Compressione di immagini tramite DCT Attraverso l'utilizzo di Python

https://github.com/nicoripa/MCS_Project/

Lorenzo Rovida, Nicolò Ripamonti l.rovida1@campus.unimib.it, n.ripamonti@campus.unimib.it 817151, 816171

Dipartimento di Informatica, Sistemi e Comunicazione, Universitá degli Studi di Milano-Bicocca, Milano, Italia

Abstract

Lo scopo di questo progetto è quello di utilizzare l'implementazione dell'operazione matematica denominata **DCT2** in un ambiente *open source* e di studiare gli effetti di un algoritmo di compressione di tipo jpeg (senza utilizzare una matrice di quantizzazione) sulle delle immagini in toni di grigio di formato *bitmap*. Il progetto si divide in tue macro parti:

Parte 1 Implementare la DCT2 in un ambiente open source a scelta e confrontare i tempi di esecuzione con la DCT2 ottenuta usando la libreria dell'ambiente utilizzato. In particolare, bisogna utilizzare array quadrati $N \times N$ con N crescente e rappresentare su un grafico i tempi di esecuzione dei due algoritmi.

Parte 2 Scrivere un software in grado di far scegliere all'utente un'immagine in formato bitmap e successivamente comprimere tale immagine utilizzando la DCT2, tagliare le frequenze che l'utente sceglie di eliminare, utilizzare l'inversa della DCT e far visualizzare a schermo l'immagine originale con quella ottenuta dopo aver modificato le frequenze.

1. Introduzione

1.1. Discrete Cosine Transform

La trasformata discreta del coseno o DCT, è la più diffusa funzione che provvede alla compressione spaziale, capace di rilevare le variazioni di informazione tra un'area e quella contigua di un'immagine digitale trascurando le ripetizioni.

È una trasformata simile alla trasformata discreta di Fourier (DFT), ma fa uso solo di numeri reali.

La variante più comune della trasformata discreta del coseno è la DCT tipo II che è spesso chiamata semplicemente DCT; la sua inversa, la DCT tipo III è, in corrispondenza, chiamata spesso DCT inversa o IDCT.

La DCT, e in particolare la DCT-II, è spesso usata nell'elaborazione dei segnali e delle immagini, specialmente per la compressione con perdita (compressione di tipo **lossy**). L'algoritmo JPEG è basato sulla Trasformata discreta del coseno bidimensionale (DCT2), che viene applicata su blocchi di 8x8 pixel, i cui risultati sono poi quantizzati e compressi con tecniche basate sull'entropia (come la Codifica di Huffman o la Codifica aritmetica).

La formula che descrive il funzionamento della DCT bidimensionale è la seguente:

$$c_{kl} = a_{kl} \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} f_{ij} \cos\left(k\pi \frac{2i+1}{2N}\right) \cos\left(l\pi \frac{2j+1}{2M}\right)$$

Dove $a_{kl} = a_k^N a_l^M$:

$$a_{00} = \frac{1}{\sqrt{NM}}, \ e \ a_{k0} = a_{0l} = \sqrt{\frac{2}{NM}}, \ a_{kl} = \frac{2}{\sqrt{NM}}, \ k, l \ge 1.$$

Mentre f_{ij} sono gli indici bidimensionali:

$$\mathbf{f} = (f_{ij}), i = 0, ..., N - 1, j = 0, ..., M - 1.$$

1.2. Formato bitmap

Windows bitmap è un formato dati utilizzato per la rappresentazione di immagini **raster** sui sistemi operativi Microsoft Windows. Noto soprattutto come formato di file, fu introdotto con Windows 3.0 nel 1990. Le bitmap,

come sono comunemente chiamati i file d'immagine di questo tipo, hanno generalmente l'estensione .bmp.

Sono state sviluppate tre versioni del formato bitmap. La prima e più comunemente utilizzata è la versione 3: non esistono versioni antecedenti. Le versioni successive 4 e 5 si incontrano piuttosto raramente.

Il formato di file Windows bitmap nella versione 3 permette operazioni di lettura e scrittura molto veloci e senza perdita di qualità, ma richiede generalmente una maggior quantità di memoria rispetto ad altri formati analoghi.

Le immagini bitmap possono avere una profondità di 1, 4, 8, 16, 24 o 32 bit per pixel. Le bitmap con 1, 4 e 8 bit contengono una tavolozza per la conversione dei (rispettivamente 2, 16 e 256) possibili indici numerici nei rispettivi colori. Nelle immagini con profondità più alta il colore non è indicizzato bensì codificato direttamente nelle sue componenti cromatiche RGB; con 16 o 32 bit per pixel alcuni bit possono rimanere inutilizzati.

Nel caso in esame le immagini in formato .bmp sono state scelte con colori in scala di grigi, ovvero immagini con una profondità di 8 bit. Tali bit servono per convertire gli indici numerici nei rispettivi bit, in questo caso da 0, che identifica il colore nero, a 255, che identifica il colore bianco. Tutti i valori tra l'1 e il 254 sono tutte le possibili varianti di grigio.

1.3. Calcolatore utilizzato

Per effettuare i calcoli sugli script è stato utilizzato un MacBook Pro 2016 con le seguenti caratteristiche hardware:

Processore 2 GHz Intel Core i5 dual-core

Architettura CPU x64

Memoria 8 GB 1867 MHz LPDDR3

Scheda grafica Intel Iris Graphics 540 1536 MB

2. Ambiente di sviluppo

L'ambiente di sviluppo scelto per il progetto, sia per la parte 1 che per la parte 2, è stato **Python**.

Versione: 3.7.3

Referenze: Sito - Documentazione

Python è un linguaggio di programmazione di più "alto livello" rispetto alla maggior parte degli altri linguaggi. È orientato a oggetti, ma non in maniera ferrea come ad esempio Java; adatto, tra gli altri usi, a sviluppare applicazioni distribuite, scripting, computazione numerica e system testing.

È un linguaggio multi-paradigma che ha tra i principali obiettivi: dinamicità, semplicità e flessibilità. Supporta il paradigma object oriented, la programmazione strutturata e molte caratteristiche di programmazione funzionale e riflessione.

Le caratteristiche più immediatamente riconoscibili di Python sono le variabili non tipizzate e l'uso dell'indentazione per la definizione delle specifiche.

3. Implementazioni

3.1. Parte 1

plot(img, img compressa)

3.3. Codice

L'implementazione su ambiente Python è stata effettuata tramite questo script:

SCRIVERE SCRIPT.

4. Elaborazioni e risultati