Minimization by a numerical algorithm

- The projected coordinates of *j*-th point in *i*-th frame depend on
 - parameters of ith camera and
 - spatial coordinated of j-th point.
- Numerical optimization by Levenberg-Marquardt algorithm.
 - Jacobian matrix of the problem has to be determined.
 - Jacobian is very sparse.
- Thus, a sparse Levenberg-Marquardt algorithm should be applied.
 - It is called bundle Adjustment (BA) in the literature.

Levenberg-Marquardt for 3D Reconstruction

LM-rule for parameter tuning:

$$\Delta \mathbf{p} = \left(\mathbf{J}^T \mathbf{J} + \lambda \mathbf{I} \right)^{-1} \mathbf{J}^T \epsilon_{\mathbf{p}}$$

- Parameters to be tuned:
 - camera parameters
 - spatial coordinates
- E.g. for 20 perspective cameras and 1000 3D points: $20 \cdot 11 + 3 \cdot 1000 = 3220$ parameters have to be estimated
 - Dimension of $\mathbf{J}^T \mathbf{J}$ is 3220×3220 .
 - Matrix invertion requires very high time demand.
 - Numerical stability of invertion is questionable

Jacobian matrix

Jacobian matrix

Jacobian matrix

Normal equation

Bundle adjustment: normal equation

• Normal equation can be written by block of matrices:

$$\left[\begin{array}{cc} \mathbf{U} & \mathbf{X} \\ \mathbf{X}^T & \mathbf{V} \end{array}\right] \left[\begin{array}{c} \Delta \mathbf{m} \\ \Delta \mathbf{s} \end{array}\right] = \left[\begin{array}{c} \epsilon_{\mathbf{m}} \\ \epsilon_{\mathbf{s}} \end{array}\right]$$

• If normal equation is multiplied by $\begin{bmatrix} I & -XV^{-1} \\ 0 & I \end{bmatrix}$, from the left, normal equation is modified as follows:

$$\left[\begin{array}{cc} \mathbf{U} - \mathbf{X} \mathbf{V}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} & \mathbf{0} \\ \mathbf{X}^{\mathsf{T}} & \mathbf{V} \end{array}\right] \left[\begin{array}{c} \Delta \mathbf{m} \\ \Delta \mathbf{s} \end{array}\right] = \left[\begin{array}{c} \epsilon_{\mathbf{m}} - \mathbf{X} \mathbf{V}^{-1} \epsilon_{\mathbf{s}} \\ \epsilon_{\mathbf{s}} \end{array}\right]$$

Bundle adjustment: solution for normal equation

Solution:

$$\Delta \mathbf{m} = \left(\mathbf{U} - \mathbf{X} \mathbf{V}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}}\right)^{-1} \left(\epsilon_{\mathbf{m}} - \mathbf{X} \mathbf{V}^{-1} \epsilon_{\mathbf{s}}\right)$$
$$\Delta \mathbf{s} = \mathbf{V}^{-1} \left(\epsilon_{\mathbf{s}} - \mathbf{X}^{\mathsf{T}} \Delta \mathbf{m}\right)$$

- Inversion required:
 - V:
 - It contains small block matrices, they are inverted separately:
 - $(U XV^{-1}X^{T})^{-1}$
 - Its size is relatively small.
 - Is is also a special matrix, sub-blocks can be formed.