Week6 monday

For Turing machine $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ the **computation** of M on a string w over Σ is:

- Read/write head starts at leftmost position on tape.
- Input string is written on |w|-many leftmost cells of tape, rest of the tape cells have the blank symbol. **Tape alphabet** is Γ with $\bot \in \Gamma$ and $\Sigma \subseteq \Gamma$. The blank symbol $\bot \notin \Sigma$.
- Given current state of machine and current symbol being read at the tape head, the machine transitions to next state, writes a symbol to the current position of the tape head (overwriting existing symbol), and moves the tape head L or R (if possible). Formally, **transition function** is

$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$$

• Computation ends if and when machine enters either the accept or the reject state. This is called halting. Note: $q_{accept} \neq q_{reject}$.

The language recognized by the Turing machine M, is

 $\{w \in \Sigma^* \mid \text{computation of } M \text{ on } w \text{ halts after entering the accept state}\} = \{w \in \Sigma^* \mid w \text{ is accepted by } M\}$

To define a Turing machine, we could give a

- Formal definition, namely the 7-tuple of parameters including set of states, input alphabet, tape alphabet, transition function, start state, accept state, and reject state; or,
- Implementation-level definition: English prose that describes the Turing machine head movements relative to contents of tape, and conditions for accepting / rejecting based on those contents.

Conventions for drawing state diagrams of Turing machines: (1) omit the reject state from the diagram (unless it's the start state), (2) any missing transitions in the state diagram have value $(q_{reject}, -, R)$.

Computation on input string 01#01

$q_1 \downarrow 0$			Г			
0	1	#	0	1	u	٦
1						
I						
		<u> </u>		<u> </u>	<u> </u>	
			1		•	
		<u> </u>	<u> </u>			<u> </u>

Implementation level description of this machine:

Zig-zag across tape to corresponding positions on either side of # to check whether the characters in these positions agree. If they do not, or if there is no #, reject. If they do, cross them off.

Once all symbols to the left of the # are crossed off, check for any un-crossed-off symbols to the right of #; if there are any, reject; if there aren't, accept.

The language recognized by this machine is

 $\{w\#w \mid w \in \{0,1\}^*\}$

A language L is **recognized by** a Turing machine M means

A Turing machine M recognizes a language L if means

A Turing machine M is a **decider** means

A language L is **decided by** a Turing machine M means

A Turing machine M decides a language L means

Week6 wednesday

Two models of computation are called **equally expressive** when every language recognizable with the first model is recognizable with the second, and vice versa.

True / False: NFAs and PDAs are equally expressive.

True / False: Regular expressions and CFGs are equally expressive.

Some examples of models that are equally expressive with deterministic Turing machines:

May-stay machines The May-stay machine model is the same as the usual Turing machine model, except that on each transition, the tape head may move L, move R, or Stay.

Formally: $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ where

$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$$

Claim: Turing machines and May-stay machines are equally expressive. To prove . . .

To translate a standard TM to a may-stay machine:

To translate one of the may-stay machines to standard TM: any time TM would Stay, move right then left.

Formally: suppose $M_S = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$ has $\delta : Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$. Define the Turing-machine

$$M_{new} = ($$

Multitape Turing machine A multitape Turing machine with k tapes can be formally representated as $(Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$ where Q is the finite set of states, Σ is the input alphabet with $\bot \notin \Sigma$, Γ is the tape alphabet with $\Sigma \subsetneq \Gamma$, $\delta : Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R\}^k$ (where k is the number of states)

If M is a standard TM, it is a 1-tape machine.

To translate a k-tape machine to a standard TM: Use a new symbol to separate the contents of each tape and keep track of location of head with special version of each tape symbol. Sipser Theorem 3.13

Extra practice: Wikipedia Turing machine Define a machine $(Q, \Gamma, b, \Sigma, q_0, F, \delta)$ where Q is the finite set of states Γ is the tape alphabet, $b \in \Gamma$ is the blank symbol, $\Sigma \subsetneq \Gamma$ is the input alphabet, $q_0 \in Q$ is the start state, $F \subseteq Q$ is the set of accept states, $\delta: (Q \setminus F) \times \Gamma \not\to Q \times \Gamma \times \{L, R\}$ is a partial transition function If computation enters a state in F, it accepts If computation enters a configuration where δ is not defined, it rejects. Hopcroft and Ullman, cited by Wikipedia

Enumerators Enumerators give a different model of computation where a language is **produced**, **one string at a time**, rather than recognized by accepting (or not) individual strings.

Each enumerator machine has finite state control, unlimited work tape, and a printer. The computation proceeds according to transition function; at any point machine may "send" a string to the printer.

$$E = (Q, \Sigma, \Gamma, \delta, q_0, q_{print})$$

Q is the finite set of states, Σ is the output alphabet, Γ is the tape alphabet $(\Sigma \subseteq \Gamma, \bot \in \Gamma \setminus \Sigma)$,

$$\delta: Q \times \Gamma \times \Gamma \to Q \times \Gamma \times \Gamma \times \{L,R\} \times \{L,R\}$$

where in state q, when the working tape is scanning character x and the printer tape is scanning character y, $\delta((q, x, y)) = (q', x', y', d_w, d_p)$ means transition to control state q', write x' on the working tape, write y' on the printer tape, move in direction d_w on the working tape, and move in direction d_p on the printer tape. The computation starts in q_0 and each time the computation enters q_{print} the string from the leftmost edge of the printer tape to the first blank cell is considered to be printed.

The language **enumerated** by E, L(E), is $\{w \in \Sigma^* \mid E \text{ eventually, at finite time, prints } w\}$.

q0									
_ *]	1	J	1	1	_			
_ *	J	u	u	J]	u			

Theorem 3.21 A language is Turing-recognizable iff some enumerator enumerates it. *Proof next time . . .*

Week6 friday

To define a Turing machine, we could give a

- Formal definition: the 7-tuple of parameters including set of states, input alphabet, tape alphabet, transition function, start state, accept state, and reject state; or,
- Implementation-level definition: English prose that describes the Turing machine head movements relative to contents of tape, and conditions for accepting / rejecting based on those contents.
- **High-level description**: description of algorithm (precise sequence of instructions), without implementation details of machine. As part of this description, can "call" and run another TM as a subroutine.

Theorem 3.21 A language is Turing-recognizable iff some enumerator enumerates it.

Proof:

Assume L is enumerated by some enumerator, E, so L = L(E). We'll use E in a subroutine within a high-level description of a new Turing machine that we will build to recognize L.

Goal: build Turing machine M_E with $L(M_E) = L(E)$.

Define M_E as follows: M_E = "On input w,

- 1. Run E. For each string x printed by E.
- 2. Check if x = w. If so, accept (and halt); otherwise, continue."

Assume L is Turing-recognizable and there is a Turing machine M with L = L(M). We'll use M in a subroutine within a high-level description of an enumerator that we will build to enumerate L.

Goal: build enumerator E_M with $L(E_M) = L(M)$.

Idea: check each string in turn to see if it is in L.

How? Run computation of M on each string. But: need to be careful about computations that don't halt.

Recall String order for $\Sigma = \{0, 1\}$: $s_1 = \varepsilon$, $s_2 = 0$, $s_3 = 1$, $s_4 = 00$, $s_5 = 01$, $s_6 = 10$, $s_7 = 11$, $s_8 = 000$, ...

Define E_M as follows: E_M = " ignore any input. Repeat the following for i = 1, 2, 3, ...

- 1. Run the computations of M on s_1, s_2, \ldots, s_i for (at most) i steps each
- 2. For each of these i computations that accept during the (at most) i steps, print out the accepted string."

Nondeterministic Turing machine

At any point in the computation, the nondeterministic machine may proceed according to several possibilities: $(Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$ where

$$\delta: Q \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, R\})$$

The computation of a nondeterministic Turing machine is a tree with branching when the next step of the computation has multiple possibilities. A nondeterministic Turing machine accepts a string exactly when some branch of the computation tree enters the accept state.

Given a nondeterministic machine, we can use a 3-tape Turing machine to simulate it by doing a breadth-first search of computation tree: one tape is "read-only" input tape, one tape simulates the tape of the nondeterministic computation, and one tape tracks nondeterministic branching. Sipser page 178

Two models of computation are called **equally expressive** when every language recognizable with the first model is recognizable with the second, and vice versa.

Church-Turing Thesis (Sipser p. 183): The informal notion of algorithm is formalized completely and correctly by the formal definition of a Turing machine. In other words: all reasonably expressive models of computation are equally expressive with the standard Turing machine.

Claim: If two languages (over a fixed alphabet Σ) are Turing-recognizable, then their union is as well.
Proof using Turing machines:
Proof using nondeterministic Turing machines:
Proof using enumerators: