Portfolio

Roshan Sathyanarayana Shenoy

Agenda

Roshan Sathyanarayana Shenoy

Masters Student bei Technische Universität Kaiserslautern

<u>Bildungsweg</u>

Seit 10/19

Masters in Nutzfahrzeugtechnik, Vorläufige Noten: 2,1

Vertiefung:

Intelligente Systeme

Relevante Kursen:

2D Bildverarbeitung, Grundlagen des Software Engineering, Machine Learning I: Foundations, 3D Computer Vision

09/11 - 07/15

Bachelors in Maschinenbau, Deutsche Äquivalente Noten: 1,5 Relevante Kursen:

Engineering Mathematics, Computer Concepts and C Programming, Fahrzeugtechnik, Regelungstechnik **Bachelorarbeit**:

Effect of Boron Nitride on Mechanical, Friction and Wear Behaviour of Polyaryletherketone Composites.

- Deutschland Stipendium 2019-20. ₽
- Patent zum Thema, Replacement of Femoral Metal Stem in Total Hip Arthroplasty with a Novel Composite Material beantragt (Patentanmeldungs-nummer: 5807/CHE/2015).
- Ein Forschungsbericht über "Optimization of wear behaviour of boron nitride filled polyaryletherketone composites by Taguchi approach" wurde am 31. Mai 2019 in Material Research Express veröffentlicht.

Praktikum (09/21 – 05/21) bei Continental ADC GmbH

1. Test Automation Framework Entwicklung

RTS Blockschaltbild

Anechoic Chamber

Test Exekution und Evaluation Flow Diagramm

Praktikum (09/21 – 05/21) bei Continental ADC GmbH

2. Kontrollierung von Verschiedene Steuergeräte

Drehmotoren

Datenerfassungssysteme

Praktikum (09/21 – 05/21) bei Continental ADC GmbH

3. Integrierung von EURO NCAP Test Szenarian

Parallel Fahren

Cross Moving Fahren

Cut-in Fahren

Kurve Fahren

- Python Bibliotheken: PyQt, Pyserial, ctypes, pandas, numpy und matplotlib
- MATLAB
- CANoe, Esys

Akademische Projekte

<u>Projekt</u>

10/20 - 04/21

Environment perception, mapping and motion planning for Autonomous mobile robots

- Recherchierte der Verwendung von Dense-Objektdeskriptoren zur Erkennung von 1-D-Objekten für die Roboternavigation.
- Bewegungsplannung durch A star und sample based (Rapidly-exploring Random Tree) algorithmen.
- Simultaneous Lokalizierung und Mapping (SLAM) für die Schätzung von Roboterposition und Umgebung.

<u>Aufgaben</u>

Tools Used

- Detektion von 1D objekte wie kabeln zur roboter navigation über ein unbekanntes Terrain.
- Detektion von Kannten, Ecke und Topgraphie von objekt
- Python Bibliotheken: pytorch, pandas, numpy and matplotlib

<u>Images</u>

Dense Descriptor generation pipeline

Gelernte Deskriptor Korrespondenz

<u>Projekt</u>

10/19 - 09/20

A Comparative Study: Sensor Fusion of LIDAR and RADAR using Kalman Filter and Extended Kalman Filter

- untersuchte die Parameter, die die Auswahl von LIDARs und RADARs beeinflussen.
- Modelierung von Kalman Filter und Erweiterte Filter für abstand and geschwindigkeit schätzung.
- Vorhersage vergleich von Kalman Filter and Erweiterte Kalman Filter mit dem aktuelle ground truth werten.

<u>Hearausforder</u> <u>ungen</u>

Toolkette

<u>Images</u>

- Problem bei der Umstellung von polaren in kartesische Koordinaten für RADAR.
- Python Bibliotheken: pandas, numpy und matplotlib

Kalman Filter Working Flowchart

Application of Kalman Filter on (left) and Extended Kalman Filter (Right) on RADAR and LiDAR

Kursen

Machine Learning 1: Foundations

Projekt

04/21 - 09/21

Programmierung Übungen

- Übung 1: Linear Support Vector Machine Reference implementation und Nearest Centroid Classifier.
- Übung 2: Gradient Descent und Linear Support Vector Machine Implementation.
- Übung 3: Multi Class und Kernel SVM Implementation.
- Übung 4: Artificial Neural Networks (LeNet-5 Architecture und ANN). *∂*
- Übung 5: K-Means und Dbscan clustering implementation. ∂

Python Bibliotheken: scikit learn, pytorch, pandas, numpy, os, sys und matplotlib

<u>Toolkette</u>

Ergebnisse

Gradient Descent

Multi Class SVM

Neural Network Classifier

2D Bildverarbeitung

<u>Projekt</u>

04/21 - 09/21

Programmierung Übungen

- 🕨 Übung 1: Template Matching, Image smoothening, Image Noises, Fourier Transform, Integral Histogram. 🔗
- Übung 2: Canny Edge, Laplacian und Harris Point detector.
- Übung 3: Lucas Kanade Optical Flow. ∂

<u>Toolkette</u>

Ergebnissen

Python Bibliotheken: OpenCV, numpy, os und matplotlib

Original Image

Template Matching

Image Noise

Kante und Ecke Detektoren

3D Computer Vision

<u>Projekt</u>

10/20 - 03/21

Programmierung Übungen

- Übung 1: Kamera Kalibrierung. ∂
- Übung 2: Relativ Drehung und Pose Einschätzung vom Homography. 🔗
- Übung 3: Feature Matching und Struktur Rekonstruktion. 🔗

<u>Toolkette</u>

Python Bibliotheken: OpenCV, scipy, numpy, os und matplotlib

<u>Ergebnissen</u>

Kamera Kalibrierung

Epilines und Feature Matches

Sonstige Projekte

Project Name Radar Ta

Radar Target Generation and Detection

<u>Duration</u>

May 2020 - May 2020

<u>Objective</u>

The aim of the project was to track multiple cars on a highway using Lidar and Radar

<u>Highlights</u>

- ☐ Developed a radar target generation and detection system by configuring the Frequency Modulated Continuous Wave (FMCW) radar waveform.
- ☐ Implemented Range/Doppler Fast Fourier Transform (FFT) and 2D Constant False Alarm Rate (CFAR) techniques for detecting position and velocity using MATLAB.

Software used

☐ MATLAB

<u>Images</u>

The 1st FFT output for the target located at 110 m

2D FFT output - Range Doppler Map

The output of the 2D CFAR process

Sample stream of unprocessed point cloud data

Streaming von processed punktwolken daten

Project Name Duration <u>Objective</u> <u>Highlights</u>

Unscented Kalman Filter Project

May 2020 - May 2020

The aim of the project was to track multiple cars on a highway using Lidar and Radar

☐ Each vehicle was tracked using a Constant Turn Rate Velocity motion model

- ☐ Used unscented transformation based on sigma points to approximate the mean and covariance for the real predicted distribution
- Predicted the position and velocity for the vehicles using Lidar and Radar measurements
- ☐ Checked if the RMS values for the position and velocity were below the threshold

Software used

<u>Images</u>

□ C++

Accuracy - RMSE: 12.465948 3.295366 4.928666 0.608929 4.27

Tracking using Unscented Kalman Filter