Мощность множеств

Отношения

Определение

$$A \times B := \{\langle a,b \rangle \mid a \in A, b \in B\}$$
 Бинарное отношение — $R \subseteq A \times B$ Функциональное бинарное отношение (функция) R — такое, что $\forall x.x \in A \to \exists ! y. \langle x,y \rangle \in R$ R — инъективная функция, если $\forall x. \forall y. \langle x,t \rangle \in R \& \langle y,t \rangle \in R \to x = y.$ R — сюръективная функция, если $\forall y.y \in B \to \exists x. \langle x,y \rangle \in R.$

Равномощные множества

Определение

Множество A равномощно B (|A| = |B|), если существует биекция $f: A \to B$. Множество A имеет мощность, не превышающую мощности B ($|A| \le |B|$), если существует инъекция $f: A \to B$.

Теорема Кантора-Бернштейна

Теорема

Если $|A| \le |B|$ и $|B| \le |A|$, то |A| = |B|.

Заметим, f:A o B, g:B o A — инъекции, но не обязательно g(f(x))=x.

Доказательство.

Избавимся от множества B: пусть $A_0 = A$; $A_1 = g(B)$; $A_{k+2} = g(f(A_k))$.

Тогда, если существует $h:A_0\to A_1$ — биекция, то тогда $g^{-1}\circ h:A\to B$ — требуемая биекция.

Построение биекции $h:A_0 o A_1$

Пусть
$$C_k = A_k \setminus A_{k+1}$$
. Тогда $g(f(C_k)) = g(f(A_k)) \setminus g(f(A_{k+1})) = A_{k+2} \setminus A_{k+3} = C_{k+2}$.

Тогда определим h(x) следующим образом:

$$h(x) = \begin{cases} x, & x \in C_{2k+1} \lor x \in \cap A_k \\ g(f(x)), & x \in C_{2k} \end{cases} \xrightarrow{C_1} \xrightarrow{C_2 C_3} \xrightarrow{\cap A_k}$$

Кардинальные числа

Определение

Кардинальное число — ординал, не равномощный никакому меньшему:

$$\forall x.x \in c \rightarrow |x| < |c|$$

Теорема

Конечные ординалы — кардинальные числа.

Определение

Мощность множества (|S|) — равномощное ему кардинальное число.

Диагональный метод

Лемма

 $|\mathbb{R}| > |\mathbb{N}|$

Доказательство.

Рассмотрим $a \in (0,1)$ и десятичную запись: $0.a_0a_1a_2\dots$ Пусть существует биективная $f: \mathbb{N} \to (0,1)$. По функции найдём значение σ , не являющееся образом никакого натурального числа.

n	f(n)	$f(n)_0$	$f(n)_1$	$f(n)_2$	$f(n)_3$	$f(n)_4$	$f(n)_5$	
n_0	0.3	3	0	0	0	0	0	
n_1	$\pi/10$	3	1	4	1	5	9	
<i>n</i> ₂	1/7	1	4	2	8	5	7	

Диагональный метод

Лемма

 $|\mathbb{R}| > |\mathbb{N}|$

Доказательство.

Рассмотрим $a\in(0,1)$ и десятичную запись: $0.a_0a_1a_2\dots$ Пусть существует биективная $f:\mathbb{N}\to(0,1)$. По функции найдём значение σ , не являющееся образом никакого натурального числа.

n	f(n)	$f(n)_0$	$f(n)_1$	$f(n)_2$	$f(n)_3$	$f(n)_4$	$f(n)_5$	
n_0	0.3	3	0	0	0	0	0	
n_1	$\pi/10$	3	1	4	1	5	9	
n_2	1/7	1	4	2	8	5	7	
	σ	8	6	7	$\dots \sigma_k$:	$=(f(n_k))$	(k+5)%	610

Теорема Кантора

Теорема

$$|\mathcal{P}(S)| > |S|$$

Доказательство.

Пусть
$$S = \{a, b, c, \dots\}$$

n	$a \in f(n)$	$b \in f(n)$	$c \in f(n)$	
а	N	Л	И	
b	Л	Л	И	
С	И	N	N	
	Л	N	Л	$y \notin f(y)$

Теорема Кантора

Теорема

$$|\mathcal{P}(S)| > |S|$$

Доказательство.

Пусть
$$S = \{a, b, c, \dots\}$$

n	$a \in f(n)$	$b \in f(n)$	$c \in f(n)$	
а	N	Л	И	
a b	Л	Л	И	
С	И	N	И	
	Л	И	Л	$y \notin f(y)$

Пусть $f: S \to \mathcal{P}(S)$ — биекция. Тогда $\sigma = \{y \in S \mid y \notin f(y)\}$. Пусть $f(x) = \sigma$. Но $x \in f(x)$ тогда и только тогда, когда $x \notin \sigma$, то есть $f(x) \neq \sigma$.

О буквах

 $\verb|https://en.wikipedia.org/wiki/Proto-Sinaitic_script|\\$

Иерархии \aleph_n и \beth_n

Определение

$$\aleph_0 := |\omega|$$
; $\aleph_{k+1} := \min\{a \mid a - opдинал, \aleph_k < |a|\}$

Определение

$$\beth_0 := |\omega|, \, \beth_{k+1} := |\mathcal{P}(\beth_k)|$$

Континуум-гипотеза (Г.Кантор, 1877): $\aleph_1 = \beth_1$ (не существует мощности, промежуточной между счётной и континуумом).

Обобщённая континуум-гипотеза: $\aleph_n = \beth_n$ при всех n.

Определение

Утверждение α противоречит аксиоматике: $\vdash \alpha$ ведёт к противоречию. Утверждение α не зависит от аксиоматики: $ot \vdash \alpha$ и $ot \vdash \neg \alpha$.

Иерархии \aleph_n и \beth_n

Определение

$$\aleph_0 := |\omega|$$
; $\aleph_{k+1} := \min\{a \mid a - opдинал, \aleph_k < |a|\}$

Определение

$$\beth_0 := |\omega|, \, \beth_{k+1} := |\mathcal{P}(\beth_k)|$$

Континуум-гипотеза (Г.Кантор, 1877): $\aleph_1 = \beth_1$ (не существует мощности, промежуточной между счётной и континуумом).

Обобщённая континуум-гипотеза: $\aleph_n = \beth_n$ при всех n.

Определение

Утверждение α противоречит аксиоматике: $\vdash \alpha$ ведёт к противоречию. Утверждение α не зависит от аксиоматики: $\not\vdash \alpha$ и $\not\vdash \neg \alpha$.

Теорема (О независимости континуум-гипотезы, Дж.Коэн, 1963) Утверждение $\aleph_1 = \beth_1$ не зависит от аксиоматики ZFC.

Примеры мощностей множеств

Пример	мощность
ω	ℵ₀
ω^2 , ω^ω	ℵ₀
\mathbb{R}	\beth_1
все непрерывные функции $\mathbb{R} o \mathbb{R}$	\beth_1
все функции $\mathbb{R} o \mathbb{R}$	\beth_2

Как пересчитать вещественные числа (неформально)?

1. Номер вещественного числа — первое упоминание в литературе, т.е. $\langle j,y,n,p,r,c \rangle$: j — гёделев номер названия научного журнала (книги); y — год издания;

р — страница;

n - номер;

r — строка;

с — позиция

Как пересчитать вещественные числа (неформально)?

1. Номер вещественного числа — первое упоминание в литературе, т.е. $\langle j,y,n,p,r,c \rangle$: j — гёделев номер названия научного журнала (книги); y — год издания;

n — номер;

р — страница;

r — строка;

с — позиция

2. Попробуете предъявить число x, не имеющее номера? Это рассуждение сразу даст номер.

Мощность модели и аксиоматизации

Определение

Пусть задана модель $\langle D, F_n, P_n \rangle$ для некоторой теории первого порядка. Её мощностью будем считать мощность D.

Мощность модели и аксиоматизации

Определение

Пусть задана модель $\langle D, F_n, P_n \rangle$ для некоторой теории первого порядка. Её мощностью будем считать мощность D.

Определение

Пусть задана формальная теория с аксиомами α_n . Её мощность — мощность множества $\{\alpha_n\}$.

Мощность модели и аксиоматизации

Определение

Пусть задана модель $\langle D, F_n, P_n \rangle$ для некоторой теории первого порядка. Её мощностью будем считать мощность D.

Определение

Пусть задана формальная теория с аксиомами α_n . Её мощность — мощность множества $\{\alpha_n\}$.

Пример

Формальная арифметика, исчисление предикатов, исчисление высказываний — счётно-аксиоматизируемые.

Определение

$$\mathcal{M}' = \langle D', F'_n, P'_n \rangle$$
 — элементарная подмодель $\mathcal{M} = \langle D, F_n, P_n \rangle$, если:

Определение

$$\mathcal{M}'=\langle D',F_n',P_n'
angle$$
 — элементарная подмодель $\mathcal{M}=\langle D,F_n,P_n
angle$, если:

1. $D' \subseteq D$,

Определение

$$\mathcal{M}'=\langle D',F_n',P_n'
angle$$
 — элементарная подмодель $\mathcal{M}=\langle D,F_n,P_n
angle$, если:

1. $D' \subseteq D$, F'_n , P'_n — сужение F_n , P_n (замкнутое на D').

Определение

$$\mathcal{M}' = \langle D', F'_n, P'_n \rangle$$
 — элементарная подмодель $\mathcal{M} = \langle D, F_n, P_n \rangle$, если:

- 1. $D' \subseteq D$, F'_n , P'_n сужение F_n , P_n (замкнутое на D').
- 2. $\mathcal{M} \models \varphi(x_1,\ldots,x_n)$ тогда и только тогда, когда $\mathcal{M}' \models \varphi(x_1,\ldots,x_n)$ при $x_i \in D'$.

Определение

$$\mathcal{M}' = \langle D', F'_n, P'_n \rangle$$
 — элементарная подмодель $\mathcal{M} = \langle D, F_n, P_n \rangle$, если:

- 1. $D' \subseteq D$, F'_n , P'_n сужение F_n , P_n (замкнутое на D').
- 2. $\mathcal{M} \models \varphi(x_1,\ldots,x_n)$ тогда и только тогда, когда $\mathcal{M}' \models \varphi(x_1,\ldots,x_n)$ при $x_i \in D'$.

Пример

Когда сужение М не является элементарной подмоделью?

Определение

$$\mathcal{M}' = \langle D', F'_n, P'_n \rangle$$
 — элементарная подмодель $\mathcal{M} = \langle D, F_n, P_n \rangle$, если:

- 1. $D' \subseteq D$, F'_n , P'_n сужение F_n , P_n (замкнутое на D').
- 2. $\mathcal{M} \models \varphi(x_1,\ldots,x_n)$ тогда и только тогда, когда $\mathcal{M}' \models \varphi(x_1,\ldots,x_n)$ при $x_i \in D'$.

Пример

Когда сужение М не является элементарной подмоделью? $\forall x. \exists y. x \neq y.$ Истинно в \mathbb{N} .

Определение

$$\mathcal{M}' = \langle D', F'_n, P'_n \rangle$$
 — элементарная подмодель $\mathcal{M} = \langle D, F_n, P_n \rangle$, если:

- 1. $D' \subseteq D$, F'_n , P'_n сужение F_n , P_n (замкнутое на D').
- 2. $\mathcal{M} \models \varphi(x_1,\ldots,x_n)$ тогда и только тогда, когда $\mathcal{M}' \models \varphi(x_1,\ldots,x_n)$ при $x_i \in D'$.

Пример

Когда сужение M не является элементарной подмоделью? $\forall x. \exists y. x \neq y.$ Истинно в \mathbb{N} . Но пусть $D' = \{0\}$.

Теорема Лёвенгейма-Сколема

Теорема

Пусть T — множество всех формул теории первого порядка. Пусть теория имеет некоторую модель \mathcal{M} . Тогда найдётся элементарная подмодель \mathcal{M}' , причём $|\mathcal{M}'| = \max(\aleph_0, |T|)$.

Теорема Лёвенгейма-Сколема

Теорема

Пусть T — множество всех формул теории первого порядка. Пусть теория имеет некоторую модель \mathcal{M} . Тогда найдётся элементарная подмодель \mathcal{M}' , причём $|\mathcal{M}'| = \max(\aleph_0, |T|)$.

Доказательство.

(Схема доказательства)

1. Построим D_0 — множество всех значений, которые упомянуты в языке теории.

Теорема Лёвенгейма-Сколема

Теорема

Пусть T — множество всех формул теории первого порядка. Пусть теория имеет некоторую модель \mathcal{M} . Тогда найдётся элементарная подмодель \mathcal{M}' , причём $|\mathcal{M}'| = \max(\aleph_0, |T|)$.

Доказательство.

(Схема доказательства)

- 1. Построим D_0 множество всех значений, которые упомянуты в языке теории.
- 2. Будем последовательно пополнять D_i : $D_0 \subseteq D_1 \subseteq D_2 \dots$, следя за мощностью. $D' = \cup D_i$.
- 3. Покажем, что $\langle D', F_n, P_n \rangle$ требуемая подмодель.

Пусть $\{f_k^0\}$ — все 0-местные функциональные символы теории.

Пусть $\{f_k^0\}$ — все 0-местные функциональные символы теории.

1. $D_0 = \{ \llbracket f_k^0 \rrbracket \}$, если есть хотя бы один f_k^0 .

Пусть $\{f_k^0\}$ — все 0-местные функциональные символы теории.

- 1. $D_0 = \{ \llbracket f_k^0 \rrbracket \}$, если есть хотя бы один f_k^0 .
- 2. Если таких f_k^0 нет, возьмём какое-нибудь одно значение из D.

Пусть $\{f_k^0\}$ — все 0-местные функциональные символы теории.

- 1. $D_0 = \{ \llbracket f_k^0 \rrbracket \}$, если есть хотя бы один f_k^0 .
- 2. Если таких f_k^0 нет, возьмём какое-нибудь одно значение из D.

Пусть $\{f_k^0\}$ — все 0-местные функциональные символы теории.

- 1. $D_0 = \{ \llbracket f_k^0 \rrbracket \}$, если есть хотя бы один f_k^0 .
- 2. Если таких f_k^0 нет, возьмём какое-нибудь одно значение из D.

Очевидно, $|D_0| \le |T|$.

Пополнение D

Фиксируем некоторый D_k . Напомним, T — множество всех формул теории. Рассмотрим $\varphi \in \mathcal{T}$.

Пополнение D

Фиксируем некоторый D_k . Напомним, T — множество всех формул теории. Рассмотрим $\varphi \in \mathcal{T}$.

 $1. \ arphi$ не имеет свободных переменных — пропустим.

- $1. \ arphi$ не имеет свободных переменных пропустим.
- 2. φ имеет хотя бы одну свободную переменную y.

- 1. φ не имеет свободных переменных пропустим.
- 2. φ имеет хотя бы одну свободную переменную y.
 - 2.1 $\varphi(y,x_1,\ldots,x_n)$ при $y,x_i\in D_k$ бывает истинным и ложным ничего не меняем

- 1. φ не имеет свободных переменных пропустим.
- 2. φ имеет хотя бы одну свободную переменную y.
 - $2.1 \ \varphi(y,x_1,\ldots,x_n)$ при $y,x_i\in D_k$ бывает истинным и ложным ничего не меняем
 - 2.2 $\varphi(y, x_1, \dots, x_n)$ при $y \in D$ и $x_i \in D_k$ либо всегда истинен, либо всегда ложен ничего не меняем

- $1. \ \varphi$ не имеет свободных переменных пропустим.
- 2. φ имеет хотя бы одну свободную переменную y.
 - $2.1 \ \varphi(y,x_1,\ldots,x_n)$ при $y,x_i\in D_k$ бывает истинным и ложным ничего не меняем
 - 2.2 $\varphi(y, x_1, \dots, x_n)$ при $y \in D$ и $x_i \in D_k$ либо всегда истинен, либо всегда ложен ничего не меняем
 - 2.3 $\varphi(y,x_1,\ldots,x_n)$ при $y,x_i\in D_k$ тождественно истинен или ложен, но при $y'\in D\setminus D_k$ отличается добавим y' к D_{k+1} .

- $1. \ \varphi$ не имеет свободных переменных пропустим.
- 2. φ имеет хотя бы одну свободную переменную y.
 - 2.1 $\varphi(y,x_1,\ldots,x_n)$ при $y,x_i\in D_k$ бывает истинным и ложным ничего не меняем
 - 2.2 $\varphi(y, x_1, \dots, x_n)$ при $y \in D$ и $x_i \in D_k$ либо всегда истинен, либо всегда ложен ничего не меняем
 - 2.3 $\varphi(y, x_1, \dots, x_n)$ при $y, x_i \in D_k$ тождественно истинен или ложен, но при $y' \in D \setminus D_k$ отличается добавим y' к D_{k+1} . Вместе добавим всевозможные $[\![\theta(y')]\!]$.

Фиксируем некоторый D_k . Напомним, T — множество всех формул теории. Рассмотрим $\varphi \in \mathcal{T}$.

- $1. \ arphi$ не имеет свободных переменных пропустим.
- 2. φ имеет хотя бы одну свободную переменную y.
 - $2.1 \ \varphi(y,x_1,\ldots,x_n)$ при $y,x_i\in D_k$ бывает истинным и ложным ничего не меняем
 - 2.2 $\varphi(y, x_1, \dots, x_n)$ при $y \in D$ и $x_i \in D_k$ либо всегда истинен, либо всегда ложен ничего не меняем
 - 2.3 $\varphi(y, x_1, \dots, x_n)$ при $y, x_i \in D_k$ тождественно истинен или ложен, но при $y' \in D \setminus D_k$ отличается добавим y' к D_{k+1} . Вместе добавим всевозможные $[\![\theta(y')]\!]$.

Всего добавили не больше $|T| \cdot |D_k|$.

Фиксируем некоторый D_k . Напомним, T — множество всех формул теории. Рассмотрим $\varphi \in \mathcal{T}$.

- 1. φ не имеет свободных переменных пропустим.
- 2. φ имеет хотя бы одну свободную переменную y.
 - 2.1 $\varphi(y,x_1,\ldots,x_n)$ при $y,x_i\in D_k$ бывает истинным и ложным ничего не меняем
 - 2.2 $\varphi(y,x_1,\ldots,x_n)$ при $y\in D$ и $x_i\in D_k$ либо всегда истинен, либо всегда ложен ничего не меняем
 - 2.3 $\varphi(y, x_1, \dots, x_n)$ при $y, x_i \in D_k$ тождественно истинен или ложен, но при $y' \in D \setminus D_k$ отличается добавим y' к D_{k+1} . Вместе добавим всевозможные $[\![\theta(y')]\!]$.

Всего добавили не больше $|T|\cdot |D_k|$. $|\cup D_i|\leq |T|\cdot |D_k|\cdot |\aleph_0|=\max(|T|,|\aleph_0|)$

Индукцией по структуре формул $\tau\in T$ покажем, что все формулы можно вычислить, и что $[\![\varphi]\!]_{\mathcal{M}'}=[\![\varphi]\!]_{\mathcal{M}}.$

1. База, 0 связок. $\tau \equiv P(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n)).$

Индукцией по структуре формул $\tau\in T$ покажем, что все формулы можно вычислить, и что $[\![\varphi]\!]_{\mathcal{M}'}=[\![\varphi]\!]_{\mathcal{M}}.$

1. База, 0 связок. $\tau \equiv P(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n))$. Если $x_i \in D'$, то значит, добавлены на некоторых шагах (максимальный пусть t). Поэтому в D_{t+1} можно вычислить формулу, и её значение сохранилось.

- 1. База, 0 связок. $\tau \equiv P(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n))$. Если $x_i \in D'$, то значит, добавлены на некоторых шагах (максимальный пусть t). Поэтому в D_{t+1} можно вычислить формулу, и её значение сохранилось.
- 2. Переход. Пусть формулы из k связок сохраняют значения. Рассмотрим τ с k+1 связкой.

- 1. База, 0 связок. $\tau \equiv P(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n))$. Если $x_i \in D'$, то значит, добавлены на некоторых шагах (максимальный пусть t). Поэтому в D_{t+1} можно вычислить формулу, и её значение сохранилось.
- 2. Переход. Пусть формулы из k связок сохраняют значения. Рассмотрим au с k+1 связкой.
 - 2.1 $\tau \equiv \rho \star \sigma$ очевидно.

- 1. База, 0 связок. $\tau \equiv P(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n))$. Если $x_i \in D'$, то значит, добавлены на некоторых шагах (максимальный пусть t). Поэтому в D_{t+1} можно вычислить формулу, и её значение сохранилось.
- 2. Переход. Пусть формулы из k связок сохраняют значения. Рассмотрим τ с k+1 связкой.
 - 2.1 $\tau \equiv \rho \star \sigma$ очевидно.
 - 2.2 $\tau \equiv \forall y. \varphi(y, x_1, \ldots, x_n).$

- 1. База, 0 связок. $\tau \equiv P(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n))$. Если $x_i \in D'$, то значит, добавлены на некоторых шагах (максимальный пусть t). Поэтому в D_{t+1} можно вычислить формулу, и её значение сохранилось.
- 2. Переход. Пусть формулы из k связок сохраняют значения. Рассмотрим τ с k+1 связкой.
 - 2.1 $\tau \equiv \rho \star \sigma$ очевидно.
 - 2.2 $au \equiv \forall y. arphi(y, x_1, \dots, x_n)$. Каждый x_i добавлен на каком-то шаге максимум t.

- 1. База, 0 связок. $\tau \equiv P(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n))$. Если $x_i \in D'$, то значит, добавлены на некоторых шагах (максимальный пусть t). Поэтому в D_{t+1} можно вычислить формулу, и её значение сохранилось.
- 2. Переход. Пусть формулы из k связок сохраняют значения. Рассмотрим τ с k+1 связкой.
 - 2.1 $\tau \equiv \rho \star \sigma$ очевидно.
 - 2.2 $au\equiv \forall y. \varphi(y, x_1, \dots, x_n)$. Каждый x_i добавлен на каком-то шаге максимум t. Если $\varphi(y, x_1, \dots, x_n)$ бывает истинен и ложен при $y_t, y_f \in D$, то $y_t, y_f \in D_{t+1}$ (по построению).

- 1. База, 0 связок. $\tau \equiv P(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n))$. Если $x_i \in D'$, то значит, добавлены на некоторых шагах (максимальный пусть t). Поэтому в D_{t+1} можно вычислить формулу, и её значение сохранилось.
- 2. Переход. Пусть формулы из k связок сохраняют значения. Рассмотрим τ с k+1 связкой.
 - 2.1 $\tau \equiv \rho \star \sigma$ очевидно.
 - 2.2 $au \equiv \forall y. \varphi(y, x_1, \dots, x_n)$. Каждый x_i добавлен на каком-то шаге максимум t. Если $\varphi(y, x_1, \dots, x_n)$ бывает истинен и ложен при $y_t, y_f \in D$, то $y_t, y_f \in D_{t+1}$ (по построению). Поэтому, если $\mathcal{M} \not\models \forall y. \varphi(y, x_1, \dots, x_n)$, то и $\mathcal{M}' \not\models \forall y. \varphi(y, x_1, \dots, x_n)$.

- 1. База, 0 связок. $\tau \equiv P(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n))$. Если $x_i \in D'$, то значит, добавлены на некоторых шагах (максимальный пусть t). Поэтому в D_{t+1} можно вычислить формулу, и её значение сохранилось.
- 2. Переход. Пусть формулы из k связок сохраняют значения. Рассмотрим au с k+1 связкой.
 - 2.1 $\tau \equiv \rho \star \sigma$ очевидно.
 - 2.2 $au \equiv \forall y. \varphi(y, x_1, \dots, x_n)$. Каждый x_i добавлен на каком-то шаге максимум t. Если $\varphi(y, x_1, \dots, x_n)$ бывает истинен и ложен при $y_t, y_f \in D$, то $y_t, y_f \in D_{t+1}$ (по построению). Поэтому, если $\mathcal{M} \not\models \forall y. \varphi(y, x_1, \dots, x_n)$, то и $\mathcal{M}' \not\models \forall y. \varphi(y, x_1, \dots, x_n)$. Если же $\varphi(y, x_1, \dots, x_n)$ не меняется от y, то тем более $\llbracket \varphi \rrbracket_{\mathcal{M}'} = \llbracket \varphi \rrbracket_{\mathcal{M}}$.

- 1. База, 0 связок. $\tau \equiv P(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n))$. Если $x_i \in D'$, то значит, добавлены на некоторых шагах (максимальный пусть t). Поэтому в D_{t+1} можно вычислить формулу, и её значение сохранилось.
- 2. Переход. Пусть формулы из k связок сохраняют значения. Рассмотрим au с k+1 связкой.
 - 2.1 $\tau \equiv \rho \star \sigma$ очевидно.
 - 2.2 $au \equiv \forall y. \varphi(y, x_1, \dots, x_n)$. Каждый x_i добавлен на каком-то шаге максимум t. Если $\varphi(y, x_1, \dots, x_n)$ бывает истинен и ложен при $y_t, y_f \in D$, то $y_t, y_f \in D_{t+1}$ (по построению). Поэтому, если $\mathcal{M} \not\models \forall y. \varphi(y, x_1, \dots, x_n)$, то и $\mathcal{M}' \not\models \forall y. \varphi(y, x_1, \dots, x_n)$. Если же $\varphi(y, x_1, \dots, x_n)$ не меняется от y, то тем более $\llbracket \varphi \rrbracket_{\mathcal{M}'} = \llbracket \varphi \rrbracket_{\mathcal{M}}$.
 - 2.3 $\tau \equiv \exists y. \varphi(y, x_1, \dots, x_n)$ аналогично.

1. Как известно, $|\mathbb{R}| = |\mathcal{P}(\mathbb{N})| > |\mathbb{N}| = \aleph_0$.

1. Как известно, $|\mathbb{R}|=|\mathcal{P}(\mathbb{N})|>|\mathbb{N}|=\aleph_0$. Однако, ZFC — теория со счётным количеством формул.

1. Как известно, $|\mathbb{R}| = |\mathcal{P}(\mathbb{N})| > |\mathbb{N}| = \aleph_0$. Однако, ZFC — теория со счётным количеством формул. Значит, существует счётная модель ZFC, то есть $|\mathbb{R}| = \aleph_0$.

1. Как известно, $|\mathbb{R}| = |\mathcal{P}(\mathbb{N})| > |\mathbb{N}| = \aleph_0$. Однако, ZFC — теория со счётным количеством формул. Значит, существует счётная модель ZFC, то есть $|\mathbb{R}| = \aleph_0$. В чём ошибка?

«Парадокс» Сколема

- 1. Как известно, $|\mathbb{R}| = |\mathcal{P}(\mathbb{N})| > |\mathbb{N}| = \aleph_0$. Однако, ZFC теория со счётным количеством формул. Значит, существует счётная модель ZFC, то есть $|\mathbb{R}| = \aleph_0$. В чём ошибка?
- 2. У равенств разный смысл, первое в предметном языке, второе в метаязыке.