

Winning Space Race with Data Science

Shahid Hussain 15-Jan-2024

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - Data Collection through API and Web Scrapping
 - Data Wrangling
 - EDA with SQL and Data Visualization
 - Building an interactive map with Folium
 - Building a Dashboard with Plotly dash
 - Predictive Analysis
- Summary of all results
 - EDA results
 - Interactive analysis
 - Predictive analysis

Introduction

Project background and context

SpaceX advertises Falcon 9 rocket launches on its website, with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage.

Problems you want to find answers

The project task is to predicting if the first stage of the SpaceX Falcon 9 rocket will land successfully

Methodology

Executive Summary

- Data collection methodology:
 - SpaceX Rest API and Web scrapping from Wikipedia
- Perform data wrangling
 - Data was processed using one-hot encoding for catagorical feature and cleaning of null values and irrelevant columns
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - LR, KNN SVM, DT models have been built and evaluated for the best classifier methodology

Data Collection

- Describe how data sets were collected.
 - SpaceX launch data that is gathered from the SpaceX Rest API, gives information about the rocket used, payload delivered, launch specifications, landing specifications and landing outcome
 - Web scrapping was also done to gather the data

Data Collection – SpaceX API

 Present your data collection with SpaceX REST calls using key phrases and flowcharts

 GitHub URL of the completed SpaceX API calls notebook - https://github.com/uniqueshahid/datascience-capstone-project/blob/master/jupyter-labsspacex-data-collection-api.ipynb

Data Collection - Scraping

 Present your web scraping process using key phrases and flowcharts

 GitHub URL of the completed web scraping notebook -https://github.com/uniqueshahid/data-science-capstone-project/blob/master/jupyter-labs-webscraping.ipynb # use requests.get() method with the provided static_url
assign the response to a object
data = requests.get(static_url).text

Use BeautifulSoup() to create a BeautifulSoup object from a response text content
soup = BeautifulSoup(data, 'html5lib')

df= pd.DataFrame({ key:pd.Series(value) for key, value in launch_dict.items() })
df

	Flight No.	Launch site	Payload	Payload mass	Orbit	Customer	Launch outcome	Version Booster	Booster landing	Date	Time
0	1	CCAFS	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success\n	F9 v1.0B0003.1	Failure	4 June 2010	18:45
1	2	CCAFS	Dragon	0	LEO	NASA	Success	F9 v1.0B0004.1	Failure	8 December 2010	15:43
2	3	CCAFS	Dragon	525 kg	LEO	NASA	Success	F9 v1.0B0005.1	Not attempted\n	22 May 2012	07:44
3	4	CCAFS	SpaceX CRS-1	4,700 kg	LEO	NASA	Success\n	F9 v1.0B0006.1	No attempt	8 October 2012	00:35
4	5	CCAFS	SpaceX CRS-2	4,877 kg	LEO	NASA	Success\n	F9 v1.0B0007.1	Not attempted\n	1 March 2013	15:10

Data Wrangling

how data were processed

EDA with Data Visualization

Summarize what charts were plotted and why you used those charts

• GitHub URL of your completed EDA with data visualization notebook - https://github.com/uniqueshahid/data-science-capstone-project/blob/master/jupyter-labs-eda-dataviz.ipynb.jupyterlite.ipynb

EDA with SQL

Using bullet point format, summarize the SQL queries you performed

• GitHub URL of your completed EDA with SQL notebook - https://github.com/uniqueshahid/data-science-capstone-project/blob/master/jupyter-labs-eda-sql-coursera sqllite.ipynb

Build an Interactive Map with Folium

- Map markers has been added to the map with aim to finding an optimal location for building a launch site
- GitHub URL of your completed interactive map with Folium map https://github.com/uniqueshahid/data-science-capstone-project/blob/master/lab_jupyter_launch_site_location.jupyterlite.ipynb

Build a Dashboard with Plotly Dash

• GitHub URL of your completed Plotly Dash lab - https://github.com/uniqueshahid/data-science-capstone-project/blob/master/spacex dash app.py

Predictive Analysis (Classification)

• The SVM, KNN and Logistic Regression model achieved the highest accuracy of 83.3%, while the SVM performs the best in terms of Area under Curve at 0.958

• GitHub URL of your completed predictive analysis lab - https://github.com/uniqueshahid/data-science-capstone-project/blob/master/SpaceX Machine Learning Prediction Part 5.jupyterlite.ipynb

Results

- The SVN, KNN and Logistic regression models are the best in terms of prediction accuracy for this dataset.
- Low weighted payloads perform better than heavier payloads
- The success rate for SpaceX launches is directly proportional time in years they will eventually perfect the launches
- KSC LC 39A had the most successful launches from all the sites.
- Orbit GEO, HEO, SSO, ES L1 has the best Success Rate

Flight Number vs. Launch Site

Launches from CCAFS SLC 40 are significantly higher than launches from other sites.

Payload vs. Launch Site

• If we observe Payload Vs. Launch Site scatter point chart, we find that for the VAFB-SLC launchsite there are no rockets launched for heavy payload mass (greater than 10000)

Success Rate vs. Orbit Type

• The Orbit type of ES-L1, GEO, HEO, SSO are among the highest success rate

Flight Number vs. Orbit Type

• From Flight number vs Orbit type scatter plot, a trend can be observed of shifting to VLEO launches in recent years

Payload vs. Orbit Type

• There are strong correlation between ISS and Payload at the range around 2000, as well as between GTO and the range of 4000-8000.

All Launch Site Names

```
%sql SELECT DISTINCT Launch_Site FROM SPACEXTBL;
 * sqlite:///my_data1.db
Done.
   Launch_Site
   CCAFS LC-40
   VAFB SLC-4E
   KSC LC-39A
 CCAFS SLC-40
```

Launch Site Names Begin with 'CCA'

%sql SELECT * FROM SPACEXTBL WHERE Launch_Site LIKE 'CCA%' LIMIT 5; * sqlite:///my_data1.db Done. Booster_Version Launch_Site Payload PAYLOAD_MASS_KG_ Orbit Customer Mission_Outcome Landing_Outcome Date Dragon CCAFS LC-Spacecraft F9 v1.0 B0003 LEO Failure (parachute) SpaceX Success 40 Qualification 06-04 Unit Dragon demo flight C1, two NASA CCAFS LC-2010-LEO 15:43:00 F9 v1.0 B0004 CubeSats, (COTS) Failure (parachute) Success 12-08 (ISS) barrel of NRO Brouere cheese Dragon CCAFS LC-LEO NASA 2012-7:44:00 F9 v1.0 B0005 demo flight 525 Success No attempt 05-22 (ISS) (COTS) C2 CCAFS LC-2012-SpaceX NASA LEO 0:35:00 F9 v1.0 B0006 500 Success No attempt 10-08 40 CRS-1 (ISS) (CRS) CCAFS LC-SpaceX LEO NASA F9 v1.0 B0007 15:10:00 No attempt Success 03-01 40 CRS-2 (ISS) (CRS)

Total Payload Mass

```
%sql SELECT SUM(PAYLOAD_MASS__KG_) as TOTAL_PAYLOAD_MASS FROM SPACEXTBL WHERE Customer = 'NASA (CRS)';

* sqlite://my_data1.db
Done.

TOTAL_PAYLOAD_MASS___
45596
```

Average Payload Mass by F9 v1.1

First Successful Ground Landing Date

```
%sql SELECT MIN(Date) FROM SPACEXTBL WHERE Landing_Outcome = 'Success (ground pad)';

* sqlite://my_data1.db
Done.

MIN(Date)
2015-12-22
```

Successful Drone Ship Landing with Payload between 4000 and 6000

```
Done.
                                                                                                                                                                                                                                                                                                                                 %%sql
SELECT
                                                                                                                                                                                                                                                                            sqlite:///my_data1
                                                                                                                                                                                                                                                                                                                      ROM SPACEXTBL
                                                                                                                                                                                                                                F9 FT B1021.1
                                                                                                                                                                                                             F9 FT B1022
                 B4 B1042.1
                                   FT B1031.2
                                                                                                                                                                                           FT B1023.1
B4 B1045.1
                                                                         B1038.1
                                                                                                                B1029.2
                                                                                                                                                                                                                                                                                                                                 BOOSTER_VERSION
                                                                                                                                                                                                                                                                                                    PAYLOAD_MASS
                                                                                                                                                                                                                                                                                                     (drone < 6000;
                                                                                                                                                                                                                                                                                                   6000;
```

Total Number of Successful and Failure Mission Outcomes

Boosters Carried Maximum Payload

```
$$\text{$\frac{\psi}{\psi}$} $$\text{$\frac{\
```

2015 Launch Records

```
%%sq1
SELECT substr(DATE,6,2) as Month, LANDING_OUTCOME, BOOSTER_VERSION, LAUNCH_SITE
FROM SPACEXTBL
WHERE Landing_Outcome = 'Failure (drone ship)' AND substr(DATE,0,5) = '2015';

* sqlite:///my_data1.db
Done.

Month Landing_Outcome Booster_Version Launch_Site

01 Failure (drone ship) F9 v1.1 B1012 CCAFS LC-40

04 Failure (drone ship) F9 v1.1 B1015 CCAFS LC-40
```

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

```
%%sql
  SELECT LANDING_OUTCOME, COUNT(LANDING_OUTCOME) AS TOTAL_NUMBER
  FROM SPACEXTBL
  WHERE DATE BETWEEN '2010-06-04' AND '2017-03-20'
  GROUP BY LANDING_OUTCOME
  ORDER BY TOTAL_NUMBER DESC
 * sqlite:///my_data1.db
Done.
     Landing_Outcome TOTAL_NUMBER
           No attempt
                                    10
   Success (drone ship)
     Failure (drone ship)
   Success (ground pad)
     Controlled (ocean)
   Uncontrolled (ocean)
     Failure (parachute)
  Precluded (drone ship)
```


Launch Sites Marked on a Map

Success / Failed launches marked on Map

Distances between a launch site to its proximities

SpaceX Launch Records Dashboard

Total Success Launches for all sites

Payload vs Launch Outcome

Classification Accuracy

Confusion Matrix

Conclusions

- The SVM, KNN, and Logistic Regression models are the best in terms of prediction accuracy for this dataset.
- Low weighted payloads perform better than the heavier payloads.
- The success rates for SpaceX launches is directly proportional time in years they will eventually perfect the launches.
- KSC LC 39A had the most successful launches from all the sites.
- Orbit GEO,HEO,SSO,ES L1 has the best Success Rate

