Algoritmos y Estructuras de Datos I

Primer Cuatrimestre 2018

Guía Práctica **EJERCICIOS DE TALLER**

Versión: 9 de abril de 2018

1. Introducción a C++

Ejercicio 1. Crear un programa (en cualquier editor de texto) y ejecutarlo como se muestra a continuación.

```
Archivo: labo00.cpp

#include <iostream>

int f(int x){
    return x+1;
}

int main() {
    std::cout << "El resultado es: " << f(10) << std::endl;
    return 0;
}

Para compilar y ejecutar el código en la terminal:
g++ labo00.cpp -o labo00_ejecutable
./labo00_ejecutable
```

Ejercicio 2. Modificar el programa anterior para que f tome dos parámetros de tipo int y los sume.

Ejercicio 3. Modificar el programa anterior para que f tome dos parámetros x e y de tipo int y los sume sólo si x > y, en caso contrario el resultado será el producto.

Ejercicio 4. Crear un proyecto nuevo de C++ en **CLion** con el nombre labo00. Escribir el programa del ejercicio anterior y ejecutarlo.

Ejercicio 5. Escribir la función que dado $n \in \mathbb{N}$ devuelve si es primo. Recuerden que un número es primo si los únicos divisores que tiene son 1 y el mismo.

Iteración vs Recursión

Los siguientes ejercicios deben ser implementados primero en su versión **recursiva**, luego iterativa utilizando **while** y por último iterativa utilizando **for**. Para todos ellos, utilizar el siguiente esqueleto de archivo y modificarlo con los procedimientos que implementen.

Ejercicio 6. Escribir la función de Fibonacci que dado un entero n devuelve el n-ésimo número de Fibonacci. Los números de Fibonacci empiezan con $F_0 = 0$ y $F_1 = 1$. $F_n = F_{n-1} + F_{n-2}$

Ejercicio 7. Escribir la función que dado $n \in \mathbb{N}$ devuelve la suma de todos los números impares menores que n.

Ejercicio 8. Escribir la función sumaDivisores que dado $n \in \mathbb{N}$, devuelve la suma de todos sus divisores entre [1, n].

• Hint: Recordar que para la versión recursiva es necesario implementar divisoresHasta

Ejercicio 9. Escribir una función que dados n, $k \in \mathbb{N}$ compute el combinatorio: $\binom{n}{k}$. Hacerlo usando la igualdad $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$ ¿Qué pasa si tuvieran que escribir la versión iterativa?

Ejercicio 10. ¿Es mejor programar utilizando algoritmos recursivos ó iterativos? ¿Es mejor usar while o for?

2. Entrada/Salida + Pasaje de parámetros

Ejercicio 11. Escribir un programa en el que se ingrese un número por teclado (entrada estándar), calcule si es primo y muestre por pantalla (salida estándar) el resultado:

- si es primo "El número ingresado es primo"
- y si no lo es "El número ingresado no es primo"

Ejercicio 12. Escribir una función writeToFile que escriba en un archivo salida.txt 2 enteros a y b y luego 2 reales f y g separados con coma en una única línea.

Ejercicio 13. Leer del archivo entrada.txt un valor entero y almacenarlo en una variable llamada a y luego leer un valor real y almacenarlo en un variable f. Mostrar los valores leídos en la salida estaándar Ambos valores están separados por un espacio y hay una única línea en el archivo.

- entrada.txt:
- **■** -234 1.7

Ejercicio 14. El archivo numeros.txt contiene una lista de números separados por espacios. Leer los números del archivo e imprimirlos por pantalla.

Ejercicio 15. ¿Cuál es el valor de a luego de la invocación prueba(a,a)?

```
int a = 10;

void prueba(int& x, int& y) {
    x = x + y;
    y = x - y;
    x = 1/y;
}
prueba(a, a);
```

En los siguientes ejercicios, ingresar los valores por entrada estándar, mostrar en la salida estándar los valores ingresados y los resultados de las funciones.

Ejercicio 16. Implementar la función swap: void swap(int& a, int& b), que cumpla con la siguiente especificación:

```
\begin{array}{ll} \texttt{proc swap (inout a:}\mathbb{Z}, \ \texttt{inout b:}\mathbb{Z}) & \{ \\ & \texttt{Pre} \ \{ a = a_0 \land b = b_0 \} \\ & \texttt{Post} \ \{ a = b_0 \land b = a_0 \} \\ \} \end{array}
```

Ejercicio 17. Implementar la función division que cumpla con la siguiente especificación:

```
 \begin{array}{l} \texttt{proc division (in dividendo } \mathbb{Z}, \ \text{in divisor } \mathbb{Z}, \ \text{out cociente:} \mathbb{Z}, \ \text{out resto:} \mathbb{Z}) \ \ \{ \ Pre \ \{ dividendo \geq 0 \land divisor > 0 \} \\ \ Post \ \{ dividendo = divisor * cociente + resto \land 0 \leq resto < divisor \} \ \} \\ \end{aligned}
```

Resolver este ejercicio en versiones iterativa y recursiva.

Ejercicio 18. void collatz(int n, int& cantPasos)

La conjetura de Collatz dice que dado un número natural n y el proceso que describimos a continuación, sin importar cuál sea el número original, provocará que la serie siempre termine en 1. El proceso:

- Si n es par lo dividimos por 2
- Si n es impar lo multiplicamos por 3 y le sumamos 1 al resultado

En este ejercicio, supondremos que la conjetura es cierta y se pide implementar una función que devuelva la cantidad de pasos que se realizan desde el número original hasta llegar a 1. Ejemplo: si calculamos collatz de 11, la cantidad de pasos es 15 y la sucesión es 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1 Resolver este ejercicio en versiones iterativa y recursiva.

Ejercicio 19. Dados dos archivos que contienen números separados por espacios (ambos archivos tienen la misma cantidad de números), se pide que se sumen los valores de los archivos y se genere uno nuevo con la suma de los mismos. Ejemplo: "numeros.txt" contiene 1 25 6 y "numeros1.txt" contiene 45 5 4 debe crear el archivo "salida.txt" que contenga 46 30 10.

Ejercicio 20. void primosGemelos(int n, int& res1, int& res2) Decimos que a y b son primos gemelos, si ambos son primos y ademas a=b-2. Queremos obtener los iesimos primos gemelos. Por ejemplo, son primos gemelos 3 y 5, 5 y 7, 11 y 13, 17 y 19, 29 y 31, 41 y 43 ..., los 4-esimos primos gemelos son 17 y 19. Además se debe escribir en un archivo la secuencia de primos gemelos hasta llegar al i-esimo.

Para el ejemplo el archivo debe contener: (3,5) (5,7) (11,17) (17,19)

3. Vectores

Ejercicio 21. Especificar y luego implementar en su versión recursiva e iterativa:

1. bool divide(vector<int> v, int n)

Dados un vector v y un entero n, decide si n divide a todos los números de v.

2. int maximo(vector<int> v)

Dado un vector, devuelve el valor máximo.

3. bool pertenece(int elem, vector<int> v)

Dado un entero, indica si pertenece o no al vector.

Ejercicio 22. Implementar en su versión iterativa:

1. vector<int> rotar(vector<int> v, int k)

Dado un vector v y un entero k, rotar k posiciones los elementos de v.

[1, 2, 3, 4, 5, 6] rotado 2, deberia dar [3, 4, 5, 6, 1, 2].

2. vector<int> reverso(vector<int> v)

Dado un vector v, devuelve el reverso. Implementar también la versión recursiva de este problema.

3. vector<int> factoresPrimos(int n)

Dado un entero devuelve un vector con los factores primos del mismo.

4. void mostrarVector(vector<int> v)

Dado un vector de enteros muestra por la salida estándar (cout), el vector Ejemplo: si el vector es <1,2,5,65> se debe mostrar en pantalla [1,2,5,65]

5. bool estaOrdenado(vector<int> v)

Dado un vector v de int, dice si es monótonamente creciente o monótonamente decreciente.

Ejercicio 23. Integradores. Implementar las siguientes funciones

1. void negadorDeBooleanos(vector<bool> &booleanos)

Modifica un vector de booleanos negando todos sus elementos.

2. void palindromos(string rutaArchivoIn, string rutaArchivoOut)

Este procedimiento debe leer un archivo que contiene una lista de strings y crear uno nuevo dejando sólo los palíndromos. Además, debe transformar las palabras a mayúscula. **Ayuda**: Buscar la función toupper definida en cctype. Utilizar como ejemplo el archivo palindromos.txt.

3. void promedios(string rutaArchivoIn1, string rutaArchivoIn2, string rutaArchivoOut)

Dados dos archivos en los que cada uno contiene una secuencia de enteros (ambas con la misma longitud), guardar el promedio de cada par de números que se encuentran en la misma posición en el archivo de salida. Por ejemplo: si tenemos dos secuencias "1 2 3 4" y "1 25 3 12" el resultado debe ser "1 13.5 3 8"

4. void cantidadApariciones(string rutaArchivoIn, string rutaArchivoOut)

Dado un archivo rutaArchivoIn, que contiene una lista de números separados por espacios, contar la cantidad de apariciones de cada uno y escribe rutaArchivoOut con una línea por cada número encontrado, un espacio y la cantidad de apariciones. Por ejemplo: si el "1" aparece 44 veces y el "2" 20 veces, la salida debería contener dos líneas: "1 44" y "2 20".

5. int cantidadAparicionesDePalabra(string rutaArchivo, string palabra)

Dada una palabra y un archivo de texto devuelve la cantidad de apariciones de la palabra en el archivo.

6. void estadisticas(string rutaArchivo)

Dado un archivo de texto, mostrar por pantalla las estadísticas de cantidad de palabras con longitud 1, 2, 3... hasta el máximo. Por ejemplo:

```
Palabras de longitud 1: 100
Palabras de longitud 2: 12
Palabras de longitud 3: 6
...
```

7. void intersecion()

Procedimiento que pide al usuario que se ingresen dos nombres de archivos que contengan sólo números enteros separados por espacios, luego calcula la intersección (números que se encuentran en ambos archivos) e imprime por pantalla el resultado.