A Deep Neural Network Approach to Splice Site Prediction

Tilman Hinnerichs

Knowledge Mining Lab - KAUST

October 13, 2019

Outline

- 1. Problem Description
- 2. Dataset description
- Classification Results
 Baseline
 Neural Networks
- 4. Next Steps

Figure: RNA splicing reaction

- ► Acceptor side:
 - ... CGTATCTAGATGAGCA...
- Donor side:
 - ... ATGATTTGTGCAGTCA...

- Acceptor side:
 - ...CGTATCT AG ATGAGCA...
- Donor side:
 - ...ATGATTT<mark>GT</mark>GCAGTCA...

- Acceptor side:
 - ...CGTATCT AG ATG AG CA...
- Donor side:
 - ...ATGATTT<mark>GT</mark>GCA<mark>GT</mark>CA...

Dataset description

Example file, e.g., acceptor side

Baseline

Classification results: Baseline

- Build on label encoded data
- ▶ All models are validated by 10-fold cross validation

Approach	Samples	Acceptor acc.	Donor acc.
Naive Bayes	40,000	79.32	80.76
Naive Bayes	200,000	79.42	81.12
SVM	4,000	79.21	80.23

Figure: Baseline results

Classification Results: NN – binary classification

- Models built on one-hot-encoded data
- Dense networks with dropout

Approach	Samples	Depth	Acceptor acc.	Donor acc.
NN	40,000	1	62.24	63.15
NN	40,000	2	92.29	93.50
NN	200,000	2	93.62	93.62
DNN	40,000	4	92.21	93.53
DNN	20,000	6	92.49	93.87
DNN	20,000	7	92.38	93.43
DNN	200,000	7	93.34	93.34
DNN	40,000	8	92.50	93.82
DNN	200,000	8	93.25	93.20
DNN	40,000	15	91.78	92.94

Next Steps

- Adapt convolution techniques from other papers with same goal
- Vary pre and post marker nt sequence length
- Use DiProDB[Friedel et al., NAR, 2009] for input
- ▶ Utilize electron io interaction potential (EIIP) for prediction

8/9

Sources

Images:

https://en.wikipedia.org/