Quant Management Assignment#6

#This notebook contains the code for the Assignment 6.

#Install IpSolveAPI package if not alresdy installed

#install.packages("lpSolveAPI")

Load the library

library(lpSolveAPI)

Solution 1 using inequalities

Let us set up the Linear problem. Note that we have 6 decision variables and 5 constraints.

lprec <- make.lp(5, 6)</pre>

Set the minimization objective function

set.objfn(lprec, c(622, 614, 630, 641, 645, 649))
lp.control(lprec,sense='min')

Set values for the rows (set the Left hand side constraints) set row(lprec, 1, c(1, 1, 1), indices = c(1, 2, 3))

set.row(lprec, 1, c(1, 1, 1), indices = c(1, 2, 3))
set.row(lprec, 2, c(1, 1, 1), indices = c(4, 5, 6))
set.row(lprec, 3, c(1, 1), indices = c(1, 4))
set.row(lprec, 4, c(1, 1), indices = c(2, 5))
set.row(lprec, 5, c(1, 1), indices = c(3, 6))

rhs <- c(100, 120, 80, 60, 70)

Set the right hand side values

rns <- c(100, 120, 80, 60, 70)
set.rhs(lprec, rhs)

set.constr.type(lprec, c("<=", "<=", "=", "=", "=")) set.bounds(lprec, lower = rep(0, 6))</pre>

Set constraint type and set variable types and bound

Finally, name the decision variables (column) and

lp.rownames <- c("CapacityA", "CapacityB", "DemandW1", "DemandW2", "DemandW3") lp.colnames <- c("PlantAW1", "PlantAW2", "PlantAW3", "PlantBW1", "PlantBW2", "PlantBW3") dimnames(lprec) <- list(lp.rownames, lp.colnames)</pre>

View the linear problem object to make sure it's correct

lprec ## Model name: PlantAW1 PlantAW2 PlantAW3 PlantBW1 PlantBW2 PlantBW3 614 ## Minimize 622 630 649 ## CapacityA 0 <= 100

 0
 0
 0
 1
 1

 1
 0
 0
 1
 0

 0
 1
 0
 0
 1

 0
 0
 1
 0
 0

 1
 0
 0
 0

 ## CapacityB 1 <= 120 ## DemandW1 0 = 80## DemandW2 0 = 60## DemandW3 1 = 70Std Std Std ## Kind Std Std Std

Real

Inf

Real

Inf

Real

Inf

write.lp(lprec, filename = "AED.lp", type = "lp")

Save this into a file

Type

Upper

Lower

constraints (rows)

Now, solve the model

solve(lprec)

Real

Inf

Real

Inf

Real

Inf

** [1] 0

Show the value of objective function, variables,

constraints and slack get.objective(lprec)

[1] 132790

get.variables(lprec)

[1] 0 60 40 80 0 30

get.constraints(lprec)

[1] 100 110 80 60 70

get.constraints(lprec) - rhs

[1] -2.842171e-14 -1.000000e+01 -1.421085e-14 0.000000e+00 0.000000e+00

Let us set up the Linear problem. Note that we had 8 decision variables and 6 constraints.

lp.control(lprec1, sense='min')

rhs \leftarrow c(100, 120, 80, 60, 70, 10)

constraints)

set.rhs(lprec1, rhs)

lprec1

Minimize

CapacityA

CapacityB

Solution 2: Using Dummy Variables

lprec1 <- make.lp(6, 8)</pre>

Set the minimization objective function

set.objfn(lprec1, c(622, 614, 630, 0, 641, 645, 649, 0))

Set values for the rows (set the Left hand side

set.row(lprec1, 2, c(1, 1, 1, 1), indices = c(5, 6, 7, 8))
set.row(lprec1, 3, c(1, 1), indices = c(1, 5))
set.row(lprec1, 4, c(1, 1), indices = c(2, 6))
set.row(lprec1, 5, c(1, 1), indices = c(3, 7))
set.row(lprec1, 6, c(1, 1), indices = c(4, 8))

Set constraint type and set variable types and bound

dimnames(lprec1) <- list(lp.rownames, lp.colnames)</pre>

622

Set the right hand side values

set.row(lprec1, 1, c(1, 1, 1, 1), indices = c(1, 2, 3, 4))

set.constr.type(lprec1, c("=", "=", "=", "=", "=", "="))
set.bounds(lprec1, lower = rep(0, 8))

Finally, name the decision variables (column) and constraints (rows)

lp.rownames <- c("CapacityA", "CapacityB", "DemandW1", "DemandW2", "DemandW3", "DemandW4")
lp.colnames <- c("PlantAW1", "PlantAW2", "PlantAW3", "PlantAW4", "PlantBW1", "PlantBW2", "PlantBW3", "PlantBW4")</pre>

Model name: ## PlantAW1 PlantAW2 PlantAW3 PlanntAW4 PlantBW1 PlantBW2 PlantBW3 PlantBW4

1

0

= 100

1 = 120

1

Show the value of objective function, variables,

View the linear program object to make sure it's correct

0 ## DemandW1 80 ## DemandW2 1 ## DemandW3 70 ## DemandW4 Std Std Std Std Std Std Std ## Kind Std ## Type Real Real Real Real Real Real Real Real Inf Inf Inf Inf Inf Inf Inf ## Upper Inf ## Lower Now solve the model solve(lprec1) ## [1] 0

get.objective(lprec1)

constraints and slack

saved above.

[1] 132790

get.variables(lprec1)

[1] 0 60 40 0 80 0 30 10

get.constraints(lprec1)

[1] 100 120 80 60 70 10

get.constraints(lprec1) - rhs

Also, We can now read the lp formulation using an lp file and solve it. I am using the same lp file which I have

Read from file and solve it

[1] 0.000000e+00 0.000000e+00 0.000000e+00 -7.105427e-15 0.000000e+00

X		# disp	olay x					
## Model name	:							
##	PlantAW1	PlantAW2	PlantAW3	PlantBW1	PlantBW2	PlantBW3		
## Minimize	622	614	630	641	645	649		
## CapacityA	1	1	1	0	0	0	<=	100
## CapacityB	0	0	0	1	1	1	<=	120
## DemandW1	1	0	0	1	0	0	=	80
## DemandW2	0	1	0	0	1	0	=	60
## DemandW3	0	0	1	0	0	1	=	70
## Kind	Std	Std	Std	Std	Std	Std		
## Type	Real	Real	Real	Real	Real	Real		
## Upper	Inf	Inf	Inf	Inf	Inf	Inf		
## Lower	0	0	0	0	0	0		

| ## [1] 0 | # get objective(x) | # get objective value | ## [1] 132790 |

get.variables(x) # get values of decision variables
[1] 0 60 40 80 0 30

get.constraints(x) # get constraints ## [1] 100 110 80 60 70