```
import numpy as np
import matplotlib.pyplot as plt
# Bipolar activation function
def bipolar_activation(x):
  return 1 if x \ge 0 else -1
# Perceptron training function
def perceptron_train(inputs, targets, learning_rate=0.1, max_epochs=100):
  num_inputs = inputs.shape[1]
  num_samples = inputs.shape[0]
  # Initialize weights and bias
  weights = np.random.randn(num_inputs)
  bias = np.random.randn()
  convergence_curve = []
  for epoch in range(max_epochs):
     misclassified = 0
     for i in range(num_samples):
       net_input = np.dot(inputs[i], weights) + bias
       predicted = bipolar_activation(net_input)
       if predicted != targets[i]:
          misclassified += 1
          update = learning_rate * (targets[i] - predicted)
          weights += update * inputs[i]
          bias += update
     accuracy = (num_samples - misclassified) / num_samples
     convergence_curve.append(accuracy)
     if misclassified == 0:
       print("Converged in {} epochs.".format(epoch + 1))
       break
  return weights, bias, convergence_curve
# Main function
if __name__ == "__main__":
  # Input and target data (bipolar representation)
```

```
inputs = np.array([[-1, -1], [-1, 1], [1, -1], [1, 1]])
  targets = np.array([-1, -1, -1, 1])
  # Training the perceptron
  weights, bias, convergence_curve = perceptron_train(inputs, targets)
  # Decision boundary line
  x = np.linspace(-2, 2, 100)
  y = (-weights[0] * x - bias) / weights[1]
  # Plot convergence curve
  plt.figure(figsize=(8, 4))
  plt.plot(range(1, len(convergence_curve) + 1), convergence_curve)
  plt.xlabel('Epoch')
  plt.ylabel('Accuracy')
  plt.title('Convergence Curve')
  plt.grid()
  plt.show()
  # Plot the decision boundary line and data points
  plt.figure(figsize=(8, 6))
  plt.plot(x, y, label='Decision Boundary')
  plt.scatter(inputs[targets == 1][:, 0], inputs[targets == 1][:, 1], label='Target 1 (+1)',
color='blue')
  plt.scatter(inputs[targets == -1][:, 0], inputs[targets == -1][:, 1], label='Target -1 (-1)',
color='red')
  plt.xlabel('Input 1')
  plt.ylabel('Input 2')
  plt.title('Perceptron Decision Boundary')
  plt.legend()
  plt.grid()
  plt.show()
  print(inputs[targets == 1][:, 0])
  print(inputs[targets == 1][:, 1])
```

1. Convergence curve:

2. Perceptron decision boundary


```
import numpy as np
def softmax(x):
  ex = np.exp(x)
  return ex / np.sum(ex)
def sigmoid(x):
  return 1/(1 + np.exp(-x))
def multi_class(W1, W2, X, D):
  alpha = 0.9
  N = 4
  for k in range(N):
     x = X[:, :, k].reshape(25, 1)
     d = D[k, :].reshape(-1, 1)
     v1 = np.dot(W1, x)
     y1 = sigmoid(v1)
     v = np.dot(W2, y1)
     y = softmax(v)
    e = d - y
     delta = e
     e1 = np.dot(W2.T, delta)
     delta1 = y1 * (1 - y1) * e1
     dW1 = alpha * np.dot(delta1, x.T)
     W1 = W1 + dW1
     dW2 = alpha * np.dot(delta, y1.T)
     W2 = W2 + dW2
  return W1, W2
def main():
  np.random.seed(3)
  X = np.zeros((5, 5, 5))
  X[:,:,0] = \text{np.array}([[0,1,1,0,0],
                 [0, 0, 1, 0, 0],
                 [0, 0, 1, 0, 0],
                 [0, 0, 1, 0, 0],
                 [0, 1, 1, 1, 0]]
  X[:,:,1] = np.array([[1, 1, 1, 1, 0],
                 [0, 0, 0, 0, 1],
                 [0, 1, 1, 1, 0],
                 [1, 0, 0, 0, 0],
                 [1, 1, 1, 1, 1]
  X[:, :, 2] = np.array([[1, 1, 1, 1, 0],
```

```
[0, 0, 0, 0, 1],
                   [0, 1, 1, 1, 0],
                   [0, 0, 0, 0, 1],
                  [1, 1, 1, 1, 0]]
  X[:,:,3] = np.array([[0,0,0,1,0],
                   [0, 0, 1, 1, 0],
                   [0, 1, 0, 1, 0],
                   [1, 1, 1, 1, 1],
                  [0, 0, 0, 1, 0]]
  D = np.eye(5)
  W1 = 2 * np.random.rand(50, 25) - 1
  W2 = 2 * np.random.rand(5, 50) - 1
  for epoch in range(10000):
     W1, W2 = multi\_class(W1, W2, X, D)
  N = 4
  for k in range(N):
     x = X[:, :, k].reshape(25, 1)
     v1 = np.dot(W1, x)
     y1 = sigmoid(v1)
     v = np.dot(W2, y1)
     y = softmax(v)
     print(f'' \setminus n \setminus n \text{ Output for } X[:,:,\{k\}]: \setminus n \setminus n'')
     print(f"\{y\} \setminus n  This matrix from see that \{k+1\} position accuracy is higher that is
: {max(y)} So this number is correctly identified")
if __name__ == "__main___":
  main()
```

```
Output for X[:,:,0]:
[[9.99990560e-01]
[3.73975045e-06]
[7.29323123e-07]
[4.95516529e-06]
[1.56459758e-08]]
This matrix from see that 1 position accuracy is higher that is: [0.99999056] So this number
is correctly identified
Output for X[:,:,1]:
[[3.81399150e-06]
[9.99984069e-01]
[1.07138749e-05]
[7.38201374e-07]
[6.65377695e-07]]
This matrix from see that 2 position accuracy is higher that is: [0.99998407] So this number
is correctly identified
Output for X[:,:,2]:
[[2.10669179e-06]
[9.17015598e-06]
[9.99972467e-01]
[2.22084036e-06]
[1.40352894e-05]]
This matrix from see that 3 position accuracy is higher that is: [0.99997247] So this number
is correctly identified
Output for X[:,:,3]:
[[4.72578106e-06]
[8.98916172e-07]
[9.07090140e-07]
[9.99990801e-01]
[2.66714208e-06]]
This matrix from see that 4 position accuracy is higher that is: [0.9999908] So this number
is correctly identified
```

```
#XOR implementation using McCulloch pit neuron
import numpy as np
import matplotlib.pyplot as plt
# Sigmoid activation function and its derivative (for training)
def sigmoid(x):
  return 1/(1 + np.exp(-x))
def sigmoid_derivative(x):
  return x * (1 - x)
# XOR function dataset
inputs = np.array([[0, 0],
           [0, 1],
           [1, 0],
           [1, 1]]
targets = np.array([0, 1, 1, 0])
# Neural network parameters
input_layer_size = 2
hidden_layer_size = 2
output_layer_size = 1
learning\_rate = 0.1
max\_epochs = 10000
# Initialize weights and biases with random values
np.random.seed(42)
weights_input_hidden = np.random.randn(input_layer_size, hidden_layer_size)
bias_hidden = np.random.randn(hidden_layer_size)
weights_hidden_output = np.random.randn(hidden_layer_size, output_layer_size)
bias_output = np.random.randn(output_layer_size)
convergence_curve = []
# Training the neural network
for epoch in range(max_epochs):
  misclassified = 0
  for i in range(len(inputs)):
    # Forward pass
    hidden_layer_input = np.dot(inputs[i], weights_input_hidden) + bias_hidden
    hidden_layer_output = sigmoid(hidden_layer_input)
    output_layer_input = np.dot(hidden_layer_output, weights_hidden_output) + bias_output
    predicted_output = sigmoid(output_layer_input)
```

```
# Backpropagation
     error = targets[i] - predicted_output
     #print(error)
     if targets[i] != predicted_output:
       misclassified += 1
     output_delta = error * sigmoid_derivative(predicted_output)
     hidden_delta = output_delta.dot(weights_hidden_output.T) * sigmoid_derivative(hidden_layer_output)
     # Update weights and biases
     weights_hidden_output += hidden_layer_output[:, np.newaxis] * output_delta * learning_rate
     bias output += output delta * learning rate
     weights_input_hidden += inputs[i][:, np.newaxis] * hidden_delta * learning_rate
     bias_hidden += hidden_delta * learning_rate
  accuracy = (len(inputs) - misclassified) / len(inputs)
  #print((accuracy))
  convergence_curve.append(accuracy)
  if misclassified == 0:
     print("Converged in { } epochs.".format(epoch + 1))
     break
# Decision boundary line
x = np.linspace(-0.5, 1.5, 100)
y = (-weights\_input\_hidden[0, 0] * x - bias\_hidden[0]) / weights\_input\_hidden[1, 0]
y2 = (-weights\_input\_hidden[0, 1] * x - bias\_hidden[1]) / weights\_input\_hidden[1, 1]
# Plot convergence curve
plt.figure(figsize=(8, 4))
plt.plot(range(1, len(convergence_curve) + 1), convergence_curve)
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.title('Convergence Curve')
plt.grid()
plt.show()
# Plot the decision boundary line and data points
plt.figure(figsize=(8, 6))
plt.plot(x, y, label='Decision Boundary 1')
plt.plot(x, y2, label='Decision Boundary 2')
plt.scatter(inputs[targets == 1][:, 0], inputs[targets == 1][:, 1], label='Target 1 (1)', color='blue')
plt.scatter(inputs[targets == 0][:, 0], inputs[targets == 0][:, 1], label='Target 0 (0)', color='red')
plt.xlabel('Input 1')
plt.ylabel('Input 2')
plt.title('XOR Function Decision Boundary')
plt.legend()
```

plt.grid()
plt.show()

Output:

1. Convergence Curve

2. Perceptron decision boundary


```
import numpy as np
# Sigmoid activation function and its derivative (for training)
def sigmoid(x):
  return 1/(1 + np.exp(-x))
def sigmoid derivative(x):
  return x * (1 - x)
# XOR function dataset with binary inputs and outputs
inputs = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
targets = np.array([[0], [1], [1], [0]])
# Neural network parameters
input_layer_size = 2
hidden layer size = 2
output layer size = 1
learning\_rate = 0.1
max epochs = 10000
# Initialize weights and biases with random values
np.random.seed(42)
weights input hidden = np.random.randn(input layer size, hidden layer size)
bias_hidden = np.random.randn(hidden_layer_size)
weights hidden output = np.random.randn(hidden layer size, output layer size)
bias_output = np.random.randn(output_layer_size)
# Training the neural network with backpropagation
for epoch in range(max_epochs):
  # Forward pass
  hidden_layer_input = np.dot(inputs, weights_input_hidden) + bias_hidden
  hidden_layer_output = sigmoid(hidden_layer_input)
  output_layer_input = np.dot(hidden_layer_output, weights_hidden_output) +
bias output
  predicted_output = sigmoid(output_layer_input)
  # Calculate the error
  error = targets - predicted_output
  # Backpropagation
  output_delta = error * sigmoid_derivative(predicted_output)
  hidden_delta = output_delta.dot(weights_hidden_output.T) *
sigmoid_derivative(hidden_layer_output)
```

```
# Update weights and biases
  weights_hidden_output += hidden_layer_output.T.dot(output_delta) * learning_rate
  bias_output += np.sum(output_delta, axis=0) * learning_rate # Removed
keepdims=True here
  weights_input_hidden += inputs.T.dot(hidden_delta) * learning_rate
  bias_hidden += np.sum(hidden_delta, axis=0) * learning_rate
# Test the XOR function with the trained neural network
test_inputs = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
hidden_layer_input = np.dot(test_inputs, weights_input_hidden) + bias_hidden
hidden_layer_output = sigmoid(hidden_layer_input)
output_layer_input = np.dot(hidden_layer_output, weights_hidden_output) + bias_output
predicted_output = sigmoid(output_layer_input)
print("Predicted outputs:")
print(predicted_output)
# Round the predicted outputs to get binary values (0 or 1)
predicted_binary = np.round(predicted_output).astype(int)
print("Predicted binary outputs:")
print(predicted_binary)
```

Predicted outputs:
[[0.05395132]
[0.9505447]
[0.95009809]
[0.05355567]]
Predicted binary outputs:
[[0]
[1]
[1]
[0]]

```
import numpy as np
import matplotlib.pyplot as plt
# Perceptron training function
def perceptron_train(inputs, targets, learning_rate=0.1, max_epochs=100):
  num_inputs = inputs.shape[1]
  num samples = inputs.shape[0]
  # Initialize weights and bias
  weights = np.random.randn(num inputs)
  bias = np.random.randn()
  convergence_curve = []
  for epoch in range(max_epochs):
     misclassified = 0
     for i in range(num_samples):
       net_input = np.dot(inputs[i], weights) + bias
       predicted = 1 if net input >= 0 else 0
       if predicted != targets[i]:
          misclassified += 1
          update = learning_rate * (targets[i] - predicted)
          weights += update * inputs[i]
          bias += update
     accuracy = (num_samples - misclassified) / num_samples
     convergence_curve.append(accuracy)
     if misclassified == 0:
       print("Converged in {} epochs.".format(epoch + 1))
       break
  return weights, bias, convergence_curve
# Generate random linearly separable data points
def generate_data(n_samples):
  np.random.seed(42)
  inputs = np.random.rand(n_samples, 2) * 10
  targets = np.sum(inputs, axis=1) >= 10
  targets = targets.astype(int)
  return inputs, targets
# Main function
if __name__ == "_
                   _main_
```

```
# Generate linearly separable data
  n samples = 100
  inputs, targets = generate_data(n_samples)
  # Training the perceptron
  weights, bias, convergence_curve = perceptron_train(inputs, targets)
  # Decision boundary line
  x = np.linspace(0, 10, 100)
  y = (-weights[0] * x - bias) / weights[1]
  # Plot convergence curve
  plt.figure(figsize=(8, 4))
  plt.plot(range(1, len(convergence_curve) + 1), convergence_curve)
  plt.xlabel('Epoch')
  plt.ylabel('Accuracy')
  plt.title('Convergence Curve')
  plt.grid()
  plt.show()
  # Plot the decision boundary line and data points
  plt.figure(figsize=(8, 6))
  plt.plot(x, y, label='Decision Boundary')
  plt.scatter(inputs[targets == 1][:, 0], inputs[targets == 1][:, 1], label='Class 1',
color='blue')
  plt.scatter(inputs[targets == 0][:, 0], inputs[targets == 0][:, 1], label='Class 0',
color='red')
  plt.xlabel('Feature 1')
  plt.ylabel('Feature 2')
  plt.title('Perceptron Decision Boundary')
  plt.legend()
  plt.grid()
  plt.show()
```

1. Convergence curve

2. Perceptron decision boundary


```
import numpy as np
# Sigmoid activation function and its derivative (for training)
def sigmoid(x):
  return 1/(1 + np.exp(-x))
def sigmoid derivative(x):
  return x * (1 - x)
# XOR function dataset with binary inputs and outputs
inputs = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
targets = np.array([[0], [1], [1], [0]])
# Neural network parameters
input_layer_size = 2
hidden layer size = 2
output layer size = 1
learning rate = 0.1
momentum factor = 0.9
max epochs = 10000
# Initialize weights and biases with random values
np.random.seed(42)
weights_input_hidden = np.random.randn(input_layer_size, hidden_layer_size)
bias_hidden = np.random.randn(hidden_layer_size)
weights_hidden_output = np.random.randn(hidden_layer_size, output_layer_size)
bias_output = np.random.randn(output_layer_size)
# Initialize previous weight updates with zeros for momentum
prev_weight_input_hidden_update = np.zeros((input_layer_size, hidden_layer_size))
prev bias hidden update = np.zeros(hidden layer size)
prev_weight_hidden_output_update = np.zeros((hidden_layer_size, output_layer_size))
prev_bias_output_update = np.zeros(output_layer_size)
# Training the neural network with backpropagation and momentum
for epoch in range(max_epochs):
  # Forward pass
  hidden_layer_input = np.dot(inputs, weights_input_hidden) + bias_hidden
  hidden_layer_output = sigmoid(hidden_layer_input)
  output_layer_input = np.dot(hidden_layer_output, weights_hidden_output) +
bias_output
  predicted_output = sigmoid(output_layer_input)
```

```
# Calculate the error
  error = targets - predicted output
  # Backpropagation
  output_delta = error * sigmoid_derivative(predicted_output)
  hidden_delta = output_delta.dot(weights_hidden_output.T) *
sigmoid_derivative(hidden_layer_output)
  # Update weights and biases with momentum
  weight_input_hidden_update = inputs.T.dot(hidden_delta) * learning_rate
  bias_hidden_update = np.sum(hidden_delta, axis=0) * learning_rate
  weight_hidden_output_update = hidden_layer_output.T.dot(output_delta) *
learning rate
  bias_output_update = np.sum(output_delta, axis=0) * learning_rate
  weights_input_hidden += weight_input_hidden_update + momentum_factor *
prev_weight_input_hidden_update
  bias_hidden += bias_hidden_update + momentum_factor * prev_bias_hidden_update
  weights_hidden_output += weight_hidden_output_update + momentum_factor *
prev_weight_hidden_output_update
  bias_output += bias_output_update + momentum_factor * prev_bias_output_update
  # Store previous updates for momentum
  prev_weight_input_hidden_update = weight_input_hidden_update
  prev_bias_hidden_update = bias_hidden_update
  prev_weight_hidden_output_update = weight_hidden_output_update
  prev_bias_output_update = bias_output_update
  # Calculate mean squared error for convergence check
  mse = np.mean(error ** 2)
  if mse < 1e-6:
    print("Converged in {} epochs.".format(epoch + 1))
    break
# Test the XOR function with the trained neural network
test_inputs = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
hidden_layer_input = np.dot(test_inputs, weights_input_hidden) + bias_hidden
hidden_layer_output = sigmoid(hidden_layer_input)
output_layer_input = np.dot(hidden_layer_output, weights_hidden_output) + bias_output
predicted_output = sigmoid(output_layer_input)
print("Predicted outputs:")
```

```
print(predicted_output)

# Round the predicted outputs to get binary values (0 or 1)
predicted_binary = np.round(predicted_output).astype(int)
print("Predicted binary outputs:")
print(predicted_binary)
```

Predicted outputs:

[[0.03383077]

[0.97009142]

[0.96988489]

[0.03162844]]

Predicted binary outputs:

[[0]]

[1]

[1]

[0]]

```
import numpy as np
# Sigmoid activation function and its derivative (for training)
def sigmoid(x):
  return 1/(1 + np.exp(-x))
def sigmoid derivative(x):
  return x * (1 - x)
# Input and target datasets
X_{input} = np.array([[0, 0, 1], [0, 1, 1], [1, 0, 1], [1, 1, 1]])
D_{target} = np.array([[0], [0], [1], [1]])
# Neural network parameters
input_layer_size = 3
output layer size = 1
learning rate = 0.1
max_epochs = 10000
# Initialize weights with random values
np.random.seed(42)
weights = np.random.randn(input layer size, output layer size)
# Training the neural network with SGD
for epoch in range(max_epochs):
  error sum = 0
  for i in range(len(X_input)):
    # Forward pass
     input_data = X_input[i]
     target_data = D_target[i]
     net_input = np.dot(input_data, weights)
     predicted_output = sigmoid(net_input)
    # Calculate error
     error = target_data - predicted_output
     error_sum += np.abs(error)
    # Update weights using the delta learning rule
     weight_update = learning_rate * error * sigmoid_derivative(predicted_output) *
input data
     weights += weight_update[:, np.newaxis] # Update weights for each input separately
  # Check for convergence
```

```
if error_sum < 0.01:
    print("Converged in {} epochs.".format(epoch + 1))
    break

# Test data
test_data = X_input

# Use the trained model to recognize target function
print("Target Function Test:")
for i in range(len(test_data)):
    input_data = test_data[i]
    net_input = np.dot(input_data, weights)
    predicted_output = sigmoid(net_input)

print(f"Input: {input_data} -> Output: {np.round(predicted_output)}")
```

Target Function Test:

Input: [0 0 1] -> Output: [0.] Input: [0 1 1] -> Output: [0.] Input: [1 0 1] -> Output: [1.] Input: [1 1 1] -> Output: [1.]

```
import numpy as np
# Sigmoid activation function and its derivative (for training)
def sigmoid(x):
  return 1/(1 + np.exp(-x))
def sigmoid derivative(x):
  return x * (1 - x)
# Input and target datasets
X_{input} = np.array([[0, 0, 1], [0, 1, 1], [1, 0, 1], [1, 1, 1]])
D_{target} = np.array([[0],[0],[1],[1]])
# Neural network parameters
input_layer_size = 3
output layer size = 1
learning rate = 0.1
max_epochs = 10000
# Initialize weights with random values
np.random.seed(42)
weights = np.random.randn(input_layer_size, output_layer_size)
# Training the neural network with batch method
for epoch in range(max_epochs):
  # Forward pass
  net_input = np.dot(X_input, weights)
  predicted_output = sigmoid(net_input)
  # Calculate error
  error = D_target - predicted_output
  error_sum = np.sum(np.abs(error))
  # Update weights using the delta learning rule
  weight_update = learning_rate * np.dot(X_input.T, error *
sigmoid_derivative(predicted_output))
  weights += weight_update
  # Check for convergence
  if error_sum < 0.01:
    print("Converged in {} epochs.".format(epoch + 1))
    break
# Test data
test_data = X_input
```

```
# Use the trained model to recognize target function
print("Target Function Test:")
for i in range(len(test_data)):
   input_data = test_data[i]
   net_input = np.dot(input_data, weights)
   predicted_output = sigmoid(net_input)

print(f"Input: {input_data} -> Output: {np.round(predicted_output)}")
```

Target Function Test:

Input: [0 0 1] -> Output: [0.] Input: [0 1 1] -> Output: [0.] Input: [1 0 1] -> Output: [1.] Input: [1 1 1] -> Output: [1.]

```
import numpy as np
import time
# Sigmoid activation function and its derivative (for training)
def sigmoid(x):
  return 1/(1 + np.exp(-x))
def sigmoid_derivative(x):
  return x * (1 - x)
# XOR function dataset with binary inputs and outputs
X_{input} = np.array([[0, 0, 1], [0, 1, 1], [1, 0, 1], [1, 1, 1]])
D_{target} = np.array([[0],[0],[1],[1]])
# Neural network parameters
input layer size = 3
output_layer_size = 1
learning\_rate = 0.1
max epochs = 10000
# Initialize weights with random values
np.random.seed(42)
weights_sgd = np.random.randn(input_layer_size, output_layer_size)
weights_batch = np.random.randn(input_layer_size, output_layer_size)
# Training the neural network with SGD
start_time_sgd = time.time()
for epoch in range(max_epochs):
  error sum = 0
  for i in range(len(X_input)):
    # Forward pass
     input_data = X_input[i]
     target_data = D_target[i]
     net_input = np.dot(input_data, weights_sgd)
     predicted_output = sigmoid(net_input)
    # Calculate error
     error = target_data - predicted_output
     error_sum += np.abs(error)
     # Update weights using the delta learning rule
    weight_update = learning_rate * error * sigmoid_derivative(predicted_output) *
input_data
```

```
weights_sgd += weight_update[:, np.newaxis] # Update weights for each input
separately
  # Check for convergence
  if error sum < 0.01:
    break
end_time_sgd = time.time()
# Training the neural network with the batch method
start_time_batch = time.time()
for epoch in range(max_epochs):
  # Forward pass
  net_input = np.dot(X_input, weights_batch)
  predicted_output = sigmoid(net_input)
  # Calculate error
  error = D_target - predicted_output
  error_sum = np.sum(np.abs(error))
  # Update weights using the delta learning rule
  weight_update = learning_rate * np.dot(X_input.T, error *
sigmoid_derivative(predicted_output))
  weights_batch += weight_update
  # Check for convergence
  if error_sum < 0.01:
    break
end_time_batch = time.time()
# Test data
test_data = X_input
# Use the trained models to recognize target function
def test_model(weights):
  predicted_output = sigmoid(np.dot(test_data, weights))
  return np.round(predicted_output)
print("SGD Results:")
print("Time taken: {:.6f} seconds".format(end_time_sgd - start_time_sgd))
print("Trained weights:")
print(weights_sgd)
print("Predicted binary outputs:")
print(test_model(weights_sgd))
print("\nBatch Method Results:")
print("Time taken: {:.6f} seconds".format(end_time_batch - start_time_batch))
print("Trained weights:")
print(weights_batch)
```

```
print("Predicted binary outputs:")
print(test_model(weights_batch))
```

SGD Results:

Time taken: 0.892055 seconds

Trained weights: [[7.25950187]

[-0.22431325] [-3.41036643]]

Predicted binary outputs:

[[0.]]

[0.]

[1.]

[1.]]

Batch Method Results:

Time taken: 0.263896 seconds

Trained weights:

[[7.26775966]

[-0.22304058]

[-3.41538639]]

Predicted binary outputs:

[[0.]]

[0.]

[1.]

[1.]]

```
import numpy as np
def softmax(x):
  ex = np.exp(x)
  return ex / np.sum(ex)
def sigmoid(x):
  return 1/(1 + np.exp(-x))
def multi_class(W1, W2, X, D):
  alpha = 0.9
  N = 5
  for k in range(N):
     x = X[:, :, k].reshape(25, 1)
     d = D[k, :].reshape(-1, 1)
     v1 = np.dot(W1, x)
     y1 = sigmoid(v1)
     v = np.dot(W2, y1)
     y = softmax(y)
     e = d - y
     delta = e
     e1 = np.dot(W2.T, delta)
     delta1 = y1 * (1 - y1) * e1
     dW1 = alpha * np.dot(delta1, x.T)
     W1 = W1 + dW1
     dW2 = alpha * np.dot(delta, y1.T)
     W2 = W2 + dW2
  return W1, W2
def main():
  np.random.seed(3)
  X = np.zeros((5, 5, 5))
  X[:,:,0] = \text{np.array}([[0,1,1,0,0],
                 [0, 0, 1, 0, 0],
                 [0, 0, 1, 0, 0],
                 [0, 0, 1, 0, 0],
                 [0, 1, 1, 1, 0]]
  X[:,:,1] = np.array([[1, 1, 1, 1, 0],
                 [0, 0, 0, 0, 1],
                 [0, 1, 1, 1, 0],
                 [1, 0, 0, 0, 0]
                 [1, 1, 1, 1, 1]
  X[:, :, 2] = np.array([[1, 1, 1, 1, 0],
                [0, 0, 0, 0, 1],
```

```
[0, 1, 1, 1, 0],
                   [0, 0, 0, 0, 1],
                   [1, 1, 1, 1, 0]]
  X[:,:,3] = \text{np.array}([[0,0,0,1,0],
                   [0, 0, 1, 1, 0],
                   [0, 1, 0, 1, 0],
                   [1, 1, 1, 1, 1],
                   [0, 0, 0, 1, 0]]
  X[:,:,4] = \text{np.array}([[1, 1, 1, 1, 1],
                   [1, 0, 0, 0, 0],
                   [1, 1, 1, 1, 0],
                   [0, 0, 0, 0, 1],
                   [1, 1, 1, 1, 0]]
  D = np.eye(5)
  W1 = 2 * np.random.rand(50, 25) - 1
  W2 = 2 * np.random.rand(5, 50) - 1
  for epoch in range(10000):
     W1, W2 = multi\_class(W1, W2, X, D)
  N = 5
  for k in range(N):
     x = X[:, :, k].reshape(25, 1)
     v1 = np.dot(W1, x)
     v1 = sigmoid(v1)
     v = np.dot(W2, y1)
     y = softmax(v)
     print(f'' \setminus n \setminus n \text{ Output for } X[:,:,\{k\}]: \setminus n \setminus n'')
     print(f"\{y\} \setminus n \setminus n This matrix from see that \{k+1\} position accuracy is higher that is :
{max(y)} So this number is correctly identified")
if __name__ == "__main__":
  main()
```

```
Output for X[:,:,0]: [[9.99990560e-01] [3.73975045e-06] [7.29323123e-07] [4.95516529e-06]
```

```
[1.56459758e-08]]
```

This matrix from see that 1 position accuracy is higher that is : [0.99999056] So this number is correctly identified

Output for X[:,:,1]:

[[3.81399150e-06]

[9.99984069e-01]

[1.07138749e-05]

[7.38201374e-07]

[6.65377695e-07]]

This matrix from see that 2 position accuracy is higher that is: [0.99998407] So this number is correctly identified

Output for X[:,:,2]:

[[2.10669179e-06]

[9.17015598e-06]

[9.99972467e-01]

[2.22084036e-06]

[1.40352894e-05]]

This matrix from see that 3 position accuracy is higher that is: [0.99997247] So this number is correctly identified

Output for X[:,:,3]:

[[4.72578106e-06]

[8.98916172e-07]

[9.07090140e-07]

[9.99990801e-01]

[2.66714208e-06]]

This matrix from see that 4 position accuracy is higher that is : [0.9999908] So this number is correctly identified

Output for X[:,:,4]:

[[6.12205780e-07]

[2.29663674e-06]

[1.16748707e-05]

[1.01696314e-06]

[9.99984399e-01]]

This matrix from see that 5 position accuracy is higher that is : [0.9999844] So this number is correctly identified

```
#import
import os
import cv2
import numpy as np
from sklearn.model_selection import train_test_split
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
#dataset input || training
def load_data(folder):
  images = []
  labels = []
  for filename in os.listdir(folder):
     label = folder.split('/')[-1]
     img = cv2.imread(os.path.join(folder, filename))
     img = cv2.resize(img, (150, 150)) # Resize the image to a consistent size
     img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Convert to RGB format
     images.append(img)
     labels.append(label)
  return images, labels
banana_folder = 'dataset/banana'
cucumber_folder = 'dataset/cucumber'
banana_images, banana_labels = load_data(banana_folder)
cucumber_images, cucumber_labels = load_data(cucumber_folder)
# Combine the data
images = np.array(banana_images + cucumber_images)
labels = np.array(banana_labels + cucumber_labels)
print(labels)
# Encode labels to numerical values
label_dict = {'banana': 0, 'cucumber': 1}
encoded_labels = np.array([label_dict[label] for label in labels])
print(encoded_labels)
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(images, encoded_labels,
test_size=0.15,random_state=42)
# Normalize the pixel values between 0 and 1
X_{train} = X_{train.astype}('float32') / 255
X_{\text{test}} = X_{\text{test.astype}}(\text{'float32'}) / 255
```

```
#Adding CNN layer and epoch running
import matplotlib.pyplot as plt
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(512, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dense(128, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
history = model.fit(X_train, y_train, epochs=30, batch_size=32)
# Evaluate the model
loss, accuracy = model.evaluate(X test, y test)
# Plotting loss
plt.plot(history.history['loss'], label='Training Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()
# Plotting accuracy
plt.plot(history.history['accuracy'], label='Training Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
print('Test accuracy:', accuracy*100)
```

#Import Image


```
#Test image
from tensorflow.keras.preprocessing import image
import numpy as np
# Path to the test image
test_image_path = 'pic2.jpg' # Replace with the actual path of your test image
# Load and preprocess the test image
test_image = image.load_img(test_image_path, target_size=(150, 150))
test_image = image.img_to_array(test_image)
test_image = np.expand_dims(test_image, axis=0)
test_image = test_image / 255.0 # Normalize the image
# Predict the class of the test image
prediction = model.predict(test_image)
print('prediction',prediction)
if prediction < 0.5:
print('This is Banana')
elif prediction \geq 0.5:
 print('This is Cucumber')
```

Output:

1/1 [======] - 0s 61ms/step prediction [[0.9634724]]
This is Cucumber

INDEX

Exp No.	Experiment Name
01	Write a MATLAB or program using perception net for AND function with
	bipolar inputs and targets. The convergence curves and the decision boundary
	lines are also shown.
02	Write a MATLAB or Python program to recognize the numbers 1 to 4 from the
	matrix form of number. The net has to be trained to recognize all the numbers, and when the test data is given, the network has to recognize the particular
	number.
03	Generate the XOR function using the McCulloch-Pitts neuron by writing an M-
05	file or .py file.
04	Write a MATLAB or Python program to show Back Propagation Network for
	XOR function with Binary Input and Output.
05	Write a MATLAB or Python program for solving linearly separable problem
	using Perceptron Model. The convergence curves and the decision boundary
	lines are also shown.
06	Write a MATLAB or Python program for XOR function (binary input and
0.7	output) with momentum factor using back propagation algorithm.
07	Implement the SGD Method using Delta learning rule for following input-target
08	sets. $X_{input} = [0\ 0\ 1;\ 0\ 1\ 1;\ 1\ 0\ 1;\ 1\ 1\ 1],\ D_{Target} = [0;\ 0;\ 1;\ 1]$ Implement the Batch Method using Delta learning rule for following input-
08	target sets. $X_{input} = [0 \ 0 \ 1; 0 \ 1 \ 1; 1 \ 0 \ 1; 1 \ 1], D_{Target} = [0; 0; 1; 1]$
09	Compare the performance of SGD and the Batch method using the delta
0)	learning rule.
10	Write a MATLAB or Python program to recognize the image of digits. The
	input images are five-by-five-pixel squares, which display five numbers from 1
	to 5, as shown in Figure 1.
11	Write a MATLAB or Python program to classify face/fruit/bird using
	Convolutional Neural Network(CNN).