## Islamic University of Technology (IUT)

## **Electrical and Electronic Engineering Department**

Course No.: EEE 4632 Course Title: Power System III Lab

Academic Year: 2022 - 2023 Semester: Summer

Statement of Problem. (PROJECT)

Consider the IEEE 39 bus (New England) test system shown in the next page. For the system, the nominal frequency is 50 Hz. The bus, line, transformer, generator and load data are given below –

Marks: 15

**Table 1: Bus Data** 

| Bus No. | Voltage (kV) | Voltage (kV) Bus No. |      |
|---------|--------------|----------------------|------|
| 01      | 345          | 21                   | 345  |
| 02      | 345          | 22                   | 345  |
| 03      | 345          | 23                   | 345  |
| 04      | 345          | 24                   | 345  |
| 05      | 345          | 25                   | 345  |
| 06      | 345          | 26                   | 345  |
| 07      | 345          | 27                   | 345  |
| 08      | 345          | 28                   | 345  |
| 09      | 345          | 29                   | 345  |
| 10      | 345          | 30                   | 16.5 |
| 11      | 345          | 31                   | 16.5 |
| 12      | 138          | 32                   | 16.5 |
| 13      | 345          | 33                   | 16.5 |
| 14      | 345          | 34                   | 16.5 |
| 15      | 345          | 35                   | 16.5 |
| 16      | 345          | 36                   | 16.5 |
| 17      | 345          | 37                   | 16.5 |
| 18      | 345          | 38                   | 16.5 |
| 19      | 345          | 39                   | 345  |
| 20      | 230          |                      |      |



Figure 1: Single line diagram of IEEE 39 bus system

Table 2: Line data

| Line | From | To  | Line    | R      | X      | В      | Distance |
|------|------|-----|---------|--------|--------|--------|----------|
| no.  | Bus  | Bus | voltage | (p.u.) | (p.u.) | (p.u.) | (km)     |
|      |      |     | (kV)    |        |        |        |          |
| 1    | 1    | 2   | 345     | 0.0035 | 0.0411 | 0.6987 | 275.5    |
| 2    | 1    | 39  | 345     | 0.0010 | 0.0250 | 0.7500 | 167.6    |
| 3    | 2    | 3   | 345     | 0.0013 | 0.0151 | 0.2572 | 101.2    |
| 4    | 2    | 25  | 345     | 0.0070 | 0.0086 | 0.1460 | 57.6     |
| 5    | 3    | 4   | 345     | 0.0013 | 0.0213 | 0.2214 | 142.8    |
| 6    | 3    | 18  | 345     | 0.0011 | 0.0133 | 0.2138 | 89.1     |
| 7    | 4    | 5   | 345     | 0.0008 | 0.0128 | 0.1342 | 85.8     |
| 8    | 4    | 14  | 345     | 0.0008 | 0.0129 | 0.1382 | 86.5     |
| 9    | 5    | 6   | 345     | 0.0002 | 0.0026 | 0.0434 | 17.4     |
| 10   | 5    | 8   | 345     | 0.0008 | 0.0112 | 0.1476 | 75.1     |
| 11   | 6    | 7   | 345     | 0.0006 | 0.0092 | 0.1130 | 61.7     |
| 12   | 6    | 11  | 345     | 0.0007 | 0.0082 | 0.1389 | 55       |
| 13   | 7    | 8   | 345     | 0.0004 | 0.0046 | 0.0780 | 30.8     |
| 14   | 8    | 9   | 345     | 0.0023 | 0.0363 | 0.3804 | 243.3    |
| 15   | 9    | 39  | 345     | 0.0010 | 0.0250 | 1.2000 | 167.6    |
| 16   | 10   | 11  | 345     | 0.0004 | 0.0043 | 0.0729 | 28.8     |
| 17   | 10   | 13  | 345     | 0.0004 | 0.0043 | 0.0729 | 28.8     |
| 18   | 13   | 14  | 345     | 0.0009 | 0.0101 | 0.1723 | 67.7     |
| 19   | 14   | 15  | 345     | 0.0018 | 0.0217 | 0.3660 | 145.4    |
| 20   | 15   | 16  | 345     | 0.0009 | 0.0094 | 0.1710 | 63.0     |
| 21   | 16   | 17  | 345     | 0.0007 | 0.0089 | 0.1342 | 59.7     |
| 22   | 16   | 19  | 345     | 0.0016 | 0.0195 | 0.3040 | 130.7    |
| 23   | 16   | 21  | 345     | 0.0008 | 0.0135 | 0.2548 | 90.5     |
| 24   | 16   | 24  | 345     | 0.0003 | 0.0059 | 0.0680 | 39.5     |
| 25   | 17   | 18  | 345     | 0.0007 | 0.0082 | 0.1319 | 55.0     |
| 26   | 17   | 27  | 345     | 0.0013 | 0.0173 | 0.3216 | 116.0    |
| 27   | 21   | 22  | 345     | 0.0008 | 0.0140 | 0.2565 | 93.8     |
| 28   | 22   | 23  | 345     | 0.0006 | 0.0096 | 0.1846 | 64.3     |
| 29   | 23   | 24  | 345     | 0.0022 | 0.0350 | 0.3610 | 234.6    |
| 30   | 25   | 26  | 345     | 0.0032 | 0.0323 | 0.5130 | 216.5    |
| 31   | 26   | 27  | 345     | 0.0014 | 0.0147 | 0.2396 | 98.5     |
| 32   | 26   | 28  | 345     | 0.0043 | 0.0474 | 0.7802 | 317.7    |
| 33   | 26   | 29  | 345     | 0.0057 | 0.0625 | 1.0290 | 418.9    |
| 34   | 28   | 29  | 345     | 0.0014 | 0.0151 | 0.2490 | 101.2    |

Table 3: Transformer data

| Name | S       | From | To  | HV   | LV   | R       | X       |
|------|---------|------|-----|------|------|---------|---------|
|      | (MVA)   | Bus  | Bus | (kV) | (kV) | ( p.u.) | ( p.u.) |
| T01  | 300     | 12   | 11  | 345  | 138  | 0.0048  | 0.1305  |
| T02  | 300     | 12   | 13  | 345  | 138  | 0.0048  | 0.1305  |
| T03  | 700     | 6    | 31  | 345  | 16.5 | 0.00001 | 0.1750  |
| T04  | 800     | 10   | 32  | 345  | 16.5 | 0.00001 | 0.1600  |
| T05  | 800     | 19   | 33  | 345  | 16.5 | 0.0056  | 0.1136  |
| T06  | 2 x 300 | 20   | 34  | 230  | 16.5 | 0.0054  | 0.1080  |
| T07  | 800     | 22   | 35  | 345  | 16.5 | 0.00001 | 0.1144  |
| T08  | 700     | 23   | 36  | 345  | 16.5 | 0.0035  | 0.1904  |
| T09  | 700     | 25   | 37  | 345  | 16.5 | 0.0042  | 0.1624  |
| T10  | 1000    | 2    | 30  | 345  | 16.5 | 0.00001 | 0.1810  |
| T11  | 1000    | 29   | 38  | 345  | 16.5 | 0.0080  | 0.1560  |
| T12  | 1000    | 19   | 20  | 345  | 230  | 0.0070  | 0.1380  |

Table 4: Generator data

| Generator | Bus no. | MVA    | Dispatched | Specified        |
|-----------|---------|--------|------------|------------------|
|           |         | rating | P (MW)     | generation       |
|           |         |        |            | voltage V (p.u.) |
| G 01      | 39      | 10000  | 1000.0     | 1.0300           |
| G 02      | 31      | 700    | slack      | 0.9820           |
| G 03      | 32      | 800    | 650.0      | 0.9831           |
| G 04      | 33      | 800    | 632.0      | 0.9972           |
| G 05      | 34      | 2x300  | 508.0      | 1.0123           |
| G 06      | 35      | 800    | 650.0      | 1.0493           |
| G 07      | 36      | 700    | 560.0      | 1.0635           |
| G 08      | 37      | 700    | 540.0      | 1.0278           |
| G 09      | 38      | 1000   | 830.0      | 1.0265           |
| G 10      | 30      | 1000   | 250.0      | 1.0475           |

Table 5: Load data

| Load  | Bus no. | P (MW) | Q (MVAR) |
|-------|---------|--------|----------|
| L01   | 03      | 322.0  | 2.4      |
| L02   | 04      | 500.0  | 184.0    |
| L03   | 07      | 233.8  | 84.0     |
| L04   | 08      | 522.0  | 176.0    |
| L05   | 12      | 7.5    | 88.0     |
| L06   | 15      | 320.0  | 153.0    |
| L07   | 16      | 329.0  | 32.3     |
| L08   | 18      | 158.0  | 30.0     |
| L09   | 20      | 628.0  | 103.0    |
| L10   | 21      | 274.0  | 115.0    |
| L11   | 23      | 247.5  | 84.6     |
| L12   | 24      | 308.6  | -92.2    |
| L13   | 25      | 224.0  | 47.2     |
| L14   | 26      | 139.0  | 17.0     |
| L15   | 27      | 281.0  | 75.5     |
| L16   | 28      | 206.0  | 27.6     |
| L17   | 29      | 283.5  | 26.9     |
| L18   | 31      | 9.2    | 4.6      |
| L19   | 39      | 1104.0 | 250.0    |
| Total |         | 6097.1 | 1408.9   |

## Tasks:

- 1. Perform the load flow analysis.
- 2. Perform the frequency response analysis for the outage of G08 (i.e. loss of 540 MW generation). Assume a suitable load shedding scheme to stop the frequency excursion.
- 3. Repeat the frequency response analysis for the load frequency relief  $(k_p)$  of 1%, 2% and 3%.
- 4. Determine Fast voltage stability index (FVSI) for each load bus. Using FVSI results, rank the buses (weaker to stronger) in terms of voltage stability.
- 5. Now design a load shedding scheme to apply more load cut to weaker buses following the loss of G08. Use  $k_p = 0$ . [Hint: For this, divide the buses in various zones (e.g. 4/5 zones) and apply higher amount of load shedding in relatively weaker zones]
- 6. Investigate the impact of load frequency relief (i.e. use kp = 1%, 2% and 3%) on the load shedding scheme designed in task-5.

N.B.: For any missing data, assume standard values. Also, for design problem part, it may not have a unique answer. The solution will depend on your design approach.