Fundamentals of System Hardware

Overview

- Definition of a computer
- Types of computers
- What's inside a computer (macro view)
- What each component does
- Commonalities between components
- How components communicate
- How the CPU works
- The memory hierarchy
- Hard disks
- Networking

Definition

• The computer is an electromechanical device which takes input, does processing and produces output.

Types of computers

- Mainframe
- Server
- Desktop
- Laptop
- Tablet
- Portable phone

Inside a computer

What's common between them?

- All computers have:
 - at least one Central Processing Unit (CPU) which is the "brain" of the computer.
 - Main memory where code and data is stored temporarily
 - Secondary storage where information is stored permanently
- Most computers will have:
 - A video graphic controller where images can be rendered for display on a screen
 - A network interface for communications
 - Peripheral interfaces (USB, Thunderbolt, Firewire, SCSI, etc)

Communications between the devices

- Internal communications in a machine is done via a "bus."
- A bus is a physical pathway for communication between two or more devices
- The system bus is the main pathway between the CPU and main memory, but also carries data to and from Input and Output (IO) devices.

The CPU

- The CPU is the "brain" of the computer
- It is a single piece of silicon in the form of a chip.
- This is the only location where code is actually executed in the system.
- The CPU only runs "machine language" code.
- The CPU operates on a "fetch-decode-execute" cycle.
- Each type of CPU has its own set of "instructions" which is understands.
- Each CPU has a small amount of memory, call "registers" which it uses to perform operations and store results.
- A CPU ay have a "cache" memory to perform more quickly.

Machine-Language

- Computers can only understand very basic commands like
 - Move
 - Add
 - Subtract
 - Multiply
 - Compare
 - Jump
 - etc
- The designer of the CPU puts the capability to perform these operations in the physical chip.

Instruction set

- The designers of the CPU create a set of instructions that the CPU can perform.
- This set of instructions, usually as small as 100, can each be represented by a numeric value.
- When the CPU receives a particular instruction, it performs that task.

Instruction	Opcode
ADD	0x00
AND	0x20
CMP	0x38
INT	0xCD
JMP	0xE9

Fetch-Execute Cycle

- The CPU performs a fetch to move the instruction from main memory into the CPU (specifically into an instruction register).
- It then decodes the instruction, also moving in any additional data that might be necessary with that instruction
- It then executes that instruction
- This process repeats with the next instruction in the sequence
- This whole process can take as little as about 0.00000001 seconds or about 10 nanoseconds. Meaning the CPU can process millions of instructions per second.

Memory

- The Instruction, and all the data, has to come from somewhere.
- In order for code to be executed, it has to be in a register built into the CPU
- Why not just store everything in registers? They are EXPENSIVE!
- As memory gets faster, it tends to get more expensive. So we have a hierarchy

The hierarchy

- Registers (Nanosecond access time, but size measured in bytes)
 - Instructions can be executed only here
- Cache (Nanosecond access time, size measured in megabytes)
 - Useful for the processor designers, not terribly useful for programmers
- RAM (10+ nanosecond access time, size measured in gigabytes)
 - This is where all of your code and data will be stored temporarily
 - This is known as volatile memory because it is all lost when the computer is off
- Secondary Storage(10 millisecond access time, size measured in terabytes)
 - Permanent storage, your hard drive.
- Tierterary storage (offline, size measured only by your imagination)
 - Used for backup or other information that doesn't need to be immediately accessible

RAM

- Known as RANDOM Access Memory because any place in it can be accessed in the same amount of time (which is not necessarily true for older secondary storage).
- This areas of memory is broken down into bytes, with each byte being able to be accessed independently of the others
- When the computer is turned off, everything in RAM is lost.
- When running a program, all the machine language instructions are brought into RAM and, one-by-one, pulled into the CPU by the fetch and execute cycle.

Secondary Storage

- Secondary storage can usually be broken down into two types
 - Hard disk drive (HDD) also known as "spinning" drives.
 - Contain multiple magnetic material discs which rotate together at a constant velocity
 - Contain read heads which move to different radii on the disk
 - Allow the system to access any position via it's three dimensional polar coordinates
 - Accessing first the innermost radius then the outermost radius takes significantly longer than two adjacent radii.
 - Size is usually measured in terabytes
 - Solid State Disks
 - Contain a number of chips like USB flash drives.
 - Data is stored, electrically, in these chips
 - All data can be access in the same amount of time
 - Due to cost, these drives a smaller than HDDs but perform much faster.

HDD vs. SSD

Networking

- The world is now globally connected
- Data can come from anywhere as long as the data and we are connected to the same network.
- Networks are interconnected via the Internet

Physical connections

- Types of connections
 - Copper
 - Fiber
 - Wireless
- Protocols
 - How do we know when to start sending data?
 - How do we know who its from?
 - How do we know who its going to?
- Types of physical connections
 - Ethernet
 - Wifi (802.11)
 - ATM

Packets

- Unlike a telephone, true connections on a network are rare.
- Data is sent from a program to another program indirectly by using multiple protocols.
- Generally there will be protocols for:
 - Each application
 - Each logical network
 - Each physical network
- In order to send data it is encapsulated into a packet and given to the application protocol, which then adds a header for information for the receiver to understand what's being sent.
- When the packet moves to the logical protocol, it too adds a header on top of the application layer's header.

Layers we commonly use

- Application
 - HTTP Hyper Text Transport Protocol
 - SMTP Simple Mail Transport Protocol
 - IMAP Internet Mail Access Protocol
- Logical (more formally called Network)
 - Usually broken down into two layers
 - Connection oriented vs. Connection less deals with the ordering and guarantee of delivery of packets
 - UDP
 - TCP
 - Global delivery of packets
 - Internet Protocol IP
- Physical
 - Often adds a header and footer (to indicate the end)
 - Mostly concerned with local addressing and how to deal with eccentricities of the physical medium
 - Ethernet
 - 802.11