

Floquet theory

Sigmund Kohler

Instituto de Ciencia de Materiales de Madrid, CSIC

- I. Schrödinger equation
- II. Quantum dissipation
- III. Application: Landau-Zener-Stückelberg-Majorana interference
- IV. Miscellaneous: symmetries, time-dep. Liouvillians, bichromatric, ...

https://sigmundkohler.github.io/download/FloquetTutorial.pdf

■ Time evolution of an eigenstate:

$$|\psi(t)\rangle = e^{-iE_nt}|\phi_n\rangle$$

Notation:

 ψ : solution of Schrödinger equation

 ϕ : other state vector, e.g., eigenstate

■ energy ↔ phase

for (periodically) time-dependent system ?

Adiabatic time-dependence — Berry phase

Spin in magnetic field B(t) = B(t + T):

$$H(t) = \frac{1}{2}\vec{B}(t)\cdot\vec{\sigma}$$

Spin in magnetic field B(t) = B(t + T):

$$H(t) = \frac{1}{2}\vec{B}(t)\cdot\vec{\sigma}$$

Quantum dynamics for $\dot{B} \ll B^2$:

$$|\psi(t)\rangle \propto |\phi_n(t)\rangle$$

state follows the eigenstate

adiabatically

 $\rightarrow |\psi(t)\rangle$ determined up to phase factor

After one period: $|\psi(\mathcal{T})
angle=rac{{
m e}^{ioldsymbol{arphi}}|\psi(0)
angle$

$$\varphi = -\int_0^T dt \, E_n(t) + \gamma_{\mathcal{C}}$$

- lacktriangle dynamical phase \leftrightarrow mean energy
- Berry phase γ_C
 - depends only on closed curve C in parameter space

M. Berry, Proc. Roy. Soc. London, Ser. A 392, 45 (1984)

After one period: $|\psi(\mathit{T})
angle = e^{iarphi} |\psi(0)
angle$

$$\varphi = -\int_0^T dt \, E_n(t) + \gamma_C$$

- dynamical phase ↔ mean energy
- lacksquare Berry phase $\gamma_{\mathcal{C}}$
 - ullet depends only on closed curve ${\mathcal C}$ in parameter space

M. Berry, Proc. Roy. Soc. London, Ser. A 392, 45 (1984)

- Assumptions:
 - $\vec{B}(t)$ changes adiabatically slowly
 - **2** initial state: eigenstate $|\phi_n(0)\rangle$

.

Different perspective:

State vector undergoes periodic time-evolution

- $|\psi(T)\rangle = e^{i\varphi}|\psi(0)\rangle$
- lacksquare dynamics $|\psi(t)
 angle$ induced by some Hamiltonian H(t)

Remarks:

- no adiabatic condition
- lacksquare $|\psi(t)
 angle$ need not be an eigenstate of H(t)
- \blacksquare H(t) is not unique
- only condition: cyclic time-evolution in Hilbert space

$$|\psi(t)\rangle = e^{it(t)}|\phi(t)\rangle, \qquad \phi(t) = \phi(t+T)$$

 \rightarrow Phase acquired during cyclic evolution: $\varphi = f(T) - f(0)$

$$\frac{df}{dt} = -\langle \phi | H | \phi \rangle + \langle \phi | i \frac{d}{dt} | \phi \rangle \quad \Longrightarrow \quad \boxed{\varphi = \gamma_{\rm dyn} + \gamma}$$

→ Phase acquired during cyclic evolution: $\varphi = f(T) - f(0)$

$$rac{df}{dt} = -\langle \phi | H | \phi
angle + \langle \phi | i rac{d}{dt} | \phi
angle \quad \Longrightarrow \quad \boxed{\varphi = \gamma_{
m dyn} + \gamma}$$

Dynamical phase
$$\gamma_{\mathsf{dyn}} = -\int_0^T dt \ \langle \phi(t) | H(t) | \phi(t)
angle$$

- ullet depends on choice of H(t)
- reflects mean energy

 \rightarrow Phase acquired during cyclic evolution: $\varphi = f(T) - f(0)$

$$rac{df}{dt} = -\langle \phi | H | \phi
angle + \langle \phi | i rac{d}{dt} | \phi
angle \quad \Longrightarrow \quad \boxed{arphi = \gamma_{
m dyn} + \gamma}$$

Dynamical phase
$$\gamma_{\mathsf{dyn}} = -\int_0^T dt \ \langle \phi(t) | H(t) | \phi(t)
angle$$

- ullet depends on choice of H(t)
- reflects mean energy

Aharonov-Anandan phase ("non-adiabatic Berry phase")

$$\gamma = \int_0^T dt \; \langle \phi | i rac{d}{dt} | \phi
angle$$

- depends only on trajectory in Hilbert space not in parameter space!
 - adiabatic limit: $\gamma = \gamma_c$

Aharonov & Anandan, PRL 1987

Floquet theory

- Schrödinger equation
 - Geometric phases
 - Time-periodicity, Floquet ansatz, and all that
- 2 Quantum dissipation
 - System-bath model
 - Floquet-Bloch-Redfield formalism
- 3 Application: LZSM Interference
- 4 Miscellaneous
 - Time-periodic Liouvillians
 - Symmetries
 - Bichromatic driving

Time-dependent Schrödinger equation

Goal: propagator U(t, t')

■ Time-independent system: diagonalize Hamiltonian $\rightarrow |\phi_n\rangle$, E_n

$$U(t,t') = U(t-t') = \sum_{n} e^{-iE_n(t-t')} |\phi_n\rangle\langle\phi_n|$$

Goal: propagator U(t, t')

■ Time-independent system: diagonalize Hamiltonian $\rightarrow |\phi_n\rangle$, E_n

$$U(t,t') = U(t-t') = \sum_{n} e^{-iE_n(t-t')} |\phi_n\rangle\langle\phi_n|$$

Driven system:

$$i\frac{d}{dt}|\psi\rangle = H(t)|\psi\rangle$$
 \rightarrow numerical integration

problem 1: time-integration not efficient for long times

problem 2: no information about structure of U

Ω

Goal: propagator U(t, t')

■ Time-independent system: diagonalize Hamiltonian $\rightarrow |\phi_n\rangle$, E_n

$$U(t,t') = U(t-t') = \sum_{n} e^{-iE_n(t-t')} |\phi_n\rangle\langle\phi_n|$$

Driven system:

$$i\frac{d}{dt}|\psi\rangle=H(t)|\psi\rangle$$
 $ightharpoonup$ numerical integration

problem 1: time-integration not efficient for long times problem 2: no information about structure of U

- Solution for H(t) = H(t+T): "Bloch theory in time" of. $H(x)|\phi\rangle = \epsilon|\phi\rangle$ with H(x) = H(x+a)
 - \rightarrow Bloch waves $\phi(x) = e^{iqx} \varphi(x)$, where $\varphi(x)$ is a-periodic

F. Bloch, Z. Phys. A **52**, 555 (1928)

Discrete time translation and Floquet ansatz

- H(t) = H(t + T)
 - $\rightarrow t \rightarrow t + T$ is symmetry operation
 - ightharpoonup solutions of Schrödinger equation obey $|\psi(t+T)\rangle=e^{i\varphi}|\psi(t)\rangle$
- Floquet ansatz

$$|\psi(t)
angle = e^{-i\epsilon t}|\phi(t)
angle = e^{-i\epsilon t}\sum_k e^{-ik\Omega t}|c_k
angle$$

• ϵ quasienergy (cf. quasi momentum)

→ long-time dynamics

• $|\phi(t)\rangle = |\phi(t+T)\rangle$, Floquet state

- → within driving period
- Floquet theorem: H(t) has a complete set of Floquet solutions
- Schrödinger equation $i\partial_t |\psi\rangle = H(t) |\psi\rangle$ yields

$$(H(t)-i\partial_t)|\phi(t)\rangle=\epsilon|\phi(t)\rangle$$

Brillouin zone structure

- $lack |\phi(t)
 angle$ Floquet state with quasienergy ϵ
- $\rightarrow e^{ik\Omega t}|\phi(t)\rangle$ Floquet state with $\epsilon + k\Omega$

proof: insert into $(H-i\partial_t)|\phi
angle=\epsilon|\phi
angle$

Brillouin zone structure

- $|\phi(t)\rangle$ Floquet state with quasienergy ϵ
- $\rightarrow e^{ik\Omega t}|\phi(t)\rangle$ Floquet state with $\epsilon + k\Omega$

proof: insert into
$$(H-i\partial_t)|\phi\rangle=\epsilon|\phi
angle$$

e.g. for two-level system

- all Brillouin zones equivalent, choice arbitrary
- → quasienergies cannot serve for ordering!

■ Physical quantity / observable: mean energy

$$E = rac{1}{T} \int_0^T dt \, \langle \psi(t) | H(t) | \psi(t)
angle = rac{1}{T} \int_0^T dt \, \langle \phi(t) | H(t) | \phi(t)
angle$$

- All equivalent states have the same mean energy [proof: insert $e^{-ik\Omega t}|\phi(t)\rangle$]
- → Floquet states can be ordered by their mean energy

Mean energy

$$\begin{split} E &= \frac{1}{T} \int_0^T dt \ \langle \phi(t) | \big\{ H(t) - i \partial_t + i \partial_t \big\} | \phi(t) \rangle \end{split}$$
 where $(H - i \partial_t) | \phi(t) \rangle = \epsilon | \phi(t) \rangle$
$$E &= \epsilon + \frac{1}{T} \int_0^T dt \ \langle \phi(t) | i \partial_t | \phi(t) \rangle \end{split}$$

Mean energy

$$E = \frac{1}{T} \int_0^T dt \, \langle \phi(t) | \{ H(t) - i\partial_t + i \partial_t \} | \phi(t) \rangle$$

where $(H-i\partial_t)|\phi(t)
angle=\epsilon|\phi(t)
angle$

$$-\epsilon = -E + rac{1}{T} \int_0^T dt \ \langle \phi(t) | i \partial_t | \phi(t)
angle$$

Compare to

$$arphi = \gamma_{\mathsf{dyn}} + \gamma$$

Mean energy

$$E = \frac{1}{T} \int_0^T dt \ \langle \phi(t) | \{ H(t) - i\partial_t + i\partial_t \} | \phi(t) \rangle$$

where $(H-i\partial_t)|\phi(t)
angle=\epsilon|\phi(t)
angle$

$$-\epsilon = -E + rac{1}{T} \int_0^T dt \; \langle \phi(t) | i \partial_t | \phi(t)
angle$$

Compare to

$$arphi = \gamma_{\mathsf{dyn}} + \gamma$$

 $(E - \epsilon)T$ is a geometric phase

Floquet equation as function of Ω and Ωt :

$$\epsilon(\mathbf{\Omega})\phi(\Omega t) = \left[H(\Omega t) - i\mathbf{\Omega}\frac{\partial}{\partial\Omega t}\right]\phi(\Omega t)$$

Floquet equation as function of Ω and Ωt :

$$\epsilon(\Omega)\phi(\Omega t) = \left[H(\Omega t) - i\Omega \frac{\partial}{\partial \Omega t}\right]\phi(\Omega t)$$

Compute derivative $(\partial/\partial\Omega)|_{\Omega t}$ and apply $\int \frac{dt}{T} \, \phi^+$ to obtain

$$\frac{\partial \epsilon}{\partial \Omega} = -\frac{\gamma}{2\pi} = \frac{\epsilon - E}{\Omega} \qquad \Rightarrow \qquad E = \epsilon - \Omega \frac{\partial \epsilon}{\partial \Omega}$$

Floquet equation as function of Ω and Ωt :

$$\epsilon(\mathbf{\Omega})\phi(\Omega t) = \left[H(\Omega t) - i\mathbf{\Omega}\frac{\partial}{\partial \Omega t}\right]\phi(\Omega t)$$

Compute derivative $(\partial/\partial\Omega)|_{\Omega t}$ and apply $\int \frac{dt}{T} \phi^+$ to obtain

$$\frac{\partial \epsilon}{\partial \Omega} = -\frac{\gamma}{2\pi} = \frac{\epsilon - E}{\Omega} \qquad \Rightarrow \qquad E = \epsilon - \Omega \frac{\partial \epsilon}{\partial \Omega}$$

E.g. for
$$\gamma = \gamma_{\rm ad} + \mathcal{O}(\Omega)$$

 $\rightarrow \epsilon = {\rm const} - (\gamma_{\rm ad}/2\pi)\Omega + \ldots \rightarrow E = E_{\rm ad} + \mathcal{O}(\Omega^2)$

Fainshtein, Manakov, Rapoport, J. Phys. B (1978)

Mean energies — two-level system

Driven undetuned two-level system

exact crossings (consequence of a symmetry)

Mean energies — two-level system

]

Driven undetuned two-level system

exact crossings (consequence of a symmetry)

- ... with small detuning
 - quasi energies
 - avoided crossings
 - mean energies
 - exact crossings remain
 - additional crossings
 - → do not follow from any eigenvalue equation

Goal: more formal treatment of $H(t) - i\partial_t$

■ $|\phi(t)\rangle \in \mathcal{R} \otimes \mathcal{T}$ composite Hilbert space / Sambe space Shirley, PR **138**, B979 (1965), Sambe, PRA **7**, 2203 (1973)

 \mathcal{T} : Hilbert space of \mathcal{T} -periodic functions with inner product

$$\langle f|g\rangle = \int_0^T f(t)^* g(t) \frac{dt}{T} = \sum_k f_k^* g_k$$

- extended Dirac notation:
 - $\bullet |\phi(t)\rangle = \langle t|\phi\rangle\rangle$
 - Fourier coefficient $|\phi_{\mathbf{k}}\rangle = \langle \mathbf{k} | \phi \rangle \rangle$

e.g.:
$$|\phi(t)\rangle=\langle t|\phi\rangle\rangle=\sum_{k}\langle t|k\rangle\langle k|\phi\rangle\rangle=\sum_{k}e^{-ik\Omega t}|\phi_{k}\rangle$$

Completeness and Orthogonality

- $H i\partial_t$ is hermitian
- $oldsymbol{
 ightarrow}$ Floquet states $|\phi_{lpha}
 angle$ orthonormal and complete in $\mathcal{R}\otimes\mathcal{T}$

$$\langle\langle\phi_{lpha}^{(k)}|\phi_{eta}^{(k')}
angle
angle=\delta_{lphaeta}\delta_{kk'}$$

? but in \mathcal{R} ?

Completeness and Orthogonality

- $H i\partial_t$ is hermitian
- $oldsymbol{
 ightarrow}$ Floquet states $|\phi_{lpha}
 angle$ orthonormal and complete in $\mathcal{R}\otimes\mathcal{T}$

$$\langle\langle\phi_{\alpha}^{(k)}|\phi_{\beta}^{(k')}\rangle\rangle=\delta_{\alpha\beta}\delta_{kk'}$$

- ? but in \mathcal{R} ?
- Consider $\langle \phi_{\alpha}(t) | \phi_{\beta}(t) \rangle = \sum_{k} \lambda_{k} e^{-ik\Omega t}$ since *T*-periodic with the Fourier coefficient

$$\lambda_k = rac{1}{T} \int_0^T dt \, e^{ik\Omega t} \langle \phi_lpha(t) | \phi_eta(t)
angle = \langle \langle \phi_lpha | \phi_eta^{(k)}
angle
angle = \delta_{lphaeta} \delta_{k,0}$$

→ Floquet states orthogonal at equal times

propagator in terms of Floquet states

$$U(t,t') = \sum_{lpha} |\psi_{lpha}(t)
angle \langle \psi_{lpha}(t')| = \sum_{lpha} e^{-i\epsilon_{lpha}(t-t')} |\phi_{lpha}(t)
angle \langle \phi_{lpha}(t')|$$

- long-time dynamics (depends on t t')
- dynamics within driving period (depends on t and t')

propagator in terms of Floquet states

$$U(t,t') = \sum_{lpha} |\psi_{lpha}(t)
angle \langle \psi_{lpha}(t')| = \sum_{lpha} e^{-i\epsilon_{lpha}(t-t')} |\phi_{lpha}(t)
angle \langle \phi_{lpha}(t')|$$

- long-time dynamics (depends on t t')
- ullet dynamics within driving period (depends on t and t')
- one-period propagator for kicked systems

$$H(t) = H_0 + K \sum_n \delta(t - nT)$$

$$\rightarrow U(T) = e^{-iH_0T}e^{-iK}$$

- ✓ easy to compute
- ✓ provides quasienergies
- only long-time dynamics (stroboscopic)

Computation of Floquet states

Solve eigenvalue problem

$$ig\{ H(t) - i\partial_t ig\} |\phi
angle
angle = \epsilon |\phi
angle
angle$$

Solve eigenvalue problem

$$\{H(t) - i\partial_t\}|\phi\rangle\rangle = \epsilon|\phi\rangle\rangle$$

Straightforward in Fourier representation ("Floquet matrix")

Computation of Floquet states

- **1** direct diagonalization of $H(t) i\partial_t$
 - conceptually simple → first choice
 - increasingly difficult with smaller frequency
 - often more efficient after unitary transformation
- 2 analytical tool: perturbation theory strong driving: $H_1 \cos(\Omega t) i\partial_t$ as zeroth order
- 3 diagonalization of $U(T, 0) \rightarrow e^{-i\epsilon T}, |\phi(0)\rangle$
- matrix-continued fraction (convenient for time-dep. Liouvillians)
- (t, t') formalism (very efficient propagation scheme)

Example I: Coherent destruction of tunneling

- 1 role of quasienergy crossings
- perturbation theory (two-level approximation)

Driven double-well potential $H(t) = H_{DW} + Sx \cos(\Omega t)$

- ? tunnel oscillations influenced by driving
- ? dynamics at quasienergy crossing

Example I: Coherent destruction of tunneling

Occupation $P_{left}(nT)$

far from crossing:

tunnel oscillations

at crossing:

- particle stays in left well
- "coherent destruction of tunneling" by ac field

Grossmann et al., PRL 1991

Analytical understanding → two-level approximation

Driven two-level system

$$H(t) = -\frac{\Delta}{2}\sigma_x + \frac{A}{2}\cos(\Omega t)\sigma_z$$

quasienergy spectrum

Analytical approach for $\Delta \ll \Omega$: high-frequency limit

$$H(t) = -\frac{\Delta}{2}\sigma_x + \frac{A}{2}\cos(\Omega t)\sigma_z$$

■ zeroth order propagator

$$U_{\mathrm{dr}}(t,0) = \exp\left(-\frac{iA}{2\Omega}\sin(\Omega t)\sigma_z\right)$$

■ transformation and rotating-wave approximation (i.e. time-average)

$$H(t) \longrightarrow -\frac{\Delta}{2} U_{\mathrm{dr}}^{\dagger}(t,0) \sigma_{x} U_{\mathrm{dr}}(t,0) \longrightarrow -\frac{\Delta}{2} J_{0}(A/\Omega) \sigma_{x}$$

 \rightarrow tunnel-matrix element renormalized by Bessel function J_0

Bessel function $J_n(x)$: *n*th Fourier coefficient of $e^{-ix\sin(\Omega t)}$

Example I: CDT — perturbation theory

$$H_{\text{eff}} = rac{ ilde{\Delta}}{2} egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}$$

Floquet states

$$\phi_{\pm}(t) = \mathit{U}_{\mathsf{dr}}(t, \mathsf{0}) |\pm
angle$$

quasienergies

$$\epsilon_{\pm}=\pmrac{\Delta}{2}J_{0}(A/\Omega)$$

0.4

Example I: CDT — perturbation theory

$$H_{\text{eff}} = rac{ ilde{\Delta}}{2} egin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Floquet states

$$\phi_{\pm}(t) = \mathit{U}_{\mathsf{dr}}(t,0) |\pm
angle$$

quasienergies

$$\epsilon_{\pm}=\pmrac{\Delta}{2}J_{0}(A/\Omega)$$

lacksquare mean energies $E=\epsilon-\Omega(\partial\epsilon/\partial\Omega)$

$$E_{\pm} = \pm \frac{\Delta}{2} \Big[J_0(A/\Omega) - \frac{A}{\Omega} J_1(A/\Omega) \Big]$$

Bessel function $J_1(x) = \frac{d}{dx}J_0(x)$

Some standard references

- Classic work:
 - Shirley, Phys. Rev. 138, B979 (1965)
 - Sambe, Phys. Rev. A 7, 2203 (1973)
- Reviews:
 - Grifoni, Hänggi, Phys. Rep. 304, 229 (1998)
 - Hänggi, Chap.5 of "Quantum transport and dissipation" (1998)
 http://www.physik.uni-augsburg.de/theo1/hanggi/Papers/Chapter5.pdf
 - Eckardt, Rev. Mod. Phys. 89, 011004 (2017)

Floquet theory

- Schrödinger equation
 - Geometric phases
 - Time-periodicity, Floquet ansatz, and all that
- 2 Quantum dissipation
 - System-bath model
 - Floquet-Bloch-Redfield formalism
- 3 Application: LZSM Interference
- 4 Miscellaneous
 - Time-periodic Liouvillians
 - Symmetries
 - Bichromatic driving

Quantum dissipation and decoherence

Heuristic approach

coupling of qubit to electromagnetic environment → sponaneous decay

$$|\psi
angle \longrightarrow egin{cases} \sigma_-|\psi
angle & ext{decay with probability } lpha \ll 1 \ |\psi
angle + |\delta\psi
angle & ext{no decay, probability } 1-lpha \end{cases}$$

lacksquare normalization requires $|\delta\psi\rangle=rac{lpha}{2}\sigma_+\sigma_-|\psi
angle$

Quantum dissipation and decoherence

Heuristic approach

coupling of qubit to electromagnetic environment → sponaneous decay

$$|\psi
angle \longrightarrow egin{cases} \sigma_-|\psi
angle & ext{decay with probability } lpha \ll 1 \ |\psi
angle + |\delta\psi
angle & ext{no decay, probability } 1-lpha \end{cases}$$

- \blacksquare normalization requires $|\delta\psi\rangle=rac{lpha}{2}\sigma_+\sigma_-|\psi
 angle$
- corresponding density operator

$$\rho \longrightarrow \rho + \frac{\alpha}{2} \Big(2\sigma_{-}\rho\sigma_{+} - \sigma_{+}\sigma_{-}\rho - \rho\sigma_{+}\sigma_{-} \Big)$$

■ add continuous time-evolution → master equation

$$\frac{d}{dt}\rho = -i[H, \rho] + \frac{\gamma}{2} \Big(2\sigma_{-}\rho\sigma_{+} - \sigma_{+}\sigma_{-}\rho - \rho\sigma_{+}\sigma_{-} \Big)$$

Lindblad form

Time evolution must conserve

- lacktriangle hermiticity and trace of ho
- \blacksquare positivity (all eigenvalues of $\rho \geq$ 0)

Time evolution must conserve

- \blacksquare hermiticity and trace of ρ
- lacktriangle positivity (all eigenvalues of $\rho \geq 0$)

Fulfilled by a Markovian master equation iff of "Lindblad form"

$$\frac{d}{dt}\rho = -i[H,\rho] + \sum_{n} \gamma_{n} \Big(2Q_{n}\rho Q_{n}^{\dagger} - Q_{n}^{\dagger}Q_{n}\rho - \rho Q_{n}^{\dagger}Q_{n} \Big)$$

G. Lindblad, Comm. Math. Phys. 48, 119 (1976)

V. Gorini, J. Math. Phys. 17, 821 (1976)

■ Interpretation: incoherent transitions $|\psi\rangle \to Q_n|\psi\rangle$

Lindblad form

Time evolution must conserve

- \blacksquare hermiticity and trace of ρ
- lacktriangle positivity (all eigenvalues of $\rho \geq 0$)

Fulfilled by a Markovian master equation iff of "Lindblad form"

$$rac{d}{dt}
ho = -i[H,
ho] + \sum_{n} \gamma_{n} \Big(2Q_{n}
ho Q_{n}^{\dagger} - Q_{n}^{\dagger}Q_{n}
ho -
ho Q_{n}^{\dagger}Q_{n} \Big)$$

G. Lindblad, Comm. Math. Phys. 48, 119 (1976)

V. Gorini, J. Math. Phys. **17**, 821 (1976)

■ Interpretation: incoherent transitions $|\psi
angle
ightarrow Q_n |\psi
angle$

X Critique

- request for Markovian evolution unphysical
- axiomatic, not based on physical model
- high-temperature limit typically wrong
 i.e. not the Klein-Kramers or the Smoluchowski equation

Caldeira-Leggett model

Magalinskii 1959; Caldeira, Leggett 1981

Coupling of a system to bath of harmonic oscillators

$$H = H_{ ext{system}}(t) + X \sum_{
u} \gamma_{
u} (b^{\dagger}_{
u} + b_{
u}) + \sum_{
u} \omega_{
u} b^{\dagger}_{
u} b_{
u}$$

- → eliminate bath
- → equation of motion for reduced density operator
 - interpretation: bath "measures" system operator X

Total density operator $R \approx \rho \otimes \rho_{\text{bath,eq}}$

$$\dot{R} = -i[H_{\text{total}}, R]$$

2nd order perturbation theory in system-bath coupling

$$\begin{split} \frac{d}{dt}\rho &= -i[H_{\text{sys}},\rho] - i\int_{\mathbf{0}}^{(t-t_0)\to\infty} d\tau \mathcal{A}(\tau)[X,[\tilde{X}(-\tau),\rho(t-\boldsymbol{\tau})]_{+}] \\ &- \int_{\mathbf{0}}^{(t-t_0)\to\infty} d\tau \mathcal{S}(\tau)[X,[\tilde{X}(-\tau),\rho(t-\boldsymbol{\tau})]] \end{split}$$

- lacktriangle Heisenberg operator $ilde{X}(- au) = U(au) \, X \, U^\dagger(au)$
- lacksquare bath correlation functions \mathcal{A}, \mathcal{S}
- non-Markovian
 - short system-bath correlation time: Markov approximation

anti-symmetric correlation function

$$\mathcal{A}(\tau) = -i\langle [\xi(\tau), \xi(0)] \rangle$$

$${\cal A}(\omega)=\pi\sum_{
u}|\gamma_{
u}|^2\delta(\omega-\omega_{
u})\longrightarrow {\it J}(\omega)$$

here: Ohmic with cutoff

$$J(\omega) = 2\pi \alpha \omega e^{-\omega/\omega_{\rm cutoff}}$$

ullet dimensionless dissipation strength lpha

symmetric bath correlation function

$$S(\tau) = \frac{1}{2} \langle [\xi(\tau), \xi(0)]_{+} \rangle$$

$$S(\omega) = J(\omega) \coth\left(\frac{\omega}{2k_{B}T}\right)$$

$$= \begin{cases} 4\pi\alpha k_{B}T & \text{high } k_{B}T \\ 2\pi\alpha\omega & \text{low } k_{B}T \end{cases}$$

symmetric bath correlation function

$$\begin{split} \mathcal{S}(\tau) &= \frac{1}{2} \big\langle [\xi(\tau), \xi(0)]_{+} \big\rangle \\ \mathcal{S}(\omega) &= J(\omega) \coth \left(\frac{\omega}{2k_{B}T} \right) \\ &= \begin{cases} 4\pi \alpha k_{\mathrm{B}} T & \text{high } k_{B}T \\ 2\pi \alpha \omega & \text{low } k_{B}T \end{cases} \end{split}$$

- \blacksquare $S(\omega)$ evaluated at transition frequencies
- → dissipation strength depends on coherent spectrum/dynamics

- Ohmic, short memory times (e.g. for $\gamma < k_{\rm B}T$)
 - → Bloch-Redfield master equation

$$\dot{\rho} = -i[H_{S}, \rho] + i\gamma[X, \{[H_{S}, X], \rho\}] - [X, [Q, \rho]]$$

coherent dynamics dissipation decoherence

coherent dynamics enters via
$$Q = \int_0^\infty d au \, \mathcal{S}(au) \, \tilde{X}(- au)$$

- Ohmic, short memory times (e.g. for $\gamma < k_{\rm B}T$)
 - → Bloch-Redfield master equation

$$\dot{\rho} = -i[H_{S}, \rho] + i\gamma[X, \{[H_{S}, X], \rho\}] - [X, [Q, \rho]]$$

coherent dynamics dissipation decoherence

coherent dynamics enters via
$$Q = \int_0^\infty d au \, \mathcal{S}(au) \, \tilde{X}(- au)$$

- not of Lindblad form
 - positivity might be violated
 - ✓ happens only on unphysically small time scales
- high-temperature limit: Fokker-Planck equation

- Decomposition into energy basis and rotating-wave approximation
- → rate equation for the populations (Pauli master equation)

$$\frac{d}{dt}\rho_{\alpha\alpha} = \sum_{\alpha'} \left[w_{\alpha\leftarrow\alpha'} \, \rho_{\alpha'\alpha'} - w_{\alpha'\leftarrow\alpha} \, \rho_{\alpha\alpha} \right]$$

with the golden-rule rates

$$\mathbf{w}_{\alpha \leftarrow \alpha'} = J(E_{\alpha} - E_{\alpha'}) \left| \langle \phi_{\alpha} | X | \phi_{\alpha'} \rangle \right|^{2} n_{\mathsf{th}} (E_{\alpha} - E_{\alpha'})$$

• notice: $-n_{\text{th}}(-\omega) = n_{\text{th}}(\omega) + 1$

- Decomposition into energy basis and rotating-wave approximation
- → rate equation for the populations (Pauli master equation)

$$\frac{d}{dt}\rho_{\alpha\alpha} = \sum_{\alpha'} \left[w_{\alpha \leftarrow \alpha'} \; \rho_{\alpha'\alpha'} - w_{\alpha' \leftarrow \alpha} \; \rho_{\alpha\alpha} \right]$$

with the golden-rule rates

$$\mathbf{w}_{\alpha \leftarrow \alpha'} = J(E_{\alpha} - E_{\alpha'}) \left| \langle \phi_{\alpha} | X | \phi_{\alpha'} \rangle \right|^{2} n_{\mathsf{th}} (E_{\alpha} - E_{\alpha'})$$

- notice: $-n_{th}(-\omega) = n_{th}(\omega) + 1$
- ✓ fluctuation theorem $\frac{w_{\alpha \leftarrow \alpha'}}{w_{\alpha' \leftarrow \alpha}} = e^{-(E_{\alpha} E_{\alpha'})/k_BT}$
- ✓ Lindblad form
- high-temperature limit typically wrong

full Bloch-Redfield: golden rule for non-diagonal $\rho_{\alpha\beta}$

Driven system → noise term becomes time-dependent

$$\dot{\rho} = \ldots - [X, [Q(t), \rho]], \quad Q(t) = \int_0^\infty d\tau \, \mathcal{S}(\tau) \, \tilde{X}(t-\tau, t)$$

Driven system → noise term becomes time-dependent

$$\dot{\rho} = \ldots - [X, [Q(t), \rho]], \quad Q(t) = \int_0^\infty d\tau \, S(\tau) \, \tilde{X}(t-\tau, t)$$

Central idea:

- **1** adapted basis: Floquet states $|\phi_{\alpha}(t)\rangle \rightarrow$ captures coherent dynamics
- 2 master equation in Floquet basis

$$rac{d}{dt}
ho_{lphaeta}=-i(\epsilon_lpha-\epsilon_eta)
ho_{lphaeta}+\sum_{lpha'eta'}\mathcal{L}_{lphaeta,lpha'eta'}(t)\,
ho_{lpha'eta'}$$

where
$$\mathcal{L}(t) = \mathcal{L}(t+T)$$

moderate rotating-wave approximation: time average $\mathcal{L}(t) \to \bar{\mathcal{L}}$, but keep all $\rho_{\alpha\beta}$

Blümel et al., PRA 1991; SK, Dittrich, Hänggi, PRE 1997

■ Numerical method: compute \mathcal{L} and solve

$$\dot{
ho}_{lphaeta} = -i(\epsilon_{lpha} - \epsilon_{eta})
ho_{lphaeta} + \sum_{lpha'eta'}ar{\mathcal{L}}_{lphaeta,lpha'eta'}\,
ho_{lpha'eta'}$$

- 1 time-independent master equation for driven system
- 2 ac driving captured by choice of basis → efficient
- includes impact of bath on dissipation strength (very relevant for fermionic baths; see Lecture III)
- Analytical tool: find H_{eff} and approx. for $\overline{Q(t)}$
 - → effective time-independent Bloch-Redfield equation

→ full RWA → (Pauli master equation)

$$\frac{d}{dt}\rho_{\alpha\alpha} = \sum_{\alpha'} w_{\alpha \leftarrow \alpha'} \, \rho_{\alpha'\alpha'} - \sum_{\alpha} w_{\alpha' \leftarrow \alpha} \, \rho_{\alpha\alpha}$$

with the golden-rule rates

$$w_{\alpha \leftarrow \alpha'} = \sum_{k} J(\epsilon_{\alpha} - \epsilon_{\alpha'} + k\Omega) \left| \sum_{k'} \langle \phi_{\alpha, k+k'} | X | \phi_{\alpha', k} \rangle \right|^{2} n_{\mathsf{th}}(\epsilon_{\alpha} - \epsilon_{\alpha'} + k\Omega)$$

- sidebands contribute to $w_{\alpha \leftarrow \alpha'}$
 - ... but NOT as independent states!
- no simple relation between forward/backward rates

Dissipation vs. Transport

- Floquet states for central system
- evaluate rates $w_{\alpha \leftarrow \alpha'}$
- → dc current, counting statistics

	Dissipation	Transport
Environment	harmonic oscillators	electron source/drain
Coupling of mode ν	$\mathit{X}(\mathit{a}_{ u}^{\dagger}+\mathit{a}_{ u})$	$c^\dagger {\color{red}c_ u} + {\color{red}c_ u^\dagger} c$
Absorption / tunnel in	$n_{th}(\omega)$	$f(\epsilon-\mu)$
Emission / tunnel out	1 + $n_{th}(\omega)$	$1-f(\epsilon-\mu)$
"Ohmic"	$J(\omega) \propto \omega$	$\Gamma(\omega)={\sf const}$

วล

Floquet theory

- Schrödinger equation
 - Geometric phases
 - Time-periodicity, Floquet ansatz, and all that
- 2 Quantum dissipation
 - System-bath model
 - Floquet-Bloch-Redfield formalism
- 3 Application: LZSM Interference
- 4 Miscellaneous
 - Time-periodic Liouvillians
 - Symmetries
 - Bichromatic driving

AC-driving and Landau-Zener transitions

Quantum system in AC-field, H(t)

non-adiabatic transition probability

$$P_{\rm LZ}=e^{-\pi\Delta^2/2\hbar v}$$

Landau, Zener, Stückelberg, Majorana, 1932

AC-driving and Landau-Zener transitions

Quantum system in AC-field, H(t)

non-adiabatic transition probability

$$P_{\mathsf{LZ}} = e^{-\pi \Delta^2/2\hbar v}$$

Landau, Zener, Stückelberg, Majorana, 1932

- → beam splitter, interference
- → Landau-Zener-(Stückelberg-Majorana) interferometry

$$H(t) = \frac{\Delta}{2}\sigma_x + \frac{g(t)}{2}\sigma_z$$
 $g(t) = \epsilon + A\cos(\Omega t)$

f 1 (avoided) crossing requires $m A > |\epsilon|$

$$H(t) = \frac{\Delta}{2}\sigma_x + \frac{g(t)}{2}\sigma_z$$
 $g(t) = \epsilon + A\cos(\Omega t)$

- 1 (avoided) crossing requires $A>|\epsilon|$
- relative phase between dominant paths

adiabatic: $P_{1.7} \ll 1$

 \rightarrow fringes for $\varphi(T) = 2\pi k$

diabatic:
$$1 - P_{17} \ll 1$$

$$H(t) = \frac{\Delta}{2}\sigma_x + \frac{g(t)}{2}\sigma_z$$
 $g(t) = \epsilon + A\cos(\Omega t)$

- 1 (avoided) crossing requires $A>|\epsilon|$
- relative phase between dominant paths

adiabatic: $P_{1.7} \ll 1$

 \rightarrow fringes for $\varphi(T) = 2\pi k$

diabatic: $1 - P_{LZ} \ll 1$

$$\epsilon = k\Omega$$
 "k-photon resonance"

Patterns for two-level systems

Patterns for two-level systems

E.g. excitation probabilities of a TLS:

DC current:

$$I(t) = e_0 \Gamma_R \langle n_R(t) \rangle \rightarrow \overline{\langle n_R(t) \rangle}^T$$

Forster et al., PRL 2014

Measurement II: Cavity transmission

Dispersive frame: effective cavity frequency

$$\omega_0 \longrightarrow \omega_0 + rac{g^2}{\epsilon_{
m qb} - \omega_0} rac{\sigma_{_{_{m Z}}}}{\epsilon_{
m qb}}$$

Theory for readout of driven system?

Koski et al., PRL 2018

Qubit-cavity Hamiltonian

$$H = H_{\mathsf{sys}}(t) + gZ(a^{\dagger} + a) + \omega_0 a^{\dagger} a$$

- Backaction: cavity → qubit → cavity
- Cavity equation (input/output formalism)

$$\frac{d}{dt}a = -i\omega_0 a - \frac{\kappa}{2}a - \sum_{\nu=1,2} \sqrt{\kappa_\nu} a_{\text{in},\nu} - ig\mathbf{Z}$$

• (non equilibrium) Kubo formula $Z(t) = g \int dt' \chi(t-t') a(t')$ with the response function (may depend on the initial state!)

$$\chi(t) = -i\langle [Z(t), Z] \rangle \theta(t - t')$$

$$\rightarrow -i\omega a = -i\left(\omega_0 + g^2\chi(\omega)\right)a - \frac{\kappa}{2}a - \sum_{\nu=1,2}\sqrt{\kappa_\nu}a_{\text{in},\nu}$$

→ measured quantity: (non-equilibrium) susceptibility

Response of periodically driven system

$$\chi(t,t') = -i\langle [Z(t),Z(t')] \rangle_{\mathsf{non-eq}} = \chi(t+T,t'+T)$$

such that

$$\chi(t, t - \tau) = \sum_{k} e^{-ik\Omega t} \int d\omega \, e^{-i\omega\tau} \chi^{(k)}(\omega)$$

Response of periodically driven system

$$\chi(t,t') = -i\langle [Z(t),Z(t')] \rangle_{\mathsf{non-eq}} = \chi(t+T,t'+T)$$

such that

$$\chi(t, t - \tau) = \sum_{k} e^{-ik\Omega t} \int d\omega \, e^{-i\omega\tau} \chi^{(k)}(\omega)$$

- resonant cavity driving, $\omega = \omega_0$
- \blacksquare response Z(t) acquires sidebands
- good cavity limit, $\kappa \ll \omega_0$, Ω

Relevant component:

$$\chi^{(0)}(\omega_0) = \sum_{\beta,\alpha,k} \frac{(p_{\alpha} - p_{\beta})|Z_{\beta\alpha,k}|^2}{\epsilon_{\alpha} - \epsilon_{\beta} + \omega_0 + k\Omega + i\gamma/2}$$

- Floquet theory \rightarrow quasi-energies ϵ_{α}
- Floquet-Bloch-Redfield → populations p_{α}

Relevant component:

$$\chi^{(0)}(\omega_0) = \sum_{\beta,\alpha,k} \frac{(p_\alpha - p_\beta)|Z_{\beta\alpha,k}|^2}{\epsilon_\alpha - \epsilon_\beta + \omega_0 + k\Omega + i\gamma/2}$$

- Floquet theory \rightarrow quasi-energies ϵ_{α}
- Floquet-Bloch-Redfield extstyle populations p_{lpha}

Resonance conditions

cavity response:

cf. population:

$$\Delta \epsilon = \omega_0 + k\Omega$$

$$\Delta \epsilon = k\Omega$$

e.g. Ivakhnenko et al., Phys.Rep. 2023

→ Agree only for low-frequency oscillator!

AΩ

Chen et al., Phys. Rev. B 103, 205428 (2021)

Motivation: Holes in interference fringes

Experiment (Cao & Guo, Hefei)

- holes in LZSM pattern
- GaAs DQD → two-level sys.

Motivation: Holes in interference fringes

Experiment (Cao & Guo, Hefei)

- holes in LZSM pattern
- GaAs DQD → two-level sys.

Recap: susceptibility (two-level system)

$$\chi^{(0)}(\omega_0) = (\rho_0 - \rho_1) \sum_k \frac{|Z_{10,k}|^2}{\epsilon_1 - \epsilon_0 + \omega_0 + k\Omega + i\gamma/2}$$

response determined by

- resonance condition for cavity signal
- Floquet state population

- competing resonance conditions
- holes in fringes when $p_0 \approx p_1 \approx 1/2$
- → cavity response provides information about Floquet state population

Mean energy state vs. Floquet-Gibbs state

Steady state of driven dissipative quantum system

quasi energy:
$$p_{lpha} \propto e^{-\epsilon_{lpha}/kT}$$

mean energy:
$$p_{lpha} \propto e^{-E_{lpha}/kT}$$

Steady state of driven dissipative quantum system

quasi energy: $p_{lpha} \propto e^{-\epsilon_{lpha}/kT}$

Floquet-Gibbs state vs. anti Floquet-Gibbs

mean energy: $ho_{lpha} \propto e^{-E_{lpha}/kT}$

The present case!

Floquet state population

- \blacksquare p_{α} determined by E_{α}
- → holes in reflection consistent with mean-energy state
- → bath coupling (predominantly) via σ_x

Floquet theory

- Schrödinger equation
 - Geometric phases
 - Time-periodicity, Floquet ansatz, and all that
- 2 Quantum dissipation
 - System-bath model
 - Floquet-Bloch-Redfield formalism
- 3 Application: LZSM Interference
- 4 Miscellaneous
 - Time-periodic Liouvillians
 - Symmetries
 - Bichromatic driving

Periodically time-dependent Liouvillians

Master equation of type

$$\frac{d}{dt}P = L(t)P$$

- Floquet-Bloch-Redfield beyond moderate RWA
- time-dependent system with Lindblad dissipator $\dot{\rho} = -i[H(t), \rho] + \gamma(2a^{\dagger}\rho a a^{\dagger}a\rho \rho a^{\dagger}a)$
 - very weak dissipation
 - transport problem with large bias

- → long-time solution T-periodic
- → Floquet ansatz with "quasienergy" zero

$$P(t) = \sum_{k} e^{-ik\Omega t} p_{k}$$

$$\frac{d}{dt}P = L(t)P$$
 with

$$L(t) = L_0 + 2L_1 \cos(\Omega t)$$

→ kernel of tridiagonal Floquet matrix

$$L_{0} + 2L_{1}\cos(\Omega t) - \partial_{t} \leftrightarrow \begin{pmatrix} \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \cdots & L_{0} + 2i\Omega & L_{1} & 0 & 0 & 0 & \cdots \\ \cdots & L_{1} & L_{0} + i\Omega & L_{1} & 0 & 0 & \cdots \\ \cdots & 0 & L_{1} & L_{0} & L_{1} & 0 & \cdots \\ \cdots & 0 & 0 & L_{1} & L_{0} - i\Omega & L_{1} & \cdots \\ \cdots & 0 & 0 & 0 & L_{1} & L_{0} - 2i\Omega & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Matrix-continued fractions

■ ansatz $P(t) = \sum_k e^{-ik\Omega t} p_k$ yields

$$L_1 p_{k-1} + (L_0 + ik\Omega)p_k + L_1 p_{k+1} = 0$$

■ idea: truncate and iterate $p_{k-1} = -L_1^{-1}\{(L_0 - ik\Omega)p_k + L_1p_{k+1}\}$

Matrix-continued fractions

■ ansatz $P(t) = \sum_k e^{-ik\Omega t} p_k$ yields

$$L_1 p_{k-1} + (L_0 + ik\Omega)p_k + L_1 p_{k+1} = 0$$

■ idea: truncate and iterate $p_{k-1} = -L_1^{-1} \{ (L_0 - ik\Omega)p_k + L_1p_{k+1} \}$ **X** fails, L_1 generally singular

Matrix-continued fractions

■ ansatz $P(t) = \sum_k e^{-ik\Omega t} p_k$ yields

$$L_1 p_{k-1} + (L_0 + ik\Omega)p_k + L_1 p_{k+1} = 0$$

- idea: truncate and iterate $p_{k-1} = -L_1^{-1} \{ (L_0 ik\Omega)p_k + L_1p_{k+1} \}$ **X** fails, L_1 generally singular
- solution: ansatz $p_k = S_k L_1 p_{k+1}$ $(k \ge 0)$ leads to

$$\mathbf{S}_{k} = -\left(L_{0} + ik\Omega + L_{1}\mathbf{S}_{k\pm1}L_{1}\right)^{-1} \longrightarrow \mathbf{S}_{\pm1} \tag{1}$$

$$0 = (L_1 S_{-1} L_1 + L_0 + L_1 S_1 L_1) p_0$$
 (2)

- \rightarrow truncate at $\pm k_0$, iterate (1), and solve (2)
- \rightarrow time-averaged $P(t) = p_0 \rightarrow$ time-averaged expectation values

Risken, "The Fokker-Planck Equation" Appendix of Forster *et al.*, PRB 2015

Symmetries of dipole driving

$$H_{\mathrm{dipole}} \propto x \cos(\Omega t)$$

1 time periodicity $t \longrightarrow t + T$

→ Floquet theory applicable

2 time reversal $t \longrightarrow -t$

- → Floquet states real
- **3** generalized parity $(x, t) \longrightarrow (-x, t + T/2)$
 - → Floquet states even/odd
 - e.g. symmetric potential with dipole driving
- 4 time-reversal parity $(x, t T/4) \longrightarrow (-x, T/4 t)$
 - · combination of the other three
 - relevant for Floquet scattering theory

$$g(t) = \cos(\Omega t) + \eta \cos(\Omega' t + \phi)$$

 Ω' , Ω commensurable vs. incommensurable

 $\rightarrow g(t)$ periodic vs. quasi-periodic

Quantum master equation

$$\frac{d}{dt}\rho = L(t)\rho$$
 with $L(t) = L_0 + L_1 \cos(n\Omega t) + L_1' \cos(n'\Omega t)$

ണ

Quantum master equation

$$\frac{d}{dt}\rho = L(t)\rho$$
 with $L(t) = L_0 + L_1 \cos(n\Omega t) + L_1' \cos(n'\Omega t)$

■ long-time solution periodic, "Floquet solution with eigenvalue 0"

$$\rho(t) = \rho(t + 2\pi/\Omega) = \sum_{k} e^{-ik\Omega t} \rho_{k}$$

- \rightarrow homogeneous set of equations for ρ_k
- $\rightarrow \rho_0$, time-averaged expectation values

cn

 \blacksquare $\frac{d}{dt}\rho = L(t)\rho$ with

$$L(t) = L_0 + L_1 \cos(\Omega t) + L_1' \cos(\omega t)$$

auxiliary angular coordinate $\omega t \longrightarrow \theta$

$$\begin{split} \frac{d}{dt}\mathcal{P} &= \mathcal{L}(t,\theta)\mathcal{P} \\ \mathcal{L}(t,\theta) &= L_0 + L_1\cos(\Omega t) + L_1'\cos(\theta) - \omega\frac{\partial}{\partial \theta} \end{split}$$

- \rightarrow 2 π/Ω -periodic time-dependence
- → solve by usual Floquet tools here: matrix-continued fractions

 \blacksquare $\frac{d}{dt}\rho = L(t)\rho$ with

$$L(t) = L_0 + L_1 \cos(\Omega t) + L_1' \cos(\omega t)$$

auxiliary angular coordinate $\omega t \longrightarrow \theta$

$$egin{aligned} rac{d}{dt}\mathcal{P} &= \mathcal{L}(t, heta)\mathcal{P} \ \\ \mathcal{L}(t, heta) &= L_0 + L_1\cos(\Omega t) + L_1'\cos(heta) - \omegarac{\partial}{\partial heta} \end{aligned}$$

- \rightarrow 2 π/Ω -periodic time-dependence
- → solve by usual Floquet tools here: matrix-continued fractions
 - lacktriangledown connection $ho(t) = \mathcal{P}(t, \theta)\big|_{\theta = \omega t}$

cf. *t-t'* formalism, see Peskin & Moiseyev, J.Chem.Phys. 1993

Summary

- Berry phase and its non-adiabatic generalization
- Floquet theory

 - within driving period: Floquet states
- Floquet-Bloch-Redfield theory
 - Floquet + Bloch-Redfield
 - time-independent master equation
 - stationary state
 - susceptibility
- Various
 - readout
 - transport
 - matrix-continued fractions
 - bichromatic drive

ຂວ

Experiments by

■ Stefan Ludwig (PDI Berlin)

Jason R. Petta (UCLA)

■ Guo-Ping Guo & Gang Cao (Hefei)

■ Mark Buitelaar (UC London)

