Mathematik 1 für Informatik

Kleingruppenübung

Blatt 02

Kampmann/Meyer HS Osnabrück, Fakultät I.u.I.

Erinnern Sie sich an folgende Begriffe, Sachverhalte und Sätze: Relationen, Abbildungen, Äquivalenzrelationen, Ordnungsrelationen, endliche Summen, vollständige Induktion

- 1. Aufgabe: Gegeben sind die Menge $A = \{1, 2, 3, 4, 5, 6\}$ und die Relation $R \subseteq A \times A$ mit $R = \{(1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 3), (4, 5), (5, 3), (5, 6), (6, 6)\}$
 - (a) Ist R reflexiv, symmetrisch, transitiv, antisymmetrisch?
 - (b) Ergänzen Sie R durch passende Elemente $(a_1, a_2) \in A \times A$ so, dass R eine Äquivalenzrelation ist und bestimmen Sie die Äquivalenzklassen zu $\overline{3} = [3]$ und $\overline{6} = [6]$.
- 2. Aufgabe: Gegeben ist die Menge M aller Menschen.
 - (a) Die Relation $F \subseteq M \times M$ ist definiert durch $(a,b) \in F \Leftrightarrow$ a und b gehören zur selben Familie.
 - (b) Die Relation $B \subseteq M \times M$ ist definiert durch $(a, b) \in B \Leftrightarrow$ a ist Bruder von b.
 - (c) Die Relation $A \subseteq M \times M$ ist definiert durch $(a, b) \in A \Leftrightarrow$ a ist so alt wie b.

Welche der angegebenen Relationen ist eine Äquivalenzrelation? (Antwort mit Begründung!). Wie sehen die zugehörigen Äquivalenzklassen aus?

3. Aufgabe: Gegeben sind folgende Mengen $A = \{1, 2, 3, 4, 5\}$, $B = \{a, b, c\}$ und die Relationen $R_1 = \{(1, a); (2, b); (3, c); (4, b); (5, b)\} \subseteq A \times B$,

$$R_2 = \{(a, 1); (a, 2); (a, 3); (a, 4); (a, 5)\} \subseteq B \times A,$$

$$R_3 = \{(1,b); (3,c)\} \subseteq A \times B$$

Wir machen folgende

Definition:

Gegeben sind die (zweistelligen) Relationen $R_1 \subseteq A \times B$ und $R_2 \subseteq B \times C$. Dann ist die Verknüpfung $R_1 \circ R_2 \subseteq A \times C$ definiert durch: $(a, c) \in R_1 \circ R_2 \Leftrightarrow \exists x \in B : (a, x) \in R_1 \wedge (x, c) \in R_2$.

- a) Bilden Sie (falls diese Relationen definiert sind) die Verknüpfungen: $R_4 = R_1 \circ R_2$, $R_5 = R_2 \circ R_1$, $R_6 = R_3 \circ R_2$ und $R_7 = R_2 \circ R_3$
- b) Welche der 7 Relationen ist eine Funktion? (Antwort mit Begründung!).
- 4. Aufgabe: Gegeben ist die Menge $M = \{1, 2, 3, 4, 6, 8, 12, 16, 24, 48\}$. Betrachten Sie die Relation $T = \{(x, y) \in M \times M | x \text{ ist Teiler von y} \}$
 - (a) Untersuchen Sie, ob T eine Äquivalenzrelation oder Ordnungsrelation ist.
 - (b) Begründen Sie, warum T keine Funktion ist.
 - (c) Geben Sie eine Teilmenge \tilde{T} von T an, die eine Funktion ist.
- 5. Aufgabe: (a) Geben Sie die Zahlen $a_i = \frac{1}{i^2 + 1}$. Berechnen Sie folgende Summen $\sum_{i=-2}^{3} a_i$ und $\sum_{i=1}^{4} i \cdot a_i$.
 - (b) Berechnen Sie $\sum_{k=0}^{n} (5k+1)$, $\sum_{k=1}^{n} (2-k)$ und (möglichst geschickt!) $\sum_{i=11}^{100} i$.
 - (c) Berechnen Sie $\sum_{k=0}^{10} (k + 4 \cdot 2^k)$.
 - (d) Schreiben Sie die Summe 101 + 202 + 303 + 404 + ... + 909 + 1010 in Summenschreibweise, also in der Form $\sum_{i=u}^{o} a_i$, und berechnen Sie den Wert der Summe.
 - (e) Berechnen Sie $\sum_{k=1}^{5} (2 \cdot k 1)$ (siehe auch Aufgabe 6 (c)).
- 6. Aufgabe: Beweisen Sie mit vollständiger Induktion:
 - (a) $\forall n \in \mathbb{N} \text{ gilt: } 11|10^{2n} 1.$
 - (b) $\forall n \in \mathbb{N}_0 \text{ gilt: } 11|10^{2n+1} + 1.$
 - (c) $\forall n \in \mathbb{N} \text{ gilt: } \sum_{k=1}^{n} (2 \cdot k 1) = n^2.$
 - (d) $\forall n \in \mathbb{N}, n \ge 4 \text{ gilt: } 2^n \ge n^2.$