Ztest: A C++ Unit Testing Framework High-level Language Programming Project

郑辰阳 叶穗华 吴泓庆 齐彦松 王瑞箐

未来技术学院 数据科学与大数据技术

2025 年 6 月 6 日

背景介绍

单元测试(英语: Unit Testing)又称为模块测试,是针对程序模块(软件设计的最小单位)来进行正确性检验的测试工作。程序单元是应用的最小可测试部件。在过程化编程中,一个单元就是单个程序、函数、过程等;对于面向对象编程,最小单元就是方法,包括基类(超类)、抽象类、或者派生类(子类)中的方法。

表 1: 主流测试框架对比

框架	GUI 支持	并发测试	报告系统	扩展性	数据驱动
Google $Test(C++)$	无	有限	基础	中等	不支持
JUnit (Java)	Eclipse 插件	支持	HTML/XML	高	支持
PyTest (Python)	第三方工具	优秀	丰富	优秀	支持
Catch2 (C++)	无	一般	简洁	中等	不支持
$\mathbf{Ztest*} \; (\mathbf{C}++)$	精美	优秀	丰富	高	支持

Ztest Function

TEST Management

Two types of basic testing

Safe Test

Concurrent and thread-safe test

Unsafe Test

serial execution or thread-unsafe

Two types of special testing

Benchmark Test

Multiple iterations to evaluate performance

Parameterized Test

Data-driven testing with parameters

Hooks

- BeforeAll
- AfterEach
- AfterAll

Tests

N * Safe test

M* Unsafe test

两种定义方式

链式定义

```
ZTEST_F(BasicMath, FailedAdditionTest)
{ EXPECT_EQ(6, add(2, 3));
  return ZState::z_success;
}
```

宏定义

Assertion

- EXPECT_EQ: Verifies whether two values are equal.
- ASSERT_TRUE: Verifies whether a condition is true.
- **EXPECT_NEAR**: Verifies whether two floating-point values are close enough.

```
// If the assertion fails, an exception is thrown
EXPECT_EQ(5, add(2, 3));
ASSERT_TRUE(6 == add(2, 3));
EXPECT_NEAR(5.0, add(2.0, 3.0), 0.1);
```

任务分类

更关注结果正确性 对单元测试进行多线程并行 合并多个文件 加法运算 复杂字符串匹配与替换 字符串拼接 大量数据排序结果验证 用户登录验证 短 长 测试所需时间 多线程处理任务 读取或写入大文件 压力测试 低复杂度算法性能测试 时间复杂高算法测试 数据库查询

更关注对运行过程的评估

TEST Actuator

UnSafe,参数化和benchmark 顺序执行

Data-Driven Testing

Data.csv Storage cache Memory

Al Diagnosis

AI分析报告

- 1. **根本原因**: 测试失败源于逻辑错误或精度问题,如加法计算偏差、断言条件不满足及浮点数比较精度不足。
- 2. 修复建议: 修正加法函数逻辑,使用更宽松的浮点数比较容差,确保断言条件正确。
- 3. 高风险测试用例: ASSERTION.FailedEXPECT EQ、ASSERTION.FailedEXPECT NEAR、ASSERTION.FailedASSERT TRUE。
- 4. 测试覆盖率评估: 覆盖率较高,但需关注浮点运算和逻辑分支覆盖。
- 5. 稳定性改进建议: 增强浮点数比较容差,优化异常处理,增加边界值测试。

Ztest Core Architecture

GUI Architecture

CLI

Usage: executor_name [OPTIONS]

Options:

- --help Show help
- --run-all Run all tests
- --list-tests List all tests
- --no-gui Run in headless mode

Responsibilities

- Zheng Chenyang: Architectural design, main code writing for ztest core and GUI, report writing, and presentation
- Ye Suohua: GUI improvement, partial test logic improvement
- Wu Hongqing: GUI improvement
- Qi Yansong: GUI improvement
- Wang Ruizhen: Attempt to migrate to Windows

THANKS