

مرور جلسه قبل

Maintain/Restore the max-heap property MAX-HEAPIFY Create a max-heap from an unordered array BUILD-MAX-HEAP Sort an array in place HEAPSORT Priority queues $O(\log n)$ O(h)

صف اولویت یا priority queue

A *priority queue* is a data structure for maintaining a set S of elements, each with an associated value called a *key*. A *max-priority queue* supports the following operations:

INSERT(S, x) inserts the element x into the set S, which is equivalent to the operation $S = S \cup \{x\}$.

MAXIMUM(S) returns the element of S with the largest key.

EXTRACT-MAX(S) removes and returns the element of S with the largest key.

INCREASE-KEY (S, x, k) increases the value of element x's key to the new value k, which is assumed to be at least as large as x's current key value.

عملیاتهای روی priority queue

HEAP-MAXIMUM(A)

1 return A[1]

HEAP-EXTRACT-MAX(A)

- 1 **if** A.heap-size < 1
- 2 **error** "heap underflow"
- 3 max = A[1]
- $4 \quad A[1] = A[A.heap-size]$
- $5 \quad A.heap\text{-}size = A.heap\text{-}size 1$
- 6 MAX-HEAPIFY (A, 1)
- 7 **return** *max*

HEAP-INCREASE-KEY (A, i, key)

- 1 if key < A[i]
- error "new key is smaller than current key"
- A[i] = key
- 4 **while** i > 1 and A[PARENT(i)] < A[i]
- 5 exchange A[i] with A[PARENT(i)]
- i = PARENT(i)

MAX-HEAP-INSERT(A, key)

- 1 A.heap-size = A.heap-size + 1
- 2 $A[A.heap\text{-size}] = -\infty$
- 3 HEAP-INCREASE-KEY (A, A. heap-size, key)

فصل هفتم: مرتبسازی سریع | Quicksort

- معرفی Quicksort
- بازدهی Quicksort
- نسخه تصادفی Quicksort
 - تحلیل Quicksort

II Sorting and Order Statistics

Introduction 147

6 Heapsort 151

- 6.1 Heaps 151
- 6.2 Maintaining the heap property 154
- 6.3 Building a heap 156
- 6.4 The heapsort algorithm 159
- 6.5 Priority queues 162

7 Quicksort 170

- 7.1 Description of quicksort 170
- .2 Performance of quicksort 174
- 7.3 A randomized version of quicksort 179
- 7.4 Analysis of quicksort 180

اااا ااالکوریتم (ترم اول ۹۹۹۱) INTRODUCTION TO ALGORITHM |

مقایسه الگوریتمهای مرتبسازی

مقايسه الگوريتمهاي مرتبسازي

we can beat this lower bound of $\Omega(n \lg n)$

if we can gather information about the sorted order of the input

• الگوريتم Counting sort

worst-case running time $\Theta(k+n)$

مرتبه زماني

expected running time $\Theta(k+n)$

• الگوريتم Radix sort

worst-case running time $\Theta(d(n+k))$

expected running time $\Theta(d(n+k))$

مرتبه زماني

there are n integers to sort integer has d digits digit can take on up to k possible values

the input numbers are in the set $\{0, 1, \dots, k\}$

requires knowledge of the probabilistic distribution of numbers in the input array

real numbers uniformly distributed in the half-open interval [0, 1)

• الگوريتم Bucket sort

worst-case running time

 $\Theta(n^2)$

average-case running time $\Theta(n)$

مرتبہ زمانی

مرتبسازی سریع یا Quicksort

quicksort has tight code, popular algorithm for sorting large input arrays

sorts in place

worst-case running time $\Theta(n^2)$ expected running time $\Theta(n \lg n)$ outperforms heapsort in practice

مرتبه زماني

- با وجود بدترین زمان اجرا $0(n^2)$ معمولاً بهترین انتخاب مرتبسازی Quicksort •
- به دلیل expected خوب و ثابتهای خیلی کوچک در تقریب 0 و درجا بودن عملیات
- به دلیل درجا بودن عملیات و جابجایی کم مناسب برای حافظههای مجازی Virtual Memory
 - مشابه Mergesort از روش تقسیم و حل استفاده میکند

نحوہ کار Quicksort

Partition (rearrange) the array A[p..r]

تقسيم

$$A[p..q-1] \leq A[q] \leq A[q+1..r]$$

$$p q-1$$
Quicksort(...)

حل

A[p ...r] is now sorted

شبه کد Quicksort بصورت بازگشتی

QUICKSORT(A, p, r)

- 1 if p < r
- 2 q = PARTITION(A, p, r)
- 3 QUICKSORT(A, p, q 1)
- 4 QUICKSORT(A, q + 1, r)

اولین فراخوانی تابع:

QUICKSORT (A, 1, A.length).

نحوہ کار Partition

- انتخاب آخرین عنصر به عنوان pivot
- تغییر چیدمان عناصر آرایه با رعایت قوانین چهار بخش
 - قرارداد pivot در جایگاه مناسب

```
1 \quad x = A[r]
2 \quad i = p - 1
3 \quad \text{for } j = p \text{ to } r - 1
4 \quad \text{if } A[j] \leq x
5 \quad i = i + 1
6 \quad \text{exchange } A[i] \text{ with } A[j]
7 \quad \text{exchange } A[i + 1] \text{ with } A[r]
8 \quad \text{return } i + 1
```

PARTITION(A, p, r)

$$A[p ... q-1] \leq A[q] \leq A[q+1...r]$$

نمونه Partition

PARTITION (A, p, r)

$$1 \quad x = A[r]$$

$$2 i = p - 1$$

3 **for**
$$j = p$$
 to $r - 1$

4 if
$$A[j] \leq x$$

$$5 i = i + 1$$

6 exchange
$$A[i]$$
 with $A[j]$

7 exchange
$$A[i + 1]$$
 with $A[r]$

8 return
$$i+1$$

$$A[p..q-1] \leq A[q] \leq A[q+1..r]$$

نمونه Partition

شرایط میانی

PARTITION (A, p, r)

$$1 \quad x = A[r]$$

$$2 i = p - 1$$

3 **for**
$$j = p$$
 to $r - 1$

4 if
$$A[j] \leq x$$

$$5 i = i + 1$$

6 exchange
$$A[i]$$
 with $A[j]$

7 exchange
$$A[i + 1]$$
 with $A[r]$

8 return
$$i+1$$

اثبات شبہ کد Partition

```
دانشگاه صنعی امر کیر
دانشگاه صنعی امر کیر
```

```
PARTITION(A, p, r)

1  x = A[r]

2  i = p - 1

3  for j = p to r - 1
```

```
4 if A[j] \le x
5 i = i + 1
```

6 exchange A[i] with A[j]

7 exchange A[i + 1] with A[r]

3 return i+1

مستقل از حلقه

At the beginning of each iteration of the loop of lines 3–6, for any array index k,

- 1. If $p \le k \le i$, then $A[k] \le x$.
- 2. If $i + 1 \le k \le j 1$, then A[k] > x.
- 3. If k = r, then A[k] = x.

اثبات شبہ کد Partition

```
دانشگاه صفتي امر كبر
```

```
PARTITION (A, p, r)

1  x = A[r]

2  i = p - 1

3  for j = p to r - 1

4  if A[j] \le x

5  i = i + 1

6  exchange A[i] with A[j]

7  exchange A[i + 1] with A[r]

8  return i + 1
```

```
مستقل از حلقه
```

At the beginning of each iteration of the loop of lines 3–6, for any array index k,

- 1. If $p \le k \le i$, then $A[k] \le x$.
- 2. If $i + 1 \le k \le j 1$, then A[k] > x.
- 3. If k = r, then A[k] = x.

Initialization: i = p - 1 and j = p

اثنات شنہ کد Partition

```
PARTITION(A, p, r)
   x = A[r]
   i = p - 1
   for j = p to r - 1
       if A[j] \leq x
           i = i + 1
           exchange A[i] with A[j]
   exchange A[i + 1] with A[r]
   return i + 1
```

At the beginning of each iteration of the loop of lines 3–6, for any array index k,

مستقل از حلقه

- 1. If $p \le k \le i$, then $A[k] \le x$.
- 2. If $i + 1 \le k \le j 1$, then A[k] > x.
- 3. If k = r, then A[k] = x.

اثبات شبہ کد Partition

```
PARTITION (A, p, r)

1  x = A[r]

2  i = p - 1

3  for j = p to r - 1

4  if A[j] \le x

5  i = i + 1

6  exchange A[i] with A[j]

7  exchange A[i + 1] with A[r]

8  return i + 1
```

مستقل از حلقه

At the beginning of each iteration of the loop of lines 3–6, for any array index k,

- 1. If $p \le k \le i$, then $A[k] \le x$.
- 2. If $i + 1 \le k \le j 1$, then A[k] > x.
- 3. If k = r, then A[k] = x.

Termination: j = r

7 exchange A[i+1] with A[r]

$$A[p..q-1] \leq A[q] \leq A[q+1..r]$$

تحلیل زمان اجرای Quicksort


```
PARTITION(A, p, r)

1  x = A[r]

2  i = p - 1

3  for j = p to r - 1

4  if A[j] \le x

5  i = i + 1

6  exchange A[i] with A[j]

7  exchange A[i + 1] with A[r]

8  return i + 1
```


- چقدر متقارتن تقسیم شده؟
 - چه حالتی بهترست؟

Quicksort تحلیل شهودی بدتری زمان اجرای


```
PARTITION(A, p, r)

1  x = A[r]

2  i = p - 1

3  for j = p to r - 1
```

 $\begin{array}{ll}
4 & \text{if } A[j] \le x \\
5 & i = i + 1
\end{array}$

6 exchange A[i] with $A[\dot{p}]$

7 exchange A[i + 1] with A[r]

8 return i+1

$$T(n) = T(n-1) + T(0) + \Theta(n)$$

$$= T(n-1) + \Theta(n).$$

 $\sum_{k=1}^{n} k = \frac{1}{2}n(n+1)$ $= \Theta(n^2).$

زمان اجرای quicksort برای آرایه مرتب؟

برای مرتبسازی درجی؟

تحلیل بهترین زمان اجرای Quicksort

```
PARTITION(A, p, r)

1  x = A[r]

2  i = p - 1

3  for j = p to r - 1

4  if A[j] \le x

5  i = i + 1

6  exchange A[i] with A[j]

7  exchange A[i + 1] with A[r]

8  return i + 1
```


$$T(n) = 2T(n/2) + \Theta(n) \; , \qquad \longrightarrow \qquad$$
حالت دوم قضیه اصلی $T(n) = T(n/2) + \Theta(n) \; , \qquad \longrightarrow \qquad T(n) = \Theta(n \lg n)$

تحلیل متوسط زمان اجرای Quicksort

```
PARTITION(A, p, r)

1  x = A[r]

2  i = p - 1

3  for j = p to r - 1

4  if A[j] \le x

5  i = i + 1

6  exchange A[i] with A[j]

7  exchange A[i + 1] with A[r]

8  return i + 1
```


$$T(n) = T(9n/10) + T(n/10) + cn$$
 حدس با درخت بازگشتی

تحلیل متوسط زمان اجرای Quicksort

دانشگاه صنعتی امبر کبیر (بلیر تکنیک ته اد)

متوسط زمان اجرای Quicksort به بهترین زمان اجرای آن بسیار نزدیک است

```
PARTITION(A, p, r)

1  x = A[r]

2  i = p - 1

3  for j = p to r - 1

4  if A[j] \le x

5  i = i + 1

6  exchange A[i] with A[j]

7  exchange A[i + 1] with A[r]

8  return i + 1
```


دارای n/10 عنصر

دارای 9n/10 عنصر

$$T(n) = T(9n/10) + T(n/10) + cn$$
 حدس با درخت بازگشتی

تحلیل متوسط زمان اجرای Quicksort

 $O(n \lg n)$

$$T(n) = T(9n/10) + T(n/10) + cn$$
 حدس با درخت بازگشتی

برای تقسیم ۹۹ به ۱ چطور؟؟

 $T(n) = \Theta(n \lg n)$ برای تقسیم ثابت همواره

تحلیل شهودی متوسط زمان اجرای Quicksort


```
PARTITION(A, p, r)

1  x = A[r]

2  i = p - 1

3  for j = p to r - 1

4  if A[j] \le x

5  i = i + 1

6  exchange A[i] with A[j]

7  exchange A[i + 1] with A[r]

8  return i + 1
```


برای محاسبه دقیق زمان متوسط اجرای Quicksort نیاز به فرضیاتی نسبت به چیدمان ورودی داریم

صرفا چیدمان اهمیت دارد و نه خود اعداد ورودی

Exercise 7.2-6

about 80 percent of the time PARTITION produces a split that is more balanced than 9 to 1

ااالTRODUCTION TO ALGORITHM | (۱۳۹۹ وال ۹۳۹۹) ا

تحلیل شهودی متوسط زمان اجرای Quicksort

```
PARTITION(A, p, r)

1  x = A[r]

2  i = p - 1

3  for j = p to r - 1

4  if A[j] \le x

5  i = i + 1

6  exchange A[i] with A[j]

7  exchange A[i + 1] with A[r]

8  return i + 1
```


دارای <mark>صفر</mark> عنصر

دارای $\lfloor n/2 \rfloor$ عنصر

دارای n-1 عنصر

دارای $\lceil n/2 \rceil - 1$ عنصر

بار دوم

بار اول

مدل تصادفی Quicksort

Pivot selection: A[r] \longrightarrow Randomly choose from $A[p \dots r]$

RANDOMIZED-PARTITION (A, p, r)

- i = RANDOM(p, r)
- exchange A[r] with A[i]
- **return** Partition(A, p, r)

RANDOMIZED-QUICKSORT (A, p, r)

- if p < r
- q = RANDOMIZED-PARTITION(A, p, r)
- RANDOMIZED-QUICKSORT (A, p, q 1)
- RANDOMIZED-QUICKSORT (A, q + 1, r)

تحلیل ریاضی بدتری زمان اجرای Quicksort

```
PARTITION (A, p, r)
1 x = A[r]
  i = p - 1
   for j = p to r - 1
      if A[j] \leq x
       i = i + 1
           exchange A[i] with A[j]
   exchange A[i + 1] with A[r]
   return i+1
```


 $O(n^2)$

$$T(n) = \max_{0 \le q \le n-1} (T(q) + T(n-q-1)) + \Theta(n)$$

$$\boxed{D(n^2)}$$

$$\boxed{T(n) \le cn^2} \quad T(n) \le \max_{0 \le q \le n-1} (cq^2 + c(n-q-1)^2) + \Theta(n) \quad T(n) \le cn^2 - c(2n-1) + \Theta(n)$$

$$= c \cdot \max_{0 \le q \le n-1} (q^2 + (n-q-1)^2) + \Theta(n) \quad \le cn^2,$$

 $\max_{0 \le q \le n-1} (q^2 + (n-q-1)^2) \le (n-1)^2$