Adult Dataset

"Census Income" dataset.

Number of Instances: 48842 Number of Attributes: 14 Date Donated: 1996-05-01 Missing Values?: Yes

Attributes:

Number of Attributes: 6 continuous, 8 nominal attributes

- · age: continuous.
- workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked.
- · fnlwgt: continuous.
- education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.
- · education-num: continuous.
- marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse.
- occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces.
- relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.
- race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.
- · sex: Female. Male.
- · capital-gain: continuous.
- · capital-loss: continuous.
- · hours-per-week: continuous.
- native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands.
- class: >50K, <=50K

```
In [18]:
```

```
import pandas as pd
adult_df = pd.read_csv('adult.csv')
adult_df.head()
```

Out[18]:

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	
0	39	State-gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in- family	White	_
1	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in- family	White	
3	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband	Black	
4	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife	Black F	F

```
In [19]:
```

```
type(adult_df.age)
```

Out[19]:

pandas.core.series.Series

In [20]:

```
type(adult_df)
```

Out[20]:

pandas.core.frame.DataFrame

In [21]:

```
adult_df.loc[0].index
```

Out[21]:

```
In [22]:
```

adult_df.age.index

Out[22]:

RangeIndex(start=0, stop=32561, step=1)

In [23]:

adult_df.set_index(np.arange(10000,42561),inplace=True)

In [24]:

adult_df.set_index(np.arange(10000,42561))

Out[24]:

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	ra
10000	39	State-gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in- family	Wh
10001	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	Wh
10002	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in- family	Wh
10003	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband	Bla
10004	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife	Bla
42556	27	Private	257302	Assoc- acdm	12	Married- civ- spouse	Tech- support	Wife	Wh
42557	40	Private	154374	HS-grad	9	Married- civ- spouse	Machine- op-inspct	Husband	Wh
42558	58	Private	151910	HS-grad	9	Widowed	Adm- clerical	Unmarried	Wh
42559	22	Private	201490	HS-grad	9	Never- married	Adm- clerical	Own-child	Wh
42560	52	Self-emp- inc	287927	HS-grad	9	Married- civ- spouse	Exec- managerial	Wife	Wh

32561 rows × 15 columns

```
In [26]:
adult_df.iloc[2].loc['education']
Out[26]:
'HS-grad'
In [27]:
adult_df.education.loc[10002]
Out[27]:
'HS-grad'
In [28]:
adult_df['education'].iloc[2]
Out[28]:
'HS-grad'
In [29]:
adult_df.at[10002, 'education']
Out[29]:
'HS-grad'
In [30]:
row_series = adult_df.loc[10002]
print(row_series.loc['education'])
print(row series.iloc[3])
print(row_series['education'])
print(row series.education)
HS-grad
HS-grad
HS-grad
HS-grad
In [31]:
columns_series = adult_df.education
print(columns_series.loc[10002])
print(columns_series.iloc[2])
print(columns_series[10002])
# print(row_series.10002) This will give syntax error!
HS-grad
HS-grad
```

Slicing

HS-grad

```
In [32]:
my_array = np.array([[2,3,5,7],[11,13,17,19],
                     [23,29,31,37,], [41,43,47,49]])
my_array
Out[32]:
array([[ 2, 3, 5, 7],
      [11, 13, 17, 19],
       [23, 29, 31, 37],
       [41, 43, 47, 49]])
In [33]:
my_array[1,1]
Out[33]:
13
In [34]:
my_array[1,:]
Out[34]:
array([11, 13, 17, 19])
In [35]:
my_array[:,1]
Out[35]:
array([ 3, 13, 29, 43])
In [36]:
my_array
Out[36]:
array([[ 2, 3, 5, 7],
       [11, 13, 17, 19],
       [23, 29, 31, 37],
       [41, 43, 47, 49]])
In [37]:
my_array[1:3,:]
Out[37]:
array([[11, 13, 17, 19],
       [23, 29, 31, 37]])
```

```
In [38]:
my_array[1:3,0:2]
Out[38]:
array([[11, 13],
      [23, 29]])
In [39]:
my_array[1:3,[0,2]]
Out[39]:
array([[11, 17],
      [23, 31]])
In [40]:
adult_df.loc[:,'education':'occupation']
Out[40]:
```

	education	education-num	marital-status	occupation
10000	Bachelors	13	Never-married	Adm-clerical
10001	Bachelors	13	Married-civ-spouse	Exec-managerial
10002	HS-grad	9	Divorced	Handlers-cleaners
10003	11th	7	Married-civ-spouse	Handlers-cleaners
10004	Bachelors	13	Married-civ-spouse	Prof-specialty
42556	Assoc-acdm	12	Married-civ-spouse	Tech-support
42557	HS-grad	9	Married-civ-spouse	Machine-op-inspct
42558	HS-grad	9	Widowed	Adm-clerical
42559	HS-grad	9	Never-married	Adm-clerical
42560	HS-grad	9	Married-civ-spouse	Exec-managerial

32561 rows × 4 columns

In [41]:

adult_df.sort_values('education-num').reset_index().iloc[1:32561:3617]

Out[41]:

	index	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationsh
1	23248	68	Private	168794	Preschool	1	Never- married	Machine- op-inspct	Not-i fam
3618	19607	25	Private	251854	11th	7	Never- married	Adm- clerical	Own-ch
7235	38845	31	Private	272856	HS-grad	9	Never- married	Craft-repair	Own-ch
10852	32759	56	Private	182273	HS-grad	9	Married- civ- spouse	Machine- op-inspct	Husbai
14469	10419	34	State-gov	240283	HS-grad	9	Divorced	Transport- moving	Unmarri
18086	31532	25	Self-emp- inc	98756	Some- college	10	Divorced	Adm- clerical	Own-ch
21703	17245	37	Federal- gov	40955	Some- college	10	Never- married	Other- service	Own-ch
25320	40595	43	Private	342567	Bachelors	13	Married- spouse- absent	Adm- clerical	Unmarri
28937	15200	43	Federal- gov	144778	Bachelors	13	Never- married	Exec- managerial	Not-i fam
32554	27308	55	Self-emp- not-inc	53566	Doctorate	16	Divorced	Exec- managerial	Not-i fam

In [42]:

twopowers_sr = pd.Series([1,2,4,8,16,32,64,128,256,512,1024])
BM = [False,False,True,False,False,True,True,True,True]
twopowers_sr[BM]

Out[42]:

3 8 7 128 8 256 9 512 10 1024 dtype: int64

```
In [43]:
twopowers sr >=500
Out[43]:
0
      False
1
      False
2
      False
3
      False
4
      False
5
      False
6
      False
7
      False
8
      False
9
       True
10
       True
dtype: bool
In [44]:
BM = two powers sr >= 500
twopowers_sr[BM]
Out[44]:
9
       512
10
      1024
dtype: int64
In [45]:
twopowers sr[twopowers sr >=500]
Out[45]:
       512
      1024
dtype: int64
In [46]:
BM = adult df.education == 'Preschool'
print('Mean: {}'.format(np.mean(adult_df[BM].age)))
print('Median: {}'.format(np.median(adult_df[BM].age)))
Mean: 42.76470588235294
Median: 41.0
In [47]:
BM1 = adult df['education-num'] > 10
BM2 = adult_df['education-num'] < 10</pre>
print('More than 10 years of education - Capital Gain: {}'
      .format(np.mean(adult_df[BM1].capitalGain)))
print('Less than 10 years of education - Capital Gain: {}'
      .format(np.mean(adult_df[BM2].capitalGain)))
More than 10 years of education - Capital Gain: 2230.9397109166985
```

Less than 10 years of education - Capital Gain: 492.25532059102613

```
In [48]:
adult_df.shape
Out[48]:
(32561, 15)
In [49]:
adult_df.columns
Out[49]:
Index(['age', 'workclass', 'fnlwgt', 'education', 'education-num',
        'marital-status', 'occupation', 'relationship', 'race', 'se
x',
        'capitalGain', 'capitalLoss', 'hoursPerWeek', 'nativeCountr
у',
        'income'],
      dtype='object')
In [50]:
adult_df.columns = ['age', 'workclass', 'fnlwgt', 'education',
                      'education_num', 'marital_status', 'occupation',
                      'relationship', 'race', 'sex', 'capitalGain',
'capitalLoss', 'hoursPerWeek', 'nativeCountry',
                      'income']
In [51]:
adult df.describe()
```

Out[51]:

	age	fnlwgt	education_num	capitalGain	capitalLoss	hoursPerWeel
count	32561.000000	3.256100e+04	32561.000000	32561.000000	32561.000000	32561.000000
mean	38.581647	1.897784e+05	10.080679	1077.648844	87.303830	40.437456
std	13.640433	1.055500e+05	2.572720	7385.292085	402.960219	12.347429
min	17.000000	1.228500e+04	1.000000	0.000000	0.000000	1.000000
25%	28.000000	1.178270e+05	9.000000	0.000000	0.000000	40.000000
50%	37.000000	1.783560e+05	10.000000	0.000000	0.000000	40.000000
75%	48.000000	2.370510e+05	12.000000	0.000000	0.000000	45.000000
max	90.000000	1.484705e+06	16.000000	99999.000000	4356.000000	99.000000

In [52]:

```
adult_df.age.plot.hist()
```

Out[52]:

<matplotlib.axes._subplots.AxesSubplot at 0x1ae2c81d850>

In [53]:

```
adult_df.relationship.unique()
```

Out[53]:

In [54]:

```
adult_df.relationship.value_counts()
```

Out[54]:

Husband	13193
Not-in-family	8305
Own-child	5068
Unmarried	3446
Wife	1568
Other-relative	981

Name: relationship, dtype: int64

```
In [55]:
```

```
adult_df.relationship.value_counts().plot.bar()
```

Out[55]:

<matplotlib.axes._subplots.AxesSubplot at 0x1ae2d043820>

Appy a function

```
In [56]:
```

```
def MultiplyBy2(n):
    return n*2
adult_df.age.apply(MultiplyBy2)
```

Out[56]:

```
10000
           78
10001
          100
10002
           76
10003
          106
10004
           56
42556
           54
42557
           80
          116
42558
42559
           44
42560
          104
Name: age, Length: 32561, dtype: int64
```

Applying a Function - Analytic Example 1

Divide every value in column fnlwgt by the sum of all its values.

In [57]:

```
total_fnlwgt = adult_df.fnlwgt.sum()

def CalculatePercentage(v):
    return v/total_fnlwgt*100

adult_df.fnlwgt = adult_df.fnlwgt.apply(CalculatePercentage)
adult_df
```

Out[57]:

	age	workclass	fnlwgt	education	education_num	marital_status	occupation	relation
10000	39	State-gov	0.001254	Bachelors	13	Never-married	Adm- clerical	I
10001	50	Self-emp- not-inc	0.001348	Bachelors	13	Married-civ- spouse	Exec- managerial	Нι
10002	38	Private	0.003490	HS-grad	9	Divorced	Handlers- cleaners	1
10003	53	Private	0.003798	11th	7	Married-civ- spouse	Handlers- cleaners	Нι
10004	28	Private	0.005476	Bachelors	13	Married-civ- spouse	Prof- specialty	
•••								
42556	27	Private	0.004164	Assoc- acdm	12	Married-civ- spouse	Tech- support	
42557	40	Private	0.002498	HS-grad	9	Married-civ- spouse	Machine- op-inspct	Нι
42558	58	Private	0.002458	HS-grad	9	Widowed	Adm- clerical	Unn
42559	22	Private	0.003261	HS-grad	9	Never-married	Adm- clerical	Ow
42560	52	Self-emp- inc	0.004659	HS-grad	9	Married-civ- spouse	Exec- managerial	
32561 rows × 15 columns								

In [58]:

```
total_fnlwgt = adult_df.fnlwgt.sum()
adult_df.fnlwgt = adult_df.fnlwgt.apply(lambda v: v/total_fnlwgt*100)
adult_df
```

Out[58]:

	age	workclass	fnlwgt	education	education_num	marital_status	occupation	relation	
10000	39	State-gov	0.001254	Bachelors	13	Never-married	Adm- clerical	I	
10001	50	Self-emp- not-inc	0.001348	Bachelors	13	Married-civ- spouse	Exec- managerial	Нι	
10002	38	Private	0.003490	HS-grad	9	Divorced	Handlers- cleaners	1	
10003	53	Private	0.003798	11th	7	Married-civ- spouse	Handlers- cleaners	Нι	
10004	28	Private	0.005476	Bachelors	13	Married-civ- spouse	Prof- specialty		
42556	27	Private	0.004164	Assoc- acdm	12	Married-civ- spouse	Tech- support		
42557	40	Private	0.002498	HS-grad	9	Married-civ- spouse	Machine- op-inspct	Нι	
42558	58	Private	0.002458	HS-grad	9	Widowed	Adm- clerical	Unn	
42559	22	Private	0.003261	HS-grad	9	Never-married	Adm- clerical	Ow	
42560	52	Self-emp- inc	0.004659	HS-grad	9	Married-civ- spouse	Exec- managerial		
32561	32561 rows × 15 columns								

```
In [59]:
def CalcLifeNoEd(row):
    return row.age - row.education_num
adult df.apply(CalcLifeNoEd,axis=1)
Out[59]:
10000
         26
10001
         37
10002
         29
10003
         46
10004
         15
42556
         15
42557
         31
42558
         49
         13
42559
         43
42560
Length: 32561, dtype: int64
In [60]:
adult df.apply(lambda r: r.age-r.education num,axis=1)
Out[60]:
10000
         26
10001
         37
10002
         29
10003
         46
10004
         15
         . .
42556
         15
42557
         31
42558
         49
42559
         13
42560
         43
Length: 32561, dtype: int64
In [61]:
adult df['lifeNoEd'] = adult df.apply(
    lambda r: r.age-r.education num,axis=1)
adult_df['capitalNet'] = adult_df.apply(
    lambda r: r.capitalGain - r.capitalLoss,axis=1)
adult df[['education num','lifeNoEd','capitalNet']].corr()
Out[61]:
```

	education_num	lifeNoEd	capitalNet
education_num	1.000000	-0.150452	0.117891
lifeNoEd	-0.150452	1.000000	0.051490
capitalNet	0.117891	0.051490	1.000000

Groupby

```
In [62]:
adult_df.groupby(['marital_status','sex']).age.median()
Out[62]:
marital status
                        sex
Divorced
                        Female
                                  43.0
                        Male
                                  42.0
Married-AF-spouse
                                  31.0
                        Female
                        Male
                                  29.0
Married-civ-spouse
                        Female
                                  38.0
                        Male
                                  43.0
Married-spouse-absent
                        Female
                                  39.0
                        Male
                                  41.0
Never-married
                        Female
                                  25.0
                        Male
                                  25.0
Separated
                        Female
                                  39.0
                        Male
                                  38.0
Widowed
                        Female
                                  60.0
                                  62.5
                        Male
Name: age, dtype: float64
In [63]:
adult_df.groupby(['race','sex']).capitalNet.mean()
Out[63]:
race
                     sex
                                530.142857
Amer-Indian-Eskimo
                    Female
                    Male
                                628.864583
Asian-Pac-Islander
                    Female
                                727.583815
                    Male
                               1707.440115
                               471.142765
Black
                    Female
                    Male
                                627.268324
Other
                                218.385321
                    Female
                               1314.438272
                    Male
White
                    Female
                                508.219857
                    Male
                               1266.413112
Name: capitalNet, dtype: float64
```

```
In [64]:
grb_result =adult_df.groupby(['race','sex']).capitalNet.mean()
print(grb result.index)
MultiIndex([('Amer-Indian-Eskimo', 'Female'),
            ('Amer-Indian-Eskimo',
                                     'Male'),
            ('Asian-Pac-Islander', 'Female'),
            ('Asian-Pac-Islander',
                                     'Male'),
                          'Black', 'Female'),
                          'Black',
                                     'Male'),
                          'Other', 'Female'),
                          'Other',
                                     'Male'),
                          'White', 'Female'),
                          'White',
                                     'Male')],
           names=['race', 'sex'])
In [65]:
grb_result =adult_df.groupby(['race','sex']).capitalNet.mean()
grb result
Out[65]:
race
                    sex
Amer-Indian-Eskimo
                    Female
                               530.142857
                    Male
                               628.864583
Asian-Pac-Islander Female
                               727.583815
                    Male
                             1707.440115
Black
                    Female
                               471.142765
                    Male
                               627.268324
Other
                              218.385321
                    Female
                    Male
                              1314.438272
White
                    Female
                              508.219857
                    Male
                              1266.413112
Name: capitalNet, dtype: float64
In [66]:
grb result.unstack()
Out[66]:
```

sex	Female	Male
race		
Amer-Indian-Eskimo	530.142857	628.864583
Asian-Pac-Islander	727.583815	1707.440115
Black	471.142765	627.268324
Other	218.385321	1314.438272
White	508.219857	1266.413112

In [67]:

```
mlt_seris =adult_df.groupby(['race','sex','income']).fnlwgt.mean()
mlt_seris
```

Out[67]:

race	sex	income	
Amer-Indian-Eskimo	Female	<=50K	0.001764
		>50K	0.002395
	Male	<=50K	0.002046
		>50K	0.001954
Asian-Pac-Islander	Female	<=50K	0.002398
		>50K	0.002305
	Male	<=50K	0.002652
		>50K	0.002762
Black	Female	<=50K	0.003454
		>50K	0.003331
	Male	<=50K	0.003922
		>50K	0.003971
Other	Female	<=50K	0.002803
		>50K	0.002593
	Male	<=50K	0.003478
		>50K	0.003310
White	Female	<=50K	0.002969
		>50K	0.002978
	Male	<=50K	0.003074
		>50K	0.003025

Name: fnlwgt, dtype: float64

In [68]:

```
mlt_seris.unstack()
```

Out[68]:

	income	<=50K	>50K
race	sex		
Amer-Indian-Eskimo	Female	0.001764	0.002395
	Male	0.002046	0.001954
Asian-Pac-Islander	Female	0.002398	0.002305
	Male	0.002652	0.002762
Black	Female	0.003454	0.003331
	Male	0.003922	0.003971
Other	Female	0.002803	0.002593
	Male	0.003478	0.003310
White	Female	0.002969	0.002978
	Male	0.003074	0.003025

```
        sex
        Female
        Male
        Female
        Male

        race

        Amer-Indian-Eskimo
        0.001764
        0.002046
        0.002395
        0.001954

        Asian-Pac-Islander
        0.002398
        0.002652
        0.002305
        0.002762

        Black
        0.003454
        0.003922
        0.003331
        0.003971

        Other
        0.002803
        0.003478
        0.002593
        0.003310

        White
        0.002969
        0.003074
        0.002978
        0.003025
```

In [70]:

```
mlt_df= mlt_seris.unstack().unstack()
mlt_df.columns
```

Out[70]:

In [71]:

```
mlt_df.stack()
```

Out[71]:

	income	<=50K	>50K
race	sex		
Amer-Indian-Eskimo	Female	0.001764	0.002395
	Male	0.002046	0.001954
Asian-Pac-Islander	Female	0.002398	0.002305
	Male	0.002652	0.002762
Black	Female	0.003454	0.003331
	Male	0.003922	0.003971
Other	Female	0.002803	0.002593
	Male	0.003478	0.003310
White	Female	0.002969	0.002978
	Male	0.003074	0.003025

In [72]:

```
mlt_df.stack().stack()
```

Out[72]:

race	sex	income	
Amer-Indian-Eskimo	Female	<=50K	0.001764
		>50K	0.002395
	Male	<=50K	0.002046
		>50K	0.001954
Asian-Pac-Islander	Female	<=50K	0.002398
		>50K	0.002305
	Male	<=50K	0.002652
		>50K	0.002762
Black	Female	<=50K	0.003454
		>50K	0.003331
	Male	<=50K	0.003922
		>50K	0.003971
Other	Female	<=50K	0.002803
		>50K	0.002593
	Male	<=50K	0.003478
		>50K	0.003310
White	Female	<=50K	0.002969
		>50K	0.002978
	Male	<=50K	0.003074
		>50K	0.003025

dtype: float64

Pivot & Melt

In [73]:

```
wide_df = pd.read_csv('wide.csv')
wide_df
```

Out[73]:

	ReadingDateTime	NO	NO2	NOX	PM10	PM2.5
0	01/01/2017 00:00	3.5	30.8	36.2	35.7	31.0
1	01/01/2017 01:00	3.6	31.5	37.0	28.5	31.0
2	01/01/2017 02:00	2.2	27.3	30.7	22.7	31.0

In [74]:

Out[74]:

	ReadingDateTime	Species	Value	
0	01/01/2017 00:00	NO	3.5	
1	01/01/2017 01:00	NO	3.6	
2	01/01/2017 02:00	NO	2.2	
3	01/01/2017 00:00	NO2	30.8	
4	01/01/2017 01:00	NO2	31.5	
5	01/01/2017 02:00	NO2	27.3	
6	01/01/2017 00:00	NOX	36.2	
7	01/01/2017 01:00	NOX	37.0	
8	01/01/2017 02:00	NOX	30.7	
9	01/01/2017 00:00	PM10	35.7	
10	01/01/2017 01:00	PM10	28.5	
11	01/01/2017 02:00	PM10	22.7	
12	01/01/2017 00:00	PM2.5	31.0	
13	01/01/2017 01:00	PM2.5	31.0	
14	01/01/2017 02:00	PM2.5	31.0	

```
In [75]:
```

```
long_df = pd.read_csv('long.csv')
long_df
```

Out[75]:

	ReadingDateTime	Species	Value
0	01/01/2017 00:00	NO	3.5
1	01/01/2017 01:00	NO	3.6
2	01/01/2017 02:00	NO	2.2
3	01/01/2017 00:00	NO2	30.8
4	01/01/2017 01:00	NO2	31.5
5	01/01/2017 02:00	NO2	27.3
6	01/01/2017 00:00	NOX	36.2
7	01/01/2017 01:00	NOX	37.0
8	01/01/2017 02:00	NOX	30.7
9	01/01/2017 00:00	PM10	35.7
10	01/01/2017 01:00	PM10	28.5
11	01/01/2017 02:00	PM10	22.7
12	01/01/2017 00:00	PM2.5	31.0
13	01/01/2017 01:00	PM2.5	31.0
14	01/01/2017 02:00	PM2.5	31.0

In [76]:

Out[76]:

Species	NO	NO2	NOX	PM10	PM2.5
ReadingDateTime					
01/01/2017 00:00	3.5	30.8	36.2	35.7	31.0
01/01/2017 01:00	3.6	31.5	37.0	28.5	31.0
01/01/2017 02:00	22	27.3	30.7	22 7	31.0