IN THE CLAIMS

What is claimed is:

1	1.	A semiconductor device, comprising:
2		a trench element separation region including a trench formed in a
3		surface of a semiconductor substrate, the trench element separation region
4		isolating separate semiconductor elements;
5		an oxide film formed on inner walls of the trench;
6		a trench filling insulating material filling the trench and having edges
7		above the inner walls of the trench; and
8		wherein a top section of the trench and the edges of the trench filling
9		insulating material are formed so as to be essentially located on the same
0		plane.
1	2.	The semiconductor device of claim 1, wherein the edges of the trench filling
2	insula	ting material are defined by side edges of a sacrificial layer.
1	3.	The semiconductor device of claim 2, wherein the sacrificial layer is a silicon nitride
2	film.	
1	4.	The semiconductor device of claim 3, wherein:
2		the side edges of the sacrificial layer are formed by an etching process
3		including a neutral radical.

- 1 5. The semiconductor device of claim 1, wherein the semiconductor elements are
- 2 insulated gate field effect transistors (IGFETs).
- 1 6. The semiconductor device of claim 5, wherein the IGFETs include opposite
- 2 conductivity types.
- 1 7. A semiconductor device, comprising:
- a trench element separation region including a trench formed in a
- 3 surface of a semiconductor substrate, the trench element separation region
- 4 isolating a first doped channel layer of a first insulated gate field effect
- 5 transistor (IGFET) from a second doped channel layer of a second IGFET;
- an oxide film formed on inner walls of the trench;
- 7 a trench filling insulating material filling the trench and having edges
- 8 above the inner walls of the trench; and
- 9 wherein inner wall edges in a top section of the trench and the edges of
- the trench filling insulating material are formed so as to be essentially located
- on the same plane.

4 00 PER 1 10 PER 1 10

- 1 8. The semiconductor device of claim 7, wherein the edges of the trench filling
- 2 insulating material are defined by side edges of a sacrificial layer.
- 1 9. The semiconductor device of claim 8, wherein:

2		the side edges of the sacrificial layer are formed by an etching process
3		including a fluorine radical.
1	10.	The semiconductor device of claim 7, wherein the first and second doped channel
2	layers	s are of the same conductivity types.
1	11.	The semiconductor device of claim 7, wherein the first and second doped channel
2	layers	s are of opposite conductivity types.
1	12.	A method for forming a trench element separation region on a surface of a
2	semic	conductor substrate, comprising the steps of:
3		depositing a first insulation film onto the surface of the semiconductor
4		substrate;
5		depositing and patterning a second insulation film to form a second
6		insulation film pattern;
7		dry etching the semiconductor substrate using the second insulation
8		film pattern as an etching mask to form a trench;
9		forming an oxide film on an inner wall of the trench by thermally
10		oxidizing the semiconductor substrate using the second insulation film pattern
11		as an oxidation mask;
12		removing a modified layer formed on the surface of the second
13		insulation film during the thermal oxidation step by using a neutral radical
14		including fluorine;

15	etching the surface of the second insulation film by a predetermined		
16	thickness after the modified layer is removed;		
17	depositing a filling insulation film over the whole surface of the trench		
18	to completely fill the trench after the surface of the second insulation film is		
19	etched; and		
20	chemically mechanical polishing the filling insulation film using the		
21	second insulation film as a polishing stopper to form a trench filling insulating		
22	material.		
1	13. The method for manufacturing a semiconductor device according to claim	12,	
2	wherein:		
3	the second insulation film includes a silicon nitride film.		
1			
1	14. The method for manufacturing a semiconductor device according to claim	12,	
2	wherein:		
3	the semiconductor substrate is a silicon substrate and the neutral		
4	radical is a fluorine radical.		
1	15. The method for manufacturing a semiconductor device according to claim	14,	
2	wherein:		
3	a final judgment of the modified layer removal is performed by		
4	measuring a change in intensity of emissions with a wavelength of		
5	approximately 336 nm from a reaction product NH.		

1	16.	The method for manufacturing a semiconductor device according to claim 14,
2	where	zin:
3		a final judgment of the modified layer removal is performed by
4		measuring a change in intensity of emissions with a wavelength of
5		approximately 388 nm from a reaction product CN.
1	17.	The method for manufacturing a semiconductor device according to claim 14,
2	where	in:
3		the thickness of the second insulation film is etched for adjustment
4		such that edges of the trench insulating material above the inner walls of the
5		trench are essentially located on the same plane as edges of the inner walls of
6		the trench in a top section of the trench.
1	18.	The method for manufacturing a semiconductor device according to claim 14, further
2	includ	ing the step of:
3		forming a doped channel layer of an insulated gate field effect
4		transistor (IGFET) by ion implantation and heat treatment after the trench
5		filling insulating material is formed.
1	19.	The method for manufacturing a semiconductor device according to claim 14,
2	where	in:

the first insulation film is a silicon oxide film formed by thermal

4	oxidation of the semiconductor substrate; and	
5	the filling insulation film is a silicon oxide film deposited by a vapor	
6	deposition method.	
1	20. The method for manufacturing a semiconductor device according to claim 14,	
2	wherein:	
3	the trench element separation region isolates a first insulated gate field	
4	effect transistor (IGFET) from a second IGFET.	