

Discrete Mathematics

Jidong Yuan yuanjd@bjtu.edu.cn SD 404

Algebraic Structure

- Outline:
- Introduction to Algebraic Structure
- Semigroup and Monoid
- Group and Subgroup
- Abelian Group, Cyclic Group and Permutation Group
- Ring and Field
- Lattice
- Boolean Algebra

Review

- •Algebraic system <A, $\circ>$ or <S, \triangle , *>
 - √4 properties
 - □ Closure
 - Commutativity
 - Associativity
 - Distributivity
 - √ 3 constants
 - Identity
 - Zero
 - Inverse

- ✓ 10 special algebraic systems
 - ■Semigroup
 - Monoid
 - □ Group
 - □ Abelian Group, Cyclic Group, Permutation Group
 - Coset
 - ☐Ring and Field
 - ☐ The corresponding algebraic system of Lattice
- ✓ 2 relations
 - Homomorphism
 - Isomorphism

Boolean Algebra

- Boolean Lattice: A distributive complemented lattice is called a Boolean lattice.
- Every element in a Boolean lattice has a unique complement.
- Define a unary operation " $\overline{}$ " where \overline{a} denotes the complement of a.
- Let (L, \leq) be a Boolean lattice, the corresponding algebraic system <*L*, ∨, \land , ¬> is called a **Boolean algebra**.
- A Boolean algebra with finite elements is called a finite Boolean algebra.
- Example: Boolean lattice $(P(S), \subseteq)$ Boolean algebra $\langle P(S), \cup, \cap, \stackrel{-}{\rangle}$

Example 1

U	Ø	<i>{a}</i>	<i>{b}</i>	<i>[a, b]</i>
Ø	Ø	{ <i>a</i> }	{ <i>b</i> }	{ <i>a</i> , <i>b</i> }
<i>{a}</i>	{ <i>a</i> }	{ <i>a</i> }	$\{a,b\}$	{ <i>a</i> , <i>b</i> }
$\{b\}$	{ <i>b</i> }	{ <i>a</i> , <i>b</i> }	{ <i>b</i> }	{ <i>a</i> , <i>b</i> }
$\{a,b\}$	$ \{a,b\} $	{ <i>a</i> , <i>b</i> }	$\{a,b\}$	$\{a,b\}$

Λ	Ø	<i>{a}</i>	<i>{b}</i>	$\{a,b\}$
Ø	Ø	Ø	Ø	
{a}	Ø	{ <i>a</i> }	Ø	<i>{a}</i>
{ <i>b</i> }	Ø	Ø	{ <i>b</i> }	$\{b\}$
$\{a,b\}$	Ø	<i>{a}</i>	{ <i>b</i> }	$\{a,b\}$

	_
Ø	$\{a,b\}$
<i>{a}</i>	{ <i>b</i> }
$\{b\}$	{a}
{ <i>a</i> , <i>b</i> }	Ø

Theorem 1

For any two elements a, b in a Boolean algebra

$$\overline{(a)} = a$$

$$\overline{a \vee b} = \overline{a} \wedge \overline{b}$$

$$\overline{a \wedge b} = \overline{a} \vee \overline{b}$$

Proof:

Exercise 1

Show that in a Boolean algebra, $b \wedge \overline{c} = 0$ if and only if $b \leq c$.

Exercise 2

•Let $\langle A, \vee, \wedge, \overline{\ } \rangle$ be a Boolean algebra, + is a binary operation defined on A as

$$a + b = (a \wedge \overline{b}) \vee (\overline{a} \wedge b)$$

show that $\langle A, + \rangle$ is an abelian group.

Exercise 3

•Let $\langle A, \vee, \wedge, \overline{\ } \rangle$ be a Boolean algebra, + and \cdot are two binary operations defined on A as

$$a + b = (a \wedge \overline{b}) \vee (\overline{a} \wedge b)$$

$$a \cdot b = a \wedge b$$

show that $\langle A, +, \cdot \rangle$ is a ring with identity I.

Isomorphism of Boolean Algebra

•Let $\langle A, \vee, \wedge, \overline{\ } \rangle$ and $\langle B, \vee, \wedge, \overline{\ } \rangle$ be two Boolean algebras, if there exists a bijection $f: A \rightarrow B$ such that for $\forall a, b \in A$,

$$f(a \lor b) = f(a) \lor f(b)$$
$$f(a \land b) = f(a) \land f(b)$$
$$f(\overline{a}) = \overline{f(a)}$$

then we say $\langle A, \vee, \wedge, \overline{\ } \rangle$ and $\langle B, \vee, \wedge, \overline{\ } \rangle$ are isomorphic.

Theorem 2

olf $S_1 = \{x_1, x_2, ..., x_n\}$ and $S_2 = \{y_1, y_2, ..., y_n\}$ are any two finite sets with n elements, then the Boolean algebras $\langle P(S_1), \vee, \wedge, \bar{\ } \rangle$ and $\langle P(S_2), \vee, \wedge, \bar{\ } \rangle$ are isomorphic. Consequently, the Hasse diagrams of lattices $\langle P(S_1), \subseteq \rangle$ and $\langle P(S_2), \subseteq \rangle$ may be drawn identically.

Note: $\langle P(S), \vee, \wedge, \overline{\rangle}$ is completely determined by the number |S| and does not depend in any way on the nature of the elements in S.

Example 2

 $ullet S = \{a, b, c\} \text{ and } T = \{2, 3, 5\}. \ (P(S), \subseteq) \text{ and } (P(T), \subseteq).$

Boolean Algebra

- If the Hasse diagram of the lattice corresponding to a set with n elements is labeled by sequences of 0's and 1's of length n, then the resulting lattice is named B_n . If $x = a_1 a_2 \cdots a_n$ and $y = b_1 b_2 \cdots b_n$ are two elements of B_n , then
- $\checkmark x \le y$ if and only if $a_k \le b_k$ for k = 1, 2, ..., n.
- $\checkmark x \land y = c_1c_2 \cdots c_n$, where $c_k = \min\{a_k, b_k\} = a_k \land b_k$
- $\checkmark x \lor y = d_1 d_2 \cdots d_n$, where $d_k = \max\{a_k, b_k\} = a_k \lor b_k$
- ✓ x has a complement $x' = z_1 z_2 \cdots z_n$,
 where $z_1 = 1$ if $x_1 = 0$ and $z_2 = 0$ if x_1

Boolean Algebra

- ullet A finite lattice is called a Boolean algebra if it is isomorphic with B_n for some nonnegative integer n.
- For every positive integer n, there must be a Boolean algebra with 2^n elements; For every Boolean algebra, the member of its elements must be positive integer power of 2.

• Hasse diagrams of the lattices B_n for n = 0, 1, 2, 3

Example 3

• Determine whether $(D_6, |)$, $(D_{20}, |)$ and $(D_{30}, |)$ is a Boolean algebra or not, respectively.

Homework 4

- Textbook p272: 24, 34
- ●Textbook p278-279: 1-10(判断即可), 12, 20
- ●1. Show that in a lattice if $a \leq b \leq c$, then
- (1) $a \lor b = b \land c$
- $(2) (a \wedge b) \vee (b \wedge c) = b = (a \vee b) \wedge (a \vee c)$
- ●2. A bounded lattice is shown in Figure 1, answer the following questions.
- (1) Find the complements of a and f.
- (2) Is the lattice a complemented lattice? Why?
- •3. Show that in a bounded lattice, the only complement of 0 is 1.