Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.

7.7 1,2547; p. 2

Potential Evapotranspiration and Climate in Alaska by Thornthwaite's Classification

Pacific Northwest Forest and Range Experiment Station
U.S. Department of Agriculture Forest Service Juneau, Alaska 1968
U.S.D.A. Forest Service Research Paper PNW-71 Institute of Northern Forestry

ABOUT THE AUTHORS

Patric was hydrologist at the Institute of Northern Forestry, Juneau, Alaska, and is now project leader at Northeastern Forest Experiment Station, Parsons, West Virginia. Black is Assistant Professor of Watershed Management, State University of New York, College of Forestry, at Syracuse University, Syracuse, New York.

INTRODUCTION

Long ago, Fernow (1893) wrote concerning "the desirability of utilizing the Weather Bureau, the various agricultural experiment stations, and other forces, in forming a systematic service of water statistics, and in making a careful survey of the conditions of water supplies, which may serve as a basis for the application of rational principles of water management." Over the intervening years, many of these statistics have been amassed for other States, but many still are unavailable for Alaska. This report is a step for Alaska along the path pointed out by Fernow.

Although Alaska has about 200 currently active climatological stations, it has only 0.03 rain gage per 100 square miles, or about one-tenth the gage density for conterminous United States. This density is inadequate for realistic maps of precipitation, temperature, or runoff. Nevertheless, the U.S. Weather Bureau is accumulating a large and growing record of precipitation and temperature over the State, and the U.S. Geological Survey heads an expanding stream-gaging program. There has been less attention to evaporative losses which determine differences between precipitation income and water available for human needs. As Thornthwaite (1948) pointed out, wet and dry climates are determined neither by total nor seasonal precipitation but by the relation of precipitation to the evaporative demand. For example, precipitation amounts are nearly equal in California's Mojave Desert and in Alaska's forested and frequently boggy interior. The important and often overlooked difference between climates of these regions is the amount and timing of the evaporative demand--over 100 inches yearlong on the Mojave; only about onesixth as much during summer in Alaska's interior.

The evaporative demand usually is established at climatic stations containing evaporation pans and associated meteorological instruments requiring regular observation and service by trained personnel. Before 1963, there were only two evaporation pans in Alaska; since then, four more have been installed and others are planned. Even this severalfold expansion of evaporation measurement constitutes a minute sample in a State one-fifth the area of the 48 conterminous States. Lacking direct measurement of evaporation, one can estimate evaporative losses from weather data which have been routinely obtained at hundreds of climatic stations.

The importance of the evaporative loss is attested by the development of many formulas for estimating it from these more easily obtained climatic data. The large number of formulas also attests that none is wholly suited to its purpose. Penman's (1948) equation is accepted as best founded theoretically, but requiring sunshine, humidity, and wind data which are reported at only four climatic stations in Alaska. Papadakis (1961) fitted climate for a few Alaska stations into his worldwide classification. Thornthwaite's (1948) equation has

 $[\]frac{1}{2}$ Names and dates in parentheses refer to Literature Cited, p. 27.

probably been tested more widely than any other. Penman (1956) remarked that "considering it inherent simplicity and obvious limitations, the [Thornthwaite] method does surprisingly well." Because it requires only the simplest climatic data to provide reasonably reliable estimates of evapotranspiration, Thornthwaite's method was chosen for this study.

All of the previously mentioned equations provide estimates of potential evapotranspiration (PET)--water losses from fully vegetated land surfaces always abundantly supplied with soil moisture. Some equations, including Thornthwaite's, permit estimates of actual evapotranspiration (AET)--water losses from land surfaces under conditions of natural rainfall and soil moisture utilization. The concept of PET has proven especially useful since, on the basis of available heat energy, it sets a ceiling above which water losses to the atmosphere ordinarily cannot occur. PET permits hydrologists and engineers to estimate evaporative losses from lakes and rivers; agronomists and foresters to relate plant water needs to available soil moisture. Penman (1963) has described these concepts, their uses, and some of their limitations. In addition to estimates of potential and actual evapotranspiration, Thornthwaite's method provides estimates of streamflow and a quantitative method for the classification of climates.

Only a few comparisons of estimated with measured PET are known for Alaska and northwestern Canada. At Barrow, Alaska, Mather and Thornthwaite (1958) used heat balance to compute average daily PET of 1.24 millimeters as opposed to 1.20 millimeters measured from small evapotranspirometers. Close agreement was found between several estimates of PET and soil moisture loss under irrigated grass at the Alaska Agricultural Experiment Station in Palmer. Sanderson (1950) showed close agreement between PET measurements and estimates by Thornthwaite's method at Norman Wells, Northwest Territory, Canada. Brown (1965) computed annual PET of 24.75 inches at Norman Wells but measured only 19.41 inches, using some of Sanderson's equipment.

METHODS

The climates of Alaska were determined by procedures described at length by Thornthwaite (1948) and by Thornthwaite and Mather (1955). Essentially, water availability (precipitation) is compared with water need (PET). Where precipitation exceeds PET, the climate is humid. Where PET exceeds precipitation, the climate is arid. Indexes of humidity (Ih) and aridity (Ia) are expressed as percentages in the relations:

$$Ih = \frac{100(precipitation)}{PET} \text{ and } Ia = \frac{100(PET-AET)}{PET}$$

^{2/} Personal communication from Neil Michelson, soil physicist, Alaska Agricultural Experimental Station, Palmer, Alaska.

The humidity index has more weight than the aridity index in the moisture index (Im) calculation:

$$Im = Ih - 0.6 (Ia)$$

Thornthwaite (1948) justified the coefficient 0.6 in the Im calculation by reasoning that a surplus of 6 inches of precipitation in one year counteracted a deficiency of 10 inches in another year. This assumption recognized that deep-rooted perennial plants were not totally dependent on rainfall to replenish soil moisture during the growing season but grew at reduced transpiration rates on moisture stored in the soil during previous seasons. This reasoning seems appropriate at those places in Alaska where snowmelt annually replenishes soil moisture and natural vegetation seldom shows evidence of prolonged soil moisture deficit. The influence of annually thawing permafrost on plant-water relations is not known.

Annual summaries of climatic data for Alaska (U.S. Weather Bureau 1916-66) provided most of the requisite precipitation and temperature data. Other sources included old descriptions of Alaska climate, publications by the Canada Department of Transport, Thompson, Potter, and the U.S. Weather Bureau files at Anchorage. Altogether, climatic records were obtained for 315 stations in Alaska, the coastal islands, and nearby Canada. These records varied in length from 1 year at several stations to about 100 years at Sitka. Estimates of available soil moisture were inferred from soil maps of Alaska (Kellogg and Nygard 1951) when more specific information was unavailable.

Water balances were computed manually from Thornthwaite and Mather instructions (1957) for each climatic station. Temperature and precipitation data for 207 of these stations also were processed in a computer program developed by Black (1967), which utilizes continuous functions rather than incremental tables. Figure 1, a preliminary example based on only 4 years of

³/Canada Department of Transport, Meteorological Branch. Temperature normals for British Columbia. CDS #3-65, 10 pp. (Mimeogr.) 1965.

Canada Department of Transport, Meteorological Branch. Precipitation normals for British Columbia. CDS #8-65, 15 pp. (Mimeogr.) 1965.

Canada Department of Transport, Meteorological Branch. Precipitation normals for the Yukon and Northwest Territories. CDS #12-65, 7 pp. (Mimeogr.) 1965.

^{4/} Thompson, H. A. Temperature normals, averages and extremes in Yukon Territory during the period 1931 to 1960. Can. Dep. Transp., Meteorol. Br., CDS #1-62, 9 pp. (Mimeogr.) 1962.

⁵/ Potter, J. G. A catalogue of climatological stations in the Yukon and Northwest Territories. 21 pp. (Mimeogr.) Can. Dep. Transp., Climatol. Div., Meteorol. Br., 315 Bloor St. West, Toronto 5, Ont. 1965.

climatic data from Juneau Airport, illustrates a computer-produced table of water balance. Results by both manual and computer methods usually agreed closely; t-testing a random sample of 52 PET estimates showed no significant differences between results by either method. Climates were classified by applying the estimated PET in procedures described by Thornthwaite (1948).

MEAN ANNUAL WATER BALANCE

VERSION		WEATHER BUREAU STATION NO. 4100
SILVICULTURE GU-101 1966	1957 TO 1960	STREAMFLOW GAGE NO. 0
WBMEAN	LATITUDE 58N	NUMBER OF YEARS OF RECORD 4
THORNTHWAITE AND MATHER 1957		SOIL STORAGE IN MILLIMETERS 257

DATA IN MM., UNLESS SPECIFIED

COMPONENT						1	MON	ТН					
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
TDEGF	24.8	28.5	32.9	40.2	47.9	54.4	55.4	54.5	49.3	41.7	35.1	32.1	41.4
PPTIN	2.8	3.0	3.0	3.0	3.0	2.2	4.7	4.0	6.2	7.1	6.2	6.1	51.3
ARDIN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TDEGC	-3.9	-1.8	. 5	4.6	8.8	12.5	13.0	12.5	9.6	5.4	1.7	0.0	
HEATI	0.0	0.0	0.0	. 9	2.4	4.0	4.2	4.0	2.7	1.1	• 2	0.0	19.5
UNPET	-0	0	0	1	2	3	3	3	2	1	1	0	
CORFA	23	24	31	34	40	40	40	37	32	28	23	21	
POTET	0	0	6	39	77	103	107	94	66	37	12	0	540
PPTMM	71	77	76	77	75	57	120	101	157	180	157	155	1303
P-PET	71	77	70	38	0	-45	13	6	91	143	144	155	762
ACPWL	0	0	0			-46	0	0	0				
STRGE	328	406	257	257	256	215	228	234	257	257	257	257	
DELTA	0	0	0			-40	13	6	23	0	0	0	
ACTET	0	0	6	39	77	98	107	94	66	37	12	0	536
DEFIC	0	0	0			5	0	0	0				5
SURPL	0	0	70	38	0	0	0	0	68	143	144	155	618
WATRO	68	34	52	45	22	11	6	3	35	89	117	136	618
SNORO	0	0	15	67	33	17	8	4	2	1	1	0	148
TROMM	68	34	67	112	56	28	14	7	37	90	117	136	766
TROIN	2.7	1.3	2.6	4.4	2.2	1.1	. 6	• 3	1.5	3.6	4.6	5.4	30.2

Figure 1. -- Computer output, complete water balance, for Juneau Airport, Alaska.

RESULTS

Table 1 lists, alphabetically, all of the stations for which data were available to calculate PET and to classify climate. Alaska's climate (A B'1rb'1; i.e. perhumid, first mesothermal, occurs in sheltered places close to the Pacific Ocean from Sitka southward. Within this region, mean annual temperature may exceed 45° F. and precipitation, usually rain, often exceeds 100 inches per year. This is Alaska's only mesothermal climate, a type sometimes compared to that of the less rainy central Atlantic States. The area, extending from Prince Rupert, British Columbia, and along the entire Pacific coast well out into the Aleutian Islands, has as much rainfall but is cooler (A C'2rc'2; perhumid, warm microthermal, no season of rainfall deficit, temperature efficiency normal to warm microthermal). Here, annual temperatures average nearer 40° F., similar to the less rainy climate of coastal Maine.

There are no broad expanses of humid (B) climate; apparently, the belt of humid climate is the transition between prevalent coastal and interior conditions. Thus, Skagway ($B_1C'_2sc'_2$; humid, warm microthermal, moderate summer water deficiency, temperature efficiency normal to warm microthermal) is drier than nearby coastal stations, and Nome ($B_1C'_1rc'_1$; humid, cold microthermal, little or no water deficiency, temperature efficiency normal to cold microthermal) is wetter than nearby interior stations.

The Matanuska Valley, Alaska's agricultural center, has a drier climate (C1C'2dc'2; i.e., dry subhumid, warm microthermal, little or no water surplus, thermal efficiency normal to warm microthermal). Mean annual temperatures are about 35° F., similar to northern Wisconsin and Minnesota.

The "typical" Alaska climate (D C'2dc'2; i.e., semiarid, warm microthermal, little or no rainfall surplus, temperature efficiency normal to warm microthermal) centers in the upper Yukon, Copper, and Susitna River valleys. Annual precipitation consists of about 2 feet of snow and 8 or 10 inches of summer rain. Mean annual temperatures range from 20° to 25° F. and winter temperature may fall to -60° F. This climate sometimes is compared with that of the Yellowstone area in Wyoming. A similarly dry but colder climate (D C'1dc'1; semiarid, cold microthermal, little or no rainfall surplus, temperature efficiency normal to cold microthermal) is more widespread, extending from the Seward Peninsula eastward into Yukon Territory, from the Brooks Range southeast into British Columbia.

^{6/} The terms "mesothermal," "microthermal," and "tundra," as used in this classification, express decreasing lengths and temperatures of growing seasons. The terms "cold" and "warm" have been used in conjunction with microthermal climates because they are more descriptive than the conventionally used terms "first" and "second."

Table 1.--Location and climatic description for

Station name $\frac{1}{}$	Eleva- tion	Latitude (North)	Longitude (West)	Mean annual temperature	Mean annual precipitation (P)	Potential evapo- transpiration (PET)
	Feet	-		Degrees F.	Inches	Inches
Adak*3/	34	51°53'	176°39'	40.2	57.9	20.94
Afognak	40	58°00'	152047'	39.9	51.42	19.25
Aishihik*	3,170	61°39'	137°29'	24.5	9.88	21.42
		60°55'	161023'			
Akiak*	21			27.3	17.55	16.54
Akulurak	40	62°30'	164 ^o 25'	27.3	14.87	15.02
Aleknagik	55	59°18'	158°54'	32.8	36.07	17.15
Alice Arm*	104	55°30'	129°30'	32.7	80.05	15.08
Allakaket*	600	66°35'	152044'	20.5	13.78	16.97
Alpine Inn	455	61°43'	148°54'	33.4	17.36	18.49
Amchitka*	226	51°24'	179°15'E.	38.7	35.68	19.49
	0.100	500101	1-10161		4.5.40	
Anaktuvuk Pass*	2,100	68°10'	151°46'	13.2	10.68	11.34
Anchorage*	118	61°13'	149 ^o 52'	35.3	14.27	19.25
Angoon*	35	57 [°] 30'	134 ^o 35'	40.7	39.10	21.10
Aniak*	81	61°35'	159°36'	28.3	20.58	17.17
Annette*	18	55°04'	131°39'	45.6	96.59	23.70
Annex Creek*	24	58°19'	134°06'	39.8	109.11	20.91
Atka*	36	52°13'	174012	40.1	59.64	20.55
Atlin*	2,200	59°35'	133°39'	24.8	10.95	12.91
	2,200	52°50'	173°11'E.	38.8		18.96
Attu					71.17	
Auke Bay	35	58°24'	134 ^o 40'	41.4	58.33	17.79
Baranof*	20	570081	134050'	41.5	151.68	20.98
Barrow*	22	71°18'	156°47'	9.7	4.36	7.01
Barter Island*	39	70°08'	1430381	10.4	6.28	7.44
Bear Cove	50	590431	151°05'	35.3	25.74	17.47
Beaver Falls*	35	55°23'	131°28'	44.2	153.73	22.83
D-11 T-134	10	55°551	131°35'	43.6	108.67	22.24
Bell Island*		52°12'	165°55'E.			
Bering Island*	20		165 55 E.	32.9	21.30	16.54
Bethel*	15	60°47'	161°43'	29.6	18.17	16.81
Bettles*	666	66°54'	151°31'	22.1	14.01	16.85
Big Delta*	1,268	64 ^o 08'	155°44'	27.4	11.54	18.15
Big Lake	130	61°32'	149°55'	32.8	20.9	18.06
Bonanza Mine	5,800	61°31'	142°53'	24.7	22.41	6.35
Boundary*	2,600	64°04 °	141°07'	22.3	13.22	16.30
Broad Pass	2,127	63°12'	149°15'	28.3	11.4	16.69
	44	58°33'	155°49'	35.4	21.18	17.29
Brooks Lake	44	38 33	155 49	33.4	21.10	17.29
Calder*	20	56°10'	132°27'	43.1	112.26	22.20
Candle*	24	65°56'	161°55'	20.3	9.02	14.61
Canyon Village	990	67°09'	141°05'	15.7	10.54	15.53
Cape	131	53°23'	167°54'	39.0	46.57	18.32
Cape Decision	39	56°00'	134°08'	43.7	76.49	21.73
Cana Hinabial1	105	60°14'	146°39'	41.6	83 20	19.07
Cape Hinchinbrook	185				83.30	
Cape Lisburne	45	68°52'	166°08'	17.0	14.53	10.33
Cape Newenham	475	58°40'	162°10'	32.1	42.61	14.50
Cape Romanzof*	7	61047	166°07'	28.7	27.14	14.80

		Index of		Index of			
Actual evapo- transpiration (AET)	Surplus P-PET	humidity $Ih = \frac{100}{PET} \frac{(P-PET)}{PET}$	Deficit PET-AET	$Ia = \frac{100(PET-AET)}{PET}$	Moisture Index MI=Ih-0.6Ia	Summer need	Climatic type2/
Inches	Inches		Inches			Percent	
20.91 19.19 9.88 14.94 12.97	36.97 32.17 1.01	176.6 167.1 6.1	0.03 0.06 11.54 1.60 2.05	0.1 0.3 53.9 9.7 13.6	+176 +167 - 32 + 0.3 - 8	70 72 69 77 80	AC'2rc'2 AC'2rc'2 DC'2dc'2 C2C'1dc'1 C1C'2dc'1
16.80 15.04 13.31 15.28 19.37	18.92 64.97 16.19	110.3 430.8 83.1	0.35 0.04 3.66 3.21 0.12	2.0 0.3 21.6 17.4 0.6	+109 +431 - 13 - 10.4 + 83	76 79 76 74 72	AC'2rc'2 AC'1rc'1 C1C'2dc'2 C1C'2dc'2 B4C'2rc'2
8.82 15.20 20.51 15.28 23.70	18.00 3.41 72.89	 85.3 19.9 307.6	2.52 4.05 0.59 1.89	22.2 21.0 2.8 11.0	- 13 - 13 + 84 + 13 +308	88 72 72 76 66	C ₁ C' ₁ dc' ₁ C ₁ C' ₂ dc' ₂ B ₄ C' ₂ rc' ₂ C ₂ C' ₂ rc' ₂ AB' ₁ rb' ₁
20.91 20.55 8.31 18.96 17.79	88.20 39.09 52.21 40.54	421.8 190.2 275.4 227.9	0 0 4.60 0	0 0 35.6 0	+422 +190 - 21 +275 +228	70 71 84 73 75	AC'2rc'2 AC'2rc'2 DC'1dc'1 AC'2rc'2 AC'2rc'2
20.98 4.36 6.28 13.83 22.83	130.70 8.27 130.90	623.0 47.3 573.4	0 2.65 1.16 3.64	0 37.8 15.6 20.8	+623 - 23 - 9 + 45 +573	70 102 100 75 68	AC'2rc'2 DD'dd' C ₁ D'dd' B ₂ C'2sc'2 AB'1rc'2
22.24 15.05 14.05 13.11 11.54	86.43 4.76 1.36 	388.6 28.8 8.1 ——	0 1.49 2.76 3.74 6.61	0 9.0 16.4 22.2 36.4	+389 + 23 - 2 - 13 - 22	68 77 77 76 74	AC'2rc'2 B1C'1rc'1 C1C'1dc'1 C1C'2dc'2 DC'2dc'2
15.07 6.21 13.23 10.89 15.78	2.84 16.06 3.89	15.7 252.9 22.5	2.99 0.14 3.07 5.80 1.51	16.6 2.2 18.8 34.8 8.7	+ 6.0 +251 - 11 - 21 + 17	74 104 77 78 77	C ₂ C' ₂ rc' ₂ AD'rd' C ₁ C' ₁ dc' ₁ DC' ₁ dc' ₁ C ₂ C' ₂ rc' ₁
22.17 8.74 10.54 18.32 21.73	90.06 28.25 54.76	405.7 154.4 252.0	0.03 5.87 4.99 0	0.1 40.2 32.1 0	+405 - 24 - 19 +154 +252	68 80 79 76 69	AC'2rc'2 DC'1dc'1 C1C'1dc'1 AC'2rc'2 AC'2rc'2
19.07 9.65 14.50 14.29	64.23 4.20 28.11 12.34	336.8 40.7 193.9 83.4	0 0.68 0 0.51	0 6.6 0 3.4	+337 + 37 +194 + 81	73 90 83 80	AC'2rc'2 B1D'rd' AC'1rc'1 B4C'1rc'1

Table 1.--Location and climatic description for

Station $name^{{1\over 2}/}$	Eleva- tion	Latitude (North)	Longitude (West)	Mean annual temperature	Mean annual precipitation (P)	Potential evapor transpiration (PET)
	Feet			Degrees F.	Inches	Inches
Cape Sarichef* 3/	175	54033	164056	38.0	74.25	18.07
Cape Spencer*	81	58°12'	136°38'	42.2	68.77	21.85
Cape St. Elias*	50	59048'	144036'	43.2	68.35	22.17
Cape Thompson*	33	680061	165046'	18.9	14.21	11.85
Carmacks*	1,710	62 ⁰ 06'	136°18'	25.2	8.73	17.91
Caswell*	290	61°58'	150001	31.0	25.06	18.66
Central*	870	65°32'	144048'	20.0	10.34	18.54
Chalkyitsik	560	66°38'	143043'	17.0	5.30	15.55
Chena Hot Springs	1,574	65 ⁰ 03'	146 ⁰ 04	20.9	11.14	15.89
Chernofski Harbor*	25	53°26'	167°21'	40.2	52.75	20.16
Chichagof*	10	57°40¹	136005	41.9	122.91	21.38
Chickaloon*	929	61°48'	148°27'	32.7	14.00	18.11
Chicken	1,360	640041	141 ^o 56' 158 ^o 23'	19.3	8.62	17.01
Chignik	10 2,000	56 ⁰ 18' 62 ⁰ 34'	158°23' 144°45'	37.0 26.2	158.1 12.4	16.63 18.85
Chistochina	2,000		144 45	20.2	12.4	10.03
Chitina*	580	61 ^o 32'	144027	28.3	12.81	18.39
Circle City	700	65048'	144004	21.2	10.3	17.23
Circle Hot Springs*	1,000	65°29†	144 ^o 34'	22.2	10.20	17.80
Clear Airport	546	64 ⁰ 18'	149 ⁰ 09 '	21.1	13.91	17.38
Clear Water	1,100	64 ^o 03'	145 ^o 31'	15.9	14.43	17.69
Coal Harbor*	30	550241	160049	39.1	48.51	18.82
Cold Bay*	93	55°12'	162043'	38.4	33.20	17.81
Colleen River	1,120	67°45'	142°34' 149°40'	14.7	11.15	13.19 19.14
Cooper Lake Project	350	60°22' 61°58'	145°19'	37.3 26.1	30.79 9.15	17.40
Copper Center*	1,031	01.30	145 19	20.1	9.13	17.40
Copper Valley School	1,030	62005'	145°18'	26.8	10.53	18.31
Cordova*	25	60032'	145045'	38.6	98.64	19.13
Council*	95	64°53'	163041'	26.5	13.96	15.47
Craig*	13	55°29'	133009'	44.9	106.26	23.46
Crooked Creek*	125	61°52†	158 ⁰ 15'	29.0	14.09	17.60
Curry*	516	620371	1500021	34.9	43.67	18.94
Dah1	250	65°22'	164041'	17.4	6.86	13.43
Davis River	22	55°461	130°11'	39.9	100.6	19.40
Dawson*	1,062	64004	139°26'	23.6	12.67	18.11
Dease Lake*	2,678	58°25'	130°00'	19.6	15.25	10.20
Devil's Club	360	60°58′	149 ⁰ 11'	37.8	39.82	19.65
Dillingham*	50	590031	158°27'	33.4	25.03	17.95
Dutch Harbor*	13	53°53'	166°32'	40.7	61.64	20.59
Eagle*	821	64045	141 ⁰ 12'	25.1	11.24	17.67
Eielson Field*	547	640391	147°04'	25.1	13.99	18.39
Eklutna Lake*	882	61 ⁰ 24 '	149009'	30.7	12.38	16.93
Eklutna Project*	38	61°28'	149°10'	33.7	18.34	19.25
Eldred Rock*	55	580581	135°13'	41.9	51.21	21.50
Elmendorf*	192	61014'	149°52'	34.8	15.73	19.65

315 stations in Alaska and adjacent Canada -- Continued

Actual evapo- transpiration (AET)	Surplus P-PET	Index of humidity $Ih = \frac{100 (P-PET)}{PET}$	Deficit PET-AET	Index of aridity $Ta = \frac{100(PET-AET)}{PET}$	Moisture Index MI=Ih-0.6Ia	Summer need	Climatic type ^{2/}
Inches	Inches		Inches			Percent	
17.83 21.85 22.17 10.67 8.62	56.18 46.92 46.18 2.36	310.9 214.7 208.3 19.9	0.24 0 0 1.18 9.29	1.3 0 0 10.0 51.9	+310 +215 +208 + 14 - 31	74 69 68 86 75	AC'2rc'2 AC'2rc'2 AC'2rc'2 C2C'1rc'1 DC'2dc'2
16.57 10.20 5.30 11.14 20.04	6.40 32.59	34.3 161.7	2.09 8.34 10.25 4.75 0.12	11.2 45.0 65.9 29.9 0.6	+ 27 - 27 - 39.5 - 18 +161	73 74 79 78 71	B ₁ C' ₂ rc' ₂ DC' ₂ dc' ₂ DC' ₁ dc' ₁ DC' ₁ dc' ₁ AC' ₂ rc' ₂
21.38 12.68 8.62 16.63 12.30	101.53 141.47	474.9 850.7	0 5.43 8.39 0 6.55	0 30.0 49.3 0 34.7	+475 - 18 - 30 +851 - 21	69 74 76 77 73	AC'2rc'2 C1C'2dc'2 DC'2dc'2 AC'1rc'1 DC'2dc'2
11.81 10.15 10.20 12.37 14.43	 	== == ==	6.58 7.08 7.60 5.01 3.26	35.8 41.1 42.7 28.8 18.4	- 21 - 25 - 26 - 17 - 11	74 76 75 75 75	DC'2dc'2 DC'2dc'2 DC'2dc'2 C1C'2dc'2 C1C'2dc'2
18.80 17.52 11.15 15.71 9.15	29.69 15.39 11.65	157.8 86.4 60.9	0.02 0.29 2.04 3.43 8.25	0.1 1.6 15.5 17.9 47.4	+158 + 85 - 6 + 51 - 28	73 75 83 73 75	AC'2rc'2 B4C'2rc'2 C1C'1dc'1 B2C'2rc'2 DC'2dc'2
10.53 19.13 11.69 23.46 14.09	79.51 82.80	415.6 352.9	7.78 0 3.78 0 3.51	42.5 0 24.4 0 19.9	- 26 +416 - 15 +353 - 12	74 73 79 67 75	DC'2dc'2 AC'2rc'2 C1C'1dc'1 AB'1rb'1 C1C'2dc2
18.62 6.86 19.40 12.48 9.65	24.73 81.20 5.05	130.6 418.6 49.5	0.32 6.57 0 5.63 0.55	1.7 48.9 0 31.1 5.4	+130 - 29 +419 - 19 + 46	73 83 72 74 91	AC'2rc'2 DC'1dc'1 AC'2rc'2 C1C'2dc'2 B2D'rd'
18.34 16.53 19.92 10.41 13.99	20.17 7.08 41.05 	102.6 39.4 199.4	1.31 1.42 0.67 7.26 4.40	6.7 7.9 3.3 41.1 23.9	+ 98 + 35 +197 - 25 - 14	72 74 71 75 74	B4C'2rc'2 B1C'2rc'2 AC'2rc'2 DC'2dc'2 C1C'2dc'2
12.32 15.16 20.47 15.31	29.71 	138.2	4.61 4.09 1.03 4.34	27.2 21.2 4.8 22.1	- 16 - 13 +135 - 13	76 72 69 72	C ₁ C' ₁ dc' ₂ C ₁ C' ₂ dc' ₂ AC' ₂ rc' ₂ C ₁ C' ₂ dc' ₂

Table 1.--Location and climatic description for

Station name <u>l</u> /	Eleva- tion	Latitude (North)	Longitude (West)	Mean annual temperature	Mean annual precipitation (P)	Potential evapor transpiration (PET)
	Feet			Degrees F.	Inches	Inches
Eureka	3,326	61057'	147010'	24.0	17.09	12.33
Fairbanks*3/	436	640491	147052	26.2	11.92	18.35
False Pass	20	540501	163040	39.6	80.7	17.58
Farewell*	20	62°30'	153°54 '	25.7	16.25	16.42
Five Finger Light*	70	57016.1	133°37'	43.4	57.84	22.48
Flat*	326	620291	158°05'	27.5	18.23	17.32
Fort Egbert	573	640461	141012	21.3	10.3	16.95
Fort Gibbon	235	65°121	152000'	23.3	10.7	16.91
Fort Liscom*	9	61006'	146°27'	25.1	74.4	18.15
Fort Tongass*	20	540451	130°35'	47.8	133.8	24.92
Fort Yukon*	419	66°35'	145°18'	20.7	6.53	17.91
Fortmann*	132	55°36'	131°25'	45.2	144.40	21.93
Galena*	120	64043'	156°54'	25.2	14.62	17.83
Gambell*	25	630461	171048'	24.2	15.83	11.30
Geese Islands	15	56°43'	153°55'	41.9	57.4	21.76
Girdwood	50	60°56'	149010'	35.9	38.4	19.27
Glennallen	1,456	62°07'	145°32'	22.9	8.21	15.57
Golovin	12	64°33"	163°01'	26.6	9.02	14.97
Goodnews Bay	20	59°10'	162°30'	31.4	25.3	15.60
Guard Island*	20	55°27 '	131°53'	46.0	65.43	23.90
Gu1kana*	1,572	62°17'	145°27'	26.9	11.70	17.44
Gull Cove*	18	58°12'	.136°09'	41.6	102.84	21.02
Gustavus*	22	58°25'	135°42'	40.9	54.86	20.87
Haines*	100	59°14'	135°26'	40.3	60.64	20.79
Haines Junction*	1,960	60°46'	137°35'	26.5	10.94	16.57
Herschel Island*	15	690351	139015'	10.7	5.91	9.06
	2,760	620541	149°05'	27.1	24.5	14.18
High Lake Lodge	15	550281	132040'	44.2	103.58	22.83
Hollis*	150	62010'	159045'	29.2	18.35	17.40
Holy Cross* Homer*	67	590381	151°30'	37.3	25.25	18.86
	2.5	61°32'	166 ⁰ 05¹	30.0	17.07	15.24
Hooper Bay	35	66°04'	154°20'	23.6	13.91	17.56
Hughes*	545					
Hyder*	9	55°55'	130°01'	40.9	89.58	21.30
Igloo	4	65°12'	165°04'	21.8	9.06	13.85
Iliamna*	145	59 ⁰ 44'	154 ^o 57'	33.7	25.78	17.80
Indian River	735	62045	149050'	31.1	36.7	16.97
Iniskin*	300	590451	153014	33.9	78.23	17.36
Intricate Bay	170	59043	1540281	33.7	35.05	16.62
Jualin	710	58°49 '	135002	42.8	81.96	21.28
Juneau*	72	58°18'	134°24'	42.5	90.25	21.89
Juneau Airport*	12	58°22'	134°35'	40.5	54.62	20.63
Kake*	8	56°59!	133 ⁰ 55'	42.7	54.51	21.89
				20.7	100 3	17 01
Kalsin Bay	20	57°341	152°27'	39.7	100.3	17.91

315 stations in Alaska and adjacent Canada -- Continued

		T 1 5		T 1 C			
Actual evapo-	Surplus	Index of humidity	Deficit	Index of aridity	Moisture	Summer	Climațic
transpiration	P-PET	$Ih = \frac{100 \text{ (P-PET)}}{100 \text{ (P-PET)}}$	PET-AET	$Ia = \frac{100(PET-AET)}{1}$	Index	need	type ² /
(AET)	1 111	Ih = TOO (1 121) PET		Ia = PET	MI=Ih-0.6Ia	need	сурс
Inches	Inches		Inches			Percent	
12.18	4.76	38.6	0.15	1.2	+ 38	85	B ₁ C' ₁ rc' ₁
10.94	4.70	J0.0 	7.41	40.4	- 24	74	DC'2dc'2
17.58	63.12	359.0	0	0	+359	75	AC'2rc'2
15.68			0.74	4.5	- 3	77	
	35.36	157.3	0.74	0	+157	68	C ₁ C' ₁ dc' ₁
22.28	33.30	13/.3	U	U	+13/	00	AC'2rc'2
13.81	0.91	5.3	3.51	20.3	- 7	75	C ₁ C' ₂ dc' ₂
10.32			6.63	39.1	- 23	76	DC'2dc'2
10.70			6.21	36.7	- 22	76	DC'2dc'2
17.91	56.25	309.9	0.24	1.3	+309	74	AC'2rc'2
24.92	108.88	436.9	0	0	+437	65	AB'1rb'1
			_				1 1
6.53			11.38	63.5	- 38	7.5	DC'2dc'2
21.93	122.47	558.5	0	· 0	+559	69	AC'2rc'2
14.62			3.21	18.0	- 11	75	C ₁ C' ₂ dc' ₂
10.36	4.53	40.1	0.94	8.3	+ 35	88	B ₁ C' ₁ rd'
21.76	35.64	163.8	0	0	+164	69	AC'2rc'2
16.63	19.13	99.3	2.64	13.7	+ 91	72	B ₄ C' ₂ rc' ₂
8.21			7.36	47.3	- 28	79	DC'1dc'1
9.02			5.95	39.7	- 24	80	DC'1dc'1
14.17	9.70	62.2	1.43	9.2	+ 57	78	B ₂ C' ₁ rc' ₁
23.90	41.53	173.8	0	0	+174	66	AB'ırb'ı
23.70	41.00	175.0	O	U	11/4	00	Ab IIb I
11.54			5.90	33.8	- 20.3	75	DC'2dc'2
21.00	81.82	389.2	0.02	0.1	+389	70	AC'2rc'2
20.67	33.99	162.9	0.20	1.0	+163	70	AC'2rc'2
18.58	39.85	191.7	2.21	10.6	+185	70	AC'2rc'2
10.94			5.63	34.0	- 20.4	77	DC'1dc'1
5.83			2 22	25 7	2.1	0.7	DD 1 1 1 1
13.92	10.32		3.23	35.7	- 21	94	DD'dd'
22.71	80.75	72.8	0.26	1.8	+ 71	81	B ₃ C' ₁ rc' ₁
14.64	0.95	353.7	0.12	0.5	+353	68	AB' ₁ rc' ₂
16.65	6.39	5.5	2.76	15.9	- 4	75	C ₁ C [†] ₂ dc [†] ₂
10.05	0.39	33.9	2.21	11.7	+ 27	73	B ₁ C' ₂ rc' ₂
13.91	1.83	12.0	1.33	8.7	+ 7	79	C ₂ C' ₁ rc' ₁
13.43			4.13	23.5	- 14	75	C ₁ C' ₂ dc' ₂
21.06	68.28	320.6	0.24	1.12	+320	70	AC'2rc'2
8.80			5.05	36.5	- 22	82	DC'1dc'1
16.38	7.98	44.8	1.42	8.0	+ 40	75	B ₂ C [†] 2rc [†] 2
14.88	19.73	116 2	2 00	10.0	1100	27	
17.36	60.87	116.3	2.09	12.3	+109	76	AC'2rc'2
16.30	18.43	350.6	0	0	+351	75	AC'2rc'2
21.05	60.68	110.9	0.32	1.9	+109.8	77	AC'irc'i
21.89		285.2	0.23	1.1	+284	70	AC'2rc'2
41.09	68.36	312.2	0	0	+312	69	AC'2rc'2
20.53	33.99	164.8	0.10	0.5	+165	70	AC'2rc'2
21.38	32.62	149.0	0.51	2.4	+148	69	AC'2rc'2
17.91	82.39	460.0	0	0	+460	75	AC'2rc'2
12.80			5.27	29.2	- 18	74	C ₁ C [†] ₂ dc [†] ₂
							1 2 2

Table 1.--Location and climatic description for

Station name $^{1/}$	Eleva- tion	Latitude (North)	Longitude (West)	Mean annual temperature	Mean annual precipitation (P)	Potential evapor transpiration (PET)
	Feet			Degrees F.	Inches	Inches
Kanatak 2/	23	570341	156002	42.1	57.83	20.84
Kanatak Kasilof* 3/	80	60°23'	151017'	34.8	17.10	18.82
Katalla	10	60°12'	144 ⁰ 33'	41.3	110.6	19.05
Kenai*	85	60°341	151°16'	33.3	18.42	17.17
Kennecott*	2,210	61029'	142°53	30.2	23.47	16.57
Kenney Lake	1,200	61°44'	144043"	26.6	16.95	15.07
Kensington Mine	2,025	58°52'	1350081	40.0	74.65	19.40
Kechumstuk	2,600	6407'	142°20'	18.1	13.4	14.22
Ketchikan*	15	55°21	131°39'	46.1	151.19	23.74
Killisnoo*	20	57°22'	134°29'	40.7	52.9	20.67
Kinsham Cove	13	57°41'	136°06'	44.8	117.0	22.14
King Island	100	64°56'	168 ⁰ 01'	29.2	12.53	14.08
King Salmon*	44	58°41'	157°05'	34.1	22.46	17.87
Kitimat*	55	54 ⁰ 00 '	128042'	37:8	96.78	18.90
Kitoi Bay*	20	58°11'	152°21'	39.1	62.62	16.57
Kiukpalik Island	20	58°36'	1530341	38.8	75.7	17.47
Klatt's Farm	150	61°04'	149054	33.8	16.53	18.96
Klukwan*	91	59°24'	135°54	35.7	21.16	19.80
Kobuk	140	66°54'	156 ^o 52'	19.4	20.7	14.30
Kodiak*	152	570481	152024	40.5	61.54	19.96
Kokhanok Bay*	115	59°30'	154°52 *	33.0	31.33	16.18
Komakuk Beach	30	69°35'	140°11'	10.9	6.06	9.80
Kotzebue*	10	66°52'	162°38'	20.6	8.02	13.39
Ladd Air Force Base*	464	64050'	147036'	26.7	12.60	18.70
Lake Chandalar	1,900	67°30'	1480301	14.2	12.01	13.25
Lake Minchumina*	693	630531	152°17'	25.3	11.99	17.87
Lake Nerka*	65	590341	1590021	31.1	57.85	17.44
Larsen Bay*	15	570321	154°05'	39.4	21.90	20.27
Latouche*	45	60°03'	147°54 *	41.5	180.96	20.67
Latouche* Lazy Bay	12	560531	154015	40.3	45.41	19.31
	1 176	600571	148°59'	27.0	16.0	15.85
Lignite	1,176	63°57'		27.0		23.39
Lincoln Rock*	25	56°03'	132°46'	44.9	60.31	
Linger Longer	700	59026	136017'	37.7	36.63	19.10
Little Diomede	150	65°45'	168°56'	22.1	28.71	10.60
Little Port Walter*	14	56°231	134°39'	43.2	222.47	22.32
Livengood*	730	65°30'	148 ⁰ 29 °	24.8	12.75	17.95
Mankomen Lake	3,330	62 ⁰ 59'	144 ⁰ 29'	24.3	26.0	14.59
Manley Hot Springs*	265	65°00'	150°39'	25.1	15.19	17.80
Matanuska Expt. Station*	150	610341	149016'	35.5	15.40	19.76
May Creek	1,500	62°21'	142041*	26.1	13.90	15.01
Mayo Landing*	1,625	63°36'	1350531	14.3	11.16	11.89
McGrath*	334	62°58'	155°37'	25.2	19.13	17.68
McKinley Park*	2,092	630421	149°00'	27.5	14.44	14.61
	2,717	62047	145°27'	22.4	15.27	13.35
Meier	2,111	02 47	147 41	24 · T	23.27	

315 stations in Alaska and adjacent Canada--Continued

Actual evapo- transpiration (AET)	Surplus P-PET	Index of humidity Ih = \frac{100(P-PET)}{PET}	Deficit PET-AET	Index of aridity $Ia = \frac{100 (PET-AET)}{PET}$	Moisture Index MI=Ih-0.6Ia	Summer need	Climatic type2/
Inches	Inches		Inches	-		Percent	
20.78 15.24	36.99	177.5 	0.06 3.58	0.3 19.0	+177 - 11	70 73	AC'2rc'2 C1C'2dc'2
19.05	91.55	480.6	0	0	+481	73	AC'2rc'2
15.12	1.25	7.3	2.05	11.9	+ 0.2	76	C2C'2rc'2
15.00	6.90	41.6	1.57	9.5	+ 36	77	B1C'1rc'1
10.78	1.88	12.5	4.29	28.5	- 4.6	79	C ₁ C' ₁ dc ₁
19.14	55.25	284.8	0.26	1.3	+284	72	AC'arc'a
11.75			2.47	17.4	- 10.4	81	$c_1c_1^{\dagger}dc_1^{\dagger}$
23.74	127.45	536.9	0	0	+537	66	AB'ırb'ı
20.31	32.23	155.9	0.36	1.74	+155	70	AC'2rc'2
22.14	94.86	428.5	0	0	+429	68	AC'2rc'2
10.45			3.63	25.8	- 15	81	$C_1C'_1dc'_1$
15.98	4.59	25.7	1.89	10.6	+ 19	75	C ₂ C' ₂ rc' ₂
18.90	77.88	412.1	0	0	+412	73	AC'2rc'2
16.57	45.05	271.9	0	0	+272	77	AC'1rc'1
17.47	58.23	333.3	0	0	+333	75	AC'2rc'2
15.45			3.51	18.5	- 11	73	$C_1C_2dc_2$
15.17	1.36	6.9	4.63	23.4	- 7	72	C1C'2dc'2
12.13	6.40	44.8	2.17	15.2	+ 36	81	B ₁ C' ₁ rc' ₁
19.92	41.58	209.3	0.04	0.2	+209	71	AC'2rc'2
15.57	15.15	93.6	0.61	3.8	+ 91	77	B ₄ C' ₁ rc' ₁
5.90			3.90	39.8	- 24	92	DD'dd'
8.02			5.37	40.1	- 24	83	DC'1dc'1
12.60			6.10	32.6	- 19.6	72	C ₁ C' ₂ dc' ₂
10.73			2.52	19.0	- 11	83	C ₁ C' ₁ dc' ₁
11.99			5.88	32.9	- 19.7	75	C1C'2dc'2
17.44	40.41	231.7	0	0	+232	75	AC'2rc'2
16.18	1.63	8.0	4.09	20.2	- 4	71	$C_1C'_2dc'_2$
20.67	160.29	775.5	0	0	+776	70	AC'2rc'2
19.04	26.10	135.2	.27	1.4	+134	72	AC'2rc'2
14.29	0.15	1.0	1.56	9.8	- 4.9	78	$c_1c'_1dc'_1$
23.36	36.92	157.8	0.03	0.1	+158	67	AB'1rc'2
14.99	17.53	91.8	4.11	21.5	+ 79	73	B ₃ C' ₂ sc' ₂
9.41	18.11	170.8	1.19	11.2	+164	90	AD'rd'
22.32	200.15	896.7	0	0	+897	68	AC'2rc'2
12.72			5.23	29.1	- 17	74	C1C'1dc'2
14.57	11.41	78.2	0.02	0.1	+ 78	80	B3C'1rc'1
14.80		-	3.00	16.9	- 10.1	75	C1C'1dc'2
15.40			4.36	22.1	- 13	72	C1C'2dc'2
11.86			3.15	21.0	- 13	80	C ₁ C' ₁ dc' ₁
9.09			2.80	23.5	- 14	86	C_1D 'dc' $_1$
15.54	1.45	8.2	2.14	12.1	+ 1	75	C ₂ C' ₁ rc' ₂
13.58			3.03	18.2	- 11	77	C1C'1dc'1
12.83	1.92	14.4	0.52	3.9	+ 10.4	83	C ₂ C' ₁ rc' ₁

Table 1.--Location and climatic description for

Station name ¹ /	Eleva- tion	Latitude (North)	Longitude (West)	Mean annual temperature	Mean annual precipitation (P)	Potential evapo- transpiration (PET)
	Feet			Degrees F.	Inches	Inches
Mendenhal1* ^{3/}	85	58°24 t	134032*	40.0	93.73	20.71
Middleton Island*	39	59°28'	146°19'	42.1	61.01	21.93
Mile 28, Haines H'way	400	50°24'	135°54'	35.5	31.79	19.76
Moose Pass	480	60°28'	149°23'	33.5	43.66	17.39
Moose Run	395	61°15'	149°40'	33.0	19.2	17.43
Moose Valley*	400	59025'	136003'	35.8	33.15	19.65
Moses Point*	15	640431	1620041	25.0	20.50	15.71
Mountain Village*	39	62°07'	163°45'	27.7	16.26	16.18
Naknek*	49	58°45'	157°05'	34.4	22.89	18.66
Nenana*	356	64°33'	149°05'	25.8	11.13	18.11
New Hazelton*	1,150	55014'	127036'	29.3	19.17	14.06
Nikolski	18	52°27'	168°52'	38.0	32.81	16.62
Ninilchik	25	60°05	151°40'	34.3	25.54	16.33
Nome*	13	64°30'	165°26'	26.3	18.96	15.00
Noorvik*	68	66°50'	161000'	22.1	16.40	12.01
North Dutch Island*	33	60°46'	147°48'	41.0	126.84	20.20
Northeast Cape*	38	63°17'	168041'	25.1	18.24	12.05
North Fork	2,700	64°30'	142010'	19.9	12.6	16.00
Northway*	1,713	63°00'	141050'	22.4	11.34	17.52
Nulato*	210	64 ⁰ 43'	158°04'	25.9	15.60	16.26
Nunivak*	40	60°23'	166°12'	29.6	14.65	15.28
Nyac*	450	61°00'	159°59'	30.4	22.65	17.01
Ohogamiut	45	61°38'	161°54'	33.3	23.65	21.54
Old Crow*	800	67°35'	139°50'	13.3	7.54	13.74
Ophir Ophir	400	63°10'	156°33'	19.9	12.6	16.00
Palmer*	220	61°37'	149 ⁰ 06'	35.6	16.61	19.72
Passage Canal	12	60°47'	148°13'	39.8	190.19	19.18
Paxson*	2,697	63°03 °	145°27'	24.3	19.65	14.53
Perseverence Camp	1,100	58°18'	134°20'	37.7	160.1	18.85
Petersburg*	50	56°49'	132057	42.3	105.01	21.69
Pilgrim Springs*	50	65005	164°58'	24.1	5.86	15.71
Pilot Point	50	570371	1570341	37.4	19.8	18.25
Pilot Station*	50	61°58'	163°00'	28.4	16.61	16.18
Platinum*	20	59001'	161047'	32.2	18.75	16.93
Point Hope*	13	68°20'	1660481	18.7	10.21	10.87
Point Lay*	10	690451	163003'	13.3	6.91	10.75
Point Retreat*	20	58°251	134°57'	42.2	78.68	21.38
Porcupine Creek*	1,800	59°22'	136°16'	34.5	39.00	19.13
Port Alexander*	18	56°10'	1340451	43.8	169.10	22.80
Port Alsworth	230	60°12'	154018	32.8	21.32	16.72
Port Heiden	92	56°57 *	158°37'	36.1	17.11	16.76
Port Moller*	18	55°56*	160°30'	38.1	19.2	18.94
Portage*	35	60°51!	148°59'	36.5	57.13	19.29

15 stations in Alaska and adjacent Canada--Continued

		,					
Actual evapo- transpiration (AET)	Surplus P-PET	Index of humidity Ih = 100 (P-PET)	Deficit	Index of aridity $Ia = \frac{100(PET-AET)}{1}$	Moisture Index MI=Ih-0.6Ia	Summer need	Climatic type ² /
()		PET		PET			
Inches	Inches		Inches	-		Percent	
20.71	73.02	352.6	0	0	+353	70	AC'2rc'2
21.77	39.08	178.2	0.16	0.7	+178	69	AC [†] 2rc [†] 2
							AC 2rc 2
15.39	12.03	60.9	4.37	22.1	+ 48	72	B ₂ C [†] 2sc [†] 2
13.63	26.27	151.1	3.76	21.6	+138	75	AC'2rc'2
14.00	1.77	10.2	3.43	19.67	- 2	75	C ₁ C' ₂ sc' ₂
15.79	13.50	68.7	3.86	19.64	+ 57	72	B ₂ C' ₂ sc' ₂
14.50	4.79	30.5	1.21	7 7	+ 25	78	BiC'isc'i
13.67	.08	0.5	2.51	15.5	- 9	77	C1C'1dc'1
17.48	4.23	22.7	1.18	6.3	+ 19	73	C ₂ C' ₂ rc' ₂
	4.23						
11.02			7.09	39.1	- 23	74	DC'2dc'2
12.96	5.11	36.3	1.10	7.8	+ 32	81	B ₁ C' ₁ rc' ₁ B ₁ C' ₁ rc' ₁ B ₂ C' ₁ rc' ₁ B ₁ C' ₁ rc' ₁
16.47	16.19	97.4	0.15	0.9	+ 97	77	B ₁ C' ₁ rc' ₁
14.42	9.21	56.4	1.91	11.7	+ 49	77	B ₂ C' ₁ rc' ₁
14.13	3.96	26.4	0.87	5.80	+ 23	80	B1C'1rc'1
10.69	4.39	36.6	1.32	11.0	+ 30.0	86	$B_1^{TC'_1rc'_1}$
20.20	106.64	527.9	0	0	+528	71	AC'2rc'2
10.59	6.19	51.4	1.46	12.1	+ 44	85	P.Cl. mal
		21.4	3.45				B ₂ C 1rc 1 C ₁ C 1dc 1
12.55	, 			21.6	- 13	78	Clc.lac.1
11.34			6.18	35.3	- 21	75	DC'2dc'2
12.09			4.17	25.6	- 15	77	$c_1c_1dc_1$
13.08			2.20	14.4	- 9	79	C1C'1dc'1
15.57	5.64	33.2	1.44	8.5	+ 28	76	B1C'1rc'2
18.45	2.11	9.8	3.09	14.3	+ 1	69	C2C'2rc'2
7.52			6.22	45.3	- 27	82	DC'1dc'1
12.60			3.40	21.25	- 13	76	C ₁ C' ₁ dc' ₂
16.61			3.11	15.8	- 9.5	72	C1C'2dc'2
19.18	171.01	891.6	0	0 - 5	+892	73	AC'2rc'2
13.72	5.12	35.2	0.81	56	+ 32	81	B ₁ C' ₂ rc' ₁
18.85	141.25	749.3	0	0	+749	73	AC'irc'2
21.69	83.32	383.7	0	0	+384	69	AC'2rc'2
5.86			9.85	62.7	- 37.6	78	DC'idc'i
16.13	1.55	8.5	2.12	11.6	+ 1.5	74	C ₂ C' ₂ rc' ₂
14.29	0.43		1.89				
		2.7		11.7	- 4	77	C1C'1dc'1
14.54	1.82	10.8	2.39	14.1	+ 2	76	C2C'2rc'2
7.56		atter some	3.31	30.5	- 18	89	C ₁ D'dd'
6.91	·		3.84	35.7	- 21	89	DD'dd'
21.34	57.30	268.0	0.04	0.2	+268	69	AC'2rc'2
16.42	19.87	103.9	2.71	14.2	+ 95	73	B ₄ C [†] 2rc [†] 2
22.80	146.30	641.7	0	~ 0	+642	68	AB'1rc'2
15.45	4.60	27.5	1.27	7.6	+ 23	76	B ₁ C' ₁ rc' ₂
15.00	0.05	0.1	1 10	0. 1		7.	
15.36	0.35	2.1	1.40	8.4	- 3	76	C1C'1dc'2
15.04	0.26	1.4	3.90	20.6	- 11	73	C ₁ C' ₂ dc' ₂
18.82	37.84	196.2	0.47	2.4	+195	72	AC'2rc'2
20.24	74.17	366.5	0	0	+367	71	AC'2rc'2

Table 1.--Location and climatic description for

Station name1/	Eleva- tion	Latitude (North)	Longitude (West)	Mean annual temperature	Mean annual precipitation (P)	Potential evapo transpiration (PET)
	Feet			Degrees F.	Inches	Inches
Puntilla* 3/	1,837	62006	152045	25.9	14.24	15.55
Radioville*	15	57°36'	136009'	45.0	122.79	23.50
Rampart*	375	65°30'	150°15'	22.7	9.88	18.03
Rapids*	2,128	63°32'	145°51'	29.9	18.58	17.24
Richardson*	880	64017'	1460221	28.9	12.89	18.62
Ruby*	705	64044	155°26'	27.1	17.16	17.91
Salmon Creek Beach	20	58°19'	134°28'	40.9	106.8	20.09
Sand Point*	32	550201	160030'	38.1	71.3	18.50
Savoonga*	35	63°41'	170°26'	23.5	9.95	11.50
	20	54025'	164045'	40.5	50.82	20.71
Scotch Cap*	20	34~23	104-43	40.5	30.62	20.71
Seclusion Harbor*	20	56°33'	134 ⁰ 03'	43.1	111.9	22.17
Selawik	20	66°36'	160002'	18.6	9.74	15.17
Seldovia	30	59°26'	151043'	34.7	40.84	18.29
Seward*	76	60°07′	149 ⁰ 27 [†]	39.4	68.98	19.88
Shaktolik	15	64 ⁰ 15'	161°09'	24.5	16.30	13.10
Shaw Island	8	58°12'	136°15'	43.3	105.0	21.81
Shearwater Bay*	5	57021	152 ^o 55'	40.2	96.84	19.76
Sheep Mountain*	2,280	61°48′	147 ⁰ 41'	28.8	11.01	16.42
Shemya*	92	57°421	174°06'E.	38.8	26.15	18.70
Shingle Point*	120	68°57'	137°12'	13.1	7.32	12.44
Shishmaref*	16	660141	166007'	20.5	8.00	12.40
Shungnak*	138	660541	157002'	21.7	20.04	15.94
Sitka*	67	57°03 t	135°20'	43.3	96.33	22.64
Sitkinak	53	56°33*	154008	39.9	53.4	18.09
Skagway*	18	59°27'	135°19'	41.1	29.86	20.87
Skwentna*	153	61057	151010'	32.6	29.87	18.46
Slana	2,200	620431	143055'	27.7	21.13	15.88
Sleetmute	2,200	610421	157011'	25.9	23.44	15.46
	16	55019'	130047'	42.1	104.59	21.26
Smeaton Bay						
Smithers*	1,690	54044	127°06'	28.6	20.27	14.76
Snag*	1,925	620221	140°24'	21.4	14.07	17.20
Snowshoe Lake	2,500	620021	146040'	21.5	11.6	12.58
Soldatna	85	600291	151005'	31.8	19.1	16.97
Sparrevohn*	1,580	61°06'	155°341	30.3	25.64	16.89
St. George Island*	100	56°36'	169°32'	36.3	29.27	16.61
St. Michael*	50	630291	162001'	26.1	13.19	14.92
St. Paul Island*	22	570091	170013'	35.2	24.24	15.94
Stampede Stampede	2,500	630441	150°22'	26.6	19.28	15.85
Sterling*	2,300	60°32'	150°45'	31.8	16.68	17.72
Stevart*	150	55°58'	129°581	33.8	70.92	16.22
Stony Piver	221	61°46'	156°381	28.3	22.03	16.98
Stony River	500	62°05'	161000'	27.4	28.4	15.46
Stuyahok	25	55°12'	1320491	46.0	111.1	24.01
Sulzer	25					
Summit*	2,401	63 ⁰ 201	149 ⁰ 09 '	25.8	22.25	15.51

315 stations in Alaska and adjacent Canada--Continued

Actual evapo- transpiration (AET)	Surplus P-PET	Index of humidity $Ih = \frac{100 (P-PET)}{PET}$	Deficit PET-AET	Index of aridity $Ia = \frac{100(PET-AET)}{PET}$	Moisture Index MI=Ih-0.6Ia	Summer need	Climatic type2/
Inches	Inches		Inches			Percent	
13.55 23.50 9.88 16.24 12.89	99.29 1.34	422.5 7.8	1.97 0 8.15 1.00 5.73	12.7 0 45.2 5.8 30.8	- 7 +423 - 27 + 4 - 18	79 67 74 76 73	C1C'1dc'1 AB'Ir'1 DC'2dc'2 C2C'2rc'2 C1C'2dc'2
13.78 20.09 18.42 9.80 20.71	86.71 52.8 30.11	431.6 285.4 145.4	4.13 0 0.08 1.70	23.1 0 0.4 14.8	- 14 +432 +285 - 9 +145	75 71 74 87 70	C1C'2dc'2 AC'2rc'2 AC'2rc'2 C1C'1dc'1 AC'2rc'2
22.17 9.74 15.97 19.49 12.37	89.73 22.55 49.10 3.20	404.07 123.3 247.0 24.4	0 5.43 2.32 0.39 0.73	0 35.8 12.7 2.0 5.6	+405 - 21 +114 +246 + 21	68 79 74 71 84	AC'2rc'2 DC'1dc'1 AC'2rc'2 AC'2rc'2 B ₂ C'2rc'2
21.33 19.76 11.01 17.76 7.32	83.19 77.08 7.45	381.4 390.1 39.8	0.48 0 5.41 0.94 5.12	2.2 0 32.9 5.02 41.2	+380 +390 - 19.7 + 36 - 25	69 72 77 73 85	AC'2rc'2 AC'2rc'2 C1C'1dc'1 B1C'2rc'2 DC'1dc'1
8.00 15.45 22.64 17.97 16.57	4.10 73.69 35.31 8.99	25.7 325.5 195.2 43.1	4.40 0.49 0 0.12 4.30	35.5 3.1 0 0.7 20.6	- 21 + 23 +326 +195 + 31	85 78 67 74 70	DC'1dc'1 B1C'1rc'1 AB'1rb'1 AC'2rc'2 B1C'2sc'2
16.97 15.16 14.49 21.23 13.32	11.41 5.25 7.98 83.33 5.51	61.8 33.1 51.6 392.0 37.3	1.49 0.72 0.97 0.03 1.44	8.1 4.5 6.3 0.1 9.8	+ 57 + 30.4 + 47 +392 + 31	74 78 79 70 80	B ₂ C' ₂ rc' ₂ B ₁ C' ₁ rc' ₁ B ₂ C' ₁ rc' ₁ AC' ₂ rc' ₂ B ₁ C' ₁ rc' ₁
14.07 11.54 14.31 16.44 16.34	2.13 8.75 12.66	12.6 51.8 76.2	3.13 1.04 2.66 0.45 0.27	18.2 8.3 15.7 2.7 1.6	- 11 - 5 + 3 + 50 + 75	75 85 76 76 77	C ₁ C' ₂ dc' ₂ C ₁ C' ₁ dc' ₁ C ₂ C' ₂ rc' ₂ B ₂ C' ₂ rc' ₂ B ₃ C' ₁ rc' ₁
11.81 15.34 15.11 13.70 16.10	8.30 3.43 54.70	52.1 21.6 ————————————————————————————————————	3.11 0.60 0.74 4.02 0.12	20.8 3.7 4.7 22.7 0.73	- 12 + 50 + 19 - 14 +337	80 78 78 75 77	C ₁ C' ₁ dc' ₁ B ₂ C' ₁ rc' ₁ C ₂ C' ₁ rc' ₁ C ₁ C' ₂ dc' ₂ AC' ₁ rc' ₁
15.44 14.56 24.01 15.09	5.05 12.94 87.09 6.74	29.7 83.7 362.7 43.5	1.54 0.90 0 0.42	9.1 5.8 0 2.7	+ 24 + 80.2 +363 + 42	76 79 66 79	B ₁ C' ₂ rc' ₂ B ₄ C' ₁ rc' ₁ AB' ₁ rb' ₁ B ₂ C' ₁ rc' ₁

Table 1.--Location and climatic description for

Station name <u>l</u> /	Eleva- tion	Latitude (North)	Longitude (West)	Mean annual temperature	Mean annual precipitation (P)	Potential evapo- transpiration (PET)
	Feet	1		Degrees F.	Inches	Inches
Summit Nike Site	3,980	61°15'	1490331	29.3	30.7	12.69
Sunrise*3/	50	60°55'	149°35'	33.8	35.4	17.87
Susitna*	40	61°30'	150040'	36.0	28.6	19.76
Taku Pass*	175	58°33'	133°41'	39.0	60.3	20.83
Talkeetna*	345	620181	150006'	33.2	28.85	18.70
Tanaga Island	145	510451	1780021	39.1	44.67	18.91
Tanacross*	1,546	630241	143019'	23.5	10.02	17.52
Tanalian Point*	308	60013'	154022	35.2	21.66	18.94
Tanana*	232	65010'	152006'	23.9	13.03	17.52
Telegraph Creek*	550	57054'	131009'	25.9	12.59	14.33
reregraph Greek-	550	37-34	131-09	23.7	12.39	
Teller*	10	65016'	166°21'	24.7	11.92	13.54
Tenakee	19	57°47 '	135°12'	42.8	68.41	21.01
Terrace*	719	54°28 '	128°35'	36.1	47.18	17.91
Thane	20	58°15'	134°21'	41.5	81.5	19.54
Thompson Pass*	2,700	61007	145044	28.3	88.66	13.11
Thornbrough*	99	55°12'	1620431	37.5	33.10	18.07
Tiekel	2,500	61°20′	144 ⁰ 55'	27.6	21.2	17.37
Tok	1,632	63°20'	1430021	23.3	12.24	16.74
Tonsina	1,500	61038'	1450111	26.6	12.97	15.79
Tree Point*	36	540481	130°56'	45.8	96.67	23.94
Trims Camp*	2,408	63°261	1450461	26.5	36.11	17.29
Tunnel	500	60°41'	149°02 *	37.3	44.67	17.94
Tyonek*	50	61°05'	151°15'	35.3	23.2	19.57
Uganik Bay*	50	57°43'	153°19'	40.7	42.06	20.24
Umiat*	337	690221	152008'	11.1	5.51	11.34
Umnak	130	530231	167°54'	29.3	38.8	19.77
Unalakleet*	14	63°54†	160°47'	26.7	13.66	16.10
Unalaska	15	53°52†	166°31'	40.5	60.97	19.05
	481	64°51'	147°52'	25.6	13.37	18.31
University Experiment Station*	401 5	560041	131006'	40.5	118.82	18.94
Unuk River	ر	36004	131-00	40.5	110.02	10.74
Valdez*	15	61007	146016	35.6	62.05	18.62
Venetie	620	67°00'	146034"	17.8	9.85	17.00
Venta	150	59 ^o 50'	150°58'	37.6	24.41	19.00
View Cove*	13	550041	1330041	46.3	161.87	24.09
Wainwright*	29	700401	160000'	11.7	4.10	8.58
Wales*	9	65°37'	168°03'	21.0	10.54	11.65
Wasilla	400	61°35'	149°28	35.0	17.21	17.79
		57058	152046	39.8	54.03	19.69
Whale Island*	2 102	60°43'	135°04°	39.8	10.05	18.23
Whitehorse* White Mountain	2,103 50	64041'	163°24'	27.0	15.36	16.10
	0.1		1/00/11	20.0	162 7/	10 57
Whittier*	31	60°47'	148°41'	39.0	163.74	19.57
Wild Lake	2,200	679291	151036'	15.7	12.23	13.16
Willow	600	610451	150000'	32.4	29.16	17.28
Windham	6	57°32'	133°29'	41.2	100.10	19.85

315 stations in Alaska and adjacent Canada -- Continued

Actual evapo- transpiration (AET)	Surplus P-PET	Index of humidity $Ih = \frac{100 (P-PET)}{PET}$	Deficit PET-AET	Index of aridity Ia = $\frac{100(\text{PET-AET})}{\text{PET}}$	Moisture Index MI=Ih-0.6Ia	Summer need	Climatic type2/
Inches	Inches		Inches			Percent	
11.75 16.02 18.40 20.28 17.28	18.01 17.53 8.84 39.47 10.15	141.9 98.1 44.7 189.5 54.3	0.94 1.85 1.36 0.55 1.42	7.4 10.4 6.9 2.6 7.6	+138 + 92 + 41 +188 + 50	84 75 72 70 73	AC'1rc'1 B4C'2rc'2 B2C'2rc'2 AC'2rc'2 B2C'2rc'2
18.21 9.92 14.71 13.03 9.49	25.76 2.72 	136.2 14.4 	0.70 7.60 4.23 4.49 4.84	3.7 43.4 22.3 25.6 33.8	+134 - 26 + 1 - 15 - 20.3	73 75 73 75 81	AC'2rc'2 DC'2dc'2 C2C'2sc'2 C1C'2dc'2 DC'1dc'1
9.76 20.93 16.50 19.54 13.11	47.40 29.27 61.96 75.55	225.6 163.4 317.1 576.3	3.78 0.08 1.41 0	27.9 0.4 7.9 0	- 17 +225 +159 +317 +576	83 70 75 72 84	C1C'1dc'1 AC'2rc'2 AC'2rc'2 AC'2rc'2 AC'1rc'1
17.13 14.27 12.24 10.19 23.94	15.03 3.83 72.73	83.2 22.0 —— —— 303.8	0.94 3.10 4.50 5.60	5.2 17.8 26.9 35.5	+ 80.1 + 11 - 16 - 21 +304	74 75 77 78 66	B4C'2rc'2 C2C'2sc'2 C1C'2dc'1 DC'1dc'1 AB'1rb'1
13.19 16.39 16.31 18.54 5.31	18.82 206.73 3.63 21.82	108.8 149.0 18.5 107.8	4.10 1.55 3.26 1.70 6.03	23.7 8.6 16.7 8.4 53.2	+106 +144 + 8.5 +103 - 32	81 74 72 71 88	AC'2sc'1 AC'2rc'2 C2C'2sc'2 AC'2rc'2 DC'1dd'
19.69 12.91 18.59 11.93 18.70	19.03 41.92 99.88	96.3 220.1 527.3	0.08 3.19 0.46 6.38 0.24	0.4 19.8 2.4 34.8 1.3	+ 96 - 12 +219 - 21 +526	72 78 73 74 73	B4C'2rc'2 C1C'1dc'1 AC'2rc'2 DC'2dc'2 AC'2rc'2
18.50 9.85 15.50 24.09 4.10	43.43 5.41 137.78	233.2 28.5 571.9	0.12 7.15 3.50 0 4.48	0.6 42.1 18.4 0 52.2	+233 - 25 + 18 +572 - 31	73 76 73 66 96	AC'2rc'2 DC'2dc'2 C2C'2sc'2 AB'1rb'1 DD'dd'
10.39 15.48 19.57 10.05 12.13	34.34	174.4 	1.26 2.31 0.12 8.18 3.97	10.8 13.0 0.6 44.9 24.7	- 6 - 8 +174 - 26.9 - 15	87 75 72 74 78	C ₁ C' ₁ dc' ₁ C ₁ C' ₂ dc' ₂ AC' ₂ rc' ₂ DC' ₂ dc' ₂ C ₁ C' ₁ dc' ₁
19.57 11.07 14.43 19.85	144.17 11.88 80.25	736.7 68.8 404.3	0 2.09 2.85 0	0 15.9 16.5 0	+737 - 9.5 + 59 +404	72 83 76 72	AC'2rc'2 C1C'1dc'1 B2C'2rc'2 AC'2rc'2

Station name $\frac{1}{}$	Eleva- tion	Latitude (North)	Longitude (West)	Mean annual temperature	Mean annual precipitation (P)	Potential evapo- transpiration (PET)
	Feet			Degrees F.	Inches	Inches
Wiseman* 3/ Wonder Lake Woody Island* Wosnessenski Wrangell*	1,286	67°26'	150°13'	22.0	15.36	16.57
	2,000	63°28'	150°52'	31.8	19.50	18.48
	101	57°45'	152°20'	41.9	50.31	21.06
	25	55°13'	161°21'	42.2	39.52	22.96
	37	56°28'	132°23'	43.7	82.90	22.60
Yakataga*	27	60°05'	142°30'	39.7	106.9	19.80
Yakutat*	28	59°31'	139°40'	39.3	134.15	19.80

 [■] Spelling and location of station names are according to U.S. Geological Survey map E of Alaska, 1954.

A very cold climate (D D'dd'; i.e., semiarid, tundra, little or no water surplus, temperature efficiency normal to tundra) extends along most of the Arctic coast eastward from Point Lay. Here, mean annual temperature is about 10° F., precipitation only 5 or 6 inches per year, almost entirely snow. Climate near the tops of the high Rocky Mountains and temperatures on Mount Washington may approach this severity. In western Alaska, both temperature and precipitation decrease to the northward. Other generalizations are difficult, probably because continental, oceanic, and topographic influences on weather cause considerable variation among data from neighboring climatic stations.

Monthly PET at University Experiment Station, computed by three widely used estimating methods, is compared in figure 2. Annual PET by these methods agrees rather closely (Penman, 15.70 inches; evaporation pan, 18.68 inches; Thornthwaite, 17.87 inches). Papadakis (1961) estimated 15.75 inches PET at Fairbanks whereas Patric (1967) estimated 15.60 inches, using Hamon's (1964) equation. These annual figures are consistent with other comparisons which usually report annual values of PET by Thornthwaite's method higher than other estimates. Relative humidity strongly influenced Penman and evaporation pan estimates of monthly PET but could not influence Thornthwaite estimates which are based solely on temperature. Thus, figure 2 shows Thornthwaite estimates of PET low during the least humid months of May and June, highest during the more humid months of July, August, and September.

Figure 3 is a generalized map of PET for Alaska. The isolines of PET must be interpreted very carefully since the station values on which these lines are based were heavily biased to sea-level and valley-bottom climates. The climatic records for high-elevation stations are few, commonly of short

^{2/} Thornthwaite's climatic type symbols.

^{3/} Asterisk denotes a climatic station for which complete water balance data are on file at the Institute of Northern Forestry, Juneau, Alaska.

Actual evapo- transpiration (AET)	Surplus P-PET	Index of humidity $Ih = \frac{100 (P-PET)}{PET}$	Deficit PET-AET	Index of aridity $Ia = \frac{100(PET-AET)}{PET}$	Moisture Index MI=Ih-0.6Ia	Summer need	Climatic type2/
Inches	Inches		Inches			Percent	
11.34			5.23	31.6	- 19	7 7	C1C'1dc'1
17.71	1.02	5.5	0.77	4.2	+ 3	74	C2C 2rc 2
20.59	29.25	138.9	0.47	2.2	+137	70	AC'2rc'2
22.68	16.56	72.1	0.28	1.2	+ 71	67	BaBijrbij
22.56	60.30	266.8	0.04	0.2	+267	68	AB' ₁ rc' ₂
19.80	87.10	439.9	0	. 0	+440	72	AC'2rc'2
19.80	114.35	577.5	0	0	+578	72	AC'2rc'2

Figure 2.--Estimates of potential evapotranspiration for University Experiment Station near Fairbanks, Alaska. Results by these three widely used methods are based on not less than 10 years of average monthly climatic data. This is the only station in Alaska for which longterm data are published to make this comparison possible.

duration, and sometimes of questionable quality. Comparisons of PET were possible between 22 high-elevation stations and nearby sea-level or valley-bottom stations. Differences between PET and elevation for these stations are plotted in figure 4. The line drawn through these plotted points suggests that PET decreases about 1 inch per year per 500 feet of elevation.

Figure 3.--Potential evapotranspiration (PET) in Alacka. These lines, showing yearly evaporative loss in inshee, and lackd solely on valley and sea-level climates.

DISCUSSION

These estimates of PET must be considered first approximations which will be improved as better equations are developed to make more effective use of improved, more abundant, climatic data.

The influence of elevation on PET needs clarification, especially in a State as mountainous as Alaska. The hills and mountains of the interior are not represented in figure 3 because most interior climatic stations are along major rivers and represent only valley climates. The only stations reporting climatic data at high elevation in the interior (Summit Nike Site and Bonanza Mine) suggest a perhumid tundra climate above approximately 4,000-foot elevation. This climate is sufficiently wet and cold to nourish glaciers, which abound in the Alaska Range but which are smaller and occur less frequently in the drier climate of the Brooks Range. For coastal Alaska, the data in table I describe only stations near sea level and below the 3,000-foot timberline. Permanently snowcapped, extensively glacierized mountains also evidence a cold, wet climate at high elevation which is wholly unrepresented in figure 3.

Figure 4.--Effect of elevation on potential evapotranspiration (PET). Each plotted point shows how PET decreased with increasing elevation at the 22 stations where this comparison was possible. The 2:1 line was not statistically fitted to the data.

The suggestion that PET decreases about 1 inch per year per 500 feet of elevation cannot be checked in the literature. There are, however, many studies of elevation-temperature relations and Thornthwaite's method of computing PET is based solely on temperature. It is an ecological truism that temperature on mountains decreases about 1° F. per 300 feet of elevation. Spurr (1964), for example, reported that temperature on east coast mountains decreases 3° F. per 1,000 feet of elevation. In maritime California, this increase is only 1° to 1-1/2° F. per 1,000 feet of elevation, a modifying effect of onshore Pacific winds. Table 1 permits similar temperature comparisons of Anchorage to Summit Nike Site, Kennecott to Bonanza Mine, and Valdez to Thompson Pass. These comparisons show average annual temperatures decreasing 1° F. per 370 to 650 feet of elevation. Because our temperature-elvation relations concur with those from other parts of the country, the PET-elevation relation suggested in figure 4 is at least of the correct magnitude.

Ideally, natural vegetation should reflect local climatic influences. For example, Thornthwaite and Mather (1955) demonstrated a close correlation of natural tree and grass vegetation to the moisture index along the 41st parallel in the United States. Hare (1950) reported no obvious correlation between

moisture provinces and forest divisions of the subarctic Labrador-Ungava Peninsula. Eastern Canada, however, does not have the large differences of rainfall found in Alaska. A belt of heavy rainfall extends along the southern shoreline from British Columbia westward to the end of the Aleutian chain. Within this fringe of perhumid climate, a dense western hemlock-Sitka spruce forest extends west to the Kenai Peninsula. Southwest from the Kenai Peninsula, Sitka spruce extends to Afognak Island and is invading Kodiak Island. Within this forest region, average PET for 68 stations is 21.27 inches, with a standard deviation of ± 1.61 inches. A few plantations of Sitka spruce on the Aleutian Islands have survived but they have grown very slowly. Note in table 1 the similarity of climate on Afognak, where Sitka spruce thrives, and on Adak, where one of these abortive plantations still exists. Our data suggest that failure of the coastal forest to thrive west of existing boundaries must be explained in terms other than temperature or amount and distribution of precipitation.

Heavy precipitation along the coastal perhumid belt becomes much lighter within relatively short distances from the Pacific Ocean, as shown in the following comparison of paired stations:

Precipitation at stations having perhumid climate	Precipitation at nearest station in drier climate	Distance apart
(Inches)	(Inches)	(Miles)
158 (Chignik) 164 (Whittier) 89 (Thompson Pass) 61 (Haines) 51 (Eldred Rock) 80 (Alice Arm)	17 (Port Heiden) 14 (Anchorage) 21 (Teikel) 21 (Klukwan) 11 (Atlin) 19 (New Hazelton)	45 50 35 25 70 85

In forested areas, this transition from heavy to light precipitation is distinctly marked by a change from western hemlock-Sitka spruce to the spruce-birch-aspen forest of the interior. Commercial stands of this interior forest are found along most major streams east of longitude 160° W. and south of the Arctic Circle (Hutchison 1967). Although annual precipitation rarely exceeds 15 inches, and may be as low as 6 inches within the commercial forest region of the interior, PET in this region ranges from 15.5 to 19.8 inches. Commercial timber, much of which occurs along major rivers (Hutchison 1967), may use moisture from water tables in addition to local precipitation for their water supply. These observations seem to be consistent with the widely accepted view (Hare 1950) "that the northern forests are governed in their growth by temperature and that precipitation is everywhere adequate to supply the needs of the growth possible under such cool conditions." Nevertheless, annual rings of reduced width occur- that superficially appear to be associated with the

^{7/} Personal communication from Wilbur A. Farr, Research Forester, Institute of Northern Forestry.

record low precipitation during 1958 and other dry years. However, the relation of growth ring width to various site factors, including precipitation and temperature, is poorly understood in the interior. Spruce-birch-aspen forests exist where PET is as low as 14 inches per year but rarely in commercial stands and usually associated with tundra vegetation. In fact, tundra mixed with scrubby tree cover should be expected wherever annual PET is less than 16 inches. These observations are consistent with Hare's findings for eastern Canada (Thornthwaite and Mather 1955) as shown in table 2.

Table 2.--A comparison of potential evapotranspiration in natural vegetation of eastern Canada and interior Alaska

Vegetation	Potential evapotranspiration				
type	Eastern Canada	Interior Alaska			
	<u>Inc</u>	ches			
Tundra	12.2	$14.52 \pm 2.42^{\frac{1}{2}}$			
Mixed tundra and noncommercial forest	12.2 - 16.5	16.51 ± 1.49			
Commercial forest	16.5	17.76 ± .86			

^{1/} Mean and standard deviation for all stations.

Perhaps the higher PET values for Alaska are due to the aforementioned bias in station location, although ocean currents, topography, and prevailing airmass genesis actually may cause an Alaskan climate warmer than that of the eastern part of the continent at the same latitude.

More refined statistical treatment seems unwarranted since these data were collected over varying timespans by hundreds of observers having different equipment and training. Studies specifically designed to correlate vegetation and climate probably will relate natural plant cover to PET more as reported for eastern Canada.

Funsch (1964) used 16-year mean temperatures to derive growing season distribution of degree-days for 22 stations in the commercial forest zone of interior Alaska. PET calculated for the same stations also was derived from mean temperatures but from records collected over varying spans of time. To test the influence of timespan on temperature records, temperatures used in the PET calculations were converted to degree-days. Funsch's mean for all stations was 1,430 degree-days, a value little different from 1,438 for the same stations derived from PET temperature data. Although varying lengths of record had little effect on the degree-days, PET was much less variable as an

index of climate. For the 22 stations, coefficient of variation averaged almost 20 percent for growing season degree-days, a little over 5 percent for annual PET. Thus, even though temperature is recognized to govern growth of northern forests, PET reflects forest distribution better than temperature data alone.

An interesting anomaly occurs along the Arctic coastal plain where evaporative demand considerably exceeds precipitation but soil almost always remains wet, even saturated, throughout the short summer. The moss and lichen plants of this tundra region apparently use water at slower rates than does vegetation of warmer regions. Tundra plants function more like mulch than like transpiring vegetation, and under these conditions the whole Thornthwaite formula seems to break down. Shallow thawing of permafrost under the tundra vegetation also may contribute moisture to these very wet soils.

The few checks available suggest that PET by Thornthwaite's method provides valid estimates of this measure of climate. Our evidence supports Hare's (1950) conclusion that growth of the northern forest is governed by temperature. In terms of thermal efficiency, commercial forest can be expected in warm microthermal climates, whereas noncommercial forest mixed with tundra can be expected in cold microthermal climates. Forest species, if found at all in tundra climates, are severely stunted. These close relationships of natural vegetation to the Thornthwaite climatic classification strengthen our confidence in PET as a key parameter of climate.

^{8/} Personal communication from John R. Mather, President, C. W. Thornthwaite Associates, Centerton, N. J.

LITERATURE CITED

- Black, Peter E.
 - 1967. Thornthwaite's mean annual water balance. Silviculture general utility library program GU-101, 20 pp., illus. Syracuse, N.Y.: State Univ. Coll. Forest.
- Brown, R. J. E.
 - 1965. Some observations on the influence of climatic and terrain features on permafrost at Norman Wells, N.W.T., Can. Can. J. Earth Sci. 2: 15-31.
- Fernow, B. E.
 - 1893. Forest influences. U.S. Dep. Agr. Forest. Div. Bull. 7, 197 pp., illus.
- Funsch, Robert W.
 - 1964. A summary of seasonal temperature and precipitation data for the interior forested area of Alaska. Northern Forest Exp. Sta. U.S. D.A. Forest Serv. Res. Note NOR-9, 50 pp., illus.
- Hamon, W. Russell.
 - 1964. Computation of direct runoff amounts from storm rainfall. Surface Water Symp., Int. Ass. Sci. Hydrol. Pub. 63: 52-62.
- Hare, F. Kenneth.
 - 1950. Climate and zonal divisions of the boreal forest formation in eastern Canada. Geogr. Rev. 40: 615-635.
- Hutchison, O. Keith.
 - 1967. Alaska's forest resource. Pacific Northwest Forest & Range Exp. Sta. U.S.D.A. Forest Serv. Resource Bull. PNW-19, 74 pp., illus.
- Kellogg, Charles E., and Nygard, Iver J.
 - 1951. Exploratory study of the principal soil groups of Alaska. U.S. Dep. Agr., Agr. Monogr. 7, 138 pp., illus.
- Mather, John R., and Thornthwaite, C. W.
 - 1958. Microclimate investigations at Point Barrow, Alaska. Drexel Inst. Technol. Lab. Climatol. Pub. Climatol. Vol. 11, No. 2, 176 pp.
- Papadakis, J.
 - 1961. Climatic tables for the world. Buenos Aires (Ave. Cordoba 4564). Ed. by author. 175 pp., illus.

- Patric, J. H.
 - [1967.] A simplified method for estimating potential evapotranspiration in Alaska. Alaskan Sci. Conf. Proc. 1966: 36-40. Alaska Div. A. A. A. S., College.
- Penman, H. L.
 - 1948. Natural evaporation from open water, bare soil, and grass. Roy. Soc. London Proc. (A) 193: 120-145.
 - 1956. Evaporation: an introductory survey. Neth. J. Agr. Sci. 4(1): 9.
 - 1963. Vegetation and hydrology. Commonwealth Bur. Soils, Tech. Commun. 53, 124 pp. Harpenden, England.
- Sanderson, Marie.
 - 1950. Measuring potential evapotranspiration at Norman Wells. Geogr. Rev. 40: 636-645.
- Thornthwaite, C. W.
 - 1948. An approach toward a rational classification of climate. Geogr. Rev. 38: 55-94.
 - and Mather, J. R.
 - 1955. The water balance. Drexel Inst. Tech. Lab. Climatol. Pub. Climatol., Vol. 8, No. 1, 86 pp., illus.
 - and Mather, J. R.
 - 1957. Instructions and tables for computing potential evapotranspiration and the water balance. Drexel Inst. Tech. Lab. Climatol. Pub. Climatol., Vol. 10, No. 3, 126 pp., illus.
- U.S. Weather Bureau.
 - 1916-66. Climatological data, Alaska. Vol. 2-52. Asheville, N. C.

Patric, James H., and Black, Peter E.

1968. Potential evapotranspiration and climate in Alaska by Thornthwaite's classification. U.S.D.A. Forest Serv. Res. Pap. PNW-71, 28 pp., illus. Pacific Northwest Forest & Range Experiment Station, Portland, Oregon.

Estimates and measurements of potential evapotranspiration (PET) by Thornthwaite's methods showed good agreement with estimates and measurements by other methods. Natural vegetation is closely related to climate. Vegetation distribution in the interior seems governed more by temperature than by moisture availability. The available data heavily bias classifications of climate to sea-level and valley-bottom conditions.

Patric, James H., and Black, Peter E. 1968. Potential evapotranspiration and climat

Potential evapotranspiration and climate in Alaska by Thornthwaite's classification. U.S.D.A. Forest Serv. Res. Pap. PNW-71, 28 pp., illus. Pacific Northwest Forest & Range Experiment Station, Portland, Oregon.

Estimates and measurements of potential evapotranspiration (PEI) by Thornthwaite's methods showed good agreement with estimates and measurements by other methods. Natural vegetation is closely related to climate. Vegetation distribution in the interior seems governed more by temperature than by moisture availability. The available data heavily bias classifications of climate to sea-level and valley-bottom conditions.

Patric, James H., and Black, Peter E.

1968. Potential evapotranspiration and climate in Alaska by Thornthwaite's classification. U.S.D.A. Forest Serv. Res. Pap. PNW-71, 28 pp., illus. Pacific Northwest Forest & Range Experiment Station, Portland, Oregon.

Estimates and measurements of potential evapotranspiration (PET) by Thornthwaite's methods showed good agreement with estimates and measurements by other methods. Natural vegetation is closely related to climate. Vegetation distribution in the interior seems governed more by temperature than by moisture availability. The available data heavily bias classifications of climate to sea-level and valley-bottom conditions.

Patric, James H., and Black, Peter E.

8. Potential evapotranspiration and climate in Alaska by Thornthwaite's classification. U.S.D.A. Forest Serv. Res. Pap. PNW-71, 28 pp., illus. Pacific Northwest Forest & Range Experiment Station, Portland, Oregon.

Estimates and measurements of potential evapotranspiration (PEI) by Thornthwaite's methods showed good agreement with estimates and measurements by other methods. Natural vegetation is closely related to climate. Vegetation distribution in the interior seems governed more by temperature than by moisture availability. The available data heavily bias classifications of climate to sea-level and valley-bottom conditions.

Headquarters for the PACIFIC NORTHWEST FOREST AND RANGE EXPERIMENT STATION is in Portland, Oregon. The Station's mission is to provide the scientific knowledge, technology, and alternatives for management, use, and protection of forest, range, and related environments for present and future generations. The area of research encompasses Alaska, Washington, and Oregon, with some projects including California, Hawaii, the Western States, or the Nation. Project headquarters are at:

College, Alaska Juneau, Alaska Bend, Oregon Corvallis, Oregon La Grande, Oregon Portland, Oregon Roseburg, Oregon Olympia, Washington Seattle, Washington Wenatchee, Washington The FOREST SERVICE of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation's forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the National Forests and National Grasslands, it strives — as directed by Congress—to provide increasingly greater service to a growing Nation.