CO Excitation Workshop

PDR Benchmark Progress

Starting Point PDR-1 (n= 10^3 , $\chi=10$)

Starting Point PDR-2 (n= 10^3 , $\chi=10^5$)

Starting Point PDR-3 (n= $10^{5.5}$, $\chi=10$)

Starting Point PDR-4 (n= $10^{5.5}$, $\chi=10^5$)

Starting Point PDR-5 ($n=10^7, \chi=10$)

Large model scatter looks scary, but model assumptions were vastly different.

Heating/Cooling

Heating/Cooling

During the workshop we concentrate on the "true" PDR case #4, and try to understand the differences

1020

1021

1022

NEW

During the workshop we concentrate on the "true" PDR case #4, and try to understand the differences

PE Heating, H₂ formation heating Dust content

During the workshop we concentrate on the "true" PDR case #4, and try to understand the differences

Starting Point PDR-4 (n= $10^{5.5}$, $\chi=10^5$)

Starting Point PDR-4 (n= $10^{5.5}$, $\chi=10^5$)

- Dust temperatures appear consistent
- Temperature range for grain size distributions comparable
- Relatively hot dust throughout the whole cloud!

- Major heating through photo-electric heating
- NO PAHs!
- Differences remain (FUV field?, electron density, ...)

Major coolants

[01]

gas-grain collisison

Major coolants

[OI]

Summary

- Given the complexity of the various codes and the vagueness of the benchmark (round 2) specifics the convergence of the results is still remarkable.
- No new major heating/cooling process candidate
- Major processes are :
 - Dust physics
 - H₂ formation
 - FUV??
- But their details remain to be investigated