```
F^+ = F apply the reflexivity rule /* Generates all trivial dependencies */
repeat

for each functional dependency f in F^+

apply the augmentation rule on f

add the resulting functional dependencies to F^+

for each pair of functional dependencies f_1 and f_2 in F^+

if f_1 and f_2 can be combined using transitivity

add the resulting functional dependency to F^+

until F^+ does not change any further
```

Figure 7.7 A procedure to compute F^+ .

• $AG \rightarrow I$. Since $A \rightarrow C$ and $CG \rightarrow I$, the pseudotransitivity rule implies that $AG \rightarrow I$ holds.

Another way of finding that $AG \to I$ holds is as follows: We use the augmentation rule on $A \to C$ to infer $AG \to CG$. Applying the transitivity rule to this dependency and $CG \to I$, we infer $AG \to I$.

Figure 7.7 shows a procedure that demonstrates formally how to use Armstrong's axioms to compute F^+ . In this procedure, when a functional dependency is added to F^+ , it may be already present, and in that case there is no change to F^+ . We shall see an alternative way of computing F^+ in Section 7.4.2.

The left-hand and right-hand sides of a functional dependency are both subsets of R. Since a set of size n has 2^n subsets, there are a total of $2^n \times 2^n = 2^{2n}$ possible functional dependencies, where n is the number of attributes in R. Each iteration of the repeat loop of the procedure, except the last iteration, adds at least one functional dependency to F^+ . Thus, the procedure is guaranteed to terminate, though it may be very lengthy.

7.4.2 Closure of Attribute Sets

We say that an attribute B is functionally determined by α if $\alpha \to B$. To test whether a set α is a superkey, we must devise an algorithm for computing the set of attributes functionally determined by α . One way of doing this is to compute F^+ , take all functional dependencies with α as the left-hand side, and take the union of the right-hand sides of all such dependencies. However, doing so can be expensive, since F^+ can be large.

An efficient algorithm for computing the set of attributes functionally determined by α is useful not only for testing whether α is a superkey, but also for several other tasks, as we shall see later in this section.