Logistic Regression Model Fitting

Maximum likelihood estimation of model parameters

- ▶ Data: (y_i, m_i, x_i) , $i = 1, \dots, n$
- ▶ Model: $y_i \sim Bin(m_i, \pi_i)$ where $g(\pi_i) = \mathbf{x}_i^T \boldsymbol{\beta}$
- ► Log likelihood:

$$I(\beta) = \sum_{i=1}^{n} \left[y_i \log(\frac{\pi_i}{1-\pi_i}) + m_i \log(1-\pi_i) + \log\binom{m_i}{y_i} \right]$$

- Fisher scoring algorithm (IRLS)
- Convergence: not always obtainable

Goodness of Fit

Overall goodness-of-fit (for grouped data)

• Generalized Pearson χ^2 statistic

$$G(\hat{\boldsymbol{\pi}}, \boldsymbol{y}) = \sum_{i=1}^{n} \frac{(y_i - m_i \hat{\boldsymbol{\pi}}_i)^2}{m_i \hat{\boldsymbol{\pi}}_i (1 - \hat{\boldsymbol{\pi}}_i)}$$

Deviance

$$2\sum_{i=1}^{n} \left[y_{i} \log \frac{y_{i}}{m_{i}\hat{\pi}_{i}} + (m_{i} - y_{i}) \log \frac{m_{i} - y_{i}}{m_{i}(1 - \hat{\pi}_{i})} \right]$$

Note: if $y_i = 0$ or $y_i = m_i$, the zero-valued linear term overrides the log term, so the deviance is still well defined.

- ▶ Both approximately follow $\chi^2(n-p)$ distribution when m_i 's are large
- ▶ What about ungrouped data?

For sparse data $(m_i \text{ small})$

- ▶ Deviance and Generalized Pearson χ^2 statistics cannot be used for goodness-of-fit measure.
- ▶ Hosmer-Lemeshow statistic: χ^2_{HL}
 - Group observations into $g~(\approx 10)$ categories based on covariate patterns

$$\chi^2_{HL} = \sum_{i=1}^g \frac{(O_i - n_i \bar{\pi}_i)^2}{n_i \bar{\pi}_i (1 - \bar{\pi}_i)}$$

- O_i is the number of observed 1s in the ith group
- lacktriangledown $\bar{\pi}_i$ is the average of $\hat{\pi}_{ij}$ in the *i*th group
- Approximately $\chi^2(g-2)$
- Large value means lack of fit

Confidence Interval

For β , we know that

$$\hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \stackrel{\text{asy}}{\sim} \textit{N}(0, \mathcal{I}(\boldsymbol{\beta})^{-1}),$$

Thus the CI for β_j is $\hat{\beta}_j \pm Z_{1-\alpha/2}se(\hat{\beta}_j)$, where $Z_{\alpha/2}$ is the $\alpha/2$ quantile of the standard normal distribution.

What about $f(\beta)$?

▶ The asymptotic distribution of $f(\hat{\beta})$ is

$$N(f(\boldsymbol{\beta}), \frac{\partial f}{\partial \boldsymbol{\beta}^T} \mathcal{I}(\boldsymbol{\beta})^{-1} \frac{\partial f}{\partial \boldsymbol{\beta}})$$

▶ Thus the CI for $f(\beta)$ is

$$f(\hat{\boldsymbol{\beta}}) \pm Z_{1-\alpha/2} se(f(\hat{\boldsymbol{\beta}}))$$

lacktriangleright For example, the asymptotic distribution of $\hat{\eta}_* = \pmb{x}_*^T \hat{\pmb{\beta}}$ is

$$N(\boldsymbol{x}_*^T\boldsymbol{\beta},\boldsymbol{x}_*^T\mathcal{I}(\boldsymbol{\hat{\beta}})^{-1}\boldsymbol{x}_*)$$

▶ Subsequently, the asymptotic CI for $\eta_* = \mathbf{x}_*^T \boldsymbol{\beta}$ is

$$\mathbf{x}_*^{\mathsf{T}}\hat{\boldsymbol{\beta}} \pm Z_{\alpha/2} \sqrt{\mathbf{x}_*^{\mathsf{T}} \mathcal{I}(\hat{\boldsymbol{\beta}})^{-1} \mathbf{x}_*},$$

▶ Ultimately, we are interested in obtaining the CI for π_* .

$$\pi_* = g^{-1}(\eta_*)$$

- Point estimate: $\hat{\pi}_* = g^{-1}(\mathbf{x}_*^T \hat{\boldsymbol{\beta}})$
- $\begin{array}{c} (1-\alpha)100\% \text{ CI for } \eta_* = \mathbf{x}_*^T \boldsymbol{\beta} \text{ is } (\hat{\eta}_L, \hat{\eta}_R), \text{ where} \\ \\ \hat{\eta}_L = \mathbf{x}_*^T \hat{\boldsymbol{\beta}} \mathbf{z}_{\alpha/2} \sqrt{\mathbf{x}_*^T \mathcal{I}(\hat{\boldsymbol{\beta}})^{-1} \mathbf{x}_*} \\ \\ \hat{\eta}_R = \mathbf{x}_*^T \hat{\boldsymbol{\beta}} + \mathbf{z}_{\alpha/2} \sqrt{\mathbf{x}_*^T \mathcal{I}(\hat{\boldsymbol{\beta}})^{-1} \mathbf{x}_*} \end{array}$
- CI for π_∗:

$$[g^{-1}(\hat{\eta}_L), g^{-1}(\hat{\eta}_R)]$$

Example

► Show/no-show:

Investigating the relation between show/no-show and appointment lag. $\label{eq:local_show} \mbox{lag.}$

Peer reviewed publication:

Comparing urology fellows with and without time off in terms of their proportions of urological publications.