姓名

重庆大学《Multivariable Calculus》课程

A卷 B卷

2017 — 2018 学年 第 1 学期

开课学院: <u>数统学院</u> 课程号: <u>MATH20083</u> 考试日期: <u>2017 12 15</u> 考试方式: ① 开卷 ① 闭卷 ① 其他 考试时间: <u>120</u> 分钟

题 号	_	11	111	凹	五	六	七	八	九	+	总分
得 分											

考试提示

1.严禁随身携带通讯工具等电子设备参加考试;

2.考试作弊,留校察看,毕业当年不授学位;请人代考、 替他人考试、两次及以上作弊等,属严重作弊,开除学籍。

—, (15pts.) Fill in the blanks with correct answers.

- 1. The curvature of the parabola $y=x^2$ at (0,0) is _____.
- 2. The area of the surface $\begin{cases} x^2 + y^2 = 4 \\ 0 < z < 1 \end{cases}$ is _____.
- 3. $\iint_D x dA =$ _____, where D is the region in the first quadrant that lies between the circles $x^2 + y^2 = 4$ and $x^2 + y^2 = 2x$.
- 4. $\int_C \nabla f \cdot d\vec{r} =$ _____, where C is a simple closed path and f is a smooth function with 2 variables.
- 5. Curl \vec{F} =_____, where $\vec{F}(x,y,z) = xz\vec{\imath} + xyz\vec{\jmath} y^2\vec{k}$.

- 1. If $\operatorname{curl} \vec{F} = 0$ for a smooth 3-dimensional vector field \vec{F} , then it must be conservative. ()
- 2. The two mixed second order partial derivatives for z=f(x,y) must be equal. ()
- 3. Suppose D is a 2-dimensional simple bounded plane region, then $\iint_{D} 1 dA = \int_{\partial D} x dy = -\int_{\partial D} y dx. \quad ()$
- 4. If the two partial derivatives f_x and f_y at (x_0, y_0) exist, then f(x, y) must be continuous at this point. ()
- 5. Given two vectors $\alpha=(a_1,\ldots,a_n), \beta=(b_1,\ldots,b_n)$, then they are orthogonal if and only if $\sum_{i=1}^n a_i b_i=0$.

三、(10pts.)

Suppose
$$f(x, y) = \begin{cases} (x^2 + y^2)\cos\frac{1}{\sqrt{x^2 + y^2}} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases}$$

1) Is f(x, y) continuous at (0, 0)?

2) Find $f_x(0,0)$ and $f_y(0,0)$

3) Is f(x, y) differentiable at (0, 0)?

四、(10pts.) 1) Assume $f(x, y, z) = \sqrt[z]{\frac{x}{y}}$, find the total differential of f at (1, 1, 1)

2) $F(x, y, z) = x^3 + y^3 + z^3 + 6xyz - 1 = 0$ defines implicitly a function z = f(x, y), find $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$.

五、(10pts.) Suppose $f(x,y)=(y+\frac{x^3}{3})e^{x+y}$, find the maximal and minimal values of f(x,y).

 \overrightarrow{F} , (10pts.) Use the Divergence theorem to evaluate $\iint_S \overrightarrow{F} \cdot d\overrightarrow{S}$, where $\overrightarrow{F}(x,y,z) = 3xy^2\overrightarrow{i} + (xe^z)\overrightarrow{j} + z^3\overrightarrow{k}$, and S is the surface of the region bounded by $y^2 + z^2 = 1$ and x=-1, x=2.

七、(30pts.) Suppose $\vec{F}(x,y) = \frac{-y}{x^2+y^2}\vec{i} + \frac{x}{x^2+y^2}\vec{j} = P\vec{i} + Q\vec{j}$.

1) (5pts.) Find the domain D of this vector field, and show that $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ for all points in the domain D of this vector field.

2) (5pts.) Calculate $\int_C \vec{F} \cdot d\vec{r}$, where C is any positive oriented simple closed path which doesn't enclose the origin.

3) (8pts.) Calculate $\int_C \vec{F} \cdot d\vec{r}$, where C is any positive oriented simple closed path which enclose the origin.

4)(7pts.) Prove that $\int_{\mathcal{C}} \vec{F} \cdot d\vec{r}$ is not independent of paths in the domain D by showing that this line integral differs along two different paths in D.

5) (5pts.) Is $\vec{F}(x,y)$ conservative on D? On what kind of regions is $\vec{F}(x,y)$ conservative?