Инструкции для выполнения проекта (ВШЭ, майнор, 2023)

Введение

Целью работы над проектом является изучение ранней эволюции белков, выполняющих различные эпигенетические модификации а клетках человека, методами сравнительной геномики.

Подготовка

Из <u>таблицы</u> выбрать белок (-и), который делает какую-либо эпигенетическую модифицию в клетках человека, прописать название белка в <u>таблицу</u> (вкладка Project). При выборе эпигенетического белка имеет смысл ориентироваться на кол-во статей (неск сотен, а лучше больше 1000) по этому белку (или по комплексу, в состав которого данный белок входит) -- это можно проверить в БД NCBI (Pubmed) или Google Scholar. Сами статьи (если они в закрытом доступе) можно получить через ресурс https://sci-hub.ru/

Каждая группа готовит предварительную презентацию по введению в свою эпигенетическую модификацию (на основании литературного анализа):

- Таблица со списком участников группы (+выбранные белки и их функции)
- С какой модификацией связана функция выбранных белков
- Для каждого белка привести ссылку на статью, где сказано, что он действительно связан с этой модификацией (у всех белков группы должна быть одна и та же эпигенетическая модификация)
- В какие комплексы входят выбранные белки
- В каких тканях человека экспрессируются данные гены
 - о См например БД NCBI Gene https://www.ncbi.nlm.nih.gov/gene/
 - БД GTEx https://gtexportal.org/home/gene/KDM6B
- Доменная структура выбранных белков
 - ∘ БД Pfam
 - БД NCBI conserved domains https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi

Обязательная часть задания

• Скачиваем посл-ть белка из человека. Если у выбранного гена несколько изоформ, выбираем самый длинный белок, например для гена DNMT1:

RefSeq Gene DNMT1

RefSeq: NM_001318731.2 Status: Reviewed

Description: DNA methyltransferase 1, transcript variant 4

Molecule type: mRNA Source: BestRefSeq Biotype: protein_coding

Synonyms: ADCADN,AIM,CXXC9,DNMT,HSN1E,m.Hsal,MCMT Other notes: isoform d is encoded by transcript variant 4

Identical Proteins FASTA Graphics

OMIM: 126375

Protein: NP 001305660.1

HGNC: 2976

DNA (cytosine-5)-methyltransferase 1 isoform a [Homo sapiens]

Go to: ♥

LOCUS NP_001124295 1632 aa linear PRI 29-MAY-2023

DEFINITION DNA (cytosine-5)-methyltransferase 1 isoform a [Homo sapiens].

ACCESSION NP_001124295

VERSION NP 001124295.1

DBSOURCE REFSEQ: accession NM 001130823.3
KEYWORDS RefSeq; MANE Select.

NCBI Reference Sequence: NP_001124295.1

- Запускаем поиск BLASTp вашего белка против 11-ти протеомов
 - Протеомы на сервере находятся тут /mnt/storage/project_2023/proteomes
 - если делаете это через питоновский ноутбук, необходимо ставить ! в начале строки:

blastp -query YOUR_PROTEIN.fasta -db /mnt/storage/project 2023/proteomes/drosophila.faa -out drosophila.blast -outfmt 7

В итоге получается 11 файлов с выдачей BLAST по каждому протеому

Выписать лучше (самые маленькие, первые по списку) E-value из каждого поиска в единую табличку -- желательно с помощью кода на Питоне (например в ноутбуке). Если поиск не дал результатов, считаем, что E-value = 1 (те его log будет равен 0).

	human	mouse	 Dropohilla	Yeast	Am	Inf
H2a	0	0	2.00E-69			
H2b						
H3						
H4						
YOUR_PROTEIN						

- Установка пакетов
 - При необходимости можно поставить модули питона командой:
 - pip3 install pandas
 - Либо создать окружение и ставить программы и модули туда:
 - conda install -c bioconda muscle

• Конвертируем в -log(Evalue) -- Если evalue < 1e-300, то считать его 1e-300

)		human	mouse	 Dropohilla	Yeast	Am	Inf
	H2a	300	300	69			
	H2b						
	H3						
	H4						
,	YOUR_PROTEIN						

Анализ самих гистонов

- Каждый гистон может кодироваться несколькими генами (см https://en.wikipedia.org/wiki/Histone). Необходимо проверить, насколько они правда похожи друг на друга.
 - Белковые посл-ти гистонов на серверена находятся тут:
 - /mnt/storage/project 2023/histones
- Для этого предлагается скачать аминокислотные последовательности гистонов H2A, H2B, H3, H4, которые можно найти тут или на сервере в папке /mnt/storage/project_2023/histones. В файлах содержатся все аминокислотные последовательности, которые относятся к каждому гистону (включая разные изоформы генов). После скачивания необходимо провести выравнивание белковых последовательностей (например, с помощью программы MUSCLE, CLUSTAL, MEGAX), проанализировать получившиеся результаты, сделать выводы о том, являются ли эти гены копиями, и объяснить из-за чего могут быть различия. Результаты выравнивания и выводу нужно привести в репозитории в файле README.

- Для вызова программы CLUSTAL на кластере используйте команду "clustalw2"
- Далее нужно выбрать по одной аминокислотной последовательности для каждого гистона и сопоставить их с модельными организмами. Для этого нужно выбрать одну белковую последовательность из соответствующего файла и сохранить ее в отдельный файл в формате fasta. Далее нужно запустить blastp для выбранного белка и выбранного организма (пример запуска blastp тут). Это необходимо проделать для каждого гистона и каждого организма.
- Получившиеся результаты нужно добавить на тепловую карту.
 - а. В строках гистоны
 - b. В столбцах -- протеомы (записывается название организма)
 - с. Цвет ячейки -- -log(BLASTp evalue)
 - d. Порядок столбцов:
 - i. многокл позвоночные -- human, mouse, zebrafish
 - іі. многокл беспозвоночные -- drosophila, c.elegans
 - ііі. однокл эукартиоты -- ciliate, yeast
 - iv. Apxeи -- methanocaldococcus, thermococcus
 - v. бактерии -- e.coli, tuberculosis
 - e. Пример создания тепловой карты с помощью R-библиотеки ComplexHeatmap:
 - https://github.com/vanya-antonov/article-chelatase/blob/master/images_R/heatmap_full.R
 - f. Пример создания тепловой карты с помощью Python: https://colab.research.google.com/drive/1ec_IBTF6EIUfQzIBudq8R1tc-ay LOCMW?usp=sharing

Требования к отчету по индивидуальному заданию

- 1. Отчет оформлен на github в файле README.md
- 2. Краткое описание выбранного гена (эпигенетическая функция соотв белка, ссылки на статьи (по крайней мере 2), где указана его связь с эпигенетической меткой, где экспрессируется и тп)
- 3. Множественное белковое выравнивание каждого из 4-х гистонов (или скриншоты из программы просмотра этого выравнинваия, например <u>AliVlew</u>)
- 4. Таблички с E-value и -log(Evalue) для 4х гистонов и вашего белка (и 11 протеомов в столбцах)
- 5. Тепловая карта созданная по табличке -log(E-value)

6. Вывод о том, насколько рано в эволюции появился Ваш выбранный белок

Требования к финальной групповой презентации

- Краткое описание того, что было сделано
 - Табличка с информацией по последовательностям белков человека (queries), которые были использованы для поиска по протеомам. В эту табличку включить следующую информацию:
 - название гена (напрмер, AIRE)
 - количество изоформ у данного гена (по аннотации RefSeq или UCSC)
 - идентификатор белка, выбранного для поиска (например NP 000374.1)
 - Длина выбранного (например 545 аминокислотных остатков)
 - Домены, которые присутствуют в данном белке
 - Как именно был проведен поиск BLASTp по протеомам, какие пороги использовались, сколько хитов (результатов поиска) было найдено в каждом поиске, уменьшалось ли кол-во хитов при удалении от человека по эволюционной лестнице.
- Объединить результаты по всем белкам группы и показать общую тепловую карту.
- Для каждого из 10-ти белков группы выбрать хит BLASTp (найденный белок) в протеоме наиболее удаленного от человека организме. Важно, чтобы этот дальний гомолог имел достаточно "сильное" E-value (например < 1e-10) и его длина была сопоставима с длину исходного человеческого белка (разница не более 100 или 200 а.о.).
- Подготовить табличку с информацией о отобранных далеких гомологах -- название гена, идентификатор белка и описание его функции длина бе
- Для каждого из выбранных далеких гомологов привести следующую информацию:
 - Название гена (если есть) и идентификатор белка-гомолога
 - о описание функции данного белка-гомолога
 - набор доменов в белке-голомоле
- Посмотреть статьи о наличии данной модификации у наиболее древних организмах
 - в частности поискать информацию о том, действительно ли функция найденных далеких белков-ортологов связана с выбранной эпигенетической метков
- В конце презентации слайд Выводы
 - Ваше мнение о том, в каком из наиболее ранних организмах появилась выбранная эпигенетическая метка (только у позвоночных, или беспозвоночные тоже имели данную модификацию или возможно даже у одноклеточных эукариот и тп)

Форма отчетности

Индивидуальный Github репозиторий, содержащий все полученные результаты и код.

Групповой Github репозиторий, содержащий файлы с 2-мя презентациями (вводной и финальной) + любой код, который Вы использовали (например, для создания общей тепловой карты).

Последний срок сдачи: воскресенье, 11 июня до 23:59 (будет отслеживаться по последнему коммиту в репозиторий).