

Anti-Surge, High Power Thick Film Chip Resistors

The anti-surge thick film chip resistor series combines a significantly higher power rating and pulse load performance as compared to standard chip resistors.

FEATURES

- Excellent surge pulse capability
- Superior ESD surge characteristics
- High power rating
- AEC-Q200 qualified
- Material categorization: for definitions of compliance please see www.vishav.com/doc?99912

RoHS COMPLIANT HALOGEN FREE

APPLICATIONS

- Automotive
- Industrial
- Telecommunications
- Medical

TECHNICAL SPECIFICATIONS						
DESCRIPTION	RCS0402 e3	RCS0603 e3	RCS0805 e3	RCS1206 e3		
Imperial size	0402	0603	0805	1206		
Metric size code	RR1005M	RR1608M	RR2012M	RR3126M		
Resistance range	1 Ω to 10 M Ω ; jumper (0 Ω)					
Resistance tolerance	± 5 %; ± 1 %; ± 0.5 %					
Temperature coefficient		± 200 ppm/K;	± 100 ppm/K			
Rated dissipation, P_{70} ⁽¹⁾	0.2 W	0.25 W	0.4 W	0.5 W		
Operating voltage, U _{max.} AC _{RMS} /DC	50 V	75 V	150 V	200 V		
Permissible film temperature, $g_{\rm F \ max.}^{\ \ (1)}$		155	5 °C			
Operating temperature range		-55 °C to	+155 °C			
Max. resistance change at P_{70} for resistance range, $ \Delta R/R $ after:						
1000 h		≤ 1.	0 %			
8000 h	≤ 2.0 %					
Permissible voltage against ambient (insulation):						
1 min, U_{ins}	75 V	100 V	200 V	300 V		

Note

APPLICATION INFORMATION

When the resistor dissipates power, a temperature rise above the ambient temperature occurs, dependent on the thermal resistance of the assembled resistor together with the printed circuit board. The rated dissipation applies only if the permitted film temperature is not exceeded.

These resistors do not feature a limited lifetime when operated within the permissible limits. However, resistance value drift increasing over operating time may result in exceeding a limit acceptable to the specific application, thereby establishing a functional lifetime.

⁽¹⁾ Please refer to APPLICATION INFORMATION below.

TEMPERATU	RE COEFFICIENT AND I	RESISTANCE RANG	E	
TYPE / SIZE	TCR	TOLERANCE	RESISTANCE	E-SERIES
	± 200 ppm/K	± 5 %	1 Ω to 10 MΩ	E24
	± 100 ppm/K	± 1 %	1 Ω to 10 MΩ	E24; E96
RCS0402 e3	± 100 ppm/K	± 0.5 %	1 Ω to 10 MΩ	E24; E96
	Jumper, I _{max.} = 3 A	≤ 20 mΩ	0 Ω	-
RCS0603 e3	± 200 ppm/K	± 5 %	1 Ω to 10 M Ω	E24
	± 100 ppm/K	± 1 %	1 Ω to 10 M Ω	E24; E96
	± 100 ppm/K	± 0.5 %	1 Ω to 10 MΩ	E24; E96
	Jumper, I _{max.} = 3.5 A	≤ 20 mΩ	0 Ω	-
	± 200 ppm/K	± 5 %	1 Ω to 10 M Ω	E24
RCS0805 e3	± 100 ppm/K	± 1 %	1 Ω to 10 MΩ	E24; E96
HC20802 63	± 100 ppm/K	± 0.5 %	1 Ω to 10 MΩ	E24; E96
	Jumper, I _{max.} = 4 A	≤ 20 mΩ	0 Ω	-
	± 200 ppm/K	± 5 %	1 Ω to 10 M Ω	E24
DCC1006 - 2	± 100 ppm/K	± 1 %	1 Ω to 10 M Ω	E24; E96
RCS1206 e3	± 100 ppm/K	± 0.5 %	1 Ω to 10 M Ω	E24; E96
	Jumper, I _{max.} = 5 A	≤ 20 mΩ	0 Ω	-

Note

• The temperature coefficient of resistance (TCR) is not specified for 0 Ω jumpers.

PACKAGING									
TYPE / SIZE	CODE	QUANTITY	PACKAGING STYLE	PACKAGING STYLE WIDTH PITCH		PACKAGING DIMENSIONS			
RCS0402 e3	ED = ET7	10 000			2 mm	Ø 180 mm/7"			
NO30402 e3	EE = EF4	50 000			2 111111	Ø 330 mm/13"			
	EI = ET2	5000			2 mm 4 mm 4 mm	Ø 180 mm/7"			
	ED = ET3	10 000		8 mm		Ø 180 mm/7"			
	EL = ET4	20 000				Ø 285 mm/11.25"			
RCS0603 e3	EE = ET8	50 000				Ø 330 mm/13"			
	EA = ET1	5000				Ø 180 mm/7"			
	EB = ET5	10 000	Paper tape according to IEC 60286-3, Type 1a			Ø 285 mm/11.25"			
	EC = ET6	20 000	, , , , , , , , , , , , , , , , , , , ,			Ø 330 mm/13"			
	EA = ET1	5000				Ø 180 mm/7"			
RCS0805 e3	EB = ET5	10 000				Ø 285 mm/11.25"			
	EC = ET6	20 000				Ø 330 mm/13"			
	EA = ET1	5000				Ø 180 mm/7"			
RCS1206 e3	EB = ET5	10 000				Ø 285 mm/11.25"			
	EC = ET6	20 000				Ø 330 mm/13"			

www.vishay.com

Vishay

DESCRIPTION

Production is strictly controlled and follows an extensive set of instructions established for reproducibility. A cermet film layer and a glass-over are deposited on a high grade (Al₂O₃) ceramic substrate with its prepared inner contacts on both sides. A special laser is used to achieve the target value and the desired power dissipation performance by smoothly fine trimming the resistive layer without damaging the ceramics. The resistor elements are covered by a protective coating designed for electrical, mechanical and climatic protection. The terminations receive a final pure tin on nickel plating.

The result of the determined production is verified by an extensive testing procedure on 100 % of the individual chip resistors. Only accepted products are laid directly into the tape in accordance with **IEC 60286-3 Type 1a** ⁽¹⁾.

ASSEMBLY

The resistors are suitable for processing on automatic SMD assembly systems. They are suitable for automatic soldering using wave, reflow or vapor phase as shown in **IEC 61760-1**. The encapsulation is resistant to all cleaning solvents commonly used in the electronics industry, including alcohols, esters and aqueous solutions. The suitability of conformal coatings potting compounds and their processes, if applied, shall be qualified by appropriate means to ensure the long-term stability of the whole system.

The resistors are RoHS-compliant, the pure tin plating provides compatibility with lead (Pb)-free and lead-containing soldering processes. Solderability is specified for 2 years after production or requalification. The permitted storage time is 20 years. The immunity of the plating against tin whisker growth has been proven under extensive testing.

MATERIALS

Vishay acknowledges the following systems for the regulation of hazardous substances:

- IEC 62474, Material Declaration for Products of and for the Electrotechnical Industry, with the list of declarable substances given therein (2)
- ullet The Global Automotive Declarable Substance List (GADSL) $^{(3)}$
- The REACH regulation (1907/2006/EC) and the related list of substances with very high concern (SVHC) (4) for its supply chain

The products do not contain any of the banned substances as per IEC 62474, GADSL, or the SVHC list, see www.vishay.com/how/leadfree.

Hence the products fully comply with the following directives:

- 2000/53/EC End-of-Life Vehicle Directive (ELV) and Annex II (ELV II)
- 2011/65/EU Restriction of the Use of Hazardous Substances Directive (RoHS) with amendment 2015/863/EU
- 2012/19/EU Waste Electrical and Electronic Equipment Directive (WEEE)

Vishay pursues the elimination of conflict minerals from its supply chain, see the Conflict Minerals Policy at www.vishay.com/doc?49037.

APPROVALS

The resistors are qualified according to AEC-Q200.

Where applicable, the resistors are tested in accordance with **EN 140401-802** which refers to **EN 60115-1**, **EN 60115-8** and the variety of environmental test procedures of the **IEC 60068** ⁽¹⁾ series.

RELATED PRODUCTS

For more information about products with superior surge and pulse performance please refer to D/CRCW-IF e3, Pulse Proof Thick Film Chip Resistors datasheet (www.vishav.com/doc?20024).

The CRCW-HP e3 product series is designed for those applications where both enhanced power rating and superior pulse loading performance is required.

For ordering CRCW-HP e3 please refer to latest edition of datasheet (www.vishay.com/doc?20043).

For thick film resistors with standard requirements for power rating, please refer to D/CRCW e3, Standard Thick Film Chip Resistors datasheet (www.vishay.com/doc?20035)

Notes

- (1) The quoted IEC standards are also released as EN standards with the same number and identical contents.
- (2) The IEC 62474 list of declarable substances is maintained in a dedicated database, which is available at http://std.iec.ch/iec62474.
- (3) The Global Automotive Declarable Substance List (GADSL) is maintained by the American Chemistry Council and available at www.gadsl.org.
- (4) The SVHC list is maintained by the European Chemical Agency (ECHA) and available at http://echa.europa.eu/candidate-list-table.

FUNCTIONAL PERFORMANCE

Pulse load rating in accordance with EN 60115-1, 4.27; 1.2 μ s/50 μ s; 5 pulses at 12 s intervals; for permissible resistance change 1 %

Pulse load rating in accordance with EN 60115-1, 4.27; 10 μ s/700 μ s; 10 pulses at 1 min intervals; for permissible resistance change 1 %

DERATING

TESTS AND REQUIREMENTS

All executed tests are carried out in accordance with the following specifications:

EN 60115-1, generic specification

EN 60115-8 (successor of EN 140400), sectional specification

EN 140401-802, detail specification

IEC 60068-2-xx, test methods

The parameters stated in the Test Procedures and Requirements table are based on the required tests and permitted limits of EN 140401-802. The table presents only the most important tests, for the full test schedule refer to the documents listed above. However, some additional tests and a number of improvements against those minimum requirements have been included.

The testing also covers most of the requirements specified by EIA/IS-703 and JIS-C-5201-1.

The tests are carried out under standard atmospheric conditions in accordance with IEC 60068-1, 4.3, whereupon the following values are applied:

Temperature: 15 °C to 35 °C Relative humidity: 25 % to 75 %

Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar).

A climatic category LCT / UCT / 56 is applied, defined by the lower category temperature (LCT), the upper category temperature (UCT), and the duration of exposure in the damp heat, steady state test (56 days).

The components are mounted for testing on boards in accordance with EN 60115-8, 2.4.2 unless otherwise specified.

TEST PROCEDURES AND REQUIREMENTS								
	IEC		PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE (ΔR)				
60115-1	60082-2 ⁽¹⁾	TEST	PROCEDURE	STABILITY CLASS 1 OR BETTER	STABILITY CLASS 2 OR BETTER			
CLAUSE	METHOD		Stability for product types:	1.0 to	10 ΜΩ			
			RCS e3	1 22 10	10 10122			
4.5	-	Resistance	-	± 0.5 %; ± 1 %	± 5 %			
4.8	-	Temperature coefficient	At (20 / -55 / 20) °C and (20 / 155 / 20) °C	± 100 ppm/K	± 200 ppm/K			
4.25.1	_	Endurance at 70 °C	$U = \sqrt{P_{70} \times R}$ or $U = U_{\text{max.}}$ whichever is the less severe; 1.5 h on; 0.5 h off					
4.20.1		Endurance at 70°C	70 °C; 1000 h	± (1 % R + 0.05 Ω)	± (2 % R + 0.1 Ω)			
			70 °C; 8000 h	± (2 % R + 0.1 Ω)	± (4 % R + 0.1 Ω)			
4.25.3	-	Endurance at upper category temperature	155 °C; 1000 h	± (1 % R + 0.05 Ω)	± (2 % R + 0.1 Ω)			
4.24	78 (Cab)	Damp heat, steady state	(40 ± 2) °C; 56 days; (93 ± 3) % RH	± (1 % R + 0.05 Ω)				
4.37	67 (Cy)	Damp heat, steady state, accelerated	(85 ± 2) °C; (85 ± 5) % RH $U = \sqrt{0.1 \times P_{85} \times R} \le 100 \text{ V};$ 1000 h	± (1 % R + 0.05 Ω) ± (2 % R + 0				
4.23	-	Climatic sequence:						
4.23.2	2 (Bb)	Dry heat	125 °C; 16 h					
4.23.3	30 (Db)	Damp	55 °C; 24 h; ≥ 90 % RH; 1 cycle		1			
4.23.4	1 (Ab)	Cold	-55 °C; 2 h	± (1 % R + 0.05 Ω)	± (2 % R + 0.1 Ω)			
4.23.5	13 (M)	Low air pressure	8.5 kPa; 2 h; (25 ± 10) °C	1 (1 /0 /1 1 0.00 32)	± (2 % A + 0.1 52)			
4.23.6	30 (Db)	Damp heat, cyclic	55 °C; 24 h; ≥ 90 % RH; 5 cycles					
4.23.7	-	DC load	$U = \sqrt{P_{70} \times R} \le U_{\text{max.}}; 1 \text{ min}$					
-	1 (Aa)	Cold	-55 °C; 2 h	$\pm (0.25 \% R + 0.05 \Omega)$	$\pm (0.5 \% R + 0.05 \Omega)$			
4.19	14 (Na)	Rapid change of temperature	30 min. at -55 °C and 30 min. at 125 °C 1000 cycles	± (1 % R + 0.05 Ω) no visible damage				

TEST PROCEDURES AND REQUIREMENTS								
	IEC		PROCEDURE		S PERMISSIBLE GE (\(\Delta R\)			
60115-1	60082-2 ⁽¹⁾ TEST	TEST	PROCEDURE	STABILITY CLASS 1 OR BETTER	STABILITY CLASS 2 OR BETTER			
CLAUSE	METHOD		Stability for product types: RCS e3	1 Ω to 10 MΩ				
4.13	-	Short time overload	$U = 2.5 \times \sqrt{P_{70} \times R} \le 2 \times U_{\text{max.}};$ whichever is the less severe; 5 s	± (2 % R + 0.05 Ω)				
4.27	-	Single pulse high voltage overload	Severity no. 4: $U = 10 \times \sqrt{P_{70} \times R}$ or $U = 2 \times U_{\text{max.}}$; whichever is the less severe; 10 pulses 10 µs / 700 µs	\pm (1 % R + 0.05 Ω) no visible damage				
4.39	-	Periodic electric overload	$U=\sqrt{15 \times P_{70} \times R}$ or $U=2 \times U_{\text{max.}};$ whichever is the less severe; 0.1 s on; 2.5 s off; 1000 cycles	\pm (1 % R + 0.05 Ω) no visible damage				
4.38	-	Electrostatic discharge (human body model)	IEC 61340-3-1 ⁽¹⁾ ; 3 positive + 3 negative discharges; ESD voltage according to the size	± (1 % R + 0.05 Ω)				
4.22	6 (Fc)	Vibration	Endurance by sweeping; 10 Hz to 2000 Hz; no resonance; amplitude \leq 1.5 mm or \leq 200 m/s ² ; 7.5 h	\pm (0.25 % R + 0.05 Ω) no visible damage	\pm (0.5 % R + 0.05 Ω) no visible damage			
4.17	58 (Td)	Solderability	Solder bath method, SnPb40; non-activated flux (235 ± 5) °C; (2 ± 0.2) s	O ,	95 % covered);			
4.17	30 (Tu)	Solderability	Solder bath method, Sn96.5Ag3Cu0.5; non-activated flux (245 ± 5) °C; (3 ± 0.3) s	no visible damage				
4.18	58 (Td)	Resistance to soldering heat	Soldering bath method; (260 ± 5) °C; (10 ± 1) s	± (0.25 % R + 0.05 Ω)	± (0.5 % R + 0.05 Ω)			
4.29	45 (XA)	Component solvent resistance	Isopropyl alcohol +50 °C; method 2	No visible damage				
4.32	21 (Ue ₃)	Shear (adhesion)	RCS0402 e3: 9 N RCS0603 e3 and RCS0805 e3: 17.7 N	No visible damage				
4.33	21 (Ue ₁)	Substrate bending	Depth 2 mm; 3 times	\pm (0.25 % R + 0.05 Ω) no visible damage, no open circuit in bent position				
4.7	-	Voltage proof	$U = 1.4 \times U_{ins}$; 60 s	No flashover	or breakdown			
4.35	-	Flammability, needle flame test	IEC 60695-11-5 ⁽¹⁾ ; 10 s	No burning	g after 30 s			

Note

⁽¹⁾ The quoted IEC standards are also released as EN standards with the same number and identical contents.

DIMENSIONS

DIMENSIONS AND MASS									
TYPE / SIZE	L (mm)	W (mm)	H (mm)	T1 (mm)	T2 (mm)	MASS (mg)			
RCS0402 e3	1.0 ± 0.05	0.5 ± 0.05	0.35 ± 0.05	0.25 ± 0.05	0.2 ± 0.10	0.65			
RCS0603 e3	1.55 + 0.10 / - 0.05	0.85 ± 0.10	0.45 ± 0.05	0.3 ± 0.20	0.3 ± 0.20	2			
RCS0805 e3	2.0 + 0.20 / - 0.10	1.25 ± 0.15	0.45 ± 0.05	0.3 + 0.20 / - 0.10	0.3 ± 0.20	5.5			
RCS1206 e3	3.2 + 0.10 / - 0.20	1.6 ± 0.15	0.55 ± 0.10	0.45 ± 0.20	0.4 ± 0.20	10			

SOLDER PAD DIMENSIONS

RECOMMENDED SOLDER PAD DIMENSIONS								
		WAVE SO	AVE SOLDERING		REFLOW SOLDERING			
TYPE / SIZE	G (mm)	Y (mm)	X (mm)	Z (mm)	G (mm)	Y (mm)	X (mm)	Z (mm)
RCS0402 e3	-	-	-	=	0.45	0.6	0.6	1.65
RCS0603 e3	0.65	1.10	1.25	2.85	0.75	0.75	1.00	2.15
RCS0805 e3	0.90	1.30	1.60	3.50	1.00	0.95	1.45	2.90
RCS1206 e3	1.40	1.40	1.95	4.20	1.50	1.05	1.80	3.60

Notes

- The given solder pad dimensions reflect the considerations for board design and assembly as outlined e.g in standards IEC 61188-5-x (1) or in publication IPC-7351.
- $^{(1)}$ The quoted IEC standards are also released as EN standards with the same number and identical contents.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay:

RCS04023K30FKE	RCS08055K10FKE	RCS0603150RFKE	A RCS060375R0FKE	RCS06031K00FKEA
RCS06031M00FKEA	RCS0603470RJNEA	RCS080510K0FKEA	RCS080547K0FKEA	RCS080522R0JNEA
RCS0402100RFKED	RCS060310K0JNEA	RCS04022M20JNED	RCS06034R70JNEA	RCS04024K75FKED
RCS04024K70JNED	RCS060333R2FKEA	RCS040233R0FKED	RCS040233R2FKED	RCS0402499RFKED
RCS06032K00FKEA	RCS080510R0FKEA	RCS040249K9FKED	RCS08054K75FKEA	RCS080527K0FKEA
RCS0603249KFKEA	RCS04024K99FKED	RCS0402100KJNED	RCS04024M70JNED	RCS040222K0JNED
RCS04021M00JNED	RCS060322R0JNEA	RCS06034K22FKEA	RCS0603220KJNEA	RCS0603820RFKEA
RCS08055K60FKEA	RCS060349R9FKEA	RCS0603220RJNEA	RCS060310R0JNEA	RCS06032M20JNEA
RCS04021K00JNED	RCS06030000Z0EA	RCS0603100RFKEA	RCS0603300RFKEA	RCS0402120RFKED
RCS04023K00FKED	RCS06034K70JNEA	RCS08051K50FKEA	RCS08052K20FKEA	RCS080510M0FKEA
RCS0805470RJNEA	RCS0402240RFKED	RCS0805220KJNEA	RCS080556R0FKEA	RCS06033K30FKEA
RCS04024R70JNED	RCS0603499KFKEA	RCS060310M0FKEA	RCS04021M00FKED	RCS040210M0FKED
RCS04022R20JNED	RCS08054K70FKEA	RCS08051M00FKEA	RCS08051R00JNEA	RCS080551R0FKEA
RCS08054K70JNEA	RCS080547K0JNEA	RCS04021R00JNED	RCS060368R0FKEA	RCS080533R2FKEA
RCS0402100KFKED	RCS06032K20JNEA	RCS060347K0JNEA	RCS0402499KFKED	RCS0603100KJNEA
RCS060310M0JNEA	RCS04021K00FKED	RCS0402220RJNED	RCS06034K70FKEA	RCS060320K0FKEA
RCS040247R0JNED	RCS060330K9FKEA	RCS040222R1FKED	RCS0402470RJNED	RCS0402220KJNED
RCS060310K0FKEA	RCS060315K0FKEA	RCS040249R9FKED	RCS040247K0JNED	RCS060310R0FKEA
RCS0603499RFKEA	RCS06031R00JNEA	RCS060322K0JNEA	RCS0805470RFKEA	RCS04022K00FKED
RCS0402100RJNED	RCS0402249KFKED	RCS08052K20JNEA	RCS08054M70JNEA	RCS0603200KFKEA