Chapitre 8

Équations différentielles

Dans ce chapitre, I est un intervalle de $\mathbb R$ contenant au moins deux points, et $K=\mathbb R$ ou $K=\mathbb C$.

1 Équations différentielles linéaires du premier ordre

Dans ce paragraphe, on considère l'équation différentielle

$$y' = a(x)y + b(x), (E)$$

où $a,b:I\longrightarrow K$ sont des fonctions continues. C'est une équation différentielle linéaire du premier ordre résolue.

Définition 1.1

1. Une solution de (E) sur I est une fonction dérivable $f: I \longrightarrow K$ telle que pour tout $x \in I$,

$$f'(x) = a(x)f(x) + b(x).$$

2. L'équation différentielle homogène associée à (E) est l'équation différentielle sans second membre

$$y' = a(x)y. (E_0)$$

3. Une courbe intégrale de (E) est la courbe représentative d'une solution de (E) dans un repère donné.

1.1 Solutions d'une équation différentielle homogène

Proposition 1.2 (Ensemble des solutions d'une équation différentielle homogène)

L'ensemble S_0 des solutions de (E_0) est $\{x \longmapsto \lambda e^{A(x)}, \ \lambda \in \mathbb{R}\}$, où A est une primitive de a sur I.

Proposition 1.3 (Combinaisons linéaires)

Soient f, g deux solutions de (E_0) sur I, et $\lambda \in K$. Alors f + g et λf sont solutions de (E_0) sur I.

Remarques.

- 1. La proposition 1.3 est fausse si l'équation n'est pas homogène.
- 2. Notez qu'étudier y' + ay + b = 0 impose des changements de signes qu'il ne faut pas oublier.
- 3. On n'écrit jamais $\frac{y'}{y} = \cdots$, puisqu'on ne sait pas *a priori* si *y* s'annule.
- 4. On sait après coup que seule la solution nulle s'annule.

Proposition 1.4 (Ensemble des solutions de (E))

Soit f une solution de (E) et S_0 l'ensemble des solutions de l'équation homogène. Alors l'ensemble des solutions S de (E) est

$$\mathcal{S} = \{ f + h_0 \mid h_0 \in \mathcal{S}_0 \} .$$

Autrement dit, une fonction $g: I \longrightarrow K$ dérivable est solution de (E) si et seulement si f - g est solution de (E_0) .

Remarque.

On dit que f est une solution particulière de (E). Elle est appelée ainsi car elle a été choisie arbitrairement par rapport aux autres solutions. Par contre, il convient de noter qu'elle n'a rien de particulier par rapport aux autres solutions : rien ne permet a priori de différencier deux solutions d'une même équation différentielle sans parler de propriétés supplémentaires (par exemple conditions initiales).

1.2 Résolution complète

Dans ce paragraphe, on cherche à déterminer une solution particulière de l'équation, afin des les avoir toutes.

Proposition 1.5 (Principe de superposition)

Si f_1 est une solution sur I de l'équation $y' = a(x)y + b_1(x)$ et f_2 une solution de $y' = a(x)y + b_2(x)$, alors la fonction $f_1 + f_2$ est solution de l'équation $y' = a(x)y + b_1(x) + b_2(x)$.

Proposition 1.6 (Méthode de la variation de la constante)

Soit $\lambda: I \longrightarrow K$ une fonction dérivable telle que

$$\forall x \in I, \ \lambda'(x) = b(x)e^{-A(x)}.$$

Alors la fonction $f: I \longrightarrow K$ définie par

$$\forall x \in I, \ f(x) = \lambda(x)e^{A(x)}$$

est une solution de l'équation différentielle (E).

Remarques.

1. Il faut savoir refaire ces calculs sans les apprendre par coeur. Il faut également rester formel dans ces calculs : ne jamais remplacer A(x) par l'expression obtenue.

2. Attention : parfois, il y a des solutions évidentes. Il ne faut pas toujours se précipiter sur la méthode de la variation de la constante.

Méthode 1.7

Pour résoudre une équation différentielle linéaire du premier ordre :

- 1. La mettre sous la forme y' = a(x)y + b(x).
- 2. Déterminer une primitive A de a.
- 3. Résoudre l'équation y' = a(x)y.
- 4. Déterminer une solution de y' = a(x)y + b(x) (soit par la variation de la constante, soit une solution "évidente".
- 5. En déduire l'ensemble des solutions.

1.3 Équations à coefficients constants

Voici des cas particuliers où une solution particulière s'obtient plus facilement qu'avec la méthode de la variation de la constante.

Méthode 1.8

On n'oublie pas le principe de superposition qui permet de combiner les méthodes suivantes.

Méthode 1.9 (Second membre polynomial)

On considère l'équation y' + ay = P(x), où $a \in K$ est une constante, et P un polynôme de degré $n \in \mathbb{N}$.

- 1. Si $a \neq 0$, l'équation a une solution particulière polynomiale de degré n.
- 2. Si a=0, l'équation a une solution particulière de la forme $x \mapsto xQ(x)$, où Q est un polynôme de degré n: il suffit d'intégrer P!

Dans les deux cas, on détermine une telle solution par identification des coefficients.

Losque P est un polynôme constant égal à b, et $a \neq 0$, la fonction constante égale à b/a est solution.

Méthode 1.10 (Second membre (co)sinus)

On considère l'équation $y' + ay = \lambda \sin(\alpha x)$ (ou $y' + ay = \lambda \cos(\alpha x)$), où $a, \alpha \in K$ sont des constantes.

L'équation admet une solution de la forme $x \mapsto b \sin(\alpha x) + c \cos(\alpha x)$, où $b, c \in K$ se déterminent par identification.

Méthode 1.11 (Second membre exponentielle)

On considère l'équation $y' + ay = \lambda e^{\alpha x}$, où $a, \alpha \in K$ sont des constantes.

- 1. Si $a \neq -\alpha$, l'équation a une solution particulière de la forme $x \mapsto be^{\alpha x}, b \in K$.
- 2. Si $a = -\alpha$, l'équation a une solution particulière de la forme $x \mapsto bxe^{\alpha x}$, où $b \in K$.

Dans les deux cas, on détermine b par identification.

1.4 Résolution avec condition initiale

Corollaire 1.12 (Solutions sous forme intégrale)

Soient $x_0 \in I$ et A une primitive sur I de la fonction a. Alors les solutions sur I de l'équation (E) sont les fonctions

$$x \longmapsto \lambda e^{A(x)} + e^{A(x)} \int_{x_0}^x b(t)e^{-A(t)} dt,$$

où $\lambda \in K$.

Proposition 1.13 (Résolution avec condition initiale, problème de Cauchy)

Pour tout $x_0 \in I$ et $y_0 \in K$, il existe une unique solution f de (E) su I telle que

$$f(x_0) = y_0.$$

Équations différentielles linéaires du second ordre à coefficients constants

Dans ce paragraphe, on considère l'équation différentielle du second ordre à coefficients constants

$$ay'' + by' + cy = f(x), \tag{E'}$$

où $a, b, c \in K$ avec $a \neq 0$, et f est une fonction définie sur \mathbb{R} , à valeurs dans K (\mathbb{R} ou \mathbb{C}), et on recherche les fonctions solutions sur \mathbb{R} .

2.1 Généralités

Définition 2.1

1. Une solution de (E') sur \mathbb{R} est une fonction deux fois dérivable $h: \mathbb{R} \longrightarrow K$ telle que pour tout $x \in \mathbb{R}$,

$$ah''(x) + bh'(x) + ch(x) = f(x).$$

2. L'équation différentielle homogène associée à (E') est l'équation différentielle sans second membre

$$ay'' + by' + cy = 0,$$
 (E_0)

3. Une courbe intégrale de (E') est la courbe représentative d'une solution de (E') dans un repère donné.

Proposition 2.2 (Forme des solutions)

Soit S_0 l'ensemble des solutions de (E'_0) , et g une solution de (E') sur \mathbb{R} . L'ensemble des solutions de (E') sur \mathbb{R} est

$$g + S_0 = \{g + y_0 \mid y_0 \in S_0\}$$
.

Proposition 2.3 (Principe de superposition)

Soit g_1 (resp. g_2) une solution de l'équation différentielle $ay'' + by' + cy = f_1(x)$ (resp. $ay'' + by' + cy = f_2(x)$), où f_1 , f_2 sont des fonctions à valeurs dans K. Alors la fonction $g_1 + g_2$ est une solution de l'équation $ay'' + by' + cy = f_1(x) + f_2(x)$.

2.2 Résolution de l'équation homogène

Définition 2.4 (Équation caractéristique)

L'équation caractéristique de (E') est l'équation (E_c) : $ax^2 + bx + c = 0$.

Théorème 2.5 (Ensemble des solutions de (E'_0))

1. Si (E_c) admet deux solutions distinctes r_1 et r_2 (réelles ou complexes), l'ensemble des solutions de (E'_0) est

$$\{x \longmapsto \lambda e^{r_1 x} + \mu e^{r_2 x}, \quad \lambda, \mu \in K\}.$$

2. Si (E_c) admet une racine double r, l'ensemble des solutions de (E'_0) est

$$\{x \longmapsto (\lambda + \mu x)e^{rx}, \quad \lambda, \mu \in K\}.$$

3. Si $a, b, c \in \mathbb{R}$ et si (E_c) admet deux solutions complexes non réelles $\alpha \pm i\beta$, l'ensemble des solutions **réelles** de (E'_0) est

$$\{x \longmapsto (\lambda \cos(\beta x) + \mu \sin(\beta x))e^{\alpha x}, \quad \lambda, \mu \in \mathbb{R}\},\$$

ou encore

$$\{x \longmapsto \lambda \sin(\beta x + \varphi)e^{\alpha x}, \quad \lambda, \varphi \in \mathbb{R}\}.$$

Remarque.

On peut remarquer que si f, g sont deux solutions de (E'_0) et $\lambda \in K$, alors f + g et λf sont solutions de (E'_0) sur \mathbb{R} . On reverra ces propriétés lorsqu'on parlera des espaces vectoriels.

Proposition 2.6 (Combinaisons linéaires)

Soient f, g deux solutions de (E'_0) sur \mathbb{R} , et $\lambda \in K$. Alors f + g et λf sont solutions de (E'_0) sur \mathbb{R} .

2.3 Solution particulière pour certains seconds membres

Méthode 2.7 (Second membre exponentielle)

On suppose que le second membre de (E') est $x \mapsto Ae^{sx}$, où $s, A \in K$ sont des constantes. On note (E_c) l'équation caractéristique. Alors

- 1. Si s n'est pas solution de (E_c) , il existe une solution de la forme $x \mapsto Ce^{sx}$, où $C \in K$.
- 2. Si s est une racine simple de (E_c) , il existe une solution de la forme $x \mapsto Cxe^{sx}$, où $C \in K$.
- 3. si s est une racine double de (E_c) , il existe une solution de la forme $x \mapsto Cx^2e^{sx}$, où $C \in K$. Pour obtenir C on injecte la solution dans l'équation, et on procède par identification.

Méthode 2.8 (Second membre (co)sinus)

On suppose que le second membre de (E') est $x \mapsto A\cos(\omega x)$ ou $x \mapsto A\sin(\omega x)$, où $A, \omega \in \mathbb{R}$ sont des constantes. Alors

- 1. On recherche une solution pour l'équation $ay'' + by' + cy = Ae^{i\omega x}$ à l'aide de la méthode 2.7 avec $s = i\omega$.
- 2. La partie réelle de cette solution est une solution de $ay'' + by' + cy = A\cos(\omega x)$, et la partie imaginaire une solution de $ay'' + by' + cy = A\sin(\omega x)$.
- 3. Si $i\omega$ n'est pas solution de l'équation caractéristique (E_c) , on peut aussi directement chercher une solution combinaison linéaire de la forme $x \mapsto \lambda \sin(\omega x) + \mu \cos(\omega x)$.

Remarques.

- 1. On utilise ces méthodes conjointement avec les propositions 2.2 et 2.5 pour résoudre l'équation différentielle.
- 2. Le principe de superposition permet alors d'obtenir des solutions particulières pour des seconds membres en $x \mapsto \operatorname{ch}(x)$ et $x \mapsto \operatorname{sh}(x)$ par exemple.

2.4 Résolution complète

Méthode 2.9 (Résolution complète)

Pour résoudre complètement E', on procède ainsi :

- 1. On résout E'_0 à l'aide du théorème 2.5.
- 2. On détermine une solution f de E' (paragraphe 2.3, principe de superposition 2.3, ou autre suivant les cas).
- 3. On conclut avec la proposition 2.2.

Proposition 2.10 (Résolution avec conditions initiales, problème de Cauchy)

Soient $x_0 \in \mathbb{R}$ et $y_0, y_0' \in K$. Il existe une unique solution h de (E') telle que

$$h(x_0) = y_0, \qquad h'(x_0) = y'_0.$$

3 Compétences

- 1. Savoir reconnaître une équation différentielle linéaire du premier ordre, et la mettre sous la forme résolue. Déterminer un **intervalle** sur lequel on peut la résoudre.
- 2. Savoir mettre en oeuvre la méthode de la variation de la constante de manière formelle.
- 3. Savoir trouver des solutions particulières simples sans la méthode de la variation de la constante (solutions constantes, polynomiale).
- 4. Savoir reconnaître une équation différentielle linéaire du second ordre à coefficients constants.
- 5. Reconnaître les seconds membres pour lesquels on sait trouver une solution particulière. Savoir déterminer une solution particulière dans ce cas, et savoir rédiger correctement.
- 6. Reconnaître un problème de Cauchy.