Lout Clan (15 September)
Duizres + Recap
2) Intro to Boosting
Boosting Intuition - How to combine Bare Learners?
4) What happens at frain & fest fine
(5) GBDT Intuition
Sklewn implementation
Today's c/m
1) Orizzen
2) Recap of prob. & loss for in Boosted Tree
3) How clamification is done in Boosted Trees 4) Bias Vovience Trade at
4) Bias Variance Trade-off
5) How to regularize GBDT

6) Does Outlier impret GBDT

7) Use care - EMG Signal Claim tication

Regression Loss for -> MSF clanification loss from log loss - \(\frac{\pi}{2}\) \(\frac{\p predicted froth 7 0406 200 total 110 to 100 - Ve 804 ve 20-re (A (110) P(tre) = 80 = 0.8 $P(-VP) = \frac{20}{100} = 0.2$ ho(n) = mean of all

Tevr,
$$(x^{(i)}) = y^{(i)} - f_0(x^{(i)})$$

while him $h_1(x^{(i)}) = f_0(x^{(i)}) + \chi h_1(x^{(i)})^2$

min $\sum_{i=1}^{m} \left[y^{(i)} - \sum_{i=1}^{m} f_0(x^{(i)}) + \chi h_1(x^{(i)}) \right]^2$
 $\int h_1(x^{(i)}) = f_0(x^{(i)}) + \chi h_1(x^{(i)})^2$
 $\int h_2(x^{(i)}) = f_0(x^{(i)}) + \chi h_2(x^{(i)})^2$

while him $\sum_{i=1}^{m} \left[y^{(i)} - \sum_{i=1}^{m} \left[y^{(i)}$

$$\frac{3L}{3X} = \sum_{i=1}^{2} (y^{(i)}) + \sum_{i=1}^{2} h_{2}(x^{(i)}) + \sum_{i=1$$

Test time h_{v} $\left(\mathcal{H}^{(v)} \right)$ Tring $h, (\chi^{(n)})$

$$y_3 = y_1 + y_2$$
 $y_4 = y_1 + 0.1 + 2$

earning rute 7722 100/1 1000 rundom Sey venle -> Resume

Shrizheage (V) $F_{m}(n) = h_{0}(n) + \sqrt{\sum_{i=1}^{m} \chi_{m} h_{m}(n)}$ hyper-param only used during trining Juring validation validation & test times M Fm(n) $Zh_o(n)$ + $\leq 2mh_m(n)$ i=12(a)

greeny (test) point 3 danses / Clan o

= [0.45, [0.6], 0.45] () class 1 normalize to make the sum 1