Risk Management - Problems 2 (due date: April 13, 2025)

Jakub Gizbert-Studnicki Maciej Trzetrzelewski Maciej A. Nowak

Mark Kac Complex Systems Research Center Jagiellonian University Kraków, Poland Summer semester (2024/25) Jagiellonian University WFAIS.IF-Y491.0

Multivariate distributions

1. Consider multivariate random variables X_i with a covariance matrix elements $C_{ij}^{(X)} \equiv Cov(X_i, X_j) \equiv \langle x_i x_j \rangle - \langle x_i \rangle \langle x_j \rangle$. Show that random variables Y_{α} being linear combinations of X_i , such that $Y_{\alpha} = \sum_i v_{\alpha i} X_i$, where $v_{\alpha i}$ are constant weights, have the covariance matrix:

$$C_{\alpha\beta}^{(Y)} \equiv Cov(Y_{\alpha}, Y_{\beta}) = \sum_{i,j} v_{\alpha i} C_{ij} v_{\beta j}$$

In the matrix form: $C_{\alpha\beta}^{(Y)} = \boldsymbol{v}_{\alpha}^T \boldsymbol{C}^{(X)} \boldsymbol{v}_{\beta}$, if \boldsymbol{v}_{α} , \boldsymbol{v}_{β} are column vectors.

- 2. Show that the (Gaussian) d-dimensional random vector $\mathbf{Y}_d \equiv \mathbf{X}_d/\sqrt{d}$, where \mathbf{X}_d is drawn from a multivariate Gaussian distribution with zero mean vector $(m_i = 0)$ and unit covariance matrix $(C_{ij} = \delta_{ij})$ converges to the (unit) d-dimensional sphere, i.e. $||\mathbf{Y}_d||^2 \equiv \mathbf{Y}_d^T \mathbf{Y}_d \to 1$ for $d \to \infty$.
 - (a) Numerically: generate a (large, e.g. $N=10^4$) sample of \mathbf{Y}_d for $\overline{d}=1,2^2,3^2,...,10^2$ and compute the mean and variance of $||\mathbf{Y}_d||^2$ and draw them as a function of d. (HINT: as for $C_{ij}=\delta_{ij}$ the elements of the random vector \mathbf{X}_d are independent, one can simply generate each of them separately from a one-dim Gaussian)
 - (b) Analytically: one can use the Central Limit Theorem (HINT: the sum of squares of d iid standard Gaussian variables $X_i \sim N(0,1)$: $Q = \sum_{i=1}^d X_i^2$ has the Chi-Squared distribution with d degrees of freedom.)

Note that this is also the case for any (normalized, i.e. shifted and rescaled: $\frac{X_i - m_i}{C_{ii}^{1/2}}$) correlated Gaussian variables, as introducing correlation is just a rotation of the sphere (see Principal Components).

3. (Contour) plot the joint PDF of the 2-dimensional probability distribution defined by the Gumbel Copula:

CDF:
$$C(u, v) = \exp \left[-\left(\left(\ln \frac{1}{u} \right)^{\theta} + \left(\ln \frac{1}{v} \right)^{\theta} \right)^{1/\theta} \right]$$

with standard Gaussian marginals N(0,1) for the (coupling) parameter $\theta = 1, 1.5, 2$.

Note: for $\theta > 1$ this is not a multivariate Gaussian but it has Gaussian marginal distributions!

- 4. The file *dat.txt* contains sample bivariate data (each line is a 2-dim random vector with components separated by a space), generated using the Gaussian Copula with some (unknown) marginals.
 - (a) Compute numerically and plot empirical CDFs of the marginal distributions.

NOTE: Compute empirical CDFs in the whole range of x_i but plot them in range $x_i \in [-2, 2]$, (i = 1, 2).

HINT: empirical CDF for the sample with N elements:

$$P_{\leq}(x) = \frac{\text{number of elements in the sample} \leq x}{N} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{1}_{X_i \leq x}$$

(b) Estimate the (only) parameter of the 2-dim Gaussian Copula, i.e. the correlation coefficient ρ .

HINT: Using empirical marginal CDFs convert the sample data into the 2-dim uniform distribution and then (using inverse Gaussian CDF) into the 2-dim Gaussian and compute the covariance ρ , see (the opposite) example in the Lecture notes, p. 47.