More Terminology

Definition (Directed Graph)

A directed graph is a graph G = (V, E) where V is a set (of objects) and E is a set of ordered pairs of elements of V.

- In a directed graph each edge (u, v) has a direction
- Edges (u, v) and (v, u) can both exist, and have different weights
- An undirected graph can be seen as a special type of directed graph

Shortest Paths

With weighted edges a simple breadth-first search will not find the shortest paths

• The 'shortest' path from a to e is $\langle a, b, c, e \rangle$

Questions

- What might a "brute force" algorithm do?
- How long would it take?

The Bellman-Ford algorithm solves the general problem where edges may have negative weights

- A distance array is used again
- distance[v] is the current estimate of the shortest path to v
- The algorithm proceeds by gradually reducing these estimates

Relaxing edge (u, v) checks if $s \sim u \rightarrow v$ reduces distance [v]

Relax (Input: weighted edge (u, v))

- If distance[v] is greater than distance[u] + w(u, v) then:
 - distance[v] is distance[u] + w(u, v)
 - Parent of v is u

Bellman-Ford (Input: weighted graph G = (V, E) and vertex s)

- Set $distance[v] = \infty$ for all vertices
- Set distance[s] = 0
- Repeat |V| 1 times:
 - For each edge $e \in E$
 - Relax e
- For each edge $(u, v) \in E$
 - If distance[v] is greater than distance[u] + w(u, v)
 - Return FALSE
- Return TRUE

Question

Why does the loop run |V| - 1 times?

Bellman-Ford (Input: weighted graph G and vertex s)

- Set $distance[v] = \infty$ for all vertices
- Set distance[s] = 0
- Repeat |V| 1 times:
 - For each edge $e \in E$
 - Relax e
- For each edge $(u, v) \in E$
 - If distance[v] is greater than distance[u] + w(u, v)
 - Return FALSE
- Return TRUE
- ullet All edges are relaxed |V|-1 times so all paths are tried
- The algorithm returns FALSE if a negative weight cycle occurs

Relax (Input: weighted edge (u, v))

- If distance[v] is greater than distance[u] + w(u, v) then:
 - distance[v] is distance[u] + w(u, v)
 - Parent of v is μ

- In iteration i all edges in paths containing i edges have been relaxed
- ullet The most edges in any (simple) path is |V|-1

Relax (Input: weighted edge (u, v))

- If distance[v] is greater than distance[u] + w(u, v) then:
 - distance[v] is distance[u] + w(u, v)
 - Parent of v is μ

- In iteration i all edges in paths containing i edges have been relaxed
- ullet The most edges in any (simple) path is |V|-1

Relax (Input: weighted edge (u, v))

- If distance[v] is greater than distance[u] + w(u, v) then:
 - distance[v] is distance[u] + w(u, v)
 - Parent of v is μ

- In iteration i all edges in paths containing i edges have been relaxed
- ullet The most edges in any (simple) path is |V|-1

Relax (Input: weighted edge (u, v))

- If distance[v] is greater than distance[u] + w(u, v) then:
 - distance[v] is distance[u] + w(u, v)
 - Parent of v is μ

- In iteration i all edges in paths containing i edges have been relaxed
- ullet The most edges in any (simple) path is |V|-1

Relax (Input: weighted edge (u, v))

- If distance[v] is greater than distance[u] + w(u, v) then:
 - distance[v] is distance[u] + w(u, v)
 - Parent of v is u

- In iteration i all edges in paths containing i edges have been relaxed
- ullet The most edges in any (simple) path is |V|-1

Relax (Input: weighted edge (u, v))

- If distance[v] is greater than distance[u] + w(u, v) then:
 - distance[v] is distance[u] + w(u, v)
 - Parent of v is u

- In iteration i all edges in paths containing i edges have been relaxed
- ullet The most edges in any (simple) path is |V|-1

Relax (Input: weighted edge (u, v))

- If distance[v] is greater than distance[u] + w(u, v) then:
 - distance[v] is distance[u] + w(u, v)
 - Parent of v is u

- In iteration i all edges in paths containing i edges have been relaxed
- ullet The most edges in any (simple) path is |V|-1

Definition (Negative Weight Cycle)

A path $C = \langle v_1, v_2, \dots, v_n \rangle$ in a directed graph is a negative weight cycle iff C is a cycle and $\sum_{i=1}^{n-1} w(v_i, v_{i+1}) < 0$.

If a directed graph G contains a negative weight cycle $\langle v_1, v_2, \dots, v_n \rangle$ then:

- The shortest paths to all vertices reachable from v_1, \ldots, v_n are undefined
- In this case Bellman-Ford will return FALSE

Time

Question

What is the time complexity of Bellman–Ford?

Bellman-Ford (Input: weighted graph G and vertex s)

- Set $distance[v] = \infty$ for all vertices
- Set distance[s] = 0
- Repeat |V| 1 times:
 - For each edge $e \in E$
 - Relax e
- For each edge $(u, v) \in E$
 - If distance[v] is greater than distance[u] + w(u, v)
 - Return FALSE
- Return TRUE

If G has non-negative edges only then we can use Dijkstra's Algorithm

- Bellman-Ford relaxes every edge of every path
- The running time of Bellman-Ford is O(VE)
- Dijkstra's algorithm instead uses a greedy strategy

Basic idea:

- Relax edges from one vertex
- Will have then found shortest path to at least one other vertex
- Repeat

Dijkstra's algorithm maintains a set of vertices whose distance[v] is correct

```
Dijkstra (Input: weighted graph G = (V, E), vertex s)
distance[v] = infinity for all vertices
distance[s] = 0
S = {}
while V - S != {}
u is vertex in V - S with least distance[u]
for v in G.adj[u]
    relax (u,v)
S = S + {u}
```

- The next vertex added to S is the one with the least distance[u]
- This value is now assumed to be minimal. Is this correct?

Correctness

In the following, the function p represents the (actual) length of the shortest path from the source to a given vertex

- If there is no path $s \rightsquigarrow v$, then $p(v) = \infty$
- $\infty + x = \infty$, for all $x \in \mathbb{R}$

Theorem (Correctness of Dijkstra)

At the start of the while loop of Dijkstra's algorithm, run on weighted, directed graph G = (V, E) with non-negative weight function w, and vertex $s \in V$: if distance[v] = p(v) for all vertices $v \in S$, then distance[u] = p(u) for u, the next vertex added to S.

First we prove two useful properties

Lemma (Triangle Lemma)

Let G = (V, E) be a weighted, directed graph with weight function w, and source vertex s. If (u, v) is an edge in E, then $p(v) \le p(u) + w(u, v)$.

Proof.

If there is no path $s \rightsquigarrow u$, then $p(u) = \infty$, so $p(v) \leq p(u)$ and the lemma holds. If there is a path $s \rightsquigarrow u$, then $s \rightsquigarrow u \rightarrow v$ is a path to v. The length of one such path to v is p(u) + w(u, v). The shortest path to v cannot be longer than this, so the lemma also holds in this case.

First we prove two useful properties

Lemma (Triangle Lemma)

Let G = (V, E) be a weighted, directed graph with weight function w, and source vertex s. If (u, v) is an edge in E, then $p(v) \le p(u) + w(u, v)$.

Proof.

If there is no path $s \rightsquigarrow u$, then $p(u) = \infty$, so $p(v) \leq p(u)$ and the lemma holds. If there is a path $s \rightsquigarrow u$, then $s \rightsquigarrow u \rightarrow v$ is a path to v. The length of one such path to v is p(u) + w(u, v). The shortest path to v cannot be longer than this, so the lemma also holds in this case.

First we prove two useful properties

Lemma (Triangle Lemma)

Let G = (V, E) be a weighted, directed graph with weight function w, and source vertex s. If (u, v) is an edge in E, then $p(v) \le p(u) + w(u, v)$.

Proof.

If there is no path $s \sim u$, then $p(u) = \infty$, so $p(v) \leq p(u)$ and the lemma holds. If there is a path $s \sim u$, then $s \sim u \rightarrow v$ is a path to v. The length of one such path to v is p(u) + w(u, v). The shortest path to v cannot be longer than this, so the lemma also holds in this case.

First we prove two useful properties

Lemma (Triangle Lemma)

Let G = (V, E) be a weighted, directed graph with weight function w, and source vertex s. If (u, v) is an edge in E, then $p(v) \le p(u) + w(u, v)$.

Proof.

If there is no path $s \sim u$, then $p(u) = \infty$, so $p(v) \leq p(u)$ and the lemma holds. If there is a path $s \sim u$, then $s \sim u \rightarrow v$ is a path to v. The length of one such path to v is p(u) + w(u, v). The shortest path to v cannot be longer than this, so the lemma also holds in this case.

First we prove two useful properties

Lemma (Triangle Lemma)

Let G = (V, E) be a weighted, directed graph with weight function w, and source vertex s. If (u, v) is an edge in E, then $p(v) \le p(u) + w(u, v)$.

Proof.

If there is no path $s \sim u$, then $p(u) = \infty$, so $p(v) \leq p(u)$ and the lemma holds. If there is a path $s \sim u$, then $s \sim u \rightarrow v$ is a path to v. The length of one such path to v is p(u) + w(u, v). The shortest path to v cannot be longer than this, so the lemma also holds in this case.

This lemma shows that distance[u] is always an upper bound for p(u)

Lemma (Upper Bound Lemma)

Let G=(V,E) be a weighted, directed graph with weight function w, and source vertex s. If distance[s] is initialised to 0 and distance[v], for all $v \in V$ where $v \neq s$, is initialised to ∞ , then distance $[u] \geq p(u)$, for all $u \in V$, after relaxing any sequence of edges in G.

Proof.

Firstly, consider a sequence of 0 relaxed edges.

- $distance[u] = \infty$, for $u \neq s$
- distance[s] = 0

If s is part of a negative weight cycle, then $p(s) = -\infty$, otherwise p(s) = 0. So, $distance[u] \ge p(u)$ for all $u \in V$ in this case.

Proof (continued).

Now consider the relaxation of edge (x, y) within some sequence of relaxations.

• Assume distance $[u] \ge p(u)$ for all $u \in V$, prior to relaxing (x, y)

When (x, y) is relaxed either all distance[u] are unchanged, or distance[y] = distance[x] + w(x, y). In the latter case:

- distance[y] = distance[x] + w(x, y), so
- $distance[y] \ge p(x) + w(x, y)$, by the assumption, and
- $distance[y] \ge p(y)$, by the Triangle Lemma

So after relaxing (x, y), $distance[u] \ge p(u)$ still holds for all vertices in G, and by the principle of induction $distance[u] \ge p(u)$ is always true for any sequence of edge relaxations.

Theorem (Correctness of Dijkstra)

At the start of the while loop of Dijkstra's algorithm, run on weighted, directed graph G = (V, E) with non-negative weight function w, and vertex $s \in V$: if distance[v] = p(v) for all vertices $v \in S$, then distance[u] = p(u) for u, the next vertex added to S.

Proof.

If there is no path $s \rightsquigarrow u$ then $p(u) = \infty$. Since:

- $distance[u] \ge p(u)$, by the Upper Bound Lemma, then
- $distance[u] = \infty$, so
- distance[u] = p(u).

and the theorem is true.

Proof (continued).

If there is a path $s \leadsto u$, then consider the shortest such path. Let this path be $s \leadsto^p x \to y \leadsto^q u$, where y is the first vertex on the path not in S. First, it is shown that distance[y] = p(y), as follows. $s \leadsto^p x \to y$ must be a shortest path from s to y. (Or there would be a shorter path to u.) Then,

- distance[x] = p(x)
- distance[y] = distance[x] + w(x, y) = p(x) + w(x, y)

since x is in S and (x, y) was relaxed when x was added to S.

Proof (continued).

And, since $s \rightsquigarrow^p x \rightarrow y$ is a shortest path from s to y, then:

•
$$p(y) = p(x) + w(x, y) = distance[y]$$

Next we show that distance[u] = distance[y] = p(y) = p(u) using the observations that

- (1) $distance[u] \leq distance[y]$, since u is added next to S
- (2) $p(y) \le p(u)$, since all edges are non-negative.

Algorithms (580) Weighted Graphs February 2018

Proof (continued).

So, beginning with Observation (1):

- $distance[u] \leq distance[y]$, and therefore
- $distance[u] \leq p(y)$, and
- $distance[u] \le p(u)$, by Observation (2).

But $distance[u] \ge p(u)$ by the Upper Bound Lemma, so distance[u] = p(u) and the theorem is true.

Discussion

What is the time complexity of Dijkstra's algorithm?

```
Dijkstra (Input: weighted graph G = (V, E), vertex s)
distance[v] = infinity for all vertices
distance[s] = 0
S = {}
while V - S != {}
u is vertex in V - S with least distance[u]
for v in G.adj[u]
    relax (u,v)
S = S + {u}
```

Discussion

What is the time complexity of Dijkstra's algorithm?

Performance

The running time of Dijkstra's algorithm depends on the way in which the ordering of the vertices is managed

- Implement V S as a priority queue
- There is one iteration through the graph vertices
- ullet Each edge is relaxed once, giving an aggregate of |E|

With a binary-heap-based priority queue adding, removing and updating (changing key) all run in $O(\log_2 V)$ time.

• Overall running time is then $O(E \log_2 V)$