

CHIMIE NIVEAU MOYEN ÉPREUVE 1

Jeudi 8 mai 2008 (après-midi)

45 minutes

INSTRUCTIONS DESTINÉES AUX CANDIDATS

- N'ouvrez pas cette épreuve avant d'y être autorisé(e).
- Répondez à toutes les questions.
- Choisissez pour chaque question la réponse que vous estimez la meilleure et indiquez votre choix sur la feuille de réponses qui vous est fournie.
- Le tableau périodique est inclus pour référence en page 2.

0	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)			
Γ-		9 F 19,00	17 Cl 35,45	35 Br 79,90	53 I 126,90	85 At (210)		71 Lu 174,97	103 Lr (260)
9		8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)		70 Yb 173,04	102 No (259)
v		7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98		69 Tm 168,93	101 Md (258)
its 4		6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19		68 Er 167,26	100 Fm (257)
lémen 3		5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37		67 Ho 164,93	99 Es (254)
de la classification périodique des éléments 3				30 Zn 65,37	48 Cd 112,40	80 Hg 200,59		66 Dy 162,50	98 Cf (251)
odiqu				29 Cu 63,55	47 Ag 107,87	79 Au 196,97		65 Tb 158,92	97 Bk (247)
n péri				28 Ni 58,71	46 Pd 106,42	78 Pt 195,09		64 Gd 157,25	96 Cm (247)
ficatio				27 Co 58,93	45 Rh 102,91	77 Ir 192,22		63 Eu 151,96	95 Am (243)
classi				26 Fe 55,85	44 Ru 101,07	76 Os 190,21		62 Sm 150,35	94 Pu (242)
				25 Mn 54,94	43 Tc 98,91	75 Re 186,21		61 Pm 146,92	93 Np (237)
Le tableau	tomique	nent comique		24 Cr 52,00	42 Mo 95,94	74 W 183,85		60 Nd 144,24	92 U 238,03
Le	Numéro atomique	Element Masse atomique		23 V 50,94	41 Nb 92,91	73 Ta 180,95		59 Pr 140,91	91 Pa 231,04
				22 Ti 47,90	40 Zr 91,22	72 Hf 178,49		58 Ce 140,12	90 Th 232,04
				21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)	* -	÷÷.
2		4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)		
1	1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)		
ı					'				

- 1. Quelle quantité **d'atomes**, en moles, y a-t-il dans 88 g de dioxyde de carbone?
 - A. $6,02 \times 10^{23}$
 - B. $1,204 \times 10^{24}$
 - C. 6
 - D. 1
- 2. Les abondances isotopiques d'un élément, X, sont ${}^{28}_{14}X = 20\%$ et ${}^{29}_{14}X = 80\%$. Que vaut la masse atomique relative de l'élément X ?
 - A. 14
 - B. 28,2
 - C. 28,5
 - D. 28,8
- 3. Quelle est la proposition correcte en ce qui concerne la formule moléculaire d'un composé ?
 - A. C'est un multiple entier de la formule empirique.
 - B. Elle montre comment les atomes sont liés dans la molécule.
 - C. Elle représente la proportion la plus petite des atomes présents dans une molécule.
 - D. Elle représente la composition centésimale (pourcentage) d'une molécule.

- **4.** Un échantillon d'hydrocarbure contient 84 g de carbone et 14 g d'hydrogène. Quelles sont les propositions correctes parmi les suivantes?
 - I. La formule empirique du composé est CH₂.
 - II. La formule moléculaire du composé est C₂H₄.
 - III. Les informations disponibles ne sont pas suffisantes pour confirmer que la formule moléculaire du composé est C_2H_4 .
 - A. I et II uniquement
 - B. I et III uniquement
 - C. II et III uniquement
 - D. I, II et III
- **5.** Un isotope de l'uranium a un nombre de masse de 235. Quels sont le nombre de neutrons dans le noyau et le numéro atomique de cet isotope ?

	Nombre de neutrons	Numéro atomique				
A.	143	235				
B.	92	235				
C.	143	92				
D.	238	92				

- **6.** Quel processus est responsable des raies émises dans le domaine de la lumière visible dans le spectre d'émission de l'hydrogène ?
 - A. La libération d'énergie par l'électron
 - B. La libération d'énergie par le noyau excité
 - C. L'excitation de l'électron
 - D. L'absorption d'énergie par l'électron

- I. $Cl_2(aq) + 2KBr(aq) \rightarrow Br_2(aq) + 2KCl(aq)$
- II. $I_2(aq) + 2KBr(aq) \rightarrow Br_2(aq) + 2KI(aq)$
- III. $Cl_2(aq) + 2NaI(aq) \rightarrow I_2(aq) + 2NaCl(aq)$
- A. I et II uniquement
- B. I et III uniquement
- C. II et III uniquement
- D. I, II et III
- **8.** Quelles propositions représentent des arguments pour décrire l'oxyde d'aluminium comme amphotère ?

-5-

- I. Il peut présenter un comportement acide en présence de bases fortes.
- II. Il peut présenter un comportement basique en présence d'acides forts.
- III. Il se dissout dans l'eau en formant une solution neutre.
- A. I et II uniquement
- B. I et III uniquement
- C. II et III uniquement
- D. I, II et III
- 9. Quelle est l'espèce ayant la même configuration électronique que l'ion Ca²⁺?
 - A. L'ion Al^{3+}
 - B. L'ion Br
 - C. L'atome Ar
 - D. L'atome K

- 10. Quelles sont les formules correctes du nitrure de magnésium et du sulfure d'aluminium ?
 - A. Mg_2N_3 et Al_2S_3
 - B. Mg_3N_2 et Al_2S_3
 - C. Mg_2N_3 et Al_3S_2
 - D. Mg_3N_2 et Al_3S_2
- 11. Quelle est la molécule la plus polaire ?
 - A. CH₄
 - B. CCl₄
 - C. CH₂Cl₂
 - D. CHCl₃
- 12. Quelle est la forme de la molécule PCl₃?
 - A. Plane trigonale
 - B. Pyramidale trigonale
 - C. Tétraédrique
 - D. Coudée (en forme de V)
- 13. Quelles sont les modifications qui accompagnent l'ébullition d'un liquide ?
 - I. La distance entre les particules augmente.
 - II. L'énergie moyenne des particules augmente.
 - III. Les forces d'attraction entre les particules deviennent plus faibles.
 - A. I et II uniquement
 - B. I et III uniquement
 - C. II et III uniquement
 - D. I, II et III

14. Un échantillon de gaz occupe un volume V_1 sous une pression P_1 et à une température T_1 exprimée en Kelvin. Quelle serait la température du gaz, T_2 , si l'on doublait simultanément la pression et le volume ?

-7-

A.
$$T_2 = \frac{1}{2}T_1$$

B.
$$T_2 = T_1$$

C.
$$T_2 = 2T_1$$

D.
$$T_2 = 4T_1$$

15. Parmi les combinaisons ci-dessous, quelle est la combinaison correcte concernant les variations d'énergie accompagnant la rupture et la formation d'une liaison ?

	Rupture d'une liaison	Formation d'une liaison			
A.	exothermique	endothermique			
B.	exothermique	exothermique			
C.	endothermique	endothermique			
D.	endothermique	exothermique			

16. Une méthode de préparation du peroxyde d'hydrogène est :

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l)$$
 $\Delta H^{\ominus} = x$

$$H_2O(l) + \frac{1}{2}O_2(g) \rightarrow H_2O_2(l)$$
 $\Delta H^{\ominus} = y$

Quelle expression peut être utilisée pour calculer la variation d'enthalpie accompagnant la décomposition du peroxyde d'hydrogène à l'aide de ces données ?

$$H_2O_2(1) \to H_2(g) + O_2(g)$$

A.
$$-x-y$$

B.
$$x + y$$

C.
$$-x + y$$

D.
$$x-y$$

17. Quels doivent être les signes de ΔG , de ΔH et de ΔS pour qu'une réaction chimique soit spontanée à toute température ?

	ΔG	ΔH	ΔS
A.	positif	négatif	positif
B.	négatif	négatif	négatif
C.	négatif	négatif	positif
D.	négatif	positif	négatif

18. Parmi les réactions chimiques ci-dessous, quelle est celle dont la variation d'entropie, ΔS , sera plus probablement la plus **négative** ?

A.
$$C(s) + O_2(g) \rightarrow CO_2(g)$$

B.
$$N_2O_4(g) \rightarrow 2NO_2(g)$$

C.
$$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$$

D.
$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

19. Quelle proposition explique pourquoi une augmentation de la température augmente la vitesse d'une réaction chimique ?

- A. Un plus grand nombre de molécules possèdent une énergie égale ou supérieure à l'énergie d'activation.
- B. À une température plus élevée, l'énergie d'activation de la réaction est plus basse.
- C. Un plus grand nombre de molécules ont une géométrie de collision correcte.
- D. La réaction évolue conformément au principe de Le Chatelier.
- **20.** Quelle est la meilleure manière de décrire l'étape déterminante de la vitesse d'une réaction ?
 - A. C'est l'étape la plus rapide d'une réaction chimique
 - B. C'est l'étape la plus lente d'une réaction chimique
 - C. C'est l'étape au cours de laquelle le nombre de molécules en interaction est le plus faible
 - D. C'est l'étape au cours de laquelle la plupart des molécules possèdent l'énergie la plus élevée

21. On considère la réaction :

$$2A(g) + 3B(g) \rightleftharpoons C(g) + 2D(g)$$

Quelle est l'expression de la constante d'équilibre, K_c ?

A.
$$K_c = \frac{[C] 2[D]}{2[A] 3[B]}$$

B.
$$K_c = \frac{2[A]3[B]}{[C]2[D]}$$

C.
$$K_c = \frac{[C][D]^2}{[A]^2[B]^3}$$

D.
$$K_c = \frac{[A]^2 [B]^3}{[C][D]^2}$$

22. On considère la réaction suivante :

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
 $\Delta H^{\ominus} = -92 \text{ kJ}$

Quelle intervention aura pour effet de modifier la valeur de $K_{\rm c}$?

- A. L'addition d'un catalyseur
- В. Une augmentation de la pression
- C. Une augmentation des concentrations en azote et en hydrogène
- D. Une augmentation de la température

Quel composé formera, une fois dissous dans l'eau, une solution dont le pH sera supérieur à 7 ? 23.

- A. NaHCO₃(s)
- $SiO_{2}(s)$ В.
- C. $SO_3(g)$
- CH₃CO₂H(aq) D.

24.	Quelle paire	de solutions p	eut être utilisée p	pour préparer une	solution tampo	n ?
-----	--------------	----------------	---------------------	-------------------	----------------	-----

- A. CH₃COONa (aq) / NaOH (aq)
- B. $NH_3(aq)/NH_4NO_3(aq)$
- C. $NH_4Cl(aq)/HCl(aq)$
- D. HNO₃(aq)/NaNO₃(aq)

25. Quel est le nombre d'oxydation de vanadium dans le composé NaVO₃?

- A. -1
- B. 0
- C. +2
- D. +5

26. Quelle est la proposition correcte en ce qui concerne les cellules électrochimiques ?

- A. Dans une cellule voltaïque, la réaction est spontanée.
- B. Dans une cellule d'électrolyse, la réaction est spontanée.
- C. Dans une cellule voltaïque, la réaction consomme de l'énergie électrique.
- D. Dans une cellule d'électrolyse, la réaction produit de l'énergie électrique.

27. On considère la réaction suivante :

$$\operatorname{Sn}^{4+}(aq) + \operatorname{Fe}^{2+}(aq) \to \operatorname{Sn}^{3+}(aq) + \operatorname{Fe}^{3+}(aq)$$

Quelle est la combinaison correcte de propositions ?

	Espèce	Subit une	Agit comme		
A.	$\mathrm{Sn}^{^{4+}}$	oxydation	agent oxydant		
B.	Fe ²⁺	réduction	agent réducteur		
C.	Sn ⁴⁺	réduction	agent oxydant		
D.	Fe^{2+}	réduction	agent oxydant		

- **28.** Quelle est la molécule qui possède un atome de carbone chiral ?
 - A. CH₂CClCH₂CH₃
 - B. CH₃CHOHCH₂CH₃
 - C. (CH₃)₂CHCH₂CH₃
 - D. H₂NCH₂COOH
- **29.** La polymérisation de l'éthène H₂C=CH₂ produit du polyéthène :

$$nH_2C = CH_2 \rightarrow +CH_2 - CH_2 + \frac{1}{n}$$

Quel type de réaction l'éthène a-t-il subi?

- A. Hydrogénation
- B. Addition
- C. Isomérisation
- D. Condensation

30.	Quel est l	e type	de liaison	formé lo	rsque deux	acides	aminés r	éagissent	l'un avec l	l'autre?

- A. Cétone
- B. Amine
- C. Amide
- D. Ester