Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 3 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження ітераційних циклічних алгоритмів»

Варіант 2

Виконав студент	ІП-15, Богун Даниїл Олександрович
(шифр, прізвище, ім'я, п	ю батькові)
Перевірив	
(прізвище, ім'я, по бать	кові)

Лабораторна робота 3

Дослідження ітераційних циклічних алгоритмів

Мета — дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Варіант 2

Задача: З точністю $\varepsilon = 10^{-6}$ обчислити значення функції Ln a :

$$\operatorname{Ln} a = (a-1) - \frac{(a-1)^2}{2} + \frac{(a-1)^3}{3} - \dots, \quad \text{для } 0 \le a \le 2.$$

Порівняти одержане за допомогою ряду значення зі значенням, отриманим стандартною функцією.

Постановка задачі:

Нам дані значення аргумента a і значення ϵ . Ln a — це сума елементів послідовності, яка пряму ϵ до якогось числа. Вирышувати задачу будемо використовуючи ряд Тейлора. Процес ітерації треба продовжувати , поки модуль різниці двох сусідніх елементів послідовності не буде менше за ϵ . Потім треба результат порівняти зі значенням, отриманим стандартною функцією.

Побудова математичної моделі:

Змінна	Тип	Ім'я	Призначення
Точність	Дійсний	3	Початкове дане
Аргумент	Дійсний	а	Початкове дане
Член послідовності	Дійсний	X	Проміжне дане
Наступний член послідовності	Дійсний	x_n	Проміжне дане
Лічильник ітерації	Цілий	n	Проміжне дане
Функція ln а за формулою	Дійсний	sum	Результат
Чисельник у формулі	Дійсний	p	Проміжне дане
Стандартна функція ln <i>a</i>	Дійсний	Y	Проміжне дане
Порівняння функцій	Дійсний	res	Результат

Y = стандртна функція ln a;

Res = sum / Y

Змінній п присвоюємо значення 1;

Змінній р присвоюємо значення -1;

Змінній x_n присвоюємо значення 1;

Змінній х присвоюємо значення о;

Змінній sum присвоюємо значення о;

Розв'язання

Програмні специфікації запищемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1: Визначимо основні дії

Крок 2: Введення умови для a.

Крок 3: Деталізуємо знаходження функції $\ln a$.

Крок 4: Знаходимо Yi res.

Крок 1	Крок 2	Крок 3
Початок	Початок	Початок
Введення Е	Введення Е	Введення &
Введення а	Введення а	Введення а
Умова для <i>а</i>	Якщо <i>a></i> =2 або <i>a<</i> =0	Якщо <i>a></i> =2 або <i>a<</i> =0
Знаходження Ln а з точністю Є	Виведення "Невірне значення a ."	Виведення "Невірне значення a ."
Знаходження Ү	Інакше	Інакше
Знаходження res	Знаходження Ln а з точністю & Знаходження Y Знаходження res	Повторити
Виведення sum		x = xn
Виведення res		p = p * (-(a-1))
Кінець Знаходження res Виведення sum Виведення res		xn = p / n
	Виведення sum	n = n+1
	Виведення res	
	Кінець	sum = sum + xn
		Π оки $ \mathbf{x}_n - \mathbf{x}_{n-1} > \xi$
		Знаходження Ү
		Знаходження res

Виведення sum

Виведення res

Кінець

Крок	4
πρυπ	7

Початок

Введення Е

Введення а

Якщо *a>=*2 або *a<=*0

Виведення "Невірне значення а."

Інакше

Повторити

$$x = xn$$

$$p = p * (-(a-1))$$

$$xn = p / n$$

$$n = n+1$$

$$sum = sum + xn$$

Поки
$$|\mathbf{x}_n - \mathbf{x}_{n-1}| > \mathcal{E}$$

$$Y = ln a$$

Знаходження res

Виведення sum

Виведення res

Кінець

Крок 5

Початок

Введення &

Введення а

Якщо a>=2 або a<=0

Виведення "Невірне значення а."

Інакше

Повторити

$$x = xn$$

$$p = p * (-(a-1))$$

$$xn = p / n$$

$$n = n+1$$

$$sum = sum + xn$$

Поки
$$|x_n - x_{n-1}| > \varepsilon$$

$$Y = \ln a$$

$$Res = sum / Y$$

Виведення sum

Виведення res

Кінець

Побудова блок-схеми алгоритму

Випробування алгоритму

Початок
a=1.6
n= 24
Sum=0.470004
res=1
Кінець

```
С:\Users\38096\Desktop\New Folder\ОП\Лаб 3\Lab3_OP_Bohun\Lab_3_Bohun\Debug\ConsoleApplication2.exe

0<a<=2 a=1.6
a=1.6 Sum=0.470004 res=1 n=24
Для продолжения нажмите любую клавишу . . .
```

Початок
a=0.67
n=13
Sum=-0.400478
res=1
Кінець

```
С:\Users\38096\Desktop\New Folder\ОП\Лаб 3\Lab3_OP_Bohun\Lab_3_Bohun\Debug\ConsoleApplication2.exe

0<a<=2 a=0.67
a=0.67 Sum=-0.400478 res=1 n=13
Для продолжения нажмите любую клавишу . . . _
```

Висновки

Протягом третьої лабораторної роботи ми дослідили подання операторів повторення дій та набули практичних навичок їх використання під час складання циклічних програмних специфікацій.