

Faculty of Computing

Year 2 Semester 1 (2025)

IT2120 - Probability and Statistics

Lab Sheet 08

Exercise

1. Calculate the population mean and population standard deviation of the laptop bag weights.

■ Data Editor — □ >							
File Edit Help							
	Weight.kg.	var2	var3	var4	var5	var6	^
1	2.46						1
2	2.45						1
3	2.47						1
4	2.71						
5	2.46						1
6	2.05						1
7	2.6						1
8	2.42						1
9	2.43						1
10	2.53						
11	2.57						1
12	2.85]
13	2.7						1
14	2.53]
15	2.28]
16	2.2						
17	2.57						
18	2.89						
19	2.51						1

```
> setwd("C:\\Users\\acer\\OneDrive\\Desktop\\IT24104092")
> getwd()
[1] "C:/Users/acer/OneDrive/Desktop/IT24104092"
> # Read the data file
> weights <- read.table("Exercise - LaptopsWeights.txt", header = TRUE)
> fix(weights)
> attach(weights)
```

```
> #Q1
> popmn<-mean(Weight.kg.)
> popmn
[1] 2.468
> popsd<-sd(Weight.kg.)
> popsd
[1] 0.2561069
```

2. Draw 25 random samples of size 6 (with replacement) and calculate the sample mean and sample standard deviation for each sample.

```
> # Q2
> samples<-c()
> n<-c()
> for(i in 1:25){
  s<-sample(Weight.kg.,6,replace = TRUE)</pre>
   samples<-cbind(samples,s)</pre>
 n<-c(n,paste('5',i))</pre>
+ }
> colnames(samples)=n
> s.means<-apply(samples,2,mean)</pre>
> s.means
    5 1
           5 2 5 3 5 4 5 5 5 6
2.336667 2.460000 2.458333 2.696667 2.456667 2.513333
    5 7
            58 59 510 511
2.358333 2.466667 2.425000 2.591667 2.471667 2.520000
   5 13 5 14 5 15 5 16 5 17 5 18
2.288333 2.446667 2.378333 2.463333 2.236667 2.463333
          5 20 5 21 5 22 5 23 5 24
2.456667 2.603333 2.528333 2.385000 2.561667 2.420000
   5 25
2.401667
> s.sd<-apply(samples,2,sd)</pre>
> s.sd
     51 52 53 54
0.2280058 0.3312401 0.1682161 0.1602082 0.2307957
             5 7 5 8
                              5 9 5 10
0.3731309 0.1979310 0.1467878 0.2137054 0.1333292
            5 12 5 13 5 14 5 15
    5 11
0.3539727 0.2813539 0.3257248 0.2293178 0.3361200
    5 16 5 17 5 18 5 19 5 20
0.2196057 0.3023684 0.2166718 0.2967603 0.1366260
    5 24 5 25
0.2614128 0.1803053 0.1859480 0.2319483 0.2540407
```

3. Calculate the mean and standard deviation of the 25 sample means and state the relationship of them with true mean and true standard deviation.

```
> #Q3
> #calculate the mean and standard deviation of the 25 sample means
> samplemean<-mean(s.means)</pre>
> samplemean
[1] 2.455533
> samplesd<-sd(s.means)</pre>
> samplesd
[1] 0.09972151
> #state therelationship of them with true mean and true standard deviation
> popmn
[1] 2.468
> samplemean
[1] 2.455533
> truesd=popsd/sqrt(6)
> samplesd
[1] 0.09972151
```