Teaching a Small Robot how to Understand Spoken Language

Department of Computer Science

Casey Kennington, PhD and Sarah Plane Boise State University

Language Acquisition in Robots

Current systems do not reflect the natural, interactive process of child language acquisition.

- Systems are trained on large amounts of textual data
- The system is evaluated using speech & ASR, often unsuccessfully Face-to-face interaction is crucial for grounding, which is key when establishing meaning.
- **Symbol grounding**: language is connected to aspects of the object (sight, smell, touch, etc.).
- Conversational grounding: aspects of events are recorded for later recall

Solution: Use a grounded semantic model to teach a robot about meaning through online learning.

• An interactive, incremental SDS using WAC

Why Cozmo?

- Cozmo is small and portable
- SDK & support community
- Can lift, push, and point
- Text to speech synthesizer
- Black and white camera
- Affordable
- Cozmo is adorable/likeable

Spoken Dialog System

Initial Testing

Training: 300 episodes to train the WAC model Evaluation:

- 89 episodes (untrained)
- 29 WAC classifiers
- Object features were fed to the WAC classifiers giving a probability.
- Compared to actual referring expression
- Convert average ranks to an MMR to get a score between 0-1

Results:

- Right & Left (MMR ~ 0.8)
- Shapes (MMR ~ 0.5)
- Color (MMR under 0.5)

Due to the low MMR for color we added a color camera with a bird-eye perspective to help with color detection.

Words-As-Classifiers (WAC) Model

Model of Word Meaning:

- 1. Single object via visual properties: takes visual features & returns a probability for the word to match the features.
- 2. Relation between two objects: takes a vector of features for a set of objects to train on Euclidean distance, vertical and horizontal differences, and spatial relationships.

Trained using the referring expression and the visual scene, resulting in a set of classifiers. When evaluated, it predicts the relationship between a word and an object.

Composition & Selection:

Distributes predictions over all candidate objects for an entire utterance.

- 1. Simple References: only contains properties for the referent object (the red cross)
- 2. Relational References: has properties for both a target and a landmark object (the red cross to the left of the purple T)

Evaluating with the WAC Model:

- Rank the probabilities for word match
- High Mean Reciprocal Rank (MMR)
- Compose & Select for DM

Benefits of WAC Model:

- Transparency
- Modularized
- Amendable and Scalable

The Experiment

Each participant will be asked to complete two tasks (given in a randomized order): **Task 1**

Interactions will begin with simple reference resolution tasks (e.g. the participant will teach the robot what a new shape is: *the red cross on the left*) and will build to an interaction task in which Cozmo locates ("fetches") a specific requested object while navigating through a variety of objects (e.g., *Cozmo, find the purple P*). This models a more <u>passive learning style</u>, which is representative of the current systems for natural language processing models.

Task 2

Interactions will begin with the task in which the robot locates ("fetches") a specific requested object while navigating through a variety of objects (e.g., *Cozmo*, *find the purple P*). Cozmo will have to guess and check, with a more adaptive, <u>active learning style</u>, which is representative of how children acquire their first language. This task requires the robot to learn online through interaction with the participant.

Follow-up surveys will be conducted after each task to help us compare the participant's response to each learning style.

Each session will log:

- A png snapshot of the setting (as seen by Cozmo, B&W)
- A png snapshot of the object (cropped using Cozmo's object detection)
- A png snapshot of the birds-eye view
- A png snapshot of the object (cropped using the birdseye object detection)
- A Pickle (a compilation of a series of objects)
- Speech recorded from the participant & audio recorded from Cozmo
- Visual recording of the entire session captured by an external camera

