Arsitektur Mikroprosesor: Bus, Memori, Register

Pertemuan 2 Lab Mikroprosesor

- 2.1. Arsitektur Mikroprosesor
- Definisi: Arsitektur mikroprosesor adalah desain fungsional mikroprosesor yang meliputi bagian-bagian utama yang mendukung operasi pemrosesan data, pengendalian, dan komunikasi antar perangkat.

- 2.2. Bus dalam Mikroprosesor
- Bus adalah jalur komunikasi yang digunakan untuk mentransfer data antar komponen di dalam mikroprosesor. Tiga jenis bus utama dalam mikroprosesor adalah:
- Bus Data: Mengirimkan data antara prosesor, memori, dan perangkat I/O. Bus data adalah jalur utama tempat instruksi dan data dikirim.
- Bus Alamat: Digunakan oleh prosesor untuk menentukan lokasi fisik di memori di mana data akan dibaca atau ditulis. Lebar bus alamat menentukan jumlah memori yang dapat diakses prosesor.
- Bus Kontrol: Mengirimkan sinyal kontrol untuk mengkoordinasikan operasi antara prosesor dan komponen lainnya, seperti membaca atau menulis data.

Nama Buss	Sifat	Arah Data dan CPU	Jumlah Saluran
Bus Data	Dua arah	Masuk dan Keluar	8 bit
Bus Alamat	Satu arah	Keluar	16 bit
Bus Kendali	Satu arah	Masuk dan Keluar	10 - 12 bit

2.3. Memori dalam Mikroprosesor

- Memori Utama (RAM): Tempat penyimpanan sementara yang digunakan untuk menyimpan data dan instruksi yang sedang diolah oleh mikroprosesor.
- Memori Sekunder: Penyimpanan yang digunakan untuk menyimpan data secara permanen, seperti hard disk atau SSD.
- Memori Cache: Memori berkecepatan tinggi yang berada lebih dekat dengan CPU untuk mempercepat akses ke data yang sering digunakan.

2.3. Memori dalam Mikroprosesor

- Memori Utama (RAM): Tempat penyimpanan sementara yang digunakan untuk menyimpan data dan instruksi yang sedang diolah oleh mikroprosesor.
- Memori Sekunder: Penyimpanan yang digunakan untuk menyimpan data secara permanen, seperti hard disk atau SSD.
- Memori Cache: Memori berkecepatan tinggi yang berada lebih dekat dengan CPU untuk mempercepat akses ke data yang sering digunakan.

2.4. Register dalam Mikroprosesor

- O Register adalah memori kecil berkecepatan tinggi yang ada di dalam CPU. Register menyimpan data sementara selama prosesor melakukan operasi aritmatika atau logika.
- Jenis Register:
- Register Data: Menyimpan data yang sedang diproses oleh ALU (Arithmetic Logic Unit).
- Register Alamat: Menyimpan alamat memori tempat data akan dibaca atau ditulis.
- Program Counter (PC): Menunjukkan alamat instruksi berikutnya yang akan dieksekusi oleh
 CPU.Instruction Register (IR): Menyimpan instruksi yang sedang dieksekusi.

2.5. Hubungan Antara Mikroprosesor dan Memori

- Mikroprosesor berkomunikasi dengan memori melalui bus alamat untuk menentukan lokasi memori dan menggunakan bus data untuk membaca/menulis data dari/ke memori.
- Efisiensi kinerja mikroprosesor sering bergantung pada kecepatan akses memori, sehingga penggunaan cache dan memori berkecepatan tinggi sangat penting.

Blok Diagram Mikroproseso

