Genomic Imprinting in the Human Brain

Attila Gulyás-Kovács

Chess Lab

Contents

- First part
 - Imprinting and allelic bias
 - Imprinted genes in the brain
- Second part
 - Dependence of allelic bias
 - Future work

Contents

- First part
 - Imprinting and allelic bias
 - Imprinted genes in the brain
- Second part
 - Dependence of allelic bias
 - Future work

Imprinting and allelic bias

- epigenetic mechanism
- variation across age and tissue
- biological function

Renfree et al 2012 Philos Trans R Soc Lond B

Increasing evolutionary prevalence

How many imprinted genes? $\approx 100 \leftrightarrow \approx 1300^{-1}$

¹Gregg et al 2010

Dysfunction: development and growth

Angelman syndrome. Boy with a puppet

Prader-Willi syndr. Eugenia "La Monstrua"

Attila Gulyás-Kovács

Genomic Imprinting in the Human Brain

Dysfunction: psychology

Angelman/Prader-Willi region implicated in schizophrenia

Sullivan 2012 Nat Rev Genet.

Questions

- Imprinted genes in the DLPFC²
 - How many?
 - Novelty?
- ② Dependence of allelic bias... on age, psychiatric condition, genetics (ancestry), gender
 - Signal vs noise?
 - Genes affected uniformly?
 - Most prominent effects?

Contents

- First part
 - Imprinting and allelic bias
 - Imprinted genes in the brain
- Second part
 - Dependence of allelic bias
 - Future work

The read count ratio approach

Castel et al 2015 GenomeBiology

Our research study

data/project Common Mind Consortium

participants Ifat Keydar, Eva Xia, Menachem Fromer, Doug
Ruderfer, Ravi Sachinanandam, Andrew Chess

Study setup

Distribution across individuals and genes

Called imprinted genes

Called imprinted genes

Questions and Answers

- Imprinted genes in the DLPFC²
 - How many? 30 genes in $\approx \frac{1}{3}$ genome
 - Novelty? 8 new imprinted genes
- ② Dependence of allelic bias... on age, psychiatric condition, genetics (ancestry), gender
 - Signal vs noise?
 - Genes affected uniformly?
 - Most prominent effects?

Contents

- First part
 - Imprinting and allelic bias
 - Imprinted genes in the brain
- Second part
 - Dependence of allelic bias
 - Future work

Explaining inter-individual variation

Multiple interdependent predictors

Inferring dependence using regression models

generalized linear models

$$E[y_g] = \mu_g = h^{-1}(X\beta_g)$$
$$y = \mu_g + \varepsilon_{\mu_g}$$

Inferring dependence using regression models

generalized linear models

$$E[y_g] = \mu_g = h^{-1}(X\beta_g)$$
$$y = \mu_g + \varepsilon_{\mu_g}$$

inference for gene g (PEG3)

predictive distributions (simple regression, for demonstration only)

predictive distributions

(simple regression, for demonstration only)

age

result:

AIC isn't useful in this case bad fit may inflate likelihood for some models

result: wnlm.Q and unlm.Q fit the best

Explained variation of read count ratio

Genes g affected by one or more predictors p ($eta_{pg} eq 0$)

Gene	Gene type	Chr	Coefficient	Known phenotype
ZDBF2	protein coding	2	Age, Ancestry.1	
NAP1L5	protein coding	4	GenderMale	
PEG10	protein coding	7	DxSCZ	
MEST	protein coding	7	DxSCZ	Silver-Russell syndrome
KCNK9	protein coding	8	Age	Birk-Barel mental retardation dysmorphism syndrome
INPP5F	protein coding	10	Age	cell motility; endocytic recycling
KCNQ10T1	antisense	11	GenderMale	Beckwith-Wiedemann syn.; Isol. hemihyperplasia
MEG3	lincRNA	14	GenderMale	Mat/pat 14q32.2 hypermeth/microdel syndrome
RP11-909M7.3	lincRNA	14	DxSCZ	
AL132709.5	miRNA	14	Ancestry.1	
MAGEL2	protein coding	15	Age	Prader-Willi syn.; Schaaf-Yang syn.; Arthrogryposis
NDN	protein coding	15	GenderMale	Prader-Willi syndrome
PWRN1	lincRNA	15	Ancestry.1	Prader-Willi syndrome
UBE3A	protein coding	15	DxSCZ	Prader-Willi syn.; Angelman syn.; circadian rhythm
PEG3	protein coding	19	GenderMale	

Different results under similarly well-fitting models

Effects appear interdependent

Multiple levels of variation

Better modeling framework?

hierarchical Bayesian

Questions and Answers

- Imprinted genes in the DLPFC²
 - How many? 30 genes in $\approx \frac{1}{3}$ genome
 - Novelty? 8 new imprinted genes
- Opendence of allelic bias... on age, psychiatric condition, genetics (ancestry), gender
 - Signal vs noise? Poor; modeling challenge
 - Genes affected uniformly? No
 - Most prominent effects? genetics and age on a few genes

Contents

- First part
 - Imprinting and allelic bias
 - Imprinted genes in the brain
- Second part
 - Dependence of allelic bias
 - Future work

Reanalyze dependence?

Is it worth? If yes...

- add more data
- more accurate read counts
- find a better model

Reanalyze dependence?

Is it worth? If yes...

- add more data
 - no solution for biased stats. approach
 - more accurate read counts
 - improve QC: RNA-seq + genotyping
- find a better model
 - implement inference, validate

Paquola, Erwin, Gage 2016

challenges with somatic variants:

- detection allelic fraction
- prioritization multiple info
- integration germline vars.

Thanks to

Chess lab

- Andy Chess (support)
- Chaggai Rosenbluh (feedback)
- Eva Xia
- Mehaa Bajaj

- Gabriel Hoffman (feedback, variancePartition)
- Ravi Sachinanandam (critical feedback)