# **Numerical Methods for Computer Science**

Robin Bacher, Janis Hutz https://github.com/janishutz/eth-summaries

28. Oktober 2025

# TITLE PAGE COMING SOON

"Denken vor Rechnen" "Wer in Python Type annotation benötigt, der soll kein Python verwenden" (2025-10-09T10:43) "Wenn ich keine Lust habe, das zu berechnen, dann wende ich einfach Gewalt an"

- Vasile Gradinaru, 2025

HS2025, ETHZ Summary of the Script and Lectures

28. Oktober 2025 1 / 41

# Inhaltsverzeichnis

| 0 | Intro | oduction 3                                         |  |  |  |  |  |
|---|-------|----------------------------------------------------|--|--|--|--|--|
| 1 | Einf  | 4                                                  |  |  |  |  |  |
| _ | 1.1   | Rundungsfehler                                     |  |  |  |  |  |
|   | 1.2   | Rechenaufwand                                      |  |  |  |  |  |
|   | 1.3   | Rechnen mit Matrizen                               |  |  |  |  |  |
|   |       |                                                    |  |  |  |  |  |
| 2 | Poly  | nominterpolation 9                                 |  |  |  |  |  |
|   | 2.1   | Interpolation und Polynome                         |  |  |  |  |  |
|   |       | 2.1.1 Monombasis                                   |  |  |  |  |  |
|   | 2.2   | Newton Basis                                       |  |  |  |  |  |
|   |       | 2.2.1 Koeffizienten                                |  |  |  |  |  |
|   |       | 2.2.2 Auswertung                                   |  |  |  |  |  |
|   | 0.0   | 2.2.3 Fehler                                       |  |  |  |  |  |
|   | 2.3   | Lagrange- und Baryzentrische Interpolationsformeln |  |  |  |  |  |
|   | 0.4   | 2.3.1 Fehler                                       |  |  |  |  |  |
|   | 2.4   | Chebyshev Interpolation                            |  |  |  |  |  |
|   |       | 2.4.1 Fehler                                       |  |  |  |  |  |
| 3 | Trig  | onometrische Interpolation 18                      |  |  |  |  |  |
|   | 3.1   | Fourier-Reihen                                     |  |  |  |  |  |
|   | 3.2   | Diskrete Fourier Transformation                    |  |  |  |  |  |
|   |       | 3.2.1 Motivation                                   |  |  |  |  |  |
|   |       | 3.2.2 Konstruktion                                 |  |  |  |  |  |
|   |       | 3.2.3 DFT in Numpy                                 |  |  |  |  |  |
|   |       | 3.2.4 DFT & Lineare Algebra                        |  |  |  |  |  |
|   | 3.3   | Schnelle Fourier Transformation                    |  |  |  |  |  |
|   | 3.4   | Trigonometrische Interpolation                     |  |  |  |  |  |
|   |       | 3.4.1 Von Approximation zur Interpolation          |  |  |  |  |  |
|   |       | 3.4.2 Zero-Padding-Auswertung                      |  |  |  |  |  |
|   | 3.5   | Fehlerabschätzungen                                |  |  |  |  |  |
|   | 3.6   | DFT und Chebyshev-Interpolation                    |  |  |  |  |  |
| _ |       |                                                    |  |  |  |  |  |
| 4 |       | ckweise Polynomiale Interpolation 30               |  |  |  |  |  |
|   | 4.1   | Stückweise Lineare Interpolation                   |  |  |  |  |  |
|   | 4.2   | Kubische Hermite-Interpolation                     |  |  |  |  |  |
|   | 4.3   | Splines                                            |  |  |  |  |  |
| 5 | Nun   | nerische Quadratur 33                              |  |  |  |  |  |
| Ū | 5.3   | Grundbegriffe und -Ideen                           |  |  |  |  |  |
|   | 5.4   | Äquidistante Punkte                                |  |  |  |  |  |
|   | 5.5   | Nicht äquidistante Stützstellen                    |  |  |  |  |  |
|   | 0.0   | 5.5.1 Gauss Quadratur                              |  |  |  |  |  |
|   |       | 5.5.2 Clenshaw-Curtis Quadraturformel              |  |  |  |  |  |
|   | 5.6   | Adaptive Quadratur                                 |  |  |  |  |  |
|   | 5.7   | Quadratur in $\mathbb{R}^d$ und dünne Gitter       |  |  |  |  |  |
|   | 5.8   | Monte-Carlo Quadratur                              |  |  |  |  |  |
|   | 5.9   | Methoden zur Reduktion der Varianz                 |  |  |  |  |  |

28. Oktober 2025 2 / 41

## 0 Introduction

This summary is intended to give you a broad overview of the topics relevant for the exam and is not intended to serve as a full on replacement for the script. We have decided to write it in German, as is the new script and for some of the topics that are poorly explained in the script, we have added further explanations.

The numbering should match the script's numbering exactly (apart from the cases where two definitions were combined due to being closely related and short), making it easier for you to look up the relevant definitions, theorems, etc in context in the script.

Many of the figures in this summary were taken directly from the Script or Lecture notes created by Professor Vasile Gradinaru.

To add to the one quote regarding Python and type annotation: This is objectively wrong and a really hot take. Yes, this applies for small projects, but libraries *DO* need type annotation, as you can't possibly read the entire library's code to use it. The reason this quote was even included here is that his coding style is really awful (yes, there were semicolons in his Python-code sometimes) and he rambled about bad coding style for about 10 minutes in this lecture.

Meanwhile his code has variable names that neither future him, nor anybody else can make much sense of intuitively. You can get away without type annotation in Python, even in larger projects, but only if you give variables proper names!

Moral of the story: Use descriptive variable names and do NOT use  $t, tt, ttt, \dots$ 

28. Oktober 2025 3 / 41

# 1 Einführung

## 1.1 Rundungsfehler

#### **Absoluter & Relativer Fehler**

**Definition 1.1.1** 

• Absoluter Fehler:  $||\widetilde{x} - x||$ 

• Relativer Fehler:  $\frac{||\widetilde{x}-x||}{||x||}$  für  $||x|| \neq 0$ 

wobei  $\widetilde{x}$  eine Approximation an  $x \in \mathbb{R}$  ist

Rundungsfehler entstehen durch die (verhältnismässig) geringe Präzision die man mit der Darstellung von Zahlen auf Computern erreichen kann. Zusätzlich kommt hinzu, dass durch Unterläufe (in diesem Kurs ist dies eine Zahl die zwischen 0 und der kleinsten darstellbaren, positiven Zahl liegt) Präzision verloren gehen kann.

Überläufe hingegen sind konventionell definiert, also eine Zahl, die zu gross ist und nicht mehr dargestellt werden kann.

#### Auslöschung

Bemerkung 1.1.9

Bei der Subtraktion von zwei ähnlich grossen Zahlen kann es zu einer Addition der Fehler der beiden Zahlen kommen, was dann den relativen Fehler um einen sehr grossen Faktor vergrössert. Die Subtraktion selbst hat einen vernachlässigbaren Fehler

**Beispiel 1.1.18:** (Ableitung mit imaginärem Schritt) Als Referenz in Graphen wird hier oftmals die Implementation des Differenzialquotienten verwendet.

Der Trick hier ist, dass wir mit Komplexen Zahlen in der Taylor-Approximation einer glatten Funktion in  $x_0$  einen rein imaginären Schritt durchführen können:

$$f(x_0+ih)=f(x_0)+f'(x_0)ih-\frac{1}{2}f''(x_0)h^2-iC\cdot h^3 \text{ für } h\in\mathbb{R} \text{ und } h\to 0$$

Da  $f(x_0)$  und  $f''(x_0)h^2$  reell sind, verschwinden die Terme, wenn wir nur den Imaginärteil des Ausdruckes weiterverwenden. Nach weiteren Vereinfachungen und Umwandlungen erhalten wir

$$f'(x_0) pprox \frac{\mathsf{Im}(f(x_0 + ih))}{h}$$

Falls jedoch hier die Auswertung von  $Im(f(x_0+ih))$  nicht exakt ist, so kann der Fehler beträchtlich sein.

Beispiel 1.1.20: (Konvergenzbeschleunigung nach Richardson)

$$yf'(x) = yd\left(\frac{h}{2}\right) + \frac{1}{6}f'''(x)h^2 + \frac{1}{480}f^{(s)}h^4 + \dots - f'(x)$$
$$= -d(h) - \frac{1}{6}f'''(x)h^2 + \frac{1}{120}f^{(s)}(x)h^n \Leftrightarrow 3f'(x)$$
$$= 4d\left(\frac{h}{2}\right)d(h) + \mathcal{O}\left(h^4\right) \Leftrightarrow$$

#### **Schema**

$$d(h) = \frac{f(x+h) - f(x-h)}{2h}$$

wobei im Schema dann

$$R_{l,0} = d\left(\frac{h}{2^l}\right)$$

28. Oktober 2025 4 / 41

und

$$R_{l,k} = \frac{4^k \cdot R_{l,k-1} - R_{l-1,k-1}}{4^k - 1}$$

and 
$$f'(x) = R_{l,k} + C \cdot \left(\frac{h}{2^l}\right)^{2k+2}$$

28. Oktober 2025 5 / 41

#### 1.2 Rechenaufwand

In NumCS wird die Anzahl elementarer Operationen wie Addition, Multiplikation, etc benutzt, um den Rechenaufwand zu beschreiben. Wie in Algorithmen und \* ist auch hier wieder  $\mathcal{O}(\ldots)$  der Worst Case. Teilweise werden auch andere Funktionen wie  $\sin, \cos, \sqrt{\ldots}, \ldots$  dazu gezählt.

Die Basic Linear Algebra Subprograms (= BLAS), also grundlegende Operationen der Linearen Algebra, wurden bereits stark optimiert und sollten wann immer möglich verwendet werden und man sollte auf keinen Fall diese selbst implementieren.

Dieser Kurs verwendet numpy, scipy, sympy (collection of implementations for symbolic computations) und matplotlib. Dieses Ecosystem ist eine der Stärken von Python und ist interessanterweise zu einem Grossteil nicht in Python geschrieben, da dies sehr langsam wäre.

28. Oktober 2025 6 / 41

#### 1.3 Rechnen mit Matrizen

Wie in Lineare Algebra besprochen, ist das Resultat der Multiplikation einer Matrix  $A \in \mathbb{C}^{m \times n}$  und einer Matrix  $B \in \mathbb{C}^{n \times p}$  ist eine Matrix  $AB = \mathbb{C}^{m \times p}$ 

**In numpy** haben wir folgende Funktionen:

- b @ a (oder np.dot(b, a) oder np.einsum('i,i', b, a) für das Skalarprodukt
- A @ B (oder np.einsum('ik,kj->ij', )) für das Matrixprodukt
- A @ x (oder np.einsum('ij,j->i', A, x)) für Matrix × Vektor
- A.T für die Transponierung
- A.conj() für die komplexe Konjugation (kombiniert mit .T = Hermitian Transpose)
- np.kron(A, B) für das Kroneker Produkt
- b = np.array([4.j, 5.j]) um einen Array mit komplexen Zahlen zu erstellen (j ist die imaginäre Einheit, aber es muss eine Zahl direkt daran geschrieben werden)

**Bemerkung 1.3.4:** (Rang der Matrixmultiplikation) Rang(AX) = min(Rang(A), Rang(X))

**Bemerkung 1.3.7:** (Multiplikation mit Diagonalmatrix D)  $D \times A$  skaliert die Zeilen von A während  $A \times D$  die Spalten skaliert

**Beispiel 1.3.8:** D @ A braucht  $\mathcal{O}\left(n^3\right)$  Operationen, wenn wir jedoch D.diagonal()[:, np.newaxis] \* A verwenden, so haben wir nur noch  $\mathcal{O}\left(n^2\right)$  Operationen, da wir die vorige Bemerkung Nutzen und also nur noch eine Skalierung vornehmen. So können wir also eine ganze Menge an Speicherzugriffen sparen, was das Ganze bedeutend effizienter macht

Bemerkung 1.3.14: Wir können bestimmte Zeilen oder Spalten einer Matrix skalieren, in dem wir einer Identitätsmatrix im unteren Dreieck ein Element hinzufügen. Wenn wir nun diese Matrix E (wie die in der LU-Zerlegung) linksseitig mit der Matrix A multiplizieren (bspw.  $E^{(2,1)}A$ ), dann wird die zugehörige Zeile skaliert. Falls wir aber  $AE^{(2,1)}$  berechnen, so skalieren wir die Spalte

**Bemerkung 1.3.15:** (Blockweise Berechnung) Man kann das Matrixprodukt auch Blockweise berechnen. Dazu benutzen wir eine Matrix, deren Elemente andere Matrizen sind, um grössere Matrizen zu generieren. Die Matrixmultiplikation funktioniert dann genau gleich, nur dass wir für die Elemente Matrizen und nicht Skalare haben.

Untenstehend eine Tabelle zum Vergleich der Operationen auf Matrizen

| Name                   | Operation | Mult | Add     | Komplexität                  |
|------------------------|-----------|------|---------|------------------------------|
| Skalarprodukt          | $x^H y$   | n    | n-1     | $\mathcal{O}\left(n\right)$  |
| Tensorprodukt          | $xy^H$    | nm   | 0       | $\mathcal{O}\left(mn ight)$  |
| $Matrix \times Vektor$ | Ax        | mn   | (n-1)m  | $\mathcal{O}\left(mn\right)$ |
| Matrixprodukt          | AB        | mnp  | (n-1)mp | $\mathcal{O}\left(mnp ight)$ |

**Bemerkung 1.3.16:** Das Matrixprodukt kann mit Strassen's Algorithmus mithilfe der Block-Partitionierung in  $\mathcal{O}\left(n^{\log_2(7)}\right) \approx \mathcal{O}\left(n^{2.81}\right)$  berechnet werden.

**Bemerkung 1.3.17:** (Rang 1 Matrizen) Können als Tensorprodukt von zwei Vektoren geschrieben werden. Dies ist beispielsweise hierzu nützlich:

Sei  $A = ab^{\top}$ . Dann gilt  $y = Ax \Leftrightarrow y = a(b^{\top}x)$ , was dasselbe Resultat ergibt, aber nur  $\mathcal{O}(m+n)$  Operationen und nicht  $\mathcal{O}(mn)$  benötigt wie links.

**Beispiel 1.3.18:** Für zwei Matrizen  $A,B\in\mathbb{R}^{n\times p}$  mit geringem Rang  $p\ll n$ , dann kann mithilfe eines Tricks die Rechenzeit von  $\operatorname{np.triu}(A@B.T)@x$  von  $\mathcal{O}(pn^2)$  auf  $\mathcal{O}(pn)$  reduziert werden. Die hier beschriebene Operation berechnet  $\operatorname{Upper}(AB^\top)x$  wobei  $\operatorname{Upper}(X)$  das obere Dreieck der Matrix X zurück gibt. Wir nennen diese Matrix hier R. In numpy können wir den folgenden Ansatz verwenden, um die Laufzeit zu verringern: Da die Matrix R eine obere Dreiecksmatrix ist, ist das Ergebnis die Teilsummen von unserem Umgekehrten Vektor x, also können wir mit

28. Oktober 2025 7 / 41

np.cumsum(x[::-1], axis=0)[::-1] die Kummulative Summe berechnen. Das [::-1] dient hier lediglich dazu, den Vektor x umzudrehen, sodass das richtige Resultat entsteht. Die vollständige Implementation sieht so aus:

```
def low_rank_matrix_vector_product(A: np.ndarray, B: np.ndarray, x: np.ndarray):
    n, _ = A.shape
    y = np.zeros(n)

# Compute B * x with broadcasting (x needs to be reshaped to 2D)
    v = B * x[:, None]

# s is defined as the reverse cummulative sum of our vector
# (and we need it reversed again for the final calculation to be correct)
    s = np.cumsum(v[::-1], axis=0)[::-1]

y = np.sum(A * s)
```

**Definition 1.3.21:** (Kronecker-Produkt) Das Kronecker-Produkt ist eine  $(ml) \times (nk)$ -Matrix, für  $A \in \mathbb{R}^{m \times n}$  und  $B \in \mathbb{R}^{l \times k}$ .

In numpy können wir dieses einfach mit np.kron(A, B) berechnen (ist jedoch nicht immer ideal):

$$A \otimes B := \begin{bmatrix} (A)_{1,1}B & (A)_{1,2}B & \dots & \dots & (A)_{1,n}B \\ (A)_{2,1}B & (A)_{2,2}B & \dots & \dots & (A)_{2,n}B \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ (A)_{m,1}B & (A)_{m,2}B & \dots & \dots & (A)_{m,n}B \end{bmatrix}$$

**Beispiel 1.3.22:** (Multiplikation des Kronecker-Produkts mit Vektor) Wenn man  $A \otimes B \cdot x$  berechnet, so ist die Laufzeit  $\mathcal{O}(m \times n \times l \times k)$ , aber wenn wir den Vektor x in n gleich grosse Blöcke aufteilen (was man je nach gewünschter nachfolgender Operation in NumPy in  $\mathcal{O}(1)$  machen kann mit  $\mathtt{x.reshape(n, x.shape[0] / n)}$ ), dann ist es möglich das Ganze in  $\mathcal{O}(m \cdot l \cdot k)$  zu berechnen.

Die vollständige Implementation ist auch hier nicht schwer und sieht folgendermassen aus:

Um die oben erwähnte Laufzeit zu erreichen muss erst ein neuer Vektor berechnet werden, oben im Code bx genannt, der eine Multiplikation von Bx\_i als Einträge hat.

28. Oktober 2025 8 / 41

# 2 Polynominterpolation

#### 2.1 Interpolation und Polynome

Bei der Interpolation versuchen wir eine Funktion  $\widetilde{f}$  durch eine Menge an Datenpunkten einer Funktion f zu finden. Die  $x_i$  heissen Stützstellen/Knoten, für welche  $\widetilde{f}(x_i) = y_i$  gelten soll. (Interpolationsbedingung)

$$\begin{bmatrix} x_0 & x_1 & \dots & x_n \\ y_0 & y_1 & \dots & y_n \end{bmatrix}, \quad x_i, y_i \in \mathbb{R}$$

Normalerweise stellt f eine echte Messung dar, d.h. macht es Sinn anzunehmen dass f glatt ist.

Die informelle Problemstellung oben lässt sich durch Vektorräume formalisieren:

 $f \in \mathcal{V}$ , wobei  $\mathcal{V}$  ein Vektorraum mit  $\dim(\mathcal{V}) = \infty$  ist.

Wir suchen d.h.  $\widetilde{f}$  in einem Unterraum  $\mathcal{V}_n$  mit endlicher  $\dim(\mathcal{V}_n) = n$ . Sei  $B_n = \{b_1, \dots, b_n\}$  eine Basis für  $\mathcal{V}_n$ . Dann lässt sich der Bezug zwischen f und  $\widetilde{f} = f_n(x)$  so ausdrücken:

$$f(x) \approx f_n(x) = \sum_{j=1}^{n} \alpha_j b_j(x)$$

**Bemerkung 2.1.1:** Unterräume  $V_n$  existieren nicht nur für Polynome, wir beschränken uns aber auf  $b_j(x) = x^{i-1}$ . Andere Möglichkeiten:  $b_j = \cos((j-1)\cos^-1(x))$  (Chebyshev) oder  $b_j = e^{i2\pi jx}$  (Trigonometrisch)

**Satz 2.1.4:** (Peano) f stetig  $\Longrightarrow \exists p(x)$  welches f in  $||\cdot||_{\infty}$  beliebig gut approximiert.

**Definition 2.1.5:** (Raum der Polynome)  $\mathcal{P}_k := \{x \mapsto \sum_{j=0}^k \alpha_j x^j\}$  **Definition 2.1.6:** (Monom)  $f: x \mapsto x^k$ 

**Satz 2.1.7:** (Eigenschaft von  $\mathcal{P}_k$ )  $\mathcal{P}_k$  ist ein Vektorraum mit  $\dim(\mathcal{P}_k) = k + 1$ .

#### 2.1.1 Monombasis

**Satz 2.1.8:** (Eindeutigkeit)  $p(x) \in (P)_k$  ist durch k+1 Punkte  $y_i = p(x_i)$  eindeutig bestimmt.

Dieser Satz kann direkt angewendet werden zur Interpolation, in dem man p(x) als Gleichungssystem schreibt.

$$p_n(x) = \alpha_n x^n + \dots + \alpha_0 x^0 \iff \underbrace{\begin{bmatrix} 1 & x_0 & \dots & x_0^n \\ 1 & x_1 & \dots & x_1^n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \dots & x_n^n \end{bmatrix}}_{\text{Variance de Matrix}} \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{bmatrix}$$

Um  $\alpha_i$  zu finden ist die Vandermonde Matrix unbrauchbar, da die Matrix schlecht konditioniert ist.

Zur Auswertung von p(x) kann man direkt die Matrix-darstellung nutzen, oder effizienter:

**Definition 2.1.9:** (Horner Schema) 
$$p(x) = (x \dots x(x(\alpha_n x + \alpha_{n-1}) + \dots + \alpha_1) + \alpha_0)$$

In numpy liefert polyfit die direkte Auswertung, polyval wertet Polynome via Horner-Schema aus. (Gemäss Script, in der Praxis sind diese Funktionen deprecated)

28. Oktober 2025 9 / 41

#### 2.2 Newton Basis

Die Newton-Basis hat den Vorteil, dass sie leichter erweiterbar als die Monombasis ist.

Die Konstruktion verläuft iterativ, und vorherige Datenpunkte müssen nicht neuberechnet werden.

**Satz 2.2.2:** (Newton-Basis)  $\{N_0, \ldots, N_n\}$  ist eine Basis von  $\mathcal{P}_n$ 

$$N_0(x) := 1$$
  $N_1(x) := x - x_0$   $N_2(x) := (x - x_0)(x - x_1)$  ...  
 $N_n(x) := \prod_{i=0}^{n-1} (x - x_i)$ 

#### 2.2.1 Koeffizienten

Wegen Satz 2.2.3 lässt sich jedes  $p_n \in \mathcal{P}_n$  als  $p_n(x) = \sum_{i=0}^n \beta_i N_i(x)$  darstellen. Ein Gleichungssystem liefert alle  $\beta_i$ :

$$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 1 & N_0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & N_0 & \cdots & N_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_n \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{bmatrix}$$

Die Matrixmultiplikation in  $\mathcal{O}(n^3)$  ist aber nicht nötig: Es gibt ein effizienteres System.

**Definition 2.2.4:** (Dividiente Differenzen)

$$y[x_i] := y_i \\ y[x_i, \ \dots, x_{i+k}] \overset{\text{Rec.}}{:=} \frac{y[x_{i+1}, \ \dots, x_{i+k}] - y[x_i, \ \dots, x_{i+k-1}]}{x_{i+k} - x_i} \\ x_1 \\ y[x_1] \\ x_1 \\ y[x_1] \\ x_1 \\ y[x_1] \\ x_2 \\ y[x_2] \\ x_2 \\ y[x_2] \\ x_2 \\ y[x_2] \\ x_3 \\ y[x_3] \\ y[x_3]$$

Bemerkung 2.2.5: (Äquidistante Stellen)

Falls  $x_j = x_0 + \underbrace{j \cdot h}_{:=\Delta^j}$  gilt vereinfacht sich einiges:

$$y[x_0, x_1] = \frac{1}{h} \Delta y_0$$
$$y[x_0, x_1, x_2] = \frac{1}{2!h} \Delta^2 y_0$$
$$y[x_0, \dots, x_n] = \frac{1}{n!h^n} \Delta^n y_0$$

**Satz 2.2.8:** (Newton) Falls  $\beta_j = y[x_0, \ldots, x_j]$  geht das resultierende Polynom durch alle  $(x_i, y_i)$ . (D.h. die dividierten Differenzen sind korrekt.)

**Beispiel 2.2.9:** (Runge-Funktion) Die Runge-Funktion kann am Rand des gewählten Intervalls starke Oszillationen in der Interpolation verursachen, wenn bspw. die Stützstellen nicht gut gewählt sind oder das Polynom einen zu hohen Grad hat. Sie ist definiert durch  $f(x) = \frac{1}{1+x^2}$ 

28. Oktober 2025 10 / 41

Matrixmultiplikation in  $\mathcal{O}(n^3)$ , Speicher  $\mathcal{O}(n^2)$ 

```
Vektorisierter Ansatz in \mathcal{O}(n^2), Speicher \mathcal{O}(n)
```

```
# Slow matrix approach
                                                      # Fast vectorized approach
   def divdiff_slow(x,y):
                                                      def divdiff_fast(x,y):
       n = y.size
                                                          n = y.shape[0]
       T = np.zeros((n,n))
       T[:,0] = y
                                                          for k in range(1, n):
                                                              y[k:] = (y[k:] - y[(k-1):n-1])
                                                              y[k:] /= (x[k:] - x[0:n-k])
       for l in range(1,n):
            for i in range(n-1):
                T[i, 1] = (T[i+1, 1-1] - T[i, 1-1])
                                                         return y
                T[i, 1] /= (x[i+1] - x[i])
10
11
       return T[0,:]
12
```

#### 2.2.2 Auswertung

Auswertung eines Newton-Polynoms funktioniert in  $\mathcal{O}(n)$  durch ein modifiziertes Horner-Schema:

#### 2.2.3 Fehler

**Satz 2.2.11:** (Fehler)  $f:[a,b]\to\mathbb{R}$  ist (n+1)-mal diff.-bar, p ist das Polynom zu f in  $x_0,\ldots,x_n\in[a,b]$ .

$$\forall x \in [a,b] \ \exists \xi \in (a,b): \qquad \underbrace{f(x) - p(x)}_{\text{Eabler}} = \prod_{i=0}^{n} (x - x_i) \cdot \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

Man bemerke: Die Wahl der Stützpunkte hat direkten Einfluss auf den Fehler.

28. Oktober 2025 11 / 41

#### 2.3 Lagrange- und Baryzentrische Interpolationsformeln

#### Lagrange Polynome

Definition 2.3.1

Für Knoten (auch gennannt Stützstellen)  $x_0, x_1, \ldots, x_n \in \mathbb{R}$  definieren wir die Lagrange-Polynome für n =Anzahl Stützstellen, also haben wir n-1 Brüche, da wir eine Iteration überspringen, weil bei dieser j=i ist:

$$l_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{x - x_j}{x_i - x_j}$$

Falls j = i im Produkt, so überspringt j diese Zahl.

**Beispiel 2.3.2:** Seien  $x_0, x_1, x_2$  die Stützstellen für die Lagrange-Polynome (mit n=2):

$$l_0(x) = \frac{x - x_1}{x_0 - x_1} \cdot \frac{x - x_2}{x_0 - x_2}$$

$$l_1(x) = \frac{x - x_0}{x_1 - x_0} \cdot \frac{x - x_2}{x_1 - x_2}$$

$$l_0(x) = \frac{x - x_1}{x_0 - x_1} \cdot \frac{x - x_2}{x_0 - x_2} \qquad \qquad l_1(x) = \frac{x - x_0}{x_1 - x_0} \cdot \frac{x - x_2}{x_1 - x_2} \qquad \qquad l_2(x) = \frac{x - x_0}{x_2 - x_0} \cdot \frac{x - x_1}{x_2 - x_1}$$

# Lagrange-Interpolationsformel

Satz 2.3.3

Die Lagrange-Polynome  $l_i$  zu den Stützstellen  $(x_0, y_0), \ldots, (x_n, y_n)$  bilden eine Basis der Polynome  $\mathcal{P}_n$  und es gilt:

$$p(x) = \sum_{i=0}^{n} y_i l_i(x) \text{ mit } l_i(x) = \prod_{j \neq i} \frac{x - x_j}{x_i - x_j}$$

Bemerkung 2.3.4: (Eigenschaften der Lagrange-Polynome)

1. 
$$l_i(x_i) = 0 \ \forall j \neq i$$

3. 
$$deg(l_i) = n \ \forall i$$

2. 
$$l_i(x_i) = 1 \ \forall i$$

4. 
$$\sum_{k=0}^{n} l_k(x) = 1$$
 und  $\sum_{k=0}^{n} l_k^{(m)}(x) = 0$  für  $m > 0$ 

Da eine Implementation, welche direkt auf den Lagrange-Polynomen basiert, eine Laufzeit von  $\mathcal{O}(n^3)$  hätte, suchte man nach einer besseren Methode. Mit der baryzentrischen Interpolationsformel wird zuerst ein Pre-Computing auf Teilen der Lagrange-Polynome durchgeführt, was dann dazu führt, dass die Laufzeit auf  $\mathcal{O}(n^2)$  sinkt  $(\mathcal{O}(n)$  für die Auswertung der Formel und  $\mathcal{O}\left(n^2\right)$  für die Berechnung der  $\lambda_k$ ). Man berechnet die baryzentrischen Gewichte  $\lambda_k$  folgendermassen:

$$\lambda_k = \prod_{i \neq k} \frac{1}{x_k - x_j}$$

oder das ganze mithilfe von Numpy:

```
def barycentric_weights(x: np.ndarray) -> np.ndarray:
   n = len(x)
   # Initialize to zeros
   barweight = np.ones(n)
   for k in range(n):
   # Vectorized differences between x_k and all xs
   differences = x[k] - x
   # Remove the k-th element (and handle edge cases for k=0 and k=n-1)
   if k < n - 1 and k > 0:
   diff_processed = np.concatenate((differences[:k], differences[(k + 1) :]))
   barweight[k] = 1 / np.prod(diff_processed)
11
   elif k == 0:
   barweight[k] = 1 / np.prod(differences[1:])
13
   else:
   barweight[k] = 1 / np.prod(differences[:k])
15
   return barweight
```

28. Oktober 2025 12 / 41 Gleiche funktion, etwas kürzer:

```
def barycentric_weights(x: np.ndarray) -> np.ndarray:
    n = len(x)
    w = np.ones(n) # = barweight
    # Compute the (non-inverted) product, avoiding case (x[i] - x[i]) = 0
    for i in range(0, n, 1):
        if (i-1 > 0): w[0:(i-1)] *= (x[0:(i-1)] - x[i])
        if (i+1 < n): w[i+1:n] *= (x[i+1:n] - x[i])
        # Invert all at once
    return 1/w</pre>
```

Mit dem können wir dann ein Polynom mit der baryzentrischen Interpolationsformel interpolieren:

# Baryzentrische Interpolationsformel

**Formel** 

$$p(x) = \frac{\sum_{k=0}^{n} \frac{\lambda_k}{x - x_k} y_k}{\sum_{k=0}^{n} \frac{\lambda_k}{x - x_k}}$$

Falls wir die Stützstellen als (n+1) Chebyshev-Abszissen  $x_k=\cos\left(\frac{k\pi}{n}\right)$  wählen, so sind alle  $\lambda_k$  gegeben durch  $\lambda_k=(-1)^k\delta_k$  mit  $\delta_0=\delta_n=0.5$  und  $\delta_i=1.$ 

Mit anderen  $\lambda_k$  eröffnet die baryzentrische Formel einen Weg zur Verallgemeinerung der Interpolation mittels rationaler Funktionen und ist entsprechend kein Polynom mehr.

Eine weitere Anwendung der Formel ist als Ausganspunkt für die Spektralmethode für Differenzialgleichungen.

```
def interp_barycentric(
   data_point_x: np.ndarray,
   data_point_y: np.ndarray,
   barweight: np.ndarray,
   x: np.ndarray
   p_x = np.zeros_like(x)
   n = data_point_x.shape[0]
   for i in range(x.shape[0]):
10
   # Separate sums to divide in the end
11
   upper_sum = 0
^{12}
   lower_sum = 0
13
   for k in range(n):
   frac = barweight[k] / (x[i] - data_point_x[k])
   upper_sum += frac * data_point_y[k]
16
   lower_sum += frac
   p_x[i] = upper_sum / lower_sum
18
19
   return p_x
20
```

28. Oktober 2025 13 / 41

#### 2.3.1 Fehler

Falls an den Stützstellen  $x_i$  durch beispielsweise ungenaue Messungen unpräzise Werte  $\widetilde{y_i}$  haben, so entsteht logischerweise auch ein unpräzises Polynom  $\widetilde{p}(x)$ . Verglichen in der Lagrange-Basis zum korrekten Interpolationspolynom p(x) ergibt sich folgender Fehler:

$$|p(x) - \widetilde{p}(x)| = \left| \sum_{i=0}^{n} (y_i - \widetilde{y}_i) l_i(x) \right| \le \max_{i=0,\dots,n} |y_i - \widetilde{y}_i| \cdot \sum_{i=0}^{n} |l_i(x)|$$

**Definition 2.3.5:** (Lebesgue-Konstante) Zu den Stützstellen  $x_0, \ldots, x_n$  im Intervall [a, b] ist sie definiert durch

$$\Lambda_n = \max_{x \in [a,b]} \sum_{i=0}^n |l_i(x)|$$

**Satz 2.3.7:** (Auswirkung von Messfehlern) Es gilt (wenn  $\Lambda_n$  die beste Lebesgue-Konstante für die Ungleichung ist):

$$\max_{x \in [a,b]} |p(x) - \widetilde{p}(x)| \le \Lambda_n \max_{i=0,\dots,n} |y_i - \widetilde{y}_i|$$

**Fehler** 

Satz 2.3.8

Sei  $f:[a,b] \to \mathbb{R}$  und p das Interpolationspolynom zu f. Seien  $x_0,\dots,x_n$  die Stützstellen, dann gilt:

$$||f(x) - p(x)||_{\infty} = \max_{x \in [a,b]} |f(x) - p(x)| \le (1 + \Lambda_n) \min_{q \in \mathcal{P}_n} \max_{x \in [a,b]} |f(x) - q(x)|$$

Bemerkung 2.3.10: Für gleichmässig auf I verteilte Stützstellen gilt  $\Lambda_n \approx \frac{2^{n+1}}{en\log(n)}$ 

Wichtig: Niemals gleichmässig verteilte Stützstellen verwenden für die Interpolation von Polynomen hohen Grades

Präzisere Interpolationen lassen sich beispielsweise durch Unterteilen des Intervalls in kleinere Intervalle finden, indem man für jedes Intervall ein separates Polynom berechnet, oder indem eine ideale Verteilung der Stützstellen wählt (was wiederum nicht einfach zu erzielen ist, siehe nächstes Kapitel).

28. Oktober 2025 14 / 41

#### 2.4 Chebyshev Interpolation

#### **Chebyshev-Polynome**

# **Definition 2.4.1**

**Erster Art** 

**Zweiter Art** 

$$T_n(x) = \cos(n\arccos(x)), x \in [-1, 1]$$

$$U_n(x) = \frac{\sin((n+1)\arccos(x))}{\sin(\arccos(x))}, \quad x \in [-1, 1]$$

 $T_n(x)$  scheint erst nicht ein Polynom zu sein, aber wir haben einen  $\arccos$  in einem  $\cos$ . Zudem:

**Satz 2.4.3:** (Eigenschaften) Das n-te Chebyshev-Polynom ist ein Polynom von Grad n und für  $x \in [-1, 1]$  gilt:

1. 
$$T_0(x) = 1, T_1(x) = x,$$
  
 $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$ 

3. 
$$T_n\left(\cos\left(\frac{k\pi}{n}\right)\right) = (-1)^k \text{ für } k = 0, \dots, n$$

2. 
$$|T_n(x)| \le 1$$

4. 
$$T_n\left(\cos\left(\frac{(2k+1)\pi}{2n}\right)\right) = 0$$
 für  $k = 0, \dots, n-1$ 

**Definition 2.4.4:** (Chebyshev-Knoten) Die (n+1) Chebyshev-Knoten  $x_0, \ldots, x_n$  im Intervall [-1, 1] sind die Nullstellen von  $T_{n+1}(x)$ 

**Bemerkung 2.4.5:** (Chebyshev-Knoten für beliebiges Intervall) Für I = [a, b] sind die Chebyshev-Knoten:

$$x_k = a + \frac{1}{2}(b - a)\left(\cos\left(\frac{2k+1}{2(n+1)}\pi\right) + 1\right) \quad k = 0, \dots, n$$

**Definition 2.4.6:** (Chebyshev-Abszissen) Die (n-1) Chebyshev-Abszissen  $x_0, \ldots, x_{n-2}$  im Intervall [-1,1] sind die Extrema des Chebyshev-Polynoms  $T_n(x)$  und zeitgleich die Nullstellen von  $U_{n-1}(x)$ . Je nach Kontext nimmt man noch die Grenzen des Intervalls (1 und -1) hinzu und hat dann (n+1) Abszissen.

Die Baryzentrischen Gewichte sind dann viel einfacher zu berechnen:  $\lambda_k = (-1)^k$  (siehe Bemerkung unterhalb der Baryzentrischen Interpolationsformel, Kapitel 2.3)

**Bemerkung 2.4.7:** (Chebyshev-Abszissen für beliebiges Intervall) Für I = [a, b] sind die Chebyshev-Abszissen:

$$x_k = a + \frac{1}{2}(b-a)\left(\cos\left(\frac{k}{n}\pi\right) + 1\right)$$
  $k = 0,\dots, n$ 

Oder  $k = 1, \ldots, n-1$  bei ausgeschlossenen Endpunkten a und b

Bemerkung 2.4.8: Gegen die Ränder des Intervalls werden die Chebyshev-Knoten dichter.

#### Orthogonalität

Satz 2.4.9

Die Chebyshev-Polynome sind orthogonal bezüglich des Skalarprodukts

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) \frac{1}{\sqrt{1 - x^2}} dx$$

Sie  $(T_0,\ldots,T_n)$  sind zudem orthogonal bezüglich des diskreten Skalarprodukts im Raum der Polynome von Grad < n

$$(f,g) = \sum_{l=0}^{n} f(x_l)g(x_l)$$

wobei  $(x_0, \ldots, x_n)$  die Nullstellen von  $T_{n+1}$  sind.

28. Oktober 2025 15 / 41

#### 2.4.1 Fehler

Was hat die neue Verteilung für einen Einfluss auf den Fehler?

#### **Fehlerabschätzung**

Satz 2.4.11

Unter allen  $(x_0,\ldots,x_n)$  mit  $x_i\in\mathbb{R}$  wird (wobei  $x_k$  die Nullstellen von  $T_{n+1}$  sind)

$$\max_{x \in [-1,1]} |(x-x_0) \cdot \ldots \cdot (x-x_n)| \qquad \qquad \text{minimal für } x_k = \cos\left(\frac{2k+1}{2(n+1)}\pi\right)$$

Folglich sind also die Nullstellen der Chebyshev-Polynome  $T_n$  die bestmögliche Wahl für die Stützstellen. Da die Abszissen mit FFT einfacher zu berechnen sind, werden diese oft bevorzugt berechnet. Dies, da die Nullstellen von  $T_n$  in den Extrema von  $T_{2n}$  enthalten sind, während zudem zwischen zwei nebeneinanderliegenden Chebyshev-Abszissen jeweils eine Nullstelle von  $T_{2n}$  liegt

**Satz 2.4.13:** (Lebesgue-Konstante) Für die Chebyshev-Interpolation:  $\Lambda_n \approx \frac{2}{\pi} \log(n)$  für  $n \to \infty$ 

#### Interpolationspolynom

Satz 2.4.15

Das Interpolationspolynom p zu f mit Chebyshev-Knoten gleich der Nullstellen von  $T_{n+1}$  ist gegeben durch

$$p(x) = c_0 + c_1 T_1(x) + \ldots + c_n T_n(x)$$

wobei für die  $c_k$  gilt:

$$c_k = \frac{2}{n+1} \sum_{l=0}^n f\left(\underbrace{\cos\left(\frac{2l+1}{n+1}\frac{\pi}{2}\right)}_{=x_i(\mathsf{Knoten})}\right) \cos\left(k\frac{2l+1}{n+1}\frac{\pi}{2}\right) \qquad \qquad \mathsf{f\"{u}r} \ k = 1, \dots, n$$

$$c_k = \frac{1}{n+1} \sum_{l=0}^n f\left(\underbrace{\cos\left(\frac{2l+1}{n+1}\frac{\pi}{2}\right)}_{=x_i(\mathsf{Knoten})}\right) \cos\left(k\frac{2l+1}{n+1}\frac{\pi}{2}\right) \qquad \text{für } k = 0$$

Für  $n \ge 15$  berechnet man  $c_k$  mit der Schnellen Fourier Transformation (FFT).

Bemerkung 2.4.16: (Laufzeit) Für die Interpolation ergibt sich folgender Aufwand:

Direkte Berechnung der  $c_k$   $\mathcal{O}\left((n+1)^2\right)$  Operationen Dividierte Differenzen  $\mathcal{O}\left(\frac{n(n+1)}{2}\right)$  Operationen (zum Vergleich)  $c_k$  mittels FFT  $\mathcal{O}\left(n\log(n)\right)$  Operationen

Satz 2.4.17: (Clenshaw-Algorithmus) Seien  $d_{n+2}=d_{n+1}=0$ . Sei  $d_k=c_k+(2x)d_{k+1}-d_{k+2}$  für  $k=n,\ldots,0$  Dann gilt:  $p(x)=\frac{1}{2}(d_0-d_2)$  und man kann das Interpolationspolynom p(x) mit Hilfe einer Rückwärtsrekursion berechnen

Der Clenshaw-Algorithmus ist sehr stabil, auch wenn er mit (oft) unstabilen Rekursionen implementiert ist.

Auf der nächsten Seite findet sich eine saubere, effiziente Implementation des Clenshaw-Algorithmus:

28. Oktober 2025 16 / 41

```
def clenshaw(coeffs: np.ndarray, x: np.ndarray):
       n = len(coeffs) - 1
       # initialise temporary variables
       d_prev_prev, d_prev, d_curr = (
           np.zeros_like(x),
           np.zeros_like(x),
           np.zeros_like(x),
       )
       for k in range(n, -1, -1): # backward recursion
10
           d_curr = coeffs[k] + 2 * x * d_prev - d_prev_prev
           d_prev_prev, d_prev = d_prev, d_curr
12
13
       return d_prev - x * d_prev_prev
14
```

In numpy kann man mit np.polynomial.chebyshev.chebfit ein polyfit für Chebyshev-Polynome durchführen und mit np.polynomial.chebyshev.chebder die Ableitungen der Approximation berechnen. Die chebder-Funktion nimmt die normalen Chebyshev-Koeffizienten als Argument, die man einfach mit folgendem Code berechnen kann:

```
def get_cheb_coeffs(abscissa: np.ndarray)
    n = len(abscissa) - 1
    dct_vals = scipy.fft.dct(abscissa, type=1)

coeffs = dct_vals / n
    coeffs[0] /= 2
    self.coeffs = coeffs
```

28. Oktober 2025 17 / 41

**Definition 3.1.3** 

# 3 Trigonometrische Interpolation

#### 3.1 Fourier-Reihen

Eine Anwendung der (Schnellen) Fourier-Transformation (FFT) ist die Komprimierung eines Bildes und sie wird im JPEG-Format verwendet.

Intuition: Wir haben eine Datenmenge D, die die y-Werte einer Frequenzmessung an N äquidistanten Punkten enthält. Die Fourier-Transformation dieser Datenmenge ergibt eine neue Datenmenge, nennen wir sie F, die, wenn geplottet, einem Plot der Frequenzanalyse entsprechen. Dies ist auch korrekt, denn die Fourier-Transformation macht (vereinfacht) genau das; Sie macht einen Basiswechsel auf der Datenmenge D, so dass die Frequenz auf der x-Achse und die "Häufigkeit" deren auf der y-Achse aufgetragen werden, oder formaler, so dass wir statt einer Funktion der Zeit eine Funktion der Frequenz haben.

Das Inverse davon nimmt eine Funktion der Frequenz und transformiert diese in eine Funktion der Zeit

**Definition 3.1.1:** (Trigonometrisches Polynom von Grad  $\leq m$ ) Die Funktion:

$$p_m(t):=t\mapsto \sum_{j=-m}^m \gamma_j e^{2\pi i j t}$$
 wobei  $\gamma_j\in\mathbb{C}$  und  $t\in\mathbb{R}$ 

**Bemerkung 3.1.2:**  $p_m: \mathbb{R} \to \mathbb{C}$  ist periodisch mit Periode 1. Falls  $\gamma_{-j} = \overline{\gamma_j}$  für alle j, dann ist  $p_m$  reellwertig und  $p_m$  kann folgendermassen dargestellt werden  $(a_0 = 2\gamma_0, a_j = 2\Re(\gamma_j))$  und  $b_j = -2\Im(\gamma_j)$ :

$$p_m(t) = \frac{a_0}{2} + \sum_{j=1}^{m} (a_j \cos(2\pi jt) + b_j \sin(2\pi jt))$$

# $L^2$ -Funktionen \_\_\_\_\_\_

Wir definieren die  $L^2$ -Funktionen auf dem Intervall (0,1) als

$$L^{2}(0,1) := \{ f : (0,1) \to \mathbb{C} \mid ||f||_{L^{2}(0,1)} < \infty \}$$

während die  $L^2$ -Norm (= Euklidische Norm, also die normale Vektornorm) auf (0,1) durch das Skalarprodukt

$$\langle g, f \rangle_{L^2(0,1)} := \int_0^1 \overline{g(x)} f(x) \, \mathrm{d}x$$

über  $||f||_{L^2(0,1)} = \sqrt{\langle f, f \rangle_{L^2(0,1)}}$  induziert wird

**Bemerkung 3.1.4:**  $L^2(a,b)$  lässt sich analog definieren mit

$$\begin{split} \langle g,f\rangle_{L^2(a,b)} &:= \int_a^b \overline{g(x)} f(x) \ \mathrm{d}x \\ &= (b-a) \int_0^1 \overline{g(a+(b-a)t)} f(a+(b-a)t) \ \mathrm{d}t \end{split}$$

In Anwendungen findet sich oft das Intervall  $\left[-\frac{T}{2},\frac{T}{2}\right]$ . Dann verwandeln sich die Integrale in die Form  $\frac{1}{T}\int_{\frac{T}{2}}^{-\frac{T}{2}}(\ldots)\,\mathrm{d}t$  und  $\exp(2\pi i j t)$  durch  $\exp(i\frac{2\pi j}{T}t)$  ersetzt wird.

**Bemerkung 3.1.6:** Die Funktionen  $\varphi_k(x) = \exp(2\pi i k x)$  sind orthogonal bezüglich des  $L^2(0,1)$ -Skalarprodukts, bilden also eine Basis für den Unterraum der trigonometrischen polynome.

**Definition 3.1.7:** Eine Funktion f ist der  $L^2$ -Grenzwert von Funktionenfolgen  $f_n \in L^2(0,1)$ , wenn für  $n \to \infty$  gilt, dass  $||f - f_n||_{L^2(0,1)} \to 0$ 

28. Oktober 2025 18 / 41

Fourier-Reihe Satz 3.1.8

Jede Funktion  $f \in L^2(0,1)$  ist der Grenzwert ihrer Fourier-Reihe:

$$f(t) = \sum_{k=-\infty}^{\infty} \hat{f}(k)e^{2\pi ikt}$$

wobei die Fourier-Koeffizienten

$$\widehat{f}(k) = \int_0^1 f(t)e^{-2\pi ikt} \, \mathrm{d}t \ k \in \mathbb{Z}$$

definiert sind. Es gilt die Parseval'sche Gleichung:

$$\sum_{k=-\infty}^{\infty} |\widehat{f}(k)|^2 = ||f||_{L^2(0,1)}^2$$

**Bemerkung 3.1.9:** Oder viel einfacher und kürzer: Die Funktionen  $\varphi_k(x)$  bilden eine vollständige Orthonormalbasis in  $L^2(0,1)$ .

**Bemerkung 3.1.14:** Die Parseval'sche Gleichung beschreibt einfach gesagt einen "schnellen" Abfall der  $\widehat{f}(k)$ . Genauer gesagt, klingen die Koeffizienten schneller als  $\frac{1}{\sqrt{k}}$  ab. Sie sagt zudem aus, dass die  $L^2$ -Norm der Funktion aus einer Summe berechnet werden kann (nicht nur als Integral). Wenn wir die Fourier-Reihe nach t ableiten, erhalten wir

$$f'(t) = \sum_{k=-\infty}^{\infty} 2\pi i k \hat{f}(k) e^{2\pi i k t}$$

Fourier-Reihe Satz 3.1.15

Seien f und f' integrierbar auf (0,1), dann gilt  $\widehat{f'}(k)=2\pi i k \widehat{f}(k)$  für  $k\in\mathbb{Z}$ . Falls die Operationen erlaubt sind, dann gilt zudem:

$$\widehat{f^{(n)}} = (2\pi i k)^n \widehat{f}(k) \text{ und } ||f^{(n)}||_{L^2}^2 = (2\pi)^{2n} \sum_{k=-\infty}^{\infty} k^{2n} |\widehat{f}(k)|^2$$

**Satz 3.1.16:** Wenn 
$$\int_0^1 |f^{(n)}(t)| \ \mathrm{d}t < \infty$$
, dann ist  $\widehat{f}(k) = \mathcal{O}(k^{-n})$ 

Falls die Funktion jedoch nicht glatt ist, dann entstehen Überschwingungen an den Sprungstellen, die näher und näher an die Sprünge herankommen, aber nicht kleiner werden, wenn wir mehr Terme der Fourier-Reihe aufsummieren. Das Phänomen wird das  $\it Gibbs-Phänomen$  gennant und wir haben  $\it L^2-Konvergenz$ , aber keine punktweise Konvergenz an der Sprungstelle.

**Bemerkung 3.1.17:** Diese Überschwingungen entstehen durch die Definition der Fourier-Reihe und sind in der untenstehenden Abbildung 3.1.18 aus dem Skript sehr gut ersichtlich. Die dargestellte Funktion ist die Fourier-Reihe der charakteristischen Funktion des Intervalls  $[a,b] \subseteq ]0,1[$ , welche sich folgendermassen analytisch berechnen lässt:

$$b - a + \frac{1}{\pi} \sum_{k \neq 0} e^{-ikc} \frac{\sin(kd)}{k} e^{i2\pi kt}, \quad t \in [0, 1]$$

Mit  $c = \pi(a+b)$  und  $d = \pi(b-a)$ 

**Bemerkung 3.1.19:** Meist ist es nicht möglich (oder nicht sinnvoll) die Fourier-Koeffizienten analytisch zu berechnen, weshalb man wieder zur Numerik und der Trapezformel greift, die folgendermassen definiert ist für  $t_l = \frac{l}{N}$ , wobei  $l = 0, 1 \dots, N-1$  und N die Anzahl der Intervalle ist:

$$\widehat{f}_N(k) := \frac{1}{N} \sum_{l=0}^{N-1} f(t_l) e^{-2\pi i k t_l} \approx \widehat{f}(k)$$

28. Oktober 2025 19 / 41





Abbildung 3.1.18: Überschwingungen der Fourier-Reihe der charakteristischen Funktion des Intervalls  $[a, b] \subseteq ]0, 1[$ . (Abbildung aus dem Vorlesungsdokument von Prof. V. Gradinaru, Seite 69)

#### 3.2 Diskrete Fourier Transformation

#### 3.2.1 Motivation

Nutzen wir die Trapezregel um approximativ die Fourierkoeffizienten  $\widehat{f}_N(k)$  auf äquidistanten Punkten  $l_t = \frac{l}{N} \ (0 \le l \le N-1)$  zu bestimmen, erhalten wir tatsächlich ein Polynom  $p_{N-1}$  welches die Interpolationsbedingung erfüllt:

$$p_{N-1}(t) = \sum_{k=-\frac{N}{2}}^{\frac{N}{2}-1} \widehat{f}_N(k) e^{2\pi i k t}$$

Der Beweis hierfür ist im Skript auf p. 71. Die N-te Einheitswurzel wird hier definiert:

**Definition 3.2.1:** (*N*-te Einheitswurzel)  $\omega_N := \exp(\frac{-2\pi i}{N})$ 

**Bemerkung 3.2.2:** (Eigenschaften von  $\omega_N$ )

$$\begin{aligned} \forall j,k \in \mathbb{Z}: \quad & \omega_N^{k+jN} = \omega_N^k \\ \forall k \in \mathbb{Z}, t \in \mathbb{R}: \quad & \omega_N^{t+kN} = \omega_N^t \end{aligned}$$

$$\omega_N^N = 1$$

$$\omega_N^{N/2} = -1$$

$$\sum_{k=0}^{N-1} \omega_N^{kj} = \begin{cases} N, & j \equiv_N 0 \\ 0, & \text{sonst} \end{cases}$$

#### 3.2.2 Konstruktion

Wir definieren die Trigonometrische Basis. Den Basiswechsel zu dieser Basis nennen wir diskrete Fourier Transformation.

**Definition 3.2.3:** (Trigonometrische Basis)

$$\{v_0,\dots,v_{N-1}\} \text{ ist eine Basis von } \mathbb{C}^N, \text{ wobei } v_k = \begin{bmatrix} \omega_N^{0\cdot k} \\ \omega_N^{1\cdot k} \\ \vdots \\ \omega_N^{(N-1)\cdot k} \end{bmatrix} \in \mathbb{C}^N$$

Die symmetrische, nicht hermitesche Matrix  $V = [v_0, \ldots, v_{N-1}]$  ist eine orthogonale Basis für  $\mathbb{C}^N$ :  $V^H V = N \cdot I_N$ . Ebenfalls ist V die Basiswechsel Matrix Trigonometrische Basis  $(z) \mapsto \mathsf{Standardbasis}\ (y)$ . An Hand von V definieren wir gleich die Fourier-Matrix  $F_N$ .

$$y = Vz \implies z = V^{-1}y = \frac{1}{N}V^{H}y = \frac{1}{N}\underbrace{F_{N}}_{:=V^{H}}y$$

Der Eintrag  $y_l$  enstspricht einem Glied der Fourier-Reihe ausgewertet in  $\frac{l}{N} \in [0,1)$ . Die diskreten Fourier-Koeffizienten  $\gamma_k$  sind eine Umsortierung der Koeffizienten der trigonometrischen Basis.

28. Oktober 2025 20 / 41

$$y = \sum_{k=0}^{N-1} y_k e_{k+1} = \sum_{k=0}^{N-1} z_k v_k = \sum_{k=0}^{N-1} z_k \begin{bmatrix} \omega_N^{0.k} \\ \omega_N^{1.k} \\ \omega_N^{2.k} \\ \vdots \\ \omega_N^{(N-1) \cdot k} \end{bmatrix}$$
 
$$y_l = \sum_{k=0}^{N-1} z_k \omega_N^{l.k} \stackrel{\text{S. 75}}{=} \sum_{k=-N/2}^{N/2-1} \gamma_k \cdot \exp(\frac{2\pi i}{N} lk)$$
 wobei  $\gamma_k = \begin{cases} z_k, & 0 < k \leq \frac{N}{2} - 1 \\ z_k + N, & -\frac{N}{2} \leq k < 0 \end{cases}$ 

**Definition 3.2.4:** (Fourier-Matrix)

$$F_N := V^H = [v_0, \dots, v_{N-1}]^H = \begin{bmatrix} \omega_N^0 & \omega_N^0 & \cdots & \omega_N^0 \\ \omega_N^0 & \omega_N^1 & \cdots & \omega_N^{N-1} \\ \omega_N^0 & \omega_N^2 & \cdots & \omega_N^{2(N-1)} \\ \vdots & \vdots & & \vdots \\ \omega_N^0 & \omega_N^{N-1} & \cdots & \omega_N^{(N-1)^2} \end{bmatrix} = [\omega_N^{jk}]_{j,k=0}^{N-1} \in \mathbb{C}^{N \times N}$$

Die skalierte Fourier-Matrix  $\frac{1}{\sqrt{N}}F_N$  hat einige besondere Eigenschaften.

**Satz 3.2.6:** Die skalierte Fourier-Matrix  $\frac{1}{\sqrt{N}}F_N$  ist unitär:  $F_N^{-1} = \frac{1}{N}F_N^H = \frac{1}{N}\overline{F_N}$ 

**Bemerkung 3.2.7:** (Eigenwerte von  $\frac{1}{\sqrt{N}}F_N$ ) Die  $\lambda$  von  $\frac{1}{\sqrt{N}}F_N$  liegen in  $\{1,-1,i,-i\}$ .

Die diskrete Fourier-Transformation ist nun einfach die Anwendung der Basiswechsel-Matrix  $F_N$ .

**Definition 3.2.5:** (Diskrete Fourier-Transformation)  $\mathcal{F}_N : \mathbb{C} \to \mathbb{C}$  s.d.  $\mathcal{F}_N(y) = F_N y$ 

Für 
$$c = \mathcal{F}_N(y)$$
 gilt:  $c_k = \sum_{j=0}^{N-1} y_j \omega_N^{kj}$ 

c lässt sich als Repräsentation von y im Frequenzbereich interpetieren. Durch die DFT können wir nun jederzeit zwischen der normalen und der Frequenz-perspektive wechseln. Das ermöglicht einige interessante Anwendungen.

#### 3.2.3 DFT in Numpy

Sei y in der Standardbasis, und  $c = \mathcal{F}_N(y)$ , also y in der trig. Basis.

$$c=F_N imes y= ext{fft}(y)$$
 (DFT in numpy) $y=rac{1}{N}F_N^Hc= ext{ifft}(c)$  (Inverse DFT in numpy)

Um zur ursprünglichen Darstellung des trig. Polynoms zurück zu kommen, müssen wir die Koeffizienten umsortieren: Seien  $z=\frac{1}{N}F_Ny$  und  $\zeta=\mathtt{fft.fftshift}(z)$ .

$$f(x) \approx \underbrace{\sum_{k=-N/2}^{N/2-1} \zeta_k \cdot e^{2\pi i k x}}_{\text{Form des trig. Polynoms}}$$

Bemerkung 3.2.13: Man kann mit dieser Approximation einfach die  $L^2$ -Norm und Ableitungen berechnen:

$$||f||_{L^{2}}^{2} \approx \left\| \sum_{k=-N/2}^{N/2-1} \zeta_{k} \cdot e^{2\pi i k x} \right\|_{L^{2}}^{2} = \sum_{k=-N/2}^{N/2-1} |\zeta_{k}|^{2} = ||z||_{L^{2}}^{2}$$
 
$$f'(t) \approx \sum_{k=-N/2}^{N/2-1} (2\pi i k) \zeta_{k} \cdot e^{2\pi i k x}$$

28. Oktober 2025 21 / 41

#### 3.2.4 DFT & Lineare Algebra

**Definition 3.2.25:** (Zirkulant) Für einen vektor  $c \in \mathbb{R}^N$  hat der Zirkulant  $C \in \mathbb{R}^{N \times N}$  die Form:

$$C = \begin{bmatrix} c_0 & c_{N-1} & c_{N-2} & \cdots & c_3 & c_2 & c_1 \\ c_1 & c_0 & c_{N-1} & \cdots & c_4 & c_3 & c_2 \\ c_2 & c_1 & c_0 & \cdots & c_5 & c_4 & c_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ c_{N-3} & c_{N-4} & c_{N-5} & \cdots & c_0 & c_{N-1} & c_{N-2} \\ c_{N-2} & c_{N-3} & c_{N-4} & \cdots & c_1 & c_0 & c_{N-1} \\ c_{N-1} & c_{N-2} & c_{N-3} & \cdots & c_2 & c_1 & c_0 \end{bmatrix}$$

$$S_N = \begin{bmatrix} 0 & 0 & \cdots & \cdots & 0 & 1 \\ 1 & 0 & \cdots & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \cdots & 0 & 0 \\ 0 & 0 & \cdots & \cdots & 1 & 0 \end{bmatrix}$$

Die Shift Matrix  $S_N$  ist der Zirkulant für  $c=e_2$ .  $S_N$  ist eine Permutationsmatrix, die alle Einträge nach vorne schiebt.

$$S_{N} \begin{bmatrix} x_{0} \\ x_{1} \\ \vdots \\ x_{N-1} \end{bmatrix} = \begin{bmatrix} x_{N-1} \\ x_{0} \\ \vdots \\ x_{N-2} \end{bmatrix} \qquad S_{N}^{\top} \begin{bmatrix} x_{N-1} \\ x_{0} \\ \vdots \\ x_{N-2} \end{bmatrix} = \begin{bmatrix} x_{0} \\ x_{1} \\ \vdots \\ x_{N-1} \end{bmatrix}$$

Die Shift-Matrix hat einen speziellen Bezug zu den Spaltenvektoren  $v_k$  von  $F_N$ , und auch allen anderen Zirkulanten C.

**Bemerkung 3.2.26:** Der k-te Fourier-Vektor  $v_k$  ist ein Eigenvektor von  $S_N$  zu  $\lambda_k = e^{2\pi i \frac{k}{N}}$ .

**Satz 3.2.27:** (Diagonalisierung von Zirkulanten) Die Eigenvektoren von  $S_N$  diagonalisieren jeden Zirkulanten C, und sind d.h. auch die Eigenvektoren von C. Die Eigenwerte erhält man aus  $p(z) = c_0 z^0 + \ldots + c_{N-1} z^{N-1}$ .

Eine Operation mit vielen Anwendungen ist die Faltung. Sie hat einige Beziehungen zur Fourier-Transformation.

**Definition 3.2.28:** (Faltung)  $a*b:=(c_k)_{k\in\mathbb{Z}}=\sum_{n=-\infty}^{\infty}a_nb_{k-n}$ , wobei  $(a_k)_{k\in\mathbb{Z}}$ ,  $(b_k)_{k\in\mathbb{Z}}$  unendliche Folgen sind.

Die Faltung von  $a = [a_0, \dots, a_{N-1}]^\top, b = [b_0, \dots, b_{N-1}]^\top$  ist leicht: Man erweitert beide Vektoren mit Nullen.

**Definition 3.2.29:** (*Zyklische Faltung*) Für N-periodische Folgen oder Vektoren der Länge N:

$$c=a\circledast b$$
 s.d.  $\sum_{n=0}^{N-1}a_nb_{k-n}\equiv_N\sum_{n=0}^{N-1}b_na_{n-k}$ 

Bemerkung 3.2.32: Zyklische Faltungen von Vektoren kann man mit Zirkulanten berechnen.

$$c = a \circledast b = Ab = \underbrace{\begin{bmatrix} a_0 & \cdots & a_{N-1} \\ \vdots & \ddots & \vdots \\ a_{N-1} & \cdots & a_0 \end{bmatrix}}_{\text{Zirkulant von } a} b$$

**Bemerkung 3.2.30:** Eine Multiplikation von Polynomen g, h entspricht einer Faltung im Frequenzbereich.

$$\mathcal{F}_N(\underbrace{g*h}_{\mathsf{Standard\ Basis}}) = \underbrace{\mathcal{F}_N(g)\cdot\mathcal{F}_N(h)}_{\mathsf{Trigonometrische\ Basis}}$$

Im Fall von T -periodischen Funktionen gilt:  $(g*h)(x) = \frac{1}{T} \int_0^T g(t) h(x-t).$ 

**Bemerkung 3.2.31:** Da  $F_N$  jeden Zirkulant C diagonalisiert (Satz 3.4.27), gilt sogar:

$$c = a \circledast b = Ab = F_N^{-1} p(D) F_N b$$
 (p(D) ist Diagonalmatrix der  $\lambda$  von C)

Man erhält so letzendlich das Faltungs-Theorem: Die  $F_N$ -Transformierte einer Faltung ist genau das gleiche wie die Multiplikation zweier  $F_N$ -Transormierten. Da die DFT in  $\mathcal{O}(n\log(n))$  (Kap. 3.3) geht, gilt dies nun auch für die Faltung.

$$F_N c = diag(F_N a) F_N b$$

28. Oktober 2025 22 / 41

#### 3.3 Schnelle Fourier Transformation

Da es viele Anwendungen für die Fourier-Transformation gibt, ist ein Algorithmus mit guter Laufzeit sehr wichtig. Während eine naive version des DFT-Algorithmus eine Laufzeit von  $\mathcal{O}\left(N^2\right)$  hat, so hat der Fast Fourier Transform Algorithmus nur eine Laufzeit von  $\mathcal{O}\left(N\log(N)\right)$ , was bei N=1024 bereits eine Laufzeitsverbesserung von  $100\times$  mit sich bringt ( $\mathcal{O}\left(10\,000\right)$  vs  $\mathcal{O}\left(1\,000\,000\right)$  Operationen)! Die untenstehende Abbildung 3.3.3 findet sich, zusammen mit dem Code, mit der sie produziert wurde im Skript auf Seite 86-88



Abbildung 3.3.3: Vergleich der Laufzeit von verschiedenen Fourier-Transformations-Algorithmen. (Abbildung 3.3.3 aus dem Vorlesungsdokument von Prof. V. Gradinaru, Seite 88)

Der hier besprochene Cooley-Tukey-Algorithmus wurde ursprünglich von Gauss 1805 entdeckt, dann vergessen und schliesslich 1965 von Cooley und Tukey wiederentdeckt. Der Algorithmus verwendet einen "Divide and Conquer" Approach, also ist logischerweise die Idee, dass man die Berechnung einer DFT der Länge n auf die Berechnung vieler DFTs kleinerer Längen zurückführen kann.

Für den Algorithmus müssen folgende vier Optionen betrachtet werden:

- I Vektoren der Länge  $N=2m\Longrightarrow$  Laufzeit gut
- II Vektoren der Länge  $N=2^L\Longrightarrow$  Laufzeit ideal
- III Vektoren der Länge N=pq mit  $p,q\in\mathbb{Z}\Longrightarrow$  Etwas langsamer
- IV Vektoren der Länge N, mit N prim  $\Longrightarrow$  ca.  $\mathcal{O}\left(N^2\right)$ , besonders für N gross

Wir formen die Fourier-Transformation um für den ersten Fall (N=2m):

$$c_k = \sum_{j=0}^{N-1} y_j e^{-\frac{2\pi i}{N}jk}$$

$$= \sum_{j=0}^{m-1} y_{2j} e^{-\frac{2\pi i}{N}2jk} + \sum_{j=0}^{m-1} y_{2j+1} e^{-\frac{2\pi i}{N}(2j+1)k}$$

$$= \sum_{j=0}^{m-1} \left( y_{2j} e^{-\frac{2\pi i}{N+2}jk} \right) + e^{-\frac{2\pi}{N}k} \left( \sum_{j=0}^{m-1} y_{2j+1} e^{-\frac{2\pi i}{N+2}jk} \right)$$

Der zweite Fall ist einfach eine rekursive Weiterführung des ersten Falls, bei welchem dann das m kontinuierlich weiter dividiert wird bis zum Trivialfall mit einer  $1 \times 1$ -Matrix.

In numpy gibt es die Funktionen np.fft.fft (Vorwärts FFT), np.fft.ifft (Rückwärts FFT). scipy.fft liefert dieselben Funktionen und sie sind oft etwas schneller als die von numpy

28. Oktober 2025 23 / 41

## 3.4 Trigonometrische Interpolation

#### 3.4.1 Von Approximation zur Interpolation

Wir erinnern uns daran, dass wir die Fourier-Approximation durch den Abbruch der unendlichen Fourier-Reihe erhalten, oder in anderen Worten, wir verkleinern die Limiten der Summe.

**Bemerkung 3.4.1:** (DFT mit N=2n Koeffizienten an Punkten  $\frac{l}{N}$  für  $l=0,1,\ldots,N-1$ )

Der Shift ist hier gegeben durch (für  $k \ge 0$  ist  $\gamma_k = \widehat{f}_N(k)$  und für k < 0 ist  $\gamma_k = \widehat{f}_N(N+k)$ )

$$f_{N-1}(x) = \sum_{k=-n}^{n-1} \gamma_k e^{2\pi i k x} = \sum_{k=0}^{n-1} \gamma_k e^{2\pi i k x} + \sum_{k=-n}^{-1} \gamma_k e^{2\pi i k x}$$

$$\Leftrightarrow f_{N-1}(x) = \frac{1}{N} \left( \sum_{j=0}^{N-1} \left( f\left(\frac{j}{n}\right) \sum_{k=-n}^{n-1} e^{2\pi i k \left(x - \frac{j}{N}\right)} \right) \right)$$

Wenn wir die Funktion nun an der Stelle  $\frac{l}{N}$  auswerten so erhalten wir:

$$f_{N-1}\left(\frac{l}{N}\right) = \dots = f\left(\frac{l}{N}\right)$$

was aufgrund der Orthogonalität der diskreten Fourier-Vektoren funktioniert, welche besagt, dass  $\sum_{k=-n}^{n-1} \omega_N^{k(j-l)} = 0$ , für alle  $j \neq l$ . Für j = l ergibt die Summe N.

Dies heisst also, dass die Fourier-Approximation die Interpolationsbedingungen an den Punkten  $\frac{l}{N}$  erfüllt, also können wir die Lösung der Interpolationsaufgabe  $p_{N-1}\left(\frac{l}{N}\right)=f\left(\frac{l}{N}\right)$  f  $l=0,1,\ldots,N-1$  im Raum

$$\mathcal{T}_N = \operatorname{span}\{e^{2\pi i j t} \mid j = -\left\lfloor \frac{N-1}{2} \right\rfloor, \dots, \left\lfloor \frac{N}{2} \right\rfloor\}$$

folgendermassen finden können:

- (1) Mittels Gleichungssystem  $\sum_j \gamma_j e^{2\pi i j t_l} = f(t_l)$  für  $l=0,\ldots,N-1$ . Operationen:  $\mathcal{O}\left(N^3\right)$
- (2) Mittels FFT in  $\mathcal{O}\left(N\log(N)\right)$  Operationen, aber nur falls die Punkte äquidistant sind, also  $t_l=\frac{l}{N}$ . Dann ist die Matrix des obigen Gleichungssystems  $F_N^{-1}$

Unten findet sich Python code der mit den unterschiedlichen Methoden die Koeffizienten des Trigonometrischen Polynoms bestimmt.

```
def get_coeff_trig_poly(t: np.ndarray, y: np.ndarray):
    N = y.shape[0]

if N % 2 == 1:
    n = (N - 1.0) / 2.0
    M = np.exp(2 * np.pi * 1j * np.outer(t, np.arange(-n, n + 1)))

else:
    n = N / 2.0
    M = np.exp(2 * np.pi * 1j * np.outer(t, np.arange(-n, n)))

c = np.linalg.solve(M, y)

return c

N = 2**12

N = 2**12

t = np.linspace(0, 1, N, endpoint=False)

y = np.random.rand(N)

direct = get_coeff_trig_poly(t, y)

using_ifft = np.fft.fftshift(np.fft.fft(y) / N)

using_ifft = np.conj(np.fft.fftshift(np.fft.ifft(y)))
```

28. Oktober 2025 24 / 41

#### 3.4.2 Zero-Padding-Auswertung

Ein trigonometrisches Polynom  $p_{N-1}(t)$  kann effizient an den äquidistanten Punkten  $\frac{k}{M}$  mit M>N ausgewertet werden, für  $k=0,\ldots,M-1$ . Dazu muss das Polynom  $p_{N-1}\in\mathcal{T}_N\subseteq\mathcal{T}_M$  in der trigonometrischen Basis  $\mathcal{T}_M$  neugeschrieben werden, in dem man **Zero-Padding** verwendet, also Nullen im Koeffizientenvektor an den Stellen höheren Frequenzen einfügt.

**TODO:** Insert cleaned up code from Page 95 (part of exercises)

Die folgende Funktion wird im Script evaliptrig genannt.

```
def evaluate_trigonometric_interpolation_polynomial(y: np.ndarray, N: int):
    n = len(y)
    if (n % 2) == 0:
        c = np.fft.ifft(y)  # Fourier coefficients
        a = np.zeros(N, dtype=complex)

# Zero padding
    a[: n // 2] = c[: n // 2]
    a[N - n // 2 :] = c[n // 2 :]
    return np.fft.fft(a)

else:
    raise ValueError("odd length")
```

28. Oktober 2025 25 / 41

#### 3.5 Fehlerabschätzungen

#### Konvergenz

**Definition 3.5.1** 

Algebraische Konvergenz

**Exponentielle Konvergenz** 

Wenn der Fehler  $E(n) = \mathcal{O}\left(\frac{1}{n^p}\right)$  mit p > 0 ist

Wenn der Fehler  $E(n) = \mathcal{O}(q^n)$  mit  $0 \le q < 1$ 

**Beispiel:** Zur Fehlerbetrachtung verwenden wir drei Funktionen  $f:[0,1]\to\mathbb{R}$ , welche wir mit trigonometrischer Interpolation an den Punkten  $\frac{k}{N}$  approximieren:

- (I) Stufenfunktion (periodische Fortsetzung von f)  $f:[0,1]\to\mathbb{R}$  mit  $f(t)=\begin{cases} 0 & \text{für } \left|t-\frac{1}{2}\right|>\frac{1}{4}\\ 1 & \text{für } \left|t-\frac{1}{2}\right|\leq\frac{1}{4} \end{cases}$
- (II) Periodische, glatte Funktion  $h:\mathbb{R}\to\mathbb{R}$  mit  $h(t)=\frac{1}{\sqrt{1+\frac{1}{2}\sin(2\pi t)}}$
- (III) Hutfunktion (periodische Fortsetzung von h)  $g:[0,1]\to\mathbb{R}$  mit  $g(t)=\left|t-\frac{1}{2}\right|$

Die untenstehende Abbildung 3.5.2 beinhaltet einen Plot, auf dem die Konvergenz in Abhängigkeit des Grades des Interpolationspolynoms aufgetragen ist.



Abbildung 3.5.2: Interpolierungsfehler der Beispiele. Algebraische Konvergenz für (I) und (III), exponentielle für (II). (Abbildung 3.5.2 aus dem Vorlesungsdokument von Prof. V. Gradinaru, Seite 96)

Auch hier tritt das Gibbs-Phänomen wieder an den Sprungstellen von f(t) auf. Dies verursacht die Verlangsamung der Konvergenz in den Stellen, in welchen die Funktion nicht glatt ist.

28. Oktober 2025 26 / 41

**Beispiel 3.5.4:** Sei für  $\alpha \in [0,1)$   $f(t) = \frac{1}{\sqrt{1-\alpha\sin(2\pi t)}}$ . Die Konvergenz ist exponentiell in n und je kleiner  $\alpha$ , desto schneller ist sie. In der untenstehenden Abbildung 3.5.5 sind einige Beispiele aufgetragen:



Abbildung 3.5.5: Fehler bei der trigonometrischen Interpolation. (Abbildung 3.5.5 aus dem Vorlesungsdokument von Prof. V. Gradinaru, Seite 98)

Aliasing Satz 3.5.6

Der k-te Fourier-Koeffizient des N-ten trigonometrischen Interpolationspolynoms unterscheidet sich vom k-ten Fourier-Koeffizienten von f gerade um die Summe aller Fourier-Koeffizienten, die um ganze Vielfache von N vom k-ten Fourier-Koeffizienten verschoben sind:

$$\widehat{p}_N(k) - \widehat{f}(k) = \sum_{j \neq 0 \in \mathbb{Z}} \widehat{f}(k+jN)$$

 $\textbf{Korollar 3.5.7:} \ \mathsf{F\"{u}r} \ f \in \mathbb{C}^p([0,1]) \ \mathsf{mit} \ p \geq 1 \ \mathsf{und} \ f \ 1\text{-periodisch, dann gilt:} \ |\widehat{p}_N(k) - \widehat{f}(k)| = \mathcal{O}\left((N^{-p})\right) \ \mathsf{f\"{u}r} \ |k| \leq \frac{N}{2}$ 

Das heisst also, dass die Fourier-Koeffizienten von f bei kleinen Frequenzen (hier  $|k| < \frac{N}{2}$ ) sehr gut durch die Fourier-Koeffizienten des trigonometrischen Interpolationspolynoms approximiert werden.

#### Fehler der trigonometrischen Interpolation

Satz 3.5.8

Falls f 1-periodisch ist und die Reihe  $\sum_{k\in\mathbb{Z}}|\widehat{f}(k)|$  absolut konvergiert, dann ist der Approximationsfehler definiert als:

$$|p_N(x) - f(x)| \le 2 \sum_{|k| \ge \frac{N}{2}} |\widehat{f}(k)| \quad \forall x \in \mathbb{R}$$

Da durch diesen Satz die obere Schranke für den Approximationsfehler durch die schwer approximierbaren Fourier-Koeffizienten  $\widehat{f}(k)$  gegeben ist, heisst das folgendes für die Approximation von Polynomen von Grad  $\deg(P(x)) < n$  für unser Approximationspolynom von Grad  $\deg(P_N(x)) = n$ :

**Korollar 3.5.9:** (Abtasttheorem) Sei f 1-periodisch mit maximaler Frequenz m, also  $\widehat{f}(k) = 0 \ \forall |k| > m$ . Falls N > 2m, dann gilt  $p_N(x) = f(x) \ \forall x$ 

**Beispiel:** Ein Beispiel aus der Musik: Wir haben ein analoges Signal und wollen es digitalisieren. Wir messen die Spannungswerte in äquidistanten Punkten. Falls wir jedoch die Frequenz der Messung zu niedrig wählen, so kann ein total falsches Interpolationspolynom entstehen, wie in der untenstehenden Abbildung 3.5.10 zu sehen: Für unser

28. Oktober 2025 27 / 41



Abbildung 3.5.10: Aliasing für  $f(t)=\cos(2\pi\cdot 19t)$ . (Abbildung 3.5.10 aus dem Vorlesungsdokument von Prof. V. Gradinaru, Seite 100)

Signal bedeutet das also, dass wir eine Art Verzerrung auf der Aufnahme haben, oder für Autoräder, dass es so scheint, als würden sich die Räder rückwärts drehen.

#### **Fehlerabschätzung**

Satz 3.5.11

Sei  $f^{(k)} \in L^2(0,1) \ \forall k \in \mathbb{N}$ , dann gilt:

$$||f-p_N(f)||_{L^2(0,1)} \leq \sqrt{1+c_k}N^{-k}||f^{(k)}||_{L^2(0,1)} \text{ wobei } c_k = 2\sum_{l=1}^{\infty}(2l-1)^{-2k}$$

Also, je mehr Ableitungen in  $L^2(0,1)$  liegen, desto kleiner ist der Fehler.

Im Skript auf Seiten 101 und 102 gibt es einige Abbildungen die eine gewisse Intuition hinter der Approximation und den entstandenen Fehlern gibt.

28. Oktober 2025 28 / 41

#### 3.6 DFT und Chebyshev-Interpolation

Mithilfe der DFT können günstig und einfach die Chebyshev-Koeffizienten ( $c_k$ ) berechnet werden. Die Idee basiert auf dem Satz 2.4.16, durch welchen schon schnell klar wird, dass es eine Verbindung zwischen den Fourier-Koeffizienten und Chebyshev-Koeffizienten gibt.

Die Chebyshev-Knoten sind folgendermassen definiert:

$$t_k := \cos\left(\frac{2k+1}{2(n+1)}\pi\right), \ k = 0, \dots, n$$

Mit den Hilfsfunktionen  $g:[-1,1]\to\mathbb{C}, s\mapsto f(\cos(2\pi s))$  und  $q:[-1,1]\to\mathbb{C}, s\mapsto p(\cos(2\pi s))$ , können wir folgendes mit der Interpolationsbedingung  $f(t_k)=p(t_k)$  tun:

$$f(t_k) = p(t_k) \Longleftrightarrow g\left(\frac{2k+1}{4(n+1)}\right) = p\left(\frac{2k+1}{4(n+1)}\right)$$

Wir wenden nun die Translation  $s^*=s+\frac{1}{4n+1}$  an, die Hilfsfunktionen sind dann  $g*(s)=g(s^*)$  und  $q^*(s)=q(s^*)$  und man kann zeigen (Seite 100 im Skript), dass  $q^*$  das trigonometrische Interpolationspolynom von  $g^*$  ist, also kann man eine Chebyshev-Interpolation durch eine DFT durchführen. Folglich überträgt sich auch die Fehlerabschätzung. Die Interpolationsbedingungen sind folgendermassen definiert:

$$q\left(\frac{k}{2(n+1)} + \frac{1}{4(n+1)}\right) = z_k := \begin{cases} y_k & \text{für } k = 0, \dots, n \\ y_{2n+1-k} & \text{für } k = n, \dots, 2n+1 \end{cases}$$

Um das ganze zu implementieren ist eine andere Darstellung nützlich:

$$\cos(2\pi\xi_k) \text{ mit } \xi_k = \frac{2k+1}{4(n+1)}$$

Durch Umformungen (Seite 101 im Skript) erhalten wir:

$$\begin{split} z_l &= \sum_{-n}^n \zeta_j \exp\left(2\pi i j \widetilde{\xi}_l\right) \text{ mit } \widetilde{\xi}_l = \frac{l}{2n+2} \text{ für } 0,1,\dots,2n+1 \\ \zeta_j &= c_j \exp\left(\frac{2\pi i j}{4(n+1)}\right) \text{ für } j = -n,\dots,-1,0,1,\dots,n \end{split}$$

Und mit weitern Umformungen erhalten wir

$$F_{2n+2}^{-1} \left[ \exp\left(\frac{\pi i n l}{n+1}\right) z_l \right] = \left[\zeta_{k-n}\right]$$

Auf Seite 102 im Skript findet sich auch eine effiziente Implementation dessen.

**Bemerkung 3.6.2:** Die Formel in Satz 2.4.16 (und in der eben erwähnten Implementierung) sind nichts anderes als eine Version der DCT (Discrete Cosine Transform). Dies ist eine günstigere, aber beschränktere Variante der DFT, mit der nur reellwertige, gerade Funktionen interpoliert werden können.

In numpy benutzen wir scipy.fft.dct. Dazu müssen die Mesungen in den Punkten  $x_j = \cos\left((j+0.5)\cdot \frac{\pi}{N}\right)$ 

**Bemerkung 3.6.3:** Die Chebyshev-Koeffizienten  $c_i$  können folgendermassen berechnet werden:

$$c_j = \frac{1}{\pi} \int_0^{2\pi} f(\cos(\varphi)) \cos(j\varphi) \, d\varphi$$

Eine weitere effiziente Interpolation findet sich auf Seiten 104 - 105 im Skript

28. Oktober 2025 29 / 41

# 4 Stückweise Polynomiale Interpolation

#### 4.1 Stückweise Lineare Interpolation

Globale Interpolation (also Interpolation auf dem ganzen Intervall  $]-\infty,\infty[)$  funktioniert nur dann gut, wenn:

- (a) die gegebenen Interpolationspunkte als Chebyshev-Knoten oder -Abszissen verwendet werden können
- (b) die Funktion glatt ist

Es müssen beide obige Eigenschaften zutreffen. Eine Idee um die Einschränkungen zu reduzieren oder komplett zu entfernen ist es, das Intervall zu unterteilen, oder formaler, das Intervall I = [a, b] in viele kleinere Intervalle zu zerlegen.

Wir haben dann ein Polynom vom Grad n auf jedem Teilintervall mit n+1 Punkten, was den Fehler verringert:

$$|f(x) - s(x)| < \frac{h^{n+1}}{(n+1)!} ||f^{(n+1)}||_{\infty}$$

Seien N+1 Messpunkte gegeben. Wir verwenden sie als Knoten (im Englischen breakpoints gennant. Die Knoten sind also nicht dasselbe wie in den vorigen Kapiteln, es gibt aber keinen wirklich sinnvollen Namen im Deutschen) diese N+1 Messpunkte. Die Knoten dienen Paarweise als Abgrenzung der neuen, kleinen Intervalle, die wir erstellt haben. Die linearen Interpolanten für jedes Intervall sind (mit  $h_j=x_j-x_{j-1}$ ):

$$s_j(x) = y_{j-1} \frac{x_j - x}{h_j} + y_j \frac{x - x_{j-1}}{h_j} \quad \text{ für } x \in [x_{j-1}, x_j]$$

Wie man nun zu dieser Formel kommt: Sei  $\chi(t)=t \ \forall t\in [0,1].$  Die Funktion  $f(t)=y_0\chi(1-t)+y_1\chi(t)$  hat also die Interpolationseigenschaften  $f(0)=y_0$  und  $f(1)=y_1$  und ist linear in t. Die Interpolation  $s_j(x)$  auf  $[x_{j-1},x_j]$  entsteht dann also aus f mit Variablenwechsel  $t=\frac{x-x_{j-1}}{h_j}\in [0,1] \leftrightarrow x=x_{j-1}+h_jt$ , also gilt:

$$s_j(x) = y_{j-1}\chi\left(\frac{x_j-x}{h_j}\right) + y_j\chi\left(\frac{x-x_{j-1}}{h_j}\right) \qquad \text{für } x \in [x_{j-1},x_j]$$

Dies ist eine lokale Interpolation und  $s_j$  ist 0 ausser im definierten Intervall. Die Idee des Variablenwechsel ist es, das Intervall, auf welchem die Funktion definiert ist von [0,1] nach  $[x_{j-1},x_j]$  zu verschieben.

#### 4.2 Kubische Hermite-Interpolation

Die Kubische Hermite-Interpolation (CHIP) produziert eine auf [a,b] stetig differenzierbare Funktion, welche auf den Teilintervallen  $[x_{j-1},x_j]$  jeweils ein Polynom von Grad 3 ist. Wichtige Eigenschaft von Polynomen n-ten Grades ist, dass sie n+1 Freiheitsgrade haben (da sie n+1 freie Variabeln enthalten).

Nutzen wir wieder das Konzept von oben, und wählen eine Funktion  $\varphi(t)=t^2(3-2t)$  für  $t\in[0,1]$ , so erfüllt  $f(t)=y_0\varphi(1-t)+y_1\varphi(t)$  wieder unsere Interpolationseigenschaften  $f(0)=y_0$  und  $f(1)=y_1$  und wir vollziehen denselben Variablenwechsel wie oben. So erhalten wir:

$$p_j(x) = y_{j-1}\varphi\left(\frac{x_j-x}{h_j}\right) + y_j\varphi\left(\frac{x-x_{j-1}}{h_j}\right) \qquad \text{für } x \in [x_{j-1},x_j]$$

Wir haben folgende Ableitungen:  $\varphi'(t) = 6t(1-t)$ , also sind die Nullstellen dieser Funktion bei  $t \in \{0,1\}$ , weshalb auch die Ableitungen von  $p_i$  an den Stellen  $x_{i-1}$  und  $x_i$  verschwinden.

Für die Ableitungen definieren wir eine zweite Funktion  $\psi(t)=t^2(t-1)$ , welche offensichtlich die Nullstellen an  $t\in\{0,1\}$  hat und deren Ableitung  $\psi'(t)=t(3t-2)$ . Mit demselben Variablenwechsel müssen wir die Kettenregel beachten:

$$q_j(x) = c_{j-1}h_j\psi\left(\frac{x-x_{j-1}}{h_j}\right) - c_jh_j\psi\left(\frac{x_j-x}{h_j}\right) \qquad \text{für } x \in [x_{j-1},x_j]$$

Die Interpolationsfunktion ist dann einfach die Summe  $s_i(x) = p_i(x) + q_i(x)$  für  $x \in [x_{i-1}, x_i]$ 

In numpy verwendet man scipy.interpolate.Akima1DInterpolator oder PchipInterpolator, welcher "former-haltender" ist, also wenn eine Funktion lokal monoton ist, so ist der Interpolant dort auch monoton. Bei anderen Interpolationsmethoden ist dies nicht garantiert (so auch nicht beim Akima1DInterpolator)

Wenn man den Parameter method="makima" bei Akima1DInterpolator mitgibt, wird eine neuere modifizierte Variante davon ausgeführt

28. Oktober 2025 30 / 41

#### Fehler der CHIP

Satz 4.2.2

Sei  $f \in C^4[a,b]$  und s der stückweise CHIP mit exakten Werten der Ableitungen  $s'(x_j) = f'(x_j), s(x_j) = f(x_j)$  für  $j = 0, \dots, N$  und sei  $s_j$  ein Polynom vom Grad 3, für  $j = 1, \dots, N$ . Dann gilt:

$$||f^{(k)} - s^{(k)}||_{L^{\infty}} \le \frac{1}{384} h^{4-k} ||f^{(4)}||_{L^{\infty}}$$

mit  $h = \max_{j=1,...,N} (x_j - x_{j-1})$  und k = 0, 1

#### 4.3 Splines

#### Raum der Splines

**Definition 4.3.1** 

Sei  $[a,b] \subseteq \mathbb{R}$  ein Intervall, sei  $\mathcal{G} = \{a = x_0 < x_1 < \ldots < x_N = b\}$  und sei  $d \ge 1 \in \mathbb{N}$ . Die Menge

$$\mathcal{S}_{d,\mathcal{G}} = \{s \in C^{d-1}[a,b], \ s_j := s_{|[x_{j-1},x_j]|} \text{ ist ein polynom von Grad h\"ochstens } d\}$$

ist die Menge aller auf [a,b] (d-1) mal stetig ableitbaren Funktionen, die auf  $\mathcal G$  aus stückweisen Polynomen von Grad höchtens d bestehen und wir der Raum der Splines vom Grad d, oder der Ordnung (d+1) genannt

**Bemerkung 4.3.2:** Obige Definition ist undefiniert für d=0, aber  $\mathcal{S}_{d,\mathcal{G}}$  kann als die Menge der stückweise Konstanten Funktionen betrachtet werden. Im Vergleich zu den Kubischen Hermite-Interpolanten sind die Kubischen-Splines (für d=3) zweimal Ableitbar statt nur einmal

**Bemerkung 4.3.3:**  $\dim(\mathcal{S}_{d,\mathcal{G}}) = N + d$ . Es werden oft kubische Splines in Anwendungen verwendet, also ist  $\dim(\mathcal{S}_{d,\mathcal{G}}) = N + 3$ , wir haben aber nur N + 1 Funktionswerte, also beleiben noch zwei Freiheitsgrade übrig.

Dies bedeutet, dass wir ein underdeterminiertes lineares Gleichungssystem haben für  $h_j = x_j - x_{j-1}$ :

$$\begin{bmatrix} b_0 & a_1 & b_1 & 0 & \dots & & & & & \\ 0 & b_1 & a_2 & b_2 & & & & & \\ & 0 & \ddots & \ddots & \ddots & & & & \vdots \\ \vdots & & & \ddots & \ddots & \ddots & & & \\ \vdots & & & & \ddots & \ddots & \ddots & & \\ 0 & \dots & & & & 0 & b_{N-2} & b_{N-2} & 0 \\ 0 & \dots & & & & & 0 & b_{N-2} & a_{N-1} & b_{N-1} \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_{N-1} \\ c_N \end{bmatrix} = \begin{bmatrix} 3\left(\frac{y_1-y_0}{h_1^2} + \frac{y_2-y_1}{h_2^2}\right) \\ \vdots \\ 3\left(\frac{y_{N-1}-y_{N-2}}{h_{N-1}^2} + \frac{y_N-y_{N-1}}{h_N^2}\right) \end{bmatrix}$$

Wobei im Resultatvektor Einträge der Form

$$3\left(\frac{y_{j}-y_{j-1}}{h_{j}^{2}}+\frac{y_{j+1}-y_{j}}{h_{j+1}^{2}}\right)$$

enthalten sind und mit  $a_j:=rac{2}{h_j}+rac{2}{h_{j+1}}$  und  $b_j:=rac{1}{h_{j+1}}$  für  $j=0,1,\ldots,N-1$ 

Wir müssen also zwei weitere Gleichungen finden (oder zwei Freiheitsgrade eliminieren).

**Definition 4.3.4:** (Vollständige kubische Spline-Interpolation) Falls wir die zusätzlichen Bedingungen  $s'(x_0) = c_0$  und  $s'(x_N) = c_N$  mit gegebenen  $c_0$  und  $c_N$  haben. Sie ist auch bekannt als clamped cubic spline. In der obigen Matrix können dann die erste und letzte Spalte weggelassen werden.

**Definition 4.3.5:** (Natürliche kubische Spline-Interpolation) Falls wir die zusätzlichen Bedingungen  $s''(x_0)=0$  und  $s''(x_N)=0$  haben. Dann fügen wir obigem SLE zwei Zeilen hinzu (1. und (N+1)-te), die  $2,1,0,0,\ldots=\frac{y_1-y_0}{h_1}$  und  $0,\ldots,0,1,2=\frac{y_N-y_{N-1}}{h_N}$ . Die Matrix ist nun also positive-definite und symmetrisch

**Definition 4.3.6:** (Periodische kubische Spline-Interpolation) Falls wir die zusätzlichen Bedingungen  $s'(x_0) = s'(x_N)$  und  $s''(x_0) = s''(x_N)$  haben. Dies macht nur Sinn, wenn  $y_0 = y_N$ , also nehmen wir das an und wir haben eine Spalte weniger und eine Reihe mehr, also ist die Systemmatrix rechts

$$A := \begin{bmatrix} a_1 & b_1 & 0 & \dots & 0 & b_0 \\ b_1 & a_2 & b_2 & & & 0 \\ 0 & \ddots & \ddots & \ddots & & \vdots \\ 0 & & & \ddots & a_{N-1} & b_{N-1} \\ b_0 & 0 & \dots & 0 & b_{N-1} & a_0 \end{bmatrix}$$

28. Oktober 2025 31 / 41

**Bemerkung 4.3.7:** Die SLE können in  $\mathcal{O}(n)$  gelöst werden.

**Bemerkung 4.3.8:** Mit der "not-a-knot"-Bedingung s''' ist stetig in  $x_1$  und  $x_{N-1}$  braucht man mindestens 4 Knoten. Da wir kubische Splines betrachten erzwing die Bedingung dass ein Polynom nur in den ersten beiden und ein anderes in den letzten beiden Subintervallen erscheint, also gilt  $s_1 = s_2$  und  $s_{N-1} = s_N$ 

Bemerkung 4.3.9: Der natürliche Spline minimiert die Gesamtkrümmung des Funktionsgraphen:

$$\int_a^b |s''(x)|^2 \ \mathrm{d}x \leq \int_a^b |g''(x)|^2 \ \mathrm{d}x$$

für alle Funktionen zweimal stetig differenzierbaren Funktionen g, für welche  $g(x_j) = y_j$  gilt für jedes  $j = 0, \dots, N$ 

# Interpolationsfehler vollständiger kubischer Splines

Satz 4.3.10

Wenn  $f \in C^4[a,b]$  und s der vollständige kubische Spline-Interpolation von f auf einem äquidistantem Gitter mit Gitterweite h ist, dann ist der Fehler für k = 0, 1, 2, 3:

$$||f^{(k)} - s^{(k)}||_{L^{\infty}} \le \frac{5}{384} h^{4-k} ||f^{(4)}||_{L^{\infty}}$$

In numpy verwendet scipy.interpolate.CubicSpline aktuell die "not-a-knot"-Bedingung. Es ist möglich mithilfe von bc\_type beim Instanziieren der Klasse die Art des Splines zu ändern. Folgende (relevante) Optionen stehen laut Dokumentation zur Verfügung: "not-a-knot" (was der Default ist), "periodic", "clamped" und "natural"

Auf Seite 114-115 im Skript finden sich einige Abbildungen zur Konvergenz der verschiedenen Varianten des CubicSplices

28. Oktober 2025 32 / 41

# 5 Numerische Quadratur

## 5.3 Grundbegriffe und -Ideen

Es ist oft nicht möglich oder sinnvoll einen Integral analytisch zu berechnen. Mit Methoden der Quadratur können wir Integrale nummerisch berechnen.

In numpy kann scipy.integrate.quad verwendet werden. Falls man jedoch eine manuelle Implementation erstellen will, so nutzt man oft die Trapez- oder Simpson-Regel, da sie sowohl einfach zu implementieren, wie auch effizient sind. In gewissen Anwendungen sind Gauss-Quadratur-Formeln nützlich, welche man durch Spektralmethoden ersetzen kann, welche die FFT verwenden und effizienter sind.

Quadratur Definition 5.3.1

Ein Integral kann durch eine gewichtete Summe von Funktionswerten der Funktion f an verschiedenen Stellen  $c_i^n$  approximiert werden:

$$\int_a^b f(x) d \approx Q_n(f; a, b) := \sum_{i=1}^n \omega_i^n f(c_i^n)$$

wobei  $\omega_i^n$  die *Gewichte* und  $c_i^n \in [a,b]$  die *Knoten* der Quadraturformel sind.

Wir wollen natürlich wieder  $c_i^n \in [a, b]$  und  $w_i^n$  so wählen, dass der Fehler minimiert wird.

Fehler Definition 5.3.2

Der Fehler der Quadratur  $Q_n(f)$  ist

$$E(n) = \left| \int_{a}^{b} f(x) \, d - Q_n(f; a, b) \right|$$

Wir haben algebraische Konvergenz wenn  $E(n)=\mathcal{O}\left(\frac{1}{n^p}\right)$  mit p>0 und exponentielle Konvergenz wenn  $E(n)=\mathcal{O}\left(q^n\right)$  mit  $0\leq q<1$ 

Die Idee, den Integral einer schweren Funktion zu berechnen, ist diese mit einer einfachen Funktion, die analytisch integrierbar ist, zu approximieren. Wenn wir diese Funktion geschickt wählen, dann ist es sogar möglich, dass wir nur eine solche Funktion für alle Funktionen f benötigen.

Wir ersetzen also f durch  $f_n \in \text{span}\{c_0, c_1, \dots, c_n\}$ , wobei die  $c_i$  eine Basis des Raums der Funktionen auf [a, b] bilden:

$$\int_a^b f(x) \ \mathrm{d}x \approx \int_a^b f_n(x) \ \mathrm{d}x = \int_a^b \left( \sum_{k=0}^n \alpha_k b_k(x) \right) \ \mathrm{d}x = \sum_{k=0}^n \alpha_k \int_a^b c_k(x) \ \mathrm{d}x$$

Falls wir  $c_k(x) = x^k$  haben (was oft der Fall ist, je nach Funktion aber könnte eine rationale Funktion oder andere Arten besser geeignet sein), dann erhalten wir:

$$\int_{a}^{b} c_k(x) \, \, \mathrm{d}x = \frac{b^{k+1} - a^{k+1}}{k+1}$$

#### Lagrange-Polynome

**Definition 5.3.3** 

Für die Knoten  $x_0, x_1, \ldots, x_n \in \mathbb{R}$  definieren wir die Polynome

$$l_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{x - x_j}{x_i - x_j}$$

als die Lagrange-Polynome zu den Stützstellen  $x_0, x_1, \ldots, x_n$ 

Für ein Beispiel verweisen wir auf Beispiel 2.3.2

28. Oktober 2025 33 / 41

**Bemerkung 5.3.6:** (Eigenschaften der Lagrange-Polynome) Zu den Eigenschaften aus 2.3.4 fügen wir an (die Eigenschaften aus Bemerkung 2.3.4 sind hier erneut aufgeführt)

1. 
$$l_i(x_i) = 0 \ \forall j \neq i$$

4. 
$$\sum_{k=0}^{n} l_k(x) = 1 \ \forall x \in \mathbb{R}$$

2. 
$$l_i(x_i) = 1 \ \forall i$$

5. 
$$\sum_{k=0}^{n} l_k^{(m)}(x) = 0$$
 für  $m > 0$ 

3. 
$$deg(l_i) = n \ \forall i$$

6.  $l_0, l_1, \ldots, l_n$  bilden Basis von  $\mathcal{P}_{n+1}$ 

wobei  $\mathcal{P}_{n+1}$  der Raum der Polynome von Grad maximal n ist.

Bemerkung 5.3.7: (Quadraturgewichte aus den Lagrange-Polynomen) Das Interpolationspolynom ist gegeben durch:

$$p(x) = \sum_{j=0}^{n} f(x_j)l_j(x)$$

Durch die Eigenschaften der Lagrange-Polynome haben wir  $p(x_j) = f(x_j)$  und die Konstruktion von p(x) ist eindeutig in  $\mathcal{P}_{n+1}$ . Wir erhalten nun eine Quadraturformel, wenn wir p als Approximation von f verwenden:

$$w_j = \int_a^b l_j(x), \quad j = 0, 1, \dots, n$$

Durch die Konstruktion der Formel ist sie exakt für alle Polynome aus  $\mathcal{P}_{n+1}$  und der Fehler ist:

$$\left| \int_a^b f(x) \, dx - \int_a^b p_n(x) \, dx \right| \le \frac{1}{n!} (b - a)^{n+1} \max |f^{(n)}(z)|$$

Wir wollen also ein kleines Intervall (oft b-a<1 da wir so das Integral besser approximieren können) und wir setzen voraus, dass f glatt ist.

Da wir aber oft ein grösseres Intervall betrachten möchten, ist ein möglicher Ansatz, das grosse Intervall in kleinere Intervalle zu zerlegen. Wir nehmen ein äquidistantes Gitter, mit  $x_k=x_0+k\cdot h$  für  $h=\frac{b-a}{N}$  und  $k=0,\ldots,N$ :

$$\int_{a}^{b} f(x) \, dx = \sum_{k=0}^{N-1} \int_{x_{k}}^{x_{k+1}} f(x) \, dx$$

Die obige Formel wird auch die summierte Quadraturformel genannt. Der Fehler ist dann also:

$$\left| \int_{a}^{b} f(x) \, dx - \sum_{k=0}^{N-1} Q(f, x_{k}, x_{k+1}) \right| \leq \ldots \leq C \frac{h^{n}}{n!} (b-a) \qquad \text{mit } C = \max_{z \in [a, b]} |f^{(n)}(z)| = ||f^{n}||_{\max} dx + \sum_{k=0}^{N-1} Q(f, x_{k}, x_{k+1})| \leq \ldots \leq C \frac{h^{n}}{n!} (b-a)$$

Der obige Ansatz ist gewissermassen "divide and conquer" (zu Deutsch: "Teile und Herrsche", wir werden aber DnC verwenden) und wir der lokale Fehler liegt in  $\mathcal{O}\left(h^{n+1}\right)$  und mit  $N=(b-a)\div h$  Intervallen der Grösse h haben wir einen globalen Fehler in  $\mathcal{O}\left(h^n\right)$ . Folglich ist also der Fehler kleiner, je kleiner h ist.

Wir benutzen erneut einen Variablenwechsel, um von einem Referenzintervall [-1,1] auf eines unserer Teilintervalle  $[x_k,x_{k+1}]$  zu wechseln. Dies heisst also allgemein für Intervall [a,b] nach [-1,1]:

$$\int_a^b f(t) \ \mathrm{d}t = \frac{1}{2}(b-a) \int_{-1}^1 \widehat{f}(\tau) \ \mathrm{d}\tau \ \min \ \widehat{f}(\tau) := f\left(\frac{1}{2}(1-\tau)a + \frac{1}{2}(\tau+1)b\right)$$

Für dieses Referenzintervall können wir die Gewichte  $\widehat{w}_i$  und die Knoten  $\widehat{c}_i$  bestimmen

$$\int_{a}^{b} f(t) \ \mathrm{d}t \approx \frac{1}{2} (b-a) \sum_{j=1}^{n} \widehat{w}_{j} \widehat{f}(\widehat{c}_{j}) = \sum_{j=1}^{n} w_{j} f(c_{j}) \\ \qquad \qquad \text{mit} \quad c_{j} = \frac{1}{2} (1-\widehat{c}_{j}) a + \frac{1}{2} (1+\widehat{c}_{j}) b \\ \qquad \qquad w_{j} = \frac{1}{2} (b-a) \widehat{w}_{j}$$

**Definition 5.3.8:** Die Ordnung einer Quadraturformel ist n wenn sie Polynome vom Grad (n-1) exakt integriert.

Dies folgt natürlich direkt davon, dass wir ein Polynom n-ten Grades mit n+1 Koeffizienten darstellen können.

**Definition 5.3.9:** (Symmetrie) Eine Quadraturformel auf [-1,1] heisst symmetrisch, falls  $\omega_i=\omega_{n+1-i}$  und  $c_i=-c_{n+1-i}$  gilt für die Gewichte  $\omega_i$  und Knoten  $c_i$ 

Bemerkung 5.3.10: Die Mittelpunkts-, Trapez- und Simpson-Regeln aus Abschnitt 5.4 sind symmetrisch

Satz 5.3.11: Die Ordnung einer symmetrischen Quadraturformel ist gerade

Beweis: Kann mittels Induktion bewiesen werden, siehe dazu Seite 123 im Skript

28. Oktober 2025 34 / 41

# 5.4 Äquidistante Punkte

28. Oktober 2025 35 / 41

#### 5.5 Nicht äquidistante Stützstellen

Alternativ zur Unterteilung des Intervalls können wir andere Quadraturpunkte erlauben

#### 5.5.1 Gauss Quadratur

In diesem Kapitel werden die Gewichte mit  $b_1, b_2, \dots, b_s$  und die Knoten auf unserem Referenzintervall, welches hier [0,1] ist, mit  $c_1, c_2, \dots, c_s \in [0,1]$  bezeichnet.

Wir möchten unsere Gewichte  $b_i$  und Knoten  $c_i$  so bestimmen, dass die Quadraturordnung maximal ist.

Wir definieren die Notation  $\langle M, g \rangle = \int_0^1 M(t)g(t) dt$  (also das Skalarprodukt).

#### Ordnung der Quadraturformel

Satz 5.5.1

Die Ordnung ist s+m genau dann, wenn  $\langle M,g\rangle=0$  für alle Polynome g mit  $\deg(g)\leq m-1$  und  $M(t)=(t-c_1)\cdot (t-c_2)\cdot\ldots\cdot (t-c_s)$  für s. Also steht M senkrecht zu allen g.

Satz 5.5.2: (Maximale Ordnung einer Quadraturformel) Die Ordnung einer Quadraturformel mit s Knoten ist  $\leq 2s$ 

#### **Orthogonale Polynome**

Für I=]a,b[ sei  $w:I\to\mathbb{R}$  eine stetige Gewichtsfunktion mit  $w(x)>0 \ \forall x\in I,$  so dass für alle  $k=0,1,2,\ldots$   $\int_a^b |x|^k w(x) \ \mathrm{d}x$  existiert.

#### **Orthogonale Polynome**

Satz 5.5.3

Im Raum  $V=\{f:I\to\mathbb{R} \text{ stetig}, \int_a^b |f(x)|^2w(x) \ \mathrm{d}x \text{ existiert}\}$  existiert eine eindeutige Folge von Polynomen  $p_0,p_1,\ldots$  mit  $p_k(x)=x^k+P(x)$  mit  $\deg(P(x))\leq k-1$  für  $k\geq 0$ , so dass  $p_k\perp \operatorname{span}\{p_0,p_1,\ldots,p_{k-1}\}$ . Sie können mit der **3-Term-Rekursion** gebaut werden:

$$p_{k+1}(x) = (x - \beta_{k+1}) \cdot p_k(x) - \gamma_k p_{k-1}(x)$$

mit  $p_0(x)=1$ ,  $p_{-1}(x)=0$ ,  $\beta_{k+1}=\frac{\langle x\cdot p_k,p_k\rangle}{\langle p_k,p_k\rangle}$  und  $\beta_{k+1}=\frac{\langle p_k,p_k\rangle}{\langle p_{k-1},p_{k-1}\rangle}$ , wobei hier  $\langle f,g\rangle=\int_a^b f(x)g(x)w(x)\,\mathrm{d}x$  das Skalarprodukt ist.

**Beispiel 5.5.4:** (Legendre-Polynome) sind definiert für w(x) = 1, a = -1 und b = 1 (sie sind orthogonal):

$$p_0(x) = 1$$
  $p_1(x) = x$   $p_2(x) = \frac{1}{2}(3x^2 - 1)$   $p_3(x) = \frac{1}{2}(5x^3 - 3x)$ 

Die Normierung der Legendre-Polynome ist nicht standardisiert

In numpy können wir mit scipy.special.eval\_legendre und scipy.special.legendre diese Polynome berechnen und mit scipy.special.roots\_legendre die Knoten berechnen

**Beispiel 5.5.5:** (Hermite-Polynome) sind definiert für  $w(x) = e^{-x^2}$ ,  $a = -\infty$  und  $b = \infty$ :

$$p_0(x) = 1$$
  $p_1(x) = 2x$   
 $p_2(x) = 4x^2 - 2$   $p_3(x) = 8x^3 - 12x$ 

**Bemerkung 5.5.7:** Aus Theorem 5.5.3 folgt direkt, dass  $c_1, c_2, \ldots, c_s$  die Nullstellen von  $p_s$  sind.

Bemerkung 5.5.11: (Knoten und Fehler der Gauss-Quadratur)

- Gauss-Knoten sind nicht äquidistant.
- Gauss-Knoten sind nicht verschachtelt (was er damit meint ist, dass wir sie nicht mit DnQ verwenden können

  —Wir können also nicht für eine Quadratur höherer Ordnung die Knotenpunkte der Gauss-Quadratur tieferer

  Ordnung verwenden)

28. Oktober 2025 36 / 41

- Die Gauss-Quadratur ist offen (da die Endpunkte des Intervalls keine Knoten sind)
- Bei der Radau-Quadratur fixiert man ein Ende als Randknoten, und man hat nun Ordnung 2s-1. Die Berechnung ist ansonsten gleich, bis auf den Fakt, dass wir nur noch (s-1) Knoten haben (1 bis und mit s-1). Sie können mit scipy.special.roots\_jacobi(s 1, alpha=1, beta=0) berechnet werden.
- Bei der **Lobatto-Quadratur** fixiert man gleich beide Enden als Randknoten, und man hat Ordnung 2s-2 und wir haben die Knoten  $c_2, \ldots, c_{s-1}$
- Die Lombatto- und Radau-Quadratur werden häufig bei der Lösung gewöhnlicher DGL verwendet.

Der Fehler der Gauss-Quadratur ist:

$$\int_{a}^{b} f(x) \, dx - \sum_{j=1}^{s} b_{j} \cdot f(c_{j}) = \frac{b-a}{(2s)!} f^{(2s)}(z) \, \operatorname{mit} \, z \in [a, b]$$

Und eine obere Schranke für den Fehler ist dann

$$\left| \int_{a}^{b} f(x) \, dx - \sum_{k=1}^{N} G_{s}(f, x_{k-1, x_{k}}) \right| \le c \cdot h^{2s} \max_{z \in [a, b]} |f^{(2s)}(z)|$$

wobei  $c \in \mathbb{R}$  eine Konstante ist und h = b - a die Grösse des Intervalls ist.

**Bemerkung 5.5.14:** (Gewichte der Gauss-Legendre-Quadratur) Für die Knoten  $c_1, \ldots, c_s$  und den entsprechenden Lagrange-Polynomen  $l_1, \ldots, l_s$  mit  $\deg(l_i) = s - 1 \ \forall i \in \{1, \ldots, s\}$ . Die zugehörige Quadraturformel ist exakt für Polynome 2s - 1-ten Grades. Die Gewichte sind:

$$b_i = \int_0^1 l_i(t)^2 \, \mathrm{d}t$$

Satz 5.5.15: Die Gewichte der Gauss-Legendre-Quadraturformel sind positiv.

| Algorithmus        | Laufzeit                                                        | Genauigkeit Knoten          | Genauigkeit Gewichte          |
|--------------------|-----------------------------------------------------------------|-----------------------------|-------------------------------|
| GW (1969)          | $\mathcal{O}\left(s^3\right) \ / \ \mathcal{O}\left(s^2\right)$ | $\mathcal{O}\left(1\right)$ | $\mathcal{O}\left(s^2\right)$ |
| Bogaert-Townsend   | $\mathcal{O}\left(s ight)$                                      | $\mathcal{O}\left(1\right)$ | $\mathcal{O}(1)$              |
| $CC\ (2s\ Knoten)$ | $\mathcal{O}\left(s\log(s)\right)$                              | $\mathcal{O}\left(1\right)$ | $\mathcal{O}\left(1\right)$   |

Die Gauss-Quadratur ist in der Messtechnik nicht besonders geeignet, da wir die zugrundeliegende Funktion nicht im Vorhinein kennen und die Kosten für die Anpassung der Ordnung aufgrund fehlender Verschachtelbarkeit sehr hoch sind (wir müssen alle vorigen Berechnungen komplett neu machen)

#### 5.5.2 Clenshaw-Curtis Quadraturformel

Die erste Quadraturformel von Fejér benutzt die Chebyshev-Knoten (Nullstellen der Chebyshev-Polynome erster Art), welche aber nicht verschachtelt sind. Die zweite Quadraturformel von Fejér benutzt die Filippi-Knoten  $x_k = \cos\left(k\frac{\pi}{n}\right)$  für  $k=1,\ldots,n-1$  und Clenshaw und Curtis haben dann zusätzlich noch die Endknoten hinzugefügt (also  $k=0,\ldots,n$ ). Die Clenshaw-Curtis-Knoten sind die Chebyshev-Abszissen und die Formel verhält sich mit den entsprechenden Gewichten ähnlich gleich wie die Gauss-Quadratur.

Da die Clenshaw-Curtis-Quadratur mithilfe der DFT berechnet werden kann ist sie sehr effizient. Dazu müssen wir aber zuerst etwas umformen, mit  $x = \cos(\theta)$ , so dass das Integral eine periodische Funktion wird:

$$\int_{-1}^{1} f(x) dx = \int_{0}^{\pi} f(\cos(\theta)) \sin(\theta) d\theta = f(\cos(\theta))$$

 $F(\theta)$  ist  $2\pi$ -periodisch und gerade, kann sich also in eine Kosinius-Reihe entwickeln, also:  $F(\theta) = \sum_{k=0}^{\infty} a_k \cos(k\theta)$ , woraus folgt, dass

 $\int_0^\pi F(\theta) \sin(\theta) \ \mathrm{d}\theta = \ldots = a_0 + \sum_{2 \le k \ \mathrm{gerade}} \frac{2a_k}{1 - k^2}$ 

wobei sich die Koeffizienten  $a_k$  mit FFT oder DCT berechnen lassen

Eine wichtige Erkenntnis ist, dass die Newton-Cotes bei grösserer Ordnung komplett unbrauchbar werden, wie das in Abbildung 5.5.24 im Skript zu sehen ist, während die Clenshaw-Curtis-Quadratur ähnlich gut ist wie die Gauss-Quadratur (gleiche Konvergenzordnung).

28. Oktober 2025 37 / 41

| Quadratur                  | Intervall    | Gewichtsfunktion              | Polynom      | Notation               | scipy.special.             |
|----------------------------|--------------|-------------------------------|--------------|------------------------|----------------------------|
| Gauss                      | (-1,1)       | 1                             | Legendre     | $P_k$                  | roots_legendre             |
| Chebyshev I                | (-1, 1)      | $\frac{1}{\sqrt{1-x^2}}$      | Chebyshev I  | $T_k$                  | roots_chebyt               |
| Chebyshev II               | (-1, 1)      | $\sqrt{1-x^2}$                | Chebyshev II | $U_k$                  | roots_chebyu               |
| Jacobi $\alpha, \beta > 1$ | (-1, 1)      | $(1-x)^{\alpha}(1+x)^{\beta}$ | Jacobi       | $P_k^{(\alpha,\beta)}$ | ${\tt roots\_jacobi}$      |
| Hermite                    | $\mathbb{R}$ | $e^{-x^2}$                    | Hermite      | $H_k$                  | roots_hermite              |
| Laguerre                   | $(0,\infty)$ | $x^{\alpha}e^{-x^2}$          | Laguerre     | $L_k$                  | ${\tt roots\_genlaguerre}$ |

Tabelle 5.5.16: Gewichtsfunktionen für Quadraturformeln

#### 5.6 Adaptive Quadratur

Der lokale Fehler einer zusammengesetzten Quadraturformel auf dem Gitter  $\mathcal{M} := \{a = x_0 < x_1 < \dots < x_m = b\}$  ist (für  $f \in C^2([a,b])$ ):

$$\left| \int_{x_k}^{x_{k+1}} f(t) \ \mathrm{d}t - \frac{f(x_k) + f(x_{k+1})}{2} (x_{k+1} - x_k) \right| \leq (x_{k+1} - x_k)^3 ||f''||_{L^\infty([x_k, x_{k+1}])}$$

Also ist es nur sinnvoll, das Gitter zu verfeinern wo |f''| gross ist.

Auf Seiten 150 - 151 im Skript findet sich Code, um eine adaptive Quadratur durchzuführen.

**Bemerkung 5.6.3:** (Adaptive Quadratur in Python) Mit scipy.integrate.quad können wir einfach eine adaptive Quadratur durchführen und benutzt QUADPACK. Mit scipy.integrate.quadrature können wir die Gauss-Quadratur verwenden.

Für  $x \in \mathbb{R}^d$ , also eine mehrdimensionale Funktion der Dimension d können wir scipy.integrate.nquad verwenden. Mehr dazu im nächsten Kapitel

28. Oktober 2025 38 / 41

# 5.7 Quadratur in $\mathbb{R}^d$ und dünne Gitter

28. Oktober 2025 39 / 41

# 5.8 Monte-Carlo Quadratur

28. Oktober 2025 40 / 41

# 5.9 Methoden zur Reduktion der Varianz

28. Oktober 2025 41 / 41