## BIOMETRÍA II CLASE 13 INTEGRACIÓN DE MODELOS

## Estructura de los datos

|  | Tipo de estudio: experimental u observacional                                                         | Determina las conclusiones (causalidad o asociación)                                                      |
|--|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|  | Tipo de VR: continua, discreta, binaria                                                               | Define la distribución de probabilidades y<br>por lo tanto el tipo de modelo y el<br>método de estimación |
|  | Tipo de VE: continua, discreta, binaria, cuali                                                        | Solo cuali: anova<br>Cuanti y cuali: regresión con dummies<br>(ancova)<br>Cuanti: regresión               |
|  | Relación entre VR y VE                                                                                | Modelos lineales o no lineales (en los parámetros)                                                        |
|  | Estructura de agregación (independencia vs bloques, anidamiento, medidas repetidas, parcela dividida) | Modelos con VE de efectos fijos vs<br>modelos marginales /condicionales                                   |
|  | Declaración de dependencia entre las observaciones                                                    | Modelos marginales o modelos condicionales                                                                |

### Protocolo

#### Parte aleatoria

Basándose en el diseño experimental o en el método de muestreo empleado, incluir efectos aleatorios (modelos condicionales) o estructura de la matriz de covarianza (modelos marginales) si existe nivel de agrupamiento entre las observaciones

#### Parte fija

- Si se trata de un experimento: incluir en el modelo todos los términos que quedaron definidos por el diseño experimental. El modelo no se debería simplificar (independientemente de la significación de cada término)
- Si se trata de un estudio observacional: utilizar algún criterio de selección de modelos a fin de identificar las VE significativas o importantes, las restantes se eliminan del modelo a menos que interese incluirlas por razones teóricas

## Modelos en R

| Fun-<br>ción | Modelo                                                                                                                                                      | Estima-<br>ción |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| lm           | Modelo lineal con errores normales y varianza constante; generalmente es usado para regresión con VE cuantitativas                                          | MCO             |
| gls          | Modelo lineal con errores normales. Permite modelar heterocedasticidad y distintas estructuras de matriz de covarianzas; no admite VE de efectos aleatorios | MV              |
| lme          | Modelo lineal con errores normales y VE de efectos fijos y aleatorios. Permite modelar heterocedasticidad y distintas estructuras de matriz de covarianza   | MV              |
| lmer         | Idem anterior, pero no modela estructuras de matriz de covarianza                                                                                           | MV              |

## Funciones genéricas

| Función | Modelo                                                                                                                         |
|---------|--------------------------------------------------------------------------------------------------------------------------------|
| summary | Proporciona estimaciones de los parámetros del modelo en forma de regresión o anova (summary.lm y summary.aov respectivamente) |
| plot    | Gráficos de diagnóstico de supuestos del modelo                                                                                |
| anova   | Permite comparar modelos anidados                                                                                              |
| update  | Modifica el último modelo ajustado                                                                                             |
| coef    | Proporciona los estimadores de los parámetros del modelo                                                                       |
| fitted  | Valores predichos por el modelo lineal                                                                                         |
| predict | Idem anterior                                                                                                                  |
| resid   | Diferencia entre el valor observado y el predicho por el modelo                                                                |
| AIC     | Compara modelos por AIC                                                                                                        |

## Modelos lineales sin VE de efectos aleatorios

| Modelo                   | lineal<br>general                                                | lineal<br>general                        | lineal<br>generalizado                                                           |
|--------------------------|------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------|
| Método de<br>estimación  | cuadrados mínimos                                                | máxima verosimilitud<br>restringida      | máxima verosimilitud                                                             |
| distribución de<br>la VR | normal                                                           | normal                                   | Familia exponencial                                                              |
| heterocedasticidad       | sensible                                                         | modelable                                | modelable                                                                        |
| desbalanceo              | sensible                                                         | robusto                                  | robusto                                                                          |
| supuestos                | Independencia,<br>normalidad,<br>homocedasticidad,<br>linealidad | Independencia,<br>normalidad, linealidad | Independencia,<br>linealidad<br>dispersión acorde a la<br>distrib de la variable |

## Modelos lineales con VE de efectos aleatorios

| Modelo                   | lineal<br>general mixto                        | lineal<br>general mixto                                     | lineal<br>general marginal                                 |
|--------------------------|------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|
| Método de<br>estimación  | cuadrados mínimos                              | máxima verosimilitud<br>restringida                         | máxima verosimilitud                                       |
| distribución de<br>la VR | normal                                         | normal                                                      | normal                                                     |
| Estructura de agregación | modelable pero<br>arduo                        | Modelable mediante la inclusión de VE de efectos aleatorios | Modelable mediante la declaración de matriz de covarianza  |
| Componentes de varianza  | SÍ                                             | sí                                                          | no                                                         |
| supuestos                | normalidad,<br>homocedasticidad,<br>linealidad | Normalidad, linealidad;<br>heterocedasticidad<br>modelable  | Normalidad, linealidad;<br>heterocedasticidad<br>modelable |

# Algunas pautas para una correcta experimentación

#### En el diseño:

- Aleatorización de los tratamientos
- Replicación en la escala adecuada. Atención a las seudorréplicas
- Determinar a priori el tamaño de muestra para una dada potencia y un efecto de tratamiento

# Algunas pautas para un correcto análisis estadístico

- Recurrir a herramientas gráficas para tener idea del efecto de los tratamientos, variabilidad y posibles outliers
- Identificar tipo de VR, tipo de VE, si existen estructuras de agrupamiento de los datos
- Si se trata de un modelo con algún nivel de agregación de las observaciones, modelar primero la estructura aleatoria de los datos
- Centrar las VE si se desea darle sentido a la ordenada al origen
- Verificar los supuestos del modelo; patrones en los residuos pueden indicar la necesidad de incluir potencias o interacciones
- Evitar efectuar múltiples test estadísticos separados. Ajuste del nivel de significación
- Respetar el principio de marginalidad: siempre analizar primero la interacción de mayor orden; no excluir términos involucrados en interacciones
- No comparar p de distintas pruebas, ya que a menos que los GL sean iguales no son comparables

# Algunas pautas para un correcto análisis estadístico

#### En las conclusiones:

- Alcance del estudio: aplicar la inferencia estadística sólo a la población de la cual se extrajo la muestra
- Diferenciar estudios experimentales de observacionales; atención con la causalidad
- Significación biológica vs estadística. Magnitud del efecto (diferencia de medias, pendiente), informar intervalos de confianza
- Presentar los resultados gráficamente utilizando las estimaciones del modelo

Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data exploration to avoid common statistical problems. *Methods in Ecology and Evolution*, *1*(1), 3-14.

## Presentación de resultados Materiales & Métodos

- Diseño experimental
- Pruebas estadísticas
- Nivel de significación
- Software

Los resultados para (*variable respuesta*) fueron analizados mediante un modelo lineal general en un diseño (). Las variables explicatorias fueron (). Los supuestos () se estudiaron mediante (). El criterio utilizado para la selección de modelos fue ().

El nivel de significación empleado fue () / Se consideraron significativas aquellas pruebas con p < ()

Todos los análisis estadísticos fueron efectuados utilizando el programa estadístico (R, R Core Team 2021)

## Plantas en cojín en la Puna Análisis 1



- Las plantas en cojín son una de las formas de vida mejor adaptadas a las extremas condiciones de los ambientes de alta montaña
- Al proporcionar micrositios más adecuados para la adquisición de recursos, actuarían como nodrizas para el resto de las especies de la comunidad
- Se desea estudiar las características de los cojines de la especie Laretia acaulis que favorecen el establecimiento de plántulas de otras especies, a dos altitudes en la puna jujeña: baja (~2000 m.s.n.m) y alta(~3000 m.s.n.m)
- A cada altitud de la puna jujeña se seleccionaron al azar 65 cojines separados al menos 1 km. En cada uno se determinó la biomasa de otras especies vegetales (en gramos) y características de los cojines: diámetro (cm), altura máxima, temperatura del sustrato, potencial hídrico del suelo, distancia al cojín más cercano
- □ VR? VE? Tipo? Modelo? (asumiendo efectos aditivos) n? Base de datos

### Modelando



- Especule qué valores de VIF esperaría encontrar para las 5 VE cuantitativas
- Si detecta colinealidad, explique qué consecuencias traería incluir a todas las variables en el modelo
- 3. Si detecta colinealidad, ¿se solucionaría centrando las variables?
- ¿Cómo decidiría qué variables excluir?
- Suponga que se retuvieron diámetro y altitud y que se sospecha que el efecto nodriza es mayor a mayor altitud. Plantee el modelo

#### Coefficients:

|              | Estimate | Std. Error | Pr(> t )     |
|--------------|----------|------------|--------------|
| (Intercept)  | 160.183  | 33.734     | 2.10e-04 *** |
| diámetro     | 10.261   | 1.0835     | 2.23e-05 *** |
| altitud.alta | -20.123  | 3.1471     | 2.18e-03 *** |
| diámetro.    |          |            |              |
| altitud.alta | 3.123    | 0.814      | 5.22e-03 *** |

- 6. ¿Interpretación de los coeficientes?
- ¿Qué cambiaría si se centrase diámetro?
- 8. ¿Conclusiones biológicas?
- y si se detecta que la variabilidad en la biomasa es mayor a menor altitud?

### Análisis 2



- Los investigadores desean analizar las modificaciones microclimáticas que induce *L. αcαυlis* con respecto a los espacios abiertos.
- Particularmente desean estudiar si existen cambios en el potencial hídrico matricial del suelo (PHMS).
- Para ello, en cada uno de los cojines se midió el PHMS en el suelo en el cojín y en el suelo aledaño
- Escriba el modelo condicional
- ¿Qué componentes de varianza pueden estimarse?
- ¿Qué diferencias tiene este modelo con el marginal?
- Si se midiese el PHMS a distintas distancias del cojín, ¿qué cambiaría?
- 5. Si en cada sitio se tomasen observaciones a las 8, 12, 16 y 20 hs, ¿cómo se modificaría el modelo?