

CS/IS F214 Logic in Computer Science

MODULE: TEMPORAL LOGICS

Linear Temporal Logic – Binary Temporal Operators

26-11-2018 Sundar B. CS&IS, BITS Pilani 0

Formulas and Interpretation

 Now let us consider some binary temporal connectives (and formulas):

```
φ U ψ /* read φ Until ψ */
φ W ψ /* read φ Weak-until ψ
or φ Wait ψ */
φ R ψ /* read φ Release ψ */
```


Formulas and Interpretation

- Semantics of these temporal operators:
 - Let $M = (S, \rightarrow, L)$ be a model and $\pi = s_1 \rightarrow s_2 \rightarrow ...$ be a path in M.
 - Then define the <u>satisfaction relation</u> |= as follows:
 - $\pi \mid = \phi \cup \psi$ iff there is some i such that $\pi^i \mid = \psi$ and for all $j = 1,..., i-1, \pi^j \mid = \phi$
 - $\pi \mid = \phi W \psi$ iff there is some i such that $\pi^i \mid = \psi$ and for all $j = 1,..., i-1, \pi^j \mid = \phi$; or all k>=1 $\pi^k \mid = \phi$
 - $\pi \mid = \phi R \psi$ iff for some i>=1 $\pi^i \mid = \phi$ and for all j = 1,..., i, $\pi^j \mid = \psi$; or all k>=1 $\pi^k \mid = \psi$
- Exercise:
 - Express U in terms of W and vice-versa

Examples

How do you read the following formulas?

- 1) XGo
- 2) $F(w \vee r)$
- 3) X (o U w)
- 4) XX(aUw)
- 5) **GFs**
- 6) $GF(w \vee r)$
- 7) GF(($w \lor r$) \land (X a))

Examples

How do you read the following formulas?

- 1) XGo
- 2) $F(w \vee r)$
- 3) X (o U w)
- 4) XX(aUw)
- 5) **GFs**
- 6) $GF(w \vee r)$
- 7) GF(($w \lor r$) \land (X a))

Evaluate each formula under the path

$$\begin{split} \pi_{w} = s_2 \to s_3 \to s_4 \to s_5 \to s_6 \to s_3 \, ... \, , \\ \text{where the sequence } s_3 \to s_4 \to s_5 \to s_6 \to \text{ repeats} \end{split}$$

ad infinitum.

CS/IS F214 Logic in Computer Science

MODULE: TEMPORAL LOGICS

LTL Syntax

Syntax of LTL

- Write the grammar for LTL
- Precedence and Associativity
 - One convention:
 - Propositional Operators (∧, ∨, -->, and ¬) have higher precedence over Temporal Operators (F, G, X, U, W, and R).
 - Unary Operators have higher precedence over Binary Operators within each category.
 - All binary operators are right-associative i.e.
 - $\phi \cup \psi \cup \chi$ would be associated as $\phi \cup (\psi \cup \chi)$
 - Rewrite the grammar for LTL using these precedence and associativity conventions.

