Random Fourier Features: Optimal Uniform Bounds

Zoltán Szabó*

Joint work with Bharath K. Sriperumbudur*

Department of Statistics, PSU

(*equal contribution)

'Statistics with coffee' seminar École Polytechnique October 5, 2016

Outline

- Kernel.
- Random Fourier features (RFFs).
- Optimal uniform guarantee on RFF approximation.

Kernel

Kernel, RKHS

- $k: \mathfrak{X} \times \mathfrak{X} \to \mathbb{R}$ kernel on \mathfrak{X} , if
 - $\exists \varphi : \mathfrak{X} \to H(\mathsf{ilbert space})$ feature map,
 - $k(a,b) = \langle \varphi(a), \varphi(b) \rangle_H \ (\forall a,b \in \mathfrak{X}).$

Kernel, RKHS

- $k: \mathfrak{X} \times \mathfrak{X} \to \mathbb{R}$ kernel on \mathfrak{X} , if
 - $\exists \varphi : \mathfrak{X} \to H(\mathsf{ilbert space})$ feature map,
 - $k(a,b) = \langle \varphi(a), \varphi(b) \rangle_H \ (\forall a,b \in \mathfrak{X}).$
- Kernel examples: $\mathfrak{X} = \mathbb{R}^d \ (p > 0, \ \theta > 0)$
 - $k(a, b) = (\langle a, b \rangle + \theta)^p$: polynomial,
 - $k(a, b) = e^{-\theta \|a-b\|_2^2}$: Gaussian,
 - $k(a,b) = e^{-\theta ||a-b||_2}$: Laplacian.

Kernel, RKHS

- $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ kernel on \mathcal{X} , if
 - $\exists \varphi : \mathfrak{X} \to H(\mathsf{ilbert space})$ feature map,
 - $k(a,b) = \langle \varphi(a), \varphi(b) \rangle_H \ (\forall a,b \in \mathfrak{X}).$
- Kernel examples: $\mathfrak{X} = \mathbb{R}^d \ (p > 0, \ \theta > 0)$
 - $k(a, b) = (\langle a, b \rangle + \theta)^p$: polynomial,
 - $k(a, b) = e^{-\theta ||a-b||_2^2}$: Gaussian,
 - $k(a, b) = e^{-\theta ||a-b||_2}$: Laplacian.
- In the H = H(k) RKHS ($\exists !$): $\varphi(b) = k(\cdot, b)$.

RKHS: evaluation point of view

- Let $H \subset \mathbb{R}^{\mathcal{X}}$ be a Hilbert space.
- Consider for fixed $x \in \mathcal{X}$ the $\delta_x : f \in H \mapsto f(x) \in \mathbb{R}$ map.
- The evaluation functional is linear:

$$\delta_{\mathsf{x}}(\alpha f + \beta g) = \alpha \delta_{\mathsf{x}}(f) + \beta \delta_{\mathsf{x}}(g).$$

RKHS: evaluation point of view

- Let $H \subset \mathbb{R}^{\mathcal{X}}$ be a Hilbert space.
- Consider for fixed $x \in \mathcal{X}$ the $\delta_x : f \in H \mapsto f(x) \in \mathbb{R}$ map.
- The evaluation functional is linear:

$$\delta_{\mathsf{x}}(\alpha \mathsf{f} + \beta \mathsf{g}) = \alpha \delta_{\mathsf{x}}(\mathsf{f}) + \beta \delta_{\mathsf{x}}(\mathsf{g}).$$

• Def.: *H* is called *RKHS* if δ_x is continuous for $\forall x \in \mathcal{X}$.

RKHS: reproducing point of view

- Let $H \subset \mathbb{R}^{\mathcal{X}}$ be a Hilbert space.
- $k: \mathcal{X} \times \mathcal{X} \rightarrow$ is called a *reproducing kernel of H* if for $\forall x \in \mathcal{X}, f \in \mathcal{H}$

 - $\langle f, k(\cdot, x) \rangle_H = f(x)$ (reproducing property).

RKHS: reproducing point of view

- Let $H \subset \mathbb{R}^{\mathcal{X}}$ be a Hilbert space.
- $k: \mathcal{X} \times \mathcal{X} \rightarrow$ is called a *reproducing kernel of H* if for $\forall x \in \mathcal{X}, f \in \mathcal{H}$

 - $\langle f, k(\cdot, x) \rangle_H = f(x)$ (reproducing property).

Specifically, $\forall x, y \in \mathcal{X}$

$$k(x,y) = \langle k(\cdot,x), k(\cdot,y) \rangle_H$$

RKHS: positive-definite point of view

- Let us given a $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ symmetric function.
- k is called *positive definite* if $\forall n \geq 1, \ \forall (a_1, \ldots, a_n) \in \mathbb{R}^n$, $(x_1, \ldots, x_n) \in \mathcal{X}^n$

$$\sum_{i,j=1}^n a_i a_j k(x_i, x_j) = \mathbf{a}^T \mathbf{G} \mathbf{a} \geq 0,$$

where
$$\mathbf{G} = [k(x_i, x_j)]_{i,j=1}^n$$
.

Kernel: example domains (\mathfrak{X})

- Euclidean space: $\mathfrak{X} = \mathbb{R}^d$.
- Graphs, texts, time series, dynamical systems, distributions.

Kernel: application example – ridge regression

- Given: $\{(x_i, y_i)\}_{i=1}^{\ell}$, H = H(k).
- Task: find $f \in H$ s.t. $f(x_i) \approx y_i$,

$$J(f) = \frac{1}{\ell} \sum_{i=1}^{\ell} [f(x_i) - y_i]^2 + \lambda \|f\|_H^2 \to \min_{f \in H} \quad (\lambda > 0).$$

Kernel: application example – ridge regression

- Given: $\{(x_i, y_i)\}_{i=1}^{\ell}$, H = H(k).
- Task: find $f \in H$ s.t. $f(x_i) \approx y_i$,

$$J(f) = \frac{1}{\ell} \sum_{i=1}^{\ell} [f(x_i) - y_i]^2 + \lambda \|f\|_H^2 \to \min_{f \in H} \quad (\lambda > 0).$$

• Analytical solution, $O(\ell^3)$ – expensive:

$$f(x) = [k(x_1, x), \dots, k(x_{\ell}, x)](\mathbf{G} + \lambda \ell I)^{-1}[y_1; \dots; y_{\ell}],$$

$$\mathbf{G} = [k(x_i, x_j)]_{i,j=1}^{\ell}.$$

Kernel: application example – ridge regression

- Given: $\{(x_i, y_i)\}_{i=1}^{\ell}$, H = H(k).
- Task: find $f \in H$ s.t. $f(x_i) \approx y_i$,

$$J(f) = \frac{1}{\ell} \sum_{i=1}^{\ell} [f(x_i) - y_i]^2 + \lambda \|f\|_H^2 \to \min_{f \in H} \quad (\lambda > 0).$$

• Analytical solution, $O(\ell^3)$ – expensive:

$$f(x) = [k(x_1, x), \dots, k(x_{\ell}, x)](\mathbf{G} + \lambda \ell I)^{-1}[y_1; \dots; y_{\ell}],$$

$$\mathbf{G} = [k(x_i, x_j)]_{i,j=1}^{\ell}.$$

• Idea: $\hat{\mathbf{G}}$, matrix-inversion lemma, fast primal solvers \rightarrow RFF.

Random Fourier features

Focus

- $\mathfrak{X} = \mathbb{R}^d$. k: continuous, shift-invariant $[k(\mathbf{x}, \mathbf{y}) = \tilde{k}(\mathbf{x} \mathbf{y})]$.
- By Bochner's theorem:

$$k(\mathbf{x}, \mathbf{y}) = \int_{\mathbb{R}^d} e^{i\boldsymbol{\omega}^T(\mathbf{x} - \mathbf{y})} \mathrm{d}\Lambda(\boldsymbol{\omega}) = \int_{\mathbb{R}^d} \cos\left(\boldsymbol{\omega}^T(\mathbf{x} - \mathbf{y})\right) \mathrm{d}\Lambda(\boldsymbol{\omega}).$$

Focus

- $\mathfrak{X} = \mathbb{R}^d$. k: continuous, shift-invariant $[k(\mathbf{x}, \mathbf{y}) = \tilde{k}(\mathbf{x} \mathbf{y})]$.
- By Bochner's theorem:

$$k(\mathbf{x}, \mathbf{y}) = \int_{\mathbb{R}^d} e^{i\boldsymbol{\omega}^T(\mathbf{x} - \mathbf{y})} d\Lambda(\boldsymbol{\omega}) = \int_{\mathbb{R}^d} \cos\left(\boldsymbol{\omega}^T(\mathbf{x} - \mathbf{y})\right) d\Lambda(\boldsymbol{\omega}).$$

• RFF trick [Rahimi and Recht, 2007] (MC): $\omega_{1:m} := (\omega_j)_{j=1}^m \overset{i.i.d.}{\sim} \Lambda$,

$$\hat{k}(\mathbf{x}, \mathbf{y}) = \frac{1}{m} \sum_{j=1}^{m} \cos \left(\omega_{j}^{T} (\mathbf{x} - \mathbf{y}) \right) = \int_{\mathbb{R}^{d}} \cos \left(\omega^{T} (\mathbf{x} - \mathbf{y}) \right) d\Lambda_{m}(\omega).$$

RFF - existing guarantee, basically

• Hoeffding inequality + union bound:

$$\|k - \hat{k}\|_{L^{\infty}(\mathbb{S})} = \mathfrak{O}_{p}\left(\underbrace{|\mathbb{S}|}_{\text{linear}}\sqrt{\frac{\log m}{m}}\right).$$

RFF - existing guarantee, basically

• Hoeffding inequality + union bound:

$$\|k - \hat{k}\|_{L^{\infty}(\mathbb{S})} = \mathfrak{O}_{p}\left(\underbrace{|\mathbb{S}|}_{\text{linear}}\sqrt{\frac{\log m}{m}}\right).$$

- Characteristic function point of view [Csörgő and Totik, 1983] (asymptotic!):
 - **1** $|S_m| = e^{o(m)}$ is the optimal rate for a.s. convergence,
 - ② For faster growing $|S_m|$: even convergence in probability fails.

Uniform finite-sample bound for RFFs

Today: one-page summary

 $\bullet \quad \mathsf{Finite}\text{-sample } L^{\infty}\text{-guarantee} \xrightarrow{\mathsf{specifically}}$

$$\|k - \hat{k}\|_{L^{\infty}(\mathbb{S})} = \mathcal{O}_{a.s.}\left(\frac{\sqrt{\log |\mathfrak{S}|}}{\sqrt{m}}\right)$$

 \Rightarrow S can grow exponentially $[|S_m| = e^{o(m)}]$ – optimal!

Today: one-page summary

• Finite-sample L^{∞} -guarantee $\xrightarrow{\text{specifically}}$

$$\|k - \hat{k}\|_{L^{\infty}(\mathbb{S})} = \mathcal{O}_{a.s.}\left(\frac{\sqrt{\log |\mathcal{S}|}}{\sqrt{m}}\right)$$

- \Rightarrow S can grow exponentially $[|S_m| = e^{o(m)}]$ optimal!
- ② Dissemination: NIPS-2015 [spotlight 3.65%],
 - H. Strathmann, D. Sejdinovic, S. Livingston, Z. Szabó, A. Gretton. Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families. In NIPS-2015, pages 955-963.
 - W. Jitkrittum, A. Gretton, N. Heess, A. Eslami, B. Lakshminarayanan, D. Sejdinovic, Z. Szabó. Kernel-Based Just-In-Time Learning for Passing Expectation Propagation Messages. In UAI-2015, pages 405-414.

$\|k - \hat{k}\|_{L^{\infty}(\mathbb{S})}$: proof idea

① Empirical process form $[\mathbb{P}g := \int g d\mathbb{P}; \ g(\omega) = \cos\left(\omega^T(\mathbf{x} - \mathbf{y})\right)]$:

$$\sup_{\mathbf{x},\mathbf{y}\in\mathcal{S}}\left|k(\mathbf{x},\mathbf{y})-\hat{k}(\mathbf{x},\mathbf{y})\right|=\sup_{g\in\mathcal{G}}\left|\Lambda_g-\Lambda_mg\right|=\left\|\Lambda-\Lambda_m\right\|_{\mathcal{G}}.$$

$||k - \hat{k}||_{L^{\infty}(\mathbb{S})}$: proof idea

1 Empirical process form $[\mathbb{P}g := \int g d\mathbb{P}; \ g(\boldsymbol{\omega}) = \cos\left(\boldsymbol{\omega}^T(\mathbf{x} - \mathbf{y})\right)]$:

$$\sup_{\mathbf{x},\mathbf{y}\in\mathbb{S}}\left|k(\mathbf{x},\mathbf{y})-\hat{k}(\mathbf{x},\mathbf{y})\right|=\sup_{g\in\mathcal{G}}\left|\Lambda_g-\Lambda_mg\right|=\left\|\Lambda-\Lambda_m\right\|_{\mathcal{G}}.$$

② $f(\omega_{1:m}) = \|\Lambda - \Lambda_m\|_{\mathcal{G}}$ concentrates (bounded difference):

$$\|\Lambda - \Lambda_m\|_{\mathcal{G}} \lesssim \mathbb{E}_{\omega_{1:m}} \|\Lambda - \Lambda_m\|_{\mathcal{G}} + \frac{1}{\sqrt{m}}.$$

$||k - \hat{k}||_{L^{\infty}(\mathbb{S})}$: proof idea

1 Empirical process form $[\mathbb{P}g := \int g d\mathbb{P}; \ g(\omega) = \cos(\omega^T (\mathbf{x} - \mathbf{y}))]$:

$$\sup_{\mathbf{x},\mathbf{y}\in\mathbb{S}}\left|k(\mathbf{x},\mathbf{y})-\hat{k}(\mathbf{x},\mathbf{y})\right|=\sup_{g\in\mathcal{G}}\left|\Lambda_g-\Lambda_mg\right|=\left\|\Lambda-\Lambda_m\right\|_{\mathcal{G}}.$$

② $f(\omega_{1:m}) = \|\Lambda - \Lambda_m\|_{\mathcal{G}}$ concentrates (bounded difference):

$$\|\Lambda - \Lambda_m\|_{\mathcal{G}} \lesssim \mathbb{E}_{\omega_{1:m}} \|\Lambda - \Lambda_m\|_{\mathcal{G}} + \frac{1}{\sqrt{m}}.$$

ullet is 'nice' (uniformly bounded, separable Carathéodory) \Rightarrow

$$\begin{split} \mathbb{E}_{\boldsymbol{\omega}_{1:m}} \left\| \boldsymbol{\Lambda} - \boldsymbol{\Lambda}_m \right\|_{\mathcal{G}} \precsim \mathbb{E}_{\boldsymbol{\omega}_{1:m}} & \underbrace{\mathbb{R}\left(\mathcal{G}, \boldsymbol{\omega}_{1:m}\right)}_{\mathbb{E}_{\boldsymbol{\varepsilon}} \operatorname{sup}_{g \in \mathcal{G}} \left| \frac{1}{m} \sum_{j=1}^{m} \epsilon_{j} g(\omega_{j}) \right|}. \end{split}$$

Proof idea

Using Dudley's entropy bound:

$$\Re\left(\mathcal{G}, \boldsymbol{\omega}_{1:m}\right) \precsim \frac{1}{\sqrt{m}} \int_{0}^{|\mathcal{G}|_{L^{2}(\Lambda_{m})}} \sqrt{\log \mathcal{N}(\mathcal{G}, L^{2}(\Lambda_{m}), r)} \mathrm{d}r.$$

Proof idea

Using Dudley's entropy bound:

$$\Re\left(\mathcal{G}, \boldsymbol{\omega}_{1:m}\right) \lesssim \frac{1}{\sqrt{m}} \int_{0}^{|\mathcal{G}|_{L^{2}(\Lambda_{m})}} \sqrt{\log \mathcal{N}(\mathcal{G}, L^{2}(\Lambda_{m}), r)} \mathrm{d}r.$$

 $oldsymbol{\mathfrak{G}}$ is smoothly parameterized by a compact set \Rightarrow

$$\mathcal{N}\left(\mathcal{G}, L^{2}(\Lambda_{m}), r\right) \leq \left(\frac{4|\mathcal{S}|A}{r} + 1\right)^{d}, \ A(\omega_{1:m}) = \sqrt{\frac{1}{m} \sum_{j=1}^{m} \|\omega_{j}\|_{2}^{2}}.$$

Proof idea

Using Dudley's entropy bound:

$$\Re\left(\mathcal{G}, \boldsymbol{\omega}_{1:m}\right) \lesssim \frac{1}{\sqrt{m}} \int_{0}^{|\mathcal{G}|_{L^{2}(\Lambda_{m})}} \sqrt{\log \mathcal{N}(\mathcal{G}, L^{2}(\Lambda_{m}), r)} \mathrm{d}r.$$

5 \mathcal{G} is smoothly parameterized by a compact set \Rightarrow

$$\mathcal{N}\left(\mathcal{G}, L^{2}(\Lambda_{m}), r\right) \leq \left(\frac{4|\mathcal{S}|A}{r} + 1\right)^{d}, \ A(\omega_{1:m}) = \sqrt{\frac{1}{m} \sum_{j=1}^{m} \|\omega_{j}\|_{2}^{2}}.$$

1 Putting together $[|\mathcal{G}|_{L^2(\Lambda_m)} \leq 2$, Jensen inequality] we get . . .

L^{∞} result for k

Let k be continuous, $\sigma^2 := \int \|\omega\|^2 d\Lambda(\omega) < \infty$. Then for $\forall \tau > 0$ and compact set $S \subset \mathbb{R}^d$

$$\Lambda^{m}\left(\|\hat{k}-k\|_{L^{\infty}(\mathbb{S})} \geq \frac{h(d,|\mathbb{S}|,\sigma)+\sqrt{2\tau}}{\sqrt{m}}\right) \leq e^{-\tau},$$

$$h(d,|\mathbb{S}|,\sigma) := 32\sqrt{2d\log(2|\mathbb{S}|+1)} + 16\sqrt{\frac{2d}{\log(2|\mathbb{S}|+1)}} + 32\sqrt{2d\log(\sigma+1)}.$$

Open questions

- We also have finite-sample bounds in $L^p(S)$: optimal?
- Kernel derivatives:
 - Applications, e.g.
 - fitting ∞ -D exp. family distributions [Sriperumbudur et al., 2014],
 - 2 nonlinear variable selection [Rosasco et al., 2013].
 - Challenge: *non-uniformly* bounded functions.

Open questions-2

- FiniteD features with $\|\cdot\|_{L^{\infty}(\mathbb{R}^d)}$ -guarantee?
- For operator-valued kernels
 - $k(x, y) \in \mathbb{R}$ $\leftrightarrow H(k) = \{f : \mathcal{X} \to \mathbb{R} \text{ functions}\}$
 - $k(x,y) \in \mathcal{L}(Z) \leftrightarrow H(k) = \{f : \mathcal{X} \to Z \text{ functions}\}.$

RFFs exist [Brault et al., 2016, Minh, 2016], but with loose bounds.

Thank you for the attention!

Uniformly bounded, separable Carathéodory family

 $\mathcal{G} = \{ \boldsymbol{\omega} \mapsto \cos \left(\boldsymbol{\omega}^{\mathsf{T}} \mathbf{z} \right) : \mathbf{z} = \mathbf{x} - \mathbf{y} \in \Delta_{\mathbb{S}} := \mathbb{S} - \mathbb{S} \}$ is a separable Carathéodory family, i.e.

Uniformly bounded, separable Carathéodory family

 $\mathcal{G} = \{ \boldsymbol{\omega} \mapsto \cos \left(\boldsymbol{\omega}^{\mathsf{T}} \mathbf{z} \right) : \mathbf{z} = \mathbf{x} - \mathbf{y} \in \Delta_{\mathbb{S}} := \mathbb{S} - \mathbb{S} \}$ is a separable Carathéodory family, i.e.

- 2 $z \mapsto \cos(\omega^T z)$: continuous for $\forall \omega$,

Uniformly bounded, separable Carathéodory family

$$\mathcal{G} = \{ \boldsymbol{\omega} \mapsto \cos \left(\boldsymbol{\omega}^{\mathsf{T}} \mathbf{z} \right) : \mathbf{z} = \mathbf{x} - \mathbf{y} \in \Delta_{\mathbb{S}} := \mathbb{S} - \mathbb{S} \}$$
 is a separable Carathéodory family, i.e.

- **1** $\omega \mapsto \cos(\omega^T \mathbf{z})$: measurable for $\forall \mathbf{z} \in \Delta_{\mathbb{S}}$,
- 2 $\mathbf{z} \mapsto \cos(\boldsymbol{\omega}^T \mathbf{z})$: continuous for $\forall \boldsymbol{\omega}$,
- lacktriangledown is separable, $\Delta_{\mathcal{S}} \subseteq \mathbb{R}^d \Rightarrow \Delta_{\mathcal{S}}$: separable,

and $\mathcal G$ is uniformly bounded $(\sup_{g\in\mathcal G}\|g\|_\infty\leq 1<\infty).$

Infinite-dimensional exponential family

Exponential family:

$$p_{\theta}(\mathbf{x}) \propto e^{\langle \mathbf{\theta}, T(\mathbf{x}) \rangle},$$

where θ : natural parameter, T(x): sufficient statistics.

• InfiniteD generalization:

$$p_f(\mathbf{x}) \propto e^{f(\mathbf{x})} = e^{\langle f, \mathbf{k}(\cdot, \mathbf{x}) \rangle_{H(k)}}.$$

Infinite-dimensional exponential family

Exponential family:

$$p_{\theta}(\mathbf{x}) \propto e^{\langle \mathbf{\theta}, T(\mathbf{x}) \rangle}$$

where θ : natural parameter, T(x): sufficient statistics.

• InfiniteD generalization:

$$p_f(\mathbf{x}) \propto e^{f(\mathbf{x})} = e^{\langle f, k(\cdot, \mathbf{x}) \rangle_{H(k)}}.$$

Fitting idea (score matching, Fischer divergence):

$$J(p_*,p_f) := \int p^*(\mathbf{x}) \left\| \frac{\partial p_*(\mathbf{x})}{\partial \mathbf{x}} - \frac{\partial p_f(\mathbf{x})}{\partial \mathbf{x}} \right\|_2^2 d\mathbf{x} \to \min_f.$$

Brault, R., d'Alché Buc, F., and Heinonen, M. (2016).

Random Fourier features for operator-valued kernels.

Technical report.

https://arxiv.org/abs/1605.02536.

Csörgő, S. and Totik, V. (1983).

On how long interval is the empirical characteristic function uniformly consistent?

Acta Scientiarum Mathematicarum, 45:141–149.

Minh, H. Q. (2016).

Operator-valued Bochner theorem, Fourier feature maps for operator-valued kernels, and vector-valued learning.

Technical report, Istituto Italiano di Tecnologia. http://128.84.21.199/abs/1608.05639v1.

Rahimi, A. and Recht, B. (2007).
Random features for large-scale kernel machines.
In *Neural Information Processing Systems (NIPS)*, pages 1177–1184.

Rosasco, L., Villa, S., Mosci, S., Santoro, M., and Verri, A. (2013).

Nonparametric sparsity and regularization.

Journal of Machine Learning Research, 14:1665–1714.

Sriperumbudur, B. K., Fukumizu, K., Gretton, A., Hyvärinen, A., and Kumar, R. (2014).

Density estimation in infinite dimensional exponential families. Technical report.

http://arxiv.org/pdf/1312.3516.pdf.