MEMBRANE TRANSPORT

Membrane materials and structure create barrier and semipermeable membrane barrier separating two fluid mixtures in which chemical potentials of one or more components differs

Δ Chemical potentials creates driving force

Types of Transport

Passive: Down chemical potential gradient

Facilitated: Carrier mediated transport in which one or more species binds to

diffusible carrier

Active: Up chemical potential gradient, coupled to metabolic chemical

reaction

Chemical Potential of Species i (µ i)

$$u_i = u_i^Q + \overline{S}_i T + \overline{V}_i P + RT \ln a_i + Z_i F \Psi + \dots$$

 $\frac{\partial}{\mu_i}$ = chemical potential of standard state

F = Faraday's constant

 $\overline{S_i}$ = partial molal entropy

P = Pressure

 $\overline{V_i}$ = partial molal volume

 $a_i = \gamma_i C_i$, chemical activity

R = ideal gas constant

 γ_i = activity coefficient

 $Z_i = valence$

 C_i = concentration

 Ψ = electrical field potential

CATEGORIZATION OF MEMBRANE SEPARATION PROCESSES

NAME	UPSTREAM MIXTURE	DOWNSTREAM MIXTURE	DRIVING FORCE	PERMEANT	REJECTED SPECIES
Gas Permeation	Gas	Gas	Concentration or Partical Pressure	Gas	
Pervaporation	Liquid Solution	Gas	Concentration or Partical Pressure	Gas	
Dialysis	Liquid Solution	Liquid Solution	Concentration	Microsolutes	
Electrodialysis	Liquid Solution	Liquid Solution	Electrical Potential	Ions	
Filtration					
Reverse Osmosis (Hyperfiltration)	Liquid Solution	Liquid Solution	Pressure and Concentration	Solvent	Microsoluted
Ultrafiltration	Liquid Solution	Liquid Solution	Pressure and Concentration	Microsolutes	Macrosolutes
Microfiltration	Liquid Suspension	Liquid Solution	Pressure and Concentration	Macrosolutes	Colloidal Particles
Particle Filtration	Liquid Suspension	Liquid Suspension	Pressure and Concentration	Colloidal Particles	Macroscopic Particles

STEADY-STATE CONVECTIVE TRANSPORT

Hydroststic Pressure Driving Force

Volume Flux =
$$J_{V} = \frac{k\Delta P}{\mu L}$$

Darcy's Law
$$\left(\frac{k}{\mu L}\right) \Delta P = L_P \Delta P$$

k = hydraulic permeability

 $\mu = viscosity$

P = hydrostatic presure

 $J_V = L_{p \Delta P}$

 L_p = phenomenological hydraulic permeability = $\frac{k}{\mu L}$

STEADY-STATE DIFFUSIVE TRANSPORT

Partitioning of solute between solution and membrane

$$C_{s1} - C_{s2}$$

$$C_{m1} - C_{s2}$$

Membrane Thickness

Mass Flux =
$$J_s = -D \frac{dC}{dx}$$

D = effective diffusion coefficient in membrane

C = concentration

x = distance

Integration across membrane:

$$J_{s} = D \frac{C_{m1} - C_{m2}}{L} = D K_{p} \frac{C_{s1} - C_{s2}}{L}$$

$$K_p$$
 = membrane partition coefficient = $\frac{C_m}{C_s}$
 $J_s = P_m \Delta C_s$

$$P_m$$
 = membrane permeability = $\frac{DK_p}{L}$

Thus,
$$J_s = \frac{DK_p}{L}(Cs_1 - Cs_2) = P_m(\Delta Cs)$$

COMBINED DIFFUSIVE CONVECTIVE TRANSPORT THE LINEAR CASE

Basis:

Thermodynamics of Irreversible Processes

Key Assumption:

Small departure from equilibrium

$$\frac{d\,\mu_i}{dx} = \frac{\Delta}{\Delta X}$$

$$J_V = L_p(\Delta P - \sigma \Delta \pi)$$
 The greater the rejection the greater the impact of $\Delta \pi$
$$J_S = P_m \Delta C_S + (1-\sigma)\overline{C_S}J_V$$
 This describes solute pauses this membrane by convective flow \overline{C} = average solution concentration

$$\sigma$$
 = Staverman reflection coefficient = $\frac{\operatorname{actual}\Delta\pi}{\Delta\mu \text{ with }\sigma=1}$

Limiting Cases:

 $\sigma = 1$ Membrane completely retains solute

 $\sigma = 0$ membrane freely permeable to solute

REGIMES OF CROSS-FLOW FILTRATION

PRESSURE DIFFERENCE, A P

MASS TRANSFER MODEL FOR MEMBRANE FILTRATION

At Steady State

$$JC_b = D\frac{dC}{dx}$$

Integration across the boundry layer δ

$$J = \frac{D}{\delta} \ln \frac{C_g}{C_b} = k \ln \frac{C_g}{C_b}$$

$$J = f(k) = f(V_s, \mu, P, \text{ system geometry})$$

Mass Transfer coefficient

$$K = f(\text{Re}, S_c)$$
 $R_e = \frac{\text{vdP}}{\mu}$ $S_c = \frac{\mu}{\text{PD}}$

PROSTAK-1

HF-LAB-5/ROMICON-1

-+- Flux --△-- Temperature

PACESETTER-1

-+- Flux --△-- Temperature

PACESETTER-1

Cell harvesting of E. coli

Membrane filtration

