Graphs

A graph is a pair (V, E), where

- V is a set of nodes or vertices
- E is a collection of pairs of vertices (u,v), called edges, links, or arcs

$$V = \{a,b,c,d,e\}$$

 $E = \{(a,b),(a,c),(a,d),$
 $(b,e),(c,d),(c,e),(d,e)\}$

Edge Types

- Directed edge
 - ordered pair of vertices (u,v)
 - first vertex u is the origin
 - second vertex v is the destination
- Undirected edge
 - unordered pair of vertices (u,v)
- Directed graph or digraph
 - all the edges are directed
- Undirected graph
 - all the edges are undirected
- Mixed graph
 - directed and undirected edges

Applications

Computer networks

3

Applications

Transportation networks

Applications

□ Scheduling tasks

A typical student day

Terminology

 End vertices (or endpoints) of an edge

U and V are the endpoints of a

- Edges incident on a vertex
 - a, d, and b are incident on V
- Adjacent vertices
 - U and V are adjacent
- Degree of a vertex
 - X has degree 5
- Parallel edges
 - h and i are parallel edges
- Self-loop
 - j is a self-loop

A graph without parallel edges or self-loops is called a simple graph

Terminology

- Path
 - sequence of adjacent vertices
- Simple path
 - path such that all its vertices and edges are distinct
- Examples
 - $P_1 = (V, X, Z)$ is a simple path
 - P₂=(U,W,X,Y,W,V) is a path that is not simple

Terminology

- Cycle
 - circular sequence of adjacent vertices
- Simple cycle
 - cycle such that all its vertices are distinct (except first and last)
- Examples
 - C₁=(V,X,Y,W,U,V) is a simple cycle
 - C₂=(U,W,X,Y,W,V,U) is a cycle that is not simple

Properties

Notation

n number of vertices

m number of edges

deg(v) degree of vertex v

Property 1

$$\sum_{v} \deg(v) = 2m$$

Example

$$n=4$$

$$m = 6$$

$$\bullet \deg(v) = 3$$

Complete Graph or Clique

Each vertex is connected to every other vertex.

Trees

A tree is a graph without cycles.

$$m = n-1$$

Forest

A forest is a set of trees.

Subgraph

A subgraph is a subset of vertices and edges that forms a graph.

Subgraph

A subgraph is a subset of vertices and edges that forms a graph.

Connected Graph

A graph is connected if there is a path from each vertex to every other vertex

Connected Component

A connected component is a maximal connected subgraph.

2 connected components

Connected Component

A connected component is a maximal connected subgraph.

3 connected components

Graphs 17

Graph ADT

```
numVertices(): number of vertices of the graph
getEdge(u,v): returns the edge between vertices u and v
opposite(v,e): returns the vertex other than v that is incident on e
insertVertex(x): creates and returns a new vertex storing value x
insertEdge(u,v,x): creates an edge between u and v soring value x
removeVertex(v): removes vertex v and all edges incident on it
removeEdge(e): removes edge e
areAdjacent(u,v): returns true is u and v are adjacent; false
                  otherwise
incidentEdges(u): returns an iterator of all edges incident on
                  vertex u.
```

Edge List Structure

- Vertex object
 - element
- Edge object
 - element
 - origin vertex object
 - destination vertex object
- Vertex sequence
 - sequence of vertex objects
- Edge sequence
 - sequence of edge objects

Adjacency List Structure

- Incidence sequence for each vertex
 - list of incident edges

Adjacency Matrix Structure

- 2D-array adjacency array
 - Reference to edges for adjacent vertices
 - Null for non nonadjacent vertices
- The "old fashioned" version just has 0 for no edge and 1 for edge

			0	1	2	3
u		0		e	g	
v		1	e		f	
W		2	g	f		h
Z		3			h	

Performance

■ n vertices, m edges	Edge List	Adjacency List	Adjacency Matrix
Space	O(n+m)	O(n+m)	$O(n^2)$
incidentEdges(v)	O(m)	$O(\deg(v))$	O(n)
areAdjacent (v, w)	O(m)	$O(\min\{\deg(v), \deg(w)\})$	O(1)
insertVertex(o)	O(1)	O(1)	$O(n^2)$
insertEdge(v, w, o)	O(1)	O(1)	O(1)
removeVertex(v)	O(m)	$O(\deg(v))$	$O(n^2)$
removeEdge(v,w)	O(m)	O(deg(u)+deg(v))	O(1)