LIN – BI-SPOL-13

Matice: součin matic, regulární matice, inverzní matice a její výpočet, vlastní čísla matice a jejich výpočet, diagonalizace matice.

Obsah

1 Součin matic

Nechť $m, n, p \in \mathbb{N}$, $\mathbb{A} \in T^{m,n}$ a $\mathbb{B} \in T^{n,p}$. Součinem těchto matic je matice $\mathbb{D} = \mathbb{AB}$, pro jejíž prvky platí:

$$d_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

2 Regulární a inverzní matice

Definice 1 (Regulární a inverzní matice). Nechť $\mathbb{A} \in T^{n,n}$. Pokud existuje $\mathbb{A} \in T^{n,n}$ tak, že

$$AB = BA = E$$

Potom nazveme matici \mathbb{A} regulární a matici \mathbb{B} inverzní. Inverzní matici značíme $\mathbb{B} = \mathbb{A}^{-1}$.

Věta 2. Buď $\mathbb{A} \in T^{n,n}$. Následující tvrzení jsou ekvivalentní:

- A je regulární.
- Soubor řádků matice A je LN.
- $h(\mathbb{A}) = n$.
- $\mathbb{A} \sim \mathbb{E}$.

2.1 Výpočet inverzní matice

Nechť $\mathbb{A} \in T^{n,n}$. Ověřte, zda je matice regulární a pokud je, nalezněte k ní matici inverzní \mathbb{A}^1 .

- 1. Hledáme matici \mathbb{A}^{-1} s vlastností $\mathbb{A}^{-1}\mathbb{A} = \mathbb{A}\mathbb{A}^{-1} = \mathbb{E}$.
- 2. Doplněním zadané matice o jednotkovou matici stejného rozměru sestavme dvoublokovou rozšířenou matici $(\mathbb{A}|\mathbb{E}) \in T^{n,2n}$.
- 3. Na celou ($\mathbb{A}|\mathbb{E}$) používáme řádkové úpravy GEM, pro libovolnou posloupnost řádkových úprav realizovaných regulární maticí $\mathbb P$ pak platí

$$(A|E) \sim (PA|PE) = (PA|P).$$

Víme, že levou část je možné převést na jednotkovou matici právě tehdy, když je \mathbb{A} regulární. Vznikne-li při úpravách \mathbb{A} na horní stupňovitý tvar **nulový řádek**, pak \mathbb{A} je singulární a **inverze neexistuje**.

4. Je-li \mathbb{A} regulární, pak pro úpravy \mathbb{P} vedoucí k převedení levého bloku matice $(\mathbb{A}|\mathbb{E})$ na jednotkovou matici platí $\mathbb{P} = \mathbb{A}^{-1}$, tedy $(\mathbb{A}|\mathbb{E}) \sim (\mathbb{E}|\mathbb{A}^{-1})$ a pravý blok výsledné matice obsahuje hledanou \mathbb{A}^{-1} .

3 Vlastní čísla

Definice 3. Řekneme, že $\lambda \in \mathbb{C}$ je vlastní číslo operátoru $A \in \mathcal{L}(V)$, právě když existuje $x \in V$, $x \neq \theta$, takový, že $Ax = \lambda x$. Vektor x pak nazýváme vlastním vektorem operátoru A příslušejícím vlastnímu číslu λ . Množinu všech vlastních čísel A nazýváme spektrem operátoru A a značíme symbolem $\sigma(A)$.

Analogicky pro matice $\mathbb{A} \in \mathbb{C}^{n,n}$, $kde \mathbb{A} = {}^{\varepsilon}A$.

Charakteristický polynom matice \mathbb{A} (ozn. $p_{\mathbb{A}}$) definujeme předpisem $p_{\mathbb{A}}(\lambda) := \det(\mathbb{A} - \lambda \mathbb{E})$.

Definice 4. Je-li $\lambda \in C$ vlastní číslo operátoru $A \in \mathcal{L}(V_n)$, pak podprostor $\ker(A - \lambda E)$ nazýváme vlastním podprostorem operátoru A příslušejícím vlastnímu číslu λ .

Definice 5. Nechť $\lambda \in C$ je vlastní číslo operátoru $A \in \mathcal{L}(V_n)$. Číslo $d(A - \lambda E) = \dim \ker (A - \lambda E)$ nazýváme **geometrickou násobností** vlastního čísla λ a značíme ji $\nu_q(\lambda)$.

Definice 6. Nechť $A \in \mathcal{L}(V_n)$ a $\lambda \in \sigma(A)$. Násobnost čísla λ jako kořene charakteristického polynomu p_A operátoru A nazýváme **algebraickou násobností** vlastního čísla λ a značíme ji $\nu_a(\lambda)$.

Definice 7 (determinant). *Determinant matice* $\mathbb{A} \in \mathbb{C}^{n,n}$ *je číslo:*

$$\det \mathbb{A} = \sum_{\pi \in S_n} \operatorname{sgn} \pi \cdot a_{1\pi(1)} a_{2\pi(2)} \cdots a_{n\pi(n)}.$$

3.1 Výpočet determinantu

Determinant se dá vypočítat kombinací následujících postupů:

- · Přes definici.
- Sarrusovo nebo křížové pravidlo. (Soros zde asi nepomůže)
- Je-li matice \mathbb{A} trojúhelníková (tj. $\mathbb{A}_{ij} = 0$ pro i > j), lze determinant spočítat vynásobením čísel na diagonále.
- $\det \mathbb{A} = \det \mathbb{A}^T$
- Úprava GEM
 - (G1) Prohození dvou řádků mění znaménko determinantu.
 - (G2) Vynásobení jednoho řádku nenulovým číslem determinant se tím číslem musí vydělit.
 - (G3) Přičtení k jednomu řádku α násobek jiného řádku determinant se nemění.

3.2 Výpočet vlastních čísel

• Pro danou matici $\mathbb{A} \in \mathbb{C}^{n,n}$ hledáme nenulové vektory x a čísla $\lambda \in \mathbb{C}$ splňující rovnici

$$\mathbb{A}x = \lambda x$$
.

• To je ekvivalentní hledání λ takové, že homogenní soustava rovnic

$$(\mathbb{A} - \lambda \mathbb{E})x = \theta$$

má nenulové řešení.

- To nastává ale tehdy a jen tehdy (vzpomeňme Frobeniovu větu), když je matice $\mathbb{A} \lambda \mathbb{E}$ singulární (neregulární).
- A to je zase ekvivalentní tomu, že determinant matice $\mathbb{A} \lambda \mathbb{E}$ je roven nule: abychom tedy našli vlastní číslo, řešíme rovnici

$$\det(\mathbb{A} - \lambda \mathbb{E}) = 0.$$

- Pro zadané vlastní číslo λ už najdeme vlastní vektory snadno jako řešení homogenní soustavy uvedené výše.

4 Diagonalizace matice

Definice 8. Matice $\mathbb{A}, \mathbb{B} \in \mathbb{C}^{n,n}$ nazveme **podobné**, právě když existuje regulární $\mathbb{P} \in \mathbb{C}^{n,n}$ tak, že:

$$\mathbb{A} = \mathbb{P}^{-1}\mathbb{BP}$$

Ekvivalentně platí, že matice $\mathbb{A}, \mathbb{B} \in C^{n,n}$ jsou podobné právě tehdy, když jsou obě maticemi stejného lineárního operátoru (v nějakých bázích), tedy když existuje $\mathbb{A} \in \mathcal{L}(V)$ a báze \mathcal{X}, \mathcal{Y} takové, že

$$^{\mathcal{X}}\mathbb{A}=\mathbb{A}$$
 a současně $^{\mathcal{Y}}\mathbb{A}=\mathbb{B}$.

Operátor $\mathbb{A} \in \mathcal{L}(V)$ nazveme **diagonalizovatelný**, jestliže existuje báze \mathcal{X} prostoru V_n taková, že matice $^{\mathcal{X}}\mathbb{A}$ je diagonální (matice je **diagonalizovatelná**, je-li podobná diagonální matici).

- Operátor $A \in \mathcal{L}(V)$ je diagonalizovatelný právě když $\forall \lambda_0 \in \sigma(A) : \nu_a(\lambda_0) = \nu_q(\lambda_0)$.
- Libovolný soubor vlastních vektorů, ve kterém každý přísluší jinému vlastnímu číslu, je vždy LN.
- Zadání "ověřte, zda je operátor diagonalizovatelný, a nalezněte bázi, ve které je jeho matice diagonální" tedy znamená:
 - nalézt spektrum $\sigma(A)$,
 - ke každému vlastnímu číslu nalézt bázi vlastního podprostoru,
 - porovnat algebraické a geometrické násobnosti u každého $\lambda \in \sigma(A)$,
 - rovnají-li se pro každé $\lambda \in \sigma(A)$, bázi \mathcal{X} sestavíme popořadě z bazických vektorů všech vlastních podprostorů. Matice přechodu ${}^{\mathcal{X}}E^{\varepsilon}$ je bude obsahovat ve sloupcích, diagonální matice operátoru ${}^{\mathcal{X}}A$ bude na diagonále obsahovat v odpovídajícím pořadí všechna vlastní čísla (každé zopakované tolikrát, kolik je jeho násobnost).