From Entropy-Regularized OT to Sinkhorn Divergences

Sinkhorn Divergences

Aude Genevay

MIT CSAIL

OTML Worskshop - NeurIPS 2019

Joint work with Francis Bach, Lénaïc Chizat, Marco Cuturi, Gabriel Peyré

Distances

Comparing Probability Measures

Figure $1 - \min_{(x_1, \dots, x_k)} \mathcal{D}(\frac{1}{k} \sum_{i=1}^k \delta x_i, \frac{1}{n} \sum_{i=1}^n \delta y_i)$

Figure $1 - \min_{(x_1, \dots, x_k)} \mathcal{D}(\frac{1}{k} \sum_{i=1}^k \delta x_i, \frac{1}{n} \sum_{i=1}^n \delta y_i)$

Figure $1 - \min_{(x_1, \dots, x_k)} \mathcal{D}(\frac{1}{k} \sum_{i=1}^k \delta x_i, \frac{1}{n} \sum_{i=1}^n \delta y_i)$

Figure $1 - \min_{(x_1, \dots, x_k)} \mathcal{D}(\frac{1}{k} \sum_{i=1}^k \delta x_i, \frac{1}{n} \sum_{i=1}^n \delta y_i)$

Figure 2 – $\min_{\theta} \mathcal{D}(\alpha_{\theta}, \beta)$

Figure 2 – $\min_{\theta} \mathcal{D}(\alpha_{\theta}, \beta)$

Figure 2 – $\min_{\theta} \mathcal{D}(\alpha_{\theta}, \beta)$

Entropic Regularization

0000

Figure 2 – $\min_{\theta} \mathcal{D}(\alpha_{\theta}, \beta)$

- 1 Notions of Distance between Measures
- 2 Entropic Regularization of Optimal Transport
- 3 Sinkhorn Divergences: Interpolation between OT and MMD
- 4 Conclusion

Sinkhorn Divergences

Definition (φ -divergence)

Let φ convex l.s.c. function such that $\varphi(1)=0$, the φ -divergence D_{φ} between two measures α and β is defined by :

$$D_{\varphi}(\boldsymbol{\alpha}|\boldsymbol{\beta}) \stackrel{\text{def.}}{=} \int_{\mathcal{X}} \varphi\left(\frac{\mathrm{d}\boldsymbol{\alpha}(x)}{\mathrm{d}\boldsymbol{\beta}(x)}\right) \mathrm{d}\boldsymbol{\beta}(x).$$

Example (Kullback Leibler Divergence)

$$D_{\mathit{KL}}(\alpha|\beta) = \int_{\mathcal{X}} \log\left(rac{\mathrm{d}lpha}{\mathrm{d}eta}(x)
ight) \mathrm{d}lpha(x) \quad \leftrightarrow \quad arphi(x) = x \log(x)$$

Sinkhorn Divergences

Example

Sinkhorn Divergences

Example

Distances

Sinkhorn Divergences

Example

Distances

Sinkhorn Divergences

Example

Sinkhorn Divergences

Example

Distances

Sinkhorn Divergences

Example

Sinkhorn Divergences

Example

Distances

Sinkhorn Divergences

Example

Distances

Sinkhorn Divergences

Example

Distances

Example

On \mathbb{R} , $\alpha = \delta_0$ and $\alpha_n = \delta_{1/n} : D_{KL}(\alpha_n | \alpha) = +\infty$.

Definition (Weak Convergence)

 $\begin{array}{l} \alpha_{\textbf{n}} \text{ weakly converges to } \alpha, \text{ (denoted } \alpha_{\textbf{n}} \rightharpoonup \alpha) \\ \Leftrightarrow \int f(x) \mathrm{d}\alpha_{\textbf{n}}(x) \to \int f(x) \mathrm{d}\alpha(x) \ \forall f \in \mathcal{C}_b(\mathcal{X}). \\ \text{Let } \mathcal{D} \text{ distance between measures , } \mathcal{D} \text{ metrises weak} \\ \text{convergence } \text{IFF}\Big(\mathcal{D}(\alpha_{\textbf{n}},\alpha) \to 0 \Leftrightarrow \alpha_{\textbf{n}} \rightharpoonup \alpha\Big). \end{array}$

Max. Mean Discrepancies (Gretton '06)

Definition (RKHS)

Let \mathcal{H} a Hilbert space with kernel k, then \mathcal{H} is a Reproduicing Kernel Hilbert Space (RKHS) IFF:

Let \mathcal{H} a RKHS avec kernel k, the distance **MMD** between two probability measures α and β is defined by :

$$\begin{aligned} MMD_{k}^{2}(\alpha, \beta) &\stackrel{\text{def.}}{=} & \left(\sup_{\{f | \|f\|_{\mathcal{H}} \leqslant 1\}} |\mathbb{E}_{\alpha}(f(X)) - \mathbb{E}_{\beta}(f(Y))|\right)^{2} \\ &= & \mathbb{E}_{\alpha \otimes \alpha}[k(X, X')] + \mathbb{E}_{\beta \otimes \beta}[k(Y, Y')] \\ &- 2\mathbb{E}_{\alpha \otimes \beta}[k(X, Y)]. \end{aligned}$$

Distances

Optimal Transport (Monge 1781, Kantorovitch '42)

- c(x, y): cost of moving a unit of mass from x to y:
- $\pi(x, y)$ (coupling) : how much mass moves from x to y

The Wasserstein Distance

Sinkhorn Divergences

Minimal cost of moving ALL the mass from α to β ?

Let $\alpha \in \mathcal{M}^1_+(\mathcal{X})$ and $\beta \in \mathcal{M}^1_+(\mathcal{Y})$,

$$W_c(\alpha, \beta) = \min_{\pi \in \Pi(\alpha, \beta)} \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) d\pi(x, y)$$
 (P)

For $c(x,y) = ||x-y||_2^p$, $W_c(\alpha,\beta)^{1/p}$ is the **p-Wasserstein** distance.

0000

Optimal Transport vs. MMD

	MMD	ОТ
sample complexity	$\left(\frac{1}{\sqrt{n}}\right)$	$O(n^{-1/d})$ (curse of dimension)
computation	$O(n^2)$	$O(n^3 \log(n))$

Distances

Optimal Transport vs. MMD

MMD OT $O(n^{-1/d})$ sample complexity $\left(\frac{1}{\sqrt{n}}\right)$ (curse of dimension) $O(n^2)$ $O(n^3 \log(n))$ computation better gradients! $W_c - c = ||\cdot||_2^{1.5}$ Initial Setting $MMD_k - k = -||\cdot||_2^{1.5}$

 $\min_{(x_1,\dots,x_k)} \mathcal{D}(\frac{1}{k} \sum_{i=1}^k \delta x_i, \frac{1}{n} \sum_{i=1}^n \delta y_i)$ after 200 steps of grad. descent.

- Notions of Distance between Measures
- 2 Entropic Regularization of Optimal Transport The basics Sample Complexity
- 3 Sinkhorn Divergences: Interpolation between OT and MMD
- 4 Conclusion

The basics

Entropic Regularization (Cuturi '13)

Let
$$\alpha \in \mathcal{M}^1_+(\mathcal{X})$$
 and $\beta \in \mathcal{M}^1_+(\mathcal{Y})$,

$$W_c (\alpha, \beta) \stackrel{\text{def.}}{=} \min_{\pi \in \Pi(\alpha, \beta)} \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) d\pi(x, y)$$
 (P)

The basics

Entropic Regularization (Cuturi '13)

Sinkhorn Divergences

Let $\alpha \in \mathcal{M}^1_{\perp}(\mathcal{X})$ and $\beta \in \mathcal{M}^1_{\perp}(\mathcal{Y})$,

$$W_{c,\varepsilon}(\alpha, \beta) \stackrel{\text{def.}}{=} \min_{\pi \in \Pi(\alpha, \beta)} \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) d\pi(x, y) + \varepsilon H(\pi | \alpha \otimes \beta), \quad (\mathcal{P}_{\varepsilon})$$

where

$$H(\pi | \alpha \otimes \beta) \stackrel{\text{def.}}{=} \int_{\mathcal{X} \times \mathcal{V}} \log \left(\frac{\mathrm{d}\pi(x, y)}{\mathrm{d}\alpha(x) \mathrm{d}\beta(y)} \right) \mathrm{d}\pi(x, y).$$

relative entropy of the transport plan π with respect to the product measure $\alpha \otimes \beta$.

Distances The basics

Entropic Regularization

Figure 3 – Influence of the regularization parameter ε on the transport plan π .

The entropic penalty smoothes the coupling matrix, yielding fuzzy assignments.

The basics

Dual Formulation

Convex dual of standard OT: constrained dual problem

Entropic Regularization

$$W_c (\alpha, \beta) = \max_{\substack{u \in \mathcal{C}(\mathcal{X}) \\ \mathbf{v} \in \mathcal{C}(\mathcal{Y})}} \int_{\mathcal{X}} \mathbf{u}(\mathbf{x}) d\alpha(\mathbf{x}) + \int_{\mathcal{Y}} \mathbf{v}(\mathbf{y}) d\beta(\mathbf{y}) \qquad (\mathcal{D})$$

such that $\{u(x) + v(y) \le c(x, y) \ \forall \ (x, y) \in \mathcal{X} \times \mathcal{Y}\}$

The basics

Dual Formulation

Convex dual of regularized OT: unconstrained dual problem

$$W_{c,\varepsilon}(\alpha, \beta) = \max_{\substack{u \in \mathcal{C}(\mathcal{X})\\v \in \mathcal{C}(\mathcal{Y})}} \int_{\mathcal{X}} u(x) d\alpha(x) + \int_{\mathcal{Y}} v(y) d\beta(y)$$
$$-\varepsilon \int_{\mathcal{X} \times \mathcal{Y}} e^{\frac{u(x) + v(y) - c(x,y)}{\varepsilon}} d\alpha(x) d\beta(y) + \varepsilon.$$
$$(\mathcal{D}_{\varepsilon})$$

Iterative algorithm : alternate between optimizing over u with fixed v and optimizing over v with fixed u.

Sinkhorn's Algorithm

Sinkhorn Divergences

When
$$\alpha = \sum_{i=1}^{n} \alpha \delta_{x_i}$$
 and $\beta = \sum_{j=1}^{m} \beta \delta_{y_j}$

Sinkhorn's Algorithm

Let
$$K_{ij} = e^{-\frac{c(x_i,y_j)}{\varepsilon}}$$
, $\mathbf{a} = e^{\frac{\mathbf{u}}{\varepsilon}}$, $\mathbf{b} = e^{\frac{\mathbf{v}}{\varepsilon}}$.

$$\mathbf{a}^{(\ell+1)} = \frac{1}{\mathsf{K}(\mathbf{b}^{(\ell)} \odot \boldsymbol{\beta})} \qquad ; \qquad \mathbf{b}^{(\ell+1)} = \frac{1}{\mathsf{K}^{\mathsf{T}}(\mathbf{a}^{(\ell+1)} \odot \boldsymbol{\alpha})}$$

Complexity of each iteration : $O(n^2)$ (matrix vector multiplications) Linear convergence, constant degrades when $\varepsilon \to 0$.

Bonus: Fully differentiable with auto-diff tools (e.g TensorFlow) \Rightarrow differentiable approximation of OT! (Salimans et al., G.P.C. '18)

Distances

The 'sample complexity'

Sinkhorn Divergences

Informal Definition

Given a distance between measures, its sample complexity corresponds to the error made when approximating this distance with samples of the measures.

Known cases:

- OT: $\mathbb{E}|W(\alpha, \beta) W(\hat{\alpha}_n, \hat{\beta}_n)| = O(n^{-1/d})$ ⇒ curse of dimension (Dudley '84, Weed and Bach '18)
- MMD : $\mathbb{E}|MMD(\alpha, \beta) MMD(\hat{\alpha}_n, \hat{\beta}_n)| = O(\frac{1}{\sqrt{n}})$ ⇒ independent of dimension (Gretton '06)

What about
$$\mathbb{E}|W_{\varepsilon}(\alpha,\beta)-W_{\varepsilon}(\hat{\alpha}_n,\hat{\beta}_n)|$$
?

Sample Complexity

'Sample Complexity' of W_{ε} .

Theorem (G., C., B., C., P. '19) (Mena, Weed '19)

Entropic Regularization

Let $\mathcal{X},\mathcal{Y}\subset\mathbb{R}^d$ bounded , and $c\in\mathcal{C}^\infty$ L-Lipschitz. Then

$$\mathbb{E}|W_{\varepsilon}(\alpha, \beta) - W_{\varepsilon}(\hat{\alpha}_n, \hat{\beta}_n)| = O\left(\frac{1}{\varepsilon^{\lfloor d/2 \rfloor} \sqrt{n}}\right) \qquad \text{when } \varepsilon \to 0$$

$$\mathbb{E}|W_{\varepsilon}(\alpha, \frac{\beta}{\beta}) - W_{\varepsilon}(\hat{\alpha}_n, \hat{\beta}_n)| = O\left(\frac{1}{\sqrt{n}}\right) \qquad \text{when } \varepsilon \to +\infty.$$

where constants depend on $|\mathcal{X}|$, $|\mathcal{Y}|$, d, and $||c^{(k)}||_{\infty}$ pour $k = 0 \dots |d/2| + 1$.

 \rightarrow A large enough regularization breaks the curse of dimension.

- Notions of Distance between Measure
- 2 Entropic Regularization of Optimal Transport
- 3 Sinkhorn Divergences : Interpolation between OT and MMD Definition and properties
- 4 Conclusion

Sinkhorn Divergences

Discrete gradient flow of W_{ε} , $\varepsilon=1$

The effect of entropy

Sinkhorn Divergences

Entropic Transport is Maximum Likelihood under Gaussian noise (Rigollet Weed '18)

Consider a sample $(x_1, \ldots, x_n) \sim X$ from the model

$$X = Y + \zeta$$
 where $Y \sim \alpha_{\theta}, \ \zeta \sim \mathcal{N}(0, \varepsilon)$

. Then,

$$\hat{\theta}^{MLE} = min_{\theta} W_{\varepsilon}(\alpha_{\theta}, \frac{1}{n} \sum_{i=1}^{n} \delta x_{i})$$

0000

Distances

The effect of entropy

Sinkhorn Divergences

Sinkhorn Divergences

'Issue' of regularized Wass. Distance : $W_{c,\varepsilon}(\alpha,\alpha) \neq 0$ Proposed Solution : introduce corrective terms to 'debias' regularized Wasserstein distance.

Definition (Sinkhorn Divergences)

Let
$$\alpha \in \mathcal{M}^1_+(\mathcal{X})$$
 and $\beta \in \mathcal{M}^1_+(\mathcal{Y})$,

$$SD_{c,\varepsilon}(\alpha, \beta) \stackrel{\text{def.}}{=} W_{c,\varepsilon}(\alpha, \beta) - \frac{1}{2}W_{c,\varepsilon}(\alpha, \alpha) - \frac{1}{2}W_{c,\varepsilon}(\beta, \beta),$$

Interpolation Property

Theorem (G., Peyré, Cuturi '18), (Ramdas and al. '17)

Sinkhorn Divergences have the following asymptotic behavior :

when
$$\varepsilon \to 0$$
, $SD_{c,\varepsilon}(\alpha, \beta) \to W_c(\alpha, \beta)$, (1)

when
$$\varepsilon \to +\infty$$
, $SD_{c,\varepsilon}(\alpha, \beta) \to \frac{1}{2} MMD_{-c}^2(\alpha, \beta)$. (2)

Remark : To get an MMD, -c must be positive definite. For $c = \|\cdot\|_2^p$ with 0 , the MMD is called Energy Distance.

00000

Definition and properties

Distances

Discrete gradient flow of SD_{ε} , $\varepsilon=1$

Definition and properties

Definition and properties

Summary

$$W_{c,\varepsilon} - \varepsilon = 1, c = ||\cdot||_2^{1.5}$$

$$ED_p - p = 1.5$$

$$SD_{c,\varepsilon} - \varepsilon = 1, c = ||\cdot||_2^{1.5}$$

$$SD_{c,\varepsilon} - \varepsilon = 10^2, c = ||\cdot||_2^{1.5}$$

Figure 4 -
$$\min_{(x_1,...,x_k)} \mathcal{D}(\frac{1}{k} \sum_{i=1}^k \delta x_i, \frac{1}{n} \sum_{i=1}^n \delta y_i).$$

- 1 Notions of Distance between Measures
- 2 Entropic Regularization of Optimal Transport
- 4 Conclusion

Sinkhorn Divergences

Sinkhorn Divergences are a great notion of distance between measures!

- 'debias' regularized Wasserstein Distance
- interpolate between OT (small ε) and MMD (large ε) and get the best of both worlds :
 - inherit geometric properties from OT
 - break curse of dimension for ε large enough
- fast algorithms for implementation in ML tasks