Quality-Aware Coding and Relaying for 60 GHz Real-Time Wireless Video Broadcasting

IEEE International Conference on Communications (ICC) Budapest, Hungary, June 2013.

Presenter

Joongheon (Joon) Kim, Ph.D. Candidate of Computer Science, University of Southern California, Los Angeles, CA, USA Email: joongheon.kim@usc.edu

Introduction – Next Generation Wireless

Introduction – Next Generation Wireless: Motivation

Uncompressed 1080p HD Video Streaming

To transmit 30 "1080p HD video frames" in one second (standard mode), around 1.5 gigabit/s data rates are required.

How mm-wave can support gigabit/s?

Research Challenges and Solution Approaches

Application Scenario

Our Objective

How can we maximize the sum quality of delivered video streams from wireless cameras to a broadcasting center?

Link Budget Analysis

Related Work

	,—————————————————————————————————————						
	ICME07	TWC07	CSVT09	MILCOM07	JSAC12	PIMRC11	Proposed
Route Selection	0	0	0	0	0	0	0
Rate Allocation	X	X	X	X	0	0	0
Millimeter-Wave Channels	X	X	X	X	X	0	0
Multiple-Antenna Elements	X	X	X	X	X	X	0
Video Streaming	0	0	0	0	X	0	0
Limited Number of Relays	-	-	-	-	-	X	0

- [ICME07] M.-H. Lu, P. Steenkiste, T. Chen (Carnegie Mellon)
- [TWC07] S. Mao, X. Xheng, Y.T. Hou, H.D. Sherali, J.H.Reed (Virginia Tech)
- [CSVT09] W. Wei, A. Zakhor (UC-Berkeley)
- [MILCOM07] S. Murthy, P. Hegde, V. Parameswaran, B. Li, A. Sen (Arizona State)
- [JSAC12] S. Sharma, Y. Shi, Y.T. Hou, H.D. Sherali, S. Kompella (Virginia Tech)
- [PIMRC11] J. Kim, Y. Tian, S. Mangold, A.F. Molisch (USC)

A Reference System Model

Network Model

System Component Architectures

System Specification

System Specification

The number of beams can be specified in sources and relays.

Multi-Beams at Sources and Relays

Single-Beams at Sources and Multi-Beams at Relays

Single-Beams at Sources and Relays

A Reference Network Model and Notations

Network Model and Objective

Objective:

Max the overall delivered video qualities

- Relay Selection
- Rate Selection

Notations

Notation	Description		
\mathcal{S}	Set of sources		
$\mathcal R$	Set of relays		
D	Destination		
s_i	Source $i, \forall i \in \{1, \cdots, \mathcal{S} \}$		
r_{j}	Relay $j, \forall j \in \{1, \cdots, \mathcal{R} \}$		
$\mathcal{A}_{s_i o r_i}^{ ext{SRR}}$	Max achievable rate between s_i and r_j		
$\mathcal{A}_{r_i o D}^{ ext{RDR}}$	$\underset{i \to D}{\text{EDR}}$ Max achievable rate between r_j and D		
$a_{s_i \to r_i}^{SRR}$	Data rate between s_i and r_j		
$x_{s_i \to r_j}^{\text{SRR}}$	Connectivity index between s_i and r_j		
$\underline{a}_{s_i \to r_j}^{\text{SRR}}$	Lower bounds of rates at each source s_i		
	for minimum required video quality		
$f_{q}\left(\cdot\right)$	Function for the relationship between		
	video quality and data rate		
B_{s_i}	Number of antenna-beams at s_i		
B_{r_j}	Number of antenna-beams at r_j		

Initial Formulation

Formulation

Variables and Quality Bounds

 $\sum_{i=1}^{|\mathcal{S}|} x_{s_i \to r_j}^{\text{SRR}} \leq B_{r_j}, \forall j$ $\sum_{i=1}^{|\mathcal{S}|} x_{s_i \to r_j}^{\text{SRR}} \leq B_{r_j}, \forall j$ $\sum_{j=1}^{|\mathcal{R}|} x_{s_i \to r_j}^{\text{SRR}} \leq B_{s_i}, \forall i$

$$\begin{array}{ccc} \underline{a}_{s_i} & \leq & \displaystyle\sum_{j=1}^{|\mathcal{R}|} a_{s_i \rightarrow r_j}^{\text{SRR}} x_{s_i \rightarrow r_j}^{\text{SRR}}, \forall i, \\ \\ a_{s_i \rightarrow r_j}^{\text{SRR}} & \leq & \mathcal{A}_{s_i \rightarrow r_j}^{\text{SRR}}, \forall i, \forall j, \\ \\ x_{s_i \rightarrow r_j}^{\text{SRR}} & \in & \{0, 1\}, \forall i, \forall j, \end{array}$$

Quality Bounds

Each camera has a quality lower bound.

Should be larger than its low bounds.

 r_2

Data rate between source i and relay j (positive)

Path selection between source *i* and relay *j* (Boolean: 0 or 1)

Initial Formulation

Formulation

Constraints: Relay Capacity and Selection

Subject To
$$\sum_{i=1}^{|\mathcal{S}|} a_{s_{i} \to r_{j}}^{\text{SRR}} x_{s_{i} \to r_{j}}^{\text{SRR}} \leq \mathcal{A}_{r_{j} \to D}^{\text{RDR}}, \forall j$$

$$\sum_{i=1}^{|\mathcal{S}|} x_{s_{i} \to r_{j}}^{\text{SRR}} \leq B_{r_{j}}, \forall j$$

$$\sum_{j=1}^{|\mathcal{R}|} x_{s_{i} \to r_{j}}^{\text{SRR}} \leq B_{s_{i}}, \forall i$$

$$\underline{a}_{s_{i}} \leq \sum_{j=1}^{|\mathcal{R}|} a_{s_{i} \to r_{j}}^{\text{SRR}} x_{s_{i} \to r_{j}}^{\text{SRR}}, \forall i,
a_{s_{i} \to r_{j}}^{\text{SRR}} \leq \mathcal{A}_{s_{i} \to r_{j}}^{\text{SRR}}, \forall i, \forall j,
x_{s_{i} \to r_{i}}^{\text{SRR}} \in \{0, 1\}, \forall i, \forall j,$$

Sum of all incoming rates

Link Capacity

Relays: (# of incoming streams) \leq (# of beams)

Sources: (# of outgoing streams) \leq (# of beams)

Initial Formulation

Formulation

Object Function: Delivered Quality Maximization

Subject To $\frac{|S|}{|S|}$

- In the paper, per-link quality is considered instead of per-source quality consideration.
- Considering per-link quality is valid when
 (i) sources have single-beam antennas or
 (ii) multiple streams emanate from one source location, each being transmitted via one link.
- In other situations, Considering the quality of each source is the most meaningful consideration.

Formulation Simplification: Concept

Performance Evaluation – Setting

Our Scheme and Control Group

- Proposed Scheme
 - *VQM* Video Quality Maximization
- Control Group
 - SRM
 - → Sum Rate Maximization
 - → No Quality Consideration on our Objective Function
 - JRSR
 - → Joint Relay Selection and Routing
 - \rightarrow [JSAC12] in Related Work

Performance Evaluation – Impact of Lower Bounds

VQM has better performance than SRM for all settings

Setting III suffers significantly from the higher required per-stream quality

Performance Evaluation – CDF of Aggregated Video Quality

The performance of JRSR is worse than that of both SRM and VQM

VQM always has the highest performance than SRM and JRSR in terms of the achieved total video quality distribution

Concluding Remarks – Quality-Aware SVC and Relaying

Issues

Solutions

Relays for Mm-Wave

Video Quality Consideration

Computation

Relay Network Construction via Link Budget Analysis

Sum Quality Consideration Formulation

Formulation Simplification

Q&A

Appendix

- A) Assumptions
- B) Link Budget Analysis
- C) Solving the Convex or Non-Convex Programming

Appendix A: Assumptions and System Specification

Short range version with 1ft. Antenna

Easy antenna alignment using voltmeter RSSI test points.

Appendix B: Link Budget Analysis

Link Budget Analysis

Appendix C: Solving Optimization

Solving the Convex or Non-Convex Programming

