

Limiti

Intervalli e intorni, definizione, teoremi e calcolo

Intervalli e intorni

• INTERVALLO = particolare sottoinsieme dei numeri reali che corrisponde ad un segmento (limitato) o una semiretta (illimitato) della retta reale.

■ INTORNO DI UN PUNTO: qualsiasi intervallo aperto contenente il punto (completo).

$$I(x_0) =]x_0 - \delta_1; \ x_0 + \delta_2[$$
, con δ_1 , δ_2 numeri reali positivi.
ESEMPIO: l'intervallo]3; 6[è un intorno del punto 5, poiché: $I(5) =]5 - 2; 5 + 1]$

Proprietà degli intorni

• Se $\delta_1 = \delta_2 \rightarrow$ intorno circolare

- Se $\delta_2 = 0 \rightarrow$ intorno sinistro
- Se $\delta_1 = 0 \rightarrow$ intorno destro

L'intersezione tra due o più intorni di un punto è ancora intorno del punto stesso. Se tutti gli intorni sono circolari, l'intersezione rimane intorno circolare.

Intorni di infinito

■ INTORNO DI MENO INFINITO: intervallo illimitato inferiormente, cioè del tipo] $-\infty$; a[

$$I(-\infty) =]-\infty$$
; $a[=\{x \in \mathbb{R}: x < a\}$, con a numero reale arbitrario;

■INTORNO DI PIU' INFINITO: intervallo illimitato superiormente, cioè del tipo]b; $+\infty$ [

$$I(+\infty) =]b; +\infty[= \{x \in \mathbb{R}: x > b\}, \text{ con } b \text{ numero reale arbitrario} \}$$

Punti di accumulazione

Il numero x_0 è un punto di accumulazione per l'insieme A reale se ogni intorno completo di x_0 contiene infiniti punti di A.

ESEMPIO: L'insieme $A = [2; 5[U \{6\} \text{ ha infiniti}]$ punti di accumulazione. Infatti, ogni punto dell'intervallo [2; 5[è un punto di accumulazione, così come lo è anche l'estremo 5 dell'intervallo, anche se non appartiene ad A. Il punto x = 6, invece, non è un punto di accumulazione di A.

Arriviamo alla definizione di limite di una funzione (1)

Consideriamo la funzione

$$f(x) = y = \frac{x^2 + x}{2x}$$

Il suo dominio è $\mathbb{R} - \{0\}$.

Tolto il suo comportamento in 0, la funzione è perfettamente sovrapponibile alla retta

$$y = \frac{1}{2}x + \frac{1}{2}$$

Quale sarà il comportamento di questa funzione per x che si avvicina a 0?

Arriviamo alla definizione di limite di una funzione (2)

X	У
1	1
-1	0
1/2	3/4
- ½	1/4

Consideriamo intorni del punto $x_0=0$ sempre più piccoli: le immagini di tali intorni attraverso la funzione f si riducono ad essere intorni sempre più piccoli centrati nel punto $y_0=\frac{1}{2}$. La funzione non potrà mai assumere quel valore, ma ci si avvicinerà sempre di più, tendendo ad ½ per x che tende a 0.

Definizione di limite di una funzione

La funzione f(x), definita nel dominio D, ha come limite il numero reale l per x che tende ad x_0 punto di accumulazione di D quando, per qualunque numero E scelto piccolo a piacere, si può trovare un intorno completo $I(x_0)$ tale che

$$|f(x) - l| < \varepsilon$$

per ogni $x \in I(x_0) \cap D$, diverso al più da x_0 .

Si scrive:

$$\lim_{x \to x_0} f(x) = l$$

Interpretazione geometrica

N.B. questa definizione consente solo di verificare il limite se lo conosciamo già, ma non di calcolarlo.

Casistica possibile

• esiste
$$\lim_{x \to x_0} f(x) = l$$

$$e l = f(x_0)$$

$$\lim_{x \to 1} 2^x = 2$$

e 2 = 2¹

• esiste
$$\lim_{x \to x_0} f(x) = l$$

$$e l \neq f(x_0)$$

$$\lim_{x \to 3} f(x) = 2$$

e $2 \neq f(3)$

• esiste
$$\lim_{x \to x_0} f(x) = l$$

e non esiste $f(x_0)$

$$\lim_{x \to 2} \frac{x^2 - 2x}{x - 2} = 2$$
e $f(2)$ non esiste

Definizione di continuità

La funzione f(x) è **continua** nel punto x_0 quando esiste il limite di tale funzione per $x \to x_0$ e tale limite è uguale al valore $f(x_0)$ della funzione calcolata in x_0 , cioè

$$\exists \lim_{x \to x_0} f(x) = f(x_0)$$

a. $\lim_{x \to x_0} f(x) = \ell$ e $f(x_0) = \ell$, quindi f(x) è continua in x_0 .

b. $\lim_{x \to x_0} f(x) = \ell$ e $f(x_0) \neq \ell$, quindi f(x) non è continua in x_0 .

Funzioni continue più «famose»

- funzioni costanti y = k
- funzioni polinomiali (es. quadratiche) $y=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_0$
- funzioni radici nel loro dominio $y = \sqrt[n]{x}$
- funzioni goniometriche $y = \cos x$ $y = \sin x$ $y = \tan x$ (nel suo dominio)
- funzioni esponenziali $y = a^x$
- funzioni logaritmiche nel loro dominio $y = \log_a x$

Limite destro e limite sinistro

■ Limite DESTRO: quando prendo un intorno solo destro di x_0 , cioè $x \to x_0$ restando sempre maggiore di esso, e si scrive:

$$\lim_{x \to x_0^+} f(x)$$

• Limite SINISTRO: quando prendo un intorno solo sinistro di x_0 , cioè $x \to x_0$ restando sempre minore di esso, e si scrive:

$$\lim_{x \to x_0^-} f(x)$$

$$\lim_{x \to x_0} f(x) = l \quad \leftrightarrow \quad \lim_{x \to x_0^+} f(x) = l \quad \land \quad \lim_{x \to x_0^-} f(x) = l$$

N.B.: se limite destro e sinistro non coincidono, allora non esiste il limite.

Limite infinito di una funzione

Consideriamo la funzione

$$f(x) = y = \frac{1}{x}$$

Il suo dominio è $\mathbb{R} - \{0\}$.

Notiamo dal grafico che la funzione cresce man mano che si avvicina a 0 da destra, mentre decresce quando si avvicina a 0 da sinistra:

X	у	X	у
$^{1}/_{2}$	2	$-\frac{1}{2}$	-2
1/8	8	$^{-1}/_{8}$	-8
1/20	20	$-\frac{1}{20}$	-20
1/1000	1000	$-\frac{1}{1000}$	-1000

Definizioni di limite infinito

Una funzione f(x) di dominio D tende a $\pm \infty$ per $x \to x_0$ se, per qualsiasi numero positivo M grande a piacere, si può determinare un intorno completo $I(x_0)$ tale che

$$f(x) > M (per + \infty) oppure f(x) < -M (per - \infty)$$

per ogni $x \in I(x_0) \cap D$, diverso al più da x_0 .

Si scrive

$$\lim_{x \to x_0} f(x) = \pm \infty$$

Esempi di grafici

Limite per x_0 che tende a infinito

Consideriamo la funzione

$$f(x) = y = \frac{1}{x}$$

Il suo dominio è $\mathbb{R} - \{0\}$.

Notiamo dal grafico che la funzione, man mano che x cresce, si avvicina a 0 da sopra, mentre se x decresce si avvicina a 0 da sotto:

X	У	X	У
2	1/2	-2	$-\frac{1}{2}$
8	1/8	-8	$^{-1}/_{8}$
20	1/20	-20	$-\frac{1}{20}$
1000	1/1000	-1000	$-\frac{1}{1000}$

Definizioni di limite per x_0 che tende a infinito

Una funzione f(x) di dominio D tende a l per $x \to +\infty$ $(-\infty)$ se, per qualsiasi numero positivo ε piccolo a piacere, si può trovare un numero positivo M grande a piacere tale che

$$|f(x) - l| < \varepsilon$$

per ogni x > M (x < -M) preso nel dominio di f.

Si scrive

$$\lim_{x \to +\infty} f(x) = l$$

Limite infinito per x_0 che tende a infinito

Consideriamo la funzione

$$f(x) = y = 2^x$$

Il suo dominio è \mathbb{R} .

Notiamo dal grafico che la funzione, man mano che x cresce, cresce sempre di più:

X	У	
2	4	
8	64	
20	400	
1000	1000000	

Definizioni di limite infinito per x_0 che tende a infinito

Una funzione f(x) di dominio D tende a $\pm \infty$ per $x \to \pm \infty$ se, per qualsiasi numero positivo K grande a piacere, si può trovare un numero positivo M grande a piacere tale che

$$f(x) > K (f(x) < -K)$$

per ogni x > M (x < -M) preso nel dominio di f.

Si scrive

$$\lim_{x \to +\infty} f(x) = \pm \infty$$

Teorema di unicità del limite

Se esiste il limite l di f(x) per $x \to x_0$, allora esso è unico.

$$\exists ! \lim_{x \to x_0} f(x) = l$$

Teorema di permanenza del segno

Se una funzione f(x) ammette limite finito l per x che tende a x_0 ed essa, in un intorno $I(x_0)$ essa è:

- positiva o nulla, allora $l \ge 0$;
- negativa o nulla, allora $l \leq 0$.

Teorema del confronto

Siano f(x), g(x), h(x) tre funzioni definite in un intorno $I(x_0)$, escluso al più il punto x_0 . Se in ogni punto di $I(x_0)$ — $\{x_0\}$ risulta

$$h(x) \le f(x) \le g(x)$$

e il limite delle due funzioni h(x) e g(x), per $x \to x_0$ è uno stesso numero l, allora anche il limite di f(x) per $x \to x_0$ è uguale ad l.

$$\lim_{x \to 0} \frac{\sin x - 2x}{x - 2\sin x} = 1$$

$$\lim_{x o 0}rac{\ln(1+x)}{x}=1;$$

$$\lim_{x o 0}rac{\ln(1+x)}{x}=1; \qquad \qquad \lim_{f(x) o 0}rac{\ln(1+f(x))}{f(x)}=1$$

$$\lim_{x\to 3}\frac{\sin(x-3)}{(x-3)}$$

$$\lim_{x\to 0}\frac{\sin(5^x-1)}{5^x-1}$$

CALCOLO DELLIMITI

$$\lim_{x\to 0} \frac{\tan x}{x} = 1$$

$$\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$$

$$\lim_{x\to 2}$$

$$\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$$

$$\lim_{x\to 2} \frac{4-x^2}{x^3+2x^2-3x-4}$$

$$\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$$

$$\lim_{x\to 0} \frac{s^x - 1}{s} = 1$$

$$\lim_{x\to 0} \frac{e^{3+x}}{e^{-x}+e^x}$$

Limiti di funzioni elementari

Funzioni elementari continue \rightarrow se il limite è per $x \rightarrow x_0$ finito, basta calcolare $f(x_0)$ Se il limite è per $x \rightarrow \pm \infty$ e/o è infinito...

$$y = x^n \rightarrow \dots$$

$$y = \sqrt[n]{x} \rightarrow \dots$$

$$y = a^x \rightarrow \dots$$

$$y = \log_a x \rightarrow \dots$$

$$y = \sin x$$
, $y = \cos x \rightarrow ...$

Funzioni non continue \rightarrow si studiano i limiti agli estremi del dominio:

$$y = \operatorname{tg} x$$
 $y = \frac{1}{x}$

$$\frac{\frac{1}{0^{\pm}} \to \pm \infty}{\frac{1}{\pm \infty} \to 0}$$

Algebra dei limiti

- SOMMA DEI LIMITI: $\lim_{x \to x_0} [f(x) + g(x)] = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$
- PRODOTTO COSTANTE PER LIMITE: $\lim_{x \to x_0} k \cdot f(x) = k \cdot \lim_{x \to x_0} f(x)$
- PRODOTTO DI LIMITI: $\lim_{x \to x_0} [f(x) \cdot g(x)] = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$
- QUOZIENTE DI LIMITI: $\lim_{x \to x_0} [f(x)/g(x)] = \lim_{x \to x_0} f(x) / \lim_{x \to x_0} g(x)$
- POTENZA DI LIMITI: $\lim_{x \to x_0} [f(x)^{g(x)}] = \lim_{x \to x_0} f(x)^{\lim_{x \to x_0} g(x)}$ (base >0)

In caso di limite infinito?

FORME DETERMINATE

- $l \pm \infty$
- $-\pm\infty\pm\infty$
- $\pm \infty \cdot l$
- $l/\pm\infty$
- $\pm \infty/l$
- $-l^{\infty}$

FORME INDETERMINATE

- $-+\infty-\infty$
- $\pm \infty \cdot 0$
- 0/0
- $-\infty/\infty$
- **0**0
- 1[∞]

Forma indeterminata $+\infty - \infty$

Funzioni POLINOMIALI: raccolgo x alla potenza maggiore

$$\lim_{x \to +\infty} (x^3 + 2x^2 - x) = \lim_{x \to +\infty} x^3 \left(1 + \frac{2}{x} - \frac{1}{x^2} \right) = +\infty$$

Funzioni RAZIONALI: razionalizzo

$$\lim_{x \to +\infty} (x - \sqrt{x^2 - 3}) = \lim_{x \to +\infty} (x - \sqrt{x^2 - 3}) \cdot \frac{x + \sqrt{x^2 - 3}}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)}{x + \sqrt{x^2 - 3}} = \lim_{x \to +\infty} \frac{x^2 - (x^2 - 3)$$

$$= \lim_{x \to +\infty} \frac{3}{x + \sqrt{x^2 - 3}} = 0$$

Forma indeterminata $\pm \infty \cdot 0$

Funzioni GONIOMETRICHE: uso formule per risolverla

$$\lim_{x \to \frac{\pi^{+}}{2}} \cos x \cdot \operatorname{tg} x = \lim_{x \to \frac{\pi^{+}}{2}} \cos x \cdot \frac{\sin x}{\cos x} = 1$$

■ Altre funzioni: lo riporto alla forma indeterminata 0/0 oppure ∞/∞

Forma indeterminata ∞/∞

Se ho una funzione razionale, raccolgo la potenza maggiore di x sia a numeratore che a denominatore, altrimenti uso la gerarchia degli infiniti.

$$\lim_{x \to +\infty} \frac{2x^4 + 3x^2 + 1}{x^3 + 2x}$$

$$\lim_{x \to +\infty} \frac{2x+4}{x^2-1}$$

$$\lim_{x \to +\infty} \frac{3x^3 + 4x}{2x^3 + 3x^2 + 1}$$

Forma indeterminata 0/0

Scompongo la funzione fratta (numeratore e denominatore) in modo da semplificare. Il numero a cui tende x mi dà l'indicazione del polinomio che posso raccogliere.

$$\lim_{x \to -5} \frac{x^2 - 25}{x^2 + 7x + 10} = \lim_{x \to -5} \frac{(x+5)(x-5)}{(x+2)(x+5)} = \lim_{x \to -5} \frac{x - 5}{x + 2} = \frac{-10}{-3} = \frac{10}{3}$$

$$\lim_{x \to 0} \frac{x^3 + 2x^2}{x^2 - x} = \lim_{x \to 0} \frac{x(x^2 + 2x)}{x(x - 1)} = \lim_{x \to 0} \frac{x^2 + 2x}{x - 1} = 0$$

Forme indeterminate 0^0 , ∞^0 , 1^∞

$$\lim_{x \to x_0} f(x)^{g(x)} = \lim_{x \to x_0} e^{\ln(f(x)^{g(x)})} = \lim_{x \to x_0} e^{g(x) \ln f(x)}$$

$$\lim_{x \to 0^{+}} (x^{2} + 2x)^{\frac{1}{\ln x}} = \lim_{x \to 0^{+}} e^{\ln(x^{2} + 2x)^{\frac{1}{\ln x}}} = \lim_{x \to 0^{+}} e^{\frac{1}{\ln x} \ln(x(x+2))} = \lim_{x \to 0^{+}} e^{\frac{\ln x + \ln(x+2)}{\ln x}} = \lim_{x \to 0^{+}} e^{\frac{\ln (x+2)}{\ln x}} = e \cdot \lim_{x \to 0^{+}} e^{\frac{\ln (x+2)}{\ln x}} = e \cdot 1 = e$$

Limiti notevoli

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$

$$\lim_{x \to \pm \infty} \left(1 + \frac{1}{x} \right)^x = e$$

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

Gerarchia degli infiniti

Se ci si imbatte in una forma indeterminata $\frac{\infty}{\infty}$ dove sono presenti funzioni di tipo diverso, bisogna ricordare che:

$$(\log_a x)^n \ll x^k \ll b^x$$

cioè, le esponenziali vanno ad infinito più rapidamente di tutte le funzioni, seguite dalle potenze di x, mentre i logaritmi sono i più lenti.

$$\lim_{x \to +\infty} \frac{2^x}{x^{100}} = +\infty \qquad \qquad \lim_{x \to +\infty} \frac{(\log x)^{23}}{x} = 0$$

