

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in Theoretical Computer Science

Electronic Notes in Theoretical Computer Science 333 (2017) 153–162

www.elsevier.com/locate/entcs

Characterizing Consistent Smyth Powerdomains by $FS-\wedge^{\uparrow}$ -domains

Yayan Yuan^{1,2}

Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control, School of Mathematics and Information Sciences, Henan Normal University, Xinxiang, Henan 453007, China

Hui Kou³

Yangtze Center of Mathematics, College of Mathematics, Sichuan University, Chengdu, Sichuan 610064,
China

Abstract

In this paper, we introduce $FS-\wedge^{\uparrow}$ -domains, and show that the category with $FS-\wedge^{\uparrow}$ -domains as objects and Scott continuous functions as morphisms is a Cartesian closed category. Moreover, we characterize the consistent Smyth powerdomain over a Lawson compact domain by means of $FS-\wedge^{\uparrow}$ -domain.

Keywords: Domain; Consistency; $FS-\wedge^{\uparrow}$ -domain; Consistent Smyth powerdomain

1 Introduction

In Domain theory, powerdomains are very important structures, which play an important role in modeling the semantics of nondeterministic programming languages ([4,5,6,7,9,11,12,13,14,15]). For example, the Smyth powerdomain is the free deflationary semilattice over a continuous dcpo, where the deflationary binary operator is exactly the Scott continuous meet operator [14]. However, in many interesting domains, such as L-domains, the meet operator is not total but a partial one: two elements have a meet (or a greatest lower bound) if they are consistent, i.e., they have an upper bound. In this case, the partial meet operator is called a consistent meet, denoted by \wedge^{\uparrow} . So a question arises: can we construct a new free algebra over

Supported by NSFC (11371262, 11171368) and Foundation of the Education Department Henan Province (15A110034).

² Email: yayanyuan@hotmail.com

³ Email: kouhui@scu.edu.cn

a continuous dcpo on which the binary operator is exactly the Scott continuous consistent meet? In [16], we show by methods of topology and order theory that the consistent Smyth powerdomain over a continuous dcpo exists and is a continuous dcpo- \wedge^{\uparrow} -semilattice. Moreover, if a continuous dcpo is Lawson compact, then its consistent Smyth powerdomain is a Lawson compact L-domain. This is a difference between the consistent Smyth powerdomain and the classical one, because the classical Smyth powerdomain over a Lawson compact domain is a bounded complete domain.

Note that classical powerdomains, such as the Smyth powerdomain and the Hoare powerdomain, can be characterized by means of some FS-domains given of the basic functions in the structure of powerdomains respectively. In [8], Huth, Jung and Keimel introduced a new concept: linear FS-lattice, which is a complete lattice and there exists a directed family of finitely separated linear functions which can approximate id, where a function is linear if it preserves all suprema. They proved that the Hoare powerdomain H(L) over a pointed domain L is characterized by a distributive linear FS-lattice. In [10], Meng and Kou introduced FS_{\wedge} -domains and proved that the Smyth powerdomain S(L) over a Lawson compact domain L is characterized by FS_{\wedge} -domains. So for purely mathematical purposes, we have reasons to believe that there exists a kind of FS-domains to characterize the consistent Smyth powerdomain over a Lawson compact continuous domain.

In this paper we first use the partial Scott continuous binary operator \wedge^{\uparrow} to construct a finitely separated domain: $FS-\wedge^{\uparrow}$ -domain, which is a dcpo- \wedge^{\uparrow} -semilattice and there exists a directed family of finitely separated \wedge^{\uparrow} -semilattice homomorphisms which can approximate id_L . We have obtained the following conclusions:

- a) The category with $FS-\wedge^{\uparrow}$ -domains as objects and Scott continuous functions as morphisms is a cartesian closed category.
- b) The consistent Smyth powerdomain $S_C(L)$ over a Lawson compact continuous domain L is an $FS-\wedge^{\uparrow}$ -domain.

Moreover, we characterize consistent Smyth power domains by means of $FS-\wedge^{\uparrow}$ -domains.

Next, we collect some basic notions needed in this paper. The reader can also consult [1,3]. A poset L is called a directed complete poset (a dcpo, for short) if any directed set of L has a sup in L. For $x, y \in L$, x is called to be way below y (denoted by $x \ll y$) if for any directed set D, $y \leq \vee D$ implies that there is some $d \in D$ with $x \leq d$. A poset L is called continuous if for all $x \in L$, $x = \vee^{\uparrow} \downarrow x$, i.e., the set $\downarrow x = \{a \in L : a \ll x\}$ is directed and $x = \vee \{a \in L : a \ll x\}$, where the arrow in the symbol \vee^{\uparrow} is to emphasize the directedness of $\downarrow x$. Specially, a dcpo which is continuous as a poset will be called a (continuous) domain. For a subset A of L, let $\uparrow A = \{x \in L : \exists a \in A, \ a \leq x\}$, $\downarrow A = \{x \in L : \exists a \in A, \ x \leq a\}$. We use $\uparrow a$ (resp. $\downarrow a$) instead of $\uparrow \{a\}$ (resp. $\downarrow \{a\}$) when $A = \{a\}$. A is called an upper (resp. a lower) set if $A = \uparrow A$ (resp. $A = \downarrow A$). An element $k \in L$ is called compact if $k \ll k$. The subset of all compact elements is denoted by K(L). A dcpo L is called algebraic if for all $x \in L$, $x = \vee^{\uparrow}(\downarrow x \cap K(L))$.

Definition 1.1 Let L be a poset.

- (1) A subset A of L is called consistent if A has an upper bound in L, i.e., $A \subseteq \downarrow x$ for some $x \in L$.
- (2) L is called a consistent meet-semilattice (or \wedge^{\uparrow} -semilattice) if $x \wedge y$ exists for all consistent $x, y \in L$. To emphasize the fact that x and y are consistent, we will write $x \wedge^{\uparrow} y$ instead of $x \wedge y$. Moreover, if L is a (continuous) dcpo, then L is called a (continuous) dcpo- \wedge^{\uparrow} -semilattice.
- (3) L is called an L-domain if L is a domain and every consistent subset of L has an inf, i.e., $\downarrow x$ is a complete lattice for all $x \in L$.

Let L be a poset. We call the topology generated by the complements $L \setminus \tau$ of principal filters as subbasic open sets the lower topology and denote it by $\omega(L)$. If (L, \leq) is a dcpo, we define the Scott topology (denoted by $\sigma(L)$), which has as its topology of closed sets all directed complete lower sets, i.e., lower sets closed under directed sups. The Lawson topology $\lambda(L)$ is generated by taking the join of $\sigma(L)$ and $\omega(L)$ as subbasic. If L is a \wedge^{\uparrow} -semilattice, then the partial operator $\wedge^{\uparrow}: L \times L \to L$ is Scott continuous.

A \wedge^{\uparrow} -semilattice homomorphism f between dcpo- \wedge^{\uparrow} -semilattices (P, \wedge^{\uparrow}) and (E, \wedge^{\uparrow}) is a Scott continuous function from P to E such that $f(a \wedge^{\uparrow} b) = f(a) \wedge^{\uparrow} f(b)$ whenever a, b are consistent in P. Note that the function is Scott continuous and conditionally multiplicative (or cm for short in [2]), that is, each \wedge^{\uparrow} -semilattice homomorphism is a Scott continuous cm function.

2 Categories of $FS-\wedge^{\uparrow}$ -domains

For dcpos L and P, let $[L \longrightarrow P]$ denote all Scott continuous functions from L to P with the pointwise order. For dcpo- \wedge^{\uparrow} -semilattices D and E, let $[D \longrightarrow_{\wedge^{\uparrow}} E]$ denote the function space of \wedge^{\uparrow} -semilattice homomorphisms from D to E with the pointwise order.

Definition 2.1 [3] A dcpo L is called an FS-domain if id_L is approximated directly by a family of finitely separating functions, where a Scott continuous function $f: L \longrightarrow L$ is called finitely separated if there exists a finite set M_f such that for each $x \in L$, there exists $m \in M_f$ such that $f(x) \leq m \leq x$.

Definition 2.2 A dcpo L is called an $FS-\wedge^{\uparrow}$ -domain if it is a \wedge^{\uparrow} -semilattice and there exists a directed family of finitely separated \wedge^{\uparrow} -semilattice homomorphisms which can approximate id_L .

In other words, an $FS-\wedge^{\uparrow}$ -domain is a continuous dcpo- \wedge^{\uparrow} -semilattice which id is approximated by a directed family of finitely separated Scott continuous functions preserving existing finite infs. Obviously, every $FS-\wedge^{\uparrow}$ -domain is an FS-domain. Then we have

Proposition 2.3 Each $FS-\wedge^{\uparrow}$ -domain is a Lawson compact L-domain.

Next, we show that the category with $FS-\wedge^{\uparrow}$ -domains as objects and Scott continuous functions as morphisms is a cartesian closed category.

Theorem 2.4 Let D and E be $dcpo-\land \uparrow$ -semilattices, then $[D\longrightarrow_{\land \uparrow} E]$ is a $dcpo-\land \uparrow$ -

semilattice.

Proof. Firstly, $[D \longrightarrow_{\wedge^{\uparrow}} E]$ is a dcpo. For any directed set $\{f_j \in [D \longrightarrow_{\wedge^{\uparrow}} E] : j \in J\}$ and $x \in D$, set $f(x) = \bigvee_{j \in J} f_j(x)$. It is obvious that f is Scott continuous. If $x, y \in D$ are consistent, then f(x), f(y) are also consistent in E. Then

$$f(x \wedge^{\uparrow} y) = \bigvee_{j \in J} f_j(x \wedge^{\uparrow} y) = \bigvee_{j \in J} (f_j(x) \wedge^{\uparrow} f_j(y))$$
$$= (\bigvee_{j \in J} f_j(x)) \wedge^{\uparrow} (\bigvee_{j \in J} f_j(y)) = f(x) \wedge^{\uparrow} f(y).$$

So f is also Scott continuous and a \wedge^{\uparrow} -semilattice homomorphism. Hence $[D \longrightarrow_{\wedge^{\uparrow}} E]$ is a dcpo.

Secondly, $[D \longrightarrow_{\wedge^{\uparrow}} E]$ is a \wedge^{\uparrow} -semilattice. If $f, g \in [D \longrightarrow_{\wedge^{\uparrow}} E]$ are consistent, then f(x), g(x) are consistent for any $x \in D$. Then $f(x) \wedge^{\uparrow} g(x)$ exists. Let $(f \wedge^{\uparrow} g)(x) = f(x) \wedge^{\uparrow} g(x)$. For a directed set $\{x_k \in D : k \in K\}$, we have

$$(f \wedge^{\uparrow} g)(\bigvee_{k \in K} (x_k)) = f(\bigvee_{k \in K} (x_k)) \wedge^{\uparrow} g(\bigvee_{k \in K} (x_k))$$

$$= \bigvee_{k \in K} f(x_k) \wedge^{\uparrow} \bigvee_{k \in K} g(x_k) = \bigvee_{k \in K} [f(x_k) \wedge^{\uparrow} g(x_k)]$$

$$= \bigvee_{k \in K} [(f \wedge^{\uparrow} g)(x_k)].$$

Then $f \wedge^{\uparrow} g$ is Scott continuous.

For a pair of consistent points x, y in D, $f(x \wedge^{\uparrow} y)$ and $g(x \wedge^{\uparrow} y)$ are consistent in E. Then

$$\begin{split} &(f \wedge^{\uparrow} g)(x \wedge^{\uparrow} y) \\ &= f(x \wedge^{\uparrow} y) \wedge^{\uparrow} g(x \wedge^{\uparrow} y) \\ &= (f(x) \wedge^{\uparrow} f(y)) \wedge^{\uparrow} (g(x) \wedge^{\uparrow} g(y)) \\ &= (f(x) \wedge^{\uparrow} g(x)) \wedge^{\uparrow} (f(y) \wedge^{\uparrow} g(y)) \\ &= (f \wedge^{\uparrow} g)(x) \wedge^{\uparrow} (f \wedge^{\uparrow} g)(y). \end{split}$$

That is, $f \wedge^{\uparrow} g$ is a \wedge^{\uparrow} -semilattice homomorphism. So $[D \longrightarrow_{\wedge^{\uparrow}} E]$ is a \wedge^{\uparrow} -semilattices.

Finally, by the Scott continuity of the operation \wedge^{\uparrow} , we obtain the following conclusion. If the sup of the directed set $\{f_j \in [D \longrightarrow_{\wedge^{\uparrow}} E] : j \in J\}$ and $g \in [D \longrightarrow_{\wedge^{\uparrow}} E]$ are consistent, then for $x \in D$,

$$[g \wedge^{\uparrow} (\bigvee_{j \in J} f_j)](x) = g(x) \wedge^{\uparrow} (\bigvee_{j \in J} (f_j(x)))$$

$$= \bigvee_{j \in J} [g(x) \wedge^{\uparrow} f_j(x)] = \bigvee_{j \in J} [(g \wedge^{\uparrow} f_j)(x)]$$

$$= [\bigvee_{j \in J} (g \wedge^{\uparrow} f_j)](x).$$

So $\wedge^{\uparrow}: [D \longrightarrow_{\wedge^{\uparrow}} E] \times [D \longrightarrow_{\wedge^{\uparrow}} E] \longrightarrow [D \longrightarrow_{\wedge^{\uparrow}} E]$ is Scott continuous. We have obtained that $[D \longrightarrow_{\wedge^{\uparrow}} E]$ is a dcpo- \wedge^{\uparrow} -semilattice.

Theorem 2.5 Let D and E be $FS-\wedge^{\uparrow}$ -domains, then $[D\longrightarrow_{\wedge^{\uparrow}} E]$ and $[D\longrightarrow E]$ are $FS-\wedge^{\uparrow}$ -domains.

Proof. Suppose that \mathcal{D} and \mathcal{E} are approximate identities for D and E respectively. Then we claim that the family

$$\mathcal{D} \otimes \mathcal{E} = \{ \delta \otimes \epsilon : \delta \in \mathcal{D}, \epsilon \in \mathcal{E} \}$$

defined by

$$f \mapsto \epsilon^2 f \delta^2$$

for $f \in [D \longrightarrow_{\wedge^{\uparrow}} E]$ is an approximate identity for $[D \longrightarrow_{\wedge^{\uparrow}} E]$ and $\delta \otimes \epsilon$ is finitely separating. The proof is similar with the case of FS-domains.

It suffices to show that $\delta \otimes \epsilon \in [D \longrightarrow_{\wedge^{\uparrow}} E] \longrightarrow_{\wedge^{\uparrow}} [D \longrightarrow_{\wedge^{\uparrow}} E]$. Firstly, it is obvious that $\delta \otimes \epsilon$ is Scott continuous. Secondly, for a pair of consistent points $f, g \in [D \longrightarrow_{\wedge^{\uparrow}} E]$, we have $(\delta \otimes \epsilon)(f), (\delta \otimes \epsilon)(g)$ are consistent and for any $x \in D$

$$\begin{split} &[(\delta \otimes \epsilon)(f \wedge^{\uparrow} g)](x) = [\epsilon^{2}(f \wedge^{\uparrow} g)\delta^{2}](x) \\ &= \epsilon^{2}[f\delta^{2}(x) \wedge^{\uparrow} g\delta^{2}(x)] = \epsilon^{2}f\delta^{2}(x) \wedge^{\uparrow} \epsilon^{2}g\delta^{2}(x) \\ &= [\epsilon^{2}f\delta^{2} \wedge^{\uparrow} \epsilon^{2}g\delta^{2}](x) = [(\delta \otimes \epsilon)(f) \wedge^{\uparrow} (\delta \otimes \epsilon)(g)](x). \end{split}$$

So we conclude that $\delta \otimes \epsilon$ is a \wedge^{\uparrow} -semilattice homomorphism. Then $[D \longrightarrow_{\wedge^{\uparrow}} E]$ is an $FS-\wedge^{\uparrow}$ -domain. Similarly, $[D \longrightarrow E]$ is also an $FS-\wedge^{\uparrow}$ -domain.

Note that usually the category with $FS-\wedge^{\uparrow}$ -domains as objects and \wedge^{\uparrow} -semilattice homomorphisms as morphisms is not a cartesian closed category. However, if the category considers Scott continuous functions as morphisms, then from the preceding paragraph we have the following conclusion:

Theorem 2.6 The category with $FS-\wedge^{\uparrow}$ -domains as objects and Scott continuous functions as morphisms is a cartesian closed category.

3 Characterize consistent Smyth powerdomains by FS- \wedge^{\uparrow} -domains

In the following paragraph, we will relate $FS-\wedge^{\uparrow}$ -domain and consistent Smyth powerdomain with the functions: \wedge^{\uparrow} -semilattice homomorphisms. We characterize consistent Smyth powerdomains $S_C(L)$ over a Lawson compact continuous domain L by means of $FS-\wedge^{\uparrow}$ -domains.

Definition 3.1 [16] A consistent deflationary semilattice is a continuous dcpo L with a Scott continuous binary partial operator \wedge^{\uparrow} defined only for consistent pairs of points that satisfy three equations for commutativity $x \wedge^{\uparrow} y = y \wedge^{\uparrow} x$, associativity $x \wedge^{\uparrow} (y \wedge^{\uparrow} z) = (x \wedge^{\uparrow} y) \wedge^{\uparrow} z$, and idempotency $x \wedge^{\uparrow} x = x$ together with the inequality $x \geq x \wedge^{\uparrow} y$ for any $x, y, z \in L$. The free consistent deflationary semilattice over a domain L is called the consistent Smyth powerdomain over L.

Definition 3.2 [16] Let L be a poset and F a nonempty subset of L. Two elements x and y in F are called linearly connected in F provided there exists a consistent path in $\uparrow F$ from x to y, i.e. finitely many x_0, x_1, \ldots, x_n in $\uparrow F$ such that $x = x_0 \dagger x_1 \dagger \ldots \dagger x_n = y$, denoted by $x \sim_F y$. F is called linearly connected if any two elements of F are linearly connected in F.

Let L be a continuous domain and let

$$\mathcal{B}_C(L) = \{ F \subseteq_{fin} L : F \neq \emptyset \text{ and } F \text{ is linearly connected} \}.$$

Let $S_C(L)$ be the family generated by $\uparrow \mathcal{B}_C(L) = \{\uparrow F : F \in \mathcal{B}_C(L)\}$ as a basis, i.e., for all $A \in S_C(L)$, $A = \bigcap_{\uparrow} \{\uparrow F : F \in \mathcal{B}_C(L) \& \uparrow F \ll A\}$, then $S_C(L)$ is a continuous dcpo- \land [†]-semilattice in [16].

Theorem 3.3 [16] Let L be a continuous domain. The embedding j of L into $S_C(L)$ is given by $j(x) = \uparrow x$ for $x \in L$. If P is a dcpo- $\land \uparrow$ -semilattice and $f: L \longrightarrow P$ a Scott continuous function, then there exists uniquely a $\land \uparrow$ -homomorphism \bar{f} such that $\bar{f}j = f$. Thus, $S_C(L)$ is isomorphic to the consistent Smyth powerdomain over L.

Definition 3.4 The relation \ll in a continuous dcpo- \wedge^{\uparrow} -semilattice D is called consistent \ll -multiplication if for consistent elements $a,b\in D,\ x\ll a,b$ implies $x\ll a \wedge^{\uparrow} b$.

For a continuous L-domain L, L is distributive with \vee and \wedge^{\uparrow} if it holds the following statements: for any consistent points $x, y, z, x \wedge^{\uparrow} (y \vee z) = (x \wedge^{\uparrow} y) \vee (x \wedge^{\uparrow} z)$.

Definition 3.5 Let L be a poset. An element $m \in L$ is a minimal upper bound (or mub for short) for a subset A if m is an upper bound for A that is minimal in the set of all upper bounds of A.

Lemma 3.6 Let D be an algebraic Lawson compact L-domain with the consistent \ll -multiplicative property. If D is distributive with \vee and \wedge^{\uparrow} , then D is an $FS-\wedge^{\uparrow}$ -domain.

Proof. Let $\mathcal{D} = \{(x \Rightarrow x) \in D \rightarrow D : x \ll x\}$, where $(x \Rightarrow x)$ is the one-step function defined by

$$(x \Rightarrow x)(z) = \begin{cases} x, & z \in \uparrow x, \\ 0_{\downarrow z}, & \text{otherwise.} \end{cases}$$

For any finite compact element subset $K = \{x_1, ..., x_n\} \subseteq K(D)$ for $n \in N$ and $\emptyset \neq G \subseteq K$, define $M_G \subseteq_{fin} mub(G)$: for any $m \in M_G$, there is $x \in \cap_{x_i \in G} \uparrow x_i$ such that $m \ll x$. By compactness of D, there is a finite set $M_G \subseteq mub\{x_i : x_i \in G\}$ such that $mub\{x_i : x_i \in G\} \subseteq \bigcup_{m \in M_G} \uparrow m$.

Set

$$L_c(K) = \{ \land_{x_i \in G}^{\uparrow} \{x_i\} : \emptyset \neq G \subseteq K, \cap_{x_i \in G} \uparrow x_i \neq \emptyset \},$$

$$M_{L_c(K)} = \bigcup_G \{ m \in M_G : \emptyset \neq G \subseteq L_c(K), \cap_{x_i \in G} \uparrow x_i \neq \emptyset \},$$

$$K^* = L_c(K) \cup M_{L_c(K)},$$

$$K_1 = K^*, K_2 = K_1^*, ..., K_{n+1} = K_n^*,$$

$$\mathcal{F}(K) = \bigcup_{n \in N} K_n.$$

By the distributive property, the set $\mathcal{F}(K)$ is finite. Let us define the mapping $f_K: D \to D$ as follows: for $x \in D$,

$$f_K(x) = \begin{cases} m, & x \in \uparrow m \setminus \uparrow (\uparrow m \cap \mathcal{F}(K)), \ m \in \mathcal{F}(K), \\ 0_{\downarrow x}, \text{ otherwise.} \end{cases}$$

If $G_1 = G_2$, $m_1, m_2 \in M_{G_1}$ and $m_1 \neq m_2$, then $\uparrow m_1 \setminus \uparrow (\uparrow m_1 \cap \mathcal{F}(K)) \cap \uparrow m_2 \setminus \uparrow (\uparrow m_2 \cap \mathcal{F}(K)) = \emptyset$. Otherwise, there is $x \in \uparrow m_1 \setminus \uparrow (\uparrow m_1 \cap \mathcal{F}(K)) \cap \uparrow m_2 \setminus \uparrow (\uparrow m_2 \cap \mathcal{F}(K))$. But $m_1 \neq m_2$. This is a contradiction with which D is an L-domain. If $G_1 \neq G_2$ and $m_i \in M_{G_i}$ for i = 1, 2, then $\uparrow m_1 \setminus \uparrow (\uparrow m_1 \cap \mathcal{F}(K)) \cap \uparrow m_2 \setminus \uparrow (\uparrow m_2 \cap \mathcal{F}(K)) = \emptyset$. Otherwise, there is $x \in \uparrow m_1 \setminus \uparrow (\uparrow m_1 \cap \mathcal{F}(K)) \cap \uparrow m_2 \setminus \uparrow (\uparrow m_2 \cap \mathcal{F}(K))$. Then $x \in \uparrow (m_1 \vee_{\downarrow x} m_2)$, a contradiction. On the other hand, suppose $m_1 \in M_{G_1}, m_2 \in M_{G_2}$ and $G_1 \neq G_2$. If $a \in \uparrow m_1 \setminus \uparrow (\uparrow m_1 \cap \mathcal{F}(K))$ and $b \in \uparrow m_2 \setminus \uparrow (\uparrow m_2 \cap \mathcal{F}(K))$ and $f_K(a) \neq f_K(b)$. We must have $a \neq b$. Otherwise, $a \in \uparrow (m_1 \vee_{\downarrow a} m_2)$, but $f_K(a) = m_1$. This is a contradiction with the definition of f_K . If $G_1 = G_2, m_1, m_2 \in M_{G_1}$ and $m_1 \neq m_2$, then $a \neq b$ because D is a L-domain. Then f_K is well defined.

It's obvious that f_K is monotone with finite range and $f_K \leq id_D$. For any $d \in D$, if $d = 0_{\downarrow d}$ and $d \notin {\downarrow}m$ for any $m \in \mathcal{F}(K)$, then $f_K^{-1}({\uparrow}d) = {\uparrow}d$; if there is some $m \in \mathcal{F}(K)$ such that $d \ll m$, then $f_K^{-1}({\uparrow}d) = \bigcup \{{\uparrow}m : d \ll m\}$ and otherwise, $f_K^{-1}({\uparrow}d) = \emptyset$. All cases show that $f_K^{-1}({\uparrow}d)$ is a Scott open set of D. Then f_K is Scott continuous.

It is easy to show that $\{f_K : K \subseteq K(D), |K| \subseteq_{fin} N\}$ is a directed set approximated to id_D . For any $x \in D$, we know $\sup\{f_K(x) : K \subseteq K(D), |K| \subseteq_{fin} N\} \le x$. If $x \not\leq \sup\{f_K(x) : K \subseteq K(D), |K| \subseteq_{fin} N\}$, then there is $u \ll x$ but $u \not\leq \sup\{f_K(x) : K \subseteq K(D), |K| \subseteq_{fin} N\}$. By $u \ll x$, there is some compact element v such that $u \ll v \ll x$. By $(v \Rightarrow v)(x) = v$ and $(v \Rightarrow v) \leq \sup\{f_K : K \subseteq K(D), |K| \subseteq_{fin} N\}$.

 $K(D), |K| \subseteq_{fin} N$, then $u \le v \le \sup\{f_K(x) : K \subseteq K(D), |K| \subseteq_{fin} N\}$, a contradiction.

To show that $\{f_K : K \subseteq K(D), |K| \subseteq_{fin} N\}$ is the approximate identity over D, it is sufficient to prove that these functions are also \wedge^{\uparrow} -homomorphisms. Suppose that a and b are consistent witnessed by c. Let $a \wedge^{\uparrow} b = x$ and let

$$a \in \uparrow m_1 \setminus \uparrow (\uparrow m_1 \cap \mathcal{F}(K)),$$

$$b \in \uparrow m_2 \setminus \uparrow (\uparrow m_2 \cap \mathcal{F}(K))$$

and

$$x \in \uparrow m_0 \setminus \uparrow (\uparrow m_0 \cap \mathcal{F}(K)),$$

where $m_i \in M_{G_i}$ for i = 0, 1, 2. Then $f_K(a) \wedge^{\uparrow} f_K(b)$ exists. By $m_0 \ll x \leq a$ and $m_0 \ll x \leq b$, if $G_0 = G_1 = G_2$, then $m_1 = m_0$ and $m_2 = m_0$, and then $m_0 = m_1 \wedge^{\uparrow} m_2$. Otherwise, we obtain $m_0 \vee_{\downarrow a} m_1 \ll a$ and $m_0 \vee_{\downarrow a} m_1 \in \mathcal{F}(K)$, but $a \in \uparrow m_1 \setminus \uparrow (\uparrow m_1 \cap \mathcal{F}(K))$. Then $m_0 \leq m_1$. Similarly, $m_0 \leq m_2$. Thus, we have $m_0 \leq m_1 \wedge^{\uparrow} m_2$. On the other hand, by \ll -multiplicative property, $m_1 \wedge^{\uparrow} m_2 \ll a \wedge^{\uparrow} b = x$. By the definition of f_K , we conclude $m_0 = m_1 \wedge^{\uparrow} m_2$. Hence, $f_K(a \wedge^{\uparrow} b) = m_0 = m_1 \wedge^{\uparrow} m_2 = f_K(a) \wedge^{\uparrow} f_K(b)$.

Theorem 3.7 Let D be a Lawson compact L-domain with consistent \ll multiplicative property. If D is distributive with \vee and \wedge^{\uparrow} , then D is an FS- \wedge^{\uparrow} domain.

Proof. For any finite subset $X = \{x_1, ..., x_n\} \subseteq D$, $Y = \{y_1, ..., y_n\} \subseteq D$ and $y_i \ll x_i$ for any $n \in N$ and $I = \{1, ..., n\}$, set

$$L_{c}(X) = \{ \wedge_{i \in F}^{\uparrow} \{x_{i}\} : F \in \Phi(I) = \Phi(\Psi_{X}) \},$$

$$U_{c}(X) = \{ \vee_{\downarrow x} \{x_{i} : i \in F\} : F \in \Phi(\Psi_{L_{C}(X)}), \exists x \in D, s.t., \{x_{i} : i \in F\} \subseteq \downarrow x \},$$

$$X^{*} = L_{c}(X) \cup U_{c}(X),$$

$$X_{1} = X^{*}, X_{2} = X_{1}^{*}, ..., X_{n+1} = X_{n}^{*},$$

$$\mathcal{F}(X) = \bigcup_{n \in N} X_{n},$$

where $\Phi(I) = \{ F \subseteq I : \cap_{i \in F} \uparrow x_i \neq \emptyset \}, \Phi_k(I) = \{ F \in \Phi(I) : |F| = k \},$

$$MI = \max\{i \in I: \exists F \in \Phi(I), s.t., |F| = i\},$$

and let $\Psi_X = I$, and

$$\Psi_{L_c(X)} = \{i \downarrow (i + k_1^{(2)}), ..., i \downarrow (i + k_t^{(2)}), ..., i \downarrow (i + k_{s_1}^{(e+1)}) \downarrow ... \downarrow (i + k_{s_e}^{(e+1)}) : 1 \le i \le n\},$$

where

$$k_1^{(2)} = \min\{k : \uparrow x_i \cap \uparrow x_{i+k} \neq \emptyset, 0 \le k \le n - i\},$$

$$k_t^{(2)} = \max\{k : \uparrow x_i \cap \uparrow x_{i+k} \neq \emptyset, 0 \le k \le n - i\}$$

П

and $i\downarrow(i+k_1^{(2)})$ means that $x_i \wedge^{\uparrow} x_{i+k_1^{(2)}}$ exists, and

$$e = \max\{|E| : \uparrow x_i \cap (\bigcap_{k \in E} \uparrow x_{i+k}) \neq \emptyset, 0 \le k \le n - i\},\$$

$$\{(i+k_{s_1}^{(e+1)}),...,(i+k_{s_e}^{(e+1)})\} = \max\{E: \uparrow x_i \cap (\bigcap_{k \in E} \uparrow x_{i+k}) \neq \emptyset, 0 \le k \le n-i\},$$

 $i\downarrow(i+k_{s_1}^{(e+1)})\downarrow...\downarrow(i+k_{s_e}^{(e+1)})$ denotes that $\wedge^\uparrow\{x_i,x_{i+k_{s_1}^{(e+1)}},...,x_{i+k_{s_e}^{(e+1)}}\}$ exists. From the definition of Ψ , we know that $|\Psi_{L_c(X)}| \leq (L_c(X))!$. Then $\Psi_{L_c(X)}$ is finite. Similarly, for some X_k , the set Ψ_{X_k} is finite.

Let us define $M_E \subseteq_{fin} mub\{y_i : i \in E\}$ for a finite set E: for any $m \in M_E$, there is $x \in \cap_{i \in E} \uparrow x_i$ such that $m \ll x$. By compactness of D, there is a finite set $M_E \subseteq mub\{y_i : i \in E\}$ such that $mub\{x_i : i \in E\} \subseteq \bigcup_{m \in M_E} \uparrow m$.

Let $m_a = \wedge_{i \in F}^{\uparrow} \{y_i\}$, if $a = \wedge_{i \in F}^{\uparrow} \{x_i\}$ for $F \in \Phi(\Psi_{X_{k_1}})$. Let $m_a = \vee_{\downarrow x} \{y_i : i \in F\}$, if there is some $x \in D$ such that $\{x_i : i \in F\} \subseteq \downarrow x$ for $F \in \Phi(\Psi_{X_{k_2}})$ and $a = \vee_{\downarrow x} \{x_i : i \in F\}$.

By the distributive property and compactness of D, the set $\{m_a : a \in \mathcal{F}(X)\}$ is finite. Let us define a mapping $f_I : D \to D$ as follows: for $x \in D$,

$$f_I(x) = \begin{cases} m_a, \ x \in (\uparrow m_a \cap \uparrow a) \setminus \uparrow (\uparrow a \cap \mathcal{F}(X)), \ a \in \mathcal{F}(X), \\ 0_{\downarrow x}, \text{ otherwise.} \end{cases}$$

Then $\{f_I : I \subseteq_{fin} N\}$ is an approximate identity over D.

In [16], we show that the consistent Smyth powerdomain over a Lawson compact continuous domain is a Lawson compact continuous L-domain.

Theorem 3.8 [16] If L is a Lawson compact continuous domain, then the consistent Smyth powerdomain $S_C(L)$ is a Lawson compact continuous L-domain satisfied the consistent \ll -multiplicative property and the distributive property with \vee and \wedge^{\uparrow} .

By Theorem 3.7 and Theorem 3.8, we have the following conclusion:

Theorem 3.9 If L is a Lawson compact continuous domain, then the consistent Smyth powerdomain $S_C(L)$ over L is an $FS-\wedge^{\uparrow}$ -domain.

References

- Abramsky, S., and Jung, A., Domain Theory, In Handbook of Logic in Computer Science, 1-168, Oxford University Press, 1994.
- [2] Amadio, R., and Curien, P.-L., Domains and Lambda Calculi, Cambridge University Press, 1998.
- [3] Gierz, G., Hofmann, K.H., Keimel, K., et al., Continuous Lattices and Domains, Cambridge University Press, 2003.
- [4] Heckmann, R., An upper power domain construction in terms of strongly compact sets. Lecture Notes in Computer Science, 598: 272-293, 1991.

- [5] Heckmann, R., Characterizing FS-domains by means of power domains. Theoretical Computer Science, 264: 195-203, 2001.
- [6] Heckmann, R., Power domain constructions. Science of Computer Programming, 17: 77-117, 1990.
- [7] Heckmann, R., Power domains and second-order predicates. Theoretical Computer Science, 111: 59-88, 1993
- [8] Huth, M., Jung, A., and Keimel, K., Linear types and approximation. Mathematical Structures in Computer Science, 10: 719-745, 2000.
- [9] Liang, J.H., and Kou, H., Convex power domain and vietoris spaces. Computers and Mathematics with Applications, 47: 541-548, 2004.
- [10] Meng, H., and Kou, H., On the function spaces of semilattice homomorphisms and FS_{\wedge} -domains. Chinese annals of Mathematics, 32: 107-114, 2011.
- [11] Mislove, M.W., On the Smyth power domain. Lecture Notes in Computer Science, 298: 161-172, 1988.
- [12] Mislove, M.W., Topology, domain theory and theoretical computer science. Topology and its Applications, 89: 3-59, 1998.
- [13] Plotkin, G.D., A powerdomain construction. SIAM Journal on Computing, 5: 452-487, 1976.
- [14] Smyth, M.B., Powerdomains. Journal of Computer and Systems Sciences, 16: 23-36, 1978.
- [15] Smyth, M.B., Powerdomains and predicate transformers: a topological view. Lecture Notes in Computer Science, 154: 662-676, 1983.
- [16] Yuan, Y.Y., and Kou, H., Consistent Smyth powerdomains. Topology and its Applications, 173: 264-275, 2014.