Bitcoin Fraudulent Transaction Detection

Austin Yeh, Haoxiang Yi, Muhammad Ibrahim, Luke Leon, Biagio Alessandrello

TABLE OF CONTENTS

1 02 03

Problem Dataset & EDA Methodology

04 05

Implementation Takeaways

01 Problem

Problem Overview

In a Bitcoin network, transactions can be categorized as licit versus illicit ones. Our task is to analyze a network to detect fraudulent transactions.

In 2023:

- \$24.2 billion worth of cryptocurrencies was stolen globally
- Over 69,000 complaints to FBI from the public in the US regarding fraud using cryptocurrency

02 DATASET & EDA

What is a Bitcoin Transaction Graph?

A transaction graph from the Bitcoin blockchain, containing 203,769 nodes and 234,355 edges.

- A node represents a transaction
- An edge represents the flow of Bitcoins between two transactions

Original Dataset - Transactions

Network Structure:

Size: 203,769 nodes and 234,355 edges

Class Distribution:

Illicit: 2% of nodesLicit: 21% of nodesUnknown: 77%

Features:

• 166 anonymized attributes

Time

Time steps from 1 to 49, representing
 2-week increments of transactions

	txld	Time step	Local_feature_1	Local_feature_2	Local_feature_3	Local_feature_4	Local_feature_5	Local_feature_6
0	3321	1	-0.169615	-0.184668	-1.201369	-0.121970	-0.043875	-0.113002
1	11108	1	-0.137586	-0.184668	-1.201369	-0.121970	-0.043875	-0.113002
2	51816	1	-0.170103	-0.184668	-1.201369	-0.121970	-0.043875	-0.113002
3	68869	1	-0.114267	-0.184668	-1.201369	0.028105	-0.043875	-0.113002
4	89273	1	5.202107	-0.210553	-1.756361	-0.121970	260.090707	-0.113002
	***		***			***	***	***
203764	158304003	49	-0.165622	-0.139563	1.018602	-0.121970	-0.043875	-0.113002
203765	158303998	49	-0.167040	-0.139563	1.018602	-0.121970	-0.043875	-0.113002
203766	158303966	49	-0.167040	-0.139563	1.018602	-0.121970	-0.043875	-0.113002
203767	161526077	49	-0.172212	-0.139573	1.018602	-0.121970	-0.043875	-0.113002
203768	194103537	49	-0.172212	-0.139573	1.018602	-0.121970	-0.043875	-0.113002

Extended Dataset - Actors

Network Structure:

 Identifies actors linked to transactions in the Bitcoin network

Features:

 56 non-anonymized attributes (btc sent, btc received, etc.)

Linkage:

Can map transactions (txld) to their associated actors

Class Distribution:

- Illicit:
- Licit:
- Unknown:

Overview of Datasets

Original Dataset: 203,769 transactions, 49 time steps, licit/illicit/unknown labels, 166 anonymized features.

Extended Dataset: 822,942 wallet addresses, address-to-transaction mappings, temporal interactions.

Transactions

# Nodes (transactions)	203,769
# Edges (money flow)	234,355
# Time steps	49
# Illicit (class-1)	4,545
# Licit (class-2)	42,019
# Unknown (class-3)	157,205
# Features	183

Actors

# Wallet addresses	822,942
# Nodes (temporal interactions)	1,268,260
# Edges (addr-addr)	2,868,964
# Edges (addr-tx-addr)	1,314,241
# Time steps	49
# Illicit (class-1)	14,266
# Licit (class-2)	251,088
# Unknown (class-3)	557,588
# Features	56

Class Labels Over Time

03 — Methodology

A Simplistic Approach

- 1. Drop all unknown transactions
 - a. $\sim 157k$ out of $\sim 204k$
- 2. Create train/test split based on time step
 - a. 1-34 train, 35-49 test
- Run various models
 - a. LR, RF, MLP, XGB
- 4. Select one with best metrics on test set
 - a. RF (shown on slide)

We Wanted to Do Something More Involved

Make Use of All Unlabeled Data

Develop a Unique Methodology

Modeling Approach

Unsupervised (Wallets)

T-SNE Clustering

- Grouped into 10 buckets
- Analyzed the percentage fraud transactions in each bucket
- Most had very low percentage, but showed some distinction

K-Means Clustering

- Two of the features were substantially important in this model
 - # of address transacted multiple
 - Transacted with address total
 - Most likely correlated
- Other notable important features
 - # of receiving transactions
 - o # of sender transactions
 - Amount of BTC being transferred
- Will use the model to predict category of each wallet post T10.

Variance Across Centroids (Importance)

2 Labeling (TX)

Confusion Matrix

Random Forest

Performance Metrics:

Accuracy: 0.98 Precision: 0.96

Recall: 0.86

F1-Score: 0.91

ROC Curve

Precision-Recall Curve

XGBoost

Performance Metrics:

Accuracy: 0.98 Precision: 0.98

Recall: 0.99

F1-Score: 0.99

MODEL	Accuracy	Precision	Recall	AUROC	AUPRC
Simplistic*	0.98	0.97	0.72	0.92	0.79
Random Forest	0.97	0.40	0.02	0.87	0.17
Random Forest w Smote	0.97	0.33	0.02	0.88	0.13
XGBoost	0.97	0.97	1.00	0.92	0.26
XGBoost w Smote	0.58	0.95	0.93	0.91	1.00
GNN	0.97	0.94	0.97	0.76	0.99

Models not mentioned

- Neural Network

- Convolutional Neural Net

- Support Vector Classification

- Simple Classification

^{*} Uses different train/test split and methodology than the rest of the models

- Dropped Class, Txld, and Time Step
- Fit on times steps 11 through 44
- Predicted time steps 45 to 49
- Results
 - Accuracy: 0.97
 - O Precision: 0.40
 - Recall: 0.02
 - o F1-Score: 0.03
- With Smote Results
 - o Accuracy: 0.97
 - o Precision: 0.33
 - o Recall: 0.02
 - o F1-Score: 0.03

Graph Neural Net

- Most Intuitive Approach
- Results
 - Accuracy: 0.97
 - O Precision: 0.94
 - o Recall: 0.97
 - o F1-Score: 0.98

04 Real World Application

Production Pipeline

- 1. As new data comes in we expand our window for finding better labeling of risk scores for our wallets. Eventually we would have a larger customer lookup or better unsupervised model
- 2. We keep a rolling window for labeling and training on the transactions data and test on the hold out set
- Once a good model is found we retrain till the last timestep to incorporate the latest information in the production model

05 — Takeaways

Challenges / Takeaways

Complex Problem

Anonymized Features - Difficult Feature Engineering

Many Modeling Approaches

Immense Compute Power

Problems with Predicting a Proxy

Preventing Data Leakage

Experienced Leakage on Several Approaches

New Techniques

Graph Neural Networks (GNN)

Self-Supervised Learning

Thank You!

Questions?