The density of covering numbers

Nathan McNew

Towson University

Joint work with Jai Setty (NYU)

Combinatorial and Additive Number Theory CUNY Graduate Center, New York May 23, 2025

A set of integer residue classes forms a **covering system** if their union contains every integer.

A set of integer residue classes forms a **covering system** if their union contains every integer. Denote this set $\{a_i \pmod{m_i}\}$, $m_i > 1$. Every integer n satisfies $n \equiv a_i \pmod{m_i}$ for some i.

A set of integer residue classes forms a **covering system** if their union contains every integer. Denote this set $\{a_i \pmod{m_i}\}$, $m_i > 1$. Every integer n satisfies $n \equiv a_i \pmod{m_i}$ for some i.

If the moduli m_i are distinct we call it a **distinct covering system**.

A set of integer residue classes forms a **covering system** if their union contains every integer. Denote this set $\{a_i \pmod{m_i}\}$, $m_i > 1$. Every integer n satisfies $n \equiv a_i \pmod{m_i}$ for some i.

If the moduli m_i are distinct we call it a **distinct covering system**.

For example, we can check that the set:

{0 (mod 2), 0 (mod 3), 1 (mod 4), 1 (mod 6), 11 (mod 12)}

forms a distinct covering system, by considering the residues modulo 12:

A set of integer residue classes forms a **covering system** if their union contains every integer. Denote this set $\{a_i \pmod{m_i}\}$, $m_i > 1$. Every integer n satisfies $n \equiv a_i \pmod{m_i}$ for some i.

If the moduli m_i are distinct we call it a **distinct covering system**.

For example, we can check that the set:

```
{0 (mod 2), 0 (mod 3), 1 (mod 4), 1 (mod 6), 11 (mod 12)}
```

forms a distinct covering system, by considering the residues modulo 12:

A set of integer residue classes forms a **covering system** if their union contains every integer. Denote this set $\{a_i \pmod{m_i}\}$, $m_i > 1$. Every integer n satisfies $n \equiv a_i \pmod{m_i}$ for some i.

If the moduli m_i are distinct we call it a **distinct covering system**.

For example, we can check that the set:

```
{0 (mod 2), 0 (mod 3), 1 (mod 4), 1 (mod 6), 11 (mod 12)}
```

forms a distinct covering system, by considering the residues modulo 12:

A set of integer residue classes forms a **covering system** if their union contains every integer. Denote this set $\{a_i \pmod{m_i}\}$, $m_i > 1$. Every integer n satisfies $n \equiv a_i \pmod{m_i}$ for some i.

If the moduli m_i are distinct we call it a **distinct covering system**.

For example, we can check that the set:

```
{0 (mod 2), 0 (mod 3), 1 (mod 4), 1 (mod 6), 11 (mod 12)}
```

forms a distinct covering system, by considering the residues modulo 12:

A set of integer residue classes forms a **covering system** if their union contains every integer. Denote this set $\{a_i \pmod{m_i}\}$, $m_i > 1$. Every integer n satisfies $n \equiv a_i \pmod{m_i}$ for some i.

If the moduli m_i are distinct we call it a **distinct covering system**.

For example, we can check that the set:

```
{0 (mod 2), 0 (mod 3), 1 (mod 4), 1 (mod 6), 11 (mod 12)}
```

forms a distinct covering system, by considering the residues modulo 12:

Erdős and some conjectures

- Erdős introduced covering systems in 1950, introduced the Minimum Modulus Problem: "Are there distinct covering systems whose smallest modulus exceeds *M* for any *M*?"
- Many additional conjectures an problems of Erdős and others.
- Is there a distinct covering system with only odd moduli? (Erdős-Selfridge conjecture)

Exciting Developments

- Minimum Modulus Problem
 - Hough (2015): M cannot be arbitrarily large.
 - Owens (2014), and Balister, Bollobás, Morris, Sahasrabudhe, Tiba (2018):

$$42 \le m_1 < 616000.$$

Exciting Developments

- Minimum Modulus Problem
 - Hough (2015): M cannot be arbitrarily large.
 - Owens (2014), and Balister, Bollobás, Morris, Sahasrabudhe, Tiba (2018):

$$42 \leq m_1 < 616000.$$

- The Erdős-Selfridge conjecture remains open.
 - Hough, Nielsen (2017) a modulus is divisible by either 2 or 3.
 - Balister et al (2018): a modulus is divisible by 2, 9 or 15.

Haight (1979), answering an Erdős problem, defines **covering numbers**: integers whose divisors form the moduli of a distinct covering system.

Since we found a covering system with moduli 2, 3, 4, 6, and 12, we see that 12 is a covering number. In fact it is the smallest covering number.

Haight (1979), answering an Erdős problem, defines **covering numbers**: integers whose divisors form the moduli of a distinct covering system.

Since we found a covering system with moduli 2, 3, 4, 6, and 12, we see that 12 is a covering number. In fact it is the smallest covering number.

Any multiple of a covering number is also covering, so call n a **primitive** covering number if it is a covering number but no proper divisor of n is.

Primitive covering numbers (A160559): 12,80,90,210,280,378,448,1386...

Haight (1979), answering an Erdős problem, defines **covering numbers**: integers whose divisors form the moduli of a distinct covering system.

Since we found a covering system with moduli 2, 3, 4, 6, and 12, we see that 12 is a covering number. In fact it is the smallest covering number.

Any multiple of a covering number is also covering, so call n a **primitive** covering number if it is a covering number but no proper divisor of n is.

Primitive covering numbers (A160559): 12,80,90,210,280,378,448,1386...

Erdős-Selfridge Conjecture: There are no odd covering numbers. After Bellobas et al, every covering number is a multiple of 2, 9 or 15.

Define the "abundancy index"
$$h(n) := \frac{\sigma(n)}{n} = \sum_{d|n} \frac{1}{d}$$
.

Define the "abundancy index" $h(n) := \frac{\sigma(n)}{n} = \sum_{d|n} \frac{1}{d}$.

A number n is **abundant** if $\sigma(n) := \sum_{d|n} d > 2n$

Define the "abundancy index" $h(n) := \frac{\sigma(n)}{n} = \sum_{d|n} \frac{1}{d}$.

A number n is **abundant** if $\sigma(n) := \sum_{d|n} d > 2n \iff h(n) > 2$.

Define the "abundancy index" $h(n) := \frac{\sigma(n)}{n} = \sum_{d|n} \frac{1}{d}$.

A number n is **abundant** if $\sigma(n) := \sum_{d|n} d > 2n \iff h(n) > 2$.

$$\sum_{d|n, d>1} \frac{1}{d} \geq 1$$

Define the "abundancy index" $h(n) := \frac{\sigma(n)}{n} = \sum_{d|n} \frac{1}{d}$.

A number n is **abundant** if $\sigma(n) := \sum_{d|n} d > 2n \iff h(n) > 2$.

$$\sum_{d|n, d>1} \frac{1}{d} > 1$$

Define the "abundancy index" $h(n) := \frac{\sigma(n)}{n} = \sum_{d|n} \frac{1}{d}$.

A number n is **abundant** if $\sigma(n) := \sum_{d|n} d > 2n \iff h(n) > 2$.

$$\sum_{d|n, d>1} \frac{1}{d} > 1 \implies h(n) - 1 > 1$$

Define the "abundancy index" $h(n) := \frac{\sigma(n)}{n} = \sum_{d|n} \frac{1}{d}$.

A number n is **abundant** if $\sigma(n) := \sum_{d|n} d > 2n \iff h(n) > 2$.

$$\sum_{\substack{d \mid n, d > 1}} \frac{1}{d} > 1 \implies h(n) - 1 > 1 \implies h(n) > 2.$$

Define the "abundancy index" $h(n) := \frac{\sigma(n)}{n} = \sum_{d|n} \frac{1}{d}$.

A number n is **abundant** if $\sigma(n) := \sum_{d|n} d > 2n \iff h(n) > 2$.

An arithmetic progression mod d "covers" a set of integers of density $\frac{1}{d}$, so a necessary (not sufficient) condition for n to be a covering number is

$$\sum_{d|n, d>1} \frac{1}{d} > 1 \implies h(n) - 1 > 1 \implies h(n) > 2.$$

So the covering numbers form a subset of the abundant numbers.

Define the "abundancy index" $h(n) := \frac{\sigma(n)}{n} = \sum_{d|n} \frac{1}{d}$.

A number n is **abundant** if $\sigma(n) := \sum_{d|n} d > 2n \iff h(n) > 2$.

An arithmetic progression mod d "covers" a set of integers of density $\frac{1}{d}$, so a necessary (not sufficient) condition for n to be a covering number is

$$\sum_{d|n, d>1} \frac{1}{d} > 1 \implies h(n) - 1 > 1 \implies h(n) > 2.$$

So the covering numbers form a subset of the abundant numbers.

Theorem (Sun, 2007)

There are infinitely many primitive covering numbers $n = 2^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, where $\alpha_k = 1$, $\alpha_{k-1} = \left\lfloor \frac{p_k-1}{p_{k-1}-1} \right\rfloor$ $p_i = 1 + \tau \left(p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_{i-1}^{\alpha_{i-1}} \right) \quad (1 < i < k)$ and $p_k \leq \tau \left(p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_{k-1}^{\alpha_{k-1}} \right)$.

Theorem (Sun, 2007)

There are infinitely many primitive covering numbers $n=2^{\alpha_1}p_2^{\alpha_2}\cdots p_k^{\alpha_k}$, where $\alpha_k=1$, $\alpha_{k-1}=\left\lfloor \frac{p_k-1}{p_{k-1}-1}\right\rfloor$ $p_i = 1+\tau\left(p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_{i-1}^{\alpha_{i-1}}\right) \quad (1< i< k)$ and $p_k \leq \tau\left(p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_{k-1}^{\alpha_{k-1}}\right)$.

Conjecture (Sun): Every primitive covering number has (roughly) this form.

Theorem (Sun, 2007)

There are infinitely many primitive covering numbers $n = 2^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, where $\alpha_k = 1$, $\alpha_{k-1} = \left\lfloor \frac{p_k-1}{p_{k-1}-1} \right\rfloor$ $p_i = 1 + \tau \left(p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_{i-1}^{\alpha_{i-1}} \right)$ (1 < i < k)

$$egin{array}{lll} egin{array}{lll} eta_i &=& 1+ auig(p_1^{lpha_1}p_2^{lpha_2}\cdots p_{i-1}^{lpha_{i-1}}ig) &=& (1< i< k) \ & & ext{and} & eta_k &\leq& auig(p_1^{lpha_1}p_2^{lpha_2}\cdots p_{k-1}^{lpha_{k-1}}ig) \;. \end{array}$$

Conjecture (Sun): Every primitive covering number has (roughly) this form.

Jones, White (2016) find an infinite family of counterexamples $2^{\alpha}pq$.

Theorem (Sun, 2007)

There are infinitely many primitive covering numbers $n = 2^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, where $\alpha_k = 1$, $\alpha_{k-1} = \left\lfloor \frac{p_k - 1}{p_{k-1} - 1} \right\rfloor$

$$p_i = 1 + auig(p_1^{lpha_1}p_2^{lpha_2}\cdots p_{i-1}^{lpha_{i-1}}ig) \quad (1 < i < k)$$
 and $p_k \leq auig(p_1^{lpha_1}p_2^{lpha_2}\cdots p_{k-1}^{lpha_{k-1}}ig)$.

Conjecture (Sun): Every primitive covering number has (roughly) this form.

Jones, White (2016) find an infinite family of counterexamples $2^{\alpha}pq$.

Harrington, Jones, Phillips (2017) find infinitely many more of form $2^{\alpha}p^{\beta}q$.

Question (Phillips)

Do the covering numbers have a density?

Question (Phillips)

Do the covering numbers have a density?

If so, can this density be estimated?

Notation Summary

- $\tau(n)$: number of divisors,
- $P^+(n), P^-(n)$: largest, smallest prime factor
- \bullet \mathcal{A} , \mathcal{C} , sets of abundant and covering numbers
- $\mathcal{P}_{\mathcal{A}}, \mathcal{P}_{\mathcal{C}}$ their primitive subsets
- $S(x) := \#\{n \le x \mid n \in S\}$ the counting function of the set S.
- $d(S) := \lim_{x \to \infty} \frac{S(x)}{x}$ denotes the natural density of S if it exists.

It isn't immediately obvious the density of abundant numbers exists.

It isn't immediately obvious the density of abundant numbers exists.

• Behrend (1932) showed that $\frac{A(n)}{n} < 0.47$ for all integers n.

It isn't immediately obvious the density of abundant numbers exists.

- Behrend (1932) showed that $\frac{A(n)}{n} < 0.47$ for all integers n.
- Davenport (1933) proved the abundant numbers have a density.

It isn't immediately obvious the density of abundant numbers exists.

- Behrend (1932) showed that $\frac{A(n)}{n} < 0.47$ for all integers n.
- Davenport (1933) proved the abundant numbers have a density.
- Erdős (1934): The sum $\sum_{a \in \mathcal{P}_{\mathcal{A}}} \frac{1}{a}$ converges, giving an elementary proof of the existence of the density of abundant numbers.

May 23, 2025

It isn't immediately obvious the density of abundant numbers exists.

- Behrend (1932) showed that $\frac{A(n)}{n} < 0.47$ for all integers n.
- Davenport (1933) proved the abundant numbers have a density.
- Erdős (1934): The sum $\sum_{a \in \mathcal{P}_{\mathcal{A}}} \frac{1}{a}$ converges, giving an elementary proof of the existence of the density of abundant numbers.

Subsequent improvements			
Year	Author	Lower Bound	Upper Bound
1933	Behrend	0.241	0.314

It isn't immediately obvious the density of abundant numbers exists.

- Behrend (1932) showed that $\frac{A(n)}{n} < 0.47$ for all integers n.
- Davenport (1933) proved the abundant numbers have a density.
- Erdős (1934): The sum $\sum_{a \in \mathcal{P}_{\mathcal{A}}} \frac{1}{a}$ converges, giving an elementary proof of the existence of the density of abundant numbers.

Subsequent improvements				
Year	Author	Lower Bound	Upper Bound	
1933	Behrend	0.241	0.314	
1955	Salié	0.246		

It isn't immediately obvious the density of abundant numbers exists.

- Behrend (1932) showed that $\frac{A(n)}{n} < 0.47$ for all integers n.
- Davenport (1933) proved the abundant numbers have a density.
- Erdős (1934): The sum $\sum_{a \in \mathcal{P}_{\mathcal{A}}} \frac{1}{a}$ converges, giving an elementary proof of the existence of the density of abundant numbers.

Subsequent improvements

Year	Author	Lower Bound	Upper Bound
1933	Behrend	0.241	0.314
1955	Salié	0.246	
1971-72	Wall et al.	0.2441	0.2909

It isn't immediately obvious the density of abundant numbers exists.

- Behrend (1932) showed that $\frac{A(n)}{n} < 0.47$ for all integers n.
- Davenport (1933) proved the abundant numbers have a density.
- Erdős (1934): The sum $\sum_{a \in \mathcal{P}_{\mathcal{A}}} \frac{1}{a}$ converges, giving an elementary proof of the existence of the density of abundant numbers.

Subsequent	improvemen	ts
-	D	

Year	Author	Lower Bound	Upper Bound
1933	Behrend	0.241	0.314
1955	Salié	0.246	
1971-72	Wall et al.	0.2441	0.2909
1998	Deléglise	0.2474	0.2480

It isn't immediately obvious the density of abundant numbers exists.

- Behrend (1932) showed that $\frac{A(n)}{n} < 0.47$ for all integers n.
- Davenport (1933) proved the abundant numbers have a density.
- Erdős (1934): The sum $\sum_{a \in \mathcal{P}_{\mathcal{A}}} \frac{1}{a}$ converges, giving an elementary proof of the existence of the density of abundant numbers.

Subsequent improvements

Year	Author	Lower Bound	Upper Bound
1933	Behrend	0.241	0.314
1955	Salié	0.246	
1971-72	Wall et al.	0.2441	0.2909
1998	Deléglise	0.2474	0.2480
2010	Kobayashi	0.2476171	0.2476475

Covering Numbers

Question (Phillips)

Do the covering numbers have a density?

If so, can this density be estimated?

A key lemma

Lemma (M.)

If n is a primitive covering number then $P^+(n) < \tau(n)$.

A key lemma

Lemma (M.)

If n is a primitive covering number then $P^+(n) < \tau(n)$.

This inequality, $P^+(n) < \tau(n)$ doesn't happen too frequently.

A key lemma

Lemma (M.)

If n is a primitive covering number then $P^+(n) < \tau(n)$.

This inequality, $P^{+}(n) < \tau(n)$ doesn't happen too frequently.

On average,
$$\frac{1}{x} \sum_{n \le x} \tau(n) \approx \log x$$
, while $\frac{1}{x} \sum_{n \le x} P^+(n) \approx \frac{\pi^2}{12} \frac{x}{\log x}$.

Bounding Primitive Covering Numbers

Key idea: Numbers typically have large prime factors and few divisors.

Bounding Primitive Covering Numbers

Key idea: Numbers typically have large prime factors and few divisors.

• Smooth numbers: $\psi(x, y)$ counts integers $\leq x$ with $P^+(n) \leq y$

$$\psi(x, y) = x \exp\left((-1 + o(1))\frac{\log x}{\log y}\log\frac{\log x}{\log y}\right)$$

Valid when $x \ge y \ge \exp((\log \log x)^{5/3+\epsilon})$ (Hildebrand).

Bounding Primitive Covering Numbers

Key idea: Numbers typically have large prime factors and few divisors.

• Smooth numbers: $\psi(x,y)$ counts integers $\leq x$ with $P^+(n) \leq y$

$$\psi(x, y) = x \exp\left((-1 + o(1)) \frac{\log x}{\log y} \log \frac{\log x}{\log y}\right)$$

Valid when $x \ge y \ge \exp((\log \log x)^{5/3+\epsilon})$ (Hildebrand).

• Many divisors: $\Delta(x, y)$ counts integers $\leq x$ with $\tau(n) > y$

$$\Delta(x,y) = x \exp\left((-1 + o(1)) \frac{\log y}{\log 2} \log \log y\right)$$

Valid when $x \ge y > (\log x)^{2\log 2 + \epsilon}$ (Norton).

So
$$\mathcal{P}_{\mathcal{C}}(x) \leq \psi(x,y) + \Delta(x,y) \approx \frac{x}{\exp\left(\frac{\log x}{\log y}\log\frac{\log x}{\log y}\right)} + \frac{x}{\exp\left(\frac{\log y}{\log 2}\log\log y\right)}$$
.

So
$$\mathcal{P}_{\mathcal{C}}(x) \leq \psi(x,y) + \Delta(x,y) \approx \frac{x}{\exp\left(\frac{\log x}{\log y}\log\frac{\log x}{\log y}\right)} + \frac{x}{\exp\left(\frac{\log y}{\log 2}\log\log y\right)}$$
. Pick $y = \exp\left(\sqrt{\log 2\log x}\right)$.

So
$$\mathcal{P}_{\mathcal{C}}(x) \leq \psi(x,y) + \Delta(x,y) \approx \frac{x}{\exp\left(\frac{\log x}{\log y}\log\frac{\log x}{\log y}\right)} + \frac{x}{\exp\left(\frac{\log y}{\log 2}\log\log y\right)}$$
. Pick $y = \exp\left(\sqrt{\log 2\log x}\right)$.

So
$$\mathcal{P}_{\mathcal{C}}(x) \leq \psi(x,y) + \Delta(x,y) \approx \frac{x}{\exp\left(\frac{\log x}{\log y}\log\frac{\log x}{\log y}\right)} + \frac{x}{\exp\left(\frac{\log y}{\log 2}\log\log y\right)}$$
.
Pick $y = \exp\left(\sqrt{\log 2\log x}\right)$.

Theorem

$$\mathcal{P}_{\mathcal{C}}(x) \ll x \exp\left(\left(-\frac{1}{2\sqrt{\log 2}} + \epsilon\right) \sqrt{\log x} \log \log x\right)$$

So
$$\mathcal{P}_{\mathcal{C}}(x) \leq \psi(x,y) + \Delta(x,y) \approx \frac{x}{\exp\left(\frac{\log x}{\log y}\log\frac{\log x}{\log y}\right)} + \frac{x}{\exp\left(\frac{\log y}{\log 2}\log\log y\right)}$$
.
Pick $y = \exp\left(\sqrt{\log 2\log x}\right)$.

Theorem

$$\mathcal{P}_{\mathcal{C}}(x) \ll x \exp\left(\left(-\frac{1}{2\sqrt{\log 2}} + \epsilon\right)\sqrt{\log x}\log\log x\right)$$

Corollary

• The reciprocal sum $\sum_{c \in \mathcal{P}_c} \frac{1}{c}$ converges.

So
$$\mathcal{P}_{\mathcal{C}}(x) \leq \psi(x,y) + \Delta(x,y) \approx \frac{x}{\exp\left(\frac{\log x}{\log y}\log\frac{\log x}{\log y}\right)} + \frac{x}{\exp\left(\frac{\log y}{\log 2}\log\log y\right)}$$
.
Pick $y = \exp\left(\sqrt{\log 2\log x}\right)$.

Theorem

$$\mathcal{P}_{\mathcal{C}}(x) \ll x \exp\left(\left(-\frac{1}{2\sqrt{\log 2}} + \epsilon\right)\sqrt{\log x}\log\log x\right)$$

Corollary

- The reciprocal sum $\sum_{c \in \mathcal{P}_c} \frac{1}{c}$ converges.
- The density d(C) of covering numbers exists.

Define
$$A_y(x) = d(\{n : P^-(n) > y, h(n) > x\})$$

Define
$$A_y(x) = d(\{n : P^-(n) > y, h(n) > x\})$$

Behrend's goal: Bound the density $d(A) = A_1(2)$.

Define
$$A_y(x) = d(\{n : P^-(n) > y, h(n) > x\})$$

Behrend's goal: Bound the density $d(A) = A_1(2)$.

Fix y, each n factors uniquely as n = sr with $P^+(s) \le y$ and $P^-(r) > y$.

Define
$$A_y(x) = d(\{n : P^-(n) > y, h(n) > x\})$$

Behrend's goal: Bound the density $d(A) = A_1(2)$.

Fix y, each n factors uniquely as n = sr with $P^+(s) \le y$ and $P^-(r) > y$.

If $h(n) \ge 2$ then (since h is multiplicative), $h(s)h(r) \ge 2$, so $h(r) \ge \frac{2}{h(s)}$.

$$d(\mathcal{A}) = \sum_{P^+(s) \le y} \frac{1}{s} A_y \left(\frac{2}{h(s)} \right)$$

Define
$$A_y(x) = d(\{n : P^-(n) > y, h(n) > x\})$$

Behrend's goal: Bound the density $d(A) = A_1(2)$.

Fix y, each n factors uniquely as n = sr with $P^+(s) \le y$ and $P^-(r) > y$.

If $h(n) \ge 2$ then (since h is multiplicative), $h(s)h(r) \ge 2$, so $h(r) \ge \frac{2}{h(s)}$.

$$d(\mathcal{A}) = \sum_{P^+(s) \leq y} \frac{1}{s} A_y \left(\frac{2}{h(s)}\right) = \sum_{\substack{s \leq z \\ P^+(s) \leq y}} \frac{1}{s} A_y \left(\frac{2}{h(s)}\right) + \sum_{\substack{s > z \\ P^+(s) \leq y}} \frac{1}{s} A_y \left(\frac{2}{h(s)}\right)$$

4 D > 4 D > 4 E > 4 E > E 990

$$d(\mathcal{A}) = \sum_{\substack{s \leq z \\ P^+(s) \leq y}} \frac{1}{s} A_y \left(\frac{2}{h(s)}\right) + \sum_{\substack{s > z \\ P^+(s) \leq y}} \frac{1}{s} A_y \left(\frac{2}{h(s)}\right)$$

$$d(\mathcal{A}) = \sum_{\substack{s \leq z \\ P^+(s) \leq y}} \frac{1}{s} A_y \left(\frac{2}{h(s)}\right) + \sum_{\substack{s > z \\ P^+(s) \leq y}} \frac{1}{s} A_y \left(\frac{2}{h(s)}\right)$$

Bound the tail sum trivially: $\sum_{\substack{n>z\\P^+(s)\leq y}}\frac{1}{s}A_y\left(\frac{2}{h(s)}\right) \leq \left(\prod_{p\leq y}\left(1-\frac{1}{p}\right)\right)\sum_{\substack{s>z\\P^+(s)\leq y}}\frac{1}{s}$

$$d(\mathcal{A}) = \sum_{\substack{s \leq z \\ P^+(s) \leq y}} \frac{1}{s} A_y \left(\frac{2}{h(s)}\right) + \sum_{\substack{s > z \\ P^+(s) \leq y}} \frac{1}{s} A_y \left(\frac{2}{h(s)}\right)$$

Bound the tail sum trivially:
$$\sum_{\substack{n>z\\P^+(s)\leq y}}\frac{1}{s}A_y\left(\frac{2}{h(s)}\right)\leq \left(\prod_{p\leq y}\left(1-\frac{1}{p}\right)\right)\sum_{\substack{s>z\\P^+(s)\leq y}}\frac{1}{s}$$
 Bound the $A_y(x)$ in the first sum using moments of $h_y(n):=\sum_{d\mid n}\frac{1}{d}$.

Set
$$\mu_{y,r} := \lim_{x \to \infty} \frac{1}{x} \sum_{n \le x} h_y(n)^r$$
 then $A_y(x) \le \prod_{p \le y} \left(1 - \frac{1}{p}\right) \frac{\mu_{y,r} - 1}{x^r - 1}$

$$d(\mathcal{A}) = \sum_{\substack{s \leq z \\ P^+(s) \leq y}} \frac{1}{s} A_y \left(\frac{2}{h(s)}\right) + \sum_{\substack{s > z \\ P^+(s) \leq y}} \frac{1}{s} A_y \left(\frac{2}{h(s)}\right)$$

Bound the tail sum trivially:
$$\sum_{\substack{n>z\\P^+(s)\leq y}}\frac{1}{s}A_y\left(\frac{2}{h(s)}\right)\leq \left(\prod_{p\leq y}\left(1-\frac{1}{p}\right)\right)\sum_{\substack{s>z\\P^+(s)\leq y}}\frac{1}{s}$$
 Bound the $A_y(x)$ in the first sum using moments of $h_y(n):=\sum_{d\mid n}\frac{1}{d}$.

Set
$$\mu_{y,r} := \lim_{x \to \infty} \frac{1}{x} \sum_{n \le x} h_y(n)^r$$
 then $A_y(x) \le \prod_{p \le y} \left(1 - \frac{1}{p}\right) \frac{\mu_{y,r} - 1}{x^r - 1}$ Pick r to give the best bound.

$$d(\mathcal{A}) = \sum_{\substack{s \leq z \\ P^+(s) \leq y}} \frac{1}{s} A_y \left(\frac{2}{h(s)}\right) + \sum_{\substack{s > z \\ P^+(s) \leq y}} \frac{1}{s} A_y \left(\frac{2}{h(s)}\right)$$

Bound the tail sum trivially:
$$\sum_{\substack{n>z\\P^+(s)\leq y}}\frac{1}{s}A_y\left(\frac{2}{h(s)}\right)\leq \left(\prod_{p\leq y}\left(1-\frac{1}{p}\right)\right)\sum_{\substack{s>z\\P^+(s)\leq y}}\frac{1}{s}$$
 Bound the $A_y(x)$ in the first sum using moments of $h_y(n):=\sum_{d\mid n}\frac{1}{d}$.

Set
$$\mu_{y,r} := \lim_{x \to \infty} \frac{1}{x} \sum_{n \le x} h_y(n)^r$$
 then $A_y(x) \le \prod_{p \le y} \left(1 - \frac{1}{p}\right) \frac{\mu_{y,r} - 1}{x^r - 1}$ Pick r to give the best bound.

Deléglise takes y = 500, $z = 10^{14}$ to get d(A) < 0.2480.

Since $C \subset A$, $d(C) \leq d(A) < 0.24765$. (Kobayashi)

17

Since
$$C \subset A$$
, $d(C) \leq d(A) < 0.24765$. (Kobayashi)

To improve this, we need an analogue of the multiplicative function h(n).

Since $C \subset A$, $d(C) \leq d(A) < 0.24765$. (Kobayashi)

To improve this, we need an analogue of the multiplicative function h(n).

Let r(n) count the maximum number of residues modulo n that can be covered by distinct congruences mod d, with $d \mid n, d > 1$.

Since
$$C \subset A$$
, $d(C) \leq d(A) < 0.24765$. (Kobayashi)

To improve this, we need an analogue of the multiplicative function h(n).

Let r(n) count the maximum number of residues modulo n that can be covered by distinct congruences mod d, with $d \mid n, d > 1$.

Now, define the "covering index"

$$c(n) := 1 + \frac{r(n)}{n}$$

Since
$$C \subset A$$
, $d(C) \leq d(A) < 0.24765$. (Kobayashi)

To improve this, we need an analogue of the multiplicative function h(n).

Let r(n) count the maximum number of residues modulo n that can be covered by distinct congruences mod d, with $d \mid n, d > 1$.

Now, define the "covering index"
$$c(n) := 1 + \frac{r(n)}{n}$$

The integer n is a covering number $\iff r(n) = n \iff c(n) = 2$.

Lemma: For all n, $c(n) \le h(n)$.

Lemma: For all n, $c(n) \le h(n)$.

Unlike h(n), c(n) is not multiplicative.

Lemma: For all n, $c(n) \le h(n)$.

Unlike h(n), c(n) is not multiplicative.

Theorem

If gcd(m, n) = 1, then $c(mn) \le c(m)h(n)$.

Lemma: For all n, $c(n) \le h(n)$.

Unlike h(n), c(n) is not multiplicative.

Theorem

If
$$gcd(m, n) = 1$$
, then $c(mn) \le c(m)h(n)$.

Since
$$c(mn) = 2 \iff h(m) \ge \frac{2}{c(n)}$$
,

$$d(\mathcal{C}) < \sum_{\substack{s \leq z \\ P^+(s) \leq y}} \frac{1}{s} A_y \left(\frac{2}{c(s)}\right) + \left(\prod_{p \leq y} \left(1 - \frac{1}{p}\right)\right) \sum_{\substack{s > z \\ P^+(s) \leq y}} \frac{1}{s}.$$

Bounding d(C) with c(n)

Lemma: For all n, $c(n) \le h(n)$.

Unlike h(n), c(n) is not multiplicative.

Theorem

If gcd(m, n) = 1, then $c(mn) \le c(m)h(n)$.

Since
$$c(mn) = 2 \iff h(m) \ge \frac{2}{c(n)}$$
,

$$d(\mathcal{C}) < \sum_{\substack{s \leq z \\ P^+(s) \leq y}} \frac{1}{s} A_y \left(\frac{2}{c(s)}\right) + \left(\prod_{p \leq y} \left(1 - \frac{1}{p}\right)\right) \sum_{\substack{s > z \\ P^+(s) \leq y}} \frac{1}{s}.$$

Unfortunately, computing c(n) is **very** computationally intensive...

Let $S_2(i,j)$ be Stirling numbers of the 2nd kind, $B_{r,d} := -\sum_{k=1}^d (-r)^k S_2(d,k)$.

Let $S_2(i,j)$ be Stirling numbers of the 2nd kind, $B_{r,d} := -\sum_{k=1}^d (-r)^k S_2(d,k)$.

 $(B_{1,d}$ is the negative of the sequence of complementary Bell numbers.)

Let $S_2(i,j)$ be Stirling numbers of the 2nd kind, $B_{r,d} := -\sum_{k=1}^{d} (-r)^k S_2(d,k)$.

 $(B_{1,d})$ is the negative of the sequence of complementary Bell numbers.)

Theorem

If $n = \ell m$ with $(\ell, m) = 1$ and $r(\ell) = \ell - 1$ then

$$c(n) \leq 1 + \frac{\ell-1}{\ell} + \frac{1}{\ell} \sum_{d|m,d>1} \frac{B_{\tau(\ell),\omega(d)}}{d} =: c'(n).$$

$$d(\mathcal{C}) < \sum_{\substack{s \leq z \\ P^+(s) \leq y}} \frac{1}{s} A_y \left(\frac{2}{c'(s)}\right) + \left(\prod_{p \leq y} \left(1 - \frac{1}{p}\right)\right) \sum_{\substack{s > z \\ P^+(s) \leq y}} \frac{1}{s}$$

Nathan McNew Covering numbers and Abundant Numbers

$$d(\mathcal{C}) < \sum_{\substack{s \leq z \\ P^+(s) \leq y}} \frac{1}{s} A_y \left(\frac{2}{c'(s)}\right) + \left(\prod_{p \leq y} \left(1 - \frac{1}{p}\right)\right) \sum_{\substack{s > z \\ P^+(s) \leq y}} \frac{1}{s}$$

c'(s) is far more efficient to compute that c(s), but not that efficient.

$$d(\mathcal{C}) < \sum_{\substack{s \leq z \\ P^+(s) \leq y}} \frac{1}{s} A_y \left(\frac{2}{c'(s)}\right) + \left(\prod_{p \leq y} \left(1 - \frac{1}{p}\right)\right) \sum_{\substack{s > z \\ P^+(s) \leq y}} \frac{1}{s}$$

c'(s) is far more efficient to compute that c(s), but not that efficient. No hope of computing this sum with y = 500, $z = 10^{14}$ like Deléglise.

$$d(\mathcal{C}) < \sum_{\substack{s \leq z \\ P^+(s) \leq y}} \frac{1}{s} A_y \left(\frac{2}{c'(s)}\right) + \left(\prod_{p \leq y} \left(1 - \frac{1}{p}\right)\right) \sum_{\substack{s > z \\ P^+(s) \leq y}} \frac{1}{s}$$

c'(s) is far more efficient to compute that c(s), but not that efficient.

No hope of computing this sum with y = 500, $z = 10^{14}$ like Deléglise.

With y = 200, $z = 10^9$ we found:

$$0.1032 \le d(\mathcal{C}) \le 0.1197$$

Code to compute this sum spends a long time handling s coprime to 6.

Code to compute this sum spends a long time handling s coprime to 6.

We know there are no such covering numbers.

Code to compute this sum spends a long time handling s coprime to 6.

We know there are no such covering numbers.

It also spends a while on odd multiples of 3.

Code to compute this sum spends a long time handling s coprime to 6.

We know there are no such covering numbers.

It also spends a while on odd multiples of 3.

The density of such covering numbers is tiny.

Code to compute this sum spends a long time handling s coprime to 6.

We know there are no such covering numbers.

It also spends a while on odd multiples of 3.

The density of such covering numbers is tiny.

Do we need to treat all the numbers s in a "large box" $P^+(s) < y$, s < z?

Code to compute this sum spends a long time handling s coprime to 6.

We know there are no such covering numbers.

It also spends a while on odd multiples of 3.

The density of such covering numbers is tiny.

Do we need to treat all the numbers s in a "large box" $P^+(s) < y$, s < z? We'd rather focus on numbers divisible by large powers of 2...

Code to compute this sum spends a long time handling s coprime to 6.

We know there are no such covering numbers.

It also spends a while on odd multiples of 3.

The density of such covering numbers is tiny.

Do we need to treat all the numbers s in a "large box" $P^+(s) < y$, s < z? We'd rather focus on numbers divisible by large powers of 2...

Smooth-Rough Divisor Partition

Definition

For a pair (a, q) with $P^+(a) \le q$, denote by $M_{a,q} = \{ar : P^-(r) \ge q\}$.

A set W of such pairs is a **smooth-rough divisor partition** of $\mathbb N$ if:

- $M_{a,q}$ are disjoint,
- $\mathbb{N} = \bigsqcup_{(a,q) \in W} M_{a,q}$,

Smooth-Rough Divisor Partition

Definition

For a pair (a, q) with $P^+(a) \leq q$, denote by $M_{a,q} = \{ar : P^-(r) \geq q\}$.

A set W of such pairs is a **smooth-rough divisor partition** of $\mathbb N$ if:

- $M_{a,q}$ are disjoint,
- $\bullet \mathbb{N} = \bigsqcup_{(a,q)\in W} M_{a,q},$

Further partition $W = W_{<} \sqcup W_{=}$

$$W_{<} := \{(a,q) \in W : P^{+}(a) < q\}$$

$$W_{=} \coloneqq \{(a,q) \in W : P^{+}(a) = q\}$$

Smooth-Rough-Divisor Partitions

Example:

$$W = \{(1,5), (2,3), (3,3), (4,2)\}$$

$$W_{<} = \{(1,5), (2,3)\},$$

$$W_{=} = \{(3,3), (4,2)\}$$

For any smooth-rough divisor partition W,

$$d(\mathcal{C}) = \sum_{(a,q) \in W_{c}} \frac{1}{a} A_{q} \left(\frac{2}{c'(a)} \right) + \sum_{(a,q) \in W_{c}} \frac{1}{a(1-1/q)} A_{q+1} \left(\frac{2}{c''(a,q)} \right)$$

Unclear how to pick the optimal smooth-rough divisor partition W.

24

Unclear how to pick the optimal smooth-rough divisor partition W.

After much numerical experimentation and several hours of computation...

Theorem

Lower bound from the primitive covering numbers.

Unclear how to pick the optimal smooth-rough divisor partition W.

After much numerical experimentation and several hours of computation...

Theorem

Lower bound from the primitive covering numbers. First use the infinite families identified by Sun, et al.

Unclear how to pick the optimal smooth-rough divisor partition W.

After much numerical experimentation and several hours of computation...

Theorem

Lower bound from the primitive covering numbers. First use the infinite families identified by Sun, et al. Then use integer programming (Gurobi) and tricks with almost-covering numbers to find "sporadic" examples.

Unclear how to pick the optimal smooth-rough divisor partition W.

After much numerical experimentation and several hours of computation...

Theorem

Lower bound from the primitive covering numbers. First use the infinite families identified by Sun, et al. Then use integer programming (Gurobi) and tricks with almost-covering numbers to find "sporadic" examples.

Identify all primitive covering numbers $< 773\,500 = 2^2 \times 5^3 \times 7 \times 13 \times 17$.

The smooth-rough divisor partitions were useful for bounding d(C).

The smooth-rough divisor partitions were useful for bounding d(C).

Can we use them to bound d(A)?

The smooth-rough divisor partitions were useful for bounding d(C).

Can we use them to bound d(A)? Yes!

The smooth-rough divisor partitions were useful for bounding d(C).

Can we use them to bound d(A)? Yes!

Recall, Kobayashi (2010): 0.2476171 < d(A) < 0.2476475.

The smooth-rough divisor partitions were useful for bounding d(C).

Can we use them to bound d(A)? Yes!

Recall, Kobayashi (2010): 0.2476171 < d(A) < 0.2476475.

Using smooth-rough divisor partitions and 3 minutes of runtime we find

Abundant density bounds

Lower	Upper	Time
0.2476127	0.2476379	3m07s
0.2476158	0.2476299	13m08s
0.2476175	0.2476253	56m56s
0.2476185	0.2476226	4h54m59s
0.2476190	0.2476214	26h38m12s
0.24761929	0.24762053	6d05h14m31s
0.24761940	0.24762022	

Abundant density bounds

Lower	Upper	Time
0.2476127	0.2476379	3m07s
0.2476158	0.2476299	13m08s
0.2476175	0.2476253	56m56s
0.2476185	0.2476226	4h54m59s
0.2476190	0.2476214	26h38m12s
0.24761929	0.24762053	6d05h14m31s
0.24761940	0.24762022	

Further optimization and about two weeks of distributed computation gives:

Theorem

THANK YOU!