# Invariance of simultaneous similarity and equivalence of matrices under extension of the ground field

Clément de Seguins Pazzis \*†

March 12, 2010

#### Abstract

We give a new and elementary proof that simultaneous similarity and simultaneous equivalence of families of matrices are invariant under extension of the ground field, a result which is non-trivial for finite fields and first appeared in a paper of Klinger and Levy ([2]).

AMS Classification: 15A21; 12F99

Keywords: matrices, Kronecker reduction, field extension, simultaneous similarity, simultaneous equivalence.

#### 1 Introduction

In this article, we let  $\mathbb{K}$  denote a field,  $\mathbf{L}$  a field extension of  $\mathbb{K}$ , and n and p two positive integers.

**Definition 1.** Two families  $(A_i)_{i\in I}$  and  $(B_i)_{i\in I}$  of matrices of  $M_n(\mathbb{K})$  indexed over the same set I are said to be **simultaneously similar** when there exists  $P \in GL_n(\mathbb{K})$  such that

$$\forall i \in I, \ P A_i P^{-1} = B_i$$

(such a matrix P will then be called a **base change matrix** with respect to the two families).

<sup>\*</sup>Teacher at Lycée Privé Sainte-Geneviève, 2, rue de l'École des Postes, 78029 Versailles Cedex, FRANCE.

<sup>&</sup>lt;sup>†</sup>e-mail address: dsp.prof@gmail.com

Two families  $(A_i)_{i\in I}$  and  $(B_i)_{i\in I}$  of matrices of  $M_{n,p}(\mathbb{K})$  indexed over the same set I are said to be **simultaneously equivalent** when there exists a pair  $(P,Q) \in GL_n(\mathbb{K}) \times GL_p(\mathbb{K})$  such that

$$\forall i \in I, \ P A_i Q = B_i.$$

Of course, those relations extend the familiar relations of similarity and equivalence respectively on  $M_n(\mathbb{K})$  dans  $M_{n,p}(\mathbb{K})$ , and they are equivalence relations respectively on  $M_n(\mathbb{K})^I$  dans  $M_{n,p}(\mathbb{K})^I$ .

The simultaneous similarity of matrices is generally regarded upon as a "wild problem" where finding a useful characterisation by invariants seems out of reach. See [1] for an account of the problem and an algorithmic approach to its solution (for that last matter, also see [2]).

In this respect, our very limited goal here is to establish the following two results :

**Theorem 1.** Let  $\mathbb{K} - L$  be a field extension and I be a set. Let  $(A_i)_{i \in I}$  and  $(B_i)_{i \in I}$  be two families of matrices of  $M_n(\mathbb{K})$ . Then  $(A_i)_{i \in I}$  and  $(B_i)_{i \in I}$  are simultaneously similar in  $M_n(\mathbb{K})$  if and only if they are simultaneously similar in  $M_n(L)$ .

**Theorem 2.** Let  $\mathbb{K} - L$  be a field extension and I be a set. Let  $(A_i)_{i \in I}$  and  $(B_i)_{i \in I}$  be two families of matrices of  $M_{n,p}(\mathbb{K})$ . Then  $(A_i)_{i \in I}$  and  $(B_i)_{i \in I}$  are simultaneously equivalent in  $M_{n,p}(\mathbb{K})$  if and only if they are simultaneously equivalent in  $M_{n,p}(L)$ .

Remarks 1.

- (i) In both theorems, the "only if" part is trivial.
- (ii) It is an easy exercise to derive theorem 1 from theorem 2. However, we will do precisely the opposite!

# 2 A proof for simultaneous similarity

#### 2.1 A reduction to special cases

In order to prove theorem 2, we will not, contra [2], try to give a canonical form for simultaneous similarity. Instead, we will focus on base change matrices and prove directly that if one exists in  $M_n(L)$ , then another (possibly the same), also exists in  $M_n(\mathbb{K})$ . To achieve this, we will prove the theorem in the two following special cases:

- (i)  $\mathbb{K}$  has at least n elements;
- (ii)  $\mathbb{K} \mathbb{L}$  is a separable quadratic extension.

Assuming these cases have been solved, let us immediately prove the general case. Case (i) handles the situation where  $\mathbb{K}$  is infinite. Assume now that  $\mathbb{K}$  is finite, and choose a positive integer N such that  $(\#\mathbb{K})^{2^N} \geq n$ . Since  $\mathbb{K}$  is finite, there exists (see section V.4 of [3]) a tower of N quadratic separable extensions

$$\mathbb{K} \subset K_1 \subset K_2 \subset \cdots \subset K_N$$
.

We let  $\mathbb{M}$  denote a compositum extension of  $K_N$  and  $\mathbb{L}$  (as extensions of  $\mathbb{K}$ ):



Assume the families  $(A_i)_{i\in I}$  and  $(B_i)_{i\in I}$  of matrices of  $M_n(\mathbb{K})$  are simultaneously similar in  $M_n(\mathbb{L})$ . Then they are also simultaneously similar in  $M_n(\mathbb{M})$ . However,  $\#K_N = (\#\mathbb{K})^{2^N} \geq n$ , so this simultaneous similarity also holds in  $M_n(K_N)$ . Using case (ii) by induction, when then obtain that that  $(A_i)_{i\in I}$  and  $(B_i)_{i\in I}$  are simultaneously similar in  $M_n(\mathbb{K})$ .

#### 2.2 The case $\# \mathbb{K} \geq n$

The line of reasoning here is folklore, but we reproduce the proof for sake of completeness. Let then  $P \in GL_n(L)$  be such that

$$\forall i \in I, \ P A_i P^{-1} = B_i,$$

so

$$\forall i \in I, \ P A_i = B_i P.$$

Let V denote the  $\mathbb{K}$ -vector subspace of  $\mathbb{E}$  generated by the coefficients of P, and choose a basis  $(x_1, \ldots, x_N)$  of V. Decompose then

$$P = x_1 P_1 + \dots + x_N P_N$$

with  $P_1, \ldots, P_N$  in  $\mathcal{M}_n(\mathbb{K})$ , and let W be the  $\mathbb{K}$ -vector subspace of  $\mathcal{M}_n(\mathbb{K})$  generated by the N-tuple  $(P_1, \ldots, P_N)$ . Since the  $A_i$ 's and the  $B_i$ 's have all their coefficients in  $\mathbb{K}$ , the previous relations give :

$$\forall i \in I, \ \forall k \in [1, N], \ P_k A_i = B_i P_k$$

hence

$$\forall i \in I, \ \forall Q \in W, \ Q A_i = B_i Q.$$

It thus suffices to prove that W contains a non-singular matrix. However, the polynomial  $\det(Y_1 P_1 + \cdots + Y_N P_N) \in \mathbb{K}[Y_1, \dots, Y_N]$  is homogeneous of total degree n and is not the zero polynomial because

$$\det(x_1.P_1 + \dots + x_N.P_N) = \det(P) \neq 0.$$

Since  $n \leq \# \mathbb{K}$ , we conclude that the map  $Q \mapsto \det Q$  does not totally vanish on W, which proves that  $W \cap \operatorname{GL}_n(\mathbb{K})$  is non-empty, QED.

#### 2.3 The case L is a separable quadratic extension of $\mathbb{K}$

We choose an arbitrary element  $\varepsilon \in \mathbb{L} \setminus \mathbb{K}$  and let  $\sigma$  denote the non-identity automorphism of the  $\mathbb{K}$ -algebra  $\mathcal{L}$ . Assume  $(A_i)_{i\in I}$  and  $(B_i)_{i\in I}$  are simultaneously similar in  $\mathcal{M}_n(\mathcal{L})$ , and let  $P \in GL_n(\mathcal{L})$  be such that

$$\forall i \in I, PA_iP^{-1} = B_i.$$

We first point out that the problem is essentially unchanged should P be replaced with a  $\mathbb{K}$ -equivalent matrix of  $GL_n(\mathbb{L})$ .

Indeed, let  $(P_1, P_2) \in GL_n(\mathbb{K})^2$ , and set  $P' := P_1 P P_2^{-1} \in GL_n(\mathbb{L})$ , and  $A'_i := P_2 A_i (P_2)^{-1}$  and  $B'_i := P_1 B_i (P_1)^{-1}$  for all  $i \in I$ . Then :

$$\forall i \in I, \ P' A_i' (P')^{-1} = B_i'.$$

Since it follows directly from definition that  $(A_i)_{i\in I}$  and  $(A'_i)_{i\in I}$  are simultaneously similar in  $M_n(\mathbb{K})$ , and that it is also true of  $(B_i)_{i\in I}$  and  $(B'_i)_{i\in I}$ , it will suffice to show that  $(A'_i)_{i\in I}$  and  $(B'_i)_{i\in I}$  are simultaneously similar in  $M_n(\mathbb{K})$ , knowing that they are simultaneously similar in  $M_n(\mathbb{L})$ .

Returning to P, we split it as

$$P = Q + \varepsilon R$$
 with  $(Q, R) \in M_n(\mathbb{K})^2$ .

The previous remark then reduces the proof to the case where the pair (Q, R) is canonical in terms of Kronecker reduction (see chapter XII of [4] and our section 4). More roughly, when can assume, since P is non-singular, that, for some  $q \in [0, n]$ :

$$Q = \begin{bmatrix} M & 0 \\ 0 & I_{n-q} \end{bmatrix} \quad \text{and} \quad R = \begin{bmatrix} I_q & 0 \\ 0 & N \end{bmatrix}$$

where  $M \in \mathrm{M}_q(\mathbb{K})$ , N is a nilpotent matrix of  $\mathrm{M}_{n-q}(\mathbb{K})$ , and we have let  $I_k$  denote the unit matrix of  $\mathrm{M}_k(\mathbb{K})$ .

Let  $i \in I$ . Applying  $\sigma$  coefficient-wise to  $P A_i P^{-1} = B_i$ , we get:

$$\sigma(P) A_i \sigma(P)^{-1} = B_i = P A_i P^{-1},$$

hence  $A_i$  commutes with  $\sigma(P)^{-1}P$ . We now claim the following result:

**Lemma 3.** Under the preceding assumptions, any matrix of  $M_n(\mathbb{K})$  that commutes with  $\sigma(P)^{-1}P$  also commutes with P.

Assuming this lemma holds, we deduce that  $\forall i \in I$ ,  $PA_iP^{-1} = A_i$ , hence  $(A_i)_{i \in I}$  and  $(B_i)_{i \in I}$  are equal, thus simultaneously similar in  $M_n(\mathbb{K})$ , which finishes our proof.

Proof of lemma 3. Let  $A \in \mathcal{M}_n(\mathbb{K})$  which commutes with  $\sigma(P)^{-1}P$ . Applying  $\sigma$ , we deduce that A also commutes with  $P^{-1}\sigma(P)$ , hence with  $I_n + (\sigma(\varepsilon) - \varepsilon)P^{-1}R$ , hence with  $P^{-1}R$  since  $\sigma(\varepsilon) \neq \varepsilon$ . Notice then that

$$P^{-1} R = \begin{bmatrix} (M + \varepsilon.I_q)^{-1} & 0 \\ 0 & (I_{n-q} + \varepsilon N)^{-1} N \end{bmatrix}$$

with  $(M + \varepsilon I_q)^{-1}$  non-singular and  $(I_n + \varepsilon N)^{-1}N$  nilpotent, so A, which stabilizes both  $\operatorname{Im}(P^{-1}R)^n$  and  $\operatorname{Ker}(P^{-1}R)^n$ , must be of the form

$$A = \begin{bmatrix} C & 0 \\ 0 & D \end{bmatrix} \text{ for some } (C, D) \in \mathcal{M}_q(\mathbb{K}) \times \mathcal{M}_{n-q}(\mathbb{K}).$$

Commutation of A with  $P^{-1}R$  ensures that C commutes with  $(M+\varepsilon.I_q)^{-1}$ , whereas D commutes with  $(I_{n-q}+\varepsilon N)^{-1}N=\varepsilon^{-1}.I_{n-q}-\varepsilon^{-1}.(I_{n-q}+\varepsilon N)^{-1}$  hence with  $(I_{n-q}+\varepsilon N)^{-1}$ . It follows that A commutes with  $P^{-1}$ , hence with P.

## 3 A proof for simultaneous equivalence

We will now derive theorem 2 from theorem 1. Under the assumptions of theorem 2, we choose an arbitrary object a that does not belong to I, and define

$$C_a = D_a := \begin{bmatrix} I_n & 0 \\ 0 & 0 \end{bmatrix} \in \mathcal{M}_{n+p}(\mathbb{K})$$

and, for  $i \in I$ ,

$$C_i = \begin{bmatrix} 0 & A_i \\ 0 & 0 \end{bmatrix}$$
 and  $D_i = \begin{bmatrix} 0 & B_i \\ 0 & 0 \end{bmatrix}$  in  $M_{n+p}(\mathbb{K})$ .

The following two conditions are then equivalent:

- (i)  $(A_i)_{i\in I}$  and  $(B_i)_{i\in I}$  are simultaneously equivalent;
- (ii)  $(C_i)_{i \in I \cup \{a\}}$  and  $(D_i)_{i \in I \cup \{a\}}$  are simultaneously similar.

Indeed, if condition (i) holds, then we choose  $(P,Q) \in GL_n(\mathbb{K}) \times GL_p(\mathbb{K})$  such that  $\forall i \in I$ ,  $PA_iQ = B_i$ , set  $R := \begin{bmatrix} P & 0 \\ 0 & Q^{-1} \end{bmatrix}$ , and remark that  $R \in GL_{n+p}(\mathbb{K})$  and

$$\forall i \in I \cup \{a\}, \ R C_i R^{-1} = D_i.$$

Conversely, assume condition (ii) holds, and choose  $R \in \mathrm{GL}_{n+p}(\mathbb{K})$  such that

$$\forall i \in I \cup \{a\}, \ R C_i R^{-1} = D_i.$$

Equality  $R C_a R^{-1} = C_a$  then entails that R is of the form

$$R = \begin{bmatrix} P & 0 \\ 0 & Q \end{bmatrix}$$
 for some  $(P,Q) \in \mathrm{GL}_n(\mathbb{K}) \times \mathrm{GL}_p(\mathbb{K})$ ,

and the other relations then imply that

$$\forall i \in I, \ P A_i Q^{-1} = B_i.$$

Using equivalence of (i) and (ii) with both fields  $\mathbb K$  and  $\mathbb L$ , theorem 2 follows easily from theorem 1.

# 4 Appendix: on the Kronecker reduction of matrix pencils

Attention was brought to me that, in [4], the proof that every pencil of matrix is equivalent to a canonical one fails for finite fields. We will give a correct proof here in the case of a "weak" canonical form (that is all we need here, and reducing further to a true canonical form is not hard from there using the theory of elementary divisors).

Notation 2. For 
$$n \in \mathbb{N}$$
, set  $L_n = \begin{bmatrix} 1 & 0 & 0 & & \\ 0 & 1 & 0 & & \\ & & \ddots & \ddots & \\ & & & 1 & 0 \end{bmatrix} \in \mathcal{M}_{n,n+1}(\mathbb{K})$  and

$$K_n = \begin{bmatrix} 0 & 1 & 0 & & \\ 0 & 0 & 1 & & \\ & & \ddots & \ddots & \\ & & & 0 & 1 \end{bmatrix} \in \mathcal{M}_{n,n+1}(\mathbb{K}); \text{ and, for arbitrary objects } a \text{ and}$$

b, define the Jordan matrix:

$$J_n(a,b) = \begin{bmatrix} a & b & 0 \\ 0 & a & b \\ & \ddots & \ddots \end{bmatrix} \in \mathcal{M}_n(\{0,a,b\}).$$

**Theorem 4** (Kronecker reduction theorem for pencils of matrices). Let A and B in  $M_{n,p}(\mathbb{K})$ . Then there are non-singular  $(P_1,Q_1) \in GL_n(\mathbb{K}) \times GL_p(\mathbb{K})$  such that  $P_1(A+XB)Q_1$  is block-diagonal with every non-zero diagonal block having one of the following forms, with only one of the first type:

- $P + X I_r$  for some non-singular  $P \in GL_r(\mathbb{K})$ ;
- $J_r(1,X);$   $J_r(X,1);$   $L_r + XK_r;$   $(L_r + XK_r)^t.$

This decomposition is unique up to permutation of blocks and up to similarity on the non-singular P.

We will only prove here that such a decomposition exists. Uniqueness is not needed here so we will leave it as an exercise for the reader. We will consider A and B as linear maps from  $E = \mathbb{K}^p$  to  $F = \mathbb{K}^n$ . Without loss of generality, we may assume  $\operatorname{Ker} A \cap \operatorname{Ker} B = \{0\}$  and  $\operatorname{Im} A + \operatorname{Im} B = F$ . We define inductively two towers  $(E_k)_{k \in \mathbb{N}}$  and  $(F_k)_{k \in \mathbb{N}}$  of linear subspaces of E and F by:

- (a)  $E_0 = \{0\}$ ;  $F_0 = A(\{0\}) = \{0\}$ ;
- (b)  $\forall k \in \mathbb{N}, E_{k+1} = B^{-1}(F_k) \text{ and } F_{k+1} = A(E_{k+1}).$

Notice that  $E_1 = \operatorname{Ker} B$ . The sequences  $(E_k)_{n \geq 0}$  and  $(F_k)_{n \geq 0}$  are clearly non-decreasing so we can find a smallest integer N such that  $E_N = E_k$  for every  $k \geq N$ . Hence  $F_N = F_k$  for every  $k \geq N$ , and  $E_N = g^{-1}(F_N)$ . It follows that  $A(E_N) = F_N$  and  $B(E_N) \subset F_N$ . We now let f and g denote the linear maps from  $E_N$  to  $F_N$  induced by A and B.

From there, the proof has two independent major steps:

**Lemma 5.** There are basis **B** and **C** respectively of  $E_N$  and  $F_N$  such that  $M_{\mathbf{B},\mathbf{C}}(f) + X M_{\mathbf{B},\mathbf{C}}(g)$  is block-diagonal with all non-zero blocks having one of the forms  $J_r(1,X)$  or  $L_s + X K_s$ .

**Lemma 6.** There are splittings  $E = E_N \oplus E'$  and  $F = F_N \oplus F'$  such that  $A(E') \subset F'$  and  $B(E') \subset F'$ .

Assuming those lemmas are proven, let us see how we can easily conclude:

- We deduce from the two previous lemmas that A+XB is  $\mathbb{K}$ -equivalent to some  $\begin{bmatrix} A'+XB' & 0 \\ 0 & C(X) \end{bmatrix}$  where C(X) is block-diagonal with all non-zero blocks of the form  $J_r(1,X)$  or  $L_s+XK_s$ , and A' and B' have coefficients in  $\mathbb{K}$ , with  $\operatorname{Ker} B'=\{0\}$ ; it will thus suffice to prove the existence of a canonical form for the pair (A',B');
- applying the first step of the proof to the matrices  $(A')^t$  and  $(B')^t$ , we find that A' + X B' is  $\mathbb{K}$ -equivalent to some  $\begin{bmatrix} A'' + X B'' & 0 \\ 0 & D(X) \end{bmatrix}$

- where D(X) is block-diagonal with all non-zero blocks of the form  $J_r(1,X)^t$  (which is  $\mathbb{K}$ -similar to  $J_r(1,X)$ ) or  $(L_s+XK_s)^t$ , and A'' and B'' have coefficients in  $\mathbb{K}$ , with  $\operatorname{Ker} B''=\{0\}$  and  $\operatorname{coker} B''=\{0\}$ . It follows that B'' is non-singular.
- Finally,  $(B'')^{-1}(A'' + X B'') = (B'')^{-1}A'' + X.I_k$  for some integer k, and the pair (A'', B'') can thus be reduced by using the Fitting decomposition of  $(B'')^{-1}A''$  combined with a Jordan reduction of its nilpotent part: this yields a block-diagonal matrix  $\mathbb{K}$ -equivalent to A'' + X B'' with all diagonal blocks of the form  $J_r(X, 1)$  or  $P + X.I_s$  for some non-singular P. This completes the proof of existence.

Proof of lemma 6. We proceed by induction.

Assume, for some  $k \in [\![1,N]\!]$ , that there are splittings  $E = E_N \oplus E'$  and  $F = F_N \oplus F'$  such that  $A(E') \subset F' \oplus F_k$  and  $B(E') \subset F' \oplus F_k$ . Since  $B^{-1}(F_N) = E_N$ , the subspaces  $F_N$  and B(E') are independant. We can therefore find some F'' such that  $F' \oplus F_k = F'' \oplus F_k$ ,  $F_N \oplus F'' = F$  and  $B(E') \subset F''$ . Choose then a basis  $(e_1, \ldots, e_p)$  of E', and decompose  $A(e_i) = f_i + f'_i$  for all  $i \in [\![1,p]\!]$ , with  $f_i \in F''$  and  $f'_i \in F_k$ . For  $i \in [\![1,p]\!]$ , we have  $f'_i = A(g_i)$  for some  $g_i \in E_k$ . Then  $(e_1 - g_1, \ldots, e_p - g_p)$  still generates a supplementary subspace E'' of  $E_N$  in E, and we now have  $A(e_i - g_i) \in F''$  and  $B(e_i - g_i) \in F'' \oplus F_{k-1}$  for all  $i \in [\![1,p]\!]$ . Hence  $E = E_N \oplus E''$  and  $F = F_N \oplus F''$ , now with  $A(E'') \subset F'' \oplus F_{k-1}$  and  $B(E'') \subset F'' \oplus F_{k-1}$ . The condition is thus proven at the integer k-1. By downward induction, we find that it holds for k = 0, QED.

*Proof of lemma 5.* The argument is similar to the standard proof of the Jordan reduction theorem.

- Split  $F_N = F_{N-1} \oplus W_{N,N}$  and  $E_N = E_{N-1} \oplus V_{N,N} \oplus V'_{N,N}$  such that  $E_{N-1} \oplus V'_{N,N} = E_{N-1} + (E_N \cap \operatorname{Ker} f), \ V'_{N,N} \subset \operatorname{Ker} f$  and  $f(V_{N,N}) = W_{N,N}$  (so f induces an isomorphism from  $V_{N,N}$  to  $W_{N,N}$ ). Set  $W_{N,N-1} = g(V_{N,N})$  and  $W'_{N,N-1} = g(V'_{N,N})$ . Remark that  $F_{N-2} \oplus W_{N,N-1} \oplus W'_{N,N-1} \subset F_{N-1}$ , and split  $F_{N-1} = F_{N-2} \oplus W_{N,N-1} \oplus W'_{N,N-1} \oplus W_{N-1,N-1}$ .
- We then proceed by downward induction to define four families of linear subspaces  $(V_{\ell,k})_{1 \leq k \leq \ell \leq N}$ ,  $(V'_{\ell,k})_{1 \leq k \leq \ell \leq N}$   $(W_{\ell,k})_{1 \leq k \leq \ell \leq N}$  and  $(W'_{\ell,k})_{1 \leq k \leq \ell 1 \leq N-1}$  such that:
  - (i) for every  $k \in [1, N]$ ,

$$E_k = E_{k-1} \oplus V_{k,k} \oplus V_{k+1,k} \oplus \cdots \oplus V_{N,k} \oplus V'_{k,k} \oplus V'_{k+1,k} \oplus \cdots \oplus V'_{N,k};$$

(ii) for every  $k \in [1, N]$ ,

$$F_k = F_{k-1} \oplus W_{k,k} \oplus W_{k+1,k} \oplus \cdots \oplus W_{N,k} \oplus W'_{k+1,k} \oplus W'_{k+2,k} \oplus \cdots \oplus W'_{N,k};$$

- (iii) for every  $k \in [1, N]$ ,  $E_{k-1} + (E_k \cap \text{Ker } f) = E_{k-1} \oplus V'_{k,k}$  and  $V'_{k,k} \subset \text{Ker } f$ ;
- (iv) for every  $\ell \in \llbracket 1, N \rrbracket$  and  $k \in \llbracket 2, \ell \rrbracket$ , g induces an isomorphism  $g_{\ell,k} : V_{\ell,k} \xrightarrow{\simeq} W_{\ell,k-1}$  and an isomorphism  $g'_{\ell,k} : V'_{\ell,k} \xrightarrow{\simeq} W'_{\ell,k-1}$ ;
- (v) for every  $\ell \in [\![1,N]\!]$  and  $k \in [\![1,\ell]\!]$ , f induces an isomorphism  $f_{\ell,k}: V_{\ell,k} \xrightarrow{\simeq} W_{\ell,k}$  and, if  $k < \ell$ , an isomorphism  $f'_{\ell,k}: V'_{\ell,k} \xrightarrow{\simeq} W'_{\ell,k}$ .



• Set  $\ell \in [1, N]$ . Define

$$G_{\ell} = V_{\ell,1} \oplus \cdots \oplus V_{\ell,\ell}, \quad G'_{\ell} = V'_{\ell,1} \oplus \cdots \oplus V'_{\ell,\ell},$$

$$H_{\ell} = W_{\ell,1} \oplus \cdots \oplus W_{\ell,\ell}$$
 and  $H'_{\ell} = W'_{\ell,1} \oplus \cdots \oplus W'_{\ell,\ell-1}$ .

Notice that:

$$f(G_{\ell}) = H_{\ell}$$
,  $g(G_{\ell}) \oplus W_{\ell,\ell} = H_{\ell}$ ,  $f(G'_{\ell}) = H'_{\ell}$  and  $g(G'_{\ell}) = H'_{\ell}$ .

From there, it is easy to conclude.

• Let  $n_{\ell} = \dim W_{\ell,\ell}$ . Remark that  $\dim V_{\ell,k} = \dim W_{\ell,k} = n_{\ell}$  for every  $1 \in [\![1,\ell]\!]$  and choose a basis  $\mathbf{C}_{\ell,\ell}$  of  $W_{\ell,\ell}$ . Define  $\mathbf{B}_{\ell,\ell} = f_{\ell,\ell}^{-1}(\mathbf{C}_{\ell,\ell})$ ,  $\mathbf{C}_{\ell,\ell-1} := g_{\ell,\ell}(\mathbf{B}_{\ell,\ell})$  and proceed by induction to recover a basis for  $V_{\ell,k}$  and  $W_{\ell,k}$  for every suitable k: by glueing together those basis, we recover respective basis  $(\mathbf{B}_{\ell,1},\ldots,\mathbf{B}_{\ell,\ell})$  and  $(\mathbf{C}_{\ell,1},\ldots,\mathbf{C}_{\ell,\ell})$  of  $G_{\ell}$  and  $H_{\ell}$  and remark that f and g induce linear maps from  $G_{\ell}$  to  $H_{\ell}$  with respective matrices  $L_{\ell} \otimes I_{n_{\ell}}$  and  $K_{\ell} \otimes I_{n_{\ell}}$  in those basis (remember that  $E_1 = \mathrm{Ker}\,g$ ). A simple permutation of basis shows that those linear maps can be represented by  $I_{n_{\ell}} \otimes L_{\ell}$  and  $I_{n_{\ell}} \otimes K_{\ell}$  in a suitable common pair of basis.

- Proceeding similarly for  $G'_{\ell}$  and  $H'_{\ell}$ , but starting from a basis of  $V'_{\ell,\ell}$ , we obtain that f and g induce linear maps from  $G'_{\ell}$  to  $H'_{\ell}$  and there is a suitable choice of basis so that their matrices are respectively  $I_s \otimes I_{\ell}$  and  $I_s \otimes J_{\ell}(0,1)$  for some integer s.
- Notice that we have defined splittings

$$E_N = G_1 \oplus G_1' \oplus G_2 \oplus G_2' \oplus \cdots \oplus G_N \oplus G_N'$$

and

$$F_N = H_1 \oplus H_1' \oplus H_2 \oplus H_2' \oplus \cdots \oplus H_{N-1}' \oplus H_N,$$

therefore lemma 5 is proven by glueing together the various basis built here.

### References

- [1] S. Friedland, Simultaneous similarity of matrices. Advances in Mathematics. 50 (1983) 189-265
- [2] L. Klinger, L S. Levy, Sweeping similarity of matrices. *Linear Algebra Appl.* 75 (1986) 67-104
- [3] S. Lang, Algebra, 3rd edition. GTM, 211, Springer-Verlag, 2002.
- [4] F.R. Gantmacher, Matrix Theory, Vol. 2, New York: Chelsea, 1977.