Table of Contents

Demonstrates the creation of bar plots.	1
Demonstrates the creation of pie plots.	2
Creates a 3-D line plot using the parameteric equations: (pratice gradient)	3
Creates a surface in the 3-D space described by the equation z(x, y)	4
Plots a spherical surface of radius 2a centered at the origin, a cylindrical surface of radius a and	
length 4a, centered at (a, 0, 0), and their intersection curve given by the equations	5
Demonstrates the creation of contour plots.	6
Demonstrates the creation of a 2-D vector plot.	8
Demonstrates the creation of a 3-D vector plot.	9
Creates a 2-D streamline plot for the flow described	10
Creates a 3-D streamline plot for the flow described	11
Creates an isosurface plot for the potential function described	12

Demonstrates the creation of bar plots.

```
clc % ##command window
clear all % ##WorkSpace##
close all % ######
USA = [-6.3, -4.3, 0.1, 5.9, 12.1, 17.1, ...
       19.9, 18.9, 14.4, 7.7, 0.4, -4.8];
hb = bar(USA);
ha = gca;
    axis([0, 13, -30, 30])
    ha.XTickLabel = {'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', ...
                     'July', 'Aug', 'Sept', 'Oct', 'Nov', 'Dec'};
CAN = [-24.6, -23.3, -18.7, -9.8, -0.3, 7.2, ...]
       11.1, 9.5, 3.5, -4.4, -14.5, -21.5];
GBR = [3.0, 3.0, 4.7, 6.7, 9.8, 12.8, ...]
       14.4, 14.3, 12.2, 9.5, 5.5, 3.9];
y = [USA', CAN', GBR'];
delete(hb);
hold on
hb = bar(y);
    hb(1).BarWidth = 1.0;
    hb(2).BarWidth = 1.0;
    hb(3).BarWidth = 1.0;
title('Average Monthly Temperature (1961-1999)')
ylabel('Temperature (\circC)')
legend('United States', 'Canada', 'United
Kingdom', 'Location', 'best')
```


Demonstrates the creation of pie plots.

```
clc % ##command window
clear all % ##WorkSpace##
close all % ######
world = 29.85;
CHN = 7.03; USA = 5.46; IND = 1.74;
RUS = 1.71; JPN = 1.21; DEU = 0.79;
others = world - CHN - USA - IND - RUS - JPN - DEU;
x = [CHN, USA, IND, RUS, JPN, DEU, others];
explode = [1, 1, 1, 1, 1, 1, 1];
countries = {'China', 'United States', 'India', ...
    'Russia', 'Japan', 'Germany', 'Other Countries'};
for k = 1:7
    labels\{k\} = [countries\{k\}, sprintf('(%.1f%%)', x(k)/world*100)];
end
h = pie(x, explode, labels)
    h(2).FontSize = 12;
    h(4).FontSize = 12;
    h(6).FontSize = 12;
    h(8).FontSize = 12;
    h(10).FontSize = 12;
    h(12).FontSize = 12;
    h(14).FontSize = 12;
```

```
h =
 1×14 graphics array:
 Columns 1 through 8
   Patch
           Text
                    Patch
                           Text
                                    Patch
                                            Text
                                                     Patch
 Columns 9 through 14
   Patch
           Text Patch
                                    Patch
                            Text
                                            Text
```


Creates a 3-D line plot using the parameteric equations: (pratice gradient)

```
clc % ##command window
clear all % ##WorkSpace##
close all % ######
z = linspace(0, 8*pi, 200);
x = exp(-z/20).*cos(z);
y = exp(-z/20).*sin(z);
plot3(x,y,z)
xlabel x, ylabel y, zlabel z
```

```
axis([-1, 1, -1, 1, 0, 8*pi])
h = gca; h.BoxStyle = 'full'; box on
grid on
axis vis3d
```


Creates a surface in the 3-D space described by the equation z(x, y)

```
clc % ##command window
clear all % ##WorkSpace##
close all % ######
x = linspace(0, 2*pi, 100);
y = linspace(0, pi, 50);
[X,Y] = meshgrid(x, y);
Z = sin(X) .* cos(Y);
hs = surf(X, Y, Z);
xlabel x, ylabel y, zlabel z
ha = gca;
    axis([0, 2*pi, 0, pi, -1, 1])
    ha.XTick = [0, pi/2, pi, 3*pi/2, 2*pi];
    ha.YTick = [0, pi/2, pi];
    ha.XTickLabel = {'0', '\pi/2', '\pi', '3\pi/2', '2\pi'};
    \label = \{ \ '0', \ '\ pi/2', \ '\ pi' \};
    axis vis3d
    axis equal
```

```
ha.BoxStyle = 'full';
box on
  grid on
colorbar
% colormap hot
%  hs.FaceAlpha = 0.2;
hs.EdgeColor = 'none';
```


Plots a spherical surface of radius 2a centered at the origin, a cylindrical surface of radius a and length 4a, centered at (a, 0, 0), and their intersection curve given by the equations

Demonstrates the creation of contour plots.

```
clc % ##command window
clear all % ##WorkSpace##
close all % ######
[X,Y,Z] = peaks;
surf(X,Y,Z)
[C,h] = contour(X,Y,Z, [-6:8]);
% colorbar % colorbar #############
colormap % #########colormap ##
    h.ShowText = 'on';
    h.TextList = [-6:2:8];
[C,h] = contourf(X,Y,Z, [-6:8]);
clabel(C,h, [-6:2:8])
[C,h] = contour3(X,Y,Z, [-6:8]);
clabel(C,h, [-6:2:8])
```

0.2422	0.1504	0.6603
0.2504	0.1650	0.7076
0.2578	0.1818	0.7511
0.2647	0.1978	0.7952
0.2706	0.2147	0.8364
0.2751	0.2342	0.8710
0.2783	0.2559	0.8991
0.2803	0.2333	0.9221
0.2813		0.9221
	0.3006	
0.2810	0.3228	0.9579
0.2795	0.3447	0.9717
0.2760	0.3667	0.9829
0.2699	0.3892	0.9906
0.2602	0.4123	0.9952
0.2440	0.4358	0.9988
0.2206	0.4603	0.9973
0.1963	0.4847	0.9892
0.1834	0.5074	0.9798
0.1786	0.5289	0.9682
0.1764	0.5499	0.9520
0.1687	0.5703	0.9359
0.1540	0.5902	0.9218
0.1460	0.6091	0.9079
0.1380	0.6276	0.8973
0.1248	0.6459	0.8883
0.1113	0.6635	0.8763
0.0952	0.6798	0.8598
0.0689	0.6948	0.8394
0.0297	0.7082	0.8163
0.0036	0.7203	0.7917
0.0067	0.7312	0.7660
0.0433	0.7411	0.7394
0.0964	0.7500	0.7120
0.1408	0.7584	0.6842
0.1717	0.7670	0.6554
0.1938	0.7758	0.6251
0.2161	0.7843	0.5923
0.2470	0.7918	0.5567
0.2906	0.7973	0.5188
0.3406	0.8008	0.4789
0.3909	0.8029	0.4354
0.4456	0.8024	0.3909
0.5044	0.7993	0.3480
0.5616	0.7942	0.3045
0.6174	0.7876	0.2612
0.6720	0.7793	0.2227
0.7242	0.7698	0.1910
0.7738	0.7598	0.1646
0.8203	0.7498	0.1535
0.8634	0.7406	0.1596
0.9035	0.7330	0.1774

0.9393	0.7288	0.2100
0.9728	0.7298	0.2394
0.9956	0.7434	0.2371
0.9970	0.7659	0.2199
0.9952	0.7893	0.2028
0.9892	0.8136	0.1885
0.9786	0.8386	0.1766
0.9676	0.8639	0.1643
0.9610	0.8890	0.1537
0.9597	0.9135	0.1423
0.9628	0.9373	0.1265
0.9691	0.9606	0.1064
0.9769	0.9839	0.0805

Demonstrates the creation of a 2-D vector plot.

Demonstrates the creation of a 3-D vector plot.

Creates a 2-D streamline plot for the flow described

```
clc % ##command window
clear all % ##WorkSpace##
close all % ######
x = 0:0.1:1; y = 0:0.1:1;
[X,Y] = meshgrid(x,y);
U = 0.3+X; V = 0.4-Y;
quiver(X,Y,U,V)
sx = [0:0.1:1, zeros(1,11), 0:0.1:1];
sy = [zeros(1,11), 0:0.1:1, ones(1,11)];
SL = stream2(X,Y, U,V, sx,sy);
streamline(SL) % Plot streamlines from 2-D or 3-D vector data
```


Creates a 3-D streamline plot for the flow described

```
clc % ##command window
clear all % ##WorkSpace##
close all % ######
x = 0:0.1:1; y = 0:0.1:1; z = 0:0.1:1;
[X,Y,Z] = meshgrid(x,y,z);
U = 0.3+X; V = 0.4-Y; W = 0.5-Z;
% quiver3(X,Y,Z,U,V,W)
sx = 0;
sy = 0:0.1:1;
sz = 0:0.1:1;
[Sx, Sy, Sz] = meshgrid(sx,sy,sz);
SL = stream3(X,Y,Z, U,V,W, Sx,Sy,Sz);
streamline(SL)
view(3), axis vis3d, box on
xlabel('x'), ylabel('y'), zlabel('z')
```


Creates an isosurface plot for the potential function described

```
clc % ##command window
clear all % ##WorkSpace##
close all % ######

x = 0:0.05:1; y = 0:0.05:1; z = 0:0.05:1;
[X,Y,Z] = meshgrid(x,y,z);
V = 0.3*X+0.4*Y+0.5*Z+0.5*X.^2-0.5*Y.^2-0.5*Z.^2;
colorbar
hold on
for isovalue = 0.4:0.1:0.8
   isosurface(X,Y,Z,V, isovalue) % ??#?####?###. #?###?
end
view(3), axis vis3d
xlabel('x'), ylabel('y'), zlabel('z')
```


Published with MATLAB® R2018a