

Comparing 545 Million Years of Sea-Level Change: New Insights from the TopoChronia QGIS Plugin

Florian Franziskakis¹, Christian Vérard, Sébastien Castelltort, Grégory Giuliani

¹enviroSPACE Lab, Institute for Environmental Sciences, University of Geneva, florian.franziskakis@unige.ch

Continental Drift?

"The Americas are torn away from Europe and Africa (...) by earthquakes and floods"

Abraham Ortelius (16th century)

Continental Drift?

Shapes of continent are like the pieces of a puzzle with similar fossil records.

Continents must have "drifted" from an original "supercontinent"

Alfred Wegener (1912, 1915)

Plate Tectonics?

Study of the Earth structure through seismic waves: layers with different physical and chemical properties

1957 physiographic map of the North Atlantic:

Oceanic floor is not flat!
Shallow ridges in the middle of the ocean

Plate Tectonics?

The lithosphere moves on top of the asthenosphere.

Old crust is recycled back into the mantle at converging boundaries.

Newly erupted crust is formed at diverging boundaries

Plate Tectonics Controls on Geography/Topography

Plate Tectonics Controls on Geography/Topography

Vérard (2024)

Plate Tectonics Controls on Geography/Topography

Can we reconstruct the deep-time Earth topography and geography using plate tectonic models?

Can we estimate sea-level variations based on past topographic reconstructions?

Palaeogeography: Approach

PANALESIS: Automated, quantitative & synthetic

Modified after Vérard (2019)

Synthetic Topography

10

NOAA (2022), Franziskakis et al. (2025)

TopoChronia QGIS Plugin

TopoChronia: Digital Elevation Models of the Earth Past based on the PANALESIS Plate Tectonic Model

https://github.com/florianfranz/topo_chronia

https://topo-chronia.readthedocs.io/en/latest/

https://github.com/florianfranz/topo_chronia/releases/tag/v1.0.0-beta

https://github.com/openjournals/joss-reviews/issues/8108 (in review)

Uncorrected Sea-Level

Uncorrected Sea-Level

Corrected Sea-Level

Water Load Correction

Vérard et al. (2015):

$$\Delta SL = 0.55 \times (h_2 - h_1)$$

Now (Airy):

$$\Delta SL = \left(\frac{\rho M - \rho W}{pM}\right) \times (h_2 - h_1)$$

$$\Delta SL \cong 0.69 \times (h_2 - h_1)$$

```
ho M = 3300 \, [kg/m^3];

ho W = 1027 \, [kg/m^3];

h_1 = \text{original water column height [m]};

h_2 = \text{final water column height [m]};
```

Comparison: v0 vs Haq's curves

Comparison: v1 vs Haq's curves

Comparison: Summary

	TopoChronia	TopoChronia	Vérard et al. 2015
	v0	v1	UNIL
	0 - 500	330 - 540	0 - 500
Mean	60.1594	42.7190	47.1240
Median	37.7314	27.4410	41.1070
Max	243.5463	111.0964	138.3365
Min	1.3245	3.3149	5.3841

Climate Models: Resolution

000 Ma (present-day)

TopoChronia $(10 \times 10 \text{km})$ MITgcm $(280 \times 280 \text{km})$ PLASIM-GENIE $(500 \times 500 \text{km})$

250 Ma (Triassic)

19

Climate Models: Influence of Palaeogeography

PANALESIS

PALEOMAP

20

Climate Models: Influence of Palaeogeography

PANALESIS PALEOMAP

Courtesy of N. Werner (ETH Zurich)

Conclusions

Example of reproducibility crisis: software, input and outputs changed with time.

New results differ from previously published ones, still performs quite well.

Ongoing efforts to open software and data with community standards.

Palaeogeography is key for long-term climate simulations of the Earth's past.

Long-term feedback mechanisms between climate and geography yet to explore.

References

Ali Saberi, A. (2013). Percolation Description of the Global Topography of Earth and the Moon. *Physical Review Letters*, 110(17), 178501. https://doi.org/10.1103/PhysRevLett.110.178501

Allen, P. A., & Allen, J. R. (2005). *Basin Analysis: Principles and Applications 2nd Edition*. Blackwell Publishing, Incorporated, Oxford OX4 1JF, United Kingdom.

Aminov, J., Dupont-Nivet, G., Ruiz, D., & Gailleton, B. (2023). Paleogeographic reconstructions using QGIS: Introducing Terra Antiqua plugin and its application to 30 and 50 Ma maps. *Earth-Science Reviews*, 240, 104401. https://doi.org/10.1016/j.earscirev.2023.104401

Franziskakis, F., Vérard, C., Castelltort, S., & Giuliani, G. (2025). Global Quantified Palaeogeographic Maps and Associated Sea-level Variations for the Phanerozoic using the PANALESIS Model [Data set]. Zenodo. https://doi.org/10.5281/zenodo.15396265

NOAA. (2022). NOAA National Centers for Environmental Information. 2022: ETOPO 2022 15 Arc-Second Global Relief Model. [Dataset]. https://doi.org/10.25921/fd45-gt74

Ortelius, A. (1596). Thesaurus Geographicus.

Scotese, C. (2021). An Atlas of Phanerozoic Paleogeographic Maps: The Seas Come In and the Seas Go Out. *Annual Review of Earth and Planetary Sciences*, 49(Volume 49, 2021), 679–728. https://doi.org/10.1146/annurev-earth-081320-064052

Vérard, C. (2019). Panalesis: Towards global synthetic palaeogeographies using integration and coupling of manifold models. *Geological Magazine*, 156(2), Article 2. https://doi.org/10.1017/S0016756817001042

Wegener, A. (1912). Die Entstehung der Kontinente. Geologische Rundschau, 3(4), 276–292. https://doi.org/10.1007/BF02202896

Wegener, A. (1915). Die Enstehung der Kontinente und Ozeane.

Image sources

Slide 2: Theatrum Orbis Terrarum by Abraham Ortelius (1572), via Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Theatrum Orbis Terrarum, by Abraham Ortelius, World, 1572.jpg

Slide 3: Snider-Pellegrini Wegener fossil map, based on USGS materials, via Wikimedia Commons.

https://commons.wikimedia.org/wiki/File:Snider-Pellegrini_Wegener_fossil_map.svg

Slide 4: Earth Cutaway Schematic (2013), by Anasofiapaixao. Public domain via Wikimedia Commons.

https://commons.wikimedia.org/wiki/File:Earth_cutaway_schematic-en.svg

Slide 4: Physiographic Map of the North Atlantic (1957) by Bruce Heezen & Marie Tharp. Public domain via Wikimedia Commons.

https://commons.wikimedia.org/wiki/File:Physiographic_map_of_the_North_Atlantic,_1957.jpg

Slide 5: Continental-continental constructive plate boundary by domdomegg, licensed under CC BY 4.0, via Wikimedia Commons: https://commons.wikimedia.org/wiki/File:Continental-continental-constructive plate boundary.svg

Slide 5: Continental-continental destructive plate boundary by domdomegg, licensed under CC BY 4.0, via Wikimedia Commons: https://commons.wikimedia.org/wiki/File:Continental_continental_destructive_plate_boundary.svg

Slide 5: Tectonic plates (2022)" by M. Bitton, licensed under CC BY-SA 3.0, via Wikimedia Commons: https://commons.wikimedia.org/wiki/File:Tectonic plates (2022).svg