Natural Language Processing

 $\bullet \bullet \bullet$

≠ Neuro-Linguistic Programming

(even if ✓ is the first result on Google when you search for NLP)

About me

Ovidiu Şerban (<u>https://ovidiu.roboslang.org/</u>)

Research Associate @ Imperial College London

- Institute for Security Science and Technology (ISST)
- Data Science Institute (DSI)

Natural Language Processing, Machine Learning, Data Visualization, ...

Recent work

Şerban, O., Thapen, N., Maginnis, B., Hankin, C., & Foot, V. (2018). Real-time processing of social media with SENTINEL: A syndromic surveillance system incorporating deep learning for health classification. *Information Processing & Management*.

Loop until you're satisfied with the result

My NLP process

1. **Problem definition**

What are you trying to achieve?

2. Data acquisition

How are you going to get the data out?

- 3. Cleaning & parsing/tokenization
- 4. Feature representation

Vectors? Tokens? Paragraphs? Documents?

- 5. Classification
- 6. Metrics

Problem definition

Part of Speech (PoS) Tagging

- Input: Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.
- Output: Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV topping/V forecasts/N on/P Wall/N Street/N ,/, as/P their/POSS CEO/N Alan/N Mulally/N announced/V first/ADJ quarter/N results/N ./.
- N: Noun; V: Verb; P: Preposition; Adv: Adverb; Adj: Adjective

Tagging variations

- POS tagging problem usually all tokens are tagged with a label
- Entity recognition not all tokens are tagged
 Elon Musk settles with SEC over fraud charge
- Segmentation multiple tokens become part of the same entity
- Document classification the entire document is tagged with a label Elon Musk settles with SEC over fraud charge → positive | + 0.75

Translation/Language Models/Generation

• Generate a sequence of tokens (text) starting from another sequence

```
(EN) Elon Musk settles with SEC over fraud charge (FR) Elon Musk règle avec SEC sur les accusations de fraude (RO) Elon Musk recurge la o rezoluție amiabilă cu SEC asupra acuzațiilor de fraudă
```

- Language Models → predicting the next token in a sequence of text
- Text generation → generate a sequence of text starting from a random token

Data acquisition

Checklist

- Source, license, etc ...
- Data quality
- Document markup & metadata
- Annotations
 - E.g. Amazon's Mechanical Turk
- Annotation confidence
 - Inter-annotator agreements
 - Weighted inter-annotator agreements (experts vs non-experts)

Cleaning, parsing and tokenization

Notes

- Cleaning, parsing and tokenization is problem dependent

 I use this NLTK parser that this tutorial recommended, but my classifier does not work properly
- Be careful not to strip too much context with your cleaning
 - Document markup may be useful
 - Punctuation may help
 - Stop word removal (which everybody does in traditional NLP) may not be the best thing
 - Stemming may hurt your performance
- Clean less on first iterations

Cleaning

- Punctuation
- Stop words
- URLs, usernames
- Hashtags
- Emoji and emoticons (<u>https://emojipedia.org/</u>)
 - \circ Translation: $\square \to Grinning Face$
 - **Note:** Emoji/emoticons may have different meanings on different platforms depending on the icon
- Stemming
 - \circ fishing, fished, fisher \rightarrow fish
 - \circ argue, argued, argues, arguing \rightarrow argu
- Lemma
 - \circ go, goes, going, went, gone \rightarrow go

Tokenization

- Language dependent
- Source dependent (they deal differently with tweets/ wikipedia/ news articles, etc)
- Hashtag/url tokenization
- Word expansion
 - \circ Don't \rightarrow do not

Data representation

Notes

- Data representation is highly dependent on the classifier
- Numeric/vectorized representations
- Discrete representation (raw tokens)
- Co-occurrences (NGram frequencies)

One hot encoding

	o_ENE	o_ESE	o_East	o_NE	o_NNE	o_NNW	o_NW	o_North	o_SE	o_SSE	o_SSW	o_SW	o_South	o_Variable	o_WSW
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
2	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
4	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
10	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0

TF-IDF

TF-IDF Score

$$TF - IDF\ Score = TF_{x,y} * IDF = TF_{x,y} * log \frac{N}{df} \dots (1)$$

, where TF_{x,y} is the frequency of keyphrase X in the article Y, N is the total number of documents in the corpus. df is the number of documents containing keyphrase X

Vectorization

Document vectorization

Which vector model to choose?

											L
Eleven	Detect	Vector	Rare Words			SimLex 999			WordSim 353		
Flavor	Dataset	size	score	TR	oov	score	TR	oov	score	TR	oov
FastText Twitter		300	48.92	36.26	14%	36.76	36.76	0%	69.95	69.95	0%
GloVe	Twitter	300	45.82	2.56	83%	14.64	13.86	1%	57.26	46.55	8%
Word2Vec	Twitter	300	38.70	31.60	14%	31.40	31.40	0%	61.44	61.44	0%
FastText	OpenSubtitles	300	51.73	38.89	13%	41.85	41.85	0%	71.97	71.97	0%
GloVe	GloVe OpenSubtitles		33.41	20.53	49%	16.40	16.57	0%	53.58	53.47	0%
Word2Vec	OpenSubtitles	300	35.44	28.57	13%	34.88	34.88	0%	60.27	60.27	0%

Document vectorization

 Similar to token vectorization → one vector representation for the whole document (latent representation)

Classifiers

Linear SVM

CNN

LSTM

Metrics

Metrics

- Precision = tp / (tp + fp) Recall = tp / (tp + fn)
 - Precision: probability that a randomly selected retrieved sample is relevant
 - Recall: probability that a randomly selected relevant sample is retrieved in a search.
- Accuracy = (tp + tn) / total
- F1 = 2*P*R / (P + R)
- Error rate = 1 Accuracy
- Domain dependent:
 - \circ BLEU (bilingual evaluation understudy) \rightarrow translation quality score

Error analysis

- Vector representation issues:
 - Out of Vocabulary (OOV) problems
 - Synonyms
 - Rare words
- Lack of context too much cleaning, stemming issues
- Negation
- Lack of data for certain classes

Questions