Chapitre 5 : Segmentation (Partie 1)

Joël Lefebvre (UQÀM)

INF600F – Traitement d'images

Automne 2024

Annonces

- TP3 en ligne bientôt
- Laboratoire vendredi (Segmentation)

Survol du cours

- Introduction
- Détection de contours
- Détection de courbes simples
- Segmentation de régions (prochain cours)

Références

- (Chityala, 2020) Section 4.3 : Edge Detection using Derivatives
- (Chityala, 2020) Section 10.3 : Hough Transform
- (Burger, 2009) Vol1 Ch6: Edges and Contours
- (Burger, 2009) Vol2 Ch2: Detecting Simple Curves
- (Gonzalez, 2018) Chapitre 10

Qu'est-ce que la segmentation ?

- Regroupement de pixels en objets
- « Organisation perceptuelle »
- Chaque région doit satisfaire une propriété commune
- Deux régions voisines ne doivent pas satisfaire la même propriété

Pourquoi regrouper les pixels?

- Pixels : Propriété des détecteurs, pas de la scène
- Travailler au niveau des objets peut rendre le traitement plus facile
 - Les objets sont à une profondeur constante
 - Les objets peuvent être reconnus
 - Les objets peuvent se déplacer en bloc

Rappel: Région / Frontière

Source: N. Snavely

Dualité contour / région

- Approche 1 : Détecter un objet à l'aide de son contour
- Approche 2 : Détecter un objet à l'aide de l'apparence de sa région

Formulations équivalentes ?

- En théorie : oui
- En pratique : non

(Gonzalez, Woods, 4e)

Pourquoi utiliser les contours?

- Résilience aux changements de couleur / illumination
- Utile pour la **reconnaissance** d'images
- Utile pour la correspondance de sous-régions (patch)

Argument psychophysique Pourquoi les contours?

- La vision humaine est très sensible aux contours
- Conversion d'une image 2D en un ensemble de courbes
- Extraction des éléments saillants de la scène, représentation compacte

Source : N. Snavely

Argument de vision par ordinateur Pourquoi les contours ?

- Fournit des indices sur la forme et la géométrie
- Utile pour la reconnaissance d'objets

Credit: Attneave

• Utile pour la compréhension des structures 3D

Vertical vanishing point (at infinity)

Vanishing point

Vanishing point

Vanishing point

Source : N. Snavely

Détection de contours

Chapitre 5 : Segmentation (Partie 1)

Joël Lefebvre (UQÀM)

INF600F – Traitement d'images

(Burger 2009, Fig 6.1)

Détection de contours – Aperçu

- But : Identifier les changements visuels dans une image
- Intuitivement, de l'information **sémantique** est encodée dans les **contours**.
- Quelles sont les « causes » des contours visuels?

Adapté de la peinture « La trahison des images » de René Margritte (1929, <u>Source</u>)

Origine des contours des muector qui point dohns et 900, indique (a direction

• Les contours sont causés par une variété de facteurs

Source: Steve Seitz

Exemple de contours

Source: D. Hoiem

Caractérisation des contours (1D)

• Un contour est un endroit présentant un changement rapide

de l'intensité de l'image

Exemples de contour 1D

Plusieurs types de segments

- Variation lente (ramp)
- Point isolé
- Région uniforme (flat)
- Ligne
- Échelle (step)

Chaque type de segments influence la valeur et les variations (dérivées) du profil

Méthode du gradient (1D)

- Intensité le long d'une ligne : f(x)
- 1^{ere} **dérivée** du signal : $f'(x) = \frac{df}{dx}(x)$
- On doit approximer la dérivée pour un signal discret

$$\frac{df}{du}(u) \approx \frac{f(u+1) - f(u-1)}{(u+1) - (u-1)} = \frac{f(u+1) - f(u-1)}{2}$$

(Burger, 2009)

Méthode du gradient (2D)

Dérivée partielle: Dérivée selon une direction donnée pour une fonction multidimensionnelle f(x, y)

- $\frac{\partial f}{\partial x}$: Dérivée partielle selon la direction x• $\frac{\partial f}{\partial y}$: Dérivée partielle selon la direction y

Gradient de l'image

 Le gradient est un vecteur qui pointe dans la direction de l'augmentation d'intensité la plus rapide

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

• La force du contour est donnée par l'amplitude du vecteur gradient

$$|\nabla f| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

La direction du gradient est donnée par

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

Quel est le lien avec la direction des contours ?

Filtres différentiels (Derivative filters)

- Représentation du gradient par son approximation en différence finie
- Filtre linéaire pour la composante x du gradient

$$H_{\chi}^{D} = [-0.5 \quad \mathbf{0} \quad 0.5]$$

• Filtre linéaire pour la composante y du gradient

$$H_y^D = \begin{bmatrix} -0.5 \\ \mathbf{0} \\ 0.5 \end{bmatrix}$$

Effet du bruit

• Où se situe la bordure ?

Image bruitée

Source: S. Seitz

Effet du bruit : Hautes fréquences

- Le bruit contient des hautes fréquences
- Les bordures contiennent aussi des hautes fréquences
- La différentiation est un filtre passe-haut
- La différentiation accentue le bruit

Solution: Appliquer un lissage

f * h

 Pour détecter les contours, chercher les pics dans la dérivée partielle d'une version lissée de l'image originale

 $\frac{\partial}{\partial x}(f*h)$

Sigma = 50 Signal Kernel

où h est **un filtre passe-bas** $\frac{d}{dx}(f*h)$ (exemple : Filtre gaussien)

Propriété d'associativité de la convolution

- La différentiation est une convolution
- La convolution est associative : $\frac{d}{dx}(f*h) = f*\frac{d}{dx}h$
- Ceci permet de réduire le nombre d'opérations

Rappel: Filtre gaussien 1D & dérivées

Filtre gaussien

$$G_{\sigma} = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}}$$

 1^{ere} dérivée du filtre gaussien

$$G'_{\sigma}(x) = \frac{d}{dx}G_{\sigma}(x)$$
$$= -\frac{1}{\sigma} \left(\frac{x}{\sigma}\right) G_{\sigma}(x)$$

Filtre pour la détection des contours 2D

Gaussienne

$$h_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}}$$

Dérivée partielle x de la Gausienne

$$\frac{\partial}{\partial x}h_{\sigma}(x,y)$$

Dérivées partielles du filtre gaussien

Opérateur de Sobel

Approximation de la dérivée de la gaussienne

$$H_{x}^{S} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & \mathbf{0} & 2 \\ -1 & 0 & 1 \end{bmatrix}, H_{y}^{S} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & \mathbf{0} & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

Exemple : Opérateur de Sobel

Image originale f

$$G_{x} = H_{x}^{s} * f$$

Exemple : Sobel + Bruit

Image + Noise

Derivatives detect

Smoothed derivative removes

edge and noise

noise, but blurs edge

Source: N. Snavely

Opérateurs de Sobel & Prewitt

- Lissage combiné au calcul de la différence finie
- Opérateur de **Prewitt** : lissage uniforme

$$H_{\mathcal{X}}^{P} = \begin{bmatrix} 1 \\ \mathbf{1} \\ 1 \end{bmatrix} * \begin{bmatrix} -1 & \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 1 \\ -1 & \mathbf{0} & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

• Opérateur de **Sobel** : Lissage gaussien

$$H_{\mathcal{X}}^{P} = \begin{bmatrix} 1 \\ \mathbf{2} \\ 1 \end{bmatrix} * \begin{bmatrix} -1 & \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & \mathbf{0} & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

Approximation du gradient de l'image avec les opérateurs de Prewitt & Sobel

• Approximation du gradient avec l'opérateur de Prewitt

$$\nabla I(x,y) \approx \frac{1}{6} \begin{bmatrix} (I * H_x^P)(x,y) \\ (I * H_y^P)(x,y) \end{bmatrix}$$

Approximation du gradient avec l'opérateur de Sobel

$$\nabla I(x,y) \approx \frac{1}{8} \begin{bmatrix} (I * H_x^S)(x,y) \\ (I * H_y^S)(x,y) \end{bmatrix}$$

Orientation et force des contours pour Sobel / Prewitt

Calcul des composantes X et Y du gradient

$$D_x = H_x * I \text{ et } D_y = H_y * I$$

Force du contour

$$E(u,v) = \sqrt{(D_x(x,y))^2 + (D_y(x,y))^2}$$

Orientation du contour

$$\Phi(x,y) = \tan^{-1} \left(\frac{D_y(u,v)}{D_x(u,v)} \right)$$

Représentation graphique du pipeline d'analyse des contours avec Sobel

Exemple: Force & Orientation des contours avec Sobel

Image originale

Orientation des contours

Force des contours

Orientation des contours (en couleur)

Détection des contours : Autre opérateur

• On peut utiliser le **Laplacien** (2^e dérivée) plutôt que le gradient (1^{ere} dérivée) pour détecter les contours.

$$\nabla^2 f(x,y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

- **Amplitude** : rapidité des variations de f
- Direction : plus grande pente
- Approximations numériques

$$abla^2 = egin{pmatrix} 0 & -1 & 0 \ -1 & 4 & -1 \ 0 & -1 & 0 \end{pmatrix} \qquad \qquad
abla^2 = egin{pmatrix} -1 & -1 & -1 \ -1 & 8 & -1 \ -1 & -1 & -1 \end{pmatrix}$$

Sommes d'opérations 1D

$$abla^2 = egin{pmatrix} -1 & -1 & -1 \ -1 & 8 & -1 \ -1 & -1 & -1 \end{pmatrix}$$

Meilleure isotropie

Comparaison entre 1^{ere} / 2^e dérivée

Comparaison: Gradient vs Laplacien

Synthèse sur les méthodes élémentaires de détection de contours

Gradient

- Directionnel
- Moins sensible au bruit (différences premières)
- Possibilité de mise en œuvre par opérateurs 1D

Laplacien

- ~ moins sensible aux diag Très sensible au bruit (différences secondes)
- Possibilité limitée de mise en œuvre par opérateurs 1D
- Double réponse aux discontinuités → détection des passages par zero

Détection des frontières des objets

- Les résultats obtenus avec les méthodes simples de détection des contours (p. ex. Sobel) sont souvent différents de ce que les humains perçoivent comme étant des contours importants.
- Raison 1 : Les opérateurs sont locaux et petits (3x3) et détectent uniquement les variations locales d'intensité.
- Raison 2 : Les contours existent à plusieurs échelles

Quelles sont les frontières perçues par les humains ?

• Base de données de segmentation de Berkeley (URL)

Segmentation humaine Amplitude du gradient Image

Source: Malik & Hays

Méthode de Canny pour détecter les contours

- Probablement la méthode de détection de contours la plus utilisée en vision par ordinateur
- Modèle théorique : Des contours échelons corrompus par du bruit gaussien additif.
- Canny a montré que la 1^{ere} dérivée de la gaussienne est une bonne approximation de l'opérateur permettant d'optimiser le ratio signal-sur-bruit et la localisation de la détection des contours.
 - J. Canny, <u>A Computational Approach To Edge Detection</u>, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986. (> 30K citations!)

Méthode de Canny : Image initiale

Démo : http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/

Source: N. Snavely Image credit: Joseph Redmon

Méthode de Canny – Algorithme (1)

1. Filtrer l'image avec les dérivées x et y de la gaussienne

Amplitude du gradient

Méthode de Canny – Algorithme (2)

2. Calcul de l'amplitude et de l'orientation du gradient.

Méthode de Canny – Algorithme (3)

- 3. Affinage des contours via la suppression des non-maximums
 - Convertir les arêtes minces d'une largeur de plusieurs pixels en une ligne d'une largeur d'un seul pixel

Exemple: Suppression des non-maximums

Méthode de Canny – Algorithme (4) Double seuillage (Hystérésis)

- 2 seuils : Bas (S_l) et élevé (S_h)
- Amplitude du gradient $> S_h$? = Contour fort
- Amplitude du gradient $\langle S_l \rangle$ = bruit
- Entre les deux : Contour faible
- « Suivi » des contours en débutant sur les pixels de contours forts
- Étendre les contours forts vers les contours faibles

Exemple : Seuillage des contours

Résumé: Méthode de Canny

Étapes principales du filtre de Canny

- 1. Filtrer l'image avec un filtre dérivée de la gaussienne
- 2. Trouver la direction et la l'amplitude du gradient
- 3. Affinage des contours (Suppression des non-maximums)
- 4. Double seuil (hystérésis) pour déterminer les arêtes potentielles, et suivi des bordures par hystérésis

Canny - Résumé

- 1^{er} pipeline de vision par ordinateur!
- Encore très utilisé
- Dépend de plusieurs paramètres : seuils bas et élevé, σ : taille du filtre gaussien

skimage.feature.canny (Documentation)

Détection de courbes simples

Chapitre 5 : Segmentation (Partie 1)

Joël Lefebvre (UQÀM)

INF600F – Traitement d'images

Détection de courbes

- Contours détectés : représentation incomplète des frontières présentes dans l'image
- Nécessité de joindre les éléments d'une même frontière
- Très difficile lorsque le niveau de bruit est élevé

Approches de détection de courbes

- Approche locale
 - Seuillage avec hystérésis (Canny)
 - Méthodes empiriques : amplitude similaire et même angle du gradient
 - Approche par régions (exemple : approximations polygonales)
- Approche globale : Transformée de Hough
 - Détection de l'ensemble des points de contour appartenant à un même objet paramétré
 - L'objet paramétré peut être un point, une droite, une courbe, un cercle, etc.

Paramétrisation d'une droite : Forme Pente / Intersection

$$y = mx + b$$

Où m est la pente et b est l'intersection avec l'axe y

Paramétrisation d'une droite : Forme Double-Intersection

$$\frac{x}{a} + \frac{y}{b} = 1$$

- a est l'intersection avec l'axe x
- b est l'intersection avec l'axe y

Quels sont les paramètres de cette ligne?

b = 3 - (-1) = 4

$$= 70, 150, y=4$$
 $= 70, y=4$
 $= 70, y=4$
 $= 70, y=4$
 $= 70, y=4$
 $= 70, y=4$

$$50$$
, 456 , $9=4$
 $54-0.0=4$
 $54-0.1=4$
 $54-0.1=4$

Paramétrisation d'une droite : Forme normale

$$x\cos\theta + y\sin\theta = \rho$$

Dérivation:

$$\cos \theta = \frac{\rho}{a} \to a = \frac{\rho}{\cos \theta}$$
$$\sin \theta = \frac{\rho}{b} \to b = \frac{\rho}{\sin \theta}$$

Remplacer dans : $\frac{x}{a} + \frac{y}{b} = 1$

On obtient : $x \cos \theta + y \sin \theta = \rho$

Source: CMU2019

Transformée de Hough

- Détection de l'ensemble des points de contour appartenant à un même objet paramétré
- L'objet paramétré peut être un point, une droite, une courbe, un cercle, etc.
- Les contours n'ont pas besoin d'être connectés
- Les droites peuvent être partiellement cachées
- Principe général : les contours **votent** pour les modèles possibles.

Source: CMU2019

Espace image vs paramètre

paramètres

y = mx + b

Espace image

y - mx = b

variables

Une ligne devient un point

Espace paramètre

Espaces image et paramètre

 Qu'est-ce que devient un point dans l'espace image lorsque représenté dans l'espace paramètre ?

Espaces image et paramètre (1 point)

Source : CMU2019

Un point devient une ligne

Espace image

Espace paramètre

Espaces image et paramètre (2 points)

Espace image

Espaces image et paramètre (3 points)

Espace image

Espace paramètres

Espaces image et paramètre (4 points)

Espace image

Espace paramètres

Algorithme pour la transformée de Hough

Algorithme (Forme y = mx + b)

- Discrétiser l'espace paramètre (m, b)
- Créer une matrice d'accumulation A(m,b)
- Initialiser $A(m, b) = 0 \ \forall \ m, b$
- Pour chaque pixel de contours (x_i, y_i)
 - Pour chaque élément de A(m, b)
 - si (m, b) sur une ligne: $b = -x_i m + y_i$
 - Ajouter A(m,b) = A(m,b) + 1
- Trouver les maximums locaux A(m, b)

Problème avec la paramétrisation ?

 Quelle taille doit avoir l'accumulateur pour la paramétrisation (m,b)?

A(m,c)

L'espace de m est gigantesque! $-\infty \le m \le \infty$

L'espace de b est gigantesque! $-\infty \le b \le \infty$

Meilleure paramétrisation : Forme normale

$$x\cos\theta + y\sin\theta = \rho$$

Étant donné un point (x_i, y_i) , il faut trouver les paramètres (ρ, θ)

Espace sinusoïdal de Hough

$$0 \le \theta \le 2\pi$$
$$0 \le \rho \le \rho_{\text{max}}$$

(Matrice accumulatrice de taille finie)

Espaces image et paramètre (1 point)

Un point devient une onde

Espace image

Espace paramètre

Espaces image et paramètre (1)

variables y=mx+b paramètres

Source: CMU2019

$$x\cos\theta + y\sin\theta = \rho$$

Espace image

Espace paramètre

Espaces image et paramètre (2)

variables y = mx + bparamètres

Source: CMU2019

 $x\cos\theta + y\sin\theta = \rho$

Espaces image et paramètre (3)

variables y = mx + b paramètres

Source: CMU2019

$$x\cos\theta + y\sin\theta = \rho$$

Espace image

Espaces image et paramètre (4)

variables y=mx+b paramètres

Source: CMU2019

$$x\cos\theta + y\sin\theta = \rho$$

Espace image Espace

Espaces image et paramètre (5)

variables y=mx+b paramètres

Espace image

Source : CMU2019

$$x\cos\theta + y\sin\theta = \rho$$

74

Espaces image et paramètre (6)

variables y=mx+b paramètres

Source: CMU2019

$$x\cos\theta + y\sin\theta = \rho$$

Espace image

Espaces image et paramètre

variables y=mx+b y paramètres

 $x\cos\theta + y\sin\theta = \rho$

Pourquoi est-ce que rho est négatif?

Une ligne devient un

point

Espace image

Espace paramètre

Source: CMU2019

Espaces image et paramètre

variables y=mx+b paramètres

Source : CMU2019

$$x\cos\theta + y\sin\theta = \rho$$

Une ligne devient un point

Espace image

Espace paramètre

Rayons négatifs

- Il y a 2 façons de décrire la même ligne
- Version positive de ρ $x \cos \theta + y \sin \theta = \rho$
- Version négative de ρ $x \cos(\theta + \pi) + y \sin(\theta + \pi) = -\rho$

Rappel

$$\sin(\theta) = -\sin(\theta + \pi)$$

$$\cos(\theta) = -\cos(\theta + \pi)$$

Source: CMU2019

Espaces image et paramètre (1 point)

variables y = mx + b paramètres

Source: CMU2019

$$x\cos\theta + y\sin\theta = \rho$$

Une ligne devient un point

Espace image

Espace paramètre

Espaces image et paramètre (2 points)

Espace image

Source: CMU2019

Espace paramètre

80

Espaces image et paramètre (3 points)

Source: CMU2019

Espace image

Espaces image et paramètre (4 points)

Source: CMU2019

Espace image

Source: CMU2019

Implémentation

- 1. Initialiser l'accumulateur $H(\rho, \theta)$ à zéro
- 2. Pour chaque pixel de contour (x,y) de l'image Pour $\theta=0$ à 180 $\rho=x\cos\theta+y\sin\theta \\ H(\rho,\theta)=H(\rho,\theta)+1$ fin fin
- 3. Trouver les valeurs de (ρ, θ) où $H(\rho, \theta)$ est un maximum local
- 4. La ligne détectée dans l'image est donnée par : $\rho = x \cos \theta + y \sin \theta$

H: accumulator array (votes)

Note: Attention aux coordonnées. L'origine de l'image est en haut à gauche.

Source: CMU2019

Python et transformée de Hough

• skimage.transform.hough_line (Documentation)

Formes de base (dans l'espace paramètre)

• Quels sont les objets représentés ?

Transformée de Hough d'une ligne Formes de base

Source: CMU2019

Image plus complexe

Source: CMU2019

En pratique, les mesures sont bruitées

Ici, il y a trop de bruit...

 Plus le bruit augmente, et moins il y aura de votes pour la droite à extraire.

Source: CMU2019

89

Source: CMU2019

Exemple d'application de la transformée de Hough : Détection d'un objet rectangulaire

Original

Contours

Espace paramètre

Lignes de Hough

Autres types de transformées de Hough

Cercle (skimage.transform.hough_circle)

- Ellipse (skimage.transform.hough_ellipse)
- Plan et surface (3D)

Limitation de la transformée de Hough: Très lourd au point de vue computationnel

