Úkol č. 3 do předmětu Složitost

Vojtěch Havlena (xhavle03)

1. Příklad

Nejprve důkaz, že $MEM_1 \in PSPACE$. Sestrojíme NTS M, který má na vstupu (M_L, w) a simuluje M_L na vstupu w. Vzhledem k tomu, že LOA je speciální případ nedeterministického TS, platí že $L(M) = MEM_1 \in NSPACE(n)$, A tedy podle Savitchova tvrzení, $MEM_1 \in PSPACE$.

Důkaz PSPACE těžkosti provedeme redukcí z QBF. Neformálně ke každé QBF ϕ sestrojíme LOA M_1 , který bude simulovat rekurzivní vyhodnocování procedury Eval (viz. přednáška PSPACE) a přijme právě když formule ϕ je pravdivá. Vstupní páska bude reprezentovat zásobník pro simulaci Eval. Vzhledem k tomu, že hloubka zanoření je omezena lineárně vzhledem k velikosti ϕ , velikost pásky bude polynomiální k $|\phi|$ (počet kvantifikátorů plus počet operátorů). Počáteční řetězec na vstupu je tedy nutné zvolit tak, aby jsme obsáhli max. velikost zásobníku.

Více detailněji. Dále uvažuji, že $\phi \equiv Q_1 x_1 \dots Q_m x_m F$ je QBF. Nejprve si připravíme LOA M_1 , který bude řídit výpočet procedury Eval. LOA M_1 navrhneme tak, aby pracoval nezávisle na formuli ϕ . V průběhu výpočtu M_1 obsahuje na pásce řetězec ve tvaru

$$\#\langle F \rangle \# (\#fx_1 \dots x_m)^m \# d \# \# x'_1 \dots x'_m \# \langle F' \rangle \#,$$

kde m je počet proměnných ve formuli ϕ , $x_1 \dots x_m$ je ohodnocení proměnných $x_1 \dots x_m$, f je příznak, který označuje, jak je aktuálně sledovaná proměnná kvantifikována, d je aktuální hloubka zanoření, $\langle F \rangle$ je kód vstupní Booleovské formule a $x'_1 \dots x'_m$ je aktuální ohodnocení proměnných pro které se má vyhodnotit logická funkce F.

LOA M_1 pracuje potom následovně: Vstupní obsah pásky je

$$\#\langle F \rangle \# \# \langle Q_1 \rangle 0^m \# \dots \langle Q_m \rangle 0^m \# \langle m \rangle \# \# 0^m \# \langle F \rangle \# \tag{1}$$

(všechny proměnné jsou nastaveny na hodnotu 0 a hloubka na m). LOA M_1 potom simuluje výpočet LOA M_F (vyhodnocení funkce F podle zadaného přiřazení, popis dále) pro ohodnocení proměnných v hloubce m – za $x'_1 \dots x'_m$ se nahradí ohodnocení z úrovně m a řetězec $\langle F' \rangle$ je obnoven za $\langle F \rangle$ (LOA M_F přepíše řetězec reprezentující formuli, proto je nutné ho obnovit) Podle výsledku M_F se informace propaguje o úroveň níž (řekněme do i), kde podle předaného výsledku, aktuální hodnoty f_i a hodnoty x_i provede akce podle procedury Eval (buď se hodnota propaguje do další úrovně nebo je hodnota x_i změněna na další hodnotu, pokud je to ovšem možné, a hodnoty všech proměnných x_j , $i < j \le m$ na všech vyšších hloubkách

jsou nastaveny na 0 a celý postup je opakován). Pokud se informace dopropagovala až do první úrovně a procedura Eval je již vyčíslená (rekurzivně jsme již získali odpověď na to, jestli ϕ je pravdivá), přijmeme právě tehdy, když získaná hodnota je 1 (ϕ je pravdivá). Tedy M_1 přijmě právě tehdy, když vstupní formule ϕ je pravdivá.

LOA M_F na své vstupní pásce očekává vstupní řetězec ve tvaru $x_1 \dots x_m \# \langle \phi \rangle$, kde $\langle \phi \rangle$ je kód formule ϕ a $x_1 \dots x_m$ jsou ohodnocení proměnných $x_1 \dots x_m$. LOA M_F po ukončení výpočtu zapíše na pásku hodnotu $\phi(x_1 \dots x_m)$. Ve zkratce, M_F pracuje tak, že nejprve nahradí všechny výskyty proměnných ve řetězci $\langle \phi \rangle$ za jejich hodnoty. LOA M_F začne procházet vstupní řetězec s formulí a začne vyhodnocovat formuli od nejvnitřnějších podformulí a tyto podformule nahrazuje za jejich výsledné hodnoty. (tedy např. nejprve se vyhodnotí podformule typu $\neg x_i, x_i \wedge x_j$ atd. a potom teprve složitější podformule). Časová složitost tohoto přístupu bude velká, ale na druhou stranu je potřeba pouze ta část pásky, kde je zapsán vstup (tedy M_F je opravdu LOA). Činnost M_F je opět nezávislá na vstupní formuli ϕ .

Hloubka rekurze procedury Eval je m, kde m je počet proměnných v ϕ . Tedy pokud je vstupní řetězec zadán podle (1), stačí pro vyhodnocení pravdivosti QBF ϕ pouze prostor pásky, kde je zapsán vstup. Tedy LOA M_1 pro libovolnou QBF ϕ přijme právě když je pravdivá.

Redukce R tedy pro libovolnou QBF $\phi = Q_1 x_1 \dots Q_m x_m F$ vrátí dvojici (M_1, w) , kde

$$w = \#\langle F \rangle \# \# \langle Q_1 \rangle 0^m \# \dots \langle Q_m \rangle 0^m \# \langle m \rangle \# \# 0^m \# \langle F \rangle \#.$$

Velikost řetězce $\langle F \rangle$ je $O(n^2)$, kde $n = |\phi|$ a ve stejném čase může být řetězec sestaven. Vzhledem k tomu, že $m \leq n$, je celková délka $|w| \in O(n^2)$ a tento řetězec může být sestaven v pol. čase. Tedy celá redukce R může být implementována DTS v polynomiálním čase. Navíc platí:

$$\phi \in QBF \Rightarrow R(\phi) \in MEM_1$$
 a $\phi \notin QBF \Rightarrow R(\phi) \notin MEM_1$.

Tedy MEM_1 je PSPACE-úplný.

2. Příklad

Nejprve dokážeme, že $OPT_PARTITION \in NPO$.

- Množina vstupních případů problému je množina dvojic (S, v), kde S je množina položek a v je váhová funkce. Deterministický Turingův stroj nejprve zkontroluje, zda na vstupu je správně zformovaná instance problému. Následně ověří, jestli je váhová funkce dobře definována (pro každou položku z S zkontroluje, zda váhová funkce přiřazuje této položce nějakou váhu). Tento TS pracuje v polynomiálním čase. Tedy $I \in P$.
- Uvažujme nějaké $x \in I$. Potom pro každé $A \in F(x)$ platí $A \subseteq S$, tedy $|A| \leq |S|$. Přípustná řešení jsou tedy ohraničena polynomem.
- Opět uvažujme nějaké $x \in I$. Pokud máme nějaké $|A| \leq |S|$, potom lze v polynomiálním čase (vzhledem k |S|) rozhodnout, zda $A \subseteq S$ (pro každý prvek z A, zkontrolujeme, jestli je i v S).

– Cena řešení c, která je dána jako rozdíl součtu vah položek $S \setminus A$ a A lze opět vypočítat DTS v polynomiálním čase vzhledem k |S| (pro každý prvek z $S \setminus A$ najdeme odpovídající váhy a sečteme je, to samé pro A a nakonec obě hodnoty odečteme.

V dalším kroku ukážeme, že jazyk asociovaný k tomuto opt. problému L_{OP} je NP-úplný. Vzhledem k tomu, že $OPT_PARTITION \in NPO$, tak $L_{OP} \in NP$. Důkaz, že L_{OP} je NP-těžký provedeme redukcí z problému PARTITION. Nechť (T,v) je instance problému PARTITION. Redukce R pouze vstup transformuje na ((T,v),0). Cena řešení je 0 právě když lze množinu T rozdělit na dvě disjunktní množiny se stejnou váhou. Potom tedy platí, že

$$(T, v) \in PARTITION \Leftrightarrow R((T, v)) \in L_{OP}.$$

Redukci lze zřejmě implementovat pomocí DTS v pol. čase. Tedy L_{OP} je NP-úplný jazyk.

Nyní už můžeme přejít k samotnému důkazu neexistence absolutního aproximačního algoritmu. Důkaz povedeme sporem, tedy předpokládáme, že existuje absolutní aproximativní algoritmus A s absolutní chybou k. Pomocí algoritmu A vytvoříme polynomiální algoritmus, který pro instanci $OPT_PARTITION$ nalezene jeho optimální řešení. Tento polynomiální algoritmus nejprve pro vstupní případ x=(S,v) problému $OPT_PARTITION$ sestrojí vstup x'=(S,v'), kde v'(z)=(k+1)v(z), pro každé $z\in S$ a na vstupu x' odsimuluje výpočet algoritmu A. Přípustná řešení jsou pro oba případy stejná, tedy F(x)=F(x') (výběr podmnožin S). Avšak cena přípustných řešení problému x' je (k+1) násobek cen řešení x.

Algoritmus A vypočítá A(x'). Vzhledem k tomu, že A je absolutní apr. algoritmus s chybou k, platí:

$$|c'(A(x')) - OPT(x')| = \left| \left| \sum_{z \in S \setminus A(x')} v'(z) - \sum_{z \in A(x')} v'(z) \right| - OPT(x') \right| \le k \qquad (2)$$

Vzhledem k tomu, že v'(z) = (k+1)v(z), platí i OPT(x') = (k+1)OPT(x). Tedy úpravou (2) dostáváme

$$\left\| \sum_{z \in S \setminus A(x')} (k+1)v(z) - \sum_{z \in A(x')} (k+1)v(z) \right\| - (k+1)OPT(x) \le k$$
 (3)

Celou nerovnici můžeme podělit k+1 a protože pracujeme v celých číslech dostáváme následující

$$\left| \left| \sum_{z \in S \setminus A(x')} v(z) - \sum_{z \in A(x')} v(z) \right| - OPT(x) \right| = |c(A(x')) - OPT(x)| = 0.$$

Tedy A(x') je optimálním řešením pro případ x. Vzhledem k tomu, že A pracuje s polynomiální složitostí (definice), celý algoritmus pro výpočet opt. řešení pracuje v polynomiálním čase. Tedy $OPT_PARTITION \in PO$ a vzhledem k tomu, že asociovaný jazyk L_{OP} je NP-úplný, dostáváme, že NP = P, což je spor s předpokladem. Absolutní apr. algoritmus tedy neexistuje.