Labs

Optimization for Machine LearningSpring 2024

EPFL

School of Computer and Communication Sciences

Martin Jaggi & Nicolas Flammarion

github.com/epfml/OptML_course

Problem Set 4 — Solutions (Subgradient Descent)

Subgradient Descent

Solve Exercises 28, 29, 30, 32 and 27 from the lecture notes.

Exercise 28. Prove Lemma 4.2, meaning that a function that is differentiable at x has at most one subgradient there, namely $\nabla f(x)$.

Solution: Let g be a subgradient at x. Together with differentiability at x (Definition 1.5), we derive the inequality

$$(\mathbf{g} - \nabla f(\mathbf{x}))^{\top} (\mathbf{y} - \mathbf{x}) \leq r_{\mathbf{x}} (\mathbf{y} - \mathbf{x})$$

for all \mathbf{y} in some neighborhood of \mathbf{x} , where $r_{\mathbf{x}}$ is a sublinear error function $(r_{\mathbf{x}}(\mathbf{v})/\|\mathbf{v}\| \to 0 \text{ as } \mathbf{v} \to 0)$. Then it should also hold for all $\mathbf{y}_{\varepsilon} = \varepsilon \mathbf{e}_i + \mathbf{x}$ for small enough ε , where \mathbf{e}_i is the i-th coordinate vector. Substituting \mathbf{y}_{ε} and dividing both sides with $\|\mathbf{y} - \mathbf{x}\|$ we get

$$\frac{(\mathbf{g} - \nabla f(\mathbf{x}))^{\top}(\varepsilon \mathbf{e}_i)}{\varepsilon \|\mathbf{e}_i\|} \le \frac{r_{\mathbf{x}}(\varepsilon \mathbf{e}_i)}{\|\varepsilon \mathbf{e}_i\|}$$

We see that on the left hand side ε cancels and the term does not depend on it, while the right part goes to zero as $\varepsilon \to 0$ since r_x is sublinear function. This means that the left part has to be zero, i.e. $(\mathbf{g} - \nabla f(\mathbf{x}))^{\mathsf{T}} \mathbf{e}_i = 0$ and this should hold for any i. This is possible only when $\mathbf{g} = \nabla f(\mathbf{x})$.

Exercise 29. Prove the easy direction of Lemma 4.3, meaning that the existence of subgradients everywhere implies convexity!

Solution: Let's assume that we have subgradients everywhere. With $\mathbf{g} \in \partial f(\lambda \mathbf{x} + (1-\lambda)\mathbf{y})$, (4.1) yields

$$f(\mathbf{x}) \geq f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) + \mathbf{g}^{\top}((1 - \lambda)(\mathbf{x} - \mathbf{y})),$$

$$f(\mathbf{y}) \geq f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) + \mathbf{g}^{\top}(\lambda(\mathbf{y} - \mathbf{x})).$$

Adding up these two inequalities with multiples λ and $1-\lambda$ cancels the subgradient terms and yields

$$\lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y}) \ge f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}),$$

which is convexity.

Exercise 30. Prove Lemma 4.4 (Lipschitz continuity and bounded subgradients).

Solution: We assume that $\mathbf{dom}(f) = \mathbb{R}^d$ and hint at the general case. $ii \implies i$: Given any $\mathbf{x} \in \mathbb{R}^d$ ("harder" alternative: \mathbf{x} in a convex domain $D = \mathbf{dom}(f)$), consider \mathbf{g} an element of $\partial f(\mathbf{x})$. Let $\mathbf{z} = \mathbf{x} + \mathbf{g}$ (alternative: let $\eta > 0$ such that $\mathbf{z} = \mathbf{x} + \eta \mathbf{g}$ is still in D).

Since f is B-Lipschitz, we have

$$f(\mathbf{z}) - f(\mathbf{x}) \le B \cdot ||\mathbf{z} - \mathbf{x}|| = B \cdot ||\mathbf{g}||.$$

(Alternative $\cdots \leq \eta \cdot \|\mathbf{g}\|$.)

Using the definition of subgradient, we have:

$$f(\mathbf{z}) - f(\mathbf{x}) \ge \mathbf{g}^{\top}(\mathbf{z} - \mathbf{x}) = \|\mathbf{g}\|^2.$$

(Alternative: $\cdots \geq \eta \cdot ||\mathbf{g}||^2$.)

Combining the inequalities, we have $\|\mathbf{g}\| \leq B$ (the η is simplified on both sides in the alternative situation when \mathbf{x} is drawn from a domain D and not from all \mathbb{R}^d and we get the same result.)

 $i \implies ii$

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ and let \mathbf{g} be any element in $\partial f(\mathbf{x})$, by definition of subgradient we have: $f(\mathbf{y}) - f(\mathbf{x}) \ge \mathbf{g}^\top (\mathbf{y} - \mathbf{x})$, therefore, by inversing the signs in the inequality, then using Cauchy-Schwartz and finally the bound on the norm of the subgradient, we have:

$$f(\mathbf{x}) - f(\mathbf{y}) \le \mathbf{g}^{\top}(\mathbf{x} - \mathbf{y})$$
$$\le \|\mathbf{g}\| \cdot \|\mathbf{x} - \mathbf{y}\|$$
$$\le B \cdot \|\mathbf{x} - \mathbf{y}\|$$

which is the desired inequality to conclude that ii holds.

Note: in the case where f is defined on a convex domain D, the latter is assumed to be open in the alternative situation described above. If not, the reasoning applies for any \mathbf{x} in the interior of D.

Exercise 32. Suppose that $f: \mathbb{R}^d \to \mathbb{R}$ is convex and satisfies

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{\mu}{2} ||\mathbf{x} - \mathbf{y}||^2$$

for all x such that $\nabla f(x)$ exists, and for all y. Prove that this implies

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \mathbf{g}_{\mathbf{x}}^{\top}(\mathbf{y} - \mathbf{x}) + \frac{\mu}{2} \|\mathbf{x} - \mathbf{y}\|^2$$

for all x, all $g_x \in \partial f(x)$ and all y.

Solution: We first show that the conclusion holds for all limit subgradients \mathbf{g} of the form $\mathbf{g} = \lim_{n \to \infty} \nabla f(\mathbf{x}_n)$ where $\lim_{n \to \infty} \mathbf{x}_n = \mathbf{x}$. We have

$$f(\mathbf{y}) \ge f(\mathbf{x}_n) + \nabla f(\mathbf{x}_n)^{\top} (\mathbf{y} - \mathbf{x}_n) + \frac{\mu}{2} ||\mathbf{x}_n - \mathbf{y}||^2, \quad n \in \mathbb{N},$$

so this inequality also holds in the limit. Continuity of f and $\|\cdot\|^2$, convergence of gradients, and the fact that limits and products commute, implies that

$$\lim_{n \to \infty} f(\mathbf{x}_n) = f(\mathbf{x}),$$

$$\lim_{n \to \infty} \frac{\mu}{2} ||\mathbf{x}_n - \mathbf{y}||^2 = \frac{\mu}{2} ||\mathbf{x} - \mathbf{y}||^2,$$

$$\lim_{n \to \infty} \nabla f(\mathbf{x}_n)^{\top} (\mathbf{y} - \mathbf{x}_n) = \mathbf{g}^{\top} (\mathbf{y} - \mathbf{x}).$$

This yields the statement for any limit subgradient g at x, i.e., it holds that

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \mathbf{g}^{\top}(\mathbf{y} - \mathbf{x}) + \frac{\mu}{2} ||\mathbf{x} - \mathbf{y}||^2.$$

By Theorem 4.6, every subgradient at \mathbf{x} is a convex combination of limit subgradients, $\mathbf{g}_{\mathbf{x}} = \sum_{i} \lambda_{i} \mathbf{g}_{i}$, $\sum_{i} \lambda_{i} = 1$, $\lambda_{i} \geq 0$ for all i. Hence, using the above statement for limit subgradients, we get

$$f(\mathbf{y}) = \sum_{i} \lambda_{i} f(\mathbf{y}) \geq \sum_{i} \lambda_{i} f(\mathbf{x}) + \sum_{i} \lambda_{i} \mathbf{g}_{i}^{\top} (\mathbf{y} - \mathbf{x}) + \sum_{i} \lambda_{i} \frac{\mu}{2} \|\mathbf{x} - \mathbf{y}\|^{2}$$
$$= f(\mathbf{x}) + g_{\mathbf{x}}^{\top} (\mathbf{y} - \mathbf{x}) + \frac{\mu}{2} \|\mathbf{x} - \mathbf{y}\|^{2}.$$

Exercise 27. Prove Theorem 3.14!

Solution: From (3.17), the proximal step could be written as

$$\mathbf{x}_{t+1} = \underset{\mathbf{y} \in \mathbb{R}^d}{\operatorname{argmin}} \{ g(\mathbf{x}_t) + \nabla g(\mathbf{x}_t)^\top (\mathbf{y} - \mathbf{x}_t) + \frac{L}{2} \|\mathbf{y} - \mathbf{x}_t\|^2 + h(\mathbf{y}) \} = \underset{\mathbf{y} \in \mathbb{R}^d}{\operatorname{argmin}} \{ \psi(\mathbf{y}) \},$$

where the function $\psi(\mathbf{y}) = g(\mathbf{x}_t) + \nabla g(\mathbf{x}_t)^{\top} (\mathbf{y} - \mathbf{x}_t) + \frac{L}{2} ||\mathbf{y} - \mathbf{x}_t||^2 + h(\mathbf{y})$ is strongly convex with the parameter L. This means that $\psi(\mathbf{y}) \geq \psi(\mathbf{x}_{t+1}) + \frac{L}{2} ||\mathbf{y} - \mathbf{x}_{t+1}||^2$. This is equivalent to

$$\nabla g(\mathbf{x}_{t})^{\top}(\mathbf{y} - \mathbf{x}_{t}) + \frac{L}{2}\|\mathbf{y} - \mathbf{x}_{t}\|^{2} + h(\mathbf{y}) \geq \nabla g(\mathbf{x}_{t})^{\top}(\mathbf{x}_{t+1} - \mathbf{x}_{t}) + \frac{L}{2}\|\mathbf{x}_{t+1} - \mathbf{x}_{t}\|^{2} + h(\mathbf{x}_{t+1}) + \frac{L}{2}\|\mathbf{y} - \mathbf{x}_{t+1}\|^{2},$$

Rearranging terms and subtracting $h(\mathbf{x}_t)$ from both sides,

$$\nabla g(\mathbf{x}_t)^{\top}(\mathbf{y} - \mathbf{x}_t) + \frac{L}{2} \|\mathbf{y} - \mathbf{x}_t\|^2 - \frac{L}{2} \|\mathbf{y} - \mathbf{x}_{t+1}\|^2 + h(\mathbf{y}) - h(\mathbf{x}_t) \ge \nabla g(\mathbf{x}_t)^{\top}(\mathbf{x}_{t+1} - \mathbf{x}_t) + \frac{L}{2} \|\mathbf{x}_{t+1} - \mathbf{x}_t\|^2 + h(\mathbf{x}_{t+1}) - h(\mathbf{x}_t)$$

As the function g is L-smooth, we can estimate the right side as $g(\mathbf{x}_t)^{\top}(\mathbf{x}_{t+1}-\mathbf{x}_t)+\frac{L}{2}\|\mathbf{x}_{t+1}-\mathbf{x}_t\|^2 \geq g(\mathbf{x}_{t+1})-g(\mathbf{x}_t)$, and because g is convex, on the left side we estimate $\nabla g(\mathbf{x}_t)^{\top}(\mathbf{y}-\mathbf{x}_t) \leq g(\mathbf{y})-g(\mathbf{x}_t)$. Putting this together

 $f(\mathbf{y}) - f(\mathbf{x}_t) + \frac{L}{2} ||\mathbf{y} - \mathbf{x}_t||^2 - \frac{L}{2} ||\mathbf{y} - \mathbf{x}_{t+1}||^2 \ge f(\mathbf{x}_{t+1}) - f(\mathbf{x}_t)$

This holds for any $\mathbf{y} \in \mathbb{R}^d$. Lets take $\mathbf{y} = \mathbf{x}^*$ and sum up the inequation above from t = 0 to t = T - 1

$$\sum_{t=0}^{T-1} (f(\mathbf{x}^*) - f(\mathbf{x}_t)) + \frac{L}{2} \|\mathbf{x}^* - \mathbf{x}_0\|^2 - \frac{L}{2} \|\mathbf{x}^* - \mathbf{x}_T\|^2 \ge f(\mathbf{x}_T) - f(\mathbf{x}_0)$$

or equivalently,

$$\sum_{t=1}^{T} (f(\mathbf{x}_t) - f(\mathbf{x}^*)) \le \frac{L}{2} \|\mathbf{x}^* - \mathbf{x}_0\|^2 - \frac{L}{2} \|\mathbf{x}^* - \mathbf{x}_T\|^2 \le \frac{L}{2} \|\mathbf{x}^* - \mathbf{x}_0\|^2$$

Note that $f(\mathbf{x}_{t+1}) \leq f(\mathbf{x}_t)$, as $\psi(\mathbf{x}_{t+1}) \leq \psi(\mathbf{x}_t)$ for each $0 \leq t \leq T$

$$f(\mathbf{x}_t) - f(\mathbf{x}^*) \le \frac{1}{T} \sum_{t=1}^{T} (f(\mathbf{x}_t) - f(\mathbf{x}^*)) \le \frac{L}{2T} ||\mathbf{x}^* - \mathbf{x}_0||^2.$$

Random Walks

Gradient descent turns up in a surprising number of situations which apriori have nothing to do with optimization. In this exercise, we will see how performing a random walk on a graph can be seen as a special case of gradient descent.

We are given an undirected graph G(V,E) with vertices V=[n] labelled 1 through n, and edges $E\subseteq [n]^2$ such that if $(i,j)\in E$, then $(j,i)\in E$. Further, we assume that the graph is regular in the sense that every edge has the same degree. Let d be the degree of each node such that if we denote $\mathcal{N}(i)=\{j:(i,j)\in E\}$ to be the neighbors of i, then $|\mathcal{N}(i)|=d$. We assume that every node is connected to itself and so $(i,i)\in \mathcal{N}(i)$.

Now we start our random walk from node 1, jumping randomly from a node to its neighbor. More precisely, suppose at time step t we are at node i_t . Then i_{t+1} is picked uniformly at random from $\mathcal{N}(i)$. If we run this random walk for a large enough T steps, we expect that $\Pr(i_T=j)=1/n$ for any $j\in[n]$. This is called the stationary distribution.

Problem A. Let us represent the position at time step t in the graph with $\mathbf{e}_{i_t} \in \mathbb{R}^n$ where the i_t th coordinate is 1 and all others are 0. Then, the vector $\mathbf{x}_t = \mathbb{E}[\mathbf{e}_{i_t}]$ denotes the probability distribtion over the n nodes of the graph. Further, let us denote $\mathbf{G} \in \mathbb{R}^{n \times n}$ be the transition probability matrix such that

$$\mathbf{G}_{i,j} = \begin{cases} \frac{1}{d} & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}.$$

Show that

$$\mathbf{x}_{t+1} = \mathbf{G}\mathbf{x}_t \tag{1}$$

Solution: Let look at one coordinate j of random vector $\mathbf{x}_{t+1} = \mathbb{E}[\mathbf{e}_{i_{t+1}}]$. Then by the low of total probability, the expectation of this coordinate would be

$$[\mathbf{x}_{t+1}]_{j} = \mathbb{E}[\mathbf{e}_{i_{t+1}}]_{j} = \Pr([\mathbf{e}_{i_{t+1}}]_{j} = 1) = \sum_{k} \Pr(i_{t+1} = j | i_{t} = k) \Pr(i_{t} = k) = \sum_{k} \Pr(i_{t+1} = j | i_{t} = k) \Pr([\mathbf{e}_{i_{t}}]_{k} = 1)$$

$$= \sum_{k} \Pr(i_{t+1} = j | i_{t} = k) \mathbb{E}[\mathbf{e}_{i_{t}}]_{k} = \sum_{k} \Pr(i_{t+1} = j | i_{t} = k) [\mathbf{x}_{t}]_{j}$$

Note, that for $k: (j,k) \notin E$, $\Pr(i_{t+1} = j | i_t = k) = 0 = \mathbf{G}_{j,k}$ and for $k: (j,k) \in E$, $\Pr(i_{t+1} = j | i_t = k) = \frac{1}{d} = \mathbf{G}_{j,k}$. This means that

$$[\mathbf{x}_{t+1}]_j = \sum_k \mathbf{G}_{jk}[\mathbf{x}_t]_k,$$

or equivalently

$$\mathbf{x}_{t+1} = \mathbf{G}\mathbf{x}_t \tag{2}$$

Problem B. Simulate the random walk above over a torus and confirm that we indeed converge to a uniform distribution over the nodes. What is the *rate* at which this convergence occurs?

Follow the Python notebook provided here:

github.com/epfml/OptML_course/tree/master/labs/ex04/

Problem C. Define $\mu = \frac{1}{n} \mathbf{1}_n$ be a vector of all 1/n, and a objective function $f : \mathcal{S} \to \mathbb{R}$ as

$$f(\mathbf{x}) = (\mathbf{x} - \mu)^{\top} (\mathbf{I} - \mathbf{G})(\mathbf{x} - \mu),$$

defined over the probability simplex $S \subseteq \mathbb{R}^n$ where $S = \{\mathbf{v} : \mathbf{1}_n^\top \mathbf{v} = 1, v_i \ge 0\}$.

- 1. Show that f defined above is convex and compute its smoothness constant.
- 2. Show that running gradient descent on f with the correct step-size is equivalent to the random walk step (1).
- 3. Prove that \mathbf{x}_t converges to the distribution μ at a linear rate i.e. for the random walk on a torus with n nodes,

$$\|\mathbf{x}_t - \mu\|_2^2 \le \left(1 - \frac{1}{n}\right)^t \|\mathbf{x}_0 - \mu\|_2^2 \le \left(1 - \frac{1}{n}\right)^t.$$

Hint: Use that the two largest eigenvalues of G are 1 and $1 - \frac{1}{n}$. Also $G\mu = \mu$ and so μ is the eigenvector corresponding to eigenvalue 1.

Solution:

1. By the second order characterization of convexity (Lemma 1.18) the function is convex if its hessian is positive semidefinite. Lets show that

$$\nabla^2 f(\mathbf{x}) = 2(\mathbf{I} - \mathbf{G}) \succeq 0$$

For any vector **z**

$$\mathbf{z}^{\top}(\mathbf{I} - \mathbf{G})\mathbf{z} = \sum_{i=1}^{n} z_{i}^{2} - \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{G}_{ij} z_{i} z_{j} = d \sum_{i=1}^{n} \frac{1}{d} z_{i}^{2} - \sum_{i=1}^{n} \sum_{j:(i,j)\in E} \frac{1}{d} z_{i} z_{j} =$$

$$= (d-1) \sum_{i=1}^{n} \frac{1}{d} z_{i}^{2} - \sum_{i=1}^{n} \sum_{j< i:(i,j)\in E} \frac{2}{d} z_{i} z_{j} = \sum_{i=1}^{n} \frac{1}{d} \sum_{j< i:(i,j)\in E} z_{i}^{2} + z_{j}^{2} - 2z_{i} z_{j}$$

$$= \sum_{i=1}^{n} \frac{1}{d} \sum_{j< i:(i,j)\in E} (z_{i} - z_{j})^{2} \ge 0.$$

where we used that the G is symmetric because the graph is undirected and that every row of G had exactly d non-zero elements.

Let us prove now that the function f is L-smooth with smoothness constant L=2. From Exercise 14 we know that $L=2\|I-G\|$, and we claim that $\|I-G\|$ is less than 1. As we already showed above,

$$\mathbf{z}^{\top}(\mathbf{I} - \mathbf{G})\mathbf{z} = \sum_{i=1}^{n} \frac{1}{d} \sum_{j < i: (i,j) \in E} (z_i - z_j)^2.$$

Using that $z_i > 0 \ \forall i$,

$$\mathbf{z}^{\top}(\mathbf{I} - \mathbf{G})\mathbf{z} \le \frac{1}{d} \sum_{i=1}^{n} \sum_{j < i: (i,j) \in E} z_i^2 + z_j^2 = \frac{d-1}{d} \sum_{i=1}^{n} z_i^2 < \|\mathbf{z}_i\|^2$$

This means that $\|\mathbf{I} - \mathbf{G}\| < 1$.

2. The gradient of f is

$$\nabla f(\mathbf{x}) = 2(\mathbf{I} - \mathbf{G})(\mathbf{x}_t - \mu) = 2(\mathbf{I} - \mathbf{G})\mathbf{x}_t - 2(\mu - \mathbf{G}\mu) = 2(\mathbf{I} - \mathbf{G})\mathbf{x}_t.$$

The last equality followed since $G\mu=\mu$. With the stepsize $\gamma=\frac{1}{L}=\frac{1}{2}$ gradient descent will take form

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \frac{1}{2}\nabla f(\mathbf{x}_t) = \mathbf{x}_t - \frac{1}{2}2(\mathbf{I} - \mathbf{G})\mathbf{x}_t = \mathbf{G}\mathbf{x}_t.$$

Since our problem is constrained to the set S, we have to make sure \mathbf{x}_{t+1} also lies in S. This is easy to verify.

3. To show the linear convergence rate, we first will prove that function f restricted to the set S is strongly convex with parameter $\frac{2}{n}$. Then, the convergence rate would follow from the Theorem 2.11.

To find strong convexity coefficient we need to show a lower bound on $(\mathbf{y} - \mathbf{x})^{\top} \nabla^2 f(\mathbf{x}) (\mathbf{y} - \mathbf{x}) = (\mathbf{y} - \mathbf{x})^{\top} 2(\mathbf{I} - \mathbf{G})(\mathbf{y} - \mathbf{x})$ for $\mathbf{x}, \mathbf{y} \in \mathcal{S}$. For that we will find the minimum

$$\min_{\mathbf{y},\mathbf{x} \in \mathcal{S}} \frac{(\mathbf{y} - \mathbf{x})^\top (\mathbf{I} - \mathbf{G})(\mathbf{y} - \mathbf{x})}{\|\mathbf{y} - \mathbf{x}\|^2}$$

First, let's show that $\mathbf{y} - \mathbf{x} \perp \mu \ \forall \mathbf{x}, \mathbf{y} \in \mathcal{S}$. Indeed,

$$(\mathbf{y} - \mathbf{x})^{\mathsf{T}} \mu = \mathbf{y}^{\mathsf{T}} \mu - \mathbf{x}^{\mathsf{T}} \mu = \frac{1}{n} - \frac{1}{n} = 0.$$

Here we used that $\sum_i y_i = 1$ and $\sum_i x_i = 1$.

Then

$$\min_{\mathbf{y}, \mathbf{x} \in \mathcal{S}} \frac{(\mathbf{y} - \mathbf{x})^{\top} (\mathbf{I} - \mathbf{G}) (\mathbf{y} - \mathbf{x})}{\|\mathbf{y} - \mathbf{x}\|^2} \geq \min_{\mathbf{z} \perp \mu} \frac{\mathbf{z}^{\top} (\mathbf{I} - \mathbf{G}) \mathbf{z}}{\|\mathbf{z}\|^2} \,.$$

Recall that μ is the principal eigenvector. Then, the right hand side of the above equation characterizes the second largest eigenvalue. In the basis of orthonormal eigenvectors $\{\mathbf{v}_i\}_{i=1}^n$ of $\mathbf{I} - \mathbf{G}$ vector \mathbf{z} is represented as $\mathbf{z} = \sum_{i=2}^n \alpha_i \mathbf{v}_i$, because it is orthogonal to $\mathbf{v}_1 = \mu$. Then

$$\min_{\mathbf{z} \perp \mu} \frac{\mathbf{z}^{\top} (\mathbf{I} - \mathbf{G}) \mathbf{z}}{\|\mathbf{z}\|^2} = \min_{\alpha_2, \dots, \alpha_n} \frac{\sum_{i=2}^n \alpha_i^2 \lambda_i}{\sum_{i=2}^n \alpha_i^2} = \lambda_2 = \frac{1}{n}.$$

This shows that f is $\frac{2}{n}$ strongly convex when restricted to S.