EN.530.663: Robot Motion Planning Homework 8

Jin Seob Kim, Ph.D. Senior Lecturer, ME Dept., LCSR, JHU

due: 04/09/2021, midnight EST to Gradescope

This is exclusively used for Spring 2021 EN.530.663 RMP students, and is not to be posted, shared, or otherwise distributed.

Problems

- 1. Write a Matlab function code for build_RRT for planar point robot cases (as in the hand-outs). The specification of the code is the following:
 - The function should be of the form:

function $[path, V, E] = build_RRT(q_I, q_G, NumNodes, \Delta q, O, x_{max}, y_{max})$

- The input includes:
 - $-q_I$ and q_G : initial and goal position of the robot.
 - NumNodes: the limit number of nodes.
 - $-\Delta q$: step size (constant).
 - O is the cell array of obstacles.
 - Assume that the reachable workspace is a 2D (of course!) square box of which the lower left corner is the origin. You will then need the size of the box in the input, which is $x_{max} \times y_{max}$.
 - other inputs as necessary
- The output includes:
 - the $path \in \mathbb{R}_{2 \times n}$ connecting q_I and q_G . $(q_I \text{ and } q_G \text{ should also be included})$
 - The set of vertices V and the set of edges E
 - other outputs as necessary.
- 2. Write a Matlab function code for build_PRM for planar point robot cases (as in the hand-outs). The specification of the code is the following:
 - the function should be of the form:

```
function [path, V, G] = build\_PRM(q_I, q_G, n, K, O, x_{max}, y_{max})
```

- The input includes:
 - $-q_I$ and q_G : initial and goal position of the robot.

RMP (EN.530.663)

- -n: the limit number of nodes.
- -K: number of nearest neighbors.
- O is the cell array of obstacles.
- $-(x_{max}, y_{max})$ the coordinates of the upper right corner of the workspace box (the origin is the lower left corner as in P1).
- other inputs as necessary
- The output includes:
 - the path $path \in \mathbb{R}_{2 \times n}$ connecting q_I and q_G .
 - The set of vertices V and the weighted adjacency matrix G
 - other outputs as necessary.

Note:

• You need to write the function is intersect_linepolygon as in the hand-outs for both of problems.

Submission Guideline

- Submit all your Matlab codes in a single .zip file. Name your single zip file submission as "YourName_HW8.zip". For example, "JinSeobKim_HW8.zip" for a single zip file. Submission will be done through the Gradescope.
- Please make sure to include *all the necessary files*, even files that were submitted in the previous homework assignments (of course the codes must be updated if necessary so as to be error-free). If TAs try to run your function and it does not run, then your submission will have a significant points deduction.
- Make as much comments as possible so that the TAs can easily read your codes.