	<u> </u>	Solution	Marks	Remarks
1.	mx = 2(m+c)			
	mx = 2m + 2c			,
	mx - 2m = 2c		1M	for putting m on one side
	m(x-2)=2c		I	for factorization
			1M	for factorization
	$m = \frac{2c}{x-2}$		1A	
	x-2		1 22%	
			(3)	
2.	For $\frac{3-5x}{4} \ge 2-x$, we have			
••	For $\frac{1}{4} \ge 2 - x$, we have		· •	•
	$3-5x \ge 4(2-x)$		ĺ	
	$3 \sim 5x \ge 8 - 4x$			
	$4x - 5x \ge 8 - 3$		1M	
	-x≥5		11M	for putting x on one side
	x ≤5		. ,	
	For $x+8>0$, we have	·	1A	·
	x > -8		ŀ	·
	So, the required solution is		•	
	$x > -8$ and $x \le -5$.		٠,,	
	Thus, the required solution is		IA.	do not accept graphical solutio
	$-8 < x \le -5$.		į	
	0 1 2 2 ,	·	(3)	
		_	ļ(3)	
		•	ļ	
	(a) $x^2 - (y - z)^2$			
	=(x+(y-z))(x-(y-z))		1	
	= (x+y-z)(x-y+z)			
	=(x+y-2)(x-y+2)		1A	
	(1)	1.	•	
	(b) $ab-ad-bc+cd$	F-11-2-1-1-1		
	= a(b-d) - c(b-d)	b(a-c)-d(a-c)	1M	for taking out common factors
	= (a-c)(b-d)		1A	•
	•		(3)	·
	$4^{x+1} = 8$	•		
•	$2^{2(x+1)} = 2^3$			
	$2^{2x+2} = 2^3$		1M	for same base (2, 4 or 8 only)
	2x + 2 = 3 $2x + 2 = 3$		13.6	
	2x = 1		1M	for equating the powers
	$x = \frac{1}{2}$		1A	
			<u> </u>	
	$4^{x+1} = 8$			
	$\log(4^{x+1}) = \log 8$		1M	for taking log
	$(x+1)\log 4 = \log 8$			
	$x + 1 = \frac{\log 8}{\log 4}$		1M	for putting log on one side
	log 4	•		
	•		ļ	
	$x+1=\frac{3}{2}$	•		•
	1		1.A	
	$ r=\hat{-} $		Y-73	l · · · · · · · · · · · · · · · · · · ·
	$x=\frac{1}{2}$		I	

2003-CE-MATH 1-4

Solution	Marks	Remarks
5. (a) The selling price of the handbag		
$= 400(1+20\%)(0.75)$ $\boxed{400(1+20\%)(1-25\%)}$	1	
= \$360	lA	
	1A	u-1 for missing unit
(b) Percentage loss		
$=\frac{400-360}{400}\times100\%$		
400 = 10%	lM	accept without 100%
- 10/b] 1A	i
](<i>i</i>	4)
	!	
Let x be the number of first-class tickets sold.		
Then, the number of economy-class tickets sold is $3x$. Therefore, we have $x+3x=600$		
4x = 600	1A	
x = 150		
	1A	can be absorbed
The sum of money for the tickets sold		
=(150)(850)+(3)(150)(500)	1	İ
=\$352 500	1M	
	lA	u-1 for missing unit r.t. \$353 00
The number of first-class tickets sold		<u> </u>
$=(600)\left(\frac{1}{1+3}\right)$	1A	
a a	1.7	
=150	İ	
The number of economy-class tickets sold	ł	
= 600 - 150	≻ IA	for either one and can be absorbed
= 450	}	and can be absorbed
The many Control of the control of t	J	ļ
The sum of money for the tickets sold $= (150)(850) + (450)(500)$	ļ]
= \$352 500	1M	
= \$332 500	1A	u_1 for mission
	 	u-1 for missing unit r.t. \$353 000
	(4)	
(a) Common difference]	
= 5 - 2		
= 3		
The 10th term	1A	
= 2 + (10 - 1)(3)		
= 29	,	
(b) The sum of the first 10 terms	IA	
The Later to terms]	
$=\frac{10}{2}(2+29)$ $\frac{10}{2}((2)(2)+(10-1)(3))$		10
=155	1M	for $\frac{10}{2}(2+(a))$
-155	1A	2
(a) Note that the arithmetic sequence is 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, The 10th term = 29	<u> </u>	
The 10th term = 29	1A	
	1A	į
(b) The sum of the first 10 terms		
=2+5+8+11+14+17+20+23+26+29	13.6	5. 6
= 155	lM IA	for $2+\cdots+(a)$
	IA I	
	(4)	· <u> </u>

		Solution	Marks	Remarks
8.	(a)	In $\triangle ABC$ and $\triangle CDA$, $\angle CAB = \angle ACD$ (alternate $\angle s$, $AB \parallel DC$) $\angle ACB = \angle CAD$ (alternate $\angle s$, $BC \parallel AD$) $AC = CA$ (common side) $\triangle ABC \cong \triangle CDA$ (ASA)		[(內)錯角、AB#DC] [(內)錯角,BC#AD] [公共邊]
		Marking Scheme: Case 1 Any correct proof with correct reasons. Case 2 Any correct proof without reasons.	2	
	(b)	$\Delta ABD \cong \Delta CDB$ $\Delta ABE \cong \Delta CDE$ $\Delta AED \cong \Delta CEB$		
		Marking Scheme: Case 1 There are exactly three pairs of triangles and all of them are correct.	2	
		Case 2 Any one pair is correct.	1(4)	
9.	(a)	The shortest distance = $100 \sin 60^{\circ}$ = $50\sqrt{3}$	1M	
		≈ 87 km	1A	u-1 for missing unit
	(b)	The distance travelled by S between 1:00 a.m. and when it is nearest to L = 100 cos 60° = 50 km	1M	accept $\frac{87}{\tan 60^\circ}$
		The distance travelled by S between 1:00 a.m. and when it is nearest to $L = \sqrt{100^2 - (50\sqrt{3})^2}$ $= \sqrt{2500}$ $= 50 \text{ km}$	1M	for $\sqrt{100^2 - (a)^2}$
		The time taken $= \frac{50}{20}$ = 2.5 hours	1M	
		Therefore, S will be nearest to L at 3:30 and .	1A (5)	do not accept 2.5 hours after 1:00 a.m.

그 가는 하는 하는 다리

EOD TEACHEDS! HISE ONLY

	Solution	Marks	Remarks
. (a)	Let $V = aL^2 + bL$, where a and B are constants.	lA	
	When $L = 10$, $V = 30$, so we have $100a + 10b = 30$		
	$10a+b=3 \qquad \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots $	lΜ	for substitution (either one)
	When $L = 15$, $V = 75$, so we have 225a + 15b = 75 15a + b = 5		
	Solving (1) and (2), we have		
	$ \left\{ \begin{array}{l} a = \frac{2}{5} \\ b = -1 \end{array} \right. $	1A	for both correct
	$\therefore V = \frac{2}{5}L^2 - L$	(2)	
		(3)	
(b)	When $V \ge 30$, we have $\frac{2}{5}L^2 - L \ge 30$ (by(a)). Therefore, we have	IM	for putting the result of (a) into $V \ge$
	$2L^{2} - 5L - 150 \ge 0$ $(2L + 15)(L - 10) \ge 0$	1M	in the form $k_1L^2 + k_2L + k_3 \ge 0$
	$L \ge 10$ or $L \le -75$	1 A	
	Since $5 \le L \le 25$, we have $10 \le L \le 25$.	1A	accept ' $L \ge 10$ and $L \le 25$ ' but do not accept graphical solution
		(4)	
		1	

		Solution		Marks	Remarks
11. (a) (i)	The mode = 10		1A	
	(ii)	The median $= \frac{11 + 12}{2}$			
		= 11.5		1A	
	(iii)	The mean			
		= 12		1A	
	(iv)	The range ≅∭6—400			
		= 6		1A (4)	
(b)	(i)	The median will be the least when the four unknown data are at most equal to 10. The least possible value of the median			
		= 10 The median will be the greatest when the four unknown data are at least equal to 16. The greatest possible value of the median	•	1 A	-
		= 14.5	·	1A	
	(ii)	The required mean $= \frac{(12)(6)+(11)(4)}{(12)(4)}$			
		6 + 4		1M	for (11)(4) = sum of the four unknown data
		= 11.6		1A (4)	

	Solution	Marks	Remarks
. (a)	The slope of BC		
=	$\frac{3-0}{0-2}$		
=	$\frac{-3}{2}$	1A	accept -1.5 or $-1\frac{1}{2}$
	2		•
(b)	The slope of AP	(1)	
•	-		
	$\frac{-1}{-1.5}$	1M	can be absorbed
=	$\frac{2}{3}$		
	the equation of AP is:		
•			
	$\frac{y-0}{x-(-1)}=\frac{2}{3}$	1M	for point-slope form
	2x - 3y + 2 = 0		2x 2
	2x · 3y + 2 = 0	1A	accept $y = \frac{2x}{3} + \frac{2}{3}$
		(3)	-
(c) (i)	Let the coordinates of H be (0, h)		
(-)	Then, by (b), $2(0) - 3h + 2 = 0$	1M	for putting $x = 0$ into (b)
	$h = \frac{2}{3}$	1A	
	2		
	Thus, the coordinates of H are $(0, \frac{2}{3})$.		
(ii	i) The slope of $AC = \frac{3-0}{0-(-1)} = 3$	1A	
	Suppose the altitude from B to AC cuts AC at Q .		
	_		
	The slope of $BQ = \frac{-1}{3}$	1 M	
			0 2
	The equation of BQ is: $\frac{y-0}{x-2} = \frac{-1}{3}$		or, the slope of $BH = \frac{0 - \frac{2}{3}}{2 - 0} =$
	x + 3y - 2 = 0		2-0
	·		
	Note that $0 + (3)(\frac{2}{3}) - 2 = 2 - 2 = 0$		•
	Hence, the three altitudes pass through the same point 27.	1	.
	0 2	-	
	Note that the slope of $BH = \frac{0 - \frac{2}{3}}{2 - 0} = \frac{-1}{3}$	1M	
	2,-0 3		
	and the slope of $AC = \frac{3-0}{0-(-1)} = 3$	1A	
	$\therefore \text{ (the slope of } BH \text{) (the slope of } AC \text{)} = (\frac{-1}{3})(3) = -1$		
	5		
	∴ BH ⊥ AC Hence, the three altitudes pass through the same point 程.	1	
	point if.	<u> </u>	
		(5)	

Solution	Marks	Remarks
(a) (i) $\frac{x}{360} = \frac{30\pi}{(2\pi)(56 + 24)}$ $x = 67.5$	1M - 1A	for $\frac{x}{360} = \frac{30\pi}{2\pi r}$ u-1 for having unit
$30\pi = (56 + 24)(\frac{x\pi}{180})$	1M	for $30\pi = r \left(\frac{x\pi}{180} \right)$
x = 67.5	IA_	u-1 for having unit
(ii) The required area = area of sector ODC - area of sector OAB = $\left(\frac{67.5}{360}\right) \left((56+24)^2 \pi\right) - \left(\frac{67.5}{360}\right) \left(56^2 \pi\right)$ = $1200\pi - 588\pi$	1M	for either one
$= 612\pi \text{ cm}^2$	1A	u-1 for missing unit
The required area = area of sector ODC - area of sector OAB = $\frac{1}{2}(56+24)^2 \left(\frac{67.5\pi}{180}\right) - \frac{1}{2}(56^2) \left(\frac{67.5\pi}{180}\right)$	1 M	for either one
$= 1200\pi - 588\pi$ $= 612\pi \text{ cm}^2$	1A	u-1 for missing unit
(b) (i) The required area $= (612\pi)(\frac{18}{24})^{2}$ $= \frac{1377}{4} \pi \text{ cm}^{2}$	1M	for $((a)(ii))(\frac{18}{24})^2$ accept 344.25 π cm ² or 344 $\frac{1}{4}\pi$ c u-1 for missing unit
I8 cm G FO' FG		
$\frac{FO'}{BO} = \frac{FG}{BC}$ $\frac{FO'}{56} = \frac{18}{24}$ Hence, $FO' = 42$ cm		
The required area	1N	1
$= \frac{1}{2} (42 + 18)^{2} \left(\frac{67.5\pi}{180} \right) - \frac{1}{2} (42^{2}) \left(\frac{67.5\pi}{180} \right)$ $= \frac{1377}{4} \pi \text{ cm}^{2}$	1/	2 241
1 13// 2	17	,

只限教師參閱

FOR TEACHERS' USE ONLY

Solution	Marks	Remarks
(ii) $2\pi r = \left(\frac{18}{24}\right)(30\pi)$	1M+1M	$1M \text{ for } \left(\frac{18}{24}\right)(30\pi) +$
$2\pi r = 22.5\pi$		1M for equating $2\pi r$
$r = \frac{45}{4}$	1A	accept 11.25 r.t. 11.3
24 cm / D		3 cm
30π cm		
$\begin{array}{ccc} \therefore & 2\pi \ s = 30\pi \\ \therefore & s = 15 \end{array}$	1 M	for equating $2\pi s$
$r = \left(\frac{FG}{RC}\right)s$		
$\therefore r = \left(\frac{18}{24}\right)(15)$	1M	
Thus, $r = \frac{45}{4}$	1A	accept 11.25 r.t. 11.3
	(5)	
	, , , , , , , , , , , , , , , , , , ,	
·		

	Solution	Marks	Remarks
4. (a) By	cosine formula, we have		
(-,		1A	
	$\cos \angle OAC = \frac{3^2 + 6^2 - 4^2}{(2)(3)(6)}$	iA	
	2010 ≈ 36.33605751°		
	∠OAC ≈ 36.3°	1A (2)	u-1 for missing unit
(I.) (C)	*** 40° BC		
(B) (L)	$\tan 40^\circ = \frac{BC}{4}$	- 1.A	for either one correct
	$BC = 4 \tan 40^{\circ}$		
	BC ≈ 3.36 m		
			3.36
	$\tan 30^\circ = \frac{4 \tan 40^\circ}{CD}$	1M	accept $\tan 30^{\circ} \approx \frac{3.36}{CD}$
	CD ≈ 88 (3252775		
	CD ≈ 5.81 m	1A	u–1 for missing unit r.t. 5.81
(i:	· •		
	$\cos \angle CAD = \frac{6^2 + 8^2 - CD^2}{(2)(8)(6)}$	1M	with CD substituted
	(2)(8)(6)		
	ces24CAD≈0.689692571		
	2020-46399760439	1 14	u-1 for missing unit
	∠ <i>CAD</i> ≈ 46.4°	1A	r.t. 46.4°
(i	ii) By sine formula, we have		
	$\frac{CE}{\sin \angle EAC} = \frac{6}{\sin \theta} \text{and} \frac{ED}{\sin \angle EAD} = \frac{8}{\sin(180^{\circ} - \theta)}$	IM	for either one with angle substitut
	$\sin \angle EAC \sin \theta \sin \angle EAD \sin(180^{\circ} - \theta)$		
	So, $\frac{6\sin 36.33605751^{\circ}}{\sin \theta} + \frac{8\sin 10.06370296^{\circ}}{\sin(180^{\circ} - \theta)} \approx CD$	1M	with CD substituted
		11.11	1
	3.5551215 11.697944043 = 5505057475		
	5100		
	$\sin\theta \approx 0.85200065$	1M	for making $\sin \theta$ the subject
	$\theta = 58.42994248^{\circ}$		1.0
	$\theta \approx 58.4^{\circ} (\because \theta \text{ is acute})$	1A	u-1 for missing unit r.t. 58.4°
	By cosine formula, we have		
	$\cos \angle ACD = \frac{6^2 + CD^2 - 8^2}{(2)(6)(CD)}$	23.5	with CD substituted
	(2)(6)(CD)	2M	with CD substituted
	cos ∠ACD ≈ 0.083086497		
	*ACTO=35.234000000TP		
	$\angle EAC + \angle ACD + \theta = 180^{\circ} (\angle sum \text{ of } \Delta)$		
	$36.33605751^{\circ} + 85.23400001^{\circ} + \theta = 180^{\circ}$	1M	
	0~58.429912489	* 4	1 6
	Thus, $\theta \approx 58.4^{\circ}$	1A	u-1 for missing unit
		(9	
			1

			Solution	Marks	Remarks
15.	(a)	(i)	The required area = $\frac{1}{2}k(1-k)\sin 60^{\circ}$	ıM	for $\frac{1}{2}ab\sin 60^{\circ}$
			$=\frac{\sqrt{3}}{4}k(1-k) m^2$	1A	u-1 for missing unit
		(ii)	By cosine formula, we have $x^{2} = k^{2} + (1-k)^{2} - 2k(1-k)\cos 60^{\circ}$ $x^{2} = 3k^{2} - 3k + 1$	1M	for $x^2 = a^2 + b^2 - 2ab \cos 60^c$
			$x = \sqrt{3k^2 - 3k + 1}$. 1A	
		(iii)	By symmetry, $A_1B_1 = B_1C_1 = C_1A_1 = x$ m. Thus, $A_1B_1C_1$ is an equilateral triangle.	1(5)	
	(b)	(i)	$\therefore \frac{A_2 B_1}{A_1 B_0} = \frac{x(1-k)}{1-k} = x = \frac{xk}{k} = \frac{B_2 B_1}{B_1 B_0}$		
			$\angle A_2 B_1 B_2 = 60^\circ = \angle A_1 B_0 B_1$ $\therefore \Delta A_1 B_0 B_1 \sim \Delta A_2 B_1 B_2 \text{(ratio of 2 sides, inc.} \angle \text{)}$		 [兩邊 成比例且夾角相等]
			Marking Scheme :		
			Case 1 Any correct proof with correct reasons. Case 2 Any correct proof without reasons.	2	·
		(ii)	$\Delta A_1 B_0 B_1 \sim \Delta A_2 B_1 B_2 \sim \Delta A_3 B_2 B_3 \sim \dots$ their areas form a geometric sequence with a common ratio x^2 .	1A	can be absorbed
			So, the total area $= \frac{\sqrt{3}}{4}k(1-k) + \frac{\sqrt{3}}{4}k(1-k)x^2 + \frac{\sqrt{3}}{4}k(1-k)x^4 + \cdots$		
			$=\frac{\frac{\sqrt{3}}{4}k(1-k)}{1-x^2}$	1M	for $\frac{(a)(i)}{1-r}$
			$= \frac{\frac{\sqrt{3}}{4}k(1-k)}{3k-3k^2}$ (by (a)(ii))	1M	·
			$=\frac{\sqrt{3}}{12} \text{ m}^2$	IA	u–1 for missing unit
					1

					Solution		Marks	Remarks
16.	(a)	The	e requi	ired probability	$= \left(1 - \frac{1}{10}\right) \left(\frac{1}{2}\right)$		1M	for $\left(1 - \frac{1}{10}\right)P_1$, where $0 < P_1 < 1$
				=	$=\frac{9}{20}$		1A	0.45
					20		(2)	
	(b)	(i)	The	required probab	ility = $\left(1 - \frac{2}{25}\right) \left(\frac{1}{2}\right)$		1M	for $\left(1 - \frac{2}{25}\right)^{P_2}$, where $0 < P_2 < 1$
					$=\frac{23}{50}$,	IA	0.46
					50			0.70
		(ii)	(1)	The required pr	robability = $\left(\frac{2}{3}\right)\left(\frac{2}{3}\right)$	$\left(\frac{9}{20}\right) + \left(\frac{1}{3}\right)\left(\frac{23}{50}\right)$		$1M \text{ for } \left(\frac{2}{3}\right)(a) +$
								$1M \text{ for } \left(\frac{1}{3}\right)((b)(i))$
					$=\frac{34}{75}$		1A	r.t. 0.453
			(3)	···				·
			(2)	Transportation Bus and Train	Transportation Cost	Transportation Cost + \$15 Lunch		ts
				Train and Train	\$12 \$15	\$27 \$30		
				The required pr	ohahility			
				$=1-\frac{34}{75}$	осивнич		2M	for 1-(b)(ii)(1)
				$=\frac{41}{75}$		£.		
							1A	r.t. 0.547
				The required = P(John will s	probability pend more than a to	otal of \$30)		
				= P(John will spend	d more than a total of \$22	.5 for the morning trip and lunch)		
				$=$ $\left(\frac{2}{3}\right)\left(\frac{1}{10}+\left(1\right)\right)$	$-\frac{1}{10}\left[\left(\frac{1}{2}\right)\right]+\left(\frac{1}{3}\right)$	$\left(\frac{2}{25} + \left(1 - \frac{2}{25}\right)\left(\frac{1}{2}\right)\right)$		
				$= \frac{1}{15} + \frac{3}{10} + \frac{2}{75}$	·	`	lA+1A	1A for either one correct +
				$=\frac{41}{75}$	150		1 1	1A for all correct
				75			1A	r.t. 0.547
				The required	probability pend more than a to	otal of \$20)		
			,	= P(John will spend	i more than a total of \$22	.5 for the morning trip and lunch)	j	
				$= \left(\frac{2}{3}\right) \left(\frac{1}{10}\right) \left(\frac{1}{2}\right)$	$+\left(\frac{2}{3}\right)\left(\frac{1}{10}\right)\left(\frac{1}{2}\right)+\left(\frac{2}{3}\right)$	$\left(\frac{9}{10}\right)\left(\frac{1}{2}\right)$ +		
				$\left(\frac{1}{3}\right)\left(\frac{2}{25}\right)\left(\frac{1}{2}\right)$	$+\left(\frac{1}{3}\right)\left(\frac{2}{25}\right)\left(\frac{1}{2}\right)+\left(\frac{1}{3}\right)\left(\frac{1}{2}\right)$, , , ,		
				$=\frac{1}{30}+\frac{1}{30}+\frac{3}{10}$	$+\frac{1}{75}+\frac{1}{75}+\frac{23}{150}$		1A+1A	1A for either one correct +
				$=\frac{41}{25}$			l lA	1A for all correct r.t. 0.547
				75			(9)	

		Solution	Marks	Remarks
17. (a)		In $\triangle NPM$ and $\triangle NKP$, $\angle NPM = \angle NKP$ (\angle in alt. segment) $\angle MNP = \angle PNK$ (common angle) $\therefore \triangle NPM \sim \triangle NKP$ (\triangle sum of \triangle) So, $\frac{NP}{NK} = \frac{NM}{NP}$ Thus, we can conclude that $NP^2 = NK \cdot NM$. Marking Scheme:		[交錯弓形的圓周角]、[弦切角定理 [公共角] [公內角和] [等角] (AA) (equiangular)
		Case 1 Any correct proof with correct reasons. Case 2 Any correct proof without reasons.	2	
		Case 2 Any conect proof without reasons. Case 3 Any one line except the first line and the conclusion.	1	
	(ii)	$NP^{2} = NK \cdot NM \text{and} ON^{2} = NK \cdot NM (by (a)(i))$ $NP = ON$ $RS \parallel OP$ $\Delta KRM \sim \Delta KON (AAA) \text{and} \Delta KMS \sim \Delta KNP (AAA)$	1	
		$\therefore \frac{RM}{ON} = \frac{KM}{KN} \text{and} \frac{MS}{NP} = \frac{KM}{KN}$ $\therefore \frac{RM}{ON} = \frac{MS}{NP}$ $\therefore RM = MS$	1	
(b)	(i)	FM = 2a $MG = 2(p-a)$	1A	for either one correct
		FG = 2a + 2(p - a) $= 2p$	1A	:
			1A	for either one correct
		FG = (2p - a) - (-a) $= 2p$	1A	
	(ii)	F = (-a, b) FG = 2OP (by (b)(i)) and $FG // OP$ (given)	1A	
		\therefore O is the mid-point of F and Q. Thus, $Q = (a, -b)$	1A	
	(iii)	∴ x-coordinate of $Q = a = x$ -coordinate of M ∴ $MQ \perp RS$ ∴ $RM = MS$ (by (a)(ii)) ∴ $\Delta QMR \cong \Delta QMS$ (SAS)	1	
		Thus, $QR = QS$ Hence, $\triangle QRS$ is an isosceles triangle.	1	