Correction Exercices C5

Exercice 27p51

1. La relation reliant N, n et N_A est : N= n x N_A

Avec n : la quantité de matière en mol NA : la constante d'Avogadro , en mol⁻¹

2. Tableau:

Échantillon	N	n
1	1,5 × 10 ²¹	2,5 mmol
2	1,20 × 10 ²²	2,0 × 10 ⁻² mol
3	1,3 × 10 ²¹	2,1 × 10⁻³ mol
4	2,41 × 10 ²⁴	4,0 mol

Exercice 28p51

1. On sait que : N = m echantillon/ m atome

2. Ici, m $_{echantillon}$ = 6,0g = 6,0 x 10⁻³ kg et m atome carbone = 2,0 x 10⁻²⁶kg $_{Donc}$ N = m $_{echantillon}$ / m $_{atome}$ = 6,0 x 10⁻³ /2,0 x 10⁻²⁶ = 3,0 x 10⁻²³ Conclusion : il y a , dans un échantillon de 6,0g de carbone, 3,0 x 10⁻²³ atomes de carbone.

3. On sait que n = N/Na

Avec : $N = 3.0 \times 10^{23}$ Na = 6.02×10^{23} mol⁻¹

AN: $n = 3.0 \times 10^{23}/6.02 \times 10^{23} = 5.0 \times 10^{-1} \text{ mol}$

Exercice 29 p51

1. Nombre d'atomes de fer contenus dans l'échantillon : $N = n \times Na = 2.5x = 6.02 \times 10^{23} = 1.5 \times 10^{24}$ atomes.

2. La masse d'un atome de fer s'écrit : m atome = $m_{echantillon}/N = 140/= 1.5 \times 10^{-24} = 9.3 \times 10^{-23} g$

Exercice 30 p 51

- 1. Pour respecter la neutralité de la matière, il y a autant d'ions sodium que d'ions chlorure, soit 24×10^{23} ions.
- **2.** On cherche n ,la quantité de matière d'ions chlorure, présente dans l'échantillon

Formule : $n=N/Na = 24 \times 10^{23} / 6,02 \times 10^{23} = 4,0 \text{ mol}.$

3. Déterminons la masse m_{ions} chlorure, des ions chlorure dans l'échantillon :

 $m_{ions\ chlorure}$ = N x m $_{(1\ ion\ chlorure)}$ = 24 x 10 23 x 6,2 X 10 $^{-26}$ = 1,5 x 10 $^{-1}$ kg.