- 3.2 (a) The proof of Thm 3.2(ii) uses axiom A3 that a + 0 = a. However, in order for it to be useful in the proof, axiom A2 must first be applied so that a+0=0+a=a. Only then can we apply the result of Thm 3.2(i) that a(0)+a(0)=0+a(0) implies a(0)=0.
 - (b) In the proof of Thm 3.2(iii), the text reaches the equation that ab+(-a)b = ab+(-(ab)). In order to apply Thm 3.2(i), axiom A2 must be applied so that ab+(-a)b = (-a)b+ab and ab+(-(ab)) = -(ab)+ab and hence (-a)b = -(ab) as desired.
- 3.4 v *Proof.* We will use proof by contradiction. Suppose that $0 \ge 1$. Then, by Thm 3.2(iv) that $0 \le a^2$ for all a, it follows that $1 \le 0 \le a^2$ for all a and hence $1 \le a^2$ for all a. However, if $a = \frac{1}{2}, a^2 = \frac{1}{4}$, which is less than 1. Contradiction. Therefore, 0 < 1.
 - vii *Proof.* If 0 < a < b, then we have that 0 < a and 0 < b. From Thm 3.2(vi), we can conclude that $0 < a^{-1}$ and $0 < b^{-1}$. Thus, we just need to show that $b^{-1} < a 1$. We will use proof by contradiction. Suppose a < b and $a^{-1} < b^{-1}$. Since a and b are both positive, ab > 0. Thus, $a^{-1} < b^{-1}$ implies that $a^{-1}(ab) < b^{-1}(ab)$ so b < a. Contradiction. Therefore, $0 < b^{-1} < a 1$
- 3.6 (a) Proof. Let a,b,c be some real numbers. By axiom, |a+b+c| = |a+(b+c)|. By the triangle inequality, we then have that $|a+(b+c)| \le |a|+|b+c|$. We can then apply the triangle inequality again to |b+c| to get that $|b+c| \le |b|+|c|$. As a result, we have that $|a|+|b+c| \le |a|+|b|+|c|$ and so $|a+b+c| \le |a|+|b|+|c|$. Since a, b, and c were arbitrary, $|a+b+c| \le |a|+|b|+|c|$ for all $a,b,c \in \mathbb{R}$.
 - (b) Proof. We will prove by induction. Note that $|a_1| = |a_1|$ so the claim holds for n = 1. Now suppose that claim holds for some $n \in \mathbb{N}$. Then, $|a_1 + a_2 + \cdots + a_n + a_{n+1}| = |(a_1 + a_2 + \cdots + a_n) + a_{n+1}| \le |a_1 + a_2 + \cdots + a_n| + |a_{n+1}|$ by the triangle inequality. By the inductive hypothesis, $|a_1 + a_2 + \cdots + a_n| + |a_{n+1}| \le |a_1| + |a_2| + \cdots + |a_n| + |a_{n+1}|$ so the claim holds for n+1. Since n = 1 was arbitrary, the claim holds for n+1 whenever it holds for n. Therefore by induction, the claim holds for all $n \in \mathbb{N}$.
- 3.8 *Proof.* We will use proof by contradiction. Suppose that $a \leq b_1$ for every $b_1 > b$ and a > b. Then, a b > 0 and $b_1 b > 0$ so $a b_1 > 0$. Thus, we have that $a > b_1$. Contradiction. Therefore, if $a \leq b_1$ for every $b_1 > b$, then $a \leq b$.
- 4.8 (a) If $s \le t$ for all $s \in S$ and $t \in T$, then clearly there is some $s_0 \in T$ such that $s \le s_0$ for all $s \in S$ and so S is bounded above. Likewise, there is some $t_0 \in S$ such that $t \ge t_0$ for all $t \in T$ and so T is bounded below.
 - (b) We will use proof by contradiction. Let s_0 be $\sup S$ and t_0 be $\inf T$. Suppose $s_0 > t_0$. By the Denseness of \mathbb{R} , there is some $s_1 \in S$ such that $t_0 < s_1 < s_0$. Likewise, there is some $t_1 \in T$ such that $t_0 < t_1 < s_1 < s_0$ and so $t_1 < s_1$. Contradiction. Therefore, $s_0 \le t_0$.
 - (c) If S = (0,1] and T = [1,2), then $S \cap T = \{1\}$.
 - (d) If S = (0,1) and T = (1,2), then $\sup S = \inf T$ and $S \cap T$ is the empty set.
- 4.10 *Proof.* a > 0 and 1 > 0, so by Archimedean Principle, there is some natural number n such that na > 1. Thus, $a > \frac{1}{n}$. Likewise, since 1 > 0 and a > 0, so by Archimedean Principle there is some natural number n such that 1(n) > a. Thus, n > a. Therefore, if a > 0, then there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < a < n$.
- 4.16 *Proof.* Let $S = \{r \in \mathbb{Q} \mid r < a\}$. By definition, a is an upper bound for S since S is defined as the set of all rational numbers which are less than a. By the Completeness Axiom, we know that $\sup S$ exists and is a real number. Thus, we want to show that a is a least upper bound for S. We will use proof by contradiction.

Let s_0 be an upper bound for S such that $s_0 < a$. By the denseness of of \mathbb{Q} , there is some $s_1 \in S$ such that $s_0 < s_1' < a$ so s_0 is not an upper bound. Contradiction. Since s_0 was an arbitrary element less than a, we can conclude that a is the least upper bound.

Since a was arbitrary, $a = \sup S$ for each $a \in \mathbb{R}$.

27 January 2018 Page 1

- 5.6 Proof. $S \subseteq T$ so every element in S is also an element in T. S and T are non-empty, so $infS \le supS$ and $infT \le supT$. Let $t_0 = infT$. As $t_0 \le t$ for all $t \in T$, then clearly $t_0 \le s$ for all $s \in S$ as well. Thus, t_0 is a lower bound for S but $t_0 \le infS$ since infS is the greatest lower bound for S. Likewise, let $t_1 = supT$. As $t_1 \ge t$ for all $t \in T$, then clearly $t_1 \ge s$ for all $s \in S$ as well. Thus, t_1 is an upper bound for S but $t_1 \ge supS$ since supS is the least upper bound for S. Therefore, $infT \le infS \le supS \le supT$.
- 7.2 (a) The terms of the sequence converge to 0 as n increases.
 - (b) The terms of the sequence converge to $\frac{3}{4}$ as n increases.
 - (c) The terms of the sequence converge to 0 as n increases.
 - (d) The terms of the sequence do not converge as n increases.
- 7.4 (a) $\langle x_n \rangle = \langle \frac{\pi}{n} \rangle$ converges to 0 as n increases
 - (b) $\langle x_n \rangle = \langle (1 + \frac{1}{n})^n \rangle$ converges to e as n increases.

27 January 2018 Page 2