MÉTODOS COMPUTACIONALES

Guía 5: Determinantes Primer Semestre 2025

Ejercicio 1. Calcular los determinantes mediante desarrollo por cofactores. En cada caso, seleccionar una fila o columna que implique la menor cantidad de operaciones

a)
$$\begin{bmatrix} 6 & 0 & 0 & 5 \\ 1 & 7 & 2 & -5 \\ 2 & 0 & 0 & 0 \\ 8 & 3 & 1 & 8 \end{bmatrix}$$

b)
$$\begin{bmatrix} 1 & -2 & 5 & 2 \\ 0 & 0 & 3 & 0 \\ 2 & -6 & -7 & 5 \\ 5 & 0 & 0 & 4 \end{bmatrix}$$

c)
$$\begin{bmatrix} 3 & 5 & -8 & 4 \\ 0 & -2 & 3 & -7 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

d)
$$\begin{bmatrix} 4 & 0 & 0 & 0 \\ 7 & -1 & 0 & 0 \\ 2 & 6 & 3 & 0 \\ 5 & -8 & 4 & -3 \end{bmatrix}$$

e)
$$\begin{bmatrix} 6 & 3 & 2 & 4 & 0 \\ 9 & 0 & -4 & 1 & 0 \\ 8 & -5 & 6 & 7 & 1 \\ 3 & 0 & 0 & 0 & 0 \\ 4 & 2 & 3 & 2 & 0 \end{bmatrix}$$

a)
$$\begin{bmatrix} 6 & 0 & 0 & 5 \\ 1 & 7 & 2 & -5 \\ 2 & 0 & 0 & 0 \\ 8 & 3 & 1 & 8 \end{bmatrix}$$
b)
$$\begin{bmatrix} 1 & -2 & 5 & 2 \\ 0 & 0 & 3 & 0 \\ 2 & -6 & -7 & 5 \\ 5 & 0 & 0 & 4 \end{bmatrix}$$
c)
$$\begin{bmatrix} 3 & 5 & -8 & 4 \\ 0 & -2 & 3 & -7 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$
d)
$$\begin{bmatrix} 4 & 0 & 0 & 0 \\ 7 & -1 & 0 & 0 \\ 2 & 6 & 3 & 0 \\ 5 & -8 & 4 & -3 \end{bmatrix}$$
e)
$$\begin{bmatrix} 6 & 3 & 2 & 4 & 0 \\ 9 & 0 & -4 & 1 & 0 \\ 8 & -5 & 6 & 7 & 1 \\ 3 & 0 & 0 & 0 & 0 \\ 4 & 2 & 3 & 2 & 0 \end{bmatrix}$$
f)
$$\begin{bmatrix} 4 & 0 & -7 & 3 & -5 \\ 0 & 0 & 2 & 0 & 0 \\ 7 & 3 & -6 & 4 & -8 \\ 5 & 0 & 5 & 2 & -3 \\ 0 & 0 & 9 & -1 & 2 \end{bmatrix}$$

Ejercicio 2. Encontrar los determinantes por reducción de filas a una forma escalonada.

a)
$$\begin{bmatrix} 1 & -1 & -3 & 0 \\ 0 & 1 & 5 & 4 \\ -1 & 2 & 8 & 5 \\ 3 & -1 & -2 & 3 \end{bmatrix}$$

$$b) \begin{bmatrix}
1 & 3 & 0 & 2 \\
-2 & -5 & 7 & 4 \\
3 & 5 & 2 & 1 \\
1 & -1 & 2 & -3
\end{bmatrix}$$

a)
$$\begin{bmatrix} 1 & -1 & -3 & 0 \\ 0 & 1 & 5 & 4 \\ -1 & 2 & 8 & 5 \\ 3 & -1 & -2 & 3 \end{bmatrix}$$
 b)
$$\begin{bmatrix} 1 & 3 & 0 & 2 \\ -2 & -5 & 7 & 4 \\ 3 & 5 & 2 & 1 \\ 1 & -1 & 2 & -3 \end{bmatrix}$$
 c)
$$\begin{bmatrix} 1 & 3 & -1 & 0 & -2 \\ 0 & 2 & -4 & -1 & -6 \\ -2 & -6 & 2 & 3 & 9 \\ 3 & 7 & -3 & 8 & -7 \\ 3 & 5 & 5 & 2 & 7 \end{bmatrix}$$

Ejercicio 3. Sean $u=(3,0), v=(1,2)\in\mathbb{R}^2$. Calcular el área del paralelogramo determinado por $\{0, u, v, u + v\}$, y obtener el determinante de la matriz $[u \mid v]$. ¿Cómo comparan ambos resultados? Remplazar la primera entrada de v por un número arbitrario y repetir el ejercicio. Explicar lo encontrado.

Ejercicio 4. Calcular las áreas de los siguientes paralelogramos, dados por sus cuatro vértices:

- a) (0,0), (5,2), (6,4), (11,6)
- b) (0,0), (-3,7), (8,-9), (5,-2)
- c) (-6,0), (0,5), (4,5), (-2,0)
- d) (0,-2), (5,-2), (-3,1), (2,1)

Ejercicio 5. (Python) ¿Es cierto que det(A+B) = det(A) + det(B)? Para averiguarlo, generar matrices aleatorias A y B de 5×5 , y comprobar si det(A + B) - det(A) - det(B) = 0.

Ejercicio 6. (Python) ¿Es cierto que det(AB) = det(A)det(B)? Experimentar con matrices aleatorias como en el ejercicio anterior.

Ejercicio 7. Sean A y B matrices 4×4 tales que det(A) = a y det(B) = -5. Calcular:

a) det(AB)

b) det(BA)

c) $det(B^5)$

d) det(2A)

e) $det(A^TA)$

f) $det(B^{-1}AB)$

Ejercicio 8. Determinar los valores de k para los cuales se tiene que det(A) = 0:

a)
$$A = \begin{bmatrix} 2 & k+4 \\ k-2 & -4 \end{bmatrix}$$
 b) $A = \begin{bmatrix} k & 2 & 1 \\ 0 & k^2-1 & 2 \\ 0 & 0 & k-2 \end{bmatrix}$ c) $A = \begin{bmatrix} k & 3 & 0 \\ k^2 & 9 & 0 \\ 3 & 3 & 1 \end{bmatrix}$

Ejercicio 9. Calcular det(AB), det(A+B), $det(A^{10})$, $det(A^5B-A^5)$ con

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 2 & -1 \\ -1 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 1 & -1 \\ 0 & 1 & 8 \\ 0 & 0 & -1 \end{bmatrix}$$

Ejercicio 10. Sean A y B matrices de $n \times n$ arbitrarias. Decidir si las siguientes afirmaciones son verdaderas o falsas, justificando en ambos casos:

- a) El determinante de la matriz identidad $\mathbb I$ es 1.
- b) det(A + B) = det(A) + det(B).
- c) det(AB) = det(A)det(B).
- d) $det(A^{-1}) = (-1)det(A)$.
- e) $det(A^{-1}) = \frac{1}{det(A)}$.
- f) Si A es tal que $A^3 = 0$ entonces no puede ser invertible.
- g) $det(A) = det(A^T)$.
- h) Si A es tal que $A^T A = \mathbb{I}$ entonces $det(A) = \pm 1$.
- i) Si $k \in \mathbb{R}$ entonces det(kA) = k det(A).

Ejercicio 11. Sea $A = \begin{bmatrix} 1 & 0 & -1 \\ 0 & -1 & 4 \\ 2 & 3 & 2 \end{bmatrix}$ y B también de tamaño 3×3 e invertible, tales que det(AB) = 2. Calcular $det(B^{-1})$.

Ejercicio 12. Resolver los siguientes sistemas lineales usando la regla de Cramer:

a)
$$\begin{cases} 5x_1 + 7x_2 = 3 \\ 2x_1 + 4x_2 = 1 \end{cases}$$
b)
$$\begin{cases} 6x_1 + 1x_2 = 3 \\ 5x_1 + 2x_2 = 4 \end{cases}$$
c)
$$\begin{cases} 3x_1 - 2x_2 = 3 \\ -4x_1 + 6x_2 = -5 \end{cases}$$
d)
$$\begin{cases} -5x_1 + 2x_2 = 9 \\ 3x_1 - 1x_2 = -4 \end{cases}$$
e)
$$\begin{cases} x_1 + x_2 = 2 \\ -5x_1 + 4x_3 = 0 \\ x_2 - x_3 = -1 \end{cases}$$
f)
$$\begin{cases} x_1 + 3x_2 + x_3 = 8 \\ -x_1 + 2x_3 = 4 \\ 3x_1 + x_2 = 4 \end{cases}$$

Ejercicio 13. (Python) Implementar una función para resolver sistemas lineales a partir de la regla de Cramer. Generar matrices de $n \times n$ y vectores de $n \times 1$ aleatorios y verificar los resultados contra la solución obtenida al resolver el sistema de la manera usual.

Ejercicio 14. Calcular la matriz adjunta de las siguientes matrices A y luego calcular A^{-1} a partir de la adjunta.

a)
$$A = \begin{bmatrix} 0 & -2 & -1 \\ 5 & 0 & 0 \\ -1 & 1 & 1 \end{bmatrix}$$
 b) $A = \begin{bmatrix} 1 & 1 & -2 \\ -1 & 1 & 3 \\ 0 & -1 & 3 \end{bmatrix}$ c) $A = \begin{bmatrix} 3 & 5 & 4 \\ 1 & 0 & 1 \\ 2 & 1 & 1 \end{bmatrix}$ d) $A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & 1 \\ 3 & 0 & 6 \end{bmatrix}$

Ejercicio 15. (Ejercicio de parcial) Los determinantes satisfacen la siguiente propiedad:

$$\left| \begin{array}{ccc} a+b & c & d \\ e+f & g & h \\ i+j & k & l \end{array} \right| = \left| \begin{array}{ccc} a & c & d \\ e & g & h \\ i & k & l \end{array} \right| + \left| \begin{array}{ccc} b & c & d \\ f & g & h \\ j & k & l \end{array} \right|.$$

Tenemos $x, y, z \in \mathbb{R}$ tales que:

$$\left| \begin{array}{ccc} x & 5 & 1 \\ y & 0 & 1 \\ z & 3 & 1 \end{array} \right| = 1,$$

determinar el valor de la siguiente expresión utilizando propiedades del determinante:

$$\left| \begin{array}{ccc} y & 2y & y+2 \\ x & 2x+5 & x+2 \\ z & 2z+3 & z+2 \end{array} \right|.$$