

Application of Gibbs sampling in meal plan recommendation algorithm

Guo Zheng

Sep 21, 2018

数字生命研究院 ICX Research

Outline

- AU
 - Gibbs Sampling Method (GS)
 - Idea of sampling
 - Gibbs Sampling overview
 - Meal plan recommendation algorithm
 - Application of GS
 - Other possible methods & their performances
 - Potential improvements

数字生命研究院 ICX Research Idea of Sampling

数字生命研究院 Gibbs Sampling properties

- Sampling method for probability distribution
 - Multivariate
 - Monte Carlo Markov Chain process (MCMC)
 - Theoretical basis for convergence
 - Hard to sample directly

Gibbs Sampling pseudocode

Algorithm

Algorithm 1 Gibbs sampler

```
Initialize x^{(0)} \sim q(x)
for iteration i = 1, 2, \dots do
  x_1^{(i)} \sim p(X_1 = x_1 | X_2 = x_2^{(i-1)}, X_3 = x_3^{(i-1)}, \dots, X_D = x_D^{(i-1)})
   x_2^{(i)} \sim p(X_2 = x_2 | X_1 = x_1^{(i)}, X_3 = x_2^{(i-1)}, \dots, X_D = x_D^{(i-1)})
   x_D^{(i)} \sim p(X_D = x_D | X_1 = x_1^{(i)}, X_2 = x_2^{(i)}, \dots, X_D = x_{D-1}^{(i)})
end for
```


Gibbs Sampling demonstration Gibbs Sampling demonstration

5:09-5:49

Meal Plan RecommendationMeal Plan Recommendation

- Context
 - o Data:
 - About 1700 types of food divided into 13 categories (淀粉, 蔬菜, etc)
 - Amount of nutrition components (35 components) for every food type
 - Human body's requirements for every component (range)
 - Goal: combine a meal plan
 - Cost function
 - Number of requirements satisfied
 - Restrictions:
 - One type of food from one category

Mathematical expression Mathematical expression

Constrained optimization problem

max: score(x)

subject to:

- 1. g(x) = 1
- 2. f(x) in range (min,max)

Meal Plan Recommendation

$$egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

13*35

One row from each matrix

categories: 13

Meal Plan RecommendationMeal Plan Recommendation

In total 9.66e+22 combinations!

Typically, 1 million trials gives about 10 meal plans scoring 30.

Brute force doesn't work!

Meal Plan Recommendation Meal Plan Recommendation

• Meal plan 13-dimension probability distribution.

- Probability distribution determines the chance of being chosen to be the new initial point.
 - Relate score with probability. (Function choosing)

数字生命研究院 ICX Research Mapping function

Choosing mapping function:

Meal Plan Recommendation

Comparison between gradient method and gibbs sampling:

Multiplier coefficient examination

• Determination of the coefficient k: $f(x) = \exp(kx)$

数字生命研究院 ICX Research **Performance**

- Algorithm final performance (multiplier: 4)
 - Finds meal plan with score 35 in an average loop number around 30 loops, 15 minutes

数字生命研究院 Other methods

- Genetic algorithm:
 - Basic idea: generate better offsprings through mutation, crossover, and selection
 - Current performance: much slower than Gibbs
- Annealing algorithm:
 - Basic idea: reduce the randomness of the selecting process for Gibbs sampling

で 数字生命研究院 Potential future improvements

- 1. More detailed examination on the optimal multiplier value
- 2. Setting threshold for loop number
- 3. Examination of the performance of annealing algorithm

• http://www.mit.edu/~ilkery/papers/GibbsSampling.pdf

Thanks ~