Algebra Note

Miliyon T.
Addis Ababa University
Department of Mathematics
http://www.albohessab.weebly.com

Contents

1	Introduction						
	1.1	Sets	3				
	1.2	Functions	3				
2	Gro	oups 5	5				
	2.1	Basic Definitions	5				
	2.2	Homomorphisms	3				
	2.3	Subgroups	7				
		Cyclic groups					
		Permutations					
	2.6	Isomorphism Theorems	9				
	2.7	Isomorphism Theorems9Sylow Theorems9	9				
	2.8	Classification of Finite Groups)				
3	Rin	$_{ m gs}$	1				
		Definition and elementary properties	1				

1 Introduction

1.1 Sets

Definition 1.1 (Equality of sets). For any two sets A and B; $A = B \Leftrightarrow A \subseteq B$ and $B \subseteq A$.

1.2 Functions

Let $f:A\to B.$ Then the diagram of functions

is said to be commutative if $g \circ f = h$. Similarly, the diagram

is said to be commutative if $g \circ f = k \circ h$.

If $f: A \to B$

- 1. $S \subset A$, $f(S) = \{f(x) : x \in S\}$.
- 2. $T \subset B$, $f^{-1}(T) = \{x \in A : f(x) \in T\}$.
- 3. $S \subset A \Rightarrow S \subset f^{-1}(f(S))$. If f is 1 1, then $S = f^{-1}(f(S))$.
- 4. $T \subset B \Rightarrow T \subset f(f^{-1}(T))$. If f is onto, then $T = f(f^{-1}(T))$.

If $A \xrightarrow{f} B \xrightarrow{g} C$, then $g \circ f : A \to C$

- 1. If f, g is 1 1, so is $g \circ f$.
- 2. If f, g is onto, $g \circ f$ is onto.

Definition 1.2 (Equivalence relation). A relation R on a set A is an equivalence relation if it satisfies

- (i) Reflexive: $(a, a) \in R, \forall a \in A$.
- (ii) Symmetric: $(a, b) \in R \Rightarrow (b, a) \in R, \forall a, b \in A$.
- (iii) Transitive: $(a,b), (b,c) \in R \Rightarrow (a,c) \in R, \forall a,b,c \in A.$

Definition 1.3. $\bar{a} = \{x \in A : x \sim a\} = \{x \in A : (x, a) \in R\}$ is the equivalence class determined by a.

$$\bar{a} = \bar{b} \Leftrightarrow a \sim b \ i.e.(a, b) \in R.$$

Proposition 1.4. For any $a, b \in A$ either $\bar{a} = \bar{b}$ or $\bar{a} \cap \bar{b} = \emptyset$.

Definition 1.5. A/R =The set of all equivalence class in A.

Example 1.6. Let m > 0 be an integer. Congruence modulo m is an equivalence relation on \mathbb{Z} which has precisely m equivalence classes.

Definition 1.7 (Choice). Let $A_i : i \in I$ be a non-empty family of sets indexed by I. The cartesian product of the sets A_i is the set of all functions

$$f:I\to \bigcup_{i\in I}A_i$$

such that $f(i) \in A_i \ \forall i \in I$. It is denoted by $\prod_{i \in I} A_i$

$$\prod_{i \in I} A_i = \{ f : f : I \to \cup A_i \text{ such that } f(i) \in A_i \}.$$

Definition 1.8 (WOA). Every non empty subset of positive integer has a least element.

Definition 1.9 (PMI).

Theorem 1.10 (Division Algorithm). If $a, b \in \mathbb{Z}$ and $b \neq 0$, then $\exists!$ integers q, r such that

$$a = qb + r, \qquad 0 \le r < |b|.$$

Theorem 1.11 (Bezout's Lemma).

2 Groups

2.1 Basic Definitions

Definition 2.1 (Binary operation). Let $G \neq \emptyset$ a binary operation on G is a function from $G \times G \to G$.

Definition 2.2 (Groupoid). A non-empty set G together with a binary operation on G.

Definition 2.3 (Semi-Group). A non-empty set G together with a binary operation on G which is associative.

Definition 2.4 (Monoid). A semi group which contains a two sided identity.

Definition 2.5 (Group). A Monoid G such that for every $a \in G$, there exists a two sided inverse.

Notation 2.6. $|G| = \text{order of the group. If } |G| < \infty$, then G is finite otherwise infinite.

Theorem 2.7. If G is a monoid the identity element e is unique

Proof. Let e and e' be two identity elements, then

$$e = ee' = e'e = e'$$

Theorem 2.8. If G is a group, then

i) $c \in G$ and $cc = c \Rightarrow c = e$.

ii) $\forall a, b, c$

(Left cancelation)
$$ab = ac \Rightarrow b = c$$

(Right cancelation) $ba = ca \Rightarrow b = c$

- iii) For each $a \in G$ the inverse is unique.
- iv) For each $a \in G$, $(a^{-1})^{-1} = a$.
- **v)** For all $a, b \in G$, $(ab)^{-1} = b^{-1}a^{-1}$
- vi) For all $a, b \in G$, the equation ax = b, ya = b have a unique solution $x = a^{-1}b$ and $y = ba^{-1}$.

Proposition 2.9. Let G be a semigroup. Then G is a group iff

- 1. $\exists e \in G \text{ such that } ea = a, \ \forall a \in G.$
- 2. For each $a \in G$, there exists $a^{-1} \in G$ such that $a^{-1}a = e$.

Proof.

Proposition 2.10. Let G be a semigroup. Then G is a group iff the equations ax = b and ya = b have solutions in G.

Example 2.11.
$$(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +)$$
 are groups. $(\mathbb{Z}, \cdot), (\mathbb{Q}, \cdot), (\mathbb{R}, \cdot)$ are monoids.

Example 2.12. Consider a square with vertices consecutively numbered 1, 2, 3, 4 and centered at the origin of the x, y plane. Let $D_4^* = \{R, R^2, R^3, I, T_x, T_y, T_{1,3}, T_{2,4}\}$ where

R is a counter clockwise rotation about 90° R^2 is a counter clockwise rotation about 180° R^3 is a counter clockwise rotation about 270° I is a counter clockwise rotation about 360° T_x is a reflection about x – axis T_y is a reflection about y – axis $T_{1,3}$ is a reflection about the line through 1&3 $T_{2,4}$ is a reflection about the line through 2&4

$$I = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, R = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}, R^2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}, R^3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix},$$

$$T_x = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}, T_y = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}, T_{1,3} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix}, T_{2,4} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$$

For $v, u \in D_4^*$, $uv = u \circ v$ transformation v followed by u. Claim: D_4^* is a non-abelian group of order 8. The Cayley Table for D_4^* is

0	I	R	R^2	R^3	T_x	T_y	$T_{1,3}$	$T_{2,4}$
I	I	R	R^2	R^3	T_x	T_y	$T_{1,3}$	$T_{2,4}$
R	R	R^2	R^3	I	$T_{2,4}$	$T_{1,3}$	T_x	T_y
R^2	R^2	R^3	I	R	T_y	T_x	$T_{2,4}$	$T_{1,3}$
R^3	R^3	I	R	R^2	$T_{1,3}$	$T_{2,4}$	T_y	T_x
T_x	T_x	$T_{1,3}$	T_y	$T_{2,4}$	I	R^2	R	R^3
T_y	T_y	$T_{2,4}$	T_y	$T_{1,3}$	R^2	I	R^3	R
$T_{1,3}$	$T_{1,3}$	T_y	$T_{2,4}$	T_x	R^3	R	I	R^2
$T_{2,4}$	$T_{2,4}$	T_x	$T_{1,3}$	T_y	R	R^3	R^2	I

Table 1: (D_4^*, \circ) [uv: u from row and v from column.]

2.2 Homomorphisms

Definition 2.13. Let G and H be semigroups. A function $f: G \to H$ is a homomorphism if

$$f(ab) = f(a) f(b), \quad \forall a, b \in G.$$

If f is injective, then f is a monomorphism. If f is surjective, then f is an epimorphism. If f is bijective, then f is an isomorphism.

Definition 2.14. G and H are said to be isomorphic if there is an isomorphism between them.

Notation 2.15. If G and H are isomorphic we write $G \cong H$.

Definition 2.16. A homomorphism $f: G \to G$ is called an endomorphism.

Definition 2.17. An isomorphism $f: G \to G$ is called an automorphism.

Lemma 2.18. If G and H are groups with identities e_G and e_H respectively, then i) $f(e_G) = e_H$. ii) $f(a^{-1}) = [f(a)]^{-1}$

Proof. Exercise
$$\Box$$

Example 2.19. Let G be an abelian group. Define $f: G \to G$ by $f(x) = x^2$. Show that f is a homomorphism.

Example 2.20. Define $f: G \to G$ by $f(x) = x^{-1}$. Show that f is an automorphism.

Definition 2.21. Let $f: G \to H$ be a homomorphism of groups, then $\ker f = \{x \in G: f(x) = e\}$ $A \subset G, f(A) = \{f(x): x \in A\}$ $B \subset H, f^{-1}(B) = \{x \in G: f(x \in B)\}$

Theorem 2.22. If $f: G \to H$ is a homomorphism of groups, then

- 1. f is a monomorphism iff $\ker f = \{e\}$.
- 2. f is an isomorphism iff \exists a homomorphism $f^{-1}: H \to G$ such that $f \circ f^{-1} = I_H$ and $f^{-1}f = I_G$.

Proof. (1) Exercise

(2) (\Rightarrow) Suppose f is an isomorphism i.e. f is 1-1, onto, monomorphism. Since f is bijective, there exist f^{-1} which is also bijective.

Claim: f^{-1} is homomorphism.

2.3 Subgroups

Definition 2.23. Let G be a group and $\emptyset \neq H \subset G$ that is closed under the binary operation of G, then H is said to be a subgroup of G if H by itself is a group.

Notation 2.24. If H is a subgroup of G, we write $H \leq G$.

Example 2.25 (Trivial subgroups). Let G be a group, then $\{e\}$ and G are subgroups of G.

Example 2.26. Consider $(\mathbb{Z}, +)$, then for $k \in \mathbb{Z}$, $(k\mathbb{Z}, +) \leq (\mathbb{Z}, +)$.

Example 2.27. Consider (\mathbb{Z}_6, \oplus_6)

Proposition 2.28. If p is prime, then \mathbb{Z}_p has no proper subgroups.

Theorem 2.29. Let $f: G \to H$ be a homomorphism of groups, then

- 1. $\ker f \leq G$,
- 2. $A \leq G \Rightarrow f(A) \leq H$, (In particular; $imf \leq H$)
- 3. $B < H \Rightarrow f^{-}(B) < G$.

Proof. Exercise

Example 2.30. Let G be a group $Aut(G) = \{f : G \to G, f \text{ is an isomorphism}\}$. Show $(Aut(G), \circ)$ is a group.

Theorem 2.31. Let $\emptyset \neq H \subset G$, $H \leq G$ iff $ab^{-1} \in H$, $\forall a, b \in H$.

Corollary 2.32. Let G be a group and $\{H_i : i \in \Delta\}$ be a non-empty set family of subgroups of G. Then $\bigcap_{i \in \Delta} \leq G$.

Definition 2.33. Let G be a group and $X \subset G$. Let $\{H_i : i \in \Delta\}$ be a non-emptyset family of subgroups of G containing X (i.e. $X \subset H_i, \forall i \in \Delta$). Then $\bigcap_{i \in \Delta} H_i$ is called the subgroup of G generated by the set X and denoted by $\langle X \rangle$.

Notation 2.34. If $X = \{a_1, a_2, ..., a_n\}$, then $\langle X \rangle = \langle a_1, a_2, ..., a_n \rangle$.

Definition 2.35. If $G = \langle a_1, a_2, \dots, a_n \rangle$, then we say that G is finitely generated.

Remark 2.36. $\langle \emptyset \rangle = \{e\}.$

Theorem 2.37. Let G be a group and $\emptyset \neq X \subset G$. Then $\langle X \rangle$ consists of all finite products $a_1^{n_1} a_2^{n_2} \cdots a_t^{n_t}$ where $a_i \in X$ and $n_i \in \mathbb{Z}$.

In particular, for all $a \in G$, $\langle a \rangle = \{a^n : n \in \mathbb{Z}\}.$

2.4 Cyclic groups

Definition 2.38. A group G is said to be cyclic if $G = \langle a \rangle$ for some $a \in G$.

Proposition 2.39. The only subgroups of $(\mathbb{Z}, +)$ are of the form $(k\mathbb{Z}, +)$ for $k \in \mathbb{Z}$.

Example 2.40. $\mathbb{Z} = \langle 1 \rangle = \langle -1 \rangle \Rightarrow \mathbb{Z}$ is cyclic.

Example 2.41. The group $\{1, -1, i, -i\}$ under multiplication is a cyclic group.

Theorem 2.42. Every infinite cyclic group is isomorphic to the additive group \mathbb{Z} and every finite cyclic group of order m is isomorphic to the additive group \mathbb{Z}_m .

Proof. Let G be a cyclic group. Then $G = \langle a \rangle$. Define $\alpha : \mathbb{Z} \to G$ by $\alpha(k) = a^k$. Claim :- α is an epimorphism. i) Homomorphism: $\alpha(k_1 + k_2) = a^{k_1 + k_2} = a^{k_1} \cdot a^{k_2} = \alpha(k_1)\alpha(k_2)$ ii) Onto: Let $x \in \langle a \rangle$. Then $x = a^k$ for some $k \in \mathbb{Z} \Rightarrow \alpha(k) = x$.

Hence α is an epimorphism.

Consider $\ker \alpha$

2.5 Permutations

Definition 2.43. Let $I_n = \{1, 2, ..., n\}$. $S_n = \{\sigma | \sigma : I_n \to I_n \text{ bijective}\}$. The elements of S_n are called **permutations**.

Definition 2.44. Let i_1, i_2, \ldots, i_r $(r \leq n)$ be distinct elements of I_n . Then $(i_1 i_2 \cdots i_r)$ denotes a permutation that maps $i_1 \to i_2, i_2 \to i_3, \cdots, i_{r-1} \to i_r$ and fixes every other element. $(i_1 i_2 \cdots i_r)$ is called a cycle of length r. A cycle of length two is called **transposition**.

Definition 2.45. The permutations $\sigma_1, \sigma_2, \dots, \sigma_r$ of S_n are said to be **disjoint** for each $1 \le i \le r$ and every $k \in I_n$ if

$$\sigma_i(k) \neq k \Rightarrow \sigma_j(k) = k$$
, for every $j \neq i$.

Theorem 2.46. If τ and σ are disjoint, then $\tau \sigma = \sigma \tau$.

Proof. First assume $\sigma(i) \neq i$. Then $\tau(i) = i$ by definition because σ and τ are disjoint, and therefore $\sigma(\tau(i)) = \sigma(i)$. On the other hand, because permutations are injective, $\sigma(i) \neq i$ means that $\sigma(\sigma(i)) \neq \sigma(i)$, so $\tau(\sigma(i)) = \sigma(i)$, again because σ and τ are disjoint. Since $\sigma\tau(i)$ and $\tau\sigma(i)$ both equal $\sigma(i)$, they are equal.

Next assume $\sigma(i) = i$. Then it may be that $\tau(i) \neq i$, in which case proceed as in the previous case with τ and σ interchanged.

Finally if $\sigma(i) = i$ and $\tau(i) = i$, then obviously $\sigma\tau(i) = i = \tau\sigma(i)$.

Since there's always one of these cases that holds, and $\sigma\tau(i) = \tau\sigma(i)$ in each of them, it holds always. \square

Theorem 2.47. Every non-identity

Corollary 2.48. Every permutation in S_n

Definition 2.49. A permutation $\tau \in S_n$ is said to be **even**(resp. **odd**) if τ can be written as a product of **even**(resp. **odd**) number of transpositions.

$$\operatorname{sgn}(\tau) = \begin{cases} 1 & \text{if } \tau \text{ is even.} \\ -1 & \text{if } \tau \text{ is odd.} \end{cases}$$

Theorem 2.50. A permutation in $S_n (n \geq 2)$ can not be both even and odd.

Theorem 2.51. For each $n \geq 2$, let A_n be the set of all even permutations of S_n . Then

- i) $A_n \triangleleft S_n$
- ii) $[S_n : A_n] = 2$
- iii) $|A_n| = |S_n|/2 = n!/2$

Proof. Consider the group $(\{1, -1\}, \cdot)$. Define the map $f: S_n \to \{-1, 1\}$ by $f(\sigma) = \operatorname{sgn}(\sigma)$.

2.6 Isomorphism Theorems

Theorem 2.52 (First Isomorphism Theorem). If $f: G \to H$ is a group homomorphism, then

$$\ker f \lhd G$$
 and $G/\ker f \cong im f$

i.e. if ker f = K and $\phi: G/K \to im$ $f \le H$ is given by $\phi: aK \mapsto f(a)$, then ϕ is an isomorphism.

Remark 2.53. The following diagram describes the proof of the first isomorphism theorem, where $\pi: G \to G/K$ is the natural map $\pi: a \mapsto aK$.

Proof.

Theorem 2.54 (Second Isomorphism Theorem). If N and K are subgroups of a group G with $N \triangleleft G$, then NK is a subgroup, $N \cap K \triangleleft K$, and

$$K/(N \cap K) \cong NK/N$$
.

Proof.

Theorem 2.55 (Third Isomorphism Theorem). If H and K are normal subgroups of a group G with $K \leq H$, then $H/K \triangleleft G/K$ and

$$(G/K)/(H/K) \cong G/H$$
.

Proof.

2.7 Sylow Theorems

Theorem 2.56 (Cauchy). If G is a finite group whose order is divisible by a prime p, then G contains an element of order p.

Definition 2.57 (p-group). A group in which every element has order a power (≥ 0) of some fixed prime p is called a p-group. If H is a subgroup of a group G and H is a p-group, H is said to be a p-subgroup of G. In particular $\langle e \rangle$ is a p-subgroup of G for every prime p since $|\langle e \rangle| = 1 = p^0$.

Definition 2.58 (Sylow *p*-subgroup). A subgroup P of a group G is said to be a sylow *p*-subgroup of G if P is a maximal p subgroup of G. i.e. $P \le H \le G$ with H a p-subgroup of G, then P = H.

Corollary 2.59. A finite group G is a p-group if and only if |G| is a power of p.

Theorem 2.60 (First Sylow Theorem). Let G be a group of order $p^n m$, with n > 1, p prime, and (p, n) = 1. Then G contains a subgroup of order p^i for each 1 < i < n and every subgroup of G of order p^i (i < n) is normal in some subgroup of order p^{i+1} .

Corollary 2.61. Let G be a group of order $p^n m$ with p prime, $n \ge 1$ and (m, p) = 1. Let H be a p-subgroup of G.

- (i) H is a Sylow p-subgroup of G if and only if $|H| = p^n$.
- (ii) Every conjugate of a Sylow p-subgroup is a Sylow p-subgroup.
- (iii) If there is only one Sylow p-subgroup P, then P is normal in G.

Theorem 2.62 (Second Sylow Theorem). If H is a p-subgroup of a finite group G, and P is any Sylow p-subgroup of G, then there exists $x \in G$ such that $H \leq xPx^{-1}$ In particular, any two Sylow p-subgroups of G are conjugate.

Theorem 2.63 (Third Sylow Theorem). If G is a finite group and p a prime, then the number of Sylow p-subgroups of G divides |G| and is of the form kp + 1 for some $k \ge 0$.

2.8 Classification of Finite Groups

We shall classify up to isomorphism all groups of order pq (p,q primes) and all groups of small order $n \leq 23$.

Order	Distinct Groups
1	$\langle e \rangle$
2	\mathbb{Z}_2
3	\mathbb{Z}_3
4	$\mathbb{Z}_2 igoplus \mathbb{Z}_2, \mathbb{Z}_4$
5	\mathbb{Z}_5
6	\mathbb{Z}_6,D_3
7	\mathbb{Z}_7
8	$\mathbb{Z}_2 \bigoplus \mathbb{Z}_2 \bigoplus \mathbb{Z}_2, \mathbb{Z}_2 \bigoplus \mathbb{Z}_4, \mathbb{Z}_8, Q_8, D_4$
9	$\mathbb{Z}_3 \bigoplus \mathbb{Z}_3, \mathbb{Z}_9$
10	\mathbb{Z}_{10},D_5
11	\mathbb{Z}_{11}
12	$\mathbb{Z}_2 \bigoplus \mathbb{Z}_6, \mathbb{Z}_{12}, A_4, D_6, T$
13	\mathbb{Z}_{13}
14	\mathbb{Z}_{14},D_7
15	\mathbb{Z}_{15}
16	$\mathbb{Z}_{16},$
17	$\mathbb{Z}_{17},$
18	$\mathbb{Z}_{18},$
19	$\mathbb{Z}_{19},$
20	$\mathbb{Z}_{20},$
21	$\mathbb{Z}_{21},$
22	$\mathbb{Z}_{22},$
23	$\mathbb{Z}_{23},$

3 Rings

3.1 Definition and elementary properties

Definition 3.1.

Example 3.2.

Definition 3.3.

Notation 3.4.