Cálculo Diferencial e Integral I

Limites

Universidade Federal de Minas Gerais

Considere a função $f(x) = x^2 - x + 2$. Vamos calcular valores de f(x) quando x se aproxima do ponto fixado a = 2, com $x \neq 2$:

X	f(x)	Х	f(x)
1	2	3	8
1,5	2,75	2,5	5,75
1,9	3,71	2,1	4,31
1,95	3,8525	2,05	4,1525
1,99	3,9701	2,01	4,0301
1,999	3,997001	2,001	4,003001

Considere a função $f(x) = x^2 - x + 2$. Vamos calcular valores de f(x) quando x se aproxima do ponto fixado a = 2, com $x \neq 2$:

Х	f(x)	X	f(x)
1	2	3	8
1,5	2,75	2,5	5,75
1,9	3,71	2,1	4,31
1,95	3,8525	2,05	4,1525
1,99	3,9701	2,01	4,0301
1,999	3,997001	2,001	4,003001

▶ Observamos que, a medida que x se aproxima de a = 2, f(x) se aproxima do valor 4.

▶ Seja $f: I \to \mathbb{R}$, onde $I \subset \mathbb{R}$ é um intervalo, e a um ponto de I (ou uma extremidade de I).

Definição

Dizemos que que o número $L \in \mathbb{R}$ é o **limite** de f(x) quando x tende ao valor a, e denotamos

$$\lim_{x\to a} f(x) = L,$$

se f(x) se aproxima arbitrariamente de L quando x se aproxima de a $(com x \neq a)$.

▶ Seja $f: I \to \mathbb{R}$, onde $I \subset \mathbb{R}$ é um intervalo, e a um ponto de I (ou uma extremidade de I).

Definição

Dizemos que que o número $L \in \mathbb{R}$ é o **limite** de f(x) quando x tende ao valor a, e denotamos

$$\lim_{x\to a} f(x) = L,$$

se f(x) se aproxima arbitrariamente de L quando x se aproxima de a $(com x \neq a)$.

Denotamos também

$$f(x) \to L$$
 se $x \to a$.

 $\blacktriangleright \quad \textbf{Exemplo.} \quad \lim_{x \to 1} \frac{x - 1}{x^2 - 1}$

- **Exemplo.** $\lim_{x \to 1} \frac{x-1}{x^2-1}$
- ▶ **Solução.** Observe que $f(x) = (x-1)/(x^2-1)$ não está definida quando x=1. Isso não é relevante, pois estamos interessados nos valores f(x) para x próximo de 1, mas diferente de 1. Vamos calcular alguns desses valores:

<i>x</i> < 1	f(x)	x > 1	f(x)
0,5	0,666667	1,5	0,4
0,9	0,526316	1,1	0,476190
0,99	0,502513	1,01	0,497512
0,999	0,500250	1,001	0,499750
0,9999	0,500025	1,0001	0,499975

Com base nesses valores, podemos conjecturar que

$$\lim_{x \to 1} \frac{x - 1}{x^2 - 1} = 0, 5.$$

Exemplo. $\lim_{t \to 0} \frac{\sqrt{t^2 + 9} - 3}{t^2}$

Exemplo.
$$\lim_{t \to 0} \frac{\sqrt{t^2 + 9} - 3}{t^2}$$

➤ **Solução.** A tabela fornece uma lista de valores da função para vários valores de t próximos de 0:

t	$\frac{\sqrt{t^2+9}-3}{t^2}$
$\pm 1, 0$	0, 16228
$\pm 0,5$	0, 16553
$\pm 0, 1$	0, 16662
$\pm 0,05$	0, 16666
$\pm 0,01$	0, 16667

À medida que t tende a 0, os valores da função parecem se aproximar de 0,1666666... Assim, podemos conjecturar que

$$\lim_{t \to 0} \frac{\sqrt{t^2 + 9} - 3}{t^2} = \frac{1}{6}.$$

 $\blacktriangleright \quad \textbf{Exemplo.} \quad \lim_{x \to 0} \frac{\text{sen}(x)}{x}$

Exemplo.
$$\lim_{x\to 0} \frac{\operatorname{sen}(x)}{x}$$

Solução. Novamente, f(x) = sen(x)/x não está definida quando x = 0. Usando uma calculadora, construímos a tabela abaixo:

X	f(x)
$\pm 1, 0$	0,84147098
$\pm 0,5$	0,95885108
$\pm 0,4$	0,97354586
$\pm 0,3$	0,98506736
$\pm 0, 2$	0,99334665
$\pm 0, 1$	0,99833417
$\pm 0,05$	0,99958339
$\pm 0,01$	0,99998333
$\pm 0,005$	0,99999583
$\pm 0,001$	0,99999983

Dos valores apresentados na tabela, podemos conjecturar que

$$\lim_{x\to 0}\frac{\mathrm{sen}(x)}{x}=1.$$

Exemplo. $\lim_{x\to 0} \operatorname{sen}\left(\frac{\pi}{x}\right)$

- **Exemplo.** $\lim_{x\to 0} \operatorname{sen}\left(\frac{\pi}{x}\right)$
- Solução. Este limite não existe. Observe que nos pontos da forma x=1/n, onde $n\in\mathbb{N}$ (ou seja, $1,1/2,1/3,\ldots$), temos $\mathrm{sen}(\pi/x)=0$. Por outro lado, nos pontos da forma x=1/(1/2+2n), onde $n\in\mathbb{N}$ (ou seja, $1/(1/2+2),1/(1/2+4),1/(1/2+6),\ldots$), temos $\mathrm{sen}(\pi/x)=1$. Ou seja, dependendo da forma como nos aproximamos de x=0, f(x) se aproxima de valores diferentes. Veja o gráfico dessa função:

Exemplo. Defina

$$f(x) = \begin{cases} 1 & \text{se } x \ge 0 \\ -1 & \text{se } x < 0 \end{cases}$$

Não existe $\lim_{x\to 0} f(x)$.

Exemplo. Defina

$$f(x) = \begin{cases} 1 & \text{se } x \ge 0 \\ -1 & \text{se } x < 0 \end{cases}$$

Não existe $\lim_{x\to 0} f(x)$.

▶ **Solução.** De fato, quando x se aproxima de zero pela direita, $f(x) \to 1$. Quando x se aproxima de zero pela esquerda, $f(x) \to -1$.

▶ Seja $f: I \to \mathbb{R}$, onde $I \subset \mathbb{R}$ é um intervalo, e a um ponto de I (ou uma extremidade de I), que contenha pontos x menores do que a (dizemos que a é acumulado "à esquerda" por pontos de I).

Definição

Dizemos que o número $L \in \mathbb{R}$ é o **limite** de f(x) quando x tende ao ponto a **pela esquerda**, e denotamos

$$\lim_{x \to a^{-}} f(x) = L,$$

se f(x) se aproxima arbitrariamente de L quando x se aproxima do ponto a por valores x < a.

▶ Seja $f: I \to \mathbb{R}$, onde $I \subset \mathbb{R}$ é um intervalo, e a um ponto de I (ou uma extremidade de I), que contenha pontos x menores do que a (dizemos que a é acumulado "à esquerda" por pontos de I).

Definição

Dizemos que o número $L \in \mathbb{R}$ é o **limite** de f(x) quando x tende ao ponto a **pela esquerda**, e denotamos

$$\lim_{x\to a^-}f(x)=L,$$

se f(x) se aproxima arbitrariamente de L quando x se aproxima do ponto a por valores x < a.

Denotamos também

$$f(x) \to L$$
 se $x \to a^-$.

e dizemos "x tende ao ponto a por valores menores que a".

▶ Analogamente, se a é acumulado "à direita " por pontos de I, definimos

Definição

Dizemos que o número $L \in \mathbb{R}$ é o **limite** de f(x) quando x tende ao ponto a **pela direita**, e denotamos

$$\lim_{x\to a^+}f(x)=L,$$

se f(x) se aproxima arbitrariamente de L quando x se aproxima do ponto a por valores x > a.

Analogamente, se a é acumulado "à direita" por pontos de I, definimos

Definição

Dizemos que o número $L \in \mathbb{R}$ é o **limite** de f(x) quando x tende ao ponto a **pela direita**, e denotamos

$$\lim_{x \to a^+} f(x) = L,$$

se f(x) se aproxima arbitrariamente de L quando x se aproxima do ponto a por valores x > a.

Denotamos também

$$f(x) \to L$$
 se $x \to a^+$

e dizemos "x tende ao ponto a por valores maiores que a".

Exemplo. Defina

$$f(x) = \begin{cases} 1 & \text{se } x \ge 0 \\ -1 & \text{se } x < 0 \end{cases}$$

Temos:

$$\lim_{x \to 0^{-}} f(x) = -1$$
 e $\lim_{x \to 0^{+}} f(x) = 1$.

Exemplo. Defina

$$f(x) = \begin{cases} 1 & \text{se } x \ge 0 \\ -1 & \text{se } x < 0 \end{cases}$$

Temos:

$$\lim_{x \to 0^{-}} f(x) = -1$$
 e $\lim_{x \to 0^{+}} f(x) = 1$.

▶ Seja $f:I\subset \mathbb{R}\to \mathbb{R}$ e a é um ponto do interior do intervalo I (portanto, faz sentido falar em ambos os limites laterais). Temos o seguinte:

Proposição

$$\lim_{x \to a} f(x) = L$$
 se, e somente se $\lim_{x \to a^-} f(x) = L$ e $\lim_{x \to a^+} f(x) = L$.

Suponha f uma função definida em I \ {a}, onde a é um ponto interior do intervalo I (ou seja, f está definida em ambos os lados de a).

Definição

Dizemos que o limite de f(x) quando x tende ao ponto a é infinito, e denotamos

$$\lim_{x\to a}f(x)=\infty,$$

se f(x) se assume valores arbitrariamente grandes quando x se aproxima do ponto a $(com x \neq a)$.

Suponha f uma função definida em I\{a}, onde a é um ponto interior do intervalo I (ou seja, f está definida em ambos os lados de a).

Definição

Dizemos que o limite de f(x) quando x tende ao ponto a é infinito, e denotamos

$$\lim_{x\to a}f(x)=\infty,$$

se f(x) se assume valores arbitrariamente grandes quando x se aproxima do ponto a $(com x \neq a)$.

Denotamos também

$$f(x) \to \infty$$
 se $x \to a$.

e dizemos "f(x) tende a infinito quando x tende ao ponto a".

- $\blacktriangleright \text{ Exemplo. } \lim_{x\to 0}\frac{1}{x^2}=\infty$
- **Solução.** À medida que x se aproxima de zero, x^2 também se aproxima de zero e $1/x^2$ se torna arbitrariamente grande. Veja o gráfico:

► Analogamente, definimos:

Definição

Dizemos que o o limite de f(x) quando x tende ao ponto a é menos infinito, e denotamos

$$\lim_{x\to a} f(x) = -\infty,$$

se f(x) se assume valores negativos, arbitrariamente grandes em módulo, quando x se aproxima do ponto a $(com x \neq a)$.

► Analogamente, definimos:

Definição

Dizemos que o o limite de f(x) quando x tende ao ponto a é menos infinito, e denotamos

$$\lim_{x\to a} f(x) = -\infty,$$

se f(x) se assume valores negativos, arbitrariamente grandes em módulo, quando x se aproxima do ponto a $(com x \neq a)$.

Denotamos também

$$f(x) \to -\infty$$
 se $x \to a$.

e dizemos "f(x) tende a menos infinito quando x tende ao ponto a".

- **Exemplo.** $\lim_{x\to 0} -\frac{1}{x^2} = -\infty$
- **Solução.** De maneira análoga ao exemplo anterior, temos que x^2 tende a zero quando x se aproxima de 0. Assim, $f(x) = -\frac{1}{x^2}$ assume valores negativos, porém arbitrariamente grandes em módulo, quando x se aproxima de 0. Veja o gráfico:

▶ De forma similar, podemos definir:

- ▶ De forma similar, podemos definir:
- ► Se a é acumulado à esquerda por pontos de *l*:

$$\lim_{x\to a^-} f(x) = \infty \text{ ou } \lim_{x\to a^-} f(x) = -\infty.$$

Se a é acumulado à direita por pontos de I:

$$\lim_{x\to a^+} f(x) = \infty \text{ ou } \lim_{x\to a^+} f(x) = -\infty.$$

- ▶ De forma similar, podemos definir:
- ► Se a é acumulado à esquerda por pontos de *l*:

$$\lim_{x \to a^{-}} f(x) = \infty \text{ ou } \lim_{x \to a^{-}} f(x) = -\infty.$$

Se a é acumulado à direita por pontos de I:

$$\lim_{x\to a^+} f(x) = \infty \quad \text{ou} \quad \lim_{x\to a^+} f(x) = -\infty.$$

▶ Uma observação importante: ∞ e $-\infty$ não são números reais. Expressões da forma $\lim_{x\to a} f(x) = \infty$ e $\lim_{x\to a} f(x) = -\infty$ indicam que os limites não existem (como números reais). Porém, dão informações qualitativas importantes sobre f(x) em pontos próximos de x=a.

► **Exemplo.**
$$\lim_{x \to 3^+} \frac{2x}{x - 3} = \infty$$
 e $\lim_{x \to 3^-} \frac{2x}{x - 3} = -\infty$

- ► **Exemplo.** $\lim_{x \to 3^+} \frac{2x}{x 3} = \infty$ e $\lim_{x \to 3^-} \frac{2x}{x 3} = -\infty$
- ▶ **Solução.** Quando x se aproxima de 3 por valores *maiores* que 3, o numerador se aproxima de 6, enquanto o denominador se aproxima de zero por valores *positivos*. Assim, temos que $f(x) \to +\infty$ quando $x \to 3^+$.

Analogamente, quando x se aproxima de 3 por valores *menores* que 3, o numerador se aproxima de 6 e o denominador se aproxima de zero, mas agora por valores *negativos*. Logo, temos que $f(x) \to -\infty$ quando $x \to 3^-$.

Definição

Dizemos que que o gráfico de f(x) tem a reta x = a como assíntota vertical se ocorrer algum dos seguintes limites infinitos:

$$\lim_{x \to a} f(x) = \infty \quad \lim_{x \to a} f(x) = -\infty$$

$$\lim_{x \to a^{-}} f(x) = \infty \quad \lim_{x \to a^{-}} f(x) = -\infty$$

$$\lim_{x \to a^{+}} f(x) = \infty \quad \lim_{x \to a^{+}} f(x) = -\infty$$

Exemplo. Encontre as assíntotas verticais de $f(x) = \tan x$.

- **Exemplo.** Encontre as assíntotas verticais de $f(x) = \tan x$.
- **Solução.** Como $\tan x = \frac{\sin x}{\cos x}$, é natural supor que existam assíntotas nos pontos em que $\cos x = 0$. De fato, como

$$cos(x) \rightarrow 0^+$$
, quando $x \rightarrow \left(\frac{\pi}{2}\right)^-$
 $cos(x) \rightarrow 0^-$, quando $x \rightarrow \left(\frac{\pi}{2}\right)^+$

e sen(x) é positivo e próximo de 1 quando x está próximo de $\pi/2$, temos que

$$\lim_{x\to (\pi/2)^-}\tan x = +\infty \quad \text{ e } \quad \lim_{x\to (\pi/2)^+}\tan x = -\infty.$$

Logo, a reta $x = \pi/2$ é *uma* assíntota vertical.

Um raciocínio análogo mostra que as retas $x=(2n+1)\pi/2$, com $n\in\mathbb{Z}$, são todas assíntotas verticais de $f(x)=\tan x$.

