1. T1(2, 0.5), T2(3, 1.2), T3(6, 0.5)

$$- \frac{0.5}{2} + \frac{1.2}{3} + \frac{0.5}{6} = 0.73333333 \quad URM(3) = 3(2^{\frac{1}{3}} - 1) = 0.79 \quad U \le URM$$
 feasible

- Here are the min/max/avg respons times for the tasks

Task	min	avg	max	std dev		
TASK T1	0.500	0.500	0.500	0.000		
TASK T2	1.700	1.700	1.700	0.000		
TASK T3	2.700	2.700	2.700	0.000		

- None of the tasks missed a deadline.
- It is definitely possible that there can be another scheduler but more tests need to be done. In this specific scenario, U is less than or equal to the Urm and is less that 1 which guarantees feasibility.
- 2. T1(2, 0.5, 1.9) T2(5,2) T3(1, 0.1, 0.5) T4(10, 5, 20)

-
$$U = \frac{0.5}{2} + \frac{2}{5} + \frac{0.1}{1} + \frac{5}{10} = 1.25$$
 $URM(4) = 4(2^{-\frac{1}{4}} - 1) = 0.75682846$

Not feasible

- Here are the min/max/avg response times

- Only Task 4 is missing its deadlines. They are missed at the deadlines 30ms all the way to 100 ms.
- There are no other schedulers that will work with this particular task set because the utilization time exceeds 1, therefore making this system not feasible.