```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

!wget --no-check-certificate https://drive.google.com/uc?id=1n9268qSj_5Q7KS_ntpv-wFPQC1UyJh6f -0 aero

df_aerofit = pd.read_csv('/content/aerofit.csv')
df_aerofit.head()

₹		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
	0	KP281	18	Male	14	Single	3	4	29562	112
	1	KP281	19	Male	15	Single	2	3	31836	75
	2	KP281	19	Female	14	Partnered	4	3	30699	66
	3	KP281	19	Male	12	Single	3	3	32973	85
	4	KP281	20	Male	13	Partnered	4	2	35247	47

sns.boxplot(df aerofit, x='Product', y='Income')


```
np.random.seed(42)
df_aerofit["random_group"] = np.random.choice(["g1", "g2", "g3"],size=len(df_aerofit))
df aerofit.head()
```

₹

•		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles	random_group
	0	KP281	18	Male	14	Single	3	4	29562	112	g3
	1	KP281	19	Male	15	Single	2	3	31836	75	g1
	2	KP281	19	Female	14	Partnered	4	3	30699	66	g3
;	3	KP281	19	Male	12	Single	3	3	32973	85	g3
	4	KP281	20	Male	13	Partnered	4	2	35247	47	g1

sns.boxplot(x='random_group', y='Income', data=df_aerofit)

from scipy.stats import f_oneway # Numeric Vs categorical for many categories from scipy.stats import ttest_ind # Numeric Vs categorical

from statsmodels.graphics.gofplots import qqplot

```
income g1 = df aerofit[df aerofit["random group"]=="g1"]["Income"]
income_g2 = df_aerofit[df_aerofit["random_group"]=="g2"]["Income"]
income_g3 = df_aerofit[df_aerofit["random_group"]=="g3"]["Income"]
income_g1.mean(), income_g2.mean(), income_g3.mean()
```

→ (51840.44827586207, 55812.69642857143, 53594.954545454544)

f oneway(income g1, income g2, income g3)

F onewayResult(statistic=0.8263259710788367, pvalue=0.43933541801191467)

df_aerofit.Product.unique()

```
→ array(['KP281', 'KP481', 'KP781'], dtype=object)
```

```
income_g1 = df_aerofit[df_aerofit["Product"]=="KP281"]["Income"]
income_g2 = df_aerofit[df_aerofit["Product"]=="KP481"]["Income"]
income_g3 = df_aerofit[df_aerofit["Product"]=="KP781"]["Income"]
```

f_oneway(income_g1, income_g2, income_g3)

F_onewayResult(statistic=89.25903546601671, pvalue=1.5644991316342494e-27)

```
apply paired t-tests between all products. 2 at a time
ttest ind(income g1, income g2)
TtestResult(statistic=-1.6817688139914835, pvalue=0.09487529747264932, df=138.0)
ttest ind(income g2, income g3)
TtestResult(statistic=-9.628009470104809, pvalue=7.770191623361236e-16, df=98.0)
ttest ind(income g1, income g3)
TtestResult(statistic=-11.551787854717519, pvalue=4.116508528877672e-21, df=118.0)
from scipy.stats import kruskal
kruskal(income g1, income g2, income g3)
FruskalResult(statistic=61.43670384567185, pvalue=4.562357014275808e-14)
Check for normality
!wget --no-check-certificate https://drive.google.com/uc?id=1Bb0JnKXUEPWrhjjLlZS_2-HoGvtZeubb -0 we:
    --2024-07-03 17:23:11-- https://drive.google.com/uc?id=1Bb0JnKXUEPWrhjjLlZS_2-HoGvtZeubb
     Resolving drive.google.com (drive.google.com)... 74.125.195.102, 74.125.195.101, 74.125.195.139, ...
     Connecting to drive google.com (drive google.com)|74.125.195.102|:443... connected.
     HTTP request sent, awaiting response... 303 See Other
    Location: <a href="https://drive.usercontent.google.com/download?id=1Bb0JnKXUEPWrhjjLlZS_2-HoGvtZeubb">https://drive.usercontent.google.com/download?id=1Bb0JnKXUEPWrhjjLlZS_2-HoGvtZeubb</a> [following]
--2024-07-03 17:23:11-- <a href="https://drive.usercontent.google.com/download?id=1Bb0JnKXUEPWrhjjLlZS_2-HoGvtZeubb">https://drive.usercontent.google.com/download?id=1Bb0JnKXUEPWrhjjLlZS_2-HoGvtZeubb</a>
     Resolving drive.usercontent.google.com (drive.usercontent.google.com)... 142.250.99.132, 2607:f8b0:400e:c0::84
     Connecting to drive.usercontent.google.com (drive.usercontent.google.com)|142.250.99.132|:443... connected.
     HTTP request sent, awaiting response... 200 OK
     Length: 428120 (418K) [application/octet-stream]
     Saving to: 'weight-height.csv'
     weight-height.csv 100%[=========>] 418.09K --.-KB/s
                                                                                in 0.005s
     2024-07-03 17:23:12 (84.2 MB/s) - 'weight-height.csv' saved [428120/428120]
path = '/content/weight-height.csv'
df_hw = pd.read_csv(path)
df hw.head()
```

_		Gender	Height	Weight	
	0	Male	73.847017	241.893563	
	1	Male	68.781904	162.310473	
	2	Male	74.110105	212.740856	
	3	Male	71.730978	220.042470	
	4	Male	69.881796	206.349801	
	4				

sns.histplot(df_hw.Height)

→ <Axes: xlabel='Height', ylabel='Count'>

df_hw.shape

→ (10000, 3)

from statsmodels.graphics.gofplots import qqplot

qqplot(df_hw.Height, line="s")

!wget --no-check-certificate https://drive.google.com/uc?id=1v48RRtiivufSX4ewrMaxsADK73GnN2kI -0 wa:

```
--2024-07-03 17:31:26-- <a href="https://drive.google.com/uc?id=lv48RRtiivufSX4ewrMaxsADK73GnN2kI">https://drive.google.com/uc?id=lv48RRtiivufSX4ewrMaxsADK73GnN2kI</a> Resolving drive.google.com (drive.google.com)... 74.125.195.100, 74.125.195.139, 74.125.195.138, ...
     Connecting to drive.google.com (drive.google.com)|74.125.195.100|:443... connected.
     HTTP request sent, awaiting response... 303 See Other
     Location: <a href="https://drive.usercontent.google.com/download?id=1v48RRtiivufSX4ewrMaxsADK73GnN2kI">https://drive.usercontent.google.com/download?id=1v48RRtiivufSX4ewrMaxsADK73GnN2kI</a> [following]
      --2024-07-03 17:31:26-- https://drive.usercontent.google.com/download?id=1v48RRtiivufSX4ewrMaxsADK73GnN2kI
     Resolving drive.usercontent.google.com (drive.usercontent.google.com)... 142.250.99.132, 2607:f8b0:400e:c0c::84
     Connecting to drive.usercontent.google.com (drive.usercontent.google.com)|142.250.99.132|:443... connected.
     HTTP request sent, awaiting response... 200 OK
     Length: 1656272 (1.6M) [application/octet-stream]
     Saving to: 'waiting_time.csv'
     waiting_time.csv
                              1.58M --.-KB/s
                                                                                        in 0.04s
     2024-07-03 17:31:27 (36.8 MB/s) - 'waiting_time.csv' saved [1656272/1656272]
path = '/content/waiting time.csv'
df_wt = pd.read_csv(path)
df wt.head()
```


- time
- **0** 184.003075**1** 36.721521
- **2** 29.970417

sns.histplot(df_wt["time"])

qqplot(df_wt["time"], line="s") plt.show()

