Medicine Recommendation System

Step 1: Import Libraries and Load Data

- **Purpose**: Set up the environment for data processing and machine learning.
- Actions:
 - Import libraries such as pandas for data manipulation, numpy for numerical operations, and scikit-learn and TensorFlow for machine learning and deep learning tasks.
 - Load the dataset containing medical symptoms and their corresponding diagnoses from a CSV file.

Step 2: Preprocess the Data

- **Purpose**: Prepare the data for modeling by cleaning and formatting it.
- Actions:
 - Separate the dataset into features (symptoms) and labels (diagnoses).
 - Use a LabelEncoder to convert categorical labels into numerical format, which is essential for machine learning algorithms.
 - Split the dataset into training and testing sets (e.g., 70% training, 30% testing) to ensure that the model can be evaluated on unseen data.

Step 3: Define Classification Models

- **Purpose**: Establish a variety of models to find the best one for the task.
- Actions:
 - Define multiple classification algorithms, including:
 - **Support Vector Classifier (SVC)**: Effective for high-dimensional spaces.
 - **Random Forest**: An ensemble method that improves accuracy by combining multiple decision trees.
 - **Gradient Boosting**: Another ensemble technique that builds models sequentially to minimize errors.

- **K-Neighbors**: A simple algorithm that classifies based on the closest training samples.
- Naive Bayes: A probabilistic classifier based on Bayes' theorem.

Step 4: Build the GAN Model

- Purpose: Create a Generative Adversarial Network to generate synthetic data.
- Actions:
 - **Generator**: A neural network that takes random noise as input and produces synthetic data resembling the training data.
 - **Discriminator**: Another neural network that evaluates whether the input data is real (from the dataset) or fake (generated by the generator).
 - The generator and discriminator are trained in opposition to each other, improving their performance over time.

Step 5: Train the GAN

- **Purpose**: Improve the GAN's ability to generate realistic data.
- Actions:
 - For each training epoch:
 - Generate random noise and use the generator to create synthetic samples.
 - Randomly select real samples from the training data for comparison.
 - Train the discriminator on both real and synthetic data, adjusting its weights based on how well it distinguishes between the two.
 - Train the generator by trying to fool the discriminator into thinking the synthetic data is real.

Step 6: Generate Synthetic Data

- **Purpose**: Augment the training dataset to improve model robustness.
- Actions:
 - After training the GAN, use it to generate a specified number of synthetic samples (e.g., 5000).

 Combine the synthetic data with the original training data, creating an augmented dataset that provides more examples for the models to learn from.

Step 7: Train Classifiers on Augmented Data

• **Purpose**: Evaluate the performance of various models using the enhanced training set.

Actions:

- For each defined model, fit it to the augmented training data.
- Use the test set to assess how well each model performs, calculating accuracy and generating confusion matrices to visualize performance across different classes.
- Print results for comparison, helping to identify the best model for the task.

Step 8: Make Predictions

• **Purpose**: Prepare the best-performing model for real-world use.

Actions:

- Select the model with the highest accuracy (e.g., SVC) for making predictions.
- Save the trained model using pickle, allowing it to be reused without retraining.

Step 9: Integrate with MLflow

• **Purpose**: Enhance experiment tracking and model management.

Actions:

- Install and set up MLflow, a platform for managing the machine learning lifecycle.
- Log model parameters, metrics (like accuracy), and the trained model itself during an MLflow run.
- This allows tracking of different model versions, hyperparameters, and performance metrics over time, facilitating reproducibility and experimentation.

Step 10: Implement Recommendation System

• **Purpose**: Provide users with actionable health recommendations based on their symptoms.

Actions:

- Load additional datasets that contain information about diseases, precautions, medications, and diets.
- Create a helper function that retrieves relevant information based on the predicted disease.
- Develop a user interface where users can input their symptoms, and the system predicts the likely disease and provides recommendations for treatment, precautions, and lifestyle changes.

This detailed breakdown provides a comprehensive understanding of each step in the medicine recommendation system, highlighting the purpose and actions involved. This format is suitable for a presentation, as it clearly outlines the workflow and rationale behind each component.

Team Members

- Abdelrahman Ahmed Eldaba Data Scientist LinkedIn
- Mohamed Yasser Esmaeil ML Engineer <u>LinkedIn</u>
- Mohamed Rabiee Abdallah ML Engineer <u>LinkedIn</u>
- Khaled Emad Eddin Salem ML Engineer <u>LinkedIn</u>
- Refaat-Allah Tarek Elgohary ML Engineer <u>LinkedIn</u>

GitHub Repository

Link to Project GitHub

Presentation Link

Link to Project Presentation