HUDM5124 -- Week 2 assignment: PCA [ALTERNATE VERSION]

In this Canvas module is posted a multivariate data set ("fatality.sav") on auto fatality rates, representing the correlations among six variables measured on a sample of 50 states.

The variables are:

State name of state

frate fatalities per 100M vehicle miles driven

drink min drinking age gasuse gasoline use

drivers total number of drivers (M)

density population density

temp mean January daytime low temp

Run a PCA, with varimax rotation (and default parameters otherwise) on these variables. Print out ONLY the derived eigenvalues (and a scree plot) and the rotated components matrix.

Discuss how many components you think should be extracted. Write a brief interpretation of each *rotated* component.

Use SPSS, R, or any other stat package you prefer.

KEY TO ASSN 1: Selected SPSS output:

Correlation Matrix

		fatalities per 100M vehicle miles	min drinking age	gasoline use	total number of drivers (M)	populatio n density	mean January daytime low temp
Correlati on	fatalities per 100M vehicle miles	1.000	.040	213	244	604	.168
	min drinking age	.040	1.000	.057	.065	267	135
	gasoline use	213	.057	1.000	.977	.133	.352
	total number of drivers (M) population density	244	.065	.977	1.000	.176	.321
		604	267	.133	.176	1.000	.072
	mean January daytime low temp	.168	135	.352	.321	.072	1.000

Total Variance Explained

	Initial Eigenvalues			Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings		
Compon ent	Total	% of Variance	Cumulativ e %	Total	% of Variance	Cumulativ e %	Total	% of Variance	Cumulativ e %
1	2.329	38.822	38.822	2.329	38.822	38.822	2.178	36.301	36.301
2	1.556	25.932	64.755	1.556	25.932	64.755	1.672	27.860	64.161
3	1.149	19.151	83.905	1.149	19.151	83.905	1.185	19.744	83.905
4	.635	10.581	94.487						
5	.310	5.167	99.653						
6	.021	.347	100.000						

Extraction Method: Principal Component Analysis.

Scree Plot

Component Matrix(a)

	Component			
	1	2	3	
fatalities per 100M vehicle miles	474	.718	.329	
min drinking age	068	.384	792	
gasoline use	.915	.318	108	
total number of drivers (M)	.924	.277	135	
population density	.466	751	.128	
mean January daytime low temp	.438	.388	.607	

Extraction Method: Principal Component Analysis.

Rotated Component Matrix(a)

	Component				
	1	2	3		
fatalities per 100M vehicle miles	132	.902	.133		
min drinking age	.153	.200	846		
gasoline use	.967	122	027		
total number of drivers (M)	.958	168	045		
population density	.084	831	.317		
mean January daytime low temp	.527	.290	.590		

Extraction Method: Principal Component Analysis.

Three components are extracted by the criterion of retaining only those with eigenvalues > 1. Once rotated by the VARIMAX criterion, they can be interpreted as follows:

<u>Component 1</u>: loads high on gas use and number of drivers. This is probably a size-of-state factor

<u>Component 2</u>: loads high on fatality rate and high negative on population density. This seems to suggest that the biggest effect on fatality rate might be population density, with a higher rate in low-density states

<u>Component 1</u>: loads high negative on drinking age, high positive on mean January daytime temperature. It seems to mean that warmer (Sunbelt) states have lower minimum drinking ages (check with a scatterplot?)

a 3 components extracted.

Rotation Method: Varimax with Kaiser Normalization.

a Rotation converged in 6 iterations.