

FCC TEST REPORT

APPLICANT

Shenzhen Jiayinking Technology Holding Company

Limited

PRODUCT NAME

Suitcase Bluetooth PC Encoding Turntable Player

MODEL NAME

ST15002-1/ TURN-101/ TC193-BNH

TRADE NAME

JYK

BRAND NAME

JYK

FCC ID

2ADA2ST15002-1

STANDARD(S)

47 CFR Part 15 Subpart B

TEST DATE

2015-03-31 to 2015-04-14

ISSUE DATE

SHENZHEN MORLAB COMMUNICATION

STECHNOLOGY Co., Ltd.

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Http://www.morlab.cn E-mail: service@morlab.cn

Tel: 86-755-36698555 Fax: 86-755-36698525

DIRECTORY

<u>1.</u>	TECHNICAL INFORMATION
1.1.	APPLICANT INFORMATION EQUIPMENT UNDER TEST (EUT) DESCRIPTION
1.2.	EQUIPMENT UNDER TEST (EUT) DESCRIPTION
<u>2.</u>	TEST RESULTS
2.1.	APPLIED REFERENCE DOCUMENTS
<u>3.</u>	TEST CONDITIONS SETTING
	TEST MODE ·····
	TEST SETUP AND EQUIPMENTS LIST
	I. CONDUCTED EMISSION
3.2.2	2. RADIATED EMISSION
<u>4.</u>	47 CFR PART 15B REQUIREMENTS1
4.1.	CONDUCTED EMISSION1
	l. Requirement 1
	2. Test Description
	3. TEST RESULT 1
	RADIATED EMISSION1
	. REQUIREMENT 1
	2. Test Description 1
	3. FREQUENCY RANGE OF MEASUREMENT 1
4.2.4	1. TEST RESULT 1
ANN	IEX A TEST UNCERTAINTY1
ANN	IEX B TESTING LABORATORY INFORMATION1
1.	IDENTIFICATION OF THE RESPONSIBLE TESTING LABORATORY1
2.	IDENTIFICATION OF THE RESPONSIBLE TESTING LOCATION1

3.	ACCREDITATION CERTIFICATE	.19
4.	TEST ENVIRONMENT CONDITIONS	.19

	Change History							
Issue	Issue Date Reason for change							
1.0 2015-05-05 First edition								
"OBT	MO.	TLAS TORL MO. SE IN TLAS TORLY						

Test Report Declaration

Applicant	Shenzhen Jiayinking Technology Holding Company Limited
Applicant Address	No. 11. 11-1 Anye Road, Anliang Village, Henggang Town, Longgang District, Shenzhen, City, China
Manufacturer	Shenzhen Jiayinking Technology Holding Company Limited
Manufacturer Address	No. 11. 11-1 Anye Road, Anliang Village, Henggang Town, Longgang District, Shenzhen, City, China
Product Name	Suitcase Bluetooth PC Encoding Turntable Player
Model Name	ST15002-1/ TURN-101/ TC193-BNH
Brand Name	JYK
HW Version	1.0
SW Version	1.0
Test Standards	47 CFR Part 15 Subpart B
Test Result	PASS

Cai Junlong
Cai Junlong (Test Engineer) Tested by

Reviewed by

Xiao Xiong Xiao Xiong (EMC Manager)

Zeng Dexin Zeng Dexin (Chief Engineer) Approved by

1. Technical Information

Note: Provide by applicant.

1.1. Applicant Information

Company: Shenzhen Jiayinking Technology Holding Company Limited

Address: No. 11. 11-1 Anye Road, Anliang Village, Henggang Town, Longgang District,

Shenzhen, City, China

1.2. Equipment under Test (EUT) Description

EUT Type:	EUT Type: Suitcase Bluetooth PC Encoding Turntable Player							
Serial No:	(n.a., marked #1 by test site)							
Hardware Version:	1.0							
Software Version:	1.0							

Power supply:	Battery	THE HOPE WE ARE THE		
MC	Brand Name:	N/A		
STUD WOLL WO	Model No.:	124168A		
AB RLAB	Serial No.:	(n.a. marked #1 by test site)		
MORL MO. OF	Capacity:	3000mAh		
RIAE MORLE	Rated Voltage:	3.7V		
HO'S OF IN	Charge Limit:	4.2V		
Ancillary Equipment:	AC Adapter (Charger for Battery)			
AB III ZLAB	Brand Name:	Teka		
ORLA MOR	Model No.:	TEKA006-0501000UKC		
MI CLAS OFLIA	Serial No.:	(n.a. marked #1 by test site)		
MORE ME	Rated Input:	~ 100-240V, 50/60Hz, 300mA		
AB ALAB AO	Rated Output:	= 5V, 1000mA		

NOTE:

- The EUT is a Suitcase Bluetooth PC Encoding Turntable Player. It is equipped with a special USB port which can be connected to the ancillary equipments e.g. the PC.
- For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

2. Test Results

2.1. Applied Reference Documents

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart B:

No.	Identity	Document Title
1	47 CFR Part 15(10-1-13 Edition)	Radio Frequency Devices

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Result
1	15.107	Conducted Emission	PASS
2	15.109	Radiated Emission	PASS

NOTE: The tests were performed according to the method of measurements prescribed in ANSI C63.4-2009.

3. Test Conditions Setting

3.1. Test Mode

The EUT configuration of the emission tests is EUT + Battery + Adapter + PC.

In this test mode, the EUT was charged by adapter and connected to a PC via the special USB port. During the measurement, the EUT was playing music, the PC was recording the music through the special software which supplied by the applicant, the date was transmitting between the PC and the EUT.

3.2. Test Setup and Equipments List

3.2.1. Conducted Emission

A. Test Setup:

The EUT is placed on a 0.8m high insulating table, which stands on the grounded conducting floor, and keeps 0.4m away from the grounded conducting wall. The EUT is connected to the power mains through a LISN which provides $50\Omega/50\mu H$ of coupling impedance for the measuring instrument. A Pulse Limiter is used to protect the measuring instrument. The factors of the whole test system are calibrated to correct the reading.

The power strip or extension cord has been investigated to make sure that the LISN integrity in maintained with respect to the impedance characteristics as prescribed in ANSI C63.4-2009 at Clause 4.3.

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Due. Date
Receiver	Narda	PMM 9010	595WX11007	2015.2.21	2016.2.20
EMC Analyzer	Agilent	E7405A	US44210471	2015.2.21	2016.2.20
LISN	Schwarzbeck	NSLK 8127	812744	2015.2.24	2016.2.23
Pulse Limiter (20dB)	Schwarzbeck	VTSD 9561-D	9391	(n.a.)	(n.a.)
System Simulator	Agilent	E5515C	GB43130131	2015.2.21	2016.2.20
PC N	Lenovo	ThinkPadT61	ZZF3077	(n.a.)	(n.a.)

3.2.2. Radiated Emission

A. Test Setup:

1. For radiated emissions from 30MHz to1GHz

2. For radiated emissions above 1GHz

The test is performed in a 3m Semi-Anechoic Chamber; the antenna factor, cable loss and so on of the site (factors) is calculated to correct the reading. The EUT is placed on a 0.8m high insulating Turn Table, and keeps 3m away from the Test Antenna, which is mounted on a variable-height antenna master tower.

For the test Antenna:

In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength. The emission levels at both horizontal and vertical polarizations should be tested.

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Due. Date
EMC Analyzer	Agilent	E7405A	US44210471	2015.2.21	2016.2.20
Receiver	Narda	PMM 9060	001WX11001	2015.2.21	2016.2.20
Receiver	Narda	PMM 9010	595WX11007	2015.2.21	2016.2.20
Semi-Anechoic Chamber	Albatross	9m*6m*6m	(n.a.)	2015.2.21	2016.2.20
Test Antenna - Bi-Log	Schwarzbeck	VULB 9163	9163-274	2015.2.25	2016.2.24
Test Antenna - Horn	Schwarzbeck	BBHA 9120D	9120D-963	2015.2.25	2016.2.24
PC	Lenovo	ThinkPadT61	ZZF3077	(n.a.)	(n.a.)

4. 47 CFR Part 15B Requirements

4.1. Conducted Emission

4.1.1. Requirement

According to FCC section 15.107, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a $50\mu H/50\Omega$ line impedance stabilization network (LISN).

Frequency range	Conducted	Limit (dBµV)
(MHz)	Quasi-peak	Average
0.15 - 0.50	66 to 56	56 to 46
0.50 - 5	56	46
5 - 30	60	50

NOTE:

- a) The limit subjects to the Class B digital device.
- b) The lower limit shall apply at the band edges.
- c) The limit decreases linearly with the logarithm of the frequency in the range 0.15 0.50MHz.

4.1.2. Test Description

See section 3.2.1 of this report.

4.1.3. Test Result

The maximum conducted interference is searched using Peak (PK), Quasi-peak (QP) and Average (AV) detectors; the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. All test modes are considered, refer to recorded points and plots below.

A. Test Plot and Suspicious Points:

NO.	Fre.	Emission Le	vel (dBµV)	Limit (d	dΒμV)	Power-line	Verdict
	(MHz)	Quai-peak	Average	Quai-peak	Average		
1	0.15	43.61	16.42	66.00	56.00	Line	PASS
2	3.79	38.33	33.69	56.00	46.00		PASS
3	4.735	41.41	41.23	56.00	46.00		PASS
4	4.795	42.90	42.75	56.00	46.00		PASS
5	4.86	43.08	42.96	56.00	46.00		PASS
6	4.92	41.54	41.41	56.00	46.00		PASS

NO.	Fre.	Emission Level (dBµV)		Limit (dΒμV)	Power-line	Verdict
	(MHz)	Quai-peak Average		Quai-peak Average			7 0 1 0 1 0 1
1.0	0.15	39.91	17.27	66.00	56.00	ORLA	PASS
2	3.79	36.00	32.36	56.00	46.00	e me	PASS
3	4.735	37.82	37.61	56.00	46.00	Naumoic	PASS
4	4.795	39.11	38.90	56.00	46.00	Neutral	PASS
5	4.86	39.38	39.17	56.00	46.00	OR M	PASS
6	4.92	37.69	37.46	56.00	46.00	ORLAN	PASS

Test Result: PASS

4.2. Radiated Emission

4.2.1. Requirement

According to FCC section 15.109(a), the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency	Field St	rength	Field Strength Limitation at 3m Measurem Dist		
range (MHz)	μV/m	Dist	(μV/m)	(dBµV/m)	
30.0 - 88.0	100	3m	100	20log 100	
88.0 - 216.0	150	3m	150	20log 150	
216.0 - 960.0	200	3m	200	20log 200	
Above 960.0	500	3m	500	20log 500	

As shown in FCC section 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector. When average radiated emission measurements are specified in this part, including emission measurements below 1000MHz, there also is a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit for the frequency being investigated unless a different peak emission limit is otherwise specified in the rules.

Note:

- 1) The tighter limit shall apply at the boundary between two frequency range.
- 2) Limitation expressed in $dB\mu V/m$ is calculated by 20log Emission Level($\mu V/m$).
- If measurement is made at 3m distance, then F.S Limitation at 3m distance is adjusted by using the formula of Ld1 = Ld2 * (d2/d1)².

Example:

F.S Limit at 30m distance is $30\mu\text{V/m}$, then F.S Limitation at 3m distance is adjusted as Ld1 = L1 = $30\mu\text{V/m}$ * $(10)^2$ = 100 * $30\mu\text{V/m}$

4.2.2. Test Description

See section 3.2.2 of this report.

4.2.3. Frequency range of measurement

Highest frequency generated or used in the device is the highest speed of the processor, lowest frequency generated or used in the device is the lowest frequency of the oscillator. According to 15.33(b)(1), the frequency range of radiated measurement for the EUT is listed in the following table:

Frequency	Frequency generated or used in the device	Frequency range of radiated measurement in the report	
Highest	26MHz	1GHz	

4.2.4. Test Result

The maximum radiated emission is searched using PK, QP and AV detectors; the emission levels more than the limits, and that have narrow margins from the limits will be re-measured with AV and QP detectors. Both the vertical and the horizontal polarizations of the Test Antenna are considered to perform the tests. All test modes are considered, refer to recorded points and plots below.

The amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be reported.

Note: All radiated emission tests were performed in X, Y, Z axis direction, and only the worst axis test condition was recorded in this test report.

A. Test Plots and Suspicious Points:

NO.	Fre. (MHz)	Pk	QP	AV	Limit-	Limit-	Limit-	Antenna	Verdict
	LAB	ORLAN		.0	PK	QP	AV	MORE	BW
1	90.140	N.A	32.98	N.A	N.A	43.50	N.A	Vertical	Pass
2	151.250	N.A	34.45	N.A	N.A	43.50	N.A	Vertical	Pass
3	215.270	N.A	28.99	N.A	N.A	43.50	N.A	Vertical	Pass
4	384.050	N.A	31.51	N.A	N.A	46.00	N.A	Vertical	Pass
5	572.230	N.A	40.32	N.A	N.A	46.00	N.A	Vertical	Pass
6	818.610	N.A	33.35	N.A	N.A	46.00	N.A	Vertical	Pass

NO.	Fre. (MHz)	Pk	QP	AV	Limit-	Limit-	Limit-	Antenna	Verdict
	SI'M MO	~	P 101.		PK	QP 🦪	AV	3 Miles	3 .01
1	156.100	N.A	34.28	N.A	N.A	43.50	N.A	Horizontal	Pass
2	312.270	N.A	32.10	N.A	N.A 🦪	46.00	N.A	Horizontal	Pass
3	335.550	N.A	35.37	N.A	N.A	46.00	N.A	Horizontal	Pass
4	412.180	N.A	31.32	N.A 《	N.A	46.00	N.A	Horizontal	Pass
5	680.870	N.A	42.16	N.A	N.A	46.00	N.A	Horizontal	Pass
6	797.270	N.A	33.10	N.A	N.A	46.00	N.A	Horizontal	Pass

Result: PASS

Annex A Test Uncertainty

The uncertainty is calculated using the methods suggested in the "Guide to the Expression of Uncertainty in Measurement" (GUM) published by ISO.

Í	Uncertainty of Conducted Emission:	±1.8dB
Ī	Uncertainty of Radiated Emission:	±3.1dB

Annex B <u>Testing Laboratory Information</u>

1. Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.
Department:	Morlab Laboratory
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang Road, Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R. China
Responsible Test Lab Manager:	Mr. Su Feng
Telephone:	+86 755 36698555
Facsimile:	+86 755 36698525

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.
Address:	Morlab Laboratory FL.3, Building A, FeiYang Science Park, No.8 LongChang
	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China

3. Accreditation Certificate

Accredited Testing Laboratory: the FCC registration number is 695796.

(Shenzhen Morlab Communications Technology Co., Ltd.)

4. Test Environment Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 - 60
Atmospheric Pressure (kPa):	86 - 106

