Введение

С увеличением плотности населения отдельных областей земного шара всё острее становится проблема борьбы с микроорганизмами, способными вызывать у человека заболевания различной тяжести вплоть до летального исхода. Пандемия COVID-19 в 2019-2021 годах показала, что на данный момент всё ещё существует реальная угроза глобального распространения вирусных заболеваний. Одним из способов борьбы с вредоносными микроорганизмами является обработка заражённых поверхностей и воздуха ультрафиолетовым излучением [1] [2] [3] [4]. За последние несколько лет изделия для обеззараживания воздуха и поверхностей, то есть облучатели открытого типа, получили сильное распространение [5] [6]: они широко начали использоваться образовательными учреждениями, заведениями общественного питания, транспортными компаниями и отелями. Основными требованиями к такому оборудованию являются:

- 1) Скорость обработки помещение можно обрабатывать только в отсутствие людей [7]. То есть, операционная, учебный кабинет, транспорт или гостиничный номер не сможет выполнять свои прямые задачи в течение времени обработки. Для повышения скорости обработки, производители разрабатывают всё более и более мощное оборудование.
- 2) Энергетическая эффективность это требование продиктовано не только простыми экономическими соображениями, но и ограниченными техническими возможностями электрических сетей. Повышение потребляемой мощности означает возрастание тока в сети, что налагает ограничение на её использование, так как электрическая автоматика [8] рассчитана на пропускание через себя тока ограниченной величины.

Производители оборудования для обработки поверхностей и воздуха ультрафиолетовым излучением в конкурентной борьбе пытаются как можно лучше реализовать оба запроса. Одной из современных технологий, способной помочь в решении данных задач является компьютерное и математическое моделирование. С помощью данного инструмента можно более детально определить характеристики проектируемого оборудования с помощью численных и аналитических методов расчёта.

Бактерицидное действие ультрафиолетового излучения

Ультрафиолетовое излучение (УФИ) — это часть спектра электромагнитного излучения, длина волны которого лежит в диапазоне 10 - 400 нм. Этот диапазон принято разделять на 4 диапазона: A - 400-315 нм, B - 315-280 нм, C - 280-200 нм. Бактерицидные свойства УФИ были впервые обнаружены в 1876 году A. Даунсом и Т. Блантом [9]. В 1961 году P. Бекерс и У. Берендс [10] обнаружили реакцию ультрафиолета непосредственно с тимином — одним из пяти азотистых оснований, составляющих ДНК; это открытие объяснило бактерицидную эффективность C-диапазона УФИ. То есть, при прохождении через микроорганизмы фотоны с длиной волны, относящейся к ультрафиолетовому диапазону, взаимодействует с различными компонентами

клетки, в частности, с ДНК и РНК, что приводит к их повреждениям и, следовательно, к деактивации механизмов размножения микроорганизмов [11]. Этот эффект ультрафиолетового излучения называют бактерицидным. Для разных микроорганизмов, в силу их биологических и химических [12] особенностей, восприимчивость к излучению различных длин волн будет разной [13] [14], поэтому эмпирическим путём была установлена оптимальная обеспечивающая примерно равную длина волны. бактерицидную эффективность для большинства опасных микроорганизмов. Эта оптимальная равная длина волны, 265 нм, является максимумом бактерицидной чувствительности [15]. Другие длины волн УФ диапазона тоже имеют бактерицидный эффект, однако, некоторых микроорганизмов y восприимчивость к излучению с такой длиной волны может отсутствовать. Повреждения ДНК или РНК может не приводить К уничтожению микроорганизма, но они лишат его возможности размножаться, а значит, и провоцировать заболевания. При низком давлении паров газоразрядной лампе, большее количество энергии (до 80%) приходится на резонансное излучение с уровней $6P_1^3$ и $6P_1^1$, излучение которых переносится на длинах волн 253,7 нм и 185 нм соответственно [16]. В обзорной статье по эксимерным лампам [17] приведён график спектральной чувствительности для *E. coli*, и ДНК, а также атомарная линия ртути 253,7 нм (Рис. 1):

Рис. 1. Спектральная чувствительность ДНК к УФИ

1 – Спектр инактивирующего действия УФ излучения на Е. Coli, 2 – интегральный спектр поглощения ДНК.

Помимо рабочей длины волны основной и самой важной характеристикой для обработки поверхности является доза, получаемая единицей площади:

$$D = I \cdot t, \tag{1}$$

где $D[Дж/м^2]$ — полученная доза, $I[Bт/м^2]$ — интенсивность излучения на бактерицидной длине волны в точке наблюдения, t[c] — время облучения. Доза излучения, полученная единицей поверхности, обеспечивает гарантии повреждения микроорганизмов в достаточном для их уничтожения или инактивации. Иными словами, тот факт, что поверхность набрала необходимую дозу означает, что фотоны нанесли достаточно повреждений микроорганизмам, чтобы они перестали представлять опасность для человека. Согласно [18] — это усреднённое по времени количество энергии, проходящее через заданную площадь.

Традиционные методы вычисления интенсивности лампы

В расчётах интенсивности излучения для облегчения вычислений газоразрядную лампу принято рассматривать, как протяжённый источник света с нулевой толщиной и равномерной светимостью. Проще говоря, лампу представляют в расчётах, как равномерно светящийся геометрический отрезок, концы которого совпадают с границами газового разряда, при этом расчёт интенсивности в какой-либо точке пространства происходит по принципу суперпозиции полей от каждого небольшого кусочка этого светящегося отрезка. В 1955 году Кайтцем было предложено уравнение для расчёта светящей линии. Международной ультрафиолетовой ассоциацией IUVA [19] было утверждено использовать формулу Кайтца [20] для расчёта энергетического потока на заданном расстоянии от УФ лампы:

$$\Phi = \frac{2E\pi^2 LD}{2\alpha + \sin 2\alpha'} \tag{2}$$

где $\Phi[B\tau]$ — энергетический поток или поток излучения, $E[B\tau/m^2]$ — энергетическая освещённость или облучённость, L[m] — протяжённость источника света, D[m] — нормальное расстояние от точки наблюдения до источника, $\alpha[pad]$ — угол, под которым видна лампа из точки наблюдения. Таким образом, зная расстояние до точки наблюдения, геометрические параметры лампы и её мощность в ультрафиолетовом диапазоне, можно рассчитать дозу, приходящую на единицу поверхности от этой лампы.

Рис. 2. Иллюстрация к формуле Кайтца

В формуле (2) можно перейти к полной энергии, отданной лампой за время работы, W[Дж], умножив левую и правую части на время обработки t:

$$W = \frac{2Et\pi^2 LR}{2\alpha + \sin 2\alpha}. (3)$$

Таким образом, согласно регламенту использования ультрафиолетового бактерицидного излучения для обеззараживания воздуха в помещениях [21], время обработки поверхностей помещения многоламповой установкой принято рассчитывать по формуле:

$$t = \frac{W_{\Sigma}(2\alpha + \sin 2\alpha)}{2K_{\varphi}\eta E\pi^2 LR_{max}},\tag{4}$$

где $W_{\Sigma}[\mathrm{BT}]$ — суммарная энергия излучения от всех ламп установки, $R_{max}[\mathrm{M}]$ — наибольшее возможное расстояние от установки до границы помещения, K_{φ} — коэффициент использования потока помещением, η — КПД облучателя.

Как видно из формулы (4), используются усреднённые данные о лампах и конструкции, а не минимальные значения облучённости среди всех точек обрабатываемой поверхности. В случае обработки воздуха можно считать, что он перемешивается, распределяя полученную дозу по всему объёму, но поверхности лишены возможности перераспределять дозу по доступному пространству. Так что, без достоверной информации о распределении облучённости минимальная доза, использующаяся в расчёте времени обработки, завышается, что приводит к недополучению расчётной дозы некоторыми областями обрабатываемой поверхности.

Конструкция амальгамных газоразрядных ламп низкого давления

Газоразрядная лампа состоит из колбы из кварцевого стекла. Этот материал обеспечивает наилучшее прохождение ультрафиолета из газового разряда во

внешнюю среду. В колбе из кварцевого стекла находится смесь инертных газов, обычно неона и аргона. Также с внутренней стороны на кварцевом стекле находится золотое пятно с амальгамой. На концах лампы присутствует два электрода, после зажигания в лампе между электродами горит дуговой разряд в смеси паров ртути и инертных газов. Электроды помещены в кварцевую оболочку с сохранением герметичности, сверху на этом месте надет керамический цоколь, предназначенный для защиты места подключения проводов и штекеров к электродам.

Рис. 3. Основные части конструкции лампы.

- 1 кварцевая колба, 2 электрод, 3 цоколь, 4 золотое пятно,
- 5 амальгама

В горящей лампе, когда амальгама нагрета, присутствуют пары ртути, атомы которой способны излучать фотоны в бактерицидном диапазоне. Атомы ртути могут как излучать, так и поглощать фотоны на резонансной частоте, что приводит к эффекту затенения [22], это играет роль, когда рассматривается распределение интенсивности излучения от нескольких светящих ламп. Кроме того, кварцевое стекло хоть имеет и очень низкий коэффициент поглощения УФИ, всё же пропускает не весь поток, поэтому кварцевая колба тоже производит вклад в эффект затенения. Помимо ламп, объектами, затеняющими часть излучения, могут быть и элементы конструкции прибора. Таким образом, как показали измерения, можно потерять до 50% номинального излучения на отдельных направлениях.

Энергетическая эффективность

В настоящее время в промышленных установках и бытовых приборах УФИ, в большинстве случаев, получают из источников, в основе которых лежит разряд в парах ртути. В данной работе в качестве источника излучения будут использованы газоразрядные амальгамные лампы низкого давления. Согласно теоретическому расчёту [23], в подобных лампах 30-50% электрической мощности, потребляемой разрядом, переходит в УФИ с длиной волны 253,7 нм. Практически достижимая эффективность амальгамных ламп низкого давления на сегодняшний день — 30-40% в зависимости от типа лампы. В формуле (4) для расчёта времени используется некоторый усреднённый коэффициент использования светового потока помещением. Этот метод не совсем корректно отражает объективную действительность, так как интенсивность в пространстве вокруг облучателя распределена неравномерно

и имеет минимумы и максимумы. Во время обработки предметы интерьера и элементы помещения остаются неподвижными, поэтому использование некоторого среднего значения интенсивности будет приводить к завышению характеристик оборудования. Неравномерность распределения интенсивности приводит к тому, что КПД использования ультрафиолетового излучения, полученного от ламп, может составлять 50%. Умножив все КПД друг на друга, получим, что в зависимости от конструкции излучатель использует от 15% до 28% потребляемой электрической мощности. Если усовершенствовать использование светового потока, исходящего от ламп до 90%, общий КПД всей В 2022 году были опубликованы установки может вырасти до 36%. экспериментальные идеи в сфере усреднения пространства – движущийся источник излучения [24]. Однако, устройства, способные передвигаться самостоятельно на сегодня требуют существенных доработок помещений и разработки отдельных требований к размещению мебели и других предметов интерьера. Фактически, это означает, что для расчётов времени обработки по формуле (4), необходимо ориентироваться на минимальные значения облучённости поверхности, ведь микроорганизмы находящиеся в областях минимума интенсивности не получат необходимой дозы для гарантированной инактивации, если время обработки рассчитано по среднему значению.

Поэтому целью данной работы является разработка средств и методов расчёта полей распределения интенсивности для ультрафиолетовых излучателей с целью повышения их фактического КПД.

Список литературы

- [1] Bosco R., Cevenini G., Gambelli S., Nante N., Messina G., «Improvement and stadartization of disinfection in hospital theatre with ultraviolet-C technology,» 2022.
- [2] Messina G., Camera A.D., Ferraro P., Amodeo D., Corazza A., Nante N., Cevenini G., «An Emerging Innovative UV Disinfection Technology (Part II): Virucide Activity on SARS-CoV-2,» 2021.
- [3] Messina G., Amodeo D., Taddeini F., De Palma I., Cevenini G., «Wind of change: Better air for microbial environmental control,» 2022.
- [4] Welch D., Buonanno M., Grilj V., Shuryak I., Crickmore C., Bigelow A.W., Randers-Pehrson G., Johnson G.W., Brenner D.J., «Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases,» *Scientific Reports*, 2018.
- [5] Hamzavi I.H., Lyons B.A., Kohi I., Gelfand M.J., Lim H.W., Ozog D.M., "Ultraviolet germicidal irradiation: Possible method for respirator disinfection to facilitate reuse during the COVID-19 pandemic," *Journal of the American Academy of Dermatology*, 2020.
- [6] Anderson M.,, «The ultraviolet offense: Germicidal UV lamps destroy vicious viruses. New tech might put them many more places without harming humans,» 2020.
- [7] Ненахова Е.В., Николаева Л.А., Ультрафиолетовое излучение. Влияние ультрафиолетового излучения на организм человека, 2020, pp. 17-29.
- [8] ГОСТ ІЕС 60730-1, Москва, 2016.
- [9] Downes A., Blunt T., «The influence of light upon the development of bacteria,» *The Nature*, 1877.
- [10] Beukers R., Berends W., «The effects of u.v.-irradiation on nucleic acids and their components,» *Biochimica et Biophysica Acta*, 1961.
- [11] Костюченко С.В., Ткачев А.А., Фроликова Т.Н., «УФ-технологии для обеззараживания воды, воздуха и поверхностей: принципы и возможности.,» Эпидемиология и Вакцинопрофилактика., 2020.

- [12] Bolton J.R., Cotton C.A., The ultraviolet disinfection handbook. American Water Works Association, 2011.
- [13] Beck S.E., Hull N.M., Poepping C., Linden K.G., «Wavelength-Dependent Damage to Adenoviral Proteins Across the Germicidal UV Spectrum,» 2017.
- [14] Seter A., Sanlidag T., «Solar ultraviolet radiation sensitivity of SARS-CoV-2,» *The Lancet*, 2020.
- [15] Бугаев А.С., Шешин Е.П., Озол Д.И., Мье М.М., Данилкин М.И., Верещагина Н.Ю., «Современные направления развития УФ-излучения бактерицидного диапазона,» Вестник Московского государственного областного университета, 2017.
- [16] Собур Д.А., «Амальгамная лампа для генерации вакуумного ультрафиолетового излучения (185 нм),» 2017.
- [17] Лаврентьева Л.В., Авдеев С.М., Сосин Э.А., Величевская К.Ю., «Бактерицидное действие ультрафиолетового излучения эксимерных и эксиплексных ламп на чистые культуры микроорганищмов,» 2008.
- [18] Юрьев Ю.В., Световые волны и фотоны, 2010.
- [19] Contributing authors on the IUVA Manufacturers' Council, «Method for the Measurement of the output of Monochromatic (254 nm) Low Pressure UV Lamps,» 2017.
- [20] Прытков С.В., Капитонов С.С., Винокуров А.С., «Уточнение метода определения потока излучения линейных разрядных УФ-ламп низкого давления,» 2021.
- [21] Шандала М.Г., Абрамова Е.М., Соколова И.Ф., Юзбашев В.Г., Пальцев Ю.П., Иванцова Т.В., Цирулин А.В., Вассерман А.Л., Лаврова Р.Г., Руководство Р 3.5.109-04, 2004.
- [22] Бахирев Н.Е., «Коррекция фона атомно-абсорбционного анализатора ртути,» 2023.
- [23] Кармазинов Ф.В., Костюченко С.В., Кудрявцев Н.Н., Храменков С.В., Ультрафиолетовые технологии в современном мире, 2012.
- [24] Haag C.W., Holliday G., Archulet K., Tang W., «Comparing UV-C dosages of emmiter placement strategies in a community hospital setting,» 2022.