Introducción a la Criptografía y a la Seguridad de la Información

Part 7a
Cryptographic Hash
Functions

Jorge E. Camargo, PhD

What is a hash function?

A formal definition of hash function

- Deterministic algorithm
- No encryption
- Not signature

$$H: \left\{ \begin{array}{ccc} \text{any bit string} & \to & \text{m bits} \\ x & \mapsto & y = H(x) \end{array} \right.$$

Properties of a (cryptographic) hash function

- Deterministic
- Uniformity
- Defined range
- Non-invertibility
- Pre-image resistance: Given a hash value h it should be difficult to find any message m such that h = hash(m)
- Second pre-image resistance: Given an input m1, it should be difficult to find a different input m2 such that hash(m1) = hash(m2)
- Collision resistance: It should be difficult to find two different messages m1 and m2 such that hash(m1) = hash(m2)

Collisions

- A hash function that maps names to integers form 0 to 15.
- There is a collision between "John Smith" and "Sandra Dee"

MD5 hash function

$$F(B,C,D) = (B \wedge C) \vee (\neg B \wedge D)$$

 $G(B,C,D) = (B \wedge D) \vee (C \wedge \neg D)$
 $H(B,C,D) = B \oplus C \oplus D$
 $I(B,C,D) = C \oplus (B \vee \neg D)$

 \oplus , \wedge , \vee , \neg denote the XOR, AND, OR and NOT operations respectively.

Figure 1. One MD5 operation. MD5 consists of 64 of these operations, grouped in four rounds of 16 operations. F is a nonlinear function; one function is used in each round. M_i denotes a 32-bit block of the message input, and K_i denotes a 32-bit constant, different for each operation. \ll_S denotes a left bit rotation by S places; S varies for each operation. \boxplus denotes addition modulo 2^{32} .

SHA-1 hash function

One iteration within the SHA-1 compression function:

A, B, C, D and E are 32-bit words of the state; F is a nonlinear function that varies;

 \ll_n denotes a left bit rotation by n places; n varies for each operation;

W_t is the expanded message word of round t; K_t is the round constant of round t;

⊞ denotes addition modulo 2³².

Fuente: https://en.wikipedia.org/wiki/SHA-1

Comparison

		Output	Internal	Block				Capacity	Performance on Skylake (median cpb) ^[52]		
Algorithm and variant		size (bits)	state size (bits)	size (bits)	Rounds	Operations	Security (in bits) against collision attacks	against length extension attacks	long messages	8 bytes	First Published
MD5 (as reference)		128	128 (4 × 32)	512	64	And, Xor, Rot, Add (mod 2 ³²), Or	≤18 (collisions found) ^[53]	0	4.99	55.00	1992
SHA-0		160	160 (5 × 32)	512	80	And, Xor, Rot, Add (mod 2 ³²), Or	<34 (collisions found)	0	≈ SHA-1	≈ SHA-1	1993
SHA-1							<63 (collisions found ^[54])	0	3.47	52.00	1995
SHA-2	SHA-224 SHA-256	224 256	256 (8 × 32)	512	64	And, Xor, Rot, Add (mod 2 ³²), Or, Shr	112 128	32 0	7.62 7.63	84.50 85.25	2004 2001
	SHA-384 SHA-512	384 512	512 (8 × 64)	1024	80	And, Xor, Rot, Add (mod 2 ⁶⁴), Or, Shr	192 256	128 (≤ 384) 0	5.12 5.06	135.75 135.50	2001
	SHA-512/224 SHA-512/256	224 256					112 128	288 256	≈ SHA-384	≈ SHA-384	2012
SHA-3	SHA3-224 SHA3-256 SHA3-384 SHA3-512	224 256 384 512	1600 (5 × 5 × 64)	1152 1088 832 576 1344 1088	24 ^[55]	And, Xor, Rot, Not	112 128 192 256	448 512 768 1024	8.12 8.59 11.06 15.88	154.25 155.50 164.00 164.00	2015
	SHAKE128 SHAKE256	d (arbitrary) d (arbitrary)					min(<i>d</i> /2, 128) min(<i>d</i> /2, 256)	256 512	7.08 8.59	155.25 155.50	

Fuente: https://en.wikipedia.org/wiki/SHA-3

Hash online

Test some hash functions in:

http://www.convertstring.com/Hash

Use of hash functions in Blockchain

 https://colab.research.google.com/drive/171hbYK3ERQzXW1yNLQK MSLoNwL1fzgdb#scrollTo= wu-qTT0QGz2

References

- Pinzon, Yoan. "Introducción a la criptografía y a la seguridad de la información", 2013.
- Menezes A., Handbook of applied Cryptografy, 5th Edition. CRC Press, 2001.
- A Graduate Course in Applied Cryptography by D. Boneh and V. Shoup
- H. Delfs and H. Knebl, Introduction to Cryptography, 3rd ed. 2015.
- J. A. Buchmann, Introduction to Cryptography. 2004.
- T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Ch. 31 in Introduction to Algorithms, 3rd ed. 2009.
- B. Lomas de Zamora: Gradi. Hacking desde cero, Fox Andina, 2011.
- Secure Coding Working Group, Japan Smartphone Security Association (JSSEC), Android Application Secure Design/Secure Coding Guidebook, 2017.