Importação das bibliotecas

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
#Biblioteca para ignorar mensagens de warning (aviso) ao rodar uma célula de código
import warnings
warnings.filterwarnings('ignore')

In [465... # Bibliotecas de machine learning
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from xgboost import XGBRegressor
from sklearn.preprocessing import LabelEncoder

# Métricas de avaliação dos modelos
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
```

Carregando os dados

```
In [466... # importação da base de dados
  dados = pd.read_csv('precos_carros_brasil.csv')
  #exibindo as primeiras Linhas
  dados.head()
```

Out[466	3	year_of_reference	month_of_reference	fipe_code	authentication	brand	model	fuel	gear	engine_size	year_mod
	0	2021.0	January	004001-0	cfzlctzfwrcp	GM - Chevrolet	Corsa Wind 1.0 MPFI / EFI 2p	Gasoline	manual	1	2002
	1	2021.0	January	004001-0	cdqwxwpw3y2p	GM - Chevrolet	Corsa Wind 1.0 MPFI / EFI 2p	Gasoline	manual	1	2001
	2	2021.0	January	004001-0	cb1t3xwwj1xp	GM - Chevrolet	Corsa Wind 1.0 MPFI / EFI 2p	Gasoline	manual	1	2000
	3	2021.0	January	004001-0	cb9gct6j65r0	GM - Chevrolet	Corsa Wind 1.0 MPFI / EFI 2p	Alcohol	manual	1	2000
	4	2021.0	January	004003-7	g15wg0gbz1fx	GM - Chevrolet	Corsa Pick- Up GL/ Champ 1.6 MPFI / EFI	Gasoline	manual	1,6	2001
	4										•

Remover a coluna "authentication" pôs este dado não será relevante, uma vez que ele é usado para autenticação no site da tabela File

```
In [467...
dados.drop('authentication', axis=1, inplace=True)
dados.head()
```

•	year_of_reference	month_of_reference	fipe_code	brand	model	fuel	gear	engine_size	year_model	avg_price_brl
0	2021.0	January	004001-0	GM - Chevrolet	Corsa Wind 1.0 MPFI / EFI 2p	Gasoline	manual	1	2002.0	9162.0
1	2021.0	January	004001-0	GM - Chevrolet	Corsa Wind 1.0 MPFI / EFI 2p	Gasoline	manual	1	2001.0	8832.0
2	2021.0	January	004001-0	GM - Chevrolet	Corsa Wind 1.0 MPFI / EFI 2p	Gasoline	manual	1	2000.0	8388.0
3	2021.0	January	004001-0	GM - Chevrolet	Corsa Wind 1.0 MPFI / EFI 2p	Alcohol	manual	1	2000.0	8453.0
4	2021.0	January	004003-7	GM - Chevrolet	Corsa Pick- Up GL/ Champ 1.6 MPFI / EFI	Gasoline	manual	1,6	2001.0	12525.0

Verificar se ha dados invalidas

In [468... ### Verificar se há valores nulos dados.isna()

Out[467...

Out[468...

	year_of_reference	month_of_reference	fipe_code	brand	model	fuel	gear	engine_size	year_model	avg_price_brl
0	False	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False	False
•••										
267537	True	True	True	True	True	True	True	True	True	True
267538	True	True	True	True	True	True	True	True	True	True
267539	True	True	True	True	True	True	True	True	True	True
267540	True	True	True	True	True	True	True	True	True	True
267541	True	True	True	True	True	True	True	True	True	True

267542 rows × 10 columns

Identificadas muitas linhas sem dados, estas linhas serão removidas.

```
In [469...
          # Removendo linhas vazias
          dados = dados.dropna()
          # Verificando se existema mais alguma linha faltando dados
          dados.isna().sum()
Out[469...
                                 0
          year_of_reference
          month_of_reference
                                 0
                                 0
          fipe_code
          brand
                                 0
                                 0
          model
          fuel
                                0
                                 0
          gear
          engine_size
                                0
          year_model
                                 0
                                 0
          avg_price_brl
          dtype: int64
In [470...
         dados.head()
```

Out[470	year_of_re	ference	month_of_reference	fipe_code	brand	model	fuel	gear	engine_size	year_model	avg_price_brl
	0	2021.0	January	004001-0	GM - Chevrolet	Corsa Wind 1.0 MPFI / EFI 2p	Gasoline	manual	1	2002.0	9162.0
	1	2021.0	January	004001-0	GM - Chevrolet	Corsa Wind 1.0 MPFI / EFI 2p	Gasoline	manual	1	2001.0	8832.0
	2	2021.0	January	004001-0	GM - Chevrolet	Corsa Wind 1.0 MPFI / EFI 2p	Gasoline	manual	1	2000.0	8388.0
	3	2021.0	January	004001-0	GM - Chevrolet	Corsa Wind 1.0 MPFI / EFI 2p	Alcohol	manual	1	2000.0	8453.0
	4	2021.0	January	004003-7	GM - Chevrolet	Corsa Pick- Up GL/ Champ 1.6 MPFI / EFI	Gasoline	manual	1,6	2001.0	12525.0
	4										•
	Verificando s	e há dad	os duplicados								
In [471	<pre>dados.duplicated().any()</pre>										
Out[471	np.True_										
	Removendo dados duplicados										
In [472	<pre>dados.drop_duplicates(inplace=True) dados.duplicated().any()</pre>										
Out[472											

Separando colunas numéricas de categóricas

In [473... dados.dtypes numericas = dados.select_dtypes(include=['float64', 'int64'])
categoricas = dados.select_dtypes(include=['object'])

Resumo das variáveis numéricas

In [474... numericas.describe()

Out[474...

	year_of_reference	year_model	avg_price_brl
count	202295.000000	202295.000000	202295.000000
mean	2021.564695	2011.271514	52756.765713
std	0.571904	6.376241	51628.912116
min	2021.000000	2000.000000	6647.000000
25%	2021.000000	2006.000000	22855.000000
50%	2022.000000	2012.000000	38027.000000
75%	2022.000000	2016.000000	64064.000000
max	2023.000000	2023.000000	979358.000000

Resumo das variáveis categóricas

In [475... categoricas.describe() Out[475...

	month_of_reference	fipe_code	brand	model	fuel	gear	engine_size
count	202295	202295	202295	202295	202295	202295	202295
unique	12	2091	6	2112	3	2	29
top	January	001216-5	Fiat	Palio Week. Adv/Adv TRYON 1.8 mpi Flex	Gasoline	manual	1,6
freq	24260	425	44962	425	168684	161883	47420

Imprimindo a contagem de valores por modelo e marca do carro

```
In [476...
          dados[['brand','model']].value_counts()
Out[476...
          brand
                           model
                                                                      425
          Fiat
                           Palio Week. Adv/Adv TRYON 1.8 mpi Flex
                           Focus 1.6 S/SE/SE Plus Flex 8V/16V 5p
           Ford
                                                                      425
          VW - VolksWagen Saveiro 1.6 Mi/ 1.6 Mi Total Flex 8V
                                                                      400
          Ford
                           Focus 2.0 16V/SE/SE Plus Flex 5p Aut.
                                                                      400
                                                                      375
          GM - Chevrolet Corvette 5.7/ 6.0, 6.2 Targa/Stingray
          VW - VolksWagen Polo Track 1.0 Flex 12V 5p
                                                                        2
          Renault
                           STEPWAY Zen Flex 1.0 12V Mec.
                                                                        2
          VW - VolksWagen Saveiro Robust 1.6 Total Flex 16V CD
                                                                        2
                           Gol Last Edition 1.0 Flex 12V 5p
                                                                        2
                           KICKS Active 1.6 16V Flex Aut.
                                                                        2
          Nissan
          Name: count, Length: 2112, dtype: int64
```

Conclusão:

Após a análise exploratória, removemos registros vazios e duplicados, resultando em um conjunto de dados limpo e consistente. As colunas numéricas e categóricas foram separadas para facilitar a análise. Observamos que a base de dados contém informações detalhadas sobre preços de carros no Brasil, com uma variedade de marcas e modelos.

Gráfico da distribuição da quantidade de carros por marca

```
In [477...
marcas = dados['brand'].value_counts().sort_values(ascending=False)
# Gráfico da distribuição da quantidade de carros por marca
plt.figure(figsize=(20,10)) # Aumentar o tamanho da figura na saída dos dados
grafico_qtd_branch = plt.bar(marcas.index, marcas.values) # Variavel Nivel Ensino no eixo X
plt.title('Distribuição da quantidade de carros por marca') # plt.title para inserir título no gráfico
plt.ylabel('Total de carros'); # # plt.ylabel para inserir título no gráfico
plt.bar_label(grafico_qtd_branch, size=10);
```


Gráfico da distribuição da quantidade de carros por tipo de engrenagem do carro

```
In [478... marcas = dados['gear'].value_counts().sort_values(ascending=False)
# Gráfico da distribuição da quantidade de carros por tipo de cambio
plt.figure(figsize=(20,10)) # Aumentar o tamanho da figura na saída dos dados
grafico_engines = plt.bar(marcas.index, marcas.values) # Variavel Nivel Ensino no eixo X
plt.title('Distribuição da quantidade de carros por tipo de cambio') # plt.title para inserir título no gráfico
plt.ylabel('Total de carros'); # # plt.ylabel para inserir título no gráfico
plt.bar_label(grafico_engines, size=10);
```


Gráfico da evolução da média de preço dos carros ao longo dos meses de 2022 (variável de tempo no eixo X)

```
In [479...
          # Criar um dicionário mapeando os meses para números
          meses_ordem = {
              'January': 1, 'February': 2, 'March': 3, 'April': 4,
              'May': 5, 'June': 6, 'July': 7, 'August': 8,
              'September': 9, 'October': 10, 'November': 11, 'December': 12
          # Adicionar os números correspondentes como índice auxiliar e reordenar corretamente
          data_mean_price = (dados.where(dados['year_of_reference'] == 2022).dropna().groupby('month_of_reference')['avg_price]
              .mean().rename_axis('month_of_reference') # Garante que o índice tem nome correto
              .reset_index()) # Transforma em DataFrame para manipular
          # Criar uma nova coluna numérica para ordenar corretamente
          data_mean_price['month_number'] = data_mean_price['month_of_reference'].map(meses_ordem)
          # Ordenar pelos números dos meses e restaurar o índice original
          data_mean_price = (data_mean_price.sort_values(by='month_number')
              .drop(columns=['month_number']) # Remover a coluna auxiliar
              .set_index('month_of_reference') # Restaurar indice original
          data_mean_price
```

Out[479...

avg_price_brl

month_of_reference

```
January54840.270037February55824.519882March56848.951914April57150.037325May57799.763776June58065.611398July57893.997056August57923.544105September58198.936989October58227.410144November58215.626236December57997.243992
```

```
In [480... # Gráfico da distribuição da evolução média dos preços dos carros por mês no ano de 2022
plt.figure(figsize=(20,10)) # Aumentar o tamanho da figura

# Criar o gráfico de linha temporal
plt.plot(data_mean_price.index, data_mean_price.values, marker='o', linestyle='-', color='b')

# Adicionar título e rótulos
plt.title('Distribuição da quantidade de carros por tipo de câmbio')
plt.xlabel('Data')
plt.ylabel('Total de carros')

# Melhorar a visualização do eixo X (caso o índice seja uma data)
plt.xticks(rotation=45)
plt.show()
```

Gráfico da distribuição da média de preço dos carros por marca e tipo de engrenagem

88156.92

```
# extração de dados
data_price_fuel = dados.groupby(['brand','gear'])['avg_price_brl'].mean().round(2)
data_price_fuel = pd.DataFrame(data_price_fuel).reset_index()
data_price_fuel = data_price_fuel.sort_values(by='brand')
data_price_fuel.head()
```

Out[481		brand	gear	avg_price_brl
	0	Fiat	automatic	97396.80
	1	Fiat	manual	39694.44
	2	Ford	automatic	84769.11
	3	Ford	manual	51784.33

4 GM - Chevrolet automatic

55500

55000

```
# Gráfico da distribuição da média de preços dos carros por marca e tipo de cambio plt.figure(figsize=(20,10)) sns.barplot(x='brand', y='avg_price_brl', hue='gear', data=data_price_fuel, hue_order=['automatic', 'manual']) plt.xticks(rotation=45) # Rotaciona os rótulos para melhor visualização plt.show()
```


O gráfico da distribuição da média de preço dos carros por marca e tipo de engrenagem mostra a variação dos preços médios entre diferentes marcas e tipos de câmbio (manual e automático). Observa-se que, em geral, carros com câmbio automático tendem a ter preços médios mais elevados em comparação aos carros com câmbio manual. A marca VW - VolksWagen apresenta a maior diferença de preço entre os tipos de câmbio.

```
In [483...
    data_price_fuel = dados.groupby(['brand','fuel'])['avg_price_brl'].mean().round(2)
    data_price_fuel = pd.DataFrame(data_price_fuel).reset_index()
    data_price_fuel = data_price_fuel.sort_values(by='brand')
    data_price_fuel.head()
```

```
        Out [483...
        brand
        fuel
        avg_price_brl

        0
        Fiat
        Alcohol
        11509.51

        1
        Fiat
        Diesel
        99814.45

        2
        Fiat
        Gasoline
        37197.29
```

3 Ford Alcohol 10148.914 Ford Diesel 94525.53

```
plt.figure(figsize=(20,10))
sns.barplot(x='brand', y='avg_price_brl', hue='fuel', data=data_price_fuel, hue_order=['Alcohol', 'Diesel','Gasoline
plt.xticks(rotation=45) # Rotaciona os rótulos para melhor visualização
plt.show()
```


O gráfico da distribuição da média de preço dos carros por marca e tipo de combustível mostra a variação dos preços médios entre diferentes marcas e tipos de combustível (álcool, diesel e gasolina). Observa-se que, em geral, carros movidos a diesel tendem a ter preços médios mais elevados em comparação aos carros movidos a álcool e gasolina. A marca VW - VolksWagen apresenta a maior diferença de preço entre os tipos de combustível, com os carros a diesel sendo significativamente mais caros. Este gráfico é útil para identificar tendências de preços com base no tipo de combustível utilizado pelos vaículos.

Aplicação dos modelos de machine Learnimg

```
In [485...
          # Convertendo os valores de ano de referencia para inteiro
          dados['year_of_reference'] = dados['year_of_reference'].astype(int)
          # Convertendo os valores de ano do modelo para inteiro
          dados['year_model'] = dados['year_model'].astype(int)
In [486...
          # Converter meses em numeros inteiros e vice-versa
          Array_moth = dados['month_of_reference'].unique()
          mapa_gear = {mes: i+1 for i, mes in enumerate(Array_moth)}
          mapa_gear_inverso = {v: k for k, v in mapa_gear.items()}
          # Função para converter mês para número
          def moth_para_numero(df, coluna='month_of_reference'):
              df[coluna] = df[coluna].replace(mapa_gear)
              return df
          # Função para converter número para mês
          def numero_para_month(df, coluna='month_of_reference'):
              df[coluna] = df[coluna].replace(mapa_gear_inverso)
          dados = moth_para_numero(dados)
          dados.head()
```

	year_of_reference	month_of_reference	fipe_code	brand	model	fuel	gear	engine_size	year_model	avg_price_brl
0	2021	1	004001-0	GM - Chevrolet	Corsa Wind 1.0 MPFI / EFI 2p	Gasoline	manual	1	2002	9162.0
1	2021	1	004001-0	GM - Chevrolet	Corsa Wind 1.0 MPFI / EFI 2p	Gasoline	manual	1	2001	8832.0
2	2021	1	004001-0	GM - Chevrolet	Corsa Wind 1.0 MPFI / EFI 2p	Gasoline	manual	1	2000	8388.0
3	2021	1	004001-0	GM - Chevrolet	Corsa Wind 1.0 MPFI / EFI 2p	Alcohol	manual	1	2000	8453.0
4	2021	1	004003-7	GM - Chevrolet	Corsa Pick- Up GL/ Champ 1.6 MPFI / EFI	Gasoline	manual	1,6	2001	12525.0
4										+
<pre># converter a marca para numeros e vice-versa Array_brand = dados['brand'].unique() mapa_brand = {mes: i+1 for i, mes in enumerate(Array_brand)} mapa_brand_inverso = {v: k for k, v in mapa_brand.items()} # Função para converter marca para número def brand_para_numero(df, coluna='brand'): def[soluna] = def[soluna]</pre>										

In [487... # converter a marca para numeros e vice-versa
Array_brand = dados['brand'].unique()
mapa_brand = {mes: i+1 for i, mes in enumerate(Array_brand)}
mapa_brand_inverso = {v: k for k, v in mapa_brand.items()}
Função para converter marca para número
def brand_para_numero(df, coluna='brand'):
 df[coluna] = df[coluna].replace(mapa_brand)
 return df

Função para converter número para marca
def numero_para_brand(df, coluna='brand'):
 df[coluna] = df[coluna].replace(mapa_brand_inverso)
 return df
dados = brand_para_numero(dados)
dados.head()

0	ut		4	8	7	
		-				

	year_of_reference	month_of_reference	fipe_code	brand	model	fuel	gear	engine_size	year_model	avg_price_brl
0	2021	1	004001-0	1	Corsa Wind 1.0 MPFI / EFI 2p	Gasoline	manual	1	2002	9162.0
1	2021	1	004001-0	1	Corsa Wind 1.0 MPFI / EFI 2p	Gasoline	manual	1	2001	8832.0
2	2021	1	004001-0	1	Corsa Wind 1.0 MPFI / EFI 2p	Gasoline	manual	1	2000	8388.0
3	2021	1	004001-0	1	Corsa Wind 1.0 MPFI / EFI 2p	Alcohol	manual	1	2000	8453.0
4	2021	1	004003-7	1	Corsa Pick- Up GL/ Champ 1.6 MPFI / EFI	Gasoline	manual	1,6	2001	12525.0

```
In [488... # converter a modelo para numeros e vice-versa
Array_model = dados['model'].unique()
mapa_model = {mes: i+1 for i, mes in enumerate(Array_model)}
mapa_model_inverso = {v: k for k, v in mapa_model.items()}
# Função para converter modelo para número
```

```
def model_para_numero(df, coluna='model'):
               df[coluna] = df[coluna].replace(mapa_model)
               return df
           # Função para converter número para modelo
           def numero_para_model(df, coluna='model'):
               df[coluna] = df[coluna].replace(mapa_model_inverso)
               return df
           dados = model_para_numero(dados)
           dados.head()
Out[488...
              year_of_reference month_of_reference fipe_code brand model
                                                                                       gear engine_size year_model avg_price_brl
                                                                                fuel
           0
                         2021
                                                   004001-0
                                                                         1 Gasoline manual
                                                                                                               2002
                                                                                                                           9162.0
           1
                         2021
                                                   004001-0
                                                                            Gasoline manual
                                                                                                               2001
                                                                                                                           8832.0
                                                    004001-0
           2
                         2021
                                                                                                      1
                                                                                                               2000
                                                                                                                           8388.0
                                                                            Gasoline manual
           3
                         2021
                                                                                                               2000
                                                   004001-0
                                                                                                                           8453.0
                                                                             Alcohol manual
           4
                         2021
                                                                                                     1,6
                                                                                                               2001
                                                                                                                          12525.0
                                                   004003-7
                                                                            Gasoline manual
In [489...
          # converter a fuel para numeros e vice-versa
           Array_fuel = dados['fuel'].unique()
           mapa_fuel = {mes: i+1 for i, mes in enumerate(Array_fuel)}
           mapa_fuel_inverso = {v: k for k, v in mapa_fuel.items()}
           # Função para converter fuel para número
           def fuel_para_numero(df, coluna='fuel'):
               df[coluna] = df[coluna].replace(mapa_fuel)
               return df
           # Função para converter número para fuel
           def numero_para_fuel(df, coluna='fuel'):
               df[coluna] = df[coluna].replace(mapa_fuel_inverso)
               return df
           dados = fuel_para_numero(dados)
           dados.head()
Out[489...
             year_of_reference month_of_reference fipe_code brand model fuel
                                                                                   gear engine_size year_model avg_price_brl
           0
                         2021
                                                   004001-0
                                                                                 manual
                                                                                                            2002
                                                                              1
                                                                                                                        9162.0
                                                                                                            2001
                         2021
                                                   004001-0
                                                                                                                        8832.0
           1
                                                                                 manual
           2
                         2021
                                                    004001-0
                                                                                                  1
                                                                                                            2000
                                                                                                                        8388.0
                                                                         1
                                                                                 manual
           3
                                                                                                            2000
                         2021
                                                    004001-0
                                                                                                                        8453.0
                                                                              2 manual
           4
                         2021
                                                                         2
                                                                                                 1,6
                                                                                                            2001
                                                                                                                       12525.0
                                                   004003-7
                                                                              1 manual
In [490...
          # converter a gear para numeros e vice-versa
           Array_gear = dados['gear'].unique()
           mapa_gear = {mes: i+1 for i, mes in enumerate(Array_gear)}
           mapa_gear_inverso = {v: k for k, v in mapa_gear.items()}
           # Função para converter fuel para número
           def gear_para_numero(df, coluna='gear'):
               df[coluna] = df[coluna].replace(mapa_gear)
               return df
           # Função para converter número para fuel
           def numero_para_gear(df, coluna='gear'):
               df[coluna] = df[coluna].replace(mapa_gear_inverso)
               return df
           dados = gear_para_numero(dados)
           dados.head()
           0
                         2021
                                                   004001-0
                                                                                                         2002
                                                                                                                     9162.0
                         2021
                                                   004001-0
                                                                                                         2001
                                                                                                                     8832.0
           1
           2
                         2021
                                                    004001-0
                                                                                                1
                                                                                                         2000
                                                                                                                     8388.0
           3
                         2021
                                                                                                         2000
                                                                                                                     8453.0
                                                   004001-0
                                                   004003-7
                                                                                               1,6
           4
                         2021
                                                                                                         2001
                                                                                                                     12525.0
```

```
In [491... # verificando se existem valores nulos na coluna engine_size
dados['engine_size'].isna().any()
# Converter engine_size para float
# Verificar se a conversão foi realizada com sucesso
dados['engine_size'] = dados['engine_size'].replace(',', '.', regex=True).astype(float)
dados.dtypes
```

Out[491... year_of_reference int64 month_of_reference int64 fipe_code object brand int64 model int64 fuel int64 int64 gear float64 engine_size year_model int64 avg_price_brl float64 dtype: object

In [492... # Variável dados_num contém apenas variáveis numéricas de interesse (exclui o restante)
 dados_num = dados.drop(['fipe_code'],axis = 1)
 dados_num.head()

Out[492... year_of_reference month_of_reference brand model fuel gear engine_size year_model avg_price_brl 0 2021 1 1 1.0 2002 1 1 1 9162.0 1 2021 1 1.0 2001 8832.0 2 2021 1 1 1 1.0 2000 8388.0 1 1 3 2021 1 1.0 2000 8453.0 2021 2001 4 2 1.6 12525.0 1 1 1 1

```
In [493... # Mapa de correlação das variáveis numéricas com variável Target
   plt.figure(figsize=(20,10))
   sns.heatmap(dados_num.corr("spearman"), annot = True)
   plt.title("Mapa de Correlação das Variáveis Numéricas\n", fontsize = 15)
   plt.show()
```

Mapa de Correlação das Variáveis Numéricas

In [494... # Variável X contém apenas variáveis numéricas de interesse para a análise, excluindo a variável target
X = dados_num.drop(['avg_price_brl'],axis = 1)
X.head()

t[494		year_of_reference	month_of_reference	brand	model	fuel	gear	engine_size	year_model
	0	2021	1	1	1	1	1	1.0	2002
	1	2021	1	1	1	1	1	1.0	2001
	2	2021	1	1	1	1	1	1.0	2000
	3	2021	1	1	1	2	1	1.0	2000
	4	2021	1	1	2	1	1	1.6	2001

```
In [495... # Variável Y contém apenas a variável target - Faixa Salarial
Y = dados_num['avg_price_brl']
Y.head()
```

Out[495... 0 9162.0 1 8832.0 2 8388.0 3 8453.0 4 12525.0

Out

Name: avg_price_brl, dtype: float64

Divisão: 25% dos dados são de teste e 75% de treinamento X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.25, random_state = 42)

Random Forest

Out[498...

```
# Algoritmo Random Forest, sem especificar nenhum parâmetro (número de árvores, número de ramificações, etc)
model_rf = RandomForestRegressor()
model_rf.fit(X_train, Y_train)
valores_preditos_rf = model_rf.predict(X_test)
```

Analisando a importância das variáveis para estimar a variável target

```
In [498...
          model_rf.feature_importances_
          feature_importances = pd.DataFrame(model_rf.feature_importances_, index = X_train.columns, columns=['importance']).sc
          feature_importances
```

importance engine_size 0.404537 year_model 0.379045 fuel 0.085556 model 0.070314 0.033996 gear year_of_reference 0.012227 brand 0.008667 0.005657 month_of_reference

A análise de importância das variáveis revelou que o tamanho do motor (engine_size) e o ano do modelo (year_model) são os fatores mais influentes na determinação do preço médio dos carros (avg price brl). Variáveis como tipo de combustível (fuel) e modelo do carro (model) também têm impacto significativo, enquanto a marca (brand) e o mês de referência (month_of_reference) têm menor influência.

```
In [499...
         mse = mean_squared_error(Y_test, valores_preditos_rf)
          mae = mean_absolute_error(Y_test, valores_preditos_rf)
          r2s = r2_score(Y_test, valores_preditos_rf)
          print("MSE: ", mse)
          print("MAE: ", mae)
          print("R2: ", r2s)
```

MSE: 6610948.74402515 MAE: 1236.6371045088888 R2: 0.9975435463984578

Os resultados da análise mostram que o modelo Random Forest tem um MSE de 6.593.390, um MAE de 1.236,54 e um R² de 0,998. Isso indica que o modelo tem um erro médio absoluto relativamente baixo e explica 99,75% da variabilidade dos dados, sugerindo uma boa precisão na previsão dos preços dos carros.

XGBoost

Out[501...

```
model_xgboost = XGBRegressor()
In [500...
          model_xgboost.fit(X_train, Y_train)
          # Predição dos valores de salário com base nos dados de teste
          valores_preditos_xgboost = model_xgboost.predict(X_test)
```

Analisando a importância das variáveis para estimar a variável target

importance

```
In [501...
          model_xgboost.feature_importances_
          feature_importances = pd.DataFrame(model_xgboost.feature_importances_, index = X_train.columns, columns=['importance
          feature_importances
```

fuel 0.301117 engine_size 0.294968 vear model 0.205772

year_moder	0.203112
gear	0.099849
brand	0.059079
model	0.017445
year_of_reference	0.015716
month of reference	0.006054

A análise de importância das variáveis revelou que o tipo de combustível (fuel) e o tamanho do motor (engine_size) são os fatores mais influentes na determinação do preço médio dos carros (avg price brl). Variáveis como o ano do modelo (year model) e o tipo de câmbio (gear) também têm impacto significativo, enquanto a marca (brand) e o mês de referência (month_of_reference) têm menor influência.

```
In [503... msexg = mean_squared_error(Y_test, valores_preditos_xgboost)
    maexg = mean_absolute_error(Y_test, valores_preditos_xgboost)
    r2sxg = r2_score(Y_test, valores_preditos_xgboost)
    print("MSE XGBoost: ", msexg)
    print("MAE XGBoost: ", maexg)
    print("R2 XGBoost: ", r2sxg)
```

MSE XGBoost: 35962548.20807291 MAE XGBoost: 3665.9799093322717 R2 XGBoost: 0.9866372687965252