Dérivées partielles

Exercice 1

CCINP (ou CCP) PSI 2019

Soit la fonction f: $\begin{cases}
\mathbb{R}^2 & \longrightarrow \mathbb{R} \\
(x,y) & \longmapsto \begin{cases}
\frac{x^3 - y^3}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\
0 & \text{si } (x,y) = (0,0)
\end{cases}$

- **1.** f est-elle continue sur \mathbb{R}^2 ?
- **2.** f est-elle de classe \mathcal{C}^1 sur \mathbb{R}^2 ?
- 3. Étudier l'existence de dérivées partielles secondes de f en (0,0).

Exercice 2

Soit f une application de classe \mathcal{C}^1 sur \mathbb{R}^2 . Calculer les dérivées ou dérivées partielles des fonctions suivantes en fonction des dérivées partielles de f.

1.
$$g(x, y) = f(y, x)$$

3.
$$g(x, y) = f(y, f(x, x))$$

2.
$$g(x) = f(x, x)$$

4.
$$g(x) = f(x, f(x, x))$$

Exercice 3

Etudier l'existence de dérivées partielles pour les fonctions suivantes.

1.
$$f(x, y) = \max(|x|, |y|)$$
.

2.
$$f(x, y) = |x| + |y|$$
.

3.
$$\begin{cases} f(x,y) = \frac{\sin x^2 + \sin y^2}{\sqrt{x^2 + y^2}} & \text{si } (x,y) \neq (0,0) \\ f(0,0) = 0 \end{cases}$$

Exercice 4

On définit une fonction f sur \mathbb{R}^2 par $f(x,y) = \frac{xy(x^2 - y^2)}{x^2 + y^2}$ pour $(x,y) \neq (0,0)$ et f(0,0) = 0. f est-elle de classe \mathcal{C}^0 ? \mathcal{C}^1 ? \mathcal{C}^2 ?

Exercice 5

Laplacien en polaires

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^2 . On appelle *laplacien* de f l'application $\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$. Donner une expresion du laplacien en coordonnées polaires.

Exercice 6

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 et g l'application définie sur \mathbb{R} par :

$$\forall t \in \mathbb{R}, \ g(t) = f(e^t \cos t, \ln(1+t^2))$$

Montrer que g est de classe \mathcal{C}^1 et calculer sa dérivée en fonction des dérivées partielles de f.

Exercice 7

Une équation fonctionnelle

Le but de l'exercice est de déterminer les fonctions f de classe \mathcal{C}^2 sur \mathbb{R} solutions de l'équation :

$$\forall x, y \in \mathbb{R}, \ f(x+y) + f(x-y) = 2f(x)f(y) \tag{*}$$

- 1. Déterminer les solutions constantes de (*).
- **2.** Soit f une solution non constamment nulle de (*).
 - **a.** Montrer que f(0) = 1 et f'(0) = 0.
 - **b.** Montrer que f est une fonction paire.
- 3. Soit f une fonction de classe \mathcal{C}^2 . On considère la fonction F définie sur \mathbb{R}^2 par

$$\forall x, y \in \mathbb{R}, \ F(x, y) = f(x + y) + f(x - y)$$

- **a.** Justifier que F est de classe \mathcal{C}^2 sur \mathbb{R}^2 .
- b. Calculer les dérivées partielles secondes de F.
- **c.** On suppose que f est une solution non constamment nulle de (*). Des expressions de $\frac{\partial^2 F}{\partial x^2}$ et $\frac{\partial^2 F}{\partial y^2}$, déduire que f vérifie une équation différentielle de la forme $z'' \alpha z = 0$.
- **d.** Donner les solutions de l'équation différentielle $z'' \alpha z = 0$ suivant les valeurs de α .
- 4. Déterminer toutes les solutions de (*).

Exercice 8

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $\begin{cases} f(x,y) = (x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}} & \text{si } (x,y) \neq (0,0) \\ f(0,0) = 0 \end{cases}$.

- **1.** Etudier la continuité de f.
- **2.** a. Prouver l'existence de dérivées partielles premières de f sur \mathbb{R}^2 .
 - **b.** Etudier la continuité des dérivées partielles premières de f.
 - **c.** La fonction f est-elle de classe \mathcal{C}^1 sur \mathbb{R}^2 ?

Exercice 9

Centrale-Supélec MP 2016

On note
$$\Delta = \{(x, y) \in \mathbb{R}^2, x = y\}.$$

Soit $f : \begin{cases} \mathbb{R}^2 \setminus \Delta & \longrightarrow \mathbb{R} \\ (x, y) & \longmapsto \frac{\sin x - \sin y}{x - y} \end{cases}$.

- **1.** Montrer que f est \mathcal{C}^{∞} sur $\mathbb{R}^2 \setminus \Delta$.
- **2.** Montrer que f est prolongeable en une application \tilde{f} continue sur \mathbb{R}^2 .
- **3.** Montrer que \tilde{f} admet des dérivées partielles sur \mathbb{R}^2 .
- **4.** Montrer que \tilde{f} est \mathcal{C}^1 sur \mathbb{R}^2 .
- **5.** Montrer que \tilde{f} est \mathcal{C}^{∞} sur \mathbb{R}^2 . On pourra écrire $\tilde{f}(x,y)$ comme une intégrale entre 0 et 1.
- 6. Justifier l'existence pour \tilde{f} d'un minimum et d'un maximum sur \mathbb{R}^2 et les déterminer.

Exercice 10 ***

Mines-Ponts MP 2016

On se donne $R \in \mathbb{R}_+^*$ et on définit $U = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < R^2\}$. Soit $f: U \to \mathbb{R}$ une fonction de classe \mathcal{C}^2 telle que $\Delta f = 0$. On définit

$$F: \left\{ \begin{array}{ccc}]-R, R[\times \mathbb{R} & \longrightarrow & \mathbb{R} \\ (r,\theta) & \longmapsto & f(r\cos\theta, r\sin\theta) \end{array} \right.$$

- 1. Trouver une relation entre les dérivées partielles de F et f.
- **2.** Soit $n \in \mathbb{Z}$. On définit

$$\varphi_n: \left\{ \begin{array}{ccc}
]-R, R[& \longrightarrow & \mathbb{R} \\
r & \longmapsto & \int_0^{2\pi} F(r,\theta) e^{-in\theta} d\theta
\end{array} \right.$$

Trouver une équation différentielle vérifiée par φ_n et la résoudre. En déduire φ_n .

Différentiation

Exercice 11

Banque Mines-Ponts MP 2019

On note $E = \mathcal{C}^{\infty}(\mathbb{R}^n, \mathbb{R})$ et E^* son dual. On définit

$$D = \{ \varphi \in E^*, \forall (f, g) \in E^2, \varphi(fg) = f(0)\varphi(g) + g(0)\varphi(f) \}$$

- 1. Montrer que D est un sous-espace vectoriel de E* non réduit à 0.
- **2.** Montrer que l'application $a \in \mathbb{R}^n \mapsto (f \in E \mapsto df(0) \cdot a)$ est injective.
- **3.** Donner une base de D. *Indication*: On pourra utiliser la relation fondamentale de l'analyse pour $t \in \mathbb{R} \mapsto f(tx)$.

Exercice 12

Banque Mines-Ponts MP 2018

Soit $f: \mathbb{R}^n \to \mathbb{R}^n$ différentiable, telle que $\mathrm{d} f(x)$ soit injective pour tout $x \in \mathbb{R}^n$, et vérifiant $\|f(x)\| \xrightarrow[\|x\| \to +\infty]{} +\infty$, où $\|\cdot\|$ est la norme associée au produit scalaire canonique sur \mathbb{R}^n .

Le but de cet exercice est de montrer que f est surjective. On pose pour cela $g: x \to \|f(x) - a\|^2$ où $a \in \mathbb{R}^n$.

- **1.** Justifier que g est différentiable sur \mathbb{R}^n et calculer dg(x) pour tout $x \in \mathbb{R}^n$.
- **2.** Montrer que g admet un minimum sur \mathbb{R}^n .
- 3. Conclure.

Exercice 13 ★★★

Soit A: $\mathbb{R} \to \mathcal{M}_n(\mathbb{R})$ dérivable telle que pour tout $(s,t) \in \mathbb{R}^2$, A(s) et A(t) commutent.

- **1.** Justifier que $M \in \mathcal{M}_n(\mathbb{R}) \mapsto \exp(M)$ est différentiable en 0 et calculer sa différentielle en 0.
- **2.** En déduire que φ : $t \in \mathbb{R} \mapsto \exp(A(t))$ est de classe \mathcal{C}^1 sur \mathbb{R} et que

$$\forall t \in \mathbb{R}, \ \varphi'(t) = A'(t) \exp(A(t)) = \exp(A(t))A'(t)$$

Exercice 14 ★★

Montrer que $f: M \in \mathcal{M}_n(\mathbb{R}) \mapsto M^2$ est différentiable sur $\mathcal{M}_n(\mathbb{R})$ et calculer sa différentielle en tout point de $\mathcal{M}_n(\mathbb{R})$.

Gradient

Exercice 15 ★★

Soit f un endomorphisme d'un espace euclidien E et $u \in E$. On pose

$$\forall x \in E, \ \varphi(x) = \frac{1}{2} \langle f(x), x \rangle + \langle u, x \rangle$$

- 1. Justifier que φ est différentiable sur E.
- 2. Calculer le gradient de ϕ en tout point de E.

Exercice 16 ***

Soit f un endomorphisme symétrique d'un espace euclidien E. Pour $x \in E \setminus \{0_E\}$, on pose $\varphi(x) = \frac{\langle f(x), x \rangle}{\|x\|^2}$.

On n'utilisera pas le théorème spectral dans tout cet exercice.

- 1. Calculer le gradient de φ en tout point de $E \setminus \{0_E\}$.
- **2.** Montrer que $x \in E \setminus \{0_E\}$ est un vecteur propre de f si et seulement si $\nabla \varphi(x) = 0$.
- **3.** Montrer que φ admet un maximum sur $E \setminus \{0_E\}$.
- **4.** En déduire que f admet un vecteur propre.

Jacobienne

Exercice 17 ★★

Soit la fonction $g: \mathbb{R}^2 \to \mathbb{R}^2$ définie par

$$g(x,y) = \left(x + 2\sin y, y + \frac{1}{3}\sin x\right)$$

- **1.** Justifier que g est différentiable en tout point et écrire la matrice jacobienne de g en un point (x, y). En déduire que dg est à valeurs dans $GL(\mathbb{R}^2)$.
- **2.** Montrer que g est une bijection.
- **3.** On admet que g^{-1} est différentiable. Déterminer la matrice jacobienne de g^{-1} au point (0,0).

Exercice 18 ★

Soit

$$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ (x,y) & \longmapsto & \sin(x^2 - y^2) \end{array} \right. \quad \text{et} \quad g: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ (x,y) & \longmapsto & (x+y,x-y) \end{array} \right.$$

- 1. Justifier que les fonctions f et g sont différentiables en tout point $(x, y) \in \mathbb{R}^2$ et écrire les matrices jacobiennes de ces deux fonctions au point (x, y).
- 2. Pour $(x, y) \in \mathbb{R}^2$, déterminer l'image du vecteur $(u, v) \in \mathbb{R}^2$ par l'application linéaire d($f \circ g$)(x, y)
 - **a.** en calculant $f \circ g$;
 - **b.** en utilisant le produit de deux matrices jacobiennes.

Espace tangent

Exercice 19 **

- **1.** Montrer que si $A \in \mathcal{A}_n(\mathbb{R})$ (espace des matrices antisymétriques), alors $\forall t \in \mathbb{R}$, $e^{tA} \in \mathcal{O}_n(\mathbb{R}).$
- **2.** Déterminer l'ensemble des vecteurs tangents à $O_n(\mathbb{R})$ au point I_n .

Exercice 20 **

Soit S = $\{(x, y, z) \in \mathbb{R}^3, x^3 + 3xy + z = 0\}$ et u = (0, -1, 1). Déterminer l'ensemble des points de S en lesquels le vecteur *u* est tangent à S.

Exercice 21

Soit S = $\{(x, y, z) \in \mathbb{R}^3, x = 8yz\}$. Déterminer les points de S en lesquels le plan tangent contient la droite D d'équations $\begin{cases} y = 1 \\ x + 4z + 2 = 0 \end{cases}$

Optimisation

Exercice 22

Déterminer les extrema locaux des fonctions de \mathbb{R}^2 dans \mathbb{R} suivantes :

- **1.** $f(x,y) = x^3 + y^3$. **3.** $f(x,y) = 2y^4 3xy^2 + x^2$.
 - **2.** $f(x, y) = x^2 + xy + y^2 3x 6y$. **4.** $f(x, y) = x^3 y^2 x$.

Exercice 23

Soit
$$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ (x,y) & \longmapsto & x^2(1+y)^3 + y^4 \end{array} \right.$$

- **1.** Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R}^2 .
- **2.** Montrer que la fonction f admet un unique point critique sur \mathbb{R}^2 .
- 3. Montrer que f admet un minimimum local mais pas global en ce point critique.

Exercice 24 ★★

CCINP (ou CCP) MP 2018

Soit E un espace euclidien de dimension $n \in \mathbb{N}^*$. On considère un endomorphisme symétrique f de E dont toutes les valeurs propres sont strictement positives.

- **1.** Montrer que : $\forall h \in E \setminus \{0_E\}, (f(h) \mid h) > 0$.
- 2. Soient $u \in E$ fixé et $g: x \mapsto \frac{1}{2}(f(x) \mid x) (u \mid x)$.
 - a. Montrer que g est différentiable sur E et calculer sa différentielle en tout point de E.
 - **b.** Montrer qu'il existe un unique vecteur $z_0 \in E$ point critique de g.
 - **c.** Montrer que g admet un minimum global en z_0 .

Exercice 25 ★★

CCP PSI 2015

On considère les ensembles

$$K = \{(x, y) \in \mathbb{R}^2, \ 0 \le x \le 1 \text{ et } 0 \le y \le 1\}$$

et

$$T = \{(x, y) \in \mathbb{R}^2, \ 0 < x < y < 1\}$$

ainsi que la fonction F définie sur K par

$$F(x,y) = \begin{cases} x(1-y) & \text{si } 0 \le x \le y \le 1 \\ y(1-x) & \text{si } 0 \le y \le x \le 1 \end{cases}$$

- 1. La fonction F admet-elle des extrema locaux sur T?
- 2. La fonction F admet-elle un minimum sur K? un maximum sur K. Si oui, déterminer leurs valeurs.

Exercice 26 ★★

Déterminer le minimum et le maximum éventuels de $f:(x,y)\mapsto\sin(x)\sin(y)\sin(x+y)$ sur $K=\left[0,\frac{\pi}{2}\right]^2$.

Exercice 27 ★★★

Mines-Ponts MP 2018

Soit E un espace euclidien, que l'on munit de sa norme euclidienne, et $f: E \to E$ différentiable, telle que pour tout $x \in \mathbb{R}^2$, df(x) soit injective, et vérifiant $\lim_{\|x\|\to +\infty} \|f(x)\| = +\infty$. Le but de cet exercice est de montrer que f est surjective. On pose pour cela $g: x \in E \mapsto \|f(x) - a\|^2$ où $a \in E$.

- **1.** Pour $x \in E$, calculer dg(x).
- 2. Montrer que g admet un minimum sur E.
- 3. Conclure.

Equations aux dérivées partielles

Exercice 28

Déterminer toutes les fonctions $f: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^1 vérifiant :

$$\forall (x,y) \in \mathbb{R}^2, \ \frac{\partial f}{\partial x}(x,y) + \frac{\partial f}{\partial y}(x,y) = f(x,y)$$

Exercice 29

Résoudre sur $\mathbb{R}_+^* \times \mathbb{R}$ l'équation

$$y\frac{\partial f}{\partial x}(x,y) - x\frac{\partial f}{\partial y}(x,y) = 0$$

Exercice 30

Résoudre l'équation aux dérivées partielles (E) : $\frac{\partial f}{\partial x} + x \frac{\partial f}{\partial y} = x + y \text{ d'inconnue } f \in \mathcal{C}^1(\mathbb{R}^2, \mathbb{R}) \text{ en effectuant le changement de variables } \begin{cases} x = u \\ y = \frac{u^2}{2} + v \end{cases}$ Déterminer la solution vérifiant f(0, y) = y pour tout $y \in \mathbb{R}$.

Exercice 31

Soient $f \in \mathcal{C}^1(\mathbb{R}^2, \mathbb{R})$ et $\alpha \in \mathbb{R}$. On dit que f est homogène de degré α si

$$\forall (x, y) \in \mathbb{R}^2, \ \forall t > 0, \ f(tx, ty) = t^{\alpha} f(x, y)$$

Montrer que f est homogène de degré α si et seulement si

$$\forall (x,y) \in \mathbb{R}^2, \ x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) = \alpha f(x,y)$$

Exercice 32

Soient $f \in \mathcal{C}^1(\mathbb{R}^2, \mathbb{R})$ et $\alpha \in \mathbb{R}$. On dit que f est homogène de degré α si

$$\forall (x, y) \in \mathbb{R}^2, \ \forall t > 0, \ f(tx, ty) = t^{\alpha} f(x, y)$$

1. Montrer que si f est homogène de degré α , alors

$$\forall (x,y) \in \mathbb{R}^2, \ x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) = \alpha f(x,y) \tag{*}$$

- **2.** Réciproquement, on suppose que f vérifie la relation (*).
 - **a.** On fixe $(x, y) \in \mathbb{R}^2$ et on pose $\varphi(t) = f(tx, ty) t^{\alpha} f(x, y)$ pour t > 0. Montrer que φ vérifie une équation différentielle du premier ordre sans second membre et préciser celle-ci.
 - **b.** En déduire que f est homogène de degré α .
- 3. Montrer que si f est homogène de degré α , les dérivées partielles de f sont également homogènes et préciser leur degré.

Exercice 33

Problème de Dirichlet et principe du maximum

Soient U un ouvert borné non vide de \mathbb{R}^n $(n \in \mathbb{N}^*)$. On note $\partial U = \overline{U} \setminus U$ la frontière de U.

On se donne une fonction f à valeurs réelles continue sur $\overline{\bf U}$ et de classe $\mathcal C^2$ sur $\bf U$. On pose alors

$$\forall x \in U, \, \Delta f(x) = \sum_{i=1}^{n} \frac{\partial^2 f}{\partial x_i^2}(x)$$

- 1. Montrer que f admet un maximum sur $\overline{\mathbf{U}}$. On note alors \bar{x} un point de $\overline{\mathbf{U}}$ où ce maximum est atteint.
- **2.** On suppose que $\Delta f > 0$ sur U. Montrer que $\bar{x} \in \partial U$.

A partir de maintenant, on suppose $\Delta f = 0$ sur U.

3. On se donne $\varepsilon > 0$ et on pose

$$\forall x \in \overline{\mathbf{U}}, \ f_{\varepsilon}(x) = f(x) + \varepsilon ||x||^2 = f(x) + \varepsilon \sum_{i=1}^{n} x_i^2$$

Montrer que f_{ε} est continue sur \overline{U} , de classe \mathcal{C}^2 sur U et que $\Delta f_{\varepsilon} > 0$ sur U.

- **4.** En déduire que le maximum de f sur \overline{U} est atteint sur ∂U .
- **5.** Soient f_1 et f_2 deux fonctions continues sur \overline{U} , de classe \mathcal{C}^2 sur U et vérifiant $\Delta f_1 = \Delta f_2 = 0$ sur U. On suppose en outre que $f_1 = f_2$ sur ∂U . Montrer que $f_1 = f_2$ sur U.

Exercice 34 CCP PC 2018

Soit $a \in \mathbb{R}^*$. On note $F = \mathcal{C}^0(\mathbb{R}^2, \mathbb{R})$ et E l'ensemble des applications $f \in F$ telles que $\frac{\partial f}{\partial x}$ est définie sur \mathbb{R}^2 et appartient à F. On considère $\phi: f \in E \mapsto \frac{\partial f}{\partial x} - af$.

- 1. Montrer que ϕ est une application linéaire de E dans F.
- **2.** On pose $f(x, y) = \sin(y) \exp(ax)$ pour $(x, y) \in \mathbb{R}^2$. Calculer $\phi(f)$.
- **3.** Soit $G = \{(x, y) \mapsto \alpha(y) \exp(ax), \ \alpha \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})\}$. Montrer que $G \subset \text{Ker}(\phi)$. ϕ estelle injective?
- **4.** Soit $A \in F$. On pose $f(x,y) = \exp(ax) \int_0^x A(t,y) \exp(-at) dt$ pour $(x,y) \in \mathbb{R}^2$. Montrer que $f \in E$ et que $\phi(f) = A$.
- **5.** Montrer que $G = Ker(\phi)$.
- **6.** Trouver toutes les fonctions $f \in E$ telles que :

$$\forall (x,y) \in \mathbb{R}^2, \ \frac{\partial f}{\partial x}(x,y) - af(x,y) = 2x - 3y$$