

Masters 2 Systèmes Dynamiques et Signaux

Soutenance de rapport bibliographique Informatique quantique

18 février 2021

Pierre Engelstein

Membres du jury

Président : Pr. Laurent Hardouin

Examinateurs : Dr. Nicolas Delanoue

Pr. François Chapeau-Blondeau

Pr. Sébastien Lahaye Dr. Mehdi Lhommeau Pr. David Rousseau Encadrants : Dr. Nicolas Delanoue

Pr. François Chapeau-Blondeau

- 1 Les 3 principes de base pour l'informatique quantique
- 2 3 algorithmes quantiques
 - Algorithme de Deutsch-Jozsa
 - Algorithme de Grover
 - Algorithme de Shor
- 3 Pistes de recherche (pour le stage)
- 4 Conclusion

3 Postulats [1, 2, 3]

- L'état d'un système quantique
- 2 La dyamique d'un systèmes quantique
- 3 La mesure d'un système quantique

I) : État d'un système quantique

Definition

Système quantique : vecteur d'état $|\psi\rangle$ Dans un espace de Hilbert complexe \mathcal{H} .

De norme unité : $||\psi||^2 = 1$

$$|\psi\rangle = \sum_{i} c_{i} |k_{i}\rangle,$$
 (1)

Avec $\{|k_i\rangle\}_i$ une base orthonormée de \mathcal{H} , Et les coefficients $c_i \in \mathbb{C}$.

I) : État d'un système quantique

Système quantique élémentaire : le qubit : $|\psi\rangle=\alpha\,|0\rangle+\beta\,|1\rangle$, dans un espace de Hilbert de dimension 2.

Example

$$|\psi_1\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle,$$
 (1)

avec

$$|0\rangle \mapsto \begin{bmatrix} 1 \\ 0 \end{bmatrix}, |1\rangle \mapsto \begin{bmatrix} 0 \\ 1 \end{bmatrix} \tag{2}$$

Dynamique des systèmes quantiques

Definition

La dynamique des systèmes quantiques respecte deux principes :

- Conservation de la norme unité
- Linéarité de l'évolution

On note U matrice d'évolution du système, telle que : $U \in \mathcal{H}$, $U^\dagger U = U U^\dagger = I$

Portes quantiques

Porte de Hadamard :

$$H \left| \psi \right\rangle = rac{1}{\sqrt{2}} \left[egin{matrix} 1 & 1 \\ 1 & -1 \end{matrix}
ight] \left| \psi
ight
angle$$

Example

Soit
$$|\psi\rangle = |0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, alors $H |\psi\rangle = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$

Portes quantiques

Porte de Pauli X :

$$X |\psi\rangle = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} |\psi\rangle$$

Example

Soit
$$|\psi\rangle=|0\rangle=\begin{bmatrix}1\\0\end{bmatrix}$$
, alors $X\,|\psi\rangle=\begin{bmatrix}0\\1\end{bmatrix}=|1\rangle$

La mesure projective

Definition

Quand un système quantique est dans un état $|\psi\rangle=\sum_i c_i\,|k_i\rangle$, on va avoir comme probabilité $|c_i|^2$ de mesurer l'état $|k_i\rangle$.

Remarque

La mesure est projective : on pert l'état probabiliste.

Algorithme de Deutsch-Jozsa [4]

Problème

Déterminer en le moins d'itérations possibles si une fonction f booléenne est constante ou équilibrée

Dans le cas classique : $2^{n-1} + 1$ itérations

Dans le cas quantique : 1 seule itération

Algorithme

- **1** Initialisation : $|u_0\rangle$
- $|u_1\rangle$: Mise à l'équilibre : porte de Hadamard
- $|u_2\rangle$: Application de la fonction U_f
- $|u_3\rangle$: Préparation pour la mesure

Algorithme de Grover [5]

Problème

On souhaite chercher une entrée spécifique dans une liste non triée à N éléments de façon efficace.

Dans le cas classique : *N* itération successives.

Dans le cas quantique : $\mathcal{O}(\sqrt{N})$

Schéma du circuit de l'algorithme de Grover

Algorithme de Shor [6]

Problème de factorisation de grands entiers en nombres premiers : résoudre $N = p \times q$ avec p et q entiers très grands inconnus.

- Algorithmes classiques : complexité exponentielle
- Algorithmes quantiques : complexité polynomiale

Travail à venir

Conclusion

Bibliographie

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information.

D. N. Mermin, Quantum Computer Science: An introduction.

Cambridge: Cambridge University Press, 2000.

C. H. Bennett and P. W. Shor, "Quantum information theory," *IEEE Transactions on Information Theory*, vol. 44, pp. 2724–2742, 1998.

D. Deutsch and R. Jozsa, "Rapid solution of problems by quantum computation," *Proceedings of the Royal Society of London A*, vol. 439, pp. 553–558, 1992.

L. K. Grover, A Fast Quantum Mechanical Algorithm for Database Search, p. 212–219. STOC '96. New York, NY, USA: Association for Computing Machinery, 1996.

P. W. Shor, "Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer," *SIAM Journal on Computing*, vol. 26, pp. 1484–1509, 1997.