This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 19 April 2001 (19.04.2001)

(10) International Publication Number WO 01/27257 A1

(51) International Patent Classification7: 5/00, C12P 21/06, C07H 21/02

C12N 15/00,

(74) Agent: ADLER, Benjamin, A.; McGregor & Adler, 8011

- (21) International Application Number: PCT/US00/28558
- (22) International Filing Date: 13 October 2000 (13.10.2000)
- (25) Filing Language:

English

(26) Publication Language:

English .

(30) Priority Data: 09/418,527

14 October 1999 (14.10.1999)

- (71) Applicant: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSAS [US/US]; 2404 North University Avenue, Little Rock, AR 72207-3608 (US).
- (72) Inventors: O'BRIEN, Timothy, J.; 2625 Grist Mill Road, Little Rock, AR 72227 (US). UNDERWOOD, Lowell, J.; Apt. K, 121 N. Jackson St., Little Rock, AR 72205 (US). SHIGEMASA, Kazushi; 1-2-3, Kasumi, Minamiku, Hiroshima 734 (JP).

Candle Ln., Houston, TX 77071 (US). (81) Designated States (national): AL, AM, AT, AU, AZ, BA,

BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES,

FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE,

SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU.

ZA, ZW. (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,

CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

With international search report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: TUMOR ANTIGEN DERIVED GENE-16 (TADG-16): A NOVEL EXTRACELLULAR SERINE PROTEASE AND **USES THEREOF**

(57) Abstract: The present invention provides a DNA encoding a TADG-16 protein selected from the group consisting of: (a) isolated DNA which encodes a TADG-16 protein; (b) isolated DNA which hybridizes to isolated DNA of (a) above and which encodes a TADG-16 protein; and (c) isolated DNA differing from the isolated DNAs of (a) and (b) above in codon sequence due to the degeneracy of the genetic code, and which encodes a TADG-16 protein. Also provided is a vector capable of expressing the DNA of the present invention adapted for expression in a recombinant cell and regulatory elements necessary for expression of the DNA in the cell.

TUMOR ANTIGEN DERIVED GENE-16 (TADG-16): A NOVEL EXTRACELLULAR SERINE PROTEASE AND USES THEREOF

10

5

BACKGROUND OF THE INVENTION

15

20

Field of the Invention

The present invention relates generally to the fields of cellular biology and the diagnosis of neoplastic disease. More specifically, the present invention relates to an extracellular serine protease termed Tumor Antigen Derived Gene-16 (TADG-16), which is expressed in normal ovaries and testes, as well as certain ovarian carcinomas.

Description of the Related Art

10

15

20

To date, ovarian cancer remains the number one killer of women with gynecologic malignant hyperplasia. Approximately 75% of women diagnosed with such cancers are already at the high-stage (III and IV) of the disease at their initial diagnosis. During the past 20 years, neither diagnosis nor five year survival have greatly improved for these patients. This is substantially due to the significant number of high-stage initial detections of the disease. Therefore, the challenge remains to develop new markers to improve early diagnosis, and thereby reduce the percentage of high-stage initial diagnoses.

A good tumor marker useful as an indicator of early disease is needed. Extra-cellular proteases have already been implicated in the growth, spread and metastatic progression of many cancers, thereby implying that some extracellular proteases may be candidates for marker of neoplastic development. This is in part due to the ability of malignant cells not only to grow in situ, but to dissociate from the primary tumor and to invade new surfaces (metastasize). The ability to disengage from one tissue and re-engage the surface of another tissue is what results in the morbidity and mortality associated with this disease.

In order for malignant cells to grow, spread or metastasize, they must have the capacity to invade local host tissue, dissociate or shed from the primary tumor, and for metastasis to

occur, enter and survive in the bloodstream, implant by invasion into the surface of the target organ and establish an environment conducive for new colony growth (including the induction of angiogenic and growth factors). During this progression, natural tissue barriers have to be degraded, including basement membranes and connective tissue. These barriers further include collagen, laminin, proteoglycans and extracellular matrix glycoproteins, such as fibronectin.

5

10

15

20

Degradation of these natural barriers, both surrounding the primary tumor and at sites of metastatic invasion, is believed to be brought about by the action of extracellular proteases. Proteases have been classified into four families: serine proteases, metallo-proteases, aspartic proteases and cysteine proteases. Many proteases have been shown to be involved in the human disease process and these enzymes are targets for inhibition by new therapeutic agents.

Certain individual proteases have already been shown to be induced and overexpressed in a diverse group of cancers, and as such, are potential candidates for markers useful for early diagnosis and possibly therapeutic intervention. Examples of proteases, encompassing members of the metallo-proteases, serine proteases, and cysteine proteases, are listed below.

TABLE 1

Protease Expression in Various Cancers

		Gastric	Brain	Breast	Ovarian
5					•
	Serine	uPA	uPA	NES-1NES	S-1
	Proteases	PAI-1 PAI-	l uPA	uPA	
			tPA_		PAI-2
	Cysteine	Cathepsin 1	B Cathepsin 1	L Cathepsin	B Cathepsin B
10	Proteases	Cathepsin 1	Ĺ	Cathepsin	L Cathepsin L
15	Metallo- proteases uPA, Urokinase-type	Collagenase Stromelysin-l*	Matrilysin * Stromelysin Gelatinase gen activ	MMP-8 B MMP-9 Gelatinase	
	plasminogen activator;	PAI-I, Plas	minogen act	tivator 0 i	nhibitors; PAI-2,
	Plasminogen activator	r inhibitor	s; NES-1,	Normal	epithelial cell-
	specific-1; MMP, Ma	atrix P me	tallo-proteas	se. *Ov	verexpressed in
20	gastrointestinal ulcers	3.			

Significantly, there is a good body of evidence supporting the down regulation or inhibition of individual proteases and a subsequent reduction in invasive capacity or malignancy. In work by Clark et al., (Peptides, 14, 1021-8 (1993)) inhibition of in vitro growth of human small cell lung cancer was demonstrated using a general serine protease inhibitor. More recently, Torres-Rosedo et al., (Proc. Natl. Acad. Sci. USA, 90, 7181-7185 (1993)) demonstrated an

inhibition of hepatoma tumor cell growth using specific antisense inhibitors for the serine protease hepsin gene. Metastatic potential has also been shown to be reduced using a synthetic inhibitor (batimastat) of metallo-protease in a mouse model with melanoma cells. Powell et al. (Cancer Research, 53, 417-422 (1993)) presented evidence to confirm that the expression of extracellular proteases in cells enhances their malignant relatively non-invasive tumor progression using a tumor-genic, but non-metastatic, prostate cell Specifically, Powell et al. demonstrated enhanced metastasis line. after introducing and expressing the PUMP-1 metallo-protease gene. There is also a body of data to support the notion that expression of cell surface proteases on relatively non-metastatic cell types increases the invasive potential of such cells.

5

10

15

20

Extracellular proteases have been directly associated with tumor growth, shedding of tumor cells and invasion of target organs by tumors. Individual classes of proteases are involved in, but not limited to, (a) digestion of stroma surrounding the initial tumor area; (b) digestion of the cellular adhesion molecules to allow dissociation of tumor cells; and (c) invasion of the basement membrane for metastatic growth and the activation of both tumor growth factors and angiogenic factors.

Interfering in the intracellular signal transduction pathways provides mechanisms for numerous therapeutic

applications. While several proteins have been identified that interfere with various signal transduction mechanisms, novel proteins involved in signal transduction pathways are important to provide alternatives for therapy and drug development.

The prior art is deficient in that the prior art lacks the nucleotide and amino acid sequences corresponding to tumor antigenderived gene 16 (TADG-16). The prior art further lacks effective means of screening to identify proteases, specifically TADG-16, expressed in normal ovaries and testes and certain ovarian carcinomas. The present invention fulfills this longstanding need and desire in the art.

5

10

SUMMARY OF THE INVENTION

This invention describes a new serine protease enzyme.

The TADG-16 enzyme contains the characteristic features of a serine protease, including the conserved catalytic triad (His-Asp-Ser) and a secretion signal sequence. The TADG-16 transcript is present in carcinomas and normal ovarian tissues as well as in normal testes.

20 Because TADG-16 is secreted and has a potential for extracellular activation, TADG-16 may have a role in normal or aberrant physiological activity of ovary or testes.

In one embodiment of the present invention, there is provided a DNA encoding a tumor antigen-derived gene (TADG-16) protein, selected from the following: (a) an isolated DNA which encodes a TADG-16 protein; (b) an isolated DNA which hybridizes under high stringency conditions to the isolated DNA of (a) above and which encodes a TADG-16 protein; and (c) an isolated DNA differing from the isolated DNAs of (a) and (b) above in codon sequence due to the degeneracy of the genetic code, and which encodes a TADG-16 protein. The embodiment further includes a vector comprising the TADG-16 DNA and regulatory elements necessary for expression of the DNA in a cell. Additionally embodied is a vector in which the TADG-16 DNA is positioned in reverse orientation relative to the regulatory elements such that TADG-16 antisense mRNA is produced.

10

15

20

In another embodiment of the present invention, there is provided an isolated and purified TADG-16 protein coded for by DNA selected from the following: (a) an isolated DNA which encodes a TADG-16 protein; (b) an isolated DNA which hybridizes under high stringency conditions to isolated DNA of (a) above and which encodes a TADG-16 protein; and (c) an isolated DNA differing from the isolated DNAs of (a) and (b) above in codon sequence due to the degeneracy of the genetic code, and which encodes a TADG-16 protein.

In yet another embodiment of the present invention, there is provided a method for detecting TADG-16 mRNA in a sample, comprising the steps of (a) contacting a sample with a probe which is specific for TADG-16; and (b) detecting binding of the probe to TADG-16 mRNA in the sample. In still yet another embodiment of the present invention, there is provided a kit for detecting TADG-16 mRNA, comprising an oligonucleotide probe specific for TADG-16. A label for detection is further embodied in the kit.

5

10

15

The present invention additionally embodies a method of detecting TADG-16 protein in a sample, comprising the steps of (a) contacting a sample with an antibody which is specific for TADG-16 or a fragment thereof; and (b) detecting binding of the antibody to TADG-16 protein in the sample. Similarly, the present invention also embodies a kit for detecting TADG-16 protein, comprising an antibody specific for TADG-16 protein or a fragment thereof. Means for detection of the antibody is further embodied in the kit.

In another embodiment, the present invention provides an antibody specific for the TADG-16 protein or a fragment thereof.

In yet another embodiment, the present invention provides

20 a method of screening for compounds that inhibit TADG-16,
comprising the steps of (a) contacting a sample comprising TADG-16
protein with a compound; and (b) assaying for TADG-16 protease
activity. Typically, a decrease in the TADG-16 protease activity in the

8

presence of the compound relative to TADG-16 protease activity in the absence of the compound is indicative of a compound that inhibits TADG-16.

In still yet another embodiment of the present invention, there is provided a method of inhibiting expression of TADG-16 in a cell, comprising the step of (a) introducing a vector into a cell, whereupon expression of the vector produces TADG-16 antisense mRNA in the cell which hybridizes to endogenous TADG-16 mRNA, thereby inhibiting expression of TADG-16 in the cell.

5

10

15

20

Further embodied by the present invention, there is provided a method of inhibiting a TADG-16 protein in a cell, comprising the step of (a) introducing an antibody specific for a TADG-16 protein or a fragment thereof into a cell, whereupon binding of the antibody to the TADG-16 protein inhibits the TADG-16 protein.

In another embodiment of the present invention, there is provided a method of targeted therapy to an individual, comprising the step of (a) administering a compound containing a targeting moiety and a therapeutic moiety to an individual, wherein the targeting moiety is specific for TADG-16.

In another embodiment of the present invention, there is provided a method of diagnosing cancer in an individual, comprising the steps of (a) obtaining a biological sample from an individual; and (b) detecting TADG-16 in the sample. Typically, the presence of

TADG-16 in the sample is indicative of the presence of carcinoma in the individual and the absence of TADG-16 in the sample is indicative of the absence of carcinoma in the individual.

In another embodiment of the present invention, there is provided a method of vaccinating an individual against TADG-16, comprising the steps of (a) inoculating an individual with a TADG-16 protein or fragment thereof that lacks TADG-16 protease activity. It is intended that inoculation with the TADG-16 protein or fragment thereof elicits an immune response in the individual, thereby vaccinating the individual against TADG-16.

5

10

20

In another embodiment of the present invention, there is provided an immunogenic composition, comprising an immunogenic fragment of TADG-16 and an appropriate adjuvant.

Other and further aspects, features, and advantages of the

15 present invention will be apparent from the following description of
the presently preferred embodiments of the invention given for the
purpose of disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the matter in which the above-recited features, advantages and objects of the invention, as well as others which will

particular descriptions of the invention briefly summarized above may be had by reference to certain embodiments thereof which are illustrated in the appended drawings. These drawings form a part of the specification. It is to be noted, however, that the appended drawings illustrate preferred embodiments of the invention and therefore are not to be considered limiting in their scope.

5

10

15

Figure 1 shows an alignment of a portion of the TADG-16 protein sequence (SEQ ID No. 7) with other known proteases (Prom, Protease M (SEQ ID No. 3); Try1, Trypsinogen 1 (SEQ ID No. 4); SCCE, Stratum corneum chymotryptic like enzyme (SEQ ID No. 5); and Heps, Hepsin (SEQ ID No. 6)).

Figure 2 shows Northern blot analysis of multiple human tissues using the radioactively labeled catalytic domain as a probe. The 1.4 Kb TADG-16 transcript is present in normal human testes and in certain ovarian tumors, but is not detectable at significant levels in other tissues examined. Hybridization of mRNA to β -tubulin is shown as an internal control.

Figure 3A shows the nucleotide and predicted amino acid sequence of the original subclone from the WISH cDNA containing the TADG-16 catalytic domain. Figure 3B shows a sequence identified from the EST database (Accession #AA620757) with homology to the TADG-16 catalytic domain (encoding bases 614 to 1129) and

including the 3'-untranslated region and poly (A) tail of the TADG-16 transcript.

Figure 4 shows the nucleotide sequence of the TADG-16 cDNA and the predicted amino acid sequence. The cDNA corresponding to TADG-16 contains a Kozak's consensus sequence (boxed nucleotides) for the initiation of translation from which a putative protein of 314 amino acids is encoded. The protein contains a secretion signal sequence (italicized) and the conserved amino acids of the catalytic triad of the serine protease family (circled) in the appropriate context (underlined residues). The cDNA also contains a polyadenylation sequence in the 3' untranslated region (underlined nucleotides).

5

10

15

20

Figure 5 shows TADG-16 (and β-tubulin) expression in normal and carcinoma cell lines.

Figure 6 shows TADG-16 expression in normal (N), benign (B), low malignant potential (LMP) tumors and carcinomas (C).

Figure 6A shows quantitative PCR of TADG-16 (250 bp) and internal control, β-tubulin (470 bp). Lanes 1-3, normal ovary (cases 5-7, respectively); Lanes 4-5, benign mucinous adenoma tumor (cases 8 & 11, respectively); Lane 6, serous LMP tumor (case 14); Lanes 7-8, clear cell carcinoma (cases 20 & 21, respectively); Lanes 9-11, serous adenocarcinoma (cases 22, 29 and 32, respectively); Lane 12, endometrioid adenocarcinoma (case 35). Figure 6B shows a graph

of expression of TADG-16 in normal ovaries and ovarian benign, LMP and carcinoma tumors.

DETAILED DESCRIPTION OF THE INVENTION

5

10

15

20

This invention describes a new serine protease enzyme complementary to the series of proteases already identified and characterized in ovarian carcinoma. The TADG-16 enzyme contains the characteristic features of all serine proteases, including the conserved catalytic triad of His-Asp-Ser and a signal secretion sequence. The transcript for this enzyme is present in carcinomas and normal ovarian tissues as well as in normal testes. Because TADG-16 is secreted and has a potential for extracellular activation, TADG-16 may have a role in normal or aberrant physiological activity (i.e., normal or carcinomatous growth) of ovary or testes. Furthermore, because of the presence of TADG-16 mRNA in normal testes, there is a potential role for TADG-16 in normal testicular function (e.g., sterility).

The TADG-16 cDNA is 1129 base pairs long (SEQ ID No. 1) and encodes a 314 amino acid protein (SEQ ID No. 2).

In accordance with the present invention there may be employed conventional molecular biology, microbiology, and

recombinant DNA techniques within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Maniatis, Fritsch & Sambrook, "Molecular Cloning: A Laboratory Manual (1982); "DNA Cloning: A Practical Approach," Volumes I and II (D.N. Glover ed. 1985); "Oligonucleotide Synthesis" (M.J. Gait ed. 1984); "Nucleic Acid Hybridization" [B.D. Hames & S.J. Higgins eds. (1985)]; "Transcription and Translation" [B.D. Hames & S.J. Higgins eds. (1984)]; "Animal Cell Culture" [R.I. Freshney, ed. (1986)]; "Immobilized Cells And Enzymes" [IRL Press, (1986)]; B. Perbal, "A Practical Guide To Molecular Cloning" (1984).

5

10

15

20

Therefore, if appearing herein, the following terms shall have the definitions set out below.

As used herein, the term "cDNA" shall refer to the DNA copy of the mRNA transcript of a gene.

As used herein, the term "derived amino acid sequence" shall mean the amino acid sequence determined by reading the triplet sequence of nucleotide bases in the cDNA.

As used herein the term "screening a library" shall refer to the process of using a labeled probe to check whether, under the appropriate conditions, there is a sequence complementary to the probe present in a particular DNA library. In addition, "screening a library" could be performed by PCR.

As used herein, the term "PCR" refers to the Polymerase Chain Reaction that is the subject of U.S. Patent Nos. 4,683,195 and 4,683,202 to Mullis, as well as other improvements to the process/technique of PCR now known in the art.

The amino acid described herein are preferred to be in the "L" isomeric form. However, residues in the "D" isomeric form can be substituted for any L-amino acid residue, as long as the desired functional property of immunoglobulin-binding is retained by the polypeptide. NH₂ refers to the free amino group present at the amino terminus of a polypeptide. COOH refers to the free carboxy group present at the carboxy terminus of a polypeptide. In keeping with standard polypeptide nomenclature, *J Biol. Chem.*, 243:3552-59 (1969), abbreviations for amino acid residues are shown in Table 2.

15 **TABLE 2**

5

10

		Amino acid	
	1 Letter	3 Letter	
	Α	Ala	Alanine
	С	Cys	Cysteine
20	D	Asp	Aspartic acid
	E	Glu	Glutamic acid
	F	Phe	Phenylalanine
	G	Gly	Glycine
	H	His	Histidine
25	I	Ile	Isoleucine
	K	Lys	Lysine
	L	Leu	Leucine
	M	Met	Methionine
	N	Asn	Asparagine

	P	Pro	Proline
	Q	Gln	Glutamine
	R	Arg	Arginine
	S	Ser	Serine
5	T	Thr	Threonine
	V	Val	Valine
	W	Trp	Tryptophan
	Y	Tyr	Tyrosine

are represented herein by formulae whose left and right orientation is in the conventional direction of amino-terminus to carboxy-terminus. Furthermore, it should be noted that a dash at the beginning or end of an amino acid residue sequence indicates a peptide bond to a further sequence of one or more amino-acid residues. The above table is presented to correlate the three-letter and one-letter notations which may appear alternately herein.

A "replicon" is any genetic element (e.g., plasmid, chromosome, virus) that functions as an autonomous unit of DNA replication in vivo; i.e., capable of replication under its own control.

20

A "vector" is a replicon, such as plasmid, phage or cosmid, to which another DNA segment may be attached so as to bring about the replication of the attached segment.

A "DNA molecule" refers to the polymeric form of deoxyribonucleotides (adenine, guanine, thymine, or cytosine) in its either single stranded form, or a double-stranded helix. This term refers only to the primary and secondary structure of the molecule,

and does not limit it to any particular tertiary forms. Thus, this term includes double-stranded DNA found, inter alia, in linear DNA molecules (e.g., restriction fragments), viruses, plasmids, and chromosomes. The structure is discussed herein according to the normal convention of giving only the 5' to 3' sequence of the nontranscribed strand of DNA (i.e., the strand having a sequence homologous to the mRNA).

5

10

15

20

An "origin of replication" refers to those DNA sequences that participate in DNA synthesis.

A DNA "coding sequence" is a double-stranded DNA sequence which is transcribed and translated into a polypeptide in vivo when placed under the control of appropriate regulatory sequences. The boundaries of the coding sequence are determined by a start codon at the 5' (amino) terminus and a translation stop codon at the 3' (carboxyl) terminus. A coding sequence can include, but is not limited to, prokaryotic sequences, cDNA from eukaryotic mRNA, genomic DNA sequences from eukaryotic (e.g., mammalian) DNA, and even synthetic DNA sequences. A polyadenylation signal and transcription termination sequence will usually be located 3' to the coding sequence.

Transcriptional and translational control sequences are

DNA regulatory sequences, such as promoters, enhancers,

polyadenylation signals, terminators, and the like, that provide for the expression of a coding sequence in a host cell.

5

10

15

20

A "promoter sequence" is a DNA regulatory region capable of binding RNA polymerase in a cell and initiating transcription of a downstream (3' direction) coding sequence. For purposes of defining the present invention, the promoter sequence is bounded at its 3' terminus by the transcription initiation site and extends upstream (5' direction) to include the minimum number of bases or elements initiate transcription at levels detectable necessarv above background. Within the promoter sequence will be found a transcription initiation site, as well as protein binding domains (consensus sequences) responsible for the binding **RNA** Eukaryotic promoters often, but not always, contain polymerase. "TATA" boxes and "CAT" boxes. Prokaryotic promoters contain Shine-Dalgarno sequences in addition to the -10 and -35 consensus sequences.

An "expression control sequence" is a DNA sequence that controls and regulates the transcription and translation of another DNA sequence. A coding sequence is "under the control" of transcriptional and translational control sequences in a cell when RNA polymerase transcribes the coding sequence into mRNA, which is then translated into the protein encoded by the coding sequence.

A "signal sequence" can be included near the coding sequence. This sequence encodes a signal peptide, N-terminal to the polypeptide, that communicates to the host cell to direct the polypeptide to the cell surface or secrete the polypeptide into the media, and this signal peptide is clipped off by the host cell before the protein leaves the cell. Signal sequences can be found associated with a variety of proteins native to prokaryotes and eukaryotes.

5

10

15

20

The term "oligonucleotide", as used herein in referring to the probe of the present invention, is defined as a molecule comprised of two or more ribonucleotides, preferably more than three. Its exact size will depend upon many factors which, in turn, depend upon the ultimate function and use of the oligonucleotide.

The "primer" used herein refers term as to a n purified oligonucleotide, occurring naturally whether as in a restriction digest or produced synthetically, which is capable of acting as a point of initiation of synthesis when placed under conditions in extension product. which which synthesis of a primer is complementary to a nucleic acid strand, is induced, i.e., in the presence of nucleotides and an inducing agent such as a DNA polymerase and at a suitable temperature and pH. The primer may be either single-stranded or double-stranded and must be sufficiently long to prime the synthesis of the desired extension product in the presence of the inducing agent. The exact length of the primer will

depend upon many factors, including temperature, source of primer and use the method. For example, for diagnostic applications, depending on the complexity of the target sequence, the oligonucleotide primer typically contains 15-25 or more nucleotides, although it may contain fewer nucleotides.

5

10

15

20

The primers herein are selected to be "substantially" complementary to different strands of a particular target DNA This means that the primers must be sufficiently sequence. complementary to hybridize with their respective strands. Therefore, the primer sequence need not reflect the exact sequence of the For example, a non-complementary nucleotide fragment template. may be attached to the 5' end of the primer, with the remainder of the primer sequence being complementary to the strand. Alternatively, non-complementary bases or longer sequences can be interspersed into the primer, provided that the primer sequence has sufficient complementary with the sequence or hybridize therewith and thereby form the template for the synthesis of the extension product.

As used herein, the terms "restriction endonucleases" and "restriction enzymes" refer to enzymes, each of which cut double-stranded DNA at or near a specific nucleotide sequence.

A cell has been "transformed" by exogenous or heterologous DNA when such DNA has been introduced inside the cell.

The transforming DNA may or may not be integrated (covalently)

linked) into the genome of the cell. In prokaryotes, yeast, and cells for example, the transforming DNA may be mammalian maintained on an episomal element such as a plasmid. With respect to eukaryotic cells, a stably transformed cell is one in which the transforming DNA has become integrated into a chromosome so that it is inherited by daughter cells through chromosome replication. This stability is demonstrated by the ability of the eukaryotic cell to establish cell lines or clones comprised of a population of daughter cells containing the transforming DNA. A "clone" is a population of cells derived from a single cell or ancestor by mitosis. A "cell line" is a clone of a primary cell that is capable of stable growth in vitro for many generations.

5

10

15

20

Two DNA sequences are "substantially homologous" when at least about 75% (preferably at least about 80%, and most preferably at least about 90% or 95%) of the nucleotides match over the defined length of the DNA sequences. Sequences that by comparing homologous can be identified substantially sequences using standard software available in sequence data banks, or in a Southern hybridization experiment under, for example, stringent conditions as defined for that particular system. Defining appropriate hybridization conditions is within the skill of the art. See, e.g., Maniatis et al., supra; DNA Cloning, Vols. I & II, supra; Nucleic Acid Hybridization, supra.

A "heterologous" region of the DNA construct is an identifiable segment of DNA within a larger DNA molecule that is not found in association with the larger molecule in nature. Thus, when the heterologous region encodes a mammalian gene, the gene will usually be flanked by DNA that does not flank the mammalian genomic DNA in the genome of the source organism. In another example, coding sequence is a construct where the coding sequence itself is not found in nature (e.g., a cDNA where the genomic coding sequence contains introns, or synthetic sequences having codons different than the native gene). Allelic variations or naturally-occurring mutational events do not give rise to a heterologous region of DNA as defined herein.

5

10

15

20

The labels most commonly employed for these studies are radioactive elements, enzymes, chemicals which fluoresce when exposed to ultraviolet light, and others. A number of fluorescent materials are known and can be utilized as labels. These include, for example, fluorescein, rhodamine, auramine, Texas Red, AMCA blue and Lucifer Yellow. A particular detecting material is anti-rabbit antibody prepared in goats and conjugated with fluorescein through an isothiocyanate.

Proteins can also be labeled with a radioactive element or with an enzyme. The radioactive label can be detected by any of the currently available counting procedures. The preferred isotope may

be selected from ³H, ¹⁴C, ³²P, ³⁵S, ³⁶Cl, ⁵¹Cr, ⁵⁷Co, ⁵⁸Co, ⁵⁹Fe, ⁹⁰Y, ¹²⁵I, ¹³¹I, and ¹⁸⁶Re.

Enzyme labels are likewise useful, and can be detected by any of the presently utilized colorimetric, spectrophotometric, fluorospectrophotometric, amperometric or gasometric techniques. The enzyme is conjugated to the selected particle by reaction with molecules bridging such as carbodiimides, diisocyanates, glutaraldehyde and the like. Many enzymes which can be used in these procedures are known and can be utilized. The preferred are β-glucuronidase, β-D-glucosidase, β-D-galactosidase, peroxidase, urease, glucose oxidase plus peroxidase and alkaline phosphatase. U.S. Patent Nos. 3,654,090, 3,850,752, and 4,016,043 are referred to by way of example for their disclosure of alternate labeling material and methods.

5

10

15

20

A particular assay system developed and utilized in the art is known as a receptor assay. In a receptor assay, the material to be assayed is appropriately labeled and then certain cellular test colonies are inoculated with a quantitiy of both the label after which binding studies are conducted to determine the extent to which the labeled material binds to the cell receptors. In this way, differences in affinity between materials can be ascertained.

An assay useful in the art is known as a "cis/trans" assay.

Briefly, this assay employs two genetic constructs, one of which is

typically a plasmid that continually expresses a particular receptor of interest when transfected into an appropriate cell line, and the second of which is a plasmid that expresses a reporter such as luciferase, under the control of a receptor/ligand complex. Thus, for example, if it is desired to evaluate a compound as a ligand for a particular receptor, one of the plasmids would be a construct that results in expression of the receptor in the chosen cell line, while the second plasmid would possess a promoter linked to the luciferase gene in which the response element to the particular receptor is inserted. the compound under test is an agonist for the receptor, the ligand will complex with the receptor, and the resulting complex will bind the response element and initiate transcription of the luciferase gene. The resulting chemiluminescence is then measured photometrically, and dose response curves are obtained and compared to those of known ligands. The foregoing protocol is described in detail in U.S. Patent No. 4,981,784.

5

10

15

20

As used herein, the term "host" is meant to include not only prokaryotes but also eukaryotes such as yeast, plant and animal cells. A recombinant DNA molecule or gene which encodes a human TADG-16 protein of the present invention can be used to transform a host using any of the techniques commonly known to those of ordinary skill in the art. Especially preferred is the use of a vector containing coding sequences for the gene which encodes a human

TADG-16 protein of the present invention for purposes of prokaryote transformation. Prokaryotic hosts may include *E. coli*, *S. tymphimurium*, *Serratia marcescens* and *Bacillus subtilis*. Eukaryotic hosts include yeasts such as *Pichia pastoris*, mammalian cells and insect cells.

5

10

In general, expression vectors containing promoter sequences which facilitate the efficient transcription of the inserted DNA fragment are used in connection with the host. The expression vector typically contains an origin of replication, promoter(s), terminator(s), as well as specific genes which are capable of providing phenotypic selection in transformed cells. The transformed hosts can be fermented and cultured according to means known in the art to achieve optimal cell growth.

The invention includes a substantially pure DNA encoding

15 a TADG-16 protein, a strand of which DNA will hybridize at high

stringency to a probe containing a sequence of at least 1.5

consecutive nucleotides of SEQ ID No. 1. The protein encoded by the

DNA of this invention may share at least 80% sequence identity

(preferably 85%, more preferably 90%, and most preferably 95%)

20 with the amino acids shown in SEQ ID No. 2. More preferably, the

DNA includes the coding sequence of the nucleotides shown in SEQ ID

No. 1, or a degenerate variant of such a sequence.

PCT/US00/28558

The probe to which the DNA of the invention hybridizes WO 01/27257 consists of a sequence of at least 20 consecutive nucleotides, more preferably 40 nucleotides, even more preferably preferably 50 nucleotides, and most preferably 100 nucleotides or more (up to 100%) of the coding sequence of the nucleotides shown in SEQ ID No. 1 or the complement thereof. Such a probe is useful for detecting expression of TADG-16 in a cell by a method including the steps of (a) contacting mRNA obtained from the cell with the labeled hybridization probe; and (b) detecting hybridization of the probe 10

This invention also includes a substantially pure DNA with the mRNA. nucleotides containing a sequence of at least 15 consecutive (preferably 20, more preferably 30, even more preferably 50, and most preferably all) of the region from nucleotides 1 to 3147 of the nucleotides shown in SEQ ID No. 1.

15

20

By "high stringency" is meant DNA hybridization and wash salt by high temperature concentration, e.g., wash conditions of 65°C at a salt concentration of conditions approximately 0.1 x SSC, or the functional equivalent thereof. example, high stringency conditions may include hybridization at about 42°C in the presence of about 50% formamide; a first wash at about 65°C with about 2 x SSC containing 1% SDS; followed by a second wash at about 65°C with about 0.1 x SSC.

By "substantially pure DNA" is meant DNA that is not part of a milieu in which the DNA naturally occurs, by virtue of separation (partial or total purification) of some or all of the molecules of that milieu, or by virtue of alteration of sequences that flank the claimed DNA. The term therefore includes, for example, a recombinant DNA which is incorporated into a vector, into an autonomously replicating plasmid or virus, or into the genomic DNA of a prokaryote or eukaryote; or which exists as a separate molecule (e.g., a cDNA or a genomic or cDNA fragment produced by polymerase chain reaction (PCR) or restriction endonuclease digestion) independent of other It also includes a recombinant DNA which is part of a hybrid gene encoding additional polypeptide sequence, e.g., a fusion Also included is a recombinant DNA which includes a protein. portion of the nucleotides shown in SEQ ID No. 1 which encodes an alternative splice variant of TADG-16.

10

15

20

The DNA may have at least about 70% sequence identity to the coding sequence of the nucleotides shown in SEQ ID No. 1, preferably at least 75% (e.g., at least 80%); and most preferably at least 90%. The identity between two sequences is a direct function of the number of matching or identical positions. When a subunit position in both of the two sequences is occupied by the same monomeric subunit, e.g., if a given position is occupied by an adenine in each of two DNA molecules, then they are identical at that

PCT/US00/28558

For example, if 7 positions in a sequence 10 nucleotides in WO 01/27257 length are identical to the corresponding positions in a second 10position. nucleotide sequence, then the two sequences have 70% sequence The length of comparison sequences will generally be at preferably at least 60 nucleotides, more identity. preferably least 50 nucleotides, most nucleotides, and Sequence identity is typically measured using least at preferably sequence analysis software (e.g., Sequence Analysis Software Package 100 nucleotides. of Wisconsin Group, Biotechnology Center, 1710 University Avenue, Madison, WI 53705). 10

The present invention is directed towards a vector comprising a DNA sequence which encodes a TADG-16 protein, wherein the vector is capable of replication in a host cell, wherein the vector comprises, in operable linkage: a) an origin of replication; b) a promoter; and c) a DNA sequence coding for the TADG-16 protein. Preferably, the vector of the present invention contains a portion of the DNA sequence shown in SEQ ID No. 1.

15

20

A "vector" may be defined as a replicable nucleic acid construct, e.g., a plasmid or viral nucleic acid. Vectors may be used to amplify and/or express nucleic acid encoding TADG-16 protein. An expression vector is a replicable construct in which a nucleic acid sequence encoding a polypeptide is operably linked to suitable control sequences capable of effecting expression of the polypeptide PCT/US00/28558

in a cell. The need for such control sequences will vary depending upon the cell selected and the transformation method chosen. sequences include a transcriptional promoter and suitable mRNA ribosomal binding Generally, control and of transcription enhancer, the termination and/or control which sequences 5

Methods which are well known to those skilled in the art translation. can be used to construct expression vectors containing appropriate transcriptional and translational control signals. See for example, the techniques described in Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual (2nd Ed.), Cold Spring Harbor Press, N.Y. A gene are defined as being 10 control sequences "operably linked" if the transcription control sequences effectively and its transcription Vectors of the invention control the transcription of the gene. include, but are not limited to, plasmid vectors and viral vectors. Preferred viral vectors of the invention are those derived from retroviruses, adenovirus, adeno-associated virus, SV40 virus, or 15 By a "substantially pure protein" is meant a protein which herpes viruses.

has been separated from at least some of those components which naturally accompany it. Typically, the protein is substantially pure when it is at least 60%, by weight, free from the proteins and other 20 naturally-occurring organic molecules with which it is naturally 29

associated in vivo. Preferably, the purity of the preparation is at least 75%, more preferably at least 90%, and most preferably at least 99%, by weight. A substantially pure TADG-16 protein may be obtained, for example, by extraction from a natural source; by expression of a recombinant nucleic acid encoding an TADG-16 polypeptide; or by chemically synthesizing the protein. Purity can be measured by any column appropriate method, chromatography such e.g., immunoaffinity chromatography using an antibody specific TADG-16, polyacrylamide gel electrophoresis, or HPLC analysis. protein is substantially free of naturally associated components when it is separated from at least some of those contaminants which accompany it in its natural state. Thus, a protein which is chemically synthesized or produced in a cellular system different from the cell from which it naturally originates will be, by definition, substantially free from its naturally associated components. Accordingly, substantially pure proteins include eukaryotic proteins synthesized in E. coli, other prokaryotes, or any other organism in which they do not naturally occur.

5

10

15

In addition to substantially full-length proteins, the invention also includes fragments (e.g., antigenic fragments) of the TADG-16 protein (SEQ ID No. 2). As used herein, "fragment," as applied to a polypeptide, will ordinarily be at least 10 residues, more typically at least 20 residues, and preferably at least 30 (e.g.,

PCT/US00/28558

50) residues in length, but less than the entire, intact sequence. Fragments of the TADG-16 protein can be generated by methods known to those skilled in the art, e.g., by enzymatic digestion of recombinant recombinant DNA techniques using an expression vector that encodes a defined fragment of TADG-16, or by chemical synthesis. The ability of a candidate fragment to exhibit a characteristic of TADG-16 (e.g., binding to an antibody specific for TADG-16) can be assessed by methods described herein. Purified TADG-16 or antigenic fragments of TADG-16 can be used to generate new antibodies or to test existing antibodies (e.g., as positive controls in a diagnostic assay) by employing standard protocols known to those skilled in the art. 10 antisera

in this invention generated by using TADG-16 or a fragment of TADG-16 as the immunogen in, e.g., rabbits. Standard protocols for monoclonal and polyclonal antibody production known to those skilled in this art are employed. The monoclonal antibodies generated by this procedure can be screened for the ability to identify recombinant TADG-16 cDNA clones, and to distinguish them from known cDNA clones.

15

20

Further included in this invention are TADG-16 proteins which are encoded at least in part by portions of SEQ ID No. 2, e.g., of alternative mRNA splicing or alternative protein processing events, or in which a section of TADG-16 sequence has products 31

been deleted. The fragment, or the intact TADG-16 polypeptide, may be covalently linked to another polypeptide, e.g., which acts as a label, a ligand or a means to increase antigenicity.

The invention also includes a polyclonal or monoclonal antibody which specifically binds to TADG-16. The invention encompasses not only an intact monoclonal antibody, but also an immunologically-active antibody fragment, e.g., a Fab or (Fab)₂ fragment; an engineered single chain Fv molecule; or a chimeric molecule, e.g., an antibody which contains the binding specificity of one antibody, e.g., of murine origin, and the remaining portions of another antibody, e.g., of human origin.

5

10

15

20

In one embodiment, the antibody, or a fragment thereof, may be linked to a toxin or to a detectable label, e.g., a radioactive fluorescent label, non-radioactive isotopic label, label, chemiluminescent label, paramagnetic label, enzyme label, colorimetric label. Examples of suitable toxins include diphtheria toxin, Pseudomonas exotoxin A, ricin, and cholera toxin. Examples of suitable enzyme labels include malate hydrogenase, staphylococcal nuclease, delta-5-steroid isomerase, alcohol dehydrogenase, alphaglycerol phosphate dehydrogenase, triose phosphate isomerase, alkaline phosphatase, asparaginase, glucose oxidase, peroxidase, beta-galactosidase, ribonuclease, catalase, urease. glucose-6phosphate dehydrogenase, glucoamylase, acetylcholinesterase, etc.

Examples of suitable radioisotopic labels include ³H, ¹²⁵I, ¹³¹I, ³²P, ³⁵S, ¹⁴C, etc.

5

10

15

Paramagnetic isotopes for purposes of in vivo diagnosis can also be used according to the methods of this invention. are numerous examples of elements that are useful in magnetic For discussions on in vivo nuclear magnetic resonance imaging. resonance imaging, see, for example, Schaefer et al., (1989) JACC 14, 472-480; Shreve et al., (1986) Magn. Reson. Med. 3, 336-340; Wolf, G. L., (1984) Physiol. Chem. Phys. Med. NMR 16, 93-95; Wesbey et al., (1984) Physiol. Chem. Phys. Med. NMR 16, 145-155; Runge et al., (1984) Invest. Radiol. 19, 408-415. Examples of suitable fluorescent fluorescein label, an isothiocyalate labels include a label, a rhodamine label, a phycoerythrin label, a phycocyanin label, a n allophycocyanin label, an ophthaldehyde label, a fluorescamine label, etc. Examples of chemiluminescent labels include a luminal label, an isoluminal label, an aromatic acridinium ester label, an imidazole label, an acridinium salt label, an oxalate ester label, a luciferin label, a luciferase label, an aequorin label, etc.

Those of ordinary skill in the art will know of other suitable labels which may be employed in accordance with the present invention. The binding of these labels to antibodies or fragments thereof can be accomplished using standard techniques commonly known to those of ordinary skill in the art. Typical

techniques are described by Kennedy et al., (1976) Clin. Chim. Acta 70, 1-31; and Schurs et al., (1977) Clin. Chim. Acta 81, 1-40. Coupling techniques mentioned in the latter are the glutaraldehyde method, the periodate method, the dimaleimide method, the m-maleimidobenzyl-N-hydroxy-succinimide ester method. All of these methods are incorporated by reference herein.

5

10

15

20

Also within the invention is a method of detecting TADG-16 protein in a biological sample, which includes the steps of contacting the sample with the labeled antibody, e.g., radioactively tagged antibody specific for TADG-16, and determining whether the antibody binds to a component of the sample.

As described herein, the invention provides a number of diagnostic advantages and uses. For example, the TADG-16 protein is useful in diagnosing cancer in different tissues since this protein is highly overexpressed in tumor cells. Antibodies (or antigen-binding fragments thereof) which bind to an epitope specific for TADG-16, are useful in a method of detecting TADG-16 protein in a biological sample for diagnosis of cancerous or neoplastic transformation. This method includes the steps of obtaining a biological sample (e.g., cells, blood, plasma, tissue, etc.) from a patient suspected of having cancer, contacting the sample with a labeled antibody (e.g., radioactively tagged antibody) specific for TADG-16, and detecting the TADG-16 protein using standard immunoassay techniques such as

an ELISA. Antibody binding to the biological sample indicates that the sample contains a component which specifically binds to an epitope within TADG-16.

5

10

15

20

Likewise, a standard Northern blot assay can be used to ascertain the relative amounts of TADG-16 mRNA in a cell or tissue obtained from a patient suspected of having cancer, in accordance with conventional Northern hybridization techniques known to those of ordinary skill in the art. This Northern assay uses a hybridization probe, e.g., radiolabelled TADG-16 cDNA, either containing the full-length, single stranded DNA having a sequence complementary to SEQ ID No. 1, or a fragment of that DNA sequence at least 20 (preferably at least 30, more preferably at least 50, and most preferably at least 100) consecutive nucleotides in length. The DNA hybridization probe can be labeled by any of the many different methods known to those skilled in this art.

Antibodies to the TADG-16 protein can be used in an immunoassay to detect increased levels of TADG-16 protein expression in tissues suspected of neoplastic transformation. These same uses can be achieved with Northern blot assays and analyses.

The TADG-16 cDNA is 1129 base pairs long (SEQ ID No. 1) encoding for a 314 amino acid protein (SEQ ID No. 2). The availability of the TADG-16 gene provides numerous utilities. For example, the TADG-16 gene can be used as a diagnostic or therapeutic target in

ovarian and other carcinomas, including breast, prostate, lung and colon.

The present invention is directed to DNA encoding a tumor antigen-derived gene (TADG-16) protein, selected from (a) an isolated DNA which encodes a TADG-16 protein; (b) an isolated DNA which hybridizes under high stringency conditions to the isolated DNA of (a) above and which encodes a TADG-16 protein; and (c) an isolated DNA differing from the isolated DNAs of (a) and (b) above in codon sequence due to the degeneracy of the genetic code, and which encodes a TADG-16 protein. It is preferred that the DNA has the sequence shown in SEQ ID No. 1 and the TADG-16 protein has the amino acid sequence shown in SEQ ID No. 2.

5

10

15

20

The present invention is directed toward a vector comprising the TADG-16 DNA and regulatory elements necessary for expression of the DNA in a cell, or a vector in which the TADG-16 DNA is positioned in reverse orientation relative to the regulatory elements such that TADG-16 antisense mRNA is produced. An antisense molecule corresponding to TADG-16 mRNA is shown in SEQ ID No. 16. The invention is also directed toward host cells transfected with either of the above-described vector(s). Representative host cells are bacterial cells, mammalian cells, plant cells and insect cells. Preferably, the bacterial cell is *E. coli*.

The present invention is directed toward an isolated and purified TADG-16 protein coded for by DNA selected from the following: (a) an isolated DNA which encodes a TADG-16 protein; (b) an isolated DNA which hybridizes under high stringency conditions to isolated DNA of (a) above and which encodes a TADG-16 protein; and (c) an isolated DNA differing from the isolated DNAs of (a) and (b) above in codon sequence due to the degeneracy of the genetic code, and which encodes a TADG-16 protein. Preferably, the protein has the amino acid sequence shown in SEQ ID No. 2.

5

10

15

20

The present invention is directed toward a method for detecting TADG-16 mRNA in a sample, comprising the steps of (a) contacting a sample with a probe which is specific for TADG-16; and (b) detecting binding of the probe to TADG-16 mRNA in the sample. The present invention is also directed toward a method of detecting TADG-16 protein in a sample, comprising the steps of (a) contacting a sample with an antibody which is specific for TADG-16 or a fragment thereof; and (b) detecting binding of the antibody to TADG-16 protein in the sample. Generally, the sample is a biological sample; preferably, the biological sample is from an individual; and typically, the individual is suspected of having cancer.

The present invention is directed toward a kit for detecting TADG-16 mRNA, comprising an oligonucleotide probe, wherein the probe is specific for TADG-16. The kit may further comprise a label

with which to label the probe; and means for detecting the label. The present invention is additionally directed toward a kit for detecting TADG-16 protein, comprising an antibody which is specific for TADG-16 protein or a fragment thereof. The kit may further comprise means to detect the antibody.

The present invention is directed toward a antibody which is specific for TADG-16 protein or a fragment thereof.

5

10

15

20

The present invention is directed toward a method of screening for compounds that inhibit TADG-16, comprising the steps of: (a) contacting a sample containing TADG-16 protein with a compound; and (b) assaying for TADG-16 protease activity. Typically, a decrease in the TADG-16 protease activity in the presence of the compound relative to TADG-16 protease activity in the absence of the compound is indicative of a compound that inhibits TADG-16.

The present invention is directed toward a method of inhibiting expression of TADG-16 in a cell, comprising the step of: (a) introducing a vector expressing TADG-16 antisense mRNA into a cell which hybridizes to endogenous TADG-16 mRNA, thereby inhibiting expression of TADG-16 in the cell. Generally, the inhibition of TADG-16 expression is for treating cancer.

The present invention is directed toward a method of inhibiting a TADG-16 protein in a cell, comprising the step of (a) introducing an antibody specific for a TADG-16 protein or a fragment

thereof into a cell which inhibits the TADG-16 protein. Generally, the inhibition of the TADG-16 protein is for treating cancer.

The present invention is directed toward a method of to an individual, comprising the step therapy of (a) administering a compound having a targeting moiety 5 therapeutic moiety to an individual, wherein the targeting moiety is specific for TADG-16. Representative targeting moiety antibody specific for TADG-16, a ligand that binds TADG-16 or a ligand binding domain of TADG-16, e.g., a CUB domain, an LDLR Likewise, a representative therapeutic moiety is a 10 domain, etc. radioisotope, a toxin, a chemotherapeutic agent, an immune stimulant or a cytotoxic agent. Typically, the above-described method is useful when the individual suffers from ovarian cancer, breast cancer, lung cancer, prostate cancer, colon cancer or other cancers in which 15 TADG-16 is overexpressed.

The present invention is directed toward a method of diagnosing cancer in an individual, comprising the steps of (a) obtaining a biological sample from an individual; and (b) detecting TADG-16 in the sample. Generally, the presence of TADG-16 in the sample is indicative of the presence of carcinoma in the individual, and the absence of TADG-16 in the sample is indicative of the absence of carcinoma in the individual. Typically, the biological sample is blood, urine, saliva tears, interstitial fluid, ascites fliud, tumor tissue

biopsy or circulating tumor cells. Representative means of detecting TADG-16 are by Northern blot, Western blot, PCR, dot blot, ELIZA sandwich assay, radioimmunoassay, DNA array chips or flow cytometry (after labeling tumor cells). This method may be useful in diagnosing cancers such as ovarian, breast, lung, colon, prostate and others with increased TADG-16 expression.

5

10

15

20

The present invention is also directed to an antisense oligonucleotide having the nucleotide sequence complementary to a TADG-16 mRNA sequence. The present invention is also directed to a composition comprising such an antisense oligonucleotide and a physiologically acceptable carrier therefore.

The present invention is also directed to a method of treating a neoplastic state in an individual in need of such treatment, comprising the step of administering to said individual an effective dose of an antisense oligonucleotide. Preferably, the neoplastic state is ovarian cancer, breast cancer and other cancers that exhibit TADG-16 overexpression. For such therapy, the oligonucleotides alone or in combination with other anti-neoplastic agents can be formulated for a variety of modes of administration, including systemic, topical or localized administration. Techniques and formulations generally can be found in *Remington's Pharmaceutical Sciences* (Mack Publishing Co., Easton, PA). The oligonucleotide active ingredient is generally combined with a pharamceutically acceptable carrier such as a

diluent or excipient which can include fillers, extenders, binders, wetting agents, disintergrants, surface active agents or lubricants, depending on the nature of the mode of administration and dosage forms. Typical dosage forms include tablets, powders, liquid preparations including suspensions, emulsions, and solutions, granules, capsules and suppositories, as well as liquid preparations for injections, including liposome preparations.

5

10

15

20

systemic administration, injection is preferred, For intraperitoneal intramuscular. intravenous. and including subcutaneous. For injection, the oligonucleotides of the invention are solutions, preferably in physiologically formulated in liquid buffers. In addition, the oligonucleotides compatible formulated in solid form and redissolved or suspended immediately prior to use. Lyophilized forms are also incldued. Dosages that can be used for systemic administration preferably range from about 0.01 mg/kg to 50 mg/kg administered once or twice per day. However, different dosing schedules can be utilized depending on (1) the potency of an individual oligonucleotide at inhibiting the activity of its target DNA, (2) the severity or extent of the pathological disease state, or (3) the pharmacokinetic behavior of a given oligonucleotide.

The present invention is directed toward a method of vaccinating an individual against TADG-16, comprising the steps of (a) inoculating an individual with a TADG-16 protein or fragment thereof

which lacks TADG-16 protease activity. The inoculation with the TADG-16 protein or fragment thereof elicits an immune response in the individual, thereby vaccinating the individual against TADG-16. The vaccination with TADG-16 described herein is intended for an individual who has cancer, is suspected of having cancer or is at risk of getting cancer. The present invention is also directed toward an immunogenic composition, comprising an immunogenic fragment of TADG-16 and an appropriate adjuvant. Generally, the TADG-16 fragment useful for vaccinating an individual consists of a 9-residue fragment up to and including a 20-residue fragment. Preferably, the 9-residue fragments have a sequence such as SEO ID Nos. 17, 18, 19, 77, 78, 79, 80, 97, 98, 99, 137, 138, 139, 140 or 141. Other TADG-16 fragment useful for vaccinating an individual may be readily determined by an individual having ordinary skill in this art using routine techniques.

5

10

15

20

The present invention is further directed to a method of regulating the expression of the TADG-16 protein by designing antisense oligonucleotides directed to the DNA encoding the TADG-16 protein. A person having ordinary skill in this art would be able design such antisense oligonucleotides without undue experimentation.

The following examples are given for the purpose of illustrating various embodiments of the invention and are not meant to limit the present invention in any fashion.

5

15

EXAMPLE 1

Cloning of the TADG-16 catalytic domain

Using WISH (an amnion derived cell line) cDNA (ATCC) as a template for PCR with degenerate primers designed to the conserved regions surrounding the invariant histidine and serine residues of the catalytic triad of the serine protease family of proteins, a 498 base pair product was obtained that was similar in particular consensus sequences to other known serine proteases (Figure 1).

The sequences of the degenerate primers used in the initial PCR are as follows:

Serp-S (Sense): 5'-TGGGTIGTIACIGCIGCICA(CT)TG-3' (SEQ ID No. 8); and

Serp-S (Antisense): 5'-A(AG)IGGICCICCI(CG)(TA)(AG)TCICC-3'
20 (SEQ ID No. 9).

Reactions were carried out as described by Underwood et al. (Cancer Res., 59, 4435-9 (1999)).

EXAMPLE 2

Detection of TADG-16 mRNA

Using the radioactively labeled catalytic domain as a probe, Northern blot analysis of multiple human tissues revealed that TADG-16 is highly expressed in normal human testes and in some ovarian tumors, but not detectable at significant levels in other tissues examined (Figure 2). More importantly, Northern analysis showed that the TADG-16 transcript is approximately 1.4 kilobases in length.

10

15

20

5

EXAMPLE 3

Sequence analysis of TADG-16

Comparison of the TADG-16 catalytic domain to the EST database identified a homologous sequence (Accession No. AA620757) that overlapped a portion of the TADG-16 catalytic domain clone and also included the 3'-untranslated region and poly (A) tail of the TADG-16 transcript (Figure 3). Comparison of the catalytic domain clone to the GenBank non-redundant database identified a genomic cosmid clone (Accession No. AC005361) homologous to the catalytic domain clone. Using the GRAIL exon identification program available through the National Center for

Biotechnology Information, potential exons encoding the 5' portion of the TADG-16 transcript were identified.

5 EXAMPLE 4

Cloning of the TADG-16 cDNA

10

15

5'-Α sense **PCR** primer (T16-F1: GTCAGGCCGCGGGAGAGGAG-3' (SEQ ID No. 10)) was designed to the cDNA predicted by the Grail program and used in conjunction with an antisense primer (T16-R2: 5'-ACTCTGGGCCATCAGCTTCT-3' (SEQ ID No. 11)) designed to the overlapping EST that included the polyA+ tail (GenBank Accession No. AA620757 encoding bases 614 to 1129 of Additional antisense primers were utilized in 5'-RACE TADG-16). experiments using a human testes cDNA library as template to identify the 40-most 5' bases. The sequence of the 5'-RACE primers are as follows:

T16-R6: 5'-CGGAGGGATCACTAAGGTCACTATACGT-3' (SEQ ID No. 12); and

20 T16-R7: 5'-TATACGTTTCAAAGCAGTGCGCCGCCGT-3' (SEQ ID No. 13).

This allowed for the identification of the 1129 bases of the sequence reported herein. Within this 1129 bases, there is a Kozak's consensus

sequence for the initiation of translation, an open reading frame encoding a 314 amino acid protein and a polyadenylation signal.

EXAMPLE 5

5

10

15

20

Tissue-specific expression of TADG-16

Using a previously authenticated semi-quantitative PCR technique (Shigemasa et al., *J. Soc. Gynecological Inv.*, 4, 95-102 (1997)), the expression level of the TADG-16 transcript was examined in normal ovarian tissue and ovarian tumor specimens. To do this, a TADG-16-specific PCR product was co-amplified with a PCR product for β-tubulin as an internal control. To amplify a 237 bp PCR product specific for TADG-16, the following primers were used:

T16-F2: 5'-GGTCGCCATCATAAACAACT-3' (SEQ ID No. 14); and T16-R2: 5'-ACTCTGGGCCATCAGCTTCT-3' (SEQ ID No. 15).

The reaction mixture was heated to 94°C for 1.5 min, then 30 cycles of PCR was carried out under the following conditions: 30 sec of denaturation at 94°C, 30 sec of annealing at 62°C and 30 sec of extension at 72°C. A final extension at 72°C was performed for 7 min before the reaction was terminated. These PCR products were electrophoresed through an agarose gel to separate them based on

size. Based on this experiment, TADG-16 appears to be expressed in tumor tissue (Figures 5 & 6).

5 **EXAMPLE 6**

Expression of TADG-16 in tumors

10

15

20

The expression of the serine protease TADG-16 gene in normal, low malignant potential tumors, and carcinoma mucinous and serous type) by quantitative PCR using TADG-16specific primers was determined (primers directed toward the βtubulin message were used as an internal standard). These data confirm the overexpression of the TADG-16 surface protease gene in ovarian carcinoma, including both low malignant potential tumors and Expression of TADG-16 is increased over normal overt carcinoma. levels in low malignant potential tumors, and high stage tumors (Stage III) of this group have higher expression of TADG-16 when compared to low stage tumors (Stage 1) (Table 3). In overt carcinoma, serous exhibit the highest levels of TADG-16 expression, while tumors mucinous tumors express levels of TADG-16 comparable with the high stage low malignant potential group.

TABLE 3

	Case No.	of TADG Code	Stage	Grade	Histology	TADG-16
	1	1	-	-	-	0.553
5	2	1	-	•	-	0.232
	3	1	-	-	-	0.229
	4	1	-	_	-	0.400
	5	1	-	_	-	0.226
	6	1	-	_	-	0.230
10	7	1	-	-	-	0.269
	8	2	-	-	-	0.121
	9	2	-	-	-	0.514
	10	2	-	-	-	0.333
	1 1	2	-	-	-	0.323
15	1 2	3				0.732
	1 3	3				0.487
	1 4	3			•	0.850
	15	4	1	1	2	0.815
	16	4	1	1	3	0.287
20	17	4	1	2	2	0.382
	18	4	1	1	1	0.400
	19	4	1	1	2	0.548
	20	4	1	2	. 4	2.120
	2 1	4	1	2	4	1.700
25	2 2	4	1	1	1	1.760
	23	4	1	2	1	1.240
	2 4	4	2	3	1	1.320
	25	4	2	1	1	0.710
	26	4	3	1	2	0.828
30	27	4	3	1	1	1.730
	28	4	3	1	1	0.510
	29	4	3 3	1	1	2.320
	30	4		1	2	0.792
	3 1	4	3	1	3	0.899
35	3 2	4	3	2	1	1.880
	3 3	4	3	2 2 2	1	1.130
	3 4	4	3		3	0.892
	3 5	4	3	2	3	1.990
	36	4	3	2	3 3 3 1	0.365
40	3 7	4	3 3 3 3 3 3 3 3	2 3 3		1.840
	3 8	4	3		1	1.430
	39	4	3	3	3	0.830
	40	4	3	1	1	1.730
	41	4	9	ī	1	2.910

Code: 1, normal ovary; 2, benign tumor (adenoma); 3, LMP tumor; 4, cancer (adenocarcinoma).

Stage = Clinical stage: 1, stage 1; 2, stage 2; 3, stage 3.

Grade = Histological grade: 1, grade 1; 2, grade 2; 3, grade 3.

5 Histology: 1, serous carcinoma; 2, mucinous carcinoma; 3, endometrioid carcinoma; 4, clear cell carcinoma.

10 **TABLE 4**

	mRNA Expression Levels of TADG-16 Gene in Ovarian Cancers					
	N mRNA Expression Levels					
			mean	SD		
15						
	Normal ovary	7	0.306	0.126		
	Benign tumor	4	0.323	0.161		
	LMP tumor	3	0.690	0.185		
	Ovarian cancer	27	1.235	0.692		
20						
	Clinical stage					
	Stage 1	9	1.028	0.695		
	Stage 2	2	1.015	0.431		
	Stage 3	16	1.380	0.711		
25						
	Histological gra	de				
	Grade 1	1 4	1.160	0.794		
	Grade 2	9	1.300	0.667		
	Grade 3	4	1.355	0.415		
30						
	Histological type	e				
	Serous	1 4	1.494	0.688		
	Mucinous	5	0.673	0.199		
	Endometrio	oid 6	0.877	0.609		
35	Clear Cell	2	1.910	0.297		

TABLE 5

5		p-value <u>(unpaired <i>t-</i>test)</u>
10	Tumor type normal vs. benign normal vs. LMP normal vs. cancer benign vs. LMP benign vs. cancer LMP vs. cancer	0.8473 0.0046 0.0014 0.0375 0.0148 0.1905
15	Stage stage 1 vs. stage 2 stage 1 vs. stage 3 stage 2 vs. stage 3	0.9808 0.2435 0.4951
20	Grade grade 1 vs. grade 2 grade 1 vs. grade 3 grade 2 vs. grade 3	0.6659 0.6472 0.8830
25	Histology serous vs. mucinous serous vs. endometrioid serous vs. clear cell mucinous vs. endometrioid	0.0192 0.0743 0.4230 0.4937
30	mucinous vs. clear cell endometrioid vs. clear cell	$0.0012 \\ 0.0678$

EXAMPLE 7

35

Antisense TADG-16

TADG-16 is cloned and expressed in the opposite orientation such that an antisense RNA molecule (SEQ ID No. 16) is produced. For example, the antisense RNA is used to hybridize to the

complementary RNA in the cell and thereby inhibit translation of TADG-16 RNA into protein.

5

10

15

EXAMPLE 8

Peptide ranking

For vaccine or immune stimulation, individual 9-mers to 11-mers of the TADG-16 protein were examined to rank the binding of individual peptides to the top 8 haplotypes in the general population (Parker et al., (1994)). The computer program used for this analyses can be found at http://www-bimas.dcrt.nih.gov/molbio/hla_bind/. Table 6 shows the peptide ranking based upon the predicted half-life of each peptide's binding to a particular HLA allele. A larger half-life indicates a stronger association with that peptide and the particular HLA molecule. The TADG-16 peptides that strongly bind to an HLA allele are putative immunogens, and are used to innoculate an individual against hepsin.

TABLE 6

TADG-16 peptide ranking

5	HLA Type & Ranking	Start	Peptide	Predicted Dissociation _{1/2}	SEQ ID_No.
	HLA A0201				
	1	70	SLLSHRWAL	592.807	17
10	2	299	LLFFPLLWA	395.296	18
	3	142	KLSAPVTYT	329.937	19
	4	96	WMVQFGQLT	94.077	20
	5	10	ALLLARAGL	79.041	2 1
	6	252	QIGVVSWGV	71.726	22
15	7	248	GLWYQIGVV	70.769	23
	8	139	ALVKLSAPV	69.552	24
	9	291	SQPDPSWPL	66.602	25
	10	130	YLGNSPYDI	47.991	26
	11	190	TLQEVQVAI	42.774	27
20	1 2	6	ALLLALLLA	42.278	28
	13	165	FENRTDCWV	34.216	29
	1 4	7 1	LLSHRWALT	21.536	30
	15	8	LLALLLARA	19.425	3 1
	16	297	WPLLFFPLL	17.136	3 2
25	17	113	QAYYTRYFV	17.002	3 3
	18	123	NIYLSPRYL	10.339	3 4
	19	104	TSMPSFWSL	7.352	
	3 5				
	20	273	NISHHFEWI	7.345	
30	36				
	HLA A0205				
	1	70	SLLSHRWAL	25.200	37
	2	42	IVGGEDAEL	23.800	38
	3	10	ALLLARAGL	21.000	39
35	4	291	SQPDPSWPL	20.160	40
	5	297	WPLLFFPLL	12.600	4 1
	6	248	GLWYQIGVV	12.000	42
	7	8 2	HCFETYSDL	6.300	43

	8	142	KLSAPVTYT	6.000	4 4
	9	96	WMVQFGQLT	6.000	4 5
	10	299	LLFFPLLWA	5.100	4 6
	11	303	PLLWALPLL	4.200	4 7
5	1 2	123	NIYLSPRYL	4.200	4 8
	1 3	98	VQFGQLTSM	4.080	49
	1 4	306	WALPLLGPV	3.600	50
	15	7 1	LLSHRWALT	3.400	5 1
	16	53	WPWQGSLRL	3.150	5 2
10	17	302	FPLLWALPL	3.150	5 3
	18	130	YLGNSPYDI	3.000	5 4
	19	6	ALLLALLLA	3.000	5 5
	20	190	TLQEVQVAI	3.000	56
	HLA A1				
15	1	44	GGEDAELGR	11.250	5 7
	2	90	LSDPSGWMV	7.500	58
	3	143	LSAPVTYTK	6.000	59
	4	292	QPDPSWPLL	2.500	60
	5	203	MCNHLFLKY	2.500	6 1
20	6	8 7	YSDLSDPSG	1.500	62
	7	168	RTDCWVTGW	1.250	63
	8	47	DAELGRWPW	0.900	64
	9	23	SQEAAPLSG	0.675	6 5
	10	7	LLLALLLAR	0.500	66
25	1 1	157	CLQASTFEF	0.500	67
	12	202	SMCNHLFLK	0.500	68
	13	111	SLQAYYTRY	0.500	69
	1 4	125	YLSPRYLGN	0.500	70
	1 5	152	HIQPICLQA	0.500	7 1
30	16	79	TAAHCFETY	0.500	72
	1 7	238	SGGPLACNK	0.500	73
	18	172	WVTGWGYIK	0.400	74
	19	110	WSLQAYYTR	0.300	75
	20	191	LQEVQVAII	0.270	76
35	HLA A24				
	1	118	RYFVSNIYL	400.000	77
	2	177	GYIKEDEAL	300.000	78
	3	210	KYSFRKDIF	140.000	79
	4	270	VYTNISHHF	60.000	80
40	5	148	TYTKHIQPI	28.800	8 1
	6	300	LFFPLLWAL	24.000	82
	7	234	CFGDSGGPL	22.000	83
	8	135	PYDIALVKL	9.600	84

	_		·	0.640	<u> </u>
	9	4	RGALLLALL	8.640	8.5
	10	104	TSMPSFWSL	8.640	86
	11	296	SWPLLFFPL	7.500	87
	1 2	250	WYQIGVVSW	7.200	8 8
5	1 3	5	GALLLALLL	7.200	89
	14	95	GWMVQFGQL	7.200	90
	1 5	199	INNSMCNHL	7.200	91
	16	297	WPLLFFPLL	7.200	92
	17	291	WQPDPSWPL	7.200	93
10	18	183	EALPSPHTL	7.200	94
	19	86	TYSDLSDPS	7.200	9 5
	20	10	ALLLARAGL	6.000	96
	HLA B7				
	1	297	WPLLFFPLL	80.000	97
15	2	302	FPLLWALPL	80.000	98
	3	53	WPWQGSLRL	80.000	99
	4	292	QPDPSWPLL	24.000	100
	5	145	APVTYTKHI	24.000	101
	6	42	IVGGEDAEL	20.000	102
20	7	10	ALLLARAGL	18.000	103
	8	104	TSMPSFWSL	12.000	104
	9	183	EALPSPHTL	12.000	105
	10	201	NSMCNHLFL	12.000	106
	11	5	GALLLALLL	12.000	107
25	1 2	291	SQPDPSWPL	6.000	108
	13	70	SLLSHRWAL	6.000	109
	1 4	195	QVAIINNSM	5.000	110
	1 5	116	YTRYFVSNI	4.000	111
	16	199	INNSMCNHL	4.000	112
30	1 7	82	HCFETYSDL	4.000	113
	18	132	GNSPYDIAL	4.000	114
	19	1	MGARGALLL	4.000	115
	20	63	DSHVCGVSL	4.000	116
	HLA B8				
35	1	183	EALPSPHTL	1.600	117
	2	58	SLRLWDSHV	1.200	118
	3	82	HCFETYSDL	1.200	119
	4	116	YTRYFVSNI	1.000	120
	5	2	GARGALLLA	0.800	121
40	6	302	FPLLWALPL	0.800	122
	7	53	WPWQGSLRL	0.800	123
	8	3 1	GPCGRRVIT	0.800	124
	9	297	WPLLFFPLL	0.800	125

5	10 11 12 13 14 15	5 71 242 10 70 63 89	GALLLALLL LLSHRWALT LACNKNGLW ALLLARAGL SLLSHRWAL DSHVCGVSL DLSDPSGWM	0.800 0.400 0.400 0.400 0.400 0.400 0.300	126 127 128 129 130 131 132
10	17	132	GNSPYDIAL	0.200	133
	18	140	LVKLSAPVT	0.200	134
	19	149	YTKHIQPIC	0.200	135
	20	15	RAGLRKPES	0.200	136
	HLA B2702				
	1	117	GRWPWQVSL	1000.000	137
	2	51	LRSDQEPLY	300.00	138
15	3	263	RRKLPVDRI	200.000	139
	4	74	SRWRVFAGA	100.000	140
	5	128	GRDTSLGRW	100.000	141
	6 7	266	WRLCGIVSW LRYDGAHLC	60.000 60.000	142 143
20	8	3 4	LRALTHSEL	60.000	144
	9	2 1 3	FREWIFQAI	20.000	145
	10	1 8	GRLPHTQRL	20.000	146
	1 1 1 2	$\begin{array}{c} 101 \\ 227 \end{array}$	ERNRVLSRW NRVLSRWRV	20.000 20.000	147 148
25	13	5 9	SRPKVAALT	20.000	149
	14	4 0	VRTAGANGT	20.000	150
	15	3 5	QRLLEVISV	18.000	151
30	16	98	CQGDSGGPF	10.000	152
	17	112	ARLMVFDKT	6.000	153
	18	291	WRVFAGAVA	6.000	154
	19	191	GRFLAAICQ	6.000	155
	20	157	CLQASTFEF	3.000	156
	HLA B4403				
35	1 2	1 2 2 1 8 2	SNIYLSPRY DEALPSPHT	30.000 24.000	157 158
	3	45	GEDAELGRW	18.000	159
	4	136	YDIALVKLS	11.250	160
	5	170	DCWVTGWGY	9.000	161
40	6	243	ACNKNGLWY	6.000	162
	7	163	FEFENRTDC	6.000	163
	8	88	SDLSDPSGW	6.000	164
	9 1 0	79 278	SDLSDPSGW TAAHCFETY FEWIQKLMA	6.000 6.000	165 166

	11	192	QEVQVAIIN	5.400	167
	12	92	DPSGWMVQF	4.500	168
	13	294	DPSWPLLFF	4.500	169
	1 4	203	MCNHLFLKY	4.500	170
5	15	76	WALTAAHCF	4.500	171
	16	165	FENRTDCWV	4.000	172
	17	215	KDIFGDMVC	2.500	173
	18	48	AELGRWPWQ	2.400	174
	19	272	TNISHHFEW	2.250	175
10	20	227	AQGGKDACF	2.250	176

PCT/US00/28558

Implications

15

20

25

WO 01/27257

That TADG-16 is found at low levels in some normal tissues may not detract from it's potential usefulness as a tumor marker, as there may be an aberrant expression pattern at the translational level that, e.g., allows for detection of TADG-16 in tumor patients but not in healthy patients, and/or activation of the TADG-16 enzyme may be necessary for tumor progression. In the case of the serine protease hepsin, Torres-Rosada et al. demonstrated by down-regulating hepsin that hepsin was required for growth of certain mammalian cells in culture.

The TADG-16 protein sequence is 314 amino acids in length and contains a secretion signal sequence, which suggests that this protein is functional in an extracellular capacity. A proteolytic cleavage site usually associated with protease enzyme activation is present downstream from the secretion signal sequence between

amino acid residues 19 and 20. Moreover, the identified clone contains the necessary amino acids characteristic of a functional serine protease catalytic triad, thereby suggesting that this protein may be functioning in a manner that would promote cellular growth or expansion.

Any patents or publications mentioned in this specification are indicative of the levels of those skilled in the art to which the invention pertains. These patents and publications are herein incorporated by reference to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference.

10

15

20

One skilled in the art will readily appreciate that the present invention is well adapted to carry out the objects and obtain the ends and advantages mentioned, as well as those inherent therein. present examples along with the methods, procedures, The treatments, molecules, and specific compounds described herein are presently representative of preferred embodiments, are exemplary, and are not intended as limitations on the scope of the invention. Changes therein and other uses will occur to those skilled in the art which are encompassed within the spirit of the invention as defined by the scope of the claims.

WHAT IS CLAIMED IS:

DNA encoding a tumor antigen-derived gene (TADG protein, selected from the group consisting of:

- (a) isolated DNA which encodes a TADG-16 protein;
- (b) isolated DNA which hybridizes under high stringency conditions to the isolated DNA of (a) above and which encodes a TADG-16 protein; and
- (c) isolated DNA differing from the isolated DNAs of (a) and (b) above in codon sequence due to the degeneracy of the genetic code, and which encodes a TADG-16 protein.
- 2. The DNA of claim 1, wherein said DNA has the sequence shown in SEQ ID No. 1.
 - 3. The DNA of claim 1, wherein said TADG-16 protein has the amino acid sequence shown in SEQ ID No. 2.

20

5

4. An oligonucleotide having the nucleotide sequence complementary to a sequence of claim 1.

5. A composition comprising the oligonucleotide according to claim 4 and a physiologically acceptable carrier therefore.

5

- 6. A vector comprising the DNA of claim 1 and regulatory elements necessary for expression of said DNA in a cell.
- 7. The vector of claim 6, wherein said DNA encodes a TADG-16 protein having the amino acid sequence shown in SEQ ID No.
- 15 8. The vector of claim 6, wherein said DNA is positioned in reverse orientation relative to said regulatory elements such that TADG-16 antisense mRNA is produced.
 - 9. A host cell transfected with the vector of claim 6 said vector expressing a TADG-16 protein.

10. The host cell of claim 9, wherein said cell is selected from the group consisting of bacterial cells, mammalian cells, plant cells and insect cells.

5

- 11. The host cell of claim 10, wherein said bacterial cell is E. coli.
- 10 12. Isolated and purified TADG-16 protein coded for by

 DNA selected from the group consisting of:
 - (a) isolated DNA which encodes a TADG-16 protein;
 - (b) isolated DNA which hybridizes under high stringency conditions to isolated DNA of (a) above and which encodes a TADG-16 protein; and
 - (c) isolated DNA differing from the isolated DNAs of (a) and (b) above in codon sequence due to the degeneracy of the genetic code, and which encodes a TADG-16 protein.
- 13. The TADG-16 protein of claim 12, wherein said 20 protein has the amino acid sequence shown in SEQ ID No. 2.

14. An antibody, wherein said antibody is specific for TADG-16 protein or a fragment thereof.

- 5 15. A method for detecting TADG-16 mRNA in a sample, comprising the steps of:
 - (a) contacting a sample with a probe, wherein said probe is specific for TADG-16; and
- (b) detecting binding of said probe to TADG-16 mRNA in said sample.
 - 16. The method of claim 15, wherein said sample is a biological sample.

15

17. The method of claim 16, wherein said biological sample is from an individual.

20

18. The method of claim 17, wherein said individual is suspected of having cancer.

19. A kit for detecting TADG-16 mRNA, comprising:

an oligonucleotide probe, wherein said probe is specific for TADG-16.

5

20. The kit of claim 19, further comprising: a label with which to label said probe; and means for detecting said label.

10

- 21. A method of detecting TADG-16 protein in a sample, comprising the steps of:
- (a) contacting a sample with an antibody, wherein said antibody is specific for TADG-16 or a fragment thereof; and
- (b) detecting binding of said antibody to TADG-16 protein in said sample.
- 22. The method of claim 21, wherein said sample is a 20 biological sample.

23. The method of claim 22, wherein said biological sample is from an individual.

- 5 24. The method of claim 23, wherein said individual is suspected of having cancer.
- 25. A kit for detecting TADG-16 protein, comprising:

 an antibody, wherein said antibody is specific for TADG-16

 protein or a fragment thereof.
 - 26. The kit of claim 25, further comprising: means to detect said antibody.

- 27. A method of inhibiting endogenous expression of TADG-16 in a cell, comprising the step of:
- 20 (a) introducing the vector of claim 8 into a cell, wherein expression of said vector produces TADG-16 antisense mRNA in said cell, wherein said TADG-16 antisense mRNA hybridizes to endogenous

TADG-16 mRNA, thereby inhibiting endogenous expression of TADG-16 in said cell.

28. A method of inhibiting a TADG-16 protein in a cell, comprising the step of:

5

introducing an antibody into a cell, wherein said antibody is specific for a TADG-16 protein or a fragment thereof, wherein binding of said antibody to said TADG-16 protein inhibits said TADG-10 protein.

- 29. A method of treating a neoplastic state individual in need of such treatment, comprising the step o f effective 15 administering to said individual an dose of the oligonucleotide of claim 4.
- 30. The method of claim 29, wherein said neoplastic state is selected from the group consisting of ovarian cancer, breast cancer, lung cancer, colon cancer and prostate cancer.

31. A method of vaccinating an individual against TADG-16, comprising the steps of:

inoculating an individual with a TADG-16 protein or fragment thereof, wherein said TADG-16 protein or fragment thereof lack TADG-16 protease activity, wherein said inoculation with said TADG-16 protein or fragment thereof elicits an immune response in said individual, thereby vaccinating said individual against TADG-16.

- fragment is selected from the group consisting of a 9-residue fragment up to a 20-residue fragment.
- 15 33. The method of claim 32, wherein said 9-residue fragment is selected from the group consisting of SEQ ID Nos. 17, 18, 19, 77, 78, 79, 80, 97, 98, 99, 137, 138, 139, 140 and 141.
- 20 34. The method of claim 31, wherein said individual has cancer, is suspected of having cancer or is at risk of getting cancer.

35. An immunogenic composition, comprising an immunogenic fragment of a TADG-16 protein and an adjuvant.

- 5 36. The immunogenic composition of claim 35, wherein said fragment is selected from the group consisting of a 9-residue fragment up to a 20-residue fragment.
- 37. The immunogenic composition of claim 36, wherein said 9-residue fragment is selected from the group consisting of SEQ ID Nos. 17, 18, 19, 77, 78, 79, 80, 97, 98, 99, 137, 138, 139, 140 and 141.

- 38. A method of diagnosing cancer in an individual, comprising the steps of:
 - (a) obtaining a biological sample from an individual;
- (b) detecting TADG-16 in said sample, wherein the presence of TADG-16 in said sample is indicative of the presence of carcinoma in said individual, wherein the absence of TADG-16 in said sample is indicative of the absence of carcinoma in said individual.

39. The method of claim 38, wherein said biological sample is selected from the group consisting of blood, urine, saliva, tears, interstitial

- 40. The method of claim 38, wherein said detection of said TADG-16 is by means selected from the group consisting of Northern blot, Western blot, PCR, dot blot, ELIZA sandwich assay, radioimmunoassay, DNA array chips and flow cytometry of tumor cells, wherein said tumor cells are labeled.
- 41. The method of claim 38, wherein said carcinoma is selected from the group consisting of ovarian, breast, lung, colon, prostate and other in which TADG-16 is overexpressed.
- 42. A method of screening for compounds that inhibit 20 TADG-16, comprising the steps of:
 - (a) contacting a sample with a compound, wherein said sample comprises TADG-16 protein; and

(b) assaying for TADG-16 protease activity, wherein a decrease in said TADG-16 protease activity in the presence of said compound relative to TADG-16 protease activity in the absence of said compound is indicative of a compound that inhibits TADG-16.

- 43. A method of targeted therapy to an individual, comprising the step of:
- administering a compound to an individual, wherein said to compound has a targeting moiety and a therapeutic moiety, wherein said targeting moiety is specific for TADG-16.
- 44. The method of claim 43, wherein said targeting moiety is selected from the group consisting of an antibody specific for TADG-16 and a ligand that binds TADG-16 or a ligand binding domain thereof.
- 20 45. The method of claim 43, wherein said therapeutic moiety is selected from the group consisting of a radioisotope, a toxin, a chemotherapeutic agent, an immune stimulant and a cytotoxic agent.

46. The method of claim 43, wherein said individual suffers from a cancer selected from the group consisting of ovarian, lung, prostate, colon and others in which TADG-16 is overexpressed.

PCT/US00/28558 WO 01/27257

					50	
Prom	1					
Tryl						
Scce					**********	
Heps	XXXXMAQKEG	GRTVPCCSRP		LLLTAIGAAS	WAIVAVLLKS	
Tadg16	~~~~~~~		~~~~~~~			
	51				100	
Prom			~~~~~~	~~~~~~		
Tryl	~~~~~~					
Scce	~~~~~~~	~~~~~			~~~~~~~	
Heps	DQEPLYPVQV	SSADARLMVF		CSSRSNARVA	GLSCEEMGFL	
Tadg16		~~~~~	~~~~~~~			
	101			•	150	
Prom		~~~~~~	~~~~~~	~~~~~~~	~~MKKLMVVL	
Tryl		~~~~~~~				
Scce		~~~~~~				
Heps	RALTHSELDV	RTAGANGTSG	FFCVDEGRLP	HTQRLLEVIS	VCDCPRGREL	
Tadg16	~~~~~~~	~~~~~~		~MGARGALLL	ALLLARAGUR	
	151				200	
Prom	ST.TAAAWA	.EEQNKLVHG	GPCDKTSHPY	QAALYTSGHL	LCGGVLIHPL	
Tryl	TEVALALAAP	FDDDDDKIVGG	YNCEENSVPY	QVSL.NSGYH	FCGGSLINEQ	
Scce	TSTATETAGE	FAOGDKIIDG	APCARGSHPW	QVALLSGNQL	HCGGVLVNER	
Heps	AAICQDCGRR	KLPVDRIVGG	RDTSLGRWPW	QVSLRYDGAH	LCGGSLLSGD	
Tadg16	KPTIRGPCGR	RVITSRIVGG	EDAELGRWPW	OGSTKTMD3H	ACGASTIDUK	
	201				250	
Prom	MULTABHCKK	PNLQV	.FLGKHNLRQ	RESS.QEQSS	VVRAVIHPDY	
Tryl	MANGACACAK	SRIOV	RLGEHNIEV	LEGN. EQFIN	AAKIIKHPQI	
Scce	WALL AND A CKM	NEYTV	HLGSDTLGD	RRAQRIK	ASKSEKREGE	
Heps	WVLTAAHCFP	ERNRVLSR	WRVFAGAVAQ	ASPH.GLQLG	VTDVEVSNIY	
Tadg1 <u>6</u>	WALTAAHCFE	TYSDLSDPSG	MWAGE GÖTT2	KEST MSTOVI	11111111111111	
	251				300	
Prom	DAAG	HDQDIMLLRL	ARPAKLSELI	QPLPLERDCS	ANTTSCHI	
Tryl	חסצייי	T NNDTMLTKT.	SSRAVINARV	STISLPTAPP	A. TGIRCLI	
Scce	ፍጥ∩ጥ	HUNDI.MI.VKI.	NSOARLSSMV	KKVRLPSRCE	P. PGITCIV	
Heps	LPFRDPNSEE	NSNDIALVHL YDIALVKL	SSPLPLTEII	OPTOLOASTE	EFENRTDCWV	
Tadg16	LSPRYLGNSP	YDIALVKL	SAPVITIMI	Q: I CDQ:D::		
	301				350	
Prom	T CUICION D	G.DFPDTIQC	AYIHLVSREE	CEHA. YPGQ	ITONMLCAGD	
Tryl	COLLCHERCCC	7 DVDDT10C	T.DAPVI.SOAK	CLASIPGA	TISHMECAGE	
Scce	SGWGTTTSPD	V.TFPSDLMC	VDVKLISPQD	CYKVIKDL	TKPKMFCAGY	
Heps	TGWGNTQYYG	Q.Q.AGVLQE ALPSPHTLQE	VOVATINNSM	CNHL. FLKYS	FRKDIFGD	
Tadg16	TGWGYIKEDE	ALPSENILLOR	VQVIIII	•••••		
	351				400	
Prom		DSGGPLVCGD	HLR	.GLVSWGNIP	CGSKEKPGVY	
Tryl	TRECVOCECOE	DSCCPVVCNG	OLO	.GVVSWGD.G	CWOVINGAT	
Scce	PDSKKNACNG	DSGGPLVCRG DSGGPFVCED	TLQ	CGIVSWGT G	CALAOKPGVY	
	PEGGIDACQG	DSGGPLACN.	KNGLWYO	TGVVSWG.VG	CGRPNRPGVY	
Tadg16	MG	Dagge Bross.				
	401				443 .	
~	MATTER VENISTE	QKTIQAK~~~		******	(SEQ II	D NO: 3)
m1	MINITUNIVATION T	ENTTA AMS	~~~~~~~	~~~~~~~	~~~ (SEO I)	D NO: 4)
C	TOUCKETEUIT	NOTMEKHR	~~~~~~~~	~~~~~~~	~~~ (SEQ 1)	וכ:טאו כ
	TKVSDFREWI	FQAIKTHSEA	SGMVTQL~~~	EDITMAT DIT	GPV (SEQ II	NO: 0)
Tadg16	TNISHHEEWI	OKTWW626W2	Fig. 1	£ EDTMWNETT	C1+ (DD2 11	

TGGGCACTCACGGCGCGCACTGCTTTGAAACGTATAGTGACCTTAGTGATCCCTCCGGG WALTAAHCFETYSDLSDPSG-TGGATGGTCCAGTTTGGCCAGCTGACTTCCATGCCATCCTTCTGGAGCCTGCAGGCCTAC 60 W M V Q F G Q L T S M P S F W S L Q A Y TACACCCGTTACTTCGTATCGAATATCTATCTGAGCCCTCGCTACCTGGGGAATTCACCC 120 Y T R Y F V S N I Y L S P R Y L G N S P $\mathtt{TAT}\underline{G}\mathtt{ACATTGCCTTGGTGAAGCTGTCTGCACCTACACTAAACACATCCAGCCC}$ 180 YDIALVKLSAPVTYTKHIQP ATCTGTCTCCAGGCCTCCACATTTGAGTTTGAGAACCGGACAGACTGCTGGGTGACTGGC 240 I C L Q A S T F E F E N R T D C W V T G TGGGGGTACATCAAAGAGGATGAGGCACTGCCATCTCCCCACACCCTCCAGGAAGTTCAG 300 W G Y I K E D E A L P S P H T L Q E V Q GTCGCCATCATAAACAACTCTATGTGCAACCACCTCTTCCTCAAGTACAGTTTCCGCAAG 360 V A I I N N S M C N H L F L K Y S F R K GACATCTTTGGAGACATGGTTTGTGCTGGCAATGCCCAAGGCGGGAAGGATGCCTGCTTC 420 DIFGDMVCAGNAQGGKDACF-GGTGACTCAGGTGGACCC (SEQ ID NO: 177) G D S G P (SEQ ID NO: 178) 480

Fig. 3A

1 TTTTTTTT TTGAAGAATG CCCTGCAAGG CATCAACTGG AATGTGTTTA

51 TTACCAAACA AGACAGAAGA GAACCAGGGC CTGACTTGGC AGTGGCCCAG

101 GCTGCATGGG CTCAGGTAGG CTCAGACCGG CCCCAGGAGT GGGAGAGCCC

151 AGAGAAGAGG GAAAAAGAGT AGTGGCCAGG AGGGGTCTGG CTGGGACATG

201 CCACTCTGGG CCATCAGCTT CTGGATCCAC TCAAAGTGGT GGCTGATATT

251 GGTGTAGACA CCGGGCCGAT TGGGCGACCA CAGCCCACTC CCCAGCTCAC

301 GACTCCAATC TGATACCACA GTCCATTCTT GTTACAGGCC AAGGGTCCAC

351 CTGAGTCACC GAAGCAGGCA TCCTTCCCGC ACTTGGGCAT TGCCAGCACA

401 AACCATGTCT CCAAAGATGT CCTTGCGGAA ACTGTACTTG AGGAAGAGGT

451 GGTTGCACAT AGAGTTGTTT ATGATGGCGA ACTGAACTTC CTGGAGGGTG

(SEO ID NO: 179)

Fig. 3B

M G A R G A L L L A L L L A R A G L R 121 AAGCCGGAGTCGCAGGAGGGGGGGCGCGTTATCAGGACCATGCGGCCGACGGGTCATCACG K P E S Q E A A P L S G P C G R R V I T 181 TCGCGCATCGTGGGTGGAGAGGACGCCGAACTCGGGCGTTGGCCGTGGCAGGGGAGCCTG S R I V G G E D A E L G R W P W Q G S L 241 CGCCTGTGGGATTCCCACGTATGCGGAGTGAGCCTGCTCAGCCACCGCTGGGCACTCACG R L W D S H V C G V S L L S H R W A L T 301 GCGGCGACTGCTTTGAAACGTATAGTGACCTTAGTGATCCCTCCGGGTGGATGGTCCAG E A A (H) C F E T Y S D L S D P S G W M V Q 361 TTTGGCCAGCTGACTTCCATGCCATCCTTCTGGAGCCTGCAGGCCTACTACACCCGTTAC F G Q L T S M P S F W S L Q A Y Y T R Y 421 TTCGTATCGAATATCTATCTGAGCCCTCTCTCTGGAGCCTGCAGGCCTACTACACCCGTTAC F V S N I Y L S P R Y L G N S P Y (D) I A 481 TTGGTGAAGCTGTCTGCACCTTACCTACACTAAACACATCCAGCCCATCTGTCTCCAG L V K L S A P V T Y T K H I Q P I C L Q 541 GCCTCCACATTTGAGTTTGAGAACCGGACAGACTGCTGGGGTGAATCACC A S T F E F E N R T D C W V T G W G Y I 661 AAGAAGCTGTAGCCATCCCCTCACCCTACACTAGAGAATTCAGGCTGGGGGTACATC A S T F E F E N R T D C W V T G W G Y I 661 AAGAACTCTATGGCAACCACCTCTCCCCACACCCTCCAGGAAGTTCAGGCCCATCTTTGGA N N S M C N H L F L K Y S F R K D I F G 721 GACATGGTTTGGCTGGCAATGCCCAAGGCGGGAAGGATTCCGCCAACCATCTAGGT CD M V C A G N A Q G G K D A C F G D (S) G 781 GGACCTTGGCCTGTAACAAGAAGAGGCGGGAAGGATGCCTGGAGCCTGCACCACCTTTGGG AGGACTGTTGGCTGAACAAGAAGAGAGGCGGGAAGGATGCCTGGAGCTGGACTGGGGA 641 GTGGGCTTTGGCTGGCAATGCCCAAGGCGGGGAAGGATGCCTGGAGTGGACTGGGGA 781 GGACCTTGGCCTGAACAAGAAGAAGAGGCGGGAAGGATGCCTGGTTGAGCTGGGGA 782 GACATGGTTTGTGCTGCCCAACCCCACCGTGTGTACCACAATATCAGCCACCACCTTTTGGA N N S M C N H L F L K Y S F R K D I F G 841 GTGGGCTTTGGCCGCAATGCCCCAAGGCGGGAAGGATGCCTGGAGCCTGGGGA 642 L A C N K N G L W Y I N I S H H F E 961 TGGATCCAGAAGCTGATGGCCCAGAGTGGCCTACCACCACCACCTTTGAG V G C G R P N R P G V Y T N I S H H F E 961 TGGATCCAGAAGCTGATGGCCCAGAGTGGCCACCACCTCTTGGCGCAA W I Q K L M A Q S G M S Q P D P S W P L 961 CTCTTTTCCCTCTTCTCTGGGCCCAACTCCCACCACCTCTTGGGCCGGCTTCTTGGTCTTGCTTTGTTTG	1	. GGGGCGCCCGGGCCGGGGGGGGGGGGGGGGGGGGGGG																				
121 AAGCCGGAGTCGCAGGAGGCGGCGCGTTATCAGGACCATGCGGCCGACGGGTCATCACG K P E S Q E A A P L S G P C G R R V I T 181 TCGCGCATCGTGGGTGGAGGAGGACGCCGAACTCGGGCGTTGGCCGTGGCAGGGGAGCCTG S R I V G G E D A E L G R W P W Q G S L 241 CGCCTGTGGGATTCCCACGTATGCGGAGTGAGCCTGCTCAGCCACCGCTGGGCATGGCCACG R L W D S H V C G V S L L S H R W A L T 301 GCGGCGCACTGCTTTGAAACGTATAGTGACCTTAGTGATCCCTCCGGGTGGATGGTCCAC E A A (H) C F E T Y S D L S D P S G W M V Q 361 TTTGGCCAGCTGACTTCCATGCCATCCTTCTGGAGCCTGCAGGCCTACTACACCCGTTAC F G Q L T S M P S F W S L Q A Y Y T R Y 421 TTCGTATCGAATATCTATCTGAGCCCTCGCTACCTGGGGAATTCACCCCTATGACATTGCC F V S N I Y L S P R Y L G N S P Y D I A 481 TTGGTGAAGCTGTCTGCACCTGCTACCACACACACACACCCCATCTGTCTCCAG L V K L S A P V T Y T K H I Q P I C L Q 541 GCCTCCACATTGAGTTTGAGAACCGGACAGACTGCTGGGTGACTGGCTGG	01	<u> </u>	دید M	ت <u>ابات</u>	۵۰۰	CGC	000	: A	CGC T.	T.	I GC	Z A	CGC T	T.	IGC L	A.	O I C	2	3 - A	G	L	R
K			M	G				•	. 4	- 4		-			-		•	•	•	_	_	
K	121	ΔΔ	acc	-66	АСТ	CGC	AGG	AGG	CGG	CGC	CGT	TAT	CAG	GAC	CAT	GCG	GCC	GAC	:GG	GT	CAT	CACG
181 TCGCGCATCGTGGGGGAAGGACGCCGAACTCGGGCGTTGGCCGGGGAAGCCTG S R I V G G E D A E L G R W P W Q G S L 241 CGCCTGTGGGATTCCCACGTATGCCGAAGTGAGCCTGCTCAGCCACCGCTGGGCACTCACG R L W D S H V C G V S L L S H R W A L T 301 GCGCCGCACTGCTTTGAAACGTATAGTGACCTTAGTGATCCCTCCGGGTGGATGGTCCAG E A A (H) C F E T Y S D L S D P S G W M V Q 361 TTTGGCCAGCTGACTTCCATGCCATCCTTCTGGAGCCTGCAGGCCTACTACACCCCGTTAC F G Q L T S M P S F W S L Q A Y Y T R Y 421 TTCGTATCGAATATCTATCTGAGCCCTCGCTACCTGGGGAATTCACCCCGTTAC F V S N I Y L S P R Y L G N S P Y D I A 481 TTGGTGAAGCTGTCTGCACCTGCACCTACACTAAACACATCCAGCCCATCTGTCTCCAG L V K L S A P V T Y T K H I Q P I C L Q 541 GCCTCCACATTTGAGTTTGAGAACCGGACAGACTGCTGGGTGACTGGCTGG					s	0	E	A	·A	P	L	s	G	P	C	G	R	. F	₹	V	I	T
S R I V G G E D A E L G R W P W Q G S L 241 CGCCTGTGGGATTCCCACGTATGCGGAGTGAGCCTGCCACCGCTGGGCACTCACG R L W D S H V C G V S L L S H R W A L T 301 GCGGCGCACTGCTTTGAAACGTATAGTGACCTTAGTGATCCCTCCGGGTGGATGGTCCAG A A (H) C F E T Y S D L S D P S G W M V Q 361 TTTGGCCAGCTGACTTCCATGCCATCCTTCTGGAGCCTGCAGGCCTACTACACCCGTTAC F G Q L T S M P S F W S L Q A Y Y T R Y 421 TTCGTATCGAATATCTATCTGAGCCCTCGCTACCTGGGGAATTCACCCCTATGACATTGCC F V S N I Y L S P R Y L G N S P Y (D) I A 481 TTGGTGAAGCTGTCTGCACCTGTCACCTACACTAAACACATCCAGCCCATCTGTCTCCAG L V K L S A P V T Y T K H I Q P I C L Q 541 GCCTCCACATTTGAGTTTGAGAACCGGACAGACTGCTGGGTGAAGTTCAGGCCGTACATC A S T F E F F E N R T D C W V T G W G Y I 601 AAAGAAGGAATGAGGCACTGCCATCCCCCACACCCTCCAGGAAGTTCAGGTCGCCATCATA K E D E A L P S P H T L Q E V Q V A I I 661 AACAACTCTATGTGCAACCACCTCTTCCTCAAGTACAGTTCCGCAAGGACATCTTTGGA N N S M C N H L F L K Y S F R K D I F G 721 GACATGGTTTGGCAACCACCTCTTCCTCAAGGAAGATTCCGCAAGGACATCTTTGGA N N S M C N H L F L K Y S F R K D I F G 748 GGACCCTTGGCCTGGCAATGCCCAAGGCGGGAAGGATGCCTGCTTCCGGTGACTCAGGT D M V C A G N A Q G G K D A C F G D (S) G 759 GACATGGTTTGTGCTAACAAGAATGGACTGTGTGTATCAGATTGGAGTCGTGAGCTGGGGA 841 GTGGGCTGTGGCCTGTAACAAGAATGGACTGTGTGTATCAGATTGAGTCGCACCACCTTTTGAG V G C G R P N R P G V Y T N I S H H F E 961 TGGATCCAGAAGCTGATGGCCCAGAGTGGCCTGCAGCCAGACCCCTCCTGGCCGCAA W I Q K L M A Q S G M S Q P D P S ,W P L 961 CTCTTTTTCCCTCTTCTCTCTGGGCTTCCCCACCTCCTGGGCCGGTCTGAGCCTACCTGAGC L F F P L L W A L P L L G P V * (SEQ ID NO: 2)			_	_	_	_																
241 CGCCTGTGGGATTCCCACGTATGCGGAGTGAGCCTGCTCAGCCACCGCTGGGCACTCACG R L W D S H V C G V S L L S H R W A L T 301 GCGGCGCACTGCTTTGAAACGTATAGTGACCTTAGTGATCCCTCCGGGTGGATGGTCCAG E A A (H) C F E T Y S D L S D P S G W M V Q 361 TTTGGCCAGCTGACTTCCATGCCATCCTTCTGGAGCCTGCAGGCCTACTACACCCCGTTAC F G Q L T S M P S F W S L Q A Y Y T R Y 421 TTCGTATCGAATATCTATCTGAGCCCTCGCTACCTGGGGAATTCACCCCTATCACACTTGCC F V S N I Y L S P R Y L G N S P Y D I A 481 TTGGTGAGCTGTCGCACCTGCCACCTTACCTGGGGAATTCACCCCATCTGCCAG L V K L S A P V T Y T K H I Q P I C L Q 541 GCCTCCACATTTGAGTTGAGAACCGGACAGACTGCTGGGTGAACTCAGGGGGTACATC A S T F E F E N R T D C W V T G W G Y I 661 AACAACTCTATGTGCAACCACTCTCCCCACACCCTCCAGGAAGTTCAGGTCGCCATCATA K E D E A L P S P H T L Q E V Q V A I I 661 AACAACTCTATGTGCAACCACCTCTTCCCCACAGCCCTCCTGGGGGAAGTTCAGGTCGCCATCATTA C E D E A L P S P H T L Q E V Q V A I I 661 AACAACTCTATGTGCAACCACCTCTTCCCCACAGGAAGTTCCGCAAGGACATCTTTGGA N N S M C N H L F L K Y S F R K D I F G 721 GACATGGTTTGTGCTAGCAATGCCCAAGGCGGAAGGATGCCTGCTTCGGTGAGCTCAGGT D M V C A G N A Q G G K D A C F G D (S) G 781 GGACCCTTGGCCTGTAACAAGAATGGACTGTGTGTATCAGATTGGAGTCTGGGGGAA 6 P L A C N K N G L W Y Q I G V V S W G 841 GTGGGCTGTGTCGGCCCAATGGCCCAAGGCGGGAAGGATGCCTTCGGTGAGCTGGGAA 6 P L A C N K N G L W Y Q I G V V S W G 841 GTGGGCTGTGGCCCCAATGGCCCCAGGCCGGGTGTCTACACCAATATCAGCCACCACTTTGAG V G C G R P N R P G V Y T N I S H H F E 961 TGGATCCAGAAGCTGATGGCCCAGAGTGGCCTGCTCCCAGCCCAGCCCCTCCTGGCCGCTA W I Q K L M A Q S G M S Q P D P S W P L 961 CTCTTTTTCCCTCTCTCTCTGGGCTCCCCCCCCCCCCC	181	TC	GC	GCA	TCG	TGG	GTG	GAG	AGG.	ACG	CCG.	AAC	TCG	GGC	GTT(GGC	CGT	GGC	AG	GG	GAC	CCTG
R L W D S H V C G V S L L S H R W A L T 301 GCGGCGCACTGCTTTGAAACGTATAGTGACCTTAGTGATCCCTCCGGGTGGATGGTCCAG		S	R	I	. v	G	G	Ε	D	A	Ε	L	G	R	W	P	W	· C)	G	S	L
R L W D S H V C G V S L L S H R W A L T 301 GCGGCGCACTGCTTTGAAACGTATAGTGACCTTAGTGATCCCTCCGGGTGGATGGTCCAG						. •																
301 GCGGCGACTGCTTTGAAACGTATAGTGACCTTAGTGATCCCTCCGGGTGGATGGTCCAG 2	241																					
A A (H) C F E T Y S D L S D P S G W M V Q 361 TTTGGCCAGCTGACTTCCATGCCATCCTTCTGGAGCCTGCAGGCCTACTACACCCGTTAC F G Q L T S M P S F W S L Q A Y Y T R Y 421 TTCGTATCGAATATCTATCTGAGCCCTCGCTACCTGGGGAATTCACCCCTATGACATTGCC F V S N I Y L S P R Y L G N S P Y D I A 481 TTGGTGAAGCTGTCTGCACCTGCACCTACACTAAACACATCCAGCCCATCTGTCTCCAG L V K L S A P V T Y T K H I Q P I C L Q 541 GCCTCCACATTTGAGTTTGAGAACCGGACAGACTGCTGGGTGACTGGCTGG		R	L	W	D	S	Н	V	C	G	V	S	L	L	S	H	R	W		<u> </u>	L	<u> </u>
A A (H) C F E T Y S D L S D P S G W M V Q 361 TTTGGCCAGCTGACTTCCATGCCATCCTTCTGGAGCCTGCAGGCCTACTACACCCGTTAC F G Q L T S M P S F W S L Q A Y Y T R Y 421 TTCGTATCGAATATCTATCTGAGCCCTCGCTACCTGGGGAATTCACCCCTATGACATTGCC F V S N I Y L S P R Y L G N S P Y D I A 481 TTGGTGAAGCTGTCTGCACCTGCACCTACACTAAACACATCCAGCCCATCTGTCTCCAG L V K L S A P V T Y T K H I Q P I C L Q 541 GCCTCCACATTTGAGTTTGAGAACCGGACAGACTGCTGGGTGACTGGCTGG																						
361 TTTGGCCAGCTGACTTCCATGCCATCCTTCTGGAGCCTGCAGGCCTACTACACCCGTTAC F G Q L T S M P S F W S L Q A Y Y T R Y 421 TTCGTATCGAATATCTATCTGAGCCCTCGCTACCTGGGGAATTCACCCCTATGACATTGCC F V S N I Y L S P R Y L G N S P Y D I A 481 TTGGTGAAGCTGTCTGCACCTGTCACCTACACTAAACACATCCAGCCCATCTGTCTCCAG L V K L S A P V T Y T K H I Q P I C L Q 541 GCCTCCACATTTGAGTTTGAGAACCGGACAGACTGCTGGGTGACTGGCTGG	301	GC	GGC	GC	ACTO	GCT'	ITG/	AAA	CGT	ATAC	GTG/	ACC'	TTA(STG	ATC	CCT	CCG	GGT	GG			
F G Q L T S M P S F W S L Q A Y Y T R Y 421 TTCGTATCGAATATCTATCTGAGCCCTCGCTACCTGGGGAATTCACCCTATGACATTGCC F V S N I Y L S P R Y L G N S P Y D I A 481 TTGGTGAAGCTGTCTGCACCTGTCACCTACACTAAACACTCCAGCCCATCTGTCTCCAG L V K L S A P V T Y T K H I Q P I C L Q 541 GCCTCCACATTTGAGTTTGAGAACCGGACAGACTGCTGGGTGACTGGCTGG	÷	<u>A</u>	_ <u>A</u> _	\mathcal{L}_{H}	<u>) c</u>	F	E	T	Y	5	D	L	S	D	P	5	G	W		M	٧	Q
F G Q L T S M P S F W S L Q A Y Y T R Y 421 TTCGTATCGAATATCTATCTGAGCCCTCGCTACCTGGGGAATTCACCCTATGACATTGCC F V S N I Y L S P R Y L G N S P Y D I A 481 TTGGTGAAGCTGTCTGCACCTGTCACCTACACTAAACACTCCAGCCCATCTGTCTCCAG L V K L S A P V T Y T K H I Q P I C L Q 541 GCCTCCACATTTGAGTTTGAGAACCGGACAGACTGCTGGGTGACTGGCTGG	26.									- n m c		n ~ m /	- C B /				-CT	л <i>(</i> -т	70	n ~ ~		ምምአ ር
TTCGTATCGAATATCTATCTGAGCCCTCGCTACCTGGGGAATTCACCCTATGACATTGCC F V S N I Y L S P R Y L G N S P Y D I A 481 TTGGTGAAGCTGTCTGCACCTGTCACCTACACTAAACACATCCAGCCCATCTGTCTCCAG L V K L S A P V T Y T K H I Q P I C L Q 541 GCCTCCACATTTGAGTTTGAGAACCGGACAGACTGCTGGGTGACTGGCTGG	361		TGG		AGC.	rga(LTIC	JCAT	rGCC	ATC		re re	الاياد م	ا ساد		100(7	- L L .	MC I	AC.	r r	ی ے م	V
F V S N I Y L S P R Y L G N S P Y (D) I A 481 TTGGTGAAGCTGTCTGCACCTGTCACCTACACTAAACACATCCAGCCCATCTGTCTCCAG L V K L S A P V T Y T K H I Q P I C L Q 541 GCCTCCACATTTGAGTTTGAGAACCGGACAGACTGCTGGGTGACTGGGTGGG		r	G	Q	ъ	1	3	M	•	3	c	W	3	11	Q		•	-	•	_		•
F V S N I Y L S P R Y L G N S P Y (D) I A 481 TTGGTGAAGCTGTCTGCACCTGTCACCTACACTAAACACATCCAGCCCATCTGTCTCCAG L V K L S A P V T Y T K H I Q P I C L Q 541 GCCTCCACATTTGAGTTTGAGAACCGGACAGACTGCTGGGTGACTGGGTGGG	<i>4</i> 2 1	TT	~~т	י א ידי	CAZ	ነ ጥ አ ባ	ר רייז	ייינ	CAC		·TC	י איי		rece	CAE	ነ ጥጥር	יאכנ	СТ	ATO	SAC	:AT	TGCC
481 TTGGTGAAGCTGTCTGCACCTGTCACCTACACTAAACACATCCAGCCCATCTGTCTCCAG L V K L S A P V T Y T K H I Q P I C L Q 541 GCCTCCACATTTGAGTTTGAGAACCGGACAGACTGCTGGGTGACTGGGTGGG	421	E,	-UI	AIC	ม เพ	T.	Y	T.	S	P	R	Y	T.	G	N	``s	P	Y	··	<u> </u>	I	A
L V K L S A P V T Y T K H I Q P I C L Q 541 GCCTCCACATTGAGTTGAGAACCGGACAGACTGCTGGGTGACTGGCTGG		-	٧	3	.,	_	•		J	•	• • • • • • • • • • • • • • • • • • • •	•	~	·	•	_	•	-			_	
L V K L S A P V T Y T K H I Q P I C L Q 541 GCCTCCACATTGAGTTGAGAACCGGACAGACTGCTGGGTGACTGGCTGG	481	TT	зст	GAI	AGCI	GTO	TGC	ACC	TGT	'CAC	CTA	CAC	TAA	ACA	CAT	CCA	\GC(CA	TC	rgī	CT	CCAG
GCCTCCACATTTGAGATTGAGAACCGGACAGACTGCTGGGTGACTGGGGGGTACATC A S T F E F E N R T D C W V T G W G Y I 601 AAAGAGGATGAGGCACTGCCATCTCCCCACACCCTCCAGGAAGTTCAGGTCGCCATCATA K E D E A L P S P H T L Q E V Q V A I I 661 AACAACTCTATGTGCAACCACCTCTTCCTCAAGTACAGTTTCCGCAAGGACATCTTTGGA N N S M C N H L F L K Y S F R K D I F G 721 GACATGGTTTGTGCTGGCAATGCCCAAGGCGGGAAGGATGCCTGCTTCGGTGACTCAGGT D M V C A G N A Q G G K D A C F G D S G 781 GGACCCTTGGCCTGTAACAAGAATGGACTGTGGTATCAGATTGGAGTCGTGAGCTGGGGA G P L A C N K N G L W Y Q I G V V S W G 841 GTGGGCTGTGGTCGGCCCAATCGGCCCGGTGTCTACACCAATATCAGCCACCACTTTGAG V G C G R P N R P G V Y T N I S H H F E 901 TGGATCCAGAAGCTGATGGCCCAGAGTGGCATGCCCAGCCACCACTTTGAG W I Q K L M A Q S G M S Q P D P S W P L 961 CTCTTTTTCCCTCTTCTCTGGGCTCCCCACTCCTGGGGCCGGTCTGAGCCTACCTGAGC L F F P L L W A L P L L G P V * (SEQ ID NO: 2)	701	T.	v	ĸ	L	s	A	P	v	T	Y	Т	K	Н	I	Q	P	I	(3	L	Q
A S T F E F E N R T D C W V T G W G Y I 601 AAAGAGGATGAGGCACTGCCATCTCCCCACACCCTCCAGGAAGTTCAGGTCGCCATCATA K E D E A L P S P H T L Q E V Q V A I I 661 AACAACTCTATGTGCAACCACCTCTTCCTCAAGTACAGTTTCCGCAAGGACATCTTTGGA N N S M C N H L F L K Y S F R K D I F G 721 GACATGGTTTGTGCTGGCAATGCCCAAGGCGGGAAGGATGCCTGCTTCGGTGACTCAGGT D M V C A G N A Q G G K D A C F G D S G 781 GGACCCTTGGCCTGTAACAAGAATGGACTGTGGTATCAGATTGGAGTCGTGAGCTGGGGA G P L A C N K N G L W Y Q I G V V S W G 841 GTGGGCTGTGGTCGGCCCAATCGGCCCGGTGTCTACACCAATATCAGCCACCACTTTGAG V G C G R P N R P G V Y T N I S H H F E 901 TGGATCCAGAAGCTGATGGCCCAGAGTGGCATGTCCCAGCCAG		<u> </u>	<u> </u>	••	_	•		-			-	_			_	_						_
A S T F E F E N R T D C W V T G W G Y I 601 AAAGAGGATGAGGCACTGCCATCTCCCCACACCCTCCAGGAAGTTCAGGTCGCCATCATA K E D E A L P S P H T L Q E V Q V A I I 661 AACAACTCTATGTGCAACCACCTCTTCCTCAAGTACAGTTTCCGCAAGGACATCTTTGGA N N S M C N H L F L K Y S F R K D I F G 721 GACATGGTTTGTGCTGGCAATGCCCAAGGCGGGAAGGATGCCTGCTTCGGTGACTCAGGT D M V C A G N A Q G G K D A C F G D S G 781 GGACCCTTGGCCTGTAACAAGAATGGACTGTGGTATCAGATTGGAGTCGTGAGCTGGGGA G P L A C N K N G L W Y Q I G V V S W G 841 GTGGGCTGTGGTCGGCCCAATCGGCCCGGTGTCTACACCAATATCAGCCACCACTTTGAG V G C G R P N R P G V Y T N I S H H F E 901 TGGATCCAGAAGCTGATGGCCCAGAGTGGCATGTCCCAGCCAG	541	GCC	СТС	CAC	ATI	TGA	GTI	TGA	GAA	CCG	GAC	:AGA	CTC	CTG	GGT	'GAC	TGC	CT	GGC	GG	TA	CATC
AAAGAGGATGAGGCACTGCCATCTCCCCACACCCTCCAGGAAGTTCAGGTCGCCATCATA K E D E A L P S P H T L Q E V Q V A I I AACAACTCTATGTGCAACCACCTCTTCCTCAAGTACAGTTTCCGCAAGGACATCTTTGGA N N S M C N H L F L K Y S F R K D I F G ACATGGTTTGTGCTGGCAATGCCCAAGGCGGGAAGGATGCCTGCTTCGGTGACTCAGGT D M V C A G N A Q G G K D A C F G D S G ASSIGNMENT TO THE CONTROL OF	•	A	s	T	F	Ε	F	Ε	N	R	T	D	С	W	V	T	G	W	C	;	Y	I
K E D E A L P S P H T L Q E V Q V A I I 661 AACAACTCTATGTGCAACCACCTCTTCCTCAAGTACAGTTTCCGCAAGGACATCTTTGGA N N S M C N H L F L K Y S F R K D I F G 721 GACATGGTTTGTGCTGGCAATGCCCAAGGCGGGAAGGATGCCTGCTTCGGTGACTCAGGT D M V C A G N A Q G G K D A C F G D S G 781 GGACCCTTGGCCTGTAACAAGAATGGACTGTGGTATCAGATTGGAGTCGTGAGCTGGGGA G P L A C N K N G L W Y Q I G V V S W G 841 GTGGGCTGTGGTCGGCCCAATCGGCCCGGTGTCTACACCAATATCAGCCACCACTTTGAG V G C G R P N R P G V Y T N I S H H F E 901 TGGATCCAGAAGCTGATGGCCCAGAGTGGCATGTCCCAGCCAG																						
AACAACTCTATGTGCAACCACCTCTTCCTCAAGTACAGTTTCCGCAAGGACATCTTTGGA N N S M C N H L F L K Y S F R K D I F G 721 GACATGGTTTGTGCTGGCAATGCCCAAGGCGGGAAGGATGCCTGCTTCGGTGACTCAGGT D M V C A G N A Q G G K D A C F G D S G 781 GGACCCTTGGCCTGTAACAAGAATGGACTGTGGTATCAGATTGGAGTCGTGAGCTGGGGA G P L A C N K N G L W Y Q I G V V S W G 841 GTGGGCTGTGGTCGGCCCAATCGGCCCGGTGTCTACACCAATATCAGCCACCACTTTGAG V G C G R P N R P G V Y T N I S H H F E 901 TGGATCCAGAAGCTGATGGCCCAGAGTGGCATGTCCCAGCCAG	601	AAA	AGA	GGA	TGA	GGC	ACT	'GCC	ATC	TCC	CCA	CAC	CCT	CCA	.GGA	AGT	TCF	\GG'	rco	CC		
N N S M C N H L F L K Y S F R K D I F G 721 GACATGGTTTGTGCTGGCAATGCCCAAGGCGGGAAGGATGCCTGCTTCGGTGACTCAGGT D M V C A G N A Q G G K D A C F G D S G 781 GGACCCTTGGCCTGTAACAAGAATGGACTGTGGTATCAGATTGGAGTCGTGAGCTGGGGA G P L A C N K N G L W Y Q I G V V S W G 841 GTGGGCTGTGGTCGGCCCAATCGGCCCGGTGTCTACACCAATATCAGCCACCACTTTGAG V G C G R P N R P G V Y T N I S H H F E 901 TGGATCCAGAAGCTGATGGCCCAGAGTGGCATGTCCCAGCCAG		K	Ε	D	Ε	Α	L	P	S	P	Н	T	L	Q	E	V	Q	٧	7	7	I	I
N N S M C N H L F L K Y S F R K D I F G 721 GACATGGTTTGTGCTGGCAATGCCCAAGGCGGGAAGGATGCCTGCTTCGGTGACTCAGGT D M V C A G N A Q G G K D A C F G D S G 781 GGACCCTTGGCCTGTAACAAGAATGGACTGTGGTATCAGATTGGAGTCGTGAGCTGGGGA G P L A C N K N G L W Y Q I G V V S W G 841 GTGGGCTGTGGTCGGCCCAATCGGCCCGGTGTCTACACCAATATCAGCCACCACTTTGAG V G C G R P N R P G V Y T N I S H H F E 901 TGGATCCAGAAGCTGATGGCCCAGAGTGGCATGTCCCAGCCAG																						
721 GACATGGTTTGTGCTGGCAATGCCCAAGGCGGGAAGGATGCCTGCTTCGGTGACTCAGGT D M V C A G N A Q G G K D A C F G D S G 781 GGACCCTTGGCCTGTAACAAGAATGGACTGTGGTATCAGATTGGAGTCGTGAGCTGGGGA G P L A C N K N G L W Y Q I G V V S W G 841 GTGGGCTGTGGTCGGCCCAATCGGCCCGGTGTCTACACCAATATCAGCCACCACTTTGAG V G C G R P N R P G V Y T N I S H H F E 901 TGGATCCAGAAGCTGATGGCCCAGAGTGGCATGTCCCAGCCAG	661				TAT	GTG	CAA	CCA	CCT	CTT	CCT	CAA	GTA	CAG	TTT	CCC	CAA	GG	ACA	TC	TT:	rgga
D M V C A G N A Q G G K D A C F G D (S) G 781 GGACCCTTGGCCTGTAACAAGAATGGACTGTGGTATCAGATTGGAGTCGTGAGCTGGGGA G P L A C N K N G L W Y Q I G V V S W G 841 GTGGGCTGTGGTCGGCCCAATCGGCCCGGTGTCTACACCAATATCAGCCACCACTTTGAG V G C G R P N R P G V Y T N I S H H F E 901 TGGATCCAGAAGCTGATGGCCCAGAGTGGCATGTCCCAGCCAG		N	N	S	M	С	N	Н	L	F	L	K	Y	S	F	R	K	D	1	•	E	G
D M V C A G N A Q G G K D A C F G D (S) G 781 GGACCCTTGGCCTGTAACAAGAATGGACTGTGGTATCAGATTGGAGTCGTGAGCTGGGGA G P L A C N K N G L W Y Q I G V V S W G 841 GTGGGCTGTGGTCGGCCCAATCGGCCCGGTGTCTACACCAATATCAGCCACCACTTTGAG V G C G R P N R P G V Y T N I S H H F E 901 TGGATCCAGAAGCTGATGGCCCAGAGTGGCATGTCCCAGCCAG																		~~	·m~		m ^ 7	. C C M
GGACCCTTGGCCTGTAACAAGAATGGACTGTGGTATCAGATTGGAGTCGTGAGCTGGGGA GPLACNKNGLWYQIGVVSWG GTGGGCTGTGGTCGGCCCAATCGGCCCGGTGTCTACACCAATATCAGCCACCACTTTGAG VGCGRPNRPGVYTNISHHFE TGGATCCAGAAGCTGATGGCCCAGAGTGGCATGTCCCAGCCAG	721	GAC	ATO	GGT	TTG	TGC	TGG	CAA	TGC	CCA	AGG	CGG	GAA	GGA	TGC	CIG	CII	CGC	טונ	AC	3	4001
G P L A C N K N G L W Y Q I G V V S W G 841 GTGGGCTGTGGTCGGCCCAATCGGCCCGGTGTCTACACCAATATCAGCCACCACTTTGAG V G C G R P N R P G V Y T N I S H H F E 901 TGGATCCAGAAGCTGATGGCCCAGAGTGGCATGTCCCAGCCAG		D	M	V	C	A	G	N	A	Q	G	G	ĸ	U	A	C	E	<u> </u>			<u>3</u> /	<u> </u>
G P L A C N K N G L W Y Q I G V V S W G 841 GTGGGCTGTGGTCGGCCCAATCGGCCCGGTGTCTACACCAATATCAGCCACCACTTTGAG V G C G R P N R P G V Y T N I S H H F E 901 TGGATCCAGAAGCTGATGGCCCAGAGTGGCATGTCCCAGCCAG	701	~~.	~~		~~~	~~~	~ n n n	~ n n	C 2 2 2	TCC	» с т	СТС	ርጥ አ	ሞ ር አ	ייזי ע כ	TCC	חכים	cci	מסי	ac'	TCC	CCA
941 GTGGGCTGTGGTCGGCCCAATCGGCCCGGTGTCTACACCAATATCAGCCACCACTTTGAG V G C G R P N R P G V Y T N I S H H F E 901 TGGATCCAGAAGCTGATGGCCCAGAGTGGCATGTCCCAGCCAG	/8T	GGA	CCC	-11	عیای	C16	IAA	CAA	GAA N	166	AC I	GIG	OIW	TCW	GAI	100	401	77	תט. פ	الم	M	C
V G C G R P N R P G V Y T N I S H H F E 901 TGGATCCAGAAGCTGATGGCCCAGAGTGGCATGTCCCAGCCAG		<u> </u>	<u> </u>	T	А	C	N	r	IN	G	ш	W	1	¥	_	G	٧	٧	J		"	•
V G C G R P N R P G V Y T N I S H H F E 901 TGGATCCAGAAGCTGATGGCCCAGAGTGGCATGTCCCAGCCAG	0 4 1	CTC		~~~	TCC	TCG	ccc	יממר	TCG	ecci	ccc	тст	מדח	-20	יממ־	ידעי	CRG	CCA	יככ	AC'	ттт	GAG .
901 TGGATCCAGAAGCTGATGGCCCAGAGTGGCATGTCCCAGCCAG	041	GIG	~	- 10	100	100	B C C	N	יטטי	ם ם	CGG	V	Y	Tr	NI NI	T	S	H	H		F.	F.
W I Q K L M A Q S G M S Q P D P S W P L 961 CTCTTTTTCCCTCTCTCTGGGCCTCTCCCACTCCTGGGGCCGGTCTGAGCCTACCTGAGC L F F P L L W A L P L L G P V * (SEQ ID NO: 2)		٧	G		G	K		.,	••	•	J	•	•	•	••	•	Ū	••	••		•	_
W I Q K L M A Q S G M S Q P D P S W P L 961 CTCTTTTTCCCTCTCTCTGGGCCTCTCCCACTCCTGGGGCCGGTCTGAGCCTACCTGAGC L F F P L L W A L P L L G P V * (SEQ ID NO: 2)	901	ፐርር	አ ፐር	C 2	GAA	GCT	GAT	GGC	CCA	GAG'	rgg	CAT	GTC	CCAC	GCC	AGA	ccc	CTC	CT	GG	CCG	CTA
961 CTCTTTTTCCCTCTCTCGGGCTCTCCCACTCCTGGGGCCGGTCTGAGCCTACCTGAGC L F F P L L W A L P L L G P V * (SEQ ID NO: 2)		พ	T	0	K	L	M	A	0	S	G	M	S	0	P	D	P	้ร	W	1	P	L
L F F P L L W A L P L L G P V * (SEQ ID NO: 2)		••	•	¥	••	_	••	••	*	_	_	•-	_	ж.	-	_	-	_				
L F F P L L W A L P L L G P V * (SEQ ID NO: 2)	961	СТС	ጉ ጥፕ	ידי	ccc	rct'	гст	CTG	GC	CTC	CCC	ACTO	CTC	GGG	CCC	GT	CTG	AGC	CT.	ACC	CTG	AGC
221 CCATCCAGCCTGGGGCCAACTGCCAAGTCAGGCCCTGGTTCTCTTCTTGTCTTGTTTGGTA		_	•	-	•	~				_	-	_	_	-	-	-	,	اشدت	×		-11	· · ,
	121	CCA	ጥርር	יממי	רתי	366	GCC ²	AACI	rgcc	CAAC	STC	AGGG	CCC	rgg1	TC	CTT	CTC	GTC	TT	GT1	rtg	GTA

Fig. 4

Fig. 5

Fig. 6A

Fig. 6B

SEQUENCE LISTING

```
<110> O'Brien, Timothy J.
      Underwood, Lowell
      Shigemasa, Kazushi
<120> Tumor Antigen-Derived Gene 16 (TADG-16): A Novel
      Extracellular Serine Protease and Uses Thereof
<130> D6250PCT
<141> 2000-10-13
<150> US 09/418,527
<151> 1999-10-14
<160> 179
<210>
      1
<211>
      1131
<212> DNA
<213> Homo sapiens
<220>
<223> TADG-16 cDNA sequence
<400> 1
                                                          50
ggggcgcccc gggcccggcg cgagaggagg cagagggggc gtcaggccgc
gggagaggag gccatgggcg cgcgcggggc gctgctgctg gcgctgctgc
                                                         100
                                                         150
tggctcgggc tggactcagg aagccggagt cgcaggaggc ggcgccgtta
tcaggaccat gcggccgacg ggtcatcacg tcgcgcatcg tgggtggaga
                                                         200
                                                         250
ggacgccgaa ctcgggcgtt ggccgtggca ggggagcctg cgcctgtggg
                                                         300
atteccaegt atgeggagtg ageetgetea gecaeegetg ggcaeteaeg
                                                         350
gcggcgcact gctttgaaac gtatagtgac cttagtgatc cctccgggtg
gatggtccag tttggccagc tgacttccat gccatccttc tggagcctgc
                                                         400
aggcctacta cacccgttac ttcgtatcga atatctatct gagccctcgc
                                                         450
tacctgggga attcacccta tgacattgcc ttggtgaagc tgtctgcacc
                                                         500
tgtcacctac actaaacaca tccagcccat ctgtctccag gcctccacat
                                                         550
ttgagtttga gaaccggaca gactgctggg tgactggctg ggggtacatc
                                                         600
                                                         650
aaagaggatg aggcactgcc atctccccac accctccagg aagttcaggt
                                                         700
cqccatcata aacaactcta tgtgcaacca cctcttcctc aagtacagtt
                                                         750
tccqcaaqqa catctttqqa qacatqqttt qtqctgqcaa tgcccaaggc
                                                         800
gggaaggatg cetgettegg tgacteaggt ggaccettgg cetgtaacaa
qaatqqactq tqqtatcaqa ttqqaqtcqt qaqctgggga gtgggctgtg
                                                         850
gteggeecaa teggeeeggt gtetacacca atateageea ceaetttgag
                                                         900
tggatccaga agctgatggc ccagagtggc atgtcccagc cagacccctc
                                                         950
ctggccgcta ctcttttcc ctcttctctg ggctctccca ctcctggggc
                                                        1000
cggtctgagc ctacctgagc ccatgcagcc tggggccaac tgccaagtca
                                                        1050
ggccctggtt ctcttctgtc ttgtttggta ataaacacat tccagttgat
                                                        1100
gccttgcagg gcattcttca aaaaaaaaaa a
                                                        1131
```

<210> 2 <211> 314

```
<212>
       PRT
      Homo sapiens
<213>
<220>
<223>
      TADG-16 protein sequence
<400>
Met Gly Ala Arg Gly Ala Leu Leu Leu Ala Leu Leu Leu Ala Arg
Ala Gly Leu Arg Lys Pro Glu Ser Gln Glu Ala Ala Pro Leu Ser
Gly Pro Cys Gly Arg Arg Val Ile Thr Ser Arg Ile Val Gly Gly
                                      40
Glu Asp Ala Glu Leu Gly Arg Trp Pro Trp Gln Gly Ser Leu Arg
                                      55
                                                          60
Leu Trp Asp Ser His Val Cys Gly Val Ser Leu Leu Ser His Arg
                 65
                                      70
Trp Ala Leu Thr Ala Ala His Cys Phe Glu Thr Tyr Ser Asp Leu
                                     85
                 80
Ser Asp Pro Ser Gly Trp Met Val Gln Phe Gly Gln Leu Thr Ser
                 95
                                     100
Met Pro Ser Phe Trp Ser Leu Gln Ala Tyr Tyr Thr Arg Tyr Phe
                110
                                     115
Val Ser Asn Ile Tyr Leu Ser Pro Arg Tyr Leu Gly Asn Ser Pro
                                     130
                125
Tyr Asp Ile Ala Leu Val Lys Leu Ser Ala Pro Val Thr Tyr Thr
                                    145
                                                         150
                140
Lys His Ile Gln Pro Ile Cys Leu Gln Ala Ser Thr Phe Glu Phe
                                    160
                155
Glu Asn Arg Thr Asp Cys Trp Val Thr Gly Trp Gly Tyr Ile Lys
                170
                                     175
Glu Asp Glu Ala Leu Pro Ser Pro His Thr Leu Gln Glu Val Gln
                                     190
                185
Val Ala Ile Ile Asn Asn Ser Met Cys Asn His Leu Phe Leu Lys
                                     205
                200
Tyr Ser Phe Arg Lys Asp Ile Phe Gly Asp Met Val Cys Ala Gly
                215
                                     220
Asn Ala Gln Gly Gly Lys Asp Ala Cys Phe Gly Asp Ser Gly Gly
                230
                                     235
Pro Leu Ala Cys Asn Lys Asn Gly Leu Trp Tyr Gln Ile Gly Val
                                     250
                245
Val Ser Trp Gly Val Gly Cys Gly Arg Pro Asn Arg Pro Gly Val
                                     265
                260
Tyr Thr Asn Ile Ser His His Phe Glu Trp Ile Gln Lys Leu Met
                                     280
                275
Ala Gln Ser Gly Met Ser Gln Pro Asp Pro Ser Trp Pro Leu Leu
                                    295
Phe Phe Pro Leu Leu Trp Ala Leu Pro Leu Leu Gly Pro Val
                305
<210>
       3
       244
<211>
<212>
       PRT
```

SEQ 2/45

<213> Unknown

```
<220>
       Sequence of Protease M
<223>
<400>
Met Lys Lys Leu Met Val Val Leu Ser Leu Ile Ala Ala Trp
Ala Glu Glu Gln Asn Lys Leu Val His Gly Gly Pro Cys Asp Lys
Thr Ser His Pro Tyr Gln Ala Ala Leu Tyr Thr Ser Gly His Leu
                                                          45
                 35
Leu Cys Gly Gly Val Leu Ile His Pro Leu Trp Val Leu Thr Ala
                                      55
Ala His Cys Lys Lys Pro Asn Leu Gln Val Phe Leu Gly Lys His
                 65
Asn Leu Arg Gln Arg Glu Ser Ser Gln Glu Gln Ser Ser Val Val
                                      85
                 80
Arg Ala Val Ile His Pro Asp Tyr Asp Ala Ala Ser His Asp Gln
                 95
                                     100
Asp Ile Met Leu Leu Arg Leu Ala Arg Pro Ala Lys Leu Ser Glu
                110
                                     115
Leu Ile Gln Pro Leu Pro Leu Glu Arg Asp Cys Ser Ala Asn Thr
                125
                                     130
Thr Ser Cys His Ile Leu Gly Trp Gly Lys Thr Ala Asp Gly Asp
                140
                                    145
Phe Pro Asp Thr Ile Gln Cys Ala Tyr Ile His Leu Val Ser Arg
                155
                                    160
Glu Glu Cys Glu His Ala Tyr Pro Gly Gln Ile Thr Gln Asn Met
                170
                                     175
Leu Cys Ala Gly Asp Glu Lys Tyr Gly Lys Asp Ser Cys Gln Gly
                                     190
Asp Ser Gly Gly Pro Leu Val Cys Gly Asp His Leu Arg Gly Leu
                200
                                     205
Val Ser Trp Gly Asn Ile Pro Cys Gly Ser Lys Glu Lys Pro Gly
                                     220
                215
Val Tyr Thr Asn Val Cys Arg Tyr Thr Asn Trp Ile Gln Lys Thr
                                                         240
                230
                                     235
Ile Gln Ala Lys
<210>
       4
<211>
       247
<212>
       PRT
<213>
       Unknown
<220>
<223>
       Sequence of Trypsinogen
<400>
Met Asn Pro Leu Leu Ile Leu Thr Phe Val Ala Ala Ala Leu Ala
                                      10
Ala Pro Phe Asp Asp Asp Lys Ile Val Gly Gly Tyr Asn Cys
                 20
                                      25
                                                          30
Glu Glu Asn Ser Val Pro Tyr Gln Val Ser Leu Asn Ser Gly Tyr
                 35
                                      40
His Phe Cys Gly Gly Ser Leu Ile Asn Glu Gln Trp Val Val Ser
```

```
Ala Gly His Cys Tyr Lys Ser Arg Ile Gln Val Arg Leu Gly Glu
                 65
His Asn Ile Glu Val Leu Glu Gly Asn Glu Gln Phe Ile Asn Ala
Ala Lys Ile Ile Arg His Pro Gln Tyr Asp Arg Lys Thr Leu Asn
                                     100
                 95
Asn Asp Ile Met Leu Ile Lys Leu Ser Ser Arg Ala Val Ile Asn
                                     115
                110
Ala Arg Val Ser Thr Ile Ser Leu Pro Thr Ala Pro Pro Ala Thr
                                                         135
                                     130
                125
Gly Thr Lys Cys Leu Ile Ser Gly Trp Gly Asn Thr Ala Ser Ser
                                                         150
                140
                                     145
Gly Ala Asp Tyr Pro Asp Glu Leu Gln Cys Leu Asp Ala Pro Val
                155
                                     160
Leu Ser Gln Ala Lys Cys Glu Ala Ser Tyr Pro Gly Lys Ile Thr
                170
                                     175
Ser Asn Met Phe Cys Val Gly Phe Leu Glu Gly Gly Lys Asp Ser
                                     190
                185
Cys Gln Gly Asp Ser Gly Gly Pro Val Val Cys Asn Gly Gln Leu
                200
                                     205
                                                         210
Gln Gly Val Val Ser Trp Gly Asp Gly Cys Ala Gln Lys Asn Lys
                215
                                     220
Pro Gly Val Tyr Thr Lys Val Tyr Asn Tyr Val Lys Trp Ile Lys
                230
                                     235
Asn Thr Ile Ala Ala Asn Ser
                245
<210>
<211>
       253
<212>
       PRT
<213>
       Unknown
<220>
       Sequence of SCCE
<223>
<400>
Met Ala Arg Ser Leu Leu Leu Pro Leu Gln Ile Leu Leu Ser
Leu Ala Leu Glu Thr Ala Gly Glu Glu Ala Gln Gly Asp Lys Ile
Ile Asp Gly Ala Pro Cys Ala Arg Gly Ser His Pro Trp Gln Val
                                                          45
                 35
                                      40
Ala Leu Leu Ser Gly Asn Gln Leu His Cys Gly Gly Val Leu Val
Asn Glu Arg Trp Val Leu Thr Ala Ala His Cys Lys Met Asn Glu
Tyr Thr Val His Leu Gly Ser Asp Thr Leu Gly Asp Arg Ala
                                      85
                 80
Gln Arg Ile Lys Ala Ser Lys Ser Phe Arg His Pro Gly Tyr Ser
                 95
                                     100
Thr Gln Thr His Val Asn Asp Leu Met Leu Val Lys Leu Asn Ser
                110
                                     115
Gln Ala Arg Leu Ser Ser Met Val Lys Lys Val Arg Leu Pro Ser
                125
                                     130
Arg Cys Glu Pro Pro Gly Thr Thr Cys Thr Val Ser Gly Trp Gly
```

145

150

140

```
Thr Thr Thr Ser Pro Asp Val Thr Phe Pro Ser Asp Leu Met Cys
                                     160
                                                          165
                155
Val Asp Val Lys Leu Ile Ser Pro Gln Asp Cys Thr Lys Val Tyr
                                     175
                170
                                                         180
Lys Asp Leu Leu Glu Asn Ser Met Leu Cys Ala Gly Ile Pro Asp
                                     190
                185
Ser Lys Lys Asn Ala Cys Asn Gly Asp Ser Gly Gly Pro Leu Val
                                     205
                200
Cys Arg Gly Thr Leu Gln Gly Leu Val Ser Trp Gly Thr Phe Pro
                215
Cys Gly Gln Pro Asn Asp Pro Gly Val Tyr Thr Gln Val Cys Lys
                230
                                     235
Phe Thr Lys Trp Ile Asn Asp Thr Met Lys Lys His Arg
<210>
       6
<211>
       421
<212>
       PRT
<213>
       Unknown
<220>
<221>
       PEPTIDE
<222>
       1, 2, 3, 4
       Sequence of Hepsin, Xaa = Unknown at 1, 2, 3, 4
<400>
Xaa Xaa Xaa Met Ala Gln Lys Glu Gly Gly Arg Thr Val Pro
Cys Cys Ser Arg Pro Lys Val Ala Ala Leu Thr Ala Gly Thr Leu
                                      25
                 20
Leu Leu Leu Thr Ala Ile Gly Ala Ala Ser Trp Ala Ile Val Ala
                 35
                                      40
Val Leu Leu Arg Ser Asp Gln Glu Pro Leu Tyr Pro Val Gln Val
                 50
                                      55
Ser Ser Ala Asp Ala Arg Leu Met Val Phe Asp Lys Thr Glu Gly
                                      70
Thr Trp Arg Leu Leu Cys Ser Ser Arg Ser Asn Ala Arg Val Ala
Gly Leu Ser Cys Glu Glu Met Gly Phe Leu Arg Ala Leu Thr His
                                     100
Ser Glu Leu Asp Val Arg Thr Ala Gly Ala Asn Gly Thr Ser Gly
                                     115
Phe Phe Cys Val Asp Glu Gly Arg Leu Pro His Thr Gln Arg Leu
                125
                                     130
Leu Glu Val Ile Ser Val Cys Asp Cys Pro Arg Gly Arg Phe Leu
                                     145
                                                          150
                140
Ala Ala Ile Cys Gln Asp Cys Gly Arg Arg Lys Leu Pro Val Asp
                155
                                     160
Arg Ile Val Gly Gly Arg Asp Thr Ser Leu Gly Arg Trp Pro Trp
                                     175
                170
Gln Val Ser Leu Arg Tyr Asp Gly Ala His Leu Cys Gly Gly Ser
                                     190
                185
Leu Leu Ser Gly Asp Trp Val Leu Thr Ala Ala His Cys Phe Pro
                200
                                     205
                                                         210
Glu Arg Asn Arg Val Leu Ser Arg Trp Arg Val Phe Ala Gly Ala
                215
                                     220
```

```
Val Ala Gln Ala Ser Pro His Gly Leu Gln Leu Gly Val Gln Ala
                                     235
Val Val Tyr His Gly Gly Tyr Leu Pro Phe Arg Asp Pro Asn Ser
                245
                                     250
Glu Glu Asn Ser Asn Asp Ile Ala Leu Val His Leu Ser Ser Pro
                260
                                     265
Leu Pro Leu Thr Glu Tyr Ile Gln Pro Val Cys Leu Pro Ala Ala
                                     280
Gly Gln Ala Leu Val Asp Gly Lys Ile Cys Thr Val Thr Gly Trp
                290
                                     295
Gly Asn Thr Gln Tyr Tyr Gly Gln Gln Ala Gly Val Leu Gln Glu
                                                         315
                305
                                    310
Ala Arg Val Pro Ile Ile Ser Asn Asp Val Cys Asn Gly Ala Asp
                320
                                    325
                                                         330
Phe Tyr Gly Asn Gln Ile Lys Pro Lys Met Phe Cys Ala Gly Tyr
                335
                                     340
Pro Glu Gly Gly Ile Asp Ala Cys Gln Gly Asp Ser Gly Pro
                350
                                    355
Phe Val Cys Glu Asp Ser Ile Ser Arg Thr Pro Arg Trp Arg Leu
                365
                                     370
                                                         375
Cys Gly Ile Val Ser Trp Gly Thr Gly Cys Ala Leu Ala Gln Lys
                380
                                     385
Pro Gly Val Tyr Thr Lys Val Ser Asp Phe Arg Glu Trp Ile Phe
                395
                                    400
Gln Ala Ile Lys Thr His Ser Glu Ala Ser Gly Met Val Thr Gln
                                     415
                410
Leu
<210>
<211>
       294
<212>
       PRT
<213>
       Homo sapiens
<220>
       TADG-16 protein sequence
<223>
      7
<400>
Met Gly Ala Arg Gly Ala Leu Leu Leu Ala Leu Leu Leu Ala Arg
Ala Gly Leu Arg Lys Pro Thr Ile Arg Gly Pro Cys Gly Arg Arg
Val Ile Thr Ser Arg Ile Val Gly Glu Asp Ala Glu Leu Gly
                                                          45
Arg Trp Pro Trp Gln Gly Ser Leu Arg Leu Trp Asp Ser His Val
                                     55
Cys Gly Val Ser Leu Leu Ser His Arg Trp Ala Leu Thr Ala Ala
                                     70
His Cys Phe Glu Thr Tyr Ser Asp Leu Ser Asp Pro Ser Gly Trp
                                     85
                 80
Met Val Gln Phe Gly Gln Leu Thr Ser Met Pro Ser Phe Trp Ser
                 95
                                     100
Leu Gln Ala Tyr Tyr Thr Arg Tyr Phe Val Ser Asn Ile Tyr Leu
                110
                                    115
Ser Pro Arg Tyr Leu Gly Asn Ser Pro Tyr Asp Ile Ala Leu Val
                125
                                     130
                                                         135
```

```
Lys Leu Ser Ala Pro Val Thr Tyr Thr Lys His Ile Gln Pro Ile
                140
                                    145
Cys Leu Gln Ala Ser Thr Phe Glu Phe Glu Asn Arg Thr Asp Cys
                155
                                    160
                                                         165
Trp Val Thr Gly Trp Gly Tyr Ile Lys Glu Asp Glu Ala Leu Pro
                                    175
                170
Ser Pro His Thr Leu Gln Glu Val Gln Val Ala Ile Ile Asn Asn
                                    190
                185
Ser Met Cys Asn His Leu Phe Leu Lys Tyr Ser Phe Arg Lys Asp
                200
                                    205
                                                         210
Ile Phe Gly Asp Met Gly Asp Ser Gly Gly Pro Leu Ala Cys Asn
                215
                                    220
Lys Asn Gly Leu Trp Tyr Gln Ile Gly Val Val Ser Trp Gly Val
                                    235
                230
Gly Cys Gly Arg Pro Asn Arg Pro Gly Val Tyr Thr Asn Ile Ser
                                                         255
                245
                                    250
His His Phe Glu Trp Ile Gln Lys Leu Met Ala Gln Ser Gly Met
                260
                                    265
Ser Gln Pro Asp Pro Ser Trp Pro Leu Leu Phe Pro Leu Leu
                                    280
                275
Trp Ala Leu Pro Leu Leu Gly Pro Val
                290
       8
<210>
<211>
      23
<212>
      DNA
<213>
      Artificial sequence
<220>
      primer_bind
<221>
      6, 9, 12, 15, 18
<222>
      Degenerate oligonucleotide sense primer to amplify
       serine proteases, n = inosine at 6, 9, 12, 15, 18
<400> 8
                                                          23
tgggtngtna cngcngcnca ytg
<210>
<211>
       20
<212>
      DNA
<213>
      Artificial sequence
<220>
      primer_bind
<221>
      3, 6, 9, 12, 18
<222>
<223>
      Degenerate oligonucleotide antisense primer to amplify
       serine proteases, n = inosine at 3, 6, 9, 12, 18
<400> 9
                                                          20
arnggnccnc cnswrtcncc
<210>
       10
<211>
       20
<212>
      DNA
<213> Artificial sequence
```

```
<220>
<223> Oligonucleotide sense primer specific for TADG-16
<400> 10
                                                        20
gtcaggccgc gggagaggag
<210> 11
<211>
      20
<212> DNA
<213> Artificial sequence
<220>
<223> Oligonucleotide antisense primer specific for TADG-16
<400> 11
                                                        20
actctgggcc atcagcttct
<210> 12
<211>
      28
<212>
      DNA
<213> Artificial sequence
<220>
<223> Oligonucleotide antisense primer specific for TADG-16
<400> 12
                                                        28
cggagggatc actaaggtca ctatacgt
<210> 13
<211> 28
<212> DNA
<213> Artificial sequence
<220>
<223> Oligonucleotide antisense primer specific for TADG-16
<400> 13
                                                         28
tatacqtttc aaagcagtgc gccgccgt
<210>
      14
<211>
      20
<212> DNA
<213> Artificial sequence
<220>
<223> Oligonucleotide sense primer specific for TADG-16
<400> 14
                                                         20
ggtcgccatc ataaacaact
      15
<210>
<211>
      20
<212> DNA
<213> Artificial sequence
<220>
```

```
Oligonucleotide antisense primer specific for TADG-16
 <400>
        15
 actctgggcc atcagcttct
                                                          20
 <210>
        16
 <211>
        1131
 <212> RNA
 <213> Artificial sequence
 <220>
 <223> Antisense transcript of TADG-16
 <400>
        16
 uuuuuuuuu uugaagaaug cccugcaagg caucaacugg aauguguuua
                                                          50
 uuaccaaaca agacagaaga gaaccagggc cugacuuggc aguuggcccc
                                                        100
 aggcugcaug ggcucaggua ggcucagacc ggccccagga gugggagagc
                                                        150
 ccagagaaga gggaaaaaga guagcggcca ggaggggucu ggcugggaca
                                                        200
 ugccacucug ggccaucagc uucuggaucc acucaaagug guggcugaua
                                                        250
 uugguguaga caccgggccg auugggccga ccacagccca cuccccagcu
                                                         300
                                                        350
 cacgacucca aucugauacc acaguccauu cuuguuacag gccaaggguc
 caccugaguc accgaagcag gcauccuucc cgccuugggc auugccagca 400
                                                        450
 caaaccaugu cuccaaagau guccuugcgg aaacuguacu ugaggaagag
                                                         500
 qugguugcac auagaguugu uuaugauggc gaccugaacu uccuggaggg
 uguggggaga uggcagugcc ucauccucuu ugauguaccc ccagccaguc
                                                         550
 acccagcagu cuguccgguu cucaaacuca aauguggagg ccuggagaca
                                                         600
gaugggcugg auguguuuag uguaggugac aggugcagac agcuucacca
                                                         650
                                                        700
 aggcaauguc auagggugaa uuccccaggu agcgagggcu cagauagaua
 uucgauacga aguaacgggu guaguaggcc ugcaggcucc agaaggaugg
                                                        750
 cauggaaguc agcuggccaa acuggaccau ccacceggag ggaucacuaa 800
 ggucacuaua cguuucaaag cagugcgccg ccgugagugc ccagcggugg 850
                                                         900
 cugagcagge ucacucegea uacgugggaa ucccacagge geaggeucee
 cuqccacqqc caacqcccga guucggcguc cucuccaccc acgaugcgcg 950
 acgugaugac ccgucggccg caugguccug auaacggcgc cgccuccugc 1000
 gacuceggeu uccugaguee agecegagee ageageageg ceageageag 1050
 cyccccycyc gcycccaugy ccuccucuce cycygccuya cyccccucu 1100
 gecuecucue gegeeggee eggggegeee e
                                                        1131
 <210>
        17
 <211>
 <212>
        PRT
 <213> Homo sapiens
 <220>
 <223> Residues 70-78 of the TADG-16 protein
 <400> 17
 Ser Leu Leu Ser His Arg Trp Ala Leu
 <210>
        18
 <211>
       9
 <212> PRT
 <213> Homo sapiens
```

```
<220>
<223> Residues 299-307 of the TADG-16 protein
<400> 18
Leu Leu Phe Phe Pro Leu Leu Trp Ala
                5
<210> 19
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 142-150 of the TADG-16 protein
<400> 19
Lys Leu Ser Ala Pro Val Thr Tyr Thr
<210> 20
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 96-104 of the TADG-16 protein
<400> 20
Trp Met Val Gln Phe Gly Gln Leu Thr
<210> 21
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 10-18 of the TADG-16 protein
<400> 21
Ala Leu Leu Leu Ala Arg Ala Gly Leu
<210> 22
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 252-260 of the TADG-16 protein
<400> 22
Gln Ile Gly Val Val Ser Trp Gly Val
```

```
<210> 23
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 248-256 of the TADG-16 protein
Gly Leu Trp Tyr Gln Ile Gly Val Val
<210> 24
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 139-147 of the TADG-16 protein
<400> 24
Ala Leu Val Lys Leu Ser Ala Pro Val
<210> 25
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 291-299 of the TADG-16 protein
<400> 25
Ser Gln Pro Asp Pro Ser Trp Pro Leu
                 5
<210> 26
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 130-138 of the TADG-16 protein
<400> 26
Tyr Leu Gly Asn Ser Pro Tyr Asp Ile
<210> 27
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 190-198 of the TADG-16 protein
```

```
<400> 27
Thr Leu Gln Glu Val Gln Val Ala Ile
<210> 28
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 6-14 of the TADG-16 protein
<400> 28
Ala Leu Leu Leu Ala Leu Leu Leu Ala
<210> 29
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 165-173 of the TADG-16 protein
<400> 29
Phe Glu Asn Arg Thr Asp Cys Trp Val
                 5
<210> 30
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 71-79 of the TADG-16 protein
<400> 30
Leu Leu Ser His Arg Trp Ala Leu Thr
                 5
<210> 31
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 8-16 of the TADG-16 protein
<400> 31
Leu Leu Ala Leu Leu Leu Ala Arg Ala
<210> 32
<211> 9
<212> PRT
<213> Homo sapiens
```

```
<220>
<223> Residues 297-305 of the TADG-16 protein
<400> 32
Trp Pro Leu Leu Phe Phe Pro Leu Leu
<210> 33
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 113-121 of the TADG-16 protein
Gln Ala Tyr Tyr Thr Arg Tyr Phe Val
<210> 34
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 123-131 of the TADG-16 protein
<400> 34
Asn Ile Tyr Leu Ser Pro Arg Tyr Leu
<210> 35
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 104-112 of the TADG-16 protein
<400> 35
Thr Ser Met Pro Ser Phe Trp Ser Leu
                 5
<210> 36
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 273-281 of the TADG-16 protein
<400> 36
Asn Ile Ser His His Phe Glu Trp Ile
```

```
<210> 37
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 70-78 of the TADG-16 protein
<400> 37
Ser Leu Leu Ser His Arg Trp Ala Leu
<210> 38
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 42-50 of the TADG-16 protein
<400> 38
Ile Val Gly Gly Glu Asp Ala Glu Leu
<210> 39
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 10-18 of the TADG-16 protein
<400> 39
Ala Leu Leu Leu Ala Arg Ala Gly Leu
                 5
<210> 40
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 291-299 of the TADG-16 protein
<400> 40
Ser Gln Pro Asp Pro Ser Trp Pro Leu
<210> 41
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 297-305 of the TADG-16 protein
```

```
<400> 41
Trp Pro Leu Leu Phe Phe Pro Leu Leu
<210> 42
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 248-256 of the TADG-16 protein
<400> 42
Gly Leu Trp Tyr Gln Ile Gly Val Val
<210> 43
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 82-90 of the TADG-16 protein
<400> 43
His Cys Phe Glu Thr Tyr Ser Asp Leu
<210> 44
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 142-150 of the TADG-16 protein
<400> 44
Lys Leu Ser Ala Pro Val Thr Tyr Thr
                5
<210> 45
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 96-104 of the TADG-16 protein
<400> 45
Trp Met Val Gln Phe Gly Gln Leu Thr
<210> 46
<211> 9
<212> PRT
<213> Homo sapiens
```

```
<220>
<223> Residues 299-307 of the TADG-16 protein
<400> 46
Leu Leu Phe Phe Pro Leu Leu Trp Ala
<210> 47
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 303-311 of the TADG-16 protein
<400> 47
Pro Leu Leu Trp Ala Leu Pro Leu Leu
<210> 48
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 123-131 of the TADG-16 protein
<400> 48
Asn Ile Tyr Leu Ser Pro Arg Tyr Leu
                5
<210> 49
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 98-106 of the TADG-16 protein
<400> 49
Val Gln Phe Gly Gln Leu Thr Ser Met
                 5
<210> 50
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 306-314 of the TADG-16 protein
<400> 50
Trp Ala Leu Pro Leu Leu Gly Pro Val
```

```
<210> 51
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 71-79 of the TADG-16 protein
<400> 51
Leu Leu Ser His Arg Trp Ala Leu Thr
<210> 52
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 53-61 of the TADG-16 protein
Trp Pro Trp Gln Gly Ser Leu Arg Leu
<210> 53
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 302-310 of the TADG-16 protein
<400> 53
Phe Pro Leu Leu Trp Ala Leu Pro Leu
                 5
<210> 54
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 130-138 of the TADG-16 protein
<400> 54
Tyr Leu Gly Asn Ser Pro Tyr Asp Ile
<210> 55
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 6-14 of the TADG-16 protein
```

```
<400> 55
Ala Leu Leu Leu Ala Leu Leu Ala
<210> 56
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 190-198 of the TADG-16 protein
<400> 56
Thr Leu Gln Glu Val Gln Val Ala Ile
<210> 57
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 44-52 of the TADG-16 protein
Gly Gly Glu Asp Ala Glu Leu Gly Arg
<210> 58
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 90-98 of the TADG-16 protein
<400> 58
Leu Ser Asp Pro Ser Gly Trp Met Val
                5
<210> 59
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 143-151 of the TADG-16 protein
<400> 59
Leu Ser Ala Pro Val Thr Tyr Thr Lys
                5
<210> 60
<211> 9
<212> PRT
<213> Homo sapiens
```

```
<220>
<223> Residues 292-300 of the TADG-16 protein
<400> 60
Gln Pro Asp Pro Ser Trp Pro Leu Leu
<210> 61
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 203-211 of the TADG-16 protein
<400> 61
Met Cys Asn His Leu Phe Leu Lys Tyr
<210> 62
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 87-95 of the TADG-16 protein
<400> 62
Tyr Ser Asp Leu Ser Asp Pro Ser Gly
<210> 63
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 168-176 of the TADG-16 protein
<400> 63
Arg Thr Asp Cys Trp Val Thr Gly Trp
                  5
<210> 64
<211> 04
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 47-55 of the TADG-16 protein
<400> 64
Asp Ala Glu Leu Gly Arg Trp Pro Trp
```

```
<210> 65
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 23-31 of the TADG-16 protein
<400> 65
Ser Gln Glu Ala Ala Pro Leu Ser Gly
                5
<210> 66
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 7-15 of the TADG-16 protein
Leu Leu Leu Ala Leu Leu Ala Arg
                5
<210> 67
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 157-165 of the TADG-16 protein
<400> 67
Cys Leu Gln Ala Ser Thr Phe Glu Phe
                5
<210> 68
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 202-210 of the TADG-16 protein
<400> 68
Ser Met Cys Asn His Leu Phe Leu Lys
<210> 69
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 111-119 of the TADG-16 protein
```

```
<400> 69
Ser Leu Gln Ala Tyr Tyr Thr Arg Tyr
<210> 70
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 125-133 of the TADG-16 protein
Tyr Leu Ser Pro Arg Tyr Leu Gly Asn
<210> 71
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 152-160 of the TADG-16 protein
<400> 71
His Ile Gln Pro Ile Cys Leu Gln Ala
<210> 72
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 79-87 of the TADG-16 protein
<400> 72
Thr Ala Ala His Cys Phe Glu Thr Tyr
<210> 73
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 238-246 of the TADG-16 protein
<400> 73
Ser Gly Gly Pro Leu Ala Cys Asn Lys
<210> 74
<211> 9
<212> PRT
<213> Homo sapiens
```

```
<220>
<223> Residues 172-180 of the TADG-16 protein
<400> 74
Trp Val Thr Gly Trp Gly Tyr Ile Lys
<210> 75
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 110-118 of the TADG-16 protein
<400> 75
Trp Ser Leu Gln Ala Tyr Tyr Thr Arg
<210> 76
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 191-199 of the TADG-16 protein
<400> 76
Leu Gln Glu Val Gln Val Ala Ile Ile
                 5
<210> 77
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 118-126 of the TADG-16 protein
<400> 77
Arg Tyr Phe Val Ser Asn Ile Tyr Leu
<210> 78
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 177-185 of the TADG-16 protein
<400> 78
Gly Tyr Ile Lys Glu Asp Glu Ala Leu
```

```
<210> 79
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 210-218 of the TADG-16 protein
<400> 79
Lys Tyr Ser Phe Arg Lys Asp Ile Phe
<210> 80
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 270-278 of the TADG-16 protein
<400> 80
Val Tyr Thr Asn Ile Ser His His Phe
<210> 81
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 148-156 of the TADG-16 protein
<400> 81
Thr Tyr Thr Lys His Ile Gln Pro Ile
                 5
<210> 82
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 300-308 of the TADG-16 protein
<400> 82
Leu Phe Phe Pro Leu Leu Trp Ala Leu
<210> 83
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 234-242 of the TADG-16 protein
```

```
<400> 83
Cys Phe Gly Asp Ser Gly Gly Pro Leu
<210> 84
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 135-143 of the TADG-16 protein
<400> 84
Pro Tyr Asp Ile Ala Leu Val Lys Leu
<210> 85
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 4-12 of the TADG-16 protein
<400> 85
Arg Gly Ala Leu Leu Leu Ala Leu Leu
<210> 86
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 104-112 of the TADG-16 protein
<400> 86
Thr Ser Met Pro Ser Phe Trp Ser Leu
                 5
<210> 87
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 296-304 of the TADG-16 protein
<400> 87
Ser Trp Pro Leu Leu Phe Pro Leu
<210> 88
<211> 9
<212> PRT
<213> Homo sapiens
```

```
<220>
<223> Residues 250-258 of the TADG-16 protein
<400> 88
Trp Tyr Gln Ile Gly Val Val Ser Trp
<210> 89
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 5-13 of the TADG-16 protein
<400> 89
Gly Ala Leu Leu Leu Ala Leu Leu Leu
                5
<210> 90
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 95-103 of the TADG-16 protein
<400> 90
Gly Trp Met Val Gln Phe Gly Gln Leu
                5
<210> 91
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 199-207 of the TADG-16 protein
<400> 91
Ile Asn Asn Ser Met Cys Asn His Leu
<210> 92
<211> 9
<212> PRT
<213> Homo sapiens
<223> Residues 297-305 of the TADG-16 protein
<400> 92
Trp Pro Leu Leu Phe Phe Pro Leu Leu
```

```
<210> 93
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 291-299 of the TADG-16 protein
<400> 93
Ser Gln Pro Asp Pro Ser Trp Pro Leu
                5
<210> 94
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 183-191 of the TADG-16 protein
<400> 94
Glu Ala Leu Pro Ser Pro His Thr Leu
                 5
<210> 95
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 86-94 of the TADG-16 protein
<400> 95
Thr Tyr Ser Asp Leu Ser Asp Pro Ser
                 5
<210> 96
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 10-18 of the TADG-16 protein
<400> 96
Ala Leu Leu Leu Ala Arg Ala Gly Leu
<210> 97
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 297-305 of the TADG-16 protein
```

```
<400> 97
Trp Pro Leu Leu Phe Phe Pro Leu Leu
<210> 98
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 302-310 of the TADG-16 protein
<400> 98
Phe Pro Leu Leu Trp Ala Leu Pro Leu
<210> 99
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 53-61 of the TADG-16 protein
<400> 99
Trp Pro Trp Gln Gly Ser Leu Arg Leu
<210> 100
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 292-300 of the TADG-16 protein
<400> 100
Gln Pro Asp Pro Ser Trp Pro Leu Leu
                 5
<210> 101
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 145-153 of the TADG-16 protein
<400> 101
Ala Pro Val Thr Tyr Thr Lys His Ile
<210> 102
<211> 9
<212> PRT
<213> Homo sapiens
```

```
<220>
<223> Residues 42-50 of the TADG-16 protein
<400> 102
Ile Val Gly Gly Glu Asp Ala Glu Leu
<210> 103
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 10-18 of the TADG-16 protein
<400> 103
Ala Leu Leu Ala Arg Ala Gly Leu
                5
<210> 104
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 104-112 of the TADG-16 protein
<400> 104
Thr Ser Met Pro Ser Phe Trp Ser Leu
                5
<210> 105
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 183-191 of the TADG-16 protein
<400> 105
Glu Ala Leu Pro Ser Pro His Thr Leu
                5
<210> 106
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 201-209 of the TADG-16 protein
<400> 106
Asn Ser Met Cys Asn His Leu Phe Leu
```

```
<210> 107
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 5-13 of the TADG-16 protein
<400> 107
Gly Ala Leu Leu Leu Ala Leu Leu Leu
                 5
<210> 108
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 291-299 of the TADG-16 protein
Ser Gln Pro Asp Pro Ser Trp Pro Leu
                 5
<210> 109
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 70-78 of the TADG-16 protein
<400> 109
Ser Leu Leu Ser His Arg Trp Ala Leu
                 5
<210> 110
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 195-203 of the TADG-16 protein
<400> 110
Gln Val Ala Ile Ile Asn Asn Ser Met
<210> 111
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 116-124 of the TADG-16 protein
```

```
<400> 111
Tyr Thr Arg Tyr Phe Val Ser Asn Ile
<210> 112
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 199-207 of the TADG-16 protein
<400> 112
Ile Asn Asn Ser Met Cys Asn His Leu
<210> 113
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 82-90 of the TADG-16 protein
His Cys Phe Glu Thr Tyr Ser Asp Leu
<210> 114
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 132-140 of the TADG-16 protein
<400> 114
Gly Asn Ser Pro Tyr Asp Ile Ala Leu
<210> 115
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 1-9 of the TADG-16 protein
<400> 115
Met Gly Ala Arg Gly Ala Leu Leu Leu
<210> 116
<211> 9
<212> PRT
<213> Homo sapiens
```

```
<220>
<223> Residues 63-71 of the TADG-16 protein
<400> 116
Asp Ser His Val Cys Gly Val Ser Leu
<210> 117
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 183-191 of the TADG-16 protein
<400> 117
Glu Ala Leu Pro Ser Pro His Thr Leu
<210> 118
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 58-66 of the TADG-16 protein
<400> 118
Ser Leu Arg Leu Trp Asp Ser His Val
<210> 119
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 82-90 of the TADG-16 protein
<400> 119
His Cys Phe Glu Thr Tyr Ser Asp Leu
<210> 120
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 116-124 of the TADG-16 protein
<400> 120
Tyr Thr Arg Tyr Phe Val Ser Asn Ile
```

5

```
<210> 121
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 2-10 of the TADG-16 protein
<400> 121
Gly Ala Arg Gly Ala Leu Leu Leu Ala
<210> 122
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 302-310 of the TADG-16 protein
<400> 122
Phe Pro Leu Leu Trp Ala Leu Pro Leu
<210> 123
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 53-61 of the TADG-16 protein
<400> 123
Trp Pro Trp Gln Gly Ser Leu Arg Leu
<210> 124
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 31-39 of the TADG-16 protein
<400> 124
Gly Pro Cys Gly Arg Arg Val Ile Thr
<210> 125
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 297-305 of the TADG-16 protein
```

```
<400> 125
Trp Pro Leu Leu Phe Phe Pro Leu Leu
<210> 126
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 5-13 of the TADG-16 protein
<400> 126
Gly Ala Leu Leu Leu Ala Leu Leu Leu
                 5
<210> 127
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 71-79 of the TADG-16 protein
<400> 127
Leu Leu Ser His Arg Trp Ala Leu Thr
<210> 128
<211> 9
<212> PRT.
<213> Homo sapiens
<220>
<223> Residues 242-250 of the TADG-16 protein
<400> 128
Leu Ala Cys Asn Lys Asn Gly Leu Trp
<210> · 129
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 10-18 of the TADG-16 protein
<400> 129
Ala Leu Leu Leu Ala Arg Ala Gly Leu
                5
<210> 130
<211> 9
<212> PRT
<213> Homo sapiens
```

T

```
<220>
<223> Residues 70-78 of the TADG-16 protein
<400> 130
Ser Leu Leu Ser His Arg Trp Ala Leu
<210> 131
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 63-71 of the TADG-16 protein
<400> 131
Asp Ser His Val Cys Gly Val Ser Leu 5
<210> 132
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 89-97 of the TADG-16 protein
<400> 132
Asp Leu Ser Asp Pro Ser Gly Trp Met
<210> 133
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 132-140 of the TADG-16 protein
<400> 133
Gly Asn Ser Pro Tyr Asp Ile Ala Leu
<210> 134
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 140-148 of the TADG-16 protein
<400> 134
Leu Val Lys Leu Ser Ala Pro Val Thr
```

```
<210> 135
<211> 9
<212> PRT
<213> Homo sapiens
<223> Residues 149-157 of the TADG-16 protein
<400> 135
Tyr Thr Lys His Ile Gln Pro Ile Cys
<210> 136
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 15-23 of the TADG-16 protein
<400> 136
Arg Ala Gly Leu Arg Lys Pro Glu Ser
<210> 137
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 117-125 of the TADG-16 protein
<400> 137
Thr Arg Tyr Phe Val Ser Asn Ile Tyr
                5
<210> 138
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 51-59 of the TADG-16 protein
<400> 138
Gly Arg Trp Pro Trp Gln Gly Ser Leu
<210> 139
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 263-271 of the TADG-16 protein
```

```
<400> 139
Gly Arg Pro Asn Arg Pro Gly Val Tyr
<210> 140
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 74-82 of the TADG-16 protein
<400> 140
His Arg Trp Ala Leu Thr Ala Ala His
<210> 141
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 128-136 of the TADG-16 protein
<400> 141
Pro Arg Tyr Leu Gly Asn Ser Pro Tyr
<210> 142
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 266-274 of the TADG-16 protein
<400> 142
Asn Arg Pro Gly Val Tyr Thr Asn Ile
<210> 143
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 3-11 of the TADG-16 protein
<400> 143
Ala Arg Gly Ala Leu Leu Leu Ala Leu
<210> 144
<211> 9
<212> PRT
<213> Homo sapiens
```

```
<220>
<223> Residues 34-42 of the TADG-16 protein
<400> 144
Gly Arg Arg Val Ile Thr Ser Arg Ile
<210> 145
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 213-221 of the TADG-16 protein
<400> 145
Phe Arg Lys Asp Ile Phe Gly Asp Met
<210> 146
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 18-26 of the TADG-16 protein
<400> 146
Leu Arg Lys Pro Glu Ser Gln Glu Ala
                5
<210> 147
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 101-109 of the TADG-16 protein
<400> 147
Gly Gln Leu Thr Ser Met Pro Ser Phe
                5
<210> 148
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 227-235 of the TADG-16 protein
<400> 148
Ala Gln Gly Gly Lys Asp Ala Cys Phe
```

<210> 149 <211> 9 <212> PRT Ī

```
<213> Homo sapiens
<220>
<223> Residues 59-67 of the TADG-16 protein
<400> 149
Leu Arg Leu Trp Asp Ser His Val Cys
<210> 150
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 40-48 of the TADG-16 protein
<400> 150
Ser Arg Ile Val Gly Glu Asp Ala
<210> 151
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 35-63 of the TADG-16 protein
<400> 151
Arg Arg Val Ile Thr Ser Arg Ile Val
                 5
<210> 152
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 98-106 of the TADG-16 protein
<400> 152
Val Gln Phe Gly Gln Leu Thr Ser Met
<210> 153
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 112-120 of the TADG-16 protein
```

1

```
<400> 153
Leu Gln Ala Tyr Tyr Thr Arg Tyr Phe
<210> 154
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 291-299 of the TADG-16 protein
<400> 154
Ser Gln Pro Asp Pro Ser Trp Pro Leu
                5
<210> 155
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 191-199 of the TADG-16 protein
<400> 155
Leu Gln Glu Val Gln Val Ala Ile Ile
                 5
<210> 156
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 157-165 of the TADG-16 protein
<400> 156
Cys Leu Gln Ala Ser Thr Phe Glu Phe
                 5
<210> 157
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 122-130 of the TADG-16 protein
<400> 157
Ser Asn Ile Tyr Leu Ser Pro Arg Tyr
<210> 158
<211> 9
<212> PRT
```

```
<213> Homo sapiens
<220>
<223> Residues 182-190 of the TADG-16 protein
<400> 158
Asp Glu Ala Leu Pro Ser Pro His Thr
                 5
<210> 159
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 45-53 of the TADG-16 protein
<400> 159
Gly Glu Asp Ala Glu Leu Gly Arg Trp
<210> 160
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 136-144 of the TADG-16 protein
<400> 160
Tyr Asp Ile Ala Leu Val Lys Leu Ser
<210> 161
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 170-178 of the TADG-16 protein
<400> 161
Asp Cys Trp Val Thr Gly Trp Gly Tyr
<210> 162
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 243-251 of the TADG-16 protein
<400> 162
Ala Cys Asn Lys Asn Gly Leu Trp Tyr
                 5
```

<210> 163

```
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 163-171 of the TADG-16 protein
<400> 163
Phe Glu Phe Glu Asn Arg Thr Asp Cys
<210> 164
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 88-96 of the TADG-16 protein
<400> 164
Ser Asp Leu Ser Asp Pro Ser Gly Trp
<210> 165
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 79-87 of the TADG-16 protein
Thr Ala Ala His Cys Phe Glu Thr Tyr
<210> 166
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 278-296 of the TADG-16 protein
<400> 166
Phe Glu Trp Ile Gln Lys Leu Met Ala
                5
<210> 167
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 192-200 of the TADG-16 protein
```

```
<400> 167
Gln Glu Val Gln Val Ala Ile Ile Asn
<210> 168
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 92-100 of the TADG-16 protein
<400> 168
Asp Pro Ser Gly Trp Met Val Gln Phe
<210> 169
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 294-302 of the TADG-16 protein
<400> 169
Asp Pro Ser Trp Pro Leu Leu Phe Phe
<210> 170
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 203-211 of the TADG-16 protein
<400> 170
Met Cys Asn His Leu Phe Leu Lys Tyr
<210> 171
<211> 9
<212> PRT
<213> Homo sapiens
<223> Residues 76-84 of the TADG-16 protein
<400> 171
Trp Ala Leu Thr Ala Ala His Cys Phe
<210> 172
<211> 9
<212> PRT
<213> Homo sapiens
```

```
<220>
<223> Residues 165-173 of the TADG-16 protein
<400> 172
Phe Glu Asn Arg Thr Asp Cys Trp Val
<210> 173
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 215-223 of the TADG-16 protein
<400> 173
Lys Asp Ile Phe Gly Asp Met Val Cys
<210> 174
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 48-56 of the TADG-16 protein
<400> 174
Ala Glu Leu Gly Arg Trp Pro Trp Gln
<210> 175
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 272-280 of the TADG-16 protein
<400> 175
Thr Asn Ile Ser His His Phe Glu Trp
                 5
<210> 176
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<223> Residues 227-235 of the TADG-16 protein
<400> 176
Ala Gln Gly Gly Lys Asp Ala Cys Phe
```

```
<210>
       177
<211>
       498
<212>
       DNA
<213>
       Unknown
<220>
       WISH cDNA sequence of TADG-16 catalytic domain
<223>
<400>
       177
tgggcactca cggcggcgca ctgctttgaa acgtatagtg accttagtga
teceteeggg tggatggtee agtttggeea getgaettee atgeeateet
                                                          100
tetggageet geaggeetag tacaccegtt acttegtate gaatatetat
                                                          150
ctgagccctc gctacctggg gaattcaccc tatgacattg ccttggtgaa
                                                         200
                                                         250
getgtetgea cetgteacet acaetaaaca catecagece atetgtetee
aggcctccac atttgagttt gagaaccgga cagactgctg ggtgactggc
                                                         300
                                                         350
tgggggtaca tcaaagagga tgaggcactg ccatctcccc acaccctcca
ggaagttcag gtcgccatca taaacaactc tatgtgcaac cacctcttcc
                                                         400
                                                         450
tcaaqtacaq tttccgcaag gacatctttg gagacatggt ttgtgctggc
                                                          498
aatqcccaaq qcqqqaaqqa tgcctgcttc ggtgactcag gtggaccc
<210>
       178
<211>
       166
<212>
       PRT
<213>
       Unknown
<220>
       amino acid sequence of TADG-16 catalytic domain
<223>
<400>
       178
Trp Ala Leu Thr Ala Ala His Cys Phe Glu Thr Tyr Ser Asp Leu
                                      10
Ser Asp Pro Ser Gly Trp Met Val Gln Phe Gly Gln Leu Thr Ser
                                      25
                 20
Met Pro Ser Phe Trp Ser Leu Gln Ala Tyr Tyr Thr Arg Tyr Phe
                                                           45
                 35
                                      40
Val Ser Asn Ile Tyr Leu Ser Pro Arg Tyr Leu Gly Asn Ser Pro
                                                           60
                 50
                                      55
Tyr Asp Ile Ala Leu Val Lys Ser Leu Ala Pro Val Thr Tyr Thr
                                      70
                                                           75
                 65
Lys His Ile Gln Pro Ile Cys Leu Gln Ala Ser Thr Phe Glu Phe
                 80
                                      85
Glu Asn Arg Thr Asp Cys Trp Val Thr Gly Trp Gly Tyr Ile Lys
                                     100
                                                          105
                 95
Glu Asp Glu Ala Leu Pro Ser Pro His Thr Leu Gln Glu Val Gln
                110
                                     115
                                                          120
Val Ala Ile Ile Asn Asn Ser Met Cys Asn His Leu Phe Leu Lys
                                     130
                                                          135
                125
Tyr Ser Phe Arg Lys Asp Ile Phe Gly Asp Met Val Cys Ala Gly
                                                          150
                                     145
                140
Asn Ala Gln Gly Gly Lys Asp Ala Cys Phe Gly Asp Ser Gly Gly
                                     160
                                                          165
Pro
<210>
       179
<211>
       500
<212>
       DNA
```

```
<213> Unknown
<220>
<223> Accession No. AA620757
<400> 179
                                                             50
ttttttttt ttgaagaatg ccctgcaagg catcaactgg aatgtgttta
                                                            100
ttaccaaaca agacagaaga gaaccagggc ctgacttggc agtggcccag
gctgcatggg ctcaggtagg ctcagaccgg ccccaggagt gggagagccc
                                                            150
agagaagagg gaaaaagagt agtggccagg aggggtctgg ctgggacatg
                                                            200
ccactctggg ccatcagctt ctggatccac tcaaagtggt ggctcatatt
                                                            250
ggtgtagaca ccgggccgat tgggcgacca cagcccactc cccagctcac
                                                            300
gactccaatc tgataccaca gtccattctt gttacaggcc aagggtccac
                                                            350
ctgagtcacc gaagcaggca tccttcccgc acttgggcat tgccagcaca 400 aaccatgtct ccaaagatgt ccttgcggaa actgtacttg aggaagaggt 450
ggttgcacat agagttgttt atgatggcga actgaacttc ctggagggtg 500
```

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US00/28558

A. CLASSIFICATION OF SUBJECT MATTER					
IPC(7) : C12N 15/00, 5/00; C12P 21/06; C07H 21/02					
US CL : 435/ 320.1, 325, 69.1; 536/ 23.1					
According to	According to International Patent Classification (IPC) or to both national classification and IPC				
B. FIELDS SEARCHED					
	cumentation searched (classification system followed	by classification symbols)			
U.S.: 435/ 320.1, 325, 69.1; 536/ 23.1					
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched					
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)					
MEDLINE					
	UMENTS CONSIDERED TO BE RELEVANT				
Category *	Citation of document, with indication, where ap		Relevant to claim No.		
X		GENBANK (Accession No. AF058300), National Library of Medicine,			
	Bethesda MD., July 1, 1999 (01.04.1999)				
Y			6-7,11		
x	INOUE, M. et al., Cloning and tissue distribution of a novel serine protease esp-1 from		1-4, 6-10		
	human eosinophils. Biochem. Biophys. Res. Commi		- 1, 0 20		
Y	pages 307-312.	au. 1107011001 1770, 701. 232, 110. 2,	11		
•	Leaden no. no.				
X	INOUE, M. et al., GENBANK (Accession No. AB031329), National Library of Medicine, Bethesda MD., November 1998, (DNA encoding protein)		1-4, 6-10		
Y			11		
x	ONO PHARM CO LTD., GENBANK (Accession No. X15336), National Library of Medicine, Bethesda MD., May 4, 1999 (04.05.1999)		1-3		
Y			4-7, 9-11		
v			1 27 011		
X	WO 98/36054 a1 (AMRAD OPERATIONS PTY. LTD.) 20 August 1998 (20.08.1998),		1, 3-7, 9-11		
	see Fig.6, see also pages 14, 33, 38, and 40)		1		
			ļ		
					
Fusha	documents are listed in the continuation of Pay C	San materal formily annual			
Further documents are listed in the continuation of Box C.		See patent family annex.			
Special categories of cited documents: "		"T" later document published after the inte			
"A" document defining the general state of the art which is not considered to be		date and not in conflict with the applic principle or theory underlying the inve			
of particular relevance					
"E" earlier ap	plication or patent published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be considered.			
E carrier application of parent published on or after the international range date		when the document is taken alone			
	which may throw doubts on priority claim(s) or which is cited to the publication date of another citation or other special reason (as	"Y" document of particular relevance: (claimed investion cannot be		
specified)		"Y" document of particular relevance; the considered to involve an inventive ste			
•		combined with one or more other such documents, such combina			
"O" document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art			e art		
"P" document published prior to the international filing date but later than the "&"		"&" document member of the same patent	family		
priority date claimed					
Date of the a	Date of the actual completion of the international search Date of the actual completion of the international search Date of the actual completion of the international search				
	·	Date of mailing of the international sea			
	001 (08.01.2001)				
	ailing address of the ISA/US	Authorized officer			
Commissioner of Patents and Trademarks		Gary Nickol			
Box PCT Washington, D.C. 20231		Cary Nickon	•		
Facsimile No. (703)305-3230		Telephone No. 703-308-0196			

INTERNATIONAL SEÄRCH REPORT

International application No.

PCT/US00/28558

Box I Observations where certain claims were f und unsearchable (Continuation of Item 1 of first sheet)			
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:			
1. Claim Nos.: because they relate to subject matter not required to be searched by this Authority, namely:			
Claim Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:			
3. Claim Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).			
Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)			
This International Searching Authority found multiple inventions in this international application, as follows: Please See Continuation Sheet			
1. As all required additional search fees were timely paid by the applicant, this international search report covers all			
searchable claims. 2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite			
payment of any additional fee. 3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:			
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: !-11 Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.			

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US00/28558

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Group 1, claim(s) 1-11, drawn to DNA encoding a TADG-16 protein.

Group 2, claim(s) 12-13, drawn to isolated and purified TADG-16 protein.

Group 3, claim(s) 14, drawn to an antibody.

Group 4, claim(s) 15-20, drawn to a method for detecting TADG-16 mRNA.

Group 5, claim(s) 21-26, drawn to a method for detecting TADG-16 protein.

Group 6, claim(s) 27-28, drawn to a method of inhibiting endogenous expression of TADG-16 in a cell.

Group 7, claim(s) 29-30, drawn to a method of treating a neoplastic state in an individual.

Group 8, claim(s) 31-37, drawn to a method of vaccinating an individual with a TADG-16 fragment or an immunogenic composition consisting of SEQ ID NOs: 17-19, 77-80, 97-99.

Group 9, claim(s) 31-37, drawn to a method of vaccinating an individual with a TADG-16 fragment or an immunogenic composition consisting of SEQ ID NOs: 137-140.

Group 10, claim(s) 31-37, drawn to a method of vaccinating an individual with a TADG-16 fragment or an immunogenic composition consisting of SEQ ID NO: 141.

Group 11, claim(s) 38-41, drawn to a method of diagnosing cancer in an individual.

Group 12, claim(s) 42, drawn to a method of screening for compounds that inhibit TADG-16.

Group 13, claim(s) 43-46, drawn to a method of targeted therapy to an individual.

The inventions listed as Groups 1-11 do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: Antalis et al. (WO/9836054, August 1998) teach an isolated DNA encoding a tumor antigen which 100% sequence similarity to SEQ ID NO:2 and or a TADG -16 protein (see Fig 6 and attached sequence comparison).