Лекция 1

Геометрия и физика специальной теории относительности

Специальная теория относительности основана на геометрии пространства-времени Минковского $M^4 = \mathbb{R}^{1,3}$ или, более обще $M^d = \mathbb{R}^{1,d-1}$. Это пространство-время представляет собой аффинное пространство с заданной на нем плоской метрикой сигнатуры (1,d-1). Чтобы разобраться в этом, начнем с векторных (линейных) пространств.

Пусть V-d-мерное линейное пространство. С каждым таким пространством связано d-мерное $\partial eo \check{u}$ -ственное пространство V^* , то есть пространство линейных функций (форм) на пространстве V. Предположим, что на пространстве V задана невырожденная симметричная билинейная форма $g:V\otimes V\to\mathbb{R}$ (или, что то же самое, $g\in V^*\otimes V^*$), то есть билинейное симметричное отображение g(u,v)=g(v,u) ($u,v\in V$), такая, что для любого вектора $u\neq 0$ существует хотя бы один вектор v, такой что $g(u,v)\neq 0$. Форму g можно также понимать как отображение $\overline{g}:V\to V^*$, сопоставляющее каждому вектору $u\in V$ линейную форму $g(u,\cdot)\in V^*$. Невырожденность формы g означает существование обратного отображения $\overline{g}^*:V^*\to V$, которое по тому же принципу задает билинейную форму $g^*:V^*\otimes V^*\to\mathbb{R}$, то есть бивектор $g^*\in V\otimes V$.

Изучим вопрос о знакоопределенности формы g. Предположим, что $g(u,u) \geq 0$ для любого $u \neq 0$. Тогда из невырожденности формы g следует, что g(u,u) > 0. Действительно, пусть есть такой ненулевой вектор u, что g(u,u) = 0. В силу невырожденности g существует такой вектор v, что $g(u,v) \neq 0$ и, по условию, $g(v,v) \geq 0$. Тогда для любого $\alpha \in \mathbb{R}$ имеем

$$0 \le g(u + \alpha v, u + \alpha v) = 2\alpha g(u, v) + \alpha^2 g(v, v).$$

Очевидно, это неравенство не может быть соблюдено в некоторой окрестности точки $\alpha=0$ в силу того, что $g(u,v)\neq 0$. Таким образом, любая неотрицательная форма положительно определена.

Но это значит, что если существует «нулевой» вектор u, то есть вектор, такой что g(u,u)=0, то существуют и такие два вектора v_+,v_- , что $g(v_+,v_+)>0$, а $g(v_-,v_-)<0$. Более того, любой «нулевой» вектор u может быть представлен как линейная комбинация двух таких векторов с разными знаками формы. Пусть имеется вектор v_+ , такой что $g(v_+,v_+)=1$, $g(u,v_+)\neq 0$. Тогда для вектора $v_-=u-g(u,v_+)v_+$ имеем $g(v_-,v_-)=-(g(u,v_+))^2$. Ни множество векторов \mathcal{C}_+ с g(u,u)>0, ни множество векторов \mathcal{C}_- с g(u,u)<0, ни множество векторов, позволяет предположить, что и само векторное пространство V распадается в сумму $V=V_+\oplus V_-$ пространств с положительно- и отрицательно-определенной формой g.

Чтобы в этом убедиться, построим базис в V_- . Пусть v_1 — вектор с $g(v_1, v_1) < 0$. Тогда множество ортогональных ему векторов, то есть векторов u, таких что $g(v_1,u)=0$ образует линейное пространство $V^{(1)}$. В пространстве $V^{(1)}$ форма g может быть положительно определена. Тогда $V_+ = V^{(1)}$, а $V_-={
m span}(v_1)$. Если же нет, выберем вектор $v_2\in V^{(1)}$ такой, что $g(v_2,v_2)<0$ и определяем пространство $V^{(2)}$ как подпространство ортогональных ему векторов в $V^{(1)}$. Продолжаем процедуру, пока на пространстве $V^{(d_{-})}$ форма g не будет положительно определена. Тогда $V_{+}=V^{(d_{-})}$ размерности $d_+ = d - d_-$, а $V_- = \mathrm{span}(v_1, \dots, v_{d_-})$. Заодно мы получили ортогональный базис в V_- , который легко превратить в ортонормированный, если выбирать векторы v_i условием $g(v_i, v_i) = -1$. Мы будем говорить, что форма g имеет curnamypy (d_+, d_-) . В теории относительности нас будут интересовать формы сигнатуры (1,3). Одномерное пространство V^+ отвечает времени, а трехмерное пространство $V^$ физическому пространству. Векторы из \mathcal{C}^+ (с положительной нормой) называют *времениподобными*, векторы из \mathcal{C}^- (с отрицательной нормой) — npocmpancmsenhonodofnыmu. Векторы из \mathcal{J} (с нулевой нормой) называют ceemonodoбными или usomponными. Само множество $\mathcal J$ называют ceemoeым kohycom, причем C^+ считается внутренностью светового конуса, а C^- —его внешней областью. В теории относительности светоподобный базисный вектор принято обозначать e_0 , а три пространственноподобных — е₁, е₂, е₃. Во всех векторных и матричных формулах будем принимать, что значения индексов расположены в порядке 0, 1, 2, 3.

 $^{^{1}}$ Нас, конечно, будет интересовать прежде всего случай d=4, однако там, где это не будет заметно усложнять рассуждения, мы будем рассматривать общие d>1.

 $^{^{2}}$ Можно было бы рассматривать формы сигнатуры (3,1). В некоторых отношениях такой выбор удобнее, а в чем-то менее удобен, так что это дело вкуса.

Рассмотрим некоторый базис e_{μ} , $\mu=1,\ldots,d$ в пространстве V. Любой вектор $u\in V$ записывается в виде $u=u^{\mu}e_{\mu}$, где мы предполагаем суммирование по повторяющемуся индексу. Тогда числа $g_{\mu\nu}=g(e_{\mu},e_{\nu})$ образуют симметричную матрицу $G=(g_{\mu\nu})_{\mu,\nu=1}^d$. Замена базиса $e_{\mu}=V_{\mu}{}^{\nu}e_{\nu}'$ отвечает преобразованию $g_{\mu\nu}=V_{\mu}{}^{\rho}V_{\nu}{}^{\sigma}g_{\rho\sigma}'$ или $G=VG'V^T$. Тот факт, что пространство V распадается в сумму $V_{+}\oplus V_{-}$ означает, что таким преобразованием мы можем привести матрицу G к виду

$$G = \operatorname{diag}(\underbrace{1, \dots, 1}_{d_{+}}, \underbrace{-1, \dots, -1}_{d_{-}}) \equiv (\eta_{\mu\nu})_{\mu,\nu=1}^{d} \equiv \operatorname{H}^{(d_{+}, d_{-})}. \tag{1.1}$$

Матрицы V, сохраняющие этот вид формы G, то есть

$$H^{(d_+,d_-)} = VH^{(d_+,d_-)}V^T$$
.

образуют группу псевдоортогональных матриц $O(d_+,d_-)$. Те, которые при этом имеют положительный (равный единице) определитель, образуют группу $SO(d_+,d_-)$. Группа SO(1,3) (и ее обобщение SO(1,d-1) в гипотетическом пространстве-времени размерности d) называется группой Лоренца. В теории относительности будем писать $\eta_{00} = -\eta_{11} = -\eta_{22} = -\eta_{33} = 1$.

Бивектор g^* равен, очевидно, $g^{\mu\nu}\mathbf{e}_{\mu}\otimes\mathbf{e}_{\nu}$, где коэффициенты $g^{\mu\nu}$ образуют матрицу G^{-1} :

$$g^{\mu\lambda}g_{\lambda\nu} = \delta^{\mu}_{\nu}.\tag{1.2}$$

Использование индексных обозначений компактно, но имеет один недостаток: мы заменяем реальные инвариантные объекты (тензоры) их компонентами. В то же время безындексная запись математически корректна, обща, но громоздка. Поэтому мы часто будем пользоваться методом формальных индексов. Рассмотрим тензорное произведение $V \otimes V \otimes V \otimes \cdots$ и перенумеруем входящие в него пространства натуральными числами по порядку. Будем соответствующим числом жирным шрифтом указывать, в каком пространстве расположен или на какое пространство действует объект. Например, $u^{\mathbf{k}}$ — это вектор u, расположенный в k-й тензорной компоненте, а $\omega_{\mathbf{k}}$ — 1-форма, действующая на k-ю компоненту. Тогда $\omega_1 u^1 = u^1 \omega_1 = \omega u = \omega(u)$. Здесь от формального индекса, вроде бы, нет никакой пользы. Но вот $g_{12}u^1v^2 = g(u,v)$ и $g_{12}u^1 = (\overline{g}(u))_2$ записать с формальными индексами уже удобней. И все четыре объекта $g, \overline{g}, g^*, \overline{g}^*$ можно теперь обозначать одной буквой g. Действительно,

$$g^{13}g_{32} = \delta_2^1 \tag{1.3}$$

формально похоже на (1.2), но выражает инвариантный факт, что $\overline{g}^* = \overline{g}^{-1}$. На общих многообразиях запись с формальными индексами будет значительно упрощать вывод явных формул в компонентах, не мешая пониманию инвариантного смысла выражений.

Нам часто удобно будет отождествлять вектор $u \in V$ с формой $\overline{g}(u) \in V^*$ и, наоборот, форму $\omega \in V^*$ с вектором $\overline{g}^*(\omega) \in V$. Чтобы подчеркнуть разницу мы будем писать верхний формальный индекс у объекта из V и нижний у объекта из V^* . Если не будет необходимости указывать конкретную «цифру», но нужно будет подчеркнуть, какому пространству принадлежит объект, мы будем вместо индекса ставить жирную точку, например, $u^{\bullet} = u$, $u_{\bullet} = \overline{g}(u)$ (то есть $u_{1} = g_{12}u^{2}$).

Теперь перейдем к аффинным пространствам. Аффинное пространство отличается от линейного только отсутствием выделенного нуля. То есть это множество точек, такое что каждой паре точек A, B отвечает вектор в линейном пространстве, обозначаемый $\overrightarrow{AB} = -\overrightarrow{BA}$ а для любых трех точек A, B, C выполняется правило треугольника $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$. Форма g определяет метрику на аффинном пространстве, то есть расстояние |AB| между точками A и B задается формулой

$$|AB|^2 = g(\overrightarrow{AB}, \overrightarrow{AB}).$$

Понятно, что определенное таким образом расстояние может быть как вещественным, так и мнимым. В теории относительности величина |AB| называется собственным временем, отвечающим отрезку [AB]. Точки в аффинном пространстве-времени называются событиями.

В аффинном пространстве точки можно задать координатами. Если мы выделим «начальную» точку O и базис $\{e_{\mu}\}$ в пространстве V, то координаты x_A^{μ} точки A задаются уравнением

$$\overrightarrow{OA} = x_A^{\mu} \mathbf{e}_{\mu}.$$

С одной стороны, это отождествляет аффинное пространство с пространством \mathbb{R}^d , которое, в случае метрики $g=\eta$ обозначается как \mathbb{R}^{d_+,d_-} . С другой стороны, это вводит на аффинном пространстве структуру многообразия. Понятно, что аффинное пространство покрывается одной картой, но специальная теория относительности имеет смысл на многообразиях с разной топологией. Главное, чтобы матрицы перехода между картами с (псевдо)декартовыми координатами задавались бы псевдоортогональными матрицами. Обозначения и понятия, связанные со структурой многообразия мы разберем в следующей лекции, посвященной более общей геометрии.

В теории относительности мы иногда будем пользоваться обозначениями $x^0 = t, x^1 = x, x^2 = y, x^3 = z$. Скорость света мы будем всюду принимать равной единице. Соответственно, квадрат расстояния (собственного времени) между событиями в специальной теории относительности равен

$$|AB|^2 = (t_A - t_B)^2 - (x_A - x_B)^2 - (y_A - y_B)^2 - (z_A - z_B)^2.$$
(1.4)

Для бесконечно-малых расстояний собственное время обозначается ds и равно

$$ds^2 = dt^2 - dx^2 - dy^2 - dz^2. (1.5)$$

Обсудим группу Лоренца SO(1,3) и ее физическую интерпретацию. Рассмотрим две системы отсчета K и K' и связанные с ними системы пространственных координат x^i и x'^i (i=1,2,3). Пространственными вращениями $SO(3) \subset SO(1,3)$ мы можем добиться того, чтобы базисные векторы e_i и e_i' совпали. Более того, мы можем сделать так, чтобы скорость системы отсчета K' в системе отсчета K была направлена по одной из осей, например вдоль e_1 . Тогда преобразование (npeofpasoganue Лоренца)

$$t' = \frac{t - vx}{\sqrt{1 - v^2}}, \qquad x' = \frac{x - vt}{\sqrt{1 - v^2}}, \qquad y' = y, \qquad z' = z.$$
 (1.6)

принадлежит группе Лоренца. Три вращения и преобразование Лоренца порождают всю группу Лоренца SO(1,3). Преобразования Лоренца, также как и все остальные факты релятивистской кинематики, полностью выводятся из следующего постулата: $Kaadpam\ co6cmвeнного\ времени\ |AB|^2\ dля\ dвух\ co6ытий\ A\ u\ B,\ onpedenenhui формулой\ (1.4),\ не\ зависит\ om\ cucmeмы\ omcчета.$

Полезно ввести быстроту θ уравнением $v = \operatorname{th} \theta$. Тогда преобразование Лоренца принимает вид

$$t' = t \operatorname{ch} \theta - x \operatorname{sh} \theta, \qquad x' = -t \operatorname{sh} \theta + x \operatorname{ch} \theta, \qquad y' = y, \qquad z' = z, \tag{1.7}$$

напоминающий вращение в эвклидовом пространстве. Легко проверить, что оно прямо переходит во вращение на комплексный угол $-i\theta$ после викова поворота $t = -i\tau$ времени в комплексной плоскости.

Рассмотрим теперь динамику специальной теории относительности. Нас будет интересовать поведение частиц в геометрии Минковского.

1. Свободная частица. Движение частицы описывается мировой линией, то есть линией $x^{\bullet}(t) = (t, \boldsymbol{r}(t)) = te_0 + x^i(t)e_i$, где $\boldsymbol{r}(t) = (x(t), y(t), z(t)) = x^i(t)e_i$ —закон движения частицы. Свободная частица согласно первому закону Ньютона движется равномерно и прямолинейно. То есть, если имеются два события A и B, то мировая линия свободной частицы, в момент t_A находящейся в точке $\boldsymbol{r}_A = (x_A, y_A, z_A)$, а в момент t_B —в точке $\boldsymbol{r}_B = (x_B, y_B, z_B)$, будет отрезком [AB]. Такая линия минимизирует действие

$$S[x] = -m \int_{A}^{B} ds = -m \int_{t_{A}}^{t_{B}} dt \sqrt{1 - v^{2}}.$$
 (1.8)

В нерелятивистском пределе $v\ll 1$ действие сводится к интегралу от кинетической энергии

$$S[x] \simeq -m \int_{t_A}^{t_B} dt \left(1 - \frac{\boldsymbol{v}^2}{2}\right) = \text{const} + \int_{t_A}^{t_B} dt \, \frac{m\boldsymbol{v}^2}{2}. \tag{1.9}$$

Уравнение движения, отвечающее действию (1.8), очевидно, имеет вид

$$\dot{\boldsymbol{v}} = 0. \tag{1.10}$$

Тем не менее, полезно найти импульсы и гамильтониан системы:

$$p = \frac{\partial L}{\partial v} = \frac{mv}{\sqrt{1 - v^2}}, \qquad H(r, p) = vp - L = \frac{m}{\sqrt{1 - v^2}} = \sqrt{m^2 + p^2}.$$
 (1.11)

Таким образом, в гамильтоновой форме уравнение движения имеет вид

$$\dot{\boldsymbol{p}} = 0, \qquad \dot{\boldsymbol{r}} = \frac{\boldsymbol{p}}{E}, \qquad E = \sqrt{m^2 + \boldsymbol{p}^2}.$$
 (1.12)

Энергия E и импульс p образуют 4-импульс

$$p^{\bullet} = (E, \mathbf{p}) = mu^{\bullet}, \tag{1.13}$$

где u-4-скорость

$$u^{\bullet} = \frac{dx^{\bullet}}{ds} = \left(\frac{1}{\sqrt{1 - v^2}}, \frac{v}{\sqrt{1 - v^2}}\right). \tag{1.14}$$

Величины

$$J^{\mu\nu} = x^{\mu}p^{\nu} - x^{\nu}p^{\mu} \tag{1.15}$$

тоже сохраняются и дают пространственно-временной момент импульса. Его чисто пространственные компоненты J^{ik} $(k=1,\ldots,3)$ дают обычный момент импульса:

$$J_i = \epsilon_{ijk} J^{jk}, \tag{1.16}$$

где ϵ_{ijk} — полностью антисимметричный тензор с $\epsilon_{123}=1$. Временные компоненты J^{0i} не порождают независимых сохраняющихся величин.

2. Частица в электромагнитном поле. Электромагнитное поле описывается 4-потенциалом $A_{\bullet} = (\varphi, -A)$ или, более точно, 1-формой $A(x) = A_{\mu}(x) dx^{\mu}$. Движение частицы описывается действием

$$S[x] = \int_{A}^{B} (-m \, ds - eA) = \int_{A}^{B} (-m \, ds - eA_{\mu} \, dx^{\mu}) = \int_{t_{A}}^{t_{B}} dt \, \left(-m\sqrt{1 - \boldsymbol{v}^{2}} + e\boldsymbol{A}\boldsymbol{v} - e\varphi\right). \tag{1.17}$$

Уравнение движения удобнее написать в гамильтоновой форме. Имеем для импульсов

$$P = \frac{\partial L}{\partial v} = \frac{mv}{\sqrt{1 - v^2}} + eA = p + eA$$
(1.18)

и для гамильтониана

$$H(\mathbf{r}, \mathbf{P}) = \mathbf{v}\mathbf{P} - L = \sqrt{m^2 + (\mathbf{P} - e\mathbf{A}(\mathbf{r}))^2} + e\varphi(\mathbf{r}). \tag{1.19}$$

Уравнение движения

$$\dot{\mathbf{P}} = -\frac{\partial H}{\partial \mathbf{r}}, \qquad \dot{\mathbf{r}} = \frac{\partial H}{\partial \mathbf{P}}$$
 (1.20)

нетрудно привести к стандартному виду

$$\dot{\boldsymbol{p}} = e\boldsymbol{E} + e\boldsymbol{v} \times \boldsymbol{H}, \qquad \boldsymbol{E} = -\dot{\boldsymbol{A}} - \nabla\varphi, \qquad \boldsymbol{H} = \nabla \times \boldsymbol{A}.$$
 (1.21)

В более инвариантном виде уравнение движения можно записать как

$$m\frac{du^{\mu}}{ds} = eF^{\mu}{}_{\nu}u^{\nu},\tag{1.22}$$

где тензор электромагнитного поля определяется как

$$F = \frac{1}{2} F_{\mu\nu} \, dx^{\mu} \wedge dx^{\nu} = dA, \tag{1.23}$$

или

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}, \qquad \partial_{\mu} = \frac{\partial}{\partial x^{\mu}}.$$
 (1.24)

Этот тензор выражается через компоненты напряженности поля

$$F_{\bullet \bullet} = \begin{pmatrix} 0 & E_x & E_y & E_z \\ -E_x & 0 & -H_z & H_y \\ -E_y & H_z & 0 & -H_x \\ -E_z & -H_y & H_x & 0 \end{pmatrix}. \tag{1.25}$$

Обратите внимание, что в левой части (1.22) дифференцирование выполняется по лоренц-инвариантному собственному времени.

 $[\]overline{}^3$ Всюду греческие буквы из середины алфавита $\kappa, \lambda, \mu, \nu, \ldots$ будут использоваться для пространственно-временных индексов, пробегающих значения $0, 1, \ldots, d-1$. Латинские буквы из середины алфавита i, j, k, l, \ldots будут использоваться для пространственных индексов и пробегать значения $1, \ldots, d-1$.

Задачи

- 1. Покажите, что прямой мировой линии отвечает именно минимум (а не максимум) действия (1.8), то есть максимум собственного времени $s = \int_A^B ds$. Приведите примеры мировых линий, отвечающих наименьшему собственному времени. Чему равно это время?
 - 2. В случае системы нескольких свободных частиц момент импульса равен сумме их моментов:

$$J^{\mu\nu} = \sum_{s} (x_s^{\mu} p_s^{\nu} - x_s^{\nu} p_s^{\mu}).$$

Покажите, что сохранение компонент J^{0i} эквивалентно тому, что центр инерции системы

$$\boldsymbol{R} = \frac{\sum_{s} E_{s} \boldsymbol{r}_{s}}{\sum_{s} E_{s}}$$

движется с постоянной скоростью.

3. Покажите, что при калибровочном преобразовании

$$A \to A + d\chi$$
,

где $\chi(x)$ — произвольное скалярное поле, действие (1.17) преобразуется как

$$S \to S + e(\chi(x_A) - \chi(x_B)).$$

Объясните, почему отсюда следует, что уравнение движения частицы не меняется при калибровочных преобразованиях.

- 4. Выведите уравнение (1.22).
- **5*.** Рассмотрите частицу во внешнем скалярном поле, которое описывается зависящей от точки массой m(x) в действии (1.17). Напишите гамильтониан и уравнения движения такой частицы. Покажите, что если $m(x) = m_0 + U(x)$, $U(x) \ll m_0$, то в нерелятивистском пределе эти уравнения описывают частицу во внешнем потенциальном поле U(x).

Семинар 1

Преобразования Лоренца, светоподобные координаты, диаграмма Пенроуза

Для простоты мы будем рассматривать двумерное пространство-время.

- 1. Графическое представление преобразований Лоренца в двух измерениях (Рис. 1.1).
- 2. Координаты Риндлера и равноускоренное движение. Введем координаты τ и ξ уравнениями:

$$t = \xi \operatorname{sh} \tau, \qquad x = \xi \operatorname{ch} \tau.$$

Метрика в этих координатах принимает вид

$$ds^2 = \xi^2 d\tau^2 - d\xi^2.$$

Координаты Риндлера определены в во внешней области светового конуса: |x| < |t| (Рис. 1.2). Линии постоянной координаты ξ отвечают мировым линиям наблюдателей с инвариантным ускорением ξ^{-1} , причем собственное время такой частицы равно $\xi \tau + \mathrm{const.}$

Важной особенностью риндлеровских наблюдателей является наличие горизонта событий. События вне правого клина для них ненаблюдаемы. Другое полезное наблюдение: твердый стержень не может ускоряться так, чтобы все его точки ускорялись с одним и тем же ускорением. Задний конец должен иметь большее ускорение («парадокс» Белла).

Рис. 1.1. Поворот и преобразование Лоренца в двумерном пространстве-времени. Пунктирные линии содержат точки, удаленные на единичное (по модулю) расстояние от начала координат.

Рис. 1.2. Координаты Риндлера. Гиперболы отвечают линиям постоянной координаты $\xi=-3,-2,\ldots,3,$ а прямые — линиям постоянного времени $\tau=-0.8,-0.6,\ldots,0.8.$

Рис. 1.3. Диаграмма Пенроуза для пространства Минковского. Граница $\mathcal{I}^+, \mathcal{I}^-$ отвечает бесконечному будущему, а граница $\mathcal{I}^-, \mathcal{J}^-$ — бесконечному прошлому.

3. Координаты светового конуса и причинная диаграмма (диаграмма Пенроуза) пространства Минковского.

Введем координаты

$$u = t - x,$$
 $v = t + x.$

В этих координатах метрика имеет вид

$$ds^2 = du dv.$$

В отличие от риндлеровских координат эти координаты глобально определены на всем двумерном пространстве-времени. Используя их можно «сжать» пространство-время, чтобы изобразить его на конечном листе:

$$u = 2 \operatorname{tg} u', \qquad v = 2 \operatorname{tg} v', \qquad ds^2 = \frac{4 du' \, dv'}{\cos^2 u' \cos^2 v'}.$$

Тогда пространство-время примет вид, изображенный на Рис. 1.3. Диаграмма Пенроуза описывает причинную структуру пространства-времени. Световой конус любого события на этой диаграмме изображается двумя прямыми, наклоненными под углов 45° к горизонту.