

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

Therefore, when

$$x \, = \, \frac{a}{\sqrt{3}} \, , \qquad y \, = \frac{b}{\sqrt{3}} \, , \qquad \Delta \equiv \frac{\partial^2 F}{\partial x^2} \, \frac{\partial^2 F}{\partial y^2} \, - \, \left(\frac{\partial^2 F}{\partial y \partial x} \right)^2 = \, 4 \, ;$$

and since

$$\frac{\partial^2 F}{\partial x^2} < 0, \qquad \frac{\partial F}{\partial x} = \frac{\partial F}{\partial y} = 0,$$

we have all the conditions for a maximum value of F(x, y) fulfilled at $(a/\sqrt{3}, b/\sqrt{3})$.

Hence, finally, substituting in (1), we have the volume of the greatest rectangular parallelopiped inscribed in the ellipsoid equal to $8abc/(3\sqrt{3})$.

Also solved by L. E. Lunn, L. E. Mensenkamp, O. S. Adams, C. E. Githens, J. L. RILEY, PAUL CAPRON, and H. C. FEEMSTER.

441 (Calculus). Proposed by J. L. RILEY, Stephenville, Texas.

Find the minimum value of

$$\int \left\{ \left(\frac{dy}{dx} \right)^2 \sin x + (y + x - \sin x)^2 / \sin x \right\} dx.$$

Solution by Elijah Swift, University of Vermont.

This problem is indefinite and no solution is possible, until the conditions that the end points must satisfy are stated. In fact, if we take y = mx and integrate from $\pi + \epsilon$ to $2\pi - \epsilon$, we can make the integral as small as desired by decreasing ϵ .

It is not difficult to find the equation of the extremals. Euler's differential equation is $d(F_{y'})/dx - F_y = 0$. This becomes for our problem $y'' \sin^2 x + y' \sin x \cos x - y = x - \sin x$. A solution of the equation where we make the right-hand member zero is

$$y = C_1 \tan (x/2) + C_2 \cot (x/2),$$

obtained by taking 2y' as an obvious integrating factor. Completing the solution by any one of several methods, there results

$$y = C_1 \tan (x/2) + C_2 \cot (x/2) - x + \cot (x/2) \log \sec^2 (x/2)$$
.

For any further investigation of the problem, however, a knowledge of the boundary conditions is necessary.

Also solved by Alexander Dillingham.

349 (Mechanics). Proposed by S. A. COREY, Albia, Iowa.

A 9-pound weight is attached to a string which passes over a smooth fixed pulley. The other end of the string is fastened to and supports a smooth pulley P1 of weight 1 pound, over which passes a second string to one end of which is attached a 3-pound weight, and the other end of which is attached to and supports another smooth pulley P_2 of weight 1 pound. Over the pulley P_2 passes a third string supporting weights, 2 pounds and $3\frac{1}{3}$ pounds.

If the system is acted on by gravity alone show that the accelerations of the 9-pound weight, $3\frac{1}{3}$ -pound weight, and pulley P_2 are $0, \frac{1}{2}g$, and $\frac{1}{3}g$, respectively.

Determine the motion of the weights when pulleys are not smooth, that is, when friction is present.

SOLUTION BY THE PROPOSER.

Let $x = \text{distance of 9-pound weight from center of fixed pulley}, y = \text{distance of center of } P_2$

from center of P_1 , and z= distance of $3\frac{1}{3}$ -pound weight from center of P_2 .

Then will $\dot{x}=$ velocity of 9-pound weight, $-\dot{x}=$ velocity of P_1 , $\dot{y}-\dot{x}=$ velocity of P_2 . $-\dot{y}-\dot{x}=$ velocity of 3-pound weight, $\dot{z}+\dot{y}-\dot{x}=$ velocity of $3\frac{1}{3}$ -pound weight, and $-\dot{z}+\dot{y}=$ $-\dot{x}$ = velocity of 2-pound weight.