# Raspberry pi based Surveillance Robot for Real Time Intrusion Detection and Tracking

Aniruddh Bhagwat 405B005 Manav Chouhan 405B018 Rohit Kshirsagar 405B036 Prashant Kumar 405B049

#### **Problem Statement**

Make a surveillance robot to ensure safety of the house, identify the intruder, track him and alert the owner.

#### **Motivation**

With increase in workforce of the country, the houses remain vacant when it's members are out there in offices. Hence there is:

- Need to ensure security of house.
- Need of an assistant in house.
- Need to alert owner if someone unwanted comes in.

We aim to build a surveillance robot that solves the above needs.

### **Objective**

Once completed the robot will solve the following requirements:

- Identify the person as known or unknown, when the person enters.
- Alert the owner if the person is unknown, send an image of intruder to the owner.
- Follow the intruder and send his actions to owner.
- Take next set of instruction from owner and work accordingly.
- Return to its original position.

### **Idea Matrix**

| Scoring<br>1 = Low<br>2 = Moderate<br>3 = High              | Different<br>or Better | Delivers<br>Value | Doable,<br>Practical | Potential for early adopters | Score |
|-------------------------------------------------------------|------------------------|-------------------|----------------------|------------------------------|-------|
| Person Identification,<br>Communication &<br>Tracking Robot | Н                      | М                 | Н                    | Н                            | 11    |
| Domestic Help Robot                                         | М                      | Н                 | L                    | М                            | 8     |
| Home Automation<br>Robot                                    | L                      | Н                 | М                    | Н                            | 9     |

### **Hardware Requirements**

- Raspberry Pi 3B
- Ultrasonic Sensor Module HC-SR04
- ROBOT Chassis
- Wheels, DC Motors
- Raspberry pi 5MP camera

- Bread Board
- Resistor (1k)
- Motor Driver L298 2A
- Connecting wires
- Power supply or Power bank

## **Software Requirements**

- Python3 and necessary libraries.
- Text Editor
- Raspberry pi OS
- VnC Server
- Telegram app

# **Literature Survey**

| Title                                                                                               | Published Year | Basic Idea                                                                                                                            |
|-----------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Human Detection and Tracking<br>for Video Surveillance: A<br>Cognitive Science Approach             | 2017           | <ul> <li>Detect human beings in any frame.</li> <li>Find the movement patterns of the humans in the frame.</li> </ul>                 |
| Obstacle Detection and Avoidance Robot                                                              | 2018           | <ul> <li>Detect and avoid any obstacles in the path.</li> <li>Focuses on the edge detection for higher accuracy.</li> </ul>           |
| Design and Implementation of<br>an Autonomous Indoor<br>Surveillance Robot based on<br>Raspberry Pi | 2019           | <ul> <li>Identify the person and alert the owner.</li> <li>Take necessary actions through the commands given by the owner.</li> </ul> |

# **System Architecture**



### **Single Shot Detection Algorithm**

**Single Shot detector** takes only one **shot** to **detect** multiple objects present in an image using multibox. It is significantly faster in speed and high-accuracy object **detection** algorithm.

SSD divides the image using a grid and have each grid cell be responsible for detecting objects in that region of the image. **Detection** objects simply means predicting the class and location of an object within that region.

### **Local Binary Pattern**

Local Binary Pattern (LBP) is a simple yet very efficient texture operator which labels the pixels of an image by thresholding the neighborhood of each pixel and considers the result as a binary number.

The algorithm uses a concept of a sliding window, based on the parameters radius and neighbors.



**Figure:** Three neighborhood examples used to define a texture and calculate a local binary pattern (LBP).

### **Frontend Images**







### **Backend Image**

Prashant

```
(base) prashantkumar@Prashants-MacBook-Pro robot % python3 app.py --prototxt MobileNetSSD_deploy.prototxt.txt --model MobileNetSSD_deploy.caffemodel
[INFO] loading model...
Starting Process
Prashant
Unknown Person Detected
starting video stream...
Stopped Following
Sending video please wait...
Video Sent
```

### Conclusion

Even though the development cost is kept as low as possible, the system is capable of navigating autonomously while engaged in surveillance, recognizing intruders via facial recognition.