Vector Valued Functions

An objects position in 3D space is defined by $\vec{r} = \langle x, y, z \rangle$

Full trajectory of an object is $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$

All 3 variables x, y, and z change with respect to a single variable t

	$\vec{r}(t) = \langle \cos$					
Т	Х	Υ	Z			
0	1	0	0			
$\pi/2$	0	1	$\pi/2$			
π	-1	0	π			
$3\pi/2$	0	-1	$3\pi/2$			
2π	1	0	2π			

Circle with radius r is $\vec{r}(t) = \langle rcos(t), rsin(t) \rangle$ Circle with radius r is to see if surfaces interest put one equation into another

Domain of a vector valued function must work for x(t), y(t) and z(t)

$$f'(t) = \lim_{h \to 0} \frac{f(\mathbf{t})}{f(h+t) - f(t)}$$

For
$$\mathbf{r(t)}$$
 $\vec{r}'(t) = \lim_{h \to 0} \frac{\vec{r}(h+t) - \vec{r}(t)}{h}$ So $\vec{r}'(t) = \langle x'(t), y'(t), z'(t) \rangle$

Integral
$$\int \vec{r}(t)dt = \overrightarrow{R} + \overrightarrow{c}$$

$$\int_{a}^{b} \vec{r}(t)dt = \overrightarrow{R}(b) - \overrightarrow{R}(a)$$

$$\int_{a}^{b} \vec{r}(t)dt = \vec{R}(b) - \vec{R}(a)$$

Integral is an accumulation of all the tangent vectors over inverval [a,b]

if $\vec{r}(t)$ is a position vector than $\vec{r}'(t)$ is the velocity vector

$$f(x) = \frac{k}{x} \operatorname{then} f'(x) = -\frac{k}{x^2}$$

$$f(x) = kx$$
 then $f'(x) = k$

if $|\vec{r}'(t)|$ is speed (scalar)

$$f(x) = k \operatorname{then} f'(x) = 0$$

$$f(x) = x$$
 then $f'(x) = 1$

 $\vec{r}''(t)$ is acceleration vector

Quotient Rule

$$f(x)\frac{u}{v} \text{ then } f'(x) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

$$f'(x) = \frac{LoDeHi - HiDeLo}{(Lo)^2}$$

$$f(x) = k\sqrt{x}$$
 then $f'(x) = \frac{k}{2\sqrt{x}}$

Chain Rule

$$h(x) = f(g(x))$$
 then $h'(x) = f'(g(x)) * g'(x)$

Power Rule

$$f(x) = x^n \operatorname{then} f'(x) = n x^{n-1}$$

$$f(x) = uv \text{ then } f'(x) = u \frac{dv}{dx} + v \frac{du}{dx}$$

f	(\mathbf{x})	a^{x}	then	f'((\mathbf{x})	=	a^{x}	ln(\widehat{a}	١
, ,	(~ ~ .	, Ci		, ,	$($ $^{\prime}$ $^{\prime}$		ci i	,,,,	(v)	,

$$f(x) = \ln(x) \text{ then } f'(x) = \frac{1}{x}$$

$$f(x) = e^x$$
 then $f'(x) = e^x$

$$\frac{dy}{dt} = ky \qquad \int a^x dx = \frac{a^x}{\ln a} + C$$

$$\int e^x dx = e^x + C \qquad \int \frac{dx}{x} = \ln|x| + c$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \qquad \int k dx = kx + C$$

$$\int u(dv) = uv - \int v(du)$$

$$\int ln(x)dx = xln(x) - x + C$$

Tria Functions

function Derivative

$$sin(x)$$
 $cos(x)$

$$cos(x)$$
 $-sin(x)$

$$tan(x)$$
 $sec^2(x)$

$$sec(x)$$
 $sec(x)tan(x)$

$$csc(x)$$
 $-csc(x)cot(x)$

$$cot(x)$$
 $csc^2(x)$

Estimated Length of curve

$$\sum_{i=1}^{n} |\vec{r}'(t)| \Delta t$$

Actual Length of Curve

$$\lim_{n \to \infty} \sum_{i=1}^{n} |\vec{r}'(t)| \Delta t = \int_{a}^{b} |\vec{r}'(t)| dt$$

$$s(t) = \int_{a}^{t} |\vec{r}'(t)| dt$$
 Shows how length and time are related

r(s) tells us where we are after a given length but to do this we need s(t)

$$\int ln(x)dx = xln(x) - x + C$$

Unit tangent vector $T(t) = \frac{r'(t)}{r(t)}$ T dies bot change based on magnitude so a change in T means direction changes

So $\left| \frac{dT}{ds} \right|$ is how much the curve turns

If $\left| \frac{dT}{ds} \right|$ its big then the curve turns a lot on very sharply

If $\left| \frac{dT}{ds} \right|$ its small then the curve turns very gradually

If $\left| \frac{dT}{ds} \right| = 0$ then the function is a straight line

$$\frac{ds}{dt} = |r'(t)| \text{ so } \frac{dT}{ds} = \frac{\frac{dT}{ds}}{\frac{ds}{dt}} = |\frac{T'(t)}{r'(t)}| = \kappa$$

Vector functions

Derivatives

Integrals

Derivative rules

Special derivatives

unit tangent vector

Length

Domain of function

Motion in space