QUESTION 1

QUESTION A:

• Write a program to calculate regression model that includes main effects and all two-factor interaction effects

In [343]:

OLS Regression Results

========	=======	=======	====:	=====		=======	=====
====							
Dep. Variable	:	Ņ	lew	R-squared:			
0.984							
Model:		C	DLS	Adj.	R-squared:		
0.886					•		
Method:		Least Squar	res	F-sta	tistic:		1
0.07							
Date:	Sa	t. 15 Δnr 20	123	Proh	(F-statistic):		
0.237	54	c, 15 Apr 20	,_,	1100	(scaciscie).		
Time:		21:36:	. 22	Log-L	ikelihood:		-5.
8063		21.30.		LUG-L	TKETTHOOG.		-5.
			0	ATC.			2
No. Observati	ons:		8	AIC:			2
5.61			_				
Df Residuals:			1	BIC:			2
6.17							
Df Model:			6				
Covariance Ty	pe:	nonrobu	ıst				
=========	=======	========		=====	=========	=======	=====
====							
	coef	std err		t	P> t	[0.025	0.
975]						-	
Intercept	47.6250	0.500	95	250	0.007	41.272	5
3.978	17.0230	0.300			0.007	,_,_	
Α	-0.8750	0.500	_1	.750	0.330	-7.228	
5.478	-0.0750	0.500	-1	. / 50	0.550	-7.220	
	0 2750	0 500	0	750	0 500	F 070	
B	0.3750	0.500	О	.750	0.590	-5.978	
6.728	4 5000	0 500	_	000	0 205	4 053	
C	1.5000	0.500	3	.000	0.205	-4.853	
7.853			_				
A:B	1.6250	0.500	3	.250	0.190	-4.728	
7.978							
A:C	2.5000	0.500	5	.000	0.126	-3.853	
8.853							
B:C	1.7500	0.500	3	.500	0.177	-4.603	
8.103							
=========	=======	========	====	=====	=========	=======	=====
====							
Omnibus:		9.6	577	Durbi	n-Watson:		
2.500							
Prob(Omnibus)	•	0.6	808	Jargu	e-Bera (JB):		
1.333	•	0.0	,,,,	3 a. qa	e bei a (55).		
Skew:		0 0	900	Prob(JR).		
0.513		0.6	,,,,	1100(50).		
		1 (200	Cond.	No		
Kurtosis:		1.6	900	cona.	INO .		
1.00							
========	=======	========	====	=====	========	=======	=====
====							

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

c:\Users\kanad\AppData\Local\Programs\Python\Python39\lib\site-packages\sc
ipy\stats_stats_py.py:1477: UserWarning: kurtosistest only valid for n>=2
0 ... continuing anyway, n=8
warnings.warn("kurtosistest only valid for n>=20 ... continuing "

COMMENTS:

• The coefficients are [47.63, -0.875, 0.375, 1.5,1.625,2.5,1.75] for the regression model.

QUESTION B:

• Perform the analyse of variance (Hint: complete table 2). Based on analysis which factors significantly affect the customer response rate?

```
In [344]:
```

```
import pandas as pd
import numpy as np
import scipy.stats as stats
# Read the data from the table and store it in a pandas dataframe
data = pd.DataFrame({
    'A': [-1, 1, -1, 1, -1, 1, -1, 1],
    'B': [-1, -1, 1, 1, -1, -1, 1],
    'C': [-1, -1, -1, -1, 1, 1, 1, 1],
})
df['Replicate_1']=[50, 44, 46, 42, 49, 48, 47, 56]
df['Replicate_2']=[54, 42, 48, 43, 46, 45, 48, 54]
df['Sum']=df['Replicate_1']+df['Replicate_2']
temp=df['Sum']
#print(temp)
def SS(x):
    return (8*x)**2/(8*2)
# Sum of Squares for A
A=(1/len(temp))*(temp[1]-temp[0]+temp[3]-temp[2]+temp[5]-temp[4]+temp[7]-temp[6])
SS_A=SS(A)
print('SS_A:',SS_A)
# Sum of Squares for B
B=(1/len(temp))*(temp[2]+temp[3]+temp[6]+temp[7]-temp[0]-temp[1]-temp[4]-temp[5])
SS_B=SS(B)
print('SS_B :',SS_B)
# Sum of Squares for C
C=(1/len(temp))*(temp[4]+temp[5]+temp[6]+temp[7]-temp[0]-temp[1]-temp[2]-temp[3])
SS C=SS(C)
print('SS_C :',SS_C)
# Sum of Squares for AB
AB=(1/len(temp))*(temp[3]-temp[1]-temp[2]+temp[0]+temp[7]-temp[6]-temp[5]+temp[4])
SS_AB=SS(AB)
print('SS_AB :',SS_AB)
# Sum of Squares for AC
AC=(1/len(temp))*(temp[0]-temp[1]+temp[2]-temp[3]-temp[4]+temp[5]-temp[6]+temp[7])
SS_AC=SS(AC)
print('SS_AC :',SS_AC)
# Sum of Squares for BC
BC=(1/len(temp))*(temp[0]+temp[1]-temp[2]-temp[3]-temp[4]-temp[5]+temp[6]+temp[7])
SS BC=SS(BC)
print('SS_BC :',SS_BC)
# Sum of Squares for Model
SSModel=SS A+SS B+SS C+SS AB+SS BC+SS AC
print('SS_Model :',SSModel)
# Sum of Squares for Total
S=df['Replicate_1'].to_numpy()**2+df['Replicate_2'].to_numpy()**2
S=np.sum(S)-(np.sum(df['Replicate_1'].to_numpy()+df['Replicate_2'].to_numpy()))**2/16
#print(S)
SST=S
print('SS_T :',SST)
SS_Residual=SST-SSModel
print('Residual error :',SS_Residual)
# Sum of Squares for ABC
ABC = (1/len(temp))*(temp[7] - temp[6] - temp[5] + temp[4] - temp[3] + temp[2] + temp[0])
SS_ABC=SS(ABC)
print('SS_ABC/ SS_Lack of Fit:',SS_ABC)
SS_Pure_Error = SS_Residual - SS_ABC
print('SS Pure Error :',SS Pure Error)
```

SS_A: 12.25 SS_B: 2.25 SS_C: 36.0 SS_AB: 42.25 SS_AC: 100.0 SS_BC: 49.0 SS_Model: 241.75 SS_T: 269.75 Residual error: 28.0 SS_ABC/ SS_Lack of Fit: 4.0 SS_Pure Error: 24.0

In [345]:

```
DOF=[6,1,1,1,1,1,9,1,8,15] # Degree of freedom
```

In [346]:

In [347]:

```
F=[]
for i in range(len(MSE)):
    F.append(MSE[i]/MSE[7])
print(F)
```

[12.950892857142856, 3.9375, 0.7232142857142857, 11.571428571428571, 13.58 0357142857142, 15.75, 32.14285714285714, 1.0, 1.2857142857142856, 0.964285 7142857143, nan]

In [348]:

```
# create the ANOVA table
anova_table = pd.DataFrame({
    'Source of Variation': ['Model', 'A', 'B','C', 'AB','AC', 'BC','Residual', 'Lack of
Fit','Pure error', 'Total'],
    'Sum of Squares': [SSModel,SS_A,SS_B,SS_C,SS_AB,SS_BC,SS_AC,SS_Residual,SS_ABC,SS_P
ure_Error,SST],
    'Degrees of Freedom': DOF,
    'Mean Square': MSE,
    'F value': F,
})

# set the index to the source column
anova_table.set_index('Source of Variation', inplace=True)

# display the ANOVA table
print(anova_table)
```

١

	Sum of Squares	Degrees of Freedo	om	Mean Square	١
Source of Variation					
Model	241.75		6	40.291667	
Α	12.25		1	12.250000	
В	2.25		1	2.250000	
С	36.00		1	36.000000	
AB	42.25		1	42.250000	
AC	49.00		1	49.000000	
BC	100.00		1	100.000000	
Residual	28.00		9	3.111111	
Lack of Fit	4.00		1	4.000000	
Pure error	24.00		8	3.000000	
Total	269.75	1	.5	NaN	

	. varac
Source of Variation	
Model	12.950893
A	3.937500
В	0.723214
C	11.571429
AB	13.580357
AC	15.750000
BC	32.142857
Residual	1.000000
Lack of Fit	1.285714
Pure error	0.964286
Total	NaN

COMMENTS:

- The Model F-value of 12.95 implies the model is significant. There is only a 0.06% chance that a "Model F-Value" this large could occur due to noise.
- In this case C, AB, AC, BC are significant model terms.

F value

• From the F values the two factor interactions, AB, AC, BC, and factors A and C as significant. Factor B is not significant; however, remains in the model to satisfy the hierarchal principle. The analysis of variance confirms the significance of two factor interactions and factor C.However, factor A is only marginally significant compared to others.

QUESTION C:

• Analyze the residuals from this experiment. Are there any indications of model inadequacy? (There will be two graphs; the x-axis Vs y-axis will be, 'Residual' Vs 'Normal % Probability' in the first graph and 'Predicted' Vs 'Residuals' in the second graph. The plot colour should be RED for both graphs.)

In [349]:

```
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
# Generate the residual vs. normal probability plot
residuals = model.resid
fig, ax = plt.subplots()
sm.qqplot(residuals, line='45', ax=ax, color='red')
ax.set(title='Residuals vs. Normal Probability', xlabel='Theoretical Quantiles', ylabel
='Sample Quantiles')
plt.show()
# Generate the predicted vs. residuals plot
predicted = model.fittedvalues
fig, ax = plt.subplots()
ax.scatter(predicted, residuals, color='red')
ax.axhline(y=0, color='black', linestyle='--')
ax.set(title='Predicted vs. Residuals', xlabel='Predicted', ylabel='Residuals')
plt.show()
```

c:\Users\kanad\AppData\Local\Programs\Python\Python39\lib\site-packages\st
atsmodels\graphics\gofplots.py:1045: UserWarning: color is redundantly def
ined by the 'color' keyword argument and the fmt string "b" (-> color=(0.
0, 0.0, 1.0, 1)). The keyword argument will take precedence.
ax.plot(x, y, fmt, **plot_style)

Residuals vs. Normal Probability

Predicted vs. Residuals

COMMENTS:

• The residual plots below do not identify model inadequacy.

QUESTION D:

• Suppose only one-half of data in given problem could be run, construct the design and perform the statistical analysis using the data from replicate I

In [350]:

```
X = [[-1, -1],
       [-1, 1],
       [1, -1],
       [1, 1]]
y=((df['Replicate_1'])).loc[0:3].to_numpy()
y
```

Out[350]:

```
array([50, 44, 46, 42], dtype=int64)
```

In [351]:

```
# Calculate total sum of squares
total_ss = np.sum(y**2)-np.sum(y)**2/4
print(total_ss)
# Calculate sum of squares for factor A
ss_a = (y[3]+y[1]-y[2]-y[0])**2/(4)
# Calculate sum of squares for factor B
ss_b = (y[3]+y[2]-y[1]-y[0])**2/(4)
# Calculate sum of squares for interaction AB
ss_ab = (y[3]+y[0]-y[1]-y[2])**2/(4)
# Calculate residual sum of squares
error_ss = total_ss - ss_a - ss_b - ss_ab
# Calculate degrees of freedom
df a = 1
df_b = 1
df_ab = 1
df_error = 8
# Calculate the mean square for each source of variation
ms_a = ss_a / df_a
ms_b = ss_b / df_b
ms_ab = ss_ab / df_ab
ms_error = error_ss / df_error
# Calculate the F-value for each source of variation
f_a = ms_a / ms_error
f_b = ms_b / ms_error
f_ab = ms_ab / ms_error
# Calculate the p-value for each source of variation
p_a = 1 - stats.f.cdf(f_a, df_a, df_error)
p_b = 1 - stats.f.cdf(f_b, df_b, df_error)
p_ab = 1 - stats.f.cdf(f_ab, df_ab, df_error)
# Display the results
df = pd.DataFrame({'Source of Variation':['A','B','AB','Error'],
                    'Sum of Squares':[ss a,ss b,ss ab,error ss],
                   'Degrees of Freedom':[df_a,df_b,df_ab,df_error],
                   'Mean Square': [ms a, ms b, ms ab, ms error],
                   'F-value':[f_a,f_b,f_ab,np.nan],
                   'p-value':[p_a,p_b,p_ab,np.nan]})
print(df)
```

	Source of	Variation	Sum of Squares	Degrees of	Freedom	Mean Square	\
0		Α	25.0		1	25.0	
1		В	9.0		1	9.0	
2		AB	1.0		1	1.0	
3		Error	0.0		8	0.0	
	F-value	p-value					
0	inf	0.0					
1	inf	0.0					
2	inf	0.0					
3	NaN	NaN					

C:\Users\kanad\AppData\Local\Temp\ipykernel_25884\2541813103.py:30: Runtim
eWarning: divide by zero encountered in double_scalars

f_a = ms_a / ms_error

C:\Users\kanad\AppData\Local\Temp\ipykernel_25884\2541813103.py:31: Runtim
eWarning: divide by zero encountered in double_scalars

f_b = ms_b / ms_error

C:\Users\kanad\AppData\Local\Temp\ipykernel_25884\2541813103.py:32: Runtim
eWarning: divide by zero encountered in double_scalars

f_ab = ms_ab / ms_error

COMMENTS:

• Here we can see that the error is 0.