Nearest neighbors

COMS 4771 Fall 2019

0 / 17

Example: OCR for digits

- ► Goal: Automatically label images of handwritten digits
- Possible labels are $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- ► Start with a large collection of already-labeled images

Figure 1: Example OCR digits from MNIST data set

Overview

- ▶ The NN classifier
- ► Evaluation, hyperparameter tuning
- ► Ways to improve the NN classifier

Nearest neighbor (NN) classifier

- Nearest neighbor (NN) classifier \hat{f}_D represented using collection of labeled examples $D := ((\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_n, y_n))$, plus a snippet of code
- ► Input: x
 - Find x_i in D that is "closest" to x (the nearest neighbor)
 - ► (Break ties in some arbitrary fixed way)
 - ightharpoonup Return y_i

Figure 2: Schematic of NN classifier

1 / 17

- - -

2 / 17

Distances

OCR via NN

- lacktriangle Treat (grayscale) images as vectors in Euclidean space \mathbb{R}^d
 - $d = 28^2 = 784$
 - ► Generalizes physical 3-dimensional space
- ▶ Each point $x = (x_1, ..., x_d)$ is a vector of d real numbers
 - $\|x-z\|_2 = \sqrt{\sum_{i=1}^d (x_i-z_i)^2}$
 - Also called ℓ_2 distance
- ▶ Why use this for images? Simplicity
- ▶ Why not use this for images? Spatial information is lost, . . .

Figure 3: Pixels of OCR image

- 0123456789
- ► Images are represented as vectors of real numbers
- ▶ Labels are $\{0, 1, ..., 9\}$
- ► Given: 60000 labeled examples
- ► Construct NN classifier using these examples
 - ▶ Distance comes from treating "pixel space" as "Euclidean space"
- ► How good is this classifier?

Error rate

- ightharpoonup [continuity in the continuity of the continuity
 - \blacktriangleright Fraction of labeled examples in S that have incorrect label prediction from \hat{f}
 - ightharpoonup Written $\operatorname{err}(\hat{f}, S)$
 - ► (Often, the word "rate" is omitted)
- Error rate of NN classifier?

Test error rate

- ► Better evaluation: <u>test error rate</u>
 - $\qquad \qquad \mathbf{Train}/\mathsf{test} \ \mathsf{split}, \ S \cap T = \emptyset$
 - $lackbox{ }$ Classifier \hat{f} only based on S
 - ► Training error rate: $err(\hat{f}, S)$
 - ▶ <u>Test error rate</u>: $err(\hat{f}, T)$
- ▶ On OCR data: test error rate is 3.09%

28 35 54 41

Why does NN work?

- ► Assumption: Nearby points have same label.
- ► As number of training examples increases, nearest neighbor of a test point becomes closer.
- ► Corollary: NN will have test error rate zero, given enough training examples.

Diagnostics

- ► Error analysis: look at the data and try to understand what is going on
- ► Some mistakes made by NN could have been fixed by plurality vote over three nearest neighbors.

28

2822

8 / 17

Typical effect of k

► k-nearest neighbor (k-NN) classifier

k-nearest neighbor classifier

- ► Input: x
 - Find the k nearest neighbors of x in D
 - ► Return the plurality of the corresponding labels
- ► As before, break ties in some arbitrary fixed way

- ightharpoonup Smaller k: smaller training error rate
- ightharpoonup Larger k: higher training error rate, but predictions more "stable" due to voting
- lacktriangle On OCR data: lowest test error rate achieved at k=3

k	1	3	5	7	9
test error rate	0.0309	0.0295	0.0312	0.0306	0.0341

9/1

Hyperparameter tuning

- \blacktriangleright k is a hyperparameter of k-NN
- ► How to choose hyperparameters?
 - ▶ Bad idea: Choosing k that yields lowest training error rate (degenerate choice: k = 1)
 - ▶ Better idea: Simulate train/test split on the training data
- ► Hold-out approach
 - ► <u>Hold-out set</u> (aka <u>validation set</u>)

Distance functions I

- ► Specialize to input types
- ► Edit distance for strings
 - ► Shape distance for images
 - ► Time warping distance for audio waveforms

12 / 17

Distance functions II

- ► Generic distances for vectors of real numbers
 - $ightharpoonup \ell_p$ distances

$$\|oldsymbol{x}-oldsymbol{z}\|_p = \left(\sum_{i=1}^d \left|x_i-z_i
ight|^p
ight)^{1/p}.$$

▶ What are the unit balls for these distances (in \mathbb{R}^2)?

► On OCR data:

Distance functions III

	ℓ_2	9	tangent	•
test error rate	0.0309	0.0283	0.0110	0.0063

14 / 1

15 / 17

Computation for NN
 Brute force search: Θ(dn) time for each prediction Data structures: "improve" to 2^d log(n) time Approximate nearest neighbors: sub-linear time to get "approximate" answers
21/21