PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/82, 15/29, 15/31, 5/10, A01N 63/02, 65/00, A01H 5/00

(11) International Publication Number:

WO 95/31564

A2

(43) International Publication Date: 23 November 1995 (23.11.95)

(21) International Application Number:

PCT/GB95/01075

(22) International Filing Date:

11 May 1995 (11.05.95)

(30) Priority Data:

9409394.5 11 May 1994 (11.05.94) GB PCT/GB94/02812 24 December 1994 (24.12.94) WO (34) Countries for which the regional or international application was filed: GB et al. 31 March 1995 (31.03.95) 9506658.5 GB 9507232.8 7 April 1995 (07.04.95) GB

CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TT, UA, UG, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ, UG).

(81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH,

(71) Applicant (for all designated States except US): THE GATSBY CHARITABLE FOUNDATION [GB/GB]; 9 Red Lion Court, London EC4A 3EB (GB).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): JONES, Jonathan, Dallas, George [GB/GB]; 19 Waverley Road, Norwich, Norfolk NR4 6SG (GB). HAMMOND-KOSACK, Kim, Elizabeth [GB/GB]; 6 Chestnut Hill, Norwich RN4 6NL (GB). JONES, David, Allen [GB/GB]; 139 Greenways, Eaton, Norwich NR4 6PD (GB).
- (74) Agents: WALTON, Seán, M. et al.; Mewburn Ellis, York House, 23 Kingsway, London WC2B 6HP (GB).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: METHOD OF INTRODUCING PATHOGEN RESISTANCE IN PLANTS

(57) Abstract

Variegated plants have increased pathogen resistance: cells of the plant express a phenotype, which may comprise necrosis and/or a plant defence response, and other cells not expressing this phenotype have increased pathogen resistance. Embodiments of the invention employ various genes, including Cladosporium fulvum pathogen resistance genes, which are inactivated, for example as a result of insertion of a transposable genetic element, and then reactivated in plant cells to result in necrosis and/or a plant defence response, leading to increased pathogen resistance. Cells, plants and other compositions of matter are provided comprising various combinations of genes involved in this system.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	TE.	Ireland	NZ	New Zealand
BJ	Benin	П	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI.	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	LT	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gahon		-		

BNSDOCID: <WO_____9531564A2_I_>

1

METHOD OF INTRODUCING PATHOGEN RESISTANCE IN PLANTS

The present invention relates to a method of introducing pathogen resistance in plants, particularly broad spectrum pathogen resistance, and plants which may be obtained by said method and which show resistance to at least one but preferably more than one pathogen.

Plants are constantly challenged by potentially pathogenic microorganisms. Crop plants are particularly vulnerable, because they are usually grown 10 as genetically uniform monocultures; when disease strikes, losses can be severe. However, most plants are resistant to most plant pathogens. To defend themselves, plants have evolved an array of both 15 preexisting and inducible defences which include barriers to pathogen entry such as thickened or chemically crosslinked cell wall components or toxic chemicals derived from complex plant biosynthetic pathways. Pathogens must specialize to circumvent the defence mechanisms of the host, especially those 20 biotrophic pathogens that derive their nutrition from an intimate association with living plant cells. the pathogen can cause disease, the interaction is said to be compatible, but if the plant is resistant, the interaction is said to be incompatible. 25

Induced resistance is strongly correlated with the hypersensitive response (HR), an induced response

BNSDOCID: <WO_____9531564A2_I_>

5

associated with localized cell death at sites of attempted pathogen ingress. It is hypothesized that by HR the plant deprives the pathogen of living host cells but there is no certainty about whether localised cell death results from or induces plant defence mechanisms.

Many plant defence mechanisms are strongly induced in response to a challenge by an unsuccessful pathogen. Such an induction of enhanced resistance can be systemic (hereinafter referred to as systemic 10 acquired resistance (SAR)) (Ross, 1961; Ryals et al., 1992). Acquired resistance can also be local (hereinafter referred to as LAR) (Ryals et al., 1992). Acquired resistance has been extensively researched and various facts have been established. For example, biotic stimuli are required to provoke the HR resulting 15 in areas of dead plant cells on the leaf. Cell death resulting from wounding or other abiotic stresses will not suffice. (Ryals et al., 1992; Enyedi et al., 1992). In addition, SAR is correlated with the 20 induction of a large array of pathogenesis-related (PR) proteins, some of which have demonstrated anti-fungal activity (Ward et al., 1991).

A variety of examples of SAR have been studied and include challenging of tobacco carrying the N gene for resistance to tobacco mosaic virus (TMV) with TMV (Ross, 1961) and challenging cucumber seedlings with tobacco necrosis virus or Colletotrichum largenarium.

Results show that a challenge with one pathogen leads to enhanced resistance to a wide variety of other pathogens (Ryals et al., 1992).

SAR has also been correlated with increased

levels of salicylic acid in plants which have been challenged by pathogens (Malamy et al., 1990; Metraux et al., 1990) which has been confirmed by studies that show that a supply of exogenous salicylic acid to unchallenged plants can result in SAR (Ward et al., 1991; Hennig et al., 1993). Transgenic plants designed so that salicylic acid accumulation is prevented by expression of a salicylate hydroxylase gene show reduced SAR compared to non-transgenic plants where salicylic acid accumulation is not prevented (Gaffney et al., 1993). SAR can also be induced by many

SAR is an attractive method by which broad spectrum disease control can be achieved. However, two major drawbacks hinder its commercial exploitation: SAR is not a heritable trait and so the phenomenon has to be successfully induced into every plant in the crop stand; to be effective throughout the crop's life, the SAR phenotype has to be re-boosted at regular

chemicals manufactured by Ciba-Geigy such as 2,6-

dichloroisonicotinic acid (INA) (Uknes et al., 1992).

Although the mechanisms causing SAR are not fully understood, it is believed that when a plant is

20

25

intervals.

challenged by a pathogen to which it is resistant, it undergoes an HR at the site of attempted ingress of the incompatible pathogen. The induced HR leads to a systemic enhancement and acquisition of plant resistance to virulent pathogens that would normally cause disease in the unchallenged plant.

It has long been known that HR-associated disease resistance is often (though not exclusively) specified by dominant genes (R genes). Flor showed that when pathogens mutate to overcome such R genes, these mutations are recessive. Flor concluded that for an R gene to function, there must also be a corresponding gene in the pathogen, an "avirulence gene" (Avr gene). To become virulent, pathogens must thus stop making a product that activates R gene-dependent defence mechanisms (Flor, 1971). A broadly accepted working hypothesis, often termed the elicitor/receptor model, is that R genes encode products that enable plants to detect the presence of pathogens, provided said pathogens carry the corresponding AVR gene (Gabriel and Rolfe, 1990). This recognition is then transduced into the activation of a defence response.

The mlo allele of the Mlo gene of barley is the one example of a recessive disease resistance gene currently widely used in plant breeding. Lines that are homozygous for the recessive allele of this gene activate the defence response (comprising formation of

5

10

15

20

PCT/GB95/01075 WO 95/31564

5

cell wall appositions) even in the absence of the pathogen (Wolter et al, 1993). Thus the mlo mutation causes a defence mimic phenotype, also known as a necrotic or disease lesion mimic phenotype, and appears to deregulate the defence response, so that it is 5 activated precociously, or is regulated on more of a "hair trigger". A number of examples of such disease lesion mimic mutants exist in maize (Johal et al, 1994, Pryor, 1987, Walbot, 1983). Recently, such mutants have been sought in Arabidopsis. The characterization 10 of one such mutant, acd1, has been reported (Greenberg and Ausubel, 1993). Further mutants of this type have been reported at scientific meetings (the Arabidopsis acd2 mutation by F.M. Ausubel at a meeting at Rutgers University, New Jersey, USA, April 1993; Arabidopsis mutations now known as 1sd (for lesions simulating defence response) mutations by R. Dietrich and J. Dangl at the ARAPANET ((Arabidopsis Pathology Network) workshop in Wye College, Kent, UK in April 1993). Manuscripts describing the acd2 and 1sd mutations are Dietrich et al. and Greenberg et al. (1994). highly likely that the recessive mutations identified in such mutant screens that leave the defence response more constitutively on, or more rapidly activated, or less easily inactivated, are in genes that normally dampen down the defence response to prevent it becoming

so severe that it is deleterious to the plant.

15

20

6

Conceivably, such gene could be cloned, expressed in an antisense or sense configuration to reduce expression of the corresponding gene (Hamilton, 1990, Napoli et al, 1989).

Pathogen avirulence genes are still poorly 5 understood. Several bacterial Avr genes encode hydrophilic proteins with no homology to other classes of protein, while others carry repeating units whose number can be modified to change the range of plants on which they exhibit avirulence (Keen, 1992; Long and 10 Staskawicz, 1993). Additional bacterial genes (hrp genes) are required for bacterial Avr genes to induce HR, and also for pathogenicity (Keen, 1992; Long and Staskawicz, 1993). It is not clear why pathogens make products that enable the plant to detect them. 15 widely believed that certain easily discarded Avr genes contribute to but are not required for pathogenicity, whereas other Avr genes are less dispensable (Keen, 1992; Long and Staskawicz, 1993). The characterization of two fungal avirulence genes, Avr 4 and Avr 9 (De Wit 20 et al., 1992; Joosten et al., 1994), has also been reported. Research is also being undertaken to clone rice blast avirulence genes from the causal organism Magnaporthe grisea and the avirulence genes (NIP proteins) of the barley pathogen Rhynchosporium 25 secalis. Two viral avirulence genes have also previously been cloned. Culver and Dawson, 1991, have

7

shown that tobacco mosaic virus coat protein is the avirulence determinant for the N' gene product. In addition, the potato virus X coat protein appears to be the avirulence determinant for the Rx and Nx genes (Kavanagh et al., 1992; Santa-Cruz et al., 1993; Köhm et al., 1993; Goulden et al., 1993).

Recently the map based cloning of the tomato Pto gene that confers "gene-for-gene" resistance to the bacterial speck pathogen Pseudomonas syringae pv tomato (Pst) has been reported (Martin et al., 1993). It has also been recently reported that the Arabidopsis Rps2 gene (which confers Pseudomonas syringae resistance) and the tobacco N gene (which confers virus resistance) have been cloned (Keystone Symposium, January 1994).

Even more recently, the Rps2 and features of the Cf-9 gene sequences have been revealed at the 13th Annual Symposium in Columbia, Missouri, April 13th-16th 1994, on the Biology of Communication in Plants.

International Patent Application No: PCT/GB94/02812

describes a method for generally identifying and cloning plant resistance genes.

The technology for gene isolation based primarily on genetic criteria has improved dramatically in recent years, and many workers are currently attempting to clone a variety of R genes. Targets include (amongst others) rust resistance genes in maize, Antirrhinum and flax (by transposon tagging); downy mildew resistance

25

5

5

genes in lettuce and Arabidopsis (by map based cloning and T-DNA tagging); Cladosporium fulvum (Cf) resistance genes in tomato (by tagging, map based cloning and affinity labelling with avirulence gene products); virus resistance genes in tomato and tobacco (by map based cloning and tagging); nematode resistance genes in tomato (by map based cloning); and genes for resistance to bacterial pathogens in Arabidopsis and tomato (by map based cloning).

Tomato (Lycopersicon esculentum) is susceptible to disease caused by the leaf mould fungal pathogen Cladosporium fulvum. According to De Wit, 1992, the Avr9 gene of C. fulvum, which confers avirulence on C. fulvum races that attempt to attack tomato varieties that carry the Cf-9 gene, encodes a secreted cysteinerich peptide with a final processed size of 28 amino acids. However, its role in compatible interactions is not clear. The R genes (Cf-genes) that act against C. fulvum have been identified and bred into cultivated varieties, often from related species of tomato (Dickinson et al., 1993; Jones et al., 1993).

It has been shown that *C. fulvum* contains *Avr* genes that confer recognition by plants which contain the *Cf*-genes, leading to activation of host defence mechanisms to attack the disease (incompatibility).

The *Avr*4 and *Avr*9 genes encode small peptides that are secreted by the pathogen into the intercellular spaces

. 9

of infected leaves, from which they can be extracted. This has enabled the purification and sequencing of these peptides and the isolation of the genes that encode them (De Wit, 1992; Joosten et al., 1994).

Experiments have shown that when the Avr9 gene is transformed into a race of pathogen that lacks Avr9, then the race of pathogen becomes avirulent on plants which are carrying the Cf-9 gene. In addition, it has been shown that disruption of the Avr9 gene in a pathogen race which is avirulent on plants carrying Cf-9 gene confers compatibility on the Cf-9 containing plants (Van Den Ackerveken et al., 1992, Marmeisse et al., 1993).

In addition, De Wit and colleagues have further 15 shown that the secreted peptide encoded by the Avr9 gene can be injected into Cf-9 containing tomato leaves to elicit a necrotic response in the injected area. The necrotic response is consistent with local and vigorous activation of a defence response (De Wit, 20 1992; WO 91/15585). International Patent Application No. PCT/GB94/02812 describes the transgenic expression of the Avr9 gene using the strong cauliflower mosaic virus 355 plant promoter to cause lethality in Cf-9 plants. This transgenic expression has been used to select mutants in which the Cf-9 gene has been 25 inactivated by transposon insertion in order to isolate the Cf-9 gene and perform DNA sequence analysis of this

10

gene.

5

Various pathogen races that overcome these Cfgenes have emerged and are named after the Cf-gene
which they can overcome. For example, C. fulvum race 4
can overcome Cf-4; C. fulvum race 5 can overcome Cf-5
and C. fulvum race 2.4.5.9 can overcome Cf-2, Cf-4, Cf5 and Cf-9.

WO 91/15585 describes a hypothetical method whereby if a Cf-9 gene and/or an Avr9 gene were 10 expressed under the control of a promoter that is induced by a broad range of pathogens, then a general defence response could be induced. However, there is a lack of enabling disclosure regarding which polynucleotide sequences could be used either as the resistance gene or as an actual promoter which would be 15 suitably affected by a broad range of pathogens. A further problem with this proposed method is that necrosis induced by the Cf-9 and Avr9 gene combination could lead to further induction of Avr9 and/or Cf-9 leading to spreading of the necrosis and severe 20 reduction in the yield of the plant. This problem may arise since promoters such as promoters for plant defence genes and other genes involved in the defence response such as PR genes (pathogenesis related genes), are induced in both a compatible and an incompatible 25 interaction. Therefore, even if a promoter exists which is effectively induced by a broad range of

11

pathogens, the method would not be viable unless the promoter is only induced by the appearance of a compatible pathogen. If the defence response provides further induction of the promoter the plant might experience spreading necrosis.

The present invention has resulted from experiments involving transposon tagging of resistance genes, the first one being Cf-9. Numerous alleles of the Cf-9 gene (Cf-9*Ds) were isolated that had been 10 inactivated by the maize element Dissociation (Ds). These inactive Cf-9*Ds genes did not give rise to a constitutive and lethal activation of defence mechanisms in response to constitutively expressed Avr9 transgene (35S:SP:Avr9). On backcrossing plants that carried the Cf-9*Ds and 35S:SP:Avr9 genes to tomato 15 plants carrying an Activator (Ac) transposase gene (sAc) in the homozygous state but lacking Cf-9, a quarter of the resultant progeny carried sAc, 35S:SP:Avr9 and Cf-9*Ds. These plants showed somatic excision of Ds from the Cf-9*Ds gene, somatically 20 restoring Cf-9 function and giving rise to localised activation in cells of plant defence responses due to recognition of the constitutively expressed Avr-9 peptide. These cells died and gave rise to small 25 necrotic sectors, the plants phenotypically showing variegation for a defence-related necrosis, similar to somatic flecks of necrosis that are associated with the

induction of SAR in plants challenged with necrotising pathogens. Further work showed that plants that variegate for somatic sectors of plant defence response in this way have increased resistance to a range of pathogens.

Thus, a first aspect of the present invention relates to a method of providing pathogen resistance, in particular broad spectrum pathogen resistance, in plants by induction of variegation in which genes are expressed or suppressed resulting in the activation of necrosis. A method according to the present invention comprises: (i) inactivating a nucleotide sequence which contributes to plant cell necrosis or inactivating one or more nucleotide sequences forming part of a combination of nucleotide sequences which contribute to plant cell necrosis; (ii) introducing said nucleotide sequence or sequences into the genome of a plant; and (iii) restoring said nucleotide sequence or sequences to a functional form to yield a level of necrosis resulting in pathogen resistance. The plant cell necrosis is preferably defence-related plant cell necrosis.

A second aspect of the present invention relates
to a method of providing pathogen resistance in plants

by induction of variegation in which genes are
expressed or suppressed resulting in the activation of
a plant defence response which comprises: (i)

5

10

15

13

inactivating a nucleotide sequence which contributes to the plant defence response or inactivating one or more nucleotide sequences forming part of a combination of nucleotide sequences which contribute to the plant defence response; (ii) introducing said nucleotide sequence or sequences into the genome of a plant; and (iii) restoring said inactivated nucleotide sequence or sequences to a functional form to result in pathogen resistance.

The variegation will generally be for somatic sectors. Pathogen resistance will generally be increased compared with wild-type.

The nucleotide sequence or sequences comprise one or more genes. The plant defence response and/or plant cell necrosis occurs on expression of the gene or genes. The defence response and/or plant cell necrosis can be conditional or unconditional on the expression of one or more interacting genes. A substance or a combination of substances may result in increased pathogen resistance. Examples are discussed further below.

For example, the nucleotide sequence or sequences may comprise a gene encoding either a substance which leads to necrosis, e.g. through activation of the plant defence response, or a substance which leads to a plant defence response with no sign of necrosis. For example, the sequence or sequences may comprise a plant

5

15

20

14

pathogen resistance gene (R), an avirulence gene (Avr) or other elicitor or ligand gene (L) of an R gene, or both and R gene and an L gene.

The inactivation of the nucleotide sequence or sequences which contribute to the plant defence 5 response and/or plant cell necrosis is preferably effected by insertion of a transposable genetic element into the nucleotide sequence or one or more of the nucleotide sequences forming a combination of 10 nucleotide sequences. The transposable genetic element is preferably a transposon or a nucleotide sequence flanked by specific nucleotide sequences so that transposon excision gives rise to activation of the plant defence response and/or necrosis. insertion of a genetic lesion into the nucleotide 15 sequence disrupts the gene to prevent expression of a product able to function in contributing to the plant defence response and/or plant cell necrosis. In the absence of the lesion, e.g. following excision of a 20 transposable element such as a transposon, the gene may be expressed to produce a functional product, i.e. gene function is restored. The lesion may be inserted into the part of the gene coding for the expression product, or may be in a regulatory sequence such as a promoter 25 required for expression of the product.

In this form of the invention, re-activation within the plant is preferably carried out by

15

restoraration of the inactivated nucleotide sequence or sequences resulting in activation of a plant defence response and/or necrosis. Such restoration may be caused or allowed by culturing of the plant. Where the nucleotide sequence is inactivated by virtue of insertion of a transposable element therein, the plant genome should contain at least one nucleotide sequence coding for a corresponding transposon activation system (for example, comprising a transposase).

Alternatively, the inactive form could be flanked by recombinase recognition sequences that are acted on by a site specific recombination system (comprising a specific recombinase) so that recombination activates the inactive form of the gene. Hence, when the inactivated nucleotide sequence or sequences are

inactivated nucleotide sequence or sequences are introduced into the plant genome somatic excision of the transposon or recombination of the nucleotide sequence occurs in some cells leading to activation of the plant defence response and/or necrosis in specific clones of cells.

The number of cells in which restoration of function occurs may vary. As discussed further below, certain measures are available for optimising the system, e.g. by controlling the frequency of spontaneous excision of a transposable element which is caused or allowed upon cultivation of a plant with the requisite nucleotide sequence or sequences within its

20

25

16

genome.

BNSDOCID: <WO_____9531564A2_I >

The present invention further provides transgenic plants having increased pathogen resistance obtainable by the method of the present invention, and any clone of such a plant, seed, selfed or hybrid progeny and 5 descendants, and any part of any of these, such as cuttings, seed. The invention provides any plant propagule, that is any part which may be used in reproduction or propagation, sexual or asexual, including cuttings, seed and so on. Derivatives of 10 plants are also provided by the present invention. A derivative is any functional unit derived therefrom howsowever achieved (e.g. functional allele of gene made by mutagenesis, recombinant DNA, synthesis, or 15 plant which could not have been produced without the use or manufacture of the plant from which it is derived.)

Transgenic plants in accordance with the present invention may demonstrate increased pathogen resistance since the induced plant defence response and/or necrosis of plant cells may cause other cells, such as adjacent cells, to acquire pathogen resistance. The activation of, for example, a plant resistance gene in a plant cell is inherited by the progeny and descendants of that cell. The expression of this plant resistance gene leads to initiation of the defence response in cells which may eventually lead to the

17

death of the participating plant cells resulting in an area of plant cell necrosis. So, plants may have variegation for small somatic sectors in which defence-related plant cell necrosis is activated. This response may induce pathogen resistance in other cells. In an alternative, operating on the same general principle, the expression of one or more plant pathogen resistance gene may either lead to initiation of the defence response only resulting in variegation for small somatic sectors in which the plant defence response is activated or of plant cell necrosis which is not related to the plant defence response resulting in variegation for small somatic sectors in which plant cell necrosis is activated.

15 Hence, the plant may acquire resistance to a broad range of pathogens and not only to the pathogen associated with the gene or genes contributing to necrosis, for example, C. fulvum in the case of the Cf-9/Avr gene combination. For example, a transgenic 20 tomato plant according to the present invention may demonstrate resistance against a broad range of pathogens such as one or more bacterial plant pathogens (for example, Xanthomonas campestris, Pseudomonas syringae), fungal plant pathogens (for example, Phytophthora infestans, Fusarium oxysporum, Botrytis 25 cinerea, Verticillium dahliae, Altenaria solani, Rhizoctonia solani) and viral pathogens (for example,

5

18

TMV, PVX, PVY, TSWV). Similarly, other transgenic plants such as transgenic tobacco, *Arabidopsis* and potato plants may display resistance to a large number of major diseases of important crop species such as, Peronospora, Phytophthora, Puccinia, Erysiphe and Botrytis.

Thus, according to a further aspect of the invention there is provided a plant, or any part thereof, which is phenotypically variegated, with clones of cells expressing a first phenotype and other 10 cells expressing a second phenotype which is increased pathogen resistance compared with wild-type. The first phenotype is preferably necrosis and/or a plant defence response phenotype. As discussed, plants variegated by somatic sector for such a phenotype may have enhanced 15 pathogen resistance as a result of a second phenotype in cells, which may be adjacent to the cells with the first phenotype which are necrotic and/or in which a plant defence response is activated. The phenotypic variegation is likely to result from expression in 20. cells with the first phenotype of a gene or gene, or nucleic acid comprising a gene or genes, which contributes to such phenotype, whereas other cells without such phenotype lack such gene expression. discussed herein, this may result from reactivation of 25 a previously inactivated gene, such as a resistance gene, for example by random excision of a transposable

19

element such as a transposon.

In a further aspect, the present invention provides a host cell, such as a plant or microbial cell, or a plant comprising at least one such cell, containing (i) nucleic acid encoding one or more nucleotide sequences which cause or contribute to the plant defence response and/or cell necrosis, at least one of the nucleotide sequences being reversibly inactivated, for example by insertion of a transposable element such as a transposon, and (ii) nucleic acid encoding a molecule able to reverse the inactivation, such as, in the case of a transposon, a transposase. Thus, the cell may comprise a plant resistance gene or other gene involved in the plant defence response or able to kill a cell when expressed therein (either alone or incombination with one or more sequences, for example in the case of an R gene the corresponding elicitor), the gene being inactivated by insertion therein of a transposon, and the cell further comprising a gene encoding a transposase.

In an exemplary embodiment, the genome of the cell comprises the gene Cf-9, or a mutant, derivative, variant or allele thereof which retains Cf-9 function, inactivated by insertion therein of a transposon, the genome also comprising the Avr-9 gene, or a mutant, derivative, variant or allele thereof which retains Avr-9 function, and a gene encoding a transposase able

5

10

15

20

20

to excise the transposon from the *Cf-9* gene or functional equivalent. Other resistance genes may be employed, as may genes which do not require the presence of an elicitor molecule to cause cell necrosis, as discussed further elsewhere herein.

The cell may comprise the nucleic acid encoding the various genes by virtue of introduction into the cell or an ancestor thereof of the nucleic acid, e.g. by transformation, using any suitable technique available to those skilled in the art. Furthermore, 10 plants which comprise such cells, and seed therefore, may be produced by crossing suitable parents to create a hybrid whose genome contains the required nucleic acid, in accordance with any available plant breeding technique. For example, a parent strain comprising 15 within its genome a plant resistance gene containing a transposon or other inactivating lesion may be crossed with a second strain comprising within its genome a gene encoding the elicitor molecule for the plant resistance gene and a suitable transposase for excision 20 of the transposon. At least a proportion of the hybrid progeny of the parents, i.e. seed or plants grown therefrom, will comprise the required nucleic acid for activation in the plant of, in this example, the plant resistance gene and, following interaction with the 25 elicitor, the plant defence response and/or plant cell necrosis:

21

Plants according to this aspect of the present invention will be variegated genetically. Clones of cells will have one or more nucleotide sequences which cause or contribute to the plant defence response and/or cell necrosis reactivated by removal of the inactivating lesion such as a transposon, so that a first phenotype such as necrosis is shown, while in other cells the sequence or sequences will remain inactivated so these cells will not show the first phenotype.

Within the cell or cells, the nucleic acid may be incorporated within the chromosome. A gene stably incorporated into the genome of a plant is passed from generation to generation to descendants of the plant, so such decendants should show the desired phenotypic variegation and so may have enhanced pathogen resistance.

In addition to a plant, the present invention provides any clone of such a plant, seed, selfed or hybrid progeny and descendants, and any part of any of these, such as cuttings, seed. The invention provides any plant propagale, that is any part which may be used in reproduction or propagation, sexual or asexual, including cuttings, seed and so on.

A further aspect of the present invention provides a method of making such a cell involving introduction of nucleic acid (e.g. a vector) comprising

5

10

15

(i) nucleic acid encoding one or more nucleotide sequences which cause or contribute to the plant defence response and/or cell necrosis, at least one of the nucleotide sequences being reversibly inactivated, for example by insertion of a transposable element such 5 as a transposon, and/or (ii) nucleic acid encoding a molecule able to reverse the inactivation, such as, in the case of a transposon, a transposase into a plant Introduction of nucleic acid (i) may be 10 accompanied, preceded or followed by introduction of nucleic acid (ii). Such introduction may be followed by recombination between the nucleic acid and the plant cell genome to introduce the sequence of nucleotides into the genome. Descendants of cells into which nucleic acid has been introduced are included within 15 the scope of the present invention.

The level of the plant defence response and/or plant cell necrosis in the small somatic sectors should be sufficient to result in the induction of acquired resistance or the induction of other defence mechanisms. Since this method leads to activation of acquired resistance but is inherited it is referred to as Genetic Acquired Resistance (GAR). Hence, any system which gives rise to a variegation leading to GAR is applicable to the present invention.

Methods and plants etc. according to the present invention are particularly beneficial since the

20

nucleotide sequence or sequences which contribute to the plant defence response and/or plant cell necrosis, for example the avirulence and plant resistance genes, may be under control of any suitable promoter, such as a constitutive promoter or, in the case of R genes, their own endogenous promoter, or a cell type specific promoter. Furthermore, the restoration of the nucleotide sequence or sequences, for example by the somatic excision of a transposon, gives rise to recurrent and widespread induction of the plant defence response in many small clones of cells throughout the plant, irrespective of whether or not there has been a challenge by pathogen. The resistance conferred on the plant is therefore constitutive and broad.

The present invention may be used for many applications and is suitable for deployment in F1 hybrid seed production system. In such a system, one of the parents should be homozygous, for example, for the transposase or recombinase gene. In addition, in a system where two components are required for inducing the necrosis such as in the Avr9/Cf-9 gene combination for example, this parent should also be homozygous for the constitutively expressed genes. The other parent should be homozygous for the gene that encodes the non-autonomous inactivation system, such as the transposon or recombinase-recognition sequences. After making a cross between parents of this genetic constitution, on

5

10

15

20

5

10

15

20

somatic excision or recombination, the function of the gene or genes which give rise to the defence response and/or plant cell necrosis is restored in somatic sectors in the resulting progeny.

It will be clear to the person skilled in the art that any gene or combination of genes which contributes to variegation for the plant defence response and/or plant cell necrosis may be used in the method of the present invention. Furthermore, any system which gives rise to inactivation of the nucleotide sequence or sequences and subsequent restoration of functional sequence or sequences may be used.

The present invention also provides in further aspects various compositions of matter comprising combinations of nucleotide sequences encoding various substances employed herein. Such combinations of nucleotide sequences which may be introduced into cells in accordance with the present invention follow:

- (X): represents a nucleotide sequence with one or more genes of type X
 - (XY): represents a nucleotide sequence with one or more genes of type X and one ore more genes of type Y etc.

R: receptor gene

25 L: ligand gene (capable of interacting with the R gene)

5

I: genetic insert

A: activator of transposition of genetic insert.

R may encode a substance whose presence in a plant results in a plant defence response, necrosis and/or increased pathogen resistance, with I being a genetic insert able to inactivate R and A encoding a substance able to reactivate R inactivated by I:

- (1) Any combination of:
 - 1. (R), (I) and (A);
- 10 2. (R) and (IA);
 - 3. (I) and (AR); or
 - 4. (A) and (RI);
 - 5. (RIA).

Alternatively, R and L may encode substances

whose presence together in a plant results in a plant
defence response, necrosis and/or increased pathogen
resistance, I being a genetic insert able to inactivate
R and/or L and A encoding a substance able to
reactivate R and/or L inactivated by I:

- 20 (2) Any combination of:
 - 1. (R), (L), (I) and (A);
 - 2. (R), (LI) and (A)
 - 3. (R), (LA) and (I)
 - 4. (R), (IA) and (L)
- 25 5. (L), (IR) and (A)

PCT/GB95/01075

- 6. (L), (AR) and (I)
- 7. (I), (LR) and (A)
- 8. (R) and (LIA)
- 9. (L) and (IAR)
- 5 10. (I), and (ARL); or
 - 11. (A) and (RLI);
 - 12. (RLIA)

If genetic insert (I) is coupled with either the R or the L gene, the number of possible combinations

will then be

- (1): (RI) and (A); or (RIA)
- (2): (RI)(L) and (A)
 - (R),(LI) and (A)
- 15 (RI) and (LA)
 - (RA) and (LI)
 - (RLIA)

Also provided by the present invention is a method of producing a plant, or a part, propagule,

20 derivative or descendant thereof, containing nucleic acid comprising a nucleotide sequence or nucleotide sequences encoding R, I and A, wherein R encodes a substance whose presence in a plant results in a plant

27

defence response, necrosis and/or increased pathogen resistance, I is a genetic insert able to inactivate R and A encodes a substance able to reactivate R inactivated by I, comprising crossing plant lines whose genomes comprise any of R, I, A and combinations thereof, to produce the plant or an ancestor thereof.

A further aspect provides a method of producing a plant, or a part, propagule, derivative or descendant thereof, containing nucleic acid comprising a

10 nucleotide sequence or nucleotide sequences encoding R, L, I and A, wherein R and L encode substances whose presence together in a plant results in a plant defence response, necrosis and/or increased pathogen resistance, I is a genetic insert able to inactivate R and/or L and A encodes a substance able to reactivate R and/or L inactivated by I, comprising crossing plant lines whose genomes comprise any of R, L, I, A and combinations thereof, to produce the plant or an ancestor thereof.

Said plant lines may contain nucleic acid comprising any of R, L, I, A and combinations thereof as a result of transformation of cells of the plant or an ancestor thereof

Herein, unless context demands otherwise, a

25 "receptor" is a product encoded by a gene capable of interacting with another product, the ligand.

Various embodiments of the present invention are

28

now described in more detail below, by way of example and not limitation.

Nucleotide Sequence or Sequences contributing to the Plant Defence Response and/or Necrosis

- The nucleotide sequence or combination of nucleotide sequences in which at least one of the sequences is inactivated are numerous and may include an engineered allele of a ubiquitin conjugating enzyme (Becker et al., 1993), the CaMV gene VI protein
- (Takashashi et al., 1989), a viral coat protein in the presence of the appropriate viral resistance gene, for example Tobacco Mosaic Virus Elicitor Coat Protein and the gene N' (Culver and Dawson, 1991), a bacterial harpin protein (Wei et al., 1992; He et al., 1993), the
- gene N (see e.g. Whitham et al (1994) and a ToMV-Ob gene cloned by Padgett and Beachy (1993), the potato virus X coat protein and its avirulence determinant, (Kavanagh et al., 1992; Santa-Cruz et al., 1993; Köhm et al., 1993; Goulden et al., 1993), Pto and avrPto
 - (see e.g. Rommens et al., 1995), RPS2 of Arabidopsis thaliana and the avirulence gene avrRPt2 (Bent et al., Mindrinos et al.), and genes of Arabidopsis such as those identified by Greenberg et al. (1994), Dietrich et al., (1994) and Bowling et al., (1994).
- Genes coding for substances leading to rapid cell death, such as BARNASE (Mariani et al., 1990) or

diphtheria toxin (Thorsness et al., 1993) may be usable to induce the changes that lead to GAR even though cell death in these latter examples is not caused by activation of the defence response. It is widely 5 believed amongst researchers in this field that cell death arises from local induction of the defence response and that this cell death can activate adjacent cells to give rise to the defence response. However, the precise cause and effect relationship between these 10 events is not clear at the present time. It is also not clear whether the defence response in plants is necessarily coupled to necrosis. Hence, cells may respond to for example the BARNASE-induced death of adjacent cells by activating a wound-inducible defence 15 response, such as that leading to the activation of protease inhibitors or alkaloid biosynthesis (Ryan 1990). Other genes which may be employed in this way include a proton pump such as a bacterial proton pump like the one expressed by Mittler et al (1995) in 20 transgenic tobacco plants.

A preferred example of the present invention is the use of the Cf-9/Avr9 gene system. This can involve the matching of a transposon inactivated allele of the Cf-9 gene to constitutive expression of the Avr9 gene. This system can be replaced by similar combinations of related genes for example the Avr4 and Cf-4 gene, sequence provided herein (cloning of Cf-4 is described

5

10

15

in a co-pending GB application filed simultaneously with the present application); the Avr2 and the Cf-2 gene, sequence provided herein (cloning of Cf-2 is described in GB 9506658.5, priority from which is claimed herein); the Avr5 and the Cf-5 gene, or by cloning resistance genes and corresponding avirulence genes from other systems, such as RPP5, sequence provided herein (cloning of RPP5 is described in GB 9507232.8, priority from which is claimed herein). It certain cases it may be possible to provoke a suitable response in plant cells expressing an R gene in the absence of corresponding Avr, for instance by overexpression.

It should also be noted that complete Avr or other elicitor gene may not be required. Instead a fragment may be employed, representing a part of the elicitor molecule which interacts to provoke a plant defence response and/or plant cell necrosis.

comprises the inactivated R gene, the inactivated Avr gene or both, or comprises both the R and Avr gene wherein one of the genes is inactivated. Depending of the genes used, the plant defence response and/or plant cell necrosis may be dependent on the expression of both genes and so one example would be that the R gene could be constitutively expressed and the Avr gene could exhibit somatic variegation for expression due to

31

somatic excision and restoration of Avr9 gene expression, or vice versa.

Nucleotide sequences employed in the present invention may encode a wild-type sequence (e.g. gene) selected from those available, or a mutant, derivative, 5 variant or allele, by way of insertion, addition, deletion or substitution of one or more nucleotides, of such a sequence. An alteration to or difference in a nucleotide sequence may or may not be reflected in a change in encoded amino acid sequence, depending on the 10 degeneracy of the genetic code. Preferred mutants, derivatives and alleles are those which retain a functional characteristic of the protein encoded by the wild-type gene, in the present context the ability to contribute to a plant defence response and/or plant 15 cell necrosis. Of course, changes to the nucleic acid which make no difference to the encoded amino acid sequence are included.

Similarly, homologues of the various genes whose
use is disclosed herein from other species or races may
be employed, as may mutants, variants and derivatives
of such homologues.

Inactivation and Reactivation of the nucleotide

Sequence or Sequences Contributing to the Plant Defence
Response and/or Necrosis

A method according to the present invention may

5

10

15

20

25

employ any of a variety of transposon systems known to the skilled person, including the maize Activator/Dissociation (hereinafter referred to Ac/Ds system) (Fedoroff, 1989); the maize Enhancer/Suppressor mutator (En/Spm) system (Fedoroff, 1989); and the Antirrhinum Taml and Tam3 systems (Coen et al., 1989). In addition, any modified recombination systems which are engineered to yield the appropriate results may be employed, such as, the bacterial Cre-Loxp (Odell et al, 1990) or the "FLP/FRT" system (Lloyd and Davis, 1994).

It will be apparent to the skilled person that the particular choice of transposon, recombination or other system used to inactivate the nucleotide sequence or sequences which encode substances leading to the plant defence response and/or plant cell necrosis is not essential to or a limitation of the present invention.

In some systems, a transposon or recombination system might be so active that an unacceptable level of necrosis is seen. If encountered, this may be overcome by engineering alleles of the transposon or recombinase recognition sequence in which the frequency at which activated nucleotide sequences arise is reduced, such as with Ac(Cla) (Keller et al., 1993). Alternatively, chemical or site-directed mutagenesis may be used to recover alleles of the necrosis-inducing genes which are less active and therefore result in less severe

33

levels of plant cell necrosis (Hammond-Kosack et al., 1994).

In other systems, transposition or recombination may be inefficient resulting in too few activated nucleotide sequences leading to an insufficient level of plant cell necrosis. This may be overcome by constructing suitable promoter fusions to the transposase or recombinase gene in the plant gene (Swinburne et al., 1992) to increase the frequency of excision or recombination to efficient levels. The most suitable promoter might give rise predominantly to late small sectors of necrosis during organ development rather than early large sectors.

Many other variations are possible as mechanisms for activating the defence response and/or necrosis 15 after transposon excision or recombination. A form of the Cf-9 gene may be constructed so that it activates the defence response even in the absence of its ligand. For example, the Drosophila receptor sevenless (involved in eye development) can be mutated so that it 20 is activated in the absence of its ligand (Basler et al, 1991). For example, high level expression of a disease resistance gene, or expression of a disease resistance gene in another species, may lead to activation of the defence response and/or necrosis even 25 in the absence of an avirulence product. Bonneus, et al (1995). In an alternative, the original disease

5

34

resistance gene may be mutated so that it binds to a defined chemical such as an agrichemical and this chemical activates Cf-9 to initiate the defence response and/or necrosis. Hence, genotypic variegation for excision activating the gene may occur, without initiation of the somatic necrotic reaction due to the defence response. The defence response would be initiated when the agrichemical is applied and recognised by the resistance gene triggering the same reaction as if the avirulence gene product were present.

Introducing the Nucleotide Sequence or Sequences which Contribute to Variegation for the Plant Defence Response and/or Necrosis into the Plant Genome

The inactivated nucleotide sequence, or combination of nucleotide sequences at least one of which is inactivated, codes for a substance or substances which when expressed in the plant activates the defence response and/or leads to plant cell necrosis resulting in broad spectrum pathogen resistance.

The nucleic acid may be in the form of a recombinant vector, for example a plasmid or agrobacterium binary vector (Van den Elzen et al., 1985). The nucleic acid may be under the control of an appropriate promoter and regulatory elements for

35

expression in a plant cell. In the case of genomic DNA, this may contain its own promoter and regulatory elements and in the case of cDNA this may be under the control of an appropriate promoter and regulatory elements for expression in the host cell.

Those skilled in the art are well able to construct vectors and design protocols for recombinant gene expression. Suitable vectors can be chosen or constructed, containing appropriate regulatory. sequences, including promoter sequences, terminator 10 fragments, polyadenylation sequences, enhancer sequences, marker genes and other sequences as appropriate. For further details see, for example, Molecular Cloning: a Laboratory Manual: 2nd edition, Sambrook et al, 1989, Cold Spring Harbor Laboratory 15 Press. Many known techniques and protocols for manipulation of nucleic acid, for example in preparation of nucleic acid constructs, mutagenesis, sequencing, introduction of DNA into cells and gene expression, and analysis of proteins, are described in 20 detail in Short Protocols in Molecular Biology, Second Edition, Ausubel et al. eds., John Wiley & Sons, 1992. The disclosures of Sambrook et al. and Ausubel et al. are incorporated herein by reference.

25 When introducing a chosen gene or gene construct into a cell, certain considerations must be taken into account, well known to those skilled in the art. The

36

nucleic acid to be inserted may be assembled within a construct which contains effective regulatory elements which will drive transcription. There must be available a method of transporting the construct into the cell. Once the construct is within the cell membrane, integration into the endogenous chromosomal material may or may not occur according to different embodiments of the invention. In a preferred embodiment, the nucleic acid of the invention is integrated into the genome (e.g. chromosome) of the host cell. Integration may be promoted by inclusion of sequences which promote recombination with the genome, in accordance with standard techniques. Finally, as far as plants are

concerned the target cell type should be such that

cells can be regenerated into whole plants.

Plants transformed with a DNA segment containing pre-sequence may be produced by standard techniques which are already known for the genetic manipulation of plants. DNA can be transformed into plant cells using any suitable technology, such as a disarmed Ti-plasmid vector carried by Agrobacterium exploiting its natural gene transfer ability (EP-A-270355, EP-A-0116718, NAR 12(22) 8711 - 87215 1984), particle or microprojectile bombardment (US 5100792, EP-A-444882, EP-A-434616) microinjection (WO 92/09696, WO 94/00583, EP 331083, EP 175966), electroporation (EP 290395, WO 8706614) or other forms of direct DNA uptake (DE 4005152, WO

5

10

15

20

37

9012096, US 4684611). Agrobacterium transformation is widely used by those skilled in the art to transform dicotyledonous species. Although Agrobacterium has been reported to be able to transform foreign DNA into some monocotyledonous species (WO 92/14828), microprojectile bombardment, electroporation and direct DNA uptake are preferred where Agrobacterium is inefficient or ineffective. Alternatively, a combination of different techniques may be employed to enhance the efficiency of the transformation process, eg. bombardment with Agrobacterium coated microparticles (EP-A-486234) or microprojectile bombardment to induce wounding followed by co-cultivation with Agrobacterium (EP-A-486233).

technology will be determined by its efficiency to transform certain plant species as well as the experience and preference of the person practising the invention with a particular methodology of choice. It will be apparent to the skilled person that the particular choice of a transformation system to introduce nucleic acid into plant cells is not essential to or a limitation of the invention.

Selectable genetic markers may be used consisting of chimaeric genes that confer selectable phenotypes such as resistance to antibiotics such as kanamycin, hygromycin, phosphinotricin, chlorsulfuron, methotrexate, gentamycin, spectinomycin, imidazolinones

25

5

and glyphosate (Herrera-Estrella et al, 1983; van den Elzen et al, 1985).

The present invention is particularly beneficial for use in crop and amenity plants. Examples of

5 suitable plants include tobacco, potato, pepper, cucurbits, carrot, vegetable brassicas, lettuce, strawberry, oil seed brassicas, sugar beet, wheat, barley, maize, rice, soybeans, peas, sunflower, carnation, chrysanthemum, other ornamental plants, turf grass, poplar, eucalyptus and pine.

Still further details of embodiments of the present invention are described in the following non-limiting examples, with reference to the accompanying drawings. In the drawings:

15 Figure 1 schematically depicts the Cf-9 gene, showing tagged alleles. X marks a probable promoter.

Figure 2 illustrates genetic acquired resistance to *C. fulvum* induced following necrotic sector formation caused by the excision of a Ds element from the *Cf-9* resistance gene in an Avr9 expressing tomato plant. The number of *C. fulvum* pustules per leaf is indicated, 14 days after inoculation.

Figure 3 illustrates genetic acquired resistance to Phytophthora infestans (late blight of tomato and potato). GAR+ and GAR- plants from Cf-9*Ds, mutant

lines M31 and M50 and Cf0 plants spray inoculated with 10,000 sporangiospores/mL. In panel A the appearance of leaves from the mutant 50 experiment 7 days after inoculation is shown. In panel B the rate of leaf abscission (in days after inoculation) in the various genotypes inoculated is given.

Figure 4 illustrates genetic acquired resistance to Phytophthora infestans (late blight of tomato and potato). GAR+ and GAR- plants from Cf-9*Ds, mutant

lines M31 and M50 and Cf0 plants were spray inoculated with 100 sporangiospores/mL. In panel A the appearance of leaves from the mutant 50 (GAR+ - right-hand) experiment 7 days after inoculation is shown, compared with GAR- (left-hand). In panel B the rate of

sporulating lesion formation on the various plant genotypes inoculated is given, with the mean number of sporulating lesions/leaflet given at 5, 7, 10, 13 and 16 days after inoculation.

Oidium lycopersici (powdery mildew disease). GAR+ and GAR- plants from Cf-9*Ds, mutant lines M31 and M50 and Cf0 plants were painted with equivalent numbers of spores. In panel A the appearance of leaves 14 days after inoculation is shown, GAR- on the left, GAR+ on the right. In B, the rate of chlorotic lesion (upper panel) and sporulating lesion (lower panel) formation on the various plant genotypes is given for Mutant 31:

40

mean number of lesions given at 7, 10, 14, 21, 24 and 30 days after inoculation. C shows equivalent results for Mutant 50.

Figure 6 shows the appearance of tomato fruits on

GAR+ (sAc, Cf-9*Ds - right-hand) and GAR- (sAc, Cf-9*Ds,

Avr-9 - left-hand) plants from mutant line M23 at 2, 3,

4, 5, 6 and 7 weeks after flower pollination. Dark

green sectors formed on the GAR+ but not GAR- fruits by

5 weeks. These dark green sectors were not visible on

the red fruit.

Figure 7 shows levels of defence-related gene expression in GAR+ and GAR- plants from Cf-9*Ds mutant lines M23, M31 and M50 just prior to the pathogen inoculation experiments. Northern analysis shows in panel A the levels of a basic β -1,3 glucanase gene transcript and in panel B the levels of an anionic peroxidase gene transcript.

Figure 8 illustrates functional expression of the Cf-9 gene under the control of its own promoter in

20 tobacco and potato. In panel A is shown a tobacco leaf that has been injected with intercellular fluid (IF) either containing the Avr9 peptide or lacking the Avr9 peptide. Avr9+ IF was obtained from transgenic tobacco or a compatible C. fulvum - tomato interaction

25 involving race 5. Avr9- IF was obtained from untransformed tobacco or a compatible C. fulvum - tomato interaction involving race 2,4,5,9. Grey

10

41

necrosis was visible 3-4 h after injection only in the leaf panels that had received the Avr+ IF. In panel B four separate potato leaves are shown that have each been injected with a single type of IF. Only the two leaves that received the Avr9+IF developed grey necrosis by 24 h.

Figure 9 shows development of the necrotic lethal phenotype in seedlings from the tobacco cross cv.

Petite Havana 6201A (35S:SP:Avr9)homozygote x cos 34.1 (genomic Cf-9) heterozygote. A time course for the period 5-12 days after seed planting (dsp) is shown.

50% of the seedlings become chlorotic and die within 2 days of seed germination.

Figure 10 shows development of the necrotic

lethal phenotype in seedlings from the Arabidopsis

cross 6201B4 (35S:SP:Avr9) heterozygote x cos 138

(genomic Cf-9) heterozygote. Appearance of seedlings

19 days after the majority of seedlings had germinated.

One seedling has died and another has necrotic

cotyledons.

Figure 11 shows a single T-DNA construct systems to apply GAR to potato plants. The T-DNA contains a Cf-9 gene sequence under the control of its own promoter which has been inactivated by an autonomous Ac element that is only capable of a low level of excision, the Ac (Cla) element (Keller et al. 1993; Schofield et al. 1994) and the 35S:SP:Avr9 transgene.

25

5

Figure 12 shows a photograph of three leaves, two of which are diseased with C. fulvum and one which is expressing GAR and is resistant to the same inoculum of C. fulvum.

5 Figure 13 illustrates how GAR+ plants may be made by crossing stable lines (1) comprising a Cf-9 gene, inactivated by insertion of a Ds transposon, and an Avr-9 gene and (2) an Ac transposase gene, as described in Example 1.

10 Figure 14 illustrates basic simplified haploid crossing schemes to produce plants with increased disease resistance.

T: transgenic line

P: offspring of transgenic line

15 $T_1/P_1:$ line comprising in its genome at least one of each of the four genes,

R, L, I or A

 $T_{1,2}/P_{1,2}$ line comprising in its genome at

least one of each of two of the four

20 genes R, L, I or A

> T_3/P_3 : line comprising in its genome at

> > least one of each of the four genes

R,L,I or A not present in T1.2

 $T_{3.4}/P_{3.4}$: line comprising in its genome at

25 least one of two of the four genes R,

L, I or A not present in T1.2

 $T_{1,2,3}/P_{1,2,3}$: line comprising in its genome at

43

least one of each of three of the four genes R,L,I or A $T_4/P_4 \hspace{1cm} \text{line comprising in its genome at} \\ \text{least one of each of the four genes} \\ \text{R,L,I or A not present in } T_{1,2,3}$

SEQ ID NO. 1 shows the genomic DNA sequence of the Cf-9 gene. Features: Nucleic acid sequence - Translation start at nucleotide 898; translation stop at nucleotide 3487; polyadenylation signal (AATAAA) at nucleotide 3703-3708; polyadenylation site at nucleotide 3823; a 115 bp intron in the 3' non-coding sequence from nucleotide 3507/9 to nucleotide 3622/4. Predicted Protein Sequence - primary translation product 863 amino acids; signal peptide sequence amino acids 1-23; mature peptide amino acids 24-863.

SEQ ID NO. 2 shows Cf-9 protein amino acid sequence.

SEQ ID NO. 3 shows the sequence of one of the Cf-9 cDNA clones. Translation initiates at the ATG at position +58.Cf-9 genomic sequence

SEQ ID NO. 4 shows the amino acid sequence and DNA sequence of the preferred form of the chimaeric Avr9 gene used as described herein.

SEQ ID NO. 5 shows the genomic DNA sequence of
the Cf-2.1 gene. Features: Nucleic acid sequence Translation start at nucleotide 1677; translation stop

20

5

at nucleotide 5012; no consensus polyadenylation signal (AATAAA) exists in the characterised sequence downstream of the translation stop. Predicted Protein Sequence - primary translation product 1112 amino acids; signal peptide sequence amino acids 1-26; mature peptide amino acids 27-1112.

SEQ ID NO. 6 shows Cf-2 protein amino acid sequence, designated Cf-2.1.

SEQ ID NO. 7 shows the amino acid sequence

10 encoded by the Cf-2.2 gene. Amino acids which differ
between the two Cf-2 genes are underlined.

SEQ ID NO. 8 shows the sequence of an almost full length cDNA clone which corresponds to the Cf2-2 gene.

SEQ ID NO. 9 shows the genomic DNA sequence of
the RPP5 gene. Anticipated introns are shown in noncapitalised letters. Features: Nucleic acid sequence Translation start at nucleotide 966; translation stop
at nucleotide 5512.

SEQ ID NO. 10 shows predicted RPP5 protein amino 20 acid sequence.

SEQ ID NO. 11 shows genomic DNA sequence of Cf-4. Features of this sequence include: translation start site at nucleotide 201, translation stop beginning at nucleotide 2619, consensus polyadenylation sequence beginning at nucleotide 2835, splice donor sequence in 3' untranslated sequence at 2641, splice acceptor sequence ending at nucleotide 2755, proposed site of

polyadenylation at nucleotide 2955.

SEQ ID NO. 12 shows the predicted Cf-4 amino acid sequence. The predicted protein sequence is composed of a primary translation product of 806 amino acids, signal peptide sequence amino acids 1-23, mature peptide amino acids 24-806.

SEQ ID No. 13 shows double-stranded nucleic acid and deduced amino acid sequence of a ClaI/SalI DNA fragment encoding the PR1a signal peptide sequence fused to a sequence proposed to encode the mature processed form of C. fulvum AVR4. Translation initiation codon at nucleotide 5, termination codon beginning at nucleotide 413. Amino acids 1-30 represent the signal peptide and amino acids 31-136 the mature AVR4 peptide.

EXAMPLE 1

5

10

15

20

GENETIC ACQUIRED RESISTANCE (GAR) USING Cf-9

- (i) Establishing a stock from which gametes carrying a mutagenised Cf-9 gene may be obtained and identified
- During experiments to isolate the Cf-9 gene by transposon tagging, alleles of the Cf-9 gene (Cf-9*Ds) were isolated that had been inactivated by insertion of the transposon Ds (See International Patent Application No. PCT/GB94/02812 for further details). This
- 25 inactivated Cf-9*Ds gene did not give rise to a

46

constitutive and lethal activation of defence mechanisms in response to the constitutively expressed 35S:SP:Avr9 gene.

We have established the capacity to carry out 5 transposon tagging in tomato using the maize transposon Activator (Ac) and its Dissociation (Ds) derivatives (Scofield et al 1992; Thomas et al 1993; Carroll et al The strategy is founded on the fact that these transposons preferentially transpose to linked sites. 10 Various lines that carry Dss at positions are useful, including FT33 (Rommens et al 1992), carrying a Ds linked to Cf-9, and lines that carry a construct SLJ10512 (Scofield et al 1992) which contains (a) a beta-glucuronidase (GUS) gene (Jefferson et al 1987) to 15 monitor T-DNA segregation and (b) stable Ac (sAc) that expresses transposase and can trans-activate a Ds, but which will not transpose (Scofield et al 1992).

The line FT33 did not carry a Cf-9 gene. We had

to obtain recombinants that placed Cf-9 in cis with the

T-DNA in FT33 in order to carry out linked targeted

tagging. Two strategies were pursued simultaneously:

(a) FT33 was crossed to Cf9, a stock that carries the Cf-9 gene. The resulting F1 was then back crossed
 25 to Cf0 (a stock that carries no Cf- genes). Progeny that carry the FT33 T-DNA are kanamycin resistant.
 Kanamycin resistant progeny were tested for the

presence of Cf-9; 5 C. fulvum resistant individuals were obtained among 180. We alsogenerated progeny that were homozygous for Cf-9 and carried that sAc T-DNA of SLJ10512. These were crossed to the recombinants in which Cf-9 and FT33 were in cis. 5 In the FT33 T-DNA, a transposable Ds element is cloned into a hygromycin resistance gene, preventing its function. The somatic transactivation of this Ds element, which only occurs in the presence of transposase gene expression, results in activation of the hygromycin resistance. from crossing the recombinants between Cf-9 and FT33, to the sAc-carrying Cf-9 homozygotes, hygromycin resistant individuals could be obtained which carry sAc and FT33, and are likely to be homozygous for Cf-9. 140 individuals of this genotype were thus obtained.

(b) To accelerate obtaining individuals that carried sAc, FT33, and were Cf-9 homozygotes, the FT33/Cf-9 Fl was crossed to a line that was heterozygous for Cf-9 and sAc. 25% of the resulting
20 progeny carried both T-DNAs and were hygromycin resistant, and of those, slightly more than 50% were disease resistant because they carried at least one copy of the Cf-9 gene. An RFLP marker was available, designated CP46, that enabled us to distinguish between
25 homozygotes and heterozygotes for the Cf-9 gene (Balint-kurti et al 1993). In this manner two individuals that were Cf-9 homozygotes, and that

10

carried both the FT33 T-DNA and sAc, were obtained. These two individuals were multiplied by taking cuttings so that more crosses could be made onto this genotype.

5 (ii) Establishing a tomato stock that expresses functional mature AVR9 protein

A likely frequency for obtaining any desired mutation in a gene tagging experiment is less than 1 in 1000, and often less than 1 in 10,000 (Döring, 1989).

To avoid screening many thousands of plants for mutations to disease sensitivity, we established a selection for such mutations based on expressing the fungal Avr9 gene in plants.

The sequence of the 28 amino acids of the mature 15 Avr9 protein is known (van Kan et al 1991). It is a secreted protein and can be extracted from intercellular fluid of leaves infected with Avr9carrying races of C. fulvum. For secretion from plant cells, we designed oligonucleotides to assemble a gene that carried a 30 amino acid plant signal peptide, from 20 the Prla gene (Cornelissen et al 1987) preceding the first amino acid of the mature Avr9 protein (see SEQ ID NO. 4). The preferred Avr9 gene sequence depicted in SEQ ID NO. 4 shows a chimaeric gene engineered from the Pr-la signal peptide sequence (Cornelissen et al, 1987) 25 and the Avr9 gene sequence (van Kan et al, 1991). This reading frame was fused to the 355 promoter of cauliflower mosaic virus (Odell et al 1984), and the 3' terminator sequences of the octopine synthase gene (DeGreve et al 1983), and introduced into binary plasmid vectors for plant transformation, using techniques well known to those skilled in the art, and readily available plasmids (Jones et al 1992). We obtained transformed CfO tomato lines that expressed this gene.

10 (iii) Crossing AVR9 expressing stock with Cf-9 expressing stock

The transformed lines obtained in (ii) were crossed to plants that carried the Cf-9 gene. When the resulting progeny were germinated, 50% exhibited a necrotic phenotype, that culminated in seedling death. This outcome was only observed in seedlings that contained the Avr9 gene. When the same transformants were crossed to Cf0 plants, the resulting progeny were all fully viable.

20 From selfing the primary transformants, individuals were identified that were homozygous for the Avr9 transgene. When Avr9 homozygotes were crossed to Cf-9, all progeny died. This system thus provides a powerful selection for individuals that carry mutations in the Cf-9 gene.

(iv) Tagging and inactivating Cf-9

Individuals that were homozygous for the Avr9

gene (section (iv)) were used as male parents to

pollinate individuals that were homozygous for Cf-9,

and carried both sAc and the Ds in the FT33 T-DNA

(section (iiia) and (iiib)). Many thousands of progeny

resulting from such a cross were germinated. Most

died, but some survived.

DNA was obtained from survivors and subjected to Southern blot analysis using a Ds probe. It was 10 observed that several independent mutations were correlated with insertions of the Ds into a BglII fragment of a consistent size. This suggested that several independent mutations were a consequence of insertion of the Ds into the same DNA fragment. 15 Using primers to the Ds sequence, DNA adjacent to the Ds in transposed Ds-carrying mutant #18 was amplified using inverse PCR (Triglia et al 1988). This DNA was used as a probe to other mutants, and proved that in independent mutations, the Ds had inserted into the 20 same 6.7 kb BglII fragment.

The Ds in FT33 contains a bacterial replicon and a chloramphenicol resistance gene as a bacterial selectable marker (Rommens et al 1992). This means that plant DNA carrying this transposed Ds can be digested with a restriction enzyme that does not cut within the Ds (such as BglII), the digestion products

25

51

can be recircularized, and then used to transform *E. coli*. Chloramphenicol resistant clones can be obtained that carry the *Ds* and adjacent plant DNA. This procedure was used to obtain a clone that carried 1.8 kb of plant DNA on the 3' side of the *Ds*, and 4.9 kb of plant DNA on the 5' side of the *Ds*.

Our present understanding of the Cf-9 gene is depicted schematically in Figure 1. The Cf-9 gene sequence and the deduced amino acid sequence are shown in the sequence listing.

A series of primers (F1, 2, 3, 4, 5, 6, 7, 12, 13, 10, 26, 27 and 25, indicated in Figure 1) was used to characterise a large number of independent mutations by PCR analysis in combination with primers based on 15 the sequence of Ds. Therefore, these primers were used in polymerase chain reactions with primers based on the maize Ac/Ds transposon sequence, to characterise the locations of other mutations of Cf-9 that were caused by transposon insertion. Eighteen independent 20 insertions have been characterized and are located as shown. Mutants E, #55, #74 and #100 gave incomplete survival and showed a necrotic phenotype, and based on the available sequence information, they are 5' to the actual reading frame and might permit enough Cf9 25 protein expression to activate an incomplete defence response.

Using the sequence obtained of the gene,

5

5

15

oligonucleotide primers were designed that could be used in polymerase chain reactions in combination with primers based on the sequence of the Ds element, to characterize both the location and the orientation of other transposon insertions in the gene. These are shown on Figure 1. Based on the results of such experiments, the map positions of 17 other Ds insertions have been reliably assigned (as shown in Figure 1).

10 (v) Production of GAR plants

On backcrossing plants that carried the Cf-9*Ds and 35S:SP:Avr9 gene to tomato plants that carried an Ac transposase gene (sAc that lacked the GUS gene) in the homozygous state, but lacked Cf-9, one quarter of the resulting progeny carried sAc, 35S:SP:Avr9 and Cf-9*Ds (see Figure 13) plants showed somatic excision of Ds from the Cf-9*Ds gene, somatically restoring Cf-9 function, and giving rise to necrotic somatic sectors in which the defence response was activated.

- 20 Phenotypically, these plants thus showed a variegation for a defence-related necrosis, in the same manner that plants challenged with necrotizing pathogens show somatic flecks of HR that are associated with the induction of SAR.
- Necrotic sectors were visible on cotyledons, leaves, stems, petioles, sepals, and green fruits throughout plant development. Also, the necrotic

53

sectors formed in both the lower and upper epidermis, in all mesophyll layers and in the cells surrounding the vascular tissue. The size of the necrotic sector and the frequency of their formation was determined by both the position of the Ds element in the Cf-9 sequence and the orientation of the Ds.

The plants that variegated for necrosis were tested to assess if they were more resistant to C. fulvum than their unvariegated siblings that either carried Cf-9*Ds or carried no Cf-9 gene. Plants from 10 five independent Cf-9*Ds pedigrees were tested in which the Ds had independently inserted into five different locations in the Cf-9 gene. These five independent insertions were between Cf-9 amino acids, 7 and 8 (<M23), 28 and 29 (<M18), 47 and 48 (>M50), 56 and 57 15 (>M31) and 789 and 790 (>M30) The arrows (< or >). indicates the direction of transcription of the Ds element. F₁ plants that developed somatic necrotic sectors were more resistant to C. fulvum than sibling 20 offspring that did not develop necrotic sectors. the plants with necrotic sectors an average of 1-2 small pustules per leaf developed, 14 days after inoculation with 5 \times 10⁵ spores/ml. The plants lacking a Cf gene and the non variegating individuals all showed on average 38 large sporulating pustules per 25 leaf. A example of this is shown in Figure 2.

Nine variegated Cf-9*Ds #20 plants, fifteen

54

variegated Cf-9*Ds #23 plants, eighteen variegated Cf-9*Ds #30 plants and twenty-eight variegated Cf-9*Ds #31 plants were tested, and compared to one hundred and ninety eight plants in total that did not variegate for necrosis. Plants were inoculated with C. fulvum (5 x 10⁵ spores/ml) when they were four weeks old and carried 2 expanded leaves. A similar result was obtained when variegated Cf-9*Ds #50 plants and non-variegated plants were inoculated with C. fulvum. On 18 variegated GAR+ #50 plants 1-3 pustules per leaf formed, whereas on 42 non-variegated GAR- #50 plants over 35 pustules per leaf developed by 14 days after inoculation.

Sensitivity to the pathogen was measured by

15 counting the number of sporulating pustules that were visible on each genotype 14 days and 21 days after inoculation. Samples were also taken for microscopic analysis. The results of the assay after 14 days are shown in Figure 2, and typical infections on each

20 genotype after 21 days are shown in Figure 12.

Figure 2 shows a histogram in which the sensitivity of different individual tomato plants is expressed on the y axis as the number of sporulating pustules per leaf. The Ds carried a GUS gene. M20, M23, M30 and M31 show C. fulvum growth on plants resulting from crosses between Cf-9*Ds and sAc, and derive from Cf-9*Ds #20, Cf-9*Ds #23, Cf-9*Ds #30 and

25

5

55

Cf-9*Ds #31, respectively. These individuals segregate from the Cf-9*Ds and for sAc. Cf0 carries no R genes and M20, M23, M30 and M31 GUS- plants have lost by segregation both Cf-9*Ds and sAc and are thus

5 disease sensitive sibs, providing a good control for disease symptoms in sensitive individuals. If plants receive Ds without sAc they may be GUS+ without expressing the variegation for necrosis which requires both Cf-9*Ds and sAc. As can be seen, the necrotic individuals (which all carry the 35S:Avr9 gene) show distinctly fewer pustules per leaf than their disease sensitive sibs.

Figure 2 shows that in these experiments, CfO plants (lacking the Cf-9 gene) exhibited about 38 pustules per leaf and non-variegating individuals derived from Cf-9*Ds #20, Cf-9*Ds #23 or Cf-9*Ds #31 also showed about 38 pustules per leaf. The non-variegated individuals that carried Cf-9*Ds #30 showed about 17 pustules per leaf indicating some residual action of the tagged Cf-9 allele. However, variegated individuals that carried Cf-9*Ds #20, Cf-9*Ds #23, Cf-9*Ds #30 or Cf-9*Ds #31 showed 1-3 pustules per leaf. In total seventy variegated individuals were assessed. These results demonstrate a very significant level of disease control by this method.

Figure 12 shows three leaves. Leaf 1 and Leaf 2 are infected with C. fulvum which confers the white

25

56

fluffy appearance. Leaf 1 is CfO and Leaf 2 is a disease sensitive sib from Cf-9*Ds #23. Leaf 3 showing minimal sporulation is a necrotic individual (small sectors of necrosis are discernible) that carried Cf-9*Ds #23, sAc and 35S:Avr9. Leaf 3 is therefore expressing GAR.

It is important to recognize that in this example regions of variegating plants that resist the *C. fulvum* pathogen do not contain a functional *Cf-9* gene. Indeed all the cells that do carry a functional *Cf-9* gene (whose function was restored somatically by transposon excision) are killed as they turn on the defence response after recognition of the endogenously expressed *Avr9* peptide. Thus, non resistant cells are being induced to resistance by necrosis being manifested in adjacent cells.

EXAMPLE 2

5

Pathogen resistance of variegated plants employing Cf-9

In addition to demonstrating that variegated

20 plants produced in Example 1 have enhanced resistance
to C. fulvum, we have established that the plants are
also more resistant to three unrelated fungal
pathogens, Phytophthora infestans (the causal agent of
late blight disease of tomato and potato) and Oidium

25 lycopersici (a powdery mildew) and Colletotrichum
largenarium (which causes leaf and fruit spot).

5

For the *P. infestans* experiments, sibling backcross progeny from the mutatnt Cf - 9*Ds lines M31 and M50 that were either variegating for necrosis or not and control plants lacking a Cf-gene (Cf0) were challenged by a spray application of sporangiosspores (10,000 or 100 spores/ml) of the highly virulent isolate DSSI (Al mating type). After inoculation, the plants were kept in diffuse light conditions at a constant 100% RH and 16°C and a 12h photoperiod.

Seven days after application of the high spore 10 dose the leaves of the unvariegated plants and those of the Cf0 plants were completely destroyed by the spread of P.infestans lesions which had abundant sporangiospores at their margins. In contrast, the variegated plants were infected with P. infestans but 15 the lesions were 3-5 mm in diameter and non-sporulating (Figure 3 A,B). An additional 5-6 days were required before the entire green leaf tissue of the variegated plants was destroyed and fungal sporulation commenced. At the lower spore dose, by 7 days after inoculation, 20 an average of 8-10 large sporulating lesions were present on each leaf of the unvariegated and CfO plants whereas on the plants variegating for necrosis there were 1-2 small non-sporulating lesions per 10 leaves 25 (Figure 4 A,B). A minimum of 18 plants were used for each genotype/spore.

For the Oidium lycopersici experiments the

58

identical plant genotypes were used. Each leaf was inoculated by brushing with an artist paintbrush the spores from a single 14 day old sporulating pustule over an entire upper surface. The inoculated plants were then kept under diffuse light conditions at 20°C during the 16 h photoperiod and at 18°C during the dark period. The RH was maintained at 70%.

By day 10 post inoculation 8-10 chlorotic lesions were evident on the leaves of the unvariegated and Cf0 plants and in 1-2 of these sporulation had commenced. 10 By contrast on the variegated plants 1-2 smaller chlorotic non-sporulating lesions were present on each leaf (Figure 5). By day 14 post inoculation more than 20 sporulating lesions per leaf were present on the unvariegated plants and these were accompanied by 15 severe chlorotic symptoms on the remainder of the leaf. On the variegated plants 2-4 small sporulating lesions were present per leaf (Figure 5A). An additional 7-10 days were required before a similar level of sporulation and chlorosis formed on the variegated 20 leaves to that found on the unvariegated and Cf0 leaves at day 14 post-inoculation. (16 plants each).

EXAMPLE 3

Variegation in fruit

Dark green sectors formed on green tomato fruits of GAR plants, 5 weeks after flower pollination (Figure

59

6). These sectors were not visible once the tomato fruit had turned red, which is encouraging for potential commercial exploitation. When mature red fruit taken from GAR⁺ and GAR⁻ plants were injected with $100\mu l$ of spores of Colletotrichum laginarium (10^4 spores/ml) only the GAR⁻ fruit exhibited the typical soft rot disease symptoms seven days later. Repeated inoculations of the GAR⁺ fruit failed to cause disease.

Collectively, the above results attest to a very 10 significant level of disease control that can be achieved in the plants variegating for restoration of Cf-9 gene function whilst constitutively expressing the Avr9 gene. The data also indicate that the disease control achievable by this method is potentially broad spectrum because the four fungal pathogens controlled 15 have very dissimilar modes of parasitism: C. fulvum is a biotroph that does not form haustoria and grows exclusively in the extracellular spaces of the leaf mesophyll layers; O. Lycopersici is also a biotroph but 20 colonises only the upper leaf epidermis and forms complex intracellular haustoria; P. infestans and C.largenarium are hemibiotroph that initially forms simple haustoria but later on kills host cells in both the epidermal and mesophyll layers.

25 Homozygous Cf-9*Ds, 35S:SPAvr9 lines have been established for the tomato lines M31 and M50. The F₁

backcross progeny derived from crosses to a homozygous sAc source, may be assessed for their resistance to various pathogens, including:

Potato virus X, Pseudomonas syringae pv. tomato,

Necrotrophic fungi - Botrytis spp, Colletotrichum spp,

Nematodes - Meloidogyne incognata, Aphids - Green Peach
Aphid, and fruit, pod, root or tuber attacking

pathogens. Also, the effect of GAR on the

establishedment of mycorrhizal associations may be

tested.

The enhanced resistance exhibited in the plants variegating for necrosis has been termed Genetic Acquired Resistance (GAR). It is distinct from SAR because it is a heritable trait and is active throughout the entire plants life.

When the expression of several defence-related genes were compared in the GAR⁻ and GAR⁺ plants, significantly higher levels of expression of each gene were found in the GAR⁺ plants. Examples of this are shown in Figure 7 for Cf-g*Ds lines from M23, M31 and M50 pedigrees using a basic tomato β -1,3 glucanase probe and a tomato anionic peroxidase probe (pTAP 4.5).

The effectiveness of GAR in suppressing plant disease appears to be inversely related to sector size.

The two independent Cf-9*Ds pedigrees that have the highest frequency of small necrotic sectors (lines M31)

10

15

and M50) give the best GAR. This indicates that by carefully manipulating the frequency of somatic restoration of Cf-9 function even higher levels of plant protection be developed.

Either the initially activated host cells generate local and systemic signals whilst still alive, and the necrotic lesions are a by-product of the Cf-9-Avr9 mediated responses. Alternatively, the actual death and necrotic reactions, the final response of the activated host cells, generates specific local and systemic signals in a manner analogous to SAR. Exactly how GAR works does not need to be known for the present invention to be operated. Provided the required genetic components are present, GAR plants have enhanced pathogen resistance compared with wild-type.

EXAMPLE 4

Expression of Cf-9 in Heterologous Plants Species and Induction of Cell Necrosis

We have shown that following the transfer of different genomic clones containing the Cf-9 gene into tobacco and potato, these sequences render the transgenic plants responsive to Avr9 elicitor (Figure 8).

25 Also when transgenic tobacco expression *Cf-9* is crossed to transgenic tobacco plants engineered to

5

10

express Avr9 peptide constitutively, the F1 seedlings die within 2 days of seed germination (Figure 9).

When transgenic Arabidopsis expressing Cf-9 is crossed to Avr9 expressing transgenic Arabidopsis the F1 seedlings die 10 days after seed germination (Figure 10).

Thus we have shown that in a variety of species, genes required for activation of plant defence, mediated by the Cf-9 protein, are present and functional.

EXAMPLE 5

Genetic Acquired Resistance Using Cf-9 in Potato

To apply GAR to potato plants a single T-DNA construct systems is used.

The system is based around a single T-DNA

construct (Figure 11) containing, a Cf-9 gene sequence
under the control of its own promoter which has been
inactivated by an autonomous Ac element that is only
capable of a low level of excision (the Ac (Cla)

20 element (Keller et al. 1993), and the 355:SP:Avr9
transgene). The Ac element is inserted at various
positions in the Cf-9 sequence and in both orientations
in order to determine the best configuration to produce
a high frequency of small somatic sectors where Cf-9

function has been restored.

Placing the Cf-9 sequence or other R gene

sequence under the control of a cell-type specific promoter may enhance the GAR phenotype. Potential target cellular sites include the epidermis and the vascular parenchyma cells.

5 EXAMPLE 6

Expression of Cf-4 in transgenic plants and demonstration of increased pathogen resistance

The Cf-4 gene has been tested in transgenic plants in a number of ways: firstly by inoculation with a race of C. fulvum containing the corresponding avirulence gene Avr4 to test if that race gives an incompatible response on the transgenic plant; secondly by injecting leaves of a transformed plant with intercellular fluid isolated from a compatible interaction containing AVR4; thirdly, by delivering AVR4 in the form of recombinant potato virus X as described previously in studies of the Cf-9/AVR9 interaction (Hammond-Kosack et al., 1995).

The DNA sequence of the *C. fulvum* gene encoding

20 AVR4 has been reported and the amino acid sequence of
the mature processed polypeptide (Joosten et al.,
1994). We amplified by PCR the Avr4 gene from *C.*fulvum race 2,5 using primers to the published sequence
and fused a sequence encoding the proposed mature

25 polypeptide to a DNA sequence encoding the N-terminal

64

signal peptide of the tobacco PR1a protein. This would facilitate targeting of AVR4 to the intercellular space in transgenic plants where it is expressed. This chimeric gene (SPAvr4) was inserted into a cDNA copy of potato virus X, as a ClaI/SalI DNA fragment (SEQ ID NO. 13) as described previously (Hammond-Kosack et al.,1995) to generate PVX:SPAvr4. Infectious transcripts of the recombinant virus were generated by in vitro transcription. All nucleic acid manipulations were performed using standard techniques well known to those skilled in the art.

Tomato

5

10

Experiments were designed to test the recombinant virus in 3 week old tomato seedlings. In Cf-4 containing plants inoculated cotyledons appeared 15 desiccated and eventually abscised at 3 days post-inoculation (d.p.i.), in contrast to Cf0 controls which only showed signs of slight mechanical damage at the site of virus inoculation. Cf0 plants developed visible symptoms of virus infection at 7-10 d.p.i. 20 comparable to symptoms observed with the wild type virus i.e. chlorotic mosaic symptoms. At 4-5 d.p.i. in plants containing Cf-4 necrotic lesions were observed in the younger leaves, presumably due to systemic spread of the virus as described previously in similar 25 experiments with PVX containing Avr9 on Cf-9 containing plants (Hammond-Kosack et al., 1995). Other features included necrotic sectors on petioles and the stem. The necrotic phenotype was seen to spread systemically and at 14 d.p.i. the majority of Cf-4 containing seedlings had died. Cf0 control plants did not die but did show symptoms of chlorosis and vein-clearing.

These results confirm that Cf-4 is functional in transgenic tomato plants, resulting in a necrotic defence response in the presence of elicitor AVR4.

10 Tobacco

5

Using binary vector cosmids comprising Cf-4, transgenic tobacco plants have also been produced (Fillatti et al .,1987; Horsch et al., 1985) using techniques well known to those skilled in the art.

Transgenic tobacco containing cosmids comprising

Cf-4 were inoculated with PVX:SPAvr4. In most

transformants necrotic lesions were observed at the
site of virus inoculation 3-4 d.p.i. similar in
appearance to lesions which appear in response to virus

inoculation in some virus resistant varieties. In
these individuals the necrosis was not strictly
confined to local lesions which eventually coalesced
and at 7-10 d.p.i. leaf necrosis was apparent over the
entire region of virus inoculation. In several

transformants the reaction to PVX:SPAvr4 was more acute
and the necrotic leaf sectors could be observed at 3-4

66

d.p.i. Neither of these phenotypes were observed in transgenic tobacco containing cosmids lacking Cf-4 or in non-transformed control plants challenged with PVX:SPAvr4.

Functional expression of Cf-4 in transgenic tobacco has thus also been shown, with activation of a necrotic defence response in the presence of elicitor AVR4.

Pathogen Resistance

that Cf-4 activity could be detected by inoculation with PVX:SPAvr4 on 12 tomato transformants. Transgenic tomato plants containing Cf-4 exhibited leaf necrosis on inoculated leaves 3-4 d.p.i. This necrosis

15 eventually spread systemically as previously observed in Cf-4 containing plants in the experiments described above. Transgenic plants exhibiting necrotic leaf sectors eventually died.

Obtained in the first round of transformation
experiments were further assayed for Cf-4 function by
inoculation with C. fulvum race 5. In 5 transgenic
plants tested, a positive correlation was observed
between plants exhibiting PVX:SPAvr4 dependent necrosis
and resistance to the pathogen. In this experiment
pathogen growth was observed on compatible control

PCT/GB95/01075

plants (Cf0) but not on incompatible control plants (Cf2).

All documents mentioned in the text are incorporated herein by reference.

5 **REFERENCES**:

Balint-Kurti, et al. (1994) Theor. App. Genet. 88:691-700.

Basler, et al. (1991) Cell, 64, 1069-1081.

Becker, et al. (1993) Plant Journal 3, 875-881.

- Bent, A.F., et al. (1994) Science 265, 1856.
 Biffen, R.H. (1905) J. Ag. Sci. 1, 4-48.
 Carroll B.J. et al. (1993). Genetics (In Press).
 Chang, C., et al. (1992) The Plant Cell 4:1263-1271.
 Christou, P. (1992) The Plant Journal, 2(3), 275-281.
- 15 Coen, et al. (1989) In Mobile DNA. D.E. Berg and M.M.
 Howe, eds. (Washington: ASM Pres),
 Cornelissen, et al. (1987) Nucl.Acids.Res 15:6799-6811.
 Culver, et al. (1991) Molecular Plant Microbe
 Interactions 4, 458-463.
- 20 De Wit, P.J.G.M. (1992). Ann. Rev. Phytopathol. 30, 391-418.

DeGreve, et al. (1983) J.Mol.Appl.Genet. 1:499-511.

Dickinson, et al. (1993). Mol. Plant Mic. Int. 6, 341-347.

25 Dietrich, R.A., et al. (1994) Cell 77, 565-577.

Döring H-P (1989). An overview. Maydica 34:73-88.

Enyedi, et al. (1992) Cell 70, 879-886.

Fedoroff, N.V. (1989) In Mobile DNA. M. Howe and D.

Berg, eds. (Washington: ASM Press), pp. 375-411.

5 Fillatti JJ, et al. (1987). Bio/technol. 5:726-730.

Flor, H.H. (1971) Ann. Rev. Phytopathol. 9, 275-296.

Gabriel, et al. (1990) Ann.Rev.Phytopathol. 28:365-391.

Gaffney, et al. (1993) Science 261, 754-756.

Goulden, et al. (1993) The Plant Cell 5, 921-930.

10 Greenberg, J.T., et al. (1994) Cell 77, 551-563.

Greenberg, et al. (1993) Plant Journal 4,327-341.

Hamilton, et al. (1990) Nature 346, 284-287.

Hammond-Kosack, K.E., et al. (1994) Proc. Natl. Acad. Sci. USA 91, 10445-10449.

200 20, 20113 20443.

- 15 Hammond-Kosack, et al. (1994) The Plant Cell 6, 361-374.
 - Hammond-Kosack et al. (1995) Mol. Plant-Microbe
 Interact. 8:181-185

He, et al. (1993) Cell 73, 1255-1266.

20 · Hennig, et al. (1993) Plant Journal 4, 481-493.

Herrera - Estrella, et al. (1983) EMBO J. 2, 987-995.

Horsch RB, et al. (1985). Science (Wash.)

227:1229-1231.

Jefferson, et al. (1987) EMBO.J. 6:3901-3907.

25 Johal, et al. (1992) Science (Wash.). 258:985-987.

Johal, et al. (1994) Maydica 39, (in press).

Jones, et al. (1992) Transgen.Res. 1:285-297.

Jones, D.A., et al. (1994) Science 266, 789.

Jones, et al. (1993) Mol. Plant Mic. Int. 6, 348-357.

Jones, et al. (1994) Curr. Biol. 4, 67-69.

Joosten, et al. (1994). Nature 367, 384-386.

- Kavanagh, et al. (1992) Virology 189, 609-617.
 Keen, N.T. (1992) Ann. Rev. Gen. 24, 447-463.
 Keller, et al. (1993) Molec. Biol. 21, 159-170.
 Köhm, et al. (1993) The Plant Cell 5, 913-920.
 Lloyd, et al. (1994) Mol Gen Genet 242, 653-657.
- 10 Long, et al. (1993) Cell 73, 921-935.
 Malamy, et al. (1990) Science (Wash.). 250, 1002-1004.
 Mariani, et al. (1990) Nature 347, 737-741.
 Marmeisse, et al. (1993) MPMI 6, 412-417.
 Martin, et al. (1993) Science 262, 1432-1436.
- Metraux, et al. (1990) Science (Wash.). 250, 1004-1006.
 Mindrinos, M., et al. (1994) Cell 78, 1089-1099.
 Mittler, R., et al. (1995) The Plant Cell 7, 29-42.
 Napoli, et al. (1990). The Plant Cell 2,279-289.
 Odell, et al. (1984) Nature 313:810-812.
- 20 Odell, et al. (1990) Mol. Gen. Genet. 223, 369-378.
 Padgett, H.S., et al. (1993) The Plant Cell 5, 577-586.
 Pryor, et al. (1983) Advances in Plant Pathology 10,
 281-305.

Pryor, T. (1987). Trends. Genet. 3,157-161.

25 Rommens C.M.T., et al. (1992) Pl.Molec.Biol. 20:61-70.

Rommens, C.M.T., et al. (1995) The Plant Cell 7, 249
257.

Ross, A.F. (1961) Virology 14, 340-358.

Ryals, et al. (1992) SEB Symposium 49, 205-229.

Ryan, C.A. (1990) Ann. Rev. Phytopathol. 28, 425-449.

Santa Cruz, et al. (1993) Molecular Plant-microbe

- 5 Interactions 6, 707-714.
 - Scofield, S., et al. (1992) The Plant Cell 4:573-582.

Scott, A., et al. (1994) The Plant Cell 6, 1845-1857.

Stein, J.C., et al. (1991) Proc.Natl.Acad.Sci.USA 88:8816-8820.

- 10 Swinburne, et al (1992) The Plant Cell 4, 583-592.

 Takahashi, et al (1989) Molecular & General Genetics

 216, 188-194.
 - Thomas, C.M., et al. (1993) Molecular and General Genetics (In Press).
- Thorsness, et al (1983) The Plant Cell 5, 253-261.

 Triglia, T., et al. (1988) Nucleic Acids Res. 16:8186.

 Uknes, et al. (1992) The Plant Cell 4,645-656.

 Valon, C., et al. (1993) Pl.Molec.Biol. 23:415-421.

 van den Ackerveken, et al. (1993) Plant Physiol.
- 20 van der Beek, et al. (1992) Theor.App.Genet. 84:106
 - van den Elzen, et al. (1985) Plant. Mol. Biol. 5, 149-154.

van Kan J.A.L., et al. (1991) MPMI 4:52-59.

25 van den Elzen, et al. (1985) Plant. Mol. Biol. 5, 299-302.

Van Den Ackerveken, et al. (1992) Plant Journal 2, 359-

71

366.

Walbot, V., et al. (1983) T. Kosuge et al, eds. (Plenum Press), pp. 431-430.

Walker, J.C., (1993) Plant Journal 3:451-456.

5 Ward, et al (1991) The Plant Cell 3, 1085-1094.

Wei, et al. (1992) Science (Wash.). 257, 85-88.

Whitham, S., et al. (1994) Cell 78, 1101-1115.

Wolter, M., et al. (1983) Molecular & General Genetics 239, 122-128.

BNSDOCID: <WO_____9531564A2_I_>

SEQ ID NO. 1:

CATAGTCTTT GCATATTTGG ATTAAACAGG GGCATTATTG AACCAAACTA TTAGATGTAT	60
GAAAATTTTG GACCAAGCTA TTGACAACAC GAACATTTTT AGACCAAACT ATTAACTCAG	120
AATATTTTCC GTTGAATGAA TAAGGTAACT AGTAGTAAAT TTTTAGACCA AACTATGAAG	180
AACATGCCAT GTCTGGACTC CTGCACTATC TTCCATCAAC AGGTCAATTC TCTCAACTCT	240
ATTGGTGGAA GGTAGACGGT ACAAATTGAA TTATATTAAA AGACAAGCTC ACCTGAGCAT	300
CACTGTTATA CAACAACAAC AAACTACGCT TCAGCCCCAA ACAATAGTGA CCCGAATCAT	360
ATATTGTCAC GAGTTTTTTT TAGAGTATGT TGCATATATT ATACTCAACT TAGGGTTTGT	420
CATTCTGATG CTTCGTACAA ATTTATTGAA TTTTCAACTT TAAAGGTTTA TGAACCAAAT	480
ATTACGCTTA CTATGATAGC GGTCTTTTTT GATTAATCAA ACTTATTGAA TTTTCAACTT	540
TAAAGGTTTT TCCCCGTTCT ATACACAAAC TAAGAAAAAT TTAAATTATA TAGTCTTTGG	600
ATGGTGACCT ATTTGGATGG TAACATTATT GGACCAAACT ATTGATAACG CGGACATTGT	660
TAGACCAAAC TGAGAAGGAC ATGTCTGGAC TCCTGCTCCG TCTTCCATCA GCAGGTCGAT	720
TCTTGTGGAA AATTAGCTCG AGGTGGCGCA CTATGTGAGG TAACTAGTAC TAAATTTTTC	780
TTTGCTTAAT TTGTGCTATA TATACCTCAT CTAAATTATT GAATAGTCAC ACAAAGCAAA	840
CATTTCTTGA TTTCTTCTCT ATCAACATAA CAAGTTTTGA TCATTTTTAG TGCAGAA	897
ATG GAT TGT GTA AAA CTT GTA TTC CTT ATG CTA TAT ACC TTT CTC TGT Met Asp Cys Val Lys Leu Val Phe Leu Met Leu Tyr Thr Phe Leu Cys -23 -20 -15	945
CAA CTT GCT TTA TCC TCA TCC TTG CCT CAT TTG TGC CCC GAA GAT CAA Gln Leu Ala Leu Ser Ser Leu Pro His Leu Cys Pro Glu Asp Gln -5	993
GCT CTT TCT CTA CAA TTC AAG AAC ATG TTT ACC ATT AAT CCT AAT Ala Leu Ser Leu Leu Gln Phe Lys Asn Met Phe Thr Ile Asn Pro Asn 10 20 25	1041
GCT TCT GAT TAT TGT TAC GAC ATA AGA ACA TAC GTA GAC ATT CAG TCA Ala Ser Asp Tyr Cys Tyr Asp Ile Arg Thr Tyr Val Asp Ile Gln Ser 30 35 40	1089
TAT CCA AGA ACT CTT TCT TGG AAC AAA AGC ACA AGT TGC TGC TCA TGG Tyr Pro Arg Thr Leu Ser Trp Asn Lys Ser Thr Ser Cys Cys Ser Trp 45 50 55	1137
GAT GGC GTT CAT TGT GAC GAG ACA GGA CAA GTG ATT GCG CTT GAC Asp Gly Val His Cys Asp Glu Thr Thr Gly Gln Val Ile Ala Leu Asp 60 65 70	1185
CTC CGT TGC AGC CAA CTT CAA GGC AAG TTT CAT TCC AAT AGT AGC CTC Leu Arg Cys Ser Gln Leu Gln Gly Lys Phe His Ser Asn Ser Ser Leu 75 80 85	1233
TTT CAA CTC TCC AAT CTC AAA AGG CTT GAT TTG TCT TTT AAT AAT TTC Phe Gln Leu Ser Asn Leu Lys Arg Leu Asp Leu Ser Phe Asn Asn Phe 90 95 100	1281
ACT GGA TCA CTC ATT TCA CCA AAA TTT GGT GAG TTT TCA AAT TTG ACG Thr Gly Ser Leu Ile Ser Pro Lys Phe Gly Glu Phe Ser Asn Leu Thr 110 115 120	1329

CAT His	CTC Leu	GAT Asp	TTG Leu 125	TCG Ser	CAT His	TCT Ser	AGT Ser	TTT Phe 130	ACA Thr	GGT Gly	CTA Leu	ATT	CCT Pro 135	TCT Ser	GAA Glu	13	77
ATC Ile	TGT Cys	CAC His 140	CTT Leu	TCT	AAA Lys	CTA Leu	CAC His 145	GTT Val	CTT Leu	CGT Arg	ATA Ile	TGT Cys 150	GAT Asp	CAA Gln	TAT Tyr	142	25
GIA	Leu 155	Ser	Leu	Val	Pro	Tyr 160	Asn	Phe	Glu	Leu	Leu 165	CTT Leu	Lys	Asn	Leu	147	73
ACC Thr 170	CAA Gln	TTA Leu	AGA Arg	GAG Glu	CTC Leu 175	AAC Asn	CTT Leu	GAA Glu	TCT Ser	GTA Val 180	AAC Asn	ATC Ile	TCT Ser	TCC Ser	ACT Thr 185	152	21
ATT Ile	CCT Pro	TCA Ser	AAT Asn	TTC Phe 190	TCT Ser	TCT Ser	CAT His	TTA Leu	ACA Thr 195	ACT Thr	CTA Leu	CAA Gln	CTT Leu	TCA Ser 200	GGC Gly	156	59
Thr	GIU	Leu	205	GIÀ	Ile	Leu	Pro	Glu 210	Arg	Val	Phe	CAC His	Leu 215	Ser	Asn	161	L 7
TTA Leu	CAA Gln	TCC Ser 220	CTT Leu	CAT His	TTA Leu	TCA Ser	GTC Val 225	AAT Asn	CCC Pro	CAG Gln	CTC Leu	ACG Thr 230	GTT Val	AGG Arg	TTT Phe	166	5
CCC Pro	ACA Thr 235	ACC Thr	AAA Lys	TGG Trp	AAT Asn	AGC Ser 240	AGT Ser	GCA Ala	TCA Ser	CTC. Leu	ATG Met 245	ACG Thr	TTA Leu	TAC Tyr	GTC Val	171	.3
GAT Asp 250	AGT Ser	GTG Val	AAT Asn	ATT Ile	GCT Ala 255	GAT Asp	AGG Arg	ATA Ile	CCT Pro	AAA Lys 260	TCA Ser	TTT Phe	AGC Ser	CAT His	CTA Leu 265	176	1
ACT Thr	TCA Ser	CTT Leu	CAT His	GAG Glu 270	TTG Leu	TAC Tyr	ATG Met	GGT Gly	CGT Arg 275	TGT Cys	AAT Asn	CTG Leu	TCA Ser	GGG Gly 280	CCT Pro	180	9
IIe	Pro	Lys	Pro 285	Leu	Trp	Asn	Leu	Thr 290	Asn	Ile	Val	TTT Phe	Leu 295	His	Leu	185	7
GIY	Asp	300	His	Leu	Glu	Gly	9ro 305	Ile	Ser	His	Phe	ACG Thr 310	Iļe	Phe	Glu	190	5
Lys	Leu 315	Lys	Arg	Leu	ser	Leu 320	Val	Asn	Asn	Asn	Phe 325	GAT Asp	Gly	Gly	Leu	195	3
GAG Glu 330	TTC Phe	TTA Leu	TCC Ser	TTT Phe	AAC Asn 335	ACC Thr	CAA Gln	CTT Leu	GAA Glu	CGG Arg 340	CTA Leu	GAT Asp	TTA Leu	TCA Ser	TCC Ser 345	200	1
AAT Asn	TCC Ser	CTA Leu	ACT Thr	GGT Gly 350	CCA Pro	ATT Ile	CCA Pro	TCC Ser	AAC Asn 355	ATA Ile	AGC Ser	GGA Gly	CTT Leu	CAA Gln 360	AAC Asn	204	9
CTA Leu	GAA Glu	TGT Cys	CTC Leu 365	TAC Tyr	TTG Leu	TCA Ser	TCA Ser	AAC Asn 370	CAC His	TTG Leu	AAT Asn	GGG Gly	AGT Ser 375	ATA Ile	CCT Pro	209	7
TCC Ser	TGG Trp	ATA Ile 380	TTC Phe	TCC Ser	CTT Leu	CCT Pro	TCA Ser 385	CTG Leu	GTT Val	GAG Glu	TTA Leu	GAC Asp 390	TTG Leu	AGC Ser	AAT Asn	214	5

AAC Asn	ACT Thr 395	Phe	AGT Ser	GGA Gly	AAA Lys	ATT Ile 400	Gln	GAG Glu	TTC Phe	AAG Lys	TCC Ser 405	Lys	ACA Thr	TTA Leu	AGT Ser		2193
410	Val	Thr	Leu	Lys	Gln 415	Asn	Lys	Leu	Lys	Gly 420	Arg	Ile	Pro	Asn	TCA Ser 425		2241
Leu	тел	Asn	Gin	Lys 430	Asn	Leu	Gln	Leu	Leu 435	Leu	Leu	Ser	His	Asn 440	AAT Asn		2289
TIE	ser	GIY	H1S 445	TTE	Ser	Ser	Ala	11e 450	Cys	Asn	Leu	Lys	Thr 455	Leu	ATA Ile		2337
ьeu	Leu	Asp 460	Leu	Gly	Ser	Asn	Asn 465	Leu	Glu	Gly	Thr	Ile 470	Pro	Gln	TGC Cys		2385
Val	475	GIU	Arg	Asn	GIU	171 480	Leu	Ser	His		Asp 485	Leu	Ser	Lys	Asn		2433
490	Leu	Ser	GIY	Thr	495	Asn	Thr	Thr	Phe	AGT Ser 500	Val	Gly	Asn	Ile	Leu 505		2481
Arg	Val	TIE	ser	510	HIS	GIA	Asn	Lys	Leu 515	ACG Thr	Gly	Lys	Val	Pro 520	Arg		2529
ser	Met	TIE	525	cys	rys	Tyr	Leu	530	Leu	CTT Leu	Asp	Leu	Gly 535	Asn	Asn		2577
Mec	ren	540	Asp	Thr	Pne	Pro	Asn 545	Trp	Leu	GGA Gly	Tyr	Leu 550	Phe	Gln	Leu		2625
цуs	555	ren	ser	Leu	Arg	560	Asn	Lys	Leu	CAT His	Gly 565	Pro	Ile	Lys	Ser		2673
570	GIA	ASN	THE	Asn	ьеи 575	Pne	Met	Gly	Leu	CAA Gln 580	Ile	Leu	Asp	Leu	Ser 585		2721
TCT Ser	ASII	GIY	РЛЕ	590	GIY	Asn	Leu	Pro	G1u 595	Arg	Ile	Leu	Gly	Asn 600	Leu	٠	2769
CAA Gln	Thr	Met	Lys 605	Glu	Ile	Asp	Glu	Ser 610	Thr	Gly	Phe	Pro	Glu 615	Tyr	Ile		2817
TCT	Asp	620	Tyr	Asp	Ile	Tyr	Tyr 625	Asn	Tyr	Leu	Thr	Thr 630	Ile	Ser	Thr		2865
	635	GIN	Asp	Tyr	Asp	Ser 640	Val	Arg	Ile	Leu	Asp 645	Ser	Asn	Met	Ile		2913
ATC Ile 650	AAT Asn	CTC Leu	TCA Ser	Lys	AAC Asn 655	AGA Arg	TTT Phe	GAA Glu	Gly	CAT His 660	ATT Ile	CCA Pro	AGC Ser	ATT Ile	ATT Ile 665		2961

7.5

GGA Gly	GAT Asp	CTT Leu	GTT Val	GGA Gly 670	CTT Leu	CGT Arg	ACG Thr	TTG Leu	AAC Asn 675	TTG Leu	TCT Ser	CAC His	AAT Asn	GTC Val 680	TTG Leu	3009
GAA Glu	GGT Gly	CAT His	ATA Ile 685	CCG Pro	GCA Ala	TCA Ser	TTT Phe	CAA Gln 690	AAT Asn	TTA Leu	TCA Ser	GTA Val	CTC Leu 695	GAA Glu	TCT Ser	3057
TTG Leu	GAT Asp	CTC Leu 700	TCA Ser	TCT Ser	AAT Asn	AAA Lys	ATC Ile 705	AGC Ser	GGA Gly	GAA Glu	ATT Ile	CCG Pro 710	CAG Gln	CAG Gln	CTT Leu	3105
GCA Ala	TCC Ser 715	CTC Leu	ACA Thr	TTC Phe	CTT Leu	GAA Glu 720	GTC Val	TTA Leu	AAT Asn	CTC Leu	TCT Ser 725	CAC His	AAT Asn	CAT His	CTT Leu	3153
GTT Val 730	GGA Gly	TGC Cys	ATC Ile	CCC Pro	AAA Lys 735	GGA Gly	AAA Lys	CAA Gln	TTT Phe	GAT Asp 740	TCG Ser	TTC Phe	GGG Gly	AAC Asn	ACT Thr 745	3201
TCG Ser	TAC Tyr	CAA Gln	GGG Gly	AAT Asn 750	GAT Asp	GGG Gly	TTA Leu	CGC Arg	GGA Gly 755	TTT Phe	CCA Pro	CTC Leu	TCA Ser	AAA Lys 760	CTT Leu	3249
TGT Cys	GGT Gly	GGT Gly	GAA Glu 765	GAT Asp	CAA Gln	GTG Val	ACA Thr	ACT Thr 770	CCA Pro	GCT Ala	GAG Glu	CTA Leu	GAT Asp 775	CAA Gln	GAA Glu	3297
GAG Glu	GAG Glu	GAA Glu 780	GAA Glu	GAT Asp	TCA Ser	CCA Pro	ATG Met 785	ATC Ile	AGT Ser	TGG Trp	CAG Gln	GGG Gly 790	GTT Val	CTC Leu	GTG Val	3345
Gly	TAC Tyr 795	GGT Gly	TGT Cys	GGA Gly	CTT Leu	GTT Val 800	ATT Ile	GGA Gly	CTG Leu	TCC Ser	GTA Val 805	ATA Ile	TAC Tyr	ATA Ile	ATG Met	3393
TGG Trp 810	TCA Ser	ACT Thr	CAA Gln	TAT Tyr	CCA Pro 815	GCA Ala	TGG Trp	TTT Phe	TCG Ser	AGG Arg 820	ATG Met	GAT Asp	TTA Leu	AAG Lys	TTG Leu 825	3441 .
GAA Glu	CAC His	ATA Ile	ATT Ile	ACT Thr 830	ACG Thr	AAA Lys	ATG Met	AAA Lys	AAG Lys 835	CAC His	AAG Lys	AAA Lys	AGA Arg	TAT Tyr 840	TAGTGAGT	AG 3496
CTAT	ACCT	CC A	GGTA	TTCC	A CI	'TGAT	CATI	ATO	TTTC	AGA	agai	TATI	TT 1	TGTA	TATCG	3556
ATGA	AAT T	AT C	GACC	TCCI	T CA	TCCI	CAAA	GCI	CTTA	ACT	TTCA	CTCI	TC A	TTTI	TGAAA	3616
ATTT	CAGG	AT T	CAAA	GATI	T CC	GAGT	TCCC	AGT	TGCT	TGG	GATG	CAGA	TA A	AAGO	CTTTT	3676
TATC	TTTC	AT A	GTTT	CTTA	T CC	TATG	AATA	AAG	ATTT	TAT	TTTC	ATTT	GT C	TATG	GCACG	3736
TAGA	TATG	TT C	CGTC	ACTA	AA A	ACAT	TGTA	TTT	CTCT	CAA	CTCT	TTCG	TC A	CATG	ATATC	3796
AAAG.	AACA	CT T	GACT	TCAA	T TA	AGTT	'ACTG	TAG	TCTG	CTA	TTTT	'AATT	TT I	TCCA	TTGAA	3856
ACAC	AACT	GA C	GTAT	CTTG	A GA	AAGA	GACT	ATG	ATCC	ccc	GGGC	TGCA	.G			3905

SEQ ID NO. 2:

Met Asp Cys Val Lys Leu Val Phe Leu Met Leu Tyr Thr Phe Leu Cys -23 -20 -15

Gln Leu Ala Leu Ser Ser Ser Leu Pro His Leu Cys Pro Glu Asp Gln
-5 1 5

Ala 10	Leu	Ser	Leu	Leu	Gln 15	Phe	Lys	Asn	Met	Phe 20	Thr	Ile	Asn	Pro	Ası 25
Ala	Ser	Asp	Tyr	Cys 30	Tyr	Asp	Ile	Arg	Thr 35	Tyr	Val	Asp	Ile	Gln 40	Sea
Tyr	Pro	Arg	Thr 45	Leu	Ser	Trp	Asn	Lys 50	Ser	Thr	Ser	Cys	Cys 55	Ser	Tr
Asp	Gly	Val 60	His	Cys	Asp	Glu	Thr 65	Thr	Gly	Gln	Val	Ile 70	Ala	Leu	Asp
Leu	Arg 75	Cys	Ser	Gln	Leu	Gln 80	Gly	Lys	Phe	His	Ser 85	Asn	Ser	Ser	Leu
Phe 90	Gln	Leu	Ser	Asn	Leu 95	Lys	Arg	Leu	Asp	Leu 100	Ser	Phe	Asn	Asn	Phe 105
Thr	Gly	Ser	Leu	Ile 110	Ser	Pro	Lys	Phe	Gly 115	Glu	Phe	Ser	Asn	Leu 120	Thr
His	Leu	Asp	Leu 125	Ser	His	Ser	Ser	Phe 130	Thr	Gly	Leu	Ile	Pro 135	Ser	Glu
Ile	Cys	His 140	Leu	Ser	Lys	Leu	His 145	Val	Leu	Arg	Ile	Cys 150	Asp	Gln	Тух
Gly	Leu 155	Ser	Leu	Val	Pro	Tyr 160	Asn	Phe	Glu	Leu	Leu 165	Leu	Lys	Asn	Leu
Thr 170	Gln	Leu	Arg	Glu	Leu 175	Asn	Leu	Glu	Ser	Val 180	Asn	Ile	Ser	Ser	Thr 185
Ile	Pro	Ser	Asn	Phe 190	Ser	Ser	His	Leu	Thr 195	Thr	Leu	Gln	Leu	Ser 200	Gly
Thr	Glu	Leu	His 205	Gly	Ile	Leu	Pro	Glu 210	Arg	Val	Phe	His	Leu 215	Ser	Asn
Leu	Gln	Ser 220	Leu	His	Leu	Ser	Val 225	Asn	Pro	Gln	Leu	Thr 230	Val	Arg	Phe
Pro	Thr 235	Thr	Lys	Trp	Asn	Ser 240	Ser	Ala	Ser	Leu	Met 245	Thr	Leu	Tyr	Val
Asp 250	Ser	Val	Asn	Ile	Ala 255	Asp	Arg	Ile	Pro	Lys 260	Ser	Phe	Ser	His	Leu 265
Thr	Ser	Leu	His	Glu 270	Leu	Tyr	Met	Gly	Arg 275	Cys	Asn	Leu	Ser	Gly 280	Pro
Ile	Pro	Lys	Pro 285	Leu	Trp	Asn	Leu	Thr 290	Asn	Ile	Val	Phe	Leu 295	His	Leu
Gly	Asp	Asn 300	His	Leu	Glu	Gly	Pro 305	Ile	Ser	His	Phe	Thr 310	Ile	Phe	Glu
Lys	Leu 315	Lys	Arg	Leu	Ser	Leu 320	Val	Asn	Asn	Asn	Phe 325	Asp	Gly	Gly	Leu
Glu 330	Phe	Leu	Ser	Phe	Asn 335	Thr	Gln	Leu	Glu	Arg 340	Leu	Asp	Leu	Ser	Ser 345
Asn	Ser	Leu	Thr	Gly 350	Pro	Ile	Pro	Ser	Asn 355	Ile	Ser	Gly	Leu	Gln 360	Asn

Leu	Glu	Cys	Leu 365	Tyr	Leu	Ser	Ser	Asn 370	His	Leu	Asn	Gly	Ser 375	Ile	Pro
Ser	Trp	Ile 380	Phe	Ser	Leu	Pro	Ser 385	Leu	Val	Glu	Leu	Asp 390	Leu	Ser	Asn
Asn	Thr 395	Phe	Ser	Gly	Lys	Ile 400	Gln	Glu	Phe	Lys	Ser 405	Lys	Thr	Leu	Ser
Ala 410	Val	Thr	Leu	Lys	Gln 415	Asn	Lys	Leu	Lys	Gly 420	Arg	Ile	Pro	Asn	Ser 425
Leu	Leu	Asn	Gln	Lys 430	Asn	Leu	Gln	Leu	Leu 435	Leu	Leu	Ser	His	Asn 440	Asn
Ile	Ser	Gly	His 445	Ile	Ser	Ser	Ala	Ile 450	Cys	Asn	Leu	Lys	Thr 455	Leu	Ile
Leu	Leu	Asp 460	Leu	Gly	Ser	Asn	Asn 465	Leu	Glu	Gly	Thr	Ile 470	Pro	Gln	Cys
Val	Val 475	Glu	Arg	Asn	Glu	Tyr 480	Leu	Ser	His	Leu	Asp 485	Leu	Ser	Lys	Asn
Arg 490	Leu	Ser	Gly	Thr	Ile 495	Asn	Thr	Thr	Phe	Ser 500	Val	Gly	Asn	Ile	Leu 505
Arg	Val	Ile	Ser	Leu 510	His	Gly	Asn	Lys	Leu 515	Thr	Gly	Lys	Val	Pro 520	Arg
Ser	Met	Ile	Asn 525	Cys	Lys	Tyr	Leu	Thr 530	Leu	Leu	Asp	Leu	Gly 535	Asn	Asn
Met	Leu	Asn 540	Asp	Thr	Phe	Pro	Asn 545	Trp	Leu	Gly	Tyr	Leu 550	Phe	Gln	Leu
Lys	Ile 555	Leu	Ser	Leu	Arg	Ser 560	Asn	Lys	Leu	His	Gly 565	Pro	Ile	Lys	Ser
Ser 570	Glv	_													
	,	Asn	Thr	Asn	Leu 575	Phe	Met	Gly	Leu	Gln 580	Ile	Leu	Asp	Leu	Ser 585
Ser					575								-		585
	Asn	Gly	Phe	Ser 590	575 Gly	Asn	Leu	Pro	Glu 595	580	Ile	Leu	Gly	Asn 600	585 Leu
Gln	Asn Thr	Gly Met	Phe Lys 605	Ser 590 Glu	575 Gly Ile	Asn Asp	Leu Glu	Pro Ser 610	Glu 595 Thr	580 Arg	Ile Phe	Leu Pro	Gly Glu 615	Asn 600 Tyr	585 Leu Ile
Gln Ser	Asn Thr Asp	Gly Met Pro 620	Phe Lys 605 Tyr	Ser 590 Glu Asp	Gly Ile Ile	Asn Asp Tyr	Leu Glu Tyr 625	Pro Ser 610 Asn	Glu 595 Thr	Arg Gly	Ile Phe Thr	Leu Pro Thr 630	Gly Glu 615 Ile	Asn 600 Tyr Ser	585 Leu Ile Thr
Gln Ser Lys	Asn Thr Asp Gly 635	Gly Met Pro 620 Gln	Phe Lys 605 Tyr Asp	Ser 590 Glu Asp	Gly Ile Ile Asp	Asn Asp Tyr Ser 640	Leu Glu Tyr 625 Val	Pro Ser 610 Asn Arg	Glu 595 Thr Tyr	Arg Gly Leu	Ile Phe Thr Asp	Leu Pro Thr 630 Ser	Gly Glu 615 Ile Asn	Asn 600 Tyr Ser Met	S85 Leu Ile Thr
Gln Ser Lys Ile 650	Asn Thr Asp Gly 635 Asn	Gly Met Pro 620 Gln Leu	Phe Lys 605 Tyr Asp	Ser 590 Glu Asp Tyr	Gly Ile Ile Asp Asn 655	Asn Asp Tyr Ser 640 Arg	Leu Glu Tyr 625 Val	Pro Ser 610 Asn Arg	Glu 595 Thr Tyr Ile Gly	580 Arg Gly Leu Leu	Ile Phe Thr Asp 645	Leu Pro Thr 630 Ser	Gly Glu 615 Ile Asn	Asn 600 Tyr Ser Met	S85 Leu Ile Thr Ile Ile 665
Gln Ser Lys Ile 650	Asn Thr Asp Gly 635 Asn	Gly Met Pro 620 Gln Leu Leu	Phe Lys 605 Tyr Asp Ser Val	Ser 590 Glu Asp Tyr Lys Gly 670	Gly Ile Ile Asp Asn 655 Leu	Asn Asp Tyr Ser 640 Arg	Leu Glu Tyr 625 Val Phe	Pro Ser 610 Asn Arg Glu Leu	Glu 595 Thr Tyr Ile Gly Asn 675	580 Arg Gly Leu Leu His 660	Ile Phe Thr Asp 645 Ile Ser	Leu Pro Thr 630 Ser Pro	Gly Glu 615 Ile Asn Ser	Asn 600 Tyr Ser Met Ile Val 680	S85 Leu Ile Thr Ile Ile 665 Leu

1200

Ala Ser Leu Thr Phe Leu Glu Val Leu Asn Leu Ser His Asn His Leu Val Gly Cys Ile Pro Lys Gly Lys Gln Phe Asp Ser Phe Gly Asn Thr 735 740 Ser Tyr Gln Gly Asn Asp Gly Leu Arg Gly Phe Pro Leu Ser Lys Leu Cys Gly Glu Asp Gln Val Thr Thr Pro Ala Glu Leu Asp Gln Glu Glu Glu Glu Asp Ser Pro Met Ile Ser Trp Gln Gly Val Leu Val 785 Gly Tyr Gly Cys Gly Leu Val Ile Gly Leu Ser Val Ile Tyr Ile Met Trp Ser Thr Gln Tyr Pro Ala Trp Phe Ser Arg Met Asp Leu Lys Leu Glu His Ile Ile Thr Thr Lys Met Lys Lys His Lys Lys Arg Tyr 830 835

SEO ID NO. 3:

CATTTCTTGA TTTCTTCTCT ATCAACATAA CAAGTTTTGA TCATTTTTAG TGCAGAAATG 60 GATTGTGTAA AACTTGTATT CCTTATGCTA TATACCTTTC TCTGTCAACT TGCTTTATCC 120 TCATCCTTGC CTCATTTGTG CCCCGAAGAT CAAGCTCTTT CTCTTCTACA ATTCAAGAAC 180 ATGTTTACCA TTAATCCTAA TGCTTCTGAT TATTGTTACG ACATAAGAAC ATACGTAGAC 240 ATTCAGTCAT ATCCAAGAAC TCTTTCTTGG AACAAAAGCA CAAGTTGCTG CTCATGGGAT 300 GGCGTTCATT GTGACGAGAC GACAGGACAA GTGATTGCGC TTGACCTCCG TTGCAGCCAA 360 CTTCAAGGCA AGTTTCATTC CAATAGTAGC CTCTTTCAAC TCTCCAATCT CAAAAGGCTT 420 GATTTGTCTT TTAATAATTT CACTGGATCA CTCATTTCAC CAAAATTTGG TGAGTTTTCA 480 AATTTGACGC ATCTCGATTT GTCGCATTCT AGTTTTACAG GTCTAATTCC TTCTGAAATC 540 TGTCACCTTT CTAAACTACA CGTTCTTCGT ATATGTGATC AATATGGGCT TAGTCTTGTA 600 CCTTACAATT TTGAACTGCT CCTTAAGAAC TTGACCCAAT TAAGAGAGCT CAACCTTGAA 660 TCTGTAAACA TCTCTTCCAC TATTCCTTCA AATTTCTCTT CTCATTTAAC AACTCTACAA 720 CTTTCAGGCA CAGAGTTACA TGGGATATTG CCCGAAAGAG TTTTTCACCT TTCCAACTTA 780 CAATCCCTTC ATTTATCAGT CAATCCCCAG CTCACGGTTA GGTTTCCCAC AACCAAATGG 840 AATAGCAGTG CATCACTCAT GACGTTATAC GTCGATAGTG TGAATATTGC TGATAGGATA 900 CCTAAATCAT TTAGCCATCT AACTTCACTT CATGAGTTGT ACATGGGTCG TTGTAATCTG 960 TCAGGGCCTA TTCCTAAACC TCTATGGAAT CTCACCAACA TAGTGTTTTT GCACCTTGGT 1020 GATAACCATC TTGAAGGACC AATTTCCCAT TTCACGATAT TTGAAAAGCT CAAGAGGTTA 1080 TCACTTGTAA ATAACAACTT TGATGGCGGA CTTGAGTTCT TATCCTTTAA CACCCAACTT 1140 GAACGGCTAG ATTTATCATC CAATTCCCTA ACTGGTCCAA TTCCATCCAA CATAAGCGGA

CTTCAAAACC TAGAATGTCT CTACTTGTCA TCAAACCAC	T TGAATGGGAG TATACCTTCC 1260
TGGATATTCT CCCTTCCTTC ACTGGTTGAG TTAGACTTG	A GCAATAACAC TTTCAGTGGA 1320
AAAATTCAAG AGTTCAAGTC CAAAACATTA AGTGCCGTT	A CTCTAAAACA AAATAAGCTG 1380
AAAGGTCGTA TTCCGAATTC ACTCCTAAAC CAGAAGAAC	C TACAATTACT TCTCCTTTCA 1440
CACAATAATA TCAGTGGACA TATTTCTTCA GCTATCTGC	A ATCTGAAAAC ATTGATATTG 1500
TTAGACTTGG GAAGTAATAA TTTGGAGGGA ACAATCCCA	C AATGCGTGGT TGAGAGGAAC 1560
GAATACCTTT CGCATTTGGA TTTGAGCAAA AACAGACTT	A GTGGGACAAT CAATACAACT 1620
TTTAGTGTTG GAAACATTTT AAGGGTCATT AGCTTGCAC	G GGAATAAGCT AACGGGGAAA 1680
GTCCCACGAT CTATGATCAA TTGCAAGTAT TTGACACTAG	TTGATCTAGG TAACAATATG 1740
TTGAATGACA CATTTCCAAA CTGGTTGGGA TACCTATTT	AATTGAAGAT TTTAAGCTTG 1800
AGATCAAATA AGTTGCATGG TCCCATCAAA TCTTCAGGGA	A ATACAAACTT GTTTATGGGT 1860
CTTCAAATTC TTGATCTATC ATCTAATGGA TTTAGTGGGA	A ATTTACCCGA AAGAATTTTG 1920
GGGAATTTGC AAACCATGAA GGAAATTGAT GAGAGTACAG	G GATTCCCAGA GTATATTTCT 1980
GATCCATATG ATATTTATTA CAATTATTTG ACGACAATT	CTACAAAGGG ACAAGATTAT 2040
GATTCTGTTC GAATTTTGGA TTCTAACATG ATTATCAATC	TCTCAAAGAA CAGATTTGAA 2100
GGTCATATTC CAAGCATTAT TGGAGATCTT GTTGGACTTC	GTACGTTGAA CTTGTCTCAC 2160
AATGTCTTGG AAGGTCATAT ACCGGCATCA TTTCAAAATT	TATCAGTACT CGAATCTTTG 2220
GATCTCTCAT CTAATAAAAT CAGCGGAGAA ATTCCGCAGG	AGCTTGCATC CCTCACATTC 2280
CTTGAAGTCT TAAATCTCTC TCACAATCAT CTTGTTGGAT	GCATCCCCAA AGGAAAACAA 2340
ITTGATTCGT TCGGGAACAC TTCGTACCAA GGGAATGATG	GGTTACGCGG ATTTCCACTC 2400
ICAAAACTTT GTGGTGGTGA AGATCAAGTG ACAACTCCAG	CTGAGCTAGA TCAAGAAGAG 2460
GAGGAAGAAG ATTCACCAAT GATCAGTTGG CAGGGGGTT	TCGTGGGTTA CGGTTGTGGA 2520
CTTGTTATTG GACTGTCCGT AATATACATA ATGTGGTCA	CTCAATATCC AGCATGGTTT 2580
CGAGGATGG ATTTAAAGTT GGAACACATA ATTACTACGA	AAATGAAAAA GCACAAGAAA 2640
AGATATTAGT GAGTAGCTAT ACCTCCAGGA TTCAAAGATT	TCCGAGTTCC CAGTTGCTTG 2700
GGATGCAGAT AAAAGCCTTT TTATCTTTCA TAGTTTCTT	TCCTATGAAT AAAGATTTTA 2760
ITTTCATTTG TCTATGGCAC GTAGATATGT TCCGTCACT	AAAACATTGT ATTTCTCTCA 2820
ACTCTTTCGT CACATGATAT CAAAGAACAC TTGACTTCAA	TTAAGTTAAA AAAAAAAAA 2880
SEQ ID NO. 4:	
ATG GGA TTT GTT CTC TTT TCA CAA TTG CCT TCA Met Gly Phe Val Leu Phe Ser Gln Leu Pro Ser 1 5 10	TTT CTT CTT GTC TCT 48 Phe Leu Leu Val Ser 15
ACA CTT CTC TTA TTC CTA GTA ATA TCC CAC TCT	TGC CGT GCC TAC TGT
Thr Leu Leu Leu Phe Leu Val Ile Ser His Ser 20 25	Cys Arg Ala Tyr Cys

80

AAC Asn	AGT Ser	TCT Ser 35	TGT Cys	ACA Thr	AGA Arg	GCT Ala	TTT Phe 40	GAC Asp	TGT Cys	CTT Leu	GGA Gly	CAA Gln 45	TGT Cys	GGA Gly	AGA Arg	1	L44
							TGT Cys									3	L 7 7

SEQ ID NO. 5:

1	CTCGAGTTCG	GAACCTAAAA	GGTATAAAAT	AAAATAATTA	ATTTTAAAAT
51	GGTATATCAA	TTTTTATATT	AACCAAAACG	TCAAAATCGC	TGAAACAACA
101	GCGATTTCCT	TCACCGGAAA	AAGCAAAATC	GCTACTACTG	CAGCGATTTT
151	GCAAAATGTA	ACTTTTTTT	AAAAAAATGC	ATATTTTCTT	ATAAGCTATA
201	TATTTGAATT	TCAAAAAAA	TATTTGAAAA	TCAATAAAAT	TTGTTTTTCC
251	TACGATTTTC	TTTTTAAAAT	TCTTTTTTTG	GAAAATCCCT	ACCTAGGCAG
301	CGATTTCCAT	TTTTAATTTT	TTTTAAATAA	AAGGCAGCGA	TTTTCGAAAA
351	AAAAAATTTT	TTAAAAAAAA	GAAAAAGTCG	CTGCCTAGGT	AGCGATTTGA
401	ATTTTTTAA	AAAATGTTAT	ATTTTGCAAA	ATCGTTGCAG	TAGCAACGAT
451	TTTGCTTTTT	TTGGAGGAAA	TCGCTGTTGT	TCCAGCGATT	TTGCCGTTTT
501	GGTTAATATA	AAATTTTATA	TAACGTTTTG	AAATTTTTGT	TAATATTTTA
551	TAACTTTTAG	GCTCCGGACT	CAAGATTACT	CCCTCTATCT	TAGTTTATAA
601	TGCATAGTCT	GAATTTTGAA	GAGCCAAATA	GTTTAATTTT	CGCCATAAAT
651	TCAGACATGA	AATCTTTAAA	AAAGTTTAAA	TAAAATTTGT	ATATGTTGAA
701	ACTACAGAAA	AAGTATTATA	ATTCACGATA	ATTTATTCAC	AAGCCATCGT
751	CGGAGTGATC	GCGAGTGAAG	TGAAAGAATT	GGAGTTTTTG	ATATCCAGAA
801	TCCATCTTGA	GAGGTTGAGA	TATCTTAATC	TATCTCCAAT	АААААААААС
851	TATTAATATC	CAATTTTCTT	GAAGGCCATT	ACCTATTCCG	ACAAATTCCA
901	CAAGATACTT	CATCATATAA	AAAAATAATC	TCCGTGAAGA	AATTCTTTT
951	TTTGGAAAAT	CGATTTTAGA	GTCATTGCAA	TTTAATTTTA	TCAAAATATT
1001	TGAGCATGAA	AAATTTGAAA	TGGAGGTGTC	ATAAAATAA	AATACCCTTT
1051	AAAACACGGC	TTTATTGAGT	TGACGATAGT	TCAAGTAGGG	AAAATAAATA
1101	ACTTATTAAT	TGAATATAAA	ACTTGCAAGA	AAAAAGTGAT	ATTCAAATTT
1151	AATTCTGACC	ATTATCTCTT	GATATTCTTT	GCTCTTCATT	TATTTGAATA
1201	TTCATTTTTC	AAAAGTTCCA	CGTCATAAGA	CATCAAATAT	CAAGTAGGTC
1251			TCTCAACATG		
1301			CAAAAACAAA		
1351	CGAATCATCA	TAATCTCTGA	GACTGAGAAT	TGTTAGATAT	GGTCCACTAC

1401	TOTAGAGATO	AGAMITION	ACCAMIGIA	IIMIACACIA	AGAGIGGICA
1451	TGATCATTGT	GTGATAACAA	AACTATTTTG	GCAACTTTGA	CTCAGTCCTT
1501	GGCTAAATTA	GACCTCTAAC	ACAAAACAAT	CCAAAAGTTG	ACTTGAGAAT
1551	GACAACATTT	TCTTCCCTGA	TAGCAACCAA	ATTAGCAAAT	TTGGAAAAA
1601	CGCGTGTCTT	GTTGATCTTT	AATTAGTATA	AGTTACGTAC	AATATCCTAT
1651	TGAATTGGAA	ACAATAAACT	CAAACTATGA	TGATGGTTTC	TAGAAAAGTA
1701	GTCTCTTCAC	TTCAGTTTTT	CACTCTTTTC	TACCTCTTTA	CAGTTGCATT
1751	TGCTTCGACT	GAGGAGGCAA	CTGCCCTCTT	GAAATGGAAA	GCAACTTTCA
1801	AGAACCAGAA	TAATTCCTTT	TTGGCTTCAT	GGATTCCAAG	TTCTAATGCA
1851	TGCAAGGACT	GGTATGGAGT	TGTATGCTTT	AATGGTAGGG	TAAACACGTT
1901	GAATATTACA	AATGCTAGTG	TCATTGGTAC	ACTCTATGCT	TTTCCATTTT
1951	CATCCCTCCC	TTCTCTTGAA	AATCTTGATC	TTAGCAAGAA	CAATATCTAT
2001	GGTACCATTC	CACCTGAGAT	TGGTAATCTC	ACAAATCTTG	TCTATCTTGA
2051	CTTGAACAAC	AATCAGATTT	CAGGAACAAT	ACCACCACAA	ATCGGTTTAC
2101	TAGCCAAGCT	TCAGATCATC	CGCATATTTC	ACAATCAATT	AAATGGATTI
2151	ATTCCTAAAG	AAATAGGTTA	CCTAAGGTCT	CTTACTAAGC	TATCTTTGGG
2201	TATCAACTTT	CTTAGTGGTT	CCATTCCTGC	TTCAGTGGGG	AATCTGAACA
2251	ACTTGTCTTT	TTTGTATCTT	TACAATAATC	AGCTTTCTGG	CTCTATTCCT
2301	GAAGAAATAA	GTTACCTAAG	ATCTCTTACT	GAGCTAGATT	TGAGTGATAA
2351	TGCTCTTAAT	GGCTCTATTC	CTGCTTCATT	GGGGAATATG	AACAACTTGT
2401	CTTTTTTGTT	TCTTTATGGA	AATCAGCTTT	CTGGCTCTAT	TCCTGAAGAA
2451	ATATGTTACC	TAAGATCTCT	TACTTACCTA	GATTTGAGTG	AGAATGCTCT
2501	TAATGGCTCT	ATTCCTGCTT	CATTGGGGAA	TTTGAACAAC	TTGTCTTTTT
2551	TGTTTCTTTA	TGGAAATCAG	CTTTCTGGCT	CTATTCCTGA	AGAAATAGGT
2601	TACCTAAGAT	CTCTTAATGT	CCTAGGTTTG	AGTGAGAATG	CTCTTAATGG
2651	CTCTATTCCT	GCTTCATTGG	GGAATCTGAA	AAACTTGTCT	AGGTTGAATC
2701	TTGTTAATAA	TCAGCTTTCT	GGCTCTATTC	CTGCTTCATT	GGGGAATCTG
2751	AACAACTTGT	CTATGTTGTA	TCTTTACAAT	AACCAGCTTT	CTGGCTCTAT
2801	TCCTGCTTCA	TTGGGGAATC	TGAACAACTT	GTCTATGTTG	TATCTTTACA
2851	ATAATCAGCT	TTCTGGCTCT	ATTCCTGCTT	CATTGGGGAA	TCTGAACAAC
2901	TTGTCTAGGT	TGTATCTCTA	CAATAATCAG	CTTTCTGGCT	CTATTCCTGA
2951	AGAAATAGGT	TACTTGAGTT	CTCTTACTTA	TCTAGATTTG	AGTAATAACI
3001	CCATTAATGG	ATTTATTCCT	GCTTCATTTG	GCAATATGAG	CAACTTGGCT
3051	TTTTTGTTTC	TTTATGAAAA	TCAGCTTGCT	AGCTCTGTTC	CTGAAGAAAT

3101	AGGTTACCTA	AGGTCTCTTA	ATGTCCTTGA	TTTGAGTGAG	AATGCTCTT
3151	ATGGCTCTAT	TCCTGCTTCA	TTCGGGAATT	TGAACAACTT	GTCTAGGTTC
3201	AATCTTGTTA	ATAATCAGCT	TTCTGGCTCT	ATTCCTGAAG	AAATAGGTT
3251	CCTAAGGTCT	CTTAATGTCC	TTGATTTGAG	TGAGAATGCT	CTTAATGGC
3301	CTATTCCTGC	TTCATTCGGG	AATTTGAACA	ACTTGTCTAG	GTTGAATCTT
3351	GTTAATAATC	AGCTTTCTGG	CTCTATTCCT	GAAGAAATAG	GTTACCTAAC
3401	ATCTCTTAAT	GACCTAGGTT	TGAGTGAGAA	TGCTCTTAAT	GGCTCTATTC
3451	CTGCTTCATT	GGGGAATCTG	AACAACTTGT	CTATGTTGTA	TCTTTACAAT
3501	AATCAGCTTT	CTGGCTCTAT	TCCTGAAGAA	ATAGGTTACT	TGAGTTCTCT
3551	TACTTATCTA	TCTTTGGGTA	ATAACTCTCT	TAATGGACTT	ATTCCTGCTT
3601	CATTTGGCAA	TATGAGAAAT	CTGCAAGCTC	TGATTCTCAA	TGATAACAAT
3651	CTCATTGGGG	AAATTCCTTC	ATCTGTGTGC	AATTTGACAT	CACTGGAAGT
3701	GTTGTATATG	CCGAGAAACA	ATTTGAAGGG	AAAAGTTCCG	CAATGTTTGG
3751	GTAATATCAG	TAACCTTCAG	GTTTTGTCGA	TGTCATCTAA	TAGTTTCAGT
3801	GGAGAGCTCC	CTTCATCTAT	TTCCAATTTA	ACATCACTAC	AAATACTTGA
3851	TTTTGGCAGA	AACAATCTGG	AGGGAGCAAT.	ACCACAATGT	TTTGGCAATA
3901	TTAGTAGCCT	CGAGGTTTTT	GATATGCAGA	ACAACAAACT	TTCTGGGACT
3951	CTTCCAACAA	ATTTTAGCAT	TGGATGTTCA	CTGATAAGTC	TCAACTTGCA
4001	TGGCAATGAA	CTAGAGGATG	AAATCCCTCG	GTCTTTGGAC	AATTGCAAAA
4051	AGCTGCAAGT	TCTTGATTTA	GGAGACAATC	AACTCAACGA	CACATTTCCC
4101	ATGTGGTTGG	GAACTTTGCC	AGAGCTGAGA	GTTTTAAGGT	TGACATCGAA
4151	TAAATTGCAT	GGACCTATAA	GATCATCAAG	GGCTGAAATC	ATGTTTCCTG
4201	ATCTTCGAAT	CATAGATCTC	TCTCGCAATG	CATTCTCGCA	AGACTTACCA
4251	ACGAGTCTAT	TTGAACATTT	GAAAGGGATG	AGGACAGTTG	ATAAAACAAT
4301	GGAGGAACCA	AGTTATGAAA	GCTATTACGA	TGACTCGGTG	GTAGTTGTGA
4351	CAAAGGGATT	GGAGCTTGAA	ATTGTGAGAA	TTTTGTCTTT	GTACACAGTT
4401	ATCGATCTTT	CAAGCAACAA	ATTTGAAGGA	CATATTCCTT	CTGTCCTGGG
4451	AGATCTCATT	GCGATCCGTA	TACTTAATGT	ATCTCATAAT	GCATTGCAAG
4501	GCTATATACC	ATCATCACTT	GGAAGTTTAT	CTATACTGGA	ATCACTAGAC
4551	CTTTCGTTTA	ACCAACTTTC	AGGAGAGATA	CCACAACAAC	TTGCTTCTCT
4601	TACGTTTCTT	GAATTCTTAA	ATCTCTCCCA	CAATTATCTC	CAAGGATGCA
4651	TCCCTCAAGG	ACCTCAATTC	CGTACCTTTG	AGAGCAATTC	ATATGAAGGT
4701	AATGATGGAT	TACGTGGATA	TCCAGTTTCA	AAAGGTTGTG	GCAAAGATCC
4751	TGTGTCAGAG	AAAAACTATA	CAGTGTCTGC	GCTAGAAGAT	CNACNACCA

4801	ATTCTGAATT	TTTCAATGAT	TTTTGGAAAG	CAGCTCTGAT	GGGCTATGGA
4851	AGTGGACTGT	GTATTGGCAT	ATCCATGATA	TATATCTTGA	TCTCGACTGG
4901	AAATCTAAGA	TGGCTTGCAA	GAATCATTGA	AAAACTGGAA	CACAAAATTA
4951	TCATGCAAAG	GAGAAAGAAG	CAGCGAGGTC	AAAGAAATTA	CAGAAGAAGA
5001	AATAATCACT	TCTAGACAAG	TTACCAATAC	AGAAAGATTT	GATTTCAGAA
5051	CTTCAGGTAT	TCACGCTAAG	CTCTAACACT	TATCTTTTT	AGTTTATTCT
5101	AACAACTAAT	ATATGGTTTT	TTTTTATCAA	CAAATACTTA	TTAAGGCTTG
5151	ATACAAATTG	CTATAATCAC	TTGGAAGCTG	TGATATATAA	CAAAGCCTAA
5201	AAATTTATAG	TTGTGTGACT	CACTTTCTTA	TTTTTCAGAT	TTTCAGGAGC
5251	CAAGAATTAG	AAGACGCTGG	TGTAAAGGAT	TTGCTTCTTC	CTATGTTGCA
5301	GCTTATGATT	GTTGGATTTG	ATTTTTAGTT	TTATAAGGTT	TTCTTCAGTT
5351	GGGAAAATGT	AATATTTTGA	ATTTTGATGA	TATATAATAA	ATGTTGTGTA
5401	TTGAATGATG	TGTATGCATT	TCTCGGATCA	ATAATACTCA	CCTCAAAGAA
5451	TCTAAGAGAG	TTAGCGCACG	ATAGAAGATA	GAACATACAA	AGAAGAATAC
5501	ATTACAACCT	TGGGCTTGGT	TATCTTACAC	CCCAAAGCTT	GTTATTATGG
5551	AAGGAAAGGC	CAAGTTTTAT	TTTTAGATAT	GGGGAGCCTT	GGCGTGCTGG
5601	TAAGGTTGTA	GTGGATAAGG	TAACTTCTCC	TGTTAATGAA	TTGAATGATC
5651	ATAGCAGAGA	TGTGTTTAAA	ATTTCTGTTG	TATTAGTTTG	TAATATTTGG
5701	AGGTCTTAAA	TTGAACAGAT	GCACATCTGT	TCGTGAAAGA	GCATGACTAT
5751	TCTTATAAGT	CAACTCTCAA	GTTCTATAAA	TATAAGGACT	CCTAAAGTAG
5801	CATAAGAAAA	AACTGCAGTA	TACTAAGGCG	TTGTTGGATC	CTGAAGGGAA
5851	TTGCTGGTAA	CCCCCTAAAC	AACATACGTT	ATATTGGTGG	GGGGTAGAAG
5901	GTACCCAGTG	AAATAATCTA	GGTTTGCATA	GGTTGCTCTG	CAAACAACAA
5951	TTATTAAACA	AAATCCACAC	ACACTAGCAC	ATGAGAGTAA	TAATTTAAA
6001	GACGAGATGA	AAGAAACTCA	CGCCAAGATG	GACTTTATCA	AACAACAAAT
6051	ACATTGTTTG	TACCTTTTGG	ACAACCATTT	ATCACTCAAA	GAAGATCAAG
6101	GATTGATGCA	TTACATCGTT	CTTGGAACAA	AATTATGTAC	ATAAAACTTA
6151	CAGGAATCAT	GTTTTGTGTG	TGGTAAAACT	CCATAAGGAC	TAGTCCAAGA
6201	TACTGAGATC	AAGGATTTCT	AAGTGCAGCC	AATCTCTTCT	CCAGTTCATC
6251	GATCCCCGAA	CTGCCAGCAC	GAAAGCACAA	CAACAAAATG	TACATGAGCG
6301	AGTTACTGAG	ATCAAAGAGC	atgaaaaaag	GCACTTCATA	CTAATATGAT
6351	AACTTCATAC	TAATATGATA	CAATTATTTA	CAGGAAGAAA	AGAAGAATAG
6401	GAAACCGAAC	CGCAACATAC	TTTATCTATT	AACGAGCAGT	GCACTCAAGA
6451	TAACTAGTAT	TTTTGCTCGA	G		

SEQ ID NO. 6:

1 MMMVSRKVVS SLQFFTLFYL FTVAFASTEE ATALLKWKAT FKNQNNSFLA SWIPSSNACK DWYGVVCFNG RVNTLNITNA SVIGTLYAFP FSSLPSLENL 101 DLSKNNIYGT IPPEIGNLTN LVYLDLNNNQ ISGTIPPQIG LLAKLQIIRI FHNQLNGFIP KEIGYLRSLT KLSLGINFLS GSIPASVGNL NNLSFLYLYN 151 201 NQLSGSIPEE ISYLRSLTEL DLSDNALNGS IPASLGNMNN LSFLFLYGNO LSGSIPEEIC YLRSLTYLDL SENALNGSIP ASLGNLNNLS FLFLYGNOLS 251 GSIPEEIGYL RSLNVLGLSE NALNGSIPAS LGNLKNLSRL NLVNNQLSGS 301 IPASLGNLNN LSMLYLYNNQ LSGSIPASLG NLNNLSMLYL YNNQLSGSIP 351 ASLGNINNLS RLYLYNNQLS GSIPEEIGYL SSLTYLDLSN NSINGFIPAS 401 FGNMSNLAFL FLYENQLASS VPEEIGYLRS LNVLDLSENA LNGSIPASFG 451 NLNNLSRLNL VNNQLSGSIP EEIGYLRSLN VLDLSENALN GSIPASFGNL 501 NNLSRLNLVN NQLSGSIPEE IGYLRSLNDL GLSENALNGS IPASLGNLNN 551 LSMLYLYNNQ LSGSIPEEIG YLSSLTYLSL GNNSLNGLIP ASFANMRNLQ 601 ALILNDNNLI GEIPSSVCNL TSLEVLYMPR NNLKGKVPQC LGNISNLQVL 651 SMSSNSFSGE LPSSISNLTS LQILDFGRNN LEGAIPQCFG NISSLEVFDM 701 ONNKLSGTLP TNFSIGCSLI SLNLHGNELE DEIPRSLDNC KKLQVLDLGD 751 801 NQLNDTFPMW LGTLPELRVL RLTSNKLHGP IRSSRAEIMF PDLRIIDLSR 851 NAFSQDLPTS LFEHLKGMRT VDKTMEEPSY ESYYDDSVVV VTKGLELEIV 901 RILSLYTVID LSSNKFEGHI PSVLGDLIAI RILNVSHNAL QGYIPSSLGS 951 LSILESLDLS FNQLSGEIPQ QLASLTFLEF LNLSHNYLQG CIPQGPQFRT 1001 FESNSYEGND GLRGYPVSKG CGKDPVSEKN YTVSALEDQE SNSEFFNDFW 1051 KAALMGYGSG LCIGISMIYI LISTGNLRWL ARIIEKLEHK IIMQRRKKQR 1101 GQRNYRRRNN HF*

SEQ ID NO. 7:

1 MMMVSRKVVS SLQFFTLFYL FTVAFASTEE ATALLKWKAT FKNQNNSFLA
51 SWIPSSNACK DWYGVVCFNG RVNTLNITNA SVIGTLYAFP FSSLPSLENL
101 DLSKNNIYGT IPPEIGNLTN LVYLDLNNNQ ISGTIPPQIG LLAKLQIIRI
151 FHNQLNGFIP KEIGYLRSLT KLSLGINFLS GSIPASVGNL NNLSFLYLYN
201 NQLSGSIPEE ISYLRSLTEL DLSDNALNGS IPASLGNMNN LSFLFLYGNQ
251 LSGSIPEEIC YLRSLTYLDL SENALNGSIP ASLGNLNNLS FLFLYGNQLS

85

301 GSIPEEIGYL RSLNVLGLSE NALNGSIPAS LGNLKNLSRL NLVNNOLSGS 351 IPASLGNINN LSMLYLYNNQ LSGSIPASLG NLNNLSMLYL YNNOLSGSIP 401 ASLGNLNNLS RLYLYNNQLS GSIPEEIGYL SSLTYLDLSN NSINGFIPAS 451 FGNMSNLAFL FLYENQLASS VPEEIGYLRS LNVLDLSENA LNGSIPASFG 501 NLNNLSRLNL VNNQLSGSIP EEIGYLRSLN VLDLSENALN GSIPASFGNL 551 MNLSRLNLVN NQLSGSIPEE IGYLRSLNDL GLSENALNGS IPASLGNLNN 601 LSMLYLYNNO LSGSIPEEIG YLSSLTYLSL GNNSLNGLIP ASFANMRNLO 651 ALILNDNNLI GEIPSSVCNL TSLEVLYMPR NNLKGKVPQC LGNISNLQVL 701 SMSSNSFSGE LPSSISNLTS LQILDFGRNN LEGAIPQCFG NISSLEVFDM 751 QNNKLSGTLP TNFSIGCSLI SLNLHGNELE DEIPRSLDNC KKLQVLDLGD 801 NQLNDTFPMW LGTLPELRVL RLTSNKLHGP IRSSRAEIMF PDLRIIDLSR 851 NAFSQDLPTS LFEHLKGMRT VDKTMEEPSY ESYYDDSVVV VTKGLELEIV 901 RILSLYTVID LSSNKFEGHI PSVLGDLIAI RILNVSHNAL QGYIPSSLGS 951 LSILESLDLS FNQLSGEIPQ QLASLTFLEF LNLSHNYLQG CIPQGPQFRT 1001 FESNSYEGND GLRGYPVSKG CGKDPVSEKN YTVSALEDQE SNSEFFNDFW 1051 KAALMGYGSG LCIGIS<u>I</u>IYI LISTGNLRWL ARIIE<u>E</u>LEHK IIMQRRKKQR 1101 GORNYRRRNN RF*

SEQ ID NO. 8:

1 GGTTTCTAGA AAAGTAGTCT CTTCACTTCA GTTTTTCACT CTTTTCTACC 51 TCTTTACAGT TGCATTTGCT TCGACTGAGG AGGCAACTGC CCTCTTGAAA 101 TGGAAAGCAA CTTTCAAGAA CCAGAATAAT. TCCTTTTTGG CTTCATGGAT 151 TCCAAGTTCT AATGCATGCA AGGACTGGTA TGGAGTTGTA TGCTTTAATG 201 GTAGGGTAAA CACGTTGAAT ATTACAAATG CTAGTGTCAT TGGTACACTC 251 TATGCTTTTC CATTTTCATC CCTCCCTTCT CTTGAAAATC TTGATCTTAG 301 CAAGAACAAT ATCTATGGTA CCATTCCACC TGAGATTGGT AATCTCACAA 351 ATCTTGTCTA TCTTGACTTG AACAACAATC AGATTTCAGG AACAATACCA 401 CCACAAATCG GTTTACTAGC CAAGCTTCAG ATCATCCGCA TATTTCACAA TCAATTAAAT GGATTTATTC CTAAAGAAAT AGGTTACCTA AGGTCTCTTA 451 501 CTAAGCTATC TTTGGGTATC AACTTTCTTA GTGGTTCCAT TCCTGCTTCA 551 GTGGGGAATC TGAACAACTT GTCTTTTTTG TATCTTTACA ATAATCAGCT 601 TTCTGGCTCT ATTCCTGAAG AAATAAGTTA CCTAAGATCT CTTACTGAGC 651 TAGATTTGAG TGATAATGCT CTTAATGGCT CTATTCCTGC TTCATTGGGG 701 AATATGAACA ACTTGTCTTT TTTGTTTCTT TATGGAAATC AGCTTTCTGG

751 CTCTATTCCT GAAGAAATAT GTTACCTAAG ATCTCTTACT TACCTAGATT

801	TGAGTGAGAA	TGCTCTTAAT	GGCTCTATTC	CTGCTTCATT	GGGGAATTTG
851	AACAACTTGT	CTTTTTTGTT	TCTTTATGGA	AATCAGCTTT	CTGGCTCTAT
901	TCCTGAAGAA	ATAGGTTACC	TAAGATCTCT	TAATGTCCTA	GGTTTGAGTG
951	AGAATGCTCT	TAATGGCTCT	ATTCCTGCTT	CATTGGGGAA	TCTGAAAAAC
1001	TTGTCTAGGT	TGAATCTTGT	TAATAATCAG	CTTTCTGGCT	CTATTCCTGC
1051	TTCATTGGGG	AATCTGAACA	ACTTGTCTAT	GTTGTATCTT	TACAATAACC
1101	AGCTTTCTGG	CTCTATTCCT	GCTTCATTGG	GGAATCTGAA	CAACTTGTCT
1151	ATGTTGTATC	TTTACAATAA	TCAGCTTTCT	GGCTCTATTC	CTGCTTCATT
1201	GGGGAATCTG	AACAACTTGT	CTAGGTTGTA	TCTCTACAAT	AATCAGCTTT
1251	CTGGCTCTAT	TCCTGAAGAA	ATAGGTTACT	TGAGTTCTCT	TACTTATCTA
1301	GATTTGAGTA	ATAACTCCAT	TAATGGATTT	ATTCCTGCTT	CATTTGGCAA
1351	TATGAGCAAC	TTGGCTTTTT	TGTTTCTTTA	TGAAAATCAG	CTTGCTAGCT
1401	CTGTTCCTGA	AGAAATAGGT	TACCTAAGGT	CTCTTAATGT	CCTTGATTTG
1451	AGTGAGAATG	CTCTTAATGG	CTCTATTCCT	GCTTCATTCG	GGAATTTGAA
1501	CAACTTGTCT	AGGTTGAATC	TTGTTAATAA	TCAGCTTTCT	GGCTCTATTC
1551	CTGAAGAAAT	AGGTTACCTA	AGGTCTCTTA	ATGTCCTTGA	TTTGAGTGAG
1601	AATGCTCTTA	ATGGCTCTAT	TCCTGCTTCA	TTCGGGAATT	TGAACAACTT
1651	GTCTAGGTTG	AATCTTGTTA	ATAATCAGCT	TTCTGGCTCT	ATTCCTGAAG
1701	AAATAGGTTA	CCTAAGATCT	CTTAATGACC	TAGGTTTGAG	TGAGAATGCT
1751	CTTAATGGCT	CTATTCCTGC	TTCATTGGGG	AATCTGAACA	ACTTGTCTAT
1801	GTTGTATCTT	TACAATAATC	AGCTTTCTGG	CTCTATTCCT	GAAGAAATAG
1851	GTTACTTGAG	TTCTCTTACT	TATCTATCTT	TGGGTAATAA	CTCTCTTAAT
1901	GGACTTATTC	CTGCTTCATT	TGGCAATATG	AGAAATCTGC	AAGCTCTGAT
1951	TCTCAATGAT	AACAATCTCA	TTGGGGAAAT	TCCTTCATCT	GTGTGCAATT
2001	TGACATCACT	GGAAGTGTTG	TATATGCCGA	GAAACAATTT	GAAGGGAAAA
2051	GTTCCGCAAT	GTTTGGGTAA	TATCAGTAAC	CTTCAGGTTT	TGTCGATGTC
2101	ATCTAATAGT	TTCAGTGGAG	AGCTCCCTTC	ATCTATTTCC	AATTTAACAT
2151	CACTACAAAT	ACTTGATTTT	GGCAGAAACA	ATCTGGAGGG	AGCAATACCA
2201	CAATGTTTTG	GCAATATTAG	TAGCCTCGAG	GTTTTTGATA	TGCAGAACAA
2251	CAAACTTTCT	GGGACTCTTC	CAACAAATTT	TAGCATTGGA	TGTTCACTGA
2301	TAAGTCTCAA	CTTGCATGGC	AATGAACTAG	AGGATGAAAT	CCCTCGGTCT
2351	TTGGACAATT	GCAAAAAGCT	GCAAGTTCTT	GATTTAGGAG	ACAATCAACT
2401	CAACGACACA	TTTCCCATGT	GGTTGGGAAC	TTTGCCAGAG	CTGAGAGTTT

TAAGGTTGAC ATCGAATAAA TTGCATGGAC CTATAAGATC ATCAAGGGCT 2451 GAAATCATGT TTCCTGATCT TCGAATCATA GATCTCTCTC GCAATGCATT 2501 CTCGCAAGAC TTACCAACGA GTCTATTTGA ACATTTGAAA GGGATGAGGA 2551 CAGTTGATAA AACAATGGAG GAACCAAGTT ATGAAAGCTA TTACGATGAC 2601 TCGGTGGTAG TTGTGACAAA GGGATTGGAG CTTGAAATTG TGAGAATTTT GTCTTTGTAC ACAGTTATCG ATCTTTCAAG CAACAAATTT GAAGGACATA 2701 TTCCTTCTGT CCTGGGAGAT CTCATTGCGA TCCGTATACT TAATGTATCT 2751 CATAATGCAT TGCAAGGCTA TATACCATCA TCACTTGGAA GTTTATCTAT 2801 2851 ACTGGAATCA CTAGACCTTT CGTTTAACCA ACTTTCAGGA GAGATACCAC AACAACTTGC TTCTCTTACG TTTCTTGAAT TCTTAAATCT CTCCCACAAT 2901 TATCTCCAAG GATGCATCCC TCAAGGACCT CAATTCCGTA CCTTTGAGAG CAATTCATAT GAAGGTAATG ATGGATTACG TGGATATCCA GTTTCAAAAG 3001 GTTGTGGCAA AGATCCTGTG TCAGAGAAAA ACTATACAGT GTCTGCGCTA 3051 GAAGATCAAG AAAGCAATTC TGAATTTTTC AATGATTTTT GGAAAGCAGC 3101 TCTGATGGGC TATGGAAGTG GACTGTGTAT TGGCATATCC ATAATATATA 3151 3201 TCTTGATCTC GACTGGAAAT CTAAGATGGC TTGCAAGAAT CATTGAAGAA CTGGAACACA AAATTATCAT GCAAAGGAGA AAGAAGCAGC GAGGTCAAAG 3251 AAATTACAGA AGAAGAAATA ATCGCTTCTA GACAAGTTAC CAATACCGAA 3301 AGATTTGATT TCAGAACTTC AGACTTTCAG GAGCCAAGAA TAAGAAGACG 3351 CTGGTGTAAA GGATTTGCTT CTTCCTGTGT TGCAGCTTAT GATGTTGGAT 3401 TAGATTTTTA GTTTTATAAG CTTTTCTTCA GTTGGGAAAA TGTAATATTA 3451 TGAATTTGAT GATATACAAT AAATGTTGTG TTTATTGAAA AAAAAAAAA 3501 3551 ΑΑΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑΑ ΑΑΑ

SEQ ID NO. 9:

tatatatett aataatgtaa attgatgaca aagtgattaa atagatgate gtgagagatg aaatcaggta gagttttgtg ttgttgtttc aggaattata 51 cgagtcaagg tacttgaagg ggatggagtt gagaaaatgg ggcgaacgca 101 151 acacaaaag cagagagttt ctagacgcaa ttccacggcc gcttcttgaa 201 ctcgttgata gatgtttgat agttaacccg aggcgacgaa tcagcgcaga 251 ggatgetete aagcacgagt tettetatee agtacatgaa accettagaa accaaatget cettaaacag cagcaaatge aategeagee tacagttgtt 301 gctgacgcac taagcgaaac tttaaactaa ttatacaatt cttaaaaact 351 aaaagagtaa tttagcaaac tagagagtta attttcactt tagcaaacta 401 451 gagagttaat ttaatttagc gaactaatta tattttcact ttagtataca attettagtg ttaatttagt attttcactt atattatttg aattaaaatc 501 ctcataatcg atatacttat tctcctaatc catgtgcatg tatgtattgg gaaacaagac tttgatatta aacaatcata agtacattct tacgataaaa 551 601 tgtcttgtac aaggacaact gacacccaca aaatatgtgt gtttcaaaat 651 atctgtgtag aggaaacgaa tgtaagtttc tgtctaattg cctagaactt gaaatattat ttctgtcttg tacaaagact aagacttatc ataattaagt 701 751 801 gacaaccaca aaaattcaat ctctaaaaat atctttgtat gtagtgtaaa

ď

aaagettteg aggaaagtaa gacgaagttt eteetett teteacacta 851 tgtcttgctg atttacttct cttaaaaatc ttcgtctctt ctctgagttc getetateat eteceATGGC GGCTTCTTCT TCTTCTGGCA GACGGAGATA 951 CGACGTTTTT CCAAGCTTCA GTGGGGTTGA TGTTCGCAAG ACGTTCCTCA 1001 GCCATCTTCT CAAGGCTCTC GACGGCAAAT CAATCAATAC ATTCATCGAT 1051 CATGGAATCG AGAGAAGCCG CACAATCGCC CCTGAGCTTA TATCGGCGAT TAGAGAAGCT AGGATCTCAA TCGTCATCTT CTCTAAGAAC TATGCTTCTT . 1101 1151 CAACGTGGTG CTTAAATGAA TTGGTTGAGA TCCACAAGTG CTTTAATGAT 1201 TTAGGTCAAA TGGTGATTCC AGTTTTCTAC GACGTTGATC CTTCGGAAGT 1251 TAGAAAACAG ACCGGCGAAT TTGGAAAGGT CTTTGAAAAG ACATGCGAGG 1301 TCAGCAAGGA CAAACAACCA GGGGATCAGA AACAAAGATG GGTGCAAGCT 1351 CTCACAGATA TAGCAAATAT AGCCGGAGAG GATCTTCTGA ACGGgtacgt 1401 tgttatgatt ccaatatatc tgcttgcgtt ttcaattgtc tcagaactat 1451 atttttgcat agacttcggt tcttctttta ggggtgcttc ttaattgaca 1501 aaattgactt ttgttattag GCCTAATGAA GCGCATATGG TTGAAAAGAT ATCCAATGAT GTTTCGAATA AACTTATCAC TCGGTCAAAG TGTTTTGATG 1551 1601 1651 ACTTCGTCGG AATTGAAGCT CATATTGAGG CAATAAAATC AGTATTGTGC 1701 TTGGAATCCA AGGAAGCTAG AATGGTCGGG ATTTGGGGAC AGTCAGGGAT TGGTAAGAGT ACCATCGGAA GAGCTCTTTT CAGTCAACTC TCTAGCCAGT 1751 1801 1857 TCAAAAGGAC ATAAAGATAG AGCATTTTGG TGTGGTGGAG CAAAGGTTAA 1901 1951 ATCACAAGAA AGTTCTTATC CTTCTTGATG ATGTGGATAA TCTAGAGTTT CTTAAGACCT TGGTGGGAAA AGCTGAATGG TTTGGATCTG GAAGCAGAAT AATTGTGATC ACTCAAGATA GGCAACTTCT CAAGGCTCAT GAGATTGACC 2001 2051 TTGTATATGA GGTGAAGCTG CCATCTCAAG GTCTTGCTCT TAAGATGATA 2101 TCCCAATATG CTTTTGGGAA AGACTCTCCA CCTGATGATT TTAAGGAACT 2151 AGCATTTGAA GTTGCCGAGC TTGTCGGTAG TCTTCCTTTG GGTCTCAGTG 2201 TCTTGGGTTC ATCTTTAAAA GGAAGGGACA AAGATGAGTG GGTGAAGATG ATGCCTAGGC TTCGAAATGA TTCAGATGAT AAAATTGAGG AAACACTAAG 2251 2301 AGTCGGCTAC GATAGGTTAA ATAAAAAAA TAGAGAGTTA TTTAAGTGCA 2351 TTGCATGTT TTTCAATGGT TTTAAAGTCA GTAACGTCAA AGAATTACTT 2401 GAAGATGATG TTGGGCTTAC AATGTTGGCT GAGAAGTCCC TCATACGTAT 2451 TACACCGGGT GGATATATAG AGATGCACAA TTTGCTAGAG AAATTGGGTA GAGAAATTGA TCGTGCAAAG TCCAAGGGTA ATCCTGGAAA ACGTCAATTT 2501 2551 CTGACGAATT TTGAGGATAT TCGAGAAGTA TTGACCGAGA AAACTgtaag 2601 tttttcgcat ctccttaaac gttgtaatgc atgactttat atcaatataa 2651 tcgtaatttg gggattgata aacttaagca attgttgccc catgcgtaat 2701 taaaacgtag ctttgatgtg tcagaaaaat aaaaagggtt gcgattgtta agattatatt agttttcttc ggatttttt tcagGGGACC GAAACTCTTC TTGGAATACG TTTGCCACAC CCGGGATATC TTACGACAAG GTCGTTCTTA 2751 2801 2851 ATAGATGAAA AATCATTCAA AGGCATGCGT AATCTCCAAT ATCTAGAAAT 2901 TGGTTATTGG TCAGATGGGG TTCTACCTCA GAGCCTCGTT TATTTCCCTC GTAAACTCAA AAGGCTATGG TGGGATAATT GTCCATTGAA GCGTTTGCCT 2951 3001 TCTAATTTTA AGGCTGAGTA TCTGGTTGAA CTCAGAATGG TGAATAGTAA GCTTGAGAAG CTGTGGGATG GAACTCAGGT actaattttt ttagtgatca 3101 atttctaaac ataaaaacta aaaataaaaa tgtttaaaat gttcattaac gtgtgtgctc tctttcccc tatttgttt tcagCCCCTT GGAAGTCTCA AGAAGATGGA TTTGTATAAT TCCTACAAAT TGAAAGAAAT TCCAGATCTT 3151 3201 3251 TCTTTAGCCA TAAACCTCGA GGAATTAAAT CTTGAAGAAT GCGAATCTTT 3301 GGAGACACTT CCTTCCTCGA TTCAGAATGC CATTAAACTG AGGGAGTTAA ATTGTTGGGG GGGGCTATTA ATAGATTTAA AATCATTAGA AGGCATGTGT 3351 3401 AATCTCGAAT ATCTATCAGT TCCTAGTTGG TCAAGTAGGG AATGCACTCA 3451 GGGCATCGTT TATTTCCCTC GTAAACTCAA AAGTGTATTG TGGACTAATT 3501 GTCCATTGAA GCGTTTGCCT TCTAATTTTA AGGCTGAGTA TCTGGTTGAA CTCATAATGG AGTACAGTGA GCTTGAGAAG CTGTGGGATG GTACTCAGgt 3551 3601 actaattcta ttagtgataa taaatatgtt agaaaaacta aaaataaaaa 3651 3701 tgtttaaaat gttcattaac gtgtgtgctc tcttttcccc tattttgtta tcagtcactt ggaagtctca aggagatgaa tttgaggtat tccaacaatt taaaagaaat tccagatctt tctttagcca taaacctcga ggaattagat ctttttggat gcgtatcttt ggtgacactt ccttcctcga ttcagaatgc 3751 3801 3851 CACTAAACTG ATCTATTTAG ATATGAGTGA ATGCGAAAAT CTAGAGAGTT 3901 TTCCAACCGT TTTCAACTTG AAATCTCTCG AGTACCTCGA TCTCACTGGA TGCCCGAATT TGAGAAATTT CCCAGCAATC AAAATGGGAT GTGCCTGGAC TAGATTATCT CGAACAAGAT TGTTTCCGGA AGGGAGAAAT GAGATCGTGG 3951 4001 4051 TAGAAGATTG TTTCTGGAAC AAGAATCTCC CTGCTGGACT AGATTATCTC 4101 GACTGCCTTA TGAGATGTAT GCCTTGTGAA TTTCGCTCAG AACAACTCAC 4151

4201 TTTTCTCAAT GTGAGCGGCT GCAAGCTTGA GAAGCTATGG GAAGGCATCC AGgtacattg ttaatgctat gctgattttt gtttaccttc tgttatataa 4251 ctaattaagt atacccaaat ttgtttttat ggcttgtggt cgatccacgg 4301 4351 ttatgtctta catacataca taataatgtt taattataat tttaaacata tataggtata aaattaaaat gattatcatc gataatgatt gaagcatacc aatgttttt tcagTCGCTT GGAAGTCTCG AAGAGATGGA TCTGTCAGAA 4401 4451 TCTGAAAACC TGAAAGAACT TCCAGATCTT TCAAAGGCCA CCAATCTGAA 4501 4551 GCTTTTATGT CTCAGCGGGT GCAAAAGTTT GGTGACACTT CCTTCTACAA TTGGGAATCT TCAAAATTTG AGACGTTTGT ACATGAACAG ATGCACAGGG CTGGAGGTTC TTCCGACCGA TGTCAACTTG TCATCTCTCG AAACCCTCGA TCTCAGTGGT TGCTCAAGTT TGAGAACTTT TCCTCTGATT TCAACTAATA 4601 4651 4701 TTGTATGTCT CTATCTGGAA AACACCGCCA TTGAAGAAAT TCCAGATCTT 4751 4801 TCAAAGGCCA CCAAGCTCGA GTCTTTGATA CTCAACAACT GCAAAAGTTT GGTGACACTT CCTTCTACAA TTGGGAATCT TCAAAATTTG AGACGTTTGT ACATGAACAG ATGCACAGGG CTGGAGCTTC TTCCGACCGA TGTCAACTTG TCATCTCTCG AAACCCTCGA TCTCAGTGGT TGCTCAAGTT TGAGAACTTT 4851 4901 4951 5001 TCCTCTGATT TCAACTAGAA TCGAATGTCT CTATCTAGAA AACACCGCCA 5051 TTGAAGAAGT TCCCTGCTGC ATTGAGGATT TCACGAGGCT CACTGTACTA CGGATGTATT GTTGCCAGAG GTTGAAAAAC ATCTCCCCAA ACATTTTCAG 5101 5151 ACTGACTAGT CTTACGCTCG CCGACTTTAC AGACTGTAGA GGTGTCATCA AGGCGTTGAG TGATGCAACT GTGGTAGCGA CAATGGAAGA TCACGTTTCT 5201 TGTGTACCAT TATCTGAAAA CATTGAATAT ACATGTGAAC GTTTCTGGGA 5251 5301 TGCGTGTTCT GATTATTACT CTGATGACTT TGAGGTAAAT CGGAACCCAA TTAGATTGTC AACGATGACT GTCAACGATG TGGAGTTTAA GTTTTGTTGC 5351 TCCATTACGA TCAAAGAATG CGGTGTACGA CTCTTGTATG TCTATCAAGA 5401 5451 AACAGAGCAC AACCAACAAA CTACGAGAAG CAAGAAGCGG ATGCGGGTAA 5501 GCCTTTTGCC Ataattagag ctgaaacttg taaagcaatc ttttgacttg atttgtttta taggatcaaa ataccatagc gacagactat ttgatagaat 5551 cgatcgtttg atatataatg cagatgacat cgggggacatc tgaagaagat 5601 5651 atcaacttac cctatggcca aattgtagcg gacacaggat tggccgctct aaatacagag ctttcgttag ggcagggaga agcatcatca tcaacatctc 5701 5751 tagaggggga agctttgtgt gttgatgatt acatgataaa tgaagaacaa 5801 gatgaacaaa tacctatctt gtatcctgtt tatggtaact gaagcatctt tatcattctg ttttgctctt ttttaggata acttgggatc gaccattatt 5851 ataaatttat aatgataatg acaaaacgat ttcataggtt ttgacttttg 5901 acacaageca ttttttctgc agatatagac gatgatatgt ggagatcatt 5951

SEQ ID NO. 10:

MAASSSSGRR RYDVFPSFSG VDVRKTFLSH LLKALDGKSI NTFIDHGIER SRTIAPELIS AIREARISIV IFSKNYASST WCLNELVEIH KCFNDLGQMV 51 IPVFYDVDPS EVRKQTGEFG KVFEKTCEVS KDKQPGDQKQ RWVQALTDIA 101 NIAGEDLLNG PNEAHMVEKI SNDVSNKLIT RSKCFDDFVG IEAHIEAIKS 151 VLCLESKEAR MVGIWGQSGI GKSTIGRALF SQLSSQFHHR AFLTYKSTSG 201 SDVSGMKLSW QKELLSEILG QKDIKIEHFG VVEQRLNHKK VLILLDDVDN 251 301 LEFLKTLVGK AEWFGSGSRI IVITQDRQLL KAHEIDLVYE VKLPSQGLAL 351 KMISQYAFGK DSPPDDFKEL AFEVAELVGS LPLGLSVLGS SLKGRDKDEW 401 VKMMPRLRND SDDKIEETLR VGYDRLNKKN RELFKCIACF FNGFKVSNVK 451 ELLEDDVGLT MLAEKSLIRI TPGGYIEMHN LLEKLGREID RAKSKGNPGK 501 RQFLTNFEDI REVLTEKTGT ETLLGIRLPH PGYLTTRSFL IDEKSFKGMR 551 NLQYLEIGYW SDGVLPQSLV YFPRKLKRLW WDNCPLKRLP SNFKAEYLVE LRMVNSKLEK LWDGTQPLGS LKKMDLYNSY KLKEIPDLSL AINLEELNLE 601 651 ECESLETLPS SIQNAIKLRE LNCWGGLLID LKSLEGMCNL EYLSVPSWSS

701	RECTQGIVYF	PRKLKSVLWT	NCPLKRLPSN	FKAEYLVELI	MEYSELEKLW
751	DGTQSLGSLK	EMNLRYSNNL	KEIPDLSLAI	NLEELDLFGC	VSLVTLPSSI
801	QNATKLIYLD	MSECENLESF	PTVFNLKSLE	YLDLTGCPNL	RNFPAIKMGC
851	AWTRLSRTRL	FPEGRNEIVV	EDCFWNKNLP	AGLDYLDCLM	RCMPCEFRSE
901	QLTFLNVSGC	KLEKLWEGIQ	SLGSLEEMDL	SESENLKELP	DLSKATNLKL
951	LCLSGCKSLV	TLPSTIGNLQ	NLRRLYMNRC	TGLEVLPTDV	NLSSLETLDL
1001	SGCSSLRTFP	LISTNIVCLY	LENTAIEEIP	DLSKATKLES	LILNNCKSLV
1051	TLPSTIGNLQ	NLRRLYMNRC	TGLELLPTDV	NLSSLETLDL	SGCSSLRTFP
1101	LISTRIECLY	LENTAIEEVP	CCIEDFTRLT	VLRMYCCQRL	KNISPNIFRL
1151	TSLTLADFTD	CRGVIKALSD	ATVVATMEDH	VSCVPLSENI	EYTCERFWDA
1201	CSDYYSDDFE	VNRNPIRLST	MTVNDVEFKF	CCSITIKECG	VRLLYVYQET
1251	EHNQQTTRSK	KRMRVSLLP			

SEQ ID No.11:

1	GACCAAACTG	GACTCCTGCT	CCGTCTTCCA	TCAGCAGGTC	AATTCTCGTG
51	GAAAATTAGC	TCGAGGTGGC	GCACTATGTG	AGGTAGCTAG	TACTAAATGI
101	TTATTTGCGT	AATTTGTGCT	ATATATACCT	CATCTAAATT	ATTGAATAGA
151	CACACAAAGC	AAACATCTCT	TAATTAGTTT	TGATCATTTT	TAGTGCAGAA
201	ATGGGTTGTG	TAAAACTTGT	GTTTTTCATG	CTATATGTCT	TTCTCTTTCA
251	ACTTGTTTCC	TCGTCATCCT	TACCTCATTT	GTGCCCCGAA	GATCAAGCTC
301	TTGCTCTTCT	AGAATTCAAG	AACATGTTTA	CCGTTAATCC	TAATGCTTCT
351	GATTATTGTT	ACGACAGAAG	AACTCTTTCT	TGGAACAAAA	GCACAAGTTG
401	CTGCTCATGG	GATGGCGTTC	ATTGTGACGA	AACGACAGGA	CAAGTGATTG
451	AGCTTGACCT	CCGTTGCATC	CAACTTCAAG	GCAAGTTTCA	TTCCAATAGI
501	AGCCTCTTTC	AACTCTCCAA	TCTCAAAAGG	CTTGATTTGT	CTTATAATGA
551	TTTCACTGGA	TCGCCCATTT	CACCTAAATT	TGGTGAGTTT	TCAGATTTGA
601	CGCATCTCGA	TTTGTCGCAT	TCAAGTTTTA	GGGGTGTAAT	CCCTTCTGAA
651	ATCTCTCATC	TTTCTAAACT	ATACGTTCTT	CGTATTÄGTC	TAAATGAGCT
701	TACTTTTGGT	CCTCACAATT	TTGAATTGCT	TCTTAAGAAC	TTGACCCAAT
751	TAAAAGTGCT	CGACCTTGAA	TCTATCAACA	TCTCTTCCAC	TATTCCTTTC
801	AATTTCTCTT	CTCATTTAAC	AAATCTATGG	CTTCCATACA	CAGAGTTACG
851	TGGGATATTG	CCCGAAAGAG	TTTTCCACCT	TTCCGACTTA	GAATTTCTCG
901	ATTTATCAAG	CAATCCCCAG	CTCACGGTTA	GGTTTCCCAC	AACCAAATGG
951	AATAGCAGTG	CATCACTCAT	GAAGTTATAT	CTCTATAATG	TGAATATTGA

1001	IGATAGGATA	CCIGAAICAI	TTAGCCATCT	AACTTCACTT	CATAAGTTG
1051	ACATGAGTCG	TTCTAATCTG	TCAGGGCCTA	TTCCTAAACC	TCTATGGAAT
1101	CTCACCAACA	TAGTGTTTTT	GGACCTTAAT	AATAACCATC	TTGAAGGAC
1151	AATTCCATCC	AACGTAAGCG	GACTACGTAA	CCTACAAATA	CTTTGGTTGT
1201	CATCAAACAA	CTTAAATGGG	AGTATACCAT	CCTGGATATT	CTCCCTTCC
1251	TCACTGATAG	GGTTAGACTT	GAGCAATAAC	ACTTTCAGTG	GAAAAATTCA
1301	AGAGTTCAAG	TCCAAAACAT	TAAGTACCGT	TACTCTAAAA	CAAAATAAGO
1351	TAAAAGGTCC	TATTCCGAAT	TCACTCCTAA	ACCAGAAGAA	CCTACAATTC
1401	CTTCTCCTTT	CACACAATAA	TATCAGTGGA	CATATITCTT	CAGCTATCT
1451	CAATCTGAAA	ACATTGATAT	TGTTAGACTT	GGGAAGTAAT	AATTTGGAGG
1501	GAACAATCCC	GCAATGCGTG	GTTGAGAGGA	ACGAATACCT	TTCGCATTTG
1551	GATTTGAGCA	ACAACAGACT	TAGTGGGACA	ATCAATACAA	CTTTTAGTGT
1601	TGGAAACATT	TTAAGGGTCA	TTAGCTTGCA	CGGGAATAAG	CTAACGGGGA
1651	AAGTCCCACG	ATCTATGATC	AATTGCAAGT	ATTTGACACT	ACTTGATCTA
1701	GGTAACAATA	TGTTGAATGA	CACATTTCCA	AACTGGTTGG	GATACCTATT
1751	TCAATTGAAG	ATTTTAAGCT	TGAGATCAAA	TAAGTTGCAT	GGTCCCATCA
1801	AATCTTCAGG	GAATACAAAC	TTGTTTATGG	GTCTTCAAAT	TCTTGATCTA
1851	TCATCTAATG	GATTTAGTGG	GAATTTACCC	GAAAGAATTT	TGGGGAATTT
1901	GCAAACCATG	AAGGAAATTG	ATGAGAGTAC	AGGATTCCCA	GAGTATATTT
1951	CTGATCCATA	TGATATTTAT	TACAATTATT	TGACGACAAT	TTCTACAAAG
2001	GGACAAGATT	ATGATTCTGT	TCGAATTTTG	GATTCTAACA	TGATTATCAA
2051	TCTCTCAAAG	AACAGATTTG	AAGGTCATAT	TCCAAGCATT	ATTGGAGATC
2101	TTGTTGGACT	TCGTACGTTG	AACTTGTCTC	ACAATGTCTT	GGAAGGTCAT
2151	ATACCGGCAT	CATTTCAAAA	TTTATCAGTA	CTCGAATCAT	TGGATCTCTC
2201	ATCTAATAAA	ATCAGCGGAG	AAATTCCGCA	GCAGCTTGCA	TCCCTCACAT
2251	TCCTTGAAGT	CTTAAATCTC	TCTCACAATC	ATCTTGTTGG	ATGCATCCCC
2301	AAAGGAAAAC	AATTTGATTC	GTTCGGGAAC	ACTTCGTACC	AAGGGAATGA
2351	TGGGTTACGC	GGATTTCCAC	TCTCAAAACT	TTGTGGTGGT	GAAGATCAAG
2401	TGACAACTCC	AGCTGAGCTA	GATCAAGAAG	AGGAGGAAGA	AGATTCACCA
2451	ATGATCAGTT	GGCAGGGGGT	TCTCGTGGGT	TACGGTTGTG	GACTTGTTAT
2501	TGGACTGTCC	GTAATATACA	TAATGTGGTC	AACTCAATAT	CCAGCATGGT
2551	TTTCGAGGAT	GGATTTAAAG	TTGGAACACA	TAATTACTAC	GAAAATGAAA
2601	AAGCACAAGA	AAAGATATTA	GTGAGTAGCT	ATACCTCCAG	GTATTCCACT
2651	TGATCATTAT	CTTTCAGAAG	ATTATTTTTT	GTATATCGAT	GAAATTATCG

2701	ACCTCCTTCA	TCCTCAAAGC	TCTTAACTTT	CACTCTTCAT	TTTTGAAAAT
2751	TTCAGGATTC	AAAGATTTCC	GAGTTCCCAG	TTGCTTGGGA	TGCAGATAAA
2801	AGCCTTTTTA	TCTTTCATAG	TTTCTTATCC	TATGAATAAA	GATTTTATTT
2851	TCATTTGTCT	ATGGCACGTA	GATATGTTCC	GTCACTAAAA	ACATTGTATT
2901	TCTCTCAACT	CTTTCGTCAC	ATGATATCAA	AGAACACTTG	ACTTCAATTA
2951	AGTTACTGTA	GTCTGCTATT	TTAATTTCTT	CCATTGAAAC	ACAACTGACG
3001	TATCTTGAGA	AAGAGACTAT	GATCTCAGAA	ATGGGAATCT	CCCAATCCAA

SEQ ID No. 12:

_	MOCVICIONE	DIALPEODAS	SSSLPHLCPE	DOALALLEFK	NMFTVNPNAS
51	DYCYDRRTLS	WNKSTSCCSW	DGVHCDETTG	QVIELDLRCI	QLQGKFHSNS
101	SLFQLSNLKR	LDLSYNDFTG	SPISPKFGEF	SDLTHLDLSH	SSFRGVIPSE
151	ISHLSKLYVL	RISLNELTFG	PHNFELLLKN	LTQLKVLDLE	SINISSTIPL
201	NFSSHLTNLW	LPYTELRGIL	PERVFHLSDL	EFLDLSSNPQ	LTVRFPTTKW
251	NSSASLMKLY	LYNVNIDDRI	PESFSHLTSL	HKLYMSRSNL	SGPIPKPLWN
301	LTNIVFLDLN	NNHLEGPIPS	NVSGLRNLQI	LWLSSNNLNG	SIPSWIFSLP
351	SLIGLDLSNN	TFSGKIQEFK	SKTLSTVTLK	QNKLKGPIPN	SLLNQKNLQF
401	LLLSHNNISG	HISSAICNLK	TLILLDLGSN	NLEGTIPQCV	VERNEYLSHL
451	DLSNNRLSGT	INTTFSVGNI	LRVISLHGNK	LTGKVPRSMI	NCKYLTLLDL
501	GNNMLNDTFP	NWLGYLFQLK	ILSLRSNKLH	GPIKSSGNTN	LFMGLQILDL
551	SSNGFSGNLP	ERILGNLQTM	KEIDESTGFP	EYISDPYDIY	YNYLTTISTK
601	GQDYDSVRIL	DSNMIINLSK	NRFEGHIPSI	IGDLVGLRTL	NLSHNVLEGH
651	IPASFQNLSV	LESLDLSSNK	ISGEIPQQLA	SLTFLEVLNL	SHNHLVGCIP
701	KGKQFDSFGN	TSYQGNDGLR	GFPLSKLCGG	EDQVTTPAEL	DQEEEEEDSP
751	MISWQGVLVG	YGCGLVIGLS	VIYIMWSTQY	PAWFSRMDLK	LEHIITTKMK
001	VUVVDV				

_	<u>ŸŢĊĠŸĨĠĠĠŸĨŢĬĠŨŢĊĨĊĨŢŦŢĊŶĊŶŸŢŢĠĊĊĨŢĊŸŢŢŢĊŢŨĊĨĠĨĊĨĊŢĄĊ</u> ŶĊŢĨĊ									TCT											
1		ATD								+				+			-+-			+	60
		M	G	F	v	L	F	s	Q	L	P	S	F	L	L	v	s	T	L	L	
61		TTA		+	'AAT		+-			CCG										4	120
	GAA	AAT.	GGA	TCA	ATT.	TAG	GGI	GAC	AAC	:GGC	ACG	GTT	TCG	GGG	GTT	TTG	AGT	TGG	TAT	GTT	120
	L	F	L	V	I	S	H	S	С	R	A	ĸ	A	P	ĸ	T	Q	P	Y	N	
121	CCC	ATG	CAA	GCC	CCA	AGA				CAC			TAT	GGG	TCC	CAA	GGA	TTG	TCT	CTA	7.00
	GGG	TAC	GTT	CGG	GGT	TCI							ATA	.ccc	AGG	GTT	CCT	AAC	AGA	GAT	180
	Þ	С	ĸ	P	Q	E	v	I	D	T	K	C	M	G	P	ĸ	a	C	L	Y	
181	CCC	GAA	ccc	CGA	CAG	TTG	TAC	:AAC	CTA	CAI	'ACA	GTG	TGT	ACC	GCT	CGA	CGA	AGT	TGG	CAA	
TOT	GGG	CTT	GGG	GCT	GTC	AAC				GTA			ACA	TGG	CGA	CCT	-+- GCT	TCA	ACC	+ GTT	240
	P	N	P	D	S	C	T	T	Y	I	Q	С	v	P	L	D	E	v	G	N	
241	TGC	GAA	GCC	TGT	GGT	TAA	œcc	ATC	TCC	AAA	AGG	ACT	GCA	GTG	GAA	CGA	TAA	CGT	TGG	CAA	200
	ACG	CTT	CGG	ACA	CCA	ATT	ccc	TAC	AGC	TTŢ	TCC	TGA	CGT	CAC	CŢŢ	GCT	ATT	GCA	ACC	GTT	300
	A	K	P	v	V	K	P	C	P	K	G	L	Q	W	N	D	N	v	G	ĸ	
301	GAA	GTG	GTG	CGA	CTA	TCC	AAA	CCI	GAG	TAC	GTG	TCC	GGT	AAA	GAC	GCC	GCA	ACC	GAA	GCC	
301	CTT	CAC	CAC	GCT	GAT	AGG	TTI	'GGA	CTC	ATC	CAC	AGG	CCA	TTT	CTG	 CGG	-+- CGT	TGG	CTT	CGG	360
	K	W	C	D	Y	₽	Ŋ	L	s	T	C	P	v	ĸ	T	P	Q	P	ĸ	P	
361	GAA	GAA	GGG	AGG	TGT	CGG	AGG	GAA	GAA	LGGC	GTC	GGT	TGG	ACA	TCC	TGG	CTA'	TIG.	agt	CGG	
JU1	CTT	CTT	ccc	TCC	ACA	.GCC	TCC	CTI	CTI	ccc	CAG	CCA	ACC	TGT	AGG	ACC	GAT.	AAC	TCA	GCC	420
	ĸ	ĸ	G	G	v	G	G	ĸ	K	A	s	v	G	H	P	G	Y		•		
421	ACA	AGA	AAG	GGG	ATG	GCI	GTA	ACA	GTI	CTG	GTA	.CCA	GAG	CTA	TCG	TGC	TAG	GGG.	ATC	CGT	
~ ~ ~	TGT	TCT	TTC	ČCC	TAC	CGA	CAI	TGI	CAA	GAC	CAT	GGT	CTC	GAT	AGC	ACG	ATC	CCC	TAG	GCA	480

481 ----

5

CLAIMS:

- 1. A method of providing increased pathogen resistance in a plant, or a part or propagule of a plant, by induction of variegation in which a gene is expressed or suppressed in cells resulting in the activation of a plant defence response, which comprises:
- (i) inactivating a nucleotide sequence which contributes to a plant defence response or inactivating
 10 one or more nucleotide sequences forming a part of a combination of nucleotide sequences which contributes to a plant defence response;
 - (ii) introducing said nucleotide sequence or sequences into the genome of a plant; and
- 15 (iii) restoring said nucleotide sequence or sequences
 to a functional form in cells of the plant or a
 descendant thereof, or a part or propagule of the plant
 or descendant, to result in increased pathogen
 resistance.
- 20 2. A method of providing increased pathogen resistance in a plant, or a part or propagule thereof, by induction of variegation in which a gene is expressed or suppressed resulting in necrosis, which comprises:
- 25 (i) inactivating a nucleotide sequence which contributes to necrosis or inactivating one or more nucleotide sequences forming part of a combination of

95

nucleotide sequences which contributes to necrosis;

(ii) introducing said nucleotide sequence or

sequences into the genome of a plant; and

(iii) restoring said inactivated nucleotide sequence or

sequences to a functional form in cells of the plant or

a descendant thereof, or a part or propagule of the

plant or descendant, to result in necrosis.

- 3. A method according to claim 1 or claim 2 wherein said nucleotide sequence encodes or sequences encode a substance or a combination of substances which result in increased pathogen resistance.
- 4. A method according to any one of the preceding claims wherein said nucleotide sequence or sequences comprises a gene and activation of the plant defence response and/or necrosis due to the expression of said nucleotide sequence or sequences is not dependent on the expression of any other gene comprised in said nucleotide sequence or sequences.
- 5. A method according to any one of claims 1 to 3

 20 wherein said nucleotide sequence or combination of nucleotide sequences comprises one or more genes and wherein activation of the plant defence response and/or necrosis due to the expression of said nucleotide sequence or sequences is conditional on the expression of one or more interacting genes.

5

10

PCT/GB95/01075

- 6. A method according to claim 5 wherein said nucleotide sequences encodes or nucleotide sequences encode one or more substances which are or together are capable of inducing the plant defence response and/or necrosis, and at least one of said nucleotide sequences is inactivated in step (i).
- 7. A method according to claim 6 wherein said nucleotide sequence comprises a plant pathogen resistance gene (R) or a mutant, variant or derivative thereof, or a pathogen avirulence gene (Avr) or a mutant, variant or derivative thereof, or another R gene elicitor (E), or both (i) an R gene or a mutant, variant, or derivative thereof and (ii) a corresponding Avr gene, or a mutant, variant or derivative thereof, or another R gene elicitor (E).
 - 8. A method according to claim 7 wherein said plant pathogen resistance gene (R) is a tomato Cf-9 gene or a mutant, variant, derivative or homologue thereof and the avirulence gene is a Cladosporium fulvum Avr-9 gene or a mutant, variant, derivative or homologue thereof, or encodes another Cf-9 elicitor.
 - 9. A method according to claim 7 wherein said plant pathogen resistance gene (R) is a tomato Cf-2 gene or a mutant, variant, derivative or homologue thereof and the avirulence gene is a Cladosporium fulvum Avr-2 gene

25

or a mutant, variant, derivative or homologue thereof, or encodes another Cf-2 elictor; or wherein said plant pathogene resistance gene (R) is a tomato Cf-4 gene or a mutant, variant, derivative or homologue thereof and the avirulence gene is a Cladosporium fulvum Avr-4 gene or a mutant, variant, derivative or homologue thereof, or encodes another Cf-4 elictor; or wherein said plant pathogen resistance gene (R) is the tobacco N' gene or a mutant, variant, derivative or homologue thereof, and the avirulence gene is a suitable Tobacco Mosaic Virus coat protein, or a mutant, variant, derivative or homologue thereof or encodes another N' elicitor; or wherein said plant pathogen resistance gene (R) is the potato Rx gene or a mutant, variant, derivative or homologue thereof and the avirulence gene is a suitable PVX coat protein or a mutant, variant, derivative or homologue thereof or another Rx elicitor; or wherein said plant pathogen resistance gene is another viral resistance gene and the avirulence gene encodes a corresponding viral coat protein or other elicitor of the viral resistance gene.

10. A method according to claim 5 wherein said nucleotide sequence encodes a Cauliflower Mosaic Virus gene VI protein, a bacterial harpin gene protein, an Arabidopsis RPP5 gene protein, a ubiquitin conjugating enzyme, an RNase such as Barnase, a mutant, variant, derivative or homologue of any of these, or other toxic

5

10

15

polypeptide or peptide such as diphtheria toxin or a mutant, variant, derivative or homologue thereof.

- 11. A method according to claim 4 in which the plant defence response or necrosis is dependent on the expression from a nucleotide sequence leading to the reduction of expression of a gene that negatively regulates the plant defence response, resulting in the plant defence response and/or necrosis.
- 12. A method according to claim 4 in which the plant

 10 defence response or necrosis is dependent on the

 expression of an allele of a gene from a nucleotide

 sequence which activates the plant defence response in

 the absence of a ligand that is capable of interacting

 with the product of said gene, resulting in the plant

 15 defence response and/or necrosis.
 - 13. A method according to claim 5 in which the plant defence response or necrosis is dependent on the expression of a mutant allele of a gene from a nucleotide sequence which is capable of activating the plant defence response and the expression of an enfeebled negative regulator of the defence response, leading to the plant defence response and/or necrosis.
 - 14. A method according to any of the preceding claims wherein the inactivation of said nucleotide sequence or

PCT/GB95/01075

WO 95/31564

of one or more of said nucleotide sequences is effected by the insertion therein of a transposable genetic element.

- 15. A method according to claim 14 wherein said
 transposable genetic element is a transposon or a
 nucleotide sequence bordered by specific nucleotide
 sequences that can be recognised by a site specific
 recombination system.
- 16. A method according to any of the preceding claims

 wherein said plant genome comprises at least one
 nucleotide sequence encoding a substance capable of
 restoring said inactivated nucleotide sequence or
 sequences to a functional form to result in increased
 pathogen resistance.
- 15 17. A method according to claim 16 which comprises restoring said inactivated nucleotide sequence or sequences to a functional form by excision or rearrangement of said transposable genetic element.
- 18. A method according to claim 17 wherein when said
 20 transposable element is a transposon, said plant genome
 comprises at least one nucleotide sequence coding for a
 corresponding transposon activation system to effect
 somatic excision of said transposon.

100

- 19. A method according to claim 18 wherein the genes encoding the transposon and transposase are derived from the Activator/Dissociation transposable element family (Ac/Ds) or from the Enhancer/Suppressor mutator transposon family (En/Spm).
- 20. A method according to claim 17 wherein when said inactive form of said nucleotide sequence or sequences is flanked by recombinase recognition sequences, said recombinase recognition sequences are acted on by a site specific recombination system which comprises a specific recombinase to result in recombination.
 - 21. A transgenic plant, or descendant thereof, or part or propagule of the plant or descendant, obtainable using a method of any of the preceding claims with increased pathogen resistance compared with wild-type.
- 22. A plant, or a descendant thereof, or a part or propagule of the plant or descendant, or a derivative of any of these, which is phenotypically variegated, comprising a cell or clone expressing a first phenotype and other cells expressing a second phenotype comprising increased pathogen resistance compared with wild-type.
 - 23. A plant, descendant, derivative, part or

5

101

propagule according to claim 22 wherein the first phenotype is necrosis and/or a plant defence response phenotype.

- 24. A plant, descendant, derivative, part or

 5 propagule according to claim 22 or claim 23 wherein the phenotypic variegation results from expression in cells with the first phenotype from a nucleotide sequence or sequences which contribute to such phenotype, said expression from said nucleotide sequence or sequences

 10 being inactivated in cells not having said first phenotype.
- 25. A plant, descendant, derivative, part or propagule according to claim 24 wherein said expression results from reactivation of a previously inactivated 15 gene.
- 26. A plant, descendant, derivative, part or propagule according to claim 24 or claim 25 wherein said inactivation results from insertion of a transposable genetic element into said nucleotide
 20 sequence or one or more of said nucleotide sequences.
 - 27. A plant, descendant, derivative, part or propagule according to any one of claims 24 to 26, wherein said nucleotide sequence or sequences comprises: a gene (R) which is a plant pathogen

resistance gene or a mutant, variant or derivative thereof; or a gene (L) which is a pathogen avirulence gene (Avr) or a mutant, variant or derivative thereof, or another elicitor or ligand gene the product of which can interact with the product of a R-gene; or both an R gene and an L gene.

- 28. A plant, descendant, derivative, part or propagule according to claim 27 wherein the R gene is a tomato Cf-9 gene or a mutant, variant, derivative or homologue thereof and the L gene is a Cladosporium fulvum Avr-9 gene or a mutant, variant, derivative or homologue thereof, or encodes another Cf-9 elicitor.
 - 29. A plant, descendant, derivative, part or propagule according to claim 27 wherein said R gene is:
- 15 (i) a pathogen resistance gene from tomato;
 - (ii) a pathogen resistance gene from tobacco;
 - (iii) a pathogen resistance gene from potato;
 - (iv) a pathogen resistance gene from Arabidopsis;
 - (v) a pathogen resistance gene from flax;
- - (vii) a nucleotide sequence encoding a bacterial
 harpin gene protein;
- (viii) a nucleotide sequence encoding a ubiquitin
 conjugating enzyme;
 - (ix) a nucleotide sequence encoding an RNase;

- (x) a nucleotide sequence encoding a toxic peptide;
- (xi) a mutant, variant, derivative or homologue of
 any of (i) to (x);
- 30. A plant, descendant, derivative, part or
 propagule according to claim 29 wherein said pathogen
 resistance gene from tomato is selected from
 Cladosporium fulvum resistance genes including Cf-2,
 Cf-4, Cf-5 and Cf-9; said pathogen resistance gene from
 tobacco is N'; said pathogen resistance gene from
 potato is Nx; said pathogen resistance gene from
- potato is Nx; said pathogen resistance gene from

 Arabidopsis is RPP5 or RP52; said pathogen resistance

 gene from flax is L6; said RNase is Barnase; or said

 toxic peptide is diphtheria toxin.
- 31. A plant, descendant, derivative, part or
 15 propagule according to claim 27 wherein said L gene is:
 - a Cladosporium fulvum avirulence gene or another elicitor of a resistance gene for a Cladosporium fulvum avirulence gene;
- (ii) a suitable TMV coat protein or another N'
 20 elicitor;
 - (iii) a suitable PVX coat protein or another Rx
 elicitor; or
 - (iv) a mutant, variant, derivative or homologue of any
 of (i) to (iii).
- 25 32. A plant, descendant, derivative, part or

104

propagule according to claim 31 wherein said

Cladosporium fulvum avirulence gene is Avr2, Avr4, Avr5

or Avr9.

- 33. A cell containing (i) nucleic acid encoding one
 5 or more than one nucleotide sequence which causes or
 contributes to the plant defence response and/or cell
 necrosis, at least one said nucleotide sequence being
 reversibly inactivated and (ii) nucleic acid encoding a
 molecule or molecules able to reverse the inactivation.
- 10 34. A cell according to claim 33 wherein the inactivation results from insertion of a transposable genetic element into one or more of said nucleotide sequences.
- 35. A cell according to claim 34 wherein said
 transposable genetic element is a transposon and said
 molecule or molecules provide a corresponding
 transposon activation system to effect excision of said
 transposon.
- 36. A cell according to any one of claims 33 to 35

 wherein said nucleotide sequence or sequences
 comprises: a gene (R) which is a plant pathogen
 resistance gene or a mutant, variant or derivative
 thereof; or a gene (L) which is a pathogen avirulence
 gene (Avr) or a mutant, variant or derivative thereof,

105

or another elicitor or ligand gene the product of which can interact with the product of a R-gene; or both an R gene and an L gene.

- 37. A cell according to claim 36 wherein the R gene is a tomato Cf-9 gene or a mutant, variant, derivative or homologue thereof and the L gene is a Cladosporium fulvum Avr-9 gene or a mutant, variant, derivative or homologue thereof, or encodes another Cf-9 elicitor.
- 38. A cell according to claim 37 wherein said R gene 10 is:
 - (i) a pathogen resistance gene from tomato;
 - (ii) a pathogen resistance gene from tobacco;
 - (iii) a pathogen resistance gene from potato;
 - (iv) a pathogen resistance gene from Arabidopsis;
- 15 (v) a pathogen resistance gene from flax;
 - (vi) a nucleotide sequence encoding a CaMV gene VI
 protein;
 - (vii) a nucleotide sequence encoding a bacterial
 harpin gene protein;
- 20 (viii) a nucleotide sequence encoding a ubiquitin conjugating enzyme;
 - (ix) a nucleotide sequence encoding an RNase;
 - (x) a nucleotide sequence encoding a toxic peptide;
 - (xi) a mutant, variant, derivative or homologue of
- 25 any of (i) to (x);

- 39. A cell according to claim 38 wherein said pathogen resistance gene from tomato is selected from Cladosporium fulvum resistance genes including Cf-2, Cf-4, Cf-5 and Cf-9; said pathogen resistance gene from tobacco is N'; said pathogen resistance gene from potato is Nx; said pathogen resistance gene from Arabidopsis is RPP5 or RP52; said pathogen resistance gene from flax is L6; said RNase is Barnase; or said toxic peptide is diphtheria toxin.
- 10 40. A cell according to claim 36 wherein said L gene is:
 - (i) a Cladosporium fulvum avirulence gene or another elicitor of a resistance gene for a Cladosporium fulvum avirulence gene;
- 15 (ii) a suitable TMV coat protein or another N' elicitor;
 - (iii) a suitable PVX coat protein or another Rx
 elicitor; or
- (iv) a mutant, variant, derivative or homologue of any
 of (i) to (iii).
 - 41. A cell according to claim 40 wherein said Cladosporium fulvum avirulence gene is Avr2, Avr4, Avr5 or Avr9.
- 42. A cell according to any one of claims 33 to 41 which is a microbial cell.

107

- 43. A cell according to any one of claims 33 to 41 which is a plant cell.
- 44. A plant or any part or propagule or derivative thereof comprising a cell according to claim 43.
- 5 45. A plant, part, propagule or derivative according to claim 44 which is variegated for cells wherein said nucleotide sequence is inactivated or activated.
- 46. A method of producing a cell according to any one of claims 33 to 45 comprising introduction of nucleic acid (i) and/or (ii) into the cell or an ancestor thereof.
 - 47. A composition of matter comprising any of the following combinations of nucleotide sequences:
 - (i) a nucleotide sequence comprising R, a nucleotide sequence comprising I and a nucleotide sequence comprising A;
 - (ii) a nucleotide sequence comprising R, and a nucleotide sequence comprising I and A;
 - (iii) a nucleotide sequence comprising I, and a
- 20 nucleotide sequence comprising A and R;
 - (iv) a nucleotide sequence comprising A, and a nucleotide sequence comprising R and I; and
 - (v) a nucleotide sequence comprising R, I and A;
 wherein R encodes a substance whose presence in a plant

results in a plant defence response, necrosis and/or increased pathogen resistance, I is a genetic insert able to inactivate R and A encodes a substance able to reactivate R inactivated by I.

- 5 48. A composition of matter comprising any of the following combinations of nucleotide sequences:
 - (i) a nucleotide sequence comprising R, a nucleotidesequence comprising L, a nucleotide sequence comprisingI, and a nucleotide sequence comprising A;
- (ii) a nucleotide sequence comprising R, a nucleotide sequence comprising L and I, and a nucleotide sequence comprising (A);
 - (iii) a nucleotide sequence comprising R, a nucleotide sequence comprising L and A, and a nucleotide sequence comprising I;
 - (iv) a nucleotide sequence comprising R, a nucleotide sequence comprising I and A, and a nucleotide sequence comprising L;
- (v) a nucleotide sequence comprising L, a nucleotidesequence comprising I and R, and a nucleotide sequencecomprising A;
 - (vi) a nucleotide sequence comprising L, a nucleotide sequence comprising A and R, and a nucleotide sequence comprising I;
- (vii) a nucleotide sequence comprising I, a nucleotide sequence comprising L and R, and a nucleotide sequence comprising A;

- (viii) a nucleotide sequence comprising R, and a
 nucleotide sequence comprising L, I and A;
 (ix) a nucleotide sequence comprising L, and a
 nucleotide sequence comprising I, A and R;
- 5 (x) a nucleotide sequence comprising I, and a nucleotide sequence comprising A, R and L;
 (xi) a nucleotide sequence comprising A and a nucleotide sequence comprising A, R and I; and
 (xii) a nucleotide sequence comprising R, L, I and A;
- wherein R and L encode substances whose presence together in a plant results in a plant defence response, necrosis and/or increased pathogen resistance, I is a genetic insert able to inactivate R and/or L and A encodes a substance able to reactivate R and/or L inactivated by I.
 - 49. A composition of matter according to claim 47 or 48 which is one or more nucleic acid vectors.
- 50. A composition of matter according to any one of claims 47 to 49 wherein a cell contains any of said combinations of nucleotide sequences.
 - 51. A plant, or a part, propagule, derivative or descendant thereof, comprising a cell according to the composition of claim 50.
 - 52. A method of producing a plant, or a part,

110

propagule, derivative or descendant thereof, containing nucleic acid comprising a nucleotide sequence or nucleotide sequences encoding R, I and A, wherein R encodes a substance whose presence in a plant results in a plant defence response, necrosis and/or increased pathogen resistance, I is a genetic insert able to inactivate R and A encodes a substance able to reactivate R inactivated by I, comprising crossing plant lines whose genomes comprise any of R, I, A and combinations thereof, to produce the plant or an ancestor thereof.

- 53, A method according to claim 52 wherein one or more of said plant lines contains nucleic acid comprising any of R, I, A and combinations thereof as a result of transformation of cells of the plant or an ancestor thereof.
- 54. A method of producing a plant, or a part, propagule, derivative or descendant thereof, containing nucleic acid comprising a nucleotide sequence or nucleotide sequences encoding R, L, I and A, wherein R and L encode substances whose presence together in a plant results in a plant defence response, necrosis and/or increased pathogen resistance, I is a genetic insert able to inactivate R and/or L and A encodes a substance able to reactivate R and/or L inactivated by I, comprising crossing plant lines whose genomes

5

111

comprise any of R, L, I, A and combinations thereof, to produce the plant or an ancestor thereof.

- 55, A method according to claim 54 wherein one or more of said plant lines contains nucleic acid comprising any of R, L, I, A and combinations thereof as a result of transformation of cells of the plant or an ancestor thereof.
- 56. A plant, or a part, propagule, derivative or descendant thereof, obtainable using a method according to any one of claims 52 to 55.

BNSDOCID: <WO_____9531564A2_I_>

2/18

FIGURE 2

3/18

FIGURE 3A

6/18

FIGURE 4B

FIGURE 5

8/18

9/18

FIGURE 5C

FIGURE 7

Probe	Cf0 Mutant 18		8 Mutant 31		31	Mutant 50				
		GA	R-	GAR+	GA	R-	GAR+	GA	R-	GAR+
		GUS-	GUS+	GUS+ N	GUS-	GUS+	GUS+ N	GUS-	GUS+	GUS+ N
Basic β-1,3 glucanase										

Anionic peroxidase pTap 4.5

FIGURE 8B

FIGURE 8A

FIGURE 9

FIGURE 10

Figure 12_

Leaf 1

Leaf 2

Leaf 3

FIGURE 13

WO 95/31564

18/18

FIGURE 14

A.

B.

C.

D.

T_{1,2,3,4}

↓ ③

P_{1,2,3,4}

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (51) International Patent Classification 6: WO 95/31564 (11) International Publication Number: A3 C12N 15/82, 15/29, 15/31, 5/10, A01N (43) International Publication Date: 23 November 1995 (23.11.95) 63/02, 65/00, A01H 5/00 PCT/GB95/01075 (81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, (21) International Application Number: CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN, 11 May 1995 (11.05.95) (22) International Filing Date: MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TT, UA, UG, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, (30) Priority Data: PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, 9409394.5 11 May 1994 (11.05.94) GB ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, 24 December 1994 (24.12.94) WO PCT/GB94/02812 (34) Countries for which the regional or SZ, UG). international application was filed: GB et al. 31 March 1995 (31.03.95) 9506658.5 GB 9507232.8 7 April 1995 (07.04.95) GB Published With international search report. Before the expiration of the time limit for amending the (71) Applicant (for all designated States except US): THE GATSBY claims and to be republished in the event of the receipt of CHARITABLE FOUNDATION [GB/GB]; 9 Red Lion amendments. Court, London EC4A 3EB (GB). (88) Date of publication of the international search report: (72) Inventors; and 14 December 1995 (14.12.95) (75) Inventors/Applicants (for US only): JONES, Jonathan, Dallas, George [GB/GB]; 19 Waverley Road, Norwich, Norfolk NR4 6SG (GB). HAMMOND-KOSACK, Kim, Elizabeth [GB/GB]; 6 Chestnut Hill, Norwich RN4 6NL (GB). JONES, David, Allen [GB/GB]; 139 Greenways, Eaton, Norwich NR4 6PD (GB). (74) Agents: WALTON, Seán, M. et al.; Mewburn Ellis, York

(54) Title: METHOD OF INTRODUCING PATHOGEN RESISTANCE IN PLANTS

House, 23 Kingsway, London WC2B 6HP (GB).

(57) Abstract

Variegated plants have increased pathogen resistance: cells of the plant express a phenotype, which may comprise necrosis and/or a plant defence response, and other cells not expressing this phenotype have increased pathogen resistance. Embodiments of the invention employ various genes, including Cladosporium fulvum pathogen resistance genes, which are inactivated, for example as a result of insertion of a transposable genetic element, and then reactivated in plant cells to result in necrosis and/or a plant defence response, leading to increased pathogen resistance. Cells, plants and other compositions of matter are provided comprising various combinations of genes involved in this system.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinen	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo	•	of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	K2	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon		-		

Internation Application No PCT/GB 95/01075

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/82 C12N15/29 A01H5/00 A01N65/00

C12N15/31

C12N5/10

A01N63/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N A01N A01H

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

Category *	MENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO,A,93 23532 (RIBOZYME PHARMACEUTICALS	1-4,21, 33,43-45
	INC) 25 November 1993	33,43-45
	see the whole document	
	WO,A,92 13090 (GEN HOSPITAL CORP) 6 August	1-4,21,
X	1992	33,43-45
	see page 11 line 21 - page 12, line 2	
	see page 33, line 13 - line 20; example 2	
	WO,A,92 13089 (GEN HOSPITAL CORP ;HARVARD	1-4,21,
X	COLLEGE (US)) 6 August 1992	33,43-45
	see page 12, line 3 - line 24	
	see page 35, line 3 - line 10; example 2	
		1-56
A	WO,A,91 15585 (RIJKSLANDBOUWHOGESCHOOL) 17	
	October 1991 see the whole document	·
	266 CLIS ALIO LE GOCGINELLA	
	-/	

X Further documents are listed in the continuation of box C.	X Patent family members are listed in annex.				
*A" document defining the general state of the art which is not considered to be of particular relevance	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention				
'E' earlier document but published on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone				
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the				
"O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	ments, such combination being obvious to a person sames in the art. *& document member of the same patent family				
Date of the actual completion of the international search	Date of mailing of the international search report				
19 October 1995	.1 6. 11. 95				
Name and mailing address of the ISA	Authorized officer				
European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Td. (+31-70) 340-2040, Tz. 31 651 epo nl, Fax (+31-70) 340-3016	Maddox, A				

Form PCT/ISA/210 (second sheet) (July 1992)

Patent family members are listed in annex.

INTERNATIONAL SEARCH REPORT

Internatio Application No
PCT/GB 95/01075

C./Continu	non) DOCUMENTS CONSIDERED TO BE RELEVANT	PC1/GB 95/010/5
Category *		Relevant to claim No.
P,X	SCIENCE, vol. 266, 4 November 1994 LANCASTER, PA US, pages 789-793, JONES, D.A., ET AL. 'ISOLATION OF THE TOMATO CF-9 GENE FOR RESISTANCE TO CLADOSPORIUM FULVUM BY TRANSPOSON TAGGING' see page 789, column 3	21-56
P,X	SCIENCE, vol. 268, 5 May 1995 LANCASTER, PA US, pages 661-667, STASKAWICZ, B.J., ET AL. 'MOLECULAR GENETICS OF PLANT DISEASE RESISTANCE' see page 666, column 3	1-56
A	MOL. PLANT MICROBE INTERACT., vol. 4, no. 5, 1991 pages 458-463, CULVER, J.N., ET AL. 'TOBACCO MOSAIC VIRUS ELICITOR COAT PROTEIN GENES PRODUCE A HYPERSENSITIVE PHENOTYPE IN TRANSGENIC NICOTIANA SYLVESTRIS PLANTS' see the whole document	1-56
	MOLECULAR AND GENERAL GENETICS, vol. 239, 1993 BERLIN DE, pages 122-128, WOLTER, M., ET AL. 'THE MLO RESISTANCE ALLELES TO POWDERY MILDEW INFECTION IN BARLEY TRIGGER A DEVELOPMENATAALY CONTROLLED DEFENSE MIMIC PHENOTYPE' see the whole document	1-56
P, A	PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 91, October 1994 WASHINGTON US, pages 10445-10449, HAMMOND-KOSACK, K.E., ET AL 'DEVELOPMENTALLY REGULATED CELL DEATH ON EXPRESSION OF THE FUNGAL AVIRULENCE GENE AVR9 IN TOMATO SEEDLINGS CARRYING THE DISEASE-RESISTANCE GENE CF-9' see page 10449, left column, last paragraph ————————————————————————————————————	1-56

3

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SFARCH REPORT

Internatio \pplication No
PCT/GB 95/01075

Category "	Citation of document, with indication, where appropriate, of the relevant passages	D-1
	where appropriate, of the relevant passages	Relevant to claim No.
Ρ,Α	KEYSTONE SYMPOSIUM ON SIGNAL TRANSDUCTION IN PLANTS, HILTON HEAD ISLAND, SOUTH CAROLINA, USA, MARCH 29-APRIL 4, 1995. JOURNAL OF CELLULAR BIOCHEMISTRY SUPPLEMENT 0 (21A). 1995. 485., DIXON M S 'Cloning and characterisation of the Cf-2 disease resistance gene, related family members and the corresponding null locus' see the whole document	30
	SCIENCE, vol. 262, November 1993 LANCASTER, PA US, pages 1432-1436, MARTIN, G.B., ET AL. 'MAP-BASED CLONING OF A PROTEIN KINASE GENE CONFERRING DISEASE RESISTANCE IN TOMATO' see the whole document	1-56
	WO,A,95 18230 (GATSBY CHARITABLE FOUNDATION; JONES JONATHAN DALLAS GEORGE (GB); H) 6 July 1995 see page 25, line 1 - line 8	21-56

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Institution on patent family members

Internatio Application No
PCT/GB 95/01075

Patent document cited in search report	Publication - date	Patent memb		Publication date	,
WO-A-9323532	25-11-93	AU-B- CA-A- EP-A- JP-T-	4234293 2135643 0641384 7507931	13-12-93 25-11-93 08-03-95 07-09-95	٤
WO-A-9213090	06-08-92	AU-B- AU-B- CN-A- EP-A- JP-T- NZ-A-	654330 1234492 1065682 0567568 6504444 241310	03-11-94 27-08-92 28-10-92 03-11-93 26-05-94 28-03-95	
WO-A-9213089	06-08-92	AU-B- AU-B- CN-A- EP-A- JP-T- NZ-A-	653787 1249992 1065681 0567581 6507308 241311	13-10-94 27-08-92 28-10-92 03-11-93 25-08-94 28-03-95	
WO-A-9115585	17-10-91	NL-A- AU-B- AU-B- EP-A- JP-T-	9000773 642252 7684591 0474857 5505110	01-11-91 14-10-93 30-10-91 18-03-92 05-08-93	_
W0-A-9518230	06-07-95	AU-B-	1321695	17-07-95	-

Form PCT/ISA/210 (patent family annex) (July 1992)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
. \cdot

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)