

MÉCANIQUE GÉNÉRALE - ÉVALUATION DE FIN DE SEMESTRE

01/02/2023 - 2H

Sont autorisés : Formulaire (2 pages A4 + 1 tableau des liaisons) Calculatrice non programmable

Étude d'un mécanisme de dépôt de revêtement

1 Etude cinématique analytique

1. Graphe des liaisons et figures de changement de base

- 2. La trajectoire de E par rapport à R_0 est un cercle de centre I et de rayon (R+r).
- 3. Calcul de \vec{V} (E/0) en fonction de R, r et ψ \vec{V} (E/0) = \vec{V} (E, 5/0) = $\left(\frac{\vec{\text{dIE}}}{\vec{\text{d}}t}\right)_0 = (R+r) \vec{\Omega}(E/0) \wedge \vec{z}_E$

$$\vec{V}(E, 5/0) = (R+r) \dot{\psi} \vec{x}_{E}$$

4. Condition de non glissement en P \Rightarrow $\vec{V}\left(P,5/0\right)=\vec{0}.$

P est fixe dans R_E. Il est possible de calculer $\vec{V}\left(\mathbf{P},5/0\right)$ de deux manières :

• Par cinématique du solide :
$$\vec{V}$$
 (P, 5/0) = \vec{V} (E, 5/0) + $\overrightarrow{PE} \wedge \vec{\Omega}$ (5/0)
 \vec{V} (P, 5/0) = $(R+r) \dot{\psi} \vec{x}_{\rm E} + r \vec{z}_{\rm E} \wedge (\dot{\beta} + \dot{\gamma} + \dot{\delta}) \vec{y}_{\rm E}$
= $((R+r) \dot{\psi} - r (\dot{\beta} + \dot{\gamma} + \dot{\delta})) \vec{x}_{\rm E}$

• Par composition du mouvement :
$$\vec{V}$$
 (P, 5/0) = \vec{V} (P/0) - \vec{V} (P/5)
$$\vec{V}$$
 (P/0) = $\begin{pmatrix} \frac{\text{d}\vec{\text{IP}}}{\text{d}t} \end{pmatrix}_0$ | \vec{V} (P/5) = $\begin{pmatrix} \frac{\text{d}\vec{\text{EP}}}{\text{d}t} \end{pmatrix}_5$ = $R \vec{\Omega}(\text{E}/0) \land \vec{z}_{\text{E}}$ | = $(-r) \vec{\Omega}(\text{E}/5) \land \vec{z}_{\text{E}}$ = $-r \left(\dot{\psi} - \dot{\beta} - \dot{\gamma} - \dot{\delta} \right) \vec{x}_{\text{E}}$ D'où \vec{V} (P, 5/0) = $\left((R+r) \dot{\psi} - r \left(\dot{\beta} + \dot{\gamma} + \dot{\delta} \right) \right) \vec{x}_{\text{E}}$ [(R+r) $\dot{\psi} = r \left(\dot{\beta} + \dot{\gamma} + \dot{\delta} \right)$] (edl1)

5. Contact au point
$$P \Rightarrow \overrightarrow{IP} = R\vec{z}_E$$
 ou $P_0 \equiv P_5 \Rightarrow \overrightarrow{P_0P_5} = \vec{0}$

$$\overrightarrow{IP} = \overrightarrow{IC} + \overrightarrow{CD} + \overrightarrow{DE} + \overrightarrow{EP}$$

$$= -L\vec{x}_0 + (b+c)\vec{x}_3 + e\vec{x}_4 - r\vec{z}_E$$

$$= (-L + (b+c)\cos\beta + e\cos(\beta + \gamma) - r\sin\psi)\vec{x}_0 + (-(b+c)\sin\beta - e\sin(\beta + \gamma) - r\cos\psi)\vec{z}_0$$

$$\overrightarrow{IP} = R\vec{z}_E$$

$$= R\sin\psi\vec{x}_0 + R\cos\psi\vec{z}_0$$
ou
$$\overrightarrow{P_0P_5} = \overrightarrow{P_0I} + \overrightarrow{IC} + \overrightarrow{CD} + \overrightarrow{DE} + \overrightarrow{EP_5}$$

$$= -R\vec{z}_E - L\vec{x}_0 + (b+c)\vec{x}_3 + e\vec{x}_4 - r\vec{z}_E$$

$$= (-L + (b+c)\cos\beta + e\cos(\beta + \gamma) - (R+r)\sin\psi)\vec{x}_0 + (-(b+c)\sin\beta - e\sin(\beta + \gamma) - (R+r)\cos\psi)\vec{z}_0$$

$$\left\{ (R+r)\sin\psi = (b+c)\cos\beta + e\cos(\beta + \gamma) - L \right\} \quad \text{(edl2)}$$

$$\left\{ (R+r)\cos\psi = -(b+c)\sin\beta - e\sin(\beta + \gamma) \quad \text{(edl3)}$$

6. Fermeture de chaîne en
$$\mathbf{B} \Rightarrow \mathbf{B}_2 \equiv \mathbf{B}_3 \Rightarrow \overrightarrow{\mathbf{B}_2 \mathbf{B}_3} = \vec{0}$$

$$\overrightarrow{\mathbf{B}_2 \mathbf{B}_3} = \overrightarrow{\mathbf{B}_2 \mathbf{A}} + \overrightarrow{\mathbf{AC}} + \overrightarrow{\mathbf{CB}_3}$$

$$= -x \vec{x}_{1,2} - a \vec{z}_0 + c \vec{x}_3$$

$$= (-x \cos \alpha + c \cos \beta) \vec{x}_0 + (x \sin \alpha - a - c \sin \beta) \vec{z}_0$$

$$\begin{cases} x \cos \alpha = c \cos \beta \\ x \sin \alpha = a + c \sin \beta \end{cases}$$
 (edl4)

Une autre solution est d'écrire : $\overrightarrow{B_2B_3} = \overrightarrow{B_2C} + \overrightarrow{CI} + \overrightarrow{IE} + \overrightarrow{ED} + \overrightarrow{DB_3}$. Cependant cette solution conduit à retrouver les équations (edl2) et (edl3).

- 7. Degré de mobilité : k = n m avec :
 - $n = 6 (\alpha, x, \beta, \gamma, \delta \text{ et } \psi)$
 - m = 5 ((edl1), (edl2), (edl3), (edl4) et (edl5))

$$k = 6 - 5 = 1$$

Il suffit de commander la position x du vérin linéaire pour mettre en mouvement l'ensemble du mécanisme et notamment le rouleau S_5 .

8. Le torseur cinématique 2/0 en B s'écrit :

$$\left\{ \mathcal{V}_{2/0} \right\}_{(\mathrm{B})} : \left\{ \begin{array}{l} \vec{\Omega}(2/0) = \dot{\alpha} \vec{y} \\ \vec{V}\left(\mathrm{B}, 2/0\right) = \vec{V}\left(\mathrm{B}, 2/1\right) + \vec{V}\left(\mathrm{B}, 1/0\right) = \dot{x} \vec{x}_{1,2} - x \dot{\alpha} \vec{z}_{1,2} \end{array} \right.$$

- 9. On peut remarquer que l'automoment de ce torseur est nul car $\vec{\Omega}(2/0) \cdot \vec{V}(B,2/0) = 0$. Il s'agit donc d'un glisseur puisque $\Omega(2/0)$ n'est pas nul. Puisque le problème est plan, on peut donc en conclure que le mouvement 2/0 est une rotation instantanée.
- 10. 2/0 est tangent à une rotation d'axe (I_{20}, \vec{y}) avec I_{20} tel que $\overrightarrow{BI_{20}} = \frac{\vec{\Omega}(2/0) \wedge \vec{V}(B/0)}{\left(\vec{\Omega}(2/0)\right)^2} = X_I \vec{x}_1 + Z_I \vec{z}_1$

puisque I_{20} appartient à l'axe de viration (équivalent à l'axe central).

Ainsi on a $\overrightarrow{\mathrm{BI}_{20}} = X_I \vec{x}_1 + Z_I \vec{z}_1$ avec :

$$X_I = -x Z_I = -\frac{\dot{x}}{\dot{\alpha}}$$

11. Le torseur cinématique 5/0 en E s'écrit :

12.
$$\vec{\Gamma}(E/0) = \vec{A}(E/0) = \left(\frac{d\vec{V}(E/0)}{dt}\right)_0$$

$$\vec{\Gamma}(E/0) = \vec{A}\left(E/0\right) = \left(\ddot{x} - x\dot{\alpha}^2\right)\vec{x}_1 - \left(2\dot{x}\dot{\alpha} + x\ddot{\alpha}\right)\vec{z}_1 - b\dot{\beta}^2\vec{x}_3 - b\ddot{\beta}\vec{z}_3 - e\left(\dot{\beta} + \dot{\gamma}\right)^2\vec{x}_4 - e\left(\ddot{\beta} + \ddot{\gamma}\right)\vec{z}_4$$

13. Pour déposer une couche homogène, le rouleau doit avoir une vitesse tangente à la surface et sa norme constante. Il faut donc que la composante tangentielle de l'accélération soit nulle $\Rightarrow \vec{A}(E/0) \cdot \vec{x}_E = 0$. L'écriture des équations précédentes permet d'obtenir l'expression des consignes à appliquer au vérin pour assurer un dépôt du revêtement conforme au cahier des charges.

2 Cinématique graphique

- 1. Comme la trajectoire de E par rapport à R_0 est un cercle de centre I et de rayon $\|\overrightarrow{IE}\|$, \overrightarrow{V} (E/0) est donc perpendiculaire à la droite (IE) c'est à dire selon \overrightarrow{x}_E .
- 2. $B \in S_2 \text{ et } S_3, \Rightarrow \vec{V}(B/0) = \vec{V}(B, 2/0) = \vec{V}(B, 3/0).$

On a \vec{V} (B, 2/0) = \vec{V} (B, 2/1) + \vec{V} (B, 1/0). Sachant que :

- \vec{V} (B, 2/1) est entièrement connue.
- Le mouvement 3/0 est une rotation d'axe $(C, \vec{y}_{0,3}) \Rightarrow \vec{V} (B/0) \perp (CB)$
- Le mouvement 1/0 est une rotation d'axe $(A, \vec{y}_{0.1}) \Rightarrow \vec{V}(B, 1/0) \perp (AB)$.

À partir de ces informations, on peut ainsi obtenir \vec{V} (B/0) par somme vectorielle.

3. $D \in S_3$ et S_4 , $\Rightarrow \vec{V}(D/0) = \vec{V}(D, 3/0) = \vec{V}(D, 4/0)$. Le mouvement 3/0 est une rotation d'axe $(C, \vec{y}_{0,3}) \Rightarrow \vec{V}(D, 3/0) \perp (CD)$. Connaissant $\vec{V}(B, 3/0)$, on peut trouver $\vec{V}(D, 3/0)$ par distribution des vitesses dans une rotation.

4. $E \in S_4$ et S_5 , $\Rightarrow \vec{V}(E/0) = \vec{V}(E,4/0) = \vec{V}(E,5/0)$. D'après la première question le support de $\vec{V}(E/0)$ est connu et $\vec{V}(D/0)$ est entièrement connu. Il est possible d'utiliser l'équiprojectivité sur S_4 : $\vec{V}(D,4/0) \cdot \overrightarrow{DE} = \vec{V}(E,4/0) \cdot \overrightarrow{DE}$ pour déterminer $\vec{V}(E/0)$. Il était également possible d'obtenir $\vec{V}(E/0)$ en utilisant la distribution des vitesses dans une rotation en positionnant dans un premier temps I_40 le CIR de 4/0 (cf. construction suivante).

5. On remarque que \vec{V} (D, 4/0) $\neq \vec{V}$ (E, 4/0) donc le mouvement 4/0 n'est pas une translation. 4/0 est tangent à une rotation d'axe (I_{40} , \vec{y}) avec I_{40} situé sur les perpendiculaires de ces 2 vitesses. $\Rightarrow I_{40} = (IE) \cap (DC)$.

