1 Characterization of distributed systems

1.1 Introduction

Weeks:1-2

What is a Distributed System?

A distributed system is one in which components located at networked computers communicate and coordinate their actions only by passing messages

A distributed system consists of a collection of autonomous computers linked by a computer network and equipped with distributed system software. This software enables computers to coordinate their activities and to share the resources of the system hardware, software, and data.

How to characterize a distributed system?

- concurrency of components
- · lack of global clock
- independent failures of components

Leslie Lamport :-)

You know you have a distributed system when the crash of a computer you've never heard of stops you from getting any work done!

Prime motivation: to share resources

What are the challenges?

- heterogeneity of their components
- openness
- security
- scalability the ability to work well when the load or the number of users increases
- failure handling
- concurrency of components
- transparency
- providing quality of service

1 Characterization of Distributed Systems 1.2 Examples of distributed systems

1.2 Examples of distributed systems

Distributed Systems application domains connected with networking:

2 Characterization of Distributed Systems 1.2 Examples of distributed systems

eCommerce e.g. Amazon and eBay, PayPal, online banking

Finance and commerce

	and trading
The information society	Web information and search engines, ebooks, Wikipedia;
	social networking: Facebook and MySpace
Creative industries and	online gaming, music and film in the home, user-generated
entertainment	content, e.g. YouTube, Flickr
Healthcare	health informatics, on online patient records,
	monitoring patients
Education	e-learning, virtual learning environments; distance learning
Transport and logistics	GPS in route finding systems, map services: Google Maps,
	Google Earth
Science	The Grid as an enabling technology for collaboration be-
	tween scientists
Environmental management	sensor technology to monitor earthquakes, floods or
	tsunamis

1.2.1 Web search

1.2.2 Massively multiplayer online games (MMOGs)

An example: Google

Highlights of this infrastructure:

- physical infrastructure
- distributed file system
- structured distributed storage system
- lock service
- programming model

Examples

- EVE online *client-server architecture*!
- EverQuest more distributed architecture
- Research on completely decentralized approaches based on *peer-topeer (P2P) technology*

1.2.3 Financial trading

• distributed even-based systems

- Reuters market data events
- **FIX events** (events following the specific format of the Financial Information eXchange protocol)

```
WHEN

MSFT price moves outside 2% of MSFT Moving
Average

FOLLOWED-BY (

MyBasket moves up by 0.5%
AND (

HPQ-s price moves up by 5%
OR

MSFT-s price moves down by 2%

)

ALL WITHIN
any 2 minute time period

THEN

BUY MSFT

SELL HPQ
```

Trends in distributed systems

- emergence of pervasive networking technology
- emergence of ubiquitous computing coupled with the desire to support user mobility
- multimedia services
- distributed systems as utility

Pervasive networking and the modern Internet

networking has become a pervasive resource and devices can be conected at any time and any place

A typical portion of the Internet:

1.3.2 Mobile and ubiquitous computing

- laptop computers
- handheld devices (mobile phones, smart phones, tablets, GPS-enabled devices, PDAs, video and digital cameras)
- wearable devices (smart watches, glasses, etc.)
- devices embedded in appliances (washing machines, refrigerators, cars, etc.)

Portable and handheld devices in a distributed system

- mobile computing
- location/contextaware computing
- ubiquitous computing
- spontaneous interoperation
- service discovery

1.3.3 Distributed multimedia systems

- live or pre-ordered television broadcasts
- video-on-demand
- music libraries
- audio and video conferencing

1.3.4 Distributed computing as a utility

- Cluster computing
- Grid computing
- Cloud computing

1.4 Sharing resources

What are the resources?

- Hardware
 - Not every single resource is for sharing
- Data
 - Databases
 - Proprietary software
 - Software production
 - Collaboration

Sharing Resources

- Different resources are handled in different ways, there are however some generic requirements:
 - Namespace for identification
 - Name translation to network address
 - Synchronization of multiple access

1.5 Challenges

1.5.1 Heterogeneity

Heterogeneity – variety and difference in:

- networks
- computer hardware
- OS
- programming languages
- implementations by different developers

Middleware

- *middleware* software layer providing:
 - programming abstraction
 - masking heteorogeneity of:
 - * underlying networks
 - * hardware
 - * operating systems

Heterogeneity and mobile code

Mobile code – programming code that can be transferred from one computer to another and run at the destination (Example: think Java applets)

Virtual machine approach – way of making code executable on a variety of host computers – the compiler for a particular language generates code for a virtual machine instead of a particular hardware order code.

1.5.2 Openness

OPENNESS of a:

computer system - can the system be extended and reimplemented in various ways?

distributed system - can new resource-sharing services be added and made available for use by variety of client programs?

An open system – key interfaces need to be published!

An open distributed system has:

- uniform communication mechanism
- published interfaces to shared resources

Open DS - heterogeneous hardware and software, possibly from different vendors, but conformance of each component to published standard must be tested and verified for the system to work correctly

1.5.3 Security

- 1. *Confidentiality* protection against disclosure to unauthorized individuals
- 2. *Integrity* protection against alteration or corruption
- 3. **Availability** protection against interference with the means to access the resources

Security challenges not yet fully met:

- denial of service attacks
- security of mobile code

1.5.4 Scalability

– the ability to work well when the system load or the number of users increases

Challanges with building scalable distributed systems:

- Controlling the cost of physical resources
- Controlling the performance loss
- Preventing software resources running out (like 32-bit internet addresses, which are being replaced by 128 bits)
- Avoiding performance bottlenecks
 - Example: some web-pages accessed very frequently remedy:
 caching and replication

1.5.5 Failure handling

Techniques for dealing with failures

- Detecting failures
- Masking failures
 - 1. messages can be retransmitted
 - 2. disks can be replicated in a synchronous action
- Tolerating failures
- Recovery from failures

- Redundancy
 - redundant components
 - 1. at least two different routes
 - 2. like in DNS every name table replicated in at least two different servers
 - 3. database can be replicated in several servers

Main goal: **High** *availability* – measure of the proportion of time that it is available for use

1.5.6 Concurrency

Example: Several clients trying to access shared resource at the same time

Any object with shared resources in a DS must be responsible that it operates correctly in a concurrent environment

Discussed in Chapters 7 and 17 in the book

1.5.7 Transparency

Transparency – concealment from the user and the application programmer of the separation of components in a Distributed System for the system to be perceived as a whole rather than a collection of independent components

- Acess transparency access to local and remote resources identical
- Location transparency resources accessed without knowing their physical or network location

Concurrency transparency – concurrent operation of processes using shared resources without interference be-

- tween themReplication transparency multiple instances seem like
- Failure transparency fault concealment

one

• Mobility transparency – movement of resources/clients within a system without affecting the operation of users or programs

Access and Location
transparancy – together
called also Network
transparency

1.5.8 Quality of service

Main nonfunctional properties of systems that affect Quality of Service (QoS):

- reliability
- security
- performance

Time-critical data transfers

Additional property to meet changing system configuration and resource availability:

adaptability

1.6 Case study: The World Wide Web

CERN 1989

hypertext structure, hyperlinks

- Web is an open system
- content standards freely published and widely implemented
- Web is open with respect to types

Figure 1.7 Web servers and web browsers

HTML

HyperText Markup Language www.w3.org

URL-s

Uniform Resource Locators (also known as URI-s - Uniform Resourse Identifiers) http://servername[:port][/pathName][?query][#fragment]

HTTP

- Request-reply interactions
- Content types
- One resource per request
- Simple access control
- Dynamic pages

Web services

HTML – limited – not extensible to applications beyond information browsing

37 Characterization of Distributed Systems 1.6 Case study: The World Wide Web

The Extensible Markup language (XML) designed to represent data in standard, structured, application-specific way

XML data can be transmitted by POST and GET operations

• Semantic web – web of linked metadata resources

Web as a system – main problem – the problem of scale

End of week 1