Derivatives of the Trigonometric Functions

Oct 12 2011

I dentities: (x,4) = (cos 0, sin 0) Resulting identities: -Cos (-0) = cos 0 Sin(-0) = Sin 0 Cos2(0) + Sin20 = 1 Other identities:

 $Cos(\alpha+\beta) = cos(\alpha)cos(\beta) - sin(\alpha)sin(\beta)$ $Sin(\alpha+\beta) = sin(\alpha)cos(\beta) + sin(\beta)cos(\alpha)$

$$\frac{d}{dx}\sin x =$$

$$\frac{d}{dx}\sin x = \lim_{h\to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

$$\frac{d}{dx}\sin x = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$
$$= \lim_{h \to 0} \frac{\sin(x)\cos(h) + \cos(x)\sin(h) - \sin(x)}{h}$$

$$\frac{d}{dx}\sin x = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)\cos(h) + \cos(x)\sin(h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)(\cos(h) - 1) + \cos(x)\sin(h)}{h}$$

$$\frac{d}{dx}\sin x = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)\cos(h) + \cos(x)\sin(h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)(\cos(h) - 1) + \cos(x)\sin(h)}{h}$$

$$= \sin(x)\lim_{h \to 0} \frac{\cos(h) - 1}{h} + \cos(x)\lim_{h \to 0} \frac{\sin(h)}{h}$$

$$\frac{d}{dx}\sin x = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)\cos(h) + \cos(x)\sin(h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)(\cos(h) - 1) + \cos(x)\sin(h)}{h}$$

$$= \sin(x)\lim_{h \to 0} \frac{\cos(h) - 1}{h} + \cos(x)\lim_{h \to 0} \frac{\sin(h)}{h}$$

Recall: cos(0) = 1 and sin(0) = 0

Near x = 0, $\sin(x) \approx x$:

$$\lim_{x\to 0}\frac{\sin(x)}{x}=1$$

Graph of $\frac{\cos(x)-1}{x}$:

$$\lim_{x \to 0} \frac{\cos(x) - 1}{x} = 0$$

$$\frac{d}{dx}\sin x = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)\cos(h) + \cos(x)\sin(h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)(\cos(h) - 1) + \cos(x)\sin(h)}{h}$$

$$= \sin(x)\lim_{h \to 0} \frac{\cos(h) - 1}{h} + \cos(x)\lim_{h \to 0} \frac{\sin(h)}{h}$$

$$\frac{d}{dx}\sin x = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)\cos(h) + \cos(x)\sin(h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)(\cos(h) - 1) + \cos(x)\sin(h)}{h}$$

$$= \sin(x)\lim_{h \to 0} \frac{\cos(h) - 1}{h} + \cos(x)\lim_{h \to 0} \frac{\sin(h)}{h}$$

$$= \sin(x) * 0 + \cos(x) * 1$$

$$\frac{d}{dx}\sin x = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)\cos(h) + \cos(x)\sin(h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)(\cos(h) - 1) + \cos(x)\sin(h)}{h}$$

$$= \sin(x)\lim_{h \to 0} \frac{\cos(h) - 1}{h} + \cos(x)\lim_{h \to 0} \frac{\sin(h)}{h}$$

$$= \sin(x) * 0 + \cos(x) * 1$$

$$= \cos(x)$$

$$\frac{d}{dx}\cos x =$$

$$\frac{d}{dx}\cos x = \lim_{h \to 0} \frac{\cos(x+h) - \cos(x)}{h}$$

Does it make sense?

$$y = \sin(x)$$
:

$$y = \cos(x)$$
:

$$y = -\sin(x)$$
:

Examples

On your own, calculate:

- 1. $\frac{d}{dx}\sin(2x)$
- $2. \ \frac{d}{dx} \sin\left(x^2 + \frac{1}{x}\right)$
- 3. $\frac{d}{dx}\cos(3x+\sqrt{x})$
- 4. $\frac{d}{dx}\sin(x)\cos(x)$
- $5. \frac{d}{dx}\sin(\cos(x^2+2))$

On your own, fill in the rest of the trig functions:

1.
$$\frac{d}{dx} \tan(x)$$

2.
$$\frac{d}{dx} \cot(x)$$

3.
$$\frac{d}{dx} \sec(x)$$

4.
$$\frac{d}{dx} \csc(x)$$

On your own, fill in the rest of the trig functions:

1.
$$\frac{d}{dx} \tan(x) = \frac{d}{dx} \frac{\sin(x)}{\cos(x)}$$

2.
$$\frac{d}{dx} \cot(x) = \frac{d}{dx} \frac{\cos(x)}{\sin(x)}$$

3.
$$\frac{d}{dx} \sec(x) = \frac{d}{dx} (\cos(x))^{-1}$$

4.
$$\frac{d}{dx}\csc(x) = \frac{d}{dx}(\sin(x))^{-1}$$

Example

Compute the derivative of

$$y = \left(x + \tan^3\left(\csc^2(17x)\right)\right)^4.$$