Vettori

Docente: Elisabetta Comini

Ultimo aggiornamento: 15/02/2025

Sistemi di coordinate

- coordinate cartesiane
- coordinate polari

Figura 3.2 (a) Le coordinate polari piane di un punto sono rappresentate dalla distanza r e dall'angolo θ , dove θ è misurato in senso antiorario a partire dall'asse x positivo. (b) Il triangolo rettangolo adoperato per collegare (x, y) con (r, θ) .

Sistemi di coordinate

Grandezze scalari/vettoriali

- grandezza scalare: specificata solamente da un valore con una certa unità di misura (non associata con una direzione)
- grandezza vettoriale: ha bisogno sia di un numero con le sue unità di misura (modulo del vettore), sia di una direzione orientata.

Domanda

- Fra le grandezze seguenti quali sono vettoriali e quali sono scalari?
 - la tua età
 - l'accelerazione,
 - la velocità
 - la velocità scalare
 - la massa

Figura 3.4 Se un punto materiale va da (a) a (b) seguendo un percorso qualunque, rappresentato dalla linea tratteggiata, il suo spostamento è una grandezza vettoriale rappresentata dalla freccia che va da (a) a (b).

Spostamento

Figura 3.5 I quattro vettori sono uguali perché hanno la stessa lunghezza e puntano tutti nella medesima direzione.

Alcune proprietà dei vettori

- Uguaglianza: modulo uguale e uguale direzione orientata
- **Somma**: vettore disegnato a partire dalla coda del primo vettore alla punta dell'ultimo vettore
 - proprietà **commutativa** della somma vettoriale $\vec{A} + \vec{B} = \vec{B} + \vec{A}$
 - proprietà **associativa** della somma $\vec{A} + (\vec{B} + \vec{C}) = (\vec{A} + \vec{B}) + \vec{C}$
 - Opposto di un vettore
 - Sottrazione di due vettori
 - Moltiplicazione di un vettore per uno scalare

Figura 3.6 Quando un vettore \overrightarrow{B} è sommato al vettore \overrightarrow{A} , il risultante \overrightarrow{R} è il vettore che va dalla coda di \overrightarrow{A} alla punta di \overrightarrow{B} .

Somma

Figura 3.7 Costruzione geometrica per sommare quattro vettori. Per definizione il vettore risultante \overrightarrow{R} è il vettore che completa il poligono.

Figura 3.8 (a) La costruzione mostra che $\overrightarrow{A} + \overrightarrow{B} = \overrightarrow{B} + \overrightarrow{A}$, cioè che la somma fra vettori gode della proprietà commutativa.

Proprietà commutativa

Figura 3.9 Costruzione geometrica che dimostra la proprietà associativa della somma fra vettori.

Proprietà associativa

Figura 3.10 (a) Questa costruzione mostra come sottrarre il vettore \vec{B} dal vettore \vec{A} . Il vettore $-\vec{B}$ ha modulo uguale al modulo di \vec{B} ma ha direzione orientata opposta. (b) Un secondo modo di vedere la sottrazione fra vettori.

Sottrazione

Domande

Quiz 3.2

I moduli di due vettori \vec{A} e \vec{B} sono A = 12 unità e B = 8 unità. Quale delle coppie di numeri che seguono rappresentano il *valore massimo* e il *valore minimo* che il modulo del vettore somma $\vec{R} = \vec{A} + \vec{B}$? può assumere? (a) 14.4 unità, 4 unità (b) 12 unità, 8 unità (c) 20 unità, 4 unità (d) nessuna di queste risposte.

Quiz 3.3

Se si vuole che sommando un vettore \vec{B} ad un vettore \vec{A} il vettore risultante sia nullo, quale *coppia* di condizioni deve essere verificata fra quelle elencate qui sotto? (a) $\vec{A}e$ \vec{B} sono paralleli ed hanno lo stesso verso (b) $\vec{A}e$ \vec{B} sono paralleli ed hanno versi opposti (c) $\vec{A}e$ \vec{B} hanno modulo uguale (d) $\vec{A}e$ \vec{B} sono perpendicolari fra loro.

Componenti di un vettore e vettori unitari

Componenti di un vettore: proiezioni lungo gli assi

Figura 3.12 (a) Ogni vettore \overrightarrow{A} che giace nel piano xy può essere rappresentato dai suoi vettori componenti \overrightarrow{A}_x ed \overrightarrow{A}_y . (b) Il componente $y \overrightarrow{A}_y$ può essere spostato a destra per sommarlo con \overrightarrow{A}_x . La somma vettoriale dei due vettori componenti è \overrightarrow{A} . I tre vettori formano insieme un triangolo rettangolo.

 Un vettore unitario è un vettore adimensionale il cui modulo è esattamente 1

Figura 3.14 (a) I vettori unitari $\hat{\mathbf{i}}$, $\hat{\mathbf{j}}$, \mathbf{e} $\hat{\mathbf{k}}$ sono diretti, nell'ordine, lungo gli assi x, y e z. (b) Per un vettore $\mathbf{A} = A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}}$, che giace nel piano xy, A_x e A_y sono le componenti del vettore.

Figura 3.13 I segni delle componenti di un vettore A dipendono dal quadrante in cui giace il vettore.

Domanda

- Si scelga quale delle tre possibilità rende vera l'affermazione: Il modulo di uno dei componenti di un vettore
- è sempre
- non è mai
- può essere maggiore del modulo del vettore stesso

Figura 3.15 Un punto le cui coordinate cartesiane sono (x, y) può essere rappresentato dal vettore posizione $\overrightarrow{\mathbf{r}} = x \hat{\mathbf{i}} + y \hat{\mathbf{j}}$.

Figura 3.16 Questa costruzione geometrica per la somma di due vettori mostra la relazione fra le componenti del vettore risultante **R** e le componenti dei due vettori.

Domanda

Per quale dei vettori seguenti, il modulo del vettore è uguale ad una delle sue componenti?

(a)
$$\overrightarrow{A} = 2 \hat{i} + 5 \hat{j}$$

(b)
$$\overrightarrow{\mathbf{B}} = -3\hat{\mathbf{j}}$$

(c)
$$\overrightarrow{C} = +5 \hat{k}$$