

Case Study: Regression

Dooin Kim, Guilherme, Sabina

TABLE OF CONTENTS

01

INTRODUCTION

02

OBJECTIVE OF BUSINESS CASE

03

DATASET OVERVIEW & METHODOLOGY

04

KEY INSIGHTS

ML MODEL

06

CONCLUSION

05

INTRODUCTION

22000

Dataset containing information on 22,000 properties

SOLD 2014-2015

sold between May 2014 and May 2015

2.OBJECTIVES OF BUSINESS CASE

Understand and perform the necessary EDA steps

build a ML Model that can accurately predict the selling prices

To identify the factors that influence the selling price

3. DATASET OVERVIEW AND METHODOLOGY

DATA CLEANING

EDA

DATA MODELLING

DROP COLUMNS

PYTHON

MODEL VALIDATION

HANDLING OUTLIERS

TABLEAU

MODEL IMPROOVEMENT

DEALING WITH NULL

VALUES

MY SQL

PREDICTION MODELS

4.1 DISTRICT

4.2 SIZE

price	1.000000	
sqft_living	0.701917	
grade	0.667951	
sqft_above	0.605368	
sqft_living15	0.585241	
bathrooms	0.525906	
view	0.397370	
sqft_basement	0.323799	
bedrooms	0.308787	
lat	0.306692	
waterfront	0.266398	
floors	0.256804	
yr_renovated	0.126424	
sqft_lot	0.089876	
sqft_lot15	0.082845	
yr_built	0.053953	
condition	0.036056	
long	0.022036	
zipcode	-0.053402	
Name: price, dt	ype: float64	

4.3 GRADE

4.4 VIEWS

5. HOUSE PRICE PREDICTION MODEL

- Employed Prediction Models: Linear Regressor, KNN Regressor & Random Forest Regressor.
- Model Validation: R2 Score, MAE, RMSE
- Model Improvement: Scaling (Log Transform to reduce outliers), Feature Selection (Avoid Multicollinearity using correlation matrix)

Cross- Examination of Different Algorithms

Before: Baseline Model

Linear Regressor

- R2: 0.74

- RMSE: \$183,274

- MAE:\$112,183

KNeighbor Regressor

- R2: 0.49

- RMSE:\$255,644

- MAE: \$156,184

Random Forest Regressor

- R2:0.88

- RMSE:\$123,522

- MAE: \$67,809

Linear Regressor

- R2:0.80

- RMSE:\$159,856

- MAE: \$94,731

KNeighbor Regressor

- R2:0.73

- RMSE:\$205,497

- MAE: \$108,032

Final Model Selection

Random Forest Regressor

- R2:0.88

- RMSE:\$133,140

- MAE: \$68,544

Feature Importance

Important house price factors:

- Grade
- Location (lat & long)
- Size (sqft_living & sqft_living15, sqft_lot)
- View
- Waterfront Bathrooms, Bedrooms, Condition, Floors, Basement

6. CONCLUSIONS

