Effectivess comparison report

Raphael Rodrigues Campos January 17, 2016

Experimento

Utilizei o executável tcpp compilado pelo Thiago Salles que estava no pacote que ele enviou no último email.

Para cada um dos dataset eu rodei cross-validation 10-folds. Para comparação dos métodos foi utilizado test t com correção de bonferroni. Os valores em negritos representam os vencedores e são estatisticamente significantes.

```
## [1] "results_broof_4uni" "results_lazy_4uni" "results_rf_4uni"
## [1] 1 2 3 4 5 6 7 8 9
## [1] "~/Documents/Master Degree/Master Project/Implementation/LazyNN_RF/release/results/results_test_
## numeric(0)
## [1] 1 2 3 4 5 6 7 8 9
## [1] "~/Documents/Master Degree/Master Project/Implementation/LazyNN_RF/release/results/results_test_
## numeric(0)
## [1] 1 2 3 4 5 6 7 8 9
## [1] "~/Documents/Master Degree/Master Project/Implementation/LazyNN_RF/release/results/results_test_
```

Resultados

numeric(0)

Fiz a comparação entre 5 métodos, são eles: Random Forest(RF), Random Forest com 2000 árvores (RF2000), Lazy (KNN + RF), KNN e BROOF.

Os paramêtros usados para RF, RF2000 e BROOF foram os mesmo para cada dataset (exceto o número de árvores). Para os métodos baseados no KNN foi usado k=30.

A tabela a seguir compara todos o métodos. Como pode-se notar o método Lazy ganhou ou empatou com todos os métodos em todos os 4 datasets.

% latex table generated in R 3.2.3 by xtable 1.8-0 package % Thu Feb 11 17:55:49 2016

V1	V2	REUTERS90	20NG1	4UNI	ACM
RF2000	microF1	$\textbf{63.08}\pm\textbf{2.46}$	88.07 ± 1.02	$\textbf{81.17}\pm\textbf{1.16}$	71.01 ± 0.88
	macroF1	$\textbf{24.72}\pm\textbf{1.09}$	$\textbf{88.14}\pm\textbf{0.72}$	$\textbf{73.19}\pm\textbf{0.93}$	$\textbf{60.25}\pm\textbf{2.18}$
BROOF	microF1	63.12 ± 2.39	$\textbf{87.82}\pm\textbf{1.03}$	$\textbf{81.12}\pm\textbf{1.06}$	70.99 ± 0.8
	macroF1	$\textbf{24.63}\pm\textbf{1.22}$	87.76 ± 0.79	$\textbf{73}\pm\textbf{0.82}$	$\textbf{60.34}\pm\textbf{2.11}$
KNN	microF1	$\textbf{65.93}\pm\textbf{2.66}$	55.63 ± 4.38	48.38 ± 1.29	66.94 ± 0.56
	macroF1	$\textbf{24.03}\pm\textbf{2.08}$	66.36 ± 2.87	26.06 ± 1.36	57.34 ± 1.59
LAZY	microF1	$\textbf{65.12}\pm\textbf{2.94}$	88.95 ± 0.62	$\textbf{80.72}\pm\textbf{0.77}$	$\textbf{73.69}\pm\textbf{0.44}$
	macroF1	$\textbf{26.01}\pm\textbf{1.98}$	$\textbf{88.78}\pm\textbf{0.54}$	$\textbf{72.01}\pm\textbf{0.9}$	$\textbf{63.63}\pm\textbf{1.19}$
RF	microF1	63.11 ± 2.41	86.84 ± 1.06	$\textbf{80.87}\pm\textbf{1.5}$	70.61 ± 0.77
	macroF1	$\textbf{24.79}\pm\textbf{1.7}$	86.77 ± 0.74	$\textbf{72.78}\pm\textbf{1.73}$	60.39 ± 1.45

Table 1: Comparação entre todos os métodos

A tabela a seguir compara somente RF, RF2000 e BROOF, pois eu estava achando que o BROOF da implementação que o Thiago me passou não era nada mais que uma RF com muitas árvores (por isso a comparação com uma RF de 2000 árvores). E como pode-se notar na tabela abaixo, os métodos tiveram empate estatístico em todos os datasets.

% latex table generated in R 3.2.3 by x table 1.8-0 package % Wed Feb 10 22:07:58 2016

V1	V2	REUTERS90	20NG1	4UNI	ACM
RF2000	microF1	$\textbf{63.08}\pm\textbf{2.46}$	88.07 ± 1.02	$\textbf{81.17}\pm\textbf{1.16}$	71.01 ± 0.88
	macroF1	$\textbf{24.72}\pm\textbf{1.09}$	$\textbf{88.14}\pm\textbf{0.72}$	$\textbf{73.19}\pm\textbf{0.93}$	$\textbf{60.25}\pm\textbf{2.18}$
BROOF	microF1	$\textbf{63.12}\pm\textbf{2.39}$	$\textbf{87.82}\pm\textbf{1.03}$	$\textbf{81.12}\pm\textbf{1.06}$	$\textbf{70.99}\pm\textbf{0.8}$
	macroF1	$\textbf{24.63}\pm\textbf{1.22}$	87.76 ± 0.79	$\textbf{73}\pm\textbf{0.82}$	$\textbf{60.34}\pm\textbf{2.11}$
RF	microF1	$\textbf{63.11}\pm\textbf{2.41}$	86.84 ± 1.06	80.87 ± 1.5	70.61 ± 0.77
	macroF1	$\textbf{24.79}\pm\textbf{1.7}$	$\textbf{86.77}\pm\textbf{0.74}$	$\textbf{72.78}\pm\textbf{1.73}$	60.39 ± 1.45

Table 2: Comparação entre BROOF, RF e RF2000