1 Expected Value

1.1 Integration

- X is called a *simple function* on a measurable space (Ω, \mathcal{F}) if $X = \sum_i a_i 1\{A_i\}$ is a finite sum, where $a_i \in \mathbb{R}$ and $A_i \in \mathcal{F}$.
- Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $a_i \geq 0$ for all i. The integral of X with respect to μ is

$$\int X d\mu = \sum_{i} a_{i} \mu (A_{i}).$$

• Let X be a non-negative measurable function. The integral of X with respect to μ is

$$\int X d\mu = \sup \left\{ \int Y d\mu : 0 \le Y \le X, Y \text{ is simple} \right\}.$$

• Let X be a measurable function. Define $X^+ = \max\{X,0\}$ and $X^- = -\min\{X,0\}$. Both X^+ and X^- are non-negative functions. The integral of X with respect to μ is

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu.$$

• If the measure μ is a probability measure P, then the integral $\int X dP$ is called the *expected value*, or *expectation*, of X. We often use the popular notation E[X], instead of $\int X dP$, for convenience.

1.2 Properties

- Elementary calculation: $E\left[X\right] = \sum_{x} x P\left(X=x\right)$ or $E\left[X\right] = \int x f\left(x\right) \mathrm{d}x$.
- $E[1\{A\}] = P(A)$.
- $E[X^r]$ is call the r-moment of X. Mean $\mu = E[X]$, variance $var[X] = E[(X \mu)^2]$, skewness $E[(X \mu)^3]$ and kurtosis $E[(X \mu)^4]$.
- Skewness coefficient $E\left[\left(X-\mu\right)^3\right]/\sigma^3$, degree of excess $E\left[\left(X-\mu\right)^4\right]/\sigma^4-3$.
 - Application: The formula that killed Wall Street
- Jensen's inequality. If $\varphi(\cdot)$ is a convex function, then $\varphi(E[X]) \leq E[\varphi(X)]$.
 - Application: Kullback-Leibler distance $d(p,q) = \int \log(p/q) dP = E_P[\log(p/q)]$

- Markov inequality: if $E[|X|^r]$ exists, then $P(|X| > \epsilon) \le E[|X|^r]/\epsilon^r$ for all $r \ge 1$.
 - Application: Chebyshev inequality: $P\left(|X| > \epsilon\right) \leq E\left[X^2\right]/\epsilon^2$.

2 Multivariate Random Variable

- Bivariate random variable: $X: \Omega \mapsto \mathbb{R}^2$.
- Multivariate random variable $X: \Omega \to \mathbb{R}^d$.
- Joint CDF: $F(x_1, ..., x_d) = P(X_1 \le x_1, ..., X_d \le x_d)$. Joint PDF is defined similarly.

2.1 Law of Iterated Expectations

- Given a probability space (Ω, \mathcal{F}, P) , a sub σ -algebra $\mathcal{G} \subset \mathcal{F}$ and a \mathcal{F} -measurable function X with $E|X| < \infty$, the conditional expectation $E[X|\mathcal{G}]$ is defined as a \mathcal{G} -measurable function such that $\int_A X dP = \int_A E[X|\mathcal{G}] dP$ for all $A \in \mathcal{G}$.
- Law of iterated expectation

$$E\left[E\left[Y|X\right]\right] = E\left[Y\right]$$

is a trivial fact from the definition of the conditional expectation by taking $A = \Omega$.

- Properties of conditional expectations
 - 1. $E[E[Y|X_1, X_2]|X_1] = E[Y|X_1]$
 - 2. $E[E[Y|X_1]|X_1, X_2] = E[Y|X_1]$
 - 3. E[h(X)Y|X] = h(X)E[Y|X]

2.2 Elementary Formulation

- conditional density f(Y|X) = f(X,Y)/f(X)
- marginal density $f(Y) = \int f(X, Y) dX$.
- conditional expectation $E[Y|X] = \int Y f(Y|X) dY$
- proof of law of iterated expectation
- conditional probability, or Bayes' Theorem

$$P(A|B) = \frac{P(A,B)}{P(B)} = \frac{P(B|A) P(A)}{P(B)}.$$

2.3 Application: Regression

• $Y = E[Y|X] + \epsilon$, where $\epsilon = Y - E[Y|X]$.

3 Independence

X and Y are independent if $P(X \in A, Y \in B) = P(X \in A) P(Y \in B)$ for all A and B.

Application: (Chebyshev law of large numbers) If X_1, X_2, \ldots, X_n are independent, and they have the same mean μ and variance $\sigma^2 < \infty$. Let $Z_n = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)$. Then the probability $P(|Z_n| > \epsilon) \to 0$ as $n \to \infty$,