

Índice

- 1. Introducción
- 2. Trayectoria de impulsos instantáneos
- 3. Trayectoria de impulsos finitos
- 4. Eclipses y contactos
- 5. Evolución de la altura y traza
- 6. Conclusiones

Introducción

Transferencia interplanetaria entre la Tierra y Júpiter

ightharpoonup Órbita de aparcamiento: h_p =7300 km, $i=55^\circ$

 \implies Órbita de llegada: $i = 50^{\circ}$

⇒ Se valorarán 6 opciones para la llegada a Júpiter:

Excentricidad

 ⇒
 Fly-by

 \Rightarrow e = 0.1

 \Rightarrow e = 0.6

Altura

 $\Rightarrow h_p = 600 \ km$

 $\Rightarrow h_p = 1500 \, km$

→ Ventana de lanzamiento

13 de diciembre de 2027

21 de octubre de 2031

Introducción

→ Procedimiento:

Impulsos instantáneos

- ➡ Trayectoria heliocéntrica desde el centro de la Tierra hasta la SOI de Júpiter
- ⇒ Diseño de la hipérbola de salida
- Diseño de la trayectoria heliocéntrica desde la hipérbola de salida
- Diseño de la hipérbola de llegada y maniobra de frenado

Impulsos finitos

- Maniobra de salida
- □ Transferencia heliocéntrica

Trayectoria de Impulsos Instantáneos

Definición de la hipérbola de salida

Primera aproximación: Trayectoria heliocéntrica, r=0 y v=0 relativos a la Tierra

$$V_{\infty}$$
 \longrightarrow Familia de hipérbolas (α, δ, C_3)

Definiendo R_n = radio de la órbita de aparcamiento \longrightarrow Hipérbola de salida

Conocida la hipérbola de salida → ΔV necesario para la transferencia desde la órbita de aparcamiento a la hipérbola de salida:

$$\Delta V_{HM} = \sqrt{\mu_{earth}(\frac{2}{R_p} - \frac{1}{a_h})} - \sqrt{\frac{\mu_{earth}}{R_p}} = 6.351 \frac{km}{s}$$

Se hace coincidir el RAAN y AOP de la hipérbola de salida con la órbita de aparcamiento

Definición de la hipérbola de salida 🖏

Transferencia heliocéntrica 况

Propagación hasta SOI de la Tierra

Propagador "Near Earth"

Propagación hasta TOF/4

Propagador "Deep space"

→ Maniobra de corrección

$$\Delta V_{corr}$$

Target | Hipérbola de llegada

$$ightharpoonup V_{\infty,Jup}$$
 , $i=50^{\circ}$ (B_T,B_R)

 $ightharpoonup R_p$, inclinación órbita de llegada

Hipérbola de llegada

Propagación hasta SOI de Júpiter

Propagador "Deep space"

 Propagación hasta R_p de la hipérbola de llegada

Propagador "Near Jupiter"

Órbita alrededor de Júpiter

► Maniobra de frenado

Target

 R_p , i, e de la órbita final

Estimación de $M_{p,i}$ — Estimación de $t_{b,i}$

Trayectoria de Impulsos Finitos

Maniobra de salida

Concepto

 $R_p = 7300 \text{ km} \quad \omega = 251.158 \text{deg}$

i = 50 deg $\Omega = 168.569 deg$

v = 0 deg

Para esta maniobra se hace uso del motor de inyección.

Masas consumidas en las maniobra de salida

GMAT

Maniobra de corrección 🎾

Concepto

Propagador "Deep space"

Para esta maniobra se hace uso del motor de corrección.

Tiempos necesarios en las maniobras de

Maniobra de frenado 🎉

Masas consumidas en las maniobras de frenado

Tiempos en las maniobras de frenado

- \Rightarrow Órbita e=0,1 \rightarrow no se consigue llegar con la M_p estimada
 - Requiere **optimización** del inventario de masas

(1) Órbita final con $h_p=1500\ km$ y ${
m e}=0.1$

(2) Órbita final con $h_p = 1500 \ km$ y e = 0,6

(3) Órbita final con $h_p=1500\ km$ y fly-by

Conclusiones

- ⇒ Gran ahorro de propulsante con maniobra fly-by († carga de pago)
- - Gran diferencia de masas para las distintas excentricidades
- Mejor opción: alta excentricidad y baja altura de periapsis
 - Mayor velocidad de paso por el periapsis

Eclipses y contactos

Eclipses

Eclipses con Júpiter:

- Solo las órbitas con baja excentricidad tienen eclipses
- Se alargan con el tiempo

Es de esperar que sigan creciendo hasta un máximo a lo largo del año jupiteriano

Eclipses -

Contactos A

Contactos con Montegancedo

Latitud: 40.406361°

Longitud: 356.167972°

Las órbitas de menor exentricidad tienen menos tiempo de contacto pero más frecuencia

Contactos A

Evolución de la altura y traza

Evolución de la altura 🤝

Altura de perigeo: 600 km

Excentricidad 0.1

Excentricidad 0.6

Fly-by

Evolución de la altura 🤝

Altura de perigeo: 1500 km

Excentricidad 0.1

Excentricidad 0.6

Fly-by

Altura de perigeo: 600 km

Excentricidad: 0.1

Altura de perigeo: 600 km

Excentricidad: 0.6

Altura de perigeo: 600 km Fly-by

Altura de perigeo: 1500 km

Excentricidad: 0.1

Altura de perigeo: 1500 km

Excentricidad: 0.6

Altura de perigeo: 1500 km Fly-by

Conclusiones

Impulsos instantáneos

Impulsos finitos

