概述

FZH119是一种LED(发光二极管显示器)驱动控制专用电路,内部集成有MCU 数字接口、数据锁存器、LED 驱动等电路。本产品性能优良,质量可靠。主要应用于电子产品LED显示屏驱动。采用SOP28的封装形式。

特性说明

- ➢ 采用CMOS工艺
- ▶ 显示模式(8 段×16 位)
- ▶ 辉度调节电路(占空比 8 级可调)
- ▶ 两线串行接口(SCLK, DIN)
- ▶ 振荡方式:内置RC 振荡
- ▶ 内置上电复位电路
- ▶ 封装形式: SOP28

管脚定义:

管脚功能定义:

符号	管脚名称	管脚号	说明
DIN	数据输入	7	串行数据输入,输入数据在 SCLK 的低电平变化,在 SCLK 的高电平被传输。
SCLK	时钟输入	8	在上升沿输入数据
SEG1~SEG8	输出(段)	9-16	段输出,P管开漏输出
GRID1~GRID11 GRID12~GRID16	输出(位)	18-28 1-5	位输出,N管开漏输出
VDD	逻辑电源	17	接电源正
VSS	逻辑地	6	接系统地

电气参数

极限参数 (Ta = 25℃, Vss = 0 V)

参数	符号	范围	单位
逻辑电源电压	VDD	-0.5 ~+7.0	V
逻辑输入电压	VI1	-0.5 ~ VDD + 0.5	٧
SEG脚驱动拉电流	101	50	mA
GRID脚驱动灌电流	102	200	mA
功率损耗	PD	400	mW
工作温度	Topt	-40 ~ +85	℃
储存温度	Tstg	-65 ~+ 1 50	°C

正常工作范围 (Ta = -40~+85℃ , Vss = 0 V)

参数	符号	最小	典型	最大	单位	测试 条件
电源电压	VDD	4	5	5.5	V	-
高电平输入电压	VIH	0.7 VDD	-	VDD	V	-

© Premier Chip Limited www.fangchip.com

LED 驱动控制专用电路 FZH119

低电平输入电压	VIL	0	-	0.3 VDD	V	-

电气特性(Ta = -40~+85°C, VDD = 4.5 ~ 5.5 V, Vss = 0 V)

参数	符号	最小	典型	最大	单位	测试条件
SEG脚驱动拉电流	Ioh1	20	25	40	mA	SEG1~SEG8 , Vo = Vdd-2V
2. Chat-deray) a. Chil	Ioh2	20	30	50	mA	SEG1~SEG8 , Vo = Vdd-3V
GRID脚驱动灌电流	IOL1	80	140	-	mA	GRID1~GRID16 , Vo=0.3V
输入电流	II	-	-	±1	μΑ	VI = VDD / VSS
高电平输入电压	VIH	0.7 VDD	-		V	SCLK , DIN
低电平输入电压	VIL	-	-	0.3 VDD	V	SCLK , DIN
滞后电压	VH	-	0.35	-	V	SCLK , DIN
动态电流损耗	IDDdyn	-	-	5	mA	无负载,显示关

开关特性 (Ta = -40~+85℃, VDD = 4.5 ~ 5.5 V)

参数	符号	最小	典型	最大	单位	测试条件
振荡频率	fosc	-	450	-	KHz	
	tPLZ	-	1	300	ns	CLK → DIN
传输延迟时间	tPZL	-	-	100	ns	CL = 15pF, RL = 10K Ω
上升时间	TTZH 1	-	-	2	μs	CL = 300p F SEG1~SEG8
下降时间	TTHZ	-	-	120	μs	CL = 300pF , SEGn , GRIDn
最大时钟频率	Fmax	-	-	1	MHz	占空比50%
输入电容	CI	-	-	15	pF	-

时序特性(Ta = -40 ~+85℃, VDD = 4.5 ~ 5.5 V)

参数	符号	最小	典型	最大	单位	测试条件
时钟脉冲宽度	PWCLK	400	-	-	ns	-
选通脉冲宽度	PWSTB	1	-	-	μs	-
数据建立时间	tSETUP	100	-	-	ns	-
数据保持时间	tHOLD	100	-	-	ns	-
等待时间	tWAIT	1	-	-	μs	CLK↑→CLK↓

接口说明

微处理器的数据通过两线总线接口和 F Z H 1 1 9 通信,在输入数据时当 CLK 是高电平时,DIN 上的信号必须保持不变;只有 CLK 上的时钟信号为低电平时,DIN 上的信号才能改变。数据的输入总是低位在前,高位在后传输.数据输入的开始条件是 CLK 为高电平时,DIN 由高变低;结束条件是 CLK 为高时,DIN 由低电平变为高电平。

指令数据传输过程如下图:

指令数据传输格式

写 SRAM 数据地址自动加 1 模式:

自动地址写数据格式

Command1:设置数据 Command2:设置地址

data1~N: 传输显示数据(最多16字节,不能多写)

Command3:控制显示

4

© Premier Chip Limited www.fangchip.com

写 SRAM 数据固定地址模式:

固定地址写数据格式

Command1:设置数据 Command2:设置地址 data1:传输显示数据 CommandN:设置地址

dataN: 传输显示数据(最多16字节,不能多写)

Command3:控制显示

数据指令

指令用来设置显示模式和LED 驱动器的状态。

在指令START有效后由DIN输入的第一个字节作为一条指令。经过译码,取最高B7、B6两位比特位以区别 不同的指令。

В7	В6	指令
0	1	数据命令设置
1	0	显示控制命令设置
1	1	地址命令设置

指令设置分类

如果在指令或数据传输时出现END有效,串行通讯被初始化,并且正在传送的指令或数据无效(之前传送 的指令或数据保持有效)。

数据命令设置:

В7	В6	B5	B4	В3	B2	B1	В0	说明		
0	1				0			地址自动加 1		
0	1				1	-				固定地址
0	1	无关项	页,填 3	0		无关项	页,填	普能模式		
	1			1		o .		测试模式		
0	1			1				(内部使用)		

© Premier Chip Limited www.fangchip.com

地址命令设置:

В7	В6	В5	В4	В3	В2	B1	В0	显示地址
1	1			0	0	0	0	00H
1	1			0	0	0	1	01H
1	1			0	0	1	0	02H
1	1			0	0	1	1	03H
1	1			0	1	0	0	04H
1	1			0	1	0	1	05H
1	1			0	1	1	0	06H
1	1	无关项	页,填	0	1	1	1	07H
1	1	6	9	1	0	0	0	08H
1	1			1	0	0	1	09H
1	1			1	0	1	0	ØAH
1	1			1	0	1	1	ØВН
1	1		1	1	0	0	ØCH	
1	1			1	1	0	1	ØDH
1	1			1	1	1	0	ØEH
1	1			1	1	1	1	0FH

显示地址命令设置

上电时,地址默认设为COH。

显示数据与芯片管脚以及显示地址之间的对应关系如下表所示:

SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	
В7	В6	B5	В4	В3	B2	B1	В0	
			显存地	址 C0H			,	GRID1
			显存地	址 C1H				GRID2
			显存地	址 C2H				GRID3
			显存地	址 C3H				GRID4
			显存地	址 C4H				GRID5
			显存地	址 C5H				GRID6
			显存地	址 C6H				GRID7
			显存地	址 C7H				GRID8
		GRID9						
	显存地址 C9H							
			显存地	址 CAH				GRID11

LED 驱动控制专用电路 FZH119

显存地址 CBH	GRID12
显存地址 CCH	GRID13
显存地址 CDH	GRID14
显存地址 CEH	GRID15
显存地址 CFH	GRID16

显示数据、地址、芯片管脚之间的对应关系

▲注意: 芯片显示寄存器在上电瞬间其内部保存的值可能是随机不确定的,此时客户直接发送开屏命令, 将有可能出现显示乱码。所以我司建议客户对显示寄存器进行一次上电清零操作,即上电后向16位显存地址 (C0H-CDH)中全部写入数据0x00。

显示控制命令:

MSB LSB

В7	В6	В5	В4	В3	B2	B1	В0	功能	说明	
1	0	无关项 , 填 0		1	0	0	0		设置脉冲宽度为 1/16	
1	0			1	0	0	1		设置脉冲宽度为 2/16	
1	0			1	0	1	0		设置脉冲宽度为 4/16	
1	0			1 0		1	1	消光数量设置	设置脉冲宽度为 10/16	
1	0			1	1	0	0	(亮度设置)	设置脉冲宽度为 11/16	
1	0			1	1	0	1		设置脉冲宽度为 12/16	
1	0			1	1	1	0		设置脉冲宽度为 13/16	
1	0			1	1	1	1		设置脉冲宽度为 14/16	
1	0			0	Х	Х	Х	日二丁子次罕	显示关	
1	0			1	Х	Х	Х	显示开关设置	显示开	

显示模式控制指令

硬件连接图

FZH119驱动共阴极数码管硬件电路图:

FZH119 驱动共阳极数码管硬件电路图:

- ▲注意: 1、FZH119的VDD、VSS之间必须接电容,推荐参数为100uF和104电容,且在PCB板布线应尽量靠近芯片放置,从VCC、VSS和电容组成的回路长度不能超过3CM,加强滤波效果;
 - 2、连接在DIO、CLK、STB通讯口上下拉三个100pF电容可以降低对通讯口的干扰;
 - 3、如果数码管的导通压降压约为3V(蓝光),则FZH119供电应选用5V;
 - 4、芯片工作在如电磁炉等较强干扰环境下时,建议适当降低FZH119与MCU通信频率,可在通信上串电阻,建议大小在100-200Ω。

9

IC 封装尺寸

SOP28 封装尺寸:

尺寸标注	最 小(mm)	最 大(mm)	尺寸标注	最小(mm)	最 大(mm)
A	17.83	18.03	C4	1.043TYP	
A1	0.400	64TYP	D1	0.70	0.90
A2	1. 27	TYP	D2	1.395TYP	
A3	0.5	1TYP	R1	0.508TYP	
В	9. 90	10.50	R2	0.508TYP	
B1	7.42	7.62	θ 1	7° TYP	
B2	8. 9	TYP	θ 2	5° TYP	
C1	2.24	2.44	θ 3	4° TYP	
C2	0. 204	0.33	θ 4	10° TYP	
C3	0. 10	0.25			

DETAIL "X"

10