Verjetnost

n ... št. ponovitev poskusa

 $A \dots$ dogodek

frekvenca dogodka $k_n(A)$...

Relativna frekvenca dogodka A:

$$f_n(A) = \frac{k_n(A)}{n}$$

Statistična definicija verjetnosti

$$P(A) = \lim_{n \to \infty} f_n(A)$$

Klasična definicija verietnosti

pri poguju, da so vsi izidi enako verjetni

$$P(A) = \frac{\# \text{ izidov } A}{\# \text{ vseh možnih izidov}}$$

Geometiriska definicija verietnosti

če je število izidov neskončno, pogledamo razmerje ploščine vseh dogodkov in ugodnih dogodkov.

Aksiomatična definicija verjetnosti

Imamo prostor vseh izidov oz. **vzorčni prostor** Ω . Dogodki so nekatere podmnožice $A \subseteq \Omega$.

Pravila za računanje z dogodki

$$\label{eq:alpha} \begin{array}{ll} \mathrm{idempotentnost} & A \cup A = A = A \cap A \\ \\ \mathrm{komutativnost} & A \cup B = B \cup A \\ \end{array}$$

$$A \cap B = B \cap A$$

asociativnost
$$(A \cup B) \cup C = A \cup (B \cup C)$$

$$(A\cap B)\cap C=A\cap (B\cap C)$$

distibutivnost
$$(A \cup B) \cap C = (A \cap C) \cup (A \cap C)$$

 $(A \cap B) \cup C = (A \cap C) \cup (A \cap C)$

De Morgan
$$\big(\bigcup_{i\in I}A_i\big)^{\complement} = \bigcap_{i\in I}A_i^{\complement}$$

$$\big(\bigcap_{i\in I}A_i\big)^{\complement} = \bigcup_{i\in I}A_i^{\complement}$$

Neprazna družina dogodkov \mathcal{F} v Ω je σ -algebra, če

• zaprtost za komplemente:

$$A \in \mathcal{F} \implies A^{\complement} \in \mathcal{F}$$

• zaprtost za števne unije:

$$A_1, A_2, \dots \in \mathcal{F} \implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$$

Če zahtevamo zaprtost le za končne unije, je F le

Ker je po De Morganovem zakonu $\left(\bigcup_{i\in I}A_i^\complement\right)^\complement=$ Lastnosti $P:\bigcap_{i\in I}A_i$ imamo zaprtost tudi za preseke.

Ker je $A \setminus B = A \cap B^{\complement}$ je algebra zaprta tudi za

Najmanjša algebra je **trivialna**: $\{\emptyset, \Omega\}$.

Naivečia algebra ie: $\mathcal{P}(\Omega)$.

Najmanjša algebra, ki vsebuje E je $\{\emptyset, E, E^{\complement}, \Omega\}$.

Dogodka A in B sta **nezdružljiva** (disjunktna), če je $A \cup B = \emptyset$.

Zaporedje $\{A_i\}_i \in \mathcal{F}$ (končno ali števno mnogo) je popoln sistem dogodkov, če

$$\bigcup_{i} A_{i} = \Omega \qquad A_{i} \cup A_{j} = \emptyset, \forall i, j : i \neq j$$

Verjetnost na (Ω, \mathcal{F}) je preslikava $P : \mathcal{F} \to \mathbb{R}$ z lastnostmi:

- $P(A) \ge 0$ za $\forall A \in \mathcal{F}$
- $P(\Omega) = 1$
- Za paroma nezdružljive dogodke $\{A_i\}_{i=1}^{\infty}$ velia *števna aditivnost*

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

- $P(\emptyset) = 0$
- P je končno aditivna.
- P je monotona: $A \subseteq B \implies P(A) \le P(B)$
- $P(A^{\complement}) = 1 P(A)$
- P je zvezna:

$$A_1 \subseteq A_2 \subseteq \cdots \implies P(\bigcup_{i=1}^{\infty}) = \lim_{i \to \infty} P(A_i)$$

$$B_1 \supseteq B_2 \supseteq \cdots \implies P(\bigcap_{i=1}^{\infty}) = \lim_{i \to \infty} P(B_i)$$

Verjetnostni prostor

je trojček (Ω, \mathcal{F}, P) , kjer je Ω množica vseh izidov, \mathcal{F} σ -algebra in P preslikava verjetnosti.

Najmanjša algebra \mathcal{F} na \mathbb{N} , ki vsebuje $\{1\}, \{2\}, \ldots$ je algebra

$$g = \{A \subseteq \mathbb{N} : A \text{ končna ali } A^{\complement} \text{ neskončna} \}$$

Pogojna verjetnost

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$