

PROPOSAL PENELITIAN KUALIFIKASI

PENGEMBANGAN METODE PERINGKASAN BERBASIS GRAF UNTUK DOKUMEN EVALUASI AKREDITASI BANPT: STUDI KASUS UNIVERSITAS

DINA AGUSTEN

NPM: 99216022

PROGRAM DOKTOR TEKNOLOGI INFORMASI UNIVERSITAS GUNADARMA SEPTEMBER 2024

DAFTAR ISI

	Hal.
1. PENDAHULUAN	3
1.1 Latar Belakang	3
1.2 Rumusan Masalah	6
1.3 Batasan Masalah	6
1.4 Tujuan Penelitian	6
1.5 Manfaat dan Kontribusi	7
2. TINJAUAN PUSTAKA	9
2.1 Akreditasi BAN-PT	9
2.2 Ringkasan	10
2.3 Text Summarization	10
2.4 Graf	11
2.5 TextRank	11
2.6 Machine Learning	11
2.7 Evaluasi Model	12
2.8 Perbandingan Penelitian	12
3. METODOLOGI	14
3.1 Objek Penelitian	26
3.2 Tahapan Penelitian	26
DAFTAR PUSTAKA	31

1. PENDAHULUAN

1.1. Latar Belakang

Dalam era digital, jumlah informasi yang dihasilkan dan disimpan oleh lembaga pendidikan semakin meningkat dengan pesat. Salah satu dokumen penting yang dihasilkan oleh universitas adalah dokumen evaluasi akreditasi, yang digunakan sebagai dasar penilaian oleh Badan Akreditasi Nasional Perguruan Tinggi (BAN-PT). Proses evaluasi akreditasi ini mengharuskan universitas untuk menyediakan laporan yang sangat detail tentang berbagai aspek kelembagaan, termasuk manajemen, kurikulum, penelitian, fasilitas, dan sumber daya manusia. Laporan ini biasanya berisi ratusan hingga ribuan halaman, yang perlu dianalisis oleh BAN-PT dalam waktu terbatas.

Proses akreditasi perguruan tinggi oleh Badan Akreditasi Nasional Perguruan Tinggi (BAN-PT) di Indonesia melibatkan peninjauan dokumen evaluasi yang sangat detail dan kompleks. Dokumen tersebut berisi berbagai informasi mengenai kinerja akademik, penelitian, pengabdian kepada masyarakat, dan aspek manajemen lainnya. Setiap program studi atau institusi yang menjalani akreditasi harus mengajukan laporan yang terdiri dari ribuan halaman, yang seringkali memerlukan waktu dan upaya besar untuk diproses oleh reviewer BAN-PT.

Namun, masalah utama yang dihadapi dalam penilaian dokumen akreditasi ini adalah volume informasi yang sangat besar dan heterogen serta terdapat file online. Pengulas akreditasi sering kali harus menghabiskan waktu yang cukup lama untuk membaca dan memahami keseluruhan dokumen guna menilai kelayakan universitas. Dalam kondisi tersebut, alat bantu otomatis yang dapat merangkum informasi penting dari dokumen evaluasi akreditasi sangat dibutuhkan. Salah satu solusi yang dapat diterapkan untuk menangani masalah ini adalah dengan menggunakan metode peringkasan otomatis.

Dokumen evaluasi akreditasi memerlukan penanganan khusus karena mencakup berbagai jenis data, mulai dari deskripsi tekstual hingga tabel, grafik, statistik dan file online. Oleh karena itu, penerapan metode peringkasan otomatis mampu mengidentifikasi dan mengekstrak bagian-bagian penting dari dokumen ini menjadi solusi yang relevan. Dengan demikian, metode ini dapat mengurangi beban manual dan memungkinkan pengulas BAN-PT untuk lebih efisien dalam melakukan penilaian.

Permasalahan yang terjadi pada proses evaluasi akreditasi, dokumen yang dihasilkan sering kali mencakup informasi yang berulang, kompleks, dan tersebar dalam berbagai bagian termasuk media online. Akibatnya, reviewer dari BAN-PT menghadapi tantangan dalam

mengekstrak informasi esensial secara cepat dan akurat. Dalam kondisi terbatasnya waktu dan tenaga untuk memeriksa seluruh dokumen, kesalahan dalam penilaian dapat terjadi akibat informasi penting yang terlewatkan.

Metode peringkasan otomatis memungkinkan pengurangan ukuran teks tanpa menghilangkan makna penting, membantu reviewer fokus pada bagian kunci dari dokumen yang relevan. Salah satu pendekatan yang semakin populer dalam bidang Natural Language Processing (NLP) adalah peringkasan. Dalam NLP terdapat 2 teknik yang digunakan dalam melakukan peringkasan yaitu abstraktif dimana merangkai kalimat baru dari dokumen asli, sedangkan ekstraktif akan mengambil sejumlah kalimat penting dari dokumen aslinya. Dalam peringkasan terdapat juga berbasis statistic dimana kalimat-kalimat diukur dengan menggunakan data-data statistik. Berbasis graf dimana meringkas beberapa kalimat menjadi satu kalimat dengan mencari jalur terpendek dari graph yang dibentuk dari nodes yang berisi kata-kata yang ada pada kalimat-kalimat yang akan diringkas. Jalur atau edges yang menghubungkan setiap nodes tersebut kemudian diberikan bobot tertentu. Berbasis metaheuristic menggunakan algoritma Ant Colony Optimization (ACO) memanfaatkan graph di mana komentar-komentar disusun menjadi nodes. Pada graph tersebut, nodes atau komentar-komentar terbaik akan dipilih oleh algoritma ACO secara probabilistik berdasarkan informasi heuristic yang ada pada tiap komentar.

Pada penelitian Zhuolin Jiang, et all (2020), mengusulkan sebuah kerangka kerja yang memanfaatkan kombinasi fitur-fitur ini untuk meningkatkan kinerja ringkasan ekstraktif. Penelitiannya juga memperkenalkan model berbasis Transformer untuk kompresi kalimat, yang lebih lanjut menyempurnakan proses ringkasan. Ringkasan dokumen tanpa pengawasan, dengan fokus pada integrasi embedding kata dalam dan fitur n-gram untuk meningkatkan ukuran kesamaan kalimat. Dengan penggabungan beberapa fitur dapat menangkap kesamaan semantik dalam teks. Adanya penggabungan beberapa fitur menyebabkan adanya ketergantungan terhadap kualitas fitur-fitur tersebut.

Purnama dan Utami (2023), menawarkan sistem peringkasan dokumen otomatis untuk artikel berita berbahasa Indonesia menggunakan model transformer T5. Penelitian ini mengeksplorasi tiga skenario preprocessing: (1) stemming dan penghapusan stopwords, (2) stemming tanpa penghapusan stopwords, dan (3) tanpa preprocessing. Temuan menunjukkan bahwa kinerja terbaik dicapai dengan skenario 2, yang menggunakan stemming tanpa menghapus stopwords, menghasilkan skor evaluasi ROUGE-1 sebesar 0.17568. Ini menunjukkan bahwa preprocessing yang hati-hati dapat secara signifikan meningkatkan efektivitas model peringkasan dalam memproses struktur bahasa yang kompleks. Hasil dari

skenario 2 kurang natural karena mengubah kata ke bentuk dasar, yang dapat mengurangi keterbacaan.

Hickmann, et all (2022), menyajikan sebuah studi tentang peningkatan keterjelasan dalam ringkasan multi-dokumen (MDS) menggunakan model transformer berbasis graf yang disebut GraphSum. Penelitian ini menunjukkan bahwa representasi tingkat paragraf lebih unggul dibandingkan representasi tingkat kalimat dalam menghasilkan ringkasan dari dataset MultiNews. Dengan menganalisis bobot perhatian (attention weights) dari model, para penulis mengungkapkan adanya korelasi antara bobot ini dan asal sumber informasi, yang menunjukkan bahwa model belajar adanya bias posisi yang menguntungkan paragraf-paragraf yang lebih awal. Temuan ini menyarankan bahwa mekanisme perhatian dapat meningkatkan interpretabilitas model ringkasan, membuka jalan untuk penyelidikan lebih lanjut tentang sifat serupa di dataset lain dan model berbasis transformer. Keterbatasan Dataset menyebabkan tidak terdapat temuan apakah hasil ringkasan sudah cukup baik, karena tidak semua paragraf memiliki pola yang sama.

Debiane & Hemamou (2024), mempersembahkan EYEGLAXS, sebuah kerangka inovatif yang secara efektif memanfaatkan Model Bahasa Besar (LLMs) untuk ringkasan teks ekstraktif, khususnya dalam menangani dokumen panjang. Kurang banyaknya data set untuk mengetahui kemampuan membaca Panjang urutan dari dokumen. Pengembangan dengan graf mampu memperkaya representasi teks.

Penggunaan AI generatif yang sudah fine-tuned untuk bahasa Indonesia dapat menjadi solusi inovatif untuk meningkatkan kualitas peringkasan otomatis pada dokumen akreditasi. Dengan memadukan pendekatan ekstraktif berbasis graf dengan model AI generatif yang dilatih khusus untuk bahasa Indonesia, sistem ini diharapkan dapat menghasilkan ringkasan yang lebih akurat, relevan, dan dapat dipahami dengan lebih mudah oleh reviewer BAN-PT. Berdasarkan penelitian-penelitian sebelumnya dapat dikembangkan baik dari pergantian metode ataupun penggabungan proses bisa menghasilkan peringkasan dokumen BAN-PT yang baik.

Berdasarkan beberapa penelitian sebelumnya yang masih belum fokus terhadap suatu dokumen dengan masih kurangnya data set, belum bisa mengukur panjang urutan dokumen dan tergantung terhadap kualitas fitur-fitur, maka pengembangan ini akan menghasilkan ringkasan terhadap kekhususan dokumen terutama dokumen evaluasi akreditasi BAN-PT, meningkatkan kualitas tanpa tergantung dari kualitas fitur, hasil peringkasan akan masuk machine learning dengan aturan yang sudah dibentuk untuk bisa mendapatkan prediksi penilai.

1.2. Rumusan Masalah

Penelitian ini berusaha mengembangkan metode peringkasan berbasis graf pada dokumen evaluasi akreditasi BAN-PT dengan penggunaan machine learning khusus untuk bahasa Indonesia, yang di fokuskan:

- Bagaimana membuat peringkasan berbasis graf terhadap dokumen evaluasi akreditas BAN-PT.
- Bagaimana melakukan penggunaan machine learning dalam pembuatan aturan
 9 kriteria BAN-PT khusus untuk Bahasa Indonesia.
- Bagaimana model menyesuaikan dengan kriteria akreditasi BAN-PT untuk mendapatkan prediksi hasil.
- Bagaimana melakukan penerapan peringkasan ekstraktif dengan model machine learning.

1.3. Batasan Masalah

Batasan masalah yang dilakukan pada penelitian ini terdiri dari:

- Lingkup Dokumen: Penelitian ini hanya akan fokus pada dokumen evaluasi akreditasi BAN-PT dan tidak mencakup jenis dokumen lain.
- Bahasa: Metode peringkasan yang dikembangkan hanya akan diterapkan untuk dokumen berbahasa Indonesia.
- Metode Peringkasan: Fokus penelitian adalah pada pembuatan peringkasan berbasis graf, dan tidak akan mencakup metode peringkasan lain seperti peringkasan berbasis aturan atau model lainnya.
- Kriteria Akreditasi: Penelitian ini akan berfokus pada 9 kriteria BAN-PT yang ditentukan dalam dokumen evaluasi, dan tidak akan mencakup kriteria lain atau perubahan dalam kriteria.
- Teknik Machine Learning: Penggunaan machine learning akan dibatasi pada teknik-teknik yang relevan untuk bahasa Indonesia dan peringkasan berbasis graf.

1.4. Tujuan Penelitiaan

Penelitian ini bertujuan untuk menghasilkan metode peringkasan berbasis graf pada dokumen evaluasi akreditasi BAN-PT terdiri dari:

- Pembuatan Peringkasan Berbasis Graf: Mengembangkan metode peringkasan berbasis graf yang dapat diterapkan pada dokumen evaluasi akreditasi BAN-PT.
- Penggunaan Machine Learning: Menentukan cara-cara penggunaan machine learning dalam pembuatan aturan yang sesuai dengan 9 kriteria BAN-PT khusus untuk bahasa Indonesia.
- Penyesuaian Model: Menyesuaikan model machine learning agar dapat memprediksi hasil akreditasi berdasarkan kriteria BAN-PT.
- Penerapan Peringkasan Ekstraktif: Melakukan penerapan peringkasan ekstraktif dengan menggunakan model machine learning untuk meningkatkan efisiensi dan kualitas ringkasan dokumen evaluasi.

1.5. Manfaat Dan Kontribusi Penelitian

Dengan adanya peningkatan jumlah universitas dan program studi yang mendaftar untuk akreditasi setiap tahun, kebutuhan akan alat bantu yang dapat mempercepat dan meningkatkan akurasi proses evaluasi menjadi semakin penting. Metode peringkasan berbasis graf tidak hanya relevan untuk dokumen evaluasi akreditasi, tetapi juga dapat diterapkan pada dokumen besar lainnya di masa depan, sehingga memberikan solusi yang lebih luas bagi proses penilaian dokumen di berbagai bidang pendidikan. Penelitian tentang Penerapan Metode Peringkasan Berbasis Graf untuk Dokumen Evaluasi Akreditasi BAN-PT memiliki sejumlah manfaat penting bagi peneliti, masyarakat, dan ilmu pengetahuan:

1. Manfaat bagi Peneliti

- Peningkatan Keahlian dalam Machine Learning: Peneliti akan mendapatkan pemahaman yang lebih dalam mengenai penerapan machine learning, terutama dalam konteks bahasa Indonesia dan pengolahan dokumen evaluasi akreditasi.
- Penguasaan Metode Peringkasan Berbasis Graf: Peneliti akan memperoleh keahlian dalam mengembangkan dan menerapkan metode peringkasan berbasis graf, yang dapat diaplikasikan dalam berbagai konteks lain.
- Kontribusi pada Pengembangan Teknologi AI Lokal: Penelitian ini dapat menjadi landasan dalam mengembangkan teknologi AI yang berfokus pada penggunaan bahasa Indonesia, sehingga meningkatkan kemampuan peneliti dalam berinovasi di bidang ini.

2. Manfaat bagi Masyarakat

- Efisiensi dalam Proses Evaluasi Akreditasi: Dengan peringkasan otomatis pada dokumen akreditasi, lembaga pendidikan dan pihak terkait dapat menghemat waktu dan usaha dalam proses evaluasi, membantu mereka memahami inti dari laporan secara lebih cepat.
- Peningkatan Kualitas Akreditasi Pendidikan: Metode ini dapat membantu lembaga pendidikan dan tim penilai BAN-PT lebih fokus pada informasi penting yang disajikan dalam dokumen akreditasi, sehingga hasil penilaian lebih tepat sasaran.
- Akses Lebih Mudah ke Informasi: Masyarakat yang memanfaatkan informasi dari hasil akreditasi (seperti siswa, orang tua, dan calon mahasiswa) bisa mendapatkan ringkasan yang lebih mudah dipahami dari dokumen-dokumen yang panjang dan kompleks.

3. Kontribusi bagi Ilmu Pengetahuan

- Pengembangan Teknologi Peringkasan untuk Bahasa Indonesia: Penelitian ini berkontribusi dalam mengembangkan model peringkasan otomatis yang khusus dirancang untuk bahasa Indonesia, memperkaya literatur ilmiah dalam pemrosesan bahasa alami (Natural Language Processing/NLP) untuk bahasa non-Inggris.
- Inovasi dalam Penerapan Machine Learning untuk Dokumen Spesifik: Penelitian ini dapat menjadi acuan untuk penerapan machine learning dalam domain spesifik seperti akreditasi pendidikan, membuka peluang riset lebih lanjut di bidang evaluasi dokumen formal.
- Peningkatan Pemahaman tentang Peringkasan Berbasis Graf: Penelitian ini akan menambah referensi tentang efektivitas metode peringkasan berbasis graf, memberikan kontribusi bagi pengembangan metode serupa untuk berbagai konteks dokumen lain.

Secara keseluruhan, penelitian ini diharapkan memberikan dampak positif baik secara praktis bagi lembaga akreditasi dan pendidikan, serta secara ilmiah bagi pengembangan teknologi berbasis machine learning di Indonesia.

2. TINJAUAN PUSTAKA

Bagian ini menguraikan tentang studi literatur terkait dengan pengembangan metode peringkasan berbasis graf untuk dokumen evaluasi akreditasi BAN-PT: studi kasus universitas.

2.1. Akreditasi BAN-PT

Badan Akreditasi Nasional Perguruan Tinggi, yang selanjutnya disingkat BAN-PT adalah badan yang dibentuk oleh Pemerintah Republik Indonesia dalam hal ini Kementerian Riset, Teknologi dan Pendidikan Tinggi (Kemenristekdikti) untuk menyelenggarakan dan mengembangkan akreditasi Perguruan Tinggi secara mandiri. Akreditasi Program Studi akan dilaksanakan oleh Lembaga Akreditasi Mandiri (LAM). Akan tetapi pada masa transisi, pada saat LAM belum terbentuk, BAN-PT juga akan melaksanakan akreditasi Program Studi. Akreditasi merupakan Sistem Penjaminan Mutu Eksternal (SPME) sebagai bagian dari Sistem Penjaminan Mutu Pendidikan Tinggi. Akreditasi telah diatur dalam Permenristekdikti RI Nomor 32 tahun 2016 tentang Akreditasi Program Studi dan Perguruan Tinggi. Akreditasi bertujuan untuk menentukan kelayakan Program Studi dan Perguruan Tinggi berdasarkan kriteria yang mengacu pada Standar Nasional Pendidikan Tinggi serta untuk menjamin mutu Program Studi dan Perguruan Tinggi secara eksternal baik bidang akademik maupun non akademik untuk melindungi kepentingan mahasiswa dan masyarakat. Akreditasi memiliki prinsip independen, akurat, obyektif, transparan dan akuntabel. Evaluasi akreditasi BAN-PT menetapkan fokus penilaian ke dalam kriteria yang mencakup komitmen perguruan tinggi dan unit pengelola program studi terhadap kapasitas dan keefektifan pendidikan yang terdiri atas 9 (sembilan) kriteria sebagai berikut[1]:

Kriteria 1 Visi, Misi, Tujuan, dan Strategi

Kriteria 2 Tata Pamong, Tata Kelola, dan Kerjasama

Kriteria 3 Mahasiswa

Kriteria 4 Sumber Daya Manusia

Kriteria 5 Keuangan, Sarana dan Prasarana

Kriteria 6 Pendidikan Kriteria 7 Penelitian

Kriteria 8 Pengabdian kepada Masyarakat

Kriteria 9 Luaran dan Capaian Tridharma

2.2. Ringkasan

Peringkasan dokumen adalah proses mengambil teks dari sebuah dokumen, menggali dan menyajikan informasi penting bagi user atau aplikasi dalam bentuk rangkuman yang singkat dan padat. Peringkasan dokumen dapat menjadi solusi bagi setiap orang yang tidak memiliki banyak waktu dan sedang membutuhkan informasi penting dalam tumpukan dokumen yang terus berkembang[2]. Ringkasan adalah salah satu bentuk penyajian ulang atau reproduksi karya secara singkat. Penulisan ringkasan ini dapat berasal dari sebuah bab buku ataupun artikel. Definisi ringkasan yang lainnya adalah sebuah tulisan singkat yang memiliki tujuan agar pembaca dapat memahami gagasan sebuah karya tulis serta pikiran penulis secara sistematis. Kriteria Peringkasan yang Baik:

- 1. **Kelengkapan (Completeness)**: Ringkasan harus mencakup ide-ide utama dari teks asli tanpa menghilangkan informasi yang penting.
- 2. **Ketepatan** (**Accuracy**): Ringkasan harus merepresentasikan teks asli dengan akurat tanpa menambah atau mengurangi makna.
- 3. **Keringkasan (Conciseness)**: Ringkasan harus lebih singkat dari teks asli tetapi tetap mempertahankan esensi utama dari konten.
- 4. **Keterhubungan dan Kohesi (Coherence and Cohesion**): Ringkasan harus tersusun secara logis dengan alur yang terhubung antar bagian.
- 5. **Relevansi** (**Relevance**): Hanya informasi yang penting dan relevan dengan topik utama yang harus dimasukkan dalam ringkasan.
- 6. **Kebebasan dari Duplikasi (Non-redundancy**): Informasi yang dimasukkan tidak boleh mengulang ide-ide yang sama berulang kali.

2.3.Text Summarization

Text Summarization atau perangkum teks merupakan metode yang dapat digunakan untuk merangkum dokumen teks yang panjang menjadi lebih ringkas dan memungkinkan representasi singkat yang dapat mencerminkan isi teks yang lebih luas. Merangkum teks dapat dilakukan dengan dua cara pendekatan, yaitu secara abstraktif dan ekstraktif.

A. Abstraktif

Abstraktif adalah cara merangkum seluruh teks sehingga ringkasannya memiliki kosakata yang lebih bervariasi, bahkan terkadang ada kata-kata yang sama sekali tidak ada dalam teks aslinya. Pendekatan abstraktif lebih sulit tetapi dapat menghasilkan ringkasan dengan kohesi yang tinggi antar kalimat dan lebih alami karena hasil ringkasannya merupakan hasil preparafrase seluruh isi teks seperti halnya ringkasan yang dibuat oleh manusia.

B. Ekstraktif

Ekstraktif merupakan cara merangkum teks dengan mengambil kalimat-kalimat yang sudah ada sebagai inti teks tanpa modifikasi. Pendekatan secara ekstraktif cenderung lebih mudah, akan tetapi sering sekali menghasilkan ringkasan dengan kohesi antar kalimat yang rendah[3].

2.4. Graf

Graf adalah sebuah struktur diskrit yang terdiri atas titik simpul (vertex) dan suatu himpunan pasangan tak berurutan yang menghubungkan dari titik- titik tersebut yang disebut sisi (edge). Graf dapat merepresentasikan hubungan antar kalimat di dalam suatu dokumen, berdasarkan kemiripan antar dokumen-dokumen tersebut[4].

2.5. TextRank

TextRank adalah algoritma yang digunakan untuk mendapatkan kata-kata paling penting dalam sebuah dokumen teks. TextRank berbasis graf untuk memberi peringkat pada teks dan kalimat-kalimat teks di representasikan sebagai simpul atau titik dalam grafik. TextRank merupakan algoritma perangkum berbasis graf yang dibangun berdasarkan metode PageRank yang terdiri atas vertex yang mempresentasikan kalimat pada dokumen dan edge yang mempresentasikan hubungan kemiripan antar kalimat. TextRank adalah algoritma pemrosesan bahasa alami yang digunakan untuk menganalisis teks dan memilih informasi penting dalam teks berdasarkan grafik teks. TextRank sendiri memiliki tahapan-tahapan umum dalam memilih informasi penting dari teks. Tahapan tersebut diantaranya Text Similarity, Pembobotan Teks, Sorting, dan Pemotongan Kalimat[4].

2.6. Machine Learning

Machine Learning (ML) merupakan bidang studi yang fokus kepada desain dan analisis algoritma sehingga memungkinkan komputer untuk dapat belajar[5]. Machine learning terbagi menjadi tiga kategori yaitu, Supervised Learning, Unsupervised Learning, Reinforcement Learning. Gambar 2.1 merupakan skema dari Artificial Intelligence dan Machine Learning[6].

Gambar 2.1 Skema Artificial Intelligence dan Machine Learning

2.7. Evaluasi Model

Evaluasi dilakukan untuk mengetahui kinerja model dalam hal peringkasan. Pada peringkasan terdapat 2 metode evaluasi yang paling umum digunakan, yaitu ROUGE (Recall Oriented Understudy for Gisting Evaluation) dan BLEU (Bilingual Evaluation Understudy). ROUGE menghitung kesamaan antara ringkasan otomatis dan ringkasan manual berdasarkan n-gram, jumlah kata, dan kesamaan frasa[7]. BLEU (Bilingual Evaluation Understudy), metode yang awalnya dikembangkan untuk evaluasi terjemahan mesin, tetapi juga bisa digunakan untuk evaluasi ringkasan. BLEU menghitung kesamaan antara hasil ringkasan dengan referensi ringkasan manusia berdasarkan n-gram[8].

2.8. Perbandingan Penelitian

Penelitian-penelitian terkait Penelitian Analisis Sentimen, Rating, Rekomendasi Sistem dan Peringkas disajikan pada tabel 2.1.

Tabel 2.1. Ringkasan Penelitian

Peneliti	Metode	Hasil/ Eksperimen	Kelebihan	Kekurangan
Mike Lewis,	1. Pretraining:	BART	Fleksibilitas	Kompleksitas
Yinhan Liu,	BART dilatih	menunjukkan	Noising:	Model:
Naman Goyal,	dengan dua tahap,	kinerja yang sangat	Kemampuan untuk	Meskipun BART
Marjan	yaitu: - Mengkorupsi	baik dalam	menerapkan	efektif,
Ghazvininejad,	teks menggunakan	berbagai tugas,	transformasi yang	kompleksitas
Abdelrahman	fungsi noising yang	termasuk: -	berbeda pada teks	arsitekturnya
Mohamed,	arbitrer	Mencapai hasil	asli Kinerja	mungkin

Omer Levy,	Menggunakan model	state-of-the-art	Tinggi: BART	memerlukan
Ves Stoyanov,	sequence-to-	dalam ringkasan (6	menunjukkan	sumber daya
Luke	sequence untuk	poin ROUGE lebih	kinerja yang	komputasi yang
Zettlemoyer	merekonstruksi teks	baik dibandingkan	konsisten kuat di	lebih besar
(2019)	asli dari teks yang	model	berbagai tugas,	dibandingkan
	telah dikorupsi.	sebelumnya)	termasuk	dengan model
	2. Fine-tuning:	Meningkatkan	pemahaman dan	yang lebih
	Setelah pretraining,	kinerja dalam	generasi teks	sederhana
	BART difine-tune	generasi dialog dan	Kualitas	Ketergantungan
	dengan dokumen	menjawab	Keluaran: Hasil	pada Data:
	yang tidak	pertanyaan	keluaran BART	Kinerja BART
	terkorupsi,	Memberikan	adalah bahasa yang	sangat
	menggunakan	peningkatan 1.1	fasih dan akurat	bergantung pada
	representasi dari	BLEU dalam	secara faktual,	kualitas dan
	status tersembunyi	terjemahan mesin	dengan kemampuan	kuantitas data
	akhir dari decoder.	dibandingkan	untuk melakukan	yang digunakan
	3. Noising	dengan sistem	inferensi yang	selama
	Approaches: BART	back-translation.	kompleks.	pretraining dan
	menggunakan			fine-tuning. S
	pendekatan noising			
	yang berbeda,			
	termasuk			
	pengacakan urutan			
	kalimat dan skema			
	in-filling, di mana			
	rentang teks diganti			
	dengan token mask.			
Yang Liu	1. BERTSUM: Ini	BERTSUM	Kinerja Tinggi:	Batasan pada
(2019)	adalah varian dari	mencapai hasil	BERTSUM	Ringkasan
	BERT yang	terbaik di dataset	menunjukkan	Ekstraktif:
	dirancang khusus	CNN/Dailymail,	kinerja yang sangat	Meskipun
	untuk ringkasan	mengungguli	baik dalam	efektif,
	ekstraktif. Metode	sistem sebelumnya	menghasilkan	pendekatan

	ini menggunakan	dengan	ringkasan yang	ekstraktif
	arsitektur	peningkatan 1.65	relevan dan	mungkin tidak
	Transformer dengan	pada metrik	informatif	selalu
	lapisan inter-kalimat	ROUGE-L Hasil	Penggunaan	menghasilkan
	untuk meningkatkan	pengujian	BERT:	ringkasan yang
	kinerja dalam	menunjukkan	Memanfaatkan	sehalus atau
	memilih kalimat-	bahwa model	arsitektur BERT	sekomprehensif
	kalimat penting dari	BERTSUM	yang telah terbukti	pendekatan
	dokumen.	dengan lapisan	efektif dalam	abstraktif, yang
	2. Pengujian pada	Transformer inter-	berbagai tugas	dapat
	Dataset: BERTSUM	kalimat	pemrosesan bahasa	menciptakan
	diuji pada dua	memberikan	alami,	kalimat baru
	dataset besar, yaitu	kinerja terbaik	memungkinkan	Ketergantungan
	CNN/Dailymail dan	dibandingkan	model untuk belajar	pada Kualitas
	NYT, untuk	dengan varian lain.	fitur kompleks dari	Data: Kinerja
	mengevaluasi		data Pendekatan	model sangat
	kinerjanya.		Ekstraktif yang	bergantung pada
			Efisien: Dengan	kualitas dan
			memilih kalimat-	keragaman data
			kalimat penting,	pelatihan yang
			model ini dapat	
			menghasilkan	data pelatihan
			ringkasan yang	tidak
			lebih akurat dan	representatif,
			relevan.	hasil ringkasan
				mungkin tidak
				optimal.
Tom B.	1. Pre-training dan	1. Kinerja yang	1. Kemampuan	1. Keterbatasan
Brown,	Fine-tuning: GPT-3	Kuat: GPT-3	Generatif: Mampu	dalam
Benjamin	dilatih pada korpus	menunjukkan	menghasilkan teks	Koherensi: Teks
Mann, Nick	teks besar sebelum	kemampuan yang	yang sangat mirip	yang dihasilkan
Ryder,	diujikan pada tugas	baik dalam	dengan tulisan	kadang-kadang
Melanie	tertentu. Ini	menghasilkan teks	manusia, sehingga	kehilangan

Subbiah, memungkinkan sulit dibedakan oleh koherensi dalam yang mirip dengan et all model untuk belajar manusia dan dapat evaluator manusia. paragraf yang (2020)dari berbagai melakukan 2. Adaptasi Cepat: lebih panjang dan konteks melakukan dan pola berbagai tugas Dapat dapat bahasa. 2. Few-shot dengan sedikit penyesuaian mengandung cepat Learning: Model ini kalimat contoh. pada tugas baru yang 2. Kesulitan pada tidak relevan. dirancang untuk dengan hanya sedikit contoh. melakukan tugas Tugas Tertentu: Kesulitan dengan sedikit Meskipun 3. Skala Besar: dengan contoh (few-shot) memiliki kinerja Memiliki parameter Penalaran Akal atau bahkan tanpa yang baik, GPT-3 yang sangat besar **Sehat**: Model ini contoh (zero-shot), mengalami (hingga 175 miliar), menunjukkan mirip dengan cara kesulitan kesulitan dalam pada yang manusia belajar. beberapa tugas, memungkinkan menjawab 3. Pengujian pada seperti inferensi pemahaman pertanyaan yang memerlukan Berbagai Tugas: bahasa alami konteks yang lebih GPT-3 diuji pada (ANLI) baik. akal dan penalaran berbagai benchmark beberapa dataset sehat, meskipun dan tugas NLP, pemahaman berhasil pada termasuk bacaan (RACE, beberapa dataset pemahaman bacaan QuAC). menguji yang dan inferensi bahasa domain tersebut. 3. Kinerja alami. Buruk pada **Tugas Tertentu:** Kinerja yang buruk pada beberapa tugas inferensi dan pemahaman bacaan, di mana model hanya sedikit lebih baik

				dari tebakan
				acak. Secara
				keseluruhan,
				meskipun GPT-3
				menunjukkan
				kemajuan yang
				signifikan dalam
				pemodelan
				bahasa, ada
				beberapa area di
				mana kinerjanya
				masih perlu
				ditingkatkan.
Zhuolin Jiang,	1. Kombinasi Fitur:	mengusulkan	Dengan	Adanya
et all (2020)	Penelitian ini	sebuah kerangka	penggabungan	penggabungan
	menggabungkan	kerja yang	beberapa fitur dapat	beberapa fitur
	fitur embedding kata	memanfaatkan	menangkap	menyebabkan
	dalam (seperti	kombinasi fitur-	kesamaan semantik	adanya
	word2vec dan	fitur ini untuk	dalam teks.	ketergantungan
	BERT) dengan fitur	meningkatkan		terhadap kualitas
	tf-idf dan n-gram	kinerja ringkasan		fitur-fitur
	untuk meningkatkan	ekstraktif.		tersebut.
	ukuran kesamaan	Penelitiannya juga		
	kalimat.	memperkenalkan		
	2. Graf Kesamaan	model berbasis		
	Kalimat:	Transformer untuk		
	Membangun graf	kompresi kalimat,		
	kesamaan kalimat	yang lebih lanjut		
	yang lebih baik	menyempurnakan		
	dengan	proses ringkasan.		
	menggunakan fitur-	Ringkasan		
	fitur tersebut untuk	dokumen tanpa		
		pengawasan,		

	pemilihan kalimat	dengan fokus pada		
	submodular.	integrasi		
	3. Model Kompresi	embedding kata		
	Kalimat Berbasis	dalam dan fitur n-		
	Transformer:	gram untuk		
	Menggunakan model	meningkatkan		
	Transformer untuk	ukuran kesamaan		
	melakukan kompresi	kalimat.		
	kalimat sebelum			
	melakukan			
	pemilihan kalimat			
	untuk ringkasan.			
R. C. Belwal,	Metode yang	Hasil - Evaluasi:	- Mengurangi	- Kompleksitas:
S. Rai1, A.	diusulkan adalah	Metode ini diuji	Redundansi:	Meskipun lebih
Gupta	metode ringkasan	pada dua dataset,	Metode ini berhasil	baik dalam
	ekstraktif berbasis	yaitu	mengurangi	mengurangi
(2020)	graf yang	CNN/DailyMail	masalah redundansi	redundansi,
	menggabungkan	dan Opinosis.	dengan memilih	metode berbasis
	pemodelan topik dan	- Kinerja: Hasil	kalimat yang	graf dapat
	kata kunci.	evaluasi	mewakili topik yang	menjadi lebih
	- Proses: Kalimat	menunjukkan	berbeda.	kompleks dalam
	dalam dokumen	bahwa metode	- Pendekatan	hal implementasi
	diwakili sebagai	yang diusulkan	Unsupervised:	dibandingkan
	simpul (nodes)	memiliki skor F-	Dapat	dengan metode
	dalam graf, dan	measure yang lebih	diimplementasikan	yang lebih
	hubungan antar	baik dibandingkan	dengan jumlah data	sederhana.
	kalimat diwakili	dengan teknik	yang lebih sedikit	- Ketergantungan
	sebagai tepi (edges).	ringkasan	dibandingkan	pada Ukuran
	Bobot tepi	ekstraktif yang ada.	dengan metode	Data: Meskipun
	ditentukan		berbasis	dapat bekerja
	berdasarkan		pembelajaran yang	dengan sedikit
	kesamaan antar		memerlukan banyak	data, kualitas
	kalimat serta		data pelatihan.	hasil masih dapat

	relevansi dengan		- Menggunakan	dipengaruhi oleh
	_			
	topik yang ada dalam		Ukuran Semantik:	jumlah dan
	dokumen.		Mempertimbangkan	kualitas data
	- Tujuan: Mengatasi		makna semantik	yang tersedia.
	masalah redundansi		dari kata-kata dalam	- Masalah dengan
	dengan hanya		penilaian kesamaan	Kalimat Pendek:
	menyertakan kalimat		antar kalimat.	Terdapat
	yang mewakili topik			tantangan dalam
	utama dari teks			memasukkan
	input.			kalimat yang
				sangat pendek
				yang mungkin
				mengandung
				lebih dari satu
				topik, yang
				belum dibahas
				secara eksplisit
				dalam literatur.
Hickmann, et	1. Model GraphSum:	menyajikan sebuah	- Keterjelasan:	Keterbatasan
all (2022)	Penelitian ini	studi tentang	Penggunaan bobot	Dataset
	menggunakan model	peningkatan	perhatian	menyebabkan
	GraphSum, yang	keterjelasan dalam	membantu	tidak terdapat
	merupakan model	ringkasan multi-	meningkatkan	temuan apakah
	transformer berbasis	dokumen (MDS)	keterjelasan dan	hasil ringkasan
	graf untuk	menggunakan	interpretabilitas	sudah cukup
	melakukan	model transformer	model, memberikan	baik, karena
	ringkasan multi-	berbasis graf yang	wawasan tentang	tidak semua
	dokumen (MDS).	disebut GraphSum.	bagaimana model	paragraf
	2. Representasi	Penelitian ini	menghasilkan	memiliki pola
	Teks: Penelitian	menunjukkan	ringkasan.	yang sama.
	membandingkan	bahwa representasi	- Kinerja:	
	representasi tingkat	tingkat paragraf	Representasi tingkat	
	kalimat dan paragraf	lebih unggul	paragraf	
	<u> </u>			

dalam dibandingkan menunjukkan proses pelatihan model. representasi tingkat kinerja yang lebih Analisis Bobot kalimat dalam baik dalam Perhatian: Penelitian menghasilkan menghasilkan ini juga menganalisis ringkasan dari ringkasan bobot perhatian yang dataset MultiNews. dibandingkan dihasilkan dengan representasi oleh Dengan model menganalisis bobot tingkat kalimat. untuk memahami asal perhatian (attention Analisis Posisi: sumber informasi weights) dari Penelitian ini model, para penulis dalam ringkasan menunjukkan yang dihasilkan. mengungkapkan bahwa model dapat 4. Dataset: Model korelasi belajar bias posisi, adanya antara bobot ini diuji menggunakan yang berarti dan asal sumber dua dataset informasi penting benchmark. vaitu informasi, cenderung terletak yang di kalimat-kalimat MultiNews menunjukkan dan WikiSum. bahwa model awal. belajar adanya bias yang posisi menguntungkan paragraf-paragraf yang lebih awal. Temuan ini menyarankan bahwa mekanisme perhatian dapat meningkatkan interpretabilitas model ringkasan, membuka jalan untuk penyelidikan lebih lanjut tentang

		sifat serupa di		
		dataset lain dan		
		model berbasis		
		transformer.		
Purnama dan	Model transformer	menawarkan	- Efektivitas:	Hasil dari
Utami (2023),	T5 untuk	sistem peringkasan	Metode T5	skenario 2
	peringkasan	dokumen otomatis	menunjukkan	kurang natural
	dokumen berbahasa	untuk artikel berita	kemampuan yang	karena
	Indonesia. Penelitian	berbahasa	baik dalam	mengubah kata
	ini dilakukan dengan	Indonesia	merangkum teks,	ke bentuk dasar,
	tiga skenario	menggunakan	terutama dengan	yang dapat
	preprocessing yang	model transformer	preprocessing yang	mengurangi
	berbeda:	T5. Penelitian ini	tepat.	keterbacaan.
	1. Skenario 1:	mengeksplorasi	- Fleksibilitas:	
	Menggunakan	tiga skenario	Model transformer	
	stemming dan	preprocessing: (1)	dapat menangani	
	penghapusan	stemming dan	struktur bahasa	
	stopwords.	penghapusan	yang kompleks dan	
	2. Skenario 2:	stopwords, (2)	menghasilkan	
	Menggunakan	stemming tanpa	ringkasan yang	
	stemming tanpa	penghapusan	lebih abstrak.	
	penghapusan	stopwords, dan (3)	- Kinerja: Skenario	
	stopwords.	tanpa	2 menunjukkan	
	3. Skenario 3: Tidak	preprocessing.	hasil evaluasi yang	
	menggunakan	Temuan	lebih baik	
	keduanya (tanpa	menunjukkan	dibandingkan	
	stemming dan	bahwa kinerja	dengan skenario	
	stopwords removal).	terbaik dicapai	lainnya.	
	, - ,	dengan skenario 2,	_	
		yang menggunakan		
		stemming tanpa		
		menghapus		
		stopwords,		
		,		

	Т			
		menghasilkan skor		
		evaluasi ROUGE-1		
		sebesar 0.17568.		
		Ini menunjukkan		
		bahwa		
		preprocessing yang		
		hati-hati dapat		
		secara signifikan		
		meningkatkan		
		efektivitas model		
		peringkasan dalam		
		memproses		
		struktur bahasa		
		yang kompleks.		
Falahah, Ari	1. Peringkasan Teks:	Pengujian model	1. Automatisasi:	1. Keterbatasan
Fajar Santoso,	Metode yang	peringkasan	Sistem ini dapat	Kategori: Model
Abdullah Fajar	digunakan untuk	menggunakan	secara otomatis	klasifikasi hanya
	peringkasan adalah	Textrank	melakukan	terbatas pada tiga
(2024)	Textrank, yang	menghasilkan nilai	peringkasan dan	kategori berita
	merupakan teknik	ROUGE-1 sebesar	klasifikasi berita,	olahraga
	peringkasan	0.79 dan ROUGE-	yang menghemat	(sepakbola,
	ekstraktif.	2 sebesar 0.67	waktu dan usaha.	raket, dan
	2. Klasifikasi Teks:	Pengujian model	2. Aksesibilitas:	basket), sehingga
	Metode klasifikasi	klasifikasi	Dapat dioperasikan	perlu
	yang digunakan	menggunakan	di lingkungan cloud	pengembangan
	adalah KNN (K-	KNN dengan k=3	(Google Colab),	lebih lanjut untuk
	Nearest Neighbors).	menghasilkan	sehingga mudah	kategori lainnya.
		akurasi 0.9866,	diakses oleh	2. Hosting
		sedangkan dengan	pengguna tanpa	Sementara:
		k=5 menghasilkan	instalasi yang rumit.	Penggunaan
		akurasi 0.9666.	3. Kinerja Tinggi:	ngrok untuk
		Akhirnya, k=3	Hasil pengujian	publikasi aplikasi
		dipilih untuk	menunjukkan	bersifat
	<u> </u>			

		digunakan dalam	akurasi yang tinggi	sementara,
		sistem.	dalam klasifikasi	sehingga perlu
			berita.	platform hosting
				yang lebih
				permanen untuk
				penggunaan
				jangka panjang.
				3. Keterbatasan
				Peringkasan:
				Kemampuan
				peringkasan
				masih perlu
				ditingkatkan
				dengan
				penetapan
				keyword dan
				penentuan topik
				untuk analisis
				yang lebih
				mendalam.
Debiane &	1. Model	mempersembahkan	- Integritas Factual	Kurang
Hemamou	Bahasa Besar	EYEGLAXS,	dan Gramatikal:	banyaknya data
(2024)	(LLMs):	sebuah kerangka	Dengan pendekatan	set untuk
	EYEGLAXS	inovatif yang	ekstraktif, ringkasan	mengetahui
	memanfaatkan dua	secara efektif	yang dihasilkan	kemampuan
	model, yaitu	memanfaatkan	lebih akurat dan	membaca
	LLAMA2-7B dan	Model Bahasa	dapat diandalkan.	Panjang urutan
	ChatGLM2-6B,	Besar (LLMs)	- Kinerja Tinggi:	dari dokumen.
	untuk tugas	untuk ringkasan	Mampu bersaing	Pengembangan
	ringkasan teks	teks ekstraktif,	dengan metode	dengan graf
	ekstraktif.	khususnya dalam	state-of-the-art dan	mampu
	2. Teknik	menangani	menetapkan standar	memperkaya
	Canggih: - Flash	dokumen panjang.		representasi teks.

	Attention: Untuk		baru dalam	
	efisiensi		performa.	
	penggunaan		- Adaptabilitas:	
	memori GPU.		Mampu menangani	
	- Parameter-		berbagai panjang	
	Efficient Fine-		urutan dan efisien	
	Tuning (PEFT):		dalam pelatihan	
	Untuk mengatasi		pada dataset kecil.	
	C		pada dataset kecii.	
	tantangan pelatihan model besar.			
	3. Pendekatan			
	Ekstraktif: Fokus			
	pada pemilihan			
	-			
	kalimat yang relevan dari teks			
	sumber untuk			
	memastikan			
	integritas			
	gramatikal dan			
A D	faktual.	M 11 DEDT	1 D C T' '	1 D'
Asep R.,	1. Pendekatan:	Model BERT	1. Performa Tinggi:	-
Firman S.,	Penelitian ini	menunjukkan	Model BERT	Komputasi
Farihin L.	menggunakan	performa terbaik	menunjukkan	Tinggi: Model
(2024)	metode deep	dengan: - Akurasi:	akurasi dan ROC-	BERT
	learning dengan	0.99 - ROC-AUC:	, , ,	membutuhkan
	mengintegrasikan	0.99 - Hasil	tinggi,	sumber daya
	text mining untuk	pengukuran	menjadikannya	komputasi yang
	mendeteksi berita	lainnya: -	efektif dalam	lebih besar
	hoax. 2. Model	Precision: 0.98 -	mendeteksi berita	dibandingkan
	yang Digunakan:	Recall: 0.98 - F1-	hoax.	dengan algoritma
	Model BERT	Score: 0.98	2. Kemampuan	machine learning
	(Bidirectional		Memahami	tradisional.
	Encoder		Konteks: BERT	

Represe	entations	memiliki	2. Waktu
from Tr	cansformers)	kemampuan untuk	Pelatihan Lama:
berbaha	asa	memahami konteks	Proses pelatihan
Indones	sia	kata dalam teks	model BERT
(IndoBe	ert)	secara bidirectional,	memerlukan
digunak	kan sebagai	yang meningkatkan	waktu yang lebih
baseline	e untuk	akurasi klasifikasi.	lama, terutama
rekayas	a fitur.	3. Penggunaan Data	dengan dataset
3.	Algoritma	Besar: Model ini	yang besar.
Klasifik	casi: Tiga	dilatih	3. Keterbatasan
algoritn	na	menggunakan	dalam
klasifik	asi yang	dataset yang besar,	Interpretasi:
diuji ad	alah BERT,	yang membantu	Meskipun BERT
Support	t Vector	dalam generalisasi	efektif dalam
Machin	e (SVM),	dan akurasi model.	klasifikasi,
dan	Random		interpretasi hasil
Forest.			dan pemahaman
4. Data	aset: Dataset		mendalam
yang	digunakan		tentang
terdiri	dari sekitar		keputusan model
2700 b	perita, yang		bisa menjadi
telah me	elalui proses		tantangan.
preproc	essing		
untuk	membuat		
data	lebih		
terstruk	tur.		

Kesimpulan dari tabel 2.1, berbagai penelitian dalam bidang pemrosesan bahasa alami (NLP) dan peringkasan teks, dengan fokus pada metode, hasil, kelebihan, dan kekurangan masing-masing.

1. **BART** (Mike Lewis et al., 2019) mencatat hasil luar biasa dalam ringkasan dan generasi teks, berkat teknik pretraining dan fine-tuning yang inovatif. Namun, kompleksitas model dan ketergantungan pada kualitas data menjadi tantangan utama.

- 2. **BERTSUM** (Yang Liu, 2019) berhasil mencapai skor tertinggi dalam ringkasan ekstraktif dengan pendekatan berbasis Transformer. Meski demikian, metode ini terbatasi oleh sifat ekstraktif yang kadang tidak menghasilkan ringkasan yang halus.
- 3. GPT-3 (Tom B. Brown et al., 2020) menunjukkan kemampuan generatif yang kuat dengan adaptasi cepat terhadap tugas baru. Meskipun demikian, model ini menghadapi kesulitan dalam menjaga koherensi pada teks panjang dan pada beberapa tugas inferensi.
- 4. **Kombinasi Fitur** (Zhuolin Jiang et al., 2020) mengusulkan penggabungan fitur untuk meningkatkan kesamaan kalimat, tetapi ketergantungan pada kualitas fitur menjadi kelemahan.
- 5. **Graph-Based Summarization** (R. C. Belwal et al., 2020) mengurangi redundansi dengan memilih kalimat representatif, namun kompleksitas implementasi dapat menjadi tantangan.
- 6. **GraphSum** (Hickmann et al., 2022) menunjukkan keunggulan representasi tingkat paragraf dalam ringkasan, meskipun terbatasnya dataset menghambat penilaian kinerja.
- 7. **Model T5 untuk Bahasa Indonesia** (Purnama dan Utami, 2023) menunjukkan efektivitas dengan preprocessing yang tepat, tetapi hasil yang dihasilkan dapat kurang natural.
- 8. **Textrank dan KNN** (Falahah et al., 2024) menawarkan solusi otomatis untuk peringkasan dan klasifikasi, meskipun terbatas pada kategori tertentu.
- 9. **EYEGLAXS** (Debiane & Hemamou, 2024) memanfaatkan model bahasa besar untuk ringkasan ekstraktif, menunjukkan kinerja tinggi, namun masih memerlukan pengujian pada dataset yang lebih luas.
- 10. **Deteksi Berita Hoax** (Asep R. et al., 2024) menggunakan model BERT untuk mendeteksi berita hoax, menunjukkan performa tinggi, tetapi dengan biaya komputasi dan waktu pelatihan yang signifikan.

Secara keseluruhan, penelitian-penelitian ini mencerminkan kemajuan yang signifikan dalam teknik pemrosesan bahasa alami, dengan berbagai kelebihan dan tantangan yang harus diatasi untuk pengembangan lebih lanjut.

3. METODOLOGI PENELITIAN

3.1. Obyek penelitian

Obyek penelitian ini adalah Dokumen Evaluasi Akreditasi BAN-PT, dimana mencakup dokumen-dokumen resmi yang digunakan oleh Badan Akreditasi Nasional Perguruan Tinggi (BAN-PT) dalam proses penilaian akreditasi program studi dan institusi perguruan tinggi. Dokumen-dokumen ini mencakup informasi terkait 9 kriteria:

- Kriteria 1 Visi, Misi, Tujuan, dan Strategi
- Kriteria 2 Tata Pamong, Tata Kelola, dan Kerjasama
- Kriteria 3 Mahasiswa
- Kriteria 4 Sumber Daya Manusia
- Kriteria 5 Keuangan, Sarana dan Prasarana
- Kriteria 6 Pendidikan Kriteria 7 Penelitian
- Kriteria 8 Pengabdian kepada Masyarakat
- Kriteria 9 Luaran dan Capaian Tridharma

3.2. Tahapan Penelitian

Pada bagian ini adalah langkah-langkah yang akan dilakukan untuk penelitian ini.

Gambar 3.1 Tahapan Penelitian

Berikut penjelasan dari tahapan penelitian pada gambar 3.1 dimulai dari:

1. Pengumpulan Data

Mengumpulkan dokumen evaluasi akreditasi BAN-PT dari berbagai institusi (misalnya,laporan evaluasi diri, laporan kinerja, data pendukung) sesuai data terkait 9 kriteria BAN-PT. Tujuannya menghasilkan dataset dokumen BAN-PT yang bersih dan terstruktur untuk keperluan pelatihan model. Data ini dapat diekstrak dari dokumen PDF atau format lain dan perlu diorganisir dalam bentuk structured data.

2. Pra-pemrosesan Data.

Setelah mengumpulkan data, langkah selanjutnya adalah membersihkan data. Mari anggap memiliki teks deskriptif untuk setiap kriteria.

Contoh teks:

- 1. Kualitas Program: Menilai relevansi dan kualitas program studi.
- Sumber Daya Manusia: Mengevaluasi kualitas dosen dan tenaga kependidikan.
- 3. Proses Pembelajaran: Menilai interaksi dalam proses belajar mengajar.
- 4. Penelitian: Menilai kegiatan penelitian yang dilakukan.
- 5. Pengabdian kepada Masyarakat: Keterlibatan dalam kegiatan pengabdian.
- 6. Manajemen: Mengevaluasi sistem manajemen perguruan tinggi.
- 7. Kerjasama: Kerjasama dengan pihak lain untuk meningkatkan pendidikan.
- 8. Evaluasi Diri: Kemampuan institusi dalam melakukan evaluasi.
- 9. Kepuasan Stakeholder: Menilai kepuasan mahasiswa dan alumni.

Langkah Pembersihan:

- Menghapus karakter khusus dan angka.
- Mengubah semua teks menjadi huruf kecil.

Tokenisasi

Setelah teks dibersihkan, kita perlu memecah teks menjadi token.

Contoh Hitungan:

Tokenisasi teks di atas dapat menghasilkan token untuk setiap kata atau frasa kunci.

Misalnya, untuk "Kualitas Program", tokennya adalah ["Kualitas", "Program"].

Jika ada 100 kata dalam teks, setelah tokenisasi, kita akan mendapatkan 100 token.

Stemming/Lemmatization

Langkah selanjutnya adalah mengubah kata ke bentuk dasar.

Contoh Hitungan:

Kata "menilai", "penilaian", dan "penilai" mungkin diringkas menjadi "nilai".

Jika ada 30 kata yang perlu di-stem, maka setelah proses ini, kita akan memiliki kata dasar.

Representasi Teks

Lakukan pengonversi teks yang telah diproses menjadi representasi numerik.

Contoh Hitungan:

Bag of Words (BoW): Jika kita memiliki 1.000 kata unik di semua kriteria, kita akan membuat matriks 9 x 1.000 yang menunjukkan frekuensi kata di setiap kriteria.

TF-IDF: Misalnya, kata "kualitas" muncul 20 kali di kriteria "Kualitas Program" dan 5 kali di kriteria lain. Jika kata ini muncul di 3 dari 9 kriteria, kita menghitung TF-IDF:

- TF untuk "kualitas" di "Kualitas Program" = 20/total kata di kriteria.
- IDF untuk "kualitas" = log(9/3).

Pembagian Data

Jika memiliki data yang cukup, Anda dapat membagi data menjadi set pelatihan dan pengujian. Misalnya, 80% untuk pelatihan dan 20% untuk pengujian.

Penghitungan dalam Pemodelan

Setelah data diproses, Anda dapat menggunakan model rangkuman untuk menghasilkan ringkasan berdasarkan kriteria.

Contoh Penghitungan untuk Setiap Kriteria

Misalkan kita ingin menghitung frekuensi dan TF-IDF untuk setiap kriteria:

1. Kualitas Program

- Frekuensi kata: "kualitas" = 20
- Total kata = 100
- TF = 20 / 100 = 0.2

2. Sumber Daya Manusia

- Frekuensi kata: "sumber" = 15
- Total kata = 90
- TF = 15 / 90 = 0.1667

3. Proses Pembelajaran

- Frekuensi kata: "proses" = 10
- Total kata = 80
- TF = 10 / 80 = 0.125

Menghitung TF-IDF

- Misalnya menghitung TF-IDF untuk kata "kualitas":
- IDF = $\log(9/3) \approx 1.0986$
- TF-IDF untuk "kualitas" di "Kualitas Program" = $0.2 * 1.0986 \approx 0.2197$

3. Peringkasan Ekstraktif Berbasis Graf Langkah:

- Setelah pra-pemrosesan, informasi dari dokumen diwakili dalam bentuk graf.
 Setiap kalimat dalam dokumen diubah menjadi simpul, dan hubungan antar kalimat diidentifikasi berdasarkan kesamaan konten atau kata kunci yang muncul. Metode seperti cosine similarity atau Jaccard index dapat digunakan untuk mengukur kedekatan antar kalimat. Dengan demikian, graf yang dihasilkan akan memperlihatkan struktur informasi dari dokumen dengan jelas
- Terapkan metode peringkasan berbasis graf seperti TextRank untuk melakukan peringkasan ekstraktif pada dokumen-dokumen tersebut. Untuk menentukan kalimat-kalimat mana yang paling signifikan. Algoritma ini bekerja dengan menghitung nilai sentralitas dari setiap simpul dalam graf, sehingga kalimat-kalimat yang memiliki nilai sentralitas tinggi akan dipilih untuk dimasukkan dalam ringkasan akhir. Proses ini tidak hanya mempertimbangkan frekuensi kemunculan kalimat, tetapi juga posisi dan keterkaitan antar kalimat dalam dokumen.
- Bangun graf keterhubungan antar kalimat berdasarkan kemiripan konten, kemudian pilih kalimat-kalimat yang paling penting yang mewakili informasi utama dari dokumen.

- Tujuan:

Menyaring kalimat-kalimat penting secara otomatis dari dokumen evaluasi akreditasi yang panjang, untuk mengidentifikasi bagian yang paling relevan untuk dilanjutkan ke proses peringkasan lebih lanjut.

4. Prediksi Akreditasi dengan Machine Learning

- Langkah:

 Gunakan Random forest menggunakan dataset evaluasi akreditasi BAN-PT dalam bahasa Indonesia.

5. Evaluasi Model

- Langkah:

- Gunakan Evaluasi ROUGE dan Akurasi
- Model ini akan menghasilkan ringkasan Ekstraktif, di mana model AI menciptakan kalimat-kalimat penting yang dipilih dari dokumen asli.
- Optimalkan ringkasan agar tetap relevan dengan tujuan evaluasi akreditasi BAN-PT, terutama pada bagian yang paling penting seperti penelitian, pengabdian masyarakat, kurikulum, dan SDM.

- Tujuan:

Menghasilkan ringkasan yang lebih natural, koheren, dan informatif, yang lebih mudah dipahami oleh reviewer akreditasi, serta tetap fokus pada elemen-elemen yang penting untuk penilaian.

6. Hasil

Menampilkan ringkasan dengan hasil prediksi yang sesuai dengan 9 kriteria BAN - PT

DAFTAR PUSTAKA

- [1]. BAN-PT, 2019. "Lampiran BAN-PT Akreditasi Program Studi Kriteria dan Prosedure". diakses 2024 url: https://www.banpt.or.id/wp-content/uploads/2019/10/Lampiran-2-PerBAN-PT-5-2019-tentang-IAPS-Kriteria-dan-Prosedur.pdf
- [2]. I Nyoman P. dan Ni Nengah W. U. 2023. "Implementasi Peringkas Dokumen Berbahasa Indonesia Menggunakan Metode Text to Text Transfer Transformer (T5)". Jurnal Teknologi Informasi dan Komputer, Volume 9, Nomor 4.
- [3]. Agustinus Y. S. A. Setiawan. dan Edwin Alexander. 2024. "Penerapan Algoritma Textrank Dalam Merangkum Teks Word Dan Pdf". JITET (Jurnal Informatika dan Teknik Elektro Terapan). Vol. 12 No. 1
- [4]. Faizah H., Surya A., Iis A. 2022. "Peringkasan Teks Otomatis Artikel Berbahasa Indonesia Menggunakan Algoritma Textrank". Seminar Nasional TEKNOKA ke 7 Vol.7
- [5]. Ibnu Daqiqil Id. 2021. "Machine Learning: Teori, Studi Kasus dan Implementasi Menggunakan Python". UR PRESS. Riau
- [6]. Ahmad R., Po Abas S., Ageng S. R. 2020. "Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper". IJCIT (Indonesian Journal on Computer and Information Technology) 5 (1) (2019) 75-82
- [7].Lin, Chin-Yew. "ROUGE: A package for automatic evaluation of summaries." Text summarization branches out (2004): 74-81.
- [8].Papineni, Kishore, et al. "BLEU: a method for automatic evaluation of machine translation." Proceedings of the 40th annual meeting of the Association for Computational Linguistics (2002): 311-318.