Nachklausur in Experimentalphysik 2

Prof. Dr. C. Pfleiderer Sommersemester 2017 04.10.2017

Zugelassene Hilfsmittel:

- 1 Doppelseitig handbeschriebenes DIN A4 Blatt
- 1 nichtprogrammierbarer Taschenrechner

Die Bearbeitungszeit beträgt 90 Minuten. Es müssen nicht alle Aufgaben vollständig gelöst sein, um die Note 1,0 zu erhalten.

Aufgabe 1 (7 Punkte)

Sie betrachten zwei (masselose) Punktladungen mit Ladung q > 0, die sich an den Orten $x_1 = +a$ und $x_2 = -a$ befinden. Wird ein Teilchen der Masse m und Ladung Q > 0 auf die Höhe y über die beiden Punktladungen gebracht "schwebt" das Teilchen und bewegt sich nicht. Bestimmen sie den Parameter a.

Hinweis: Die Anordnung befindet sich im Gravitationsfeld der Erde.

Aufgabe 2 (10 Punkte)

Die Produktion einer Papiermaschine wird durch kapazitive Papierdickenmessung kontinuierlich und berührungsfrei überwacht, indem die hergestellte Papierbahn der relativen Permeabilitätszahl $\epsilon_r=2,4$ in der Mitte zwischen zwei Parallelen Metallplatten der Fläche $A=0,1\,\mathrm{m}^2$ und Abstand $d_1=4,0\,\mathrm{mm}$ hindurchläuft und dabei die Kapazität gemessen wird.

- (a) Wie groß ist die Kapazität C_0 der beiden Platten, wenn kein Papier durchläuft?
- (b) Welche Dicke hat das Papier, wenn die Kapazität $C = 239 \,\mathrm{pF}$ gemessen wird?
- (c) Wie wird die Kapazitätsmessung beeinflusst, wenn die Papierbahn nicht genau in der Mitte zwischen den Metallplatten, sondern um $x=1,0\,\mathrm{mm}$ nach rechts parallelverschoben hindurchläuft?

Aufgabe 3 (9 Punkte)

Ein Plattenkondensator habe parallele und und kreisförmige Platten mit dem Radius R=2,3cm. Der Plattenabstand betrage 1,1mm, das Dielektrikum sei Luft. Nun fließe Ladung auf die eine Platte. Von der andere fließe Ladung ab. Der Strom betrage 5A.

- (a) Berechnen Sie die zeitliche Änderung des elektrischen Feldes zwischen den Platten.
- (b) Berechnen Sie den Verschiebungsstrom zwischen den Platten und zeigen Sie, dass er $5\mathrm{A}$ beträgt.
- (c) Zeigen Sie, dass im Abstand r von der Mittelachse durch beide Platten das Magnetfeld zwischen den Platten gegeben ist durch $B = (1, 89 \cdot 10^{-3} T/m) \cdot r$ wenn r kleiner ist als der Plattenradius R (r < R).

Aufgabe 4 (7 Punkte)

Ein Metallstab der Masse m liege quer über zwei ebenfalls parallelen Metallstangen mit dem Abstand l. Die Stangen sind um den Winkel θ gegen die Horizontale gekippt. Das Magnetfeld B zeigt vertikal nach oben. Die beiden Metallstangen sind am oberen Ende mit einem ohmschen Widerstand R verbunden. Der Metallstab gleite reibungslos nach unten.

- (a) Zeigen sie, dass eine Kraft des Betrages $F = (B^2 l^2 v \cos^2 \theta)/R$ auf den gleitenden Stab wirkt, die entgegen der Bewegungsrichtung wirkt (Kraft abhängig von θ).
- (b) Zeigen sie, dass für die Endgeschwindigkeit des Stabes (betragsmäßig) gilt: $v = (Rmg\sin\theta)/(B^2l^2\cos^2\theta)$

Aufgabe 5 (9 Punkte)

- (a) Stellen Sie bei der gegebenen Schaltung die Gleichung für die Gesamtimpedanz auf (Zwischenschritte werden bewertet). (Nicht explizit ausrechnen) Die Gesamtimpedanz soll $Z = 10\Omega$ betragen.
- (b) Berechnen Sie nun X_{L1} für $\mathbf{X_C} = \frac{40}{3}\Omega$, $\mathbf{X_{L2}} = 8\Omega$ und $\mathbf{R} = 16\Omega$ so, dass die Gesamtimpedanz Reell wird und 10Ω beträgt.

Aufgabe 6 (12 Punkte)

Ein Raumschiff fliegt im Tiefflug (die Höhe sei vernachlässigbar) Mit v=0,8c über einen Planeten. An der Unterseite des Raumschiffs sind bei $x_1'=0$ und $x_2'=D'=30\,\mathrm{m}$ zwei Laser L_1 und L_2 angebracht. Zum Zeitpunkt t'=t=0 befindet sich der Ursprung des bewegtegten Systems x'-y'-z' genau über dem des ruhenden x-y-z. In diesem Moment werden in dem Raumschiff gleichzeitig die beiden Laser gefeuert. Die Laserstrahlen erzeugen jeweils eine Markierung auf dem Boden.

- (a) Welchen Abstand haben die beiden Laser L_1 und L_2 für einen Beobachter auf dem Boden?
- (b) Bestimmen sie die beiden Koordinaten x_1 und x_2 , bei denen die Laserstrahlen auf den Boden treffen! Wie weit sind die Markierungen auseinander? Vergleichen sie diesen Wert mit dem Ergebnis aus Teilaufgabe a).
- (c) Zu welchem Zeitpunkt t_2 feuert für den ruhenden Beobachter der Laser L_2 ? Falls $t_2 \neq t_1$: Wie weit hat sich das Raumschiff in der vergangenen Zeit nach vorne bewegt? Welcher Zusammenhang besteht zwischen diesem Ergebnis und den Ergebnissen aus den anderen Teilaufgaben?

Aufgabe 7 (10 Punkte)

Eine sich in x-Richtung ausbreitende elektromagnetische Welle kann man durch ein elektrisches und ein magnetisches Feld der Form $\vec{E}(\vec{r},t) = \vec{E}_0 \cos\left(2\pi\left(ft-\frac{x}{\lambda}\right)\right) \vec{B}(\vec{r},t) = \vec{B}_0 \cos\left(2\pi\left(ft-\frac{x}{\lambda}\right)\right)$ darstellen. λ ist dabei die Wellenlänge, die mit der Frequenz über $\lambda = c/f$ zusammenhängt. \vec{E} besitze ohne Beschränkung der Allgemeinheit nur eine Komponente in z-Richtung. Verwenden Sie im Weiteren die differentielle Darstellung des Faraday'schen Induktionsgesetztes $\nabla \times \vec{E} = -\frac{\partial}{\partial t} \vec{B}$.

- a) Zeigen Sie durch Rechnung, dass \vec{B} senkrecht auf \vec{E} und ebenso senkrecht auf der Ausbreitungsrichtung steht.
- b) Zeigen Sie, dass $|\vec{E}| = c \left| \vec{B} \right|$ gilt.
- c) Zeigen Sie, dass die elektrische gleich der magnetischen Energiedichte ist. Verwenden Sie hierzu $\epsilon_0\mu_0=1/c^2$.

Konstanten

$$\begin{split} \epsilon_0 &= 8.85 \cdot 10^{-12} \text{CV}^{-1} \text{m}^{-1} & \mu_0 &= 1, 26 \cdot 10^{-6} \text{mkgs}^{-2} \text{A}^{-2} \\ e &= 1.60 \cdot 10^{-19} \text{C} & c &= 3 \cdot 10^8 \text{m/s} \\ m_e &= 9.11 \cdot 10^{-31} \text{kg} \end{split}$$