MAKALAH

MEMBANDINGKAN 2 METODE: ARIMA BOX JENSKIN DAN DOUBLE EXPONENTIAL SMOOTHING

Disusun Oleh:

Fedro Andreanto

210312625254

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI MALANG

2023

Data yang diambil adalah data harga saham per lembar PT Aneka Tambang Tbk dari periode Oktober – November 2023.

Sumber Data: https://finance.yahoo.com/quote/ANTM.JK?p=ANTM.JK&.tsrc=fin-srch
Secara rinci dapat dilihat pada tabel dibawah ini

Tabel 1. Harga Saham PT Aneka Tambang Tbk dalam periode Oktober – November 2023.

Periode	Harga Saham per Lembar	Periode	Harga Saham per Lembar	Periode	Harga Saham per Lembar
2 Oktober 2023	1705	27 Oktober 2023	1730	14 November 2023	1640
3 Oktober 2023	1715	30 Oktober 2023	1730	15 November 2023	1650
4 Oktober 2023	1810	31 Oktober 2023	1725	16 November 2023	1635
5 Oktober 2023	1815	1 November 2023	1625	17 November 2023	1610
6 Oktober 2023	1815	2 November 2023	1650	20 November 2023	1620
17 Oktober 2023	1775	3 November 2023	1655	21 November 2023	1605
18 Oktober 2023	1755	6 November 2023	1700	22 November 2023	1600
19 Oktober 2023	1805	7 November 2023	1690	24 November 2023	1605
20 Oktober 2023	1810	8 November 2023	1660	27 November 2023	1620
23 Oktober 2023	1850	7 November 2023	1655	28 November 2023	1655
24 Oktober 2023	1815	9 November 2023	1625	29 November 2023	1700
25 Oktober 2023	1825	10 November 2023	1620	30 November 2023	1740
26 Oktober 2023	1750	13 November 2023	1620		

A. Metode ARIMA Box Jenskin

1. Time Series Plot

Setelah melakukan input data, yang pertama melihat Time Series Plot dari kolom Jumlah.

Step: Stat \rightarrow Time Series \rightarrow Time Series Plot \rightarrow Simple \rightarrow Ok

2. Setelah itu, melihat stasioner dari grafik terhadap varians

Step: Stat \rightarrow Control Charts \rightarrow Box Cox Transformation \rightarrow All observation for a chart are in one column \rightarrow Input data C2 (Harga Saham per Lembar) \rightarrow Subgrup Sizes = 1 \rightarrow Options \rightarrow Store transformed data in \rightarrow BoxCox1 \rightarrow Ok \rightarrow Ok

3. Ulangi kembali hingga medapatkan Rounded Value = 1

4. Setelah Rounded Value = 1, selanjutnya menentukan data tersebut stasioner terhadap rata-rata/mean

Step: Stat \rightarrow Time Series \rightarrow Trend Analysis \rightarrow Input Variable C2 \rightarrow Ok

5. Dari grafik, terlihat bahwa masih ada kecenderungan penurunan dalam data, dan beberapa nilai masih jauh dari nilai rata-rata. Hal ini menunjukkan bahwa data belum mencapai tingkat statis dalam rata-rata. Oleh karena itu, perlu dilakukan metode differencing.

Didapat hasilnya sebagai berikut:

6. Mencari lag data menggunakan Autocorrelation (ACF) $Step: Stat \rightarrow Time Series \rightarrow Autocorrelation \rightarrow input series C5 \rightarrow Ok$

7. Mencari lag data menggunakan Partial Autocorrelation (PACF)

Step: Stat → Time Series → Partial Autocorrelation → input series C5 → Ok

8. Terakhir, karena ACF dan PACF sudah didapat. Dengan melihat lag di setiap langkah-langkahnya diketahui p=0, 1 dnilai q=0, 1, 2, 3, dan d=1, 2. Langkah terakhir menguji diantara berbagai kemungkinan ARIMA (p, d, q).

Step: Stat \rightarrow Time Series \rightarrow ARIMA \rightarrow Input series $Cl \rightarrow$ Input nilai Autoregressive \rightarrow input nilai Difference \rightarrow Input nilai Moving Average \rightarrow Ok

9. Uji Signifikan

Uji Signifikansi H0 = Parameter tidak signifikan terhadap model H1 = Parameter signifikan terhadap model H0 ditolak = H1 diterima saat $p-value < \alpha$. H0 diterima = H1 ditolak saat $p-value \ge \alpha$ Dari hasil Minitab, didapatkan p-value dari AR(0) = 0,002 dimana 0,002 < 0,05 maka dapat disimpulkan bahwa H0 ditolak artinya parameter signifikan terhadap model.

a. ARIMA (1,1,0)

Final Estimates of Parameters

Туре	Coef	SE Coef	T-Value	P-Value
AR 1	0,108	0,164	0,66	0,514
Constant	-1,44	5,56	-0,26	0,797

b. ARIMA (1,1,1)

Final Estimates of Parameters

Туре	Coef	SE Coef	T-Value	P-Value
AR 1	0,16	1,56	0,10	0,919
MA 1	0,05	1,57	0,03	0,975
Constant	-1,36	5,37	-0,25	0,802

c. ARIMA (1,1,2)

Final Estimates of Parameters

Туре	•	Coef	SE Coef	T-Value	P-Value
AR	1	0,751	0,255	2,95	0,006
MA	1	0,769	0,310	2,48	0,018
MA	2	0,173	0,201	0,86	0,395
Cons	tant	-0,878	0,397	-2,21	0,033

d. ARIMA (1,1,3)

Final Estimates of Parameters

Туре	Coef	SE Coef	T-Value	P-Value
AR 1	0,438	0,270	1,62	0,114
MA 1	0,387	0,257	1,50	0,142
MA 2	0,047	0,170	0,28	0,783
MA 3	0,495	0,175	2,82	0,008
Constant	-2,316	0,581	-3,98	0,000

e. ARIMA (1,2,0)

Final Estimates of Parameters

Туре	Coef	SE Coef	T-Value	P-Value
AR 1	-0,484	0,144	-3,36	0,002
Constant	2,97	6,59	0,45	0,655

f. ARIMA (1,2,1)

Final Estimates of Parameters

Туре	Coef SE	Coef T	-Value	P-Value
AR 1	0,094	0,180	0,53	0,602
MA 1	0,956	0,111	8,61	0,000
Constant	0,546	0,635	0,86	0,395

g. ARIMA (1,2,2)

Final Estimates of Parameters

Туре	Coef S	E Coef 1	-Value	P-Value
AR 1	-0,14	1,48	-0,09	0,925
MA 1	0,75	1,46	0,51	0,614
MA 2	0,21	1,41	0,15	0,885
Constant	t 0,678	0,736	0,92	0,363

h. ARIMA (1,2,3)

Final Estimates of Parameters

Туре	Coef S	E Coef T	-Value I	P-Value
AR 1	-0,482	0,449	-1,07	0,291
MA 1	0,305	0,440	0,69	0,492
MA 2	0,319	0,408	0,78	0,440
MA 3	0,345	0,169	2,04	0,049
Constant	1,130	0,566	2,00	0,054

i. ARIMA(0,1,1)

Final Estimates of Parameters

Туре	Coef	SE Coef	T-Value	P-Value
MA 1	-0,092	0,164	-0,56	0,577
Constant	-1,62	6,07	-0,27	0,791

j. ARIMA (0,1,2)

Final Estimates of Parameters

Type	Coef	SE Coef	T-Value	P-Value
MA 1	-0,219	0,162	-1,35	0,184
MA 2	-0,209	0,163	-1,28	0,207
Consta	nt -1,47	7,95	-0,19	0,854

k. ARIMA (0,1,3)

Final Estimates of Parameters

Туре	e	Coef	SE Coef	T-Value	P-Value
MA	1	-0,077	0,160	-0,48	0,631
MA	2	-0,065	0,169	-0,38	0,703
MA	3	0,396	0,169	2,34	0,025
Cons	stant	-2,13	4,11	-0,52	0,608

1. ARIMA (0,2,1)

Final Estimates of Parameters

Туре	•	Coef	SE Coef	T-Value	P-Value
MA	1	0,953	0,101	9,43	0,000
Cons	tant	0,579	0,693	0,84	0,409

m. ARIMA (0,2,2)

Final Estimates of Parameters

Туре	9	Coef	SE Coef	T-Value	P-Value
MA	1	0,848	0,174	4,88	0,000
MA	2	0,110	0,177	0,62	0,538
Cons	tant	0,599	0,702	0,85	0,400

n. ARIMA (0,2,3)

Final Estimates of Parameters

Туре	9	Coef	SE Coef	T-Value	P-Value
MA	1	0,723	0,196	3,69	0,001
MA	2	0,080	0,180	0,45	0,659
MA	3	0,309	0,183	1,69	0,100
Cons	stant	1,56	1,26	1,24	0,225

10. Uji White Noise

Dari table Ljung-Box dapat dilihat bahwa p-value dari tiap lag>0.05 sehingga disimpulkan model memenuhi uji $White\ Noise$

a. ARIMA (1,1,0)

Lag	12	24	36	48
Chi-Square	6,41	23,78	30,09	*
DF	10	22	34	*
P-Value	0,780	0,359	0,660	*

b. ARIMA (1,1,1)

Modified Box-Pierce (Ljung-Box) Chi-Square Statistic

Lag	12	24	36	48
Chi-Square	6,44	23,84	30,12	*
DF	9	21	33	*
P-Value	0,695	0,301	0,611	*

c. ARIMA (1,1,2)

Modified Box-Pierce (Ljung-Box) Chi-Square Statistic

Lag	12	24	36	48
Chi-Square	5,24	22,54	33,47	*
DF	8	20	32	*
P-Value	0,732	0,312	0,396	*

d. ARIMA (1,1,3)

Modified Box-Pierce (Ljung-Box) Chi-Square Statistic

Lag	12	24	36	48
Chi-Square	1,55	18,01	27,59	*
DF	7	19	31	*
P-Value	0,981	0,522	0,642	*

e. ARIMA (1,2,0)

Lag	12	24	36	48
Chi-Square	11,45	32,29	35,08	*
DF	10	22	34	*
P-Value	0,324	0,073	0,417	*

f. ARIMA (1,2,1)

Modified Box-Pierce (Ljung-Box) Chi-Square Statistic

Lag	12	24	36	48
Chi-Square	5,73	24,62	31,54	*
DF	9	21	33	*
P-Value	0,767	0,264	0,540	*

g. ARIMA (1,2,2)

Modified Box-Pierce (Ljung-Box) Chi-Square Statistic

Lag	12	24	36	48
Chi-Square	5,73	24,78	32,20	*
DF	8	20	32	*
P-Value	0,677	0,210	0,457	*

h. ARIMA (1,2,3)

Modified Box-Pierce (Ljung-Box) Chi-Square Statistic

```
    Lag
    12
    24
    36 48

    Chi-Square
    3,19 22,25 27,60 *

    DF
    7
    19 31 *

    P-Value
    0,867 0,272 0,642 *
```

i. ARIMA(0,1,1)

```
    Lag
    12
    24
    36
    48

    Chi-Square
    6,40
    23,99
    30,60
    *

    DF
    10
    22
    34
    *

    P-Value
    0,781
    0,348
    0,635
    *
```

j. ARIMA (0,1,2)

Modified Box-Pierce (Ljung-Box) Chi-Square Statistic

Lag	12	24	36	48
Chi-Square	6,16	22,75	27,27	*
DF	9	21	33	*
P-Value	0,724	0,358	0,748	*

k. ARIMA (0,1,3)

Modified Box-Pierce (Ljung-Box) Chi-Square Statistic

Lag	12	24	36	48
Chi-Square	1,31	18,09	25,94	*
DF	8	20	32	*
P-Value	0,995	0,581	0,766	*

l. ARIMA (0,2,1)

Modified Box-Pierce (Ljung-Box) Chi-Square Statistic

```
    Lag
    12
    24
    36 48

    Chi-Square
    5,92 26,32 34,98 *

    DF
    10 22 34 *

    P-Value
    0,822 0,238 0,421 *
```

m. ARIMA (0,2,2)

Lag	12	24	36	48
Chi-Square	5,82	24,38	31,08	*
DF	9	21	33	*
P-Value	0,758	0,275	0,563	*

n. ARIMA (0,2,3)

Modified Box-Pierce (Ljung-Box) Chi-Square Statistic

Lag	12	24	36	48
Chi-Square	4,97	22,35	25,43	*
DF	8	20	32	*
P-Value	0,761	0,322	0,788	*

11. Uji Normalitas Residual

Dari tabel dapat dilihat bahwa p-value yang nilainya > 0.05 sehingga disimpulkan model memenuhi uji Normalitas Residual

a. ARIMA (1,1,0)

b. ARIMA (1,1,1)

c. ARIMA (1,1,2)

d. ARIMA (1,1,3)

e. ARIMA (1,2,0)

f. ARIMA (1,2,1)

g. ARIMA (1,2,2)

h. ARIMA (1,2,3)

i. ARIMA (0,1,1)

j. ARIMA (0,1,2)

k. ARIMA (0,1,3)

l. ARIMA (0,2,1)

m. ARIMA (0,2,2)

n. ARIMA (0,2,3)

Tabel 2. Rangkuman

No	ARIMA (p,d,q)	Uji Signifikasi	Uji White Noise	Uji Normalitas Residual
1	ARIMA (1,1,0)	×	√	√
2	ARIMA (1,1,1)	×	√	✓
3	ARIMA (1,1,2)	×	√	✓
4	ARIMA (1,1,3)	×	√	×
5	ARIMA (1,2,0)	✓	✓	✓
6	ARIMA (1,2,1)	×	√	✓
7	ARIMA (1,2,2)	×	✓	✓
8	ARIMA (1,2,3)	×	√	×
9	ARIMA (0,1,1)	×	√	✓
10	ARIMA (0,1,2)	×	√	✓
11	ARIMA (0,1,3)	×	√	×
12	ARIMA (0,2,1)	✓	✓	✓
13	ARIMA (0,2,2)	×	√	✓
14	ARIMA (0,2,3)	×	√	×

Berdasarkan Tabel 2 didapatkan bahwa terdapat 2 ARIMA yang lolos dalam semua uji, yaitu: ARIMA (1,2,0) dan ARIMA (0,2,1).

- 12. Setelah mendapatkan ARIMA yang ingin digunakan untuk *forecast*, lanjut untuk melihat MS yang paling rendah. Karena dengan MS dapat mempengaruhi dalam akurasi pengambilan *forecast* semakin kecil MS maka semakin akurat.
 - a. ARIMA (1,2,0)

Residual Sums of Squares

Back forecasts excluded

b. ARIMA (0,2,1)

Residual Sums of Squares

Back forecasts excluded

13. Dari hasil tersebut, didapatkan bahwa ARIMA (0,2,1) yang memiliki akurasi *forecast* paling tinggi. Misal diuji untuk ramalan 5 data setelahnya didapatkan:

Forecasts from period 38

95% Limits

Period Forecast Lower Upper Actual 39 1747,94 1676,01 1819,88 40 1756,12 1651,54 1860,70 41 1764,52 1632,92 1896,12 42 1773,16 1617,11 1929,20

43 1782,02 1602,95 1961,09

B. Double Exponential Smoothing

1. Dalam metode ini, ,melalui 38 data yang telah tersedia, bisa dilakukan inputan secara langsung.

Step: Stat \rightarrow Time Series \rightarrow Double Exp Smoothing

Smoothing Constants

 α (level) 1,05746 γ (trend) 0,04831

Forecasts

Period	Forecast	Lower	Upper
39	1746,33	1680,35	1812,31
40	1750,65	1645,90	1855,39
41	1754,96	1609,75	1900,18
42	1759,28	1572,99	1945,56
43	1763,60	1535,96	1991,23

Kesimpulan

Dalam meramalkan harga saham perlu diketahui bahwa pasar keuangan sangat kompleks dan dipengaruhi oleh banyak faktor, termasuk berita, peristiwa politik, dan faktor-faktor ekonomi global. Oleh karena itu, hasil prediksi selalu memiliki tingkat ketidakpastian tertentu.

- ARIMA dan Double Exponential Smoothing memiliki pendekatan yang berbeda. ARIMA adalah model yang lebih kompleks dengan kemampuan menangkap pola yang lebih rumit, sementara SES lebih sederhana dan cocok untuk situasi di mana data cenderung lebih sederhana.
- Pemilihan antara keduanya bergantung pada karakteristik data. Jika data memiliki tren yang kuat, ARIMA bisa lebih sesuai. Jika data lebih sederhana dan kurang kompleks, DES bisa memberikan hasil yang memadai dengan parameter yang lebih sedikit.

Output ARIMA Box Jenskin:

https://drive.google.com/drive/folders/1WxThV20p8XTq_dwJSTTquBUUKdVaCcM4?usp=sharing

Output Double Exponential Smoothing:

https://drive.google.com/drive/folders/17lg89XaX9A9QyXEoKHZ4jFjF_BozQ5T6?usp=sharing