Homework 4

數據所 0656704 賴品儒

第一題 (Data: waste water)

- 廢水處理
- 三種去除 organic carbon 方法 (treatment):
 - a. Air flotation (AF)
 - b. Foam separation (FS)
 - c. Ferric-chloride coagulation (FCC)

(the organic carbon material measurements)

AF	FS	FCC	
34.6	38.8	26.7	
35.1	39.0	26.7	
35.3	40.1	27.0	
35.8	40.9	27.1	
36.1	41.0	27.5	
36.5	43.2	28.1	
36.8	44.9	28.1	
37.2	46.9	28.7	
37.4	51.6	30.7	
37.7	53.6	31.2	

(a) Test H_0 : $\mu_1 = \mu_2 = \mu_3$ at the $\alpha = .10$ level

$$n = 30 \cdot n_1 = n_2 = n_3 = 10$$

K=3

Df Sum Sq Mean Sq F value Pr(>F) treatment 2 1251.5 625.8 60.63 1.03e-10 *** Residuals 27 278.7 10.3 --- signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
$$F = \frac{\frac{SSTR}{K-1}}{\frac{SSE}{n-K}} \sim F(2,27)$$

$$F_{obs}^* = \frac{\frac{1251.5}{3-1}}{\frac{278.7}{30-3}} \approx 60.63$$

Reject H_0 if $F_{obs}^* > F_{\alpha=0.1}(2,27)$

$$F_{\alpha=0.1}(2,27) \approx 2.510609$$

結論:Reject H_0 ,我們有足夠證據顯示在 $\alpha=.10$ level下至少有一個 μ_i 不相等

第二題 (Data: fern)

光線對蕨類生長的影響·因為不同 ages 有不同生長 rates·故 Variable 由 blocking 控制

- Block (age)
 - young plants (plants grown in the dark for 4 days)
 - o older plants (plants grown in the dark for 12 days)
- Treatment (wavelength of light)

720 \ 460 \ 600 \ 720

Block (age)	Treatment (wavelength of light)				
	420 nm	460 nm	600 nm	720 nm	
Young	1017.6	929.0	939.8	1081.5	
Old	854.7	689.9	841.5	797.4	

(a) Find the sample treatment, block, and grand totals and means

K=4, b=2, n=K*b

• sample treatment :

Treatment	sample	total	mean
420 nm	1017.6, 854.7	1872.3	936.15
460nm	929.0, 689.9	1618.9	809.45
600nm	939.8, 841.5	1781.3	890.65
720nm	1081.5, 797.4	1878.9	939.45

• block:

block	sample	total	mean
Young	1017.6, 929.0, 939.8, 1081.5	3967.9	991.975
Old	854.7, 689.9, 841.5, 797.4	3183.5	795.875

- Grand total = 7151.4
- Grand mean = 893.925

(b) Test the null hypothesis of equal treatment means

$$\begin{array}{c} H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 \\ & \quad \text{Df Sum Sq Mean Sq F value Pr(>F)} \\ \text{treatment} \quad 3 \quad 22004 \quad 7335 \quad 2.172 \; 0.2702 \\ \text{block} \quad 1 \quad 76910 \quad 76910 \quad 22.777 \; 0.0175 \; * \\ \text{Residuals} \quad 3 \quad 10130 \quad 3377 \\ --- \\ \text{Signif. codes:} \quad 0 \text{ '***'} \; 0.001 \text{ '**'} \; 0.01 \text{ '*'} \; 0.05 \text{ '.'} \; 0.1 \text{ '} \; ' \; 1 \end{array}$$

Reject H_0 if $F_{obs}^* > F_{table}(p - value < 0.05)$

 $F_{\alpha=0.05}(3,3) \approx 9.2766$

結論:Don't reject H_0 ,我們沒有足夠證據顯示在 α = .05 level下 μ_i 不相等

第三題 (Data: cotinine)

Cotinine → indicator of tobacco smoke exposure

 Data: cotinine level mg/ml 檢測不同種族的 cotinine level

	White	Black
Male	210	245
	300	347
	150	125
	325	250
(1085)	100	260 (1227)
Female	177	252
	300	152
	106	315
	150	267
(893)	160	275 (1261)

- Factor 1: racial (White, Black)
- Factor 2: gender (Male, Female)

(a) Construct a two-way ANOVA table for these data and use it to test the null hypothesis of no interaction

Race <fctr></fctr>	Gender <fctr></fctr>	Count <int></int>	Sum <int></int>	Mean <dbl></dbl>
Black	Female	5	1261	252.2
Black	Male	5	1227	245.4
White	Female	5	893	178.6
White	Male	5	1085	217.0

假設 model: $Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk}$

Testing: $H_0: (\alpha\beta)_{11} = \cdots = (\alpha\beta)_{k_1k_2} = 0$ (no interaction)

factor1 : Race

Factor2: Gender

	Df	Sum Sq	Mean Sq F	value	Pr(>F)
factor1	1	13005	13005	2.129	0.164
factor2	1	1248	1248	0.204	0.657
factor1:factor2	1	2554	2554	0.418	0.527
Residuals	16	97731	6108		

Reject H_0 if p-value $< \alpha = 0.05$

p-value = 0.527 > 0.05

結論:Don't reject H_0 ,我們沒有足夠證據顯示在 $\alpha=0.05$ level下有交互作用

(b) If no interaction is found, test for main effects

• 針對 factor1: Race

 H_0 : $\mu_{white} = \mu_{black}$ p-value = 0.145 > 0.05

結論:Don't reject H_0 ,我們沒有足夠證據顯示在 $\alpha = 0.05$ level下 μ_i 不相等

• 針對 factor1: Gender

 H_0 : $\mu_{female} = \mu_{male}$ p-value = 0.661 > 0.05

結論:Don't reject H_0 ,我們沒有足夠證據顯示在 $\alpha=0.05$ level下 μ_i 不相等

- (c) If interaction is detected, construct a diagram similar to that shown in Figure 10.6 to investigate the nature of the interaction
 - \rightarrow no interaction is detected
 - 有 noise (outlier),影響 mean

下圖只顯示平均,看不出個體差異,即便有相交,但 factor Race、Gender 交互 作用不顯著

- (d) If interaction is detected, compare the mean cotinine level between whites and blacks for females via a one-way ANOVA. Do the same for males
 - → no interaction is detected
 - For female :

```
Df Sum Sq Mean Sq F value Pr(>F)
treatment 1 13542 13542 3.018 0.121
Residuals 8 35898 4487
```

 H_0 : $\mu_{white} = \mu_{black}$ p-value = 0.121 > 0.05

結論:Don't reject H_0 ,我們沒有足夠證據顯示在 $\alpha = 0.05$ level下 μ_i 不相等

• For male :

```
Df Sum Sq Mean Sq F value Pr(>F)
treatment 1 2016 2016 0.261 0.623
Residuals 8 61833 7729
```

 H_0 : $\mu_{white} = \mu_{black}$ p-value = 0.623 > 0.05

結論:Don't reject H_0 ,我們沒有足夠證據顯示在 $\alpha = 0.05$ level下 μ_i 不相等

原始碼: https://github.com/ayamisea/Applied-Methods-in-Butistics/blob/master/homework/HW04/HW04.Rmd