Assignment-4

Assignment Date	17 October 2022
Student Name	T.Thanusha
Student Roll Number	962719106037
Maximum Marks	2Marks

Question 1:

Download the dataset

Link:

https://drive.google.com/file/d/1Sjqx5H5R86tRp2YZKzzd4_iEfjChZ3ob/view?usp=sharing

Question 2:

Import required library

Solution:

import pandas as pd import numpy as np

from keras import utils

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder

from keras.models import Model

from keras.layers import LSTM, Activation, Dense, Dropout, Input, Embedding

from keras.optimizers import RMSprop

from keras.preprocessing.text import Tokenizer

from keras.preprocessing import sequence

from keras.utils import to_categorical

Question 3:

Read dataset and do pre-processing

Solution:

Read dataset

```
!unzip "/content/archive.zip"
df =
pd.read csv('spam.csv',delimiter=',',encoding='latin-1') df
Pre processing
df.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed:
4'],axis=1,inplace=True) df
sns.countplot(df.v1,palette='Set3')
plt.xlabel('Label')
plt.title('Number of ham and spam messages')
X = df.v2
Y = df.v1
le = LabelEncoder()
Y = le.fit transform(Y)
Y = Y.reshape(-1,1)
X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.15)
max words = 1000
max_len = 150
tok = Tokenizer(num_words=max_words)
tok.fit_on_texts(X_train)
sequences = tok.texts_to_sequences(X_train)
sequences_matrix = utils.pad_sequences(sequences,maxlen=max_len)
```

sequences_matrix.shape

sequences matrix.ndim

sequences_matrix = np.reshape(sequences_matrix,(4736,150,1)) sequences_matrix.ndim

Question 4:

Create model

Solution:

from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from keras.layers import Embedding

model = Sequential()

Question 5:

Add layers(LSTM, Dense-(Hidden layers), output)

Solution:

```
model.add(Embedding(max_words,50,input_length=max_len))
model.add(LSTM(units=64,input_shape =
(sequences_matrix.shape[1],1),return_sequences=True))
model.add(LSTM(units=64,return_sequences=True))
model.add(LSTM(units=64,return_sequences=True))
model.add(LSTM(units=64))
model.add(Dense(units = 256,activation = 'relu'))
model.add(Dense(units = 1,activation = 'sigmoid'))
```

Question 6:

Compile the model

Solution:

```
model.summary()
model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])
```


Question 7:

Fit the model

Solution:

X = model.fit(sequences_matrix,Y_train,batch_size=128,epochs=5,validation_split=0.2) X

Question 8:

Save the model

Solution:

model.save

Question 9:

Test the model

Solution:

```
test_sequences = tok.texts_to_sequences(X_test)
test_sequences_matrix = utils.pad_sequences(test_sequences,maxlen=max_len)
accr = model.evaluate(test_sequences_matrix,Y_test)

I = accr[0]
a = accr[1]
print('Test set\n Loss: {:0.3f}\n Accuracy: {:0.3f}'.format(I,a))
```

```
+ Code + Text
                             D X
≡ Files
     B B B
Q.
                                     [19] model.mave
     DI -
                                           chound method Model.save of ckeras.engire.sequential.Sequential object at 0x7f2643a8x750>>
(x)
   + m sample_data
      archive.zip
                                       Test the model
      para cay
                                     [20] test_sequences = tok.texts_to_sequences(X_test)
                                           test_sequences_matrix = utils.pad_sequences(test_sequences,maxlen-max_len)
                                     [21] sccr = model.evaluate(test_sequences_matrix,Y_test)
                                           27/27 [-----
                                                            0 1 - accr[0]
                                           print('Test set\n Loss: {:0.3f}\n Accuracy: {:0.3f}'.formst(1,e))
                                           Test set
Loss: 0.881
Accuracy: 0.980
63
```