

Predicting Clinical Outcomes

Faisal Maqbool Supervisor: Dr. Saeed UI Hassan

Information Technology University of the Punjab Lahore, Pakistan

- Introduction
- Motivation
- Challenges
- Problem Statement
- Literature Review
- Dataset
- Proposed Technique

Introduction

- Deep learning models have revolutionized many fields including computer vision, natural language processing, speech recognition, and is being increasingly used in clinical healthcare applications
- Early hospital mortality, length of stay, obesity and ICD-9 code group prediction is critical as intensivists strive to make efficient decisions about ill patients admitted in hospitals

Motivation

- Extract sensitive information from admission and discharge summaries
- Extract symptoms
- Prescribe medicine & propose health matrices
- Aid doctors in giving accurate information
- Predict LOS, mortality, cause and other sensitive information using the clinical text

Literature Survey

Paper Title	Author(s)	Year	Journal	Data
Comparing deep learning and concept	Sebastian	2018	PLOS One	MIMIC (URL: https://physionet.org/works/
Clinical Text Classifcation with Rule-based	Liang Yao,	2018	IEEE International	https://www.i2b2.org/NLP/DataSets/
Bidirectional LSTM-CRF for Clinical Concept	Raghavendra	2016	Clinical Natural	https://www.i2b2.org/NLP/DataSets/
Identifying adverse drug event information in	Aron Henriksson	2015	Journal of Biomedical	Data used for this study was Stockholm
Predicting healthcare trajectories from	TrangPham	2017	Journal of Biomedical	Data for both cohorts were collected for 12
Recurrent neural networks for classifying	Yuan Luo	2017	Journal of Biomedical	https://www.i2b2.org/NLP/DataSets/
Multi-task learning for interpretable cause-of-d	Mireille Gomes,	2018	Proceedings of the	Proprietary data of Million Death Study
Predicting protein functions by applying	Kamal Taha,	2019	BMC Bioinformatics	Data for this study is Gene Ontology
Structured prediction models for RNN based :	Abhyuday N	2016	Proceedings of	
Identifying Risk Factors For Heart Disease in	Thanat Chokwijitkul	2018	Proceedings of the	Data for this study is from i2b2 risk factor
Extracting medication information from		2010	Journal of the	
2010 i2b2/VA challenge on concepts, assertions, and relations in c		2011		
Early hospital mortality prediction using vital	Sadeghi, R.,	2018	Smart Health	MIMIC (URL: https://physionet.org/works/
Benchmark of deep learning models on large	Purushotham, S.,	2017	Preprint	MIMIC (URL: https://physionet.org/works/
Mortality prediction in intensive care units (ICU	Davoodi, R., &	2018	Journal of Biomedical	MIMIC (URL: https://physionet.org/works/
Explainable prediction of medical codes from	Mullenbach, J.,	2018	Preprint	MIMIC (URL: https://physionet.org/works/
	,		1	1

Problem Statement

Benchmarking results for several clinical prediction tasks such as mortality prediction, length of stay prediction, and ICD-9 code group prediction (International Statistical Classification of Diseases and Related Health Problems) and development of system predicting these valued information by combining NLP and Deep learning

Concrete Tasks

- Binary classifier for mortality or early mortality
- Regression for predicting the length of stay of patient at hospital
- ICD-9 group prediction, multi-class classification (n-groups depending on feature engineering)
- ICD-9 label prediction, multi-class classification (20 labels)
- Extracting above mentioned tasks and other clinical tasks using only discharge summaries (NLP specific)
- ** For risk factors prediction, we are going to consult a person with domain knowledge after EID-UI-AZHA

Objective

"Regardless of wide variety and complexity of features inherent in electronic health records, develop a model using NLP techniques and AI to predict several clinical tasks to aid doctors"

Challenges

- Terminological variations and irregularities in clinical information
- Morphological rules are required to cope with different variants in records
- Health records have specific formats
- Text retrieval, NLP and advanced DNN techniques are required to outperform already developed systems
- Approaches that enable faster and more collaborative research while protecting patient privacy and confidentiality are becoming more important

Paper	Dataset	Features	Model	Results
Early hospital mortality prediction using vital signals." <i>Smart Health</i> 9 (2018)	MIMIC-III	Heart Rate Quantitative Features (Max, Min, Skewness, Range etc.)	Random Forrest, Decision Trees	RF F1 Score : 0.97 DT F1 Score : 0.91
Benchmark of deep learning models on large healthcare mimic datasets. <i>Journal of biomedical informatics</i> (2017) - <i>Preprint</i>	MIMIC-III	Three feature Sets for different prediction tasks	FFN RNN MMDL : FFN + RNN	AUROC : 85 % MMDL
Mortality prediction in intensive care units (ICUs) using a deep rule-based fuzzy classifier. Journal of biomedical informatics 79 (2018)	MIMIC-III	Demographics Vital Signs and Lab Events	DRBFS- last layer DRBFS- middle layer DRBFS- first layer DRBFS	AUROC : 73.60 % DRBFS
Explainable prediction of medical codes from clinical text. arXiv preprint arXiv:1802.05695(2018)	MIMIC-III	Discharge Summaries	Convolutional Attention for Multi-Label classification (CAML)	Precision@8 of 0.71 and a Micro-F1 of 0.54

MIMIC-III (Medical Information Mart for Intensive Care)

- A freely accessible critical care database
- Developed by the MIT Lab for Computational Physiology, comprising DE identified health data associated with ~40,000 critical care patients. It includes demographics, vital signs, laboratory tests, medications, and more

12b2: Informatics for Integrating Biology and the Bedside

MIMIC-III Data Access

- Requires research ethics and compliance training courses (completed)
- Took "Data or Specimens Only Research under requirements set by "Massachusetts Institute of Technology Affiliates"
- 15 modules:
 - Research and Human Subjects
 - Privacy and Confidentiality
 - Assessing Risks
 - History and Ethical Principles
 - Regulations and Process
 - Genetics Research
 - International Research
 - HIPAA
 - Conflicts and Interest in Research

Completion Date 17-Apr-2019 Expiration Date 16-Apr-2022 Record ID 31301898

This is to certify that:

Faisal Maqbool

Has completed the following CITI Program course:

Human Research (Curriculum Group)

Data or Specimens Only Research (Course Learner Group)

2 - Refresher Course (Stage)

Under requirements set by:

Massachusetts Institute of Technology Affiliates

Verify at www.citiprogram.org/verify/?wc1018ffc-fce8-45a9-8913-7a7bbfd3c313-31301898

Initial Exploration

Figure 1: Age Distribution

Figure 2: Admit Type Distribution

Figure 3: Expired At Hospital Dist.

Experiments Mortality Prediction

Random Forrest:

precision 0.8344 recall 0.449 accuracy 0.9367 F1 score 0.5838

Cont...

NN:

precision 0.7473404255319149 recall 0.48157669237360756 accuracy 0.9326042726347915 F1 score 0.5857217300677436

Initial Exploration Cont..

Experiments Length of Stay Prediction

Gradient Boosting Regression

LOSgroupNum	predictions	
1	1	
3	3	
0	0	
0	0	
1	1	
2	2	

Figure 1. LOS Group Prediction (Labels vs Prediction)

predictions
6.974125
14.203448
7.075496
12.170375
10.801265
11.227309
18.490559

Figure 2. Length of Stay Prediction (Labels vs Prediction)

Proposed Technique

Milestones & Goals

References

- [1] Gentimis, Thanos, Alnaser Ala'J, Alex Durante, Kyle Cook, and Robert Steele. "Predicting Hospital Length of Stay Using Neural Networks on MIMIC III Data." In 2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), pp. 1194-1201. IEEE, 2017.
- [2] Sadeghi, Reza, Tanvi Banerjee, and William Romine. "Early hospital mortality prediction using vital signals." Smart Health9 (2018): 265-274.
- [3] Purushotham, Sanjay, Chuizheng Meng, Zhengping Che, and Yan Liu. "Benchmark of deep learning models on large healthcare mimic datasets." arXiv preprint arXiv:1710.08531(2017).
- [4] Purushotham, Sanjay, Chuizheng Meng, Zhengping Che, and Yan Liu. "Benchmark of deep learning models on large healthcare mimic datasets." arXiv preprint arXiv:1710.08531(2017).
- [5] Mullenbach, James, Sarah Wiegreffe, Jon Duke, Jimeng Sun, and Jacob Eisenstein. "Explainable prediction of medical codes from clinical text." arXiv preprint arXiv:1802.05695 (2018).

References

D

[6] http://kaggle.com/drscarlat/mimic3a/

Thank You