# PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-143023

(43) Date of publication of application: 03.06.1997

(51)Int.CI.

A61K 7/00

A61K 7/02

A61K 7/027

(21) Application number: 07-299905

(71) Applicant: KAO CORP

(22) Date of filing:

(72)Inventor: ABE AKIHITO 17.11.1995

YAMAKI KAZUHIRO

SUZUKI YUJI

## (54) COSMETIC

# (57) Abstract:

PROBLEM TO BE SOLVED: To obtain a cosmetic having excellent water-repellency and oil- repellency and excellent persistency and stability, particularly an oil-in-water type emulsion cosmetic by combining a specific silicone with a specific polymer.

SOLUTION: This cosmetic contains a fluorine-modified silicone and acrylic acid polymer in combination. In addition to these tow components, a hydrophobic powder and/or a water-soluble high polymer may be added thereto. The fluorine-modified silicone is, for example, a compound of the formula I[Z1 and Z2 are each formula II (Rf is perfluoroalkyl; R1 is a hydrocarbon; X, Y are each a single bond; 1 is 2-16; p is 1-200), R4 and R5 are same as R1; s is 0-200]. This fluorine-modified silicone is preferably formulated in an amount of some 0.01-99wt.% based on the whole composition. The acrylic acid polymer preferably forms gel by neutralizing it with an alkali. The amount to be formulated is about 0.1-20wt.% based on the whole amount. The amount of the hydrophobic powder is about 0.5-30wt.%, while the water-soluble polymer is about 0.01-5.0wt.%.





IJ

1

### LEGAL STATUS

[Date of request for examination]

29.08.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3432979

[Date of registration]

23.05.2003

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]





Copyright (C); 1998,2003 Japan Patent Office

## (19)日本国特許庁 (JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号

# 特開平9-143023

(43)公開日 平成9年(1997)6月3日

| (51) Int.Cl.6            |       | 酸別記号        | 庁内整理番号                | FΙ      |           |          | 4            | 技術表示箇所   |
|--------------------------|-------|-------------|-----------------------|---------|-----------|----------|--------------|----------|
| A61K                     | 7/00  |             |                       | A 6 1 K | 7/00      | ,        | J            |          |
|                          |       |             |                       |         |           | ]        | N            |          |
|                          |       |             |                       |         |           | ;        | s            |          |
|                          | 7/02  |             |                       |         | 7/02      | 1        | P            |          |
|                          | 7/027 |             |                       |         | 7/027     |          |              |          |
|                          |       |             |                       | 審查請求    | 未請求       | 請求項の数5   | OL           | (全 12 頁) |
| (21)出願番号                 |       | 特願平7-299905 |                       | (71)出願人 | . 0000009 | 18       |              |          |
|                          |       |             |                       |         | 花王株式      | 式会社      |              |          |
| (22)出願日 平成7年(1995)11月17日 |       |             | 東京都中央区日本橋茅場町1丁目14番10号 |         |           |          |              |          |
|                          |       |             |                       | (72)発明者 | 阿部        | 召仁       |              |          |
|                          |       |             | 東京都墨田区文花2-1-3 花王株5    |         |           |          |              |          |
|                          |       |             |                       |         | 社研究所      | 所内       |              |          |
|                          |       |             |                       | (72)発明者 |           |          |              |          |
|                          |       |             |                       |         |           | 墨田区文花2-  | 1-3          | 花王株式会    |
|                          |       |             |                       |         | 社研究所      |          |              |          |
|                          |       |             |                       | (72)発明者 |           |          |              |          |
|                          |       |             |                       |         |           | B田区文花2-: | 1 - 3        | 花王株式会    |
|                          |       |             |                       |         | 社研究所      | • • •    |              |          |
|                          |       |             |                       | (74)代理人 | 弁理士       | 有賀 三幸    | <b>G</b> 134 | 4)       |
|                          |       |             |                       |         |           |          |              |          |

# (54) 【発明の名称】 化粧料

# (57)【要約】

【解決手段】 フッ素変性シリコーン及びアクリル酸系 ボリマーを含有する化粧料。

【効果】 優れた撥水・撥油性を有すると共に、持続性、安定性にも優れる。

#### 【特許請求の範囲】

【請求項1】・(a)フッ素変性シリコーン及び(b) アクリル酸系ポリマーを含有することを特徴とする化粧 料。

【請求項2】 水中油型乳化化粧料である請求項1記載 の化粧料。

【請求項3】 更に(c)疎水性粉体を含有する請求項 1又は2記載の化粧料。

【請求項4】 疎水性粉体が、フッ素化合物処理粉体で ある請求項3記載の化粧料。

【請求項5】 更に(d)水溶性高分子を含有する請求 項1~4のいずれか1項記載の化粧料。

#### 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、優れた撥水・撥油 性を有し、持続性及び安定性に優れた化粧料に関する。 [0002]

【従来の技術】水中油型乳化化粧料は、連続相が水性成 分で構成されているため、油性感が少なく使用感に優れ 型乳化化粧料は、油中水型乳化化粧料と比較して、持続 性、撥水性に劣り、化粧くずれし易いという欠点があっ た。

【0003】このような欠点を解決するため、パーフル オロボリエーテル化合物を配合し、撥油性及び耐水性を 付与した化粧料が提案された(特開昭61-23492 8号公報、特開昭63-107911号公報)。しか し、パーフルオロボリエーテル化合物は化粧料に通常用 いられる他の添加剤とは相溶性が悪く、パーフルオロ化 合物のみを油剤とし、特に乳化化粧料に多量に配合した 場合には、安定な化粧料を得ることが困難である。ま た、伸びが重く、さっぱり感に欠けるという問題があっ た。

#### [0004]

【発明が解決しようとする課題】従って、本発明の目的 は、優れた撥水・撥油性を有すると共に、持続性及び安 定性にも優れる化粧料を提供することにある。

#### [0005]

【課題を解決するための手段】斯かる実情に鑑み本発明 者らは鋭意研究を行った結果、フッ素変性シリコーンと アクリル酸系ポリマーを併用した化粧料が優れた撥水・ 撥油性を示すと共に、持続性と安定性にも優れることを 見出し、本発明を完成した。

【0006】すなわち、本発明は、(a)フッ素変性シ リコーン及び(b)アクリル酸系ポリマーを含有すると とを特徴とする化粧料を提供するものである。また、本 発明は、これら2成分に加え、更に(c)疎水性粉体及 る等の特徴を有している。しかしながら、従来の水中袖 20 び/又は(d)水溶性高分子を含有する化粧料を提供す るものである。

> 【0007】本発明で用いられる(a)成分のフッ素変 性シリコーンとしては、例えば下記一般式(1)~

- (4)で表される構造単位の1以上と、下記一般式
- (5)で表される構造単位とを有するものを挙げること ができる。

[0008]

【化1】

$$\begin{array}{c|c}
 & R^{1} \\
 & Si0 \\
 & CH_{2}O - (CH_{2})_{n} - R_{f} \\
 & CH_{2}O - (CH_{2})_{n} - R_{f}
\end{array}$$
(2)

$$\begin{array}{c|c}
 & R^{1} \\
 & I \\
 & Si0 \\
 & (CH_{2})_{\ell} - (OR^{3})_{r} - 0 - (CH_{2})_{n} - R_{f}
\end{array}$$
(3)

$$\begin{array}{c|c}
 & R^1 \\
 & Si0 \\
 & (CH_2)_{\ell}R_f
\end{array}$$
(4)

【0009】[式中、R,及びR,は、同一又は異なっ ていてもよく、炭素数1~20の直鎖若しくは分岐鎖の バーフルオロアルキル基又は次式:H(CF<sub>2</sub>),-(t は1~20の整数を示す) で表される $\omega$ -H-パーフル 40 し、rは0~5の数を示し、sは0~200の数を示 オロアルキル基を示し; R1、R4 及びR1は、同一又 は異なっていてもよく、炭素数1~20の直鎖若しくは 分岐鎖の脂肪族炭化水素基又は炭素数5~10の脂環式. 若しくは芳香族炭化水素基を示し:R'は、水素原子、 炭素数1~20の直鎖若しくは分岐鎖の脂肪族炭化水素 基、炭素数5~10の脂環式若しくは芳香族炭化水素 基、炭素数1~20のパーフルオロアルキル基又は次 式:H(CF<sub>1</sub>),-(tは1~20の整数を示す)で表 されるω-H-パーフルオロアルキル基を示し:R 3 は、炭素数2~6の2価の炭化水素基を示し; X及び

Yは、単結合、-CO-又は炭素数1~6の2価の炭化 水素基を示し; 1は2~16の数を示し、m及びnはそ れぞれ1~16の数を示し、pは1~200の数を示

【0010】一般式(1)~(5)で表される構造単位 において、R、及びR、で示されるパーフルオロアルキ ル基としては、直鎖及び分岐鎖のいずれのものも用いる ことができ、例えば、CF<sub>1</sub>-、C<sub>2</sub>F<sub>5</sub>-、C<sub>4</sub>F<sub>9</sub>-、  $C_6F_{13} - C_8F_{17} - C_{10}F_{21} - H(CF_2)_{2} - C_{10}F_{21} - H(CF_2)_{2} - C_{10}F_{21} - C_{10}F_{21}$  $H(CF_1)_4-$ ,  $H(CF_2)_6-$ ,  $H(CF_2)_8-$ , (C, F,) C(CF,), -等を挙げることができる。ま た、H(CF<sub>1</sub>),-におけるtとしては、6~20の整 50 数が好ましい。

【0011】R¹、R¹及びR³で示される炭化水素基としては、例えばメチル基、エチル基、プロビル基、ブラル基、ベンチル基、ヘキシル基、ヘブチル基、オクチル基、ノニル基、デシル基等の直鎖アルキル基;イソプロビル基、sーブチル基、tーブチル基、ネオベンチル基、1ーエチルプロビル基、2ーエチルヘキシル基等の分岐鎖アルキル基;シクロベンチル基、シクロヘキシル基等の環状アルキル基;フェニルナフチル基等の芳香族炭化水素基等を挙げることができる。また、R³で示される2価の炭化水素基としては、炭素数2~4の直鎖又10は分岐鎖のアルキレン基が好ましく、特にエチレン基、プロビレン基が好ましい。

【0012】とのような構造単位を有する(a)成分のフッ素変性シリコーンとしては、例えば、下記一般式(6);

【0016】 [式中、 $Z^{\circ}$  は、一般式(1)、(2)、(3)及び(4)から選ばれる構造単位を示し、 $R^{\circ}$  は 炭素数 $1\sim20$ の直鎖若しくは分岐鎖の脂肪族炭化水素 基又は炭素数 $5\sim10$ の脂環式若しくは芳香族の炭化水素基を示し、uは $0\sim200$ の数を示し、s、 $R^{\circ}$  及び  $R^{\circ}$  は前記と同じ意味を示す]で表されるものを挙げる ことができる。

【0017】一般式(1)~(5)で表される構造単位 及び一般式(6)、(7)で表されるフッ素変性シリコ ーンにおける各式中の基としては、持続性及び使用性を 30 考慮した場合、下記のものが好ましい。R, 及びR, と しては、炭素数6~20の直鎖若しくは分岐鎖のパーフ ルオロアルキル基又は次式; H(CF<sub>2</sub>), - (tは6~ 20の整数を示す)で表されるω-H-パーフルオロア ルキル基が好ましい。R'、R'及びR'としては、同 一又は異なっていてもよく、炭素数1~4の直鎖又は分 岐鎖の脂肪族炭化水素基が好ましい。R' としては、水 素原子、炭素数6~20のパーフルオロアルキル基又は 次式; H(CF<sub>1</sub>), - (tは6~20の整数を示す)で 表されるω-Η-パーフルオロアルキル基が好ましい。 R'としては、炭素数2~4の2価の炭化水素基が好ま しい。X及びYは、単結合、-CO-又は炭素数1~4 の2価の炭化水素基が好ましく、1は2~10、特に2 ~5の数が好ましく、m及びnは、それぞれ2~10、 特に1~6の数が好ましく、pは1~100、特に1~ 10の数が好ましく、rは0~20、特に0~5の数が 好ましく、sは $0\sim100$ 、特に $0\sim10$ の数が好まし い。なお、一般式(7)で表されるフッ素変性シリコー ンの構造単位の配列は、交互でもブロックでもランダム でもよい。

\* [0013]

【化2】

$$R^{4}-Z^{1}-S_{10} \xrightarrow{\begin{array}{c} R^{4} \\ I \\ S_{10} \\ R^{5} \end{array}} \xrightarrow{\begin{array}{c} R^{4} \\ I \\ S_{10} \\ S_{1} \\ S_{1} \end{array}} \xrightarrow{\begin{array}{c} R^{4} \\ I \\ S_{1} \\ S_{2} \end{array}} = (6)$$

【0014】 [式中、 $Z^1$  及び $Z^2$  は、少なくとも一方は一般式(1)、(2)、(3)及び(4)から選ばれる構造単位を示し、残余は単結合を示し、S、 $R^1$  及び $R^2$  は前記と同じ意味を示す〕で表されるもの、又は下記一般式(7);

[0015]

[化3]

【0018】(a)成分のフッ素変性シリコーンの好ましい例としては、一般式(2)及び一般式(5)で表される構造単位を有する、特開平5-247214号公報に記載された重合度2~200のフッ素変性シリコーン、市販品である旭硝子社製のFSL-300、FSL-400、信越化学工業社製のX-22-819、X-22-820、X-22-821、X-22-822及びFL-100、東レダウコーニングシリコーン社製のFS1265等を挙げることができる。

) 【0019】(a)成分のフッ素変性シリコーンは、1種又は2種以上を組み合わせて用いることができ、全組成中に0.01~99重量%(以下、単に%で示す)配合するのが好ましく、特に0.01~80%、更に0.1~70%配合すると、より持続性に優れ、使用感も良好であり好ましい。

【0020】また、本発明で用いられる(b)成分のアクリル酸系ポリマーは、アルカリ剤で中和することによってゲルを形成するものである。従ってアクリル酸系ポリマーはアルカリ剤で中和することによってゲルを形成40 するものであれば特に限定されず、一般に水溶性アルカリ増粘型ポリマーと称せられるものが用いられる。このようなアクリル酸系ポリマーとしては、例えばB.F.グットリッチ社(B.F.Coodrich Company)から市販されているカーボポール(Carbopol)907、910、934、934-P、940、941、954、980、981、1342、1382、2984、5984等やベムラン(Pemulen)TR-1、TR-2等、リポ社(Lipo Chemicals Inc.)から市販されているハイパン(Hypam)SA-100H、SR-150H、SS-201、

50 QT-100等、住友精化社から市販されているアクベ

ック (AQUPEC) HV-501、HV-504、HV-5 05等が挙げられる。 これらのうち、特に好ましいアク リル酸系ポリマーとしては、カーボポール941、13 42;ペムランTR-1、TR-2が挙げられる。

【0021】本発明の化粧料におけるアクリル酸系ポリ マーは1種又は2種以上を組合わせて用いることがで き、その配合量は、ポリマーの種類等により異なり適宜 決定すればよいが、一般的に化粧料全量中0.1~20 %、特に0.2~1%とすることが好ましい。

【0022】アクリル酸系ポリマーを中和しゲル化する アルカリ剤としては、例えば水酸化ナトリウム、水酸化 カリウム、水酸化アンモニウム等の無機塩基及びトリエ タノールアミン、L-アルギニン等の有機塩基が挙げら れる。

【0023】本発明の化粧料には、更に必要に応じて (c) 成分の疎水性粉体を配合することができ、撥水・ 撥油性及び持続性が更に向上するので好ましい。ここで 用いられる疎水性粉体としては、通常の化粧料に用いら れる疎水性粉体のほか、例えば無機粉体及び有機粉体か ら選ばれる粉体の1種又は2種以上の表面を疎水化処理 20 した疎水化処理粉体も含まれる。表面処理法としては、 例えば粉体表面に油脂を吸着させたり、水酸基等の官能 基を利用し、エステル化やエーテル化を起こさせ粉体を 親油的にする油脂処理法、脂肪酸の亜鉛塩やマグネシウ ム塩を用いた金属石ケン処理法、ジメチルポリシロキサ ン又はメチル水素ポリシロキサンを用いたシリコーン処 理法、パーフルオロアルキル基を有するフッ素化合物で 処理する方法〔ここでフッ素化合物とは、例えば次の一 般式(8)

[0024] 【化4】

> (8)  $[C_v F_{2v+1} C_w H_{2w} O]_v PO(OH)_{3-v}$

【0025】(式中、vは4~14の整数、wは1~1 2の整数、yは1~3の整数を示す)で表されるポリフ ルオロアルキルリン酸(米国特許第3632744号参 照)、フルオロアルキルジ(オキシエチル)アミンリン 酸エステル(特開昭62-250074号公報参照)、 バーフルオロアルキル基を有する樹脂(特開昭55-1 67209号公報参照)、四フッ化エチレン樹脂、パー フルオロアルコール、パーフルオロエポキシ化合物、ス ルホアミド型フルオロリン酸、パーフルオロ硫酸塩、パ ーフルオロカルボン酸塩、パーフルオロアルキルシラン (特開平2-218603号公報参照)等が適用される がこれらに限られるものではない。〕等が挙げられる。 処理される母粉体としては、顔料、紫外線吸収剤等の水 及び油に実質的に不溶な物質であれば特に制限されず、 例えば酸化チタン、酸化鉄、群青、亜鉛華、酸化マグネ シウム、酸化ジルコニウム、マイカ、セリサイト、タル ク、シリカ、カオリン、水酸化クロム、カーボンブラッ 50 社)等〕等};保湿剤(ソルビトール、キシリトール、

ク等の無機顔料、ナイロンパウダー、ポリメチルメタク リレート、スチレンージビニルベンゼン共重合体、ポリ エチレン粉末等の有機粉体及び有機色素等が挙げられ

【0026】上記の疎水性粉体のうち、特にフッ素化合 物で表面処理した粉体を用いるのが、撥水・撥油性及び 持続性の点において好ましい。

【0027】これらの疎水性粉体は、1種又は2種以上 を組合わせて用いることができ、全組成中に0.5~3 0%、特に1~20%配合するのが好ましい。

【0028】また、本発明の化粧料には、必要により (d)成分の水溶性高分子を配合すると、乳化安定性及 び感触が更に向上するので好ましい。ここで用いられる 水溶性高分子としては、通常の化粧料等に用いられるも のであれば特に制限されず、例えばグアーガム、クイン スシード、カラギーナン、ローカストピーンガム、アラ ビアガム、トラガカント、ペクチン、マンナン、デンプ ン、アルギン酸ナトリウム、ヒアルロン酸ナトリウム、 キサンタンガム、プルランデキストラン、カードラン、 コラーゲン、ケラチン、カゼイン、アルブミン、ゼラチ ン、コンドロイチン硫酸、キチン、カチオン化セルロー ス、ヒドロキシエチルセルロース、ヒドロキシプロピル セルロース、ヒドロキシプロピルメチルセルロース、ヒ ドロキシエチルセルロース、ヒドロキシプロピルトリメ チルアンモニウムクロリドエーテル、カルボキシメチル セルロース、デキストラン硫酸、カルボキシメチルキチ ン、可溶性デンプン、カルボキシメチルデンプン、アル ギン酸プロピレングリコール、ポリビニルアルコール、 ポリビニルピロリドン、ポリアクリル酸ナトリウム、ポ 30 リビニルメチルエーテル、ポリエチレングリコール等が 挙げられる。就中特に好ましい水溶性高分子としては、 キサンタンガム、ヒアルロン酸ナトリウム、ヒドロキシ エチルセルロース等が挙げられる。

【0029】とれらの水溶性高分子は1種又は2種以上 を組合わせて用いることができ、全組成中に0.01~ 5. 0%配合するのが好ましく、特に0. 05~3. 0 %、更に0.05~0.3%が好ましい。

【0030】本発明の化粧料には、更に通常の化粧料に 用いられるその他の成分を、本発明の効果を損なわない 範囲で適宜配合することができる。その他の成分として は、油性基剤 {スクワラン、流動パラフィン、ワセリン 等の炭化水素油、鯨ロウ、カルナウバロウ等のロウ類、 ホホバ油、ミリスチン酸オクチルドデシル、ジオクタン 酸ネオペンチルグリコール等のエステル油類、オリーブ 油、マカデミアナッツ油等の天然動植物油脂、ジグリセ ライド、シリコーン油、フッ素油〔FOMBLIN H C-04, FOMBLIN HC-25, FOMBLI N HC-R (モンテフロス社)、デムナムS-20、 デムナムS-65、デムナムS-200 (ダイキン工業 (6)

グリセリン、マルチトール、プロピレングリコール、 1, 3-ブチレングリコール、1, 4-ブチレングリコ ール、ピロリドンカルボン酸ナトリウム、乳酸、乳酸ナ トリウム、ポリオキシプロピレン脂肪酸エステル、ポリ エチレングリコール等);紫外線吸収剤(パラアミノ安 息香酸エチル、パラジメチルアミノ安息香酸オクチル (エスカロール (ESCALOL) 507 (VANDY K社)〕、シノキサート、パラメトキシ桂皮酸オクチル [エスカロール557、パーソール (Parsol) M CX (GIVAUDAN社))、2-(2-ヒドロキシ 10 -5-メチルフェニル) ベンゾトリアゾール、オキシベ ンゾン [エスカロール567、スペクトラソルブ (Sp ectra-Solb) UV9 (American C yanamid社) ]、ウロカニン酸、ウロカニン酸エ チル、ベンゾフェノン、テトラヒドロキシベンゾフェノ ン〔例えば、ユビナールD50 (BASF社)〕、4t-ブチル-4'-メトキシベンゾイルメタン (パーソ ール1789〕、特開平2-212579号公報、特開 平3-188041号公報に記載の次の一般式(9) [0031]

【0032】〔式中、Rは水酸基、炭素数1~8のアル コキシ基、炭素数1~8のアルケニルオキシ基若しくは (ポリオキシアルキレン) オキシ基を示し、又は2個の 30 Rでα-メチレンジオキシ基を形成してもよく、xは1\*

$$-0_{1/2}$$
  $-\frac{\text{CH}_3}{\text{SiO}_{1/2}}$   $-\frac{\text{CH}_3}{\text{SiO}_{1/2}}$  を  $\text{PD}^{\text{H}}$  、  $\text{H}-\frac{\text{SiO}_{1/2}}{\text{CH}_3}$  を  $\text{HM又はM}^{\text{H}}$  に  $\text{CH}_3$ 

【0038】製造例1 [0039]

【化5】

\*~3の整数を示す〕で表されるベンゾイルピナコロン誘 導体等};アルコール類、キレート剤等の抗酸化剤、pH 調整剤(乳酸-乳酸ナトリウム、クエン酸-クエン酸ナ トリウム等の緩衝剤)、防腐剤(尿素、メチルパラベ ン、エチルパラベン、プロピルパラベン、ブチルパラベ ン、安息香酸ナトリウム等)、増粘剤、塩化ナトリウ ム、塩化カリウム等の電解質等)、色素、血行促進剤、 冷感剤、制汗剤、殺菌剤、皮膚賦活剤、香料の他、美白 剤(アルブチン、コウジ酸、アスコルビン酸及びその誘 導体等)などの薬効成分、細胞間脂質(セラミド、セラ ミド類似構造物質等)などが挙げられる。

【0033】また、ここでいうセラミド類似構造物質と しては、特開昭62-228048号公報に記載のアミ ド誘導体等が挙げられる。

【0034】本発明の化粧料は、常法に従って製造する ことができ、乳液、クリーム、軟膏、ファンデーショ ン、口紅、アイシャドー等の化粧料の様々な剤型とする ことができる。特に、水中油型乳化化粧料として好適で ある。

20 [0035]

【発明の効果】本発明の化粧料は、優れた撥水・撥油性 を有すると共に、持続性及び安定性に優れたものであ る。

[0036]

【実施例】以下、実施例により本発明を更に詳しく説明 するが、本発明はこれらにより限定されるものではな い。なお、併せて、フッ素変性シリコーンの製造法を示 すとともに、化学式の一部を下記のとおりに略記する。 [0037]

【化6】

【化7】

(A-1)

【0040】冷却管及び磁気攪拌子を備えた100ml の二つ口フラスコに、窒素雰囲気下、メチル水素ポリシ ロキサン ("MD,M") 11.0g(25.5mmol)、 C<sub>8</sub>F<sub>17</sub>-CH<sub>2</sub>CH<sub>2</sub>-O-CH<sub>2</sub>CH (OH) CH<sub>2</sub>- $O-CH_2CH=CH_2$  35. 4g (61. 3mmol), 塩化白金酸の2%イソプロピルアルコール溶液40μ1 (1.2×10<sup>-3</sup>mmo<sup>3</sup>)を加え、60°Cで6時間攪拌し\*

\* た。 反応混合物を室温まで冷却し、未反応の化合物を減 圧留去し、目的とする上記式で表されるフッ素変性シリ 10 コーン(A-1)38.0gを無色透明の油状物として 得た(収率94%)。

【0041】製造例2

[0042]

[{k8}]

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \begin{array}{c} \text{CH}_3 \\ \text{SiO} \\ \text{CH}_3 \\ \end{array} \begin{array}{c} \text{CH}_3 \\ \text{SiO} \\ \text{CH}_3 \\ \end{array} \begin{array}{c} \text{CH}_3 \\ \text{Si} \\ \text{CH}_3 \\ \end{array} \begin{array}{c} \text{CH}_3 \\ \text{Si} \\ \text{CH}_3 \\ \end{array}$$

(A-2)

【0043】製造例1で用いた装置に、次式;

[0044]

※ 【化9】

【0045】で表されるメチル水素ポリシロキサン(東 芝シリコーン社製)を6.0g(14.0mmol)、(C 6F1,-CH2CH2-O-CH2),CH-O-CH2CH = CH, 27.6g (33.5 mmol)、塩化白金酸の2 %イソプロビルアルコール溶液110.5μ1(4.0 ×10<sup>-3</sup> mmo1) を加え、製造例1と同様の方法により、★ ★目的とする上記式で表されるフッ素変性シリコーン(A -2)23.2gを無色透明の油状物として得た(収率 80%).

【0046】製造例3

[0047]

【化10】

$$c_{10}F_{21} \xrightarrow{0} \xrightarrow{CH_3} \xrightarrow{CH_3} \xrightarrow{CH_3} \xrightarrow{CH_3} \xrightarrow{CH_3} \xrightarrow{CH_3} c_{10}F_{21}$$

(A-3)

【0048】製造例1で用いた装置に、窒素雰囲気下、 キシレン12m1、メチル水素ポリシロキサン("MD, M'') 12. 0 g (27. 8 mmol),  $C_{10}F_{21}-CH_{2}C$  $H_2 - O - CH_2CH = CH_2 + 0.4g + 66.8mmo$ 1) 、塩化白金酸の2%イソプロピルアルコール溶液1 01 µ 1 (3. 1×10<sup>-3</sup> mmol) を加え、製造例1と同 50 【0050】

様の方法により、目的とする上記式で表されるフッ素変 性シリコーン(A-3)41.0gを無色透明のワック ス状物として得た(収率90%)。このものの融点は3 7.0℃であった。

【0049】製造例4

特開平9-143023

14

【化11】



(8)

(A-4)

【0051】製造例1で用いた装置に、メチル水素ポリ シロキサン (MD, D", M) (東芝シリコーン社製)を 19.  $0 g (4 4. 1 mmol), C_8 F_{17} - CH_2 CH_2 O-CH_2CH=CH_2$  53. 3g (105. 8 mmol) を仕込んだ。次に、フラスコ内の温度を80℃に昇温し たのち、塩化白金酸の2%イソプロピルアルコール溶液 174.5μ1を加え、5時間攪拌した。反応混合物を 室温まで冷却したのち、ヘキサン50ml及び活性炭 \*

13

\*2.2gを加え、室温で1時間攪拌した。その後、活性 炭を濾別し、溶媒を留去した。未反応の化合物を減圧留 去し、目的とする上記式で表されるフッ素変性シリコー ン(A-4)49.4gを無色透明の油状物として得た (収率78%)。

【0052】製造例5

[0053]

【化12】



(A-5)

【0054】製造例1で用いた装置に、メチル水素ポリ 30%した。以下、製造例4と同様にして、目的とする上記式 シロキサン (MD, D", M) (東芝シリコーン社製)を 25. 0g (58. 0 mmol),  $CH_2 = CH - CH_2 - C$ (CF<sub>3</sub>), C<sub>3</sub>F<sub>7</sub> 50. 1g (139. 2mmol)を仕 込んだ。次に、フラスコ内の温度を80℃に昇温したの ち、塩化白金酸の2%イソプロビルアルコール溶液23

0. 0 μ 1 (7. 0×10<sup>-3</sup>mmo1) を加え、5時間攪拌※

で表されるフッ素変性シリコーン(A-5)58.3g を無色透明の油状物として得た(収率87%)。

【0055】製造例6

[0056]

【化13】

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \end{array} \begin{array}{c} \text{CH}_3 \\ \text{SiO} \\ \text{CH}_3 \end{array} \\ \begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \end{array} \end{array}$$

(A-6)

【0057】製造例1で用いた装置に、トルエン20m (14. 9 mmol),  $C_6 F_{13} - C H_2 C H_2 - O - C H_2 C$ 1、メチル水素ポリシロキサン (MD, D", M) 6.4 g 50 H (OCOC, F, 5) - CH, -O-CH, CH=CH,

$$\begin{array}{c} \text{11} \\ \text{C}_8\text{F}_{17} \\ \text{OH} \end{array} \\ \begin{array}{c} \text{CH}_3 \\ \text{S}_{10} \\ \text{CH}_3 \\ \text{CH}_3 \end{array} \\ \begin{array}{c} \text{CH}_3 \\ \text{S}_{10} \\ \text{CH}_3 \end{array} \\ \begin{array}{c} \text{CH}_3 \\ \text{S}_{10} \\ \text{CH}_3 \end{array} \\ \begin{array}{c} \text{CH}_3 \\ \text{OH} \end{array} \\ \begin{array}{c} \text{C}_8\text{F}_{17} \\ \text{OH} \end{array}$$

(A-1)

【0040】冷却管及び磁気撹拌子を備えた100mlの二つ□フラスコに、窒素雰囲気下、メチル水素ポリシロキサン("MD,M")11.0g(25.5mmol)、C,F,,-CH,CH,-O-CH,CH(OH)CH,-O-CH,CH=CH,35.4g(61.3mmol)、塩化白金酸の2%イソプロビルアルコール溶液40μl(1.2×10<sup>-3</sup>mmol)を加え、60℃で6時間撹拌し\*

\*た。反応混合物を室温まで冷却し、未反応の化合物を減 圧留去し、目的とする上記式で表されるフッ素変性シリ 10 コーン(A-1)38.0gを無色透明の油状物として 得た(収率94%)。

【0041】製造例2

[0042]

[{£8]

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \begin{array}{c} \text{CH}_3 \\ \text{SiO} \\ \text{CH}_3 \\ \end{array} \begin{array}{c} \text{CH}_3 \\ \text{SiO} \\ \text{CH}_3 \\ \end{array} \begin{array}{c} \text{CH}_3 \\ \text{Si} \\ \text{CH}_3 \\ \end{array} \begin{array}{c} \text{CH}_3 \\ \text{Si} \\ \text{CH}_3 \\ \end{array} \begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \end{array}$$

(A-2)

【0043】製造例1で用いた装置に、次式;

[0044]

※【化9】

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \begin{array}{c} \text{CH}_3 \\ \text{SiO} \\ \text{CH}_3 \\ \end{array}$$

【0045】で表されるメチル水素ポリシロキサン(東芝シリコーン社製)を6.0g(14.0mmol)、(C F<sub>1</sub>,-CH<sub>2</sub>CH<sub>2</sub>-O-CH<sub>2</sub>),CH-O-CH<sub>2</sub>CH = CH<sub>2</sub> 27.6g(33.5mmol)、塩化白金酸の2%イソプロビルアルコール溶液110.5μ1(4.0×10<sup>-3</sup>mmol)を加え、製造例1と同様の方法により、★

★目的とする上記式で表されるフッ素変性シリコーン (A - 2) 23.2 gを無色透明の油状物として得た(収率 80%)。

【0046】製造例3

[0047]

[化10]

$$\begin{array}{c|c} & & \text{CH}_3 & \text{CH}_3 \\ \text{C}_{10}\text{F}_{21} & & \text{CH}_3 \\ \text{CH}_3 & \text{CH}_3 & \text{CH}_3 \\ \text{CH}_3 & \text{CH}_3 & \text{CH}_3 \\ \end{array} \\ \begin{array}{c} \text{CH}_3 \\ \text{CH}_3 & \text{CH}_3 \\ \text{CH}_3 & \text{CH}_3 \\ \end{array} \\ \begin{array}{c} \text{CH}_3 \\ \text{CH}_3 & \text{CH}_3 \\ \text{CH}_3 & \text{CH}_3 \\ \end{array} \\ \end{array}$$

(A-3)

様の方法により、目的とする上記式で表されるフッ素変性シリコーン(A-3)41.0gを無色透明のワックス状物として得た(収率90%)。このものの融点は37.0℃であった。

【0049】製造例4

[0050]

【化11】

$$\mathsf{CH}_3 - \mathsf{Sio} - \mathsf{CH}_3 - \mathsf{Sio} - \mathsf{CH}_3 - \mathsf{Sio} - \mathsf{CH}_3 - \mathsf{CH}_3$$

(8)

(A-4)

【0051】製造例1で用いた装置に、メチル水素ポリ シロキサン (MD, D", M) (東芝シリコーン社製)を 19. 0g (44. 1 mmol), C, F, -CH, CH, - $O-CH_2CH=CH_2$  53. 3g (105. 8 mmol) を仕込んだ。次に、フラスコ内の温度を80℃に昇温し たのち、塩化白金酸の2%イソプロビルアルコール溶液 174.5μ1を加え、5時間攪拌した。反応混合物を 室温まで冷却したのち、ヘキサン50ml及び活性炭 \* \*2.2gを加え、室温で1時間攪拌した。その後、活性 炭を濾別し、溶媒を留去した。未反応の化合物を減圧留 去し、目的とする上記式で表されるフッ素変性シリコー ン(A-4) 49. 4gを無色透明の油状物として得た (収率78%)。

【0052】製造例5

[0053]

【化12】



(A-5)

【0054】製造例1で用いた装置に、メチル水素ポリ 30%した。以下、製造例4と同様にして、目的とする上記式 シロキサン (MD, D", M) (東芝シリコーン社製)を 25. 0g (58. 0 mmol),  $CH_2 = CH - CH_2 - C$ (CF<sub>3</sub>),C<sub>3</sub>F<sub>7</sub>50. lg(139.2mmol)を仕 込んだ。次に、フラスコ内の温度を80℃に昇温したの ち、塩化白金酸の2%イソプロビルアルコール溶液23 0. 0 μ 1 (7. 0×10<sup>-3</sup>mmo1) を加え、5時間攪拌※

で表されるフッ素変性シリコーン(A-5)58.3g を無色透明の油状物として得た(収率87%)。

【0055】製造例6

[0056]

【化13】



【0057】製造例1で用いた装置に、トルエン20m (14.9 mmol),  $C_{5}F_{13}-CH_{2}CH_{2}-O-CH_{2}C$ 1、メチル水素ポリシロキサン (MD, D", M) 6. 4g 50 H (OCOC, F1, ) - CH, -O-CH, CH=CH,

31. 2g (35.6 mmol)、塩化白金酸の2%イソプロピルアルコール溶液58.9 $\mu$ l (0.89×10<sup>-3</sup> mmol)を加え、製造例1と同様の方法により、目的とする上記式で表されるフッ素変性シリコーン(A-6)25.2gを無色透明の油状物として得た(収率78%)。

15

#### [0058] 実施例1

表5 に示す組成の化粧料を常法により製造した。得られた化粧料について、撥水・撥油性、持続性及び安定性を下記の評価方法により評価した。結果を表5 に示す。 【0059】(評価方法)

(1) 撥水性: 得られた化粧料を豚皮に2 µ1 / cm² 塗布し、そこに水を滴下し、水滴のなす角度(接触角)を以下の基準に従って評価した。

[0060]

【表1】

○:水との接触角(θ)が80°以上。

○: 水との接触角(θ)が60°~80°未満。

△:水との接触角(θ)が40°~60°未満。

×:水との接触角(θ)が40°未満。

【0061】(2) 撥油性: 得られた化粧料を豚皮に  $2\mu$ 1 /cm²塗布し、そとにスクワランを滴下し、スクワラン滴のなす角度(接触角)を以下の基準に従って評価した。

[0062]

【表2】

◎:スクワランとの接触角(θ)が60°以上。

○:スクワランとの接触角(θ)が40°~60°未満。

 $\triangle$ : スクワランとの接触角( $\theta$ )が20°  $\sim$  40° 未満。

 $x: スクワランとの接触角(\theta) が20°未満。$ 

[0063] (3) 持続性:得られた化粧料をヒト額に  $2\mu1$  / cm² 塗布し、7時間後に残存する2- エチルヘキシル-p- メトキシシンナメートを定量し、その残存率を以下の基準に従って評価した。

[0064]

【表3】

10 **②**:2-エチルヘキシル-p-メトキシシンナメートの 残存率が80%以上。

○:2-エチルヘキシル-p-メトキシシンナメートの 残存率が70%~80%未満。

 $\triangle: 2-x$ チルヘキシルーp-xトキシシンナメートの 残存率が6.0%~7.0%未満。

X: 2- エチルヘキシル-p- メトキシシンナメートの残存率が60%未満。

【0065】(4)安定性:得られた化粧料を50℃で 1ヶ月保存した後、その状態を目視により、以下の基準 20 に従って評価した。

[0066]

【表4】

◎:状態に変化は認められない。

〇:状態にやや変化が認められる。

△:状態に大きな変化が認められる。

×:分離が認められる。

[0067]

【表5】

| 13 MIT 3 | 14502 |
|----------|-------|
| 18       |       |
| 7        |       |

| · # 4) (%)                                                                                                                                                                                                                             | 本                                     | 発 明                                                                                                                   | 8                                                                                                                                                        | 比                                                                                             | 交品                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| . 成分(%)                                                                                                                                                                                                                                | 1                                     | 2                                                                                                                     | 3                                                                                                                                                        | 1                                                                                             | 2                                                                                                                 |
| 製造例1のファ素変性シリコーン (A-1) アクリル酸系ポリマー (ペムラン TR-2) アクリル酸系ポリマー (カーボボール 941) ファ素化合物処理酸化チタン*キサンタンガム 酸ゲリセリン モノステアリン酸 ツルビタン 2-エチルヘキシル・p-メトキシシンナメート4-メトキシー4'・t-ブチルジベンゾイルメタン ジメチルボリシクロシロキサンスクワランセタノール ステアリルアルコールブチルバラベンメチルパラベングリセリン L-アルギニン 香 料 精製水 | 10.0<br>0.2<br>0.2<br>10.0<br>0.1<br> | 10.0<br>0.2<br>0.2<br>10.0<br>-<br>3.0<br>3.0<br>10.0<br>10.0<br>10.0<br>2.4<br>1.6<br>0.1<br>0.4<br>4<br>4.75<br>2.4 | 10.0<br>0.2<br>0.2<br>0.2<br>-<br>3.0<br>10.0<br>10.0<br>10.0<br>2.4<br>1.6<br>0.1<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4 | 10.0<br>-<br>-<br>3.5<br>1.5<br>3.0<br>3.0<br>10.0<br>10.0<br>2.4<br>1.6<br>0.1<br>0.2<br>5.0 | - 0.2<br>0.2<br>0.2<br>- 3.0<br>10.0<br>10.0<br>10.0<br>2.4<br>1.6<br>0.1<br>0.4<br>1.7<br>5.0<br>4<br>1.7<br>5.7 |
| 樹水性                                                                                                                                                                                                                                    | 0                                     | 0                                                                                                                     | 0                                                                                                                                                        | 0                                                                                             | ×                                                                                                                 |
| <b>撥油性</b>                                                                                                                                                                                                                             | 0                                     | · (Q)                                                                                                                 | 0                                                                                                                                                        | 0                                                                                             | Δ                                                                                                                 |
| 持統性                                                                                                                                                                                                                                    | 0                                     | 0                                                                                                                     | 0                                                                                                                                                        | ×                                                                                             | ×                                                                                                                 |
| 安定性                                                                                                                                                                                                                                    | 0                                     | 0                                                                                                                     | 0                                                                                                                                                        | ×                                                                                             | 0                                                                                                                 |

\*:酸化チタン150gを丸底フラスコに入れ、60℃に加熱する。これに、 0

(C6F13CH2CH2D)2PH 1 3 g とイソプロピルエーテル 1 5 0 0 g を溶解加熱 (5 0 ℃) したものを加え、6 0 ℃で 4 時間混合する。その後 5 0 ~ 6 0 ℃でイソプロピルエーテルを減圧留去し、乾燥して得たもの。

【0068】表5から明らかなように、本発明品は比較 品に比べ、撥水・撥油性、持続性及び安定性において良

\*【0069】実施例2(乳液)

下記組成の乳液を常法に従って調製した。

好な結果を示した。

\* 【表6】

| (成分)                                    | (%)  |
|-----------------------------------------|------|
| 製造例2のフッ素変性シリコーン(A-2)                    | 10.0 |
| アクリル酸系ポリマー (ベムラン TR-2)                  | 0.1  |
| アクリル酸系ポリマー (カーボポール 941)                 | 0.1  |
| フッ素化合物処理酸化チタン(実施例 1 と同じもの)              | 5.0  |
| ヒアルロン酸                                  | 0.1  |
| ジメチルポリシクロシロキサン                          | 20.0 |
| 2-エチルヘキシル-p-メトキシシンナメート                  | 3.0  |
| <b>4 - メトキシ - 4′ - t - ブチルジベンゾイルメタン</b> | 3. 0 |
| ブチルパラベン                                 | 0.1  |
| メチルパラベン                                 | 0.1  |
| エタノール                                   | 5.0  |
| グリセリン                                   | 2. 0 |
| 1,3-ブチレングリコール                           | 2. 0 |
| L-アルギニン                                 | 0.2  |
| 香料                                      | 微量   |
| 精製水                                     | バランス |

【0070】得られた乳液は撥水・撥袖性、持続性及び ※下記組成のクリームを常法に従って調製した。 安定性において良好な結果を示した。 【表7】

【0071】実施例3 (クリーム)

Ж

| (成分)                      | (%)  |
|---------------------------|------|
| 製造例3のフッ素変性シリコーン(A - 3)    | 10.0 |
| アクリル酸系ポリマー (ペムラン TR-1)    | 0.2  |
| アクリル酸系ポリマー(カーボポール 1342)   | 0.2  |
| フッ素化合物処理酸化チタン (実施例1と同じもの) | 10.0 |

```
(11)
                                              特開平9-143023
                                             20
             19
                                             0.1
          キサンタンガム
                                            0.1
          カルボキシメチルセルロース
          ジメチルポリシクロシロキサン
                                           20.0
          2-エチルヘキシル-p-メトキシシンナメート
                                             3.0
          4-メトキシ-4'-t-ブチルジベンゾイルメタン
                                             3.0
                                             0.1
          ブチルパラベン
          メチルパラベン
                                             0.1
          エタノール
                                             5.0
                                             5.0
          グリセリン
          1,3-ブチレングリコール
                                            2.0
                                             0.4
          L-アルギニン
                                             微量
          香料
                                           バランス
          精製水
                             *下記組成のリキッドファンデーションを常法に従って調
[0072]得られたクリームは撥水・撥油性、持続性
及び安定性において良好な結果を示した。
                               製した。
                               【表8】
【0073】実施例4(リキッドファンデーション) *
          (成分)
                                            (%)
          製造例4のフッ素変性シリコーン(A-4)
                                            10.0
                                            0.1
          アクリル酸系ポリマー (ベムラン TR-2)
          アクリル酸系ポリマー (カーボポール 941)
                                            0.1
          フッ素化合物処理酸化チタン(実施例1と同じもの)
                                            6.0
          フッ素化合物処理セリサイト*1
                                            8. 0
          フッ素化合物処理酸化鉄(赤、黄,黒)**
                                            1.0
          キサンタンガム
                                            0.1
                                            0.1
          ヒドロキシエチルセルロース
                                           20.0
          ジメチルポリシクロシロキサン
          スクワラン
                                            5.0
          2-エチルヘキシル-p-メトキシシンナメート
                                            3. 0
          4-メトキシ-4′-t-ブチルジベンゾイルメタン
                                            3.0
          ブチルパラベン
                                            0.1
          メチルパラベン
                                            0.1
          エタノール
                                            5.0
                                            2.0
          グリセリン
          1.3-プチレングリコール
                                            2. 0
          L-アルギニン
                                             0.2
          香料
                                              微量
                                           バランス
          精製水
           *1:酸化チタンをセリサイトに変更する以外は実施例1のフッ素化合物処理酸
             化チタンと同様にして製造したもの
           *2:酸化チタンを酸化鉄(赤、黄、黒)に変更する以外は実施例1のフッ素化
             合物処理酸化チタンと同様にして製造したもの
【0074】得られたリキッドファンデーションは撥水
                             ※【0075】実施例5(エアゾール化粧料)
                               下記組成のエアゾール化粧料を常法に従って調製した。
・撥油性、持続性及び安定性において良好な結果を示し
                           ×
                               【表9】
                                            (%)
          (成分)
          製造例5のフッ素変性シリコーン(A-5)
                                             5.0
          アクリル酸系ポリマー (ペムラン TR-2)
                                             0.1
          フッ素化合物処理タルク*3
                                             5.0
                                             0.1
          キサンタンガム
```

3.0

2-エチルヘキシル-p-メトキシシンナメート

た。

特開平9-143023

| 21                               | 22   |
|----------------------------------|------|
| 4 - メトキシ - 4′ - t - ブチルジベンゾイルメタン | 3. 0 |
| ブチルバラベン                          | 0.1  |
| メチルパラベン                          | 0.1  |
| グリセリン                            | 2. 0 |
| L-アルギニン                          | 0.1  |
| 香料                               | 微量   |
| LPG.ジメチルエーテル混合ガス(8/2)            | 7. 0 |
| 精製水                              | バランス |

\*3:酸化チタンをタルクに変更する以外は実施例1のフッ素化合物処理酸化チタンと同様にして製造したもの

【0076】得られたエアゾール化粧料は撥水・撥油

\*下記組成の口紅を常法に従って調製した。

性、持続性及び安定性において良好な結果を示した。 【表10】

【0077】実施例6(口紅)

\*

| (成分)                   | (%)    |
|------------------------|--------|
| 製造例6のフッ素変性シリコーン(A – 6) | 33.0   |
| アクリル酸系ポリマー (ベムラン TR-1) | 1.0    |
| フッ素化合物処理赤色201号* *      | 2.0    |
| フッ素化合物処理赤色202号**       | 4. 0   |
| フッ素化合物処理黄色4号Alレーキ゚゚    | . 2. 0 |
| フッ素化合物処理酸化チタン*′        | 2. 0   |
| キサンタンガム                | 1. 0   |
| ポリエチレンワックス             | 15.0   |
| ジカプリン酸ネオペンチルグリコール      | 10.0   |
| スクワラン                  | 15.0   |
| 水添ラノリン                 | 15.0   |

- \*4:酸化チタンを赤色201号に変更する以外は実施例1のフッ素化合物処理 酸化チタンと同様にして製造したもの
- \*5:酸化チタンを赤色202号に変更する以外は実施例1のフッ素化合物処理 酸化チタンと同様にして製造したもの
- \*6:酸化チタンを黄色4号A1レーキに変更する以外は実施例1のフッ素化合物処理酸化チタンと同様にして製造したもの
- \*7:実施例1と同じもの

【0078】得られた口紅は撥水・撥油性、持続性及び

安定性において良好な結果を示した。