UNIVERSIDADE FEDERAL DO AMAZONAS INSTITUTO DE CIÊNCIAS EXATAS BACHARELADO EM MATEMÁTICA

LABORATÓRIO DE FÍSICA I RELATÓRIO V

Fabrício Yuri Costa da Silva - 21454545 Gabriel Bezerra de M. Armelin - 21550325 Jonas Miranda Cascais Júnior - 21553844 Laise Alves Pimentel - 21202395 Mario Alves Pardo Junior - 21553964

Professor: José Pedro Cordeiro

Sumário

1	Introdução	3
2	Procedimento Experimental	4
3	Análise de Dados	5
	Dados do experimento	5
	Cálculo da velocidade instântanea	5
	Espaço x Tempo	6
	Velocidade x Tempo	6
	Estimativa do momento de inércia	7
	Cálculo das energias potencial, translacional e rotacional	7
	Energia potencial x Tempo	8
	Energia translacional x Tempo	8
	Energia rotacional x Tempo	9
4	Conclusão	10
R	eferências	11

1. Introdução

2. Procedimento Experimental

- 1. Usando o disco de Maxwell desenrolado, fixe o centro do mesmo com o ponto final.
- 2. Fixe o outro ponto em 200 mm, anote esta distância e obtenha o tempo que o disco percorre a mesma. Repita esta medida 3 vezes e tire uma média.
- 3. Em seguida para o cálculo da velocidade instantânea, obtenha o tempo de passagem do cilindro vermelho do disco no ponto final. Repita esta medida 3 vezes e tire uma média.
- 4. Repita este procedimento para as alturas de 300, 400 e 500 mm.

3. Análise de Dados

Esta seção apresenta os dados e cálculos em cada atividade descrita na seção Parte Experimental.

Dados do experimento

Esta seção apresenta os dados coletados durante o experimento e os cálculos de médias para esses dados.

Tabela 3.1: Dados coletados do experimento. Deslocamento em metro e tempo em segundo.

Δs (m)	T1 (s)	T2 (s)	T3 (s)	TM(s)	Ti1 (s)	Ti2 (s)	Ti3 (s)	TiM (s)
0.2	3.915	4.001	3.912	3.94267	0.63	0.64	0.64	0.63667
0.3	4.921	4.986	4.900	4.93567	0.48	0.48	0.48	0.48000
0.4	5.631	5.686	5.629	5.64867	0.42	0.42	0.42	0.42000
0.5	6.301	6.396	6.301	6.33267	0.35	0.35	0.35	0.35000
0.6	6.813	6.941	6.952	6.90200	0.37	0.37	0.37	0.37000

A variável TM é a média das variáveis T1, T2 e T3. De forma análoga, a variável TiM é a média das variáveis Ti1, Ti2 e Ti3.

Cálculo da velocidade instântanea

Para o cálculo da velocidade instântanea, utilizamos a seguinte fórmula:

$$v \approx \frac{2r_v}{T_{iM}} \tag{3.1}$$

Onde:

v: é a velocidade instântanea que desejamos obter;

 2^*r_v : espaço ΔS que fica na escuridão. r_v é o raio do cilindro que mede 10.35 mm.

 T_{iM} : tempo instântaneo médio que foi calculado e apresentado na seção anterior.

A tabela seguinte mostra o valor da velocidade instantânea:

Tabela 3.2: Velocidade instantanea

TiM (s)	Δs (m)	Vi (m/s)
0.63667	0.2	0.03251
0.48000	0.3	0.04312
0.42000	0.4	0.04929
0.35000	0.5	0.05914
0.37000	0.6	0.05595

Espaço x Tempo

O próximo gráfico mostra o relacionamento do deslocamento (Δs) e o tempo instantâneo médio (TiM) mostrados na tabela anterior.

Utilizando regressão linear, obtemos a seguinte função para estimar o espaço em função do tempo:

$$s = 4.08193 * T_{iM}^2 - 5.30326 * T_{iM} + 1.91875$$
(3.2)

A linha azul do gráfico acima foi generada utilizando esta fórmula. Observe que ela aproximou muito bem os dados do experimento.

$$s(t) = \frac{1}{2} \times \frac{mg}{m + \frac{I_z}{r^2}} t^2 \tag{3.3}$$

Velocidade x Tempo

O próximo gráfico mostra o relacionamento da velocidade (V_i) e o tempo instantâneo médio (TiM) mostrados na tabela anterior.

Utilizando regressão linear, obtemos o seguinte função para estimar a velocidade em função do tempo:

$$v = -0.09099 * T_{iM} + 0.08907 (3.4)$$

A linha azul do gráfico acima foi generada utilizando esta fórmula. Observe que ela aproximou muito bem os dados do experimento.

Estimativa do momento de inércia

Esta seção explica o cálculo realizado para estimar o momento de inércia do disco ao redor de seu eixo de rotação.

Podemos calcular o momento de inércia I_z igualando o valor do coeficiente com termo de segundo grau da equação 3.2 (4.08193) com o coeficiente da equação 3.3 resultando na seguinte equação:

$$4.08193 = \frac{1}{2} \times \frac{mg}{m + \frac{I_z}{m^2}} \tag{3.5}$$

Onde:

m: é a massa do cilindro. Seu valor aproximado é 436 g;

g: é a aceleração da gravidade. Seu valor aproximado é 9.8 m/s^2 ;

 I_z : momento de inércia que deseja-se obter;

r: raio do cilindro. Seu valor aproximado é $0.0025~\mathrm{m}$.

Resolvando esta equação para I_z , obtemos o seguinte resultado:

$$I_z = 0.001909 \tag{3.6}$$

Cálculo das energias potencial, translacional e rotacional

Tabela 3.3: Energias

TiM	$ \mathrm{Ep} $	Et	Er	E
0.63667	841.409	0.21138	0.14805	841.769
0.48000	1340.189	0.44922	0.31464	1340.953
0.42000	1757.947	0.56377	0.39487	1758.906
0.35000	2404.048	0.71383	0.49998	2405.261
0.37000	2202.006	0.66915	0.46868	2203.144

Energia potencial x Tempo

Energia translacional x Tempo

Energia rotacional x Tempo

4. Conclusão

Referências

Halliday, R.; Krane, D.; Resnick. 1996. Física. Vol. 1. Livros Técnicos e Científicos Editora. Nussenzveig, H.M. 1997. Curso de Física Básica. Vol. 1. Edgard Bucher Ltda. Tipler, G., P.A. e MOSCA. 2005. Física. Vol. 1. McGraw-Hill.