Partie 5

Réseaux locaux

Réseaux locaux - Plan

- Généralités
- Méthodes d'accès
- Normes IEEE
- Réseaux Ethernet
- Interconnexion

Qu'est-ce qu'un LAN (Local Area Network)?

Définition IEEE

« A datacomm system allowing a number of independent devices to communicate directly with each other, within a moderately sized geographic area over a physical communications channel of moderate data rates »

Donc:

- un LAN supporte des communications (entre autres) en point à point, tous les équipements en communication ayant le même statut dans le système
 - en opposition aux systèmes de communication hiérarchiques ou centralisés
- un LAN couvre typiquement un immeuble (à l'origine)
 - en opposition aux WAN et MAN
 - réseau privé
- les équipements partagent un même support
 - en opposition aux réseaux à commutation maillés
 - □ nécessité d'une technique d'arbitrage pour l'accès au support
- les débits visés vont de 10 Mbit/s à 100 Mbit/s (actuellement 10 Gbit/s)

L'exemple d'Ethernet

- Les objectifs de conception d'Ethernet (1976)
 - débits allant de 1 à 10 Mbit/s
 - distances géographiques d'au plus 1 km
 - plusieurs centaines de nœuds
 - simplicité
 - fiabilité
 - dépendance minimale vis-à-vis d'un composant central
 - utilisation efficace des ressources partagées, en particulier du réseau luimême
 - stabilité sous forte charge
 - accès équitable pour tous les nœuds
 - facilité d'installation pour un petit réseau et évolution sans remise en cause de l'existant
 - facilité de reconfiguration et de maintenance
 - coût peu élevé

Les supports physiques

- Paramètres principaux:
 - Bande passante, Facilité d'installation, Coût
- Paire torsadée
 - UTP (Unshielded Twisted Pair): Non blindée
 - STP (Shielded Twisted Pair) : Blindée / Ecrantée
- Câble coaxial
 - Compromis historique
 - Câblage volant (Ethernet fin)
- Fibre optique
 - Onde lumineuse
 - Faible encombrement, Immunité aux bruits
 - Large bande passante. Monomode, Multimode
- Radio
 - Bande de fréquence radio, eg. 2.4Ghz, 5Ghz
 - Canal versatile, débit limité (2, 11, 54Mbps)

La topologie physique

- □ o∪ plan de câblage
- □ en théorie : 4 possibilités

La topologie physique

- critères de choix
 - coût
 - longueur de câble
 - pérennité
 - type de câble utilisé
 - facilité d'installation
- en pratique : souvent l'étoile
 - armoire de brassage
 - située dans un local technique
 - sur laquelle arrivent les UTP

Maximum Distances for Horizontal Cabling

In addition to the 90 meters of horizontal cable, a total of 10 meters is allowed for work area and telecommunications closet patch and jumper cables.

La topologie logique

- la topologie prise en compte par la méthode d'accès au support
 - décrit la manière selon laquelle circule "logiquement" l'information
- □ 3 possibilités
 - □ l'étoile
 - le bus
 - l'anneau
- exemples

log. phy.	étoile	bus	anneau
étoile	PABX	-	-
bus	10BaseT	10base5 DQDB	
anneau	Token Ring	Token Bus	FDDI

Topologie en bus

- Structure partagée passive, i.e. non alimentée électriquement
- □ Terminateurs (« bouchons ») aux extrémités du câble
- Diffusion
- Prolongation par répéteurs

Distance couverte fonction du type de support et du débit:

- 500m Ethernet jaune (50 Ohms)
- 200m Ethernet noir (fin, 50 Ohms)
- 3600m CATV 75 Ohms

Topologie en anneau

- Structure active partagée
- Sensibilité aux pannes (supervision)
- Diffusion à assurer
- Cascade de liaisons point à point
- Exemples de produits
 - Token Ring
 - FDDI

Réseaux locaux - Plan

- Généralités
- Méthodes d'accès
 - problématique
 - classification
 - accès statique
 - accès dynamique déterministe
 - accès dynamique aléatoire
- Normes IEEE
- Réseaux Ethernet
- Interconnexion

Méthodes d'accès

- Problématique
 - un support unique partagé par l'ensemble des stations raccordées au support
 - les stations ne peuvent pas utiliser simultanément le support
- nécessité d'arbitrage!
- classification des mécanismes d'accès
 - accès statique
 - la bande passante est répartie de façon invariante dans le temps entre les stations
 - accès dynamique
 - la bande passante est allouée à la demande

Classification des méthodes d'accès

- accès statique
 - Accès Multiple à Répartition en Fréquence
 - Accès Multiple à Répartition dans le Temps
- accès dynamique
 - politiques d'accès dynamique à allocation déterministe
 - le polling
 - le jeton
 - non adressé
 - adressé
 - politique d'accès dynamique à allocation aléatoire
 - Aloha
 - Carrier Sense Multiple Access

TDMA

- Time Division Multiple Access
- Principe
 - le temps est découpé en intervalles réguliers qui sont affectés à chaque station de manière périodique
 - durant le slot qui lui est alloué, la station possède le droit exclusif d'accès au canal
- ✓ avantages
 - © simplicité
 - © équitabilité
 - priorités faciles à mettre en œuvre

- √ inconvénients
 - manque d'efficacité, mauvaise utilisation de la BP
 - ☼ besoin de synchronisation → une station "primaire" émet un message de synchro. pour démarrer un nouveau cycle
 - problème de fiabilité de la station primaire
 - tout ajout ou retrait de station implique une modification du cycle 31014 5.14 -

FDMA

- Frequency Division Multiple Access
- Principe
 - la bande passante est découpée en sous-bandes
 - une sous-bande est affectée à une seule station qui en a l'usage exclusif
- ✓ avantages
 - © simplicité
 - © équitabilité
 - priorités faciles à mettre en œuvre

- √ inconvénients

 - manque d'efficacité, mauvaise utilisation de la BP

Accès statique

- les méthodes d'accès statique
 - sont adaptées aux cas où
 - le nombre de stations actives est réduit et fixe
 - les trafics sont prévisibles et à débits constants
 - ne sont pas adaptées aux LAN où
 - le nombre de stations actives varie dans le temps
 - les stations génèrent un trafic sporadique
- □ il est préférable d'allouer la BP dynamiquement en fonction des demandes immédiates

Le polling

Principe

- avantages
 - Simplicité
 - équitabilité
 - priorités faciles à mettre en œuvre
- inconvénients
 - manque d'efficacité (overhead)
 - approche centralisée → fiabilité du primaire
 - approche centralisée → goulet d'étranglement du primaire

Le jeton

- Principe
 - consiste à faire circuler sur le réseau une trame spéciale : le jeton
 - seule la station qui possède le jeton, à un instant donné, est autorisée à émettre
- 2 variantes
 - le jeton non adressé
 - le jeton adressé

Le jeton non adressé

- utilisé sur des topologies en anneau
- Principe
 - le jeton circule sur l'anneau et donne, selon son état (libre/occupé) le droit d'émettre à la station qui le détient
 - une station qui veut émettre
 - attend un jeton marqué "libre"
 - sur réception de ce dernier
 - elle change l'état du jeton ("occupé)
 - elle attache au jeton son message, son @ et l'@ de dest.
 - elle transmet le tout sur l'anneau
 - une station qui reçoit un jeton marqué "occupé"
 - consulte l'@ de dest.
 - si c'est la sienne, elle copie la trame et fait suivre la trame
 - consulte l'@ de source
 - si c'est la sienne, elle retire la trame et émet un jeton marqué "libre"

Le jeton non adressé

- avantages
 - accès déterministe : chaque station est assurée de pouvoir émettre avant un délai borné
 - stabilité à forte charge : les performances ne s'écroulent pas
 - mise en œuvre de priorités possible

- inconvénients
 - la connexité doit être maintenue
 - inefficacité à faible charge
 - overhead du jeton
 - nécessité d'une station de surveillance pour veiller à l'unicité du jeton

✓ méthode utilisée dans IEEE 802.5 (Token Ring)

Le jeton adressé

- utilisé sur des topologies en bus
- Principe
 - un anneau virtuel est créé: chaque station connaît son prédécesseur et son successeur par leurs @
 - seule la station en possession du jeton peut émettre
 - si elle n'a rien à émettre, elle envoie le jeton à son successeur logique → jeton adressé
 - si elle a de l'information à émettre, elle peut émettre pendant un temps limité, au bout duquel elle doit passer le jeton à son successeur

Le jeton adressé

- avantages
 - accès déterministe : chaque station est assurée de pouvoir émettre avant un délai borné
 - stabilité à forte charge : les performances ne s'écroulent pas
 - mise en œuvre de priorités possible
 - bus passif vs. anneau actif
 - retrait implicite des trames (vs. jeton non adressé)

- inconvénients
 - inefficacité à faible charge
 - overhead du jeton
 - nécessité d'une station de surveillance pour veiller à l'unicité du jeton
 - mécanismes lourds pour l'insertion et le retrait de stations
 - nécessité d'une procédure d'initialisation de l'anneau

méthode utilisée dans IEEE 802.4 (Token Bus)

(Pure) Aloha

- testé au début des années 70 sur un réseau reliant les îles Hawaii par faisceaux hertziens
- Principe
 - une station émet dès lors qu'elle le souhaite
 - en cas de collision, la station réémettra sa trame au terme d'un délai aléatoire
 - au bout de N collisions successives, la station abandonne

✓ efficacité très faible: 18%!

Slotted Aloha

- Amélioration du Pure Aloha
- Principe
 - le temps est discrétisé
 - les stations ne peuvent émettre qu'en début de slots

✓ efficacité faible: 36%!

CSMA

- Carrier Sense Multiple Access
- Principe
 - reprend le Pure Aloha
 - avec une "écoute" du canal avant d'émettre : la station n'émet que si le canal est libre

CSMA

- Variantes selon le type de décision prise par la station émettrice lorsqu'elle détecte le canal occupé
 - CSMA persistant
 - écoute persistante du canal
 - dès qu'il devient libre, émettre
 - CSMA non persistant
 - □ faire une nouvelle tentative au bout d'un temps aléatoire
 - CSMA p-persistant
 - écoute persistante du canal
 - dès qu'il devient libre,
 - avec une probabilité p, émettre
 - avec une probabilité (1-p), attendre un délai et aller en 1.

CSMA

CSMA/CD

- Carrier Sense Multiple Access/Collision Detection
- □ le protocole utilisé par Ethernet!
- Principe
 - reprend CSMA
 - une station qui émet continue à écouter le canal pendant sa transmission → détection des collisions
 - en cas de collision, chaque station impliquée déroule un algorithme de reprise

Influence du temps de propagation

- Pourquoi peut-il y avoir encore des collisions ?
 - deux stations A et B, situées aux extrémités d'un bus
 - d la distance les séparant et vp la vitesse de propagation sur le bus
 - tp le temps de propagation entre A et B : tp = d / vp

Contraintes CSMA/CD Ethernet

- □ Contrainte C=10 Mbit/s, Lmin = 64 octets
- \Box L/C = 512 bits / 10 Mbps = 51,2 msec
- □ 2tp < 51,2 msec
- 2Dmax < 10 km</p>
- Répéteurs =>
 - Dmax< 2.5 km à 10Mbps
 - Dmax< 250 m à 100Mbps
 - Dmax< 25 m à 1Gbps !!!!!!!!!</p>

CSMA/CD: définitions

période de vulnérabilité

- intervalle de temps pendant lequel une station éloignée peut détecter le canal libre et transmettre à son tour
- égale au maximum à un temps de propagation entre les 2 stations les plus éloignées sur le support
- fenêtre de collision (time-slot)
 - délai maximum qui s'écoule avant que l'on détecte une collision ou encore délai après lequel une station est certaine d'avoir réussi sa transmission
 - égale à deux fois le temps de propagation d'un signal sur le support.
 - c'est l'unité de temps du protocole
- séquence de brouillage (jam sequence)
 - séquence de brouillage envoyée par une station dès qu'elle a détecté une collision, afin de la rendre détectable par l'ensemble des stations impliquées
- délai inter-trame (interframe gap)
 - silence minimum entre 2 trames successives

Exponential backoff

- algorithme de calcul du délai aléatoire d'attente
 - détermine l'instant de retransmission d'une trame qui a subi une collision
 - calcule la durée aléatoire D avant retransmission
 - l'intervalle croît avec le nb de collisions subjes
 - lorsque n atteint 16, il y a abandon de la transmission

Backoff (D) ;

```
n : nombre total de
collisions déjà subies
par la trame
k = min (n, 10)
tirage d'une variable
aléatoire M telle que
0 \le M \le 2^k
D = M * time-slot.
```

return (D)

CSMA/CD

- avantages
 - approche complètement décentralisée
 - simplicité
 - équitabilité
 - très efficace sous faible charge
 - utilisation d'un bus passif
 - facilité d'installation pour un petit réseau et évolution sans remise en cause de l'existant
 - coût peu élevé

- inconvénients
 - délais imprévisibles
 - pertes de trames possibles

Réseaux locaux - Plan

- Généralités
- Méthodes d'accès
- Normes IEEE
- Réseaux Ethernet
- Interconnexion

Réseaux Locaux: normalisation

Modèle

La couche liaison dans les LAN

- 2 sous-couches
- MAC
 - Medium Access Control
 - définit des règles de partage du support multipoint
 - éviter les contentions d'accès
 - partager équitablement la BP
- LLC
 - Logical Link Control
 - fournit la plupart des fonctions de la couche liaison de données

Normalisation

IEEE	débit	accès	support	exemple
802.3				
10BaseT	10 Mbit/s	CSMA/CD	PT 100m	Ethernet TP
10Base5	10 Mbit/s	CSMA/CD	coax 500m	Ethernet jaune
10Base2	10 Mbit/s	CSMA/CD	coax 180m	Ethernet fin
10BaseF	10 Mbit/s	CSMA/CD	FO (0,5-2 km)	Etoile optique
1Base5	1 Mbit/s	CSMA/CD	PT 250m	Starlan
100BaseT	100 Mbit/s	CSMA/CD	PT 100m	Ethernet 100 (Fast Ethernet)
1000BaseT	1000 Mbit/s	CSMA/CD	UTP5 100m	GigaEthernet
10Broad36	10 Mbit/s	CSMA/CD	coax LB	3600m
•••				
802.4	5-10 Mbit/s	Token Bus		MAP
802.5	4-16-100	Token Ring		IBM

Architecture IEEE

Architecture and Management Bus CD Bus CD Suppose Supp

802.10 Security and Privacy application

802.2 Logical Link Control

802.1 Bridging liaison

802.10 Secure Data Exchange

CSMA/ CD	Token Bus	Token Ring	MAN	IVD	Sans fil	AnyLan	MAC
802.3	802.4	802.5	802.6	802.9	802.11	802.12	PHY

802.7		Broadband TAG	
	802.8	Fiber Optic TAG	

La sous-couche LLC (IEEE 802.2)

- responsable de l'adressage et du contrôle du lien de données
 - indépendante de la topologie et du support de transmission
 - indépendante de la sous-couche MAC
- elle fournit
 - le choix entre plusieurs services
 - un format simple et une interface avec la couche réseau

réseau	paquet
LLC	LLC paquet
MAC	MAC LLC paquet MAC
hysique	

La norme IEEE 802.3

- les paramètres initiaux de la spécification
 - durée time_slot: 512 bit times (51,2 µs pour un réseau à 10 Mbit/s)
 - délai inter-trame : 9,6 µs
 - # max de retransmissions d'une trame : 16
 - multiplicateur max de l'intervalle de tirage : 10
 - longueur de la séquence de brouillage : 32 bits
 - taille maximale d'une trame : 1518 octets
 - taille minimale d'une trame : 64 octets
 - taille de l'adresse : 48 bits

La norme IEEE 802.3

format de la trame

7	1	2 ou 6	2 ou 6	2			4
Amorce	Marq ueur débu t	Adresse destination	Adresse origine	longueur	Données	Octets de bourrage	FCS

- le champ *longueur* donne le # d'octets du champ de données
- les octets de bourrage permettent d'atteindre éventuellement la taille totale minimum de 64 octets
- Ethernet
 - le champ *longueur* est remplacé par un champ *type* identifiant le protocole de niveau supérieur

Réseaux locaux - Plan

- Généralités
- Méthodes d'accès
- Normes IEEE
- Réseaux Ethernet
- Interconnexion

- topologie en bus
- débit : 10 Mbit/s
- codage en bande de base (Manchester)
- □ taille max. du réseau : 2,5 km
- □ longueur max. d'un segment : 500 m
- # max. de stations par segment : 100
- raccordement des stations au câble coaxial par :
 - □ câble de liaison (50 m max.)
 - transceiver (émetteur-récepteur)
- distance min. entre 2 transceivers : 2,5 m

- câble coaxial épais RG11 dit câble jaune
 - \blacksquare impédance = 50 Ω
 - □ Ø 10 mm
 - □ rayon de courbure = 25 cm
 - atténuation 8,5 dB/100m à 10 Mhz
 - coefficient de vélocité = 0,77
- câble de liaison:
 - connecteurs DB15 (prise AUI)
 - 4 paires torsadées (émission, réception, collision, alimentation)
 - raccordement sur câble coaxial prise vampire
- lacksquare bouchon de terminaison 50 Ω

- topologie en bus
- débit : 10 Mbit/s
- codage en bande de base (Manchester)
- □ taille max. du réseau : 925 m
- □ longueur max. d'un segment: 185 m
- # max. de stations par segment : 30
- transceiver intégré dans la carte
- distance min. entre 2 transceivers : 0,5 m

Ethernet fin

- câble coaxial fin RG58 dit câble noir
 - impédance = 50Ω
 - Ø 4,6 mm
 - \blacksquare rayon de courbure = 5 cm
 - atténuation 4,6 dB/100m à 10 Mhz
 - coefficient de vélocité = 0,65
- connecteurs BNC:
 - raccord droit
 - raccord en T
- \square bouchon de terminaison 50 Ω

- débit : 10 Mbit/s
- topologie physique en étoile
- topologie logique en bus grâce aux hubs
- distance max. d'une station au hub : 100 m
- codage en bande de base (Manchester)
- paires Torsadées

- paires torsadées
 - une paire en émission
 - une paire en réception
- connecteur RJ45

- en tenant le connecteur face à soi avec le clip de fixation vers le haut, les broches sont numérotées de 1 à 8 de la gauche vers la droite
- N° Utilisation
- 1 Sortie des Données (+)
- 2 Sortie des Données (-)
- 3 Entrée des Données (+)
- 4 Réservé pour le tél.
- 5 Réservé pour le tél.
- 6 Entrée des Données (-)
- 7 Réservé pour le tél.
- 8 Réservé pour le tél.

- Topologie Arbre
- Paires torsadées
- Connexion par Hub
- Hub = répéteur multiport
- Structure active
- Sensibilité aux pannes (supervision racine)
- Diffusion (similaire au bus)
- Nombre de niveaux dans l'arbre = 5 max

- Fast Ethernet
- Configuration identique au 10BaseT
- Existence d'un hub (répéteur multiport)
- □ MAC : protocole 802.3
 - même format de trame
 - Iongueur minimale: 64 octets (temps de transmission = 5,12 μs)
- □ distance maximum de 210 m!
- Conséquence : un seul niveau dans l'arbre
- 3 spécifications du niveau physique
 - 100baseTX: 2 paires UTP5 ou 2 paires STP1 (full-duplex), codage 4B/5B
 - 100baseT4: 4 paires UTP3 ou UTP4 ou UTP5 (non full-duplex), codage 8B/6T

Gigabit Ethernet

- □ débit 7 ⇒ diamètre du domaine de collision ≥
 - 10Mbps ⇒ 2500m
 - 100Mbps ⇒ 250m
 - 1000Mbps ⇒ 25m : aucun intérêt
- □ IEEE 802.3 fixe à 200 m ce diamètre ♦ taille minimum de trame = 512 octets

Gigabit Ethernet

- nouvelles couches physiques issues de Fibre Channel (standard ANSI): super-switch de type crossbar
- □ 1000BaseSX (Short Wave)
 - ☐ fibre multimode, I = 850 nm, sur 500 m
- 1000BaseLX (long Wave)
 - fibre monomode, I = 1310 nm, sur 2~3 km
- 1000BaseCX
 - □ câble coaxial ou STP, sur 25 m
- 1000BaseT
 - UTP, sur 100 m

Réseaux locaux - Plan

- Généralités
- Méthodes d'accès
- Normes IEEE
- Réseaux Ethernet
- Interconnexion

Interconnexion de LAN

Problématique

Les solutions

Interconnexion

- Marché très important aujourd'hui
- □ Très exploité pour la segmentation des réseaux
- Ingénierie du trafic
- Différents équipements en fonction des besoins
 - Répéteurs (Repeaters)
 - Ponts (Bridges) & Commutateurs (Switches)
 - Routeurs (Routers)
 - Passerelles (Gateways)
- Permettent de créer des réseaux de dimensions variables

Le répéteur

- □ interconnexion au niveau de la couche physique
- ne possède pas d'@MAC
- permet:
 - compenser un affaiblissement en régénérant le signal
 - d'augmenter la distance en interconnectant 2 segments
 - □ changer de médium (p.e. de câble coaxial à paire torsadée)
- n'effectue aucun filtrage
- ne nécessite aucune administration
- □ 4 répéteurs max. entre 2 stations quelconques (802.3 et 10Base5)

Le hub

Relais de niveau physique : répéteur multi-ports

Le pont

- Relais de niveau Liaison : analyse et conversion de trames d'un réseau local vers l'autre
- Fonctions
 - conversion du format de trame
 - filtrage des collisions → pas de propagation d'un réseau à l'autre
 - routage par une table statique ou par diffusion

Le commutateur de niveau 2

- pont multi-port (Ethernet ou Token Ring)
- 2 méthodes de commutation store and forward
 réception intégrale de la trame puis stockage, choix du routage,
 et retransmission vers un port de
 - sortie
 - 100 vers 10 Mbit/s possible
 - filtrage d'erreurs
 - temps de latence fonction de la longueur de la trame

fast forward ou on the fly

retransmission de la trame en sortie dès le décodage des bits de l'adresse destinataire

- 100 vers 10 Mbit/s impossible
- pas de filtrage d'erreurs
- © latence faible

Ethernet commuté

- un LAN 10BaseT dans lequel on aurait remplacé le hub par un commutateur (switch) Ethernet
 - comparable à un pont multi-port
- protocole modifié
 - pas de détection de collisions
- paires torsadées utilisées en full-duplex
 - la station peut simultanément émettre et recevoir
- débits variables selon le port
 - 1, 10, 100, 1000 Mbit/s

Ethernet commuté

