Model Research

MODEL RESEARCH BY THREAT TYPE

Threat Type	Dataset	Problem Type	Recommende d Models	Key Features / Inputs	Notes
Malware Classificatio n	EMBER	Tabular (binary / multiclass)	XGBoost, LightGBM, Autoencoder	2,381 static PE features (entropy, imports, sections, strings)	Tree models handle sparse + non-linear numeric features well.
Phishing URL Detection	UCI Phishing Websites	Tabular (binary)	Random Forest,	Lexical + host features (URL length, HTTPS, @ symbol, IP in URL)	Feature importance interpretable; can also use ANN for non- linearities.
Spam / Malicious Email	Enron Email	NLP (binary / multi- class)	Naive Bayes (baseline), TF- IDF + SVM, LSTM / BERT	Subject, body text, headers	Classical NB for baseline transformer (BERT) for context semantics.

Threat Type	Dataset	Problem Type	Recommende d Models	Key Features / Inputs	Notes
Static Code Vulnerabilit y	Juliet Test Suite	Source Code analysis	CodeBERT /	Tokenized AST or code embedding s	GNN captures data flows; CodeBERT for semantic understandin g.
Malware Image Classificatio n	Malimg	Image classificatio n	CNN (ResNet, EfficientNet)		Use transfer learning for fast training on GPU (Colab).
Intrusion / DDoS / Port Scan	CICIDS201 7, CSE-CIC- IDS2018	Network flow classificatio n	XGBoost, LSTM, 1-D	flow features (bytes, pkts.	Tabular ML for baseline → deep sequence for time features.
IoT / Botnet Threats	ВоТ-ІоТ	Network traffic classificatio n	LSTM, GRU, CNN-LSTM, Autoencoder	Time- series IoT features (packet rates, flows)	Capture temporal patterns; handle class imbalance.
Network Anomaly	UNSW- NB15	Tabular binary / multi-class	Isolation Forest, Autoencoder,	49 network features	Try unsupervised first →

Threat Type	Dataset	Problem Type	Recommende d Models	Key Features / Inputs	Notes
			Forest	•	supervised with labels.
Real-Time Threat Intel	AlienVault OTX	Stream matching / ranking	lookup + ML	reputation, frequency,	Combine threat feed scores + ML confidence.

Model Families Overview

☐ Classical ML (fast baselines)

- Random Forest / XGBoost / LightGBM: Best for tabular network or static
 PE data.
- Logistic Regression / SVM: Good interpretable baseline for phishing URLs.

NLP Models

- TF-IDF + SVM / Naive Bayes for spam.
- Transformer Models (BERT, RoBERTa) fine-tuned on email or phishing text.

☐ Deep Learning Models

- **CNN / ResNet / EfficientNet** malware image classification.
- LSTM / GRU / CNN-LSTM sequential network traffic.
- Autoencoder / Variational AE unsupervised anomaly detection.
- Graph Neural Networks (GNN) IP-domain-file relationship graphs.

Preprocessing & Feature Design

Data Type	Steps	Typical Features	
Network flows	Standardize numeric features (0–1 scaler), encode categoricals (proto, service)	bytes, packets, duration, ports, ratios, entropy	
URLs	Extract lexical tokens, domain age, length, special chars	binary flags, lengths, host entropy	
Emails	Clean text, tokenize, TF-IDF / word embeddings	word freqs, topic vectors	
Code	Tokenize AST / CFG graphs	function calls, flows, data dependencies	
Images	Normalize pixels (0–1) / resize	image arrays	