Neural Networks

6. Self-Organizing Maps

Center for Cognitive Science Department of Applied Informatics Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

Thursday 4th April, 2024

Self-Organizing Map

- ► Map: grid of rows × cols neurons
 - other topologies possible, e.g. hexagonal grid

Inputs: points in n-dimensional space:

$$x_k \in \mathbb{R}^n$$

Output: position of winning neuron *in the grid*:

$$i \in \{1, ..., rows\} \times \{1, ..., cols\}$$

▶ **Weights:** positions of neurons in the *input space*:

$$\mathbf{W} \in \mathbb{R}^{rows \times cols \times n}$$

Input space vs. Grid space

- ▶ Input space: $\mathcal{X} = \mathbb{R}^n$
 - ▶ input $\mathbf{x}_k \in \mathcal{X}$, neuron $\mathbf{w_i} = \mathbf{w}_{[r,c,:]} \in \mathcal{X}$
 - distance: e.g. $\|\mathbf{x}_k \mathbf{x}_j\|$ or $\|\mathbf{w}_i \mathbf{x}_k\|$
- ▶ Grid space: $\mathcal{G} = \{1, ..., rows\} \times \{1, ..., cols\}$
 - "index" of neuron = position in grid: $\mathbf{i} = (r_i, c_i) \in \mathcal{G}$
 - ightharpoonup distance: d(i,j)
- Grid distance metrics:
 - ► *L*₂-norm *Euclidean* distance:

$$d(\mathbf{i}, \mathbf{j}) = \sqrt{(r_i - r_j)^2 + (c_i - c_j)^2}$$

 $ightharpoonup L_1$ -norm – *Manhattan* distance:

$$d(\mathbf{i},\mathbf{j}) = |r_i - r_i| + |c_i - c_i|$$

► L_{∞} -norm – *axis-maximum* distance:

$$d(\boldsymbol{i},\boldsymbol{j}) = \max(|r_i - r_j|, |c_i - c_j|)$$

Input space vs. Grid space

$$L_1$$
 distance in \mathcal{G}

$$d(\mathbf{i}, \mathbf{j}) = 28$$
distance in \mathcal{X}

$$\|\mathbf{w_i} - \mathbf{w_i}\| = 4.126$$

Grid space \mathcal{G}

solid: L_1 distance in $\mathcal G$

$$d(i,j) = 28$$

dashed: L_2 distance in $\mathcal G$

$$d(i,j) = 24.331$$

Algorithm

- randomly initialize weights tensor W
 - scale and shift weights to match inputs distribution
 - i.e. if inputs are in $[100, 135] \times [-10, 0]$, neurons positions should *not* be from $[0, 1] \times [0, 1]$.
- ▶ for each epoch $t \in \{0, 1, ..., t_{max} 1\}$: for each input x:
 - winner neuron i^* $i^* = \arg \min_i ||w_i - x||$
- adjust winner and its neighborhood:
 - "pull" neurons towards x
 - \blacktriangleright h_t : neighborhood function

$$\Delta \mathbf{w_i} = \alpha_t(\mathbf{x} - \mathbf{w_i})h_t(\mathbf{i}, \mathbf{i}^*)$$

Locality of Adjustments

- $ightharpoonup h_t$: neighborhood function inverted distance
 - $black d(\mathbf{i}, \mathbf{i}^*) = 0 \implies h_t(\mathbf{i}, \mathbf{i}^*) = 1$
 - $d(\mathbf{i}, \mathbf{i}^*) = \infty \implies h_t(\mathbf{i}, \mathbf{i}^*) = 0$
- Discrete neighborhood:

$$h_t(\boldsymbol{i}, \boldsymbol{i}^*) = egin{cases} 1 & ext{if } d(\boldsymbol{i}, \boldsymbol{i}^*) < \lambda_t \ 0 & ext{otherwise} \end{cases}$$

- only adjust close-enough neurons
- Gaussian neighborhood (continuous):
 - $h_t(\mathbf{i}, \mathbf{i}^*) = \exp\left(-\frac{d(\mathbf{i}, \mathbf{i}^*)^2}{\lambda_t^2}\right)$
 - adjust all neurons with a distance fall-off
 - winner gets full adjustment:

$$d(\mathbf{i}^*, \mathbf{i}^*) = 0 \implies h_t(\mathbf{i}^*, \mathbf{i}^*) = 1$$

Training Parameters Schedule

- two training hyperparameters:
 - $\triangleright \alpha_t$: learning rate
 - λ_t: neighbourhood factor
- for first epoch, parameter value is $\alpha_0 = \alpha_s$ (start)
- for last epoch, parameter value is $\alpha_{t_{max}-1} = \alpha_f$ (finish)
- geometric schedule:

$$\begin{array}{ll} \blacktriangleright \ \ \text{parameter value for epoch} \ t \in \{0,1,...,t_{\textit{max}}-1\} \ \text{is:} \\ \alpha_t = \alpha_{\textit{s}} \cdot \left(\frac{\alpha_f}{\alpha_s}\right)^{\frac{t}{t_{\textit{max}}-1}} \qquad \quad \lambda_t = \lambda_{\textit{s}} \cdot \left(\frac{\lambda_f}{\lambda_s}\right)^{\frac{t}{t_{\textit{max}}-1}} \end{array}$$

Task

- Train SOM to various datasets:
 - square/circle/ellipse 2D
 - ► Iris dataset 2D/3D/4D
- som.py TODO:
 - initialize weights and scale them to match inputs
 - find the winner neuron, return i*
 - $ightharpoonup \alpha_t$ and λ_t schedule
 - discrete neighborhood
 - weight adjustment