CMSC5741 Big Data Tech. & Apps.

Lecture 6: Dimensionality Reduction https://powcoder.com

Add WeChat powcoder

Prof. Michael R. Lyu
Computer Science & Engineering Dept.
The Chinese University of Hong Kong

A Compression Example

ssignment Project Exam Help

https://powcoder.com

Add WeChat power

Outline

- Motivation
- SVD

Assignment Project Exam Help

CUR

https://powcoder.com – Application of SVD and CUR

PCA

Add WeChat powcoder

Extension to robust PCA

Dimensionality Reduction Motivation

- Assumption: Data lie on or near a low d-dimensional subspace
- Axes of this subspace are effective representation of the data

Dimensionality Reduction Motivation

Compress / reduce dimensionality:

\mathbf{day}	W https	s://bowo	coder.co	$ m om^{Sa}$	$\mathbf{S}\mathbf{u}$
customer	7/10/16	7/11/16	7/12/16	7/13/16	7/14/16
ABC Inc.	¹ ∆ dd	WaCh	at powc	oder	0
DEF Ltd.	2144	W 2CII	at powe	ougi	0
GHI Inc.	1	1	1	0	0
KLM Co.	5	5	5	0	0
${f Smith}$	0	0	0	2	2
$_{ m Johnson}$	0	0	0	3	3
Thompson	0	0	0	1	1

The above matrix is really "2-dimensional." All rows can be reconstructed by scaling [1 1 1 0 0] or [0 0 0 1 1]

Rank of a Matrix

- Q: What is rank of a matrix A?
- A: No. of linearly independent rows/columns of A

- Why? The first the rows Great Park find of Endent, so the rank is at least 2, but all three rows are linearly dependent (the first is equal to the sum of the second and third) so the rank must be less than 3.
- Why do we care about low rank?
 - We can write A as two "basis" vectors: [1 2 1] [-2 -3 1]
 - And new coordinates of : [1 0] [0 1] [1 -1]

Rank is "Dimensionality"

- Cloud of points 3D space:
 - Think of point positions as a matrix: Assignment Project Example 1

1 row per point: https://powcoder.com

• We can rewrite coordinates more efficiently!

- - Old basis vectors: [1 0 0] [0 1 0] [0 0 1]
 - New basis vectors: [1 2 1] [-2 -3 1]
 - Then A has new coordinates: [1 0]. B: [0 1], C: [1 -1]
 - Notice: We reduced the number of coordinates!

Dimensionality Reduction

 Goal of dimensionality reduction is to discover the axis of data!

By doing this we incur a bit of **error** as the points do not exactly lie on the line

Why Reduce Dimensions?

Why reduce dimensions?

- Discover hidden correlations/topics Assignment Project Exam Help
 - Words that occur commonly together
- https://powcoder.com
 Remove redundant and noisy features
 - Not all words are useful hat powcoder
- Interpretation and visualization
- Easier storage and processing of the data

SVD: Dimensionality Reduction

SVD: Singular Value Decomposition

- For an matrix A, we can decompose it as = ,
 where
 - U is an real of signplex of Project Fixage (1.1.)
 - Σ is an m × n rectangular diagonal matrix with nonnegative real numbers on the diagonal, and
 - V^T (the conjugate to an year of V if V is real) is an real or complex orthonormal matrix.

SVD: Singular Value Decomposition

 V^T When rank(A) = r: n • : input data matrixssignment Project Exam Help - matrix (e.g., documents, terms) • : left singular vectors https://powcoder.com - matrix (documents, topics) Add WeChat powcoder • : singular values diagonal matrix (strength of each "topic") rank of matrix - : scalar • : right singular vectors - : vector matrix (terms, topics) - : vector

SVD: Singular Value Decomposition

SVD Properties

- It is always possible to do SVD, i.e. decompose a matrix A into , where Assignment Project Exam Help U, Σ, V : unique
- U,V: column orthonormal
 - -, (I: identity matrix) eChat powcoder
- Σ: diagonal
 - Entries (singular values) are non-negative,
 - Sorted in decreasing order $(\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r \ge 0)$.

SVD Example

We give an example of a simple SVD decomposition

Assignment Project Exam Help

- example: Users to Movies

- example

- example

n

U is "user-to-concept" similarity matrix

$$\begin{bmatrix} 0.59 & 0.54 & 0.59 & 0.05 \\ -0.10 & 0.12 & -0.10 & 0.98 \\ -0.37 & 0.83 & -0.37 & -0.17 \end{bmatrix}$$

n

- example

n

• - example

V is "movie-to-concept" similarity matrix

n

Q: Does the movie "Twilight" relate to concept "Romance"?

- "movies", "users" and "concepts"
 - -: user-to-concept similarity matrix
 Assignment Project Exam Help
 -: movie-to-concept similarity matrix

 - -: its diagonal elements wooder.com
 - 'strength' of path wheeptat powcoder

SVD gives 'best' axis to project on Signment Project Exam Help

 'best' = minimal sum of squares of projection errors
 Add WeChat powcoder

 In other words,

minimum reconstruction

error

Movie 1 rating

first right singular vector − *U*: user-to-concept matrix
Assignment Project Exam
− *V*: movie-to-concept matrix https://powcoder.com Movie 1 rating 0.24 0.02 0.69 0.48 hat powcodero 0.49 X -0.07-0.160.68 0.06 0.57 0.06 0.01 0.41 -0.200.07 0.70 -0.01

0.59	0.54	0.59	0.05
-0.10	0.12	- 0.10 - 0.37	0.98
-0.37	0.83	-0.37	-0.17

0.24

0.49

0.68 0.06

0.01 0.07 -0.07

0.57

0.41

0.70

on the v₁ axis

-0.16

-0.20

-0.01

0.06

https://poweoder.com 0.02 0.69

Movie 1 rating hat powcodero

$$\begin{bmatrix} 0.59 & 0.54 & 0.59 & 0.05 \\ -0.10 & 0.12 & -0.10 & 0.98 \\ -0.37 & 0.83 & -0.37 & -0.17 \end{bmatrix}$$

X

first right

singular vector

- example
- example

 : the coordinates of the points in -: the coordinates of the

https://powcoder.com

Projection of users on the "SA-d'daweChat powcoder

1	3	1	0
3	4	3	1
4	2	4	0
5	4	5	1
0	1	0	4
0	0	0	3
0	1	0	5

2.86	0.24	8.21
5.71	-0.24	5.12
5.83	-0.95	-6.19
8.09	-0.83	-1.90
0.71	6.78	0.71
0.12	4.88	-2.38
0.83	8.33	-0.12

first right

Movie 1 rating

singular vector

Q: how exactly is dimension reduction done?

Assignment Project Exam Help

$$\begin{bmatrix} 0.59 & 0.54 & 0.59 & 0.05 \\ -0.10 & 0.12 & -0.10 & 0.98 \\ -0.37 & 0.83 & -0.37 & -0.17 \end{bmatrix}$$

- Q: how exactly is dimension reduction done?
- A: Set smallest singular values to zero Assignment Project Exam Help

https://powcoder.com

$$\begin{bmatrix} 0.59 & 0.54 & 0.59 & 0.05 \\ -0.10 & 0.12 & -0.10 & 0.98 \\ -0.37 & 0.83 & -0.37 & -0.17 \end{bmatrix}$$

- Q: how exactly is dimension reduction done?
- A: Set smallest singular values to zero Assignment Project Exam Help
 - Approximate original matrix by low-rank matrices

https://powcoder.com

$$\begin{bmatrix} 0.59 & 0.54 & 0.59 & 0.05 \\ -0.10 & 0.12 & -0.10 & 0.98 \\ -0.37 & 0.83 & -0.37 & 0.17 \end{bmatrix}$$

- Q: how exactly is dimension reduction done?
- A: Set smallest singular values to zero Assignment Project Exam Help
 - Approximate original matrix by low-rank matrices https://powcoder.com

$$\begin{bmatrix} 1 & 3 & 1 & 0 \\ 3 & 4 & 3 & 1 \\ 4 & 2 & 4 & 0 \\ 5 & 4 & 5 & 1 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & 3 \\ 0 & 1 & 0 & 5 \end{bmatrix} \approx$$

SVD: Best Low Rank Approximation

SVD: Best Low Rank Approximation

- Theorem: Let (), and
 - = diagonal matrix where (and ()
 - or equivale Assignment Broject Fixam Help
 - or equivalently,

https://powcoder.com
• Intuition (spectral decomposition)

Add WeChat powcoder

- Why setting small to 0 is the right thing to do?
 - Vectors and are unit length, so scales them.
 - Therefore, zeroing small introduces less error.

- Q: How many σ_i to keep?
- A: Rule-of-a thumbent Project Exam Help Keep 80~90% "energy" () https://powcoder.com

$$b \quad \sigma_1 u_1 \circ v_1^T + \sigma_2 u_2 \circ v_2^T + \cdots$$

SVD: Complexity

SVD for full matrix

Assignment Project Exam Help

- But
 - Less work, if we only want to compute singular values
 - or if we only want direct estimate the control (thin-svd).
 - or if the matrix is sparse (sparse svd).
- Stable implementations
 - LINPACK, Matlab, Splus, Mathematica...
 - Available in most common languages

SVD: Conclusions so far

- SVD: : unique
 - user-to-concept similarities
 Assignment Project Exam Help
 movie-to-concept similarities

 - -: strength to each conceptoder.com
- Dimensionality And West bat powcoder
 - Keep the few largest singular values (80-90% of "energy")
 - SVD: picks up linear correlations

SVD: Relationship to Eigen-decomposition

SVD gives us

Assignment Project Exam Help

• Eigen-decomposition https://powcoder.com

Add WeChat powcoder

- is symmetric
- are orthonormal (
- are diagonal

SVD: Relationship to Eigen-decomposition

Eigen-decomposition of and

Assignment Project Exam Help

https://powcoder.com

- So, , and
- That is, is the matrix of eigenvectors of
- This shows how to use eigen-decomposition to compute SVD
- Ahe singular values of are the square roots of the corresponding eigenvalues of
- Note: and are the dataset covariance matrices

A Brief Review of Eigen-Decomposition

- Eigenvalues and eigenvectors
 - matrix. Assignment Project Exam Help
 - eigenvalue of , : eigenvector of _eigenpair.
- Simple computational method of eigenvalues
 - Solve the equation Add We Chat powcoder
 - Example
 - Then
 - Then
 - Solve, we get

A Brief Review of Eigen-Decomposition

Example (continued)

Assignment Project Exam Help

- solve, we get eigenvalues // powcoder.com
- now we computation the computation of the computa
 - for eigenvalue we need to find
 - solve
 - We get Since needs to be a unit vector, therefore
 - Similarly, we can compute

Computing Eigenvalues: Power Method

- Power method
 - choose an arbitrary Assignment Project Exam Help
 - —
 - Theorem: sequence converges to the principal eigenvector (i.e., the eigenvector cards) words to the wargest reigenvalue)
- Normalized power method
 - choose an arbitrary

Theorem: sequence converges to the principal eigenvector.

In-class Practice

Go to <u>practice</u>

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

- Q: Find users that like "The Avengers"
- A: Map query into a "concept space" how? Assignment Project Exam Help

$$X \begin{bmatrix}
11.9 & 0 & 0 \\
0 & 7.1 & 0 \\
0 & 0 & 2.5
\end{bmatrix} \quad X$$

$$\begin{bmatrix} 0.59 & 0.54 & 0.59 & 0.05 \\ -0.10 & 0.12 & -0.10 & 0.98 \\ -0.37 & 0.83 & -0.37 & -0.17 \end{bmatrix}$$

- Q: Find users that like "The Avengers"
- A: Map query into a "concept space" how? Assignment Project Exam Help

Project into concept space: Inner product with each concept vector v_i

- Q: Find users that like "The Avengers"
- A: Map query into a "concept space" how? Assignment Project Exam Help

Compactly, we have

$$-q_c=qV$$

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Add WeChat powcoder

$$q = \begin{bmatrix} 5 & 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0.59 & -0.10 \\ 0.54 & 0.12 \\ 0.59 & -0.10 \\ 0.05 & 0.98 \end{bmatrix} = \begin{bmatrix} 2.95 & -0.50 \end{bmatrix}$$

movie-to-concept similarities ()

 How would the user d that rated ('Star Wars', 'Matrix') be handled? Assignment Project Exam Help

$$-d_c=dV$$

https://powcoder.com

Add WeChat powcoder

Add WeChat powcoder

Add WeChat powcoder

$$d \ [0 \ 4 \ 5 \ 0] \ X \ \begin{bmatrix} 0.59 & -0.10 \\ 0.54 & 0.12 \\ 0.59 & -0.10 \\ 0.05 & 0.98 \end{bmatrix} = [5.11 \ -0.02]$$

movie-to-concept similarities ()

Observation

- User d that rated ('Star Wars') will be similar to user q Assignment Project Exam Help that rate ('The Avengers'), although d and q have zero ratings in commupos!//powcoder.com

SVD: Drawbacks

- + Optimal low-rank approximation in terms of Euclidean norm
- Interpretability problem:
 - A singular Vector specifies a linear combination of talk in put columns or rows
- Lack of sparsity:
 Add WeChat powcoder
 Singular vectors are dense!

CUR Decomposition

- Goal: express A as a product of matrices
 - Minimize Assignment Project Exam Help
- Constraints on

https://powcoder.com

CUR Decomposition

- Goal: express A as a product of matrices
 - Minimize
 Assignment Project Exam Help
- Constraints on https://powcoder.com

CUR: Good Approximation to SVD

 Let be the best rank approximation of (obtain by SVD)
 Assignment Project Exam Help

Theorem

- CUR algorithm in time achieves

Add WeChat powcoder

- with probability at least, by picking
 - columns and
 - rows
 - (in practice, choose columns/rows)

CUR: How it Works

Sampling columns (similarly for rows):

```
Input: matraxianment Projectalizate Help c

Output: \mathbf{C}_d \in \mathbb{R}^{m \times c} inters://powcoder.com

1. for x = 1 : n [column distribution]

2. P(x) \stackrel{\text{Add}}{=} \stackrel{\text{We}}{=} \stackrel{\text{Chat}}{=} \mathbf{A}(i,j)^2

3. for i = 1 : c [sample columns]

4. Pick j \in 1 : n based on distribution P(x)

5. Compute \mathbf{C}_d(:,i) = \mathbf{A}(:,j)/\sqrt{cP(j)}
```

CUR: Computing U

- Let be the "intersection" of sampled columns C and rows R - Let SVD of Assignment Project Exam Help
- Then:, where https://powcoder.com
 - is the "Moore Pen wse pat udw inverse".
 - -, if.

CUR: Pros & Cons

- + easy interpretation
- the basis vectors are actual columns and rows
 Assignment Project Exam Help
 duplicate columns and rows
- - columns of large norms will be sampled many times

Add WeChat powcoder

CUR: Duplicate Columns

- If we want to get rid of the duplicates
 - Throw them away
 Assignment Project Exam Help
 Scale the columns/rows by the square root of the
 - number of dubticate powcoder.com

Add WeChat powcoder

SVD vs CUR

Question: Large or small? Dense or sparse?

SVD vs CUR

SVD & CUR: Simple Experiments

- DBLP data
 - author-to-conference matrix
 - very spars Assignment Project Exam Help
 - : number of papers published by author at conference .
 - 428k authors (rows)
 - 3659 conferences (column) hat powcoder
- Dimensionality reduction
 - Running time?
 - Space?
 - Reconstruction error?

Results: DBLP

courtesy: Sun, Faloutsos: Less is more, Compact Matrix Decomposition for Large Sparse Graph, SDM'07

- accuracy: 1-relative sum squared errors
- space ratio: # output non-zero matrix entries / # input non-zero matrix entries

The Linearity Assumption

- SVD is limited to linear projections
- Data lies on a low-dimensional linear space Assignment Project Exam Help
 Non-linear methods: Isomap
- - Data lies on a low-dimensional manifold
 - Non-linear Add WeChat powcoder
 - How?
 - Build adjacency graph
 - SVD the graph adjacency matrix
 - Further reading: wikipage of Isomap

PCA: An Application of SVD

PCA = Principle Component Analysis

Assignment Project Exam Help

Motivation

https://powcoder.com

- Visualization

Add WeChat powcoder

PCA: Data Visualization

• Example:

Given 53 blood samples (features) from 65 people (data item or instance)
 Assignment Project Exam Help

			H-WBC	H-RBC/	H-Hgb 14.1000	H-Hct1	H-MCV	H-MCH 29.0000	H-MCHC
Instances		A1	8.0000	4.8200	14.1000	H-Hct1 C49.0000	85.0000	29.0000	34.0000
		A2	7.3000	5.0200	14.7000	43.0000	86.0000	29.0000	34.0000
		A3	4.3000	4.4900	7 14/1600	41.0000	91.0000	32.0000	35.0000
		A4	7.5000	4.4700	44.9000	45.000	101.0000	93.9000	33.0000
		A5	7.3000	5.5200	15.4000	46.0000	84.0000	28.0000	33.0000
		A6	6.9000	4.8600	16.0000	47.0000	97.0000	33.0000	34.0000
		A7	7.8000	4.6800	14.7000	43.0000	92.0000	31.0000	34.0000
		A8	8.6000	4.8200	15.8000	42.0000	88.0000	33.0000	37.0000
		A9	5.1000	4.7100	14.0000	43.0000	92.0000	30.0000	32.0000
	Features								

How can we visualize the samples

PCA: Data Visualization

How can we visualize the other variables??? ... difficult to see in 4 or higher dimensional spaces ...

PCA: Data Visualization

- Is there a representation better than the coordinate axes?
- Is it really necessary to show all the 53 dimensions?
 Assignment Project Exam Help
 - What if there are strong Roweladons between the features?
 - How could we find the smallest subspace of the 53-D space that keeps the most information about the original data?
- A solution: Principal Component Analysis
 - An application of SVD.

PCA: Definition and Algorithms

PCA

Orthogonal projection of the data onto a laweignment Project Exam Help*n dimensional linear space such that https://powcoder.com

 Maximize variance of projected data (purple line)Add WeChat pow

 Minimize mean squared distance between

- Data point
- Projection (sum of blue lines)
- Look data from a literally different angle.

PCA: Idea

- Given data points in a d-dimensional space, project them into a lower dimensional space while Assignment Project Exam Help preserving as much information as possible.
 - Find best planatapproximation comes data
 - Find best 12-Dappwximation to door D data
- In particular, choose projection that minimizes squared error in reconstructing the original data.
 - Implement through SVD

PCA

- PCA Vectors originate from the center of mass.
- Principal component #1: points in the direction of the largest variance.
- Each subsequent principal component
 - is orthogonal to the previous orresternd
 - points in the directions of the largest variance of the residual subspace

PCA: 2D Gaussian dataset

1st PCA axis

2nd PCA axis

PCA: Algorithm

- Given centered data, compute principle vectors
 - 1st principle vector Assignment Project Exam Help
 - maximize the https://powcoder.com
 Add WeChat powcoder

PCA: Algorithm by SVD

SVD of the centered data matrix

n

PCA: Algorithm by SVD

- Columns of
 - is exactly the principal vectors.
 Assignment Project Exam Help
 orthogonal and has unit norm
- Matrix

- https://powcoder.com
- Add WeChat powcoder Diagonal
- Strength of each eigenvector
- Columns of
 - Coefficients for reconstructing the samples.

Application: Face Recognition

- Want to identify specific person, based on facial image
- Can't just use the given 256 x 256 pixels Assignment Project Exam Help

Applying PCA

- Method B: Buildhope Acadebasen for the whole dataset and then classify based on the weights.
- Example data set: Images of faces
- Each face is ...
 - values

Principal Components (Method B)

Reconstructing ... (Method B)

Happiness Subspace (Method A)

Add WeChat powcoder

Disgust Subspace (Method A)

Add WeChat powcoder

Image Compression

Assignment Project R

Divide the original https://powcoder.com/s72x492 image into
 patches: Add WeChat powc

Each patch is an instance that contains 12x12 pixels on a grid

View each as a 144-D vector

PCA Compression: 144D => 60D

PCA Compression: 144D => 16D

PCA Compression: 144D => 6D

6 Most Important Eigenvectors

PCA Compression: 144D => 3D

3 Most Important Eigenvectors

Add WeChat powcoder

Noisy Image

Denoised Image using 15 PCA Components

PCA: Shortcomings

PCA cannot capture non-linear structure

 Similar with SVD Assignment Project Exam Help . https://powcoder.com Add WeChat powcoder

PCA: Shortcomings

PCA does not know labels

PCA: Conclusions

- PCA
 - find orthonormal basis for data
 - sort dimensions in order of "strength"
 Assignment Project Exam Help
 discard low significance dimensions
- Uses

https://powcoder.com

- Get compact description
 Add WeChat powcoder
- Ignore noise
- Improve classification (hopefully)
- Not magic:
 - Doesn't know class labels
 - Can only capture linear variations
 - One of many tricks to reduce dimensionality!

Extra: Compute PCA Using Eigen-Decomposition

Given centered data compute covariance matrix

Assignment Project Exam Help

- Top PCA components = Top eigenvectors of .
 https://powcoder.com
 – Equivalence between eigen-decomposition and SVD
 - - SVD decomposition Chat powcoder
 - SVD-based algorithm for PCA
 - Eigen-decomposition of .
 - Eigen-based algorithm for PCA
 - The equivalence gives .

One-slide Takeaway

- Dimensionality reduction
 - compress/reduce dimension
 - reconstruct the original matrix by two or more smaller matrices
- Singular value decomposition (SVD)
 - decompose a matrilatas://powcoder.com
 - : column-orthonormal. diagonal matrix.

Add WeChat powcoder

- CUR decomposition
 - set of columns of . set of rows of .
- Principle component analysis (PCA)
 - reconstruct data matrix by a smaller number of eigenvectors
 - view the data from a *literally* different angle.

In-class Practice

- 1. Describe briefly (informally or formally) the relationship between singular value decomposition and eigenvalue decomposition.
- 2.1 Compute the igenvalues and eigenvectors of matrix
 Add WeChat powcoder
- 2.2 Let It is easy to check that . What are the singular values of ?
- 2.3 Obtain SVD for A where $A = U \Sigma V^T$