```
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
vector<vector<int>> twoSum(vector<int>
nums, int target) {
  vector<vector<int>> res;
  int n = nums.size();
  sort(nums.begin(), nums.end()); // Sorting
the array
  int left = 0, right = n - 1;
  while (left < right) {
    if (left > 0 \&\& nums[left] == nums[left -
1]) { // Skip duplicates for left pointer
       left++:
       continue;
    int sum = nums[left] + nums[right];
    if (sum == target) {
       res.push_back({nums[left],
nums[right]});
       left++;
       right--;
       // Skip duplicates for both left and
right pointers
       while (left < right && nums[left] ==
nums[left - 1]) left++;
       while (left < right && nums[right] ==
nums[right + 1]) right--;
    } else if (sum > target) {
       right--;
    } else {
       left++;
  return res;
int main() {
  vector<int> nums = \{2, 2, 4, 3, 1, 6, 6, 7, 5,
9, 1, 8, 9};
  int target = 10;
  vector<vector<int>> res = twoSum(nums,
target);
  // Sorting each pair and then sorting all
pairs lexicographically
  sort(res.begin(), res.end(), [](const
vector<int>& a, const vector<int>& b) {
    return a[0] == b[0] ? a[1] < b[1] : a[0] <
b[0];
  });
```

Two Sum in C++

Input:

nums = $\{2, 2, 4, 3, 1, 6, 6, 7, 5, 9, 1, 8, 9\}$ target = 10

After sorting:

 $nums = \{1, 1, 2, 2, 3, 4, 5, 6, 6, 7, 8, 9, 9\}$

Q Step-by-step Table Dry Run:

Ste p	lef t	right	num s[lef t]		su m	Actio n	Result
1	0	12	1	9	10	Found a pair, store it	{1, 9}
	1	11	1	9	10	Skip duplic ate left	
	2	11	2	9	11	Sum > target , move right	
2	2	10	2	8	10	Found a pair, store it	{1, 9}, {2, 8}
	3	9	2	7	9	Skip duplic ate left, move left++	
3	4	9	3	7	10	Found a pair, store it	{1,9},{2,8}, {3,7}
4	5	8	4	6	10	Found a pair, store it	{1,9},{2,8}, {3,7},{4,6}
5	6	7	5	6	11	Sum > target , move right	
6	6	6	5	5	10	Stop (left >= right)	

♥ Final Result:

 $\{\{1, 9\}, \{2, 8\}, \{3, 7\}, \{4, 6\}\}$

```
// Printing the result
for (auto& pair : res) {
    for (int val : pair) {
        cout << val << " ";
    }
    cout << endl;
}

return 0;

1 9
2 8
3 7
```

46