

Q1) [7 points] Rods AEB and EDC are welded together (rigid body 1). A is a ball-and-socket joint. This assembly rotates relative to the ground frame with angular velocity and angular acceleration  $\omega_{\alpha}$  and  $\dot{\omega}_{\alpha}$ 

The shown disk (rigid body 2) is connected to the rod EDC through a pin joint and is rotates with angular velocity  $(\omega_{\beta})$  and acceleration  $(\dot{\omega}_{\beta})$  relative to the rod EDC in a direction parallel to  $\hat{k}$ . Find the velocity and acceleration of point P (which is fixed to the disk) with respect to ground. At this instant the line connecting C to P is along the  $\hat{j}$  direction.

Please verity this solution (trestly worthern)

$$\frac{\omega_{11}}{2} = \omega_{x}\hat{i}, \quad \frac{\omega_{11}}{2} = \omega_{x}\hat{i} \quad (i)$$

$$\frac{\omega_{21}}{2} = \omega_{21} + \omega_{11} = \omega_{p}\hat{k} + \omega_{x}\hat{i} \quad (iii)$$

$$\frac{\omega_{21}}{2} = \omega_{21} + \frac{\omega_{11}}{2} + \frac{\omega_{11}}{2} + \frac{\omega_{11}}{2} \times \omega_{p}\hat{k}$$

$$\frac{\omega_{21}}{2} = \omega_{p}\hat{k} + \omega_{x}\hat{i} + \omega_{x}\hat{i} \times \omega_{p}\hat{k}$$

$$\frac{\omega_{21}}{2} = \omega_{p}\hat{k} + \omega_{x}\hat{i} + \omega_{x}\hat{i} \times \omega_{p}\hat{k}$$

$$\frac{\omega_{21}}{2} = \omega_{p}\hat{k} + \omega_{x}\hat{i} + \omega_{x}\hat{i} \times \omega_{p}\hat{k}$$

$$\frac{\omega_{21}}{2} = \omega_{p}\hat{k} + \omega_{x}\hat{i} + \omega_{x}\hat{i} \times \omega_{p}\hat{k}$$

$$\frac{\omega_{21}}{2} = \omega_{p}\hat{k} + \omega_{x}\hat{i} + \omega_{x}\hat{i} \times \omega_{p}\hat{k}$$

$$\frac{\omega_{21}}{2} = \omega_{p}\hat{k} + \omega_{x}\hat{i} + \omega_{x}\hat{i} \times \omega_{p}\hat{k}$$

$$\frac{\omega_{21}}{2} = \omega_{p}\hat{k} + \omega_{x}\hat{i} + \omega_{x}\hat{i} \times \omega_{p}\hat{k}$$

$$\frac{\omega_{21}}{2} = \omega_{p}\hat{k} + \omega_{x}\hat{i} + \omega_{x}\hat{i} \times \omega_{p}\hat{k}$$

$$\frac{\omega_{21}}{2} = \omega_{p}\hat{k} + \omega_{x}\hat{i} + \omega_{x}\hat{i} \times \omega_{p}\hat{k}$$

$$\frac{\omega_{21}}{2} = \omega_{p}\hat{k} + \omega_{x}\hat{i} + \omega_{x}\hat{i} \times \omega_{p}\hat{k}$$

$$\frac{\omega_{21}}{2} = \omega_{p}\hat{k} + \omega_{x}\hat{i} + \omega_{x}\hat{i} \times \omega_{p}\hat{k}$$

$$\frac{\omega_{21}}{2} = \omega_{p}\hat{k} + \omega_{x}\hat{i} + \omega_{x}\hat{i} \times \omega_{p}\hat{k}$$

$$\frac{\omega_{21}}{2} = \omega_{p}\hat{k} + \omega_{x}\hat{i} + \omega_{x}\hat{i} \times \omega_{p}\hat{k}$$

$$\frac{\omega_{21}}{2} = \omega_{p}\hat{k} + \omega_{x}\hat{i} + \omega_{x}\hat{i} \times \omega_{p}\hat{k}$$

$$\frac{\omega_{21}}{2} = \omega_{p}\hat{k} + \omega_{x}\hat{i} \times \omega_{p}\hat{k}$$

$$\frac{\omega_{21}}{2} = \omega_{p}\hat{k} + \omega_{x}\hat{i} + \omega_{x}\hat{i} \times \omega_{p}\hat{k}$$

$$\frac{\omega_{21}}{2} = \omega_{p}\hat{k} + \omega_{p}\hat{k} + \omega_{p}\hat{k}$$

$$\frac{\omega_{21}}{2} = \omega_{p}\hat{k} + \omega_{p}\hat{k} + \omega_{p}\hat{k}$$

$$\frac{\omega_{21}}{2} = \omega_{p}\hat{k} + \omega_{p}\hat{k} + \omega_{p}\hat{k}$$

$$\frac{\omega_{21}}{2} = \omega_{p}\hat{k}$$

$$\frac{\omega_{21}}$$

$$\frac{\partial}{\partial p|I} = \frac{\partial}{\partial q|I} + \frac{\omega}{\omega} \frac{\partial}{\partial q|X} \left( \frac{\Gamma_{PC}}{\Gamma_{PC}} \right) + \frac{\omega}{\omega} \frac{\partial}{\partial q|X} \left( \frac{\omega}{\omega} \frac{\partial}{\partial q|X} \times \frac{\Gamma_{PC}}{\Gamma_{PC}} \right) + \frac{2\omega}{\omega} \frac{\partial}{\partial q|X} \times \frac{1}{\omega} \frac{1}{\omega} \frac{\partial}{\partial q|X} \times \frac{1}{\omega} \frac{\partial}{\partial q|X} \times \frac{1}{\omega} \frac{\partial}{\partial q|X} \times \frac$$

Q2) [9 points] The shown assembly consists of two thin-rectangular plates of uniform density (mass m each) and two right triangular plates of uniform density (mass 0.5m each) welded to a massless rod, supported by bearings at A and B. Neglect the thickness of the plates. The assembly rotates at a constant angular velocity  $\omega \hat{e}_1$ . Find the dynamic reactions at A and B using the given assembly-fixed coordinate system. The middle plates lie in the  $x_1 - x_2$  plane, while the other two plates lie in the  $x_1 - x_3$  plane. The bearing at A and B can generate only reaction forces but no reaction torques.



## SOLUTION

Mass of sheet metal:

Sheet metal dimension:

Area of sheet metal:

Let

Moments and products of inertia:



$$m = 1.25 \text{ kg}$$

$$b = 150 \text{ mm} = 0.15 \text{ m}$$

$$A = \frac{1}{2}b^2 + b^2 + b^2 + \frac{1}{2}b^2 = 3b^2 = 0.0675 \text{ m}^2$$

$$\rho = \frac{m}{A} = \frac{1.25}{0.0675} = \frac{500}{27} \text{ kg} \cdot \text{m}^2 = \text{mass per unit area.}$$

$$I_{\text{mass}} = \rho I_{\text{area}}$$

xy plane (rectangles)

$$I_{x} = \frac{1}{3}b^{4} + \frac{1}{3}b^{4} = \frac{2}{3}b^{4}$$

$$I_{x} = \frac{2}{3}\rho b^{4}$$

$$= \frac{2}{3}\left(\frac{500}{27}\right)(0.15)^{4}$$

$$= 6.25 \times 10^{-3} \text{ kg} \cdot \text{m}^{2}$$

$$I_{xy} = (b^{2})\left(\frac{3}{2}b\right)\left(\frac{1}{2}b\right) + (b^{2})\left(\frac{5}{2}b\right)\left(-\frac{1}{2}b\right)$$

$$= -\frac{1}{2}b^{4}$$

$$I_{xy} = -\frac{1}{2}\rho b^{4} = -\frac{1}{2}\left(\frac{500}{27}\right)(0.15)^{4}$$

$$= -4.6875 \times 10^{-3} \text{ kg} \cdot \text{m}^{2}$$

xz plane (triangles)

$$I_x = \frac{1}{12}b^4 + \frac{1}{12}b^4 = \frac{1}{6}b^4$$
$$I_x = \frac{1}{6}\rho b^4 = \frac{1}{6}\left(\frac{500}{27}\right)(0.15)^4$$
$$= 1.5625 \times 10^{-3} \text{ kg} \cdot \text{m}^2$$

#### PROBLEM 18.67 (Continued)

For calculation of  $I_{xz}$ , use pairs of elements  $dA_1$  and  $dA_2$ :

$$\begin{split} dA_2 &= dA_1. \\ I_{xz} &= \int x \frac{z}{2} dA_1 + \int (4b - x) \left( -\frac{z}{2} \right) dA_2 = -\int (2b - x) z dA_1 = -\int_0^b (2b - x) z^2 dx \\ z &= x. \end{split}$$

but

Hence,

Data:

$$I_{xz} = -\int_{0}^{a} (2bx^{2} - x^{3})dx = -\left(\frac{2}{3}b^{4} - \frac{1}{4}b^{4}\right) = -\frac{5}{12}b^{4}$$

$$I_{xz} = -\frac{5}{12}\rho b^4 = -\left(\frac{5}{12}\right)\left(\frac{500}{27}\right)(0.15)^4 = -3.90625 \times 10^{-3} \text{ kg} \cdot \text{m}^2$$

Total for 
$$I_x$$
:  $I_x = 6.25 \times 10^{-3} + 1.5625 \times 10^{-3} = 7.8125 \times 10^{-3} \text{ kg} \cdot \text{m}^2$ 

The mass center lies on the rotation axis, therefore

$$\overline{\mathbf{a}} = 0$$
  
 $\Sigma \mathbf{F} = \mathbf{A} + \mathbf{B} = m\overline{\mathbf{a}} = 0 \quad \mathbf{A} = -\mathbf{B}$   
 $\mathbf{H}_A = I_x \omega \mathbf{i} - I_{xy} \omega \mathbf{j} - I_{xz} \omega \mathbf{k} \quad \omega = \omega \mathbf{i}, \quad \alpha = \alpha \mathbf{i}$ 

Let the frame of reference Axyz be rotating with angular velocity

$$\mathbf{\Omega} = \mathbf{\omega} = \mathbf{\omega} \mathbf{i}$$

$$\mathbf{\Sigma} \mathbf{M}_A = \dot{\mathbf{H}}_A = (\dot{\mathbf{H}}_A)_{Axyz} + \mathbf{\Omega} \times \mathbf{H}_A$$

$$M_0 \mathbf{i} + 4b \mathbf{i} \times (B_y \mathbf{j} + B_z \mathbf{k}) = I_x \alpha \mathbf{i} - I_{xy} \alpha \mathbf{j} - I_{xz} \alpha \mathbf{k} + \omega \mathbf{i} \times (I_x \omega \mathbf{i} - I_{xy} \omega \mathbf{j} - I_{xz} \omega \mathbf{k})$$

$$M_0 \mathbf{i} - 4b B_z \mathbf{j} + 4b B_y \mathbf{k} = I_x \alpha \mathbf{i} - (I_{xy} \alpha - I_{xz} \omega^2) \mathbf{j} - (I_{xz} \alpha + I_{xy} \omega^2) \mathbf{k}$$

Resolve into components and solve for  $B_v$  and  $B_z$ .

i: 
$$M_0 = I_x \alpha$$
  
j:  $B_z = \frac{(I_{xy}\alpha - I_{xz}\omega^2)}{4b}$   
k:  $B_y = -\frac{(I_{xz}\alpha + I_{xy}\omega^2)}{4b}$   
 $\alpha = 0$ ,  $\omega = \frac{2\pi(240)}{60} = 25.133 \text{ rad/s}$ ,  $b = 0.15 \text{ m}$   $M_0 = 0$   
 $B_z = \frac{0 - (-3.90625 \times 10^{-3})(25.133)^2}{(4)(0.15)} = 4.1124 \text{ N}$ 

# PROBLEM 18.67 (Continued)

$$B_y = \frac{0 + (-4.6875 \times 10^{-3})(25.133)^2}{(4)(0.15)} = 4.9349 \text{ N}$$

$$A_y = -B_y = -4.9349 \text{ N}$$

$$A_z = -B_z = -4.1124 \text{ N}$$

$$A = -(4.93 \text{ N})\mathbf{j} - (4.11 \text{ N})\mathbf{k} \blacktriangleleft$$

$$B = (4.93 \text{ N})j + (4.11 \text{ N})k \blacktriangleleft$$



Q3) [6 points] Each of the two rods shown is of length L=1 m and has a mass of 5 kg. Point D is connected to a spring of constant k=20 N/m and is constrained to move along a vertical slot. Knowing that the system is released from rest when rod BD is horizontal and the spring connected to point D is initially unstretched, determine the velocity of point D when it is directly to the right of point A.

## SOLUTION

Moments of inertia.

$$\overline{I} = \frac{1}{12} mL^2, \quad I_A = \frac{1}{3} mL^2$$

Use the principle of conservation of energy applied to the system consisting of both rods. Use the level at A as the datum for the potential energy of each rod.

Position 1.

(no motion)

$$T_1 = 0$$

$$V_1 = mg\left(\frac{1}{2}L\right) + mgL + \frac{1}{2}kx_1^2$$

$$= \frac{3}{2}mgL + \frac{1}{2}kx_1^2$$



Position 2.

$$V_{2} = mg\frac{L}{2}\sin 60^{\circ} + mg\frac{L}{2}\sin 60^{\circ}$$
$$= \frac{\sqrt{3}}{2}mgL + \frac{1}{2}kx_{2}^{2}$$



#### PROBLEM 17.42 (Continued)

Kinematics.

$$\omega_{AB} = \omega_{AB}$$
 $v_B = L\omega_{AB}$ 
 $v_B = L\omega_{AB}$ 
 $v_B = L\omega_{AB}$ 
 $v_B = L\omega_{AB}$ 



Locate the instantaneous center C of rod BD by drawing BC perpendicular to  $\mathbf{v}_B$  and DC perpendicular to  $\mathbf{v}_D$ . Point C coincides with Point A in position 2.

Let

$$\begin{split} & \omega_{BD} = \omega_{BD} \, \Big) \\ & \omega_{BD} = \frac{v_B}{L} = \omega_{AB} \\ & v_E = \frac{L}{2} \omega_{AB} \\ & v_G = (L \sin 60^\circ) \omega_{BD} = \frac{\sqrt{3}}{2} L \omega_{AB} \\ & v_D = L \omega_{BD} = L \omega_{AB} \\ & T_2 = \frac{1}{2} I_A \omega_{AB}^2 + \frac{1}{2} \overline{I} \omega_{BD}^2 + \frac{1}{2} m v_G^2 \\ & = \frac{1}{2} \left( \frac{1}{3} m L^2 \right) \omega_{AB}^2 + \frac{1}{2} \left( \frac{1}{12} m L^2 \right) \omega_{AB}^2 + \frac{1}{2} m \left( \frac{\sqrt{3}}{2} \omega_{AB} \right)^2 \\ & = \left( \frac{1}{6} + \frac{1}{24} + \frac{3}{8} \right) m L^2 \omega_{AB}^2 = \frac{7}{12} m L^2 \omega_{AB}^2 \end{split}$$

Principle of conservation of energy.

$$T_{1} + V_{1} = T_{2} + V_{2}: \quad 0 + \frac{3}{2} mgL + \frac{1}{2} kx_{1}^{2} = \frac{7}{12} mL^{2} \omega_{AB}^{2} + \frac{\sqrt{3}}{2} mgL + \frac{1}{2} kx_{2}^{2}$$

$$\frac{7}{12} mL^{2} \omega_{AB}^{2} = \left(\frac{3}{2} - \frac{\sqrt{3}}{2}\right) mgL - \frac{1}{2} k(x_{2}^{2} - x_{1}^{2})$$
(2)

Data:

$$m = 5 \text{ kg}, \quad L = 1 \text{ m}, \quad g = 9.81 \text{ m/s}^2$$
  
 $k = 20 \text{ N} \cdot \text{m}, \quad x_1 = 0, \quad x_2 = L = 1 \text{ m}$   

$$\left(\frac{3}{2} - \frac{\sqrt{3}}{2}\right) mgL = (0.63397) (5 \text{ kg}) (9.81 \text{ m/s}^2) (1 \text{ m}) = 31.096 \text{ J}$$

$$-\frac{1}{2} k(x_2^2 - x_1^2) = \frac{1}{2} (20 \text{ N/m}) (1 \text{ m})^2 = -10 \text{ J}$$

## PROBLEM 17.42 (Continued)

By Eq. (2), 
$$\frac{7}{12} mL^2 \omega_{AB}^2 = \left(\frac{35}{12} \text{kg} \cdot \text{m}^2\right) \omega_{AB}^2 = 21.096 \text{ J}$$
$$\omega_{AB}^2 = 7.2329 \text{ rad}^2/\text{s}^2 \quad \omega_{AB} = 2.6894 \text{ rad/s}$$

By Eq. (1), 
$$v_D = (1 \text{ m})(2.6894 \text{ rad/s})$$
  $\mathbf{v}_D = 2.69 \text{ m/s}$ 



**Q4)** [8 points] A square plate of side a and mass m supported by a ball-and-socket joint at A is rotating about the y-axis with a constant angular velocity  $\underline{\omega} = \omega_0 \underline{j}$  when an obstruction is suddenly introduced at B in the x-y plane. Assuming the impact at B to be perfectly plastic (e=0), determine immediately after impact (a) the angular velocity of the plate, (b) the velocity of its center of mass G.

## SOLUTION

For the x' and y' axes shown, the initial angular velocity  $\omega_h \mathbf{j}$  has components

$$\omega_{x'} = \frac{\sqrt{2}}{2}\omega_0, \qquad \omega_{y'} = \frac{\sqrt{2}}{2}\omega_0,$$

Initial angular momentum about the mass center:

$$(\mathbf{H}_G)_0 = \overline{I}_{x'}\omega_{x'}\mathbf{i}' + \overline{I}_{y'}\omega_{y'}\mathbf{j}' = \frac{1}{12}ma^2\frac{\sqrt{2}}{2}\omega_0(\mathbf{i}'+\mathbf{j}')$$





$$\mathbf{v}_{B} = \boldsymbol{\omega} \times \mathbf{r}_{B'A} = (\boldsymbol{\omega}_{x'}\mathbf{i}' + \boldsymbol{\omega}_{y'}\mathbf{j}' + \boldsymbol{\omega}_{z'}\mathbf{k}') \times (-\mathbf{a}\mathbf{j}')$$

$$\mathbf{v}_B = a(\omega_{x'}\mathbf{i}' + \omega_{x'}\mathbf{k}')$$

Since the corner B does not rebound,  $(v_B)_{z'} = 0$  or  $\omega_{x'} = 0$ 

$$\overline{\mathbf{v}} = \boldsymbol{\omega} \times \mathbf{r}_{G/A} = (\boldsymbol{\omega}_{y'} \mathbf{j}' + \boldsymbol{\omega}_{z'} \mathbf{k}') \times \left(\frac{1}{2} a\right) (-\mathbf{i}' - \mathbf{j}')$$
$$= \frac{1}{2} a(\boldsymbol{\omega}_{z'} \mathbf{i}' - \boldsymbol{\omega}_{z'} \mathbf{j} + \boldsymbol{\omega}_{y} \mathbf{k}')$$

Also, 
$$\mathbf{r}_{G/A} \times m\overline{\mathbf{v}} = \frac{1}{4} ma^2 \left( -\omega_{y'} \mathbf{i}' + \omega_{y'} \mathbf{j}' + 2\omega_{z'} \mathbf{k}' \right)$$

and 
$$\mathbf{H}_{G} = I_{x'}\omega_{x'}\mathbf{i}' + I_{y'}\omega_{y'}\mathbf{j}' + \overline{I}_{z'}\omega_{z'}\mathbf{k}' = \frac{1}{12}ma^{2}\omega_{y'}\mathbf{j}' + \frac{1}{6}ma^{2}\omega_{z'}\mathbf{k}'$$



## PROBLEM 18.31 (Continued)

## Principle of impulse-momentum.



Moments about A:

$$(\mathbf{H}_A)_0 + (-a\mathbf{j}) \times (F\Delta t)\mathbf{k} = \mathbf{H}_A$$

$$(\mathbf{H}_G)_0 + \mathbf{r}_{G/A} \times m\overline{\mathbf{v}}_0 - (aF\Delta t)\mathbf{i} = \mathbf{H}_G + \mathbf{r}_{G/A} \times m\overline{\mathbf{v}}$$

Resolve into components.

i': 
$$\frac{1}{24}\sqrt{2}ma^2\omega_0 - aF(\Delta t) = -\frac{1}{4}ma^2\omega_{y'}$$

$$\mathbf{j}'$$
:  $\frac{1}{24}\sqrt{2}ma^2\omega_0 = \frac{1}{12}ma^2\omega_{y'} + \frac{1}{4}ma^2\omega_{y'} \quad \omega_{y'} = \frac{\sqrt{2}}{8}\omega_0$ 

$$\mathbf{k}'$$
:  $0 = \frac{1}{6} ma^2 \omega_{z'} + \frac{1}{2} ma^2 \omega_{z'}$   $\omega_{z'} = 0$ 

(a) 
$$\omega = \frac{\sqrt{2}}{8}\omega_0 \mathbf{j}' = \frac{1}{8}\sqrt{2}\omega_0 \frac{\sqrt{2}}{2}(\mathbf{j} - \mathbf{i}) \qquad \qquad \omega = \frac{1}{8}\omega_0 (-\mathbf{i} + \mathbf{j}) \blacktriangleleft$$

(b) 
$$\overline{\mathbf{v}} = \frac{1}{2} a \omega_y \mathbf{k}' = \frac{\sqrt{2}}{16} a \omega_0 \mathbf{k} \qquad \overline{\mathbf{v}} = 0.0884 a \omega_0 \mathbf{k} \blacktriangleleft$$