In [1]:

```
import numpy as np
import pandas
import seaborn
import matplotlib.pyplot as plt
from sklearn.feature_selection import mutual_info_classif
```

In [2]:

```
df = pandas.read_csv('datasets/adult.csv')
df.head()
```

Out[2]:

	age	workclass	education	education- num	marital- status	occupation	relationship	race	r sex
0	39	State-gov	Bachelors	13	Never- married	Adm- clerical	Not-in- family	White	Male
1	50	Self-emp- not-inc	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	Male
2	38	Private	HS-grad	9	Divorced	Handlers- cleaners	Not-in- family	White	Male
3	53	Private	11th	7	Married- civ- spouse	Handlers- cleaners	Husband	Black	Male
4	28	Private	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife	Black	Female
4									•

In [3]:

```
continuous_features = ['age','hours-per-week']
discrete_features = ['workclass', 'education', 'education-num', 'marital-status','oc
cupation', 'relationship', 'race', 'sex','native-country', 'income']
```

Calculate the entropy for each feature

$$h(X) = -\sum_x P(x)log_2P(x)$$

Graph the mutual information matrix

$$IM(X,Y) = \sum_{x} \sum_{y} P(x,y) log_2 \frac{P(x,y)}{P(x)P(y)}$$

In [4]:

```
def entropy(X):
    n = len(X)
    valuesX, countsX = np.unique(X,return_counts=True)
    probX = countsX/n
    return -np.sum( probX * np.log2(probX) ), -np.log2(1/len(valuesX))
```

In [5]:

In [6]:

```
for feature in discrete_features:
    print(feature, entropy(df[feature].values) )

workclass (1.647976927509927, 3.1699250014423126)
education (2.9313508978037115, 4.0)
education-num (2.9313508978037115, 4.0)
marital-status (1.8336493538835446, 2.807354922057604)
occupation (3.516903064343104, 3.9068905956085187)
relationship (2.1544237955049743, 2.584962500721156)
```

race (0.7987406510139586, 2.321928094887362)

native-country (0.9437954138017222, 5.392317422778761)

sex (0.9157360598501509, 1.0)

income (0.7963839552022132, 1.0)

In [7]:

```
IM = np.zeros((len(discrete_features)+1,len(discrete_features)+1))
names = np.array(['entropy'])
names = np.concatenate( (names,discrete_features))
for f1, feature1 in enumerate(discrete_features):
    print(f1,'/',len(discrete_features))
    IM[f1+1,0] = IM[0,f1+1] = entropy(df[feature1].values)[0]
    for f2, feature2 in enumerate( discrete_features):
        IM[f1+1,f2+1] = mutual_information( df[feature1].values, df[feature2].values)
)

dfIM = pandas.DataFrame(IM,columns=names,index=names)
dfIM
```

0 / 10

1 / 10

2 / 10

3 / 10

4 / 10

5 / 10

6 / 10 7 / 10

8 / 10

9 / 10

Out[7]:

	entropy	workclass	education	education- num	marital- status	occupation	relationship	
entropy	0.000000	1.647977	2.931351	2.931351	1.833649	3.516903	2.154424	0
workclass	1.647977	1.647977	0.047141	0.047141	0.031334	0.471202	0.035284	0
education	2.931351	0.047141	2.931351	2.931351	0.034507	0.322677	0.054353	0
education- num	2.931351	0.047141	2.931351	2.931351	0.034507	0.322677	0.054353	0
marital- status	1.833649	0.031334	0.034507	0.034507	1.833649	0.077623	1.046677	0
occupation	3.516903	0.471202	0.322677	0.322677	0.077623	3.516903	0.121359	0
relationship	2.154424	0.035284	0.054353	0.054353	1.046677	0.121359	2.154424	0
race	0.798741	0.010107	0.014904	0.014904	0.018547	0.018315	0.024373	0
sex	0.915736	0.018833	0.006852	0.006852	0.163419	0.143273	0.394068	0
native- country	0.943795	0.013488	0.077934	0.077934	0.017175	0.042093	0.018312	0
income	0.796384	0.021572	0.093591	0.093591	0.156528	0.092922	0.165366	0
4								•

Graph a countplot or a rectangle plot for each feature

In [8]:

```
for feature in discrete_features:
   plt.figure()
   seaborn.countplot(data=df,y=feature)
   plt.show()
```


Generate a visualization to compare two features, for example, sex and education

In [9]:

```
np.unique(df['sex'].values)
```

Out[9]:

array([' Female', ' Male'], dtype=object)

In [10]:

```
idx1 = df['sex'].values == 'Female'
idx2 = df['sex'].values == 'Male'

plt.figure(figsize=(10,5))
plt.subplot(1,2,1)
plt.title('Female')
values,counts = np.unique( df['education'].values[idx1],return_counts=True )
plt.pie(counts,labels=values)
plt.subplot(1,2,2)
plt.title('Male')
values,counts = np.unique( df['education'].values[idx2],return_counts=True )
plt.pie(counts,labels=values)
plt.show()
```


In [11]:

```
idx1 = df['sex'].values == ' Female'
idx2 = df['sex'].values == ' Male'
plt.figure(figsize=(10,5))
plt.subplot(1,2,1)
plt.title('Female')
values,counts = np.unique( df['income'].values[idx1],return_counts=True )
plt.pie(counts,labels=values)
plt.subplot(1,2,2)
plt.title('Male')
values,counts = np.unique( df['income'].values[idx2],return_counts=True )
plt.pie(counts,labels=values)
plt.show()
```


Write at least two insights from the data (justifying with metrics or graphs). Insights consist of some interesting facts that you discover from the Exploratory Data Analysis.

1. Based on data, female work fewer hours than male

In [12]:

```
plt.figure(figsize=(10,5))
plt.subplot(1,2,1)
seaborn.boxplot(data=df, x='sex', y='hours-per-week')
plt.subplot(1,2,2)
seaborn.barplot(data=df, y='education', x='hours-per-week', hue='sex')
plt.show()
```


1. The never-married people are young and widowed people are old. It is not related to sex. Widowed people less than 27-year-old are considered atypical.

In [13]:

```
plt.figure(figsize=(10,8))
plt.subplot(2,1,1)
seaborn.boxplot(data=df, y='marital-status', x='age')
plt.subplot(2,1,2)
seaborn.boxplot(data=df, y='marital-status', x='age', hue='sex')
plt.show()
```


1. There are more unmarried women than men. There are more married men than women.

In [14]:

```
idx1 = df['sex'].values == 'Female'
idx2 = df['sex'].values == 'Male'
plt.figure(figsize=(10,5))
plt.subplot(1,2,1)
plt.title('Female')
values,counts = np.unique( df['relationship'].values[idx1],return_counts=True )
plt.pie(counts,labels=values)
plt.subplot(1,2,2)
plt.title('Male')
values,counts = np.unique( df['relationship'].values[idx2],return_counts=True )
plt.pie(counts,labels=values)
plt.show()
```


1. The income is related to your education, marital status, relationship, and sex

In [15]:

```
for feature in discrete_features:
    idx1 = df['income'].values == ' <=50K'
    idx2 = df['income'].values == ' >50K'
    plt.figure(figsize=(10,5))
    plt.suptitle(feature)
    plt.subplot(1,2,1)
    plt.title('<=50K')
    seaborn.countplot( y= df[feature].values[idx1] )
    plt.subplot(1,2,2)
    plt.title('>50K')
    seaborn.countplot( y= df[feature].values[idx2] )
    plt.show()
```


