

Introduction to High Performance Computing

Lecture 07 – Charateristics

Holger Fröning
Institut für Technische Informatik
Universität Heidelberg

Introduction

- Many ways to send a message
 - Goal: As few overhead as possible
 - Or: as much overlap as possible
- According to Amdahl
 - For scalability, communication must not contribute to the serial fraction
 - E.g., 10% of the execution time for communication, max. 10x SU
- Thus: large overlap, low overhead required for scalable parallel computing

Introduction

- So, what can we expect does happen if we perform nonblocking send/recv operations?
 - It all depends on the network respectively network interface...
 - Hard- and software components contribute to the overhead associated with message passing
 - Usually, SW is responsible to handle HW shortcomings
 - Examples: reliability, ordering, copy operations, ...
- Goal of this lecture
 - The most important performance characteristics of message passing (resp. parallel computing)
 - Their importance for different applications

Latency and Bandwidth Characteristics

Analogy to Shared-Memory Computers

- Standard memory access is characterized using access latency and transfer bandwidth
 - About which of both do you worry more?
- Remember caching effects
 - Caches are used to reduce average access latencies!
 - Leveraging spatial and temporal locality
- Caching for message passing systems?
 - Spatial and temporal locality?
- What is most important for message passing systems?

- Latency is the time between starting a send and completing a receive
 - Typically in micro-seconds (usec)
 - Tends to vary widely across architectures
 - Software latency vs. hardware latency
 - Usually people care about the first one
 - Hardware latency about 10-100 times lower
- Diameter of a network
 - For a pair of two nodes with the highest distance between them, the diameter is the number of hops of the shortest path
- Latency is important for programs with many small messages

Latency

- Patterson stated: "Latency lags Bandwidth" (CACM 2004)
 - Bandwidth improves much more quickly than latency: memory, storage, networking
- Every component in between sender and receiver contributes to latency
 - Buffering, queues, pipeline stages, ...
- Also, remember that the speed of light is limited
 - Vacuum: c₀=300m/usec or 3ns/m
 - PCB (FR4): typ. $c = c_0/2.0$ or about 6ns/m
 - Optical fiber: typ. $c = c_0/1.5$ or about 4.5ns/m

Latency

- Several components contribute to total latency
 - Simplified model here
- Start-up latency: latency of a minimum sized message
 - Zero-sized message
- Good indicator for overhead $t_{lat} = t_{send} + t_{flight} + \frac{size}{BW} + t_{recv}$ Total Latency

 Sender Send Overhead (processor busy)

 Time of Transmission Time (size/BW)

 Receiver (size/BW)

 Receive Overhead (processor busy)

Transport Latency

- VELO Example
- 62 cycles at 100MHz: 0.62usec
- API latency: 0.97usec
 - Diff = CPU/MC/SW overhead
 - ~0.35usec
- MPI adds 0.2-0.5 usec
 - MTL resp. BTL

Heiner Litz, Holger Fröning, Mondrian Nüssle, Ulrich Brüning, VELO: A Novel Communication Engine for Ultra-low Latency Message Transfers, 37th International Conference on Parallel Processing (ICPP-08), Sept. 08 - 12, 2008, Portland, Oregon, USA.

Bandwidth

- Physical or peak bandwidth BW = data width / cycle time
 - Cycle time = 1 / frequency
 - Applies for a network link, internal data path, PCIe subsystem, ...
- Unidirectional vs. bidirectional bandwidth
 - Some old topologies (buses) did not allow bidirectional transfers
 - Not of importance today (except marketing)
- Effective or sustained bandwidth typically lower
 - Protocol overhead
- Bandwidth is maybe the most important characteristic today (Big Data era)
 - Processor/Memory gap → Processor/Network gap

Bandwidth – Current Trends

Bandwidth

- Protocol overhead
 - Payload size / Packet size ratio

 Overall bandwidth limited by individual subsystem bandwidth

Latency Bandwidth Analysis

- Intel MPI Benchmarks (IMB)
 - Easy to use, free benchmark suite
- Benchmarks a large set of MPI functions
 - Point-to-point message passing
 - Single transfer & parallel transfer
 - Global data movement and computation routines
 - Collective
 - One-sided communications & File I/O
- PingPong & PingPing
 - Start-up latency & peak bandwidth
 - No difference for good MPI implementations

Figure 1: PingPong pattern

Figure 2: PingPing pattern

Source: http://software.intel.com/en-us/articles/intel-mpi-benchmarks

Example: IMB & Gigabit Ethernet

- Pingpong test
- Quiescent system
 - Contention and congestion will dramatically affect performance
- Mapping
 - Inter- vs. intra-node effects
- Observations BW
 - Low compared to memory BW
 - Reaches saturation asymptotically
- Observations Latency
 - Linear scaling for large messages

Example: IMB & Gigabit Ethernet

- Pingpong test zoomed view
- Observations BW
 - Really low BW for small messages
 - Saturation reached slowly
 - · Overheads!
 - Protocol, send, receive
- Observations Latency
 - For small messages (<2kB) constant
 - Otherwise linear scaling

Latency Bandwidth Analysis

Intel MPI Benchmarks(IMB) – SendRecv

- Periodic communication chain, send and receive can overlap
- Reports 2x peak BW (1 in, 1 out)
- Double throughput for perfectly bidirectional systems

Exchange

Reports 4x peak BW (2 in, 2 out)

Figure 3: Sendrecv pattern

Figure 4: Exchange pattern

Source: http://software.intel.com/en-us/articles/intel-mpi-benchmarks

Example: IMB & Gigabit Ethernet

- Parallel transfer tests
 - One process per node
- Insights
 - Small messages (<1kB): exchange better
 - Large messages (>64kB): contention for exchange
 - Only NP=2 experiments are able to get close to saturation
 - 4P@64kB: performance downgrades
- Reported BW much lower than expected

Overhead and Availability Characteristics

Overhead and Overlap

- Overhead is defined as the length of time that a processor is engaged in the transmission or reception of each message; during this time, the processor cannot perform other operations.
 - [Culler et. al, LogP: Towards a Realistic Model of Parallel Computation, *PPoPP*, 1993]
- Application availability is defined to be the fraction of total transfer time that the application is free to perform non-MPI related work
 - [Lawry et. al, COMB: A Portable Benchmark Suite for Assessing MPI Overlap, *CLUSTER*, 2002]

 $Availability[\%]=1-(overhead[usec]/transfer_time[usec])$

Overhead and Overlap

- Measuring overhead: basic idea is a post-work-wait loop
 - For each message size, repeat following steps with increasing work_t:

```
    MPI_Isend
    Work loop | work_t
    MPI Wait | iter_t
```

- Three steps:
- Work completes before message transfer is complete (region 1)
 - Derive base_t based on first iter_t measurement
 E.g., base t = iter t*1.05
 - iter_t < base_t
 - Message transfer time equals loop time iter_t
- 2. Work time exceeds message transfer time (region 2)
 - iter_t > base_t
 - Overhead = iter_t work_t
- Stop if iter_t > threshold

Overhead and Overlap

Source: http://www.cs.sandia.gov/smb/overhead.html

Overhead and Overlap Analysis

- Sandia MPI Micro-Benchmark Suite (SMB)
 - Free benchmark suite
- Host Processor Overhead
 - Measures host processor overhead and availability during nonblocking MPI operations
- 2. Real World Message Rate Benchmark
 - Measures sustained message throughput at scale with multiple peers, as would be expected in real Sandia application scenarios

Example: SMB & Gigabit Ethernet

Example: SMB & Infiniband

Example: SMB - various

	Red Storm	Thunderbird	СВС-В	Odin	Red Squall
Interconnect	Seastar 1.2	InfiniBand	InfiniBand	Myrinet 10G	QsNetII
Adapter	Custom	PCI-Express HCA	InfiniPath	Myri-10G	Elan4
Host Interface	HT 1.0	PCI-Express	HT 1.0	PCI-Express	PCI-X

Source: http://www.cs.sandia.gov/smb/overhead.html

Example: SMB - various

	Red Storm	Thunderbird	СВС-В	Odin	Red Squall
Interconnect	Seastar 1.2	InfiniBand	InfiniBand	Myrinet 10G	QsNetII
Adapter	Custom	PCI-Express HCA	InfiniPath	Myri-10G	Elan4
Host Interface	HT 1.0	PCI-Express	HT 1.0	PCI-Express	PCI-X

Source: http://www.cs.sandia.gov/smb/overhead.html

26

Message Rate Characteristics

Message Rate

- Up to now: latency, bandwidth, overhead
 - Basically sufficient for characterization
- However, small messages:
 - Latency cannot characterize overlap in this case
 - Bandwidth typically reported for large messages
- More important:
 - How many messages per second one can send out?
 - Push-model instead of round-trip communication

→ Message Rate (MR), in messages per second

Message Rate

Theoretical upper bound: BW/size

- Sustained bandwidth for given message size
- I.e., peak bandwidth without protocol overhead for given message size

Practical upper bound: gaps

- Network protocol overhead including framing, headers, CRC, etc
- 2. Message passing protocol overhead including tags, source identification, etc
- 3. Packet-to-packet gaps caused by network interface
- 4. Packet-to-packet gaps caused by switching units
- 5. Software overhead for sending and receiving

Message Rate

- Various overhead sources
- Multi-pair tests help overcoming software overhead limitations
 - Multiple end points per node

Thus:

- Latency & bandwidth should not (best case) be affected by multi-pair tests
- MPI message rate typically benefits a lot from multiple end points per node

Network	10GE ¹	IB-QDR ²	EXTOLL ³
Net Speed	10 Gbps	32 Gbps	5 Gpbs
Theoretical peak message rate (8B payload)	156.3	500.0	78.0
Network protocol overhead	82 B	38 B	32 B
MPI protocol overhead	24 B	10 B	16 B
Packet-to-Packet gap of switching units	NA	NA	8 B
Packet-to-Packet gap of network interface	NA	NA	0 B
Overhead total (as appropriate)	114 B (w/o gaps)	56 B (w/o gaps)	64 B (total)
Sustained Message Rate	0.66 (0.42%)	6.67 (1.33%)	9.73 (12.4%)
Calculated overhead derived from sustained MR	416.67 B	599.70 B	64.14 B

Holger Fröning, Mondrian Nüssle, Heiner Litz, Christian Leber and Ulrich Brüning, On Achieving High Message Rates, 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), May 13-16, 2013, Delft, The Netherlands.

Message Rate Analysis

- Sandia MPI Micro-Benchmark Suite (SMB)
- Ohio State University (OSU) Micro-Benchmarks
 - Both report cumulative messages per second
 - Ensure correct mapping!

Example: OSU_MBW_MR & Gigabit Ethernet

Example: OSU_MBW_MR & Infiniband

Example: OSU_MBW_MR & EXTOLL R2 (FPGA)

Summary

"Right" characteristic has to be chosen based on a certain workload!

- Several characteristics
 - Latency
 - Bandwidth
 - Message rate
 - Overhead and Overlap

Optimization strategy depends on networking features

- Complete communication stack contributes
 - Software for sending and receiving: API, libraries, drivers
 - Network interface architecture
 - Network switching resources & links
- Not covered here: contention and congestion
 - Can have huge impact on performance
 - Characterization of those highly depends on applied workload