DigitLabwork#3

Addition/Subtraction/Multiplication/Division in Verilog codes

- [1] Training goals
- [2] Preparations
- [3] Lab-task instruction
- [4] Observations/Evaluation

[1] Training goals

Through the lab-work, class members are expected to get acquainted with the following matters.

- a)) operation of circuits doing addition, subtraction, multiplication and division;
- b)) the use of Verilog for logic circuit description and simulation, including
 - ** circuit module building up in Verilog,
 - ** setting up of the test data;
- c)) the interactive commands required in operating the Verilog-code development system:
 - ** compilation for a syntax error-free Verilog description and test data set;
 - ** simulation of the Verilog-coded circuit module;
 - [** synthesis of the Verilog-coded circuit module].

[2] Preparation

Every class member should get oneself prepared by studying the following materials prior to attending the lab-work sessions.

- a)) Refer to "Digital Circuits 123"-section[1] and, better yet, datasheets from IC manufacturers such that functional/electrical/timing specifications regarding the circuit components targeted in the lab-work are understood;
- b)) Refer to "Digital Circuits 123"-section [4], where examples of Verilog-coding of the circuit components targeted in the lab-work are offered;
- c)) Refer to "Digital Circuits 123"-section [4] so as to know about how test data for circuit simulation should be arranged;
- d)) Refer to "Development Context of Verilog Code" for operational details in running the developing system.

[3] Lab-task instruction

In digitlabwork#3, 3 tasks are assigned to every class members as given below.

[TASK1]

(1) Write a Verilog code for an 8bit adder in compliance with the requirements given below.

(2) Put the codes under simulation; observe and interpret the waveforms of output signals

a)) coding specifications:

- ** write 3 modules of 8bit adders in gate-level, dataflow-level and behavior-level descriptions, respectively.
- ** the 3 modules will share the same A,B and C_{in} inputs, and each generates respective SUM and C_{o} outputs.
- ** write Verilog codes for generating test data sequence as requested.

b)) circuit specifications:

** I/O layout: 3 input sets A[7:0],
$$B[7:0], \\ C_{in}; \\ outputs SUM[7:0], \\ C_{o};$$

** Functional:

Α	В	C _{in}	SUM	C _o
1s/0s	1s/0s	1/0	A+B+C _{in}	(A[7]&B[7])
				(A[7]&C ₆)
				(B[7]&C6)

** Timing: no delay(s) to be considered in this task

c)) testing data: [test case 1] 12H 28H 74H 29H 88H **FFH** 5AH В 22H 77H 66H 4FH 0 C_{in} t 05 15 22 35 50 70 75 95 115 120 130 ** the testing stops at time-unit 130;

[TASK2]

(1) Write a Verilog code for a circuit capable of doing 8bit subtraction in compliance with the requirements given below.

(2) Put the codes under simulation; observe and interpret the waveforms of output signals

a)) coding specifications:

- ** B is the data to be subtracted from A, A-B that is,
- ** using an 8bit adder as the underlying component is recommended,
- ** write 3 modules of 8bit subtraction circuit in gate-level, dataflow-level and behavior-level descriptions, respectively.
- ** the 3 modules will share the same A, B and carry inputs, and each generates respective difference and carry outputs.
- ** write Verilog codes for generating test data sequence as requested.

b)) circuit specifications:

** I/O layout: 3 input sets A[7:0], B[7:0], $\begin{array}{c} & \quad C_{in}; \\ \text{output} \qquad & \text{DIFF}[7:0], \\ & \quad C_{o}; \end{array}$

** Functional:

		B2C=~B+1		
Α	В	C _{in}	DIFF	C _o
1s/0s	1s/0s	1/0	A+B2C+C _{in}	(A[7]&B2C[7])
				(A[7]&,C ₆)
				(B2C[7]&C6)

** Timing: no delay(s) to be considered in this task

c)) testing data:

[TASK3]

(1) Write a Verilog code for 8bit x 8bit unsigned multiplication in compliance with the requirements given below.

(2) Put the codes under simulation; observe and interpret the waveforms of output signals

a)) coding specifications:

** multiplication done either by iterative/successive additions or by

Wallace-tree will suffice; however, realization by any better approaches known to you is encouraged,

- ** try not using a statement like Po=A*B in behavior-level description; coding in a way that more or less shows the procedure about how the multiplication being done, instead,
- ** write 3 modules of 8bit unsigned multiplier in gate-level, dataflow-level and behavior-level descriptions, respectively.
- ** the 3 modules will share the same A,B inputs, and each comes out with respective product.
- ** write Verilog codes for generating test data sequence as requested.

b)) circuit specifications:

** I/O layout: 2 input sets A[7:0],

B[7:0];

output P[15:0];

** Functional:

Α	В	Р
1s/0s	1s/0s	AxB

** Timing: no delay(s) to be considered in this task

c)) testing data:

[test case 1]

[TASK4]

(1) Write a Verilog code for 8bit/8bit unsigned division in compliance with the requirements given below.

(2) Put the codes under simulation; observe and interpret the waveforms of output signals

a)) coding specifications:

- ** use iterative/successive subtraction as the underlying dividing mechanism, unless you know otherwise how the division could be done more elegantly,
- ** try not using a statement like Q=A/B in behavior-level description; coding in a way that more or less shows the procedure about how the division being done instead,
- ** write 3 modules of 8bit unsigned divider in gate-level, dataflow-level and behavior-level descriptions, respectively.
- ** the 3 modules will share the same A,B inputs, and each comes out respective quotient and remainder.
- ** write Verilog codes for generating test data sequence as requested.

b)) circuit specifications:

** Functional:

Α	В	Q,R
1s/0s	1s/0s	A=BxQ+R

** Timing: no delay(s) to be considered in this task

c)) testing data:

[test case 1]

[4] Observations/Evaluation

- a)) Try deriving fast carry C_6 , C_5 , C_4 , C_3 , C_2 , C_1 , C_0 in terms of A_6 , A_5 , A_4 , A_3 , A_2 , A_1 , A_0 and B_6 , B_5 , B_4 , B_3 , B_2 , B_1 , B_0 , and then ask oneself:
 - ** for any C_j, which part of A and B are involved if logic-level of the carry generating circuit is to be limited under, say, no more than 3?
 - ** what does one see regarding the logic gates required for C_j generation as j getting higher?
- b)) While observing the operation of subtracting circuit, tell about the implication of seeing and not seeing C_o generation, respectively.
- c)) If, besides DIFF and C_o, a third output O_{verflow} is needed while using 2 8bit subtraction modules for 16bit subtraction, what should be done?
- d)) Dealing with iterative addition for adding up partial products during multiplication would seem require a sequential module. So is the multiplier combinational or sequential? What about the divider if iterative-subtraction being deployed inside?
- e)) What more are to be done if multiplier/divider for signed integers is desired?
- f)) Difficulties encountered while working on the assigned tasks may more or less reflect one's deficiency in one or more aspects of the following:
 - ** experiences on the circuit structures and operations of the three basic modules which are building blocks deployed in all digital systems;
 - ** experiences on the mastery of Verilog and the tools of the developing environment;
 - ** readiness for the lab-task at hand.

Inexperience won't be a problem, as it fades away eventually when one pours in time and dedication; whereas the third would present a serious issue. The

- so called "poor-luck-in-the-laboratory" would persist, by which one will always be haunted as long as the unsound attitude continues.
- g)) It's expected that, after DigitLabwork#3, one should feel confident, or at least comfortable, in dealing with circuit doing addition, subtraction, multiplication and division using Verilog. Hopefully this is the case of everyone in the class.