

Arbitary-Distribution Loader and Furthur Applications build with OGaN

Some common Distributions

Generator

The work we want to do.

$$|\Psi\rangle = \sum_{i=0}^{N} a_i |\Psi_i\rangle$$

Data

 \rightarrow

G

 \rightarrow

LogNormal Distribution Generator

Quantum Circuit on real device

28 single gates, 9 cnot gates

Normal Distribution Generator

Quantum Circuit on real device

22 single gates, 9 cnot gates

VQE Distribution Generator

== Our Version ==

Quantum Circuit on real device

30 single gates, 2 cnot gates

runtime = 7.8s

runtime = 5.4s

Qiskit version v.s Our version

LogNormal Distribution

VQE Ansatz

Normal Distribution

┌ Normal _

relative entropy = 0.7544

LogNormal_

relative entropy = 0.1675

Quantum Loader Application: Pricing Option Problem

New: Sampling Real Stock Price Evolution (1 month)

real stock data~ log-normal distribution

Applying QGaN - Read in the Real Stock Price Distribution

relative entropy = 0.1492

Steps in Price Option problem:

	Distribution Load into Quantum state	Data Sampling
Classical Method		Classical Monte Carlo (Higher query complexity)
Quantum Full Circuit	Circuit Too Deep	Quantum Amplitude Estimation
VQE Ansatz	Shallow	Quantum Amplitude Estimation

Delta Value Calculation: Exact vs Estimation(QGaN+QAE)

Exact Value : 5.42

Estimation by QGaN+QAE : 5.53

Application(2): Quantum Simulation for Free Particles

Dispersion of a Free Particle Wave Packet

Approimation+Encoding to Qubits

$$|\psi\rangle \approx \sum_{k=-d/\Delta x}^{d/\Delta x} a_k |k\Delta x\rangle$$
.

System Hamiltonian enocoding:

$$|\psi(t)\rangle = QFT^{-1}e^{-\frac{i}{\hbar}\left(\frac{p^2}{2m}\right)\Delta t}QFTe^{-\frac{i}{\hbar}V(x)\Delta t}|\psi_{init}\rangle$$

Construct Kinetic Energy Part in Momentum basis of states:

Where is our QGaN

Result: Evolution though times

Match the prediction of Schordinger Eq!

$$\sigma(t) \equiv \sigma \sqrt{1 + (t/\tau)^2}$$

Conclusion

The three qubits states we prepare by QGaN is able to discrible and solve to real problems, with shallower gate depth, shows the potential of this methods.

Price options problem:

We test on our distribution(real data) different from log-normal(original paper) to varify our loader.

Dynamics problem:

Our loader have the capability to load guassian distribution correct enough to successfully simulate this dynamics.