ПОВЫШЕНИЕ ЧУВСТВИТЕЛЬНОСТИ СКАНИРУЮЩЕГО СУБМИЛЛИМЕТРОВОГО СПЕКТРОМЕТРА РАД С ПОМОЩЬЮ КВАЗИОПТИЧЕСКОГО РЕЗОНАТОРА

В. П. Казаков, В. В. Паршин, Ю. А. Дрягин

При исследовании слабоинтенсивных молекулярных линий (с коэффициентом поглощения $\alpha_{\max} < 10^{-6} \div 10^{-8}$ см⁻¹), а также при абсорбционном спектральном анализе высокочистых веществ становится актуальной задача повышения чувствитель-

ности субмиллиметрового спектрометра.

Известно [¹], что эффективным способом повышения чувствительности сканирующего спектрометра РАД является увеличение мощности пронизывающего ячейку излучения. Однако в субмиллиметровом диапазоне длин волн уровень мощности традиционно применяемых в газовой спектроскопии источников невысок — порядка 10 мВт [²], так что исследование слабоинтенсивных спектральных линий становится невозможным. Одним из способов повышения мощности, эффективно взаимодействующей с исследуемым газом, является создание резонанса в поглощающей ячейке [³-6].

В настоящей работе исследовалась возможность повышения чувствительности субмиллиметрового спектрометра РАД с помощью квазиоптического резонатора. Для спектрометра РАД любое увеличение мощности, поглощенной газом в ячейке, и более эффективное преобразование в акустический сигнал будет увеличивать чувствитель-

ность.

Блок-схема экспериментальной установки приведена на рис. 1. Мощность источника излучения ЛОВ (1) поступала через волноводный рупор в резонаторную ячейку (2) с акустическим детектором (3). Оптический столик (4) позволял юстировать ось резонатора относительно рупора ЛОВ и подстраивать КСВ волноводного тракта. Для снижения акустических помех ячейки поглощения с акустическим детектором (например низкочастотных вибраций, близких к частоте модуляции $\omega = 180~\Gamma \mu$ и т. д.)

была разработана амортизация с многоступенчатыми низкочастотными фильтрами (5, 6, 7). Резонатор возбуждался волноводным рупором, заканчивающимся плавным переходом на отверстие связи в центре плоского зеркала. В рассматриваемом квазиоптическом резонаторе длиной l = 130 мм отношение диаметра отверстий связи (0.5-3) мм к диаметру зеркал 36 мм изменялось в пределах 0.014-0.1.

Экспериментальные исследования, выполненные на описанной установке, проводились на слабоинтенсивных линиях молекулы закиси азота N_2O в возбужденных колебательных состояниях 001, 200, 040, 030 и линии микропримеси фосфина PH_3 в германе GeH_4 в диапазоне частот $f=(200\div500)$ $\Gamma \Gamma u$. Часть результатов, полученных на ячейке PAД в виде квазиоптического резонатора, представлена на рис. 2, 3 и в таблице. На рис. 2 представлена запись участка спектра перехода $J=14\leftarrow13$ молекулы N_2O , полученная в сканирующем режиме при настройке в резонанс по линии $03^{14}0$ с коэффициентом поглощения $\alpha_{\max} \simeq 1,7\cdot 10^{-6}$ cm^{-1} ($\gamma_{\min} \simeq 5\cdot 10^{-11}$ cm^{-1} , $\tau \sim 1$ c, $T \simeq 300$ K, $P \simeq 0,8$ Top). Отдельно показаны (значком *) слабоинтенсивные линии в возбужденных колебательных состояниях $00^{\circ}1$ с $\alpha_{\max} \simeq 1,7\cdot 10^{-7}$ cm^{-1} и $20^{\circ}0$ с $\alpha_{\max} \simeq 3,2\cdot 10^{-8}$ cm^{-1} при тех же экспериментальных условиях ($\gamma_{\min} \simeq 4\cdot 10^{-11}$ cm^{-1}). Ранее [7] при исследовании вращательного спектра N_2O не удавалось наблюдать слабоинтенсивные линии $00^{\circ}1$ и $20^{\circ}0$ (см. обзорную запись спектра N_2O на рис. 1 в работе [7]). На представленном рис. 2 * линии $00^{\circ}1$ и $20^{\circ}0$ наблюдаются с S/N > 100, что наглядно демонстрирует возросшую чувствительность спектрометра.

Рис. 2.

Однако резонаторный метод ограничивает возможность наблюдения слабых линий, расположенных на крыльях интенсивных переходов. С целью выяснения области ограничений дополнительно был выполнен эксперимент, который показал, что при давлении $P \simeq 0.8$ Тор поглощение в крыльях перехода $J = 14 \leftarrow 13$ молекулы N_2O уже при расстройке от центра линии 00^{00} с $\alpha_{max} \sim 10^{-2}$ см $^{-1}$ около 300 - 400 МГ μ позволяло наблюдать линии с $\alpha_{max} \sim 3 \cdot 10^{-8}$ см $^{-1}$. Таким образом, диапазон исследований слабоинтенсивных линий с предельной чувствительностью резонаторной ячейки РАД остается достаточно широким. Кстати, устранить вклад от сплошного электродипольного поглощения можно, например, введением модуляции длины резонатора или при-

менением штарковской модуляции. Далее, если предельная чувствительность ограничивается вкладом от крыльев линий, то в эксперименте должна наблюдаться квадратичная зависимость ложного отклика от крыла при изменении давления (или соответственно ширины). Из экспериментальных данных, приведенных в таблице, нетрудно заметить, что при изменении давления N_2O от 0,8 до 5 Top на слабоинтен-

сивных линиях с коэффициентом поглощения, изменяющихся в пределах двух порядков $\alpha_{\max} \simeq 3 \cdot (10^{-6} \div 10^{-8}) \, \text{см}^{-1}$ в широкой области субмиллиметровых частот $f = (328 \div 378) \, \Gamma \Gamma u$, чувствительность спектрометра отклоняется от среднего значения $\gamma_{\min} = 3 \cdot 10^{-11} \, \text{см}^{-1}$ незначительно (в пределах зависимости чувствительности акустического детектора от величины давления).

Следовательно, в результате проведенных исследований можно сделать вывод: реализованное на ячейке поглощения РАД в виде квазиоптического резонатора отношение сигнал/шум (S/N) на слабоинтенсивных линиях молекулы N_2O в субмиллиметровом диапазоне длин волн демонстрирует (рис. 2 и таблица) чувствительность $\gamma_{\min} = 3 \cdot 10^{-11} \ cm^{-1}$ при $\tau \sim 1 \ c$. Достигнутая чувствительность более чем на порядок превосходит полученную ранее [6] с помощью объемного неперестраиваемого резонатора.

Применение ячейки поглощения РАД в виде квазиоптического резонатора в спектральном анализе позволит определять концентрации микропримеси фосфина PH_3 до $5\cdot 10^{-6}\,\%$ мольн. в высокочистых образцах германа GeH₄, являющихся сырьем при производстве сверхчистых материалов микроэлектроники (на рис. 3 представлены результаты, когда S/N>100, концентрация $PH_3\sim 10^{-3}$ % мольн., $\tau\sim 1$ c).

Чувствительность субмиллиметрового спектрометра РАД можно повысить оптимизацией связи разработанной ячейки, улучшением качества отражающих поверхностей и конфигурации резонатора.

Таблица

Идентификация	Экспериментальная частота, <i>МГц</i>	αрасчетн макс см-1	үмин · 1011,	P, Top
03 ¹ d0	328 157	1,4 · 10-6	3,3	2,1
0001	348 771	$1,7 \cdot 10^{-7}$	4,9	1
2000	348 813	$3,2 \cdot 10^{-8}$	3,5	0,8 2,1 2,1
0400	352 946	$1,0 \cdot 10^{-7}$	1,3	2,1
0330	353 063	$3,2 \cdot 10^{-6}$	2,3	2,1
042c0	353 133	$1,1\cdot 10^{-7}$	3,5	1
03140	353 390	$1,7 \cdot 10^{-6}$	2,7	2,1
0440	353 507	1,9 · 10-7	4,9 3,5 1,3 2,3 3,5 2,7 3,5	1
0400	378 136	1,2.10-7	2,3	5
04 ^{2d} 0	378 421	$1,2 \cdot 10^{-7}$	2,2	5 5

Недостатком резонаторного метода является необходимость синхронной под-стройки частоты резонатора и ЛОВ, что усложняет поиск слабоинтенсивных линий, частота которых известна с невысокой точностью. Несмотря на это предлагаемый метод оправдан, поскольку позволяет расширить область объектов, доступных для исследований, в частности, молекулярных «запрещенных» спектров, спектров в возбужденных колебательных состояниях, а также снизить предел обнаружения ряда полярных молекулярных примесей в абсорбционном спектральном анализе высокочистых летучих веществ.

Авторы выражают признательность А. Ф. Крупнову за постановку задачи и полезные обсуждения результатов работы.

ЛИТЕРАТУРА

- 1. Белов С. П., Буренин А. В., Герштейн Л. И., Королихин В. В., Круп-
- нов А. Ф. Оптика и спектроскопия, 1973, 35, вып. 2, с. 295. Голант М. Б., Алексеенко З. Т., Кротова З. С., Лункина Л. А., Негире В. А. А., Реброва Т. Б., Савельев В. С., Петрова О. В. ПТЭ,
- 1969, № 3, с. 231. 3. Рудин Р. Л. Оптика и спектроскопия, 1968, 24, вып. 4, с. 602.
- 4. Helms D., Gordy W. J. Molec. Spectr., 1977, 66, № 2, p. 206.

5. Goldan P. D. Goto K. — J. Appl. Phys., 1974, 45, № 10, р. 4350. 6. Қазаков В. П. — Изв. вузов — Радиофизика, 1980, 23, № 7, с. 877. 7. Andreev B. A., Burenin A. V., Karyakin E. N., Krupnov A. F., Shapin S. M. — J. Molec. Spectr., 1976, 62, р. 126.

Институт прикладной физики АН СССР

Поступила в редакцию 25 апреля 1985 г.