In [34]: import IPython
 import pandas as pd
 import numpy as np
 import matplotlib.pyplot as plt
 import seaborn as sns
 from IPython import get_ipython
 import warnings
 warnings.filterwarnings("ignore")

In [35]: | df=pd.read_csv(r"C:\Users\Asus\OneDrive\Desktop\project dataset\crp.csv")

In [36]: df.head(10)

Out[36]:

	N	Р	K	temperature	humidity	ph	rainfall	label
0	90	42	43	20.879744	82.002744	6.502985	202.935536	rice
1	85	58	41	21.770462	80.319644	7.038096	226.655537	rice
2	60	55	44	23.004459	82.320763	7.840207	263.964248	rice
3	74	35	40	26.491096	80.158363	6.980401	242.864034	rice
4	78	42	42	20.130175	81.604873	7.628473	262.717340	rice
5	69	37	42	23.058049	83.370118	7.073454	251.055000	rice
6	69	55	38	22.708838	82.639414	5.700806	271.324860	rice
7	94	53	40	20.277744	82.894086	5.718627	241.974195	rice
8	89	54	38	24.515881	83.535216	6.685346	230.446236	rice
9	68	58	38	23.223974	83.033227	6.336254	221.209196	rice

In [37]: df.tail(10)

Out[37]:

	N	Р	K	temperature	humidity	ph	rainfall	label
2190	103	40	30	27.309018	NaN	6.348316	141.483164	coffee
2191	118	31	34	27.548230	62.881792	6.123796	181.417081	coffee
2192	106	21	35	25.627355	57.041511	7.428524	188.550654	coffee
2193	116	38	34	23.292503	50.045570	6.020947	183.468585	coffee
2194	97	35	26	24.914610	53.741447	6.334610	166.254931	coffee
2195	107	34	32	26.774637	66.413269	6.780064	177.774507	coffee
2196	99	15	27	27.417112	56.636362	6.086922	127.924610	coffee
2197	118	33	30	24.131797	67.225123	6.362608	173.322839	coffee
2198	117	32	34	26.272418	52.127394	6.758793	127.175293	coffee
2199	104	18	30	23.603016	60.396475	6.779833	140.937041	coffee

```
In [38]: df.shape
Out[38]: (2200, 8)
In [39]: df.columns
Out[39]: Index(['N', 'P', 'K', 'temperature', 'humidity', 'ph', 'rainfall', 'label'],
          dtype='object')
In [40]: | df.drop_duplicates()
Out[40]:
                  Ν
                          K temperature
                                         humidity
                                                        ph
                                                               rainfall
                                                                       label
                  90
                     42 43
                               20.879744 82.002744 6.502985 202.935536
              0
                                                                         rice
                  85
                     58 41
                               21.770462 80.319644 7.038096 226.655537
              1
                                                                         rice
              2
                  60
                     55 44
                               23.004459 82.320763 7.840207 263.964248
                                                                         rice
                  74
                     35 40
                               26.491096 80.158363
                                                  6.980401
                                                           242.864034
                                                                         rice
                  78 42 42
                               20.130175 81.604873 7.628473 262.717340
                                                                         rice
           2195
                107
                     34
                         32
                               26 774637 66 413269
                                                  6.780064 177.774507 coffee
           2196
                               27.417112 56.636362 6.086922 127.924610 coffee
                  99
                     15 27
           2197
                 118
                     33 30
                               24.131797 67.225123
                                                  6.362608 173.322839 coffee
           2198
                117
                     32 34
                               26.272418 52.127394 6.758793 127.175293 coffee
           2199 104
                               23.603016 60.396475 6.779833 140.937041 coffee
                    18 30
          2200 rows × 8 columns
In [41]: df.duplicated().sum()
Out[41]: 0
In [42]: df.isnull().sum()
Out[42]: N
                           0
                           0
                           0
          temperature
                           0
          humidity
                           1
          ph
                           0
          rainfall
                           0
          label
                           0
          dtype: int64
```

```
In [43]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2200 entries, 0 to 2199
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	N	2200 non-null	int64
1	Р	2200 non-null	int64
2	K	2200 non-null	int64
3	temperature	2200 non-null	float64
4	humidity	2199 non-null	float64
5	ph	2200 non-null	float64
6	rainfall	2200 non-null	float64
7	label	2200 non-null	object
_			

dtypes: float64(4), int64(3), object(1)

memory usage: 137.6+ KB

In [44]: df.describe()

Out[44]:

	N	Р	K	temperature	humidity	ph	rainf
count	2200.000000	2200.000000	2200.000000	2200.000000	2199.000000	2200.000000	2200.0000
mean	50.551818	53.362727	48.149091	25.616244	71.489185	6.469480	103.4636
std	36.917334	32.985883	50.647931	5.063749	22.266165	0.773938	54.9583
min	0.000000	5.000000	5.000000	8.825675	14.258040	3.504752	20.2112
25%	21.000000	28.000000	20.000000	22.769375	60.273103	5.971693	64.5516
50%	37.000000	51.000000	32.000000	25.598693	80.474764	6.425045	94.8676
75%	84.250000	68.000000	49.000000	28.561654	89.960531	6.923643	124.2675
max	140.000000	145.000000	205.000000	43.675493	99.981876	9.935091	298.5601

In [45]: df.nunique()

Out[45]: N

N 137
P 117
K 73
temperature 2200
humidity 2199
ph 2200
rainfall 2200
label 22
dtype: int64

In [46]: df.plot()

Out[46]: <AxesSubplot:>


```
In [47]: df['label'].unique()
```

```
In [48]: df['label'].value_counts()
Out[48]: rice
                         100
                         100
         maize
         jute
                         100
         cotton
                         100
         coconut
                         100
         papaya
                         100
         orange
                         100
         apple
                         100
         muskmelon
                         100
         watermelon
                         100
         grapes
                         100
         mango
                         100
         banana
                         100
         pomegranate
                         100
         lentil
                         100
         blackgram
                         100
         mungbean
                         100
         mothbeans
                         100
         pigeonpeas
                         100
         kidneybeans
                         100
         chickpea
                         100
         coffee
                         100
         Name: label, dtype: int64
 In [ ]:
In [49]: df.columns
Out[49]: Index(['N', 'P', 'K', 'temperature', 'humidity', 'ph', 'rainfall', 'label'],
         dtype='object')
In [50]: import plotly.express as px
In [51]: fig=px.box(df,y="N",points="all")
```

In [52]: fig.show()


```
In [53]: # detecting outliers
```

In [54]: fig=px.box(df,y="P",points="all")

In [55]: fig.show()


```
In [56]: fig=px.box(df,y="K",points="all")
fig.show()
```



```
In [57]: fig=px.box(df,y="temperature",points="all")
    fig.show()
```



```
In [58]: fig=px.box(df,y="humidity",points="all")
fig.show()
```



```
In [59]: fig=px.box(df,y="rainfall",points="all")
fig.show()
```



```
In [60]: df_boston=df
df_boston.columns=df_boston.columns
```

In [61]: df_boston.head()

Out[61]:

	N	Р	K	temperature	humidity	ph	rainfall	label
0	90	42	43	20.879744	82.002744	6.502985	202.935536	rice
1	85	58	41	21.770462	80.319644	7.038096	226.655537	rice
2	60	55	44	23.004459	82.320763	7.840207	263.964248	rice
3	74	35	40	26.491096	80.158363	6.980401	242.864034	rice
4	78	42	42	20.130175	81.604873	7.628473	262.717340	rice

```
In [62]: Q1 = np.percentile(df_boston['rainfall'],25,
                           interpolation='midpoint')
In [63]: Q3=np.percentile(df_boston['rainfall'],75,
                           interpolation='midpoint')
In [64]: | IQR= Q3-Q1
In [65]: print("OLD SHAPE : ",df_boston.shape)
         OLD SHAPE: (2200, 8)
In [66]: # upper bond
In [67]: | upper=np.where(df_boston['rainfall']>=(Q3+1.5*IQR))
In [68]: # Lower bound
         lower=np.where(df_boston['rainfall']<=(Q1-1.5*IQR))</pre>
In [69]:
In [70]: #removing outliers
In [71]: | df_boston.drop(upper[0],inplace= True)
         df_boston.drop(lower[0],inplace= True)
In [72]: print("New Shape : ",df_boston.shape)
         New Shape : (2101, 8)
In [73]: data=df_boston
In [74]: import matplotlib.pyplot as plt
In [75]:
         import seaborn as sns
```

```
In [76]: plt.figure(figsize=(15,6))
    sns.barplot(y='N',x='label',data=data,palette='hls')
    plt.xticks(rotation=90)
    plt.show()
```


In [77]: df.corr()

Out[77]:

	N	Р	K	temperature	humidity	ph	rainfall
N	1.000000	-0.237127	-0.139970	0.041633	0.190194	0.099238	0.003231
Р	-0.237127	1.000000	0.737806	-0.133415	-0.111882	-0.146018	-0.046656
K	-0.139970	0.737806	1.000000	-0.165188	0.198030	-0.174559	-0.042466
temperature	0.041633	-0.133415	-0.165188	1.000000	0.203929	-0.021339	-0.039570
humidity	0.190194	-0.111882	0.198030	0.203929	1.000000	-0.006008	0.021174
ph	0.099238	-0.146018	-0.174559	-0.021339	-0.006008	1.000000	-0.127166
rainfall	0.003231	-0.046656	-0.042466	-0.039570	0.021174	-0.127166	1.000000

```
In [78]: fig,ax=plt.subplots(1,1,figsize=(15,15))
    sns.heatmap(df.corr(),annot=True,cmap='Wistia')
    ax.set(xlabel='features')
    ax.set(ylabel='features')

plt.title('CORRELATIONS BETWEEN DIFFERENT FEATURES',fontsize=15,c='black')
    plt.show()
```



```
In [79]: X=df.drop('label',axis=1)
y=df['label']
```

In [80]: from sklearn.model_selection import train_test_split

In [81]: X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.30,shuffle=True

In [82]: |pip install lightgbm

```
Defaulting to user installation because normal site-packages is not writeable
         Requirement already satisfied: lightgbm in c:\users\asus\appdata\roaming\pyth
         on\python39\site-packages (3.3.5)
         Requirement already satisfied: numpy in c:\programdata\anaconda3\lib\site-pac
         kages (from lightgbm) (1.21.5)
         Requirement already satisfied: scikit-learn!=0.22.0 in c:\programdata\anacond
         a3\lib\site-packages (from lightgbm) (1.0.2)
         Requirement already satisfied: scipy in c:\programdata\anaconda3\lib\site-pac
         kages (from lightgbm) (1.9.1)
         Requirement already satisfied: wheel in c:\programdata\anaconda3\lib\site-pac
         kages (from lightgbm) (0.37.1)
         Requirement already satisfied: threadpoolctl>=2.0.0 in c:\programdata\anacond
         a3\lib\site-packages (from scikit-learn!=0.22.0->lightgbm) (2.2.0)
         Requirement already satisfied: joblib>=0.11 in c:\programdata\anaconda3\lib\s
         ite-packages (from scikit-learn!=0.22.0->lightgbm) (1.1.0)
         Note: you may need to restart the kernel to use updated packages.
In [83]:
         import lightgbm as lgb
In [84]: model= lgb.LGBMClassifier()
         model.fit(X_train,y_train)
Out[84]: LGBMClassifier()
In [85]: y pred=model.predict(X test)
In [86]: from sklearn.metrics import accuracy score
In [87]: | accuracy=accuracy score(y pred,y test)
In [88]:
         print('LightGBM model accuracy score : {0:0.4f}'.format(accuracy_score(y_test,
         LightGBM model accuracy score : 0.9889
In [89]: | from sklearn.metrics import confusion matrix
In [90]: | cm=confusion matrix(y test,y pred)
```

```
In [91]: plt.figure(figsize=(15,15))
    sns.heatmap(cm,annot=True, fmt=".0f",linewidth=.5,square=True,cmap='Blues');
    plt.ylabel('ACTUAL LABEL');
    plt.xlabel('PREDICTED LABEL');
    all_sample_title='Confusion Matrix - score:'+str(accuracy_score(y_test,y_pred)
    plt.title(all_sample_title,size=15);
    plt.show()
```



```
In [92]: from sklearn.metrics import classification_report
    print(classification_report(y_test,y_pred))
```

	precision	recall	f1-score	support
apple	1.00	1.00	1.00	30
banana	1.00	1.00	1.00	30
blackgram	0.94	1.00	0.97	30
chickpea	1.00	1.00	1.00	30
coconut	1.00	1.00	1.00	26
coffee	1.00	1.00	1.00	30
cotton	1.00	0.97	0.98	30
grapes	1.00	1.00	1.00	30
jute	0.97	1.00	0.98	30
kidneybeans	0.94	1.00	0.97	30
lentil	1.00	0.97	0.98	30
maize	0.97	1.00	0.98	30
mango	0.97	1.00	0.98	30
mothbeans	1.00	1.00	1.00	30
mungbean	1.00	1.00	1.00	30
muskmelon	1.00	1.00	1.00	30
orange	1.00	1.00	1.00	30
papaya	1.00	1.00	1.00	25
pigeonpeas	1.00	0.87	0.93	30
pomegranate	1.00	1.00	1.00	30
rice	1.00	0.90	0.95	10
watermelon	1.00	1.00	1.00	30
accuracy			0.99	631
macro avg	0.99	0.99	0.99	631
weighted avg	0.99	0.99	0.99	631

```
In [93]: from sklearn.tree import DecisionTreeClassifier
Classifier=DecisionTreeClassifier(criterion='entropy',random_state=0)
```

```
In [94]: X = np.nan_to_num(X_train)
Y= np.nan_to_num(y_train)
```

- In [95]: Classifier.fit(X,Y)
- Out[95]: DecisionTreeClassifier(criterion='entropy', random_state=0)
- In [96]: y_pred=Classifier.predict(X_test)
- In [97]: from sklearn.metrics import accuracy_score
- In [98]: accuracy=accuracy_score(y_test,y_pred)

```
In [99]:
             print('DECISION TREE MODEL ACCURACY SCORE : {0:0.4f}'.format(accuracy_score(y_
             DECISION TREE MODEL ACCURACY SCORE: 0.9873
             plt.figure(figsize=(15,15))
In [100]:
             sns.heatmap(cm,annot=True, fmt=".0f",linewidth=.5,square=True,cmap='Blues');
             plt.ylabel('ACTUAL LABEL');
             plt.xlabel('PREDICTED LABEL');
             all_sample_title='Confusion Matrix - score:'+str(accuracy_score(y_test,y_pred)
             plt.title(all sample title, size=15);
             plt.show()
                                     Confusion Matrix - score: 0.9873217115689382
                                                                          0
                                                                                                            - 25
                                                                             0
                                                                      0
                                                                          0
                                                                                 0
                                                                      0
                                                                          0
                                                                             0
                                                                                 0
                                                                                                            - 20
                              0
                                 0
                                     0
                                        29
                                                              0
                                                                  0
                                                                      0
                                                                         0
                                                                             0
                                                                                 0
                                                                                    0
                                                                                        0
                                                                                           0
                                                                                               0
                                                                  0
                                                                      0
                                                                          0
                                                                             0
                                                                                 0
                                                                                    0
                                                                                        0
                                                                                           0
                                                                                               0
                                             0
                                                                      0
                                                                          0
                                                                             0
                                                                                 0
               10
                                                       29
                                                              0
                                                                  0
                                                                      0
                                                                         0
                                                                             0
                                                                                 0
                                                                                    0
                                                                                           0
                                                                                               0
                                                                                                            - 15
                                                    0
                                                                      0
                                                                          0
                                                                             0
                                                                                 0
                                                                      0
                                                                          0
                                                                             0
               7
                                                           0
                                                              0
                                                                      0
                                                                         0
                                                                             0
                                                                                 0
                                                                                    0
                                                                                        0
                                                                                           0
                                                                                               0
                                                                     30
                                                                          0
                                                                             0
                                                                                 0
                                                                                    0
                                                                                        0
                                                                                           0
                                                                                               0
                                                                      0
                                                                             0
                                                                                 0
                                                                                    0
                                                                                                            - 10
                                                                      0
                                                                             30
                                                                                 0
                                                                                    0
                                                                                        0
                                                                                           0
                                                                      0
                                                                         0
                                                                      0
                                                                          0
                                                                             0
                                                                                 0
                                                                          0
                                                                             0
                                                                                            0
                                                                                        0
                                                                  0
                                                                      0
                                                                         0
                                                                             0
                                                                                 0
                                                                                    0
                                                                                           9
                   0
                                            0
                                                0
                                                    0
                                                       0
                                                              0
                                                                  0
                                                                      0
                                                                          0
                                                                             0
                                                                                 0
                                                                                    0
                                                                                        0
                                                                                           0
                   0
                                                       10
                                                          11
                                                              12
                                                                  13
                                                                     14
                                                                         15
                                                                             16
                                                                                17
                                                                                    18
                                                                                       19
                                                                                           20
                                                    PREDICTED LABEL
                                                                                                           - 0
In [101]: X_test[0:1]
Out[101]:
                            K temperature
                                              humidity
                                                                      rainfall
                    Ν
                                                              ph
```

18.093002 72.610242 6.376651 78.961595

91 55 15

```
In [102]: result=Classifier.predict(X_test[0:1])
In [103]: result
Out[103]: array(['maize'], dtype=object)
          y_test[0:1]
In [104]:
Out[104]: 191
                 maize
          Name: label, dtype: object
In [105]:
          features = df.columns
          importances = Classifier.feature_importances_
          indices = np.argsort(importances)
          plt.title('FEATURE IMPORTANCES')
          plt.barh(range(len(indices)),importances[indices], color='r' , align="center")
          plt.yticks(range(len(indices)),[features[i] for i in indices])
          plt.xlabel('RELATIVE IMPORTANCE')
          plt.show()
```


