Méthode de prévision

Etude de la série : Nombre de créations d'entreprises - Micro-entrepreneurs - Activités spécialisées, scientifiques et techniques et activités de services administratifs et de soutien - France

Keroudine BELLADJO

Plan

I - Introduction : présentation de la série

II - Lissage

III - Box-Jenkins

IV- Conclusion

I - INTRODUCTION : Présentation de la série

Le nombre d'entreprises créées chaque moi en France par les micro-entrepreneurs dans les activités spécialisées, scientifiques et techniques, ainsi que dans les activités de services administratifs et de soutien sur la période 2009-2022

Nombre de créations d'entreprises

Mois Source : INSEE

1 - Graphique du TABLEAU DE BUYS-BALLOT

- Des creux tous les mois d'Août,
- Des pics en octobre
- Des variations inattendues en mars 2010 et en avril 2020.

II - Lissage

Dans cette partie nous appliquerons différentes méthode de lissage : la méthode de Holt, la méthode de Holt-Winters sur notre série temporelle

Objectif : Déterminer la meilleure méthode de lissage pour cette série

1 - La méthode de Holt

Mois

Le MAPE obtenu avec cette méthode :

MAPE 11,04 %

2 - La méthode de Holt-Winters

La méthode additive:

Legère écart entre l'échantillon d'estimation des valeurs prédites et les valeurs observées

La méthode multiplicative:

Ecart plus important entre l'échantillon d'estimation des valeurs prédites et les valeurs observées que pour la méthode additive

La meilleure méthode entre les deux est donc la méthode additive

Comparaison entre La méthode de Holt-Winters additive et la La méthode de Holt

La méthode de Holt :

La méthode de Holt-Winters additive :

MAPE

- → La méthode de Holt a la plus petite MAPE.
- → C'est donc la meilleure méthode pour cette série parmi les méthode de lissage

III-Méthode de Box-Jenkins

La méthode de Box-Jenkins est une approche en plusieurs étapes pour identifier et modéliser une série chronologique stationnaire avec un processus auto-régressif et une moyenne mobile (ARMA).

Première étape :Analyse de données

Étape ayant pour objectif la stationnarisation de la série

1 - La série Brute (v2)

Test de Dicker-Fuller

H0 = La série admet de racines unitaires

H1 = La série n'admet pas de racines unitaires

```
Test de Dickey-Fuller augmenté pour v2
test à reculons à partir de 13 retards, suivant le critère AIC
taille de l'échantillon 143
hypothèse nulle de racine unitaire : a = 1

test avec constante
avec 12 retards de (1-L)v2
modèle: (1-L)y = b0 + (a-1)*y(-1) + ... + e
valeur estimée de (a - 1): 0.0379423
statistique de test: tau_c(1) = 1.09701
p. critique asymptotique 0.9975
Coeff. d'autocorrélation du 1er ordre pour e: 0.021
différences retardées: F(12, 129) = 28.081 [0.0000]
```

La p-critique ou p-value $0.9975 > \alpha = 0.05$, on ne rejette donc pas H0.

La série n'est donc pas stationnaire

2 - Série en différence saisonnière (Sd_v2)

La série n'est pas saisonnière

Test de Dicker-Fuller

H0 = La série admet de racines unitaires

H1 = La série n'admet pas de racines unitaires

```
Test de Dickey-Fuller augmenté pour sd_v2
test à reculons à partir de 13 retards, suivant le critère AIC
taille de l'échantillon 130
hypothèse nulle de racine unitaire : a = 1

test avec constante
avec 13 retards de (1-L)sd_v2
modèle: (1-L)y = b0 + (a-1)*y(-1) + ... + e
valeur estimée de (a - 1): -0.148233
statistique de test: tau_c(1) = -1.74347
p. critique asymptotique 0.4093
Coeff. d'autocorrélation du 1er ordre pour e: -0.009
différences retardées: F(13, 115) = 2.852 [0.0014]
```

La p-critique $0.4093 > \alpha = 0.05$, on ne rejette donc pas H0.

La série n'est donc pas stationnaire

3 - Série en différence première (d_v2)

La série est saisonnière

Test de Dicker-Fuller

H0 = La série admet de racines unitaires

H1 = La série n'admet pas de racines unitaires

```
Test de Dickey-Fuller augmenté pour d_v2
test à reculons à partir de 13 retards, suivant le critère AIC
taille de l'échantillon 143
hypothèse nulle de racine unitaire : a = 1

test avec constante
avec 11 retards de (1-L)d_v2
modèle: (1-L)y = b0 + (a-1)*y(-1) + ... + e
valeur estimée de (a - 1): -2.29016
statistique de test: tau_c(1) = -3.76651
p. critique asymptotique 0.003285
Coeff. d'autocorrélation du 1er ordre pour e: 0.015
différences retardées: F(11, 130) = 30.770 [0.0000]
```

La p-critique $0.003282 < \alpha = 0.05$, faible, on rejette donc H0.

La série est donc stationnaire

4 - Série en différence première et saisonnière (sd_d_v2)

La série n'est pas saisonnière

Test de Dicker-Fuller

H0 = La série admet de racines unitaires

H1 = La série n'admet pas de racines unitaires

Test de Dickey-Fuller augmenté pour sd_d_v2 test à reculons à partir de 13 retards, suivant le critère AIC taille de l'échantillon 130 hypothèse nulle de racine unitaire : a = 1

test avec constante avec 12 retards de (1-L)sd_d_v2 modèle: (1-L)y = b0 + (a-1)*y(-1) + ... + e valeur estimée de (a-1): -2.72201 statistique de test: tau_c(1) = -5.13918 p. critique asymptotique 1.051e-05 Coeff. d'autocorrélation du 1er ordre pour e: -0.020 différences retardées: F(12, 116) = 4.249 [0.0000]

La p-critique est très petite, on rejette donc H0.

La série est donc stationnaire.

Deuxième étape

Identification, estimation, validation et prévision du modèle.

Corrélogramme des deux séries stationnaires

Série en différence premières (d_v2):

Série en différence première et saisonnière (sd_d_v2):

❖ La série sd_d_v2 a le corrélogramme le plus significatif, on choisit donc cette série.

Estimation du modèle et son écriture

Test individuel : Test de significativité du modèle

Évaluations de la fonction : 88 Évaluations du gradient : 31 Modèle 7: ARIMA, utilisant les observations 2010:02-2021:12 (T = 143) Estimation par AS 197 (MV exact) Variable dépendante: (1-L)(1-Ls) v2 Écarts-types basés sur la matrice hessienne coefficient éc. type p. critique 0.1559 const 3.12569 20.0433 0.8761 phi 9 0.236105 0.0937563 2.518 0.0118 phi_22 -0.3163830.114289 -2.7680.0056 *** theta 1 -0.186766 0.0919645 -2.0310.0423 theta 5 -0.277744 0.0909111 -3.0550.0022 *** Theta 1 -0.5137170.109569 -4.6892.75e-06 Moyenne var. dép. -21.58741 Éc. type var. dép. 981.3808 Éc. type innovations 814.8222 Movenne innovations -55.03916 0.916353 R2 ajusté 0.913928 Log de vraisemblance -1165.059 Critère d'Akaike 2344.117 Critère de Schwarz 2364.857 Hannan-Ouinn 2352.545 Réel Imaginaire Modulo Fréquence Ordre 1 0.7843 0.6760 1.0354 0.1132 Ordre 2 0.7843 -0.67601.0354 -0.1132Ordre 3 -1.0460-0.16771.0594 -0.4747-1.04601.0594 0.4747 Ordre 4 0.1677 0rdre 1.0408 -0.13181.0491 -0.0200

Ecriture du modèle estimé:

Le modèle est significatif, on peut donc l'écrire:

$$(1-\varphi_9 B^9 - \varphi_{22} B^{22}) (1-B)(1-B^{12})v2$$

= $(1-\theta_5 B^5)(1-\Theta B^{12})\epsilon_t$

- Tous les coefficients sont significatifs.
- Le modèle est donc significatif

Validation du modèle

Fonction d'autocorrélation résiduelle ***, **, * indiquent une significativité au seuil de 1%, 5% et 10% sur la base d'écart-type 1/T^0.5

RETARD	ACF	PACF	Q	[p. criti	que]
1 -0.0 2 -0.0 3 -0.0 4 -0.0 5 0.0 6 0.0 7 0.0 8 0.0 9 0.0 10 -0.0 11 -0.0 12 0.0 13 -0.1 14 0.0 15 0.0 16 0.0 17 0.0	075 536 439 077 223 844 93 232 251 403 678 388 * 531 900 534 608	-0.0075 -0.0536 -0.0448 -0.0114 0.0174 0.0823 0.0071 0.0607 0.0331 -0.0173 -0.0372 0.0610 -0.1497 * 0.0457 0.0780 0.0523 0.0152 -0.0329	Q	1.8780 1.8803 2.2543 2.3378 2.4363 2.6915 3.4186 6.4921 6.9457 8.2589 8.7248 9.0536	[0.171] [0.391] [0.521] [0.674] [0.786] [0.846] [0.844] [0.643] [0.643] [0.647] [0.647] [0.726] [0.769]
19 -0.0 20 0.1 21 -0.0	039	-0.0057 0.0893 -0.0809		9.2670 11.0868 11.7608	[0.814] [0.746] [0.760]

Test PORTMANTEAU

H₀ = Toutes les autocorrélations des résidus du modèle valent zéro

H₁ = Au moins une est différente de zéro

La p-critique la plus petite des autocorrélations de notre modèle est 17,1% > 5%, on ne rejette donc pas H0, Les résidus sont des bruits blancs. Notre modèle est donc valide

Prévision

Calcul des prévisions

U2 de Theil

Proportion de biais, UM

Proportion des régressions, UR

Proportion des perturbations, UD

	v2	prédiction	éc. type	intervalle de 95%
2021:01	13167.00	14045.70		
2021:02	12625.00	11860.34		
2021:03	13403.00	12406.41		
2021:04	12944.00	11618.32		
2021:05	11226.00	12933.87		
2021:06	13318.00	13929.85		
2021:07	11944.00	12812.68		
2021:08	9663.00	9061.33		
2021:09	14458.00	13562.02		
2021:10	16107.00	15813.53		
2021:11	12831.00	14128.20		
2021:12	13546.00	13043.02		
2022:01	17853.00	17264.25	814.822	15667.22 - 18861.27
2022:02	15372.00	15612.77	1050.252	13554.31 - 17671.22
2022:03	17388.00	15497.56	1241.822	13063.63 - 17931.48
2022:04	14762.00	13514.07	1407.556	10755.31 - 16272.83
2022:05	13936.00	12791.31	1555.734	9742.13 - 15840.49
2022:06	14955.00	15028.15	1615.763	11861.31 - 18194.99
2022:07	13948.00	13824.83	1673.641	10544.55 - 17105.10
2022:08	12590.00	11603.66	1729.583	8213.74 - 14993.58
2022:09	17693.00	16611.76	1783.771	
2022:10	19757.00	18151.04	1891.328	14444.11 - 21857.97
2022:11	16624.00	15627.10	1982.047	
2022:12	14470.00	15056.72	2068.792	11001.96 - 19111.48
Statist	iques sur la d	qualité de la	prévision uti	lisant 12 observations
Moyenne	Erreur		730.4	
Moyenne	Erreur Carrée	e (racine)	1037.9	
Moyenne	Erreur Absolu	ue	880.51	
Moyenne	Pourcentage I	Erreur	4.4734	
		Erreur Absolue	5.4918	

0.41107

0.49528

0.50176

0.0029592

Critères de qualité prédictive :

MAPE (Moyenne Pourcentage Erreur Absolue) = 5,4918%

Les modèles identifiés et leur comparaison

Xt = v2

Modèles	Coefficients significatifs	Test Portmanteau	Le critère d'Akaike (AIC)	MAPE
$(1-\varphi_9 B^9 - \varphi_{22} B^{22}) (1-B)(1-B^{12}) X_t = (1-\theta_5 B^5)(1-\Theta B^{12}) \epsilon_t$	OUI	17% - 84%	2344,177	5,49
$(1-\phi_1 B) (1-\Phi B^{12})(1-B)(1-B^{12})X_t = (1-\theta_5 B^5-\theta_9 B^9-\theta_{13} B^{13})\epsilon_t$	OUI	33,2%- 99,7%	2347,947	11,409
$(1-\varphi_1B - \varphi_{13}B^{13})(1-\Phi B^{12})(1-B)(1-B^{12})X_t$ = $(1-\theta_5B^5-\theta_9B^9)\epsilon_t$	OUI	32,5%-99,6%	2345,956	11,035
$(1-\varphi_1B - \varphi_9B^9)(1-\Phi B^{12})(1-B)(1-B^{12})X_t = (1-\theta_5B^5)\epsilon_t$	OUI	43,5%-97,1%	2351.378	10,476
$(1-\varphi_1B - \varphi_5B^5 - \varphi_{12}B^{12})(1-B)(1-B^{12})X_t = (1-\theta_9B^9 - \theta_{13}B^{13})\epsilon_t$	OUI	44,7%-97,2%	2348,249	11,435

IV - Conclusion

Le MAPE du meilleurs modèle de la **méthode de** lissage (méthode de Holt) : 11,04%

Le MAPE du meilleurs modèle de la **méthode de Box-Jenkins : 5,49%**

Pour cette série la meilleure méthode est donc la méthode de Box-Jenkins.

Graphique comportant les observations et les prévisions du meilleur modèle

Merci pour votre attention!