Set Theory

Kenneth Kunen

July 14, 2021

Contents

1 Background Material	1
1.1 The Axioms of Set Theory	1
1.2 Extensionality, Comprehension, Pairing, Union	3
1 Background Material	
1.1 The Axioms of Set Theory	
We work in predicate logic with $\mathcal{L} = \{\in\}$.	
Axiom 1. Extensionality.	
$\forall z(z\in x\leftrightarrow z\in y)\to x=y$	
Axiom 2. Foundation.	
$\exists y(y \in x) \to \exists y(y \in x \land \neg \exists z(z \in x \land z \in y))$	
Axiom 3. Comprehension Scheme . For each formula, φ , without y free	
$\exists y \forall x (x \in y \leftrightarrow x \in v \land \varphi(x))$	
Axiom 4. Pairing.	
$\exists z (x \in z \land y \in z)$	
Axiom 5. Union	
$\exists A \forall Y \forall x (x \in Y \land Y \in \mathcal{F} \rightarrow x \in A)$	

Axiom 6. Replacement Scheme. For each formula φ , without B free,

$$\forall x \in A \exists ! y \varphi(x, y) \rightarrow \exists B \forall x \in A \exists y \in B \varphi(x, y)$$

On the basis of Axioms 1,3,4,5, define \subseteq , \emptyset , S, \cap and SING(x) (x is a singleton) by

$$x \subseteq y \quad \Leftrightarrow \quad \forall z(z \in x \to z \in y)$$

$$x = \emptyset \quad \Leftrightarrow \quad \forall z(z \notin x)$$

$$y = S(x) \quad \Leftrightarrow \quad \forall z(z \in y \Leftrightarrow z \in x \lor z = x)$$

$$y = v \cap w \quad \Leftrightarrow \quad \forall x(x \in y \Leftrightarrow x \in v \land x \in w)$$

$$SING(x) \quad \Leftrightarrow \quad \exists y \in x \forall z \in x(z = y)$$

Axiom 7. Infinity.

$$\exists x (\emptyset \in x \land \forall y \in x (S(y) \in x))$$

Axiom 8. Power Set.

$$\exists y \forall z (z \subseteq x \to z \in y)$$

Axiom 9. Chioce, or AC.

$$\emptyset \notin F \land \forall x \in F \forall y \in F(x \neq y \rightarrow x \cap y = \emptyset) \rightarrow \exists C \forall x \in F(SING(C \cap x))$$

- ZFC = Axioms 1-9. ZF = Axioms 1-8
- ZC and Z are ZFC and ZF, respectively, with the Replacement Scheme deleted
- X^{-1} denotes X without Foundation Axiom
- X P denote X without the Power Set Axiom
- X inf denotes X without Axiom of Infinity

Definition 1.1. BST ("Basic Set Theory") denotes the axioms of Extensionality, Foundation, Comprehension, Pairing and Union, plus the disjunction: the Power Set Axiom holds or the Replacement Axioms holds.

Definition 1.2. AC^+ is the statement that every set can be well-ordered

1.2 Extensionality, Comprehension, Pairing, Union

Definition 1.3.
$$int(v, w, y) \leftrightarrow \forall x (x \in y \leftrightarrow x \in v \land x \in w)$$

Introducing a defined relation such as tint(v, w, y) requires no justification, although defining $v \cap w$ to be *the y* such that int(v, w, y) *does* require a justification, namely

Lemma 1.4. $\forall v, w \exists ! y int(v, w, y)$

Proof. To prove $\exists y \text{int}(v, w, y)$, use Comprehension, with φ the formula $x \in w$:

$$\forall v, w[\exists y \forall x (x \in y \leftrightarrow x \in v \land x \in w)]$$

To prove that y is unique, observe, from the definition of int(v, w, y), that

$$\operatorname{int}(v, w, y_1) \wedge \operatorname{int}(v, w, y_2) \to \forall x (x \in y_1 \leftrightarrow x \in y_2)$$

so that $y_1 = y_2$ by Extensionality

This justifies:

Definition 1.5. $v \cap w$ is the unique y s.t. int(v, w, y)

Before giving a name to an object satisfying some property, we must prove that property really is held by a unique object

Definition 1.6. For any formula $\varphi(x)$

- $\{x: \varphi(x)\}$ is, informally, called a **class**
- if there is a set A s.t. $\forall x[x \in A \leftrightarrow \varphi(x)]$, then A is unique by Extensionality, and we denote this set by $\{x : \varphi(x)\}$, and we say that $\{x : \varphi(x)\}$ exists
- if there is no such set, then we say that $\{x: \varphi(x)\}$ doesn't exist, *or* forms a proper class
- $\{x \in v : \varphi(x)\}$ abbreviates $\{x : x \in v \land \varphi(x)\}$

Comprehension asserts that sets of the form $\{x: x \in v \land \varphi(x)\}$ always exists

Definition 1.7. Given v, w

$$v \cap w := \{x \in v : x \in w\}$$
$$v \setminus w := \{x \in v : x \notin w\}$$

Definition 1.8. emp(y) iff $\forall x (x \notin y)$

Definition 1.9. \emptyset denotes the (unique) y s.t. emp(y)

Justification. Fix any v and form $y = \{x \in v : x \neq x\}$, which is empty, so $\exists y \in v$. Then y is unique by Extensionality. \Box

Definition 1.10. The universe, $V := \{x : x = x\}$

Lemma 1.11. *V* doesn't exists, and neither does $R := \{x : x \notin x\}$

Proof. For R, we need no axioms at all; if we had an R s.t. $\forall x[x \in R \leftrightarrow x \notin x]$, then $R \in R \leftrightarrow R \notin R$, a contradiction. For V, we use Comprehension; if we had a V with $\forall x[x \in V]$, then we could form R as $\{x \in V : x \notin x\}$

Definition 1.12.

$$\{x,y\} = \{w : w = x \lor w = y\}$$

$$\{x\} = \{x,x\}$$

$$\langle x,y\rangle = (x,y) = \{\{x\}, \{x,y\}\}$$

Lemma 1.13.
$$\langle x, y \rangle = \langle x', y' \rangle \rightarrow x = x' \land y = y'$$

Definition 1.14.
$$0 = \emptyset$$
, $1 = \{0\} = \{\emptyset\}$, $2 = \{0, 1\} = \{\emptyset, \{\emptyset\}\}$

The axioms so far don't let us construct any sets with more than two elements. To do that we use the Union Axiom; then we can get $3=2\cup\{2\}=\{0,1,2\}$. The Union Axiom can be used to justify infinite unions as well.

$$\forall \mathcal{F} \exists A \forall Y \forall x [x \in Y \land Y \in \mathcal{F} \to x \in A]$$

Definition 1.15.
$$\bigcup \mathcal{F} = \bigcup_{Y \in \mathcal{F}} Y = \{x : \exists Y \in \mathcal{F}(x \in Y)\}$$