Decomposition and Functional Dependency

Outline

- ☐ Redundancy
- Decomposition
- ☐ Functional dependency
- ☐ Inference rules

Why Redundancy?

☐ An ER diagram can be directly converted to relational tables, which may contain redundancy, namely, repetition of the same information.

id hourly-wages employee

EMPLOYEE

id	rating	hourly-wages
1	B1	100
2	B1	100
3	B1	100
4	В2	200
5	B2	200
6	B2	200

☐ If we have the value for the attribute "rating", we can uniquely determine the attribute "hourly-wages".

Disadvantages of Redundancy

- ☐ Higher space consumption
- ☐ Higher update overhead
- ☐ Anomalous Insertion/update

EMPLOYEE

id	rating	hourly-wages
1	B1	100
2	B1	100
3	B1	100
4	B2	200
5	B2	200
6	B2	200

How to tackle this issue?

Solution: Decomposition

EMPLOYEE

id	rating	hourly-wages
1	B1	100
2	B1	100
3	B1	100
4	B2	200
5	B2	200
6	B2	200

EMPLOYEE

id	rating
1	B1
2	B1
3	B1
4	В2
5	B2
6	В2

SALARY

rating	hourly-wages
B1	100
В2	200

Basic Questions to Ask Before Using Decomposition

- ☐ Do we need to decompose a relation?
- ☐ What issues (if any) can a given decomposition cause?
 - May possibly lose information.
 - ➤ Need to join several tables together to obtain the complete information.

- ☐ How can we make sure that the first issue does not happen?
 - ➤ Fulfill lossless-join property (Can provide the same result after we join those decomposed tables.)
 - > Fulfill dependency preserving property (discuss later)

Illegal Decomposition

EMPLOYEE

id	rating	hourly-wages
1	B1	100
2	B1	100
3	B1	100
4	B2	200
5	B2	200
6	B2	200

EMPLOYEE

id
1
2
3
4
5
6

SALARY

rating	hourly-wages
B1	100
B2	200

Violate the lossless-join property

Legal Decomposition

EMPLOYEE

id	rating
1	B1
2	B1
3	B1
4	B2
5	B2
6	B2

SALARY

rating	hourly-wages
B1	100
В2	200

- ☐ Checking the "legitimacy" of decomposition:
 - The new tables must have common attribute(s).
 - The common attribute(s) must be the candidate key of at least one new table.

Question 1

1. Consider three tables R, S, and T. Suppose that we decompose the table R into S and T. Is it an illegal decomposition? Explain your answer.

	A	В	C		A	В		В	C
R	1	2	3		1	2		2	3
	2	2	2	\Rightarrow s	2	2		2	2
	3	3	1		3	3		3	1

Question 2 and Question 3

2. Consider three tables R, S, and T. Suppose that we decompose the table R into S and T. Is it an illegal decomposition? Explain your answer.

	A	В	C		A	В		В	C
	1	2	4	N	1	2		2	4
R	2	3	5	ightharpoonup S	2	3		3	5
	3	1	8		3	1		1	8

3. Consider three tables R, S, and T. Suppose that we decompose the table R into S and T. Is it an illegal decomposition? Explain your answer.

				_					
	A	В	C		A	В		В	C
_	1	2	4		1	2 2		2	4
R	2	2		\subseteq S	2	2	T	3	6
	3	3	6		3	3			

Functional Dependency

EMPLOYEE

id	rating	hourly-wages
1	B1	100
2	B1	100
3	B1	100
4	B2	200
5	B2	200
6	B2	200

- ☐ Why does redundancy exist in this table?
 - > rating determines hourly-wages.
 - > Once the tuple's *rating* is known, its *hourly-wages* is also decided.
- ☐ We have this functional dependency (also called a functional dependence (FD)).

 $rating \rightarrow hourly-wages.$

☐ The attribute value of *rating* can uniquely identify the attribute value of *hourly-wages*.

Functional Dependency

□ Let L and R be two sets of attributes. $L \rightarrow R$ means that: if we know a tuple's L, then there is only a single possibility for the tuple's R!

 \square If we know L, we know R.

Correct Decomposition with Functional Dependency

EMPLOYEE

id	rating	hourly-wages
1	B1	100
2	B1	100
3	B1	100
4	B2	200
5	B2	200
6	B2	200

EMPLOYEE

id	rating
1	B1
2	B1
3	B1
4	B2
5	B2
6	B2

SALARY

rating	hourly-wages
B1	100
B2	200

 $rating \rightarrow hourly-wages.$

Where are FDs from?

- ☐ Common senses.
 - \rightarrow HK-id \rightarrow name.
 - \triangleright country \rightarrow capital.
 - \triangleright (father, mother) \rightarrow eldest-child.
- ☐ Special constraints of the underlying application.
 - Suppose that every employee has his/her own office.
 - $emp-id \rightarrow office-number$.
 - > Suppose that every customer has his/her single account.
 - $cust-id \rightarrow acc-id$.
- ☐ Explored by the inference rules.

Rule 0: A Candidate Key Determines All

- ☐ For example, a candidate key of EMPLOYEE is *id*.
- ☐ Then, *id* determines any combination of the attributes.
 - $\rightarrow id \rightarrow id$
 - \rightarrow id \rightarrow rating
 - \rightarrow id \rightarrow hourly-wages
 - \triangleright id \rightarrow rating, hourly-wages
 - \rightarrow id \rightarrow id, rating, hourly-wages

EMPLOYEE

id	rating	hourly-wages
1	B1	100
2	B1	100
3	B1	100
4	B2	200
5	B2	200
6	B2	200

☐ If we know the id of a tuple, we can know that there is only one possibility for the value(s) of any attribute(s) in this tuple.

Rule 1: Reflexivity

□ Let \mathbf{R} be a relation schema. \mathbf{X} and \mathbf{Y} are the subsets of attributes in \mathbf{R} . If $\mathbf{Y} \subseteq \mathbf{X}$, we have $\mathbf{X} \to \mathbf{Y}$.

Example:

- \triangleright (id, rating) \rightarrow id
- \triangleright (id, rating) \rightarrow rating
- \triangleright (id, rating) \rightarrow (id, rating)
- \triangleright (id, hourly-wages) \rightarrow id
- \triangleright (id, rating, hourly-wages) \rightarrow (id, rating)

${f EMPLOYEE}$

id	rating	hourly-wages					
1	B1	100					
2	B1	100					
3	B1	100					
4	B2	200					
5	B2	200					
6	B2	200					

Rule 2: Union (Combining)

 \square Let **R** be a relation schema. **X**, **Y**, and **Z** are the subsets of attributes in **R**. If **X** \rightarrow **Y** and **X** \rightarrow **Z**, we have **X** \rightarrow **YZ**.

creditcard-no	cust-id	cust-name	cust-city	branch-id	acc-id
40101342	1	Brown	HK	B1	A1
40101343	2	William	NY	B1	A2
40101344	1	Brown	HK	B2	A2

- □ Suppose that we have the following fds.
 - \triangleright cust-id \rightarrow cust-name
 - $\triangleright cust-id \rightarrow cust-city$
- ☐ We have the following fd based on this rule.
 - $\rightarrow cust-id \rightarrow (cust-name, cust-city)$

Rule 3: Transitivity

 \square Let **R** be a relation schema. **X**, **Y**, and **Z** are the subsets of attributes in **R**. If **X** \rightarrow **Y** and **Y** \rightarrow **Z**, we have **X** \rightarrow **Z**.

creditcard-no	cust-id	cust-name	cust-city	branch-id	acc-id
40101342	1	Brown	HK	B1	A1
40101343	2	William	NY	B1	A2
40101344	1	Brown	HK	В2	A2

- □ Suppose that we have the following fds.
 - \triangleright creditcard-no \rightarrow cust-id
 - \triangleright cust-id \rightarrow cust-name
- ☐ We have the following fd based on this rule.
 - \triangleright creditcard-no \rightarrow cust-name

Rule 4: Augmentation

 \square Let **R** be a relation schema. **X**, **Y**, and **Z** are the subsets of attributes in **R**. If **X** \rightarrow **Y**, we have **XZ** \rightarrow **YZ**.

creditcard-no	cust-id	cust-name	cust-city	branch-id	acc-id
40101342	1	Brown	HK	B1	A1
40101343	2	William	NY	B1	A2
40101344	1	Brown	HK	B2	A2

- □ Suppose that we have the following fd.
 - \triangleright creditcard-no \rightarrow cust-id
- ☐ We have the following fd based on this rule.
 - \triangleright (creditcard-no, branch-id) \rightarrow (cust-id, branch-id)

Rule 5: Splitting

 \square Let **R** be a relation schema. **X**, **Y**, and **Z** are the subsets of attributes in **R**. If **X** \rightarrow **YZ**, we have **X** \rightarrow **Y** and **X** \rightarrow **Z**.

creditcard-no	cust-id	cust-name	cust-city	branch-id	acc-id
40101342	1	Brown	HK	B1	A1
40101343	2	William	NY	B1	A2
40101344	1	Brown	HK	B2	A2

- □ Suppose that we have the following fd.
 - \triangleright creditcard-no \rightarrow (cust-id, cust-name)
- ☐ We have the following fd based on this rule.
 - \triangleright creditcard-no \rightarrow cust-id
 - \triangleright creditcard-no \rightarrow cust-name

Question 4

Consider the following table, which only contains the following three records.

A	В	C	D	E	F
1	2	4	1	1	4
2	3	5	6	5	3
3	1	8	3	5	9

Determine whether the following fds hold for this table.

- a) $A \rightarrow C$
- b) $A \rightarrow D$
- c) A \rightarrow CD
- d) $A \rightarrow DE$
- e) $E \rightarrow F$
- f) D \rightarrow EF

Prove FDs

- ☐ To prove an FD is correct, we need to use Rules 0-5 to show the correctness.
- □ Example: Consider R(A, B, C, D, E) with these FDs, A \rightarrow B, B \rightarrow D, and DE \rightarrow C. Prove of disprove AE \rightarrow C.

We have:
$$A \rightarrow D$$
 (Transitivity rule).
 $AE \rightarrow DE$ (Augmentation rule).
 $AE \rightarrow C$ ($DE \rightarrow C$)

Disprove FDs

☐ To disprove an FD, we need to find some counterexample to verify it is incorrect.

□ Example: Consider R(A, B, C, D, E) with these FDs, A \rightarrow B, B \rightarrow D, and DE \rightarrow C. Prove of disprove A \rightarrow C.

A	B C		D	E
2	4	3	1	3
2	4	6	1	4

Question 5 and Question 6

5. Consider the table R(A, B, C, D). Suppose that we have the following FDs.

$$A \rightarrow C$$
 and $D \rightarrow B$

Prove or disprove $AD \rightarrow CB$.

6. Consider the table R(A, B, C, D, E, F, G). Suppose that we have the following FDs.

$$DEF \rightarrow G$$
, $A \rightarrow C$, and $C \rightarrow DE$

Prove or disprove $AF \rightarrow G$.

Question 7 and Question 8

7. Consider the table R(A, B, C, D, E, F, G). Suppose that we have the following FDs.

$$DE \rightarrow FG$$
, $A \rightarrow D$, $A \rightarrow E$, and $A \rightarrow C$

Prove or disprove $A \rightarrow CFG$.

8. Consider the table R(A, B, C, D, E, F, G). Suppose that we have the following FDs.

$$E \rightarrow FG$$
, $A \rightarrow E$, and $C \rightarrow A$

Prove or disprove $A \rightarrow CFG$.

Other Ways of Eliminating Redundancy

■ Normalization

Extended reading: 1NF, 2NF, 3NF, ...

☐ Yes. It violates the lossless-join property.

$$S \bowtie_{S.B=T.B} T = \begin{bmatrix} A & B & C \\ 1 & 2 & 3 \\ 1 & 2 & 2 \\ 2 & 2 & 3 \\ 2 & 2 & 2 \\ 3 & 3 & 1 \end{bmatrix} \neq R$$

Solutions to Questions 2 & 3

2. No. It satisfies the lossless-join property.

$$S \bowtie_{S.B=T.B} T = \begin{bmatrix} A & B & C \\ 1 & 2 & 4 \\ 2 & 3 & 5 \\ 3 & 1 & 8 \end{bmatrix} = R$$

3. No. It satisfies the lossless-join property.

$$S \bowtie_{S.B=T.B} T = \begin{bmatrix} A & B & C \\ 1 & 2 & 4 \\ 2 & 2 & 4 \\ 3 & 3 & 6 \end{bmatrix} = R$$

- a. Yes
- b. Yes
- c. Yes
- d. Yes
- e. No
- f. Yes

Answer:

- 1) A→C
- 2) AD→CD (Augmentation 1))
- 3) AD→D (Reflexivity)
- **4)** D→B
- 5) AD→B (Transitivity 3) and 4))
- 6) AD→BCD (Union 2) and 5))
- 7) BCD→CB (Reflexivity)
- 8) AD→CB (Transitivity 6) and 7))

Answer:

- 1) A→C
- 2) C→DE
- 3) A→DE (Transitivity 1) and 2))
- 4) AF→DEF (Augmentation 3))
- 5) DEF→G
- 6) AF→G (Transitivity 4) and 5))

Answer:

- **1**) A→D
- 2) A→E
- 3) A→DE (Union 1) and 2))
- 4) DE→FG
- 5) A→FG (Transitivity 3) and 4))
- 6) A→C
- 7) A→CFG

A	В	С	D	Е	F	G
1	4	2	7	1	1	2
1	5	3	8	1	1	2
2	6	1	9	3	1	5

E→FG holds

A→E holds

C→A holds

A→CFG does not hold

There are two cases for C, F, and G when A=1

- $A = 1 \rightarrow C = 2, F = 1, G = 2$
- $A = 1 \rightarrow C = 3, F = 1, G = 2$