Exercice 1: Soit la matrice:

$$N_{\lambda} = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 2 - \lambda & \lambda - 2 & \lambda \end{pmatrix} \in M_3(\mathbb{R}).$$

1- Discuter, suivant le paramètre λ , la diagonalisation de N_{λ} .

2- On pose : $\lambda = 0$.

 \mathbf{a} / Sans effectuer de calculs, dire si N_0 est inversible. Justifier.

 \mathbf{b} / Trouver une matrice inversible P et une matrice diagonale D telles que :

$$D = P^{-1}.N_0.P.$$

c/ En déduire l'expression de la matrice N_0^n où $n \in \mathbb{N}^*$ en fonction des matrices D et P.

Exercice 2 : Soit $f \in End(\mathbb{R}^3)$, et soit A la matrice associée à f relativement à la base canonique notée $C = (e_1, e_2, e_3)$ de \mathbb{R}^3 :

$$A = \begin{pmatrix} -1 & 0 & 0 \\ 2 & -1 & 4 \\ 1 & 0 & 3 \end{pmatrix} \in M_3(\mathbb{R}).$$

1- Montrer que la matrice A n'est pas diagonalisable?.

2- On note les valeurs propres de A par λ_1 et λ_2 tels que : $\lambda_1 < \lambda_2$, et par v, w des vecteurs propres associés, respectivement, à λ_1 et λ_2 .

Montrer qu'il existe un vecteur v' tel que : f(v') = v - v'.

3- On pose B = (v, v', w).

a/ Montrer que B est une base de \mathbb{R}^3 .

 \mathbf{b}' Déterminer la matrice $A' = M_B(f)$.

Exercice 3: I- Soit la matrice:

$$A = \left(\begin{array}{ccc} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{array}\right).$$

Est ce que la matrice A est diagonalisable dans $M_3(\mathbb{R})$? dans $M_3(\mathbb{C})$? Justifier.

II- Soit, dans \mathbb{R} , le système linéaire suivant :

$$\begin{cases}
\alpha x - y + z = \beta \\
2x + y - z = -1 \\
x + 2y + z = 1
\end{cases} (S_{\alpha,\beta})$$

où α et β sont des paramètres réels .

1- Calculer le déterminant de la matrice du système $(S_{\alpha,\beta})$.

2- Pour quelles valeurs de α et β le système $(S_{\alpha,\beta})$ est de Cramer. Dans ce cas, résoudre $(S_{\alpha,\beta})$.

3- Résoudre $(S_{\alpha,\beta})$ dans le cas où il n'est pas de Cramer.

Exercice 4: Soit la matrice:

$$A = \begin{pmatrix} 0 & 2 & 2 \\ -1 & 3 & -1 \\ 3 & -3 & 1 \end{pmatrix} \in M_3(\mathbb{R}).$$

- **1-** Calculer $(A 4I_3) . V$ où $V = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$ $(I_3 \text{ désigne la matrice identité d'ordre 3}).$
- **2-** Calculer la trace de A et le déterminant de A.
- **3-** En déduire :
 - \mathbf{a} / Les valeurs propres de A.
 - **b**/ Que la matrice A est diagonalisable.
- 4- Trouver une matrice inversible P et une matrice diagonale D telles que :

$$D = P^{-1}.A.P.$$

5- Déterminer la matrice A^n où $n \in \mathbb{N}^*$

Exercice 5: Soit la matrice:

$$A = \begin{pmatrix} \alpha & \beta & \beta \\ \beta & \alpha & \beta \\ \beta & \beta & \alpha \end{pmatrix} \in M_3(\mathbb{C}) \text{ tel que } \beta \neq 0.$$

Soit f un endomorphisme de \mathbb{C}^3 tel que sa matrice associée relativement à la base canonique est égale à A.

On note par B la base canonique de \mathbb{C}^3 .

- **1-** Calculer les valeurs propres de f.
- **2-** Montrer que ker $(f (\alpha + 2\beta) Id_{\mathbb{C}^3})$ est de dimension 1. En donner une base.
- **3-** Montrer que ker $(f (\alpha \beta) Id_{\mathbb{C}^3})$ est de dimension 2. En donner une base.
- 4- Montrer que f est diagonalisable et donner une base C des valeurs propres de f.
- **5-** En déduire une matrice inversible $P \in M_3(\mathbb{C})$ telle que la matrice $D = P^{-1}.A.P$ soit diagonale. Ecrire D.

Exercice 6 : Soit α un paramètre réel et soit la matrice :

$$A_{\alpha} = \begin{pmatrix} 1 & 0 & 0 \\ \alpha & -1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \in M_3(\mathbb{R}).$$

- **1-** Déterminer le polynôme caractérique de A_{α} .
- **2-** Donner une condition nécessaire et suffisante sur le paramètre α pour que la matrice A_{α} soit diagonalisable.
 - **3-** On pose : $\alpha = 1$.
- **a**/ Trouver une matrice inversible P et une matrice diagonale D telles que : $D = P^{-1}.A_1.P$.
 - **b**/ En déduire, sans effectuer de calculs, la matrice A_1^n pour tout pair $n \in \mathbb{N}^*$.