Continuous time Fourier series

$$x(t) = \sum_{k=-\infty}^{\infty} c_k^x e^{jk\omega_0 t} \longrightarrow c_k^x = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt, \quad \omega_0 = 2\pi/T$$

Table 4.1 Properties of exponential Fourier series

Table 4.1 Properties of exponential Fourier series		
Periodic signal Fourier coefficients		
$x(t) = x(t+T), \omega_0 = 2\pi/T$	$\left\{c_{k}^{x}\right\}$	
$y(t) = y(t+T), \omega_0 = 2\pi/T$	$\left\{c_{k}^{\scriptscriptstyle{\mathcal{Y}}} ight\}$	
ax(t)+by(t)	$\left\{ac_k^x + bc_k^y\right\}$	
$x(t-t_0), t_0 \in \mathbb{R}$	$\left\{e^{-jk\omega_0 t_0}c_k^x\right\} \omega_0 = 2\pi/T$	
$x(t)e^{jk_0\omega_0t}, k_0 \in \mathbb{Z}, \omega_0 = 2\pi/T$	$\left\{ c_{k-k_{0}}^{x} ight\}$	
$x^*(t)$	$\left\{ \left(c_{-k}^{^{x}} ight)^{st} ight\}$	
x(-t)	$\left\{c_{-k}^{x}\right\}$	
$x(at), a \in \mathbb{R}^*_+, \text{ period } T/a$	$\left\{c_{k}^{x}\right\}$	
$x(t) \circledast y(t) = \int_{T} x(\tau) y(t-\tau) d\tau$	$\left\{Tc_{k}^{x}c_{k}^{y} ight\}$	
$\frac{1}{T}\int_{T}x^{*}(\tau)y(t+\tau)d\tau$	$\left\{ \left(c_{k}^{x} ight)^{\!st}c_{k}^{y} ight\}$	
x(t)y(t)	$\left\{c_k^x * c_k^y\right\} = \left\{\sum_{n=-\infty}^{\infty} c_{k-n}^x c_n^y\right\}$	
$\frac{dx(t)}{dt}$	$\left\{ jk\omega_{0}c_{k}^{x} ight\}$	
$\int_{-\infty}^{t} x(\tau) d\tau$	$\left\{\frac{c_k^x}{jk\omega_0}\right\} \qquad c_0^x = 0$	
	$c_k^x = \left(c_{-k}^x\right)^*$	
$x(t) \in \mathbb{R}$	$\left c_{k}^{x}\right = \left c_{-k}^{x}\right ;$ Arg $c_{k}^{x} = -\operatorname{Arg} c_{-k}^{x}$	
	$\operatorname{Re}\left\{c_{k}^{x}\right\} = \operatorname{Re}\left\{c_{-k}^{x}\right\}; \operatorname{Im}\left\{c_{k}^{x}\right\} = -\operatorname{Im}\left\{c_{-k}^{x}\right\}$	
$x_e(t), x(t) \in \mathbb{R}$	$\left\{\operatorname{Re}c_{k}^{x}\right\}$	
$x_o(t), x(t) \in \mathbb{R}$	$\left\{ j\operatorname{Im}c_{k}^{x}\right\}$	
$\frac{1}{T} \int_{T} \left x(t) \right ^{2} dt = \sum_{k=-\infty}^{\infty} \left c_{k} \right ^{2}$		

Continuous-time Fourier transform

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega \longrightarrow X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

Table 5.3 Properties of continuous-time Fourier transform

Table 5.3 Properties of continuous-time Fourier transform		
Aperiodic signal	Fourier transform	
x(t)	$X(\omega)$	
y(t)	$Y(\omega)$	
ax(t)+by(t)	$aX(\omega)+bY(\omega)$	
$x(t-t_0), t_0 \in \mathbb{R}$	$e^{-j\omega t_0}X(\omega)$	
$e^{j\omega_0 t}x(t), \omega_0 \in \mathbb{R}$	$X(\omega-\omega_0)$	
$x^*(t)$	$X^*(-\omega)$	
$x(-t) = \breve{x}(t)$	$X(-\omega)$	
$x(at), a \in \mathbb{R}$	$\frac{1}{ a }X\left(\frac{\omega}{a}\right)$	
x(t)*y(t)	$X(\omega)\cdot Y(\omega)$	
$ \widetilde{x}^*(t) * y(t) $	$X^*(\omega)\cdot Y(\omega)$	
x(t)y(t)	$\frac{1}{2\pi}X(\omega)*Y(\omega)$	
$\frac{dx(t)}{dt}$	$j\omega X\left(\omega \right)$	
$\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{1}{j\omega}X(\omega)+\pi X(0)\delta(\omega)$	
tx(t)	$j\frac{d}{d\omega}X(\omega)$	
	$X(\omega) = X^*(-\omega)$	
$x(t) \in \mathbb{R}$	$ X(\omega) = X(-\omega) ; \qquad \operatorname{Arg} X(\omega) = -\operatorname{Arg} X(-\omega)$ $\operatorname{Re} \{X(\omega)\} = \operatorname{Re} \{X(-\omega)\}; \operatorname{Im} \{X(\omega)\} = -\operatorname{Im} \{X(-\omega)\}$	
$x_e(t), x(t) \in \mathbb{R}$	$\operatorname{Re}\{X(\omega)\}$	
$x_o(t), x(t) \in \mathbb{R}$	$j\operatorname{Im}\left\{ X\left(\omega\right) \right\}$	
$\int_{-\infty}^{\infty} \left x(t) \right ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left X(\omega) \right ^2 d\omega$		
$x(t)\longleftrightarrow X(\omega)$		
$X(t) \longleftrightarrow 2\pi x(-\omega)$		

Table 5.4 Tables of Fourier transforms for different signals

Signal	Fourier transforms for differe	Exponential Fourier series (for periodic signals only)
$\sum_k c_k e^{jk\omega_0 t}$	$\sum_{k} 2\pi c_{k} \delta(\omega - k\omega_{0})$	$\{c_k\}$
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	$c_1 = 1; c_k = 0, k \neq 1$
$\cos \omega_0 t$	$\pi \Big[\delta \big(\omega - \omega_0 \big) + \delta \big(\omega + \omega_0 \big) \Big]$	$c_1 = 1; c_k = 0, k \neq 1$ $c_1 = c_{-1} = \frac{1}{2};$ $c_k = 0, k \notin \{-1, 1\}$
$\sin \omega_0 t$	$\frac{\pi}{j} \Big[\delta(\omega - \omega_0) - \delta(\omega + \omega_0) \Big]$	$c_{1} = -c_{-1} = \frac{1}{2j};$ $c_{k} = 0, k \notin \{-1, 1\}$
x(t) = 1(const)	$2\pi\delta(\omega)$	$c_0 = 1; c_k = 0, k \neq 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\sum_{k=-\infty}^{\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0)$	$c_k = \frac{\sin k\omega_0 T_1}{k\pi}, k \neq 0;$ $c_0 = \frac{2T_1}{T}$
$\delta_{T}(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT)$	$\omega_0 \delta_{\omega_0}(t) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta\left(\omega - k \frac{2\pi}{T}\right)$	$c_k = \frac{1}{T}$
$\delta_{T}(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT)$ $p_{\tau}(t) = \begin{cases} 1, & t < \tau \\ 0, & t > \tau \end{cases}$	$\frac{2\sin\omega\tau}{\omega}$	
$\frac{\sin \omega_0 t}{\pi t}$	$p_{\omega_0}(\omega) = \begin{cases} 1, & \omega < \omega_0 \\ 0, & \omega > \omega_0 \end{cases}$	
$\delta(t)$	1(const)	
$\delta(t-t_0), t_0 \in \mathbb{R}$	$e^{-j\omega t_0}$	
$\sigma(t)$	$\frac{1}{j\omega} + \pi\delta(\omega)$	
$e^{-at}\sigma(t),\operatorname{Re}\{a\}>0$	$(a+j\omega)^{-1}$	
$te^{-at}\sigma(t), \operatorname{Re}\{a\} > 0$	$(a+j\omega)^{-2}$	
$\frac{t^{n-1}e^{-at}}{(n-1)!}\sigma(t),\operatorname{Re}\{a\}>0$	$(a+j\omega)^{-n}$	

Discrete-time Fourier series

$$x[n] = \sum_{k=0}^{N-1} c_k e^{jk\Omega_0 n}, n = \overline{0, N-1} \longrightarrow c_k = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk\Omega_0 n}, k = \overline{0, N-1}, \quad \Omega_0 = \frac{2\pi}{N}$$

Table 6.1 Properties of discrete-time Fourier series

Discrete-time periodic signal	Exponential Fourier series
$x[n], x[n+N] = x[n] = x[(n)_N]$	$\{c_k^x\}; c_{k+N}^x = c_k^x = c_{(k)_N}^x$
$y[n], y[n+N] = y[n] = y[(n)]_N$	$\{c_{k}^{y}\}; c_{k+N}^{y} = c_{k}^{y} = c_{(k)_{N}}^{y}$
ax[n]+by[n]	$\left\{ac_k^x + bc_k^y\right\}$
$x[n-n_0], n_0 \in \mathbb{Z}$	$\{e^{-jk\frac{2\pi}{N}n_0}c_k^x\}$
$x^*[n]$	$\{\left(c_{-k}^{x}\right)^{*}\}$
x[-n]	$\left\{c_{-k}^{x}\right\}$
$x_{(m)}[n] = \begin{cases} x[n/m]; & \text{if } n : m \\ 0 & \text{; otherwise} \end{cases}, \text{ period } mN$	$\left\{\frac{1}{m}c_k^x\right\}$, period mN
$e^{jk_0\frac{2\pi}{N}n}x[n]$	$\left\{c_{k-k_0}^x\right\}$
$x[n] \circledast y[n] = \sum_{k \in \langle N \rangle} x[k]y[n-k]$	$\left\{Nc_k^xc_k^y ight\}$
$\frac{1}{N_0} \sum_{k=0}^{N_0} x^* [n] y [n+k]$	$\left\{ \left(c_{k}^{x}\right)^{*}\cdot c_{k}^{y}\right\}$
x[n]y[n]	$\left\{c_k^x \circledast c_k^y\right\} = \left\{\sum_{m \in \langle N \rangle} c_{k-m}^x c_m^y\right\}$
x[n]-x[n-1]	$\left\{ \left(1 - e^{-j2\pi k/N}\right)c_k^x\right\}$
$\sum_{k=-\infty}^{n} x[k], c_0^x = 0$	$\{c_k^x/(1-e^{-j2\pi k/N})\}, c_0^x=0$
$x[n] \in \mathbb{R}$	$\begin{split} c_k &= c_{-k}^* = c_{\left(-k\right)_N}^* \\ \left c_k \right &= \left c_{-k} \right ; \operatorname{Arg} c_k = -\operatorname{Arg} c_{-k} \\ \operatorname{Re} \left\{ c_k \right\} &= \operatorname{Re} \left\{ c_{-k} \right\}; \operatorname{Im} \left\{ c_k \right\} = -\operatorname{Im} \left\{ c_{-k} \right\} \end{split}$
$x_e[n], x[n] \in \mathbb{R}$	$\left\{\operatorname{Re}\left\{c_{k}^{x}\right\}\right\}$
$x_o[n], x[n] \in \mathbb{R}$	$\left\{ j\operatorname{Im}\left\{ c_{k}^{x}\right\} \right\}$
$\frac{1}{N} \sum_{n \in \langle N \rangle} x[n] ^2 = \sum_{k} x[n] ^2 = \sum_{k}$	$\sum_{k \in \langle N \rangle} \left c_k \right ^2$

Discrete-time Fourier transform

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(\Omega) e^{j\Omega n} d\Omega \longrightarrow X(\Omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\Omega n}$$

Table 6.2 Properties of the discrete-time Fourier transform

Table 6.2 Properties of the discrete-time Fourier transform		
Discrete-time aperiodic signal	Exponential Fourier series	
x[n]	$X(\Omega); X(\Omega+2\pi)=X(\Omega)$	
y[n]	$Y(\Omega); Y(\Omega+2\pi)=Y(\Omega)$	
ax[n]+by[n]	$aX\left(\Omega\right)+bY\left(\Omega\right)$	
$x[n-n_0]$	$e^{-j\Omega n_0}X\left(\Omega ight)$	
$e^{j\Omega_0 n}x[n]$	$X\left(\Omega\!-\!\Omega_{_{0}} ight)$	
$x^*[n]$	$X^*(-\Omega)$	
x[-n]	$X\left(-\Omega ight)$	
$x_{(k)}[n] = \begin{cases} x[n/k]; & \text{if } n:k \\ 0 & \text{; otherwise} \end{cases}$	$X\left(k\Omega ight)$	
x[n] * y[n]	$X(\Omega)Y(\Omega)$	
$\overline{x}^*[n]*y[n]$	$X^*(\Omega)Y(\Omega)$	
x[n]y[n]	$\frac{1}{2\pi}X(\Omega) \circledast Y(\Omega) = \frac{1}{2\pi} \int_{2\pi} X(u)Y(\Omega - u) du$	
x[n]-x[n-1]	$\left(1-e^{-j\Omega} ight)X\left(\Omega ight)$	
$\sum_{k=-\infty}^{n} x[k]$	$\frac{X(\Omega)}{1 - e^{-j\Omega}} + \pi X(0) \sum_{k = -\infty}^{\infty} \delta(\Omega - k2\pi)$ $j \frac{dX(\Omega)}{d\Omega}$	
nx[n]	$j\frac{dX\left(\Omega\right)}{d\Omega}$	
$x[n] \in \mathbb{R}$	$X(\Omega) = X^*(-\Omega);$ $ X(\Omega) = X(-\Omega) ; \operatorname{Arg} X(\Omega) = -\operatorname{Arg} X(-\Omega)$ $\operatorname{Re}\{X(\Omega)\} = \operatorname{Re}\{X(-\Omega)\}; \operatorname{Im}\{X(\Omega)\} = -\operatorname{Im}\{X(-\Omega)\}$	
$x_e[n], x[n] \in \mathbb{R}$	$\operatorname{Re}ig\{Xig(\Omegaig)ig\}$	
$x_o[n], x[n] \in \mathbb{R}$	$j\mathrm{Im}ig\{Xig(\Omegaig)ig\}$	
$\sum_{n=-\infty}^{\infty} \left x[n] \right ^2 = \frac{1}{2\pi} \int_{2\pi} \left X(\Omega) \right ^2 d\Omega$		

Table 6.3 Tables of discrete-time Fourier transform for different signals

Signal	Fourier transform	Exponential Fourier series (periodic signals)
$\sum_{k\in\langle N\rangle} c_k e^{jk\frac{2\pi}{N}n}$	$\sum_{k \in \langle N \rangle} 2\pi c_k \delta \left(\Omega - k 2\pi / N \right); c_k = c_{(k)_N}$	$\{c_k\}$
$e^{j\Omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta (\Omega - \Omega_0 - k2\pi)$	For $\frac{\Omega_0}{2\pi} = \frac{m}{N} \in \mathbb{Q} : \{c_k\}; c_k = \begin{cases} 1, & (k)_N = m \\ 0, & \text{otherwise} \end{cases}$ For $\frac{\Omega_0}{2\pi} \notin \mathbb{Q}$: the signal isn't periodic
$\cos\Omega_0 n$	$\sum_{k=-\infty}^{\infty} \pi \Big[\delta \Big(\Omega - \Omega_0 - k2\pi \Big) + \delta \Big(\Omega + \Omega_0 - k2\pi \Big) \Big]$	For $\frac{\Omega_0}{2\pi} = \frac{m}{N} \in \mathbb{Q} : \left\{ c_k \right\}, c_k = c_{-k} = \begin{cases} 1/2, & (k)_N = m \\ 0, & \text{otherwise} \end{cases}$ For $\frac{\Omega_0}{2\pi} \notin \mathbb{Q}$: the signal isn't periodic
$\sin\Omega_0 n$	$\sum_{k=-\infty}^{\infty} \frac{\pi}{j} \Big[\delta \big(\Omega - \Omega_0 - k2\pi \big) - \delta \big(\Omega + \Omega_0 - k2\pi \big) \Big]$	$\operatorname{For} \ \frac{\Omega_0}{2\pi} = \frac{m}{N} \in \mathbb{Q} : c_k = c_{-k} = \begin{cases} \frac{1}{2j}, & k = m \pm pN \\ -\frac{1}{2j}, & k = -m \pm pN \\ 0, & \text{otherwise} \end{cases}$ $\operatorname{For} \ \frac{\Omega_0}{2\pi} \not\in \mathbb{Q} : \ \text{the signal isn't periodic}$
x[n]=1	$\sum_{k=-\infty}^{\infty} 2\pi \delta (\Omega - k2\pi)$	$c_k = \begin{cases} 1, & (k)_N = m \\ 0, & \text{otherwise} \end{cases}$
$x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & N_1 \le n \le \frac{N}{2} \end{cases}$ $x[n+N] = x[n]$	$\sum_{k=-\infty}^{\infty} 2\pi \frac{\sin\left(\frac{2N_1+1}{2} \cdot \frac{2k\pi}{N}\right)}{N\sin\frac{2k\pi}{2N}} \cdot \delta\left(\Omega - k\frac{2\pi}{N}\right)$	$c_{k} = \frac{\sin\left(\frac{2N_{1}+1}{2} \cdot \frac{2k\pi}{N}\right)}{N\sin\frac{2k\pi}{2N}}, (k)_{N} \neq 0;$ $c_{k} = \frac{2N_{1}+1}{2}, (k)_{N} = 0$

Signal	Fourier transform	Exponential Fourier series (periodic signals)
$\delta_{N}[n] = \sum_{k=-\infty}^{\infty} \delta[n - kN]$	$\frac{2\pi}{N} \sum_{k=-\infty}^{\infty} \delta \left(\Omega - k \frac{2\pi}{N} \right)$	$c_k = \frac{1}{N}$
$a^n \sigma[n], a < 1$	$\frac{1}{1-ae^{-j\Omega}}$	-
$x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & n > N_1 \end{cases}$	$\frac{\sin\left[\left(2N_1+1\right)/2\right]\Omega}{\sin\left(\Omega/2\right)}$	-
$\frac{\sin\Omega_0 n}{\pi n}; \ 0 < \Omega_0 < \pi$	$X\left(\Omega\right) = egin{cases} 1, & \left \Omega\right \leq \Omega_0 \ 0, & \Omega_0 < \left \Omega\right \leq \pi \end{cases}, \ X\left(\Omega + 2\pi\right) = X\left(\Omega\right)$	-
$\delta[n]$	1(constant)	-
$\sigma[n]$	$\frac{1}{1-e^{-j\Omega}} + \pi \sum_{k=-\infty}^{\infty} \delta(\Omega - 2k\pi)$	-
$\delta[n-n_0]$	$e^{-j\Omega n_0}$	-
$(n+1)a^n\sigma[n];$ a <1	$\frac{1}{\left(1-ae^{-j\Omega} ight)^2}$	-
$\frac{(n+m-1)!}{n!(m-1)!}a^n\sigma[n];$ $ a <1$	$\frac{1}{\left(1-ae^{-j\Omega}\right)^m}$	-

Laplace transform

$$x(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} X(s)e^{st}ds, \operatorname{Re}\{s\} \in ROC \longrightarrow X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt; \quad (s = \sigma + j\omega) \text{ - bilateral Laplace transform}$$

$$x(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\omega} X(s)e^{st}ds, \operatorname{Re}\{s\} > \sigma_0 \longrightarrow X_u(s) = \int_{0^+}^{\infty} x(t)e^{-st}dt; \quad (s = \sigma + j\omega) \text{ - unilateral Laplace transform}$$

Table 7.1 Properties of Laplace transform

Signal	Bilateral transform		Unilateral transform
Transform	Transform	Region of convergence	- Offinater at transform
x(t)	X(s)	ROC^{x}	$X_u(s)$
y(t)	Y(s)	ROC^{y}	$Y_{u}(s)$
ax(t) + by(t)	aX(s)+bY(s)	$ROC^x \cap ROC^y$ at least	$aX_{u}(s)+bY_{u}(s)$
$x(t-t_0), t_0 \in \mathbb{R}$	$e^{-st_0}X(s)$	ROC^{x}	
$x(t-t_0), \ t_0 > 0$	$e^{-st_0}X(s)$	ROC^{x}	$e^{-st_0}X_u(s)$
$e^{s_0t}x(t)$	$X(s-s_0)$	ROC^{x} shifted	$X_u(s-s_0)$
$x(at), a \in \mathbb{R}^*$	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	ROC ^x scaled	
x(at), a>0	$\frac{1}{a}X\left(\frac{s}{a}\right)$	ROC ^x scaled	$\frac{1}{a}X_u\left(\frac{s}{a}\right)$
x(t)*y(t)	X(s)Y(s)	$ROC^x \cap ROC^y$ at least	$X_u(s)Y_u(s)$
$\frac{d}{dt}x(t)$	sX(s)	ROC ^x at least	$sX_u(s)-x(0^+)$

Signal	Bilateral transform		Unilateral transform
Signal	Transform	Region of convergence	— Cimateral transform
-tx(t)	$\frac{d}{ds}X(s)$	ROC^{x}	$\frac{d}{ds}X_{u}(s)$
$\left(-t\right)^{n}x(t)$	$\frac{d^n}{ds^n}X(s)$	ROC^{x}	$\frac{d^n}{ds^n}X_u(s)$
x(t)y(t)	$\frac{1}{2\pi j} \oint_{\Gamma} X(u) Y(s-u) du$	$\Gamma \subset ROC^x \cap ROC^y$ at least	$\frac{1}{2\pi j} \oint_{\Gamma} X(u) Y(s-u) du$
$\int_{-\infty}^t x(\tau)d\tau$	$\frac{1}{s}X(s)$	$ROC^{x} \cap \{\operatorname{Re}\{s\} > 0\}$ at least	
$\int_{0}^{t} x(\tau) d\tau$	$\frac{1}{s}X(s)$	$ROC^{x} \cap \{\operatorname{Re}\{s\} > 0\}$ at least	$\frac{X_u(s) + x^{(-1)}(0)}{s}$ $x^{(-1)}(0) - \text{initial value of integral}$
$x(t) = x(t)\sigma(t)$	$x(0^+) = \lim_{s \to \infty} sX(s)$		$x(0^+) = \lim_{s \to \infty} sX_u(s)$
$x(t) = x(t)\sigma(t)$	$x(\infty) = \lim_{s \to 0} sX(s)$		$x(\infty) = \lim_{s \to 0} sX_u(s)$

Table 7.2 Pairs signal-Laplace transform

Signal	Transform	Region of convergence
$\delta(t)$	1(constant)	$\forall s$
$\sigma(t)$	$\frac{1}{s}$	$\operatorname{Re}\{s\} > 0$
* $-\sigma(-t)$	$\frac{1}{s}$	$\operatorname{Re}\{s\} < 0$
$\frac{t^{n-1}}{(n-1)!}\sigma(t)$ *-\frac{t^{n-1}}{(n-1)!}\sigma(-t)	$\frac{1}{s^n}$	$\operatorname{Re}\{s\} > 0$
$^*-\frac{t^{n-1}}{(n-1)!}\sigma(-t)$	$\frac{1}{s^n}$	$\operatorname{Re}\{s\} < 0$
$e^{-at}\sigma(t)$	$\frac{1}{s+a}$	$\operatorname{Re}\{s\} > -a$
$^*-e^{-at}\sigma(-t)$	$ \begin{array}{c} s+a \\ \frac{1}{s+a} \\ 1 \end{array} $	$\operatorname{Re}\{s\} < -a$
$\frac{t^{n-1}}{(n-1)!}e^{-at}\sigma(t)$ $*-\frac{t^{n-1}}{(n-1)!}e^{-at}\sigma(-t)$	$\frac{1}{\left(s+a\right)^n}$	$\operatorname{Re}\{s\} > -a$
$^*-rac{t^{n-1}}{(n-1)!}e^{-at}\sigma(-t)$	$\frac{1}{\left(s+a\right)^n}$	$\operatorname{Re}\{s\} < -a$
$\delta(t-t_0);\ t_0>0$	e^{-st_0}	$\forall s$
$(\cos \omega_0 t) \sigma(t)$	$\frac{s}{s^2 + \omega_0^2}$	$\operatorname{Re}\{s\} > 0$
$(\sin \omega_0 t) \sigma(t)$	$\frac{\omega_0}{s^2 + \omega_0^2}$	$\operatorname{Re}\{s\} > 0$
$(e^{-at}\cos\omega_0 t)\sigma(t)$	$\frac{s+a}{\left(s+a\right)^2+\omega_0^2}$	$\operatorname{Re}\{s\} > -a$
$\left(e^{-at}\sin\omega_0 t\right)\sigma(t)$	$\frac{\omega_0}{\left(s+a\right)^2+\omega_0^2}$	$\operatorname{Re}\{s\} > -a$
$J_0(at)\sigma(t)$	$\frac{1}{\sqrt{s^2 + a^2}}$	$\operatorname{Re}\left\{s\right\} > - a $

For causal signals, $X(s) = X_u(s)$, and for non-causal signals only X(s) exists.

Z transform

$$x[n] = \frac{1}{2\pi j} \oint_{\Gamma} X(z) z^{n-1} dz, \quad \Gamma \subset ROC \longrightarrow X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n} \quad \text{- bilateral Z transform,}$$

$$z = r \cdot e^{j\Omega}, \quad r \ge 0$$

$$x[n] \longrightarrow X_u(z) = \sum_{n=0}^{\infty} x[n] z^{-n} \quad \text{- unilateral Z transform}$$

Table 10.1 Properties of the Z transform

The signals marked by * correspond to the unilateral transform. Otherwise the properties of the two transforms are identical.

Signal	Z transform	Region of convergence
x[n]	X(z)	$R^x < z < R_+^x$
y[n]	Y(z)	$R^y < z < R_+^y$
ax[n]+by[n]	aX(z)+bY(z)	$\max \left\{ R_{-}^{x}, R_{-}^{y} \right\} < z $ $ z < \min \left\{ R_{+}^{x}, R_{+}^{y} \right\}$
$x[n-n_0], n_0 \in \mathbb{Z}$	$z^{-n_0}X(z)$	$R^x < z < R_+^x$
$ *x[n-n_0], n_0 \in \mathbb{N} $	$z^{-n_0} \left(X(z) + \sum_{n=-n_0}^{-1} x[n] z^{-n} \right)$	$R_{-}^{x} < z $
$ *x[n+n_0], n_0 \in \mathbb{N} $	$z^{n_0} \left(X(z) - \sum_{n=0}^{n_0-1} x[n] z^{-n} \right)$	$R_{-}^{x} < z $
$e^{j\Omega_0 n}x[n]$	$X\left(e^{-j\Omega_0}z\right)$	$R^x < z < R_+^x$
x[-n]	X(1/z) only for the bilateral transform	$\frac{1}{R_+^x} < z < \frac{1}{R^x}$
x[n]-x[n-1]	$\left(1-z^{-1}\right)X\left(z\right)$	$R^x < z < R_+^x$
x[n]-x[n-1]	$\left(1-z^{-1}\right)X\left(z\right)-x\left[-1\right]$	$R_{-}^{x} < z $
$\sum_{k=-\infty}^{n} x[k]$	$\frac{X(z)}{1-z^{-1}}$	$R^x < z < R_+^x$
$* \sum_{k=-\infty}^{n} x[k]$	$\frac{X(z) + \sum_{k=-\infty}^{-1} x[k]}{1 - z^{-1}}$ $-z \frac{d}{dz} X(z)$	$R_{-}^{x} < z $
nx[n]	UL,	$R^x < z < R_+^x$
$x[n]; x[n] \equiv 0 \ n < 0$	$\lim_{z\to\infty}X\left(z\right)=x\big[0\big]$	$R_{-}^{x} < z $
$x[n]; x[n] \equiv 0 \ n < 0$	$\lim_{z \to 1} (z - 1) X(z) = x[\infty]$	$R_{-}^{x} < z $
x*[n]	$X^*(z^*)$	$R_{-}^{x} < \left z \right < R_{+}^{x}$

Signal	Z transform	Region of convergence
x[n]*y[n]	X(z)Y(z)	$\max \left\{ R_{-}^{x}, R_{-}^{y} \right\} < z $ $ z < \min \left\{ R_{+}^{x}, R_{+}^{y} \right\}$
x[n]y[n]	$\frac{1}{2\pi j} \oint_{\Gamma} X(u) Y\left(\frac{z}{u}\right) \frac{du}{u}$	$R_{-}^{x}R_{-}^{y} < z < R_{+}^{x}R_{+}^{y}$
$\sum_{n=-\infty}^{\infty} \left x[n] \right ^2 = \frac{1}{2\pi j} \oint_{\Gamma} X(u) X^* \left(1/u^* \right) \frac{du}{u}$		

Table 10.2 Pairs signal-Z transform

With the exception of the signals marked in the table with * that do not have unilateral transform, the two transforms (unilateral and bilateral) are identical.

Signal	two transforms (unilateral and bilateral) are identica Z transform	Region of convergence
$\delta[n]$	1 (constant)	$\forall z \in \mathbb{C}$
$\sigma[n]$	$\frac{1}{1-z^{-1}} = \frac{z}{z-1}$	z > 1
*-\sigma[-n-1]	$\frac{1}{1-z^{-1}} = \frac{z}{z-1}$ $\frac{1}{1-z^{-1}} = \frac{z}{z-1}$	z < 1
$\delta[n-n_0]$	z^{-n_0}	$\forall z \in \mathbb{C} \setminus \{0\} \text{ if } n_0 > 0 \text{ or}$ $\forall z \in \mathbb{C} \setminus \{\infty\} \text{ if } n_0 < 0$
$a^n \sigma[n]$	$\frac{1}{1-az^{-1}} = \frac{z}{z-a}$	z > a
a^* $-a^n\sigma[-n-1]$	$\frac{1}{1-az^{-1}} = \frac{z}{z-a}$	z < a
$na^n\sigma[n]$	$\frac{1}{1 - az^{-1}} = \frac{z}{z - a}$ $\frac{1}{1 - az^{-1}} = \frac{z}{z - a}$ $\frac{az^{-1}}{\left(1 - az^{-1}\right)^2} = \frac{az}{\left(z - a\right)^2}$	z > a
$-na^n\sigma[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2} = \frac{az}{(z-a)^2}$	z < a
$\sigma[n]\cos\Omega_0 n$	$\frac{1 - z^{-1}\cos\Omega_0}{1 - 2z^{-1}\cos\Omega_0 + z^{-2}} = \frac{z(z - \cos\Omega_0)}{z^2 - 2z\cos\Omega_0 + 1}$	z > 1
$\sigma[n]\sin\Omega_0 n$	$\frac{z^{-1}\sin\Omega_0}{1 - 2z^{-1}\cos\Omega_0 + z^{-2}} = \frac{z\sin\Omega_0}{z^2 - 2z\cos\Omega_0 + 1}$	z > 1
$\sigma[n]a^n\cos\Omega_0n$	$\frac{1 - z^{-1}a\cos\Omega_0}{1 - 2z^{-1}a\cos\Omega_0 + a^2z^{-2}} = \frac{z(z - a\cos\Omega_0)}{z^2 - 2za\cos\Omega_0 + a^2}$	z > a
$\sigma[n]a^n\sin\Omega_0n$	$\frac{z^{-1}a\sin\Omega_0}{1 - 2z^{-1}a\cos\Omega_0 + a^2z^{-2}} = \frac{za\sin\Omega_0}{z^2 - 2za\cos\Omega_0 + a^2}$	z > a