CS5800 Algorithms

Module 3. More Divide and Conquer

1

Master Method For Solving Recurrences (CLRS 4.5)

• "Cookbook" method for solving recurrences of the form

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- Proof is presented in CLRS 4.6, left as optional (not covered in class)
- Intuitive understanding: We compare f(n) with $n^{\log_b a}$
 - If f(n) is smaller (polynomially & asymptotically), then $T(n) = \Theta(n^{\log_b a})$.
 - If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
 - If f(n) is bigger with some more conditions (see Theorem 4.1), then $T(n) = \Theta(f(n))$

Master Method (Revisit)

$$T(n) = 2T\left(\frac{n}{2}\right) + n\lg n$$

Which case?

$$f(n) = n \lg n$$
 , $n^{\log_b a} = n^{\log_2 2} = n$

So, f(n) is asymptotically bigger than $n^{\log_b a}$. Is it Case 3?

- Try to prove by the substitution method.

Solve
$$T(n) = 2T\left(\frac{n}{2}\right) + n \lg n$$

Master Method (Revisit)

- $T(n) = aT\left(\frac{n}{b}\right) + f(n)$
 - Case 1: If there exists a constant $\epsilon > 0$, such that $f(n) = O(n^{\log_b a \epsilon})$ (polynomially & asymptotically smaller), then $T(n) = \Theta(n^{\log_b a})$.
 - Case 2: If there exists a constant $k \ge 0$, such that $f(n) = \Theta(n^{\log_b a} \lg^k n)$, then $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$
 - Case 3: If there exists a constant $\epsilon > 0$, such that $f(n) = \Omega(n^{\log_b a + \epsilon})$, and if f(n) additionally satisfies the *regularity condition*, $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n (polynomially & asymptotically bigger), then $T(n) = \Theta(f(n))$.

(See Theorem 4.1 and Exercise 4.5-5 for the regularity condition – out of this course.)

5

Divide-And-Conquer With Searching

Make Every Algorithm Recursive For The Sake Of Algorithm Analysis Only

Binary Search (Exercise 2.3-5)

- Searching a "sorted" array for a value
 - Like looking up a dictionary for a word, or a phone book for a name
- Everyone is expected to write the binary search code (pseudocode or actual language) fluently both recursively and iteratively
 - Remember the "divide-and-conquer" nature
 - And also the "elimination" nature: You can eliminate half of the array once you compare with the middle value
 - What differences & benefits are there in each approach (recursive & iterative)?
 - Keep this question in mind when you experiment the code in the next slides

/

http://pythontutor.com/

```
def binary_search(array, value):
    return binary_search_recursive(array, 0, len(array) - 1, value)

def binary_search_recursive(array, left, right, value):
    if left > right:
        return -1

mid = (left + right) / 2
    if value == array[mid]:
        return mid
    if value > array[mid]:
        return binary_search_recursive(array, mid + 1, right, value)

return binary_search_recursive(array, left, mid - 1, value)

print(binary_search([0,11,22,33,44,55,66,77,88], 77))
```

Iterative version

```
def binary_search_iterative(array, value):
    left = 0
    right = len(array) - 1

while left <= right:
    mid = (left + right) / 2
    if value == array[mid]:
        return mid
    if value > array[mid]:
        left = mid + 1
    else:
        right = mid - 1
    return -1
print(binary_search_iterative([0,11,22,33,44,55,66,77,88], 77))
```

C

Q: Given an array [0,11,22,33,44,55,66,77,88] and a searched value 77, what is the correct sequence of (left, right) pairs in the binary search? Assume 0 is the starting index.

```
a. (1, 8), (4, 8), (6, 8), (7, 7)
```

- b. (0, 8), (0, 4), (0, 2), (0, 1), (0, 0), (0, -1)
- c. (0, 8), (5, 8), (7, 8)
- d. (0, 8), (4, 8), (6, 9), (7, 7)

Q: Given an array [0,11,22,33,44,55,66,77,88] and a searched value 30, what is the correct sequence of (left, right) pairs in the binary search? Assume 0 is the starting index.

- a. (1, 8), (4, 8), (6, 8), (7, 7)
- b. (0, 8), (0, 3), (2, 3), (3, 3), (4, 3)
- c. (0, 8), (0, 3), (2, 3), (3, 3), (3, 2)
- d. (0, 8), (0, 4), (0, 2), (0, 1), (0, 0), (0, -1)

11

Analysis of Binary Search

```
• Best case: T(n) = \Theta(1)
```

- Fixed # operations (1 mid calc op, 1 if, 1 return) when the mid entry is a hit
- Worst case
 - $T(n) = T\left(\left|\frac{n}{2}\right|\right) + \Theta(1)$
 - $T(0) = \Theta(1)$
- Easier to derive the recurrence from recursive code
- Fewer # steps with iterative code

```
def binary search iterative(array, value):
       left = 0
       right = len(array)-1
       while left <= right:
          mid = (left + right) / 2
          if value == array[mid]:
            return mid
          if value > array[mid]:
            left = mid + 1
          else: # value < array[mid]
            right = mid - 1
       return -1 # No match
def binary search recursive(array, left, right, value):
  if left > right:
    return -1
  mid = (left + right) / 2
  if value == array[mid]:
    return mid
  if value > array[mid]:
    return binary_search_recursive(array, mid+1, right, value)
  # value < array[mid]
  return binary search recursive(array, left, mid-1, value)
```

Recursive vs. Iterative Binary Search

- Easier to write recursive code and derive recurrence from it
- Call stack overhead in recursive code : $O(\log n)$ space complexity
- Harder to write iterative code and analyze it
- Faster execution (constant factor speed up) with iterative code, no call stack overhead (O(1)) space complexity)
- Quite common to start out writing recursive implementation, then translate it to iterative code for optimization
- Possible variation: What if we need to return the index of the first match when there are multiple matches?

13

Sidebar: Binary Divide-And-Conquer For Searching Unsorted Array

- With an unsorted array, we can't eliminate the problem size by half, like with a sorted array and binary search
- Had to do sequential search, eliminating problem size by one at a time
- Can we do the binary divide-and-conquer with unsorted array as well?
 - Yes, we can. Can you code that?
 - But we won't get any benefit, as our recurrence will be:
 - $T(n) = 2T\left(\frac{n}{2}\right) + \Theta(1) \rightarrow T(n) = \Theta(n)$, not $\Theta(\log n)$
- Can we derive general solution on $T(n) = aT\left(\frac{n}{h}\right) + \Theta(n^c)$?

Maximum Subarray Problem (CLRS 4.1)

- Given an example array A=[13,-3,-25,20,-3,-16,-23,18,20,-7,12,-5,-22,15,-4,7],
 - What is the subarray whose sum is the maximum of all subarray sums?
 - In this example, it's [18,20,-7,12] with sum 43.
 - You can confirm this yourself by whatever means
 - It doesn't make much difference between finding the max subarray sum (43) and finding the subarray itself ([18,20,-7,12]). Think about why.
 - Interesting only when there are negative numbers in the array.
 - Read CLRS 4.1 for a motivating application of this problem
 - Stock trading to maximize gain when daily change amounts are known.
 - · Not a real stock trading technique!

15

Naïve, Brute-Force Solutions

- Evaluate sums of all A[i..j] for any possible i & j, and find the max.
 - max_subarray_sum = -infinity (or A[1])
 - for i=1 to n (assuming 1-starting array indexing)
 - for j=i to n
 - subarray_sum=0
 - for k=i to j
 - subarray_sum += A[k]
 - If subarray_sum > max_subarray_sum,
 - max_subarray_sum = subarray_sum
 - return max subarray sum
- $\Theta(n^3)$: Really naïve, repeating same summation many times
- $\Theta(n^2)$: By separating out summations, storing them in a 2D array, then doing comparisons, we can achieve this improvement.

Can We Do Any Better?

- How about binary divide-and-conquer, like earlier?
 - Max subarray sum of A[low..high] is the maximum of:
 - Max subarray sum of A[low..mid] ← Recursively computed
 - Max subarray sum of A[mid+1..high] ← Recursively computed
 - · Max of sums of subarrays straddling mid
 - Easier than original problem because this problem is constrained.


```
FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
    left-sum = -\infty
    sum = 0
 2
    for i = mid downto low
 3
 4
        sum = sum + A[i]
 5
        if sum > left-sum
                                                                        A[mid + 1 \dots j]
 6
             left-sum = sum
                                                    low
                                                                     mid
                                                                                         high
 7
             max-left = i
 8
    right-sum = -\infty
                                                                        mid + 1
                                                               A[i ..mid]
 9
    sum = 0
10
    for j = mid + 1 to high
11
        sum = sum + A[j]
12
        if sum > right-sum
13
             right-sum = sum
14
             max-right = j
    return (max-left, max-right, left-sum + right-sum)
                                        CLRS pp. 71
```

```
FIND-MAXIMUM-SUBARRAY (A, low, high)
    if high == low
 2
         return (low, high, A[low])
                                               // base case: only one element
    else mid = |(low + high)/2|
                                                                             crosses the midpoint
         (left-low, left-high, left-sum) =
              FIND-MAXIMUM-SUBARRAY (A, low, mid)
 5
         (right-low, right-high, right-sum) =
             FIND-MAXIMUM-SUBARRAY (A, mid + 1, high)
                                                                    entirely in A[low..mid]
                                                                                        entirely in A[mid + 1..high]
 6
         (cross-low, cross-high, cross-sum) =
              FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
 7
         if left-sum \geq right-sum and left-sum \geq cross-sum
 8
             return (left-low, left-high, left-sum)
 9
         elseif right-sum \ge left-sum and right-sum \ge cross-sum
10
             return (right-low, right-high, right-sum)
11
         else return (cross-low, cross-high, cross-sum)
                                              CLRS pp. 72
```

Analysis of Divide-And-Conquer Max Subarray

- $T(1) = \Theta(1)$: Base case. Recursive case is:
- $T(n) = T\left(\frac{n}{2}\right) + T\left(\frac{n}{2}\right) + T_{crossing}(n) + \Theta(1)$ where:
 - $T_{crossing}(n) = \Theta(n)$
- $T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$: Exactly the same as merge sort
- $T(n) = \Theta(n \log n)$
- Achieved $\Theta(n^2)$ to $\Theta(n \log n)$ improvement
 - Actually we can do better and achieve linear time $(\Theta(n))$
 - Exercise 4.1-5 in pp. 75.
 - It's not a divide-and-conquer solution, though. It's rather a clever intuition.

Strassen's Matrix Multiplication Algorithm (CLRS 4.2)

- Multiplying 2 $n \times n$ matrices
 - Study Appendix D if you are not familiar with matrices and operations
- Simple straightforward algorithm, giving $\Theta(n^3)$

```
SQUARE-MATRIX-MULTIPLY (A, B)

1  n = A.rows

2  let C be a new n \times n matrix

3  for i = 1 to n

4  for j = 1 to n

5  c_{ij} = 0

6  for k = 1 to n

7  c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}

8  return C
```

21

Simple Divide-And-Conquer Matrix Mult.

• Partition each of A, B, and C into 4 quarters:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}, \tag{4.9}$$

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}. \tag{4.10}$$

$$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21}, \qquad (4.11)$$

$$C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22}, \qquad (4.12)$$

$$C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21}, \qquad (4.13)$$

 $C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22} . (4.14)$

• Can we reduce # multiplications some way?

Strassen's Improvement

• Not sure how Strassen found this, but he observed that, by letting:

23

• Submatrix C_{ij} can be represented as follows:

$$C_{11} = P_5 + P_4 - P_2 + P_6$$
. $C_{12} = P_1 + P_2$, $C_{21} = P_3 + P_4$ $C_{22} = P_5 + P_1 - P_3 - P_7$,

- Algebraic proofs shown in CLRS pp. 81
- We've now got $7 \frac{n}{2} \times \frac{n}{2}$ multiplications and 18 additions
 - 18 additions are still $\Theta(n^2)$.
 - Thus new recurrence is

$$T(n) = 7T\left(\frac{n}{2}\right) + \Theta(n^2)$$

• Solution to this recurrence (using master theorem, which will be presented later) is $T(n) = \Theta(n^{\log_2 7}) \cong \Theta(n^{2.81})$

Quicksort

Fastest Sorting Algorithm On Average, How To Prove That

25

Recall Merge Sort

- "Divide": easy. Just divide the input array into two sub-arrays.
- "Conquer": hard. It takes O(n) time complexity.
- ⇒ What if divide the input array into 3 sub-arrays?
 - \Rightarrow "Divide": O(1)

 - $\Rightarrow \text{"Conquer": still O(n)}$ $\Rightarrow T(n) = 3T\left(\frac{n}{3}\right) + O(n)$
 - ⇒ Overall, the same time complexity as Merge Sort
- \Rightarrow What if divide the input array into \sqrt{n} sub-arrays?
 - \Rightarrow "Divide": $O(\sqrt{n})$
 - \Rightarrow "Conquer": O($n\sqrt{n}$)
 - $\Rightarrow T(n) = \sqrt{n}T(\sqrt{n}) + O(n\sqrt{n})$
 - \Rightarrow Overall, it is worse than Merge Sort
 - \Rightarrow If we can make the "conquer" part in O(n), the time complexity becomes O(n log log n). But, can we?

Quicksort: Different Kind Of Divide & Conquer

- So far, "divide" was straightforward, and "conquer" was involved.
- In sorting, can we make "conquer" part easy (almost nothing), by doing more on "divide" part?
 - CLRS 7.1 "Divide": **Partition** (rearrange) the array A[p..r] into two (either one of the two may be empty) subarrays A[p..q-1] and A[q+1..r] such that:
 - $A[i] \le A[q]$ for any $p \le i < q$, and
 - A[j] > A[q] for any $q < j \le r$.
 - CLRS 7.1 "Conquer": Then conquering becomes straightforward:
 - Sort A[p..q-1] recursively
 - Sort A[q + 1..r] recursively

```
Quicksort (A, p, r)

1 if p < r

2 q = \text{Partition}(A, p, r)

3 Quicksort (A, p, q - 1)
```

QUICKSORT(A, q + 1, r)

To sort an entire array A, the initial call is QUICKSORT(A, 1, A. length).

PARTITION() Can Be Recursive As Well

• Maybe more overhead, but maybe easier to understand

- If $A[p] \le A[r]$, return PARTITION(A, p + 1, r)
- Otherwise, 3-way swap between A[p], A[r], and A[r-1]
 - A[p] to A[r], A[r] to A[r-1], A[r-1] to A[p], then return PARTITION(A,p,r-1)
 - Definitely more swaps (so more overhead), but still correct (and same asymptotic notation) with easier derivation of the recurrence relation
 - $T(n) = T(n-1) + \Theta(1) \rightarrow T(n) = \Theta(n)$
- Base case: If p = r, return r.

29

Given the input array A = [13, 19, 9, 5, 12], what is the correct array when the textbook's PARTITION() pseudocode is applied to the array A?

- a) [19, 13, 12, 9, 5]
- b) [13, 9, 12, 5, 19]
- c) [9, 5, 12, 19, 13]
- d) [5, 9, 12, 13, 19]

Quicksort Analysis

QUICKSORT(A, p, r)

1 if p < r

q = PARTITION(A, p, r)

3 Quicksort (A, p, q - 1)

4 QUICKSORT(A, q + 1, r)

- From the QUICKSORT() pseudocode, $T_{qsort}(n) = T_{partition}(n) + T_{qsort}(n_1) + T_{qsort}(n_2)$, where $n_1 + n_2 + 1 = n$ and $n_1 \ge 0$, $n_2 \ge 0$
- It's obvious that $T_{partition}(n) = \Theta(n)$.
- So, $T(n) = T(n_1) + T(n_2) + \Theta(n)$ where $n_1 + n_2 + 1 = n$
- Worst case: $n_1 = 0$ or $n_2 = 0$ all the time (bad split/partition) \rightarrow
 - $T(n) = T(n-1) + \Theta(n) \rightarrow T(n) = \Theta(n^2)$
 - When would this happen? What's the insertion/bubble sort performance in that case?
- Best case: $n_1 \cong n_2$ as much as possible (even split) \rightarrow
 - $T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n) \rightarrow T(n) = \Theta(n \lg n)$

31

Balanced Splits, Even Skewed (CLRS Fig. 7.4)

- 9-to-1 splits all the time
- In fact, doesn't matter what x & y in x-to-y splits, as long as x & y are fixed.

Randomized Quicksort (CLRS Section 7.3)

- To avoid worst case as much as possible,
 - Pick the pivot from a random index, not from a fixed one at the end.
 - Still rely on the original PARTITION() after swapping the randomly picked pivot with the original fixed pivot.

33

Formal Proofs of RANDOMIZED-QUICKSORT Time Complexities (CLRS Section 7.4)

- Lots of algebraic derivations. We won't focus on those.
- Also random probabilistic analysis and derivations for randomized case. We won't focus on those either.
- Just read through CLRS Section 7.4 and see how they go.

Brief Summary

- Worst-case: $T(n) = \max_{0 \le q \le n-1} (T(q) + T(n-q-1)) + \Theta(n)$ We can show $T(n) \le cn^2$ for some c and large enough n, showing $T(n) = O(n^2)$ (This is done in textbook)
 - Can also show $T(n) \geq cn^2$ for some c and large enough n, showing $T(n) = \Omega(n^2)$ (Exercise 7.4-1)
 - Therefore, worst-case $T(n) = \Theta(n^2)$.
- Average-case (expected running time) of RANDOMIZED-QUICKSORT()
 - Probabilities of possible cases, number of comparisons becoming random variable, derive the expected average of the random variable.
 - $E[X] = \cdots = O(n \log n)$
- In practice, Quick Sort is usually faster than Merge Sort.

35

Median Finding Algorithm

No Need To Sort Entire Array

Medians and Order Statistics

- Given a set A of n elements,
 - Minimum (first in the ordered sequence), maximum (last), median (mid)
 - If n is even, there could be 2 medians. For simplicity, we mean the lower median.
- General i-th order statistic: The i-th smallest element of A
 - Minimum: A's 1st order statistic, maximum: A's n-th order statistic
 - Median: A's $\lfloor (n+1)/2 \rfloor$ -th order statistic
- Algorithm to find the *i*-th order statistic of A for any given A and *i*
 - Simple (Naïve): Sort A, return A[i]: $O(n \lg n)$
 - Do we really need to sort the entire array? Aren't we doing more than necessary?
 - Finding minimum: Just by scanning the entire array, you can find i-th element in O(n) (In fact, this is the optimal solution why? Read the textbook).
 - But what about finding i-th order (general algorithm)?

37

Average Linear Time Selection Algorithm

• CLRS 9.2 RANDOMIZED-SELECT() (pp. 216)

```
RANDOMIZED-SELECT (A, p, r, i)

1 if p == r

2 return A[p]

3 q = \text{RANDOMIZED-PARTITION}(A, p, r)

4 k = q - p + 1

5 if i == k // the pivot value is the answer

6 return A[q]

7 elseif i < k

8 return RANDOMIZED-SELECT (A, p, q - 1, i)

9 else return RANDOMIZED-SELECT (A, q + 1, r, i - k)
```

Time Complexity Analysis of RAND-SEL

- $T_{select}(n) = T_{partition}(n) + T_{select}(n')$, where $0 \le n' < n$
- Worst case: T(n) = T(n-1) + O(n)
 - $\Theta(n^2)$, just like quicksort
- Average (expected) case: T(n) = T(n/k) + O(n)
 - Requires random variable analysis, just like in quicksort
 - Assume probabilities, find expected running time, show it's at most O(n)
 - · Details in CLRS 9.2
 - We don't need to do this all the time.
 - I'd say intuition is more important than formal proof.
 - Think about balanced splits-case (e.g., 2:3), and derive running time, confirm it's O(n).
- Can we achieve O(n) in worst case as well?
 - Surprisingly, yes.
 - Time complexity analysis of SELECT() is more interesting and involved.

39

Selection algorithm in worst-case linear time

(Main Idea)

- Divide the input array into n/5 groups.
- Find the median for each group (note each group consists of at most 5 elements) O(1)
- Find the median of n/5 medians (This is done recursively) T(n/5)
- 3n/10 6 (= 3(n/10 2)is already less than the median of the medians.
- If the median of the medians is the median, return.
- Otherwise, recursively call among 7n/10 + 6 elements. -T(7n/10 + 6)
- Overall running time:
 - T(n) = T(n/5) + T(7n/10 + 6) + O(n) => O(n)