Examenul de bacalaureat național 2015

Proba E. c) Matematică *M_mate-info*

BAREM DE EVALUARE SI DE NOTARE

Varianta 8

Varianta 8

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\left(\sqrt{5}+1\right)^2 = 6+2\sqrt{5}$	2p
	$\left(\sqrt{5} - 1\right)^2 = 6 - 2\sqrt{5} \Rightarrow \left(6 + 2\sqrt{5}\right) + \left(6 - 2\sqrt{5}\right) = 12$	3 p
2.	f(3) = 0	3p
	f(1) f(2) f(3) f(4) = 0	2p
3.	$x^2 - 4x + 4 = 1 \Leftrightarrow x^2 - 4x + 3 = 0$	2p
	$x_1 = 1$ și $x_2 = 3$, care verifică ecuația dată	3 p
4.	Cifra unităților este 3	2p
	Numerele sunt 243 și 423, deci se pot forma două astfel de numere	3 p
5.	$m_{AB} = 1$ și $m_d \cdot m_{AB} = -1 \Rightarrow m_d = -1$	3 p
	Ecuația dreptei d este $y = -x + 3$	2p
6.	$\sin(\pi - x) = \sin x$	2p
	$\sin(\pi + x) = -\sin x \Rightarrow \sin(\pi - x) + \sin(\pi + x) = \sin x - \sin x = 0$, pentru orice număr real x	3p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$ $\begin{vmatrix} 1 & 0 & 0 \end{vmatrix}$	
	$B(0) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \det(B(0)) = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} =$	2 p
	$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$	
	=1+0+0-0-0-0=1	3 p
b)	$B(x) + B(y) = \begin{pmatrix} 1 & 0 & x \\ 0 & 1 & 0 \\ 3x & 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 0 & y \\ 0 & 1 & 0 \\ 3y & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & x+y \\ 0 & 2 & 0 \\ 3x+3y & 0 & 2 \end{pmatrix} =$	3 p
	$= 2 \begin{pmatrix} 1 & 0 & \frac{x+y}{2} \\ 0 & 1 & 0 \\ 3 \cdot \frac{x+y}{2} & 0 & 1 \end{pmatrix} = 2B \left(\frac{x+y}{2}\right), \text{ pentru orice numere reale } x \text{ şi } y$	2 p
c)	$B(x^{2}+1)B(x) = \begin{pmatrix} 3x^{3}+3x+1 & 0 & x^{2}+x+1 \\ 0 & 1 & 0 \\ 3(x^{2}+x+1) & 0 & 3x^{3}+3x+1 \end{pmatrix}, B(x^{2}+x+1) = \begin{pmatrix} 1 & 0 & x^{2}+x+1 \\ 0 & 1 & 0 \\ 3(x^{2}+x+1) & 0 & 1 \end{pmatrix}$	3p
	$3x^3 + 3x + 1 = 1 \Leftrightarrow x = 0$	2p

2.a)	$(-3) \circ 3 = \frac{1}{2}(-3-3)(3-3) + 3 =$	3p
	=0+3=3	2 p
b)	$n \circ n = \frac{1}{2}(n-3)^2 + 3$	2p
	$(n-3)^2 = 16 \Leftrightarrow n_1 = -1$, care nu convine, și $n_2 = 7$, care convine	3 p
c)	$x \circ 3 = 3$ și $3 \circ y = 3$, pentru x și y numere reale	2p
	$1 \circ 2 \circ 3 \circ \dots \circ 2015 = (1 \circ 2) \circ 3 \circ (4 \circ 5 \circ \dots \circ 2015) = 3 \circ (4 \circ 5 \circ \dots \circ 2015) = 3$	3 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = \frac{1 \cdot (x-1) - (x+2) \cdot 1}{(x-1)^2} =$	3p
	$=\frac{x-1-x-2}{(x-1)^2} = -\frac{3}{(x-1)^2}, \ x \in (1,+\infty)$	2p
b)	$f''(x) = \frac{6}{(x-1)^3}, \ x \in (1,+\infty)$	3p
	$f''(x) > 0$, pentru orice $x \in (1, +\infty)$, deci funcția f este convexă pe intervalul $(1, +\infty)$	2p
c)	$f'(x) = -3 \Leftrightarrow (x-1)^2 = 1$	3p
	Cum $x \in (1, +\infty)$, coordonatele punctului sunt $x = 2$ și $y = 4$	2p
2.a)	$\int_{1}^{2} \frac{1}{x} f(x) dx = \int_{1}^{2} e^{x} dx = e^{x} \Big _{1}^{2} =$	3p
	$=e^2-e=e(e-1)$	2p
b)	$F: \mathbb{R} \to \mathbb{R}$, $F(x) = (x-1)e^x + c$, unde $c \in \mathbb{R}$	3p
	$F(1) = 0 \Rightarrow c = 0$, deci $F(x) = (x-1)e^x$	2p
c)	$I_n = \int_0^1 x^{n+1} e^x dx = \left(x^{n+1} e^x\right) \Big _0^1 - (n+1) \int_0^1 x^n e^x dx =$	3p
	$=e-(n+1)I_{n-1}$, deci $I_n+(n+1)I_{n-1}=e$, pentru orice număr natural $n, n \ge 2$	2p