Esercizi Assembly 4

M. Sonza Reorda – M. Grosso

Politecnico di Torino Dipartimento di Automatica e Informatica

Esercizio 1

- Si scriva un programma in linguaggio
 Assembly 8086 che dica se un'equazione di secondo grado nella forma ax²+bx+c=0 ha o meno soluzioni reali. I coefficienti a, b e c siano variabili di tipo word.
 - Si ricorda che la soluzione di un'equazione di secondo grado ha la forma:

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Esercizio 2

- Si scriva un programma in grado di calcolare il valore di un insieme di monete di diverso importo (espresso in centesimi di Euro). Siano dati i seguenti vettori:
 - valore, vettore di word indicante il valore di ciascun tipo di moneta
 - monete, vettore di byte indicante il numero di monete di ciascun tipo.
- Ad esempio, con
 - valore dw 1, 2, 5, 10, 20, 50, 100, 200
 - monete db 100, 23, 17, 0, 79, 48, 170, 211
 - si hanno 100 monete da 1 centesimo, 23 monete da 2 centesimi, e così via.
- Il programma deve fornire il risultato aggiornando due variabili precedentemente dichiarate, di tipo word, denominate euro e cent, e rappresentanti rispettivamente l'importo in euro e in centesimi. Nell'esempio, il valore risultante è pari a 63411 centesimi, quindi alla fine del programma le due variabili euro e cent varranno rispettivamente 634 e 11.

Esercizio 3

- Sia data una matrice quadrata di word memorizzata per righe (numero di righe pari a DIM, con DIM dichiarato come costante).
- Si scriva un programma che sia in grado di valutare se la matrice quadrata è simmetrica o diagonale. Il programma dovrà stampare a video un valore pari a:
 - 2 se la matrice è diagonale
 - 1 se la matrice è simmetrica
 - 0 se la matrice non è simmetrica.

Esercizio 3 [cont.]

 Si ricorda che in una matrice diagonale solamente i valori della diagonale principale possono essere diversi da 0, mentre una matrice simmetrica ha la proprietà di essere la trasposta di se stessa

		Γ1	0	0	0	07	
		0	2	0	0	0	
•	sempio di matrice diagonale:	0	0	3	0 4 0	0	
		0	0	0	4	0	
		L_0	0	0	0	5	
•		٢1	4	5	6	7	
		4	2	8	6	4	
	Esempio di matrice simmetrica:	5	8	3	6 6 2 4 4	9	
	•	6	6	2	4	4	
		L7	4	9	4	5]	

Esercizio 4

- Sia data una matrice quadrata di byte di dimensione 8x8 preinizializzata. La matrice contiene valori unsigned.
- Per ogni elemento della matrice si calcoli la somma dei 4 elementi limitrofi (nelle posizioni N, E, S, O; per gli elementi lungo i bordi si consideri solo il sottoinsieme di elementi esistenti). Quindi, si trovi l'elemento per cui tale somma è massima e ne si forniscano le coordinate di riga e colonna.
- In caso di occorrenze multiple, si operi una scelta opportuna.

Esercizio 4 [cont.]

• Esempio:

0	4	0	0	0	0	0	60
0	5	0	0	11	0	0	0
0	5	7	0	0	10	0	0
0	0	0	9	0	0	49	0
0	0	10	0	0	0	0	0
0	10	3	9	0	0	12	0
0	0	58	0	0	17	0	0
0	1	0	0	3	0	0	0

• Risultato: x = 3, y = 6