Литералы

- ightharpoonup Литерал любая переменная $m \emph{x}$ или ее отрицание $m \overline{\it x}$.
- $ightharpoonup \sigma^{\sigma}=1$ и $\sigma^{\overline{\sigma}}=0$ для всех $\sigma\in {\it B}.$
- ▶ Таким образом, $x^{\sigma} = 1$ тогда и только тогда, когда $x = \sigma$.
- ightharpoonup А также, $m \emph{x}^{\sigma}=0$ тогда и только тогда, когда $m \emph{x} \neq \sigma$, то есть $m \emph{x}=\overline{\sigma}$.

Элементарные конъюнкты

 Элементарным конъюнктом называется конъюнкция литералов

$$X_{i_1}^{\sigma_1} \& X_{i_2}^{\sigma_2} \& \dots \& X_{i_k}^{\sigma_k},$$

в который каждая переменная входит не более одного раза.

- ightharpoonup Примеры $\it X_2$ & $\it \overline{X_4}$, $\it \overline{X_1}$ & $\it X_2$ & $\it X_3$.
- Элементарный конъюнкт называется полным, если он содержит все рассматриваемые переменные.

Элементарные дизъюнкты

 Элементарным дизъюнктом называется дизъюнкция литералов

$$X_{i_1}^{\sigma_1} \vee X_{i_2}^{\sigma_2} \vee \cdots \vee X_{i_k}^{\sigma_k},$$

в который каждая переменная входит не более одного раза.

- ▶ Примеры $X_2 \vee \overline{X_4}$, $\overline{X_1} \vee X_2 \vee X_3$.
- Элементарный дизъюнкт называется полным, если он содержит все рассматриваемые переменные.

Дизъюнктивные нормальные формы

- Дизъюнкция элементарных конъюнктов называется дизъюнктивной нормальной формой (ДНФ).
- ▶ Пример $x_2 \& \overline{x_4} \lor \overline{x_1} \& x_2 \& x_3$.
- Дизъюнкция полных элементарных конъюнктов называется совершенной дизъюнктивной нормальной формой (СДНФ).

Конъюнктивные нормальные формы

- ► Конъюнкция нескольких элементарных дизъюнктов называется конъюнктивной нормальной формой (КНФ).
- ▶ Пример $(x_2 \vee \overline{x_4}) \& (\overline{x_1} \vee x_2 \vee x_3)$.
- Конъюнкция нескольких полных элементарных дизъюнктов называется совершенной конъюнктивной нормальной формой (СКНФ).

Существование СДНФ

Теорема. Для любой булевой функции $f: B^n \to B$ имеет место

$$f(x_1, x_2, ..., x_n) = \bigvee_{(\sigma_1, \sigma_2, ..., \sigma_n) \in I} x_1^{\sigma_1} \& x_2^{\sigma_2} \& ... \& x_n^{\sigma_n},$$

где
$$I = \{(\sigma_1, \sigma_2, \dots, \sigma_n) \in B^n \mid f(\sigma_1, \sigma_2, \dots, \sigma_n) = 1\}.$$
 Доказательство. Пусть $f(x_1, x_2, \dots, x_n) = 1$. Тогда при $\sigma_1 = x_1, \sigma_2 = x_2, \dots, \sigma_n = x_n$ имеем

$$x_1^{\sigma_1} \& x_2^{\sigma_2} \& \dots \& x_n^{\sigma_n} = 1 \& 1 \& \dots \& 1 = 1.$$

Поэтому правая часть (п.ч.) равна 1.

Существование СДНФ

Теорема. Для любой булевой функции $f: B^n \to B$ имеет место

$$f(x_1, x_2, \ldots, x_n) = \bigvee_{(\sigma_1, \sigma_2, \ldots, \sigma_n) \in I} x_1^{\sigma_1} \& x_2^{\sigma_2} \& \ldots \& x_n^{\sigma_n},$$

где $I = \{(\sigma_1, \sigma_2, \dots, \sigma_n) \in B^n \mid f(\sigma_1, \sigma_2, \dots, \sigma_n) = 1\}.$ Доказательство (продолжение). Пусть п.ч. равна 1. Тогда для некоторого $(\sigma_1, \sigma_2, \dots, \sigma_n) \in B^n$, такого, что $f(\sigma_1, \sigma_2, \dots, \sigma_n) = 1$, имеем

$$x_1^{\sigma_1} \& x_2^{\sigma_2} \& \dots \& x_n^{\sigma_n} = 1.$$

Значит для каждого $i = \overline{1, n}$ значение $x_i^{\sigma_i} = 1$, а это возможно только при $\sigma_i = x_i$. Таким образом, $f(x_1, x_2, \dots, x_n) = 1$.

Существование СКНФ

Теорема. Для любой булевой функции $f: B^n \to B$ имеет место

$$f(x_1,x_2,\ldots,x_n)=\bigotimes_{(\sigma_1,\sigma_2,\ldots,\sigma_n)\in J}(x_1^{\overline{\sigma_1}}\vee x_2^{\overline{\sigma_2}}\vee\cdots\vee x_n^{\overline{\sigma_n}}).$$

где $J = \{(\sigma_1, \sigma_2, \dots, \sigma_n) \in B^n \mid f(\sigma_1, \sigma_2, \dots, \sigma_n) = 0\}.$ Доказательство. Пусть $f(x_1, x_2, \dots, x_n) = 0$. Тогда при $\sigma_1 = x_1, \sigma_2 = x_2, \dots, \sigma_n = x_n$ имеем

$$x_1^{\overline{\sigma_1}} \vee x_2^{\overline{\sigma_2}} \vee \cdots \vee x_n^{\overline{\sigma_n}} = 0 \vee 0 \vee \cdots \vee 0 = 0.$$

Поэтому правая часть (п.ч.) равна 0.

Существование СКНФ

Теорема. Для любой булевой функции $f: B^n \to B$ имеет место

$$f(x_1,x_2,\ldots,x_n)=\bigotimes_{(\sigma_1,\sigma_2,\ldots,\sigma_n)\in J}(x_1^{\overline{\sigma_1}}\vee x_2^{\overline{\sigma_2}}\vee\cdots\vee x_n^{\overline{\sigma_n}}).$$

где $J=\{(\sigma_1,\sigma_2,\ldots,\sigma_n)\in B^n\mid f(\sigma_1,\sigma_2,\ldots,\sigma_n)=0\}.$ Доказательство (продолжение). Пусть п.ч. равна 0. Тогда для некоторого $(\sigma_1,\sigma_2,\ldots,\sigma_n)\in B^n$, такого, что $f(\sigma_1,\sigma_2,\ldots,\sigma_n)=0$, имеем

$$X_1^{\overline{\sigma_1}} \vee X_2^{\overline{\sigma_2}} \vee \cdots \vee X_n^{\overline{\sigma_n}} = 0.$$

Значит для каждого $i = \overline{1, n}$ значение $x_i^{\overline{\sigma_i}} = 0$, а это возможно только при $\sigma_i = x_i$. Таким образом, $f(x_1, x_2, \dots, x_n) = 0$.

Единственность СДНФ и СКНФ

Теорема. Для любой булевой функции $f: B^n \to B$ существует одна СДНФ и одна СКНФ с точностью до перестановок в конъюнкциях и дизъюнкциях.

Доказательство. С точностью до перестановок существует ровно 2^n полных элементарных конъюнктов (диъюнктов). Поэтому с точностью до перестановок существует ровно 2^{2^n} различных СДНФ (СКНФ). Но всего имеется ровно столько же 2^{2^n} булевых функций $f: B^n \to B$, причем у каждой существует по крайней мере одна СДНФ (СКНФ). Значит у каждой функции имеется ровно одна СДНФ (СКНФ).