Steiner Triple Systems

Existence, representation and construction

Luca Vecchi

University of Milan

December 10, 2018

Introduction

Outline

- Challenge on combinatorial design
- What is STS?:
 - existence or non-existence
 - representation
 - construction

What is Steiner Triple System

(Definition) Steiner Triple Systems (STS)

is an ordered pair (S, T) (a *design*) where S is a finite set of *point/symbol* and T is a set of subsets of 3-symbol in which all possible pair of S are contained **once and only once**.

What is Steiner Triple System

(Definition) Steiner Triple Systems (STS)

is an ordered pair (S, T) (a *design*) where S is a finite set of *point/symbol* and T is a set of subsets of 3-symbol in which all possible pair of S are contained **once and only once**.

More formally:

- define S such that |S| = v
- then $T = \{ \forall \{a,b,c\} \in S \times S \times S \}$ such that $\forall a,b \in S \times S \ a \neq b$ $\sum_{\forall \{x,y,z\} \in T} (\mathbb{I}_{\{a,b\} \in \{x,y\}} + \mathbb{I}_{\{a,b\} \in \{y,z\}} + \mathbb{I}_{\{a,b\} \in \{z,x\}}) = 1$

More compact way to define STS by define the order v of STS by v = |S|

$$S = \{a\}, T = \emptyset$$

 $S = \{a, b\}, T = \emptyset$

$$S = \{a\}, T = \emptyset$$

 $S = \{a, b\}, T = \emptyset$
 $S = \{a, b, c\}, T = \{\{a, b, c\}\}$

$$S = \{a\}, T = \emptyset$$

 $S = \{a, b\}, T = \emptyset$
 $S = \{a, b, c\}, T = \{\{a, b, c\}\}$
 $S = \{a, b, c, d\}, T = \emptyset$
 $S = \{a, b, c, d, e\}, T = \emptyset$
 $S = \{a, b, c, d, e, f\}, T = \emptyset$

$$S = \{a\}, T = \emptyset$$

$$S = \{a, b\}, T = \emptyset$$

$$S = \{a, b, c\}, T = \{\{a, b, c\}\}$$

$$S = \{a, b, c, d\}, T = \emptyset$$

$$S = \{a, b, c, d, e\}, T = \emptyset$$

$$S = \{a, b, c, d, e, f\}, T = \emptyset$$

$$S = \{a, b, c, d, e, f\}, T = \emptyset$$

$$S = \{a, b, c, d, e, f, g\}, T = \{\{a, b, c\}, \{c, d, e\}, \{c, g, h\}, \{c, g, f\}\}$$

٠.

Balanced incomplete blocks design

(Definition) $(v, k, \lambda) - BIBD$

v,k and λ be positive integers such that $v>k\geq 2$. A balanced incomplete block design is a design (S,T) such that satisfy these properties:

- **1** |S| = v
- lacktriangle for all distinct pairs are contained in exactly λ blocks (t)

Why balanced and incomplete?

balanced they share the same property (2)

incomplete by reason of
$$v = |S| > k = |t| \ \forall t \in T$$

What is Steiner Triple System 2

 λ blocks (t) of (v, k, λ) – BIBD iff $\lambda = 1$, k = 3.

$$(v, k, \lambda) - BIBD$$

v,k and λ be positive integers such that $v>k\geq 2$. A balanced incomplete block design is a *design* (S,T) such that satisfy these properties:

- **1** |S| = v
- **③** $\forall s \in S$ is contained in exactly λ blocks (t)

What is Steiner Triple System 2

 λ blocks (t) of (v, k, λ) – BIBD iff $\lambda = 1$, k = 3.

$$(v, k, \lambda) - BIBD$$

v,k and λ be positive integers such that $v>k\geq 2$. A balanced incomplete block design is a *design* (S,T) such that satisfy these properties:

- **1** |S| = v
- **③** $\forall s \in S$ is contained in exactly λ blocks (t)

All theory from BIBD is shared too in STS

$\underset{\text{of STS(v)}}{\mathsf{Representation}}$

How to represent

- through display each 3-set of T and S ($\{a, b, c, d, e, f, g\}$, $\{a, b, c\}$, $\{b, d, e\}$, ..., $\{d, f, g\}$))
- through a complete graph

Figure: A complete graph of order v = 7

Example

Why a focus on representation?

- we talk about combinatorial design (display somehow somethings)
- help to design algorithm

Figure: A complete graph of order v = 7

Example

Why a focus on representation?

- we talk about combinatorial design (display somehow somethings)
- help to design algorithm

Figure: A complete graph of order v = 7

Focus on

How to choose a proper partition of the graph?

Example

First non-dummy: STS of order 7

Figure: Fano plane

Figure: Building methods on STS(7)

[Kirkman, 1847]Existence proof

Theorem

A STS of order v exists if and only if $v \equiv 1, 3 \mod(6)$

Proof.

(\Rightarrow)We know that all possible pairs are $\binom{v}{2}$, and by definition these pairs are partitioned (non-overlapping and union make all) into 3-element groups. Thoose groups are $|T| = \frac{\binom{v}{2}}{3} = \frac{v(v-1)}{6}$. Then for $\forall x \in S$ can be defined $T(x) = \{t \ \{x\} | x \in t \in T\}$. So if an $x \in S$ is fixed and then for every set t which contain x we remove the point x then we carry out v-1 point partitioned in 2-element set. As we can't make 2-element partition from a group of odd element, v-1 is even! So v is odd and it's equal to say $v \equiv 1, 3, 5 mod(6)$. The $\frac{v(v-1)}{6}$ is not an integer for every $v \equiv 5 mod(6)$. As a result STS $\Rightarrow v \equiv 1, 3 \ mod(6)$

Existence proof 2

$$(S,T): |S| = v \land v \equiv 1,3 \mod(6) \Rightarrow STS(v)$$

In addition we suppose:

- each dinstict pair of S belongs to at least one triple in T
- $\bullet |T| \leq \frac{v(v-1)}{6}$

Proof 1.

(Absurd) Assume the contrary and make a list L as follows: for every pair write down the triple with which it is associated. Then $|L| > {v \choose 2}$ as there exists a pair with tow triples. Now since each triple is counted by exactly three pairs so $|T| = |L|/3 > {{v \choose 2} \over 3}$, a contradiction.

Proof 2.

For each distinct pair of S belongs to at least one triple and if the number of triples is less than or equal to the right number of triples, then each pair of sumbols in S belongs to exactly one triple in T.

Proof 3.

We costruct 2 methods to prove sufficient costraint to the Theorem by showing 2 methods:

- Bose construction
- Skolem construction

Construction methods

How to create

- Bose method
- Skolem method
- 6n + 5
- With quasigroups with holes
- Wilson
- and so many

Bose construction

We need first define:

idempotent commutative quasigroups of order 2n+1

But first: recap

(Definition) latin square of order n

is an $n \times n$ array where each row and column contains all symbols $\{1,...,n\}$ exactly one time.

1	3	2
2	1	3
3	2	1

Table: Latin square of order 3

(Definition) Quasigroup

A quasigroup of order n is an algebric structure, a pair (Q, \circ) where |Q| = n and $\circ: Q \times Q \to Q$. $\forall a, b \in Q$ then $\exists ! x, y$ (unique!) to the equations $a \circ x = b$ and $x \circ a = b$.

An examples of quasigroup are $(Z_n, -)$, $(Z_n, +)$.

(Example) 1723 Latin square

(Example) 1723 Latin square

(Example) 1723 Latin square

AKQJ JQKA KAJQ QJAK

Quasigroup and latin square

Theorem

The multiplication table of a quasigroup is a Latin square

A quasigroup (G, \circ) is a latin square of order v = |G|:

1	3	2
2	1	3
3	2	1

Table: Latin square of order 3

0	1	2	3
1	1	2	3
2	3	1	2
3	2	3	1

Table: Quasigroup of order 3

Quasigroup and latin square

Theorem

The multiplication table of a quasigroup is a Latin square

A quasigroup (G, \circ) is a latin square of order v = |G|:

1	3	2
2	1	3
3	2	1

0	1	2	3
1	1	2	3
2	3	1	2
3	2	3	1

Table: Latin square of order 3

Table: Quasigroup of order 3

A (Q, \circ) is said:

idempotent $\forall i: 1 \leq i \leq |G|$ the cell (i,i) contains α such that $\alpha \leq i$ commutative $\forall i,j: 1 \leq i < j \leq |G|$ the cell (i,j) contains the same of (j,i)

Commutative idempotent latin square

1	3	2
3	2	1
2	1	3

Table: C. I. latin square of order 3

Commutative idempotent latin square

1	3	2
3	2	1
2	1	3

Table: C. I. latin square of order 3

How can we create a C.I. latinsquare/quasigroup of order v?

Theorem

idempotent commutative quasigroups exist **if and only if** they have odd order.

Great! We look at the half of all possible

Construction method of CI quasigroup

- Let v be the order of quasigroup, take $(Z_v, +)$ where + is the addition in Z_v .
- ② For all element i := i + 1
- **3** Take the elements of main diagonal $\langle d_1, ..., d_v \rangle$. Build a permutation $\sigma_v = \{(d_1, 1), (d_2, 2), ..., (d_v, v)\}$.
- **4** Apply σ_{ν} for all element of the *multiplication table*

As result you have a CI quasigroup.

Construction method of CI quasigroup of order 7

Z_{7} ,+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7
2	2	3	4	5	6	7	1
3	3	4	5	6	7	1	2
4	4	5	6	7	1	2	3
5	5	6	7	1	2	3	4
6	6	7	1	2	3	4	5
7	7	1	2	3	4	5	6

- **1** Let v be the order of quasigroup, take $(Z_v, +)$ where + is the addition in Z_v .
- 2 For all element i := i + 1

Construction method of CI quasigroup of order 7

	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7
2	2	3	4	5	6	7	1
3	3	4	5	6	7	1	2
4	4	5	6	7	1	2	3
5	5	6	7	1	2	3	4
6	6	7	1	2	3	4	5
7	7	1	2	3	4	5	6

$$\sigma_{v} = \{(1,1), (3,2), (5,3), (7,4), (2,5), (4,6), (6,7)\}$$

- **1** Let v be the order of quasigroup, take $(Z_v, +)$ where + is the addition in Z_v .
- 2 For all element i := i + 1
- **3** Take the elements of main diagonal $\langle d_1, ..., d_v \rangle$. Build a permutation $\sigma_v = \{(d_1, 1), (d_2, 2), ..., (d_v, v)\}.$
- **4** Apply σ_v for all element of the *multiplication table*

Construction method of CI quasigroup of order 7

	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7
2	2	3	4	5	6	7	1
3	3	4	5	6	7	1	2
4	4	5	6	7	1	2	3
5	5	6	7	1	2	3	4
6	6	7	1	2	3	4	5
7	7	1	2	3	4	5	6

	1	2	3	4	5	6	7
1	1	5	2	6	3	7	4
2	5	2	6	3	7	4	1
3	2	6	3	7	4	1	5
4	6	3	7	4	1	5	2
5	3	7	4	1	5	2	6
6	7	4	1	5	2	6	3
7	4	1	5	2	6	3	7

We apply $\sigma_{\nu} = \{(1,1), (3,2), (5,3), (7,4), (2,5), (4,6), (6,7)\}$ as result we have a idempotent commutative quasigroup of order ν .

Bose construction($v \equiv 3 mod(6)$)

Let v=6n+3 and let (Q,\circ) be an idempotent commutative quasigroup of order 2n+1, where $Q=\{1,2,3,...,2n+1\}$. Let $S=Q\times\{1,2,3\}$ and define T to contain the following types of triples.

Type 1: For
$$1 \le i \le 2n + 1$$
, $\{(i,1),(i,2),(i,3)\} \in T$
Type 2: For $1 \le i < j \le 2n + 1$, $\{\{(i,1),(j,1),(i \circ i,2)\},\{(i,2),(j,2),(i \circ j,3)\}\}\{(i,3),(j,3),(i \circ j,1)\}\} \in T$

Then (S, T) is a Steiner triple system of order 6n + 3.

Type of partitions

Figure: Type 1

We need to prove that all pairs are v(v-1)/6 then, as result of all pair is contained only one, we have proved the corecteness.

Proof right number

|T| is made up with 2 type:

- Type 1: 2n + 1 triples
- Type 2: $\binom{2n+1}{2}$ choices for i and j, for all of them there are 3 another type.

Then $|T| = (2n+1) + 3\frac{(2n+1)2n}{2} = \frac{(2n+1)(6n+2)}{2} = v(v-1)/6$ have the right number of triple.

To show that every pairs is contained in at least 1 triple, think about 2 possible pair of point $(a, b), (c, d) \in Q \times \{1, 2, 3\}$:

Cont...

$$\forall (a,b),(c,d)\in Q\times\{1,2,3\}$$

- $a = c \land b = d$ impossible
- if a = c (so $b \neq d$) is contained in at least 1 triple of type 1 $\{(a, 1), (a, 2), (a, 3)\}$
- if $b = d \land a \neq c$ is contained in at least 1 triple of type 2 $\{\{(a,b),(c,b),(a \circ c,b+1 mod(3))\},\{(x,1),(a,1),(b,2)\},...\}$
- $a \neq c \land b \neq d$. Assume b = 1 and d = 2. Since (Q, \circ) is a quasigroup $a \circ i = c$ and $j \circ a = c$ for some i, j. Because the *commutative* i = j and because *idempotent* only $a \circ a = a$, all the others we are sure that $i \neq a$. So $\{(a, 1), (i, 1), (a \circ i = c, 2)\}$.

All possible point have been shown that are in T.

Skolem construction ($v \equiv 3 mod(6)$)

Let v = 6n + 1 and let (Q, \circ) be a half-idempotent commutative quasigroup of order 2n, where

Half-idempotent commutative latin square

(Definition) Half-idempotent commutative latin square

A latin square (multiplication table of quasigroup of the same order) L of order 2n is half-idempotent if the cells (i,i) contain the same symbol i of the cell (n+i,n+i) $\forall 1 \leq i \leq n$

1	3	2	4
3	2	4	1
2	4	1	3
4	1	3	2

Half-idempotent latin square of order 4 (n = 2)

Half-idempotent commutative latin square

(Definition)Half-idempotent commutative latin square

A latin square (multiplication table of quasigroup of the same order) L of order 2n is half-idempotent if the cells (i,i) contain the same symbol i of the cell (n+i,n+i) $\forall 1 \leq i \leq n$

1	3	2	4
3	2	4	1
2	4	1	3
4	1	3	2

Half-idempotent latin square of order 4 (n = 2)

Commutative half-idempotent latin squares exist for all even order.

Example half-idempotent quasigroup

1	3	2	4
3	2	4	1
2	4	1	3
4	1	3	2

1	4	2	5	3	6
4	2	5	3	6	1
2	5	3	6	1	4
5	3	6	1	4	2
3	6	1	4	2	5
6	1	4	2	5	3

Example half-idempotent quasigroup

1	3	2	4
3	2	4	1
2	4	1	3
4	1	3	2

1	4	2	5	3	6
1			_	_	U
4	2	5	3	6	1
2	5	3	6	1	4
5	3	6	1	4	2
3	6	1	4	2	5
6	1	4	2	5	3

How can we algorithmically build a H-I Latin Square?

How costruct H-I latin square/quasigroup

0	1	2	3	4	5
1	2	3	4	5	0
2	3	4	5	0	1
3	4	5	0	1	2
4	5	0	1	2	3
5	0	1	2	3	4

Table: Quasigroup $(Z_6, +mod(6))$

How costruct H-I latin square/quasigroup

0	1	2	3	4	5
1	2	3	4	5	0
2	3	4	5	0	1
3	4	5	0	1	2
4	5	0	1	2	3
5	0	1	2	3	4

Table: Quasigroup $(Z_6, +mod(6))$

The bijection σ is built increasing all value by 1(or by taking the next element). Then by taking the main diagonal from the left grid (<1,3,5,...>) and assign the right number (<1,2,3,...>)

How costruct H-I latin square/quasigroup

0	1	2	3	4	5
1	2	3	4	5	0
2	3	4	5	0	1
3	4	5	0	1	2
4	5	0	1	2	3
5	0	1	2	3	4

1	4	2	5	3	6
4	2	5	3	6	1
2	5	3	6	1	4
5	3	6	1	4	2
3	6	1	4	2	5
6	1	4	2	5	3

Table: Quasigroup $(Z_6, +mod(6))$

Table: Applied func σ on the quasigroup

The bijection σ is built increasing all value by 1(or by taking the next element). Then by taking the main diagonal from the left grid $(<1,3,5,\ldots>)$ and assign the right number $(<1,2,3,\ldots>)$

Example Skolem construction

```
Let v = 6n + 1 and let (Q, \circ) be a half-idempotent commutative quasigroup of order 2n, where Q = \{1, 2, 3, ...., 2n\}. Let S = \{\infty\} \cup (Q \times \{1, 2, 3\}). We define T as follow: Type 1: for 1 \le i \le n, \{(i, 1), (i, 2), (i, 3)\} \in T Type 2: for 1 \le i \le n, \{\infty, (n + i, 1), (i, 2)\}, \{\infty, (n + i, 2), (n + i, 3)\}, \{\infty, (n + i, 3), (i, 1)\} \in T Type 3: for 1 \le i < j \le 2n, \{(i, 1), (j, 1), (i \circ j, 2)\}, \{(i, 2), (j, 2), (i \circ j, 3)\}, \{(i, 3), (i, 3), (i, 0), (i, 0), (i, 0)\} \in T
```

Then (S, T) is STS(6n + 1).

Example Skolem construction

Proof

We have to prove (in a similar way of Bose) there are the right number of $t \in T$ and every pair (from $\binom{6n+1}{2}$) is contained almost 1.

1: Right number of |T|.

We sum up 3 different element:

- type 1: for 1 < i < n, $\{(i,1), (i,2), (i,3)\} \in T$ are n
- type 2: for $1 \le i \le n$, $\{\infty, (n+i,3), (i,2)\}, \{\infty, (n+i,2), (n+i,3)\}, \{\infty, (n+i,3), (i,1)\} \in T$ are 3n
- type 3: for $1 \le i < j \le 2n, \{(i,1), (j,1), (i \circ j, 2)\}, \{(i,2), (j,2), (i \circ j, 3)\}, \{\} \in T$ are

We have to prove
$$|T| = \frac{v(v-1)}{6} = \frac{(6n+1)(6n)}{6} = n+n+3\binom{2n}{2}$$
. Easily $n+3n+3\binom{2n}{2} = \frac{2n*4+2n*(6n-3)}{2} = \frac{2n(6n+1)}{2} = \frac{3}{2}\frac{2n(6n+1)}{2} = \frac{6n(6n+1)}{2} = |T|$

2: every pair of point $\in T$.

We have to prove all possible pair of point (a, b) and (c, d):

- $a = c = \infty \land b \neq d$
- $a = c \neq \infty \land b \neq d$
- $a = \infty \neq b \land b = d$
- $a \neq c \land b \neq d$

2: every pair of point $\in T$.

We have to prove all possible pair of point (a, b) and (c, d):

- $a = c = \infty \land b \neq d$
- $a = c \neq \infty \land b \neq d$
- $a = \infty \neq b \land b = d$
- $a \neq c \land b \neq d$

All covered by Skolem construction $\land |T|$ is the right number \Rightarrow is a STS(2n)

Practical example

[1850] The Lady's and Gentleman's Diary/Kirkman's shoolgirl problem

A teacher would like to take 15 schoolgirls out for a walk, the girls being arranged in 5 rows of three. The teacher would like to ensure equal chances of friendship between any two girls. Hence it is desirable to find different row arrangements for the 7 days of the week such that any pair of girls walk in the same row exactly one day of the week.

[1850] The Lady's and Gentleman's Diary/Kirkman's shoolgirl problem

A teacher would like to take 15 schoolgirls out for a walk, the girls being arranged in 5 rows of three. The teacher would like to ensure equal chances of friendship between any two girls. Hence it is desirable to find different row arrangements for the 7 days of the week such that any pair of girls walk in the same row exactly one day of the week.

Solution

[1971 (Ray-Chaudhuri and Wilson)] it asks for a Steiner Triple System on 6t + 3 varieties whose blocks can be partitioned into 3t + 1 sets so that any variety appears only once in a set.

Important remark

Theorem

If a
$$(v, k, \lambda)$$
 – BIBD exist, then $\lambda(v-1) \equiv 0 \pmod{(k-1)}$ and $\lambda v(v-1) \equiv \pmod{(k-1)}$.

Theorem

A STS of order v exists if and only if $v \equiv 1, 3 \mod(6)$

Theorem

If a
$$(v, k, \lambda)$$
 – BIBD exist, then $\lambda(v-1) \equiv 0 \pmod{(k-1)}$ and $\lambda v(v-1) \equiv \pmod{(k-1)}$.

Only necessary.

Theorem

A STS of order v exists if and only if $v \equiv 1,3 \mod(6)$

Necessary and sufficient.

STS on OEIS

Steiner systems, sequences related to:

Steiner systems, quadruple (SQS's): A051390* A124120 A124119

Steiner systems: A001293* (S(5,8,24))

Steiner systems: A187567 and A187585 (S(2,4,n))

Steiner triple systems (STS's): A001201*, A030128*, A030129*, A051390*, A002885 (cyclic),

A006181, A006182, A051391

Isomorphisms between two design

Isomorphism

Two designs (X, A) and (Y, B) where |X| = |Y| are isomorphic if there exists a bijection $\alpha : X \to Y$ such that:

$$\{\alpha(x):x\in A\}=\mathrm{B}$$

Then α is called isomorphism.

$$X = \{1, 2, 3, 4, 5, 6, 7\},$$
 and $A = \{123, 145, 167, 246, 257, 347, 356\};$

$$Y = \{a, b, c, d, e, f, g\},$$
 and $\mathcal{B} = \{abd, bce, cdf, deg, aef, bfg, acg\}.$

Beyond Existence or non-existence

	t_1
1	1
2	1
3	1

Table: Incidence matrix of STS(3)

Incidence matrix

Fixed a design

$$(S, T) \equiv (\{s_1, ..., s_{|S|}\}, \{t_1, ..., t_{|T|}\})$$

let all elements $m_{i,j}$ of incidence
matrix of a design (S, T) be:

$$m_{i,j} = \begin{cases} 1 & \text{if } s_i \in t_j \\ 0 & \text{if } s_i \notin t_j \end{cases}$$

2-isomorphic sts(7)

$$v = 7$$
, $k = {7 \choose 2}/3$

1	2		4			
	2	3		5		
		3	4		6	
			4	5		7
1				5	6	
	2				6	7
1		3				7

				5	6	7
		3	4			7
1	2					7
	2		4		6	
1		3			6	
	2	3		5		
1			4	5		

The enumeration of non-isomorphic STS is complex and a open field.

The enumeration of non-isomorphic STS is complex and a open field.

(A030129) Number of nonisomorphic Steiner triple systems (STS's) S(2,3,n) on n points

<1,0,1,0,0,0,1,0,1,0,0,0,2,0,80,0,0,0,11084874829>

(A051390)Number of nonisomorphic Steiner quadruple systems (SQS's) of order n

<1,1,0,1,0,0,0,1,0,1,0,0,0,4,0,1054163>

[1974 Wilson]Upper bound to non-isomorphic STS(v)

A algebric result:

$$F(v) \leq ((1+o(1)\frac{v}{e^2})^{\frac{n^2}{6}})$$

[1985 Stinson]Estimation of STS(19)

Was discovered 284457 non-isomorphic through different methods. They had discovered $N(19) \geq 2395687$ through a non-deterministic hill-climbing algorithm. Then for every STS(19) calculate 2 invariants (non-isomorphic give the property of different invariant.) First they conclude $N=3.54\times10^8$, but the random seed was from a population of $10^9(11084874829)$ and some 2 isomorphic STS may have the same invariants.

They made another estimation by knowing the *right number* of sub-STS(9) the N(19) by looking the ratio of of sub-STS(9) fount divided by the right times the number of nonisomorphic sts. So... they miss by an order of magnitude but really close!

References

Stinson, Douglas R. (Douglas Robert), 1956 Combinatorial designs: constructions and analysis
C.C. Lindner and C.A. Rodger, Design Theory, CRC Press, 2008
M. Wilson, Richard. (1974). Nonisomorphic Steiner triple systems.
Mathematische Zeitschrift. 135. 303-313. 10.1007/BF01215371.
D. R. Stinson and H. Ferch (1985). 20000000 Steiner Triple Systems of Order 19. Mathematics of computation. 44. 533-555