Exercises Structures for Semantics

Here a selection of exercises related to the materials I used for the tutorial and assessment components of the course *Structures for Semantics* during the summer terms of 2021-2023 while I was teaching assistant for the course. The full course includes many more exercises and materials from earlier editions. Since I was not the sole contributor to these materials, I am not making them publicly available here. If you would like access to them, please reach out.

1 Indefinites

1.1 The and type-shifting rules

Consider the following GQT definition for the:

$$(the [n])(A) = \begin{cases} every(A) & \text{if } |A| = n \\ \text{undefined} & \text{otherwise} \end{cases}$$

- (i) Assume that |man| = 1. Determine whether the[1](man) is a filter, an ideal or an ultrafilter of the powerset lattice $\langle \wp(D), \subseteq \rangle$, based on the domain D. Provide proofs of your claims.
- (ii) Assume that |man| = 1. Determine whether the following are equivalent or not. Motivate your answer.
 - (a) $BE(the[1](man)) \equiv ident(lower(the[1](man)))$
 - (b) $BE(the[1](man)) \equiv BE(lift(iota(man)))$
- (iii) Consider now the set-theoretic interpretation of THE (man), where THE is Montague's translation of the definite article in English:

$$THE = \lambda P \lambda Q(\exists x (\forall y (P(y) \leftrightarrow y = x) \land Q(x)))$$

Does the following equation hold? Motivate your answer.

(c)
$$THE(man) \equiv the[1](man)$$

- (iv) Assume $[\![W]\!] = \{a,b\} = woman$. Determine whether the[2](woman) is a filter, an ideal or an ultrafilter of the powerset lattice $\langle \wp(D), \subseteq \rangle$, based on the domain D. No proofs needed. Consider now Landman's translation of *the women* using the σ operator: $\sigma x.^{\uparrow}W(x)$. Show that the following equation does not hold.
 - (d) $[\sigma x.^{\uparrow}W(x)] \equiv the[2](woman)$
 - (v) Define type-shifting rules which can be applied to *the*[2](*woman*) to verify the statement in (iv-d).

1.2 Indefinites and Team Semantics

Consider the following ambiguous sentence:

- (A) Ali wants to marry a philosopher.
- (i) Outline the ambiguity of (A). Provide translations of the two readings of (S) using Aloni & Degano (2022) dependence atoms (you should translate WANT in terms of a universal quantification over worlds).
- (ii) Consider now the following variant of (A) involving a marked indefinite determiner IND $_x$ triggering the activation of the variation atom var(v, x). Which one of the two readings of (A) do Aloni & Degano (2022) predict for (B)?
 - (B) Ali wants to marry IND_x philosopher.

2 Generalized Quantifier Theory

2.1 Possesives

- 1. Find the GQT characterization of the determiners in (a) and (b);
 - (a) Every book
 - (b) John's books
- 2. Show that (a) satisfies ISOM, while (b) does not.

2.2 Connectedness/Convexity

(CON) A determiner Det is left *connected/convex* iff for all M with $A, B_2 \subseteq M$ and $B_1 \subseteq B \subseteq B_2$,

$$Det_M(A, B_1)$$
 and $Det_M(A, B_2)$ imply $Det_M(A, B)$

(from van Benthem 1984)

For the following exercises, consider only determiners which can be represented in the Tree of Numbers (i.e., EXT, CONS and ISOM are satisfied)

- (i) Give two examples of natural language determiners which are downward monotone on the right (i.e., $MON \downarrow$).
- (ii) Give two examples of natural language determiners which are connected, but not monotone on any argument.
- (iii) Represent the determiners you found in part (i) and (ii) in the Tree of Numbers. Which pattern do $MON \downarrow$ determiners exhibit? Which pattern do CON determiners exhibit?

3 Intensions

3.1 Ups and Downs

Assume the following type declarations.

IL Declarations:

Туре	Variables	Constants
e	x	j
$\langle s, e \rangle$	r	-
$\langle e, t \rangle$	X	W
$\langle\langle s,e\rangle,t\rangle$	Q	С
$\langle s, \langle e, t \rangle \rangle$	P	-
$\langle s, t \rangle$	p	-

Determine if the following pair of expression are logically equivalent or not. No proofs needed: answering Equivalent/Non-Equivalent is sufficient. (/If not, construct a partial model in IL in which the two expression have different values.)

1. j $^{\vee \wedge}j$ 2. r $^{\wedge r}$ 3. $\lambda p \Box^{\vee} p(^{\wedge}C(^{\wedge}j)) \Box C(^{\wedge}j)$ 4. $\lambda X \Box X(j)(\lambda xW(x)) \Box W(j)$ 5. $\lambda P \Box^{\vee} P(j)(^{\wedge}\lambda xW(x)) \Box W(x)$ 6. $\lambda Q \Box Q(^{\wedge}j)(\lambda rC(r)) \Box C(^{\wedge}j)$

3.2 De re and de dicto

The sentence below is ambiguous between a *de re* and *de dicto* reading. (You can treat 'Miss Netherlands' as an individual constant.)

- (1) John believes that Miss Netherlands is a dancer.
 - a. *De re*: John has a belief about a certain individual called 'Miss Netherlands' in the current world, the belief being that this individual is a dancer.
 - b. *De dicto*: John believes that whoever is named as 'Miss Netherlands' is a dancer.

Translate the two readings into IL and Ty2. Show using Theorem 6 from Gamut (p. 136) that the IL and Ty2 translations are equivalent.

4 Extensional Montague Grammar

4.1 Exceptive constructions

Extend the EMG fragment with exceptive constructions:

- (2) Every student *but* John passed (the course).
 - (i) Provide an extension of EMG where but has category T/(CN/CN). What are the problems of such analysis?
 - (ii) Provide now an extension of EMG which does not suffer from the problems you found before. Does your analysis overgenerate?

4.2 Pre-nominal adjectives in EMG

Extend the fragment of EMG presented in the EMG notes to account for 'prenominal' adjectives like *excellent* below:

(3) John is an excellent singer.

Treat *be* as a particular transitive verb with the following translation:

BE:
$$\lambda X \lambda x X(\lambda y(x=y))$$

Consider the contrast below. How to account for this in EMG?

- (4) a. John is an excellent singer.
 - b. \Rightarrow John is a singer.

- (5) a. John is a former singer.
 - b. ⇒ John is a singer.

Definitions

EMG

S2 : If $\alpha \in P_{(S/IV)=T}$ and $\beta \in P_{IV}$, then $F_1(\alpha, \beta) \in P_S$, where $F_1(\alpha, \beta) = \alpha \beta'$ (β' is β + inflection)

T2: If $\alpha \in P_T$ and $\beta \in P_{IV}$, and $\alpha \mapsto \alpha'$ and $\beta \mapsto \beta'$, then $F_1(\alpha, \beta) \mapsto \alpha'(\beta')$

S'3: If $\alpha \in P_{T/CN}$ and $\beta \in P_{CN}$, then $F_2(\alpha, \beta) \in P_T$, where $F_2(\alpha, \beta) = \alpha\beta$

T'3: If $\alpha \in P_{T/CN}$ and $\beta \in P_{CN}$, and $\alpha \mapsto \alpha'$ and $\beta \mapsto \beta'$, then $F_2(\alpha, \beta) \mapsto \alpha'(\beta')$

S7 : If $\alpha \in P_{(IV/(S/IV))=TV}$ and $\beta \in P_T$, then $F_6(\alpha, \beta) \in P_{IV}$, where $F_6(\alpha, \beta) = \alpha \beta^* (\beta^* \text{ is } \beta + \text{ accusative })$

T7 : If $\alpha \in P_{TV}$ and $\beta \in P_T$, and $\alpha \mapsto \alpha'$ and $\beta \mapsto \beta'$, then $F_6(\alpha, \beta) \mapsto \alpha'(\beta')$

 $S8_n$: If $\alpha \in P_T$ and $\beta \in P_S$, then $F_7(\alpha, \beta) \in P_S$, where $F_7(\alpha, \beta) = \beta [he_n/\alpha]$

 $T8_n$: If $\alpha \in P_T$ and $\beta \in P_S$, and $\alpha \mapsto \alpha'$ and $\beta \mapsto \beta'$, then $F_7(\alpha, \beta) \mapsto \alpha'(\lambda x_n \beta')$

 $love \mapsto \lambda \mathcal{T} \lambda x (\mathcal{T}(\lambda y (love(y)(x))))$ $every \mapsto \lambda P \lambda Q (\forall x (P(x) \to Q(x)))$ $a = \lambda P \lambda Q (\exists x (P(x) \land Q(x)))$

IL Semantic Clauses

If α is a constant, $[\![\alpha]\!]_{M,w,g} = I(\alpha)(w)$

If α is a variable, $[\![\alpha]\!]_{M,w,g} = g(\alpha)$

If α is an expression of type $\langle a,b\rangle$ and β an expression of type a, $[\![\alpha(\beta)]\!]_{M,w,g} = [\![\alpha]\!]_{M,w,g} ([\![\beta]\!]_{M,w,g})$

If α is an expression of type a and z variable of type b, $[\![\lambda z\alpha]\!]_{M,w,g}$ is that function $h\in D_{\langle b,a\rangle}$ s.t. for all $d\in D_b:h(d)=[\![\alpha]\!]_{M,w,g[z/d]}$

 $\llbracket \Box \phi \rrbracket_{M,w,g} = 1 \text{ iff } \forall w' \in W : \llbracket \phi \rrbracket_{M,w',g} = 1$

If α is an expression of type a, then $\llbracket ^{\wedge}\alpha \rrbracket_{M,w,g}$ is that function $h \in D_{\langle s,a \rangle}$ such that for all $w' \in W$: $h(w') = \llbracket \alpha \rrbracket_{M,w',g}$

If α is an expression of type $\langle s,a \rangle$, then $[\![^{\vee}\alpha]\!]_{M,w,g} = [\![\alpha]\!]_{M,w,g}(w)$

IL - Ty2 translation

- (i) $\sigma(c_{\tau}) = c_{\langle s, \tau \rangle}(v)$ $\sigma(v_{\tau}) = v_{\tau}$ (vi) $\sigma(\alpha = \beta) = \sigma(\alpha) = \sigma(\beta)$
- (ii) $\sigma(\alpha(\beta)) = (\sigma(\alpha)(\sigma(\beta)))$ (vii) $\sigma(\lambda x(\alpha)) = \lambda x(\sigma(\alpha))$
- (iii) $\sigma(\neg \phi) = \neg \sigma(\phi)$ (vii) $\sigma(\lambda \chi(\alpha)) = \lambda \chi(\sigma(\alpha))$ (iv) $\sigma(\phi \land \psi) = \sigma(\phi) \land \sigma(\phi)$ (viii) $\sigma(\Box \phi) = \forall v(\sigma(\phi))$
- [likewise for \lor , \rightarrow , \leftrightarrow] (ix) $\sigma(\diamond \phi) = \exists v(\sigma(\phi))$ (v) $\sigma(\forall x(\phi)) = \forall x(\sigma(\phi))$ (x) $\sigma(^{\land}\alpha) = \lambda v(\sigma(\alpha))$
- [likewise for $\exists x(\phi)$] (xi) $\sigma({}^{\vee}\alpha) = (\sigma(\alpha(v)))$

Theorem 6: $[\![\sigma(\alpha)]\!]_{M2,g[v/w]} = [\![\alpha]\!]_{M,w,g}$

Plurals

The language

- 1. The standard first order operations \neg , \land , \lor , \exists and abstraction λ .
- 2. Individual constants and individual variables.
- 3. Two term creating operations: + for term conjunction and σ for definites.
- 4. A special relational constant \leq .
- 5. A set **P** of one place predicates. This set is sorted into three different sets:
 - (a) IND: the set of individual level predicates
 - (b) COL: the set of collective predicates
 - (c) MIX: the set of mixed predicates
- 6. A special predicate $AT \in IND$
- 7. Three predicate operations: \uparrow , \downarrow , D

Models

A model for LP is a triple $\langle \langle A, V \rangle, *, I \rangle$ where:

- 1. $\langle A, \vee \rangle$ is a free i-join (=complete) semilattice generated by a set of atoms AT. $PL = A \setminus AT$
- 2. $* \notin A$ (undefined element to deal with non-referring terms)
- 3. *I* is an interpretation function, such that
 - If $c \in CON$, then $I(c) \in A \cup \{*\}$
 - If $P \in IND$, then $I(P) \subseteq AT$
 - If $P \in COL$, then $I(P) \subseteq PL$
 - If $P \in MIX$, then $I(P) \subseteq A$

Semantics

Terms:

 $[\![t_1 + t_2]\!] = [\![t_1]\!] \cup [\![t_2]\!]$, if both $[\![t_1]\!]$, $[\![t_2]\!] \in A$; * otherwise $[\![\sigma x.P(x)]\!] = \bigvee [\![P]\!]$, if $\bigvee [\![P]\!] \in [\![P]\!]$; * otherwise

Predicates:

[AT] = AT

 $\llbracket^{\uparrow}P\rrbracket = \llbracket\llbracket P\rrbracket \rrbracket$, the complete sub join-semilattice of A generated by $\llbracket P\rrbracket$ [contains all the individual joins of members of $\llbracket P\rrbracket$]

 $\llbracket ^{\downarrow}P \rrbracket = \{ d \in AT : d \in \llbracket P \rrbracket \}$

Formulas:

[P(t)] = 1 iff $[t] \in [P]$, 0 otherwise $[t \le t'] = 1$ iff $[t] \le [t']$, 0 otherwise

Filter, Ideal, Ultrafilter

Let $\langle A, \leq \rangle$ be a lattice. A subset $X \subseteq A$ is:

- *upward closed* if $a \in X$ and $a \le b$ implies $b \in X$;
- downward closed if $b \in X$ and $a \le b$ implies $a \in X$;
- *a filter* if it is (1) non-empty, (2) upward closed, (3) closed under binary meet: if $a, b \in X$ then $a \land b \in X$

• an ideal if it is: (1) non-empty, (2) downward closed, (3) closed under binary join: if $a, b \in X$ then $a \lor b \in X$

Let $\langle A, \leq \rangle$ be a Boolean lattice. $X \subseteq A$ is an *ultrafilter* if:

- 1. it is a filter;
- 2. for any $a \in A$, exactly one of a and its complement is in X

Let $\langle A, \leq \rangle$ be a Boolean lattice. A (ultra)filter $F \subseteq A$ is *principal* if there exists a set S, with $S \neq \emptyset$ and $S \subseteq A$, s.t. $F = \{B : S \subseteq B\}$. We call S the *generator* of the principal (ultra)filter F.

Generalized Quantifiers

ISOM, EXT and CONS

(ISOM) A determiner D is topic-neutral iff for any M, M' and any A, $B \subseteq M$, A', $B' \subseteq M'$:

If $(M, A, B) \cong (M', A', B')$, then $D_M(A, B) \leftrightarrow D'_M(A', B')$

(EXT) A determiner D satisfies extension iff for any M and any $A, B \subseteq M$:

If $M \subseteq M'$, then $D_M(A, B) \Leftrightarrow D_{M'}(A, B)$

(CONS) A determiner D is conservative iff for any M and any A, $B \subseteq M$:

 $D_M(A, B) \Leftrightarrow D_M(A, A \cap B)$ Monotonicity (fixing a model M)

MON \uparrow : A determiner *D* is **right monotone increasing** iff

 $B \subseteq B'$ and D(A)(B) then D(A)(B')

MON \downarrow . A determiner D is **right monotone decreasing** iff

 $B \subseteq B'$ and D(A)(B') then D(A)(B)

↑MON. A determiner *D* is **left monotone increasing** iff $A \subseteq A'$ and D(A)(B) then D(A')(B)

↓MON. A determiner *D* is **left monotone decreasing** iff $A \subseteq A'$ and D(A')(B) then D(A)(B)

Tree of Numbers

(0,0)

(1,0) (0,1)

(2,0) (1,1) (0,2)

(3,0) (2,1) (1,2) (0,3)

. . .

. . .

A - B $A \cap B$

Each position in the tree corresponds to pairs $(|A - B|, |A \cap B|)$

Each row in the tree corresponds to a different cardinality of *A*:

Row₀: card(A) = 0, Row₁: card(A) = 1,...

+ indicates that the quantifier is true in that situation.

indicates that the quantifier is false in that situation.
Examples:

Filter, Ideal, Ultrafilter

Let $\langle A, \leq \rangle$ be a lattice. A subset $X \subseteq A$ is:

- upward closed if $a \in X$ and $a \le b$ implies $b \in X$;
- downward closed if $b \in X$ and $a \le b$ implies $a \in X$;
- *a filter* if it is (1) non-empty, (2) upward closed, (3) closed under binary meet: if $a, b \in X$ then $a \land b \in X$
- an ideal if it is: (1) non-empty, (2) downward closed, (3) closed under binary join: if $a, b \in X$ then $a \lor b \in X$

Let $\langle A, \leq \rangle$ be a Boolean lattice. $X \subseteq A$ is an *ultrafilter* if:

- 1. it is a filter;
- 2. for any $a \in A$, exactly one of a and its complement is in X

Let $\langle A, \leq \rangle$ be a Boolean lattice. A (ultra)filter $F \subseteq A$ is *principal* if there exists a set S, with $S \neq \emptyset$ and $S \subseteq A$, s.t. $F = \{B : S \subseteq B\}$. We call S the *generator* of the principal (ultra)filter F.

Type-Shifting

$$BE = \lambda T_{\langle\langle e, t \rangle, t \rangle} \lambda x_e (T(\lambda y_e(y=x)))$$

$$THE = \lambda P_{\langle e,t \rangle} \lambda Q_{\langle e,t \rangle} (\exists x (\forall y (P(y) \leftrightarrow y = x) \land Q(x)))$$

$$A = \lambda P_{\langle e, t \rangle} \lambda Q_{\langle e, t \rangle} (\exists x (P(x) \land Q(x)))$$

lift
$$e \mapsto \langle \langle e, t \rangle, t \rangle$$
 $j \mapsto \lambda PP(j)$
lower $\langle \langle e, t \rangle, t \rangle \mapsto e$ $lower(lift(j)) = j$

(lower maps a principal ultrafilter to the unique element in its generator)

ident
$$e \mapsto \langle e, t \rangle$$
 $j \mapsto \lambda x(x = j)$
iota $\langle e, t \rangle \mapsto e$ $P \mapsto \iota x P(x)$

(iota maps a property to the unique individual satisfying that property)

Team Semantics

$$M,T \models P(x_1,\ldots,x_n) \iff \forall j \in T : \langle j(x_1),\ldots,j(x_n) \rangle \in I(P^n)$$

$$M,T \models \phi \land \psi \iff M,T \models \phi \text{ and } M,T \models \psi$$

$$M,T \models \phi \lor \psi \iff T = T_1 \cup T_2 \text{ for two teams}$$

$$T_1 \text{ and } T_2 \text{ s.t. } M,T_1 \models \phi$$

$$\text{and } M,T_2 \models \psi$$

$$M,T \models \forall y \phi$$
 \Leftrightarrow $M,T[y] \models \phi$, where $T[y] = \{i[d/y] : i \in T \text{ and } d \in D\}$

$$M,T \models \exists_{\text{strict}} y \phi$$
 \Leftrightarrow there is a function h : $T \to D \text{ s.t. } M, T[h/y] \models \phi$, where $T[h/y] = \{i[h(i)/y]: i \in T\}$

$$M,T \models \exists_{\mathrm{lax}} y \phi$$
 \Leftrightarrow there is a function $f: T \rightarrow \wp(D) \setminus \{\varnothing\}$ s.t. $M,T[f/y] \models \phi$, where $T[f/y] = \{i[d/y]: i \in T \text{ and } d \in f(i)\}$

$$M,T \models dep(\vec{x},y)$$
 \Leftrightarrow for all $i,j \in T : i(\vec{x}) = j(\vec{x}) \Rightarrow i(y) = j(y)$

$$M, T \models var(\vec{x}, y)$$
 \Leftrightarrow there is $i, j \in T : i(\vec{x}) = j(\vec{x}) \& i(y) \neq j(y)$