EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015

MATEMATYKA POZIOM ROZSZERZONY

ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

Zadanie 1. (1 p.)

Dane są dwie urny z kulami. W każdej jest 5 kul. W pierwszej urnie jest jedna kula biała i 4 kule czarne. W drugiej urnie są 3 kule białe i 2 kule czarne. Rzucamy jeden raz symetryczną sześcienną kostką do gry. Jeśli wypadnie jedno lub dwa oczka, to losujemy jedną kulę z pierwszej urny, jeśli wypadną co najmniej trzy oczka, to losujemy jedną kulę z drugiej urny. Prawdopodobieństwo wylosowania kuli białej jest równe

A.
$$\frac{1}{15}$$
.

B.
$$\frac{2}{5}$$
.

C.
$$\frac{7}{15}$$
.

D.
$$\frac{3}{5}$$
.

Wymagania ogólne

IV. Użycie i tworzenie strategii.

Wymagania szczegółowe

10.3R Uczeń korzysta z twierdzenia o prawdopodobieństwie całkowitym.

Rozwiązanie (I sposób)

Rozwiązujemy zadanie metodą drzewa.

Następnie obliczamy prawdopodobieństwo wylosowania kuli białej: $\frac{1}{3} \cdot \frac{1}{5} + \frac{2}{3} \cdot \frac{3}{5} = \frac{7}{15}$.

Odp.: C.

Rozwiązanie (II sposób)

Niech U_1 i U_2 oznaczają odpowiednio zdarzenie polegające na wylosowaniu kuli z pierwszej urny i zdarzenie polegające na wylosowaniu kuli z drugiej urny.

2

Zdarzenia U_1 i U_2 spełniają warunki:

1.
$$U_1 \cap U_2 = \emptyset$$
,

$$2. \ U_1 \cup U_2 = \Omega,$$

3.
$$P(U_1) = \frac{2}{6} = \frac{1}{3} > 0$$
,

4.
$$P(U_2) = \frac{4}{6} = \frac{2}{3} > 0$$
.

Rozważmy zdarzenie B polegające na wylosowania kuli białej.

Prawdopodobieństwo tego zdarzenia możemy obliczyć, korzystając ze wzoru

$$P(B) = P(B|U_1) \cdot P(U_1) + P(B|U_2) \cdot P(U_2),$$

gdzie prawdopodobieństwo wylosowania kuli białej pod warunkiem, że losujemy z pierwszej urny, jest równe $P(B|U_1) = \frac{1}{5}$ i prawdopodobieństwo wylosowania kuli białej pod warunkiem, że losujemy z drugiej urny, jest równe $P(B|U_2) = \frac{3}{5}$.

Obliczamy $P(B) = \frac{1}{5} \cdot \frac{1}{3} + \frac{3}{5} \cdot \frac{2}{3} = \frac{7}{15}$

Odp.: C.

Zadanie 2. (1 p.)

Dany jest nieskończony ciąg geometryczny (a_n) określony wzorem

$$a_n = \frac{3}{(\sqrt{2})^n}$$
 dla $n = 1, 2, 3,$

Suma wszystkich wyrazów tego ciągu jest równa

A.
$$\frac{1}{\sqrt{2}-1}$$
.

B.
$$\frac{\sqrt{2}}{\sqrt{2}-1}$$
. C. $\frac{2}{\sqrt{2}-1}$. D. $\frac{3}{\sqrt{2}-1}$.

C.
$$\frac{2}{\sqrt{2}-1}$$

D.
$$\frac{3}{\sqrt{2}-1}$$

Wymagania ogólne

IV. Użycie i tworzenie strategii.

Wymagania szczegółowe

5.3R Uczeń rozpoznaje szeregi geometryczne zbieżne i oblicza ich sumy.

Rozwiązanie

Pierwszy wyraz i iloraz tego ciągu są odpowiednio równe: $a_1 = \frac{3}{\sqrt{2}}, q = \frac{1}{\sqrt{2}}$

Ponieważ
$$|q| = \left| \frac{1}{\sqrt{2}} \right| < 1$$
, więc mamy $S = \frac{a_1}{1-q} = \frac{\frac{3}{\sqrt{2}}}{1-\frac{1}{\sqrt{2}}} = \frac{3}{\sqrt{2}-1}$.

Odp.: D.

Zadanie 3. (1 p.)

Liczba $\frac{27^{665} \cdot \sqrt[3]{3^{-92}}}{\left(\frac{1}{2}\right)^{\frac{152}{3}}} \text{ jest równa}$

A. 3^{725} .

 $B. 3^{1995}$

C. 3^{2015} .

D. 3^{2045}

Wymagania ogólne

IV. Użycie i tworzenie strategii.

Wymagania szczegółowe

1.4 Uczeń oblicza potęgi o wykładnikach wymiernych i stosuje prawa działań na potęgach o wykładnikach wymiernych.

Rozwiązanie

Obliczamy, korzystając z działań na potęgach

$$\frac{27^{665} \cdot \sqrt[3]{3^{-92}}}{\left(\frac{1}{3}\right)^{\frac{152}{3}}} = \frac{3^{3 \cdot 665} \cdot \left(3^{-92}\right)^{\frac{1}{3}}}{3^{-\frac{152}{3}}} = 3^{1995 - \frac{92}{3} + \frac{152}{3}} = 3^{2015}.$$

Odp.: C.

Zadanie 4. (1 p.)

Dane są dwa okręgi: okrąg o_1 o równaniu $x^2+(y-1)^2=25$ oraz okrąg o_2 o równaniu $(x-1)^2+y^2=9$.

- A. Te okręgi przecinają się w dwóch punktach.
- B. Te okręgi są styczne.
- C. Te okręgi nie mają punktów wspólnych oraz okrąg o_1 leży w całości wewnątrz okręgu $o_2.$
- D. Te okręgi nie mają punktów wspólnych oraz okrąg o_2 leży w całości wewnątrz okręgu $o_1.$

Wymagania ogólne

 $IV.\ Użycie\ i\ tworzenie\ strategii.$

Wymagania szczegółowe

8.5R Uczeń posługuje się równaniem okręgu $(x-a)^2 + (y-b)^2 = r^2$ oraz opisuje koła za pomocą nierówności.

Rozwiązanie (I sposób)

Szkicujemy oba okręgi w jednym układzie współrzędnych i stwierdzamy, że drugi okrąg leży w całości wewnątrz pierwszego.

Odp.: D.

Rozwiązanie (II sposób)

Wyznaczamy środki i promienie okręgów odpowiednio $S_1 = (0,1)$ i R = 5 oraz $S_2 = (1,0)$ i r = 3.

Obliczamy
$$|S_1S_2| = \sqrt{(1-0)^2 + (0-1)^2} = \sqrt{2} \text{ oraz } |R-r| = 5-3=2.$$

Stwierdzamy, że zachodzi warunek $|S_1S_2| < |R-r|$, tzn. okręgi są rozłączne wewnętrznie i drugi okrąg leży w całości wewnątrz pierwszego.

Odp.: D.

Zadanie 5. (1 p.)

Suma $\sin\alpha + \sin3\alpha$ jest dla każdego α równa

- A. $\sin 4\alpha$.
- B. $2\sin 4\alpha$.
- C. $2\sin 2\alpha \cos \alpha$.
- D. $2\sin\alpha\cos2\alpha$.

Wymagania ogólne

II. Wykorzystanie i interpretowanie reprezentacji.

Wymagania szczegółowe

6.5R Uczeń stosuje wzory na sinus i cosinus sumy i różnicy kątów, sumę i różnicę sinusów i cosinusów.

Rozwiązanie (I sposób)

Korzystamy ze wzoru $\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$. Mamy zatem

$$\sin \alpha + \sin 3\alpha = \sin 3\alpha + \sin \alpha = 2\sin \frac{3\alpha + \alpha}{2}\cos \frac{3\alpha - \alpha}{2} = 2\sin 2\alpha \cdot \cos \alpha.$$

Odp.: C.

Rozwiązanie (II sposób)

Korzystamy ze wzorów

$$\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$$
 oraz $\cos 2\alpha = 2\cos^2\alpha - 1$.

Mamy zatem

$$\sin 3\alpha = \sin (\alpha + 2\alpha) = \sin \alpha \cos 2\alpha + \cos \alpha \sin 2\alpha = \sin \alpha \cos 2\alpha + 2\sin \alpha \cos^2 \alpha = \\ = \sin \alpha (4\cos^2 \alpha - 1).$$

A stąd otrzymujemy:

$$\sin \alpha + \sin 3\alpha = \sin \alpha + \sin \alpha (4\cos^2 \alpha - 1) = \sin \alpha (1 + 4\cos^2 \alpha - 1) =$$

$$= 4\sin \alpha \cos^2 \alpha = 2(2\sin \alpha \cos \alpha)\cos \alpha = 2\sin 2\alpha \cos \alpha.$$

Odp.: C.

Zadanie 6. (2 p.)

Liczba n jest najmniejszą liczbą całkowitą spełniającą równanie

$$2 \cdot |x + 57| = |x - 39|$$
.

Zakoduj cyfry: setek, dziesiątek i jedności liczby |n|.

Wymagania ogólne

II. Wykorzystanie i interpretowanie reprezentacji.

Wymagania szczegółowe

3.9R Uczeń rozwiązuje równania i nierówności z wartością bezwzględną o poziomie trudności nie wyższym niż: ||x+1|-2|=3, |x+3|+|x-5|>12.

Rozwiązanie (I sposób)

Przyjrzyjmy się interpretacji geometrycznej rozważanego równania. Na osi liczbowej dane są dwa punkty A i B o współrzędnych: A=-57 oraz B=39. Szukamy takich punktów X, dla których odległość od punktu B jest dwukrotnie większa od odległości od punktu A. Są dwa takie punkty X. Ponieważ odległość od A do B jest równa 96, więc jeden z nich (nazwijmy go X_1) leży w odległości 96 na lewo od punktu A, drugi zaś (nazwijmy go X_2) leży w odległości $\frac{96}{3}=32$ na prawo od punktu A. Ponieważ -57-96=-153 oraz -57+32=-25, więc szukaną liczbą n jest n=-153 oraz |n|=153.

W karcie odpowiedzi kodujemy cyfry: 1, 5, 3.

Schemat oceniania I sposobu rozwiązania

Rozwiązanie (II sposób) — zapisanie trzech przypadków

Wyróżniamy na osi liczbowej przedziały: $(-\infty, -57)$, (-57, 39), $(39, +\infty)$.

Rozwiązujemy równania w poszczególnych przedziałach i sprawdzamy, czy otrzymana liczba należy do danego przedziału.

$x \in (-\infty, -57)$	$x \in (-57, 39)$	$x \in \langle 39, +\infty \rangle$
$2 \cdot (-x - 57) = -x + 39$	$2 \cdot (x+57) = -x+39$	$2 \cdot (x+57) = x-39$
-x = 39 + 114	3x = 39 - 114	x = -39 - 114
x = -153	3x = -75	x = -153
	x = -25	Równanie nie ma roz-
		wiązania w tym prze-
		dziale.

Stad wynika, że n = -153 oraz |n| = 153.

Zatem kodujemy cyfry: 1, 5, 3.

Albo:

Wyróżniamy na osi liczbowej przedziały: $(-\infty, -57)$, (-57, 39), $(39, +\infty)$.

Zauważamy, że jeżeli w przedziale $(-\infty, -57)$ istnieje najmniejsza liczba całkowita spełniająca to równanie, to jest to szukana liczba n.

Rozwiązujemy dane równanie w przedziale $(-\infty, -57)$:

$$2 \cdot (-x - 57) = -x + 39,$$
$$-x = 39 + 114.$$

stąd x = -153.

Najmniejszą liczbą całkowitą spełniającą to równanie jest liczba n = -153, więc |n| = 153. Zatem kodujemy cyfry: 1, 5, 3.

Schemat oceniania II sposobu rozwiązania

Rozwiązanie (III sposób) — własności wartości bezwzględnej

Zapisujemy równanie $2 \cdot |x+57| = |x-39|$ w postaci:

$$2 \cdot (x+57) = -x+39$$
 lub $2 \cdot (x+57) = x-39$
 $3x = 39-114$ $x = -39-114$ $x = -153$ $x = -25$

Najmniejszą liczbą całkowitą spełniającą to równanie jest liczba n=-153, więc |n|=153. Zatem kodujemy cyfry: 1, 5, 3.

Schemat oceniania III sposobu rozwiązania

Zadanie 7. (2 p.)

Oblicz granicę ciągu

$$\lim_{n\to\infty}\frac{3n^2-5n+2}{\left(8n+7\right)\left(n+4\right)}.$$

Zakoduj trzy pierwsze cyfry po przecinku rozwinięcia dziesiętnego obliczonej granicy.

Wymagania ogólne

II. Wykorzystanie i interpretowanie reprezentacji.

Wymagania szczegółowe

5.2R Uczeń oblicza granice ciągów, korzystając z granic ciągów typu $\frac{1}{n}$, $\frac{1}{n^2}$ oraz z twierdzeń o działaniach na granicach ciągów.

Rozwiązanie

Ta granica jest równa

$$\lim_{n \to \infty} \frac{3n^2 - 5n + 2}{(8n + 7)(n + 4)} = \lim_{n \to \infty} \frac{3 - \frac{5}{n} + \frac{2}{n^2}}{\left(8 + \frac{7}{n}\right)\left(1 + \frac{4}{n}\right)} = \frac{3}{8} = 0,375.$$

W karcie odpowiedzi należy zatem zakodować cyfry 3, 7, 5.

Schemat oceniania

Zadanie 8. (2 p.)

Dana jest funkcja f określona wzorem

$$f\left(x\right) = \frac{x - 8}{x^2 + 6}$$

dla każdej liczby rzeczywistej x. Oblicz wartość pochodnej tej funkcji w punkcie $x=\frac{1}{2}$. Zakoduj trzy pierwsze cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku.

Wymagania ogólne

II. Wykorzystanie i interpretowanie reprezentacji.

Wymagania szczegółowe

11.2R Uczeń oblicza pochodne funkcji wymiernych.

Rozwiązanie

Mamy
$$f'(x) = \frac{(x-8)'(x^2+6) - (x-8)(x^2+6)'}{(x^2+6)^2} = \frac{x^2+6-2x(x-8)}{(x^2+6)^2} = \frac{x^2+6-2x^2+16x}{(x^2+6)^2} = \frac{x^2+6-2x^2+16x+6}{(x^2+6)^2}.$$

$$\text{Zatem } f'\left(\frac{1}{2}\right) = \frac{-\frac{1}{4} + 8 + 6}{\left(\frac{1}{4} + 6\right)^2} = \frac{\frac{55}{4}}{\left(\frac{25}{4}\right)^2} = \frac{55}{4} \cdot \frac{16}{625} = \frac{44}{125} = 0,352.$$

W karcie odpowiedzi należy zakodować cyfry 3, 5, 2.

Schemat oceniania

Zadanie 9. (2 p.)

Oblicz

$$\log_3 \sqrt[4]{27} - \log_3 \left(\log_3 \sqrt[3]{\sqrt[3]{3}}\right).$$

Zakoduj cyfrę jedności i dwie pierwsze cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku.

Wymagania ogólne

II. Wykorzystanie i interpretowanie reprezentacji.

Wymagania szczegółowe

1.2R Uczeń stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.

Rozwiązanie

$$\log_3 \sqrt[4]{27} - \log_3(\log_3 \sqrt[3]{\sqrt[3]{3}}) = \log_3 \frac{27^{\frac{1}{4}}}{\log_3 3^{\frac{1}{9}}} = \log_3 \frac{3^{\frac{3}{4}}}{3^{-2}} = \log_3 3^{2^{\frac{3}{4}}} = 2,75.$$

Schemat oceniania

Zadanie 10. (3 p.)

Punkty $P_1,P_2,P_3,\ldots,P_{23},P_{24}$ dzielą okrąg na 24 równe łuki (zobacz rysunek). Punkt A jest punktem przecięcia cięciw $P_{11}P_{22}$ i P_1P_{16} .

Udowodnij, że $| \not\sim P_{16}AP_{11}| = 60^{\circ}$.

Wymagania ogólne

V. Rozumowanie i argumentacja.

Wymagania szczegółowe

7.1 Uczeń stosuje zależności między kątem środkowym i kątem wpisanym.

Rozwiązanie (I sposób)

Narysujmy cięciwę P_1P_{11} .

Kąt wpisany $P_{11}P_{16}$ jest oparty na krótszym łuku $P_{16}P_{11}$. Łuk ten stanowi $\frac{5}{24}$ okręgu. Zatem kąt środkowy oparty na tym łuku ma miarę $\frac{5}{24} \cdot 360^\circ = 75^\circ$. Stąd wynika, że kąt wpisany oparty na tym łuku ma miarę $37,5^\circ$. Podobnie stwierdzamy, że kąt wpisany $P_1P_{11}P_{22}$ jest oparty na łuku stanowiącym $\frac{3}{24}$ okręgu, a więc ma miarę $22,5^\circ$. Stąd wynika, że

$$| \not\sim P_{11}AP_{16}| = 180^{\circ} - (180^{\circ} - 22, 5^{\circ} - 37, 5^{\circ}) = 60^{\circ}.$$

Schemat oceniania I sposobu rozwiązania

$$| \not P_{16} P_1 P_{11}| = 37.5^{\circ}, | \not P_1 P_{11} P_{22}| = 22.5^{\circ}.$$

$$| \not P_{16} P_1 P_{11}| = 37.5^{\circ}, \quad | \not P_1 P_{11} P_{22}| = 22.5^{\circ}.$$

Rozwiązanie (II sposób)

Zauważmy najpierw (zobacz rysunek), że jeżeli łuki AD i BC są równe, przy czym punkty C i D leżą po tej samej stronie prostej AB, to proste AB i CD są równoległe.

Wynika to wprost z równości kątów BAC i ACD (kąty wpisane oparte na równych łukach). Ponieważ punkty P_1 i P_{22} oraz P_8 i P_{11} wyznaczają łuki o tej samej długości, więc cięciwa P_1P_8 jest równoległa do $P_{11}P_{22}$.

Kąt wpisany $P_8P_1P_{16}$ jest oparty na krótszym z łuków P_8P_{16} , który stanowi $\frac{8}{24} = \frac{1}{3}$ okręgu, więc

 $| \not\sim P_8 P_1 P_{16}| = \frac{1}{3} \cdot \frac{1}{2} \cdot 360^\circ = 60^\circ.$

Schemat oceniania II sposobu rozwiązania

Zadanie 11. (3 p.)

Udowodnij, że dla każdej liczby rzeczywistej \boldsymbol{x} i każdej liczby rzeczywistej \boldsymbol{m} prawdziwa jest nierówność

$$20x^2 - 24mx + 18m^2 \ge 4x + 12m - 5$$
.

Wymagania ogólne

V. Rozumowanie i argumentacja.

Wymagania szczegółowe

3.2R Uczeń rozwiązuje równania i nierówności liniowe i kwadratowe z parametrem.

Rozwiązanie (I sposób)

Przekształcamy daną nierówność w sposób równoważny do postaci:

$$20x^2 - 24mx + 18m^2 - 4x - 12m + 5 \ge 0$$
.

Sposób "trikowy" polega na odpowiednim grupowaniu:

$$20x^2 - 24mx + 18m^2 - 4x - 12m + 5 = (2x - 1)^2 + (3m - 2)^2 + (4x - 3m)^2$$
.

Ponieważ $(2x-1)^2 + (3m-2)^2 + (4x-3m)^2 \ge 0$, więc dla każdej liczby rzeczywistej x i każdej liczby rzeczywistej m prawdziwa jest nierówność: $20x^2 - 24mx + 18m^2 \ge 4x + 12m - 5$.

Schemat oceniania I sposobu rozwiązania

Rozwiązanie (II sposób)

Inny sposób polega na potraktowaniu wyrażenia $20x^2 - 24mx + 18m^2 - 4x - 12m + 5$ jako trójmianu kwadratowego zmiennej x z parametrem m:

$$20x^2 - 24mx + 18m^2 - 4x - 12m + 5 = 20x^2 - (24m + 4)x + \left(18m^2 - 12m + 5\right).$$

Trójmian ten ma dodatni współczynnik przy x^2 oraz niedodatni wyróżnik dla każdego m:

$$\Delta = (24m+4)^2 - 4 \cdot 20 \cdot \left(18m^2 - 12m + 5\right) = -864m^2 + 1152m - 384 = -96\left(3m - 2\right)^2.$$

Zatem dla każdego x (i dla każdego m) wartość tego trójmianu jest nieujemna.

Schemat oceniania II sposobu rozwiązania

Trójmian ten ma dodatni współczynnik przy x^2 oraz niedodatni wyróżnik dla każdego m, zatem dla każdego x (i dla każdego m) wartość tego trójmianu jest nieujemna.

Zadanie 12. (3 p.)

Janek przeprowadza doświadczenie losowe, w którym jako wynik może otrzymać jedną z liczb: 0, 1, 2, 3, 4, 5, 6. Prawdopodobieństwo p_k otrzymania liczby k jest dane wzorem: $p_k = \frac{1}{64} \cdot \begin{pmatrix} 6 \\ k \end{pmatrix}$. Rozważamy dwa zdarzenia:

- zdarzenie A polegające na otrzymaniu liczby ze zbioru $\{1, 3, 5\}$,
- \bullet zdarzenie B polegające na otrzymaniu liczby ze zbioru $\{2,\,3,\,4,\,5,\,6\}.$

Oblicz prawdopodobieństwo warunkowe P(A|B).

Wymagania ogólne

III. Modelowanie matematyczne.

Wymagania szczegółowe

10.2R Uczeń oblicza prawdopodobieństwo warunkowe.

Rozwiązanie

Obliczamy:

$$p_0 = \frac{1}{64}, \ p_1 = \frac{6}{64}, \ p_2 = \frac{15}{64}, \ p_3 = \frac{20}{64}, \ p_4 = \frac{15}{64}, \ p_5 = \frac{6}{64}, \ p_6 = \frac{1}{64}.$$

Korzystamy teraz ze wzoru $P(A|B) = \frac{P(A \cap B)}{P(B)}$. Zdarzenie $A \cap B$ polega na wylosowaniu jednej z liczb: 3, 5.

$$P(A \cap B) = p_3 + p_5 = \frac{26}{64},$$

$$P(B) = p_2 + p_3 + p_4 + p_5 + p_6 = \frac{57}{64}.$$

Stąd wynika, że $P(A|B) = \frac{26}{64} \cdot \frac{64}{57} = \frac{26}{57} \approx 0,45614.$

Schemat oceniania

$$p_2 = \frac{15}{64}, \ p_3 = \frac{20}{64}, \ p_4 = \frac{15}{64}, \ p_5 = \frac{6}{64}, \ p_6 = \frac{1}{64}.$$

$$P(A \cap B) = \frac{26}{64}, \quad P(B) = \frac{57}{64}.$$

$$P(A|B) = \frac{26}{57} = 0,45614...$$

Uwaga 1. Zdający może tylko obliczyć prawdopodobieństwa $p_2, p_3, ..., p_6$.

Uwaga 2. Zdający może obliczyć prawdopodobieństwa $p_0, p_1, ..., p_6$ korzystając bezpośrednio z definicji symbolu Newtona.

Zadanie 13. (3 p.)

Wyznacz wszystkie wartości parametru m, dla których prosta o równaniu y = mx + (2m + 3) ma dokładnie dwa punkty wspólne z okręgiem o środku w punkcie S = (0,0) i promieniu r = 3.

Wymagania ogólne

III. Modelowanie matematyczne.

Wymagania szczegółowe

8.6R Uczeń wyznacza punkty wspólne prostej i okręgu.

Rozwiązanie (I sposób)

Dla żadnego parametru m prosta o równaniu y = mx + (2m+3) nie jest równoległa do osi Oy. Wynika stąd, że jeśli taka prosta przecina okrąg, to współrzędne x obu punktów przecięcia są różne. To znaczy, że do stwierdzenia, czy któraś z rozważanych prostych przecina okrąg w dwóch punktach, wystarczy stwierdzić, czy równanie

$$x^{2} + (mx + (2m + 3))^{2} = 9$$

z niewiadomą x i parametrem m ma dwa rozwiązania. Przekształćmy to równanie:

$$x^{2} + (mx + (2m+3))^{2} = 9,$$

$$x^{2} + m^{2}x^{2} + 2m(2m+3)x + (2m+3)^{2} - 9 = 0,$$

$$(m^{2} + 1)x^{2} + 2m(2m+3)x + 4m^{2} + 12m = 0.$$

Ponieważ $m^2+1\neq 0$, więc dla każdego m jest to równanie kwadratowe. Ma ono dwa rozwiązania wtedy i tylko wtedy, gdy jego wyróżnik jest dodatni. Obliczamy zatem ten wyróżnik:

$$\begin{split} &\Delta = 4m^2 \left(2m+3\right)^2 - 4\left(m^2+1\right)\left(4m^2+12m\right) = \\ &= 4m\left(m\left(2m+3\right)^2 - 4\left(m^2+1\right)\left(m+3\right)\right) = \\ &= 4m\left(4m^3+12m^2+9m-4m^3-12m^2-4m-12\right) = \\ &= 4m\left(5m-12\right) \end{split}$$

Wyróżnik Δ jest dodatni wtedy i tylko wtedy, gdy m < 0 lub $m > \frac{12}{5}$. Zatem rozważana prosta przecina dany okrąg w dwóch punktach wtedy i tylko wtedy, gdy m < 0 lub $m > \frac{12}{5}$.

Schemat oceniania I sposobu rozwiązania

$$\left(m^{2}+1\right)x^{2}+2m\left(2m+3\right)x+4m^{2}+12m=0$$

i stwierdzenie, że wyróżnik równania powinien być dodatni: $\Delta = 4m \cdot (5m-12), \ \Delta > 0.$

Rozwiązanie (II sposób)

Dowolna prosta będzie miała dokładnie dwa punkty wspólne z okręgiem, jeżeli odległość środka okręgu od danej prostej będzie mniejsza od promienia okręgu.

Zapisujemy równanie danej prostej w postaci ogólnej: mx - y + (2m + 3) = 0.

Wyznaczamy odległość punktu S = (0,0) od danej prostej: $d = \frac{|2m+3|}{\sqrt{m^2+1}}$.

Odległość ma być mniejsza od promienia, zatem $\frac{|2m+3|}{\sqrt{m^2+1}} < 3$.

Rozwiązujemy nierówność równoważną $|2m+3| < 3\sqrt{m^2+1}$.

Obie strony nierówności są nieujemne, więc $(2m+3)^2 < 9(m^2+1)$. Stąd $-5m^2+12m < 0$.

Rozwiązaniem nierówności $-5m^2 + 12m < 0$ jest m < 0 lub $m > \frac{12}{5}$.

Prosta y=mx+(2m+3) przecina dany okrąg w dwóch punktach wtedy i tylko wtedy, gdy m<0 lub $m>\frac{12}{5}$.

Uwaga

Zdający może rozwiązać nierówność $\frac{|2m+3|}{\sqrt{m^2+1}} < 3$ w dwóch przedziałach: $m < -\frac{3}{2}$ i $m \geqslant -\frac{3}{2}$. Ostatecznym rozwiązaniem będzie suma rozwiązań nierówności w każdym z przedziałów.

- 1. Jeżeli $m<-\frac{3}{2}$ to $-2m-3<3\sqrt{m^2+1}$. Obie strony nierówności są nieujemne, wobec tego $(-2m-3)^2<9\left(m^2+1\right)$. Stąd $-5m^2+12m<0$. Dla $m<-\frac{3}{2}$ rozwiązaniem nierówności $-5m^2+12m<0$ jest $m<-\frac{3}{2}$.
- 2. Jeżeli $m \ge -\frac{3}{2}$ to $2m+3 < 3\sqrt{m^2+1}$. Obie strony nierówności są nieujemne, wobec tego $(2m+3)^2 < 9\left(m^2+1\right)$. Stąd $-5m^2+12m < 0$. Dla $m \ge -\frac{3}{2}$ rozwiązaniem nierówności $-5m^2+12m < 0$ jest $-\frac{3}{2} \le m < 0$ i $m > \frac{12}{5}$.

Rozwiązaniem nierówności $\frac{ 2m+3 }{\sqrt{m^2+1}} < 3$ jest zatem suma rozwiązań, czyli $m < 0$ lub $m > \frac{12}{5}$.
Schemat oceniania II sposobu rozwiązania
Rozwiązanie, w którym jest istotny postęp
Pokonanie zasadniczych trudności zadania
Rozwiązanie pełne
Zadanie 14. (3 p.) Dana jest parabola o równaniu $y=x^2+1$ i leżący na niej punkt A o współrzędnej x równej 3. Wyznacz równanie stycznej do paraboli w punkcie A .
Wymagania ogólne IV. Użycie i tworzenie strategii.
Wymagania szczegółowe 11.3R Uczeń korzysta z geometrycznej i fizycznej interpretacji pochodnej.
Rozwiązanie (I sposób)
Styczna do paraboli o równaniu $y = f(x)$ w punkcie $A = (x_0, f(x_0))$ ma równanie postaci $y = ax + b$, gdzie współczynnik kierunkowy a jest równy $a = f'(x_0)$. W naszym przypadku
$f(x) = x^2 + 1 \text{ oraz } x_0 = 3.$
Mamy zatem $f'(x) = 2x$, skąd dostajemy $a = 2 \cdot 3 = 6$. Punkt A ma współrzędne $(3, f(3))$, czyli $A = (3, 10)$. Prosta o równaniu $y = 6x + b$ ma przechodzić przez punkt A , a więc $10 = 6 \cdot 3 + b$. Zatem $b = -8$ i ostatecznie równanie stycznej ma postać $y = 6x - 8$.
Schemat oceniania I sposobu rozwiązania
Schemat oceniania I sposobu rozwiązania Rozwiązanie, w którym jest istotny postęp

Rozwiązanie (II sposób)

Prosta nierównoległa do osi paraboli będzie styczna do tej paraboli, jeżeli ma z parabolą dokładnie jeden punkt wspólny.

Obliczamy współrzędne punktu A: A = (3,10). Wyznaczamy równanie prostej przechodzącej przez punkt A: y = ax + 10 - 3a.

Ta prosta nie jest równoległa do osi paraboli, więc układ równań

$$\begin{cases} y = x^2 + 1 \\ y = ax + 10 - 3a \end{cases}$$

ma dokładnie jedno rozwiązanie, jeżeli równanie kwadratowe $x^2+1=ax+10-3a$ ma jedno rozwiązanie.

Przekształcamy równanie do postaci $x^2 - ax + 3a - 9 = 0$.

Obliczamy wyróżnik równania kwadratowego: $\Delta = a^2 - 12a + 36$. Zatem równanie ma jedno rozwiązanie, jeżeli wyróżnik jest równy zeru.

Rozwiązujemy równanie $a^2-12a+36=0$, czyli $(a-6)^2=0$. Jedynym rozwiązaniem tego równania jest a=6.

Równanie prostej stycznej do paraboli $y = x^2 + 1$ w punkcie A ma postać y = 6x - 8.

Schemat oceniania II sposobu rozwiązania

Zadanie 15. (3 p.)

W ostrosłupie prawidłowym czworokątnym krawędź podstawy ma długość a. Kąt między krawędzią boczną a krawędzią podstawy ma miarę $\alpha>45^\circ$ (zobacz rysunek). Wyznacz objętość tego ostrosłupa.

Wymagania ogólne

IV. Użycie i tworzenie strategii.

Wymagania szczegółowe

9.6 Uczeń stosuje trygonometrię do obliczeń długości odcinków, miar kątów, pól powierzchni i objętości.

Rozwiązanie (I sposób) — "najpierw wysokość ściany bocznej"

Wysokość hściany bocznej jest równa $h\!=\!\frac{a}{2}{\rm tg}\alpha.$ Z twierdzenia Pitagorasa wynika, że wysokość Hostrosłupa jest równa

$$H = \sqrt{h^2 - \left(\frac{a}{2}\right)^2} = \frac{a}{2} \cdot \sqrt{\operatorname{tg}^2 \alpha - 1}$$

Objętość V tego ostrosłupa jest więc równa

$$V = \frac{a^3}{6} \cdot \sqrt{\operatorname{tg}^2 \alpha - 1}.$$

Schemat oceniania I sposobu rozwiązania

Uwagi:

- 1. Jeżeli zdający zapisze objętość ostrosłupa w postaci $V = \frac{1}{3}a^2 \cdot \sqrt{\left(\frac{a}{2} \cdot \lg \alpha\right)^2 \left(\frac{a}{2}\right)^2}$, to otrzymuje **3 punkty**.
- 2. Co bardziej dociekliwi zdający mogą zauważyć, że $tg^2\alpha 1 = \frac{-\cos 2\alpha}{\cos^2 \alpha}$. Wtedy:
 - -- wysokość H ostrosłupa przyjmuje postać

$$H = \frac{a}{2\cos\alpha} \cdot \sqrt{-\cos 2\alpha},$$

— objętość ostrosłupa przyjmuje postać

$$V = \frac{a^3}{6\cos\alpha} \cdot \sqrt{-\cos 2\alpha}.$$

Rozwiązanie (II sposób) — "najpierw krawędź boczna"

Długość b krawędzi bocznej tego ostrosłupa jest równa $b = \frac{a}{2\cos\alpha}$. Z twierdzenia Pitagorasa wynika, że wysokość H ostrosłupa jest równa

$$H = \sqrt{b^2 - \left(\frac{a\sqrt{2}}{2}\right)^2} = \sqrt{\frac{a^2}{4\cos^2\alpha} - \frac{a^2}{2}} = \frac{a\cdot\sqrt{1 - 2\cos^2\alpha}}{2\cos\alpha} = \frac{a}{2\cos\alpha}\cdot\sqrt{-\cos2\alpha}.$$

Objętość V tego ostrosłupa jest więc równa

$$V = \frac{a^3}{6\cos\alpha} \cdot \sqrt{-\cos 2\alpha}.$$

Schemat oceniania II sposobu rozwiązania

Uwaga

Jeżeli zdający zapisze objętość ostrosłupa w postaci $V = \frac{1}{3}a^2\sqrt{\left(\frac{a}{2\cos\alpha}\right)^2-\left(\frac{a\sqrt{2}}{2}\right)^2}$, to otrzymuje **3 punkty**.

Uwaga do treści zadania

W każdym ostrosłupie prawidłowym czworokątnym kąt α jest większy od 45°. Ta dodatkowa informacja wpisana w treści zadania ma na celu zwrócenie zdającym uwagi na to, że nie będzie sprawdzane badanie warunku rozwiązywalności zadania w zależności od miary kąta α . Uzasadnienie geometryczne tego warunku wymagałoby odrębnego rozumowania. Najprostsze takie rozumowanie wygląda następująco:

$$|ABE| + |CBE| > |ABC|,$$

czyli $2\alpha > 90^{\circ}$, a więc $\alpha > 45^{\circ}$.

To rozumowanie wykracza poza obecną podstawę programową, gdyż nie ma w niej twierdzenia o tym, że suma dwóćh kątów płaskich trójścianu jest większa od trzeciego kąta płaskiego.

Zadanie 16. (6 p.)

Punkty M i L leżą odpowiednio na bokach AB i AC trójkąta ABC, przy czym zachodzą równości $|MB| = 2 \cdot |AM|$ oraz $|LC| = 3 \cdot |AL|$. Punkt S jest punktem przecięcia odcinków BL i CM. Punkt K jest punktem przecięcia prostej AS z odcinkiem BC (zobacz rysunek).

Pole trójkąta ABC jest równe 660. Oblicz pola trójkątów: AMS, ALS, BMS i CLS.

Wymagania ogólne

IV. Użycie i tworzenie strategii.

Wymagania szczegółowe

7.5R Uczeń znajduje związki miarowe w figurach płaskich z zastosowaniem twierdzenia sinusów i twierdzenia cosinusów.

Rozwiązanie (I sposób)

Oznaczmy literami x i y pola trójkątów AMS i ALS, czyli $P_{AMS}=x$ i $P_{ALS}=y$.

Trójkąty AMC i BMC mają wspólną wysokość opuszczoną z wierzchołka C, więc

$$\frac{P_{AMC}}{P_{BMC}} = \frac{|AM|}{|BM|} = \frac{1}{2}, \quad \text{czyli} \quad P_{BMC} = 2 \cdot P_{AMC}.$$

Stad

$$P_{AMC} = \frac{1}{3} \cdot P_{ABC} = \frac{1}{3} \cdot 660 = 220.$$

Podobnie

$$\frac{P_{AMS}}{P_{BMS}} = \frac{|AM|}{|BM|} = \frac{1}{2}, \quad \text{czyli} \quad P_{BMS} = 2 \cdot P_{AMS} = 2x.$$

Trójkąty ALB i CLB mają wspólną wysokość opuszczoną z wierzchołka B, więc

$$\frac{P_{ALB}}{P_{CLB}} = \frac{|AL|}{|CL|} = \frac{1}{3}, \quad \text{czyli} \quad P_{CLB} = 3 \cdot P_{ALB}.$$

Stąd

$$P_{ALB} = \frac{1}{4} \cdot P_{ABC} = \frac{1}{4} \cdot 660 = 165.$$

Podobnie

$$\frac{P_{ALS}}{P_{CLS}} = \frac{|AL|}{|CL|} = \frac{1}{3}, \quad \text{czyli} \quad P_{CLS} = 3 \cdot P_{ALS} = 3y.$$

Otrzymaliśmy więc

$$P_{AMC} = P_{AMS} + P_{ALS} + P_{CLS} = x + y + 3y = x + 4y,$$

czyli

$$x + 4y = 220$$
.

Analogicznie

$$P_{ALB} = P_{AMS} + P_{ALS} + P_{BMS} = x + y + 2x = 3x + y,$$

czyli

$$3x + y = 165$$
.

Pozostaje rozwiązać układ równań

$$\begin{cases} x + 4y = 220 \\ 3x + y = 165. \end{cases}$$

Rozwiązaniem tego układu jest x = 40 i y = 45.

Zatem

$$P_{AMS} = x = 40$$
, $P_{ALS} = y = 45$, $P_{BMS} = 2x = 80$, $P_{CLS} = 3y = 135$.

Uwaga

Możemy równie łatwo obliczyć pola pozostałych dwóch trójkątów, tj. CKS i BKS.

Oznaczając pola tych trójkątów odpowiednio przez w i z oraz zauważając, podobnie jak poprzednio, że

$$\frac{P_{BKA}}{P_{CKA}} = \frac{P_{BKS}}{P_{CKS}}, \quad \text{czyli} \quad \frac{3x+z}{4y+w} = \frac{z}{w},$$

a więc

$$\frac{120+z}{180+2} = \frac{z}{w},$$

otrzymujemy

$$120w + zw = 180z + zw,$$
$$2w = 3z.$$

Wystarczy teraz zauważyć, że $P_{BCS} = 660 - 3x - 4y = 660 - 120 - 180 = 360$, czyli w + z = 360. Stąd w = 360 - z, więc 2(360 - z) = 3z, czyli z = 144 i w = 216.

Schemat oceniania I sposobu rozwiązania

- \bullet obliczy pole jednego z trójkątów: $AMC,\,BMC,\,ALB,\,CLB$ albo
- \bullet wyznaczy pole trójkąta BMSw zależności od pola trójkąta $AMS\colon P_{BMS}=2x$ albo
- wyznaczy pole trójkąta CLS w zależności od pola trójkąta ALS: $P_{CLS} = 3y$.

Uwaga

Jeżeli zdający zapisze tylko jedno równanie z dwiema niewiadomymi, np. x+4y=220, to otrzymuje **3 punkty**.

- \bullet obliczy pole jednego z trójkątów AMSlub $ALS\colon x=40,\;y=45$ albo
- obliczy pola wszystkich trójkątów: AMS, ALS, BMS i CLS popełniając błędy rachunkowe.

Zadanie 17. (6 p.)

Oblicz, ile jest stucyfrowych liczb naturalnych o sumie cyfr równej 4.

Wymagania ogólne

IV. Użycie i tworzenie strategii.

Wymagania szczegółowe

10.1R Uczeń wykorzystuje wzory na liczbę permutacji, kombinacji, wariacji i wariacji z powtórzeniami do zliczania obiektów w bardziej złożonych sytuacjach kombinatorycznych.

Rozwiązanie

Wszystkie liczby stucyfrowe o sumie cyfr równej 4 możemy podzielić na 7 grup w zależności od tego, jakie cyfry występują w zapisie dziesiętnym tych liczb:

- I Liczba 4000...000, w której po cyfrze 4 następuje 99 zer: jest 1 taka liczba,
- II Liczby postaci 3000...1...000, w których po cyfrze 3 występuje 98 cyfr 0 i jedna cyfra 1, stojąca na jednym z 99 możliwych miejsc: jest 99 takich liczb,
- III Liczby postaci 2000...2...000, w których po cyfrze 2 występuje 98 cyfr 0 i jedna cyfra 2, stojąca na jednym z 99 możliwych miejsc: jest 99 takich liczb,
- IV Liczby postaci 1000...3...000, w których po cyfrze 1 występuje 98 cyfr 0 i jedna cyfra 3, stojąca na jednym z 99 możliwych miejsc: jest 99 takich liczb,
- V Liczby postaci 2000...1...000...1...000, w których po cyfrze 2 występuje 97 cyfr 0 i dwie cyfry 1, stojące na dwóch miejscach wybranych z 99 możliwych miejsc: jest

$$\binom{99}{2} = \frac{99 \cdot 98}{2} = 99 \cdot 49 = 4851$$

takich liczb,

VI Liczby postaci 1000...2...000...1...000 lub 1000...1...000...2...000, w których po cyfrze 1 występuje 97 cyfr 0 oraz cyfry 1 i 2 (w dowolnej kolejności), stojące na dwóch miejscach wybranych z 99 możliwych miejsc: jest

$$2 \cdot \begin{pmatrix} 99 \\ 2 \end{pmatrix} = 2 \cdot \frac{99 \cdot 98}{2} = 99 \cdot 98 = 9702$$

takich liczb,

VII Liczby postaci 1000...1...000...1...000, w których po cyfrze 1 występuje 96 cyfr 0 i trzy cyfry 1, stojące na trzech miejscach wybranych z 99 możliwych miejsc: jest

$$\begin{pmatrix} 99 \\ 3 \end{pmatrix} = \frac{99 \cdot 98 \cdot 97}{6} = 33 \cdot 49 \cdot 97 = 156849$$

takich liczb.

Łacznie zatem mamy 1+3.99+4851+9702+156849=171700 takich liczb.

Schemat oceniania

W rozwiązaniu można wyróżnić 3 etapy:

Pierwszy – wstępny:

zauważenie, że należy rozpatrzyć przypadki i zapisanie, że jest jedna stucyfrowa liczba, której pierwszą cyfrą jest 4 a po niej następuje 99 zer (grupa I).

Drugi – składający się z rozważenia czterech przypadków:

- 1. obliczenie, ile jest stucyfrowych liczb postaci 3000...1...000, w których po cyfrze 3 występuje 98 cyfr 0 i jedna cyfra 1 oraz ile jest stucyfrowych liczb postaci 2000...2...000, w których po cyfrze 2 występuje 98 cyfr 0 i jedna cyfra 2 oraz ile jest stucyfrowych liczb postaci 1000...3...000, w których po cyfrze 1 występuje 98 cyfr 0 i jedna cyfra 3 (grupy II, III i IV),
- 2. obliczenie, ile jest stucyfrowych liczb postaci 2000...1...000...1...000, w których po cyfrze 2 występuje 97 cyfr 0 i dwie cyfry 1 stojące na dwóch miejscach wybranych z 99 możliwych miejsc (grupa V),
- 3. obliczenie, ile jest stucyfrowych liczb postaci

$$1000...2...000...1...000$$
 oraz $1000...1...000...2...000$,

w których po cyfrze 1 występuje 97 cyfr 0 oraz cyfry 1 i 2 (w dowolnej kolejności), stojące na dwóch miejscach wybranych z 99 możliwych miejsc (grupa VI),

4. obliczenie, ile jest stucyfrowych liczb postaci 1000...1...000...1...000...1...000, w których po cyfrze 1 występuje 96 cyfr 0 i trzy cyfry 1, stojące na trzech miejscach wybranych z 99 możliwych miejsc (grupa VII).

Trzeci – obliczenia końcowe:

obliczenie, ile jest wszystkich stucyfrowych liczb naturalnych o sumie cyfr równej 4.

1.
$$3 \cdot 99 = 297$$
,
2. $\binom{99}{2} = \frac{99 \cdot 98}{2} = 99 \cdot 49 = 4851$,
3. $2\binom{99}{2} = 2 \cdot \frac{99 \cdot 98}{2} = 99 \cdot 98 = 9702$,
4. $\binom{99}{3} = \frac{99 \cdot 98 \cdot 97}{6} = 33 \cdot 49 \cdot 97 = 156849$.

W tej części rozwiązania zdający może otrzymać od 0 punktów do 4 punktów.

Uwaga

Zadanie można rozwiązać powołując się na nietrudne do udowodnienia twierdzenie, że dla $k \le 9$ istnieje $\binom{n+k-2}{k-1}$ liczb n-cyfrowych o sumie cyfr równej k. (Istnieje $\binom{n+k-2}{k-1}$ ciągów (a_1,\ldots,a_n) takich, że a_1,\ldots,a_n są liczbami całkowitymi, $a_1 \ne 0,\,a_2,\ldots,a_n \ge 0$ oraz $a_1+\ldots+a_n=k$). W naszym przypadku mamy n=100 i k=4:

$$\left(\begin{array}{c} n+k-2 \\ k-1 \end{array}\right) = \left(\begin{array}{c} 102 \\ 3 \end{array}\right) = \frac{102 \cdot 101 \cdot 100}{6} = 17 \cdot 101 \cdot 100 = 171700.$$

Zadanie 18. (7 p.)

Dany jest prostokątny arkusz kartonu o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe naroża (zobacz rysunek).

Następnie zagięto karton wzdłuż linii przerywanych, tworząc w ten sposób prostopadłościenne pudełko (bez przykrywki). Oblicz długość boku wyciętych kwadratowych naroży, dla której objętość otrzymanego pudełka jest największa. Oblicz tę objętość.

Wymagania ogólne

III. Modelowanie matematyczne

Wymagania szczegółowe

11.6R Uczeń stosuje pochodne do rozwiązywania zagadnień optymalizacyjnych.

Ogólny schemat oceniania

Rozwiązanie zadania optymalizacyjnego za pomocą rachunku różniczkowego składa się z trzech etapów:

- 1. Zbudowanie modelu matematycznego (3 p.).
- 2. Zbadanie tego modelu (3 p.).
- 3. Wyciągnięcie wniosków, końcowe obliczenia itp. (1 p.).

W pierwszych dwóch etapach można wyróżnić następujące części:

- 1.a) wybór zmiennej i wyrażenie za pomocą tej zmiennej wielkości, które będą potrzebne do zdefiniowania funkcji,
- 1.b) zdefiniowanie funkcji jednej zmiennej,
- 1.c) określenie dziedziny tej funkcji,
- 2.a) wyznaczenie pochodnej,
- 2.b) obliczenie miejsc zerowych tej pochodnej,
- 2.c) uzasadnienie (np. badanie monotoniczności funkcji), że funkcja posiada wartość najmniejsza/największa.

Za poprawne rozwiązanie każdej z powyższych części zdający otrzymuje **1 punkt**, o ile **po- przednia część danego etapu** została zrealizowana bezbłędnie.

Rozwiązanie (I sposób)

Oznaczmy literą x długość boku kwadratowych naroży. Podstawa pudełka ma wymiary

$$(80-2x) \times (50-2x)$$
.

Wysokość pudełka jest równa x. Zatem objętość wyraża się wzorem

$$V = (80 - 2x) \cdot (50 - 2x) \cdot x$$

czyli

$$V = (4000 - 160x - 100x + 4x^{2}) \cdot x = 4x^{3} - 260x^{2} + 4000x = 4(x^{3} - 65x^{2} + 1000x).$$

Naszym zadaniem jest obliczenie, dla jakiego x (spełniającego nierówności 0 < x < 25) funkcja f określona wzorem

$$f(x) = x^3 - 65x^2 + 1000x$$

przyjmuje największa wartość. Obliczamy pochodną tej funkcji:

$$f'(x) = 3x^2 - 130x + 1000.$$

Następnie znajdujemy miejsca zerowe tej pochodnej:

$$\Delta = 130^2 - 12 \cdot 1000 = 16900 - 12000 = 4900,$$

$$x_1 = \frac{130 - 70}{6} = 10, \quad x_2 = \frac{130 + 70}{6} \approx 33{,}33.$$

Pierwiastek x_2 nie spełnia nierówności $0 < x_2 < 25$. Zatem jedynym argumentem podejrzanym o ekstremum lokalne w rozważanym przedziale jest $x_1 = 10$. Ponieważ

$$f'(x) > 0$$
 dla $x < 10$

oraz

$$f'(x) < 0 \quad \text{dla } x > 10,$$

więc w przedziale (0,10) funkcja f jest rosnąca i w przedziale (10,25) jest malejąca. Stąd wynika, że w punkcie x=10 funkcja f przyjmuje największą wartość. Szukana objętość jest zatem równa

$$V = (80 - 20) \cdot (50 - 20) \cdot 10 = 18000 \text{ cm}^2.$$

Schemat oceniania I sposobu rozwiązania

Rozwiązanie zadania składa się z trzech etapów, opisanych ogólnie na stronie 27.

- 1.a) Oznaczenie literą np. x długości boku kwadratowych naroży, zapisanie długości podstawy pudełka (80-2x) i szerokości podstawy pudełka (50-2x).
- 1.b) Zapisanie objętości jako funkcji zmiennej wysokości pudełka $x: V = (80-2x) \cdot (50-2x) \cdot x$.
- 1.c) Zapisanie warunków, jakie musi spełniać wysokość pudełka: 0 < x < 25.
- 2.a) Obliczenie pochodnej wprowadzonej funkcji np. $f: f'(x) = 3x^2 130x + 1000$.
- 2.b) Obliczenie miejsc zerowych: $x_1 = 10$, $x_2 = 33\frac{1}{3}$.
- 2.c) Stwierdzenie, że f'(x) > 0 dla 0 < x < 10 oraz f'(x) < 0 dla 10 < x < 25, więc w przedziale (0, 10) funkcja f jest rosnąca i w przedziale (10, 25) jest malejąca. Stąd wynika, że dla x = 10 funkcja f przyjmuje największą wartość w dziedzinie (0, 25).
- 3. Zapisanie, że długość boku kwadratowych naroży jest równa 10 cm i obliczenie największej objętości: $V = (80 20) \cdot (50 20) \cdot 10 = 18000 \text{ cm}^3$.

Rozwiązanie (II sposób)

Oznaczmy literą x długość podstawy pudełka. Długość boku kwadratowych naroży (więc również wysokość pudełka) jest wtedy równa $\frac{80-x}{2}$, zaś szerokość podstawy pudełka: $50-2\cdot\frac{80-x}{2}$. Zatem objętość wyraża się wzorem $V=(x-30)\cdot\frac{80-x}{2}\cdot x$, dla 30< x<80

$$V(x) = 0, 5x \cdot (x - 30) \cdot (80 - x) = 0, 5(80x^2 - x^3 - 2400x + 30x^2) = -\frac{1}{2}x^3 + \frac{110}{2}x^2 - 1200x.$$

Obliczamy, dla jakiego argumentu funkcja objętości przyjmuje największą wartość.

$$V'(x) = -\frac{3}{2}x^2 + 110x - 1200.$$

Wyznaczamy miejsca zerowe tej pochodnej: $\Delta=12100-7200,\ \Delta=4900,\ x_1=\frac{110-70}{3}=\frac{40}{3},\ x_2=\frac{110+70}{3}=60.$ Po uwzględnieniu dziedziny otrzymujemy x=60. Ponieważ V'(x)>0 dla 30 < x < 60 oraz V'(x) < 0 dla 60 < x < 80, więc w przedziale (30,60) funkcja V jest rosnąca i w przedziale (60,80) jest malejąca. Stąd wynika, że dla x=60 funkcja V przyjmuje największą wartość w dziedzinie (30,80). Długość boku kwadratowych naroży jest równa $\frac{80-60}{2}=10$ cm, szukana objętość jest równa $(60-30)\cdot\frac{80-60}{2}\cdot60=18000$ cm³.

Schemat oceniania II sposobu rozwiązania

Rozwiązanie zadania składa się z trzech etapów, opisanych ogólnie na stronie 27.

1.a) Oznaczenie literą np. x długości boku podstawy pudełka, zapisanie szerokości podstawy pudełka $50-2\cdot\frac{80-x}{2}$ i wysokości pudełka $\frac{80-x}{2}$.

- 1.b) Zapisanie objętości jako funkcji zmiennej długości podstawy pudełka $x: V = (x-30) \cdot \frac{80-x}{2} \cdot x$.
- 1.c) Zapisanie warunków, jakie musi spełniać długość podstawy pudełka: 30 < x < 80.
- 2.a) Obliczenie pochodnej funkcji $V: V'(x) = -\frac{3}{2}x^2 + 110x 1200$
- 2.b) Obliczenie miejsc zerowych: $x_1 = \frac{40}{3}$, $x_2 = 60$.
- 2.c) Stwierdzenie, że V'(x) > 0 dla 30 < x < 60 oraz V'(x) < 0 dla 60 < x < 80, więc w przedziale (30,60) funkcja V jest rosnąca i w przedziale (60,80) jest malejąca. Stąd wynika, że dla x = 60 funkcja V przyjmuje największą wartość w dziedzinie (30,80).
- 3. Obliczenie długości boku kwadratowych naroży $\frac{80-60}{2} = 10$ cm. Obliczenie największej objętości:

$$V = (60 - 30) \cdot \frac{80 - 60}{2} \cdot 60 = 18000 \text{ cm}^3.$$

Rozwiązanie (III sposób)

Oznaczmy literą x szerokość podstawy pudełka. Długość boku kwadratowych naroży (więc również wysokość pudełka) jest wtedy równa $\frac{50-x}{2}$, zaś długość podstawy pudełka: $80-2\cdot\frac{50-x}{2}$. Zatem objętość wyraża się wzorem $V=(x+30)\cdot\frac{50-x}{2}\cdot x$, dla 0< x<50.

$$V(x) = 0, 5x \cdot (x+30) \cdot (50-x) = 0, 5(50x^2 - x^3 - 1500x - 30x^2) = -\frac{1}{2}x^3 + 10x^2 - 750x$$

Obliczamy dla jakiego argumentu funkcja objętości przyjmuje największą wartość.

$$V'(x) = -\frac{3}{2}x^2 + 20x - 750.$$

Wyznaczamy miejsca zerowe tej pochodnej: $\Delta=4900,\,x_1=\frac{20-70}{3}=-\frac{50}{3},\,x_2=\frac{20+70}{3}=30.$ Po uwzględnieniu dziedziny otrzymujemy x=30. Ponieważ V'(x)>0 dla 0< x<30 oraz V'(x)<0 dla 30< x<50, więc w przedziale (0,30) funkcja V jest rosnąca i w przedziale (30,50) jest malejąca. Stąd wynika, że dla x=30 funkcja V przyjmuje największą wartość w dziedzinie (0,50). Długość boku kwadratowych naroży jest równa $\frac{50-30}{2}=10$ cm, szukana objętość jest równa

$$V = (30+30) \cdot \frac{50-30}{2} \cdot 30 = 18000 \text{ cm}^3.$$

Schemat oceniania III sposobu rozwiązania

Rozwiązanie zadania składa się z trzech etapów, opisanych ogólnie na stronie 27.

- 1.a) Oznaczenie literą np. x szerokości podstawy pudełka, zapisanie długości podstawy pudełka $80-2\cdot\frac{50-x}{2}$ i wysokości pudełka $\frac{50-x}{2}$.
- 1.b) Zapisanie objętości jako funkcji zmiennej długości podstawy pudełka $x: V = (x+30) \cdot \frac{50-x}{2} \cdot x$.

- 1.c) Zapisanie warunków, jakie musi spełniać szerokość podstawy pudełka: 0 < x < 50.
- 2.a) Obliczenie pochodnej funkcji $V: V'(x) = -\frac{3}{2}x^2 + 20x 750$. 2.b) Obliczenie miejsc zerowych: $x_1 = \frac{20-70}{3} = -\frac{50}{3}$, $x_2 = \frac{20+70}{3} = 30$.
- Stwierdzenie, że V'(x) > 0 dla 0 < x < 30 oraz V'(x) < 0 dla 30 < x < 50, więc w przedziale $(0,30\rangle$ funkcja Vjest rosnąca i w przedziale $\langle 30,50\rangle$ jest malejąca. Stąd wynika, że dla x = 30 funkcja V przyjmuje największą wartość w dziedzinie (0, 50).
- Obliczenie długości boku kwadratowych naroży $\frac{50-30}{2}=10$ cm. 3. Obliczenie największej objętości: $V = 60 \cdot 10 \cdot 30 = 18000 \text{ cm}^3$.