Keras 를 활용한

Image Classification Mini-App 구현

안영준 | 안철환 | 조대현 | 홍정현

Table of Contents

- 1. 주제 선정 및 역할 분담
- 2. DenseNet 아키텍쳐 소개
- 3. 모델 학습 과정 및 결과
- 4. Mini-App
- 5. 실습

R-CNN: Regions with CNN features

Can we implement Deep Learning in R?

Deep Learning in R

With Keras & Shiny

Datasets (CIFA-10)

The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images.

DenseNet (CNN Arichtecture)

Layers	Output Size	DenseNet- $121(k = 32)$	DenseNet-169 $(k = 32)$	DenseNet-201 $(k = 32)$	DenseNet-161 $(k = 48)$
Convolution	112 × 112	7×7 conv, stride 2			
Pooling	56 × 56	3×3 max pool, stride 2			
Dense Block	56 × 56	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 3 \end{bmatrix} \times 6$		$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 6 \end{bmatrix} \times 6$
(1)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 6}$		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 6}$	
Transition Layer	56 × 56	$1 \times 1 \text{ conv}$			
(1)	28×28	2×2 average pool, stride 2			
Dense Block	28 × 28	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 1$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$	
(2)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{12}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{12}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{12}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{12}$
Transition Layer	28 × 28	$1 \times 1 \text{ conv}$			
(2)	14 × 14	2 × 2 average pool, stride 2			
Dense Block	14 × 14	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 24$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 3 \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix} \times 48 \qquad \begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 36 \end{bmatrix} \times 36$
(3)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{24}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{3}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$
Transition Layer	14 × 14	$1 \times 1 \text{ conv}$			
(3)	7 × 7	2×2 average pool, stride 2			
Dense Block	7 × 7	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 16 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 24 \end{bmatrix}$
(4)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 10}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{3/2}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{32}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 24}$
Classification	1 × 1	7 × 7 global average pool			
Layer		1000D fully-connected, softmax			

Table 1. DenseNet architectures for ImageNet. The growth rate for the first 3 networks is k=32, and k=48 for DenseNet-161. Note that each "conv" layer shown in the table corresponds the sequence BN-ReLU-Conv.

Figure 2: A deep DenseNet with three dense blocks. The layers between two adjacent blocks are referred to as transition layers and change feature-map sizes via convolution and pooling.

Moving Chart

https://drive.google.com/open?id=1zmYjYuGjZRvvnNXaVttg je8DHhy2h94A

https://drive.google.com/open?id=1SaHntEhBIq4Q9k-cVpE5GaSnz_47TmVa

Results

Accuarcy

Loss

Train: 50,000 / Test: 10,000

Accuarcy : <u>0.9351</u>

• Epoch: 300

Drop-out rate : 0.2

Learning Rate: 0.1(epoch<=150) -> 0.01(epoch <= 225) -> 0.001(else))

Mini-App (Shiny)

2) Predict with pre-trained model

R Data + Deep Learning Model

Let's Try

https://aidencahn.shinyapps.io/cifar10_densenet/