Úvod do praktické fyziky NOFY055

Petr Hruška – Katedra fyziky nízkých teplot

místnost L164 (Troja)

petr.hruska@matfyz.cuni.cz

https://physics.mff.cuni.cz/kfnt/vyuka/upf/hruska/

Doporučená literatura:

- J. Englich, "Úvod do praktické fyziky I", (Matfyzpress, Praha 2006).
- W.T. Eadie et al., "Statistical Methods in Experimental Physics", (North Holland, Amsterdam, 1971).
- G. Cowan, "Statistical Data Analysis", (Oxford Science Publications, Oxford 1998).
- R.J. Barlow, "Statistics. A Guide to the Use of Statistical Methods in the Physical Sciences", (John Wiley & Sons, Chichester 1989).

Úvod do praktické fyziky NOFY055

podmínky pro získání zápočtu:

- úspěšné absolvování 2 testů během semestru (termín bude oznámen)
- každý test 0 15 bodů → celkem je nutné získat alespoň 16 bodů
- velmi doporučuji po každém semináři vypracovat seminární úlohy

Struktura seminářů

přednáška + praktické cvičení

používané programy viz: https://physics.mff.cuni.cz/kfnt/vyuka/upf/

- Excel (příklady dělané ve verzi s českou lokalizací)
 - pro všechny studenty MFF zdarma služba Office 365

- bezplatná distribuce Anaconda
- prostředí Spyder

- pro všechny studenty zdarma plovoucí licence

- pro všechny studenty MFF zdarma celofakultní licence
- nutno mít zřízený účet Office 365

Gnuplot

k dispozici zdarma

Chyby měření

Výsledky měření nebo pozorování jsou vždy zatíženy chybou:

statistické jsou důsledkem náhodných fluktuací, které se popisují metodami matematické statistiky

 systematické vznikají v důsledku chybných kalibrací, interpretací apod., zatěžují stejným způsobem výsledek každého nezávisle opakovaného měření

hrubé vznikají hrubým zásahem do procesu měření, jejich velikost významně převyšuje rozptyl chyby statistické

Chyby měření

10 měření veličiny y

Příklad: Měření tloušťky tenké vrstvy

10 měření tloušťky d pomocí kontaktního profilometru

n	d (nm)
1	178
2	176
3	171
4	164
5	171
6	164
7	159
8	163
9	160
10	170

Příklad: Měření odporu přímou metodou

1. zapojení $\rightarrow R_1$

$$R_1 = \frac{U_1}{I_1} = \frac{U_R + U_A}{I_1} = R + R_A$$

$$R_1 > R$$

2. zapojení
$$\rightarrow R_2$$

$$R_1 = \frac{U_2}{I_2} = \frac{U_2}{I_R + I_V} \Rightarrow \frac{1}{R_2} = \frac{1}{R} + \frac{1}{R_V}$$

$$R_2 < R$$

Náhodná a systematická chyba

Improving Precision
Decreasing Random Errors

Nejistota (uncertainty) výsledku měření

CIMP (Mezinárodní výbor pro míry a váhy) Comité International des Poids et Mesures ISO (Mezinárodní Organizace pro Normalizaci) – Guide to the Expression of Uncertainty in Measurements (2008)

- statistické (typu A) nejčastěji zpracování složek nejistoty, σ_{A} které mají svůj původ v náhodných jevech
- ostatní (typu B) zpracování ostatních složek nejistoty (odhad)
- $\hat{\mu}$ odhad skutečné hodnoty měřené veličiny
- $\sigma_C^2 = \sigma_A^2 + \sigma_R^2$ odhad chyby – kombinovaná standardní nejistota

výsledek měření
$$x = (\hat{\mu}_x \pm \sigma_{C,x}) \, [x]$$
 označení jednotky

absolutní chyba (nejistota)

relativní chyba
$$\eta_{\chi} = rac{\sigma_{C,\chi}}{\hat{\mu}_{\chi}} imes 100\%$$

Chyba typu A vs typu B

$$\sigma_A \gg \sigma_B \Rightarrow \sigma_C \approx \sigma_A$$

GB7676-98

一口 2.5 上皿

$$\sigma_B \gg \sigma_A \Rightarrow \sigma_C \approx \sigma_B$$

$$\sigma_{A} \cong \sigma_{B} \Rightarrow \sigma_{C} = \sqrt{\sigma_{A}^{2} + \sigma_{B}^{2}}$$

Zápis výsledku měření

- nejistotu (chybu) uvádíme nejvýše na 2 platné číslice
- výsledek zaokrouhlíme v řádu poslední platné číslice neurčitosti (chyby)
- platné číslice všechny číslice s výjimkou nul před první nenulovou číslicí

```
0.00152 \rightarrow 3 platné číslice 0.010040 \rightarrow 5 platných číslic \rightarrow 10 platných číslic
```

zápis výsledku měření

$$v = (1.63 \pm 0.02) \text{ m s}^{-1}$$
 $I = (0.10 \pm 0.01) \times 10^{-3} \text{ A}$
 $p = (5.105 \pm 0.012) \text{ GPa}$ $t = 0.405(3) \text{ s}$

Poznámka: Pokud se chyba měření ve výsledku neudává, předpokládá se implicitně, že je menší, než polovina řádu za poslední platnou číslicí výsledku:

$$v = 1.5 \,\mathrm{m \, s^{-1}} \quad \Rightarrow 1.45 \,\mathrm{m \, s^{-1}} < v < 1.55 \,\mathrm{m \, s^{-1}}$$

Příklad: Zápis výsledku měření

Poznámky:

- Abychom předešli nejednoznačnost, měli bychom výsledky měření zapisovat ve tvaru x.xxxx, kde x jsou číslice.
- Odhad naměřené hodnoty a celkovou chybu uvádíme na stejný počet desetinných míst.
- Mezi hodnotou a jednotkou píšeme vždy mezeru, jednotky nepíšeme kurzívou.
- Lze psát desetinnou čárku (CZ, SK) i desetinnou tečku (EN).