

Face Recognition A Convolutional Neural Network Approach

Student: Hazrat Ali Teacher: Dawit Mengistu

About article

Title: Face recognition: A convolutional neural network approach

Published: 1st January 1997 [received]

Authors: Steve Lawrence. Lee Giles, Ah Chung, Andrew (IEEE members)

Published: IEEE Transactions on Neural Networks vol. 8

Introduction

- → PERSONAL IDENTIFICATION
- → Increased interest in using Biometrics
- Includes fingerprints, speech, signature dynamics & Face recognition
- More than \$100 million products [1997 23 yrs]
- Non intrusive for personal identity.
- → TWO CATEGORIES FACE IDENTIFICATION
- → Non real time search a person in big database
- Real time allow a person, a security system

Identification methods

GEOMETRICAL FEATURES

- → Geometrical feature of face
- → Ratio of distance among features
- → Such as nose width
- → Mouth position
- → Chin shape
- → EIGENFACES
- → High level recognition task many stages of processing
- → Images are projected to principal components

Identification methods

- → TEMPLATE MATCHING
- → Direct correlation of image segments
- → Images have the same scale effective
- → GRAPH MATCHING
- → High level recognition task many stages of processing
- → Images are projected to principal components

Identification methods

- NEURAL NETWORK
- → Small number of classes
- → Features extracted and reduced to fewer dimensions
- → Classified using MLP (multilayer perceptron)
- → HMM
- → Hidden markov model classification
- → 13% error rate
- → Own implementation 10% error rate

System Components

- Local image sampling for partial lighting invariance
- SOM A self organizing map for projection of the image sample (fig)
- More than \$100 million products [1997 23 yrs]

Components

LOCAL IMAGE SAMPLING

- 2 Methods
- A window is scanned over the image
- The first method creates a vector form
- Intensity values at each point in the window
- The second method creates a representation of the local sample
 - Intensity of the center pixel
 - The difference in intensity between the center pixel and all other

Components

SELF ORGANIZING MAP (SOM)

- → Maps are important part of ANN and information processing systems
- → Examples : retinotopic, tonotopic,
- → SOM is like a classification technique at is provides topological ordering

KL TRANSFORM

Linear method for reducing redundancy in dataset

Uses PCA - principal component analysis

Does feature extraction

 Generates a set of orthogonal axes of projections known as principal components

Results

- → 400 images
- → 200 for testing and 200 training
- → 40 Persons
- → 5 images/person 3.8 % error
- → 10 images/person 10.5%

Comparison

Method	Kanade	Brunelli	Cox
Geometrical	45 - 75 % success 20 persons	90% success 47 persons	95% 95 persons
Method	Turk	Pentland	Cox
Eigenface	96, 85, 64 % Lighting, orientation, scaling	95% success 200 persons	95% 95 persons

Thanks!

ANY QUESTIONS?

You can find me at

- @alibth
- → ali.dev.se@gmail.com

