(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003 年11 月27 日 (27.11.2003)

PCT

(10) 国際公開番号 WO 03/097824 A1

(51) 国際特許分類7:

110 05/07/02-

(21) 国際出願番号:

PCT/JP03/06054

(22) 国際出願日:

2003年5月15日(15.05.2003)

C12N 9/12, C12Q 1/48

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2002-142232 2002年5月16日(16.05.2002) .

- (71) 出願人 (米国を除く全ての指定国について): 萬有製薬株式会社 (BANYU PHARMACEUTICAL CO., LTD.) [JP/JP]; 〒103-8416 東京都中央区日本橋本町2丁目2番3号 Tokyo (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 鎌田 健司 (KA-MATA, Kenji) [JP/JP]; 〒300-2611 茨城県 つくば市 大久保 3 番 萬有製薬株式会社 つくば研究所内 Ibaraki (JP). 長田 安史 (NAGATA, Yasufumi) [JP/JP]; 〒300-2611 茨城県 つくば市 大久保 3 番 萬有製薬株式会社 つくば研究所内 Ibaraki (JP). 岩間 年治 (IWAMA, Toshiharu) [JP/JP]; 〒300-2611 茨城県 つくば市 大久保 3 番 萬有製薬株式会社 つくば研究所内 Ibaraki (JP).

- (74) 代理人: 小林 浩, 外(KOBAYASHI,Hiroshi et al.); 〒 104-0028 東京都 中央区 八重洲 2 丁目 8 番 7 号 福岡 ビル 9 階 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: CRYSTAL OF GLUCOKINASE PROTEIN, AND METHOD FOR DRUG DESIGN USING THE CRYSTAL

(54) 発明の名称: グルコキナーゼタンパク質の結晶、及びその結晶を用いたドラッグデザイン方法

(57) Abstract: Glucokinase is crystallized, the three-dimensional structure thereof is analyzed, and then a compound to be bonded to glucokinase is designed on the basis of the coordinate for the resulting three-dimensional structure. Specifically, glucokinase is freed of a part of amino acid residues being on the N-terminal side thereof, to thereby crystallize it, and the three-dimensional structure of the resulting crystal is elucidated through the X-ray crystallographic analysis thereof.

(57) 要約: 本発明は、グルコキナーゼを結晶化し、その三次元構造を解析し、得られる三次元構造座標に基づいてグルコキナーゼに結合する化合物を設計する。 具体的には、グルコキナーゼのN末端側のアミノ酸残基の一部を欠失させることによってグルコキナーゼを結晶化し、この結晶についてX線結晶構造解析によってその三次元構造を解明することによって達成される。

- 1 -

明細書

グルコキナーゼタンパク質の結晶、及びその結晶を用いたドラッグデザイン方 法

5 技術分野

本発明は、新規なグルコキナーゼタンパク質(以下、「GKタンパク質」ともいう)の結晶、その結晶を用いて得られる三次元構造座標を用いたドラッグデザイン方法などに関する。

10 背景技術

グルコキナーゼ(ATP:D-hexose 6-phosphotran sferaze, EC2. 7. 1. 1)は、哺乳類の4種のヘキソキナーゼアイソザイムのうちの一つ(ヘキソキナーゼ IV)である。これらのアイソザイムは同じ反応を触媒するが、グルコースに対する Km 値に差がある。すなわち、

15 ヘキソキナーゼ I、 I I I I O Km 値は 10⁻⁶~10⁻⁴M であるのに対し、グルコキナーゼともよばれるヘキソキナーゼ I V のグルコースに対する Km 値はずっと大きく、約 10⁻²M である。ヘキソキナーゼは、解糖系の初期段階に関与する酵素であり、グルコースからグルコース 6 リン酸への反応を触媒する。

グルコキナーゼは、主に肝臓と膵臓ベータ細胞に発現が限局しており、それ 5の細胞におけるグルコース代謝の律速段階を制御することで、体全体の糖代 謝に重要な役割を果たしている。肝臓と膵臓ベータ細胞のグルコキナーゼは、 それぞれスプライシングの違いによりN末端の15アミノ酸の配列が異なって いるが、酵素学的性質は同一である。

10年ほど前から、グルコキナーゼは膵臓ベータ細胞や肝臓のグルコースセンサーとして働くという仮説が提唱されている(Garfinkel D, et al: Am J Physiol 247(3Pt2):R527-536, 1984)。最近のグルコキナーゼ遺伝子操作マウスの結果から、実際にグルコキナーゼは全身のグルコース恒常性に重要な役割を担うことが明らかになっている。

グルコキナーゼ遺伝子を破壊したマウスは、生後まもなく糖尿病で死亡する

(Grupe A, et al: Cell 83:69-78.1995)。一方、グルコキナーゼを過剰発現させたマウスは血糖値が低くなる(Ferre T, et al: Proc Natl Acad Sci U S A 93:7225-7230.1996)。グルコース濃度上昇によってグルコキナーゼ活性が上昇すると、膵臓ベータ細胞と肝細胞の反応は異なるが、いずれも血糖を低下させる方向に作用する。膵臓ベータ細胞は、より多くのインスリンを分泌するようになり、肝臓は糖を取り込みグリコーゲンとして貯蔵すると同時に糖放出を低下させる。

このようにグルコキナーゼ酵素活性の変動は、肝臓および膵臓ベータ細胞を 介した哺乳類のグルコースホメオスタシスにおいて重要な役割を果たしている。

MODY2 (maturity-onset diabetes of the young) と呼ばれる若年に糖尿病を発症する症例においてグルコキナーゼ遺伝子の突然変異が発見され、グルコキナーゼ活性の低下が血糖上昇の原因となっている (Vionnet N, et al: Nature 356:721-722, 1992)。一方グルコキナーゼ活性を上昇させる突然変異をもつ家系も見つかっており、このような人たちは低血糖症状を示す (Glaser B, et al: N Engl J Med 338: 226-230, 1998)。

以上より、グルコキナーゼはヒトにおいてもグルコースセンサーとして働き、グルコース恒常性に重要な役割を果たしている。一方、多くの I I 型糖尿病患者のグルコキナーゼは変位を受けていないので、グルコキナーゼセンサーシステムを利用した血糖調節は可能と考えられる。グルコキナーゼ活性化物質には膵臓ベータ細胞のインスリン分泌促進作用と肝臓の糖取り込み亢進および糖放出抑制作用が期待できるので、 I I 型糖尿病患者の治療薬として有用と考えられる。

20

近年、膵臓ベータ細胞型グルコキナーゼが、ラット脳、なかでも特に摂食中 25 枢である視床下部腹内側核(Ventromedial hypothala mus, VMH)に限局して発現していることが明らかにされた。VMHの約 2割の神経細胞は、グルコースレスポンシブニューロンと呼ばれ、従来から体 重コントロールに重要な役割を果たすと考えられてきた。ラットの脳内へグル コースを投与すると摂食量が低下するのに対して、グルコース類縁体のグルコ

15

サミンの脳内投与によってグルコース代謝を抑制すると過食となる。電気生理学的実験からグルコースレスポンシブニューロンは生理的なグルコース濃度変化(5-20mM)に呼応して活性化されるがグルコサミン等でグルコース代謝を抑制すると活性抑制が認められる。VMHのグルコース濃度感知システムには膵臓ベータ細胞のインスリン分泌と同様なグルコキナーゼを介したメカニズムが想定されている。従って肝臓、膵臓ベータ細胞に加えVHMのグルコキナーゼ活性化を行う物質には血糖是正効果のみならず、多くのII型糖尿病患者で問題となっている肥満をも是正できる可能性がある。

一方、DIABETES, vol. 48, 1698-1705, September 1999 にはヘキソキナー 10 ゼ I からグルコキナーゼの立体構造を予測した旨が記載されているが、実際に 結晶化はされていないし、実用的なものではなかった。

以上より、グルコキナーゼの三次元立体構造を明らかにし、グルコキナーゼと相互作用する化合物を効率的に見いだすことを可能にすることは、例えば、糖尿病の治療剤、又は予防剤;網膜症、腎症、神経症、虚血性心疾患、動脈硬化等の糖尿病の慢性合併症の治療剤、又は予防剤;肥満の治療剤、又は予防剤の開発に大きな進展をもたらすと考えられる。

現在ではタンパク質の活性中心の解析や反応機作の予測といった作業にコンピュータを利用したCARDD (Computer Aided Rational Drug Design)が実用的なレベルで活用されるようになっている。

 CARDDによる創薬システムにおいては、ターゲットとなるタンパク質の 3次元構造解析データに基づき、タンパク質の活性部位の構造が予測される。 そして、その活性部位の構造と結合し得る化合物の候補に関する情報が化合物 データベースから取得される。その後、ターゲットとなるタンパク質の活性部 位と候補化合物の3次元構造や物理的性質を考慮し、ターゲットとなるタンパ ク質に結合しうる化合物の候補を選択する。これらの工程が、いわゆるインシ リコスクリーニング工程である。

インシリコスクリーニング工程で選択された化合物が、ターゲットとなるタンパク質と結合し、その活性を変化させるかどうかは、実際の試験(ウエット実験)により調べられる。そして、実際にターゲットとなるタンパク質の活性

を変化させる化合物が医薬の有効成分となる。これにより、実験室で無数の化合物を標的タンパク質に一つ一つ作用させて相互作用を確認するという操作を行うことなく、標的タンパク質と相互作用する化合物を効率よく探し出される。インシリコスクリーニングは、ターゲットとなるタンパク質と結合する化合物の候補を大幅に絞ることができるため医薬品開発に有効な手段であるといえる。

CARDDによる創薬システムにおいては、ターゲットとなるタンパク質の X線構造解析による3次元構造解析データが重要な情報となる。X線構造解析 による3次元構造解析には、解析試料としてターゲットとなるタンパク質の結 10 晶が必要である。したがってCARDDによる創薬システムに基づいてGKに 関連する創薬の開発を進めるためには、GKの結晶が必要である。しかしなが ら、前述のとおりGKは結晶化が困難で、CARDDに必要な情報を与えうる ものではなかった。

15 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、グルコキナーゼの結晶を得ること、及び、当該結晶から得られた情報に基づいてグルコキナーゼに結合する化合物を設計することを目的とする。

発明の開示

- 20 上記目的の少なくともひとつ以上は、以下の発明により解決される。
 - [1] 結晶化に用いることを特徴とする、グルコキナーゼタンパク質。
 - [2] 配列番号5に記載のアミノ酸配列からなることを特徴とする、前記 [1]に記載のタンパク質。
- [3] 配列番号5に記載のアミノ酸配列又はそのアミノ酸配列と実質的に 25 同一のアミノ酸配列からなることを特徴とするタンパク質の結晶。
 - [4] 前記タンパク質がグルコキナーゼタンパク質である、前記[3]に記載の結晶。
 - [5] 配列番号5に記載のアミノ酸配列を有するタンパク質の結晶である、 前記[3]に記載の結晶。

- 5 -

- [6] 格子定数が、下記式(1)~(4)
- a=b=79.9±4オングストローム … (1)
- c=322.2±15オングストローム … (2)

 $\alpha = \beta = 90^{\circ}$... (3)

5 $\gamma = 120^{\circ}$... (4)

を満たす、前記[3]に記載の結晶。

- [7] 空間群がP6₅22である、前記[6]に記載の結晶。
- [8] 表1に記載の三次元構造座標データによって特定されるタンパク質の結晶。
- 10 [9] 表1に記載の三次元構造座標データの少なくとも一つのデータを変更した三次元構造座標データにおいて、表1に記載の三次元構造座標データで示されるアミノ酸の主鎖の原子(Cα原子)と、該Cα原子と対応する前記変更した三次元構造座標データで示されるCα原子との平均二乗偏差が、0.6 オングストローム以下である結晶。
- [10] 化合物結合部位が、配列番号5に示すアミノ酸配列における、チロシン61~セリン69、グルタミン酸96~グルタミン98、イソロイシン159、メチオニン210~チロシン215、ヒスチジン218~グルタミン酸221、メチオニン235、アルギニン250、ロイシン451~リジン459のアミノ酸残基の少なくともひとつによって構成される、[3]~[9]のいずれかに記載の結晶。
 - [11] 配列番号5に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同一のアミノ酸配列からなるタンパク質と該タンパク質に結合可能な化合物との複合体を含む結晶。
 - [12] 前記化合物が、式(I)で表される、前記[11]に記載の結晶。

- 6 -

(1)

は、アミド基に結合した炭素原子の隣に窒素原子を有する、置換されていても 10 よい単環の又は双環のヘテロアリール基を示す]

[13] 前記化合物が、式(IIIa) \sim 式(IIIc) で表されるいずれかの化合物である前記[12]に記載の結晶。

(IIIa)

PCT/JP03/06054

$$0 = \stackrel{\text{CH}_3}{=} 0 \qquad 0 \qquad \stackrel{\text{NH}_2}{=} CH_3 \qquad (IIIc)$$

5

- [14] 配列番号8に記載のアミノ酸配列からなることを特徴とする、前記 [1] に記載のタンパク質。
- [15] 配列番号8に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同一のアミノ酸配列からなることを特徴とするタンパク質の結晶。
- 10 [16] 前記タンパク質がグルコキナーゼタンパク質である、前記 [15] に記載の結晶。
 - [17] 配列番号8に記載のアミノ酸配列を有するタンパク質の結晶である、 前記[15]に記載の結晶。
 - [18] 格子定数が、下記式
- 15 a=b=103. 2±5 オングストローム … (5)

c=281.0±7オングストローム … (6)

$$\alpha = \beta = 90^{\circ} \quad \cdots \quad (7)$$

 $\gamma = 120^{\circ} \quad \cdots \quad (8)$

を満たす、前記[15]に記載の結晶。

20 [19] 空間群が P6522 である、前記 [18] に記載の結晶。

- 8 -

[20] 表2に記載の三次元構造座標データによって特定されるタンパク質の結晶。

[21] 表 2 に記載の三次元構造座標データの少なくとも一つのデータを変更した三次元構造座標データにおいて、表 2 に記載の三次元構造座標データで示されるアミノ酸の主鎖の原子($C\alpha$ 原子)と、該 $C\alpha$ 原子と対応する前記変更した三次元構造座標データで示される $C\alpha$ 原子との平均二乗偏差が、0.6オングストローム以下である結晶。

[22] 配列番号 2 に記載のアミノ酸配列を有するタンパク質のN末端、C末端のいずれかまたは両方から、 $1\sim50$ 個のアミノ酸残基を欠損したアミノ酸配列を有するタンパク質を製造するタンパク質製造工程と、

前記タンパク質製造工程で得られたタンパク質と結合する化合物と、前記タンパク質製造工程で得られたタンパク質とを反応させるタンパク質反応工程とを含む、

タンパク質及びそのタンパク質と結合する化合物の複合体を含む結晶の製造 15 方法。

[23] タンパク質の結晶を製造する方法であって、

配列番号5に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同一のアミノ酸配列を含みグルコキナーゼ活性を有するタンパク質、及び該タンパク質に結合可能な化合物を用いることを特徴とする、結晶の製造方法。

20 [24] 前記タンパク質に結合可能な化合物が、式(I)で表される化合物 であることを特徴とする、前記[23]に記載のタンパク質の結晶の製造方法。

$$\begin{array}{c|c}
R^1 & O \\
N & C \\
H & NH_2
\end{array}$$

10

「式中、 R^1 は、Nロゲン原子、-S-(O)p-A、-S-(O)q-B又は-O-Bを示し(ここで、p及びqは同一又は異なって、 $0\sim2$ の整数を示し、Aは置換されていてもよい直鎖の C_1-C_6 アルキル基を示し、Bは置換されていてもよい五員環又は六員環のアリール基又はヘテロアリール基を示し、

5 R²は水素原子又はハロゲン原子を示し、

(II)

は、アミド基に結合した炭素原子の隣に窒素原子を有する、置換されていても よい単環の又は双環のヘテロアリール基を示す)

- 10 [25] 共結晶法又はソーキング法による、前記[23]、又は[24]に 記載の結晶の製造方法。
 - [26] タンパク質の立体構造情報に基づいて該タンパク質に結合する化合物の構造をデザインするドラッグデザイン方法であって、

該タンパク質の立体構造情報が、前記[3]~[13]、又は[15]~[2 15 1]のうちのいずれか一項に記載の結晶を解析することによって得られる情報 であることを特徴とする、ドラッグデザイン方法。

[27] 前記立体構造情報に基づいて、前記タンパク質の化合物結合部位を 推測する結合部位推測工程と、

前記結合部位推測工程で推測された化合物結合部位に適合する化合物を、化合 20 物ライブラリより選択する選択工程と、

を含むことを特徴とする、前記[26]に記載のドラッグデザイン方法。

[28] 前記立体構造情報に基づいて、前記タンパク質の化合物結合部位を 推測する結合部位推測工程と、

前記結合部位推測工程で推測された化合物結合部位に適合する化合物の構造を 25 構築する化合物構造構築工程と、

を含むことを特徴とする、前記[26]に記載のドラッグデザイン方法。

[29] 前記立体構造情報に基づいて、前記タンパク質の化合物結合部位を 推測する結合部位推測工程と、

前記結合部位推測工程で推測された化合物結合部位と該化合物結合部位に適合 する化合物とが相互作用するように化合物の構造を目視によりデザインするデ ザイン工程と、

を含むことを特徴とする、前記[26]に記載のドラッグデザイン方法。

- [30] 前記化合物結合部位が、配列番号 5 に示すアミノ酸配列における、 チロシン6 1 ~セリン6 9 、グルタミン酸9 6 ~グルタミン9 8 、イソロイシン1 5 9 、メチオニン2 1 0 ~チロシン2 1 5 、ヒスチジン2 1 8 ~グルタミ
- 10 ン酸 $2\ 2\ 1$ 、メチオニン $2\ 3\ 5$ 、アルギニン $2\ 5\ 0$ 、ロイシン $4\ 5\ 1$ ~ $1\ 2\ 5$ 0 のアミノ酸残基の少なくともひとつによって構成されている、前記 $1\ 2\ 6$ ~ $1\ 2\ 9$ のうちのいずれか一項に記載のドラッグデザイン方法。
 - [31] さらに、前記化合物結合部位に適合すると推定される候補化合物の 生理活性を測定する工程を含む、前記[26]~[30]のいずれか一項に記載のドラッグデザイン方法。
 - [32] さらに、前記化合物結合部位に適合すると推定される候補化合物と、配列番号5に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同一のアミノ酸配列を含むタンパク質とを接触させ、その候補化合物が該タンパク質に結合するか否か判定する結合判定工程を含む、前記[26]~[30]のいずれか一項に記載のドラッグデザイン方法。
 - [33] 前記 [26] ~ [30] のいずれか一項に記載のドラッグデザイン 方法によって選択された化合物群を化合物アレイとして組み合わせることを含 む化合物アレイの製造方法。

25 図面の簡単な説明

5

15

20

図1は、グルコキナーゼの三次元構造を示すリボン図である。

(図 1a は、グルコキナーゼ (Δ 1-1 1)/グルコース/化合物 1 (式 IIIa の化合物)の構造を示すリボン図である。また、右図は、左図を回転した図である。)

- 11 -

(図1 bは、グルコキナーゼ (Δ 1 - 1 5)単体の構造を示すリボン図である。また、右図は、左図を回転した図である。)

図 2 は、グルコキナーゼ (Δ 1-1 1) の結合部位に対する化合物 1 (式 IIIa の化合物) の結合様式を示す図である。

5 図 3 は、グルコキナーゼ (Δ 1-1 1) の結合部位の構造を示す図である。

発明を実施するための最良の形態

本明細書において、アミノ酸、ペプチド、蛋白質は下記に示す I UPAC-I UB生化学命名委員会 (CBN) で採用された略号を用いて表される。また、特に明示しない限りペプチド及び蛋白質のアミノ酸残基の配列は、左端から右端にかけてN末端からC末端となるように、またN末端が1番になるように表

以下、本発明の各実施態様について詳細に説明する。

15 (グルコキナーゼタンパク質)

にすることは重要である。

10

20

される。

まず、本発明は、結晶化に用いることを特徴とする、グルコキナーゼタンパク質を提供する。グルコキナーゼタンパク質(GKタンパク質)は、上述のように、生体内で極めて重要な糖の代謝に関与している。したがって、GKタンパク質の三次元構造を明らかにし、GKタンパク質の活性部位を解明することによって、GKタンパク質に結合する化合物(すなわち、活性化剤又は阻害剤)を探索することができる。よって、GKタンパク質の三次元構造を明らか

タンパク質の3次元構造を明らかにする手法として、X線結晶構造解析が良く知られている。即ち、タンパク質を結晶化し、その結晶に単色化されたX線をあて、得られたX線の回折像をもとに、該タンパク質の3次元構造を解明する(Blundell, T. L. 及びJohnson, L. N., PROTEIN CRYSTALLOGRAPHY, 1-565頁, (1976) Academic Press, New York)。GKタンパク質のX線結晶構造解析に供するために、まず、GKタンパク質を結晶化する必要がある。

ここで、本発明の「GKタンパク質」とは、配列番号2に示すアミノ酸配列を有するヒト由来の肝臓型グルコキナーゼと、配列番号2と実質的に同一のアミノ酸配列を含有するタンパク質をいう。ここで当該実質的に同一のアミノ酸配列を含有するタンパク質としては、グルコキナーゼ活性を有するものが好ましい。したがって、本明細書では、GKタンパク質は、ヒト由来の肝臓型グルコキナーゼのみならず、ヒト由来の膵臓型グルコキナーゼ、マウス、ラット、サル等の非ヒト由来GKタンパク質をも含む。本発明では、ヒト肝臓型グルコキナーゼが好ましく用いられる。ヒト由来のグルコキナーゼにおいて、肝臓型と膵臓型ではN末端の15アミノ酸残基が相違する。ここで、「グルコキナーゼ活性」とは、グルコースからグルコース6リン酸への反応を触媒する活性をいう。

10

タンパク質の結晶化が一般的に困難なことは良く知られており、GKタンパ ク質をそのまま結晶化することはできなかった。本発明者らは、種々、試行錯 誤による実験の結果、GKタンパク質のN末端側のアミノ酸を11個、又は1 5個を欠失させることによって、始めてGKタンパク質の結晶化に成功した。 15 欠失させた領域は、結晶化を試みた際に球状のGKタンパク質分子より突出し、 その結果、結晶内で隣接するGKタンパク質分子との間で立体的な障害となり GKタンパク質が結晶となるのを妨げていたと考えられる。すなわち、本発明 では、アミノ酸配列が既知でありながら結晶化には成功していなかったグルコ キナーゼにおいて、N末端側の11個のアミノ酸残基を欠失させたGKタンパ 20 ク質(配列番号5)、又はN末端側の15個のアミノ酸残基を欠失させたGK タンパク質(配列番号8)を用いることにより、GKタンパク質の結晶を得た。 ただし、欠失させるアミノ酸は、隣接する結晶との間で立体的な障害がなくな る範囲であればその数は限定されない。具体的には、例えば、配列番号2で表 されるアミノ酸配列において、N末端側の1~50個、好ましくは3~30個、 25 より好ましくは $5\sim25$ 個、さらに好ましくは $8\sim18$ 個、特に好ましくは11~15個のアミノ酸残基を欠失させたアミノ酸配列などが本発明において用 いられる。また、C末端側の $1\sim8$ 個、好ましくは $1\sim7$ 個、より好ましくは 2~6個のアミノ酸残基を欠失させたアミノ酸配列などが本発明において用い

- 13 -

られる。

(グルコキナーゼタンパク質の結晶及びその製造方法)

次に、本発明においては、配列番号5、及び配列番号8に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同一のアミノ酸配列を含むタンパク質を含む結晶を提供する。

上述したように、結晶化に供するGKタンパク質としては、配列番号 5、及び/又は配列番号 8 で表されるアミノ酸配列又はそれと実質的に同一のアミノ酸配列を含むタンパク質などが用いられる。

配列番号5、及び/又は配列番号8で表されるアミノ酸配列又はそれと実質 10 的に同一のアミノ酸配列を含むタンパク質(以下、配列番号2で表されるアミ ノ酸配列又はそれと実質的に同一のアミノ酸配列を有するタンパク質と併せて 「GKタンパク質」と略すこともある)は、結晶化が可能であればよく、その アミノ酸配列は特に制限されない。ここで、配列番号5、及び/又は配列番号 8に記載のアミノ酸配列と実質的に同一のアミノ酸配列を含むタンパク質は、 15 グルコキナーゼ活性を有している必要はなく、ドラッグデザインに必要な情報 を得ることができる結晶構造を有するものであれば、不活性な変異体(例えば、 ATPの結合部位に変異を有することにより不活性化した変異体)であってもよ い。ここで、配列番号2又は5で表されるアミノ酸配列と実質的に同一のアミ ノ酸配列を含むタンパク質としては、配列番号2又は5で表わされるアミノ酸 20 配列と約60%以上、好ましくは約70%以上、さらに好ましくは約80%以 上、なかでも好ましくは約90%以上、最も好ましくは約95%以上の相同性 を有するアミノ酸配列などが挙げられる。また、配列番号2又は5で表される アミノ酸配列と実質的に同一のアミノ酸配列を含むタンパク質として、例えば、 配列番号 2 又は 5 に記載のアミノ酸配列において $1\sim1$ 0 個、好ましくは $1\sim1$ 25 5個、さらに好ましくは $1\sim3$ 個、さらに好ましくは $1\sim2$ 個のアミノ酸残基 が置換、欠失、付加および/または挿入されたアミノ酸配列が例示される。

GKタンパク質の3次元構造解析は、例えば、次のようにして行う。まず、 タンパク質を精製する。そして、結晶化、X線回折強度データ収集、各回折斑

点の位相決定、電子密度計算、分子モデル作成、構造の精密化などの一連の工程を行う。タンパク質構造解析を行うための主要な設備として、結晶化用インキュベーター、双眼顕微鏡、X線回折計、3次元コンピュータグラフィックス装置などが用いられる。具体的にタンパク質の結晶を作製する実験過程は、タンパク質を大量に(数mg以上が好ましい。)精製する段階、結晶が得られる条件を広く検索する段階、X線解析に適した良質の結晶を得る段階に分けられる。以下、各工程について具体的に説明する。

5

10

結晶化に際しては、GKタンパク質を、高純度に精製する。精製方法としては、公知のものが利用でき、例えば、カラムクロマトグラフィー、塩析、遠心分離などが用いられる。

精製されたGKタンパク質は、結晶化し、X線結晶構造解析のための試料とする。結晶化は、蒸気拡散法や透析法等の公知の方法に基づいて行われる。タンパク質の結晶を得る際に、タンパク質の純度・濃度、温度、pH、使用する沈殿剤濃度等多くの要素を検討する必要がある。結晶化条件の検討は、市販のスクリーニング試薬を使用して広い範囲で行うことができ、1つの条件に1~2%濃度のタンパク質溶液を1~2μLずつ使用して検索することが好ましい。こうして微結晶などが得られた場合には、さらに条件を精密化することが好ましい。

なお、GKタンパク質の結晶を得るためには非常に多くの条件を検索しなけれ 20 ばならない。従って、結晶化条件の検討のためにも、タンパク質の大量発現系 を構築することが好ましい。一般にタンパク質のうち、結晶になるものの多く は、溶液状態で単分散であり、多分散のものは大体において結晶化しない。そ こで、GKタンパク質のN末端を順次切除し、得られたタンパク質について、光 散乱装置を用いてタンパク質溶液の単分散性を判定し、試料が結晶化に適して いるかどうかを検討しても良い。

次に、得られたGKタンパク質の結晶を用いて、X線回折強度測定を行う。 最近では、結晶を細い糸の輪などですくって液体窒素温度に急速冷却してその まま低温で測定する方法も利用されている。回折X線の強度測定は、通常、イ メージングプレートなどの2次元検出器によって行う。X線を当てながら結晶 を回転させることで発生する多くの回折線をイメージングプレートに記録し、 記録された回折強度をレーザーを当てることにより読み取る。

次に、重原子ソーキング法や共結晶化法により重原子同型置換体を調製することが好ましい。これを使用して多重同型置換法 (MIR法) によりタンパク質 結晶の位相を決定することができる。重原子を導入する代わりに、複雑な波長のX線による回折強度データに基づいて位相を決定する多波長異常散乱法 (MAD法) も利用できる。類似構造を有する分子が既に解析されている場合には、その分子構造を結晶中にあてはめて初期構造を得ることができ、これをもとにフーリエ合成図を描き、残りの部分の構造を解明して全構造を決定する分 子置換法 (MR法) も知られている。

位相が上記の方法で決定したならば、これより電子密度を求める。この精度は、反射の数(分解能)と使用した反射の精度による。分解能は使用する反射の最小面間隔で表す。この電子密度図から分子モデルを組み立てる。分子モデルを組み立てると原子座標が得られるので、これより構造因子の計算値を求め、

15 この大きさを観測値に近づける最小自乗法により原子パラメータの精密化を行う。このようにしてできるだけ妥当な構造情報を取得する。

本発明においては、配列番号 5 に示すG K 9 ンパク質の結晶を調製することに成功している(後述の実施例参照)。そしてこのようにして得られたG K 9 ンパク質の結晶は、格子定数が、下記式(1)~(4):

20 a=b=79.9±4オングストローム … (1) c=322.2±15オングストローム … (2) α=β=90° … (3)

 $\gamma = 120^{\circ} \quad \cdots \quad (4)$

を満たすものであった。また、この結晶は、空間群が $P6_s22$ であることが解明された。ここで、前記a=bは 79.9 ± 3 オングストロームであることが好ましく、 79.9 ± 2 オングストロームであることがより好ましく、 79.9 ± 1 オングストロームであることがさらに好ましい。また、前記cは 322.2 ± 10 オングストロームであることが好ましく、 322.2 ± 8 オングストロームであることがより好ましく、 322.2 ± 5 オングストロームであることがさらに好ましい。

- 16 -

このようにして得られたGKタンパク質結晶の3次元構造座標を表1に示す。

	表1							
	ATOM	1	CB	THR	14	25. 972 -34. 025	76. 567	1. 00 51. 12
5	ATOM	2	0G1	THR	14	27. 398 -34. 012	76. 715	1.00 51.49
	ATOM	3	CG2	THR	14	25. 626 -34. 173	75. 095	1. 00 49. 96
	ATOM	4	C	THR	14	24. 138 -32. 317	76. 374	1. 00 50. 95
	ATOM	5	0	THR	14	24. 246 -31. 685	75. 330	1. 00 52. 42
	ATOM	6	N	THR	14	25. 108 -32. 861	78. 611	1. 00 51. 41
10	ATOM	7	CA	THR	14	25. 384 -32. 717	77. 154	1. 00 50. 49
	ATOM	8	N	LEU	15	22. 957 -32. 673	76. 871	1. 00 49. 75
	ATOM	9	CA	LEU	15	21. 733 -32. 307	76. 167	1. 00 49. 25
	MOTA	10	CB	LEU	15	20. 496 -32. 824	76. 904	1. 00 52. 56
	ATOM	11	CG	LEU	15	20. 439 -34. 307	77. 291	1. 00 55. 08
15	ATOM	12	CD1	LEU	15	21. 186 -34. 524	78. 610	1. 00 53. 67
	ATOM	13	CD2	LEU	15	18. 980 -34. 742	77. 438	1. 00 54. 84
	ATOM	14	C		15	21. 676 -30. 781	76. 078	1. 00 48. 68
	ATOM	15	0		15	21. 397 -30. 208	75. 023	1. 00 47. 52
	ATOM	16	N	VAL		21. 955 -30. 128	77. 201	1. 00 47. 07
20	ATOM	17	CA	VAL		21. 950 -28. 677	77. 265	1. 00 44. 96
	ATOM	18	СВ	VAL		21. 988 -28. 188	78. 733	1. 00 46. 09
	ATOM	19			16	22. 239 -26. 684	78. 784	1. 00 44. 09
	ATOM	20		VAL		20. 670 -28. 523	79. 418	1. 00 45. 38
	ATOM	21	C	VAL		23. 142 -28. 097	76. 512	1. 00 43. 58
25	ATOM	22	0	VAL		23. 004 -27. 110		
	ATOM	23	N	GLU		24. 310 -28. 712	76. 672	1. 00 43. 48
	ATOM	24	CA	GLU		25. 507 -28. 223	75. 998	1. 00 45. 62
	ATOM	25	CB	GLU		26. 759 -28. 931	76. 532	1. 00 46. 30
	ATOM	26	CG	GLU	17	27. 140 -28. 571	77. 984	1. 00 49. 19

- 17 -

	ATOM	27	CD	GLU	17	27. 467	-27. 087	78. 191	1. 00	50. 74
	ATOM	28	0E1	GLU	17	28. 238	-26. 520	77. 386	1. 00	50. 39
	MOTA	29	0E2	GLU	17	26. 966	-26. 488	79. 170	1. 00	50. 85
	ATOM	30	C	GLU	17	25. 417	-28. 378	74. 479	1. 00	45. 93
5	ATOM	31	0	GLU	17	26. 097	-27. 666	73. 735	1. 00	44. 10
	MOTA	32	N	GLN	18	24. 577	-29. 303	74. 020	1. 00	45. 41
	ATOM	33	CA	GLN	18	24. 400	-29. 513	72. 588	1. 00	46. 37
	ATOM	34	CB	GLN	18	23. 643	-30. 818	72. 307	1. 00	49. 99
	ATOM	35	CG	GLN	18	24. 488	-32. 086	72. 423	1. 00	55. 59
10	ATOM	36	CD	GLN	18	23. 701	-33. 352	72. 088	1. 00	58. 40
	ATOM	37	0E 1	GLN	18	23. 158	-33. 489	70. 988	1. 00	60. 78
	ATOM	38	NE2	GLN	18	23. 638	-34. 280	73. 037	1. 00	56. 40
	ATOM	39	С	GLN	18	23. 617	-28. 338	72. 014	1. 00	44. 35
	ATOM	40	0	GLN	18	23. 849	-27. 912	70. 885	1. 00	43. 20
15	ATOM	41	N	ILE	19	22. 677	-27. 821	72. 791	1. 00	41. 97
	ATOM	42	CA	ILE	19	21. 895	-26. 689	72. 327	1. 00	40. 37
	ATOM	43	CB	ILE	19	20. 631	-26. 500	73. 193	1. 00	39. 71
	ATOM	44	CG2	ILE	19	19. 976	-25. 166	72. 894	1. 00	39. 42
	ATOM	45	CG1	ILE	19	19. 653	-27. 653	72. 915	1. 00	40. 83
20	ATOM	46	CD1	ILE	19	18. 356	-27. 599	73. 719	1. 00	38. 38
	ATOM	47	C	ILE	19	22. 764	-25. 431	72. 344	1. 00	39. 01
	ATOM	48	0	ILE	19	22. 746	-24. 644	71. 394	1. 00	40. 12
	ATOM	49	N	LEU	20	23. 550	-25. 267	73. 404	1. 00	35. 38
	ATOM	50	CA	LEU	20	24. 423	-24. 109	73. 537	1. 00	34. 35
25	ATOM	51	CB	LEU	20	25. 026	-24. 050	74. 944	1. 00	32. 09
	ATOM	52	CG	LEU	20	24. 050	-23. 887	76. 106	1. 00	30. 92
	ATOM	53	CD1	LEU	20	24. 813	-23. 722	77. 420	1. 00	27. 61
	MOTA	54	CD2	LEU	20	23. 171	-22. 689	75. 843	1. 00	29. 31
	ATOM	55	C	LEU	20	25. 555	-24. 135	72. 518	1. 00	34. 62

- 18 -

	ATOM	56	0	LEU 20	26. 066 -23. 087	72. 112	1. 00 34. 19
	ATOM	57	N	ALA 21	25. 946 -25. 336	72. 116	1. 00 33. 16
	ATOM	58	CA	ALA 21	27. 030 -25. 509	71. 163	1. 00 34. 30
	ATOM	59	CB	ALA 21	27. 344 -26. 992	70. 993	1. 00 34. 49
5	ATOM	60	C	ALA 21	26. 696 -24. 886	69. 814	1. 00 35. 20
	ATOM	61	0	ALA 21	27. 587 -24. 619	69. 007	1. 00 35. 57
	ATOM	62	N	GLU 22	25. 412 -24. 652	69. 578	1. 00 36. 75
	ATOM	63	CA	GLU 22	24. 961 -24. 053	68. 329	1. 00 37. 80
	ATOM	64	CB	GLU 22	23. 435 -24. 102	68. 256	1. 00 41. 47
10	ATOM	65	CG	GLU 22	22. 878 -23. 851	66. 867	1. 00 47. 91
	ATOM	66	CD	GLU 22	21. 384 -24. 128	66. 767	1. 00 49. 95
	ATOM	67	0E 1	GLU 22	20. 857 -24. 163	65. 630	1. 00 50. 84
	ATOM	68	0E2	GLU 22	20. 741 -24. 307	67. 822	1. 00 50. 26
	ATOM	69	C	GLU 22	25. 444 -22. 605	68. 177	1. 00 37. 38
15	ATOM	70	0	GLU 22	25. 380 -22. 039	67. 088	1. 00 38. 34
	ATOM	71	N	PHE 23	25. 928 -22. 012	69. 268	1. 00 35. 41
	ATOM	72	CA	PHE 23	26. 426 -20. 636	69. 249	1. 00 33. 38
	ATOM	73	CB	PHE 23	26. 224 -19. 962	70. 614	1. 00 31. 59
	ATOM	74	CG	PHE 23	24. 826 -19. 470	70. 843	1. 00 29. 81
20	ATOM	75		PHE 23	23. 836 -20. 328	71. 310	1. 00 26. 48
	ATOM	76		PHE 23	24. 489 -18. 151	70. 555	1. 00 28. 79
	ATOM	77		PHE 23	22. 520 -19. 882	71. 487	1. 00 29. 30
	ATOM	78		PHE 23		70. 727	1. 00 31. 65
	ATOM	79	CZ	PHE 23	22. 189 -18. 563	71. 195	1. 00 28. 91
25	ATOM	80	С	PHE 23		68. 877	1. 00 33. 33
	ATOM	81	0	PHE 23	28. 396 -19. 467	68. 549	1. 00 34. 12
	ATOM	82	N	GLN 24	28. 596 -21. 670	68. 940	1. 00 32. 75
	ATOM	83	CA	GLN 24		68. 620	1. 00 32. 56
	ATOM	84	CB	GLN 24	30. 543 -23. 147	68. 778	1. 00 35. 53

PCT/JP03/06054

- 19 -

WO 03/097824

			13		
	ATOM 88	G CG GLN 24	30. 817 -23. 603	70. 210	1. 00 37. 84
	ATOM 86	G CD GLN 24	31. 214 -25. 074	70. 266	1.00 42.36
	ATOM 87	OE1 GLN 24	31. 802 -25. 601	69. 320	1. 00 43. 06
	ATOM 88	NE2 GLN 24	30. 902 -25. 739	71. 375	1. 00 40. 61
5	ATOM 89	C GLN 24	30. 335 -21. 233	67. 208	1. 00 31. 93
	ATOM 90	0 GLN 24	29. 508 -21. 320	66. 299	1. 00 30. 32
	ATOM 91	N LEU 25	31. 548 -20. 717	67. 043	1. 00 31. 64
	ATOM 92	CA LEU 25	32. 029 -20. 257	65. 751	1. 00 31. 85
	ATOM 93	CB LEU 25	31. 876 -18. 742	65. 615	1. 00 31. 24
10	ATOM 94	CG LEU 25	30. 441 -18. 211	65. 563	1. 00 29. 93
	ATOM 95	CD1 LEU 25	30. 436 -16. 690	65. 710	1. 00 28. 63
	ATOM 96	CD2 LEU 25	29. 801 -18. 640	64. 262	1. 00 27. 61
	ATOM 97	C LEU 25	33. 502 -20. 635	65. 667	1. 00 33. 30
	ATOM 98	0 LEU 25	34. 298 -20. 218	66. 502	1. 00 33. 97
15	ATOM 99	N GLN 26	33. 856 -21. 450	64. 679	1. 00 34. 57
	ATOM 100	CA GLN 26	35. 244 -21. 860	64. 496	1. 00 36. 87
	ATOM 101	CB GLN 26	35. 330 -23. 053	63. 540	1. 00 40. 20
	ATOM 102	CG GLN 26	35. 105 -24. 414	64. 182	1. 00 46. 34
	ATOM 103	CD GLN 26		65. 041	1. 00 48. 48
20	ATOM 104	OE1 GLN 26			
	ATOM 105		32. 725 -24. 757		
			36. 024 -20. 688	63. 910	1. 00 36. 49
	ATOM 107	0 GLN 26		63. 403	1. 00 35. 76
	ATOM 108	N GLU 27	37. 347 -20. 761	63. 981	1. 00 35. 17
25	ATOM 109	CA GLU 27	38. 181 -19. 705	63. 441	1. 00 37. 77
	ATOM 110	CB GLU 27	39. 658 -20. 047	63. 627	1. 00 40. 11
	ATOM 111	CG GLU 27	40. 596 -19. 156	62. 831	1. 00 47. 14
	ATOM 112	CD GLU 27	41. 754 -18. 639	63. 662	1. 00 52. 56
	ATOM 113	OE1 GLU 27	41. 507 -17. 808	64. 567	1. 00 54. 72

- 20 -

	ATOM 114	OE2 GLU 27	42. 906 -19. 067	63. 415	1. 00 54. 43
	ATOM 115	C GLU 27	37. 878 -19. 511	61. 961	1. 00 37. 80
	ATOM 116	0 GLU 27	37. 915 -18. 392	61. 446	1. 00 37. 09
	ATOM 117	N GLU 28	37. 557 -20. 605	61. 282	1. 00 36. 94
5	ATOM 118	CA GLU 28	37. 261 -20. 535	59. 862	1. 00 36. 18
	ATOM 119	CB GLU 28	37. 175 -21. 939	59. 267	1. 00 37. 83
	ATOM 120	CG GLU 28	37. 826 -22. 039	57. 902	1. 00 41. 72
	ATOM 121	CD GLU 28	39. 154 -21. 287	57. 843	1. 00 44. 57
	ATOM 122	0E1 GLU 28	40. 033 -21. 531	58. 706	1. 00 46. 91
10	ATOM 123	0E2 GLU 28	39. 313 -20. 446	56. 933	1. 00 44. 10
	ATOM 124	C GLU 28	35. 973 -19. 779	59 . 588	1. 00 34. 66
	ATOM 125	0 GLU 28	35. 860 -19. 089	58. 575	1. 00 33. 91
	ATOM 126	N ASP 29	34. 994 -19. 926	60. 472	1. 00 32. 44
	ATOM 127	CA ASP 29	33. 738 -19. 219	60. 301	1. 00 32. 41
15	ATOM 128	CB ASP 29		61. 370	1. 00 34. 13
	ATOM 129				
			32. 012 -21. 580		
		OD2 ASP 29			
	ATOM 132	C ASP 29			
20		0 ASP 29			
			34. 912 -17. 403		
			35. 274 -16. 016		
	ATOM 136	CB LEU 30	36. 101 -15. 901	62. 964	1. 00 23. 67
25	ATOM 137	CG LEU 30	35. 435 -16. 298	64. 289	1. 00 23. 54
25	ATOM 138	CD1 LEU 30	36. 314 -15. 823	65. 433	1. 00 22. 55
	ATOM 139	CD2 LEU 30	34. 038 -15. 674	64. 418	1. 00 24. 55
	ATOM 140 ATOM 141	C LEU 30	36. 032 -15. 390	60. 499	1. 00 29. 80
		0 LEU 30	35. 775 -14. 242		1. 00 29. 56
	ATOM 142	N LYS 31	36. 963 -16. 131	59. 906	1. 00 29. 13

- 21 -

					- L		
	ATOM 143	CA LYS	31	37. 704 -	15. 609	58. 770	1. 00 30. 46
	ATOM 144	CB LYS	31	38. 823 -	16. 574	58. 365	1. 00 32. 24
	ATOM 145	CG LYS	31	39. 970 -1	16. 653	59. 374	1. 00 36. 80
	ATOM 146	CD LYS	31	41. 091 -1	17. 577	58. 885	1. 00 40. 49
. 5	ATOM 147	CE LYS	31	42. 291 -1	7. 534	59. 829	1. 00 44. 52
	ATOM 148	NZ LYS	31	43. 443 -1	8. 369	59. 363	1. 00 47. 22
	ATOM 149	C LYS	31	36. 746 -1	5. 391	57. 599	1. 00 31. 28
	ATOM 150	0 LYS	31	36. 918 -1	4. 464	56. 816	1. 00 32. 79
	ATOM 151	N LYS	32	35. 730 -1	6. 243	57. 486	1. 00 30. 96
10	ATOM 152	CA LYS	32	34. 758 -1	6. 116	56. 406	1. 00 32. 66
	ATOM 153	CB LYS	32	33. 868 -1	7. 364	56. 324	1. 00 32. 27
	ATOM 154	CG LYS	32	32. 921 -1	7. 362	55. 135	1. 00 34. 72
	ATOM 155	CD LYS	32	32. 203 -1	8. 701	54. 965	1. 00 39. 55
							1. 00 42. 65
15					0. 026	53. 417	1. 00 42. 72
		C LYS					1. 00 32. 63
				33. 607 -14			
							1. 00 30. 17
				32. 654 -13			
20				32. 154 -13			
				31. 519 -12			
				31. 130 -14		59. 815	1. 00 32. 03
	ATOM 165	C VAL		33. 538 -12		57. 908	1. 00 26. 62
	ATOM 166	0 VAL				57. 338	1. 00 22. 25
25	ATOM 167	N MET		34. 802 -12		58. 317	1. 00 25. 50
	ATOM 168	CA MET		35. 750 -11	. 226	58. 142	1. 00 27. 22
	ATOM 169	CB MET		37. 108 -11.		58. 748	1. 00 24. 41
	ATOM 170	CG MET		38. 150 -10.	. 512	58. 537	1. 00 26. 32
	ATOM 171	SD MET :	34	39. 793 -11.	. 040	59. 074	1. 00 32. 95

- 22 -

	ATOM 172	CE MET 34	40. 162 -12. 313	57. 821	1. 00 30. 64
	ATOM 173	C MET 34	35. 927 -10. 879	56. 665	1.00 29.30
	ATOM 174	0 MET 34	35. 850 -9. 717	56. 286	1. 00 29. 01
	ATOM 175	N ARG 35	36. 164 -11. 883	55. 827	1. 00 30. 96
5	ATOM 176	CA ARG 35	36. 340 -11. 621	54. 403	1. 00 32. 99
	ATOM 177	CB ARG 35	36. 664 -12. 913	53. 641	1. 00 34. 85
	ATOM 178	CG ARG 35	37. 948 -13. 585	54. 081	1. 00 38. 82
	ATOM 179	CD ARG 35	38. 377 -14. 682	53. 126	1. 00 43. 22
	ATOM 180	NE ARG 35	38. 963 -15. 791	53. 869	1. 00 47. 35
10	ATOM 181	CZ ARG 35	38. 260 -16. 801	54. 366	1. 00 47. 12
	ATOM 182	NH1 ARG 35	36. 946 -16. 850	54. 186	1. 00 48. 27
	ATOM 183	NH2 ARG 35	38. 868 -17. 746	55. 064	1. 00 50. 91
	ATOM 184	C ARG 35	35. 090 -10. 997	53. 797	1. 00 33. 31
	ATOM 185	0 ARG 35	35. 178 -10. 089	52. 966	1. 00 33. 49
15	ATOM 186	N ARG 36	33. 926 -11. 493	54. 206	1. 00 32. 00
	ATOM 187	CA ARG 36	32. 673 -10. 982	53. 675	1. 00 31. 76
	ATOM 188	CB ARG 36	31. 511 -11. 857	54. 158	1. 00 29. 95
	ATOM 189	CG ARG 36	30. 191 -11. 607	53. 441	1. 00 31. 90
	ATOM 190	CD ARG 36	30. 386 -11. 434	51. 929	1. 00 33. 67
20	ATOM 191	NE ARG 36	29. 114 -11. 263	51. 230	1. 00 38. 02
	ATOM 192	CZ ARG 36	28. 229 -12. 238	51.018	1. 00 40. 67
	ATOM 193	NH1 ARG 36	28. 477 -13. 471	51. 447	1. 00 40. 50
	ATOM 194	NH2 ARG 36	27. 087 -11. 979	50. 382	1. 00 41. 02
	ATOM 195	C ARG 36	32. 459 -9. 510	54.060	1. 00 31. 54
25	ATOM 196	0 ARG 36	31. 959 -8. 718	53. 260	1. 00 30. 75
	ATOM 197	N MET 37	32. 856 -9. 147	55. 276	1. 00 30. 98
	ATOM 198	CA MET 37	32. 720 -7. 774	55. 742	1. 00 30. 21
	ATOM 199	CB MET 37	33. 134 -7. 663	57. 208	1. 00 27. 60
	ATOM 200	CG MET 37	33. 102 -6. 240	57. 761	1. 00 27. 98

- 23 -

	ATOM 201	SD MET	37	31. 418	-5. 613	57. 981	1. 00 30. 18
	ATOM 202	CE MET	37	31. 115	-6. 153	59. 683	1. 00 28. 30
	ATOM 203	C MET	37	33. 598	-6. 852	54. 892	1. 00 30. 32
	ATOM 204	0 MET	37	33. 162	-5. 782	54. 479	1. 00 31. 66
5	ATOM 205	N GLN	38	34. 835	-7. 272	54. 642	1. 00 30. 60
	ATOM 206	CA GLN	38	35. 774	-6. 500	53. 829	1. 00 31. 68
	ATOM 207	CB GLN	38	37. 126	-7. 206	53. 750	1. 00 32. 18
	ATOM 208	CG GLN	38	38. 051	-6. 918	54. 898	1. 00 36. 36
	ATOM 209	CD GLN	38	39. 318	-7. 743	54. 831	1. 00 37. 65
10	ATOM 210	OE1 GLN	38	39. 352	-8. 890	55. 275	1. 00 41. 25
	ATOM 211	NE2 GLN	38	40. 362	-7. 170	54. 258	1. 00 39. 99
	ATOM 212	C GLN	38	35. 241	-6. 33 ⁷	52. 419	1. 00 32. 20
	ATOM 213	O GLN	38	35. 471	-5. 318	51.769	1. 00 32. 83
	ATOM 214	N LYS	39	34. 541	-7. 360	51. 947	1. 00 31. 94
15	ATOM 215	CA LYS	39	33. 965	-7. 343	50. 611	1. 00 33. 33
	ATOM 216	CB LYS	39	33. 515	-8. 754	50. 220	1. 00 34. 32
	ATOM 217	CG LYS	39	33. 757	-9. 105	48. 756	1. 00 41. 05
	ATOM 218	CD LYS 3		32. 994	-8. 183	47. 799	1. 00 43. 55
	ATOM 219	CE LYS 3		33. 319	-8. 502	46. 336	1. 00 47. 30
20	ATOM 220	NZ LYS 3		32. 587		45. 363	1. 00 48. 42
	ATOM 221	C LYS 3			-6. 378		1. 00 32. 37
	ATOM 222	0 LYS 3				49. 564	1. 00 33. 02
	ATOM 223	N GLU 4			-6. 342	51.613	1. 00 31. 82
	ATOM 224	CA GLU 4			-5. 442	51. 632	1. 00 33. 50
25	ATOM 225	CB GLU 4			-5. 831	52. 737	1. 00 34. 39
	ATOM 226	CG GLU 4		29. 159	-7. 167	52. 507	1. 00 36. 32
	ATOM 227	CD GLU 4			-7. 293	51. 112	1. 00 38. 53
	ATOM 228	OE1 GLU 4		27. 878	-6. 350	50. 660	1. 00 39. 61
	ATOM 229	OE2 GLU 4	0	28. 770	-8. 342	50. 469	1. 00 38. 22

- 24 -

	ATOM 230	C	GLU 40	31. 309	-4. 009	51. 833	1. 00 33. 20
							1. 00 33. 12
	ATOM 232						1. 00 33. 18
	ATOM 233	CA	MET 41	32. 957	-2. 515	52. 783	1. 00 34. 90
5	ATOM 234	CB		34. 173			
	ATOM 235	CG	MET 41	33. 838	-2. 927	55. 154	1. 00 34. 83
	ATOM 236	SD	MET 41	35. 327	-2. 987	56. 170	1. 00 34. 41
	ATOM 237	CE	MET 41	35. 747	-1. 216	56. 267	1. 00 36. 69
	ATOM 238	C	MET 41	33. 368	-1. 941	51. 430	1. 00 36. 56
10	ATOM 239	0	MET 41	33. 058	-0. 792	51. 108	1. 00 34. 98
	ATOM 240	N	ASP 42	34. 054	-2. 758	50. 639	1. 00 36. 46
	ATOM 241	CA	ASP 42	34. 508	-2. 346	49. 317	1. 00 38. 91
	ATOM 242	CB	ASP 42	35. 318	-3. 470	48. 674	1. 00 42. 09
		CG	ASP 42	36. 130	-2. 999	47. 490	1. 00 43. 40
15	ATOM 244	OD1	ASP 42	37. 081	-2. 216	47. 705	1. 00 45. 67
	ATOM 245	OD2	ASP 42	35. 817	-3. 411	46. 350	1. 00 42. 51
	ATOM 246		ASP 42				1. 00 38. 61
	ATOM 247						1. 00 39. 03
	ATOM 248						1. 00 36. 74
20							1. 00 33. 90
							1. 00 33. 80
							1. 00 34. 68
	ATOM 252	CD	ARG 43		-6. 163	47.614	1. 00 34. 89
0.5	ATOM 253		ARG 43		-5. 997	47. 906	1. 00 35. 11
25	ATOM 254		ARG 43		-5. 729		1. 00 37. 42
	ATOM 255		ARG 43		-5. 589	45. 719	1. 00 39. 98
	ATOM 256		ARG 43	26. 028			1. 00 36. 46
	ATOM 257		ARG 43		-1. 229	48. 193	1. 00 34. 64
	ATOM 258	0	ARG 43	29. 712	-0. 550	47. 357	1. 00 35. 89

- 25 -

				•		•
	ATOM 259	N GLY 44	30. 382	-0. 892	49. 475	1. 00 31. 21
	ATOM 260	CA GLY 44	29. 744	0. 318	49. 940	1. 00 31. 87
	ATOM 261	C GLY 44	30. 463	1. 579	49. 490	1. 00 33. 29
	ATOM 262	0 GLY 44	29. 854	2. 645	49. 397	1. 00 31. 49
5	ATOM 263	N LEU 45	31. 756	1. 455	49. 200	1. 00 31. 44
	ATOM 264	CA LEU 45	32. 563	2. 595	48. 778	1. 00 32. 24
	ATOM 265	CB LEU 45	34. 033	2. 358	49. 129	1. 00 27. 43
	ATOM 266	CG LEU 45	34. 415	2. 487	50. 601	1. 00 29. 59
	ATOM 267	CD1 LEU 45	35. 832	1. 992	50. 827	1. 00 30. 31
10	ATOM 268	CD2 LEU 45	34. 281	3. 941	51. 022	1. 00 30. 45
	ATOM 269	C LEU 45	32. 455	2. 933	47. 294	1. 00 33. 00
	ATOM 270	0 LEU 45	32. 537	4. 098	46. 924	1. 00 32. 78
	ATOM 271	N ARG 46	32. 277	1. 911	46. 460	1. 00 34. 18
	ATOM 272	CA ARG 46	32. 179	2. 074	45. 009	1. 00 34. 76
15	ATOM 273	CB ARG 46	32. 320	0. 714	44. 312	1. 00 36. 33
	ATOM 274	CG ARG 46	33. 519	-0. 119	44. 756	1. 00 39. 02
	ATOM 275	CD ARG 46	34. 794	0. 267	44. 035	1. 00 43. 71
	ATOM 276	NE ARG 46	35. 913	-0. 593	44. 431	1. 00 48. 60
		CZ ARG 46				
20		NH1 ARG 46				
		NH2 ARG 46				
	ATOM 280	C ARG 46	30. 856	2. 710	44. 587	1. 00 34. 95
	ATOM 281	0 ARG 46	29. 785	2. 361	45. 091	1. 00 32. 49
	ATOM 282	N LEU 47	30. 935	3. 638	43. 644	1. 00 34. 90
25	ATOM 283	CA LEU 47	29. 741	4. 311	43. 162	1. 00 34. 40
	ATOM 284	CB LEU 47	30. 100	5. 297	42. 049	1. 00 34. 27
	ATOM 285	CG LEU 47	28. 929	6. 085	41. 447	1. 00 33. 85
	ATOM 286	CD1 LEU 47	28. 445	7. 144	42. 442	1. 00 31. 01
	ATOM 287	CD2 LEU 47	29. 381	6. 741	40. 144	1. 00 31. 08

- 26 -ATOM 288 C LEU 47 28. 727 3. 316 42. 625 1. 00 34. 52 ATOM 289 0 LEU 47 27. 535 3. 411 42. 922 1. 00 32. 39 ATOM 290 N GLU 48 29. 202 2. 353 41.841 1.00 34.67 ATOM 291 **GLU 48** CA 28. 301 1. 378 41. 242 1. 00 36. 59 5 ATOM 292 CB**GLU 48** 29. 010 0. 589 40. 134 1. 00 38. 07 ATOM 293 GLU 48 CG 30. 205 -0.24840. 562 1.00 39.26 ATOM 294 CD **GLU 48** 31. 499 0.534 40. 580 1.00 40.85 ATOM 295 0E1 GLU 48 32. 571 -0.10640. 497 1.00 44.46 ATOM 296 0E2 GLU 48 31. 454 1. 779 40. 682 1. 00 38. 21 10 ATOM 297 C **GLU 48** 27. 600 0.406 42. 188 1.00 37.46 ATOM 298 **GLU 48** 0 26. 654 -0.26841.778 1. 00 37. 82 ATOM 299 N THR 49 28. 037 0.321 43. 441 1. 00 36. 85 ATOM 300 THR 49 CA 27. 371 -0.59144. 370 1.00 36.40 ATOM 301 THR 49 CB 28. 212 -1. 855 44. 645 1. 00 34. 37 ATOM 302 15 OG1 THR 49 29. 554 -1.48044. 969 1. 00 33. 33 ATOM 303 CG2 THR 49 28. 215 -2.77043. 437 1.00 32.44 ATOM 304 C THR 49 27. 032 0.037 45. 703 1.00 38.54 ATOM 305 THR 49 0 26. 536 -0.64746. 599 1. 00 40. 86 ATOM 306 N HIS 50 27. 272 1. 335 45. 842 1. 00 38. 89 ATOM 307 20 CA HIS 50 26. 994 1. 990 47. 115 1.00 41.74 ATOM 308 CBHIS 50 27. 548 3. 422 47. 130 1. 00 44. 04 ATOM 309 CG HIS 50 26.666 4. 426 46. 451 1.00 46.35 ATOM 310 CD2 HIS 50 25. 795 5. 331 46. 959 1.00 48.65 ATOM 311 ND1 HIS 50 26.607 4. 565 45. 081 1. 00 47. 18 ATOM 312 25 CE1 HIS 50 25. 738 5. 512 44. 772 1. 00 48. 13 ATOM 313 NE2 HIS 50 25. 231 5. 993 45. 894 1. 00 49. 20 ATOM 314 HIS 50 C 25. 512 2. 030 47. 466 1. 00 42. 66 ATOM 315 0 HIS 50 25. 153 2. 046 48. 642 1.00 42.85 ATOM 316 N GLU 51 24. 657 2. 034 46. 447 1. 00 43. 12

5

10

15

20

25

ATOM 344

ATOM 345

0

N

SER 54

VAL 55

24. 682

26. 485

-2.147

-2.684

54. 934

53. 724

1. 00 29. 57

1. 00 28. 44

- 27 -ATOM 317 CA GLU 51 23. 213 2. 120 46. 645 1. 00 44. 07 ATOM 318 CB GLU 51 22. 555 2. 574 45. 329 1. 00 44. 83 ATOM 319 CG GLU 51 21.051 2. 824 45. 399 1. 00 46. 43 ATOM 320 CDGLU 51 20. 531 3. 691 44. 243 1. 00 48. 89 ATOM 321 0E1 GLU 51 20.822 3. 385 43.064 1. 00 46. 31 0E2 GLU 51 ATOM 322 19.821 4. 683 44. 522 1. 00 50. 83 ATOM 323 0.848 С GLU 51 22. 543 47. 179 1. 00 44, 27 ATOM 324 0 GLU 51 21.630 0. 925 48. 000 1. 00 45. 14 ATOM 325 GLU 52 N 22. 991 -0.31746. 723 1. 00 44. 47 ATOM 326 CA GLU 52 22. 422 -1.58547. 178 1. 00 44. 81 ATOM 327 CBGLU 52 22. 199 -2.52145. 988 1. 00 47. 15 ATOM 328 CG GLU 52 23. 485 -2.92045. 264 1. 00 53. 66 ATOM 329 CD GLU 52 23.698 -2.16443.951 1. 00 57. 63 ATOM 330 0E1 GLU 52 23.646 -0.90943. 953 1.00 55.90 ATOM 331 0E2 GLU 52 23. 925 -2.83542. 917 1. 00 57. 72 ATOM 332 C GLU 52 23. 313 -2.29748. 206 1. 00 42. 49 ATOM 333 0 GLU 52 23. 052 -3.44148. 575 1. 00 43. 45 ATOM 334 ALA 53 N 24. 362 -1.62648.666 1. 00 39. 72 ATOM 335 ALA 53 CA 25. 285 -2.22449. 628 1. 00 37. 01 ATOM 336 ALA 53 CB 26. 589 -1.43849. 645 1. 00 35. 23 ATOM 337 C ALA 53 24. 700 -2.29151. 038 1. 00 35. 27 ATOM 338 0 ALA 53 24. 125 -1.32151. 528 1. 00 34. 63 ATOM 339 N SER 54 24. 845 -3.43951. 689 1. 00 32. 88 ATOM 340 CA SER 54 24. 339 -3.59453. 052 1. 00 32. 06 ATOM 341 CBSER 54 24. 397 -5.06253. 476 1. 00 30. 23 ATOM 342 0G SER 54 25. 694 -5.57653. 261 1. 00 35. 67 ATOM 343 C SER 54 25. 188 -2.74153. 990 1. 00 28. 49

- 28 -

	ATOM 34	16 CA	VAL 5	5 27. 386	-1. 876	54. 535	1. 00	28. 63
	ATOM 34	17 CB	VAL 5	5 28. 737	-2. 594	54. 726	1. 00	27. 89
	ATOM 34	18 CG	1 VAL 5	5 29.660	-1. 766	55. 599	1. 00	26. 89
	ATOM 34	9 CG:	VAL 5	5 28. 497	-3. 957	55. 365	1. 00	27. 94
5	ATOM 35	0 C	VAL 5	5 27. 559	-0. 551	53. 788	1. 00	29. 80
	ATOM 35	1 0	VAL 5	5 28. 367	-0. 430	52. 868	1. 00	28. 14
	ATOM 35	2 N	LYS 5	6 26. 787	0. 446	54. 205	1. 00	31. 68
	ATOM 35	3 CA	LYS 5	3 26. 788	1. 750	53. 550	1. 00	30. 06
	ATOM 35	4 CB	LYS 5	25. 7 27	2. 628	54. 203	1. 00	29. 96
10	ATOM 35	5 CG	LYS 5	3 24. 312	2. 124	53. 933	1. 00	29. 47
	ATOM 35	6 CD	LYS 5	3 23. 279	2. 935	54. 689	1. 00	31. 68
	ATOM 35	7 CE	LYS 5	3 23. 417	2. 767	56. 196	1. 00	30. 78
	ATOM 35	8 NZ	LYS 5	3 22. 911	1. 428	56. 648	1. 00	36. 66
	ATOM 35	9 C	LYS 50	3 28. 087	2. 535	53. 374	1. 00	28. 33
15	ATOM 36	0 0	LYS 56	3 28. 222	3. 256	52. 388	1. 00	30. 83
	ATOM 36	1 N	MET 57	29. 044	2. 410	54. 287	1. 00	25. 97
	ATOM 36	2 CA	MET 57	30. 299	3. 149	54. 137	1. 00	23. 92
	ATOM 36	3 CB	MET 57	31. 098	2. 577	52. 964	1. 00	24. 05
	ATOM 36	4 CG	MET 57	31. 383	1. 078	53. 075	1. 00	27. 54
20	ATOM 36		MET 57	32. 303	0. 659	54. 580	1. 00	26. 48
	ATOM 36		MET 57		1. 127	54. 113	1. 00	21. 76
	ATOM 36		MET 57		4. 643	53. 887	1. 00	
	ATOM 36		MET 57		5. 237	52. 903	1. 00	24. 39
	ATOM 36		LEU 58			54. 803	1. 00	26. 42
25	ATOM 37		LEU 58			54. 713		
	ATOM 37		LEU 58			55. 677	1. 00	24. 27
	ATOM 37		LEU 58		6. 043	55. 386	1. 00	30. 26
	ATOM 37		LEU 58			56. 473		28. 51
•	ATOM 374	4 CD2	LEU 58	25. 874	6. 430	54. 016	1. 00	31. 10

- 29 -ATOM 375 С LEU 58 29. 932 7.665 54. 965 1. 00 25. 48 ATOM 376 0 LEU 58 30. 495 7. 742 56. 053 1. 00 25. 30 ATOM 377 N PRO 59 30. 242 8. 476 53. 946 1.00 24.56 ATOM 378 CD PRO 59 29. 764 8. 341 52. 557 1. 00 24. 76 ATOM 379 CA PRO 59 31. 262 9. 528 54. 063 1. 00 26. 48 ATOM 380 CB PRO 59 31. 217 10. 196 52. 686 1. 00 26. 76 ATOM 381 CG PRO 59 30. 865 9. 036 51. 769 1. 00 26. 41 ATOM 382 C PRO 59 30. 820 10. 478 55. 190 1. 00 26. 49 ATOM 383 0 PRO 59 29.656 10.863 55. 239 1. 00 28. 20 ATOM 384 10 N THR 60 31. 728 10.845 56.092 1. 00 27. 28 ATOM 385 CA THR 60 31. 372 11. 720 57. 220 1. 00 27. 77 ATOM 386 CBTHR 60 31. 994 11. 217 58. 544 1. 00 24. 87 ATOM 387 0G1 THR 60 33. 400 11. 482 58. 536 1. 00 22. 66 ATOM 388 CG2 THR 60 31.767 9. 713 58. 726 1.00 28.80 ATOM 389 15 C THR 60 31.800 13. 196 57. 085 1. 00 30. 72 ATOM 390 THR 60 0 31. 405 14. 041 57. 897 1. 00 29. 67 ATOM 391 TYR 61 N 32. 623 13. 485 56. 084 1. 00 30. 13 ATOM 392 TYR 61 CA 33. 144 14. 824 55. 844 1. 00 33. 87 ATOM 393 TYR 61 CB 32. 005 15. 837 55. 684 1. 00 32. 96 ATOM 394 20 CG TYR 61 31. 409 15. 730 54. 298 1. 00 35. 37 ATOM 395 CD1 TYR 61 32. 084 16. 251 53. 192 1.00 36.43 ATOM 396 CE1 TYR 61 31.621 16. 036 51.890 1.00 34.05 ATOM 397 CD2 TYR 61 30. 244 14. 995 54.068 1. 00 34. 99 ATOM 398 CE2 TYR 61 29. 778 14. 772 52. 768 1. 00 33. 96 ATOM 399 25 CZTYR 61 30. 475 15. 294 51. 689 1. 00 33. 72 ATOM 400 OH TYR 61 30. 039 15.064 50. 402 1. 00 37. 69 ATOM 401 C TYR 61 34. 156 15. 264 56. 890 1. 00 34. 78 ATOM 402 TYR 61 0 34. 712 16. 357 56.806 1.00 34.09 ATOM 403 N VAL 62 34. 407

14. 407

57. 875

1. 00 36. 47

- 30 -

			• •		
ATOM 404	CA VAL 62	35. 426	14. 713	58. 869	1. 00 37. 40
ATOM 405	CB VAL 62	35. 283	13. 825	60. 116	1. 00 37. 42
ATOM 406	CG1 VAL 62	36. 410	14. 107	61. 089	1. 00 32. 97
ATOM 407	CG2 VAL 62	33. 937	14. 073	60. 774	1. 00 36. 34
ATOM 408	C VAL 62	36. 695	14. 335	58. 104	1. 00 41. 04
ATOM 409	0 VAL 62	36. 944	13. 153	57. 865	1. 00 40. 85
ATOM 410	N ARG 63	37. 475	15. 331	57. 692	1. 00 43. 48
ATOM 411	CA ARG 63	38. 682	15. 070	56. 909	1. 00 48. 27
ATOM, 412	CB ARG 63	38. 843	16. 126	55. 814	1. 00 47. 25
ATOM 413	CG ARG 63	37. 735	16. 112	54. 783	1. 00 49. 66
ATOM 414	CD ARG 63	37. 648	17. 447	54.061	1. 00 50. 62
ATOM 415	NE ARG 63	36. 482	17. 523	53. 185	1. 00 51. 28
ATOM 416	CZ ARG 63	36. 405	16. 961	51.982	1. 00 50. 52
		35. 295	17. 089	51. 268	1. 00 49. 50
		42. 760	15. 583	58. 398	1. 00 65. 69
			16. 584	57. 703	1. 00 65. 99
			15. 530	59. 714	1. 00 71. 92
		43. 402	16. 649	60. 545	1. 00 77. 78
		44. 529	16. 194	61. 524	1. 00 78. 35
		44. 959	17. 309	62. 317	1. 00 79. 07
		45. 714	15. 611	60. 757	1. 00 79. 19
ATOM 432	C THR 65	43. 839	17. 925	59. 817	1. 00 80. 90
	ATOM 405 ATOM 406 ATOM 407 ATOM 408 ATOM 409 ATOM 410 ATOM 411 ATOM 412 ATOM 413 ATOM 415 ATOM 416 ATOM 417 ATOM 418 ATOM 419 ATOM 420 ATOM 421 ATOM 422 ATOM 423 ATOM 424	ATOM 405 CB VAL 62 ATOM 406 CG1 VAL 62 ATOM 407 CG2 VAL 62 ATOM 408 C VAL 62 ATOM 410 N ARG 63 ATOM 411 CA ARG 63 ATOM 412 CB ARG 63 ATOM 413 CG ARG 63 ATOM 415 NE ARG 63 ATOM 416 CZ ARG 63 ATOM 417 NH1 ARG 63 ATOM 418 NH2 ARG 63 ATOM 419 C ARG 63 ATOM 420 O ARG 63 ATOM 421 N SER 64 ATOM 422 CA SER 64 ATOM 423 CB SER 64 ATOM 425 C SER 64	ATOM 405 CB VAL 62 35. 283 ATOM 406 CG1 VAL 62 36. 410 ATOM 407 CG2 VAL 62 33. 937 ATOM 408 C VAL 62 36. 695 ATOM 410 N ARG 63 37. 475 ATOM 411 CA ARG 63 38. 843 ATOM 412 CB ARG 63 37. 735 ATOM 414 CD ARG 63 37. 648 ATOM 415 NE ARG 63 36. 482 ATOM 416 CZ ARG 63 36. 482 ATOM 417 NH1 ARG 63 37. 430 ATOM 418 NH2 ARG 63 37. 430 ATOM 419 C ARG 63 39. 952 ATOM 420 O ARG 63 39. 952 ATOM 421 N SER 64 40. 987 ATOM 422 CA SER 64 42. 276 ATOM 423 CB SER 64 42. 760 ATOM 424 OG SER 64 42. 952 ATOM 426 O SER 64 42. 952 ATOM 427 N THR 65 42. 961 ATOM 428 CA THR 65 44. 959 ATOM 430 OG1 THR 65 44. 959 ATOM 430 OG1 THR 65 44. 959 ATOM 430 OG1 THR 65 44. 959	ATOM 405 CB VAL 62 35. 283 13. 825 ATOM 406 CG1 VAL 62 36. 410 14. 107 ATOM 407 CG2 VAL 62 36. 695 14. 335 ATOM 409 0 VAL 62 36. 695 14. 335 ATOM 410 N ARG 63 37. 475 15. 331 ATOM 411 CA ARG 63 38. 682 15. 070 ATOM 412 CB ARG 63 38. 843 16. 126 ATOM 413 CG ARG 63 37. 735 16. 112 ATOM 414 CD ARG 63 37. 648 17. 447 ATOM 415 NE ARG 63 36. 482 17. 523 ATOM 416 CZ ARG 63 36. 482 17. 523 ATOM 417 NH1 ARG 63 37. 430 16. 274 ATOM 418 NH2 ARG 63 35. 295 17. 089 ATOM 420 O ARG 63 39. 952 15. 006 ATOM 421 N SER 64 40. 987 14. 431 ATOM 422 CA SER 64 42. 276 14. 280 ATOM 423 CB SER 64 42. 276 14. 280 ATOM 424 OG SER 64 42. 276 14. 280 ATOM 425 C SER 64 42. 276 14. 280 ATOM 426 O SER 64 42. 760 15. 583 ATOM 427 N THR 65 42. 961 15. 530 ATOM 428 CA THR 65 42. 961 15. 530 ATOM 429 CB THR 65 43. 402 16. 649 ATOM 429 CB THR 65 44. 529 16. 194 ATOM 430 OG1 THR 65 44. 959 17. 309 ATOM 431 CG2 THR 65 44. 959 17. 309	ATOM 405 CB VAL 62 35. 283 13. 825 60. 116 ATOM 406 CG1 VAL 62 36. 410 14. 107 61. 089 ATOM 407 CG2 VAL 62 36. 695 14. 335 58. 104 ATOM 408 C VAL 62 36. 695 14. 335 57. 865 ATOM 410 N ARG 63 37. 475 15. 331 57. 692 ATOM 411 CA ARG 63 38. 682 15. 070 56. 909 ATOM 412 CB ARG 63 38. 843 16. 126 55. 814 ATOM 413 CG ARG 63 37. 648 17. 447 54. 061 ATOM 414 CD ARG 63 37. 648 17. 447 54. 061 ATOM 415 NE ARG 63 36. 405 16. 961 51. 982 ATOM 417 NH1 ARG 63 37. 430 16. 274 51. 492 ATOM 418 NH2 ARG 63 39. 952 15. 006 57. 728 ATOM 420 O ARG 63 39. 952 15. 006 57. 728 ATOM 421 N SER 64 40. 987 14. 431 57. 128 ATOM 422 CA SER 64 42. 276 14. 280 57. 783 ATOM 423 CB SER 64 42. 276 14. 280 57. 783 ATOM 424 OG SER 64 42. 952 16. 584 57. 703 ATOM 425 C SER 64 42. 952 16. 584 57. 703 ATOM 426 O SER 64 42. 952 16. 584 57. 703 ATOM 427 N THR 65 42. 961 15. 530 59. 714 ATOM 428 CA THR 65 44. 959 17. 309 62. 317 ATOM 430 OG1 THR 65 44. 959 17. 309 62. 317 ATOM 431 CG2 THR 65 44. 959 17. 309 62. 317

- 31 -

					01		
	ATOM 433	0	THR 65	45. 033	18. 188	59. 654	1. 00 80. 93
	ATOM 434	N	PRO 66	42. 863	18. 732	59. 364	1. 00 83. 72
	ATOM 435	CD	PRO 66	41. 410	18. 469	59. 372	1. 00 84. 56
	ATOM 436	CA	PRO 66	43. 162	19. 983	58. 661	1. 00 85. 58
5	ATOM 437	CB	PRO 66	41. 871	20. 254	57. 897	1. 00 85. 53
	ATOM 438	CG	PRO 66	40. 827	19. 776	58. 864	1. 00 85. 36
	ATOM 439	C	PRO 66	43. 468	21. 057	59. 710	1. 00 87. 07
	ATOM 440	0	PRO 66	42. 581	21. 812	60. 119	1. 00 87. 87
	ATOM 441	N	GLU 67	44. 726	21. 109	60. 144	1. 00 87. 71
10	ATOM 442	CA	GLU 67	45. 162	22. 055	61. 169	1. 00 87. 66
	ATOM 443	CB	GLU 67	46. 683	22. 238	61. 110	1. 00 88. 42
	ATOM 444	CG	GLU 67	47. 283	22. 824	62. 384	1. 00 89. 15
	ATOM 445	CD	GLU 67	46. 871	22. 058	63. 636	1. 00 89. 71
	ATOM 446	0E1	GLU 67	45. 689	22. 150	64. 037	1. 00 89. 95
15	ATOM 447	0E2	GLU 67	47. 728	21. 359	64. 217	1. 00 89. 51
	ATOM 448	C	GLU 67	44. 463	23. 413	61.095	1. 00 86. 97
	ATOM 449	0	GLU 67	44. 203	23. 944	60. 013	1. 00 86. 95
	ATOM 450	N	GLY 68	44. 160	23. 962	62. 266	1. 00 85. 72
	ATOM 451	CA	GLY 68	43. 475	25. 237	62. 344	1. 00 83. 56
20	ATOM 452						1. 00 82. 01
	ATOM 453						1. 00 82. 39
	ATOM 454	N	SER 69	42. 530	25. 038	64. 555	1. 00 79. 39
	ATOM 455	CA	SER 69	41. 469	24. 869	65. 537	1. 00 77. 31
	ATOM 456	CB	SER 69	41. 855	23. 784	66. 542	1. 00 77. 69
25	ATOM 457	0G	SER 69	40. 877	23. 677	67. 561	1. 00 78. 20
	ATOM 458	C	SER 69	41. 118	26. 143	66. 294	1. 00 75. 21
	ATOM 459	0	SER 69	41. 993	26. 857	66. 784	1. 00 74. 23
	ATOM 460	N	GLU 70	39. 822	26. 413	66. 386	1. 00 73. 26
	ATOM 461	CA	GLU 70	39. 328	27. 581	67. 096	1. 00 71. 89

- 32 -

	ATOM 462	CB GLU 70	38. 004	28. 042	66. 482	1. 00 73. 40
	ATOM 463	CG GLU 70	37. 897	29. 544	66. 297	1. 00 77. 84
	ATOM 464	CD GLU 70	38. 900	30. 073	65. 285	1. 00 80. 27
	ATOM 465	OE1 GLU 70	38. 763	29. 757	64. 082	1. 00 81. 41
5	ATOM 466	0E2 GLU 70	39. 830	30. 801	65. 692	1. 00 81. 33
	ATOM 467	C GLU 70	39. 107	27. 144	68. 543	1. 00 69. 48
	ATOM 468	0 GLU 70	38. 409	26. 163	68. 789	1. 00 69. 73
	ATOM 469	N VAL 71	39. 701	27. 853	69. 499	1. 00 65. 92
	ATOM 470	CA VAL 71	39. 536	27. 490	70. 904	1. 00 62. 64
10	ATOM 471	CB VAL 71	40. 760	27. 909	71. 746	1. 00 61. 59
	ATOM 472	CG1 VAL 71	41. 993	27. 156	71. <u>2</u> 75	. 1. 00 61. 91
	ATOM 473	CG2 VAL 71	40. 979	29. 406	71.642	1. 00 61. 78
	ATOM 474	C VAL 71	38. 278	28. 105	71. 510	1. 00 61. 05
	ATOM 475	0 VAL 71	37. 608	28. 919	70. 877	1. 00 61. 02
15	ATOM 476	N GLY 72	37. 952	27. 700	72. 734	1. 00 59. 60
	ATOM 477	CA GLY 72	36. 769	28. 225	73. 390	1. 00 58. 10
	ATOM 478	C GLY 72	35. 841	27. 169	73. 967	1. 00 57. 74
	ATOM 479	0 GLY 72	36. 178	25. 982	74. 006	1. 00 58. 27
	ATOM 480	N ASP 73				1. 00 55. 55
20						1. 00 54. 21
		CB ASP 73				
		CG ASP 73	33. 846	27. 496	77. 424	1. 00 59. 78
	ATOM 484	OD1 ASP 73	35. 046	27. 830	77. 299	1. 00 61. 37
	ATOM 485	OD2 ASP 73	33. 324	27. 225	78. 529	1. 00 60. 87
25	ATOM 486	C ASP 73	32. 599	26. 310	73. 994	1. 00 52. 36
	ATOM 487	0 ASP 73	31. 936	27. 161	73. 406	1. 00 52. 44
	ATOM 488	N PHE 74	32. 424	25. 005	73. 800	1. 00 49. 73
	ATOM 489	CA PHE 74	31. 412	24. 519	72. 866	1. 00 46. 98
	ATOM 490	CB PHE 74	32. 019	23. 571	71. 837	1. 00 46. 41

- 33 -

	ATOM 491	CG PHE 74	33. 117	24. 179	71. 030	1. 00 47. 09
	ATOM 492	CD1 PHE 74	34. 335	24. 492	71. 618	1. 00 47. 62
	ATOM 493	CD2 PHE 74	32. 930	24. 452	69. 681	1. 00 47. 01
	ATOM 494	CE1 PHE 74	35. 359	25. 071	70. 874	1. 00 49. 47
5	ATOM 495	CE2 PHE 74	33. 943	25. 031	68. 924	1. 00 48. 12
	ATOM 496	CZ PHE 74	35. 161	25. 342	69. 520	1. 00 48. 82
	ATOM 497	C PHE 74	30. 316	23. 783	73. 601	1. 00 45. 68
	ATOM 498	0 PHE 74	30. 485	23. 382	74. 745	1. 00 46. 35
	ATOM 499	N LEU 75	29. 185	23. 615	72. 932	1. 00 45. 12
10	ATOM 500	CA LEU 75	28. 064	22. 895	73. 501	1. 00 44. 80
	ATOM 501	CB LEU 75	26. 769	23. 686	73. 333	1. 00 43. 29
	ATOM 502	CG LEU 75	25. 535	23. 023	73. 959	1. 00 45. 05
	ATOM 503	CD1 LEU 75	25. 529	23. 278	75. 466	1. 00 41. 53
	ATOM 504	CD2 LEU 75	24. 259	23. 571	73. 326	1. 00 43. 45
15	ATOM 505	C LEU 75	27. 971	21. 598	72. 708	1. 00 46. 04
	ATOM 506	0 LEU 75	28. 087	21. 611	71. 479	1. 00 46. 97
	ATOM 507	N SER 76	27. 770	20. 484	73. 405	1. 00 45. 48
	ATOM 508	CA SER 76	27. 664	19. 189	72. 744	1. 00 43. 73
	ATOM 509	CB SER 76	28. 837	18. 295	73. 143	1. 00 43. 52
20	ATOM 510	OG SER 76	30. 040	18. 741	72. 551	1. 00 44. 64
	ATOM 511	C SER 76	26. 361	18. 469	73. 051	1. 00 41. 60
	ATOM 512	0 SER 76	26. 026	18. 242	74. 209	1. 00 40. 88
	ATOM 513	N LEU 77	25. 617	18. 130	72. 007	1. 00 41. 06
	ATOM 514	CA LEU 77	24. 369	17. 397	72. 175	1. 00 43. 50
25	ATOM 515	CB LEU 77	23. 281	17. 918	71. 225	1. 00 43. 84
	ATOM 516	CG LEU 77	22. 750	19. 346	71. 401	1. 00 45. 70
	ATOM 517	CD1 LEU 77	21. 587	19. 577	70. 442	1. 00 45. 96
	ATOM 518	CD2 LEU 77	22. 284	19. 550	72. 835	1. 00 46. 75
	ATOM 519	C LEU 77	24. 662	15. 933	71. 851	1. 00 43. 78

- 34 -

					- 54	_	
	ATOM 520	0	LEU 77	25. 529	15. 635	71. 026	1. 00 43. 07
	ATOM 521	N	ASP 78	23. 946	15. 021	72. 496	1. 00 44. 50
	ATOM 522	CA	ASP 78	24. 151	13. 604	72. 244	1. 00 44. 82
	ATOM 523	CB	ASP 78	25. 126	13. 026	73. 271	1. 00 44. 71
5	ATOM 524	CG	ASP 78	25. 597	11. 628	72. 905	1. 00 45. 55
	ATOM 525	OD1	ASP 78	24. 738	10. 750	72. 672	1. 00 41. 76
	ATOM 526	OD2	ASP 78	26. 828	11. 410	72. 853	1. 00 45. 32
	ATOM 527	C	ASP 78	22. 838	12. 829	72. 276	1. 00 44. 74
	ATOM 528	0	ASP 78	22. 245	12. 633	73. 333	1. 00 45. 25
10	ATOM 529	N	LEU 79	22. 385	12. 398	71. 107	1. 00 45. 72
	ATOM 530	CA	LEU 79	21. 154	11. 630	70. 994	1. 00 47. 25
	ATOM 531	CB	LEU 79	20. 137	12. 351	70. 116	1. 00 45. 37
	ATOM 532	CG	LEU 79	18. 865	11. 530	69. 915	1. 00 43. 65
	ATOM 533	CD1	LEU 79	18. 067	11. 553	71. 200	1. 00 46. 42
15	ATOM 534	CD2	LEU 79	18. 045	12. 086	68. 777	1. 00 43. 81
	ATOM 535	C	LEU 79	21. 491	10. 295	70. 354	1. 00 49. 50
	ATOM 536	0	LEU 79	22. 073	10. 249	69. 274	1. 00 49. 35
	ATOM 537	N	GLY 80	21. 123	9. 207	71. 016	1. 00 52. 24
	ATOM 538	CA	GLY 80	21. 421	7. 902	70. 466	1. 00 56. 31
20	ATOM 539	C	GLY 80	20. 965	6. 833	71. 420	1. 00 59. 13
	ATOM 540		GLY 80	20. 278	5. 896	71. 027	1. 00 60. 86
	ATOM 541	N (GLY 81	21. 360	6. 966	72. 679	1. 00 62. 30
	ATOM 542	CA (GLY 81	20. 940	6. 002	73. 674	1. 00 65. 60
	ATOM 543	C (GLY 81	19. 551	6. 395	74. 137	1. 00 67. 84
25	ATOM 544	0 (GLY 81	18. 936	7. 301	73. 564	1. 00 69. 00
	ATOM 545	N 7	THR 82	19. 047 -	5. 722	75. 165	1. 00 69. 33
	ATOM 546	CA 7	THR 82	17. 726	6. 037	75. 695	1. 00 70. 36
	ATOM 547	CB T	THR 82	17. 110	4. 824	76. 418	1. 00 71. 43
	ATOM 548	0G1 T	THR 82	18. 032	4. 332	77. 398	1. 00 71. 60

- 35 -

			- 35 -				
	ATOM 549	CG2 THR 82	16. 784	3. 716	75. 420	1. 00 71. 87	
	ATOM 550	C THR 82	17. 846	7. 196	76. 679	1. 00 70. 10	
	ATOM 551	0 THR 82	16. 933	7. 458	77. 464	1. 00 71. 18	
	ATOM 552	N ASN 83	18. 981	7. 887	76. 625	1. 00 69. 08	
5	ATOM 553	CA ASN 83	19. 232	9. 017	77. 508	1. 00 68. 14	
	ATOM 554	CB ASN 83	20. 161	8. 584	78. 646	1. 00 69. 98	
	ATOM 555	CG ASN 83	19. 862	9. 300	79. 948	1. 00 70. 80	
	ATOM 556	OD1 ASN 83	20. 627	9. 213	80. 909	1. 00 71. 46	
	ATOM 557	ND2 ASN 83	18. 739	10. 004	79. 990	1. 00 72. 56	
10	ATOM 558	C ASN 83	19. 866	10. 177	76. 738	1. 00 66. 16	
	ATOM 559	0 ASN 83	21.050	10. 136	76. 407	1. 00 66. 52	
	ATOM 560	N PHE 84	19. 073	11. 203	76. 447	1. 00 63. 41	
	ATOM 561	CA PHE 84	19. 567	12. 375	75. 728	1. 00 60. 93	
	ATOM 562	CB PHE 84	18. 398	13. 227	75. 241	1. 00 61. 87	
15	ATOM 563	CG PHE 84	18. 817	14. 477	74. 528	1. 00 63. 55	
	ATOM 564	CD1 PHE 84	18. 419	15. 724	74. 993	1. 00 63. 38	
	ATOM 565	CD2 PHE 84	19. 599	14. 409	73. 381	1. 00 64. 28	
	ATOM 566	CE1 PHE 84	18. 793	16. 888	74. 325	1. 00 64. 07	
	ATOM 567	CE2 PHE 84	19. 979	15. 568	72. 705	1. 00 65. 31	
20	ATOM 568	CZ PHE 84	19. 574	16. 810	73. 179	1. 00 64. 75	
	ATOM 569	C PHE 84	20. 442	13. 206	76. 658	1. 00 59. 07	
	ATOM 570	0 PHE 84	20. 011	13. 582	77. 744	1. 00 59. 19	
	ATOM 571	N ARG 85	21. 665	13. 500	76. 232	1. 00 57. 25	
	ATOM 572	CA ARG 85	22. 583	14. 272	77. 064	1. 00 56. 05	
25	ATOM 573	CB ARG 85	23. 857	13. 467	77. 344	1. 00 56. 68	
	ATOM 574	CG ARG 85	23. 605	12. 044	77. 828	1. 00 58. 78	
	ATOM 575	CD ARG 85	24. 896	11. 367	78. 267	1. 00 59. 39	
	ATOM 576	NE ARG 85	25. 908	11. 348	77. 213	1. 00 59. 87	
	ATOM 577	CZ ARG 85	27. 068	11. 994	77. 282	1. 00 60. 09	

- 36 -

	ATOM 578	NH1 ARG 85	27. 366	12. 713	78. 357	1. 00 59. 50
		NH2 ARG 85				
		C ARG 85				
	ATOM 581					1. 00 54. 93
5	ATOM 582	N VAL 86				1. 00 53. 13
	ATOM 583	CA VAL 86	23. 598	17. 935	76. 861	1. 00 51. 01
	ATOM 584	CB VAL 86				
		CG1 VAL 86				1. 00 51. 39
	ATOM 586	CG2 VAL 86	21. 216	18. 446	76. 225	1. 00 50. 96
10	ATOM 587	C VAL 86	24. 734	18. 381	77. 767	1. 00 49. 34
	ATOM 588	0 VAL 86	24. 613	18. 316	78. 989	1. 00 48. 07
	ATOM 589	N MET 87	25. 834	18. 835	77. 178	1. 00 49. 52
	ATOM 590	CA MET 87	26. 970	19. 260	77. 981	1. 00 50. 78
	ATOM 591	CB MET 87	27. 864	18. 054	78. 284	1. 00 52. 70
15						1. 00 54. 49
		SD MET 87				
	ATOM 594	CE MET 87	27. 839	14. 951	76. 090	1. 00 51. 63
		C MET 87				
	ATOM 596					1. 00 50. 18
20	ATOM 597					1. 00 50. 90
		CA LEU 88				
		CB LEU 88	29. 278	23. 325	78. 631	1. 00 53. 23
	ATOM 600	CG LEU 88		24. 580	78. 288	1. 00 54. 71
	ATOM 601	CD1 LEU 88		25. 140	76. 951	1. 00 54. 33
25	ATOM 602	CD2 LEU 88		25. 623	79. 390	1. 00 54. 33
	ATOM 603	C LEU 88		21. 600	77. 847	1. 00 52. 33
	ATOM 604	0 LEU 88		21. 048	78. 877	1. 00 53. 12
	ATOM 605	N VAL 89		21. 795	76. 789	1. 00 52. 10
	ATOM 606	CA VAL 89	33. 078	21. 342	76. 788	1. 00 52. 46

- 37 -

				01		
	ATOM. 607	7 CB VAL 89	33. 241	20. 072	75. 882	1. 00 50. 52
	ATOM 608	GI VAL 89	32. 289	20. 147	74. 710	1. 00 52. 35
	ATOM 609	GC VAL 89	34. 674	19. 939	75. 388	1. 00 46. 86
	ATOM 610) C VAL 89	34. 049	22. 433	76. 357	1. 00 53. 35
5	ATOM 611	0 VAL 89	33. 858	23. 081	75. 336	1. 00 54. 69
	ATOM 612	N LYS 90	35. 096	22. 625	77. 151	1. 00 55. 22
	ATOM 613	CA LYS 90	36. 100	23. 640	76. 868	1. 00 56. 94
	ATOM 614	CB LYS 90	36. 656	24. 205	78. 181	1. 00 57. 66
	ATOM 615	CG LYS 90	37. 642	25. 360	78. 005	1. 00 58. 70
10	ATOM 616	CD LYS 90	38. 140	25. 909	79. 345	1. 00 59. 35
	ATOM 617	CE LYS 90	36. 995	26. 399	80. 226	1. 00 60. 64
	ATOM 618	NZ LYS 90	36. 185	27. 462	79. 568	1. 00 61. 04
	ATOM 619	C LYS 90	37. 237	23. 078	76. 019	1. 00 57. 63
	ATOM 620	0 LYS 90	37. 921	22. 136	76. 417	1. 00 57. 69
15	ATOM 621	N VAL 91	37. 428	23. 670	74. 846	1. 00 58. 29
	ATOM 622	CA VAL 91	38. 473	23. 254	73. 919	1. 00 57. 11
	ATOM 623	CB VAL 91	37. 920	23. 136	72. 480	1. 00 56. 48
	ATOM 624	CG1 VAL 91	39. 010	22. 661	71. 533	1. 00 55. 29
	ATOM 625	CG2 VAL 91	36. 741	22. 183	72. 459	1. 00 55. 52
20	ATOM 626	C VAL 91	39. 598	24. 279	73. 926	1. 00 57. 81
	ATOM 627	0 VAL 91		25. 466	73. 710	1. 00 59. 53
	ATOM 628	N GLY 92	40. 817	23. 819	74. 172	1. 00 58. 12
	ATOM 629	CA GLY 92	41. 947	24. 723	74. 200	1. 00 59. 69
	ATOM 630	C GLY 92	43. 047	24. 245	73. 286	1. 00 61. 78
25	ATOM 631	0 GLY 92	42. 821	23. 381	72. 448	1. 00 61. 06
	ATOM 632	N GLU 93	44. 240	24. 803	73. 449	1. 00 65. 18
	ATOM 633	CA GLU 93	45. 373	24. 426	72. 619	1. 00 69. 00
	ATOM 634	CB GLU 93	45. 897	25. 646	71. 866	1. 00 71. 56
	ATOM 635	CG GLU 93	47. 082	25. 344	70. 965	1. 00 75. 20

- 38 -

				00		
	ATOM 636	CD GLU 93	47. 659	26. 591	70. 325	1. 00 78. 28
	ATOM 637	0E1 GLU 93	46. 893	27. 326	69. 659	1. 00 80. 05
	ATOM 638	OE2 GLU 93	48. 877	26. 834	70. 485	1. 00 79. 21
	ATOM 639	C GLU 93	46. 505	23. 822	73. 437	1. 00 71. 00
5	ATOM 640	0 GLU 93	47. 118	24. 500	74. 263	1. 00 70. 74
	ATOM 641	N GLY 94	46. 784	22. 544	73. 195	1. 00 72. 97
	ATOM 642	CA GLY 94	47. 849	21. 869	73. 916	1. 00 74. 44
	ATOM 643	C GLY 94	49. 078	21. 673	73. 052	1. 00 75. 82
	ATOM 644	0 GLY 94	49. 485	22. 577	72. 315	1. 00 76. 47
10	ATOM 645	N GLU 95	49. 682	20. 496	73. 145	1. 00 75. 73
	ATOM 646	CA GLU 95	50. 859	20. 195	72. 349	1. 00 76. 61
	ATOM 647	CB GLU 95	52. 023	19. 792	73. 249	1. 00 76. 93
	ATOM 648	CG GLU 95	52. 439	20. 891	74. 203	1. 00 78. 31
	ATOM 649	CD GLU 95	53. 614	20. 497	75. 065	1. 00 78. 40
15	ATOM 650	OE1 GLU 95	54. 715	20. 274	74. 514	1. 00 78. 51
	ATOM 651	0E2 GLU 95	53. 432	20. 408	76. 295	1. 00 78. 60
	ATOM 652	C GLU 95	50. 516	19. 071	71. 392	1. 00 76. 91
	ATOM 653	O GLU 95	49. 833	18. 116	71. 764	1. 00 76. 81
	ATOM 654	N GLU 96	50. 987	19. 203	70. 155	1. 00 77. 78
20	ATOM 655	CA GLU 96	50. 733	18. 220	69. 105	1. 00 78. 07
	ATOM 656					1. 00 81. 32
	ATOM 657	CG GLU 96	52. 943	16. 930	69. 454	1. 00 85. 11
	ATOM 658	CD GLU 96	53. 541	17. 309	68. 101	1. 00 87. 05
	ATOM 659	OE1 GLU 96	53. 346	16. 551	67. 124	1. 00 88. 73
25	ATOM 660	0E2 GLU 96	54. 207	18. 365	68. 014	1. 00 87. 56
	ATOM 661	C GLU 96	49. 230	18. 025	68. 919	1. 00 75. 88
	ATOM 662	0 GLU 96	48. 784	17. 039	68. 327	1. 00 75. 92
	ATOM 663	N GLY 97	48. 456	18. 980	69. 427	1. 00 72. 88
	ATOM 664	CA GLY 97	47. 013	18. 910	69. 309	1. 00 69. 37

- 39 -

	ATOM 665	C	GLY 97	46. 296	19. 710	70. 380	1. 00 67. 02
	ATOM 666						1. 00 67. 10
	ATOM 667						1. 00 64. 76
	ATOM 668			44. 166			1. 00 62. 45
5	ATOM 669	CB	GLN 98	42. 872	21. 045	70. 562	1. 00 62. 69
	ATOM 670	CG	GLN 98	43. 026	21. 908	69. 315	1. 00 64. 93
	ATOM 671	CD	GLN 98	43. 191	21. 095	68. 046	1. 00 65. 89
	ATOM 672	0E 1	GLN 98	44. 299	20. 684	67. 696	1. 00 65. 96
	ATOM 673	NE2	CLN 98	42.079	20. 847	67. 353	1. 00 65. 22
10	ATOM 674	C	GLN 98	43. 781	19. 630	72. 369	1. 00 61. 23
	ATOM 675	0	GLN 98	43. 880	18. 403	72. 269	1. 00 62. 18
	ATOM 676	N	TRP 99	43. 356	20. 233	73. 473	1. 00 57. 45
		CA					1. 00 54. 44
	ATOM 678	CB	TRP 99	43. 639	19. 822	75. 904	1. 00 55. 51
15		CG					1. 00 56. 94
			TRP 99				1. 00 56. 03
					23. 426	76. 922	1. 00 57. 25
			TRP 99		21. 969	77. 121	1. 00 56. 67
	ATOM 683				22. 062		1. 00 56. 29
20							1. 00 56. 55
							1. 00 56. 53
			TRP 99				1. 00 56. 67
							1. 00 56. 70
0.5	ATOM 688		TRP 99		19. 756		1. 00 52. 04
25	ATOM 689						1. 00 50. 70
			SER 100				5 1.00 49.57
	ATOM 691		SER 100				5 1.00 48.29
	ATOM 692		SER 100				7 1.00 49.26
	ATOM 693	0G	SER 100	39. 05	5 17. 19	6 74.31	5 1. 00 47. 27

- 40 -

						- 40 -		
	ATOM 6	94 C	SER	100	38. 860	18. 655	77. 067	1. 00 47. 91
	ATOM 6	95 0	SER	100	39. 569	17. 845	77. 662	1. 00 48. 73
	ATOM 6	96 N	VAL	101	37. 718	19. 120	77. 558	1. 00 47. 53
	ATOM 6	97 CA	VAL	101	37. 225	18. 684	78. 852	1. 00 47. 86
5	ATOM 6	98 CB	VAL	101	38. 102	19. 233	79. 995	1. 00 47. 92
	ATOM 6	99 CG	1 VAL	101	38. 160	20. 747	79. 923	1. 00 49. 02
	ATOM 7	00 CG	2 VAL	101	37. 545	18. 783	81. 342	1. 00 47. 98
	ATOM 7	01 C	VAL	101	35. 784	19. 102	79. 101	1. 00 48. 77
	ATOM 7	02 0	VAL	101	35. 391	20. 228	78. 798	1. 00 49. 05
10	ATOM 7	03 N	LYS	102	35. 004	18. 176	79. 649	1. 00 49. 04
	ATOM 7	04 CA	LYS	102	33. 607	18. 422	79. 969	1. 00 50. 31
	ATOM 70	05 CB	LYS	102	32. 875	17. 101	80. 220	1. 00 51. 15
	ATOM 70	06 CG	LYS	102	31. 385	17. 263	80. 452	1. 00 52. 57
	ATOM 70	07 CD	LYS	102	30. 835	16. 229	81. 425	1. 00 56. 56
15	ATOM 70	08 CE	LYS	102	30. 955	14. 804	80. 908	1. 00 57. 06
	ATOM 70	9 NZ	LYS	102	30. 275	13. 804	81. 787	1. 00 58. 08
	ATOM 71	10 C	LYS	102	33. 587	19. 254	81. 243	1. 00 51. 12
	ATOM 71	11 0	LYS	102	34. 220	18. 888	82. 234	1. 00 52. 47
	ATOM 71	2 N	THR	103	32. 859	20. 366	81. 217	1. 00 51. 40
20	ATOM 71	.3 CA	THR	103	32. 774	21. 252	82. 373	1. 00 50. 47
	ATOM 71	4 CB	THR	103	33. 004	22. 715	81. 965	1. 00 50. 28
	ATOM 71	5 OG1	THR	103	31. 992	23. 113	81. 032	1. 00 51. 29
	ATOM 71	6 CG2	THR	103	34. 368	22. 879	81. 324	1. 00 47. 52
	ATOM 71	7 C	THR	103	31. 416	21. 148	83. 048	1. 00 50. 90
25	ATOM 71	8 0	THR	103	31. 329	21. 056	84. 268	1. 00 50. 91
	ATOM 71	9 N	LYS	104	30. 358	21. 162	82. 247	1. 00 52. 41
	ATOM 72	O CA	LYS	104	29. 000	21. 063	82. 770	1. 00 54. 04
	ATOM 72	1 CB	LYS	104	28. 310	22. 436	82. 714	1. 00. 57. 21
	ATOM 72	2 CG	LYS	104	28. 823	23. 450	83. 739	1. 00 59. 16

					- 41 -		
	ATOM 723	CD LYS	104	28. 138	24. 809	83. 576	1. 00 62. 54
	ATOM 724	CE LYS	104	28. 398	25. 734	84. 766	1. 00 62. 99
	ATOM 725	NZ LYS	104	27. 798	25. 217	86. 037	1. 00 64. 17
	ATOM 726	C LYS	104	28. 215	20. 047	81. 948	1. 00 53. 79
5	ATOM 727	0 LYS	104	28. 411	19. 941	80. 740	1. 00 53. 53
	ATOM 728	N HIS	105	27. 330	19. 299	82. 600	1. 00 53. 65
	ATOM 729	CA HIS	105	26. 539	18. 295	81. 903	1. 00 55. 05
	ATOM 730	CB HIS	105	27. 316	16. 972	81. 837	1. 00 55. 94
	ATOM 731	CG HIS	105	27. 668	16. 397	83. 176	1. 00 55. 84
10	ATOM 732	CD2 HIS	105	28. 793	16. 501	83. 924	1. 00 55. 19
	ATOM 733	ND1 HIS	105	26. 803	15. 602	83. 897	1. 00 55. 83
	ATOM 734	CE1 HIS	105	27. 380	15. 241	85. 030	1. 00 56. 35
	ATOM 735	NE2 HIS	105	28. 589	15. 773	85. 071	1. 00 55. 64
	ATOM 736	C HIS	105	25. 169	18. 074	82. 534	1. 00 56. 32
15	ATOM 737	0 HIS	105	24. 903	18. 535	83. 640	1. 00 56. 55
	ATOM 738	N GLN	106	24. 302	17. 365	81. 817	1. 00 58. 21
	ATOM 739	CA GLN	106	22. 950	17. 090	82. 289	1. 00 60. 74
	ATOM 740	CB GLN	106	22. 108	18. 367	82. 224	1. 00 61. 97
	ATOM 741	CG GLN	106	20. 775	18. 285	82. 945	1. 00 64. 86
20	ATOM 742	CD GLN	106	20. 928	18. 379	84. 447	1. 00 67. 03
	ATOM 743	OE1 GLN	106	21. 447	19. 370	84. 969	1. 00 68. 82
	ATOM 744	NE2 GLN	106	20. 479	17. 348	85. 155	1. 00 67. 41
	ATOM 745	C GLN	106	22. 322	16. 025	81. 396	1. 00 61. 62
	ATOM 746	0 GLN	106	22. 532	16. 027	80. 186	1. 00 62. 03
25	ATOM 747	N MET	107	21. 550	15. 121	81. 990	1. 00 63. 03
	ATOM 748	CA MET	107	20. 900	14. 058	81. 232	1. 00 64. 74
	ATOM 749	CB MET	107	21. 322	12. 688	81. 769	1. 00 66. 23
	ATOM 750	CG MET	107	22. 821	12. 456	81. 786	1. 00 68. 74
	ATOM 751	SD MET	107	23. 248	10. 812	82. 388	1. 00 70. 84

- 42 -

						42 -		
	ATOM 752	CE	MET	107	23. 427	9. 926	80. 853	1. 00 71. 13
	ATOM 753	C	MET	107	19. 385	14. 175	81. 313	1. 00 65. 81
	ATOM 754	0	MET	107	18. 837	14. 489	82. 369	1. 00 65. 52
	ATOM 755	N	TYR	108	18. 712	13. 915	80. 196	1. 00 66. 87
5	ATOM 756	CA	TYR	108	17. 258	13. 984	80. 143	1. 00 68. 20
	ATOM 757	CB	TYR	108	16. 800	15. 167	79. 286	1. 00 67. 20
	ATOM 758	CG	TYR	108	17. 436	16. 484	79. 660	1. 00 66. 35
	ATOM 759	CD1	TYR	108	18. 781	16. 731	79. 386	1. 00 65. 95
	ATOM 760	CE1	TYR	108	19. 380	17. 929	79. 746	1. 00 65. 76
10	ATOM 761	CD2	TYR	108	16. 702	17. 477	80. 307	1. 00 66. 24
	ATOM 762	CE2	TYR	108	17. 292	18. 683	80. 674	1. 00 65. 93
	ATOM 763	CZ	TYR	108	18. 633	18. 902	80. 391	1. 00 66. 14
	ATOM 764	ОН	TYR	108	19. 235	20. 083	80. 763	1. 00 64. 27
	ATOM 765	С	TYR	108	16. 706	12. 700	79. 549	1. 00 70. 20
15	ATOM 766	0	TYR	108	16. 995	12. 363	78. 404	1. 00 70. 55
	ATOM 767	N	SER	109	15. 912	11. 982	80. 331	1. 00 73. 54
	ATOM 768	CA	SER	109	15. 322	10. 739	79. 863	1. 00 76. 84
	ATOM 769	CB :	SER	109	14. 524	10. 082	80. 992	1. 00 77. 63
	ATOM 770	OG S	SER	109	15. 353	9. 837	82. 120	1. 00 78. 13
20	ATOM 771	C S	SER	109	14. 419	11. 020	78. 664	1. 00 78. 98
	ATOM 772		SER	109		12. 138	78. 486	1. 00 78. 51
	ATOM 773	N]	LE	110	14. 198	10. 002	77. 841	1. 00 82. 34
	ATOM 774	CA I	LE	110	13. 369	10. 143	76. 651	1. 00 86. 07
	ATOM 775	CB I	LE	110	13. 892	9. 249	75. 511	1. 00 86. 28
25	ATOM 776	CG2 I	LE	110	13. 092	9. 505	74. 242	1. 00 86. 56
	ATOM 777	CG1 I	LE	110	15. 379	9. 529	75. 275	1. 00 86. 19
	ATOM 778	CD1 I	LE	110	16. 025	8. 612	74. 258	1. 00 86. 76
	ATOM 779	C I	LE	110	11. 916	9. 772	76. 927	1. 00 88. 58
	ATOM 780	0 [LE	110	11. 596	8. 606	77. 152	1. 00 88. 69

- 43 -

ATOM 781	N PRO	111	11. 016	10. 767	76. 910	1. 00 91. 13
ATOM 782	CD PRO	111	11. 319	12. 205	76. 811	1. 00 91. 83
ATOM 783	CA PRO	111	9. 585	10. 562	77. 157	1. 00 93. 32
ATOM 784	CB PRO	111	9. 015	11. 975	77. 062	1. 00 93. 16
ATOM 785	CG PRO	111	10. 147	12. 819	77. 536	1. 00 92. 31
ATOM 786	C PRO	111	8. 928	9. 613	76. 159	1. 00 95. 40
ATOM 787	0 PRO	111	9. 466	9. 355	75. 082	1. 00 95. 80
ATOM 788	N GLU	112	7. 758	9. 101	76. 529	1. 00 97. 55
ATOM 789	CA GLU	112	7. 006	8. 185	75. 679	1. 00 99. 50
ATOM 790	CB GLU	112	5. 816	7.611	76. 458	1. 00100. 31
ATOM 791	CG GLU	112	4. 745	6. 971	75. 589	1. 00101. 76
ATOM 792	CD GLU	112	5. 316	5. 989	74. 587	1. 00102. 84
ATOM 793	OE1 GLU	112	5. 967	5. 012	75. 014	1. 00103. 66
ATOM 794	OE2 GLU	112	5. 113	6. 196	73. 372	1. 00103. 00
ATOM 795	C GLU	112	6. 508	8. 884	74. 418	1. 00100. 37
ATOM 796	0 GLU	112	6. 914	8. 545	73. 304	1. 00100. 17
ATOM 797	N ASP	113	5. 625	9. 859	74. 606	1. 00101. 44
ATOM 798	CA ASP	113	5. 056	10.620	73. 499	1. 00102. 05
ATOM 799			4. 087	11. 680	74. 038	1. 00102. 23
ATOM 800	CG ASP	113	4. 682	12. 494	75. 177	1. 00102. 33
ATOM 802	OD2 ASP	113	4. 870	13. 716	74. 999	1. 00101. 99
ATOM 803	C ASP	113	6. 131	11. 282	72. 638	1. 00102. 09
ATOM 804	0 ASP	113	5. 843	11. 789	71. 553	1. 00101. 96
ATOM 805	N ALA	114	7. 368	11. 273	73. 126	1. 00102. 12
ATOM 806	CA ALA	114	8. 484	11. 869	72. 401	1. 00102. 09
ATOM 807	CB ALA	114	9. 590	12. 256	73. 377	1. 00101. 76
ATOM 808	C ALA	114	9. 022	10. 895	71. 358	1. 00102. 06
ATOM 809	0 ALA	114	9. 763	11. 282	70. 455	1. 00101. 89
	ATOM 782 ATOM 783 ATOM 784 ATOM 785 ATOM 786 ATOM 788 ATOM 789 ATOM 791 ATOM 791 ATOM 793 ATOM 793 ATOM 795 ATOM 796 ATOM 797 ATOM 798 ATOM 798 ATOM 799 ATOM 799 ATOM 800 ATOM 801 ATOM 801 ATOM 802 ATOM 803 ATOM 803 ATOM 804 ATOM 805 ATOM 806 ATOM 807 ATOM 806 ATOM 807 ATOM 807	ATOM 782 CD PRO ATOM 783 CA PRO ATOM 784 CB PRO ATOM 785 CG PRO ATOM 786 C PRO ATOM 787 O PRO ATOM 788 N GLU ATOM 790 CB GLU ATOM 791 CG GLU ATOM 792 CD GLU ATOM 793 OE1 GLU ATOM 794 OE2 GLU ATOM 795 C GLU ATOM 797 N ASP ATOM 799 CB ASP ATOM 800 CG ASP ATOM 801 OD1 ASP ATOM 803 C ASP ATOM 804 O ASP ATOM 805 N ALA ATOM 806 CA ALA ATOM 806 </td <td>ATOM 782 CD PRO 111 ATOM 783 CA PRO 111 ATOM 784 CB PRO 111 ATOM 785 CG PRO 111 ATOM 786 C PRO 111 ATOM 787 O PRO 111 ATOM 788 N GLU 112 ATOM 789 CA GLU 112 ATOM 790 CB GLU 112 ATOM 791 CG GLU 112 ATOM 792 CD GLU 112 ATOM 793 OE1 GLU 112 ATOM 794 OE2 GLU 112 ATOM 795 C GLU 112 ATOM 797 N ASP 113 ATOM 799 CB ASP 113 ATOM 801 <td< td=""><td>ATOM 782 CD PRO 111 11. 319 ATOM 783 CA PRO 111 9. 585 ATOM 784 CB PRO 111 9. 015 ATOM 785 CG PRO 111 10. 147 ATOM 786 C PRO 111 8. 928 ATOM 787 O PRO 111 9. 466 ATOM 788 N GLU 112 7. 758 ATOM 789 CA GLU 112 7. 006 ATOM 790 CB GLU 112 5. 816 ATOM 791 CG GLU 112 5. 316 ATOM 792 CD GLU 112 5. 316 ATOM 793 OE1 GLU 112 5. 316 ATOM 794 OE2 GLU 112 5. 113 ATOM 795 C GLU 112 6. 508 ATOM 796 O GLU 112 6. 508 ATOM 797 N ASP 113 5. 625 ATOM 798 CA ASP 113 4. 087 ATOM 800 CG ASP 113 4. 087 ATOM 801 OD1 ASP 113 4. 682 ATOM 802 OD2 ASP 113 4. 870 ATOM 803 C ASP 113 6. 131 ATOM 804 O ASP 113 5. 843 ATOM 805 N ALA 114 7. 368 ATOM 807 CB ALA 114 9. 590 ATOM 808 CC ALA 114 9. 590</td><td>ATOM 782 CD PRO 111 11. 319 12. 205 ATOM 783 CA PRO 111 9. 585 10. 562 ATOM 784 CB PRO 111 9. 015 11. 975 ATOM 785 CG PRO 111 10. 147 12. 819 ATOM 786 C PRO 111 8. 928 9. 613 ATOM 787 O PRO 111 9. 466 9. 355 ATOM 788 N GLU 112 7. 758 9. 101 ATOM 789 CA GLU 112 7. 006 8. 185 ATOM 790 CB GLU 112 7. 006 8. 185 ATOM 791 CG GLU 112 4. 745 6. 971 ATOM 792 CD GLU 112 5. 816 7. 611 ATOM 793 OE1 GLU 112 5. 316 5. 989 ATOM 794 OE2 GLU 112 5. 113 6. 196 ATOM 795 C GLU 112 5. 113 6. 196 ATOM 796 O GLU 112 6. 508 8. 884 ATOM 797 N ASP 113 5. 625 9. 859 ATOM 798 CA ASP 113 4. 087 11. 680 ATOM 799 CB ASP 113 4. 087 11. 680 ATOM 800 CG ASP 113 4. 682 12. 494 ATOM 801 OD1 ASP 113 4. 870 13. 716 ATOM 803 C ASP 113 4. 870 13. 716 ATOM 804 O ASP 113 6. 131 11. 282 ATOM 805 N ALA 114 7. 368 11. 273 ATOM 806 CA ALA 114 7. 368 11. 273 ATOM 807 CB ALA 114 9. 590 12. 256 ATOM 808 C ALA 114 9. 590 12. 256</td><td>ATOM 783 CA PRO 111 9.585 10.562 77.157 ATOM 784 CB PRO 111 9.015 11.975 77.062 ATOM 785 CG PRO 111 10.147 12.819 77.536 ATOM 786 C PRO 111 8.928 9.613 76.159 ATOM 787 O PRO 111 9.466 9.355 75.082 ATOM 788 N GLU 112 7.758 9.101 76.529 ATOM 789 CA GLU 112 7.006 8.185 75.679 ATOM 790 CB GLU 112 5.816 7.611 76.458 ATOM 791 CG GLU 112 4.745 6.971 75.589 ATOM 792 CD GLU 112 5.316 5.989 74.587 ATOM 793 OE1 GLU 112 5.316 5.989 74.587 ATOM 794 OE2 GLU 112 5.113 6.196 73.372 ATOM 795 C GLU 112 6.508 8.884 74.418 ATOM 797 N ASP 113 5.625 9.859 74.606 ATOM 798 CA ASP 113 5.056 10.620 73.499 ATOM 799 CB ASP 113 4.087 11.680 74.038 ATOM 800 CG ASP 113 4.961 11.913 76.249 ATOM 801 OD1 ASP 113 4.870 13.716 74.999 ATOM 803 C ASP 113 4.870 13.716 74.999 ATOM 804 O ASP 113 5.843 11.789 71.553 ATOM 805 N ALA 114 7.368 11.273 73.126 ATOM 806 CA ALA 114 8.484 11.869 72.401 ATOM 807 CB ALA 114 9.590 12.256 73.377</td></td<></td>	ATOM 782 CD PRO 111 ATOM 783 CA PRO 111 ATOM 784 CB PRO 111 ATOM 785 CG PRO 111 ATOM 786 C PRO 111 ATOM 787 O PRO 111 ATOM 788 N GLU 112 ATOM 789 CA GLU 112 ATOM 790 CB GLU 112 ATOM 791 CG GLU 112 ATOM 792 CD GLU 112 ATOM 793 OE1 GLU 112 ATOM 794 OE2 GLU 112 ATOM 795 C GLU 112 ATOM 797 N ASP 113 ATOM 799 CB ASP 113 ATOM 801 <td< td=""><td>ATOM 782 CD PRO 111 11. 319 ATOM 783 CA PRO 111 9. 585 ATOM 784 CB PRO 111 9. 015 ATOM 785 CG PRO 111 10. 147 ATOM 786 C PRO 111 8. 928 ATOM 787 O PRO 111 9. 466 ATOM 788 N GLU 112 7. 758 ATOM 789 CA GLU 112 7. 006 ATOM 790 CB GLU 112 5. 816 ATOM 791 CG GLU 112 5. 316 ATOM 792 CD GLU 112 5. 316 ATOM 793 OE1 GLU 112 5. 316 ATOM 794 OE2 GLU 112 5. 113 ATOM 795 C GLU 112 6. 508 ATOM 796 O GLU 112 6. 508 ATOM 797 N ASP 113 5. 625 ATOM 798 CA ASP 113 4. 087 ATOM 800 CG ASP 113 4. 087 ATOM 801 OD1 ASP 113 4. 682 ATOM 802 OD2 ASP 113 4. 870 ATOM 803 C ASP 113 6. 131 ATOM 804 O ASP 113 5. 843 ATOM 805 N ALA 114 7. 368 ATOM 807 CB ALA 114 9. 590 ATOM 808 CC ALA 114 9. 590</td><td>ATOM 782 CD PRO 111 11. 319 12. 205 ATOM 783 CA PRO 111 9. 585 10. 562 ATOM 784 CB PRO 111 9. 015 11. 975 ATOM 785 CG PRO 111 10. 147 12. 819 ATOM 786 C PRO 111 8. 928 9. 613 ATOM 787 O PRO 111 9. 466 9. 355 ATOM 788 N GLU 112 7. 758 9. 101 ATOM 789 CA GLU 112 7. 006 8. 185 ATOM 790 CB GLU 112 7. 006 8. 185 ATOM 791 CG GLU 112 4. 745 6. 971 ATOM 792 CD GLU 112 5. 816 7. 611 ATOM 793 OE1 GLU 112 5. 316 5. 989 ATOM 794 OE2 GLU 112 5. 113 6. 196 ATOM 795 C GLU 112 5. 113 6. 196 ATOM 796 O GLU 112 6. 508 8. 884 ATOM 797 N ASP 113 5. 625 9. 859 ATOM 798 CA ASP 113 4. 087 11. 680 ATOM 799 CB ASP 113 4. 087 11. 680 ATOM 800 CG ASP 113 4. 682 12. 494 ATOM 801 OD1 ASP 113 4. 870 13. 716 ATOM 803 C ASP 113 4. 870 13. 716 ATOM 804 O ASP 113 6. 131 11. 282 ATOM 805 N ALA 114 7. 368 11. 273 ATOM 806 CA ALA 114 7. 368 11. 273 ATOM 807 CB ALA 114 9. 590 12. 256 ATOM 808 C ALA 114 9. 590 12. 256</td><td>ATOM 783 CA PRO 111 9.585 10.562 77.157 ATOM 784 CB PRO 111 9.015 11.975 77.062 ATOM 785 CG PRO 111 10.147 12.819 77.536 ATOM 786 C PRO 111 8.928 9.613 76.159 ATOM 787 O PRO 111 9.466 9.355 75.082 ATOM 788 N GLU 112 7.758 9.101 76.529 ATOM 789 CA GLU 112 7.006 8.185 75.679 ATOM 790 CB GLU 112 5.816 7.611 76.458 ATOM 791 CG GLU 112 4.745 6.971 75.589 ATOM 792 CD GLU 112 5.316 5.989 74.587 ATOM 793 OE1 GLU 112 5.316 5.989 74.587 ATOM 794 OE2 GLU 112 5.113 6.196 73.372 ATOM 795 C GLU 112 6.508 8.884 74.418 ATOM 797 N ASP 113 5.625 9.859 74.606 ATOM 798 CA ASP 113 5.056 10.620 73.499 ATOM 799 CB ASP 113 4.087 11.680 74.038 ATOM 800 CG ASP 113 4.961 11.913 76.249 ATOM 801 OD1 ASP 113 4.870 13.716 74.999 ATOM 803 C ASP 113 4.870 13.716 74.999 ATOM 804 O ASP 113 5.843 11.789 71.553 ATOM 805 N ALA 114 7.368 11.273 73.126 ATOM 806 CA ALA 114 8.484 11.869 72.401 ATOM 807 CB ALA 114 9.590 12.256 73.377</td></td<>	ATOM 782 CD PRO 111 11. 319 ATOM 783 CA PRO 111 9. 585 ATOM 784 CB PRO 111 9. 015 ATOM 785 CG PRO 111 10. 147 ATOM 786 C PRO 111 8. 928 ATOM 787 O PRO 111 9. 466 ATOM 788 N GLU 112 7. 758 ATOM 789 CA GLU 112 7. 006 ATOM 790 CB GLU 112 5. 816 ATOM 791 CG GLU 112 5. 316 ATOM 792 CD GLU 112 5. 316 ATOM 793 OE1 GLU 112 5. 316 ATOM 794 OE2 GLU 112 5. 113 ATOM 795 C GLU 112 6. 508 ATOM 796 O GLU 112 6. 508 ATOM 797 N ASP 113 5. 625 ATOM 798 CA ASP 113 4. 087 ATOM 800 CG ASP 113 4. 087 ATOM 801 OD1 ASP 113 4. 682 ATOM 802 OD2 ASP 113 4. 870 ATOM 803 C ASP 113 6. 131 ATOM 804 O ASP 113 5. 843 ATOM 805 N ALA 114 7. 368 ATOM 807 CB ALA 114 9. 590 ATOM 808 CC ALA 114 9. 590	ATOM 782 CD PRO 111 11. 319 12. 205 ATOM 783 CA PRO 111 9. 585 10. 562 ATOM 784 CB PRO 111 9. 015 11. 975 ATOM 785 CG PRO 111 10. 147 12. 819 ATOM 786 C PRO 111 8. 928 9. 613 ATOM 787 O PRO 111 9. 466 9. 355 ATOM 788 N GLU 112 7. 758 9. 101 ATOM 789 CA GLU 112 7. 006 8. 185 ATOM 790 CB GLU 112 7. 006 8. 185 ATOM 791 CG GLU 112 4. 745 6. 971 ATOM 792 CD GLU 112 5. 816 7. 611 ATOM 793 OE1 GLU 112 5. 316 5. 989 ATOM 794 OE2 GLU 112 5. 113 6. 196 ATOM 795 C GLU 112 5. 113 6. 196 ATOM 796 O GLU 112 6. 508 8. 884 ATOM 797 N ASP 113 5. 625 9. 859 ATOM 798 CA ASP 113 4. 087 11. 680 ATOM 799 CB ASP 113 4. 087 11. 680 ATOM 800 CG ASP 113 4. 682 12. 494 ATOM 801 OD1 ASP 113 4. 870 13. 716 ATOM 803 C ASP 113 4. 870 13. 716 ATOM 804 O ASP 113 6. 131 11. 282 ATOM 805 N ALA 114 7. 368 11. 273 ATOM 806 CA ALA 114 7. 368 11. 273 ATOM 807 CB ALA 114 9. 590 12. 256 ATOM 808 C ALA 114 9. 590 12. 256	ATOM 783 CA PRO 111 9.585 10.562 77.157 ATOM 784 CB PRO 111 9.015 11.975 77.062 ATOM 785 CG PRO 111 10.147 12.819 77.536 ATOM 786 C PRO 111 8.928 9.613 76.159 ATOM 787 O PRO 111 9.466 9.355 75.082 ATOM 788 N GLU 112 7.758 9.101 76.529 ATOM 789 CA GLU 112 7.006 8.185 75.679 ATOM 790 CB GLU 112 5.816 7.611 76.458 ATOM 791 CG GLU 112 4.745 6.971 75.589 ATOM 792 CD GLU 112 5.316 5.989 74.587 ATOM 793 OE1 GLU 112 5.316 5.989 74.587 ATOM 794 OE2 GLU 112 5.113 6.196 73.372 ATOM 795 C GLU 112 6.508 8.884 74.418 ATOM 797 N ASP 113 5.625 9.859 74.606 ATOM 798 CA ASP 113 5.056 10.620 73.499 ATOM 799 CB ASP 113 4.087 11.680 74.038 ATOM 800 CG ASP 113 4.961 11.913 76.249 ATOM 801 OD1 ASP 113 4.870 13.716 74.999 ATOM 803 C ASP 113 4.870 13.716 74.999 ATOM 804 O ASP 113 5.843 11.789 71.553 ATOM 805 N ALA 114 7.368 11.273 73.126 ATOM 806 CA ALA 114 8.484 11.869 72.401 ATOM 807 CB ALA 114 9.590 12.256 73.377

- 44 **-**

	ATOM	M 810	N	MET	115	8. 640	9. 630	71. 491	1. 00102. 04	
	ATON	811	CA	MET	115	9. 081	8. 592	70. 569	1. 00102. 05	
	ATON	812	CB	MET	115	9. 466	7. 331	71. 346	1. 00102. 77	
	ATON	813	CG	MET	115	10. 637	7. 509	72. 307	1. 00103. 47	
5	ATON	814	SD	MET	115	12. 256	7. 549	71. 502	1. 00104. 26	
	ATOM	815	CE	MET	115	12. 740	5. 824	71. 638	1. 00103. 48	
	ATOM	816	C	MET	115	8. 004	8. 253	69. 538	1. 00101. 77	
	ATOM	817	0	MET	115	8. 268	8. 275	68. 337	1. 00102. 14	
	ATOM	818	N	THR	116	6. 796	7. 942	70. 006	1. 00101. 14	
10	ATOM	819	CA	THR	116	5. 690	7. 590	69. 110	1. 00100. 36	
	ATOM	820	CB	THR	116	4. 517	6. 927	69. 880	1. 00100. 42	
	ATOM	821	0G1	THR	116	5. 004	5. 805	70. 625	1. 00100. 29	
	ATOM	822	CG2	THR	116	3. 441	6. 441	68. 911	1. 00100. 05	
	ATOM	823	С	THR	116	5. 150	8. 816	68. 379	1. 00 99. 62	
15	ATOM	824	0	THR	116	4. 423	8. 694	67. 391	1. 00 99. 72	
	ATOM	825	N	GLY	117	5. 510	9. 996	68. 870	1. 00 98. 62	
	ATOM	826	CA	GLY	117	5. 048	11. 224	68. 252	1. 00 97. 42	
	ATOM	827	C	GLY	117	5. 619	11. 447	66. 866	1. 00 96. 48	
	ATOM	828	0	GLY	117	5. 746	10. 511	66. 074	1. 00 96. 38	
20	ATOM		N	THR	118	5. 962	12. 696	66. 570	1. 00 95. 25	
	ATOM		CA	THR	118	6. 521	13. 050	65. 273	1. 00 93. 78	
	ATOM		CB	THR	118	5. 679	14. 133	64. 578	1. 00 93. 57	
	ATOM			THR	118	5. 735	15. 343	65. 342	1. 00 93. 50	
	ATOM		CG2	THR	118	4. 234	13. 685	64. 457	1. 00 93. 65	
25	ATOM		C	THR	118	7. 936	13. 583	65. 440	1. 00 92. 67	
	ATOM	835	0	THR	118	8. 335	13. 976	66. 537	1. 00 92. 39	
	ATOM		N	ALA	119	8. 687	13. 593	64. 343	1. 00 91. 30	
	ATOM		CA	ALA	119	10. 058	14. 084	64. 356	1. 00 90. 00	
	ATOM	838	CB	ALA	119	10. 643	14. 031	62. 956	1. 00 89. 81	

- 45 -

					- 45 -		
	ATOM 839	C A	LA 119	10. 066	15. 513	64. 867	1. 00 89. 21
	ATOM 840) O A	LA 119	11. 045	15. 972	65. 455	1. 00 88. 98
	ATOM 841	l N G	LU 120	8. 959	16. 210	64. 636	1. 00 88. 61
	ATOM 842	CA G	LU 120	8. 819	17. 593	65. 063	1. 00 87. 61
5	ATOM 843	CB G	LU 120	7. 505	18. 177	64. 536	1. 00 87. 74
	ATOM 844	CG G	LU 120	7. 138	17. 763	63. 112	1. 00 86. 31
	ATOM 845	CD G	LU 120	8. 269	17. 956	62. 120	1. 00 85. 84
	ATOM 846	0E1 G	LU 120	8. 884	19. 042	62. 113	1. 00 84. 76
	ATOM 847	OE2 G	LU 120	8. 535	17. 020	61. 336	1. 00 85. 71
10	ATOM 848	C G	.U 120	8. 837	17. 658	66. 588	1. 00 86. 71
	ATOM 849	0 G	.U 120	9. 610	18. 412	67. 179	1. 00 86. 71
	ATOM 850	N MI	T 121	7. 980	16. 859	67. 216	1. 00 85. 74
	ATOM 851	CA ME	T 121	7. 895	16. 817	68. 671	1. 00 84. 85
	ATOM 852	CB ME	T 121	6. 798	15. 842	69. 111	1. 00 84. 04
15	ATOM 853	CG ME	T 121	5. 390	16. 273	68. 740	1. 00 81. 88
	ATOM 854	SD ME	T 121	4. 152	15. 078	69. 268	1. 00 80. 83
	ATOM 855	CE ME	T 121	3. 772	14. 283	67. 730	1. 00 78. 55
	ATOM 856	C ME	T 121	9. 226	16. 397	69. 286	1. 00 84. 73
	ATOM 857	0 ME	T 121	9. 687	17. 003	70. 255	1. 00 84. 87
20	ATOM 858	N LE	U 122	9. 839	15. 360	68. 717	1. 00 84. 21
	ATOM 859		U 122	11. 115	14. 851	69. 211	1. 00 83. 20
	ATOM 860	CB LE	J 122	11. 711	13. 847	68. 221	1. 00 83. 29
	ATOM 861	CG LE		12. 966	13. 109	68. 697	1. 00 83. 07
	ATOM 862	CD1 LE		12. 612	12. 232	69. 885	1. 00 82. 78
25	ATOM 863	CD2 LEI	122	13. 533	12. 261	67. 572	1. 00 82. 52
	ATOM 864	C LEI	122	12. 110	15. 980	69. 448	1. 00 82. 61
	ATOM 865	0 LEU	122	12. 546	16. 204	70. 575	1. 00 82. 47
	ATOM 866	N PHE	123	12. 467	16. 694	68. 385	1. 00 82. 28
	ATOM 867	CA PHE	123	13. 414	17. 794	68. 512	1. 00 82. 09

- 46 -

	ATOM 868	CB PHE	123	13. 898	18. 251	67. 136	1. 00 82. 08
	ATOM 869	CG PHE	123	14. 948	17. 357	66. 547	1. 00 81. 61
	ATOM 870	CD1 PHE	123	14. 616	16. 098	66. 060	1. 00 81. 34
	ATOM 871	CD2 PHE	123	16. 281	17. 756	66. 523	1. 00 81. 33
5	ATOM 872	CE1 PHE	123	15. 594	15. 246	65. 559	1. 00 80. 67
	ATOM 873	CE2 PHE	123	17. 268	16. 912	66. 026	1. 00 81. 58
	ATOM 874	CZ PHE	123	16. 923	15. 653	65. 543	1. 00 81. 33
	ATOM 875	C PHE	123	12. 834	18. 964	69. 288	1. 00 81. 98
	ATOM 876	0 PHE	123	13. 570	19. 838	69. 747	1. 00 81. 74
10	ATOM 877	N ASP	124	11. 512	18. 980	69. 429	1. 00 82. 09
	ATOM 878	CA ASP	124	10. 852	20. 028	70. 195	1. 00 82. 29
	ATOM 879	CB ASP	124	9. 329	19. 909	70. 073	1. 00 81. 96
	ATOM 880	CG ASP	124	8. 731	20. 961	69. 157	1. 00 81. 56
	ATOM 881	OD1 ASP	124	7. 510	20. 897	68. 901	1. 00 81. 25
15	ATOM 882	OD2 ASP	124	9. 477	21. 855	68. 701	1. 00 80. 94
	ATOM 883	C ASP	124	11. 279	19. 808	71. 641	1. 00 82. 22
							1. 00 81. 61
	ATOM 885	N TYR	125	11. 047	18. 595	72. 133	1. 00 82. 59
	ATOM 886	CA TYR	125	11. 420	18. 233	73. 494	1. 00 83. 66
20	ATOM 887						1. 00 85. 84
							1. 00 88. 74
	ATOM 889	CD1 TYR	125	12. 763	15. 590	75. 209	1. 00 89. 83
	ATOM 890	CE1 TYR	125	13. 222	15. 110	76. 437	1. 00 91. 28
	ATOM 891	CD2 TYR	125	10. 770	16. 399	76. 257	1. 00 90. 41
25	ATOM 892	CE2 TYR	125	11. 221	15. 926	77. 493	1. 00 91. 86
	ATOM 893	CZ TYR	125	12. 448	15. 281	77. 574	1. 00 92. 09
	ATOM 894	OH TYR	125	12. 896	14. 807	78. 789	1. 00 93. 08
	ATOM 895	C TYR	125	12. 917	18. 451	73. 704	1. 00 82. 86
	ATOM 896	0 TYR	125	13. 352	18. 829	74. 792	1. 00 82. 74

- 47 -

	ATOM 897	N	ILE	126	13. 701	18. 215	72. 655	1. 00 81. 74
	ATOM 898	CA	ILE	126	15. 146	18. 398	72. 727	1. 00 80. 58
	ATOM 899	CB	ILE	126	15. 824	18. 005	71. 397	1. 00 79. 32
	ATOM 900	CG2	ILE	126	17. 277	18. 443	71. 398	1. 00 78. 57
5	ATOM 901	CG1	ILE	126	15. 719	16. 494	71. 194	1. 00 78. 47
	ATOM 902	CD1	ILE	126	16. 408	15. 993	69. 946	1. 00 78. 42
	ATOM 903	C	ILE	126	15. 479	19. 852	73. 047	1. 00 80. 87
	ATOM 904	0	ILE	126	16. 334	20. 133	73. 887	1. 00 79. 71
	ATOM 905	N	SER	127	14. 799	20. 772	72. 370	1. 00 81. 80
10	ATOM 906	CA	SER	127	15. 018	22. 196	72. 594	1. 00 82. 44
	ATOM 907	CB	SER	127	14. 160	23. 021	71. 636	1. 00 82. 62
	ATOM 908	0G	SER	127	14. 559	22. 807	70. 294	1. 00 83. 20
	ATOM 909	C	SER	127	14. 668	22. 543	74. 034	1. 00 82. 44
	ATOM 910	0	SER	127	15. 318	23. 382	74. 660	1. 00 81. 86
15	ATOM 911	N	GLU	128	13. 636	21. 884	74. 553	1. 00 83. 04
	ATOM 912	CA	GLU	128	13. 202	22. 106	75. 927	1. 00 83. 79
	ATOM 913	CB	GLU	128	11. 944	21. 289	76. 232	1. 00 84. 79
•	ATOM 914	CG	GLU	128	11. 408	21. 490	77. 645	1. 00 86. 70
	ATOM 915	CD	GLU	128	10. 425	20. 409	78. 061	1. 00 88. 14
20	ATOM 916	0E1	GLU	128	9. 408	20. 222	77. 357	1. 00 88. 36
	ATOM 917	0E2	GLU	128	10. 672	19. 747	79. 094	1. 00 88. 06
	ATOM 918	С	GLU	128	14. 318	21. 686	76. 877	1. 00 83. 42
	ATOM 919	0	GLU	128	14. 483	22. 261	77. 952	1. 00 84. 16
	ATOM 920	N	CYS	129	15. 081	20. 675	76. 475	1. 00 82. 77
25	ATOM 921	CA	CYS	129	16. 177	20. 179	77. 295	1. 00 81. 21
	ATOM 922		CYS	129	16. 554	18. 760	76. 873	1. 00 81. 07
	ATOM 923		CYS	129	15. 206	17. 569	77. 006	1. 00 80. 63
	ATOM 924	С	CYS	129	17. 391	21. 089	77. 178	1. 00 80. 64
	ATOM 925	0	CYS	129	18. 092	21. 330	78. 160	1. 00 79. 84

- 48 -

	ATOM 926	N ILE	130	17. 644	21. 591	75. 975	1. 00 80. 16
	ATOM 927	CA ILE	130	18. 782	22. 475	75. 775	1. 00 80. 33
	ATOM 928	CB ILE	130	18. 944	22. 860	74. 298	1. 00 79. 59
	ATOM 929	CG2 ILE	130	20. 253	23. 614	74. 102	1. 00 79. 29
5	ATOM 930	CG1 ILE	130	18. 933	21. 599	73. 436	1. 00 79. 00
	ATOM 931	CD1 ILE	130	19. 069	21. 860	71. 958	1. 00 79. 73
	ATOM 932	C ILE	130	18. 559	23. 735	76. 595	1. 00 80. 49
	ATOM 933	0 ILE	130	19. 475	24. 241	77. 239	1. 00 80. 22
	ATOM 934	N SER	131	17. 326	24. 229	76. 574	1. 00 81. 09
10	ATOM 935	CA SER	131	16. 970	25. 428	77. 320	1. 00 82. 28
	ATOM 936	CB SER	131	15. 525	25. 826	77. 006	1. 00 83. 15
	ATOM 937	OG SER	131	14. 641	24. 736	77. 195	1. 00 82. 88
	ATOM 938	C SER	131	17. 136	25. 195	78. 820	1. 00 82. 33
	ATOM 939	0 SER	131	17. 843	25. 940	79. 501	1. 00 82. 07
15	ATOM 940	N ASP	132	16. 478	24. 155	79. 322	1. 00 82. 42
	ATOM 941	CA ASP	132	16. 540	23. 792	80. 735	1. 00 82. 24
	ATOM 942	CB ASP	132	15. 893	22. 411	80. 934	1. 00 83. 24
	ATOM 943	CG ASP	132	15. 836	21. 981	82. 393	1. 00 83. 66
	ATOM 944	OD1 ASP	132	15. 165	20. 963	82. 678	1. 00 83. 28
20	ATOM 945	OD2 ASP	132	16. 458	22. 645	83. 250	1. 00 83. 85
	ATOM 946	C ASP	132	17. 996	23. 778	81. 200	1. 00 81. 62
	ATOM 947	0 ASP	132	18. 324	24. 293	82. 270	1. 00 82. 12
	ATOM 948	N PHE	133	18. 866	23. 193	80. 383	1. 00 80. 65
	ATOM 949	CA PHE	133	20. 286	23. 118	80. 698	1. 00 79. 47
25	ATOM 950	CB PHE	133	21. 033	22. 331	79. 616	1. 00 77. 80
	ATOM 951	CG PHE	133	22. 528	22. 391	79. 750	1. 00 75. 86
	ATOM 952	CD1 PHE	133	23. 178	21. 695	80. 761	1. 00 75. 50
	ATOM 953	CD2 PHE	133	23. 284	23. 179	78. 889	1. 00 75. 39
	ATOM 954	CE1 PHE	133	24. 562	21. 785	80. 914	1. 00 74. 78

- 49 -

	ATOM 955	CE2 PHE	133	24. 667	23. 275	79. 035	1. 00 74. 59
	ATOM 956	CZ PHE	133	25. 305	22. 578	80. 049	1. 00 74. 18
	ATOM 957	C PHE	133	20. 876	24. 519	80. 786	1. 00 79. 33
	ATOM 958	0 PHE	133	21. 690	24. 810	81. 659	1. 00 79. 06
5	ATOM 959	N LEU	134	20. 459	25. 382	79. 869	1. 00 79. 23
	ATOM 960	CA LEU	134	20. 951	26. 748	79. 828	1. 00 79. 59
	ATOM 961	CB LEU	134	20. 482	27. 412	78. 534	1. 00 79. 43
	ATOM 962	CG LEU	134	21. 043	26. 703	77. 297	1. 00 78. 61
	ATOM 963	CD1 LEU	134	20. 401	27. 247	76. 032	1. 00 78. 47
10	ATOM 964	CD2 LEU	134	22. 554	26. 878	77. 264	1. 00 77. 75
	ATOM 965	C LEU	134	20. 524	27. 565	81. 043	1. 00 79. 41
	ATOM 966	0 LEU	134	21. 324	28. 310	81. 609	1. 00 78. 74
	ATOM 967	N ASP	135	19. 268	27. 423	81. 448	1. 00 80. 16
	ATOM 968	CA ASP	135	18. 780	28. 152	82. 609	1. 00 80. 92
15	ATOM 969	CB ASP	135	17. 271	27. 966	82. 777	1. 00 80. 81
	ATOM 970	CG ASP	135	16. 474	28. 778	81. 783	1. 00 81. 08
	ATOM 971	OD1 ASP	135	16. 801	29. 970	81. 599	1. 00 82. 67
	ATOM 972	OD2 ASP	135	15. 517	28. 234	81. 195	1. 00 81. 12
	ATOM 973	C ASP	135	19. 486	27. 686	83. 872	1. 00 81. 80
20	ATOM 974	0 ASP	135	20. 090	28. 490	84. 578	1. 00 82. 12
	ATOM 975	N LYS	136	19. 418	26. 384	84. 143	1. 00 82. 43
	ATOM 976	CA LYS	136	20. 041	25. 811	85. 333	1. 00 83. 25
	ATOM 977	CB LYS	136	19. 750	24. 307	85. 418	1. 00 82. 64
	ATOM 978	CG LYS	136	18. 288	23. 970	85. 677	1. 00 82. 57
25	ATOM 979	CD LYS	136	18. 095	22. 487	85. 952	1. 00 82. 49
	ATOM 980	CE LYS	136	16. 630	22. 154	86. 182	1. 00 82. 31
	ATOM 981	NZ LYS	136	16. 053	22. 914	87. 323	1. 00 82. 43
	ATOM 982	C LYS	136	21. 548	26. 044	85. 429	1. 00 84. 12
	ATOM 983	0 LYS	136	22. 185	25. 610	86. 390	1. 00 84. 51

- 50 -

	ATOM	984	N F	IIS	137	22. 119	26. 727	84. 442	1. 00 85. 08
	ATOM	985	CA H	IIS	137	23. 551	27. 010	84. 450	1. 00 86. 27
	ATOM	986	CB E	IIS	137	24. 280	26. 115	83. 438	1. 00 86. 74
	ATOM	987	CG H	IIS	137	24. 169	24. 649	83. 730	1. 00 87. 04
5	ATOM	988	CD2 H	IIS	137	25. 112	23. 729	84. 047	1. 00 86. 44
	ATOM	989	ND1 H	IS	137	22. 968	23. 971	83. 708	1. 00 87. 51
	ATOM	990	CE1 H	IS	137	23. 176	22. 699	83. 999	1. 00 86. 59
	ATOM	991	NE2 H	IS	137	24. 468	22. 526	84. 209	1. 00 86. 35
	ATOM	992	СН	IS	137	23. 820	28. 476	84. 123	. 00 87. 11
10	ATOM	993 (D H	IS	137	24. 943	28. 842	83. 776	. 00 86. 73
	ATOM	994 1	N G	LN	138	22. 784	29. 307	84. 249 1	. 00 88. 41
	ATOM	995 (CA G	LN	138	22. 883	30. 736	83. 955 1	. 00 89. 43
	ATOM	996 (CB G	LN	138	23. 469	31. 512	85. 140 1	. 00 90. 47
	ATOM	997 (CG G	LN	138	22. 654	31. 451	86. 419 1	. 00 92. 10
15	ATOM	998 (CD G1	LN	138	22. 738	30. 099	87. 095 1	. 00 93. 09
	ATOM						29. 598	37. 372 1	. 00 93. 35
·	ATOM			2 GLN	138	21. 58	34 29. 50	87. 371	1. 00 93. 71
	ATOM	1001		GLN		23. 77	79 30. 931	82. 747	1. 00 89. 90
	ATOM	1002		GLN		24. 92	22 31. 376	82. 875	1. 00 89. 53
20	ATOM	1003		MET		23. 26	30. 591	81. 573	1. 00 89. 97
	ATOM	1004		MET					
	ATOM	1005						80. 235	1. 00 90. 82
	ATOM	1006		MET	139				1. 00 91. 26
	ATOM	1007	SD	MET	139	27. 52			1. 00 90. 73
25	ATOM	1008	CE	MET	139	28. 30			1. 00 91. 08
	ATOM	1009	C	MET	139	23. 13	•		1. 00 90. 17
	ATOM	1010	0	MET	139	23. 61		78. 006	1. 00 90. 11
	ATOM	1011	N	LYS	140	21. 82		79. 380	1. 00 89. 92
	ATOM	1012	CA	LYS	140	20. 85	1 30. 921	78. 300	1. 00 89. 78

- 51 -

	ATOM	1013	CE	LYS	140	19. 434	30. 922	78. 874	1. 00 89. 37
	ATOM	1014	CG	LYS	140	18. 357	31. 239	77. 852	1. 00 89. 17
	ATOM	1015	CD	LYS	140	16. 972	31. 055	78. 438	1. 00 89. 06
	ATOM	1016	CE	LYS	140	16. 688	29. 588	78. 675	1. 00 88. 66
5	ATOM	1017	NZ	LYS	140	16. 797	28. 822	77. 406	1. 00 88. 73
	ATOM	1018	C	LYS	140	21. 067	32. 179	77. 466	1. 00 89. 78
	ATOM	1019	0	LYS	140	20. 593	32. 278	76. 334	1. 00 89. 28
	ATOM	1020	N	HIS	141	21. 794	33. 133	78. 037	1. 00 90. 38
	ATOM	1021	CA	HIS	141	22. 082	34. 401	77. 376	1. 00 90. 81
10	ATOM	1022	CB	HIS	141	22. 222	35. 506	78. 427	1. 00 90. 98
	ATOM	1023	CG	HIS	141	23. 294	35. 243	79. 443	1. 00 91. 18
	ATOM	1024	CD	2 HIS	141	24. 520	35. 794	79. 610	1. 00 91. 04
	ATOM	1025	ND:	HIS	141	23. 163	34. 294	80. 434	1. 00 91. 11
	ATOM	1026	CE	HIS	141	24. 262	34. 273	81. 168	1. 00 91. 45
15	ATOM	1027	NE2	HIŞ	141	25. 102	35. 174	80. 688	1. 00 90. 96
	ATOM	1028	C	HIS	141	23. 349	34. 367	76. 516	1. 00 90. 72
	ATOM	1029	0	HIS	141	24. 048	35. 374	76. 399	1. 00 91. 00
	ATOM	1030	N	LYS	142	23. 648	33. 220	75. 912	1. 00 90. 17
	ATOM	1031	CA	LYS	142	24. 845	33. 109	75. 082	1. 00 89. 12
20	ATOM	1032	CB	LYS	142	26. 000	32. 529	75. 908	1. 00 89. 54
	ATOM	1033	CG	LYS	142	26. 424	33. 406	77. 079	1. 00 90. 51
	ATOM	1034	CD	LYS	142	27. 490	32. 730	77. 926	1. 00 91. 91
	ATOM	1035	CE	LYS	142	27. 867	33. 579	79. 131	1. 00 92. 42
	ATOM	1036	NZ	LYS	142	28. 820	32. 863	80. 026	1. 00 92. 34
25	ATOM	1037	C	LYS	142	24. 643	32. 276	73. 815	1. 00 87. 58
	ATOM	1038	0	LYS	142	23. 763	31. 418	73. 749	1. 00 87. 74
	ATOM	1039	N	LYS	143	25. 465	32. 554	72. 808	1. 00 85. 65
	ATOM	1040	CA	LYS	143	25. 414	31. 849	71. 532	1. 00 83. 45
	ATOM	1041	CB	LYS	143	25. 052	32. 819	70. 402	1. 00 83. 10
						•			

- 52 -

	ATOM	1042	CO	LYS	143	25. 199	32. 262	68. 988	1. 00 82. 55
	ATOM	1043	CI	LYS	143	24. 890	33. 339	67. 951	1. 00 82. 36
	ATOM	1044	CE	LYS	143	25. 289	32. 922	66. 540	1. 00 82. 46
	MOTA	1045	NZ	LYS	143	24. 519	31. 749	66. 045	1. 00 82. 29
5	ATOM	1046	C	LYS	143	26. 790	31. 252	71. 283	1. 00 82. 32
	ATOM	1047	0	LYS	143	27. 751	31. 974	71. 002	1. 00 82. 33
	ATOM	1048	N	LEU	144	26. 884	29. 932	71. 409	1. 00 79. 90
	ATOM	1049	CA	LEU	144	28. 146	29. 233	71. 198	1. 00 77. 12
	ATOM	1050	CB	LEU	144	28. 653	28. 634	72. 517	1. 00 78. 89
10	ATOM	1051	CG	LEU	144	29. 417	29. 543	73. 491	1. 00 80. 11
	ATOM	1052	CD	1 LEU	144	28. 560	30. 727	73. 924	1. 00 81. 77
	ATOM	1053	CD	2 LEU	144	29. 836	28. 721	74. 698	1. 00 80. 96
	ATOM	1054	C	LEU	144	27. 993	28. 132	70. 156	1. 00 73. 23
	ATOM	1055	0	LEU	144	26. 876	27. 742	69. 810	1. 00 72. 89
15	ATOM	1056	N	PRO	145	29. 119	27. 628	69. 628	1. 00 70. 01
	ATOM	1057	CD	PRO	145	30. 498	28. 104	69. 833	1. 00 68. 83
	ATOM	1058	CA	PRO	145	29. 081	26. 565	68. 621	1. 00 67. 77
	ATOM	1059	CB	PRO	145	30. 555	26. 356	68. 285	1. 00 68. 79
	ATOM	1060	CG	PRO	145	31. 159	27. 706	68. 542	1. 00 69. 21
20	ATOM	1061	С	PR0	145	28. 434	25. 299	69. 181	1. 00 65. 49
	ATOM	1062	0	PRO	145	28. 615	24. 963	70. 351	1. 00 64. 23
	ATOM	1063	N	LEU	146	27. 677	24. 603	68. 340	1. 00 63. 31
	ATOM	1064	CA	LEU	146	27. 007	23. 383	68. 757	1. 00 61. 72
	ATOM	1065	CB	LEU	146	25. 492	23. 532	68. 602	1. 00 62. 15
25	ATOM	1066	CG	LEU	146	24. 678	22. 285	68. 945	1. 00 62. 90
	ATOM	1067		LEU	146	25. 011	21. 842	70. 353	1. 00 64. 57
	ATOM	1068		LEU	146	23. 194	22. 577	68. 817	1. 00 65. 06
	ATOM	1069	C	LEU	146	27. 473	22. 152	67. 985	1. 00 59. 94
	ATOM	1070	0	LEU	146	27. 342	22. 086	66. 763	1. 00 59. 04

- 53 -

						- t	3 -		
	ATOM	1071	N	GLY	147	28. 028	21. 189	68. 721	1. 00 58. 65
	ATOM	1072	CA	GLY	147	28. 492	19. 939	68. 136	1. 00 54. 15
	ATOM	1073	C	GLY	147	27. 444	18. 891	68. 465	1. 00 49. 71
	ATOM	1074	0	GLY	147	27. 175	18. 628	69. 635	1. 00 50. 70
5	ATOM	1075	N	PHE	148	26. 854	18. 287	67. 440	1. 00 46. 12
	ATOM	1076	CA	PHE	148	25. 795	17. 297	67. 635	1. 00 42. 39
	ATOM	1077	CB	PHE	148	24. 610	17. 675	66. 740	1. 00 39. 68
	ATOM	1078	CG	PHE	148	23. 366	16. 864	66. 977	1. 00 38. 24
	ATOM	1079	CD1	PHE	148	22. 326	16. 901	66. 056	1. 00 36. 04
10	ATOM	1080	CD2	PHE	148	23. 212	16. 102	68. 132	1. 00 36. 13
	ATOM	1081	CE1	PHE	148	21. 148	16. 194	66. 279	1. 00 38. 53
	ATOM	1082	CE2	PHE	148	22. 042	15. 395	68. 365	1. 00 35. 28
	ATOM	1083	CZ	PHE	148	21. 005	15. 440	67. 437	1. 00 37. 48
	ATOM	1084	C	PHE	148	26. 197	15. 840	67. 354	1. 00 41. 67
15	ATOM	1085	0	PHE	148	26. 463	15. 475	66. 205	1. 00 42. 24
	ATOM	1086	N	THR	149	26. 247	15. 013	68. 398	1. 00 40. 23
-	ATOM	1087	CA	THR	149	26. 562	13. 593	68. 222	1. 00 36. 30
	ATOM	1088	CB	THR	149	27. 281	13. 001	69. 442	1. 00 36. 36
	ATOM	1089	0G1	THR	149	28. 580	13. 597	69. 560	1. 00 37. 54
20	ATOM	1090	CG2	THR	149	27. 444	11. 492	69. 286	1. 00 37. 01
	ATOM	1091	C	THR	149	25. 212	12. 909	68. 039	1. 00 34. 65
	ATOM	1092	0	THR	149	24. 412	12. 836	68. 967	1. 00 31. 13
	ATOM	1093	N	PHE	150	24. 972	12. 422	66. 825	1. 00 33. 67
	ATOM	1094	CA	PHE	150	23. 714	11. 782	66. 456	1. 00 34. 60
25	ATOM	1095	CB	PHE	150	23. 061	12. 614	65. 336	1. 00 32. 78
	ATOM	1096	CG	PHE	150	21. 739	12. 086	64. 854	1. 00 30. 57
	ATOM	1097	CD1	PHE	150	21. 625	11. 513	63. 595	1. 00 30. 43
	ATOM	1098	CD2	PHE	150	20. 598	12. 213	65. 637	1. 00 31. 90
	ATOM	1099	CE1	PHE	150	20. 382	11. 076	63. 115	1. 00 34. 54

- 54 -

					•	-		
	ATOM	1100	CE2	PHE 150	19. 356	11. 783	65. 176	1. 00 30. 63
	ATOM	1101	CZ.	PHE 150	19. 241	11. 213	63. 913	1. 00 32. 01
	ATOM	1102	C :	PHE 150	24. 011	10. 358	65. 991	1. 00 35. 95
	ATOM	1103	0	PHE 150	24. 369	10. 128	64. 836	1. 00 38. 42
5	ATOM	1104	N .	SER 151	23. 843	9. 412	66. 908	1. 00 36. 96
	ATOM	1105	CA :	SER 151	24. 129	7. 995	66. 680	1. 00 34. 37
	ATOM	1106	CB S	SER 151	24. 186	7. 271	68. 025	1. 00 35. 80
	ATOM	1107	0G S	SER 151	25. 111	7. 897	68. 892	1. 00 39. 97
	ATOM	1108	C S	SER 151	23. 189	7. 228	65. 770	1. 00 32. 05
10	ATOM	1109	0 5	SER 151	22. 537	6. 292	66. 215	1. 00 32. 11
	ATOM	1110	N F	PHE 152	23. 110	7. 611	64. 505	1. 00 31. 41
	ATOM	1111	CA P	PHE 152	22. 253	6. 902	63. 563	1. 00 31. 81
	ATOM	1112	CB P	PHE 152	20. 824	7. 464	63. 570	1. 00 34. 43
	ATOM	1113	CG P	HE 152	20. 149	7. 372	64. 904	1. 00 34. 95
15	ATOM	1114	CD1 P	HE 152	20. 278	8. 401	65. 838	1. 00 32. 95
	ATOM	1115	CD2 P	HE 152	19. 439	6. 228	65. 256	1. 00 35. 34
	ATOM	1116	CE1 P	HE 152	19. 713	8. 291	67. 108	1. 00 35. 00
	ATOM	1117	CE2 P	HE 152	18. 868	6. 102	66. 526	1. 00 35. 79
	ATOM	1118	CZ P	HE 152	19. 005	7. 135	67. 454	1. 00 38. 15
20	ATOM	1119	C P	HE 152	22. 845	7. 010	62. 171	1. 00 31. 95
	ATOM	1120	0 P	HE 152	23. 727	7. 831	61. 921	1. 00 31. 72
	ATOM	1121	N P	RO 153	22. 386	6. 164	61. 247	1. 00 32. 44
	ATOM	1122	CD P	RO 153	21. 374	5. 098	61. 343	1. 00 30. 73
	ATOM	1123	CA P	RO 153	22. 942	6. 248	59. 896	1. 00 34. 59
25	ATOM	1124	CB PI	RO 153	22. 397	4. 991	59. 225	1. 00 31. 34
	ATOM	1125	CG PI	RO 153	21. 072	4. 812	59. 884	1. 00 31. 98
	ATOM	1126	C PF	RO 153	22. 507	7. 535	59. 201	1. 00 37. 30
	ATOM	1127	0 PF	RO 153	21. 310	7. 813	59. 067	1. 00 39. 02
	ATOM	1128	N VA	L 154	23. 483	8. 325	58. 770	1. 00 39. 02

- 55 -

	ATOM	1129	CA	VAL	154	23. 187	9. 581	58. 092	1. 00 40. 43
	ATOM	1130	CB	VAL	154	23. 446	10. 792	59. 007	1. 00 39. 28
	ATOM	1131	CG1	VAL	154	23. 191	12. 081	58. 238	1. 00 41. 18
	ATOM	1132	CG2	VAL	154	22. 557	10. 727	60. 221	1. 00 38. 37
5	ATOM	1133	C	VAL	154	24. 023	9. 785	56. 837	1. 00 41. 48
	ATOM	1134	0	VAL	154	25. 241	9. 602	56. 861	1. 00 41. 28
	ATOM	1135	N .	ARG	155	23. 365	10. 162	55. 743	1. 00 43. 31
	ATOM	1136	CA .	ARG	155	24. 072	10. 441	54. 495	1. 00 46. 32
	ATOM	1137	CB .	ARG	155	23. 233	10. 058	53. 280	1. 00 47. 31
10	ATOM	1138	CG .	ARG	155	23. 809	10. 586	51. 968	1. 00 52. 20
	ATOM	1139	CD A	ARG	155	23. 563	9. 614	50. 844	1. 00 55. 56
	ATOM	1140	NE A	ARG	155	24. 419	8. 437	50. 968	1. 00 59. 93
	ATOM	1141	CZ A	ARG 1	155	24. 068	7. 217	50. 573	1. 00 61. 41
	ATOM	1142	NH1 A	ARG 1	155	22. 874	7. 011	50. 032	1. 00 63. 00
15	ATOM	1143	NH2 A	ARG 1	155	24. 910	6. 203	50. 717	1. 00 63. 35
	ATOM	1144	C A	ARG 1	155	24. 367	11. 934	54. 456	1. 00 46. 23
	ATOM	1145	0 A	IRG 1	55	23. 486	12. 737	54. 166	1. 00 47. 64
	ATOM	1146	N H	IIS 1	56	25. 613	12. 291	54. 754	1. 00 47. 03
	ATOM	1147	CA H	IIS 1	56	26. 046	13. 682	54. 791	1. 00 48. 05
20	ATOM	1148	CB H	IS 1	56	27. 318	13. 834	55. 632	1. 00 49. 62
	ATOM	1149	CG H	IS 1	56	27. 157	13. 444	57. 066	1. 00 52. 65
	ATOM	1150	CD2 H		56	26. 274	12. 619	57. 676	1. 00 53. 99
	ATOM	1151	ND1 H		56	27. 990	13. 916	58. 057	1. 00 53. 35
	ATOM	1152	CE1 H		56	27. 625	13. 401	59. 218	1. 00 54. 78
25	ATOM	1153	NE2 H	IS 1	56	26. 586	12. 610	59. 014	1. 00 54. 28
	ATOM	1154	C H	IS 1	56	26. 334	14. 317	53. 440	1. 00 48. 30
	ATOM	1155	0 Н	IS 1	56	26. 872	13. 677	52. 535	1. 00 47. 38
	ATOM	1156	N G	LU 1	57	25. 969	15. 589	53. 319	1. 00 47. 98
	ATOM	1157	CA G	LU 18	57	26. 256	16. 343	52. 114	1. 00 48. 38

- 56 -

	ATOM	1158	CB	GLU	157	25. 113	17. 296	51. 749	1. 00 51. 05
	ATOM	1159	CG	GLU					1. 00 57. 22
	ATOM	1160	CD	GLU	157	24. 422	19. 276	50. 275	1. 00 58. 92
	ATOM	1161	0E1	GLU	157	23. 299	18. 931	49. 845	1. 00 60. 91
5	ATOM	1162	0E2	GLU	157	24. 734	20. 471	50. 485	1. 00 60. 69
	ATOM	1163	C	GLU	157	27. 475	17. 138	52. 547	1. 00 45. 12
	ATOM	1164	0	GLU	157	28. 349	17. 457	51. 749	1. 00 43. 91
	ATOM	1165	N	ASP	158	27. 529	17. 427	53. 843	1. 00 43. 85
	ATOM	1166	CA	ASP	158	28. 633	18. 174	54. 416	1. 00 43. 81
10	ATOM	1167	CB	ASP	158	28. 479	19. 654	54. 085	1. 00 46. 74
	ATOM	1168	CG	ASP	158	29. 743	20. 445	54. 349	1. 00 49. 54
	ATOM	1169	0D1	ASP	158	29. 760	21. 651	54. 016	1. 00 53. 34
	ATOM	1170	OD2	ASP	158	30. 716	19. 869	54. 884	1. 00 49. 62
	ATOM	1171	C	ASP	158	28. 671	17. 972	55. 928	1. 00 43. 93
15	MOTA	1172	0	ASP	158	27. 724	17. 447	56. 518	1. 00 43. 97
	ATOM	1173	N	ILE	159	29. 767	18. 399	56. 547	1. 00 43. 75
	ATOM	1174	CA	ILE	159	29. 963	18. 250	57. 983	1. 00 44. 27
	ATOM	1175	CB	ILE	159	31. 248	18. 971	58. 452	1. 00 45. 07
	ATOM	1176	CG2	ILE	159	31.069	20. 480	58. 354	1. 00 47. 24
20	ATOM	1177	CG1	ILE	159	31. 544	18. 617	59. 907	1. 00 45. 29
	ATOM	1178			159	31. 733	17. 140		1. 00 48. 99
	ATOM	1179	C	ILE	159	28. 795	18. 744	58. 829	1. 00 44. 47
	ATOM	1180	0	ILE	159	28. 583	18. 254	59. 941	1. 00 44. 15
	ATOM	1181	N	ASP	160	28. 037	19. 709	58. 317	1. 00 44. 10
25	ATOM	1182	CA	ASP	160	26. 904	20. 239	59. 072	1. 00 42. 92
	ATOM	1183	CB .	ASP	160	27. 103	21. 734	59. 360	1. 00 44. 13
	ATOM	1184	CG .	ASP	160	27. 448	22. 533	58. 118	1. 00 45. 52
	ATOM	1185	OD1 .		160	28. 258	23. 479	58. 239	1. 00 47. 57
	ATOM	1186	OD2	ASP	160	26. 912	22. 228	57. 031	1. 00 45. 51

- 57 -

	ATOM	1107	7 0	ACD	100	05 550			
		1187		ASP					1. 00 42. 92
	ATOM	1188		ASP	160	24. 579	20. 691	58. 706	1. 00 44. 48
	ATOM	1189	N	LYS	161	25. 509	19. 026	57. 518	1. 00 41. 57
	ATOM	1190	CA	LYS	161	24. 267	18. 692	56. 838	1. 00 41. 51
5	ATOM	1191	CB	LYS	161	24. 067	19. 597	55. 618	1. 00 41. 19
	ATOM	1192	CG	LYS	161	22. 783	19. 306	54. 863	1. 00 41. 39
	ATOM	1193	CD	LYS	161	22. 687	20. 094	53. 557	1. 00 43. 25
	ATOM	1194	CE	LYS	161	21. 366	19. 809	52. 860	1. 00 40. 06
	ATOM	1195	NZ	LYS	161	21. 335	20. 312	51. 468	1. 00 41. 02
10	ATOM	1196	C	LYS	161	24. 258	17. 224	56. 397	1. 00 41. 66
	ATOM	1197	0	LYS	161	25. 239	16. 725	55. 838	1. 00 39. 36
	ATOM	1198	N	GLY	162	23. 143	16. 546	56. 654	1. 00 40. 90
	ATOM	1199	CA	GLY	162	23. 005	15. 152	56. 276	1. 00 42. 70
	ATOM	1200	C	GLY	162	21.618	14. 645	56. 615	1. 00 43. 15
15	ATOM	1201	0	GLY	162	21.019	15. 085	57. 594	1. 00 43. 59
	ATOM	1202	N	ILE	163	21.096	13. 722	55. 816	1. 00 43. 93
	ATOM	1203	CA	ILE	163	19. 763	13. 190	56. 068	1. 00 45. 03
	ATOM	1204	CB	ILE	163	18. 958	13. 031	54. 755	1. 00 46. 16
	ATOM	1205	CG2	ILE	163	18. 943	14. 352	53. 985	1. 00 45. 82
20	ATOM	1206	CG1	ILE	163	19. 585	11. 938	53. 889	1. 00 46. 11
	ATOM	1207	CD1	ILE	163	18. 812	11. 638	52. 613	1. 00 48. 51
	ATOM	1208	C	ILE	163	19. 812	11. 833	56. 764	1. 00 46. 49
	ATOM	1209	0	ILE	163	20. 771	11. 074	56. 609	1. 00 45. 36
	ATOM	1210	N	LEU	164	18. 767	11. 545	57. 533	1. 00 47. 21
25	ATOM	1211	CA	LEU	164	18. 649	10. 286	58. 253	1. 00 47. 53
	ATOM	1212	CB	LEU	164	17. 623	10. 414	59. 379	1. 00 47. 11
	ATOM	1213	CG	LEU	164	17. 135	9. 126	60. 049	1. 00 47. 15
	ATOM	1214	CD1	LEU	164	18. 265	8. 469	60. 832	1. 00 45. 45
	ATOM	1215	CD2	LEU	164	15. 981	9. 465	60. 977	1. 00 47. 00

- 58 -

						U.			
	ATOM	1216	C	LEU	164	18. 189	9. 220	57. 277	1. 00 48. 06
	ATOM	1217	0	LEU	164	17. 137	9. 352	56. 657	1. 00 48. 49
	ATOM	1218	N	LEU	165	18. 977	8. 161	57. 137	1. 00 48. 32
	ATOM	1219	CA	LEU	165	18. 614	7. 093	56. 224	1. 00 47. 47
5	ATOM	1220	CB	LEU	165	19. 827	6. 208	55. 954	1. 00 45. 44
	ATOM	1221	CG	LEU	165	20. 867	6. 978	55. 140	1. 00 47. 60
	ATOM	1222	CD1	LEU	165	22. 128	6. 155	54. 956	1. 00 47. 47
	ATOM	1223	CD2	LEU	165	20. 261	7. 342	53. 786	1. 00 48. 48
	ATOM	1224	C	LEU	165	17. 460	6. 300	56. 814	1. 00 46. 86
10	ATOM	1225	0	LEU	165	16. 497	5. 985	56. 120	1. 00 46. 90
	ATOM	1226	N	ASN	166	17. 562	5. 992	58. 101	1. 00 46. 60
	ATOM	1227	CA	ASN	166	16. 521	5. 266	58. 817	1. 00 47. 23
	ATOM	1228	CB	ASN	166	16. 282	3. 883	58. 200	1. 00 49. 17
	ATOM	1229	CG	ASN	166	17. 542	3. 053	58. 118	1. 00 50. 36
15	ATOM	1230	0D1	ASN	166	18. 205	2. 997	57. 076	1. 00 50. 62
	ATOM	1231	ND2	ASN	166	17. 888	2. 406	59. 223	1. 00 50. 50
	ATOM	1232	C	ASN	166	16. 913	5. 123	60. 279	1. 00 47. 60
	ATOM	1233	0	ASN	166	18. 096	5. 177	60. 623	1. 00 48. 53
	ATOM	1234	N	TRP	167	15. 916	4. 966	61. 142	1. 00 46. 96
20	ATOM	1235	CA	TRP	167	16. 166	4. 815	62. 571	1. 00 45. 46
	ATOM	1236	CB	TRP	167	14. 890	5. 085	63. 376	1. 00 47. 63
	ATOM	1237	CG '	TRP	167	14. 433	6. 519	63. 454	1. 00 49. 15
	ATOM	1238	CD2	TRP	167	15. 093	7. 602	64. 126	1. 00 49. 07
	ATOM	1239	CE2	TRP	167	14. 237	8. 725	64. 050	1. 00 48. 21
25	ATOM	1240	CE3	TRP	167	16. 321	7. 732	64. 787	1. 00 49. 17
	ATOM	1241	CD1	TRP	167	13. 242	7. 022	63. 003	1. 00 49. 03
	ATOM	1242	NE1 1	TRP	167	13. 117	8. 343	63. 361	1. 00 48. 46
	ATOM	1243	CZ2 7	rp	167	14. 569	9. 962	64. 614	1. 00 47. 68
	ATOM	1244	CZ3 I	TRP	167	16. 652	8. 966	65. 348	1. 00 49. 58

- 59 -

						0.	,			
	ATOM	1245	CH	2 TRP	167	15. 777	10. 064	65. 256	1. 00	48. 80
	ATOM	1246	C	TRP	167	16. 647	3. 394	62. 890	1. 00	43. 28
	ATOM	1247	0	TRP	167	16. 425	2. 461	62. 119	1. 00	42. 86
	ATOM	1248	N	THR	168	17. 297	3. 245	64. 038	1. 00	41. 63
5	ATOM	1249	CA	THR	168	17. 796	1. 953	64. 501	1. 00	40. 13
	ATOM	1250	CB	THR	168	19. 275	1. 723	64. 086	1. 00	37. 87
	ATOM	1251	0G	THR	168	20. 082	2. 795	64. 587	1. 00	33. 52
	ATOM	1252	CG2	2 THR	168	19. 417	1. 647	62. 566	1. 00	34. 11
	ATOM	1253	C	THR	168	17. 719	1. 943	66. 029	1. 00	41. 33
10	ATOM	1254	0	THR	168	17. 382	2. 953	66. 649	1. 00	41. 41
	ATOM	1255	N	LYS	169	18. 025	0. 799	66. 631	1. 00	42. 06
	ATOM	1256	CA	LYS	169	18. 013	0. 672	68. 083	1. 00	42. 59
	ATOM	1257	CB	LYS	169	19. 077	1. 594	68. 683	1. 00	39. 56
	ATOM	1258	CG	LYS	169	20. 497	1. 209	68. 287	1. 00	36. 24
15	ATOM	1259	CD	LYS	169	21. 528	2. 170	68. 840	1. 00	33. 26
	ATOM	1260	CE	LYS	169	21. 481	3. 514	68. 133	1. 00	30. 26
	ATOM	1261	NZ	LYS	169	22. 589	4. 373	68. 610	1. 00	32. 75
	ATOM	1262	C	LYS	169	16. 661	0. 933	68. 751	1. 00	45. 26
	ATOM	1263	0	LYS	169	16. 598	1. 191	69. 955	1.00	45. 85
20	ATOM	1264	N	GLY	170	15. 583	0. 881	67. 975	1. 00	47. 46
	ATOM	1265	CA	GLY	170	14. 267	1. 083	68. 555	1. 00	52. 44
	ATOM	1266	C	GLY	170	13. 552	2. 394	68. 295	1. 00	55. 24
	ATOM	1267	0	GLY	170	12. 324	2. 422	68. 275	1. 00	56. 11
	ATOM	1268	N	PHE	171	14. 293	3. 482	68. 118	1. 00	58. 10
25	ATOM	1269	CA	PHE	171	13. 668	4. 777	67. 861	1. 00 (61. 86
	ATOM	1270	CB	PHE	171	14. 734	5. 846	67. 613	1. 00 6	32. 35
	ATOM	1271	CG	PHE	171	15. 449	6. 285	68. 856	1. 00 6	64. 08
	ATOM	1272	CD1	PHE	171	16. 060	5. 354	69. 691	1. 00 6	66. 00
	ATOM	1273	CD2	PHE	171	15. 511	7. 630	69. 196	1. 00 6	84. 53

- 60 -

	ATOM	1274	CE	1 PHE	171	16. 721	5. 760	70. 851	1. 00 66. 96
	ATOM	1275	CE	2 PHE	171	16. 170	8. 046	70. 352	1. 00 65. 93
	ATOM	1276	CZ	PHE	171	16. 776	7. 109	71. 180	1. 00 66. 07
	ATOM	1277	C	PHE	171	12. 727	4. 697	66. 663	1. 00 63. 91
5	ATOM	1278	0	PHE	171	12. 994	3. 975	65. 702	1. 00 63. 50
	ATOM	1279	N	LYS	172	11. 620	5. 430	66. 727	1. 00 65. 77
	ATOM	1280	CA	LYS	172	10. 657	5. 424	65. 633	1. 00 68. 37
	ATOM	1281	CB	LYS	172	9. 738	4. 197	65. 727	1. 00 70. 16
	ATOM	1282	CG	LYS	172	8. 814	4. 035	64. 517	1. 00 72. 04
10	ATOM	1283	CD	LYS	172	7. 867	2. 842	64. 647	1. 00 73. 43
	ATOM	1284	CE	LYS	172	6. 977	2. 718	63. 406	1. 00 74. 42
	ATOM	1285	NZ	LYS	172	5. 933	1. 655	63. 525	1. 00 73. 62
	ATOM	1286	C	LYS	172	9. 808	6. 688	65. 606	1. 00 69. 18
	ATOM	1287	0	LYS	172	8. 599	6. 642	65. 838	1. 00 70. 01
15	ATOM	1288	N	ALA	173	10. 445	7. 820	65. 332	1. 00 68. 98
	ATOM	1289	CA	ALA	173	9. 734	9. 086	65. 251	1. 00 69. 07
	ATOM	1290	CB	ALA	173	10. 598	10. 210	65. 818	1. 00 68. 41
	ATOM	1291	C	ALA	173	9. 424	9. 339	63. 776	1. 00 69. 07
	ATOM	1292	0	ALA	173	10. 336	9. 471	62. 962	1. 00 69. 61
20	ATOM	1293	N	SER	174	8. 139	9. 394	63. 432	1. 00 69. 06
	ATOM	1294	CA	SER	174	7. 735	9. 620	62. 047	1. 00 68. 32
	ATOM	1295	CB	SER	174	6. 217	9. 491	61. 901	1. 00 69. 02
	ATOM	1296	0G	SER	174	5. 546	10. 503	62. 632	1. 00 68. 18
	ATOM	1297	С	SER	174	8. 173	10. 996	61. 568	1. 00 67. 71
25	ATOM	1298	0	SER	174	8. 410	11. 897	62. 370	1. 00 68. 23
	ATOM	1299	N	GLY	175	8. 288	11. 148	60. 254	1. 00 67. 37
	ATOM	1300	CA	GLY	175	8. 688	12. 424	59. 690	1. 00 67. 08
	ATOM	1301	C	GLY	175	10. 143	12. 787	59. 915	1. 00 66. 86
	ATOM	1302	0	GLY	175	10. 507	13. 962	59. 855	1. 00 67. 38

- 61 -

						U	1			
	ATOM	1303	N	ALA	176	10. 979	11. 786	60. 172	1. 00	56. 42
	ATOM	1304	CA	ALA	176	12. 400	12. 018	60. 401	1. 00	34. 67
	ATOM	1305	CB	ALA	176	12. 828	11. 360	61. 699	1. 00	34. 11
	ATOM	1306	C	ALA	176	13. 229	11. 475	59. 242	1. 00	34. 02
5	ATOM	1307	0	ALA	176	14. 053	12. 183	58. 667	1. 00 (35. 00
	ATOM	1308	N	GLU	177	12. 993	10. 214	58. 903	1. 00 6	33. 24
	ATOM	1309	CA	GLU	177	13. 710	9. 544	57. 825	1. 00 6	3. 08
	ATOM	1310	CB	GLU	177	13. 147	8. 127	57. 639	1. 00 6	32. 97
	ATOM	1311	CG	GLU	177	13. 315	7. 224	58. 865	1. 00 6	4. 81
10	ATOM	1312	CD	GLU	177	12. 712	5. 837	58. 682	1. 00 6	4. 99
	ATOM	1313	0E1	GLU	177	12. 948	4. 972	59. 552	1. 00 6	5. 80
	ATOM	1314	0E2	GLU	177	12. 003	5. 612	57. 677	1. 00 6	4. 52
	ATOM	1315	C	GLU	177	13. 669	10. 293	56. 491	1. 00 6	2. 92
	ATOM	1316	0	GLU	177	12. 602	10. 489	55. 908	1. 00 6	3. 26
15	ATOM	1317	N	GLY	178	14. 838	10. 708	56. 013	1. 00 6	2. 46
	ATOM	1318	CA	GLY	178	14. 911	11. 406	54. 741	1. 00 6	1. 36
	ATOM	1319	C	GLY	178	15. 095	12. 911	54. 805	1. 00 6	0. 52
	ATOM	1320	0	GLY	178	15. 337	13. 539	53. 777	1. 00 6	1. 73
	ATOM	1321	N	ASN	179	14. 990	13. 498	55. 993	1. 00 5	9. 84
20	ATOM	1322	CA	ASN	179	15. 139	14. 942	56. 134	1. 00 5	9. 11
	ATOM	1323	CB	ASN	179	13. 985	15. 512	56. 959	1. 00 5	9. 72
	ATOM	1324	CG	ASN	179	12. 630	15. 217	56. 342	1.00 6	1. 46
	ATOM	1325	OD1	ASN	179	12. 423	15. 416	55. 143	1. 00 6	1. 86
	ATOM	1326	ND2	ASN	179	11.696	14. 743	57. 161	1.00 6	1. 02
25	ATOM	1327	C	ASN	179	16. 463	15. 349	56. 765	1. 00 58	8. 81
	ATOM	1328	0	ASN	179	17. 108	14. 553	57. 441	1. 00 59	€. 10
	ATOM	1329	N	ASN	180	16. 860	16. 599	56. 537	1. 00 58	3. 30
	ATOM	1330	CA	ASN	180	18. 107	17. 130	57. 079	1. 00 57	7. 96
	ATOM	1331	CB	ASN	180	18. 362	18. 539	56. 539	1. 00 58	3. 57

- 62 -

						- 0	Z –		
	ATOM	1332	CG	ASN	180	19. 693	19. 112	57. 001	1. 00 60. 99
	ATOM	1333	0D1	ASN	180	20. 278	18. 647	57. 983	1. 00 60. 88
	ATOM	1334	ND2	ASN	180	20. 171	20. 139	56. 302	1. 00 60. 74
	ATOM	1335	C	ASN	180	18. 036	17. 183	58. 600	1. 00 57. 30
5	ATOM	1336	0	ASN	180	17. 388	18. 064	59. 162	1. 00 57. 94
	ATOM	1337	N	VAL	181	18. 709	16. 245	59. 261	1. 00 55. 49
	ATOM	1338	CA	VAL	181	18. 716	16. 189	60. 720	1. 00 54. 19
	ATOM	1339	CB	VAL	181	19. 698	15. 109	61. 229	1. 00 53. 15
	ATOM	1340	CG1	VAL	181	19. 756	15. 121	62. 748	1. 00 50. 90
10	ATOM	1341	CG2	VAL	181	19. 258	13. 742	60. 731	1. 00 51. 33
	ATOM	1342	C	VAL	181	19. 089	17. 534	61. 333	1. 00 54. 31
	ATOM	1343	0	VAL	181	18. 473	17. 979	62. 299	1. 00 53. 21
	ATOM	1344	N	VAL	182	20. 110	18. 174	60. 777	1. 00 56. 27
	ATOM	1345	CA	VAL	182	20. 533	19. 472	61. 271	1. 00 58. 32
15	ATOM	1346	CB	VAL	182	21. 706	20. 033	60. 447	1. 00 58. 42
	ATOM	1347	CG1	VAL	182	22. 135	21. 373	61. 007	1. 00 58. 05
	ATOM	1348	CG2	VAL	182	22. 867	19. 054	60. 460	1. 00 59. 02
	ATOM	1349	C	VAL	182	19. 339	20. 410	61. 125	1. 00 60. 16
	ATOM	1350	0	VAL	182	19. 052	21. 220	62. 008	1. 00 59. 87
20	ATOM	1351	N	GLY	183	18. 640	20. 275	60. 003	1. 00 61. 05
	ATOM	1352	CA	GLY	183	17. 480	21. 103	59. 741	1. 00 63. 47
	ATOM	1353	C	GLY	183	16. 412	20. 967	60. 805	1. 00 64. 68
	ATOM	1354	0	GLY	183	15. 873	21. 966	61. 280	1. 00 64. 59
	ATOM	1355	N	LEU	184	16. 103	19. 733	61. 187	1. 00 65. 39
25	ATOM	1356	CA	LEU	184	15. 091	19. 502	62. 203	1. 00 66. 47
	ATOM	1357	CB	LEU	184	14. 855	18. 005	62. 387	1. 00 66. 17
	ATOM	1358	CG	LEU	184	14. 407	17. 254	61. 132	1. 00 67. 51
	ATOM	1359	CD1	LEU	184	14. 116	15. 805	61. 486	1. 00 66. 63
	ATOM	1360	CD2	LEU	184	13. 168	17. 913	60. 546	1. 00 68. 22

- 63 -

						,	, ,		
	ATOM	1361	C	LEU	- 184	15. 502	20. 130	63. 528	1. 00 67. 67
	ATOM	1362	0	LEU	184	14. 651	20. 570	64. 301	1. 00 68. 91
	ATOM	1363	N	LEU	185	16. 804	20. 176	63. 790	1. 00 68. 11
	ATOM	1364	CA	LEU	185	17. 297	20. 759	65. 031	1. 00 68. 91
5	ATOM	1365	CB	LEU	185	18. 797	20. 501	65. 194	1. 00 67. 32
	ATOM	1366	CG	LEU	185	19. 409	21. 060	66. 482	1. 00 66. 21
	ATOM	1367	CD	LEU	185	18. 776	20. 375	67. 676	1. 00 65. 16
	ATOM	1368	CD2	LEU	185	20. 913	20. 851	66. 486	1. 00 66. 43
	ATOM	1369	C	LEU	185	17. 034	22. 262	65. 058	1. 00 70. 10
10	ATOM	1370	0	LEU	185	16. 422	22. 776	65. 991	1. 00 70. 26
	ATOM	1371	N	ARG	186	17. 505	22. 962	64. 033	1. 00 71. 83
	ATOM	1372	CA	ARG	186	17. 314	24. 403	63. 948	1. 00 73. 78
	ATOM	1373	CB	ARG	186	18. 015	24. 941	62. 700	1. 00 73. 97
	ATOM	1374	CG	ARG	186	19. 533	24. 881	62. 804	1. 00 74. 09
15	ATOM	1375	CD	ARG	186	20. 206	24. 984	61. 448	1. 00 74. 37
	ATOM	1376	NE	ARG	186	21. 662	24. 945	61. 571	1. 00 75. 77
	ATOM	1377	CZ	ARG	186	22. 503	24. 860	60. 543	1. 00 75. 94
	ATOM	1378	NH1	ARG	186	22. 036	24. 800	59. 303	1. 00 75. 97
	ATOM	1379	NH2	ARG	186	23. 815	24. 841	60. 755	1. 00 75. 99
20	ATOM	1380	C	ARG	186	15. 825	24. 737	63. 927	1. 00 74. 93
	ATOM	1381	0	ARG	186	15. 365	25. 609	64. 665	1. 00 74. 59
	ATOM	1382	N	ASP	187	15. 074	24. 023	63. 095	1. 00 76. 23
	ATOM	1383	CA	ASP	187	13. 632	24. 225	62. 981	1. 00 77. 59
	ATOM	1384	CB	ASP	187	13. 018	23. 128	62. 102	1. 00 75. 83
25	ATOM	1385	CG	ASP	187	13. 203	23. 391	60. 614	1. 00 74. 87
	ATOM	1386	OD1	ASP	187	14. 193	24. 051	60. 234	1. 00 73. 64
	ATOM	1387	0D2	ASP	187	12. 359	22. 924	59. 820	1. 00 74. 33
	ATOM	1388	C	ASP	187	12. 945	24. 236	64. 349	1. 00 79. 78
	ATOM -	1389	0	ASP	187	11. 963	24. 952	64. 551	1. 00 80. 50

- 64 -

	ATOM	1390	N	ALA	188	13. 461	23. 445	65. 286	1. 00 81. 21
	ATOM	1391	CA	ALA	188	12. 883	23. 379	66. 625	
	ATOM	1392	CB	ALA	188	13. 118	22. 000	67. 230	1. 00 83. 00
	ATOM	1393	C	ALA	188	13. 477	24. 456	67. 525	1. 00 84. 14
5	ATOM	1394	0	ALA	188	12. 783	25. 019	68. 376	1. 00 84. 10
	ATOM	1395	N	ILE	189	14. 763	24. 736	67. 338	1. 00 85. 33
	ATOM	1396	CA	ILE	189	15. 445	25. 753	68. 127	1. 00 86. 87
	ATOM	1397	CB	ILE	189	16. 947	25. 819	67. 776	1. 00 86. 40
	ATOM	1398	CG2	2 ILE	189	17. 585	27. 049	68. 409	1. 00 85. 37
10	ATOM	1399	CG1	ILE	189	17. 641	24. 541	68. 253	1. 00 86. 52
	ATOM	1400	CD1	ILE	189	19. 136	24. 516	68. 004	1. 00 86. 36
	ATOM	1401	C	ILE	189	14. 812	27. 114	67. 871	1. 00 88. 85
	ATOM	1402	0	ILE	189	14. 802	27. 978	68. 748	1. 00 89. 64
	ATOM	1403	N	LYS	190	14. 278	27. 295	66. 666	1. 00 90. 36
15	ATOM	1404	CA	LYS	190	13. 638	28. 551	66. 291	1. 00 91. 75
	ATOM	1405	CB	LYS	190	13. 678	28. 729	64. 770	1. 00 92. 26
	ATOM	1406	CG	LYS	190	15. 032	29. 205	64. 234	1. 00 93. 56
	ATOM	1407	CD	LYS	190	16. 174	28. 282	64. 652	1. 00 94. 17
	ATOM	1408	CE	LYS	190	17. 507	28. 722	64. 064	1. 00 94. 42
20	ATOM	1409	NZ	LYS	190	18. 605	27. 773	64. 409	1. 00 93. 91
•	ATOM	1410	C	LYS	190	12. 202	28. 645	66. 803	1. 00 92. 34
	ATOM	1411	0	LYS	190	11. 612	29. 723	66. 817	1. 00 92. 82
	ATOM	1412	N	ARG	191	11. 639	27. 516	67. 221	1. 00 92. 78
	ATOM	1413	CA	ARG	191	10. 286	27. 502	67. 763	1. 00 93. 41
25	ATOM	1414	CB	ARG	191	9. 674	26. 108	67. 658	1. 00 93. 77
	ATOM	1415	CG	ARG	191	9. 711	25. 497	66. 275	1. 00 93. 66
	ATOM	1416	CD	ARG	191	9. 530	23. 993	66. 378	1. 00 93. 81
	ATOM	1417	NE	ARG	191	9. 816	23. 310	65. 123	1. 00 93. 99
	ATOM	1418	CZ	ARG	191	10. 012	22. 000	65. 017	1. 00 94. 26

- 65 -

	ATOM	1419) NF	11 ARG	191	9. 954	1 21. 231	66, 095	1. 00 94. 65
	ATOM	1420) NE	12 ARG		10. 269			
	ATOM	1421		ARG					1. 00 94. 00
	ATOM	1422	0	ARG	191	9. 526			
5	ATOM	1423	N	ARG	192	11. 596			
	ATOM	1424	CA	ARG	192	11. 897			
	ATOM	1425	СВ	ARG	192	13. 049			
	ATOM	1426	CG	ARG	192	12. 733	26. 469		
	ATOM	1427	CD	ARG	192	11. 737			
10	ATOM	1428	NE	ARG	192	11. 339			
	ATOM	1429	CZ	ARG	192	10. 624	24. 278		
	ATOM	1430	NH	1 ARG	192	10. 230	25. 035	74. 746	
	ATOM	1431	NH	2 ARG	192	10. 300	22. 992		
	ATOM	1432	C	ARG	192	12. 273	30. 265	71. 062	1. 00 96. 50
15	ATOM	1433	0	ARG	192	11. 603	31. 035	71. 752	1. 00 96. 60
	ATOM	1434	N	GLY	193	13. 352	30. 652	70. 386	1. 00 96. 89
	ATOM	1435	CA	GLY	193	13. 812	32. 026	70. 465	1. 00 97. 08
	ATOM	1436	C	GLY	193	14. 385	32. 217	71. 855	1. 00 97. 08
	ATOM	1437	0	GLY	193	15. 060	33. 204	72. 147	1. 00 96. 46
20	ATOM	1438	N	ASP	194	14. 104	31. 235	72. 707	1. 00 97. 36
	ATOM	1439	CA	ASP	194	14. 552	31. 205	74. 092	1. 00 97. 35
	ATOM	1440	CB	ASP	194	13. 938	29. 984	74. 789	1. 00 98. 43
	ATOM	1441	CG	ASP	194	13. 764	30. 181	76. 284	1. 00 99. 62
	ATOM	1442	0D1	ASP	194	13. 117	31. 173	76. 683	1. 00100. 29
25	ATOM	1443	OD2	ASP	194	14. 262	29. 338	77. 059	1. 00 99. 87
	ATOM	1444	C	ASP	194	16. 078	31. 122	74. 122	1. 00 96. 90
	ATOM	1445	0	ASP	194	16. 715	31. 471	75. 118	1. 00 97. 50
	ATOM	1446	N	PHE	195	16. 657	30. 655	73. 018	1. 00 95. 62
	ATOM	1447	CA	PHE	195	18. 105	30. 524	72. 896	1. 00 94. 15

- 66 -

	ATOM	1448	CB	PHE	195	18. 598	29. 309	73. 697	1. 00 94. 86
	ATOM	1449	CG	PHE	195	18. 043			
	ATOM	1450	CD	1 PHE	195	18. 560	27. 360	72. 095	1. 00 95. 09
	ATOM	1451	CD	2 PHE	195	17. 005	27. 369	73. 916	1. 00 95. 17
5	ATOM	1452	CE	1 PHE	195	18. 053	26. 136	71. 663	1. 00 95. 14
	ATOM	1453	CE	2 PHE	195	16. 491	26. 145	73. 492	1. 00 95. 12
	ATOM	1454	CZ	PHE	195	17. 016	25. 528	72. 364	1. 00 94. 97
	ATOM	1455	C	PHE	195	18. 508	30. 393	71. 430	1. 00 92. 64
	ATOM	1456	0	PHE	195	17. 667	30. 131	70. 569	1. 00 92. 22
10	ATOM	1457	N	GLU	196	19. 793	30. 583	71. 148	1. 00 90. 93
	ATOM	1458	CA	GLU	196	20. 292	30. 486	69. 779	1. 00 89. 04
	ATOM	1459	CB	GLU	196	20. 249	31. 861	69. 102	1. 00 89. 55
	ATOM	1460	CG	GLU	196	18. 846	32. 395	68. 832	1. 00 90. 25
	ATOM	1461	CD	GLU	196	18. 859	33. 771	68. 187	1. 00 90. 61
15	ATOM	1462	0E 1	GLU	196	19. 342	34. 728	68. 830	1. 00 90. 30
	ATOM	1463	0E2	GLU	196	18. 390	33. 895	67. 035	1. 00 90. 79
	ATOM	1464	С	GLU	196	21. 711	29. 923	69. 694	1. 00 87. 11
	ATOM	1465	0	GLU	196	22. 681	30. 589	70. 066	1. 00 86. 83
	ATOM	1466	N	MET	197	21. 824	28. 692	69. 201	1. 00 84. 23
20	ATOM	1467	CA	MET	197	23. 121	28. 043	69. 045	1. 00 80. 79
	ATOM	1468	CB	MET	197	23. 067	26. 586	69. 524	1. 00 81. 16
	ATOM	1469		MET	197	22. 633	26. 389	70. 967	1. 00 80. 14
	ATOM	1470	SD	MET	197	23. 597	27. 356	72. 135	1. 00 81. 93
	ATOM	1471	CE	MET	197	25. 195	26. 640	71. 968	1. 00 81. 72
25	ATOM	1472	С	MET	197	23. 502	28. 070	67. 568	1. 00 77. 74
	ATOM	1473	0	MET	197	22. 695	28. 436	66. 716	1. 00 76. 30
	ATOM	1474	N	ASP	198	24. 733	27. 672	67. 269	1. 00 75. 73
	ATOM	1475	CA	ASP	198	25. 214	27. 652	65. 894	1. 00 72. 50
	ATOM	1476	CB	ASP	198	26. 297	28. 723	65. 720	1. 00 73. 47

- 67 -

	ATOM	1477	' CG	ASP	198	26. 573	29. 046	64. 265	1. 00 75. 34
	ATOM	1478	OD	1 ASP	198	27. 407	29. 941	64. 005	1. 00 75. 72
	ATOM	1479	OD	2 ASP	198	25. 954	28. 407	63. 384	1. 00 76. 53
	ATOM	1480	C	ASP	198	25. 769	26. 265	65. 544	1. 00 69. 75
5	ATOM	1481	0	ASP	198	26. 962	26. 005	65., 703	1. 00 69. 48
	ATOM	1482	N	VAL	199	24. 892	25. 383	65. 068	1. 00 66. 43
	ATOM	1483	CA	VAL	199	25. 266	24. 018	64. 697	1. 00 62. 47
	ATOM	1484	CB	VAL	199	24. 055	23. 266	64. 113	1. 00 62. 19
	ATOM	1485	CG	l VAL	199	24. 426	21. 823	63. 827	1. 00 61. 88
10	ATOM	1486	CG2	VAL	199	22. 886	23. 340	65. 083	1. 00 61. 21
	ATOM	1487	C	VAL	199	26. 409	23. 986	63. 682	1. 00 60. 44
	ATOM	1488	0	VAL	199	26. 192	24. 135	62. 479	1. 00 59. 37
	ATOM	1489	N	VAL	200	27. 624	23. 774	64. 180	1. 00 58. 00
	ATOM	1490	CA	VAL	200	28. 820	23. 741	63. 341	1. 00 56. 24
15	ATOM	1491	CB	VAL	200	30. 048	24. 278	64. 128	1. 00 57. 42
	ATOM	1492	CG1	VAL	200	31. 326	24. 071	63. 331	1. 00 57. 94
	ATOM	1493	CG2	VAL	200	29. 859	25. 761	64. 433	1. 00 59. 29
	ATOM	1494	C	VAL	200	29. 159	22. 357	62. 785	1. 00 54. 53
	ATOM	1495	0	VAL	200	29. 759	22. 242	61.715	1. 00 54. 29
20	ATOM	1496	N	ALA	201	28. 779	21. 306	63. 503	1. 00 52. 88
	ATOM	1497	CA	ALA	201	29. 085	19. 953	63. 048	1. 00 49. 83
	ATOM	1498	CB	ALA	201	30. 541	19. 627	63. 349	1. 00 47. 49
	ATOM	1499	С	ALA	201	28. 196	18. 887	63. 654	1. 00 46. 62
	ATOM	1500	0	ALA	201	27. 803	18. 973	64. 810	1. 00 47. 96
25	ATOM	1501	N	MET	202	27. 873	17. 883	62. 851	1. 00 44. 82
	ATOM	1502	CA	MET	202	27. 065	16. 762	63. 309	1. 00 42. 12
	ATOM	1503	CB	MET	202	25. 731	16. 695	62. 567	1. 00 39. 23
	ATOM	1504	CG	MET	202	24. 886	15. 520	63. 014	1. 00 38. 13
	ATOM	1505	SD	MET	202	23. 425	15. 193	62. 026	1. 00 40. 98

- 68 -

	ATOM	1506	CE	MET	202	24. 134	15. 162	60. 401	1. 00 37. 63
	ATOM	1507	C	MET	202	27. 865	15. 489	63. 027	1. 00 40. 68
	ATOM	1508	0	MET	202	28. 274	15. 251	61. 888	1. 00 38. 74
	ATOM	1509	N	VAL	203	28. 092	14. 679	64. 060	1. 00 39. 90
5	ATOM	1510	CA	VAL	203	28. 851	13. 438	63. 901	1. 00 37. 47
	ATOM	1511	CB	VAL	203	30. 264	13. 549	64. 517	1. 00 36. 73
	ATOM	1512	CG1	VAL	203	31. 078	14. 615	63. 796	1. 00 34. 96
	ATOM	1513	CG2	VAL	203	30. 155	13. 852	65. 996	1. 00 37. 90
	ATOM	1514	C	VAL	203	28. 190	12. 199	64. 505	1. 00 37. 09
10	ATOM	1515	0	VAL	203	27. 250	12. 284	65. 309	1. 00 36. 61
	ATOM	1516	N	ASN	204	28. 707	11. 039	64. 101	1. 00 36. 09
	ATOM	1517	CA	ASN	204	28. 228	9. 749	64. 584	1. 00 31. 60
	ATOM	1518	CB	ASN	204	28. 461	8. 695	63. 497	1. 00 32. 07
	ATOM	1519	CG	ASN	204	27. 949	7. 322	63. 888	1. 00 31. 63
15	ATOM	1520	0D1	ASN	204	28. 729	6. 443	64. 250	1. 00 30. 91
	ATOM	1521	ND2	ASN	204	26. 634	7. 135	63. 824	1. 00 28. 99
	ATOM	1522	C	ASN	204	29. 027	9. 454	65. 853	1. 00 28. 81
	ATOM	1523	0	ASN	204	30. 122	9. 990	66. 019	1. 00 30. 24
	ATOM	1524	N	ASP	205	28. 498	8. 639	66. 765	1. 00 27. 90
20	ATOM	1525	CA	ASP	205	29. 240	8. 361	67. 995	1. 00 26. 70
	ATOM	1526	CB	ASP	205	28. 369	7. 627	69. 028	1. 00 27. 65
	ATOM	1527	CG	ASP	205	27. 642	6. 438	68. 455	1. 00 30. 26
	ATOM	1528	OD 1	ASP	205	27. 079	5. 655	69. 256	1. 00 28. 60
	ATOM	1529	OD2	ASP	205	27. 623	6. 289	67. 213	1. 00 31. 99
25	ATOM	1530	C	ASP	205	30. 573	7. 630	67. 791	1. 00 26. 87
	ATOM	1531	0	ASP	205	31. 498	7. 810	68. 581	1. 00 27. 79
	ATOM	1532	N	THR	206	30. 686	6. 816	66. 740	1. 00 24. 79
	ATOM	1533	CA	THR	206	31. 951	6. 146	66. 476	1. 00 24. 03
	ATOM	1534	CB	THR	206	31. 886	5. 236	65. 206	1. 00 25. 43

- 69 -

						- 0:	9 -		
	ATOM	1535	OG.	1 THR	206	31. 401	5. 999	64. 089	1. 00 26. 30
	ATOM	1536	CG2	2 THR	206	30. 976	4. 032	65. 444	1. 00 16. 83
	ATOM	1537	C	THR	206	32. 970	7. 258	66. 220	1. 00 24. 75
	ATOM	1538	0	THR	206	34. 025	7. 326	66. 858	1. 00 25. 65
5	ATOM	1539	N	VAL	207	32. 632	8. 136	65. 285	1. 00 22. 49
	ATOM	1540	CA	VAL	207	33. 487	9. 257	64. 917	1. 00 23. 51
	ATOM	1541	CB	VAL	207	32. 775	10. 133	63. 855	1. 00 25. 35
	ATOM	1542	CG1	VAL	207	33. 617	11. 362	63. 521	1. 00 24. 61
	ATOM	1543	CG2	VAL	207	32. 509	9. 299	62. 609	1. 00 21. 66
10	ATOM	1544	C	VAL	207	33. 897	10. 119	66. 126	1. 00 23. 48
	ATOM	1545	0	VAL	207	35. 061	10. 470	66. 279	1. 00 26. 51
	ATOM	1546	N	ALA	208	32. 948	10. 452	66. 989	1. 00 24. 53
	ATOM	1547	CA	ALA	208	33. 262	11. 251	68. 169	1. 00 26. 32
	ATOM	1548	CB	ALA	208	31. 980	11533	68. 958	1. 00 27. 56
15	ATOM	1549	C	ALA	208	34. 287	10. 530	69. 055	1. 00 28. 84
	ATOM	1550	0	ALA	208	35. 247	11. 138	69. 549	1. 00 27. 69
	ATOM	1551	N	THR	209	34. 084	9. 228	69. 258	1. 00 28. 76
	ATOM	1552	CA	THR	209	35. 006	8. 447	70. 075	1. 00 28. 08
	ATOM	1553	CB	THR	209	34. 474	7. 001	70. 271	1. 00 31. 76
20	ATOM	1554	0G1	THR	209	33. 373	7. 027	71. 181	1. 00 33. 12
	ATOM	1555	CG2	THR	209	35. 550	6. 080	70. 818	1. 00 30. 03
	ATOM	1556	C	THR	209	36. 382	8. 414	69. 418	1. 00 26. 73
	ATOM	1557	0	THR	209	37. 399	8. 611	70. 078	1. 00 28. 00
	ATOM	1558	N	MET	210	36. 421	8. 191	68. 110	1. 00 28. 44
25	ATOM	1559	CA	MET	210	37. 703	8. 143	67. 419	1. 00 28. 08
	ATOM	1560	CB	MET	210	37. 516	7. 851	65. 932	1. 00 26. 94
	ATOM	1561	CG	MET	210	38. 842	7. 766	65. 168	1. 00 28. 59
	ATOM	1562	SD	MET	210	38. 643	7. 734	63. 374	1. 00 32. 14
	ATOM	1563	CE	MET	210	38. 216	9. 518	63. 083	1. 00 33. 30

- 70 -

	ATOM	1564	C	MET	210	38. 467	9. 452	67. 578	1. 00 29. 43
	ATOM	1565	0	MET	210	39. 636	9. 459	67. 972	1. 00 30. 57
	ATOM	1566	N	ILE	211	37. 799	10. 561	67. 281	1. 00 31. 16
	ATOM	1567	CA	ILE	211	38. 433	11. 873	67. 376	1. 00 30. 57
5	ATOM	1568	CB	ILE	211	37. 418	13. 012	67. 019	1. 00 29. 75
	ATOM	1569	CG	2 ILE	211	38. 086	14. 390	67. 177	1. 00 28. 08
	ATOM	1570	CG	1 ILE	211	36. 928	12. 837	65. 578	1. 00 22. 83
	ATOM	1571	CD	1 ILE	211	38. 021	12. 979	64. 553	1. 00 26. 28
	ATOM	1572	C	ILE	211	39. 014	12. 128	68. 762	1. 00 30. 30
10	ATOM	1573	0	ILE	211	40. 185	12. 489	68. 897	1. 00 31. 89
	ATOM	1574	N	SER	212	38. 203	11. 914	69. 792	1. 00 32. 78
	ATOM	1575	CA	SER	212	38. 639	12. 146	71. 164	1. 00 35. 84
	ATOM	1576	CB	SER	212	37. 499	11. 852	72. 140	1. 00 35. 91
	ATOM	1577	0G	SER	212	37. 317	10. 455	72. 307	1. 00 41. 55
15	ATOM	1578	C	SER	212	39. 864	11. 334	71. 566	1. 00 37. 74
	ATOM	1579	0	SER	212	40. 684	11. 803	72. 354	1. 00 41. 44
	ATOM	1580	N	CYS	213	39. 990	10. 121	71. 040	1. 00 38. 07
	ATOM	1581	CA	CYS	213	41. 132	9. 273	71. 374	1. 00 39. 83
	ATOM	1582	CB	CYS	213	40. 802	7. 799	71. 108	1. 00 38. 31
20	ATOM	1583	SG	CYS	213	39. 513	7. 129	72. 185	1. 00 38. 48
	ATOM	1584	C	CYS	213	42. 372	9. 666	70. 582	1. 00 41. 86
	ATOM	1585	0	CYS	213	43. 503	9. 426	71. 012	1. 00 38. 47
	ATOM	1586	N	TYR	214	42. 149	10. 261	69. 413	1. 00 45. 32
	ATOM	1587	CA	TYR	214	43. 243	10. 701	68. 554	1. 00 45. 02
25	ATOM	1588	CB	TYR	214	42. 705	11. 506	67. 370	1. 00 45. 88
	ATOM	1589	CG	TYR	214	43. 798	12. 171	66. 573	1. 00 45. 72
	ATOM	1590	CD1	TYR	214	44. 509	11. 465	65. 608	1. 00 46. 39
	ATOM	1591	CE1	TYR	214	45. 556	12. 061	64. 913	1. 00 47. 16
	ATOM	1592	CD2	TYR	214	44. 160	13. 498	66. 823	1. 00 44. 53

- 71 -

10	ATOM ATOM ATOM ATOM	1593 1594 1595	CE2 CZ	TYR TYR	214 214	45. 203	14. 099	66. 134		45. 20
10	ATOM		CZ	TYR	914	45 000				
10		1595			414	45. 896	13. 375	65. 183	1. 00	46. 22
10	ATOM	1000	ОН	TYR	214	46. 942	13. 955	64. 510	1. 00	50. 31
10		1596	C	TYR	214	44. 226	11. 573	69. 322	1. 00	44. 69
10	ATOM	1597	0	TYR	214	45. 420	11. 296	69. 363	1. 00	44. 40
10	ATOM	1598	N	TYR	215	43. 713	12. 635	69. 924	1. 00	45. 92
10	ATOM	1599	CA	TYR	215	44. 556	13. 552	70. 667	1. 00	48. 38
10	ATOM	1600	CB	TYR	215	43. 713	14. 716	71. 175	1. 00	51. 93
15	ATOM	1601	CG	TYR	215	43. 192	15. 545	70. 021	1. 00	57. 70
15	ATOM	1602	CD1	TYR	215	41. 918	15. 330	69. 484	1. 00	58. 41
15	ATOM	1603	CE1	TYR	215	41. 478	16. 047	68. 363	1. 00	61. 27
15	ATOM	1604	CD2	TYR	215	44. 011	16. 498	69. 413	1. 00	59. 13
15	ATOM	1605	CE2	TYR	215	43. 586	17. 214	68. 300	1. 00	61. 22
	ATOM	1606	CZ	TYR	215	42. 325	16. 991	67. 780	1. 00	62. 20
	ATOM	1607	ОН	TYR	215	41. 928	17. 728	66. 688	1. 00	61. 67
4	ATOM	1608	C	TYR	215	45. 304	12. 871	71. 792	1. 00	48. 87
1	ATOM	1609	0	TYR	215	46. 282	13. 407	72. 318	1. 00	49. 38
1	ATOM	1610	N	GLU	216	44. 852	11. 672	72. 142	1. 00	47. 69
1	ATOM	1611	CA	GLU	216	45. 496	10. 889	73. 181	1. 00	47. 03
20	ATOM	1612	CB	GLU	216	44. 474	9. 979	73. 863	1. 00	49. 83
I	ATOM	1613	CG	GLU	216	44. 837	9. 550	75. 270	1. 00	55. 37
I	ATOM	1614	CD	GLU	216	44. 998	10. 735	76. 208	1. 00	59. 31
I	ATOM	1615	0E1	GLU	216	44. 285	11. 747	76. 012	1. 00	59. 95
I	ATOM	1616	0E2	GLU	216	45. 824	10. 649	77. 146	1. 00	60. 13
25 /	ATOM	1617	C	GLU	216	46. 552	10. 044	72. 477	1. 00	45. 45
I	ATOM	1618	0	GLU	216	47. 673	9. 905	72. 958	1. 00	45. 05
A	ATOM	1619	N	ASP	217	46. 183	9. 495	71. 321	1. 00	43. 73
I	ATOM	1620	CA	ASP	217	47. 074	8. 643	70. 530	1. 00	41. 33
A		1621	CB	ASP	217	46. 776	7. 171	70. 845	1. 00	10 10

PCT/JP03/06054 WO 03/097824

						- 7	2 -		
	ATOM	1622	CG	ASP	217	47. 780	6. 208	70. 226	1. 00 39. 76
	ATOM	1623	OD	1 ASP	217	48. 461	6. 571	69. 249	1. 00 40. 95
	ATOM	1624	OD	2 ASP	217	47. 876	5. 062	70. 712	1. 00 42. 61
	ATOM	1625	C	ASP	217	46. 852	8. 921	69. 033	1. 00 40. 53
5	ATOM	1626	0	ASP	217	45. 862	8. 474	68. 443	1. 00 37. 20
	ATOM	1627	N	HIS	218	47. 779	9. 657	68. 427	1. 00 41. 94
	ATOM	1628	CA	HIS	218	47. 689	10. 008	67. 007	1. 00 44. 23
	ATOM	1629	CB	HIS	218	48. 912	10. 828	66. 603	1. 00 47. 00
	ATOM	1630	CG	HIS	218	48. 860	12. 244	67. 079	1. 00 51. 95
10	ATOM	1631	CD	2 HIS	218	49. 230	13. 402	66. 483	1. 00 54. 47
	ATOM	1632	ND	HIS	218	48. 371	12. 592	68. 320	1. 00 54. 33
	ATOM	1633	CE	HIS	218	48. 439	13. 903	68. 467	1. 00 55. 83
	ATOM	1634	NE	2 HIS	218	48. 957	14. 419	67. 367	1. 00 55. 95
	ATOM	1635	C	HIS	218	47. 528	8. 810	66. 074	1. 00 42. 66
15	ATOM	1636	0	HIS	218	47. 157	8. 963	64. 909	1. 00 42. 00
	ATOM	1637	N	GLN	219	47. 793	7. 620	66. 597	1. 00 41. 40
	ATOM	1638	CA	GLN	219	47. 667	6. 394	65. 820	1. 00 41. 15
	ATOM	1639	CB	GLN	219	48. 592	5. 321	66. 397	1. 00 45. 16
	ATOM	1640	CG	GLN	219	50. 070	5. 611	66. 214	1. 00 49. 72
20	ATOM	1641	CD	GLN	219	50. 566	5. 230	64. 832	1. 00 55. 92
	ATOM	1642	0E1	GLN	219	49. 997	5. 646	63. 813	1. 00 57. 28
	ATOM	1643	NE2	GLN	219	51. 636	4. 429	64. 787	1. 00 57. 32
	ATOM	1644	С	GLN	219	46. 228	5. 869	65. 792	1. 00 37. 41
	ATOM	1645	0	GLN	219	45. 927	4. 904	65. 091	1. 00 37. 06
25	ATOM	1646	N	CYS	220	45. 342	6. 488	66. 562	1. 00 34. 18
	ATOM	1647	CA	CYS	220	43. 955	6. 038	66. 578	1. 00 32. 52
	ATOM	1648	CB	CYS	220	43. 199	6. 597	67. 783	1. 00 28. 93
	ATOM	1649	SG	CYS	220	41. 420	6. 288	67. 739	1. 00 31. 90
	ATOM	1650	C	CYS	220	43. 272	6. 474	65. 303	1. 00 32. 01

- 73 -

	ATOM	1651	0	CYS	220	43. 010	7. 664	65. 096	1. 00 32. 91
	ATOM	1652	N	GLU	221	42. 993	5. 505	64. 442	1. 00 29. 12
	ATOM	1653	CA	GLU	221	42. 343	5. 785	63. 176	1. 00 28. 98
	ATOM	1654	СВ	GLU	221	43. 273	5. 437	62. 009	1. 00 30. 00
5	ATOM	1655	CG	GLU	221	44. 481	6. 366	61. 853	1. 00 35. 29
	ATOM	1656	CD	GLU	221	45. 190	6. 166	60. 515	1. 00 36. 83
	ATOM	1657	0E	1 GLU	221	44. 490	6. 007	59. 498	1. 00 38. 09
	ATOM	1658	0E	2 GLU	221	46. 436	6. 176	60. 465	1. 00 40. 80
	ATOM	1659	C	GLU	221	41. 057	4. 991	63. 059	1. 00 25. 46
10	ATOM	1660	0	GLU	221	40. 513	4. 835	61. 970	1. 00 22. 65
	ATOM	1661	N	VAL	222	40. 569	4. 491	64. 185	1. 00 25. 43
	ATOM	1662	CA	VAL	222	39. 337	3. 703	64. 179	1. 00 25. 45
	ATOM	1663	CB	VAL	222	39. 625	2. 172	64. 189	1. 00 24. 36
	ATOM	1664	CG	VAL	222	38. 318	1. 391	64. 122	1. 00 21. 56
15	ATOM	1665	CG2	VAL	222	40. 533	1. 795	63. 029	1. 00 21. 70
	ATOM	1666	C	VAL	222	38. 527	4. 016	65. 414	1. 00 25. 44
	ATOM	1667	0	VAL	222	39. 076	4. 192	66. 492	1. 00 25. 99
	ATOM	1668	N	GLY	223	37. 217	4. 090	65. 240	1. 00 25. 97
	ATOM	1669	CA	GLY	223	36. 328	4. 347	66. 349	1. 00 25. 83
20	ATOM	1670	C	GLY	223	35. 337	3. 201	66. 340	1. 00 25. 37
	ATOM	1671	0	GLY	223	34. 852	2. 812	65. 273	1. 00 25. 38
	ATOM	1672	N	MET	224	35. 044	2. 647	67. 511	1. 00 24. 88
	ATOM	1673	CA	MET	224	34. 114	1. 527	67. 587	1. 00 25. 47
	ATOM	1674	CB	MET	224	34. 881	0. 187	67. 638	1. 00 22. 66
25	ATOM	1675	CG	MET	224	33. 956	-1.041	67. 634	1. 00 25. 14
	ATOM	1676	SD	MET	224	34. 806	-2. 680	67. 748	1. 00 22. 18
	ATOM	1677	CE	MET	224	35. 380	-2. 594	69. 396	1. 00 16. 01
	ATOM	1678	C	MET	224	33. 177	1. 618	68. 780	1. 00 22. 20
	ATOM	1679	0	MET	224	33. 577	1. 978	69. 881	1. 00 22. 65

- 74 -

	ATOM	1680	N	· ILE	225	31. 915	1. 295	68. 543	1. 00 21. 12
	ATOM	1681	CA	ILE	225	30. 936	1. 314	69. 604	1. 00 21. 34
	ATOM	1682	CB	ILE	225	29. 757	2. 295	69. 293	1. 00 25. 85
	ATOM	1683	CG2	ILE.	225	28. 739	2. 268	70. 446	1. 00 25. 47
5	ATOM	1684	CG1	ILE	225	30. 273	3. 734	69. 107	1. 00 25. 08
	ATOM	1685	CD1	ILE	225	30. 838	4. 355	70. 382	1. 00 22. 09
	ATOM	1686	C	ILE	225	30. 321	-0. 080	69. 789	1. 00 22. 30
	ATOM	1687	0	ILE	225	29. 885	-0. 712	68. 826	1. 00 24. 03
	ATOM	1688	N	VAL	226	30. 313	-0. 563	71. 025	1. 00 22. 67
10	ATOM	1689	CA	VAL	226	29. 645	-1. 817	71. 341	1. 00 21. 60
	ATOM	1690	CB	VAL	226	30. 618	-2. 993	71. 634	1. 00 21. 77
	ATOM	1691	CG1	VAL	226	29. 821	-4. 291	71. 718	1. 00 21. 54
	ATOM	1692	CG2	VAL	226	31. 663	-3. 113	70. 541	1. 00 17. 23
	ATOM	1693	C	VAL	226	28. 838	-1. 493	72. 604	1. 00 21. 49
15	ATOM	1694	0	VAL	226	29. 316	-1. 633	73. 723	1. 00 18. 90
	ATOM	1695	N	GLY	227	27. 615	-1. 016	72. 402	1. 00 25. 39
	ATOM	1696	CA	GLY	227	26. 744	-0. 675	73. 518	1. 00 26. 76
	ATOM	1697	C	GLY	227	25. 353	-1. 140	73. 150	1. 00 28. 03
	ATOM	1698	0	GLY	227	25. 155	-2. 315	72. 846	1. 00 29. 80
20	ATOM	1699	N	THR	228	24. 384	-0. 235	73. 161	1. 00 27. 62
	ATOM	1700	CA	THR	228	23. 031	-0. 607	72. 788	1. 00 27. 59
	ATOM	1701	CB	THR	228	22. 083	0. 601	72. 911	1. 00 29. 15
	ATOM	1702	0G1	THR	228	21. 937	0. 932	74. 294	1. 00 32. 52
	ATOM	1703	CG2	THR	228	20. 719	0. 291	72. 339	1. 00 28. 08
25	ATOM	1704	C	THR	228	23. 094	-1. 080	71. 345	1. 00 26. 98
	ATOM	1705	0	THR	228	22. 460	-2. 065	70. 960	1. 00 27. 95
	ATOM	1706	N	GLY	229	23. 890	-0. 374	70. 554	1. 00 26. 02
	ATOM	1707	CA	GLY	229	24. 050	-0. 718	69. 154	1. 00 25. 33
	ATOM	1708	C	GLY	229	25. 503	-1. 055	68. 911	1. 00 24. 09

- 75 -

	ATOM	. 1709	0	GLY	229	26. 312	-1. 004	69. 838	1. 00 23. 25
	ATOM	1710	N	CYS	230	25. 850	-1. 395	67. 677	1. 00 24. 12
	ATOM	1711	CA	CYS	230	27. 235	-1. 750	67. 376	1. 00 23. 83
	ATOM	1712	CB	CYS	230	27. 395	-3. 280	67. 425	1. 00 20. 39
5	ATOM	1713	SG	CYS	230	29. 076	-3. 879	67. 182	1. 00 25. 34
	ATOM	1714	C	CYS	230	27. 627	-1. 204	66. 010	1. 00 20. 45
	ATOM	1715	0	CYS	230	26. 919	-1. 406	65. 035	1. 00 20. 28
	ATOM	1716	N	ASN	231	28. 763	-0. 526	65. 935	1. 00 23. 86
	ATOM	1717	CA	ASN	231	29. 196	0. 076	64. 669	1. 00 24. 35
10	ATOM	1718	CB	ASN	231	28. 267	1. 261	64. 355	1. 00 25. 51
	ATOM	1719	CG	ASN	231	28. 598	1. 962	63. 042	1. 00 27. 76
	ATOM	1720	OD 1	ASN	231	28. 930	1. 331	62. 039	1. 00 24. 60
	ATOM	1721	ND2	ASN	231	28. 472	3. 288	63. 043	1. 00 30. 91
	ATOM	1722	C	ASN	231	30. 640	0. 553	64. 784	1. 00 23. 81
15	ATOM	1723	0	ASN	231	31. 184	0. 624	65. 885	1. 00 23. 94
	ATOM	1724	N	ALA	232	31. 249	0. 885	63. 651	1. 00 22. 70
	ATOM	1725	CA	ALA	232	32. 626	1. 359	63. 636	1. 00 25. 15
	ATOM	1726	CB	ALA	232	33. 580	0. 169	63. 463	1. 00 24. 36
	ATOM	1727	С	ALA	232	32. 867	2. 372	62. 511	1. 00 26. 31
20	ATOM	1728	0	ALA	232	32. 127	2. 416	61. 530	1. 00 28. 47
	ATOM	1729	N	CYS	233	33. 911	3. 176	62. 664	1. 00 24. 88
	ATOM	1730	CA	CYS	233	34. 291	4. 160	61. 653	1. 00 26. 51
	ATOM	1731	CB	CYS	233	33. 899	5. 583	62. 076	1. 00 24. 89
	ATOM	1732	SG	CYS	233	34. 875	6. 224	63. 436	1. 00 25. 76
25	ATOM	1733	С	CYS	233	35. 805	4. 055	61. 555	1. 00 25. 08
	ATOM	1734	0	CYS	233	36. 450	3. 564	62. 480	1. 00 25. 19
	ATOM	1735	N	TYR	234	36. 373	4. 505	60. 442	1. 00 25. 32
	ATOM	1736	CA	TYR	234	37. 820	4. 427	60. 245	1. 00 23. 93
	ATOM	1737	CB	TYR	234	38. 200	3. 020	59. 760	1. 00 20. 70

- 76 -

	ATOM	1738	CG	TYR	234	37. 782	2. 771	58. 328	1. 00 16. 78
	ATOM	1739	CD	TYR	234	38. 712	2. 786	57. 302	1. 00 18. 75
	ATOM	1740	CE	TYR	234	38. 326	2. 6 6 8	55. 975	1. 00 18. 89
	ATOM	1741	CD2	TYR	234	36. 443	2. 622	57. 990	1. 00 19. 60
5	ATOM	1742	CE2	TYR	234	36. 043	2. 506	56. 666	1. 00 18. 40
	ATOM	1743	CZ	TYR	234	36. 990	2. 535	55. 665	1. 00 21. 55
	ATOM	1744	OH	TYR	. 234	36. 603	2. 479	54. 346	1. 00 23. 25
	ATOM	1745	C	TYR	234	38. 254	5. 452	59. 194	1. 00 26. 41
	ATOM	1746	0	TYR	234	37. 436	5. 929	58. 404	1. 00 27. 14
10	ATOM	1747	N	MET	235	39. 543	5. 769	59. 179	1. 00 27. 10
	ATOM	1748	CA	MET	235	40. 094	6. 722	58. 224	1. 00 28. 74
	ATOM	1749	CB	MET	235	41. 383	7. 331	58. 789	1.00 29.38
	ATOM	1750	CG	MET	235	41. 169	8. 180	60. 035	1. 00 31. 43
	ATOM	1751	SD	MET	235	39. 947	9. 503	59. 750	1. 00 32. 30
15	ATOM	1752	CE	MET	235	40. 866	10. 535	58. 591	1. 00 34. 11
	ATOM	1753	C	MET	235	40. 374	6.066	56. 869	1. 00 29. 42
	ATOM	1754	0	MET	235	41. 170	5. 134	56. 767	1. 00 30. 49
	ATOM	1755	N	GLU	236	39. 714	6565	55. 829	1. 00 31. 08
	ATOM	1756	CA	GLU	236	39. 867	6. 040	54. 476	1. 00 31. 04
20	ATOM	1757	CB	GLU	236	38. 491	5. 743	53. 879	1. 00 31. 57
	ATOM	1758	CG	GLU	236	38. 536	5. 161	52. 474	1. 00 32. 18
	ATOM	1759	CD	GLU	236	39. 330	3. 875	52. 427	1. 00 32. 52
	ATOM	1760	0E1	GLU	236	40. 565	3. 952	52. 273	1. 00 34. 34
	ATOM	1761	0E2	GLU	236	38. 723	2. 789	52. 571	1. 00 30. 79
25	ATOM	1762	C	GLU	236	40. 598	7. 030	53. 574	1. 00 33. 43
	ATOM	1763	0	GLU	236	40. 583	8. 238	53. 818	1. 00 29. 93
	ATOM	1764	N	GLU	237	41. 240	6. 506	52. 532	1. 00 35. 85
	ATOM	1765	CA	GLU	237	41. 969	7. 333	51. 575	1. 00 37. 83
	ATOM	1766	CB	GLU	237	42. 934	6. 462	50. 764	1. 00 40. 16

- 77 -

	ATOM	1767	CG	GLU	237	43. 684	5. 426	51. 602	1. 00 43. 86
	ATOM	1768	CD	GLU	237	44. 466	6. 049	52. 743	1. 00 47. 85
	ATOM	1769	0E1	GLU	237	44. 806	5. 322	53. 704	1. 00 51. 02
	ATOM	1770	0E2	GLU	237	44. 747	7. 264	52. 681	1. 00 48. 78
5	ATOM	1771	C	GLU	237	40. 920	7. 969	50. 657	1. 00 37. 87
	ATOM	1772	0	GLU	237	40. 058	7. 268	50. 122	1. 00 38. 29
	ATOM	1773	N	MET	238	40. 987	9. 287	50. 477	1. 00 37. 42
	ATOM	1774	CA	MET	238	40. 009	9. 987	49. 644	1. 00 37. 50
	ATOM	1775	CB	MET	238	40. 375	11. 467	49. 501	1. 00 38. 62
10	ATOM	1776	CG	MET	238	39. 772	12. 355	50. 587	1. 00 40. 32
	ATOM	1777	SD	MET	238	37. 956	12. 144	50. 764	1. 00 42. 83
	ATOM	1778	CE	MET	238	37. 308	13. 116	49. 410	1. 00 44. 06
	ATOM	1779	C	MET	238	39. 796	9. 374	48. 270	1. 00 36. 21
	ATOM	1780	0	MET	238	38. 685	9. 413	47. 740	1. 00 33. 93
15	ATOM	1781	N	GLN	239	40. 848	8. 803	47. 690	1. 00 35. 50
	ATOM	1782	CA	GLN	239	40. 714	8. 184	46. 378	1. 00 36. 82
	ATOM	1783	CB	GLN	239	42. 078	7. 732	45. 846	1. 00 39. 35
	ATOM	1784	CG	GLN	239	42. 839	6. 804	46. 774	1. 00 44. 12
	ATOM	1785	CD	GLN	239	43. 900	7. 534	47. 584	1. 00 49. 18
20	ATOM	1786	0E1	GLN	239	43. 635	8. 580	48. 192	1. 00 49. 88
	ATOM	1787	NE2	GLN	239	45. 111	6. 981	47. 600	1. 00 49. 95
	ATOM	1788	C	GLN	239	39. 762	6. 986	46. 395	1. 00 35. 72
	ATOM	1789	0	GLN	239	39. 276	6. 568	45. 348	1. 00 37. 20
	ATOM	1790	N	ASN	240	39. 503	6. 419	47. 570	1. 00 34. 56
25	ATOM	1791	CA	ASN	240	38. 604	5. 272	47. 648	1. 00 33. 20
	ATOM	1792	CB	ASN	240	39. 118	4. 239	48. 658	1. 00 33. 68
	ATOM	1793	CG	ASN	240	40. 548	3. 802	48. 369	1. 00 34. 24
	ATOM	1794	0D1	ASN	240	40. 963	3. 710	47. 210	1. 00 33. 87
	ATOM	1795	ND2	ASN	240	41. 306	3. 523	49. 424	1. 00 34. 32

- 78 -

	ATOM	1796	C	ASN	240	37. 190	5. 690	48. 011	1. 00	33. 25
	ATOM	1797	0	ASN	240	36. 259	4. 886	47. 936	1. 00	33. 86
	ATOM	1798	N	VAL	241	37. 024	6. 946	48. 414	1. 00	32. 52
	ATOM	1799	CA	VAL	241	35. 702	7. 441	48. 753	1. 00	31. 62
5	ATOM	1800	CB	VAL	241	35. 755	8. 559	49. 811	1. 00	29. 14
	ATOM	1801	CG1	VAL	241	34. 339	8. 948	50. 204	1. 00	31. 00
	ATOM	1802	CG2	VAL	241	36. 530	8. 107	51. 021	1. 00	26. 87
	ATOM	1803	C	VAL	241	35. 102	8. 010	47. 474	1. 00	33. 73
	ATOM	1804	0	VAL	241	35. 048	9. 224	47. 286	1. 00	35. 18
10	ATOM	1805	N	GLU	242	34. 643	7. 132	46. 595	1. 00	33. 33
	ATOM	1806	CA	GLU	242	34. 075	7. 572	45. 324	1. 00	33. 69
	ATOM	1807	CB	GLU	242	33. 788	6. 364	44. 431	1. 00	31. 05
	ATOM	1808	CG	GLU	242	34. 983	5. 457	44. 222	1. 00	33. 00
	ATOM	1809	CD	GLU	242	34. 767	4. 451	43. 115	1. 00	33. 45
15	ATOM	1810	0E1	GLU	242	33. 595	4. 162	42. 776	1. 00	33. 74
	ATOM	1811	0E2	GLU	242	35. 778	3. 940	42. 592	1. 00	35. 96
	ATOM	1812	C	GLU	242	32. 812	8. 437	45. 427	1. 00	34. 45
	ATOM	1813	0	GLU	242	32. 406	9. 061	44. 442	1. 00	32. 92
	ATOM	1814	N	LEU	243	32. 192	8. 471	46. 602	1. 00	33. 82
20	ATOM	1815	CA	LEU	243	30. 982	9. 262	46. 799	1. 00	36. 13
	ATOM	1816	CB	LEU	243	30. 080	8. 598	47. 844	1. 00	33. 99
	ATOM	1817	CG	LEU	243	29. 168	7. 490	47. 297	1. 00	37. 04
	ATOM	1818	CD1	LEU	243	27. 999	8. 096	46. 545	1. 00	36. 01
	ATOM	1819	CD2	LEU	243	29. 969	6. 560	46. 384	1. 00	36. 49
25	ATOM	1820	C	LEU	243	31. 290	10. 700	47. 199	1. 00	35. 69
	ATOM	1821	0	LEU	243	30. 406	11. 458	47. 585	1. 00	37. 51
	ATOM	1822	N	VAL	244	32. 560	11. 062	47. 117	1. 00	37. 53
	ATOM	1823	CA	VAL	244	32. 992	12. 411	47. 426	1. 00	37. 50
	ATOM	1824	CB	VAL	244	33. 537	12. 547	48. 861	1. 00	36. 75

- 79 -

	ATOM	1825	CG1	VAL	244	33. 967	13. 990	49. 109	1. 00	36. 55
	ATOM	1826	CG2	VAL	244	32. 465	12. 160	49. 870	1. 00	37. 02
	ATOM	1827	C	VAL	244	34. 099	12. 727	46. 446	1. 00	39. 75
	ATOM	1828	0	VAL	244	35. 090	12. 003	46. 361	1. 00	39. 55
5	ATOM	1829	N	GLU	245	33. 909	13. 802	45. 688	1. 00	42. 16
	ATOM	1830	CA	GLU	245	34. 880	14. 232	44. 695	1. 00	42. 30
	ATOM	1831	CB	GLU	245	34. 372	15. 487	43. 989	1. 00	45. 34
	ATOM	1832	CG	GLU	245	34. 886	15. 636	42. 576	1. 00	48. 54
	ATOM	1833	CD	GLU	245	34. 377	16. 893	41. 901	1. 00	50. 12
10	ATOM	1834	0E1	GLU	245	33. 192	17. 249	42. 107	1. 00	49. 37
	ATOM	1835	0E2	GLU	245	35. 164	17. 511	41. 152	1. 00	52. 40
	ATOM	1836	C	GLU	245	36. 203	14. 532	45. 378	1. 00	41. 00
	ATOM	1837	0	GLU	245	36. 230	15. 132	46. 446	1. 00	42. 20
	ATOM	1838	N	GLY	246	37. 297	14. 107	44. 761	1. 00	41. 28
15	ATOM	1839	CA	GLY	246	38. 606	14. 349	45. 336	1. 00	42. 88
	ATOM	1840	C	GLY	246	39. 362	13. 066	45. 618	1. 00	45. 38
	ATOM	1841	0	GLY	246	38. 774	12. 056	45. 997	1. 00	45. 50
	ATOM	1842	N	ASP	247	40. 675	13. 105	45. 443	1. 00	47. 31
	ATOM	1843	CA	ASP	247	41. 509	11. 940	45. 687	1. 00	49. 13
20	ATOM	1844	CB	ASP	247	42. 139	11. 454	44. 384	1. 00	51.65
	ATOM	1845	CG	ASP	247	41. 131	10. 836	43. 449	1. 00	56.09
	ATOM	1846	OD 1	ASP	247	41. 534	10. 410	42. 345	1. 00	58. 83
	ATOM	1847	OD2	ASP	247	39. 936	10. 770	43. 819	1. 00	59. 44
	ATOM	1848	C	ASP	247	42. 611	12. 274	46. 667	1. 00	49. 51
25	ATOM	1849	0	ASP	247	43. 406	11. 415	47. 039	1. 00	49. 57
	ATOM	1850	N	GLU	248	42. 661	13. 531	47. 086	1. 00	50. 49
	ATOM	1851	CA	GLU	248	43. 696	13. 957	48. 011	1. 00	50. 97
	ATOM	1852	CB	GLU	248	44. 198	15. 351	47. 634	1. 00	54. 71
	ATOM	1853	CG	GLU	248	45. 670	15. 391	47. 259	1. 00	62. 15

- 80 -

	ATOM	1854	CD	GLU	248	46. 067	14. 259	46. 317	1. 00	66. 63
	ATOM	1855	0E1	GLU	248	46. 196	13. 105	46. 788	1. 00	68. 58
	ATOM	1856	0E2	GLU	248	46. 241	14. 520	45. 105	1. 00	68. 21
	ATOM	1857	C	GLU	248	43. 222	13. 955	49. 446	1. 00	47. 90
5	ATOM	1858	0	GLU	248	42. 063	14. 250	49. 726	1. 00	46. 55
	ATOM	1859	N	GLY	249	44. 133	13. 614	50. 351	1. 00	45. 49
	ATOM	1860	CA	GLY	249	43. 799	13. 590	51. 759	1. 00	44. 30
	ATOM	1861	C	GLY	249	43. 138	12. 301	52. 205	1. 00	42. 85
	ATOM	1862	0	GLY	249	43. 257	11. 259	51. 552	1. 00	42. 97
10	ATOM	1863	N	ARG	250	42. 444	12. 380	53. 335	1. 00	41. 43
	ATOM	1864	CA	ARG	250	41. 747	11. 232	53. 897	1. 00	39. 63
	ATOM	1865	CB	ARG	250	42. 625	10. 532	54. 931	1. 00	40. 69
	ATOM	1866	CG	ARG	250	44. 092	10. 454	54. 559	1. 00	43. 91
	ATOM	1867	CD	ARG	250	44. 903	9. 902	55. 714	1. 00	45. 22
15	ATOM	1868	NE	ARG	250	44. 630	8. 487	55. 940	1. 00	45. 43
	ATOM	1869	CZ	ARG	250	45. 040	7. 813	57. 007	1. 00	44. 67
	ATOM	1870	NH1	ARG	250	45. 738	8. 426	57. 954	1. 00	46. 95
	ATOM	1871	NH2	ARG	250	44. 761	6. 524	57. 121	1. 00	46. 99
	ATOM	1872	C	ARG	250	40. 486	11. 726	54. 580	1. 00	37. 70
20	ATOM	1873	0	ARG	250	40. 430	12. 865	55. 042	1. 00	37. 51
	ATOM	1874	N	MET	251	39. 473	10. 867	54. 630	1. 00	35. 10
	ATOM	1875	CA	MET	251	38. 216	11. 197	55. 277	1. 00	32. 34
	ATOM	1876	CB	MET	251	37. 137	11. 517	54. 242	1. 00	33. 00
	ATOM	1877	CG	MET	251	35. 803	11. 907	54. 868	1. 00	31. 56
25	ATOM	1878	SD	MET	251	34. 474	12. 160	53. 677	1. 00	37. 84
	ATOM	1879	CE	MET	251	35. 067	13. 715	52. 885	1. 00	32, 92
	ATOM	1880	С	MET	251	37. 764	10. 007	56. 121	1. 00	32. 47
	ATOM	1881	0	MET	251	38. 024	8. 852	55. 777	1. 00	31.05
	ATOM	1882	N	CYS	252	37. 088	10. 292	57. 229	1. 00	30. 16

- 81 -

	ATOM	1883	CA	CYS	252	36. 595	9. 236	58. 092	1. 00 30. 32
	ATOM	1884	CB	CYS	252	36. 364	9. 762	59. 517	1. 00 30. 54
	ATOM	1885	SG	CYS	252	35. 601	8. 557	60. 676	1. 00 28. 61
	ATOM	1886	C	CYS	252	35. 292	8. 717	57. 511	1. 00 29. 86
5	ATOM	1887	0	CYS	252	34. 422	9. 495	57. 114	1. 00 29. 84
	ATOM	1888	N	VAL	253	35. 170	7. 397	57. 438	1. 00 28. 79
	ATOM	1889	CA	VAL	253	33. 960	6. 776	56. 921	1. 00 27. 69
	ATOM	1890	CB	VAL	253	34. 291	5. 761	55. 816	1. 00 28. 07
	ATOM	1891	CG1	VAL	253	33. 033	5. 005	55. 405	1. 00 26. 98
10	ATOM	1892	CG2	VAL	253	34. 898	6. 484	54. 624	1. 00 24. 14
	ATOM	1893	C	VAL	253	33. 200	6.069	58. 038	1. 00 28. 79
	ATOM	1894	0	VAL	253	33. 801	5. 448	58. 922	1. 00 31. 23
•	ATOM	1895	N	ASN	254	31. 879	6. 188	58. 000	1. 00 28. 38
	ATOM	1896	CA	ASN	254	31. 003	5. 557	58. 976	1. 00 27. 73
15	ATOM	1897	CB	ASN	254	29. 834	6. 473	59. 328	1. 00 27. 41
	ATOM	1898	CG	ASN	254	28. 803	5. 779	60. 181	1. 00 31. 67
	ATOM	1899	OD1	ASN	254	29. 048	4. 675	60. 677	1. 00 32. 14
	ATOM	1900	ND2	ASN	254	27. 643	6. 415	60. 367	1. 00 29. 17
	ATOM	1901	C	ASN	254	30. 480	4. 295	58. 299	1. 00 27. 41
20	ATOM	1902	0	ASN	254	29. 575	4. 372	57. 467	1. 00 25. 53
	ATOM	1903	N	THR	255	31. 049	3. 142	58. 654	1. 00 24. 66
	ATOM	1904	CA	THR	255	30. 662	1. 883	58. 016	1. 00 24. 86
	ATOM	1905	CB	THR	255	31. 501	0. 665	58. 527	1. 00 23. 42
	ATOM	1906	0G1	THR	255	31. 071	0. 310	59. 849	1. 00 23. 50
25	ATOM	1907	CG2	THR	255	32. 973	0. 982	58. 558	1. 00 23. 88
	ATOM	1908	C	THR	255	29. 207	1. 488	58. 195	1. 00 23. 00
	ATOM	1909	0	THR	255	28. 589	0. 984	57. 259	1. 00 24. 38
	ATOM	1910	N	GLU	256	28. 673	1. 710	59. 394	1. 00 23. 70
	ATOM	1911	CA	GLU	256	27. 306	1. 305	59. 721	1. 00 26. 37

- 82 -

						,	34		
	ATOM	1912	CB	GLU	256	26. 271	2. 017	58. 838	1. 00 26. 22
	ATOM	1913	CG	GLU	256	25. 974	3. 471	59. 204	1.00 29.32
	ATOM	1914	CD	GLU	256	25. 284	3. 644	60. 558	1. 00 31. 10
	ATOM	1915	0E	1 GLU	256	24. 489	2. 764	60. 953	1. 00 31. 47
5	ATOM	1916	0E	2 GLU	256	25. 523	4. 682	61. 218	1. 00 30. 04
	ATOM	1917	C	GLU	256	27. 269	-0. 203	59. 458	1. 00 27. 40
	ATOM	1918	0	GLU	256	26. 369	-0. 713	58. 782	1. 00 26. 71
	ATOM	1919	N	TRP	257	28. 269	-0. 912	59. 982	1. 00 25. 98
	ATOM	1920	CA	TRP	257	28. 335	-2. 356	59. 774	1. 00 24. 56
10	ATOM	1921	CB	TRP	257	29. 714	-2. 928	60. 180	1. 00 21. 05
	ATOM	1922	CG	TRP	257	30. 100	-2. 891	61. 653	1. 00 17. 51
	ATOM	1923	CD2	TRP	257	31. 429	-3. 026	62. 182	1. 00 16. 19
	ATOM	1924	CE2	TRP	257	31. 320	-3. 077	63. 588	1. 00 14. 42
	ATOM	1925	CE3	TRP	257	32. 705	-3. 112	61. 597	1. 00 16. 23
15	ATOM	1926	CD1	TRP	257	29. 264	-2. 862	62. 733	1. 00 18. 14
	ATOM	1927	NE1	TRP	257	29. 990	-2. 977	63. 902	1. 00 19. 95
	ATOM	1928	CZ2	TRP	257	32. 435	-3. 214	64. 421	1. 00 17. 46
	ATOM	1929	CZ3	TRP	257	33. 815	-3. 246	62. 424	1. 00 13. 91
	ATOM	1930	CH2	TRP	257	33. 672	-3. 294	63. 822	1. 00 14. 28
20	ATOM	1931	C	TRP	257	27. 218	-3. 091	60. 500	1. 00 24. 58
	ATOM	1932	0	TRP	257	27. 067	-4. 305	60. 352	1. 00 24. 81
	ATOM	1933	N	GLY	258	26. 427	-2. 354	61. 273	1. 00 23. 21
	ATOM	1934	CA	GLY	258	25. 328	-2. 981	61. 982	1. 00 23. 11
	ATOM	1935	C	GLY	258	24. 385	-3. 640	60. 991	1. 00 25. 72
25	ATOM	1936	0	GLY	258	23. 758	-4. 660	61. 285	1. 00 28. 37
	ATOM	1937	N	ALA	259	24. 288	-3. 067	59. 796	1. 00 24. 64
	ATOM	1938	CA	ALA	259	23. 406	-3. 630	58. 789	1. 00 25. 53
	ATOM	1939	CB	ALA	259	22. 866	-2. 519	57. 874	1. 00 25. 11
	ATOM	1940	C	ALA	259	24. 084	-4. 724	57. 961	1. 00 25. 44

- 83 -

	ATOM	1941	0	ALA	259	23. 51	5 -5. 205	56. 985	1. 00 24. 68
	ATOM	1942	N	PHE	260	25. 306	5 -5. 101	58. 329	1. 00 26. 96
	ATOM	1943	CA	PHE	260	25. 995	-6. 175	57. 614	1. 00 28. 11
	ATOM	1944	CB	PHE	260	27. 359	-6. 440	58. 254	1. 00 30. 88
5	ATOM	1945	CG	PHE	260	28. 127	7. 569	57. 625	1. 00 33. 87
	ATOM	1946	CD	1 PHE	260	28. 496	-7. 525	56. 286	1. 00 33. 60
	ATOM	1947	CD	2 PHE	260	28. 499	-8. 675	58. 380	1. 00 37. 30
	ATOM	1948	CE	PHE	260	29. 220	-8. 564	55. 716	1. 00 33. 58
	ATOM	1949	CE	PHE	260	29. 229	-9. 720	57. 808	1. 00 35. 65
10	ATOM	1950	CZ	PHE	260	29. 586	-9. 660	56. 478	1. 00 34. 41
	ATOM	1951	C	PHE	260	25. 080	-7. 388	57. 783	1. 00 28. 87
	ATOM	1952	0	PHE	260	24. 487	-7. 576	58. 849	1. 00 27. 08
	ATOM	1953	N	GLY	261	24. 941	-8. 193	56. 737	1. 00 28. 88
	ATOM	1954	CA	GLY	261	24. 074	-9. 357	56. 826	1. 00 30. 83
15	ATOM	1955	C	GLY	261	22. 664	-9. 092	56. 317	1. 00 32. 15
	ATOM	1956	0	GLY	261	21. 905	-10. 021	56. 043	1. 00 34. 22
	ATOM	1957	N	ASP	262	22. 307	-7. 822	56. 175	1. 00 33. 45
	ATOM	1958	CA	ASP	262	20. 975	-7. 456	55. 701	1. 00 35. 91
	ATOM	1959	CB	ASP	262	20. 761	-5. 948	55. 868	1. 00 35. 78
20	ATOM	1960	CG	ASP	262	20. 674	-5. 541	57. 323	1. 00 35. 93
	ATOM	1961	0D1	ASP	262	20. 903	-6. 415	58. 182	1. 00 37. 70
	ATOM	1962	0D2	ASP	262	20. 382	-4. 364	57. 615	1. 00 35. 14
	ATOM	1963	C	ASP	262	20. 676	-7. 884	54. 262	1. 00 36. 35
	ATOM	1964	0	ASP	262	19. 546	-7. 758	53. 799	1. 00 37. 40
25	ATOM	1965	N	SER	263	21. 685	-8. 380	53. 554	1. 00 37. 07
	ATOM	1966	CA	SER	263	21. 488	-8. 863	52. 189	1. 00 37. 53
	ATOM	1967	CB	SER	263	22. 420	-8. 155	51. 200	1. 00 37. 00
	ATOM	1968	0G	SER	263	22. 028	-6. 815	50. 991	1. 00 38. 85
	ATOM	1969	C	SER	263	21. 770	-10. 359	52. 161	1. 00 37. 06

- 84 -

						04		
	ATOM	1970	0	SER	263	22. 062 -10. 923	51. 107	1. 00 36. 90
	ATOM	1971	N	GLY	264	21. 697 -10. 988	53. 331	1. 00 36. 97
	ATOM	1972	CA	GLY	264	21. 934 -12. 418	53. 428	1. 00 37. 50
	ATOM	1973	C	GLY	264	23. 370 -12. 857	53. 663	1. 00 38. 59
5	ATOM	1974	0	GLY	264	23. 666 -14. 050	53. 573	1. 00 40. 28
	ATOM	1975	N	GLU	265	24. 263 -11. 915	53. 961	1. 00 37. 52
	ATOM	1976	CA	GLU	265	25. 671 -12. 237	54. 199	1. 00 36. 34
	ATOM	1977	CB	GLU	265	26. 488 -10. 965	54. 438	1. 00 35. 82
	ATOM	1978	CG	GLU	265	26. 535 -9. 976	53. 289	1. 00 38. 57
10	ATOM	1979	CD	GLU	265	25. 270 -9. 148	53. 158	1. 00 39. 55
	ATOM	1980	0E1	GLU	265	24. 600 -8. 901	54. 173	1. 00 38. 51
	ATOM	1981	0E2	GLU	265	24. 953 -8. 722	52. 031	1. 00 43. 82
	ATOM	1982	C	GLU	265	25. 906 -13. 171	55. 391	1. 00 36. 38
	ATOM	1983	0	GLU	265	26. 899 -13. 906	55. 425	1. 00 35. 35
15	ATOM	1984	N	LEU	266	24. 996 -13. 140	56. 362	1. 00 34. 63
	ATOM	1985	CA	LEU	266	25. 130 -13. 955	57. 567	1. 00 35. 02
	ATOM	1986	CB	LEU	266	25. 008 -13. 054	58. 803	1. 00 31. 68
	ATOM	1987	CG	LEU	266	26. 017 -11. 914	58. 973	1. 00 33. 35
	ATOM	1988	CD1	LEU	266	25. 555 -10. 975	60. 077	1. 00 32. 52
20	ATOM	1989	CD2	LEU	266	27. 383 -12. 480	59. 294	1. 00 32. 43
	ATOM	1990	C	LEU	266	24. 108 -15. 092	57. 674	1. 00 35. 37
	ATOM	1991	0	LEU	266	24. 047 -15. 779	58. 696	1. 00 35. 21
	ATOM	1992	N	ASP	267	23. 321 -15. 300	56. 627	1. 00 36. 35
	ATOM	1993	CA	ASP	267	22. 286 -16. 332	56. 643	1. 00 39. 50
25	ATOM	1994	CB	ASP	267	21. 664 -16. 480	55. 248	1. 00 42. 21
	ATOM	1995	CG	ASP	267	20. 666 -15. 369	54. 921	1. 00 45. 43
	ATOM	1996	0D1	ASP	267	20. 205 -15. 320	53. 759	1. 00 48. 41
	ATOM	1997	0D2	ASP	267	20. 332 -14. 554	55. 813	1. 00 45. 57
	ATOM	1998	С	ASP	267	22. 676 -17. 715	57. 171	1. 00 38. 87

- 85 -

	ATOM	1999	0	ASP	267	21. 888 -18. 353	57. 867	1. 00 39. 64
	ATOM	2000	N	GLU	268	23. 879 -18. 179	56. 860	1. 00 38. 72
	ATOM	2001	CA	GLU	268	24. 301 -19. 502	57. 313	1. 00 39. 91
	ATOM	2002	CB	GLU	268	25. 510 -19. 971	56. 495	1. 00 40. 60
5	ATOM	2003	CG	GLU	268	26. 847 -19. 444	56. 976	1. 00 43. 85
	ATOM	2004	CD	GLU	268	27. 969 -19. 710	55. 981	1. 00 47. 64
	ATOM	2005	0E1	GLU	268	28. 013 -19. 017	54. 941	1. 00 49. 73
	ATOM	2006	0E2	GLU	268	28. 802 -20. 612	56. 232	1. 00 48. 40
	ATOM	2007	C	GLU	268	24. 633 -19. 577	58. 807	1. 00 40. 59
10	ATOM	2008	0	GLU	268	24. 790 -20. 667	59. 360	1. 00 41. 43
	ATOM	2009	N	PHE	269	24. 734 -18. 427	59. 462	1. 00 39. 17
	ATOM	2010	CA	PHE	269	25. 070 -18. 402	60. 882	1. 00 37. 75
	ATOM	2011	CB	PHE	269	26. 182 -17. 385	61. 127	1. 00 34. 69
	ATOM	2012	CG	PHE	269	27. 435 -17. 675	60. 369	1. 00 35. 74
15	ATOM	2013	CD1	PHE	269	28. 144 -18. 853	60. 599	1. 00 35. 94
	ATOM	2014	CD2	PHE	269	27. 910 -16. 781	59. 416	1. 00 34. 75
	ATOM	2015	CE1	PHE	269	29. 306 -19. 136	59. 891	1. 00 34. 71
	ATOM	2016	CE2	PHE	269	29. 068 -17. 050	58. 701	1. 00 34. 58
	ATOM	2017	CZ	PHE	269	29. 770 -18. 233	58. 939	1. 00 35. 80
20	ATOM	2018	C	PHE	269	23. 898 -18. 085	61. 793	1. 00 36. 73
	ATOM	2019	0	PHE	269	23. 932 -18. 384	62. 984	1. 00 36. 59
	ATOM	2020	N	LEU	270	22. 861 -17. 480	61. 231	1. 00 37. 18
	ATOM	2021	CA	LEU	270	21. 696 -17. 107	62. 012	1. 00 37. 71
	ATOM	2022	CB	LEU	270	20. 712 -16. 332	61. 135	1. 00 36. 52
25	ATOM	2023	CG	LEU	270	21. 264 -15. 036	60. 521	1. 00 37. 18
	ATOM	2024	CD1	LEU	270	20. 299 -14. 516	59. 466	1. 00 38. 72
	MOTA	2025	CD2	LEU	270	21. 488 -13. 990	61. 604	1. 00 34. 72
	ATOM	2026	C	LEU	270	21. 010 -18. 312	62. 644	1. 00 38. 27
	ATOM	2027	0	LEU	270	20. 794 -19. 333	61. 995	1. 00 39. 49

- 86 -

	ATOM	2028	N	LEU	271	20. 685 -18. 176	63. 924	1. 00 37. 92
	ATOM	2029	CA	LEU	271	20. 010 -19. 212	64. 693	1. 00 38. 22
	ATOM	2030	СВ	LEU	271	20. 657 -19. 339	66. 078	1. 00 37. 71
	ATOM	2031	CG	LEU	271	21. 897 -20. 220	66. 261	1. 00 38. 14
5	ATOM	2032	CD	1 LEU	271	22. 827 -20. 111	65. 075	1. 00 39. 09
	ATOM	2033	CD	2 LEU	271	22. 596 -19. 830	67. 549	1. 00 35. 73
	ATOM	2034	C	LEU	271	18. 536 -18. 845	64. 855	1. 00 39. 78
	ATOM	2035	0	LEU	271	18. 125 -17. 721	64. 538	1. 00 38. 05
	ATOM	2036	N	GLU	272	17. 751 -19. 794	65. 358	1. 00 39. 69
10	ATOM	2037	CA	GLU	272	16. 322 -19. 590	65. 575	1. 00 41. 03
	ATOM	2038	CB	GLU	272	15. 697 -20. 842	66. 219	1. 00 43. 64
	ATOM	2039	CG	GLU	272	16. 221 -21. 179	67. 627	1. 00 47. 44
	ATOM	2040	CD	GLU	272	15. 685 -22. 509	68. 182	1. 00 49. 81
	ATOM	2041	0E1	GLU	272	16. 081 -23. 580	67. 666	1. 00 51. 29
15	ATOM	2042	0E2	GLU	272	14. 869 -22. 484	69. 134	1. 00 47. 60
	ATOM	2043	C	GLU	272	16. 084 -18. 377	66. 466	1. 00 39. 89
	ATOM	2044	0	GLU	272	15. 151 -17. 602	66. 250	1. 00 40. 35
	ATOM	2045	N	TYR	273	16. 944 -18. 208	67. 465	1. 00 38. 65
	ATOM	2046	CA	TYR	273	16. 813 -17. 095	68. 393	1. 00 35. 97
20	ATOM	2047	CB	TYR	273	17. 829 -17. 238	69. 530	1. 00 35. 50
	ATOM	2048	CG	TYR	273	18. 008 -18. 658	70. 009	1. 00 34. 45
	ATOM	2049	CD1	TYR	273	19. 109 -19. 416	69. 611	1. 00 32. 53
	ATOM	2050	CE1	TYR	273	19. 252 -20. 740	70. 017	1. 00 35. 58
	ATOM	2051	CD2	TYR	273	17. 053 -19. 258	70. 830	1. 00 34. 35
25	ATOM	2052	CE2	TYR	273	17. 185 -20. 580	71. 241	1. 00 34. 82
	ATOM	2053	CZ	TYR	273	18. 281 -21. 314	70. 830	1. 00 35. 96
	ATOM	2054	OH	TYR	273	18. 381 -22. 626	71. 208	1. 00 38. 31
	ATOM	2055	C	TYR	273	17. 021 -15. 763	67. 680	1. 00 35. 11
	ATOM	2056	0	TYR	273	16. 404 -14. 752	68. 031	1. 00 34. 85

- 87 -

	ATOM	2057	N	ASP	274	17. 888 -15. 763	66. 676	1. 00 36. 47
	ATOM	2058	CA	ASP	274	18. 164 -14. 541	65. 933	1. 00 36. 65
	ATOM	2059	CB	ASP	274	19. 405 -14. 718	65. 059	1. 00 32. 36
	ATOM	2060	CG	ASP	274	20. 627 -15. 072	65. 869	1. 00 32. 89
5	ATOM	2061	0D1	ASP	274	20. 949 -14. 315	66. 810	1. 00 30. 53
•	ATOM	2062	0D2	ASP	274	21. 265 -16. 104	65. 569	1. 00 32. 08
	ATOM	2063	C	ASP	274	16. 968 -14. 165	65. 081	1. 00 37. 27
	ATOM	2064	0	ASP	274	16. 571 -13. 001	65. 040	1. 00 37. 20
	ATOM	2065	N	ARG	275	16. 380 -15. 148	64. 410	1. 00 39. 32
10	ATOM	2066	CA	ARG	275	15. 222 -14. 866	63. 574	1. 00 41. 70
	ATOM	2067	CB	ARG	275	14. 803 -16. 121	62. 809	1. 00 44. 47
	ATOM	2068	CG	ARG	275	15. 908 -16. 666	61. 914	1. 00 49. 05
	ATOM	2069	CD	ARG	275	15. 516 -18. 002	61. 303	1. 00 53. 46
	ATOM	2070	NE	ARG	275	16. 668 -18. 740	60. 779	1. 00 57. 36
15	ATOM	2071	CZ	ARG	275	17. 352 -18. 408	59. 685	1. 00 58. 81
	ATOM	2072	NH 1	ARG	275	18. 383 -19. 148	59. 296	1. 00 60. 43
	ATOM	2073	NH2	ARG	275	17. 005 -17. 341	58. 976	1. 00 61. 75
	ATOM	2074	C	ARG	275	14. 079 -14. 353	64. 446	1. 00 41. 43
	ATOM	2075	0	ARG	275	13. 350 -13. 444	64. 059	1. 00 40. 04
20	ATOM	2076	N	LEU	276	13. 939 -14. 927	65. 637	1. 00 40. 97
	ATOM	2077	CA	LEU	276	12. 888 -14. 507	66. 556	1. 00 42. 14
	MOTA	2078	CB	LEU	276	12. 831 -15. 450	67. 761	1. 00 44. 12
	ATOM	2079	CG	LEU	276	12. 315 -16. 862	67. 468	1. 00 47. 86
	ATOM	2080	CD1	LEU	276	12. 662 -17. 800	68. 618	1. 00 48. 62
25	ATOM	2081	CD2	LEU	276	10. 808 -16. 808	67. 236	1. 00 47. 43
	ATOM	2082	C	LEU	276	13. 094 -13. 072	67. 034	1. 00 40. 87
	ATOM	2083	0	LEU	276	12. 152 -12. 281	67. 072	1. 00 41. 20
	ATOM	2084	N	VAL	277	14. 322 -12. 740	67. 412	1. 00 39. 68
	ATOM	2085	CA	VAL	277	14. 617 -11. 390	67. 876	1. 00 40. 86

- 88 -

	ATOM	2086	CB	VAL	277	16. 084 -11. 263	68. 331	1. 00 41. 86
	ATOM	2087	CG1	VAL	277	16. 447 -9. 802	68. 497	1. 00 43. 25
	ATOM	2088	CG2	VAL	277	16. 290 -12. 012	69. 647	1. 00 41. 47
	ATOM	2089	C	VAL	277	14. 363 -10. 381	66. 761	1. 00 40. 10
5	ATOM	2090	0	VAL	277	13. 813 -9. 305	66. 993	1. 00 41. 12
	ATOM	2091	N	ASP	278	14. 767 -10. 738	65. 550	1. 00 39. 42
	ATOM	2092	CA	ASP	278	14. 592 -9. 867	64. 398	1. 00 40. 24
	ATOM	2093	CB	ASP	278	15. 356 -10. 434	63. 195	1. 00 38. 24
	ATOM	2094	CG	ASP	278	15. 179 -9. 598	61. 943	1. 00 40. 23
10	ATOM	2095	OD1	ASP	278	15. 260 -8. 351	62. 043	1. 00 39. 72
	ATOM	2096	OD2	ASP	278	14. 969 -10. 187	60. 860	1. 00 38. 10
	ATOM	2097	C	ASP	278	13. 120 -9. 669	64. 043	1. 00 41. 19
	ATOM	2098	0	ASP	278	12. 693 -8. 545	63. 791	1. 00 40. 82
	ATOM	2099	N	GLU	279	12. 347 -10. 754	64. 035	1. 00 43. 34
15	ATOM	2100	CA	GLU	279	10. 922 -10. 688	63. 696	1. 00 46. 81
	ATOM	2101	CB	GLU	279	10. 321 -12. 097	63. 627	1. 00 50. 53
	ATOM	2102	CG	GLU	279	10. 870 -12. 965	62. 496	1. 00 56. 10
	ATOM	2103	CD	GLU	279	10. 320 -14. 382	62. 523	1. 00 59. 07
	ATOM	2104	0E1	GLU	279	10. 336 -15. 006	63. 607	1. 00 60. 28
20	ATOM	2105	0E2	GLU	279	9. 880 -14. 876	61. 461	1. 00 60. 79
	ATOM	2106	C	GLU	279	10. 086 -9. 840	64. 652	1. 00 47. 25
	ATOM	2107	0	GLU	279	9. 048 -9. 303	64. 260	1. 00 46. 34
	ATOM	2108	N	SER	280	10. 535 -9. 722	65. 899	1. 00 46. 87
	ATOM	2109	CA	SER	280	9. 809 -8. 948	66. 900	1. 00 47. 53
25	ATOM	2110	CB	SER	280	9. 769 -9. 708	68. 228	1. 00 49. 98
	ATOM	2111	0G	SER	280	9. 043 -10. 919	68. 093	1. 00 52. 36
	ATOM	2112	C	SER	280	10. 415 -7. 575	67. 129	1. 00 47. 33
	ATOM	2113	0	SER	280	9. 909 -6. 788	67. 936	1. 00 45. 86
	ATOM	2114	N	SER	281	11. 499 -7. 289	66. 416	1. 00 46. 95

- 89 -

ATOM	2115	CA	SER	281	12. 172	-6. 004	66. 552	1. 00	46. 75
ATOM	2116	CB	SER	281	13. 581	-6. 081	65. 971	1. 00	47. 24
ATOM	2117	0G	SER	281	13. 524	-6. 172	64. 559	1. 00	47. 80
ATOM	2118	C	SER	281	11. 391	-4. 915	65. 824	1. 00	45. 65
ATOM	2119	0	SER	281	10. 514	-5. 199	65. 013	1. 00	45. 10
ATOM	2120	N	ALA	282	11. 723	-3. 667	66. 123	1. 00	45. 75
ATOM	2121	CA	ALA	282	11. 066	-2. 530	65. 500	1. 00	45. 70
ATOM	2122	CB	ALA	282	11. 257	-1. 289	66. 354	1. 00	45. 60
ATOM	2123	C	ALA	282	11. 617	-2. 286	64. 100	1. 00	46. 48
ATOM	2124	0	ALA	282	11. 252	-1. 303	63. 449	1. 00	48. 61
ATOM	2125	N	ASN	283	12. 493	-3. 172	63. 633	1. 00	43. 90
ATOM	2126	CA	ASN	283	13. 076	-3. 015	62. 306	1. 00	41. 45
ATOM	2127	CB	ASN	283	14. 300	-2. 092	62. 384	1. 00	40. 08
ATOM	2128	CG	ASN	283	15. 398	-2. 631	63. 289	1. 00	39. 25
ATOM	2129	0D1	ASN	283	15. 136	-3. 308	64. 289	1. 00	37. 65
ATOM	2130	ND2	ASN	283	16. 641	-2. 310	62. 950	1. 00	37. 96
ATOM	2131	C	ASN	283	13. 433	-4. 350	61. 655	1. 00	41.06
ATOM	2132	0	ASN	283	14. 585	-4. 606	61. 318	1. 00	40. 48
ATOM	2133	N	PR0	284	12. 423	-5. 211	61. 455	1. 00	40. 23
ATOM	2134	CD	PR0	284	11. 013	-4. 898	61. 751	1. 00	40. 75
ATOM	2135	CA	PRO	284	12. 534	-6. 540	60. 851	1. 00	40. 08
ATOM	2136	CB	PR0	284	11. 080	-6. 914	60. 581	1. 00	40. 52
ATOM	2137	CG	PR0	284	10. 364	-6. 260	61. 712	1. 00	41. 21
ATOM	2138	C	PR0	284	13. 366	-6. 565	59. 579	1. 00	39. 55
ATOM	2139	0	PR0	284	13. 054	-5. 868	58. 617	1. 00	40. 95
ATOM	2140	N	GLY	285	14. 416	-7. 382	59. 576	1. 00	38. 56
ATOM	2141	CA	GLY	285	15. 266	-7. 491	58. 407	1. 00	35. 73
ATOM	2142	C	GLY	285	16. 428	-6. 516	58. 371	1. 00	35. 10
ATOM	2143	0	GLY	285	17. 288	-6. 624	57. 500	1. 00	36. 22
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	ATOM 2116 ATOM 2117 ATOM 2118 ATOM 2119 ATOM 2120 ATOM 2121 ATOM 2122 ATOM 2122 ATOM 2123 ATOM 2124 ATOM 2125 ATOM 2126 ATOM 2127 ATOM 2128 ATOM 2128 ATOM 2130 ATOM 2131 ATOM 2131 ATOM 2131 ATOM 2132 ATOM 2133 ATOM 2134 ATOM 2135 ATOM 2135 ATOM 2136 ATOM 2137 ATOM 2138 ATOM 2138 ATOM 2139 ATOM 2139 ATOM 2140 ATOM 2141 ATOM 2141	ATOM 2116 CB ATOM 2117 OG ATOM 2118 C ATOM 2119 O ATOM 2120 N ATOM 2121 CA ATOM 2122 CB ATOM 2123 C ATOM 2124 O ATOM 2125 N ATOM 2126 CA ATOM 2127 CB ATOM 2128 CG ATOM 2129 OD1 ATOM 2130 ND2 ATOM 2131 C ATOM 2132 O ATOM 2133 N ATOM 2133 N ATOM 2133 CA ATOM 2136 CB ATOM 2137 CG ATOM 2137 CG ATOM 2138 C ATOM 2139 O ATOM 2140 N ATOM 2141	ATOM 2116 CB SER ATOM 2117 OG SER ATOM 2118 C SER ATOM 2119 O SER ATOM 2120 N ALA ATOM 2121 CA ALA ATOM 2122 CB ALA ATOM 2123 C ALA ATOM 2124 O ALA ATOM 2125 N ASN ATOM 2126 CA ASN ATOM 2127 CB ASN ATOM 2128 CG ASN ATOM 2129 OD1 ASN ATOM 2130 ND2 ASN ATOM 2131 C ASN ATOM 2133 N PRO ATOM 2134 CD PRO ATOM 2135 CA PRO ATOM 2137 CG	ATOM 2116 CB SER 281 ATOM 2117 OG SER 281 ATOM 2118 C SER 281 ATOM 2119 O SER 281 ATOM 2120 N ALA 282 ATOM 2121 CA ALA 282 ATOM 2123 C ALA 282 ATOM 2124 O ALA 282 ATOM 2124 O ALA 282 ATOM 2125 N ASN 283 ATOM 2126 CA ASN 283 ATOM 2128 CG ASN 283 ATOM 2128 CG ASN 283 ATOM 2130 ND2 ASN 283 ATOM 2131 C ASN 283 ATOM 2133 N PRO 284 ATOM 2134	ATOM 2116 CB SER 281 13. 581 ATOM 2117 OG SER 281 13. 524 ATOM 2118 C SER 281 11. 391 ATOM 2119 O SER 281 10. 514 ATOM 2120 N ALA 282 11. 066 ATOM 2121 CA ALA 282 11. 066 ATOM 2122 CB ALA 282 11. 257 ATOM 2124 O ALA 282 11. 617 ATOM 2124 O ALA 282 11. 252 ATOM 2125 N ASN 283 12. 493 ATOM 2126 CA ASN 283 14. 300 ATOM 2127 CB ASN 283 15. 398 ATOM 2130 ND2 ASN 283 15. 136 ATOM 2131 C ASN	ATOM 2116 CB SER 281 13.581 -6.081 ATOM 2117 OG SER 281 13.524 -6.172 ATOM 2118 C SER 281 11.391 -4.915 ATOM 2119 O SER 281 10.514 -5.199 ATOM 2120 N ALA 282 11.723 -3.667 ATOM 2121 CA ALA 282 11.257 -1.289 ATOM 2123 C ALA 282 11.257 -1.289 ATOM 2123 C ALA 282 11.257 -1.289 ATOM 2123 C ALA 282 11.257 -1.303 ATOM 2124 O ALA 282 11.257 -1.303 ATOM 2125 N ASN 283 12.493 -3.172 ATOM 2125 CA ASN 283 14.300 <t< th=""><th>ATOM 2116 CB SER 281 13. 581 -6. 081 65. 971 ATOM 2117 OG SER 281 13. 524 -6. 172 64. 559 ATOM 2118 C SER 281 11. 391 -4. 915 65. 824 ATOM 2119 O SER 281 10. 514 -5. 199 65. 013 ATOM 2120 N ALA 282 11. 723 -3. 667 66. 123 ATOM 2121 CA ALA 282 11. 267 -1. 289 66. 354 ATOM 2122 CB ALA 282 11. 257 -1. 289 66. 354 ATOM 2124 O ALA 282 11. 257 -1. 303 63. 449 ATOM 2125 N ASN 283 12. 493 -3. 172 63. 633 ATOM 2127 CB ASN 283 14. 300 -2. 092 62. 384 ATOM 2128<!--</th--><th>ATOM 2116 CB SER 281 13. 581 -6. 081 65. 971 1. 00 ATOM 2117 0G SER 281 13. 524 -6. 172 64. 559 1. 00 ATOM 2118 C SER 281 11. 391 -4. 915 65. 824 1. 00 ATOM 2119 0 SER 281 10. 514 -5. 199 65. 013 1. 00 ATOM 2120 N ALA 282 11. 666 -2. 530 65. 500 1. 00 ATOM 2122 CB ALA 282 11. 617 -2. 286 64. 100 1. 00 ATOM 2123 C ALA 282 11. 617 -2. 286 64. 100 1. 00 ATOM 2123 C ALA 282 11. 617 -2. 286 64. 100 1. 00 ATOM 2123 C ALA 282 11. 617 -2. 286 64. 100 1. 00 ATOM</th></th></t<>	ATOM 2116 CB SER 281 13. 581 -6. 081 65. 971 ATOM 2117 OG SER 281 13. 524 -6. 172 64. 559 ATOM 2118 C SER 281 11. 391 -4. 915 65. 824 ATOM 2119 O SER 281 10. 514 -5. 199 65. 013 ATOM 2120 N ALA 282 11. 723 -3. 667 66. 123 ATOM 2121 CA ALA 282 11. 267 -1. 289 66. 354 ATOM 2122 CB ALA 282 11. 257 -1. 289 66. 354 ATOM 2124 O ALA 282 11. 257 -1. 303 63. 449 ATOM 2125 N ASN 283 12. 493 -3. 172 63. 633 ATOM 2127 CB ASN 283 14. 300 -2. 092 62. 384 ATOM 2128 </th <th>ATOM 2116 CB SER 281 13. 581 -6. 081 65. 971 1. 00 ATOM 2117 0G SER 281 13. 524 -6. 172 64. 559 1. 00 ATOM 2118 C SER 281 11. 391 -4. 915 65. 824 1. 00 ATOM 2119 0 SER 281 10. 514 -5. 199 65. 013 1. 00 ATOM 2120 N ALA 282 11. 666 -2. 530 65. 500 1. 00 ATOM 2122 CB ALA 282 11. 617 -2. 286 64. 100 1. 00 ATOM 2123 C ALA 282 11. 617 -2. 286 64. 100 1. 00 ATOM 2123 C ALA 282 11. 617 -2. 286 64. 100 1. 00 ATOM 2123 C ALA 282 11. 617 -2. 286 64. 100 1. 00 ATOM</th>	ATOM 2116 CB SER 281 13. 581 -6. 081 65. 971 1. 00 ATOM 2117 0G SER 281 13. 524 -6. 172 64. 559 1. 00 ATOM 2118 C SER 281 11. 391 -4. 915 65. 824 1. 00 ATOM 2119 0 SER 281 10. 514 -5. 199 65. 013 1. 00 ATOM 2120 N ALA 282 11. 666 -2. 530 65. 500 1. 00 ATOM 2122 CB ALA 282 11. 617 -2. 286 64. 100 1. 00 ATOM 2123 C ALA 282 11. 617 -2. 286 64. 100 1. 00 ATOM 2123 C ALA 282 11. 617 -2. 286 64. 100 1. 00 ATOM 2123 C ALA 282 11. 617 -2. 286 64. 100 1. 00 ATOM

- 90 -

	40016					J	,0		
	ATOM	2144	N	GLN	286	16. 468	-5. 573	59. 308	1. 00 34. 06
	ATOM	2145	CA	GLN	286	17. 547	-4. 584	59. 348	1. 00 34. 96
	ATOM	2146	CB	GLN	286	16. 974	-3. 166	59. 321	1. 00 39. 16
	ATOM	2147	CG	GLN	286	16. 189	-2. 825	58. 067	1. 00 45. 72
5	ATOM	2148	CD	GLN	286	15. 698	-1. 384	58. 074	1. 00 51. 15
	ATOM	2149	0E1	GLN	286	14. 816	-1. 018	58. 860	1. 00 52. 21
	ATOM	2150	NE2	GLN	286	16. 276	-0. 555	57. 203	1. 00 50. 85
	ATOM	2151	C	GLN	286	18. 439	-4. 719	60. 573	1. 00 33. 59
	ATOM	2152	0	GLN	286	17. 993	-5. 157	61. 637	1. 00 33. 18
10	ATOM	2153	N	GLN	287	19. 701	-4. 334	60. 408	1. 00 32. 85
	ATOM	2154	CA	GLN	287	20. 691	-4. 375	61. 484	1. 00 32. 45
	ATOM	2155	CB	GLN	287	20. 248	-3. 456	62. 636	1. 00 33. 34
	ATOM	2156	CG	GLN	287	19. 955	-1. 999	62. 251	1. 00 31. 48
	ATOM	2157	CD	GLN	287	21. 188	-1. 259	61. 743	1. 00 31. 78
15	ATOM	2158	0E1	GLN	287	21. 330	-1. 010	60. 544	1. 00 33. 25
	ATOM	2159	NE2	GLN	287	22. 090	-0. 921	62. 652	1. 00 27. 51
	ATOM	2160	C	GLN	287	20. 924	-5. 788	62. 032	1. 00 30. 79
	ATOM	2161	0	GLN	287	21. 120	-5. 957	63. 229	1. 00 29. 31
	ATOM	2162	N	LEU	288	20. 921	-6. 791	61. 158	1. 00 29. 33
20	ATOM	2163	CA	LEU	288	21. 101	-8. 181	61. 585	1. 00 27. 53
	ATOM	2164	CB	LEU	288	20. 940	-9. 129	60. 393	1. 00 28. 13
	ATOM	2165	CG	LEU	288	19. 599	-9. 090	59. 647	1. 00 29. 14
	ATOM	2166	CD1	LEU	288	19. 390	-10. 418	58. 922	1. 00 27. 60
	ATOM	2167	CD2	LEU	288	18. 453	-8. 844	60. 621	1. 00 27. 42
25	ATOM	2168	C	LEU	288	22. 418	-8. 476	62. 297	1. 00 27. 92
	ATOM	2169	0	LEU	288	22. 438	-9. 184	63. 303	1. 00 28. 24
	ATOM	2170	N	TYR	289	23. 520	-7. 946	61. 776	1. 00 27. 17
	ATOM	2171	CA	TYR	289	24. 819	-8. 153	62. 399	1. 00 24. 83
	ATOM	2172	CB	TYR	289	25. 899	-7. 458	61. 583	1. 00 24. 32

- 91 -

ATOM 2173 CG TYR 289 27. 303 -7. 575 1.00 21.26 62. 137 ATOM 2174 CD1 TYR 289 27. 951 -8. 814 62. 208 1. 00 20. 00 ATOM 2175 CE1 TYR 289 29. 281 -8. 909 62.616 1. 00 18. 43 ATOM 2176 CD2 TYR 289 28. 013 -6. 441 62. 503 1. 00 18. 12 5 ATOM 2177 CE2 TYR 289 29. 338 -6. 520 62. 918 1. 00 20. 65 ATOM 2178 CZTYR 289 29. 976 -7. 762 62.966 1. 00 21. 27 ATOM 2179 0HTYR 289 31. 314 -7. 833 63. 326 1.00 19.02 ATOM 2180 C TYR 28924. 771 -7. 566 63. 799 1. 00 26. 94 2181 **ATOM** 0 TYR 289 25. 221 -8. 175 64. 776 1. 00 27. 95 **ATOM** 2182 10 N GLU 290 24. 198 -6. 374 63. 892 1. 00 27. 68 **ATOM** 2183 CA GLU 290 24.078 -5.68665. 165 1. 00 26. 41 ATOM 2184 CBGLU 290 23. 484 -4.30964. 927 1. 00 26. 55 2185 **ATOM** CG GLU 290 23. 059 -3.59566. 180 1. 00 27. 05 2186 **ATOM** CD GLU 290 22. 815 -2.14265. 913 1. 00 25. 47 ATOM 2187 15 OE1 GLU 290 23. 716 66. 204 -1.3361. 00 27. 17 ATOM 2188 OE2 GLU 290 21. 731 -1.81565.398 1. 00 29. 09 ATOM 2189 GLU C 290 23. 218 -6.46366. 159 1. 00 26. 59 **ATOM** 2190 0 GLU 290 23. 458 - 6.43067.371 1.00 25.62 ATOM 2191 N LYS 291 22. 216 -7. 166 65.646 1. 00 26. 31 ATOM 20 2192 CA LYS 291 21. 343 -7.94266. 509 1. 00 27. 77 ATOM 2193 CB LYS 291 65.722 20. 110 -8.3941. 00 28. 30 **ATOM** 2194 CG LYS 291 19.096 65.585 -7. 263 1. 00 33. 35 ATOM 2195 CD LYS 291 18. 005 -7. 529 64. 555 1. 00 33. 56 ATOM 2196 CE LYS 291 17. 038 - 6.33064. 522 1. 00 36. 46 25 ATOM NZ LYS 2197 291 16. 150 -6. 319 63. 327 1. 00 36. 55 **ATOM** 2198 C LYS 291 22. 073 -9. 123 67. 138 1. 00 26. 53 ATOM 2199 0 LYS 291 21. 584 -9. 736 68.084 1. 00 27. 81 ATOM 2200 N LEU 292 23. 261 -9. 426 66. 628 1. 00 26. 02 ATOM 2201 CA LEU 292 24. 043 -10. 523 67. 168 1. 00 25. 35

- 92 -

	ATOM	2202	CB	LEU	292	24. 922	-11. 140	66. 079	1. 00 25. 16
	ATOM	2203	CG	LEU	292	24. 229	-11. 746	64. 856	1. 00 26. 25
	ATOM	2204	CD	1 LEU	292	25. 274	-12. 190	63. 827	1. 00 23. 09
	ATOM	2205	CD	2 LEU	292	23. 359	-12. 912	65. 297	1. 00 24. 40
5	MOTA	2206	C	LEU	292	24. 942	-10. 030	68. 283	1. 00 25. 18
	ATOM	2207	0	LEU	292	25. 392	-10. 808	69. 120	1. 00 23. 84
	ATOM	2208	N	ILE	293	25. 179	-8. 723	68. 308	1. 00 24. 94
	ATOM	2209	CA	ILE	293	26. 107	-8. 140	69. 267	1. 00 23. 59
	ATOM	2210	CB	ILE	293	27. 259	-7. 468	68. 476	1. 00 24. 66
10	ATOM	2211	CG	2 ILE	293	28. 233	-6. 762	69. 409	1. 00 21. 05
	ATOM	2212	CG:	ILE	293	27. 952	-8. 527	67. 618	1. 00 24. 42
	ATOM	2213	CD	ILE	293	28. 715	-7. 965	66. 441	1. 00 25. 64
	ATOM	2214	C	ILE	293	25. 560	-7. 148	70. 278	1. 00 25. 10
	ATOM	2215	0	ILE	293	25. 797	-7. 289	71. 474	1. 00 23. 79
15	ATOM	2216	N	GLY	294	24. 845	-6. 136	69. 781	1. 00 28. 83
	ATOM	2217	CA	GLY	294	24. 302	-5. 071	70. 615	1. 00 26. 73
	ATOM	2218	C	GLY	294	23. 551	-5. 379	71. 898	1. 00 29. 79
	ATOM	2219	0	GLY	294	22. 757	-6. 318	71. 964	1. 00 27. 85
	ATOM	2220	N	GLY	295	23. 794	-4. 553	72. 918	1. 00 30. 56
20	ATOM	2221	CA	GLY	295	23. 136	-4. 722	74. 204	1. 00 33. 01
	ATOM	2222	C	GLY	295	21. 628	-4. 539	74. 144	1. 00 34. 05
	ATOM	2223	0	GLY	295	20. 927	-4. 810	75. 107	1. 00 34. 93
	ATOM	2224	N	LYS	296	21. 124	-4. 058	73. 016	1. 00 35. 19
	ATOM	2225	CA	LYS	296	19. 690	-3. 868	72. 851	1. 00 36. 24
25	ATOM	2226	CB	LYS	296	19. 419	-2. 988	71. 626	1. 00 38. 05
	ATOM	2227	CG	LYS	296	17. 961	-2. 910	71. 181	1. 00 40. 26
	ATOM	2228	CD	LYS	296	17. 122	-2. 093	72. 141	1. 00 43. 32
	ATOM	2229	CE	LYS	296	15. 730	-1. 862	71. 579	1. 00 44. 42
	ATOM	2230	NZ	LYS	296	14. 842	-1. 175	72. 562	1. 00 44. 77

- 93 -

						•	•	•		
	ATOM	2231	С	LYS	296	19. 045	-5. 235	72. 654	1. 00	36. 63
	ATOM	2232	0	LYS	296	17. 867	-5. 420	72. 963	1. 00	38. 56
	ATOM	2233	N	TYR	297	19. 836	-6. 193	72. 168	1. 00	34. 63
	ATOM	2234	CA	TYR	297	19. 346	-7. 539	71. 890	1. 00	33. 22
5	ATOM	2235	CB	TYR	297	19. 487	-7. 810	70. 389	1. 00	34. 65
	ATOM	2236	CG	TYR	297	19. 073	-6. 631	69. 535	1. 00	36. 28
	ATOM	2237	CD1	TYR	297	20. 010	-5. 677	69. 125	1. 00	34. 21
	ATOM	2238	CE1	TYR	297	19. 622	-4. 548	68. 404	1. 00	36. 22
	ATOM	2239	CD2	TYR	297	17. 732	-6. 431	69. 195	1. 00	34. 24
10	ATOM	2240	CE2	TYR	297	17. 330	-5. 305	68. 476	1. 00	35. 71
	ATOM	2241	CZ	TYR	297	18. 280	-4. 368	68. 082	1. 00	37. 38
	ATOM	2242	ОН	TYR	297	17. 887	-3. 258	67. 375	1. 00	35. 33
	ATOM	2243	C	TYR	297	19. 968	-8. 713	72. 670	1. 00	33. 21
	ATOM	2244	0	TYR	297	19. 392	-9. 800	72. 716	1, 00	33. 78
15	ATOM	2245	N	MET	298	21. 126	-8. 504	73. 283	1.00	31. 19
	ATOM	2246	CA	MET	298	21. 803	-9. 576	74. 005	1. 00	30. 16
	ATOM	2247	CB	MET	298	23. 075	-9. 038	74. 644	1. 00	30. 05
	ATOM	2248	CG	MET	298	23. 957	-10. 104	75. 231	1. 00	26.86
	ATOM	2249	SD	MET	298	25. 486	-9. 405	75. 850	1. 00	32. 83
20	ATOM	2250	CE	MET	298	26. 409	-9. 201	74. 338	1. 00	29. 59
	ATOM	2251	C	MET	298	20. 963	-10. 296	75. 066	1. 00	31. 27
	ATOM	2252	0	MET	298	20. 882	-11. 529	75. 077	1. 00	29. 78
	ATOM	2253	N	GLY	299	20. 353	-9. 530	75. 963	1. 00	30. 40
	ATOM	2254	CA	GLY	299	19. 534	-10. 132	76. 998	1. 00	31. 32
25	ATOM	2255	C	GLY	299	18. 354	-10. 869	76. 393	1. 00	33. 32
	ATOM	2256	0	GLY	299	17. 988	-11. 962	76. 831	1. 00	33. 97
	ATOM	2257	N	GLU	300	17. 752	-10. 265	75. 377	1. 00	31. 78
	ATOM	2258	CA	GLU	300	16. 617	-10. 874	74. 707	1. 00	31. 93
	ATOM	2259	CB	GLU	300	16. 080	-9. 937	73. 621	1. 00	29. 00

- 94 -

						UI		
	ATOM	2260	CG	GLU	300	14. 877 -10. 486	72. 881	1. 00 32. 60
	ATOM	2261	CD	GLU	300	13. 655 -10. 655	73. 769	1. 00 31. 13
	ATOM	2262	0E 1	GLU	300	12. 629 -11. 144	73. 265	1. 00 34. 55
	ATOM	2263	0E2	GLU	300	13. 714 -10. 299	74. 963	1. 00 33. 16
5	ATOM	2264	C	GLU	300	17. 013 -12. 215	74. 092	1. 00 30. 90
	ATOM	2265	0	GLU	300	16. 225 -13. 156	74. 090	1. 00 32. 89
	ATOM	2266	N	LEU	301	18. 234 -12. 301	73. 570	1. 00 31. 16
	ATOM	2267	CA	LEU	301	18. 714 -13. 546	72. 973	1. 00 28. 93
	ATOM	2268	CB	LEU	301	20. 085 -13. 339	72. 325	1. 00 24. 69
10	ATOM	2269	CG	LEU	301	20. 152 -12. 667	70. 952	1. 00 24. 17
	ATOM	2270	CD1	LEU	301	21. 607 -12. 326	70. 628	1. 00 23. 70
	ATOM	2271	CD2	LEU	301	19. 560 -13. 598	69. 886	1. 00 23. 13
	ATOM	2272	C	LEU	301	18. 814 -14. 616	74. 056	1. 00 29. 42
	ATOM	2273	0	LEU	301	18. 408 -15. 761	73. 853	1. 00 32. 03
15	ATOM	2274	N	VAL	302	19. 365 -14. 239	75. 204	1. 00 28. 73
	ATOM	2275	CA	VAL	302	19. 505 -15. 164	76. 317	1. 00 29. 42
	ATOM	2276	CB	VAL	302	20. 265 -14. 510	77. 497	1. 00 26. 51
	ATOM	2277	CG1	VAL	302	20. 172 -15. 395	78. 740	1. 00 25. 63
	ATOM	2278	CG2	VAL	302	21. 731 -14. 301	77. 117	1. 00 25. 98
20	ATOM	2279	C	VAL	302	18. 127 -15. 624	76. 795	1. 00 31. 88
	ATOM	2280	0	VAL	302	17. 934 -16. 795	77. 112	1. 00 32. 71
	ATOM	2281	N	ARG	303	17. 171 -14. 703	76. 835	1. 00 32. 91
	ATOM	2282	CA	ARG	303	15. 818 -15. 039	77. 270	1. 00 36. 08
	ATOM	2283	CB	ARG	303	14. 910 -13. 802	77. 250	1. 00 35. 86
25	ATOM	2284	CG	ARG	303	13. 524 -14. 055	77. 847	1. 00 36. 97
	ATOM	2285	CD	ARG	303	12. 660 -12. 802	77. 833	1. 00 39. 15
	ATOM	2286	NE	ARG	303	12. 105 -12. 529	76. 511	1. 00 41. 95
	ATOM	2287	CZ	ARG	303	11. 090 -13. 197	75. 968	1. 00 43. 84
	ATOM	2288	NH1	ARG	303	10. 502 -14. 182	76. 631	1. 00 42. 47

- 95 -

	ATOM	2289	NH2	ARG	303	10. 666 -12. 885	74. 750	1. 00 43. 86
	ATOM	2290	C	ARG	303	15. 215 -16. 110	76. 373	1. 00 36. 97
	ATOM	2291	0	ARG	303	14. 554 -17. 032	76. 851	1. 00 37. 22
	ATOM	2292	N	LEU	304	15. 432 -15. 970	75. 068	1. 00 37. 86
5	ATOM	2293	CA	LEU	304	14. 914 -16. 924	74. 103	1. 00 37. 63
	ATOM	2294	CB	LEU	304	15. 113 -16. 387	72. 687	1. 00 38. 69
	ATOM	2295	CG	LEU	304	13. 944 -15. 590	72. 104	1. 00 40. 35
	ATOM	2296	CD1	LEU	304	13. 486 -14. 516	73. 062	1. 00 40. 85
	ATOM	2297	CD2	LEU	304	14. 378 `-14. 986	70. 785	1. 00 42. 07
10	ATOM	2298	C	LEU	304	15. 602 -18. 272	74. 262	1. 00 37. 69
	ATOM	2299	0	LEU	304	14. 978 -19. 324	74. 120	1. 00 38. 84
	ATOM	2300	N	VAL	305	16. 893 -18. 238	74. 558	1. 00 36. 28
	ATOM	2301	CA	VAL	305	17. 647 -19. 466	74. 753	1. 00 34. 31
	ATOM	2302	CB	VAL	305	19. 148 -19. 184	74. 908	1. 00 32. 24
15	ATOM	2303	CG1	VAL	305	19. 868 -20. 438	75. 390	1. 00 28. 85
	ATOM	2304	CG2	VAL	305	19. 717 -18. 713	73. 578	1. 00 29. 80
	ATOM	2305	C	VAL	305	17. 153 -20. 158	76. 012	1. 00 35. 48
	ATOM	2306	0	VAL	305	17. 079 -21. 389	76. 070	1. 00 34. 47
	ATOM	2307	N	LEU	306	16. 820 -19. 362	77. 023	1. 00 34. 14
20	ATOM	2308	CA	LEU	306	16. 328 -19. 921	78. 273	1. 00 35. 52
	ATOM	2309	CB	LEU	306	16. 257 -18. 841	79. 353	1. 00 32. 11
	ATOM	2310	CG	LEU	306	17. 601 -18. 289	79. 829	1. 00 32. 53
	ATOM	2311	CD1	LEU	306	17. 359 - 17. 326.	80. 964	1. 00 33. 54
	ATOM	2312	CD2	LEU	306	18. 515 -19. 420	80. 287	1. 00 30. 60
25	ATOM	2313	C	LEU	306	14. 948 -20. 532	78. 049	1. 00 37. 53
	ATOM	2314	0	LEU	306	14. 637 -21. 608	78. 566	1. 00 33. 87
	ATOM	2315	N	LEU	307	14. 129 -19. 850	77. 257	1. 00 39. 39
	ATOM	2316	CA	LEU	307	12. 787 -20. 336	76. 971	1. 00 41. 43
	ATOM	2317	CB	LEU	307	12. 011 -19. 296	76. 165	1. 00 40. 84

- 96 -

						00		
	ATOM	2318	CG	LEU	307	10. 932 -18, 527	76. 935	1. 00 43. 43
	ATOM	2319	CD1	LEU	307	11. 389 -18. 243	78. 356	1. 00 43. 36
	ATOM	2320	CD2	LEU	307	10. 610 -17. 233	76. 197	1. 00 41. 75
	ATOM	2321	C	LEU	307	12. 802 -21. 674	76. 239	1. 00 42. 39
5	ATOM	2322	0	LEU	307	11. 974 -22. 537	76. 514	1. 00 42. 90
	ATOM	2323	N	ARG	308	13. 729 -21. 860	75. 306	1. 00 42. 02
	ATOM	2324	CA	ARG	308	13. 771 -23. 132	74. 605	1. 00 42. 88
	ATOM	2325	CB	ARG	308	14. 765 -23. 125	73. 445	1. 00 43. 55
	ATOM	2326	CG	ARG	308	14. 891 -24. 514	72. 837	1. 00 47. 00
10	ATOM	2327	CD	ARG	308	15. 908 -24. 626	71. 729	1. 00 49. 25
	ATOM	2328	NE	ARG	308	16. 079 -26. 026	71. 349	1. 00 52. 10
	MOTA	2329	CZ	ARG	308	16. 915 -26. 456	70. 410	1. 00 52. 45
	ATOM	2330	NH1	ARG	308	17. 663 -25. 591	69. 739	1. 00 54. 77
	ATOM	2331	NH2	ARG	308	17. 016 -27. 756	70. 154	1. 00 51. 73
15	ATOM	2332	С	ARG	308	14. 181 -24. 222	75. 582	1. 00 43. 27
	ATOM	2333	0	ARG	308	13. 654 -25. 333	75. 540	1. 00 42. 09
	ATOM	2334	N	LEU	309	15. 135 -23. 895	76. 452	1. 00 42. 54
	ATOM	2335	CA	LEU	309	15. 627 -24. 837	77. 447	1. 00 42. 29
	ATOM	2336	CB	LEU	309	16. 771 -24. 207	78. 248	1. 00 40. 55
20	ATOM	2337	CG	LEU	309	18. 193 -24. 656	77. 886	1. 00 39. 65
	ATOM	2338	CD1	LEU	309	18. 313 -24. 973	76. 416	1. 00 38. 56
	ATOM	2339	CD2	LEU	309	19. 171 -23. 569	78. 284	1. 00 37. 67
	ATOM	2340	C	LEU	309	14. 515 -25. 302	78. 379	1. 00 42. 66
	ATOM	2341	0	LEU	309	14. 509 -26. 450	78. 818	1. 00 41. 33
25	ATOM	2342	N	VAL	310	13. 570 -24. 416	78. 676	1. 00 44. 27
	ATOM	2343	CA	VAL	310	12. 464 -24. 789	79. 543	1. 00 46. 40
	ATOM	2344	CB	VAL	310	11. 711 -23. 546	80. 111	1. 00 46. 06
	ATOM	2345	CG1	VAL	310	12. 682 -22. 613	80. 807	1. 00 45. 43
	ATOM	2346	CG2	VAL	310	10. 976 -22. 825	79. 014	1. 00 48. 29

- 97 -

	ATOM	2347	C	VAL	310	11. 479 -25. 666	78. 769	1. 00 48. 00
	ATOM	2348	0	VAL	310	10. 952 -26. 638	79. 311	1. 00 47. 71
	ATOM	2349	N	ASP	311	11. 242 -25. 333	77. 501	1. 00 49. 58
	ATOM	2350	CA	ASP	311	10. 313 -26. 104	76. 683	1. 00 52. 37
5	ATOM	2351	CB	ASP	311	9. 978 -25. 365	75. 382	1. 00 54. 70
	ATOM	2352	CG	ASP	311	9. 318 -24. 014	75. 626	1. 00 58. 89
	ATOM	2353	O D1	ASP	311	8. 742 -23. 808	76. 719	1. 00 60. 74
	ATOM	2354	OD2	ASP	311	9. 364 -23. 158	74. 713	1. 00 60. 54
	ATOM	2355	C	ASP	311	10. 872 -27. 485	76. 365	1. 00 52. 35
10	ATOM	2356	0	ASP	311	10. 131 -28. 388	75. 982	1. 00 55. 07
	ATOM	2357	N	GLU	312	12. 180 -27. 642	76. 515	1. 00 51. 23
	ATOM	2358	CA	GLU	312	12. 828 -28. 926	76. 279	1. 00 51. 12
	ATOM	2359	CB	GLU	312	14. 277 -28. 729	75. 834	1. 00 52. 62
	ATOM	2360	CG	GLU	312	14. 445 -28. 141	74. 448	1. 00 57. 13
15	ATOM	2361	CD	GLU	312	14. 187 -29. 153	73. 358	1. 00 58. 40
	MOTA	2362	0E1	GLU	312	14. 831 -30. 222	73. 385	1. 00 59. 31
	ATOM	2363	0E2	GLU	312	13. 346 -28. 879	72. 476	1. 00 60. 41
	ATOM	2364	C	GLU	312	12. 810 -29. 660	77. 611	1. 00 50. 76
	ATOM	2365	0	GLU	312	13. 292 -30. 787	77. 720	1. 00 50. 64
20	ATOM	2366	N	ASN	313	12. 265 -28. 989	78. 624	1. 00 50. 08
	ATOM	2367	CA	ASN	313	12. 154 -29. 533	79. 974	1. 00 51. 37
	ATOM	2368	CB	ASN	313	11. 428 -30. 886	79. 932	1. 00 53. 51
	ATOM	2369	CG	ASN	313	10. 846 -31. 275	81. 271	1. 00 55. 73
	ATOM	2370	OD1	ASN	313	10. 011 -30. 560	81. 824	1. 00 58. 95
25	ATOM	2371	ND2	ASN	313	11. 281 -32. 415	81. 803	1. 00 59. 16
	ATOM	2372	C	ASN	313	13. 524 -29. 693	80. 635	1. 00 50. 00
	ATOM	2373	0	ASN	313	13. 733 -30. 595	81. 447	1. 00 50. 40
	ATOM	2374	N	LEU	314	14. 449 -28. 799	80. 296	1. 00 48. 35
	ATOM	2375	CA	LEU	314	15. 805 -28. 843	80. 835	1. 00 45. 12

- 98 -

	ATOM	2376	CB	LEU	314	16. 819 -28. 785	79. 688	1. 00 44. 25
	ATOM	2377	CG	LEU	314	16. 759 -29. 872	78. 611	1. 00 45. 98
	ATOM	2378	CD1	LEU	314	17. 619 -29. 465	77. 416	1. 00 43. 63
	ATOM	2379	CD2	LEU	314	17. 232 -31. 201	79. 196	1. 00 45. 09
5	ATOM	2380	C	LEU	314	16. 119 -27. 724	81. 829	1. 00 43. 38
	ATOM	2381	0	LEU	314	17. 180 -27. 732	82. 449	1. 00 41. 90
	ATOM	2382	N	LEU	315	15. 211 -26. 765	81. 982	1. 00 41. 74
	ATOM	2383	CA	LEU	315	15. 446 -25. 645	82. 899	1. 00 42. 39
	ATOM	2384	CB	LEU	315	15. 907 -24. 407	82. 116	1. 00 40. 17
10	ATOM	2385	CG	LEU	315	17. 243 -23. 721	82. 428	1. 00 39. 81
	ATOM	2386	CD1	LEU	315	17. 262 -22. 383	81. 689	1. 00 41. 89
	ATOM	2387	CD2	LEU	315	17. 421 -23. 482	83. 920	1. 00 37. 58
	ATOM	2388	C	LEU	315	14. 198 -25. 278	83. 694	1. 00 42. 28
	ATOM	2389	0	LEU	315	13. 103 -25. 214	83. 144	1. 00 40. 83
15	ATOM	2390	N	PHE	316	14. 377 -25. 021	84. 986	1. 00 43. 70
	ATOM	2391	CA	PHE	316	13. 271 -24. 648	85. 863	1. 00 46. 70
	ATOM	2392	CB	PHE	316	12. 717 -23. 278	85. 459	1. 00 47. 06
	ATOM	2393	CG	PHE	316	13. 776 -22. 247	85. 187	1. 00 47. 07
	ATOM.	2394	CD1	PHE.	316	14. 824 -22. 051	86. 082	1. 00 47. 24
20	ATOM	2395	CD2	PHE	316	13. 722 -21. 467	84. 037	1. 00 47. 25
	ATOM	2396	CE1	PHE	316	15. 803 -21. 094	85. 835	1. 00 46. 12
	ATOM	2397	CE2	PHE	316	14. 695 -20. 507	83. 782	1. 00 47. 70
	ATOM	2398	CZ	PHE	316	15. 738 -20. 321	84. 683	1. 00 47. 68
	ATOM	2399	C	PHE	316	12. 131 -25. 672	85. 857	1. 00 48. 45
25	ATOM	2400	0	PHE	316	10. 960 -25. 306	85. 967	1. 00 48. 86
	ATOM	2401	N	HIS	317	12. 473 -26. 950	85. 725	1. 00 50. 80
	ATOM	2402	CA	HIS	317	11. 469 -28. 009	85. 712	1. 00 53. 83
	ATOM	2403	CB	HIS	317	10. 655 -27. 986	87. 010	1. 00 57. 67
	ATOM	2404	CG	HIS	317	11. 496 -27. 985	88. 246	1. 00 61. 10

- 99 -

	ATOM	2405	CD2	2 HIS	317	11. 558 -27. 116	89. 282	1. 00 63. 07
	ATOM	2406	ND 1	HIS	317	12. 430 -28. 965	88. 509	1. 00 62. 35
	ATOM	2407	CE	HIS	317	13. 032 -28. 699	89. 655	1. 00 64. 77
	ATOM	2408	NE	HIS	317	12. 521 -27. 582	90. 144	1. 00 65. 99
5	ATOM	2409	С	HIS	317	10. 521 -27. 859	84. 534	1. 00 53. 57
	ATOM	2410	0	HIS	317	9. 429 -28. 425	84. 537	1. 00 53. 60
	ATOM	2411	N	GLY	318	10. 939 -27. 090	83. 534	1. 00 52. 50
	ATOM	2412	CA	GLY	318	10. 113 -26. 881	82. 358	1. 00 51. 83
	ATOM	2413	C	GLY	318	8. 940 -25. 958	82. 615	1. 00 51. 72
10	ATOM	2414	0	GLY	318	7. 939 -25. 999	81. 904	1. 00 50. 88
	ATOM	2415	N	GLU	319	9. 073 -25. 110	83. 627	1. 00 53. 43
	ATOM	2416	CA	GLU	319	8. 014 -24. 182	83. 996	1. 00 55. 73
	ATOM	2417	CB	GLU	319	7. 510 -24. 544	85. 392	1. 00 58. 85
	ATOM	2418	CG	GLU	319	6. 145 -23. 998	85. 761	1. 00 63. 60
15	ATOM	2419	CD	GLU	319	5. 590 -24. 664	87. 016	1. 00 66. 32
	ATOM	2420	0E1	GLU	319	6. 206 -24. 527	88. 100	1. 00 65. 47
	ATOM	2421	0E2	GLU	319	4. 540 -25. 335	86. 913	1. 00 67. 45
	ATOM	2422	C	GLU	319	8. 538 -22. 748	83. 966	1. 00 55. 18
	ATOM	2423	0	GLU	319	9. 278 -22. 324	84. 851	1. 00 55. 23
20	ATOM	2424	N	ALA	320	8. 145 -22. 006	82. 938	1. 00 55. 14
	ATOM	2425	CA	ALA	320	8. 585 -20. 630	82. 780	1. 00 55. 95
	ATOM	2426	CB	ALA	320	8. 609 -20. 265	81. 304	1. 00 55. 13
	ATOM	2427	C	ALA	320	7. 708 -19. 649	83. 544	1. 00 56. 88
	MOTA	2428	0	ALA	320	6. 487 -19. 789	83. 584	1. 00 58. 58
25	ATOM	2429	N	SER	321	8. 344 -18. 648	84. 141	1. 00 57. 00
	ATOM	2430	CA	SER	321	7. 644 -17. 625	84. 902	1. 00 56. 57
	ATOM	2431	CB	SER	321	8. 649 -16. 808	85. 705	1. 00 56. 74
	ATOM	2432	0G	SER	321	8. 013 -15. 725	86. 349	1. 00 57. 41
	ATOM	2433	C	SER	321	6. 853 -16. 689	83. 995	1. 00 58. 61

- 100 **-**

						100		
	ATOM	2434	0	SER	321	7. 054 -16. 665	82. 783	1. 00 58. 41
	ATOM	2435	N	GLU	322	5. 955 -15. 914	84. 595	1. 00 60. 41
	ATOM	2436	CA	GLU	322	5. 133 -14. 960	83. 858	1. 00 62. 09
	ATOM	2437	CB	GLU	322	4. 171 -14. 254	84. 819	1. 00 65. 34
5	ATOM	2438	CG	GLU	322	3. 185 -13. 299	84. 165	1. 00 69. 70
	ATOM	2439	CD	GLU	322	2. 075 -14. 020	83. 418	1. 00 73. 68
	ATOM	2440	0E1	GLU	322	1. 379 -14. 851	84. 046	1. 00 74. 78
	ATOM	2441	0E2	GLU	322	1. 896 -13. 751	82. 208	1. 00 75. 02
	ATOM	2442	C	GLU	322	6. 047 -13. 929	83. 204	1. 00 61. 24
10	ATOM	2443	0	GLU	322	5. 913 -13. 612	82. 022	1. 00 60. 81
	ATOM	2444	N	GLN	323	6. 987 -13. 420	83. 991	1. 00 60. 42
	ATOM	2445	CA	GLN	323	7. 935 -12. 422	83. 521	1. 00 58. 63
	ATOM	2446	CB	GLN	323	8. 729 -11. 863	84. 700	1. 00 59. 77
	ATOM	2447	CG	GLN	323	7. 902 -11. 039	85. 658	1. 00 61. 20
15	ATOM	2448	CD	GLN	323	8. 690 -10. 608	86. 873	1. 00 63. 03
	ATOM	2449	0E1	GLN	323	9. 672 -9. 866	86. 767	1. 00 63. 70
	ATOM	2450	NE2	GLN	323	8. 266 -11. 074	88. 044	1. 00 64. 05
	ATOM	2451	C	GLN	323	8. 904 -12. 955	82. 478	1. 00 56. 96
	ATOM	2452	0	GLN	323	9. 244 -12. 255	81. 526	1. 00 56. 89
20	ATOM	2453	N	LEU	324	9. 351 -14. 190	82. 652	1. 00 53. 93
	ATOM	2454	CA	LEU	324	10. 298 -14. 763	81. 713	1. 00 52. 62
	ATOM	2455	CB	LEU	324	10. 745 -16. 151	82. 180	1. 00 51. 22
	ATOM	2456	CG	LEU	324	11. 830 -16. 826	81. 334	1. 00 50. 58
	ATOM	2457	CD1	LEU	324	13. 076 -15. 952	81. 299	1. 00 49. 50
25	ATOM	2458	CD2	LEU	324	12. 160 -18. 192	81. 909	1. 00 49. 35
	ATOM	2459	C	LEU	324	9. 730 -14. 855	80. 306	1. 00 52. 38
	ATOM	2460	0	LEU	324	10. 485 -14. 870	79. 337	1. 00 51. 83
	ATOM	2461	N	ARG	325	8. 405 -14. 902	80. 193	1. 00 52. 63
	ATOM	2462	CA	ARG	325	7. 759 -15. 015	78. 887	1. 00 53. 00

- 101 -

	ATOM	2463	CB	ARG	325	6. 477 -15. 848	79. 000	1. 00 54. 77
	ATOM	2464	CG	ARG	325	6. 585 -17. 005	79. 985	1. 00 58. 57
	ATOM	2465	CD	ARG	325	6. 013 -18. 330	79. 458	1. 00 60. 34
	ATOM	2466	NE	ARG	325	6. 881 -18. 961	78. 464	1. 00 62. 28
5	ATOM	2467	CZ	ARG	325	6. 953 -20. 273	78. 249	1. 00 62. 81
	ATOM	2468	NH	1 ARG	325	6. 208 -21. 109	78. 963	1. 00 62. 98
	ATOM	2469	NH	2 ARG	325	7. 769 -20. 752	77. 317	1. 00 62. 50
	ATOM	2470	C	ARG	325	7. 430 -13. 663	78. 266	1. 00 52. 20
	ATOM	2471	0	ARG	325	6. 835 -13. 595	77. 194	1. 00 51. 65
10	ATOM	2472	N	THR	326	7. 820 -12. 589	78. 940	1. 00 51. 52
	ATOM	2473	CA	THR	326	7. 562 -11. 248	78. 438	1. 00 53. 54
	ATOM	2474	CB	THR	326	7. 031 -10. 343	79. 570	1. 00 54. 40
	ATOM	2475	0G1	THR	326	8. 068 -10. 120	80. 534	1. 00 56. 68
	ATOM	2476	CG2	THR	326	5. 858 -11. 012	80. 274	1. 00 53. 00
15	ATOM	2477	С	THR	326	8. 853 -10. 655	77. 850	1. 00 54. 00
	ATOM	2478	0	THR	326	9. 891 -10. 626	78. 515	1. 00 53. 48
	ATOM	2479	N	ARG	327	8. 782 -10. 191	76. 604	1. 00 54. 30
	ATOM	2480	CA	ARG	327	9. 948 -9. 628	75. 923	1. 00 55. 25
	ATOM	2481	CB	ARG	327	9. 568 -9. 074	74. 550	1. 00 58. 73
20	ATOM	2482	CG	ARG	327	9. 050 -10. 101	73. 572	1.00 62.94
	ATOM	2483	CD	ARG	327	9. 189 -9. 599	72. 143	1.00 66.63
	ATOM	2484	NE	ARG	327	8. 462 -10. 454	71. 213	1. 00 70. 25
	ATOM	2485	CZ	ARG	327	7. 136 -10. 522	71. 154	1. 00 72. 29
	ATOM	2486	NH1	ARG	327	6. 399 -9. 778	71. 969	1. 00 72. 86
25	ATOM	2487	NH2	ARG	327	6. 546 -11. 338	70. 288	1. 00 73. 24
	ATOM	2488	C	ARG	327	10. 660 -8. 529	76. 688	1. 00 53. 79
	ATOM	2489	0	ARG	327	10. 027 -7. 690	77. 326	1. 00 55. 10
	ATOM	2490	N	GLY	328	11. 986 -8. 535	76. 604	1. 00 50. 97
	ATOM	2491	CA	GLY	328	12. 773 -7. 520	77. 276	1. 00 50. 03

- 102 -

•	ATOM	2492	C	GLY	328	12. 922	-7. 715	78. 770	1. 00	49. 36
	ATOM	2493	0	GLY	328	13. 622	-6. 942	79. 426	1. 00	49. 68
	ATOM	2494	N	ALA	329	12. 274	-8. 740	79. 315	1. 00	47. 47
	ATOM	2495	CA	ALA	329	12. 354	-9. 007	80. 749	1. 00	46. 93
5	ATOM	2496	CB	ALA	329	11. 468	-10. 184	81. 115	1. 00	48. 23
	ATOM	2497	C	ALA	329	13. 786	-9. 287	81. 173	1. 00	45. 48
	ATOM	2498	0	ALA	329	14. 247	-8. 794	82. 203	1. 00	44. 91
	ATOM	2499	N	PHE	330	14. 490	-10. 088	80. 383	1. 00	43. 75
	ATOM	2500	CA	PHE	330	15. 870	-10. 392	80. 710	1. 00	42. 95
10	ATOM	2501	CB	PHE	330	16. 271	-11. 760	80. 156	1. 00	39. 40
	ATOM	2502	CG	PHE	330	17. 478	-12. 350	80. 829	1. 00	36. 90
	ATOM	2503	CD1	PHE	330	18. 761	-11. 985	80. 436	1. 00	35. 73
	ATOM	2504	CD2	PHE	330	17. 330	-13. 241	81. 893	1. 00	35. 23
	ATOM	2505	CE1	PHE	330	19. 878	-12. 496	81. 093	1. 00	33. 48
15	ATOM	2506	CE2	PHE	330	18. 443	-13. 759	82. 558	1. 00	31.61
	ATOM	2507	CZ	PHE	330	19. 716	-13. 387	82. 160	1. 00	33. 39
	ATOM	2508	C	PHE	330	16. 752	-9. 292	80. 130	1. 00	43. 51
	ATOM	2509	0	PHE	330	17. 202	-9. 373	78. 986	1. 00	44. 11
	ATOM	2510	N	GLU	331	16. 962	-8. 254	80. 935	1. 00	43. 95
20	ATOM	2511	CA	GLU	331	17. 777	-7. 099	80. 569	1. 00	43. 11
	ATOM	2512	CB	GLU	331	17. 767	-6. 068	81. 697	1. 00	46. 19
	ATOM	2513	CG	GLU	331	16. 393	-5. 551	82. 092	1. 00	50. 13
	ATOM	2514	CD	GLU	331	16. 458	-4. 651	83. 316	1. 00	53. 54
	ATOM	2515	0E1	GLU	331	17. 324	-3. 745	83. 343	1. 00	55. 03
25	ATOM	2516	0E2	GLU	331	15. 646	-4. 846	84. 247	1. 00	53. 56
	ATOM	2517	C	GLU	331	19. 216	-7. 511	80. 310	1. 00	42. 02
	ATOM	2518	0	GLU	331	19. 742	-8. 411	80. 968	1. 00	42. 05
	ATOM	2519	N	THR	332	19. 855	-6. 830	79. 365	1. 00	39. 23
	ATOM	2520	CA	THR	332	21. 235	-7. 122	79. 017	1. 00	36. 08

- 103 -

	ATOM	2521	CB	THR	332	21. 713	-6. 200	77. 869	1. 00 36. 47
	ATOM	2522	0G:	1 THR	332	21. 297	-6. 762	76. 618	1. 00 33. 61
	ATOM	2523	CG2	2 THR	332	23. 235	-6. 030	77. 884	1. 00 31. 36
	ATOM	2524	C	THR	332	22. 159	-6. 987	80. 219	1. 00 35. 73
5	ATOM	2525	0	THR	332	23. 209	-7. 634	80. 280	1. 00 35. 30
	ATOM	2526	N	ARG	333	21. 782	-6. 151	81. 180	1. 00 34. 21
	ATOM	2527	CA	ARG	333	22. 632	-6. 003	82. 353	1. 00 34. 18
	ATOM	2528	CB	ARG	333	22. 211	-4. 786	83. 193	1. 00 36. 60
	ATOM	2529	CG	ARG	333	20. 830	-4. 854	83. 835	1. 00 39. 58
10	ATOM	2530	CD	ARG	333	20. 488	-3. 518	84. 520	1. 00 42. 78
	ATOM	2531	NE	ARG	333	19. 264	-3. 590	85. 316	1. 00 45. 29
	ATOM	2532	CZ	ARG	333	19. 205	-4. 039	86. 567	1. 00 47. 32
	ATOM	2533	NH 1	ARG	333	20. 305	-4. 455	87. 182	1. 00 49. 55
	ATOM	2534	NH2	ARG	333	18. 042	-4. 080	87. 205	1. 00 48. 70
15	ATOM	2535	C	ARG	333	22. 609	-7. 298	83. 181	1. 00 31. 65
	ATOM	2536	0	ARG	333	23. 584	-7. 625	83. 863	1. 00 31. 61
	ATOM	2537	N	PHE	334	21. 513	-8. 049	83. 105	1. 00 31. 01
	ATOM	2538	CA	PHE	334	21. 431	-9. 317	83. 835	1. 00 30. 67
	ATOM	2539	CB	PHE	334	20. 048	-9. 967	83. 678	1. 00 30. 39
20	ATOM	2540	CG	PHE	334	18. 923	-9. 210	84. 330	1. 00 30. 58
	ATOM	2541	CD1	PHE	334	19. 170	-8. 214	85. 269	1. 00 29. 37
	ATOM	2542	CD2	PHE	334	17. 600	-9. 522	84. 019	1. 00 31. 94
	ATOM	2543	CE1	PHE	334	18. 113	-7. 539	85. 891	1. 00 31. 67
	ATOM	2544	CE2	PHE	334	16. 535	-8. 851	84. 636	1. 00 32. 25
25	ATOM	2545	CZ	PHE	334	16. 796	-7. 857	85. 575	1. 00 28. 89
	MOTA	2546	C	PHE	334	22. 496 -	-10. 287	83. 295	1. 00 30. 73
	ATOM	2547	0	PHE	334	23. 136 -	11. 016	84. 064	1. 00 30. 77
	ATOM	2548	N	VAL	335	22. 685 -	10. 290	81. 973	1. 00 29. 44
	ATOM	2549	CA	VAL	335	23. 672 -	11. 165	81. 350	1. 00 30. 61

- 104 -

	4 000 4	0==0	-					
	ATOM	2550	CB	VAL	335	23. 777 -10. 921	79. 831	1. 00 30. 75
	ATOM	2551	CG1	VAL	335	24. 774 -11. 898	79. 216	1. 00 32. 48
	ATOM	2552	CG2	VAL	335	22. 424 -11. 078	79. 181	1. 00 29. 80
	ATOM	2553	C	VAL	335	25. 041 -10. 904	81. 964	1. 00 31. 64
5	MOTA	2554	0	VAL	335	25. 759 -11. 830	82. 356	1. 00 31. 87
	ATOM	2555	N	SER	336	25. 382 -9. 623	82. 048	1. 00 33. 23
	ATOM	2556	CA	SER	336	26. 655 -9. 173	82. 593	1. 00 32. 42
	ATOM	2557	CB	SER	336	26. 778 -7. 660	82. 384	1. 00 33. 94
	ATOM	2558	0G	SER	336	28. 080 -7. 204	82. 682	1. 00 38. 27
10	ATOM	2559	C	SER	336	26. 793 -9. 524	84. 078	1. 00 32. 82
	ATOM	2560	0	SER	336	27. 863 -9. 917	84. 529	1. 00 33. 76
	ATOM	2561	N	GLN	337	25. 711 -9. 389	84. 839	1. 00 32. 64
	ATOM	2562	CA	GLN	337	25. 753 -9. 715	86. 260	1. 00 34. 83
	ATOM	2563	CB	GLN	337	24. 480 -9. 233	86. 958	1. 00 37. 43
15	ATOM	2564	CG	GLN	337	24. 339 -7. 721	86. 972	1. 00 42. 29
	ATOM	2565	CD	GLN	337	22. 984 -7. 260	87. 471	1. 00 44. 59
	ATOM	2566	0E1	GLN	337	22. 710 -6. 062	87. 525	1. 00 46. 49
	ATOM	2567	NE2	GLN	337	22. 128 -8. 209	87. 835	1. 00 43. 79
	ATOM	2568	C	GLN	337	25. 899 -11. 217	86. 447	1. 00 33. 66
20	ATOM	2569	0	GLN	337	26. 663 -11. 674	87. 297	1. 00 35. 28
	ATOM	2570	N	VAL	338	25. 159 -11. 983	85. 655	1. 00 31. 29
	ATOM	2571	CA	VAL	338	25. 236 -13. 432	85. 743	1. 00 29. 21
	ATOM	2572	CB	VAL	338	24. 326 -14. 102	84. 690	1. 00 28. 27
	ATOM	2573	CG1	VAL	338	24. 687 -15. 571	84. 525	1. 00 27. 17
25	ATOM	2574	CG2	VAL	338	22. 877 -13. 984	85. 129	1. 00 26. 99
	ATOM	2575	C	VAL	338	26. 678 -13. 877	85. 547	1. 00 27. 35
	ATOM	2576	0	VAL	338	27. 176 -14. 722	86. 284	1. 00 26. 69
	ATOM	2577	N	GLU	339	27. 361 -13. 283	84. 576	1. 00 27. 29
	ATOM	2578	CA	GLU	339	28. 747 -13. 657	84. 314	1. 00 27. 15

- 105 -

	ATOM	2579	CB	GLU	339	29. 136 -13. 303	82. 871	1. 00 27. 02
	ATOM	2580	CG	GLU	339	28. 404 -14. 185	81. 843	1. 00 30. 73
	ATOM	2581	CD	GLU	339	28. 942 -14. 063	80. 425	1. 00 30. 33
	ATOM	2582	0E1	GLU	339	30. 121 -14. 414	80. 185	1. 00 34. 73
5	ATOM	2583	0E2	GLU	339	28. 179 -13. 619	79. 548	1. 00 29. 50
	ATOM	2584	C	GLU	339	29. 749 -13. 085	85. 311	1. 00 26. 93
	ATOM	2585	0	GLU	339	30. 940 -13. 345	85. 209	1. 00 27. 69
	ATOM	2586	N	SER	340	29. 264 -12. 320	86. 285	1. 00 27. 55
	ATOM	2587	CA	SER	340	30. 140 -11. 763	87. 318	1. 00 28. 61
10	ATOM	2588	CB	SER	340	29. 741 -10. 323	87. 667	1. 00 29. 40
	ATOM	2589	0G	SER	340	29. 800 -9. 485	86. 528	1. 00 35. 97
	ATOM	2590	C	SER	340	30. 029 -12. 615	88. 583	1. 00 27. 94
	ATOM	2591	0	SER	340	30. 811 -12. 448	89. 526	1. 00 24. 04
	ATOM	2592	N	ASP	341	29. 042 -13. 511	88. 600	1. 00 28. 02
15	ATOM	2593	CA	ASP	341	28. 812 -14. 387	89. 748	1. 00 29. 66
	ATOM	2594	CB	ASP	341	27. 808 -15. 490	89. 393	1. 00 30. 94
	ATOM	2595	CG	ASP	341	27. 296 -16. 227	90. 620	1. 00 33. 11
	ATOM	2596	OD1	ASP	341	26. 289 -15. 778	91. 217	1. 00 28. 78
	ATOM	2597	OD2	ASP	341	27. 918 -17. 247	90. 991	1. 00 32. 82
20	ATOM	2598	C	ASP	341	30. 137 -15. 003	90. 163	1. 00 30. 38
	ATOM	2599	0	ASP	341	30. 853 -15. 564	89. 342	1. 00 30. 59
	ATOM	2600	N	THR	342	30. 466 -14. 886	91. 443	1. 00 33. 59
	ATOM	2601	CA	THR	342	31. 729 -15. 405	91. 953	1. 00 37. 01
	ATOM	2602	CB	THR	342	32. 013 -14. 836	93. 350	1. 00 38. 81
25	ATOM	2603	0G1	THR	342	31. 012 -15. 304	94. 265	1. 00 43. 90
	ATOM	2604	CG2	THR	342	31. 972 -13. 316	93. 317	1. 00 35. 79
	ATOM	2605	C	THR	342	31. 780 -16. 929	92. 027	1. 00 37. 87
	ATOM	2606	0	THR	342	32. 853 -17. 514	92. 191	1. 00 39. 64
	ATOM	2607	N	GLY	343	30. 625 -17. 568	91. 894	1. 00 36. 81

- 106 -

	ATOM	2608	CA	GLY	343	30. 578 -19. 018	91. 970	1. 00	39. 26
	ATOM	2609	C	GLY	343	29. 631 -19. 515	93. 053	1. 00	38. 98
	ATOM	2610	0	GLY	343	29. 293 -20. 695	93. 090	1. 00	39. 46
	ATOM	2611	N	ASP	344	29. 204 -18. 615	93. 935	1. 00	38. 20
5	ATOM	2612	CA	ASP	344	28. 287 -18. 980	95. 005	1. 00	39. 74
	ATOM	2613	CB	ASP	344	28. 480 -18. 071	96. 231	1. 00	39. 14
	ATOM	2614	CG	ASP	344	28. 267 -16. 595	95. 928	1. 00	41. 19
	ATOM	2615	OD 1	ASP	344	27. 733 -16. 256	94. 848	1. 00	39. 57
	ATOM	2616	OD2	ASP	344	28. 627 -15. 767	96. 794	1. 00	42. 27
10	ATOM	2617	C	ASP	344	26. 842 -18. 926	94. 516	1. 00	40. 25
	ATOM	2618	0	ASP	344	25. 904 -19. 235	95. 257	1. 00	39. 36
	ATOM	2619	N	ARG	345	26. 680 -18. 525	93. 259	1. 00	38. 45
	ATOM	2620	CA	ARG	345	25. 374 -18. 449	92. 618	1. 00	37. 30
	ATOM	2621	CB	ARG	345	24. 738 -19. 847	92. 587	1. 00	37. 49
15	ATOM	2622	CG	ARG	345	25. 657 -20. 935	92. 044	1. 00	38. 81
	ATOM	2623	CD	ARG	345	24. 976 -22. 301	92. 046	1. 00	40. 19
	ATOM	2624	NE	ARG	345	25. 790 -23. 327	91. 397	1. 00	42. 18
	ATOM	2625	CZ	ARG	345	26. 730 -24. 051	91. 999	1. 00	43. 19
	ATOM	2626	NH1	ARG	345	26. 990 -23. 880	93. 288	1. 00	43. 31
20	ATOM	2627	NH2	ARG	345	27. 421 -24. 947	91. 302	1. 00	40. 56
	ATOM	2628	C	ARG	345	24. 397 -17. 456	93. 246	1. 00	37. 06
	ATOM	2629	0	ARG	345	23. 231 -17. 395	92. 837	1. 00	35. 44
	ATOM	2630	N	LYS	346	24. 855 -16. 681	94. 228	1. 00	37. 09
	ATOM	2631	CA	LYS	346	23. 977 -15. 704	94. 876	1. 00	39. 61
25	ATOM	2632	CB	LYS	346	24. 710 -14. 964	96. 005	1. 00	43. 18
	ATOM	2633	CG	LYS	346	25. 084 -15. 826	97. 214	1. 00	47. 92
	ATOM	2634	CD	LYS	346	25. 835 -15. 009	98. 285	1. 00	50. 48
	ATOM	2635	CE	LYS	346	26. 274 -15. 887	99. 466	1. 00	53. 20
	ATOM	2636	NZ	LYS	346	27. 039 -15. 136	100. 520	1. 00	54. 15
	111 0111	1000		D10	0.10	21. 000 10. 100	100	. 020	. 020 1. 00

- 107 -

	ATOM	2637	C	LYS	346	23. 467 -14. 690	93. 858	1. 00 39. 25
	ATOM	2638	0	LYS	346	22. 271 -14. 400	93. 795	1. 00 38. 51
	ATOM	2639	N	GLN	347	24. 384 -14. 158	93. 055	1. 00 40. 01
	ATOM	2640	CA	GLN	347	24. 036 -13. 169	92. 037	1. 00 39. 62
5	ATOM	2641	CB	GLN	347	25. 301 -12. 725	91. 290	1. 00 44. 30
	ATOM	2642	CG	GLN	347	25. 117 -11. 507	90. 403	1. 00 50. 12
	ATOM	2643	CD	GLN	347	24. 996 -10. 214	91. 196	1. 00 54. 40
	ATOM	2644	0E1	GLN	347	24. 699 -9. 153	90. 637	1. 00 57. 36
	ATOM	2645	NE2	GLN	347	25. 234 -10. 295	92. 501	1. 00 55. 02
10	ATOM	2646	C	GLN	347	23. 015 -13. 735	91. 046	1. 00 36. 71
	ATOM	2647	0	GLN	347	22. 012 -13. 087	90. 732	1. 00 35. 38
	ATOM	2648	N	ILE	348	23. 264 -14. 949	90. 563	1. 00 33. 61
	ATOM	2649	CA	ILE	348	22. 360 -15. 579	89. 610	1. 00 30. 26
	ATOM	2650	CB	ILE	348	22. 946 -16. 906	89. 103	1. 00 31. 09
15	ATOM	2651	CG2	ILE	348	21. 983 -17. 561	88. 102	1. 00 24. 14
	ATOM	2652	CG1	ILE	348	24. 315 -16. 641	88. 467	1. 00 24. 89
	ATOM	2653	CD1	ILE	348	25. 016 -17. 870	87. 989	1. 00 26. 20
	ATOM	2654	C	ILE	348	20. 990 -15. 836	90. 231	1. 00 32. 47
	ATOM	2655	0	ILE	348	19. 946 -15. 578	89. 607	1. 00 28. 48
20	ATOM	2656	N	TYR	349	20. 996 -16. 330	91. 468	1. 00 33. 64
	ATOM	2657	CA	TYR	349	19. 757 -16. 622	92. 173	1. 00 33. 94
	ATOM	2658	CB	TYR	349	20. 023 -17. 189	93. 566	1. 00 35. 19
	ATOM	2659	CG	TYR	349	18. 728 -17. 513	94. 273	1. 00 35. 54
	ATOM	2660	CD1	TYR	349	18. 085 -18. 737	94. 064	1. 00 35. 44
25	ATOM	2661	CE1	TYR	349	16. 847 -19. 009	94. 647	1. 00 35. 96
	ATOM	2662	CD2	TYR	349	18. 100 -16. 569	95. 083	1. 00 34. 28
	ATOM	2663	CE2	TYR	349	16. 860 -16. 833	95. 665	1. 00 34. 50
	ATOM	2664	CZ	TYR	349	16. 242 -18. 053	95. 441	1. 00 34. 82
	ATOM	2665	ОН	TYR	349	15. 007 -18. 305	95. 990	1. 00 39. 44

PCT/JP03/06054 WO 03/097824

						- 108 -		
	ATOM	2666	C	TYR	349	18. 888 -15. 390	92. 339	1. 00 35. 45
	ATOM	2667	0	TYR	349	17. 698 -15. 419	92. 042	1. 00 37. 11
	ATOM	2668	N	ASN	350	19. 475 -14. 312	92. 846	1. 00 37. 18
	ATOM	2669	CA	ASN	350	18. 722 -13. 082	93. 049	1. 00 38. 47
5	ATOM	2670	СВ	ASN	350	19. 617 -11. 985	93. 630	1. 00 40. 65
	ATOM	2671	CG	ASN	350	20. 014 -12. 263	95. 065	1. 00 45. 75
	ATOM	2672	0D1	ASN	350	19. 176 -12. 638	95. 893	1. 00 45. 11
	ATOM	2673	ND2	ASN	350	21. 298 -12. 075	95. 373	1. 00 46. 81
	ATOM	2674	C	ASN	350	18. 085 -12. 585	91. 768	1. 00 37. 56
10	ATOM	2675	0	ASN	350	16. 924 -12. 186	91. 769	1. 00 40. 92
	ATOM	2676	N	ILE	351	18. 839 -12. 601	90. 673	1. 00 37. 62
	ATOM	2677	CA	ILE	351	18. 310 -12. 139	89. 395	1. 00 37. 09
	ATOM	2678	СВ	ILE	351	19. 401 -12. 130	88. 308	1. 00 38. 11
•	ATOM	2679	CG2	ILE	351	18. 771 -11. 955	86. 938	1. 00 37. 56
15	ATOM	2680	CG1	ILE	351	20. 400 -11. 004	88. 588	1. 00 38. 11
	ATOM	2681	CD1	ILE	351	21. 726 -11. 178	87. 879	1. 00 36. 24
	ATOM	2682	C	ILE	351	17. 144 -12. 997	88. 921	1. 00 36. 57
	ATOM	2683	0	ILE	351	16. 120 -12. 474	88. 479	1. 00 38. 22
	ATOM	2684	N	LEU	352	17. 291 -14. 314	89. 012	1. 00 35. 96
20	ATOM	2685	CA	LEU	352	16. 219 -15. 206	88. 577	1. 00 36. 28
	ATOM	2686	CB	LEU	352	16. 740 -16. 640	88. 443	1. 00 32. 41
	ATOM	2687	CG	LEU	352	17. 845 -16. 828	87. 395	1. 00 30. 66
	ATOM	2688	CD1	LEU	352	18. 465 -18. 226	87. 496	1. 00 25. 83
	ATOM	2689	CD2	LEU	352	17. 262 -16. 597	86. 025	1. 00 27. 66
25	ATOM	2690	C	LEU	352	15. 039 -15. 156	89. 547	1. 00 37. 27
	ATOM	2691	0	LEU	352	13. 896 -15. 356	89. 145	1. 00 38. 32
	ATOM	2692	N	SER	353	15. 322 -14. 888	90. 819	1. 00 39. 41
	ATOM	2693	CA	SER	353	14. 279 -14. 794	91. 838	1. 00 42. 13
	ATOM	2694	CB	SER	353	14. 893 -14. 708	93. 237	1. 00 43. 72

- 109 -

	ATOM	2695	0G	SER	353	13. 883 -14. 546	94. 224	1. 00 48. 17
	ATOM	2696	С	SER	353	13. 431 -13. 557	91. 590	1. 00 43. 61
	MOTA	2697	0	SER	353	12. 229 -13. 552	91. 858	1. 00 42. 99
	ATOM	2698	N	THR	354	14. 066 -12. 506	91. 081	1. 00 44. 80
5	ATOM	2699	CA	THR	354	13. 363 -11. 267	90. 785	1. 00 46. 06
	ATOM	2700	CB	THR	354	14. 356 -10. 122	90. 497	1. 00 47. 48
	ATOM	2701	0G1	THR	354	15. 100 -9. 820	91. 687	1. 00 47. 39
	ATOM	2702	CG2	THR	354	13. 615 -8. 877	90. 034	1. 00 47. 87
	ATOM	2703	C	THR	354	12. 446 -11. 455	89. 579	1. 00 46. 06
10	ATOM	2704	0	THR	354	11. 443 -10. 757	89. 436	1. 00 47. 23
	ATOM	2705	N	LEU	355	12. 788 -12. 406	88. 717	1. 00 46. 03
•	ATOM	2706	CA	LEU	355	11. 983 -12. 679	87. 533	1. 00 46. 26
	ATOM	2707	CB	LEU	355	12. 875 -13. 157	86. 390	1. 00 46. 43
	ATOM	2708	CG	LEU	355	14. 030 -12. 210	86. 063	1. 00 46. 85
15	ATOM	2709	CD1	LEU	355	14. 861 -12. 813	84. 950	1. 00 47. 00
	ATOM	2710	CD2	LEU	355	13. 497 -10. 844	85. 660	1. 00 45. 99
	ATOM	2711	C	LEU	355	10. 908 -13. 722	87. 821	1. 00 46. 88
	ATOM	2712	0	LEU	355	10. 370 -14. 346	86. 902	1. 00 47. 28
	ATOM	2713	N	GLY	356	10. 609 -13. 912	89. 105	1. 00 47. 29
20	ATOM	2714	CA	GLY	356	9. 586 -14. 858	89. 511	1. 00 44. 74
	ATOM	2715	C	GLY	356	9. 959 -16. 321	89. 396	1. 00 44. 45
	ATOM	2716	0	GLY	356	9. 097 -17. 163	89. 146	1. 00 45. 09
	ATOM	2717	N	LEU	357	11. 235 -16. 635	89. 575	1. 00 43. 26
	ATOM	2718	CA	LEU	357	11. 681 -18. 018	89. 485	1. 00 41. 29
25	ATOM	2719	CB	LEU	357	12. 653 -18. 187	88. 310	1. 00 42. 15
	ATOM	2720	CG	LEU	357	12. 171 -17. 833	86. 896	1. 00 41. 21
	ATOM	2721	CD1	LEU	357	13. 366 -17. 781	85. 972	1. 00 39. 61
	ATOM	2722	CD2	LEU	357	11. 153 -18. 849	86. 393	1. 00 39. 50
	ATOM	2723	C	LEU	357	12. 361 -18. 455	90. 780	1. 00 40. 57

- 110 -

	ATOM	2724	0	LEU	357	12. 780 -17. 627	91. 590	1. 00 38. 53
	ATOM	2725	N	ARG	358	12. 448 -19. 766	90. 970	1. 00 39. 68
	ATOM	2726	CA	ARG	358	13. 092 -20. 355	92. 139	1. 00 40. 04
	ATOM	2727	CB	ARG	358	12. 048 -20. 916	93. 112	1. 00 42. 61
5	ATOM	2728	CG	ARG	358	11. 172 -19. 845	93. 760	1. 00 46. 08
	ATOM	2729	CD	ARG	358	12. 019 -18. 871	94. 560	1. 00 49. 74
	ATOM	2730	NE	ARG	358	11. 355 -17. 588	94. 772	1. 00 55. 41
	ATOM	2731	CZ	ARG	358	10. 588 -17. 293	95. 816	1. 00 58. 08
	ATOM	2732	NH1	ARG	358	10. 376 -18. 195	96. 771	1. 00 59. 09
10	MOTA	2733	NH2	ARG	358	10. 035 -16. 087	95. 906	1. 00 58. 98
	ATOM	2734	C	ARG	358	13. 954 -21. 471	91. 576	1. 00 38. 39
	ATOM	2735	0	ARG	358	13. 569 -22. 641	91. 586	1. 00 37. 47
	ATOM	2736	N	PRO	359	15. 140 -21. 109	91. 065	1. 00 36. 51
	ATOM	2737	CD	PRO	359	15. 664 -19. 728	91. 087	1. 00 36. 88
15	ATOM	2738	CA	PRO	359	16. 123 -22. 006	90. 461	1. 00 34. 17
	ATOM	2739	CB	PRO	359	17. 035 -21. 039	89. 722	1. 00 35. 29
	ATOM	2740	CG	PR0	359	17. 135 -19. 925	90. 703	1. 00 34. 03
	ATOM	2741	C	PR0	359	16. 915 -22. 872	91. 416	1. 00 33. 10
	ATOM	2742	0	PR0	359	17. 140 -22. 520	92. 566	1. 00 31. 20
20	ATOM	2743	N	SER	360	17. 365 -24. 004	90. 899	1. 00 33. 97
	ATOM	2744	CA	SER	360	18. 183 -24. 931	91. 658	1. 00 34. 21
	ATOM	2745	CB	SER	360	17. 912 -26. 363	91. 210	1. 00 34. 53
	ATOM	2746	0G	SER	360	18. 287 -26. 530	89. 851	1. 00 33. 54
	ATOM	2747	C	SER	360	19. 618 -24. 568	91. 307	1. 00 34. 99
25	ATOM	2748	0	SER	360	19. 855 -23. 673	90. 495	1. 00 35. 49
	ATOM	2749	N	THR	361	20. 564 -25. 267	91. 920	1. 00 34. 70
	ATOM	2750	CA	THR	361	21. 977 -25. 048	91. 673	1. 00 36. 89
	MOTA	2751	CB	THR	361	22. 838 -26. 003	92. 535	1. 00 36. 99
	ATOM	2752	0G1	THR	361	22. 828 -25. 558	93. 898	1. 00 38. 93

- 111 -

	ATOM	2753	CG2	THR	361	24. 260 -26. 041	92. 033	1. 00 38. 24
	ATOM	2754	C	THR	361	22. 303 -25. 291	90. 201	1. 00 37. 14
	ATOM	2755	0	THR	361	23. 142 -24. 606 ³	89. 616	1. 00 37. 81
	ATOM	2756	N	THR	362	21. 635 -26. 273	89. 612	1. 00 35. 92
5	ATOM	2757	CA	THR	362	21. 865 -26. 614	88. 223	1. 00 34. 91
	ATOM	2758	CB	THR	362	21. 369 -28. 037	87. 914	1. 00 36. 12
	ATOM	2759	0G1	THR	362	19. 969 -28. 117	88. 199	1. 00 40. 45
	ATOM	2760	CG2	THR	362	22. 113 -29. 063	88. 771	1. 00 34. 62
	ATOM	2761	C	THR	362	21. 181 -25. 626	87. 292	1. 00 33. 53
10	ATOM	2762	0	THR	362	21. 684 -25. 360	86. 205	1. 00 33. 46
	ATOM	2763	N	ASP	363	20. 034 -25. 091	87. 698	1. 00 31. 06
	ATOM	2764	CA	ASP	363	19. 355 -24. 115	86. 860	1. 00 32. 46
	ATOM	2765	CB	ASP	363	18. 018 -23. 690	87. 468	1. 00 34. 45
	ATOM	2766	CG	ASP	363	16. 964 -24. 783	87. 409	1. 00 37. 91
15	ATOM	2767	OD1	ASP	363	16. 889 -25. 504	86. 388	1. 00 38. 99
	ATOM	2768	OD2	ASP	363	16. 194 -24. 907	88. 385	1. 00 38. 23
	ATOM	2769	C	ASP	363	20. 254 -22. 878	86. 718	1. 00 32. 88
	ATOM	2770	0	ASP	363	20. 419 -22. 331	85. 629	1. 00 30. 65
	ATOM	2771	N	CYS	364	20. 833 -22. 451	87. 836	1. 00 33. 86
20	ATOM	2772	CA	CYS	364	21. 712 -21. 292	87. 860	1. 00 32. 22
	ATOM	2773	CB	CYS	364	22. 186 -21. 015	89. 289	1. 00 31. 35
	ATOM	2774	SG	CYS	364	20. 915 -20. 338	90. 389	1. 00 31. 77
	ATOM	2775	C	CYS	364	22. 914 -21. 493	86. 950	1. 00 30. 91
	ATOM	2776	0	CYS	364	23. 207 -20. 645	86. 119	1. 00 30. 71
25	ATOM	2777	N	ASP	365	23. 608 -22. 614	87. 107	1. 00 31. 25
	ATOM	2778	CA	ASP	365	24. 774 -22. 894	86. 280	1. 00 32. 00
	ATOM	2779	CB	ASP	365	25. 389 -24. 243	86. 659	1. 00 32. 78
	ATOM	2780	CG	ASP	365	26. 037 -24. 211	88. 023	1. 00 35. 48
	ATOM	2781	OD1	ASP	365	26. 017 -23. 127	88. 650	1. 00 37. 01

- 112 -

	ATOM	2782	OD2	ASP	365	26. 564 -25. 251	88. 466	1. 00 35. 21
	ATOM	2783	C	ASP	365	24. 405 -22. 886	84. 810	1. 00 30. 41
	ATOM	2784	0	ASP	365	25. 166 -22. 407	83. 966	1. 00 31. 73
	ATOM	2785	N	ILE	366	23. 225 -23. 408	84. 514	1. 00 29. 17
5	ATOM	2786	CA	ILE	366	22. 739 -23. 462	83. 148	1. 00 30. 58
	ATOM	2787	CB	ILE	366	21. 456 -24. 318	83. 058	1. 00 30. 61
	ATOM	2788	CG2	ILE	366	20. 779 -24. 118	81. 712	1. 00 28. 15
	ATOM	2789	CG1	ILE	366	21. 808 -25. 797	83. 261	1. 00 33. 09
	ATOM	2790	CD1	ILE	366	20. 577 -26. 702	83. 405	1. 00 32. 69
10	ATOM	2791	C	ILE	366	22. 462 -22. 066	82. 576	1. 00 29. 08
	ATOM	2792	0	ILE	366	22. 729 -21. 815	81. 405	1. 00 28. 78
	ATOM	2793	N	VAL	367	21. 906 -21. 170	83. 386	1. 00 27. 52
	ATOM	2794	CA	VAL	367	21. 632 -19. 817	82. 910	1. 00 27. 71
	ATOM	2795	CB	VAL	367	20. 803 -19. 021	83. 943	1. 00 26. 66
15	ATOM	2796	CG1	VAL	367	20. 812 -17. 531	83. 609	1. 00 24. 57
	ATOM	2797	CG2	VAL	367	19. 373 -19. 535	83. 928	1. 00 26. 09
	ATOM	2798	C	VAL	367	22. 979 -19. 143	82. 643	1. 00 28. 05
	MOTA	2799	0	VAL	367	23. 144 -18. 409	81. 670	1. 00 28. 53
	ATOM	2800	N	ARG	368	23. 940 -19. 436	83. 508	1. 00 27. 74
20	ATOM	2801	CA	ARG	368	25. 300 -18. 927	83. 386	1. 00 30. 76
	ATOM	2802	СВ	ARG	368	26. 172 -19. 575	84. 458	1. 00 31. 66
	ATOM	2803	CG	ARG	368	27. 023 -18. 648	85. 269	1. 00 38. 26
	ATOM	2804	CD	ARG	368	28. 312 -18. 282	84. 579	1. 00 41. 00
	MOTA	2805	NE	ARG	368	29. 272 -17. 763	85. 547	1. 00 43. 72
25	ATOM	2806	CZ	ARG	368	30. 397 -17. 135	85. 226	1. 00 46. 75
	ATOM	2807	NH1	ARG	368	30. 710 -16. 938	83. 954	1. 00 48. 06
	ATOM	2808	NH2	ARG	368	31. 212 -16. 708	86. 179	1. 00 47. 96
	ATOM	2809	C	ARG	368	25. 841 -19. 317	82. 003	1. 00 30. 63
	ATOM	2810	0	ARG	368	26. 343 -18. 469	81. 256	1. 00 27. 84

- 113 -

	ATOM	2811	N	ARG	369	25. 735 -20. 606	81. 677	1. 00 27. 70
	ATOM	2812	CA	ARG	369	26. 228 -21. 115	80. 399	1. 00 28. 24
	ATOM	2813	CB	ARG	369	26. 077 -22. 645	80. 327	1. 00 26. 69
	ATOM	2814	CG	ARG	369	27. 044 -23. 429	81. 224	1. 00 29. 04
5	ATOM	2815	CD	ARG	369	28. 506 -23. 228	80. 815	1. 00 31. 91
	ATOM	2816	NE	ARG	369	28. 752 -23. 683	79. 445	1. 00 35. 74
	ATOM	2817	CZ	ARG	369	29. 117 -22. 892	78. 439	1. 00 36. 75
	ATOM	2818	NH1	ARG	369	29. 291 -21. 590	78. 638	1. 00 36. 65
	ATOM	2819	NH2	ARG	369	29. 291 -23. 400	77. 225	1. 00 36. 11
10	ATOM	2820	C	ARG	369	25. 528 -20. 472	79. 208	1. 00 27. 14
	ATOM	2821	0	ARG	369	26. 160 -20. 188	78. 189	1. 00 28. 06
	ATOM	2822	N	ALA	370	24. 224 -20. 252	79. 327	1. 00 25. 64
	ATOM	2823	CA	ALA	370	23. 480 -19. 634	78. 238	1. 00 25. 08
	ATOM	2824	CB	ALA	370	21. 991 -19. 587	78. 574	1. 00 25. 47
15	ATOM	2825	C	ALA	370	24. 015 -18. 218	78. 006	1. 00 25. 14
	ATOM	2826	0	ALA	370	24. 196 -17. 793	76. 870	1. 00 25. 23
	ATOM	2827	N	CYS	371	24. 268 -17. 491	79. 087	1. 00 24. 15
	ATOM	2828	CA	CYS	371	24. 785 -16. 135	78. 965	1. 00 25. 09
	ATOM	2829	CB	CYS	371	24. 855 -15. 467	80. 338	1. 00 22. 74
20	ATOM	2830	SG	CYS	371	23. 239 -15. 076	81. 033	1. 00 25. 40
	ATOM	2831	C	CYS	371	26. 161 -16. 127	78. 300	1. 00 24. 93
	ATOM	2832	0	CYS	371	26. 392 -15. 358	77. 367	1. 00 25. 49
	ATOM	2833	N	GLU	372	27. 062 -16. 991	78. 765	1. 00 24. 70
	ATOM	2834	CA	GLU	372	28. 411 -17. 073	78. 207	1. 00 26. 69
25	ATOM	2835	CB	GLU	372	29. 247 -18. 105	78. 975	1. 00 27. 07
	ATOM	2836	CG	GLU	372	29. 232 -17. 890	80. 481	1. 00 32. 77
	ATOM	2837	CD	GLU	372	30. 016 -18. 945	81. 243	1. 00 33. 87
	ATOM	2838	0E1	GLU	372	29. 905 -20. 139	80. 892	1. 00 36. 95
	ATOM	2839	0E2	GLU	372	30. 733 -18. 583	82. 200	1. 00 35. 18

PCT/JP03/06054 WO 03/097824

						- 114 -		
	ATOM	2840	C	GLU	372	28. 418 -17. 420	76. 718	1. 00 27. 23
	ATOM	2841	0	GLU	372	29. 259 -16. 922	75. 966	1. 00 29. 09
	ATOM	2842	N	SER	373	27. 489 -18. 273	76. 296	1. 00 25. 93
	ATOM	2843	CA	SER	373	27. 403 -18. 664	74. 894	1. 00 27. 07
5	ATOM	2844	CB	SER	373	26. 393 -19. 803	74. 718	1. 00 25. 93
	ATOM	2845	0G	SER	373	26. 784 -20. 951	75. 457	1. 00 32. 56
	ATOM	2846	C	SER	373	26. 988 -17. 471	74. 034	1. 00 25. 31
	ATOM	2847	0	SER	373	27. 585 -17. 207	72. 998	1. 00 24. 49
	ATOM	2848	N	VAL	374	25. 962 -16. 754	74. 475	1. 00 25. 87
10	ATOM	2849	CA	VAL	374	25. 473 -15. 596	73. 743	1. 00 25. 12
	ATOM	2850	CB	VAL	374	24. 139 -15. 103	74. 319	1. 00 26. 07
	ATOM	2851	CG1	VAL	374	23. 754 -13. 766	73. 682	1. 00 29. 29
	ATOM	2852	CG2	VAL	374	23. 055 -16. 127	74. 061	1. 00 25. 56
	ATOM	2853	C	VAL	374	26. 465 -14. 429	73. 742	1. 00 24. 54
15	ATOM	2854	0	VAL	374	26. 657 -13. 792	72. 714	1. 00 25. 64
	ATOM	2855	N	SER	375	27. 094 -14. 144	74. 878	1. 00 21. 70
	ATOM	2856	CA	SER	375	28. 029 -13. 034	74. 922	1. 00 23. 89
	ATOM	2857	CB	SER	375	28. 298 -12. 585	76. 365	1. 00 23. 28
	ATOM	2858	0G	SER	375	28. 986 -13. 565	77. 120	1. 00 29. 71
20	ATOM	2859	C	SER	375	29. 324 -13. 391	74. 210	1. 00 24. 77
	ATOM	2860	0	SER	375	29. 873 -12. 560	73. 490	1. 00 23. 61
	ATOM	2861	N	THR	376	29. 805 -14. 623	74. 386	1. 00 23. 54
	ATOM	2862	CA	THR	376	31. 029 -15. 052	73. 707	1. 00 23. 38
	ATOM	2863	CB	THR	376	31. 444 -16. 501	74. 096	1. 00 23. 76
25	ATOM	2864	0G1	THR	376	31. 874 -16. 527	75. 458	1. 00 26. 36
	ATOM	2865	CG2	THR	376	32. 594 -16. 987	73. 222	1. 00 21. 48
	ATOM	2866	C	THR	376	30. 859 -14. 996	72. 189	1. 00 22. 33
	ATOM	2867	0	THR	376	31. 810 -14. 694	71. 465	1. 00 23. 88
	ATOM	2868	N	ARG	377	29. 660 -15. 293	71. 695	1. 00 20. 80

- 115 -

	ATOM	2869	CA	ARG	377	29. 452 -15. 239	70. 253	1. 00 21. 46
	ATOM	2870	CB	ARG	377	28. 141 -15. 918	69. 839	1. 00 22. 21
	ATOM	2871	CG	ARG	377	27. 958 -15. 875	68. 312	1. 00 25. 01
	ATOM	2872	CD	ARG	377	26. 601 -16. 377	67. 827	1. 00 27. 70
5	ATOM	2873	NE	ARG	377	25. 491 -15. 558	68. 302	1. 00 25. 17
	ATOM	2874	CZ	ARG	377	24. 255 -15. 637	67. 825	1. 00 26. 42
	ATOM	2875	NH	1 ARG	377	23. 973 -16. 492	66. 850	1. 00 25. 23
	ATOM	2876	NH	2 ARG	377	23. 294 -14. 877	68. 339	1. 00 26. 96
	ATOM	2877	C	ARG	377	29. 439 -13. 773	69. 787	1. 00 21. 55
10	ATOM	2878	0	ARG	377	29. 856 -13. 462	68. 670	1. 00 20. 80
	ATOM	2879	N	ALA	378	28. 951 -12. 879	70. 639	1. 00 19. 46
	ATOM	2880	CA	ALA	378	28. 927 -11. 463	70. 302	1. 00 21. 17
	ATOM	2881	CB	ALA	378	28. 239 -10. 653	71. 412	1. 00 20. 68
	ATOM	2882	C	ALA	378	30. 374 -11. 015	70. 151	1. 00 20. 18
15	ATOM	2883	0	ALA	378	30. 747 -10. 420	69. 145	1. 00 20. 36
	ATOM	2884	N	ALA	379	31. 191 -11. 326	71. 153	1. 00 19. 41
	ATOM	2885	CA	ALA	379	32. 600 -10. 950	71. 138	1. 00 20. 64
	ATOM	2886	CB	ALA	379	33. 296 -11. 515	72. 371	1. 00 20. 04
	ATOM	2887	C	ALA	379	33. 332 -11. 405	69. 869	1. 00 22. 79
20	ATOM	2888	0	ALA	379	34. 054 -10. 620	69. 234	1. 00 21. 82
	ATOM	2889	N	HIS	380	33. 139 -12. 666	69. 489	1. 00 22. 45
	ATOM	2890	CA	HIS	380	33. 803 -13. 208	68. 305	1. 00 22. 78
	ATOM	2891	CB	HIS	380	33. 726 -14. 745	68. 314	1. 00 22. 80
	ATOM	2892	CG	HIS	380	34. 584 -15. 384	69. 364	1. 00 26. 52
25	ATOM	2893	CD2	HIS	380	35. 557 -14. 870	70. 152	1. 00 27. 81
	ATOM	2894	ND1	HIS	380	34. 499 -16. 720	69. 687	1. 00 28. 99
	ATOM	2895	CE1	HIS	380	35. 383 -17. 002	70. 627	1. 00 28. 15
	ATOM	2896	NE2	HIS	380	36. 039 -15. 896	70. 927	1. 00 28. 70
	ATOM	2897	C	HIS	380	33. 242 -12. 657	66. 994	1. 00 22. 38

- 116 -

	ATOM	2898	0	HIS	380	33. 988	-12. 368	66. 073	1. 00 20. 71
	ATOM	2899	N	MET	381	31. 926	-12. 524	66. 915	1. 00 23. 83
	ATOM	2900	CA	MET	381	31. 285	-12. 018	65. 713	1. 00 26. 66
	ATOM	2901	CB	MET	381	29. 760	-12. 086	65. 899	1. 00 29. 06
5	ATOM	2902	CG	MET	381	28. 926	-12. 031	64. 622	1. 00 34. 34
	ATOM	2903	SD	MET	381	29. 456	-13. 157	63. 312	1. 00 33. 69
	ATOM	2904	CE	MET	381	28. 228	-14. 472	63. 429	1. 00 34. 64
	ATOM	2905	C	MET	381	31. 781	-10. 580	65. 509	1. 00 27. 50
	ATOM	2906	0	MET	381	32. 153	-10. 188	64. 406	1. 00 26. 70
10	ATOM	2907	N	CYS	382	31. 830	-9. 813	66. 595	1. 00 26. 32
	ATOM	2908	CA	CYS	382	32. 302	-8. 441	66. 536	1. 00 24. 87
	ATOM	2909	CB	CYS	382	32. 102	-7. 769	67. 896	1. 00 26. 05
	ATOM	2910	SG	CYS	382	32. 389	-5. 962	67. 931	1. 00 26. 70
	ATOM	2911	C	CYS	382	33. 785	-8. 355	66. 122	1. 00 24. 60
15	ATOM	2912	0	CYS	382	34. 187	-7. 457	65. 360	1. 00 19. 92
	ATOM	2913	N	SER	383	34. 590	-9. 288	66. 623	1. 00 22. 62
	ATOM	2914	CA	SER	383	36. 017	-9. 302	66. 327	1. 00 22. 35
	ATOM	2915	CB	SER	383	36. 716	-10. 439	67. 096	1. 00 23. 03
	ATOM	2916	0G	SER	383	36. 361	-11. 712	66. 571	1. 00 24. 25
20	ATOM	2917	C	SER	383	36. 272	-9. 463	64. 834	1. 00 23. 77
	ATOM	2918	0	SER	383	37. 202	-8. 875	64. 288	1. 00 24. 79
	ATOM	2919	N	ALA	384	35. 448	-10. 269	64. 173	1. 00 24. 03
	ATOM	2920	CA	ALA	384	35. 612	-10. 480	62. 743	1. 00 25. 52
	ATOM	2921	CB	ALA	384	34. 649	-11. 552	62. 256	1. 00 22. 05
25	ATOM	2922	C	ALA	384	35. 369	-9. 182	61. 980	1. 00 25. 61
	ATOM	2923	0	ALA	384	35. 990	-8. 942	60. 947	1. 00 25. 37
	ATOM	2924	N	GLY	385	34. 450	-8. 360	62. 490	1. 00 25. 67
	ATOM	2925	CA	GLY	385	34. 134	-7. 098	61.842	1. 00 23. 86
	ATOM	2926	C	GLY	385	35. 289	-6. 128	61. 944	1. 00 20. 99

- 117 -

	ATOM	2927	0	GLY	385	35. 702	-5. 531	60. 960	1. 00 22. 47
	ATOM	2928	N	LEU	386	35. 811	-5. 962	63. 148	1. 00 22. 82
	ATOM	2929	CA	LEU	386	36. 937	-5. 065	63. 364	1. 00 25. 33
	ATOM	2930	CB	LEU	386	37. 259	-4. 971	64. 850	1. 00 23. 48
5	ATOM	2931	CG	LEU	386	37. 800	-3. 658	65. 425	1. 00 27. 75
	ATOM	2932	CD 1	LEU	386	38. 641	-4. 007	66. 641	1. 00 26. 18
	ATOM	2933	CD2	LEU	386	38. 621	-2. 865	64. 428	1. 00 25. 52
	ATOM	2934	С	LEU	386	38. 172	-5. 584	62. 616	1. 00 26. 01
	ATOM	2935	0	LEU	386	38. 953	-4. 794	62. 067	1. 00 26. 60
10	ATOM	2936	N	ALA	387	38. 356	-6. 904	62. 601	1. 00 23. 95
	ATOM	2937	CA	ALA	387	39. 509	-7. 482	61. 902	1. 00 24. 13
	ATOM	2938	CB	ALA	387	39. 585	-8. 989	62. 135	1. 00 20. 59
	ATOM	2939	C	ALA	387	39. 405	-7. 181	60. 411	1. 00 24. 07
	ATOM	2940	0	ALA	387	40. 419	-6. 990	59. 730	1. 00 22. 59
15	ATOM	2941	N	GLY	388	38. 175	-7. 141	59. 904	1. 00 24. 30
	ATOM	2942	CA	GLY	388	37. 975	-6. 838	58. 497	1. 00 24. 40
	ATOM	2943	C	GLY	388	38. 380	-5. 398	58. 203	1. 00 25. 62
	ATOM	2944	0	GLY	388	39. 048	-5. 114	57. 205	1. 00 25. 24
	ATOM	2945	N	VAL	389	37. 974	-4. 488	59. 084	1. 00 25. 15
20	ATOM	2946	CA	VAL	389	38. 294	-3. 072	58. 950	1. 00 23. 08
	ATOM	2947	CB	VAL	389	37. 581	-2. 259	60. 057	1. 00 21. 38
	ATOM '	2948	CG1	VAL	389	38. 083	-0. 820	60.076	1. 00 21. 90
	ATOM	2949	CG2	VAL	389	36. 078	-2. 303	59. 819	1. 00 20. 64
	ATOM	2950	C	VAL	389	39. 802	-2. 858	59. 034	1. 00 24. 13
25	ATOM	2951	0	VAL	389	40. 402	-2. 198	58. 178	1. 00 25. 99
	ATOM	2952	N	ILE	390	40. 424	-3. 429	60.054	1. 00 24. 21
	MOTA	2953	CA	ILE	390	41. 866	-3. 289	60. 209	1. 00 25. 31
	ATOM	2954	CB	ILE	390	42. 317	-3. 883	61. 576	1. 00 25. 21
	ATOM	2955	CG2	ILE	390	43. 831	-3. 962	61. 661	1. 00 27. 92

- 118 -

	ATOM	2956	CG1	ILE	390	41. 778	-2. 993	62. 708	1. 00	26. 03
	ATOM	2957	CD1	ILE	390	42. 091	-3. 476	64. 094	1. 00	27. 41
	ATOM	2958	C	ILE	390	42. 668	-3. 899	59. 040	1. 00	26. 27
	ATOM	2959	0	ILE	390	43. 622	-3. 287	58. 563	1. 00	25. 08
5	ATOM	2960	N	ASN	391	42. 286	-5. 082	58. 561	1. 00	27. 72
	ATOM	2961	CA	ASN	391	43. 026	-5. 689	57. 448	1. 00	29. 87
	ATOM	2962	CB	ASN	391	42. 649	-7. 162	57. 250	1. 00	27. 74
	ATOM	2963	CG	ASN	391	43. 147	-8. 044	58. 375	1. 00	29. 54
	ATOM	2964	OD1	ASN	391	44. 216	-7. 804	58. 939	1. 00	28. 68
10	ATOM	2965	ND2	ASN	391	42. 383	-9. 079	58. 699	1. 00	26. 84
	ATOM	2966	C	ASN	391	42. 805	-4. 930	56. 144	1. 00	31. 14
	ATOM	2967	0	ASN	391	43. 688	-4. 903	55. 281	1. 00	29. 49
	ATOM	2968	N	ARG	392	41. 627	-4. 331	55. 991	1. 00	31. 07
	ATOM	2969	CA	ARG	392	41. 358	-3. 553	54. 795	1. 00	33. 43
15	ATOM	2970	CB	ARG	392	39. 921	-3. 018	54. 780	1. 00	35. 04
	ATOM	2971	CG	ARG	392	39. 597	-2. 307	53. 483	1. 00	35. 84
	ATOM	2972	CD	ARG	392	38. 614	-1. 173	53. 650	1.00	37. 18
	ATOM	2973	NE	ARG	392	38. 804	-0. 186	52. 589	1. 00	35. 89
	ATOM	2974	CZ	ARG	392	38. 518	-0. 390	51. 309	1. 00	36. 67
20	ATOM	2975	NH1	ARG	392	38. 006	-1. 550	50. 911	1. 00	38. 42
	ATOM	2976	NH2	ARG	392	38. 788	0. 553	50. 417	1. 00	37. 33
	ATOM	2977	C	ARG	392	42. 335	-2. 377	54. 831	1. 00	33. 73
	ATOM	2978	0	ARG	392	43. 028	-2. 107	53. 858	1. 00	34. 52
	ATOM	2979	N	MET	393	42. 396	-1. 691	55. 967	1. 00	34. 05
25	ATOM	2980	CA	MET	393	43. 298	-0. 554	56. 126	1. 00	35. 93
	ATOM	2981	CB	MET	393	43. 119	0.073	57. 517	1. 00	32. 21
	ATOM	2982	CG	MET	393	41. 801	0. 834	57. 692	1. 00	28. 72
	ATOM	2983	SD :	MET	393	41. 530	1. 348	59. 400	1. 00	27. 28
	ATOM	2984	CE :	MET	393	42. 652	2. 753	59. 533	1. 00	24. 26

- 119 -

	ATOM	2985	C	MET	393	44. 751	-0. 979	55. 947	1. 00 39. 48
	ATOM	2986	0	MET	393	45. 579	-0. 216	55. 448	1. 00 39. 63
	ATOM	2987	N	ARG	394	45. 049	-2. 205	56. 364	1. 00 43. 20
	ATOM	2988	CA	ARG	394	46. 391	-2. 766	56. 277	1. 00 45. 79
5	ATOM	2989	CB	ARG	394	46. 381	-4. 180	56. 870	1. 00 49. 86
	ATOM	2990	CG	ARG	394	47. 670	-4. 595	57. 551	1. 00 53. 76
	ATOM	2991	CD	ARG	394	48. 587	-5. 335	56. 612	1. 00 56. 09
	ATOM	2992	NE	ARG	394	49. 896	-5. 554	57. 217	1. 00 60. 36
	ATOM	2993	CZ	ARG	394	50. 797	-4. 596	57. 411	1. 00 60. 35
10	ATOM	2994	NHI	ARG	394	50. 528	-3. 353	57. 042	1. 00 61. 48
	ATOM	2995	NH2	ARG	394	51. 964	-4. 878	57. 978	1. 00 60. 51
	MOTA	2996	C	ARG	394	46. 912	-2. 792	54. 835	1. 00 46. 90
	ATOM	2997	0	ARG	394	48. 117	-2. 697	54. 606	1. 00 44. 95
	ATOM	2998	N	GLU	395	46. 005	-2. 906	53. 869	1. 00 48. 68
15	ATOM	2999	CA	GLU	395	46. 387	-2. 943	52. 459	1. 00 52. 84
	ATOM	3000	CB	GLU	395	45. 165	-3. 275	51. 590	1. 00 54. 51
	ATOM	3001	CG	GLU	395	44. 388	-4. 508	52. 051	1. 00 60. 85
	ATOM	3002	CD	GLU	395	43. 310	-4. 952	51, 061	1. 00 64. 84
	ATOM	3003	0E1	GLU	395	42. 485	-4. 105	50. 642	1. 00 65. 83
20	ATOM	3004	0E2	GLU	395	43. 286	-6. 155	50. 708	1. 00 66. 43
	ATOM	3005	C	GLU	395	47. 008	-1. 621	51. 991	1. 00 54. 64
	ATOM	3006	0	GLU	395	47. 791	-1. 594	51. 039	1. 00 53. 71
	ATOM	3007	N	SER	396	46. 660	-0. 528	52. 666	1. 00 56. 54
	ATOM	3008	CA	SER	396	47. 179	0. 794	52. 313	1. 00 58. 22
25	ATOM	3009	CB	SER	396	46. 037	1. 808	52. 266	1. 00 57. 21
	ATOM	3010	0G	SER	396	44. 980	1. 340	51. 448	1. 00 59. 52
	ATOM	3011	C	SER	396	48. 221	1. 268	53. 318	1. 00 60. 22
	ATOM	3012	0	SER	396	48. 394	2. 468	53. 527	1. 00 60. 38
	ATOM	3013	N	ARG	397	48. 915	0. 324	53. 941	1. 00 62. 22

- 120 -

	ATOM	3014	CA	ARG	397	49. 924	0. 663	54. 933	1. 00 64. 67
	ATOM	3015	CB	ARG	397	49. 430	0. 260	56. 324	1. 00 65. 24
	ATOM	3016	CG	ARG	397	49. 798	1. 218	57. 444	1. 00 67. 16
	ATOM	3017	CD	ARG	397	49. 178	2. 596	57. 244	1. 00 68. 03
5	ATOM	3018	NE	ARG	397	48. 803	3. 208	58. 516	1. 00 69. 13
	ATOM	3019	CZ	ARG	397	47. 681	2. 933	59. 178	1. 00 70. 58
	MOTA	3020	NH	l ARG	397	46. 813	2. 059	58. 687	1. 00 71. 37
	MOTA	3021	NH2	2 ARG	397	47. 429	3. 521	60. 340	1. 00 70. 29
	ATOM	3022	C	ARG	397	51. 222	-0. 063	54. 611	1. 00 65. 54
10	ATOM	3023	0	ARG	397	51. 416	-1. 215	54. 998	1. 00 66. 75
	ATOM	3024	N	SER	398	52. 106	0. 621	53. 894	1. 00 66. 86
	ATOM	3025	CA	SER	398	53. 388	0. 052	53. 508	1. 00 67. 48
	ATOM	3026	CB	SER	398	53. 980	0. 832	52. 331	1. 00 67. 48
	ATOM	3027	0G	SER	398	53. 155	0. 725	51. 181	1. 00 66. 93
15	ATOM	3028	C	SER	398	54. 358	0.063	54. 679	1. 00 68. 36
	ATOM	3029	0	SER	398	55. 036	1. 063	54. 934	1. 00 69. 35
	ATOM	3030	N	GLU	399	54. 413	-1. 059	55. 388	1. 00 67. 90
	ATOM	3031	CA	GLU	399	55. 297	-1. 206	56. 533	1. 00 68. 16
	ATOM	3032	CB	GLU	399	55. 002	-0. 126	57. 564	1. 00 68. 95
20	ATOM	3033	CG	GLU	399	53. 540	0. 020	57. 889	1. 00 71. 05
	ATOM	3034	CD	GLU	399	53. 261	1. 318	58. 598	1. 00 71. 37
	ATOM	3035	0E1	GLU	399	53. 871	1. 545	59. 662	1. 00 72. 25
	ATOM	3036	0E2	GLU	399	52. 443	2. 111	58. 089	1. 00 71. 32
	ATOM	3037	C	GLU	399	55. 167	-2. 581	57. 168	1. 00 67. 57
25	ATOM	3038	0	GLU	399	54. 078	-3. 155	57. 232	1. 00 67. 34
	ATOM	3039	N	ASP	400	56. 301	-3. 091	57. 635	1. 00 66. 86
	ATOM	3040	CA	ASP	400	56. 397	-4. 400	58. 265	1. 00 65. 75
	ATOM	3041	CB	ASP	400	57. 739	-4. 507	58. 989	1. 00 68. 55
	ATOM	3042	CG	ASP	400	58. 892	-3. 961	58. 157	1. 00 71. 49

- 121 -

	ATOM	3043	0D1	ASP	400	59. 015	-4. 356	56. 976	1. 00	72. 29
	ATOM	3044	0D2	ASP	400	59. 675	-3. 136	58. 682	1. 00	72. 38
	ATOM	3045	C	ASP	400	55. 247	-4. 676	59. 233	1. 00	63. 41
	ATOM	3046	0	ASP	400	54. 385	-5. 514	58. 962	1. 00	63. 27
5	ATOM	3047	N	VAL	401	55. 241	-3. 973	60. 361	1. 00	59. 50
	ATOM	3048	CA	VAL	401	54. 193	-4. 138	61. 360	1. 00	55. 59
	ATOM	3049	CB	VAL	401	54. 789	-4. 439	62. 757	1. 00	55. 81
	ATOM	3050	CG1	VAL	401	53. 698	-4. 375	63. 818	1. 00	54. 69
	ATOM	3051	CG2	VAL	401	55. 442	-5. 817	62. 757	1. 00	54. 18
10	ATOM	3052	C	VAL	401	53. 345	-2. 876	61. 454	1. 00	53. 78
	ATOM	3053	0	VAL	401	53. 841	-1. 807	61. 820	1. 00	53. 39
	ATOM	3054	N	MET	402	52. 065	-2. 991	61. 114	1. 00	50. 91
	ATOM	3055	CA	MET	402	51. 190	-1. 834	61. 194	1. 00	47. 59
	ATOM	3056	CB	MET	402	49. 992	-1. 958	60. 250	1. 00	46. 98
15	ATOM	3057	CG	MET	402	49. 043	-0. 768	60. 387	1. 00	47. 22
	ATOM	3058	SD	MET	402	47. 505	-0. 874	59. 461	1. 00	48. 69
	ATOM	3059	CE	MET	402	46. 622	-2. 099	60. 439	1. 00	48. 15
	ATOM	3060	C	MET	402	50. 670	-1. 643	62. 605	1. 00	44. 98
	ATOM	3061	0	MET	402	49. 945	-2. 483	63. 134	1. 00	43. 92
20	ATOM	3062	N	ARG	403	51. 054	-0. 533	63. 219	1. 00	43. 27
	ATOM	3063	CA	ARG	403	50. 587	-0. 229	64. 556	1. 00	41.71
	ATOM	3064	CB	ARG	403	51. 673	0. 484	65. 350	1. 00	45. 65
	ATOM	3065	CG	ARG	403	52. 903	-0. 356	65. 596	1. 00	52. 20
	ATOM	3066	CD	ARG	403	53. 973	0. 474	66. 262	1. 00	57. 99
25	ATOM	3067	NE	ARG	403	55. 137	-0. 324	66. 630	1. 00	65. 47
	ATOM	3068	CZ	ARG	403	56. 251	0. 184	67. 149	1. 00	68. 76
	ATOM	3069	NH1	ARG	403	56. 349	1. 493	67. 357	1. 00	69. 34
	ATOM	3070	NH2	ARG	403	57. 265	-0. 615	67. 468	1. 00	69. 59
	ATOM	3071	C	ARG	403	49. 388	0. 685	64. 372	1. 00	37. 99

- 122 -

	ATOM	3072	0	ARG.	403	49. 471	1. 692	63. 679	1. 00 37. 13
	ATOM	3073	N	ILE	404	48. 267	0. 322	64. 975	1. 00 34. 39
	ATOM	3074	CA	ILE	404	47. 069	1. 129	64. 854	1. 00 31. 53
	ATOM	3075	CB	ILE	404	46. 161	0. 577	63. 735	1. 00 33. 38
5	ATOM	3076	CG2	ILE	404	45. 681	-0. 829	64. 096	1. 00 32. 57
	ATOM	3077	CG1	ILE	404	44. 987	1. 524	63. 500	1. 00 35. 77
	ATOM	3078	CD1	ILE	404	44. 144	1. 153	62. 300	1. 00 38. 45
	ATOM	3079	C	ILE	404	46. 322	1. 152	66. 179	1. 00 28. 96
	ATOM	3080	0	ILE	404	46. 393	0. 204	66. 956	1. 00 29. 35
10	ATOM	3081	N	THR	405	45. 632	2. 250	66. 453	1. 00 28. 84
	ATOM	3082	CA	THR	405	44. 874	2. 359	67. 693	1. 00 27. 84
	ATOM	3083	CB	THR	405	45. 323	3. 558	68. 535	1. 00 26. 65
	ATOM	3084	0G1	THR	405	46. 663	3. 335	68. 990	1. 00 30. 48
	ATOM	3085	CG2	THR	405	44. 428	3. 715	69. 749	1. 00 27. 32
15	ATOM	3086	C	THR	405	43. 387	2. 460	67. 408	1. 00 27. 13
	ATOM	3087	0	THR	405	42. 964	3. 127	66. 462	1. 00 24. 36
	ATOM	3088	N	VAL	406	42. 604	1. 786	68. 245	1. 00 25. 61
	ATOM	3089	CA	VAL	406	41. 160	1. 737	68. 107	1. 00 23. 67
	ATOM	3090	CB	VAL	406	40. 705	0. 244	67. 973	1. 00 23. 64
20	ATOM	3091	CG1	VAL	406	39. 189	0. 138	67. 798	1. 00 24. 19
	ATOM	3092	CG2	VAL	406	41. 405	-0. 399	66. 783	1. 00 21. 36
	ATOM	3093	C	VAL	406	40. 493	2. 392	69. 320	1. 00 26. 21
	ATOM	3094	0	VAL	406	40. 763	2. 018	70. 469	1. 00 26. 86
	ATOM	3095	N	GLY	407	39. 644	3. 389	69. 072	1. 00 25. 61
25	ATOM	3096	CA	GLY	407	38. 943	4. 044	70. 168	1. 00 23. 09
	ATOM	3097	C .	GLY	407	37. 645	3. 285	70. 387	1. 00 21. 77
	ATOM	3098	0	GLY	407	36. 919	3. 011	69. 426	1. 00 23. 17
	ATOM	3099	N	VAL	408	37. 334	2. 943	71. 632	1. 00 20. 52
	ATOM	3100	CA	VAL	408	36. 128	2. 167	71. 907	1. 00 21. 51

- 123 -

						1	20 -		
	ATOM	3101	CB	VAL	408	36. 500	0. 684	72. 252	1. 00 23. 04
	ATOM	3102	CG	VAL	408	35. 237	-0. 176	72. 351	1. 00 19. 52
	ATOM	3103	CG2	VAL	408	37. 436	0. 121	71. 201	1. 00 20. 49
	ATOM	3104	C	VAL	408	35. 282	2. 704	73. 060	1. 00 23. 66
5	ATOM	3105	0	VAL	408	35. 814	3. 223	74. 045	1. 00 23. 60
	ATOM	3106	N	ASP	409	33. 963	2. 580	72. 923	1. 00 24. 58
	ATOM	3107	CA	ASP	409	33. 040	2. 992	73. 975	1. 00 26. 70
	ATOM	3108	CB	ASP	409	32. 612	4. 455	73. 803	1. 00 30. 78
	ATOM	3109	CG	ASP	409	31. 909	4. 998	75. 041	1. 00 31. 51
10	ATOM	3110	0D1	ASP	409	32. 322	4. 625	76. 156	1. 00 31. 70
	ATOM	3111	OD2	ASP	409	30. 955	5. 794	74. 910	1. 00 35. 70
	ATOM	3112	C	ASP	409	31. 824	2. 083	73. 898	1. 00 25. 68
	ATOM	3113	0	ASP	409	31. 639	1. 396	72. 901	1. 00 27. 99
	ATOM	3114	N	GLY	410	30. 999	2. 079	74. 943	1. 00 28. 67
15	ATOM	3115	CA	GLY	410	29. 807	1. 233	74. 964	1. 00 29. 54
	ATOM	3116	C	GLY	410	29. 755	0. 355	76. 212	1. 00 30. 09
	ATOM	3117	Ó	GLY	410 .	30. 787	-0. 138	76. 657	1. 00 28. 57
	ATOM	3118	N	SER	411	28. 560	0. 150	76. 767	1. 00 30. 89
	ATOM	3119	CA	SER	411	28. 392	-0. 649	77. 983	1. 00 32. 71
20	ATOM	3120	CB	SER	411	26. 941	-0. 554	78. 490	1. 00 32. 88
	ATOM	3121	0G	SER	411	26. 011	-0. 884	77. 473	1. 00 36. 82
	ATOM	3122	C	SER	411	28. 804	-2. 121	77. 840	1. 00 31. 25
	ATOM	3123	0	SER	411	29. 480	-2. 661	78. 712	1. 00 29. 96
	ATOM	3124	N	VAL	412	28. 398	-2. 768	76. 754	1. 00 29. 78
25	ATOM	3125	CA	VAL	412	28. 780	-4. 158	76. 535	1. 00 28. 59
	ATOM	3126	CB	VAL	412	28. 264	-4. 665	75. 174	1. 00 29. 68
	ATOM	3127	CG1	VAL	412	28. 772	-6. 088	74. 908	1. 00 27. 25
	ATOM	3128	CG2	VAL	412	26. 739	-4. 642	75. 173	1. 00 29. 93
	ATOM	3129	C	VAL	412	30. 307	-4. 320	76. 584	1. 00 29. 24

- 124 -

	ATOM	3130	0	VAL	412		-5. 145	77 940	1 00 90 70
	ATOM	3131		TYR	413	31. 023			
	ATOM	3132							
					413		-3. 602		
_	ATOM	3133			413	33. 049			1. 00 19. 87
5	ATOM	3134			413	34. 568	-2. 710	74. 587	1. 00 20. 22
	ATOM	3135	CD	1 TYR	413	35. 270	-3. 566	73. 735	1. 00 21. 52
	ATOM	3136	CE	1 TYR	413	36. 667	-3. 519	73. 655	1. 00 19. 93
	ATOM	3137	CD	2 TYR	413	35. 300	-1. 819	75. 363	1. 00 14. 63
	ATOM	3138	CE	2 TYR	413	36. 690	-1. 770	75. 294	1. 00 17. 31
10	ATOM	3139	CZ	TYR	413	37. 364	-2. 616	74. 439	1. 00 19. 92
	ATOM	3140	ОН	TYR	413	38. 737	-2. 547	74. 362	1. 00 23. 08
	ATOM	3141	C	TYR	413	33. 151	-3. 193	77. 072	1. 00 26. 48
	ATOM	3142	0	TYR	413	34. 085	-3. 849	77. 534	1. 00 26. 86
	ATOM	3143	N	LYS	414	32. 690	-2. 108	77. 669	1. 00 26. 13
15	ATOM	3144	CA	LYS	414	33. 309	-1. 640	78. 902	1. 00 29. 80
	ATOM	3145	CB	LYS	414	33. 001	-0. 147	79. 117	1. 00 29. 42
	ATOM	3146	CG	LYS	414	33. 882	0. 802	78. 302	1. 00 32. 94
	ATOM	3147	CD	LYS	414	33. 558	2. 275	78. 559	1. 00 34. 12
	ATOM	3148	CE	LYS	414	34. 553	3. 179	77. 833	1. 00 36. 09
20	ATOM	3149	NZ	LYS	414	34. 170	4. 626	77. 859	1. 00 35. 28
	ATOM	3150	С	LYS	414	32. 966	-2. 400		1. 00 29. 74
	ATOM	3151	0	LYS	414	33. 850	-2. 677	80. 988	1. 00 28. 77
	ATOM	3152	N	LEU	415	31. 696	-2. 749	80. 357	1. 00 30. 99
	ATOM	3153	CA	LEU	415	31. 255	-3. 395	81. 591	1. 00 34. 39
25	ATOM	3154	CB	LEU	415	29. 942	-2. 738	82. 041	1. 00 34. 94
	ATOM	3155	CG	LEU	415	29. 964	-1. 195	82. 012	1. 00 38. 17
	ATOM	3156	CD1	LEU	415	28. 610	-0. 647	82. 469	1. 00 38. 59
	ATOM	3157	CD2	LEU	415	31. 080	-0. 660	82. 901	1. 00 34. 42
	ATOM	3158	C	LEU	415	31. 113	-4. 923	81. 657	1. 00 34. 46

- 125 -

	ATOM	3159	0	LEU	415	31. 202	-5. 493	82. 741	1. 00 33. 89
	ATOM	3160	N	HIS	416	30. 886	-5. 586	80. 531	1. 00 34. 56
	ATOM	3161	CA	HIS	416	30. 746	-7. 041	80. 561	1. 00 36. 94
	ATOM	3162	CB	HIS	416	30. 394	-7. 572	79. 175	1. 00 39. 81
5	ATOM	3163	CG	HIS	416	29. 811	-8. 949	79. 192	1. 00 44. 04
	ATOM	3164	CD	2 HIS	416	28. 536	-9. 375	79. 038	1. 00 43. 02
	ATOM	3165	ND	1 HIS	416	30. 573	-10. 080	79. 402	1. 00 44. 57
	ATOM	3166	CE	1 HIS	416	29. 791	-11. 144	79. 374	1. 00 44. 76
	ATOM	3167	NE	2 HIS	416	28. 550	-10. 744	79. 156	1. 00 46. 14
10	ATOM	3168	C	HIS	416	32. 046	-7. 673	81. 060	1. 00 35. 57
	ATOM	3169	0	HIS	416	33. 103	-7. 483	80. 471	1. 00 37. 06
	ATOM	3170	N	PRO	417	31. 973	-8. 445	82. 153	1. 00 33. 55
	ATOM	3171	CD	PRO	417	30. 727	-8. 999	82. 700	1.00 32.04
	ATOM	3172	CA	PRO	417	33. 134	-9. 109	82. 757	1. 00 33. 47
15	ATOM	3173	CB	PRO	417	32. 504	-10. 219	83. 614	1. 00 31. 67
	ATOM	3174	CG	PRO	417	31. 142	-10. 410	83. 016	1. 00 32. 88
	ATOM	3175	C	PRO	417	34. 252	-9. 628	81. 849	1. 00 32. 70
	ATOM	3176	0	PRO	417	35. 428	-9. 411	82. 146	1. 00 36. 28
	ATOM	3177	N	SER	418	33. 929	-10. 302	80. 752	1. 00 29. 70
20	ATOM	3178	CA	SER	418	35. 015	-10. 808	79. 915	1. 00 28. 37
	ATOM	3179	CB	SER	418	35. 215	-12. 314	80. 163	1. 00 30. 65
	ATOM	3180	0G	SER	418	35. 798	-12. 555	81. 439	1. 00 35. 61
	ATOM	3181	C	SER	418	34. 895	-10. 560	78. 418	1. 00 25. 27
	ATOM	3182	0	SER	418	35. 730 ·	-11. 028	77. 648	1. 00 23. 69
25	ATOM	3183	N	PHE	419	33. 856	-9. 846	78. 004	1. 00 21. 86
	ATOM	3184	CA	PHE	419	33. 673	-9. 543	76. 587	1. 00 24. 13
	ATOM	3185	CB	PHE	419	32. 551	-8. 522	76. 407	1. 00 22. 03
	ATOM	3186	CG	PHE	419	32. 270	-8. 187	74. 978	1. 00 24. 42
	ATOM	3187	CD1	PHE	419	31. 273	-8. 860	74. 276	1. 00 23. 32

- 126 -

	ATOM	3188	CD2	PHE	419	33. 033	-7. 231	74. 312	1. 00	22. 16
	ATOM	3189	CE 1	PHE	419	31. 038	-8. 593	72. 932	1. 00	23. 49
	ATOM	3190	CE2	PHE	419	32. 808	-6. 961	72. 967	1. 00	25. 91
	ATOM	3191	CZ	PHE	419	31. 806	-7. 645	72. 275	1. 00	24. 70
5	ATOM	3192	C	PHE	419	34. 961	-8. 965	76. 000	1. 00	24. 09
	ATOM	3193	0	PHE	419	35. 491	-9. 455	75. 009	1. 00	26. 51
	ATOM	3194	N	LYS	420	35. 432	-7. 899	76. 628	1. 00	25. 00
	ATOM	3195	CA	LYS	420	36. 641	-7. 179	76. 238	1. 00	26. 79
	ATOM	3196	CB	LYS	420	36. 984	-6. 207	77. 370	1. 00	28. 35
10	ATOM	3197	CG	LYS	420	38. 241	-5. 396	77. 229	1. 00	30. 04
	ATOM	3198	CD	LYS	420	38. 433	-4. 537	78. 497	1. 00	33. 98
	ATOM	3199	CE	LYS	420	37. 170	-3. 740	78. 832	1. 00	31.09
	ATOM	3200	NZ	LYS	420	37. 322	-2. 923	80. 067	1. 00	36. 69
	ATOM	3201	C	LYS	420	37. 819	-8. 118	75. 968	1. 00	25. 76
15	ATOM	3202	0	LYS	420	38. 446	-8. 064	74. 911	1. 00	25. 94
	ATOM	3203	N	GLU	421	38. 111	-8. 961	76. 951	1. 00	24. 13
	ATOM	3204	CA	GLU	421	39. 195	-9. 929	76. 887	1. 00	26. 26
	ATOM	3205	CB	GLU	421	39. 204	-10. 781	78. 155	1. 00	32. 38
	ATOM	3206	CG	GLU	421	39. 547	-10. 043	79. 417	1. 00	38. 45
20	ATOM	3207	CD	GLU	421	38. 700	-8. 798	79. 664	1. 00	41. 54
	ATOM	3208	0E1	GLU	421	37. 458	-8. 844	79. 501	1. 00	42. 17
	ATOM	3209	0E2	GLU	421	39. 300	-7. 767	80. 053	1. 00	42. 62
	ATOM	3210	С	GLU	421	39. 075	-10. 864	75. 699	1. 00	24. 57
	ATOM	3211.	0	GLU	421	40. 017 -	-11. 023	74. 930	1. 00	25. 86
25	ATOM	3212	N	ARG	422	37. 921 -	-11. 509	75. 576	1. 00	24. 00
	MOTA	3213	CA	ARG	422	37. 682 -	-12. 439	74. 480	1. 00	26. 01
	MOTA	3214	CB	ARG	422	36. 284 -	-13. 063	74. 610	1. 00	27. 36
	ATOM	3215	CG	ARG	422	36. 076 -	-13. 878	75. 887	1. 00	31. 58
	ATOM	3216	CD	ARG	422	34. 600 -	-14. 053	76. 188	1. 00	35. 39

- 127 -

	ATOM	3217	NE	ARG	422	34. 390	-14. 834	77. 397	1. 00	40. 58
	ATOM	3218	CZ	ARG	422	33. 232	-14. 911	78. 046	1. 00	44. 53
	ATOM	3219	NH1	ARG	422	32. 171	-14. 243	77. 596	1. 00	41. 79
	ATOM	3220	NH2	ARG	422	33. 141	-15. 651	79. 150	1. 00	41. 67
5	ATOM	3221	C	ARG	422	37. 794	-11. 691	73. 160	1. 00	24. 48
	ATOM	3222	0	ARG	422	38. 439	-12. 148	72. 221	1. 00	22. 97
	ATOM	3223	N	PHE	423	37. 153	-10. 531	73. 094	1. 00	24. 48
	ATOM	3224	CA	PHE	423	37. 189	-9. 737	71. 879	1. 00	22. 97
	ATOM	3225	CB	PHE	423	36. 403	-8. 442	72. 089	1. 00	24. 98
10	ATOM	3226	CG	PHE	423	36. 494	-7. 484	70. 939	1. 00	25. 21
	ATOM	3227	CD1	PHE	423	37. 468	-6. 490	70. 926	1. 00	25. 04
	ATOM	3228	CD2	PHE	423	35. 618	-7. 584	69. 861	1. 00	23. 47
	ATOM	3229	CE1	PHE	423	37. 568	-5. 607	69. 857	1. 00	24. 77
	ATOM	3230	CE2	PHE	423	35. 710	∸6. 708	68. 784	1. 00	25. 48
15	ATOM	3231	CZ	PHE	423	36. 684	-5. 715	68. 780	1. 00	24. 31
	ATOM	3232	C	PHE	423	38. 629	-9. 442	71. 456	1. 00	21. 03
	ATOM	3233	0	PHE	423	38. 989	-9. 680	70. 308	1. 00	19. 38
	ATOM	3234	N	HIS	424	39. 454	-8. 952	72. 381	1. 00	20. 46
	ATOM	3235	CA	HIS	424	40. 846	-8. 631	72. 054	1. 00	23. 40
20	ATOM	3236	CB	HIS	424	41. 602	-8. 128	73. 293	1. 00	24. 89
	ATOM	3237	CG	HIS	424	41. 133	-6. 803	73. 808	1. 00	25. 28
	ATOM	3238	CD2	HIS	424	40. 391	-5. 828	73. 230	1. 00	24. 67
	ATOM	3239	ND1	HIS	424	41. 419	-6. 361	75. 083	1. 00	25. 18
	ATOM	3240	CE1	HIS	424	40.869	-5. 174	75. 269	1. 00	22. 64
25	ATOM	3241	NE2	HIS	424	40. 239	-4. 829	74. 161	1. 00	24. 12
	ATOM	3242	С	HIS	424	41. 604	-9. 834	71. 486	1. 00	24. 51
	ATOM	3243	0	HIS	424	42. 239	-9. 741	70. 432	1. 00	23. 58
	ATOM	3244	N	ALA	425	41. 540	-10. 962	72. 191	1. 00	24. 51
•	ATOM	3245	CA	ALA	425	42. 242	-12. 164	71. 746	1. 00	26. 94

- 128 -

	ATOM	3246	CB	ALA	425	42. 068 -13. 306	72. 774	1. 00 27. 10
	ATOM	3247	C	ALA	425	41. 759 -12. 605	70. 370	1. 00 25. 71
	ATOM	3248	0	ALA	425	42. 559 -12. 937	69. 505	1. 00 27. 02
	ATOM	3249	N	SER	426	40. 453 -12. 600	70. 151	1. 00 24. 30
5	ATOM	3250	CA	SER	426	39. 967 -13. 003	68. 850	1. 00 23. 93
	ATOM	3251	CB	SER	426	38. 450 -13. 142	68. 863	1. 00 20. 85
	ATOM	3252	0G	SER	426	38. 007 -13. 582	67. 596	1. 00 21. 86
	ATOM	3253	C	SER	426	40. 394 -12. 039	67. 743	1. 00 25. 72
	ATOM	3254	0	SER	426	40. 760 -12. 483	66. 660	1. 00 25. 40
10	ATOM	3255	N	VAL	427	40. 363 -10. 727	68. 007	1. 00 27. 03
	ATOM	3256	CA	VAL	427	40. 761 -9. 750	66. 983	1. 00 27. 43
	ATOM	3257	CB	VAL	427	40. 591 -8. 269	67. 450	1. 00 28. 91
	ATOM	3258	CG1	VAL	427	40. 999 -7. 323	66. 314	1. 00 29. 57
	ATOM	3259	CG2	VAL	427	39. 150 -7. 990	67. 852	1. 00 27. 73
15	ATOM	3260	C	VAL	427	42. 226 -9. 919	66. 601	1. 00 28. 67
	ATOM	3261	0	VAL	427	42. 582 -9. 858	65. 424	1. 00 27. 30
	ATOM	3262	N	ARG	428	43. 076 -10. 119	67. 603	1. 00 28. 43
	ATOM	3263	CA	ARG	428	44. 498 -10. 281	67. 350	1. 00 31. 91
	ATOM	3264	CB	ARG	428	45. 273 -10. 231	68. 670	1. 00 31. 80
20	ATOM	3265	CG	ARG	428	45. 449 -8. 793	69. 130	1. 00 31. 90
	ATOM	3266	CD	ARG	428	45. 662 -8. 639	70. 617	1. 00 34. 40
	ATOM	3267	NE	ARG	428	45. 867 -7. 231	70. 971	1. 00 34. 78
	ATOM	3268	CZ	ARG	428	45. 668 -6. 728	72. 186	1. 00 38. 69
	ATOM	3269	NH1	ARG	428	45. 251 -7. 516	73. 172	1. 00 38. 56
25	ATOM	3270	NH2	ARG	428	45. 901 -5. 442	72. 424	1. 00 39. 08
	ATOM	3271	C	ARG	428	44. 797 -11. 548	66. 572	1. 00 33. 56
	ATOM	3272	0	ARG	428	45. 694 -11. 558	65. 731	1. 00 32. 81
	ATOM	3273	N	ARG	429	44. 037 -12. 609	66. 837	1. 00 34. 25
	ATOM	3274	CA	ARG	429	44. 224 -13. 859	66. 115	1. 00 33. 42

- 129 -

	ATOM	3275	CB	ARG	429	43. 252 -14. 941	66. 601	1. 00 36. 36
	ATOM	3276	CG	ARG	429	43. 756 -15. 769	67. 760	1. 00 43. 73
	ATOM	3277	CD	ARG	429	42. 930 -17. 038	67. 939	1. 00 47. 67
	ATOM	3278	NE	ARG	429	41. 561 -16. 789	68. 398	1. 00 51. 58
5	ATOM	3279	CZ	ARG	429	41. 222 -16. 467	69. 646	1. 00 51. 70
	ATOM	3280	NH1	ARG	429	42. 154 -16. 345	70. 585	1. 00 50. 85
	ATOM	3281	NH2	ARG	429	39. 945 -16. 288	69. 962	1. 00 49. 95
	ATOM	3282	C	ARG	429	43. 960 -13. 618	64. 639	1. 00 32. 81
	ATOM	3283	0	ARG	429	44. 610 -14. 215	63. 783	1. 00 32. 29
10	ATOM	3284	N	LEU	430	43. 001 -12. 741	64. 345	1. 00 30. 18
	ATOM	3285	CA	LEU	430	42. 623 -12. 455	62. 965	1. 00 29. 19
	ATOM	3286	CB	LEU	430	41. 132 -12. 109	62. 904	1. 00 29. 15
	ATOM	3287	CG	LEU	430	40. 173 -13. 164	63. 453	1. 00 31. 83
	ATOM	3288	CD1	LEU	430	38. 746 -12. 629	63. 437	1. 00 28. 32
15	ATOM	3289	CD2	LEU	430	40. 281 -14. 441	62. 613	1. 00 32. 03
	ATOM	3290	C	LEU	430	43. 407 -11. 355	62. 251	1. 00 27. 64
	ATOM	3291	0	LEU	430	43. 244 -11. 151	61. 048	1. 00 28. 08
	ATOM	3292	N	THR	431	44. 261 -10. 645	62. 966	1. 00 28. 04
	ATOM	3293	CA	THR	431	44. 988 -9. 567	62. 326	1. 00 31. 15
20	ATOM	3294	CB	THR	431	44. 569 -8. 201	62. 934	1. 00 30. 03
	ATOM	3295	0G1	THR	431	44. 666 -8. 254	64. 363	1. 00 31. 84
	ATOM	3296	CG2	THR	431	43. 137 -7. 879	62. 561	1. 00 26. 93
	ATOM	3297	C	THR	431	46. 507 -9. 719	62. 367	1. 00 34. 65
	ATOM	3298	0	THR	431	47. 190 -9. 015	63. 101	1. 00 34. 08
25	ATOM	3299	N	PRO	432	47. 049 -10. 655	61. 566	1. 00 37. 36
	ATOM	3300	CD	PRO	432	46. 296 -11. 603	60. 726	1. 00 37. 91
	ATOM	3301	CA	PR0	432	48. 489 -10. 923	61. 484	1. 00 38. 59
	MOTA	3302	CB	PRO	432	48. 572 -12. 080	60. 487	1. 00 38. 98
	ATOM	3303	CG	PRO	432	47. 245 -12. 758	60. 630	1. 00 40. 10

- 130 -

	ATOM	3304	C	PR0	432	49. 224	-9. 689	60. 969	1. 00 39. 65
	ATOM	3305	0	PRO	432	48. 712	-8. 968	60. 113	1. 00 39. 80
	ATOM	3306	N	SER	433	50. 420	-9. 461	61. 495	1. 00 39. 94
	ATOM	3307	CA	SER	433	51. 254	-8. 326	61. 112	1. 00 42. 47
5	ATOM	3308	CB	SER	433	51. 467	-8. 280	59. 586	1. 00 44. 12
	ATOM	3309	0G	SER	433	50. 363	-7. 707	58. 898	1. 00 48. 10
	ATOM	3310	C	SER	433	50. 687	-6. 996	61. 598	1. 00 42. 26
	ATOM	3311	0	SER	433	51. 085	-5. 932	61. 121	1. 00 42. 50
	ATOM	3312	N	CYS	434	49. 756	-7. 053	62. 544	1. 00 40. 68
10	ATOM	3313	CA	CYS	434	49. 184	-5. 831	63. 092	1. 00 40. 64
	ATOM	3314	CB	CYS	434	47. 679	-5. 735	62. 826	1. 00 39. 36
	ATOM	3315	SG	CYS	434	47. 196	-5. 674	61. 111	1. 00 39. 36
	ATOM	3316	C	CYS	434	49. 398	-5. 789	64. 590	1. 00 40. 17
	ATOM	3317	0	CYS	434	49. 258	-6. 801	65. 281	1. 00 40. 51
15	ATOM	3318	N	GLU	435	49. 743	-4. 609	65. 081	1. 00 38. 91
	ATOM	3319	CA	GLU	435	49. 945	-4. 388	66. 504	1. 00 39. 30
	ATOM	3320	CB	GLU	435	51. 302	-3. 733	66. 738	1. 00 42. 29
	ATOM	3321	CG	GLU	435	51. 779	-3. 766	68. 162	1. 00 49. 24
	ATOM	3322	CD	GLU	435	53. 072	-2. 993	68. 340	1. 00 53. 77
20	ATOM	3323	0E1	GLU	435	54. 106	-3. 421	67. 781	1. 00 56. 24
	ATOM	3324	0E2	GLU	435	53. 047	-1. 950	69. 032	1. 00 54. 88
	ATOM	3325	C	GLU	435	48. 801	-3. 430	66. 839	1. 00 37. 06
	ATOM	3326	0	GLU	435	48. 866	-2. 241	66. 532	1. 00 34. 30
	ATOM	3327	N	ILE	436	47. 749	-3. 971	67. 449	1. 00 36. 39
25	ATOM	3328	CA	ILE	436	46. 552	-3. 203	67. 786	1. 00 34. 47
	ATOM	3329	CB	ILE	436	45. 280	-4. 040	67. 508	1. 00 34. 15
	ATOM	3330	CG2	ILE	436	44. 024	-3. 166	67. 639	1. 00 33. 64
	ATOM	3331	CG1	ILE	436	45. 357	-4. 633	66. 100	1. 00 36. 06
	ATOM	3332	CD1	ILE	436	44. 166	-5. 487	65. 719	1. 00 36. 35

- 131 -

							-			
	ATOM	3333	C	ILE	436	46. 492	-2. 717	69. 228	1. 00	34. 50
	ATOM	3334	0	ILE	436	46. 612	-3. 506	70. 164	1. 00	35. 88
	ATOM	3335	N	THR	437	46. 308	-1. 411	69. 405	1. 00	32. 66
	ATOM	3336	CA	THR	437	46. 196	-0. 837	70. 741	1. 00	30. 32
5	ATOM	3337	CB	THR	437	47. 134	0. 370	70. 930	1. 00	29. 83
	ATOM	3338	0G1	THR	437	48. 496	-0.060	70. 833	1. 00	33. 74
	ATOM	3339	CG2	THR	437	46. 925	0. 996	72. 294	1. 00	28. 96
	ATOM	3340	C	THR	437	44. 759	-0. 377	70. 949	1. 00	29. 92
	ATOM	3341	0	THR	437	44. 177	0. 293	70. 090	1. 00	28. 24
10	ATOM	3342	N	PHE	438	44. 179	-0. 750	72. 083	1. 00	29. 43
	ATOM	3343	CA	PHE	438	42. 807	-0. 359	72. 390	1. 00	29. 35
	ATOM	3344	CB	PHE	438	41. 991	-1. 567	72. 853	1. 00	27. 92
	MOTA	3345	CG	PHE	438	41. 794	-2. 614	71. 789	1. 00	27. 95
	MOTA	3346	CD1	PHE	438	42. 695	-3. 661	71. 648	1. 00	27. 90
15	ATOM	3347	CD2	PHE	438	40. 703	-2. 549	70. 930	1. 00	24. 76
	ATOM	3348	CE1	PHE	438	42. 505	-4. 634	70. 662	1. 00	29. 21
	ATOM	3349	CE2	PHE	438	40. 506	-3. 505	69. 950	1. 00	28. 87
	ATOM	3350	CZ	PHE	438	41. 408	-4. 554	69. 814	1. 00	28. 70
	ATOM	3351	C	PHE	438	42. 772	0. 712	73. 467	1. 00	30. 41
20	ATOM	3352	0	PHE	438	43. 469	0.601	74. 474	1. 00	30. 53
	ATOM	3353	N	ILE	439	41. 968	1. 752	73. 250	1. 00	30. 35
	ATOM	3354	CA	ILE	439	41. 839	2. 832	74. 220	1. 00	31.89
	ATOM	3355	CB	ILE	439	42. 544	4. 124	73. 751	1. 00	33. 03
	ATOM	3356	CG2	ILE	439	42. 233	5. 269	74. 721	1. 00	36. 00
25	ATOM	3357	CG1	ILE	439	44. 053	3. 916	73. 704	1. 00	33. 82
	ATOM	3358	CD1	ILE	439	44. 818	5. 165	73. 296	1. 00	36. 93
	ATOM	3359	C	ILE	439	40. 373	3. 158	74. 420	1. 00	32. 85
	ATOM	3360	0	ILE	439	39. 603	3. 157	73. 467	1. 00	33. 09
	ATOM	3361	N	GLU	440	39. 991	3. 442	75. 659	1. 00	35. 09

- 132 -

	ATOM	3362	CA	GLU	440	38. 608	3. 789	75. 956	1. 00 39. 34
	ATOM	3363	CB	GLU	440	38. 133	3. 041	77. 199	1. 00 37. 95
	ATOM	3364	CG	GLU	440	38. 213	1. 526	77. 038	1. 00 39. 96
	ATOM	3365	CD	GLU	440	37. 837	0. 773	78. 298	1. 00 40. 82
5	ATOM	3366	0E1	GLU	440	38. 058	-0. 456	78. 340	1. 00 41. 23
	ATOM	3367	0E2	GLU	440	37. 318	1. 403	79. 245	1. 00 41. 08
	ATOM	3368	C	GLU	440	38. 495	5. 298	76. 156	1. 00 41. 28
	ATOM	3369	0	GLU	440	39. 356	5. 918	76. 769	1. 00 42. 10
	ATOM	3370	N	SER	441	37. 431	5. 886	75. 627	1. 00 43. 99
10	ATOM	3371	CA	SER	441	37. 231	7. 327	75. 738	1. 00 48. 53
	ATOM	3372	CB	SER	441	36. 390	7. 823	74. 550	1. 00 47. 96
	ATOM	3373	0G	SER	441	35. 196	7. 066	74. 390	1. 00 48. 42
	ATOM	3374	C	SER	441	36. 577	7. 752	77. 051	1. 00 50. 20
	ATOM	3375	0	SER	441	35. 654	7. 087	77. 531	1. 00 51. 01
15	ATOM	3376	N	GLU	442	37. 060	8. 852	77. 634	1. 00 53. 24
	ATOM	3377	CA	GLU	442	36. 490	9. 359	78. 885	1. 00 55. 51
	ATOM	3378	CB	GLU	442	37. 362	10. 454	79. 507	1. 00 60. 16
	ATOM	3379	CG	GLU	442	36. 822	10. 936	80. 859	1. 00 65. 44
	ATOM	3380	CD	GLU	442	37. 596	12. 107	81. 450	1. 00 69. 63
20	ATOM	3381	0E1	GLU	442	38. 824	11. 984	81. 667	1. 00 71. 27
•	ATOM	3382	0E2	GLU	442	36. 965	13. 155	81. 709	1. 00 72. 91
	ATOM	3383	С	GLU	442	35. 118	9. 938	78. 579	1. 00 54. 68
	ATOM	3384	0	GLU	442	34. 104	9. 495	79. 126	1. 00 56. 30
	ATOM	3385	N	GLU	443	35. 094	10. 942	77. 714	1. 00 51. 73
25	ATOM	3386	CA	GLU	443	33. 840	11. 555	77. 307	1. 00 51. 12
	ATOM	3387	CB	GLU	443	33. 706	12. 960	77. 888	1. 00 51. 77
	ATOM	3388	CG	GLU	443	32. 561	13. 086	78. 869	1. 00 49. 05
	ATOM	3389	CD	GLU	443	31. 202	12. 812	78. 239	1. 00 48. 41
	ATOM	3390	0E1	GLU	443	30. 245	12. 572	79. 006	1. 00 48. 06

- 133 -

						10	o .		
	ATOM	3391	0E2	GLU	443	31. 084	12. 842	76. 990	1. 00 44. 46
	ATOM	3392	C	GLU	443	33. 851	11. 614	75. 793	1. 00 50. 48
	ATOM	3393	0	GLU	443	33. 624	12. 662	75. 191	1. 00 50. 61
	ATOM	3394	N	GLY	444	34. 131	10. 458	75. 199	1. 00 49. 69
5	ATOM	3395	CA	GLY	444	34. 213	10. 321	73. 760	1. 00 46. 29
	ATOM	3396	C	GLY	444	33. 300	11. 190	72. 928	1. 00 45. 39
	ATOM	3397	0	GLY	444	33. 786	12. 031	72. 181	1. 00 44. 10
	MOTA	3398	N	SER	445	31. 990	10. 996	73. 052	1. 00 44. 40
	ATOM	3399	CA	SER	445	31. 035	11. 765	72. 263	1. 00 45. 82
10	ATOM	3400	CB	SER	445	29. 614	11. 258	72. 505	1. 00 43. 70
	ATOM	3401	OG	SER	445	29. 248	11. 396	73. 860	1. 00 51. 13
	ATOM	3402	C	SER	445	31. 108	13. 265	72. 523	1. 00 45. 79
	ATOM	3403	0	SER	445	31. 381	14. 043	71. 607	1. 00 46. 62
	ATOM	3404	N	GLY	446	30. 867	13. 666	73. 766	1. 00 45. 46
15	ATOM	3405	CA	GLY	446	30. 924	15. 075	74. 112	1.00 44.61
	ATOM	3406	C	GLY	446	32. 176	15. 778	73. 615	1. 00 44. 65
	ATOM	3407	0	GLY	446	32. 085	16. 754	72. 872	1. 00 45. 17
	ATOM	3408	N	ARG	447	33. 344	15. 286	74. 024	1. 00 44. 10
	ATOM	3409	CA	ARG	447	34. 615	15. 878	73. 615	1. 00 44. 23
20	ATOM	3410	CB	ARG	447	35. 765	15. 244	74. 396	1. 00 44. 71
	ATOM	3411	CG	ARG	447	36. 079	15. 917	75. 720	1. 00 46. 63
	ATOM	3412	CD	ARG	447	36. 405	14. 896	76. 794	1. 00 48. 87
	ATOM	3413	NE	ARG	447	37. 226	13. 804	76. 286	1. 00 53. 97
	ATOM	3414	CZ	ARG	447	38. 507	13. 915	75. 956	1. 00 55. 65
25	ATOM	3415	NH1	ARG	447	39. 130	15. 076	76. 085	1. 00 56. 71
	ATOM	3416	NH2	ARG	447	39. 161	12. 862	75. 486	1. 00 58. 00
	ATOM	3417	C	ARG	447	34. 891	15. 739	72. 122	1. 00 45. 53
	ATOM	3418	0	ARG	447	35. 506	16. 617	71. 508	1. 00 45. 95
	ATOM	3419	N	GLY	448	34. 444	14. 630	71. 543	1. 00 45. 12

PCT/JP03/06054 WO 03/097824

						- 13	4 -		
	ATOM	3420	CA	GLY	448	34. 667	14. 395	70. 129	1. 00 43. 75
	ATOM	3421	С	GLY	448	33. 915	15. 390	69. 275	1. 00 44. 42
	ATOM	3422	0	GLY	448	34. 497	16. 033	68. 401	1. 00 43. 25
	ATOM	3423	N	ALA	449	32. 617	15. 508	69. 530	1. 00 44. 33
5	ATOM	3424	CA	ALA	449	31. 764	16. 435	68. 798	1. 00 46. 02
	ATOM	3425	CB	ALA	449	30. 349	16. 393	69. 362	1. 00 44. 02
	ATOM	3426	C	ALA	449	32. 334	17. 852	68. 901	1. 00 47. 27
	ATOM	3427	0	ALA	449	32. 388	18. 585	67. 910	1. 00 46. 99
	ATOM	3428	N	ALA	450	32. 771	18. 226	70. 100	1. 00 47. 32
10	ATOM	3429	CA	ALA	450	33. 337	19. 549	70. 320	1. 00 48. 93
	ATOM	3430	CB	ALA	450	33. 590	19. 771	71. 803	1. 00 48. 70
	ATOM	3431	C	ALA	450	34. 630	19. 752	69. 537	1. 00 49. 10
	ATOM	3432	0	ALA	450	34. 795	20. 770	68. 864	1. 00 51. 55
	ATOM	3433	N	LEU	451	35. 546	18. 792	69. 625	1. 00 47. 13
15	ATOM	3434	CA	LEU	451	36. 828	18. 889	68. 923	1. 00 46. 08
	ATOM	3435	CB	LEU	451	37. 693	17. 661	69. 226	1. 00 43. 72
	ATOM	3436	CG	LEU	451	38. 376	17. 636	70. 598	1. 00 44. 07
	ATOM	3437	CD1	LEU	451	38. 798	16. 218	70. 955	1. 00 41. 74
	ATOM	3438	CD2	LEU	451	39. 577	18. 574	70. 574	1. 00 40. 23
20	ATOM	3439	C	LEU	451	36. 672	19. 055	67. 410	1. 00 45. 46
	ATOM	3440	0	LEU	451	37. 495	19. 708	66. 760	1. 00 46. 36
	ATOM	3441	N	VAL	452	35. 618	18. 465	66. 857	1. 00 43. 95
	ATOM	3442	CA	VAL	452	35. 348	18. 552	65. 428	1. 00 44. 38
	ATOM	3443	CB	VAL	452	34. 426	17. 376	64. 959	1. 00 43. 85
25	ATOM	3444	CG1	VAL	452	33. 998	17. 576	63. 513	1. 00 41. 59
	ATOM	3445	CG2	VAL	452	35. 169	16. 040	65. 087	1. 00 40. 86
	ATOM	3446	C	VAL	452	34. 687	19. 905	65. 125	1. 00 45. 31
	ATOM	3447	0	VAL	452	34. 881	20. 482	64. 056	1. 00 42. 97
	ATOM	3448	N	SER	453	33. 912	20. 411	66. 077	1. 00 46. 60

- 135 -

	ATOM	3449	CA	SER	453	33. 253	21. 693	65. 900	1. 00 49. 07
	ATOM	3450	CB	SER	453	32. 204	21. 902	66. 986	1. 00 47. 21
	ATOM	3451	0G	SER	453	31. 146	20. 972	66. 845	1. 00 44. 37
	ATOM	3452	C	SER	453	34. 293	22. 806	65. 951	1. 00 51. 53
5	ATOM	3453	0	SER	453	34. 150	23. 820	65. 281	1. 00 52. 56
	ATOM	3454	N	ALA	454	35. 352	22. 593	66. 728	1. 00 54. 40
	ATOM	3455	CA	ALA	454	36. 430	23. 567	66. 881	1. 00 56. 39
	ATOM	3456	СВ	ALA	454	37. 336	23. 158	68. 031	1. 00 55. 74
	ATOM	3457	C	ALA	454	37. 259	23. 751	65. 614	1. 00 58. 75
10	ATOM	3458	0	ALA	454	37. 863	24. 807	65. 408	1. 00 59. 45
	ATOM	3459	N	VAL	455	37. 310	22. 719	64. 779	1. 00 60. 29
	ATOM	3460	CA	VAL	455	38. 063	22. 796	63. 535	1. 00 61. 78
	ATOM	3461	CB	VAL	455	38. 603	21. 416	63. 112	1. 00 61. 44
	ATOM	3462	CG1	VAL	455	39. 090	21. 464	61. 672	1. 00 60. 81
15	ATOM	3463	CG2	VAL	455	39. 737	21. 005	64. 031	1. 00 60. 68
	ATOM	3464	C	VAL	455	37. 152	23. 330	62. 442	1. 00 63. 56
	ATOM	3465	0	VAL	455	37. 550	24. 176	61. 643	1. 00 63. 25
	ATOM	3466	N	ALA	456	35. 921	22. 835	62. 416	1. 00 65. 38
	ATOM	3467	CA	ALA	456	34. 959	23. 275	61. 422	1. 00 69. 39
20	ATOM	3468	CB	ALA	456	33. 751	22. 354	61. 423	1. 00 68. 17
	ATOM	3469	C	ALA	456	34. 522	24. 709	61.710	1. 00 73. 10
	ATOM	3470	0	ALA	456	33. 975	25. 382	60. 837	1. 00 73. 04
	ATOM	3471	N	CYS	457	34. 771	25. 170	62. 935	1. 00 77. 06
	ATOM	3472	CA	CYS	457	34. 390	26. 521	63. 341	1. 00 81. 01
25	ATOM	3473	CB	CYS	457	34. 192	26. 599	64. 856	1. 00 80. 51
	ATOM	3474	SG	CYS	457	33. 478	28. 151	65. 432	1. 00 81. 75
	ATOM	3475	C	CYS	457	35. 420	27. 554	62. 916	1. 00 83. 65
	ATOM	3476	0	CYS	457	35. 312	28. 726	63. 275	1. 00 85. 11
	ATOM	3477	N	LYS	458	36. 430	27. 118	62. 172	1. 00 86. 29

- 136 -

	ATOM	3478	CA	LYS	458	37. 441	28. 041	61. 683	1. 00 89. 14
	ATOM	3479	CB	LYS	458	38. 843	27. 441	61. 803	1. 00 88. 60
	ATOM	3480	CG	LYS	458	39. 932	28. 486	61. 632	1. 00 89. 51
	ATOM	3481	CD	LYS	458	41. 276	27. 992	62. 130	1. 00 89. 70
5	ATOM	3482	CE	LYS	458	42. 257	29. 146	62. 269	1. 00 89. 22
	ATOM	3483	NZ	LYS	458	41. 718	30. 194	63. 180	1. 00 88. 81
	MOTA	3484	С	LYS	458	37. 096	28. 310	60. 232	1. 00 91. 26
	ATOM	3485	0	LYS	458	37. 936	28. 733	59. 438	1. 00 91. 56
	ATOM	3486	N	LYS	459	35. 834	28. 043	59. 901	1. 00 93. 94
10	ATOM	3487	CA	LYS	459	35. 302	28. 240	58. 548	1. 00 96. 28
	ATOM	3488	CB	LYS	459	35. 323	26. 923	57. 765	1. 00 96. 25
	ATOM	3489	CG	LYS	459	36. 719	26. 409	57. 421	1. 00 96. 30
	ATOM	3490	CD	LYS	459	37. 458	27. 348	56. 475	1. 00 96. 73
	ATOM	3491	CE	LYS	459	38. 833	26. 801	56. 111	1. 00 97. 12
15	ATOM	3492	NZ	LYS	459	39. 577	27. 717	55. 197	1. 00 97. 75
	ATOM	3493	C	LYS	459	33. 863	28. 759	58. 624	1. 00 97. 78
	ATOM	3494	0	LYS	459	33. 417	29. 516	57. 758	1. 00 98. 11
	ATOM	3495	N	ALA	460	33. 153	28. 327	59. 666	1. 00 99. 29
	ATOM	3496	CA	ALA	460	31. 778	28. 738	59. 916	1. 00100. 54
20	ATOM	3497	CB	ALA	460	31. 028	27. 644	60. 681	1. 00100. 58
	ATOM	3498	C	ALA	460	31. 765	30. 042	60. 719	1. 00101. 56
	ATOM	3499	0	ALA	460	30. 755	30. 750	60. 777	1. 00101. 79
	ATOM	3500	N	CYS	461	32. 899	30. 360	61. 338	1. 00102. 59
	ATOM	3501	CA	CYS	461	33. 033	31. 572	62. 156	1. 00103. 00
25	ATOM	3502	CB	CYS	461	33. 145	31. 169	63. 624	1. 00103. 05
	ATOM	3503	SG	CYS	461	33. 354	32. 536	64. 774	1. 00103. 32
	ATOM	3504	C	CYS	461	34. 265	32. 367	61. 753	1. 00103. 21
	ATOM	3505	0	CYS	461	34. 788	33. 098	62. 620	1. 00103. 54
•	ATOM	3506	OXT	CYS	461	34. 665	32. 248	60. 578	1. 00103. 24

- 137 -

	TER 3507 CYS		461						
	ATOM	3508	C1	GLC	500	23. 469	1. 767	65. 521	1. 00 30. 82
	ATOM	3509	C2	GLC	500	23. 418	3. 122	64. 706	1. 00 29. 40
	ATOM	3510	C3	GLC	500	24. 837	3. 619	64. 445	1. 00 29. 78
5	ATOM	3511	C4	GLC	500	25. 496	3. 860	65. 778	1. 00 28. 77
	ATOM	3512	C5	GLC	500	25. 529	2. 514	66. 593	1. 00 27. 72
	ATOM	3513	C6	GLC	500	26. 162	2. 717	67. 936	1. 00 26. 98
	ATOM	3514	01	GLC	500	24. 127	0. 765	64. 857	1. 00 36. 62
	ATOM	3515	02	GLC	500	22. 756	2. 872	63. 483	1. 00 32. 75
10	ATOM	3516	03	GLC	500	24. 786	4. 837	63. 698	1. 00 29. 31
	ATOM	3517	04	GLC	500	26. 853	4. 253	65. 639	1. 00 29. 10
	ATOM	3518	05	GLC	500	24. 152	2. 040	66. 770	1. 00 29. 59
	ATOM	3519	06	GLC	500	25. 517	3. 687	68. 814	1. 00 30. 98
	TER 35	20 G	LC	500					
15	ATOM	3521	S1	CP1	501	36. 312	19. 051	60. 824	1. 00 50. 83
	ATOM	3522	C2	CP1	501	35. 720	19. 405	59. 240	1.00 49.96
	ATOM	3523	C3	CP1	501	36. 398	18. 662	58. 318	1.00 49.96
	ATOM	3524	N4	CP1	501	37. 363	17. 829	58. 827	1. 00 49. 99
	ATOM	3525	C5	CP1	501	37. 429	17. 932	60. 162	1.00 49.39
20	ATOM	3526	N6	CP1	501	38. 317	17. 183	60. 878	1. 00 48. 07
	ATOM	3527	C7	CP1	501	38. 575	17. 220	62. 294	1. 00 46. 71
	ATOM	3528	80	CP1	501	37. 968	18. 001	63. 039	1. 00 47. 48
	ATOM	3529	C9	CP1	501	40. 386	16. 405	64. 107	1. 00 46. 71
	ATOM	3530	C10	CP1	50 1	39. 620	16. 253	62. 884	1.00 47.34
25	ATOM	3531	C11	CP1	501	39. 831	15. 053	62. 110	1. 00 46. 39
	ATOM	3532	C12	CP1	501	40. 749	14.066	62. 520	1. 00 46. 34
	ATOM	3533	C13	CP1	501	41. 496	14. 237	63. 722	1. 00 47. 57
	ATOM	3534	F	CP1	501	42. 392	13. 310	64. 155	1. 00 48. 24
	ATOM	3535	C15	CP1	501	41. 306	15. 404	64. 502	1. 00 46. 98

- 138 -ATOM 3536 S16 CP1 501 40. 907 12. 638 61. 485 1. 00 44. 61 ATOM 3537 N17 CP1 501 42. 782 10.864 62. 327 1. 00 40. 11 ATOM 3538 C18 CP1 501 42. 525 11. 942 61. 488 1.00 41.49 ATOM N19 CP1 3539 501 43. 528 12. 436 60.686 1. 00 42. 95 5 ATOM 3540 C20 CP1 501 44. 549 11. 571 61.054 1. 00 43. 00 ATOM 3541 C21 CP1 501 44. 116 10. 651 62.014 1. 00 39. 24 ATOM C22 CP1 3542 501 41.894 10. 152 63. 276 1. 00 32. 83 ATOM 3543 N23 CP1 501 40. 279 17. 465 64. 913 1.00 46.10 TER 3544 CP1 501 JJJJ 10 ATOM 3545 NA+1 NA1 600 36. 903 10. 609 46. 484 1. 00 48. 71 ATOM 3546 0 HOH 601 20. 332 -23. 624 70. 208 1. 00 45. 57 ATOM 3547 0 HOH 602 18. 766 -22. 456 65. 630 1. 00 41. 87 ATOM 3548 0 HOH 603 13. 471 -20. 599 70. 297 1. 00 45. 83 **ATOM** 3549 0 HOH 604 11. 104 -30. 408 72. 307 1. 00 48. 61 **ATOM** 15 3550 O HOH 605 6. 606 -26. 352 79. 319 1. 00 59. 47 ATOM 3551 0 HOH 606 15. 315 -28. 400 85. 522 1.00 48.85 ATOM 3552 0 HOH 607 18. 765 -29. 705 82. 807 1. 00 55. 60 ATOM 3553 0 HOH 608 27. 649 -22. 465 84. 914 1. 00 39. 29 ATOM 3554 0 HOH 609 28. 890 -18. 936 88. 942 1. 00 38. 24 ATOM 3555 0 HOH 610 31. 397 -19. 437 88. 300 1. 00 44. 33 ATOM 3556 0 HOH 611 33. 495 -12. 487 88. 943 1. 00 40. 63 ATOM 3557 0 HOH 612 28. 110 -14. 193 93. 119 1. 00 37. 41 **ATOM** 3558 0 HOH 613 22. 501 -9. 921 93.883 1.00 55.62 **ATOM** 3559 HOH 0 614 18. 084 -9. 259 91. 966 1.00 48.69 ATOM 3560 0 HOH 615 19. 985 -7. 585 89. 518 1.00 54.30 ATOM 3561 0 HOH 616 18. 162 -4. 982 77. 583 1. 00 42. 44

20

25

ATOM

ATOM

ATOM

3562 0

3563 0

3564 0

HOH

HOH

HOH

617

618

619

15. 728 -5. 792

-7.338

-9.827

17. 869

14. 631

77. 752

75. 263

77. 339

1. 00 49. 61

1. 00 52. 43

1.00 27.38

- 139 -

							-			
	ATOM	3565	0	НОН	620	14. 305	-5. 926	69. 446	1. 00	38. 14
	MOTA	3566	0	НОН	621	13. 616	-3. 087	68. 452	1. 00	51. 29
	ATOM	3567	0	НОН	622	15. 537	-2. 602	66. 865	1. 00	35. 42
	ATOM	3568	0	НОН	623	18. 821	-1. 831	65. 405	1. 00	31. 67
5	ATOM	3569	0	НОН	624	17. 261	0. 174	60. 996	1. 00	34. 87
	ATOM	3570	0	НОН	625	18. 895	-0. 653	58. 995	1. 00	41. 82
	ATOM	3571	0	НОН	626	20. 053	-2. 478	55. 373	1. 00	35. 91
	ATOM	3572	0	НОН	627	22. 217	-1. 019	55. 062	1. 00	36. 64
	ATOM	3573	0	нон	628	25. 137	-0. 153	56. 470	1. 00	24. 69
10	ATOM	3574	0	НОН	629	22. 562	1. 498	59. 774	1. 00	31. 68
	ATOM	3575	0	НОН	630	24. 912	0. 122	62. 135	1. 00	25. 12
	ATOM	3576	0	НОН	631	25. 071	2. 179	71. 129	1. 00	26. 49
	ATOM	3577	0	НОН	632	27. 157	5. 888	71. 903	1. 00	41. 05
	ATOM	3578	0	НОН	633	29. 481	7. 227	73. 290	1. 00	47. 52
15	ATOM	3579	0	НОН	634	31. 223	8. 383	71. 417	1. 00	44. 33
	ATOM	3580	0′	НОН	635	32. 517	7. 788	77. 983	1. 00	44. 30
	ATOM	3581	0	НОН	636	35. 945	15. 748	80. 298	1. 00	32. 85
	ATOM	3582	0	НОН	637	41. 395	13. 522	74. 250	1. 00	52. 40
	ATOM	3583	0	НОН	638	41. 454	16. 603	73. 492	1. 00	35. 38
20	ATOM	3584	0	НОН	639	44. 238	18. 657	64. 621	1. 00	57. 41
	ATOM	3585	0	НОН	640	48. 524	12. 679	62. 857	1. 00	55. 80
	ATOM	3586	0	НОН	641	50. 088	10. 035	69. 707	1. 00	37. 86
	ATOM	3587	0	НОН	642	47. 834	4. 897	73. 654	1. 00	43. 91
	ATOM	3588	0	НОН	643	47. 658	2. 456	75. 515	1. 00	46. 89
25	ATOM	3589	0	НОН	644	45. 862	0.872	75. 793	1. 00	36. 22
	ATOM	3590	0	НОН	645	42. 167	-0. 401	77. 407	1. 00	46. 09
	ATOM	3591	0	НОН	646	39. 939	-1. 664	76. 818	1. 00	28. 80
	ATOM	3592	0	НОН	647	41. 804	2. 590	77. 672	1. 00	30.06
	ATOM	3593	0	НОН	648	35. 946	-0. 230	81. 704	1. 00	44. 47

- 140 -

						1-10		
	ATOM	3594	0	НОН	649	35. 692 -3. 832	84. 533	1. 00 48. 68
	ATOM	3595	0	НОН	650	35. 503 -5. 648	82. 602	1. 00 39. 36
	ATOM	3596	0	НОН	651	34. 249 <i>-</i> 6. 282	78. 743	1. 00 28. 80
	ATOM	3597	0	НОН	652	41. 570 -6. 014	79. 114	1. 00 41. 31
5	ATOM	3598	0	НОН	653	42. 725 -8. 259	76. 851	1. 00 34. 12
	ATOM	3599	0	НОН	654	42. 400 -10. 619	75. 649	1. 00 32. 12
	ATOM	3600	0	НОН	655	44. 745 -10. 112	73. 414	1. 00 30. 95
	ATOM	3601	0	НОН	656	44. 977 -6. 287	75. 709	1. 00 54. 82
	ATOM	3602	0	НОН	657	49. 536 -3. 896	71. 639	1. 00 46. 68
10	ATOM	3603	0	НОН	658	47. 500 -6. 424	68. 659	1. 00 37. 00
	ATOM	3604	0	НОН	659	46. 887 -8. 289	65. 948	1. 00 35. 73
	ATOM	3605	0	НОН	660	45. 007 -14. 004	70. 403	1. 00 31. 53
	ATOM	3606	0	НОН	661	44. 785 -16. 666	70. 958	1. 00 39. 67
	ATOM	3607	0	НОН	662	39. 546 -15. 899	74. 666	1. 00 38. 86
15	ATOM	3608	0	НОН	663	38. 539 -14. 985	72. 232	1. 00 34. 80
	ATOM	3609	0	НОН	664	38. 252 -17. 032	68. 208	1. 00 47. 76
	ATOM	3610	0	НОН	665	39. 836 -15. 454	66. 437	1. 00 38. 55
	ATOM	3611	0	НОН	666	36. 975 -19. 549	67. 636	1. 00 43. 12
	ATOM	3612	0	НОН	667	37. 200 -20. 262	70. 388	1. 00 51. 64
20	ATOM	3613	0	НОН	668	33. 328 -20. 695	70. 543	1. 00 49. 91
	ATOM	3614	0	НОН	669	32. 877 -18. 716	69. 209	1.00 30.69
	ATOM	3615	0	НОН	670	30. 463 -18. 228	69. 770	1. 00 29. 35
	ATOM	3616	0	НОН	671	29. 403 -18. 862	72. 028	1. 00 29. 94
	ATOM	3617	0	НОН	672	31. 677 -19. 876	75. 929	1. 00 57. 83
25	ATOM	3618	0	НОН	673	32. 105 -15. 120	81. 811	1. 00 56. 36
	ATOM	3619	0	НОН	674	25. 408 -13. 262	70. 399	1. 00 19. 73
	ATOM	3620	0	НОН	675	20. 199 -11. 770	66. 567	1. 00 31. 95
	ATOM	3621	0	НОН	676	20. 589 -11. 169	63. 684	1. 00 28. 18
	ATOM	3622	0	НОН	677	18. 416 -12. 169	62. 695	1. 00 34. 73

- 141 -

						_			
	ATOM	3623	0	НОН	678	18. 037	-12. 657	56. 097	1. 00 62. 31
	ATOM	3624	0	НОН	679	15. 700	-10. 616	55. 942	1. 00 49. 61
	ATOM	3625	0	НОН	680	17. 485	-8. 240	55. 372	1. 00 37. 91
	ATOM	3626	0	НОН	681	22. 370	-12. 555	56. 733	1. 00 27. 53
5	ATOM	3627	0	НОН	682	21. 048	-16. 039	51. 265	1. 00 53. 09
	ATOM	3628	0	НОН	683	25. 649	-8. 890	49. 620	1. 00 43. 30
	ATOM	3629	0	НОН	684	25. 472	-5. 908	50. 031	1. 00 43. 23
	ATOM	3630	0	НОН	685	27. 841	-3. 633	51. 119	1. 00 34. 64
	ATOM	3631	0	НОН	686	23. 209	1. 359	50. 792	1. 00 44. 06
10	ATOM	3632	0	НОН	687	26. 198	3. 711	50. 151	1. 00 38. 65
	ATOM	3633	0	НОН	688	27. 728	6. 416	50. 494	1. 00 39. 66
	ATOM	3634	0	НОН	689	30. 171	5. 238	50. 152	1. 00 36. 90
	ATOM	3635	0	НОН	690	32. 248	6. 334	48. 750	1. 00 33. 36
	ATOM	3636	0	НОН	691	36. 665	2. 495	46. 196	1. 00 32. 68
15	ATOM	3637	0	НОН	692	37. 821	0. 573	47. 634	1. 00 47. 42
	ATOM	3638	0	НОН	693	42. 794	0. 201	52. 097	1. 00 44. 65
	ATOM	3639	0	НОН	694	41. 559	1. 725	53. 810	1. 00 38. 52
	ATOM	3640	0	НОН	695	43. 105	3. 662	55. 242	1. 00 34. 89
	ATOM	3641	0	НОН	696	45. 510	2. 836	56. 086	1. 00 40. 92
20	ATOM	3642	0	НОН	697	50. 206	2. 510	60. 598	1. 00 45. 86
	ATOM		0	НОН	698	52. 258	1. 308	61. 720	1. 00 45. 43
	ATOM	3644	0	НОН	699	48. 954	1. 961	67. 618	1. 00 35. 43
	ATOM	3645	0	НОН	700	49. 694	-0. 399	68. 442	1. 00 39. 38
	ATOM	3646	0	НОН	701	40.015	-5. 106	51. 960	1. 00 36. 49
25	ATOM	3647	0	НОН	702	34. 048 -	-12. 903	50. 839	1. 00 37. 87
	ATOM	3648	0	НОН	703	33. 190 -	-14. 541	52. 882	1. 00 51. 09
	ATOM	3649	0	НОН	704	34. 961 -	-16. 254	52. 067	1. 00 35. 42
	ATOM	3650	0	НОН	705	30. 397 -	-15. 105	52. 902	1. 00 39. 69
	ATOM	3651	0	НОН	706	31.770 -	-20. 985	57. 467	1. 00 48. 16

- 142 -

	ATOM	3652	0	НОН	707	37. 192	-19. 637	55. 866	1. 00 46. 43
	ATOM	3653	0	НОН	708	38. 187	-23. 567	61. 924	1. 00 40. 92
	ATOM	3654	0	НОН	709	38. 470	-23. 126	65. 456	1. 00 45. 43
٠.	ATOM	3655	0	НОН	710	30. 533	-23. 844	62. 578	1. 00 37. 90
5	ATOM	3656	0	НОН	711	26. 515	-21. 678	62. 544	1. 00 39. 08
	ATOM	3657	0	НОН	712	27. 242	-20. 400	65. 671	1. 00 33. 60
	ATOM	3658	0	НОН	713	25. 907	-18. 116	65. 171	1. 00 24. 64
	ATOM	3659	0	НОН	714	28. 226	-26. 567	74. 622	1. 00 44. 93
	ATOM	3660	0	НОН	715	31. 091	-28. 151	73. 632	1. 00 39. 43
10	ATOM	3661	0	НОН	716	28. 020	-32. 685	74. 512	1. 00 48. 35
	ATOM	3662	0	НОН	717	28. 401	-36. 363	77. 956	1. 00 47. 24
	ATOM	3663	0	НОН	718	26. 796	-22. 733	95. 375	1. 00 34. 50
	ATOM	3664	0	НОН	719	23. 506	-18. 729	96. 532	1. 00 46. 50
	ATOM	3665	0	НОН	720	7. 193	-13. 392	87. 134	1. 00 48. 33
15	ATOM	3666	0	НОН	721	23. 769	-2. 393	77. 130	1. 00 39. 79
	ATOM	3667	0	НОН	722	21. 538	6. 141	76. 432	1. 00 52. 58
	ATOM	3668	0	НОН	723	26. 038	13. 552	80. 579	1. 00 47. 60
	ATOM	3669	0	НОН	724	25. 460	9. 823	62. 329	1. 00 33. 10
	ATOM	3670	0	НОН	725	27. 321	10. 443	60. 403	1. 00 39. 23
20	ATOM	3671	0	НОН	726	26. 658	8. 602	58. 871	1. 00 32. 16
	ATOM	3672	0	НОН	727	29. 670	11.059	61. 417	1. 00 24. 95
	ATOM	3673	0	НОН	728	30. 585	13. 937	60. 932	1. 00 41. 90
	ATOM	3674	0	НОН	729	34. 591	18. 790	55. 094	1. 00 40. 47
	ATOM	3675	0	НОН	730	34. 117	19. 353	52. 182	1. 00 54. 62
25	ATOM	3676	0	НОН	731	31. 428	16. 535	48. 224	1. 00 37. 06
	ATOM	3677	0	НОН	732	31. 432	15. 488	46. 047	1. 00 33. 85
	ATOM	3678	0	НОН	733	27. 660	11. 291	51. 289	1. 00 40. 74
	ATOM	3679	0	НОН	734	27. 629	10. 029	53. 857	1. 00 30. 56
	ATOM	3680	0	НОН	735	22. 996	7. 311	45. 724	1. 00 57. 65

- 143 -

28. 016 21. 804 51. 201 1. 00 44. 12

22. 797 26. 498 63. 763 1. 00 53. 69

ATOM	3681	0	НОН	736	25. 532	2. 038	43. 263	1. 00	34. 43
ATOM	3682	0	НОН	737	33. 508	3. 221	40. 211	1. 00	45. 05
ATOM	3683	0	НОН	738	35. 525	1. 426	41. 242	1. 00	44. 71
ATOM	3684	0	НОН	739	37. 227	9. 576	44. 352	1. 00	31. 96
ATOM	3685	0	НОН	740	39. 858	15. 804	52. 237	1. 00	43. 41
ATOM	3686	0	НОН	741	42. 053	15. 415	53. 940	1. 00	47. 39
ATOM	3687	0	НОН	742	32. 200	24. 148	58. 683	1. 00	45. 42

10 ATOM 3690 0 HOH 745 10. 552 26. 073 62. 119 1. 00 43. 13

743

744

ATOM 3691 0 HOH 746 11. 190 7. 673 68. 338 1. 00 57. 06 ATOM 3692 0 HOH 747 20. 818 -3. 881 51. 225 1. 00 56. 55

ATOM 3692 O HOH 747 20. 818 -3. 881 51. 225 1. 00 56. 55 ATOM 3693 O HOH 748 29. 885 -6. 633 43. 981 1. 00 46. 17

ATOM 3694 0 HOH 749 40.811 30.945 68.309 1.00 45.88

15 TER 3695 HOH

3688 0

3689 0

HOH

НОН

5

ATOM

ATOM

なお、表1は、当業者によって慣用されているプロテイン・データ・バンク の表記方法に準拠して作成されている。表1中、GLCはグルコース分子を表 し、CP1は式IIIaで表される化合物を表し、HOHは水分子を表す。

また、本発明においては、配列番号8に示すGKタンパク質の結晶を調製することに成功している(後述の実施例参照)。そしてこのようにして得られたGKタンパク質の結晶は、格子定数が、下記式(5)~(8):

25 a=b=103. 2±5 オングストローム … (5)

c=281.0±7オングストローム … (6)

 $\alpha = \beta = 90^{\circ} \qquad \cdots \quad (7)$

 $\gamma = 120^{\circ}$... (8)

を満たすものであった。また、この結晶は、空間群が P6522 であることが

- 144 -

解明された。ここで、前記 a=b は 103.2 ± 3 オングストロームであることが好ましく、 103.2 ± 2 オングストロームであることがより好ましく、 103.2 ± 1 オングストロームであることがさらに好ましい。また、前記 c は 281.0 ± 6 オングストロームであることが好ましく、 281.0 ± 4 オングストロームであることが好ましく、 281.0 ± 4 オングストロームであることがより好ましく、 281.0 ± 2 オングストロームであることがさらに好ましい。このようにして得られた GK タンパク質結晶の 3 次元構造座標を表 2 に示す。

	表 2								
	ATOM	1	CB	MET	15	54. 150	5. 972	67. 103	1. 00 55. 10
10	ATOM	2	CG	MET	15	55. 594	5. 943	67. 591	1. 00 55. 46
	ATOM	3	SD	MET	15	56. 013	4. 505	68. 603	1. 00 52. 92
	ATOM	4	CE	MET	15	56. 517	5. 326	70. 108	1. 00 51. 73
	ATOM	5	C	MET	15	52. 357	4. 955	65. 669	1. 00 56. 87
	ATOM	6	0	MET	15	52. 057	4. 609	64. 524	1. 00 57. 60
15	ATOM	7	N	MET	15	54. 770	4. 766	65. 028	1. 00 55. 00
	ATOM	.8	CA	MET	15	53. 800	4. 813	66. 167	1. 00 56. 04
	ATOM	9	N	VAL	16	51. 468	5. 456	66. 525	1. 00 55. 58
	ATOM	10	CA	VAL	16	50. 065	5. 625	66. 154	1. 00 52. 87
	ATOM	11	CB	VAL	16	49. 141	4. 862	67. 129	1. 00 49. 32
20	ATOM	12	CG1	VAL	16	47. 696	5. 016	66. 716	1. 00 48. 26
	ATOM	13	CG2	VAL	16	49. 508	3. 394	67. 126	1. 00 47. 28
	ATOM	14	C	VAL	16	49. 666	7. 097	66. 085	1. 00 53. 26
	ATOM	15	0	VAL	16	49. 218	7. 563	65. 040	1. 00 52. 32
	ATOM	16	N	GLU	17	49. 845	7. 828	67. 182	1. 00 56. 12
25	ATOM	17	CA	GLU	17	49. 511	9. 253	67. 210	1. 00 59. 41
	ATOM	18	CB	GLU	17	50. 102	9. 921	68. 456	1. 00 63. 35
	ATOM	19	CG	GLU	17	49. 063	10. 373	69. 484	1. 00 68. 69
	ATOM	20	CD	GLU	17	48. 174	11. 525	69. 004	1. 00 72. 00
	ATOM	21	0E1	GLU	17	47. 314	11. 964	69. 805	1. 00 74. 22

- 145 -

	ATOM	22	0E2	GLU	17	48. 328	11. 992	67. 847	1. 00 72. 36
	ATOM	23	C	GLU	17	50. 035	9. 963	65. 967	1. 00 59. 05
	ATOM	24	0	GLU	17	49. 521	11. 011	65. 566	1. 00 57. 70
	ATOM	25	N	GLN	18	51.070	9. 389	65. 367	1. 00 60. 75
5	ATOM	26	CA	GLN	18	51.661	9. 960	64. 170	1. 00 61. 70
	ATOM	27	CB	GLN	18	53. 038	9. 329	63. 895	1. 00 66. 55
	ATOM	28	CG	GLN	18	54. 001	9. 219	65. 110	1. 00 72. 22
	ATOM	29	CD	GLN	18	54. 509	10. 566	65. 654	1. 00 75. 87
	ATOM	30	0E1	GLN	18	55. 317	10.605	66. 595	1. 00 75. 55
10	ATOM	31	NE2	GLN	18	54. 037	11. 669	65. 067	1. 00 77. 63
	ATOM	32	C	GLN	18	50. 709	9. 682	63. 004	1. 00 59. 33
	ATOM	33	0	GLN	18	50. 322	10.601	62. 287	1. 00 59. 09
	ATOM	34	N	ILE	19	50. 321	8. 418	62. 832	1. 00 55. 64
	ATOM	35	CA	ILE	19	49. 416	8. 029	61. 747	1. 00 53. 41
15	ATOM	36	CB	ILE	19	49. 113	6. 529	61. 778	1. 00 52. 34
	ATOM	37	CG2	ILE	19	47. 964	6. 211	60. 832	1. 00 50. 69
	ATOM	38	CG1	ILE	19	50. 374	5. 754	61. 389	1. 00 52. 73
	ATOM	39	CD1	ILE	19	50. 186	4. 256	61. 274	1. 00 53. 73
	ATOM	40	C	ILE	19	48. 088	8. 774	61. 741	1. 00 53. 03
20	ATOM	41	0	ILE	19	47. 791	9. 528	60. 812	1. 00 52. 86
	ATOM	42	N	LEU	20	47. 279	8. 548	62. 766	1. 00 52. 38
	ATOM	43	CA	LEU	20	45. 997	9. 228	62. 861	1. 00 51. 95
	ATOM	44	CB	LEU	20	45. 336	8. 937	64. 195	1. 00 50. 70
	ATOM	45	CG	LEU	20	44. 563	7. 632	64. 212	1. 00 51. 65
25	ATOM	46	CD1	LEU	20	45. 450	6. 454	63. 803	1. 00 51. 77
	ATOM	47	CD2	LEU	20	44. 010	7. 463	65. 599	1. 00 51. 02
	ATOM	48	C	LEU	20	46. 158	10. 723	62. 727	1. 00 52. 33
	ATOM	49	0	LEU	20	45. 204	11. 427	62. 401	1. 00 54. 11
	ATOM	50	N	ALA	21	47. 366	11. 207	62. 990	1. 00 51. 49

- 146 -

	ATOM	51	CA	ALA	21	47. 6	43 12.62	8 62. 907	1. 00	49. 87
	ATOM	52	CB	ALA	21	49. 0	66 12.89	9 63. 342	1. 00	50. 58
	ATOM	53	C	ALA	21	47. 4	14 13. 13	3 61. 491	1. 00	48. 63
	ATOM	54	0	ALA	21	47. 0	90 14. 30	1 61. 286	1. 00	47. 74
5	ATOM	55	N	GLU	22	47. 5	71 12. 24	3 60. 517	1. 00	47. 60
	ATOM	56	CA	GLU	22	47. 3	83 12. 60	5 59. 121	1. 00	48. 69
	ATOM	57	CB	GLU	22	47. 8	18 11. 45	7 58. 215	1. 00	51. 49
	ATOM	58	CG	GLU	22	49. 2	82 11. 52	0 57. 838	1. 00	59. 47
	ATOM	59	CD	GLU	22	49. 7	38 10. 33	5 57. 003	1. 00	64. 78
10	ATOM	60	0E1	GLU	22	50. 89	96 10. 36	9 56. 519	1. 00	66. 47
	ATOM	61	0E2	GLU	22	48. 94	48 9. 37	3 56. 839	1. 00	68. 05
	ATOM	62	C	GLU	22	45. 9	54 12. 99	9 58. 794	1. 00	48. 26
	ATOM	63	0	GLU	22	45. 68	83 13. 53	8 57. 721	1. 00	48. 86
	ATOM	64	N	PHE	23	45. 03	36 12. 73	3 59.715	1. 00	47. 14
15	ATOM	65	CA	PHE	23	43. 64	11 13. 07	59. 490	1. 00	45. 51
	ATOM	66	CB	PHE	23	42. 72	22 12. 04	5 60. 147	1. 00	41. 36
	ATOM	67	CG	PHE.	23	42. 54	14 10. 78	3 59. 347	1. 00	37. 96
	ATOM	68	CD1	PHE	23	43. 20	9. 613	3 59. 697	1. 00	35. 23
	ATOM	69	CD2	PHE	23	41. 68	37 10. 758	3 58. 2 55	1. 00	37. 67
20	ATOM	70	CE1	PHE	23	43. 01	8. 43	58.968	1. 00	32. 67
	ATOM	71	CE2	PHE	23	41. 49	9. 583	3 57. 523	1. 00	37. 15
	ATOM	72	CZ	PHE	23	42. 15	8. 423	57. 883	1. 00	33. 48
	ATOM	73	С	PHE	23	43. 31	0 14.468	60. 013	1. 00	47. 24
	ATOM	74	0	PHE	23	42. 22	7 14. 993	59. 767	1. 00	46. 34
25	ATOM	75	N	GLN	24	44. 24	5 15.068	60. 735	1. 00	50. 44
	ATOM	76	CA	GLN	24	44. 02	8 16.400	61. 279	1. 00	55. 06
	ATOM	77	CB	GLN	24	45. 30	6 16: 882	61. 979	1. 00	59. 10
	ATOM	78	CG	GLN	24	45. 71	5 16.023	63. 168	1. 00	62. 03
	ATOM	79	CD	GLN	24	44. 68	6 16.075	64. 277	1. 00	65. 56

- 147 -

						_	41		
	ATOM	80	0E	l GLN	24	44. 653	15. 207	65. 156	1. 00 66. 95
	ATOM	81	NE	GLN	24	43. 834	17. 103	64. 245	1. 00 65. 89
	ATOM	82	C	GLN	24	43. 644	17. 359	60. 149	1. 00 56. 09
	ATOM	83	0	GLN	24	43. 892	17. 073	58. 979	1. 00 57. 63
5	ATOM	84	N	LEU	25	43. 016	18. 476	60. 504	1. 00 55. 99
	ATOM	85	CA	LEU	25	42. 616	19. 501	59. 540	1. 00 55. 27
	ATOM	86	CB	LEU	25	41. 303	19. 128	58. 841	1. 00 54. 71
	ATOM	87	CG	LEU	25	41. 325	17. 896	57. 922	1. 00 53. 30
	ATOM	88	CD1	LEU	25	39. 928	17. 618	57. 419	1. 00 53. 18
10	ATOM	89	CD2	LEU	25	42. 264	18. 113	56. 755	1. 00 51. 55
	ATOM	90	C	LEU	25	42. 444	20. 786	60. 336	1. 00 56. 31
	ATOM	91	0	LEU	25	41. 377	21. 061	60. 889	1. 00 55. 85
	ATOM	92	N	GLN	26	43. 519	21. 563	60. 399	1. 00 58. 22
	ATOM	93	CA	GLN	26	43. 527	22. 807	61. 153	1. 00 58. 31
15	ATOM	94	CB	GLN	26	44. 980	23. 280	61. 361	1. 00 63. 03
	ATOM	95	CG	GLN	26	45. 118	24. 480	62. 313	1. 00 69. 87
	ATOM	96	CD	GLN	26	46. 490	25. 161	62. 245	1. 00 73. 70
	ATOM	97	0E1	GLN	26 -	47. 009	25. 446	61. 158	1. 00 74. 68
	ATOM	98	NE2	GLN	26	47. 067	25. 446	63. 411	1. 00 74. 99
20	ATOM	99	C	GLN	26	42. 702	23. 903	60. 485	1. 00 55. 29
	ATOM	100	0	GLN	26	42. 358	23. 811	59. 308	1. 00 51. 30
	ATOM	101	N	GLU	27	42. 389	24. 931	61. 267	1. 00 55. 08
	ATOM	102	CA	GLU	27	41. 617	26. 083	60. 824	1. 00 55. 66
	ATOM	103	CB	GLU	27	41. 940	27. 280	61. 709	1. 00 57. 13
25	ATOM	104	CG	GLU	27	41. 029	28. 469	61. 523	1. 00 59. 64
	ATOM	105	CD	GLU	27	39. 694	28. 272	62. 208	1. 00 62. 00
	ATOM	106	0E1	GLU	27	39. 685	27. 840	63. 382	1. 00 62. 44
	ATOM	107	0E2	GLU	27	38. 653	28. 559	61. 581	1. 00 64. 27
	ATOM	108	C	GLU	27	41. 905	26. 454	59. 380	1. 00 55. 70

- 148 -

	ATOM	109	0	GLU	27	41. 025	26. 416	58. 531	1. 00 56. 30
	ATOM	110	N	GLU	28	43. 147	26. 828	59. 113	1. 00 56. 74
	ATOM	111	CA	GLU	28	43. 571	27. 208	57. 770	1. 00 58. 34
	ATOM	112	CB	GLU	28	45. 102	27. 226	57. 714	1. 00 63. 94
5	ATOM	113	CG	GLU	28	45. 704	28. 026	56. 573	1. 00 70. 36
	ATOM	114	CD	GLU	28	45. 615	29. 524	56. 806	1. 00 74. 74
	ATOM	115	0E1	GLIJ	28	46. 245	30. 289	56. 040	1. 00 77. 18
	ATOM	116	0E2	GLU	28	44. 912	29. 938	57. 755	1. 00 77. 44
	ATOM	117	C	GLU	28	43. 032	26. 231	56. 721	1. 00 56. 56
10	ATOM	118	0 ·	GLU	28	42. 375	26. 641	55. 764	1. 00 54. 38
	ATOM	119	N	ASP	29	43. 316	24. 942	56. 921	1. 00 55. 20
	ATOM	120	CA	ASP	29	42. 893	23. 869	56. 015	1. 00 53. 13
	ATOM	121	CB	ASP	29	43. 106	22. 499	56. 667	1. 00 56. 36
	ATOM	122	CG	ASP	29	44. 570	22. 116	56. 758	1. 00 59. 69
15	ATOM	123	OD1	ASP	29	45. 263	22. 198	55. 717	1. 00 61. 07
	ATOM	124	OD2	ASP	29	45. 021	21. 727	57. 863	1. 00 60. 92
	ATOM	125	C	ASP	29	41. 439	23. 995	55. 607	1. 00 49. 74
	ATOM	126	0	ASP	29	41. 100	23. 924	54. 424	1. 00 47. 81
	ATOM	127	N	LEU	30	40. 579	24. 156	56. 603	1. 00 46. 04
20	ATOM	128	CA	LEU	30	39. 167	24. 309	56. 344	1. 00 43. 06
	ATOM	129	CB	LEU	30	38. 393	24. 491	57. 649	1. 00 39. 08
	ATOM	130	CG	LEU	30	38. 026	23. 218	58. 404	1. 00 36. 61
	ATOM	131	CD1	LEU	30	39. 280	22. 441	58. 756	1. 00 37. 28
	ATOM	132	CD2	LEU	30	37. 233	23. 576	59. 642	1. 00 35. 29
25	ATOM	133	С	LEU	30	38. 948	25. 516	55. 452	1. 00 44. 18
	ATOM	134	0	LEU	30	38. 410	25. 388	54. 354	1. 00 45. 60
	ATOM	135	N	LYS	31	39. 381	26. 685	55. 920	1. 00 44. 63
	ATOM	136	CA	LYS	31	39. 206	27. 927	55. 170	1. 00 43. 67
	ATOM	137	CB	LYS	31	40. 136	29. 020	55. 695	1. 00 45. 23

- 149 -

	ATOM	138	CG	LYS	31	39. 968	29. 361	57. 165	1. 00 46. 98
	ATOM	139	CD	LYS	31	38. 743	30. 221	57. 440	1. 00 45. 54
	ATOM	140	CE	LYS	31	38. 695	30. 675	58. 915	1. 00 45. 82
	ATOM	141	NZ	LYS	31	39. 836	31. 545	59. 387	1. 00 42. 73
5	ATOM	142	C	LYS	31	39. 483	27. 725	53. 697	1. 00 42. 23
	ATOM	143	0	LYS	31	38. 759	28. 241	52. 855	1. 00 41. 29
	ATOM	144	N	LYS	32	40. 535	26. 976	53. 385	1. 00 41. 79
	ATOM	145	CA	LYS	32	40. 877	26. 737	51. 994	1. 00 43. 47
	ATOM	146	CB	LYS	32	42. 171	25. 928	51. 888	1. 00 45. 16
10	ATOM	147	CG	LYS	32	42. 811	25. 974	50. 499	1. 00 50. 49
	ATOM	148	CD	LYS	32	44. 302	25. 565	50. 510	1. 00 54. 48
	ATOM	149	CE	LYS	32	44. 505	24. 086	50. 900	1. 00 57. 45
	ATOM	150	NZ	LYS	32	45. 934	23. 610	51. 002	1. 00 56. 65
	ATOM	151	C	LYS	32	39. 740	25. 995	51. 308	1. 00 43. 99
15	ATOM	152	0	LYS	32	39. 260	26. 407	50. 246	1. 00 43. 34
	ATOM	153	N	VAL	33	39. 306	24. 901	51. 925	1. 00 43. 47
	ATOM	154	CA	VAL	33	38. 218	24. 100	51. 382	1. 00 40. 87
	ATOM	155	CB	VAL	33	37. 895	22. 927	52. 310	1. 00 40. 53
	ATOM	156	CG1	VAL	33	36. 977	21. 939	51. 604	1. 00 40. 20
20	ATOM	157	CG2	VAL	33	39. 183	22. 248	52. 729	1. 00 40. 29
	ATOM	158	C	VAL	33	36. 994	24. 981	51. 226	1. 00 39. 39
	ATOM	159	0	VAL	33	36. 370	25. 011	50. 165	1. 00 37. 22
	ATOM	160	N	MET	34	36. 675	25. 707	52. 290	1. 00 39. 46
	ATOM	161	CA	MET	34	35. 539	26. 609	52. 288	1. 00 42. 17
25	ATOM	162	CB	MET	34	35. 515	27. 460	53. 555	1. 00 43. 81
	ATOM	163	CG	MET	34	34. 259	28. 305	53. 656	1. 00 48. 81
	ATOM	164	SD	MET	34	34. 302	29. 606	54. 908	1. 00 56. 60
	ATOM	165	CE	MET	34	34. 576	31. 074	53. 859	1. 00 55. 54
	ATOM	166	C	MET	34	35. 612	27. 535	51. 086	1. 00 43. 35

- 150 -

	ATOM	167	0	MET	34	34. 626	27. 735	50. 383	1. 00 43. 86
	ATOM	168	N	ARG	35	36. 785	28. 104		1. 00 44. 90
	ATOM	169	CA	ARG	35	36. 938	29. 015	49. 729	1. 00 45. 60
	ATOM	170	CB	ARG	35	38. 286	29. 727	49. 815	1. 00 49. 40
5	ATOM	171	CG	ARG	35	38. 459	30. 563	51. 075	1. 00 53. 81
	ATOM	172	CD	ARG	35	38. 231	32. 052	50. 851	1. 00 57. 78
	ATOM	173	NE	ARG	35	38. 483	32. 807	52. 077	1. 00 63. 20
	ATOM	174	CZ	ARG	35	39. 587	32. 696	52. 820	1. 00 65. 30
	ATOM	175	NH 1	ARG	35	40. 557	31. 854	52. 466	1. 00 64. 80
10	ATOM	176	NH2	ARG	35	39. 720	33. 425	53. 925	1. 00 66. 89
	ATOM	177	C	ARG	35	36. 814	28. 262	48. 418	1. 00 44. 08
	ATOM	178	0	ARG	35	35. 977	28. 605	47. 586	1. 00 43. 75
	ATOM	179	N	ARG	36	37. 633	27. 227	48. 245	1. 00 43. 43
	ATOM	180	CA	ARG	36	37. 612	26. 418	47. 026	1. 00 43. 94
15	ATOM	181	CB	ARG	36	38. 547	25. 212	47. 174	1. 00 44. 76
	ATOM	182	CG	ARG	36	40. 020	25. 580	47. 244	1. 00 44. 66
	ATOM	183	CD	ARG	36	40. 898	24. 392	47. 617	1. 00 44. 20
	ATOM	184	NE	ARG	36	41. 728	23. 919	46. 512	1. 00 44. 66
	ATOM	185	CZ	ARG	36	42. 890	23. 292	46. 678	1. 00 45. 10
20	ATOM	186	NH1	ARG	36	43. 350	23. 075	47. 900	1. 00 44. 34
	ATOM	187	NH2	ARG	36	43. 590	22. 870	45. 631	1. 00 45. 47
	ATOM	188	C	ARG	36	36. 202	25. 941	46. 660	1. 00 43. 73
	ATOM	189	0	ARG	36	35. 921	25. 645	45. 497	1. 00 43. 31
	ATOM	190	N	MET	37	35. 324	25. 851	47. 656	1. 00 42. 87
25	ATOM	191	CA	MET	37	33. 946	25. 440	47. 413	1. 00 41. 30
	ATOM	192	CB	MET	37	33. 222	25. 136	48. 726	1. 00 43. 30
	ATOM	193	CG	MET	37	31. 782	24. 636	48. 556	1. 00 45. 16
	ATOM	194	SD	MET	37	31. 646	22. 826	48. 280	1. 00 52. 61
	ATOM	195	CE	MET	37	31. 892	22. 708	46. 492	1. 00 46. 47

PCT/JP03/06054 WO 03/097824

- 151 -ATOM 196 C MET 37 33. 249 26. 603 46. 723 1. 00 39. 52 **ATOM** 197 0 MET 37 32. 702 26. 458 45. 635 1. 00 39. 06 ATOM 198 N **GLN 38** 33. 275 27. 767 47. 359 1. 00 37. 22 ATOM 199 CA GLN 38 32. 637 28. 927 46. 776 1. 00 35. 67 ATOM 5 200 CBGLN 38 32. 874 30. 155 47. 643 1. 00 36. 29 ATOM 201 CG GLN 38 32. 128 30. 122 48. 950 1. 00 37. 44 ATOM 202 CD GLN 38 32. 689 31. 108 49.950 1.00 41.99 ATOM 203 0E1 GLN 38 33. 841 30. 992 50.376 1.00 44.33 ATOM NE2 GLN 38 204 31.880 32. 091 50. 331 1.00 44.58 10 ATOM 205 C **GLN 38** 33. 184 29. 155 45. 382 1. 00 35. 21 ATOM 206 0 GLN 38 32. 454 29. 557 44. 486 1. 00 34. 82 ATOM 207 N LYS 39 34. 467 28. 884 45. 188 1.00 36.41 **ATOM** 208 CA LYS 39 35.069 29. 081 43. 875 1.00 38.60 ATOM 209 CBLYS 39 36. 560 28. 708 43.888 1. 00 42. 47 15 ATOM 210 CG LYS 39 37. 395 29. 263 42.714 1. 00 45. 02 ATOM 211 LYS 39 CD 37. 638 30. 775 42.861 1.00 49.54 ATOM 212 CE LYS 39 38. 523 31. 365 41. 752 1. 00 51. 65 **ATOM** 213 NZ LYS 39 38. 621 32. 865 41.821 1. 00 53. 58 ATOM 214 C LYS 39 34. 339 28. 196 42.884 1. 00 38. 31 20 ATOM 215 0 LYS 39 34. 229 28. 534 41.710 1. 00 40. 28 ATOM 216 N GLU 40 33. 827 27. 066 43. 369 1. 00 37. 21 ATOM 217 CA GLU 40 33. 117 26. 107 42. 525 1. 00 34. 69 ATOM 218 CBGLU 40 33. 329 24. 705 43.072 1. 00 32. 80 ATOM 219 CG GLU 40 34. 742 24. 245 42. 900 1. 00 33. 53 25 ATOM 220 CD GLU 40 35. 164 24. 348 41. 459 1.00 36.48 **ATOM** 221 0E1 GLU 40 34. 318 24. 044 40. 589 1. 00 39. 36 ATOM 222 0E2 GLU 40 36. 326 24. 720 41. 187 1. 00 37. 18 ATOM 223C GLU 40 31. 632 26. 387 42. 375 1.00 34.48 ATOM 2240

GLU 40

31. 040

26. 110

41. 332

1. 00 32. 30

- 152 -

	ATOM	225	N	MET	41	31. 030	26. 928	43. 425	1. 00	35. 61
	ATOM	226	CA	MET	41	29. 621	27. 256	43. 373	1. 00	39. 30
	ATOM	227	CB	MET	41	29. 155	27. 852	44. 692	1. 00	39. 16
	ATOM	228	CG	MET	41	29. 146	26. 910	45. 867	1. 00	40. 71
5	ATOM	229	SD	MET	41	27. 930	27. 569	47. 040	1. 00	46. 34
	ATOM	230	CE	MET	41	28. 978	28. 338	48. 243	1. 00	46. 54
	ATOM	231	C	MET	41	29. 336	28. 258	42. 251	1. 00	42. 24
	ATOM	232	0	MET	41	28. 358	28. 113	41. 517	1. 00	44. 97
	ATOM	233	N	ASP	42	30. 173	29. 284	42. 118	1. 00	43. 47
10	ATOM	234	CA	ASP	42	29. 952	30. 274	41. 069	1. 00	42. 69
	ATOM	235	CB	ASP	42	30. 848	31. 497	41. 249	1. 00	44. 70
	ATOM	236	CG	ASP	42	30. 548	32. 254	42. 523	1. 00	49. 63
	ATOM	237	0D1	ASP	42	31. 352	32. 128	43. 477	1. 00	52. 14
٠	ATOM	238	0D2	ASP	42	29. 510	32. 968	42. 572	1. 00	49. 66
15	ATOM	239	C	ASP	42	30. 248	29. 641	39. 739	1. 00	41. 40
	ATOM	240	0	ASP	42	29. 550	29. 880	38. 759	1. 00	41.06
	ATOM	241	N	ARG	43	31. 289	28. 826	39. 707	1. 00	39. 70
	ATOM	242	CA	ARG	43	31. 668	28. 171	38. 477	1. 00	39. 99
	ATOM	243	CB	ARG	43	32. 835	27. 227	38. 739	1. 00	43. 98
20	ATOM	244	CG	ARG	43	33. 329	26. 482	37. 516	1. 00	49. 72
	ATOM	245	CD	ARG	43	34. 636	25. 777	37. 831	1. 00	55. 67
	ATOM	246	NE	ARG	43	34. 962	24. 746	36. 854	1. 00	62. 98
	ATOM	247	CZ	ARG	43	36. 062	24. 002	36. 899	1. 00	67. 95
	ATOM	248	NH1	ARG	43	36. 950	24. 178	37. 877	1. 00	69. 41
25	ATOM	249	NH2	ARG	43	36. 269	23. 075	35. 969	1. 00	70. 32
	ATOM	250	С	ARG	43	30. 488	27. 417	37. 881	1. 00	38. 35
	ATOM	251	0	ARG	43	30. 253	27. 493	36. 677	1. 00	38. 07
	ATOM	252	N	GLY	44	29. 739	26. 709	38. 728	1. 00	36. 44
	ATOM	253	CA	GLY	44	28. 592	25. 938	38. 262	1. 00	32. 80

- 153 -ATOM 254C GLY 44 27. 344 26. 772 38. 062 1.00 31.71 ATOM 255 0 GLY 44 26. 483 26. 448 37. 251 1.00 30.43 ATOM 256 N LEU 45 27. 258 27. 854 38. 820 1. 00 31. 23 ATOM 257 CA LEU 45 26. 144 28. 774 38. 761 1. 00 31. 72 ATOM LEU 45 5 258 CB26. 168 29. 638 40.010 1.00 30.96 ATOM 259 CG LEU 45 25.063 29. 363 41.013 1.00 34.38 ATOM 260 CD1 LEU 45 25. 346 30.066 42. 334 1.00 34.74 **ATOM** CD2 LEU 45 261 23. 750 29. 849 40. 413 1. 00 37. 12 ATOM 262 C LEU 45 26. 204 29.666 37. 517 1.00 33.39 ATOM 263 10 0 LEU 45 25. 184 30. 211 37. 086 1. 00 34. 01 ATOM 264 N ARG 46 27. 402 29. 813 36. 955 1. 00 34. 39 ATOM 265 CAARG 46 27. 628 35. 774 30. 651 1. 00 37. 39 ATOM 266 CB ARG 46 29. 092 31. 140 35. 744 1. 00 42. 80 ATOM 267 CG ARG 46 29. 463 32. 067 34. 562 1. 00 48. 17 ATOM 15 268 CD ARG 46 30. 951 32. 487 34. 546 1. 00 49. 35 ATOM 269 NE ARG 46 31. 250 33. 400 33. 441 1. 00 54. 04 ATOM 270 CZARG 46 30. 599 34. 542 33. 216 1. 00 57. 98 ATOM 271 NH1 ARG 46 29.608 34. 915 34.019 1.00 56.34 ATOM 272 NH2 ARG 46 30. 936 35. 316 32. 187 1. 00 59. 91 ATOM 273 C ARG 46 20 27. 301 29. 920 34. 477 1. 00 37. 53 ATOM 274 0 ARG 46 27. 773 28. 804 34. 243 1.00 38.11 ATOM 275 N LEU 47 26. 515 30. 573 33. 623 1. 00 36. 42 ATOM 276 CA LEU 47 26. 089 29. 993 32. 350 1. 00 35. 82 ATOM 277 CB LEU 47 25. 151 30. 957 31.617 1.00 31.45 25 ATOM 278 CG LEU 47 24. 771 30. 548 30. 196 1.00 29.68 ATOM 279 CD1 LEU 47 24. 031 29. 240 30. 230 1. 00 28. 93 ATOM CD2 LEU 47 280 23. 929 31. 622 29. 559 1. 00 28. 83 **ATOM** 281 C LEU 47 27. 223 29. 578 31. 418 1. 00 37. 14 ATOM 282 0 LEU 47 27. 152 28. 534 30. 764 1. 00 36. 41

- 154 -ATOM 283 N **GLU 48** 28. 272 30. 383 31. 347 1. 00 39. 28 ATOM 284 $\mathsf{C}\mathsf{A}$ **GLU 48** 29. 371 30.034 30. 462 1. 00 42. 38 ATOM 285 CB**GLU 48** 30. 448 31. 126 30. 473 1.00 43.91 ATOM 286 CG GLU 48 30. 126 32. 354 29. 631 1. 00 46. 02 ATOM 287 CD**GLU 48** 5 29. 022 33. 215 30. 221 1. 00 48. 71 ATOM 288 0E1 GLU 48 28. 581 34. 157 29. 524 1. 00 48. 10 ATOM OE2 GLU 48 289 28. 600 32. 959 31. 375 1. 00 49. 31 ATOM 290 C **GLU 48** 30.005 28. 691 30.809 1. 00 43. 42 ATOM 291 0 GLU 48 30. 593 28. 045 29. 939 1. 00 43. 61 10 ATOM 292 N THR 49 29. 873 28. 262 32.066 1. 00 44. 28 ATOM 293 CA THR 49 30. 484 26. 999 32. 508 1. 00 46. 81 **ATOM** 294 CBTHR 49 31. 761 27. 267 33. 366 1.00 47.70 ATOM OG1 THR 49 295 31. 477 28. 265 34. 356 1. 00 45. 18 ATOM CG2 THR 49 296 32. 921 27.739 32. 486 1. 00 48. 17 ATOM 297 C THR 49 29. 595 26.024 15 33. 293 1. 00 46. 50 ATOM 298 THR 49 0 30.043 24. 932 33.683 1. 00 45. 72 ATOM 299 HIS 50 N 28. 340 26. 405 33. 508 1. 00 44. 18 ATOM HIS 50 300 CA 25. 565 27. 416 34. 262 1. 00 41. 93 ATOM HIS 50 301 CB26. 129 25. 980 34. 190 1. 00 38. 83 20 ATOM 302 CG HIS 50 25.754 25. 217 32.953 1. 00 35. 50 ATOM 303 CD2 HIS 50 23. 950 25. 304 32. 795 1. 00 33. 70 ATOM ND1 HIS 50 304 25. 730 25. 894 31.682 1. 00 36. 24 ATOM CE1 HIS 50 305 25. 550 24. 812 30.796 1. 00 33. 56 ATOM 306 NE2 HIS 50 23. 722 25. 189 31. 446 1. 00 32. 06 ATOM 307 C HIS 50 33. 804 25 27. 447 24. 117 1. 00 41. 73 ATOM 308 0 HIS 50 23. 212 34. 572 27. 144 1. 00 41. 14 ATOM 309 N GLU 51 23. 883 27. 848 32. 566 1. 00 42. 00

ATOM

ATOM

310

311

CA

CB

GLU 51

GLU 51

22. 519

22. 463

32. 103

30.617

1. 00 45. 79

1. 00 46. 76

27. 863

27. 573

- 155 -ATOM 312 CG GLU 51 27. 523 21. 048 30. 100 1. 00 50. 98 **ATOM** 313 CD GLU 51 26. 521 20.885 28. 989 1. 00 53. 94 ATOM 314 OE1 GLU 51 25. 313 21.082 29. 253 1. 00 55. 61 0E2 GLU 51 ATOM 315 26. 940 20. 560 27.857 1. 00 55. 48 ATOM 316 C 5 GLU 51 29. 139 21. 757 32. 402 1. 00 48. 17 ATOM 317 0 GLU 51 29. 094 20.657 32. 953 1. 00 49. 35 ATOM 318 N GLU 52 30. 276 22. 331 32. 034 1. 00 50. 75 ATOM 319 CA GLU 52 31. 565 32. 264 21. 681 1. 00 52. 07 ATOM 320 CB GLU 52 32. 633 22. 321 31. 352 1. 00 56. 66 10 ATOM 321 CG GLU 52 32. 768 23. 854 31. 476 1. 00 63. 81 ATOM 322 CDGLU 52 33. 420 24. 528 30. 253 1. 00 67. 84 ATOM 323 0E1 GLU 52 33. 601 25. 770 30. 278 1. 00 68. 83 OE2 GLU 52 ATOM 324 33. 742 23. 826 29. 266 1. 00 70.00 ATOM 325 C GLU 52 31. 982 21. 760 33. 738 1. 00 49. 95 15 ATOM 326 0 GLU 52 33. 013 21. 215 34. 132 1. 00 47. 47 ATOM 327N ALA 53 31. 162 22. 429 34. 548 1. 00 48. 46 ATOM 328 CA ALA 53 31. 449 22. 594 35. 972 1. 00 47. 88 ATOM 329 CB ALA 53 30. 418 23. 510 36.615 1. 00 47. 30 ATOM 330 C ALA 53 31. 510 21. 278 36. 731 1. 00 46. 84 20 ATOM 331 0 ALA 53 31. 287 20. 206 36. 172 1. 00 48. 51 ATOM 332N SER 54 31. 816 21. 353 38. 016 1. 00 44. 67 ATOM 333 CA SER 54 31. 895 20. 133 38. 792 1. 00 42. 38 ATOM 334 CB **SER 54** 33. 201 20.090 39. 581 1. 00 44. 26 ATOM 335 0G**SER 54** 33. 290 18. 883 40.316 1. 00 45. 49 ATOM 25 336 C SER 54 30. 712 20.059 39. 734 1. 00 39. 72 ATOM 337 0 SER 54 30.058 19. 028 39. 841 1. 00 41. 09 **ATOM** 338 N VAL 55 30. 440 21. 165 40.411 1. 00 34. 77 ATOM VAL 55 339 CA 29. 326 21. 239 41.343 1. 00 30. 58

ATOM

340

CB

VAL 55

29. 682

22. 186

42. 498

1. 00 28. 73

- 156 -ATOM 341 CG1 VAL 55 28. 480 22. 433 43. 383 1. 00 30. 75 ATOM CG2 VAL 55 342 30. 814 21. 596 43. 297 1.00 25.80 ATOM 343 C VAL 55 28. 094 21.760 40.597 1. 00 30. 28 ATOM 344 0 VAL 55 27. 704 22. 920 40.745 1. 00 32. 16 5 ATOM 345 N LYS 56 27. 482 20. 887 39. 803 1. 00 26. 82 ATOM 346 CA LYS 56 26. 323 21. 235 38. 986 1. 00 21. 66 ATOM 347 CB LYS 56 25. 362 20.046 38.891 1. 00 26. 53 ATOM CG 348 LYS 56 25. 936 18. 737 38. 337 1.00 29.32 ATOM 349 CD LYS 56 26. 311 18.836 36.875 1. 00 29. 86 10 ATOM 350 CE LYS 56 27. 609 19. 592 36. 698 1. 00 29. 73 ATOM 351 NZ LYS 56 27. 932 19. 759 35. 259 1. 00 32. 80 ATOM 352 C LYS 56 25. 520 22. 470 39. 374 1. 00 17. 56 ATOM 353 0 LYS 56 25. 133 23. 236 38. 498 1. 00 15. 95 ATOM 354 N MET 57 25. 257 22. 660 40. 665 1. 00 14. 30 ATOM 15 355 CA MET 57 24. 462 23. 803 41. 128 1. 00 12. 73 ATOM 356 CB MET 57 25. 277 25. 089 41.059 1. 00 9. 92 ATOM 357 CG MET 57 26. 515 25.090 41. 930 1. 00 6. 47 ATOM 358 SD MET 57 43.694 26. 219 25. 164 1. 00 8.00 **ATOM** 359 CE MET 57 25. 523 26. 842 43. 905 1.00 1.00 ATOM 20 360 MET 57 C 23. 207 23. 953 40. 270 1.00 14.05 ATOM 361 0 MET 57 23. 000 24. 972 39.610 1. 00 12. 36 ATOM 362N LEU 58 22. 371 22. 923 40. 290 1. 00 17. 80 ATOM 363 CA LEU 58 21. 154 22. 914 39. 498 1. 00 19. 02 ATOM CB LEU 58 364 21. 466 20. 710 39. 245 1. 00 18. 03 25 ATOM 365 CG LEU 58 21. 726 20. 444 38. 720 1.00 16.28 ATOM CD1 LEU 58 366 21. 193 19.068 39. 021 1. 00 20. 44 ATOM 367 CD2 LEU 58 20.608 21. 999 37. 233 1. 00 15. 03 ATOM 368 C LEU 58 20.005 23. 696 40. 134 1. 00 20. 20

ATOM

369 0

LEU 58

23. 602

19. 752

41. 340

1. 00 19. 91

- 157 -

	ATOM	370) N	PR(59	19. 316	24. 507	39. 320	1. 00 20. 57
	ATOM	371	l CI		59		24. 939		
	ATOM	372	CA	PRO	59	18. 171	25. 342	39. 694	1. 00 22. 50
	ATOM	373	CB	PRO	59				
5	ATOM	374	CG	PRO	59	19. 306	26. 329	37. 906	1. 00 21. 92
	ATOM	375	С	PRO	59	16. 975	24. 437	40. 010	1. 00 23. 49
	ATOM	376	0	PRO	59	16. 698	23. 504	39. 264	1. 00 25. 36
	ATOM	377	N	THR	60				1. 00 22. 35
	ATOM	378	CA	THR	60	15. 133	23. 871	41. 469	1. 00 20. 99
10	ATOM	379	CB	THR	60	15. 097	23. 607	42. 964	1. 00 22. 35
	ATOM	380	0G	1 THR	60	14. 823	24. 837	43. 647	1. 00 24. 53
	ATOM	381	CG	2 THR	60	16. 408	23. 049	43. 441	1. 00 24. 88
	ATOM	382	С	THR	60	13. 815	24. 516	41. 160	1. 00 20. 21
	ATOM	383	0	THR	60	12. 793	23. 848	41. 119	1. 00 24. 18
15	ATOM	384	N	TYR	61	13. 839	25. 822	40. 973	1. 00 19. 09
	ATOM	385	CA	TYR	61	12. 628	26. 595	40. 715	1. 00 20. 03
	ATOM	386	CB	TYR	61	11. 955	26. 172	39. 427	1. 00 13. 50
	ATOM	387	CG	TYR	61	12. 581	26. 830	38. 234	1. 00 13. 18
	ATOM	388	CD1	TYR	61	12. 028	27. 983	37. 666	1. 00 8. 00
20	ATOM	389		TYR		12. 596	28. 551	36. 536	1. 00 4. 24
	ATOM	390		TYR		13. 725			1. 00 14. 04
	ATOM	391	CE2	TYR	61	14. 296	26. 843	36. 529	1. 00 10. 05
	ATOM	392	CZ	TYR	61	13. 730	27. 963	35. 976	1. 00 5. 80
	ATOM	393	ОН	TYR		14. 307	28. 423	34. 828	1. 00 4. 54
25	ATOM	394	C	TYR	61	11. 620	26. 572	41. 833	1. 00 21. 95
	ATOM	395	0	TYR	61	10. 437	26. 816	41. 609	1. 00 22. 47
	ATOM	396	N	VAL	62	12. 102	26. 293	43. 037	1. 00 24. 47
	ATOM	397	CA	VAL (62	11. 265	26. 288	44. 218	1. 00 29. 86
	ATOM	398	CB	VAL (32	11. 750	25. 231	45. 207	1. 00 28. 92

- 158 -

						11			
	ATOM	399	CG	1 VAI	62	10. 780	25. 091	46. 370	1. 00 28. 30
	ATOM	400	CG	2 VAI	62	11. 909	23. 926	44. 480	1. 00 28. 58
	ATOM	401	С	VAI	62	11. 494	27. 680	44. 786	1. 00 34. 67
	ATOM	402	0	VAI	62	11. 584	27. 879	45. 993	1. 00 39. 01
5	ATOM	403	N	ARG	63	11. 589	28. 638	43. 874	1. 00 38. 40
	ATOM	404	CA	ARG	63	11. 847	30. 038	44. 182	1. 00 41. 10
	ATOM	405	CB	ARG	63	12. 041	30. 804	42. 874	1. 00 42. 02
	ATOM	406	CG	ARG	63	10. 794	30. 798	41. 996	1. 00 44. 76
	ATOM	407	CD	ARG	63	11. 072	31. 197	40. 550	1. 00 46. 61
10	ATOM	408	NE	ARG	63	9. 827	31. 366	39. 804	1. 00 48. 56
	ATOM	409	CZ	ARG	63	8. 972	30. 381	39. 541	1. 00 50. 39
	ATOM	410	NH 1	ARG	63	9. 225	29. 145	39. 955	1. 00 50. 83
	ATOM	411	NH2	ARG	63	7. 854	30. 635	38. 875	1. 00 51. 11
	ATOM	412	C	ARG	63	10. 788	30. 751	45. 004	1. 00 42. 71
15	ATOM	413	0	ARG	63	9. 790	30. 167	45. 424	1. 00 41. 58
	ATOM	414	N	SER	64	11. 047	32. 036	45. 224	1. 00 46. 12
	ATOM	415	CA	SER	64	10. 155	32. 922	45. 954	1. 00 49. 96
	ATOM	416	CB	SER	64	10. 400	32. 826	47. 454	1. 00 50. 57
	ATOM	417	0G	SER	64	9. 374	33. 507	48. 157	1. 00 53. 70
20	ATOM	418	C	SER	64	10. 435	34. 340	45. 458	1. 00 51. 04
	ATOM	419	0	SER	64	11. 300	35. 047	45. 985	1. 00 50. 38
	ATOM	420	N	THR	65	9. 690	34. 728	44. 425	1. 00 53. 23
	ATOM	421	CA	THR	65	9. 827	36. 031	43. 791	1. 00 54. 89
	ATOM	422	CB	THR	65	10. 151	35. 871	42. 281	1. 00 56. 21
25	ATOM	423	0G1	THR	65	9. 094	35. 158	41. 622	1. 00 55. 23
	ATOM	424	CG2	THR	65	11. 461	35. 112	42. 103	1. 00 56. 71
	ATOM	425	C	THR	6 5	8. 582	36. 911	43. 939	1. 00 56. 01
	ATOM	426	0	THR	65	7. 503	36. 430	44. 291	1. 00 56. 26
	ATOM	427	N	PRO	66	8. 728	38. 222	43. 676	1. 00 56. 49

- 159 -

	ATOM	428	CD	PRO	66	10. 019	38. 866	43. 377	1. 00 56. 96
	ATOM	429	CA	PR0	66	7. 666	39. 228	43. 758	1. 00 56. 28
	ATOM	430	CB	PRO	66	8. 369	40. 502	43. 313	1. 00 57. 08
	ATOM	431	CG	PR0	66	9. 759	40. 287	43. 786	1. 00 58. 08
5	ATOM	432	C	PRO	66	6. 487	38. 901	42. 864	1. 00 56. 75
	ATOM	433	0	PR0	66	5. 477	39. 604	42. 874	1. 00 57. 23
	ATOM	434	N	GLU	67	6. 631	37. 849	42. 072	1. 00 56. 42
	ATOM	435	CA	GLU	67	5. 540	37. 445	41. 193	1. 00 56. 82
	ATOM	436	CB	GLU	67	6. 048	36. 487	40. 115	1. 00 61. 19
10	ATOM	437	CG	GLU	67	6. 421	35. 108	40. 637	1. 00 66. 99
	ATOM	438	CD	GLU	67	7. 123	34. 261	39. 594	1. 00 69. 61
	ATOM	439	0E1	GLU	67	8. 253	34. 618	39. 201	1. 00 70. 19
	ATOM	440	0E2	GLU	67	6. 541	33. 241	39. 168	1. 00 70. 18
	ATOM	441	C	GLU	67	4. 406	36. 803	41. 984	1. 00 54. 30
15	ATOM	442	0	GLU	67	3. 241	36. 940	41. 633	1. 00 54. 25
	ATOM	443	N	GLY	68	4. 753	36. 116	43. 076	1. 00 50. 50
	ATOM	444	CA	GLY	68	3. 741	35. 478	43. 901	1. 00 45. 77
	ATOM	445	C	GLY	68	4. 166	34. 087	44. 316	1. 00 43. 04
	ATOM	446	0	GLY	68	3. 626	33. 503	45. 259	1. 00 40. 69
20	ATOM	447	N	SER	69	5. 154	33. 564	43. 599	1. 00 42. 30
	ATOM	448	CA	SER	69	5. 690	32. 230	43. 845	1. 00 41. 02
	ATOM	449	CB	SER	69	6. 769	31. 902	42. 804	1. 00 41. 03
	ATOM	450	0G	SER	69	6. 438	32. 404	41. 517	1. 00 42. 34
	ATOM	451	C	SER	69	6. 301	32. 126	45. 240	1. 00 39. 68
25	ATOM	452	0	SER	69	7. 163	32. 920	45. 607	1. 00 38. 89
	ATOM	453	N	GLU	70	5. 857	31. 143	46. 014	1. 00 39. 96
	ATOM	454	CA	GLU	70	6. 388	30. 942	47. 355	1. 00 40. 53
	ATOM	455	CB	GLU	70	5. 265	31. 074	48. 391	1. 00 44. 80
	ATOM	456	CG	GLU	70	4. 675	32. 483	48. 492	1. 00 52. 74

- 160 -ATOM 457 CD GLU 70 5. 705 33. 554 48. 900 1. 00 58. 55 ATOM 458 0E1 GLU 70 5. 362 34. 763 48.866 1.00 59.55 0E2 GLU 70 ATOM 459 6.852 33. 192 49. 258 1. 00 60. 30 ATOM 460 C **GLU** 70 7. 075 29. 583 47. 483 1. 00 38. 65 5 ATOM 461 0 **GLU** 70 6.807 28.660 46. 704 1. 00 37. 89 ATOM 462 N VAL 71 7. 962 29. 459 48. 466 1. 00 35. 96 ATOM 463 CA VAL 71 8. 670 28. 207 48. 653 1.00 34.46 ATOM 464 CBVAL 71 9. 723 28. 319 49. 755 1.00 33.00 ATOM 465 CG1 VAL 71 10. 236 26. 949 50. 120 1.00 33.91 10 ATOM 466 CG2 VAL 71 10. 885 29. 152 49. 249 1. 00 32. 56 ATOM 467 C VAL 71 7. 730 27. 042 48. 931 1.00 34.75 ATOM 468 0 VAL 71 7. 851 25. 985 48. 310 1.00 37.23 ATOM 469 N **GLY 72** 6. 783 27. 219 49.841 1.00 33.37 ATOM 470 CA **GLY** 72 5. 842 26. 139 50. 105 1. 00 32. 39 ATOM 15 471 C GLY 72 5. 066 25. 644 48. 879 1. 00 31. 10 ATOM 472 0 GLY 72 4. 631 24. 493 48. 859 1. 00 28. 98 ATOM 473 ASP 73 N 4. 878 26. 503 47. 870 1. 00 31. 05 ATOM 474 CA ASP 73 4. 156 26. 129 46.650 1.00 31.14 ATOM 475 CB ASP 73 4. 389 27. 147 45. 532 1.00 34.00 ATOM 20 476 CG ASP 73 3. 759 28. 491 45.817 1.00 38.43 **ATOM** 477 OD1 ASP 73 3. 758 29. 355 44. 907 1.00 41.88 **ATOM** 478 OD2 ASP 73 3. 262 28.690 46. 945 1. 00 41. 23 ATOM 479 C ASP 73 4. 675 24. 785 46. 189 1.00 30.89 ATOM 480 0 ASP 73 5. 875 24. 544 46. 256 1. 00 32. 81 ATOM 25 481 N PHE 74 3. 796 23. 921 45. 694 1.00 28.84 ATOM 482 CA PHE 74 4. 233 22. 595 45. 271 1. 00 27. 21 ATOM 483 CB PHE 74 4. 728 21. 834 46. 502 1. 00 26. 13 **ATOM** 484 CG PHE 74 5. 407 20. 551 46. 185 1. 00 25. 61 ATOM 485 CD1 PHE 74 6.641 20. 546 45. 547 1. 00 29. 29

- 161 -ATOM CD2 PHE 74 1.00 24.94 486 4. 805 19. 344 46. 496 ATOM 487 CE1 PHE 74 7. 259 45. 213 1.00 31.36 19. 354 ATOM 488 CE2 PHE 74 5. 408 18. 149 46. 168 1. 00 27. 38 CZATOM 489 PHE 74 45. 527 6.640 18. 149 1. 00 30. 18 ATOM 490 C PHE 74 3. 080 21. 837 44.604 1. 00 27. 31 5 ATOM 491 PHE 74 0 1. 912 22. 034 44. 951 1.00 28.04 492 ATOM N LEU 75 3. 402 20.965 43.654 1. 00 23. 99 ATOM 493 LEU 75 CA 2. 370 20. 214 42. 958 1. 00 20. 00 ATOM 494 CB LEU 75 2. 222 41.534 20. 725 1. 00 19. 88 10 **ATOM** 495 CG LEU 75 0.868 20.487 40.865 1.00 21.27 ATOM 496 CD1 LEU 75 1.083 39. 354 20. 282 1. 00 19. 58 ATOM 497 CD2 LEU 75 0. 190 19. 279 41. 474 1. 00 18. 85 ATOM 498 LEU 75 C 2. 755 18. 758 42. 911 1. 00 18. 82 ATOM 499 0 LEU 75 3.587 18.369 42. 102 1.00 19.49 ATOM 500 N **SER 76** 2. 143 43. 774 15 17. 957 1. 00 21. 08 43. 834 ATOM 501 CA SER 76 2. 434 16. 530 1. 00 22. 49 ATOM 502 CB **SER 76** 2. 333 45. 261 1.00 22.74 16.001 ATOM 503 0G**SER 76** 2. 591 14.612 45. 292 1. 00 20. 37 42. 967 ATOM 504 SER 76 C 1. 507 15. 720 1. 00 23. 58 ATOM 505 0 SER 76 0.309 15. 980 42.866 1. 00 23. 06 20 ATOM 506 N LEU 77 2.064 42. 378 14. 686 1. 00 25. 35 ATOM 507 CA LEU 77 1. 280 13.862 41.509 1. 00 27. 55 **ATOM** 508 CB LEU 77 1. 758 14. 122 40.089 1. 00 29. 38 ATOM LEU 77 1. 176 509 CG 13. 275 38. 980 1. 00 32. 75 ATOM 510 CD1 LEU 77 -0.33413. 434 38. 974 25 1. 00 34. 55 **ATOM** CD2 LEU 77 1.796 511 13. 695 37.661 1. 00 32. 83 ATOM C LEU 77 41.913 512 1. 445 12. 402 1. 00 28. 86 ATOM 2. 527 513 0 LEU 77 11.826 41.760 1. 00 26. 84 ATOM 514 N ASP 78 0. 386 42. 465 1. 00 29. 41 11. 811

- 162 -ATOM 515 CA ASP 78 0.457 10. 407 42. 865 1. 00 30. 41 ATOM CB ASP 78 516 -0.15044. 255 10. 186 1. 00 31. 87 ATOM 517 CG ASP 78 -0.2868. 702 44.606 1. 00 33. 99 ATOM 518 OD1 ASP 78 -1.0257. 993 43. 894 1. 00 35. 38 OD2 ASP 78 ATOM 519 5 0. 338 45. 586 8. 241 1. 00 33. 31 ATOM 520 C ASP 78 -0.2709. 530 41.860 1. 00 29. 41 ATOM 521 ASP 78 0 -1.4849. 587 41. 732 1. 00 29. 74 ATOM 522N LEU 79 0.472 8. 710 41. 143 1. 00 27. 93 ATOM 523 CA LEU 79 -0. 169 7. 858 40. 184 1. 00 28. 08 ATOM 524 CBLEU 79 0.323 10 38. 781 1. 00 25. 78 8. 173 ATOM 525 CG LEU 79 1.676 7. 627 38. 371 1. 00 24. 57 ATOM 526 CD1 LEU 79 1.845 7.871 36. 904 1. 00 25. 82 ATOM 527 CD2 LEU 79 2. 779 8. 274 39. 166 1. 00 26. 37 LEU 79 ATOM 528 C 0. 114 6. 420 40. 548 1. 00 31. 25 ATOM 529 15 0 LEU 79 1. 265 6.017 40. 712 1. 00 32. 14 ATOM 530 N **GLY 80** -0.9555.652 40.699 1.00 34.99 ATOM 531 CA GLY 80 -0.8124. 259 41.056 1.00 38.29 ATOM 532 C **GLY 80** -2.0883. 499 40.776 1. 00 40. 81 ATOM 533 0 GLY 80 -3.1003. 686 41. 452 1. 00 40. 77 ATOM 534 39. 765 20 N **GLY 81** -2.0382. 642 1.00 43.19 ATOM 39. 422 535 CA GLY 81 -3. 197 1. 850 1. 00 45. 84 ATOM 536 C GLY 81 -3.9362. 428 38. 244 1. 00 49. 22 ATOM 537 0 GLY 81 -3. 328 2. 825 37. 241 1. 00 49. 20 ATOM 538 N THR 82 -5. 260 38. 365 2. 465 1. 00 51. 93 25 ATOM 539 CA THR 82 -6. 117 3. 003 37. 312 1.00 54.41 540 ATOM CB THR 82 -7. 344 37.060 2. 090 1. 00 56. 74 ATOM 541 0G1 THR 82 -6.90836.952 0.727 1. 00 60. 43 CG2 THR 82 ATOM 542 -8. 043 2.473 35. 752 1. 00 58. 23 ATOM 543 C THR 82 -6.5844. 382 37. 759 1. 00 52. 48

- 163 -ATOM 544 0 THR 82 -7.3085. 077 37. 046 1. 00 52. 21 ATOM 545 N ASN 83 -6.1484. 778 38. 946 1. 00 50. 63 ATOM 546 CA ASN 83 -6.52339. 466 6.071 1. 00 50. 52 ATOM 547CBASN 83 **−**7. 574 5. 911 40.568 1. 00 53. 97 5 ATOM 548 CG ASN 83 -8.9555. 560 40.020 1. 00 58. 88 ATOM 549 OD1 ASN 83 -9. 508 6. 290 39. 190 1. 00 60. 51 ATOM ND2 ASN 83 550 -9.5214. 444 40. 489 1. 00 60. 30 ATOM 551 C ASN 83 -5.33839. 997 6.861 1. 00 48. 79 ATOM 552 0 ASN 83 -4.68240.956 6. 442 1.00 48.09 10 ATOM 553 N PHE 84 -5.0688. 003 39. 356 1. 00 45. 51 ATOM 554 CA PHE 84 -3.9958. 907 39. 772 1.00 40.32 ATOM 555 CBPHE 84 -2.99838. 644 9. 145 1. 00 39. 20 ATOM 556 CG PHE 84 -3.43610. 175 37.652 1. 00 39. 52 ATOM 557 CD1 PHE 84 -4.0969. 802 36. 494 1. 00 40. 87 15 ATOM 558 CD2 PHE 84 -3.15911. 524 37. 860 1. 00 39. 69 **ATOM** CE1 PHE 84 559 -4.47910. 758 35. 549 1. 00 41. 79 ATOM 560 CE2 PHE 84 -3.54012. 490 36.922 1. 00 40. 16 ATOM CZ PHE 84 561 -4.19812. 105 35. 762 1. 00 40. 38 ATOM 562 C PHE 84 -4.60410. 246 40. 176 1. 00 37. 84 ATOM 20 563 PHE 84 0 -5. 405 10.806 39. 439 1. 00 37. 11 ATOM ARG 85 564 N **-4**. 216 10. 762 41. 338 1.00 36.37 ATOM 565 ARG 85 CA -4.73812. 032 41.840 1. 00 35. 14 ATOM 566 CB ARG 85 -5.49611. 779 43. 136 1. 00 39. 80 ATOM ARG 85 567 CG -4. 888 10.677 43. 970 1.00 47.71 ATOM 25 568 CD ARG 85 -5.9489.964 44. 805 1. 00 55. 73 ATOM ARG 85 569 NE -5. 391 8. 801 45. 493 1. 00 62. 76 ATOM 570 CZ ARG 85 -4.7997. 772 44. 883 1. 00 65. 65 571 NH1 ARG 85 ATOM -4.6847. 749 43. 557 1. 00 63. 79 ATOM 572 NH2 ARG 85 -4.3146. 765 45. 605 1. 00 66. 67

- 164 -

	ATOM	573	C	ARG	85	-3. 664	13. 088	42. 075	1. 00 3	2. 14
	ATOM	574	0	ARG	85	-2. 561	12. 772	42. 522	1. 00 3	2. 77
	ATOM	575	N	VAL	86	-3. 977	14. 345	41. 778	1. 00 2	7. 45
	ATOM	576	CA	VAL	86	-2. 997	15. 405	41. 983	1. 00 2	6. 49
5	ATOM	577	CB	VAL	86	-2. 975	16. 400	40. 821	1. 00 2	4. 77
	ATOM	578	CG1	VAL	86	-3. 033	15. 655	39. 510	1. 00 2	6. 70
	ATOM	579	CG2	VAL	86	-4. 109	17. 373	40. 948	1. 00 2	4. 73
	ATOM	580	C	VAL	86	-3. 292	16. 177	43. 257	1. 00 2	6. 66
	ATOM	581	0	VAL	86	-4. 401	16. 121	43. 779	1. 00 2	8. 06
10	ATOM	582	N	MET	87	-2. 289	16. 888	43. 757	1. 00 2	6. 93
	ATOM	583	CA	MET	87	-2. 427	17. 677	44. 973	1. 00 2	5. 08
	ATOM	584	CB	MET	87	-1. 748	16. 979	46. 138	1. 00 2	5. 05
	ATOM	585	CG	MET	87	-1. 674	17. 833	47. 375	1. 00 2	4. 83
	ATOM	586	SD	MET	87	-0. 509	17. 090	48. 503	1. 00 3	0. 68
15	ATOM	587	CE	MET	87	-1. 544	16. 749	49. 894	1. 00 2	9. 41
	ATOM	588	C	MET	87	-1. 768	19. 021	44. 774	1. 00 2	4. 52
	ATOM	589	0	MET	87	-0. 638	19. 097	44. 298	1. 00 2	7. 12
	· ATOM	590	N	LEU	88	-2. 455	20. 087	45. 146	1. 00 2	2. 16
	ATOM	591	CA	LEU	88	-1. 872	21. 398	44. 975	1. 00 2	0. 70
20	ATOM	592	CB	LEU	88	-2. 825	22. 309	44. 230	1. 00 2	0. 34
	ATOM	593	CG	LEU	88	-2. 178	23. 663	43. 991	1. 00 2	3. 49
	ATOM	594	CD1	LEU	88	-0. 806	23. 470	43. 354	1. 00 2	4. 39
	ATOM	595	CD2	LEU	88	-3. 078	24. 493	43. 094	1. 00 2	5. 91
	ATOM	596	C	LEU	88	-1. 535	22. 021	46. 301	1. 00 1	9. 94
25	ATOM	597	0	LEU	88	-2. 225	21. 794	47. 282	1. 00 2	1. 18
	ATOM	598	N	VAL	89	-0. 463	22. 799	46. 343	1. 00 2	0. 16
	ATOM	599	CA	VAL	89 .	-0. 082	23. 462	47. 580	1. 00 2	1. 15
	ATOM	600	CB	VAL	89	0. 984	22. 676	48. 357	1. 00 1	4. 95
	ATOM	601	CG1	VAL	89	1. 292	23. 385	49. 657	1. 00	7. 73

- 165 -ATOM 602 CG2 VAL 89 0. 515 21. 268 48, 609 1. 00 10. 59 ATOM 603 C VAL 89 0. 491 24. 829 47. 254 1. 00 27. 10 ATOM 604 0 **VAL** 89 1. 410 24. 939 46. 442 1. 00 27. 22 ATOM 605 N LYS 90 -0.06625.866 47.875 1. 00 33. 21 ATOM 606 LYS 90 5 CA 0. 401 27. 235 47. 671 1. 00 40. 01 ATOM 607 CB LYS 90 -0. 443 27. 962 46. 604 1.00 41.03 LYS 90 ATOM 608 CG -1.94127. 979 46.850 1. 00 47. 19 ATOM 609 CDLYS 90 -2.74928. 454 45. 622 1. 00 52. 33 ATOM 610 CE LYS 90 -4.27428. 393 45. 899 1. 00 55. 73 10 ATOM 611 NZ LYS 90 -5. 161 28. 724 44. 731 1. 00 56. 02 ATOM 612 C LYS 90 0. 384 28.009 48.981 1. 00 43. 61 ATOM 613 0 LYS 90 -0.57727. 943 49. 747 1.00 44.04 ATOM 614 N VAL 91 1. 469 28. 728 49. 241 1. 00 47. 88 ATOM 615 CA VAL 91 1. 587 29. 513 50. 458 1. 00 51. 82 ATOM 15 616 CBVAL 91 3. 059 29. 780 50. 788 1. 00 51. 29 ATOM 617 CG1 VAL 91 3. 160 30. 748 51. 947 1. 00 54. 88 ATOM 618 CG2 VAL 91 3. 749 28. 479 51. 137 1. 00 48. 18 ATOM 619 С VAL 91 0.849 30.846 50.355 1. 00 55. 01 ATOM 620 0 VAL 91 0. 994 31.569 49. 369 1. 00 54. 57 **ATOM** 621 N 20 **GLY 92** 0.060 31. 157 51.382 1. 00 59. 16 ATOM 622 CA GLY 92 -0.69632. 396 51.401 1.00 64.58 ATOM 623 C GLY 92 -0.30533. 297 52. 558 1. 00 68. 39 ATOM 624 0 **GLY 92** 0.637 32. 992 53. 295 1. 00 66. 92 ATOM 625 N GLU 93 -1.02534. 410 52. 712 1. 00 73. 13 25 ATOM 626 CA GLU 93 -0.75135. 351 53. 792 1. 00 78. 27 ATOM 627 CB GLU 93 -0.62336. 780 53. 248 1.00 79.11 ATOM 628 CG **GLU 93** 0. 334 37. 635 54. 077 1. 00 82. 44 **GLU 93 ATOM** 629 CD 0. 218 39. 120 53. 795 1. 00 84. 34 ATOM 0E1 GLU 93 630 -0.877 39. 688 54. 018 1. 00 84. 71

- 166 -

	ATOM	631	0E	2 GL	IJ 93	1. 228	39. 718	53. 359	1. 00 85. 45
	ATOM	632	C	GL	J 93	-1. 813	35. 309	54. 904	1. 00 80. 72
	ATOM	633	0	GLI	J 93	-1. 469	35. 340	56. 086	1. 00 81. 42
	ATOM	634	N	GLY	7 94	-3. 093	35. 240	54. 536	1. 00 83. 03
5	ATOM	635	CA	GLY	94	-4. 153	35. 182	55. 538	1. 00 85. 37
	ATOM	636	C	GLY	94	-4. 867	36. 502	55. 792	1. 00 87. 51
	ATOM	637	0	GLY	94	-4. 356	37. 562	55. 430	1. 00 88. 65
	ATOM	638	N	GLU	95	-6. 041	36. 447	56. 427	1. 00 88. 43
	ATOM	639	CA	GLU	95	-6. 831	37. 653	56. 716	1. 00 88. 66
10	ATOM	640	CB	GLU	95	-8. 192	37. 281	57. 328	1. 00 89. 61
	ATOM	641	CG	GLU	95	-9. 077	36. 406	56. 448	1. 00 90. 41
	ATOM	642	CD	GLU	95	-8. 620	34. 958	56. 408	1. 00 91. 01
	ATOM	643	0E 1	GLU	95	-9. 089	34. 211	55. 523	1. 00 90. 26
	ATOM	644	0E2	GLU	95	-7. 800	34. 565	57. 266	1. 00 91. 81
15	ATOM	645	С	GLU	95	-6. 115	38. 625	57. 652	1. 00 88. 62
	ATOM	646	0	GLU	95	-6. 576	39. 748	57. 868	1. 00 88. 29
	ATOM	647	N	GLU	96	-4. 991	38. 182	58. 208	1. 00 89. 03
	ATOM	648	CA	GLU	96	-4. 200	38. 995	59. 124	1. 00 88. 80
	ATOM	649	CB	GLU	96	-4. 065	38. 282	60. 476	1. 00 88. 55
20	ATOM	650	CG	GLU	96	-5. 368	38. 155	61. 268	1. 00 89. 59
	ATOM	651	CD	GLU		-6. 400	37. 262	60. 593	1. 00 90. 56
	ATOM	652	0E1	GLU	96	-6. 163	36. 040	60. 481	1. 00 90. 53
	ATOM	653		GLU	96	-7. 452	37. 785	60. 172	1. 00 90. 67
	ATOM	654	С	GLU		-2. 810	39. 327	58. 519	1. 00 88. 40
25	ATOM	655	0	GLU	96	-2. 097	40. 166	59. 052	1. 00 89. 12
	ATOM	656	N	GLY		-2. 431	38. 700	57. 404	1. 00 86. 87
	ATOM	657	CA	GLY		-1. 133	38. 917	56. 789	1. 00 85. 05
	ATOM	658	С	GLY		-0. 161	37. 976	57. 494	1. 00 84. 17
	ATOM	659	0	GLY	97	1. 044	38. 179	57. 605	1. 00 83. 49

- 167 -ATOM 660 N **GLN 98** -0.82036. 901 57. 977 1.00 83.07 ATOM 661 GLN 98 CA -0. 253 35. 810 58. 769 1.00 82.28 ATOM 662 CB**GLN 98** -1.34634. 825 59. 250 1. 00 82. 41 ATOM 663 CG GLN 98 -2.64735. 462 59. 699 1.00 83.61 ATOM 5 664 CDGLN 98 -3. 740 34. 427 60.007 1.00 84.16 ATOM 665 0E1 GLN 98 -3.60633. 239 59. 714 1.00 84.01 ATOM NE2 GLN 98 666 -4.90534. 685 60. 592 1. 00 84. 46 ATOM 667 C **GLN 98** 0. 735 34. 981 58.011 1. 00 81. 85 ATOM 668 0 GLN 98 1. 955 57.956 35. 200 1.00 83.51 ATOM 669 N TRP 99 10 0. 118 33. 962 57. 470 1.00 79.05 TRP 99 ATOM 670 CA 0.703 32. 914 56.706 1. 00 75. 85 ATOM 671 CBTRP 99 1. 993 32. 398 57. 308 1. 00 73. 88 ATOM 672 CG TRP 99 2.968 31. 780 56. 325 1. 00 71. 82 ATOM 673 CD2 TRP 99 3. 211 30. 386 56.075 1.00 70.49 ATOM 15 674 CE2 TRP 99 4. 222 30. 308 55. 123 1. 00 69. 72 ATOM CE3 TRP 99 675 2.671 29. 200 56. 550 1. 00 69. 52 CD1 TRP 99 ATOM 676 3. 832 32. 464 55. 525 1. 00 71. 99 ATOM 677 NE1 TRP 99 4. 598 31. 589 54. 790 1. 00 71. 07 CZ2 TRP 99 ATOM 678 4. 692 29.089 54.624 1. 00 67. 81 ATOM 20 679 CZ3 TRP 99 3. 136 27. 984 56.080 1. 00 67. 31 ATOM 680 CH2 TRP 99 4. 151 27. 945 55. 111 1. 00 67. 77 ATOM 681 C TRP 99 -0.24731. 793 56. 673 1. 00 74. 58 ATOM 682 0 TRP 99 57. 556 -1.06031. 567 1. 00 75. 00 **ATOM** 683 N **SER 100** -0.09031. 087 55. 647 1. 00 72. 11 25 ATOM 684 CA **SER 100** -0.94829. 999 55. 517 1.00 68.48 ATOM 685 CB SER 100 -2.37630. 466 55. 232 1.00 68.40 ATOM 686 **SER 100** 0G -2. 467 31. 128 53. 985 1. 00 68. 76 ATOM 687 C **SER 100** -0.522

ATOM

688

0

SER 100

29. 152

29. 473

0.405

54. 382

53. 632

1. 00 66. 28

1. 00 65. 13

- 168 -ATOM 689 N VAL 101 -1.2251. 00 64. 27 28. 028 54. 291 ATOM 690 VAL 101 -0.98227. 030 CA 53. 262 1. 00 62. 66 ATOM 691 CBVAL 101 0.090 26. 023 53. 715 1. 00 62. 98 CG1 VAL 101 **ATOM** 692 1. 493 26. 554 53. 459 1. 00 66. 77 ATOM 693 CG2 VAL 101 -0.07525. 688 55. 198 1.00 63.17 5 1.00 60.88 ATOM 694 C VAL 101 -2.21926. 243 52. 878 ATOM 695 0 VAL 101 -2.56125. 258 53. 530 1. 00 60. 62 ATOM 696 LYS 102 -2.88026.671 N 51.810 1. 00 58. 24 ATOM 697 CA LYS 102 -4.06625. 981 1.00 56.12 51. 337 10 ATOM 698 CBLYS 102 -4. 887 26.880 50.410 1.00 57.06 ATOM 699 CG LYS 102 -5.88427. 806 51. 111 1. 00 60. 55 ATOM 700 CD LYS 102 -7.05627. 038 51. 748 1. 00 63. 17 LYS 102 ATOM 701 CE -8.28227. 944 52.036 1.00 64.70 ATOM 702 NZ LYS 102 -8.02129. 150 52. 899 1.00 63.52 703 C LYS 102 -3.67724. 710 15 ATOM 50. 596 1. 00 54. 04 ATOM 704 0 LYS 102 -2.59924.609 50.007 1. 00 52. 35 ATOM 705 N THR 103 -4.57623. 738 50. 631 1.00 52.24 ATOM 706 CA THR 103 -4.34522. 474 49. 972 1. 00 49. 72 ATOM CB THR 103 -4.13921.385 707 51.010 1. 00 49. 49 OG1 THR 103 ATOM -3.39920 708 20.316 50. 422 1.00 53.11 ATOM 709 CG2 THR 103 -5.47520.861 51. 517 1. 00 48. 32 ATOM 710 C THR 103 -5.56322. 158 49. 106 1.00 49.61 THR 103 -6.69322. 435 ATOM 711 0 49. 507 1. 00 50. 24 ATOM 712 N LYS 104 -5.33021. 587 47. 924 1. 00 48. 56 ATOM 21. 251 713 LYS 104 -6.40446. 983 1. 00 48. 50 25 CA ATOM 714 CBLYS 104 -6.46922. 298 45. 864 1. 00 49. 98 ATOM 715 CG LYS 104 -6.75323. 737 46. 313 1. 00 56. 05 ATOM 716 CD LYS 104 -8.19523. 932 1.00 60.38 46. 814 ATOM 717 CE LYS 104 -8.45625. 383 47. 254 1. 00 62. 32

- 169 -ATOM 718 NZ LYS 104 -9.84525. 649 47. 761 1.00 61.31 ATOM 719 C LYS 104 -6.22419. 878 46. 332 1. 00 48. 13 ATOM 720 0 LYS 104 -5.28619.685 45. 563 1.00 49.60 ATOM 721 N HIS 105 -7.12718. 936 46.606 1.00 47.57 5 ATOM 722 CA HIS 105 -7.02317. 601 46. 010 1. 00 47. 23 ATOM 723 CB HIS 105 -7. 165 16. 529 47. 074 1. 00 47. 40 ATOM 724CG HIS 105 -6.24116. 709 48. 228 1.00 49.37 ATOM 725 CD2 HIS 105 -5.09816.066 48. 563 1.00 49.55 ATOM 726 ND1 HIS 105 -6.45917. 648 49. 212 1.00 50.43 ATOM 727 CE1 HIS 105 10 -5.49317. 571 50. 110 1.00 51.38 NE2 HIS 105 ATOM 728 -4.65516. 619 49. 740 1. 00 50. 58 729 ATOM C HIS 105 -8.03017. 304 44. 907 1. 00 46. 39 ATOM 730 0 HIS 105 -9.19517. 692 44. 985 1.00 49.62 ATOM 731 N GLN 106 -7. 575 16. 580 43. 894 1. 00 42. 98 ATOM 732 CA GLN 106 -8.41915 16. 226 42. 771 1. 00 40. 44 733 · CB ATOM -8. 284 GLN 106 17. 285 41.685 1. 00 40. 41 ATOM CG -9.546734 GLN 106 17. 548 40.908 1. 00 40. 59 ATOM 735 CD GLN 106 -10.42816. 324 40.813 1.00 40.54 ATOM 736 OE1 GLN 106 -11.06115. 927 41. 795 1. 00 39. 16 ATOM 20 737 NE2 GLN 106 -10.47515. 712 39. 631 1. 00 40. 06 ATOM 738 C GLN 106 -7.94014. 878 42. 249 1. 00 40. 70 ATOM 739 -6.7450 GLN 106 14. 699 42. 012 1. 00 41. 69 ATOM 740 N MET 107 -8.86713. 937 42.066 1.00 41.01 ATOM 741 CA MET 107 -8.53212. 588 41. 599 1. 00 40. 17 ATOM 742 25 CB MET 107 -9.08311. 551 42. 588 1. 00 42. 07 ATOM 743 CG MET 107 -8.77210.094 42. 249 1.00 44.67 ATOM 744 SD MET 107 -10.1859. 202 41. 551 1. 00 50. 71 ATOM 745 CE MET 107 -10.6888. 056 42. 927 1. 00 43. 37 **ATOM** 746 C MET 107 -9.05912. 294 40. 204 1. 00 38. 93

- 170 -1.00 41.30 ATOM 747 0 MET 107 -10. 264 12. 285 39. 979 ATOM TYR 108 12.044 39. 264 1.00 37.96 748 N -8. 161 ATOM 749 CA TYR 108 -8.58811. 750 37. 907 1. 00 38. 48 TYR 108 12. 454 1.00 35.63 ATOM 750 CB -7.67036. 900 ATOM 751 CG TYR 108 -7. 732 13. 972 36. 977 1. 00 35. 18 5 CD1 TYR 108 -7.492ATOM 752 14. 645 38. 180 1. 00 37. 21 ATOM CE1 TYR 108 -7.55016.047 38. 268 1.00 34.81 753 ATOM CD2 TYR 108 -8.03114. 735 35. 857 1.00 34.14 754 ATOM 755 CE2 TYR 108 -8.09216. 134 35. 931 1.00 35.09 TYR 108 ATOM 756 CZ-7.85216. 783 37. 139 1. 00 35. 25 10 ATOM 757 0HTYR 108 -7. 937 18. 158 37. 211 1. 00 33. 27 ATOM 758 C TYR 108 -8.58310. 241 37. 689 1. 00 40. 17 -7.8179.514 38. 325 ATOM 759 TYR 108 1. 00 38. 04 0 ATOM 760 N **SER 109** -9.4699.765 36. 818 1. 00 42. 63 8.341 ATOM 761 CA **SER 109** -9.52436. 530 1. 00 44. 60 15 -10.9297. 787 ATOM 762 CB **SER 109** 36. 736 1. 00 43. 05 -10.9266.385 ATOM 763 0G **SER 109** 36. 522 1. 00 41. 66 8. 106 ATOM 764 С SER 109 -9. 090 35. 097 1. 00 46. 74 ATOM 765 **SER 109** -9.5318.799 34. 182 1.00 44.65 0 ATOM 766 ILE 110 -8. 217 7. 120 20 N 34. 918 1. 00 50. 31 -7.6866.782 ATOM 767 CA ILE 110 33.608 1. 00 55. 29 ATOM 768 CB ILE 110 -6.3266.060 33. 731 1. 00 54. 32 CG2 ILE 110 ATOM 769 -5.6905. 932 32. 364 1. 00 56. 16 ATOM 770 CG1 ILE 110 -5.3736.844 34. 626 1. 00 53. 30 ATOM CD1 ILE 110 -4.067771 6. 117 34. 869 1. 00 51. 57 25 ATOM 772 C ILE 110 -8.6215. 882 32. 799 1. 00 59. 70 ATOM 773 ILE 110 -8.9064. 749 33. 199 1. 00 58. 82 0 ATOM 774 N PRO 111 -9. 114 6.381 31.650 1.00 64.10

ATOM

775

CD

PRO 111

-8.972

31. 142

7. 759

1. 00 64. 05

- 171 -ATOM 776 CA PRO 111 -10.0125. 608 30. 788 1. 00 68. 40 ATOM 777 CB PRO 111 -10.1186. 484 29. 547 1. 00 67. 29 ATOM 778 CG PRO 111 -10.1057.860 30. 144 1. 00 63. 88 ATOM 779 C PRO 111 -9.4164. 231 30. 494 1. 00 72. 88 ATOM 4.065 780 0 PRO 111 -8.19530. 506 1. 00 73. 72 5 ATOM 781 N GLU 112 -10.2803. 250 30. 239 1. 00 77. 60 782 GLU 112 -9.845ATOM CA 1.879 29. 958 1. 00 80. 79 ATOM 783 CB GLU 112 -11.0720.968 1. 00 82. 29 29. 798 -10. 748 ATOM CG GLU 112 784 -0.49829. 524 1. 00 83. 62 **ATOM** 785 CD GLU 112 -11.896-1.24728. 851 1.00 85.04 10 ATOM 786 OE1 GLU 112 -11. 697 -2.42328. 470 1. 00 85. 60 0E2 GLU 112 -12.995-0.66528. 700 ATOM 787 1. 00 85. 42 1.806 ATOM 788 C GLU 112 -8.97128. 702 1. 00 82. 21 ATOM 789 0 GLU 112 -7.9361. 137 28.693 1. 00 82. 17 ATOM 790 N ASP 113 -9.3942.501 27. 649 1. 00 83. 97 15 ASP 113 -8.6602. 522 ATOM 791 CA 26. 385 1. 00 85. 79 1. 00 86. 45 ATOM 792 CB ASP 113 -9.5063. 221 25. 302 ATOM 793 CG ASP 113 -9.9614.624 25. 712 1. 00 87. 32 -ATOM 794 OD1 ASP 113 -10.6554.756 26. 748 1. 00 86. 75 ATOM OD2 ASP 113 795 -9.6295. 595 24. 991 1. 00 87. 18 20 ATOM -7.29726. 533 796 C ASP 113 3. 215 1.00 86.44 **ATOM** 797 0 ASP 113 -6.4673. 195 25. 617 1.00 86.35 MOTA 798 N ALA 114 -7.0753. 813 27. 701 1. 00 86. 34 -5.837ATOM 799 CA ALA 114 4. 533 28. 000 1. 00 85. 22 ATOM 800 CB-6.17425 ALA 114 5. 904 28. 585 1. 00 84. 46 ATOM 801 C ALA 114 -4.9283.768 28. 963 1. 00 83. 67 ATOM 802 0 ALA 114 -3.7163.692 28. 762 1. 00 83. 48 ATOM 803 MET 115 -5.528N 3. 212 30. 012 1. 00 81. 79 ATOM 804 CA MET 115 -4.8022. 457 31. 023 1. 00 78. 70

- 172 -ATOM 805 CB MET 115 -5. 776 2. 050 32. 135 1. 00 81. 16 806 ATOM CG MET 115 -5. 148 1.863 33. 503 1. 00 84. 52 ATOM 807 SD MET 115 -3.9780.492 33. 553 1.00 90.44 MET 115 ATOM 808 CE -5.060-0.891 34. 119 1.00 88.49 809 5 ATOM C MET 115 -4.1451. 224 30. 391 1. 00 76. 27 ATOM 810 0 MET 115 -3.0660.809 1. 00 74. 47 30. 813 ATOM 811 N THR 116 -4.7960.658 29. 372 1.00 74.50 ATOM 812 CA THR 116 -4.282-0.51828. 666 1.00 72.46 ATOM . 813 CB THR 116 -5.399-1.52428. 309 1. 00 72. 22 ATOM 814 OG1 THR 116 10 -6.200-0.99327. 244 1. 00 71. 17 ATOM 815 CG2 THR 116 -6.275-1.80529. 516 1.00 71.94 ATOM 816 C THR 116 -3.621-0.11027. 356 1. 00 71. 75 ATOM 817 0 THR 116 -3.562-0.89926. 412 1.00 71.39 ATOM 818 N GLY 117 -3.1421. 131 27. 301 1. 00 71. 09 ATOM 819 CA GLY 117 -2.47715 1. 639 26. 110 1. 00 68. 62 ATOM 820 C GLY 117 -0.9611.651 26. 260 1.00 66.70 ATOM 821 0 GLY 117 -0. 384 0.702 26. 798 1.00 67.20 ATOM 822 N THR 118 -0.3132.716 25. 783 1. 00 63. 05 **ATOM** 823 CA THR 118 1. 142 2.844 25. 876 1.00 59.92 ATOM 824 CB20 THR 118 1. 796 3.020 24. 502 1. 00 59. 06 ATOM 825 OG1 THR 118 1. 013 3. 926 23. 718 1. 00 57. 88 ATOM 826 CG2 THR 118 1. 917 1. 688 23. 794 1. 00 59. 21 ATOM 827 C THR 118 4. 038 1. 548 26. 721 1. 00 58. 97 **ATOM** 828 0 THR 118 0.764 4. 971 26. 912 1. 00 58. 11 25 ATOM 829 N ALA 119 2. 782 4.001 27. 218 1.00 56.72 ATOM 830 CA ALA 119 3. 313 5.071 28. 052 1. 00 52. 86 ATOM 831 CB ALA 119 4. 807 4. 938 28. 177 1. 00 51. 30 **ATOM** 832 C ALA 119 2.972 6.399 27. 421 1. 00 51. 58 ATOM 833 0 ALA 119 2.456 7. 301 28. 080 1. 00 52. 70

- 173 -ATOM 834 N **GLU 120** 3. 260 6.502 26. 131 1. 00 48. 02 ATOM 835 CA GLU 120 2. 994 7. 716 25. 386 1. 00 46. 07 ATOM 836 CB **GLU 120** 3. 194 7. 471 23. 894 1. 00 49. 10 ATOM 837 CG GLU 120 4. 210 6.381 23. 550 1. 00 52. 89 5 ATOM 838 CD GLU 120 5. 630 6. 736 23. 945 1. 00 53. 64 839 ATOM 0E1 GLU 120 5. 962 6.621 25. 141 1. 00 55. 30 ATOM 840 0E2 GLU 120 6. 411 7. 139 23.057 1. 00 52. 83 ATOM 841 C **GLU 120** 1.557 25.630 8. 140 1. 00 44. 27 ATOM 842 0 GLU 120 1. 295 9. 257 26.070 1.00 44.84 10 ATOM 843 N MET 121 0.627 7. 235 25. 351 1. 00 41. 37 ATOM 844 CA MET 121 -0.7917. 525 25. 513 1. 00 38. 57 ATOM 845 CB MET 121 -1.6266.358 24. 990 1. 00 41. 30 ATOM 846 CG MET 121 -1.7216. 328 23. 479 1. 00 46. 24 ATOM 847 SD MET 121 -2.4834. 835 22. 838 1. 00 50. 88 15 ATOM 848 CE MET 121 -3.9084.669 23. 961 1. 00 50. 02 ATOM 849 C MET 121 -1.1907.820 26. 937 1. 00 34. 60 ATOM 850 0 MET 121 -1.9108.780 27. 204 1.00 31.69 ATOM 851 N LEU 122 -0.7196.985 27. 852 1. 00 32. 63 ATOM 852 CA LEU 122 -1.0517. 141 29. 263 1.00 30.24 20 **ATOM** 853 LEU 122 CB-0.2566. 140 30. 108 1. 00 27. 33 **ATOM** 854 CG LEU 122 -0. 778 5. 923 31. 533 1.00 21.99 CD1 LEU 122 ATOM 855 -0. 279 4.601 32. 031 1. 00 22. 53 ATOM CD2 LEU 122 856 -0.3667. 034 32. 456 1.00 17.78 ATOM 857 C LEU 122 -0.7598. 551 29. 746 1. 00 28. 67 25 ATOM 858 0 LEU 122 -1.6199. 228 30. 326 1. 00 25. 21 ATOM 859 N PHE 123 0.469 8. 987 29. 502 1. 00 26. 83 ATOM 860 CA PHE 123 0.871 10. 306 29. 929 1. 00 25. 29 ATOM 861 CB PHE 123 2. 387 10. 398 29. 908 1. 00 20. 22 ATOM 862 CG PHE 123 3. 015 9. 772 31. 112 1. 00 15. 51

- 174 -ATOM 863 CD1 PHE 123 3. 538 8. 494 31. 064 1. 00 12. 96 ATOM 864 CD2 PHE 123 3. 028 10. 457 32. 328 1. 00 13. 35 ATOM 865 CE1 PHE 123 4.067 7.910 32. 217 1. 00 12. 87 ATOM 866 CE2 PHE 123 3. 552 9.879 33. 484 1.00 9.69 5 ATOM 867 czPHE 123 4. 072 8. 609 33. 432 1.00 9.56 ATOM 868 C PHE 123 0.202 11. 432 29. 157 1. 00 26. 20 ATOM 869 0 PHE 123 -0.10212. 489 29. 722 1. 00 26. 61 ATOM 870 N ASP 124 -0.05311. 207 27.875 1. 00 24. 47 ATOM 871 CA ASP 124 -0.75012. 210 27. 090 1. 00 23. 14 ATOM 872 CB ASP 124 10 -1.22811.614 25. 785 1. 00 24. 52 ATOM 873 CG ASP 124 -0.17811. 628 24. 747 1. 00 27. 01 ATOM 874 OD1 ASP 124 -0.37610. 955 23. 715 1. 00 26. 39 ATOM 875 OD2 ASP 124 0.839 12. 325 24.968 1. 00 29. 23 ATOM 876 C ASP 124 -1.96712. 650 27. 875 1. 00 21. 89 15 ATOM 877 0 ASP 124 -2.36113. 815 27. 841 1. 00 20. 01 ATOM 878 N TYR 125 -2.56211.688 28. 574 1. 00 20. 84 ATOM 879 CA TYR 125 -3.74911. 943 29. 371 1. 00 20. 51 ATOM 880 CB TYR 125 -4.41410.619 29. 792 1. 00 20. 43 ATOM 881 CG TYR 125 -5.79610. 794 30. 394 1. 00 22. 84 **ATOM** 882 CD1 TYR 125 20 -6.08310.358 31. 692 1. 00 23. 51 ATOM 883 CE1 TYR 125 -7.34510. 584 32. 268 1.00 31.08 ATOM 884 CD2 TYR 125 -6.80311. 451 29. 678 1. 00 26. 43 ATOM 885 CE2 TYR 125 -8.06411. 685 30. 232 1. 00 31. 61 ATOM 886 CZTYR 125 -8. 336 11. 255 31. 528 1.00 34.64 25 ATOM 887 OH TYR 125 -9.58511. 520 32.073 1. 00 38. 10 ATOM 888 C TYR 125 -3.38212. 752 30.605 1.00 19.11 ATOM 889 0 TYR 125 -3.90413. 848 30. 824 1.00 16.08 ATOM 890 N ILE 126 -2.46512. 212 31. 399 1. 00 17. 91 ATOM 891 CA ILE 126 1. 00 17. 82 -2.04912. 879 32. 615

- 175 -ATOM 892 CBILE 126 -0.81912. 236 33. 203 1. 00 19. 82 CG2 ILE 126 ATOM 893 -0.48912. 905 34. 538 1. 00 18. 77 ATOM 894 CG1 ILE 126 -1.05510. 732 33. 331 1. 00 21. 27 ATOM 895 CD1 ILE 126 0.045 9.984 34.062 1.00 23.92 896 C 5 ATOM ILE 126 -1.71714. 313 32. 325 1. 00 18. 09 ATOM 897 ILE 126 0 -1.99115. 205 33. 123 1. 00 16. 68 ATOM 898 N SER 127 -1.10814. 532 31. 172 1. 00 19. 12 ATOM 899 CA SER 127 -0.74715. 877 30. 789 1. 00 20. 96 ATOM 900 CB SER 127 -0.05715. 857 29. 432 1. 00 19. 89 ATOM 901 0G SER 127 0.569 10 17. 100 29. 190 1. 00 22. 20 ATOM 902 C -2.011SER 127 16. 742 30. 746 1. 00 21. 92 ATOM 903 0 **SER 127** -2.17717. 658 31. 551 1. 00 20. 25 ATOM 904 N -2.902**GLU 128** 16. 431 29. 813 1. 00 23. 87 ATOM 905 CA GLU 128 -4.15217. 161 29.670 1. 00 26. 98 ATOM 906 CB GLU 128 -5. 111 16. 353 15 28. 802 1. 00 33. 10 ATOM CG 907 GLU 128 -6.47116.990 28. 544 1. 00 39. 51 ATOM 908 CD GLU 128 -7.28016. 175 27. 544 1. 00 44. 52 ATOM 909 OE1 GLU 128 -7.21116. 481 26. 327 1. 00 46. 11 ATOM 0E2 GLU 128 -7.963910 15. 218 27. 980 1.00 43.93 ATOM 911 C GLU 128 20 -4.79717. 431 31.020 1. 00 26. 55 ATOM 912 0 **GLU 128** -5.17718. 561 31. 334 1. 00 26. 16 ATOM 913 CYS 129 -4.929N 16. 384 31. 820 1.00 26.36 ATOM 914 CA CYS 129 -5.53216. 535 33. 130 1. 00 26. 47 ATOM 915 CB CYS 129 -5.45215. 219 33. 893 1. 00 28. 39 ATOM 25 916 SG CYS 129 -6.45013. 922 33. 126 1. 00 37. 58 ATOM 917 C CYS 129 -4.85317. 636 33. 914 1. 00 25. 00 ATOM 918 0 CYS 129 -5.51518. 561 34. 372 1. 00 24. 97 ATOM 919 N ILE 130 -3. 532 17. 536 34. 059 1. 00 24. 74 **ATOM** 920 CA ILE 130 -2.76318. 536 34. 793 1. 00 21. 55

- 176 -ATOM 921 CB ILE 130 -1.24518. 255 34. 709 1. 00 17. 55 ATOM 922 CG2 ILE 130 -0.45819. 404 35. 304 1. 00 15. 00 ATOM 923 CG1 ILE 130 -0.91516. 984 35. 490 1. 00 16. 42 ATOM 924 CD1 ILE 130 0. 574 16. 713 35. 623 1. 00 18. 34 ATOM 925 C ILE 130 5 -3.07019. 910 34. 219 1. 00 23. 54 ATOM 926 0 ILE 130 -3.57220. 780 34. 926 1. 00 21. 27 **ATOM** 927 N SER 131 -2.78520.091 32. 933 1. 00 26. 25 ATOM 928 CA SER 131 -3.04821. 353 32. 270 1. 00 28. 50 ATOM 929 CB SER 131 -3.01121. 186 30. 764 1. 00 28. 76 10 ATOM 930 0GSER 131 -3.85622. 154 30. 164 1. 00 32. 87 ATOM 931 C SER 131 -4.41721. 851 32: 661 1. 00 31. 48 ATOM 932 0 SER 131 -4.58623. 002 33.057 1. 00 33. 67 ATOM ASP 132 933N -5. 411 20. 986 32. 546 1. 00 34. 56 ATOM 934 CA ASP 132 -6.75321. 397 32. 908 1. 00 39. 04 ATOM 935 CB15 ASP 132 -7. 735 20. 248 32. 694 1.00 44.84 ATOM 936 CG ASP 132 -9.16520.650 32. 987 1. 00 50. 51 ATOM 937 OD1 ASP 132 -9.76421. 347 32. 131 1.00 53.56 ATOM 938 OD2 ASP 132 -9.67420. 283 34. 078 1. 00 52. 37 ATOM C 939 ASP 132 -6.79021. 843 34. 376 1. 00 38. 23 ATOM 940 20 0 ASP 132 -7.16022. 982 34. 677 1. 00 36. 81 ATOM 941 N PHE 133 -6.39420. 932 35. 270 1. 00 36.88 ATOM 942 CA PHE 133 -6.37221. 170 36. 713 1. 00 34. 85 **ATOM** 943 CB PHE 133 -5.60420.060 37. 433 1. 00 33. 59 ATOM 944 CG PHE 133 -5.34320. 362 38. 878 1. 00 34. 77 25 ATOM 945 CD1 PHE 133 -6.39620. 547 39.760 1. 00 35. 58 ATOM 946 CD2 PHE 133 -4.04320. 523 39. 348 1. 00 37. 81 ATOM 947 CE1 PHE 133 -6.15920.896 41.091 1. 00 37. 66 ATOM CE2 PHE 133 948 -3.79220.872 40.678 1.00 38.00 ATOM CZ PHE 133 949 -4.85021. 059 41. 548 1. 00 38. 85

- 177 -ATOM 950 C PHE 133 **-5.** 755 22. 503 37. 094 1. 00 34. 28 ATOM 951 0 PHE 133 **-6.** 274 23. 226 37. 947 1. 00 33. 97 LEU 134 ATOM 952 N -4.62222. 813 36. 482 1. 00 33. 97 ATOM 953 CA LEU 134 -3.95824. 070 36. 766 1. 00 31. 79 5 ATOM 954 CB LEU 134 -2.59024. 109 36. 089 1. 00 24. 12 ATOM LEU 134 955 CG -1.61823. 026 1.00 16.64 36. 545 ATOM 956 CD1 LEU 134 -0.36823. 101 35. 705 1.00 15.98 ATOM 957 CD2 LEU 134 -1. 305 23. 184 38. 014 1. 00 10. 77 ATOM 958 C LEU 134 -4. 855 25. 176 36. 234 1.00 34.44 10 ATOM 959 0 LEU 134 -5. 111 26. 163 36. 920 1. 00 34. 41 ATOM 960 N ASP 135 · -5. 365 24. 999 35. 022 1. 00 37. 26 ATOM 961 CA ASP 135 -6.23026. 014 34. 454 1. 00 42. 65 ATOM 962 CB ASP 135 -6.81525. 565 33. 121 1.00 46.76 ATOM 963 CG ASP 135 -7. 707 26. 629 32. 509 1. 00 52. 18 ATOM 15 964 OD1 ASP 135 -8.65926. 271 31. 772 1. 00 53. 75 ATOM 965 OD2 ASP 135 -7.44327. 829 32. 772 1. 00 52. 70 966 ATOM C ASP 135 -7.38626. 381 35. 383 1.00 43.96 ATOM 967 ASP 135 0 -7.64327. 563 35. 619 1. 00 44. 98 ATOM 968 LYS 136 N -8.08425. 368 35. 894 1.00 44.30 20 ATOM 969 $\mathsf{C}\mathsf{A}$ LYS 136 -9.22525. 578 36. 780 1. 00 44. 56 ATOM 970 CBLYS 136 -9.88924. 237 37. 124 1. 00 46. 76 ATOM 971 CG LYS 136 -11.19524. 350 37. 941 1. 00 52. 67 ATOM 972 CD LYS 136 -11.91022. 981 38. 128 1. 00 55. 98 ATOM 973 CE LYS 136 -13.36723. 120 38. 628 1. 00 55. 25 25 ATOM - 974 NZ LYS 136 -14. 106 21. 817 38. 719 1. 00 51. 28 ATOM LYS 136 975 C -8.86226. 306 38. 069 1. 00 44. 85 ATOM 976 0 LYS 136 -9.73026. 894 38. 717 1. 00 45. 87 ATOM 977 N HIS 137 -7.58626. 273 38. 444 1. 00 44. 25 ATOM 978 CA HIS 137 -7. 149 26. 937 39. 670 1. 00 43. 21

- 178 -ATOM 979 CBHIS 137 -6.43425. 937 40. 585 1. 00 44. 13 CG HIS 137 ATOM 980 -7. 344 24. 915 41. 199 1.00 45.24 CD2 HIS 137 ATOM 981 -7.67624.680 42. 492 1.00 45.35 ATOM ND1 HIS 137 982 -8.04223. 991 40. 452 1.00 45.45 **ATOM** 983 CE1 HIS 137 -8.76423. 231 41. 257 1.00 45.40 5 ATOM NE2 HIS 137 984 -8.56023. 629 42. 500 1.00 44.34 ATOM 985 C HIS 137 28. 132 -6.24239. 400 1.00 41.96 **ATOM** 986 0 HIS 137 -5.59228. 649 40. 307 1.00 40.24 ATOM 987 N **GLN 138** -6.21728. 577 38. 151 1.00 42.87 10 ATOM 988 CA GLN 138 -5.39029. 706 37. 766 1.00 44.93 989 ATOM CBGLN 138 -5.94930. 993 38. 373 1. 00 47. 58 ATOM 990 CG GLN 138 -7.25831. 448 37. 749 1.00 51.96 ATOM 991 CD **GLN 138** 32.966 -7.41637. 766 1. 00 55. 20 ATOM 992 OE1 GLN 138 -6.68033.698 37. 088 1.00 56.05 NE2 GLN 138 ATOM 993 -8.37533. 445 38. 546 15 1. 00 55. 44 **ATOM** 994 C GLN 138 -3.92129. 537 38. 162 1. 00 44. 67 ATOM 995 0 **GLN 138** -3.31630. 437 38. 747 1. 00 45. 78 ATOM 996 N MET 139 -3.35028. 383 37.836 1.00 41.86 **ATOM** 997 CA MET 139 -1.95128. 109 38. 138 1.00 38.60 ATOM 998 -1.84627.062 20 CB MET 139 39. 236 1.00 39.19 ATOM 999 CG MET 139 -2.04827.660 40.604 1.00 41.24 ATOM 1000 SD MET 139 -0.85928. 992 40.852 1. 00 47. 65 ATOM 1001 CE MET 139 0.308 28. 217 42. 007 1.00 44.32 ATOM 1002 -1.232C MET 139 27. 653 36.881 1. 00 36. 60 ATOM 1003 0 MET 139 -0.31626. 823 25 36. 910 1.00 35.29 ATOM 1004 N LYS 140 -1.65928. 237 35. 771 1. 00 34. 23 ATOM 1005 CA LYS 140 -1.10127. 921 34. 477 1. 00 32. 15 ATOM 1006 CBLYS 140 -2.19828. 062 33. 417 1.00 31.04 ATOM 1007 CG LYS 140 -1.97027. 293 32. 116 1. 00 31. 48

- 179 --2. 184 1. 00 32. 43 ATOM 1008 LYS 140 25. 780 CD 32. 275 30. 925 **ATOM** CE LYS 140 1.00 30.89 1009 -2. 112 25. 015 ATOM 1010 NZ LYS 140 -0.81125. 130 30. 168 1.00 29.56 LYS 140 **ATOM** 1011 C 0.085 28.834 34. 161 1. 00 31. 02 ATOM 1012 0 LYS 140 0.047 30.045 34. 412 1.00 29.99 5 **ATOM** 1013 HIS 141 1. 143 28. 228 33. 627 1. 00 31. 35 N HIS 141 33. 244 ATOM 1014 CA 2. 353 28. 940 1. 00 30. 03 **ATOM** HIS 141 1. 989 32. 385 1.00 30.05 1015 CB30. 145 **ATOM** 1016 CG HIS 141 1.001 29.836 31. 305 1.00 31.15 30. 473 10 ATOM 1017 CD2 HIS 141 -0. 132 30. 927 1.00 30.91 ATOM 1018 ND1 HIS 141 1. 148 28. 769 30. 448 1. 00 33. 49 ATOM 1019 CE1 HIS 141 0.147 28. 763 29. 584 1. 00 35. 03 ATOM NE2 HIS 141 -0.64329. 787 29.853 1. 00 32. 67 1020 HIS 141 ATOM 1021 C 3. 138 29. 396 34. 460 1. 00 29. 17 1022 4. 211 29. 983 34. 341 ATOM 0 HIS 141 1. 00 28. 17 15 ATOM 2.601 1023 N LYS 142 29. 108 35. 635 1. 00 28. 81 **ATOM** LYS 142 3. 248 29. 505 36.869 1024 CA 1. 00 29. 17 ATOM 2.317 29. 240 38.065 1025 CB LYS 142 1. 00 33. 65 0.986 ATOM 1026 CG LYS 142 30. 042 38. 072 1. 00 39. 35 ATOM 1027 LYS 142 1. 194 31. 561 38. 214 1. 00 42. 74 20 CD **ATOM** LYS 142 -0.12232. 360 38. 170 1.00 45.49 1028 CE LYS 142 ATOM 1029 NZ 0. 110 33. 844 38. 325 1. 00 46. 19 ATOM 1030 C LYS 142 4. 575 28. 785 37. 075 1. 00 26. 49 **ATOM** 1031 LYS 142 5.340 29. 138 37. 966 1. 00 26. 10 0 4.862 27. 784 36. 254 ATOM 1032 N LYS 143 1. 00 24. 58 25 ATOM 1033 CALYS 143 6. 106 27. 042 36. 416 1. 00 22. 67 ATOM LYS 143 7. 258 27. 847 35. 836 1. 00 21. 51 1034 CB ATOM LYS 143 27.071 35. 737 1035 CG 8. 533 1. 00 22. 59 ATOM LYS 143 34. 516 1036 CD 9. 319 27. 510 1.00 25.81

- 180 -1.00 28.01 34. 240 **ATOM** 1037 LYS 143 10. 455 26. 542 CE 32.959 1. 00 27. 25 NZ LYS 143 11. 140 26. 828 ATOM 1038 26. 732 37. 896 1.00 22.14 ATOM 1039 C LYS 143 6. 383 27. 459 38. 556 1.00 21.99 LYS 143 7. 133 ATOM 0 1040 ATOM 1041 N LEU 144 5. 766 25. 655 38. 401 1. 00 20. 81 5 25. 214 39. 797 1. 00 16. 90 ATOM CA LEU 144 5. 910 1042 4.577 25. 351 40. 567 1. 00 16. 78 **ATOM** CB LEU 144 1043 39.983 1. 00 18. 43 ATOM CG LEU 144 3. 208 24. 956 1044 2. 148 24. 915 41.074 1. 00 17. 60 **ATOM** 1045 CD1 LEU 144 25. 960 38. 929 1. 00 19. 20 10 ATOM 1046 CD2 LEU 144 2. 795 39. 933 1.00 15.80 6. 432 23. 781 ATOM 1047 C LEU 144 6. 265 22. 958 39. 032 1. 00 12. 24 ATOM 1048 0 LEU 144 23.478 41.076 1. 00 16. 26 ATOM PRO 145 7.078 1049 N 42. 172 1. 00 15. 64 ATOM 1050 CD PRO 145 7. 227 24. 446 7. 678 22. 196 41. 467 1. 00 14. 17 ATOM 1051 CA PRO 145 15 8.079 22. 427 42. 923 1.00 18.10 **ATOM** 1052 CB PRO 145 8.378 23.860 42.963 1.00 17.14 1053 CG PRO 145 ATOM 1. 00 12. 75 6. 707 21. 050 41. 357 ATOM 1054 C PRO 145 5. 580 21. 141 41.852 1. 00 12. 27 MOTA 1055 0 PRO 145 19. 957 40.758 1. 00 10. 29 1056 LEU 146 7. 160 20 ATOM N 6. 290 18. 804 40. 560 1. 00 11. 21 ATOM 1057 CA LEU 146 1.00 7.24 6. 156 18. 539 39. 075 ATOM 1058 CBLEU 146 17. 439 38. 824 1.00 3.01 LEU 146 5. 160 ATOM 1059 CG 1.00 CD1 LEU 146 3.817 17. 832 39. 389 1.00 ATOM 1060 1.00 3.06 CD2 LEU 146 5.083 17. 215 37. 342 ATOM 1061 25 ATOM 1062 C LEU 146 6.696 17. 502 41. 233 1. 00 12. 36 1. 00 15. 11 7.629 16.851 40. 790 ATOM 1063 0 LEU 146 1.00 14.72 1064 N **GLY 147** 5.972 17. 086 42. 262 ATOM 1. 00 17. 81 CA 6. 333 15. 851 42. 937 ATOM 1065 GLY 147

- 181 -14. 586 ATOM 1066 GLY 147 5. 716 42. 371 1. 00 18. 51 C 1. 00 20. 85 ATOM 1067 0 GLY 147 4. 689 14. 644 41.704 PHE 148 1.00 19.28 ATOM 1068 N 6. 342 13. 440 42.631 PHE 148 5.825 12. 167 42. 142 1. 00 20. 55 ATOM 1069 CA ATOM 1070 CB PHE 148 6. 707 11. 635 41.023 1. 00 16. 36 5 PHE 148 6.593 ATOM 1071 CG 12. 409 39. 759 1. 00 17. 72 1072 CD1 PHE 148 6.792 39. 753 1. 00 17. 99 ATOM 13. 779 **ATOM** 1073 CD2 PHE 148 6. 298 11. 769 38. 560 1. 00 21. 10 CE1 PHE 148 6.695 14. 509 38.570 1. 00 22. 37 ATOM 1074 10 ATOM 1075 CE2 PHE 148 6. 198 12. 494 37. 362 1. 00 22. 82 CZPHE 148 6. 398 13.864 37. 366 1. 00 21. 67 ATOM 1076 PHE 148 5. 712 43. 222 1. 00 22. 75 ATOM 1077 C 11. 104 6.691 10. 783 ATOM 1078 0 PHE 148 43.885 1. 00 24. 66 4. 513 10. 562 ATOM 1079 N THR 149 43. 403 1. 00 24. 45 ATOM 1080 CA THR 149 4. 312 9. 514 44. 387 1. 00 24. 75 15 1081 CB THR 149 3. 365 9. 917 45. 497 1. 00 23. 76 ATOM 1082 OG1 THR 149 2.757 11. 175 1. 00 25. 51 ATOM 45. 192 CG2 THR 149 4. 107 9. 989 ATOM 1083 46. 786 1. 00 22. 63 8. 306 ATOM 1084 C THR 149 3.705 43. 715 1. 00 27. 38 ATOM 1085 0 THR 149 3.093 8. 405 42.647 1. 00 24. 58 20 **ATOM** 1086 PHE 150 7. 160 44. 361 1. 00 30. 07 N 3.857 ATOM 1087 PHE 150 3. 327 5. 936 43. 811 1. 00 32. 54 CA 1088 5. 120 43. 215 ATOM CB PHE 150 4. 455 1. 00 29. 97 ATOM 1089 CG PHE 150 5. 172 5. 820 42. 119 1. 00 27. 55 ATOM 1090 CD1 PHE 150 6. 134 6.770 42.397 1. 00 27. 41 25 1.00 27.56 5. 561 ATOM 1091 CD2 PHE 150 4.850 40. 798 1092 CE1 PHE 150 6.770 7. 447 41.366 1. 00 28. 61 ATOM CE2 PHE 150 6.231 39.762 ATOM 1093 5.481 1. 00 26. 86 1. 00 27. 37 ATOM 1094 CZ PHE 150 6. 437 7. 177 40.045

- 182 -ATOM 1095 C PHE 150 2. 561 5. 093 44. 808 1. 00 35. 78 ATOM 1096 0 PHE 150 3. 095 4. 695 45. 845 1. 00 36. 93 ATOM 1097 N SER 151 1. 305 4.813 44. 467 1.00 38.60 ATOM 1098 CA SER 151 0.420 4.006 45. 295 1.00 40.51 **ATOM** 1099 5 CB SER 151 -0.8304. 802 1. 00 41. 51 45. 641 ATOM 1100 0G SER 151 -1.5075. 159 44. 453 1. 00 47. 40 ATOM 1101 C SER 151 0.038 2. 736 44. 533 1. 00 41. 75 ATOM 1102 0 SER 151 0.069 2.696 43.301 1. 00 40. 78 ATOM 1103 N PHE 152 -0. 336 45. 278 1. 704 1. 00 43. 86 10 ATOM 1104 CA PHE 152 -0.6840. 421 44. 687 1. 00 45. 76 **ATOM** 1105 CB PHE 152 0.465 -0.55744. 965 1. 00 51. 67 ATOM 1106 CG PHE 152 0. 429 -1.80844. 133 1.00 57.82 **ATOM** 1107 CD1 PHE 152 0. 597 -1.74942. 751 1. 00 59. 39 ATOM CD2 PHE 152 1108 0.256 -3.05644. 739 1. 00 60. 37 CE1 PHE 152 15 ATOM 1109 0.598 -2.91541.979 1. 00 61. 23 ATOM CE2 PHE 152 1110 0. 254 -4.23243. 978 1.00 61.76 **ATOM** 1111 CZPHE 152 0. 426 -4.16142. 593 1.00 61.46 **ATOM** 1112 C PHE 152 -2.007-0. 134 45. 238 1. 00 43. 74 **ATOM** 1113 0 PHE 152 -2. 137 -0.38246. 437 1.00 43.01 ATOM 20 1114 N PRO 153 -3.005-0. 322 44. 359 1.00 40.65 ATOM 1115 CD PRO 153 -2.9930. 179 42. 979 1. 00 39. 35 ATOM 1116 CA PRO 153 -4.330-0.84444. 685 1. 00 38. 88 ATOM 1117 CB PRO 153 -5. 045 -0.80343. 352 1. 00 36. 16 ATOM 1118 CG PRO 153 -4. 454 0.359 42.711 1. 00 37. 38 ATOM 25 1119 C PRO 153 -4.235-2.25545. 192 1. 00 41. 30 ATOM 1120 0 PRO 153 -3.481-3.05744.657 1. 00 42. 17 ATOM 1121 N VAL 154 -5. 013 -2.56546. 215 1. 00 45. 30 ATOM 1122 CA VAL 154 -5.016-3.90546.767 1.00 49.50 ATOM 1123 CBVAL 154 -4. 124 -3.98947. 990 1. 00 45. 75

- 183 -`ATOM 1124 CG1 VAL 154 **-4**. 297 **-5**. 331 1. 00 45. 79 48. 638 ATOM 1125 CG2 VAL 154 -2.684 -3.77247. 594 1. 00 44. 88 ATOM 1126 C VAL 154 **-6**. 432 **-4**. 268 47. 181 1. 00 55. 51 ATOM 1127 0 VAL 154 -6.963-3. 683 48. 119 1.00 58.30 1.00 61.06 1128 5 ATOM N ARG 155 -7.042-5.23246. 495 CA ARG 155 ATOM 1129 -8. 413 -5. 643 46. 812 1. 00 67. 71 ATOM 1130 CB ARG 155 -8.812 -6.84745. 956 1. 00 71. 43 ATOM 1131 CG ARG 155 -9.033 -6.50144. 501 1. 00 76. 11 ATOM 1132 $^{\rm CD}$ ARG 155 **-9.** 094 **−7.** 736 43. 621 1.00 78.73 NE ARG 155 ATOM 1133 -9. 292 *-7*. 352 42. 226 10 1. 00 81. 59 ATOM 1134 CZ ARG 155 **-9.** 138 **-8.** 168 41. 190 1. 00 82. 83 ATOM 1135 NH1 ARG 155 1.00 83.55 **-8.** 778 **-9.** 432 41. 386 ATOM 1136 NH2 ARG 155 **-9.** 340 **−7.** 717 39. 956 1. 00 82. 01 ATOM 1137 C ARG 155 -8.639 -5.96548. 291 1. 00 70. 15 ATOM 1138 0 ARG 155 -7.689 -6.25549. 022 1. 00 71. 24 15 **ATOM** 1139 N HIS 156 1. 00 71. 23 -9.903 -5.92348. 720 **ATOM** 1140 CA HIS 156 -10. 265 -6. 184 50. 117 1. 00 72. 30 1141 CBHIS 156 -11.724 -5.769ATOM 50. 365 1. 00 73. 82 1142 ATOM CG HIS 156 -12.049 -5.50651.808 1. 00 76. 32 20 ATOM 1143 CD2 HIS 156 -11. 335 *-*5. 722 52. 941 1. 00 76. 70 ATOM ND1 HIS 156 -13. 243 -4. 944 1144 52. 211 1. 00 76. 54 CE1 HIS 156 -13.251 -4.823ATOM 1145 53. 527 1. 00 76. 16 NE2 HIS 156 $-12.\ 106$ $-5.\ 288$ 1.00 77.55 ATOM 53. 994 1146 ATOM 1147 C HIS 156 -10.063 -7.64550. 522 1. 00 72. 42 ATOM -7.95725 1148 0 HIS 156 -9.19651. 345 1. 00 71. 15 ATOM 1149 N ASN 180 11.816 6. 551 32. 482 1. 00 43. 22 ATOM 1150 CA ASN 180 11. 492 7. 278 33. 706 1. 00 42. 73 ATOM 1151 CB ASN 180 12. 677 8. 168 34. 155 1. 00 46. 67 ATOM CG ASN 180 1152 13. 189 9.094 33. 052 1. 00 50. 13

- 184 -1. 00 51. 24 8. 777 ATOM 1153 OD1 ASN 180 14. 152 32. 336 ATOM ND2 ASN 180 12. 547 10. 250 32. 915 1. 00 51. 73 1154 ATOM 1155 С ASN 180 10. 228 8. 110 33. 523 1. 00 38. 44 ASN 180 9.941 8.600 32. 431 ATOM 1156 0 1. 00 36. 40 ATOM 1157 N VAL 181 9. 473 8. 257 34. 603 1. 00 34. 02 5 8. 218 ATOM CA VAL 181 8. 995 34. 577 1. 00 31. 37 1158 7.498 8.874 35. 957 1.00 34.84 ATOM 1159 CB VAL 181 ATOM CG1 VAL 181 6.091 9. 484 35. 909 1. 00 32. 59 1160 CG2 VAL 181 7.414 7. 405 36. 353 1. 00 38. 00 ATOM 1161 10 ATOM 1162 C VAL 181 8. 426 10. 458 34. 221 1. 00 26. 36 VAL 181 7. 882 10.964 33. 237 1. 00 23. 28 ATOM 1163 0 9.228ATOM 1164 N VAL 182 11. 131 35. 030 1. 00 23. 56 ATOM CA VAL 182 9. 518 12. 538 34. 826 1.00 18.23 1165 ATOM 1166 CB VAL 182 10.702 12. 958 35. 716 1. 00 14. 26 35. 426 CG1 VAL 182 11. 905 12.084 ATOM 1167 1. 00 14. 73 15 11.001 14. 403 ATOM 1168 CG2 VAL 182 35. 508 1. 00 11. 08 9.773 12.882 ATOM 1169 C VAL 182 33. 352 1.00 15.36 9.330 13. 924 32. 875 ATOM 1170 0 VAL 182 1. 00 15. 32 10.467 12.009 ATOM 1171 N GLY 183 32. 632 1. 00 13. 34 **ATOM** 1172 CA GLY 183 10. 713 12. 267 31. 228 1. 00 12. 56 20 9.458 ATOM 1173 C GLY 183 12.098 30. 382 1. 00 13. 06 ATOM 1174 0 GLY 183 9. 104 12. 978 29. 601 1. 00 12. 05 1. 00 15. 78 8. 772 10.971 30. 540 ATOM 1175 N LEU 184 10.708 ATOM 1176 CA LEU 184 7.549 29. 777 1. 00 15. 21 LEU 184 6.858 9. 435 30. 295 1. 00 16. 78 ATOM 1177 CB25 ATOM 1178 CG LEU 184 7.613 8. 108 30.075 1. 00 15. 45 ATOM 1179 CD1 LEU 184 7. 037 7. 023 30. 951 1. 00 10. 71 ATOM 1180 CD2 LEU 184 7. 548 7. 708 28. 608 1. 00 16. 62 29.863 ATOM 1181 C LEU 184 6.601 11. 894 1. 00 13. 07

- 185 -ATOM 1182 0 LEU 184 6. 041 12. 311 28. 855 1. 00 13. 90 ATOM 1183 N LEU 185 6. 430 12. 436 31.064 1. 00 11. 99 ATOM 1184 CA LEU 185 5. 571 13. 600 31. 250 1. 00 12. 43 ATOM 1185 CB LEU 185 5. 524 13. 997 32. 729 1. 00 13. 27 ATOM 5 1186 CG LEU 185 4.630 15. 191 33. 080 1. 00 11. 52 ATOM 1187 CD1 LEU 185 3. 256 14. 936 32. 515 1. 00 10. 60 ATOM CD2 LEU 185 1188 4. 553 15. 395 34.600 1. 00 12. 16 ATOM 1189 С LEU 185 6.077 14. 788 30. 419 1. 00 12. 48 ATOM 1190 0 LEU 185 5. 289 15. 488 29. 784 1. 00 9. 22 10 ATOM 1191 N ARG 186 7.388 15. 020 30. 428 1. 00 13. 24 ATOM 1192 CA ARG 186 7. 946 16. 123 29. 661 1. 00 14. 83 ATOM 1193 CB ARG 186 9.478 16. 135 29. 727 1. 00 14. 69 ATOM 1194 CG ARG 186 30. 526 10. 112 17. 274 1. 00 18. 47 ATOM 1195 ARG 186 CD 11. 633 17.063 30. 663 1. 00 25. 71 ATOM 15 1196 NE ARG 186 12. 325 18.069 31. 484 1. 00 37. 62 ATOM 1197 CZARG 186 12.048 18. 357 32. 764 1. 00 42. 54 **ATOM** 1198 NH1 ARG 186 11.070 17. 721 33. 407 1. 00 43. 86 ATOM NH2 ARG 186 1199 12. 762 19. 277 33. 414 1. 00 39. 97 **ATOM** 1200 ARG 186 C 7.510 15. 968 28. 220 1. 00 16. 38 20 ATOM 1201 0 ARG 186 6.857 16.851 27. 673 1. 00 17. 00 **ATOM** 1202 N ASP 187 7.850 14. 832 27. 616 1. 00 19. 34 ATOM 1203 CA ASP 187 7. 519 14. 579 26. 214 1. 00 24. 04 ATOM 1204 CBASP 187 7.799 13. 123 25. 822 1. 00 30. 35 ATOM 1205 CG ASP 187 9. 226 12.696 26. 123 1. 00 37. 33 ATOM 1206 OD1 ASP 187 25 9. 479 12. 216 27. 251 1. 00 40. 99 ATOM OD2 ASP 187 1207 10.096 12. 845 25. 234 1. 00 40. 65 ATOM ASP 187 1208 C 6.069 25. 912 14. 889 1. 00 23. 78 ATOM 1209 0 ASP 187 5.756 15. 541 24. 909 1. 00 25. 37 ATOM 1210 N ALA 188 5. 185 14. 413 26. 780 1. 00 20. 98

- 186 -ATOM 1211 CA ALA 188 3. 761 14. 634 26. 603 1. 00 17. 11 ATOM 1212 CB ALA 188 2. 996 13. 943 27. 722 1.00 19.70 1213 ATOM C ALA 188 3. 475 16. 130 26.600 1. 00 14. 48 ATOM 1214 ALA 188 0 2. 911 16.660 25. 646 1. 00 11. 69 5 ATOM 1215 N ILE 189 3. 873 16. 801 27. 677 1. 00 13. 32 ATOM 1216 CA ILE 189 3. 682 18. 239 27. 817 1.00 13.84 ATOM 1217 CB ILE 189 4. 422 18. 754 29. 056 1. 00 12. 34 ATOM 1218 CG2 ILE 189 4. 368 20. 266 29. 118 1. 00 13. 98 **ATOM** 1219 CG1 ILE 189 3. 776 18. 153 30. 302 1. 00 14. 10 10 ATOM 1220 CD1 ILE 189 4. 455 18. 530 31. 595 1.00 14.04 ATOM 1221 C ILE 189 4. 223 18. 928 26. 575 1. 00 15. 60 ATOM 1222 0 ILE 189 3. 634 19.888 26.058 1. 00 14. 87 **ATOM** 1223 N LYS 190 5. 351 18. 408 26. 103 1. 00 16. 13 ATOM 1224 CA LYS 190 6.010 18. 913 24. 918 1. 00 16. 34 15 ATOM 1225 CB LYS 190 7. 361 18. 211 24. 737 1. 00 18. 43 ATOM 1226 CG LYS 190 8. 503 19.081 24. 175 1. 00 24. 32 ATOM 1227 CDLYS 190 19. 154 8. 539 22. 631 1. 00 28. 76 **ATOM** 1228 CE LYS 190 9.830 19. 841 22. 125 1. 00 30. 07 **ATOM** 1229 NZ LYS 190 10.060 19. 788 20.642 1. 00 27. 01 ATOM 20 1230 C LYS 190 5. 101 18.652 23. 718 1. 00 16. 41 ATOM 1231 0 LYS 190 4. 786 19. 575 22. 981 1. 00 17. 80 ATOM 1232 ARG 191 N 4.656 17. 413 23. 529 1. 00 14. 92 ATOM 1233 ARG 191 CA 3. 798 17. 107 22. 386 1. 00 15. 62 ATOM 1234 CB ARG 191 3. 241 15. 684 22. 491 1. 00 19. 10 ATOM 25 1235 ARG 191 CG 4.071 14. 622 21. 775 1. 00 20. 57 **ATOM** 1236 CDARG 191 3. 634 13. 221 22. 156 1. 00 19. 26 ATOM 1237 NE ARG 191 3. 950 12. 925 23. 547 1. 00 23. 45 ATOM 1238 CZARG 191 3. 732 11. 747 24. 119 1. 00 28. 59 ATOM 1239 NH1 ARG 191 3. 194 10. 767 23. 406 1. 00 32. 19

- 187 -ATOM 1240 NH2 ARG 191 4.062 11. 537 25. 391 1. 00 29. 84 ATOM 1241 C ARG 191 2. 652 18.086 22. 207 1. 00 15. 44 ATOM 1242 0 ARG 191 2. 383 18. 513 21. 098 1. 00 15. 17 ATOM 1243 N ARG 192 1. 980 18. 441 23. 295 1. 00 17. 09 ATOM 5 1244 CA ARG 192 0.853 19. 372 1. 00 19. 02 23. 253 ATOM 1245 CB ARG 192 0. 588 19. 885 24. 647 1. 00 17. 94 ATOM 1246 CG ARG 192 0.579 18. 785 25.635 1. 00 20. 35 MOTA 1247 CD ARG 192 -0.81218. 328 25.855 1. 00 22. 03 **ATOM** 1248 NE ARG 192 -1.56526. 586 19. 332 1. 00 27. 30 - 10 ATOM 1249 CZ ARG 192 -2. 824 19. 164 26. 954 1. 00 32. 13 ATOM 1250 NH1 ARG 192 -3.43718. 028 26. 639 1. 00 34. 51 ATOM 1251 NH2 ARG 192 -3.46520. 115 27. 631 1. 00 33. 64 ATOM 1252 C ARG 192 1. 010 20. 572 22. 321 1. 00 22. 21 **ATOM** 1253 0 ARG 192 0.017 21. 184 21. 937 1. 00 24. 03 15 ATOM 1254 N GLY 193 2. 245 20. 923 21.975 1. 00 24. 28 ATOM 1255 CA GLY 193 2. 472 22. 052 21.088 1. 00 25. 59 ATOM 1256 C GLY 193 2. 351 23. 417 21. 750 1. 00 27. 55 **ATOM** 1257 0 **GLY 193** 2. 734 24. 437 21. 163 1. 00 26. 53 ATOM 1258 N ASP 194 1.836 23. 434 22. 981 1. 00 28. 09 ATOM 20 1259 CA ASP 194 1. 634 24. 678 23. 725 1. 00 28. 74 **ATOM** 1260 CB ASP 194 0. 349 24. 597 24. 548 1. 00 32. 11 ATOM 1261 CG ASP 194 -0.87324. 329 23.692 1. 00 36. 60 **ATOM** 1262 OD1 ASP 194 -1.05325. 025 22.668 1. 00 38. 48 ATOM 1263 OD2 ASP 194 -1.65923. 424 24.046 1. 00 40. 23 ATOM 25 1264 C ASP 194 2. 774 25. 089 24. 641 1. 00 27. 04 **ATOM** 1265 0 ASP 194 3. 815 24. 439 24. 689 1. 00 26. 55 ATOM 1266 PHE 195 N 2. 565 26. 181 25. 370 1. 00 25. 47 ATOM 1267 CA PHE 195 3. 582 26. 691 26. 274 1. 00 25. 41 ATOM 1268 CB PHE 195 3. 083 27. 932 27. 016 1. 00 27. 05

- 188 -ATOM 1269 CG PHE 195 3. 156 29. 192 26. 201 1. 00 28. 43 1270 CD1 PHE 195 ATOM 2. 032 29. 686 25. 550 1. 00 31. 56 1271 CD2 PHE 195 ATOM 4. 353 29. 880 26.067 1. 00 29. 11 ATOM 1272 CE1 PHE 195 2. 097 30. 852 24. 771 1. 00 30. 45 ATOM 1273 CE2 PHE 195 4. 426 31. 046 5 25. 290 1. 00 30. 62 CZPHE 195 24.644 1.00 29.47 ATOM 1274 3. 294 31. 528 1275 PHE 195 ATOM C 4. 024 25. 642 27. 267 1. 00 24. 15 **ATOM** 1276 0 PHE 195 3. 214 25. 083 28.000 1. 00 25. 61 ATOM 1277 N GLU 196 5. 324 25. 385 27. 280 1. 00 22. 49 GLU 196 1278 CA 5. 897 24. 394 10 ATOM 28. 166 1. 00 23. 12 ATOM 1279 CBGLU 196 7. 117 23. 754 27. 499 1. 00 21. 72 1280 CG GLU 196 6. 942 23. 418 ATOM 26. 020 1. 00 22. 22 ATOM 1281 CD GLU 196 8. 121 22. 629 25. 477 1. 00 24. 60 ATOM 1282 OE1 GLU 196 8. 336 22. 601 24. 241 1. 00 23. 54 **ATOM** 1283 0E2 GLU 196 8. 839 22. 026 15 26. 301 1. 00 26. 49 1284 C ATOM GLU 196 6. 314 25. 066 29. 466 1. 00 24. 25 ATOM 1285 0 GLU 196 7. 467 24. 966 29.882 1. 00 26. 05 1286 5. 376 25. 729 ATOM N MET 197 30. 126 1. 00 25. 12 ATOM 1287 CA MET 197 5. 711 26. 444 31. 352 1. 00 27. 52 5. 546 ATOM 1288 CB MET 197 27. 942 31.096 20 1. 00 29. 51 ATOM 1289 CG MET 197 6. 758 28. 782 31.466 1. 00 33. 61 ATOM 1290 7. 208 29. 992 SD MET 197 30. 181 1. 00 35. 72 ATOM 1291 CE MET 197 5. 967 31. 256 30. 466 1. 00 37. 45 ATOM 1292 C 4.906 26.045 MET 197 32. 583 1. 00 27. 47 ATOM 1293 0 MET 197 4. 921 26. 749 25 33. 597 1. 00 25. 63 ATOM 1294N ASP 198 4. 230 24. 903 32. 502 1. 00 27. 57 ATOM 1295 CA ASP 198 3. 384 24. 430 33. 598 1. 00 26. 12 ATOM 1296 CB ASP 198 2. 462 23. 298 33. 110 1. 00 29. 89 **ATOM** 1297 CG ASP 198 1. 326 23.796 32. 232 1. 00 31. 76

- 189 -ATOM 1298 OD1 ASP 198 0. 736 24. 840 32. 590 1.00 30.59 ATOM 1299 OD2 ASP 198 1. 023 23. 135 31. 203 1. 00 32. 71 ATOM 1300 C ASP 198 4. 110 23. 959 34. 853 1. 00 22. 26 ASP 198 ATOM 1301 0 3.960 24. 551 35. 923 1.00 18.00 1302 5 ATOM N VAL 199 4. 873 22. 878 34. 717 1. 00 19. 81 ATOM 1303 CA VAL 199 5. 605 22. 301 35. 841 1. 00 18. 78 ATOM 1304 CBVAL 199 5. 133 20.852 1. 00 16. 48 36. 115 ATOM 1305 CG1 VAL 199 3. 736 20. 859 36.696 1. 00 19. 07 CG2 VAL 199 ATOM 1306 5. 150 20. 042 34. 823 1.00 10.86 10 ATOM 1307 C VAL 199 7. 121 22. 267 35. 648 1. 00 20. 19 **ATOM** 1308 0 VAL 199 7.665 22. 752 34. 655 1. 00 21. 16 ATOM 1309 N VAL 200 7. 798 21. 695 36. 629 1.00 20.40 ATOM 1310 CA VAL 200 9. 237 21. 547 36. 594 1. 00 22. 39 ATOM 1311 CBVAL 200 9.975 22. 834 37. 007 1. 00 24. 84 ATOM 1312 CG1 VAL 200 15 9.331 23. 406 38. 255 1.00 31.58 ATOM 1313 CG2 VAL 200 11.465 22. 539 37. 266 1.00 21.54 ATOM 1314 C VAL 200 9. 502 20. 457 37. 598 1. 00 23. 06 ATOM 1315 0 VAL 200 9.039 20. 501 38. 755 1. 00 22. 26 ATOM 1316 N ALA 201 10. 229 19.460 37. 120 1. 00 23. 03 20 ATOM 1317 CA ALA 201 10.569 18. 300 37. 907 1. 00 22. 74 ATOM 1318 CB ALA 201 11.460 17. 418 37. 112 1.00 23.66 ATOM 1319 C ALA 201 11. 236 18. 646 39. 209 1. 00 24. 47 ATOM 1320 0 ALA 201 12.045 19. 564 39. 285 1. 00 27. 55 ATOM 1321 N MET 202 10.872 17. 914 40. 244 1. 00 25. 96 ATOM 25 1322 CA MET 202 11. 479 18. 106 41. 547 1. 00 27. 52 ATOM 1323 CBMET 202 10. 720 19. 124 42. 386 1. 00 27. 45 ATOM 1324 CG MET 202 11. 516 19. 580 43. 597 1. 00 27. 56 ATOM 1325 SD MET 202 11. 967 18. 244 44. 740 1. 00 28. 85 ATOM 1326 CE MET 202 10. 732 46.045 18. 486 1. 00 23. 74

- 190 -

						101	J		
	ATOM	1327	C	MET	202	11. 436	16. 752	42. 219	1. 00 28. 79
	ATOM	1328	0	MET	202	10. 377	16. 290	42. 653	1. 00 25. 51
	ATOM	1329	N	VAL	203	12. 600	16. 118	42. 293	1. 00 29. 76
	ATOM	1330	CA	VAL	203	12. 695	14. 802	42. 883	1. 00 28. 97
5	ATOM	1331	CB	VAL	203	12. 943	13. 727	41. 813	1. 00 25. 86
	ATOM	1332	CG1	VAL	203	11. 936	13. 870	40. 681	1. 00 22. 02
	ATOM	1333	CG2	VAL	203	14. 361	13. 831	41. 310	1. 00 23. 30
	ATOM	1334	C	VAL	203	13. 815	14. 713	43. 890	1. 00 31. 36
	ATOM	1335	0	VAL	203	13. 934	13. 713	44. 585	1. 00 34. 93
10	ATOM	1336	N	ASN	204	14. 638	15. 745	43. 987	1. 00 32. 12
	ATOM	1337	CA	ASN	204	15. 741	15. 674	44. 929	1. 00 33. 37
	ATOM	1338	CB	ASN	204	16. 667	16. 867	44. 736	1. 00 36. 19
	ATOM	1339	CG	ASN	204	18. 052	16. 601	45. 260	1. 00 39. 20
	ATOM	1340	OD1	ASN	204	18. 847	15. 905	44. 621	1. 00 41. 71
15	ATOM	1341	ND2	ASN	204	18. 349	17. 133	46. 440	1. 00 39. 72
	ATOM	1342	C	ASN	204	15. 220	15. 625	46. 363	1. 00 32. 02
	ATOM	1343	0	ASN	204	14. 382	16. 439	46. 751	1. 00 28. 87
	ATOM	1344	N	ASP	205	15. 705	14. 665	47. 149	1. 00 31. 97
	ATOM	1345	CA	ASP	205	15. 245	14. 538	48. 541	1. 00 33. 94
20	ATOM	1346	CB	ASP	205	15. 792	13. 266	49. 197	1. 00 32. 38
	ATOM	1347	CG	ASP	205	15. 163	12. 017	48. 642	1. 00 31. 18
	ATOM	1348	OD1	ASP	205	15. 386	10. 935	49. 217	1. 00 31. 15
	ATOM	1349	OD2	ASP	205	14. 450	12. 118	47. 625	1. 00 28. 42
	ATOM	1350	C	ASP	205	15. 626	15. 722	49. 414	1. 00 33. 64
25	ATOM	1351	0	ASP	205	14. 909	16. 080	50. 356	1. 00 33. 83
	ATOM	1352	N	THR	206	16. 770	16. 313	49. 092	1. 00 31. 15
	ATOM	1353	CA	THR	206	17. 290	17. 449	49. 826	1. 00 25. 09
	ATOM	1354	CB	THR	206	18. 646	17. 825	49. 278	1. 00 25. 45
	ATOM	1355	0G1	THR	206	19. 423	16. 630	49. 123	1. 00 24. 81

- 191 -ATOM CG2 THR 206 1356 19. 350 18. 769 50. 232 1. 00 26. 26 ATOM 1357 C THR 206 16. 347 18. 634 49. 734 1. 00 20. 16 1358 ATOM 0 THR 206 15. 923 19. 184 50. 755 1.00 17.86 ATOM 1359 N VAL 207 16.009 19.016 48. 510 1. 00 12. 86 1360 5 ATOM CA VAL 207 15. 106 20. 133 48. 308 1.00 9. 27 ATOM 1361 CB VAL 207 14. 582 20. 164 46.867 1.00 5. 21 ATOM 1362 CG1 VAL 207 13.555 21. 243 46. 720 1.00 1. 26 ATOM 1363 CG2 VAL 207 15. 714 20. 397 1. 00 4. 57 45. 910 ATOM 1364 C VAL 207 13.917 19. 992 49. 255 1. 00 11. 72 1365 VAL 207 13. 584 20. 909 50.016 1. 00 9. 00 10 ATOM 0 ATOM 1366 13. 291 18.819 N ALA 208 49. 212 1.00 14.04 1367 ATOM CA ALA 208 12. 122 18. 523 50.041 1.00 14.67 1368 11.598 17. 148 ATOM CB ALA 208 49. 702 1.00 14.60 1369 ATOM C ALA 208 12. 422 18. 615 51. 537 1. 00 15. 41 1370 11. 514 ATOM 0 ALA 208 18. 770 52. 362 1. 00 14. 28 15 13.699 ATOM 1371 N THR 209 18. 498 51. 879 1. 00 13. 94 **ATOM** 1372 THR 209 14. 123 18. 591 53. 261 CA 1. 00 13. 05 ATOM 1373 CB THR 209 15. 567 18. 237 53. 423 1. 00 11. 66 **ATOM** 1374 OG1 THR 209 15.887 17. 177 52. 525 1. 00 12. 70 54.846 ATOM CG2 THR 209 15.833 17.807 20 1375 1. 00 7. 92 1376 THR 209 14.007 ATOM C 20.041 53. 626 1.00 14.97 ATOM 1377 0 THR 209 13. 554 20. 401 54. 714 1. 00 14. 80 MET 210 20.885 ATOM 1378 N 14. 447 52. 707 1. 00 15. 34 ATOM 1379 CA MET 210 14.363 22. 298 52. 965 1. 00 16. 36 ATOM 1380 MET 210 15.043 23. 091 25 CB 51.845 1. 00 19. 89 **ATOM** 1381 CG MET 210 15. 119 24. 592 52. 103 1. 00 23. 82 **ATOM** 1382 SD MET 210 15. 258 25. 542 50. 561 1. 00 29. 33 **ATOM** MET 210 13. 547 25. 995 1383 CE 50. 325 1. 00 27. 80 **ATOM** 1384 C MET 210 12. 864 22. 592 53. 031 1. 00 14. 33

- 192 -**ATOM** 1385 0 MET 210 12. 332 22. 896 54. 102 1. 00 15. 04 ATOM 1386 ILE 211 N 12. 180 22. 452 51. 898 1. 00 11. 15 ATOM 1387 CA ILE 211 10. 743 22. 708 51. 831 1.00 9.09 ATOM 1388 CBILE 211 10. 157 22. 122 50. 566 1. 00 5. 39 5 ATOM 1389 CG2 ILE 211 8. 748 22. 693 50. 337 1. 00 3. 22 ATOM 1390 CG1 ILE 211 11. 111 22. 412 49. 412 1. 00 2. 02 ATOM 1391 CD1 ILE 211 10.580 22. 065 48.067 1.00 1.00 ATOM 1392 C ILE 211 9. 987 22. 129 53.022 1.00 10.92 ATOM 1393 0 ILE 211 9. 117 22. 781 53. 605 1.00 7.92 10 ATOM 1394 N SER 212 10. 319 20. 891 53. 364 1. 00 12. 74 ATOM 1395 CA SER 212 9. 701 20. 254 54. 489 1. 00 15. 18 **ATOM** 1396 CB SER 212 10.300 18.880 54. 704 1. 00 12. 84 **ATOM** 1397 0G SER 212 10. 216 18. 533 56.078 1. 00 19. 56 ATOM 1398 C SER 212 9.918 21. 101 55. 736 1. 00 19. 90 ATOM 15 1399 SER 212 8.969 0 21. 432 56. 435 1. 00 21. 30 ATOM 1400 N CYS 213 11. 161 21. 476 56.016 1. 00 24. 22 ATOM 1401 CA CYS 213 11. 432 22. 259 57. 219 1. 00 28. 52 ATOM 1402 CB CYS 213 12.934 22. 367 57. 464 1. 00 30. 65 ATOM 1403 SG CYS 213 13.713 20. 766 57. 805 1.00 39.09 20 ATOM 1404 C CYS 213 10.822 23. 637 57. 168 1.00 29.40 ATOM 1405 0 CYS 213 10. 366 24. 150 58. 186 1. 00 30. 64 **ATOM** 1406 TYR 214 N 10.816 24. 229 55. 981 1. 00 29. 50 ATOM 1407 TYR 214 CA 10. 243 25. 548 55. 788 1. 00 29. 27 ATOM 1408 CBTYR 214 10. 168 25. 846 54. 292 1. 00 31. 33 ATOM 25 1409 CG TYR 214 9.637 27. 212 53. 985 1. 00 33. 15 ATOM CD1 TYR 214 1410 10. 182 28. 328 54. 594 1. 00 36. 28 ATOM 1411 CE1 TYR 214 9.694 29. 592 54. 341 1. 00 39. 73 ATOM 1412 CD2 TYR 214 8. 582 27. 390 53. 100 1. 00 35. 23 ATOM CE2 TYR 214 1413 8.080 28. 656 52. 833 1. 00 39. 38

- 193 -**ATOM** 1414 CZ TYR 214 8. 644 29. 758 53. 463 1. 00 41. 11 ATOM OH TYR 214 31. 034 53. 241 1. 00 43. 33 1415 8. 168 ATOM 1416 C TYR 214 8. 848 25. 649 56. 429 1. 00 28. 57 ATOM 1417 0 TYR 214 8. 561 26. 578 57. 185 1. 00 27. 99 7.986 ATOM 1418 N TYR 215 24. 685 56. 136 1. 00 27. 91 5 ATOM 1419 CA TYR 215 6.642 24. 685 56. 691 1. 00 27. 12 **ATOM** 1420 CBTYR 215 5. 922 23. 403 56. 309 1. 00 21. 95 **ATOM** 1421 CG TYR 215 5. 723 23. 235 54. 829 1. 00 18. 06 ATOM 1422 CD1 TYR 215 6.064 22. 048 54. 197 1. 00 17. 25 1423 CE1 TYR 215 5. 835 21.867 52. 841 1. 00 17. 47 ATOM 10 ATOM 1424 CD2 TYR 215 5. 152 24. 246 54.065 1. 00 16. 51 1425 CE2 TYR 215 4. 917 24. 075 52. 711 1.00 15.51 ATOM 1426 CZTYR 215 5. 257 22. 882 1.00 17.82 ATOM 52. 109 4.979 22. 681 ATOM 1427 OH TYR 215 50. 785 1. 00 20. 98 6.658 ATOM 1428 C TYR 215 24. 810 58. 201 1. 00 30. 19 15 1429 0 TYR 215 5. 780 25. 438 58. 778 1.00 31.10 ATOM GLU 216 7.640 24. 197 1. 00 35. 15 ATOM 1430 N 58. 850 7.725 24. 278 ATOM 1431 CA**GLU 216** 60. 306 1. 00 41. 19 8.560 ATOM 1432 CB **GLU 216** 23. 132 60.876 1.00 44.10 ATOM 1433 CG GLU 216 7.877 21. 767 60. 887 1. 00 52. 19 20 1434 CD GLU 216 6. 579 21. 749 61. 685 1. 00 54. 93 ATOM 1435 OE1 GLU 216 6.491 22. 481 62. 702 1. 00 55. 44 ATOM 0E2 GLU 216 5.658 20.988 ATOM 1436 61. 296 1. 00 56. 26 C **GLU 216** 8.369 25. 591 60.707 1.00 43.33 ATOM 1437 7. 787 26. 385 25 ATOM 1438 0 GLU 216 61. 449 1. 00 44. 64 1439 ASP 217 9. 583 25. 802 60. 209 1. 00 44. 35 ATOM N ATOM 1440 CA ASP 217 10. 357 27. 007 60. 489 1. 00 44. 65 ASP 217 26. 623 1.00 47.71 **ATOM** 1441 CB 11. 734 61. 033 ATOM 1442 CG ASP 217 12. 667 27. 806 61. 136 1.00 50.46

- 194 -ATOM 1443 OD1 ASP 217 13. 252 28. 205 60. 106 1. 00 51. 95 ATOM 1444 OD2 ASP 217 12. 804 28. 346 62. 252 1.00 54.06 ATOM 1445 C ASP 217 10. 514 27. 820 59. 215 1. 00 43. 04 ATOM 1446 ASP 217 0 11. 372 27. 527 58. 385 1.00 44.60 5 ATOM 1447 N HIS 218 9. 691 28. 848 59. 059 1.00 41.00 ATOM 1448 CA HIS 218 9. 750 29.671 57. 862 1. 00 39. 42 ATOM 1449 CB HIS 218 8. 569 30.630 57.826 1.00 40.46 ATOM 1450 CG HIS 218 7. 261 29.960 58. 083 1. 00 44. 54 ATOM 1451 CD2 HIS 218 6.652 28. 930 57. 450 1. 00 45. 30 ATOM 1452 ND1 HIS 218 10 6. 449 30. 290 59. 147 1. 00 47. 09 1453 ATOM: CE1 HIS 218 5. 397 29. 492 59. 161 1. 00 45. 61 ATOM 1454 NE2 HIS 218 5. 497 28.657 58. 142 1.00 46.44 ATOM 1455 11.036 C HIS 218 30. 452 57. 759 1. 00 37. 69 ATOM 1456 0 HIS 218 11. 120 31. 381 56. 974 1. 00 37. 21 1457 ATOM N GLN 219 12. 041 30.076 58. 537 1. 00 37. 38 15 1458 ATOM CA GLN 219 13. 312 30. 779 58. 494 1. 00 38. 18 **ATOM** 1459 CBGLN 219 13. 727 31. 186 59. 910 1. 00 41. 72 **ATOM** 1460 CG GLN 219 14. 577 32. 451 60.011 1. 00 48. 69 ATOM 1461 13.836 CD GLN 219 33. 718 59. 546 1. 00 55. 14 1462 20 ATOM OE1 GLN 219 12. 665 33. 945 59. 908 1. 00 55. 89 **ATOM** 1463 NE2 GLN 219 14. 523 34. 555 58. 751 1. 00 55. 41 ATOM 1464 GLN 219 14. 348 C 29. 846 57. 886 1. 00 36. 85 ATOM 1465 GLN 219 15.508 0 30. 200 57. 735 1. 00 37. 28 ATOM 1466 N CYS 220 13. 912 28. 647 57. 535 1. 00 36. 02 ATOM 1467 CYS 220 14.790 25 CA 27. 646 56. 950 1. 00 37. 10 ATOM 1468 CBCYS 220 14. 103 26. 286 57. 043 1. 00 38. 40 ATOM 1469 CYS 220 15.067 SG 24. 916 56. 396 1. 00 44. 24 ATOM CYS 220 1470 C 15. 106 27. 970 55. 486 1. 00 37. 48 ATOM 1471 CYS 220 14. 193 0 28. 081 54. 672 1. 00 40. 52

- 195 -ATOM 1472 N GLU 221 1.00 36.17 16. 382 28. 123 55. 137 1473 GLU 221 1. 00 35. 58 ATOM CA 16. 742 28. 428 53. 746 1474 CB GLU 221 29. 911 ATOM 17. 116 53. 591 1.00 38.60 ATOM 1475 CG GLU 221 15. 921 30.878 53. 645 1. 00 42. 48 1476 CD GLU 221 16. 325 32. 347 5 ATOM 53. 760 1. 00 42. 62 ATOM 1477 OE1 GLU 221 17. 120 32. 815 52. 909 1. 00 42. 89 1478 OE2 GLU 221 15.835 33.024 ATOM 54. 700 1.00 40.36 ATOM 1479 C GLU 221 17.896 27. 566 53. 260 1. 00 33. 89 18. 498 27. 826 ATOM 1480 0 GLU 221 52. 217 1. 00 32. 29 1481 N VAL 222 18. 199 26. 525 54.018 1. 00 32. 57 10 ATOM ATOM 1482 CA VAL 222 19. 286 25.654 53. 645 1.00 31.01 ATOM 1483 CB VAL 222 20. 548 26. 041 54.376 1. 00 29. 59 ATOM 1484 CG1 VAL 222 21. 673 25. 102 53. 995 1. 00 29. 07 ATOM 1485 CG2 VAL 222 20.895 27. 465 54. 043 1.00 30.00 1486 C VAL 222 18. 983 24. 214 53. 966 ATOM 1. 00 31. 75 15 ATOM 1487 0 VAL 222 18.872 23.846 55. 132 1.00 33.50 ATOM 1488 N **GLY 223** 18.858 23. 400 52. 925 1. 00 31. 02 1489 **GLY 223** 18. 575 21. 994 ATOM $\mathsf{C}\mathsf{A}$ 53. 119 1. 00 28. 49 ATOM 1490 C **GLY 223** 19. 847 21. 184 53. 026 1. 00 26. 21 ATOM 1491 0 **GLY 223** 20. 757 21. 528 52. 267 1.00 25.39 20 ATOM 1492 N MET 224 19. 911 20.098 53. 786 1. 00 24. 93 1493 CA MET 224 21. 101 19. 267 ATOM 53. 774 1. 00 24. 66 **ATOM** 1494 CB MET 224 22. 164 19. 958 54. 623 1.00 26.07 23. 584 ATOM 1495 CG MET 224 19. 535 54. 358 1. 00 26. 25 **ATOM** 1496 SD MET 224 24.664 20. 375 55. 525 1.00 28.76 25 ATOM 1497 CE MET 224 24. 493 19. 328 56. 939 1. 00 27. 46 ATOM 1498 C MET 224 20.867 17. 819 1. 00 23. 62 54. 253 ATOM 1499 0 MET 224 20. 243 17. 581 55. 294 1.00 21.62 ATOM 1500 N 16.867 ILE 225 21. 389 53. 478 1.00 21.96

- 196 -ATOM 1501 CAILE 225 21. 265 15. 434 53. 764 1. 00 21. 80 ATOM 1502 CBILE 225 20. 514 14. 706 52. 662 1. 00 23. 26 ATOM 1503 CG2 ILE 225 20. 389 13. 242 53. 026 1. 00 22. 57 ATOM 1504 CG1 ILE 225 19. 142 15. 332 52. 463 1. 00 26. 22 5 ATOM 1505 CD1 ILE 225 18. 270 15. 229 53. 688 1.00 30.06 ATOM 1506 C ILE 225 22. 595 14. 702 53.904 1. 00 21. 76 ATOM 1507 0 ILE 225 23. 204 14. 299 52.909 1.00 20.84 ATOM 1508 N VAL 226 23. 008 14. 492 55. 146 1. 00 22. 14 ATOM 1509 CA VAL 226 24. 263 13. 824 55. 454 1. 00 22. 07 10 ATOM 1510 CBVAL 226 25. 031 14. 613 56. 514 1. 00 22. 20 -ATOM 1511 CG1 VAL 226 26. 321 13. 905 56.872 1. 00 20. 57 ATOM 1512 CG2 VAL 226 25. 283 16.016 56.005 1. 00 22. 66 **ATOM** 1513 C VAL 226 24.060 12. 411 55. 972 1. 00 22. 96 **ATOM** 1514 0 VAL 226 24. 032 12. 172 57. 183 1. 00 23. 79 15 ATOM 1515 N GLY 227 23. 924 11.470 55. 054 1. 00 23. 08 ATOM 1516 CA GLY 227 23. 738 10.094 55. 459 1. 00 25. 20 ATOM 1517 C **GLY 227** 24. 623 9. 207 54. 621 1. 00 25. 79 **ATOM** 1518 **GLY 227** 0 25.820 9. 447 54. 501 1. 00 26. 18 **ATOM** 1519 N THR 228 24. 039 8. 181 54.026 1. 00 27. 28 ATOM 20 1520 CA THR 228 24. 822 7. 291 53. 200 1.00 29.44 **ATOM** 1521 CB THR 228 23.900 6. 356 52. 413 1. 00 28. 91 ATOM 1522 OG1 THR 228 24. 691 5. 441 51.650 1. 00 27. 54 ATOM 1523 CG2 THR 228 22. 983 51.496 7. 159 1.00 30.69 ATOM 1524 C THR 228 25. 705 8. 139 52. 267 1. 00 30. 87 25 ATOM 1525 0 THR 228 26. 878 7. 834 52. 072 1. 00 32. 00 ATOM 1526 N GLY 229 25. 140 9. 216 51. 723 1.00 31.23 ATOM 1527 CA GLY 229 25. 888 10. 111 50. 855 1. 00 30. 25 ATOM 1528 C GLY 229 25. 716 11. 501 51. 434 1. 00 32. 12 ATOM 1529 0 GLY 229 25. 139 11. 632 52. 518 1. 00 33. 23

- 197 -1530 CYS 230 ATOM N 26. 208 12. 535 50. 749 1. 00 31. 95 CYS 230 **ATOM** 1531 CA 26.057 13. 909 51. 247 1.00 31.05 CYS 230 ATOM 1532 CB27. 344 14. 417 51.891 1.00 31.11 ATOM 1533 SG CYS 230 27. 145 16.090 52. 562 1.00 40.64 1534 CYS 230 25.650 14. 909 1.00 29.04 5 ATOM C 50. 183 26. 202 ATOM 1535 0 CYS 230 14. 913 49. 087 1.00 30.85 1536 24. 701 15. 775 ATOM N ASN 231 50. 513 1. 00 26. 12 ATOM 1537 ASN 231 24. 267 16. 773 49. 554 1. 00 26. 17 CA ATOM 1538 CB ASN 231 23. 380 16. 130 48. 505 1. 00 24. 13 1539 CG ASN 231 23. 146 17. 030 47. 341 ATOM 1.00 24.98 10 ATOM 1540 OD1 ASN 231 22. 505 18. 064 47. 463 1. 00 24. 73 ATOM 1541 ND2 ASN 231 23.684 16.656 46. 196 1.00 29.51 ATOM 1542 C ASN 231 23. 529 17. 927 50. 213 1. 00 27. 77 22. 929 ATOM 1543 0 ASN 231 17. 757 51. 275 1. 00 28. 70 ATOM 1544 N **ALA 232** 23.569 19. 103 49. 587 1. 00 27. 44 15 22.890 ATOM 1545 CA ALA 232 20. 258 50. 158 1.00 26.70 ATOM 1546 CB ALA 232 23.806 20.963 51. 113 1.00 26.89 ATOM 1547 C ALA 232 22. 366 21. 245 49. 144 1. 00 26. 61 ATOM 1548 0 **ALA 232** 22. 693 21. 184 47. 963 1. 00 26. 44 ATOM CYS 233 21.537 22. 161 1549 N 49. 617 1.00 27.04 20 ATOM 1550 CA CYS 233 20.976 23. 172 48. 743 1. 00 31. 21 ATOM 1551 CB CYS 233 19.676 22. 666 48. 127 1.00 31.60 ATOM 1552 SG CYS 233 18. 376 22. 446 49. 348 1. 00 35. 31 **ATOM** 1553 C CYS 233 20.708 24. 408 49. 589 1.00 31.98 ATOM 1554 0 CYS 233 20. 596 24. 303 50. 809 1. 00 32. 62 25 ATOM 1555 N TYR 234 20. 621 25. 572 48. 949 1. 00 30. 70 ATOM TYR 234 20.366 26. 822 49.660 1.00 30.60 1556 CA **ATOM** 1557 CB TYR 234 21.684 27. 524 1.00 29.53 50.026 ATOM 1558 CG TYR 234 22. 464 28. 011 48. 829 1. 00 27. 41

٥

- 198 -1.00 25.56 ATOM 1559 CD1 TYR 234 22. 363 29. 327 48. 393 47. 217 1. 00 25. 47 ATOM CE1 TYR 234 22. 981 29. 739 1560 ATOM CD2 TYR 234 23. 218 27. 121 48.061 1. 00 28. 10 1561 CE2 TYR 234 23.838 27. 524 46. 882 1. 00 26. 39 ATOM 1562 TYR 234 23.707 28.830 46. 462 1. 00 25. 77 ATOM 1563 CZ5 45. 253 1. 00 27. 36 ATOM 1564 OH TYR 234 24. 240 29. 201 1. 00 32. 10 TYR 234 19. 531 27. 742 48. 797 ATOM 1565 C ATOM 1566 TYR 234 19. 211 27. 411 47.657 1. 00 32. 79 0 MET 235 19. 184 28.897 49. 357 1.00 34.08 ATOM 1567 N ATOM CA MET 235 18.380 29.908 48.679 1.00 34.57 1568 10 ATOM 1569 CBMET 235 17. 492 30. 617 49. 697 1. 00 34. 74 MET 235 16. 489 29. 699 50. 305 1. 00 34. 74 ATOM 1570 CG 28. 985 48. 959 1. 00 35. 81 ATOM 1571 SD MET 235 15. 575 ATOM 1572 CE MET 235 14. 171 30. 092 48. 917 1.00 34.50 1. 00 35. 41 ATOM 1573 C MET 235 19. 270 30. 933 48. 009 15 ATOM 19.631 31. 930 48. 625 1. 00 37. 55 1574 0 MET 235 30. 702 46. 753 1. 00 35. 58 ATOM 1575 N GLU 236 19.626 ATOM GLU 236 20. 487 31.643 46. 049 1. 00 36. 59 1576 CA ATOM 1577 CB **GLU 236** 21. 168 30. 949 44. 869 1. 00 38. 16 22.051 31.861 44. 051 1. 00 39. 44 ATOM 1578 CGGLU 236 20 **GLU 236** 23. 107 32. 542 44.890 1. 00 41. 44 ATOM 1579 CD ATOM 1580 OE1 GLU 236 24. 116 31. 891 45. 240 1.00 40.65 33. 735 ATOM 1581 OE2 GLU 236 22. 918 45. 208 1. 00 42. 03 19.679 32. 838 45. 564 1. 00 37. 02 ATOM 1582 C GLU 236 1.00 38.00 ATOM GLU 236 18. 452 32. 810 45. 580 25 1583 0 33. 898 45. 149 1. 00 38. 75 ATOM 1584 GLU 237 20. 354 N **GLU 237** 19.634 35.062 44.668 1. 00 41. 18 ATOM 1585 CA 44. 830 1. 00 39. 63 GLU 237 20. 482 36. 317 ATOM 1586 CB

ATOM

1587

CG

GLU 237

20. 912

36. 579

46. 258

1.00 36.10

- 199 -9. 764 - 37

	ATOM	1588	CD	GLU	237	19. 764	37. 022	47. 131	1. 00 35. 20
	ATOM	1589	0E1	GLU	237	19. 056	37. 971	46. 726	1. 00 34. 49
	ATOM	1590	0E2	GLU	237	19. 574	36. 434	48. 221	1. 00 33. 72
	ATOM	1591	C	GLU	237	19. 307	34. 836	43. 206	1. 00 43. 71
5	ATOM	1592	0	GLU	237	20. 143	34. 351	42. 437	1. 00 43. 65
	ATOM	1593	N	MET	238	18. 078	35. 172	42. 832	1. 00 45. 47
	ATOM	1594	CA	MET	238	17. 625	35. 013	41. 457	1. 00 47. 13
	ATOM	1595	CB	MET	238	16. 275	35. 705	41. 275	1. 00 47. 10
	ATOM	1596	CG	MET	238	15. 094	34. 875	41. 721	1. 00 46. 82
10	ATOM	1597	SD	MET	238	14. 773	33. 548	40. 554	1. 00 45. 37
	ATOM	1598	CE	MET	238	13. 564	34. 332	39. 412	1. 00 46. 47
	ATOM	1599	C	MET	238	18. 629	35. 589	40. 466	1. 00 48. 34
	ATOM	1600	0	MET	238	18. 814	35. 061	39. 371	1. 00 49. 97
	ATOM	1601	N	GLN	239	19. 280	36. 672	40. 868	1. 00 48. 44
15	ATOM	1602	CA	GLN	239	20. 252	37. 344	40. 026	1. 00 49. 76
	ATOM	1603	CB	GLN	239	20. 398	38. 794	40. 491	1. 00 54. 00
	ATOM	1604	CG	GLN	239	20. 375	38. 963	42. 007	1. 00 58. 66
	ATOM	1605	CD	GLN	239	20. 056	40. 394	42. 447	1. 00 63. 23
	ATOM	1606	0E1	GLN	239	19. 660	40. 624	43. 593	1. 00 65. 75
20	ATOM	1607	NE2	GLN	239	20. 233	41. 359	41. 540	1. 00 63. 23
	ATOM	1608	C	GLN	239	21. 612		40. 011	1. 00 48. 87
	ATOM	1609	0	GLN	239	22. 611	37. 295	39. 687	1. 00 49. 50
	ATOM	1610	N	ASN	240	21. 656	35. 384	40. 354	1. 00 47. 67
	ATOM	1611	CA	ASN	240	22. 926	34. 660	40. 379	1. 00 47. 01
25	ATOM	1612	CB	ASN	240	23. 301	34. 278	41. 809	1. 00 47. 66
	ATOM	1613	CG	ASN	240	24. 101	35. 347	42. 518	1. 00 45. 71
	ATOM	1614	OD 1	ASN	240	23. 553	36. 328	43. 021	1. 00 43. 88
	ATOM	1615	ND2	ASN	240	25. 414	35. 159	42. 561	1. 00 46. 64
	ATOM	1616	C	ASN	240	22. 861	33. 393	39. 550	1. 00 46. 58

- 200 -ATOM $1617 \cdot 0$ ASN 240 23. 888 32. 840 39. 137 1. 00 46. 44 ATOM 1618 N VAL 241 1.00 44.69 21. 643 32. 919 39. 340 1619 VAL 241 21. 426 31.717 38. 564 1. 00 43. 22 ATOM CA ATOM 1620 CBVAL 241 20. 103 31.056 38. 948 1. 00 43. 93 1621 ATOM CG1 VAL 241 20.071 29. 643 38. 412 1. 00 44. 87 5 1622 CG2 VAL 241 ATOM 19. 922 31.091 40. 456 1. 00 40. 98 1623 VAL 241 21. 358 32. 182 ATOM C 37. 126 1. 00 41. 83 1624 ATOM 0 VAL 241 20. 351 32. 739 36.685 1. 00 42. 56 ATOM 1625 N GLU 242 22. 433 31. 974 36. 386 1. 00 39. 79 1626 ATOM CA GLU 242 22. 426 32. 440 35. 017 1. 00 38. 35 10 1627 ATOM CBGLU 242 23. 841 32. 438 34. 435 1. 00 41. 38 ATOM 1628 CG 24.874 33.080 35. 345 GLU 242 1. 00 43. 21 ATOM 1629 CD GLU 242 26.062 33. 639 34. 588 1. 00 46. 65 1630 ATOM OE1 GLU 242 26. 489 33. 026 33. 581 1. 00 46. 29 **ATOM** 1631 0E2 GLU 242 26. 581 34.694 35. 014 1. 00 49. 23 15 1632 ATOM C GLU 242 21. 495 31.626 34. 144 1. 00 34. 71 ATOM 1633 0 GLU 242 21. 135 32. 057 33. 054 1. 00 33. 08 1634 21.085 30. 456 ATOM N LEU 243 34. 612 1. 00 31. 90 **ATOM** 1635 CA LEU 243 20. 194 29.652 33. 794 1. 00 30. 72 ATOM 1636 CBLEU 243 20. 125 28. 214 34. 285 20 1. 00 29. 40 ATOM 1637 CG LEU 243 21. 244 27. 279 33. 833 1. 00 28. 38 ATOM 1638 CD1 LEU 243 21. 264 27. 192 32. 321 1. 00 23. 84 CD2 LEU 243 22.570 27. 786 ATOM 1639 34. 381 1. 00 31. 28 **ATOM** 1640 C LEU 243 18.799 30. 222 33. 763 1. 00 31. 18 25 ATOM 1641 0 LEU 243 18. 143 30. 153 32. 729 1. 00 32. 86 ATOM 1642 N VAL 244 18. 350 30. 779 1. 00 30. 11 34. 887 ATOM 1643 CA VAL 244 17.011 31. 361 34. 979 1. 00 30. 23 ATOM 1644 CBVAL 244 16.549 31. 527 36. 432 1. 00 31. 77 ATOM 1645 CG1 VAL 244 15. 085 31. 981 36. 444 1. 00 31. 84

- 201 -ATOM 1646 CG2 VAL 244 16. 748 30. 234 37. 213 1. 00 31. 59 **ATOM** 1647 C VAL 244 16. 955 32. 746 34. 361 1. 00 30. 94 ATOM 1648 0 VAL 244 17. 919 33. 499 34. 458 1. 00 31. 77 ATOM 1649 N GLU 245 15. 819 33. 083 33. 753 1. 00 32. 44 1650 ATOM CA GLU 245 15. 625 34. 389 1. 00 36. 05 5 33. 125 ATOM 1651 CB GLU 245 14. 384 34. 384 32. 237 1. 00 35. 98 ATOM 1652 CG GLU 245 14. 542 35. 203 30. 981 1. 00 38. 72 1653 CDGLU 245 ATOM 15. 357 34. 449 1.00 41.52 29. 959 ATOM 1654 0E1 GLU 245 15. 957 33. 428 30. 356 1. 00 40. 02 0E2 GLU 245 ATOM 1655 15. 402 34. 859 28. 776 1. 00 43. 26 10 ATOM 1656 C GLU 245 15. 453 35. 511 34. 149 1. 00 39. 49 ATOM 1657 0 GLU 245 15. 995 36.603 33. 978 1. 00 39. 69 ATOM 1658 N **GLY 246** 14. 676 35. 239 35. 197 1. 00 42. 62 14. 417 ATOM 1659 CA GLY 246 36. 228 36. 233 1. 00 44. 14 ATOM 1660 C **GLY 246** 15. 642 36. 762 36. 953 15 1. 00 44. 54 **ATOM** 1661 0 **GLY 246** 16.720 36. 163 36. 906 1. 00 43. 59 ATOM 1662 N ASP 247 15. 476 37. 896 37. 627 1. 00 44. 51 **ATOM** 1663 CA ASP 247 16. 582 38. 500 38. 345 1. 00 45. 26 ATOM 1664 CB ASP 247 17. 179 39.654 37. 540 1. 00 48. 06 ATOM 1665 CG ASP 247 18. 102 39. 173 20 36. 436 1. 00 52. 60 ATOM 1666 OD1 ASP 247 19.016 38. 376 36. 744 1. 00 54. 76 ATOM 1667 OD2 ASP 247 17. 923 39. 584 35. 265 1. 00 54. 15 ATOM 1668 C ASP 247 16. 213 38. 993 39. 720 1.00 44.83 ATOM 1669 0 ASP 247 17. 087 39. 306 40.518 1. 00 45. 80 25 ATOM 1670 N GLU 248 14. 930 39.064 40.022 1.00 44.56 ATOM 1671 CA GLU 248 14. 561 39. 546 1.00 45.70 41. 336 **ATOM** 1672 CB **GLU 248** 13.610 40. 727 41. 206 1.00 50.66 ATOM 1673 CG GLU 248 12. 441 40. 458 40. 298 1.00 60.84 ATOM 1674 CD GLU 248 11. 394 41.556 40. 355 1. 00 67. 29

o

- 202 -1.00 69.90 ATOM 1675 0E1 GLU 248 10. 742 41. 702 41. 414 39. 340 1.00 71.41 ATOM 1676 0E2 GLU 248 11. 223 42. 273 38. 482 42. 224 1.00 43.15 **GLU 248** 13. 952 ATOM 1677 C 1678 0 GLU 248 12. 986 37. 827 41.855 1. 00 42. 29 ATOM 38. 315 43. 404 1. 00 42. 35 ATOM 1679 N GLY 249 14. 530 5 37. 327 44. 330 1.00 42.91 ATOM 1680 CA GLY 249 14. 023 ATOM 1681 C GLY 249 15. 044 36. 247 44. 625 1.00 43.93 1.00 43.62 0 **GLY 249** 16. 177 36. 294 44. 145 **ATOM** 1682 ATOM 1683 N ARG 250 14. 644 35. 267 45. 427 1. 00 43. 38 ARG 250 15. 526 34. 160 45. 781 1.00 41.04 1684 CA 10 ATOM 47. 293 ATOM 1685 CBARG 250 15. 819 34. 207 1. 00 42. 27 1686 ARG 250 14. 745 34. 934 48. 114 1. 00 46. 82 ATOM CG 1687 CD ARG 250 15. 139 35. 142 49. 584 1. 00 51. 21 ATOM 35. 828 1. 00 55. 52 ARG 250 16. 425 49. 730 ATOM 1688 NE 16.864 36. 394 50.855 1.00 55.63 1689 CZARG 250 ATOM 15 16. 121 36. 375 51.956 1. 00 55. 05 1690 NH1 ARG 250 ATOM 1691 NH2 ARG 250 18.063 36. 962 50. 885 1. 00 54. 32 **ATOM** 32. 812 1. 00 38. 25 1692 ARG 250 14. 905 45. 359 ATOM C 13. 681 32. 640 45. 394 1. 00 37. 44 1693 0 ARG 250 ATOM 15.760 31.880 44. 932 1. 00 33. 58 1694 N MET 251 20 ATOM 1695 MET 251 15. 352 30. 543 44. 492 1. 00 29. 34 **ATOM** CA 15. 326 30. 471 42. 966 1. 00 24. 54 1696 MET 251 ATOM CB 1697 MET 251 15. 180 29. 069 42. 379 1.00 17.89 ATOM CG 14. 994 29. 090 40. 552 1. 00 18. 23 1698 SD MET 251 ATOM MET 251 16. 329 28. 087 40. 075 1. 00 12. 48 ATOM 1699 CE 25 16. 316 29. 481 45.004 1. 00 30. 48 ATOM 1700 C MET 251 1.00 31.49 MET 251 17. 529 29. 640 44. 895 1701 0 ATOM 1. 00 29. 56 ATOM 1702 N CYS 252 15. 775 28. 392 45. 546 1. 00 26. 54 1703 CA CYS 252 16. 599 27. 298 46.059 ATOM

- 203 -26. 185 1. 00 27. 29 CYS 252 46. 612 15. 710 ATOM 1704 CBCYS 252 46. 927 1.00 29.14 SG 16. 613 24. 659 ATOM 1705 44.975 1. 00 23. 38 CYS 252 17. 492 26. 704 ATOM 1706 C 43.816 1. 00 22. 79 CYS 252 17. 104 26. 639 ATOM 1707 0 1. 00 20. 80 ATOM 1708 N VAL 253 18.688 26. 268 45. 349 5 44. 377 1. 00 20. 25 VAL 253 19. 584 25. 660 ATOM 1709 CA 43.969 1.00 19.02 ATOM CBVAL 253 20. 740 26. 583 1710 25. 881 42.936 1. 00 15. 42 CG1 VAL 253 21.623 ATOM 1711 ATOM 1712 CG2 VAL 253 20. 198 27. 866 43. 411 1. 00 19. 77 44. 900 1. 00 22. 35 20. 191 24. 374 10 ATOM 1713 C VAL 253 24. 305 46.023 1. 00 22. 21 VAL 253 20. 705 ATOM 1714 0 23. 352 44.060 1. 00 24. 23 ASN 254 20. 127 ATOM 1715 N CA ASN 254 20.661 22. 045 44. 390 1. 00 22. 10 ATOM 1716 19.860 20. 975 43. 647 1. 00 21. 49 CBASN 254 ATOM 1717 ASN 254 20. 479 19.604 43.747 1. 00 22. 93 ATOM 1718 CG 15 21.074 19. 232 44. 764 1. 00 20. 03 1719 OD1 ASN 254 ATOM **ATOM** 1720 ND2 ASN 254 20. 325 18. 827 42. 687 1. 00 26. 40 22. 046 43. 975 1. 00 19. 26 1721 C ASN 254 22. 124 ATOM 42. 795 1. 00 15. 88 ATOM 1722 0 ASN 254 22. 454 22. 155 44.961 1. 00 15. 23 THR 255 23.001 21. 949 ATOM 1723 N 20 ATOM 1724CA THR 255 24. 428 21. 962 44. 691 1. 00 15. 03 25. 193 22. 217 45. 944 1. 00 13. 56 1725 THR 255 ATOM CB1726 OG1 THR 255 25. 035 21. 087 46. 808 1. 00 14. 56 ATOM 24.670 23. 458 46. 617 1. 00 14. 18 1727 CG2 THR 255 ATOM ATOM 1728 C THR 255 24. 957 20.665 44. 127 1. 00 15. 21 25 1. 00 12. 07 25.675 20. 647 43. 126 1729 THR 255 ATOM 0 24. 594 19. 570 44. 777 1. 00 18. 83 ATOM 1730 N **GLU 256** 1. 00 22. 28 CA 25.076 18. 268 44. 355 ATOM 1731 GLU 256 ATOM 1732 CBGLU 256 24. 795 18. 025 42. 876 1. 00 25. 93

- 204 -ATOM 1733 CG GLU 256 23. 377 18. 345 42. 454 1. 00 31. 90 ATOM 1734 CDGLU 256 22. 500 17. 121 42. 336 1. 00 34. 74 **ATOM** 1735 OE1 GLU 256 22. 191 16. 510 43. 386 1. 00 36. 97 ATOM 1736 0E2 GLU 256 22. 122 16. 777 41. 188 1. 00 35. 26 5 ATOM 1737 C GLU 256 26. 562 18. 402 44. 559 1.00 21.32 ATOM 1738 0 **GLU 256** 27. 359 18.032 43. 701 1. 00 23. 09 ATOM 1739 N TRP 257 26. 931 18. 966 45. 699 1.00 17.36 ATOM 1740 CA TRP 257 28. 327 19. 141 45. 985 1. 00 14. 83 ATOM 1741 CBTRP 257 28. 514 20.074 47. 176 1. 00 11. 59 10 ATOM 1742 CG TRP 257 28.038 19. 561 48. 478 1.00 8.69 ATOM 1743 CD2 TRP 257 27.830 20. 332 49.676 1. 00 9.05 ATOM CE2 TRP 257 1744 27. 562 19. 410 50. 715 1.00 7.00 ATOM 1745 CE3 TRP 257 27. 845 21. 703 49. 964 1. 00 7. 18 CD1 TRP 257 ATOM 1746 27.881 18. 265 48. 827 1. 00 7. 58 15 ATOM 1747 NE1 TRP 257 27.602 18. 163 50. 172 1.00 7.99 **ATOM** CZ2 TRP 257 1748 27. 325 19. 818 52. 038 1.00 4. 73 **ATOM** 1749 CZ3 TRP 257 27.605 22. 108 51. 280 1.00 7. 12 ATOM 1750 CH2 TRP 257 27. 346 21. 164 52. 300 1. 00 5. 47 ATOM 1751 C TRP 257 29. 033 17. 813 46. 224 1. 00 17. 81 ATOM 20 1752 0 TRP 257 30. 221 17. 776 46. 523 1.00 19.44 **ATOM** 1753 N GLY 258 28. 318 16. 708 46. 099 1. 00 21. 88 **ATOM** 1754 CA GLY 258 28. 991 15. 444 46. 303 1. 00 23. 25 **ATOM** 1755 C GLY 258 30. 137 15. 303 45. 316 1. 00 23. 01 ATOM 1756 0 GLY 258 31. 133 14. 629 45. 600 1. 00 21. 92 ATOM 25 1757 N ALA 259 29. 997 15. 943 44. 156 1. 00 23. 11 **ATOM** 1758 ALA 259 CA 31. 015 15. 863 43. 113 1. 00 27. 74 ATOM 1759 CB ALA 259 30. 400 16. 139 41.766 1. 00 27. 03 **ATOM** 1760 С ALA 259 32. 176 16.806 43. 335 1. 00 30. 23 **ATOM** 1761 0 ALA 259 33. 178 16. 748 42. 622 1. 00 32. 12

- 205 -ATOM 1762 N PHE 260 32. 041 17. 680 44. 320 1. 00 32. 43 ATOM 1763 CA PHE 260 33. 093 18. 627 44.611 1.00 36.43 PHE 260 ATOM 1764 CB32. 804 19. 343 45. 924 1.00 39.42 ATOM 1765 CG PHE 260 33. 932 20. 206 46. 411 1.00 43.92 ATOM 1766 CD1 PHE 260 5 34.660 21. 003 45. 534 1.00 46.49 ATOM 1767 CD2 PHE 260 34. 232 20. 263 47. 765 1.00 45.64 ATOM CE1 PHE 260 1768 35. 672 21. 835 46.002 1.00 47.73 ATOM 1769 CE2 PHE 260 35. 242 21.093 48. 242 1.00 46.62 ATOM 1770 CZ PHE 260 35. 958 21. 882 47. 360 1.00 47.27 10 ATOM 1771 C PHE 260 34. 412 17. 897 44. 695 1.00 39.39 ATOM 1772 0 PHE 260 34. 495 16.800 45. 243 1.00 40.20 ATOM 1773 N GLY 261 35. 441 18. 511 44. 127 1.00 41.71 ATOM 1774 CA GLY 261 36. 753 17. 911 1.00 43.62 44. 152 **ATOM** 1775 C GLY 261 36.967 16.857 43.090 1.00 44.99 ATOM 1776 0 GLY 261 38. 049 15 16. 282 43.015 1.00 47.22 ATOM 1777 N ASP 262 35. 961 16. 578 42. 270 1.00 46.06 **ATOM** 1778 CA ASP 262 36. 143 15. 574 41. 229 1.00 47.68 **ATOM** 1779 CBASP 262 34.800 15. 197 40.602 1.00 50.82 ATOM 1780 CG ASP 262 34. 024 14. 187 41.445 1. 00 53. 64 20 ATOM 1781 OD1 ASP 262 32. 815 13. 996 41. 191 1.00 54.63 ATOM 1782 OD2 ASP 262 34. 624 13. 578 42. 356 1.00 54.71 ATOM 1783 C ASP 262 37.089 16. 129 40. 177 1.00 47.19 ATOM ASP 262 37.539 1784 0 15. 400 39. 292 1.00 47.09 ATOM 1785 N SER 263 37. 380 17. 427 40. 298 1.00 46.38 ATOM 25 1786 CA SER 263 38. 289 18. 147 39. 401 1.00 44.53 **ATOM** 1787 CB SER 263 37. 651 19. 445 38. 903 1.00 43.57 **ATOM** 1788 0G SER 263 36. 341 19. 246 38. 415 1.00 43.79 ATOM 1789 C SER 263 39. 552 18. 513 40. 174 1. 00 43. 93 ATOM 1790 0 SER 263 40.061 19. 632 40. 059 1. 00 44. 40

- 206 -1.00 43.71 40. 039 17. 577 40. 979 ATOM 1791 N GLY 264 41.762 1. 00 42. 64 17. 825 CA GLY 264 41. 235 ATOM 1792 18.889 42. 845 1.00 40.75 C **GLY 264** 41. 133 ATOM 1793 1. 00 42. 90 42.052 19.012 43.648 **GLY 264 ATOM** 1794 0 **GLU 265** 40.040 19. 647 42.887 1. 00 38. 43 ATOM 1795 N 5 43. 893 1. 00 37. 42 39. 881 20. 700 **ATOM** 1796 CA GLU 265 21. 227 43. 907 1. 00 39. 11 GLU 265 38. 437 CBATOM 1797 42.632 1.00 40.76 37.986 21. 928 ATOM 1798 CG GLU 265 41.701 1.00 43.56 37. 198 21. 023 CD GLU 265 **ATOM** 1799 1.00 45.26 ATOM 1800 OE1 GLU 265 36. 904 21. 461 40. 565 10 42.099 1. 00 42. 42 36. 863 19. 883 ATOM 1801 OE2 GLU 265 1. 00 36. 38 GLU 265 40. 266 20. 299 45. 321 ATOM 1802 C 1.00 33.59 21. 160 46. 185 40. 410 **ATOM** 1803 0 GLU 265 N LEU 266 40.425 19.004 45. 573 1. 00 37. 71 **ATOM** 1804 46.912 1. 00 40. 56 40. 783 18. 534 ATOM 1805 CA LEU 266 15 1. 00 40. 03 CB LEU 266 39. 597 17. 831 47. 567 ATOM 1806 48.001 1. 00 40. 79 38. 371 18. 631 CG LEU 266 ATOM 1807 48. 259 1. 00 40. 27 **ATOM** 1808 CD1 LEU 266 37. 234 17.673 19. 432 49. 253 1. 00 41. 81 CD2 LEU 266 38. 677 ATOM 1809 17. 563 46.880 1. 00 43. 51 ATOM C LEU 266 41.949 1810 20 1.00 43.63 42.363 17. 045 47. 919 1811 0 LEU 266 ATOM 1.00 47.00 ATOM 1812 N ASP 267 42. 475 17. 324 45. 682 16. 393 45. 480 1. 00 48. 18 43. 584 **ATOM** 1813 CA ASP 267 16.622 44.097 1. 00 50. 89 ASP 267 44. 222 ATOM 1814 CB1.00 54.98 44.982 15. 391 43. 584 ASP 267 ATOM 1815 CG 25 1.00 56.65 1816 OD1 ASP 267 45. 239 15. 317 42. 360 ATOM 1. 00 55. 43 45. 328 14. 499 44. 398 ATOM 1817 OD2 ASP 267 1. 00 46. 46 ASP 267 44. 659 16. 440 46. 571 1818 C ATOM 1. 00 45. 37 45. 205 15. 397 46.960 ASP 267 ATOM 1819 0

- 207 -ATOM 1820 **GLU 268** 44. 957 47.084 1. 00 44. 63 N 17. 630 ATOM 1821 CA **GLU 268** 45.990 17. 721 48. 109 1.00 44.67 ATOM 1822 **GLU 268** 46.805 19. 024 47.956 1.00 44.68 CB ATOM 1823 **GLU 268** 46.508 20. 163 48. 934 1. 00 43. 60 CG 5 ATOM 1824 CDGLU 268 45. 234 20. 915 48. 613 1. 00 43. 53 0E1 GLU 268 ATOM 1825 45.020 21. 258 47. 423 1. 00 42. 43 ATOM 1826 0E2 GLU 268 44. 461 21. 174 49. 561 1. 00 40. 84 ATOM 1827 C GLU 268 45. 457 17. 569 49. 528 1. 00 43. 45 **ATOM** 1828 0 GLU 268 46. 102 17. 961 50. 499 1. 00 46. 29 1. 00 38. 78 1829 PHE 269 44. 286 16. 971 ATOM N 49. 656 10 ATOM 1830 CA PHE 269 43.729 16. 785 50. 974 1. 00 33. 75 ATOM 1831 CB PHE 269 42. 480 17.614 51. 135 1. 00 33. 69 ATOM 1832 CG PHE 269 42. 733 18. 990 51. 639 1. 00 34. 75 CD1 PHE 269 43. 435 ATOM 1833 19. 193 52. 822 1. 00 36. 51 ATOM 1834 CD2 PHE 269 42. 161 20. 079 51.001 1. 00 34. 78 15 CE1 PHE 269 43. 548 20. 469 ATOM 1835 53. 365 1. 00 37. 39 ATOM 1836 CE2 PHE 269 42. 266 21. 354 51. 532 1. 00 35. 15 1. 00 37. 68 PHE 269 42. 955 21. 551 52. 717 ATOM 1837 CZ **ATOM** 1838 C PHE 269 43. 405 15. 343 51. 225 1. 00 32. 83 1839 PHE 269 43. 206 14. 952 ATOM 0 52. 365 1. 00 31. 85 20 ATOM 1840 N LEU 270 43. 355 14. 555 50. 157 1. 00 33. 85 43.046 ATOM 1841 CA LEU 270 13. 130 50. 259 1. 00 34. 53 ATOM 1842 CB LEU 270 42.712 12. 553 48. 884 1. 00 35. 63 LEU 270 41. 326 12. 857 48. 321 1.00 37.61 ATOM 1843 CG 25 ATOM 1844 CD1 LEU 270 41. 323 14. 293 47. 842 1. 00 35. 85 1. 00 37. 50 CD2 LEU 270 40.966 11. 878 47. 177 ATOM 1845 ATOM C LEU 270 44. 172 12. 298 50. 845 1.00 33.68 1846 ATOM LEU 270 45. 334 12.640 1847 0 50. 695 1.00 35.64 **ATOM** 1848 N 43.829 11. 200 51. 507 1. 00 33. 66 LEU 271

- 208 -1. 00 34. 55 LEU 271 44. 850 10. 324 52. 059 ATOM 1849 CA LEU 271 10.032 53. 519 1.00 30.63 ATOM 1850 CB44. 610 11. 238 1. 00 29. 49 CG LEU 271 44.870 54. 383 **ATOM** 1851 CD1 LEU 271 43.855 12. 324 54.075 1. 00 27. 82 ATOM 1852 ATOM 1853 CD2 LEU 271 44. 783 10. 798 55. 824 1. 00 31. 04 5 51. 324 1. 00 37. 04 LEU 271 44.884 9.010 ATOM 1854 C 44.009 ATOM 1855 0 LEU 271 8. 715 50. 513 1. 00 36. 79 8. 209 1.00 40.66 1856 N GLU 272 45.890 51.638 ATOM 1857 CA GLU 272 46.052 6. 927 50. 989 1. 00 44. 99 ATOM 6. 182 51. 590 1. 00 51. 18 1858 CB GLU 272 47. 256 10 ATOM GLU 272 5. 781 53.075 1. 00 58. 46 1859 CG 47. 124 ATOM 48.371 5.077 53.641 1. 00 62. 56 1860 CD GLU 272 ATOM 1861 0E1 GLU 272 49.393 5. 772 53. 876 1.00 64.96 ATOM 3.835 53. 849 1. 00 61. 73 0E2 GLU 272 48. 325 ATOM 1862 1863 GLU 272 44.789 6.080 51.092 1. 00 44. 62 ATOM С 15 GLU 272 44. 377 5. 452 50. 116 1. 00 44. 50 ATOM 1864 0 ATOM 1865 N TYR 273 44. 163 6.079 52. 266 1. 00 43. 42 5. 284 52. 486 1. 00 40. 23 1866 CA TYR 273 42. 955 ATOM 1. 00 38. 82 ATOM 1867 CB TYR 273 42. 537 5. 377 53. 958 1.00 36.38 1868 TYR 273 43.709 5. 401 54. 923 ATOM CG 20 ATOM 1869 CD1 TYR 273 44. 126 6. 602 55. 505 1. 00 35. 57 45. 210 6.647 56. 380 1. 00 34. 95 ATOM 1870 CE1 TYR 273 1. 00 35. 34 ATOM 1871 CD2 TYR 273 44. 413 4. 231 55. 243 56. 122 1.00 34.05 1872 CE2 TYR 273 45. 509 4. 264 ATOM 1.00 34.66 25 ATOM 1873 .CZ TYR 273 45. 897 5. 481 56. 685 1. 00 33. 77 TYR 273 46.966 5. 556 57. 550 ATOM 1874 0H5. 749 51. 567 1.00 38.50 ATOM 1875 C TYR 273 41.826 41. 264 1. 00 35. 21 1876 TYR 273 4. 967 50.804 **ATOM** 0 ATOM 1877 N ASP 274 41. 507 7. 030 51. 638 1. 00 38. 17

- 209 -1.00 40.03 40.473 7. 579 50. 796 CA ASP 274 ATOM 1878 1.00 41.17 CBASP 274 40.470 9.083 50.929 ATOM 1879 52. 341 1. 00 43. 77 ASP 274 9. 512 CG 40. 252 ATOM 1880 OD1 ASP 274 39. 123 9. 327 52. 839 1. 00 46. 59 ATOM 1881 10. 010 52. 958 1. 00 44. 41 ATOM 1882 OD2 ASP 274 41. 212 5 7. 200 49. 359 1.00 40.92 C ASP 274 40.740 **ATOM** 1883 6.937 48.595 1.00 41.41 1884 0 ASP 274 39.819 ATOM 1.00 42.93 7. 160 48. 984 ARG 275 42. 007 **ATOM** 1885 N CA ARG 275 42. 333 6.819 47. 613 1. 00 45. 81 ATOM 1886 1. 00 49. 53 6. 993 47. 365 ARG 275 43. 831 10 ATOM 1887 CB 1. 00 53. 24 CG 44. 191 7.563 45. 995 1888 ARG 275 ATOM 7. 772 45.886 1. 00 58. 85 45.702 ATOM 1889 CD ARG 275 **ATOM** NE ARG 275 46. 213 8.663 46. 933 1. 00 62. 67 1890 1. 00 62. 82 8. 308 47. 876 ARG 275 47. 088 ATOM 1891 CZ47. 571 7.068 47. 922 1. 00 61. 28 1892 NH1 ARG 275 ATOM 15 9.201 48.777 1.00 61.64 NH2 ARG 275 47.476 1893 **ATOM** 1894 C ARG 275 41. 901 5. 390 47. 316 1. 00 46. 01 **ATOM** ARG 275 5. 160 46. 382 1. 00 45. 19 41. 134 1895 0 ATOM 4. 437 1.00 47.51 1896 N LEU 276 42. 382 48. 113 ATOM 3.030 47. 922 1.00 48.68 LEU 276 42.026 1897 **ATOM** CA 20 1.00 45.63 ATOM 1898 CBLEU 276 42. 460 2. 197 49. 134 1.00 43.28 1. 999 49. 287 LEU 276 43. 971 ATOM 1899 CG 50.686 1. 00 42. 53 1900 CD1 LEU 276 44. 418 2. 379 ATOM 1.00 42.97 0. 557 48. 994 CD2 LEU 276 44. 321 **ATOM** 1901 1902 C LEU 276 40. 520 2. 915 47. 718 1. 00 51. 24 **ATOM** 25 1. 00 52. 38 2. 133 46. 891 LEU 276 40.050 ATOM 1903 0 39. 772 3. 710 48. 475 1. 00 53. 11 1904 N VAL 277 ATOM 1.00 54.05 38. 321 3. 722 48. 372 VAL 277 ATOM 1905 CA 37. 703 4. 640 49. 423 1. 00 52. 84 1906 CBVAL 277 ATOM

- 210 -ATOM CG1 VAL 277 36. 210 49. 249 1. 00 52. 71 1907 4. 682 CG2 VAL 277 4. 156 50.804 1. 00 54. 87 ATOM 1908 38.069 4. 231 46.999 1. 00 55. 80 ATOM 1909 C VAL 277 37.906 ATOM 1910 0 VAL 277 37. 381 3. 474 46. 185 1. 00 57. 15 5. 518 46. 754 1. 00 56. 71 1911 ASP 278 38. 146 5 ATOM N ASP 278 6. 146 45. 481 1. 00 57. 65 ATOM 1912 CA 37. 804 45.353 ASP 278 38. 479 7.514 1. 00 59. 73 **ATOM** 1913 CB 8. 163 43.989 1.00 61.93 **ATOM** CG ASP 278 38. 243 1914 ATOM 1915 OD1 ASP 278 38.990 9. 110 43.642 1. 00 61. 47 OD2 ASP 278 37. 308 7. 733 43. 273 1. 00 62. 11 ATOM 1916 10 5. 281 44. 328 1.00 58.14 ATOM 1917 C ASP 278 38. 263 ASP 278 37.645 5. 271 43. 266 1. 00 58. 75 ATOM 1918 0 4. 563 1. 00 58. 33 ATOM 1919 N GLU 279 39. 358 44. 538 3.710 ATOM **GLU 279** 39.900 43. 498 1. 00 59. 14 1920 CA 3.808 GLU 279 41.437 43. 477 1. 00 60. 99 ATOM 1921 CB 15 41.978 5. 219 43. 178 1. 00 61. 92 **ATOM** 1922 CG **GLU 279** 5. 276 ATOM 1923 CD GLU 279 43. 497 43.014 1. 00 60. 92 0E1 GLU 279 44. 219 4.874 43. 953 1. 00 60. 85 ATOM 1924 0E2 GLU 279 43.965 5. 733 41.946 1. 00 58. 99 ATOM 1925 2. 261 43.664 1.00 58.04 **ATOM** 1926 C GLU 279 39. 467 20 ATOM 1927 0 GLU 279 40. 196 1. 346 43. 298 1. 00 59. 38 1928 SER 280 38. 283 2. 044 44. 219 1.00 57.21 ATOM N SER 280 37. 798 0.679 44. 390 1. 00 56. 55 ATOM 1929 CA**SER 280** 38. 283 0.091 45. 719 1. 00 56. 66 ATOM 1930 CB -1.29845. 774 1. 00 54. 41 25 ATOM 1931 0GSER 280 38. 015 SER 280 36. 282 0.671 44. 334 1. 00 55. 29 ATOM 1932 C -0.37144. 472 1. 00 53. 68 ATOM 1933 0 SER 280 35. 640 1934 N SER 281 35. 725 1.854 44. 113 1. 00 54. 58 ATOM ATOM 1935 CA SER 281 34. 288 2. 038 44. 020 1. 00 55. 36

- 211 -ATOM 1936 CB SER 281 33. 919 3. 451 44. 464 1. 00 56. 89 ATOM 1937 0G SER 281 34. 565 4. 415 43. 649 1.00 56.89 ATOM 1938 C SER 281 33. 843 1. 832 42. 584 1. 00 54. 80 ATOM 1939 0 SER 281 34.652 1. 905 41. 664 1. 00 55. 85 5 ATOM 1940 N ALA 282 32. 553 1. 587 42. 389 1. 00 53. 75 ATOM 1941 CA ALA 282 32.025 1. 379 41.050 1. 00 52. 42 ATOM 1942 CB ALA 282 30.626 0.809 41. 133 1. 00 52. 26 ATOM 1943 C ALA 282 32. 012 2. 679 40. 250 1. 00 51. 83 ATOM 1944 0 ALA 282 31.632 2.685 39.081 1. 00 52. 27 10 ATOM 1945 N ASN 283 32. 441 3. 772 40.879 1. 00 50. 19 ATOM 1946 CA ASN 283 32. 465 5.089 40. 239 1. 00 47. 37 ATOM 1947 CB ASN 283 31. 338 5. 945 40. 790 1.00 47.04 ATOM 1948 CG ASN 283 31. 482 6. 191 42. 276 1.00 47.38 ATOM OD1 ASN 283 1949 31.584 5. 255 43.068 1.00 46.86 ATOM 15 ND2 ASN 283 1950 31. 497 7. 455 42.662 1.00 49.96 ATOM 1951 C ASN 283 33. 777 5.806 40. 513 1.00 46.64 ATOM 1952 0 ASN 283 33. 783 6. 894 41.081 1. 00 48. 74 ATOM 1953 N PRO 284 34. 905 5. 214 40. 110 1.00 45.15 ATOM 1954 CD PRO 284 35. 028 39. 462 3. 896 1. 00 44. 41 20 ATOM 1955 CA PRO 284 36. 227 5. 814 40. 327 1. 00 43. 24 ATOM 1956 CBPRO 284 37. 151 4. 855 39. 583 1. 00 44. 66 ATOM 1957 CG PRO 284 36. 459 3. 532 39. 756 1. 00 44. 93 ATOM 1958 C PRO 284 36. 389 7. 267 39. 856 1.00 41.14 ATOM 1959 0 PRO 284 35. 978 7. 624 38. 755 1. 00 40. 17 25 ATOM 1960 N **GLY 285** 36. 994 8. 099 40.695 1. 00 39. 45 ATOM 1961 CA GLY 285 37. 208 9. 484 40. 321 1. 00 40. 34 ATOM 1962 C **GLY 285** 35. 964 10. 343 40.401 1. 00 42. 06 ATOM 1963 0 GLY 285 36. 035 11. 576 40. 367 1. 00 43. 11 ATOM 1964 N GLN 286 34. 811 9. 699 40. 510 1. 00 42. 34

- 212 -ATOM 1965 **GLN 286** CA 33. 555 10. 427 40.601 1. 00 41. 88 1966 GLN 286 32. 490 ATOM CB9. 717 39. 758 1. 00 44. 97 1967 31.973 10. 544 1. 00 49. 89 ATOM CG GLN 286 38. 588 ATOM 1968 CDGLN 286 31. 043 11.668 39. 043 1. 00 54. 72 ATOM 1969 OE1 GLN 286 29. 911 11. 419 39. 483 1. 00 56. 09 5 NE2 GLN 286 31.519 12. 911 ATOM 1970 38. 950 1. 00 54. 20 GLN 286 1971 C 33. 113 10. 541 1. 00 40. 59 ATOM 42.063 **ATOM** 1972 0 GLN 286 33. 396 9.660 42.879 1. 00 39. 39 ATOM 1973 N GLN 287 32. 445 11. 648 42. 389 1. 00 39. 59 ATOM 1974 CA GLN 287 31. 939 11. 913 43. 741 1. 00 38. 06 10 ATOM 1975 CB GLN 287 30.770 10.969 44. 053 1. 00 37. 29 **ATOM** 1976 CG GLN 287 29. 732 10.837 42. 939 1. 00 35. 04 ATOM 1977 CD GLN 287 28. 912 12. 100 42. 736 1. 00 33. 74 28. 906 ATOM 1978 OE1 GLN 287 12. 692 41.647 1. 00 28. 89 ATOM 1979 NE2 GLN 287 28. 204 12. 514 43. 786 1. 00 31. 49 15 ATOM 1980 C GLN 287 33.015 11. 744 44.820 1. 00 37. 30 ATOM 1981 0 GLN 287 32. 958 10.813 45. 624 1. 00 37. 53 1982 LEU 288 33. 990 12. 643 44.856 ATOM N 1. 00 34. 03 **ATOM** 1983 CA LEU 288 35. 051 12. 516 45. 844 1. 00 29. 84 ATOM 1984 CB LEU 288 36. 351 13. 071 45. 293 1. 00 30. 50 20 ATOM 1985 CG LEU 288 37. 285 11. 960 44. 819 1. 00 32. 69 CD1 LEU 288 36.645 11. 102 ATOM 1986 43. 728 1. 00 31. 90 ATOM 1987 CD2 LEU 288 38. 546 12. 611 44. 323 1. 00 36. 00 ATOM 1988 C LEU 288 34. 729 13. 180 47. 156 1. 00 26. 53 25 ATOM 1989 0 LEU 288 34. 991 12. 627 48. 218 1. 00 26. 76 1990 34. 172 ATOM N TYR 289 14. 374 47. 086 1. 00 23. 58 ATOM 1991 TYR 289 33. 809 15. 074 48. 292 1. 00 22. 36 CA 1992 TYR 289 ATOM CB 33. 086 16. 365 47. 939 1. 00 20. 16 ATOM 1993 CG TYR 289 32. 716 17. 186 49. 136 1. 00 18. 61

- 213 -**ATOM** 1994 CD1 TYR 289 33. 660 17. 486 1. 00 18. 65 50. 105 CE1 TYR 289 ATOM 1995 33. 347 18. 269 51. 195 1.00 18.34 ATOM 1996 CD2 TYR 289 31. 433 17. 693 49. 288 1.00 18.91 ATOM 1997 CE2 TYR 289 31. 105 18. 484 50. 378 1. 00 18. 97 ATOM 1998 CZTYR 289 32.073 5 18. 768 51. 327 1. 00 20. 15 ATOM 1999 0HTYR 289 31. 788 19. 565 52. 408 1. 00 22. 93 ATOM 2000 C TYR 289 32. 894 14. 165 49. 105 1. 00 25. 30 ATOM 2001 0 TYR 289 32. 991 14. 106 50. 337 1. 00 24. 21 ATOM 2002 N GLU 290 32. 005 13. 448 48. 411 1. 00 27. 35 ATOM 2003 CA GLU 290 31.071 10 12. 532 49. 084 1. 00 26. 68 ATOM 2004 CBGLU 290 30.081 11. 904 48. 090 1. 00 26. 17 ATOM 2005 CG GLU 290 · 28. 614 12. 216 48. 413 1. 00 25. 68 ATOM 2006 CD GLU 290 27. 617 11. 404 47. 591 1.00 26.93 ATOM 2007 0E1 GLU 290 27. 735 11. 363 46. 337 1. 00 22. 27 ATOM 2008 0E2 GLU 290 26. 702 15 10. 815 48. 215 1. 00 27. 37 ATOM 2009 C GLU 290 31.838 11. 425 49. 781 1. 00 25. 75 ATOM 2010 0 GLU 290 31.649 11. 193 50. 974 1. 00 26. 23 ATOM 2011 N LYS 291 32.706 10.756 49. 024 1. 00 24. 16 ATOM 2012 CA LYS 291 33. 526 9.666 49. 538 1. 00 24. 45 ATOM 2013 CB LYS 291 34. 342 9.063 20 48. 408 1. 00 24. 19 ATOM 2014 CG LYS 291 33. 506 8. 383 47. 354 1. 00 28. 37 ATOM 2015 CD LYS 291 34. 322 8. 162 46. 094 1. 00 31. 52 ATOM 2016 CE LYS 291 33. 533 7. 434 45. 030 1. 00 31. 16 ATOM 2017 NZ LYS 291 34. 367 7. 299 43.813 1. 00 33. 55 **ATOM** 2018 C LYS 291 25 34.460 10. 143 50.636 1.00 24.99 ATOM LYS 291 2019 0 35. 488 9. 522 50. 918 1. 00 25. 78 ATOM 2020 N LEU 292 34. 095 11. 254 51. 255 1. 00 24. 20 ATOM 2021 CA LEU 292 34. 894 11. 809 52. 318 1. 00 25. 20 ATOM CB 2022 LEU 292 35. 544 13. 106 51.843 1. 00 25. 62

- 214 -

	ATOM	2023	CG	LEU	292	36. 904	13. 450	52. 464	1. 00 2	6. 59
	ATOM	2024	CD1	LEU	292	37. 935	12. 396	52. 035	1. 00 2	6. 37
	ATOM	2025	CD2	LEU	292	37. 343	14. 853	52. 025	1. 00 2	4. 08
	ATOM	2026	C	LEU	292	33. 999	12.063	53. 528	1. 00 2	6. 58
5	ATOM	2027	0	LEU	292	34. 431	11. 924	54. 671	1. 00 2	7. 91
	ATOM	2028	N	ILE	293	32. 744	12. 421	53. 272	1. 00 2	7. 03
	ATOM	2029	CA	ILE	293	31. 783	12. 689	54. 342	1.00 2	6. 01
	ATOM	2030	CB	ILE	293	30. 948	13. 956	54. 019	1.00 2	6. 42
	ATOM	2031	CG2	ILE	293	30. 184	14. 431	55. 247	1. 00 2	5. 08
10	ATOM	2032	CG1	ILE	293	31. 866	15. 085	53. 573	1. 00 2	4. 53
	ATOM	2033	CD1	ILE	293	31. 131	16. 366	53. 336	1. 00 2	3. 77
	ATOM	2034	C	ILE	293	30. 827	11. 503	54. 489	1. 00 2	4. 65
	ATOM	2035	0	ILE	293	30. 681	10. 919	55. 565	1. 00 2	3. 84
	ATOM	2036	N	GLY	294	30. 197	11. 159	53. 374	1.00 2	4. 02
15	ATOM	2037	CA	GLY	294	29. 237	10. 073	53. 325	1. 00 2	5. 49
	ATOM	2038	C	GLY	294	29. 454	8. 815	54. 142	1. 00 2	4. 75
	ATOM	2039	0	GLY	294	30. 427	8. 079	53. 953	1. 00 2	6. 25
	ATOM	2040	N	GLY	295 .	28. 517	8. 556	55. 044	1.00 2	2. 54
	ATOM	2041	CA	GLY	295	28. 607	7. 369	55. 851	1. 00 2	2. 80
20	ATOM	2042	C	GLY	295	28. 530	6. 125	54. 986	1. 00 2	5. 08
	ATOM	2043	0	GLY	295	28. 252	5. 047	55. 497	1.00 2	7. 80
	ATOM	2044	N	LYS	296	28. 748	6. 238	53. 680	1. 00 2	5. 43
	ATOM	2045	CA	LYS	296	28. 696	5. 039	52. 849	1. 00 2	5. 87
	ATOM	2046	CB	LYS	296	28. 313	5. 354	51. 411	1. 00 2	7. 04
25	ATOM	2047	CG	LYS	296	28. 036	4. 096	50. 587	1. 00 30	0. 40
	ATOM	2048	CD	LYS	296	29. 249	3. 562	49. 842	1. 00 30	0. 20
	ATOM	2049	CE	LYS	296	28. 954	2. 204	49. 176	1. 00 33	2. 59
	ATOM	2050	NZ	LYS	296	29. 015	1. 038	50. 135	1. 00 33	2. 31
	ATOM	2051	C	LYS	296	30. 044	4. 364	52. 828	1. 00 28	3. 34

- 215 **-**ATOM 2052 0 LYS 296 30. 158 3, 185 52. 507 1.00 29.08 **ATOM** TYR 297 53. 163 2053 N 31.075 5. 122 1. 00 29. 56 ATOM 2054 CA TYR 297 32. 414 4. 582 53. 147 1. 00 29. 25 33. 208 ATOM 2055 CBTYR 297 5. 230 52. 022 1.00 30.07 CG TYR 297 ATOM 2056 32. 620 5. 025 50.650 1. 00 30. 84 5 ATOM 2057 CD1 TYR 297 32. 023 6.082 49.960 1. 00 32. 45 ATOM CE1 TYR 297 5.915 48.665 1. 00 35. 21 2058 31. 544 ATOM 2059 CD2 TYR 297 32.715 3.789 50.015 1. 00 30. 51 **ATOM** 2060 CE2 TYR 297 32. 244 3. 604 48. 724 1. 00 34. 82 ATOM 2061 CZTYR 297 4. 673 48. 049 1. 00 37. 82 10 31.661 ATOM 2062 0HTYR 297 31. 219 4. 504 46. 753 1. 00 41. 74 ATOM 2063 C TYR 297 33.097 4.842 54.465 1.00 27.53 ATOM 2064 0 TYR 297 34. 174 4. 312 54. 731 1. 00 28. 35 ATOM MET 298 5.665 2065 N 32. 464 55. 288 1. 00 24. 45 ATOM MET 298 6.000 56.580 15 2066 CA33. 025 1. 00 23. 96 ATOM 6.652 2067 CB MET 298 31.959 57. 454 1.00 21.69 6. 992 ATOM 2068 CG MET 298 32. 436 58. 850 1. 00 20. 73 **ATOM** 2069 SD MET 298 31. 288 8. 100 59. 701 1. 00 20. 68 ATOM MET 298 9.523 58.620 2070 CE 31. 435 1. 00 18. 32 ATOM MET 298 4.750 57. 254 2071 C 33. 579 1. 00 24. 25 20 ATOM 2072 0 MET 298 34. 776 4.656 57. 529 1. 00 24. 74 ATOM 2073 GLY 299 32.707 3.779 57. 494 N 1. 00 26. 72 CA ATOM 2074 GLY 299 33. 135 2. 552 58. 135 1.00 25.77 **ATOM** 2075 C GLY 299 1.906 34. 301 57. 424 1. 00 25. 50 25 ATOM 2076 0 GLY 299 35. 162 1. 331 58. 076 1. 00 26. 16 ATOM 2077 N GLU 300 34. 325 2.004 56. 095 1. 00 25. 37 ATOM 2078 CA GLU 300 35. 389 1. 418 55. 282 1. 00 24. 57 ATOM CB 2079 GLU 300 35.057 1. 551 53.800 1. 00 24. 05

ATOM

2080

CG

GLU 300

36.066

0.859

52. 905

1.00 24.66

- 216 -53. 004 1. 00 24. 52 **GLU 300** 36. 018 -0. 662 ATOM 2081 CD 0E1 GLU 300 35. 581 -1.19554. 054 1. 00 24. 02 ATOM 2082 52. 026 1. 00 22. 70 0E2 GLU 300 36. 438 -1.319ATOM 2083 2.082 55. 550 1. 00 25. 31 **GLU 300** 36.734 ATOM 2084 C 1. 00 22. 71 ATOM 2085 0 **GLU 300** 37. 769 1. 408 55. 663 5 3. 409 55. 622 1. 00 26. 47 LEU 301 36.712 ATOM 2086 N 55. 900 37.919 4. 174 1. 00 26. 65 LEU 301 ATOM 2087 CA 5.676 55. 992 1. 00 26. 57 LEU 301 37.600 ATOM 2088 CB6.395 54. 701 1. 00 26. 02 ATOM CG LEU 301 37. 165 2089 1. 00 27. 06 7. 784 55. 047 ATOM 2090 CD1 LEU 301 36. 684 10 1. 00 25. 38 6. 474 53. 701 ATOM CD2 LEU 301 38. 312 2091 1. 00 26. 23 3. 648 57. 226 ATOM 2092 C LEU 301 38. 452 3. 209 57. 313 1. 00 26. 97 39. 594 ATOM 2093 0 LEU 301 58. 259 1. 00 26. 05 **ATOM** 2094 N VAL 302 37.623 3. 670 1.00 27.56 3. 154 59. 542 VAL 302 38.068 ATOM 2095 CA 15 3.034 60. 524 1. 00 28. 13 ATOM 2096 CB VAL 302 36.911 2. 285 1. 00 26. 62 37.354 61. 777 ATOM CG1 VAL 302 2097 4. 424 60. 882 1. 00 30. 95 ATOM 2098 CG2 VAL 302 36. 433 1.786 1. 00 27. 42 38.723 59. 386 2099 VAL 302 ATOM C 1.00 29.00 39.765 1. 529 59. 977 ATOM 2100 0 VAL 302 20 0.906 58. 593 1. 00 25. 04 2101 N ARG 303 38. 127 ATOM 58. 417 1. 00 25. 12 -0. 395 ATOM 2102 CA ARG 303 38. 723 -1.2541. 00 26. 51 37. 906 57. 475 2103 CB ARG 303 ATOM -2.55857. 126 1. 00 28. 11 ATOM 2104 CG ARG 303 38. 587 1. 00 31. 77 37.609 -3.52056. 490 ARG 303 ATOM 2105 CD 25 2106 NE ARG 303 38. 260 -4. 456 55. 583 1. 00 32. 46 ATOM 38. 483 -4. 215 54. 296 1. 00 34. 64 ATOM 2107 CZARG 303 38. 103 -3. 059 53. 759 1. 00 33. 51 2108 NH1 ARG 303 ATOM

39. 082 -5. 136

ATOM

2109

NH2 ARG 303

1. 00 35. 80

53. 546

- 217 -ARG 303 ATOM 2110 C 1. 00 27. 77 40. 111 -0.24257. 854 ATOM ARG 303 -0.78858. 401 1.00 30.47 2111 0 41. 073 ATOM 2112 N LEU 304 40. 236 0.495 56. 754 1.00 27.67 CA 0.674 1.00 24.93 ATOM 2113 LEU 304 41.562 56. 147 ATOM 2114 CB LEU 304 41.464 1. 526 54. 865 1.00 22.51 5 ATOM 2115 CG LEU 304 0.902 53. 718 1. 00 19. 14 40.640 ATOM CD1 LEU 304 1. 957 52. 675 1. 00 19. 15 2116 40. 386 CD2 LEU 304 -0.29553. 105 ATOM 2117 41. 352 1. 00 14. 45 ATOM 2118 C LEU 304 42.523 1. 290 57. 168 1. 00 21. 35 10 ATOM 2119 0 LEU 304 43.584 0.736 57. 432 1. 00 20. 90 2120 N VAL 305 2. 406 57. 770 1. 00 17. 52 ATOM 42. 142 **ATOM** 2121 CA VAL 305 43.003 3.011 58. 758 1. 00 17. 43 59. 423 ATOM 2122 CB VAL 305 42. 316 4. 162 1.00 14.40 ATOM 2123 CG1 VAL 305 43. 154 4.673 60.583 1.00 14.53 5. 240 2124 CG2 VAL 305 42. 095 58. 408 1. 00 14. 33 15 ATOM ATOM 2125 С VAL 305 43.400 2.010 59. 829 1. 00 20. 92 2126 44. 497 2.071 60.387 1. 00 22. 69 ATOM 0 VAL 305 ATOM 2127 N LEU 306 42. 502 1. 085 60. 126 1. 00 24. 02 2128 42.783 0.081 ATOM CA LEU 306 61. 144 1. 00 26. 64 -0.58520 ATOM 2129 CB LEU 306 41. 481 61. 594 1. 00 27. 02 41. 154 -0.563ATOM 2130 CG LEU 306 63. 087 1. 00 27. 64 ATOM 2131 CD1 LEU 306 41.094 0.873 63. 592 1.00 27.51 1.00 28.07 2132 CD2 LEU 306 39. 826 -1.26763. 311 ATOM ATOM 2133 C LEU 306 43. 721 -0.96560. 566 1. 00 27. 73 ATOM 2134 0 LEU 306 44. 745 -1.30361. 157 1. 00 26. 86 25 ATOM 2135 N LEU 307 43. 360 -1.46759. 394 1.00 28.77 ATOM 2136 CA LEU 307 44. 156 -2.47858. 733 1. 00 32. 47 -2. 893 1.00 29.90 ATOM 2137 CB LEU 307 43. 465 57. 437 43. 477 -4. 392 57. 130 1. 00 29. 19 ATOM 2138 CG LEU 307

- 218 -ATOM 2139 CD1 LEU 307 43. 104 -5. 210 58. 361 1. 00 28. 38 CD2 LEU 307 ATOM 2140 42. 495 -4. 648 56. 015 1. 00 29. 88 **ATOM** 2141 C LEU 307 45. 553 -1.91658. 466 1. 00 35. 49 **ATOM** 2142 0 LEU 307 46. 542 -2. 645 58. 394 1.00 36.50 2143 ARG 308 5 ATOM N 45. 622 -0.60258. 332 1.00 38.03 CA ARG 308 46.882 0.080 ATOM 2144 58. 101 1.00 41.29 ATOM 2145 CB ARG 308 46.603 1. 580 57. 936 1.00 47.88 2146 ATOM CG ARG 308 47.706 2. 544 58. 368 1. 00 54. 88 ATOM 2147 CDARG 308 48. 819 2. 693 57. 338 1. 00 60. 14 ARG 308 3.958 ATOM 2148 NE 49. 524 57. 540 1. 00 65. 47 10 ATOM 2149 CZARG 308 50. 523 4. 401 56. 784 1.00 67.54 ATOM 2150 NH1 ARG 308 50.954 3.673 55. 757 1. 00 68. 57 **ATOM** 2151 NH2 ARG 308 51.074 5. 584 57. 046 1.00 66.83 ATOM 2152 C ARG 308 47. 783 -0. 182 59. 301 1. 00 40. 42 2153 0 ARG 308 48. 889 -0.694ATOM 59. 159 1. 00, 40, 04 15 ATOM 2154 LEU 309 47. 287 0. 152 N 60. 487 1. 00 39. 27 ATOM 2155 CA LEU 309 48.043 -0.02761. 717 1.00 38.92 0.484 ATOM 2156 CBLEU 309 47. 224 62. 895 1. 00 33. 74 ATOM 2157 CG LEU 309 46.852 1. 958 62. 854 1. 00 30. 26 ATOM 2158 CD1 LEU 309 2. 121 20 45. 453 63. 368 1. 00 30. 84 ATOM 2159 CD2 LEU 309 47. 819 2.766 63. 683 1. 00 27. 57 -1.473ATOM 2160 C LEU 309 48. 461 61. 984 1. 00 41. 92 ATOM 2161 0 LEU 309 49.600 -1.74162. 364 1. 00 42. 73 VAL 310 ATOM 2162 N 47. 541 -2.40661. 788 1. 00 44. 59 ATOM 2163 CA VAL 310 47. 829 -3.81162. 039 1.00 46.67 25 ATOM 2164 CBVAL 310 46. 606 -4. 651 61. 798 1. 00 46. 95 CG1 VAL 310 ATOM 2165 45. 419 -4.00662. 479 1. 00 49. 54 ATOM 2166 CG2 VAL 310 46. 368 -4.77960. 312 1. 00 47. 77 ATOM 2167 C 61. 139 1.00 47.55 VAL 310 ·48. 929 -4. 321

- 219 -

	ATOM	2168	0	VAL	310	49. 488	-5. 392	61. 374	1. 00	48. 66
	ATOM	2169	N	ASP	311	49. 217	-3. 559	60. 093	1. 00	48. 93
	ATOM	2170	CA	ASP	311	50. 262	-3. 927	59. 160	1. 00	52. 04
	ATOM	2171	CB	ASP	311	49. 993	-3. 298	57. 793	1. 00	57. 14
5	ATOM	2172	CG	ASP	311	48. 752	-3. 869	57. 135	1. 00	61. 79
	ATOM	2173	0D1	ASP	311	48. 348	-3. 377	56. 054	1. 00	63. 59
	ATOM	2174	0D2	ASP	311	48. 180	-4. 819	57. 713	1. 00	63. 98
	ATOM	2175	C	ASP	311	51. 618	-3. 490	59. 698	1. 00	51.94
	ATOM	2176	0	ASP	311	52. 580	-4. 256	59. 653	1. 00	53. 89
10	ATOM	2177	N	GLU	312	51. 702	-2. 267	60. 212	1. 00	49. 51
	ATOM	2178	CA	GLU	312	52. 961	-1. 785	60. 762	1. 00	47. 68
	ATOM	2179	CB	GLU	312	53. 071	-0. 272	60. 632	1. 00	48. 44
	ATOM	2180	CG	GLU	312	52. 900	0. 221	59. 216	1. 00	51.79
	ATOM	2181	CD	GLU	312	53. 122	1. 713	59. 084	1. 00	53. 56
15	ATOM	2182	0E1	GLU	312	52. 698	2. 280	58. 047	1. 00	49. 90
	ATOM	2183	0E2	GLU	312	53. 725	2. 309	60. 013	1. 00	56.82
	ATOM	2184	C	GLU	312	53. 075	-2. 172	62. 222	1. 00	46. 11
	ATOM	2185	0	GLU	312	53. 514	-1. 377	63. 049	1. 00	46. 75
	ATOM	2186	N	ASN	313	52. 666	-3. 397	62. 527	1. 00	45. 02
20	ATOM	2187	CA	ASN	313	52. 720	-3. 938	63. 879	1. 00	44. 64
	ATOM	2188	CB	ASN	313	54. 100	-4. 550	64. 119	1. 00	43. 84
	ATOM	2189	CG	ASN	313	54. 028	-5. 860	64. 863	1. 00	45. 16
	ATOM	2190	OD 1	ASN	313	53. 377`	-5. 965	65. 906	1. 00	43. 79
	ATOM	2191	ND2	ASN	313	54. 701	-6. 875	64. 333	1. 00	46. 05
25	ATOM	2192	C	ASN	313	52. 408	-2. 921	64. 991	1. 00	44. 49
	ATOM	2193	0	ASN	313	53. 303	-2. 509	65. 728	1. 00	45. 19
	ATOM	2194	N	LEU	314	51. 142	-2. 530	65. 126	1. 00	43. 02
	ATOM	2195	CA	LEU	314	50. 743	-1. 563	66. 159	1. 00	40. 80
	ATOM	2196	CB	LEU	314	50. 639	-0. 167	65. 549	1. 00	34. 97

- 220 -ATOM CG LEU 314 51.940 2197 0.499 65. 127 1. 00 29. 58 ATOM 2198 CD1 LEU 314 51.698 1. 453 63. 981 1. 00 28. 94 ATOM 2199 CD2 LEU 314 1. 212 52. 516 66. 311 1. 00 28. 16 ATOM 2200 C LEU 314 49. 396 -1.92466. 777 1. 00 42. 38 ATOM 2201 0 LEU 314 49. 026 -1.4225 67. 848 1. 00 39. 73 ATOM 2202 N LEU 315 48. 689 **-2**. 812 66.078 1. 00 44. 49 LEU 315 **ATOM** 2203 CA -3.26847. 352 66. 439 1. 00 45. 22 ATOM 2204 CBLEU 315 46. 354 -2.69565. 445 1. 00 43. 49 ATOM 2205 CG LEU 315 45. 121 -2.06366. 045 1. 00 43. 28 -1.976ATOM 2206 CD1 LEU 315 44. 055 10 64. 972 1. 00 43. 01 CD2 LEU 315 ATOM 2207 44. 643 -2.90767. 209 1. 00 46. 13 ATOM 2208 C LEU 315 47. 214 -4. 781 66. 407 1.00 46.34 ATOM 2209 0 LEU 315 47. 828 -5. 439 65. 577 1. 00 47. 74 ATOM 2210 N PHE 316 46. 380 -5. 318 67. 292 1. 00 48. 50 ATOM 2211 CA PHE 316 46. 125 -6.76067. 369 1. 00 50. 80 15 ATOM 2212 CBPHE 316 45.054 -7.18666. 347 1.00 48.89 ATOM 2213 CG PHE 316 43. 829 -6.31266. 331 1.00 46.47 ATOM 2214 CD1 PHE 316 43. 163 -5. 999 67. 508 1. 00 45. 93 ATOM 2215 CD2 PHE 316 43. 350 -5.79165. 134 1. 00 44. 48 ATOM 2216 CE1 PHE 316 -5. 183 20 42. 043 67. 491 1.00 44.57 ATOM 2217 CE2 PHE 316 42. 229 -4. 974 65. 109 1. 00 43. 59 ATOM CZ2218 PHE 316 41. 577 -4. 669 66. 290 1. 00 44. 05 ATOM 2219 C PHE 316 47. 371 -7.60567. 124 1.00 53.06 2220 ATOM 0 PHE 316 47. 342 -8.52166. 299 1.00 54.62 25 ATOM 2221 N HIS 317 48. 456 -7.30467. 835 1.00 54.60 2222 CAATOM HIS 317 49. 710 -8.04667. 691 1. 00 55. 95 ATOM 2223 CBHIS 317 49.676 -9.30168. 569 1. 00 54. 90 ATOM CG 2224 HIS 317 49. 708 -9.00470.034 1. 00 55. 21 **ATOM** CD2 HIS 317 2225 49.686 -9.82371. 113 1. 00 55. 22

- 221 -1.00 54.55 ATOM ND1 HIS 317 49. 778 -7. 718 70. 528 2226 **ATOM** 2227 CE1 HIS 317 49. 798 -7. 756 71. 848 1. 00 55. 21 NE2 HIS 317 49. 744 -9. 020 72. 229 1.00 56.90 ATOM 2228 HIS 317 50. 004 -8. 426 66. 240 1. 00 58. 27 **ATOM** 2229 C 1. 00 58. 90 ATOM 2230 0 HIS 317 50. 521 -9.51465. 950 -7.51365. 335 1. 00 59. 86 ATOM 2231 N GLY 318 49. 665 **ATOM** 2232 CA GLY 318 49. 881 -7. 734 63. 921 1.00 60.72 -9.0221. 00 62. 25 2233 C **GLY 318** 49. 290 63. 379 ATOM ATOM 2234 0 **GLY 318** 50. 031 -9. 956 63. 080 1. 00 63. 75 2235 N GLU 319 47. 962 -9. 087 63. 277 1. 00 62. 86 10 ATOM 47. 277 -10. 257 62. 716 1. 00 62. 72 ATOM 2236 CA GLU 319 47. 663 -11. 545 63. 439 1. 00 66. 93 2237 CB GLU 319 ATOM 2238 CG GLU 319 47. 437 -12. 784 62. 575 1. 00 73. 23 ATOM 47. 862 -14. 068 63. 262 1. 00 78. 58 ATOM 2239 CDGLU 319 2240 OE1 GLU 319 49. 020 -14. 129 63. 745 1. 00 80. 57 ATOM 15 47. 043 -15. 019 63.310 1.00 81.49 2241 0E2 GLU 319 ATOM 1. 00 59. 42 ATOM 2242 C GLU 319 45. 765 -10. 097 62. 739 2243 0 GLU 319 45. 098 -10. 387 63. 735 1.00 57.03 ATOM **ATOM** 2244 N ALA 320 45. 246 -9. 643 61.604 1. 00 55. 74 **ATOM** 2245 ALA 320 43. 828 -9. 394 61. 414 1. 00 54. 02 20 CA ATOM 2246 CB ALA 320 43. 657 -8. 357 60. 338 1. 00 52. 55 43. 052 -10. 650 1.00 54.49 ATOM 2247 C ALA 320 61. 043 1.00 55.61 2248 ALA 320 43. 620 -11. 565 60. 457 ATOM 0 SER 321 41. 762 -10. 698 61. 388 1. 00 55. 01 ATOM 2249 N **ATOM** 2250 CA SER 321 40. 924 -11. 856 61.050 1. 00 55. 90 25 2251 CB SER 321 39. 649 -11. 911 61. 895 1. 00 56. 08 ATOM 2252 38. 814 -12. 975 1. 00 53. 96 ATOM 0G SER 321 61. 445 1. 00 55. 49 **ATOM** 2253 C SER 321 40. 513 -11. 780 59. 589 2254 40. 367 -10. 689 59. 041 1. 00 54. 92 ATOM 0 SER 321

- 222 -

	ATOM	2255	N	GLU	322	40. 292	-12. 933	58. 967	1. 00	54. 84
	ATOM	2256	CA	GLU	322	39. 917	-12. 951	57. 563	1. 00	56. 14
	ATOM	2257	СВ	GLU	322	39. 646	-14. 382	57. 092	1. 00	58. 38
	ATOM	2258	CG	GLU	322	40. 173	-14. 697	55. 681	1. 00	63. 26
5	ATOM	2259	CD	GLU	322	41. 712	-14. 670	55. 574	1. 00	66. 36
	ATOM	2260	0E1	GLU	322	42. 296	-13. 571	55. 432	1. 00	66. 15
	ATOM	2261	0E2	GLU	322	42. 339	-15. 754	55. 637	1. 00	66. 78
	ATOM	2262	С	GLU	322	38. 685	-12. 085	57. 354	1. 00	55. 71
	ATOM	2263	0	GLU	322	38. 343	-11. 727	56. 227	1. 00	54. 93
10	ATOM	2264	N	GLN	323	38. 027	-11. 740	58. 454	1. 00	55. 82
	ATOM	2265	CA	GLN	323	36. 838	-10. 904	58. 393	1. 00	55. 20
	ATOM	2266	CB	GLN	323	35. 995	-11. 101	59. 659	1. 00	57. 22
	ATOM	2267	CG	GLN	323	35. 737	-12. 571	59. 983	1. 00	60. 42
	ATOM	2268	CD	GLN	323	34. 801	-12. 778	61. 164	1. 00	62. 11
15	ATOM	2269	0E1	GLN	323	34. 596	-13. 909	61. 612	1. 00	63. 58
	ATOM	2270	NE2	GLN	323	34. 223	-11. 690	61. 668	1. 00	61. 37
	ATOM	2271	C	GLN	323	37. 259	-9. 445	58. 249	1. 00	53. 59
	ATOM	2272	0	GLN	323	36. 963	-8. 800	57. 242	1. 00	53. 27
	ATOM	2273	N	LEU	324	37. 973	-8. 936	59. 248	1. 00	50. 98
20	ATOM	2274	CA	LEU	324	38. 430	-7. 553	59. 224	1. 00	48. 40
	ATOM	2275	CB	LEU	324	39. 396	-7. 294	60. 378	1. 00	46. 63
	ATOM	2276	CG	LEU	324	39. 956	-5. 876	60. 498	1. 00	44. 87
	ATOM	2277	CD1	LEU	324	38. 846	-4. 837	60. 390	1. 00	44. 21
	ATOM	2278	CD2	LEU	324	40. 671	-5. 758	61. 827	1. 00	43. 22
25	ATOM	2279	C	LEU	324	39. 115	-7. 224	57. 911	1. 00	47. 25
	ATOM	2280	0	LEU	324	39. 181	-6. 065	57. 505	1. 00	44. 86
	ATOM	2281	N	ARG	325	39. 627	-8. 253	57. 252	1. 00	48. 35
	ATOM	2282	CA	ARG	325	40. 309	-8. 057	55. 988	1. 00	50. 22
	ATOM	2283	CB	ARG	325	41. 473	-9. 055	55. 839	1. 00	53. 47

- 223 -. 2284 ATOM CG ARG 325 42. 580 -8. 896 56. 894 1. 00 57. 97 ATOM 2285 CD ARG 325 43. 660 -9. 986 56. 808 1.00 61.92 ATOM 2286 NE ARG 325 44. 564 -9. 957 57. 966 1.00 67.95 ATOM 2287 CZARG 325 45. 535 -10. 844 58. 206 1. 00 70. 27 2288 NH1 ARG 325 5 ATOM 45. 753 -11. 854 57. 371 1.00 69.69 2289 NH2 ARG 325 ATOM 46. 290 -10. 725 59. 293 1.00 70.39 ATOM 2290 C ARG 325 39. 320 -8. 224 1.00 48.80 54. 850 ATOM 2291 0 ARG 325 39. 617 -8. 859 53. 847 1.00 50.46 ATOM 2292 N THR 326 38. 131 -7. 663 54. 999 1.00 46.54 ATOM 2293 CA THR 326 37. 162 -7. 783 10 53. 929 1. 00 45. 13 ATOM 2294 CB THR 326 36. 108 -8. 810 54. 264 1. 00 44. 85 **ATOM** 2295 OG1 THR 326 36. 749 -10. 061 54. 546 1.00 44.98 ATOM 2296 CG2 THR 326 35. 160 -8. 973 53.092 1.00 43.46 2297 ATOM C THR 326 **36.** 500 **−6.** 453 53. 687 1.00 44.79 ATOM 2298 0 THR 326 36. 256 15 -5. 705 54. 626 1. 00 45. 01 2299 ATOM N ARG 327 36. 216 -6. 143 52. 430 1.00 45.02 ATOM 2300 CA ARG 327 35. 590 -4.86652. 136 1. 00 45. 97 2301 ATOM CB ARG 327 35. 476 -4.65550. 623 1. 00 48. 63 ATOM 2302 CG ARG 327 34. 961 -3.28350. 229 1.00 53.97 **ATOM** 2303 20 CD ARG 327 34. 975 -3.07248. 722 1.00 58.44 ATOM 2304 NE ARG 327 33. 747 -2. 410 48. 282 1.00 66.14 ATOM 2305 CZARG 327 33. 387 -1.17848. 648 1.00 69.53 ATOM 2306 NH1 ARG 327 34. 167 -0.47149. 458 1.00 69.84 ATOM NH2 ARG 327 2307 32. 242 -0.65248. 220 1. 00 68. 29 ATOM 2308 C ARG 327 25 34. 217 -4.79052. 794 1.00 44.69 ATOM 2309 0 ARG 327 33. 486 -5. 784 52. 861 1.00 44.55 ATOM 2310 N GLY 328 33. 888 -3.60553. 302 1. 00 42. 14 ATOM 2311 CA GLY 328 32. 606 -3. 394 53.952 1. 00 37. 48 ATOM 2312 C GLY 328 32. 480 -4.00755. 334 1.00 33.00

- 224 -GLY 328 31. 693 -3. 532 1. 00 32. 88 ATOM 2313 56. 148 0 **ATOM** 2314 ALA 329 33. 258 -5.04955. 601 1. 00 29. 02 N ALA 329 33. 227 -5.74356. 885 1. 00 26. 22 ATOM 2315 CA ALA 329 34. 452 -6.62357. 028 1. 00 28. 65 ATOM 2316 CBATOM 2317 C ALA 329 33. 092 -4.86158. 115 1. 00 24. 38 5 2318 -5.2761. 00 26. 43 ATOM ALA 329 32. 490 59. 097 0 ATOM 2319 N PHE 330 33. 663 -3.66358.091 1. 00 21. 81 1.00 18.07 ATOM PHE 330 33. 547 -2.77659. 242 2320 $\mathsf{C}\mathsf{A}$ ATOM 2321 CBPHE 330 34. 887 -2.13759. 558 1. 00 13. 90 PHE 330 2322 CG 34. 913 -1.40460.862 1. 00 12. 45 10 ATOM CD1 PHE 330 34. 460 -0.09660.961 1. 00 12. 64 ATOM 2323 CD2 PHE 330 -2.0091. 00 12. 73 **ATOM** 2324 35. 436 61. 995 **ATOM** CE1 PHE 330 34. 535 0.605 62. 188 1. 00 12. 83 2325 35. 515 -1.31563. 221 1. 00 11. 49 ATOM 2326 CE2 PHE 330 CZPHE 330 35.066 -0.00863. 315 1. 00 8. 96 ATOM 2327 15 C PHE 330 32. 528 -1.71658. 886 1. 00 17. 48 ATOM 2328 2329 PHE 330 32. 855 -0.70258. 273 1. 00 17. 97 ATOM 0 2330 GLU 331 31. 288 -1.97659. 275 1. 00 16. 36 ATOM N GLU 331 30. 149 -1. 105 58. 998 1. 00 18. 14 ATOM 2331 CA -1.88959. 308 1. 00 22. 08 ATOM 2332 CB GLU 331 28. 865 20 ATOM 2333 CG GLU 331 28. 790 -3.22658. 546 1. 00 26. 82 -4. 382 1. 00 28. 86 2334 CD GLU 331 28. 183 59. 346 ATOM OE1 GLU 331 28. 381 -5.55258. 931 1. 00 28. 12 ATOM 2335 -4.12960.371 1. 00 30. 16 **ATOM** 2336 OE2 GLU 331 27. 509 0. 248 59.719 1.00 16.36 **ATOM** 2337 C GLU 331 30. 126 25 ATOM 2338 0 GLU 331 30. 596 0. 380 60.849 1. 00 16. 97 THR 332 1. 263 59.060 1.00 14.04 ATOM 2339 N 29. 583 59.695 1. 00 14. 47 ATOM 2340 CA THR 332 29. 494 2. 568 CB3. 562 58. 825 1. 00 10. 93 ATOM 2341 THR 332 28. 747

- 225 -1. 00 6. 57 3. 751 57. 611 OG1 THR 332 29. 473 ATOM 2342 CG2 THR 332 4.890 59. 550 1. 00 6. 34 28. 597 ATOM 2343 THR 332 2.382 60.994 1. 00 18. 42 28. 725 ATOM 2344 C 2.872 62.052 1. 00 17. 70 THR 332 29. 125 ATOM 2345 0 1. 00 21. 79 ATOM 2346 N ARG 333 27. 609 1. 671 60. 892 5 62. 040 1. 00 24. 44 26. 783 1. 346 CA ARG 333 ATOM 2347 1. 00 28. 62 ARG 333 26. 095 0.001 61.764 ATOM 2348 CB 1.00 34.65 -0.59062. 910 ARG 333 25. 291 ATOM 2349 CG 24. 308 -1.66462. 401 1. 00 39. 87 2350 ARG 333 ATOM CD 61.910 -2.8871. 00 43. 42 ATOM 2351 NE ARG 333 24. 953 10 1.00 46.01 CZ25. 198 -3.96962. 653 2352 ARG 333 ATOM 1. 00 45. 10 -3.99263. 940 ATOM 2353 NH1 ARG 333 24. 852 25. 791 -5.03062. 104 1. 00 43. 75 NH2 ARG 333 ATOM 2354 1. 271 63. 323 1. 00 24. 88 ATOM 2355 C ARG 333 27. 638 1.803 64. 358 1. 00 24. 00 27. 242 2356 0 ARG 333 ATOM 15 28.818 0.635 63. 232 1. 00 23. 97 ATOM 2357 N PHE 334 29.740 0.458 64. 371 1. 00 19. 64 PHE 334 2358 CA ATOM 30. 877 -0.50964. 033 1. 00 20. 52 ATOM 2359 CB PHE 334 -1.81363. 468 1. 00 24. 74 30. 420 2360 CG PHE 334 ATOM 1. 00 25. 94 29. 469 -2.57464. 121 ATOM 2361 CD1 PHE 334 20 -2.27962. 262 1. 00 26. 47 CD2 PHE 334 30. 938 **ATOM** 2362 -3.78063. 575 1. 00 28. 43 ATOM 2363 CE1 PHE 334 29. 039 1. 00 24. 74 30. 514 -3. 483 61. 711 CE2 PHE 334 ATOM 2364 1. 00 26. 41 29. 565 -4.23362. 365 **ATOM** 2365 czPHE 334 64. 842 1. 00 16. 52 PHE 334 30. 382 1. 739 **ATOM** 2366 C 25 1. 00 16. 16 ATOM 2367 0 PHE 334 30. 434 2. 020 66. 039 1. 00 13. 20 VAL 335 30. 907 2. 509 63. 905 ATOM 2368 N VAL 335 31. 546 3. 752 64. 284 1. 00 11. 36 ATOM 2369 CA 1. 00 8. 08 31.877 63. 033 CBVAL 335 4. 565 ATOM 2370

- 226 -1.00 8.71 ATOM CG1 VAL 335 32. 113 6.003 63. 402 2371 ATOM 2372 CG2 VAL 335 33.082 3. 979 62. 358 1. 00 1. 00 1.00 13.02 ATOM 2373 C VAL 335 30.653 4. 558 65. 249 ATOM 2374 0 VAL 335 31. 126 5.066 66. 264 1. 00 10. 40 4.640 1. 00 16. 23 5 ATOM 2375 N SER 336 29. 359 64. 934 5. 372 65.740 1. 00 18. 55 ATOM 2376 CA SER 336 28. 365 ATOM 2377 CB SER 336 27.017 5. 350 65.039 1. 00 19. 92 3.999 1.00 25.40 **ATOM** 2378 0G SER 336 26.611 64.866 ATOM 2379 C SER 336 28. 162 4. 766 67. 118 1. 00 17. 99 27.896 5.465 68. 100 1.00 14.64 ATOM 2380 0 SER 336 10 2381 N 28. 239 3. 445 67. 159 1. 00 19. 48 ATOM GLN 337 28.061 2.719 68.394 1. 00 21. 39 ATOM 2382 CA GLN 337 2383 CB GLN 337 27.995 1. 223 68. 123 1. 00 21. 42 ATOM 26.829 0.800 67. 264 1. 00 23. 07 ATOM 2384 CG GLN 337 26. 920 -0.6542385 CD 66. 895 1. 00 24. 96 ATOM GLN 337 15 27. 243 2386 OE1 GLN 337 -1.49667. 735 1. 00 28. 83 ATOM 2387 NE2 GLN 337 26. 633 -0.96665. 638 1. 00 24. 29 ATOM 29. 260 3.011 2388 C GLN 337 69. 240 1. 00 20. 91 ATOM 2389 0 **GLN 337** 29. 205 2. 963 70. 464 1. 00 23. 32 ATOM 30.362 3. 317 ATOM 2390 N VAL 338 68. 584 1. 00 20. 52 20 ATOM 2391 CA VAL 338 31. 559 3. 589 69. 337 1. 00 21. 67 2392 CBVAL 338 32.812 3.470 68. 443 1. 00 20. 93 ATOM CG1 VAL 338 34.065 3.624 69. 279 1. 00 19. 79 ATOM 2393 2394 CG2 VAL 338 32.811 2. 126 67. 739 1.00 16.69 ATOM 1.00 23.61 ATOM 2395 C VAL 338 31.480 4.973 69. 977 25 ATOM 2396 0 VAL 338 31. 385 5.079 71. 203 1. 00 21. 96 GLU 339 31.486 6.020 1. 00 25. 05 ATOM 2397 N 69. 146 CA ATOM 2398 GLU 339 31. 455 7.406 69.620 1. 00 26. 21 CB 31.460 68. 440 1.00 26.37 ATOM 2399 GLU 339 8. 402

- 227 -GLU 339 30. 515 8. 082 67. 282 1.00 31.63 ATOM 2400 CG 66.311 1. 00 36. 86 GLU 339 30. 287 9. 267 **ATOM** 2401 CD 0E1 GLU 339 29. 542 10. 219 66.663 1. 00 37. 19 ATOM 2402 0E2 GLU 339 ATOM 2403 30.850 9. 243 65. 187 1. 00 37. 90 1. 00 26. 44 30. 299 7. 735 70. 541 2404 C GLU 339 5 ATOM 30.423 8. 613 71. 396 1. 00 27. 55 ATOM 2405 0 GLU 339 7.017 70.380 1. 00 26. 30 SER 340 29. 189 ATOM 2406 N 7. 246 71. 181 1. 00 25. 08 SER 340 27. 987 ATOM 2407 CA 6. 322 1. 00 23. 68 **ATOM** 2408 CBSER 340 26.861 70. 717 27. 191 4. 970 70. 957 1. 00 23. 58 SER 340 ATOM 2409 0G 10 7.065 72.676 1. 00 26. 02 ATOM 2410 C SER 340 28. 211 7. 539 73.488 1. 00 26. 83 SER 340 27.415 ATOM 2411 0 6.380 73. 033 1. 00 27. 41 ATOM 2412 N ASP 341 29. 294 6. 143 74. 434 1. 00 27. 85 ASP 341 29.630 ATOM 2413 CA 4.885 1. 00 27. 41 ASP 341 28.939 74. 953 ATOM 2414 CB 15 29. 253 4. 621 76. 410 1. 00 26. 49 2415 CG ASP 341 ATOM 29. 628 5. 591 77. 107 1. 00 26. 07 ATOM 2416 OD1 ASP 341 1. 00 25. 64 OD2 ASP 341 29. 117 3. 463 76. 862 ATOM 2417 1. 00 28. 59 ASP 341 31. 128 6.008 74. 672 ATOM 2418 C 31.757 5.049 74. 229 1.00 30.06 **ATOM** 2419 ASP 341 0 20 6.965 75. 398 1. 00 27. 34 ATOM 2420 N THR 342 31. 688 1. 00 26. 74 2421 THR 342 33. 105 6. 953 75. 694 ATOM CA 1. 00 26. 75 2422 THR 342 33.681 8. 348 75. 553 ATOM CB OG1 THR 342 33.072 9. 217 76. 511 1. 00 25. 10 **ATOM** 2423 1. 00 29. 29 CG2 THR 342 33. 387 8.881 74. 171 25 ATOM 2424 77. 114 1. 00 27. 84 2425 C THR 342 33. 292 6. 477 ATOM 34. 365 1. 00 27. 29 6. 625 77. 692 ATOM 2426 0 THR 342 1. 00 30. 32 GLY 343 32. 223 5. 908 77. 662 ATOM 2427 N ATOM 2428 CA GLY 343 32. 234 5. 398 79. 020 1. 00 31. 31

- 228 -1. 00 32. 13 79. 178 **GLY 343** 32. 970 4. 083 2429 С ATOM 3. 944 80. 105 1.00 34.00 2430 **GLY 343** 33. 765 ATOM 0 78. 304 1.00 31.93 ATOM 2431 N ASP 344 32. 712 3. 114 1.836 78. 411 1. 00 34. 25 ASP 344 33. 400 ATOM 2432 CA CBASP 344 32. 592 0.857 79. 267 1. 00 38. 13 ATOM 2433 5 0.646 78. 744 1. 00 43. 49 CG ASP 344 31. 205 ATOM 2434 -0.02979. 426 1. 00 47. 59 OD1 ASP 344 30. 399 ATOM 2435 77.643 1. 00 46. 67 OD2 ASP 344 30. 923 1. 159 **ATOM** 2436 1. 196 77.075 1. 00 33. 85 ASP 344 33. 744 ATOM 2437 C 76.015 1. 00 32. 12 ATOM 2438 0 ASP 344 33. 354 1. 681 10 0.098 77. 148 1.00 34.54 ARG 345 34. 490 ATOM 2439 N -0.62675.968 1.00 35.60 ARG 345 34. 935 ATOM 2440 CA 1.00 35.33 -1.27876. 233 ARG 345 36. 297 ATOM 2441 CB CG ARG 345 37. 339 -0.37076.864 1. 00 35. 88 ATOM 2442 -1.0061. 00 35. 19 38. 729 76. 879 ATOM 2443 CD ARG 345 15 1. 00 36. 95 NE ARG 345 39. 507 -0.59778. 054 ATOM 2444 0.629 1. 00 36. 97 39. 984 78. 275 CZARG 345 ATOM 2445 1. 605 77. 396 1. 00 36. 40 ATOM 2446 NH1 ARG 345 39. 780 40.654 0.885 79. 394 1. 00 36. 46 NH2 ARG 345 ATOM 2447 ARG 345 -1.71675. 551 1. 00 36. 31 ATOM 2448 C 33. 961 20 -2.2801.00 37.64 34. 080 74. 461 ATOM 2449 0 ARG 345 ATOM 2450 N LYS 346 33. 004 -2.02076. 420 1. 00 35. 01 -3.08176. 134 1. 00 33. 81 CA LYS 346 32. 050 ATOM 2451 LYS 346 30. 824 -2.97577. 041 1.00 33.64 ATOM 2452 CB -4.22376.985 1.00 33.85 29. 942 CG LYS 346 25 ATOM 2453 LYS 346 30. 759 -5.50577. 186 1. 00 31. 48 **ATOM** 2454 CD 76. 542 1. 00 32. 39 2455 CE LYS 346 30. 061 -6. 699 ATOM -7. 968 76. 542 1. 00 30. 01 NZ LYS 346 30. 855 ATOM 2456 31. 613 -3. 093 . 74. 684 1. 00 33. 18 ATOM 2457 C LYS 346

- 229 -1. 00 31. 98 ATOM 2458 0 LYS 346 31. 746 -4. 101 73. 995 74. 214 1. 00 33. 36 GLN 347 31. 101 -1.967ATOM 2459 N **ATOM** CA GLN 347 30. 662 -1.88772. 839 1. 00 34. 32 2460 1.00 37.17 30.014 -0.53072. 589 ATOM 2461 CB GLN 347 GLN 347 28. 510 -0.57872. 703 1. 00 39. 97 ATOM 2462 CG 5 71.611 1. 00 43. 97 ATOM 2463 CDGLN 347 27. 905 -1.43628. 219 -2.62671. 491 1. 00 43. 88 ATOM 2464 OE1 GLN 347 -0.83570.799 ATOM 2465 NE2 GLN 347 27. 039 1. 00 46. 46 31. 799 -2.14471.844 1. 00 34. 27 ATOM 2466 C GLN 347 ATOM 2467 0 GLN 347 31. 630 -2.92270. 902 1. 00 35. 29 10 -1.50272.054 1. 00 31. 49 ILE 348 32. 952 ATOM 2468 N 1. 00 25. 43 ATOM 2469 CA ILE 348 34. 109 -1.67971. 165 ILE 348 35. 309 -0.82671.614 1. 00 21. 01 ATOM 2470 CB ATOM 2471 CG2 ILE 348 36. 369 -0.82670. 540 1. 00 15. 50 0.606 71. 875 1. 00 22. 27 2472 CG1 ILE 348 34. 852 ATOM 15 35.914 1. 509 72. 462 1. 00 24. 55 ATOM 2473 CD1 ILE 348 -3.13971. 211 1. 00 24. 70 ILE 348 34. 524 ATOM 2474С 34. 793 -3.76370. 182 1. 00 23. 36 ATOM 2475 0 ILE 348 -3.68172. 421 TYR 349 34. 560 1. 00 23. 30 ATOM 2476 N TYR 349 34. 933 -5.06172. 597 1. 00 23. 65 ATOM 2477 CA 20 34. 727 -5.49174.047 1. 00 25. 21 **ATOM** 2478 CB TYR 349 34. 779 -6.98974. 221 1. 00 31. 27 ATOM 2479 CG TYR 349 CD1 TYR 349 -7. 665 74. 333 1. 00 33. 98 2480 35. 990 ATOM CE1 TYR 349 36. 028 -9.06274. 435 1. 00 36. 98 ATOM 2481 -7.74074. 216 1. 00 34. 38 ATOM 2482 CD2 TYR 349 33. 607 25 ATOM 2483 CE2 TYR 349 33. 628 **-9**. 125 74. 312 1. 00 36. 69 34. 837 -9. 786 74. 421 1. 00 37. 89 ATOM 2484 CZTYR 349 ATOM 2485 0HTYR 349 34. 834 -11. 165 74. 512 1. 00 37. 12

ATOM

2486

C

TYR 349

34. 105 -5. 945

71. 676

1. 00 23. 47

-230 -ATOM 2487 0 TYR 349 34. 654 -6. 602 70. 794 1. 00 21. 02 ATOM 2488 N ASN 350 32. 783 -5. 934 71. 872 1. 00 25. 29 2489 CA ASN 350 ATOM 31. 850 -6. 766 71. 091 1.00 25.07 2490 CB ASN 350 30.379 - 6.500ATOM 71. 482 1. 00 23. 90 72. 941 2491 CG ASN 350 30.069 -6.844 1.00 25.09 ATOM ATOM 2492 OD1 ASN 350 30. 413 -7. 924 73. 440 1. 00 22. 84 ATOM 2493 ND2 ASN 350 29. 398 -5. 923 73. 626 1. 00 25. 65 ATOM 2494 С ASN 350 31. 982 -6. 620 69. 580 1. 00 25. 25 2495 31. 994 -7. 619 ATOM 0 ASN 350 68. 859 1. 00 25. 84 ATOM 2496 N ILE 351 32. 068 -5. 392 69. 083 1. 00 25. 43 ATOM 2497 ILE 351 32. 195 -5. 227 CA 67. 642 1. 00 25. 64 ATOM 2498 CBILE 351 32. 388 -3. 745 67. 248 1.00 24.60 2499 32. 282 ATOM CG2 ILE 351 -3.60065. 743 1. 00 23. 69 ATOM 2500 CG1 ILE 351 31. 305 -2.88267. 903 1. 00 22. 24 **ATOM** 2501 CD1 ILE 351 31. 357 -1. 431 67. 509 1. 00 19. 88 ATOM 2502 C ILE 351 33. 415 -6. 047 67. 224 1. 00 26. 73 **ATOM** 2503 0 ILE 351 33. 282 -7. 047 66. 517 1. 00 25. 71 **ATOM** 2504 N LEU 352 34. 592 -5. 629 67. 695 1. 00 27. 08 ATOM 2505 CA LEU 352 35. 847 -6. 312 67. 397 1. 00 27. 36 ATOM 2506 CBLEU 352 36. 994 -5. 700 68. 206 1. 00 24. 45 ATOM 2507 CG LEU 352 37. 295 -4.20868. 090 1. 00 23. 84 ATOM 2508 CD1 LEU 352 38. 464 -3. 838 68. 995 1. 00 21. 54 CD2 LEU 352 ATOM 2509 37. 620 -3.8721. 00 23. 96 66. 660

5 10 15 20 ATOM 2510 C LEU 352 35. 746 -7.79867. 737 1. 00 29. 42 ATOM 2511 0 LEU 352 36. 045 -8.67025 66. 912 1. 00 29. 43 ATOM 2512 · N 35. 336 SER 353 -8.08768. 965 1. 00 30. 73 69. 398 ATOM 2513 CA SER 353 35. 206 -9.4681. 00 32. 72 ATOM 2514 CB SER 353 34. 408 -9. 531 70. 711 1. 00 32. 86 ATOM 2515 0GSER 353 34. 187 -10. 870 71. 126 1. 00 35. 10

- 231 -1.00 33.76 34. 513 -10. 277 68. 295 ATOM SER 353 2516 C ATOM 2517 0 SER 353 35. 123 -11. 149 67. 670 1. 00 34. 42 33. 252 -9. 941 68. 035 1.00 34.17 2518 N THR 354 ATOM THR 354 32. 437 -10. 621 67. 031 1. 00 32. 96 **ATOM** 2519 $\mathsf{C}\mathsf{A}$ 1.00 33.01 ATOM 2520 CBTHR 354 30. 999 -10. 073 67. 076 5 66. 408 1. 00 32. 52 ATOM 2521 OG1 THR 354 30. 120 -10. 980 ATOM CG2 THR 354 30. 922 -8. 702 66. 411 1. 00 34. 65 2522 33. 007 -10. 503 65. 608 1. 00 32. 28 ATOM 2523 C THR 354 32. 444 -11. 038 64. 646 1. 00 30. 58 **ATOM** 2524 0 THR 354 65. 497 1. 00 31. 47 10 ATOM 2525 N LEU 355 34. 137 -9. 807 64. 227 1. 00 30. 67 LEU 355 34. 832 -9. 612 ATOM 2526 CA 1. 00 28. 42 35. 488 -8. 239 64. 187 ATOM 2527 CB LEU 355 34. 780 -7. 240 63. 293 1. 00 27. 13 2528 CG LEU 355 ATOM 1. 00 26. 09 35. 387 -5. 874 63. 487 ATOM 2529 CD1 LEU 355 34. 898 -7. 698 61.859 1. 00 27. 39 2530 CD2 LEU 355 ATOM 15 35. 905 -10. 668 1.00 31.14 C LEU 355 64.061 ATOM 2531 36. 573 -10. 735 63. 033 1. 00 30. 59 2532 0 LEU 355 ATOM 36. 074 -11. 484 65. 091 1. 00 32. 64 ATOM 2533 N GLY 356 1. 00 35. 49 CA **GLY 356** 37. 068 -12. 530 65. 030 ATOM 2534 1.00 37.44 **GLY 356** 38. 435 -12. 074 65. 493 20 ATOM 2535 C 39. 443 -12. 492 64. 930 1. 00 37. 31 **ATOM** 2536 0 **GLY 356** 38. 471 -11. 222 1. 00 39. 40 ATOM 2537 N LEU 357 66. 516 39. 729 -10. 717 67. 057 1. 00 41. 85 2538 CA LEU 357 ATOM 1.00 41.35 CBLEU 357 39. 898 -9. 239 66. 705 ATOM 2539 39. 816 -8. 876 65. 218 1. 00 43. 17 CG LEU 357 ATOM 2540 25 1.00 42.98 **ATOM** 2541 CD1 LEU 357 39. 953 -7. 375 65.064 40. 904 -9. 585 1. 00 43. 93 CD2 LEU 357 64. 428 ATOM 2542 C LEU 357 39. 759 -10. 888 68. 571 1.00 44.59 ATOM 2543

38. 750 -11. 247

ATOM

2544 0

LEU 357

69. 176

1.00 45.94

- 232 -40. 919 -10. 643 ATOM 2545 ARG 358 69. 178 1.00 46.55 N ATOM 2546 CA ARG 358 41. 080 -10. 752 70. 632 1. 00 48. 12 ATOM 2547 CB ARG 358 42. 113 -11. 819 70. 994 1. 00 52. 19 ATOM 2548 CG ARG 358 41. 649 -13. 258 70. 839 1. 00 61. 21 ARG 358 40. 870 -13. 768 72.064 1. 00 68. 48 5 ATOM 2549 CD72. 184 ATOM NE ARG 358 39. 519 -13. 206 1. 00 74. 00 2550 **ATOM** CZARG 358 38. 629 -13. 577 73. 104 1. 00 75. 57 2551 73. 998 1.00 75.58 **ATOM** 2552 NH1 ARG 358 38. 935 -14. 517 ATOM 2553 NH2 ARG 358 37. 431 -13. 005 73. 131 1. 00 74. 54 ATOM C ARG 358 41. 558 -9. 418 71. 174 1. 00 46. 76 2554 10 ATOM 2555 0 ARG 358 42. 702 -9. 284 71. 580 1. 00 49. 52 40. 679 -8. 412 71. 197 1. 00 45. 33 ATOM 2556 N PRO 359 1.00 45.90 ATOM 2557 CD PRO 359 39. 271 -8.53270. 791 2558 -7.056ATOM CA PRO 359 40. 956 71. 677 1.00 44.06 71. 784 **ATOM** 2559 CBPRO 359 39. 565 -6.4491. 00 45. 14 15 70.643 ATOM 2560 CG PRO 359 38. 865 -7.0861. 00 46. 70 ATOM 2561 C PRO 359 41. 725 -6.93672. 986 1. 00 42. 11 1. 00 42. 98 ATOM 2562 0 PRO 359 41. 662 -7. 797 73. 860 ATOM 2563 SER 360 42. 449 -5.84073. 118 1. 00 38. 55 N ATOM SER 360 43. 209 -5.60874. 321 1. 00 35. 42 2564 CA 20 44. 701 -5.62474. 014 1. 00 38. 45 ATOM 2565 CBSER 360 73. 453 1. 00 37. 32 ATOM 2566 0G SER 360 45. 100 -4. 379 ATOM 2567 C SER 360 42. 847 -4.23474. 818 1. 00 33. 26 1. 00 30. 55 ATOM 2568 0 SER 360 42. 530 -3.34574. 028 1. 00 31. 87 25 ATOM 2569 N THR 361 42. 907 -4.06076. 128 ATOM CA THR 361 42. 625 -2.77176. 721 1. 00 33. 02 2570

43. 285

42. 697

43. 135

-2.646

-3. 593

-1.223

78. 083

78. 981

78. 618

1. 00 32. 00

1.00 31.30

1. 00 28. 90

CB

THR 361

OG1 THR 361

CG2 THR 361

2571

2572

2573

ATOM

ATOM

ATOM

- 233 -ATOM 2574 C THR 361 43. 162 -1. 637 75. 853 1. 00 35. 59 ATOM 2575 0 THR 361 42. 600 -0. 545 75. 837 1. 00 37. 16 ATOM 2576 N THR 362 44. 253 -1. 879 75. 135 1. 00 37. 62 ATOM 2577 CA THR 362 44. 812 -0.81974. 303 1.00 37.63 ATOM 2578 CBTHR 362 46. 341 -0.94974. 156 1. 00 38. 04 5 ATOM 2579 OG1 THR 362 46. 950 -0.98175. 453 1. 00 37. 77 CG2 THR 362 **ATOM** 2580 46.890 0. 242 73. 395 1. 00 37. 49 2581 C THR 362 44. 183 -0.83972.928 1.00 36.67 **ATOM** 2582 43. 758 ATOM 0 THR 362 0. 194 72. 416 1. 00 34. 48 2583 ATOM N ASP 363 44. 132 -2.03272. 345 1. 00 37. 88 10 ATOM 2584 CA ASP 363 43. 555 -2. 246 71.024 1. 00 40. 18 **ATOM** 2585 CBASP 363 43. 238 -3.72970. 842 1. 00 42. 13 2586 CG ASP 363 44. 477 ATOM -4.55770.666 1. 00 45. 73 ATOM 2587 OD1 ASP 363 44. 433 -5.77970. 932 1.00 49.54 ATOM 2588 OD2 ASP 363 45. 500 -3.97670. 247 15 1.00 46.04 ATOM 2589 42. 289 C ASP 363 -1.42970.841 1. 00 40. 28 ATOM 2590 0 ASP 363 42. 070 -0. 801 69. 802 1. 00 38. 03 2591 N CYS 364 **ATOM** 41. 455 -1.44971. 871 1.00 41.60 **ATOM** 2592 CA CYS 364 40. 197 -0.72471.849 1.00 41.33 2593 ATOM CB CYS 364 39. 426 -1.03673. 131 1. 00 41. 81 20 ATOM 2594 SG. CYS 364 39. 078 -2.81873. 225 1. 00 41. 98 ATOM 2595C CYS 364 40. 447 0.766 71. 685 1. 00 39. 78 2596 ATOM 0 CYS 364 39. 991 1. 382 70. 721 1. 00 37. 44 ATOM 2597 N ASP 365 41. 194 1. 333 72.622 1. 00 38. 65 25 ATOM 2598 CA ASP 365 41. 525 2. 744 72. 580 1. 00 37. 87 ATOM 2599 CBASP 365 42. 498 3.060 73. 709 1. 00 39. 53 ATOM 2600 CG ASP 365 42.073 2. 424 75.014 1. 00 42. 28 **ATOM** 2601 OD1 ASP 365 40.887 2. 000 75.096 1.00 43.06 ATOM 2602 OD2 ASP 365 42. 908 1. 00 41. 82 2. 355 75. 949

- 234 -ATOM 2603 C ASP 365 42. 123 3. 092 71. 220 1. 00 35. 70 ATOM 2604 0 ASP 365 41.887 4. 173 70.682 1. 00 35. 49 ATOM 2605 N ILE 366 42.895 2. 175 70.655 1. 00 32. 72 ATOM 2606 CA ILE 366 43. 469 2. 428 69. 347 1. 00 31. 21 2607 CBILE 366 1. 00 30. 98 ATOM 44. 345 1. 241 68. 891 5 **ATOM** 2608 CG2 ILE 366 44.878 1. 488 67.482 1. 00 30. 08 2609 CG1 ILE 366 1.010 ATOM 45. 472 69.907 1. 00 30. 05 ATOM 2610 CD1 ILE 366 46. 426 2. 165 1. 00 26. 19 70.071 ATOM 2611 C ILE 366 42. 292 2. 622 68. 384 1. 00 30. 65 2612 ILE 366 3.686 10 ATOM 0 42. 140 67. 790 1. 00 29. 65 ATOM 2613 N VAL 367 41. 451 1. 598 68. 255 1. 00 29. 81 2614 40. 287 1.665 ATOM CA VAL 367 67. 378 1. 00 27. 24 ATOM 2615 CB VAL 367 39. 397 0.424 67. 541 1. 00 26. 77 38. 193 0.520 ATOM 2616 CG1 VAL 367 66. 630 1. 00 25. 16 CG2 VAL 367 40. 190 -0.817**ATOM** 2617 67. 220 1. 00 27. 90 15 2618 2.910 **ATOM** C VAL 367 39. 453 67.657 1. 00 26. 82 ATOM 2619 0 VAL 367 39.061 3.606 66. 727 1. 00 27. 16 2620 ATOM N ARG 368 39. 171 3. 191 68. 927 1. 00 25. 49 ATOM 2621 ARG 368 38.398 4.380 CA 69. 266 1. 00 24. 26 2622 ATOM CB ARG 368 38. 431 4.644 70.772 1. 00 23. 73 20 ATOM 2623 CG ARG 368 37. 765 5. 951 71. 217 1. 00 26. 32 2624 CD 36. 239 5. 948 ATOM ARG 368 71. 033 1. 00 32. 00 ATOM 2625 NE ARG 368 35. 542 5. 015 71.926 1. 00 33. 36 ATOM 2626 CZARG 368 35. 558 5.096 73. 253 1. 00 33. 30 25 ATOM 2627 NH1 ARG 368 36. 237 6.069 73. 843 1. 00 36. 87 NH2 ARG 368 ATOM 2628 34. 904 4. 209 73. 990 1. 00 30. 08 ATOM 2629 C ARG 368 39.034 5. 545 68. 539 1. 00 25. 24 ATOM 2630 0 67.700 1.00 26.08 ARG 368 38. 403 6. 175 ATOM 2631 N ARG 369 40. 299 5.808 68. 844 1. 00 26. 69

- 235 -**ATOM** 2632 CA ARG 369 41. 022 1. 00 28. 80 6. 905 68. 226 ATOM 2633 CBARG 369 42.500 6.842 1. 00 33. 81 68. 619 ATOM 2634 CG ARG 369 42. 992 8. 041 1. 00 41. 54 69. 421 ATOM 2635 CD ARG 369 44. 246 8.666 68. 797 1. 00 47. 78 2636 5 ATOM NE ARG 369 44. 827 9. 709 69. 642 1. 00 53. 83 ATOM 2637 CZ ARG 369 45. 436 9. 479 70.803 1. 00 57. 34 ATOM 2638 NH1 ARG 369 45. 547 8. 234 71. 256 1. 00 57. 39 ATOM 2639 NH2 ARG 369 45. 925 10. 492 71. 517 1. 00 58. 51 ATOM 2640 C ARG 369 40.888 6. 941 66. 704 1. 00 27. 66 10 ATOM 2641 0 ARG 369 40.898 8. 017 66. 116 1. 00 27. 35 ATOM 2642 N ALA 370 40.760 5. 778 66.071 1. 00 28. 23 ATOM 2643 CA ALA 370 40.622 5.699 64.613 1.00 29.69 ATOM 2644 CB ALA 370 40.779 4. 264 64. 144 1. 00 27. 18 **ATOM** 2645 C ALA 370 39. 266 6. 218 64. 184 1. 00 32. 49 ATOM 2646 0 15 ALA 370 39. 155 7.084 63. 313 1. 00 33. 37 ATOM 2647 N CYS 371 38. 229 5.663 64. 797 1.00 35.80 ATOM 2648 CYS 371 CA 36.860 6.053 64. 500 1. 00 37. 09 ATOM 2649 CB CYS 371 35. 892 5. 310 65. 427 1. 00 37. 67 **ATOM** 2650 SG CYS 371 35.709 3. 539 65. 052 1. 00 43. 56 20 ATOM 2651 C ·CYS 371 36.692 7. 555 64.663 1. 00 36. 66 ATOM 2652 0 CYS 371 36. 237 8. 231 63. 746 1. 00 36. 14 **ATOM** 2653 N GLU 372 37.079 8.065 65. 829 1.00 36.70 **ATOM** 2654 CA GLU 372 36.962 9. 482 66. 140 1. 00 37. 83 ATOM 2655 CB GLU 372 37. 440 9. 741 67. 569 1. 00 41. 72 ATOM 25 2656 CG GLU 372 37. 405 11. 202 67. 993 1. 00 50. 44 ATOM GLU 372 2657 CD 38. 615 11. 981 67. 504 1. 00 56. 78 ATOM 2658 0E1 GLU 372 39. 747 11.656 67.940 1.00 60.05 ATOM 0E2 GLU 372 2659 38. 437 12. 914 66.685 1. 00 59. 31 ATOM 2660 C GLU 372 37. 736 10. 344 65. 163 1. 00 36. 14

-236 -ATOM 2661 0 GLU 372 37. 280 11. 410 64. 745 1.00 34.24 ATOM 2662 N SER 373 38. 917 9.890 64. 793 1.00 37.31 10.662 ATOM 2663 CA **SER 373** 39. 703 63.856 1.00 39.48 ATOM 2664 CB SER 373 41. 095 10. 040 63. 694 1. 00 40. 54 ATOM 2665 0G SER 373 41.014 8. 697 63. 253 1.00 41.31 5 38.966 10.713 ATOM 2666 C SER 373 62. 516 1. 00 38. 54 61.953 ATOM 2667 0 SER 373 38. 778 11. 790 1.00 39.30 9.552 ATOM 2668 N VAL 374 38. 528 62.029 1. 00 35. 74 ATOM 2669 CA VAL 374 37. 817 9. 462 60.755 1. 00 34. 53 ATOM 2670 CBVAL 374 37. 519 7. 987 60.388 1. 00 33. 30 10 ATOM 2671 CG1 VAL 374 36.688 7.897 59. 119 1. 00 30. 40 ATOM 2672 CG2 VAL 374 38.811 7. 257 60. 186 1. 00 34. 78 ATOM 2673 C VAL 374 36. 512 10. 250 60. 736 1. 00 35. 17 2674 36. 253 11.010 ATOM 0 VAL 374 59. 797 1. 00 34. 51 ATOM 2675 N **SER 375** 35.700 10.080 61. 775 1. 00 35. 24 15 2676 **SER 375** 34. 416 10.768 61.866 ATOM CA 1. 00 34. 91 ATOM 2677 CBSER 375 33. 641 10. 312 63. 103 1. 00 35. 91 33.802 ATOM 2678 0G SER 375 11. 230 64. 178 1. 00 37. 28 ATOM 2679 C SER 375 34. 585 12. 272 61. 933 1. 00 34. 67 **ATOM** 2680 0 **SER 375** 33.865 13.010 61.266 1.00 35.17 20 ATOM 2681 N THR 376 35. 534 12. 725 62. 743 1. 00 34. 00 ATOM 2682 CA THR 376 35. 768 14. 150 62. 889 1. 00 35. 55 ATOM 2683 CB THR 376 36. 827 14. 421 63. 954 1. 00 38. 06 ATOM 2684 OG1 THR 376 36. 461 13. 739 65. 158 1.00 40.51 25 ATOM 2685 CG2 THR 376 36. 926 15. 923 64. 239 1. 00 38. 22 1. 00 34. 80 ATOM 2686 C THR 376 36. 208 14. 788 61. 583 ATOM 2687 0 THR 376 35. 794 15. 901 61. 241 1. 00 32. 23 **ATOM** 2688 N ARG 377 37. 049 14. 078 60.848 1. 00 36. 51 ATOM 2689 CA ARG 377 37. 523 14.601 59. 581 1. 00 38. 20

- 237 -ATOM 2690 ARG 377 38. 535 1. 00 41. 90 CB 13. 640 58. 956 2691 ATOM CG ARG 377 14. 271 57. 892 1. 00 43. 83 39. 417 **ATOM** 2692 CD ARG 377 38. 735 14. 280 56. 551 1. 00 46. 24 2693 NE ARG 377 38. 467 12. 921 **ATOM** 56.074 1. 00 50. 02 ATOM 2694 CZARG 377 39.400 12. 058 55. 679 1. 00. 48. 89 5 2695 ATOM NH1 ARG 377 40.681 12. 405 1. 00 47. 77 55. 700 2696 NH2 ARG 377 39.050 ATOM 10. 849 55. 256 1. 00 48. 65 2697 C ARG 377 36.311 14. 759 ATOM 58. 688 1. 00 37. 15 2698 **ATOM** 0 ARG 377 36. 163 15. 780 58.016 1. 00 37. 23 10 ATOM 2699 N ALA 378 35. 445 13. 744 58. 706 1. 00 36. 43 **ATOM** 2700 34. 212 CA ALA 378 13. 732 57. 920 1. 00 35. 58 2701 ATOM CB ALA 378 33. 470 12. 430 58. 130 1. 00 35. 75 ATOM 2702 C ALA 378 33. 314 14. 897 58. 304 1. 00 34. 75 2703 ATOM 0 ALA 378 32. 675 15. 507 57. 451 1. 00 34. 63 2704 33. 249 15. 204 ATOM N ALA 379 59. 590 1. 00 34. 17 15 ATOM 2705 32. 427 16. 317 CA ALA 379 60.009 1. 00 34. 54 2706 32. 281 ATOM CB ALA 379 16. 340 61.515 1. 00 32. 43 2707 33. 073 ATOM C ALA 379 17. 607 59. 519 1. 00 35. 95 2708 32.465 ATOM 0 ALA 379 18. 358 58. 761 1. 00 38. 27 ATOM 2709 HIS 380 34. 314 17.856 59. 925 1. 00 35. 13 20 N ATOM 2710 HIS 380 34. 994 19.083 CA 59. 526 1. 00 34. 04 ATOM HIS 380 19. 031 2711 CB36. 448 59. 968 1. 00 37. 01 2712 36.628 19. 284 ATOM CG HIS 380 61. 430 1. 00 42. 02 ATOM 2713 CD2 HIS 380 35. 734 19. 637 62. 385 1. 00 43. 27 ND1 HIS 380 37.852 ATOM 2714 19. 206 62.058 1. 00 44. 66 25 ATOM 2715 CE1 HIS 380 37. 704 19. 500 63. 339 1. 00 46. 06 ATOM 2716 NE2 HIS 380 36. 429 19. 766 63. 562 1. 00 44. 63 ATOM 2717 C HIS 380 34. 894 19. 405 58. 045 1. 00 32. 37 ATOM 2718 0 HIS 380 34. 581 20. 536 57.671 1. 00 29. 98

- 238 -**ATOM** 2719 MET 381 N 35. 154 18. 417 57. 197 1. 00 30. 55 **ATOM** 2720 CA MET 381 35.055 18.640 55. 764 1.00 30.35 2721 **ATOM** CB MET 381 35. 383 17. 365 54. 992 1.00 28.41 ATOM 2722 CG MET 381 36. 852 17. 181 54. 767 1.00 28.31 2723 MET 381 37. 505 5 ATOM SD 18. 684 54. 017 1. 00 31. 73 2724 ATOM CE MET 381 38. 142 18. 070 52. 446 1. 00 30. 02 2725 C ATOM MET 381 33. 647 19. 101 55. 415 1. 00 32. 29 **ATOM** 2726 0 MET 381 33. 453 19. 930 54. 527 1. 00 32. 42 ATOM 2727 N CYS 382 32.660 18. 566 56. 124 1. 00 33. 02 2728 CYS 382 ATOM CA 31. 279 18. 942 55. 869 1.00 33.44 10 2729 CB CYS 382 30. 323 18.012 ATOM 56. 625 1. 00 33. 78 **ATOM** 2730 SG CYS 382 28. 582 18. 152 56. 124 1.00 40.21 ATOM 2731 C CYS 382 31. 087 20. 387 56. 316 1. 00 33. 02 2732 ATOM 0 CYS 382 30. 566 21. 218 55. 563 1. 00 32. 71 ATOM 2733 N SER 383 31. 528 20.686 15 57. 537 1. 00 33. 57 2734 CA SER 383 ATOM 31. 418 22. 037 58.097 1.00 33.39 ATOM 2735 CB SER 383 32. 232 22. 159 59. 392 1. 00 32. 88 ATOM 2736 0G SER 383 33.605 21.877 59. 176 1. 00 31. 29 ATOM 2737 C SER 383 31. 935 23. 042 57. 085 1. 00 32. 50 2738 **ATOM** 0 SER 383 31. 314 24.073 20 56. 832 1. 00 32. 64 ATOM 2739 N ALA 384 33. 082 22. 729 56. 501 1. 00 30. 75 33.663 23.607 ATOM 2740 CA ALA 384 55. 510 1. 00 29. 62 ATOM 2741 CB ALA 384 34. 787 22. 885 54. 789 1.00 29.04 ATOM 2742 C ALA 384 32.604 24.095 54. 509 1.00 29.94 25 ATOM 27430 ALA 384 32. 211 25. 259 54. 544 1. 00 28. 35 ATOM GLY 385 23. 193 53. 639 2744 N 32. 141 1. 00 31. 38 ATOM 2745 CA GLY 385 31. 149 23. 525 52. 621 1. 00 30. 00 ATOM 2746 C **GLY 385** 29.870 24. 198 53.090 1.00 30.54 ATOM 2747 0 GLY 385 29. 522 25. 285 52. 613 1. 00 28. 88

- 239 -1. 00 29. 58 ATOM 2748 N LEU 386 29. 151 23. 559 54. 010 **ATOM** CA LEU 386 27. 917 24. 148 54. 522 1.00 28.86 2749 23. 374 55. 749 1. 00 25. 55 ATOM 2750 CBLEU 386 27. 410 LEU 386 23. 824 1. 00 21. 28 ATOM 2751 CG 26. 141 56. 493 ATOM 2752 CD1 LEU 386 26.504 24. 768 57. 605 1. 00 18. 56 5 CD2 LEU 386 25. 157 24. 456 55. 533 1. 00 17. 77 ATOM 2753 2754 C LEU 386 28. 199 25. 595 54. 898 1. 00 30. 29 ATOM 27. 344 26. 458 1. 00 30. 86 ATOM 2755 0 LEU 386 54. 728 ATOM 2756 N ALA 387 29. 413 25. 846 55. 393 1. 00 32. 40 2757 CA ALA 387 29.851 27. 184 55. 799 1. 00 32. 84 10 ATOM 27. 101 56. 536 1.00 31.99 ATOM 2758 CBALA 387 31. 181 29.991 28.098 C ALA 387 54. 585 1. 00 34. 20 ATOM 2759**ATOM** 2760 0 ALA 387 29.509 29. 235 54. 588 1. 00 34. 34 2761 N 30.663 27. 597 53. 553 1. 00 34. 88 ATOM GLY 388 30.831 28. 378 52. 344 ATOM 2762 CA GLY 388 1. 00 35. 13 15 28. 833 51.867 **ATOM** 2763 C **GLY 388** 29. 467 1. 00 35. 42 2764 0 **GLY 388** 29. 257 30.005 51. 545 1. 00 36. 39 ATOM 28. 524 27.898 2765 VAL 389 51. 839 1. 00 34. 42 ATOM N 2766 CA VAL 389 27. 167 28. 202 51. 402 1. 00 32. 28 ATOM 2767 VAL 389 26. 266 26. 949 51. 487 1. 00 31. 56 20 ATOM CB ATOM 2768 CG1 VAL 389 24.856 27. 285 51. 027 1. 00 28. 68 CG2 VAL 389 26.853 25. 836 50. 638 1. 00 28. 05 ATOM 2769 ATOM 2770 C VAL 389 26.579 29. 307 52. 273 1. 00 30. 86 2771 VAL 389 26.072 30. 304 51. 762 1. 00 26. 91 ATOM 0 ATOM 2772 N ILE 390 26.665 29. 115 53. 586 1.00 31.06 25 54. 548 26. 146 30. 073 1. 00 34. 83 ATOM 2773 CA ILE 390 26. 262 2774 CB ILE 390 29. 538 56.001 1. 00 32. 76 ATOM 2775 CG2 ILE 390 25. 733 30. 562 56. 996 1. 00 31. 45 ATOM 25. 425 56. 154 1. 00 32. 06 2776 CG1 ILE 390 28. 274 ATOM

- 240 -57. 572 1. 00 31. 73 ATOM 2777 CD1 ILE 390 25. 311 27. 804 ILE 390 31. 415 54. 444 1. 00 39. 01 ATOM C 26. 858 2778 54.370 ATOM 2779 0 ILE 390 26. 209 32. 465 1. 00 42. 11 31. 398 54. 437 1.00 41.07 ASN 391 28. 186 ATOM 2780 N 2781 CA ASN 391 28. 921 32. 652 54. 326 1. 00 42. 97 ATOM 5 32. 386 1. 00 47. 00 ATOM CB ASN 391 30. 430 54. 290 2782 1. 00 51. 32 ATOM CG ASN 391 31.061 32. 452 55. 678 2783 1. 00 51. 98 OD1 ASN 391 32. 205 32.029 55. 878 ATOM 2784 1. 00 51. 87 ND2 ASN 391 30. 312 32. 996 56. 646 **ATOM** 2785 **ATOM** 2786 C ASN 391 28. 459 33. 377 53.070 1. 00 42. 59 10 27. 927 34. 488 53. 141 1. 00 40. 64 ATOM 2787 0 ASN 391 ATOM 2788 N ARG 392. 28. 638 32. 723 51. 928 1. 00 43. 30 33. 277 50.644 1. 00 45. 75 ATOM 2789 ARG 392 28. 237 CA ATOM 2790 CBARG 392 28. 328 32. 182 49. 571 1. 00 48. 20 31. 811 1. 00 54. 22 2791 ARG 392 27. 020 48. 892 ATOM CG 15 26.803 1. 00 59. 36 ATOM 2792 CD ARG 392 32. 578 47. 590 31.984 1.00 66.46 NE ARG 392 27. 491 46. 437 ATOM 2793 32.098 ATOM 2794 CZARG 392 28. 794 46. 156 1. 00 69. 91 NH1 ARG 392 29.613 32. 793 46. 941 1. 00 69. 61 ATOM 2795 29. 279 31. 524 45.063 1. 00 70. 50 ATOM 2796 NH2 ARG 392 20 1. 00 45. 30 ARG 392 26.822 33. 854 50.711 ATOM 2797 C ATOM 2798 0 ARG 392 26. 474 34. 777 49. 973 1. 00 44. 35 1. 00 47. 21 33. 316 51.607 MET 393 26.009 ATOM 2799 N ATOM 2800 CA MET 393 24.640 33. 785 51. 739 1. 00 50. 87 MET 393 23. 761 32. 687 52. 346 1. 00 49. 84 ATOM 2801 CB 25 ATOM 2802 CG MET 393 23. 427 31. 551 51. 389 1. 00 45. 97 1. 00 42. 67 MET 393 22. 244 30. 416 52. 096 ATOM 2803 SD 2804 CE MET 393 20.761 31. 465 52. 244 1. 00 42. 67 ATOM 35. 046 52. 581 1. 00 54. 43 ATOM 2805 C MET 393 24. 559

- 241 -1. 00 53. 85 35. 851 ATOM 2806 0 MET 393 23. 631 52. 443 35. 208 53. 469 1.00 59.09 ATOM 2807 N ARG 394 25. 528 ATOM 2808 CAARG 394 25. 568 36. 386 54. 314 1.00 64.57 26.624 36. 224 55. 404 1.00 65.91 ATOM 2809 CB ARG 394 ARG 394 26.830 37, 477 56. 228 1.00 67.95 **ATOM** 2810 CG 5 ATOM 2811 CD ARG 394 28. 048 37. 364 57. 130 1.00 69.02 57.600 1.00 68.97 2812 NE ARG 394 28. 499 38. 673 ATOM ATOM 2813 CZARG 394 27. 776 39. 494 58. 357 1.00 69.21 58. 743 1. 00 70. 35 2814 NH1 ARG 394 26. 553 39. 151 ATOM ATOM 2815 NH2 ARG 394 28. 281 40.662 58. 732 1. 00 68. 24 10 37. 537 53. 404 1.00 67.94 ATOM 2816 C ARG 394 25. 952 2817 25. 306 38. 588 53. 391 1.00 67.14 ATOM 0 ARG 394 27. 012 37. 313 52. 633 1. 00 72. 08 ATOM 2818 N GLU 395 ATOM 2819 GLU 395 27. 513 38. 314 51. 707 1.00 77.04 CA GLU 395 ATOM 2820 CB28. 578 37. 691 50. 784 1. 00 78. 09 15 29. 425 38. 685 49. 955 1. 00 81. 99 ATOM 2821 CG GLU 395 30. 402 1.00 84.19 2822 CD GLU 395 39. 533 50. 789 ATOM 2823 0E1 GLU 395 29. 949 40. 442 51. 526 1. 00 83. 64 ATOM 0E2 GLU 395 39. 290 ATOM 2824 31. 631 50. 702 1. 00 84. 22 2825 26. 340 38. 873 50.898 1. 00 79. 30 ATOM C GLU 395 20 2826 26. 250 40.078 50.683 1. 00 81. 15 ATOM 0 GLU 395 ATOM 2827 N SER 396 25. 423 38.007 50. 481 1. 00 81. 59 ATOM 2828 CA SER 396 24. 276 38. 451 49.696 1. 00 83. 40 23. 379 2829 CBSER 396 37. 264 49. 366 1. 00 84. 05 ATOM 24. 123 36. 252 48. 716 1. 00 86. 28 25 ATOM 2830 0G SER 396 SER 396 23.462 39. 526 50.406 1.00 84.36 **ATOM** 2831 C 23.578 40.708 ATOM 2832 0 SER 396 50.092 1. 00 84. 49 2833 ARG 397 22. 639 39. 118 51. 362 1. 00 86. 41 ATOM N CA 21. 812 40.070 52.090 1. 00 88. 71 ATOM 2834 ARG 397

- 242 -ARG 397 1.00 89.74 ATOM 2835 CB 20. 682 39. 335 52. 816 53. 346 1. 00 90. 87 ARG 397 19. 579 40. 241 ATOM 2836 CG 1.00 91.04 ATOM ARG 397 19.096 39. 776 54. 713 2837 CD 55. 782 1.00 89.87 20.021 40. 158 ATOM NE ARG 397 2838 CZ ARG 397 19. 905 39.766 57.047 1. 00 89. 80 ATOM 2839 5 57. 409 1. 00 91. 15 NH1 ARG 397 18. 906 38. 971 ATOM 2840 57. 955 1. 00 87. 97 NH2 ARG 397 20.779 40. 174 ATOM 2841 1.00 89.74 22.653 40. 847 53. 102 ATOM 2842 C ARG 397 54.305 1.00 90.41 ARG 397 22. 585 40. 588 **ATOM** 2843 0 ATOM 2844 N SER 398 23. 448 41. 795 52. 614 1. 00 90. 58 10 42. 602 53. 492 1.00 91.09 SER 398 24. 288 ATOM 2845 CA 43. 782 52.718 1.00 91.14 ATOM 2846 CBSER 398 24. 903 51.747 1.00 89.49 SER 398 25.845 43. 347 ATOM 2847 0G 43. 129 54.677 1. 00 91. 27 ATOM 2848 C SER 398 23. 470 43.810 54.496 1. 00 91. 10 SER 398 22. 458 2849 0 ATOM 15 23. 904 42. 786 55. 887 1.00 91.43 GLU 399 ATOM 2850 N 2851 CA GLU 399 23. 238 43. 233 57. 108 1. 00 90. 89 ATOM 21. 799 42. 705 57. 183 1. 00 91. 87 2852 GLU 399 ATOM CB GLU 399 20.969 43. 349 58. 298 1.00 93.31 ATOM 2853 CG 20. 726 44. 836 58.064 1. 00 94. 22 2854 CD GLU 399 20 ATOM 0E1 GLU 399 20. 270 45. 533 58. 999 1. 00 93. 53 ATOM 2855 20.986 45. 307 56. 936 1. 00 94. 80 0E2 GLU 399 ATOM 2856 GLU 399 24.013 42. 774 58. 339 1.00 89.25 ATOM 2857 C 24. 987 42.029 58. 236 1.00 88.96 **ATOM** 2858 GLU 399 0 ATOM 2859 N ASP 400 23. 570 43. 226 59. 502 1. 00 87. 38 25 1. 00 85. 70 24. 214 42. 883 60.754 2860 ASP 400 ATOM CA CBASP 400 23. 332 43. 352 61. 915 1. 00 88. 35 ATOM 2861 22. 861 44. 795 61. 743 1. 00 90. 64 2862 CG ASP 400 **ATOM** OD1 ASP 400 22.059 45.055 60.817 1. 00 91. 42 2863 ATOM

- 243 -2864 OD2 ASP 400 23. 297 45. 671 62. 524 1. 00 91. 68 ATÓM ATOM 2865 C ASP 400 24. 496 41. 385 60.853 1.00 82.94 25.506 40.900 1. 00 82. 03 2866 0 ASP 400 60. 346 ATOM 40.658 1. 00 79. 90 2867 N VAL 401 23. 593 61. 502 ATOM ATOM 2868 CA VAL 401 23. 738 39. 219 61. 682 1. 00 75. 91 5 23.607 38. 841 63. 153 1. 00 74. 20 ATOM 2869 CBVAL 401 CG1 VAL 401 24. 803 39. 343 63. 927 1. 00 73. 12 ATOM 2870 22. 314 39. 430 63.710 1. 00 72. 79 2871 CG2 VAL 401 ATOM C VAL 401 22.662 38. 458 60. 925 1. 00 74. 63 ATOM 2872 21. 489 38. 846 60. 942 1. 00 75. 56 10 ATOM 2873 0 VAL 401 23.063 37. 365 1. 00 70. 61 2874 N MET 402 60. 278 ATOM 22. 130 36. 539 59. 521 1. 00 65. 65 ATOM 2875 CA MET 402 22.818 35. 887 58. 325 1. 00 62. 74 2876 CB MET 402 ATOM ATOM 2877 CG MET 402 21. 897 34. 958 57. 543 1. 00 56. 61 22. 543 34. 551 55. 906 1. 00 52. 49 2878 SD MET 402 15 ATOM 23.857 33. 399 ATOM 2879 CE MET 402 56. 323 1. 00 49. 76 21. 532 1. 00 65. 00 2880 MET 402 35. 450 60. 381 ATOM C 22. 222 ATOM 2881 0 MET 402 34. 513 60.781 1. 00 65. 18 35. 575 2882 N ARG 403 20. 241 60.657 1. 00 63. 62 ATOM 2883 ARG 403 19. 535 34. 593 61. 462 1. 00 61. 57 20 ATOM CA 35. 275 62. 262 1. 00 64. 83 ATOM 2884 CB ARG 403 18. 418 ATOM 2885 CG ARG 403 18.856 36. 547 62. 987 1. 00 70. 01 17.691 37. 205 63. 724 1. 00 75. 36 ATOM 2886 CD ARG 403 36. 582 1. 00 80. 50 ATOM 2887 NE ARG 403 17. 412 65. 018 16.305 36. 788 65. 731 1. 00 83. 41 ATOM 2888 CZARG 403 25 ATOM 2889 NH1 ARG 403 15. 358 37. 603 65. 277 1. 00 84. 55 ATOM 2890 NH2 ARG 403 16. 147 36. 187 66. 907 1. 00 83. 64 18. 946 33. 560 60. 504 1. 00 57. 99 ATOM 2891 C ARG 403

17. 775

ATOM

2892

0

ARG 403

33. 639

60. 135

1. 00 58. 57

- 244 -1. 00 52. 97 ATOM 2893 N ILE 404 19. 762 32. 597 60. 091 1. 00 49. 14 31. 570 59. 170 ILE 404 19. 301 ATOM 2894 CA 1.00 47.44 ILE 404 20. 293 31. 412 57. 999 CB ATOM 2895 58. 458 1. 00 43. 94 30.680 CG2 ILE 404 21. 538 ATOM 2896 19.629 30.649 56. 854 1. 00 48. 45 CG1 ILE 404 ATOM 2897 5 55. 598 1. 00 48. 95 ATOM 2898 CD1 ILE 404 20. 477 30. 559 1. 00 48. 34 30. 222 59. 879 19. 126 ATOM 2899 C ILE 404 60. 897 1. 00 48. 83 19.771 29. 967 ATOM 2900 0 ILE 404 1. 00 46. 42 29.380 59. 346 18. 236 THR 405 ATOM 2901 N THR 405 17.956 28. 043 59. 892 1. 00 42. 37 CA ATOM 2902 10 1.00 41.93 27. 838 60. 222 CBTHR 405 16. 451 **ATOM** 2903 1. 00 43. 89 16.010 28. 839 61. 145 2904 OG1 THR 405 ATOM 1. 00 38. 85 60.849 16. 227 26. 475 CG2 THR 405 ATOM 2905 1. 00 39. 95 C THR 405 18. 332 26. 990 58. 857 **ATOM** 2906 27. 204 57. 653 1. 00 38. 97 18. 178 ATOM 2907 0 THR 405 15 59. 324 1. 00 38. 10 VAL 406 18.809 25. 844 ATOM 2908 N 1. 00 36. 64 24. 776 58. 414 2909 VAL 406 19. 195 ATOM CA 1. 00 35. 12 CBVAL 406 20.686 24. 442 58. 563 ATOM 2910 1. 00 35. 29 23. 342 57.600 21.069 ATOM 2911 CG1 VAL 406 58. 303 1. 00 35. 40 CG2 VAL 406 21.515 25. 672 2912 ATOM 20 1.00 35.83 23. 499 58.635 18. 390 C VAL 406 ATOM 2913 1. 00 37. 06 2914 0 VAL 406 18. 214 23. 058 59. 765 **ATOM** 1.00 34.50 17. 895 22. 915 57. 549 **ATOM** 2915 N GLY 407 1. 00 32. 79 17. 143 21. 680 57. 653 2916 CAGLY 407 ATOM 1. 00 32. 90 18. 074 20. 522 57. 353 2917 C GLY 407 25 ATOM 1. 00 33. 85 GLY 407 18. 704 20. 467 56. 294 ATOM 2918 0 58. 279 1. 00 31. 27 18. 177 19. 585 2919 N VAL 408 ATOM 1. 00 29. 57 19.064 18. 466 58. 054 2920 VAL 408 ATOM CA 59. 042 1.00 29.66 20. 199 18. 491 **ATOM** 2921 CB VAL 408

- 245 -1.00 31.77 58. 468 21. 390 17. 767 CG1 VAL 408 ATOM 2922 1.00 29.91 20. 515 19. 916 59. 412 CG2 VAL 408 ATOM 2923 1. 00 29. 58 58. 206 18.366 17. 135 ATOM 2924 C VAL 408 17.015 58. 942 1. 00 28. 54 17. 392 VAL 408 ATOM 2925 0 1. 00 30. 15 ASP 409 18.878 16. 131 57. 509 ATOM 2926 N 5 57. 598 1. 00 31. 95 14. 789 18. 324 ATOM 2927 CA ASP 409 17. 109 14. 635 56. 674 1. 00 35. 66 ASP 409 2928 CB ATOM 13. 252 1.00 40.01 56. 775 16. 455 ATOM 2929 CG ASP 409 15.613 12. 928 55. 898 1. 00 40. 26 OD1 ASP 409 ATOM 2930 57. 728 1. 00 39. 33 12. 499 ATOM 2931 OD2 ASP 409 16. 773 10 13. 824 57. 180 1.00 31.91 19. 415 ASP 409 ATOM 2932 C 56. 484 1. 00 32. 39 14. 208 ATOM 2933 0 ASP 409 20. 352 12. 574 57. 607 1. 00 31. 09 19.300 GLY 410 ATOM 2934 N 1.00 29.56 11. 593 57. 233 **ATOM** 2935 CA **GLY 410** 20. 299 58. 385 1. 00 29. 32 10. 704 20. 703 ATOM 2936 C GLY 410 15 1. 00 28. 27 11.041 59. 558 GLY 410 20. 510 ATOM 2937 0 9.559 58.053 1. 00 28. 24 21. 282 SER 411 ATOM 2938 N 1. 00 27. 52 8. 631 59. 086 ATOM 2939 CASER 411 21. 699 7. 253 58. 481 1.00 29.46 22. 018 SER 411 **ATOM** 2940 CB7. 316 57. 471 1.00 31.64 23.016 ATOM 2941 0G SER 411 20 1.00 25.78 9. 160 59.863 SER 411 22. 895 2942 C ATOM 1. 00 25. 89 9. 113 61.090 ATOM 2943 0 SER 411 22. 909 1. 00 23. 18 9.687 59. 161 23. 890 VAL 412 ATOM 2944 N 59. 839 1. 00 21. 25 10. 185 CA VAL 412 25. 076 ATOM 2945 58.841 1. 00 20. 56 26.099 10.669 ATOM 2946 CB VAL 412 25 1. 00 17. 73 CG1 VAL 412 27. 372 11. 084 59. 564 ATOM 2947 57.857 1. 00 20. 59 26. 378 9. 552 2948 CG2 VAL 412 **ATOM** 1. 00 20. 44 24. 769 11. 300 60. 818 2949 C VAL 412 ATOM

25. 182

ATOM

2950

0

VAL 412

61. 983

11. 262

1. 00 21. 51

- 246 -1. 00 16. 42 ATOM 2951 N TYR 413 24. 033 12. 288 60. 340 61. 171 1. 00 16. 41 23.659 13. 409 2952 TYR 413 ATOM CA 23. 095 14. 526 60. 288 1. 00 16. 40 TYR 413 ATOM 2953 CB 61.051 15. 762 1. 00 14. 37 22. 700 ATOM 2954 CG TYR 413 16.707 61. 434 1. 00 13. 43 CD1 TYR 413 23.645 ATOM 2955 5 62. 226 1. 00 13. 93 **ATOM** 2956 CE1 TYR 413 23. 296 17. 789 15. 939 61.470 1. 00 13. 10 21. 401 ATOM 2957 CD2 TYR 413 1. 00 15. 82 21. 049 17.007 62. 256 CE2 TYR 413 ATOM 2958 62.638 1. 00 14. 65 17. 927 21. 994 **ATOM** 2959 CZTYR 413 21.620 18.948 63. 475 1. 00 16. 02 OH TYR 413 ATOM 2960 10 62. 233 1. 00 17. 41 C TYR 413 22. 626 13. 007 ATOM 2961 1. 00 18. 36 13. 758 63. 172 TYR 413 22. 364 ATOM 2962 0 11.826 62. 103 1. 00 18. 12 22. 035 ATOM 2963 N LYS 414 21.033 11. 426 63.083 1.00 19.00 CA LYS 414 ATOM 2964 11. 130 62. 384 1. 00 19. 22 LYS 414 19. 706 ATOM 2965 CB 15 12. 358 61. 894 1. 00 18. 92 LYS 414 18. 962 ATOM 2966 CG 11.965 61. 314 1. 00 21. 36 17. 615 ATOM 2967 CD LYS 414 16.829 13. 181 60. 855 1. 00 25. 08 CE LYS 414 ATOM 2968 15. 567 12. 829 60. 132 1. 00 28. 46 **ATOM** 2969 NZ LYS 414 10. 249 1. 00 20. 50 21.400 63. 975 C LYS 414 ATOM 2970 20 9.883 1. 00 21. 27 20.637 64.871 ATOM 2971 0 LYS 414 22.565 9.655 63. 753 1. 00 22. 22 LEU 415 2972 N ATOM 22. 958 8. 511 64. 565 1. 00 23. 27 **ATOM** 2973 CALEU 415 1. 00 21. 47 22.679 7. 218 63. 784 2974 CB LEU 415 ATOM 6. 978 63. 313 1. 00 17. 45 ATOM 2975 CG LEU 415 21. 234 25 1. 00 16. 66 5. 672 62. 545 CD1 LEU 415 21. 158 ATOM 2976 6.954 1. 00 14. 44 CD2 LEU 415 20. 293 64. 498 ATOM 2977 1. 00 25. 05 8. 566 65. 033 ATOM 2978 C LEU 415 24. 418

24. 921

ATOM

2979

0

LEU 415

7. 625

65. 657

1. 00 26. 05

- 247 -ATOM 2980 N HIS 416 25.095 9. 673 64. 736 1.00 24.04 ATOM 2981 CA HIS 416 26.481 9.852 65. 147 1.00 22.40 ATOM 2982 CBHIS 416 27. 365 9.997 63. 922 1. 00 23. 29 ATOM 2983 CG HIS 416 27. 383 8. 774 63.069 1. 00 25. 75 5 ATOM 2984 CD2 HIS 416 28. 392 7. 937 62. 729 1. 00 27. 82 **ATOM** 2985 ND1 HIS 416 26. 241 8. 248 62. 506 1. 00 26. 69 ATOM 2986 CE1 HIS 416 26. 545 7. 138 61.857 1. 00 28. 69 ATOM 2987 NE2 HIS 416 27.844 6. 926 61. 977 1. 00 28. 20 ATOM 2988 С HIS 416 26. 577 11. 080 66. 027 1. 00 21. 63 10 ATOM 2989 0 HIS 416 26. 808 12. 184 65. 558 1. 00 22. 44 ATOM 2990 N PRO 417 26.386 10. 898 67. 331 1. 00 21. 25 ATOM 2991 CD PRO 417 26. 126 9. 627 68. 015 1. 00 22. 18 ATOM 2992 CA PRO 417 26. 440 11. 991 68. 297 1. 00 22. 07 ATOM 2993 CB PRO 417 26. 447 11. 258 69. 627 1. 00 21. 52 ATOM 2994 CG PRO 417 15 25. 565 10. 108 69. 340 1. 00 23. 41 ATOM 2995 C PRO 417 27.655 12.874 68. 113 1. 00 22. 46 **ATOM** 2996 PRO 417 27.519 0 14.076 67.878 1. 00 22. 18 ATOM 2997 N SER 418 28. 835 12. 262 68. 221 1.00 20.96 **ATOM** 2998 CA SER 418 30. 105 12. 959 68. 064 1. 00 18. 32 20 ATOM 2999 CB SER 418 31. 264 11. 962 68. 076 1. 00 20. 88 **ATOM** 3000 0G SER 418 67.460 32. 419 12. 512 1. 00 24. 12 ATOM 3001 C SER 418 30.099 13. 720 66. 757 1. 00 15. 71 ATOM 3002 0 SER 418 30. 269 14. 935 66. 742 1. 00 16. 10 ATOM 3003 N PHE 419 29. 905 13.010 65.656 1. 00 11. 39 ATOM 3004 CA PHE 419 25 29.864 13. 683 64. 379 1. 00 10. 22 ATOM 3005 CB PHE 419 29. 243 12. 789 63. 335 1. 00 5. 53 **ATOM** 3006 CG PHE 419 29. 035 13. 468 62. 034 1. 00 1. 42 ATOM CD1 PHE 419 3007 29. 814 13. 137 60. 942 1.00 3. 13 ATOM 3008 CD2 PHE 419 28. 080 14. 449 61. 893 1.00 1. 00

- 248 -1. 00 1.47 ATOM 3009 CE1 PHE 419 29. 648 13. 773 59. 712 60. 670 1.00 2. 68 CE2 PHE 419 27. 909 15. 088 ATOM 3010 1.00 1.00 CZPHE 419 28. 699 14. 746 59. 575 ATOM 3011 64. 472 1. 00 12. 48 29.037 14. 965 ATOM 3012 C PHE 419 PHE 419 29.520 16. 048 64. 156 1. 00 12. 11 **ATOM** 3013 0 5 1.00 15.88 14. 838 64. 900 ATOM 3014 N LYS 420 27. 785 64.994 1. 00 20. 63 26.917 16.000 CA LYS 420 ATOM 3015 65. 522 1. 00 21. 26 ATOM 3016 CBLYS 420 25. 525 15. 610 1.00 22.35 16. 730 65. 361 CG LYS 420 24. 470 ATOM 3017 ATOM CDLYS 420 23. 045 16. 288 65. 686 1. 00 22. 81 3018 10 1. 00 25. 24 LYS 420 22. 942 15. 740 67. 102 ATOM 3019 CE 1. 00 27. 51 ATOM NZLYS 420 21.616 15. 092 67. 350 3020 17.099 1.00 24.04 LYS 420 27.505 65.866 ATOM C 3021 1. 00 23. 74 ATOM 3022 0 LYS 420 27. 533 18. 260 65. 465 16. 733 67. 053 1. 00 29. 67 GLU 421 27. 978 ATOM 3023 N 15 17. 701 67. 999 1. 00 34. 96 ATOM 3024 $\mathsf{C}\mathsf{A}$ GLU 421 28. 550 16.972 69. 244 1. 00 36. 76 29.075 ATOM 3025 CB GLU 421 29. 292 1. 00 40. 52 ATOM 3026 CG GLU 421 17. 843 70. 480 29.895 17. 047 71. 638 1. 00 43. 55 GLU 421 ATOM 3027 CD 16. 467 71. 445 1.00 47.03 **ATOM** 3028 0E1 GLU 421 30. 981 20 1. 00 43. 28 29. 294 16.990 72. 734 ATOM 0E2 GLU 421 3029 1.00 36.40 ATOM 3030 C GLU 421 29. 680 18. 512 67. 369 1. 00 38. 37 29. 689 19. 745 67. 442 3031 0 GLU 421 ATOM 1.00 35.66 30.629 17. 816 66. 751 ATOM 3032 N ARG 422 1. 00 35. 13 ARG 422 31.755 18. 477 66. 124 ATOM 3033 CA 25 1. 00 38. 76 ATOM 3034 CBARG 422 32. 801 17. 449 65. 684 16. 525 66. 811 1. 00 46. 51 ARG 422 33. 277 ATOM 3035 CG

CD

NE

3036

3037

ATOM

ATOM

ARG 422

ARG 422

33. 915

35. 322

17. 286

17. 578

67. 980

67. 732

1. 00 51. 67

1. 00 57. 41

- 249 -

						<u> </u>			
	ATOM	3038	CZ	ARG	422	36. 269	16. 649	67. 625.	1. 00 60. 70
	ATOM	3039	NH1	ARG	422	35. 956	15. 364	67. 749	1. 00 60. 82
	ATOM	3040	NH2	ARG	422	37. 529	17. 002	67. 380	1. 00 61. 68
	ATOM	3041	C	ARG	422	31. 256	19. 278	64. 942	1. 00 33. 47
5	ATOM	3042	0	ARG	422	31. 585	20. 450	64. 803	1. 00 35. 28
	ATOM	3043	N	PHE	423	30. 446	18. 654	64. 096	1. 00 32. 46
	ATOM	3044	CA	PHE	423	29. 901	19. 348	62. 930	1. 00 30. 30
	ATOM	3045	CB	PHE	423	28. 949	18. 423	62. 165	1. 00 27. 32
	ATOM	3046	CG	PHE	423	28. 188	19. 106	61.063	1. 00 23. 75
10	ATOM	3047	CD1	PHE	423	26. 891	19. 552	61. 270	1. 00 22. 33
	ATOM	3048	CD2	PHE	423	28. 765	19. 293	59. 814	1. 00 23. 98
	ATOM	3049	CE1	PHE	423	26. 178	20. 169	60. 245	1. 00 22. 83
	ATOM	3050	CE2	PHE	423	28. 061	19. 909	58. 784	1. 00 22. 46
	ATOM	3051	CZ	PHE	423	26. 769	20. 347	59. 001	1. 00 22. 73
15	ATOM	3052	C	PHE	423	29. 185	20. 663	63. 280	1. 00 29. 75
	ATOM	3053	0	PHE	423	29. 328	21. 652	62. 568	1. 00 27. 58
	ATOM	3054	N	HIS	424	28. 415	20. 694	64. 363	1. 00 30. 19
	ATOM	3055	CA	HIS	424	27. 743	21. 936	64. 692	1. 00 32. 48
	ATOM	3056	CB	HIS	424	26. 754	21. 760	65. 835	1. 00 32. 75
20	ATOM	3057	CG	HIS	424	25. 412	21. 279	65. 387	1. 00 31. 94
	ATOM	3058			424				1. 00 29. 85
	ATOM	3059	ND 1	HIS	424	24. 341	21. 147	66. 243	1. 00 32. 28
	ATOM	3060	CE1	HIS	424	23. 308	20. 661	65. 580	1. 00 30. 67
	ATOM	3061	NE2	HIS	424	23. 670	20. 477	64. 323	1. 00 30. 19
25	ATOM	3062	C	HIS	424	28. 737	23. 011	65. 048	1. 00 35. 15
	MOTA	3063	0	HIS	424	28. 689	24. 102	64. 487	1. 00 36. 91
	ATOM	3064	N	ALA	425	29. 636	22. 711	65. 979	1. 00 36. 32
	ATOM	3065	CA	ALA	425	30. 652	23. 675	66. 395	1. 00 36. 74
	ATOM	3066	CB	ALA	425	31. 542	23. 058	67. 444	1. 00 35. 43

- 250 -1. 00 37. 82 ATOM 3067 C . ALA 425 31. 492 24. 149 65. 201 1. 00 38. 66 31. 420 25. 316 64. 809 ATOM 3068 ALA 425 0 32. 274 23. 243 64. 617 1. 00 37. 75 ATOM 3069 N SER 426 23. 576 63. 466 1. 00 37. 83 ATOM SER 426 33. 113 3070 CA 33. 602 22. 289 62. 782 1. 00 38. 67 ATOM CB SER 426 3071 5 61.667 1. 00 37. 85 ATOM 3072 0G SER 426 34. 440 22. 560 62. 445 1. 00 37. 21 C SER 426 32. 390 24. 461 ATOM 3073 1. 00 37. 08 **ATOM** 3074 0 SER 426 33. 025 25. 151 61. 657 62. 450 1. 00 37. 84 VAL 427 31.064 24. 443 ATOM 3075 N **ATOM** CA VAL 427 30. 321 25. 269 61. 510 1. 00 38. 87 3076 10 61. 194 1. 00 39. 38 **ATOM** 3077 CBVAL 427 28. 935 24. 667 CG1 VAL 427 28. 000 25. 744 60. 633 1. 00 37. 50 ATOM 3078 1. 00 36. 83 29.092 23. 534 60. 188 ATOM 3079 CG2 VAL 427 ATOM 3080 C VAL 427 30. 138 26. 655 62.090 1. 00 39. 54 27. 639 61. 512 1. 00 40. 58 ATOM 3081 0 VAL 427 30. 578 15 ATOM ARG 428 29. 483 26. 724 63. 238 1. 00 40. 14 3082 N 27. 993 63.897 1. 00 42. 86 ARG 428 29. 247 ATOM 3083 CA **ATOM** 3084 CB ARG 428 28.603 27. 739 65. 258 1. 00 42. 72 26. 982 1. 00 43. 31 27. 288 65. 186 **ATOM** 3085 CG ARG 428 ATOM ARG 428 27. 139 26. 044 66. 378 1.00 46.03 3086 CD 20 25.802 25. 461 66.485 1.00 47.83 ARG 428 ATOM 3087 NE ATOM 3088 CZARG 428 24.690 26. 173 66. 648 1. 00 48. 39 1. 00 47. 35 24. 757 27. 499 66. 716 ATOM 3089 NH1 ARG 428 1. 00 47. 34 NH2 ARG 428 23. 516 25. 559 66.756 ATOM 3090 28. 768 64.064 1. 00 44. 67 C 30. 561 ATOM 3091 ARG 428 25 ATOM 3092 0 ARG 428 30. 577 30.001 64.060 1. 00 45. 05 28. 037 64. 195 1. 00 45. 77 ATOM 3093 N ARG 429 31. 663 32. 972 28. 652 64. 378 1. 00 46. 48 ATOM 3094 CA ARG 429 1.00 52.63 27. 738 65. 244 ATOM 3095 CB ARG 429 33. 849

- 251 -ARG 429 3096 ATOM CG 33. 260 27. 471 66. 648 1. 00 59. 36 ATOM 3097 CD ARG 429 33. 828 26. 199 67. 328 1. 00 64. 53 ATOM 3098 NE ARG 429 35. 247 26. 286 67. 677 1. 00 66. 23 CZATOM 3099 ARG 429 35. 963 25. 274 68. 159 1.00 66.80 ATOM NH1 ARG 429 24.083 3100 35. 398 68. 357 1.00 66.02 5 NH2 ARG 429 ATOM 3101 37. 249 25. 455 68. 435 1. 00 68. 38 ATOM 3102 C ARG 429 33. 657 28. 954 63. 049 1.00 44.06 **ATOM** 3103 0 ARG 429 34. 885 28. 943 62. 954 1.00 43.92 ATOM 29. 221 62.029 3104 N LEU 430 32. 847 1.00 41.46 10 ATOM 3105 CA LEU 430 33. 333 29. 551 60.692 1. 00 40. 12 ATOM CBLEU 430 28. 300 59. 830 3106 33. 495 1. 00 35. 57 ATOM 3107 CG LEU 430 34. 755 27. 468 60.042 1. 00 34. 48 **ATOM** 3108 CD1 LEU 430 34. 764 26. 279 59. 101 1. 00 32. 77 ATOM 3109 CD2 LEU 430 35. 965 28. 332 59.806 1. 00 33. 57 15 ATOM 3110 C LEU 430 32. 332 30. 468 60. 029 1. 00 42. 10 ATOM 3111 0 LEU 430 32. 503 30.868 58. 880 1. 00 42. 67 ATOM 3112 N THR 431 31. 280 30. 797 60. 763 1. 00 44. 70 ATOM 3113 CA THR 431 30. 238 31. 658 60. 239 1. 00 '48. 98 28. 923 ATOM 3114 CBTHR 431 30. 928 60. 113 1. 00 49. 80 ATOM 20 3115 OG1 THR 431 28. 533 30. 463 61.410 1. 00 50. 69 ATOM CG2 THR 431 29.048 29. 758 59. 159 3116 1. 00 51. 11 ATOM 3117 C THR 431 29. 999 32. 820 61. 174 1.00 51.66 ATOM 3118 0 THR 431 28. 986 32. 868 61. 881 1. 00 52. 07 **ATOM** 3119 N PRO 432 30. 935 33. 774 61. 190 1. 00 52. 95 ATOM 3120 CD PRO 432 32. 179 33. 719 60. 403 25 1. 00 51. 90 ATOM 3121 CA PRO 432 30.886 34. 980 62. 020 1. 00 52. 47 ATOM 3122 CB PRO 432 32. 135 35. 733 61. 587 1. 00 54. 48 ATOM 3123 CG PRO 432 33. 073 34. 623 61. 176 1. 00 54. 21 ATOM 3124 C PRO 432 29. 620 35. 783 61. 739 1. 00 52. 15

-252 -1.00 49.70 ATOM 3125 0 PRO 432 29. 257 35. 981 60. 582 3126 28. 955 36. 243 1. 00 53. 82 ATOM N SER 433 62. 793 ATOM 3127 CA SER 433 27.734 37. 042 62.652 1. 00 57. 56 3128 CB SER 433 28.055 38. 372 61.952 1. 00 59. 89 **ATOM** 3129 SER 433 28.537 38. 176 60.633 1. 00 62. 34 5 ATOM 0GATOM 3130 C SER 433 26. 570 36. 340 61. 926 1. 00 57. 57 3131 SER 433 25. 907 36. 923 61.056 1. 00 57. 63 ATOM 0 ATOM 3132 N CYS 434 26. 327 35. 088 62. 306 1.00 56.67 ATOM 3133 CYS 434 25. 256 34. 275 61. 738 1.00 54.67 CA ATOM 3134 CB CYS 434 25.805 33. 375 60. 634 1. 00 54. 21 10 26. 729 34. 213 59. 354 1. 00 55. 95 ATOM 3135 SG CYS 434 ATOM 3136 C CYS 434 24. 657 33. 390 62. 832 1. 00 54. 71 ATOM 3137 CYS 434 25. 381 32. 663 63. 513 1. 00 54. 74 0 **ATOM** 3138 N GLU 435 23. 344 33. 454 63.011 1. 00 54. 63 22.681 32. 621 1. 00 54. 57 ATOM 3139 CA GLU 435 64.009 15 ATOM 3140 CB GLU 435 21. 529 33. 383 64. 681 1. 00 59. 73 3141 GLU 435 21. 927 34. 615 65. 511 1. 00 64. 17 ATOM CG **ATOM** 3142 CDGLU 435 20.717 35. 479 65. 902 1. 00 67. 96 20.905 36. 554 ATOM 3143 0E1 GLU 435 66. 521 1. 00 68. 24 ATOM 0E2 GLU 435 19.574 35.079 65. 584 1. 00 69. 98 3144 20 31. 378 ATOM 3145 C **GLU 435** 22. 134 63. 289 1. 00 51. 70 ATOM 3146 0 GLU 435 21.058 31. 412 62.685 1. 00 51. 14 63. 350 22. 889 30. 288 1. 00 47. 61 ATOM 3147 N ILE 436 ATOM 3148 ILE 436 22. 497 29. 046 62. 702 1. 00 43. 09 CA **ATOM** 23.719 28. 331 62. 118 1. 00 38. 65 3149 CB ILE 436 25 ATOM 3150 CG2 ILE 436 23. 278 27. 138 61. 300 1. 00 38. 13 ATOM 3151 CG1 ILE 436 24. 502 29. 286 61. 234 1. 00 34. 79 CD1 ILE 436 25. 768 28. 686 60.710 1. 00 34. 08 ATOM 3152 ATOM 3153 C 21. 798 28. 088 63. 664 1. 00 42. 96 ILE 436

- 253 -ATOM 3154 ILE 436 22. 403 27. 608 64. 621 1. 00 43. 46 0 ATOM 3155 THR 437 63.402 N 20. 521 27. 821 1.00 41.73 ATOM 3156 CA THR 437 19. 724 26. 910 64. 218 1. 00 39. 10 ATOM 3157 CB THR 437 18. 384 27. 553 64.638 1. 00 37. 86 ATOM 3158 OG1 THR 437 18. 182 28. 763 63.899 1. 00 37. 22 5 CG2 THR 437 ATOM 3159 18. 370 27. 856 66. 130 1. 00 37. 07 ATOM C THR 437 3160 19. 430 25. 672 63.380 1. 00 38. 74 **ATOM** 3161 0 THR 437 18. 979 25. 784 62. 238 1. 00 39. 10 ATOM 3162 N PHE 438 19.696 24. 494 63. 936 1. 00 36. 24 10 ATOM 3163 CA PHE 438 19. 449 23. 257 63. 210 1. 00 33. 18 ATOM 3164 CB PHE 438 20. 556 22. 256 63.491 1. 00 30. 88 ATOM 3165 CG PHE 438 21. 905 22. 742 63.093 1. 00 32. 48 ATOM 3166 CD1 PHE 438 22. 597 23. 652 63.887 1.00 31.95 ATOM 3167 CD2 PHE 438 22. 489 22. 301 61.913 1. 00 32. 85 ATOM 3168 CE1 PHE 438 23. 857 24. 118 63. 507 1. 00 31. 30 15 ATOM 3169 CE2 PHE 438 23. 745 22. 758 61. 522 1. 00 32. 28 CZPHE 438 ATOM 3170 24. 432 23.668 62.320 1. 00 31. 80 ATOM 3171 С PHE 438 18. 102 22. 648 63. 563 1. 00 33. 15 ATOM 3172 0 PHE 438 17. 662 22. 729 64. 705 1. 00 '34. 90 **ATOM** 3173 ILE 439 17.450 22. 049 20 N 62. 570 1. 00 31. 06 ATOM 3174 CA ILE 439 16. 150 21. 412 62. 738 1. 00 28. 59 ATOM 3175 CBILE 439 15. 010 22. 347 62. 321 1. 00 26. 74 ATOM 15. 268 3176 CG2 ILE 439 22. 879 60. 937 1. 00 27. 91 ATOM 3177 CG1 ILE 439 13.683 21. 591 62.312 1.00 27.91 **ATOM** CD1 ILE 439 12. 545 22. 406 25 3178 61.776 1.00 26.70 ATOM 3179 C ILE 439 16. 113 20. 190 61.837 1. 00 29. 76 ATOM 3180 0 ILE 439 16. 208 20. 310 60.618 1. 00 29. 55 ATOM 3181 N GLU 440 15. 977 19.014 62.434 1. 00 30. 76 **ATOM** 3182 CA GLU 440 15. 934 17. 781 61.666 1. 00 32. 34

- 254 -**ATOM** GLU 440 16. 028 16. 592 62. 609 1.00 34.09 3183 CB63.458 1.00 38.93 ATOM 3184 CG GLU 440 17. 272 16. 583 ATOM 3185 CD GLU 440 17. 339 15. 367 64. 353 1. 00 43. 10 ATOM 3186 0E1 GLU 440 16.378 15. 162 65. 131 1. 00 44. 22 0E2 GLU 440 18. 346 14. 623 64. 277 1.00 44.99 ATOM 3187 5 **GLU 440** 14.648 17. 687 60.854 1. 00 33. 11 ATOM 3188 С 13. 703 18. 445 61.086 1. 00 31. 25 ATOM 3189 0 GLU 440 59.896 1.00 34.70 ATOM 3190 N SER 441 14.613 16. 764 ATOM 3191 CA SER 441 13. 416 16. 587 59.086 1. 00 37. 07 57. 761 ATOM 3192 CBSER 441 13. 738 15. 904 1. 00 34. 79 10 SER 441 ATOM 3193 0G 14. 159 14. 579 57. 988 1. 00 34. 61 12. 452 15. 724 59. 889 1. 00 40. 43 ATOM 3194 C SER 441 ATOM 3195 0 SER 441 12. 866 14. 964 60. 773 1. 00 38. 99 ATOM 3196 N GLU 442 11. 168 15. 855 59. 571 1. 00 43. 31 ATOM 3197 CA **GLU 442** 10.099 15. 135 60. 254 1. 00 45. 59 15 3198 **GLU 442** 8.764 15. 638 59. 724 1. 00 46. 37 ATOM CBATOM 3199 CG GLU 442 7. 575 15. 244 60. 549 1. 00 49. 47 GLU 442 CD6.653 16. 421 60.794 1. 00 52. 25 ATOM 3200 ATOM 3201 0E1 GLU 442 5. 425 16. 199 60. 895 1. 00 52. 44 ATOM 3202 0E2 GLU 442 7. 160 17. 568 60. 894 1. 00 53. 16 20 ATOM 3203 C GLU 442 10. 165 13.607 60. 174 1. 00 47. 69 ATOM 3204 0 GLU 442 10. 828 13. 035 59. 314 1. 00 47. 21 ATOM 3205 N GLU 443 9.435 12. 964 61.076 1. 00 50. 15 3206 GLU 443 9. 382 11. 508 61. 210 1. 00 52. 79 ATOM CA ATOM 3207 CBGLU 443 8. 911 11. 204 62. 623 1. 00 55. 86 25 ATOM GLU 443 9. 468 12. 183 63. 635 1.00 61.71 3208 CG ATOM 3209 CDGLU 443 10. 948 11. 962 63. 877 1. 00 66. 19 0E1 GLU 443 62. 886 ATOM 3210 11. 689 11. 746 1. 00 68. 22 ATOM 0E2 GLU 443 11. 365 12.006 65. 058 1. 00 67. 57 3211

- 255 -1.00 53.03 3212 C GLU 443 8. 521 10. 711 60. 218 ATOM 60.025 1.00 54.82 ATOM 3213 0 GLU 443 10.999 7. 344 59. 593 1.00 52.26 ATOM 3214 N **GLY 444** 9.116 9.702 8.861 58.667 1.00 52.32 ATOM 3215 CA **GLY 444** 8. 373 ATOM 3216 C **GLY 444** 7.966 9. 389 57. 302 1. 00 53. 07 5 **GLY 444** 9.460 57.003 1. 00 52. 97 ATOM 3217 0 6. 767 8.961 9.750 56. 483 1. 00 52. 71 ATOM 3218 N SER 445 ATOM SER 445 8.760 10. 239 55. 104 1.00 50.05 3219 CA 11.464 55.084 1.00 51.01 ATOM 3220 CB SER 445 7.836 ATOM 3221 OG SER 445 6. 487 11.084 55. 318 1. 00 46. 84 10 54. 356 1.00 46.51 ATOM 3222 C SER 445 10.076 10. 545 1.00 45.30 ATOM 3223 0 SER 445 11. 123 10.710 54.976 10.013 53.026 1. 00 43. 17 ATOM 3224 N **GLY 446** 10.603 ATOM 3225 CA **GLY 446** 11. 207 10. 842 52. 235 1. 00 40. 08 12.057 51.330 1.00 39.05 ATOM 3226 C GLY 446 11. 199 15 13. 164 51.803 1. 00 42. 74 **ATOM** 3227 0 GLY 446 11. 414 11.873 50.039 1.00 37.60 **ATOM** 3228 N ARG 447 10.940 13.000 49. 098 1. 00 37. 46 ATOM 3229 CA ARG 447 10.956 ATOM 3230 CB 11. 549 12. 546 47. 747 1. 00 45. 51 ARG 447 10.793 11. 401 47.014 1. 00 53. 91 20 ATOM 3231 CG ARG 447 10.902 45. 743 1.00 58.18 ATOM 3232 CD ARG 447 11. 521 ATOM 3233 NE ARG 447 12. 939 10. 598 45. 975 1. 00 63. 62 3234 CZ 9. 623 46.769 1. 00 66. 02 ATOM ARG 447 13. 399 8.825 1. 00 67. 97 ATOM 3235 NH1 ARG 447 12. 560 47. 425 NH2 ARG 447 14.711 9. 447 46.924 1.00 69.08 ATOM 3236 25 ATOM 3237 C ARG 447 9. 642 13. 737 48. 848 1. 00 32. 93 3238 0 ARG 447 9. 122 14. 416 49. 741 1. 00 29. 46 ATOM ATOM 3239 N GLY 448 9. 150 13. 625 47.607 1. 00 30. 52 3240 CA **GLY 448** 7. 902 14. 245 47. 202 1.00 26.03 ATOM

- 256 -1. 00 25. 25 3241 C GLY 448 6.845 13. 828 48. 200 ATOM 48. 244 ATOM 3242 0 GLY 448 5. 752 14. 378 1. 00 24. 59 49.018 ATOM 3243 N **ALA 449** 7. 186 12. 840 1. 00 23. 74 6. 282 12. 362 50.035 1.00 20.54 ATOM 3244 CA ALA 449 **ATOM** 3245 CB ALA 449 6.611 10. 917 50.410 1. 00 18. 12 5 6.340 13. 251 51. 282 1. 00 22. 37 ATOM 3246 С ALA 449 13. 782 51. 693 1. 00 22. 56 3247 0 ALA 449 5. 307 ATOM 7. 524 13. 443 51.881 1. 00 22. 28 ATOM 3248 N ALA 450 7.605 14. 261 53.088 1.00 20.98 ATOM 3249 CA ALA 450 10 ATOM 3250 CB ALA 450 9. 056 14. 432 53. 535 1.00 9.63 6. 937 15. 594 52. 872 1.00 20.66 ATOM 3251 C ALA 450 1. 00 19. 81 ATOM 3252 0 ALA 450 6. 417 16. 168 53. 826 3253 N 6. 943 16. 109 51. 702 1. 00 19. 91 ATOM LEU 451 ATOM 3254 CA LEU 451 6. 279 17. 379 51.602 1. 00 22. 22 6. 586 18. 056 50. 279 1. 00 26. 74 ATOM 3255 CB LEU 451 15 6.089 ATOM 3256 CG LEU 451 19. 496 50. 144 1. 00 34. 07 6.894 3257 CD1 LEU 451 20. 425 51.040 1.00 37.55 ATOM 6. 160 ATOM 3258 CD2 LEU 451 19. 955 48. 696 1. 00 36. 19 3259 LEU 451 4. 774 17. 157 51.686 1. 00 23. 24 ATOM C 3260 0 LEU 451 4. 136 17. 474 52. 699 1. 00 21. 18 20 ATOM 4. 212 16.613 1.00 26.44 ATOM 3261 N VAL 452 50.608 ATOM 3262 CA VAL 452 2. 798 16. 405 50. 557 1.00 26.90 1.00 28.65 15. 179 49.666 ATOM 3263 CB VAL 452 2. 454 ATOM 3264 CG1 VAL 452 3.082 15. 353 48. 300 1.00 26.01 CG2 VAL 452 2. 933 13.886 50.313 1. 00 31. 22 ATOM 3265 25 **ATOM** 3266 C VAL 452 2. 217 16. 308 51. 935 1. 00 26. 69 16.878 **ATOM** 3267 0 VAL 452 1. 181 52. 234 1. 00 24. 86 2.880 15. 579 52. 769 1. 00 26. 07 ATOM 3268 N SER 453 15. 346 54. 125 1. 00 26. 79 ATOM 3269 CA SER 453 2. 377

- 257 -1. 00 28. 88 14. 127 54. 756 ATOM 3270 CB SER 453 3. 058 56.057 1.00 37.16 13.881 0G SER 453 2. 553 ATOM 3271 1.00 26.82 55. 028 3272 C SER 453 2.571 16. 558 ATOM 1. 00 26. 28 17. 301 55. 377 1. 658 ATOM 3273 0 SER 453 3. 831 16. 701 55. 389 1. 00 26. 83 **ATOM** 3274 N ALA 454 5 17. 807 56. 177 1. 00 23. 37 4. 250 ATOM 3275 CA ALA 454 18. 128 55. 937 1. 00 17. 54 5. 719 3276 CB ALA 454 ATOM 55.866 1. 00 21. 80 3. 381 19. 002 ATOM 3277 C ALA 454 19.883 56. 714 1. 00 21. 02 3. 194 **ATOM** 3278 0 ALA 454 54. 656 1. 00 21. 59 ATOM 3279 N VAL 455 2.848 19. 044 10 54. 281 1. 00 25. 32 20. 156 2. 020 ATOM 3280 CAVAL 455 1.00 28.03 52. 841 3281 CBVAL 455 2. 313 20. 557 ATOM 19. 583 51.871 1.00 29.06 1.676 CG1 VAL 455 ATOM 3282 52. 577 1. 00 29. 98 ATOM 3283 CG2 VAL 455 1.813 21. 961 54. 469 1.00 27.69 0. 528 19. 890 C VAL 455 ATOM 3284 15 54.911 1.00 28.10 -0.20220. 783 ATOM 3285 0 VAL 455 0.061 18.681 54. 142 1.00 30.51 ATOM 3286 N ALA 456 1.00 31.54 -1.36718. 349 54. 318 ATOM 3287 CA ALA 456 1.00 25.20 53. 836 -1.66616. 937 CBALA 456 ATOM 3288 1. 00 31. 77 -1.70218. 505 55. 797 ATOM 3289 C ALA 456 20 18. 713 56. 176 1. 00 33. 11 ALA 456 -2.853ATOM 3290 0 1. 00 31. 33 18. 384 56. 625 ATOM 3291 N CYS 457 -0.6731.00 33.33 18. 538 58. 049 -0.8433292 CA CYS 457 ATOM 58.811 1.00 36.53 0. 262 17. 815 **ATOM** 3293 CB CYS 457 16. 448 57.890 1.00 44.65 1.040 **ATOM** 3294 SG CYS 457 25 1. 00 34. 59 ATOM 3295 C CYS 457 -0.90319. 990 58. 438 1.00 34.67 -1.74520. 391 59. 237 CYS 457 ATOM 3296 0 1.00 37.14 20.779 57. 881 3297 N LYS 458 0.005 ATOM 1. 00 38. 61 22. 199 58. 190 LYS 458 0.0603298 CA ATOM

- 258 -1. 00 37. 21 57.669 LYS 458 1. 363 22. 799 ATOM 3299 CB 58. 538 1. 00 37. 81 LYS 458 2. 573 22. 474 ATOM 3300 CG 23. 206 59.874 1. 00 38. 84 ATOM 3301 CD LYS 458 2. 501 23. 143 60.639 1. 00 38. 18 CE LYS 458 3.820 ATOM 3302 NZ LYS 458 3.812 24. 023 61.851 1. 00 36. 51 ATOM 3303 5 57. 596 1. 00 40. 24 C -1.12822. 920 ATOM 3304 LYS 458 57. 898 1. 00 39. 64 LYS 458 -1.37724. 079 ATOM 3305 0 1. 00 43. 69 22. 223 56. 752 **ATOM** 3306 N LYS 459 -1.86956. 147 1. 00 50. 66 LYS 459 -3.03622. 820 **ATOM** 3307 CA 54. 747 1. 00 55. 88 ATOM 3308 CBLYS 459 -3.24222. 248 10 1.00 63.64 22. 405 54. 183 LYS 459 -4. 657 ATOM 3309 CG 53.856 1. 00 66. 97 ATOM 3310 CDLYS 459 -5.03723. 850 1.00 68.86 23. 941 53. 226 CE LYS 459 -6.431ATOM 3311 **ATOM** 3312 NZ LYS 459 -7.53123. 519 54. 152 1. 00 71. 25 1. 00 52. 41 -4.26222. 562 57. 018 ATOM 3313 C LYS 459 15 LYS 459 -5.13223. 425 57. 132 1. 00 51. 90 ATOM 3314 0 21. 380 57.634 1.00 54.96 -4.322ATOM 3315 N ALA 460 **ATOM** 3316 CA ALA 460 -5. 449 20.997 58. 495 1. 00 57. 72 -5.20119.620 59. 111 1. 00 54. 90 ATOM 3317 CB ALA 460 1.00 60.41 ATOM 3318 С ALA 460 -5.73622. 018 59. 596 20 -6.77321. 950 60. 261 1.00 60.54 ATOM 3319 0 ALA 460 1.00 63.50 ATOM 3320 N CYS 461 **-4**. 815 22. 965 59. 776 24.022 60.776 1. 00 66. 18 -4.961ATOM 3321 CA CYS 461 CB CYS 461 -3.58024. 489 61. 252 1. 00 67. 98 ATOM 3322 1. 00 75. 61 -3.60426. 041 62. 185 ATOM 3323 SG CYS 461 25 C -5.72725. 217 60.200 1. 00 65. 92 **ATOM** 3324 CYS 461 1. 00 65. 70 0 CYS 461 -6.94025. 348 60. 490 **ATOM** 3325 1. 00 65. 20 OXT CYS 461 26.001 59. 454 3326 -5. 099 ATOM 7. 477 54. 655 1. 00 35. 04 3327 S S04 600 20. 241 ATOM

						- 259 -			
	ATOM	3328	01	S04	600	19. 370	7. 951	53. 566	1. 00 33. 14
5	ATOM	3329	02	S04	600	20. 343	8. 532	55. 683	1. 00 32. 80
	ATOM	3330	03	S04	600	19. 690	6. 249	55. 260	1. 00 33. 32
	ATOM	3331	04	S04	600	21. 572	7. 178	54. 108	1. 00 33. 97
	ATOM	3332	S	S04	601	22. 953	22. 471	69. 199	1. 00 77. 32
	ATOM	3333	01	S04	601	21. 971	21. 759	68. 356	1. 00 76. 19
	ATOM	3334	02	S04	601	22. 411	23. 803	69. 553	1. 00 77. 48
10	ATOM	3335	03	S04	601	23. 205	21. 698	70. 433	1. 00 77. 23
	ATOM	3336	04	S04	601	24. 224	22. 628	68. 461	1. 00 77. 19
	ATOM	3337	NA+1	NA1	602	17. 158	10. 244	54. 280	1. 00 10. 17
	ATOM	3338	0H2	НОН	603	19. 770	14. 543	47. 159	1. 00 1. 00
	ATOM	3340	0H2	НОН	604	20. 723	24. 387	67. 178	1. 00 17. 94
15	ATOM	3341	0H2	НОН	605	10. 880	33. 802	37. 628	1. 00 1. 00
	ATOM	3342	OH2	НОН	606	22. 743	28. 762	37. 147	1. 00 31. 78
	ATOM	3343	OH2	НОН	607	38. 906	1. 328	74. 611	1. 00 37. 76
	ATOM	3344	OH2	НОН	608	1. 237	30. 510	46. 162	1. 00 32. 40
	ATOM	3345	OH2	НОН	609	34. 702	-1. 731	56. 455	1. 00 62. 03
	END								

20 なお、表 2 は、当業者によって慣用されているプロテイン・データ・バンク の表記方法に準拠して作成されている。表 2 中、HOHは水分子を表す。

本発明においては、配列番号 5、及び/又は配列番号 8 と実質的に同一のアミノ酸配列を有し、グルコキナーゼ活性を有するタンパク質の結晶は本発明の 25 範囲内である。そのような結晶としては、例えば、表 1、及び/又は表 2 に記載の三次元構造座標データの少なくとも一つのデータを変更した三次元構造座標データにおいて、表 1、及び/又は表 2 に記載の三次元構造座標データで示されるアミノ酸の主鎖の原子(C α 原子)と、該C α 原子と対応する前記変更した三次元構造座標データで示されるC α 原子との平均二乗偏差が、0.

6 オングストローム以下である結晶が挙げられる。原子の位置を表す座標の数値が異なっても、構造座標に含まれる対応する原子の位置を重ね合わせることができる二つの構造座標は、同一の三次元構造を表すものである。

5 なお、表1、及び/又は表2に記載のGKタンパク質の三次元構造座標は、ドラッグデザインのための重要な情報であり、必要に応じて、コンピュータ読み取り可能な記憶媒体に保存され、コンピュータでこの情報を処理してドラッグデザインを行う。したがって、本発明の別の態様によれば、コンピュータを、表1、及び/又は表2に記載のアミノ酸残基の三次元座標を記憶する三次元座で記憶手段として機能させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体が提供される。

また、本発明の別の態様によれば、コンピュータを、表1、及び/又は表2に記載のアミノ酸残基の三次元座標に関する情報を記憶した三次元座標記憶手段と、前記三次元座標を開いて配列番号5、及び/又は配列番号8で表されるアミノ酸配列を有するタンパク質の化合物結合部位を推測する結合部位推測手段と、タンパク質と結合する化合物の種類と、当該化合物の三次元構造に関する情報を記憶した結合化合物記憶手段と、少なくとも、前記結合部位推測手段によって推測された配列番号5、及び/又は配列番号8で表されるアミノ酸配列を有するタンパク質の化合物結合部位の三次元構造に関する情報と、前記結合化合物記憶手段に記憶された化合物の三次元構造に関する情報と、前記結合化合物記憶手段に記憶された化合物の三次元構造に関する情報とを用いて前記配列表の配列番号1で表されるアミノ酸配列を有するタンパク質の化合物結合部位に適合する化合物の候補を選択する結合化合物候補選択手段、として機能させるプログラムを記録したコンピュータ読み取り可能な記録媒体が提供される。さらに、本発明の別の態様によれば、上記各手段を備えるコンピュータも提供される。

15

20

25

(GKタンパク質とそれに結合する化合物との複合体の結晶) 次に、本発明の別の態様によれば、配列番号5、又は配列番号8に記載のア

ミノ酸配列又はそのアミノ酸配列と実質的に同一のアミノ酸配列を含むタンパク質と該タンパク質に結合可能な化合物との複合体を含む結晶及びその製造方法が提供される。

GKタンパク質と結合する化合物が得られた場合は、まず、GKタンパク質とその化合物を、例えば、水溶液中で混合し、複合体を形成する。このような複合体の結晶は、共結晶法、ソーキング法などの公知の共結晶の製造方法が用いられる。結晶化条件、結晶化方法については、上述した方法が参照される。

GKタンパク質と結合する化合物は、例えば、上記式(I)で表される化合物群から選択される。

10 ここで、上記式(I)のハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが例示され、これらの中でも塩素原子が好ましい。

また、上記式(I)のA、B及び式(I I)のヘテロアリール基における置換基としては、アミノ基、カルバモイル基、カルバモイルアミノ基、カルバモイルオキシ基、カルボキシル基、シアノ基、スルファモイル基、トリフルオロメチル基、ハロゲン原子、ヒドロキシ基、ホルミル基、直鎖のC₁-C₆アルキ

- ル基、環状のC₃-C₆炭化水素基、アラルキル基、N-アラルキルアミノ基、N, N-ジアラルキルアミノ基、アラルキルオキシ基、アラルキルカルボニル基、N-アラルキルカルバモイル基、アリール基、アリールチオ基、N-アリールアミノ基、アリールオキシ基、アリールスルホニル
- 20 ルオキシ基、N-アリールスルホニルアミノ基、アリールスルファモイル基、N-アリールカルバモイル基、アロイル基、アロキシ基、 C_2-C_6 アルカノイル基、 $N-C_2-C_6$ アルカノイルアミノ基、 C_1-C_6 アルキルチオ基、 $N-C_1-C_6$ アルキルスルファモイル基、N, N-ジー C_1-C_6 アルキルスルファモイル基、N, N-ジーN
- N- C_1 - C_6 アルキルスルホニルアミノ基、 C_1 - C_6 アルコキシ基、 C_1 - C_6 アルコキシカルボニル基又は C_1 - C_6 アルキルアミノ基を示す)などが挙げられる。ここで用いられる好ましい置換基は、アミノ基、カルバモイル基、カルバモイルアミノ基、カルバモイルオキシ基、カルボキシル基、シアノ基、スルファモイル基、トリフルオロメチル基、ハロゲン原子、ヒドロキシ基、ホルミ

ル基、直鎖のC,-C,アルキル基などが例示される。

ここで、「炭化水素基」は、炭素数1乃至6の直鎖のアルキル基を示すか、 又は該アルキル基を構成する炭素原子のうち、1又は2の、好ましくは1の炭素原子が窒素原子、硫黄原子又は酸素原子で置き換わっていてもよいか、及び/又は該炭素数1乃至6の直鎖のアルキル基中の炭素原子同士が二重結合又は三重結合で結合されていてもよい基である。該二重結合又は三重結合の数は、1又は2であることが好ましく、1であることがより好ましい。

該炭化水素基としては、具体的には、メチル基、エチル基、プロピル基若しくはイソプロピル基、ブチル基又は下記式

で表される基であることが好ましい。より好ましい炭化水素基は、メチル基、 エチル基、プロピル基、イソプロピル基又は下記式

20

で表される基である。

好ましいAとしては (p=0 の場合)、例えば、次の基が挙げられる。

5

好ましいBとしては、例えば、次の基が挙げられる。

10

- 264 -

式(II)で示されるヘテロアリール基としては、例えば、次の複素環基が 5 挙げられる。

なお、特に好ましい化合物は、上述した式(IIIa)~式(IIIc)で表される いずれかの化合物である。 5

本発明の化合物(I)は、公知の反応手段を用いるか、或いは公知の方法に 従って容易に製造することができる。なお、本発明の一般式(I)の化合物は、 通常の液相における合成のみならず、近年発達の目覚しい例えばコンビナトリ アル合成法やパラレル合成法等の固相を用いた合成によっても製造することが できる。好ましくは例えば以下の方法により製造することができる。

10

[式中、各配号は前配定義に同じ]

(工程1)

本工程は、カルボン酸化合物(1)又はその反応性誘導体と前記式(2)で 5 表される置換されていてもよい単環の、又は双環のヘテロアリール基を有する アミノ化合物又はその塩とを反応させて、化合物(3)を製造する方法である。 本反応は文献記載の方法(例えば、ペプチド合成の基礎と実験、泉屋信夫他、 丸善、1983年、コンプリヘンシブ オーガニック シンセシス (Comp rehensive Organic Synthesis)、第6巻、Pe 10 rgamon Press社、1991年、等)、それに準じた方法又はこれ らと常法とを組み合わせることにより、通常のアミド形成反応を行えばよく、 即ち、当業者に周知の縮合剤を用いて行うか、或いは、当業者に利用可能なエ ステル活性化方法、混合酸無水物法、酸クロリド法、カルボジイミド法等によ り行うことができる。このようなアミド形成試薬としては、例えば塩化チオニ 15 ル、N、N - ジシクロヘキシルカルボジイミド、1 - メチル - 2 - ブロモピリ ジニウムアイオダイド、N, N'-カルボニルジイミダゾール、ジフェニルフ $_{ extstyle x}$ スフォリルクロリド、ジフェニルフォスフォリルアジド、 $_{ extstyle N}$ 、 $_{ extstyle N}$ $^{ extstyle '}$ $^{ extstyle -}$ $^{ extstyle 2}$

シニミジルカルボネート、 N, N'ージスクシニミジルオキザレート、1ーエチルー3ー(3ージメチルアミノプロピル)カルボジイミド塩酸塩、クロロギ酸エチル、クロロギ酸イソブチル又はベンゾトリアゾー1ーリルーオキシートリス(ジメチルアミノ)フォスフォニウムヘキサフルオロフォスフェイト等が挙げられ、中でも例えば塩化チオニル、N, Nージシクロヘキシルカルボジイミド又はベンゾトリアゾー1ーリルーオキシートリス(ジメチルアミノ)フォスフォニウムヘキサフルオロフォスフェイト等が好適である。またアミド形成反応においては、上記アミド形成試薬と共に塩基、縮合補助剤を用いてもよい。

用いられる塩基としては、例えばトリメチルアミン、トリエチルアミン、N, Nージイソプロピルエチルアミン、Nーメチルモルホリン、Nーメチルピロリジン、Nーメチルピペリジン、N, Nージメチルアニリン、1, 8ージアザビシクロ[5.4.0]ウンデカー7ーエン(DBU)、1, 5ーアザビシクロ[4.3.0]ノナー5ーエン(DBN)等の第3級脂肪族アミン;例えばピリジン、4ージメチルアミノピリジン、ピコリン、ルチジン、キノリン又はイソキノリン等の芳香族アミン等が挙げられ、中でも例えば第3級脂肪族アミン等が好ましく、特に例えばトリエチルアミン又はN, Nージイソプロピルエチルアミン等が好適である。

用いられる縮合補助剤としては、例えばN-ヒドロキシベンゾトリアゾール水和物、N-ヒドロキシスクシンイミド、N-ヒドロキシ-5-ノルポルネン-2, 3-ジカルボキシイミド又は3-ヒドロキシ-3, 4-ジヒドロ-4-オキソ-1, 2, 3-ベンゾトリアゾール等が挙げられ、中でも例えばN-ヒドロキシベンゾトリアゾール等が好適である。

20

用いられるアミノ化合物(2)の量は、用いられる化合物及び溶媒の種類その他の反応条件により異なるが、通常カルボン酸化合物(1)又はその反応性誘導体1当量に対して、0.02乃至50当量、好ましくは0.2乃至2当量である。ここにおいて、反応性誘導体としては、通常有機化学の分野において用いられる、例えば活性エステル誘導体、活性アミド誘導体等が挙げられる。

用いられるアミド形成試薬の量は、用いられる化合物及び溶媒の種類その他

の反応条件により異なるが、通常カルボン酸化合物(1)又はその反応性誘導体1当量に対して、1乃至50当量、好ましくは1乃至5当量である。

用いられる縮合補助剤の量は、用いられる化合物及び溶媒の種類その他の反応条件により異なるが、通常カルボン酸化合物(1)又はその反応性誘導体1 当量に対して、1乃至50当量、好ましくは1乃至5当量である。

用いられる塩基の量は、用いられる化合物及び溶媒の種類その他の反応条件により異なるが、通常1乃至50当量、好ましくは3乃至5当量である。

本工程において用いられる反応溶媒としては、例えば不活性有機溶媒であり、 反応に支障のない限り、特に限定されないが、具体的には、例えば塩化メチレ 10 ン、クロロホルム、1,2ージクロロエタン、トリクロロエタン、N,Nージ メチルホルムアミド、酢酸エチルエステル、酢酸メチルエステル、アセトニト リル、ベンゼン、キシレン、トルエン、1,4ージオキサン、テトラヒドロフ ラン、ジメトキシエタン又はそれらの混合溶媒が挙げられるが、好適な反応温 度確保の点から、特に例えば塩化メチレン、クロロホルム、1,2ージクロロ エタン、アセトニトリル又はN,Nージメチルホルムアミド等が好適である。

反応温度は、-100℃乃至溶媒の沸点温度、好ましくは0乃至30℃である。

反応時間は、0.5乃至96時間、好ましくは3乃至24時間である。 本工程1で用いられる塩基、アミド形成試薬、縮合補助剤は、一種又はそれ

20 以上組み合わせて使用することができる。

25

化合物(3)が保護基を有している場合には、適宜当該保護基を除去することが可能である。当該補助基の除去は、文献記載の方法(プロテクティブ グループス イン オーガニック シンセシス(Protective Groupsin Organic Synthesis)、T. W. Green著、第2版、<math>John Wiley & Sons社、1991年、等)、それに準じた方法又はこれらと常法とを組み合わせることにより行うことができる。

このようにして得られる化合物(3)は、公知の分離精製手段、例えば濃縮、減圧濃縮、結晶化、溶媒抽出、再沈殿、クロマトグラフィー等により単離精製するか又は単離精製することなく次工程に付すことができる。

(工程2)

本工程は、上記工程1で得られたアミド化合物(3)と化合物(4)とを反応させることにより化合物(5)を製造する方法である。

本反応においては、反応系中に必要に応じて塩基を加えてもよい。用いられ る化合物(4)としては、好ましくはフェノール誘導体又はチオール誘導体が 好ましい。該フェノール誘導体又はチオール誘導体としては、例えばフェノー ル、チオフェノール、チオイミダゾール、チオトリアゾール等が挙げられる。 用いられる化合物(4)の量は、用いられる化合物及び溶媒の種類その他の反 応条件により異なるが、通常アミノ誘導体(3)1当量に対して、2乃至50 10 当量、好ましくは2乃至5当量である。用いられる塩基としては、例えばトリ メチルアミン、トリエチルアミン、N、N-ジイソプロピルエチルアミン、N ーメチルモルホリン、Nーメチルピロリジン、Nーメチルピペリジン、N, N ージメチルアニリン、1,8-ジアザビシクロ[5.4.0]ウンデカー7ー エン (DBU)、1,5-アザビシクロ[4.3.0]ノナ-5-エン (DB 15 N) 等の第3級脂肪族アミン;例えばピリジン、4-ジメチルアミノピリジン、 ピコリン、ルチジン、キノリン又はイソキノリン等の芳香族アミン;例えば金 属カリウム、金属ナトリウム、金属リチウム等のアルカリ金属;例えば水素化 ナトリウム、水素化カリウム等のアルカリ金属水素化物;例えばブチルリチウ ム等のアルカリ金属アルキル化物:例えばカリウムーtertーブチラート、 20 ナトリウムエチラート又はナトリウムメチラート等のアルカリ金属アルコキシ ド;例えば水酸化カリウム、水酸化ナトリウム等のアルカリ金属水酸化物;例 えば炭酸カリウム等のアルカリ金属炭酸塩等が挙げられ、中でも例えば第3級 脂肪族アミン、アルカリ金属水素化物又はアルカリ金属炭酸塩が好ましく、特 に例えばトリエチルアミン、N, N-ジイソプロピルエチルアミン、水素化ナ 25 トリウム又は炭酸カリウムが好適である。

用いられる当該塩基の量は、用いられる化合物及び溶媒の種類その他の反応 条件により異なるが、アミド化合物(3)1当量に対して通常0乃至50当量、 好ましくは2乃至10当量である。該塩基は、必要に応じて一種又は2種以上

用いることができる。

用いられる不活性有機溶媒としては、反応に支障のないものであれば、特に限定されないが、具体的には、例えば塩化メチレン、クロロホルム、1,2-ジクロロエタン、トリクロロエタン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、酢酸エチルエステル、酢酸メチルエステル、アセトニトリル、ベンゼン、キシレン、水、トルエン、1,4-ジオキサン、テトラヒドロフラン又はこれらの混合溶媒等が挙げられる。

このようにして得られる化合物(5)は、公知の分離精製手段、例えば濃縮、減圧濃縮、結晶化、溶媒抽出、再沈殿、クロマトグラフィー等により単離精製 10 することができる。

(工程3)

25

本工程は化合物(5)を還元して、本発明で用いる化合物(I)を製造する方法である。本工程において用いられる還元反応は、当業者に周知の方法が用いられる。本工程においてもちいられる還元反応としては、具体的には、例えば(1)水素、蟻酸、蟻酸アンモニウム、ヒドラジン水和物とパラジウム、白金、ニッケル触媒を用いる接触還元法、(2)塩酸、塩化アンモニウムと鉄を用いる還元法、(3)メタノールと塩化スズを用いる還元法等が挙げられる。

上記還元反応において用いられる還元剤の量は、用いられる化合物及び溶媒 20 の種類その他の反応条件により異なるが、化合物(5)1当量に対して通常1 乃至50当量、好ましくは2乃至20当量である。

用いられる反応溶媒としては、反応に支障のない限り、特に限定されないが、例えばジクロロメタン、クロロホルム等のハロゲン化炭化水素類、例えばジエチルエーテル、tertーブチルメチルエーテル、テトラヒドロフラン等のエーテル類、例えばN,Nージメチルホルムアミド、N,Nージメチルアセトアミド等のアミド類、例えばジメチルスルホキシド等のスルホキシド類、例えばアセトニトリル等のニトリル類、例えばメタノール、エタノール、プロパノール等のアルコール類、例えばベンゼン、トルエン、キシレン等の芳香族炭化水素類、水或いはこれらの混合溶媒を用いることができる。

反応温度及び反応時間は特に限定されないが、-10万至100℃程度、好ましくは0万至50℃程度の反応温度で1万至20時間程度、好ましくは1万至5時間程度反応を行う。

このようにして得られる本発明で用いる化合物(I)は、公知の分離精製手 5 段、例えば濃縮、減圧濃縮、結晶化、溶媒抽出、再沈殿、クロマトグラフィー 等により単離精製するか又は単離精製することなく、次工程に付すことができ る。

上記各工程の化合物は、各置換基上に保護基を有していてもよい。当該保護基は、各工程において適宜、公知の方法これに準じた方法、又はこれらと常法とを組み合わせた方法により除去することができる。除去の態様は、化合物、反応の種類その他の反応条件により、適宜の除去反応が可能であるが、個別に各保護基を除去する場合、各保護基を同時に除去する場合等が考えられ、当業者が適宜選択可能である。当該保護基としては、例えばヒドロキシ基の保護基、アミノ基の保護基、カルボキシル基の保護基、アルデヒドの保護基、ケト基の保護基等が挙げられる。また、当該保護基の除去順序は、特に限定されるものではない。

10

15

20

25

ヒドロキシ基の保護基としては、例えばtertーブチルジメチルシリル基、 tertーブチルジフェニルシリル基等の低級アルキルシリル基、例えばメト キシメチル基、2-メトキシエトキシメチル基等の低級アルコキシメチル基、 例えばベンジル基、p-メトキシベンジル基等のアラルキル基、例えばホルミ ル基、アセチル基等のアシル基等が挙げられ、これらのうち、特にtertー ブチルジメチルシリル基、アセチル基等が好ましい。

アミノ基の保護基としては、例えばベンジル基、pーニトロベンジル基等のアラルキル基、例えばホルミル基、アセチル基等のアシル基、例えばエトキシカルボニル基、tertーブトキシカルボニル基等の低級アルコキシカルボニル基、例えばベンジルオキシカルボニル基、pーニトロベンジルオキシカルボニル基等のアラルキルオキシカルボニル基等が挙げられ、これらのうち、特にニトロベンジル基、tertーブトキシカルボニル基、ベンジルオキシカルボニル基等が好ましい。

15

カルボキシル基の保護基としては、例えばメチル基、エチル基、tertーブチル基等の低級アルキル基、例えばペンジル基、p-メトキシベンジル基等のアラルキル基等が挙げられ、これらのうち、特にメチル基、エチル基、tertーブチル基、ベンジル基等が好ましい。

5 ケト基の保護基としては、例えばジメチルケタール基、1,3-ジオキシラン基、1,3-ジオキソラン基、1,3-ジチアン基、1,3-ジチオラン基等が挙げられ、これらのうち、ジメチルケタール基、1,3-ジオキソラン基等がより好ましい。

アルデヒド基の保護基としては、例えば、ジメチルアセタール基、1,3-10 ジオキシラン基、1,3-ジオキソラン基、1,3-ジチアン基、1,3-ジチアン基、1,3-ジオチオラン基等が挙げられ、これらのうちジメチルアセタール基、1,3-ジオキソラン基等がより好ましい。

本発明で用いる化合物を製造するに当たっては、反応を効率よく進行させる ために、官能基に保護基を導入する場合もある。これらの保護基の導入は、当 業者に適宜選択可能であり、当該保護基の除去は、前記記載のプロテクティブ グループス イン オーガニックシンセシス等の方法、これに準じた方法又は これらと常法とを組み合わせることにより行うことができる。なお、保護基の 除去の順序についても、当業者が適宜選択可能である。

このようにして得られる化合物 (I) は、公知の分離精製手段、例えば濃縮、 20 減圧濃縮、結晶化、再沈殿、溶媒抽出、クロマトグラフィー等により単離精製 するか又は単離精製することなく次工程に付すことができる。

また、本発明で用いる化合物である(I)は、下記の工程によっても製造することができる。

「式中各記号は前記定義に同じ」

10

上記工程4、工程5及び工程6については、試薬の量、反応溶媒、反応温度 5 等その他の反応条件は、前記工程2、工程1及び工程3と同様にして行うこと ができる。

R²に保護基が必要な場合には、前記記載のプロテクティブグループス イ ンオーガニックシンセシス等の方法、それに準じた方法又はこれらと常法とを 組み合わせることにより、当業者が保護基を適宜選択することによって行うこ とができる。

このようにして得られる化合物(6)、(5')は、公知の分離精製手段、 例えば濃縮、減圧濃縮、結晶化、再沈殿、溶媒抽出等により単離精製するか、 又は単離精製することなく次工程に付すことができる。

本発明で用いる化合物(I)は、公知の分離精製手段、例えば濃縮、減圧濃 縮、結晶化、再沈殿、溶媒抽出等により単離精製することができる。 15

上記工程1乃至6において、保護基の除去は、当該保護基の種類及び化合物 の安定性により異なるが、前記記載のプロテクティブ グループス イン オ ーガニック シンセシス ((Protective Groups in O

- 274 -

rganic Synthesis)、T. W. Green著 第2版、John Wiley&Sons社、1991年、等)、それに準じた方法又はこれらと常法とを組み合わせることにより行うことができる。例えば酸又は塩基を用いる加溶媒分解、水素化金属錯体等を用いる化学的還元又はパラジウム炭素触媒、ラネーニッケル等を用いる接触還元等により行うことができる。

本発明によって提供されるベンズアミド化合物は、薬学的に許容される塩として存在することができる。当該塩は、常法に従って製造することができる。 具体的には、上記化合物(I)が、当該分子内に例えばアミノ基、ピリジル基等に由来する塩基性基を有している場合には、当該化合物を酸で処理することにより、相当する薬学的に許容される塩に変換することができる。

10

15

20

25

当該酸付加塩としては、例えば塩酸塩、フッ化水素酸塩、臭化水素酸塩、ヨウ化水素酸塩等のハロゲン化水素酸塩;硝酸塩、過塩素酸塩、硫酸塩、燐酸塩、炭酸塩等の無機酸塩;メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、エタンスルホン酸塩等の低級アルキルスルホン酸塩;ベンゼンスルホン酸塩、

pートルエンスルホン酸塩等のアリールスルホン酸塩;フマル酸塩、コハク酸塩、クエン酸塩、酒石酸塩、シュウ酸塩、マレイン酸塩等の有機酸塩;及びグルタミン酸塩、アスパラギン酸塩等のアミノ酸等の有機酸である酸付加塩を挙げることができる。また、本発明の化合物が酸性基を当該基内に有している場合、例えばカルボキシル基等を有している場合には、当該化合物を塩基で処理することによっても、相当する薬学的に許容される塩に変換することができる。当該塩基付加塩としては、例えば例えばナトリウム、カリウム等のアルカリ金属塩、カルシウム、マグネシウム等のアルカリ土類金属塩、アンモニウム塩、グアニジン、トリエチルアミン、ジシクロヘキシルアミン等の有機塩基による塩が挙げられる。さらに本発明の化合物は、遊離化合物又はその塩の任意の水和物又は溶媒和物として存在してもよい。

本発明においては、実施例の記載にて詳述するように、配列番号5に示すアミノ酸配列を有するGKタンパク質と上記式(IIIa)~式(IIIc)との化合物の複合体の結晶が得られている。これらの、結晶の3次元構造座標を解析することによって、配列番号5で示すGKタンパク質においては、化合物結合部位

- 275 -

が、チロシン61~セリン69、グルタミン酸96~グルタミン98、イソロイシン159、メチオニン210~チロシン215、ヒスチジン218~グルタミン酸221、メチオニン235、アルギニン250、ロイシン451~リジン459のアミノ酸残基から構成されることが解明されている。

5

10

20

25

なお、本発明の別の態様によれば、配列番号 2 に記載のアミノ酸配列を有するタンパク質から、上述のようにN末端側、および/またはC末端側の所定の数のアミノ酸残基を欠損したアミノ酸配列を有するタンパク質を製造するタンパク質製造工程と、前記タンパク質製造工程で得られたタンパク質と結合する化合物と、前記タンパク質製造工程で得られたタンパク質とを反応させる工程とを含む、タンパク質及びそのタンパク質と結合する化合物の複合体を含む結晶を製造する方法が提供される。

上記タンパク質製造工程において製造されるタンパク質としては、結晶内で 隣接するGKタンパク質との間で立体的な障害がなくなる範囲であればその数 は限定されない。具体的には、例えば、配列番号 2 で表されるアミノ酸配列に おいて、N末端側の $1\sim5$ 0個、好ましくは $3\sim3$ 0個、より好ましくは $5\sim2$ 5個、さらに好ましくは $8\sim1$ 8個、特に好ましくは $11\sim1$ 5個のアミノ 酸残基を欠失させたアミノ酸配列などが挙げられる。また、C末端側の $1\sim8$ 6個、好ましくは $1\sim7$ 6個、より好ましくは $2\sim6$ 6個のアミノ酸残基を欠失させ たアミノ酸配列などが挙げられる。

(3次元構造座標を用いるドラッグデザイン方法)

上記のようにして得られる本発明のGKタンパク質の3次元構造は、CAR DD (Computer Aided Rational Drug Design) による創薬システムのための重要な情報である。このGKタンパク質の活性中心、及びアロステリック部位を明らかにし、その部位に適合し、GKタンパク質と相互作用することにより、GKタンパク質を阻害、または活性化する物質を検索することは、GKタンパク質をターゲットとする創薬開発の重要なステップである。

すなわち、本発明の別の態様によれば、タンパク質の立体構造情報に基づい

て該タンパク質に結合する化合物の構造をデザインするドラッグデザイン方法であって、該タンパク質の立体構造情報が、上述のようにして得られる結晶を解析することによって得られる情報であることを特徴とする、ドラッグデザイン方法が提供される。このようなドラッグデザイン方法としては、エネルギー計算、若しくはこれに類似する活性予測値、又はファルマコフォアを用いてドラッグデザインする手法と、コンピュータグラフィックスの技術を用いて視覚的にドラッグデザインをする手法がある。

エネルギー計算、若しくはこれに類する活性予測値、又はファルマコフォアを用いる手法による方法としては、(1)上述したようにして得られる立体構造情報に基づいて、上記タンパク質の化合物結合部位を推測する結合部位推測工程と、前記結合部位推測工程で推測された化合物結合部位に適合する化合物を、化合物ライブラリより選択する選択工程とを含むことを特徴とするドラッグデザイン方法、(2)前記立体構造情報に基づいて、前記タンパク質の化合物結合部位を推測する結合部位推測工程と、前記結合部位推測工程で推測された化合物結合部位に適合する化合物の構造を構築する化合物構造構築工程とを含むことを特徴とする、ドラッグデザイン方法などが例示される。

10

20

25

上記タンパク質の化合物結合部位を推測する方法としては、例えば、化合物との共結晶においてリガンドが結合している部位をコンピュータのディスプレイ上で目視で確認して特定する方法の他、リガンドが結合していない状態で解かれたタンパク質結晶構造に対してリガンドが結合しそうな部位を推定して特定する方法が挙げられる。いずれの方法においても公知の方法や市販のコンピュータソフトウエアを用いることができる。前者の方法においては、例えば、Insight II (Accelrys Inc.)、SYBYL (Tripos Inc.)、MOE (Chemical Computing Group)等のソフトウエアを用いることができる。一方、後者の方法においては、例えば、Cavity search: an algorithm for the isolation and display of cavity-like binding regions. (Journal of Computer-Aided Molecular Design. 4(4):337-54, 1990)等の公知の手法を用いることができ、SiteID (Tripos Inc.)等のソフトウエアを用いて実施することができる。

タンパク質における化合物との結合部位が推測できたら、その推測された結

合部位に適合し得る化合物を選択する。この化合物候補を選択する方法としては、既存の化合物ライブラリからの化合物の構造情報を入手して、そのライブラリ中の化合物の構造情報と上記のようにして推測された結合部位の構造情報とを比較することによって、結合可能化合物候補を選択する。

5 より具体的には、配列番号 5 に示すアミノ酸配列のアミノ酸残基(チロシン 61~セリン 69、グルタミン酸 96~グルタミン 98、イソロイシン 159、メチオ ニン 210~チロシン 215、ヒスチジン 218~グルタミン酸 221、メチオニン 235、アルギニン 250、ロイシン 4 5 1~リジン 4 5 9)から 1 つないしは 2 つ以上 の残基もしくは複合体中のリガンドの官能基から形成される水素結合性または 10 疎水性などのファルマコフォアと、蛋白構造またはその一部の側鎖の配向を改変させた構造から作成される蛋白表面を検索条件として、化合物ライブラリより各化合物の配座、配向を網羅的に探索しながら条件を満たすかどうかを判断して選択する。

他の代替方法として、化合物ライブラリより各化合物の配座、配向を網羅的に探索しながら、アミノ酸残基(チロシン 61~セリン 69、グルタミン酸 96~グルタミン 98、イソロイシン 159、メチオニン 210~チロシン 215、ヒスチジン 218~グルタミン酸 221、メチオニン 235、アルギニン 250、ロイシン 451~リジン 459)から構成されるリガンド結合部位の構造またはその一部の側鎖の配向を改変させた構造に対して候補化合物をバーチャルでドッキングさせ、アミノ酸残基(チロシン 61~セリン 69、グルタミン酸 96~グルタミン 98、イソロイシン 159、メチオニン 210~チロシン 215、ヒスチジン 218~グルタミン酸 221、メチオニン 235、アルギニン 250、ロイシン 451~リジン 459)から1つないしは 2つ以上の残基と 4 オングストローム以下で近接した相互作用を形成したものを選択したり、エネルギー評価関数を用いた選択を行う。

25 一方、候補化合物は、上記のようにして推測された結合部位の構造情報に基づいて結合可能化合物を設計することによっても選択することができる。より 具体的には、配列番号 5 に示すアミノ酸配列のアミノ酸残基(チロシン 61~セリン 69、グルタミン酸 96~グルタミン 98、イソロイシン 159、メチオニン 210~チロシン 215、ヒスチジン 218~グルタミン酸 221、メチオニン 235、ア

ルギニン 250、ロイシン 4 5 1 ~ リジン 4 5 9)から構成される化合物結合部位の構造またはその一部の側鎖の配向を改変させた構造に対して、1つないしは2つ以上の残基と相互作用するように各種原子種、官能基を種々つなぎ合わせて化合物構造を構築する。この方法としては、メチル、エチル等の化学基を活性部位に並べて適合する化合物を探す方法と、原子を活性部位にコンピュータプログラムを用いて結合させていく方法とが知られている。

なお、コンピュータによるエネルギー評価による方法では、例えば分子力場 計算を用いて化合物と、GKタンパク質との結合のエネルギーを求める方法が 挙げられる。その計算をデータベースの中の各化合物に適用し、安定に結合で きる化合物候補を、ライブラリ化合物の中から求める。Insight II のLudiなどコンピュータプログラムによっては、蛋白質分子において相互 作用するアミノ酸残基の3次元構造座標を与えると、自動的に結合可能な化合 物の候補を選択し出力するものもあり、好適に利用することができる。

また、分子の3次元構造に基づくドラッグデザインについては、医薬品の開発・第7巻「分子設計」(廣川書店)をはじめとして数多くの文献が知られている。具体的には、第一に FlexiDock、FlexX 等のフレキシブルリガンドバインディングシミュレーションソフトウエアを用いて、低分子(分子量1000以下)化合物のライブラリ(たとえば約150000種)をコンピュータでスクリーニングすることができる。このライブラリ内の化学物質は CONCORD 等のプログラムで3次元構造を構築し、活性部位に適合する化合物を選択することができる。

一方、目視的によりドラッグデザインする方法としては、前記立体構造情報に基づいて、前記タンパク質の化合物結合部位を推測する結合部位推測工程と、前記結合部位推測工程で推測された化合物結合部位と該化合物結合部位に適合する化合物とが相互作用するように化合物の構造を目視によりデザインするデザイン工程とを含むことを特徴とする、ドラッグデザイン方法が挙げられる。例えば、配列番号5に示すアミノ酸配列のアミノ酸残基(チロシン61~セリン69、グルタミン酸96~グルタミン98、イソロイシン159、メチオニン210~チロシン215、ヒスチジン218~グルタミン酸221、メチオニン235、アルギ

25

ニン 250、ロイシン451~リジン459)から構成されるリガンド結合部位 の構造またはその一部の側鎖の配向を改変させた構造に対して、これらの残基 のうち1つないしは2つ以上の残基と相互作用するように目視による構造構築、 もしくは構造改変を行う。

具体的には、視覚的方法では、まずコンピュータの画面上にGKタンパク質 5 とそれに結合する化合物との複合体の結晶の構造を、得られた構造座標に従っ て表示する。そして、コンピュータ上で化学的相互作用を考慮しながら、ライ ブラリ中にある化合物とGKタンパク質との結合可能性を順次検討する。ここ で考慮すべき化学的相互作用は静電相互作用、疎水性相互作用、水素結合、フ ァンデルワールス相互作用などである。すなわち、該化合物の3次元空間での 10 構造が、その官能基群においてカルボキシル基、ニトロ基、ハロゲン基などの 陰性電荷を帯びやすい基が、GKタンパク質のリジン、アルギニン、ヒスチジ ンといった正電荷を持つアミノ酸残基に相互作用するように、アミノ基、イミ ノ基、グアニジル基などの陽性電荷を帯びやすい基が、GKタンパク質のグル タミン酸、アスパラギン酸といった負電荷を持つアミノ酸残基に相互作用する 15 ように、脂肪族基や芳香族基といった疎水性の官能基が、アラニン、ロイシン、 イソロイシン、バリン、プロリン、フェニルアラニン、トリプトファン及びメ チオニンといった疎水性のアミノ酸残基と相互作用するように、水酸基、アミ ド基などの水素結合に関与する基が、GKタンパク質の主鎖や側鎖部分と水素 結合ができるように、更には、該化合物とGKタンパク質の結合において立体 20 的な障害が生じないように、また、更には、空隙部分がなるべくできないよう に空隙部分が充填され、ファンデルワールス相互作用が大きくなるようになど、 相互作用に好ましい構造になっているかを総合的に考慮する。このように、静 電相互作用、疎水性相互作用、ファンデルワールス相互作用、水素結合などの 因子を、コンピュータ画面上で視覚的に総合的に考慮して、最終的に候補化合 25 物がGKタンパク質に結合し得るか否かの判断を行う。

このように目視によって化合物候補を選択するプログラムとしては、 Insight II や MOE 等のシミュレーションプログラムが例示される。 G K タンパク質と相互作用する化合物の有力候補を挙げるために、候補化合物と G K タ

ンパク質と接触させ、GKタンパク質の活性を測定する。有力候補化合物を実際にGKタンパク質と混合し、結晶化し適合するかどうかを検討する。更に適合した複合物を有機合成を用いて修飾することにより、より望ましい構造とする。

- 5 なお、視覚的手法と、エネルギーを考慮した手法は、適宜組合わせて用いることもできる。そのようなコンピュータソフトウエアとしては、FlexiDock (Tripos Inc.)、FlexX (Tripos Inc.)、SYBYL (Tripos Inc.)、Insight II (Accelrys Inc.)、MOE (Chemical Computing Group Inc.) などが挙げられる。
- 10 なお、本発明においては、上述したドラッグデザイン方法によって選択された化合物を実際に合成し、これらの化合物群を化合物アレイ(又は化合物ライブラリ)として提供することができる。このような化合物アレイを利用すれば、ハイスループットスクリーニングの技術などを用いて、一度に大量の候補化合物をアッセイすることができるので、グルコキナーゼの活性化剤又は阻害剤を効率良くスクリーニングすることができる。

(本発明の方法によって得られる化合物及びそれを含む治療剤)

20

25

上記のドラッグデザイン方法によって設計される化合物は、グルコキナーゼと結合する能力を有するので、グルコキナーゼの活性化化合物又はグルコキナーゼ阻害化合物として用いることができる。また、このような化合物を含有する治療剤又は医薬組成物は、グルコキナーゼ活性が関与する疾患の治療剤(例えば、糖尿病治療剤)として有効に用いることができる。

上記医薬組成物は、本発明のグルコキナーゼと結合する化合物を有効成分として、その薬学的有効量を、適当な薬学的に許容される担体ないし希釈剤と共に含有する。上記医薬組成物(医薬製剤)に利用できる薬学的に許容できる担体としては、製剤の使用形態に応じて通常使用される、充填剤、増量剤、結合剤、付湿剤、崩壊剤、表面活性剤、滑沢剤などの希釈剤或は賦形剤などが例示される。これらの担体は、得られる製剤の投与単位形態に応じて適宜選択使用される。

本発明の医薬組成物の投与単位形態としては、各種の形態が治療目的に応じ て選択でき、その代表的なものとしては、錠剤、丸剤、散剤、粉末剤、顆粒剤、 カプセル剤などの固体投与形態や、溶液、懸濁剤、乳剤、シロップ、エリキシ ルなどの液剤投与形態が含まれ、これらは更に投与経路に応じて経口剤、非経 口剤、経鼻剤、経膣剤、坐剤、舌下剤、軟膏剤などに分類され、それぞれ通常 の方法に従い、調合、成形、調製することができる。例えば、錠剤の形態に成 形するに際しては、上記製剤担体として例えば乳糖、白糖、塩化ナトリウム、 ブドウ糖、尿素、デンプン、炭酸カルシウム、カオリン、結晶セルロース、ケ イ酸、リン酸カリウムなどの賦形剤、水、エタノール、プロパノール、単シロ ップ、ブドウ糖液、デンプン液、ゼラチン溶液、カルボキシメチルセルロース、 10 ヒドロキシプロピルセルロース、メチルセルロース、ポリビニルピロリドンな どの結合剤、カルボキシメチルセルロースナトリウム、カルボキシメチルセル ロースカルシウム、低置換度ヒドロキシプロピルセルロース、乾燥デンプン、 アルギン酸ナトリウム、カンテン末、ラミナラン末、炭酸水素ナトリウム、炭 酸カルシウムなどの崩壊剤、ポリオキシエチレンソルビタン脂肪酸エステル類、 15 ラウリル硫酸ナトリウム、ステアリン酸モノグリセリドなどの界面活性剤、白 糖、ステアリン、カカオバター、水素添加油などの崩壊抑制剤、第4級アンモ ニウム塩基、ラウリル硫酸ナトリウムなどの吸収促進剤、グリセリン、デンプ ンなどの保湿剤、デンプン、乳糖、カオリン、ベントナイト、コロイド状ケイ 酸などの吸着剤、精製タルク、ステアリン酸塩、ホウ酸末、ポリエチレングリ 20 コールなどの滑沢剤などを使用できる。更に錠剤は必要に応じ通常の剤皮を施 した錠剤、例えば糖衣錠、ゼラチン被包錠、腸溶被錠、フィルムコーティング 錠とすることができ、また二重錠ないしは多層錠とすることもできる。

丸剤の形態に成形するに際しては、製剤担体として例えばブドウ糖、乳糖、 25 デンプン、カカオ脂、硬化植物油、カオリン、タルクなどの賦形剤、アラビア ゴム末、トラガント末、ゼラチン、エタノールなどの結合剤、ラミナラン、カ ンテンなどの崩壊剤などを使用できる。

カプセル剤は、常法に従い通常本発明の有効成分を上記で例示した各種の製剤担体と混合して硬質ゼラチンカプセル、軟質カプセルなどに充填して調整さ

- 282 -

れる。

経口投与用液体投与形態は、慣用される不活性希釈剤、例えば水、を含む医薬的に許容される溶液、エマルジョン、懸濁液、シロップ、エリキシルなどを包含し、更に湿潤剤、乳剤、懸濁剤などの助剤を含ませることができ、これらは常法に従い調製される。

非経口投与用の液体投与形態、例えば滅菌水性乃至非水性溶液、エマルジョン、懸濁液などへの調製に際しては、希釈剤として例えば水、エチルアルコール、プロピレングリコール、ポリエチレングリコール、エトキシ化イソステアリルアルコール、ポリオキシエチレンソルビタン脂肪酸エステル及びオリーブ油などの植物油などを使用でき、また注入可能な有機エステル類、例えばオレイン酸エチルなどを配合できる。これらには更に通常の溶解補助剤、緩衝剤、湿潤剤、乳化剤、懸濁剤、保存剤、分散剤などを添加することもできる。 滅菌は、例えばバクテリア保留フィルターを通過させる濾過操作、殺菌剤の配合、照射処理及び加熱処理などにより実施できる。また、これらは使用直前に滅菌水や適当な滅菌可能媒体に溶解することのできる滅菌固体組成物形態に調製することもできる。

坐剤や膣投与用製剤の形態に成形するに際しては、製剤担体として、例えばポリエチレングリコール、カカオ脂、高級アルコール、高級アルコールのエステル類、ゼラチン及び半合成グリセライドなどを使用できる。

20 ペースト、クリーム、ゲルなどの軟膏剤の形態に成形するに際しては、希釈剤として、例えば白色ワセリン、パラフイン、グリセリン、セルロース誘導体、プロピレングリコール、ポリエチレングリコール、シリコン、ベントナイト及びオリーブ油などの植物油などを使用できる。

経鼻又は舌下投与用組成物は、周知の標準賦形剤を用いて、常法に従い調製 25 することができる。

尚、本発明薬剤中には、必要に応じて着色剤、保存剤、香料、風味剤、甘味 剤などや他の医薬品などを含有させることもできる。

上記医薬製剤中に含有されるべき有効成分の量及びその投与量は、特に限定されず、所望の治療効果、投与法、治療期間、患者の年齢、性別その他の条件

- 283 -

などに応じて広範囲より適宜選択される。一般的には、投与量は、通常、1日当り体重60kg当り、約0.01mg~100mg、好ましくは約1mg~100mgとするのがよく、1日に1~数回に分けて投与することができる。

5 本明細書の配列表の配列番号は、以下の配列を示す。

〔配列番号:1〕

ヒト由来肝臓型グルコキナーゼをコードするDNAの塩基配列を示す。

〔配列番号:2〕

ヒト由来肝臓型グルコキナーゼのアミノ酸配列を示す。

10 〔配列番号:3〕

ヒト由来 β 細胞グルコキナーゼのアミノ酸配列を示す。

〔配列番号:4〕

ヒト由来肝臓型グルコキナーゼのN末端側のアミノ酸残基11個を欠失させたタンパク質をコードするDNAの塩基配列を示す。

15 〔配列番号:5〕

ヒト由来肝臓型グルコキナーゼのN末端側のアミノ酸残基11個を欠失させたタンパク質のアミノ酸配列を示す。

[配列番号:6]

以下の実施例 1 における P C R 反応で使用した、プライマー 1 の塩基配列を 20 示す。

[配列番号:7]

以下の実施例1におけるPCR反応で使用した、プライマー2の塩基配列を示す。

〔配列番号:8〕

25 ヒト由来肝臓型グルコキナーゼのN末端側のアミノ酸残基15個を欠失させ たタンパク質のアミノ酸配列を示す。

〔配列番号:9〕

以下の実施例6におけるPCR反応で使用した、プライマーの塩基配列を示す。

- 284 -

[配列番号:10]

以下の実施例6におけるPCR反応で使用した、プライマーの塩基配列を示す。

5 (実施例)

以下、本発明を、実施例を用いて具体的に説明する。

(変異型酵素の精製方法)

Human グルコキナーゼには、プロモーターの違いよって肝臓型と膵臓型が存在し、N末端の15残基が異なる。三次元構造解析を目的に結晶化を行うために、この部分の一部あるいはすべてを欠損した変異型酵素を以下の方法で作成した。

pCR2. 1 (INTROGEN 社製) 上にクローニングされた Human 肝臓型グルコキナー ぜの cDNA と 2 種のプライマーセット

- 5' gtcacaaggagccagaagcttatggccttgactctggtag- 3'(配列番号6) 及び 15 5' -gaagccccacgacattgttcccttctgc - 3 (配列番号7)の組み合わせ、ならびに、
 - 5' ccaggcccagacagccaagcttatggtagagcagatcc- 3'、 (配列番号9)及び
 - 5'-gaagccccacgacattgttcccttctgc 3' (配列番号10)

を用いて PCR 反応を行った。得られた PCR 産物の Hind III、ClaI 断片を pFLAG・CTC ベクター (Eastman Kodak) の Hind III、Eco RI 部位にクローニングされていた肝臓型 GK の Hind III - Cla I 領域と置換することで、肝臓型 GK の $1\sim11$ 残基を欠損する変異型 GK(Δ 1-1 1)、及び $1\sim15$ 残基を欠損する変異型 GK(Δ 1-1 1)、及び $1\sim15$ 残基を欠損する変異型 GK(Δ 1-1 5)をコードする cDNA を得た。得られた cDNA の配列を確認した後、これらのベクターを発現ベクターとし、大腸菌 DH5 α 株(宝 酒造社製)を形質変換した。

形質変換体を LB 培地で 600nm の吸収が 0.8 になるまで 37 $^{\circ}$ で培養した後、終濃度が 0.4mM になるようにイソプロピルー 1-チオー $\beta-$ D $^{\circ}$ カラクシド (和光純薬社製) を加え、25 $^{\circ}$ で 16 時間、タンパク質の生産誘導を行った。

培養された大腸菌を遠心機で収集し、以下の成分を含む緩衝液(50 mM リン酸カリ (Potassium Phosphate) pH7.5, 50mM NaCl, 2 mM DTT, 0.5 mM Pefabloc SC (関東化学社製)、a proteinase inhibitor mixture (Roche 社製)) に懸濁した。

5 収集した大腸菌は、超音波破砕法によって破砕し、可溶化画分を上記の緩衝液に対して透析した後、HiTrapQカラム(アマシャム社製)により精製した。
HiTrapQカラムより塩化カリウムのグラジエントにより溶出された GK 画分を
希釈により塩濃度 50mM に希釈した。

希釈された GK 画分を論文 (Preparative Biochemistry, 20(2), 163-178 (1990)) に示されている方法で作製した Glucosamin Sepharose カラムにより精製した。 GK 画分を Glucosamin Sepharose カラムに吸着させ 100mM 塩化ナトリウムで不純物を除いた後、1M のグルコースにより溶出させた。

溶出された GK 画分は、MonoQ10/10 カラムにより精製した。MonoQ10/10 カラム (アマシャム社製) より塩化ナトリウムのグラジエントにより溶出された GK 画分を、移動層として 50mM Tris-Cl pH7. 2, 50mM NaCl 緩衝液を用いて、Superdex 200 カラム (アマシャム社製) により精製した。

(結晶化方法)

10

15

25

(変異型 GK (Δ1-11) /グルコース/化合物複合体の結晶)

20 変異型 $GK(\Delta 1-11)$ /グルコース/化合物複合体の結晶は、以下に示す蒸気拡散の手法を用いて得た。なお、変異型 $GK(\Delta 1-11)$ は、配列番号 5 で表されるアミノ酸配列を有するグルコキナーゼを意味する。

すなわち、高純度に精製された変異型 GK を濃縮し、最終的に 10mg/ml 程度の変異型 GK の溶液 (25 mM Tris-Cl, 50 mM NaCl, 5 mM TCEP) とした。これに最終濃度 20mM のグルコース、及び最終濃度 0.3 mM の GK を活性化する下記化合物 1 (式 IIIa の化合物)を加え、結晶化に用いた。タンパク質溶液 1~5 μ 1 に結晶化溶液として 28~30% PEG 1500、0.1 M Hepes - NaOH (pH6.6)を等量加えて混合した溶液を 0.5~1ml の結晶化溶液を入れた密閉容器に、両溶液が触れ合わないように収め、20℃で静置した。およそ 3 日~1ヶ月の静置の

後に、試料溶液中に最大 $0.4 \text{ mm} \times 0.4 \text{ mm} \times 0.7 \text{ mm}$ 程度の結晶が得られた(実施例 1)。

さらに上記の方法で得られた結晶を下記化合物 2 (式III b で表される化合物) が0.3 mMの濃度で含まれるようにして、28~30% PEG 1500、0.1 M Hepes - NaOH (pH6.6)溶液に3~7日程度浸透することによって、下記化合物 2 と上記変異型GKの複合体結晶を得た(実施例 2)。

化合物1

5

10 化合物 2

また、前記化合物1に代えて化合物3 (式 III c で表される化合物)を用いた以外は、実施例1と同様にして結晶化を試みた結果、それぞれ実施例1と同様な結晶が得られた(実施例3)。

化合物3

$$0 = \stackrel{\mathsf{CH}_3}{=} 0 \qquad 0 \qquad \stackrel{\mathsf{S}}{\longrightarrow} \mathsf{CH}_3$$
 (IIIc)

10

15

20

25

得られた結晶を10%のグリセロールを加えた結晶化溶液に浸し、続いて液体窒素中で急速に凍結した。シンクロトロン施設 KEK-PF の BL6B において振動法により、凍結した結晶の X 線回折データを 100K 窒素気流中で収集した。得られた回折像から、DENZO/SCALEPACK(HKL 社製)を用いて回折強度を数値化し、結晶構造因子を求めた。この段階で結晶は六方晶系で空間群は P6₅22 あるいは P6₁22 を有し、結晶の単位格子は、a=b=79.9 オングストローム、c=322.2 オングストローム、 $\alpha=\beta=90$ °、 $\gamma=120$ ° であるとわかった。得られた構造因子と Human ヘキソキナーゼ タイプ103次元構造座標を

用いて分子置換法を行い構造を解析した。計算には8 オングストロームから4 オングストロームの分解能のデータを用い、CCP4 (Council for the Central laboratory of the Research Councils) の Amore プログラムにより行った。 計算により得られた構造のR 因子は、53.7%であり、結晶の空間群は $P6_522$ で非対称単位に変異型GK 一分子を含むことが分かった。この構造と構造因子から電子密度マップを得て、プログラム0 (Dat-0NO 社製)を用いて変異型グルコキナーゼの構造を決定した。

次に CNX(Accelrys Inc.)を用いてアミノ酸の位置の精密化を行い、プログラム 0 を用いてアミノ酸残基の同定を行った。この操作を繰り返し行い、変異型グルコキナーゼのスレオニン 14 からシステイン 461 までの 448 アミノ酸残基の構造座標、1分子のグルコース分子、1分子の化合物 A、1 個のナトリウムイオン、及び 149 個の水分子を同定し構造座標を決定した。最終的に決定された構造の正確さの指標とされる R 因子は、30 オングストロームから 2.3 オングストロームの分解能のデータに対して R=23.2%であり、構造の精密化の段階で計算に用いなかったデータに対する R 因子 (Rfree) は 27.4%であった。

ラマチャンドラン・プロットで確認したところ許容されない構造を持ったアミノ酸残基はなかった。

決定された変異型グルコキナーゼの構造は、アイソザイムであるヘキソキナーゼの構造と似たものであったが、グルコキナーゼを活性化する化合物 1 (式 IIIa の化合物) の結合している部位の構造は異なっていた。この構造の相違は、現在の計算化学の能力で予想できうるものでなく、今回の構造解析により、この部位がアクティベーターの結合部位であること、そしてその詳細な立体構造が初めて明らかとなった。図 1 a は、ここで解明されたグルコキナーゼの三次元構造を示すリボン図である。図 1 a に示されるように、新規に見つかった アクティベーター結合部位は、ラージドメインとスモールドメインの間に位置しており、基質であるグルコースが結合しているグルコキナーゼの活性中心から、約 20 オングストローム離れていた。アクティベーター結合部位を構成しているグルコキナーゼのアミノ酸残基は以下のとおりであった。チロシン 61 ~セリン 69、グルタミン酸 96~グルタミン 98、イソロイシン 159、メチオニン 210~チロシン 215、ヒスチジン 218~グルタミン酸 221、メチオニン 235、アルギニン 250、ロイシン 4 5 1~リジン 4 5 9。

また、この結合部位に対する化合物1(式 IIIa の化合物)の結合様式を図2に、グルコキナーゼの結合部位の構造を図3に示す。チアゾール環は、バリン62、バリン452、バリン455のそれぞれのアミノ酸側鎖の分子とファンデルワールス接触をしており、またチアゾール環上の窒素原子がアルギニン63の主鎖の窒素原子と水素結合をしていた。化合物1上のアミドの窒素原子は、アルギニン63の主鎖の酸素原子と水素結合をしていた。化合物1のベンゼン環部分はイソロイシン211とファンデルワールス接触をしており、ベンゼン環に置換したフッ素原子はチロシン214の側鎖とファンデルワールス接触をしていた。化合物1のアニリン構造は、チロシン215の側鎖の酸素原子と水素結合を形成していた。硫黄を介してベンゼン環と結合しているイミダゾール環部分は、メチオニン210、メチオニン235、チロシン214のアミノ酸側鎖部分とファンデルワールス接触をしていた。ラージドメインとスモールドメインを結んでいる、セリン64~セリン69の部分は、溶液に露出した構造をしており、化合物

- 289 -

1は、この部分が形作るアーチ状構造の下部に結合していた(図3)。

(実施例4:ドラッグデザインの実施例)

ソフトウエア UNITY (トライポス社製) を用い、Arg63 の主鎖 NH, COからそれぞれ発生させた水素結合アクセプター、水素結合ドナーのファルマコフォアと、複合体を形成するリガンドのアニリン部分のフェニル基に相当する空間に形成された疎水性のファルマコフォア、および蛋白の構造を元に作成した蛋白表面を検索条件としてライブラリ化合物をスクリーニングし、下記化合物 4、及び化合物 5 が得られ、アッセイを行ったところ、それぞれ 7 8 0 %、および 5 6 0 %の活性が認められた。なお活性が 7 8 0 %とは、グルコキナーゼの活性をコントロールを 1 0 0 %としたときに、これらの化合物によって 7 8 0 %まで増強されたことを示す (グルコース 2.5M 及びリガンド 10 μ M を使用)。

化合物4

5

10

15

化合物 5

20 (実施例5)

(変異型 GK (Δ1-15) の結晶)

変異型 $GK(\Delta 1-15)$ (配列番号 8 で表されるアミノ酸配列を有するグルコキナーゼ)の単体の結晶は、以下に示す蒸気拡散の手法を用いて得た。

活性:560%

すなわち、高純度に精製された変異型 GK を濃縮し、最終的に 10mg/ml 程度の変異型 GK の溶液 (25 mM Tris-Cl pH7.2, 50 mM NaCl, 5 mM TCEP) とした。 タンパク質溶液 1~5 μ 1 に結晶化溶液 (1.5 ~ 1.6 M 硫酸アンモニウム、50mM NaCl、0.1 M Bicine NaOH (pH8.7)) を等量加えて混合した溶液を 0.5~1ml の結晶化溶液が入った密閉容器に、両溶液が触れ合わないように収め、20℃で静置した。およそ 3 日~1 ヶ月の静置の後に、試料溶液中に最大 0.07mm×0.5mm 程度の大きさの結晶が得られた。

得られた結晶を 20%のグリセロールを加えた結晶化溶液に浸し、続いて液体窒素中で急速に凍結した。シンクロトロン施設 Spring-8 の BL32B2 において、 振動法により、凍結した結晶の X 線回折データを 100K 窒素気流中で収集した。 得られた回折像から、Mosflm を用いて回折強度を数値化し、結晶構造因子を 求めた。この段階で結晶は六方晶系であり、空間群は $P6_522$ あるいは $P6_122$ を 有し、結晶の単位格子は、a=b=103.2 Å, c=281.0Å, $\alpha=\beta=90^\circ$, $\alpha=120^\circ$ であることが明らかとなった。

15

20

次に、得られた構造因子をもちいて分子置換法を行い、構造を解析した。立体構造のモデルとして、変異型 GK(Δ 1-1 1) / グルコース/化合物複合体結晶により決定されたグルコキナーゼの各ドメインの 3 次元構造座標をそれぞれ別々に用いた。計算は、 $8\sim4$ オングストロームの分解能のデータを用いて、CCP4 (Council for the Central laboratory of the Research Councils)の Amore プログラムにより行った。結晶の空間群は $P6_522$ であり、非対称単位に変異型 GK(Δ 1-1 5) 一分子を含むことが分かった。この構造と構造因子から電子密度マップを得て、プログラム 0(Dat -0N0 社製)を用いて変異型 GK(Δ 1-1 5) 単体の構造を決定した。

次に、CNX(モレキュラーシミュレーション社製)を用いてアミノ酸の位置 の精密化を行い、プログラム0を用いてアミノ酸残基の同定を行った。この操作を繰り返し行い、変異型グルコキナーゼのメチオニン15からヒスチジン156とアスパラギン180からシステイン461までの424アミノ酸残基の構造座標、2分子の硫酸イオン、1個のナトリウムイオン、及び7個の水分子を同定し構造座標を決定した。最終的に決定された構造の正確さの指標とされるR因

子は、50~3.4 オングストロームの分解能のデータに対して R=23.8%であり、 構造の精密化の段階で計算に用いなかったデータに対する R 因子 (Rfree) は 30.6%であった。ラマチャンドラン・プロットで確認したところ、許容されな い構造を持ったアミノ酸残基はなかった。

図1a及び図1bに、それぞれグルコキナーゼ(Δ1-11)/グルコース/化 5 合物1の構造を示すリボン図、及びグルコキナーゼ(Δ1-15)単体の構造を 示すリボン図を示す。なお、右図は、左図を回転した図である。決定された変 異型 GK (Δ1-15) 単体の構造においてラージドメイン及びスモールドメ インの主要部分の構造は、変異型 GK (Δ1-11) /グルコース/化合物複 合体結晶により決定されたグルコキナーゼにおけるそれぞれの構造と似たもの 10 であったが、2つのドメインの相対位置が大きく異なっていた。変異型 GK (Δ 1-15) 単体構造においてスモールドメインの主要部分は、変異型 GK(△ 1-11) /グルコース/化合物複合体構造におけるスモールドメインの位置 からおよそ 99 度回転していた。また、グルコキナーゼの C 末端領域に位置し 変異型 GK (Δ1-11) / グルコース/化合物複合体構造においてはスモー 15 ルドメインを構成していた α 1 3 ヘリックスは、変異型 GK (Δ 1 - 1 5) 単 体構造においてはもはやスモールドメインを構成せず、両ドメイン間に位置し ていた。さらに、変異型 $GK(\Delta 1 - 11)$ /グルコース/化合物複合体構造 における基質グルコースの結合部位及び活性化剤結合部位はどちらも2つのド メイン間に存在していたため、新たに決定した構造ではそれらの部位の構造は 20 大きく変化していた。変異型 GK (Δ1-15) 単体構造では酵素活性に重要 な役割を果たすアミノ酸残基が活性部位を形成しておらず、今回解析した変異 型 $GK(\Delta 1-15)$ 単体の構造は、グルコキナーゼの不活性状態の構造であ った。また、変異型 GK (Δ1-15) 単体の構造において活性化剤結合部位 は、完全に消失していた。変異型 $GK(\Delta 1 - 11)$ /グルコース/化合物複 25 合体構造および変異型 $GK(\Delta 1-15)$ 単体構造により観測されたグルコキ ナーゼの構造変化(約99度のドメインの回転)は、今まで知られていたヘキソ キナーゼの構造変化(約12度のドメインの回転)と比較してはるかに大きな

- 292 -

ものであり、現在の計算化学の能力で予想でき得るものではなく、今回の構造解析により初めて明らかとなったものである。

また、不活性型である変異型 $GK(\Delta 1-15)$ 単体構造への構造変化を阻害する目的として、変異型 $GK(\Delta 1-11)$ /グルコース/化合物複合体構造で示された化合物結合部位に結合する化合物を設計することにより、グルコキナーゼの活性化剤を設計できることが明らかとなった。

産業上の利用可能性

以上説明したように、本発明によれば、従来は結晶化が困難であったグルコキナーゼタンパク質の結晶を得ることができた。この結晶の構造を解析することによって得られる三次元構造座標は、グルコキナーゼに結合する化合物を設計するために好適に用いることができる。また、このようにして設計される化合物は、グルコキナーゼに結合するので、グルコキナーゼ活性化剤又は阻害剤として、グルコキナーゼ活性が関与する疾患の治療剤(例えば、糖尿病治療15 剤)として用いることができる。

- 293 -

請求の範囲

- 1. 結晶化に用いることを特徴とする、グルコキナーゼタンパク質。
- 2. 配列番号5に記載のアミノ酸配列からなることを特徴とする、請求項1 に記載のタンパク質。
 - 3. 配列番号5に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同一のアミノ酸配列からなることを特徴とするタンパク質の結晶。
 - 4. 前記タンパク質がグルコキナーゼタンパク質である、請求項3に記載の結晶。
- 10 5. 配列番号5に記載のアミノ酸配列を有するタンパク質の結晶である、請求項3に記載の結晶。
 - 6. 格子定数が、下記式(1)~(4): a=b=79.9±4オングストローム …(1) c=322.2±15オングストローム …(2)
- 15 $\alpha = \beta = 90^{\circ}$... (3) $\gamma = 120^{\circ}$... (4)

を満たす、請求項3に記載の結晶。

- 7. 空間群がP6₅22である、請求項6に記載の結晶。
- 8. 表1に記載の三次元構造座標データによって特定されるタンパク質の結
- 20 晶。
 - 9. 表1に記載の三次元構造座標データの少なくとも一つのデータを変更した三次元構造座標データにおいて、表1に記載の三次元構造座標データで示されるアミノ酸の主鎖の原子(C α 原子)と、該C α 原子と対応する前記変更した三次元構造座標データで示されるC α 原子との平均二乗偏差が、O. 6 オン
- 25 グストローム以下である結晶。
 - 10. 化合物結合部位が、配列番号 5 に示すアミノ酸配列における、チロシン6 1~セリン6 9、グルタミン酸 9 6 ~グルタミン9 8、イソロイシン1 5 9、メチオニン2 1 0 ~チロシン2 1 5、ヒスチジン2 1 8 ~グルタミン酸 2 2 1、メチオニン2 3 5、アルギニン2 5 0、ロイシン4 5 1 ~リジン4 5 9

- 294 -

のアミノ酸残基の少なくともひとつによって構成されている、請求項3~9の いずれかに記載の結晶。

- 11. 配列番号5に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同一のアミノ酸配列からなるタンパク質と該タンパク質に結合可能な化合物との 複合体を含む結晶。
 - 12. 前記化合物が、式(I)で表される、請求項11に記載の結晶。

(I)

[式中、 R^1 は、 Λ ロゲン原子、-S-(O)p-A、-S-(O)q-B又は-O00 -Bを示し(ここで、p及びqは同一又は異なって、 $0\sim2$ の整数を示し、A10 は置換されていてもよい直鎖の C_1-C_6 アルキル基を示し、Bは置換されていてもよい五員環又は六員環のアリール基又はヘテロアリール基を示し、 R^2 は水素原子又は Λ ロゲン原子を示し、

(11)

15

は、アミド基に結合した炭素原子の隣に窒素原子を有する、置換されていても よい単環の又は双環のヘテロアリール基を示す)

13. 前記化合物が、式(IIIa)~式(IIIc)で表されるいずれかの化合物である請求項12に記載の結晶。

$$0 = \stackrel{\mathsf{CH}_3}{=} 0 \qquad 0 \qquad \stackrel{\mathsf{S}}{\longrightarrow} \mathsf{CH}_3$$

$$0 + \mathsf{NH}_2 \qquad (IIIc)$$

5

14. 配列番号8に記載のアミノ酸配列からなることを特徴とする、請求項

15. 配列番号8に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同 0 一のアミノ酸配列からなることを特徴とするタンパク質の結晶。

- 16. 前記タンパク質がグルコキナーゼタンパク質である、請求項15に記載の結晶。
- 17. 配列番号8に記載のアミノ酸配列を有するタンパク質の結晶である、請求項15に記載の結晶。
- 15 18. 格子定数が、下記式
 a=b=103.2±5オングストローム … (5)
 c=281.0±7オングストローム … (6)
 α=β=90° … (7)

1に記載のタンパク質。

- 296 -

 $\gamma = 120^{\circ} \quad \cdots \quad (8)$

を満たす、請求項15に記載の結晶。

- 19. 空間群が P6,22 である、請求項18 に記載の結晶。
- 20. 表2に記載の三次元構造座標データによって特定されるタンパク質の
- 5 結晶。

10

- 21. 表2に記載の三次元構造座標データの少なくとも一つのデータを変更した三次元構造座標データにおいて、表2に記載の三次元構造座標データで示されるアミノ酸の主鎖の原子(C α原子)と、該C α原子と対応する前記変更した三次元構造座標データで示されるC α原子との平均二乗偏差が、0.6オングストローム以下である結晶。
 - 22. 配列番号 2 に記載のアミノ酸配列を有するタンパク質のN 末端、C 末端のいずれかまたは両方から、 $1\sim5$ 0 個のアミノ酸残基を欠損したアミノ酸配列を有するタンパク質を製造するタンパク質製造工程と、

前記タンパク質製造工程で得られたタンパク質と結合する化合物と、前記タ 15 ンパク質製造工程で得られたタンパク質とを反応させるタンパク質反応工程と を含む、

タンパク質及びそのタンパク質と結合する化合物の複合体を含む結晶の製造 方法。

- 23. タンパク質の結晶を製造する方法であって、
- 20 配列番号 5 に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同一のア ミノ酸配列を含みグルコキナーゼ活性を有するタンパク質、及び該タンパク質 に結合可能な化合物を用いることを特徴とする、結晶の製造方法。
 - 24. 前記タンパク質に結合可能な化合物が、式(I)で表される化合物であることを特徴とする、請求項23に記載のタンパク質の結晶の製造方法。

PCT/JP03/06054 WO 03/097824

$$\begin{array}{c|c}
R^1 & O \\
N & C \\
H & N \\
NH_2
\end{array}$$

(1)

[式中、R¹は、ハロゲン原子、-S-(O)p-A、-S-(O)q-B又は-O -Bを示し(ここで、p及びqは同一又は異なって、 $0\sim2$ の整数を示し、A は置換されていてもよい直鎖の $C_1 - C_6$ アルキル基を示し、Bは置換されてい 5 てもよい五員環又は六員環のアリール基又はヘテロアリール基を示し、 R²は水素原子又はハロゲン原子を示し、

は、アミド基に結合した炭素原子の隣に窒素原子を有する、置換されていても よい単環の又は双環のヘテロアリール基を示す) 10

25. 共結晶法又はソーキング法による、請求項23、又は請求項24に記 載の結晶の製造方法。

タンパク質の立体構造情報に基づいて該タンパク質に結合する化合物 26. の構造をデザインするドラッグデザイン方法であって、

該タンパク質の立体構造情報が、請求項3~13、請求項15~21のうちの 15 いずれか一項に記載の結晶を解析することによって得られる情報であることを 特徴とする、ドラッグデザイン方法。

前記立体構造情報に基づいて、前記タンパク質の化合物結合部位を推 測する結合部位推測工程と、

前記結合部位推測工程で推測された化合物結合部位に適合する化合物を、化合 20

物ライブラリより選択する選択工程と、

を含むことを特徴とする、請求項26に記載のドラッグデザイン方法。

- 28. 前記立体構造情報に基づいて、前記タンパク質の化合物結合部位を推測する結合部位推測工程と、
- 5 前記結合部位推測工程で推測された化合物結合部位に適合する化合物の構造を 構築する化合物構造構築工程と、

を含むことを特徴とする、請求項26に記載のドラッグデザイン方法。

- 29. 前記立体構造情報に基づいて、前記タンパク質の化合物結合部位を推測する結合部位推測工程と、
- 10 前記結合部位推測工程で推測された化合物結合部位と該化合物結合部位に適合 する化合物とが相互作用するように化合物の構造を目視によりデザインするデ ザイン工程と、

を含むことを特徴とする、請求項26に記載のドラッグデザイン方法。

- 30. 前記化合物結合部位が、配列番号5に示すアミノ酸配列における、チロシン61~セリン69、グルタミン酸96~グルタミン98、イソロイシン159、メチオニン210~チロシン215、ヒスチジン218~グルタミン酸221、メチオニン235、アルギニン250、ロイシン451~リジン459のアミノ酸残基の少なくともひとつによって構成されている、請求項26~29のうちのいずれか一項に記載のドラッグデザイン方法。
- 20 31. さらに、前記化合物結合部位に適合すると推定される候補化合物の生理活性を測定する工程を含む、請求項26~30のいずれか一項に記載のドラッグデザイン方法。
- 32. さらに、前記化合物結合部位に適合すると推定される候補化合物と、 配列番号5に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同一のアミ ノ酸配列を含むタンパク質とを接触させ、その候補化合物が該タンパク質に結 合するか否か判定する結合判定工程を含む、請求項26~30のいずれか一項 に記載のドラッグデザイン方法。
 - 33. 請求項26~30のいずれか一項に記載のドラッグデザイン方法によって選択された化合物群を化合物アレイとして組み合わせることを含む化合物

- 299 -

アレイの製造方法。

5

1/3

図1

2/3

図2

3/3

図3

1/15 SEQUENCE LISTING

```
<110> Banyu Pharmaceutical Co., Ltd.
```

<120> Crystal of Glucokinase Protein and Drug Desing Method Using Thereof

```
<130> P03-0064PCT
```

<140>

<141>

<150> JP2002-142232

<151> 2002-05-16

<160> 10

<170> PatentIn Ver. 2.1

⟨210⟩ 1

<211> 1401

<212> DNA

<213 Homo sapiens

<400> 1

atggcgatgg atgtcacaag gagccaggcc cagacagcct tgactctggt agagcagatc 60 ctggcagagt tccagctgca ggaggaggac ctgaagaagg tgatgagacg gatgcagaag 120 gagatggacc gcggcctgag gctggagacc catgaagagg ccagtgtgaa gatgctgccc 180 acctacgtgc gctccacccc agaaggctca gaagtcgggg acttcctct cctggacctg 240 ggtggcacta acttcagggt gatgctggt aaggtgggag aaggtgagga ggggcagtgg 300 agcgtgaaga ccaaacacca gatgtactcc atcccgagg acgccatgac cggcactgct 360 gagatgctct tcgactacat ctctgagtgc atctccgact tcctggacaa gcatcagatg 420 aaacacaaga agctgccct gggcttcacc ttctcttc ctgtgaggac cgaaggcaatc 480 gataagggca tccttctcaa ctggaccaag ggcttcaagg cctcaggagc agaagggaac 540 aatgtcgtgg ggcttctgcg agacgctatc aaacggagag gggactttga aatggatgt 600 gtggcaatgg tgaatgacac ggtggccacg atgatctct gctactacga agaccatca 660

2/15

tecgaggicg geatgategt gegeaegge tecaatgeet getacatgga geagatgeag 720
aatgtegage teggtegagg geaegagge egeatgtee teaatacega gteggeegee 780
ttegggaet eegeeggeet geaegagte etgetagget atgaeegeet getagaega 840
agetetgeaa acceeggtea geaegatet gagaaagetea taggtegeaa gtaeatggee 900
gagetggtee geettgteet geteaggete gtegaegaaa acctgetett eeaeggggg 960
geeteegage agetegeae acgeeggagee ttegagaege getteette geaggtegaa 960
agegaeaegg gegaeegaa geagatetae aacateetga geaegetegge getgegaag 1020
agegaeaeeg gegaeegaa geagatetae aacateetga geaegetegg getgeaeee 1140
eacatgteet eggegggeet ggeggegete ateaaeegaa geetgeteae geegeegag 1200
gaegtaatge geateaetgt ggeggeggat ggeteeggt acaagetgea eeeeagaga 1200
gaegtaatge geateaetgt ggegeggat ggeeteeggt aeaagetgea eeeeagaga 1220
gagteggagg agggeagtg eegggeegg etgaeegee geeteggat eacatetete 1320
gagteggagg agggeagtg eegggeege geeetggtet eggeggtge etgaagaa 1380
geetgtatge teggeeagtg a

<210> 2

<211> 466

<212> PRT

<213> Homo sapiens

<400> 2

Met Ala Met Asp Val Thr Arg Ser Gln Ala Gln Thr Ala Leu Thr Leu 1 5 10 15

Val Glu Gln Ile Leu Ala Glu Phe Gln Leu Gln Glu Glu Asp Leu Lys 20 25 30

Lys Val Met Arg Arg Met Gln Lys Glu Met Asp Arg Gly Leu Arg Leu 35 40 45

Glu Thr His Glu Glu Ala Ser Val Lys Met Leu Pro Thr Tyr Val Arg 50 55 60

Ser Thr Pro Glu Gly Ser Glu Val Gly Asp Phe Leu Ser Leu Asp Leu 65 70 75 80

								3/1	5						
Gly	Gly	Thr	Asn	Phe 85	Arg	Val	Met	Leu	Val 90	Lys	Val	Gly	Glu	Gly 95	Glu
Glu	Gly	Gln	Trp 100	Ser	Val	Lys	Thr	Lys 105	His	Gln	Met	Tyr	Ser 110	Ile	Pro
Glu	Asp	Ala 115	Met	Thr	Gly	Thr	Ala 120	Glu	Met	Leu	Phe	Asp 125	Tyr	Ile	Ser
Glu	Cys 130	Ile	Ser	Asp	Phe	Leu 135	Asp	Lys	His	Gln	Met 140	Lys	His	Lys	Lys
Leu 145	Pro	Leu	Gly	Phe	Thr 150	Phe	Ser	Phe	Pro	Val 155	Arg	His	Glu	Asp	Ile 160
Asp	Lys	Gly	Ile	Leu 165	Leu	Asn	Trp	Thr	Lys 170	Gly	Phe	Lys	Ala	Ser 175	Gly
Ala	Glu	Gly	Asn 180	Asn	Val	Val	Gly	Leu 185	Leu	Arg	Asp	Ala	Ile 190	Lys	Arg
Arg	Gly	Asp 195	Phe	Glu	Met	Asp	Val 200	Val	Ala	Met	Val	Asn 205	Asp	Thr	Val
Ala	Thr 210	Met	Ile	Ser	Cys	Tyr 215	Tyr	Glu	Asp	His	Gln 220	Cys	Glu	Val	Gly
Me t .225	Ile	.Val	Gly	Thr	Gly 230	Cys	Asn	Ala	Cys	Tyr 235	Met	Glu	Glu	Met	Gln 240
Asn	Val	Glu	Leu	Val 245	Glu	Gly	Asp	Glu	Gly 250		Met	Cys	Val	Asn 255	Thr
Glu	Trp	Gly	Ala 260	Phe	Gly	Asp	Ser	Gly 265	Glu	Leu	Asp	Glu	Phe 270	Leu	Leu

4/15

- Glu Tyr Asp Arg Leu Val Asp Glu Ser Ser Ala Asn Pro Gly Gln Gln 275 280 285
- Leu Tyr Glu Lys Leu Ile Gly Gly Lys Tyr Met Gly Glu Leu Val Arg 290 295 300
- Leu Val Leu Leu Arg Leu Val Asp Glu Asn Leu Leu Phe His Gly Glu 305 310 315 320
- Ala Ser Glu Gln Leu Arg Thr Arg Gly Ala Phe Glu Thr Arg Phe Val 325 330 335
- Ser Gln Val Glu Ser Asp Thr Gly Asp Arg Lys Gln Ile Tyr Asn Ile 340 345 350
- Leu Ser Thr Leu Gly Leu Arg Pro Ser Thr Thr Asp Cys Asp Ile Val 355 360 365
- Arg Arg Ala Cys Glu Ser Val Ser Thr Arg Ala Ala His Met Cys Ser 370 375 380
- Ala Gly Leu Ala Gly Val Ile Asn Arg Met Arg Glu Ser Arg Ser Glu 385 390 395 400
- Asp Val Met Arg Ile Thr Val Gly Val Asp Gly Ser Val Tyr Lys Leu 405 410 415
- His Pro Ser Phe Lys Glu Arg Phe His Ala Ser Val Arg Arg Leu Thr 420 425 430
- Pro Ser Cys Glu Ile Thr Phe Ile Glu Ser Glu Glu Gly Ser Gly Arg 435 440 445
- Gly Ala Ala Leu Val Ser Ala Val Ala Cys Lys Lys Ala Cys Met Leu 450 455 460

5/15

Gly Gln

465

⟨210⟩ 3

<211> 465

<212> PRT

<213> Homo sapiens

⟨400⟩ 3

Met Leu Asp Asp Arg Ala Arg Met Glu Ala Ala Lys Lys Glu Lys Val 1 5 10 15

Glu Gln Ile Leu Ala Glu Phe Gln Leu Gln Glu Glu Asp Leu Lys Lys 20 25 30

Val Met Arg Arg Met Gln Lys Glu Met Asp Arg Gly Leu Arg Leu Glu 35 40 45

Thr His Glu Glu Ala Ser Val Lys Met Leu Pro Thr Tyr Val Arg Ser 50 55 60

Thr Pro Glu Gly Ser Glu Val Gly Asp Phe Leu Ser Leu Asp Leu Gly 65 70 75 80 .

Gly Thr Asn Phe Arg Val Met Leu Val Lys Val Gly Glu Glu Glu 85 90 95

Gly Gln Trp Ser Val Lys Thr Lys His Gln Met Tyr Ser Ile Pro Glu 100 105 110

Asp Ala Met Thr Gly Thr Ala Glu Met Leu Phe Asp Tyr Ile Ser Glu 115 120 125

Cys Ile Ser Asp Phe Leu Asp Lys His Gln Met Lys His Lys Lys Leu 130 135 140 6/15

Pro 145	Leu	Gly	Phe	Thr	Phe 150	Ser	Phe	Pro	Val	Arg 155	His	Glu	Asp	Ile	Asp 160
Lys	Gly	Ile	Leu	Leu 165	Asn	Trp	Thr	Lys	Gly 170	Phe	Lys	Ala	Ser	Gly 175	Ala
Glu	Gly	Asn	Asn 180	Val	Val	Gly	Leu	Leu 185	Arg	Asp	Ala	Ile	Lys 190	Arg	Arg
Gly	Asp	Phe 195	Glu	Met	Asp	Val	Val 200	Ala	Met	Val	Asn	Asp 205	Thr	Val	Ala
Thr	Met 210	Ile	Ser	Cys	Tyr	Tyr 215	Glu	Asp	His	Gln	Cys 220	G1u	Val	Gly	Met
Ile 225	Val	Gly	Thr	Gly	Cys 230	Asn	Ala	Cys	Tyr	Met 235	Glu	Glu	Met	Gln	Asn 240
Val	Glu	Leu	Val	Glu 245	Gly	Asp	Glu	Gly	Arg 250	Met	Cys	Val	Asn	Thr 255	Glu
Trp	Gly	Ala	Phe 260	Gly	Asp	Ser	Gly	Glu 265	Leu	Asp	Glu	Phe	Leu 270	Leu	Glu
Tyr	Asp	Arg 275	Leu	Val	Asp	Glu	Ser 280	Ser	Ala	Asn	Pro	Gly 285	Gln	Gln	Leu
Tyr	Glu 290	Lys	Leu	Ile	Gly	Gly 295	Lys	Tyr	Met	Gly	G1u 300	Leu	Val	Arg	Leu
Val 305	Leu	Leu	Arg	Leu	Val 310	Asp	Glu	Asn	Leu	Leu 315	Phe	His	Gly	Glu	Ala 320
Ser	Glu	Gln	Leu	Arg 325	Thr	Arg	Gly	Ala	Phe 330	Glu	Thr	Arg	Phe	Val 335	Ser

7/15 .

Gln Val Glu Ser Asp Thr Gly Asp Arg Lys Gln Ile Tyr Asn Ile Leu 340 345 350

Ser Thr Leu Gly Leu Arg Pro Ser Thr Thr Asp Cys Asp Ile Val Arg 355 360 365

Arg Ala Cys Glu Ser Val Ser Thr Arg Ala Ala His Met Cys Ser Ala 370 375 380

Gly Leu Ala Gly Val Ile Asn Arg Met Arg Glu Ser Arg Ser Glu Asp 385 390 395 400

Val Met Arg Ile Thr Val Gly Val Asp Gly Ser Val Tyr Lys Leu His 405 410 415

Pro Ser Phe Lys Glu Arg Phe His Ala Ser Val Arg Arg Leu Thr Pro 420 425 430

Ser Cys Glu Ile Thr Phe Ile Glu Ser Glu Glu Gly Ser Gly Arg Gly 435 440 445

Ala Ala Leu Val Ser Ala Val Ala Cys Lys Lys Ala Cys Met Leu Gly 450 455 460

Gln

465

⟨210⟩ 4

<211> 1368

<212> DNA

<213 Homo sapiens

<400> 4

atggccttga ctctggtaga gcagatcctg gcagagttcc agctgcagga ggaggacctg 60

8/15

aagaaggtga tgagacggat gcagaaggag atggaccgcg gcctgaggct ggagacccat 120 gaagaggcca gtgtgaagat gctgcccacc tacgtgcgct ccaccccaga aggctcagaa 180 gtcggggact tcctctccct ggacctgggt ggcactaact tcagggtgat gctggtgaag 240 gtgggagaag gtgaggaggg gcagtggagc gtgaagacca aacaccagat gtactccatc 300 cccgaggacg ccatgaccgg cactgctgag atgctcttcg actacatctc tgagtgcatc 360 tccgacttcc tggacaagca tcagatgaaa cacaagaagc tgcccctggg cttcaccttc 420 tcctttcctg tgaggcacga agacatcgat aagggcatcc ttctcaactg gaccaagggc 480 ttcaaggcct caggagcaga agggaacaat gtcgtggggc ttctgcgaga cgctatcaaa 540 cggagagggg actitgaaat ggatgtggtg gcaatggtga atgacacggt ggccacgatg 600 atctcctgct actacgaaga ccatcagtgc gaggtcggca tgatcgtggg cacgggctgc 660 aatgcctgct acatggagga gatgcagaat gtggagctgg tggaggggga cgagggccgc 720 atgtgcgtca ataccgagtg gggcgccttc ggggactccg gcgagctgga cgagttcctg 780 ctggagtatg accgcctggt ggacgagagc tctgcaaacc ccggtcagca gctgtatgag 840 aagctcatag gtggcaagta catgggcgag ctggtgcggc ttgtgctgct caggctcgtg 900 gacgaaaacc tgctcttcca cggggaggcc tccgagcagc tgcgcacacg cggagccttc 960 gagacgcgct tcgtgtcgca ggtggagagc gacacgggcg accgcaagca gatctacaac 1020 tgcgagagcg tgtctacgcg cgctgcgcac atgtgctcgg cggggctggc gggcgtcatc 1140 aaccgcatgc gcgagagccg cagcgaggac gtaatgcgca tcactgtggg cgtggatggc 1200 tccgtgtaca agctgcaccc cagcttcaag gagcggttcc atgccagcgt gcgcaggctg 1260 acgcccagct gcgagatcac cttcatcgag tcggaggagg gcagtggccg gggcgcgccc 1320 1368 ctggtctcgg cggtggcctg taagaaggcc tgtatgctgg gccagtga

<210> 5 <211> 455

<212> PRT

<213> Homo sapiens

<400> 5

Met Ala Leu Thr Leu Val Glu Gln Ile Leu Ala Glu Phe Gln Leu Gln
1 5 10 .15

Glu Glu Asp Leu Lys Lys Val Met Arg Arg Met Gln Lys Glu Met Asp 20 25 30

9/15

Arg Gly Leu Arg Leu Glu Thr His Glu Glu Ala Ser Val Lys Met Leu 35 40 45

- Pro Thr Tyr Val Arg Ser Thr Pro Glu Gly Ser Glu Val Gly Asp Phe 50 55 60
- Leu Ser Leu Asp Leu Gly Gly Thr Asn Phe Arg Val Met Leu Val Lys 65 70 75 80
- Val Gly Glu Gly Glu Gly Gln Trp Ser Val Lys Thr Lys His Gln 85 90 95
- Met Tyr Ser Ile Pro Glu Asp Ala Met Thr Gly Thr Ala Glu Met Leu 100 105 110
- Phe Asp Tyr Ile Ser Glu Cys Ile Ser Asp Phe Leu Asp Lys His Gln 115 120 125
- Met Lys His Lys Lys Leu Pro Leu Gly Phe Thr Phe Ser Phe Pro Val
- Arg His Glu Asp Ile Asp Lys Gly Ile Leu Leu Asn Trp Thr Lys Gly 145 150 155 160
- Phe Lys Ala Ser Gly Ala Glu Gly Asn Asn Val Val Gly Leu Leu Arg 165 170 175
- Asp Ala Ile Lys Arg Arg Gly Asp Phe Glu Met Asp Val Val Ala Met 180 185 190
- Val Asn Asp Thr Val Ala Thr Met Ile Ser Cys Tyr Tyr Glu Asp His 195 200 205
- Gln Cys Glu Val Gly Met Ile Val Gly Thr Gly Cys Asn Ala Cys Tyr 210 215 220

10/15

Met 225	Glu	Glu	Met	Gln	Asn 230	Val	Glu	Leu	Val	Glu 235	Gly	Asp	Glu	Gly	Arg 240
Met	Cys	Val	Asn	Thr 245	Glu	Trp	Gly	Ala	Phe 250	Gly	Asp	Ser	Gly	G1u 255	Leu
Asp	Glu	Phe	Leu 260	Leu	Glu	Tyr	Asp	Arg 265	Leu	Val	Asp	Glu	Ser 270	Ser	Ala
Asn	Pro	Gly 275	Gln	Gln	Leu	Tyr	Glu 280	Lys	Leu	Ile	Gly	Gly 285	Lys	Tyr	Met
Gly	G1u 290	Leu	Val	Arg	Leu	Val 295	Leu	Leu	Arg	Leu	Val 300	Asp	Glu	Asn	Leu
Leu 3 0 5	Phe	His	Gly	Glu	Ala 310	Ser	Glu	Gln	Leu	Arg 315	Thr	Arg	Gly	Ala	Phe 320
Glu	Thr	Arg	Phe	Val 325	Ser	Gln	Val	Glu	Ser 330	Asp	Thr	Gly	Asp	Arg 335	Lys
Gln	Ile	Tyr	Asn 340		Leu	Ser	Thr	Leu 345	Gly	Leu	Arg	Pro	Ser 350	Thr	Thr
Acn	Cve	Aen	Ha	Va 1	Ara	Δτσ	۸la	Cvc	Glu	Ser	Val	Ser	Thr	Arg	Ala

Ala His Met Cys Ser Ala Gly Leu Ala Gly Val Ile Asn Arg Met Arg

Glu Ser Arg Ser Glu Asp Val Met Arg Ile Thr Val Gly Val Asp Gly

Ser Val Tyr Lys Leu His Pro Ser Phe Lys Glu Arg Phe His Ala Ser

11/15

Val Arg Arg Leu Thr Pro Ser Cys Glu Ile Thr Phe Ile Glu Ser Glu 420 425 430

Glu Gly Ser Gly Arg Gly Ala Ala Leu Val Ser Ala Val Ala Cys Lys 435 440 445

Lys Ala Cys Met Leu Gly Gln 450 455

<210> 6

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Primer

<400> 6

gtcacaagga gccagaagct tatggcctga ctctggtag

39

<210> 7

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Primer

<400> 7

gaagccccac gacattgttc ccttctgc

28

<210> 8

<211> 451

12/15

<212> PRT

<213> Homo sapiens

<400> 8

Met Val Glu Gln Ile Leu Ala Glu Phe Gln Leu Gln Glu Glu Asp Leu 1 5 10 15

Lys Lys Val Met Arg Arg Met Gln Lys Glu Met Asp Arg Gly Leu Arg 20 25 30

Leu Glu Thr His Glu Glu Ala Ser Val Lys Met Leu Pro Thr Tyr Val 35 40 45

Arg Ser Thr Pro Glu Gly Ser Glu Val Gly Asp Phe Leu Ser Leu Asp 50 55 60

Leu Gly Gly Thr Asn Phe Arg Val Met Leu Val Lys Val Gly Glu Gly 65 70 75 80

Glu Glu Gly Gln Trp Ser Val Lys Thr Lys His Gln Met Tyr Ser Ile 85 90 95

Pro Glu Asp Ala Met Thr Gly Thr Ala Glu Met Leu Phe Asp Tyr Ile 100 105 110

Ser Glu Cys Ile Ser Asp Phe Leu Asp Lys His Gln Met Lys His Lys 115 120 125

Lys Leu Pro Leu Gly Phe Thr Phe Ser Phe Pro Val Arg His Glu Asp 130 135 140

Ile Asp Lys Gly Ile Leu Leu Asn Trp Thr Lys Gly Phe Lys Ala Ser 145 150 155 160

Gly Ala Glu Gly Asn Asn Val Val Gly Leu Leu Arg Asp Ala Ile Lys 165 170 175

13/15

Arg	Arg	Gly	Asp 180	Phe	Glu	Met	Asp	Val 185	Val	Ala	Met	Val	Asn 190	Asp	Thr
Val	Ala	Thr 195	Met	Ile	Ser	Cys	Tyr 200	Tyr	Glu	Asp	His	Gln 205	Cys	Glu	Val
Gly	Met 210	Ile	Val	Gly	Thr	Gly 215	Cys	Asn	Ala	Cys	Tyr 220	Met	Glu	Glu	Met
G1n 225	Asn	Val	Glu	Leu	Val 230	Glu	Gly	Asp	Glu	Gly 235	Arg	Met	Cys	Val	Asn 240
Thr	Glu	Trp	Gly	Ala 245	Phe	Gly	Asp	Ser	Gly 250	Glu	Leu	Asp	Glu	Phe 255	Leu
Leu	Glu	Tyr	Asp 260	Arg	Leu	Val	Asp	G1u 265	Ser	Ser	Ala	Asn	Pro 270	Gly	Gln
Gln	Leu	Tyr 275	Glu	Lys	Leu	Ile	Gly 280	Gly	Lys	Tyr	Met	Gly 285	Glu	Leu	Val
Arg	Leu 290	Val	Leu	Leu	Arg	Leu 295	Val	Asp	Glu	Asn	Leu 300	Leu	Phe	His	Gly
G1u 305	Ala	Ser	Glu	Gln	Leu 310	Arg	Thr	Arg	Gly	Ala 315	Phe	Glu	Thr	Arg	Phe 320
Val	Ser	Gln	Val	Glu 325	Ser	Asp	Thr	Gly	Asp 330	Arg	Lys	Gln	Ile	Tyr 335	Asn
lle	Leu	Ser	Thr 340	Leu	Gly	Leu	Arg	Pro 345	Ser	Thr	Thr	Asp	Cys 350	Asp	Ile
/al	Arg	Arg 355	Ala	Cys	Glu	Ser	Val 360	Ser	Thr	Arg	Ala	Ala 365	His	Met	Cys

14/15

Ser Ala Gly Leu Ala Gly Val Ile Asn Arg Met Arg Glu Ser Arg Ser 370 375 380

Glu Asp Val Met Arg Ile Thr Val Gly Val Asp Gly Ser Val Tyr Lys 385 390 395 400

Leu His Pro Ser Phe Lys Glu Arg Phe His Ala Ser Val Arg Arg Leu 405 410 415

Thr Pro Ser Cys Glu Ile Thr Phe Ile Glu Ser Glu Glu Gly Ser Gly 420 425 430

Arg Gly Ala Ala Leu Val Ser Ala Val Ala Cys Lys Lys Ala Cys Met 435 440 445

Leu Gly Gln 450

<210> 9

<211> 38

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Primer

<400> 9

ccaggcccag acagccaagc ttatggtaga gcagatcc

38

⟨210⟩ 10

⟨211⟩ 28

<212> DNA

<213> Artificial Sequence

15/15

<220>

<223> Description of Artificial Sequence:Primer

<400> 10

gaagcccac gacattgttc ccttctgc

28

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/06054

A. CLASS Int.	SIFICATION OF SUBJECT MATTER C1 ⁷ C12N9/12, C12Q1/48						
According t	o International Patent Classification (IPC) or to both na	ational classification and IPC					
B. FIELD	S SEARCHED						
Minimum d	ocumentation searched (classification system followed CL1 C12N9/12, C12Q1/48	by classification symbols)					
1116.	CI CI2N9/12, CI2Q1/40						
Documentat	tion searched other than minimum documentation to the	extent that such documents are included	in the fields searched				
CA(S	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CA(STN), BIOSIS(DIALOG), WPI(DIALOG), SwissProt/PIR/Genbank/EMBL/DDBJ/GeneSeq						
C. DOCU	MENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where ap	•	Relevant to claim No.				
X A	TANIZAWA, Y. et al., Human Liver Glucokinase Gene: Cloning and Sequence Determination of Two Alternatively Spliced cDNAs, Proc.Natl.Acad.Sci. USA., 1991, Vol.88, pages 7294 to 7297						
Α	MAHALINGAM B. et al., Structural model of human glucokinase in complex with glucose and ATP., Diabetes, 1999, Vol.48, pages 1698 to 1705						
A	WILLSON M. et al., Yeast hexokinase inhibitors designed from the 3-D enzyme structure reboilding. J. Enzyme Inhib., 1997, Vol.12, No.2, pages 101 to 121						
Furth	er documents are listed in the continuation of Box C.	See patent family annex.					
"A" docume	l categories of cited documents: ent defining the general state of the art which is not cred to be of particular relevance document but published on or after the international filing	"T" later document published after the inte priority date and not in conflict with th understand the principle or theory unde "X" document of particular relevance; the	ne application but cited to erlying the invention				
date	ent which may throw doubts on priority claim(s) or which is	considered novel or cannot be considered step when the document is taken alone	red to involve an inventive				
cited to	reason (as specified)	"Y" document of particular relevance; the considered to involve an inventive step	claimed invention cannot be				
"O" docum	reason (as specified) ent referring to an oral disclosure, use, exhibition or other	combined with one or more other such	documents, such				
than th	ent published prior to the international filing date but later e priority date claimed	combination being obvious to a person "&" document member of the same patent i	family				
12 J	actual completion of the international search fune, 2003 (12.06.03)	Date of mailing of the international searce 24 June, 2003 (24.0					
	nailing address of the ISA/ nese Patent Office	Authorized officer					
Faccimile M		Telephone No					

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP03/06054

Box :	1 (Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This	inter	rnational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
to	b be	Claims Nos.: 26 to 33 because they relate to subject matter not required to be searched by this Authority, namely: Inventions according to said claims relate to subject matters not required e searched by this Authority in accordance with PCT Article 17 (2) (a) PCT Rule 39.1. (see extra sheet for details)
2. [Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. [<u></u>	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
		Observations where unity of invention is lacking (Continuation of item 3 of first sheet) mational Searching Authority found multiple inventions in this international application, as follows:
1. [As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. [As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. [_	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. [No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Rem	ark (on Protest

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP03/06054

Continuation of Box No.I-1 of continuation of first sheet(1)

•			
	•		
	·	,	

	属する分野の分類(国際特許分類(IPC)) 2N9/12, C12Q1/48						
B. 調査を	<u> </u>	***************************************					
	最小限資料(国際特許分類(IPC))						
	Int. Cl ⁷ Cl2N9/12, Cl2Q1/48						
最小限資料以	外の資料で調査を行った分野に含まれるもの						
CA (STN), B	用した電子データベース(データベースの名称、 OSIS(DIALOG), WPI(DIALOG) PIR/Genbank/EMBL/DDBJ/GeneSeq	調査に使用した用語)					
C. 関連す	ると認められる文献						
引用文献の			関連する				
カテゴリー*	引用文献名 及び一部の箇所が関連すると	ときは、その関連する箇所の表示	請求の範囲の番号				
<u>X</u> A	TANIZAWA Y. Tanizawa, et al., Hum Cloning and Sequence Determination Spliced cDNAs		$\frac{1}{2-25}$				
	Proc. Natl. Acad. Sci. USA., 1991, Vo	ol. 88, p. 7294-7297					
A	MAHALINGAM B. et al., Structural in complex with glucose and ATP. Diabetes, 1999, Vol. 48, p1698-170	1-25					
区 C欄の続	きにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。				
もの 「E」 以後 の 「L」 の 日本献 に 「O」 口頭に	のカテゴリー 車のある文献ではなく、一般的技術水準を示す 頭目前の出願または特許であるが、国際出願日 公表されたもの 主張に疑義を提起する文献又は他の文献の発行 くは他の特別な理由を確立するために引用する 理由を付す) よる開示、使用、展示等に言及する文献 頭目前で、かつ優先権の主張の基礎となる出願	の日の後に公表された文献 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの 「&」同一パテントファミリー文献					
国際調査を完	了した日 12.06.03	国際調査報告の発送日 24.05.05					
日本[D名称及びあて先 国特許庁 (ISA/JP) 即の100-8915	特許庁審査官 (権限のある職員) 4B 3037 鈴木 恵理子					
東京	部千代田区霞が関三丁目 4番 3 号	電話番号 03-3581-1101	内級 3488				

C (続き). 用文献の フテゴリー* A	関連すると認められる文献 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する間水の範囲の番号
ウテゴリー*		韓東の統囲の来り
A		もはつくくと単位日へては、
	WILLSON M. et al., Yeast hexokinase inhibitors designed from the 3-D enzyme structure reboilding. J. Enzyme Inhib., 1997, Vol. 12, No. 2, p. 101-121	1-25
	·	

第I枫	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
	条第3項 (PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作
成しなか	³ った。
1. 🗵	請求の範囲 <u>26-33</u> は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
	当該請求の範囲に記載された発明は、PCT17条(2)(a)(i)及びPCT規則39.1(i i i)の規定により、この国際調査機関が調査することを要しない対象に係るものである。 (詳細は「特別ページ」を参照されたい)
2.	請求の範囲 は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
3. 🗌	請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
第Ⅱ欄	発明の単一性が欠如しているときの意見(第1ページの3の続き)
为山城	光列の年 住が人知しているととの意光(第1、 クの3の肌と)
次に対	比べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
	•
1.	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
2.	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追 加調査手数料の納付を求めなかった。
3.	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
	* * * * * * * * * * * * * * * * * * *
4.	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。
14 4 - ETT	Actor Walled a BERM and a day of the state o
追加調子	至手数料の異議の申立てに関する注意] 追加調査手数料の納付と共に出願人から異議申立てがあった。
_	追加調査手数料の納付と共に出願人から異議申立てがなかった。

『第1ページの続葉 (1) 「第I欄1.」』の続き

本願発明に係る「ドラッグデザイン方法」は、タンパク質の立体構造情報に基づいて該タンパク質に結合する化合物の構造をデザインすることであるが、発明者がその精神活動によって適切な化合物を推測する行為を包含しており、これは純粋に精神的な行為の遂行に相当すると認められる。