Ordinary Differential Equations

as an alternative to agent-based modelling

eX Modelo school

OpenMOLE

June 26, 2019

ODE systems

ightarrow widely used to model transmission phenomena

- population split into compartments
- system of ordinary differential equations

$$\begin{cases} \frac{\mathrm{d}S}{\mathrm{d}t} &= -\beta S + \lambda I \\ \frac{\mathrm{d}I}{\mathrm{d}t} &= \beta S - (\lambda + \gamma)I \\ \frac{\mathrm{d}R}{\mathrm{d}t} &= \gamma I \end{cases}$$

ODE

Equation-based
Generic mechanisms

Population scale

Needs less resources

ABM

Individual-based
Precise mechanisms

Individual scale

maividuai scaie

Computationally expensive

A Zombie situation

How could we model the Zombie invasion?

- ► Which mechanisms?
- ► Which parameters?

How could we model the Zombie invasion?

- ► Which mechanisms?
- Which parameters?

How can we assess our model's ability to reproduce the real data?

- ▶ Which metrics?
- ▶ Which fitness function?

$$\begin{cases} \frac{\mathrm{d}H_{walk}}{\mathrm{d}t} &= -(panic + inf) * H_{walk} + exhaustH * H_{run} \\ \frac{\mathrm{d}H_{run}}{\mathrm{d}t} &= panic * H_{walk} - (exhaustH + inf) * H_{run} \\ \frac{\mathrm{d}Z_{walk}}{\mathrm{d}t} &= inf * (H_{walk} + H_{run}) - hunt * Z_{walk} + exhaustZ * Z_{run} \\ \frac{\mathrm{d}Z_{run}}{\mathrm{d}t} &= hunt * Z_{walk} - exhaustZ * Z_{run} \end{cases}$$

$$\begin{cases} N &= H_{walk} + H_{run} + Z_{walk} + Z_{run} \\ \\ panic &= panic_0 * (Z_{walk} + Z_{run})/N \\ \\ hunt &= hunt0 * (H_{walk} + H_{run})/N \end{cases}$$

Exploration

We have some real time series of zombie invasion

 \rightarrow find the parameter values to best fit them

We have some real time series of zombie invasion \rightarrow find the parameter values to best fit them

► Embed the model in OpenMOLE

- ► Embed the model in OpenMOLE
- ▶ Define a fitness function

- ► Embed the model in OpenMOLE
- Define a fitness function
- Write a calibration task

Parameter set

 $\begin{array}{ccc} panic_0 & 7.25 \\ stamina_H & 0.99 \\ hunt_0 & 10.15 \\ stamina_Z & 1.28 \\ inf & 0.02 \\ fitness & 780 394 \\ \end{array}$

Second step: Profiles

Profiles for each of the 5 parameters: $rightarrow\ panic_0$, $stamin_{aH}$, $hunt_0$, $stamin_{aZ}$, inf_0

Adding complexity

The parcimony issue

The parcimony issue

▶ Do the new mechanisms really improve the fitness?

The parcimony issue

- Do the new mechanisms really improve the fitness?
- ▶ Do we need them all?

The parcimony issue

- ▶ Do the new mechanisms really improve the fitness?
- ▶ Do we need them all?
- What are the best combinations?

► Embed the model in OpenMOLE DONE

- ► Embed the model in OpenMOLE DONE
- ▶ Define a **second** fitness function

- ► Embed the model in OpenMOLE DONE
- ▶ Define a **second** fitness function
- ► Modify the calibration task

Pareto front

Dynamics for 0 mechanism activated

Dynamics for 1 mechanism activated

Dynamics for 2 mechanisms activated

Dynamics for 3 mechanisms activated

Some mathematics

Recall the ODE system:

$$\begin{cases} \frac{\mathrm{d}H_{walk}}{\mathrm{d}t} &= -(panic0*\frac{Z_{walk}+Z_{run}}{N}+inf)*H_{walk}+exhaustH*H_{run} \\ \frac{\mathrm{d}H_{run}}{\mathrm{d}t} &= panic0*\frac{Z_{walk}+Z_{run}}{N}*H_{walk}-(exhaustH+inf)*H_{run} \\ \frac{\mathrm{d}Z_{walk}}{\mathrm{d}t} &= inf*(H_{walk}+H_{run})-hunt0*\frac{H_{walk}+H_{run}}{N}*Z_{walk}+exhaustZ*Z_{run} \\ \frac{\mathrm{d}Z_{run}}{\mathrm{d}t} &= hunt0*\frac{H_{walk}+H_{run}}{N}*Z_{walk}-exhaustZ*Z_{run} \end{cases}$$

Where
$$N := H_{walk} + H_{run} + Z_{walk} + Z_{run}$$

First-order **nonlinear** (autonomous) ordinary differential equation... a priori no explicit solution, hence numerical solutions.

Summing the 4 equations, we have:

$$\frac{\mathrm{d}N}{\mathrm{d}t} = \frac{\mathrm{d}H_{walk}}{\mathrm{d}t} + \frac{\mathrm{d}H_{run}}{\mathrm{d}t} + \frac{\mathrm{d}Z_{walk}}{\mathrm{d}t} + \frac{\mathrm{d}Z_{run}}{\mathrm{d}t} = 0$$

So N(t) is constant:

$$N(t) = N(0)$$
, for all t .

We find back that the population size (human + zombies) is constant: natural !

Let's note $H := H_{walk} + H_{run}$ Summing the first equations, we have:

$$\frac{\mathrm{d}H}{\mathrm{d}t} = \frac{\mathrm{d}H_{walk}}{\mathrm{d}t} + \frac{\mathrm{d}H_{run}}{\mathrm{d}t} = -\inf*(H_{walk}(t) + H_{run}(t)) = -\inf*H(t)$$

First-order linear ordinary differential equation with constant coefficient: explicit solution !

$$H(t) = H(0) * e^{-inf*t}$$

Likewise,

$$Z(t) := Z_{walk} + Z_{run} = N - H(t)$$

Definition: The point $x \in \mathbb{R}^4$ is an *equilibrium point* for the differential equation X' = F(X) if F(X) = 0.

For example, points of the form (0,0,N,0) are equilibrium points. They correspond to a population composed of walking zombies.

$$\begin{cases} \frac{\mathrm{d}H_{walk}}{\mathrm{d}t} &= -(panic + inf + out) * H_{walk} + exhaustH * H_{run} \\ \frac{\mathrm{d}H_{run}}{\mathrm{d}t} &= panic * H_{walk} - (exhaustH + inf + out) * H_{run} \\ \frac{\mathrm{d}Z_{walk}}{\mathrm{d}t} &= inf * (H_{walk} + H_{run}) - (hunt + die) * Z_{walk} + exhaustZ * Z_{run} \\ \frac{\mathrm{d}Z_{run}}{\mathrm{d}t} &= hunt * Z_{walk} - (exhaustZ + die) * Z_{run} \end{cases}$$

$$\begin{cases} N &= H_{walk} + H_{run} + Z_{walk} + Z_{run} \\ \\ panic &= panic0 * (Z_{walk} + Z_{run})/N \\ \\ hunt &= hunt0 * (H_{walk} + H_{run})/N \\ \\ inf &= inf0 * (1 - fightback) \\ \\ out &= out0 * (H_{walk} + H_{run})/N \\ \\ die &= die0 * (H_{walk} + H_{run})/N \end{cases}$$

However, the population size is no more constant, due to out0 and die0.

Then, $H := H_{walk} + H_{run}$ satisfies :

$$\frac{\mathrm{d}H}{\mathrm{d}t} = -(\inf + \operatorname{out0}.\frac{H}{N}).H$$

for which a solution is not as simple as for the previous model.