精円曲線上、階数2の接続のモジュライ空間に ついて

西原寛人

2024年2月4日

概要

本修士論文は Fassarella-Loray-Muniz の On the moduli of logarithmic connections on elliptic curves の主張である以下の定理についてまとめた。

定理

 \mathfrak{Con}^{ν} は極を偶数 n 個持つ楕円曲線上階数 2 の対数的接続のモジュライ空間とする。更に下部放物ベクトル束が μ 半安定となるものを $\mathrm{Con}_{L\epsilon}^{\nu}$ とする。

- $\mathbf{Con}_{I,\epsilon}^{\nu} \simeq S^n$ となる。
- ullet \mathfrak{Com}^{ν} は、有限個の S^n の複製の貼り合わせで得られる。

設定

設定

- C は楕円曲線とする。
- $D = t_1 + \cdots + t_n$ を C の因子とする。
- ullet $\omega_{\infty}\in C$ は固定する。
- E は C 上階数 2 のベクトル束で $\det E \simeq \mathscr{O}_C(\omega_\infty)$ を満たすとする。

以下この場合を考える。

定義

楕円曲線 C 上の階数 2 のベクトル束 E_1 を、短完全列

$$0 \to \mathscr{O}_C \to E_1 \to \mathscr{O}_C(\omega_\infty) \to 0$$

が分裂しないようなものと定める。これは同型を除き一意に定 まる。

命題

C 上階数 2 のベクトル束 E で $\det E = \mathcal{O}_C(\omega_\infty)$ を満たすものは以下のいずれかになる。

- \blacksquare $E \simeq E_1$
- ullet $E\simeq L\oplus L^{-1}(\omega_\infty)$ (ただし L は $\deg L=1$ を満たす直線束)

定義

 $\mu \in (0,1)^n$ とする。モジュライ空間を

$$\mathrm{Bun}_{\omega_\infty}^\mu := \left\{ (\mathsf{E}, \mathbf{p}) \middle| egin{array}{l} \mathsf{rank} \, \mathsf{E} = 2 \, \mathsf{か} \mathsf{O} \ (\mathsf{E}, \mathbf{p}) \, \mathsf{l} \mathsf{a} \mu$$
半安定な放物ベクトル東 $brace$

と定める。これが射影代数多様体として存在することは Mehta-Seshadri より従う。

命題

$$\mu \in \mathfrak{C} := \{\mu \in (0,1)^n | \sum_{k=1}^n \mu_k < 1 \}$$
 なら $\operatorname{Bun}_{\omega_\infty}^\mu = \{(E,\mathbf{p}) | E \simeq E_1 \}$ となる。特に $\operatorname{Bun}_{\omega_\infty}^\mu \simeq \left(\mathbb{P}^1\right)^n$ となる。

接続のモジュライ空間

$$u = (\nu_1^+, \nu_1^-, \dots, \nu_n^+, \nu_n^-) \in \mathbb{C}^{2n}$$
 は以下ふたつを満たすとする。

- ullet全ての $a_k \in \{+,-\}$ に対して $u_1^{a_1} + \dots +
 u_n^{a_n}
 otin \mathbb{Z}$
- ullet全ての $k \in \{1, \ldots, n\}$ に対して $u_k^+
 u_k^- \notin \{0, 1, -1\}$

 $\zeta: \mathscr{O}_C(\omega_\infty) \to \mathscr{O}_C(\omega_\infty) \otimes \Omega^1_C(D)$: 対数的接続 で $\operatorname{Res}_{t_k}(\zeta) = \nu_k^+ + \nu_k^-$ を満たすものを固定する。

定義

$$\mathfrak{Con}^{
u} := \left\{ (E, \nabla) \middle| egin{array}{l}
abla \, ext{obj} \, \partial_{\lambda} \ \det E = \mathscr{O}_{\mathcal{C}}(\omega_{\infty}), \operatorname{tr}(\nabla) = \zeta \end{array}
ight\} / \sim \ \mathfrak{Con}^{
u}_{st} := \left\{ (E, \nabla) \in \mathfrak{Con}^{
u} \middle| egin{array}{l}
\exists \epsilon \in \{+, -\}^n, \exists I \subset \{1, \dots, n\} \\
\mu \in \{\mu \in (0, 1)^n \middle| \sum_{k=1}^n \mu_k < 1\} \\
s.t. \quad (E, \mathbf{p}^{\epsilon}(\nabla)) \in \operatorname{Bun}_{\omega_{\infty}}^{\phi_I(\mu)} \end{array}
ight\} \ \operatorname{Con}^{
u} := \left\{ (E, \nabla) \in \mathfrak{Con}^{
u} \middle| E \simeq E_1 \right\} \subset \mathfrak{Con}^{
u}_{st} \end{cases}$$

定理 [1] Fassarella-Loray-Muniz

$$\Delta\subset\mathbb{P}^1 imes\mathbb{P}^1$$
 を対角成分として、 $S:=(\mathbb{P}^1 imes\mathbb{P}^1)\setminus\Delta$ とすると

Par:
$$\operatorname{Con}^{\nu} \to S^{n}$$

 $(E_{1}, \nabla) \mapsto (p_{1}^{+}(\nabla), p_{1}^{-}(\nabla); \cdots; p_{n}^{+}(\nabla), p_{n}^{-}(\nabla))$

が定まり、これは同型になる。

証明.

- ullet $([z_j,w_j],[u_j,v_j])_{1\leq j\leq n}\in S^n$ に対して $A_j:=\left(egin{array}{cc} z_j & u_j \ w_j & v_j \end{array}
 ight)\left(egin{array}{cc}
 u_j^+ & 0 \ 0 &
 u_j^- \end{array}
 ight)\left(egin{array}{cc} z_j & u_j \ w_j & v_j \end{array}
 ight)^{-1}$ と定める。
- lacksquare A_j から局所的な接続 $abla_j: E_1|_{U_j} o E_1|_{U_j} \otimes \Omega^1_C(D)$ を構成する。
- ullet $\left\{egin{array}{l} [(
 abla_i
 abla_j)] \in \mathrm{H}^1(\mathcal{E} nd(E_1) \otimes \Omega^1_C) = \mathbb{C} \\ \mathrm{tr}(
 abla_i
 abla_j) = 0 \\ \mathcal{L} \mathcal{D} \setminus_i \mathcal{L}$ たちは貼り合う。

初等変換

$$I\subset \{1,\ldots,n\}$$
 として、 $\phi_I:(0,1)^n o (0,1)^n$ を $\phi_I(\mu_i):=\left\{egin{array}{ll} 1-\mu_i & (i\in I) \ \mu_i & (i
otin I) \end{array}
ight.$ と定める。

命題

 $\mu\in\mathfrak{C}=\{\mu|\sum_{k=1}^n\mu_k<1\}$ で |I| は偶数とする。 $L_0^{\otimes 2}=\mathscr{O}_C\left(\sum_{i\in I}t_i\right)$ を満たす直線束 L_0 をひとつ固定する。すると写像

elm_I:
$$\operatorname{Bun}_{\omega_{\infty}}^{\mu} \longrightarrow \operatorname{Bun}_{\omega_{\infty}}^{\phi_{I}(\mu)}$$

 $(E, \mathbf{p}) \longmapsto (E' \otimes L_{0}, \mathbf{p}')$

が定まりこれは同型写像である。ただし $E':= \operatorname{\mathsf{Ker}} \left(E o igoplus_{i \in I} E|_{t_i}/p_i
ight)$ と定める。

命題

$$I\subset\{1,\ldots,n\}$$
 で $|I|$ は偶数、 $\mu\in\mathfrak{C}=\{\mu|\sum_{k=1}^n\mu_k<1\}$ とする。

$$\Gamma_I := \left\{ (E_1, \mathbf{p}) \in \operatorname{Bun}_{\omega_\infty}^\mu \simeq (\mathbb{P}^1)^n \middle| egin{array}{l} (E_1, \mathbf{p}) \ \mathrm{id}\phi_I(\mu) \end{array}
ight.$$
学安定でない $\left.
ight.$ 放物ベクトル束

と部分多様体を定める。すると

$$\Gamma_I \simeq V \times (\mathbb{P}^1)^{n-|I|}$$

$$V := \left\{ \mathbf{p} \in \prod_{i=1}^{|I|} \mathbb{P}(E_1|_{t_i}) \middle| egin{array}{l} \exists L : \mathbf{\underline{a}} \& \mathbf{\overline{p}} \ni \phi \in \mathsf{Hom}(L, E_1) \setminus \{0\} s.t. \\ \deg L = 1 - rac{|I|}{2}, orall i \in I : \phi(L|_{t_i}) \subset p_i \end{array}
ight\}$$

となる。特に V は既約な超平面で次数は $(2, \ldots, 2)$ となる。

定理 [2] Fassarella-Loray-Muniz

 $\mathfrak{Con}_{st}^{\nu}$ は有限個の S^n に同型なものの貼り合わせで得られる。

補題

|I| は偶数で $\mu\in\mathfrak{C}=\{\mu|\sum_{k=1}^n\mu_k<1\}$ 、 $\epsilon\in\{+,-\}^n$ とする。 $\mathrm{Con}_{I,\epsilon}^{\nu}$ を

$$\mathrm{Con}_{I,\epsilon}^{
u}:=\left\{(E,
abla)\in\mathfrak{Con}^{
u}\Big|(E,\mathbf{p}^{\epsilon}(
abla))\in\mathrm{Bun}_{\omega_{\infty}}^{\phi_{I}(\mu)}
ight\}$$

と定めると以下の可換図式を得る。

$$\begin{array}{ccc} \operatorname{Con}_{I,\epsilon}^{\nu} & \xrightarrow{\Phi_{I}^{\epsilon}} & \operatorname{Con}^{\phi_{I}^{\epsilon}(\nu)} \\ \downarrow^{\pi_{\epsilon}} & & \downarrow^{\pi} \\ \operatorname{Bun}_{\omega_{\infty}}^{\phi_{I}(\mu)} & \xrightarrow{\operatorname{elm}^{I}} & \operatorname{Bun}_{\omega_{\infty}}^{\mu} \end{array}$$

定理 [2] の証明

- $lacksymbol{\bullet}$ $\mathfrak{Con}_{st}^
 u = igcup_{I,\epsilon} \mathrm{Con}_{I,\epsilon}^
 u$ と開被覆をとれる。
- 以下の図式が可換であった。

$$\begin{array}{ccc} \operatorname{Con}_{I,\epsilon}^{\nu} & \xrightarrow{\Phi_{I}^{\epsilon}} & \operatorname{Con}^{\phi_{I}^{\epsilon}(\nu)} \\ \downarrow^{\pi_{\epsilon}} & & \downarrow^{\pi} \\ \operatorname{Bun}_{\omega_{\infty}}^{\phi_{I}(\mu)} & \xrightarrow{\operatorname{elm}^{I}} & \operatorname{Bun}_{\omega_{\infty}}^{\mu} \end{array}$$

ullet 定理 [1] より $\mathrm{Con}^{\phi_{ar{i}}^{\epsilon}(
u)} \simeq S^n$ であった。

定理 (再揭: Fassarella-Loray-Muniz)

n が偶数のときは $\mathfrak{Con}^{\nu} = \mathfrak{Con}_{st}^{\nu}$ となる。特に \mathfrak{Con}^{ν} も有限個の S^n に同型なものの貼り合わせで得られる。