

<110> FUCHS, Sara BARCHAN, Dora SOUROUJON, Miriam

<120> RECOMBINANT FRAGMENTS OF THE HUMAN ACETYLCHOLINE RECEPTOR AND THEIR U SE FOR TREATMENT OF MYASTHENIA GRAVIS

<130>	FUCI	HS=2A					
<150> <151>		423,398 9-11-08					
<150> <151>	,	/IL98/00211 3-05-06					
<160>	32						
<170>	Pate	entIn versio	on 3.0				
<210> <211> <212> <213>		o sapiens					
<400> tccgaac	1 catg	agacccgtct	ggtggcaaag	ctatttaaag	actacagcag	cgtggtgcgg	60
ccagtg	gaag	accaccgcca	ggtcgtggag	gtcaccgtgg	gcctgcagct	gatacagctc	120
atcaato	gtgg	atgaagtaaa	tcagatcgtg	acaaccaatg	tgcgtctgaa	acagcaatgg	180
gtggatt	taca	acctaaaatg	gaatccagat	gactatggcg	gtgtgaaaaa	aattcacatt	240
ccttcag	gaaa	agatctggcg	cccagacctt	gttctctata	acgatgcaga	tggtgacttt	300
gctatto	gtca	agttcaccaa	agtgctcctg	cagtacactg	gccacatcac	gtggacacct	360
ccagcca	atct	ttaaaagcta	ctgtgagatc	atcgtcaccc	actttccctt	tgatgaacag	420
aactgca	agca	tgaagctggg	cacctggacc	tacgacggct	ctgtcgtggc	catcaacccg	480
gaaagc	gacc	agccagacct	gagcaacttc	atggagagcg	gggagtgggt	gatcaaggag	540
tcccgg	ggct	ggaagcactc	cgtgacctat	tcctgctgcc	ccgacacccc	ctacctggac	600
atcacct	cacc	acttcgtcat	gcagcgcctg				630

<210> 2 <211> 210 <212> PRT

<213> Homo sapiens

<400> 2

Ser Glu His Glu Thr Arg Leu Val Ala Lys Leu Phe Lys Asp Tyr Ser 1 $$ 5 $$ 10 $$ 15

Al	a Gly	Leu 35	Gln	Leu	Ile	Gln	Leu 40	Ile	Asn	Val	Asp	Glu 45	Val	Asn	Gln	
Il	e Val 50	. Thr	Thr	Asn	Val	Arg 55	Leu	Lys	Gln	Gln	Trp 60	Val	Asp	Tyr	Asn	
Le 65	u Lys	Trp	Asn	Pro	Asp 70	Asp	Tyr	Gly	Gly	Val 75	Lys	Lys	Ile	His	Ile 80	
Pr	o Ser	Glu	Lys	Ile 85	Trp	Arg	Pro	Asp	Leu 90	Val	Leu	Tyr	Asn	Asn 95	Ala	
As	p Gly	Asp	Phe 100	Ala	Ile	Val	Lys	Phe 105	Thr	Lys	Val	Leu	Leu 110	Gln	Tyr	
Th	r Gly	His 115	Ile	Thr	Trp	Thr	Pro 120	Pro	Ala	Ile	Phe	Lys 125	Ser	Tyr	Cys	
Gl	u Ile 130	: Ile	Val	Thr	His	Phe 135	Pro	Phe	Asp	Glu	Gln 140	Asn	Cys	Ser	Met	
Ly 14	_	Gly	Thr	Trp	Thr 150	Tyr	Asp	Gly	Ser	Val 155	Val	Ala	Ile	Asn	Pro 160	
Gl	u Ser	: Asp	Gln	Pro 165	Asp	Leu	Ser	Asn	Phe 170	Met	Glu	Ser	Gly	Glu 175	Trp	
Va	l Il∈	. Lys	Glu 180	Ser	Arg	Gly	Trp	Lys 185	His	Ser	Val	Thr	Tyr 190	Ser	Cys	
Су	s Pro	195	Thr	Pro	Tyr	Leu	Asp 200	Ile	Thr	Tyr	His	Phe 205	Val	Met	Gln	
Ar	g Leu 210			•												
<2 <2	10> 11> 12> 13>	3 75 DNA Homo	sapi	iens												
	00> tgaca	3 itgg	tagai	tctg	cc ad	cgcc	ccago	c tga	cgtga	actt	tggg	gagtt	ccc t	ttgt	tttct	60
ca	tctgc	agg (atga	3												75
<2 <2	10> 11> 12> 13>	4 25 PRT Homo	sap:	iens								•				
<4	00>	4					,									
G1 1	y Asp	Met	Val	Asp 5	Leu	Pro	Arg	Pro	Ser 10	Cys	Val	Thr	Leu	Gly 15	Val	
Pr	o Leu	Phe	Ser 20	His	Leu	Gln	Asp	Glu 25								
_	10> 11>	5 705														

<213> Homo sapiens <400> 5

<400> 5						
	g agacccgtct	ggtggcaaag	ctatttaaag	actacagcag	cgtggtgcgg	60
ccagtggaa	g accacegeca	ggtcgtggag	gtcaccgtgg	gcctgcagct	gatacagctc	120
atcaatgtg	g atgaagtaaa	tcagatcgtg	acaaccaatg	tgcgtctgaa	acagggtgac	180
atggtagat	c tgccacgccc	cagctgcgtg	actttgggag	ttcctttgtt	ttctcatctg	240
caggatgag	c aatgggtgga	ttacaaccta	aaatggaatc	cagatgacta	tggcggtgtg	300
aaaaaaatt	c acattccttc	agaaaagatc	tggcgcccag	accttgttct	ctataacgat	360
gcagatggt	g actttgctat	tgtcaagttc	accaaagtgc	tcctgcagta	cactggccac	420
atcacgtgg	a cacctccagc	catctttaaa	agctactgtg	agatcatcgt	cacccacttt	480
ccctttgat	g aacagaactg	cagcatgaag	ctgggcacct	ggacctacga	cggctctgtc	540
gtggccatc	a acccggaaag	cgaccagcca	gacctgagca	acttcatgga	gagcggggag	600
tgggtgatc	a aggagtcccg	gggctggaag	cactccgtga	cctattcctg	ctgccccgac	660
accccctac	c tggacatcac	ctaccacttc	gtcatgcagc	gcctg		705

<210> 6 <211> 235

<212> PRT

<213> Homo sapiens

<400> 6

Ser Glu His Glu Thr Arg Leu Val Ala Lys Leu Phe Lys Asp Tyr Ser $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ser Val Val Arg Pro Val Glu Asp His Arg Gln Val Val Glu Val Thr 20 25 30

Ala Gly Leu Gln Leu Ile Gln Leu Ile Asn Val Asp Glu Val Asn Gln 35 40 45

Ile Val Thr Thr Asn Val Arg Leu Lys Gln Gly Asp Met Val Asp Leu 50 55 60

Pro Arg Pro Ser Cys Val Thr Leu Gly Val Pro Leu Phe Ser His Leu 65 70 75 80

Gln Asp Glu Gln Trp Val Asp Tyr Asn Leu Lys Trp Asn Pro Asp Asp 85 90 95

Tyr Gly Gly Val Lys Lys Ile His Ile Pro Ser Glu Lys Ile Trp Arg 100 105 110

Pro Asp Leu Val Leu Tyr Asn Asn Ala Asp Gly Asp Phe Ala Ile Val 115 120 125

Lys Phe Thr Lys Val Leu Leu Gln Tyr Thr Gly His Ile Thr Trp Thr 130 135 140

Pro Pro Ala Ile Phe Lys Ser Tyr Cys Glu Ile Ile Val Thr His Phe

145	150	155	160
Pro Phe Asp Glu Gln A		ys Leu Gly Thr Trp Thr .70 175	Tyr
Asp Gly Ser Val Val 7	Ala Ile Asn Pro G 185	Glu Ser Asp Gln Pro Asp 190	Leu
Ser Asn Phe Met Glu S 195	Ser Gly Glu Trp V 200	Val Ile Lys Glu Ser Arg 205	Gly
Trp Lys His Ser Val 7	Thr Tyr Ser Cys C 215	Cys Pro Asp Thr Pro Tyr 220	Leu
Asp Ile Thr Tyr His E	Phe Val Met Gln A 230	arg Leu 235	
<210> 7 <211> 690 <212> DNA <213> Homo sapiens			
<400> 7 tccgaacatg agacccgtct	t ggtggcaaag ctat	ttaaag actacagcag cgtgc	gtgcgg 60
ccagtggaag accaccgcca	a ggtcgtggag gtca	ccgtgg gcctgcagct gatac	agctc 120
atcaatgtgg atgaagtaaa	a tcagatcgtg acaa	ccaatg tgcgtctgaa acagg	ggtgac 180
atggtagatc tgccacgccc	c cagctgcgtg actt	tgggag ttcctttgtt ttctc	catctg 240
caggatgagc aatgggtgga	a ttacaaccta aaat	ggaatc cagatgacta tggcc	ggtgtg 300
aaaaaaattc acattccttc	c agaaaagatc tggc	gcccag accttgttct ctata	acgat 360
gcagatggtg actttgctat	t tgtcaagttc acca	aagtgc teetgeagta caetg	gccac 420
atcacgtgga cacctccago	c catctttaaa agct	actgtg agatcatcgt cacco	acttt 480
ccctttgatg aacagaacto	g cagcatgaag ctgg	gcacct ggacctacga cggct	ctgtc 540
gtggccatca acccggaaag	g cgaccagcca gacc	tgagca acttcatgga gagcg	gggag 600
tgggtgatca aggagtcccg	g gggctggaag cact	ccgtga cctattcctg ctgcc	ccgac 660
accccctacc tggacatcac	c ctaccacttc		690
<210> 8 <211> 230 <212> PRT <213> Homo sapiens			
<400> 8			•
Ser Glu His Glu Thr A		ys Leu Phe Lys Asp Tyr 0 15	Ser
Ser Val Val Arg Pro V 20	Val Glu Asp His A 25	arg Gln Val Val Glu Val	Thr
Ala Gly Leu Gln Leu I 35	Ile Gln Leu Ile A 40	sn Val Asp Glu Val Asn 45	Gln

Ile	Val 50	Thr	Thr	Asn	Val	Arg 55	Leu	Lys	Gln	Gly	Asp 60	Met	Val	Asp	Leu	
Pro 65	Arg	Pro	Ser	Суз	Val 70	Thr	Leu	Gly	Val	Pro 75	Leu	Phe	Ser	His	Leu 80	
Gln	Asp	Glu	Gln	Trp 85	Val	Asp	Tyr	Asn	Leu 90	Lys	Trp	Asn	Pro	Asp 95	Asp	
Tyr	Gly	Gly	Val 100	Lys	Lys	Ile	His	Ile 105	Pro	Ser	Glu	Lys	Ile 110	Trp	Arg	
Pro	Asp	Leu 115	Val	Leu	Tyr	Asn	Asn 120	Ala	Asp	Gly		Phe 125	Ala	Ile	Val	
Lys	Phe 130	Thr	Lys	Val	Leu	Leu 135	Gln	Tyr	Thr	Gly	His 140	Ile	Thr	Trp	Thr	
Pro 145	Pro	Ala	Ile	Phe	Lys 150	Ser	Tyr	Cys	Glu	Ile 155	Ile	Val	Thr	His	Phe 160	
Pro	Phe	Asp	Glu	Gln 165	Asn	Cys	Ser	Met	Lys 170	Leu	Gly	Thr	Trp	Thr 175	Tyr	
Asp	Gly	Ser	Val 180	Val	Ala	Ile	Asn	Pro 185	Glu	Ser	Asp	Gln	Pro 190	Asp	Leu	
Ser	Asn	Phe 195	Met	Glu	Ser	Gly	Glu 200	Trp	Val	Ile	Lys	Glu 205	Ser	Arg	Gly	
Trp	Lys 210	His	Ser	Val	Thr	Tyr 215	Ser	Cys	Cys	Pro	Asp 220	Thr	Pro	Tyr	Leu	
Asp 225	Ile	Thr	Tyr	His	Phe 230											
<210 <211 <212 <213	L> 2 2> I	9 20 DNA Arti1	ficia	al												
<220 <223		syntl	netio	c												•
<400 ccgg		9 cga a	acato	gagad	cc										,	20
<210 <211 <212 <213	L> 2 2> [10 23 DNA Arti1	ficia	al												
<220 <223		synth	netio	2												
<400 cgga		l0 cca ç	ggcgo	ctgca	at ga	ac										23
<210 <211		l 1 26													•	

<212> <213>	DNA Artificial		
<220> <223>	synthetic		
<400> cggaat	11 tctg gaggtgtcca	cgtgat •	26
	12 23 DNA Artificial		
<220> <223>	synthetic		
<400> ccggate	12 ccgc catctttaaa	agc	23
<210><211><211><212><213>	13 25 DNA Artificial		
<220> <223>	synthetic		
<400> ggccate	13 gggc teegaacatg	agacc	25
<210> <211> <212> <213>	14 29 DNA Artificial		
<220> <223>	synthetic		
<400> ccggato	14 cctc aaaagtgrta	ggtgatrtc	29
<210> <211> <212> <213>	15 24 DNA Artificial		
<220> <223>	synthetic		
<400> cgctate	15 gggg ctgcttgttg	acag	24
<210> <211> <212> <213>	16 24 DNA Artificial		

<220> <223>	synthetic	
<400> gacggta	16 atca gtggtctcag tggc	24
<210> <211> <212> <213>	17 26 DNA Artificial	
<220> <223>	synthetic	
<400> cagccca	17 agtg gaacagggag attcgc	26
<210> <211> <212> <213>	18 20 DNA Artificial	
<220> <223>	synthetic	
<400> gatcctd	18 caaa ttgcagcaca	20
<210> <211> <212> <213>	19 20 DNA Artificial	
<220> <223>	synthetic	
<400> agccaaa	19 aaga tgagaagcca	20
<210> <211> <212> <213>	20 24 DNA Artificial	
<220> <223>	synthetic	
<400> tgggaga	20 acag ctgacggtta aaag	24
<210> <211> <212> <213>	21 20 DNA Artificial	
<220> <223>	synthetic	

<400> cgggaa	21 tggg aattttacct	20
<210> <211> <212> <213>	22 20 DNA Artificial	
<220> <223>	synthetic	
<400> tccaga	22 gcag tgatggtgag	20
<210><211><211><212><213>	23 24 DNA Artificial	
<220> <223>	synthetic	
<400> aacatg	23 acac cgcggagact cggg	24
<210> <211> <212> <213>	24 20 DNA Artificial	
<220> <223>	synthetic	
<400> aggact	24 tggc cttttggagt	20
<210> <211> <212> <213>	25 20 DNA Artificial	
<220> <223>	synthetic	
<400> cagtcc	25 ctgg atggtgaggt	20
<210><211><211><212><213>	26 24 DNA Artificial	
<220> <223>	synthetic	
<400>	26	24

<210> <211> <212> <213>	27 21 DNA Artificial	
<220> <223>	synthetic	
<400> gtgagag	27 gaaa aggcattgct g	21
<210> <211> <212> <213>	28 21 DNA Artificial	
<220> <223>	synthetic	
<400> ggttctt	28 Egtt tgtttetetg e	21
<210> <211> <212> <213>	29 24 DNA Artificial	
<220> <223>	synthetic	
<400> ggtgctd	29 etct gtcatctccg gggt	24
<210> <211> <212> <213>	30 23 DNA Artificial	
<220> <223>	synthetic	
<400> gaggcaa	30 agct tacttcaata gca	23
<210> <211> <212> <213>	31 23 DNA Artificial	
<220> <223>	synthetic	
<400> atgccag	31 gtgt ttcttgtttc att	23
<210> <211>	32 24	

<212> DNA <213> Artificial

<220> <223> synthetic

<400> 32

acacccacgg gatcaattat cctc

24