Note: Your TA may not get to all the problems. This is totally fine, the discussion worksheets are not designed to be finished in an hour. The discussion worksheet is also a resource you can use to practice, reinforce, and build upon concepts discussed in lecture, readings, and the homework.

1 Master Theorem

For solving recurrence relations asymptotically, it often helps to use the Master Theorem:

Master Theorem. If $T(n) = aT(n/b) + \mathcal{O}(n^d)$ for a > 0, b > 1, and $d \ge 0$, then

$$T(n) = \begin{cases} \mathcal{O}(n^d) & \text{if } d > \log_b a \\ \mathcal{O}(n^d \log n) & \text{if } d = \log_b a \\ \mathcal{O}(n^{\log_b a}) & \text{if } d < \log_b a \end{cases}$$

Note: You can replace \mathcal{O} with Θ and you get an alternate (but still true) version of the Master Theorem that produces Θ bounds.

 $d_{crit} = \log_b a$ is called the *critical exponent*. Notice that whichever of d_{crit} and d is greater determines the growth of T(n), except in the case where they are perfectly balanced.

Solve the following recurrence relations and give a \mathcal{O} bound for each of them.

- (a) (i) T(n) = 3T(n/4) + 4n
 - (ii) $T(n) = 45T(n/3) + .1n^3$
- (b) $T(n) = 2T(\sqrt{n}) + 3$, and T(2) = 3.

Hint: Try repeatedly expanding the recurrence.

(c) Consider the recurrence relation $T(n) = 2T(n/2) + n \log n$. We can't plug it directly into the Master Theorem, so solve it by adding the size of each layer.

Hint: split up the $\log(n/(2^i))$ terms into $\log n - \log(2^i)$, and use the formula for arithmetic series.

Sorted Array 2

Given a sorted array A of n (possibly negative) distinct integers, you want to find out whether there is an index i for which A[i] = i. Devise a divide-and-conquer algorithm that runs in $O(\log n)$ time.

3 Quantiles

Let A be an array of length n. The boundaries for the k quantiles of A are $\{a^{(n/k)}, a^{(2n/k)}, \dots, a^{((k-1)n/k)}\}$ where $a^{(\ell)}$ is the ℓ -th smallest element in A.

Devise an algorithm to compute the boundaries of the k quantiles in time $\mathcal{O}(n \log k)$. For convenience, you may assume that k is a power of 2.

Hint: Recall that QUICKSELECT(A, ℓ) gives $a^{(\ell)}$ in $\mathcal{O}(n)$ time.

4 Complex numbers review

A complex number is a number that can be written in the rectangular form a + bi (i is the imaginary unit, with $i^2 = -1$). The following famous equation (Euler's formula) relates the polar form of complex numbers to the rectangular form:

$$re^{i\theta} = r(\cos\theta + i\sin\theta)$$

In polar form, $r \ge 0$ represents the distance of the complex number from 0, and θ represents its angle. The *n* roots of unity are the *n* complex numbers satisfying $\omega^n = 1$. They are given by

$$\omega_k = e^{2\pi i k/n}, \qquad k = 0, 1, 2, \dots, n-1$$

(a) Let $x=e^{2\pi i 3/10}, y=e^{2\pi i 5/10}$ which are two 10-th roots of unity. Compute the product $x\cdot y$. Is this a root of unity? Is it an 10-th root of unity?

What happens if $x = e^{2\pi i 6/10}$, $y = e^{2\pi i 7/10}$?

(b) Show that for any *n*-th root of unity ω , $\sum_{k=0}^{n-1} \omega^k = 0$, when n > 1.

Hint: Use the formula for the sum of a geometric series $\sum_{k=0}^{n} \alpha^k = \frac{\alpha^{n+1}-1}{\alpha-1}$. It works for complex numbers too!

- (c) (i) Find all ω such that $\omega^2 = -1$.
 - (ii) Find all ω such that $\omega^4 = -1$.