

Міністерство освіти і науки України Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки Кафедра інформатики та програмної інженерії

Лабораторна робота №2

Аналіз даних з використанням мови Python

Тема: Статистичний аналіз даних

Варіант: 1

Виконав	Перевірив:
студент групи ІП-11:	Тимофєєва Ю. С
Панченко С. В.	

3MICT

1 Мета лабораторної роботи	6
2 Завдання	7
3 Завдання	8
3.1 Знайти середній вік матерів і батьків і порівняти ці середні значення	8
3.2 Перевірити чи нормально розподілена вага дітей	9
3.3 Перевірити за допомогою статистичних гіпотез чи у матерів, що паля	ΊЪ,
легші діти	9
3.4 Чи ϵ зв'язок між зростом матері та дитини?	.10
4 Висновок	11

1 МЕТА ЛАБОРАТОРНОЇ РОБОТИ

Ознайомитись з основними функціями бібліотеки NumPy та SciPy для описової статистики, перевірки статистичних гіпотез, кореляційного аналізу та лінійної регресії.

2 ЗАВДАННЯ

Варіант 1.

Файл Birthweight.csv.

- 1. Знайти середній вік матерів і батьків і порівняти ці середні значення.
- 2. Перевірити чи нормально розподілена вага дітей.
- 3. Перевірити за допомогою статистичних гіпотез чи у матерів, що палять, легші діти.
- 4. Чи ϵ зв'язок між зростом матері та дитини?

3 ЗАВДАННЯ

3.1 Знайти середній вік матерів і батьків і порівняти ці середні значення

Для початку створимо датафрейм з датасету Birthweight.csv.

In [68]:	<pre>import pandas as pd import numpy as np df = pd.read_csv('data/Birthweight.csv') df.head(10)</pre>													
Out[68]:		ID	Length	Birthweight	Headcirc	Gestation	smoker	mage	mnocig	mheight	mppwt	fage	fedyrs	fnocig
	0	1360	56	4.55	34	44	0	20	0	162	57	23	10	35
	1	1016	53	4.32	36	40	0	19	0	171	62	19	12	0
	2	462	58	4.10	39	41	0	35	0	172	58	31	16	25
	3	1187	53	4.07	38	44	0	20	0	174	68	26	14	25
	4	553	54	3.94	37	42	0	24	0	175	66	30	12	0
	5	1636	51	3.93	38	38	0	29	0	165	61	31	16	0
	6	820	52	3.77	34	40	0	24	0	157	50	31	16	0
	7	1191	53	3.65	33	42	0	21	0	165	61	21	10	25
	8	1081	54	3.63	38	38	0	18	0	172	50	20	12	7
	9	822	50	3.42	35	38	0	20	0	157	48	22	14	0
4														+

Рисунок 3.1 - Датафрейм Birthweight.csv

Оскільки лабораторна робота вимагає саме використання NumPy, а не Pandas, то дістанемо матрицю даних з датафрейма, а індекси колонок будемо знаходити за допомогою словника.

Рисунок 3.2 - Робота з матрицею NumPy

Знайдемо середній вік матері та батька по всіх новонароджених, порівняємо їх. mage - колонка віку матері дитини, fage - колонка віку батька дитини.

Побачимо, що вік батька в середньому вищий.

```
In [84]: mean_mage = mat[:, cols["mage"]].mean()
    mean_fage = mat[:, cols["fage"]].mean()
    print(f'Mean mage: {mean_mage}')
    print(f'Mean fage: {mean_fage}')
    print(f"Delta: {mean_fage - mean_mage}")

Mean mage: 25.547619047619047
    Mean fage: 28.904761904761905
    Delta: 3.3571428571428577
```

Рисунок 3.3 - Середній вік батьків - матері та батька дитини

3.2 Перевірити чи нормально розподілена вага дітей

Перевіримо нормальність розподілу ваги дітей за допомогою критерію Андерсона. Імпортуємо з пакету scipy модуль stats, використаємо тест Колмогорова-Смірнова. Побачимо, що розподіл ваги дітей не ε нормальним. Якщо pvalue < 0.05, то приймається альтернативна гіпотеза.

```
In [71]: import scipy.stats as stats
    res = stats.kstest(mat[cols["Birthweight"]], 'norm')
    print(res)
    print(f'Is pvalue > 0.05? {res.pvalue > 0.05}')
    print(f'H_0 is {res.pvalue > 0.05}')

    KstestResult(statistic=0.7499793424930875, pvalue=8.015167938365836e-10)
    Is pvalue > 0.05? False
    H_0 is False
```

Рисунок 3.4 - Перевірка розподілу ваги на нормальність за допомогою теста Колмогорова-Смірнова

3.3 Перевірити за допомогою статистичних гіпотез чи у матерів, що палять, легші діти

Застосуємо двовибірковий t-критерій з альтернативною гіпотезою того, що у матерів, які палять, легші діти. Як бачимо альтернативна гіпотеза приймається, тому у курців діти мають меншу масу ніж у тих людей, що не палять.

```
In [72]: smoker = mat[mat[:, cols['smoker']] == 1][:, cols['Birthweight']]
    no_smoker = mat[mat[:, cols['smoker']] == 0][:, cols['Birthweight']]
    res = stats.ttest_ind(smoker, no_smoker, alternative='less')
    print('H1: smoker < no_smoker')
    print(f'H1 is {res.pvalue < 0.05}')

    H1: smoker < no_smoker
    H1 is True</pre>
```

Рисунок 3.5 - Доведення альтернативної гіпотези, що курці мають новонароджених з меншою масою

3.4 Чи є зв'язок між зростом матері та дитини?

Використаємо тест Пірсона для перевірки даної гіпотези. Функція stats.pearsonr бере за нульову гіпотезу те, що послідовності є некорельованими та нормально розподіленими. 'two-sided' - кореляція є ненульовою, 'less' - кореляція є від'ємною, 'greater' - кореляція є додатною. Бачимо, що поле staticstic показує чітку кореляцію, а оскільки pvalue > 0.05, то кореляція існує точно.

Рисунок 3.6 - Тест Пірсона для перевірки кореляції між зростом матері та дитини

4 ВИСНОВОК

Під час виконання даної лабораторної роботи я ознайомився з основними функціями бібліотеки NumPy та SciPy для описової статистики, перевірки статистичних гіпотез, кореляційного аналізу та лінійної регресії. У першому завданні було отримано, що середній вік батьків вищий ніж матерів. У другому завданні був використаний тест Колмогорова-Смірнова, далі побачили, що вага немовлят не розподілена нормально. За допомогою двовибіркового t-критерію дізналися, що матері, які палять, мають легших новонароджених дітей. І в кінці за допомогою тесту Пірсона вказали, що існує кореляція між зростом матері та дитини.