ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 3833552/22-03

(22) 29.12.84

(46) 15.08.86. Бюл. № 30

(72) Г.М. Осинов, Е.Н. Самойленко,

А.И. Тимченко, В.И. Либерман

и А.А. Рыбалка

(53) 624.155.1 (088.8)

(56) Авторское свидетельство СССР Р 720105, кл. Е 21 В 7/20, 1976.

Авторское свидетельство СССР № 866200, кл. Е 21 В 7/20, 1980. (54) (57) 1. УСТРОЙСТВО ДЛЯ БУРЕНИЯ СКВАЖИН С ОДНОВРЕМЕННОЙ ОБСАДКОЙ, включающее буровую колонну с закрепленным в ее нижней части породоразрушающим инструментом и размещенную концентрично ей обсадную колонну, отпичающееся тем, что, с целью повышения производительности бурения путем увеличения скорости выноса частиц шлама за счет уменьшения зоны размыва затрубного пространства обсадной колонны, обсадная колонна выполнена с прорезью вдоль ее образующей, а уст-

ройство снабжено опорным стаканом, размещенным концентрично с внешней стороны обсадной колонны, кареткой с разжимными элементами и упором, потком, закрепленным в верхней масти каретки, и защитными планками, прикрепленными к нижней части каретки с внешней и внутренией стороны обсадной колонны в месте прореэи, при этом разжимные элементы каретки размещены в прорези с возможностью перемещения и образования щели при взаимодействии упора каретки с опорным стаканом, а защитные планки установлены с возможностью герметизации щели.

- 2. Устройство по п.1, о т л ич а ю щ е е с я тем, что вдоль продольной прорези обсадной колонны выполнены поперечные надрезы, расположенные по обе ее стороны.
- 3. Устройство по пп.1 и 2, о тл и ч а ю щ е е с я тем, что разжимные элементы выполнены в виде роликов.

SU 1250637

Изобретение относится к горному делу, а именно к бурению скважин в породах, перекрытых сверху толщей рыхлых отложений.

Целью изобретения является повышение производительности бурения путем увеличения скорости выноса частиц шлама за счет уменьшения эоны размыва затрубного пространства обсадной колонны.

На фиг.1 и фиг.2 представлено устройство в двух проекциях, общий вид; на фиг.3 - разрез устьевой части устройства; на фиг.4 - сечение A-A на фиг.3; на фиг.5 - сечение Б-Б на фиг.4; на фиг.6 и фиг.7 обсадная колонна с продольной прорезью и поперечными надрезами, варианты выполнения.

Устройство для бурения скважин с одновременной обсадкой состоит из буровой колонны 1 (фиг.1 и 2) с закрепленными в ее нижней части забойным двигателем 2, породоразрушающим инструментом 3 и центратором 4. На буровой колоние с помощью комута 5 закреплена обсадная колонна 6, в которой выполнена продольная прорезь 7 со скосами 8 в торцовых частях колонны. В прорезь 7 вставлена каретка 9 с разжинными роликами 10 (фиг. 3-5), выполненными из закаленной стали образующими в обсадной колонне щель 11 длиной ? (фиг. 2). Разжимные ролики 10 закреплены в каретке 9 с помощью подшипников 12 качения, зашищенных от шлама с помощью уплотнений 13 (фиг. 3 и 4). На внешней части каретки 9 выполнен упор 14,а к нижней ее части закреплены защитные планки 15 и 16, перекрывающие щель с внешней и внутренней сторон обсадной колонны. Защитные планки установлены с обеспечением герметиза чин щели, для чего подпружинены относительно друг друга с помощью пружин 17, надетых на пальцы 18. Для исключения попадания частиц шлама под ролики 10 каретка 9 снабжена уплотнениями 19 и 20. В верхней части каретки закреплен лоток 21 для отвода шлама через стенку обседной колонны. Упор 14 касается верхней торцовой части опорного стакана 22, расположенного на устъе скважин. Для снижения деформаций обсадной колонны при ее раскрытии

и уменьшения длины Р щели (фиг.2) в обсадной колоние могут быть выполнены поперечные надрезы 23 (фиг.6), расположенные вдоль продольной прорези 7 и соединенные с ней.

Величину раскрытия обсадной копонны, т.е. ширину в щели (фиг.5) и ее длину ((фиг. 2), определяют нэ следующих условий: d, < b < b, NLG, где d₁- максимальный диаметр частиц шлама движущегося в кольцевом сечении нежду обсадной и буровой колоннами, b, - ширина щели, 15 соответствующая началу пластических пеформаций в буровой колоние, N усилие на перемещение каретки по обсадной колонне и G - осевая нагрузка на забой. Значения во и И определяют экспериментально. Цля этого предварительно выбирают отреэок трубы нужного диаметра D, и длиной около 10 D и разрезают трубу вдоль, например, фрезерованием или с помощью сварочного аппарата, стремясь при этом получить возможно большую чистоту поверхности разреза. По краям разреза делают скосы 8 (фиг.2). Конструкция коретки пре-30 дусматривает установку в ней роликов со смещением (фиг.5) таким образом, чтобы вирина ик ряда несколько превышала максимально возможный размер частиц шлама.

Затем подводят каретку к скосу 35 8 трубы и, нанося удары по каретке или ее упору 14, загоняют каретку в середину разрезанного участка. При этом определяют длину в раскрытой части трубы и оценивают усилие N на перемещение каретки. Всли после извлечения каретки из трубы ширина прорези осталась прежней (исходной), в усилие й не превысило допустимого 45 эначения, то обсадную колонну де-, пают из данного сечения труб. Если в выбранном отрезке труб возникла остаточная деформация, то выбирают другую трубу с меньшей толщиной стенки или большего диаметра. Дополнительной возможностью исключить остаточную деформацию трубы является периодическая поперечная надреяка трубы участками 23 вдоль линии 55 основной продольной прорези 7 (фиг.6) или замена металлической трубы на неметаллическую, например полиэтиленовую, Указанные мероприя-

15

20

тия позволяют одновременно снизить и усилие для продвижения каретки по трубе. Длину защитных планок 15 и 16 выбирают равной половине длины щели, т.е. ?/2.

Устройство для бурения скважин с одновременной обсадкой собирают и работают с ним следующим образом.

Перед началом бурения заготавливают обсадную колонну расчетной длины, достаточной для перекрытня всей мощности рыхлых отложений, и выполняют в ней продольную прорезь 7 со скосами 8, указанным способом, а если необходимо, дополнительные поперечные надрезы 23 (фиг. 2, 6). Закрепляют на буровой колоние забойный гидродвигатель 2 (например, турбобур), породоразрушающий инструмент 3, центратор 4 и обсадную колонну 6 с помощью хомута 5. При этом породоразрушающий инструмент должен (в данном варианте применения устройства) свободно проходить в обсадной колонне и выступать из нее на некоторую величину.

Далее закрепляют к нижней части каретки 9 уплотнение 20 и защитные планки 15 и 16, подпружиненные и соединенные между собой с помощью пальцев 18.

Подводят каретку 9 к обсадной колонне со стороны породоразрушаю— щего инструмента 3 и забивают ее вначале в скос 8, а затем в прорезь 35 трубы упором 14 наружу до тех пор, пока концы защитных планок дойдут до нижнего обреза обсадной колонны.

Буровой снаряд вывешивают в вертижальном положении над точкой бурения, подводят под него опорный стакан 22 (фиг. 1-3), вставляют в верхнюю часть каретки 9 уплотнение 19, там же закрепляют лоток 21 и приступают к бурению.

Для этого в полость буровой копонны подают под напором рабочую жидкость, которая, пройдя через гидродвигатель 2, приводит во вращение породоразрушающий инструмент. 50

После опускания снаряда на забой начинается углубка скважины в рыхлой толще. Реактивный момент от гидро-деигателя воспринимается мачтой

станка через верхнюю часть колонны бурильных труб. В начальный момент углубки снаряда отработанная жилкость со шламом изливается из-под обсадной колонны. Дальнейшее заглубление снаряда происходит за счет размыва рыхлой толщи и разрушения ее породоразрушающим инструментом. при этом упор 14 каретки соприкасвечия с торцовой поверхностью стакана 22 (фиг. 3), каретка 9 с защитными планками 15 и 16 удерживается на уровне устья скважины. Ролики 10 каретки начинают катиться по плоскостям прорези 7 обсадной колонны, образуя в ней бегущую щель, которая перемещается по обсадной колоние снизу вверх, оставаясь при этом на уровне устья скважины.

Промывочная жидкость со шламом поступает в кольцевое пространство между обсадной и бурильной колоннатии, поднимается до уровня каретки 9 и изливается наружу через открытую часть щели 11 по лотку 21. Зашитные планки 15 и 16 предотвращают попадание и заклинивание частиц шлама в часть щели 11, расположенную ниже каретки 9, что обеспечиватет смыкание щели под действием сил упругости обсадной колонны.

В свою очередь сальниковое уплотнение 19 в верхней части каретки 9 предотвращает попадание и заклинивание частиц шлама между роликами 10 и плоскостями разреза 7 обсадной колонны.

К моменту завершения перекрытия всей толщи рыхлых отложений каретка 9 выходит через верхний скос 8 обсадной трубы. На этом бурение временно прекращают. Каретку 9 с лотком 21, защитными планками 15 и 16, в также хомут 5 снимают. Дальнейшее бурение ведут в устойчивых породах без подъема буровой колонны, наращивая ее по мере необходимости. В этом случае промывочная жидкость со шламом поднимается с забоя вверх по обсадной колонне и изливается, как обычно, через верхнее ее сечение, расположенное несколько выше уровня поверхности грунта.

Составитель Л. Черепенкина Техред М. Ходанич Корректор С. Шекмар

Редактор М. Недолуженко

3axas 4382/24

Тираж 548

Подписное ВНИИЛИ Государственного комитета СССР по делам изобретений и открытий

113035, Москва, Ж-35, Раушская наб., д. 4/5