Time:60 min.

(CLASS <u>+1</u>)

Marks: 100

Motion In One Dimension (Test-4)

	Name	Mobi	le No		
1.	The displacement-time graph for two particles A and B are straight lines inclined at angles of 30° and 60° with the time axis. The ratio of velocities of $V_A:V_B$ is				
	(a) 1:2	(b) $1:\sqrt{3}$	(c) $\sqrt{3}:1$	(d) 1 : 3	
2.	A train has a speed of $60 km/h$. for the first one hour and $40 km/h$ for the next half hou speed in km/h is				
	(a) 50	(b) 53.33	(c) 48	(d) 70	
3.	Which of the following is a one dimensional motion				
	(a) Landing of an aircraft		(b) Earth revolving a round the sun		
	(c) Motion of wheels of a moving trains		(d) Train running on a straight track		
4.	A man walks on a straight road from his home to a market 2.5 km away with a speed of 5 km/h.				
	Finding the market closed, he instantly turns and walks back home with a speed of 7.5 km/h . The				
	average speed of the ma	nn over the interval of time 0	to 40 <i>min</i> . is equal to		
	(a) $5 km/h$	(b) $\frac{25}{4} km/h$	(c) $\frac{30}{4} km/h$	$(\mathbf{d})\frac{45}{8} \ \mathbf{km/h}$	
5.	The numerical ratio of displacement to the distance covered is always				
	(a) Less than one		(b) Equal to one	(b) Equal to one	
	(c) Equal to or less than one		(d)Equal to or greater than one		
6.	The correct statement from the following is				
•	(a) A body having zero velocity will not necessarily have zero acceleration				
	(b) A body having zero velocity will necessarily have zero acceleration				
	(c) A body having uniform speed can have only uniform acceleration				
	(d) A body having non-uniform velocity will have zero acceleration				
7.	A bullet fired into a fixed target loses half of its velocity after penetrating 3 cm. How much further it will penetrate before coming to rest assuming that it faces constant resistance to motion?				
	(a) 1.5 cm	(b) 1.0 cm	(c) 3.0 cm	(d) 2.0 cm	
8.	The displacement x of a particle along a straight line at time t is given by $x = a_0 + a_1t + a_2t^2$. The				
	acceleration of the part	ticle is			
	(a) a_0	(b) a_1	(c) $2a_2$	(d) a_2	
9.	•	om rest has a velocity that in	_	e that is $v = kt$ where	
•	An electron starting from rest has a velocity that increases linearly with the time that is $v = kt$, where $k = 2m / \sec^2$. The distance travelled in the first 3 seconds will be				
				(1) 26	
	(a) 9 m	(b) 16 m	(c) 27 m	(d) 36 m	
10.	The relation between tir	ne and distance is $t = \alpha x^2 + \beta y$	α , where α and β are cons	stants. The retardation	
	is				
	(a) $2\alpha v^3$	(b) $2\beta v^3$	(c) $2\alpha\beta v^3$	(d) $2\beta^2 v^3$	
11.	An elevator car, whose acceleration of 1.2 ms^{-2} . fall time of the bolt is	e floor to ceiling distance is 2 sec after the start, a bolt	s equal to 2.7 <i>m</i> , starts as begins fallings from the ceili	O	

(c) 0.7 s

(d) 1 s

(b) $\sqrt{6} \ s$

(a) $\sqrt{0.54} \ s$

