Apprentissage Statistique

Master DAC - Université Paris 6 et Master Math – Spécialité Big Data - Université Paris 6

P. Gallinari, patrick.gallinari@lip6.fr, http://www-connex.lip6.fr/~gallinar/

L. Denoyer, <u>ludovic.denoyer@lip6.fr</u>, O. Schwandler, olivier.schwandler@lip6.fr

Année 2015-2016

Plan du cours

- Introduction
 - Apprentissage à partir d'exemples
 - Exemple introductif : le perceptron
- Formalisation du problème d'apprentissage
- Apprentissage supervisé
 - Réseaux de neurones
 - Réseaux de neurones profonds (deep learning) et apprentissage de représentations
 - Réseaux récurrents
 - Machines à noyaux, machines à vecteurs de support
- Apprentissage non supervisé
 - Algorithme EM et mélange de densités
 - Clustering spectral
 - Factorisation matricielle
- Introduction à la théorie de l'apprentissage

Introduction

Apprentissage à partir d'exemples

- 3 ingrédients de base
 - Données {**z**¹, ..., **z**^N}
 - Machine ou modèle F_{θ}
 - Critère C (apprentissage et évaluation)
- But
 - Extraire de l'information à partir des données
 - Information pertinente
 - □ pour la tâche étudiée
 - □ pour d'autres données du même type
- Utilisation
 - Inférence sur de nouvelles données
- Type d'apprentissage :
 - Supervisé
 - Non supervisé
 - Semi supervisé
 - Renforcement

Exemples - problèmes d'apprentissage

- Parole / Ecriture
 - Données : (signal, (transcription))
 - But : reconnaître signal
 - Critère : # mots correctement reconnus
- Conduite véhicule autonome
 - Données : (images routes, (commande volant)) e.g. S. Thrun Darpa Challenge + Google car
 - But : suivre route
 - Critère : distance parcourue
- Recherche d'information textuelle
 - Données : (texte + requête, (information pertinente)) corpus d'apprentissage
 - ▶ But : extraire l'information correspondant à la requête
 - Critère : Rappel / Précision
- Diagnostic dans systèmes complexes
 - Données : (état capteurs + alarmes, (diagnostic))
 - But : diagnostic correct
 - Critère :?

Exemples - problèmes d'apprentissage

- Modélisation d'utilisateur
 - Données : (Traces utilisateur)
 - ▶ But : analyser/ modéliser le comportement de l'utilisateur
 - Exemples : ciblage clientèle, aide navigation, publicité, recommandation, assistants personnels e.g. Google Now, etc
 - Critère :?
 - Evaluation :?
 - Example Google Now
 - Google Now keeps track of searches, calendar events, locations, and travel patterns. It then synthesizes all that info and alerts you—either through notifications in the menu bar or cards on the search screen—of transit alerts for your commute, box scores for your favorite sports team, nearby watering holes, and more. You can assume it will someday suggest a lot more.

Exemples - problèmes d'apprentissage

Plus complexe:

- Traduction
- Extraction d'information (e.g. Never-Ending Language/ Image Learning)
- ▶ Compréhension de texte / scène visuelle extraction de sens
- Découverte dans bases de données ou bases de connaissances, web, etc
 - Données : i.e. représenter l'information ??
 - ▶ But ??
 - Critère ??
 - Evaluation ??

Données: diversité

Apprentissage Statistique - P. Gallinari

Données: quantités Yahoo! Data – A league of its own... U. Fayyad KDD'07

GRAND CHALLENGE PROBLEMS OF DATA PROCESSING

TRAVEL, CREDIT CARD PROCESSING, STOCK EXCHANGE, RETAIL, INTERNET

Y! PROBLEM EXCEEDS OTHERS BY 2 ORDERS OF MAGNITUDE

Données : quantités Petabytes (10^15) (chiffres 2012)

- Google processes about 24 petabytes of data per day
- Google Street View Has Snapped 20 Petabytes of Street Photos
- Telecoms: AT&T transfers about 30 petabytes of data through its networks each day
- Physics: The experiments in the Large Hadron Collider produce about 15 petabytes of data per year
- Neurology: It is estimated that the human brain's ability to store memories is equivalent to about 2.5 petabytes of binary data

Big Data: Volume, Velocity, Variety, and Veracity http://www-01.ibm.com/software/data/bigdata/

Volume: terabytes, petabytes

- Turn 12 terabytes of Tweets created each day into improved product sentiment analysis
- Convert 350 billion annual meter readings to better predict power consumption
- Velocity: streams
 - Scrutinize 5 million trade events created each day to identify potential fraud
 - Analyze 500 million daily call detail records in real-time to predict customer churn faster
- Variety: Big data is any type of data structured and unstructured data such as text, sensor data, audio, video, click streams, log files and more. New insights are found when analyzing these data types together.
 - Monitor 100's of live video feeds from surveillance cameras to target points of interest
 - Exploit the 80% data growth in images, video and documents to improve customer satisfaction
- Veracity: Establishing trust in big data presents a huge challenge as the variety and number of sources grows.

Gartner Hype Cycle: Machine Learning

▶ 2015: I ere apparition du Machine Learning qui ne serait déjà plus dans le Hype, Big Data sort de la figure ...

We're making data science a sport.

Participate in competitions

Kaggle is an arena where you can match your data science skills against a global cadre of experts in statistics, mathematics, and machine learning. Whether you're a world-class algorithm wizard competing for prize money or a novice looking to learn from the best, here's your chance to jump in and geek out, for fame, fortune, or fun.

Join as a participant

(Need convincing?)

Create a competition

Kaggle is a platform for data prediction competitions that allows organizations to post their data and have it scrutinized by the world's best data scientists. In exchange for a prize, winning competitors provide the algorithms that beat all other methods of solving a data crunching problem. Most data problems can be framed as a competition.

Learn more about hosting

Browse all »

Ends 11 days

\$1,000

For Kaggle contestants: Got a lead on a neat dataset? Let us know! Host a competition for... Analytics

Have a Competition

idea?

Get the world's best predictive model.

Data Exploration Find the diamonds in your data.

Recruitment Uncover objectively brilliant candidates.

Education Free, powerful classroom competitions.

On the Forums

sluggish website

"Last post" forum bug

Are there Google calendars for

Follow the Money: Investigative Reporting Prospect

Find hidden patterns, connections, and ultimately compelling

Kaggle Prospect

Data driven science – le 4e paradigme (Jim Gray MSR – Prix Turing)

- ► SNRI 2013: https://www.allistene.fr/contribution-dallistene-et-des-poles-de-competitivite-a-la-strategie-nationale-de-recherche-sciences-et-technologie-du-numerique/
 - Extrait : « À l'heure actuelle, la science vit une révolution qui conduit à un nouveau paradigme selon lequel "la science est dans les données", autrement dit la connaissance émerge du traitement des données. »... » « Le traitement de données et la gestion de connaissances représentent ainsi le quatrième pilier de la science après la théorie, l'expérimentation et la simulation. L'extraction de connaissances à partir de grands volumes de données (en particulier quand le nombre de données est bien plus grand que la taille de l'échantillon) , l'apprentissage statistique, l'agrégation de données hétérogènes, la visualisation et la navigation dans de grands espaces de données et de connaissances sont autant d'instruments qui permettent d'observer des phénomènes, de valider des hypothèses, d'élaborer de nouveaux modèles ou de prendre des décisions en situation critique »

Place de l'apprentissage

- L'apprentissage constitue une brique dans le processus de fouille / traitement de données
 - qui arrive souvent à la fin du processus
 - qui est intégré dans une application ou dans le SI de l'entreprise
- Les différentes étapes de l'analyse des données
 - Collecte des données / stockage
 - Prétraitement des données, étiquetage éventuel
 - Analyses des données par des techniques exploratoires
 - Mise au point et test de différents modèles d'apprentissage
 - Fvaluation

Domaines d'application en Data Mining Exemples

Web

- recherche d'information, filtrage d'information
- extraction d'information textuelle : e.g. recherche, bibliothèques virtuelles, veille technologique, Question Answering , ...
- Multi-média
 - image + son, vidéo
- Données d'entreprise
 - infos produits, infos clients, ciblage clientèle ...
- Analyse comportement
 - e.g. telecoms : serveurs web, accès services commerciaux, internet intranet, aide accès information, publicité
- Distribué
 - ▶ Mobiles : personnalisation, accès information
 - Capteurs distribués, objets connectés
- Biologie analyse de séquences, de structures
- Automobile ...

4 Familles de problèmes

4 familles de problèmes d'apprentissage

- L'apprentissage propose des outils pour traiter des problèmes génériques
- C'est un domaine transverse à des domaines « d'application » comme la finance, la publicité, la vision, etc.
- Les 4 grandes familles de problèmes d'apprentissage
 - Supervisé
 - Non supervisé
 - Semi-supervisé
 - Renforcement
- Chaque famille traite d'un ensemble de problèmes génériques propres
 - Exemple de problème générique
 - En supervisé: classification, regression, ordonnancement,

Apprentissage supervisé

- Ensemble d'apprentissage constitué de couples (entrée, sortie désirée) $(x^1, d^1), ..., (x^N, d^N)$
- Objectif : apprendre à associer les entrées aux sorties
 - Avec une bonne généralisation, i.e. $d = F_{\theta}(x)$ si x hors de l'ensemble d'apprentissage mais généré par le même phénomène ou un phénomène proche
- Utilisation : classification, regression, ordonnancement

Apprentissage non supervisé

- ▶ Ensemble d'apprentissage
 - Uniquement des données d'entrée $x^1, ..., x^N$, pas de sortie désirée associée
- But
 - Extraire des régularités des données
 - > Similarités, relations entre données, facteurs sous jacent à la génération des données
- Utilisation
 - Estimation de densité, clustering, découverte de facteurs latents, ...

Apprentissage semi supervisé

Ensemble d'apprentissage

- étiquetés faible quantité $(x^1, d^1), ..., (x^N, d^N)$
- non étiquetés grande quantité $x^{N+1}, ..., x^{N+M}$

But

- Extraire l'information des exemples non étiquetés, utile pour l'étiquetage
- Apprendre conjointement à partir des deux ensembles d'exemples

Utilisation

grandes masses de données où l'étiquetage est possible mais coûteux,
 classification et calcul de scores associés aux noeuds

Apprentissage par Renforcement

Ensemble d'apprentissage

- Couples (entrée, sortie désirée qualitative) $(x^1, d^1), ..., (x^N, d^N)$
- Les x^i peuvent être des séquences (temporal credit assignment), les d^i sont des réponses qualitatives (e.g. 0, I), déterministes ou stochastiques.

Paradigme

- Système qui apprend à partir de l'exploration de son univers, à partir de récompense/ punitions
- On parle de paradigme exploration/ exploitation

Utilisation

- commande, décision séquentielle, robotique, jeux à 2 joueurs, jeux collectifs, programmation dynamique, applications web ou sociales, ...
- ▶ Exemple backgammon (TD Gammon Thesauro 1992)
 - Entrainé sur 1.5 M partie
 - Joue contre lui même

Algorithmes d'apprentissage numérique

- Il existe un grand nombre d'algorithmes et de familles d'algorithmes pour les différents problèmes génériques abordés en apprentissage
- Il existe de nombreuses implémentations sous forme de programmes dédiés ou de logiciels plus généralistes
- Quelques exemples d'algorithmes populaires
 - Données statiques
 - Supervisé
 - □ Réseaux de neurones
 - ☐ Arbres décision / régression, random forest
 - ☐ Fonctions noyau, machines à vecteurs supports
 - □ Nombreux modèles pour l'estimation de densité paramétrique, non paramétrique
 - Non supervisé
 - ☐ Modèles à variables latentes
 - Modèles latents probabilistes
 - □ Factorisation matricielle
 - Données structurées
 - Séquences
 - □ Réseaux de neurones récurrents, modèles Markoviens, noyaux
 - Arbres et graphes
 - □ Modèles relationnels probabilistes, réseaux de neurones, noyaux

Des environnements de programmation pour l'apprentissage statistique

- Prototypes universitaires
 - Weka Java based
- Systèmes industriels
 - Scikit-learn Python
 - ▶ Mlib Apache Spark
 - Apache Mahout
 - RapidMiner: environnement pour data mining, Machine learning, predictive analytics, text ...
 - ▶ R langage et environnement pour statistiques + visualisation
 - ▶ KNIME environnement pour data mining, predictive analytics ...
 - Graphlab : environnement pour systèmes distribués
 - MS Azure Machine Learning
 - ▶ IBM Watson analytics
 - **....**
- Plus de nombreux systèmes dédiés à une famille d'algorithmes
 - Pour les réseaux de neurones
 - ▶ Torch
 - Theano
 - Caffe
 - **)** ...

Exemple introductif: Perceptron

Un exemple: Perceptron (1960 Rosenblatt)

- Le perceptron est utilisé pour la discrimination
- La cellule de décision calcule une fonction à seuil :
- $F(x) = sgn(\sum_{i=1}^{n} w_i x_i + w_0) = sgn(\sum_{i=0}^{n} w_i x_i) \text{ avec } x_0 = 1$
 - □ Classe I : $\{x : F(x) = +1\}$
 - □ Classe 2: $\{x : F(x) = -1\}$

L'algorithme du perceptron (2 classes)

```
Données base d'apprentissage \{(x^i, d^i, i = 1..N, x \in R^n, d \in \{-1,1\}\} Output classifieur w \in R^n, décision F(x) = sgn(\sum_{i=0}^n w_i x_i) Initialiser w (0) Répeter (t) choisir un exemple, (x(t), d(t)) Si d(t)w(t).x(t) \le 0 alors w(t+1) = w(t) + \epsilon d(t)x(t) Jusqu'à convergence
```

- C'est un algorithme à correction d'erreur
- si ε est constant : règle à incrément fixe
- ightharpoonup si ϵ est fonction du temps : règle à incrément variable

Fonction discriminante linéaire

$$F(x) = w \cdot x + w_0 = \sum_{i=0}^{n} w_i x_i \text{ avec } x_0 = 1$$

- Surface de décision: hyperplan d'équation F(x) = 0
- Quelques propriétés
 - w est le vecteur normal de l'hyperplan, il défini son orientation
 - distance de x à H : r = F(x)/||w||
 - $w_0 = 0$: H passe par l'origine

Géométrie de la discrimination linéaire

Le perceptron effectue une descente de gradient

Fonction de coût

- $C = -\sum_{(x,d)mal\ class\'{e}} w. x. d$
- On veut minimiser *C*
- gradient

$$prad_{\mathbf{w}}C = \left(\frac{\partial C}{\partial w_1}, \dots, \frac{\partial C}{\partial w_n}\right)^T \operatorname{avec} \frac{\partial C}{\partial w_i} = -\sum_{(\mathbf{x}, d) mal \ classé} \mathbf{x}. d$$

- Règle d'apprentissage
 - $\mathbf{w} = \mathbf{w} \epsilon \operatorname{grad}_{\mathbf{w}} C$
 - \blacktriangleright Règle d'apprentissage du perceptron : algorithme adaptatif pour optimiser cette fonction de coût $\mathcal C$

Demo

http://lcn.epfl.ch/tutorial/english/

Cas multi-classes

- Approche générale : one vs all
 - p classes = p " problèmes 2 classes " : C_i contre le reste
 - ▶ construire p fonctions discriminantes $F_i(\mathbf{x})$, i = 1 ... p
 - ▶ règle de décision: $\mathbf{x} \in C_i$ si $F_i(\mathbf{x}) > F_i(\mathbf{x})$ pour $j \neq i$
 - rée une partition de l'espace d'entrée
 - \triangleright chaque classe est un polygone avec au plus p I faces.
 - Régions convexes : limitation des classifieurs linéaires

Théorème de convergence du perceptron

(Novikov 1962)

- ▶ Si
- $\exists R: \forall x, ||x|| \leq R$
- les données peuvent être séparées avec une marge ρ , i.e.
 - $\qquad \sup_{w} \min_{i} \ d^{i}(\mathbf{x}^{i}.\mathbf{w}) > \rho$
- l'ensemble d'apprentissage est présenté au perceptron un nombre suffisant de fois
- Alors après au plus $[R^2/\rho^2]$ corrections, l'algorithme converge

Borne sur l'erreur de généralisation (Aizerman et al. 1964)

▶ Si

- les données sont séparables
- elles sont en nombre infini
- règle arrêt : après la kème correction, les

$$m_k = \frac{1+2\ln k - \ln \eta}{-\ln(1-\epsilon)}$$

données présentées sont reconnues correctement

alors

- le perceptron converge en $l \le \frac{1+4 \ln R/\rho \ln \eta}{-\ln(1-\epsilon)} [R^2/\rho^2]$ étapes
- avec une probabilité 1η , l'erreur de test est < ϵ

Overtraining / généralisation en regression

Exemple (Bishop 06)

- Necessité de controler lors de l'apprentissage la complexité des modèles
 - Techniques de régularisation

Données dans la pratique de l'apprentissage

Distinguer les ensembles

- d'apprentissage
 - Mettre au point le modèle
- de test
 - Evaluer les performances du modèle appris
- de validation
 - Apprentissage de méta-paramètres
- Remarque
 - On fera en général l'hypothèse que toutes les données sont générées suivant une même loi

Formalisation du problème de l'apprentissage

Formalisme probabiliste

- Données
 - vecteurs aléatoires (z) générés suivant une densité p(z)
- Machine d'apprentissage
 - $F = \{F_{\theta}\}_{\theta}$ avec θ les paramètres du modèle à valeur dans un espace réel
- Coût
 - $c_{\theta}(\mathbf{z})$ pour la machine F_{θ} et l'exemple \mathbf{z}
- Risque théorique
 - $R_{\theta} = E_{\mathbf{z}}[c_{\theta}(\mathbf{z})] = \int_{\mathbf{z}} c_{\theta}(\mathbf{z})p(\mathbf{z})d\mathbf{z}$
- Solution optimale
 - $F_{\theta^*} = argmin_{\theta}R_{\theta}$

Apprentissage à partir d'exemples

Données

$$D = \left\{ \mathbf{z}^i \right\}_{i=1..N}$$

Risque empirique

$$C = \frac{1}{N} \sum_{i=1}^{N} c_{\theta}(\mathbf{z}^{i})$$

- Principe inductif
 - ▶ Exemple : Minimisation du risque empirique
 - La fonction F_{θ^*} qui minimise le risque théorique est approximée par $F_{\widehat{\theta}}$ qui optimise le risque empirique
 - ▶ Est-ce un bon principe ?
 - Propriété de généralisation ?

Problèmes d'apprentissage : exemples

Discrimination

- $z = (x, d), d \in \{0, 1\}$
- F_{θ} ensemble des fonctions à seuil
- ▶ R : probabilité de mauvaise classification
- C: fréquence des erreurs

Régression

- $\mathbf{z} = (\mathbf{x}, d), d \in \mathbf{R}$
- $ightharpoonup F_{\theta}$ un ensemble de fonctions réelles
- R : espérance des erreurs quadratiques
- ▶ C : somme des erreurs quadratiques

Estimation de densité

- z = x
- $ightharpoonup F_{\theta}$ ensemble de fonctions réelles
- R: espérance
- C: vraisemblance

$$c_{\theta}(\mathbf{z}) = \begin{cases} 0 \text{ si } d = F_{\theta}(\mathbf{x}) \\ 1 \text{ sinon} \end{cases}$$

$$c_{\theta}(\mathbf{z}) = \|d - F_{\theta}(\mathbf{x})\|^2$$

$$c_{\theta}(\mathbf{z}) = -lnp_{\theta}(\mathbf{x})$$

Apprentissage supervisé

Préliminaires : gradient, regression, regression logistique
Modèles discriminants
- Réseaux de neurones et Deep Learning
- Machines à noyaux et SVM

- L'apprentissage supervisé recouvre un ensemble de problèmes génériques
 - Regression
 - Classification
 - Ranking
 - **...**
- Dans le première partie du cours on examine des problèmes de régression et de classification

Optimisation Algorithmes de gradient

Objectif

- lacktriangle Optimiser une fonction de coût C(w) dépendant de paramètres w
- Principe :
 - ▶ Initialiser w
 - Itérer jusqu'à convergence

la direction de descente D, le pas de gradient ε sont déterminés à partir d'informations locales sur la fonction de coût C(w), i.e. approximations au ler ou 2nd ordre.

Exemple:

Gradient de la plus grande pente (batch) Ensemble d'apprentissage
$$D = \{(x_1, d_1), \dots, (x_N, d_N)\}$$
 Initialiser w_0 Itérer
$$w(t+1) = w(t) - \epsilon \nabla_w C(t)$$
 Critère d'arrêt
$$A \text{vec} \quad C = \sum_{i=1}^N c(x_i)$$

Autres procédures de minimisation basées sur le gradient

 Approximation quadratique locale de la fonction à optimiser (on approxime C par une parabole)

$$C(w) = C(w_0) + (w - w_0)^T \nabla C(w_0) + \frac{1}{2} (w - w_0)^T H(w - w_0)$$

- □ Avec H le Hessien de C(.) : $H_{ij} = \frac{\partial C}{\partial w_{ij}}$
- En différentiant par rapport à w

$$\nabla C(w) = \nabla C(w_0) + H(w - w_0)$$

On cherche le minimum de C

$$\nabla C(w) = 0$$

Méthode de Newton

$$w = w_0 - H^{-1} \nabla C(w_0)$$

Trop couteux en pratique $(O(n^3)$ pour l'inverse, + dérivées partielles)

- En pratique on utilise des gradients du ler ordre ou des approximations du 2nd ordre
- Exemple approximation du 2nd ordre :
 - Méthodes de quasi-Newton : approximation de H^{-1} itérativement.
 - Forme générale :

$$w = w_0 - \varepsilon H'_t \nabla C(w_0)$$

$$H'_{t+1} = H'_t + F(H'_t, w, w_0, \nabla C(w_0), \nabla C(w))$$

ightharpoonup H': approximation de H^{-1} sans calculer les dérivées secondes

Regression

Regression simple

- Objectif : prédire une fonction réelle
- ▶ Ensemble d'apprentissage
 - $(x^1, d^1), ..., (x^N, d^N)$
 - $x \in \mathbb{R}^n, d \in \mathbb{R}$: regression simple
- Modèle linéaire

$$F(x) = w. x = \sum_{i=0}^{n} w_i x_i \text{ avec } x_0 = 1$$

- Fonction de coût
 - Moindres carrés

$$C = \frac{1}{2} \sum_{i=1}^{N} (d^{i} - \mathbf{w}. \mathbf{x}^{i})^{2}$$

▶ Gradient de la plus grande pente

$$\mathbf{w} = \mathbf{w}(t) - \epsilon \nabla_{w} C, \nabla_{w} C = (\frac{\partial C}{\partial w_{1}}, \dots, \frac{\partial C}{\partial w_{n}})^{T}$$

$$\frac{\partial C}{\partial w_k} = \frac{1}{2} \sum_{i=1}^N \frac{\partial}{\partial w_k} (d^i - \boldsymbol{w}. \boldsymbol{x}^i)^2 = -\sum_{i=1}^N (d^i - \boldsymbol{w}. \boldsymbol{x}^i) x_k^i$$

Regression

Géométrie des moindres carrés

Regression multi-variée

- Le modèle s'étend directement au cas où $d \in R^p$
 - On a alors p regressions linéaires indépendantes
 - L'algorithme est identique

Interprétation probabiliste

- Modèle statistique de la regression
 - $d = w. x + \epsilon$, où ϵ est une v.a. qui modélise l'erreur
 - \blacktriangleright On suppose que ϵ est une v.a. i.i.d. gaussienne

- La distribution a posteriori de d est alors $p(d \mid x; w) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{(d-w.x)^2}{2\sigma^2})$
- Vraisemblance
 - $L(w) = \prod_{i=1}^{N} p(d^{i} | \mathbf{x}^{i}; \mathbf{w})$
 - ☐ C'est une fonction de w, calculée pour un ensemble de données, ici les données d'apprentissage
- Principe du maximum de vraisemblance
 - lacktriangle Choisir le paramètre w qui maximise L(w) ou toute fonction croissante de L(w)
- on va maximiser la log vraisemblance l(w) = logL(w) qui donne des calculs plus adaptés en pratique

$$l(\mathbf{w}) = Nlog\left(\frac{1}{\sqrt{2\pi}\sigma}\right) - \frac{1}{2\sigma^2} \sum_{i=1}^{N} (d^i - \mathbf{w}. \mathbf{x}^i)^2$$

- On retrouve le critère des moindres carrés
- Sous les hyp. précédentes, on a une interprétation probabiliste de la régression

Regression logistique

- La regression linéaire peut être utilisée pour des problèmes de regression ou de classification
- Un modèle mieux adapté pour la classification (avec des sorties binaires) est celui de la régression logistique

$$F_w(x) = g(w.x) = \frac{1}{1 + \exp(-w.x)}$$

- Fonction logistique
 - La fonction $g(z) = \frac{1}{1 + \exp(-z)}$ est appelée fonction logistique ou sigmoide
 - □ hint

$$g'(z) = g(z)(1 - g(z))$$

Regression logistique Interprétation probabiliste

- ▶ Comme $d \in \{0,1\}$, on va faire l'hypothèse d'une distribution conditionnelle de Bernouilli
 - $p(d = 1|x; w) = F_w(x)$ et $p(d = 0|x; w) = 1 F_w(x)$
 - ▶ En plus compact
 - $p(d|x; w) = (F_w(x))^d (1 F_w(x))^{1-d} \text{ avec } d \in \{0,1\}$
- Vraisemblance

$$L(\mathbf{w}) = \prod_{i=1}^{N} (F_{w}(\mathbf{x}^{i}))^{d^{i}} (1 - F_{w}(\mathbf{x}^{i}))^{1 - d^{i}}$$

Log-vraisemblance

$$l(w) = \sum_{i=1}^{N} d^{i} log F_{w}(x^{i}) + (1 - d^{i}) (log(1 - F_{w}(x^{i})))$$

- □ qui est une entropie croisée
- Gradient de la plus grande pente

Algorithme

$$\square \mathbf{w} = \mathbf{w} - \epsilon \nabla_{\mathbf{w}} C = \mathbf{w} + \epsilon \sum_{i=1}^{N} (d^{i} - F_{\mathbf{w}}(\mathbf{x}^{i})) \mathbf{x}^{i}$$

Regression logistique multivariée

- On suppose que l'on a un problème de classification à plusieurs classes I...p
- On les code suivant la fonction indicatrice suivante

```
• Classe I: d = (1,0,...,0)^T
```

- ightharpoonup Classe 2: $d = (0,1,...,0)^T$
- ...
- Classe I: $d = (0,0,...,1)^T$
- On a un vecteur de sorties à p dimensions codage "one out of p"
- La fonction $F_W(x)$ est une fonction vectorielle à p dimensions
 - La composante i sera une fonction softmax

$$F_{\mathbf{W}}(\mathbf{x})_i = \frac{\exp(\mathbf{w}_i.\mathbf{x})}{\sum_{j=1}^p \exp(\mathbf{w}_p.\mathbf{x})}$$

- □ Attention : ici $w_i \in R^n$ est un vecteur
- Le modèle probabiliste sous jacent est un modèle multinomial pour les densités conditionnelles

$$p(Classe = i|x; w) = \frac{\exp(w_i.x)}{\sum_{j=1}^{p} \exp(w_j.x)}$$

- Algorithme d'apprentissage
 - ▶ Comme précédement on peut utiliser un algorithme de gradient pour maximiser la log vraisemblance
 - ▶ Si le nombre de classes est très grand l'estimation du softmax est couteuse
 - Différentes techniques pour limiter la complexité du calcul (vu plus tard)

Apprentissage supervisé

Réseaux de neurones

Réseaux de neurones

Les RN servent de métaphore pour réaliser des systèmes d'apprentissage

- Ils constituent un paradigme important en apprentissage statistique
 - Le cerveau humain est constitué par un réseau dense (10^{11}) d'unités simples, les neurones. Chaque neurone est connecté en moyenne à 10^4 neurones.
 - Concepts importants
 - Représentation et contrôle sont distribué
 - Apprentissage à partir d'exemples ou d'essais/ erreurs

Apports pluridisciplinaires

Domaines

- Neurosciences
- Sciences cognitive (Al, psychologie, linguistique)
- Informatique
- Maths
- Physique

Buts

- Modélisation (neurophysiologie, biologie....)
- ▶ Modèle de calcul (applications, computational theory, apprentissage...)

Fondements biologiques

Le neurone

- Soma
- Arbre des dendrites
- Axone
- ▶ Flot d'information
 - axone : impulsions électriques
 - ▶ dendrites : transmission chimique avec le soma via synapses

Synapses

- contact : émission réception
- ▶ Poids synaptique = modulation de l'information transmise vers le soma.
- Comportement du neurone + mémoire ?

Composants du neurone

Historique rapide des réseaux de neurones

- ▶ 43 Mc Culloch & Pitts : neurone formel
 - ▶ "A logical calculus of the ideas immanent in nervous activities"
- **▶** 40 − 45
 - Wiener (USA)
 - Kolmogorov (URSS)
 - ► Türing (UK)
 - Théorie de l'estimation et de la prédiction (contrôle batteries anti-aeriennes)
 - Boucle de rétro-action
- ▶ 48 50 Von Neuman : réseaux d'automates
- ▶ 49 Hebb : apprentissage dans les réseaux d'automates

- **▶** 55 − 60
 - Rosenblatt : Perceptron

- **▶** 90 − 95
 - Réseaux non linéaires
 - Réseaux de Hopfield, Machine de Boltzmann
 - Perceptron multicouches ...
- **2006 ..**
 - ▶ Deep neural networks, restricted Boltzmann machines,...
 - Representation learning

Optimisation dans les RN - Algorithmes de gradient

Principe :

- $\mathbf{w}(t+1) = \mathbf{w}(t) + \epsilon(t)\mathbf{D}(t)$
- la direction de descente D, le pas de gradient ε sont déterminés à partir d'informations locales sur la fonction de coût C(w), i.e. approximations au 1 er ou 2nd ordre.

Exemples :

Gradient adaptatif (on line – stochastic gradient) c(x(t)) est le coût sur l'exemple x(t) Historiquement les algorithmes de RN utilisent des gradients stochastiques

Initialiser w_0 Iterer

choisir un exemple x(t) $w(t+1) = w(t) - \epsilon \nabla_{\!\! w} c(x(t))$ Critère d'arrêt

Que l'on compare avec l'algorithme batch

 $C = \sum_{i=1}^{N} c(x^i)$ est le coût calculé sur l'ensemble des exemples d'apprentissage

Plus grande pente (batch)

Initialiser w_0 Itérer $w(t+1) = w(t) - \epsilon \nabla_{\!\! w} \mathcal{C}(\mathbf{t})$ Critère d'arrêt

Le neurone formel

- C'est un automate caractérisé par
 - l'espace des signaux d'entrée $x = (x_1, ..., x_n) \in \mathbb{R}^n$
 - une fonction de transition $F_w(x)$

- Fonctions de transition
 - ▶ Historiquement, fonction à seuil (Neurone formel de McCulloch et Pitts)
 - En pratique on utilise des fonctions différentiables
 - \Box Soit $a = \sum_{i=1}^{n} w_i x_i + w_0$, on considère des fonctions de la forme F(x) = g(a)
 - □ Fonction identité g= *Id*
 - □ Fonction sigmoïde $g(a) = \frac{1}{1 + \exp(-ka)}$
 - □ Fonction tangente hyperbolique $g(a) = \frac{\exp(ka) \exp(-ka)}{\exp(ka) + \exp(-ka)}$
 - ☐ On verra par la suite d'autres fonctions de transition

Adaline

Modèle

- Neurone linéaire
- Risque empirique : moindres carrés

$$C = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{w}. \mathbf{x}^{i} - d^{i})^{2}$$

- On suppose que l'on est dans un contexte « en ligne »
 - Les données arrivent et sont traitées séquentiellement
 - Les paramètres sont modifiés pour chaque donnée
 - Algorithme d'apprentissage : gradient stochastique (Robbins-Monro, 1951),
 popularisé pour les réseaux de neurones par (Widrow et Hoff, 1959)

Adaline : règle de Widrow-Hoff

```
initialiser w(0) Iterer choisir un exemple x(t) w(t+1) = w(t) - \epsilon(t) \big( w(t). \, x(t) - d(t) \big) x(t) Critère d'arrêt
```

- □ x(t) est l'exemple présenté à l'instant t, le gradient est calculé sur le coût local
- □ A comparer avec le gradient classique qui calcule le gradient sur le risque empirique

```
Plus grande pente initialiser w(0) Iterer w(t+1)=w(t)-\epsilon(t)\sum_{i=1}^N(w(t).\,x^i-d^i)\,x^i Critère d'arrêt
```

- ▶ Apprentissage hors ligne vs apprentissage adaptatif
- c_k erreur sur la forme k de l'ensemble d'apprentissage

$$C = \frac{1}{N} \sum_{k} c_{k}$$
 Gradient sur C Gradient adaptatif sur c

Optimisation dans les RN Algorithmes de gradient

- Les algorithmes d'optimisation pour les réseaux de neurones utilisent souvent ces techniques simples de gradient stochastique
- Raisons
 - Historique
 - Complexité et taille de données
 - Ces méthodes sont devenues populaires également pour de nombreux autres modèles (complexité)
 - Ils exploitent bien la redondance présente dans les données
 - Bien adaptés aux grandes dimensions
 - ▶ En pratique utilisation d'algorithmes « mini-batch »
 - À chaque itération on considère un petit sous ensemble des données

Perceptron Multicouches

Réseau avec :

- des couches externes: entrée et sortie
- des couches internes dites cachées
- Les cellules sur les couches internes et la couche de sortie sont des fonctions sigmoïdes ou tangente hyperbolique.

Perceptron Multicouches

- Les exemples sont présentés séquentiellement
- Inférence : passe avant
 - Pour chaque exemple on calcule la sortie $y = F_w(x)$
- Apprentissage : passe arrière
 - On calcule l'erreur $(d F_w(x))$ entre sortie désirée et sortie calculée.
 - On propage cette erreur pour calculer le gradient des poids du réseau

Notations

- \Box $\mathbf{z}^{(i)}$ vecteur activation de la couche i
- \Box $z_j^{(i)}$ activation du neurone j de la couche i
- \square $W^{(i+1)}$ matrice de poids de la couche i à la couche i+l
- $w_{jk}^{(i)}$ poids de la cellule k sur la couche i à la cellule j sur la couche i+l
- □ y vecteur de sortie

$$y_1 = z_1^{(2)} = g(w_{10}^{(2)} + w_{11}^{(2)} z_1^{(1)} + w_{12}^{(2)} z_2^{(1)})$$

$$\Box \ z_1^{(1)} = g(w_{10}^{(1)} + w_{11}^{(1)}x_1 + w_{12}^{(1)}x_2 + w_{13}^{(1)}x_3)$$

$$\square W^{1} = \begin{pmatrix} w_{10}^{(1)} & w_{11}^{(1)} & w_{12}^{(1)} & w_{13}^{(1)} \\ w_{20}^{(1)} & w_{21}^{(1)} & w_{22}^{(1)} & w_{23}^{(1)} \end{pmatrix}$$

Inférence: passe avant

Pour un exemple x

- On calcule en parallèle les activités de la couche de neurones I
- $a^{(1)} = W^{(1)}x$ puis $z^{(1)} = g(a^{(1)})$
 - \Box Avec $g(a^{(1)}) = (g(a_1^{(1)}), g(a_2^{(1)}))^T$
- Don utilise les sorties de la couche 1 comme entrées de la couche 2 et on calcule en parallèle les activités de la couche 2
- $a^{(2)} = W^{(2)}z^{(1)}$ puis $y = z^{(2)} = g(a^{(2)})$

Apprentissage: passe arrière

- On décrit l'algorithme dans le cas d'une fonction de coût moindre carrés
 - ▶ On présente un exemple (x, d), $x \in R^n$, $d \in R^p$
 - On calcule la sortie $y = F_W(x), y \in \mathbb{R}^p$
 - Calculer l'erreur $\delta = (y d) = (y_1 d_1, ..., y_p d_p)^T$
 - Rétropropager cette erreur de la couche de sortie vers la couche d'entrée :
 - $\square w_{ij}^{(k)} = w_{ij}^{(k)} + \Delta w_{ij}^{(k)}$ \rightarrow mise à jour des poids par sgd
 - - □ C'est cette quantité « e » que l'on va rétropropager
 - $\Box \ e_i^{(k+1)} = 2\delta_i g'(a_i^{(k+1)})$ si i est une cellule de sortie
 - $\Box \ e_i^{(k+1)} = \sum_{h=1}^{NbCell(k+1)} w_{hi}^{(k)} \, e_h^{(k+1)} g'(a_i^{(k+1)})$ si i n'est pas une cellule de sortie

Remarques

- ▶ Comme pour la passe avant, on modifie tous les poids d'une couche en parallèle
- C'est une implémentation particulière de l'algorithme du gradient stochastique qui évite de dupliquer les calculs
- Elle peut être adaptée à toute fonction différentiable
- Fonctions de coût
 - ▶ Pour des tâches de regression : LMSE
 - Pour des tâches de classification, différentes fonctions employées
 - □ Entropie croisée
 - ☐ Hinge, logistique (cf slide suivant)

Fonctions de coût

- Différentes fonctions de coût sont utilisées, suivant les problèmes, ou les modèles
- LMSE
 - Regression
 - Souvent utilisé en classification
- Classification, Hinge, logistique
 - Classification
 - Exemples
 - $y \in R^p, d \in \{-1,1\}^p$
- Hinge, logistique sont ici des approximations de l'erreur de classification

En abscisse : z = y. d (marge)

$$C_{MSE}(\mathbf{y}, \mathbf{d}) = ||\mathbf{y} - \mathbf{d}||^2$$

$$C_{hinge}(\mathbf{y}, \mathbf{d}) = [1 - \mathbf{y}, \mathbf{d}]_+ = \max(0, 1 - \mathbf{y}, \mathbf{d})$$

$$C_{logistique}(\mathbf{y}, \mathbf{d}) = \ln(1 + \exp(-\mathbf{y}, \mathbf{d}))$$

Contrôle de la complexité

- ▶ En pratique, on n'optimise jamais le risque empirique seul
- On optimise le risque tout en controlant la complexité
 - cf partie théorique du cours
- Nombreuses méthodes
 - Régularisation (Hadamard ...Tikhonov)
 - Théorie des problèmes mal posés
 - Minimisation du risque structurel (Vapnik)
 - Estimateurs algébriques de l'erreur de généralisation (AIC, BIC, LOO, etc)
 - Apprentissage bayesien
 - Fournit une interprétation statistique de la régularisation
 - Le terme de régularisation apparait comme un a priori sur les paramètres du modèle
 - Méthodes d'ensembles
 - Boosting, bagging, etc
 -

Regularisation

- Hadamard
 - Un problème est bien posé si
 - ► Il existe une solution
 - ▶ Elle est unique
 - ▶ La solution est stable
 - Exemple de problème mal posé (Goutte 1997)

- Tikhonov
 - Propose des méthodes pour transformer un problème mal posé en problème bien posé

Régularisation

- Principe: Contrôler la variance de la solution en contraignant la fonctionnelle F
 - Optimiser $C = C_1 + \lambda C_2(F)$
 - ▶ C est un compromis entre
 - $ightharpoonup C_1$: mesure du but poursuivi e.g. MSE, Entropie, ...
 - C_2 : contraintes sur la forme de la solution (e.g. distribution des poids)
 - λ : poids de la contrainte
- Moindres carrés régularisés
 - On reprend le cas de la regression linéaire simple
 - $C = \frac{1}{N} \sum_{i=1}^{N} (d^{i} \mathbf{w}. x^{i})^{2} + \frac{\lambda}{2} \sum_{j=1}^{n} |w_{j}|^{q}$
 - p = 2 régularisation L_2 , q = 1 régularisation L_1 connu aussi sous le nom de « Lasso »

Figure 3.3 Contours of the regularization term in (3.29) for various values of the parameter q.

Résoudre

$$Min_{\mathbf{w}} C = \frac{1}{N} \sum_{i=1}^{N} (d^{i} - \mathbf{w}. x^{i})^{2} + \frac{\lambda}{2} \sum_{j=1}^{n} |w_{j}|^{q}, \lambda > 0$$

- Revient à résoudre le problème d'optimisation sous contrainte
 - $Min_{\mathbf{w}} C = \frac{1}{N} \sum_{i=1}^{N} \left(d^{i} \mathbf{w} \cdot x^{i} \right)^{2}$
 - Sous contrainte $\sum_{j=1}^{n} |w_j|^q \le s$ pour une certaine valeur de s
- Effet de cette contrainte

Figure 3.4 Plot of the contours of the unregularized error function (blue) along with the constraint region (3.30) for the quadratic regularizer q=2 on the left and the lasso regularizer q=1 on the right, in which the optimum value for the parameter vector \mathbf{w} is denoted by \mathbf{w}^* . The lasso gives a sparse solution in which $w_1^*=0$.

Apprentissage Statistique - P. Gallinari

ightharpoonup Penalisation L_2

▶ Coût

$$C = C_1 + \lambda \sum_{j=1}^n |w_j|^2$$

Gradient

Update

La pénalisation est proportionnelle à w

ightharpoonup Penalisation L_1

Coût

$$C = C_1 + \lambda \sum_{j=1}^{n} \left| w_j \right|^1$$

Gradient

 \rightarrow sign(w) est le signe de w appliqué à chaque composante de w

Update

$$\qquad w = w - \epsilon \nabla_{w} C = w - \epsilon \lambda sign(w) - \epsilon \nabla_{w} C_{1}$$

La pénalisation est constante avec un signe sign(w)

Régularisation empirique pour les réseaux de neurones

$$C_2 = \sum_{i=1}^n w_i^2$$
 \rightarrow biaise la solution en diminuant les poids inutiles

$$C_2 = \sum_{i=1}^n \frac{\frac{w_i^2}{c^2}}{1 + \frac{w_i^2}{c^2}} \longrightarrow 2 \text{ groupes de poids autour de c}$$

$$C_2 = \alpha \sum_{i=1}^n \frac{\frac{w_i^2}{c}}{1 + \frac{w_i^2}{c}} + (1 - \alpha) \sum_{i=1}^n \frac{\frac{h_i^2}{c}}{1 + \frac{h_i^2}{c}} \rightarrow \text{cellules cachées h + poids}$$

- Utiliser des contraintes différentes suivant le rôle des poids
- Problème : détermination des "hyper-paramètres"

Autres idées pour le problème de la généralisation dans les réseaux de neurones

- Arrêt de l'apprentissage
- Elagage : tuer les paramètres inutiles dans un réseau. Différentes mesures d'utilité ont été proposées
- Bruiter les entrées (Matsuoka 1992 ; Grandvallet et Canu 1994 ; Bishop 1994)
- Réseaux à convolution

Exemple (Cibas et al, 95, 96)

- Discriminer entre trois classes de "formes d'onde".
 - Les trois formes de base pour la génération des formes d'onde :

▶ 3 classes Cl¹, C2, C3⁵engendres respectivement par: ²¹

$$x = uh_{1} + (1 - u)h_{2} + 2\varepsilon$$

$$x = uh_{1} + (1 - u)h_{3} + 10\varepsilon$$

$$x = uh_{2} + (1 - u)h_{3} + 26\varepsilon$$

u v. a. de densité uniforme sur [0,1], $\varepsilon \sim N(0,I)$, Classes équiprobables

- ▶ Apprentissage = 10 ensembles disjoints, chacun de 300 exemples
- ► Test = 5000 exemples
- Algorithme : Rétropropagation

Evolution des performances pendant l'apprentissage

> Sans régularisation

□ Figure I a (left), b (right): evolution of the performances (mean square error) during training for MLPs with a varying number of hidden units. (a) corresponds to a stochastic gradient descent and (b) to a conjugate gardient. Each curve corresponds to a two weight layer MLP, the number on the curve gives the size of the hidden layer.

Evolution des performances pendant l'apprentissage

Avec régularisation

□ Comparaison de l'erreur en apprentissage (a) et en généralisation (b) pour les réseaux h=15 et h=60 en minimisant le coût ordinaire sans terme de régularisation (...-ord) et le coût avec la régularisation: avec détermination des paramètres à priori (...-WD) et en les estimant pendant l'apprentissage (...-estim)

Fonctions à Base Radiale

- Réseau à deux couches
 - Notations
 - wi. = poids vers la cellule i, xi sortie de la cellule i, x entrée

Couche de sortie

$$A = w_0 + \sum_j w_j x_j$$
$$g = \text{Id}$$

Couche intermédiaire

$$A = ||x - w||^2$$
$$g(A) = e^{-\frac{A}{\sigma^2}}$$

$$y_{i} = G_{i}(x) = w_{i0} + \sum_{j} w_{ij} g\left(\left\|x - w_{j}\right\|^{2}\right)$$
Risque: moindres carrés

La fonction sigmoïde

Distribution de la famille exponentielle :

$$p(x, \theta, \phi) = \exp((\theta^T x - b(\theta))/a(\phi) + c(x, \phi))$$

- q, f : paramètres de la loi, (q paramètre de position, f paramètre de dispersion).
- Ex. de distributions exponentielles : normale, gamma, binomiale, poisson, hypergéométrique ...
- Hypothèse : la distribution des données conditionnellement à chaque classe est de la famille exponentielle, avec un paramètre de dispersion identique pour toutes les classes i.e.:
- Alors

$$p(x/C_{i}) = \exp((\theta_{i}^{T} x - b(\theta_{i}))/a(\phi) + c(x, \phi))$$

$$P(C_{i}/x) = \frac{1}{1 + e^{-(w^{T} x + b)}}$$

Capacités d'approximation des PMC

- Résultats basés sur les théorèmes d'approximation de l'analyse fonctionnelle.
 - ▶ (Cybenko (1989))
 - Théorème I (regression): Soit f une fonction saturante continue, alors l'espace des fonctions de la forme $g(x) = \sum_{j=1}^{n} v_j f(\mathbf{w}_j ... \mathbf{x})$ est dense dans l'espace des fonctions continues sur le cube unité C(I). i.e. $\forall h \in C(I)et \ \forall \epsilon > 0, \exists \ g: |g(x) h(x)| < \epsilon$ sur I
 - Théorème 2 (classification): Soit f une fonction saturante continue. Soit F une fonction de décision définissant une partition de l. Alors $\forall \epsilon > 0$, il existe une fonction de la forme $g(x) = \sum_{j=1}^n v_j f(\mathbf{w}_j ... \mathbf{x})$ et un ensemble $D \subset I$ tel que $mesure(D) = 1 \epsilon(D)$ $|g(x) h(x)| < \epsilon$ sur D

.

- ▶ (Hornik et al., 1989)
 - Théorème 3 : Pour toute fonction saturante croissante f, et toute mesure de probabilité m sur R^n , l'espace des fonctions de la forme $g(x) = \sum_{j=1}^n \nu_j f(\mathbf{w}_j ... \mathbf{x})$ est uniformément dense sur les compacts de $C(R^n)$ espace des fonctions continues sur R^n

- Fonctions radiales (Park & Sandberg, 1993)
 - ▶ **Théorème** 4 : Si *f*, fonction réelle définie sur Rⁿ est intégrable, alors l'espace des fonctions de la forme :

est dense dans L^I(Rⁿ) ssi

$$g(x) = \sum_{j=1}^{N} v_j \cdot f(\frac{x - w_{j}}{\sigma_j})$$

$$\int_{R^n} f(x)dx \neq 0$$

- Résultats basés sur le théorème de Kolmogorov
- Théorème sur la représentation (exacte) des fonctions réelles de Kolmogorov
 - ▶ Toute fonction h de C(I) peut s'écrire sous la forme

$$h(x_1,...,x_n) = \sum_{q=1}^{2n+1} g_q(\sum_{p=1}^n f_{pq}(x_p))$$

où les fonctions g et f sont des fonctions continues d'une variable.

- Théorème 6 (Kurkova 1992)
 - Soit h dans C(I), $n \ge 2$ et $\varepsilon \in \mathbb{R}^+$, alors quelquesoit $m \in \mathbb{N}$ vérifiant m = 2n + 1 $n/(m-n) + v < \varepsilon / ||h||$ $\omega_h(1/m) < v(m-n)/(2m-3n)$

v > 0

h peut être approximée à une précision ε par un perceptron possédant deux couches cachées de fonctions saturantes et dont les sorties sont linéaires. La première couche comprend n.m(m+l) unités et la seconde m²(m+l)n. Les poids sont universels sauf ceux de la dernière couche, pour toutes les fonctions f vérifiant :

$$\omega_f(d) = \sup\{|f(x_1, ..., x_n) - f(y_1, ..., y_n)|, x, y \in I \text{ et } |x_p - y_p| < \delta \ \forall \ p\}.$$

Interprétation probabiliste des sorties

- Risque théorique $R = E_{x,d} \left[\left(d h(x) \right)^2 \right]$
- Le min de R est obtenu pour $h^*(x) = E_d[d|x]$
- Le Risque théorique C pour la famille de fonction $F_w(x)$ se décompose de la façon suivante :

 - $C = E_d[(d E_d[d|x])^2] + E_{x,d}[(E_d[d|x] F_w(x))^2]$
- Considérons $E_d[(d E_d[d|x])^2]$
 - Ce terme est indépendant du modèle choisi et dépend uniquement des caractéristiques du problème (le bruit intrinsèque des données).
 - Il représente l'erreur minimum que l'on peut attendre sur ces données
 - $h^*(x) = E_d[d|x]$ est bien la solution optimale au problème $\min_h R = E_{x,d} \left[\left(d h(x) \right)^2 \right]$
- Minimiser $E_{x,d}[(d-F_w(x))^2]$ est équivalent à minimiser $E_{x,d}[(E_d[d|x]-F_w(x))^2]$
 - La solution optimale $F_{w*}(x) = \operatorname{argmin}_w E_{x,d}[(E_d[d|x] F_w(x))^2]$ est la meilleure approximation au sens des moindres carrés de E[d|x]

Interprétation probabiliste des sorties

- Cas de la Classification
 - On considère la classification multi-classes avec un codage des sorties désirées «1 vs all »
 - i.e. d = (0, ..., 0, 1, 0, ..., 0) avec un 1 en ième position si la sortie désirée est la classe classe i et 0 partout ailleurs
 - $h_i^* = E_d[d|x] = 1.P(C_i|x) + 0.(1 P(C_i|x)) = P(C_i|x)$
 - i.e. $F_{W^*}()$ est la meilleure approximation LMS de la fonction discriminante de Bayes (solution optimale pour la classification avec coûts 0/1).
 - de façon générale avec des sorties binaires
 - $h_i^* = P(d_i = 1|x)$
 - L'importance de la précision sur les sorties dépend de l'utilisation
 - classification : la précision peut ne pas être importante
 - estimation de probabilité conditionnelle : elle l'est

Décomposition biais-variance

- Illustre la problématique du choix de modèle en mettant en évidence l'influence de la complexité du modèle
 - On rappelle la décomposition de l'espérance du coût quadratique

$$E_{x,d}\left[\left(d - F_w(x)\right)^2\right] = E_d\left[\left(d - E_d[d|x]\right)^2\right] + E_{x,d}\left[\left(E_d[d|x] - F_w(x)\right)^2\right]$$

- On note $h^*(x) = E_d[d|x]$ la solution optimale à la minimisation de ce risque
- En pratique on ne dispose pas d'une infinité de données permettant d'obtenir un bon estimateur de $E_d[d|\mathbf{x}]$
 - L'estimateur obtenu dépendra de l'ensemble d'apprentissage D
 - L'incertitude sur l'estimateur liée au choix de l'ensemble d'apprentissage D peut être mesurée comme suit :
 - \square On tire une série d'ensembles d'apprentissage de taille $N: D_1, D_2, ...$
 - \square apprend $F_w(x, D)$ sur chacun de ces ensembles
 - □ On mesure la moyenne des coût empiriques sur chacun de ces ensembles
 - Examinons l'intuition derrière cette procédure

Décomposition biais-variance

- On considère l'erreur quadratique $(F(x; D) h^*(x))^2$ pour une donnée x et pour la solution $F_w(x; D)$ obtenue avec un ensemble d'apprentissage D
 - ▶ On note $E_D[F_w(x; D)]$ l'espérance sur D de ces solutions
- $(F(x; D) h^*(x))^2$ se décompose en

$$(F(x;D) - h^*(x))^2 = (F(x;D) - E_D[F_W(x;D)] + E_D[F_W(x;D)] - h^*(x))^2$$

$$(F(x;D) - h^*(x))^2 = \frac{(F(x;D) - E_D[F_W(x;D)])^2 + (E_D[F_W(x;D)] - h^*(x))^2}{+2(F(x;D) - E_D[F_W(x;D)])(E_D[F_W(x;D)] - h^*(x))}$$

- L'espérance de $(F(x; D) h^*(x))^2$ par rapport à D se décompose en
 - $E_{D}[(F(x;D) h^{*}(x))^{2}] = (E_{D}[F(x;D)] h^{*}(x))^{2} + E_{D}[F(x;D) E_{D}[F_{W}(x;D)])^{2}] = biais^{2} + variance$
- Intuition
 - ► Choisir le bon modèle nécessite un compromis flexibilité simplicité (cf régularisation)
 - Modèle flexible : faible biais forte variance
 - ▶ Modèle simple : fort biais faible variance

The Bias-Variance Decomposition (Bishop PRML)

- Example: 100 data sets from the sinusoidal, varying the degree of regularization
 - Model: gaussian basis function, Learning set size = 25, λ is the regularization parameter
 - Left 20 of the 100 models shown
 - ▶ Right : average of the 100 models (red), true sinusoid (green)

The Bias-Variance Decomposition (Bishop PRML)

Example: 100 data sets from the sinusoidal, varying the degree of regularization

The Bias-Variance Decomposition (Bishop PRML)

From these plots, we note that an over-regularized model (large λ) will have a high bias, while an under-regularized model (small λ) will have a high variance.

Deep Neural Networks and Representation Learning

Brief history

- Deep learning was popularized by Hinton 05 with a model called Restricted Boltzmann Machines
- Idea
 - Train several successive layers in an unsupervised way, stack them, stick a classifier at the last layer and do back propagation
- Developed by different actors Bengio 06, LeCun 06, Ng 07
 - And many others now
- Success story
 - Very active domain, technology adopted by big actors (Google, Facebook, Msoft ..)
 - Success in many different academic benchmarks for a large series of problems
 - Image / scene labeling
 - Speech recognition
 - Natural language processing
 - Translation
 - etc

Motivations

Learning representations

- Handcrafted versus learned representation
 - Very often complex to define what are good representations
- General methods that can be used for
 - different application domains
 - Multimodal data
 - Multi-task learning
- Learning the latent factors behind the data generation
- Unsupervised feature learning
 - Useful for learning data/ signal rerpesentations

Several families of techniques

- Matrix factorization, dictionary learning, compressed sensing
- Latent probabilistic models
- (deep) Neural networks are the focus of this course

Complement to the NN course

More units

- In addition to the logistic or tanh units, already seen in the NN course, other forms may be used some of the popular forms are:
 - Rectifier linear units
 - $g(x) = \max(0, b + w. x)$
 - □ Rectifier units allow to draw activations to 0 (used for sparse representations)
 - Maxout

$$\square g(x) = \max_{i} (b_i + \boldsymbol{w}_i.\boldsymbol{x})$$

- Generalizes the rectifier unit
- ☐ There are multiple weight vectors for each unit
- Softmax
 - Used for classification with a 1 out of p coding (p classes)
 - ☐ Ensures that the sum of predicted outputs sums to I

$$g(x) = softmax(\mathbf{b} + W\mathbf{x}) = \frac{e^{b_i + (Wx)_i}}{\sum_{j=1}^{p} e^{b_j + (Wx)_j}}$$

Mean square error and maximum likelihood

- Remember the following result concerning minimization of MSE
- Mean square loss $R = E\left[\left(d h(x)\right)^2\right]$
- Min of R is obtained for $h^*(x) = E_d[d|x]$
- MSE for a family of function $F_w(x)$
 - $\triangleright \mathsf{C} = E_{x,d}[(d F_w(x))^2]$
 - $C = E_{x,d}[(d E[d|x])^2] + E_{x,d}[(E[d|x] F_w(x))^2]$
- $\Rightarrow h^*(x) = E[d|x]$ is the optimal solution to Min_w C
- $w^* / R(w^*) = Min_w C$ minimizes simultaneously:
 - $E_{x,d}[(d-F_w(x))^2]$ LMSE
 - $E_{x,d}[(E_d[d|x] F_w(x))^2]$ best LMS approximation of E[d|x]

Mean Square error maximum likelihood

- Statistical model of the regression
 - $d = F_w(x) + \epsilon$, where ϵ is a random variable modeling the error (variability)
 - \blacktriangleright Let ϵ be a i.i.d. Gaussian random variable

$$\rho \in N(0, \sigma^2), \qquad p(\epsilon) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{\epsilon^2}{2\sigma^2})$$

- The posterior distribution of d is $p(d | x; w) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{(d-F(x))^2}{2\sigma^2})$
- Likelihood

$$L(w) = \prod_{i=1}^{N} p(d^{i} | \mathbf{x}^{i}; \mathbf{w})$$

- Maximum likelihood
 - Choose the parameter w qui maximizing L(w) or alternatively any increasing function of L(w) such as
- ▶ log likelihood l(w) = logL(w)

$$l(\mathbf{w}) = N \log \left(\frac{1}{\sqrt{2\pi}\sigma} \right) - \frac{1}{2\sigma^2} \sum_{i=1}^{N} \left(d^i - \mathbf{F}(\mathbf{x}^i) \right)^2$$

• Under normal hypothesis on $p(d \mid x; w)$, maximizing the likelihood is equivalent to minimizing the MSE loss

Cross-entropy loss – 2 classes

- 2 classes classification problem
 - ▶ Target is d = 1 if $x \in C_1$, 0 if $x \in C_2$
 - We consider a discriminant function y = F(x)
 - Here we take, $F(x) = \frac{1}{1 + \exp(-a)}$ with $a = w \cdot x + w_0$, i.e. **logistic function**
 - The posterior probability of a class is a Bernoulli distribution and can be written
 - $p(d|x) = y^d (1-y)^{1-d}$
 - \Box d target output, y computed output
 - Likelihood

$$\prod_{i=1}^{N} (y^i)^{d^i} (1-y^i)^{1-d^i}$$

- Loss: negative log-likelihood
 - $L = -\sum_{i=1}^{N} (d^i \log y^i + (1 d^i) \log (1 y^i)) = -\sum_{i=1}^{N} \log (p_\theta(d|x))$ for the Bernoulli distribution $y = p_\theta(d|x)$
 - ▶ This is the cross entropy between the target and computed posterior class distributions
 - ▶ The minimum is obtained for $y^i = d^i \ \forall i = 1..N$
 - \rightarrow This cross entropy loss could be used also when the targets are not binary but in the range [0,1]
 - It can be shown that the optimal solution to the minimization of L is F(x) = p(d = 1|x) this means that (with the logistic function F) the learned y^i will approximate this posterior probability

Cross-entropy loss – multiple classes

- p mutually exclusive classes
 - One considers a I out of p target coding scheme
 - i.e. the target has a 1 at the position corresponding to the class and 0 elsewhere
 - □ e.g. d = (0,1,0,...,0) if $x \in Class\ 2$
 - $\square p(d^i|x) = \prod_{k=1}^p (y_k^i)^{d_k^i}$
 - \square $\log(p(d^i|x)) = \sum_{k=1}^p d_k^i y_k^i$ only I term is non 0 in this sum
 - □ Negative log likelihood
 - $\square L = -\sum_{i=1}^{N} \sum_{k=1}^{p} d_k^i log y_k^i$
 - Which is equivalent to $L=-\sum_{i=1}^N log y_*^i$ with y_*^i the output corresponding to d_*^i =1
 - □ Minimum when $y_k^i = d_k^i \ \forall i = 1 ... N$
 - ☐ Activation function: **softmax**
 - ▶ The outputs must be in [0,1] and sum to I
 - $y_k = \frac{\exp(a_k)}{\sum_{k'=1}^p \exp(a_{k'})}$ with $a_k = w_k. x + w_{k,0}$
 - \blacktriangleright Again this for is also suitable for targets in [0,1] that sum to unity
 - ▶ This is called the multinoulli distribution
 - y_k can be interpreted as the posterior probability of class k

- More generally, a probabilistic interpretation of NNs (and other parametric models) can be obtaind by considering for the loss function a negative log-likelihood
 - $L(F(\mathbf{x}), \mathbf{d}) = -\log(p(\mathbf{d}|\mathbf{x}))$
 - If d is a continuous variable and we make the hypothesis that it is conditionnally gaussian with mean F(x), we get the MSE loss
 - If d is binary and we make the hypothesis that it is conditionnally Bernoulli with probability F(x) = p(d = 1|x) we get the cross entropy loss
- For multiple outputs
 - lacktriangleright One has to specify the form of the joint distribution of the output variables conditionally on x
 - e.g. conditional independence
 - $p(d_1, \dots, d_p | x) = \prod_{i=1}^k p(d_i | x)$

Auto-encoders

Auto-encoders

- This is a neural network (MLP) trained to reproduce the inputs at the outputs
- Early attempts date back to the 80s with the auto-associative memories (Kohonen)
- Renewed interest since 2006 for learning representations and for deep learning
- Basic scheme

- Neurons in the hidden and output layers could be of any type
 - In the following one will assume hat units are sigmoid (but any differentiable function could be used)
 - Note that when using saturating functions like sigmoids, the x values shall be coded in a fixed interval [0, 1] for sigmoids
 - Otherwise use linear ouput units

Auto-Encoders - Training

- Training set $\{x^1, ..., x^N\}$
 - this is unsupervised learning
- ▶ The transition function of the AE is $F = g \circ f$
 - f is called the encoder, g is the decoder, h = f(x) is the code of x
- Loss function
 - different functions can be used such as Mean Square Error or cross Entropy for example
- Algorithm
 - \blacktriangleright Auto-Encoders can be trained with back propagation, using the xs both as inputs and outputs
 - The auto-encoder will try to reproduce the input, i.e. to learn the identity function
- In order to avoid this trivial solution, one will impose constraints on the hidden layer
 - Undercomplete representations
 - One possible constriant is to limit the number of hidden units
 - The A-E will learn a compressed representation of the data by exploiting the correlation among the features, this is called **undercomplete** representation
 - rq: if all units are linear, AE trained with MSE performs a transformation f similar to PCA, i.e. it will learn the projection that maximizes the variance of the data (without the orthogonal property, of PCA but this can be easily solved
 - Overcomplete representations
 - More recently, other constraints have been used with a hidden layer that may be even larger than the input layer
 - When the representation is larger than the input space, it is called **overcomplete** representation

Learning overcomplete representations

- In order to learn overcomplete representations different constraints have been proposed either on the form of the learned F function or on the hidden units
 - Sparse auto-encoders
 - A sparse representation is a representation such that for a given x, only a small number of the values in h are non zero
 - Sparse representations have some desirable properties
 - \Box e.g. it allows the mapping F to respond differently to different regions in the input space, i.e. hidden units specialize on some input regions (see manifold interpretation)
 - ☐ This corresponds to learning local mappings
 - ☐ This is usually implemented through constraints operating on the hidden units
 - Contractive auto-encoders
 - this encourages the derivative $\frac{\partial h}{\partial x}$ to be close to 0, so that h is not sensible to variations in x except in the directions where this is meaningful
 - Prior on the distribution of hidden units
 - Under a probabilistic interpretation of the NN, priors can play the role of constraints
 - Dropout
 - Specific heuristic effective for large NN

Sparsity for hidden units representation

- Sparsity is often imposed using a regularization term in the loss function
 - \rightarrow C = C₁ + λ C₂(F)
 - With C_2 constraining the activation of h towards 0
- Different penalization terms may be used to enforce sparsity
 - $L_1 \text{ norm } C_2 = |\mathbf{h}|_1$
 - Kullback Leibler divergence penalty $C_2 = -\sum_{i=1}^{card(h)} s \log(\widehat{h_i}) + (1-s) \log(1-\widehat{h_i})$
 - The summation is over the hidden units
 - \blacktriangleright the hidden units are assumed sigmoid (values in [0,1]) and h_i is the activation of hidden unit i
 - $\widehat{h_i}$ is the mean value of h_i over the training examples
 - s is a **sparsity parameter**, typically set at a low value e.g. 0.05
 - ▶ Kulback Leibler divergence between 2 discrete distributions P and Q is a dissimilarity measure between these 2 distributions
 - $\square KL(P||Q) = \sum_{i} P(i) \log \frac{P(i)}{Q(i)}$
 - $KL(s||h) = s \log(\frac{s}{h}) + (1-s)\log(\frac{1-s}{1-h})$ is KL divergence between 2 Bernoulli distributions of means s et h
 - Kullback Leibler divergence penalty forces the mean value of the hidden units to be close to s and thus to have a low mean value

Derivatives for back propagation

- Note that these sparsity terms are defined on the activations of the training data
- Computing them thus requires a forward pass through the training set in order to compute the required average values
- Then these mean values can be used for computing the gradient of these loss function

Visualizing hidden units activities

- One way to understand what a hidden unit (or any unit) is doing is to look at its weight vector
- We consider here unit activations based on dot products like sigmoid or tanh units
- Example (image from A. Ng cite)
 - ▶ Auto-encoder trained on a small set of 10x10 images
 - ▶ 100 hidden units
 - Each square represents the (normalized) weights of a
 - Grey value indicates the weight value
 - Each hidden unit has learned a feature detector
 - Here mostly image edges (gradient) detectors
 at different angles and positions

Probabilistic interpretation of auto-encoders

- The loss criteria can be given a probabilistic interpretation
- If we make the hypothesis of the existence of a conditional output distribution, the training objective is
 - $L = -\log p(x|F(x))$
 - If the conditional distribution is gaussian we get MSE, if it is a Bernoulli, we get the cross entropy loss
- For sparse auto-encoders
 - lack A prior distribution on $m{h}$ the hidden unit vector, corresponds to a regularization term for the loss
 - e.g. Laplace prior on \boldsymbol{h} corresponds to the L_1 regularization on the hidden units activity
 - $L = -\log p(x|F(x)) + \lambda \sum_{i=1}^{n_h} |h_i| = -\log p(x|g(h)) + \lambda \sum_{i=1}^{n_h} |h_i|$
 - Note that all penalty terms do not need to have a prior interpretation (e.g. cross entropy on h)

Combining auto-encoders with a classifier

- ▶ The features learned can be used as inputs to any other system
- Instead of using the input features x use h = f(x)
- Example for classification
 - I. train an autoencoder
 - $\qquad \{x^1,\ldots,x^N\} \rightarrow \{h^1,\ldots,h^N\}$

- 2. use the codes to train a classifier
 - $\{(h^1, d^1), \dots, (h^N, d^N)\}$
 - Assuming here a 3 class problem

e.g. sigmoid units (logistic classifier)

Both NN (encoder and classifier) can be trained separately using stochastic gradient descent

Join training of the auto-encoder and the classifier

Fine tuning

- Separate training of each layer can be used as initialization
- Then stack the coding and classification layers one upon the other and fine tune the new NN using back propagation as in a classical MLP

Deep auto-associators

- Idea
 - train successive layers of auto-associators in the hope of learning more complex features of the inputs
- Strategy (greedy layer wise training)
 - Each auto-associator will be trained using the representation layer of a previous auto-associator
 - ▶ The encoding layer of the different netwoks will then be stacked
 - After that fine tuning can be performed as before for a classification task
- Why not learning all the layers at once
 - Vanishing gradient
 - ☐ The gradients propagated backwards diminish rapidly in magnitude so that the first layers will not learn much
 - □ Non linear form of the loss function: many local minima

Deep architectures

- autoassociators can be stacked
 - ▶ Plus fine tuning using the last hidden layer if this is relevant for the task

Why using auto-association

- Unsupervised learning
 - Often easy to get very large quantities of unlabeled data
 - Allows the extraction of « meaningful » features
 - These features can be used as preprocessing for other learning machines (e.g. classification) and for other datasets (same type of data but with different characteristics or another density distribution)
 - e.g extract meaningful image feature extractors on a large dataset that can be used for other image datasets
- Supervised fine tuning
 - Can be used with other datasets when labels are available for the latter
- Today, there exists procedures for training deep NN architectures from scratch

CNN: Convolutional Neural Nets

Local connections

- In many cases, data exhibit local properties, i.e. short term or space dependencies between characteristics
 - e.g. images, speech signal
- Instead of computing global statistics via fully connected layers, one may use local connections
 - ▶ This also allows the reduction of the number of parameters

Shared connections: convolutions

- Local connections may be constrained to have the same weight vector
 - This is called shared weights
 - This is equivalent to convolve a unique weight vector with the input signal
 - Think of a local edge detector for images
 - This reduces even more the number of free parameters
 - In the figure, colors indicate a weight value, here the 3 hidden units share the same weight vector

Shared connections: convolutions

- Several convolution filters can be learned simultaneously
- ▶ This corresponds to applying a set of local filters on the input signal
 - e.g edge detectors at different angles for an image
 - Here colors indicate similar weight vectors

Pooling

- The number of extracted features on the hidden layer can be very large if one uses several filters
- In order to reduce this number, one may use pooling
 - ▶ This consists in aggregating statistics for these features over a region of the signal
 - Pooling operator : max, mean of the input units
 - For an image or a spatial signal, pooling of features generated by the same convolutional filter brings some invariance to small translations of the input signal

Pooled feature (max or mean operator)

Convolutional features

Convolutional nets

- ConvNet architecture (Y. LeCun since 1988)
 - Deployed e.g. at Bell Labs in 1989-90
 - Character recognition
 - Convolution: non linear embedding in high dimension
 - Pooling: average, max

In Convnet

- The first hidden layer consists in 64 different convolution kernels over the initial input, resulting in 64 different mapping of the input
- The second hidden layer is a sub-sampling layer with I pooling tranformation is applied to each matrix representation of the first hidden layer
- etc
- Last layer is a classification layer

Convolutional nets - visualization

▶ Hand writing recognition (Y. LeCun Bell labs 1989)

Convolutional nets (Krizhevsky et al. 2012)

- ▶ A landmark in object recognition
- Imagenet competition
 - Large Scale Visual Recognition Challenge
 - ▶ 1000 categories, 1.5 Million labeled training samples
 - Method: large convolutional net
 - ▶ 650K neurons, 630M synapses, 60M parameters

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

Convolutional nets (Krizhevsky et al. 2012)

Details of learned weights

Labels

- True label under the image
- Predicted label probability for the 5 most probable labels

Figure 3: 96 convolutional kernels of size $11 \times 11 \times 3$ learned by the first convolutional layer on the $224 \times 224 \times 3$ input images. The top 48 kernels were learned on GPU 1 while the bottom 48 kernels were learned on GPU

Learning word vectors (Collobert et al. JMLR 2011)

Learning word vector representations

(Mikolov et al. 2013a, 2013b)

Goal

- Learn robust vector representation of words that can be used in different Natural Language Processing or Information retrieval tasks
- Learn word representations in phrase contexts
- Learn using **very** large text corpora
- ▶ Learn efficient, low complexity transformations

Learning word vector representations

(Mikolov et al. 2013a, 2013b)

CBOW model

- Task
 - Predict the midle word of a sequnce of words
- Input and output word representations are learned jointly
 - (random initialization)
- ▶ The projection layer is linear followed by a sigmoid
- Word weight vectors in the projection layer are shared (all the weight vectors are the same)
- The output layer computes a hierarchical softmax
 - See later
 - This allows computing the output in $O(\log_2(dictionary\ size))$ instead of $O(dictionary\ size)$
- The context is typically 4 words before and 4 after

CBOW

Learning word vector representations (Mikolov et al. 2013a, 2013b)

Skip Gram model

- Similar to the CBOW model, except that the context is predicted from the central word instead of the reverse
- Input and outputs have differet representations for the same word
- ▶ The output is computed using a hierarchical softmax classifier
- Output words are sampled less frequently if they are far from the input word
 - ▶ i.e. if the context is C = 5 words each side, one selects $R \in \{1; C\}$ and use R words for the output context

Learning word vector representations (Mikolov et al. 2013a, 2013b)

Skip gram model

- Loss average log probability
- $L = \frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log p(w_{t+j}|w_t)$
 - Where T is the number of words in the whole sequence used for training (roughly number of words in the corpus) and c is the context size
- $p(w_{out}|w_{in}) = \frac{\exp(v_{w_{out}}.v_{w_{in}})}{\sum_{w=1}^{V} \exp(v_{w}.v_{w_{in}})}$
 - Where v_w is the learned representation of the w vector (the hidden layer), $v_{w_{out}}$. $v_{w_{in}}$ is a dot product and V is the vocabulary size
 - Note that computing this softmax function is impractical since it is proportional to the size of the vocabulary
 - In practice, this can be reduced to a complexity proportional to $\log_2 V$ using abinary tree structure for computing the softmax
 - □ Other alternatives are possible to compute the softmax in a reasonable time

Learning word vector representations

(Mikolov et al. 2013a, 2013b)

Properties

- « analogical reasoning »
- This model learns analogical relationships between terms in the representation space

i.e. term pairs that share similar relations are share a similar geometric transformation

in the representation space

Example for the relation « capital of »

In the vector space

□ Paris – France + Italy = Rome

☐ At least approximatively

□ i.e. Rome is the nearest vector to

Paris – France + Italy

Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their capital cities. The figure illustrates ability of the model to automatically organize concepts and learn implicitly the relationships between them, as during the training we did not provide any supervised information about what a capital city means.

Learning word vector representations

(Mikolov et al. 2013a, 2013b)

Paris – France + Italy = Rome

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skipgram model trained on 783M words with 300 dimensionality).

Relationship	Example 1	Example 2	Example 3
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tattahassee
big - bigger	small: larger	cold: colder	quick: quicker
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
Sarkozy - France	Berlusconi: Italy	Merket: Germany	Koizumi: Japan
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
Berlusconi - Silvio	Sarkozy: Nicotas	Putin: Medvedev	Obama: Barack
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

DeViSE: A Deep Visual-Semantic Embedding Model (Frome et al, NIPS 2013)

Goal

Learn to label images

Approach

- Learn a language model from text
 - With the skip gram model of Mikolov et al.
 - This models maps each word of a vocabulary onto a fixed vector space representation
 - ☐ This is called word representation
 - Vectors are normalized to I
- Learn a visual model for image classification
 - Similar to the convolutional model of Krizhevsky et al. 2012, trained with 1000 target classes
 - The last layer of this network computes a representation of each image
 - □ This is called image representation
- Visual-semantic embedding
 - The language model is used to map the label terms onto the fixed word vector space representation
 - A mapping is learned from the visual representation to the target words, word representation
 - ☐ This is a linear mapping with a ranking criterion
 - □ This is called transformation mapping
- Test time
 - An image is
 - □ mapped onto its image representation
 - □ This image representation is then mapped via the transformation mapping
 - □ A nearest neighbor search produces a ranked list of potential labels

DeViSE: A Deep Visual-Semantic Embedding Model (Frome et al, NIPS 2013)

(image from Frome et al, NIPS 2013)

Figure 1: (a) Left: a traditional visual object categorization network with a softmax output layer. Right: a skip-gram language model, which learns word representations that allow the prediction of nearby words in a document. Center: our joint model, which is initialized with parameters pre-trained at the lower layers of the other two models. (b) t-SNE visualization [16] of the skip-gram language model embedding space across a subset of image recognition labels.

$$loss(image, label) = \sum_{j \neq label} \max[0, margin - \vec{t}_{label} M \vec{v}(image) + \vec{t}_{j} M \vec{v}(image)]$$

DeViSE: A Deep Visual-Semantic Embedding Model (Frome et al, NIPS 2013)

Loss function

- Ranking criterion
- Where
 - $t^{textlabel}$ is the row vector of the text label representation (normalized to unit norm)
 - ▶ *M* is the matrix of the linear transformation
 - $m{v}^{image}$ is the column vector of the image representation
 - $m{t}^j$ is the row vector of another term representation (another text label also normalized to unit norm)
 - $m{t}^{textlabel} M m{v}^{image}$ is a dot product (similarity) between $m{t}^{textlabel}$ and $M m{v}^{image}$
- \blacktriangleright This loss function was more efficient than an L_2 loss in the experiments
- Training algorithm
 - Stochastic gradient descent
- Intersting properties
 - Generalization to images with new labels (0 shot learning)

DeViSE: A Deep Visual-Semantic Embedding Model (Frome et al, NIPS 2013)

Figure 2: Zero-shot predictions of the joint semantic visual model and a vision model trained on ImageNet 2012 1K. Predictions ordered by decreasing score. Correct predictions labeled in green. Ground truth: (a) telephoto lens, zoom lens; (b) English horn, cor anglais; (c) babbler, cackler; (d) pineapple, pineapple plant, Ananas comosus; (e) salad bar; (f) spacecraft, ballistic capsule, space vehicle.

Objective

- Learn triplets (Subject, Predicate, Object) from multi-relational data
- Examples
 - Knowledge bases
 - \Box (S, P, O) = (Obama, president of, USA)
 - □ e.g. Freebase 1.2 billion triplets, 80 million entities, thousands of relations
 - Social networks
 - \Box (A, friend of, B)
- Infer new relations
 - ▶ (S, P, ?) infer all objects in relation p with s
 - ▶ (S, ?, O) infer all relations between s and o
- Any other inference task on the triplets

Method

- Learn representations for all occurrences of S, P and O so that (S, P, ?) and (S, ?,
 O) questions can be answered
- Use the observations made in Word2Vec
 - When learning word representations from word sequences, some relations emerge as translations between s and o
 - ▶ Here the model will force the learning of translations in the representation space
 - Let $s, p, o \in \mathbb{R}^k$ the representations to be learned for S, P, O
 - \Box One wants $s + p \approx o$ if (S, P, O) holds
- Representations are learned by optimizing a loss function representing this goal

- The loss function is a margin based ranking function
 - $L = \sum_{(S,P,O)\in KB} \sum_{(S',P,O'),noisy\ version\ of\ (S,P,O)} \max(0,margin+d(s+p,o)-d(s',p,o'))$
 - Where
 - d(s + p, o) is a disimilarity measure (e.g. distance)
 - (S', P, O') is a corrupted version of (S, P, O), where either S has been replaced by a random subject S' from the knowledge base or O has been replaced by O'
 - Margin is a positive scalar
 - This loss is a ranking based criterion
 - i.e. it forces $margin + d(s + p, o) \le d(s', p, o')$
 - Training
 - \Box It amounts at learning the representations s, p, o by optimizing the loss
 - □ Optimization is performed by stochastic gradient
 - □ With the constraint ||s|| = ||o|| = 1

Examples (from Bordes et al. 2013)

Table 5: Example predictions on the FB15k test set using TransE. Bold indicates the test triplet's true tail and *italics* other true tails present in the training set.

Department of the control of the con			
INPUT (HEAD AND LABEL)	PREDICTED TAILS		
J. K. Rowling influenced by	G. K. Chesterton, J. R. R. Tolkien, C. S. Lewis, Lloyd Alexander,		
	Terry Pratchett, Roald Dahl, Jorge Luis Borges, Stephen King, Ian Fleming		
Anthony LaPaglia performed in	Lantana, Summer of Sam, Happy Feet, The House of Mirth,		
	Unfaithful, Legend of the Guardians, Naked Lunch, X-Men, The Namesake		
Camden County adjoins	Burlington County, Atlantic County, Gloucester County, Union County,		
	Essex County, New Jersey, Passaic County, Ocean County, Bucks County		
The 40-Year-Old Virgin nominated for	MTV Movie Award for Best Comedic Performance,		
	BFCA Critics' Choice Award for Best Comedy,		
	MTV Movie Award for Best On-Screen Duo,		
	MTV Movie Award for Best Breakthrough Performance,		
	MTV Movie Award for Best Movie, MTV Movie Award for Best Kiss,		
	D. F. Zanuck Producer of the Year Award in Theatrical Motion Pictures,		
	Screen Actors Guild Award for Best Actor - Motion Picture		
Costa Rica football team has position	Forward, Defender, Midfielder, Goalkeepers,		
	Pitchers, Infielder, Outfielder, Center, Defenseman		
Lil Wayne born in	New Orleans, Atlanta, Austin, St. Louis,		
	Toronto, New York City, Wellington, Dallas, Puerto Rico		
WALL-E has the genre	Animations, Computer Animation, Comedy film,		
	Adventure film, Science Fiction, Fantasy, Stop motion, Satire, Drama		

Recursive neural networks (Socher et al. 2013)

- Exemple bengio slide Canadian Al 2014
- Layer wise was an idea from 2006. Now possible to learn without pre-training better intitilazation and alternative non linearities (e.g. rectifier)
- Compositionality
 - Recursive NNs à donner en exemple socher
 - Autres papiers ?
 - Distributed representations : mutually exclusice features (disantangle)
- Exemples
 - Collobert example
 - Bordes
 - S. bengio NIPS 2013, S. Bengio, Weston, Usunier
- Sparse representations
- Dropout

Recurrent networks

Recurrent networks

- Dynamics
 - time limited
 - □ Stop the dynamic after a # time steps
 - unlimited
 - □ Wait for convergence: stable state or limit cycle
- Input x :

 - $\mathbf{x}(\mathbf{t}) = \mathbf{x}(\mathbf{t}_0), \forall \mathbf{t}$
 - x(t) : sequence
- Supervision
 - Defined in the time x units space {1,...T} x {units}
 - e.g. at each step, at some prespecified stpes x units, at the end of the sequence, ...
- Recurrent neural networks are dynamic, non linear and continuous state models

Two types of formulation

- ► Input output
- State models

$$y(t) = f(x(t))$$

$$\begin{cases} c(t) = f(c(t-1), x(t-1)) \\ y(t) = g(c(t)) \end{cases}$$

□ State models include the input-output formulation as a special case

Algorithms

- Deux main families:
 - □ Local recurrences
 - □ Global recurrences

Local recurrences (1)

- Fixed recurrent connexions
 - Probably the simplest architecture
 - Recurrent connections are fixed by hand
 - Only the forward connections are learned like in classical back propagation

$$\begin{cases} c(t+1) = f(c(t), x(t)) \\ y(t) = g(c(t), x(t)) \end{cases}$$

- Can be used in two modes
 - ightharpoonup x fixed ightharpoonup sequence generation
 - □ E.g. x is the first term of a sequence to be generated by the network
 - ▶ x sequence $x(1), ..., x(T) \rightarrow$ classification

Local recurrences (2)

- Here the local connections are learned
- The figure illustrates the simple case of self connections in the hidden layer (i.e. the connection matrix is diagonal)
- Extensions
 - Several time delays (1, 2, ...)
 - Non diagonal recurrent matrix

 \mathbf{X}

- e.g. if delay = 1, the hidden state at time t is:
 - $h_i(t) = f(w_{ii}h_i(t-1)) + \sum_{j \text{ input cell }} w_{ij}x_j(t))$
 - Mhere h_i is the state of hiden cell i
- Training: back-propagation for sequences
 - Loss: $Q = \sum_{t \in T} \sum_{i=1..p} \delta_t \left(y^i(t) d^i(t) \right)^2$
 - Where t are the supervision steps and $\delta_t=1$ is t is a supervision step and 0 otherwise

Properties:

- Forgeting behavior: gradient vanishing:
 - Can only memorise short term dependencies

$$\frac{\partial x_{i}(t)}{\partial x_{j}(t-q)} \underset{q \to \infty}{\longrightarrow} 0$$

- Can learn fixed size sequences up to the desired precision
- For unknown size sequences, there exists several limitations, e.g. cannot count the number of occurrences in a sequence of unknown length

Global recurrences

Dynamics

$$x_{i}(t+1) = f(\sum_{j} w_{ij} x_{j}(t) + x_{0i}(t))$$

- Training
 - ▶ Targets are provided at specific steps
- For sequences of limited size
 - Network unfolding
 - Algorithm
 - Back propagation through time
- For general sequences
 - Algorithm is $O(n^4)$ if n units

Unfolded NN:

note that weights are shared

Example: trajectory learning

(Pearlmutter, 1995, IEEE Trans. on Neural Networks - nice review paper on RNN)

▶ Globally recurrent net: 2 output units

Fig. 9. The output states y₁ and y₂ plotted against each other for a 1000 time unit run, with all the units in the network perturbed by a random amount about every 40 units of time. The perturbations in the circle network (left) were uniform in ±0.1, and in the figure eight network (right) in ±0.05.

Example: trajectory learning

(Pearlmutter, 1995, IEEE Trans. on Neural Networks)

Recurrent net with 2 input units (sin q, cos q), 30 hidden units and 2 output units (x,y):

$$\begin{pmatrix} x \\ y \end{pmatrix} = 0.4 \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \sin \pi t/16 \\ \cos \pi t/16 \end{pmatrix} + \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}$$

▶ Goal: learn a trajectory that depends on the inputs

Recurrent neural networks with memory

- Several attempts in order to limit or bypass the vanishing gradient problem
- Here we present two models based on the same idea
 - Add a memory to the recurrent cell, that enable to remember past states
 - Add a possibility to forget the past of the sequence during its processing
 - ▶ Allows to model several successive sub-sequences as independent sequences

Gated recurrent unit – GRU (Cho et al. 2014)

- Let us start with a locally connected recurrent net with recurrent units on the hidden layer
 - $h_t = g(Wx_t + Uh_{t-1})$

 $\boldsymbol{\chi}_t$

- The gated recurrent unit has been proposed to capture dependencies at different time scales
- The forward computation for a gated recurrent unit is governed by the following equations (explained on the next slide):
 - $b_t^j = (1 z_t^j) h_{t-1}^j + z_t^j h_t^{'j}$
 - $\Box \quad z_t^j = \sigma(W_z \mathbf{x}_t + U_z \mathbf{h}_{t-1})$
 - $\Box h_t^{\prime j} = \tanh(W x_t + U(r_t \odot h_{t-1}))^j$

 - □ In these equations
 - \Box Bold characters (x_t, h_{t-1}) denote vectors
 - \Box h_t^j is the value of hidden cell j at time t
 - □ ⊙ is the elementwise multiplication

Gated recurrent unit (Cho et al. 2014)

- The output h_t^j of cell j is a weighted sum of the cell output at time t-I h_{t-1}^j and a new value of the cell $h_t^{\prime j}$
 - $h_t^j = (1 z_t^j) h_{t-1}^j + z_t^j h_t^{'j}$
 - z is a gating function
 - If z = 0 h_t^j is a simple copy of h_{t-1}^j
 - If z = 1 it takes the new value $h_t^{\prime j}$
 - w.r.t the classical recurrent unit formulation, this new form allows us to remember the value of the hidden cell at a given time in the past and reduces the vanishing gradient phenomenon
- The gating function is a function of the current input at time t and the past value of the hidden cell $m{h}_{t-1}$

$$z_t^j = \sigma(W_z x_t + U_z h_{t-1})$$

- The new value ${h_t^\prime}^J$ is a classical recurrent unit where the values at time t-I are gated by a reset unit r_t
 - $h_t^{\prime j} = \tanh(W x_t + U(r_t \odot h_{t-1}))^j$
- The reset unit r_t allows us to forget the previous hidden state and to start again a new modeling of the sequence
 - This is similar to a new state in a HMM (but it is soft)
 - $r_t^j = \sigma(W_r x_t + U_r h_{t-1})^j$

1-z

Gated recurrent unit (Cho et al. 2014)

- There are two main novelties in this unit
 - ▶ The z gating function and the + form of the cell value which acts for reducing the vanishing gradient effect
 - The r gating function which acts for forgeting the previous state and starting again a new subsequence modeling with no memory
- ▶ Each unit adapts its specific parameters, i.e. each may adapt its own time scale and memory size
- Training
 - is performed using some adaptation of backpropagation for recurrent nets
 - ▶ All the functions unit states and gating functions are learned from the data

Long short term memory - LSTM

- This was initially proposed in 1997 (Hochreiter et al.) and revised latter.
- State of the art on several sequence prediction problems
 - Speech, handwriting recognition, translation
 - Used in conjontions with other models e.g. HMMs or in standalone recurrent neural networks
 - ▶ The presentation here is based on (Graves 2012)

Long short term memory

- In the LSTM, there are 3 gating functions
 - i: input gating
 - o: output gating
 - f: forget gating

- Difference with the gated recurrent cell
 - Similarities
 - Both use an additive form for computing the hidden cell state (c) here.
 - ☐ This additive component reduces the vanishing gradient effect and allows us to keep in memory past state values.
 - ▶ Both use a reset (called here forget (f)) gate
 - □ The reset permits to start from a new « state » a subsequence prediction
 - Differences
 - No output gating in the GRU
 - Reset does not play exactly the same role

Long short term memory

For the forward pass, the different activations are computed as follows and the this order

$$i_{t} = \sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_{i})$$

$$f_{t} = \sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_{f})$$

$$c_{t} = f_{t}c_{t-1} + i_{t} \tanh(W_{xc}x_{t} + W_{hc}h_{t-1} + b_{c})$$

$$o_{t} = \sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_{t-1} + b_{o})$$

$$h_{t} = o_{t} \tanh(c_{t})$$

- NN have been used for a long time in translation systems (as an additional component, e.g. for reranking or as language model)
- Recently translation systems have been proposed that are based on recurrent neural networks with GRU or LSTM units.
 - Sutskever et al. 2014, Cho et al. 2014
- General principle
 - Sentence to sentence translation
 - Use an encoder-decoder architecture
 - ▶ Encoding is performed using a RNN on the input sentence (e.g. english)
 - This transforms a variable length sequence into a fixed size vector which encodes the whole sentence
 - Starting with this encoding, another RNN generates the translated sentence (e.g. French)

▶ The encoder – decoder architecture

Let

- x_1, \dots, x_T be an input sentence
- $y_1, ..., y_T'$ be an output sentence
- Note that T and T' might be different and that the word order in the two sentences is also generally different

Objective

- Learn $p(y_1, ..., y'_T | x_1, ..., x_T)$
- Encoder
 - ▶ Reads each symbol of the input sentence sequentially using a RNN
 - After each symbol the state of the RNN is changed according to $h_t = f(x_t, h_{t-1})$
 - ightharpoonup After reading the sentence, the final state is $h_T = v$
- Decoder
 - Generates the output sequence by predicting the next symbol y_t given the hidden state h_t, y_{t-1} and the vector v:
 - $b_t = f(y_{t-1}, \boldsymbol{h}_{t-1}, \boldsymbol{v})$
 - $p(y_t|y_{t-1},...,y_1,v) = g(y_{t-1}, h_t, v)$

Training

 $\qquad \max_{\theta} \frac{1}{N} \sum_{n=1}^{N} \log p_{\theta}(\boldsymbol{y}_{n} | \boldsymbol{x}_{n})$

Architecture

- ▶ RNN with 1000 hidden cells
- Word embeddings of dimension between 100 and 1000
- Softmax at the output for computing the word probabilities
- Of the order of 100 M parameters

Neural image caption generator (Vinyals et al. 2015)

Objective

- Learn a textual description of an image
 - i.e. using an image as input, generate a sentence that describes the objects and their relation!

Model

- Inspired by a translation approach but the input is an image
 - Use a RNN to generate the textual description, word by word, provided a learned description of an image via a deep CNN

Figure 1. NIC, our model, is based end-to-end on a neural network consisting of a vision CNN followed by a language generating RNN. It generates complete sentences in natural language from an input image, as shown on the example above.

Neural image caption generator (Vinyals et al. 2015)

Loss criterion

- $\qquad \max_{\theta} \sum_{I,S} \log p(S|I;\theta)$
 - \triangleright Where (I, S) is an associated couple (Image, Sentence)
- $p(S_t|I,S_0,...,S_{t-1})$ is modeled with a RNN with $S_0,...,S_{t-1}$ encoded into the hidden state h_t of the RNN
- ▶ Here $h_{t+1} = f(h_t, x_t)$ is modelled using a RNN with LSTM
- For encoding the image, a CNN is used

Figure 3. LSTM model combined with a CNN image embedder (as defined in [30]) and word embeddings. The unrolled connections between the LSTM memories are in blue and they correspond to the recurrent connections in Figure 2. All LSTMs share the same parameters.

Neural image caption generator (Vinyals et al. 2015)

Figure 5. A selection of evaluation results, grouped by human rating.

Apprentissage supervisé

Machines à noyaux

Introduction

- Familles de machines d'apprentissage générales qui exploitent l'idée suivante :
 - Projeter les données dans un espace de grande dimension éventuellement infini
 -où le problème sera facile à traiter
 - Utiliser des "projections" non linéaires permettant des calculs "efficaces"
- **Exemples**:
 - Machines à Vecteurs Support (généralisent : hyperplan optimal, cadre Vapnik)
 - Processus Gaussien (généralisent : régression logistique, cadre Bayesien)

Perceptron: formulation duale

hyp: 2 classes linéairement séparables, sorties désirées -1, 1

Perceptron primal

Initialiser w(0) = 0Répeter (t) choisir un exemple, (x(t), d(t))si $d(t)w(t).x(t) \le 0$ alors w(t+1) = w(t) + d(t)x(t)Jusqu'à convergence

Fonction de décision

$$F(x) = sgn(\sum_{j=0}^{n} w_j x_j),$$

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i \mathbf{d}^i x^i$$

 α_i : nombre de fois où l'algorithme a rencontré une erreur de classification sur x^i

Perceptron dual

Initialiser $\alpha = 0$, $\alpha \in \mathbb{R}^N$ Répeter (t)

choisir un exemple, (x(t), d(t))soit $k: x(t) = x^k$ si $d(t) \sum_{i=1}^N \alpha_i d^i x^i . x(t) \le 0$ alors $\alpha_k = \alpha_k + 1$ Jusqu'à convergence

Fonction de décision

$$F(x) = sgn(\sum_{i=1}^{N} \alpha_i d^i x^i. x)$$

Matrice de Gram Gmatrice $N \times N$ de terme i, j : x^i . x^j matrice de similarité entre données

Apprentissage Statistique - P. Gallinari

Représentation Duale

- La plupart des machines à apprentissage linéaires ont une représentation duale
 - Exemples
 - Adaline, regression, regression ridge, etc
 - L'information sur les données est entièrement fournie par la matrice de Gram : $G = (x^i, x^j)_{i,j=1...N}$, qui joue un rôle central
 - La fonction de décision F(x) s'exprime comme une combinaison linéaire de produits scalaires entre la donnée d'entrée x et les exemples d'apprentissage
- Les machines à noyau généralisent ces idées
 - Une fonction noyau K est définie sur $R^n x R^n$ (on suppose $x \in R^n$) par $K(x,z) = \langle \Phi(x), \Phi(z) \rangle$

où Φ est une fonction de \mathbb{R}^n dans un espace muni d'un produit scalaire

Produit Scalaire et Noyaux

- Projection non linéaire dans un espace de grande dimension H
 - ▶ (en général dim H >> n, et peut même être infinie)
 - $Φ: R^n → R^p \text{ avec } p \gg n$
 - Machine linéaire dans H Primal :
 - $F(x) = \sum_{j=1}^{p} w_j \Phi_j(x) + b$
 - Machine linéaire dans H Dual :
- ▶ Calculer les produits scalaires dans l'espace initial : choisir F /

 - $F(x) = \sum_{i=1}^{N} d^{i} \alpha_{i} K(x^{i}, x) + b$
 - avec K : fonction noyau (i.e. symétrique)

- ▶ Généralise le produit scalaire dans l'espace initial
- Le calcul de F ne dépend pas directement de la taille de H : les calculs sont faits dans l'espace initial.
- La machine linéaire dans H peut être construite à partir d'une fonction K sans qu'il soit nécessaire de définir explicitement Φ : en pratique, on spécifiera directement K.
- Cette idée permet d'étendre de nombreuses techniques linéaires au non linéaire: il suffit de trouver des noyaux appropriés
 - Exemples
 - ACP, Analyse discriminante, regression, etc

Caractérisation des noyaux

- Quand peut on utiliser cette idée ?
- Cas d'un espace fini
 - Soit $X = \{x^1, ..., x^N\}$, K(x, x') une fonction symétrique sur X, K est une fonction noyau ssi la matrice $N \times N$ dont l'élément (i, j) est $K(x^i, x^j)$ est positive semi-définie (valeurs propres ≥ 0 ou $x^T K x > 0 \ \forall x$)
- Cas général : Conditions de Mercer (noyaux de Mercer)
 - ightharpoonup Il existe une application Φ et un développement

$$K(x,x') = \sum_{i=1}^{\infty} \Phi(x)_{i} . \Phi(x')_{i}$$

 \Rightarrow ssi $\forall g/\int g(x)^2 dx$ est fini, $\int K(x, x')g(x)g(x')dxdx' \ge 0$

Caractérisation des noyaux Espace de Hilbert à noyau autoreproduisant

Une fonction $K: X*X \rightarrow R$ qui est soit continue soit définie sur un domaine fini peut s'écrire sous la forme d'un produit scalaire :

$$K(x,z) = \langle \phi(x), \phi(z) \rangle$$

avec $\Phi: x \to \Phi(x) \in \mathbf{F}$ espace de Hilbert

ssi c'est une fonction symétrique et toutes les matrices formées par la restriction de K à un échantillon fini sur X sont semi-définies positives).

- Résultat à la base de la caractérisation effective des fonctions noyaux
- Il permet de caractériser K comme un noyau sans passer par Φ
- C'est une formulation équivalente aux conditions de Mercer

L'espace de Hilbert associé au noyau K :

$$F = \left\{ \sum_{i=1}^{l} \alpha_i K(x_i, .) / l \in N, x_i \in X, \alpha_i \in R, i = 1...l \right\}$$

Le produit scalaire défini sur cet espace :

Soient
$$f(.) = \sum_{i=1}^{l} \alpha_i K(x_i,.),$$
 $g(.) = \sum_{j=1}^{n} \beta_j K(x_j,.)$
 $\langle f, g \rangle = \sum_{i=1}^{l} \sum_{j=1}^{n} \alpha_i \beta_j K(x_i, z_j) = \sum_{i=1}^{l} \alpha_i g(x_i) = \sum_{j=1}^{n} \beta_j f(z_j)$

- Noyau auto-reproduisant
 - Si on prend g(.) = K(x,.), alors

$$< f, K(x,.) > = \sum_{i=1}^{l} \alpha_i K(x_i, x_i) = f(x)$$

Exemples de noyaux

$$K(x,z) = < x.z >^2$$

$$K(x,z) = \left(\sum_{i=1}^{n} x_i.z_i\right)^2 = \sum_{i,j=1}^{n} (x_i.x_j)(z_i.z_j)$$

$$K(x,z) = \langle \phi(x).\phi(z) \rangle$$
 avec $\phi(x)/\phi(x)_{i,j} = (x_i.x_j)_{i,j=1,n}$

i.e. tous les monomes de d° 2: $\binom{n+1}{2}$

$$K(x,z) = (\langle x.z \rangle + c)^2$$

$$K(x,z) = \langle \phi(x).\phi(z) \rangle$$
 avec $\phi(x)/\phi(x)_{i,j} = ((x_i.x_j)_{i,j=1,n}, (\sqrt{2}cx_i)_{i=1,n}, c)$

i.e. ss ensemble des polynomes de d° 2

Exemples de noyaux (suite)

$$K(x,x^{i}) = \begin{cases} (x.x^{i}+1)^{d} & \Phi \text{ polynome d'ordre d} \\ \exp(-\gamma ||x-x^{i}||^{2}) & \Phi \text{ noyau gaussien} \\ Sigmoïde(vx.x^{i}+c) \end{cases}$$

Construction des noyaux en pratique

- Les résultats de Mercer servent à prouver les propriétés des fonctions noyaux. En pratique, elles sont peu utiles
- Pour construire des noyaux, on procède par combinaison à partir de noyaux connus
- Si K_1 et K_2 sont des noyaux sur X^2 , K_3 défini sur \mathbf{F} , les fonctions suivantes sont des noyaux :
 - $K(x, z) = K_1(x, z) + K_2(x, z)$
 - $K(x, z) = K_1(x, z) \cdot K_2(x, z)^*$
 - $K(x, z) = aK_1(x, z)$
 - $K(x,z) = K_3 (\Phi(x), \Phi(z))$
 - **....**

Machines à vecteurs support

- Exposé du cours : discrimination 2 classes
- Cas général : discrimination multi-classes, régression, densité
- Idées
 - Projeter -non linéairement- les données dans un espace de "très" grande taille H
 - Faire une séparation linéaire de bonne qualité dans cet espace
 - Raisonner dans H, mais résoudre le problème d'optimisation dans l'espace de départ (noyaux)

Notion de marge

- Hyperplan H
 - $F(x) = w \cdot x + b = 0$
- Marge géométrique pour xⁱ

$$M(x^i) = d^i \left(\frac{w \cdot x^i}{\|w\|} + \frac{b}{\|w\|}\right)$$

- Marge de w pr à un ensemble de données D
 - $\rightarrow Min_iM(x^i)$
- Hyperplan de marge maximale
 - $\rightarrow Max_w(Min_iM(x^i))$

Marge géométrique vs marge fonctionnelle

- Marge géométrique
 - \rightarrow $d^i.F(x^i)/||w||$
- Marge fonctionnelle
 - \rightarrow $d^{i}.F(x^{i})$
- Remplacer w par k.w ne change pas la fonction de décision ou la marge géométrique, mais change la marge fonctionnelle.
- Pour les SVM, on fixera la marge fonctionnelle à 1 et on optimisera la marge géométrique.

Prémisses : Séparation linéaire à hyperplan optimal (1974)

- ▶ Hyp : D linéairement séparable
- Fonction de décision : F(x) = w.x + b

$$D = \{x^i, d^i\}_{i=1..N}$$
 avec $d^i = \pm 1$

- Pb apprentissage :
 - trouver l'hyperplan optimal H* qui sépare D i.e.
 - \rightarrow dⁱ.F(xⁱ) \geq 1, \forall i
- avec une marge maximale M =

i.e.: Problème Primal:

$$\min_{i} \frac{d^{i}.F(x^{i})}{\|w\|} = \frac{1}{\|w\|}$$

$$\begin{cases} \text{Minimiser} & \|w\|^{2} \\ S.C. & d^{i}.F(x^{i}) \ge 1 \end{cases}$$

Solution : \mathbf{w}^* dépend uniquement des points supports i.e. points sur la marge qui vérifient : $d^i.F^*(x^i) = I$

$$w^* = \sum_{i \text{ support}} d^i \alpha_i x^i \qquad F^*(x) = \sum_{i \text{ support}} d^i \alpha_i x^i x$$

- i support i support

 Rq: Quelque soit la dimension de l'espace, le nombre de degrés de liberté est "égal" au nombre de points de support
- F* dépend uniquement du produit scalaire $x^i.x$

Apprentissage :

On résoud le problème d'optimisation dit dual :

Maximiser
$$L(\alpha) = \sum_{i} \alpha_{i} - \sum_{i,j} \alpha_{i} \alpha_{j} d^{i} d^{j} x^{i} . x^{j}$$

 $S.C \quad \alpha_{i} \geq 0 \text{ et } \sum_{i} \alpha_{i} d^{i} = 0$

Problème minimisation quadratique sous contraintes

Machines à vecteurs supports

- Faire une séparation à marge max. dans un espace défini par une fonction noyau.
- Tous les résultats sur le classifieur linéaire à marge max. se transposent en remplaçant $x^i x$ par $K(x^i, x)$

$$\Phi: R^{n} \to R^{p}$$

$$W = \sum_{x^{i} V.S.} d^{i} \alpha_{i} \Phi(x^{i}) \qquad F(x) = \sum_{x^{i} V.S.} d^{i} \alpha_{i} \Phi(x^{i}) \Phi(x) + b$$

$$\Phi(x).\Phi(x') = K(x,x')$$

$$F(x) = \sum_{x^i \ V.S.} d^i \alpha_i K(x,x^i) + b$$

Apprentissage :

On résoud le problème d'optimisation dual :

Maximiser
$$L(\alpha) = \sum_{i} \alpha_{i} - \sum_{i,j} \alpha_{i} \alpha_{j} d^{i} d^{j} K(x^{i}, x^{j})$$

 $S.C \quad \alpha_{i} \geq 0 \quad \text{et} \quad \sum_{i} \alpha_{i} d^{i} = 0$

- Problème minimisation quadratique sous contraintes dans l'espace de départ
- Difficile en pratique : différents algorithmes.
- ▶ Dans la solution optimale α_i > 0 uniquement pour les points support.
 - \blacktriangleright Seuls les produits scalaires K apparaissent, et pas les Φ .

Propriétés de généralisation exemples

▶ Th I

$$E[P(erreur(x))] \le \frac{E[\# \text{vecteurs supports}]}{E[\# \text{vecteurs supports}]}$$

- Th I $E[P(erreur(x))] \le \frac{E[\# \text{vecteurs supports}]}{\# \text{exemples apprentissage} 1}$ peu de points support \to meilleure généralisation
- indépendant de la taille de l'espace de départ
- Th 2

Si

$$\exists q/\forall i = 1..N, ||x^i|| \le q$$

l'hyperplan optimal passe par l'origine et a pour marge ho

Alors

$$E\left[\frac{q}{2}\right]$$

$$E\left[P\left(erreur(x)\right)\right] \le \frac{\rho}{N}$$

□ Dans les 2 cas, E[P()] est l'espérance sur tous les ensembles de taille l-1, et E[membre droit] est l'espérance sur tous les ensembles d'apprentissage de taille l (leave one out).

Cas non linéairement séparable

- Marges molles
 - L'algorithme est instable
 - Dans les cas non linéairement séparables
 - Dans le cas de données réelles même linéairement séparables
 - Solution adoptée en pratique
 - □ autoriser des erreurs, i.e. prendre pour contraintes :

$$d^{i}(W \cdot \Phi(x^{i}) + b) \ge 1 - \eta^{i}$$
$$\eta^{i} \ge 0$$

- $> 0 < \eta^i <= 1, x^i$ est correctement classifié, est à l'intérieur de la marge
- \rightarrow $\eta^i > 1$, x^i est mal classé
- ηⁱ: slack variable

- But
 - Maximiser la marge tout en pénalisant les points qui sont mal classés
- Formalisation
 - Plusieurs expressions possibles du problème
 - L'une des plus courantes :

$$Min(w.w) + C \sum_{i=1}^{N} \eta^{i}$$
 (i.e. max la marge)
 $S.C.$
 $d^{i}(w.x^{i} + b) \ge 1 - \eta^{i}, i = 1..N$

 $\eta^i \ge 0, i = 1..N$ • C fixé par validation croisée joue le rôle de paramètre de régularisation

Marges molles – formulation duale

Maximiser
$$L(\alpha) = \sum_{i} \alpha_{i} - \sum_{i,j} \alpha_{i} \alpha_{j} d^{i} d^{j} K(x^{i}, x^{j})$$
$$S.C \quad 0 \le \alpha_{i} \le C \quad \text{et} \quad \sum_{i} \alpha_{i} d^{i} = 0$$

Algorithmes d'optimisation

- Algorithmes d'optimisation standard pour la programmation quadratique sous contrainte
 - e.g. Sequential Minimal Optimization (SMO)
- Algorithmes stochastiques SVM Results –(Bottou 2007)
 - ► Task : Document classification RCVI documents belonging to the class CCAT (2 classes classification task)
 - Programs <u>SVMLight</u> and <u>SVMPerf</u> are well known SVM solvers written by <u>Thorsten Joachims</u>. SVMLight is suitable for SVMs with arbitrary kernels. Similar results could be achieved using <u>Chih-Jen Lin</u>'s <u>LibSVM</u> software. SVMPerf is a specialized solver for linear SVMs. It is considered to be one of the most efficient optimizer for this particular problem.

Algorithm (hinge loss)	Training Time	Primal cost	Test Error
SVMLight	23642 secs	0.2275	6.02%
<u>SVMPerf</u>	66 secs	0.2278	6.03%
Stochastic Gradient (svmsgd)	1.4 secs	0.2275	6.02%
Stochastic Gradient (svmsgd2	1.4 secs	0.2275	6.01%

Annexe : Optimisation Problèmes sous contraintes égalités, inégalités

- Soient
 - f, $g_{i,i=1,\dots,k}$, $h_{i,j=1,\dots,m}$ des fonctions définies sur \mathbb{R}^n à valeur dans \mathbb{R}
- On considère le problème primal suivant (pb. 0) :

$$Min\ f(\mathbf{w}), \mathbf{w} \in \Omega \subset \mathbb{R}^n$$

Sous contraintes $g_i(\mathbf{w}) \leq 0, i = 1, ..., \mathbf{k}$ noté $\mathbf{g}(\mathbf{w}) \leq 0$ $h_i(\mathbf{w}) = 0, j = 1, ..., \mathbf{m}$ noté $\mathbf{h}(\mathbf{w}) = 0$

- **Fonction objectif** f(w)
- **Région admissible** $R = \{w ∈ Ω: g(w) ≤ 0, h(w) = 0\}$, région de Ω où f est définie et les contraintes vérifiées
- ▶ w^* est un **minimum global** si il n'existe pas d'autre point tel que $f(w) < f(w^*)$, c'est un optimum local si $\exists \epsilon > 0$: $f(w) \ge f(w^*)$, sur la boule $||w w^*|| < \epsilon$
- Une contrainte $g_i(w) \le 0$ est dite **active** si la solution \mathbf{w}^* vérifie $\mathbf{g}(\mathbf{w}^*) = 0$ et inactive sinon
- La valeur optimale de la fonction objectif (solution du pb. 0 est appelée la valeur du problème d'optimisation primal)

▶ f(w) est **convexe** pour $w \in \mathbb{R}^n$ si $\forall t \in [0,1], \forall w, v \in \mathbb{R}^n, \forall t \in [0,1], f(tw + (1-t)v) \leq tf(w) + (1-t)f(v)$

- Un **ensemble** $\Omega \subset \mathbb{R}^n$ est **convexe** si $\forall w, v \in \mathbb{R}^n$, $\forall t \in [0, 1], tw + (1 t)v \in \Omega$
- Si une fonction est convexe, tout minimum local est un minimum global
- Un **problème d'optimisation** pour lequel Ω est convexe, la fonction objectif et les contraintes sont convexes est dit **convexe**

Optimisation non contrainte

- ▶ Th. Fermat
 - Une C.N. pour que w* soit un min. de f(w), $f \in C^1$ est $\frac{\partial f(w^*)}{\partial w} = 0$
 - ▶ Si f est convexe c'est une Condition Suffisante

Optimisation avec contraintes égalités Lagrangien

Optimisation avec contraintes égalité (pb 1):

$$Min\ f(w), w \in \Omega \subset \mathbb{R}^n$$

Sous contraintes $h_j(w) = 0, \quad j = 1, ..., m$ noté $h(w) = 0$

• On définit le Lagrangien $L(w, \beta)$ associé à ce problème par

$$L(\boldsymbol{w},\boldsymbol{\beta}) = f(\boldsymbol{w}) + \sum_{j=1}^{m} \beta_j h_j(\boldsymbol{w})$$

- les β_i sont les coefficients de Lagrange
- Rq
 - Si w^* est une solution du problème d'optimisation sous contrainte, ll est possible que $\frac{\partial f(w^*)}{\partial w} \neq 0$

Optimisation avec contraintes égalités

▶ Th. Lagrange

- ▶ Une CN pour que w^* , soit solution de (pb. I), avec f, $h_i \in C^1$ est
 - $\frac{\partial L(\mathbf{w}^*, \boldsymbol{\beta}^*)}{\partial \mathbf{w}} = 0$
 - $\Box \frac{\partial L(\mathbf{w}^*, \boldsymbol{\beta}^*)}{\partial \boldsymbol{\beta}} = 0$
- ightharpoonup Si $L(w, \beta^*)$ est une fonction convexe de w, c'est une condition suffisante
- ▶ Rq
 - La première condition donne un nouveau système d'équations
 - La seconde donne les contraintes

Optimisation sous contraintes égalité + inégalités - Lagrangien augmenté

De même, on définit le Lagrangien augmenté pour le pb. 0 :

$$L(\boldsymbol{w}, \boldsymbol{\beta}) = f(\boldsymbol{w}) + \sum_{i=1}^{K} \alpha_i g_i(\boldsymbol{w}) + \sum_{j=1}^{M} \beta_j h_j(\boldsymbol{w})$$

Formulation duale du problème d'optimisation

Le problème d'optimisation dual correspondant au problème primal pb 0 est :

Maximiser
$$\theta(\alpha, \beta) = \min_{w \in \Omega} L(w, \alpha, \beta)$$

Sous contrainte $\alpha \geq 0$

- Max $\theta(\alpha, \beta)$ est appelé la valeur du dual
- Rq: $\inf_{w \in \Omega} L(w, \alpha, \beta)$ est une fonction de α, β uniquement
- Propriété: la valeur du dual est bornée supérieurement par la valeur du primal

$$\max_{\alpha,\beta,\alpha\geq 0} \min_{w\in\Omega} L(w,\alpha,\beta) \leq \min_{w\in\Omega} \max_{\alpha,\beta,\alpha\geq 0} L(w,\alpha,\beta)$$

Dans certains cas, on a égalité, cf dualité forte

Théorème de dualité forte

Etant donné un problème d'optimisation

$$Min \ f(\boldsymbol{w}), \boldsymbol{w} \in \Omega \subset \mathbb{R}^n$$

Sous contraintes

$$g_i(\mathbf{w}) \leq 0, i=1,...,$$
k noté $\mathbf{g}(\mathbf{w}) \leq 0$ $h_j(\mathbf{w}) = 0, j=1,...,$ m noté $\mathbf{h}(\mathbf{w}) = 0$

où les g_i et les h_j sont affines $(h_j(\mathbf{w}) = A_j\mathbf{w} + b_j)$

- alors les valeurs du primal et du dual sont égales
- Les conditions d'existence d'un optimum sont données par le théorème de Kuhn et Tucker

Optimisation Th. Kuhn et Tucker

- On considère (pb. 0) avec Ω convexe et $f \in C^1$ convexe, g_i , h_j affines (h = A.w + b)
- Une CNS pour que w^* soit un optimum est qu'il existe α^* et θ^* :

$$\begin{cases} \frac{\partial L(w^*, \alpha^*, \beta^*)}{\partial w} = 0\\ \frac{\partial L(w^*, \alpha^*, \beta^*)}{\partial \beta} = 0\\ \alpha_i * g_i(w^*) = 0, i = 1..k\\ g_i(w^*) \le 0, i = 1..k\\ \alpha_i * \ge 0, i = 1..k \end{cases}$$

La formulation duale est une alternative à la formulation primale qui peut se révéler plus simple à traiter

▶ Rq

- La 3e condition dite condition complémentaire de Karush-Kuhn-Tucker implique que pour une contrainte active $\alpha_i^* \geq 0$ alors que pour une contrainte inactive $\alpha_i^* = 0$
 - Soit une contrainte est active ($\alpha_i^* \ge 0$ et $g_i(w^*) = 0$), w^* est un point frontière de la région admissible
 - ▶ Soit elle est inactive ($\alpha i^* = 0$) et w^* est dans la région admissible
- Si le point solution w* est dans la région admissible (contrainte inactive) alors les conditions d'optimalité sont données par le th. de Fermat et $\alpha_i^* = 0$. Si il est sur la frontière (contrainte active), les conditions d'optimalité sont données par le th. de Lagrange avec $\alpha_i^* > 0$.

SVM – formulations primale et duale

- SVM
 - \triangleright Ω , f, contraintes sont convexes, L est quadratique
 - On étudie le cas, D = $\{(x^i, d^i)\}_{i=1..N}$ linéairement séparables
 - Formulation similaire pour le cas non linéairement séparable
- ▶ Pb. Primal

(i.e. max la marge)

$$d^{i}(w.x^{i}+b) \ge 1, i = 1..N$$

Lagrangien primal

$$L(w,b,\alpha) = \frac{1}{2} w.w - \sum_{i=1}^{N} \alpha_i (d^i (w.x^i + b) - 1)$$

Lagrangien dual

$$L(w,b,\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} d^i d^j \alpha_i \alpha_j (x^i . x^j)$$

• Avec $\alpha_i \ge 0$ dans les 2 cas

SVM – formulations primale et duale

Pb. Dual

Max
$$L(w,b,\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} d^i d^j \alpha_i \alpha_j (x^i.x^j)$$

sous les contraintes

$$\begin{cases} \sum_{i=1}^{N} d^{i} \alpha_{i} = 0 \\ \alpha_{i} \ge 0, i = 1..N \end{cases}$$

▶ Fonction de décision

$$F(x,\alpha^*,\beta^*) = \sum_{i \in S} d^i \alpha^*_i (x^i.x) + b^*$$

Apprentissage non supervisé

Algorithme EM et mélange de densités Spectral clustering Non Negative Matrix Factorization

Applications

- analyse des données quand il n'y a pas de connaissance sur la classe.
 - e.g. pas d'étiquetage des données (problème nouveau)
- trop de données ou étiquetage trop compliqué
 - e.g. traces utilisateur (web), documents web, parole, etc
- réduction de la quantité d'information
 - e.g. quantification
- découverte de régularités sur les données ou de similarités.

Apprentissage non supervisé

Algorithme Espérance Maximisation (EM)
Application aux mélanges de densités

Algorithme E. M. (Espérance Maximisation)

- On dispose
 - de données $D = \{x^i\}_{i=1..N}$
 - On n'a pas d'étiquette dⁱ
 - d'un modèle génératif, de paramètres W : F_W
 - Le modèle « explique » la génération des données
- On veut trouver les paramètres du modèle qui expliquent au mieux la génération des données
- On se donne un critère
 - lci on considère la vraisemblance des données qui est le critère le plus fréquent
 - $P(D|W) = P(x^1, ..., x^N|W)$
 - D'autres critères sont également couramment utilisés
- Don va essayer de déterminer les paramètres W de façon à maximiser la vraisemblance

Exemple

- On recueille des données sur deux populations
 - e.g. taille d'individus $D = \{x^i\}_{i=1..N}$
- Hypothèse
 - les données de chaque population sont gaussiennes $N(\mu_1, \sigma^2 Id), N(\mu_2, \sigma^2 Id)$
 - \blacktriangleright Elles ont la même variance σ^2
- Problème
 - estimer les μ_i et les σ à partir des données
 - Si les dⁱ sont connus, i.e. $D = \{(x^i, d^i)_{i=1..N} \text{ la solution est simple } \}$
 - ▶ On a deux population séparées (2 classes) C₁, C₂
 - La maximisation de la vraisemblance donne l'estimateur classique de la moyenne

$$\mu_j = \frac{1}{\left|C_j\right|} \sum_{\substack{i \in C_j}} x^i$$

Difficulté : les dⁱ sont inconnus

Cas où l'appartenance est connue

- Vraisemblance
 - $P(D|\theta) = \prod_{x^i \in C_1} p(x^i|\theta_1) \prod_{x^j \in C_2} p(x^j|\theta_2)$
- ▶ En pratique on maximise la log-vraisemblance
 - $L(\theta) = \log(P(D|\theta)) = \sum_{x^i \in C_1} logp(x^i|\theta_1) + \sum_{x^j \in C_2} logp(x^j|\theta_2)$
 - Cas des gaussiennes
 - $p(x|C_k) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{(x-\mu_k)^2}{2\sigma_k^2})$

Cas où la probabilité d'appartenance est connue

- On connait $p(C_k|x)$, k = 1, 2
- $p(x^i|\theta) = p(x^i|C_1)p(C_1) + p(x^i|C_2)p(C_2)$
- Log-vraisemblance
 - $L(\theta) = \log(P(D|\theta)) = \sum_{x^i} \log(p(x^i|C_1)p(C_1) + p(x^i|C_2)p(C_2))$
 - Cas des gaussiennes

- \square Rq: si on ne connait pas les $p(C_k|x)$, k=1,2
 - les équations forment un système non linéaire couplé, insoluble.

Variables cachées (ou latentes)

On postule

- l'existence de variables cachées h responsables de la génération des données
 - À chaque xⁱ, on associe sa classe cachée hⁱ
 - $H = \{h^i\}_{i=1..N}$
- l'existence d'une fonction densité jointe sur les données observées et cachées p(x, h)
- ▶ P(D, H| W) sera appelé vraisemblance complète des données pour le modèle W.

Remarque

- Les variables h sont inconnues et sont considérées comme des variables aléatoires
- ▶ P(D, H| W) sera elle même une variable aléatoire

Algorithme EM

- On veut maximiser P(D/W)à partir de l'observation des données visibles
- Problème
 - \triangleright la maximisation directe de P(D/W) ne conduit pas à des formules calculatoires (algorithme)
- Solution : on maximise de façon itérative une fonction auxiliaire Q
 - L'espérance de la vraisemblance des données complètes connaissant le modèle courant
 - L'espérance est calculée par rapport à la distribution des variables cachées h
 - Le modèle courant à l'étape t est noté W^(t)

$$Q(W/W^{(t)}) = E_H \Big[\log p(D, H/W); D, W^{(t)} \Big] = \sum_{H} p(H; D, W^{(t)}) \log p(D, H/W)$$

- Remarque : dans cette expression
 - D et W^(t) sont des constantes
 - h est une variable aléatoire de densité p(h; x, W(t))
 - W sont les paramètres du modèle que l'on veut estimer

Algorithme EM

Initialiser W = W(0)

1. Etape E : Espérance

On calcule $p(H;D,W^{(t)})$

On en déduit $Q(W;W^{(t)})$

L'espérance est calculée par rapport à la distribution de H

2. Etape M : *Maximisation*

Etant donnée la distribution courante sur H, trouver les paramètres qui maximisent Q

$$W^{(t+1)} = \underset{W}{\operatorname{arg max}} E \left[\log p(D, H/W); D, W^{(t)} \right]$$

L'algorithme converge vers un maximum local de la fonction Q et de P(D/W)

Remarques

- Lors de l'étape E, on estime la distribution de H, $p(H;D,W^{(t)})$ à partir des valeurs courantes des paramètres W(t).
- Au lieu d'essayer de maximiser directement, p(D/W) on utilise la fonction auxiliaire Q.
- On peut montrer la convergence de l'algorithme par : $Q(W^{t+1}; W^t) \ge Q(W^t; W^t) \Rightarrow p(D; W^{t+1}) \ge p(D; W^t)$
- L'algorithme est utilisé pour
 - les algorithmes non supervisés, semi supervisés
 - les données manquantes ou les composantes manquantes dans les données
 - ▶ les HMM ...

Exemple

- Mélange de densités Cas de deux classe gaussiennes, σ connu
 - ▶ But (MV) : trouver

$$\mu_{1}, \mu_{2} = \arg\max p(D / \mu_{1}, \mu_{2})$$

On considère cachées

$$\mu_{1}, \mu_{2} = \arg\max p(D / \mu_{1}, \mu_{2}) \qquad D = \left\{ (x^{i}) \right\}_{i=1..N}$$

$$D \cup H = \left\{ (x^{i}, h^{i}) \right\}_{i=1..N}, \text{ les } h^{i} \text{ sont les données}$$

- Algorithme
 - Initialisation

 $\mu_1^{(0)}, \mu_2^{(0)}$

- itérer
 - Etape E

calculer
$$p(h^{i} = j / x^{i})$$
 $i = 1..N, j = 1,2$

$$Q(\mu_1, \mu_2, \sigma'; \mu_1^t, \mu_2^t, \sigma^t) = E[P(D \cup H; \mu_1^t, \mu_2^t, \sigma^t)]$$

□ Etape M

calculer

$$\mu_{j}^{(t+1)} = \frac{\sum_{i=1..N} p(h = j / x^{i})x^{i}}{\sum_{i=1..N} p(h = j / x^{i})}$$

Trouver les μ_1 , μ_2 qui maximisent Q

Remarques

▶ Etape E : calcul de la responsabilité de chaque gaussienne pour chaque point

$$p(h^{i} = j / x^{i}) = \frac{p(h^{i} = j)p(x^{i} / h^{i} = j)}{\sum_{k} p(h^{i} = k)p(x^{i} / h^{i} = k)}$$

- Etape M : chaque centre est défini comme le centre de toutes les données, chacune étant pondérée par cette responsabilité
- Cas limite: $\sigma = 0$: algorithme des k-moyennes

Mélange de densités – cas gaussien

- On suppose que le modèle génératif des données est un mélange de densités gaussiennes
 - On fixe a priori le nombre de composantes du mélange à k
 - on suppose que les données x sont unidimensionnelles

$$p(x) = \sum_{l=1}^{k} p(l) p(x/l) \qquad p(x/l) = \frac{1}{(2\pi\sigma_l^2)^{1/2}} e^{-\frac{(x-\mu_l)^2}{2\sigma_l^2}}$$

- Paramètres
 - \blacktriangleright Coefficients du mélange p(| x), moyennes et écarts types

$$W = \left\{ p(l), \mu_l, \sigma_l \right\}_{l=1..k}$$

Vraisemblance

$$p(D/W) = \prod_{i=1}^{N} \sum_{l=1}^{k} p(l/W) p(x^{i}/l,W)$$

- Vraisemblance complète
 - variables cachées : hi classe de xi

$$\log p(D, H/W) = \sum_{i=1}^{N} \log(p(h^{i}/W)p(x^{i}/h^{i},W))$$

$$= \sum_{i=1}^{N} \sum_{l=1}^{k} \delta_{lh^{i}} \log(p(l/W)p(x^{i}/l,W))$$

Mélange de densité – Etapes E et M

Etape E

$$p(h = j/x_i, W^{(t)}) = \frac{p(x_i/h = j, W^{(t)}) p(h = j|W^{(t)})}{\sum_{l=1..k} p(x_i/h = l, W^{(t)}) . p(h = l|W^{(t)})}$$

$$Q(W/W^{(t)}) = E_{H/X,W^{(t)}}[\log p(D,H|W)] = \sum_{h^{1}=1}^{k} ... \sum_{h^{N}=1}^{k} \log p(D,H/W) \prod_{i=1}^{N} p(h^{i}/x^{i},W^{(t)})$$

$$= \sum_{i=1}^{N} \sum_{l=1}^{k} p(l/x^{i},W^{(t)}) \log(p(l/W)p(x^{i}/l,W))$$

Etape M

$$\begin{cases} Min(-Q) \\ \text{sous contrainte } \sum_{l=1}^{k} p(l/W) = 1 \end{cases} \Leftrightarrow Min(-Q + \lambda(\sum_{l=1}^{k} p(l/W) - 1))$$

Mélange de densités – Reestimation dans l'étape M

$$\mu_{j}^{(t+1)} = \frac{\sum_{i} p(j/x^{i}, W^{(t)}) x^{i}}{\sum_{i} p(j/x^{i}, W^{(t)})}$$

$$\left(\sigma_{j}^{(t+1)}\right)^{2} = \frac{1}{n} \frac{\sum_{i} p(j/x^{i}, W^{(t)}) \left\|x^{i} - \mu_{j}^{(t+1)}\right\|^{2}}{\sum_{i} p(j/x^{i}, W^{(t)})}$$

$$p(j)^{(t+1)} = \frac{1}{N} \sum_{i} p(j/x^{i}, W^{(t)})$$

Apprentissage non supervisé

Mélange de densités Apprentissage par échantillonnage de Gibbs

Les méthodes MCMC Markov Chain Monte Carlo

- Méthodes de calcul intensif basées sur la simulation pour
 - Echantillonnage de variables aléatoires
 - $\{x^{(t)}\}_{t=1...T}$ qui suivent une certaine distribution p(x)
 - Calcul de l'espérance de fonctions suivant cette distribution
 - \rightarrow E[f(x)] sera estimé par I/T . $\sum_{t=1...T} f(x^{(t)})$
 - e.g. moyenne, marginales, ...
 - Maximisation de fonctions
 - \rightarrow Argmax_xp(x)

Echantillonneur de Gibbs

- On veut estimer une densité p(x) avec $x = (x_1,...,x_n)$
- Нур
 - On connait les lois conditionnelles

- Algorithme
 - Initialiser $\{x_i, i = 1..n\}$
 - Pour t = 1 ... T faire

Echantillonner
$$x_1^{t+1} \sim p(x_1 | x_{-1}^t)$$

.

Echantillonner
$$x_n^{t+1} \sim p(x_n | x_{-n}^t)$$

Propriétés

- Sous certaines conditions de régularité, la procédure converge vers la distribution cible p(x)
 - Les échantillons résultants sont des échantillons de la loi jointe p(x)
- On n'a pas besoin de connaître la forme analytique des $p(x_i|x_{-i})$ mais uniquement de pouvoir échantillonner à partir de ces distributions
 - Mais la forme analytique permet d'avoir de meilleurs estimés
- Avant de retenir les points échantillons, on autorise souvent une période de "burn-in" pendant laquelle on fait simplement tourner l'algorithme "à vide"
- ▶ Gibbs facile à implémenter, adapté aux modèles hierarchiques (cf LDA)

Cas du mélange de deux lois gaussiennes

Modèle

$$p(x) = \sum_{l=1}^{2} p(l) p(x/l)$$

- On va considérer un modèle augmenté en ajoutant une variable cachée h
 - Les données complètes sont les (x_i, h_i)
- Les paramètres à estimer sont :

$$W = \{p(l), \mu_l, \sigma_l\}_{l=1..2}$$

- On va utiliser Gibbs en échantillonnant sur les densités conditionnelles
 - Pour simplifier on suppose dans l'example que les proportions p(l) et les variances σ sont fixées, on estime juste les moyennes μ_l et μ_2
 - Pour cela, on va échantillonner suivant la distribution jointe $(h^{(t)}, \mu_1^{(t)}, \mu_2^{(t)})$

Echantillonneur de Gibbs pour le modèle de mélange de deux gaussiennes

Choisir des valeurs initiales $\mu_1^{(0)}$, $\mu_2^{(0)}$

Répéter t = 1...T

Pour i = 1...N

1. générer $h_i^{(t)} \in \{0,1\}$ selon

$$p(h_i = j) = \frac{p_j^{(t-1)} p(x_i | \mu_j^{(t-1)}, \sigma_j)}{p_1^{(t-1)} p(x_i | \mu_1^{(t-1)}, \sigma_1) + p_2^{(t-1)} p(x_i | \mu_2^{(t-1)}, \sigma_2)}, j = 1, 2$$

calculer

$$\hat{\mu}_{j} = \frac{\sum_{i=1}^{N} (1 - h_{i}^{(t)}).x_{i}}{\sum_{i=1}^{N} (1 - h_{i}^{(t)})}, j = 1,2$$

2. générer $\mu_j^{(t)} \sim N(\hat{\mu}_j, \sigma_j), j = 1,2$

Lien avec l'algorithme EM

- Les étapes pour cet exemple sont les mêmes que avec EM
- Différence
 - Au lieu de maximiser la vraisemblance, aux étapes 1 et 2, on échantillonne
 - Etape I : on simule les variables cachées h au lieu de calculer E(h|W,D)
 - Etape 2 : on simule à partir de $p(\mu_1, \mu_2 | h, D)$ au lieu de calculer le max. vraisemblance $p(\mu_1, \mu_2 | D)$ dans EM

Apprentissage non supervisé

Spectral Clustering

Spectral Clustering (after Von Luxburg 2007)

Intuition

- $\mathbf{x}_1, ..., \mathbf{x}_n$ data points, \mathbf{w}_{ij} similarity between \mathbf{x}_i and \mathbf{x}_i
- \rightarrow G = (V, E) graph
 - \triangleright vertex v_i corresponds to data point x_i
 - Edges are weighted by w_{ii}
- Clustering amounts at finding a graph partition such that
 - ▶ Edges between clusters have low weights
 - ▶ Edges among points inside a cluster have high values

Graphs notations

- ► G = (V, E) undirected graph
 - $V = \{v_1, ..., v_n\}$
 - ▶ Edges are weighted, $W = (w_{ij})_{l,j=1...n}$, $w_{ij} \ge 0$ is the weight matrix
- lacksquare D : diagonal matrix with $d_i = \sum_{j=1}^n w_{ij}$

Building similarity graphs from data points

- Different ways to build a similarity graph
- Locally connected graphs: k-nearest neighbor graphs
 - Two vertices are connected if one of them is among the k-nearest neighbor of the other
 - Or two vertices are connected if both are in the k-neighborhood of the other
 - ▶ Edges are then weighted using the similarity of the vertices
- Fully connected graphs
 - $w_{ij} = \exp(-\|x_i x_j\|^2/2\sigma^2)$

Graph Laplacians

- Unnormalized graph Laplacian
 - L = D W
- Normalized graph Laplacians
 - $L_{sym} = D^{-\frac{1}{2}}LD^{-\frac{1}{2}} = I D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$ symmetric
 - $L_{rw}=D^{-1}L=I-D^{-1}W$ interpretation : random walk on the graph

- Properties of the unnormalized graph Laplacian
- L satisfies:
 - $\forall y \in R^n, \quad y^T L y = \frac{1}{2} \sum_{i,j=1}^n w_{ij} (y_i y_j)^2$
 - ▶ L is symmetric, positive semi-definite
 - ▶ The smallest eigenvalue of L is 0, the corresponding eigenvector is (vector with n I)
 - ▶ L has n non negative eigenvalues $0 = \lambda_1 \leq ... \leq \lambda_n$

Properties of the normalized graph Laplacians

- $\forall y \in R^n, \quad y^T L_{sym} y = \frac{1}{2} \sum_{i,j=1}^n w_{ij} \left(\frac{y_i}{\sqrt{d_i}} \frac{y_j}{\sqrt{d_j}} \right)^2$
- L_{sym} and L_{rw} are positive semi-definite and have n non negative eigenvalues $0 = \lambda_1 \leq ... \leq \lambda_n$
- λ is an eigenvalue of L_{rw} with eigenvector u iff λ is an eigenvalue of L_{sym} with eigenvector $D^{1/2}u$

Unnormalized spectral clustering

Idée

Projeter les points $x_i \in \mathbb{R}^m$, i = 1 ... n, dans un espace de dimension k dans lequel le clustering se fait facilement

Unnormalized spectral clustering

- Idea
 - Project data points $x_i \in R^m$, i = 1 ... n, in a smaller dimensional space, say of dimension k where clustering is performed
- Input: n points $\mathbf{x}_1, ..., \mathbf{x}_n$, similarity matrix S
- Output: clusters
 - Construct similarity graph and corresponding weight matrix W
 - Compute unnormalized Laplacian L
 - ▶ Compute first eigenvectors of L (corresponding to smallest eigenvalues): $u_1, ..., u_k$
 - U: n x k matrix with columns $u_1, ..., u_k$
 - For i = 1...n, $y_i \in R^k$ i-th row of U
 - ▶ Cluster \mathbf{y}_i , i = 1...n with k-means into clusters $C_1, ..., C_k$
- ▶ k clusters in the initial space: C'_i , ..., C'_k / C'_i = { \mathbf{x}_i / \mathbf{y}_i ∈ C_i }
- Note: Similar algorithms with normalized Laplacians

Apprentissage non supervisé

Non Negative Matrix Factorization

Matrix Factorization

Idea

- Project data vectors in a latent space of dimension k < m size of the original space
- Axis in this latent space represent a new basis for data representation
- Each original data vector will be approximated as a linear combination of k basis vectors in this new space
- Data are assigned to the nearest axis
- ▶ This provide a clustering of the data

Matrix factorization

- $X = \{x_1, ..., x_n\}, x_i \in \mathbb{R}^m$
- X m x n matrix with columns the x_i s
- ▶ Low rank approximation of *X*
 - Find factors $U,V,/X \approx UV$
 - With U an m x k matrix, U a k x n matrix, k < m, n

- Many different decompositions
 - e.g. Singular Value Decomposition, Non Negative Matrix Factorization, Tri factorization, etc

Applications

- Recommendation (User x Item matrix)
 - Matrix completion

	Star wars	Terminator	Titanic	Scarface
Bob	5	4	3	?
Alice	4	?	5	3
John	?	5	3	4

Link prediction (Adjacency matrix)

...

$X \approx UV$

- Columns of U, $u_{,j}$ are basis vectors, the v_{ij} are the coefficient of $x_{,j}$ in this basis

Interpretation

If X is a User x Item matrix

Original data User Item

- Users and items are represented in Representation Representation of size k
- ▶ Their interaction is measured by a dot product in this space

Interpretation

If X is a directed graph adjacency or weight matrix

- Loss function example
- Minimize $C = ||X UV||^2 + c(U, V)$
 - constraints on U, V: c(U, V) e.g.
 - Positivity (NMF)
 - ▶ Sparsity of representations, e.g. $||V||_1$, group sparsity, ...
 - Overcomplete dictionary U: k > m
 - > Symmetry, e.g. trifactorisation
 - \triangleright Bias on U and V
 - □ e.g. biases of users (low scores) or item (popularity) for recommendation
 - Multiple graphs
 - \triangleright Any a priori knowledge on U and V

Non Negative Matrix Factorization

- Loss function
 - Solve

$$Min_{\{U,V\}} ||X - UV||^2$$

Under constraints $U, V \ge 0$

i.e. the factors are constrained to be non negative

Convex loss function in U and in V, but not in both U and V

Algorithm

- Constrained optimization problem
- Can be solved by a Lagrangian formulation
 - lterative multiplicative algorithm (Xu et al. 2003)
 - □ U,V initialized at random values
 - □ Iterate until convergence

- Or by projected gradient formulations
- ▶ The solution U, V is not unique, if U, V is solution, then UD, $D^{-1}V$ for D diagonal positive is also solution

Using NMF for Clustering

▶ Normalize U as a column stochastic matrix (each column vector is of norm 1)

$$u_{ij} \leftarrow \frac{u_{ij}}{\sqrt{\sum_i u_{ij}^2}}$$

$$v_{ij} \leftarrow v_{ij} \sqrt{\sum_i u_{ij}^2}$$

- ▶ Under the constraint "U normalized" the solution U,V is unique
- Associate x^i to cluster j if $j = argmax_j(v_{ji})$

Note

- many different versions and extensions of NMF
- Different loss functions
 - e.g. different constraints on the decomposition
- Different algorithms

Applications

- Clustering
- Recommendation
- Link prediction
- Etc
- Specific forms of NMF can be shown equivalent to
 - PLSA
 - Spectral clustering

Illustration (Lee & Seung 1999)

Basis images for

NMF

Vector Quantization

Principal Component Analysis

Some useful links

- Books
 - Closest to this course
 - □ Cornuéjols A and Miclet L.: Apprentissage Artificiel. Concepts et algorithmes (2nd ed.with revisions and additions 2006 Eyrolles,
 - ☐ Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer (2006)
 - Most useful
 - □ Hastie T, Tibshirani R, and Friedman J, (2009). The Elements of Statistical Learning (2nd edition), Springer-Verlag.
 - pdf version at http://statweb.stanford.edu/~tibs/ElemStatLearn/
 - □ David Barber, 2012, Bayesian Reasoning and Machine Learning, Cambridge Univ. Press.
- Software
 - General
 - Weka 3: Data Mining Software in Java
 - □ http://www.cs.waikato.ac.nz/ml/weka/
 - SVM
 - http://www.csie.ntu.edu.tw/~cjlin/libsvm/ http://symlight.joachims.org/
 - Neural networks
 - □ http://www.torch.ch/
- Test sets
 - UCI machine learning repository
 - <u>....</u>