Recombination Paper: Quantitative Results

Alexandre Sollaci

The university of Chicago

January 29, 2017

Part I: Parameterization

Introduction

- To find the parameters I will present, I basically did a grid search.
- Because the number of parameters is big, having fine grids and searching over every possible combination is not feasible.
- Having this in mind, I first defined very coarse grids that spanned a large interval for each parameter. Having found the points that minimize the distance between the model and the data, I redefine finer grids around those points and search again. I did this 3 times.
- Having said that, I found 2 parameterizations that yield vey similar results.

Table: Model Parameters

Parameter	Interpretation
η^H	New technology quality increase.
η^M	New combination quality increase.
η^L	Reuse/refinement quality increase.
au	Scale parameter of the new ideas distribution.
λ	Scale parameter of the distribution of costs.
κ	Shape parameter of the distribution of costs.
ξ	Determines the fraction of viable combinations in a pool, $1/\xi$.
γ	Determines the scale of the final goods production function.
ϵ	Determines the elasticity of intertemporal substitution of consumption.
β	Intertemporal discount factor.
I	Number of inventors.
J	Number of firms.

Table: Parameters that do not affect patent type distribution.

variable	value	Moment
η^L	0	Normalized.
γ	0.6	Fits the labor share of GDP
ϵ	2	Taken from Acemoglu, Ak-
		cigit, Bloom and Kerr (2013).
β	0.954	$=\frac{1}{1+r}$, with $r=5\%$.
J	depends on pa-	chosen to fit average growth
	rameterization	rate.

Moments of the Patent Type Distribution

- I used 10 moments to find the rest of the parameters:
 - New technology and new combination fractions in 1850, 1900, 1950 and 2000 (8 moments);
 - Reuse fraction peak value and year that it reaches the peak.

Parameterization 1: does not include I as a parameter

Table: Parameters related to the patent type distribution.

Parameter	Value
η^H	0.2
η^M	0.04
au	400
λ	2.1
κ	7
ξ	75

and

$$I = 500;$$
 $J = 910$

Parameterization 2: includes I as a parameter

Table: Parameters related to the patent type distribution.

Parameter	Value
η^H	0.2
η^M	0.05
au	800
λ	2
κ	7
ξ	150
I	800

and

$$J = 1750$$

• I will use this version to compute the counterfactuals.

Part II: Counterfactuals

Introduction

- The counterfactual here is a subsidy on patent creation.
- I will consider a subsidy for new technology patents only, new combination patents only and both.
- I will also alter the duration of the subsidy, lasting for 50 or 100 years.

	Subsidy	No subsidy	% Change
Welfare	-0.00016789	-0.00016727	0.0036889
# technologies	65679	79604	0.21202
Average GDP growth	0.021321	0.021753	0.020279

	Subsidy	No subsidy	% Change
Welfare	-0.00017249	-0.00017185	0.0036683
# technologies	78806	106595	0.35263
Average GDP growth	0.021463	0.021933	0.021896

	Subsidy	No subsidy	% Change
Welfare	-0.00016624	-0.0001447	0.12958
# technologies	65968	66259	0.0044112
Average GDP growth	0.021339	0.021305	-0.0015829

	Subsidy	No subsidy	% Change
Welfare	-0.00017332	-0.00015093	0.12921
# technologies	79361	79179	-0.0022933
Average GDP growth	0.021469	0.02149	0.00099304

	Subsidy	No subsidy	% Change
Welfare	-0.00017333	-0.00015062	0.13101
# technologies	65551	79535	0.21333
Average GDP growth	0.021245	0.02175	0.02379

	Subsidy	No subsidy	% Change
Welfare	-0.00017313	-0.00015022	0.13232
# technologies	79265	107507	0.3563
Average GDP growth	0.021484	0.022047	0.0262

Patterns

- The pattern is clear: subsidizing new combinations will have no effect no patent shares or in the number of technologies, but it will have the highest effect on welfare.
- In fact, growth is even smaller when subsidizing new combinations, since inventors might revert from producing new technologies to produce new combinations. But the number of combination possibilities is so great that new combinations more than make up for the difference.
- Finally, subsidizing new combinations and new technologies at the same time has a bigger effect than the sum of the two subsidies alone. There is a complementarity between the two as new technologies always create more hot product lines.
- Finally, we can experiment with different subsidies. For fun, the following has 10% subsidy for new technologies and 50% subsidy for new combinations. This subsidy runs for 100 years.

10% new technology, 50% new combination, 100 years

	Subsidy	No subsidy	% Change
Welfare	-0.00017347	-0.00013343	0.23086
# technologies	78682	93980	0.19443
Average GDP growth	0.021469	0.022677	0.056245