Нормални вектори на афинно подпространство. Разстояние между афинни подпространства

Нека A е евклидово афинно пространство, моделирано върху линейното пространство U.

Определение 1 Нека B е афинно подпространство на A, моделирано върху линейното пространство V. Тогава ортогоналното на V линейно пространство V^{\perp} се нарича нормално или ортогонално, или перпендикулярно на B пространство, а векторите от V^{\perp} се наричат нормални или ортогонални, или перпендикулярни на B вектори.

Оттук нататък A е n-мерно и $K = Oe_1 \dots e_n$ е ортонормирана координатна система в A.

Твърдение 1 Нека афинното подпространство B на A има спрямо K уравнения

(1)
$$B: a_{i1}x_1 + \dots + a_{in}x_n + b_i = 0, \quad i = 1, \dots, m.$$

Тогава:

- 1. Векторите N_1, \ldots, N_m , чиито координати спрямо K са $N_i(a_{i1}, \ldots, a_{in}), i = 1, \ldots, m$, са нормални на B и нормалното пространство на B е тяхната линейна обвивка.
- 2. (1) е общо уравнение на $B \Leftrightarrow N_1, \ldots, N_m$ са линейно независими, тоест когато (N_1, \ldots, N_m) е базис на нормалното пространство на B.

Твърдение 2 Нека $P_0 \in A$, W е линейно подпространство на U и $W = l(N_1, \ldots, N_m)$. Нека спрямо K координатите на P_0 и N_1, \ldots, N_m са $P_0(x_1^0, \ldots, x_n^0)$, $N_i(a_{i1}, \ldots, a_{in})$, $i = 1, \ldots, m$. Тогава съществува единствено афинно подпространство B на A, за което $P_0 \in B$ и W е нормалното пространство на B, и спрямо K то има уравнения

(2)
$$B: a_{i1}(x_1 - x_1^0) + \dots + a_{in}(x_n - x_n^0) = 0, \quad i = 1, \dots, m.$$

B частност, ако (N_1, \ldots, N_m) е базис на W, то (2) е общо уравнение на B.

Частни случаи:

1. Хиперравнина:

Твърдение 1′ Нека хиперравнината B в A има спрямо K общо уравнение $a_1x_1 + \cdots + a_nx_n + b = 0$. Тогава векторът N, чиито координати спрямо K са (a_1, \ldots, a_n) , е нормален на B и образува базис на нормалното пространство на B, тоест нормалните вектори на B са векторите от вида λN , $\lambda \in \mathbb{R}$.

Твърдение 2' Нека точката $P_0 \in A$ и ненулевият вектор $N \in U$ имат спрямо K координати $P_0(x_1^0, \ldots, x_n^0)$, $N(a_1, \ldots, a_n)$. Тогава съществува единствена хиперравнина B в A през P_0 , за която N е нормален вектор, и спрямо K тя има общо уравнение $a_1(x_1-x_1^0)+\cdots+a_n(x_n-x_n^0)=0$.

- 2. Права в 2-мерно евклидово афинно пространство (в частност, в геометричната равнина):
 - В Твърдение 1' и Твърдение 2' n=2 и "хиперравнина" се заменя с "права".
- 3. Равнина в 3-мерно евклидово афинно пространство (в частност, в геометричното пространство):
 - В Твърдение 1' и Твърдение 2' n=3 и "хиперравнина" се заменя с "равнина".
- 4. Права в 3-мерно евклидово афинно пространство (в частност, в геометричното пространство):

Нека координатите са (x, y, z) вместо (x_1, x_2, x_3) .

Твърдение $1'^{\vee}$ Нека правата l в A има спрямо K общо уравнение

$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}.$$

Тогава векторите N_1 и N_2 , чиито координати спрямо K са $N_i(A_i, B_i, C_i)$, i = 1, 2, са нормални на l и образуват базис на нормалното пространство на l.

Твърдение 2^{/v} Нека точката $P_0 \in A$ и линейно независимите вектори $N_1, N_2 \in U$ имат спрямо K координати $P_0(x_0, y_0, z_0)$, $N_i(A_i, B_i, C_i)$, i = 1, 2. Тогава съществува единствена права l в A през P_0 , за която N_1 и N_2 са нормални вектори, и спрямо K тя има общо уравнение

$$\begin{cases} A_1(x-x_0) + B_1(y-y_0) + C_1(z-z_0) = 0 \\ A_2(x-x_0) + B_2(y-y_0) + C_2(z-z_0) = 0 \end{cases}$$

Твърдение 3 Нека B е афинно подпространство на A и $P_0 \in A$. Тогава:

- 1. Съществува единствена точка $P_0' \in B$, за която векторът $\overrightarrow{P_0'P_0}$ е перпендикулярен на B.
- 2. Aro $P \in B$, mo $|PP_0| \ge |P_0'P_0|$ $u = \Leftrightarrow P = P_0'$.

Определение 2 Нека B е афинно подпространство на A и $P_0 \in A$. Тогава единствената точка $P'_0 \in B$, за която векторът $\overrightarrow{P'_0P_0}$ е перпендикулярен на B, се нарича *ортогонална* проекция на P_0 върху B, а $|P'_0P_0|$ се нарича разстояние от P_0 до B и се означава с $d(P_0, B)$.

Пример 1 Нека $P_0 \in B$. Тогава $\overrightarrow{P_0P_0} = 0$ е перпендикулярен на B и следователно $P_0' = P_0$ и $d(P_0, B) = |P_0P_0'| = 0$.

Използвайки въведената в Определение 2 терминология, от Твърдение 3 директно получаваме:

Твърдение 4 Ако B е афинно подпространство на A и $P_0 \in A$, то $\min\{|PP_0| : P \in B\}$ съществува, достига се за ортогоналната проекция P'_0 на P_0 върху B и е равен на разстоянието от P_0 до B.

Твърдение 5 Нека спрямо K хиперравнината B в A има общо уравнение $a_1x_1+\cdots+a_nx_n+b=0$, а точката $P_0\in A$ има координатен вектор x^0 . Означаваме $F(x)=a_1x_1+\cdots+a_nx_n+b$. Тогава $d(P_0,B)=\frac{|F(x^0)|}{\sqrt{a_1^2+\cdots+a_n^2}}$, а ортогоналната проекция

$$V^{a_1+\cdots+a_n}$$
 P'_0 на P_0 върху B има спрямо K координатен вектор $x'=x^0-rac{F(x^0)}{a_1^2+\cdots+a_n^2}egin{pmatrix} a_1 \ dots \ a_n \end{pmatrix}.$

Забележка 1 Тъй като за дължината на нормалния вектор $N(a_1,\ldots,a_n)$ на B имаме $|N|=\sqrt{a_1^2+\cdots+a_n^2}$, то $P_0'P_0'=\frac{F(x^0)}{\sqrt{a_1^2+\cdots+a_n^2}}\frac{N}{|N|}$. Числото $\delta(P_0,B)=\frac{F(x^0)}{\sqrt{a_1^2+\cdots+a_n^2}}$ се нарича ориентирано разстояние от P_0 до B. Имаме $d(P_0,B)=|\delta(P_0,B)|$. Също, отворените полупространства относно B са $\{P_0(x^0)\in A:F(x^0)>0\}$ и $\{P_0(x^0)\in A:F(x^0)<0\}$ и следователно те могат да се напишат и като

 $\{P_0 \in A : \delta(P_0, B) > 0\}$ (тоест отвореното полупространство, в което "сочи" N) и

 $\{P_0 \in A : \delta(P_0, B) < 0\}$ (тоест отвореното полупространство, в което "сочи" -N).

Определение 3 Общо уравнение на хиперравнината B спрямо K, в което нормалният вектор, чиито координати спрямо K са коефициентите пред неизвестните, е единичен, се нарича *нормално уравнение на B спрямо K*.

(Тоест, ако $a_1x_1 + \cdots + a_nx_n + b = 0$ е общо уравнение на B спрямо K, то то е нормално уравнение на B спрямо $K \Leftrightarrow a_1^2 + \cdots + a_n^2 = 1$.)

Твърдение 6 Всяка хиперравнина B в A има спрямо K точно две нормални уравнения. При това, ако $a_1x_1+\dots+a_nx_n+b=0$ е едно общо уравнение на B спрямо K, то нормалните уравнения са $\pm \frac{a_1x_1+\dots+a_nx_n+b}{\sqrt{a_1^2+\dots+a_n^2}}=0$.

От Твърдение 5 директно следва

Следствие 1 Ако уравнението на B в Твърдение 5 е нормално, то $d(P_0,B) = |F(x^0)|$ и $\delta(P_0,B) = F(x^0)$.

Частни случаи:

- 1. Права в 2-мерно евклидово афинно пространство (в частност, в геометричната равнина):
 - В Твърдение 5 и нещата след него n=2 и "хиперравнина" се заменя с "права", а "полупространство" с "полуравнина".
- 2. Равнина в 3-мерно евклидово афинно пространство (в частност, в геометричното пространство):
 - В Твърдение 5 и нещата след него n=3 и "хиперравнина" се заменя с "равнина".

Твърдение 7 Нека B_1 и B_2 са афинни подпространства на A, моделирани съответно върху линейните пространства V_1 и V_2 . Тогава:

- 1. Съществуват точки $P_1 \in B_1$, $P_2 \in B_2$, за които векторът $\overrightarrow{P_1P_2}$ е перпендикулярен на B_1 и B_2 .
- 2. Векторът $\overrightarrow{P_1P_2}$ в 1. е единствен, тоест ако $Q_1 \in B_1$, $Q_2 \in B_2$ са такива, че $\overrightarrow{Q_1Q_2}$ е перпендикулярен на B_1 и B_2 , то $\overrightarrow{Q_1Q_2} = \overrightarrow{P_1P_2}$.
- 3. Точките P_1 и P_2 в 1. са единствени $\Leftrightarrow V_1 \cap V_2 = \{0\}$.
- 4. Ако $Q_1 \in B_1$, $Q_2 \in B_2$, то $|Q_1Q_2| \ge |P_1P_2|$ $u = \Leftrightarrow \overrightarrow{Q_1Q_2}$ е перпендикулярен на B_1 и B_2 , тоест когато $\overrightarrow{Q_1Q_2} = \overrightarrow{P_1P_2}$ (поради 2.).

Определение 4 Нека B_1 и B_2 са афинни подпространства на A. Тогава $|P_1P_2|$, където $P_1 \in B_1$, $P_2 \in B_2$ и P_1P_2 е перпендикулярен на B_1 и B_2 , се нарича разстояние между B_1 и B_2 и се означава с $d(B_1, B_2)$.

(Дефиницията е коректна: Точки P_1 и P_2 с нужните свойства съществуват по 1. на Твърдение 7, а независимостта от избора на P_1 и P_2 следва от 2. на Твърдение 7.)

Пример 2 Нека $B_1 \cap B_2 \neq \emptyset$. Тогава, ако $P_0 \in B_1 \cap B_2$, то $\overrightarrow{P_0P_0} = 0$ е перпендикулярен на B_1 и B_2 и следователно $d(B_1, B_2) = |P_0P_0| = 0$.

Използвайки въведената в Определение 4 терминология, от Твърдение 7 директно получаваме:

Твърдение 8 Ако B_1 и B_2 са афинни подпространства на A, то $\min\{|P_1P_2|: P_1 \in B_1, P_2 \in B_2\}$ съществува и е равен на разстоянието между B_1 и B_2 .

Забележка 2 Нещата за разстояние от точка до афинно подпространство са частен случай на нещата за разстояние между афинни подпространства: В Твърдение 7, Определение 4 и Твърдение 8 взимаме $B_1 = B$, $B_2 = \{P_0\}$ и получаваме съответно Твърдение 3, Определение 2 и Твърдение 4.