A Big Picture: Basic Steps in Query Processing

A Big Picture: Basic Steps in Query Processing (Cont.)

- A SQL query can be translated into several relational algebra expressions (internal form).
 - ☐ E.g., **select** *salary* **from** *instructor* **where** *salary* < 75000; →
 - Salary<75000 PIsalary (instructor), the Exam Help
- The relational and the relation of the relational and the relation of the rela

Assignment Project Exam Help Relational Algebra

Add WeChat powcoder

Database System Concepts

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Relational Algebra

A quick review of relational database Six basic operators select: O project: ∏ union: Assignment Project Exam Help set difference: -Cartesian product: x.//powcoder.com rename: ρ Additional operations that simplify common quaries set intersection join assignment outer join Extended relational algebra operations generalized projection aggregate functions

Example of a *Instructor* **Relation**

Attribute

- The set of allowed values for each attribute is called the domain of the attribute
- Attribute values are (normally) required to be **atomic**; that is, indivisible Assignment Project Exam Help
- The special value is "unknown"

 Add WeChat powcoder

Relation Schema and Instance

- $A_1, A_2, ..., A_n$ are attributes
- $R = (A_1, A_2, ..., A_n)$ is a *relation schema* Example:

instructorsignment desojecte, Exam Help

Formally, given sets D_1 , D_2 , D_3 , a relation r is a subset of $D_1 \times D_2 \times ... \times D_n$

where D_i is the domain of attribute A_i . Thus, a relation is a set of n-tuples

- (a, a, ..., a) where each $a \in D$. The current values (**relation instance**) of a relation are specified by a table
- An element t of r is a **tuple**, represented by a row in a table

Relations are Unordered

- Order of tuples is irrelevant (tuples may be stored in an arbitrary order)
- Example: *instructor* relation with unordered tuples

ID	name	dept_name	salary
22 2 28S1	gament l	rojestsExa	imosbbelp
12121	Wu	Finance	90000
32343	https://po	weigeter.co	m ⁶⁰⁰⁰⁰
45565	Katz	Comp. Sci.	75000
98345	Kim We	TElec. Eng	00000 0000 0000
76766	Crick	Chat powc Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

Database

- A database consists of multiple relations
- Information about a university is broken up into parts

```
instructor
student
advisasignment Project Exam Help
```

- Bad design:

 univ (instructor-ID, name, dept_name, salary, student_ID, ..)

 results in
 - Add WeChat powcoder

 repetition of information (e.g., two students have the same instructor)
 - ☐ the need for null values (e.g., represent an student with no advisor)

Keys

- Let $K \subseteq R$
- K is a **superkey** of R if values for K are sufficient to identify a unique tuple of each possible relation r(R)
 - Example: {ID} and {ID,name} are both superkeys of *instructor*.
- Superkey Assignment Revoject Fixiam Help Example: {ID} is a candidate key for *Instructor*

- One of the candidate keys is selected to be the **primary key**.
- Foreign key constraint Value in one relation must appear in another
 - **Referencing** relation
 - **Referenced** relation
 - Example *dept_name* in *instructor* is a foreign key from *instructor* referencing *department*

Schema Diagram for University Database

Relational Algebra

A quick review of relational database Six basic operators select: σ project: ∏ union: Assignment Project Exam Help set difference: -Cartesian product: x/powcoder.com rename: ρ Additional operations that simplify common quaries set intersection join assignment outer join Extended relational algebra operations generalized projection aggregate functions

Select Operation

- The **selec**t operation selects tuples that satisfy a given predicate.
- Notation: $\sigma_p(r)$
- p is called the selection predicate
- Example: select those tuples of the *instructor* relation where the instructors instructors in the instructor relation where the instructors in the instructor relation where the
- Query:

https://powcoder.com

orange dept_name="Physics" (instructor)

Add We Chat powcoder

ID	name 🎜	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

ID	name	dept_name	salary
22222	Einstein	Physics	95000
33456	Gold	Physics	87000

Select Operation (Cont.)

We allow comparisons using

in the selection predicate.

- We can combine several predicates into a larger predicate by using the connectives: Project Exam Help ∧ (and), ∨ (or), ¬ (not)
- Example: Find the ipstructors the ics with a salary greater \$90,000, we write:

- Then select predicate may include comparisons between two attributes.
 - Example, find all departments whose name is the same as their building name:

Project Operation

- A unary operation that returns its argument relation, with certain attributes left out.
- **Notation:**

Assignment Project Exam Help

where A_1 , A_2 are attribute names and r is a relation name.

- The result is defined as the relation of *k* columns obtained by erasing the columns that are not listed
 Add WeChat powcoder
 Duplicate rows removed from result, since relations are sets

Project Operation (Cont.)

- Example: eliminate the dept_name attribute of instructor
- Query:

 $\prod_{ID, name, salary}$ (instructor)

Result:

ID	nanSS19	nment	Project	Exam	He	D iame	salary
10101	Srinivasan	Comp. Sci.	65000		10101	Srinivasan	65000
12121	Wu 1	Finance /	90000		12121	Wu	90000
15151	Mozart I	ittps://po) V40000 CI	er.cøm	15151	Mozart	40000
22222	Einstein	Physics	95000		22222	Einstein	95000
32343	El Said	History Highsia Ve	60000	arra a d	32343	El Said	60000
33456	Gold 🗜	A Chicksides Co	Ustodo P	owcod	33456	Gold	87000
45565	Katz	Comp. Sci.	75000		45565	Katz	75000
58583	Califieri	History	62000		58583	Califieri	62000
76543	Singh	Finance	80000		76543	Singh	80000
76766	Crick	Biology	72000		76766	Crick	72000
83821	Brandt	Comp. Sci.	92000		83821	Brandt	92000
98345	Kim	Elec. Eng.	80000		98345	Kim	80000

Composition of Relational Operations

- The result of a relational-algebra operation is relation and therefore relational-algebra operations can be composed together into a relational-algebra expression.
- Consider the query -- Find the names of all instructors in the Physics Appropriate Project Exam Help

$$\prod_{name} (\sigma_{\text{dept_name.} = \text{"Physics"}} \text{ (instructor))} \\ \text{IIIps://powcoder.com}$$

Instead of giving the name of a relation as the argument of the projection operation.

Union Operation

- The union operation allows us to combine two relations
- Notation: $r \cup s$
- Output the union of tuples from the two input relations
- For $r \cup s$ to be valid ment Project Exam Help
 - 1. r, s must have the same arity (same number of attributes)
 - 2. The attribute of the same type of values as does the 2nd column of r deals with the same type of values as does the 2nd column of s) Add WeChat powcoder

Union Operation – Example

- Example: to find all courses taught in the Fall 2009 semester, or in the Spring 2010 semester, or in both
- Query:

$$\prod_{course_id} (\sigma_{semester="Fall"} \land_{year=2009} (section)) \cup \\ \prod_{course_id} (\sigma_{semester="Fall"} (section)) \cup \\ \prod_{course_id} (\sigma_{semester="Fall"} (section)) \cup \\ \prod_{course_id} (\sigma_{semester="Fall"} (semester="Fall") \cap \\ \prod_{course_id} (semester="Fall") \cap$$

	<u> </u>								
Ш	course_id	sec_id	semester	year _/		room_number			course_id
	BIO-101	1	Summer	2009/	Painter		COBI		CS-101
	BIO-301	1	Summer	2010	Painter	514	A		FACTOR MARKS 978 200
	CS-101	1	Fall	2009	Packard	101	H	\setminus	CS-315
	CS-101	1	Spri x	2010	Packard	at Max	rcoder	. [CS-319
	CS-190	1	Spring	2009	Taylor	at pow	E		CS-347
	CS-190	2	Spring	2009	Taylor	3128	A		FIN-201
	CS-315	1	Spring	2010	Watson	120	D	·	HIS-351
	CS-319	1	Spring	2010	Watson	100	В		MU-199
	CS-319	2	Spring	2010	Taylor	3128	C		PHY-101
	CS-347	1	Fall	2009	Taylor	3128	A		1111-101
	EE-181	1	Spring	2009	Taylor	3128	C		
	FIN-201	1	Spring	2010	Packard	101	В		
	HIS-351	1	Spring	2010	Painter	514	C		
	MU-199	1	Spring	2010	Packard	101	D		
	PHY-101	1	Fall	2009	Watson	100	A		

Set Difference Operation

- The set-difference operation allows us to find tuples that are in one relation but are not in another.
- Notation: r s
- Produce a relation containing those tuples in r but not in s ASSIGNMENT Project Exam Help
- Set differences must be taken between compatible relations.
 https://powcoder.com
 - r and s must have the same arity powcoder
 - attribute domains of *r* and *s* must be compatible

Set Difference Operation – Example

- Example: to find all courses taught in the Fall 2009 semester, but not in the Spring 2010 semester
- Query:

$$\prod_{course_id} (\sigma_{semester="Fall"} \land_{year=2009} (section)) - \prod_{course_id} (section) - \prod_{course_id} (semester="Spring"} (section)) - \prod_{course_id} (section) - \prod_{course_i$$

Ш	course_id	sec_id	semester +	year/	by dding,	room amber	timy_slot_id
	BIO-101	1	Summer	2009	Painter	514	В
	BIO-301	1	Summer	2010	Painter	514	A
	CS-101	1	Fall 🔥 🔏	2009	Packard	101	H ₁
	CS-101	1	Spring U	2010	Caskard	at pow	coder
	CS-190	1	Spring	2009	Taylor	3128	E
	CS-190	2	Spring	2009	Taylor	3128	A
	CS-315	1	Spring	2010	Watson	120	D
	CS-319	1	Spring	2010	Watson	100	В
	CS-319	2	Spring	2010	Taylor	3128	C
	CS-347	1	Fall	2009	Taylor	3128	A
	EE-181	1	Spring	2009	Taylor	3128	С
	FIN-201	1	Spring	2010	Packard	101	В
	HIS-351	1	Spring	2010	Painter	514	C
	MU-199	1	Spring	2010	Packard	101	D
	PHY-101	1	Fall	2009	Watson	100	A

course_id

CS-347
PHY-101

Cartesian-Product Operation

- ☐ The Cartesian-product operation (denoted by X) allows us to combine information from any two relations.
- □ Notation: *r* x *s*
- Output all pairs of rows from the two input relations (regardless of whether or not they have the same values on common attributes)
- Assume that at hit types $\sqrt[n]{p(R)}$ and $\sqrt[n]{s}$ joint. (That is, $R \cap S = \emptyset$).
- If attributes of r(R) and s(S) are not disjoint, then renaming must be used.

Cartesian-Product Operation – Example

Example: the Cartesian product of the relations instructor and teaches is written as:

instructor X teaches

- We construct a tuple of the result out of each possible pair of tuples: of tuples: of tuples: of the result of the teaches relation (see next slide)
- Since the instruction of the relation form with the stribute by attaching to the attribute the name of the relation form with the pattribute or relation form with the pattribute or relation form.
 - instructor.ID
 - teaches.ID

The instructor x teaches table

instructor

teaches

ID	пате	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	4000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

		 .			
ID	course_id	sec_id	semester	year	
10101	CS-101	1	Fall	2009	
10101	CS-315	1, .	Spring •	2010	
Qq1gg 1	THIE	n t	PMO16	2009	Exam
12120	FIN-201	1	Spring	2010	
15151	MU-199	1	Spring	2010	
22222	PHY-101	1	Fall	2009	
32343	HIS-351	11.	Spring	2010	
455 5	(S1)S	//1 1)	BANNEC (201b(er.con
45565	CS 319	11	Spring	2010	
76766	BIO-101	1	Summer	2009	
76766	BIO-301	1	Summer	2010	
83821	CS-190 \	XI	Spiling	2009	
83821	C3-(9)	V V ₂ C	Spring	2009	DWCOC
83821	CS-319	2	Spring	2010	
98345	EE-181	1	Spring	2009	

ſ	Inst.ID	name	dept_name	salary	teaches.ID	course_id	sec_id	semester	year
	10101	Sriniyasan	Comp. Sci.	65000	10101	CS-101	1	Fall	2009
	10101		Comp. Sci.		10101	CS-315	1	Spring	2010
	10101		Comp. Sci.		10101	CS-347	1	Fall	2009
	10101		Comp. Sci.		12121	FIN-201	1	Spring	2010
	10101		Comp. Sci.	65000	15151	MU-199	1	Spring	2010
	10101		Comp. Sci.	65000	22222	PHY-101	1	Fall	2009
	121 21	Wu 1	Finance	90000	10101	CS-101	1	Fall	2009
1	121 21	W ⊕ 1	linance	90000	10101	CS-315	1	Spring	2010
ı	12121	$W_{\mathbf{u}}$	inance	90000	10101	CS-347	1	Fall	2009
	12121	Wu	Pinance	90000	12121	FIN-201	1	Spring	2010
	12121	Wu	Finance	90000	15151	MU-199	1	Spring	2010
	12121	Wu	Pinance	90000	22222	PHY-101	1	Fall	2009
٦									
Į	15151	Mozart	Music	40000	10101	CS-101	1	Fall	2009
	15151	Mozart	Music	40000	10101	CS-315	1	Spring	2010
	15151	Mozart	Music	40000	10101	CS-347	1	Fall	2009
	15151	Mozart	Music	40000	12121	FIN-201	1	Spring	2010
4	15151	Mozart	Music	40000	15151	MU-199	1	Spring	2010
1	15151	Mozart	Music	40000	22222	PHY-101	1	Fall	2009
J	er								
Ī									
	22222	Einstein	Physics	95000	10101	CS-101	1	Fall	2009
	22222	Einstein	Physics	95000	10101	CS-315	1	Spring	2010
	22222	Einstein	Physics	95000	10101	CS-347	1	Fall	2009
	22222	Einstein	Physics	95000	12121	FIN-201	1	Spring	2010
	22222	Einstein	Physics	95000	15151	MU-199	1	Spring	2010
	22222	Einstein	Physics	95000	22222	PHY-101	1	Fall	2009

						•••			

Example Queries

- Find the names of all instructors in the Physics department, along with the course_id of all courses they have taught
 - Query 1

I Iname course id (Oinstructor 10 jteache Exam Help

σ _{dept_name="Physics"} (instructor x teaches)))

					T		7		2
inst.ID	пате	dept_name	salary	teathes ID	Sourse_1a	De Xill	Cone.tel	year	m
22222	Einstein	Physics	95000	10101	CS-437	1	Fall	2009	
22222	Einstein	_	95000	10101	CS-315	1	Spring	2010	
22222	Einstein	Physics	95000	12\21	FIM202	Ch_{2}	atproo	3010 2010	oder
22222	Einstein	Physics	95000	15151	MU-199	11	Spring	2010	ouci
22222	Einstein	Physics	95000	22222	PHY-101	1	Fall	2009	
22222	Einstein	Physics	95000	32343	HIS-351	1	Spring	2010	
•••		•••	•••		•••	•••	•••	•••	
	•••		•••			•••	•••	•••	
33456	Gold	Physics	87000	10101	CS-437	1	Fall	2009	
33456	Gold	Physics	87000	10101	CS-315	1	Spring	2010	
33456	Gold	Physics	87000	12121	FIN-201	1	Spring	2010	
33456	Gold	Physics	87000	15151	MU-199	1	Spring	2010	
33456	Gold	Physics	87000	22222	PHY-101	1	Fall	2009	
33456	Gold	Physics	87000	32343	HIS-351	1	Spring	2010	
• • •		•••	•••		•••	•••	•••	•••	
• • •		***			•••		•••	•••	

пате	course_id
Einstein	PHY-101

Example Queries

- There is often more than one way to write a query in relational algebra
- The following two queries are equivalent, i.e., they give the same result
 - Query 1

https://poweroder(instructor x teaches)))

Query 2

Add WeChat powcoder

$$\prod_{name,course_id} (\sigma_{instructor.ID=teaches.ID} ($$

σ _{dept_name="Physics"} (instructor) x teaches))

Rename Operation

- Allows us to name, and therefore to refer to, the results of relationalalgebra expressions.
- Allows us to refer to a relation by more than one name.
- The expression

returns the result of texpression. Founder the orange X

If a relational-algebra expression E has arity n, then Add WeChat powcoder $\rho_{x(A_1,A_2,\ldots A_n)}(E)$

returns the result of expression E under the name X, and with the

attributes renamed to $A_1, A_2,, A_n$.

Example Query

- Find the highest salary in the university
 - Step 1: find instructor salaries that are less than some other instructor salary (i.e. not the highest)
 - using a copy of *instructor* under a new name d
 - Assignment Project Exam Help $\Pi_{instructor.salary} (\sigma_{instructor.salary} < d.salary)$

https://powcodepconstructor)))

ID	name	dept_name	salary		salary
10101	Srinivatar	Mong Sch	165000 V	vcoder	65000
12121	Wu	Finance	90000	VCGGCI	90000
15151	Mozart	Music	40000		40000
22222	Einstein	Physics	95000		20040 0000000000000
32343	El Said	History	60000		60000
33456	Gold	Physics	87000		87000
45565	Katz	Comp. Sci.	<i>7</i> 5000		75000
58583	Califieri	History	62000		62000
76543	Singh	Finance	80000		72000
76766	Crick	Biology	72000		80000
83821	Brandt	Comp. Sci.	92000		92000
98345	Kim	Elec. Eng.	80000		

Example Query

- Find the highest salary in the university
 - Step 2: Find the highest salary
 - ightharpoonup \prod_{salarv} (instructor) Marignament in Browne et a Examy Help (instructor x ρ_d (instructor)))

 salailyttps://powcoder.com 65000 90000 dd WeChat powcoder 60000 salary 87000 95000 75000 62000 72000 80000 92000

Formal Definition

- A basic expression in the relational algebra consists of either one of the following:
 - A relation in the database
 - A constant relation
- Let E_1 and E_2 beginning are all relational-algebra expressions:

https://powcoder.com

 $E_1 \cup E_2$

Add WeChat powcoder

- $E_1 \times E_2$
- $\sigma_p(E_1)$, p is a predicate on attributes in E_1
- $\prod_{s}(E_1)$, S is a list consisting of some of the attributes in E_1
- $\rho_x(E_1)$, x is the new name for the result of E_1

Relational Algebra

A quick review of relational database Six basic operators select: O project: ∏ union: Assignment Project Exam Help set difference: -Cartesian product: x.//powcoder.com rename: ρ Additional operations that simplify common queries set intersection Join assignment outer join Extended relational algebra operations generalized projection aggregate functions

Additional Operations

We define additional operations that do not add any power to the relational algebra, but that simplify common queries.

- Set intersection
- Join
 - Assignment Project Exam Help
- Outer join

https://powcoder.com

Add WeChat powcoder

Set-Intersection Operation

- The set-intersection operation allows us to find tuples that are in both the input relations.
- Notation: $r \cap s$
- Assume:
 - r, s have the samperity Project Exam Help
 - \square attributes of r and s are compatible
- □ Note: $r \cap s = r \frac{https://powcoder.com}{}$

Add WeChat powcoder

Set-Intersection Operation – Example

- Example: to find all courses taught in both the Fall 2009 and the Spring 2010 semesters
- Query:

$$\prod_{course_id} (\sigma_{semester="Fall"} \land_{year=2009} (section)) \cap \\ \prod_{course_id} (\sigma_{semester="Fall"} \land_{year=2010} (section)) \cap \\ \prod_{course_id} (\sigma_{semester="Fall"} (section)) \cap \\ \prod_{course_id} (\sigma_{semester="Fall"} (section)) \cap \\ \prod_{course_id} (\sigma_{semester="Fall"} (semester="Fall") \cap \\ \prod_{course_id} (se$$

П	course_id	sec_id	semester	g ear/	10 (Tyling)	rgon 1 anber	ti m_s lot_id
	BIO-101	1	Summer	2009	Painter	514	В
	BIO-301	1	Summer	2010	Painter	514	A
	CS-101	1	Fall 🔥 🔏	2009	7 Packatd	101	coder
	CS-101	1	Spring	2010	Packara	at ppw	COMEI
	CS-190	1	Spring	2009	Taylor	3128	E
	CS-190	2	Spring	2009	Taylor	3128	A
	CS-315	1	Spring	2010	Watson	120	D
	CS-319	1	Spring	2010	Watson	100	В
	CS-319	2	Spring	2010	Taylor	3128	C
	CS-347	1	Fall	2009	Taylor	3128	A
	EE-181	1	Spring	2009	Taylor	3128	C
	FIN-201	1	Spring	2010	Packard	101	В
	HIS-351	1	Spring	2010	Painter	514	C
	MU-199	1	Spring	2010	Packard	101	D
	PHY-101	1	Fall	2009	Watson	100	A

course_id CS-101

Join Operation

The Cartesian-Product

instructor X teaches

associates every tuple of *instructor* with every tuple of *teaches*.

- Most of the resulting rows have information about instructors who did NCF teach a particular course.
- To get only those tuples of "instructors and the courses that they taught, we write:

We get only those tuples of "instructor X teaches" that pertain to instructors and the courses that they taught.

Join Operation (Cont.)

- The join operation allows us to combine a select operation and a Cartesian-Product operation into a single operation.
- Consider relations r(R) and s(S)
- Let "theta" be a predicate on attributes in the schema R "union" S. The join of stigmme is to Pine destident Help

https://powcoder.com

Thus

σ instructor:id=ded.w/(elsthvatoipote/acnes))r

Can equivalently be written as

instructor Instructor.id = teaches.id teaches.

Join Operation (Cont.)

- The join operation without predicate is called natural join.
- Notation: *r* s
- Let r and s be relations on schemas R and S respectively. Then, r s is a relation on schema $R \cup S$ obtained as follows:
 - Consider each pair of tuples t_r from r and t_s from s.

 Add WeChat powcoder
 - If t_r and t_s have the same value on each of the attributes in $R \cap S$, add a tuple t to the result, where
 - t has the same value as t_r on r
 - t has the same value as t_s on s

Join Operation – Example

Find the names of all instructors in the Comp. Sci. department together with the course titles of all the courses that the instructors teach

 \square $\prod_{name, \ title} (O_{dept_name="Comp. \ Sci."} (instructor teaches course))$

ID	пате	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

ID	course_id	sec_id	semester	year	
10101	CS-101	4 1 D	Fall	2 009 _	
Sdi ATI	ndisier		rolleci	2(10)	X
10101	CS-347	1	Fail	2009	
12121	FIN-201	1	Spring	2010	
15151	MU-199	1.1	Spring 1	2010	
22212	DE BASION	/po	WOO	2009	
32343	HiS-351	1	Spring	2010	
45565	CS-101	1	Spring	2010	
45565	GS-319	71	Spring	2010	
767 66	BIO 101V	V C	Gurunei	2009	
76766	BIO-301	1	Summer	2010	
83821	CS-190	1	Spring	2009	L
83821	CS-190	2	Spring	2009	
83821	CS-319	2	Spring	2010	
98345	EE-181	1	Spring	2009	

course_id	title	dept_name	credits
BIO-101	Intro. to Biology	Biology	4
BIO-399	Green is)	Biology	4
BIO-399	Computational Biology	Biology	3
CS-101	Intro. to Computer Science	Comp. Sci.	4
CS-190	Game Design	Comp. Sci.	4
CS-315	Robotics	Comp. Sci.	3
C5319	Image Processing	Comp. Sci.	3
CS-347	Database System Concepts	Comp. Sci.	3
EE-181	Intro. to Digital Systems	Elec. Eng.	3
FIN-201	Investment Banking	Finance	3
HIS-6516	World History	History	3
MU-199	Music Video Production	Music	3
PHY-101	Physical Principles	Physics	4

пате	title
Brandt	Game Design
Brandt	Image Processing
Katz	Image Processing
Katz	Intro. to Computer Science
Srinivasan	Intro. to Computer Science
Srinivasan	Robotics
Srinivasan	Database System Concepts

Assignment Operation

- It is convenient at times to write a relational-algebra expression by assigning parts of it to temporary relation variables.
- The assignment operation is denoted by ← and works like assignment in a programming language.
- Example: Arssaiginsmount Pithej certy sics and Medip department.

Physics ∪ *Music*

- With the assignment operation, a query can be written as a sequential program consisting of
 - a series of assignments
 - followed by an expression whose value is displayed as a result of the query.

Outer Join

- An extension of the join operation that avoids loss of information.
- Computes the join and then adds tuples from one relation that does not match tuples in the other relation to the result of the join.
- Uses *null* value to signify that the value is unknown or does not exist
- Three forms of other join: Project Exam Help
 - left outer joinhttps://powcoder.com
 - right outer join
 - full outer join Add WeChat powcoder

Outer Join – Example

Relation course

course_id	title	dept_name	credits	
BIO-301		Biology	4	
CS-190 .	Game Design	Comp. Sci.	$\frac{4}{\text{cam}}$ F	leln
C2-31201	Robotied 1	egmp.5ex	carge 1	reip

Relation prerechttps://powcoder.com

AddseVille	Chay po	wcoder
BIO-301	BIO-101	
CS-190	CS-101	
CS-347	CS-101	

Observe that

CS-315 is missing in *prereq* and

CS-347 is missing in course

Outer Join – Example

Joincourse prereq

course_id	title	dept_name	credits	prere_id
BIO-3 0 18	signment	Brooget I	lxam	Help 01
CS-190	Game Design	Comp. Sci.	4	CS-101

https://powcoder.com

course_id	title	dept_name	credits	prere_id
BIO-301	Genetics	Biology	4	BIO-101
CS-190	Game Design	Comp. Sci.	4	CS-101
CS-315	Robotics	Comp. Sci.	3	null

Outer Join – Example

Right Outer Join course ⋈ prereq

course_id		dept_name		
BIO-301	esignment	Project Ex	am H	PO-101
CS-190	Game Design	Comp. Sci.	4	CS-101
CS-347	nullhttps://p	owgoder.c	omull	CS-101

Full Outer Join Add WeChat powcoder course ⋈ prereq

course_id	title	dept_name	credits	prereg_id
BIO-301	Genetics	Biology	4	BIO-101
CS-190	Game Design	Comp. Sci.	4	CS-101
CS-315	Robotics	Comp. Sci.	3	null
CS-347	null	null	null	CS-101

Outer Join using Joins

- Outer join can be expressed using basic operations
 - e.g. $r \bowtie s$ can be written as

$$(r \ s) \cup (r - \Pi_B(r \ s)) \times \{(null, ..., null)\}$$

where the constant relation {(null, ..., null)} is on the schema S - R Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Relational Algebra

A quick review of relational database Six basic operators select: O project: ∏ union: Assignment Project Exam Help set difference: -Cartesian product: x.//powcoder.com rename: ρ Additional operations that simplify common quaries set intersection join assignment outer join **Extended relational algebra operations** generalized projection aggregate functions

Generalized Projection

Extends the projection operation by allowing arithmetic functions to be used in the projection list.

- ☐ E is any relationing algebrate President Exam Help
- Each of $F_1, F_2, ..., F_n$ are arithmetic expressions involving constants and attributes in the scheme of powcoder.com
- Given relation instructor(to name, dept, name) salary) where salary is annual salary, get the same information but with monthly salary

 $\prod_{ID, name, dept name, salary/12}$ (instructor)

Aggregate Functions and Operations

Aggregate function takes a collection of values and returns a single value as a result.

avg: average value min: minimum value

max: maximum value

sumsignmente Project Exam Help

count: number of values

Aggregate operations in repeated and enteresting and added the comment of the com

E is any relational-algebra expression

- $G_1, G_2, ..., G_n$ is a list of attributes on which to group (can be empty)
- Each F_i is an aggregate function
- Each A_i is an attribute name

Aggregate Operation – Example

Find the average salary in each department

For convenience, we permit renaming as part of aggregate operation

ID	name	dept_name	salary .		7 TT .1	
76766	Crick AS	Signmen Biology	72000	ect I	Exam Help	
45565	Katz	Comp. Sci.	75000		aept_name	avg_salary
10101	Srinivasan	Chttps://	powc	odei	BOMgy	72000
83821	Brandt	Comp. Sci.	92000		Comp. Sci.	77333
98345	Kim	Elecc FalgW	800Pa	t no	widedeng.	80000
12121	Wu	Finance	90000	P	Finance	85000
76543	Singh	Finance	80000		History	61000
32343	El Said	History	60000		Music	40000
58583	Califieri	History	62000		Physics	91000
15151	Mozart	Music	40000	l	THYSICS	21000
33456	Gold	Physics	87000			
22222	Einstein	Physics	95000			

Multiset Relational Algebra

- Pure relational algebra removes all duplicates
 - e.g. after projection
- Multiset relational algebra retains duplicates, to match SQL semantics
 - SQL duplicate retention was initially for efficiency, but is now a feature Assignment Project Exam Help
- Multiset relational algebra defined as follows
 - selection: habitspranypurplicates cuf. a tuple as in the input, if the tuple satisfies the selection
 - $\sigma_{\theta}(r_1)$: If there are c_1 copies of c_2 copies of c_3 , and c_4 satisfies selection σ_{θ} , then there are c_1 copies of c_2 in $\sigma_{\theta}(r_1)$.
 - projection: one tuple per input tuple, even if it is a duplicate
 - $\Pi_A(r_1)$: For each copy of tuple t_1 in r_1 , there is a copy of tuple $\Pi_A(t_1)$ in $\Pi_A(r_1)$ where $\Pi_A(t_1)$ denotes the projection of the single tuple t_1 .

Multiset Relational Algebra (Cont.)

- Multiset relational algebra defined as follows
 - Cartesian product:
 - $r_1 \times r_2$: If there are c_1 copies of tuple t_1 in r_1 and c_2 copies of tuple t_2 in r_2 , there are $c_1 \times c_2$ copies of the tuple t_1 . t_2 in $r_1 \times r_2$
 - Other Assigna pineilatly Pletinect Exam Help
 - ▶ union: *m* + *n* copies
 - intersection the intersection the intersection in the intersection
- b difference: $\min(0, m-n)$ copies Example: Suppose multiset relations r_1 (A, B) and r_2 (C) are as follows:

$$r_1 = \{(1, a) (2,a)\}$$
 $r_2 = \{(2), (3), (3)\}$

Then $\Pi_B(r_1)$ would be $\{(a), (a)\}$, while $\Pi_B(r_1) \times r_2$ would be

$$\{(a,2), (a,2), (a,3), (a,3), (a,3), (a,3)\}$$

SQL and Multiset Relational Algebra

select $A_1, A_2, ..., A_n$ from $r_1, r_2, ..., r_m$ where P

is equivalent to the following expression in multiset relational algebra

Assignment Regisct Engine Help

https://powcoder.com

- The select clause corresponds to the projection operation
- Add WeChat powcoder

 The from clause corresponds to the Cartesian product operation
- ☐ The **where** clause corresponds to the **selection** operation

SQL and Multiset Relational Algebra-Examples

Find courses that ran in Fall 2009 **or** in Spring 2010

```
(select course_id from section where semester = 'Fall' and year = 2009)
 union
(select course_id from section where semester = 'Spring' and year = 2010)
is equivalent to Assignment Project Exam Help
Find courses that ran in Fall 2009 and in Spring 2010.
(select course_id from section where semester = 'Fall' and year = 2009)
intersect
(select course_id from section where semester = 'Spring' and year = 2010)
is equivalent to
\prod_{course\_id} (\sigma_{semester="Fall"} \land_{vear=2009} (section)) \cap
 \prod_{course\_id} (\sigma_{semester="Spring"} \land vear=2010 (section))
```

SQL and Multiset Relational Algebra - Examples

Find courses that ran in Fall 2009 but **not in** Spring 2010

```
(select course_id from section where semester = 'Fall' and year = 2009) except (select course_id from section where semester = 'Spring' and year = 2010) Assignment Project Exam Help is equivalent to \Pi_{course\_id} (\sigma_{semester="Fall"} \gamma_{yeal=2010}) = \Pi_{course\_id} (\sigma_{semeste
```

SQL and Multiset Relational Algebra (Cont.)

- Set operations union, intersect, and except automatically eliminate duplicates
- To retain all duplicates, use the corresponding multiset versions union all, intersect all and except all.

Suppose a tuple soften metime pinoriand numbers in pathing, it occurs:

- m + n times in r union all s
- $\frac{\text{https://powcoder.com}}{\min(m,n) \text{ times in } r \text{ intersect all } s}$
- $\max(0, m-n)$ tip Agg_{e} in $\operatorname{Wexcept}$ at $\operatorname{Powcoder}$

SQL and Multiset Relational Algebra (Cont.)

```
select A_1, A_2, sum(A_3)

from r_1, r_2, ..., r_m

where P

group by A_1, A_2 having count (A_4) > 2

is equivalent to the following expression in multiset relational algebra
```

https://powcoder.com

Find the average salary of instructor proved for proved for the select dept_name, avg (salary) as avg_salary from instructor group by dept_name; is equivalent to