorophenyl)-5-[(ethoxyacetyl)amino]-L-threo-heptitol;
N-[(3*S*,4*S*)-4-(acetylamino)-5-(3,5-difluorophenyl)-3-hydroxy-1-methylpentyl]-2-propoxyacetamide;
N-[(3*S*,4*S*)-4-(acetylamino)-5-(3,5-difluorophenyl)-1-ethyl-3-hydroxypentyl]-2-propoxyacetamide;
N-[(3*S*,4*S*)-4-(acetylamino)-5-(3,5-difluorophenyl)-3-hydroxy-1-propylpentyl]-2-propoxyacetamide;
2-(acetylamino)-1,2,4,5-tetraideoxy-1-(3,5-difluorophenyl)-5-[(propoxyacetyl)amino]-L-threo-hexitol;
2-(acetylamino)-1,2,4,5,6-pentadeoxy-1-(3,5-difluorophenyl)-5-[(propoxyacetyl)amino]-L-threo-heptitol;
(3*E*)-*N*-[(3*S*,4*S*)-4-(acetylamino)-5-(3,5-difluorophenyl)-3-hydroxy-1-methylpentyl]hex-3-enamide;

(3E)-N-[(3S,4S)-4-(acetylamino)-5-(3,5-difluorophenyl)-1-ethyl-3-hydroxypentyl]hex-3-enamide
(3E)-N-[(3S,4S)-4-(acetylamino)-5-(3,5-difluorophenyl)-3-hydroxy-1-propylpentyl]hex-3-enamide;
2-(acetylamino)-1,2,4,5-tetradeoxy-1-(3,5-difluorophenyl)-5-[(3E)-hex-3-enoylamino]-L-threo-hexitol;
2-(acetylamino)-1,2,4,5,6-pentadeoxy-1-(3,5-difluorophenyl)-5-[(3E)-hex-3-enoylamino]-L-threo-heptitol;
(3E)-N-[(3S,4S)-4-(acetylamino)-5-(3,5-difluorophenyl)-3-hydroxy-1-methylpentyl]pent-3-enamide;
(3E)-N-[(3S,4S)-4-(acetylamino)-5-(3,5-difluorophenyl)-3-hydroxy-1-propylpentyl]pent-3-enamide;
2-(acetylamino)-1,2,4,5-tetradeoxy-1-(3,5-difluorophenyl)-5-[(3E)-pent-3-enoylamino]-L-threo-hexitol;
2-(acetylamino)-1,2,4,5,6-pentadeoxy-1-(3,5-difluorophenyl)-5-[(3E)-pent-3-enoylamino]-L-threo-heptitol;
(2E)-N-[(3S,4S)-4-(acetylamino)-5-(3,5-difluorophenyl)-3-hydroxy-1-methylpentyl]hex-2-enamide;
(2E)-N-[(3S,4S)-4-(acetylamino)-5-(3,5-difluorophenyl)-1-ethyl-3-hydroxypentyl]hex-2-enamide;
(2E)-N-[(3S,4S)-4-(acetylamino)-5-(3,5-difluorophenyl)-3-hydroxy-1-propylpentyl]hex-2-enamide;
2-(acetylamino)-1,2,4,5-tetradeoxy-1-(3,5-difluorophenyl)-5-[(2E)-hex-2-enoylamino]-L-threo-hexitol;

2- (acetylamino)-1,2,4,5,6-pentadeoxy-1-(3,5-difluorophenyl)-5-[(2E) -hex-2-enoylamino]-L-threo-heptitol;

(2E) -N- [(3S,4S) -4- (acetylamino) -5- (3,5-difluorophenyl) -3-hydroxy-1-methylpentyl] pent-2-enamide;

(2E) -N- [(3S,4S) -4- (acetylamino) -5- (3,5-difluorophenyl) -1-ethyl-3-hydroxypentyl] pent-2-enamide;

(2E) -N- [(3S,4S) -4- (acetylamino) -5- (3,5-difluorophenyl) -3-hydroxy-1-propylpentyl] pent-2-enamide;

2- (acetylamino)-1,2,4,5-tetrahydroxy-1-(3,5-difluorophenyl)-5-[(2E) -pent-2-enoylamino]-L-threo-hexitol;

2- (acetylamino)-1,2,4,5,6-pentadeoxy-1-(3,5-difluorophenyl)-5-[(2E) -pent-2-enoylamino]-L-threo-heptitol;

N- [(3S,4S) -4- (acetylamino) -5- (3,5-difluorophenyl) -3-hydroxy-1-methylpentyl] pentanamide;

N- [(3S,4S) -4- (acetylamino) -5- (3,5-difluorophenyl) -1-ethyl-3-hydroxypentyl] pentanamide;

N- [(3S,4S) -4- (acetylamino) -5- (3,5-difluorophenyl) -3-hydroxy-1-propylpentyl] pentanamide;

2- (acetylamino)-1,2,4,5-tetrahydroxy-1-(3,5-difluorophenyl)-5-(pentanoylamino)-L-threo-hexitol;

2- (acetylamino)-1,2,4,5,6-pentadeoxy-1-(3,5-difluorophenyl)-5-(pentanoylamino)-L-threo-heptitol;

N- [(3S,4S) -4- (acetylamino) -5- (3,5-difluorophenyl) -3-hydroxy-1-methylpentyl] hexanamide;

N- [(3S,4S) -4- (acetylamino) -5- (3,5-difluorophenyl) -1-ethyl-3-hydroxypentyl] hexanamide;

N- [(3S,4S) -4- (acetylamino) -5- (3,5-difluorophenyl) -3-hydroxy-1-propylpentyl] hexanamide;

2-(acetylamino)-1,2,4,5-tetra-deoxy-1-(3,5-difluorophenyl)-5-(hexanoylamino)-L-threo-hexitol; and
2-(acetylamino)-1,2,4,5,6-penta-deoxy-1-(3,5-difluorophenyl)-5-(hexanoylamino)-L-threo-heptitol.

8. A pharmaceutical composition comprising a compound according to claim 1 and a pharmaceutically acceptable carrier.

9. A method for the treatment or prevention of Alzheimer's disease, mild cognitive impairment Down's syndrome, Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch-Type, cerebral amyloid angiopathy, other degenerative dementias, dementias of mixed vascular and degenerative origin, dementia associated with Parkinson's disease, dementia associated with progressive supranuclear palsy, dementia associated with cortical basal degeneration, diffuse Lewy body type of Alzheimer's disease comprising administration of a therapeutically effective amount of a compound or salt according to Claim 1, to a patient in need thereof.

10. A method of treatment as in claim 9, wherein the patient is a human.

11. A method of treatment according to claim 9, wherein the disease is dementia.

12. A method for making a compound of claim 1.

13. An intermediate of the formula 23:

wherein R₁ and R₂ are as defined in claim 1.

14. An intermediate of formula 19:

5

wherein R₁ is as defined in claim 1.

15. An intermediate of formula 20:

10 wherein R₁ is as defined in claim 1.

16. An intermediate of formula 21:

wherein R₁ is as defined in claim 1.

15

17. The use of a compound or salt according to claim 1 for the manufacture of a medicament.

20

18. The use of a compound or salt according to claim 1 for the manufacture of a medicament for use in the treatment or prevention of Alzheimer's disease, mild cognitive impairment Down's syndrome, Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch-Type, cerebral amyloid angiopathy, other degenerative dementias, dementias of mixed vascular and

degenerative origin, dementia associated with Parkinson's disease, dementia associated with progressive supranuclear palsy, dementia associated with cortical basal degeneration, or diffuse Lewy body type of Alzheimer's disease.