Лабораторная работа 1.2.1

Определение скорости полета пули при помощи баллистического маятника

Мыздриков Иван Витальевич

27 ноября 2024 г.

Цель работы: Определмить скорость полета пули, применяя законы сохранения и используя баллистические маятники

В работе используются:

- 1. Духовое ружье на штативе
- 2. Осветитель
- 3. Оптическая система для измерения отклонений маятника
- 4. Измерительная линейка
- 5. 10 пуль
- 6. Весы
- 7. Баллистические маятники

Ход работы

1. Измерим на весах массу каждой пули (табл. 1). Погрешность весов: $\sigma_m=10$ мг 104

Таблица 1: Массы пуль

$\mathcal{N}_{\overline{o}}$	1	2	3	4	5	6	7	8	9	10
m_i , M Γ	506	512	508	509	507	503	512	508	512	506

- 2. Измерим расстояние $L = (2275.5 \pm 1)$ мм.
- 3. Соберем оптическую систему, включим и отстроим шкалу на ноль. Убедимся, что холостые выстрелы не влияют на маятник (движение не заметно глазом). Убедимся, что затухание колебаний незначительно (за 10 колебаний амплитуда уменьшается меньше, чем наполовину).
- 4. Произведем 5 выстрелов пулями № 1-5, запишем амплитуду маятника в табл. 2:

Таблица 2: Результаты выстрелов в баллистический маятник №1

Nº	1	2	3	4	5	
Δx , mm	11.5	11.5	12	13	11.5	
L, mm	2275.5 ± 1					
m , M Γ	506	512	508	509	507	
M, г	2900 ± 4					
$u, \frac{M}{c}$	136.8	135.2	142.2	153.7	136.5	
$u_{\rm cp}, \frac{\rm M}{c}$	$140.8 \pm 3(\varepsilon = 6\%)$					

5. Расчитаем начальную скорость пули по формуле:

$$u = \frac{M}{m} \sqrt{\frac{g}{L}} \Delta x$$

Расчитаем погрешность скорости:

$$\begin{split} \varepsilon_{u_{\text{chct}}} &= \varepsilon_M + \varepsilon_m + \frac{1}{2}\varepsilon_g + \frac{1}{2}\varepsilon_L + \varepsilon_{\Delta x} \approx 4\% \\ \sigma_{u_{\text{chct}}} &= u\varepsilon_{u_{\text{chct}}} \approx 3.5\frac{\text{M}}{c} \\ \sigma_{u_{\text{chyq}}} &\approx 6.85\frac{\text{M}}{c} \\ \sigma_u &= \sqrt{\sigma_{u_{\text{chyt}}}^2 + \sigma_{u_{\text{chyq}}}^2} \approx 8.44\frac{\text{M}}{c} \\ \varepsilon_u &= \frac{\sigma_u}{u} \approx 6\% \end{split}$$

По итогу получаем:

$$u = (140.8 \pm 11) \frac{M}{6} (6\%)$$

6. Измерим для баллистического маятника №2 параметры r, R и d (табл. 3):

Таблица 3: Параметры баллистического маятника №2

Параметр	r	R	d
Значение, мм	205 ± 1	340 ± 1	1395 ± 1

- 7. Измерим массы грузов: $M_1 = (730 \pm 0.1)\,$ г, $M_2 = (730 \pm 0.1)\,$ г
- 8. Настроим осветительную систему. Включим осветитель и отстроим шкалу на ноль. Убедимся, что холостые выстрелы не влияют на маятник (движение не заметно глазом). Убедимся, что затухание колебаний незначительно (за 10 колебаний амплитуда уменьшается меньше, чем наполовину).
- 9. Произведем 5 выстрелов пулями №6-10, запишем амплитуду маятника в табл. 5:

Таблица 4: Результаты выстрелов в баллистический маятник №2

$\mathcal{N}_{\overline{0}}$	1	2	3	4	5	
Δx , MM	44	43	46	42	40	
m , M Γ	503	512	508	512	506	
$u, \frac{M}{c}$	57.8	55.6	60	54.3	52.3	
$u_{\rm cp}, \frac{\rm M}{c}$	$56 \pm 3 (5.5\%)$					

10. Расчитаем начальную скорость пули по формуле:

$$u = \varphi \frac{\sqrt{kI}}{mr} \approx x \frac{\sqrt{kI}}{2dmr}$$

$$\sqrt{kI} = \frac{4\pi M R^2 T_1}{T_1^2 - T_2^2} \approx (0.757 \pm 0.003) \frac{\mathrm{K} \Gamma \cdot \mathrm{M}^2}{c}$$

$$\varepsilon_u = \varepsilon_{\sqrt{kI}} + \varepsilon_x + \varepsilon_m + \varepsilon_r \approx 2\%$$

Расчитаем погрешность:

$$\begin{split} \sigma_{u_{\rm c,nyq}} &\approx 2.7 \frac{\rm M}{c} \\ \sigma_{u_{\rm chct}} &= u \varepsilon_u \approx 1.5 \frac{\rm M}{c} \\ \sigma_u &= \sqrt{\sigma_{u_{\rm chct}}^2 + \sigma_{u_{\rm c,nyq}}^2} \approx 3 \frac{\rm M}{c} \end{split}$$

По итогу:

$$u = (56 \pm 3) \frac{M}{c} (5.5\%)$$

Выводы: С помощью баллистического маятника можно оценить начальную скорость пули из духового ружья. Этот метод при модификафии также подойдет и для огнестрельного оружия, если расположить балличтический маятник достаточно далеко от оружия, чтобы пороховые газы на него не влияли. Основной причиной погрешностей стало определение амплитуды маятника. Также разброс значений связан с тем, что начальная скорость пули при каждом выстреле действительно разная, для увеличения точности необходимо больше выстрелов.