

Week	Dates		Topic
1	16-Feb	20-Feb	1 - INTRODUCTION to MATERIALS of CONSTRUCTION ✓ Q1
2	23-Feb	27-Feb	2 – GYPSUM ✓ 3 – LIME ✓
3	2-Mar	6-Mar	4 - PORTLAND CEMENT - manufacture, hydration, tests, types
4	9-Mar	13-Mar	(<u>1st Lab</u>)
5	16-Mar	20-Mar	
6	23-Mar	27-Mar	5 – POZZOLANS
	Specific	date TBA	1 st MIDTERM
7	30-Mar	3-Apr	
8	6-Apr	10-Apr	6 – AGGREGATES
9	13-Apr	17-Apr	(<mark>2nd Lab</mark>)
10	20-Apr	24-Apr	7 – CONCRETE
11	27-Apr	1-May	(<u>3rd Lab</u>)
12	4-May	8-May	
	Specific	date TBA	2 nd MIDTERM
13	11-May	15-May	8 – POLYMERS
14	18-May	22-May	9 – FERROUS METALS, ALLOYS, AND CONCRETE REINFORCEMEN
	18-May 22-May		10 – CLAY BRICKS

HYDRATION OF PORTLAND CEMENT

Overview

- Hydration
- Solids in hydrated cement matrix
- Rate/ heat of hydration
- Voids in hydrated cement matrix
- Water in hydrated cement matrix
- Fineness of cement
- Soundness of cement
- Setting
- Strength

Tuesday, March 08, 2016

Cagla Meral - cmeral@metu.edu.tr

	Ordinary portland cement (OPC)						
Cement	Typical mineralogical composition of OPC:						
	Abbreviation	Compound	Formula	Wt% in OPC			
	C ₃ S	Tricalcium Silicate (Alite)	3(CaO).SiO ₂	50-55			
	C ₂ S	Dicalcium Silicate (Belite)	2(CaO).SiO ₂	19-24			
	C ₃ A	Tricalcium Aluminate	3(CaO).Al ₂ O ₃	6-10			
	C ₄ AF	Tetracalcium aluminoferrite	4(CaO).Al ₂ O ₃ .Fe ₂ O ₃	7-11			
	CSH₂	Gypsum	CaSO ₄ .2H ₂ O	3-7			
	(C_3S) Clinker mineral; imparts early strength and set. (C_2S) Clinker mineral; imparts long-term strength. (C_3A) Clinker mineral; contributes to early strength and set (C_4AF) Clinker mineral; acts as a flux to lower clinkering temp; imparts gray color. $(C\overline{S}H_2)$ Interground with clinker to make portland cement. Controls early set.						

Hydrated Cement Paste Solids Voids C-S-H Entrapped air (>1mm) o CH o Entrained air (75-500um) Ettringite o Capillary pores (macro → meso) Monosulfate hydrate o Interlayer space Residual unhydrated (micropores) cement Capillary water Adsorbed water o Interlayer water o Chemically combined water Cagla Meral - cmeral@metu.edu.tr

- Definite stoichiometry
- Large, weak crystals with hexagonal – prism morphology
 - Lower Van der Walls forces

- Lower strength contribution
- Size of the crystals depends on the amount of available space
- 20-25% of solids in hydrated cement paste
- Keeps the pore solution alkaline (pH 12.4-13.5)

* Image courtesy of P.J.M. Monteiro

Cagla Meral - cmeral@metu.edu.tr

Transition Zone Pore Aggregate Cement Cagla Meral - cmeral@metu.edu.tr Tuesday, March 08, 2016

Calcium Sulfoaluminate Hydrates

- 15-20% of solids in Hydrated Cement Paste
- Ettringite $C_6 A \bar{S}_3 H_{32}$
 - Trisulfate hydrate
 - Needle shaped prismatic crystals
 - Contributes to stiffening
 - Some early strength
- Monosulfate Hydrate $C_4 A \bar{S} H_{12}$
 - Hexagonal crystals
 - Vulnerable to sulfate attack

Tuesday, March 08, 2016

Cagla Meral - cmeral@metu.edu.tr

Hydration of Calcium Silicates

$$2C_3S + 6H \rightarrow C-S-H + 3CH + 120 \text{ cal/g}$$

 $2C_2S + 4H \rightarrow C-S-H + CH + 62 \text{ cal/g}$

- Both produce C-S-H and CH as reaction products
- C₂S produces less CH
 - o Important for durability in sulfate rich environments
- More heat is evolved during C₃S hydration
- C₃S hydration is more rapid
 - O Higher contribution to early age strength (2-3 hrs to 14 days)
- C₂S hydration occurs more slowly
 - Contributes to strength after 14 days

Tuesday, March 08, 2016

Cagla Meral - cmeral@metu.edu.tr

Hydration of Calcium Aluminates

- \blacksquare C_3A
 - Reaction of C₃A with water occurs very quickly and liberates high heat → Flash Set
 - Gypsum $C\bar{S}H_2$ is added to the clinker to control the hydration of C_3A :

$$C_3A + 26 H + 3 C\bar{S}H_2 \rightarrow C_6A\bar{S}_3H_{32}$$
 (Ettringite) + 207 cal/g

• When more C₃A remains:

2 C₃A + 4 H +
$$C_6A\bar{S}_3H_{32} \rightarrow$$
 3 $C_4A\bar{S}H_{12}$ (Monosulfate)

Tuesday, March 08, 2016

Cagla Meral - cmeral@metu.edu.tr

19

Hydration of Calcium Alumino Ferrites

- C₄AF
 - Reaction of C₄AF (ferrite) phase is slower and evolves less heat than C₃A:

$$C_4AF + 14 H + 2 CH \rightarrow C_4(A,F)H_{13} + (A,F)H_3 + Heat$$

O Also heavily retarded by gypsum ($C\bar{S}H_2$):

$$C_4AF + 21 H + 3 C\bar{S}H_2 \rightarrow C_6(A,F)\bar{S}_3H_{32} + (F,A)H_3 + Heat$$

$$C_4AF + C_6(A, F)\bar{S}_3H_{32} \rightarrow 3 C_4A(A, F)\bar{S}H_{12} + (F, A)H_3 + Heat$$

 Products of C₄AF are more resistant to sulfate attack than those of C₃A hydration

Tuesday, March 08, 2016

Cagla Meral - cmeral@metu.edu.tr

Heat of Hydration of Pure Compounds

- The amount of heat liberated is affected by the fractions of the compounds of the cement.
- Heat of hydration(cal/g):
 - $120 \times (\%C_3S) + 62 \times (\%C_2S) + 207 \times (\%C_3A) + 100 \times (C_4AF)$

	Heat of Hydration (cal/g)		
C ₃ S	120		
C ₂ S	62		
C ₃ A	207		
C ₄ AF	100		

Tuesday, March 08, 2016

Cagla Meral - cmeral@metu.edu.tr

Heat of Hydration

- Hydration process of cement is accompanied by heat generation (exothermic).
 - Concrete is a fair insulator:
 - generated heat in mass concrete may result in expansion & cracking → This could be overcome by using suitable cement type.
 - It could also be advantages for cold wheather concreting.
 - Heat of hydration of typical PC \approx 85-100 cal/g.
 - About 50% of this heat is liberated within 1-3 days & 75% within 7 days.
 - O By limiting C₃S & C₃A content heat of hydration can be reduced.

Cagla Meral - cmeral@metu.edu.tr

Heat evolution

- Heat evolution can be used to map the progress of hydration:
- Dissolution of ions 3. Acceleration
- Steady State

- Induction period
- 4. Deceleration

Portland Cement Hydration

- Main hydration reactions:
 - \circ (C=CaO, S=SiO₂, A=Al₂O₃, \bar{S} = SO₃)
 - $2C_3S + 6H \rightarrow C-S-H + 3CH + 120 cal/g$
 - \circ 2C₂S + 4H → C-S-H + CH + 62 cal/g
 - $C_3A + C\bar{S}H_2 \rightarrow \text{Ettringite} + ^207 \text{ cal/g}$

Influence of Compound Composition

	C ₃ S	C ₂ S	C ₃ A	C₄AF
Rate of Reaction	Moderate	Slow	Fast	Moderate
Heat Liberation	High	Low	Very High	Moderate
Early Cementitious Value	Good	Poor	Good	Poor
Ultimate Cementitious Value	Good	Good	Poor	Poor

uesday, March 08, 2016 Cagla Meral – cmeral@metu.edu.tr

22

Portland Cement Hydration

- Main hydration reactions:
 - \circ (C=CaO, S=SiO₂, A=Al₂O₃, \overline{S} = SO₃)
 - $2C_3S + 6H \rightarrow C-S-H + 3CH + 120 \text{ cal/g}$
 - \circ 2C₂S + 4H → C-S-H + CH + 62 cal/g
 - $C_3A + C\bar{S}H_2 \rightarrow$ Ettringite + ~207 cal/g

Influence of Compound Composition

Amount	
50%	very reactive compound, high heat of hydration, high early strength
25%	low heat of hydration, slow reaction
10%	problems with sulfate attack, high heat of hydration
10%	
5%	used to control the set of cement
	50% 25% 10% 10%

Tuesday, March 08, 2016

Cagla Meral - cmeral@metu.edu.tr

Stiffening and setting of Portland Cement

Which compound is primarily responsible for rapid stiffening and setting of Portland cement?

Tuesday, March 08, 2016

Cagla Meral - cmeral@metu.edu.tr

35

Massive dam construction

Q

 At METU Cement, we produce two cements with the following compound compositions. Both cements do not incorporate any mineral admixtures, and each contains 3% gypsum.

Compound (%)	Cement A	Cement B
C ₃ S	55	30
C ₂ S	16	46
C ₃ A	12	5
C ₄ AF	8	13

Compressive Strength (MPa)	Cement A	Cement B
2 days	26	13
28 days	50	40

They want to use one of our cements at a massive dam construction. Which cement would you prefer to use in that construction, why?

Tuesday, March 08, 2016

Cagla Meral - cmeral@metu.edu.tr

Hydrated Cement Paste Solids C-S-H Entrapped air (>1mm) Entrained air (75-500um) Ettringite Monosulfate hydrate Monosulfate hydrate Residual unhydrated cement Water Capillary water Adsorbed water Interlayer water Chemically combined water Tuesday, March 08, 2016 Cagla Meral - cmeral@metu.edu.tr Voids Entrapped air (>1mm) Capillary pores (macro → meso) Interlayer space (micropores)

Voids in hydrated cement paste

- Voids in the Hydrated Cement
 - Interlayer space in CSH Paste
 - size = 5 to 25 Å
 - no adverse effect on strength and permeability
 - some effect on drying shrinkage and creep
 - Capillary Voids
 - Irregular in shape
 - > 50 nm : detrimental to strength and impermeability
 - < 50 nm: important to drying shrinkage and creep.</p>
 - Air Voids
 - entrapped air: ~ 3 mm → irregular in shape
 - entrained air: 50 to 200 μm

 spherical; added for freeze/thaw resistance

Tuesday, March 08, 2016

Cagla Meral - cmeral@metu.edu.tr

Hyd	Hydrated Cement Paste					
■ Solids ■						
0		0				
0		0				
0		0				
0						
0		0				
	Water					
	 Capillary water 					
	Adsorbed water					
	 Interlayer 	wat	er			
	 Chemically 	со с	mbined water			
Tuesday, Ma	rch 08, 2016 Cagla Meral – cmeral	@met	tu.edu.tr 41			

Water inside the pores

- Water is
 - Introduced to concrete during mixing
 - Permeates the concrete during service
 - Because the water in concrete contains ions, it is usually called "pore solution" and has a high pH
- Ratio of mass of water to mass of cement in a mixture is the "water-to-cement ratio" or w/c
- When supplementary cementitious materials are used, this is "water-to-cementitious ratio" or w/cm
- w/c or w/cm may range between 0.2-0.8; but 0.4-0.6 is typical range

Tuesday, March 08, 2016

Cagla Meral – cmeral@metu.edu.tr

Water in hydrated cement paste

- Water in the Hydrated Cement
 - Interlayer space in CSH Paste
 - Water associated with the C-S-H structure
 - Can be removed only on strong drying to RH~11%, resulting shrinkage
 - Capillary Water
 - > 50 nm : free water because its removal does not cause volume change
 - < 50 nm: removal of water results in shrinkage because new bonds can form between C-S surfaces
 - Adsorbed water
 - Water physically adsorbed to the solid surface in C-S-H
 - Can be removed on drying to RH ~30%, resulting in shrinkage
 - Chemically combined water
 - Water that is an integral part of various hydration products
 - Lost only on decomposition during heating

Tuesday, March 08, 2016

Cagla Meral - cmeral@metu.edu.tr

