

Diplomado en Big Data y Ciencia de Datos Curso: Ciencia de Datos y sus Aplicaciones

Clase 04: Aplicaciones en la Industria y Fuga de Clientes

Jaime Caiceo, Roberto González, Roberto Muñoz

regonzar@uc.cl

jcaiceo@uc.cl

rmunoz@uc.cl

El uso de apuntes de clases estará reservado para finalidades académicas. La reproducción total o parcial de los mismos por cualquier medio, así como su difusión y distribución a terceras personas no está permitida, salvo con autorización del autor.

Feedback trabajo anterior (valor dolar)

Top 3 grupos:

3 → felicidades(respondieron todo)

4

8

- 1. Explique el metodo usado en esta actividad para determinar los outliers del valor del dolar. ¿Cuál seria el contexto en este caso?
- 2. ¿Cuales son las ventajas y ventajas de este metodo en comparacion al analisis puntual y contextual basado en el uso de cuartiles del boxplot?
- 3. Modifique los parametros frencuency y trend de la funcion time_decompose() y determine los valores de estos parametros que entregan los mejores resultados. ¿Cual es el criterio que usa para definir que estos resultados son mejores?
- 4. ¿Considera que los resultados de este metodo son suficientemente buenos para implementarlos como una solución productiva en la empresa? ¿Por qué?

Diplomado en Big Data y Ciencia de Datos / © Roberto González, Roberto Muñoz, Jaime Caiceo / 2021

Actividad 3

frequency = 7 days

trend = 91 days

trend = 30 days

Clase 04: Aplicaciones en la Industria y Fuga de Clientes

INDUSTRIA GUIADA POR DATOS

Data Scientist

Diagrama de Venn para Data Science Drew Conway (2010)

Data Scientist

Tipos de datos

• Los datos son el punto de partida para todo análisis.

• **Estructurados**: Están altamente organizados. Se almacenan en una base de datos relacional.

Año	PIB (\$ Millones)	Consumo Eléctrico (GWh)
1993	32.559.292	21.011,3
1994	34.416.724	22.730,7
1995	38.028.591	24.910,2
1996	40.831.596	27.969,0
1997	43.526.546	30.351,5
1998	44.944.340	33.015,8
1999	44.616.349	35.921,3
2000	46.605.199	38.867,4

Tipos de datos

 No estructurados: Son datos crudos y no están organizados. Deben ser procesados y transformados para luego ser almacenados en una base de datos.

Clase 04: Aplicaciones en la Industria y Fuga de Clientes

APLICACIONES

Fintech https://www.youtube.com/watch?v=MZrs7zQU068

La penetración digital está elevando las expectativas de los clientes

67%

de los clientes dicen que su nivel de buenas experiencias es más alto que nunca

72%

de los compradores esperan que los vendedores personalicen la experiencia a sus necesidades personales 80%

de los clientes dicen que la experiencia de una empresa es tan importante como sus productos y servicios

59%

de los clientes dicen que las empresas necesitan experiencias digitales de vanguardia para mantener su negocio. El 59% también dice que están abiertos a que las empresas usen la inteligencia artificial (AI) para mejorar su experiencia

Fuente: EY

El desarrollo de soluciones de Data & Analytics son una mezcla de múltiples tecnologías que requieren diferentes capacidades

Canales

Voz

Voice to Text Speech recognition NLP/NLG

Texto & Email

Data Mining
Semantic analysis / Sentiment Analysis

OCR Reconocimiento de <u>imág</u>enes y videos

Advanced Analytics

Data Management

Text Mining

RPA

Data Visualization

Resultados

Customer Interaction

Channel Management

Chatbots & Virtual Assistant

Analytics

Deep learning Reinforcement learning Unsupervised learning Supervised learning

Decisioning

ML & Decision Analytics Prescriptive Analytics

Knowledge graphs
Recommender systems

Recommended

Systems

Targetted

Marketing

Enfoque para los distintos tipos de aprendizaje

Unsupervised learning

Los modelos pueden agrupar datos no estructurados y/o pueden identificar casos que se desvían fuertemente (valores atípicos) de los patrones de la mayoría de los otros casos. No se proporciona información sobre el resultado al algoritmo.

UNSUPERVISED

LEARNING

SUPERVISED

LEARNING

Supervised learning

predictivos o de clasificación que mapean una entrada a una salida en base a observaciones de pares de entrada-salida anteriores.

Reinforcement **learning**

Determinar las acciones para lograr un objetivo en un entorno, maximizando alguna recompensa.

Los diferentes tipos de enfoques se pueden utilizar por separado o se pueden combinar. Por ejemplo: Los resultados del análisis de clustering no supervisado y la detección de anomalías se pueden usar como entradas adicionales en una clasificación supervisada.

Forecasting

Predictions

Aplicaciones de Data Science y Machine Learning

- Mantenimiento Predictivo
- Propensión de compras
- Estimación de demanda
- Optimización de procesos

- Planificación de inventario predictivo
- Motores de recomendación.
- Ventas y marketing multicanal
- Segmentación del mercado
- Retorno de la inversión del cliente y lifetime value

Manufactura

Retail

- Programación del tráfico aéreo
- Pricing dinámico
- Análisis de interacción
- Resolución de quejas de los clientes
- Análisis de patrones de tráfico y análisis de congestión

marketing • Evaluación de la solvencia crediticia

Gestión de campañas de ventas y

Servicios Financieros

Análisis de riesgos

Segmentación de clientes

Venta cruzada y up-selling

Aplicaciones de Data Science y Machine Learning

- Alertas y diagnósticos a partir de datos de pacientes en tiempo real
- Identificación de enfermedades y estratificación de riesgos
- Optimización del triaje de pacientes

Salud

- Análisis del uso de la energía
- Emisiones de Carbono
- · Gestión de smart grid
- Optimización de la demanda y la oferta de energía

Energy & Utilities

- Customer Churn Analysis
- Detección de Fraude
- Clickstream Analysis
- Gestión de Red / Optimización
- Gestión de la capacidad instalada

Telecomunicaciones

Más de 5 años atrás

Futuro

Casos de Uso de Machine Learning

1		Computación basada en reglas Machine Learning			Inteligencia de Máquina General	
会と	Modo Cognitivo	Inferencia basada en reglas	Supervised Learning	Unsupervised Narrow Learning	Unsupervised Context Aware Learning	Self Aware Unsupervised Learning
	Natural Language Processing	Comprobación de ortografía y gramática	Dictado de voz a texto	Asistente personal para Q&A básicas basadas en voz	Diálogo y traducción en tiempo real	Idioma, sarcasmo, matices, entonación
	Computer Vision	Inspección de defectos en la fruta con imágenes infrarrojas	Reconocimiento facial	Clasificación compleja (Ej: búsqueda de segmentos de video)	Sistemas de visión para vehículos autónomos	Agentes de seguridad digital Agentes de exploración autónomos
4	Pattern @ Recognition	Inspección industrial basada en reglas por funcionamiento defectuoso	Detección de fraude (Basado en patrones históricos)	Recomendación de productos basada en la preferencia del cliente	Diagnóstico clínico automatizado en tiempo real	Predicción de la evolución de las enfermedades
一門のは大量の	Reasoning & Optimization	Mantenimiento de diagnóstico	Mantenimiento predictivo para maquinaria	Predicción de fallos en los sistemas críticos	Automatizar las recomendaciones sobre los insumos en la cadena de valor	Motor de búsqueda capaz de responder preguntas en lugar de sólo presentar resultados

5 años atrás

Un ejemplo: Surgen nuevos modelos de servicios bancarios

Banco como experiencia

Proporcionar una

cliente, para atraer

nuevos clientes y

los ya existentes.

Crear nuevas experiencia superior al propuestas de valor, como la ampliación de grandes volúmenes de la banca con productos y servicios aumentar la lealtad de no bancarios.

Banco como marketplace

Banco como service provider

Competir con otros proveedores. Un banco como proveedor de servicios es como un proveedor de outsourcing de TI pero con capacidad bancaria.

Banco como facilitador

Proporcionar una plataforma que permita la innovación colaborativa. Los conocimientos adquiridos permitirán desarrollar servicios bancarios y no bancarios específicos.

Banco como productor

Proporcionar operaciones y tecnología para sus clientes, ya sea como una propuesta bancaria completa o para productos o mercados específicos sobre la base de una estrategia white label.

Servicios Clave

- Mejora la interacción con el cliente
- Simplificación de tareas
- Personalización del servicio

- Recomendaciones personalizadas
- Gestión de leads
- Ofertas a la medida
- Relación entre producto y cliente

- Fraudes
- Garantizar la fiabilidad y la calidad del servicio
- Autenticación e identidad
- Sistemas de reputación
- Colocación de créditos

- Gestión de las finanzas personales
- Análisis de riesgos
- Perspectivas del mercado y la competencia
- Análisis de tendencias

- Operaciones automatizadas avanzadas
- Seguridad mejorada en un entorno abierto

Pregunta: "¿Cuál de los siguientes factores consideras que son las principales limitaciones para la adopción de Data Science y Machine Learning?"

https://pollev.com/robertoeugen941

- 1) Necesidad de una cultura innovadora
- 2) La complejidad técnica de las soluciones analíticas
- 3) La falta de confianza hacia las soluciones analíticas
- 4) La brecha de capacidades
- 5) Calidad de los datos

Principales retos

- Confianza en las soluciones analíticas
- Gobernanza
- Auditabilidad y control
- Disponibilidad de datos significativos
- La explicabilidad de los resultados
- Privacidad de los datos

Clase 04: Aplicaciones en la Industria y Fuga de Clientes

FUGA DE CLIENTES

Churn

 Término utilizado para referirse a la deserción o a la pérdida de un cliente.

 Clientes o contratos que cortan el vínculo con un servicio o una empresa durante un período de tiempo dado.

Tasa de Abandono

 La tasa de abandono puede ser representada de distintas maneras:

Número de clientes perdidos

Valor de los negocios recurrentes perdidos

% de clientes perdidos

% de valor recurrente perdido

Prevención

Adquisición de clientes más leales desde un inicio

 Identificación de los clientes con mayores posibilidades de desertar

Modelo predictivo de fuga

Definir actividad y abandono

 Es necesario definir claramente qué es un cliente activo y qué es un cliente fugado (o fugando)

Consolidar los datos

Clientes Activos

Clientes Inactivos Set de Datos

Diplomado en Big Data y Ciencia de Datos / © Roberto González, Roberto Muñoz, Jaime Caiceo / 2021

Establecer marco temporal de predicción

- ¿Con cuánto tiempo de anticipación se debe hacer la predicción?
 - Nota: Es necesario establecer cuánto es el tiempo que se requiere para tomar acciones comerciales

Luego...

 Aplicar algunas de las metodologías de análisis de datos ya aprendidas

Clase 04: Aplicaciones en la Industria y Fuga de Clientes

PRIMER PROYECTO

Diplomado en Big Data y Ciencia de Datos / © Roberto González, Roberto Muñoz, Jaime Caiceo / 2021

Descripción del Proyecto

- Construir modelo predictivo de fuga de clientes en industria de telecomunicaciones.
- Recorrer el espacio de parámetros del algoritmo y anotar resultados.
- Proponer 4 acciones para retener a los clientes

Sesión 1: Análisis exploratorio, limpieza de datos, ingeniería de features

Sesión 2: Entrenamiento de modelo usando train dataset y métodos árbol de decisión, SVM o random forest. Validación del modelo usando datos de test dataset.

Evaluación

Criterios de evaluación

Aspectos a ser evaluados	Ponderación en la Nota Final		
Presentación: Estructura, claridad de contenido y atractivo visual de la ppt	30%		
Presentación: Descripción del problema, metodología aplicada, resultados y propuesta de acciones de retención	70%		

Entrega

Las presentaciones deben ser enviadas hasta las 23:59 horas del martes 13 de abril a los correos regonzar@uc.cl, rmunoz@uc.cl y jcaiceo@uc.cl

Las presentaciones se realizarán durante la clase del 14 Abril

Diplomado en Big Data y Ciencia de Datos Curso: Ciencia de Datos y sus Aplicaciones

Clase 04: Aplicaciones en la Industria y Fuga de Clientes

Jaime Caiceo, Roberto González, Roberto Muñoz

regonzar@uc.cl

jcaiceo@uc.cl

rmunoz@uc.cl

El uso de apuntes de clases estará reservado para finalidades académicas. La reproducción total o parcial de los mismos por cualquier medio, así como su difusión y distribución a terceras personas no está permitida, salvo con autorización del autor.