

Evidence		Interpretation
f is concave up	\rightarrow	f'' > 0
f is concave down	\rightarrow	f"<0
f is increasing / slopes of tangents > 0	\rightarrow	f'>0
f is decreasing / slope of tangents < 0	\rightarrow	f' < 0
f' is increasing / slopes of tangents > 0	\rightarrow	f">0
f' is decreasing / slopes of tangents < 0	\rightarrow	f"<0
f' > 0	\rightarrow	f is increasing
f' < 0	\rightarrow	f is decreasing
f'' > 0	\rightarrow	f' is increasing
f'' > 0	\rightarrow	f is concave up
f"<0	\rightarrow	f' is decreasing
f"<0	\rightarrow	f is concave down
" f is differentiable"	\rightarrow	f is continuous
"f is twice differentiable"	\rightarrow	f is continuous and differentiable f' is continuous and differentiable

To justify your answer using Calculus, you must (1) have evidence, (2) interpret the evidence, and (3) state your answer in a complete sentence.

What is considered evidence?

- ✓ Labeled sign chart
- g'(t) (-)DNE (-) 0 (+) 0 (-) -2 0 4
- ✓ Graph of a function

✓ Complete sentence.

2005 AB #3 "The function T is decreasing and twice differentiable."

2007 AB #3 "The functions f and g are differentiable for all real numbers, and g is strictly increasing."

Connections between f(x), f'(x), and f''(x).

- f(x) is increasing if an only if f'(x) is positive.
- f(x) is decreasing if and only if f'(x) is negative.
- f(x) has a relative minimum if and only if f'(x) changes sign from negative to positive.
- f(x) has a relative maximum if and only if f'(x) changes sign from positive to negative.
- f(x) has a relative minimum at x = c because f'(c) = 0 and f''(c) is positive.
- f(x) has a relative maximum at x = c because f'(c) = 0 and f''(c) is negative.
- f(x) is concave up if and only if f''(x) is positive.
- f(x) is concave down if and only if f''(x) is negative.
- f(x) is concave up if and only if f'(x) is increasing.
- f(x) is concave down if and only if f'(x) is decreasing.
- f(x) has an inflection point at x = c if and only if f''(x) changes sign.
- f(x) has an inflection point at x = c if f'(x) changes from [decreasing to increasing] or [increasing to decreasing].