电子电路与系统基础(B2)---非线性电路

第13讲:振荡器

李国林

清华大学电子工程系

B 课程 内容安排

第一学期:线性	序号	第二学期: 非线性
电路定律	1	器件基础
电阻电源	2	二极管
电容电感	3	MOSFET
信号分析	4	вјт
分压分流	5	反相电路
正弦稳态	6	数字门
时频特性	7	放大器
期中复习	8	期中复习
RLC二阶	9	负反馈
二阶时频	10	差分放大
受控源	11	频率特性
网络参量	12	正反馈
典型网络	13	振荡器
作业选讲	14	作业选讲
期末复习	15	期末复习

振荡器 内容

- 从正弦振荡到张弛振荡
 - 仿真波形
- 张弛振荡
- ■正弦振荡
 - ■正反馈原理
 - 案例分析

正弦振荡到张弛振荡

- 上节课分析负阻正弦波振荡器时,要求LC谐振腔的Q值足够高,从 而非线性负阻产生的高次谐波分量被滤除,于是可以用准线性方法 分析正弦波振荡器的稳态情况
- 显然,如果LC谐振腔的Q值下降,带通滤波效果变差,振荡波形就 会偏离正弦波,当Q值小到接近于O时,就是典型的张弛振荡

C=20pF, $R=100\Omega$, $I_0=1mA$ $v_{\rm C}(0)=3V, i_{\rm L}(0)=0$ $L=100\mu H$, $1\mu H$, 10nH, 0.1nH

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

高Q值正弦振荡

 $\mathbf{L}{=}\mathbf{100}\mu\mathbf{H}$

$$Q=\frac{1}{R}\sqrt{\frac{L}{C}}=22.36$$

 $L=1\mu H$

$$Q=\frac{1}{R}\sqrt{\frac{L}{C}}=2.236$$

低Q值张弛振荡

严重偏离正弦波形,电感/电容电流接近突变形态

L=10nH

$$Q=\frac{1}{R}\sqrt{\frac{L}{C}}=0.2236$$

L=0.1nH

$$Q=\frac{1}{R}\sqrt{\frac{L}{C}}=0.02236$$

李国林 清华大学电子工程系 《电子电路与系统基础(B2)》非线性电路

5/22/2021

二、张弛振荡

电容充放电、电感充放磁分析

- LC负阻振荡,LC谐振腔Q值很高时,形成正弦振荡;随着Q值的降低,正弦振荡波形将最终退化为张弛振荡波形
- 对于S型负阻,串联于串联LC谐振腔,电感为0对应Q值为0,因而S型负阻对接电容将形成张弛振荡

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}} \stackrel{L \to 0}{\Rightarrow} 0$$

■ 对于N型负阻,并联于并联LC谐振腔,电容为0对应Q值为0,因而N型负阻对接电感将形成张弛振荡

$$Q = \frac{1}{G} \sqrt{\frac{C}{L}} \stackrel{C \to 0}{\Rightarrow} 0$$

电容充放电时间计算

$$v_{C}(t) = v_{C\infty} + (v_{C0} - v_{C\infty})e^{-\frac{t}{\tau}}$$

$$V_1 = v_C(\Delta t) = V_{S0} + (V_0 - V_{S0})e^{-\frac{\Delta t}{\tau}}$$

$$\frac{V_1 - V_{S0}}{V_0 - V_{S0}} = e^{-\frac{\Delta t}{\tau}}$$

$$-\frac{\Delta t}{\tau} = \ln \frac{V_1 - V_{S0}}{V_0 - V_{S0}}$$

~ 终值减初值

$$\Delta t = \tau \ln \frac{V_{S0} - V_0}{V_{S0} - V_1}$$

$$\tau = RC$$

〉终值减转折值

S型负阻对接电容 S型负阻首先偏置于负阻区

分段折线建模

无法待在负阻区,

指数增长规律地

脱离负阻区,进

建模为戴维南源对电容的充放电

振荡周期与振荡频率

$$T = T_1 + T_2$$

$$f = \frac{1}{T}$$

$$T_{1} = R_{L}C \ln \frac{-V_{OL} - F_{H}V_{OH}}{-V_{OL} - \left(-F_{L}V_{OL}\right)} = R_{L}C \ln \frac{1 + F_{H}V_{OH}/V_{OL}}{1 - F_{L}}$$

$$T_{2} = R_{H}C \ln \frac{+V_{OH} - (-F_{L}V_{OL})}{+V_{OH} - F_{H}V_{OH}} = R_{H}C \ln \frac{1 + F_{L}V_{OL}/V_{OH}}{1 - F_{H}}$$

最典型的张弛振荡器电路

实际分析时 正反馈受控源可解释的一般不用负阻解释

张弛振荡经典结构

非门多谐振荡器

多谐: 非简谐正弦振荡, 有很多谐波分量

李国林 清华大学电子工程系

三角波原理

三角波电压

比较器 非门

比较功能,将波形整形为方波

方波电流

锯齿波原理

暂稳态2:低阻,开关闭合

三、正弦振荡

■负阻原理

- 以LC谐振腔为主体,添加 负阻器件(单端口器件)供 能抵偿正阻耗能,两者完全 抵偿,只剩下纯LC谐振腔, 形成正弦振荡
 - 低Q值退化为张弛振荡

■正反馈原理

■ 以放大器(二端口器件)为 主体,在特定频点实现正反 馈,导致该频率的信号越来 越强,直至进入放大器非线 性工作区,输出稳定正弦波: 正反馈正弦振荡

正反馈振荡原理 正反馈原理 起振条件,平衡条件,稳定条件 分析例 文氏电桥 RC移相 电容三点式 考毕兹电容三点式

负反馈回顾

$$v_e = v_{in} - F \cdot v_{out}$$

负反馈: 从输出引回的信号 和输入信号反相,环路增益 足够大时,反馈支路的作用 可以掩盖放大支路的作用

$$v_{out} = Av_e = A(v_{in} - F \cdot v_{out}) = Av_{in} - AFv_{out}$$

$$v_{out} = \frac{A}{1 + AF} v_{in}$$
 负反馈放大器: 1、增益下降

$$\stackrel{AF>>1}{\approx} \frac{1}{F} v_{in}$$

- 2、稳定性提高
- 3、线性度提高
- 4、带宽增加
 - 5、...

负反馈放大器具有 负反馈网络的优良 特性: 高稳定性, 高线性,高带宽

正反馈振荡

$$\begin{aligned} v_{out} &= A v_e \\ &= A \big(v_{in} + F \cdot v_{out} \big) \\ &= A v_{in} + A F v_{out} \end{aligned}$$

$$v_{out} = \frac{A}{1 - AF} v_{in}$$

$$AF = 1$$

即使输入v_{in}为零,输出v_{out}也可以不为零:为什么? 假设放大器输入端有一正弦信号,正弦信号经放大器和反馈网络 转一圈后,维持大小和相位不变,系统达到一种平衡状态

这恰好就是正反馈正弦波振荡器的平衡条件: AF=1

- 起始阶段,电路中的噪声做为初始激励,经反馈网络选频,导致特定频率信号在放大器输入端属正反馈关系,如果满足起振条件AF>1,则该正弦信号将增幅振荡
- 随着振荡幅度增加,放大器必将进入非线性工作区,其准线性放大倍数必然下降,最终使得AF=1,振荡幅度不再继续增加
 - 只要AF=1,电路中的正弦波信号 可以自行维持: 平衡条件
 - 反馈网络具有选频作用,使得只有特定的频率ω_{osc}才能满足正反馈条件,从而只有这个特定的频率才能满足起振条件A₀F(jω_{osc})>1和平衡条件AF(jω_{osc})=1,一般情况下,振荡频率由反馈网络决定
- 如果放大器放大倍数具有随着幅度增加单调下降特性,则可维持稳定的正弦输出
 - 稳定条件

正反馈正弦振荡的振荡条件

	幅度条件	相位(频率)条件
起振条件	$\left A_0F\right > 1$	$\varphi_{A_0F}(\omega_{osc})=0$ (正反馈条件)
平衡条件	$\left \overline{A}F \right = 1$	$\varphi_{\overline{AF}}(\omega_{osc}) = 0$ (正反馈条件)
	$V_{im} = V_{im\infty}$ (平衡点)	$\omega = \omega_{osc}$ (平衡点)
稳定条件	$\frac{\partial \left \overline{AF} \right }{\partial V_{im}} \Big _{V_{im} = V_{im\infty}} < 0$	$\left \frac{\partial \varphi_{\overline{AF}}}{\partial \omega} \right _{\omega = \omega_{osc}} < 0$

$$T = \overline{A}F = |\overline{A}F|e^{j\varphi_{\overline{A}F}} = |T|e^{j\varphi_T}$$

越陡峭越稳定

5/22/2021

文氏电桥正弦振荡器

放大网络与反馈网络的切分

同相电压放大器:接近理想 压控压源:输入电阻近似无 穷大,输出电阻近似零

$$A_0 = A_{v0} = 1 + \frac{R_2}{R_1}$$

反馈网络为带通滤波器

将电路中的 理想受控源 划分为理想 放大器

其余的全部 归入反馈网 络

$$F(j\omega) = \frac{\dot{V}_F}{\dot{V}_o} = \frac{R \parallel \frac{1}{j\omega C}}{R + \frac{1}{j\omega C} + R \parallel \frac{1}{j\omega C}}$$

$$= \frac{s = j\omega}{s^2 R^2 C^2 + 3sRC + 1}$$

$$= \frac{1}{3} \frac{\frac{1}{Q} \frac{s}{\omega_0}}{\left(\frac{s}{\omega_0}\right)^2 + \frac{1}{Q} \frac{s}{\omega_0} + 1}$$

$$F_0 = \frac{1}{3}$$

$$\omega_0 = \frac{1}{RC}$$

$$Q = \frac{1}{3}$$

起振条件

$$\overline{A} = \begin{cases} A_{v0} = 1 + \frac{R_2}{R_1} & |V_{om}| < V_{sat} \\ \frac{\alpha}{V_{om}} = \frac{\alpha}{A_{v0}V_{im}} = \frac{\beta}{V_{im}} & |V_{om}| >> V_{sat} \end{cases}$$

$$F(j\omega) = F_0 \frac{1}{1 + jQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}$$

因为 $\varphi_{\overline{AF}}(\omega_0) = 0$ 即在 $\omega = \omega_0$ 频点上满足正反馈条件(频率平衡条件)

故而振荡频率为
$$\omega_{osc} = \omega_0$$
 $\omega_{osc} = \omega_0 = \frac{1}{RC}$

由起振条件
$$A_{v0}F(j\omega_0)>1$$
 得到 $\left(1+\frac{R_2}{R_1}\right)\frac{1}{3}>1$ 即调整电阻,使得 $R_2>2R_1$

如果振荡频 率和准线性 增益有关, 则需把平衡 条件代入获 得最终振荡 频率

5/22/2021

放大网络与反馈网络的另外一种切分

$$F(j\omega) = \frac{\dot{V}_{F}}{\dot{V}_{o}} = \frac{\dot{V}_{p} - \dot{V}_{n}}{\dot{V}_{o}}$$

$$= \frac{R \| \frac{1}{j\omega C}}{R + \frac{1}{j\omega C} + R \| \frac{1}{j\omega C}} - \frac{R_{1}}{R_{1} + R_{2}}$$

$$= \frac{1}{3} \frac{\frac{1}{Q} \frac{s}{\omega_{0}}}{\left(\frac{s}{\omega_{0}}\right)^{2} + \frac{1}{Q} \frac{s}{\omega_{0}} + 1} \Big|_{s=j\omega} - \frac{R_{1}}{R_{1} + R_{2}}$$

$$A_0 F(j\omega_0) > 1$$
 $F(j\omega_0) > 0$ $\frac{1}{3} - \frac{R_1}{R_1 + R_2} > 0$ $R_2 > 2R_1$

$$F(j\omega_0) > 0$$

$$\frac{1}{3} - \frac{R_1}{R_1 + R_2} > 0$$

■ 优点: 电路简单, 容易调试

■ 但有提高正弦波形纯度的方法:尽量避免运放进入饱和区

$$Q = \frac{1}{3}$$

OPA

■ 如可令R₂电阻为负温度系数电阻。 在满足起振条件前提下,随着振 荡幅度的增加,R₂上消耗的能量将增加,于是R₂温度上升,由于是 负温度系数电阻,R₂阻值将变小,当R₂阻值随温度增加变小到等于 2R₁时,满足平衡条件,如果此时正弦振荡幅度尚未脱离运放的线性 区, V_{om}<V_{sqt}, 输出频谱纯度更高(谐波分量少)

RC移相正弦振荡器

一个电容最多移相90°,两个电容最多移相180°,三个电容则肯定可移相超过180°,在特定频点上,阻容反馈网络移相180°,反相放大器移相180°,构成闭合共移相360°,则可形成正反馈通路

放大网络与反馈网络的切分

跨导反馈网络:将放大器输出电压转化为反馈电流

跨阻放大网络:将输入电流 转化为输出电压

构成闭环: 反馈电流就是跨阻放大器输入电流

跨导反馈系数

$$F(j\omega) = G_f = \frac{1}{B}$$

$$= \frac{sC}{\left(\frac{1}{sRC}\right)^2 + \frac{4}{sRC} + 3}$$

$$= \frac{sC \cdot (sRC)^2}{3s^2R^2C^2 + 4sRC + 1}$$

$$\mathbf{ABCD} = \begin{bmatrix} 1 & \frac{1}{sC} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \frac{1}{R} & 1 \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{sC} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{sC} \\ \frac{1}{R} & 1 \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{sC} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 + \frac{1}{sRC} & \frac{1}{sC} \\ \frac{1}{R} & 1 \end{bmatrix} \begin{bmatrix} 1 + \frac{1}{sRC} & \frac{1}{sC} \\ \frac{1}{R} & 1 \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{sC} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \left(\frac{1}{sRC} \right)^2 + \frac{3}{sRC} + 1 & \left(2 + \frac{1}{sRC} \right) \frac{1}{sC} \\ \left(2 + \frac{1}{sRC} \right) \frac{1}{R} & 1 + \frac{1}{sRC} \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{sC} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} * & \left(\left(\frac{1}{sRC} \right)^2 + \frac{4}{sRC} + 3 \right) \frac{1}{sC} \\ * & * \end{bmatrix}$$

$$= \begin{bmatrix} * & \left(\left(\frac{1}{sRC} \right)^2 + \frac{4}{sRC} + 3 \right) \frac{1}{sC} \\ * & * \end{bmatrix}$$

$$= \begin{bmatrix} * & \left(\left(\frac{1}{sRC} \right)^2 + \frac{4}{sRC} + 3 \right) \frac{1}{sC} \\ * & * \end{bmatrix}$$

起振条件

$$T_{0} = A_{0}F = -R_{f} \cdot \frac{sC \cdot (sRC)^{2}}{3s^{2}R^{2}C^{2} + 4sRC + 1}\Big|_{s=j\omega} = R_{f} \cdot \frac{j\omega C \cdot (\omega RC)^{2}}{(1 - 3\omega^{2}R^{2}C^{2}) + 4j\omega RC} = |T_{0}(\omega)|e^{j\varphi_{T}(\omega)}$$

$$\left|T_0(\omega)\right| = \frac{R_f}{R} \frac{(\omega RC)^3}{\sqrt{1 + 10(\omega RC)^2 + 9(\omega RC)^4}} \qquad \varphi_T(\omega) = \frac{\pi}{2} - \arctan\frac{4\omega RC}{1 - 3\omega^2 R^2 C^2}$$

$$\varphi_T(\omega) = \frac{\pi}{2} - \arctan \frac{4\omega RC}{1 - 3\omega^2 R^2 C^2}$$

正反馈条件(频率平衡条件)

起振条件(幅度平衡条件)

$$T_0 = A_0 F(j\omega_{osc}) = \frac{1}{12} \frac{R_f}{R} > 1$$

$$R_f > 12R$$

$$\varphi_T(\omega)_{\omega=\omega_{osc}}=0$$

$$\omega_{osc} = \frac{1}{\sqrt{3}RC} = \frac{0.577}{RC}$$

调整运放负反馈电阻R_f,使其满足该条件,则可在f_{osc}频点发生正弦振荡

RC正弦波振荡器的通病

- RC选频网络作反馈网络不可能获得 高Q值,因而频率稳定性不高
 - RC正弦波振荡器的频率稳定度在10-3 量级以下

- 为了获得高Q值,需要LC谐振腔做为 选频网络
 - LC正弦波振荡器的频率稳定度在10⁻⁴ ~10⁻⁵量级
 - 采用高Q值的固体谐振腔,如石英晶体, 其正弦波振荡的频率稳定度可高达10-6 以上

$$A_{0}F(j\omega) = -\frac{R_{f}}{3} \frac{s^{3}C}{s^{2} + \frac{4}{3} \frac{1}{RC} s + \frac{1}{3R^{2}C^{2}}}$$

$$= -\frac{1}{3} \frac{s^{2} \cdot (sR_{f}C)}{s^{2} + \frac{4}{\sqrt{3}} \frac{s}{\sqrt{3}RC} + \left(\frac{1}{\sqrt{3}RC}\right)^{2}}$$

$$Q(\omega_0) = \frac{\sqrt{3}}{4} = 0.433$$

三点式正弦波振荡器

放 XX 络 与 反 馈 XX 络 的

简化分析1: RC串并联转换

并大串小O相等

$$Q = \frac{\text{串联电抗}}{\text{串联电阻}} = \frac{\frac{1}{\omega C_s}}{R_s} = \frac{1}{\omega R_s C_s}$$

$$R_s$$
 $Q = \frac{\text{并联电纳}}{\text{并联电导}} = \frac{\omega C_p}{G_p} = \omega R_p C_p$

$$Q = \sqrt{\frac{R_p}{R_s} - 1}$$

$$R_p = (Q^2 + 1)R_s \stackrel{Q \gg 1}{\sim} Q^2 R_S \gg R_S$$

$$C_p = \frac{Q}{\omega R_p} = \frac{QC_s}{\omega(Q^2 + 1)R_sC_s} = \frac{Q^2C_s}{(Q^2 + 1)} \stackrel{Q\gg 1}{\approx} C_s$$

简化分析2: 电容部分接入

- (a) 部分接入 (b) 并转串

- (c) 合并 (d) 串转并 (e) 全接入等效

$$R_L >> \frac{1}{\omega_0 C_2}$$

 $Q = \omega_0 C_2 R_L \gg 1$

$$C' \approx C_1 \oplus C_2$$

$$R_L' = \frac{R_L}{p^2}$$

接入系数 近似等于分压系数

电感部分接入

$$\dot{V_L} \approx \frac{j\omega_0 L_2}{j\omega_0 L_1 + j\omega_0 L_2} \dot{V_L'} = \frac{L_2}{L_1 + L_2} \dot{V_L'} = p\dot{V_L'}$$

$$\frac{1}{2} \frac{|\dot{V}_L|^2}{R_L} = \frac{1}{2} \frac{|\dot{V}'_L|^2}{R'_L} \approx \frac{1}{2} \frac{|\dot{V}_L|^2}{p^2 R'_L} \qquad \qquad R'_L = \frac{R_L}{p^2}$$

反馈网络化简

$$R_e = R_E \parallel \frac{1}{g_m}$$

$$p = \frac{C_1}{C_1 + C_2}$$

$$Q_C = \frac{1}{\omega_0 R_L C_C} >> 1$$

$$R'_{L} = \left(1 + Q_{C}^{2}\right)R_{L} \approx Q_{C}^{2}R_{L}$$

$$C'_{C} = \frac{C_{C}}{1 + Q_{C}^{-2}} \approx C_{C}$$

$$R_{pL} = Q_0 \omega_0 L$$

$$R_{p} = R_{pL} ||R'_{L}|| \frac{R_{E}}{p^{2}}$$

$$= \frac{1}{G_{pL} + \frac{1}{Q_{C}^{2}} G_{L} + p^{2} G_{E}}$$

$$= \frac{1}{G_{pL} + \frac{1}{Q_{C}^{2}} G_{L} + p^{2} G_{E}}$$

$$= \frac{1}{G_{pL} + \frac{1}{Q_{C}^{2}} G_{L} + p^{2} G_{E}}$$

件

$$R_p' = R_p || \frac{1}{p^2 g_m}$$

$$C = \frac{C_1 C_2}{C_1 + C_2}$$

$$Q = \frac{\dot{I}_o}{\dot{V}_i} = g_m \qquad Q = R_p' \sqrt{\frac{C}{L}} \qquad \omega_0 = \frac{1}{\sqrt{LC}}$$

起

$$A_0 = \frac{\dot{I}_o}{\dot{V}_i} = g_m$$

$$Q = R'_p \sqrt{\frac{C}{L}}$$

$$\varphi$$

$$F = \frac{\dot{V}_f}{\dot{I}_o} \approx p \frac{\dot{V}'_L}{\dot{I}_o} = p \cdot \left(R'_p || j\omega L || \frac{1}{j\omega C} \right) = p \frac{R'_p}{1 + jQ \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \right)}$$

$$T_0 = A_0 F = p g_m \frac{R_p'}{1 + jQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)} \qquad \qquad \varphi_{T_0}(\omega_{osc}) = 0 \Rightarrow \omega_{osc} = \omega_0$$

正反馈条件(频率平衡条件) 决定振荡频率

$$|T_0(j\omega_{osc})| = |A_0F| > 1 \Rightarrow pg_m > G_p' = p^2g_m + G_p$$

$$g_m > \frac{G_p}{p(1-p)}$$
 起振条件

负阻原理同样可以解释LC振荡

$$Y_{eff} = \frac{i_{test}}{v_{test}} = \frac{-i_1}{v_{cb}} = \frac{-g_m v_{eb}}{v_{cb}} = -g_m \frac{v_{eb}}{v_{cb}} = -pg_m$$

起 振 条 件完全 同

$$g_m > \frac{G_p}{p(1-p)}$$

Gp:电路中所有损耗折合的等效电导

物理意义明确: 跨导必须足够大,足以抵偿电路损耗等效电导

三点式振荡器

电容三点式 考毕兹振荡器 Colpitts Oscillator 考毕兹振荡器哈特 莱振荡器统称为三 点式振荡器:所谓 三点式,就是三个 电抗元件分别接在 晶体管的三个极间

电感三点式 哈特莱振荡器 Hartley Oscillator

三点式结构和地无关

理想晶体管模型: 理想压控流源

$$Z_2 = \frac{1}{j\omega C_2}$$

$$g_m Z_1 Z_2 = -\frac{g_m}{\omega^2 C_1 C_2}$$

等效串联负阻

 $Z_1 = j\omega L_1$

 $Z_2 = j\omega L_2$

 $g_m Z_1 Z_2 = -g_m \omega^2 L_1 L_2$

等效串联负阻

电容三点式: 考比兹振荡器

Colpitts Oscillator

电路中所有损耗折合串联电阻

考毕兹振荡器

$$f_0 = \frac{1}{2\pi\sqrt{L\frac{C_1C_2}{C_1 + C_2}}}$$

$$\frac{g_m}{\omega_0^2 C_1 C_2} > R_S$$

起振条件

起振条件并无区别

电路中所有损耗折合串联电阻

同一个谐振腔,等效为串联谐 振腔, 也可等效为并联谐振腔

$$\frac{Z_0}{R_S} = Q = \frac{Y_0}{G_p} = \frac{R_p}{Z_0}$$

损耗折合串 联电阻

电路中所有 电路中所有 损耗折合并 联电导

$$\frac{g_m}{\omega_0^2 C_1 C_2} > R_S$$

$$g_m > \omega_0^2 C_1 C_2 R_S = \frac{C_1 C_2 R_S}{LC}$$

$$= \frac{C_1 C_2}{C^2} \frac{R_S}{\frac{L}{C}} = \frac{C_1 C_2}{\left(\frac{C_1 C_2}{C_1 + C_2}\right)^2} \frac{R_S}{Z_0^2}$$

$$= \frac{1}{\frac{C_1 C_2}{(C_1 + C_2)^2}} G_p = \frac{G_p}{p(1-p)}$$

同一个电路,用正反馈原理,负阻原理(串 联LC谐振腔或并联LC谐振腔),结论一致

正反馈振荡器分析要点

- 把环路中的理想受控源单独抽取 出来作为放大网络,剩下的都作 为反馈网络处理
 - 分别求放大倍数和反馈系数,求环 路增益,由相位条件确定振荡频率, 由幅度条件确定起振条件,如果振 荡频率和增益有关,把满足平衡条 件的增益代入获得最终振荡频率
- 能用正反馈原理分析的就不用负阻原理,但是如果用正反馈原理分析困难的,可采用负阻原理或者直接从电路方程的负阻尼要求入手进行起振条件分析

$$i_{test} = -g_{m0}(0.5v_{test})$$

$$0.5g_{m0} > G_L + G_{pL} + 0.5g_{be} + 0.5g_{ce}$$

小结

- 从负阻的角度理解,要想形成振荡,电路必然属发散系统,因而和动态元件连接的非线性器件在其直流工作点位置的等效微分电阻必须是负阻,且该负阻效应必须强于正阻效应,即负阻供能必须强于正阻耗能,才能由噪声自动激发动态元件,使其状态变量随时间增加其幅度是增长的,从而能够自激振荡起来
 - 工作在负阻区的S型负阻串接入串联LC谐振腔,N型负阻并接入并联LC 谐振腔,只要确保高Q值条件,将形成正弦振荡
 - Q值很低时会退化为张弛振荡
 - 退化为工作在负阻区的S型负阻对接电容、N型负阻对接电感
- 从正反馈角度理解正弦波振荡器,电路中必须存在放大网络和反馈网络,反馈网络在特定频点反馈回正反馈信号,只要满足起振条件 AF>1,在该特定频点上信号将越来越大(自激振荡),最终形成单频正弦振荡。只要放大器增益随振荡幅度增加是单调下降的,则可稳定输出正弦波形。且振荡频点位置的Q值越高,频率稳定性就越高

作业1 张弛振荡

- 已知施密特触发器的滞回曲线如图所示
- 画出电容电压和触发器输出电压波形,根据波形对其工作原理进行描述,并给出振荡频率,请用R, C, V_{OH}, V_{OL}, V_{T1}, V_{T2}参量表述振荡频率

作业2 正弦振荡

■ 证明图E10.4.19所示RC移相正弦波振荡器的起振条件 为 $R_f > 29R$, 振荡频率为 $f_0 = \frac{1}{2\pi\sqrt{6}RC}$

作业3部分接入

■ 证明:全耦合变压器部分接入公式无需局部Q>>1的近似条件,给 出部分接入系数

作业4 起振条件分析

如果用负阻原理, 振荡频率有可能和 增益有关,

- 某同学在设计哈特莱正弦波振荡器时,首先将一个在磁环上绕了N圈制成的电感L(= N^2 E,E为磁环磁导)中间引出一个抽头,接到晶体管源极上,电感的两端则分别接在晶体管的漏极和栅极,如图所示。和别接在晶体管的漏极和栅极,如图所示。和上,它们之间具有全耦合关系,即 $M = \sqrt{L_1 L_2}$,其中 $L_1 = N_1^2$ E ,这里 N_1 , N_2 和N为电感在磁环上的绕线匝数, $N = N_1 + N_2$ 。假设电路中的所有能量损耗全部折合等效为电路中的所有能量损耗全部折合等效为电路中的所有能量损耗全部折合等效为电路中的所有能量损耗全部折合等效为电路中的所有能量损耗全部折合等效为电路中的所有能量损耗全部折合等效为电路中的所有能量损耗全部折合等效为电路中的所有能量损耗全部折合等效为电路中的,且 $Q = \frac{1}{R_1} \sqrt{\frac{L_1}{C}} > 1$ 。此时图中晶体管可以建模为理想压控流源,其跨导增益为 Q_m 。
- (1)请分析该振荡器,用图示的已知电路元件参量L、M、C、 R_{Loss}、g_m表述该正弦波振荡器的振荡频率和起振条件。
- (2) 在实际电路设计中,我们往往期望低功耗设计,因而希望直流偏置电流足够的小,换句话说,希望电流偏置电流属置电流成正比关系的然可以起振。请分析图示振荡器仍然可以起振。请分析图示振荡电路的电感中间抽头如何引出(即接入下银中间抽头如何取值),该电路可以在较小的 $\mathbf{g}_{\mathbf{m}}$ (对应较小的直流偏置电流)条件下就可以起振。

CAD仿真1

■ 某同学希望设计一个RC超前移相正弦波振荡器,他首先做了如下的原理性分析,如图所示,一个理想反相电压放大器(理想压控压源)使得电压信号移相180°,其后通过三级RC高通网络电压信号再移相180°,电压信号环路一周共移相360°(或0°),从而形成正反馈连接,只要压控压源电压控制系数A_{v0}足够高,其向外提供的能量补偿了RC网络消耗的能量,则可在正反馈频点上形成正弦振荡。请分析并证明该原理性RC移相正弦波振荡器的起振条件为A_{v0}>29,振荡频率为

李国林 清华大学电子工程系 《电子电路与系统基础(B2)》非线性电路

反馈网络设计

■ 在分析确认该原理性电 路可以形成正弦振荡输 出后,该同学试图用CE 组态的BJT晶体管实现其 中的反相电压放大功能。 他挑选了电流增益β极大、 厄利电压VA极高的某型 号的晶体管,从而后续 分析中BJT交流小信号模 型中的rbe和rce均可视为 无穷大电阻,由于设计 的振荡频率 $f_{osc} = 6kHz$ 比较低,BJT的寄生电容 影响无需考虑,从而晶 体管被建模为理想压控 流源。

该同学给出了如图8b所示的电路设计,他没有对这个电路进行进一步的交流小信号分析,而是直接依照对图8a电路的分析给出如下设计方案:由于振荡频率设计值为6kHz,取

$$R = 3.3k\Omega$$

$$C = 3.3nF$$

$$f_0 = \frac{1}{2\pi\sqrt{6}RC} = 5.97kHz \approx 6kHz$$

放大网络设计

晶体管直流偏置电路直接给定如下,取 R_{B2} =3.6 $k\Omega$, R_{B1} =39.6 $k\Omega$,如是 R_{B1} || R_{B2} =R=3.3 $k\Omega$ 确保移相电阻 取值如设计值。在β极大的情况下,晶体管基极电压近似等于 R_{B2} 分压,

$$V_{B0} = \frac{R_{B2}}{R_{B1} + R_{B2}} V_{CC} = 0.75V$$

晶体管发射结二极管导通电压为**0.6V**,故而发射极电压为 $V_{E0} = V_{B0} - 0.6 = 0.15V$

取 R_E =330Ω使得晶体管偏置电流 $I_{C0} \approx I_{E0} = \frac{V_{E0}}{R_E} = \frac{0.15V}{330} = 0.455mA$

不是很大,从而电路功耗较低。此时跨导增益 $g_m = \frac{I_{C0}}{v_T} \approx \frac{0.455 mA}{26 mV} = 17.5 mS$ 因而只要

 $R_C > 1.66k\Omega$ 即可确保反相电压放大倍数 $A_{v0} = g_m R_C > 29$ 于是他取值 $R_C = 2k\Omega$

仿真验证

■ 画出交流小信号电路,确认图 b振荡器的起振条件到底是什 么?这里假设R首先人为给予 确定,分析对g_m和R_c有何要求, 图b振荡器方可振荡?

■上述该同学给定的设计方案是否可以振荡?如果可以振荡,如果可以振荡,值离设计值多少?偏离设计值。并会出对应振荡频率,说明偏离设计值多少?最后通过CAD。价真确认你的分析?如果仿真和分析不符,分析原因。

CAD仿真2

CAD选做一个

- 从库中找一个晶体管(BJT、 MOS均可)
- 设计晶体管直流偏置电路,使 其工作在恒流导通区
- 调试,使其振荡在1MHz频点 上
 - 查看其起振过程(时域波形)
 - 分析振荡稳定后的正弦波形纯 度(傅立叶分析其频谱分量)
 - 如果不振荡,什么原因? 如何 使其振荡?

本节课内容在教材中的章节对应

■ P611: 负阻振荡仿真:正弦振荡退化为张弛振荡

■ P716: 状态转移时间

■ P722: 张弛振荡分析: 负阻分析

■ P731: 张弛振荡器: 受控源分析

■ P878: 正反馈振荡原理