

Görev Tatil (Task Vacation)

Anton ve arkadaşları birlikte tatil planı yapıyorlar. Yer seçimine çoktan karar verdiler, ancak tarih konusunda anlaşmakta zorlanıyorlar.

N arkadaşın hepsi işten izin almayı planladıkları günleri önceden bildirdiler. i numaralı arkadaş, izin günlerini L_i gününden R_i gününe kadar olarak planladı. Birlikte geçirebilecekleri zamanı en üst düzeye çıkarmak için, her arkadaş izin günlerini ileriye veya geriye kaydırarak ayarlayabilir. Özellikle, i-inci arkadaş bir tamsayı d_i seçebilir ve izin günlerini $[L_i+d_i,R_i+d_i]$ aralığına kaydırabilir. Pozitif bir d_i değeri, izin günlerinin başlangıçta planlanandan daha ileriye alınacağı anlamına gelir, negatif bir d_i değeri ise daha geriye alınacağı anlamına gelir ve $d_i=0$ değeri ise başlangıçtaki planın korunacağı anlamına gelir.

Anton'un arkadaşları, patronlarının değişikliklerinin yol açacağı aksaklıkları hoş karşılamayacağını biliyorlar. Bu nedenle, izin günlerini, aralıkların toplam hareketinin bir tamsayı olan K değerini aşmayacak şekilde değiştirecekler. Biçimsel olarak, $|d_0| + |d_1| + \cdots + |d_{N-1}| \leq K$ koşulunu sağlamaları gerekiyor.

Anton'un arkadaşlarının, programlarını en uygun şekilde değiştirirlerse **hepsinin** birlikte olabileceği maksimum gün sayısını bulmalarına yardım edin.

1 implementasyon detayları

Aşağıdaki fonksiyonu kodlamalısınız plan vacation:

int plan_vacation(int N, std::vector<int> L, std::vector<int> R,
long long K)

- *N*: arkadaş sayısı;
- L: N pozitif tamsayı vektörü, her biri o arkadaş için başlangıçta planlanan ilk izin gününü belirtir;
- R: N pozitif tamsayı vektörü, her biri o arkadaş için başlangıçta planlanan son izin gününü belirtir;
- $K: |d_0| + |d_1| + \cdots + |d_{N-1}|$ 'in izin verilen maksimum değeri.

Bu fonksiyon her test için bir kez çağrılacaktır. Tüm arkadaşların bir arada olabileceği maksimum gün sayısını veya bu mümkün değilse 0 değerini dönmelidir.

W Kısıtlar

- $1 \le N \le 500~000$
- $1 \le L_i \le R_i \le 10^9$
- $0 \le K \le 10^{18}$

Alt görevler

Alt görev	Puan	Gerekli Alt görevler	Ek kısıtlar
0	0	_	Örnek.
1	7	_	K = 0
2	11	1	$K \leq 1$
3	6	_	$K = 10^{18}$
4	13	0	$N \leq 10^4$, $L_i \leq 10$, $R_i \leq 10$
5	18	0	$N \le 10^3$
6	29	0, 4, 5	$N \le 10^5$
7	16	0 - 6	_

Örnek

Aşağıdaki çağrıyı ele alalım:

Başlangıçta Anton'un arkadaşları tatil günleri aralıklarını şöyle talep etmişlerdir: [1,3], [5,9], [2,5]. Bu nedenle, arkadaş 0'ın tatilini 2 gün ileriye, arkadaş 1'in tatilini 1 gün geriye alarak [3,5], [4,8], [2,5] elde edebiliriz. Böylece, tüm arkadaşlar 4. ve 5. günlerde müsait olacak ve ortak 2 gün elde edilecektir. K=3 ile daha iyisini yapamayacakları kanıtlanabilir. Fonksiyon 2 sonucunu dönmelidir.

🔊 Örnek grader

Girdi formatı aşağıdaki gibidir:

- satır 1: iki tamsayı N ve K değerleri.
- satır 2'den satır N+1'e: iki tamsayı L_i ve R_i .

Çıktı formatı aşağıdaki gibidir:

• satır 1: bir tamsayı - çağrının döneceği değer.