

IIC1253 — Matemáticas Discretas

Tarea 5 – Respuesta Pregunta 1

Pregunta 1

Sean f(n) y g(n) dos funciones de \mathbb{N} a \mathbb{R}^+ . Demuestre o refute las siguientes afirmaciones:

1. $f(n) \notin \mathcal{O}(g(n))$, entonces $g(n) \in \mathcal{O}(f(n))$.

Lo primero es equivalente a que no existe un c tal que

$$f(n) \le c * g(n) \quad \forall n \ge n_0$$

lo que implica que existe un c tal que

$$f(n) > c * g(n) \quad \forall n \ge n_0$$

entonces

$$\exists c. \ \frac{1}{c}f(n) > g(n) \quad \forall n \ge n_0$$

que implica que $g(n) \in \mathcal{O}(f(n))$, por lo tanto la afirmación es verdadera.

2. $f(n) \in \mathcal{O}(g(n))$, entonces $2^{f(n)} \in \mathcal{O}(2^{g(n)})$.

De lo primero tenemos que (Estaba en esa página https://es.wikipedia.org/wiki/An%C3%A1lisis_asint%C3%B3tico)

$$f(n) \in \mathcal{O}(q(n)) \Leftrightarrow f(n) - q(n) = o(q(n))$$

Entonces si tomamos el límite de los argumentos de la derecha tendremos

$$\lim_{n \to \infty} \frac{2^{f(n)}}{2^{g(n)}} = \lim_{n \to \infty} 2^{f(n) - g(n)} = 2^{o(g(n))}$$

lo que nos da una constante, por lo que $2^{f(n)} \in \mathcal{O}(2^{g(n)})$

IIC1253 — Matemáticas Discretas

Tarea 5 – Respuesta Pregunta 2

Pregunta 2

Demuestre formalmente (usando la definición formal de la notación \mathcal{O}) que:

1.
$$(\log_2(n))^k \in \mathcal{O}(n^{\epsilon})$$
 para $k \geq 1$ y $\epsilon > 0$

Notamos que para el caso $\epsilon \geq 1$ tenemos que

$$\log_2(n) \le n \Leftrightarrow (\log_2(n))^k \le n^k = n^{\epsilon}$$

Mientras que para el caso en que $0<\epsilon<1$

$$(\log_2(n))^k \leq n^\epsilon * \max_{n > n_0} |(\log_2(n))^k - n^\epsilon|$$

Donde n_0 es el valor de n que hace que las funciones dadas se igualen. Ese máximo representa la distancia que hay entre n^{ϵ} y la funcion logaritmica dada. Este valor es distinto de infinito ya que las funciones tienen un crecimiento similar.

2.
$$\sum_{i=1}^{n} n^i \in \mathcal{O}(2^{n*\log_2(n)})$$