Information Retrieval

CS 547/DS 547
Worcester Polytechnic Institute
Department of Computer Science
Instructor: Prof. Kyumin Lee

Midterm Exam

max 78

min 29

avg 62

Upcoming Schedule

March 17: due date of project proposal

March 21: due date of proposal presentation slides

Recommenders

Collaborative Recommendations

Collaborative Recommendations

User-based recommendation

Item-based recommendation

Collaborative Filtering

- Consider user x
- Find set N of other users whose ratings are "similar" to x's ratings
- Estimate x's ratings based on ratings of users in N

User-User CF (|N|=2)

							user	5					
		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3			5			5		4	
	2			5	4			4			2	1	3
movies	3	2	4		1	2		3		4	3	5	
Ε	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	6	1		3		3			2			4	

- rating between 1 to 5

- unknown rating

User-User CF (|N|=2)

							user	5					
		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		?	5			5		4	
	2			5	4			4			2	1	3
movies	3	2	4		1	2		3		4	3	5	
Ε	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	6	1		3		3			2			4	

Neighbor selection: Identify users similar to user 5, and rated item 1

- estimate rating of movie 1 by user 5

User-User CF (|N|=2)

User-based CF (|K|=2)

							user	S					
		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		?	5			5		4	
	2			5	4			4			2	1	3
movies	3	2	4		1	2		3		4	3	5	
	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	6	1		3		3			2			4	
			<u> </u>					1					

Compute similarity weights:

$$s_{5,3}$$
=0.21, $s_{5,9}$ =0.47

Predict by taking weighted average:

$$r_{1,5} = (0.21*3 + 0.47*5) / (0.21+0.47) = 4.4$$

$$r_{1,5} = (0.21*3 + 0.47*5) / (0.21+0.47) = 4.4$$

$$r_{xi} = \frac{\sum_{j \in K(i;x)} s_{ij} \cdot r_{jx}}{\sum s_{ij}}$$

Similarity:-0.45

0.21

1.0 -0.15

0.47

-0.71

User-based CF (|K|=2)

							user	S					
		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		4.4	5			5		4	
(0	2			5	4			4			2	1	3
movies	3	2	4		1	2		3		4	3	5	
_	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	6	1		3		3			2			4	
	_												

Compute similarity weights:

$$s_{5,3}$$
=0.21, $s_{5,9}$ =0.47

Predict by taking weighted average:

$$r_{1,5} = (0.21*3 + 0.47*5) / (0.21+0.47) = 4.4$$

$$r_{1,5} = \frac{(0.21*3 + 0.47*5)}{(0.21+0.47)} = 4.4$$

$$r_{xi} = \frac{\sum_{j \in K(i;x)} s_{ij} \cdot r_{jx}}{\sum s_{ij}}$$

Similarity:-0.45

0.21

1.0 -0.15

0.47

-0.71

Item-based CF

 After computing the similarity between items we select a set of k most similar items to the target item and generate a predicted value of user x's rating

$$r_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} s_{ij}}$$

```
s_{ij}... similarity of items i and j r_{xj}...rating of user x on item j N(i;x)... set items rated by x similar to i
```

							users	5					
		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3			5			5		4	
	2			5	4			4			2	1	3
movies	3	2	4		1	2		3		4	3	5	
	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	6	1		3		3			2			4	

- rating between 1 to 5

- unknown rating

							users	S					
		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		?	5			5		4	
	2			5	4			4			2	1	3
movies	3	2	4		1	2		3		4	3	5	
	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	6	1		3		3			2			4	

users														
		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)
	1	1		3		?	5			5		4		1.00
	2			5	4			4			2	1	3	-0.18
movies	<u>3</u>	2	4		1	2		3		4	3	5		<u>0.41</u>
	4		2	4		5			4			2		-0.10
	5			4	3	4	2					2	5	-0.31
	<u>6</u>	1		3		3			2			4		<u>0.59</u>

Neighbor selection:

Identify movies similar to movie 1, rated by user 5

Here we use Pearson correlation as similarity:

- 1) Subtract mean rating m_i from each movie i $m_1 = (1+3+5+5+4)/5 = 3.6$ row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]
- 2) Compute cosine similarities between rows

users														
		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)
	1	1		3		?	5			5		4		1.00
	2			5	4			4			2	1	3	-0.18
movies	<u>3</u>	2	4		1	2		3		4	3	5		<u>0.41</u>
Ε	4		2	4		5			4			2		-0.10
	5			4	3	4	2					2	5	-0.31
	<u>6</u>	1		3		3			2			4		<u>0.59</u>

Compute similarity weights:

s_{1,3}=0.41, s_{1,6}=0.59

	users													
		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)
	1	1		3		2.6	5			5		4		1.00
	2			5	4			4			2	1	3	-0.18
movies	<u>3</u>	2	4		1	2		3		4	3	5		<u>0.41</u>
	4		2	4		5			4			2		-0.10
	5			4	3	4	2					2	5	-0.31
	<u>6</u>	1		3		3			2			4		<u>0.59</u>

Predict by taking weighted average:

$$r_{1.5} = (0.41^2 + 0.59^3) / (0.41 + 0.59) = 2.6$$

$$r_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{jx}}{\sum s_{ij}}$$

Combining Global Baseline with CF

Global Baseline estimate:

Joe will give The Sixth Sense 4 stars

Local neighborhood (CF/NN):

- Joe didn't like related movie Signs
- Rated it 1 star below his average rating

Final estimate

• Joe will rate The Sixth Sense 4 - 1 = 3 stars

CF: Common practice $r_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} r_{xj}}{\sum_{i,j} s_{ij}}$

Before:
$$r_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} r_{xj}}{\sum_{j \in N(i;x)} s_{ij}}$$

- Define similarity s_{ii} of items i and j
- Select k nearest neighbors N(i; x)
 - Items most similar to i, that were rated by x
- Estimate rating r_{xi} as the weighted average:

$$r_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} s_{ij}}$$

$$b_{xi} = \mu + b_x + b_i$$

baseline estimate for r_{xi} μ = overall mean movie rating

• b_x = rating deviation of user x= (avg. rating of user \mathbf{x}) – $\boldsymbol{\mu}$

 b_i = rating deviation of movie i

Latent Factor Models

The Netflix Prize

Training data

- 100 million ratings, 480,000 users, 17,770 movies
- 6 years of data: 2000-2005
- Test data
 - Last few ratings of each user (2.8 million)
 - Evaluation criterion: Root Mean Square Error (RMSE)

$$= \sqrt{\frac{1}{|R|} \sum_{(i,x) \in R} (\hat{r}_{xi} - r_{xi})^2}$$

- Netflix's system RMSE: 0.9514
- Competition
 - **2,700+ teams**
 - \$1 million prize for 10% improvement on Netflix

Performance of Various Methods

Global average: 1.1296

User average: 1.0651

Movie average: 1.0533

Netflix: 0.9514

Grand Prize: 0.8563

BellKor Recommender System

- The winner of the Netflix Challenge
- Multi-scale modeling of the data: Combine top level, "regional" modeling of the data, with a refined, local view:
 - Global:
 - Overall deviations of users/movies
 - Factorization:
 - Addressing "regional" effects
 - Collaborative filtering:
 - Extract local patterns

Modeling Local & Global Effects

Global:

- Mean movie rating: 3.7 stars
- The Sixth Sense is 0.5 stars above avg.
- Joe rates 0.2 stars below avg.
 - ⇒ Baseline estimation:

 Joe will rate The Sixth Sense 4 stars

- Joe didn't like related movie Signs
- Rated it 1 star below his average rating

Final estimate

■ Joe will rate The Sixth Sense 4 - 1 = 3 stars

Modeling Local & Global Effects

In practice we get better estimates if we model deviations:

$$\hat{r}_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} s_{ij}}$$

baseline estimate for r_{xi}

$$\boldsymbol{b}_{xi} = \boldsymbol{\mu} + \boldsymbol{b}_x + \boldsymbol{b}_i$$

 μ = overall mean rating b_x = rating deviation of user x

= $(avg. rating of user x) - \mu$

 $b_i = (avg. rating of movie i) - \mu$

Problems/Issues:

- 1) Similarity measures are "arbitrary"
- **2)** Pairwise similarities neglect interdependencies among users
- **3)** Taking a weighted average can be restricting

Solution: Instead of s_{ij} use w_{ij} that we estimate directly from data

Idea: Interpolation Weights w_{ij}

Use a weighted sum rather than weighted avg.:

$$\widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} - b_{xj})$$

- A few notes:
 - N(i; x) ... set of movies rated by user x that are similar to movie i
 - $lackbox{\hspace{0.1cm}\blacksquare} w_{ij}$ is the **interpolation weight** (some real number)
 - Note, we allow: $\sum_{j \in N(i;x)} w_{ij} \neq 1$
 - w_{ij} models interaction between pairs of movies (it does not depend on user x)

Idea: Interpolation Weights w_{ij}

$$\widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i,x)} w_{ij} (r_{xj} - b_{xj})$$

- How to set w_{ij} ?
 - Remember, error metric is:

$$\sqrt{\frac{1}{|R|}}\sum_{(i,x)\in R}(\hat{r}_{xi}-r_{xi})^2$$
 or equivalently Sum of

Squared Error (SSE):
$$\sum_{(i,x)\in R} (\hat{r}_{xi} - r_{xi})^2$$

- Find w_{ii} that minimize SSE on training data!
 - Models relationships between item i and its neighbors j
- w_{ij} can be learned/estimated based on x and all other users that rated i

Recommendations via Optimization

- Goal: Make good recommendations
 - Quantify goodness using RMSE:
 Lower RMSE ⇒ better recommendations

- Want to make good recommendations on items that user has not yet seen. Can't really do this!
- Let's build a system such that it works well on known (user, item) ratings
 And hope the system will also predict well the unknown ratings

Recommendations via Optimization

- Idea: Let's set values w such that they work well on known (user, item) ratings
- How to find such values w?
- Idea: Define an objective function and solve the optimization problem
- Find w_{ij} that minimize SSE on training data!

$$J(w) = \sum_{x,i \in R} \left(\left[b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} - b_{xj}) \right] - r_{xi} \right)^{2}$$
Predicted rating

Predicted rating

Think of w as a vector of numbers

Detour: Minimizing a function

- A simple way to minimize a function f(x):
 - Compute the derivative $\nabla f(x)$
 - Start at some point y and evaluate $\nabla f(y)$
 - Make a step in the reverse direction of the gradient: $y = y \nabla f(y)$
 - Repeat until converged

Interpolation Weights

- So far: $\widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} b_{xj})$
 - Weights w_{ij} derived based on their role; no use of an arbitrary similarity measure $(w_{ij} \neq s_{ij})$
 - Explicitly account for interrelationships among the neighboring movies
- Next: Latent factor model
 - Extract "regional" correlations

Performance of Various Methods

Global average: 1.1296

User average: 1.0651

Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative filtering: 0.94

CF+Biases+learned weights: 0.91

Grand Prize: 0.8563

Latent Factor Models

■ Latent Factor Model on Netflix data: $\mathbf{R} \approx \mathbf{Q} \cdot \mathbf{P}^T$

- For now let's assume we can approximate the rating matrix R as a product of "thin" $Q \cdot P^T$
 - R has missing entries but let's ignore that for now!
 - Basically, we will want the reconstruction error to be small on known ratings and we don't care about the values on the missing ones

Ratings as Products of Factors

How to estimate the missing rating of user x for item i?

$\hat{r}_{xi} =$	q_i .	p_x
$=\sum$	q_{if}	$\cdot p_{xf}$
-	row <i>i</i> of column	

	.1	4	.2							
(0	5	.6	.5							
items	2	.3	.5							
ite	1.1	2.1	.3							
	7	2.1	-2							
	-1	.7	.3							
factors										

_						usc	10					
S	1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
	8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
fa	2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1
•						-				- · · · · · · · · · · · · · · · · · · ·		

USERS

PT

Ratings as Products of Factors

How to estimate the missing rating of user x for item i?

$\hat{r}_{xi} =$	q_i	p_x
$=\sum$	q_{if}	$\cdot p_{xf}$
- 1	= row <i>i</i> of = column	

	.1	4	.2		
(0	5	.6	.5		
items	2	.3	.5		
ite	1.1	2.1	.3		
	7	2.1	-2		
	-1	.7	.3		
factors					

_												
S	1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
	8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
<u>fa</u>	2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1

users

PT

C

Ratings as Products of Factors

How to estimate the missing rating of user x for item i?

$\hat{r}_{xi} =$	q_i	p_x
$=\sum$	q_{if}	$\cdot p_{xf}$
	= row <i>i</i> of = column	

	.1	4	.2	
(0	5	.6	.5	
items	2	.3	.5	
ite	1.1	2.1	.3	
	7	2.1	-2	
	-1	.7	.3	
f factors				

_	43013											
ors	1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
• act	8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
ff	2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1
-												

USERS

PT

G

Latent Factor Models

Latent Factor Models

Finding the Latent Factors

Latent Factor Models

Our goal is to find P and Q such tat:

$$\min_{P,Q} \sum_{(i,x)\in R} (r_{xi} - q_i \cdot p_x)^2$$

Back to Our Problem

- Want to minimize sum of the squared errors (SSE) for unseen test data
- Idea: Minimize SSE on training data
 - Want large k (# of factors) to capture all the signals
 - But, **SSE** on test data begins to rise for k > 2
- This is a classical example of overfitting:
 - With too much freedom (too many free parameters) the model starts fitting noise
 - That is it fits too well the training data and thus not generalizing well to unseen test data

Dealing with Missing Entries

To solve overfitting we introduce regularization:

- Allow rich model where there is sufficient data
- Shrink aggressively where data is scarce

$$\min_{P,Q} \sum_{training} (r_{xi} - q_i p_x)^2 + \left[\lambda_1 \sum_{x} \|p_x\|^2 + \lambda_2 \sum_{i} \|q_i\|^2 \right]$$
"error"
"length"

 $\lambda_1, \lambda_2 \dots$ user set regularization parameters

Stochastic Gradient Descent

Want to find matrices P and Q:

$$\min_{P,Q} \sum_{training} (r_{xi} - q_i p_x)^2 + \left[\lambda_1 \sum_{x} ||p_x||^2 + \lambda_2 \sum_{i} ||q_i||^2 \right]$$

- Gradient descent:
 - Initialize P and Q (using SVD, pretend missing ratings are 0)
 - Do gradient descent:

$$\blacksquare$$
 P ← *P* - η · ∇ P

•
$$\mathbf{Q} \leftarrow \mathbf{Q} - \eta \cdot \nabla \mathbf{Q}$$

How to compute gradient of a matrix?

Compute gradient of every element independently!

• where ∇Q is gradient/derivative of matrix Q:

$$\nabla Q = [\nabla q_{if}]$$
 and $\nabla q_{if} = \sum_{x,i} -2(r_{xi} - q_i p_x)p_{xf} + 2\lambda_2 q_{if}$

- Here q_{if} is entry f of row q_i of matrix Q
- Observation: Computing gradients is slow!

Stochastic Gradient Descent

- Gradient Descent (GD) vs. Stochastic GD
 - Observation: $\nabla Q = [\nabla q_{if}]$ where

$$\nabla q_{if} = \sum_{x,i} -2(r_{xi} - q_{if}p_{xf})p_{xf} + 2\lambda q_{if} = \sum_{x,i} \nabla Q(r_{xi})$$

- Here q_{if} is entry f of row q_i of matrix Q
- Idea: Instead of evaluating gradient over all ratings evaluate it for each individual rating and make a step
- GD: $\mathbf{Q} \leftarrow \mathbf{Q} \eta \left[\sum_{r_{xi}} \nabla \mathbf{Q}(r_{xi}) \right]$
- SGD: $Q \leftarrow Q \mu \nabla Q(r_{xi})$
 - Faster convergence!
 - Need more steps but each step is computed much faster

SGD vs. GD

Convergence of GD vs. SGD

Iteration/step

GD improves the value of the objective function at every step.

SGD improves the value but in a "noisy" way.

GD takes fewer steps to converge but each step takes much longer to compute.

In practice, **SGD** is much faster!

Pytorch Tutorial + Matrix Factorization