7 CONTRASTING CHARACTERS Seed shape Round Wrinkled **Seed colour** Yellow Green Flower color Purple **Pod Shape** Constricted Inflated **Pod colour** Yellow Green **Flower** position Terminal **Plant**

height

Dwarf

TWO GENE INHERITANCE

3) Law of Independent Assortment

When two pairs of traits are combined in a hybrid segregation of one pair of character is independent of the other pair of characters.

ONE GENE INHERITANCE

1) Law Of Dominance

- → Characters are controlled by discrete unit called factors.
- ★ Factors occur in pair.
- → In dissimilar pair one dominated over other.

2) Law of Segregation (law of Purity of Gametes)

- → During the gamete formation the factors segregate from each other.
- → Homozygous produces similar gametes while heterozygous produce dissimilar.

Phenotypic ratio - 3:1 Genotypic ratio - 1:2:1

GREGOR MENDEL (FATHER OF GENETICS)

Conducted hybridisation experiments on garden peas for seven years (1856-1863) and proposed the laws of inheritance in living organisms.

The heterozygous offspring

Eg - Mirabilis jalapa

shows intermediate characters.

TEST CROSS

Cross hybrid and recessive parent.

BACK CROSS

Cross hybrid and any one of the parents.

MENDELIAN INHERITANCE

4. PRINCIPLES OF INHERITANCE AND VARIATION

NON - MENDELIAN INHERITANCE

PLEIOTROPY

Ability of gene to have multiple phenotypic effects as it influences number of characters simultaneously. Eg:- PKU

MULTIPLE ALLELISM

A gene existing in more than two allelic forms. Eg:- A B O blood group

CO – DOMINANCE

Two alleles of a gene are equally dominant. Eg:- AB blood group

By Sutton and Bovery, 1902

- **→** Behaviour of chromosome is parallel to genes behavior.
- → Both occur in pairs in diploid cells.

T H Morgan(Fly man) 🏋

Linkage

Tendency of genes in a chromosome to remain together & pass as such to next generation.

Crossing-over

Exchange of genes or chromosomal parts to break already existing linkages & formation of new linkages.

Recombination

Result of Crossing over.

Translocation

gets lost.

Segment of chromosome is transferred to nonhomologous chromosome.

Euploidy

Additional set of chromosomes is present.

homologous chromosome.

Aneuploidy

Addition or deletion of one or more chromosome.

Duplication

Deleted chromosome segment gets embedded to its normal homologous chromosome.

Phenylketonuria

Autosomal recessive. Accumulation of phenyl pyruvic acid.

Thalassemia

Autosomal recessive formation of abnormal hemoglobin

Cystic Fibrosis

Autosomal recessive chronic lung infection

Haemophilia

MENDELIAN / ←

x – linked recessive disorder. Clotting of blood is affected.

Color Blindness

x – linked recessive disorder defect in red/ green cone of eye.

Sickle Cell Anemia

Autosomal recessive shape of RBCs changes (Sickle Shaped)

CHROMOSOMAL /←

Turner's Syndrome Down's Syndrome

Chromosomes 45 Trisomy of 21st Chromosomes (44+ XO) chromosome

Klinefelter's Syndrome

Presence of additional copy of x chromosome 47 chromosomes (44+XXY

GENETIC DISORDER