Support Vector Machines

Fernando Lozano

Universidad de los Andes

30 de septiembre de 2014

El perceptrón

Teorema
Suponga:

Teorema

Suponga:

•
$$\|\mathbf{x}_i\| \le K \in \mathbb{R}, \quad i = 1 \dots, n.$$

Teorema

Suponga:

- $\|\mathbf{x}_i\| \le K \in \mathbb{R}, \quad i = 1 \dots, n.$
- $\exists \hat{\mathbf{w}} \in \mathbb{R}^{d+1}, \delta > 0$ tal que $\hat{\mathbf{w}}^T \mathbf{x}_i \ge \delta$ $i = 1, \dots, n$.

Teorema

Suponga:

- $\|\mathbf{x}_i\| \le K \in \mathbb{R}, \quad i = 1 \dots, n.$
- $\exists \hat{\mathbf{w}} \in \mathbb{R}^{d+1}, \delta > 0$ tal que $\hat{\mathbf{w}}^T \mathbf{x}_i \ge \delta$ $i = 1, \dots, n$.

Entonces el algoritmo del perceptrón ejecuta el paso de actualización a lo sumo $\left(\frac{K||\hat{\mathbf{w}}||}{s}\right)^2$ veces.

Teorema

Suponga:

- $\|\mathbf{x}_i\| \le K \in \mathbb{R}, \quad i = 1 \dots, n.$
- $\exists \hat{\mathbf{w}} \in \mathbb{R}^{d+1}, \delta > 0$ tal que $\hat{\mathbf{w}}^T \mathbf{x}_i \ge \delta$ $i = 1, \dots, n$.

Entonces el algoritmo del perceptrón ejecuta el paso de actualización a lo sumo $\left(\frac{K||\hat{\mathbf{w}}||}{\delta}\right)^2$ veces.

 \bullet Deseable tener márgen δ grande.

Teorema

Suponga:

- $\|\mathbf{x}_i\| \le K \in \mathbb{R}, \quad i = 1 \dots, n.$
- $\exists \hat{\mathbf{w}} \in \mathbb{R}^{d+1}, \delta > 0$ tal que $\hat{\mathbf{w}}^T \mathbf{x}_i \ge \delta$ $i = 1, \dots, n$.

Entonces el algoritmo del perceptrón ejecuta el paso de actualización a lo sumo $\left(\frac{K||\hat{\mathbf{w}}||}{\delta}\right)^2$ veces.

- Deseable tener márgen δ grande.
- Algoritmo del perceptrón no tiene en cuenta el márgen.

Motivación desde teoría de aprendizaje

• Structural Risk Minimization:

Motivación desde teoría de aprendizaje

• Structural Risk Minimization:

• Algoritmo de aprendizaje determina la complejidad apropiada de la clase de hipótesis.

Motivación desde teoría de aprendizaje

• Structural Risk Minimization:

- Algoritmo de aprendizaje determina la complejidad apropiada de la clase de hipótesis.
- Cómo variar suavemente la complejidad?

• Márgen: Distancia de un punto a la superficie de separación.

- Márgen: Distancia de un punto a la superficie de separación.
- Es deseable tener márgenes grandes.

Margen grande vs. Complejidad

• Hipótesis $h(\mathbf{x}) = \text{sign}(\langle \mathbf{w}, \mathbf{x} \rangle + b)$

- Hipótesis $h(\mathbf{x}) = \text{sign}(\langle \mathbf{w}, \mathbf{x} \rangle + b)$
- Separación:

- Hipótesis $h(\mathbf{x}) = \text{sign}(\langle \mathbf{w}, \mathbf{x} \rangle + b)$
- Separación:

$$\langle \mathbf{w}, \mathbf{x}_i \rangle + b \ge 1$$
 Si $y_i = 1$
 $\langle \mathbf{w}, \mathbf{x}_i \rangle + b \le -1$ Si $y_i = -1$

- Hipótesis $h(\mathbf{x}) = \text{sign}(\langle \mathbf{w}, \mathbf{x} \rangle + b)$
- Separación:

$$\langle \mathbf{w}, \mathbf{x}_i \rangle + b \ge 1$$
 Si $y_i = 1$
 $\langle \mathbf{w}, \mathbf{x}_i \rangle + b \le -1$ Si $y_i = -1$ $\} y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1 \ge 0 \quad \forall i$

- Hipótesis $h(\mathbf{x}) = \text{sign}(\langle \mathbf{w}, \mathbf{x} \rangle + b)$
- Separación:

$$\langle \mathbf{w}, \mathbf{x}_i \rangle + b \ge 1$$
 Si $y_i = 1$
 $\langle \mathbf{w}, \mathbf{x}_i \rangle + b \le -1$ Si $y_i = -1$ $\} y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1 \ge 0 \quad \forall i$

• Márgen?

30 de septiembre de 2014

mín
$$\frac{1}{2} \|\mathbf{w}\|^2$$
 sujeto a $y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1 \ge 0$ $i = 1, \dots, n$

mín
$$\frac{1}{2}\|\mathbf{w}\|^2$$
 sujeto a $y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1 \ge 0$ $i = 1, \dots, n$

• Problema de programación cuadrática.

mín
$$\frac{1}{2}\|\mathbf{w}\|^2$$
 sujeto a $y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1 \ge 0$ $i = 1, \dots, n$

- Problema de programación cuadrática.
- Problema convexo:

mín
$$\frac{1}{2}\|\mathbf{w}\|^2$$
 sujeto a $y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1 \ge 0$ $i = 1, \dots, n$

- Problema de programación cuadrática.
- Problema convexo:
 - Unico mínimo global.

• Problema de optimización:

mín
$$\frac{1}{2}\|\mathbf{w}\|^2$$
 sujeto a $y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1 \ge 0$ $i = 1, \dots, n$

- Problema de programación cuadrática.
- Problema convexo:
 - Unico mínimo global.
 - ► Condiciones de Karush-Kuhn-Tucker (KKT) son suficientes y necesarias para mínimo global y máximo global del problema dual.

• Problema de optimización:

mín
$$\frac{1}{2}\|\mathbf{w}\|^2$$
 sujeto a $y_i\left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b\right) - 1 \ge 0$ $i=1,\ldots,n$

- Problema de programación cuadrática.
- Problema convexo:
 - Unico mínimo global.
 - Condiciones de Karush-Kuhn-Tucker (KKT) son suficientes y necesarias para mínimo global y máximo global del problema dual.
 - ► Solución eficiente.

• Problema de optimización:

mín
$$\frac{1}{2}\|\mathbf{w}\|^2$$
 sujeto a $y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1 \ge 0$ $i = 1, \dots, n$

- Problema de programación cuadrática.
- Problema convexo:
 - Unico mínimo global.
 - Condiciones de Karush-Kuhn-Tucker (KKT) son suficientes y necesarias para mínimo global y máximo global del problema dual.
 - Solución eficiente.
 - ► Tamaño puede ser grande.

• Introducimos multiplicadores de Lagrange $\alpha = [\alpha_1, \alpha_2, \dots, \alpha_n] \geq 0.$

• Introducimos multiplicadores de Lagrange $\alpha = [\alpha_1, \alpha_2, \dots, \alpha_n] \geq 0$. El Lagrangiano:

• Introducimos multiplicadores de Lagrange $\alpha = [\alpha_1, \alpha_2, \dots, \alpha_n] \geq 0$. El Lagrangiano:

$$L(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{n} \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) - 1 \right)$$

• Introducimos multiplicadores de Lagrange $\alpha = [\alpha_1, \alpha_2, \dots, \alpha_n] \geq 0$. El Lagrangiano:

$$L(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) - 1 \right)$$
$$= \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) + \sum_{i=1}^n \alpha_i \right)$$

• Introducimos multiplicadores de Lagrange $\alpha = [\alpha_1, \alpha_2, \dots, \alpha_n] \geq 0$. El Lagrangiano:

$$L(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) - 1 \right)$$
$$= \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) + \sum_{i=1}^n \alpha_i \right)$$

• Minimizamos $L(\mathbf{w}, b, \boldsymbol{\alpha})$ con respecto a \mathbf{w}, b para obtener la función dual:

• Introducimos multiplicadores de Lagrange $\alpha = [\alpha_1, \alpha_2, \dots, \alpha_n] \geq 0$. El Lagrangiano:

$$L(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) - 1 \right)$$
$$= \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) + \sum_{i=1}^n \alpha_i \right)$$

• Minimizamos $L(\mathbf{w}, b, \boldsymbol{\alpha})$ con respecto a \mathbf{w}, b para obtener la función dual:

$$\frac{\partial L}{\partial b} = 0$$

• Introducimos multiplicadores de Lagrange $\alpha = [\alpha_1, \alpha_2, \dots, \alpha_n] \geq 0$. El Lagrangiano:

$$L(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) - 1 \right)$$
$$= \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) + \sum_{i=1}^n \alpha_i \right)$$

• Minimizamos $L(\mathbf{w}, b, \boldsymbol{\alpha})$ con respecto a \mathbf{w}, b para obtener la función dual:

$$\frac{\partial L}{\partial b} = 0 \Rightarrow \sum_{i=1}^{n} \alpha_i y_i = 0$$

• Introducimos multiplicadores de Lagrange $\alpha = [\alpha_1, \alpha_2, \dots, \alpha_n] \geq 0$. El Lagrangiano:

$$L(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) - 1 \right)$$
$$= \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) + \sum_{i=1}^n \alpha_i \right)$$

• Minimizamos $L(\mathbf{w}, b, \boldsymbol{\alpha})$ con respecto a \mathbf{w}, b para obtener la función dual:

$$\frac{\partial L}{\partial b} = 0 \Rightarrow \sum_{i=1}^{n} \alpha_i y_i = 0$$
$$\frac{\partial L}{\partial \mathbf{w}} = 0$$

• Introducimos multiplicadores de Lagrange $\alpha = [\alpha_1, \alpha_2, \dots, \alpha_n] \geq 0$. El Lagrangiano:

$$L(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) - 1 \right)$$
$$= \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) + \sum_{i=1}^n \alpha_i \right)$$

• Minimizamos $L(\mathbf{w}, b, \boldsymbol{\alpha})$ con respecto a \mathbf{w}, b para obtener la función dual:

$$\frac{\partial L}{\partial b} = 0 \Rightarrow \sum_{i=1}^{n} \alpha_i y_i = 0$$
$$\frac{\partial L}{\partial \mathbf{w}} = 0 \Rightarrow \mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$$

• Reemplazando en el Lagrangiano:

• Reemplazando en el Lagrangiano:

$$L = \frac{1}{2} \left\langle \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i, \sum_{j=1}^{n} (\alpha_j y_j) \mathbf{x}_j \right\rangle$$
$$- \sum_{i=1}^{n} \alpha_i y_i \left(\left\langle \sum_{j=1}^{n} (\alpha_j y_j) \mathbf{x}_j, \mathbf{x}_i \right\rangle + b \right) + \sum_{i=1}^{n} \alpha_i$$

• Reemplazando en el Lagrangiano:

$$L = \frac{1}{2} \left\langle \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i, \sum_{j=1}^{n} (\alpha_j y_j) \mathbf{x}_j \right\rangle$$
$$- \sum_{i=1}^{n} \alpha_i y_i \left(\left\langle \sum_{j=1}^{n} (\alpha_j y_j) \mathbf{x}_j, \mathbf{x}_i \right\rangle + b \right) + \sum_{i=1}^{n} \alpha_i$$

• Obtenemos la función dual:

$$g(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$

máx
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$
sujeto a
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
$$\alpha \geq 0$$

máx
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$
sujeto a
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
$$\alpha \geq 0$$

• Problema de programación cuadrática cóncavo.

máx
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$
sujeto a
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
$$\alpha \ge 0$$

- Problema de programación cuadrática cóncavo.
- ullet Los datos ${f x}_i$ sólo aparecen en productos punto.

$$y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1 \ge 0 \quad i = 1, \dots, n$$

- $y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) 1 \ge 0 \quad i = 1, \dots, n$

$$y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1 \ge 0 \quad i = 1, \dots, n$$

- $\alpha_i \geq 0$ $i = 1, \ldots, n$
- $\mathbf{0} \mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$

- **1** $y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) 1 > 0$ i = 1, ..., n
- $\alpha_i \geq 0 \quad i = 1, ..., n$
- $\mathbf{0} \mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$

$$y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1 \ge 0 \quad i = 1, \dots, n$$

$$2 \alpha_i \ge 0 i=1,\ldots,n$$

$$\mathbf{0} \ \mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$$

- $y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) 1 \ge 0 \quad i = 1, \dots, n$
- $\alpha_i \geq 0 \quad i = 1, ..., n$
- $\mathbf{0} \ \mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$

- Las condiciones 3 y 5 implican que la suma $\mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$ sólo involucra vectores \mathbf{x}_i para los cuales la restricción es activa.

- $y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) 1 \ge 0 \quad i = 1, \dots, n$
- $\bullet \mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$

- Las condiciones 3 y 5 implican que la suma $\mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$ sólo involucra vectores \mathbf{x}_i para los cuales la restricción es activa.
- Estos vectores se llaman vectores de soporte.

- $y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) 1 \ge 0 \quad i = 1, \dots, n$
- $\alpha_i \geq 0 \quad i = 1, ..., n$
- $\bullet \mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$

- Las condiciones 3 y 5 implican que la suma $\mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$ sólo involucra vectores \mathbf{x}_i para los cuales la restricción es activa.
- Estos vectores se llaman vectores de soporte.
- \bullet Si S es el conjunto de vectores de soporte tenemos:

$$\mathbf{w} = \sum_{i: \mathbf{x}_i \in S} (\alpha_i y_i) \mathbf{x}_i$$

• En general, puede no existir una solución con error cero en los datos.

- En general, puede no existir una solución con error cero en los datos.
- Se introducen variables de holgura $\zeta_1, \zeta_2, \dots, \zeta_n \geq 0$:

- En general, puede no existir una solución con error cero en los datos.
- Se introducen variables de holgura $\zeta_1, \zeta_2, \dots, \zeta_n \geq 0$:

$$\langle \mathbf{w}, \mathbf{x}_i \rangle + b \ge 1 - \zeta_i$$
 Si $y_i = 1$
 $\langle \mathbf{w}, \mathbf{x}_i \rangle + b \le -1 + \zeta_i$ Si $y_i = -1$

- En general, puede no existir una solución con error cero en los datos.
- Se introducen variables de holgura $\zeta_1, \zeta_2, \dots, \zeta_n \geq 0$:

$$\langle \mathbf{w}, \mathbf{x}_i \rangle + b \ge 1 - \zeta_i \quad \text{Si } y_i = 1 \\ \langle \mathbf{w}, \mathbf{x}_i \rangle + b \le -1 + \zeta_i \quad \text{Si } y_i = -1$$

$$y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) - 1 + \zeta_i \ge 0 \quad \forall i$$

ightharpoonup Si hay error en \mathbf{x}_i

- En general, puede no existir una solución con error cero en los datos.
- Se introducen variables de holgura $\zeta_1, \zeta_2, \dots, \zeta_n \geq 0$:

$$\langle \mathbf{w}, \mathbf{x}_i \rangle + b \ge 1 - \zeta_i \quad \text{Si } y_i = 1 \\ \langle \mathbf{w}, \mathbf{x}_i \rangle + b \le -1 + \zeta_i \quad \text{Si } y_i = -1$$

$$y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) - 1 + \zeta_i \ge 0 \quad \forall i$$

• Si hay error en $\mathbf{x}_i \Rightarrow \zeta_i > 1$.

- En general, puede no existir una solución con error cero en los datos.
- Se introducen variables de holgura $\zeta_1, \zeta_2, \ldots, \zeta_n \geq 0$:

$$\langle \mathbf{w}, \mathbf{x}_i \rangle + b \ge 1 - \zeta_i$$
 Si $y_i = 1$
 $\langle \mathbf{w}, \mathbf{x}_i \rangle + b \le -1 + \zeta_i$ Si $y_i = -1$ $\} y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1 + \zeta_i \ge 0 \quad \forall i$

- Si hay error en $\mathbf{x}_i \Rightarrow \zeta_i > 1$.
- Luego $\sum_{i=1}^{n} \zeta_i$ es una cota superior del número de errores.

$$\begin{aligned} & & & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

mín
$$\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \zeta_i$$
 sujeto a $y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1 + \zeta_i \ge 0$ $i = 1, \dots, n$ $\zeta_i \ge 0$

• C es un párametro que indica el balance deseado entre márgen y error.

mín
$$\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \zeta_i$$
 sujeto a $y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1 + \zeta_i \ge 0$ $i = 1, \dots, n$ $\zeta_i \ge 0$

• C es un párametro que indica el balance deseado entre márgen y error.

Problema Dual

El Lagrangiano:

$$L(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|^2 + \frac{C}{C} \sum_{i=1}^{n} \zeta_i - \sum_{i=1}^{n} \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) - 1 + \zeta_i \right) - \sum_{i=1}^{n} \mu_i \zeta_i$$

Problema Dual

El Lagrangiano:

$$L(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|^2 + \frac{C}{C} \sum_{i=1}^{n} \zeta_i - \sum_{i=1}^{n} \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) - 1 + \zeta_i \right) - \sum_{i=1}^{n} \mu_i \zeta_i$$

resulta en el problema dual:

máx
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$
sujeto a
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
$$0 \le \alpha_i \le C$$

Problema Dual

El Lagrangiano:

$$L(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|^2 + \frac{C}{C} \sum_{i=1}^{n} \zeta_i - \sum_{i=1}^{n} \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) - 1 + \zeta_i \right) - \sum_{i=1}^{n} \mu_i \zeta_i$$

resulta en el problema dual:

$$\begin{aligned} & \text{m\'ax} & & \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{i=1}^n \alpha_i \alpha_j y_i y_j \left< \mathbf{x}_i, \mathbf{x}_j \right> \\ & \text{sujeto a} & & \sum_{i=1}^n \alpha_i y_i = 0 \\ & & 0 \leq \alpha_i \leq C \end{aligned}$$

• Unico cambio en el dual es cota superior en los multiplicadores α_i .

$$y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1 + \zeta_i \ge 0 \quad i = 1, \dots, n$$

$$\zeta_i \ge 0$$

- $y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) 1 + \zeta_i \ge 0 \quad i = 1, \dots, n$
- **3** $\mu_i \ge 0$

- $y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) 1 + \zeta_i \ge 0 \quad i = 1, \dots, n$
- **2** $\zeta_i > 0$
- **3** $\mu_i \ge 0$

$$y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1 + \zeta_i \ge 0 \quad i = 1, \dots, n$$

- **3** $\mu_i \ge 0$

$$y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1 + \zeta_i \ge 0 \quad i = 1, \dots, n$$

- **3** $\mu_i \ge 0$
- \mathbf{o} $\mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$

$$y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1 + \zeta_i \ge 0 \quad i = 1, \dots, n$$

- $\zeta_i \ge 0$
- **3** $\mu_i \ge 0$
- $\bullet \mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$
- **6** $\sum_{i=1}^{n} \alpha_i y_i = 0$

$$y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1 + \zeta_i \ge 0 \quad i = 1, \dots, n$$

- **3** $\mu_i \ge 0$
- $\bullet \mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$
- **6** $\sum_{i=1}^{n} \alpha_i y_i = 0$
- $\zeta_i \mu_i = 0$

- $\zeta_i \geq 0$
- **3** $\mu_i \ge 0$

- **6** $\sum_{i=1}^{n} \alpha_i y_i = 0$
- $\zeta_i \mu_i = 0$
- Ahora los vectores de soporte incluyen vectores para los cuales $\alpha_i = C$

• Idea: Proyectar datos a un espacio donde sean más fácilmente separables.

• Idea: Proyectar datos a un espacio donde sean más fácilmente separables.

$$\begin{aligned} \mathcal{X} &\to \mathcal{H} \\ \mathbf{x} &\mapsto \phi(\mathbf{x}) \end{aligned}$$

• Idea: Proyectar datos a un espacio donde sean más fácilmente separables.

$$egin{aligned} \mathcal{X} &
ightarrow \mathcal{H} \ \mathbf{x} &
ightarrow oldsymbol{\phi}(\mathbf{x}) \end{aligned}$$

Donde \mathcal{H} es un espacio de Hilbert:

• Idea: Proyectar datos a un espacio donde sean más fácilmente separables.

$$egin{aligned} \mathcal{X} &
ightarrow \mathcal{H} \ \mathbf{x} &
ightarrow oldsymbol{\phi}(\mathbf{x}) \end{aligned}$$

Donde \mathcal{H} es un espacio de Hilbert:

Producto punto.

• Idea: Proyectar datos a un espacio donde sean más fácilmente separables.

$$egin{aligned} \mathcal{X} &
ightarrow \mathcal{H} \ \mathbf{x} &
ightarrow oldsymbol{\phi}(\mathbf{x}) \end{aligned}$$

Donde \mathcal{H} es un espacio de Hilbert:

- Producto punto.
- Completo.

• Idea: Proyectar datos a un espacio donde sean más fácilmente separables.

$$\mathcal{X} \to \mathcal{H}$$

 $\mathbf{x} \mapsto \phi(\mathbf{x})$

Donde \mathcal{H} es un espacio de Hilbert:

- Producto punto.
- ► Completo.
- Operamos en el espacio de características \mathcal{H} :

$$\langle \mathbf{x}_i, \mathbf{x}_j \rangle \longrightarrow \langle \boldsymbol{\phi}(\mathbf{x}_i), \boldsymbol{\phi}(\mathbf{x}_j) \rangle_{\mathcal{H}}$$

• Idea: Proyectar datos a un espacio donde sean más fácilmente separables.

$$egin{aligned} \mathcal{X} &
ightarrow \mathcal{H} \ \mathbf{x} &
ightarrow oldsymbol{\phi}(\mathbf{x}) \end{aligned}$$

Donde \mathcal{H} es un espacio de Hilbert:

- Producto punto.
- Completo.
- Operamos en el espacio de características \mathcal{H} :

$$\langle \mathbf{x}_i, \mathbf{x}_j \rangle \longrightarrow \langle \boldsymbol{\phi}(\mathbf{x}_i), \boldsymbol{\phi}(\mathbf{x}_j) \rangle_{\mathcal{H}}$$

• \mathcal{X} puede ser un conjunto arbitrario.

máx
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$
sujeto a
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
$$0 < \alpha_i < C$$

máx
$$\sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \left\langle \phi(\mathbf{x}_{i}), \phi(\mathbf{x}_{j}) \right\rangle_{\mathcal{H}}$$
sujeto a
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$
$$0 \leq \alpha_{i} \leq C$$

máx
$$\sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \left\langle \phi(\mathbf{x}_{i}), \phi(\mathbf{x}_{j}) \right\rangle_{\mathcal{H}}$$
sujeto a
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$
$$0 \leq \alpha_{i} \leq C$$

• Solución: $\mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \phi(\mathbf{x}_i)$

máx
$$\sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \left\langle \phi(\mathbf{x}_{i}), \phi(\mathbf{x}_{j}) \right\rangle_{\mathcal{H}}$$
sujeto a
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$
$$0 \leq \alpha_{i} \leq C$$

- Solución: $\mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \phi(\mathbf{x}_i)$
- Evaluación:

máx
$$\sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \left\langle \phi(\mathbf{x}_{i}), \phi(\mathbf{x}_{j}) \right\rangle_{\mathcal{H}}$$
sujeto a
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$
$$0 \leq \alpha_{i} \leq C$$

- Solución: $\mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \phi(\mathbf{x}_i)$
- Evaluación:

$$sign(\langle w, \phi(\mathbf{x}) \rangle_{\mathcal{H}} + b)$$

$$\begin{aligned} & \text{máx} & & \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j \left\langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \right\rangle_{\mathcal{H}} \\ & \text{sujeto a} & & \sum_{i=1}^{n} \alpha_i y_i = 0 \\ & & 0 \leq \alpha_i \leq C \end{aligned}$$

- Solución: $\mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \phi(\mathbf{x}_i)$
- Evaluación:

$$\operatorname{sign}(\langle w, \phi(\mathbf{x}) \rangle_{\mathcal{H}} + b) = \operatorname{sign}\left(\sum_{i=1}^{n} (\alpha_{i} y_{i}) \langle \phi(\mathbf{x}_{i}), \phi(\mathbf{x}) \rangle_{\mathcal{H}} + b\right)$$

$$\begin{aligned} & \text{máx} & & \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j \left\langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \right\rangle_{\mathcal{H}} \\ & \text{sujeto a} & & \sum_{i=1}^{n} \alpha_i y_i = 0 \\ & & 0 \leq \alpha_i \leq C \end{aligned}$$

- Solución: $\mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \phi(\mathbf{x}_i)$
- Evaluación:

$$\operatorname{sign}(\langle w, \phi(\mathbf{x}) \rangle_{\mathcal{H}} + b) = \operatorname{sign}\left(\sum_{i=1}^{n} (\alpha_{i} y_{i}) \langle \phi(\mathbf{x}_{i}), \phi(\mathbf{x}) \rangle_{\mathcal{H}} + b\right)$$

• Datos sólo aparecen en términos de productos internos.

Ejemplo

$$\phi: \mathbb{R}^2 \to \mathbb{R}^3$$

 $(x_1, x_2) \mapsto (z_1, z_2, z_3) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$

Ejemplo

$$\phi : \mathbb{R}^2 \to \mathbb{R}^3$$

 $(x_1, x_2) \mapsto (z_1, z_2, z_3) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$

Kernels

• Suponga que existe un kernel:

$$k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$$

 $(\mathbf{x}_1, \mathbf{x}_2) \mapsto k(\mathbf{x}_1, \mathbf{x}_2) = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle_{\mathcal{H}}$

Kernels

• Suponga que existe un kernel:

$$k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$$

 $(\mathbf{x}_1, \mathbf{x}_2) \mapsto k(\mathbf{x}_1, \mathbf{x}_2) = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle_{\mathcal{H}}$

• Podemos calcular el producto punto $\langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle_{\mathcal{H}}$ operando en el conjunto original \mathcal{X} .

Kernels

• Suponga que existe un kernel:

$$k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$$

 $(\mathbf{x}_1, \mathbf{x}_2) \mapsto k(\mathbf{x}_1, \mathbf{x}_2) = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle_{\mathcal{H}}$

- Podemos calcular el producto punto $\langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle_{\mathcal{H}}$ operando en el conjunto original \mathcal{X} .
- Más aún, no requerimos conocer el mapeo ϕ , o el espacio \mathcal{H} .

Kernels

• Suponga que existe un kernel:

$$k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$$

 $(\mathbf{x}_1, \mathbf{x}_2) \mapsto k(\mathbf{x}_1, \mathbf{x}_2) = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle_{\mathcal{H}}$

- Podemos calcular el producto punto $\langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle_{\mathcal{H}}$ operando en el conjunto original \mathcal{X} .
- Más aún, no requerimos conocer el mape
o ϕ , o el espacio $\mathcal{H}.$
- ullet De hecho ${\mathcal H}$ puede tener dimensión infinita.

Kernels

• Suponga que existe un kernel:

$$k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$$

 $(\mathbf{x}_1, \mathbf{x}_2) \mapsto k(\mathbf{x}_1, \mathbf{x}_2) = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle_{\mathcal{H}}$

- Podemos calcular el producto punto $\langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle_{\mathcal{H}}$ operando en el conjunto original \mathcal{X} .
- Más aún, no requerimos conocer el mapeo ϕ , o el espacio \mathcal{H} .
- \bullet De hecho ${\mathcal H}$ puede tener dimensión infinita.
- Cómo sabemos si una función k(.,.) es un kernel?

máx
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$
sujeto a
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
$$0 < \alpha_i < C$$

máx
$$\sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle \phi(\mathbf{x}_{i}), \phi(\mathbf{x}_{j}) \rangle_{\mathcal{H}}$$
sujeto a
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$
$$0 \leq \alpha_{i} \leq C$$

máx
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j k(\mathbf{x}_i, \mathbf{x}_j)$$
sujeto a
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
$$0 < \alpha_i < C$$

$$\begin{aligned} & \text{máx} & & \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{k}(\mathbf{x}_i, \mathbf{x}_j) \\ & \text{sujeto a} & & \sum_{i=1}^{n} \alpha_i y_i = 0 \\ & & & 0 \leq \alpha_i \leq C \end{aligned}$$

• Solución: $\mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \phi(\mathbf{x}_i)$

$$\begin{aligned} & \text{máx} & & \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{k}(\mathbf{x}_i, \mathbf{x}_j) \\ & \text{sujeto a} & & \sum_{i=1}^{n} \alpha_i y_i = 0 \\ & & & 0 \leq \alpha_i \leq C \end{aligned}$$

- Solución: $\mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \phi(\mathbf{x}_i)$
- Evaluación:

máx
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j \frac{\mathbf{k}(\mathbf{x}_i, \mathbf{x}_j)}{\mathbf{k}(\mathbf{x}_i, \mathbf{x}_j)}$$
sujeto a
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
$$0 \le \alpha_i \le C$$

- Solución: $\mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \phi(\mathbf{x}_i)$
- Evaluación:

$$sign(\langle w, \phi(\mathbf{x}) \rangle_{\mathcal{H}} + b)$$

$$\begin{aligned} & \text{m\'ax} & & \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{i=1}^n \alpha_i \alpha_j y_i y_j \pmb{k}(\mathbf{x}_i, \mathbf{x}_j) \\ & \text{sujeto a} & & \sum_{i=1}^n \alpha_i y_i = 0 \\ & & 0 \leq \alpha_i \leq C \end{aligned}$$

- Solución: $\mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \phi(\mathbf{x}_i)$
- Evaluación:

$$\operatorname{sign}(\langle w, \phi(\mathbf{x}) \rangle_{\mathcal{H}} + b) = \operatorname{sign}\left(\sum_{i=1}^{n} (\alpha_{i} y_{i}) \langle \phi(\mathbf{x}_{i}), \phi(\mathbf{x}) \rangle_{\mathcal{H}} + b\right)$$

$$\begin{aligned} & \text{m\'ax} & & \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{i=1}^n \alpha_i \alpha_j y_i y_j \pmb{k}(\mathbf{x}_i, \mathbf{x}_j) \\ & \text{sujeto a} & & \sum_{i=1}^n \alpha_i y_i = 0 \\ & & 0 \leq \alpha_i \leq C \end{aligned}$$

- Solución: $\mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \phi(\mathbf{x}_i)$
- Evaluación:

$$\operatorname{sign}(\langle w, \boldsymbol{\phi}(\mathbf{x}) \rangle_{\mathcal{H}} + b) = \operatorname{sign}\left(\sum_{i=1}^{n} (\alpha_{i} y_{i}) \langle \boldsymbol{\phi}(\mathbf{x}_{i}), \boldsymbol{\phi}(\mathbf{x}) \rangle_{\mathcal{H}} + b\right)$$
$$= \operatorname{sign}\left(\sum_{i=1}^{n} (\alpha_{i} y_{i}) k(\mathbf{x}_{i}, \mathbf{x}) + b\right)$$

• Si $\mathcal{X} = \mathbb{R}^2$, $\mathcal{H} = \mathbb{R}^3$, $\phi(\mathbf{x}) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$, tenemos el kernel: $k(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i, \mathbf{x}_j \rangle^2$

• Si $\mathcal{X} = \mathbb{R}^2$, $\mathcal{H} = \mathbb{R}^3$, $\phi(\mathbf{x}) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$, tenemos el kernel: $k(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i, \mathbf{x}_j \rangle^2$

• Si $\mathcal{X} = \mathbb{R}^2$, $\mathcal{H} = \mathbb{R}^3$, $\phi(\mathbf{x}) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$, tenemos el kernel:

$$k(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i, \mathbf{x}_j \rangle^2$$

$$\langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle_{\mathcal{H}} = \langle (x_{i1}^2, \sqrt{2}x_{i1}x_{i2}, x_{i2}^2), (x_{j1}^2, \sqrt{2}x_{j1}x_{j2}, x_{j2}^2) \rangle$$

• Si $\mathcal{X} = \mathbb{R}^2$, $\mathcal{H} = \mathbb{R}^3$, $\phi(\mathbf{x}) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$, tenemos el kernel:

$$k(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i, \mathbf{x}_j \rangle^2$$

$$\langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle_{\mathcal{H}} = \left\langle (x_{i1}^2, \sqrt{2}x_{i1}x_{i2}, x_{i2}^2), (x_{j1}^2, \sqrt{2}x_{j1}x_{j2}, x_{j2}^2) \right\rangle$$
$$= x_{i1}^2 x_{j1}^2 + 2x_{i1}x_{i2}x_{j1}x_{j2} + x_{i2}^2 x_{j2}^2$$

• Si $\mathcal{X} = \mathbb{R}^2$, $\mathcal{H} = \mathbb{R}^3$, $\phi(\mathbf{x}) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$, tenemos el kernel:

$$k(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i, \mathbf{x}_j \rangle^2$$

$$\langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle_{\mathcal{H}} = \left\langle (x_{i1}^2, \sqrt{2}x_{i1}x_{i2}, x_{i2}^2), (x_{j1}^2, \sqrt{2}x_{j1}x_{j2}, x_{j2}^2) \right\rangle$$
$$= x_{i1}^2 x_{j1}^2 + 2x_{i1}x_{i2}x_{j1}x_{j2} + x_{i2}^2 x_{j2}^2$$
$$= (x_{i1}x_{j1} + x_{i2}x_{j2})^2$$

• Si $\mathcal{X} = \mathbb{R}^2$, $\mathcal{H} = \mathbb{R}^3$, $\phi(\mathbf{x}) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$, tenemos el kernel:

$$k(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i, \mathbf{x}_j \rangle^2$$

$$\langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle_{\mathcal{H}} = \left\langle (x_{i1}^2, \sqrt{2}x_{i1}x_{i2}, x_{i2}^2), (x_{j1}^2, \sqrt{2}x_{j1}x_{j2}, x_{j2}^2) \right\rangle$$

$$= x_{i1}^2 x_{j1}^2 + 2x_{i1}x_{i2}x_{j1}x_{j2} + x_{i2}^2 x_{j2}^2$$

$$= (x_{i1}x_{j1} + x_{i2}x_{j2})^2$$

$$= \langle \mathbf{x}_i, \mathbf{x}_j \rangle^2$$

• El mapeo ϕ y el espacio $\mathcal H$ correspondientes a un kernel no son únicos.

- El mapeo ϕ y el espacio \mathcal{H} correspondientes a un kernel no son únicos.
- Por ejemplo, para $\mathcal{X} = \mathbb{R}^2$ y el kernel $k(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i, \mathbf{x}_j \rangle^2$, podemos tener:

- El mapeo ϕ y el espacio \mathcal{H} correspondientes a un kernel no son únicos.
- Por ejemplo, para $\mathcal{X} = \mathbb{R}^2$ y el kernel $k(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i, \mathbf{x}_j \rangle^2$, podemos tener:
 - $\mathcal{H} = \mathbb{R}^4 \text{ y}$

$$\phi(\mathbf{x}) = \begin{pmatrix} x_1^2 \\ x_1 x_2 \\ x_1 x_2 \\ x_2^2 \end{pmatrix}$$

- El mapeo ϕ y el espacio \mathcal{H} correspondientes a un kernel no son únicos.
- Por ejemplo, para $\mathcal{X} = \mathbb{R}^2$ y el kernel $k(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i, \mathbf{x}_j \rangle^2$, podemos tener:
 - $ightharpoonup \mathcal{H} = \mathbb{R}^4 \ \mathrm{y}$

$$\phi(\mathbf{x}) = \begin{pmatrix} x_1^2 \\ x_1 x_2 \\ x_1 x_2 \\ x_2^2 \end{pmatrix}$$

- El mapeo ϕ y el espacio \mathcal{H} correspondientes a un kernel no son únicos.
- Por ejemplo, para $\mathcal{X} = \mathbb{R}^2$ y el kernel $k(\mathbf{x}_i, \mathbf{x}_i) = \langle \mathbf{x}_i, \mathbf{x}_i \rangle^2$, podemos tener:
 - $\mathcal{H} = \mathbb{R}^4 \text{ v}$

$$\phi(\mathbf{x}) = \begin{pmatrix} x_1^2 \\ x_1 x_2 \\ x_1 x_2 \\ x_2^2 \end{pmatrix}$$

$$\mathcal{H} = \mathbb{R}^2 \text{ y}$$

$$\phi(\mathbf{x}) = \begin{pmatrix} \frac{x_1^2 - x_2^2}{2x_1 x_2} \\ x_1^2 + x_2^2 \end{pmatrix}$$

- El mapeo ϕ y el espacio \mathcal{H} correspondientes a un kernel no son únicos.
- Por ejemplo, para $\mathcal{X} = \mathbb{R}^2$ y el kernel $k(\mathbf{x}_i, \mathbf{x}_i) = \langle \mathbf{x}_i, \mathbf{x}_i \rangle^2$, podemos tener:
 - $\mathcal{H} = \mathbb{R}^4 \text{ v}$

$$\phi(\mathbf{x}) = \begin{pmatrix} x_1^2 \\ x_1 x_2 \\ x_1 x_2 \\ x_2^2 \end{pmatrix}$$

 $\mathcal{H} = \mathbb{R}^2 \text{ y}$

$$\phi(\mathbf{x}) = \begin{pmatrix} \frac{x_1^2 - x_2^2}{2x_1 x_2} \\ x_1^2 + x_2^2 \end{pmatrix}$$

• Polinomial:

$$k(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i, \mathbf{x}_j \rangle^d$$

• Polinomial:

$$k(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i, \mathbf{x}_j \rangle^d$$

• Polinomial no homogéneo:

$$k(\mathbf{x}_i, \mathbf{x}_j) = (\langle \mathbf{x}_i, \mathbf{x}_j \rangle + c)^d$$

• Polinomial:

$$k(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i, \mathbf{x}_j \rangle^d$$

• Polinomial no homogéneo:

$$k(\mathbf{x}_i, \mathbf{x}_j) = (\langle \mathbf{x}_i, \mathbf{x}_j \rangle + c)^d$$

• Gaussiano (RBF):

$$k(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2}\right)$$

• Polinomial:

$$k(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i, \mathbf{x}_j \rangle^d$$

• Polinomial no homogéneo:

$$k(\mathbf{x}_i, \mathbf{x}_j) = (\langle \mathbf{x}_i, \mathbf{x}_j \rangle + c)^d$$

• Gaussiano (RBF):

$$k(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2}\right)$$

• Sigmoidal:

$$k(\mathbf{x}_i, \mathbf{x}_j) = \tanh\left(a\left\langle \mathbf{x}_i, \mathbf{x}_j \right\rangle + b\right)$$

Dos aproximaciones:

Dos aproximaciones:

• Reproducing Kernel Hilbert Spaces (RKHS)

Dos aproximaciones:

• Reproducing Kernel Hilbert Spaces (RKHS) (Aronszajn, 1950)

Dos aproximaciones:

- Reproducing Kernel Hilbert Spaces (RKHS) (Aronszajn, 1950)
- Teorema de Mercer

Dos aproximaciones:

- Reproducing Kernel Hilbert Spaces (RKHS) (Aronszajn, 1950)
- Teorema de Mercer (Mercer, 1911).

RKHS

Definición

Dada una función $k: \mathcal{X}^2 \to \mathbb{R} \ y \ x_1, x_2, \dots, x_n \in \mathcal{X}, \ la \ matriz \ n \times n$ con entradas

$$K_{ij} = k(x_i, x_j)$$

se llama la matriz de Gram de k con respecto a x_1, x_2, \ldots, x_n .

RKHS

Definición

Dada una función $k: \mathcal{X}^2 \to \mathbb{R} \ y \ x_1, x_2, \dots, x_n \in \mathcal{X}, \ la \ matriz \ n \times n$ con entradas

$$K_{ij} = k(x_i, x_j)$$

se llama la matriz de Gram de k con respecto a x_1, x_2, \ldots, x_n .

Definición

Una función $k: \mathcal{X}^2 \to \mathbb{R}$ para la cual para todo $n \in \mathbb{N}$, y todo $x_1, x_2, \ldots, x_n \in \mathcal{X}$ resulta en una matriz de Gram positiva semidefinida es un kernel positivo definido (o simplemente un kernel).

El mapa del kernel reproductor

 \bullet Kernel positivo definido k.

- \bullet Kernel positivo definido k.
- Mapeo:

$$\phi \,:\, \mathcal{X}
ightarrow \mathbb{R}^{\mathcal{X}}$$

- Kernel positivo definido k.
- Mapeo:

$$\phi: \mathcal{X} \to \mathbb{R}^{\mathcal{X}}$$
$$x \mapsto k(.,x).$$

- \bullet Kernel positivo definido k.
- Mapeo:

$$\phi: \mathcal{X} \to \mathbb{R}^{\mathcal{X}}$$
$$x \mapsto k(., x).$$

• Receta:

- Kernel positivo definido k.
- Mapeo:

$$\phi: \mathcal{X} \to \mathbb{R}^{\mathcal{X}}$$
$$x \mapsto k(.,x).$$

- Receta:
 - lacktriangledown Imagen de $\phi \longrightarrow$ espacio vectorial.

- Kernel positivo definido k.
- Mapeo:

$$\phi: \mathcal{X} \to \mathbb{R}^{\mathcal{X}}$$
$$x \mapsto k(.,x).$$

- Receta:
 - **1** Imagen de $\phi \longrightarrow$ espacio vectorial.
 - 2 Producto punto.

- \bullet Kernel positivo definido k.
- Mapeo:

$$\phi: \mathcal{X} \to \mathbb{R}^{\mathcal{X}}$$
$$x \mapsto k(.,x).$$

- Receta:
 - $lackbox{1}$ Imagen de $\phi \longrightarrow$ espacio vectorial.
 - Producto punto.
 - $k(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle_{\mathcal{H}}$

- \bullet Kernel positivo definido k.
- Mapeo:

$$\phi: \mathcal{X} \to \mathbb{R}^{\mathcal{X}}$$
$$x \mapsto k(.,x).$$

- Receta:
 - lacksquare Imagen de $\phi \longrightarrow$ espacio vectorial.
 - Producto punto.
 - $k(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle_{\mathcal{H}}$
 - Ompletar espacio.

$$f(.) = \sum_{i=1}^{n} \alpha_i k(., x_i) \quad n \in \mathbb{N}, \alpha_i \in \mathbb{R}, x_1, \dots \in \mathcal{X}$$

$$f(.) = \sum_{i=1}^{n} \alpha_i k(., x_i) \quad n \in \mathbb{N}, \alpha_i \in \mathbb{R}, x_1, \dots \in \mathcal{X}$$

• Producto punto:

$$f(.) = \sum_{i=1}^{n} \alpha_i k(., x_i) \quad n \in \mathbb{N}, \alpha_i \in \mathbb{R}, x_1, \dots \in \mathcal{X}$$

• Producto punto:Si $g(.) = \sum_{j=1}^{m} \beta_i k(., x_i')$ definimos:

$$f(.) = \sum_{i=1}^{n} \alpha_i k(., x_i) \quad n \in \mathbb{N}, \alpha_i \in \mathbb{R}, x_1, \dots \in \mathcal{X}$$

• Producto punto:Si $g(.) = \sum_{j=1}^{m} \beta_i k(., x_i')$ definimos:

$$\langle f, g \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \beta_j k(x_i, x'_j)$$

$$f(.) = \sum_{i=1}^{n} \alpha_i k(., x_i) \quad n \in \mathbb{N}, \alpha_i \in \mathbb{R}, x_1, \dots \in \mathcal{X}$$

• Producto punto:Si $g(.) = \sum_{j=1}^{m} \beta_i k(., x_i')$ definimos:

$$\langle f, g \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \beta_j k(x_i, x'_j)$$

• Note que: t

$$\langle f, g \rangle = \sum_{j=1}^{m} \beta_j f(x'_j)$$

$$f(.) = \sum_{i=1}^{n} \alpha_i k(., x_i) \quad n \in \mathbb{N}, \alpha_i \in \mathbb{R}, x_1, \dots \in \mathcal{X}$$

• Producto punto:Si $g(.) = \sum_{j=1}^{m} \beta_i k(., x_i')$ definimos:

$$\langle f, g \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \beta_j k(x_i, x'_j)$$

• Note que: t

$$\langle f, g \rangle = \sum_{i=1}^{m} \beta_j f(x'_j) = \sum_{i=1}^{n} \alpha_i g(x_i)$$

$$f(.) = \sum_{i=1}^{n} \alpha_i k(., x_i) \quad n \in \mathbb{N}, \alpha_i \in \mathbb{R}, x_1, \dots \in \mathcal{X}$$

• Producto punto:Si $g(.) = \sum_{j=1}^{m} \beta_i k(., x_i')$ definimos:

$$\langle f, g \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \beta_j k(x_i, x'_j)$$

• Note que: t

$$\langle f, g \rangle = \sum_{i=1}^{m} \beta_j f(x'_j) = \sum_{i=1}^{n} \alpha_i g(x_i)$$