의료 Artificial Intelligence

기계 학습 (chap6)

2022.05.19

오늘 배울 내용 …

- 1. 기계 학습 (머신 러닝)
- 2. 인공지능 실습
- 3. mblock 실습

어렵지 않다 쉬운 것도 아니다

인공지능 이론

자료와 학습

- ·머신러닝은 인간의 학습을 모방하여 예시(데이터)를 통해 학습
- ·기계가 학습을 하기 위한 학습 모델(함수)이 필요

머신러닝의 종류

·머신러닝을 수학적으로 정의하면 회귀, 분류, 군집이라고 말할 수 있음

학습 = 회귀, 분류, 군집

머신러닝과 데이터 마이닝

· 머신러닝과 통계적 분석(데이터 마이닝)의 차이점

구분	머신러닝	통계학 (통계적 분석)
특징	정확한 예측, 분류에 집중	원인/이유 분석, 일반적인 통계정보
넷플릭스	영화 평가 <u>예측</u> 의 정확성	사람들이 영화를 좋아하는 <u>이유 분석</u>
의료	내년에 병원에 갈 사람들 숫자 예측	사람들이 병원에 가는 <u>이유 분석</u>
독감 예측	독감 발생 가능성 <u>예측</u>	독감 발생의 요인 분석

머신러닝 알고리즘

"어떤 문제Task T에 관련된 경험Experience E로 부터 성과 측정지표Performance Measure P를 가지고 학습Learn을 진행하는 컴퓨터 프로그램을 말한다.

이때 문제T에 대한 성과는 P로 측정되고, 경험E로 부터 개선을 진행한다."

-톰 미첼 (1998)-

▲ 기존 계산 프로그램과 기계학습 프로그램

·작업 T는 나눗셈의 몫 구하기, 경험 E는 입력값, 성과지표 P는 수식이 정확한 확률. 정답인 나눗셈의 몫 값을 찿으면 이 프로그램은 '학습한다'고 정의할 수 있음

머신러닝 알고리즘

- · 머신러닝의 학습 결과는 매개변수 또는 가중값의 형태로 나타남
- · 머신러닝이란 입력값에 대응하는 결괏값이 제대로 나오게 하는 최적의 가중값(매개변수)를 찾는 과정

	특징				
문자	수직선	수평선	사선	곡선	
L	1	1	0	0	
Р	1	0	0	1	
T	1	1	0	0	
E	1	3	0	0	
Α	0	1	2	0	

전통적인 영문자 인식 방법은 문자에 있는 사선, 수직선, 수평선, 곡선의 개수를 파악해 문자를 인식

머신러닝 모델링 과정

기계가 학습하는 원리 (회귀)

기계가 예측하는 원리 (회귀)

기계가 학습하는 원리 (분류)

* 3가지로 분류하는 머신 구축

기계가 예측하는 원리 (분류)

- ① 입력 자료 정하기
 - 20*20 픽셀(총 400개 셀)로 이뤄진 이미지
 - 기존의 선의 특징을 추출하지 않고 각 픽셀의 입력값을 그대로 입력

0	0	0	0	0	0	0	0	0	٥
1	ı	1	١	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	#	4
5	5	5	5	5	S	5	5	5	5
6	G	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	2	7
8	8	8	8	8	8	8	8	8	8
9	૧	9	9	9	9	9	9	9	P

- ② 정답 결정하기
 - -정답(출력값) y는 각 이미지에 쓰인 숫자값
 - 벡터값으로 표현

- ③ 학습 모델 만들기
 - 컴퓨터가 0부터 9의 숫자를 분류하기 위한 최적의 값(가중값)을 찾도록 적당한 <u>모델 알고리즘이나 수식을 정의</u>해줘야 함
 - 수식에서 매개변수 θ 값(가중치)
 - → <u>가중치의 조합이 학습모델임</u>

$$h_i(X) = \theta_1^i x_1 + \theta_2^i x_2 + \dots + \theta_{399}^i x_{398} + \theta_{400}^i x_{400}$$

④ 머신러닝 시작하기

- 처음에는 각 데이터 요소별로 임의의 값으로 θ 값(가중치)을 정해서 시작
- 머신러닝 알고리즘이나 수식에 의해 <u>계산된 결과값(예측값)과 정답을 비교</u>하여 정답에 가까워질 때까지 <u>θ 값(가중치)을 조절해 주는 과정을 반복</u>

⑤ 학습 모델 구축

- 학습이 끝나면 <u>10개 숫자에 대한 입력데이터의 θ값(4,000개 = 400픽셀 x 10개 숫자)이 결정</u>되고 이를 이용한 10개의 함수가 준비됨
- → 학습 모델

⑥ 학습 결과 출력

- 학습 결과로 얻은 필기체 숫자의 예측 함수(학습 모델 + 모델 알고리즘)의 적용 결과는 해당 숫자에 해당하는 위치만 1이고 나머지는 0인 벡터를 출력
- 10개의 함수를 이용해 숫자를 인식시킴.

숫자 0의 이미지를 입력했을 때 h0의 함수 의 값이 1에 가깝게 계산되며, 나머지는 0이라는 결론을 출력. 즉, 0일 확률이 가장 높으므로 이 모델에서는 입력 이미지를 0이라고 인식

숫자 0의 이미지(\bigcirc)를 x값에 입력했을 때 0.000000 0 0.000005 (h_3) 0.000023 0.000000 0.000560 h(x) =h(x) =0 0.000000 0 0.000000 0.000028 0 0.000000 0 0 0.999531 0.999528

실제 프로그램에서는 숫자의 모양에 따라 확률이 달라짐

h0 = 0.000003, h1 = 0.000000, h2 = 0.002263, h3 = 0.000110, h4 = 0.001144h5 = 0.000423, h6 = 0.984752, h7 = 0.000001, h8 = 0.024688, h9 = 0.002832

h0=0.000000, h1=0.000000, h2=0.001421, h3=0.000210, $\underline{h4=0.236924}$ h5=0.001327, $\underline{h6=0.897365}$, h7=0.000001, h8=0.000487, h9=0.001499

같은 숫자 6이라도 첫번째는 거의 1에 가까운 확률로 6이라고 인식한 반면, 두번째는 4일 가능성도 다른 값들에 비해 높게 나옴

https://teachablemachine.withgoogle.com/train

파일에서 기존 프로젝트를 엽니다.

이미지 프로젝트

파일 또는 웹캠에서 가져온 이미지 를 기반으로 학습시키세요.

오디오 프로젝트

파일 또는 마이크에서 가져온 1초 분량의 사운드를 기반으로 학습시 키세요.

포즈 프로젝트

파일 또는 웹캠에서 가져온 이미지 를 기반으로 학습시키세요.

이미지 셋 추가

- 데이터 불러오기 : File, CSV File Import, Datasets

- 데이터 보기: Data Table, Data Info, Feature Statistics

- 데이터 차트: Box plot, Distributions

데이터 분석:모델

- Model 위젯
- Evaluate 의 'Predictions'나 'Test and Score' 와 연결
- Data는 따로 연결해 주어야 함

실습 1

- 데이터 불러오기: '감귤평점훈련', '감귤평점테스트'
- 데이터 보기 및 평가: Data Table, Predictions
- 데이터 모델: Logistic Regression

실습 1:데이터 모델 비교

- 데이터 불러오기 : 'heart_train', 'heart_test'
- 데이터 보기 및 평가: Data Table, Predictions
- 데이터 모델: Logistic Regression, Neural Network, Naïve Bayes

	Name	Тур	e	Role	Values
1	id	Ø	numeric	meta	
2	age	N	numeric	feature	
3	sex	C	categorical	feature	0, 1
4	ср		categorical	feature	
5	trtbps	N	numeric	feature	
6	chol	N	numeric	feature	
7	fbs	C	categorical	feature	0, 1
8	restecg	C	categorical	feature	
9	thalachh	N	numeric	feature	
10	exng	C	categorical	feature	0, 1
11	oldpeak	N	numeric	feature	
12	slp	C	categorical	feature	
13	caa	N	numeric	feature	
14	thall		categorical	feature	
15	output	C	categorical	target	0, 1

Confusion Matrix 해석

- 예측결과와 참값을 참/거짓 매트릭스로 구분

	Positive	Negative		
True	TP 참인 것을 참으로 예측	FN 참인 것을 거짓으로 예측		
False	FP 거짓을 참으로 예측	TN 거짓을 거짓으로 예측		

Test and Score 해석

- AUC : 재현율 (Recall : 참을 참으로 분류)과 위양성률(Fall-out : 거짓을 참으로 분류)의 비율관계
- <u>CA : 정확하게 분류한 비율, 가장 일반적 성과지표</u> (TP + TN) / (TP+FP+TN+FN)
- Precision : 예측한 참에서 실제 참의 분류 비율 TP / (TP+FP)
- Recall : 실제 참 중에 예측한 참의 분류 비율 TP / (TP+FN)
- F1: Precision와 Recall에 대한 평균

ROC(Receiver Operating Characteristic Curve) Analysis 해석

- AUC는 그래프의 아랫 쪽 면적
- 1에 가까울수록, 면적이 클 수록 모델의 성능이 우수함

MBlock 실습

인공지능 MBlock 실습

나이 인식 프로그래밍

감정인식 프로그래밍

팀 활동