Perancangan Aplikasi Augmented Reality Location Based Service Nusa Dua Tourism Guide

p-ISSN: 2301-5373

e-ISSN: 2654-5101

I Wayan Santiyasa^{a1}, I Gede Angga Narotama^{a2}, I Ketut Gede Suhartana^{a3}, I Gusti Ngurah Anom Cahyadi Putra^{a4}, Ida Bagus Made Mahendra^{a5}, I Made Widiartha^{a6}

> aProgram Studi Informatika, Universitas Udayana Badung, Bali, Indonesia 1santiyasa@unud.ac.id 2angganaro3@gmail.com 3ikg.suhartana@unud.ac.id 4anom.cp@unud.ac.id 5ibm.mahendra@unud.ac.id 6madewidiartha@unud.ac.id

Abstrak

Nusa Dua adalah salah satu pusat pariwisata di pulau Dewata Bali, yang menjadi tujuan wisatawan berkunjung saat liburan ke Bali. Sebagai salah satu objek wisata yang sering yang dikunjungi wisatawan, Nusa Dua masih mempunyai permasalahan dalam penggunaan navigasi dan marka jalan pada area lokasi wisata. Dalam penelitian ini dirancang sebuah aplikasi objek wisata *mobile* di Nusa Dua dan memberikan navigasi dengan *Location Based Service* untuk memberikan petunjuk rute atau suatu objek wisata yang dituju menggunakan *augmented reality*. Aplikasi telah berhasil dikembangkan dengan mengintegrasikan *environment* android dan AR agar fungsi pada aplikasi dapat berjalan sesuai dengan kebutuhan pengguna. Aplikasi ini juga dilengkapi dengan fitur rekomendasi objek wisata terdekat yang diimplementasikan menggunakan algoritma *Haversine* dengan akurasi 99.85%. Aplikasi ini dapat menjadi media untuk mengenalkan objek wisata di Nusa Dua dengan menampilkan detail informasi wisata dan bernavigasi secara interaktif dengan teknologi *augmented reality*. Berdasarkan hasil rekap skor *usability* pada pengujian *usability* dari tanggapan 32 responden terhadap 17 pertanyaan, ditemukan bahwa secara keseluruhan nilai rata-rata aplikasi 4.2, dimana menunjukkan bahwa aplikasi Nusa Dua Tourism Guide mendapatkan kategori *usability* yang sangat baik.

Kata Kunci: Nusa Dua, Augmented Reality, Location Based Service, Haversine, Usability

1. Pendahuluan

Bali merupakan daerah yang memiliki potensi pariwisata yang mempunyai daya tarik tersendiri. Bali memiliki daya tarik wisata alam yang menawarkan keindahan alam serta daya tarik budaya yang menampilkan budaya dan adat istiadat yang memiliki nilai-nilai tinggi. Bali memiliki sembilan wilayah yang terdiri dari delapan kabupaten dan kota yang masing-masing memiliki daya tarik wisata, diantaranya ialah, Jembrana, Tabanan, Buleleng, Gianyar, Klungkung, Karangasem, Bangli, Badung dan Kota Denpasar. Karena adanya daya tarik wisata yang spesifik dari setiap wilayah membuat wisatawan untuk melakukan kunjungan wisata ke Bali [1].

Salah satu tempat wisata yang sering dikunjungi oleh wisatawan adalah Nusa Dua. Nusa Dua merupakan salah satu wilayah di kawasan Bali Selatan yang memiliki banyak tempat wisata alam pantai berpasir putih, Nusa Dua juga menjadi salah satu pusat pariwisata di pulau Dewata Bali, yang menjadi tujuan wisatawan berkunjung saat liburan ke Bali.

Sebagai salah satu objek wisata yang sering dikunjungi wisatawan, Nusa Dua juga punya beberapa permasalahan, salah satu permasalahan tersebut adalah kurangnya petunjuk, arah dan tanda pada jalan untuk menuju ke lokasi objek wisata tertentu yang ada di Nusa Dua, kawasan Nusa Dua khususnya kompleks ITDC Nusa dua juga memiliki tata letak jalan yang khusus, misalnya dengan adanya *roundabout*, persimpangan, pengaturan jalan, khususnya saat wisatawan mencari tempat spesifik menjadi kesulitan untuk menuju ke objek wisata yang

hendak dituju. Kurangnya informasi mengenai deskripsi singkat terkait objek wisata yang ada di Nusa Dua serta navigasi yang interaktif dapat digunakan secara *real-time* menjadi masalah lain yang dihadapi wisatawan [2]. Masalah ini menyulitkan para wisatawan terutama bagi yang baru pertama kali mengunjungi Bali dengan memperkirakan lokasi objek wisata mana yang akan dituju, rute menuju tempat wisata tersebut, serta waktu tempuhnya.

Berdasarkan pemaparan diatas, dalam penelitian ini akan dirancang sebuah aplikasi *mobile* objek wisata di Nusa Dua dengan fitur navigasi menggunakan *Location Based Service* untuk memberikan petunjuk rute atau suatu objek wisata yang dituju menggunakan teknologi *augmented reality*. Teknologi aplikasi *mobile* dengan menggunakan *augmented reality* sebagai navigasi dapat dimanfaatkan untuk memberikan kemudahan kepada para wisatawan untuk mencari objek wisata dengan mempertimbangkan desain dan fungsi pada aplikasi agar sesuai dengan kebutuhan pengguna dan memiliki nilai *usability* yang baik [3].

2. Metode Penelitian

Metode SDLC (Software Development Life Cycle) dengan model waterfall digunakan dalam mengembangkan aplikasi. Metode waterfall merupakan metode yang melakukan pendekatan alur hidup perangkat lunak secara terurut dimulai dari tahap analisis, desain, implementasi, pengujian serta pemeliharaan [4].

2.1. Metode Pengumpulan Data

Proses pengumpulan data dalam penelitian ini diperoleh dari Google Maps dan Trip Advisor sebagai data sekunder terkait data koordinat objek wisata dan informasi objek wisata. Data – data yang digunakan pada aplikasi dapat dilihat pada tabel 1.

Tabel 1. Data yang digunakan pada aplikasi

No	Name	Tipe data	Deskripsi
1	latitude	Double	Nilai garis lintang dari objek wisata
2	longtitude	Double	Nilai garis bujur dari objek wisata
3	nama_wisata	String	Nama resmi objek wisata
4	alamat_wisata	String	Alamat objek wisata
5	kategori	String	Kategori objek wisata berdasarkan data pada TripAdvisor
6	deskripsi	String	Deskripsi singkat mengenai objek wisata
7	situs	String	Situs resmi dan tersedia dari objek wisata
8	telpon	String	Kontak yang dapat dihubungi dari objek wisata
9	foto	String	Gambar objek wisata

2.2. Analisis dan Perancangan Sistem

Setelah proses analisis metode pengumpulan data selesai dilakukan, maka dapat ditentukan kebutuhan fungsional sistem [5]. Kebutuhan fungsional adalah kebutuhan yang mendefinisikan fungsi dari sebuah sistem dan komponennya. Berdasarkan hasil analisis, kebutuhan fungsional bisa dilihat di tabel berikut:

Tabel 2. Kebutuhan Fungsional Sistem

No	Kebutuhan	Target Pengguna	
1	Aplikasi menampilkan daftar objek wisata yang ada di	Wisatawan Nusa Dua	
	Nusa Dua dari berbagai jenis	Wibatawaii Nasa Baa	
2	Aplikasi dapat menampilkan detail informasi dari objek	147' (N B	
	wisata seperti nama objek wisata, alamat, kontak,	Wisatawan Nusa Dua	
	situs, serta deskripsi singkat objek wisata		
3	Aplikasi menyediakan halaman panduan	Wisatawan Nusa Dua	
	penggunakan aplikasi android maupun AR	Wisatawaii Nusa Dua	
4	Aplikasi menyediakan tampilan Maps agar pengguna		
	bisa mengakses objek wisata dan melihat lokasinya	Wisatawan Nusa Dua	
	secara langsung		

5	Aplikasi menyediakan fitur rute dan navigasi menuju destinasi wisata menggunakan peta yang ada pada aplikasi	Wisatawan Nusa Dua
6	Aplikasi dapat menampilkan mode AR	Wisatawan Nusa Dua
7	Aplikasi menampilkan daftar objek wisata pada mode AR	Wisatawan Nusa Dua
8	Aplikasi dapat menampilkan navigasi menggunakan augmented reality pada mode AR sebagai sarana navigasi menuju destinasi wisata	Wisatawan Nusa Dua
9	Aplikasi menampilkan indikator seperti nama objek wisata, alamat, rute, arah jalan dan juga <i>step</i> saat menggunakan navigasi AR	Wisatawan Nusa Dua
10	Aplikasi menyediakan fitur yang bisa merekomendasikan pengguna objek wisata terdekat dari lokasi pengguna	Wisatawan Nusa Dua
11	Aplikasi menyediakan halaman tentang dan kontak agar saat terjadi kendala pengguna dapat menghubungi pengembang	Wisatawan Nusa Dua
12	Aplikasi menampilkan <i>alert</i> disaat pengguna berada di luar jaringan ataupun saat perangkat mengalami kendala tersambung ke internet	Wisatawan Nusa Dua

p-ISSN: 2301-5373

e-ISSN: 2654-5101

2.2.1 Arsitektur Sistem

Dalam perancangan aplikasi Nusa Dua Tourism Guide, sistem dirancang dengan memprioritaskan dua *environment* sebagai komponen yang esensial dalam arsitektur sistem. Kedua *environment* tersebut adalah *environment* android untuk menunjang pengembangan fitur pada Android dan *environment* unity untuk menunjang pengembangan fitur *augmented reality* yang kemudian akan diintegrasikan dengan *environment* android menjadi satu arsitektur sistem.

Gambar 1. Arsitektur sistem aplikasi Nusa Dua Tourism Guide

2.2.2 Arsitektur Environment AR

Arsitektur *environment* AR adalah lingkungan pengembangan fungsi dan program dari augmented reality pada aplikasi. Dalam rancangannya, AR *Environment* dikembangkan terlebih

dahulu pada Unity yang mana kemudian akan diintegrasikan dengan Android. Pada environment AR, digunakan library Google ARCore, ARFoundation dan Mapbox Directions API.

Gambar 2. Arsitektur Environment AR

2.3. Algoritma Haversine

Algoritma *Haversine* adalah persamaan yang digunakan dalam navigasi, yang memberikan jarak lingkaran besar antara dua titik pada permukaan bola (bumi) berdasarkan bujur dan lintang. Hukumnya adalah semua persamaan yang digunakan berdasarkan bentuk bumi yang bulat (*spherical earth*) dengan menghilangkan faktor bahwa bumi itu sedikit elips (*elipsodial factor*). Ini merupakan kasus khusus dari formula umum dalam trigonometri bola, hukum *haversine* yang berkaitan dengan sisi dan sudut segitiga bola [6].

Rumus Haversine dituliskan dalam persamaan berikut.

$$\Delta long = (long_2 + long_1) \cdot cos\left(\frac{lat_1 + lat_2}{2}\right) = cos a \cdot cos b - sin a \cdot sin b$$
 (1)

$$\Delta lat = (lat_2 - lat_1) \tag{2}$$

$$a = \sin_2\left(\frac{\Delta lat}{2}\right) + \cos(lat_1) \cdot \cos(lat_2) \cdot \sin_2\left(\frac{\Delta long}{2}\right) \tag{3}$$

$$d = \sqrt{(a)}.R$$

Keterangan:

R = Radius Bumi (6371 km)

1 derajat = 0.0174532925 radian

 Δ lat = Nilai selisih latitude (km)

 Δ lat = Nilai selisih longtitude (km)

d = Jarak (km)

2.4. Desain Aplikasi

Desain perangkat lunak adalah tahap di mana *developer* memulai desain perangkat lunak untuk dapat memenuhi setiap persyaratan dari analisis sebelumnya [7]. Desain dari aplikasi ini adalah sebagai berikut:

 a) Diagram Alir Metode Location Based AR Metode yang digunakan pada pengemb

Metode yang digunakan pada pengembangan aplikasi adalah metode *Location Based Augmented Reality* atau juga dapat disebut sebagai AR Berbasis Lokasi. Metode ini mengkombinasikan pemanfaatan layanan berbasis lokasi dengan teknologi *augmented reality* dengan hasil agar aplikasi dapat menampilkan suatu petunjuk arah atau rute

p-ISSN: 2301-5373 e-ISSN: 2654-5101

navigasi secara augmented pada lingkungan nyata yang mengambil data dari koordinat pengguna dan objek wisata pada aplikasi [8].

Gambar 3. Diagram Alir Implementasi AR

b) Diagram Alir Algoritma Haversine

Proses algoritma haversine dimulai dengan menentukan koordinat (latitude, longtitude) titik awal yang mana pada kasus ini menggunakan lokasi pengguna sebagai titk awal. kemudian menentukan koordinat titik tujuan yang mana menggunakan lokasi objek wisata yang dipilih pengguna sebagai titik tujuan, kemudian mengkonversi koordinat tersebut menjadi radian, hal ini dilakukan karena dalam perhitungan jarak antara 2 titik menggunakan radian bumi sebagai acuannya [9]. Setelah koordinat dikonversi menjadi radian kemudian dihitung perbedaan antara koordinat titik awal dan tujuan. Setelah perbedaan antara koordinat titik awal dan titik tujuan didapatkan, kemudian dihitung jarak antara kedua titik tersebut dengan haversine formula.

Gambar 4. Diagram Alir Algoritma Haversine

Use Case Diagram

Use case diagram berfungsi untuk memodelkan dan menampilkan fungsionalitas yang diharapkan dari sebuah sistem [10]. Use Case Diagram pada aplikasi ini dapat digambarkan sebagai berikut:

Gambar 5. Use Case Diagram Aplikasi

d) Activity Diagram

Gambar 6. Activity Diagram AR Mode 240

3. Hasil dan Pembahasan

3.1. Implementasi Antarmuka Pengguna

Bagian ini menjelaskan hasil implementasi dari aplikasi berupa tangkapan layar aplikasi tersebut. Adapun menu dan bagian-bagiannya:

p-ISSN: 2301-5373

e-ISSN: 2654-5101

1) Tampilan Antarmuka Menu Home dan Near Me

Gambar 7. Tampilan menu Home (kiri), detail objek wisata (tengah), near me (kanan)

2) Tampilan Antarmuka Menu Maps dan Navigasi

Gambar 8. Tampilan menu Maps (kiri), rute (tengah), navigasi (kanan)

3) Tampilan Antarmuka AR Mode

Gambar 9. Tampilan menu AR Mode (kiri), AR List (tengah), How to Use (kanan)

4) Tampilan Antarmuka Navigasi AR

Gambar 10. Tampilan rute navigasi AR (kiri), panah (tengah), finish marker (kanan)

3.2. Pengujian

Pada pengujian ini akan membahas mengenai hasil pengujian sistem yang telah dilakukan pada penelitian ini. Hasil dari pengujian ini adalah hasil pengujian akurasi algoritma haversine, hasil pengujian black box dan hasil uji usability.

3.2.1 Pengujian Algoritma Haversine

Pengujian algoritma *haversine* dilakukan dengan menggunakan alat *measure distance* pada Google Maps di setiap lokasi objek wisata. *Measure distance* digunakan pada nilai *zoomin* paling tinggi agar mendapatkan hasil yang paling akurat.

p-ISSN: 2301-5373

e-ISSN: 2654-5101

Tabel 3. Perhitungan akurasi perbandingan *Haversine* dengan Google Maps

Tabel 3. Perhitungan akurasi perbandingan Haversine dengan Google Maps						
No	Latitude	Longtitude	Haversine	Google	Akurasi	
		•	(km)	Maps(km)	(%)	
1	-8.791618968	115.2296547	4.83342	4.84	99.86	
2	-8.794082084	115.2301633	4.69832	4.70	99.96	
3	-8.808759919	115.2251705	3.37460	3.38	99.84	
4	-8.794085421	115.2301612	4.69790	4.70	99.96	
5	-8.795708545	115.2307455	4.63789	4.64	99.95	
6	-8.799052619	115.2312712	4.47424	4.48	99.87	
7	-8.816003733	115.2231719	2.93120	2.93	99.7	
8	-8.812842189	115.2265831	3.37373	3.38	99.81	
9	-8.804876079	115.2291717	3.95470	3.96	99.87	
10	-8.809694879	115.2300754	3.84206	3.85	99.79	
11	-8.791706586	115.2268069	4.59841	4.60	99.97	
12	-8.78098344	115.2249965	5.38304	5.39	99.87	
13	-8.806951178	115.2262452	3.56474	3.57	99.85	
14	-8.833576821	115.2116734	2.16751	2.17	99.89	
15	-8.79442016	115.2282636	4.51350	4.52	99.86	
16	-8.798291485	115.2238665	3.86662	3.87	99.91	
17	-8.801469179	115.2354131	4.73755	4.74	99.95	
18	-8.801826989	115.2323526	4.42084	4.43	99.79	
19	-8.799684173	115.2355243	4.84085	4.85	99.81	
20	-8.801561572	115.2355922	4.75053	4.76	99.8	
21	-8.800764866	115.222784	3.60120	3.60	99.76	
22	-8.810239648	115.1943318	1.19131	1.20	99.28	
23	-8.796379007	115.2195045	3.66656	3.67	99.91	
24	-8.758603485	115.2203389	7.36342	7.37	99.91	
25	-8.80066104	115.2338493	4.62723	4.63	99.94	
26	-8.800104575	115.2307063	4.35958	4.36	99.99	
27	-8.796333026	115.2278785	4.34587	4.35	99.91	
28	-8.801386631	115.2313432	4.34737	4.35	99.94	
29	-8.774634517	115.2235576	5.89476	5.90	99.91	
30	-8.819302272	115.2246257	3.04880	3.05	99.96	
31	-8.800613881	115.2141035	2.92057	2.93	99.68	
32	-8.833448431	115.2131079	2.27891	2.28	99.95	
33	-8.797749323	115.2368482	5.03815	5.08	99.18	
34	-8.804075531	115.2385922	4.93659	4.94	99.93	
35	-8.787176951	115.2284918	5.08835	5.09	99.97	
36	-8.810400918	115.2247144	3.26039	3.27	99.71	
37	-8.802620812	115.2389785	5.03815	5.04	99.96	
38	-8.803838885	115.2398656	5.07631	5.08	99.93	
39	-8.795760391	115.2328192	4.81915	4.81	99.98	
40	-8.807179068	115.2318085	4.11645	4.12	99.91	
Rata – Rata (%)				99.85		

Perhitungan akurasi rata - rata algoritma *haversine* mendapatkan hasil sebesar 99.85%, sehingga fungsi algoritma *haversine* pada aplikasi dapat dinyatakan akurat.

3.2.2 Pengujian Black Box

Pengujian black box bertujuan untuk menunjukkan fungsi dari aplikasi yang telah dibuat mengenai cara pengoperasiannya. Pengujian black box dilakukan untuk memeriksa

fungsionalitas apakah aplikasi yang dirancang sesuai dengan hasil yang diharapkan atau tidak. Pengujian ini dilakukan dengan menjalankan aplikasi pada beberapa perangkat yang berbeda, perangkat yang digunakan adalah Poco M3 Pro, Samsung A52 dan Redmi Note 7 Pro. Dari proses pengujian, didapatkan hasil sebagai berikut:

Tabel 4. Hasil Pengujian Black Box

No	Skenario Pengujian Hasil yang diharapkan H			
	Chonano i ongajian	i iaan yang amarapkan	Pengujian	
1	Pengguna memulai aplikasi	Sistem menampilkan splash	<u> </u>	
	33	screen dan menu home	Sesuai	
		muncul sebagai menu utama		
2	Pengguna menggunakan	Search bar aktif dan dapat		
	s <i>earch bar</i> pada menu	digunakan untuk mencari	Sesuai	
	Home	objek wisata		
3	Pengguna memilih objek	Sistem menampilkan detail	Coousi	
	wisaata pada menu Home	informasi objek wisata	Sesuai	
4	Pengguna menekan tombol	Sistem menampilkan peta		
	"Show Directions" pada	mapbox beserta rute menuju	Sesuai	
	detail informasi objek wisata	destinasi wisata		
5	Pengguna menekan tombol	Sistem menampilkan		
	"Start Navigation" setelah	navigasi menuju destinasi	Sesuai	
	rute pada peta ditampilkan	wisata secara <i>real-time</i>	Coodai	
		beserta indikator navigasi		
6	Pengguna memilih menu	Sistem menampilkan peta		
	Maps pada Bottom Navbar	mapbox beserta marker	Sesuai	
		objek wisata		
7	Pengguna memilih menu	Sistem menampilkan	Sesuai	
	AR pada Bottom Navbar	fragment AR Mode		
8	Pengguna menekan tombol	Sistem menampilkan splash	0 :	
	"Start AR Mode" pada	screen AR dan daftar objek	Sesuai	
	fragment AR Mode	wisata AR		
9	Pengguna memilih tombol (?) pada AR Mode	Sistem menampilkan panel "How to Use" AR	Sesuai	
10	Pengguna memilih objek	Sistem menampilkan		
10	wisata pada daftar objek	tampilan Navigasi AR (rute	Sesuai	
	wisata AR	dan indikatornya)	Oesuai	
11	Pengguna memilih tombol	Sistem mengalihkan		
	(←) pada Navigasi AR	pengguna ke menu daftar	Sesuai	
	(t) pada Hangael / ii t	objek wisata AR	0000.0	
12	Pengguna memilih tombol	Sistem mengalihkan		
	(x) pada daftar objek wisata	pengguna kembali ke	Sesuai	
	ÀŔ	fragment AR Mode android		
13	Pengguna memilih menu	Sistem menampilkan		
	Near Me pada Bottom	rekomendasi daftar objek	Sesuai	
	Navbar	wisata terdekat beserta	Sesuai	
		jaraknya		
14	Pengguna memilih menu	Sistem menampilkan pilihan		
	Settings pada Bottom	tombol About App dan	Sesuai	
	Navbar	Contact		
15	Pengguna memilih About	Sistem menampilkan	Sesuai	
	App	halaman About App		
16	Pengguna memilih Contact	Sistem menampilkan		
		halaman Contact dan tombol	Sesuai	
17	Donggung menakan tanahal	mail:to		
17	Pengguna menekan tombol	Sistem menampilkan aplikasi	Sesuai	
	mail:to pada halaman	<i>email</i> yang tersedia untuk		

	Contact	menuliskan saran kepada pengembang	
18	Pengguna mematikan data seluler dan wifi saat menggunakan aplikasi	Sistem menampilkan pop up disconnect	Sesuai
19	Pengguna mematikan data seluler dan wifi sebelum menggunakan aplikasi kemudian memulai aplikasi	Sistem menampilkan alert "No Connection Available! Check your internet connection."	Sesuai

p-ISSN: 2301-5373

e-ISSN: 2654-5101

Berdasarkan pengujian *black box* pada tiap fungsi yang ada pada aplikasi, didapatkan hasil bahwa seluruh fungsi yang ada pada aplikasi sudah bekerja dengan baik dan berfungsi sesuai dengan apa yang diharapkan.

3.2.3 Uji Usability

Uji usabilty dilakukan kepada 32 wisatawan yang berkunjung ke Nusa Dua yang mana lingkungan pengujiannya dilakukan secara online melalui Google Form. Kuesioner pengujian dapat dilihat pada lampiran. Kemudian setelah menyebar kuesioner, dilakukan uji validitas dan reliabilitas dari rekap data hasil jawaban pada kuesioner.

Berdasarkan uji validitas yang telah dilakukan pada 17 butir pertanyaan pada kuesioner didapatkan hasil bahwa semua indikator/item pertanyaan pada instrumen telah memenuhi kriteria uji validitas dengan nilai r hitung > r tabel yang bernilai 0.3494 sehingga dapat dinyatakan valid [11]. Sedangkan uji reliabiltas mendapatkan hasil *Cronbach's Alpha* dengan nilai 0.833 yang mana menunjukkan bahwa instrumen yang digunakan reliabel karena nilai *Cronbach's Alpha* > 0.60 [12]. Hasil dari perhitungan rata – rata nilai *usability* dapat dilihat pada tabel 5.

Tabel 5. Hasil Uii Usability

Indikator	Kode	Rata - Rata	Mean/Indikator
	A1	4.6	
Learnability (A)	A2	4.4	4.4
Learnability (A)	A3	4.5	4.4
	A4	4.2	
	B1	4.1	
Efficiency (B)	B2	4.2	4.0
	B3	3.8	
	C1	3.8	
Memorability (C)	C2	4.2	4.1
	C3	4.4	
	D1	4.7	
Errors (D)	D2	3.9	4.2
	D3	4.1	
	E1	4.3	
Satisfaction (E)	E2	4.5	4.3
Galistaciion (L)	E3	4.2	7.5
	E4	4.2	

Berdasarkan hasil rekap skor *usability* seperti terlihat pada tabel di atas dapat dilihat bahwa dari tanggapan 32 responden terhadap 17 pertanyaan, ditemukan bahwa secara keseluruhan aplikasi mendapatkan nilai rata-rata 4.2, dimana menunjukkan bahwa aplikasi Nusa Dua Tourism Guide mendapatkan kategori *usability* yang sangat baik.

4. Kesimpulan

Kesimpulan yang dapat diambil dari penelitian yang telah dilakukan adalah sebagai berikut:

1. Aplikasi Nusa Dua Tourism Guide dikembangkan dengan menggunakan metode Augmented Reality Location Based Service. Aplikasi telah berhasil dikembangkan dengan mengintegrasikan *environment* android dan AR agar fungsi pada aplikasi dapat berjalan sesuai dengan kebutuhan pengguna. Aplikasi juga dilengkapi dengan fitur rekomendasi objek wisata terdekat yang diimplementasikan menggunakan algoritma *Haversine* dengan akurasi 99.85%. Aplikasi ini dapat menjadi media untuk mengenalkan objek wisata di Nusa Dua dengan menampilkan detail informasi wisata dan bernavigasi secara interaktif dengan teknologi *augmented reality*.

2. Berdasarkan hasil rekap skor *usability* pada pengujian *usability* dari tanggapan 32 responden terhadap 17 pertanyaan, ditemukan bahwa secara keseluruhan aplikasi mendapatkan nilai rata-rata 4.2, dimana menunjukkan bahwa aplikasi Nusa Dua Touris m Guide mendapatkan kategori *usability* yang sangat baik.

Referensi

- [1] D. M. Nainggolan dan I. M. A. Kampana, "STRATEGI PENGEMBANGAN PANTAI SAWANGAN SEBAGAI DAYA TARIK WISATA NUSA DUA," *JURNAL DESTINASI PARIWISATA*, vol. 3, no. 2, pp. 45–50, 2015.
- [2] R. Yung dan C. K. Lattimore, "New realities: a systematic literature review on virtual reality and augmented reality in tourism research," *Current Issues in Tourism*, vol. 22, no. 17, pp. 2056–2081, 2017.
- [3] C. Hass, "A Practical Guide to Usability Testing," *Consumer Informatics and Digital Health*, pp. 107–124, 2019.
- [4] S. Shylesh, "A Study of Software Development Life Cycle Process Models," SSRN Electronic Journal, vol. 1, no.1, pp.1-7, 2017.
- [5] N. M. A. E. D. Wirastuti, I. G. A. K. D. D. Hartawan, dan I. M. A. Suyadnya, "IMPLEMENTASI APLIKASI LAYANAN INFORMASI BUDIDAYA JERUK DENGAN LAYANAN INFORMASI GEOGRAFIS BERBASIS ANDROID BAGI MASYARAKAT DESA BUNUTIN KINTAMANI BANGLI," *Buletin Udayana Mengabdi*, vol. 16, no. 3, pp. 391–400, 2018.
- [6] G. H. Prakarsha, H. D. M. R. Lumbantobing & I. Prihandi, "Haversine Algorithm Design using the Google Maps API Method for Android-based Public Security Applications," *International Journal of Computer Trends and Technology*, vol. 69, no. 2, pp.53-60, 2021.
- [7] L. Punchoojit dan N. Hongwarittorrn, "Usability Studies on Mobile User Interface Design Patterns: A Systematic Literature Review," *Advances in Human-Computer Interaction*, vol. 2017, no.1, pp. 1-22, 2017.
- [8] F. Lu, H. Zhou, L. Guo, J. Chen, dan L. Pei, "An ARCore-Based Augmented Reality Campus Navigation System," *Applied Sciences* 2021, vol. 11, no. 16, pp. 1-16, 2021.
- [9] P. Dauni, M. D. Firdaus, R. Asfariani, M. I. N. Saputra, A. A. Hidayat, dan W. B. Zulfikar, "Implementation of Haversine formula for school location tracking," *Journal of Physics: Conference Series*, vol. 1402, no. 7, pp. 1-6, 2019.
- [10] E. Planas dan J. Cabot, "How are UML class diagrams built in practice? A usability study of two UML tools: Magicdraw and Papyrus," *Computer Standards & Interfaces*, vol. 67, no.1, pp. 1-39, 2020.
- [11] P. Schober, C. Boer, and L. A. Schwarte, "Correlation Coefficients: Appropriate Use and Interpretation.," *Anesth Analg*, vol. 126, no. 5, pp. 1763–1768, 2018.
- [12] D. G. Bonett dan T. A. Wright, "Cronbach's alpha reliability: Interval estimation, hypothesis testing, and sample size planning," *Journal of Organizational Behavior*, vol. 36, no. 1, pp. 3–15, 2015.