딥러닝을 이용한 이상치 검출 방법

https://youtu.be/hm27RaJVq3k

접근 방식

모델 평가 방법

실습

접근 방식

1. 규칙 설정

Examples

- 1. 일상적으로 구매하던 지역과 다른 지역에서 사용 되었는가?
- 2. 다른 날과 다르게 얼마나 빈번하게 사용 되었는가?
- 3. 신뢰할 수 없는 계좌에서 큰 금액을 송금 받거나 했는가?
- 4. 동일 IP에서 단기간에 여러 계좌가 생성되어 송금에 사용되었는가?

→ 수집된 Data를 활용하여 이상 거래를 예측해야 함.

But. 전체 Data 중에서 이상 거래는 아주 소량의 데이터 and 빠른 반응

접근 방식

이상감지 (Anomaly Detection)

훈련데이터에 다른 관측치와 멀리 떨어진 관측치로 정의되는 Outlier 이상치가 포함. • 따라서 이상치 탐지기는 비정상 관찰을 무시하고 훈련 데이터가 detection 가장 집중된 영역을 맞추려고 한다. (이상치 감지) • 저밀도 영역에 위치한다고 가정. 따라서, 조밀한 클러스터 형성 않음. • 훈련데이터는 정상 데이터로만 구성. 따라서 새로운 관측치가 훈련 Novelty 데이터와 비교해서 많이 떨어져 있는지 여부를 감지. detection → 특이치 라고도 함. • 정상으로 간주되는 학습데이터의 저밀도 영역에 있는 한 조밀한 (특이치 감지) 클러스터를 형성할 수 있다.

label 기반 지도 학습

이진 분류

접근 방법

Anomaly Detection 방법 분류

구분	접근 방법	측정 기준	알고리즘
	지도 학습 방법	Label 데이터	이진 분류
전통적 Machine Learning	Random split 방법	Number of random splits	Isolated Forest
	Proximity(근접도) 기반 방법	clustering, density, distance	DBSCAN, LOF(Local Outlier Factor), K-nearest Kernel method
Deep Learning	Deviation(편차) 기반 방법	재구성 오류	Autoencoder
	통계적 방법	확률 분포의 차이	Variational Autoencoder

Confusion Matrix

	Total population	True condition	
		Condition positive	Condition negative
Predicted Condition	Predicted condition positive	True positive	False positive
	Predicted condition negative	False negative	True negative

TP →1을 1로 제대로 분류, FP → 0을 1로 잘못 분류 FN →1을 0으로 잘못 분류, TN → 0을 0으로 제대로 분류

정확도(Accuracy) = (TP+TN) / (TP+TN+FP+FN)

- Precision = TP / (TP + FP)
 - 정밀성. → Model 이 sample 을 True 로 분류했을 때 얼마나 자주 맞추었는가 ?
 - positive 분류의 정확성 측정 (1 에 가까울 수록 좋음)

		True condition	
	Total population	Condition positive	Condition negative
Predicted Condition	Predicted condition positive	True positive	False positive
	Predicted condition negative	False negative	True negative

ex) 포르노 영상 검출기 - 포르노로 분류했을 때 실제 포르노인 비율 security check 영상 탐지기 - 통과 승인된 사람 중 실제 직원 비율

- Recall (Sensitivity/ True positive Rate) = TP / (TP + FN)
 - 민감도. <u>전체 Positive 데이타 중에서 Positive로 분류</u>한 비율 (1 에 가까울 수록 좋음)
 - Positive case 를 놓치고 싶지 않은 경우의 성능 측정

ex) 포르노 영상 검출기 – 전체 포르노 중 포르노로 분류된 비율 security check 영상 탐지기 – 전체 직원 중에서 통과로 분류된 비율

ROC Curve

Negative 를 Positive 로 잘못 분류한 비율

→ TPR은 1에 가까울 수록 좋고 FPR은 0에 가까울 수록 좋다

실습

실습진행.

Q & A