TP2

Intégration numérique

3 octobre 2017

Dans ce TP, on va apprendre quelques méthodes numériques pour calculer, approximativement, l'intégrale d'une fonction sur un intervalle compact (borné, fermé).

- 1. Création d'une fonction simple et représentation graphique.
 - (a) Excrite la fonction $f(x) = 1 x^2$ sous forme d'une fonction python.
 - (b) Représentation graphique sur l'intervalle [0, 1].
 - (c) Calculer, à la main, l'intégrale I de cette fonction sur l'intervalle donné.
- 2. Calcul approché de I au moyen de la **méthode du point milieu**.
 - (a) Représenter graphiquement f sur papier, repère orthonormé, unité = 8 cm.
 - (b) On définit une subdivision régulière x_0, \dots, x_4 de l'intervalle d'intégration [0, 1] en n=4 parts égales (on a donc $x_0=0, x_1=0.25, \dots, x_4=1$. On note c_1, \dots, c_4 les milieux de ces sous-intervalles. Pour chaque $k=1, \dots, 4$, dessiner le **rectangle** de base $[x_{k-1}, x_k]$ et de hauteur $f(c_k)$, et calculer sa surface s_k .
 - (c) La méthode du point milieu consiste à prendre la somme $S_4 = \sum_{i=1}^4 s_k$ comme approximation de I. Calculer l'erreur commise $|S_4 I|$.
 - (d) Importer le module time. Utiliser la fonction clock() du module time pour mesurer le temps de calcul de votre intégrale.
 - (e) Recommencer les calculs précédents pour $n=10^k,$ k variant de 1 à 6, et remplir, manuellement, le tableau ci-dessous :

n	erreur	temps (sec.)
10		
100		
1000		
10000		
100000		
1000000		

(f) En python, recréer automatiquement le tableau obtenu au moyen d'une boucle for. Utiliser les fonction print pour voir le tableau à l'écran et write pour écrire le tableau dans un fichier texte. Voir documentation à l'adresse https://docs.python.org/3/tutorial/inputoutput.html. Exemple de tableau produit automatiquement et envoyé à l'écran :

n	١	erreur	1	temps (sec.)
10	1	8.33333e-04	1	1 00000-05
10	ı	0.33333e-04	ı	1.00000e-05
100		8.33333e-06		4.10000e-05
1000	1	8.33333e-08	1	3.99000e-04
10000	1	8.33337e-10	1	3.96900e-03
100000	1	8.33034e-12	1	4.01730e-02
1000000	1	8.37108e-14	1	4.00492e-01

- 3. Dans la méthode du point milieu, on a approximé la fonction f sur l'intervalle $[x_{k-1}, x_k]$ par la fonction constante prenant la même valeur que f en c_k , où c_k est le milieu de $[x_{k-1}, x_k]$; dans la **méthode du trapèze**, on approxime f sur cet intervalle par la fonction affine prenant la même valeur que f en x_{k-1} et x_k .
 - Refaire le même travail que précédemment avec la méthode du trapèze.
- 4. Dans la méthode du point milieu, on a approximé f sur l'intervalle $[x_{k-1}, x_k]$ par une fonction constante polynôme de degré 0; dans la méthode du trapèze, on a approximé f sur cet intervalle par une fonction affine polynôme de degré 1; dans la **méthode de Simpson**, on approxime f sur l'intervalle $[x_{k-1}, x_k]$ par le polynôme de degré 2 qui prend la même valeur que f en x_{k-1} , c_k et x_k . Refaire le même travail que précédemment avec la méthode de Simpson.