Finite element mass lumping in H(curl)

Bogdan Radu

Technische Universität Darmstadt

March 31, 2022 PhD Defense

Table of Contents

1. Maxwell's equations

Finite differences (FDTD/FIT)

2. Finite element method

First order elements
First order elements with mass lumping
A Yee-like method
Second order elements with mass lumping

3. Further results

Acoustic wave equation Porous media flow Poroelasticity

Maxwell's equations

Electromagnetic wave propagation in linear and non-dispersive but possibly inhomogeneous and anisotropic media

$$\varepsilon \, \partial_t E(t) = \operatorname{curl} H(t) - \sigma E(t)$$
 in Ω
 $\mu \, \partial_t H(t) = -\operatorname{curl} E(t)$ in Ω

in Ω , with $E(0)=E_0$ and $H(0)=H_0$ in Ω and $n\times E(t)=0$ on $\partial\Omega$

Maxwell's equations

Electromagnetic wave propagation in linear and non-dispersive but possibly inhomogeneous and anisotropic media

$$\varepsilon \partial_t E(t) = \operatorname{curl} H(t) - \sigma E(t) \quad \text{in } \Omega$$

 $\mu \partial_t H(t) = -\operatorname{curl} E(t) \quad \text{in } \Omega$

in Ω , with $E(0)=E_0$ and $H(0)=H_0$ in Ω and $n\times E(t)=0$ on $\partial\Omega$

Goal: systematic and flexible space discretization

- stable: no artificial energy production
- accurate: provable convergence rates
- efficient: appropriate for explicit time-stepping methods

Maxwell's equations

Electromagnetic wave propagation in linear and non-dispersive but possibly inhomogeneous and anisotropic media

$$\varepsilon \, \partial_t E(t) = \quad \text{curl } H(t) - \sigma E(t) \qquad \text{in } \Omega$$

$$\mu \, \partial_t H(t) = -\text{curl } E(t) \qquad \qquad \text{in } \Omega$$

in Ω , with $E(0)=E_0$ and $H(0)=H_0$ in Ω and $n\times E(t)=0$ on $\partial\Omega$

Goal: systematic and flexible space discretization

- stable: no artificial energy production
- accurate: provable convergence rates
- efficient: appropriate for explicit time-stepping methods

Methods: FDTD/FIT, FEM, FVM, DG, ...

$$\varepsilon \partial_t E(t) = \operatorname{curl} H(t) - \sigma E(t)$$
 in Ω
 $\mu \partial_t H(t) = -\operatorname{curl} E(t)$ in Ω

- ▶ 1966 Yee Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media
- ▶ 1977 Weiland Eine Methode zur Lösung der Maxwell'schen Gleichungen für sechskomponentige Felder auf diskreter Basis

▶ 1980 - Taflove - Application of the Finite-Difference Time-Domain method to sinusoidal steady-state electromagnetic penetration problems

$$\begin{split} \varepsilon \, \partial_t E(t) &= \quad \text{curl } H(t) - \sigma E(t) \qquad \text{in } \Omega \\ \mu \, \partial_t H(t) &= - \text{curl } E(t) \qquad \qquad \text{in } \Omega \end{split}$$

Finite differences: TE case

$$E = \begin{pmatrix} E_x \\ E_y \\ 0 \end{pmatrix} \qquad H = \begin{pmatrix} 0 \\ 0 \\ H_z \end{pmatrix}$$
$$\begin{cases} \varepsilon \partial_t E_x = \partial_y H_z - \sigma E_x, \\ \varepsilon \partial_t E_y = -\partial_x H_z - \sigma E_y, \\ -\mu \partial_t H_z = \partial_x E_y - \partial_y E_x. \end{cases}$$

$$\begin{split} \varepsilon \, \partial_t E(t) &= \quad \text{curl } H(t) - \sigma E(t) \qquad \text{in } \Omega \\ \mu \, \partial_t H(t) &= - \text{curl } E(t) \qquad \qquad \text{in } \Omega \end{split}$$

Finite differences: TE case

$$E = \begin{pmatrix} E_x \\ E_y \\ 0 \end{pmatrix} \qquad H = \begin{pmatrix} 0 \\ 0 \\ H_z \end{pmatrix}$$
$$\begin{cases} \varepsilon \partial_t E_x = \partial_y H_z - \sigma E_x, \\ \varepsilon \partial_t E_y = -\partial_x H_z - \sigma E_y, \\ -\mu \partial_t H_z = \partial_x E_y - \partial_y E_x. \end{cases}$$

$$\begin{split} \varepsilon \, \partial_t E(t) &= \quad \text{curl } H(t) - \sigma E(t) \qquad \text{in } \Omega \\ \mu \, \partial_t H(t) &= - \text{curl } E(t) \qquad \qquad \text{in } \Omega \end{split}$$

Finite differences: TE case

$$E = \begin{pmatrix} E_x \\ E_y \\ 0 \end{pmatrix} \qquad H = \begin{pmatrix} 0 \\ 0 \\ H_z \end{pmatrix}$$
$$\begin{cases} \varepsilon \partial_t E_x = \partial_y H_z - \sigma E_x, \\ \varepsilon \partial_t E_y = -\partial_x H_z - \sigma E_y, \\ -\mu \partial_t H_z = \partial_x E_y - \partial_y E_x. \end{cases}$$

$$\begin{split} \varepsilon \, \partial_t E(t) &= \quad \text{curl } H(t) - \sigma E(t) \qquad \text{in } \Omega \\ \mu \, \partial_t H(t) &= - \text{curl } E(t) \qquad \qquad \text{in } \Omega \end{split}$$

Finite differences: TE case

$$E = \begin{pmatrix} E_x \\ E_y \\ 0 \end{pmatrix} \qquad H = \begin{pmatrix} 0 \\ 0 \\ H_z \end{pmatrix}$$

$$\begin{cases} \varepsilon \partial_t E_x = \partial_y H_z - \sigma E_x, \\ \varepsilon \partial_t E_y = -\partial_x H_z - \sigma E_y, \\ -\mu \partial_t H_z = \partial_x E_y - \partial_y E_x. \end{cases}$$

Pros

- ► Easy to implement
- ▶ stable, accurate $O(h^2 + \tau^2)$, efficient

Cons

 Difficulties in dealing with complex domains

$$\varepsilon \, \partial_t E(t) = \quad \text{curl } H(t) - \sigma E(t) \qquad \text{in } \Omega$$

$$\mu \, \partial_t H(t) = -\text{curl } E(t) \qquad \qquad \text{in } \Omega$$

$$\begin{split} \varepsilon \, \partial_t E(t) &= \quad \text{curl } H(t) - \underbrace{\sigma E(t)} \qquad \text{in } \Omega \\ \mu \, \partial_t H(t) &= - \text{curl } E(t) \qquad \qquad \text{in } \Omega \end{split}$$

$$\varepsilon \, \partial_t E(t) = \operatorname{curl} H(t) - \sigma E(t) \quad \text{in } \Omega$$

$$\mu \, \partial_t H(t) = -\operatorname{curl} E(t) \quad \text{in } \Omega$$

Approximation spaces: $V_h \subset H_0(\operatorname{curl},\Omega)$ and $Q_h \subset L^2(\Omega)$

Galerkin method: For t > 0, find $E_h(t) \in V_h$ and $H_h(t) \in Q_h$ such that

$$(\varepsilon \partial_t E_h(t), v_h)_{\Omega} - (H_h(t), \operatorname{curl} v_h)_{\Omega} = 0$$

$$(\mu \partial_t H_h(t), q_h)_{\Omega} + (\operatorname{curl} E_h(t), q_h)_{\Omega} = 0$$

for all test functions $v_h \in V_h$ and $q_h \in Q_h$, and for all t > 0.

$$\varepsilon \, \partial_t E(t) = \operatorname{curl} H(t) - \sigma E(t) \quad \text{in } \Omega$$

$$\mu \, \partial_t H(t) = -\operatorname{curl} E(t) \quad \text{in } \Omega$$

Approximation spaces: $V_h \subset H_0(\text{curl}, \Omega)$ and $Q_h \subset L^2(\Omega)$

Galerkin method: For t > 0, find $E_h(t) \in V_h$ and $H_h(t) \in Q_h$ such that

$$(\varepsilon \partial_t E_h(t), v_h)_{\Omega} - (H_h(t), \operatorname{curl} v_h)_{\Omega} = 0$$

$$(\mu \partial_t H_h(t), q_h)_{\Omega} + (\operatorname{curl} E_h(t), q_h)_{\Omega} = 0$$

for all test functions $v_h \in V_h$ and $q_h \in Q_h$, and for all t > 0.

Algebraic realization. For a choice of basis functions, we have

$$\mathbf{M}_{\varepsilon} \partial_t \mathbf{e}(t) - \mathbf{C}^{\top} \mathbf{h}(t) = 0$$
$$\mathbf{D}_{\mu} \partial_t \mathbf{h}(t) + \mathbf{C} \mathbf{e}(t) = 0$$

Finite element spaces on reference elements.

▶ 1980 - Nedelec - Mixed Finite Elements in \mathbb{R}^3

$$\begin{array}{cccc}
 & V_h(Q) = \mathcal{N}_0(Q) & \phi_1 = (1 - y, 0) & \phi_3 = (0, 1 - x) \\
Q_h(Q) = P_0(Q) & \phi_2 = (y, 0) & \phi_4 = (0, x)
\end{array}$$

$$V_h(T) = \mathcal{N}_0(T)$$
$$Q_h(T) = P_0(T)$$

$$V_h(T) = \mathcal{N}_0(T)$$
 $\phi_1 = (1 - y, x)$ $\phi_3 = (y, 1 - x)$
 $Q_h(T) = P_0(T)$ $\phi_2 = (-y, x)$

Finite element spaces on reference elements.

▶ 1980 - Nedelec - Mixed Finite Elements in \mathbb{R}^3

Lemma (accuracy) If E and H are sufficiently smooth, then

$$||E(t) - E_h(t)||_{L^2} + ||H(t) - H_h(t)||_{L^2} \le Ch$$

- ▶ 1992 Monk Analysis of a finite element method for Maxwell's equations
- ▶ 1993 Monk An analysis of Nedelec's method for spatial discretization of Maxwell's equations

Stability and accuracy.

Lowest order MFEM yields stable and accurate approximation in space.

Stability and accuracy.

Lowest order MFEM yields stable and accurate approximation in space.

Numerical solution. Time integration of resulting ode system

$$\mathbf{M}_{\varepsilon} \partial_t \mathbf{e}(t) - \mathbf{C}^{\top} \mathbf{h}(t) = 0$$
$$\mathbf{D}_{\mu} \partial_t \mathbf{h}(t) + \mathbf{C} \mathbf{e}(t) = 0$$

by explicit schemes requires application of $\mathbf{M}_{\varepsilon}^{-1}$ and $\mathbf{D}_{\mu}^{-1}.$

Stability and accuracy.

Lowest order MFEM yields stable and accurate approximation in space.

Numerical solution. Time integration of resulting ode system

$$\mathbf{M}_{\varepsilon} \partial_t \mathbf{e}(t) - \mathbf{C}^{\top} \mathbf{h}(t) = 0$$
$$\mathbf{D}_{\mu} \partial_t \mathbf{h}(t) + \mathbf{C} \mathbf{e}(t) = 0$$

by explicit schemes requires application of $\mathbf{M}_{\varepsilon}^{-1}$ and $\mathbf{D}_{\mu}^{-1}.$

Note. Here \mathbf{D}_{μ} is diagonal, but \mathbf{M}_{ε} does not have a sparse inverse! Thus, explicit time-stepping for standard MFEM is not efficient.

Stability and accuracy.

Lowest order MFEM yields stable and accurate approximation in space.

Numerical solution. Time integration of resulting ode system

$$\mathbf{M}_{\varepsilon} \partial_t \mathbf{e}(t) - \mathbf{C}^{\top} \mathbf{h}(t) = 0$$
$$\mathbf{D}_{\mu} \partial_t \mathbf{h}(t) + \mathbf{C} \mathbf{e}(t) = 0$$

by explicit schemes requires application of $\mathbf{M}_{\varepsilon}^{-1}$ and $\mathbf{D}_{\mu}^{-1}.$

Note. Here \mathbf{D}_{μ} is diagonal, but \mathbf{M}_{ε} does not have a sparse inverse! Thus, explicit time-stepping for standard MFEM is not efficient.

Remedy – Mass-lumping: replace $\mathbf{M}_{arepsilon}$ by approximation $\mathbf{M}_{arepsilon}^L$ such that

- $lackbox{M}^L_arepsilon$ corresponds to positive definite matrix (stability)
- $lackbox{M}^L_arepsilon$ is good approximation for $\mathbf{M}_arepsilon$ (accuracy)
- $lackbox{lack}(\mathbf{M}^L_arepsilon)^{-1}$ can be applied efficiently (efficiency)

construction of $\mathbf{M}_{\varepsilon}^L$ usually via numerical quadrature.

Mass lumping literature

 1975 - Fried, Malkus - Finite element mass matrix lumping by numerical integration with no convergence rate loss

- ▶ 1999 Kong, Mulder, Veldhuizen Higher-order triangular and tetrahedral finite elements with mass lumping for solving the wave equation
- 2000 Becache, Joly, Tsogka An analysis of new mixed finite elements for the approximation of wave propagation models
- ▶ 2001 Mulder Higher-order mass-lumped finite elements for the wave equation
- ▶ 2002 Cohen Higher-Order Numerical Methods for Transient Wave Equations
- 2018 Geevers, Mulder, Vegt New higher-order mass-lumped tetrahedral elements for wave propagation modelling

Mass-lumping in H^1

Mass lumping literature

- 1975 Fried, Malkus Finite element mass matrix lumping by numerical integration with no convergence rate loss
- ▶ 1990 Lee, Madsen A mixed FEM formulation for Maxwell's equations in the time domain
- ▶ 1995 Cohen, Monk Mass lumped edge elements in three dimensions
- ▶ 1997 Elmkies, Joly Elements finis d'arete et condensation de masse pour les equations de Maxwell le cas 3D
- ▶ 1998 Cohen, Monk Gauss Point Mass Lumping Schemes for Maxwell's Equations
- ▶ 1999 Kong, Mulder, Veldhuizen Higher-order triangular and tetrahedral finite elements with mass lumping for solving the wave equation
- 2000 Becache, Joly, Tsogka An analysis of new mixed finite elements for the approximation of wave propagation models
- ▶ 2001 Mulder Higher-order mass-lumped finite elements for the wave equation
- ▶ 2002 Cohen Higher-Order Numerical Methods for Transient Wave Equations
- ▶ 2004 Lacoste Mass-lumping for the first order Raviart—Thomas—Nedelec finite elements
- ▶ 2007 Jund, Salmon Arbitrary high-order finite element schemes and high order mass lumping
- 2018 Geevers, Mulder, Vegt New higher-order mass-lumped tetrahedral elements for wave propagation modelling

Mass-lumping in H^1

Mass-lumping in H(div) and H(curl)

Mass lumping literature

- 1975 Fried, Malkus Finite element mass matrix lumping by numerical integration with no convergence rate loss
- ▶ 1990 Lee, Madsen A mixed FEM formulation for Maxwell's equations in the time domain
- ▶ 1995 Cohen, Monk Mass lumped edge elements in three dimensions
- ▶ 1997 Elmkies, Joly Elements finis d'arete et condensation de masse pour les equations de Maxwell le cas 3D
- ▶ 1998 Cohen, Monk Gauss Point Mass Lumping Schemes for Maxwell's Equations
- ▶ 1999 Kong, Mulder, Veldhuizen Higher-order triangular and tetrahedral finite elements with mass lumping for solving the wave equation
- 2000 Becache, Joly, Tsogka An analysis of new mixed finite elements for the approximation of wave propagation models
- 2001 Mulder Higher-order mass-lumped finite elements for the wave equation
- 2002 Cohen Higher-Order Numerical Methods for Transient Wave Equations
- 2004 Lacoste Mass-lumping for the first order Raviart-Thomas-Nedelec finite elements
- 2007 Jund, Salmon Arbitrary high-order finite element schemes and high order mass lumping
- 2018 Geevers, Mulder, Vegt New higher-order mass-lumped tetrahedral elements for wave propagation modelling
- 2020 Egger, Radu A mass-lumped mixed finite element method for acoustic wave propagation.
- ▶ 2020 Egger, Radu A mass-lumped mixed finite element method for Maxwell's equations
- 2021 Egger, Radu A second order finite element method with mass lumping for wave equations in H(div).
- 2021 Egger, Radu A Second-Order Finite Element Method with Mass Lumping for Maxwell's Equations on Tetrahedra.

Observation: No combination of quadrature rule and basis functions that leads to decoupling of entries in mass matrix for V_h .

Observation: No combination of quadrature rule and basis functions that leads to decoupling of entries in mass matrix for V_h .

General rule of thumb: Exactly two basis functions are necessary for each quadrature point in order to achieve local orthogonalization.

Observation: No combination of quadrature rule and basis functions that leads to decoupling of entries in mass matrix for V_h .

General rule of thumb: Exactly two basis functions are necessary for each quadrature point in order to achieve local orthogonalization.

Some existing methods: Acute mesh lumping (triangles)

▶ 1996 - Baranger - Connection between finite volume and mixed finite element methods

Use a larger polynomial space [WheelerYotov'06]

$$\bigcap_{\mathbf{Q}} \begin{array}{c} \widetilde{V}_h(Q) = \mathcal{NC}_1(Q) \\ \widetilde{Q}_h(Q) = P_0(Q) \end{array}$$

$$\widetilde{V}_h(T) = \mathcal{NC}_1(T)$$
 $\widetilde{Q}_h(T) = P_0(T)$

Use a larger polynomial space [WheelerYotov'06]

$$\widetilde{V}_h(Q) = \mathcal{NC}_1(Q)$$
 $\widetilde{Q}_h(Q) = P_0(Q)$

Lemma. $\widetilde{\mathbf{M}}_{\epsilon}^L$ is block diagonal and thus also $(\widetilde{\mathbf{M}}_{\epsilon}^L)^{-1}$.

Use a larger polynomial space [WheelerYotov'06]

$$\widetilde{V}_h(Q) = \mathcal{NC}_1(Q)
\widetilde{Q}_h(Q) = P_0(Q)$$

$$\widetilde{V}_h(T) = \mathcal{NC}_1(T)$$
 $\widetilde{Q}_h(T) = P_0(T)$

Lemma. $\widetilde{\mathbf{M}}_{\epsilon}^L$ is block diagonal and thus also $(\widetilde{\mathbf{M}}_{\epsilon}^L)^{-1}$.

Use a larger polynomial space [WheelerYotov'06]

$$\widetilde{V}_h(Q) = \mathcal{NC}_1(Q)
\widetilde{Q}_h(Q) = P_0(Q)$$

$$\widetilde{V}_h(T) = \mathcal{NC}_1(T)$$
 $\widetilde{Q}_h(T) = P_0(T)$

Lemma. $\widetilde{\mathbf{M}}_{\epsilon}^{L}$ is block diagonal and thus also $(\widetilde{\mathbf{M}}_{\epsilon}^{L})^{-1}$.

Use a larger polynomial space [WheelerYotov'06]

$$\widetilde{V}_h(Q) = \mathcal{NC}_1(Q)
\widetilde{Q}_h(Q) = P_0(Q)$$

$$\begin{split} \widetilde{V}_h(T) &= \mathcal{NC}_1(T) \\ \widetilde{Q}_h(T) &= P_0(T) \end{split}$$

Lemma. $\widetilde{\mathbf{M}}_{\epsilon}^L$ is block diagonal and thus also $(\widetilde{\mathbf{M}}_{\epsilon}^L)^{-1}$.

Use a larger polynomial space [WheelerYotov'06]

$$\overset{\bullet}{\bigvee} \qquad \overset{\widetilde{V}_h(Q)}{\widetilde{Q}_h(Q)} = \mathcal{NC}_1(Q) \qquad \overset{\bullet}{\bigvee} \qquad \overset{\widetilde{V}_h(T)}{\widetilde{Q}_h(T)} = \mathcal{NC}_1(T)$$

$$\widetilde{V}_h(T) = \mathcal{NC}_1(T)$$
 $\widetilde{Q}_h(T) = P_0(T)$

Lemma. $\widetilde{\mathbf{M}}_{\epsilon}^{L}$ is block diagonal and thus also $(\widetilde{\mathbf{M}}_{\epsilon}^{L})^{-1}$.

Theorem (accuracy)

If E and H are sufficiently smooth, then

$$\|\boldsymbol{E}(t) - \widetilde{\boldsymbol{E}}_h(t)\| + \|\boldsymbol{H}(t) - \widetilde{\boldsymbol{H}}_h(t)\| \le Ch$$

2020 - Egger, Radu - A mass-lumped mixed finite element method for Maxwell's equations

Use a larger polynomial space [WheelerYotov'06]

$$\widetilde{V}_h(Q) = \mathcal{NC}_1(Q)$$

 $\widetilde{Q}_h(Q) = P_0(Q)$

$$\uparrow \qquad \qquad \downarrow \qquad \qquad \widetilde{V}_h(Q) = \mathcal{NC}_1(Q) \qquad \uparrow \qquad \qquad \widetilde{V}_h(T) = \mathcal{NC}_1(T) \\
\widetilde{Q}_h(Q) = P_0(Q) \qquad \qquad \downarrow \qquad \qquad \widetilde{Q}_h(T) = P_0(T)$$

Lemma. $\widetilde{\mathbf{M}}_{\epsilon}^L$ is block diagonal and thus also $(\widetilde{\mathbf{M}}_{\epsilon}^L)^{-1}$.

Theorem (accuracy)

If E and H are sufficiently smooth, then

$$\|\boldsymbol{E}(t) - \widetilde{\boldsymbol{E}}_h(t)\| + \|\boldsymbol{H}(t) - \widetilde{\boldsymbol{H}}_h(t)\| \le Ch$$

2020 - Egger, Radu - A mass-lumped mixed finite element method for Maxwell's equations

Proof Idea: Error splitting in discrete and projection error, discrete stability, energy estimates, consistency error, analysis of the quadrature error (Strang).

Use a larger polynomial space [WheelerYotov'06]

$$\widetilde{V}_h(Q) = \mathcal{NC}_1(Q)$$
 $\widetilde{Q}_h(Q) = P_0(Q)$

$$\uparrow \qquad \qquad \downarrow \qquad \qquad \widetilde{V}_h(Q) = \mathcal{NC}_1(Q) \qquad \uparrow \qquad \qquad \widetilde{V}_h(T) = \mathcal{NC}_1(T) \\
\downarrow \qquad \qquad \widetilde{Q}_h(Q) = P_0(Q) \qquad \downarrow \qquad \qquad \widetilde{Q}_h(T) = P_0(T)$$

Lemma. $\widetilde{\mathbf{M}}_{\epsilon}^{L}$ is block diagonal and thus also $(\widetilde{\mathbf{M}}_{\epsilon}^{L})^{-1}$.

Theorem (accuracy)

If E and H are sufficiently smooth, then

$$\|\boldsymbol{E}(t) - \widetilde{\boldsymbol{E}}_h(t)\| + \|\boldsymbol{H}(t) - \widetilde{\boldsymbol{H}}_h(t)\| \le Ch$$

2020 - Egger, Radu - A mass-lumped mixed finite element method for Maxwell's equations

Proof Idea: Error splitting in discrete and projection error, discrete stability, energy estimates, consistency error, analysis of the quadrature error (Strang).

Requirement: The quadrature rule must be exact for $P_0(T)^2 \times \widetilde{V}_h(T)$

First order elements... a Yee-like method

Idea: Use lowest order space to represent solution, compute update in the enriched space, and then project back to the lowest order space.

First order elements... a Yee-like method

Idea: Use lowest order space to represent solution, compute update in the enriched space, and then project back to the lowest order space.

Formal representation of the inverse mass matrix :

$$(\mathbf{M}_{\epsilon}^L)^{-1} = \mathsf{P} \; (\widetilde{\mathbf{M}}_{\epsilon}^L)^{-1} \; \mathsf{P}^\top$$

First order elements... a Yee-like method

Idea: Use lowest order space to represent solution, compute update in the enriched space, and then project back to the lowest order space.

Formal representation of the inverse mass matrix :

$$(\mathbf{M}_{\epsilon}^L)^{-1} = \mathsf{P} \; (\widetilde{\mathbf{M}}_{\epsilon}^L)^{-1} \; \mathsf{P}^\top$$

Note:

- → The inverse is sparse, the corresponding mass matrix is full
- → We have equivalence to FDTD on square elements!
- → Similar idea in :
- ▶ 2008 Codecasa, Politi Explicit, consistent and conditionally stable extension of FDTD to tetrahedral grids by FIT

First order elements... a Yee-like method

Idea: Use lowest order space to represent solution, compute update in the enriched space, and then project back to the lowest order space.

Formal representation of the inverse mass matrix :

$$(\mathbf{M}_{\epsilon}^L)^{-1} = \mathsf{P} \; (\widetilde{\mathbf{M}}_{\epsilon}^L)^{-1} \; \mathsf{P}^\top$$

Theorem (accuracy)

If $oldsymbol{E}$ and $oldsymbol{H}$ are sufficiently smooth, then

$$\|E(t) - E_h(t)\| + \|H(t) - H_h(t)\| \le Ch$$

First order elements on tetrahedral meshes

The same concept also applies in 3D on tetrahedral meshes

$$\widetilde{V}_h(T) = \mathcal{NC}_1(T)$$
 $\widetilde{Q}_h(T) = P_0(T)$

First order elements on tetrahedral meshes

The same concept also applies in 3D on tetrahedral meshes

$$V_h(T) = \mathcal{N}_0(T)$$

$$Q_h(T) = P_0(T)$$

$$\overset{\mathsf{P}^{\top}}{\longleftarrow} \qquad \overset{\widetilde{V}_h(T) = \mathcal{NC}_1(T)}{\widetilde{Q}_h(T) = P_0(T)}$$

Theorem (accuracy)

If $oldsymbol{E}$ and $oldsymbol{H}$ are sufficiently smooth, then

$$\|\boldsymbol{E}(t) - \widetilde{\boldsymbol{E}}_h(t)\| + \|\boldsymbol{H}(t) - \widetilde{\boldsymbol{H}}_h(t)\| \le Ch$$

First order elements on tetrahedral meshes

The same concept also applies in 3D on tetrahedral meshes

Theorem (accuracy)

If $m{E}$ and $m{H}$ are sufficiently smooth, then

$$\|\boldsymbol{E}(t) - \widetilde{\boldsymbol{E}}_h(t)\| + \|\boldsymbol{H}(t) - \widetilde{\boldsymbol{H}}_h(t)\| \le Ch$$

Next task: Extension to second order elements.

Second order elements

Extension to second order elements

▶ 1997 - Elmkies, Joly - Elements finis d'arete et condensation de masse pour les equations de Maxwell - le cas 2D

$$\widehat{V}_h(T) = \mathcal{N}_1(T) \oplus B = \mathcal{E}\mathcal{J}_1(T) \subseteq P_3(T)$$

 $\widehat{Q}_h(T) = P_2(T)$

Second order elements

Extension to second order elements

▶ 1997 - Elmkies, Joly - Elements finis d'arete et condensation de masse pour les equations de Maxwell - le cas 2D

$$\widehat{V}_h(T) = \mathcal{N}_1(T) \oplus B = \mathcal{E}\mathcal{J}_1(T) \subseteq P_3(T)$$

 $\widehat{Q}_h(T) = P_2(T)$

New proposal:

$$\widehat{V}_h(T) = \mathcal{N}_1(T) \subseteq P_2(T)
\widehat{Q}_h(T) = P_1(T)$$

The quadrature rule is exact for P_2 polynomials ... but is this enough ?

New proposal:

$$\widehat{V}_h(T) = \mathcal{N}_1(T)$$

 $\widehat{Q}_h(T) = P_1(T)$

Theorem (accuracy). If E and H are sufficiently smooth, then

$$\|\boldsymbol{E}(t) - \widehat{\boldsymbol{E}}_h(t)\| + \|\boldsymbol{H}(t) - \widehat{\boldsymbol{H}}_h(t)\| \le Ch^2$$

New proposal:

$$\widehat{V}_h(T) = \mathcal{N}_1(T)$$

 $\widehat{Q}_h(T) = P_1(T)$

Theorem (accuracy). If E and H are sufficiently smooth, then

$$\|\boldsymbol{E}(t) - \widehat{\boldsymbol{E}}_h(t)\| + \|\boldsymbol{H}(t) - \widehat{\boldsymbol{H}}_h(t)\| \le Ch^2$$

Proof Idea: Discrete stability, energy estimates, Galerkin orthogonality, consistency error, Strang analysis of the quadrature error.

Classic requirement : The quadrature rule has to be exact for $P_1(T)^d imes \widehat{V}_h(T)$

New proposal:

$$\widehat{V}_h(T) = \mathcal{N}_1(T)$$
 $\widehat{Q}_h(T) = P_1(T)$

Theorem (accuracy). If E and H are sufficiently smooth, then

$$\|\boldsymbol{E}(t) - \widehat{\boldsymbol{E}}_h(t)\| + \|\boldsymbol{H}(t) - \widehat{\boldsymbol{H}}_h(t)\| \le Ch^2$$

Proof Idea: Discrete stability, energy estimates, Galerkin orthogonality, consistency error, Strang analysis of the quadrature error.

Classic requirement : The quadrature rule has to be exact for $P_1(T)^d \times \widehat{V}_h(T)$

New requirements

- (i) There exists a splitting $\widehat{V}_h(T) = W(T) \oplus B(T)$ such that $\dim(B(T)) = \dim(\operatorname{curl}(B(T)))$ and $\operatorname{curl}(B(T)) \cap \operatorname{curl}(W(T)) = \{0\}$
- (ii) The quadrature rule is exact for $P_1(T)^2 \times W(T)$

New proposal:

$$\widehat{V}_h(T) = \mathcal{N}_1(T) = \mathcal{NC}_1(T) \oplus B(T)$$

$$\widehat{Q}_h(T) = P_1(T)$$

Theorem (accuracy). If E and H are sufficiently smooth, then

$$\|\boldsymbol{E}(t) - \widehat{\boldsymbol{E}}_h(t)\| + \|\boldsymbol{H}(t) - \widehat{\boldsymbol{H}}_h(t)\| \le Ch^2$$

Proof Idea: Discrete stability, energy estimates, Galerkin orthogonality, consistency error, Strang analysis of the quadrature error.

Classic requirement : The quadrature rule has to be exact for $P_1(T)^d \times \hat{V}_h(T)$

New requirements

- (i) There exists a splitting $\widehat{V}_h(T) = \mathcal{NC}_1(T) \oplus B(T)$ such that $\dim(B(T)) = \dim(\operatorname{curl}(B(T)))$ and $\operatorname{curl}(B(T)) \cap \operatorname{curl}(\mathcal{NC}_1(T)) = \{0\}$
- (ii) The quadrature rule is exact for $P_1(T)^2 \times \mathcal{NC}_1(T) = P_2(T)^2$

▶ 1997 - Elmkies, Joly - Elements finis d'arete et condensation de masse pour les equations de Maxwell - le cas 3D

$$\widehat{V}_h(T) = \mathcal{N}_1(T)$$

▶ 1997 - Elmkies, Joly - Elements finis d'arete et condensation de masse pour les equations de Maxwell - le cas 3D

$$\begin{split} \widehat{V}_h(T) &= \mathcal{N}_1(T) \oplus B(T) \qquad B(T) = \operatorname{span} \left\{ \begin{aligned} & \Phi_1 = \lambda_2 \lambda_3 \lambda_4 \nabla \lambda_1 \\ & \Phi_2 = \lambda_1 \lambda_3 \lambda_4 \nabla \lambda_2 \\ & \Phi_3 = \lambda_1 \lambda_2 \lambda_4 \nabla \lambda_3 \\ & \Phi_4 = \lambda_1 \lambda_2 \lambda_3 \nabla \lambda_4 \end{aligned} \right\} \end{split}$$

1997 - Elmkies, Joly - Elements finis d'arete et condensation de masse pour les equations de Maxwell - le cas 3D

$$\widehat{V}_h(T) = \mathcal{N}_1(T) \oplus B(T) \qquad B(T) = \operatorname{span} \left\{ \begin{cases} \Phi_1 = \lambda_2 \lambda_3 \lambda_4 \nabla \lambda_1 \\ \Phi_2 = \lambda_1 \lambda_3 \lambda_4 \nabla \lambda_2 \\ \Phi_3 = \lambda_1 \lambda_2 \lambda_4 \nabla \lambda_3 \\ \Phi_4 = \lambda_1 \lambda_2 \lambda_3 \nabla \lambda_4 \end{cases} \right\}$$

$$\mathsf{n} \left\{ \begin{array}{l} \Phi_1 = \lambda_2 \lambda_3 \lambda_4 \vee \lambda_1 \\ \Phi_2 = \lambda_1 \lambda_3 \lambda_4 \nabla \lambda_2 \\ \Phi_3 = \lambda_1 \lambda_2 \lambda_4 \nabla \lambda_3 \\ \Phi_4 = \lambda_1 \lambda_2 \lambda_3 \nabla \lambda_4 \end{array} \right\}$$

But
$$\nabla(\lambda_1\lambda_2\lambda_3\lambda_4) = \Phi_1 + \Phi_2 + \Phi_3 + \Phi_4 \Rightarrow \operatorname{curl}(\Phi_1 + \Phi_2 + \Phi_3 + \Phi_4) = 0.$$

Thus $\dim(B(T)) \neq \dim(\operatorname{curl} B(T))$!

1997 - Elmkies, Joly - Elements finis d'arete et condensation de masse pour les equations de Maxwell - le cas 3D

$$\widehat{V}_h(T) = \mathcal{N}_1(T) \oplus \underline{B(T)}$$

$$\widehat{V}_h(T) = \mathcal{N}_1(T) \oplus B(T) \qquad B(T) = \operatorname{span} \left\{ \begin{cases} \Phi_1 = \lambda_2 \lambda_3 \lambda_4 \nabla \lambda_1 \\ \Phi_2 = \lambda_1 \lambda_3 \lambda_4 \nabla \lambda_2 \\ \Phi_3 = \lambda_1 \lambda_2 \lambda_4 \nabla \lambda_3 \\ \Phi_4 = \lambda_1 \lambda_2 \lambda_3 \nabla \lambda_4 \end{cases} \right\}$$

But
$$\nabla(\lambda_1\lambda_2\lambda_3\lambda_4) = \Phi_1 + \Phi_2 + \Phi_3 + \Phi_4 \Rightarrow \operatorname{curl}(\Phi_1 + \Phi_2 + \Phi_3 + \Phi_4) = 0.$$

Thus $\dim(B(T)) \neq \dim(\operatorname{curl} B(T))$!

Theorem [EggerRadu21]. If (and only if) $\operatorname{div}(\mathbf{E}) = 0$, then

$$\|\boldsymbol{E}(t) - \widehat{\boldsymbol{E}}_h(t)\| + \|\boldsymbol{H}(t) - \widehat{\boldsymbol{H}}_h(t)\| \le Ch^2$$

Note. In general, second order convergence is lost!

1997 - Elmkies, Joly - Elements finis d'arete et condensation de masse pour les equations de Maxwell - le cas 3D

$$\widehat{V}_h(T) = \mathcal{N}_1(T) \oplus B(T)$$

$$\widehat{V}_h(T) = \mathcal{N}_1(T) \oplus B(T) \qquad B(T) = \operatorname{span} \left\{ \begin{cases} \Phi_1 = \lambda_2 \lambda_3 \lambda_4 \nabla \lambda_1 \\ \Phi_2 = \lambda_1 \lambda_3 \lambda_4 \nabla \lambda_2 \\ \Phi_3 = \lambda_1 \lambda_2 \lambda_4 \nabla \lambda_3 \\ \Phi_4 = \lambda_1 \lambda_2 \lambda_3 \nabla \lambda_4 \end{cases} \right\}$$

But
$$\nabla(\lambda_1\lambda_2\lambda_3\lambda_4) = \Phi_1 + \Phi_2 + \Phi_3 + \Phi_4 \Rightarrow \operatorname{curl}(\Phi_1 + \Phi_2 + \Phi_3 + \Phi_4) = 0.$$

Thus
$$\dim(B(T)) \neq \dim(\operatorname{curl} B(T))$$
!

Theorem [EggerRadu21]. If (and only if) $\operatorname{div}(\mathbf{E}) = 0$, then

$$\|\boldsymbol{E}(t) - \widehat{\boldsymbol{E}}_h(t)\| + \|\boldsymbol{H}(t) - \widehat{\boldsymbol{H}}_h(t)\| \le Ch^2$$

Note. In general, second order convergence is lost!

Solution. Modify one basis function, for example $\widehat{\Phi}_4 = \lambda_1 \lambda_2 \lambda_3 (\lambda_2 - \lambda_1 + 1) \nabla \lambda_4$

▶ 1997 - Elmkies, Joly - Elements finis d'arete et condensation de masse pour les equations de Maxwell - le cas 3D

$$\widehat{V}_h(T) = \mathcal{N}_1(T) \oplus B(T) \qquad B(T) = \operatorname{span} \left\{ \begin{cases} \Phi_1 = \lambda_2 \lambda_3 \lambda_4 \nabla \lambda_1 \\ \Phi_2 = \lambda_1 \lambda_3 \lambda_4 \nabla \lambda_2 \\ \Phi_3 = \lambda_1 \lambda_2 \lambda_4 \nabla \lambda_3 \\ \widehat{\Phi}_4 \end{cases} \right\}$$

But
$$\nabla(\lambda_1\lambda_2\lambda_3\lambda_4) = \Phi_1 + \Phi_2 + \Phi_3 + \Phi_4 \Rightarrow \operatorname{curl}(\Phi_1 + \Phi_2 + \Phi_3 + \Phi_4) = 0.$$

Thus
$$\dim(B(T)) \neq \dim(\operatorname{curl} B(T))$$
!

Theorem [EggerRadu21]. If (and only if) div E 0, then

$$\|\boldsymbol{E}(t) - \widehat{\boldsymbol{E}}_h(t)\| + \|\boldsymbol{H}(t) - \widehat{\boldsymbol{H}}_h(t)\| \le Ch^2$$

Note. In general, second order convergence is lost!

Solution. Modify one basis function, for example
$$\widehat{\Phi}_4 = \lambda_1 \lambda_2 \lambda_3 (\lambda_2 - \lambda_1 + 1) \nabla \lambda_4$$

Further results

Further results

Dual mixed formulation of

$$\partial_t u(t) = \nabla p(t)$$
 in Ω
 $\partial_t p(t) = -\text{div } u(t)$ in Ω

▶ 1988 - Geveci - On the application of mixed finite element methods to the wave equations

$$u \in H(\operatorname{div}, \Omega)$$
 and $p \in L^2(\Omega)$

Galerkin method: For t>0, find $u_h(t)\in V_h$ and $p_h(t)\in Q_h$ such that

$$(\partial_t u_h(t), v_h)_h - (p_h(t), \operatorname{div} v_h) = 0$$
$$(\partial_t p_h(t), q_h) + (\operatorname{div} u_h(t), q_h) = 0$$

for all $v_h \in V_h \subseteq H(\operatorname{div}, \Omega)$ and $q_h \in Q_h \subseteq L^2(\Omega)$, and for all t > 0.

Galerkin method: For t > 0, find $u_h(t) \in V_h$ and $p_h(t) \in Q_h$ such that

$$(\partial_t u_h(t), v_h)_h - (p_h(t), \operatorname{div} v_h) = 0$$
$$(\partial_t p_h(t), q_h) + (\operatorname{div} u_h(t), q_h) = 0$$

for all $v_h \in V_h \subseteq H(\operatorname{div}, \Omega)$ and $q_h \in Q_h \subseteq L^2(\Omega)$, and for all t > 0.

First order methods

Galerkin method: For t > 0, find $u_h(t) \in V_h$ and $p_h(t) \in Q_h$ such that

$$(\partial_t u_h(t), v_h)_h - (p_h(t), \operatorname{div} v_h) = 0$$
$$(\partial_t p_h(t), q_h) + (\operatorname{div} u_h(t), q_h) = 0$$

for all $v_h \in V_h \subseteq H(\operatorname{div}, \Omega)$ and $q_h \in Q_h \subseteq L^2(\Omega)$, and for all t > 0.

First order methods

Theorem [EggerRadu20]. If u and p are sufficiently smooth, then

$$||u(t) - u_h(t)|| + ||p(t) - p_h(t)|| \le Ch$$

Galerkin method: For t > 0, find $u_h(t) \in V_h$ and $p_h(t) \in Q_h$ such that

$$(\partial_t u_h(t), v_h)_h - (p_h(t), \operatorname{div} v_h) = 0$$
$$(\partial_t p_h(t), q_h) + (\operatorname{div} u_h(t), q_h) = 0$$

for all $v_h \in V_h \subseteq H(\operatorname{div}, \Omega)$ and $q_h \in Q_h \subseteq L^2(\Omega)$, and for all t > 0.

Second order methods

$$V_h(T) = \mathsf{RT}_1(T)$$

$$Q_h(T) = P_1(T)$$

Theorem [EggerRadu20]. If u and p are sufficiently smooth, then

$$||u(t) - u_h(t)|| + ||p(t) - p_h(t)|| \le Ch^2$$

Extensions to H(div): Porous media flow

$$K^{-1}u + \nabla p = 0 \qquad \text{in } \Omega$$

$$\operatorname{div} u = f \qquad \text{in } \Omega$$

$$p = 0 \qquad \text{on } \partial \Omega.$$

Discrete variational formulation

$$(K^{-1}u_h, v_h) - (p_h, \operatorname{div} v_h) = 0 \qquad \forall v_h \in V_h \subseteq H(\operatorname{div}, \Omega)$$
$$(\operatorname{div} u_h, q_h) = (f, q_h) \quad \forall q_h \in Q_h \subseteq L^2(\Omega)$$

Problem: we have to solve a full (indefinite) saddle point system ...

Extensions to H(div): Porous media flow

$$K^{-1}u + \nabla p = 0 \qquad \text{in } \Omega$$

$$\operatorname{div} u = f \qquad \text{in } \Omega$$

$$p = 0 \qquad \text{on } \partial \Omega.$$

Discrete variational formulation via mass lumping (MFMFE) [WheelerYotov06]

$$(K^{-1}u_h, v_h)_h - (p_h, \operatorname{div} v_h) = 0 \qquad \forall v_h \in V_h \subseteq H(\operatorname{div}, \Omega)$$

$$(\operatorname{div} u_h, q_h) = (f, q_h) \quad \forall q_h \in Q_h \subseteq L^2(\Omega)$$

Extensions to H(div): Porous media flow

$$K^{-1}u + \nabla p = 0 \qquad \text{in } \Omega$$

$$\operatorname{div} u = f \qquad \text{in } \Omega$$

$$p = 0 \qquad \text{on } \partial \Omega.$$

Discrete variational formulation via mass lumping (MFMFE) [WheelerYotov06]

$$(K^{-1}u_h, v_h)_h - (p_h, \operatorname{div} v_h) = 0 \qquad \forall v_h \in V_h \subseteq H(\operatorname{div}, \Omega)$$

$$(\operatorname{div} u_h, q_h) = (f, q_h) \quad \forall q_h \in Q_h \subseteq L^2(\Omega)$$

For appropriate spaces V_h , Q_h and $(\cdot, \cdot)_h$, the *lumped mass matrix* M_h is block-diagonal, and the variable u_h can be eliminated efficiently.

$$\begin{pmatrix} \mathsf{M}_{\mathsf{h}} & -\mathsf{C}^\top \\ \mathsf{C} & 0 \end{pmatrix} \begin{pmatrix} \mathsf{u} \\ \mathsf{p} \end{pmatrix} = \begin{pmatrix} 0 \\ \mathsf{f} \end{pmatrix} \qquad \Longrightarrow \qquad \mathsf{C}\mathsf{M}_{\mathsf{h}}^{-1}\mathsf{C}^\top \, \mathsf{p} = \mathsf{f}$$

The problem reduces to symmetric, positive definite cell-centered system for the pressure (CCFD)

Further extension to poroelasticity

$$-\operatorname{div}(2\mu\epsilon(u) + \lambda \operatorname{div}(u)I) + \nabla p = f \qquad \text{on } \Omega, \ t > 0,$$
$$\operatorname{div} \partial_t u + c_s \partial_t p + \operatorname{div} w = g \qquad \text{on } \Omega, \ t > 0,$$
$$\mathcal{K}^{-1} w + \nabla p = 0 \qquad \text{on } \Omega, \ t > 0.$$

Further extension to poroelasticity

$$-\operatorname{div}(2\mu\epsilon(u) + \lambda \operatorname{div}(u)I) + \nabla p = f \qquad \text{on } \Omega, \ t > 0,$$
$$\operatorname{div} \partial_t u + c_s \partial_t p + \operatorname{div} w = g \qquad \text{on } \Omega, \ t > 0,$$
$$\mathcal{K}^{-1} w + \nabla p = 0 \qquad \text{on } \Omega, \ t > 0.$$

Discrete spaces. $u_h \in P_2^+(\mathcal{T}_h) \cap H^1(\Omega)$, $p_h \in P_1(\mathcal{T}_h)$, $w_h \in \mathsf{RT}_1$

Further extension to poroelasticity

$$-\operatorname{div}(2\mu\epsilon(u) + \lambda \operatorname{div}(u)I) + \nabla p = f \qquad \text{on } \Omega, \ t > 0,$$
$$\operatorname{div} \partial_t u + c_s \partial_t p + \operatorname{div} w = g \qquad \text{on } \Omega, \ t > 0,$$
$$\mathcal{K}^{-1} w + \nabla p = 0 \qquad \text{on } \Omega, \ t > 0.$$

Discrete spaces. $u_h\in P_2^+(\mathcal{T}_h)\cap H^1(\Omega),\ p_h\in P_1(\mathcal{T}_h),\ w_h\in \mathsf{RT}_1$ Algebraic structure:

$$\begin{aligned} \mathsf{A} \mathbf{u}(t) &- \mathsf{B}^\top \mathbf{p}(t) &= & \mathsf{f}(t), \\ \mathsf{B} \partial_t \mathbf{u}(t) + & \mathsf{C} \partial_t \mathbf{p}(t) + \mathsf{D} \mathbf{w}(t) &= & \mathsf{g}(t), \\ &- & \mathsf{D}^\top \mathbf{p}(t) + \mathsf{M}_\mathsf{h} \mathbf{w}(t) = & 0. \end{aligned}$$

Further extension to poroelasticity

$$-\operatorname{div}(2\mu\epsilon(u) + \lambda \operatorname{div}(u)I) + \nabla p = f \qquad \text{on } \Omega, \ t > 0,$$
$$\operatorname{div} \partial_t u + c_s \partial_t p + \operatorname{div} w = g \qquad \text{on } \Omega, \ t > 0,$$
$$\mathcal{K}^{-1} w + \nabla p = 0 \qquad \text{on } \Omega, \ t > 0.$$

Discrete spaces. $u_h \in P_2^+(\mathcal{T}_h) \cap H^1(\Omega)$, $p_h \in P_1(\mathcal{T}_h)$, $w_h \in \mathsf{RT}_1$

Mass-lumping. Local elimination of the Darcy velocity w

$$\begin{aligned} \mathsf{A} \mathsf{u}(t) & -\mathsf{B}^{\top} \mathsf{p}(t) & =& \mathsf{f}(t), \\ \mathsf{B} \partial_t \mathsf{u}(t) +& \mathsf{C} \partial_t \mathsf{p}(t) +& \mathsf{D} \mathsf{M}_{\mathsf{h}}^{-1} \mathsf{D}^{\top} \mathsf{p}(t) =& \mathsf{g}(t), \end{aligned}$$

Further extension to poroelasticity

$$-\operatorname{div}(2\mu\epsilon(u) + \lambda \operatorname{div}(u)I) + \nabla p = f \qquad \text{on } \Omega, \ t > 0,$$
$$\operatorname{div} \partial_t u + c_s \partial_t p + \operatorname{div} w = g \qquad \text{on } \Omega, \ t > 0,$$
$$\mathcal{K}^{-1} w + \nabla p = 0 \qquad \text{on } \Omega, \ t > 0.$$

Discrete spaces. $u_h \in P_2^+(\mathcal{T}_h) \cap H^1(\Omega), p_h \in P_1(\mathcal{T}_h), w_h \in \mathsf{RT}_1$

Mass-lumping. Local elimination of the Darcy velocity w

$$\begin{aligned} \mathsf{A}\mathsf{u}(t) &-\mathsf{B}^{\top}\mathsf{p}(t) &= \mathsf{f}(t), \\ \mathsf{B}\partial_t \mathsf{u}(t) + \mathsf{C}\partial_t \mathsf{p}(t) + \mathsf{D}\mathsf{M}_{\mathsf{h}}^{-1} \mathsf{D}^{\top} \mathsf{p}(t) = \mathsf{g}(t), \end{aligned}$$

Analysis. Existence of weak solutions

Further extension to poroelasticity

$$-\operatorname{div}(2\mu\epsilon(u) + \lambda\operatorname{div}(u)I) + \nabla p = f \qquad \text{on } \Omega, \ t > 0,$$
$$\operatorname{div} \partial_t u + c_s \partial_t p + \operatorname{div} w = g \qquad \text{on } \Omega, \ t > 0,$$
$$\mathcal{K}^{-1} w + \nabla p = 0 \qquad \text{on } \Omega, \ t > 0.$$

Discrete spaces. $u_h \in P_2^+(\mathcal{T}_h) \cap H^1(\Omega), p_h \in P_1(\mathcal{T}_h), w_h \in \mathsf{RT}_1$

Mass-lumping. Local elimination of the Darcy velocity w

$$\begin{aligned} \mathsf{A} \mathsf{u}(t) & -\mathsf{B}^{\top} \mathsf{p}(t) &= & \mathsf{f}(t), \\ \mathsf{B} \partial_t \mathsf{u}(t) + & \mathsf{C} \partial_t \mathsf{p}(t) + & \mathsf{D} \mathsf{M}_\mathsf{h}^{-1} \mathsf{D}^{\top} \mathsf{p}(t) = & \mathsf{g}(t), \end{aligned}$$

Analysis. Existence of weak solutions

Theorem. Together with an appropriate time discretization, we obtain

$$||u(t) - u_h(t)|| + ||p(t) - p_h(t)|| + ||w(t) - w_h(t)|| \le C(h^2 + \tau^2)$$

Closing remarks

Further topics:

- Parameter-robust preconditioning for poroelasticity
- Reduced symmetry methods for elasticity with mass lumping
- Higher order extension

Closing remarks

Further topics:

- Parameter-robust preconditioning for poroelasticity
- Reduced symmetry methods for elasticity with mass lumping
- ► Higher order extension

Key ingredients for mass lumping:

- ▶ Start with a basis space V_h that contains all $P_k(T)^d$ polynomials (for approximation).
- $lackbox{V}_h$ dictates the number of continuity conditions on the boundary
- Find a quadrature rule that has sufficiently many quadrature points on the boundary and has the desired accuracy
- Extend V_h by appropriate "bubble" functions such that we have exactly d-many functions for each quadrature point.

List of relevant publications

- ▶ 2020 Egger, Radu A mass-lumped mixed finite element method for acoustic wave propagation.
- 2020 Egger, Radu A mass-lumped mixed finite element method for Maxwell's equations
- ▶ 2021 Egger, Radu A second order finite element method with mass lumping for wave equations in H(div).
- ➤ 2021 Egger, Radu A Second-Order Finite Element Method with Mass Lumping for Maxwell's Equations on Tetrahedra.

Thank you for your attention!

$$V_h(\widehat{Q}) = \mathcal{N}_0^I(\widehat{Q}) \qquad \phi_1 = (1 - y, 0) \qquad \phi_3 = (0, 1 - x)$$

$$Q_h(\widehat{Q}) = P_0(\widehat{Q}) \qquad \phi_2 = (y, 0) \qquad \phi_4 = (0, x)$$

Assumption (A). $\epsilon={\rm diag}(\epsilon^x,\epsilon^y)$ and every element Q is rectangular i.e., Piola-transform and multiplication by ϵ do not change orientation

$$V_h(\widehat{Q}) = \mathcal{N}_0^I(\widehat{Q}) \qquad \phi_1 = (1 - y, 0) \qquad \phi_3 = (0, 1 - x)$$

$$Q_h(\widehat{Q}) = P_0(\widehat{Q}) \qquad \phi_2 = (y, 0) \qquad \phi_4 = (0, x)$$

Assumption (A). $\epsilon = \operatorname{diag}(\epsilon^x, \epsilon^y)$ and every element Q is rectangular i.e., Piola-transform and multiplication by ϵ do not change orientation

Directional quadrature.

$$\mathbf{M}_{\epsilon} \leftarrow (\epsilon \phi_{i}, \phi_{j}) \stackrel{(A)}{=} (\epsilon^{x} \phi_{i}^{x}, \phi_{j}^{x}) + (\epsilon^{y} \phi_{i}^{y}, \phi_{j}^{y})$$
$$\approx (\epsilon^{x} \phi_{i}^{x}, \phi_{j}^{x})_{Q,x} + (\epsilon^{y} \phi_{i}^{y}, \phi_{j}^{y})_{Q,y} \rightarrow \mathbf{M}_{\epsilon}^{L}$$

$$V_h(\widehat{Q}) = \mathcal{N}_0^I(\widehat{Q}) \qquad \phi_1 = (1 - y, 0) \qquad \phi_3 = (0, 1 - x)$$

$$Q_h(\widehat{Q}) = P_0(\widehat{Q}) \qquad \phi_2 = (y, 0) \qquad \phi_4 = (0, x)$$

Assumption (A). $\epsilon = \text{diag}(\epsilon^x, \epsilon^y)$ and every element Q is rectangular i.e., Piola-transform and multiplication by ϵ do not change orientation

Directional quadrature.

$$\mathbf{M}_{\epsilon} \leftarrow (\epsilon \phi_{i}, \phi_{j}) \stackrel{(A)}{=} (\epsilon^{x} \phi_{i}^{x}, \phi_{j}^{x}) + (\epsilon^{y} \phi_{i}^{y}, \phi_{j}^{y})$$
$$\approx (\epsilon^{x} \phi_{i}^{x}, \phi_{j}^{x})_{Q,x} + (\epsilon^{y} \phi_{i}^{y}, \phi_{j}^{y})_{Q,y} \rightarrow \mathbf{M}_{\epsilon}^{L}$$

Lemma. If (A) holds for all elements Q, then $\mathbf{M}_{\varepsilon}^{L}$ is diagonal. Moreover, the MFEM with directional lumping equivalent to FDTD/FIT;

$$V_h(\widehat{Q}) = \mathcal{N}_0^I(\widehat{Q}) \qquad \phi_1 = (1 - y, 0) \qquad \phi_3 = (0, 1 - x)$$

$$Q_h(\widehat{Q}) = P_0(\widehat{Q}) \qquad \phi_2 = (y, 0) \qquad \phi_4 = (0, x)$$

Assumption (A). $\epsilon = \text{diag}(\epsilon^x, \epsilon^y)$ and every element Q is rectangular i.e., Piola-transform and multiplication by ϵ do not change orientation

Directional quadrature.

$$\mathbf{M}_{\epsilon} \leftarrow (\epsilon \phi_{i}, \phi_{j}) \stackrel{(A)}{=} (\epsilon^{x} \phi_{i}^{x}, \phi_{j}^{x}) + (\epsilon^{y} \phi_{i}^{y}, \phi_{j}^{y})$$
$$\approx (\epsilon^{x} \phi_{i}^{x}, \phi_{j}^{x})_{Q,x} + (\epsilon^{y} \phi_{i}^{y}, \phi_{j}^{y})_{Q,y} \rightarrow \mathbf{M}_{\epsilon}^{L}$$

Lemma. If (A) holds for all elements Q, then $\mathbf{M}_{\varepsilon}^{L}$ is diagonal. Moreover, the MFEM with directional lumping equivalent to FDTD/FIT;

$$V_h(\widehat{Q}) = \mathcal{N}_0^I(\widehat{Q}) \qquad \begin{array}{ll} \phi_1 = (1-y,0) & \phi_3 = (0,1-x) \\ Q_h(\widehat{Q}) = P_0(\widehat{Q}) & \phi_2 = (y,0) & \phi_4 = (0,x) \end{array}$$

Assumption (A). $\epsilon = \operatorname{diag}(\epsilon^x, \epsilon^y)$ and every element Q is rectangular i.e., Piola-transform and multiplication by ϵ do not change orientation

Directional quadrature.

$$\mathbf{M}_{\epsilon} \leftarrow (\epsilon \phi_{i}, \phi_{j}) \stackrel{(A)}{=} (\epsilon^{x} \phi_{i}^{x}, \phi_{j}^{x}) + (\epsilon^{y} \phi_{i}^{y}, \phi_{j}^{y})$$
$$\approx (\epsilon^{x} \phi_{i}^{x}, \phi_{j}^{x})_{Q,x} + (\epsilon^{y} \phi_{i}^{y}, \phi_{j}^{y})_{Q,y} \rightarrow \mathbf{M}_{\epsilon}^{L}$$

Lemma. If (A) holds for all elements Q, then $\mathbf{M}_{\varepsilon}^{L}$ is diagonal. Moreover, the MFEM with directional lumping equivalent to FDTD/FIT;

Lemma (accuracy). Let (A) hold for all elements, then

$$\| \boldsymbol{E}(t) - \boldsymbol{E}_h(t) \| + \| \boldsymbol{H}(t) - \boldsymbol{H}_h(t) \| \le Ch$$
 and $\| \Pi_h \boldsymbol{E}(t) - \boldsymbol{E}_h(t) \| + \| \Pi_h^0 \boldsymbol{H}(t) - \boldsymbol{H}_h(t) \| \le Ch^2$

$$V_h(\widehat{Q}) = \mathcal{N}_0^I(\widehat{Q}) \qquad \begin{array}{c} \phi_1 = (1-y,0) & \phi_3 = (0,1-x) \\ Q_h(\widehat{Q}) = P_0(\widehat{Q}) & \phi_2 = (y,0) & \phi_4 = (0,x) \end{array}$$

Assumption (A). $\epsilon = \operatorname{diag}(\epsilon^x, \epsilon^y)$ and every element Q is rectangular i.e., Piola-transform and multiplication by ϵ do not change orientation

Directional quadrature.

$$\mathbf{M}_{\epsilon} \leftarrow (\epsilon \phi_{i}, \phi_{j}) \stackrel{(A)}{=} (\epsilon^{x} \phi_{i}^{x}, \phi_{j}^{x}) + (\epsilon^{y} \phi_{i}^{y}, \phi_{j}^{y})$$
$$\approx (\epsilon^{x} \phi_{i}^{x}, \phi_{j}^{x})_{Q,x} + (\epsilon^{y} \phi_{i}^{y}, \phi_{j}^{y})_{Q,y} \rightarrow \mathbf{M}_{\epsilon}^{L}$$

Lemma. If (A) holds for all elements Q, then $\mathbf{M}_{\varepsilon}^{L}$ is diagonal. Moreover, the MFEM with directional lumping equivalent to FDTD/FIT;

Remark. Not applicable for non-orthogonal grids or anisotropic media!

Assumption (A). $\epsilon = \operatorname{diag}(\epsilon^x, \epsilon^y)$ and every element Q is rectangular i.e., Piola-transform and multiplication by ϵ do not change orientation

Directional quadrature.

$$\mathbf{M}_{\epsilon} \leftarrow (\epsilon \phi_{i}, \phi_{j}) \stackrel{(A)}{=} (\epsilon^{x} \phi_{i}^{x}, \phi_{j}^{x}) + (\epsilon^{y} \phi_{i}^{y}, \phi_{j}^{y})$$
$$\approx (\epsilon^{x} \phi_{i}^{x}, \phi_{j}^{x})_{Q,x} + (\epsilon^{y} \phi_{i}^{y}, \phi_{j}^{y})_{Q,y} \rightarrow \mathbf{M}_{\epsilon}^{L}$$

Lemma. If (A) holds for all elements Q, then $\mathbf{M}_{\varepsilon}^{L}$ is diagonal. Moreover, the MFEM with directional lumping equivalent to FDTD/FIT;

Remark. Not applicable for non-orthogonal grids or anisotropic media!

Goal. provide generalization to unstructured grids and anisotropic media

Add additional interior basis functions [ElmkiesJoly'93].

$$V_h(\widehat{Q}) = \mathcal{N}_0^I(\widehat{Q}) \oplus B = \mathsf{EJ}_1(\widehat{Q}) \subseteq P_2(\widehat{Q})$$

$$Q_h(\widehat{Q}) = P_1(\widehat{Q})$$

$$V_h(\widehat{T}) = \mathcal{N}_0^I(\widehat{T}) \oplus B = \mathsf{EJ}_1(\widehat{T}) \subseteq P_2(\widehat{T})$$

$$Q_h(\widehat{T}) = P_1(\widehat{T})$$

Numerical Integration

Use the midpoint rule, which is exact for P_2 functions.

Add additional interior basis functions [ElmkiesJoly'93].

$$V_h(\widehat{Q}) = \mathcal{N}_0^I(\widehat{Q}) \oplus B = \mathsf{EJ}_1(\widehat{Q}) \subseteq P_2(\widehat{Q})$$

$$Q_h(\widehat{Q}) = P_1(\widehat{Q})$$

$$V_h(\widehat{T}) = \mathcal{N}_0^I(\widehat{T}) \oplus B = \mathsf{EJ}_1(\widehat{T}) \subseteq P_2(\widehat{T})$$

$$Q_h(\widehat{T}) = P_1(\widehat{T})$$

Numerical Integration

Use the midpoint rule, which is exact for P_2 functions.

Exactness requirement

The quadrature rule should be exact for $P_k \times V_h$, (k=0) for the first order case

Add additional interior basis functions [ElmkiesJoly'93].

$$V_h(\widehat{Q}) = \mathcal{N}_0^I(\widehat{Q}) \oplus B = \mathsf{EJ}_1(\widehat{Q}) \subseteq P_2(\widehat{Q})$$

$$Q_h(\widehat{Q}) = P_1(\widehat{Q})$$

$$V_h(\widehat{T}) = \mathcal{N}_0^I(\widehat{T}) \oplus B = \mathsf{EJ}_1(\widehat{T}) \subseteq P_2(\widehat{T})$$

$$Q_h(\widehat{T}) = P_1(\widehat{T})$$

Numerical Integration

Use the midpoint rule, which is exact for P_2 functions.

Lemma (accuracy)

If E and H are sufficiently smooth. Then

$$\|E(t) - E_h(t)\| + \|H(t) - H_h(t)\| \le Ch$$

Add additional interior basis functions [ElmkiesJoly'93].

$$V_h(\widehat{Q}) = \mathcal{N}_0^I(\widehat{Q}) \oplus B = \mathsf{EJ}_1(\widehat{Q}) \subseteq P_2(\widehat{Q})$$

$$Q_h(\widehat{Q}) = P_1(\widehat{Q})$$

$$\begin{aligned} V_h(\widehat{T}) &= \mathcal{N}_0^I(\widehat{T}) \oplus B = \mathsf{EJ}_1(\widehat{T}) \subseteq P_2(\widehat{T}) \\ Q_h(\widehat{T}) &= P_1(\widehat{T}) \end{aligned}$$

Note: Space enrichment allows to utilize standard numerical quadrature. Resulting method works for unstructure grids and anisotropic coefficients.

But: Enrichment substantially increases the number of dof's.

Extension to even higher orders

We look for Gauss-Lobatto type quadrature rules!

Extension to even higher orders

We look for Gauss-Lobatto type quadrature rules!

