Lecture 6: Principle of Data Reduction

Ma Xuejun

School of Mathematical Sciences Soochow University https://xuejunma.github.io

Outline

- Review
- 2 Population and Sample
- Some popular models
- Statistics
 - Sufficient statistics
 - Minimal Sufficient Statistics Terms
 - Ancillary statistics
 - Complete statistics

Review

•00

- The Delta Method and The Multivariate Delta Method
- The Edgeworth Expansion

- WLLN and CLT shows that the sample average is a reasonable estimator for the expecation
 - Converges to the expectation
 - Rate $O(1/\sqrt{n})$
- Is sample average the best estimator for the expectation?
 - 'Best' in what sense?
 - If not, how to find the 'best' estimate have?
 - What performance will the 'best' estimate have?
- Estimations for other parameters, or function of parameters?
 - Example: $X \sim N(\mu, \sigma^2)$. What is the estimation for σ ?
 - Example: $X \sim Gamma(\alpha, \beta)$. How to estimate α and β ? How about $\alpha + \beta$?
 - Not all of them can be estimated from sample mean
 - What is a proper estimation?

000

This section covers the section topic of our class.including:

- Parametric models
- Data reduction via statistics
- How to construct estimators

Evaluation of estimators will be covered in the third topic.

Population and Sample

- Population
 - The collection of measurements on a variable of interest:e.g,the condition of each light bulb of one manufactory.
 - Usually,hypothesize a model:e.g,Bernoulli(p)
- Sample

Definition 5.1.1: Random sample

The random variables X_1, X_2, \cdots, X_n are called a random sample of size n from the population $f_X(x)$ if X_1, X_2, \cdots, X_n are i.i.d. random vriables with PMF or PDF $f_X(x)$.

- Example: A sample from the light bulb manufactory: $X_1, X_2, \cdots, X_n \sim Ber(p)$
- The "i.i.d" condition can be relaxed
- If "i.i.d" condition holds, then the joint density of the random sample is

$$f_{X_1,\cdots,X_n}(x_1,\cdots,x_n)=\prod_{i=1}^n f_X(x_i)$$

Parameter Estimation

- Usually, f_X is not known to us. We draw samples to explore the properties of f_X , e.g., expectation, variance, tails, ect.
- If prior information is known,say, f_X has an unknown finite dimentional parameter $\theta \in \Theta$, which characterizes f_X . Then the problem is to estimate θ
 - Joint distribution of the sample:

$$f_{X_1,\dots,X_n}(x_1,\dots,x_n;\theta) = \prod_{i=1}^n f_X(x_i;\theta)$$

- Estimate θ
- ullet Construct some statistical tests for heta;say,model selection
- asymptotic properties
- If no prior information is known, we cannot assume the distribution family for f_X . We call it as non-parametric statistics
 - Splines
 - Kernel estimation
 - etc

I.I.D. Normal Model

- A basic model statisticians usually use is the normal model
- Let $X_1, X_2, \cdots, X_n \sim N(\mu, \sigma^2)$. Here, the unkown parameters are $\theta = (\mu, \sigma^2)$.
- Given the observations x_1, \dots, x_n , the joint density is

$$f_{X_{1:n}}(x_1,\dots,x_n;\theta) = \prod_{i=1}^n \frac{\exp\{-\frac{1}{2\sigma^2}(x_i-\mu)^2\}}{\sqrt{2\pi}\sigma} = \frac{\exp\{-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i-\mu)^2\}}{(\sqrt{2\pi}\sigma)^n}$$

• If the observations are given,then $f_{X_{1:n}}(x_1,\cdots,x_n;\theta)$ can be seen as a function about θ ,

$$L(\theta; x_1, \dots, x_n) = \frac{\exp\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\}}{(\sqrt{2\pi}\sigma)^n}$$

 $L(\theta; x_1, \dots, x_n)$ is called the likelihood function for this models.

• One way to estimate the parameters $\theta=(\mu,\sigma^2)$ is to find the maximister of $L(\theta)$:

$$\hat{\theta} = \arg\max_{\theta \in \Theta} L(\theta; x_1, \cdots, x_n)$$

I.I.D. Normal Model

Maxinum likelihood function estimation for normal dist.(Quick review)

• Note that $l(\theta) = \log L(\theta)$ has the same maximister with $L(\theta)$.

$$l(\theta; x_1, \dots, x_n) = \log L(\theta; x_1, \dots, x_n) = \exp\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\} - \frac{n}{2} \log(2\pi\sigma^2)$$

Take the partial derivative, we have

$$\left(\frac{\partial l(\theta)}{\partial \mu}, \frac{\partial l(\theta)}{\partial \sigma^2}\right) = \left(\frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu), -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (x_i - \mu)^2\right)$$

Let the derivative to be 0(local extrema). The solution is

$$\tilde{\mu}_n \sum_{i=1}^n x_i, \qquad \tilde{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \tilde{\mu}_n)^2$$

 Since this is the only solution, this local extrema should be a global extrema. Check whether it is a maxima. We need the Hessian matrix to be a negative definite matrix.

The Exponential Family

- Generalize the family of normal distribution
- ullet Exponential family is a class of densities,which for a random variable X and parameter heta, the density function is

$$f_X(x;\theta) = h(x) \exp{\{\eta(\theta)T(x) - A(\theta)\}}$$

- h, T, A are known functions
- The density functions is a product of data-only part h(x), parameter-only part $\exp\{-A(\theta)\}$,and the cross-term of data and parameters.
- The cross-term can be expressed as exponential transformation of the product of parameter and data.
- Joint density:

$$f(x_1, \dots, x_n) = \left(\prod_{i=1}^n h(x_i)\right) \exp\{\eta(\theta) \sum_{i=1}^n T(X_i) - nA(\theta)\}$$

• The normal distribution belongs to the exponential Family. If $X \sim N(\mu, \sigma^2)$, the density function is

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\{-\frac{1}{2\sigma^2}(x-\mu)^2\} = \frac{1}{\sqrt{2\pi}} \exp\{-\frac{x^2}{2\sigma^2} + \frac{\mu x}{\sigma^2 - \frac{\mu^2}{2\sigma^2} - \log \sigma}\}$$

Let

$$h(x) = \frac{1}{\sqrt{2\pi}}, \eta(\theta) = (-\frac{1}{2\sigma^2}, \frac{\mu}{\sigma^2}), T(x) = (x^2, x), A(\theta) = \frac{\mu^2}{2\sigma^2} + \log \sigma.$$

Then we have

$$f_X(x;\theta) = h(x) \exp{\{\eta(\theta)^T T(x) - A(\theta)\}},$$

which is an exponential family distribution.

Example: Suppose that $X_i|\theta\sim\exp(\lambda)$. Also,we know that $\lambda\sim Gamma(a,b)$. Given the observations x_1,x_2,\cdots,x_n , what information can we get about λ ?

Solution

The joint density for x_1, x_2, \cdots, x_n and λ is

$$f(x_1, x_2, \dots, x_n, \lambda) = \left[\prod_{i=1}^n f_X(x; \lambda)\right] \pi(\lambda)$$

$$= \left[\prod_{i=1}^n \lambda e^{\lambda x_i}\right] \frac{b^a}{\Gamma(a)} \lambda^{a-1} e^{-b\lambda} = \frac{b^a}{\Gamma(a)} \lambda^{a-1} e^{\lambda \sum x_i} \lambda^{a-1} e^{-b\lambda}$$

$$= \frac{b^a}{\Gamma(a)} \lambda^{n+a-1} e^{-\lambda(b+\sum x_i)}$$

Now,we are curious about λ ,so we want to know the conditional distribution of λ given the observations.

According to the definition of conditional distribution, we have

$$\pi(\lambda|x_1,x_2,\cdots,x_n) = \frac{f(x_1,x_2,\cdots,x_n,\lambda)}{f(x_1,x_2,\cdots,x_n)}$$

Here,to differentiate the density function for X and λ ,we always use π for the density function of λ ,and f for the density function of X_1, \dots, X_n .

Bayesian Models: Example

We want to solve

$$\pi(\lambda|x_1, x_2, \cdots, x_n) = \frac{f(x_1, x_2, \cdots, x_n, \lambda)}{f(x_1, x_2, \cdots, x_n)}$$

- ▶ The numerator is knowm, $f(x_1, x_2, \dots, x_n, \lambda) = \frac{b^a}{\Gamma(a)} \lambda^{n+a-1} e^{-\lambda(b+\sum x_i)}$
- ▶ The denominator can be calculated :

$$f(x_1, x_2, \dots, x_n) = \int_{\lambda} f(x_1, x_2, \dots, x_n, \lambda) d\lambda$$

$$= \frac{b^a}{\Gamma(a)} \int_0^{\infty} \frac{b^a}{\Gamma(a)} \lambda^{n+a-1} e^{-\lambda(b+\sum x_i)} d\lambda$$

$$= \frac{b^a}{\Gamma(a)} \times \frac{\Gamma(n+a)}{(b+\sum_{i=1}^n x_i)^{n+a}}$$

▶ So, the conditional distribution for λ is

$$\pi(\lambda|x_1, x_2, \dots, x_n) = \frac{(b + \sum_{i=1}^n x_i)^{n+a}}{\Gamma(n+a)} \frac{b^a}{\Gamma(a)} \lambda^{n+a-1} e^{-\lambda(b+\sum x_i)}$$
$$\sim Gamma(n+a, b+\sum x_i)$$

We call it as posterior distribution.

Bayesian Models:Remarks

- \blacktriangleright In the previous example, if we have proir information about λ , say, the expectation and variance, then we can identify the values of a and b, and the posterior is totally known.
- ▶ In Bayesian statistics, the posterior function is the "final answer".For frequentist, the estimation is a value.
- ▶ Depend on the loss function,the posterior function can be further reduced to a value. For example,when the loss function is $L^2 loss((\hat{\theta} \theta)^2)$,then the Bayes estimator can be reduced as $E[\pi(\theta|x_1,\cdots,x_n)]$. Details discussed later.
- ▶ Therefore, there is no "confidence interval" in Bayesian statistics. A similar notion is "credible interval". Details later.

The Linear Model

- ▶ Consider a sequence of data in pairs: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$, where $y_i \in \mathbb{R}$, and $x_i \in \mathbb{R}^p, p \geq 1, 1 \leq i \leq n$.
- ightharpoonup The y_i 's are called response variables and the y_i 's are explanatory variables. It is hypothesised that there exist some functional relationship of the form

$$Y_i = g_{\theta}(x_i) + \epsilon$$

Therefore,we can use x_i to predict the responses y_i , Here, ϵ_i is interpreted as noise.

► A simple prediction function is linear function. Therefore, the prediction function is

$$Y_i = \theta_0 + \sum_{j=1}^{p-1} \theta_j x_{ij} + \epsilon_i,$$

where ϵ_i are i.i.d.zero mean random samples,usually assumed to be $N(0,\sigma^2)$.

This model is called the linear regression model.

Statistics

- Random sample: X_1, X_2, \cdots, X_n .
- Work on the random sapmle to achieve information.

Definition: Statistics

For a random sample X_1, X_2, \dots, X_n , a statistics is a function of the random sample $T(X_1, X_2, \dots, X_n)$.

- The statistic T(X) is also a random variable. Most times, its distribution changes with n, and we denote the CDF as G_n , called the sampling distribution.
- With the observations x_1, x_2, \dots, x_n , we have $T(x_1, x_2, \dots, x_n)$, a realization of the statistic $T(X_1, X_2, \dots, X_n)$.

Statistics: Examples

Some examples of Statistics:

- ▶ Single observation of the sample: X_1
- lacktriangle order statistics: $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$
- ▶ Sample mean: $\bar{X_n}$.
- ullet Sample variance: $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X_n})^2$
- ightharpoonup sample minimum: $X_{(1)}$
- ightharpoonup sample maximum: $X_{(n)}$
- ightharpoonup sample rande: $X_{(n)}-X_{(1)}$

What is a "good" statistics?

Properties of Statistics

Recall that we are doing parametric inference, where the model is

$$f_X(X;\theta)$$

- We hope the statistics can be a summary of all the the data, relevant to the parameter.
- The process can be seen as a data reduction process
- Properties:
 - ► Sufficient statistics
 - ► Ancillary statistics
 - ▶ Complete statistics

Sufficient statistics

▶ Reduce the data,so that all the information relevant to the parameter can be summarized in one statistic

Sufficiency Principle

Let $X=(X_1,X_2,\cdots,X_n)$ be random sample from the distribution $f(x;\theta).$ If T(x) is a sufficient statistic for θ ,then any inference about θ should depend upon the sample X only through the value of T(X)

- lacktriangle We say,T(X) is sufficient for the parameter heta
- lacktriangle We can replace X with T(X) without losing information

A statistic T(X) is a sufficient for θ if the conditional distribution of the sample X given T(X) does not depend on θ , i.e.,

$$f(x_1, x_2, \dots, x_n | t; \theta) = f(x_1, x_2, \dots, x_n | t).$$

The above definition is not easy to check whether a statistic $T(\mathbf{X})$ is a sufficient statistic.

Theorem 6.2.2

If $p(\mathbf{x}|\theta)$ is the pdf or pmf of \mathbf{X} , and $q(\mathbf{t}|\theta)$ is the pdf or pmf of $T(\mathbf{X})$, then $T(\mathbf{X})$ is a sufficient statistic for θ if, for every \mathbf{x} ,

$$\frac{p(\mathbf{x}|\theta)}{q(T(\mathbf{x})|\theta)} \equiv \text{constant in } \ \theta$$

Example 1

Example. $X_1, X_2, \cdots, X_n \sim Poisson(\theta)$.Let $T = \sum_{i=1}^n X_i$.Since Poisson

dstribution is a discrete distribution, we are working with the PMF. The conditional distribution is

$$P(x_1, x_2, \dots, x_n | t) = \frac{P(X_1 = x_1, \dots, X_n = x_n, T = t)}{P(T = t)}$$

Since $T = \sum_{i=1}^{n} X_i$,

$$P(X_1 = x_1, \dots, X_n = x_n, T = t) = \begin{cases} 0, & T(x) \neq t \\ P(X_1 = x_1, \dots, X_n = x_n), & T(x) = t \end{cases}$$

And,

$$P(X^n = x^n) = \prod_{i=1}^n \frac{e^{-\theta} \theta^{\sum x_i}}{\prod (x_i!)}$$

Now, $T(x_1,\dots,x_n)=\sum x_i=t$. According to the property of Poisson distribution, $T \sim Poission(n\theta)$, so

$$P(X^n = x^n)/P(T = t) = t!/[\prod (x_i!)n^t].$$

which does not not depend on θ .So,T is a sufficient statistic for θ .

Example 6.2.3

Let X_1, X_2, \dots, X_n be i.i.d. Bernoulli(p). Let

$$T(\mathbf{X}) = X_1 + X_2 + \dots + X_n.$$

Then

$$\begin{array}{rcl} p(\mathbf{x}|p) & = & p^{x_1+\dots+x_n}(1-p)^{n-(x_1+\dots+x_n)} \\ q(t|p) & = & \binom{n}{t}p^t(1-p)^{n-t} \\ \\ \frac{p(\mathbf{X}|p)}{q(T(\mathbf{x})|p)} & = & \frac{p^{x_1+\dots+x_n}(1-p)^{n-(x_1+\dots+x_n)}}{\binom{n}{x_1+\dots+x_n}p^{x_1+\dots+x_n}(1-p)^{n-(x_1+\dots+x_n)}} \\ & = & \frac{1}{\binom{n}{T(\mathbf{x})}} \quad \text{does not depend on } \theta \end{array}$$

Let X_1, X_2, \dots, X_n be i.i.d. $N(\mu, \sigma^2)$, where σ is unknown.

$$T(\mathbf{X}) = (X_1 + X_2 + \dots + X_n)/n$$

is sufficient for μ .

$$f(\mathbf{x}|\mu) = \prod_{i=1}^{n} (2\pi)^{-1/2} \sigma^{-1} \exp\left(-(x_i - \mu)^2/(2\sigma^2)\right)$$
$$= (2\pi\sigma^2)^{-n/2} \exp\left[-\sum_{i=1}^{n} (x_i - \mu)^2/(2\sigma^2)\right]$$
$$= (2\pi\sigma^2)^{-n/2} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \bar{x})^2 - \frac{n}{2\sigma^2} (\bar{x} - \mu)^2\right]$$

 $\bar{\mathbf{X}} \sim N(\mu, \sigma^2/n)$

$$f_{\bar{\mathbf{X}}}(t|\mu) = (2\pi\sigma^2/n)^{-n/2} \exp\left[-\frac{n}{2\sigma^2}(t-\mu)^2\right]$$

So

$$\frac{f(\mathbf{x}|\mu)}{f_{\bar{\mathbf{X}}}(t|\mu)} = \frac{(2\pi)^{-n/2}}{(2\pi n^{-1})^{-1/2}} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \bar{x})^2\right]$$

does not depend on μ .

Example 6.2.5 (Sufficient Order Statistic)

Suppose X_1, X_2, \dots, X_n are i.i.d. f(x). Then

$$(X_{(1)}, X_{(2)}, \cdots, X_{(n)})$$

is sufficient for $f(\cdot)$. $(X_{(1)}, X_{(2)}, \cdots, X_{(n)})$ is the order statistic of X_1, X_2, \ldots, X_n

Sufficient Partition

▶ The sufficient can be viewed as a proper partition of the sample space.

Example. Let $X_1, X_2, X_3 \sim Bernoulli(p)$, Let $T = \sum x_i$.

$$\begin{array}{c|cccc} (x_1,x_2,x_3) & & t & p(x|t) \\ \hline (0,0,0) & \to & 0 & 1 \\ \hline (1,0,0) & \to & 1 & 1/3 \\ (0,1,0) & \to & 1 & 1/3 \\ (0,0,1) & \to & 1 & 1/3 \\ \hline (1,1,0) & \to & 2 & 1/3 \\ (0,0,1) & \to & 2 & 1/3 \\ (0,1,1) & \to & 2 & 1/3 \\ \hline (1,1,1) & \to & 3 & 1 \\ \hline \end{array}$$

According to different values of T,the original sample space Ω is partitioned onto 4 subsets.

$$\Omega = \{(0,0,0)\} \bigcup \{(1,0,0),(0,1,0),(0,0,1)\}$$

$$\bigcup \{(0,1,1),(1,0,1),(1,1,0)\} \bigcup \{(1,1,1)\}$$

Sufficient Partition: Remarks

$$\Omega = \{(0,0,0)\} \bigcup \{(1,0,0), (0,1,0), (0,0,1)\}$$
$$\bigcup \{(0,1,1), (1,0,1), (1,1,0)\} \bigcup \{(1,1,1)\}$$

- ▶ In each element of the partition (each of the four subset), the conditional probability of the data does not depend on θ
- ► We call such a partition as sufficient partition
- \blacktriangleright This partition is introduced by the statistic T.Any statistic T can introduce a partition.
- ▶ Diffierent statistic may introduce the same partition.For example, $10 \sum x_i (\sum x_i)^2$ introduce the same partition introduced is also sufficient.
- ▶ T is sufficient if and only if the partition introduced is also sufficient.

▶ How about the partition induced by other statistic? **Example.** Let $X_1, X_2, X_3 \sim Bernoulli(p)$. Let $T = X_1 + X_2$. Then partition introduced is as following.

(x_1, x_2, x_3)		t	p(x t)
(0,0,0)	\rightarrow	0	1-p
(0, 0, 1)	\rightarrow	0	p
(1,0,0)	\rightarrow	1	(1-p)/2
(0, 1, 0)	\rightarrow	1	(1-p)/2
(0, 1, 1)	\rightarrow	1	p/2
(1, 0, 1)	\rightarrow	1	p/2
(1,1,0)	\rightarrow	2	1-p
(1,1,1)	\rightarrow	2	p

The sample space is decomposed into a 3-element partition. However, in this partition, the conditional dstribution still depends on p. This is not a sufficient partition, and T is not a sufficient statistic.

The Fractorization Theorem

How to find a sufficient statistics?

The Factorization Theorem

Let $f_X(x;\theta)$ be the density of a random sample. A statistic T(X) is sufficient for θ if and only if there exist functions $g(t;\theta)$ and h(x), such that for any (x, θ) ,

$$f_X(x;\theta) = g(T(X);\theta)h(x)$$

- $\blacksquare f_X(x;\theta)$ is the joint density for the random sample x_1,\cdots,x_n
- \blacksquare The density function can be seen as a product of function about T and θ , and function about x only.
- No need to calculate the conditional distribution.

This theory is most useful in finding out sufficient statistic

Proof

We prove it assuming X is discrete; the condinous case is similar.

 \blacksquare "Only if":Let T be sufficient.Choose $q(t;\theta) = P(T(X) = t;\theta)$ and h(x) = P(X = x | T(X) = T(x)). Since T is sufficient, h(x) does not depend on θ .

$$f_X(x;\theta) = P(X = x;\theta) = P(X = x|T(X) = T(x);\theta)$$

= $P(X = x|T(X) = T(x);\theta)P(T(X) = T(x);\theta)$
= $P(X = x|T(X) = T(x))P(T(X) = T(x);\theta)$
= $h(x)g(T(x);\theta)$.

 \blacksquare "if":suppose the factorization holds, and we want to show T is sufficient for θ .Let $A_{T(X)} = y$; T(y) = T(x), then consider

$$\frac{f_X(x;\theta)}{f_T(t;\theta)} = \frac{h(x)g(T(x);\theta)}{f_T(t;\theta)} = \frac{h(x)g(T(x);\theta)}{\sum_{u \in A_{T(x)}}} h(u)g(T(u);\theta)$$
$$= \frac{h(x)g(T(x);\theta)}{g(T(x);\theta)\sum_{u \in A_{T(x)}} h(u)} = \frac{h(x)}{\sum_{u \in A_{T(x)}} h(u)}$$

The conditional distribution does not depend on θ , hence T is sufficient for θ .

• Example 6.2.7 X_1, X_2, \ldots, X_n i.i.d. $N(\mu, \sigma^2)$, σ known, we have

$$f(\mathbf{x}|\mu) = (2\pi\sigma^2)^{-n/2} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \bar{x})^2\right] \exp\left[-\frac{n}{2\sigma^2} (\bar{x} - \mu)^2\right]$$

since
$$\exp\left[-\frac{1}{2\sigma^2}\sum_{i=1}^n(x_i-\bar{x})^2\right]$$
 does not involve μ , $\bar{\mathbf{X}}=\frac{1}{n}(X_1+\ldots+X_n)$ is a sufficient statistic for μ .

Let X_1, X_2, \ldots, X_n be i.i.d. observations from discrete Uniform distribution on 1, 2, \cdots , θ .

$$f(x|\theta) = egin{cases} 1/ heta, & x = 1, 2, \cdots, \theta \\ 0, & ext{otherwise} \end{cases}$$

Thus the joint pmf of X_1, \ldots, X_n is

$$f(\mathbf{x}|\theta) = \begin{cases} \theta^{-n}, & x_i \in \{1, 2, \cdots, \theta\} \text{ for } i = 1, 2, \cdots, n \\ 0, & \text{otherwise} \end{cases}$$

Let

$$\begin{split} f(\mathbf{x}|\theta) &= \theta^{-n}I(x)_{\{1,2,...,\theta\}} = \theta^{-n}I(\max\{x_i\})_{\{\max\{x_i\} \leq \theta\}} \\ g(t|\theta) &= \theta^{-n}, t \leq \theta \\ &= \theta^{-n} \cdot 1[t \leq \theta] \end{split}$$

Then

$$f(\mathbf{x}|\theta) = g\left(\max_{1 \le i \le n} \{x_i\} | \theta\right) \cdot h(\mathbf{x})$$

 $\Longrightarrow T(\mathbf{X}) = \max_{1 \leq i \leq n} \{X_i\}$ is a sufficient statistic for θ .

Example 6.2.9

$$X_1, \cdots, X_n \sim N(\mu, \sigma^2).$$

$$f(\mathbf{x}|\mu, \sigma^2) = (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \bar{x})^2 - \frac{n}{2\sigma^2} (\bar{x} - \mu)^2\right\}$$
$$= h(\mathbf{x})g(T_1(\mathbf{x}), T_2(\mathbf{x})|\mu, \sigma^2)$$

Here,

$$h(\mathbf{x}) \equiv 1$$

$$g(t_1, t_2 | \mu, \sigma^2) = (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{n-1}{2\sigma^2} \cdot t_2 - -\frac{n-1}{2\sigma^2} (t_1 - \mu)^2\right\}$$

Hence, $T_1(\mathbf{x}) = \bar{X}$, $T_2(\mathbf{x}) = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ are sufficient statistics.

Theorem 6.2.10

Let X_1, X_2, \cdots, X_n be i.i.d. observations from a pdf or pmf $f(x|\theta)$ that belongs to an exponential family given by

$$f(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp\left(\sum_{i=1}^{k} w_i(\boldsymbol{\theta})t_i(x)\right),$$

where $\boldsymbol{\theta} = (\theta_1, \cdots, \theta_d), d \leq k$. Then

$$T(\mathbf{X}) = \left(\sum_{j=1}^{n} t_1(X_j), \sum_{j=1}^{n} t_2(X_j), \cdots, \sum_{j=1}^{n} t_k(X_j)\right)$$

is a sufficient statistic for heta

- Example Let X_1, X_2, \cdots, X_n be i.i.d. $\mathsf{Gamma}(\alpha, \beta)$, then $T(\mathbf{X}) = \left(\sum_{j=1}^n \log X_j, \sum_{j=1}^n X_j\right)$ are sufficient for (α, β) .
- Example Let X_1, X_2, \cdots, X_n be i.i.d. Uniform (α, β) , $\alpha < \beta$, then $(\min_{1 \le i \le n} X_i, \max_{1 \le i \le n} X_i)$ is sufficient for (α, β) .

Minimal Sufficient Statistics(MSS)

- There are multiple sufficient statistics for one parameter
- Example: $X_1,X_2,X_3\sim Bernoulli(p).$ For $p,\sum_{i=1}^3X_i,(\sum_{i=1}^3X_i)^2,(X_1+X_2,X_3) \text{ are all sufficient statistics}$
- Which is the "best" one for us?

Recall:

- Sufficient statistics:data reduction
- Best: the sufficient statistics that maximal the data reduction
- The "best" statistics has minimal data but sufficient information. We call it the minimal sufficient statistics.

A statistic T is called a Minimal Sufficient Statistic if

- T is sufficient;
- For any other sufficient statistics U,T=q(U) for some function q.
- For a fixed family of distribution, many sufficient statistics exist. We need to find the sufficient statistic which achieves the maximal data reduction.
- First, any one-to-one transformation of sufficient statistic is a sufficient statistic.

MSS:Example

Example:Let $X_1, X_2, X_3 \sim Bernoulli(p)$.Let $T = \sum_{i=1}^3 X_i$, $U = 2X_1 + 3X_2 + 4X_3$.

(x_1, x_2, x_3)		t	p(x t)	u	p(x u)
(0,0,0)	\rightarrow	0	1	0	1
(1,0,0)	\rightarrow	1	1/3	2	1
(0, 1, 0)	\rightarrow	1	1/3	3	1
(0, 0, 1)	\rightarrow	1	1/3	4	1
(0,1,1)	\rightarrow	2	1/3	7	1
(1, 0, 1)	\rightarrow	2	1/3	6	1
(1, 1, 0)	\rightarrow	2	1/3	5	1
(1, 1, 1)	\rightarrow	2	1	9	1

Both T and U are sufficient statistics, but U is not minimal.

- How to check the minimal sufficiency?
- How to find a minimal sufficient statistic?

Theorem: Minimal Sufficient Statistics

Let $f_X(x;\theta)$ be the density of a random sample X,Let

$$R(x, y; \theta) = \frac{f_X(x; \theta)}{f_Y(y; \theta)}$$

For a statistic T,T is minimal sufficient if $R(x,y;\theta)$ does not depend on $\theta \Leftrightarrow T(x) = T(y)$.

- \blacksquare Here,x and y are two random samples with the same sample size
- Sometimes, it is hard to show the equivalence.

MSS:Example

 \blacksquare Let $X_1, X_2, \dots, X_n \sim Poisson(\theta), Y_1, Y_2, \dots, Y_n \sim Poisson(\theta)$, then

$$p(x;\theta) = \frac{e^{-n\theta}\theta^{\sum x_i}}{\prod y_i!}, \qquad R(x,y;\theta) = \frac{\theta^{\sum y_i - \sum x_i}}{\prod y_i! / \prod x_i!}$$

It is independent with θ if and only if $(\sum y_i = \sum x_i)$, So $T = \sum x_i$ is a minimal sufficient statistic for θ .

 \blacksquare Let X_1, \dots, X_n be a random sample with Cauchy distribution. Recall for Cauchy distribution, the PDF is $f(x;\theta) = \frac{1}{\pi(1+(x-\theta)^2)}$. So, the ratio is

$$R(x,y;\theta) = \frac{f(x;\theta)}{f(y;\theta)} = \frac{\prod 1/[\pi(1+(x_i-\theta)^2)]}{\prod 1/[\pi(1+(y_i-\theta)^2)]} = \frac{\prod 1/[1+(y_i-\theta)^2]}{\prod 1/[1+(x_i-\theta)^2]}$$

The result cannot be further reduced. However, note that the final result is not sffected by the order of the fata. Therefore, R does not depend on θ if and only if $(x_{(1)}, x_{(2)}, \dots, x_{(n)}) = (y_{(1)}, y_{(2)}, \dots, y_{(n)})$. The sufficient statistic is $T = (X_{(1)}, X_{(2)}, \cdots, X_{(n)}).$

- Example 6.2.14 X_1, X_2, \cdots, X_n be i.i.d. $N(\mu, \sigma^2)$. Then $\bar{X}_n = \frac{1}{n}(X_1 + X_2 + \cdots + X_n)$ and $S_X^2 = \frac{1}{n-1}\sum_{i=1}^n \left(X_i \bar{X}\right)^2$ are minimal sufficient for μ, σ^2 .
- Example 6.2.15 X_1, X_2, \dots, X_n be i.i.d. Uniform $(\theta, \theta + 1)$. Then

$$f_{\mathbf{X}}(\mathbf{x}|\theta) = \begin{cases} 1, & \max_{i} x_i - 1 < \theta < \min_{i} x_i \\ 0, & \text{otherwise} \end{cases}$$

This implies (Theorem 6.2.13) that $\left(\max_i X_i, \min_i X_i\right)$ is minimal sufficient for θ .

Remark 1 The above is an example of two-dimensional minimal sufficient statistic for one-dimensional parameter.

Remark 1 Any one-to-one function of minimal sufficient statistic is also a minimal sufficient statistic.

- \blacksquare Sufficient statistic: the statistics that contain all information about θ .
- \blacksquare Ancillary statistics: the statistics does not depend on θ .

Definition:Ancillary Statistics

a statistic S(X) of a random sample whose distribution does not depend on θ is called an ancillary statistics.

Example Let X_1, X_2, \dots, X_n be i.i.d. Uniform $(\theta, \theta + 1)$, we see that (from Example 6.1.15) $X_{(n)}, X_{(1)}$ are minimal sufficient for θ . Therefore $\left(X_{(n)}-X_{(1)}, rac{X_{(n)}+X_{(1)}}{2}
ight)$ are minimal sufficient for heta. But Example 6.1.17 shows that $X_{(n)} - X_{(1)}$ is ancillary for θ .

Remark An ancillary statistic by itself may contain no information on θ , but when combine with other statistics, it may offer very important information. It is certainly not true that ancillary statistics are independent of minimal sufficient statistics.

• Example 6.2.17 X_1, X_2, \dots, X_n are i.i.d. Uniform $(\theta, \theta + 1)$, $-\infty < \theta < \infty$. Then $R = X_{(n)} - X_{(1)}$ is ancillary.

Answer The joint pdf of $(X_{(n)}, X_{(1)})$ is

$$g(x_{(1)}, x_{(n)}|\theta) = n(n-1)(x_{(n)} - x_{(1)})^{n-2}, \quad \theta < x_{(1)} < x_{(n)} < \theta + 1.$$

Some popular models

Let

$$\begin{cases} R = X_{(n)} - X_{(1)}, \\ M = (X_{(1)} + X_{(n)})/2, \end{cases}$$

then

 $f_{RM}(r,m) = n(n-1)r^{n-2}, \ 0 < r < 1, \theta + (r/2) < m < \theta + 1 - (r/2).$ So the marginal distribution of R is

$$f_R(r) = \int_{\theta + r/2}^{\theta + 1 - r/2} n(n-1)r^{n-2}dm = n(n-1)r^{n-2}(1-r), \quad 0 < r < 1.$$

 \implies The pdf of R does not depend on θ . So R is ancillary for θ .

for θ .

 $X_1/X_n, \cdots, X_{n-1}/X_n$ are

- Example 6.2.18 (Location Family Ancillary Statistic) X_1, X_2, \cdots, X_n are i.i.d with cdf $F(x-\theta), -\infty < \theta < \infty$. F is a known distribution function. In this case $R = X_{(n)} X_{(1)}$ is ancillary
- Example 6.2.19 (Scale Family Ancillary Statistic) Let X_1, X_2, \cdots, X_n be i.i.d from $F(x/\sigma)$, $\sigma > 0$. Then any statistic that depends on the sample through the n-1 values $X_1/X_n, \cdots, X_{n-1}/X_n$ is an ancillary statistic. For example, $(X_1+\cdots+X_n)/X_n$ is ancillary. The joint distribution of

$$F(y_1, \dots, y_{n-1} | \sigma) = \Pr_{\sigma} \left\{ X_1 / X_n \le y_1, \dots, X_{n-1} / X_n \le y_{n-1} \right\}$$

$$= \Pr_{\sigma} \left\{ \frac{\sigma Z_1}{\sigma Z_n} \le y_1, \dots, \frac{\sigma Z_{n-1}}{\sigma Z_n} \le y_{n-1} \right\}$$

$$= \Pr_{\sigma} \left\{ Z_1 / Z_n \le y_1, \dots, Z_{n-1} / Z_n \le y_{n-1} \right\}$$

does not depend on σ . Z_1, \dots, Z_n are i.i.d. from F(x).

Remark Ancillary statistic may still useful in estimation of θ . One example is that X_1, X_2, \cdots, X_n i.i.d $N(\mu, \sigma^2)$ with σ^2 unknown. Then $T_1(\mathbf{X}) = \frac{1}{\pi}(X_1 + \cdots + X_n)$ is minimal sufficient for μ . But the

Complete Statistics

Definition: Complete Statistics

Let X be a random sample with density $f_X(x;\theta)$ and T a statistic with density $f_T(t;\theta)$. The collection of densities f_X is called complete if

$$E_{\theta}[g(T)] = 0 \Rightarrow P_{\theta}[g(T) = 0] = 1 \qquad g: T \to \mathbb{R}, \theta \in \Theta.$$

T is called a Complete Statistics.

Remark.

- q is a fixed function. Say, q(x) = x. There is no randomness for q. The randomness of q(T) comes from T.
- q does not depend on θ .
- g:a function so that $E_{\theta}[g(T)] = 0$ for any $\theta \in \Theta$. For any g statisfying such condition, q(T) = 0 with probability 1 for any θ .
- The statistic is the statistic which ensures θ is identifiable.

Example.Let $X_1, X_2, X_3 \sim Bernoulli(p), \theta \in (0, 1)$.Prove that $T = \sum X_i$ is complete.

Some popular models

Proof: Suppose that $T3 \sim Bernoulli(n,\theta), \theta \in (0,1)$ and g be such that $E_{\theta}[g(T)] = 0$. Then we must have

$$0 = E_{\theta}[g(T)] = \sum_{t=0}^{n} g(t) \binom{n}{t} \theta^{t} (1-\theta)^{n-t}$$
$$= (1-\theta)^{n} \sum_{t=0}^{n} g(t) \binom{n}{t} (\frac{\theta}{1-\theta})^{t}$$
$$= (1-\theta)^{n} \sum_{t=0}^{n} g(t) \binom{n}{t} r^{t}$$

where $r=\theta/(1-\theta).$ Let r be a very small number so that $g(0)\binom{n}{0}r^0$ term be the giant component,then since the summation is 0,obviously g(0)=0. Similarly,we show that g(t)=0 for each $t\in 0,\cdots,n$ must hold. Hence, T is complete.

Complete Statistics: Example 6.2.23

Let $X_i \sim Unif(0,\theta), i \in 1, \cdots, n$, for $\theta > 0$. Recall that $T = X_{(n)}$ (the maximum of the sample) is sufficient for θ . Now, we want to prove that T is also complete.

Proof. The CDF of t is

$$F_T(t) = P(T \le t) = P() \max X_1, X_2, \cdots, X_n \le t) = (\frac{t}{\theta})^{\theta}$$

so the PDF of t is the derivative of F_T ,which is $\frac{nt^{n-1}}{\theta^n}, 0 < t < \theta.$ Suppose that g(t) statifies that $E_{\theta}[g(T)] = 0$,then $\int_0^{\theta} g(t) \frac{nt^{n-1}}{\theta^n} dt = 0.$ Since it stands for all θ ,the derivative of $E_{\theta}[g(T)]$ also equals to 0.

$$0 = \frac{d}{d\theta} \int_0^\theta g(t) \frac{nt^{n-1}}{\theta^n} dt =$$

$$\frac{d}{d\theta} (\theta^{-n}) \int_0^\theta g(t) nt^{n-1} dt + \frac{d}{d\theta} (\int_0^\theta g(t) nt^{n-1} dt) (\theta^{-n})$$

The first part equals to 0,since $\int_0^\theta g(t) \frac{nt^{n-1}}{\theta^n} dt = 0$..So we have

$$0 = \frac{d}{d\theta} \left(\int_0^\theta g(t) n t^{n-1} dt \right) (\theta^{-n}) = g(\theta) n \theta^{n-1}.$$

So, $g(\theta)=0$ for any $\theta>0$, which means that g(x)=0 when x>0. Recall that T>0 with probability 1, so g(T)=0 with probability 1, for any θ .

• Theorem 6.2.25 (Complete Statistics in the exponential Family) Let X_1, X_2, \cdots, X_n be i.i.d. observations from an exponential family with pdf or pmf of the form

$$f(x|\theta) = h(x)c(\theta) \exp\left(\sum_{j=1}^{k} w_j(\theta)t_j(x)\right)$$

where $\theta = (\theta_1, \dots, \theta_k)$. Then the statistic

$$T(\mathbf{X}) = \left(\sum_{i=1}^{k} t_1(X_i), \sum_{i=1}^{k} t_2(X_i), \cdots, \sum_{i=1}^{k} t_k(X_i)\right)$$

is complete as long as the parameter space Θ contains an open set in R^k

- Theorem 6.2.28 If a minimal sufficient statistic exists, then any complete statistic is also a minimal sufficient statistic.
- Example 6.2.26 (Using Basu's Theorem I) To show $g(\mathbf{X}) = \frac{X_n}{Y_1 + \dots + Y_n}$ and $T(\mathbf{X}) = X_1 + \dots + X_n$ are independent when X_1, X_2, \cdots, X_n are i.i.d. $\exp(\text{mean} = \theta)$.
- Example 6.2.27 (Using Basu's Theorem II) To show \bar{X}_n and S^2 are independent if X_1, X_2, \cdots, X_n are i.i.d. $N(\mu, \sigma^2)$.

Remarks

- Sufficient statistics, ancillary statistics, and complete statistics are the statistics for data reduction
- In past days, when the space is not enough
- Sufficient statistics is to reduce data so that estimation through likelihood is doable.
 - \blacksquare Ancillary statistics is to figure out the part that not related to θ
- Complete statistics is to make sure that θ is identifiable (no two θ with exactly the same model)
 - Reduce the samples to be only these statistics
- Currently,thanks to the technology development,saving the data is not that difficult. These statistics are used to help understand the model and the data and accelerate the algorithm.
- Comlpete statistics and ancillary statistics are not popular now.