RASTVORI

DISPERZNI SISTEMI
OSOBINE PRAVIH RASTVORA
ELEKTROLITI
RAVNOTEŽE U RASTVORIMA
ELEKTROLITA
KOLOIDI

DISPERZNI SISTEMI

- Disperzija (lat.) raspršivanje, rasipanje
- Disperzni sistem je smeša u kojoj su jedna ili više supstanci raspršene u nekoj drugoj supstanci u obliku sitnih čestica
- Disperziono sredstvo supstanca u kojoj se vrši disperzija
- Dispergovana faza supstanca(e) koje se disperguju

DISPERZNI SISTEMI

Podela disperznih sistema prema veličini dispergovanih čestica:

	Pravi rastvori	Koloidni sistemi	Grubo disperzni sistemi
Veličina čestica (nm)	< 1 (molekuli i joni)	1 - 100	> 100
Stabilnost	Stabilni	Ne talože se spontano (mogu se destabilizovati)	Nestabilni

Pravi rastvori

- Homogene smeše dve ili više supstanci
- Sastoje se od najmanje dve komponente
- Rastvarač
- Rastvorna susptanca (rastvorak)
- Pravi rastvori se dele prema agregatnom stanju:

Podela pravih rastvora prema agregatnom stanju

RASTVOR	AGREGATNO STANJE		Neki primeri
	Rastvarača	Rastvorka	
GASNI	GAS	GAS	Vazduh
GASIVI		TEČNO	Vlažan gas
		ČVRSTO	Dim
TEČNI	TEČNO	GAS	Kiseonik u vodi
ILCIVI		TEČNO	Etanol u vodi
		ČVRSTO	So u vodi
Č\/RSTI	ČVRSTO	GAS	H ₂ u Pt
		TEČNO	Legure
		ČVRSTO	Legure

RASTVARAČ

- Rastvarač je supstanca koja ima isto agregatno stanje kao i dobijeni rastvor
- Ako su rastvarač i rastvorak istog ageratnog stanja (tečno – tečno) onda je rastvarač supstanca čiji je udeo u smeši veći

RASTVORAK	RASTVARAČ	RASTVOR
Šećer (čvrst)	Voda (tečna)	Tečni
Kiseonik (gas)	Voda (tečna)	Tečni
Etanol (tečni) (45%)	Voda (tečna) (55%)	Tečni

PROCES RASTVARANJA

Jačina međudejstva između čestica rastvarača i rastvorka je veća od jačine međudejstva između čestica rastvarača i čestica rastvorka zasebno.

Tri faze u nastajanju rastvora:

- 1. Razlaganje rastvorka u najsitnije čestice
- Prevazilaženje međumolekulskih sila u rastvaraču, da se napravi mesto za čestice rasvorka
- 3. Omogućavanje interakcije između čestica rastvarača i rastvorka radi formiranja rastvora

Rastvaranje kao ravnotežni proces

- rastvaranje: rastvorak + rastvarač → rastvor
- kristalizacija: rastvor → rastvorak + rastvarač
- zbirno: rastvorak + rastvarač ⇒rastvor

ZASIĆENI RASTVOR

- Rastvor u kome je rastvorena maksimalna količina supstance u datom rastvaraču, na datoj temperaturi je zasićeni rastvor.
- U zasićenom rastvoru uspostavljena je dinamička ravnoteža između procesa rastvaranja i kristalizacije.
- Sadržaj rastvorne suspatance u zasićenom rastvoru je stalan.

NEZASIĆENI RASTVORI

Nezasićeni rastvori sadrže manje rastvorene supstance od zasićenih.

PREZASIĆENI RASTVORI

Sadrže više rastvorene supstance nego zasićeni rastvori. Veoma su nestabilni.

RASTVORLJIVOST

- Rastvorljivost je merilo sposobnosti neke supstance da se rastvara u datom rastvaraču.
- Sastav zasićenog rastvora je kvantitativno merilo rastvorljivosti neke supstance.
- Može se izražiti na različite načine:
- čvrste i tečne supstance: broj grama rastvorka koji se rastvara u 100 g rastvarača na datoj temperaturi dajući zasićen rastvor

FAKTORI KOJI UTIČU NA RASTVORLJIVOST

- Pored vrste rastvorne supstance i rastvarača na rastvorljivost najviše utiče temperatura.
- Na rastvorljivost gasova u tečnostima pored temperature još utiče i pritisak.
- SLIČNO SE RASTVARA U SLIČNOM
- Razmotrićemo:
- Rastvorljivost čvrstih supstanci u tečnostima
- Rastvorljivost tečnosti u tečnostima
- Rastvorljivost gasova u tečnostima

SLIČNO SE RASTVARA U SLIČNOM PODELA RASTVARAČA

RASTVARAČ	VRSTA	STRUKURNO SVOJSTVO
Voda, H ₂ O	Polaran	O-H
Etanol, C ₂ H ₅ OH	Polaran	О-Н
Aceton, CH ₃ -C-CH ₃	Polaran	C=O
Toluen, C ₇ H ₈	Nepolaran	C-C i C-H
Heksan, C ₆ H ₁₄	Nepolaran	C-C i C-H
Dietil etar, CH ₃ CH ₂ -O-CH ₂ CH ₃	Nepolaran	C-C, C-H i C-O

SLIČNO SE RASTVARA U SLIČNOM

Polarne supstance će se rastvarati u polarnim rastvaračima

Nepolarne supstance će se rastvarati u nepolarnim rastvaračima

Što je veća sličnost u međumolekulskim interakcijama, veća je verovatnoća da se dve supstance rastvaraju jedna u drugoj.

Rastvorljivost nekih alkohola u vodi i heksanu

Alkohol	Rastvorljivost u _{H2} O	Rastvorljivost u C ₆ H ₁₄
CH ₃ OH (methanol)	∞	0.12
CH ₃ CH ₂ OH (ethanol)	∞	∞
CH ₃ CH ₂ CH ₂ OH (propanol)	∞	∞
CH ₃ CH ₂ CH ₂ CH ₂ OH (butanol)	0.11	∞
CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH (pentanol)	0.030	∞
CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OH (hexanol)	0.0058	∞
$CH_3CH_2CH_2CH_2CH_2CH_2CH_2OH \ (heptanol)$	0.0008	∞

SLIČNO SE RASTVARA U SLIČNOM

Glukoza (koja gradi vodonične veze) je veoma rastvorljiva u vodi, dok cikloheksan nije

Cikloheksan nema polarne OH grupe

Glukoza ima pet polarnih OH grupa

Vitamin A je rastvoran u nepolarnim jedinjenjima (kao što su masti) Vitamin C je rastvoran u vodi

Rastvorljivost čvrstih supstanci u tečnostima Zavisnost od temperature

Rastvorljivost tečnosti u tečnostima

Postoje tri mogućnosti:

- Potpuno mešanje, nema dva sloja. (Mešljive tečnosti)
- 2. Ne mešaju se, ima dva sloja pri svim temperaturama. (Nemešljive tečnosti)
- Ograničeno mešanje, postoje dva sloja do određene temperature a onda sistem prelazi u potpuno mešanje

Mešljive i nemešljive tečnosti

@Houghton Mifflin Company. All rights reserved.

Rastvorljivost gasova u tečnostima

Rastvorljivost gasova u tečnostima zavisi od:

- Prirode gasa i rastvarača
- temperature
- Pritiska gasa koji je u dodiru sa tečnošću

Razmatraćemo rastvorljivost raznih gasova u vodi.

Uticaj prirode gasa

- Gasovi koji hemijski ne reaguju sa vodom slabo se u njoj rastvaraju (H₂, O₂, N₂, CO, He)
- Gasovi koji se dobro rastvaraju u vodi sa njom reaguju hemijski (CO₂, NH₃, HCl...)

$$CO_2(g) + H_2O(I) \rightarrow H_2CO_3(aq)$$

Rastvorljivost gasova u vodi na raznim temperaturama (dm³ gasa/dm³ vode)

Gas	Rastvorljivost pri temperaturi (°C)		
	0	20	40
N ₂	0,0236	0,0160	0,0125
O ₂	0,049	0,031	0,023
CO ₂	1,713	0,878	0,530
NH ₃	1300	710	508

Uticaj temperature

Sa porastom temperature opada rastvorljivost gasova u vodi.

Uticaj temperature

Zagrevanjem vode mogu se odstraniti rastvoreni gasovi

Uticaj pritiska Henrijev zakon

 Rastvorljivost gasova pri konstantnoj temperaturi upravo je proporcionalna pritisku gasa nad tečnošću.

$$C_g = k \cdot P_g$$

Uticaj pritiska Henrijev zakon

Uticaj pritiska Henrijev zakon

Kako odstraniti rastvorene gasove iz vode

- Zagrevanjem
- Rastvaranjem neke druge supstance koja se dobro rastvara u vodi
- Pomoću vakuma (primena Henrijevog zakona)

OSOBINE RAZBLAŽENIH RASTVORA DIFUZIJA

Pojava uzajamnog prodiranja čestica rastvorene supstance i rastvarača je difuzija.

Proces difuzije se ubrzava mešanjem i zagrevanjem.

Difuzija

Difuzija je spor proces zato što se čestice kreću haotično

OSOBINE RAZBLAŽENIH RASTVORA OSMOZA

- Prodiranje ili premeštanje molekula vode (rastvrača) kroz polupropustljivu membranu u pravcu veće koncentracije rastvorene supstance naziva se osmoza.
- Polupropustljiva membrana ima osobinu da propušta samo molekule rastvrača a zadržava molekule rastvorne susptance.

Proces osmoze

Osmotski pritisak

Osmotski pritisak

- Osmotski pritisak je onaj pritisak koji treba dati rastvoru da bi se prekunula osmoza, to jest da se zadrže molekule rastvrača od prolaska u rastvor kroz polupropustljivu membranu.
- Osmotski pritisak je proporcionalan koncentraciji rastvora i apsolutnoj temperaturi.

$$\pi = C \cdot R \cdot T$$

Poređenje osmotskih pritisaka različitih rastvora

Primena osmoze DIJALIZA

Primena osmoze Reversna osmoza

Koligativne osobine rastvora

Osobine rastvora koje zavise samo od broja čestica rastvorne supstance nazivaju se koligativne osobine.

Koligativne osobine su:

- sniženje napona pare rastvora
- sniženje tačke mržnjenja rastvora
- povećanje tačke ključanja rastvora
- osmotski pritisak

Sniženje napona pare rastvora I Raulov zakon

Sniženje napona pare rastvarača iznad rastvora na konstantnoj temperaturi direktno je proporcionalno molskom udelu rastvorne supstance.

$$p_0 - p = \Delta p = p_0 \cdot \chi(B)$$

Promene napona pare sa temperaturom

Posledice sniženja napona pare Fazni dijagram vode

Sniženje tačke mržnjenja rastvora Povećanje tačke ključanja rastvora

Sniženje tačke mržnjenja rastvora odnosno povećanje tačke ključanja rastvora proporcionalno je molalitetu rastvora.

$$\Delta t_m = K_e \cdot b(B)$$

$$\Delta t_k = K_k \cdot b(B)$$

Primena koligativnih osobina rastvora

Elektroliti

- Vodeni rastvori elektrolita provode električnu struju
- Vodeni rastvori neelektrolita ne provode električnu struju

Rastvori elektrolita sadrže jone

- Joni u rastvoru nastaju elektrolitičkom disocijacijom
- Elektrolitička disocijacija je spontani proces izdvajanja jona iz jonskih kristalnih rešetki ili iz molekula sa polarnim kovalentnim vezama dejstvom polarnih molekula vode.

Elektrolitička disocijacija

Jaki i slabi elektroliti

 Ne poseduju svi elektroliti istu sposobnost elektrolitičke disocijacije.

Jaki i slabi elektroliti Stepen elektrolitičke disocijacije

 Stepen elektrolitičke disocijacije je odnos broja disociranih molekula i ukunog broja molekula koji je bio pre disocijacije.

$$\alpha = \frac{N}{N_0}$$

- Vrednost stepena elektrolitičke disocijacije zavisi od:
- vrste elektrolita
- koncentracije elektrolita
- temperature

Jaki i slabi elektroliti

	Vrsta jedinjenja	α	Sastav rastvora	Provodljivost rastvora
Jaki elektroliti	Kiseline Baze Soli	Iznad 0,3	Voda Joni	dobra
Slabi elektroliti	Kiseline Baze	Ispod 0,3	Voda Joni Molekuli	slabija

Koligativne osobine rastvora elektrolita Vant Hofov korekcioni faktor *i*

 Korekcioni faktor predstavlja povećanje ukupnog broja čestica u rastvoru elektrolita u odnosu na rastvor neelektrolita iste molalnosti.

$$i = \frac{N'}{N}$$

•
$$i = 1 + \alpha (z - 1)$$

 Sniženje napona pare rastvarača iznad rastvora:

$$\Delta P = Po \cdot \chi(B) \cdot i$$

- Sniženje tačke mržnjenja rastvora:
- $\Delta t m = K m(r \check{c}) \cdot b(B) \cdot i$
- Povišenje tačke ključanja rastvora:
- $\Delta t \mathbf{k} = K \mathbf{k} (r \mathbf{c}) \cdot b (B) \cdot \mathbf{i}$
- Osmotski pritisak:

$$\Pi = c \cdot R \cdot T \cdot i$$

Tipovi elektrolita

Tipovi elektrolita	Joni u vodenom rastvoru	Jačina elektrolita	Primer
SOLI	Joni metala (katjoni) i joni kiselinskog ostatka (anjoni)	Jaki	NaCl, Na ₂ SO ₄ , CaCl ₂ , NaHCO ₃ , CuSO ₄ ·5H ₂ O
KISELINE	H ⁺ ili H ₃ O ⁺ (katjon) i joni kiselinskog ostatka (anjoni)	Jaki Slabi	HCI, H ₂ SO ₄ , H ₃ PO ₄ , HCIO ₄ , CH ₃ COOH, HCN
BAZE	Joni metala (katjoni) i OH- (anjon)	Jaki Slabi	NaOH, KOH, Ca(OH) ₂ , NH ₄ OH, CH ₃ NH ₂

Kiseline

Kiseline

- imaju kiseo ukus
- sa metalima izdvajaju vodonik
- plavi lakmus boje crveno
- neutrališu se bazama

BAZE

Baze

- imaju lužnat ukus
- klizave su pod prstima
- crveni lakmus boje plavo
- neutrališu se kiselinama

Šta su kiseline i baze?

- Arenijusova teorija
- Brenšted-Lorijeva teorija
- Luisova teorija

Arenijusova teorija

Kiselina – jedinjenje koje povećava [H⁺] ili [H₃O⁺] u vodi

$$HCl(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + Cl^-(aq)$$

 $HNO_3(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + NO_3^-(aq)$

Baza - je jedinjenje koje povećava [OH-] u vodi

$$NH_3(aq) + H_2O(1)$$
 \longrightarrow $NH_4^+(aq) + OH^-(aq)$

Arenijusova teorija

HCl disocira u vodi dajući H⁺i Cl⁻jone

NaOH disocira u vodi dajući Na⁺ i OH⁻ jone

Arenijusova teorija Reakcija neutralizacije

 H+ iz kiseline i OH- iz baze daju vodu dok katjon baze i anjon kiseline daju so.

$$HCI(aq) + NaOH(aq) \rightarrow NaCI(aq) + H2O(I)$$

U jonskom obliku:

$$H^+ + Cl^- + Na^+ + OH^- \rightarrow Na^+ + Cl^- + H_2O(I)$$

Reakcija neutralizacije se svodi na reakciju H+ i OH-

$$H^+ + OH^- \rightarrow H_2O(I)$$

Brenšted-Lorijeva teorija

Kiselina: davalac (donor) protona

Baza: primalac (akceptor) protona

Brenšted-Lorijeva teorija

$$NH_{3}(aq) + H_{2}O(1) \longrightarrow NH_{4}^{+}(aq) + OH^{-}(aq)$$

$$NH_{3} + H_{2}O \longrightarrow NH_{4}^{+} + OH^{-}$$

$$baza \qquad kiselina \qquad kiselina \qquad baza$$

$$baza \qquad kiselina \qquad konjugovana kis. \quad konjugovana baza$$

Konjugovani par kiselina – baza je vezan preko otpuštanja i primanja protona (H⁺)

Brenšted-Lorijeva teorija Konjugovani parovi U reakciji: $H_2O + NH_3 \rightleftharpoons HO^- + NH4^+$:

H₂O i OH⁻ čine Konjugovani par Kiselina – konjugovana baza H₂O OH-Konjugovani par kiselina - baza

Odstranjivanje H+

NH₃ i NH₄+ čine Konjugovani par Baza – konjugovana kiselina

Luisova teorija

- Luisova kiselina je primalac (akceptor) elektronskog para. To su uglavnom katjoni i neutralni molekuli sa upražnjenim valentnim orbitalama, kao Al³⁺, Cu²⁺, H⁺, BF₃.
- Luisova baza je davalac (donor) elektronskog para. To su uglavnom anjoni i neutralni molekuli sa slobodni elektronskim parovima, kao H₂O, NH₃, O²⁻.

 Veza koja se tom prilikom ostvaruje je koordinativno – kovalentna veza

Luisova teorija

Jačina kiselina i baza

A. Jaki elektroliti – 100% disocirani

- soli, jake kiseline, jake baze

NaCl
$$(s) \xrightarrow{H_2O}$$
 Na⁺ $(aq) + Cl^-(aq)$
HClO₄ $(aq) + H_2O(l) \longleftrightarrow H_3O^+(aq) + ClO_4^-(aq)$
NaOH $(s) \xrightarrow{H_2O}$ Na⁺ $(aq) + OH^-(aq)$

B. Slabi elektroliti – nisu potpuno disocirani

- slabe kiseline, slabe baze

$$CH_{3}COOH \longrightarrow CH_{3}COO^{-}(aq) + H^{+}(aq)$$

$$NO_{2}^{-}(aq) + H_{2}O(l) \longrightarrow OH^{-}(aq) + HNO_{2}(aq)$$

Jake i slabe kiseline

 \square^-

 $H \mathbb{H}$

Jaka kiselina

pre disocijacije ravnoteža

Slaba kiselina

Jaki elektroliti

Slabi elektroliti

Šta je H+ (aq)?

$$H_5O_2^+$$

Konstanta disocijacije

 $CH_3COOH(aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + CH_3COO^-(aq)$ konstanta ravnoteže za ovu reakciju je:

$$K = \frac{\left[\mathbf{H}_{3}\mathbf{O}^{+} \right] \cdot \left[\mathbf{CHCOO}^{-} \right]}{\left[\mathbf{CH}_{3}\mathbf{COOH} \right] \cdot \left[\mathbf{H}_{2}\mathbf{O} \right]}$$

$$K_{\rm a} = \frac{\text{H}^+ \cdot \text{CH}_3\text{COO}^-}{\text{CH}_3\text{COOH}} = K \cdot 55,5 \text{ mol/dm}^3$$

Značenje K_a i K_b

- što je veća vrednost konstante disocijacije kiseline ili baza to je dati elektrolit jača kiselina ili baza
- što je veća vrednost konstante disocijacije položaj ravnoteže disocijacije je više pomeren u korist jonizovanog oblika elektrolita.

Konstante disocijacije kiselina

<u>Kiselina</u>	K_{a}	Konjug. baz	$\mathbf{ka} = \mathbf{K}_{b}$
HF	7.1 x 10 ⁻⁴	F-	1.4 x 10 ⁻¹¹
HNO ₂	4.5 x 10 ⁻⁴	NO ₂ -	2.2×10^{-11}
C ₉ H ₈ O ₄ (aspirin)	3.0 x 10 ⁻⁴	$C_9H_7O_4^{-}$	3.3×10^{-11}
HCO ₂ H (mravlja)	1.7 x 10 ^{−4}	HCO ₂ -	5.9×10^{-11}
C ₆ H ₈ O ₆ (askorbinska	n) 8.0 x 10 ^{–5}	$C_6H_7O_6^-$	1.3×10^{-10}
C ₆ H ₅ CO ₂ H (benzoev	′) 6.5 x 10 ^{–5}	$C_6H_5CO_2^-$	1.5×10^{-10}
CH ₃ CO ₂ H (sirćetna)	1.8 x 10 ^{−5}	CH ₃ CO ₂ -	5.6×10^{-10}
HCN	4.9 x 10 ⁻¹⁰	CN -	2.0 x 10 ⁻⁵
C ₆ H ₅ OH (fenol)	1.3 x 10 ⁻¹⁰	C ₆ H ₅ O -	7.7 x 10 ⁻⁵

Autojonizacija vode

voda je veoma slab elektrolit i u veoma maloj meri disocira prema jednačini:

2
$$H_2O(I) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$$

 $H_2O(I) \rightleftharpoons H^+(aq) + OH^-(aq)$

Jonski proizvod vode

$$H_2O(I) \rightleftharpoons H^+(aq) + OH^-(aq)$$

$$K = \frac{H^+ \cdot OH^-}{H_2O}$$

U razblaženim vodenim rastvorima koncentracija vode ostaje praktično konstantna tako da sledi:

$$Kw = [H+] \cdot [OH-] = 1 \cdot 10^{-14} \text{ mol}^2/\text{dm}^6 (25 \, {}^{\circ}\text{C})$$

Jonski proizvod vode je proizvod koncentracija vodonikovih i hidroksidnih jona u vodenim rastvorima i konstantna je vrednost na konstantnoj temperaturi.

pH i pOH

 pH je negativni dekadni logaritam koncentracije vodonikovih jona

$$pH = - log [H^+]$$

 pOH je negativni dekadni logaritam koncentracije hidroksidnih jona

$$pOH = - log [OH^-]$$

veza između pH i pOH

$$pH + pOH = 14$$

Odnos između pH i [H+] i [OH-]

Značenje pH

 promena pH vrednosti od jedne pH jedinice označava promenu koncentracije vodonikovih jona od 10 puta, a promena od 2 pH jedinice 100 puta, 3 pH jedinice 1000 puta itd.

Rastvori soli Hidroliza (protoliza) soli

Vrsta soli	Primer	Hidroliza	Reakcija rastvora soli
So jake baze i jake kiseline	NaCl	NE	Neutralna
So slabe kiseline i jake baze	CH ₃ COONa	DA	Bazna
So jake kiseline i slabe baze	NH ₄ CI	DA	Kisela
So slabe kiseline i slabe baze	CH ₃ COONH ₄	DA	Kisela ili bazna Zavisi od K _a K _b

Rastvori soli Hidroliza (protoliza) soli

Puferi

- Puferi (puferske smeše ili regulatori pH)
 predstavljaju takve sisteme koji su sposobni da
 se odupiru promeni pH u rastvorima.
- Puferi ili puferske smeše se sastoje od slabe kiseline i njene soli koja sadrži isti anjon ili od slabe baze i njene soli koja sadrži isti katjon.
- acetatni puferski sistem (CH₃COOH, CH₃COONa); amonijačni (NH₃, NH₄CI); karbonatni (NaHCO₃, Na₂CO₃) i fosfatni (NaH₂PO₄ i Na₂HPO₄ ili Na₂HPO₄ i Na₃PO₄).

Delovanje pufera Odupiranje promeni pH

Delovanje pufera Ravnoteže

$$CH_3COONa(aq)$$

$$\downarrow$$
 $Na^+(aq)$

$$+$$
 $CH_3COOH(aq) \Longrightarrow H^+(aq) + CH_3COO^-(aq)$

Ravnoteže u acetatnom puferskom sistemu

Delovanje pufera Dodavanje jake kiseline ili baze

- Acetatni puferski sistem se sastoji od CH₃COOH i CH₃COONa
- Dodavanje jake baze:
- $CH_3COOH + NaOH \rightarrow CH_3COONa + H_2O$
- Dodavanje jake kiseline:
- CH₃COONa + HCl → CH₃COOH + NaCl

Delovanje pufera Dodavanje jake kiseline ili baze

Puferi Izračunavanje pH

$$\left[\mathbf{H}^{+}\right] = K_{a} \cdot \frac{C_{k}}{C_{s}}$$

$$\left[OH^{-}\right] = K_{b} \cdot \frac{C_{b}}{C_{s}}$$

$$pH = pK_a + \log \frac{C_k}{C_s}$$

Puferski kapacitet Zavisnost od koncentracije i pH

KOLOIDNI RASTVORI

Koloidi su svuda oko nas

Kozmetika

Koloidni sistemi

Koloidni sistemi su disperzni sistemi kod kojih se veličina čestica kreće u rasponu od 1 – 100 nm.

Tipovi koloidnih sistema

Disperzna faza	Disperzno sredstvo	Primer
Gas	gas tečnost čvrsta supstanca	Nemoguć (homogen sistem) pena vazduh u mineralima
tečnost	gas tečnost čvrsta supstanca	magla mleko voda u maslacu
čvrsta supstanca	gas tečnost čvrsta supstanca	dim gvožđe (III)-hidroksid u vodi koloidno zlato u staklu

Podela koloida prema strukturi

Podela koloida

- Liofilni (hidrofilni) koloidi pokazuju afinitet prema disperznom sredstvu i obavijeni su molekulama rastvarača (vode)
- Liofobni (hidrofobni) koloidi ne pokazuju afinitet prema disperznom sredstvu

Optičke osobine koloida Tindalov efekat

Koloidni sistemi su stabilni

Stabilnost koloidnih sistema

Hidrofobni koloidi

- Koloidi toga tipa, s obzirom da nemaju afiniteta prema disperznom sredstvu, adsorbuju iz rastvora pozitivne ili negativne ione, pa su sve čestice istoimeno naelektrisane.
- Zbog tog naboja koloidni rastvor je stabilan

Koloidna čestica

Električno odbijanje

Stabilnost hidrofobnih koloida

van der Waals-ove privlačne sile

elektrostatičko odbijanje

Stabilnost hidrofobnih koloida

Destabilizacija hidrofobnih koloida

- Koagulacija je ukrupnjavanje koloidnih čestica
- Sedimentacija je pojava vidljivog taloženja
- Hidrofobni koloidi se destabilizuju neutalisanjem njihovog naelektrisanja
- Destabilizacija se izvodi dodavanjem jona suprotnog naboja (koji se adsorbuje)

Hidrofilni koloidi

- Čestice hidrofilnih koloida, usled njihovog velikog afiniteta prema vodi, obavijene su plaštom molekula vode koji sprečava spajanje koloidnih čestica u veće agregate.
- Destabilizuju se dodatkom visokih koncentracija soli ili dodatkom organskih rastvarača koji se mešaju sa vodom

Stabilnost hidrofilnih koloida

Vodeni plašt

Reverzibilni koloidi

Nastajanje gela

Želatin - gel

Strukture gela

KRAJ