Udine, 27 September 2025

popswap • FR

PopSwap (popswap)

BALKAN OLYMPIAD

Salut! C'est moi, Jovian. On m'a promis un max de fromage si je résolvais ce problème en étant un « good boy ». Pfff, la barbe... J'ai pas le temps pour ces bêtises, alors c'est toi qui t'y colles. Voilà le topo :

Pour un entier N donné, S_N est l'ensemble de toutes les permutations de (0,...,N-1). De plus, E_N est l'ensemble de toutes les paires ordonnées (p,q) où :

- p et q sont des éléments de S_N ;
- p et q peuvent être obtenus l'un de l'autre en échangeant deux éléments adjacents.

Note que si $(p,q) \in E_N$, alors $(q,p) \in E_N$.

Ton but est d'étiqueter chaque élément de S_N avec un nombre naturel unique dans $[0, 2^{60})$, c'est-à-dire de produire une fonction injective¹ \mathcal{L} (appelée un étiquetage) de S_N vers l'ensemble des nombres naturels inférieurs à 2^{60} .

La qualité d'un étiquetage est mesurée par deux paramètres qui doivent être minimisés :

- la magnitude $M(\mathcal{L})$, définie comme étant le plus petit nombre naturel k tel que $2^k > \mathcal{L}(p)$ pour tous les éléments p de S_N .
- la proximité, définie par :

$$C(\mathcal{L}) = \sum_{(u,v) \in E_N} \operatorname{popcount}(\mathcal{L}(u) \oplus \mathcal{L}(v)).$$

où \oplus est le ou exclusif bit à bit et popcount(x) est le nombre de bits à 1 dans la représentation binaire de x.

Ta tâche est de trouver un étiquetage \mathcal{L} qui atteint de faibles valeurs pour $M(\mathcal{L})$ et $C(\mathcal{L})$. Note qu'une solution optimale n'est pas requise.

Implémentation

C'est un problème de type « output-only » (sortie seule). Tu dois soumettre un fichier de sortie séparé pour chaque fichier d'entrée. Les fichiers d'entrée et de sortie doivent suivre le format suivant.

Format de l'entrée

Les fichiers d'entrée sont constitués d'une seule ligne contenant un entier N et l'indice G de l'entrée.

Format de la sortie

Les fichiers de sortie doivent contenir N! lignes, la i-ième contenant l'étiquette de la i-ième permutation dans l'ordre lexicographique.²

Score

Ce problème a exactement 2 cas de test : input000.txt et input001.txt, dans lesquels N=10.

Le score pour ta solution sur chaque cas de test est déterminé par $S_M(\mathcal{L}) \times S_C(\mathcal{L})$, où $S_C(\mathcal{L})$ et $S_M(\mathcal{L})$ sont des fonctions de ton étiquetage de sortie \mathcal{L} .

popswap Page 1 de 2

¹Une fonction est dite injective si elle associe des éléments distincts à des images distinctes.

²Formellement, étant donné deux permutations $p \neq q$, on dit que p est lexicographiquement plus petite que q si et seulement si $p_k < q_k$ où k est le plus petit indice tel que $p_k \neq q_k$.

- $S_C(\mathcal{L}) = \left(\min\left(1, 36 \cdot 10^6/C(\mathcal{L})\right)\right)^2$ pour chaque entrée.
- $S_M(\mathcal{L})$ est différent pour chaque entrée, selon les tableaux suivants. Entre les valeurs spécifiées dans les tableaux, S_M varie linéairement.

Une sortie malformée obtient toujours zéro point.

input000.txt			input001.txt	
$M(\mathcal{L})$	$S_M(\mathcal{L})$		$M(\mathcal{L})$	$S_M(\mathcal{L})$
> 60	0		> 25	0
60	6		25	0
≤ 25	60	'	≤ 22	40

Le score pour le problème est la somme des scores sur chaque cas de test.

Exemples

input	output
3 -1	32
	16
	8
	4
	2
	1

Explication

Note que le **premier exemple** n'est pas un cas de test officiel, car $N \neq 10$ et $G \notin \{0, 1\}$. La sortie de l'exemple représente l'étiquetage suivant :

$$\mathcal{L}(p) = \begin{cases} 32 \text{ si } p = (0, 1, 2) \\ 16 \text{ si } p = (0, 2, 1) \\ 8 \text{ si } p = (1, 0, 2) \\ 4 \text{ si } p = (1, 2, 0) \\ 2 \text{ si } p = (2, 0, 1) \\ 1 \text{ si } p = (2, 1, 0) \end{cases}$$

Comme $2^5 \not\geqslant 32$ mais que $2^6 > 32$, la magnitude de l'étique tage est $M(\mathcal{L}) = 6$. Comme il y a $3! \cdot (3-1) = 12$ éléments dans E_3 et que popcount $(\mathcal{L}(p), \mathcal{L}(q)) = 2$ pour tous les $p, q \in S_N$, la proximité de l'étique tage est $C(\mathcal{L}) = 12 \cdot 2 = 24$.

Page 2 de 2