Lenguajes Formales y Computabilidad Definiciones y Convenciones: Combo 8

Nicolás Cagliero

June 23, 2025

Defina:

- 1. M(P)
- 2. *Lt*
- 3. Conjunto rectangular
- 4. "S es un conjunto de tipo (n, m)"

Respuestas:

1. Sea Σ un alfabeto finito y sea $P: D_P \subseteq \omega \times \omega^n \times \Sigma^{*m} \to \omega$ un predicado. Dado $(\overrightarrow{x}, \overrightarrow{\alpha}) \in \omega^n \times \Sigma^{*m}$, cuando exista al menos un $t \in \omega$ tal que $P(t, \overrightarrow{x}, \overrightarrow{\alpha}) = 1$, usaremos $min_t P(t, \overrightarrow{x}, \overrightarrow{\alpha})$ para denotar al menor de tales t's. Definimos:

$$M(P) = \lambda \overrightarrow{x} \overrightarrow{\alpha} [min_t P(t, \overrightarrow{x}, \overrightarrow{\alpha})]$$

2. $Lt: \mathbf{N} \to \omega$

$$Lt(x) = \begin{cases} \max_{i}(x)_{i} \neq 0 & \text{si } x \neq 1\\ 0 & \text{si } x = 1 \end{cases}$$

3. Sea Σ un alfabeto finito. Un conjunto $\Sigma\text{-mixto }S$ es llamado rectangularsi es de la forma

$$S_1 \times \cdots \times S_n \times L_1 \times \cdots \times L_m$$

con cada $S_i \subseteq \omega$ y cada $L_i \subseteq \Sigma^*$

4. $n, m \in \omega$ son tales que $S \subseteq \omega^n \times \Sigma^{*m}$