1. [punti 4]

Fornire una definizione generale di margine di ampiezza M_A e margine di fase M_F per un sistema retroazionato asintoticamente stabile. Giustificare tali definizioni enunciando e dimostrando le pertinenti proprietà geometriche. Definire una procedura per il calcolo di M_A ed M_F nel caso di intersezioni multiple del diagramma polare con l'asse reale negativo e con la circonferenza unitaria.

2. [punti 4]

Tracciare i diagrammi di Bode ed il diagramma polare della rete ritardatrice $C(s) = \frac{1 + \alpha \tau s}{1 + \tau s}$ determinando in particolare il ritardo massimo di fase e la corrispondente pulsazione.

3. [punti 3]

Nota la risposta al gradino unitario $g_s(t)$ di un sistema lineare dedurre la risposta forzata $y_F(t)$ del sistema ad un ingresso forzante u(t).

4. [punti 5]

Sia assegnato il sistema meccanico vibrante di figura

caratterizzato da due molle di costante elastica k e due corpi di massa m accoppiati da uno smorzatore viscoso di coefficiente b. Il corpo di sinistra sia soggetto ad una forza f e le posizioni delle due masse siano descritte dalle variabili x_1 e x_2 (quando il sistema è in quiete $x_1 = x_2 = 0$).

- a) Determinare le equazioni differenziali che descrivono il moto delle due masse.
- b) Determinare la funzione di trasferimento del sistema orientato dall'ingresso f all'uscita x_1 .

1

5. [punti 5] Dato un sistema con funzione di trasferimento $G(s) = \frac{10}{s+3}$ determinare la risposta forzata y(t), $t \in (0, +\infty)$ al segnale di ingresso definito in figura:

6. [punti 5]

1) Tracciare il diagramma polare associato alla funzione di trasferimento

$$P(s) = \frac{10(1-s)^2}{s(s+1)^3}$$

determinando in particolare asintoti e le intersezioni con l'asse reale negativo.

2) Utilizzando il Criterio di Nyquist si studino le radici dell'equazione caratteristica 1+P(s)=0 (quante a parte reale negativa, quante puramente immaginarie, quante a parte reale positiva).

7. [punti 5] Sia dato il sistema in retroazione di figura

$$r \xrightarrow{+} K P(s)$$

dove
$$P(s) = \frac{1}{s^2(s+2)(s+4)^2}$$
.

- 1. Dimostrare che non esistono valori $K \in \mathbb{R}$ per i quali il sistema retroazionato è asintoticamente stabile.
- 2. Tracciare i luoghi delle radici dell'equazione caratteristica del sistema retroazionato per K > 0 e K < 0 determinando in entrambi i casi:
 - a) gli asintoti del luogo;
 - b) le eventuali radici doppie.

8. [punti 5] Sia dato il sistema in retroazione di figura

dove
$$P(s) = \frac{1}{s^3}$$
.

- 1. Progettare un controllore C(s) di ordine due affinché i poli del sistema retroazionato siano posti in -1, -2, -4, -5, -6.
- 2. Con il controllore progettato al punto 1, si applichi un gradino $r(t) = 3 \cdot 1(t)$ al sistema retroazionato e si determini una stima del tempo di assestamento T_a e l'errore di regolazione a

regime
$$e_r$$
 . $\left[e_r := \lim_{t \to +\infty} r(t) - y(t)\right]$