Projetos de Circuitos Integrados.

Prof. Nobuo Oki 2013

Projeto de Circuitos Integrados

Março de 2013

Professor: Nobuo Oki

Sala 10 no Departamento de Engenharia Elétrica – Tel. (18) 37431166

E-mail: nobuo@dee.feis.unesp.br

Aulas: Segundas das 14 às 16 e Quartas das 14 às 16h.

Descrição do Curso:

I. INTRODUÇÃO. PROCESSO DE FABRICAÇÃO.

- Motivação e Importância do Curso.
- Processo de Fabricação MOS e Bipolar.

II. MODELAMENTO DE TRANSISTORES BIPOLARES E MOS. SIMULAÇÃO DE CIRCUITOS

- Modelos dos transistores bipolares e MOS.
- Programas de simulação de circuitos.

III. IMPLEMENTAÇÃO DE CONFIGURAÇÕES BÁSICAS

- Espelhos de corrente.
- Configurações básicas de amplificadores.
- Espelhos de corrente de alta impedância.
- Amplificadores diferenciais.
- Resposta em freqüência.

OBS. Estes tópicos serão abordados usando tecnologia bipolar e MOS.

IV. PROJETOS DE AMPLIFICADOR OPERACIONAL BÁSICO E COMPENSAÇÃO

- Amplificador operacional de dois estágios
- -Realimentação e compensação de amplificadores operacionais.

V. ESPELHOS DE CORRENTE E AMPLIFICADORES OPERACIONAIS AVANÇADOS

- Espelhos de corrente avançados.
- Amplificadores operacionais folded-cascode.
- Amplificadores operacionais fully differential.
- Circuitos de realimentação de modo comum.

VI. COMPARADORES

- Erros de injeção de carga.
- Comparadores com latches.
- -Exemplos de comparadores MOS e BiCMOS.

VII. SAMPLE-HOLDS, FONTES DE REFERÊNCIAS E CIRCUITOS TRANSLINEARES

- Sample-holds bipolar e BiCMOS.
- Fontes de referências bandgap
- Célula de ganho translinear
- Multiplicador translinear.

Avaliação:

A avaliação do aluno será efetivada através de 01 (uma) prova, listas de exercícios e projetos. A média de aproveitamento do aluno será dada por:

Prova - 50%

Projeto Final 30%

Exercícios 20%

A = 0.5 P + 0.3PF + 0.2 E

onde:

P = Média da prova

PF = Nota do projeto final

E = Média das listas de exercícios

O aproveitamento do aluno será convertido em conceito da seguinte forma:

Nota de Aproveitamento	Conceito
$9,0 \le A \le 10,0$	А
$7.0 \le A < 9.0$	В
5,0 ≤ A < 7,0	С
A < 5,0	D (reprovado)

Página do Curso: http://www.feis.unesp.br/#!/departamentos/engenharia-eletrica/posgraduacao/area-do-aluno-docente/disciplinas/

Livro Texto: RAZAVI, B. Design of Analog CMOS Integrated Circuits, McGraw-Hill,

2001.

Referências Adicionais:

- [01] JOHNS, D. A. e MARTIN, K., Analog Integrated Circuit Design, New York, John Wiley & Sons., 1997.
- [02] LAKER, K. R. e SANSEN, W.M. C., Design of Analog Integrated Circuits and Systems, New York, McGraw-Hill, 1994.
- [03] GEIGER, R. L., ALLEN, P. E. e STRADER, N. R., VLSI Design Techniques for Analog and Digital Circuits, New York, McGraw-Hill, 1990.
- [04] ALVAREZ, A. R. (Ed) BiCMOS Technology and Applications, 2nd Edition, Kluwer Academic Publishers, 1993.
- [05] GRAY, P. R. E MEYER, R. G. Analysis and Design of Analog Integrated Circuits, John Wiley & Sons, 3rd Edition, 1993

Introdução

- A área de projetos de circuito integrado analógico caracteriza-se por:
 - pesquisas intensas;
 - competição em nível mundial;
 - mercado potencial muito grande;
 - investimento de alto risco;
 - uso de equipamentos e CAD sofisticados;
 - necessidade de treinamento contínuo.

Objetivo do Curso

• Fornecer ao aluno os princípios básicos de eletrônica necessário ao projetista de circuito integrado e discutir os problemas de engenharia neste tipo de projeto, bem como as diversas relações de compromisso na execução de um projeto de um circuito integrado (CI).

Importância Industrial

- A tecnologia de fabricação dos semicondutores é complexa, requerendo materiais, equipamentos e suplementos específicos. Esta fabricação consiste de várias etapas que serão detalhadas em aula futura.
- Os produtos obtidos deste processo de fabricação possui aplicações na indústria automobilística, indústria eletrônica (computadores pessoais, telefones celulares, eletrônica de consumo), automação industrial, etc.
- A indústria de semicondutores
 - Produz hadware eletrônico associado com software
 - Fabrica os circuitos integrados
 - Contribui com 27% da economia do EUA em 1990
 - Representou um mercado de U\$304 bilhões em 2010.
- Por quê esta indústria se tornou tão grande?
 - Por poder aumentar o desempenho de seus produtos, decrementando os custos e preços
 - Por poder suprir a demando do mercado com produtos de alto desempenho com baixo custo, através da melhoria de projetos e do processo de manufatura.

Rank 2011	Rank 2010	Rank 2009	Company	Country of origin	Revenue (million \$ US)	2010/2009 changes	Market share
1	1	1	Intel	EUA	40 020	+24.3%	13.2%
2	2	2	Samsung	Coréia do Sul	28 137	+60.8%	9.3%
3	4	4	Texas	EUA	12 966	+34.1%	4.3%
4	3	3	Toshiba	Japão	13 081	+26.8%	4.3%
5	5	9	Renesas	Japão	11 840	+129.8%	3.9%
6	9	6	Qualcom	EUA	7 200	+12.3%	2.4%
7	7	5	STM	França/ Itália	10 290	+20.9%	3.4%
8	6	7	Hynix	Coréia do Sul	10 577	+69.3%	3.5%
9	8	13	Micron	EUA	8 853	+106.2%	2.9%
10	10	14	Broadco m	EUA	7 153	+7.0%	2.3%

Histórico

- 1947 o transistor bipolar foi inventado por Brattain, Bardeen (Bell Lab.) e Shockley.
- 1959 Jack Kilby (Texas Instruments) e Robert Noyce (Fairchild) propuseram o princípio do circuito integrado.
- 1963 Frank Wanlass (Fairchild)
 patenteou o processo de fabricação do
 CMOS.

Intel Dual Core – 151,6 milhões de transistores ocupando uma área de 90,3 mm quadrados. (Processo de 65nm)

Intel® Core™ i7-3960X Processor Die Detail

Intel Hexa Core – 2,7 bilhões de transistores ocupando uma área de 412 mm quadrados. (Processo de 32nm)

Processos da Microeletrônica

• Os principais processos usados na fabricação de circuitos integrados são:

Projeto de Circuitos Integrados

- Filosoficamente há duas formas de execução de um projeto de circuito integrado:
 - "Botton-up" o projeto inicia-se em nível de componente.
 - "Top-down" o projeto inicia-se em nível de sistema.

Diagrama de Blocos de um Projeto de um Circuito Integrado

FIGURE 1.3-1 Block diagram of conventional IC design process.

- O custo de fabricação de um circuito integrado é da ordem de U\$20.000,00 a U\$40.000,00 e demora de 1 a 4 meses para ser fabricado.
- Tentativas de minimização do custo e tempo de fabricação foram feitas, como por exemplo
 - "gate array"
 - PLA (Programmable Logic Array)
 - FPGA (Field Programmable Logic Array)

Tendências nos Projetos de Circuitos Integrados.

- Diminuição do tamanho dos dispositivos.
- Aumento da velocidade.
- Aumento da complexidade dos circuitos esta tendência é crucial para o desenvolvimento de novos mercados. Circuitos Mistos Digital + Analógico
- Aumento da produtividade dos projetistas através do uso de ferramentas de CAD mais sofisticados.
- Diminuição das tensões de alimentação e de consumo (Low Power)
- System on Chip (SoC)