

DISTA

Corso: Analisi Numerica

Docente: Roberto Piersanti

Radici di equazioni non lineari Lezione 1.4b

Iterazioni di Punto Fisso

Teorema di esistenza dei punti fissi (geometricamente)

Se
$$g(x)$$
 è continua e $g(I) \subset I$ allora $\exists \alpha \in I$ t.c. $g(\alpha) = \alpha$ $\exists g'(x)$ con $|g'(x)| \leq K < 1$ allora $\exists ! \alpha \in I$ t.c. $g(\alpha) = \alpha$

- $\checkmark \ \ \text{Consideriamo} \ g(x) \ \text{definita su} \ I \subset \mathbb{R} \qquad \qquad \checkmark \ \ \text{L'ipotesi che} \ g(x) \ \text{sia contenuta in} \ I$ e costruiamo il quadrato di lato I
 - garantisce che intersechi la retta y = x

Approssimare il punto fisso

Principio: costruire una successione numerica $\{x_n\}$ che converga a α

$$\lim_{n\to\infty} x_n = \alpha$$

Convergenza

 \triangleright Data g(x) che soddisfi il Teorema di esistenza dei punti fissi, vogliamo determinare punto fisso α valore in cui g(x) interseca y=x

$$g(x) = x$$

 \triangleright Generare una successione $\{x_n\}$ tale che

$$x_{n+1} = g(x_n)$$

Iterazioni di punto fisso

➤ Adottare un approccio iterativo

$$x_{n+1} = g(x_n)$$

ightharpoonup Partendo da x_0 , calcoliamo $x_1=g(x_0)$, $x_2=g(x_0)$ cosi via, fino a generare una successione che, «sotto opportune condizioni», converge alpha

> Formula iterativa di punto fisso

$$x_{n+1} = g(x_n) \qquad \forall n \ge 0$$

Iterazioni di punto fisso (geometricamente)

- ightharpoonup La formula di punto fisso descrive il processo geometrico di avvicinamento a lpha
- ightharpoonup Dato x_n passo n-esimo dell'iterazione, calcoliamo $x_{n+1}=g(x_n)$

Procedura:

- 2. Proiettiamo $g(x_n)$ sulla retta y=x
- 3. Riportiamo il punto di intersezione sull'asse x
- 4. Quest'ultimo rappresenta x_{n+1}
- 5. Ripetere, iterando $x_{n+1} = g(x_n)$

Iterazioni di punto fisso (geometricamente)

 \triangleright Costruisce geometricamente una «ragnatela» di segmenti che si avvicinano a y=x

 $\lim_{n \to \infty} x_n = \alpha$

