Useful Formulae and Other Information

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t} \qquad \qquad \mathscr{F}x(\omega) = X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt \qquad \qquad X(\omega) = \sum_{k=-\infty}^{\infty} 2\pi a_k \delta(\omega - k\omega_0)$$

$$c_k = \frac{1}{T} \int_T x(t)e^{-jk\omega_0 t} dt \qquad \qquad \mathscr{F}^{-1}X(t) = x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega)e^{j\omega t} d\omega \qquad \qquad X(\omega) = \sum_{k=-\infty}^{\infty} \omega_0 X_T(k\omega_0)\delta(\omega - k\omega_0)$$

$$a_k = \frac{1}{T}X_T(k\omega_0)$$

$$\mathscr{L}x(s) = X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$

$$\mathscr{L}^{-1}X(t) = x(t) = \frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + j\infty} X(s)e^{st}ds$$

$$\mathscr{L}_{\mathsf{u}}x(s) = X(s) = \int_{0^{-}}^{\infty} x(t)e^{-st}dt$$

$$e^{j\theta} = \cos \theta + j \sin \theta$$
$$\cos \theta = \frac{1}{2} \left[e^{j\theta} + e^{-j\theta} \right]$$
$$\sin \theta = \frac{1}{2j} \left[e^{j\theta} - e^{-j\theta} \right]$$

$\boldsymbol{\mathcal{X}}$	$\cos x$	$\sin x$
0	1	0
$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$
$\frac{\frac{\pi}{3}}{\frac{\pi}{2}}$ $\frac{3\pi}{4}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{2}$	0	1
$\frac{3\pi}{4}$	$-\frac{1}{\sqrt{2}}$	$\begin{array}{c} \frac{1}{\sqrt{2}} \\ 0 \end{array}$
π	-1	0
$\frac{5\pi}{4}$ $\frac{3\pi}{2}$	$-\frac{1}{\sqrt{2}} = 0$	$-\frac{1}{\sqrt{2}}$
2		-1
$\frac{7\pi}{4}$	$\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$

$$A_{k} = (v - p_{k})F(v)|_{v = p_{k}}$$

$$A_{kl} = \frac{1}{(q_{k} - l)!} \left[\frac{d^{q_{k} - l}}{dv^{q_{k} - l}} [(v - p_{k})^{q_{k}} F(v)] \right]|_{v = p_{k}}$$

$$ax^{2} + bx + c = 0 \quad \Rightarrow \quad x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

Fourier Series Properties

Property	Time Domain	Fourier Domain
Linearity	Ax(t) + By(t)	$Aa_k + Bb_k$
Time-Domain Shifting	$x(t-t_0)$	$e^{-jk\omega_0t_0}a_k$
Time Reversal	x(-t)	a_{-k}

Fourier Transform Properties

Property	Time Domain	Frequency Domain
Linearity	$a_1x_1(t) + a_2x_2(t)$	$a_1X_1(\boldsymbol{\omega}) + a_2X_2(\boldsymbol{\omega})$
Time-Domain Shifting	$x(t-t_0)$	$e^{-j\omega t_0}X(\omega)$
Frequency-Domain Shifting	$e^{j\omega_0 t}x(t)$	$X(\boldsymbol{\omega}-\boldsymbol{\omega}_0)$
Time/Frequency-Domain Scaling	x(at)	$\frac{1}{ a }X\left(\frac{\omega}{a}\right)$
Conjugation	$x^*(t)$	$X^*(-\omega)$
Duality	X(t)	$2\pi x(-\boldsymbol{\omega})$
Time-Domain Convolution	$x_1 * x_2(t)$	$X_1(\boldsymbol{\omega})X_2(\boldsymbol{\omega})$
Frequency-Domain Convolution	$x_1(t)x_2(t)$	$\frac{1}{2\pi}X_1*X_2(\boldsymbol{\omega})$
Time-Domain Differentiation	$\frac{d}{dt}x(t)$	$j\omega X(\omega)$
Frequency-Domain Differentiation	tx(t)	$j\frac{d}{d\omega}X(\omega)$
Time-Domain Integration	$\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{1}{i\omega}X(\omega) + \pi X(0)\delta(\omega)$
Parseval's Relation	$\int_{-\infty}^{\infty} x(t) ^2 dt = \frac{1}{2\pi}$	$\int_{-\infty}^{\infty} X(\boldsymbol{\omega}) ^2 d\boldsymbol{\omega}$

Fourier Transform Pairs

Pair	x(t)	$X(\omega)$
1	$\delta(t)$	1
2	u(t)	$\pi\delta(\omega) + \frac{1}{i\omega}$
3	1	$2\pi\delta(\omega)$
4	sgn(t)	$\frac{2}{i\omega}$
5	$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$
6	$\cos(\omega_0 t)$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$
7	$\sin(\omega_0 t)$	$\frac{\pi}{i}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$
8	rect(t/T)	$ T \operatorname{sinc}(T\omega/2)$
9	sinc(Bt)	$\frac{\pi}{ B }$ rect $\left(\frac{\omega}{2B}\right)$
10	$e^{-at}u(t)$, Re $\{a\} > 0$	$\frac{1}{a+j\omega}$
11	$t^{n-1}e^{-at}u(t), \operatorname{Re}\{a\} > 0$	$\frac{(n-1)!}{(a+j\omega)^n}$

Bilateral Laplace Transform Properties

Property	Time Domain	Laplace Domain	ROC
Linearity	$a_1x_1(t) + a_2x_2(t)$	$a_1X_1(s) + a_2X_2(s)$	At least $R_1 \cap R_2$
Time-Domain Shifting	$x(t-t_0)$	$e^{-st_0}X(s)$	R
Laplace-Domain Shifting	$e^{s_0t}x(t)$	$X(s-s_0)$	$R + \operatorname{Re}\{s_0\}$
Time/Laplace-Domain Scaling	x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	aR
Conjugation	$x^*(t)$	$X^*(s^*)$	R
Time-Domain Convolution	$x_1 * x_2(t)$	$X_1(s)X_2(s)$	At least $R_1 \cap R_2$
Time-Domain Differentiation	$\frac{d}{dt}x(t)$	sX(s)	At least R
Laplace-Domain Differentiation	-tx(t)	$\frac{d}{ds}X(s)$	R
Time-Domain Integration	$\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{1}{s}X(s)$	At least $R \cap \{\text{Re}\{s\} > 0\}$

Property	
Initial Value Theorem	$x(0^+) = \lim_{s \to \infty} sX(s)$
Final Value Theorem	$\lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)$

Unilateral Laplace Transform Properties

Property	Time Domain	Laplace Domain
Linearity	$a_1x_1(t) + a_2x_2(t)$	$a_1X_1(s) + a_2X_2(s)$
Laplace-Domain Shifting	$e^{s_0t}x(t)$	$X(s-s_0)$
Time/Laplace-Domain Scaling	x(at), a > 0	$\frac{1}{a}X\left(\frac{s}{a}\right)$
Conjugation	$x^*(t)$	$X^*(s^*)$
Time-Domain Convolution	$x_1 * x_2(t)$, x_1 and x_2 are causal	$X_1(s)X_2(s)$
Time-Domain Differentiation	$\frac{d}{dt}x(t)$	$sX(s) - x(0^-)$
Laplace-Domain Differentiation	-tx(t)	$\frac{d}{ds}X(s)$
Time-Domain Integration	$\int_{0^{-}}^{t} x(au) d au$	$\frac{1}{s}X(s)$

Property	
Initial Value Theorem	$x(0^+) = \lim_{s \to \infty} sX(s)$
Final Value Theorem	$\lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)$

Bilateral Laplace Transform Pairs

Pair	x(t)	X(s)	ROC
1	$\delta(t)$	1	All s
2	u(t)	$\frac{1}{s}$	$Re{s} > 0$
3	-u(-t)	$\frac{1}{s}$	$Re{s} < 0$
4	$t^n u(t)$	$\frac{n!}{s^{n+1}}$	$Re{s} > 0$
5	$-t^n u(-t)$	$\frac{n!}{s^{n+1}}$	$Re{s} < 0$
6	$e^{-at}u(t)$	$\frac{1}{s+a}$	$Re{s} > -a$
7	$-e^{-at}u(-t)$	$\frac{1}{s+a}$	$Re{s} < -a$
8	$t^n e^{-at} u(t)$	$\frac{n!}{(s+a)^{n+1}}$	$Re\{s\} > -a$
9	$-t^n e^{-at} u(-t)$	$\frac{n!}{(s+a)^{n+1}}$	$Re{s} < -a$
10	$\cos(\omega_0 t)u(t)$	$\frac{s}{s^2+\omega_0^2}$	$Re\{s\} > 0$
11	$\sin(\omega_0 t)u(t)$	$\frac{\omega_0}{s^2+\omega_0^2}$	$Re\{s\} > 0$
12	$e^{-at}\cos(\omega_0 t)u(t)$	$\frac{s+a_0}{(s+a)^2+\omega_0^2}$	$Re\{s\} > -a$
13	$e^{-at}\sin(\omega_0 t)u(t)$	$\frac{\omega_0}{(s+a)^2+\omega_0^2}$	$Re{s} > -a$

Unilateral Laplace Transform Pairs

Pair	x(t)	X(s)
1	$\delta(t)$	1
2	1	$\frac{1}{s}$
3	t^n	$\frac{n!}{s^{n+1}}$
4	e^{-at}	$\frac{1}{s+a}$
5	$t^n e^{-at}$	$\frac{n!}{(s+a)^{n+1}}$
6	$\cos(\omega_0 t)$	$\frac{s}{s^2 + \omega_0^2}$ $\frac{\omega_0}{s^2 + \omega^2}$
7	$\sin(\omega_0 t)$	$\frac{\omega_0}{s^2+\omega_0^2}$
8	$e^{-at}\cos(\omega_0 t)$	$\frac{s+a^{0}}{(s+a)^{2}+\omega_{0}^{2}}$
9	$e^{-at}\sin(\omega_0 t)$	$\frac{\omega_0}{(s+a)^2+\omega_0^2}$