Lecture Notes

Advanced Discrete Structures
COT 4115.001 S15
2015-01-08

Chapter 3

BASIC NUMBER THEORY

Basic Notions - Section 3.1.1

DIVISIBILITY

Definition

Let a and b be integers $(a, b \in \mathbb{Z})$ with $a \neq 0$.

We say that a divides b, written a|b, if there exists an integer k such that $b=a\,k$, i.e., b is a multiple of a.

Examples:

$$7 \mid 21$$
 since $21 = 3 \times 7$
 $-6 \mid 30$ since $30 = -6 \times -5$
 $5 \nmid 17$ since $17 \neq 5 \times$

Let a, b, c integers. For every $a \neq 0$, $a \mid 0$ and $a \mid a$.

Also $1 \mid b$ for every b.

Proof.

Since $0 = 0 \cdot a$, take k = 0.

Since $a = 1 \cdot a$, take k = 1.

Since $b = b \cdot 1$, take k = b.

If $a \mid b$ and $b \mid c$, then $a \mid c$.

Proof.

$$a \mid b \implies \exists k_1 \in \mathbb{Z} \text{ s.t. } b = k_1 a$$

"a divides b implies that there exists an integer k_1 such that b equals k_1 times a"

If $a \mid b$ and $b \mid c$, then $a \mid c$.

Proof.

$$a \mid b \implies \exists k_1 \in \mathbb{Z} \text{ s.t. } b = k_1 a$$

 $b \mid c \implies \exists k_2 \in \mathbb{Z} \text{ s.t. } c = k_2 b$

$$c = k_2 b = k_2 (k_1 a) = (k_2 k_1) a$$

 $\therefore a \mid c \text{ since } k_2 k_1 \in \mathbb{Z}.$

If $a \mid b$ and $a \mid c$, then $a \mid (sb + tc)$ for all integers s and t.

Proof.

$$a \mid b \implies \exists k_1 \in \mathbb{Z} \text{ s.t. } b = k_1 a$$

 $a \mid c \implies \exists k_2 \in \mathbb{Z} \text{ s.t. } c = k_2 a$

$$sb + tc = s(k_1a) + t(k_2a) = (sk_1 + tk_2)a$$

$$\therefore a \mid (sb + tc) \text{ since } sk_1 + tk_2 \in \mathbb{Z}. \blacksquare$$

If a > 1 and b are integers, then $a \nmid a b + 1$

Proof.

Suppose
$$a \mid a b + 1$$
, i.e., $\exists k \in \mathbb{Z}$ s.t. $a b + 1 = k a$

which means

$$1 = ka - ba = a(k - b)$$
.

However, a > 1 and $(k - b) \in \mathbb{Z}$. $\rightarrow \leftarrow$

Basic Notions - Section 3.1.2

PRIME NUMBERS

Definition

- A number p > 1 that is divisible by only 1 and itself is called a **prime number**.
- A number p > 1 that is not prime is called composite.

Personal Ramblings:

Should the condition that p > 1 be dropped and call -1 a prime too?

$$-1 = 1 \times -1$$

Euclid's Lemma (~300BC)

If a prime p divides the product of two integers a, b > 1, then $p \mid a$ or $p \mid b$ (or both).

More generally, if $p \mid q_1q_2 \dots q_k$, then p divides at least one of the factors q_1, q_2, \dots, q_k .

Every positive integer n > 1 can be represented in exactly one way as a product of prime powers:

$$n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$$

where $p_1 < p_2 < \cdots < p_k$ are primes and e_1, e_2, \ldots, e_k are positive integers.

Example: $3,457,440 = 2^5 \cdot 3^2 \cdot 5^1 \cdot 7^4$

Proof. Two parts:

1. Every integer n > 1 can be written as the product of primes.

2. This prime factorization representation is unique.

Proof.

 $\rightarrow \leftarrow$

- 1. Let *n* be the *smallest* integer which is not the product of primes.
 - If n is prime, then n = n (which is a one factor product of primes). →←
 - If n is composite, then n = a b for some 1 < a, b < n.
 - Since n is the smallest integer which is not the product of primes, a and b are the product of primes and their product, n, will also be a product of primes.

Proof.

2. Assume that n can be represented as the product of primes in two distinct ways:

$$n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k} = q_1^{d_1} q_2^{d_2} \dots q_l^{d_l}.$$

- Divide out all primes that occur in both prime power representations, e.g., if $p_2=q_5$.
- There must now be a prime p_i which does not appear among the remaining qs.
- By Euclid's Lemma, since $p_i \mid n$ it also divides some q in the representation. →←

There are an infinite number of primes.

Proof.

Assume that there are exactly n primes:

$$p_1, p_2, ..., p_n$$

Where $p_1 < p_2$ and $p_2 < p_3$ etc. Consider $s = p_1 p_2 ... p_n + 1 \,.$

None of the primes $p_1, p_2, ..., p_n$ divide s, so s must be prime and $p_n < s$. $\rightarrow \leftarrow$

Prime Number Theorem (~1797)

Let $\pi(x)$ be the number of primes *less than or equal to x*. Then

$$\pi(x) \sim \frac{x}{\ln x},$$

i.e.,

$$\lim_{x\to\infty}\frac{\pi(x)}{x/\ln x}=1.$$

Prime Number Theorem (\sim 1797)

Primes: 2, 3, 5, 7, 11, 13, 17, 19, 23, ...

$$\pi(22) = 8,
\pi(23) = 9,
\pi(24) = 9,
\vdots$$

Prime Number Theorem (~1797)

\boldsymbol{x}	$\pi(x)$	$\frac{x}{\ln x}$	$\frac{\pi(x)}{x/\ln x}$
10	4	4.3	0.92103
100	25	21.7	1.15129
1,000	168	144.8	1.16050
10,000	1,229	1,085.7	1.13195
100,000	9,592	8,685.9	1.10432
1,000,000	78,498	72,382.4	1.08449
10,000,000	664,579	620,421.0	1.07117
100,000,000	5,761,455	5,428,681.0	1.06130
1,000,000,000	50,847,534	48,254,942.4	1.05373

Prime Number Theorem (\sim 1797)

• Rough estimate of the size of the $n^{\rm th}$ prime: $p_n \sim n \ln n$.

Rough estimate of the number of primes in an interval:

$$\pi(10^{100}) - \pi(10^{99}) \approx \frac{10^{100}}{\ln 10^{100}} - \frac{10^{99}}{\ln 10^{99}}$$

$$\approx 3.9 \times 10^{97}$$

Basic Notions - Section 3.1.3

GREATEST COMMON DIVISOR

Definition

The greatest common divisor of $a \neq 0$ and b is the largest positive integer dividing both a and b, and denoted gcd(a, b) or (a, b).

Example:

```
30 Pos. Divisors: 1,2,3,5,6,10,15,30
```

42 Pos. Divisors: **1,2,3,6,**7,14,21,42

$$gcd(30,42) = 6$$

Definition

We say that a and b are **relatively prime** if gcd(a,b) = 1.

Two ways to find GCD:

1. Factor both integers and compare primes

$$- \frac{30 = 2 \cdot 3 \cdot 5}{42 = 2 \cdot 3 \cdot 7} \implies \gcd(30, 42) = 2 \cdot 3 = 6$$

2. Use the Euclidean Algorithm

- Compute gcd(252, 600)
 - Use "long" division algorithm to divide the bigger number by the smaller number:

•
$$600 = 2 \cdot 252 + 96$$

quotient | remainder divisor

- Use the division algorithm again on the divisor and remainder
 - $252 = 2 \cdot 96 + 60$

– Continue until you get a remainder of 0:

$$600 = 2 \cdot 252 + 96$$

$$252 = 2 \cdot 96 + 60$$

$$96 = 1 \cdot 60 + 36$$

$$60 = 1 \cdot 36 + 24$$

$$36 = 1 \cdot 24 + 12$$

$$24 = 2 \cdot 12 + 0$$

$$gcd(600, 252) = 12$$

$$\gcd(600,252)$$

$$600 = 2 \cdot 252 + 96 = \gcd(252,96)$$

$$252 = 2 \cdot 96 + 60 = \gcd(96,60)$$

$$96 = 1 \cdot 60 + 36 = \gcd(60,36)$$

$$60 = 1 \cdot 36 + 24 = \gcd(36,24)$$

$$36 = 1 \cdot 24 + 12 = \gcd(24,12)$$

$$24 = 2 \cdot 12 + 0 = \gcd(12,0) = 12$$

Division Algorithm

If a and b are integers such that b > 0, then there are unique integers q and r such that

$$a = q b + r$$

with $0 \le r < b$.

Let $r_0 = a$ and $r_1 = b$ be integers such that $a \ge b > 0$. If the division algorithm is successively applied to

$$r_j = q_{j+1}r_{j+1} + r_{j+2},$$

with $0 < r_{j+2} < r_{j+1}$ for j = 0, 1, 2, ..., n-2 and $r_{n+1} = 0$, then

$$\gcd(a,b)=r_n$$
,

the last nonzero remainder.

Theorem

Let a and b be two integers, with at least one of a,b nonzero, and let $d=\gcd(a,b)$. Then there exists integers x,y such that ax+by=d.

In particular, if a and b are relatively prime, then there exists integers x, y with ax + by = 1.

Corollary (Euclid's Lemma)

If p is a prime and p divides a product of integers ab, then either p|a or p|b.

Proof.

- If $p \mid a$, then done. Assume $p \nmid a$.
- p is prime, so gcd(a, p) = 1 or p (not p).
- There exist integers x, y such that $ax + py = 1 \implies bax + bpy = b$
- Since $p \mid ab$ and $p \mid p$, $p \mid (bax + bpy) = b$.