CSE 566 Spring 2023

Gene Expression Analysis

Instructor: Mingfu Shao

Gene Expression

Regulation of Gene Expression

- Gene regulation is the process of controlling which genes in a cell's DNA are expressed.
- Gene expression is dynamic.
 - Cells are able to respond to environmental changes.
 - Expression varies with different stages of a cycle.
- Gene expression is tissue/cell-type-specific.
 - Each cell type has a different set of active genes.

Transcription

Example of Gene Regulation

Gene Regulation of Eukaryotes

Deciphering Gene Regulation

- We are FAR away from understanding the cell-machinery.
- Elucidating gene regulations will greatly help disease diagnose and treatment.

signaling pathways that regulate cancer metabolism

RNA Sequencing (RNA-seq)

DNA / genes transcription mRNAs RNA-seq RNA-seq reads

Applications of RNA-seq

- RNA-seq measures gene activities.
- To decipher cell machinery
 - study gene regulation
 - infer gene functions
 - study various RNAs, such as lncRNAs, microRNAs, eRNAs
 - many more...
- To identify biomarkers for disease diagnosis.

Assembly

Reference-based Assembly

Assemblers: Cufflinks, TransComb, StringTie, StringTie2, Scallop, Scallop2

de novo Assembly

Assemblers: Trinity, rna-SPADES, BinPacker, TransLiG

Paper Presentation

- Send me your slides 3 days in advance.
- 20 min presentation + 5 min discussion
- You may need to pick the most interesting/relevant parts
- Include a slide to discuss the strength and weakness of the paper and discuss how you think it could be improved.
- Peer-evaluations 50% + instructor-evaluation 50%
 - Submit your evaluation/score in class
 - Submit your feedback by the end of the day

Paper Presentation

Grading:

- · clarity, coherence, and organization of your presentation
- whether the key points of the paper are clearly delivered
- think critically about the paper
- stay close to the time limit
- quality of your answers to questions
- clarity, coherence, and organization of your slides

Course Project

- Choose a problem: curiosity driven
 - Is that algorithm sensitive to certain parameter?
 - What is the range of parameters an algorithm is practical?
 - Can that algorithm be applied to other type of data / other research area / your research topic?
 - Can an efficient algorithm be still designed for a slightly different formulation?
 - Can this algorithm be improved?

Course Project

- You need to come up with some idea(s), but not necessarily working idea(s).
- When your ideas do not work, you need to think about why, but you are not required to fix it.

