RAPPELS SUITES NUMERIQUES POLYCOPIE A COMPLETER (...)

1) DEFINITION

Une suite numérique est une suite de nombres.

Exemple et notations :

u₀ est le terme initial de la suite (u_n).

u_n est le terme général de la suite (u_n), le terme de rang n ou le terme d'indice n.

n est le rang ou l'indice. n appartient à l'ensemble des entiers naturels $\mathbb{N} = \{0; 1; 2; 3; \dots\}$.

On note n ...

2) MODE DE GENERATION D'UNE SUITE

Il existe principalement deux modes de génération d'une suite :

• Par la donnée de l'expression de u_n en fonction de n (comme pour une fonction). On dit alors que l'on donne la forme explicite de la suite. Dans ce cas, on sait calculer n'importe quel terme de la suite.

Exemple: Soit (u_n) la suite définie sur \mathbb{N} par $u_n = 2n - 1$

Calculer les 3 premiers termes de la suite. Calculer u₁₀₀.

• Par la donnée d'un terme initial et d'une relation permettant de calculer chaque terme à partir du précédent. La suite est alors dite définie par récurrence, et la relation est appelée relation de récurrence.

Exemple: Soit (u_n) la suite définie sur \mathbb{N} par $u_0 = 2$ et pour tout $n \ge 0$, $u_{n+1} = 2u_n - 1$

Calculer les 3 premiers termes de la suite. Peut-on calculer u₁₀₀ directement ?

3) DES SUITES DE NATURE PARTICULIERE : SUITES ARITHMETIQUES, SUITES GEOMETRIQUES

a) Suites arithmétiques

Une suite arithmétique est une suite numérique dont chaque terme s'obtient en ajoutant au précédent un nombre réel r constant appelé raison.

Exemple:

2;3.5;5;6.5;.....

La suite est construite ainsi:

 $u_1 = u_0 + 1.5$

 $u_2 = u_1 + 1.5$

 $u_3 = u_2 + 1.5$

Définition :

De manière générale, une suite arithmétique est définie pour tout nombre entier naturel n par la relation :

 $u_{n+1} = ...$

EXERCICES 46 ET 47 P 34

b) Suites géométriques

Une suite géométrique est une suite numérique dont chaque terme s'obtient en multipliant le précédent par un nombre réel q constant appelé raison.

Exemple:

2;6;18;64;.....

 u_0 ; u_1 ; u_2 ; u_3 ;

La suite est construite ainsi:

 $u_1 = u_0 \times 3$

 $u_2 = u_1 \times 3$

 $u_3 = u_2 \times 3$

Définition :

De manière générale, une suite géométrique est définie pour tout nombre entier naturel n par la relation :

 $u_{n+1} = ...$

EXERCICES 48, 49 ET 53 P34