18.06

Transpose and Conjugate Transpose

Matrix A,

 A^{T} denotes transpose (flip across main diagonal)

 \bar{A} denotes complex conjugate (elementwise) $a+bi \rightarrow a-bi$

 A^H denotes conjugate transpose $A^H = \bar{A}^T$

Real vector v,

$$||v||^2 = v^{\mathsf{T}}v$$

Complex vector v,

$$||v||^2 = v^H v$$

Symmetric Matrices

Say matrix A is symmetric if

$$A^{\mathsf{T}} = A$$

Only square matrices can possibly be symmetric

All eigenvalues of a symmetric matrix are real

Eigenvalue λ with eigenvector v,

$$Av = \lambda v$$

Can choose ||v|| = 1

$$\lambda = \lambda v^H v = v^H \lambda v = v^H A v = (A v)^H v = (\lambda v)^H v = v^H \bar{\lambda} v = \bar{\lambda}$$

Symmetric Matrices

Eigenvectors corresponding to distinct eigenvalues are orthogonal

Eigenvalues
$$\lambda_1 \neq \lambda_2$$
 With $Av_1 = \lambda_1 v_1$ and $Av_2 = \lambda_2 v_2$ Then $v_2^{\mathsf{T}} A v_1 = v_2^{\mathsf{T}} \lambda_1 v_1 = \lambda_1 (v_1 \cdot v_2)$ and $v_1^{\mathsf{T}} A v_2 = v_1^{\mathsf{T}} \lambda_2 v_2 = \lambda_2 (v_1 \cdot v_2)$ but $(v_1^{\mathsf{T}} A v_2)^{\mathsf{T}} = v_2^{\mathsf{T}} A^{\mathsf{T}} v_1 = v_2^{\mathsf{T}} A v_1$ so $\lambda_1 (v_1 \cdot v_2) = \lambda_2 (v_1 \cdot v_2)$ which implies $(\lambda_1 - \lambda_2)(v_1 \cdot v_2) = 0$ therefore $v_1 \cdot v_2 = 0$

Symmetric Matrices

```
In fact, if A is n \times n symmetric
       with eigenvalues \lambda_1, \dots, \lambda_n (not necessarily distinct)
       Have corresponding eigenvectors v_1, \dots, v_n all orthogonal
       Can even choose v_1, \dots, v_n orthonormal
       Main idea the same, but details
Symmetric matrices always diagonalizable
       even if eigenvalues not distinct
       Q, matrix with eigenvectors in columns, orthogonal
       A = Q\Lambda Q^{-1} = Q\Lambda Q^{\mathsf{T}}
```

Symmetric matrix A,

A positive definite if all eigenvalues positive

A positive semi-definite if all eigenvalues non-negative

Many equivalent definitions

A positive definite iff $x^TAx > 0$ for every $x \neq 0$

 \Leftarrow

eigenvalue λ with eigenvector v

$$0 < v^{\mathsf{T}} A v = v^{\mathsf{T}} \lambda v = \lambda ||v||^2$$

$$||v||^2 > 0$$
, therefore, $\lambda > 0$

A positive definite iff $x^T Ax > 0$ for every $x \neq 0$

$$\Rightarrow$$

Eigenvalues
$$\lambda_1, \dots, \lambda_n > 0$$

Corresponding orthonormal eigenvectors v_1, \dots, v_n
For any $x \neq 0$, write $x = \alpha_1 v_1 + \dots + \alpha_n v_n$ (eigenbasis)
At least one $\alpha_i \neq 0$

$$(\alpha_1 v_1 + \dots + \alpha_n v_n)^{\top} A(\alpha_1 v_1 + \dots + \alpha_n v_n)$$

$$= (\alpha_1 v_1 + \dots + \alpha_n v_n)^{\top} (\alpha_1 \lambda_1 v_1 + \dots + \alpha_n \lambda_n v_n)$$

$$= (\alpha_1^2 \lambda_1 v_1^{\top} v_1 + \dots + \alpha_n^2 \lambda_n v_n^{\top} v_n)$$

$$= (\alpha_1^2 \lambda_1 + \dots + \alpha_n^2 \lambda_n) > 0$$

A positive definite iff

All eigenvalues are positive

 $x^{\mathsf{T}}Ax > 0$ for every $x \neq 0$

 $A = B^{\mathsf{T}}B$, for B with independent columns

All principal minors positive

determinant of upper left $k \times k$ submatrix, for any k

Properties:

If A, B positive definite, so is A + B

$$x^{\mathsf{T}}(A+B)x = x^{\mathsf{T}}Ax + x^{\mathsf{T}}Bx$$

If A positive definite, so is cA, for any scalar c > 0

$$x^{\mathsf{T}}(cA)x = cx^{\mathsf{T}}Ax > 0$$

Say matrix A positive if all entries $A_{ij} > 0$ Write A > 0

Say matrix A non-negative if all entries $A_{ij} \ge 0$ Write $A \ge 0$

Say matrix A Markov matrix if

A > 0 and each column has sum 1

Say matrix A generalized Markov matrix if

 $A \ge 0$ and each column has sum 1

Encodes Markov process, example:

100 objects, initially divided into two even piles

Call piles left and right

Repeatedly redistribute the objects

Sequence of steps, at every step

move 10% of objects in left pile to right pile

and move 5% of objects in right pile to left pile

What happens after doing the above many times?

Example continued:

Encode initial distribution in vector $x = \begin{pmatrix} .5 \\ .5 \end{pmatrix}$

Encode transitions in Markov matrix $A = \begin{pmatrix} .9 & .05 \\ .1 & .95 \end{pmatrix}$

Applying A to x redistributes objects according to previous rule

Applying A^2 does 2 redistribution steps

Applying A^k does k redistribution steps

What does $A^k x$ look like?

Markov Matrices: Steady State

Markov matrix A, dimensions $n \times n$ Eigenvalues $\lambda_1, \dots, \lambda_n$ Has eigenvalue $\lambda_1 = 1$ $|\lambda_i| < 1$ for all other eigenvalues

Assume A has lin. indep. eigenvectors v_1, \ldots, v_n (it may not) Can write any $x = \alpha_1 v_1 + \cdots + \alpha_n v_n$ (eigenbasis) $A^k x = A^k (\alpha_1 v_1 + \cdots + \alpha_n v_n) = \alpha_1 \lambda_1^k v_1 + \cdots + \alpha_n \lambda_n^k v_n$ Approaches $\alpha_1 \lambda_1^k v_1 = \alpha_1 v_1$, steady state

Example finished:

Encode initial distribution in vector
$$x = \begin{pmatrix} .5 \\ .5 \end{pmatrix}$$

Encode transitions in Markov matrix
$$A = \begin{pmatrix} .9 & .05 \\ .1 & .95 \end{pmatrix}$$

What does $A^k x$ look like?

 $\it A$ has eigenvalues 1 and .85

1 has corresponding (steady-state) eigenvector $\binom{.33}{.67}$

$$A^k x$$
 approaches $\binom{.33}{.67}$