配信資料に関する技術情報(気象編)第371号

~図形式配信資料における相当温位の算出方式の変更について~

図形式の配信資料における相当温位の算出方式を、相当温位の定義により近い値が得られるように変更します。

なお、今回の変更に伴う配信資料のフォーマット等の変更はありません。

1 変更日時

平成 25 年 5 月 22 日 00UTC (日本時間 22 日午前 9 時) 初期値の資料から

2 変更の対象

- ・日本 850hPa 相当温位・風 12・24・36・48 時間予想図(以下「FXJP854」 という。)
- ・国内航空路 6、12 時間予想断面図(以下「FXJP106/112」という。)

3 変更の概要

FXJP854 及び FXJP106/112 の相当温位について、これまでは簡便な算出方式を用いて算出していましたが、今般これを本来の定義により近い値となるように精密化します。具体的には相当温位の計算式と、このために必要となる飽和水蒸気圧の計算式、及び持ち上げ凝結高度での温度の計算式を変更します。詳細は別紙の通りです。

なお、本変更は、FXJP854 及び FXJP106/112 に表示する相当温位を算出する計算式のみを変更するもので、既存の数値予報モデルの予報内容自体に変更はなく、現在配信している数値予報 GPV の値への影響はありません。

4 本変更による影響

気温が高く且つ湿度が高い場合ほど、計算される相当温位はこれまでの値と 比べて大きくなります。例えば、気圧 850hPa で気温 20° C、露点温度 20° C(相 対湿度 100° M)の場合、これまでの算出方法では、FXJP854 では 354.6K、 FXJP106/112 では 353.8K であったところが、新しい算出方法では 360.3K(そ れぞれ 5.7K、6.5K の増大)となります(表 1 及び表 2)。また、FXJP854、 FXJP106/112 それぞれについてのおおまかな換算を表 3 及び表 4 に示します。 図 1 は日本付近の 850hPa の相当温位及び風向風速予想図(FXJP854)の変

更前後の比較で、平成24年6月15日00UTC初期値による例です。円で囲ん

だ九州北部の暖湿気に着目すると、新しい算出方法では 345K 以上となるところ、これまでの算出方法では 342K であることが分かります。

また、図 2 は国内航空路 6 時間予想断面図(FXJP106)で、平成 24 年 6 月 15 日 00UTC 初期値の例です。暖湿気の流入による影響が大きいと考えられる 南西諸島から九州付近にかけての中層・下層に着目すると、新しい算出方法では最大で $5\sim10 \mathrm{K}$ ほど大きく算出されています。12 時間予想による図(FXJP112) は省略しますが、今回の変更では同様の影響を受けます。

表 1 FXJP854 における、気圧 850hPa の場合の相当温位(単位 K)の新旧比較。上段が新しい算出方法による値、下段がこれまでの算出方法による値。

		気温一露点温度(℃)				
		0	3	6	9	12
	25	387.3	374.2	363.4	354.4	347.0
		378.2	367.2	358.0	350.3	343.7
	20	360.3	351.0	343.3	336.8	331.5
		354.6	346.6	339.8	334.1	329.4
気温	15	339.6	332.9	327.3	322.7	318.9
		335.9	330.0	325.1	321.0	317.5
$\widehat{\mathbb{C}}$	10	323.2	318.4	314.4	311.1	308.4
		320.9	316.6	313.0	310.0	307.5
	5	310.0	306.6	303.7	301.3	299.4
		308.5	305.3	302.7	300.6	298.8
	0	299.0	296.6	294.6	292.9	291.5
		298.0	295.8	293.9	292.4	291.1

表 2 FXJP106/112 における、それぞれ気圧が 925、850、700hPa の場合の相当温位(単位 K)の新旧比較。上段が新しい算出方法による値、下段がこれまでの算出方法による値。

925hPa

		気温-露点温度(℃)				
		0	3	6	9	12
	25	371.3	359.8	350.3	342.4	335.8
		363.0	353.1	344.9	338.0	332.3
	20	347.1	338.8	332.0	326.3	321.5
		341.8	334.5	328.5	323.4	319.2
気温 (°C)	15	328.3	322.3	317.4	313.3	309.9
		324.8	319.5	315.1	311.4	308.3
	10	313.3	309.0	305.5	302.5	300.1
		311.1	307.2	304.0	301.3	299.0
	5	301.1	298.0	295.5	293.3	291.6
		299.6	296.8	294.5	292.5	290.9
	0	290.9	288.7	286.9	285.4	284.1
		289.9	287.9	286.2	284.8	283.7

850hPa

		気温-露点温度(℃)				
		0	3	6	9	12
	25	387.3	374.2	363.4	354.4	347.0
		377.1	366.1	356.9	349.2	342.7
	20	360.3	351.0	343.3	336.8	331.5
		353.9	345.8	339.0	333.4	328.7
気	15	339.6	332.9	327.3	322.7	318.9
温		335.4	329.5	324.6	320.5	317.0
(C)	10	323.2	318.4	314.4	311.1	308.4
		320.5	316.2	312.6	309.6	307.2
	5	310.0	306.6	303.7	301.3	299.4
		308.2	305.1	302.5	300.4	298.6
	0	299.0	296.6	294.6	292.9	291.5
		297.9	295.6	293.8	292.3	291.0

700hPa

	700π α					
		気温−露点温度(℃)				
		0	3	6	9	12
	25	429.9	412.0	397.3	385.3	375.3
		413.6	399.1	387.1	377.2	368.9
	20	394.7	382.2	371.8	363.3	356.3
		384.5	374.0	365.3	358.1	352.1
気温	15	368.4	359.5	352.2	346.1	341.1
		361.9	354.3	348.0	342.7	338.3
$\widehat{\mathbb{C}}$	10	348.1	341.8	336.6	332.3	328.7
		344.0	338.4	333.8	330.0	326.9
	5	332.1	327.6	323.9	320.8	318.3
		329.4	325.4	322.1	319.4	317.2
	0	319.1	315.9	313.3	311.1	309.4
		317.4	314.5	312.2	310.2	308.6

表 3 FXJP854 における、気圧 850hPa の場合の相当温位(単位 K)の大まかな新旧の差。ここで、気温-露点温度は 0℃から 15℃程度の範囲であるとした。表の右列の「新算出方法との差」は気温-露点温度が小さいほど大きな値になることに注意。

旧 FXJP854 での相当温位	新算出方法との差(新-旧)
(K)	(K)
$350 \sim 355$	$3 \sim 5$
$345 \sim 350$	$3 \sim 4$
$340 \sim 345$	$2 \sim 4$
$335 \sim 340$	$2 \sim 4$
$325 \sim 335$	$2 \sim 3$
$315 \sim 325$	$1 \sim 3$
315 以下	2 以下

表 4 FXJP106/112 における、それぞれ 925、850、700hPa の場合の相当温位 (単位 K)の大まかな新旧の差。表 3 と同じく、気温-露点温度は 0℃から 15℃程度の範囲で算出。

925hPa

旧 FXJP106/112 での相当温位	新算出方法との差(新-旧)
(K)	(K)
$350 \sim 355$	$6 \sim 7$
$345 \sim 350$	$5\sim 6$
$340 \sim 345$	$5\sim 6$
$335 \sim 340$	$4\sim 5$
$325 \sim 335$	$2 \sim 4$
$315 \sim 325$	$2 \sim 3$
315 以下	3 以下

850hPa

旧 FXJP106/112 での相当温位	新算出方法との差(新-旧)
(K)	(K)
$350 \sim 355$	$5\sim7$
$345 \sim 350$	$5\sim 6$
$340 \sim 345$	$4 \sim 5$
$335 \sim 340$	$3 \sim 5$
$325 \sim 335$	$2 \sim 4$
$315 \sim 325$	$2 \sim 3$
315 以下	2 以下

700hPa

旧 FXJP106/112 での相当温位	新算出方法との差(新-旧)
(K)	(K)
$350 \sim 355$	$4 \sim 6$
$345 \sim 350$	$3 \sim 5$
$340 \sim 345$	$3 \sim 4$
$335 \sim 340$	$2 \sim 4$
$325 \sim 335$	$1 \sim 3$
$315 \sim 325$	$1 \sim 2$
315 以下	2 以下

図1 FXJP854の24時間予報図の比較。上段が新しい算出方法、下段がこれまでの算出方法による図。

図 2 FXJP106 の比較。上段が新しい算出方法、下段がこれまでの算出方法による図。

相当温位の計算手法

新たに FXJP854や FXJP106/112 で適用する相当温位の計算は次の式による。ここで、このために必要となる飽和水蒸気圧の計算式、及び持ち上げ凝結高度での温度の計算式も合わせて示す。

計算式に現れる変数については次の通りである。

T: 温度(K)

 T_D : 露点温度(K)

P: 気圧(hPa)

e: 水蒸気圧(hPa)

x:混合比(kg/kg)

$$\frac{R_d}{C_{pd}} = \frac{$$
乾燥空気の気体定数}{乾燥空気の定圧比熱} = 0.2854

1. 相当温位(K)の計算式

$$\theta_e = T \left(\frac{1000}{P - e} \right)^{\frac{R_d}{C_{pd}}} \left(\frac{T}{T_{LCL}} \right)^{0.28x} \exp\left(\left(\frac{3036.0}{T_{LCL}} - 1.78 \right) x (1 + 0.448x) \right)$$

2. 飽和水蒸気圧 (hPa) の計算式

$$e_s = 6.112 \exp\left(\frac{17.67(T - 273.15)}{T - 29.65}\right)$$

3. 持ち上げ凝結高度での温度 (K) の計算式

$$T_{LCL} = \frac{1}{\frac{1}{T_D - 56} + \frac{\ln(T/T_D)}{800}} + 56$$