Most Likely Rates given Phylogeny

•
$$L[\pi|001] = \omega_0 \times (P[\tau_A] + P[\tau_B])$$

+ $\omega_1 \times (P[\tau_C] + P[\tau_D])$

•

• If $\omega_0 = \omega_1$:

$$L[\pi|001] \propto P[001|\pi,\tau_A] + P[001|\pi,\tau_B] + P[001|\pi,\tau_D] + P[001|\pi,\tau_D]$$

$$P[001|\pi,\tau_{A}] = (1-\pi)^{3} \times \pi^{1}$$

$$P[001|\pi,\tau_{B}] = (1-\pi)^{2} \times \pi^{2}$$

$$P[001|\pi,\tau_{C}] = (1-\pi)^{1} \times \pi^{3}$$

$$P[001|\pi,\tau_{D}] = (1-\pi)^{2} \times \pi^{2}$$

•

• If $\omega_0 = \omega_1$:

$$L[\pi|001] \propto \pi - \pi^2$$

$$dL[\pi|001] \propto 1-2\pi$$

.. L[π|001] maximized at 2π=1. Allowing uncertain ancestry favors high rates

$$P[001|\pi,\tau] = \pi - \pi^2$$

i.e., probability maximized when character changes half of the time!

Matrices have obvious structure (25 steps over 16 taxa & 20 characters).....

- 00000110000000010100
- 00001111000000010100
- 00001101010000010100
- 00101101010000010100
- 01101101111000010100111011011111000001100
- 11101101111010000100
- 111011011111000001100
- 111011011111010000110
- 111011011111110000110
- 111011011111111100110
- 11101101111111110011111111001111000001100
- 11111001111000001100
- 11111001110000011100

- or lack thereof (50 steps over 16 taxa & 20 characters)
- 00010000000000001100
- 00010001000101011100
- 000000000001101000
- 00111011000101011100
- 00011110101001101001
- 01011000000101010000
- 01011000100101011000
- 01111001000111011000
- 01111001000111011000
 01111001000001010000
- 01001010111001101111
- 01001010111001101111
- 10001010110000101111
- 10011010110001101111
- 10011010110001101111
 110110111110001101101
- 10001010110000101111

Evaluating Matrix Structure:

Do the distributions of character states tell us anything prior to phylogenetic analysis?

Character Compatibility

- Compatible character pairs: two characters with state combinations that do not necessarily imply homoplasy
- Incompatible character pairs: two characters with state combinations that do necessarily imply homoplasy.
 Evaluating Matrix Structure:

Compatibility among binary characters

Compatible: no homoplasy on *some* trees

Α	В
0	0
1	0
1	1

Incompatible: homoplasy on all trees

Graphical depiction of (in)compatibility: closing the circuit is "bad"

Compatibility among unordered multistates:

break characters down into binaries

Compatible: all "pairs" must be compatible AND each pair must have unique combinations.

Compatibility among unordered multistates:

only one "pair" need be incompatible

			-		-			
D	F		D	F	D	F	D	F
0	0		0	0	0	0		
0	2		0	2	0	2		
1	0	=	1	0			1	0
1	1		1	1			1	1
2	0				2	0	2	0
2	2				2	2	2	0

Incompatible: states 0 and 2 show all combinations.

sometimes incompatibility is subtle.

D	G		D	G	D	G	D	G
0	0		0	0	0	0		
0	1		0	1	0	1		
1	0	=	1	0			1	0
1	2		1	2			1	2
2	1				2	1	2	1
2	2				2	2	2	2

Incompatible: all pairs compatible, but you cannot have the third pair and the first two without homoplasy.

Graphical depiction of (in)compatibility: circuit completed

Compatibility among unordered multistates:

break characters down into binaries

Н	I	Н	J
0	0	0	0
1	0	1	0
1	1	1	1
2	1	2	0
2	2	2	2

HI show no gap in distributions (compatible);

Compatibility among unordered multistates:

break characters down into binaries

Н	ı	Н	J
0	0	0	0
1	0	1	0
1	1	1	1
2	1	2	0
2	2	2	2

HJ show a gap in distributions (incompatible).

Inferring Phylogeny with Compatibility: Clique Analysis

- Clique: a group of characters that all are compatible;
- Take the largest clique and infer phylogeny from those characters
 - This can produce a general (usually polytomous) tree with no homoplasy;
- Within each section of the phylogeny, find the largest remaining clique;
 - Use this to clarify relations among those taxa;
 - Rinse & repeat....

Testing Matrix Structure with Compatibility: Permutation Tests

- · Calculate number of compatible pairs in matrix.
- Permute matrix, scrambling states within each character:
 - Each character retains same number of taxa with each state;
 - Estimates P[observed compatibility] given such high rates of change that there is no inheritance.
- Calculate compatibility of matrix & characters;
 - If observed compatibility is within the range of permuted matrix, then the data likely are cr@p;
 - If an individual character's compatibility is with the range of a permuted character, then it is likely useless.

Testing Matrix Structure with Compatibility: Simple Inverse Models

- Calculate number of compatible pairs in matrix.
- Evolve a tree and matrix of the same dimensions as the original data;
 - Use same number of states as seen for each character;
 - Estimates P[observed compatibility] given particular frequencies of change.
- Calculate compatibility of matrix & characters;
 - Tally P[compatibility | overall changes] for matrix or matrix partitions;
 - Tally P[compatibility | # changes, # derived taxa] for each character.

Probability of Compatibility Given Total Number of Steps

• As frequencies of change (and thus homoplasy) increase, the expected matrix compatibility drops.

One can test partitions for significant differences in frequencies of change

- "Slug" characters are significantly less homoplastic than are shell characters among the Rapaninae.
- This is much less true for species in the Nassariidae.

Effect of Change on Compatibility

- Infrequently changing characters typically have high compatibilities
- · frequently changing ones have low compatibilities.

Extreme distributions of taxa with derived states:

		End cases automatically compatible
0	0	0
0	0	1
0	0	1
0	0	1
0	0	1
0	0	1
0	0	1
0	0	1
0	1	1
0	1	1
0	1	1
0	1	1
0	1	1
0	1	1
0	1	1
1	1	1

Effect of Derived Taxa on Compatibility

- Characters with 1 or 31 taxa with 0 or 1 (= autapomorphic) are automatically compatible
- Characters with 16 0's and 1's have lowest compatibility.

Given X steps, compatibility is correlated with the number of derived taxa.

Effect of Correlated Character Change on Compatibility

- Simulated case with two suites of characters in which change in one induces a 75% change in others.
- Elevates compatibility because distributions are so similar.

Testing for Independent Character Change: Mutual Compatibility

- Mutual compatibility: common compatibilities between two characters.
 - If character i and j both are compatible with character k, then it is a mutual compatibility.
- Character suites that exhibit correlated change should share more mutual compatibilities than independently changing characters.
 - Do characters i & j have more mutual compatibilities than expected given compatibility and independent change?
- Multivariate structure among mutual compatibilities clusters correlated suites.
 - Similarity between each character pair based on proportion of other characters with which both are compatible.
- Mutual compatibility: common compatibilities between two characters.
 - If character i and j both are compatible with character k, then it is a mutual compatibility.
- Character suites that exhibit correlated change should share more mutual compatibilities than independently changing characters.
 - Do characters i & j have more mutual compatibilities than expected

_

given compatibility and independent change?

Stratigraphic Compatibility

- For individual characters: no states with gaps in sampled record
- For character pairs: compatible pair in which the appearance of character pairs is also consistent with phylogeny.

Compatible Pair Compatible with Stratigraphy

Ch 1	Ch2	FA	LA
0	0	1	8
1	0	2	4
1	1	2	6
2	0	6	8
2	2	7	7

No necessary homoplasy, nor any necessary stratigraphic gaps between morphotypes.

Compatible Pair Incompatible with Stratigraphy

Ch 1	Ch2	FA	LA
0	0	5	8
0	1	3	8
1	0	2	6
1	2	1	4

Morphotypes 00 and 01 appear out of order given character necessary to avoid homoplasy.

Compatible Pair Incompatible with Stratigraphy

Ch 1	Ch2	FA	LA
0	0	1	8
1	1	2	7
2	1	2	4
2	2	6	8

Morphotypes appear in the right order, but a gap exists between morphotypes 21 & 22.

Compatible Pair Incompatible with Stratigraphy

Ch 1	Ch2	FA	LA
0	0	1	8
1	1	2	7
1	1	3	6

Morphotypes appear in the right order, but a gap exists within morphotypes 01.

Different ways in which phylogenies (or character state trees) can conflict with stratigraphy. A) Stratigraphic ranges of 6 hypothetical species. B) Unsampled ancestral morphotype. C) Descendants sampled from older rack than putative ancestors. D) Gaps between putative ancestors and descendants.