Statistical Inference in R and JAGS

Noble Hendrix & Jim Thorson noblehendrix@gmail.com / james.thorson@noaa.gov

Modelos de captura recaptura CJS 20 January 2016 UDEC, Concepción Chile

Conceptos Importantes

- Historia de métodos de captura-recaptura
- Modelos abiertos y cerrados
- Comprender la relación entre capturarecaptura y modelos dinámicos de ocupamiento de parches

¿Porqué usar métodos de capturarecaptura?

- Mayor detales demográficos que modelos de ocupamiento
 - Efectos espaciales
 - Covariables a nivel individual
 - Manejo directo del movimiento
 - ¡Muy difícil de lograr sin datos de marcado!
 - 3. Tiene en cuenta la no-detección
 - Igual que en modelos de ocupamiento

HISTORIA DE CAPTURA RECAPTURA

Visita relámpago de captura recaptura

Modelos Cerrados

- Estimador Lincoln-Petersen
- Censo de Schnabel
- Muestras múltiples
- Modelo de comportamiento
- Modelo de Depleción

Modelos Abiertos

- Modelo Jolly-Seber
- Modelos Escala
- Modelo Cormack-Jolly-Seber
- Modelos Multi-estado
- Modelos Markovianos ocultos

Análisis de Captura Recaptura

- McCrea, R., U de Kent
- Publicación reciente focalizada en captura recaptura
- Programas usados:
 - MARK, RMARK
 - M-SURGE
 - E-SURGE
 - EstimateN

Hoja de ruta de modelos:

MODELOS POBLACIONALES DINAMICOS ABIERTOS

Algunos modelos importantes

Cormac-Jolly-Seber (CJS)

- Solo modela supervivencia y detección
- "Condiciones en la primera detección"

Jolly-Seber model

- Modela nacimientos, muertes y detecciones
- Inferencia fácil al tamaño total poblacional

CJS – supervivencia aparente de captura-recaptura

- Supervivencia aparente mortalidad y emigración permanente confundidas (puede haberse muerto o haberse ido fuera del área de estudio – sin distinción)
- Enfoque de Espacio-Estado
 - Proceso de Estado: Supervivencia individual
 - Proceso de Observación: dado que el animal esta vivo, es recapturado basado en la probabilidad de captura
- Enfoque Multinomial todos los animales con historias de captura similares son agrupados

Modelo CJS

Figura 7.1 Kery & Schaub (2012) Bayesian Population Analysis.

Cormack Jolly Seber – Espacio Estado

- Modelo de Proceso
 - □ f(i) = año en la primera captura $z_{i,f(i)} \sim 1$ $z_{i,t} \sim Bern(\phi_{i,t} \times z_{i,t-1})$
 - Se sabe que esta vivo en la primera captura y se ignora todo lo anterior
- Modelo de Observación

$$y_{i,t} \sim Bern(p_{i,t} \times z_{i,t})$$

- Parámetros Estimados
 - Supervivencia (ϕ_t) y detección ($p_{i,t}$)

Factores posibles que afectan el proceso de muerte

- Presencia de enfermedades
- Factores de condición
- Factores de riesgo ej., proximidad a fuentes antropogénicas

Probabilidad de un individuo *i* de supervivir en año *t*

$$z_{i,t} \sim Bern(\phi_{i,t})$$
 for $t > 1$

logit(
$$\phi_{i,t}$$
) = $\beta_0 + \sum_{k=1}^{K} \beta_k X_{k,i,t}$

Detección

Probabilidad de un individuo i de ser detectado en año t

$$y_{i,t} \sim Bern(z_{i,t} \times p_{i,t})$$

$$\operatorname{logit}(p_{i,t}) = \gamma_0 + \sum_{k=1}^{K} \gamma_k W_{k,i,t}$$

 Nota – se podría modelar la probabilidad de detección como una función del esfuerzo

$$logit(p_{i,t}) = \gamma_0 + \gamma_1 E_t$$

CJS – estructura de datos

Individuo	Tiempo 1	Tiempo 2	Tiempo 3	Tiempo 4
Α	1	0	0	1
В	1	1	1	0
С	1	1	0	0
D	1	1	0	0
E		1	0	1
F		1	1	1
G			1	0
			1	1
ZZ			1	0

Supuestos

- No hay pérdida de marcas
 - Marcado doble y expansión de modelo puede ayudar a estimar pérdida de marcas
- No hay identificación errónea de individuos
- Animales capturados y recapturados son una muestra aleatoria de la población
- La captura es instantánea, no es tan importante
- Otros supuestos pueden ser tratados internamente en el modelo (Ej., igual probabilidad de captura)

Como varia la probabilidad de detección

- Diferencias medidas entre individuos
 - Covariables
- Diferencias <u>no</u> medidas entre individuos
 - Efectos aleatorios
- Diferencias en el tiempo
- "Efectos de trampa"
 - Aumento o disminución en la probabilidad de ser re-observado
 - Ej., animales que pierden el miedo a los humanos!

Efectos aleatorios en la probabilidad de detección

Efectos aleatorios para los individuos

$$logit(p_{i,t}) = \gamma_0 + \sum_{k=1}^{K} \gamma_k W_{k,i,t} + \epsilon_i$$

$$\epsilon_i \sim N(0, \sigma_p^2)$$

Diseño Robusto de Pollock

- Kendall et al. (1995) usaron un método por el que tienen periodos abiertos (secundarios) y cerrados (primarios)
- Obtienen información de la probabilidad de detección mediante remuestreo durante los periodos cerrados

Datos de Robust Design

Individuo	Año 1	Año 2	Año 3
Α	0,0,0	1,1,0	1,1,1,
В	1,0,1	0,0,0	1,1,1,
C	1,1,1	1,0,1	1,0,0
• • •			
Z	0,0,0	1,1,0	1,0,1

3 muestras por año

Estimación

- Mark, RMark
- Modelos JAGS relativamente fácil de implementar la verosimilitud de datos completa vía aumento de datos.