The inclusion map from the integers to the reals and universal properties of the floor and ceiling functions

Jordan Bell
jordan.bell@gmail.com
Department of Mathematics, University of Toronto

April 29, 2016

1 Categories

If X is a set, by a partial order on X we mean a binary relation \leq on X that is reflexive, antisymmetric, and transitive, and we call (X, \leq) a **poset**. If (X, \leq) is a poset, we define it to be a category whose objects are the elements of X, and for $x, y \in X$,

$$\operatorname{Hom}(x,y) = \begin{cases} \{(x,y)\} & x \leq y \\ \emptyset & \neg (x \leq y). \end{cases}$$

In particular, $id_x = (x, x)$.

Let $U: \mathbb{Z} \to \mathbb{R}$ be the inclusion map. If $(j,k) \in \text{Hom}(j,k)$, define $U(j,k) = (Uj,Uk) \in \text{Hom}(Uj,Uk)$.

$$U\operatorname{id}_{j} = U(j, j) = (Uj, Uj) = \operatorname{id}_{Uj}$$

If $(j,k) \in \text{Hom}(j,k)$ and $(k,l) \in \text{Hom}(k,l)$, then $(k,l) \circ (j,k) = (j,l)$ and

$$U(k, l) \circ U(j, k) = (Uk, Ul) \circ (Uj, Uk) = (Uj, Ul) = U(j, l) = U((j, l) \circ (j, k)).$$

This shows that $U:(\mathbb{Z},\leq)\to(\mathbb{R},\leq)$ is a functor.

2 Galois connections

If (A, \leq) and (B, \leq) are posets, a function $G: A \to B$ is said to be **order-preserving** if $a \leq a'$ implies $G(a) \leq G(a')$. A **Galois connection from** A **to** B is an order-preserving function $G: A \to B$ and an order-preserving function $H: B \to A$ such that

$$G(a) \le b$$
 if and only if $a \le H(b)$, $a \in A$, $b \in B$.

We say that G is the **left-adjoint of** H and that H is the **right-adjoint of** G. Let $I: \mathbb{Z} \to \mathbb{R}$ be the inclusion map. Define $F: \mathbb{R} \to \mathbb{Z}$ by $F(x) = \lfloor x \rfloor$. For $n \in \mathbb{Z}$ and $x \in \mathbb{R}$, suppose $I(n) \leq x$. Then $F(I(n)) \leq F(x)$. But F(I(n)) = n,

 $n \in \mathbb{Z}$ and $x \in \mathbb{R}$, suppose $I(n) \leq x$. Then $F(I(n)) \leq F(x)$. But F(I(n)) = n, so $n \leq F(x)$. Suppose $n \leq F(x)$. Then $I(n) \leq I(F(x)) \leq x$. Therefore $F: \mathbb{R} \to \mathbb{Z}$, F(x) = |x| is the right-adjoint of $I: \mathbb{Z} \to \mathbb{R}$:

$$I(n) \le x \iff n \le F(x), \qquad n \in \mathbb{Z}, \quad x \in \mathbb{R}.$$

Define $C: \mathbb{R} \to \mathbb{Z}$ by $C(x) = \lceil x \rceil$. For $n \in \mathbb{Z}$ and $x \in \mathbb{R}$, suppose $C(x) \leq n$. Then $I(C(x)) \leq I(n)$. But $I(C(x)) \geq x$, so $x \leq I(n)$. Suppose $x \leq I(n)$. Then $C(x) \leq C(I(n))$. But C(I(n)) = n, so $C(x) \leq n$. Therefore $C: \mathbb{R} \to \mathbb{Z}$, $C(x) = \lceil x \rceil$ is the left-adjoint of $I: \mathbb{Z} \to \mathbb{R}$:

$$C(x) \le n \iff x \le I(n), \qquad x \in \mathbb{R}, \quad n \in \mathbb{Z}.$$

Lemma 1. For x > 0,

$$|\sqrt{|x|}| = |\sqrt{x}|.$$

Proof. For $k \in \mathbb{Z}_{\geq 0}$ and $y \in \mathbb{R}_{\geq 0}$,

$$\begin{split} k \leq \lfloor \sqrt{\lfloor y \rfloor} \rfloor &\iff I(k) \leq \sqrt{\lfloor y \rfloor} \\ &\iff k^2 \leq \lfloor y \rfloor \\ &\iff k^2 \leq y \\ &\iff k \leq \sqrt{y} \\ &\iff k \leq \lfloor \sqrt{y} \rfloor. \end{split}$$

Lemma 2. If $x \in \mathbb{R}$ and $n \in \mathbb{Z}_{\geq 1}$, then

$$\left| \frac{\lfloor x \rfloor}{n} \right| = \left\lfloor \frac{x}{n} \right\rfloor.$$

Proof. For $k \in \mathbb{Z}$,

$$k \leq F(I(F(x))/I(n)) \iff I(k) \leq I(F(x))/I(n)$$

$$\iff I(k)I(n) \leq I(F(x))$$

$$\iff I(kn) \leq I(F(x))$$

$$\iff kn \leq F(x)$$

$$\iff I(kn) \leq x$$

$$\iff I(k) \leq x/I(n)$$

$$\iff k \leq F(x/I(n)).$$

This means that F(I(F(x))/I(n)) = F(x/I(n)).

¹See Roland Backhouse, Galois Connections and Fixed Point Calculus, http://www.cs.nott.ac.uk/~psarb2/G53PAL/FPandGC.pdf, p. 14; Samson Abramsky and Nikos Tzevelekos, Introduction to Categories and Categorical Logic, http://arxiv.org/abs/1102.1313, p. 44, §1.5.1.

Lemma 3. If $n \in \mathbb{Z}_{\geq 1}$ and $m \in \mathbb{Z}$, then

$$\left\lceil \frac{m}{n} \right\rceil = \left\lfloor \frac{m+n-1}{n} \right\rfloor.$$

Proof. For $k \in \mathbb{Z}$,

$$k \leq F(I(m+n-1)/I(n)) \iff I(k) \leq I(m+n-1)/I(n)$$

$$\iff I(k)I(n) \leq I(m+n-1)$$

$$\iff kn \leq m+n-1$$

$$\iff kn-n+1 \leq m$$

$$\iff kn-n < m$$

$$\iff I(k-1) < I(m)/I(n)$$

$$\iff k-1 < C(I(m)/I(n))$$

$$\iff k \leq C(I(m)/I(n)).$$

This means

$$F(I(m+n-1)/I(n)) = C(I(m)/I(n)).$$

3 The Euclidean algorithm and continued fractions

Let $a, b \in \mathbb{Z}_{\geq 1}$, a > b. Let

$$v_0 = a, \quad v_1 = b.$$

Let

$$a_1 = \lfloor v_0/v_1 \rfloor, \quad v_2 = v_0 - a_1 v_1.$$

For $m \geq 2$, if $v_m \neq 0$ then let

$$a_m = \lfloor v_{m-1}/v_m \rfloor, \quad v_{m+1} = v_{m-1} - a_m v_m.$$

Then $0 \le v_{m+1} < v_m$.

For example, let a = 83, b = 14. Then

$$v_0 = 83, \quad v_1 = 14.$$

Then

$$a_1 = |83/14| = 5, \quad v_2 = 83 - 5 \cdot 14 = 13.$$

Then

$$a_2 = \lfloor v_1/v_2 \rfloor = 14/13 \rfloor = 1, \quad v_3 = v_1 - a_2v_2 = 14 - 1 \cdot 13 = 1.$$

 $^{^2 \}mathrm{See}$ Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 1, Chapter 1.

Then

$$a_3 = \lfloor v_2/v_3 \rfloor = \lfloor 13/1 \rfloor = 13, \quad v_4 = v_2 - a_3v_3 = 13 - 13 \cdot 1 = 0.$$

As $v_3 = 1$ and $v_4 = 0$,

$$\gcd(83, 14) = 1.$$

Written as a continued fraction, we get

$$\frac{14}{83} = [0; 5, 1, 13].$$

For example, let a = 168, b = 43. Then

$$v_0 = 168, \quad v_1 = 43.$$

Then

$$a_1 = |168/43| = 3$$
, $v_2 = v_0 - a_1v_1 = 168 - 3 \cdot 43 = 39$.

Then

$$a_2 = |43/39| = 1$$
, $v_3 = v_1 - a_2v_2 = 43 - 1 \cdot 39 = 4$.

Then

$$a_3 = \lfloor v_2/v_3 \rfloor = \lfloor 39/4 \rfloor = 9, \quad v_4 = v_2 - a_3v_3 = 39 - 9 \cdot 4 = 3.$$

Then

$$a_4 = |v_3/v_4| = |4/3| = 1$$
, $v_5 = v_3 - a_4v_4 = 4 - 1 \cdot 3 = 1$.

Then

$$a_5 = \lfloor v_4/v_5 \rfloor = \lfloor 3/1 \rfloor = 3, \quad v_6 = v_4 - a_5v_5 = 3 - 3 \cdot 1 = 0.$$

As $v_5 = 1$ and $v_6 = 0$,

$$\gcd(168, 43) = 1.$$

Written as a continued fraction, we get

$$\frac{43}{168} = [0; 3, 1, 9, 1, 3].$$

For example, let a = 1463 and b = 84. Then

$$v_0 = 1463, \quad v_1 = 84.$$

Then

$$a_1 = |1463/84| = 17, \quad v_2 = 1463 - 17 \cdot 84 = 35.$$

Then

$$a_2 = |84/35| = 2$$
, $v_3 = 84 - 2 \cdot 35 = 14$.

Then

$$a_3 = |35/14| = 2$$
, $v_4 = 35 - 2 \cdot 14 = 7$.

Then

$$a_4 = \lfloor 14/7 \rfloor 2, \quad v_5 = 14 - 2 \cdot 7 = 0.$$

As $v_4 = 7$ and $v_5 = 0$,

$$\gcd(1463, 84) = 7.$$

Written as a continued fraction, we get

$$\frac{84}{1463} = [0; 17, 2, 2, 2].$$