Exercises:

- 1. [CLRS] Devise an algorithm to determine whether any three points in a set of n points are collinear. You may work out algorithms with the following time complexities: $O(n^3)$ and $O(n^2 \lg n)$. Implement both versions of the algorithm and test their correctness.
- 2. [CLRS] Given a point $p_0 = (x_0, y_0)$, the right horizontal ray from p_0 is the set of points $\{p_i = (x_i, y_i) | x_i \ge x_0 \text{ and } y_i = y_0\}$, that is, it is the set of points due right to p_0 along with p_0 itself. Show how to determine whether a given right horizontal ray from p_0 intersects a line segment $\overline{p_1p_2}$ in O(1) time by reducing the problem to that of determining whether two line segments intersect. Write the pseudocode of the corresponding algorithm.
- 3. [Point in polygon.] Consider a convex polygon and a point defined in the plane (two dimensions). One way to determine whether a point p_0 is in the interior of a simple, convex, polygon P is to look at any ray from p_0 and check that the ray intersects the boundary of P an odd number of times but that p_0 itself is not on the boundary of P. Show how to compute in $\Theta(n)$ time whether a point p_0 is in the interior of an n-vertex polygon P. You may also implement your algorithm and test it thoroughly. (Hint: Use the previous exercise. Make sure your algorithm is correct when the ray intersects the polygon boundary at a vertex and when the ray overlaps a side of the polygon.)

Professor: Julián Rincón