

Materialwissenschaften

Prof. Peter Müller-Buschbaum, TUM School of Natural Sciences

Kapitel 9: Werkstoffversagen

- 9.1 Einführung
- 9.2 Sprödbruch
- 9.3 Bruchmechanik
- 9.4 Duktiler Bruch
- 9.5 Zusammenfassung

W. D. Callister, D.G. Rethwisch: Materialwissenschaften und Werkstofftechnik. Wiley-VCH. Kapitel 8.

J. P. Mercier, G. Zambelli, W. Kurz: Introduction to Material Science. Elsevier, 2002. Kapitel 13.

D. R. Askeland: Materialwissenschaften. Spektrum. Kapitel 23.

9.1 Einführung

Liberty-Schiffskatastrophe

Übergangstemperatur des Metalls vom Schiff wurde bei Fertigung falsch berechnet

→ im kalten Seewasser veränderte sich der Metallkörper des Schiffes plötzlich von duktil zu spröde

Spannungsüberhöhung

Callister 1997

Einführung

Bruch: Zerfall eines Materials in zwei oder mehrere Teile unter Einwirkung einer Kraft, z.B. einer Zugbelastung

Teilung: Ausbreitung eines Risses Hierbei spielen interne Defekte eine große Rolle, z.B. Haarrisse, Poren, Einschlüsse spröder Partikel, Kerbstellen

spröde Materialien:

brechen ohne plastische Verformung, z.B. Keramiken

duktile Materialien:

brechen erst nach beträchtlicher plastischer Verformung, z.B. Metalle ("duktil": verformbar, schlagzäh)

W. D. Callister, D.G. Rethwisch: Materialwissenschaften und Werkstofftechnik. Wiley-VCH.

Bruchflächen

überwiegend duktiler Bruch, z.B. bei Ag, Pb bei anderen Materialien bei hoher Temperatur

(vollständig) duktiler Bruch

- → nur langsame Vergrößerung der Risslänge
- → Riss breitet sich nur dann weiter aus, wenn die einwirkende Spannung erhöht wird
- → "stabiler Riss"

Probe wird bis auf einen punktförmigen Querschnitt eingeschnürt.

Mäßig duktiler Bruch

Mäßig duktiler Bruch: Wabenbildung

mäßig duktiler Bruch: Hohlräume → elliptischer Riss → Trichterbruch

Waben: Spuren von Mikroporen

- runde Form, wo Zugkraft senkrecht zur Bruchfläche gerichtet war
- längliche Form auf der Scherlippe, wobei Längsachsen zum Ausgangspunkt des Bruchs zeigen

9.2 Sprödbruch

- · ohne plastische Verformung
- Riss senkrecht zur Zugrichtung
- flache Bruchfläche

weicher Baustahl

- sehr harte Metalle: keine Bruchmuster
- Gläser: glänzende/glatte Bruchflächen

Chevronmuster beim Sprödbruch

Chevronmuster

- → Risse breiten sich extrem schnell aus
- → spontane Vergrößerung,
 d.h. auch ohne Erhöhung
 der einwirkenden Spannung
- → "instabiler Riss"

- fächerartig vom Rissursprung ausgehende Linien/Grate
- Entstehung durch mehrere Bruchfronten, die sich in unterschiedlichen Höhen im Material ausbreiten

W. D. Callister, D.G. Rethwisch: Materialwissenschaften und Werkstofftechnik. Wiley-VCH. D. R. Askeland: Materialwissenschaften. Spektrum.

Rissausbreitung in polykristallinen Materialien

Riss verläuft entlang spezifischer kristallographischer Ebenen: "Spaltung"

- → transgranularer Bruch, Ausbreitung durch einzelne Körner hindurch, Richtung unabhängig von Korngrenzen
- → facettenartige Textur

duktiles Gusseisen

Rissausbreitung in polykristallinen Materialien

in einigen Legierungen: Rissausbreitung entlang von Korngrenzen wenn Korngrenzbereiche geschwächt oder versprödet sind

- → intergranularer Bruch
- → Körner zu erkennen, Bruch weist facettenartige Textur auf

W. D. Callister, D.G. Rethwisch: Materialwissenschaften und Werkstofftechnik. Wiley-VCH.

9.3 Bruchmechanik

Beziehungen zwischen Materialeigenschaften, Defekten, Belastung und Rissausbreitung

Spannungskonzentration:

Bruchfestigkeit bestimmt durch mikroskopische Fehler oder Risse im Material → Spannung wird an diesen Punkten verstärkt/konzentriert

innerer Riss

- → lokal wirkende Spannung an Rissspitze besonders hoch
- → Riss wirkt spannungsüberhöhend

Spannungsüberhöhung

maximale Spannung:
$$\sigma_m = 2\sigma_0 \left(\frac{a}{\rho_t}\right)^{1/2}$$

 σ_0 : nominale Zugspannung

 ρ_t : Krümmungsradius an Riss-Spitze

a: halbe Länge eines inneren Risses

- $\frac{a}{\rho_t}$ kann hohe Werte annehmen für langen, schmalen Mikroriss
- → starke Spannungsüberhöhung
- ightarrow Spannungsintensitätsfaktor: $K_t = \frac{\sigma_m}{\sigma_0} = 2\left(\frac{a}{\rho_t}\right)^{1/2}$
- → kritische Spannung für Ausbreitung eines Risses in sprödem Material (Berechnung s. Seite 18-19):

$$\sigma_c = \left(\frac{2E\gamma_s}{\pi a}\right)^{1/2}$$

E: Elastizitätsmodul

 γ_s : spezifische Bruchflächenenergie

Bruchzähigkeit

Beziehung zwischen kritischer Spannung σ_c

und ursprünglicher Risslänge a: $K_c = Y \sigma_c \sqrt{\pi a}$

K_c: Bruchzähigkeit, Materialeigenschaft

Y: dimensionsloser Parameter, beschreibt
 Geometrie des Risses und des Bauteils
 sowie die Art der Belastung

ebenes Blech mit durchgehendem Riss: Y = 1

W. D. Callister, D.G. Rethwisch: Materialwissenschaften und Werkstofftechnik. Wiley-VCH. B. Heine: Werkstoffwahl für technische Anwendungen – Grundlagen und Beispiele; Carl Hanser Verlag München (2016)

Bruchzähigkeit

Rissöffnungsarten (Rissöffnungsmodi):

Rissöffnung senkrecht zur Rissfläche = Mode I: Beanspruchung von Mode I

kritischer Spannungsintensitätsfaktor

$$\rightarrow K_{\rm Ic} = Y \sigma_c \sqrt{\pi a}$$

Mode I: Öffnungs- oder Zugbeanspruchung

weitere Beanspruchungsfälle: andere Moden

Mode II: Schub- oder Gleitbeanspruchung

Mode III: Scherbeanspruchung

Bruchzähigkeit

spröde Materialien: niedrige K_{Ic} -Werte,

anfällig für katastrophales Versagen

z.B. Keramiken, Polymere im Glaszustand

duktile Materialien: große K_{Ic} -Werte

Bruchzähigkeit K_{Ic} abhängig von:

- der Temperatur
- der Mikrostruktur
- dem Dehnungszustand
- Der Beanspruchungsgeschwindigkeit

Rissausbreitung

Risse können sich wie folgt ausbreiten:

- durch stabile Ausbreitung,
 wenn die Spannung an der Riss-Spitze gerade groß genug ist,
 um eine langsame Ausbreitung aufrecht zu erhalten
- durch instabile Ausbreitung, wenn die maximale Spannung den kritischen Wert σ_c überschreitet \rightarrow extrem schnelle Ausbreitung

Rissausbreitung

- → Spannungsrelaxation um den Riss (grauer Bereich)
- → Erzeugung neuer Bruchflächen, diese kostet Oberflächenenergie

- (a) stabiler Riss für $\sigma < \sigma_c$ ($l < l_c$),
- (b) kritischer Riss für $\sigma = \sigma_c \ (l = l_c)$,
- (c) gebrochenes Werkstück mit $l > l_c$.

Energieverhältnisse bei Rissausbreitung

Energie, die zur Erzeugung neuer Grenzflächen nötig ist:

$$U_s = 2\gamma le$$

γ: Oberflächenspannung

l: Risslänge

e: Probendicke

gespeicherte elastische Energie pro Volumen

in rein elastischem Material (Kapitel 7, S. 6):

$$U = \frac{1}{2}\sigma_e \varepsilon_e = \frac{1}{2} \frac{\sigma_e^2}{E}$$

 σ_e : Spannung an der Streckgrenze

 ε_e : Verformung an der Streckgrenze

E: Elastizitätsmodul

Spannungsrelaxations-Zone: elliptischer Halbzylinder um den Riss

$$\rightarrow$$
 freiwerdende Energie: $U_e = -UV = -\frac{\sigma_e^2 \pi l^2 e}{2E}$

Energieverhältnisse bei Rissausbreitung

Rissbildungsenergie U_f

in Abhängigkeit von der Risslänge l

$$U_f = U_S + U_e = 2\gamma le - \frac{\sigma_e^2 \pi l^2 e}{2E}$$

ightarrow Maximum bei kritischer Risslänge l_c

für $l < l_c$: stabiler Riss

für $l > l_c$: instabiler Riss, wächst schnell

kritische Spannung:
$$\sigma_c = \sqrt{\frac{2\gamma E}{\pi l}}$$
 (s. Seite 12)

Spannungen größer als σ_c führen zu schneller Rissausbreitung

9.4 Duktiler Bruch

Rissausbreitungsenergie:

Erzeugung neuer Oberflächen, aber auch andere Dissipationsprozesse

in Metallen:

- Bewegung von Versetzungen
- plastische Verformungszone vor Riss-Spitze

in Polymermaterialien:

Mikrorisse (crazes), Fibrillen

(a) makroskopisch(b) mikroskopisch

Rupture type		
Brittle	Ductile	
(a)		
(p)		2000000
Breaking of primary bonds	Sliding	Crazing
sprödes Material	duktiles Material	

J. P. Mercier, G. Zambelli, W. Kurz: Introduction to Material Science. Elsevier, 2002.

Plastische Verformungszone

plastisch verformte Zone durch Spannungskonzentration

Gleichsetzen von maximaler Spannung mit Streckgrenze

→ Größe der plastisch verformten Zone:

$$x_p \cong \frac{K^2}{2\pi R_e^2}$$

K: Bruchzähigkeit

 R_e : Streckgrenze

Für duktile Materialien ist die Energie, die für die plastische Verformung aufgebracht werden muss, wesentlich größer als die Oberflächenenergie.

Erhöhung der Schlagzähigkeit von Polymeren

Einbetten gummiartiger Partikel

in glasförmige Polymere, z.B. in sprödes Polystyrol

- → Mikrorisse in Partikeln absorbieren Verformungsenergie
- → Rissausbreitung und somit der Sprödbruch werden gestoppt
- reines Polystyrol ist spröde
- schlagzähes Polystyrol (high impact polystyrene, HIPS) ist duktil

Erhöhung der Schlagzähigkeit von Polymeren

Polymerverbundwerkstoffe, die mit Glasfasern, Kohlenstofffasern, Pflanzenfasern und Seidenfasern verstärkt

GFRP (Glass Fibre Reinforced Plastics), CFRP (Carbon Fibre Reinforced Plastics), PFRP (Plant Fibre Reinforced Plastics) SFRP (Silk Fibre Reinforced Plastics)

ausgeprägte Zähigkeitsund Verstärkungseffekte für Epoxidverbundwerkstoffe mit Naturseide als Verstärkungsmaterial

Wasserstoffversprödung Ni-Basis-Legierung 725

Die Ni-Basis-Legierung 725 ist für hohe Festigkeit und Korrosionsbeständigkeit ausgelegt.

3D-Bilder von mikroskopisch kleinen, wasserstoffgesprengten Rissen in Ni Legierung

Rissausbreitungsgeschwindigkeit und Bruchzähigkeit

Fehleranalyse bei Feststoffraketenmotoren: einseitig gekerbte Zugproben aus hydroxyl-terminiertem Polybutadien (HTPB)

Kohäsionszonenmodell versus erweiterte Finite-Elemente-Methode und Vergleich mit Messungen

erweiterte Finite-Elemente-Methode

Defekte an Polymer Grenzflächen

Entstehung von Defektstrukturen in der Energiedissipationszone am Ende einer Rissspitze an der PMMA-PMMA-

Abrastern mit Nanostrahl: ortsaufgelöste Änderung der Steigung im Kleinwinkelbereich → verschiedene lokale Schäden

Scanfeld 160 × 250 µm²

9.5 Zusammenfassung

Dehnungs- und Bruchverhalten spröder und duktiler Materialien

verschiedene Brucharten/-flächen, z.B. Trichterbruch, Chevronmuster

Sprödbruch entlang kristallographischer Ebenen oder entlang von Korngrenzen

Spannungskonzentration an Rissen Definition der Bruchzähigkeit

Rissausbreitung: stabil, instabil plastische Verformung um Riss-Spitze und Erzeugung neuer Bruchflächen → kritische Spannung

duktile Materialien: auch andere Dissipationsprozesse

Metalle: Bewegung von Versetzungen, plastische Verformung

Polymere: Mikrorisse, Fibrillen