Course 11

Tracking: Beyond 15 Minutes of Thought

Introductions

Danette Allen Greg Welch Gary Bishop

Why thinking about tracking is so fun

It's a simple problem to state It has a little of everything

- A little physics
- A little electronics
- A little math
- A little signal processing
- A little programming

Why don't you just...

- Mount TV cameras on the walls?
- Use GPS?
- Use MEMS accelerometers?
- Use carbon nanotubes?

The 15 minute effect...

Time

Goals

- To get you to the 15 minute point and beyond...
- To equip you to evaluate the various offerings and understand the strengths and weaknesses of each.

Tracking Technologies

(Danette Allen)

Many ways to slice!

Configuration

Outside-in vs. Inside-out

Type of measurement

- Absolute vs. Relative
- Range vs. angle

Physical medium

Five categories

Five (Six) Technologies

Inertial
Acoustic
Magnetic
Mechanical
Optical

Radio (GPS) is the sixth...

- typically used outdoors
- not addressed in this course

Inertial Tracking

Passive

Newton's 2nd Law of Motion

• F = ma (linear)

• $\tau = I\alpha$ (rotational)

No physical limits on working volume Accelerometers and gyroscopes

Derivative measurements

Inertial Tracking

Accelerometers

- Measure force exerted on a mass since we cannot measure acceleration directly.
- Proof-mass and damped spring
 - Displacement proportional to acceleration

 Potentiometric and piezoelectric transducers

Inertial Tracking

Gyroscopes

- Inertia rigidity in space
- Precession

 a comparatively slow gyration of the rotation axis of a spinning body about another line intersecting it so as to describe a cone (Mirriam-Webster)

Gimbal deflection

(Discovery, 2001)

Microgyroscope

MEMS Tuning fork

Ring-laser and Fiber

- Doppler effect
- Beat frequency

(Systron Donner, 2001)

Inertial Drift

Error accumulation due to integration

- Poor SNR at low frequencies
 - Inverse square weighting of noise

LaPlace Transform $s = \sigma + j\omega$

- Gravity vector misalignment
 - 1° tilt error over 10 seconds \Rightarrow 9m position error

Periodic recalibration

hybrid systems typical

Time [s] to 0.1 [m] Error

Acoustic Tracking

The Geometry

- The intersection of 2 spheres is a circle.
- The intersection of 3 spheres is 2 points.
 - One of the two points easily eliminated

Speed of Sound

- Varies with temperature and pressure
- $\sim 331[\text{m/s}]$ in air at 0° C
 - 1 ft/ms \Rightarrow SLOW!!

Ultrasonic

40 [kHz] typical

Acoustic Tracking Methods

Time of Flight

- Measures the time required for a sonic pulse or pattern to travel from a transmitter to a receiver.
- d[m] = v[m/s] * t[s], v = speed of sound (c)
- Absolute range measurement

Phase Coherence

- Measures phase difference between transmitted and received sound waves
- Relative to previous measurement
 - still absolute!!

Phase Coherence

Equations

- A cos(ωt φ)
- $c[m/s] = \lambda[m] * f[1/s]$
- $\delta[m] = \lambda[m] * (\phi/2\pi)$

"Relative" Result

- Fractional wavelength
- Need previous range estimate
 - No integration!!!

Magnetic Tracking

Three mutually-orthogonal coils

$$H_r = \frac{M}{2\pi d^3} \cos \theta$$
 $H_{\theta} = \frac{M}{2\pi d^3} \sin \theta$

- Each transmitter coil activated serially
 - Three measurements apiece (three receiver coils)
 - Nine-element measurement for 6D position

AC vs. DC

Ferromagnetic interference

Mechanical Tracking

Ground-based or body-based
Used primarily for motion capture
Provide angle and range measurements

- gears
- bend sensors

Elegant addition of force feedback

Optical Tracking

Provides angle measurements

- One 2D point defines a ray
- Two 2D points define a point for 3D position
- Additional 2D points required for orientation

Speed of light

 \bullet 2.998 * 108 m/s (1 ft/ns)

Active vs. Passive Targets

Typical detectors

- Video and CCD cameras
 - Computer vision techniques

CCD cell/pixel

Passive targets

• Reflective materials, high contrast patterns

Active vs. Passive Targets

Typical detectors

LEPDs

$$I = I_0 \left(\frac{\sinh(\alpha(L-x))}{\sinh(\alpha L)} \right) \qquad or \qquad I \approx I_0 \left(\frac{L-x}{L} \right)$$

Quad Cells

$$x = \frac{(i_1 + i_2) - (i_3 + i_4)}{i_1 + i_2 + i_3 + i_4}$$

$$y = \frac{(i_1 + i_4) - (i_2 + i_3)}{i_1 + i_2 + i_3 + i_4}$$

Active targets

LEDs

Many ways to slice!

Configuration

next

Outside-in vs. Inside-out

Type of measurement

- Absolute vs. Relative
- Range vs. angle

Physical medium

Five categories

Source/Sensor Configurations

(Gary Bishop)

Sensor Configurations

Geometric arrangement of sensors and sources impacts:

- accuracy
- usability
- algorithms

for example CODA mpx30

3 1-D CCDs are stationary

LED targets move

Very interesting optics and sensing

CODA mpx30

- Measures angles in lab coordinate frame
- Angle determines a plane
- Intersecting 3 planes determines a point

"Flatland"

CODA mpx30

Such "outside-looking-in" systems

- measure position very well
- allow many small moving targets
- use multiple targets to get orientation
- trade off accuracy and working volume
- provide larger volume / more accuracy with more sensors
- use really simple math

HiBall

6 2-D sensors and 6 lenses in dodecahedron 1000's of LEDs fixed on the ceiling Calibration gives effectively 26 cameras

HiBall

- Measures angles in user coordinate frame
- Angles determine a constraint relating
 - position
 - orientation
 - view
 - led location

"Flatland"

HiBall

Such "inside-looking out" systems

- directly measure orientation
- allow large working volume with accuracy
- are larger than LED targets
- and thus harder to use for hands, feet, etc.

Arc Second Vulcan

Sources scan "planes of light" through space
Sensors on target detect passing plane

Arc Second Vulcan

- Time of plane passing converts to angle at the source
- Measures angles in world frame
- Thus like CODA and other "outsidelooking-in" systems
- Direction of "looking" really isn't the issue but coordinate frame of measurement

User and Sensor Uncertainty/Information

(Greg Welch)

Pose Uncertainty

- Measurement uncertainty
 - Pose estimates from *noisy* sensor measurements
- User pose uncertainty
 - Noisy and temporally-discrete measurements
 - Modeling user motion is difficult [Weber]
 - Modeling pose uncertainty is less difficult

Noise-Driven Processes

Random Variables and Signals

- Map sample space → real numbers
 - For example, time to voltage
- Random Signals
 - For example, electrical signals
 - Continuous random variables
 - Probability over a region of sample space
 - Spatial (statistical) and temporal (spectral) aspects

Cumulative Distribution Function

$$F_X(x) = P(-\infty, x]$$

- 1. $F_X(x) \rightarrow 0$ as $x \rightarrow -\infty$
- 2. $F_X(x) \rightarrow 1$ as $x \rightarrow +\infty$
- 3. $F_X(x)$ is a non-decreasing function of x

Probability Density Function

$$f_{x}(x) = \frac{d}{dx}F_{X}(x)$$

1. $f_X(x)$ is a non-negative function

$$2. \quad \int f_X(x) dx = 1$$

Probability (Continuous)

$$P_x[a,b] = \int_a^b f_x(x)dx$$

Statistical Moments

$$\mu_m = E[X^m] =$$

Continuous:

$$\int_{-\infty}^{\infty} x^m f_X(x) dx$$

Discrete:

$$\sum_{x} x^{m} p_{X}(x)$$

1st Moment or Mean

$$\mu = E[X] =$$

Continuous:

$$\int_{-\infty}^{\infty} x f_X(x) dx$$

Discrete:

$$\sum_{x} x p_X(x)$$

Central Moments

$$c_m = E[(X - \mu)^m] =$$

Continuous:

$$\int_{-\infty}^{\infty} (x-\mu)^m f_X(x) dx$$

Discrete:

$$\sum_{x} (x - \mu)^m p_X(x)$$

2nd Central Moment or Variance

$$V[X] = E[(X - \mu)^{2}]$$
$$= E[X^{2}] - \mu^{2}$$

"Mean of square minus square of mean"

Standard Deviation

$$\sigma = \sqrt{V[X]}$$

Gaussian/Normal Distribution

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2} X \sim N(\mu, \sigma^2)$$

$$X \sim N(\mu, \sigma^2)$$

Autocorrelation (Time Domain)

$$R_X(\tau) = E[X(t)X(t+\tau)]$$

Spectral Density (Frequency Domain)

The Wiener-Khinchine relationship

$$S_X(j\omega) = F[R_X(\tau)]$$

$$= \int_{-\infty}^{\infty} R_X(\tau) e^{-j\omega\tau} d\tau$$

White Noise Process

$$R_X(\tau) = \begin{cases} \text{if } \tau = 0 \text{ then } A \\ \text{else } 0 \end{cases}$$

$$S_X(j\omega) = A$$

Growth in Pose Uncertainty

$$V[X] = \int_0^{dt} w$$

where

$$w \sim N(0,q)$$

and "white."

Control of Pose Uncertainty

 $\overline{\text{Measurements}} \Rightarrow \text{pose information}$

Sensor Measurements

Break

(15 Minutes)

Traditional Approaches

(Gary Bishop)

Traditional Solution Methods

- Simple problem: Determine pose given sensor readings.
- Linear algebra taught us about N equations in N unknowns
- Each equation is a constraint
- 3 DOF→3 constraints & 6 DOF→6 constraints
- Unfortunately often non-linear constraints often with multiple solutions

Range Tracker

Intersect 3 spheres

$$(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = r_0^2$$

$$(x - x_1)^2 + (y - y_1)^2 + (z - z_1)^2 = r_1^2$$

$$(x - x_2)^2 + (y - y_2)^2 + (z - z_2)^2 = r_2^2$$

Unfortunately, the solution is ugly...

Simplify

- a. put mike 0 at origin
- b. put mike 1 out X axis 1 unit
- c. put mike 2 out Y axis 1 unit
- d. all 3 mikes in Z=0 plane

Usual coordinate transform to convert to "lab" coordinates

Simpler Range Equations

$$x^2 + y^2 + z^2 = r_0^2$$

$$(x-1)^2 + y^2 + z^2 = r_1^2$$

$$x^{2} + (y-1)^{2} + z^{2} = r_{2}^{2}$$

Note ambiguity

$$x = \frac{r_0^2 - r_1^2 + 1}{2}$$

$$y = \frac{r_0^2 - r_2^2 + 1}{2}$$

$$z = \pm \sqrt{r_0^2 - x^2 - y^2}$$

Optical with fixed 1D sensors

For example, 1D CCD with razor blade casting a shadow

- Calibrate to determine 3D plane equation from sensor reading (non-trivial)
- For each sensor reading, write a linear equation relating unknown x,y,z to plane
- Solve the system of equations for x,y,z

Solve...

$$A_i x + B_i y + C_i z = D_i$$

$$M = \begin{bmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \end{bmatrix}$$

$$M \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} D_1 \\ D_2 \\ D_3 \end{bmatrix}$$

Optical with fixed 2D sensors

For example, two video cameras looking at LEDs on the user.

- Could treat as four 1-D sensorsOR
- Calibrate to get ray equation from u,v
- Rays won't intersect!
- Minimize distance between them

Set up equations

Ray equations

$$A_1 = C_1 + s_1 D_1$$
$$A_2 = C_2 + s_2 D_2$$

Distance

$$\|(C_2 + s_2 D_2) - (C_1 + s_1 D_1)\|$$

Minimum distance line must be perpendicular to both rays, so...

$$[(C_2 + s_2 D_2) - (C_1 + s_1 D_1)] \cdot D_1 = 0$$

$$[(C_2 + s_2 D_2) - (C_1 + s_1 D_1)] \cdot D_2 = 0$$

Solve

Distance out each ray to closest point

$$\begin{split} s_1 &= \frac{(B \bullet D_1) - (D_2 \bullet D_1)(B \bullet D_2)}{1 - (D_1 \bullet D_2)^2} \\ s_2 &= \frac{(D_1 \bullet D_2)(B \bullet D_1) - (B \bullet D_2)}{1 - (D_1 \bullet D_2)^2} \end{split}$$

Halfway between

$$\tilde{P} = \frac{(C_1 + s_1 D_1) + (C_2 + s_2 D_2)}{2}$$

B is the baseline

Stochastic Approaches

(Greg Welch)

Motivation

- Take into account
 - Stochastic nature of sensor signals
 - Varying amounts of sensor information
 - Model of user motion
- Combine sensor/measurement information
 - Combat (otherwise growing) pose uncertainty
 - Fuse information from heterogeneous sensors

State-Space Models

Begin with difference equation for process

$$y_{k+1} = a_{0,k}y_k + \ldots + a_{n-1,k}y_{k-n+1} + u_k$$

Re-write as

$$\overline{x}_{k+1} \equiv \begin{bmatrix} y_{k+1} \\ y_k \\ y_{k-1} \\ \vdots \\ y_{k-n+2} \end{bmatrix} = \begin{bmatrix} a_0 & a_1 & \cdots & a_{n-2} & a_{n-1} \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & & 0 & 0 \\ \vdots & & \ddots & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} y_k \\ y_{k-1} \\ y_{k-2} \\ \vdots \\ y_{k-n+1} \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

State-Space Models

$$\bar{x}_{k+1} = \begin{bmatrix} y_{k+1} \\ y_k \\ y_{k-1} \\ \vdots \\ y_{k-n+2} \end{bmatrix} = \begin{bmatrix} a_0 & a_1 & \cdots & a_{n-2} & a_{n-1} & y_k \\ 1 & 0 & \cdots & 0 & 0 & y_{k-1} \\ 0 & 1 & & 0 & 0 & y_{k-2} \\ \vdots & & \ddots & 0 & 0 & \vdots \\ 0 & 0 & 0 & 1 & 0 & y_{k-n+1} \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} u$$

$$A \qquad \qquad \bar{X}_i \qquad G$$

$$\overline{x}_{k+1} = A\overline{x}_k + Gu_k$$

$$\overline{y}_k = H\overline{x}_k$$

Observer Design Problem

$$\overline{x}_{k} = A\overline{x}_{k-1} + G\overline{u}_{k-1}$$

$$\overline{z}_{k} = H\overline{x}_{k} + \overline{v}_{k}$$

Measurement noise

Process noise

Optimal Estimation

$$c = \int_{0}^{T} \cos(\overline{a}(t), \overline{b}(t), t) dt$$

Integral of Absolute Value of Error (IAE)

$$cost = |\overline{a} - \overline{b}|$$

Integral of Square of Error (ISE)

$$cost = (\overline{a} - \overline{b})^2$$

The Kalman Filter

R.E. Kalman, 1960

- Recursive optimal estimator
 - Minimum *variance* of error
- Versatile & robust
 - Estimation
 - Sensor fusion

- http://www.cs.unc.edu/~welch/kalman/
 - Java-Based Learning Tool, books, papers, etc.
- ACM SIGGRAPH 2001 tutorial (earlier today)

PREDICT

$$\overline{x}_{k}^{-} = A\overline{x}_{k-1}$$

$$P_{k}^{-} \neq AP_{k-1}A^{T} + Q$$

transition

uncertainty

CORRECT

$$\overline{x}_{k} = \overline{x}_{k}^{-} + K(\overline{z}_{k} - H\overline{x}_{k}^{-})$$

$$P_{k} = (I - KAH)P_{k}^{-}$$

$$P_{k} = (I - KAH)P_{k}^{-}$$

$$K = P_k^- H^T \left(\underline{H} P_k^- H^T + R \right)^{-1}$$

"denominator"

(measurement space)

Hybrid Systems and Multi-Sensor Fusion

Incremental Estimation A Single Constraint at a Time

C = constraints needed for a unique solution

M =constraints used per estimate update

Inter-Estimate Summary

Benefits of SCAAT Approach

Purposefully using minimal constraints

- Avoid simultaneity assumption
- Temporal improvements
- Simplicity and flexibility
- Online source/sensor autocalibration
- Can be applied to virtually any tracking system
 - Measurement model for each type of sensor
 - Dynamic model for user motion (possibly trivial)

Error Sources

(Greg Welch)

Error in Head Pose

- Hard to fool "mother nature"
 - Lifetime of visual experience and expectations
 - Visual-proprioceptive conflicts
 - Virtual-real misregistration
- What to do?
 - Some amount of error is unavoidable
 - Understand sources and seek to minimize

Error Classification

- Pose estimate life cycle
 - Noisy sensor measurement → Estimate →
 Transport → Transform → Display
- Two primary classes of error
 - Static (spatial)
 - Delay-induced (temporal)

Static Measurement Error

- Static field distortion
 - Repeatable error in the measurement data
 - "Bias" that might be corrected via calibration
- Random noise or jitter
 - Non-repeatable error
 - Random (electrical) noise such as described earlier
 - Often dependent on the current pose

Pose-Dependent Noise (Example)

Baseline noise ξ_0 and coefficients a, b, and c were determined off line.

$$\sqrt{\xi_c} = \frac{\sqrt{\xi_0}d_b^2}{a\alpha_b^3 + b\alpha_b^2 + c\alpha_b + 1}$$

Delay-Induced Error

- Measurement validity
 - Good at sample time, then old (aging)
 - Finite, non-zero sample time
 - Old sample ⇒ misregistration
- Motion predicition
 - Measure where you are, but want where you will be
 - Later w/ Bishop

The Simultaneity Assumption

Moderate arm & wrist translation

 $1/2 [s] \cdot 3 [m/s] \cdot 20-80 [ms] \Rightarrow 1-10 [cm]$

Moderate head rotation

 $1/2 \text{ [s]} \cdot 180 \text{ [°/s]} \cdot 20\text{-}80 \text{ [ms]} \Rightarrow 6\text{-}25 \text{ [cm]}$ (at arm's length)

First-Order Dynamic Error

$$\mathcal{E}_{\mathrm{dyn},\theta} = \dot{\theta} \Delta t$$

$$\mathcal{E}_{\mathrm{dyn},x} = \dot{x} \Delta t$$

Instantaneous velocities

Tracker + graphics pipeline latency

Synchronization Delay

A.k.a. phase delay or rendezvous delay

Pose Estimate Timeline

Total Tracker Latency

$$\begin{split} \Delta t_m &= t_{m'} - t_m \\ &= \Delta t_{ss} + \Delta t_e + \tau_e + \Delta t_{srb} + \tau_{net} + \Delta t_{crb} \\ &= \frac{1}{2r_{ss}} + \frac{1}{2r_e} + \tau_e + \frac{1}{2r_{srb}} + \tau_{net} + \frac{1}{2r_{crb}} \end{split}$$

Samplestilheastens beist buffer Client buffer synchronization

Total Tracker Error

$$\varepsilon_{\theta} \approx \varepsilon_{\text{stat}, \theta} + \varepsilon_{\text{sa}, \theta} + \dot{\theta} (\Delta t_m + \Delta t_g)$$

$$\varepsilon_x \approx \varepsilon_{\text{stat}, x} + \varepsilon_{\text{sa}, x} + \dot{x}(\Delta t_m + \Delta t_g)$$

Static esignultaneity of slut Repheinlint grayency

Closing (Error Sources)

- Did I mention error magnification?
- Consider the technology
 - Understand its limitations
 - Stay within the envelope
- Prediction (next)

Motion Prediction

(Gary Bishop)

Motion Prediction

End-to-end delay

- hurts in VR / hurts worse in AR
- sources
 - time to measure pose
 - delay in communicating pose
 - application response to change
 - graphics update
 - display refresh

What to do about delay?

- 1. Monitor
- 2. Minimize
- 3. Mitigate

Latency is not only a tracker problem.

But mitigation is best handled at the tracker.

Can prediction help?

Blue→no prediction Red→w/out inertial Green→w/inertial

Can prediction help?

Limits to prediction

Prediction error grows quadratically with motion bandwidth and prediction interval

Prediction ideas

- Extrapolate past behavior to the future
- The more history the better
- Correlations in the users coordinate frame
- Inertial sensors help
- Monitor | predicted actual | for tuning
- Use image shifting to reduce jitter

Conclusions

(Gary Bishop)

Final Thoughts

- No silver bullet
 - Tracking anywhere for any purpose is a dream
- No free lunch, only tradeoffs
 - Energy / Accuracy / Bandwidth / Latency / Noise
- No end in sight
 - Lots of possibilities for interesting work
 - ReActor not based on any of the principles described here

Resources

- http://www.cs.unc.edu/~welch/kalman
- check out Course 8 notes
- Dozens of books on KF, here are a few
 - "Optimal Estimation with an ..." by Lewis
 - "Introduction to Random Signals..." by Brown
 - "Kalman Filtering Theory and Practice" by Grewal
- Beginnings of a tracking bibliography

Exhibits we're going to check out

- 3rd Tech (cool demo)
- 5DT
- Ascension (ReActor is a new method)
- InterSense
- Measurand
- MetaMotion / PhoeniX Technologies / Vicon
- Polhemus

End

