## CSPB 3104 - Park - Algorithms

<u>Dashboard</u> / My courses / <u>2241:CSPB 3104</u> / <u>26 February - 3 March</u> / <u>Spot Exam 2 (Remotely Proctored)</u>

| Started on   | Tuesday, 27 February 2024, 11:40 AM |
|--------------|-------------------------------------|
| State        | Finished                            |
| Completed on | Tuesday, 27 February 2024, 12:17 PM |
| Time taken   | 37 mins 32 secs                     |
| Marks        | 15.00/18.00                         |
| Grade        | 8.33 out of 10.00 (83%)             |

Correct

Mark 6.00 out of 6.00

Recall the rules of being a red-black tree:

- a) root/leaves must be black (And NIL leaves are not shown in the diagram).
- b) children of red nodes must be black.
- c) For every node in the tree, the number of black nodes on every path from a node n to a leaf (not counting n but counting the leaf) must be the same.



Select the correct colors to make this a proper red black tree:

| n1:   |          |  |  |
|-------|----------|--|--|
| Red   | <b>~</b> |  |  |
| n3:   |          |  |  |
| Black | ~        |  |  |
| n4:   |          |  |  |
| Black | <b>~</b> |  |  |
| n6:   |          |  |  |
| Red   | <b>~</b> |  |  |
| n7:   |          |  |  |
| Red   | <b>~</b> |  |  |
|       |          |  |  |

n9:



Partially correct

Mark 4.00 out of 5.00

Match each question with the appropriate answer.

What is the worst-case complexity of running quickselect to find the median of an array with random pivot selection on an array of size n?

What is the average-case complexity of running quicksort to find the median of an array with randomized pivot selection on an array of size n?

What is the average-case complexity of running quickselect to find the median of an array with "median of 5 medians" pivot selection on an array of size n?

What is the average-case complexity of running quickselect to find the median of an array with "median of 5 medians" pivot selection on an array of size n?

Note that is the average-case complexity of running quicksort to find the median of an array with "median of 5 medians" pivot selection on an array of size n?

Your answer is partially correct.

You have correctly selected 4.

The correct answer is: What is the worst-case complexity of running quicksort with random pivot selection on an array of size  $n? \rightarrow n^2$ , What is the worst-case complexity of running quickselect to find the median of an array with random pivot selection on an array of size  $n? \rightarrow n^2$ , What is the average-case complexity of running quicksort to find the median of an array with randomized pivot selection on an array of size  $n? \rightarrow n \log(n)$ , What is the worst-case complexity of running quickselect to find the median of an array with "median of 5 medians" pivot selection on an array of size  $n? \rightarrow n$ , What is the average-case complexity of running quicksort to find the median of an array with "median of 5 medians" pivot selection on an array of size  $n? \rightarrow n \log(n)$ 

Partially correct

Mark 4.00 out of 6.00

| Suppose we wished to use the median of medians trick to find a pivot element for an array of size $n$ .                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------|
| (a) First divide the array into $\frac{n}{11}$ parts of size $11$ each, finding the median of                                                |
| each of the subarray of size $11$ using insertion sort.                                                                                      |
| What is the time complexity of this step?                                                                                                    |
| $\bigcirc$ $\Theta(n^2)$                                                                                                                     |
| $\Theta(n)$ $\checkmark$ Correct                                                                                                             |
| $\bigcirc \Theta(n \log(n))$                                                                                                                 |
| $\bigcirc \Theta(\log(n))$                                                                                                                   |
| Mark 1.00 out of 1.00                                                                                                                        |
| The correct answer is: $\Theta(n)$                                                                                                           |
| (b) Next, we recursively invoke our algorithm to find the median of the medians found in the previous step.                                  |
| What is the size of the array that is passed to this recursive step?                                                                         |
| ○ n/10                                                                                                                                       |
| ○ 5n/11                                                                                                                                      |
| ● 8n/11 × Incorrect                                                                                                                          |
| ○ n/11                                                                                                                                       |
| Mark 0.00 out of 1.00                                                                                                                        |
| The correct answer is: n/11                                                                                                                  |
|                                                                                                                                              |
| Let $T(n)$ denote the worst case running time of our median-of-medians median finding procedure. What is the running time of step (b)?       |
| T(n/11)                                                                                                                                      |
| $\bigcap n^2$                                                                                                                                |
| ○ T(10n/11)                                                                                                                                  |
| on x Inorrect                                                                                                                                |
| Mark 0.00 out of 1.00                                                                                                                        |
| The correct answer is: T(n/11)                                                                                                               |
|                                                                                                                                              |
| (c) We use the median found by the recursive call in step (b). How many elements of the array are guaranteed to be smaller than this median? |
| 9n/11                                                                                                                                        |
| 3n/5                                                                                                                                         |
| $\bigcirc$ 0                                                                                                                                 |
| ● 6n/22 ✓ Correct                                                                                                                            |
| Mark 1.00 out of 1.00                                                                                                                        |
| The correct answer is: 6n/22                                                                                                                 |
|                                                                                                                                              |

| (d) If the median found in step (b) were used as a pivot to partition the array into two parts, what is the size of the larger of the two partitions in the worst case? |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9n/22                                                                                                                                                                   |
| ○ 7n/10                                                                                                                                                                 |
| ○ o                                                                                                                                                                     |
| <ul> <li>16n/22 	✓ Correct</li> </ul>                                                                                                                                   |
| Mark 1.00 out of 1.00                                                                                                                                                   |
| The correct angular is: 16n/22                                                                                                                                          |

(e) We will now write down a recurrence for finding the worst case running time T(n) of finding a median using the median of 11 medians to find a pivot. Consider the options provided below:

A: 
$$T(n) = T(n) + T(\frac{8n}{22}) + \Theta(n)$$
.

B: 
$$T(n) = T(\frac{n}{11}) + \Theta(n^2)$$
.

C: 
$$T(n) = T(\frac{n}{11}) + T(\frac{16n}{22}) + \Theta(n)$$
.

D: 
$$T(n) = T(\frac{16n}{22}) + \Theta(n)$$
.

Which of the options above represents the correct recurrence for the algorithm?

- \_ A
- ОВ
- C ✓ Correct
- $\bigcirc$  D

Mark 1.00 out of 1.00

The correct answer is: C

Correct

Mark 1.00 out of 1.00

A hashtable using chaining with m=7 slots is built with a hash function that is chosen uniformly at random from the set of functions

$$\{h_1(n) = (n^2 + 5) \mod 7,$$

$$h_2(n) = (n^2 + 2n) \mod 7,$$

$$h_3(n) = (n^2 + 5n + 2) \mod 7$$

The elements 1,3,5 and 6 are inserted into the table.

Calculate the expected (average over all instantiations) number of collisions?

Select one:

- a. 1
- b. 1/8
- c. 1/2
- d. 3/4
- e. 2/3
- f. 0
- g. 1/3

h. 2

Your answer is correct.

Suppose  $h_1$  is chosen

we have  $h_1(1) = 6$ ,  $h_1(3) = 0$ ,  $h_1(5) = 2$ ,  $h_1(6) = 6$  yielding one collision.

Suppose  $h_2$  is chosen

we have  $h_2(1) = 3$ ,  $h_2(3) = 1$ ,  $h_2(5) = 0$ ,  $h_2(6) = 6$ , yielding zero collisions

Suppose  $h_3$  were chosen

we have  $h_3(1) = 1$ ,  $h_3(3) = 5$ ,  $h_3(5) = 3$ ,  $h_3(6) = 5$ , yielding one collision.

Expected number of collisions is therefore  $\frac{3}{3} = 1$ .

The correct answer is: 2/3

Comment:

×