Chapitre 1 Introduction

HLIN401 : Algorithmique et complexité

L2 Informatique Université de Montpellier 2020 – 2021

► Responsable : B. Grenet (bruno.grenet@umontpellier.fr)

- Responsable : B. Grenet (bruno.grenet@umontpellier.fr)
- Cours: lundi 9h45-11h15, BBB ou amphi 6.04 (sauf changement)
- ► TD/TP : par groupes (*cf* emploi du temps en ligne)
 - A+CMI B. Grenet
 - B E. Gurpinar
 - C B. Grenet
 - D A. Perret du Cray

- ► Responsable : B. Grenet (bruno.grenet@umontpellier.fr)
- Cours: lundi 9h45-11h15, BBB ou amphi 6.04 (sauf changement)
- ► TD/TP : par groupes (*cf* emploi du temps en ligne)
 - A+CMI B. Grenet
 - B E. Gurpınar
 - C B. Grenet
 - D A. Perret du Cray
- ightharpoonup Évaluations : CC + Examen. Note = max(E, 30%CC + 70%E)
 - Partiel type examen (15 pts) : a priori le 8 mars
 - ► TP (5 pts) : **tous** les TPs à rendre, via Moodle, avec correction automatique et détection de plagiat

- Responsable : B. Grenet (bruno.grenet@umontpellier.fr)
- Cours: lundi 9h45-11h15, BBB ou amphi 6.04 (sauf changement)
- ► TD/TP : par groupes (*cf* emploi du temps en ligne)
 - A+CMI B. Grenet
 - B E. Gurpınar
 - C B. Grenet
 - D A. Perret du Cray
- Évaluations : CC + Examen. Note = max(E, 30%CC + 70%E)
 - Partiel type examen (15 pts) : a priori le 8 mars
 - ▶ TP (5 pts) : **tous** les TPs à rendre, via Moodle, avec correction automatique et détection de plagiat
- ▶ Moodle cours HLIN401 : à consulter impérativement !

Distanciel

Moodle encore plus important!

Distanciel

Moodle encore plus important!

- ► Cours / TD : visio-conférences BBB
- Séances enregistrées

Distanciel

Moodle encore plus important!

- ► Cours / TD : visio-conférences BBB
- Séances enregistrées
- ► TP :
 - Sujets connus à l'avance
 - Code à rendre (avec détection de plagiat) et noté
 - ▶ Travail en autonomie + séances d'aide (visio, chat, etc.)
 Il est très fortement recommandé de travailler le TP avant la séance d'aide

1. Exemple introductif: calculer x^n

2. Modèle pour la complexité algorithmique

3. Conception et analyse d'un algorithme

4. Outils mathématiques

Le problème

Pour un réel x et un entier $n \ge 1$, on veut calculer x^n

Le problème

Pour un réel x et un entier $n \ge 1$, on veut calculer x^n

Pour cela on va

- proposer plusieurs algorithmes et les analyser :
- démontrer leur correction
- estimer leur complexité
 (= temps nécessaire au déroulement du programme)
- voir une implémentation possible

Le problème

Pour un réel x et un entier $n \ge 1$, on veut calculer x^n

Pour cela on va

- proposer plusieurs algorithmes et les analyser :
- démontrer leur correction
- estimer leur complexité
 (= temps nécessaire au déroulement du programme)
- voir une implémentation possible

Remarque. Problème très utile en pratique! (résolution d'équa. diff., codes correcteurs, crypto : RSA, courbes elliptiques...)

```
Algorithme : ALGOIT(x, n)

y un réel

y \leftarrow x

pour tous les i de 1 à n-1 faire

y \leftarrow x \times y

renvoyer y
```

Un petit exemple:

On effectue **l'appel** ALGOIT(2,5):

```
- Initialisation de y: y = 2

- Étape i = 1: y = 2 \times 2 = 4

- Étape i = 2: y = 2 \times 4 = 8

- Étape i = 3: y = 2 \times 8 = 16
```

- Étape i = 4: $y = 2 \times 16 = 32$

- L'algo retourne 32

```
Algorithme : ALGOIT(x, n)

y un réel

y \leftarrow x

pour tous les i de 1 à n-1 faire

y \leftarrow x \times y

renvoyer y
```

Terminaison

À la fin de la boucle **pour**, l'algo. termine.

```
Algorithme : ALGOIT(x, n)

y un réel

y \longleftarrow x

pour tous les i de 1 à n-1 faire

\downarrow y \longleftarrow x \times y

renvoyer y
```

Complexité (en temps)

Nombre d'opérations élémentaires :

- ► Récupérations de x et n, déclaration de y; affectation $(y \leftarrow x)$, retour \rightsquigarrow **5 op.**
- Dans la boucle **pour**: incrémentation de i; multiplication et affectation (y ← x × y) → 3 op.
- ▶ n-1 répétitions de la boucle \rightsquigarrow **3**n+2 **op.**
- \sim Complexité en temps O(n)

Correction : preuve d'un **invariant de l'algo.** \mathcal{P}_i : « après i tours de boucle, y contient x^{i+1} »

```
Algorithme : ALGOIT(x, n)

y un réel

y \longleftarrow x

pour tous les i de 1 à n-1 faire

y \longleftarrow x \times y

renvoyer y
```

Correction : preuve d'un invariant de l'algo.

 \mathcal{P}_i : « après i tours de boucle, y contient x^{i+1} »

Preuve par **récurrence** (quelle surprise...) :

- Pour i = 0, \mathcal{P}_0 est vraie : avant la boucle, y vaut $x = (= x^1)$.
- Supposons \mathcal{P}_{i-1} pour $i \geq 1$: après (i-1) tours, y contient $x^{(i-1)+1} = x^i$. Alors au $i^{\text{ème}}$ tour, y prend la valeur $x \times y = x^{i+1}$. Donc \mathcal{P}_i est vraie.

Donc, par récurrence, $y = x^n$ à la fin de l'algo.

```
Algorithme : ALGOIT(x, n)

y un réel

y \longleftarrow x

pour tous les i de 1 à n - 1 faire

\downarrow y \longleftarrow x \times y

renvoyer y
```

```
Exemple de code :
float AlgoIt(float x, int n)
{
    float y;
    y = x;
    for (int i = 1; i < n; i++)
        v *= x:
    return y;
int main(int argc, char** argv)
    float x = strtod(argv[1], NULL);
    int n = strtol(argv[2], NULL, 0);
    cout << AlgoIt(x, n) << endl;</pre>
    return 0:
```

```
Algorithme: ALGOD&C(x, n)

si n = 1: renvoyer x

sinon:

 z = ALGOD&C(x, \lfloor n/2 \rfloor) 

si n est pair: renvoyer z \times z

si n est impair: renvoyer x \times z \times z
```

```
Algorithme : ALGOD&C(x, n)

si n = 1 : renvoyer x

sinon :

z = ALGOD&C(x, \lfloor n/2 \rfloor)

si n est pair : renvoyer z \times z

si n est impair : renvoyer x \times z \times z
```

Un petit exemple:

On effectue **l'appel** ALGOD&C(3,5):

- ALGOD&C(3, 5) calcule z = ALGOD&C(3, 2) et retourne $3z^2$
- ALGOD&C(3, 2) calcule z = ALGOD&C(3, 1) et retourne z^2
- ALGOD&C(3, 1) retourne 3

```
Algorithme : ALGOD&C(x, n)

si n = 1 : renvoyer x

sinon :

 z = ALGOD&C(x, \lfloor n/2 \rfloor) 

si n est pair : renvoyer z \times z

si n est impair : renvoyer x \times z \times z
```

Un petit exemple:

On effectue l'appel ALGOD&C(3,5):

- ALGOD&C(3, 5) calcule z = ALGOD&C(3, 2) et retourne $3z^2$
- ALGOD&C(3, 2) calcule z = ALGOD&C(3, 1) et retourne z^2
- ALGOD&C(3, 1) retourne 3
- Du coup, ALGOD&C(3, 2) retourne $3^2 = 9$
- Du coup, ALGOD&C(3,5) retourne $3 \times 9^2 = 243$

```
Algorithme : ALGOD&C(x, n)

si n = 1 : renvoyer x

sinon :

z = ALGOD&C(x, \lfloor n/2 \rfloor)

si n est pair : renvoyer z \times z

si n est impair : renvoyer x \times z \times z
```

Terminaison

- **Nombre constant d'opérations** (≤ 5) + un appel récursif
- ▶ Appel récursif sur un paramètre strictement plus petit mais toujours ≥ 1 (variant de l'algo.)
- Cas de base présent

```
Algorithme : ALGOD\&C(x, n)

si n = 1 : renvoyer x

sinon :

z = ALGOD\&C(x, \lfloor n/2 \rfloor)

si n est pair : renvoyer z \times z

si n est impair : renvoyer x \times z \times z
```

Complexité

Nombre constant d'opérations

→ complexité proportionnelle au nombre d'appels récursifs

```
Algorithme: ALGOD&C(x, n)

si n = 1: renvoyer x

sinon:

 z = ALGOD&C(x, \lfloor n/2 \rfloor) 

si n est pair: renvoyer z \times z

si n est impair: renvoyer x \times z \times z
```

Nombre d'appels récursifs (nb de fois qu'on peut diviser n par $2 \leadsto \log n$) $\mathcal{P}_n : \ll \mathsf{ALGOD\&C}(x,n) \text{ fait au plus } \log n \text{ appels récursifs} \gg$

```
Algorithme : ALGOD&C(x, n)

si n = 1 : renvoyer x

sinon :

 z = ALGOD&C(x, \lfloor n/2 \rfloor) 

si n est pair : renvoyer z \times z

si n est impair : renvoyer x \times z \times z
```

Nombre d'appels récursifs (nb de fois qu'on peut diviser n par $2 \leadsto \log n$)

 \mathcal{P}_n : « ALGOD&C(x, n) fait au plus $\log n$ appels récursifs »

- ightharpoonup n=1: aucun appel récursif et $\log(1)=0$
- Soit $n \geq 2$ et supposons \mathcal{P}_p pour tout p < n: le nombre d'appels de $\mathsf{ALGOD\&C}(x,\lfloor\frac{n}{2}\rfloor)$ est au plus $\log(\lfloor\frac{n}{2}\rfloor) \leq \log(\frac{n}{2}) = \log(n) 1$. Donc le nombre d'appels de $\mathsf{ALGOD\&C}(x,n)$ est $\leq 1 + (\log(n) 1) = \log(n)$.
- \sim Complexité au plus proportionnelle à $\log n$ (en $O(\log n)$)


```
Algorithme : ALGOD&C(x, n)

si n = 1 : renvoyer x

sinon :

z = ALGOD&C(x, \lfloor n/2 \rfloor)

si n est pair : renvoyer z \times z

si n est impair : renvoyer x \times z \times z
```

Correction : $\mathcal{P}_n : \ll \mathsf{ALGOD\&C}(x, n) \ renvoie \ x^n \gg 1$

```
Algorithme : ALGOD\&C(x, n)

si n = 1 : renvoyer x

sinon :

z = ALGOD\&C(x, \lfloor n/2 \rfloor)

si n est pair : renvoyer z \times z

si n est impair : renvoyer x \times z \times z
```

Correction:

 \mathcal{P}_n : « ALGOD&C(x, n) renvoie x^n »

- ▶ n = 1 : ALGOD&C(x, 1) renvoie $x \rightsquigarrow \mathcal{P}_1$ est vraie
- Soit $n \ge 2$ et supposons \mathcal{P}_p pour tout p < n: ALGOD&C $(x, \lfloor n/2 \rfloor)$ renvoie $z = x^{\lfloor n/2 \rfloor}$ (car $\lfloor n/2 \rfloor < n!$).
 - ▶ Si n est pair : $n = 2 \times \lfloor n/2 \rfloor$ et ALGOD&C(x, n) renvoie $z \times z = x^{\lfloor n/2 \rfloor} \times x^{\lfloor n/2 \rfloor} = x^n$.
 - Si n est impair, $n = 2 \times \lfloor n/2 \rfloor + 1$ et ALGOD&C(x, n) renvoie $x \times z \times z = x^{2\lfloor n/2 \rfloor + 1} = x^n$.

Donc \mathcal{P}_n est vraie.


```
Algorithme : ALGOD&C(x, n)

si n = 1 : renvoyer x

sinon :

z = ALGOD&C(x, \lfloor n/2 \rfloor)

si n est pair : renvoyer z \times z

si n est impair : renvoyer x \times z \times z
```

Exemple de code :

```
float AlgoDC(float x, int n)
{
    if (n == 1) return x;
    float z = AlgoDC(x, n/2);
    if (n % 2 == 0) return z*z;
    /* else */ return x*z*z;
}
```

```
int main(int argc, char** argv)
{
    float x = strtod(argv[1], NULL);
    int n = strtol(argv[2], NULL, 0);
    cout << AlgoDC(x, n) << endl;
    return 0;
}</pre>
```

Comparaison: ALGOIT vs. ALGOD&C

Algo 3 : Arnaque

```
Algorithme: ALGOARNAQUE(x, n)
renvoyer pow(x, n)
```

```
Exemple de code :
#include <math.h>
float AlgoArnaque(float x, int n)
 return pow(x, n);
int main(int argc, char** argv)
    float x = strtod(argv[1], NULL);
    int n = strtol(argv[2], NULL, 0);
    cout << AlgoArnaque(x, n) << endl;</pre>
    return 0:
```

Algo 3 : Arnaque

```
Algorithme : ALGOARNAQUE(x, n)
renvoyer pow(x, n)
```

- ► Très pratique... mais qu'y a-t-il dessous?
- Quelques idées :
 - https://en.cppreference.com/w/cpp/numeric/math/pow
 - https://www.quora.com/
 What-is-the-time-complexity-of-the-pow-function-in-c+
 +-language-Is-it-log-b-or-0-1

cppreference.com

Numerics library | Common mathematical functions

Discussion

Darameters

Page

C++

Q

Edit History

Create account

Search

View

Algo 3 : Arnaque

```
Algorithme : ALGOARNAQUE(x, n) renvoyer pow(x, n)
```

- ► Très pratique... mais qu'y a-t-il dessous?
- ► Quelques idées :
 - https://en.cppreference.com/w/cpp/numeric/math/pow
 - https://www.quora.com/
 What-is-the-time-complexity-of-the-pow-function-in-c+
 +-language-Is-it-log-b-or-0-1
- ▶ Si on veut vraiment savoir, il faut analyser le code de pow...

1. Exemple introductif: calculer x^n

2. Modèle pour la complexité algorithmique

3. Conception et analyse d'un algorithme

4. Outils mathématiques

Pourquoi un modèle?

Objectif : répondre à la question \ll Quel temps va nécessiter la résolution d'un problème algorithmique ? \gg

Pourquoi un modèle?

Objectif : répondre à la question \ll Quel temps va nécessiter la résolution d'un problème algorithmique? \gg

▶ Difficile à estimer : dépend du programme, du langage, de la machine, du système d'exploitation...

Pourquoi un modèle?

Objectif : répondre à la question \ll Quel temps va nécessiter la résolution d'un problème algorithmique? \gg

- ▶ Difficile à estimer : dépend du programme, du langage, de la machine, du système d'exploitation...
- ► Considérer un modèle permet de faire des *prédictions*

Pourquoi un modèle?

Objectif : répondre à la question \ll Quel temps va nécessiter la résolution d'un problème algorithmique? \gg

- ▶ Difficile à estimer : dépend du programme, du langage, de la machine, du système d'exploitation...
- ► Considérer un modèle permet de faire des *prédictions*

L'étude de la complexité est une modélisation permettant des prédictions.

On va décrire les algorithmes en **pseudo-code** :

- Des opérations élémentaires :
 - Déclaration de variable Opération arithmétique : $+, -, \times, \div$
 - Affectation Test élémentaire
 - Lecture, écriture de variables Appel de fonction
- Des branchements : si ... alors ... sinon ...
- Des **boucles** : *pour* et *tant que*.

On va décrire les algorithmes en **pseudo-code** :

- Des opérations élémentaires :
 - Déclaration de variable Opération arithmétique : $+, -, \times, \div$
 - Affectation Test élémentaire
 - Lecture, écriture de variables Appel de fonction
- ▶ Des **branchements** : *si ... alors ... sinon ...*
- Des boucles : pour et tant que.
- Deux modèles :

Word-RAM : chaque opération élémentaire prend un temps constant

On va décrire les algorithmes en **pseudo-code** :

- Des opérations élémentaires :
 - Déclaration de variable Opération arithmétique : +, −, ×, ÷
 - Affectation Test élémentaire
 - Lecture, écriture de variables Appel de fonction
- ▶ Des **branchements** : *si ... alors ... sinon ...*
- Des boucles : pour et tant que.
- Deux modèles :

Word-RAM : chaque opération élémentaire prend un temps constant

RAM : chaque opération sur un bit/chiffre prend un temps constant

On va décrire les algorithmes en **pseudo-code** :

- Des opérations élémentaires :
 - Déclaration de variable Opération arithmétique : +, −, ×, ÷
 - Affectation Test élémentaire
 - Lecture, écriture de variables Appel de fonction
- Des branchements : si ... alors ... sinon ...
- Des boucles : pour et tant que.
- Deux modèles :

Word-RAM : chaque opération élémentaire prend un temps constant

RAM : chaque opération sur un bit/chiffre prend un temps constant

▶ Temps pour lire un entier n, dans chaque modèle?

Sauf cas particulier, modèle Word-RAM.

Compter le nombre d'opérations élémentaires (pour établir la complexité en temps)

Sauf cas particulier, modèle Word-RAM.

- ► Compter le nombre d'opérations élémentaires (pour établir la complexité en temps)
- Exprimer ces valeurs en fonction des paramètres d'entrée de l'algorithme.

Sauf cas particulier, modèle Word-RAM.

- Compter le nombre d'opérations élémentaires (pour établir la complexité en temps)
- Exprimer ces valeurs en fonction des paramètres d'entrée de l'algorithme.
- ► De manière asymptotique

Sauf cas particulier, modèle Word-RAM.

- Compter le nombre d'opérations élémentaires (pour établir la complexité en temps)
- Exprimer ces valeurs en fonction des paramètres d'entrée de l'algorithme.
- ► De manière asymptotique
- ▶ Dans le pire des cas, et si on n'arrive pas à compter exactement, on établira une borne supérieure sur ces valeurs.

Quelques remarques

Étudier la complexité en temps dans le pire cas de manière asymptotique dans le modèle Word-RAM : la seule façon de faire ?

Quelques remarques

Étudier la complexité en temps dans le pire cas de manière asymptotique dans le modèle Word-RAM : la seule façon de faire ? **Non :**

- ► Temps : autres mesures (espace mémoire, temps parallèle, ...)
- ▶ Pire cas : raffinements possibles (en moyenne, analyses amortie et lissée, cas pratiques, ...)
- Asymptotique : constantes « cachées » dans les $O(\cdot)$ mais en pratique, elles peuvent avoir leur importance...
- Modèle Word-RAM : autres modèles, par ex. RAM

Quelques remarques

Étudier la complexité en temps dans le pire cas de manière asymptotique dans le modèle Word-RAM : la seule façon de faire ? **Non :**

- ► Temps : autres mesures (espace mémoire, temps parallèle, ...)
- ▶ Pire cas : raffinements possibles (en moyenne, analyses amortie et lissée, cas pratiques, ...)
- Asymptotique : constantes « cachées » dans les $O(\cdot)$ mais en pratique, elles peuvent avoir leur importance...
- ► Modèle Word-RAM : autres modèles, par ex. RAM

Modèle choisi dans le cours car le plus simple et :

- souvent suffisant
- on commence toujours par ça
- ▶ si on comprend ce modèle, on comprendra (plus tard!) les autres

1. Exemple introductif : calculer x^n

2. Modèle pour la complexité algorithmique

3. Conception et analyse d'un algorithme

4. Outils mathématiques

« Recette »:

- 1. Écrire le pseudo-code de l'algorithme
- Choisir les structures de données à utiliser pour les variables (influence la complexité de l'algo!)
 On va peu s'en préoccuper dans ce cours.
- 3. Analyser l'algorithme :

- « Recette »:
 - 1. Écrire le pseudo-code de l'algorithme
 - Choisir les structures de données à utiliser pour les variables (influence la complexité de l'algo!)
 On va peu s'en préoccuper dans ce cours.
 - 3. Analyser l'algorithme :
 - 3.1 Terminaison

3.2 Complexité en temps

3.3 Correction de l'algorithme

- « Recette »:
 - 1. Écrire le pseudo-code de l'algorithme
 - Choisir les structures de données à utiliser pour les variables (influence la complexité de l'algo!)
 On va peu s'en préoccuper dans ce cours.
 - 3. Analyser l'algorithme :
 - 3.1 Terminaison
 - Variant d'algorithme = quantité entière positive qui décroît strictement au cours de l'algo.
 - 3.2 Complexité en temps

3.3 Correction de l'algorithme

- « Recette »:
 - 1. Écrire le pseudo-code de l'algorithme
 - Choisir les structures de données à utiliser pour les variables (influence la complexité de l'algo!)
 On va peu s'en préoccuper dans ce cours.
 - 3. Analyser l'algorithme :
 - 3.1 Terminaison
 - Variant d'algorithme = quantité entière positive qui décroît strictement au cours de l'algo.
 - ► Souvent omise → clair avec complexité et correction
 - 3.2 Complexité en temps

3.3 Correction de l'algorithme

« Recette »:

- 1. Écrire le pseudo-code de l'algorithme
- Choisir les structures de données à utiliser pour les variables (influence la complexité de l'algo!)
 On va peu s'en préoccuper dans ce cours.
- 3. Analyser l'algorithme :
 - 3.1 Terminaison
 - Variant d'algorithme = quantité entière positive qui décroît strictement au cours de l'algo.
 - ► Souvent omise → clair avec complexité et correction
 - 3.2 Complexité en temps
 - ▶ Borne supérieure dans le pire cas : « Je suis sûr que mon algo ne prendra pas plus de ... »
 - 3.3 Correction de l'algorithme

« Recette »:

- 1. Écrire le pseudo-code de l'algorithme
- Choisir les structures de données à utiliser pour les variables (influence la complexité de l'algo!)
 On va peu s'en préoccuper dans ce cours.
- 3. Analyser l'algorithme :
 - 3.1 Terminaison
 - Variant d'algorithme = quantité entière positive qui décroît strictement au cours de l'algo.
 - ► Souvent omise → clair avec complexité et correction
 - 3.2 Complexité en temps
 - ▶ Borne supérieure dans le pire cas : « Je suis sûr que mon algo ne prendra pas plus de ... »
 - 3.3 Correction de l'algorithme
 - Invariant d'algorithme = propriété P_i valable après i tours de boucles / i appels récursifs.
 - Preuve par récurrence

- ► C'est souvent le plus technique à faire
- ► Mais c'est nécessaire!

- C'est souvent le plus technique à faire
- Mais c'est nécessaire!

Exemple (popularisé par G. Berry) : dans l'appli *Zune* (lancée en 2006 sur les lecteurs MP3 Microsoft), une fonction donnait le numéro du jour de l'année à partir du nombre de jours écoulés depuis le 1er janvier 2004. Les lecteurs se sont déchargés entièrement le 31 décembre 2008 (jour 1827). Pourquoi?

```
Version simplifiée :
int JourDeLAnnee(int jour, int annee = 2004) {
  while (jour > 365) {
    if (estBissextile(annee)) {
      if (jour > 366) {
        jour -= 366;
        annee += 1;
    else {
      jour -= 365;
      annee += 1;
  return jour;
1827 = 366 + 365 + 365 + 365 + 366
```

- C'est souvent le plus technique à faire
- Mais c'est nécessaire!

Exemple (popularisé par G. Berry) : dans l'appli *Zune* (lancée en 2006 sur les lecteurs MP3 Microsoft), une fonction donnait le numéro du jour de l'année à partir du nombre de jours écoulés depuis le 1er janvier 2004. Les lecteurs se sont déchargés entièrement le 31 décembre 2008 (jour 1827). Pourquoi?

▶ D'autres exemples : https://en.wikipedia.org/wiki/List_of_software_bugs

1. Exemple introductif: calculer x^n

2. Modèle pour la complexité algorithmique

3. Conception et analyse d'un algorithme

4. Outils mathématiques

Notations de Landau

« Grand O »

Soit
$$f, g : \mathbb{N} \to \mathbb{R}_+$$
. Alors $f = O(g)$ si

$$\exists c > 0, n_0 \geq 0, \forall n \geq n_0, f(n) \leq c \cdot g(n).$$

 $\ll f$ est un grand O de g s'il existe une constante c et un entier n_0 tels que pour toute valeur n plus grande que n_0 , f(n) est inférieur ou égal à $c \cdot g(n) \gg 1$

Notations de Landau

« Grand O » Soit $f, g : \mathbb{N} \to \mathbb{R}_+$. Alors f = O(g) si $\exists c > 0, n_0 \ge 0, \forall n \ge n_0, f(n) \le c \cdot g(n)$.

 $\ll f$ est un grand O de g s'il existe une constante c et un entier n_0 tels que pour toute valeur n plus grande que n_0 , f(n) est inférieur ou égal à $c \cdot g(n) \gg 1$

f = O(g) si pour n suffisamment grand, f est plus petite que g, à une constante multiplicative près.

- « Mon algo. a une complexité $O(n^2)$ (où n = taille de l'entrée) »
 - \rightarrow si *n* est assez grand, le nb. d'opérations est \leq constante $\times n^2$

- « Mon algo. a une complexité $O(n^2)$ (où n = taille de l'entrée) »
 - \rightarrow si *n* est assez grand, le nb. d'opérations est \leq constante $\times n^2$
 - Avantages pour la théorie :
 - Négliger les cas de bases
 - Pas besoin de compter chaque opération en détail
 - ► Flexibilité sur les opérations élémentaires

- « Mon algo. a une complexité $O(n^2)$ (où n= taille de l'entrée) »
 - \rightarrow si *n* est assez grand, le nb. d'opérations est \leq constante $\times n^2$
 - ► Avantages pour la théorie :
 - Négliger les cas de bases
 - Pas besoin de compter chaque opération en détail
 - Flexibilité sur les opérations élémentaires
 - Avantages pour la pratique :
 - Indépendant des détails de programmation (nb. de variables intermédiaires, ...)
 - ► Indépendant de l'environnement d'exécution : système d'exploitation, vitesse de la machine, compilateur, ...

- « Mon algo. a une complexité $O(n^2)$ (où n = taille de l'entrée) »
- \rightarrow si *n* est assez grand, le nb. d'opérations est \leq constante $\times n^2$
- Avantages pour la théorie :
 - Négliger les cas de bases
 - Pas besoin de compter chaque opération en détail
 - ► Flexibilité sur les opérations élémentaires
- Avantages pour la pratique :
 - Indépendant des détails de programmation (nb. de variables intermédiaires, ...)
 - Indépendant de l'environnement d'exécution : système d'exploitation, vitesse de la machine, compilateur, ...

Un temps de calcul dépend du moment et de l'endroit.

Un résultat de complexité reste vrai pour toujours!

Exemples

$$5n + 15 = O(n^2)$$

- ► Car pour $n \ge 8$, $5n + 15 \le n^2$
- ▶ Ou alors pour $n \ge 3$, $5n + 15 \le 5n^2$

$$\rightsquigarrow c = 1 \text{ et } n_0 = 8$$

$$\rightsquigarrow c = 5 \text{ et } n_0 = 3$$

Exemples

$$5n+15=O(n^2)$$

- ► Car pour $n \ge 8$, $5n + 15 \le n^2$
- ightharpoonup Ou alors pour $n \ge 3$, $5n + 15 \le 5n^2$

$$\rightsquigarrow c = 1 \text{ et } n_0 = 8$$

$$\rightsquigarrow c = 5 \text{ et } n_0 = 3$$

2 pour
$$i = 1 \ an$$
 :

4 **pour** $i = 1 \ a \ n$:

5 | **pour**
$$j = 1 \ a \ n$$
:

7 renvoyer var

<inst. N> : opérations élémentaires

Exemples

$$5n+15=O(n^2)$$

- ► Car pour $n \ge 8$, $5n + 15 \le n^2$
- ▶ Ou alors pour $n \ge 3$, $5n + 15 \le 5n^2$

$$\rightsquigarrow c = 1 \text{ et } n_0 = 8$$

$$\rightsquigarrow c = 5 \text{ et } n_0 = 3$$

- 2 **pour** $i = 1 \ a \ n$:
- 3 <inst. 2>
- 4 **pour** $i = 1 \ a \ n$:

5 **pour**
$$j = 1 \ an :$$

7 renvoyer var

- <inst. N> : opérations élémentaires
- ► L1 et L7 : *O*(1)
- ▶ L2 exécute n fois L3 : O(n)
- ▶ L5 exécute n fois L6 : O(n)
- ▶ L4 exécute n fois L5 : $O(n^2)$

Total

$$2 \times O(1) + O(n) + O(n^2) = O(n^2)$$

Calcul avec les « grand O »

Lemme

- O(f) + O(g) = O(f+g)
- $O(f) \times O(g) = O(f \times g)$
- ▶ Si f = O(g), alors O(f + g) = O(g)
- ightharpoonup Si $\lambda \in \mathbb{R}_+$, $O(\lambda f) = O(f)$

Calcul avec les « grand O »

Lemme

- O(f) + O(g) = O(f + g)
- $ightharpoonup O(f) \times O(g) = O(f \times g)$
- ▶ Si f = O(g), alors O(f + g) = O(g)
- ightharpoonup Si $\lambda \in \mathbb{R}_+$, $O(\lambda f) = O(f)$

Preuve du premier

- ► Soit $h_1 = O(f)$: $\exists c_1, n_1, \forall n \geq n_1, h_1(n) \leq c_1 f(n)$
- ► Soit $h_2 = O(g)$: $\exists c_2, n_2, \forall n \geq n_2, h_2(n) \leq c_2 g(n)$

Calcul avec les « grand O »

Lemme

- O(f) + O(g) = O(f + g)
- $ightharpoonup O(f) \times O(g) = O(f \times g)$
- ▶ Si f = O(g), alors O(f + g) = O(g)
- ightharpoonup Si $\lambda \in \mathbb{R}_+$, $O(\lambda f) = O(f)$

Preuve du premier

- ► Soit $h_1 = O(f)$: $\exists c_1, n_1, \forall n \geq n_1, h_1(n) \leq c_1 f(n)$
- ► Soit $h_2 = O(g)$: $\exists c_2, n_2, \forall n \geq n_2, h_2(n) \leq c_2 g(n)$
- ▶ Donc $\forall n \geq \max(n_1, n_2)$,

$$h_1(n) + h_2(n) \le c_1 f(n) + c_2 g(n)$$

 $\le \max(c_1, c_2) f(n) + \max(c_1, c_2) g(n)$
 $\le \max(c_1, c_2) (f(n) + g(n))$

Calcul avec les « grand O »

Lemme

- ightharpoonup O(f) + O(g) = O(f + g)
- \triangleright $O(f) \times O(g) = O(f \times g)$
- ▶ Si f = O(g), alors O(f + g) = O(g)
- ightharpoonup Si $\lambda \in \mathbb{R}_+$, $O(\lambda f) = O(f)$

Preuve du premier

- ▶ Soit $h_1 = O(f)$: $\exists c_1, n_1, \forall n \geq n_1, h_1(n) \leq c_1 f(n)$
- ▶ Soit $h_2 = O(g)$: $\exists c_2, n_2, \forall n \geq n_2, h_2(n) \leq c_2 g(n)$
- ▶ Donc $\forall n \geq \max(n_1, n_2)$,

$$h_1(n) + h_2(n) \le c_1 f(n) + c_2 g(n)$$

 $\le \max(c_1, c_2) f(n) + \max(c_1, c_2) g(n)$
 $\le \max(c_1, c_2) (f(n) + g(n))$

$$\rightsquigarrow h_1 + h_2 = O(f + g)$$

« Grand O » et limites

Lemme

Soit
$$f, g : \mathbb{N} \to \mathbb{R}_+$$
, et $c = \lim_{n \to +\infty} \left(\frac{f(n)}{g(n)} \right)$. Alors

- ightharpoonup si c=0 : f=O(g) mais $g\neq O(f)$
- ▶ $si\ 0 < c < +\infty$: f = O(g) et g = O(f)
- ightharpoonup si $c=+\infty$: $f\neq O(g)$ mais g=O(f)

« Grand O » et limites

Lemme

Soit
$$f, g : \mathbb{N} \to \mathbb{R}_+$$
, et $c = \lim_{n \to +\infty} \left(\frac{f(n)}{g(n)} \right)$. Alors

- ightharpoonup si c=0: f=O(g) mais $g\neq O(f)$
- ▶ $si\ 0 < c < +\infty$: f = O(g) et g = O(f)
- ightharpoonup si $c=+\infty$: $f\neq O(g)$ mais g=O(f)

Preuve

- Si $f(n)/g(n) \longrightarrow_{\infty} c < +\infty$, alors $f(n)/g(n) \le c+1$ à partir d'un certain rang. Donc $f(n) \le (c+1)g(n)$, et f = O(g).
- ▶ Si $f(n)/g(n) \longrightarrow_{\infty} +\infty$, alors pour tout c, $f(n)/g(n) \ge c$ à partir d'un certain rang. Donc $f \ne O(g)$.

Inverse de limites

Lemme

Soit $f,g:\mathbb{N}\to\mathbb{R}_+$, strictement positives pour n assez grand. Alors

- ▶ si $\lim_{n\to+\infty} \frac{f(n)}{g(n)} = c \in \mathbb{R}_+^*$, alors $\lim_{n\to+\infty} \frac{g(n)}{f(n)} = \frac{1}{c}$
- ▶ si $\lim_{n\to+\infty} \frac{f(n)}{g(n)} = +\infty$, alors $\lim_{n\to+\infty} \frac{g(n)}{f(n)} = 0$
- ▶ si $\lim_{n\to+\infty} \frac{f(n)}{g(n)} = 0$, alors $\lim_{n\to+\infty} \frac{g(n)}{f(n)} = +\infty$

Preuve

Continuité de la fonction $x \mapsto \frac{1}{x} \operatorname{sur} \left[0, +\infty\right[$.

Inverse de limites

Lemme

Soit $f,g:\mathbb{N}\to\mathbb{R}_+$, strictement positives pour n assez grand. Alors

- ▶ si $\lim_{n\to+\infty} \frac{f(n)}{g(n)} = c \in \mathbb{R}_+^*$, alors $\lim_{n\to+\infty} \frac{g(n)}{f(n)} = \frac{1}{c}$
- ▶ si $\lim_{n\to+\infty} \frac{f(n)}{g(n)} = +\infty$, alors $\lim_{n\to+\infty} \frac{g(n)}{f(n)} = 0$
- ▶ si $\lim_{n\to+\infty} \frac{f(n)}{g(n)} = 0$, alors $\lim_{n\to+\infty} \frac{g(n)}{f(n)} = +\infty$

Preuve

Continuité de la fonction $x \mapsto \frac{1}{x}$ sur]0, $+\infty$ [.

À retenir!

$\lim_{+\infty} f/g$	0	С	+∞
f = O(g)	1	1	Х
g = O(f)	X	1	1
$\lim_{+\infty} g/f$	$+\infty$	1/c	0

« Omega »

Définition

 $f = \Omega(g)$ si (au choix!)

- ightharpoonup g = O(f)
- $ightharpoonup \exists c > 0, n_0 \geq 0, \forall n \geq n_0, f(n) \geq cg(n)$
- « pour n suffisamment grand, f est supérieure à g, à une constante multiplicative près »

« Omega »

Définition

 $f = \Omega(g)$ si (au choix!)

- ightharpoonup g = O(f)
- $ightharpoonup \exists c > 0, n_0 \geq 0, \forall n \geq n_0, f(n) \geq cg(n)$
- « pour n suffisamment grand, f est supérieure à g, à une constante multiplicative près »

Remarque. Utilisé une seule fois dans le cours!

$$\log n$$
, $\sqrt{n} = n^{1/2}$, n , n^2 , n^k , 2^n , $n!$

$$\log n$$
, $\sqrt{n} = n^{1/2}$, n , n^2 , n^k , 2^n , $n!$

Lemme de croissance comparée

Pour toutes **constantes** α , $\beta > 0$,

$$\lim_{+\infty} \frac{(\log n)^{\alpha}}{n^{\beta}} = 0 \qquad \qquad \lim_{+\infty} \frac{n^{\alpha}}{(2^n)^{\beta}} = 0 \qquad \qquad \lim_{+\infty} \frac{(2^n)^{\beta}}{n!} = 0$$

(logarithmes ≪ polynômes ≪ exponentielles ≪ factorielle)

$$\log n$$
, $\sqrt{n} = n^{1/2}$, n , n^2 , n^k , 2^n , $n!$

Lemme de croissance comparée

Pour toutes **constantes** α , $\beta > 0$,

$$\lim_{+\infty} \frac{(\log n)^{\alpha}}{n^{\beta}} = 0 \qquad \qquad \lim_{+\infty} \frac{n^{\alpha}}{(2^n)^{\beta}} = 0 \qquad \qquad \lim_{+\infty} \frac{(2^n)^{\beta}}{n!} = 0$$

(logarithmes ≪ polynômes ≪ exponentielles ≪ factorielle)

Si $f: \mathbb{N} \to \mathbb{R}_+$ tend vers $+\infty$ et $\alpha < \beta$:

$$\lim_{+\infty} \frac{f(n)^{\alpha}}{f(n)^{\beta}} = \lim_{+\infty} f(n)^{\alpha-\beta} = 0$$

$$\log n$$
, $\sqrt{n} = n^{1/2}$, n , n^2 , n^k , 2^n , $n!$

Lemme de croissance comparée

Pour toutes **constantes** α , $\beta > 0$,

$$\lim_{+\infty} \frac{(\log n)^{\alpha}}{n^{\beta}} = 0 \qquad \qquad \lim_{+\infty} \frac{n^{\alpha}}{(2^n)^{\beta}} = 0 \qquad \qquad \lim_{+\infty} \frac{(2^n)^{\beta}}{n!} = 0$$

(logarithmes \ll polynômes \ll exponentielles \ll factorielle)

Si $f: \mathbb{N} \to \mathbb{R}_+$ tend vers $+\infty$ et $\alpha < \beta$:

$$\lim_{+\infty} \frac{f(n)^{\alpha}}{f(n)^{\beta}} = \lim_{+\infty} f(n)^{\alpha-\beta} = 0$$

Exemples

$$ightharpoonup \log^2 n = O(\sqrt{n}), \ n^2 = O(n^3), \ \dots$$

Mais
$$\sqrt{n} \neq O(\log^2 n)$$
, $n^3 \neq O(n^2)$, ...

Sauf mention contraire : log est le logarithme **en base 2** \rightsquigarrow log n est environ le nombre de bits de n (exact : $|\log n| + 1$)

Sauf mention contraire : log est le logarithme en base 2 \rightsquigarrow log n est environ le nombre de bits de n (exact : $\lfloor \log n \rfloor + 1$)

Règles du log

- ▶ log 0 non défini
- $ightharpoonup \log 1 = 0$; $\log 2 = 1$

Sauf mention contraire : log est le logarithme en base 2

 \rightsquigarrow log n est environ le nombre de bits de n (exact : $\lfloor \log n \rfloor + 1$)

Règles du log

- ▶ log 0 non défini
- ▶ $\log 1 = 0$; $\log 2 = 1$

Règles de l'exponentielle

- $ightharpoonup 2^0 = 1$; $2^1 = 2$
- $2^{a+b} = 2^a \times 2^b$
- $\triangleright 2^{a-b} = 2^a/2^b$
- $ightharpoonup 2^{a \times b} = (2^a)^b = (2^b)^a$

Sauf mention contraire : log est le logarithme en base 2

 \rightsquigarrow log n est environ le nombre de bits de n (exact : $\lfloor \log n \rfloor + 1$)

Règles du log

- ▶ log 0 non défini
- ▶ $\log 1 = 0$; $\log 2 = 1$

- $ightharpoonup \log(a^k) = k \log a$

Règles de l'exponentielle

- $ightharpoonup 2^0 = 1$; $2^1 = 2$
- $2^{a+b} = 2^a \times 2^b$
- $\triangleright 2^{a-b} = 2^a/2^b$
- $ightharpoonup 2^{a \times b} = (2^a)^b = (2^b)^a$
- $2^{\log a} = a = \log(2^a)$
- \ll le log. transforme les \times en + ; l'exp. transforme les + en \times \gg

Sauf mention contraire : log est le logarithme en base 2

 \rightsquigarrow log n est environ le nombre de bits de n (exact : $\lfloor \log n \rfloor + 1$)

Règles du log

- ▶ log 0 non défini
- ▶ $\log 1 = 0$; $\log 2 = 1$

- $ightharpoonup \log(a^k) = k \log a$

Règles de l'exponentielle

- $ightharpoonup 2^0 = 1$; $2^1 = 2$
- $\triangleright 2^{a+b} = 2^a \times 2^b$
- $\triangleright 2^{a-b} = 2^a/2^b$
- $ightharpoonup 2^{a \times b} = (2^a)^b = (2^b)^a$
- $2^{\log a} = a = \log(2^a)$

 \ll le log. transforme les \times en + ; l'exp. transforme les + en \times \gg

Exemples

$$2^{3n} = (2^3)^n = 8^n$$
; $n^n = (2^{\log n})^n = 2^{n \log n}$

Détermination d'un « grand O »

Objectif (souvent) : exprimer sous la forme $O\left(2^{cn^{\alpha}}n^{\beta}(\log n)^{\gamma}\right)$

Détermination d'un « grand O »

Objectif (souvent) : exprimer sous la forme $O\left(2^{cn^{\alpha}}n^{\beta}(\log n)^{\gamma}\right)$

Techniques usuelles

- ▶ Simplifier les constantes additives : f(n + b) = O(f(n))
- ▶ Supprimer les termes négligeables : f + g = O(g) si f = O(g)
- ► Se ramener à des écritures *standard*. Exemples :
 - $\sqrt{n^3}/\sqrt[3]{n} = (n^3)^{1/2}/n^{1/3} = n^{3/2-1/3} = n^{7/6}$
 - $4^{\log n} = (2^{\log 4})^{\log n} = 2^{2 \log n} = (2^{\log n})^2 = n^2$
- Calculer des limites pour comparer des termes

Exemples de complexités de problèmes algorithmiques

Complexité	Notation O	Exemple d'algorithme
Constante	O(1)	Initialisation d'une variable
Logarithmique	$O(\log n)$	Recherche dichotomique dans un tableau trié
Linéaire	O(n)	Parcours d'un tableau (ou d'une liste)
Quasi-lineaire	$O(n \log n)$	Tri (fusion) d'un tableau
Quadratique	$O(n^2)$	Double boucle imbriquée
Cubique	$O(n^3)$	Triple boucle imbriquée
Exponentielle	$O(2^n)$	Énumération de tous les sous-ensembles de $\{1, \ldots, n\}$
Factorielle	O(n!)	Énumération de toutes les permutations de $\{1, \ldots, n\}$

Autres outils mathématiques

Factorielle et formule de Stirling

$$n! = n \cdot (n-1) \cdot (n-2) \cdots 1 \sim_{n \to +\infty} \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

$$\rightarrow n! = O(\sqrt{n}(n/e)^n)$$
 par exemple

Autres outils mathématiques

Factorielle et formule de Stirling

$$n! = n \cdot (n-1) \cdot (n-2) \cdots 1 \sim_{n \to +\infty} \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

 $\rightarrow n! = O(\sqrt{n}(n/e)^n)$ par exemple

Parties entières

- ▶ $\lfloor x \rfloor$ est le plus grand entier k tel que $k \leq x$ (et l'unique entier k tel que $k \leq x < k+1$)
- ▶ $\lceil x \rceil$ est le plus petit entier k tel que $x \le k$ (et l'unique entier k tel que $k-1 < x \le k$)
- $ightharpoonup x 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$
- ▶ Pour $n \in \mathbb{N}$, $\lfloor \frac{n}{2} \rfloor + \lceil \frac{n}{2} \rceil = n$ (exercice!)

$$\sum_{i=a}^{b} i = (b-a+1) \cdot \frac{b+a}{2} = \text{nb de termes} \times \text{moyenne(min, max)}$$

$$\sum_{i=a}^{b} x^{i} = x^{a} \cdot \frac{x^{b-a+1}-1}{x-1} = \frac{x^{b+1}-x^{a}}{x-1}$$

$$\sum_{i=a}^{b} i = (b-a+1) \cdot \frac{b+a}{2} = \text{nb de termes} \times \text{moyenne(min, max)}$$

$$\sum_{i=a}^{b} x^{i} = x^{a} \cdot \frac{x^{b-a+1}-1}{x-1} = \frac{x^{b+1}-x^{a}}{x-1}$$

Exemple:

$$\sum_{i=a}^{b} i = (b-a+1) \cdot \frac{b+a}{2} = \text{nb de termes} \times \text{moyenne(min, max)}$$

$$\sum_{i=a}^{b} x^{i} = x^{a} \cdot \frac{x^{b-a+1}-1}{x-1} = \frac{x^{b+1}-x^{a}}{x-1}$$

Exemple:

$$S \leftarrow 0$$
pour $i = 1$ à n :
$$y \leftarrow 1$$
pour $j = 1$ à i :
$$y \leftarrow x \times y$$

$$S \leftarrow S + y$$
renvoyer S

Complexité:
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} = O(n^2)$$

$$\sum_{i=a}^{b} i = (b-a+1) \cdot \frac{b+a}{2} = \text{nb de termes} \times \text{moyenne(min, max)}$$

$$\sum_{i=a}^{b} x^{i} = x^{a} \cdot \frac{x^{b-a+1}-1}{x-1} = \frac{x^{b+1}-x^{a}}{x-1}$$

Exemple:

$$S \leftarrow 0$$

$$\mathbf{pour} \ i = 1 \ \grave{a} \ n :$$

$$y \leftarrow 1$$

$$\mathbf{pour} \ j = 1 \ \grave{a} \ i :$$

$$y \leftarrow x \times y$$

$$S \leftarrow S + y$$

$$\mathbf{renvoyer} \ S$$

Complexité :
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} = O(n^2)$$

Valeur:
$$y = x^{i} \rightsquigarrow S = \sum_{i=1}^{n} x^{i} = \frac{x^{n+1} - x}{x - 1}$$