datasetmed

June 11, 2025

0.1 We've been provided with data on cancer patients and are required to analyze it.

0.1.1 Dataset Description:

This dataset appears to contain information on **cancer patients**, with variables capturing **demographics**, **health background**, **lifestyle factors**, **treatment details**, and **outcomes**. Each row represents an individual pat.

0.1.2 Variables Overview:

Variable	Description
id	Unique identifier for each patient
age	Patient's age in years
gender	Gender of the patient (Male or Female)
country	Country of residence
diagnosis_date	Date when the patient was diagnosed with cancer
cancer_stage	Cancer stage at diagnosis (Stage I, Stage III, etc.)
family_history	Whether the patient has a family history of cancer (Yes or No)
smoking_status	Smoking behavior (Passive Smoker, Former Smoker, etc.)
bmi	Body Mass Index (BMI)
cholesterol_level	Measured cholesterol level
hypertension	Binary indicator for hypertension $(1 = Yes, 0 = No)$
asthma	Binary indicator for asthma $(1 = Yes, 0 = No)$
cirrhosis	Binary indicator for cirrhosis $(1 = Yes, 0 = No)$
other_cancer	Binary indicator for presence of other types of cancer $(1 = \text{Yes}, 0 = \text{No})$
treatment_type	Type of cancer treatment (Chemotherapy, Surgery, Combined, etc.)
end_treatment_date	e Date when treatment ended
survived	Survival outcome $(1 = \text{Survived}, 0 = \text{Did not *ad this into a pandas})$
	DataFrame for analysis.

0.1.3 import Python libraries

```
[30]: import pandas as pd import matplotlib.pyplot as plt import numpy as np import plotly.express as px
```

0.2 import dataset

```
[5]: df = pd.read_csv(r'C:\Users\Administrator\Desktop\dataset_med.csv')
[6]: df.head()
[6]: id age gender country diagnosis_date cancer_stage family_history \
```

0	1	64.0	Male		Sweden	2016-0	4-05	Stag	e I	Yes	
1	2	50.0	Female	Net	herlands	2023-0	4-20	Stage	III	Yes	
2	3	65.0	Female		Hungary	2023-0	4-05	Stage	III	Yes	
3	4	51.0	Female		Belgium	2016-0	2-05	Stag	e I	No	
4	5	37.0	Male	Lu	xembourg	2023-1	1-29	Stag	e I	No	
	smo	king_s	tatus	bmi	cholester	ol_level	hyper	tension	asthma	cirrhosis	\
0	Pas	sive S	moker	29.4		199		0	0	1	
1	Pas	sive S	moker	41.2		280		1	1	0	
2	Fo	rmer S	moker	44.0		268		1	1	0	
3	Pas	sive S	moker	43.0		241		1	1	0	
4	Pas	sive S	moker	19.7		178		0	0	0	

other_cancer	treatment_type	end_treatment_date	survived
0	Chemotherapy	2017-09-10	0
0	Surgery	2024-06-17	1
0	Combined	2024-04-09	0
0	Chemotherapy	2017-04-23	0
0	Combined	2025-01-08	0
	other_cancer 0 0 0 0 0 0	0 Chemotherapy 0 Surgery 0 Combined 0 Chemotherapy	0 Surgery 2024-06-17 0 Combined 2024-04-09 0 Chemotherapy 2017-04-23

[7]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 890000 entries, 0 to 889999
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	id	890000 non-null	int64
1	age	890000 non-null	float64
2	gender	890000 non-null	object
3	country	890000 non-null	object
4	diagnosis_date	890000 non-null	object
5	cancer_stage	890000 non-null	object
6	family_history	890000 non-null	object
7	smoking_status	890000 non-null	object
8	bmi	890000 non-null	float64

```
cholesterol_level
                        890000 non-null
                                        int64
 10
    hypertension
                        890000 non-null int64
 11
    asthma
                        890000 non-null int64
 12 cirrhosis
                        890000 non-null int64
                        890000 non-null int64
 13 other cancer
 14 treatment_type
                        890000 non-null object
    end treatment date 890000 non-null object
 16 survived
                        890000 non-null
                                        int64
dtypes: float64(2), int64(7), object(8)
memory usage: 115.4+ MB
```

```
[8]: duplicates = df.duplicated()
     print (df[duplicates])
```

Empty DataFrame

Columns: [id, age, gender, country, diagnosis_date, cancer_stage, family_history, smoking_status, bmi, cholesterol_level, hypertension, asthma, cirrhosis, other_cancer, treatment_type, end_treatment_date, survived] Index: []

Patient Demographics

- 1.1 We seek to answer the following questions:
- 1.1.1 1. What is the age distribution of diagnosed patients?
- 1.1.2 2. How does gender distribution vary across cancer stages?
- 1.1.3 3. Which countries have the highest number of cancer cases?
- 1.1.4 4. What is the average BMI by gender and age group?

```
[10]: # we're using a histogram to see the age distribution of patients
      plt.hist(df["age"])
```

```
[10]: (array([1.20000e+01, 7.30000e+02, 1.33220e+04, 9.64490e+04, 2.81231e+05,
             3.22483e+05, 1.47271e+05, 2.65550e+04, 1.90300e+03, 4.40000e+01]),
      array([ 4., 14., 24., 34., 44., 54., 64., 74., 84., 94., 104.]),
      <BarContainer object of 10 artists>)
```



```
[21]: # how gender distribution varies with cancer stages
gender_stage = df.groupby(['cancer_stage', 'gender']).size().

ounstack(fill_value=0)
```

1.1.5 I opted for plotly.express because Matplotlib doesn't support hover interactivity

```
text='count',
    title='Gender Distribution by Cancer Stage',
    labels={'count': 'Total Patients'},
    color_discrete_sequence=px.colors.qualitative.Set2)

fig.update_layout(barmode='stack')
fig.show()
```

Gender Distribution by Cancer Stage


```
[34]: top_10_countries = df['country'].value_counts().head(10)

# Plot
plt.figure(figsize=(10, 6))
plt.bar(top_10_countries.index, top_10_countries.values, color='teal')
plt.xlabel('Country')
plt.ylabel('Number of Cancer Cases')
plt.title('Top 10 Countries with the Highest Cancer Cases')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
```


Top 10 Countries with the Highest Cancer Cases

[]: