TODO (Přednáška + první část cvik)

Důsledek

Každý Lindelöfův regulární prostor je parakompaktní.

Důkaz

At \mathcal{U} je otevřené pokrytí \mathbb{X} . Z lindolöfovosti existuje spočetné pokrytí $\mathcal{V} \subseteq \mathcal{U}$. \mathcal{V} je σ -lokálně konečné otevřené zjemnění \mathcal{U} . Tedy platí b) z minulé věty.

Definice 0.1 (Skrčení)

At X je množina a $\mathcal{S} \subseteq \mathcal{P}(X)$ (pokrytí X). Indexovaný systém $\{T_S : S \in \mathcal{S}\} \subseteq \mathcal{P}(X)$ se nazývá skrčení systému \mathcal{S} , pokud (je to pokrytí) a $T_S \subseteq S, S \in \mathcal{S}$.

Poznámka (Nadmutí)

Skrčení je speciální případ zjemnění.

Podobně jako skrčení lze definovat pojem nadmutí.

Lemma 0.1 (O skrčení)

 $At \ \mathbb{X} \ je \ normální \ TP. \ Pak \ každé lokálně konečné (stačí bodově konečné) otevřené pokrytí <math>\mathbb{X} \ má \ uzavřené \ skrčení, jehož \ vnitřky \ tvoří \ pokrytí.$

 $D\mathring{u}kaz$

Ať $\mathcal{U} = \{U_{\alpha} : \alpha < \varkappa\}$, \varkappa kardinál, \mathcal{U} je lokálně kompaktní, otevřené pokrytí \mathbb{X} . Nyní $F_0 := \mathbb{X} \setminus \bigcup \{U_{\alpha} : 0 < \alpha < \varkappa\}$ uzavřená, $F_0 \subseteq U_0$ (z toho, že \mathcal{U} je pokrytí). Z normality existuje otevřená $V_0 \subseteq \mathbb{X} : F_0 \subseteq V_0 \subseteq \overline{V_0} \subseteq U_0$.

Nyní indukcí: Nechť máme zkonstruované $V_{\beta}: \forall \beta < \alpha < \varkappa$. Označíme $F_{\alpha}:= \mathbb{X} \setminus (\bigcup \{V_{\beta}: \beta < \alpha\} \cup \bigcup \{U_{\gamma}: \alpha < \gamma < \varkappa\})$. Z normality zas $V_{\alpha} \subseteq \mathbb{X}: F_{\alpha} \subseteq V_{\alpha} \subseteq \overline{V_{\alpha}} \subseteq U_{\alpha}$.

 $\mathcal{V} = \left\{ \overline{V_{\alpha}} : \alpha < \varkappa \right\} \text{ je skrčení } \mathcal{U}, \text{ int } \overline{V_{\alpha}} \supseteq V_{\alpha} \text{ a } \bigcup_{\alpha < \varkappa} V_{\alpha} = \mathbb{X}, \text{ tedy } \bigcup_{\alpha < \varkappa} \text{ int } \overline{V_{\alpha}} = \mathbb{X}. \quad \Box$

Definice 0.2 (Kolektivně normální)

TP \mathbb{X} se nazývá kolektivně normální, pokud pro každý diskrétní systém \mathcal{F} z uzavřených množin existuje disjunktní systém otevřených množin $\{U(F): F \in \mathcal{F}\}$, že $F \subseteq U(F), F \in \mathcal{F}$ (tj. otevřené nadmutí).

Poznámka

Každý kolektivně normální prostor je normální.

Tvrzení 0.2

Každý parakompaktní prostor už je kolektivně normální, tedy i normální.

 $D\mathring{u}kaz$

Ukážeme nejprve, že \mathbb{X} je regulární. At $F \subseteq \mathbb{X}$ uzavřená, $x \in \mathbb{X} \setminus F$. Pro $y \in F$ existuje otevřené okolí U_y bodu y, že $x \notin \overline{U_y}$. $\mathcal{U} := \{U_y : y \in F\} \cup \{\mathbb{X} \setminus F\}$ otevřené pokrytí \mathbb{X} . At \mathcal{V} je lokálně konečné otevřené zjemnění \mathcal{U} . $G := \bigcup \{V \in \mathcal{V} : V \cap F \neq \emptyset\}$. Z lemmatu $\overline{G} = \bigcup \{\overline{V} : V \in \mathcal{V}, V \cup F \neq \emptyset\} \not\ni x. \ G \supset F, G \text{ otevřená. Tedy } \mathbb{X} \text{ je regulární.}$

At \mathcal{F} je diskrétní soubor z uzavřených množin. Pro $F \in \mathcal{F}$ uvážíme $\bigcup \{H \in \mathcal{F} : H \neq F\}$... uzavřená z lemmatu o uzávěru sjednocení lokálně kompaktního systému. Pro $x \in F$ existuje (z první části důkazu) U_x otevřená, že $x \in U_x$, $U_x \cap H = \emptyset$ pro $H \neq F, H \in \mathcal{F}$. $\{U_x:x\in F\in\mathcal{F}\}\cup\{\mathbb{X}\setminus\bigcup F\}$ je otevřené pokrytí \mathbb{X} . At \mathcal{V} je otevřené lokálně konečné zjemnění. Pro $F \in \mathcal{F} : V(F) := \{ V \in \mathcal{V} : V \cup F \neq \emptyset \} \setminus \bigcup \{ \overline{V} : V \in \mathcal{V}, V \cap H \neq \emptyset \text{ pro nějaké} | H \in \mathcal{F}, H \in \mathcal{F} \}$ Platí $F \subseteq V(F)$. Pro $F, F' \in \mathcal{F}, F \neq F' \implies V(F) \cap V(F') = \emptyset$. $\{V(F) : F \in \mathcal{F}\}$ je disjunktní otevřené nadmutí \mathcal{F} .

Definice 0.3 (Hvězda)

At X je množina a $S \subseteq \mathcal{P}(X)$, $x \in X$, $A \subseteq X$.

Hvězda bodu x vzhledem k S je $(x, S) = \bigcup \{S \in S : x \in S\}.$

Hvězda množiny A vzhledem k @S je $(A, S) = \bigcup_{x \in A} (x, S)$.

Definice 0.4 (Barycentrické a hvězdovité zjemnění)

At \mathcal{U} , \mathcal{V} jsou pokrytí \mathbb{X} . Řekneme, že \mathcal{U} barycentricky zjemňuje \mathcal{V} , pokud $\{(x,\mathcal{U}):x\in\mathbb{X}\}$ zjemňuje \mathcal{V} .

Řekneme, že \mathcal{U} hvězdovitě zjemňuje \mathcal{V} , pokud $\{(U,\mathcal{U}): U \in \mathcal{U}\}$ zjemňuje \mathcal{V} .

Například

At (X, ρ) je MP. At $\mathcal{U}, \mathcal{V}, \mathcal{W}$ jsou pokrytí X tvořená po řadě všemi $\varepsilon, 2\varepsilon, 3\varepsilon$ koulemi $(\varepsilon > 0)$ pevné). Pak \mathcal{U} zjemňuje barycentricky \mathcal{V} a hvězdovitě \mathcal{W} .

Lemma 0.3 (Dvojité barycentrické zjemnění je hvězdovité)

Ať X je množina, \mathcal{U} pokrytí \mathcal{X} , \mathcal{V} barycentrické zjemnění \mathcal{U} a \mathcal{W} barycentrické zjemnění V. Potom W je hvězdovité zjemnění U.