ESERCIZIO S1 L4

Il laboratorio di oggi consiste nella creazione e configurazione di una rete di calcolatori con il tool Cisco Packet Tracer, come in figura. Lo scopo è capire come funzionano le comunicazioni a livello 2 e 3 del modello ISO / OSI con i rispettivi device di rete.

Esercizio:

- Mettere in comunicazione il laptop-PT0 con IP 192.168.100.100 con il PC-PT-PC0 con IP 192.168.100.103
- Mettere in comunicazione il laptop-PT0 con IP 192.168.100.100 con il laptop-PT2 con IP 192.168.200.100
- Spiegare, con una relazione, cosa succede quando un dispositivo invia un pacchetto ad un altro dispositivo di un'altra rete

RISPOSTA

Comincio la task assegnando gli indirizzi IP sopra citati ai relativi dispositivi tramite la sezione Desktop > IP Configuration, inoltre inserisco le rispettive Subnet Mask e il Gateway per ogni dispositivo per consentire la comunicazione con il router.

Lo screenshot sottostante raffigura la sezione IP Configuration del dispositivo laptop-PT0.

Proseguo con l'assegnazione dell'interfaccia. Nello screenshot seguente vediamo che lo switch ha interfaccia Fa0/4.

Perciò ora proseguo con l'attivazione di questa porta cliccando su switch > config > port status : ON, come nell'immagine seguente.

Nel passaggio successivo configuro il router, attivando la sua interfaccia 0/0/0 cliccando su "on" e inserendo il gateway nella sezione IPV4 Address e la Subnet Mask.

Questi procedimenti permettono allo switch e al router di comunicare tra loro.

Ora, vado a testare il funzionamento attraverso la sezione Desktop > Prompt Command, utilizzando il protocollo ping, dove inserisco l'indirizzo IP del dispositivo con cui voglio comunicare.

In questo primo screenshot vediamo come il laptop-PT0 con IP 192.168.100.100 con il PC-PT-PC0 con IP 192.168.100.103 comunicano correttamente.

```
C:\>ping 192.168.100.103

Pinging 192.168.100.103 with 32 bytes of data:

Reply from 192.168.100.103: bytes=32 time<lms TTL=128
Ping statistics for 192.168.100.103:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = Oms, Maximum = Oms, Average = Oms
C:\>
```

Nel secondo screenshot vediamo il corretto funzionamento di comunicazione tra il laptop-PT0 con IP 192.168.100.100 con il laptop-PT2 con IP 192.168.200.100, appartenenti a reti diverse.

```
C:\>ping 192.168.200.100

Pinging 192.168.200.100 with 32 bytes of data:

Reply from 192.168.200.100: bytes=32 time=11ms TTL=127

Reply from 192.168.200.100: bytes=32 time=1ms TTL=127

Reply from 192.168.200.100: bytes=32 time<1ms TTL=127

Reply from 192.168.200.100: bytes=32 time<1ms TTL=127

Ping statistics for 192.168.200.100:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 11ms, Average = 3ms</pre>
```

Cosa succede in questo ultimo scenario?

Quando un dispositivo invia un pacchetto ad un'altro dispositivo su un'altra rete, il pacchetto compie diversi passaggi prima di arrivare al destinatario e anche successivamente. In questo caso partendo dalla sorgente Laptop 192.168.100.100 si comporta nel seguente modo:

Laptop 192.168.100.100 >>> Switch 0 >>> Router >>> Switch 1 >>> Laptop 192.168.200.100 per poi ripercorrere i punti all'inverso: Switch 1 >>> Router >>> Switch 0 >>> Laptop 192.168.100.100. Tornando al dispositivo che ha inviato il pacchetto.

Per avere più dettagli, illustro uno screenshot in cui è mostrata la sezione "Simulazione" (riquadro sulla destra) in cui è possibile appunto effettuare una simulazione per vedere cosa succede in questo caso, quando un dispositivo invia un pacchetto ad un altro su un'altra rete.

Come? Utilizzando un frame (letterina), che inviamo al destinatario e che ci permette di simulare l'invio di un pacchetto..

Possiamo di fatto osservare questi eventi e vedere cosa succede nel dettaglio nei vari layer cliccando sull'evento stesso.

