



# EXAMEN 2do BIMESTRE PROGRAMACIÓN I

(RRA20) SOFTWARE ICCD144-PROGRAMACIÓN I-GR1SW



Magister en ingeniería de software Diplomado Superior De Cuarto Nivel En Gerencia Estratégica De Mercadeo Ingeniero en Sistemas Informáticos Y Computación



**CLASS ROOM** 



**CLASS GROUP** 











|   | Actividad            | Puntaje | Temporalidad |
|---|----------------------|---------|--------------|
| • | Examen               | 3       | Bimestral    |
|   | Proyecto             | 3       | Bimestral    |
|   | Workshop             | 2       | semanal      |
|   | Tareas - deberes     | 2       | semanal      |
|   |                      | 10      |              |
|   | Extra: investigación | 1+      | *            |





TIPO DE INSTRUMENTO: Examen – 2do Bimestre PUNTAJE: 3 puntos

PERIODO ACADÉMICO: 2022-B **06.mar.2023** 

**TIEMPO: 2 Horas** ( **Inicio**: 11:00 am - **Fin**: 14:00 pm )

#### **OBLIGATORIO:**

Leer cuidadosamente el caso práctico de la presente rúbrica.

El examen deberá tener el nombre de su correo electrónico (nombre.apellido@epn.edu.ec) subido al Teams en:



- Incluir la presente rúbrica en su directorio/proyecto/solución.
- Se calificará únicamente los exámenes entregados dentro del tiempo establecido.
- Si se detecta copia de código se anula su examen.

### **CASO PRACTICO:**



#### **UCRANIA**

(Kiev)

Los países de la OTAN y la Unión Europea han proporcionado arsenal bélico de ultima generación a Ucrania, el cual se describe a continuación:

| Código | Tipo Arsenal Bélico | and     |
|--------|---------------------|---------|
| a      | Aeronaves           |         |
| b      | Bombarderos         |         |
| С      | Convoy              |         |
| d      | Drones              | 一定道     |
| t      | Taques              | <u></u> |
|        |                     |         |

Ucrania inmediatamente establece la estrategia de ataque fijando coordenadas/posiciones en territorio para hacer frente a Russia.

#### THE RUSSIAN FEDERATION

(Kremlin)

Rusia, ha decidido crear **bombas inteligentes** (BOMB-I#) basada en autómatas para reconocer el tipo de arsenal bélico ucraniano y determinar el tipo de bomba inteligente para un destrucción eficiente de la coordenada/posición ucraniana. Los tipo de bombas a construir son:

| Tipo Bomba | Patrón (AFD)                               |
|------------|--------------------------------------------|
| BOMB-II    | $\mathbf{a}^*\mathbf{b}^+\mathbf{c}$       |
| BOMB-IP    | $\mathbf{a} oldsymbol{b}^* oldsymbol{c}^+$ |
| BOMB-IPI   | $a^+bc^*$                                  |

El grupo de inteligencia del Kremlin hackea la estrategia de ataque ucraniano identificando las coordenadas/posiciones, capacidad bélica y tipo de arsenal bélico de cada coordenada.



# **CASO PRACTICO:**





BULGARIA

Descripción de la estrategia de ataque ucraniano por coordenada:

Cap = capacidad bélica

Geo = geoposicionamiento

Arsenal = tipo arsenal

- 13------

| Cap, | Geo,  | Tipo Arsenal |
|------|-------|--------------|
| 0,   | GPS0, | ab           |
| 1,   | GPS1, | bc           |
| 2,   | GPS2, | ac           |
| 3,   | GPS3, | bcd          |
| 4,   | GPS4, | acd          |
| 5,   | GPS5, | bct          |
| 6,   | GPS6, | act          |
| 7,   | GPS7, | aaabbct      |
| 8,   | GPS8, | abbccdt      |
| 9.   | GPS9. | aaabbcd      |



Patricio Michael Paccha Angamarca MAGISTER EN INGENIERÍA DE SOFTWARE
ESCUELA POLITÉCNICA NACIONAL



#### **EXAMEN: 2do Bimestre**

#### **INSTRUCCIONES:**

- a) El examen/proyecto/solución debe tener el **nombre de su correo electrónico** (nombre apellido@epn.edu.ec) con la presente rúbrica incluida y debe ser subido al **TEAMS**
- b) Las **variables globales, variables locales, procedimientos, funciones y estructuras** deben usar el prefijo conformado por la primera letra/vocal de su nombre y apellido usando notación **camelCase**. Ejemplo si el alumno se llama: Pepe Lucho Álvarez Perez

```
int paNombre;
void paGetEdad() {...}
```

- c) En el caso de constantes se deben crear todas en mayúsculas y si son palabras compuestas se debe usar guion bajo. Ejemplo:

  const string PANOMBRE\_COMPLETO = "Pepe Lucho Álvarez Perez";
- c) OBLIGATORIO, crear el proyecto y subirlo al GitHub. Mínimo cada 2 horas deben haber commits de desarrollador y al finalizar el **examen agregar la url en el README.md** para descargar el proyecto y validar este ítem con el respectivo código documentado
- d) Crear al menos una librería cumpliendo con los ítems b, c, d para colores, validaciones, etc. Ejemplo si el alumno se llama:

```
Pepe Lucho Pérez Suarez
nombre de librería: ./lib/ppColor.h
./lib/ppUtil.h
```

#### **NOTA:**

Si la aplicación tiene algún tipo de **crash**:

No cumplir con estas instrucciones :

-0.2 puntos por crash
-0.2 puntos por ítem



#### **EXAMEN:**



El grupo de inteligencia de Ruso, desde el Kremlin te han contratado para que desarrolles un programa (c/c++) que cumpla con los siguientes requisitos:

1. Conforme los **ítems b, c, d** declarar / inicializar/ definir :

0.5 PUNTOS

- Definir constantes globales con sus datos: Cedula y Nombre Completo
- Crear estructura **coordenada** { capacidad bélica (entero), geolocalización, detalle del Arsenal (Cadena de caracteres) y punteros que permitan estructurar un árbol binario de búsqueda}
- Crear un **archivo de texto** que contenga las coordenada ucranianas (Cap, Geo, Tipo Arsenal) cabeceras y datos. Cada fila corresponde a su número de cedula en inverso. Ejemplo: 1103635449

| Cap, | Geo,  | Tipo Arsenal |
|------|-------|--------------|
| 9,   | GPS9, | aaabbcd      |
| 4,   | GPS4, | acd          |
| 4,   | GPS4, | acd          |
| 5,   | GPS5, | bct          |
| 3,   | GPS3, | bcd          |
| 6,   | GPS6, | act          |
| 3,   | GPS3, | bcd          |
| 0,   | GPSO, | ab           |
| 1,   | GPS1, | bc           |
| 1,   | GPS1, | bc           |
|      |       |              |





2. Crear un procedimiento para leer el archivo de texto que contiene las coordenadas y cumplir con:

0.5 PUNTOS

- Cada línea que se lee debe mostrar un loading de carga que va de 0% a 100% y luego se muestra la línea leída del archivo
- Cada línea a leer debe ser una coordenada, caso contrario es un errores a mostrarse en color rojo y debe mostrar el tipo de error. El error no debe bloquear la ejecución del programa y debe avanzar la siguiente línea. Ejemplo al leer la primera línea del archivo el encabezado no es una coordenada por lo cual se debe mostrar un error
- Cada coordenada (Cap, Geo, Tipo Arsenal) leída correctamente se deben presentar en color verde y se debe agregar al árbol binario de búsqueda. Se debe descartar las coordenadas repetidas.

#### Ejemplo:

```
[+]Leyendo coordenadas ...
>> Error: Cap,Geo,
                     tipoArsenal -> stoi
   100%
          0, GPS0,
                     ab
   100%
             GPS1,
                     bc
   100%
          2, GPS2,
                     ac
   100%
            GPS3,
                     bcd
          4, GPS4,
   100%
                     acd
  39%
```



#### **EXAMEN:**

- 3. Luego de presentar las coordenadas leídas, se debe mostrar una sección de información con los datos del desarrollador y del árbol Binario de capacidad bélica Ucrania, con los siguientes ítems :
  - Developer-Nombre, Developer-Cedula y Capacidad Bélica que es la suma de la capacidad bélica (Cap) de cada coordenada que forma el árbol binario
  - Coordenada-Total, número de nodos del árbol
  - Coordenada-SecCarga, secuencia de inserción de los nodos al árbol binario de búsqueda. (considerar que los nodos repetidos no se cargan al árbol).
    - Puede valida los datos presentados: la suma de la cada Coordenada-SecCarga = capacidad bélica.

#### Ejemplo:

[+]Informacion Arbol Binario de capacidad belica Ucrania

Developer-Nombre : Pepe Lucho Perez Suarez

Developer-Cedula: 0123436445

Capacidad Belica: 45

Coordenada-Total: 10

Coordenada-SecCarga: 0 1 2 3 4 5 6 7 8 9



#### **EXAMEN:**



4. Crear un diagrama del autómata determinista finito - ADF para un tipo de BOMBA.

Considere su último número de cédula, como se indica a continuación:

| Tipo Bomba | Patrón Exp. Reg. (AFD)               | Último Nro. Cédula | Agregar alfabeto a su Patrón Exp. Reg. (AFD)                                                 |
|------------|--------------------------------------|--------------------|----------------------------------------------------------------------------------------------|
| BOMB-II    | $\mathbf{a}^*\mathbf{b}^+\mathbf{c}$ | impar              | $oldsymbol{d^+}$ ó $oldsymbol{t^+}$ , obligatorio agregar drones $oldsymbol{o}$ tanques      |
| BOMB-IP    | $\mathbf{a} b^* c^+$                 | par                | <b>d</b> y <b>t</b> , obligatorio agregar dron <b>y</b> tanque                               |
| BOMB-IPI   | $a^+bc^*$                            | cero               | $oldsymbol{d}^*$ ó $oldsymbol{t}^*$ , obligatorio agregar drones $oldsymbol{\delta}$ tanques |

5. Presentar el ARBOL BINARIO DE COORDENADAS & BOMBA donde la primera coordenada Leyda es el nodo raíz , no deben existir nodos repetidos, cada nodo tiene color con estructura: *Geo.Cap* { tipoArsenal BOMBA(si aplica según el tipoArsenal y mostrar en color rojo) }

```
[+]ARBOL BINARIO DE COORDENADAS & BOMBA

GPS9.9 { aaabbcd }

GPS7.7 { aaabbct }

GPS6.6 { act }

GPS5.5 { bct }

GPS3.3 { bcd }

GPS2.2 { ac }

GPS1.1 { bc BOMBIA_I }

GPS0.0 { ab BOMBIA_I }
```

6. Guardar la salida de ARBOL BINARIO DE COORDENADAS & BOMBA en un archivo de texto.







La tradición y el prestigio de la Politécnica exigen que el comportamiento de sus miembros se encuadre en el respeto mutuo, la honestidad, el apego a la verdad y el compromiso con la institución.

Con tal antecedente, el presente Código de Ética define la norma de conducta de los miembros de la Escuela Politécnica Nacional:

## RESPETO HACIA SÍ MISMO Y HACIA LOS DEMÁS

- Fomentar la solidaridad entre los miembros de la comunidad.
- Comportarse de manera recta, que afirme la autoestima y contribuya al prestigio institucional, que sea ejemplo y referente para los demás.
- Respetar a los demás y en particular la honra ajena y rechazar todo tipo de acusaciones o denuncias infundadas
- Respetar el pensamiento, visión y criterio ajenos.
- Excluir toda forma de violencia y actitudes discriminatorias.
- Apoyar un ambiente pluralista y respetuoso de las diferencias.
- Convertir la puntualidad en norma de conducta
- Evitar el consumo de bebidas alcohólicas, tabaco, substancias psicotrópicas o estupefacientes.



HONESTIDAD + VERDAD + COMPROMISO CON LA INSTITUCIÓN







# PROGRAMACIÓN I

(RRA20) SOFTWARE ICCD144-PROGRAMACIÓN I-GR1SW

#### **Patricio Michael Paccha Angamarca**

Magister en ingeniería de software Diplomado Superior De Cuarto Nivel En Gerencia Estratégica De Mercadeo Ingeniero en Sistemas Informáticos Y Computación



**CLASS ROOM** 



**CLASS GROUP** 



