画

1) Publication number:

0 649 845 A1

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 94116939.3

(a) Int. CI.⁶: **C07D 307/14**, C07D 405/06, A01N 31/08

② Date of filing: 26.10.94

Priority: 26.10.93 JP 266799/93

Date of publication of application:26.04.95 Bulletin 95/17

Designated Contracting States:
 CH DE FR GB IT LI NL

Applicant: MITSUI TOATSU CHEMICALS, Inc.
 2-5 Kasumigaseki 3-chome
 Chiyoda-Ku
 Tokyo 100 (JP)

(72) Inventor: Kodaka, Kenji 2-15-17, Nagatano, Ohamishirasatomachi Sanbu-gun, Chiba-ken (JP) Inventor: Kinoshita, Katsutoshi 131, Hachimanmae-shataku, 138-1, Machino Mobara-shi, Chiba-ken (JP) Inventor: Wakita, Takeo Miyanodai-ryo, 2142, Tougou Mobara-shi, Chiba-ken (JP) Inventor: Shiraishi, Shirou 5-1B-32, Oyumino, Midori-ku Chiba-shi, Chiba-ken (JP) Inventor: Ohnuma, Kazutomi

Chiba-ken (JP)

Inventor: Yamada, Eiichi

Miyanodai-ryo, 2142, Tougou Mobara-shi, Chiba-ken (JP)

Inventor: Yasui, Naoko

Mutsuno-ryo, 2785-1, Mutsuno Mobara-shi, Chiba-ken (JP)

Inventor: Nakaya, Michihiko

2-11-9, Toubudai Mobara-shi, Chiba-ken (JP)

Inventor: Matsuno, Hirozumi

Miyanodai-ryo, 2142, Tougou Mobara-shi, Chiba-ken (JP)

Inventor: Kawahara, Nobuyuki

Miyanodai-ryo, 2142, Tougou Mobara-shi, Chiba-ken (JP) Inventor: Ebihara

Inventor: Ebihara, Koichi 423, Hirabaru-apaato, 300, Hirabarumachi Ohmuta-shi, Fukuoka-ken (JP)

Representative: Zumstein, Fritz, Dr. et al Dr. F. Zumstein Dipl.-Ing. F. Klingseisen Bräuhausstrasse 4 D-80331 München (DE)

(54) Furanyl insecticide.

2225-1, Tougou

Mobara-shi,

26, Fujimidaini-apaato,

The present invention relates to novel (tetrahydro-3-furanyl)methylamino derivatives of the following formula (1):

$$X_{7}, X_{6}, X_{5}$$

$$O, X_{4}, R_{1}$$

$$X_{1}, X_{2}, X_{3}, CH_{2}-N, C$$

$$C, R_{2}$$

$$C$$

$$C$$

$$C$$

where X₁, X₂, X₃, X₄, X₅, X₆ and X₇ represent each a hydrogen atom or an alkyl group having from 1 to 4 carbon atoms, R1 represents a hydrogen atom, an alkyl group having from 1 to 5 carbon atoms, an alkenyl group having 3 carbon atoms, a benzyl group, an alkoxyalkyl group having from 2 to 4 carbon atoms (in its whole group), an alkyloxycarbonyl group having from 1 to 3 carbon atoms in its alkyloxy portion, a phenoxy carbonyl group, an alkylcarbonyl group having from 1 to 6 carbon atoms in its alkyl portion, an alkenylcarbonyl group having from 2 to 3 carbon atoms in its alkenyl portion, a cycloalkylcarbonyl group having from 3 to 6 carbon atoms in its cycloalkyl portion, a benzoyl group, a benzoyl group substituted by 1 to 3 alkyl group(s) having from 1 to 4 carbon atoms, a benzoyl group substituted by 1 to 3 halogen atom(s), a 2-furanylcarbonyl group or an N,N-dimethylcarbamoyl group; R₂ represents a hydrogen atom, an amino group, a methyl group, an alkylamino group having from 1 to 5 carbon atoms, a di-substituted alkylamino group having from 2 to 5 carbon atoms (in its whole group), a 1-pyrrolidinyl group, an alkenylamino group having 3 carbon atoms, an alkynylamino group having 3 carbon atoms, a methoxyamino group, an alkoxyalkylamino group having from 2 to 4 carbon atoms (in its whole group), a methylthio group, or -N(Y1)Y2 (where Y1 represents an alkyloxycarbonyl group having from 1 to 3 carbon atoms in its alkyloxy portion, a phenoxycarbonyl group, an alkylcarbonyl group having from 1 to 6 carbon atoms in its alkyl portion, an alkenylcarbonyl group having from 2 to 3 carbon atoms in its alkenyl portion, a cycloalkylcarbonyl group having from 3 to 6 carbon atoms in its cycloalkyl group, a benzoyl group, a benzoyl group substituted by 1 to 3 alkyl group(s) having form 1 to 4 carbon atoms, a benzoyl group substituted by 1 to 3 halogen atom(s), a 2-furanylcarbonyl group, a an N,N-dimethylcarbamoyl group, a (tetrahydro-3-furanyl)methyl group or a benzyl group, and Y2 represents a hydrogen atom or an alkyl group having from 1 to 5 carbon atoms); and Z represents = N-NO2, = CH-NO2 or = N-CN, and insecticides containing the derivatives as an effective ingredient.

BACKGROUND OF THE INVENTION

(i) Field of the Invention

The present invention relates to novel (tetrahydro-3-furanyl)methylamine derivatives, insecticides containing the derivatives as an effective ingredient and intermediates thereof.

(ii) Description of the Prior Art

Heretofore, a lot of amine compounds having a nitromethylene group, a nitroimino group or a cyanoimino group have been known (Japanese Patent Laid-Open Nos. 070468/1989, 171/1990, 157308/1991 and 154741/1992, and others). In these publications, there is a description that the amine compounds which contain a heterocyclic group in their molecule show an insecticidal activity. However, when the present inventors synthesized these compounds and examined their insecticidal activity, it was found that not all of the amine derivatives having a heterocyclic group showed insecticidal activity. In other words, compounds showing a noticeable activity among the compounds described in these publications are limited to the amine derivatives having a thiazolylmethyl or pyridylmethyl group as the heterocyclic group, and this fact is described in J. Pesticide Sci. 18 41 (1993) and others. Further, the compounds which are planned to commercialize at present are only the derivatives having a pyridylmethyl group as the heterocyclic group.

SUMMARY OF THE INVENTION

Accordingly, it is an object of the present invention to provide amine derivatives having a nitromethylene group, a nitroimino group or a cyanoimino group, which are low-toxic and show excellent insecticidal activity without having the above-mentioned pyridylmethyl group or thiazolylmethyl group as the heterocyclic group.

The present inventors earnestly investigated so as to solve the above-mentioned problems and, as a result, have found that novel (tetrahydro-3-furanyl)-methylamine derivatives of the formula (1) have an excellent insecticidal activity even in the absence of a pyridylmethyl group or a thiazolylmethyl group in their molecular structure. On the basis of the finding, they have completed the present invention.

According to the present invention, there are provided (tetrahydro-3-furanyl)methylamine derivatives represented by a formula (1):

40

10

20

$$\begin{array}{c} X_7 & X_6 & X_5 \\ O & X_4 & R_1 \\ X_1 & X_2 & CH_2 - N & R_2 \end{array}$$

carbon atoms; R₁ represents a hydrogen atom, an alkyl group having from 1 to 5 carbon atoms, an alkenyl group having 3 carbon atoms, a benzyl group, an alkoxyalkyl group having from 2 to 4 carbon atoms (in its whole group), an alkyloxycarbonyl group having from 1 to 3 carbon atoms in its alkyloxy portion, a phenoxy carbonyl group, an alkylcarbonyl group having from 1 to 6 carbon atoms in its alkyl portion, an alkenylcarbonyl group having from 2 to 3 carbon atoms in its alkenyl portion, a cycloalkylcarbonyl group having from 3 to 6 carbon atoms in its cycloalkyl portion, a benzoyl group, a benzoyl group substituted by 1 to 3 alkyl group(s) having from 1 to 4 carbon atoms, a benzoyl group substituted by 1 to 3 halogen atom(s), a 2-furanylcarbonyl group or an N,N-dimethylcarbamoyl group; R₂ represents a hydrogen atom, an amino group, a methyl group, an alkylamino group having from 1 to 5 carbon atoms, a di-substituted alkylamino group having 3 carbon atoms, an alkynylamino group having 3 carbon atoms, a methoxyamino group, an alkoxyalkylamino group having from 2 to 4 carbon atoms (in its whole group), a methylthio group or -N(Y₁)-

where X₁, X₂, X₃, X₄, X₅, X₆ and X₇ represent each a hydrogen atom or an alkyl group having from 1 to 4

Y₂ (where Y₁ represents an alkyloxycarbonyl group having from 1 to 3 carbon atoms in its alkyloxy portion,

a phenoxycarbonyl group, an alkylcarbonyl group having from 1 to 6 carbon atoms in its alkyl portion, an alkenylcarbonyl group having from 2 to 3 carbon atoms in its alkenyl portion, a cycloalkylcarbonyl group having from 3 to 6 carbon atoms in its cycloalkyl portion, a benzoyl group, a benzoyl group substituted by 1 to 3 alkyl group(s) having from 1 to 4 carbon atoms, a benzoyl group substituted by 1 to 3 halogan atom(s), a 2-furanylcarbonyl group, an N,N-dimethylcarbamoyl group, a (tetrahydro-3-furanyl)methyl group or a benzyl group, and Y_2 represents a hydrogen atom or an alkyl group having from 1 to 5 carbon atoms); and Z represents = N-NO₂, = CH-NO₂ or = N-CN;

insecticides containing the derivatives as an effective ingredient; and intermediates for producing the compounds of the formula

(1) represented by a formula (2):

10

15

20

25

35

55

$$X_{7}$$
 X_{6}
 X_{5}
 X_{4}
 X_{1}
 X_{2}
 X_{3}
 X_{1}
 X_{2}
 X_{3}
 X_{1}
 X_{2}
 X_{3}
 X_{2}
 X_{3}
 X_{1}
 X_{2}
 X_{3}
 X_{3}
 X_{4}
 X_{5}
 X_{1}
 X_{1}
 X_{2}
 X_{3}
 X_{3}
 X_{4}
 X_{5}
 X_{5}
 X_{7}
 X_{1}
 X_{1}
 X_{2}
 X_{3}
 X_{1}
 X_{2}
 X_{3}
 X_{3}
 X_{4}
 X_{1}
 X_{2}
 X_{3}
 X_{3}
 X_{4}
 X_{5}
 X_{7}
 X_{7}
 X_{1}
 X_{2}
 X_{3}
 X_{3}
 X_{4}
 X_{5}
 X_{7}
 X_{7

where X_1 , X_2 , X_3 , X_4 , X_5 , X_6 and X_7 represent each a hydrogen atom or an alkyl group having from 1 to 4 carbon atoms; R_{10} represents an alkyl group having from 1 to 5 carbon atoms or a benzyl group; and R_{11} represents an alkyl group having from 1 to 5 carbon atoms or a benzyl group.

The novel (tetrahydro-3-furanyl)methylamine derivatives of the formula (1) according to the invention are excellent compounds having a high insecticidal power and broad insecticidal spectrum. Further, agricultural chemicals containing the novel (tetrahydro-3-furanyl)-methylamine derivatives of the formula (1) according to the invention have outstanding characteristics as insecticides and hence are useful.

DETAILED DESCRIPTION OF THE INVENTION

Specific examples of the alkyl group for X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , and X_7 in the above formulae (1) and (2) include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, a tert-butyl group, and the like, preferably a methyl group.

Specific examples of the alkyl group for R₁ include a methyl group, an ethyl group, an n-propyl group, an iso-butyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, and the like.

Specific examples of the alkenyl group for R₁ include a 1-propenyl group, a 2-propenyl group, and the like.

Specific examples of the alkoxyalkyl group for R₁ include a methoxymethyl group, an ethoxymethyl group, an iso-propoxymethyl group, a methoxyethyl group, an ethoxyethyl group, and the like.

Specific examples of the alkyloxycarbonyl group for R₁ include a methyloxycarbonyl group, an ethyloxy-carbonyl group, an n-propyloxycarbonyl group, an iso-propyloxycarbonyl group, and the like.

Specific examples of the alkylcarbonyl group for R₁ include a methylcarbonyl group, an ethylcarbonyl group, an n-propylcarbonyl group, an iso-propylcarbonyl group, an n-butylcarbonyl group, an iso-butylcarbonyl group, a sec-butylcarbonyl group, a tert-butylcarbonyl group, an n-pentylcarbonyl group, an n-hexylcarbonyl group, and the like.

Specific examples of the alkenylcarbonyl group for R₁ include a vinylcarbonyl group, a 1-methyl-vinylcarbonyl group, and the like.

Specific examples of the cycloalkylcarbonyl group for R₁ include a cyclopropylcarbonyl group, a cyclobutylcarbonyl group, a cyclopentylcarbonyl group, a cyclohexylcarbonyl group, and the like.

Specific examples of the benzoyl group substituted by alkyl group(s) for R₁ include a 2-methylbenzoyl group, a 3-methylbenzoyl group, a 4-methylbenzoyl group, a 4-tert-butylbenzoyl group, and the like.

Specific examples of the benzoyl group substituted by 1 to 3 halogen atom(s) for R₁ include a 2-chlorobenzoyl group, a 3-chlorobenzoyl group, a 4-chlorobenzoyl group, a 3,4-dichloro-benzoyl group, a 4-fluorobenzoyl group, and the like.

Although R_1 can take various substituents as described above, it is preferably a hydrogen atom, an alkylcarbonyl group having from 1 to 4 carbon atoms or a cyclopropylcarbonyl group.

Specific examples of the alkylamino group for R₂ include a methylamino group, an ethylamino group, an n-propyl-amino group, an iso-propylamino group, an n-butylamino group, an iso-butylamino group, a sec-butylamino group, a tert-butylamino group, an n-pentylamino group, and the like, preferably a methylamino group.

Specific examples of the di-substituted alkylamino group for R₂ include a dimethylamino group, a diethylamino group, an N-methyl-N-ethylamino group, an N-methyl-N-n-propylamino group, an N-methyl-N-n-butylamino group, and the like, preferably a dimethylamino group.

Specific examples of the alkenylamino group for R₂ include a 1-propenylamino group, a 2-propenylamino group, and the like.

Specific examples of the alkynylamino group for R2 include a propargylamino group, and the like.

Specific examples of the alkoxyalkylamino group for R₂ include a methoxymethylamino group, an ethoxymethylamino group, an n-propoxymethylamino group, an iso-propoxymethylamino group, a methoxyethylamino group, and the like.

Specific examples of the alkyloxycarbonyl group denoted by Y_1 for R_2 include a methyloxycarbonyl group, an ethyloxy-carbonyl group, an iso-propyloxy-carbonyl group, and the like

Specific examples of the alkylcarbonyl group denoted by Y_1 for R_2 include a methylcarbonyl group, an ethylcarbonyl group, an n-propylcarbonyl group, an iso-propylcarbonyl group, an n-butylcarbonyl group, an iso-butylcarbonyl group, a sec-butyl-carbonyl group, a tert-butylcarbonyl group, an n-pentylcarbonyl group, and the like, preferably a methylcarbonyl group, an ethylcarbonyl group, an n-propylcarbonyl group, an iso-propylcarbonyl group, an n-butylcarbonyl group, an iso-butylcarbonyl group, a sec-butylcarbonyl group and a tert-butylcarbonyl group.

Specific examples of the alkenylcarbonyl group denoted by Y₁ for R₂ include a vinylcarbonyl group, a 1-methyl-vinylcarbonyl group, and the like.

Specific examples of the cycloalkylcarbonyl group denoted by Y₁ for R₂ include a cyclopropylcarbonyl group, a cyclobutylcarbonyl group, a cyclopentylcarbonyl group, a cyclo-hexylcarbonyl group, and the like, preperably a cyclopropyl-carbonyl group.

Specific examples of the benzoyl group substituted by 1 to 3 alkyl group(s) denoted by Y_1 for R_2 include a 2-methylbenzoyl group, a 3-methylbenzoyl group, a 4-methylbenzoyl group, a 4-tert-butylbenzoyl group, and the like.

Specific examples of the benzoyl group substituted by 1 to 3 halogen atom(s) denoted by Y_1 for R_2 include a 2-chlorobenzoyl group, a 3-chlorobenzoyl group, a 4-chlorobenzoyl group, a 3,4-dichlorobenzoyl group, and the like.

Specific examples of the alkyl group denoted by Y_2 for R_2 include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, and the like, preferably a methyl group.

In the formula (1), compounds in which R₁ and Y₁ are concurrently an alkylcarbonyl group having from 1 to 4 carbon atoms in its alkyl portion or a cyclopropylcarbonyl group are preferred from the viewpoint of both insecticidal activity and production method.

Compounds of the formula (1) may be produced in accordance with any of the following methods (A) through (F) depending of the substituents involved.

Method (A):

The production of compounds of an formula (1A) where R₁ stands for R3 and R2 for NR₅R₅ in the formula (1) is shown by a reaction scheme (I): Reaction Scheme (I):

45

10

15

where X_1 , X_2 , X_3 , X_4 , X_5 , X_6 and X_7 have the same meanings as mentioned above; R_3 represents a hydrogen atom, an alkyl group having from 1 to 5 carbon atoms, an alkenyl group having 3 carbon atoms, a benzyl group or an alkoxyalkyl group having from 2 to 4 carbon atoms; R_4 represents an alkylthio group having from 1 to 5 carbon atoms or a benzylthio group; R_5 represents an alkyl group having from 1 to 5 carbon atoms, an alkenyl group having 3 carbon atoms, an alkoxyalkyl group having from 2 to 4 carbon atoms, a (tetrahydro-3-furanyl)methyl group or a benzyl group; R_6 represents a hydrogen atom or an alkyl group having from 1 to 5 carbon atoms, or R_5 and R_6 are bonded together to form a 1-pyrrolidinyl group; and Z has the same meaning as mentioned above.

Namely, the compounds of the formula (1A) may be produced with ease by reacting a compound of the formula (3) and an amine of the formula (4) in various solvents in the presence of a base or a catalyst as occasion demands.

As the base, it is possible to use an excessive amount of the amine, or a carbonate such as potassium carbonate and sodium carbonate, a phosphate such as tripotassium phosphate, trisodium phosphate, dipotassium hydrogenphosphate and disodium hydrogenphosphate, an acetate such as sodium acetate and potassium acetate, or the like.

As the catalyst, it is possible to use an organic base such as 4-(dimethylamino)pyridine, DBU, triethylamine and diazabicycloundecene, ion exchange resin, silica gel, zeolite, or the like.

The solvent to be used may include not only water but also alcohols such as methanol, ethanol, propanol and butanol, aromatic hydrocarbons such as benzene, toluene and xylene, aliphatic hydrocarbons such as hexane, heptane and petroleum benzine, aprotic polar solvents such as dimethylformamide, dimethylacetamide, dimethylsulfoxide, 1,3-dimethyl-2-imidazolidinone and 1-methyl-2-pyrrolidinone, ethers such as ethyl ether, diisopropyl ether, 1,2-dimethoxyethane, tetrahydrofuran and dioxane, nitriles such as acetonitrile and propionitrile, ketones such as acetone and diisopropyl ketone, and the like.

The reaction temperature and the reaction time can be varied over wide ranges. In general, the reaction temperature is in the range of from -20 to 200 °C, preferably from 0 to 150 °C; and the reaction time is in the range of from 0.01 to 50 hours, preferably from 0.1 to 15 hours.

The compounds of the formula (3) in the reaction scheme (I) can be produced in accordance with, for example, a procedure described in Japanese Patent Laid-Open No. 70468/1989. The compounds of the formulae (4) in the reaction scheme (I) can be produced by methods known in the art.

Method B:

The production of compounds of an formula (1B) where R_1 stands for R_7 and R_2 for R_8 in the formula (1) is shown by a reaction scheme (II):

50

45

25

Reaction Scheme (II):

15

where X_1 , X_2 , X_3 , X_4 , X_5 , X_6 and X_7 have the same meanings as mentioned above; R_7 is a hydrogen atom, an alkyl group having from 1 to 5 carbon atoms, an alkenyl group having 3 arbon atoms, a benzyl group or an alkoxyalkyl group having from 2 to 4 carbon atoms; R_8 represents a hydrogen atom, an amino group, an alkyl group having from 1 to 3 carbon atoms, an alkylamino group having from 1 to 5 carbon atoms, a disubstituted alkylamino group having from 2 to 5 carbon atoms, a 1-pyrrolidinyl group, an alkoxyalkylamino group having 3 carbon atoms, an alkynylamino group having 3 carbon atoms, a methoxyamino group, an alkoxyalkylamino group having from 2 to 4 carbon atoms, an alkylthio group having from 1 to 5 carbon atoms or a benzylthio group; R_9 represents an amino group, an alkoxy group having from 1 to 5 carbon atoms, an alkylthio group having from 1 to 5 carbon atoms, an alkylthio group having from 1 to 5 carbon atoms or an benzylthio group; and Z has the same meaning as described above.

Namely, the compounds of the formula (1B) may be produced with ease and in high yield by reacting a compound of the formula (5) and a compound of the formula (6).

The reaction is effected with ease in various solvents in the presence of a base or a catalyst as occasion demands.

As the base, it is possible to use a carbonate such as potassium carbonate and sodium carbonate, a phosphate such as tripotassium phosphate, trisodium phosphate, dipotassium hydrogenphosphate and disodium hydrogenphosphate, an acetate such as sodium acetate and potassium acetate, or the like.

As the catalyst, it is possible to use an organic base such as 4-(dimethylamino)pyridine, DBU, triethylamine and diazabicycloundecene, a sulfonic acid such as p-toluenesulfonic acid and methanesulfonic acid, a mineral acid such as sulfuric acid, hydrogen chloride and phosphoric acid, ion exchange resin, silica gel, zeolote, or the like.

The solvent to be used may include not only water but also alcohols such as methanol, ethanol, propanol and butanol, aromatic hydrocarbons such as benzene, toluene and xylene, aliphatic hydrocarbons such as hexane, heptane and petroleum benzine, aprotic polar solvents such as dimethylformamide, dimethylacetamide, dimethylsulfoxide, 1,3-dimethyl-2-imidazolidinone and 1-methyl-2-pyrrolidinone, ethers such as ethyl ether, diisopropyl ether, 1,2-dimethoxyethane, tetrahydrofuran and dioxane, nitriles such as acetonitrile and propionitrile, ketones such as acetone and diisopropyl ketone, and the like.

The reaction temperature and the reaction time can be varied over wide ranges. In general, the reaction temperature is in the range of from -20 to 200 °C, preferably from 0 to 150 °C; and the reaction time is in the range of from 0.01 to 50 hours, preferably from 0.1 to 15 hours.

The compounds of a formula (5) in the reaction scheme (II) may be produced in accordance with procedures of a reaction scheme (IIA):

50

Reaction Scheme (IIA):

where X_1 , X_2 , X_3 , X_4 , X_5 , X_6 and X_7 have the same meanings as described above; W_3 represents a halogen atom, a toluenesulfonyloxy group, a methanesulfonyloxy group or a trifluoromethanesulfonyloxy group; and M represents a sodium atom or a potassium atom; R_7 represents a hydrogen atom, an alkyl group having from 1 to 5 carbon atoms, an alkenyl group having 3 carbon atoms, a benzyl group or an alkoxyalkyl group having from 2 to 4 carbon atoms.

Namely, the compounds of the formula (5) can be produced by halogenating (tetrahydro-3-furanyl)-methanol derivatives with a halogenating agent such as thionyl chloride, phosphorus oxychloride, phosphorus tribromide, triphenyl-phosphine/carbon tetrabromide and triphenyl-phosphine/carbon tetrachloride, or sulfonating the derivatives with a sulfonating agent such as tosyl chloride, methanesulfonyl chloride and trifluoromethane-sulfonic acid anhydride, followed by reaction according to known amine synthesis methods such as the Gabriel Synthesis using potassium phthalimide and the Delépine Reaction using hexamethylenetetramine or by reacting with an alkylamine.

The compounds of the formula (6) in the reaction scheme (II) can be produced by a procedure described in Chem. Ber., vol. 100, p591, and others.

Method (C):

40

55

The production of compounds of a formula (1C) where R_1 stands for R_7 , R_2 for SW_1 and Z for $= N-NO_2$ in the formula (1) is shown by a reaction scheme (III). Reaction Scheme (III):

where X_1 , X_2 , X_3 , X_4 , X_5 , X_6 and X_7 have the same meaning as described above; R_7 represents a hydrogen atom, an alkyl group having from 1 to 5 carbon atoms, a benzyl group or an alkoxyalkyl group having from

2 to 4 carbon atoms; W₁ represents an alkyl group having from 1 to 4 carbon atoms; and W₂ represents an imide group.

Namely, the compounds of the formula (1C) can be produced with ease and in high yield by reacting a compound of the formula (5) with a compound of the formula (7).

The reaction is effected with ease in various solvents in the presence of a base as occasion demands.

The base to be used includes alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxide such as magnesium hydroxide and calcium hydroxide, alkali metal hydrides such as sodium hydride and potassium hydride, alkali metal alcoholates such as sodium methylate and sodium ethylate, alkali metal oxides such as sodium oxide, carbonates such as potassium carbonate and sodium carbonate, phosphates such as tripotassium phosphate, trisodium phosphate, dipotassium hydrogenphosphate and disodium hydrogenphosphate, acetates such as sodium acetate and potassium acetate, organic bases such as pyridine, 4-(dimethylamino)pyridine, DBU, triethylamine and diazabicycloundecene, and the like.

The solvents to be used may include not only water but also alcohols such as methanol, ethanol, propanol and butanol, aromatic hydrocarbons such as benzene, toluene and xylene, aliphatic hydrocarbons such as hexane, heptane and petroleum benzine, aprotic polar solvents such as dimethylformamide, dimethylacetamide, dimethylsulfoxide, 1,3-dimethyl-2-imidazolidinone and 1-methyl-2-pyrrolidinone, ethers such as ethyl ether, diisopropyl ether, 1,2-dimethoxyethane, tetrahydrofuran and dioxane, nitriles such as acetonitrile and propionitrile, ketones such as acetone and diisopropyl ketone, and the like.

The reaction temperature and the reaction time can be varied over wide ranges. In general, the reaction temperature is in the range from -30 to 200 °C, preferably from -20 to 150 °C; and the reaction time is in the range of 0.01 to 50 hours, preferably from 0.1 to 15 hours.

The compound of the formula (5) in the reaction scheme (III) can be produced by the procedure of the above-described reaction scheme (IIA).

The compound of the formula (7) in the reaction scheme (III) can be produced in accordance with procedures of Japanese Patent Laid-Open No. 9173/1993 and others.

Method (D):

5

20

25

30

35

45

The production of compounds of a formula (1D) where R_1 stands for Y_1 , R_2 for NY_1Y_3 , and Z for Z_1 in the formula (1) is shown by a reaction scheme (IV):

Reaction Scheme (IV):

where X_1 , X_2 , X_3 , X_4 , X_5 , X_6 and X_7 have the same meaning as described above; Y_3 represents a hydrogen atom or an alkyl group having from 1 to 5 carbon atoms; Y_1 represents an alkyloxycarbonyl group having from 1 to 3 carbon atoms in its alkyloxy portion, a phenoxycarbonyl group, an alkylcarbonyl group having from 1 to 6 carbon atoms in its alkyl portion, an alkenylcarbonyl group having from 2 to 3 carbon atoms in its alkenyl portion, a cycloalkylcarbonyl group having from 3 to 6 carbon atoms in its cycloalkyl portion, a benzoyl group, a benzoyl group substituted by 1 to 3 alkyl group(s) having from 1 to 4 atoms, a benzoyl group substituted by 1 to 3 halogen atom(s), a 2-furanyl-carbonyl group, or an N,N-dimethylcarbamoyl group; and Z_1 represents = N-NO₂ or = N-CN.

The compounds of the formula (1D) may be produced with ease and in high yield by reacting a compound of the formula (8) with a compound of the formula (9).

The reaction is effected with ease in various solvents in the presence of a base.

The base to be used includes alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide, alkali metal hydrides such as sodium hydride and potassium hydride, alkali metal alcoholates such as sodium methylate and sodium ethylate, alkali metal oxides such as sodium oxide, carbonates such as potassium carbonate and sodium carbonate, phosphates such as tripotassium phosphate, trisodium phosphate, dipotassium hydrogenphosphate and disodium hydrogenphosphate, acetates such as sodium acetate and potassium actate, organic bases such as pyridine, 4-(dimethylamino)pyridine, DBU, triethylamine and diazabicycloundecene, and the like.

The solvents to be used may include not only water but also alcohols such as methanol, ethanol, propanol and butanol, aromatic hydrocarbons such as benzene, toluene and xylene, aliphatic hydrocarbons such as hexane, heptane and petroleum benzine, aprotic polar solvents such as dimethylformamide, dimethylacetamide, dimethylsulfoxide, 1,3-dimethyl-2-imidazolidinone and 1-methyl-2-pyrrolidinone, ethers such as ethyl ether, diisopropyl ether, 1,2-dimethoxyethane, tetrahydrofuran and dioxane, nitriles such as acetonitrile and propionitrile, ketones such as acetone and diisopropyl ketone, chlorinated solvents such as methylene chloride and chloroform, and the like.

The reaction temperature and the reaction time can be varied over wide ranges. In general, the reaction temperature is in the range of from -20 to 200 °C, preferably from 0 - 150 °C; and the reaction time is in the range of from 0.01 to 50 hours, preferably from 0.1 to 15 hours.

The compound of the formula (8) in the reaction scheme (IV) can be produced in accordance with the procedure of the reaction scheme (I) or (II).

The compound of the formula (9) in the reaction scheme (IV) can be produced from known carboxylic acids in accordance with known methods for the synthesis of acid chlorides.

Method (E):

25

The production of compounds of a formula (1E) where R_1 stands for Y_1 , R_2 for NY_4Y_5 , and Z for Z_1 is shown by a reaction scheme (V):

Reaction Scheme (V):

where X_1 , X_2 , X_3 , X_4 , X_5 , X_6 and X_7 have the same meanings as described above; Y_4 represents an alkyl group having from 1 to 5 carbon atoms; Y_5 represents an alkyl group having from 1 to 5 carbon atoms; Y_1 represents an alkyloxycarbonyl group having from 1 to 3 carbon atoms in its alkyloxy portion, a phenoxycarbonyl group, an alkylcarbonyl group having from 1 to 6 carbon atoms in its alkyl portion, an alkenylcarbonyl group having from 2 to 3 carbon atoms in its alkenyl portion, a cycloalkylcarbonyl group having from 3 to 6 carbon atoms in its cycloalkyl portion, a benzoyl group, a benzoyl group substituted by 1 to 3 alkyl group(s) having from 1 to 4 carbon atoms, an benzoyl group substituted by 1 to 3 halogan atom-(s), a 2-furanylcarbonyl group or an N,N-dimethylcarbamoyl group; and Z_1 represents = N-NO₂ or = N-CN.

The compounds of the formula (1E) can be produced with ease and in high yield by reacting a compound of the formula (10) with a compound of the formula (9).

The reaction is effected with ease in various solvents in the presence of a base.

The base to be used includes alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide, alkali metal hydrides such as sodium hydride and potassium hydride, alkali metal alcoholates such as sodium methylate and sodium ethylate, alkali metal oxides such as sodium oxide, carbonates such as potassium carbonate and sodium carbonate, phosphates such as tripotassium phosphate, trisodium phosphate, dipotassium hydrogenphosphate and disodium hydrogenphosphate, acetates such as sodium acetate and potassium acetate, organic bases such as pyridine, 4-(dimethylamino)pyridine, DBU, triethylamine and diazabicycloundecene, and the like.

The solvents to be used may include not only water but also alcohols such as methanol, ethanol, propanol and butanol, aromatic hydrocarbons such as benzene, toluene and xylene, aliphatic hydrocarbons such as hexane, heptane and petroleum benzine, aprotic polar solvents such as dimethylformamide, dimethylacetamide, dimethylsulfoxide, 1,3-dimethyl-2-imidazolidinone and 1-methyl-2-pyrrolidinone, ethers such as ethyl ether, diisopropyl ether, 1,2-dimethoxyethane, tetrahydrofuran and dioxane, nitriles such as acetonitrile and propionitrile, ketones such as acetone and diisopropyl ketone, chlorinated solvents such as methylene chloride and chloroform, and the like.

The reaction temperature and the reaction time can be varied over wide ranges. In general, the reacation temperature is in the range of from -20 to 200 °C, preferably from 0 to 150 °C, and the reaction time is in the range of from 0.01 to 50 hours, preferably from 0.1 to 15 hours.

The compound of the formula (10) in the reaction scheme (V) can be produced in accordance with the procedure of the reaction scheme (I) or (II).

The compound of the formula (9) in the reaction scheme (V) can be produced from known carboxylic acids in accordance with known methods for the production of acid chlorides.

25 Method (F):

10

20

30

35

40

50

The production of compounds of a formula (1F) where R_1 stands for a hydrogen atom, R_2 for NHR₁₁, and Z for = N-NO₂ is shown by a reaction scheme (VI). Reaction Scheme (VI):

where X_1 , X_2 , X_3 , X_4 , X_5 , X_6 and X_7 have the same meanings as described above; R_{10} represents an alkyl group having from 1 to 5 carbon atoms or a benzyl group; and R_{11} , represents an alkyl group having from 1 to 5 carbon atoms or a benzyl group.

Namely, the compounds of the formula (1F) can be produced with ease and in high yield by treating a compound of the formula (2) under acidic conditions.

The reaction is effected with ease in various solvents in the presence of an acid or, if necessary, a catalyst.

The acid or catalyst to be used may include sulfonic acids such as p-toluenesulfonic acid and methanesulfonic acid, mineral acids such as sulfuric acid, hydrochloric acid and phosphoric acid, ion exchange resin, silica gel, zeolite, and the like. The solvents to be used may include not only water but also alcohols such as methanol, ethanol, propanol and butanol, aromatic hydrocarbons such as benzene, toluene and xylene, aliphatic hydrocarbons such as hexane, heptane and petroleum benzine, aprotic polar solvents such as dimethylformamide, dimethylacetamide, dimethylsulfoxide, 1,3-dimethyl-2-imidazolidinone and 1-methyl-2-pyrrolidinone, ethers such as ethyl ether, diisopropyl ether, 1,2-dimethoxyethane, tetrahydrofuran

and dioxane, nitriles such as acetonitrile and propionitrile, ketones such as acetone and diisopropyl ketone, and the like.

The reaction temperature and the reaction time can be varied over wide ranges. In general, the reaction temperature is in the range of from -20 to 150 °C, preferably from room temperature to 100 °C; and the reaction time is in the range of from 0.01 to 50 hours, preferably from 0.1 to 10 hours.

The compound of the formula (2) in the reaction scheme (VI) can be produced by the procedure of a reaction scheme (VIA):

Reaction Scheme (VIA):

10

25

35

50

where X_1 , X_2 , X_3 , X_4 , X_5 , X_6 and X_7 have the same meanings as described above; W_3 represents a chlorine atom, a bromine atom, a toluenesulfonyloxy group, a methanesulfonyloxy group or a trifluoromethanesulfonyloxy group; R_{10} represents an alkyl group having from 1 to 5 carbon atoms or a benzyl group; and R_{11} represents an alkyl group having from 1 to 5 carbon atoms or a benzyl group.

The compounds of the formula (2) can be produced with ease and in high yield by reacting a compound of the formula (11) with a compound of the formula (12).

The reaction is effected with ease in various solvents in the presence of a base or catalyst as occasion demands.

The base to be used includes alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxide such as magnesium hydroxide and calcium hydroxide, alkali metal hydrides such as sodium hydride and potassium hydride, alkali metal alcoholates such as sodium methylate and sodium ethylate, alkali metal oxides such as sodium oxide, carbonates such as potassium carbonate and sodium carbonate, phosphates such as tripotassium phosphate, trisodium phosphate, dipotassium hydrogenphosphate and disodium hydrogenphosphate, acetates such as sodium acetate and potassium acetate, organic bases such as 4-(dimethylamino)pyridine, DBU, triethylamine and diazabicycloundecene, and the like.

The solvents to be used may include not only water but also alcohols such as methanol, ethanol, propanol and butanol, aromatic hydrocarbons such as benzene, toluene and xylene, aliphatic hydrocarbons such as hexane, heptane and petroleum benzine, aprotic polar solvents such as dimethylformamide, dimethylacetamide, dimethylsulfoxide, 1,3-dimethyl-2-imidazolidinone and 1-methyl-2-pyrrolidinone, ethers such as ethyl ether, diisopropyl ether, 1,2-dimethoxyethane, tetrahydrofuran and dioxane, nitriles such as acetonitrile and propionitrile, ketones such as acetone and diisopropyl ketone, and the like.

The reaction temperature and the reaction time can be varied over wide ranges. In general, the reaction temperature is in the range of from -30 to 200 °C, preferably from -20 to 150 °C; and the reaction time is in the range of from 0.01 to 50 hours, preferably from 0.1 to 15 hours.

The compound of the formula (11) in the reaction scheme (VIA) can be produced by halogenating (tetrahydro-3-furanyl)methanol derivatives with a halogenating agent such as thionyl chloride, phosphorus oxychloride, phosphorus tribromide, triphenylphosphine/carbon tetrabromide and triphenylphosphine/carbon tetrachloride, or sulfonating the derivatives with a sulfonating agent such as tosyl chloride, methanesulfonyl chloride and trifluoromethanesulfonic acid anhydride.

The compound of the formula (12) in the reaction scheme (VIA) can be produced from a monoalkyl-substituted nitroguanidine or monobenzyl-substituted nitroguanidine, a primary amine and formaldehyde.

The compounds of the formula (1) may exist as isomers (cis- and trans-isomers) and tautomers. Further, since an asymmetric carbon atom is present at the 3rd position of the tetrahydrofuran ring, the compounds may exist as optically active isomers, racemic modifications, and mixtures thereof in optional proportions. Where the tetrahydrofuran ring has alkyl substituents, diastereomers may exist in some cases. These isomers can exist as mixtures in optional proportions. All of these isomers, tautomers and mixtures thereof are also included in the scope of the present invention.

The amine derivatives having a nitromethylene group, a nitroimino group or a cyanoimino group represented by the formula (1) according to the present invention are characterized by having a (tetrahydro-3-furanyl)methyl group. For example, when the oxygen atom in the tetrahydrofuran ring is replaced by a sulfur atom or a nitrogen atom, the insecticidal activity of the derivatives is completely lost. It is also characteristics of the derivatives that the oxygen atom is present at the 3rd position. Tetrahydro-2-furylmethylamine derivatives, which has an oxygen atom at the 2nd position, show entirely no insecticidal activity. In other words, only (tetrahydro-3-furanyl)methylamine derivatives, which are saturated heterocyclic derivatives of a very limited structure, exhibit insecticidal activity very characteristically.

The derivatives of the formula (1) according to the invention have a powerful insecticidal activity and can be used as an insecticide in a variety of fields such as an agriculture, horticulture, livestock industry, forestry, forestry, disinfection and houses. The derivative of the formula (1) of the invention show exactly a high control effect on harmful insects without involving any phyto-toxicity to cultivated plants, higher animals and an environment.

Insect pest to which the derivatives of the formula (1) according to the invention can be applied for instance, include:

5 LEPIDOPTERA

Pseudaletia separata Walker - rice armyworm Sesamia inferens Walker - pink borer Narangata aenescens Moore - green rice caterpillar Agrotis ipsilon Hufnagel - black cutworm Anomis flava Fabricius - cotton leaf caterpillar Helicoverpa armigera Hubner - corn earworm Spodoptera exigua Hubner - beet armyworm Spodoptera litura Fabricius - Common cutworm Agrotis segetum Denis et Schiffermuller - cutworm Mamestra brassicae Linnaeus - cabbage armyworm Autographa nigrisigna Walker - beet semi-looper Chilo suppressalis Walker - rice stem borer Cnaphalocrocis medinalis Guenee - rice leafroller Scirpophaga incertulas Walker - yellow rice borer Ectomyelois pyrivorella Matsumura - pear fruit moth Hellulla undalis Fabricius - cabbage webworm Maruca testulalis Hubner - bean pod borer Parnara guttata Bremer et Grey - rice skipper 45 Pectinophora gossypiella Saunders - pink bollworm Phthorimaea operculella Zeller - potato tuberworm Pieris rapae crucivota Boisduval - common cabbage worm Plodia interpunctella Hubner - Indian meal worm Adoxophyes sp.

Phyllonorycter ringoniella Matsumura - apple leafminer
Phyllocnistis citrella Stainton - citrus leafminer
Eupoecillia ambiguella Hubner - grape cochylid
Grapholita molesta Busck - oriental fruit moth
Leguminivora glycinivorella Matsumura - soybean pod borer
Carposina niponensis Walsingham - peach fruit moth
Paranthrene regalis Butler - grape clearwing moth
Caloptilia theivora Walsingham - tea leafroller
Plutella xylostella Linnaeus - diamondback moth

Tinea translucens Meyrick - casemaking clothes moth

HEMIPTERA

Bemisia tabaci Gennadius - sweetpotato whitefly
Trialeurodes vaporariorum Westwood - greenhouse whitefly
Aleurocanthus spiniferus Quaintance - citrus spiny whitefly
Aphis gossypii Glover - cotton aphid
Aphis citricola van der Goot - spiraea aphid

Eriosoma lanigerum Hausmann - woolly apple aphid
Myzus persicae Sulzer - green peach aphid
Brevicoryne brassicae Linnaeus - cabbage aphid
Lipaphis erysimi Kaltenbach - turnip aphid
Aphis craccivora Koch - cowpea aphid

Toxoptera aurantii Boyer de Fonscolombe - black citrus aphid
Toxoptera citricidus Kirkaldy - tropical citrus aphid
Viteus vitifolii Fitch - grapeeleaf louse
Schizaphis graminum Rondani - greenbug
Aulacorthum solani Kaltenbach - foxglove aphid

Empoasca onukii Matsuda - tea green leaf hopper
Arboridia apicalis Nawa - grape leafhopper
Laodelphax striatellus Fallen - small brown planthopper
Nilaparvata lugens Stal - brown rice hopper
Sogatella furcifera Horvath - whitebacked rice planthopper

Nephotettix cincticeps Uhler - green rice leafhopper
Nephotettix virescens Distant - green rice leafhopper
Cofana spectra Distant - rice leafhopper
Ceroplastes rubens Maskell - red wax scale
Saissetia oleae Bernard - black scale

Comstockaspis perniciosa Comstock - San Jose scale Lepidosaphes ulmi Linnaeus - oystershell scale Aonidiella aurantii Maskell - California red scale

Chrysomphalus ficus Ashmead - Florida red scale Unaspis vanonensis Kuwana - arrowhead scale

Pseudococcus comstocki Kuwana - Comstock mealybug
Planococcus citri Risso - citrus mealybug
Icerya purchasi Maskell - cottonycushion scale
Psylla mali Schmidberger - apple sucker
Diaphorina citri Kuwayama - citrus psylla

Nezara viridula Linnaeus - southern green stink bug
Riptortus clavatus Thunberg - bean bug
Stephanitis nashi Esaki et Takeya - pear lace bug

COLEOPTERA

45

Lissorhoptrus oryzophilus Kuschhel - rice water weevil
Oulema oryzae Kuwayama - rice leaf beetle
Phyllotreta striolata Fabricius - striped flea beetle
Leptinotarsa decemlineata Say - Colorado potato beetle
Chaetocnema concinna Marshall
Diabrotica spp

Sitophilus zeamais Motschulsky - maize weevil
Carpophilus hemipterus Linnaeus - driedfruit beetle

Epilachna vigintioctopunctata Fabricius - twenty-eight-spotted ladybird

Acanthoscelides obtectus Say - bean weevil
Callosobruchus chinensis Linnaeus - adzuki bean weevil
Callosobruchus maculatus Fabricius - cowpea weevil
Anomala cuprea Hope - cupreous chafer

Anomala rufocuprea Motschulsky - soybean beetle
Popilla japonica Newman - japanese beetle
Anoplophora malasiaca Thomson - whitespotted longicorn beetle
Lasioderma serricorne Fabicius - cigarette beetle
Anthrenus verbasci Linnaeus - varied carpet beetle
Tribolium castaneum Herbst - red flour beetle
Lyctus brunneus Stephens - powderpost beetle

HYMENOPTERA

10

Culex pipiens pallens Coquilett
Culex pipiens molestus
Anopheles sinensis
Aedes albopictus

Agromyza oryzae Munakata - rice leafminer
Asphondylia sp. - soybean pod gall midge
Chlorops oryzae Matsumura - rice stem maggot
Hydrellia griseola Fallen - rice leafminer
Musca domestica vicina Macquart - house fly

Phormia regina Meigen

Delia antiqua Meigen - onion maggot

Dacus (Zeugodacus) cucurbitae Coquillett - melon fly

Dacus (Bactrocera) dorsalis Hendel - oriental fruit fly

25 THYSANOPTERA

Thrips tabaci Lindeman - onion thrips
Ponticulothrips diospyrosi Haga et Okajima
Thrips palmi Karny
Stenchaetothrips biformis Bagnall - rice thrips
Scirtothrips dorsalis Hood - yellow tea thrips

ORTHOPTERA

Periplaneta fuliginosa Serville
Periplaneta japonica Karny
Periplaneta americana Linne - American cockroach
Blattella germanica Linne
Oxya yezoensis Shiraki - rice grasshopper
Locusta migratoria Linnaeus - Asiatic locust

HYMENOPTERA

Athalia rosae ruficornis Jakovlev - cabbage sawfly

45

ACARINA

Tetranychus urticae Koch - two-spotted spider mite
Tetranychus kanzawai Kishida - Kanzawa spider mite
Panonychus ulmi Koch - European red mite
Polyphagotarsonemus latus Branks - broad mite
Aculops pelekassi Keifer - pink citrus rust mite
Eriophyes chibaensis Kadono
Ornithonyssus bacoti Hirst

TROMBICULIDAE

15

Tyrophagus putrescentiae Schrank - dog flea
Pediculus humanus humanus De Geer
Reticulitermes speratus Kolbe
Oxidus gracilis C.L.Koch

The save a see a billion desti Venha

Thereuronema hilgendorfi Verhoeff

Where the compounds of the formula (1) of the invention are actually applied, they may be used singly without addition of any other ingredient. However, it is usual to incorporate carriers in order to make easier application as a control chemical.

For preparation of the compounds of the invention, any specific requirement is not necessary to formulate them into various preparations, such as emulsions, wettable powders, dusts, granules, fine powders, flowable preparations, microcapsules, oils, aerosols, smoking agents, poisonous feeds and the like, according to the procedures of preparing general agricultural chemicals well known in the art.

The term "carrier" used herein is intended to mean synthetic or natural, organic or inorganic materials which assist the effective ingredient toe arrive at sites or portions to be treated and which are blended in order to make easier storage, transport and handling of the effective compound.

Appropriate solid carriers include, for example, inorganic substances such as montmorilonite, kaolinite, diatomaceous earth, white clay, talc, vermiculite, gypsum, calcium carbonate, silica gel and ammonium sulfate, and organic substances such as soybean flour, saw dust, wheat flour, pectin, methyl cellulose, sodium alginate, vaseline, lanolin, liquid paraffin, lard and vegetable oils.

Suitable liquid carriers include, for example, aromatic hydrocarbons such as toluene, xylene, cumene and solvent naphtha, paraffinic hydrocarbons such as kerosene and mineral oils, halogenated hydrocarbons such as methylene chloride, chloroform and carbon tetrachloride, ketones such as acetone, methyl ethyl ketone and cyclohexane, ethers such as dioxane, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, diethylene glycol monomethyl ether and propylene glycol monomethyl ether, esters such as ethyl acetate, butyl acetate and fatty acid glycerol ester, nitriles such as acetonitrile and propionitrile, alcohols such as methanol, ethanol, n-propanol, isopropanol and ethylene glycol, dimethylformamide, dimethylsulfoxide, water and the like.

In order to reinforce the efficacy of the compounds of the formula (1) of the invention, the following adjuvants may be used singly or in combination, depending on the type of preparation, the manner of application and the purpose.

Adjuvants used for the purpose of emulsification, dispersion, spreading, wetting, bonding and stabilization may include water-soluble bases such as ligninsulfonates, nonionic surface active agents such as alkylbensenesulfonates, alkylsulfates, polyoxyethylenealkyl aryl ethers and polyhydric alcohol esters, lubricants such as calcium stearate and waxes, stabilizers such as isopropyl hydrogenphosphate, methyl cellulose, carboxymethyl cellulose, casein, gum arabi, and the like. It should be noted that the adjuvants are not limited to those mentioned above.

The derivatives of the formula (1) according to the invention may develop better insecticidal activity when used in combination of two or more. If other physiologically active substances or chemicals are used in combination, multipurpose compositions with good efficacy can be prepared with the possibility of developing a synergistic effct.

Examples of such physiologically active substances include: synthetic pyrethroid insecticide or pyrethrum extracts, such as allethrin, tetramethrin, resmethrin, phenothrin, furamethrin, permethrin, cypermethrin, deltamethrin, cyhalothrin, cyfluthrin, fenpropathrin,tralomethrin, cycloprothrin, flucythrinate, fluvalinate, acrinathrin, tefluthrin, silafluofen, bifenthrin, empenthrin, beta-cyfluthrin, zeta-cypermethrin and the like; organo-phosphate insecticides such as DDVP, cyanophos, fenthion, fenitrothion, dichlofenthion, tetrachlorvinphos, dimethylvinphos, chlorfenvinphos, propaphos, methyparathion, temephos, phoxim, acephate, isofenphos, salithion, DEP,EPN, ethion, mecarbam, pyridafenthion, diazinon, pirimiphos-methyl, etrimfos, isoxathion, quinalphos, chloropyriphos-methyl, chloropyriphos, phosalone, phosmet, methidathion, oxydeprofos, vamidothion, malathion, phenthoate, dimethoate, formothion, thiometon, ethylthiometon, phorate, terbufos, oxydeprofos, profenophos, prothiofos, sulprofos, pyraclofos, monocrotophos, naled, fosthiazate and the like; carbamate insectiscides such as NAC, MTMC, MIPC, BPMC, XMC, PHC, MPHC, ethiofencarb, bendiocarb, primicarb, carbosurfan, benfuracarb, methomyl, oxamyl, aldicarb and the like: aryl propyl ether insecticides such as etofenprox, flufenprox, halfenprox and the like; aromatic alkane insecticides such as 1-(3-phenoxyphenyl)-4-(4-ethoxyphenyl)-4-methylpentane, 1-(3-phenoxy-4-fluorophenyl)-4-(4-ethoxyphenyl)-4methylpentan and the like; silyl ether insecticides such as silafluofen and the like; insecticidal natural substances such as nicotine-sulfate, polynactins, avermectin, milbemectin and the like; insecticides such as

cartap, thiocyclam, bensultap, diflubenzuron, chlorfluazuron, teflubenzuron, triflumuron, flufenoxuron, novaluron, flucycloxuron, hexaflumuron, fluazuron, imidacloprid, nitenpyram, NI-25, pymetrozine, fipronil, buprofezin, fenoxycarb, pyriproxyfen, methoprene, hydroprene,kinoprene, endosulfan, diafenthiuron, triazuron, tebufenozide and the like; acaricides such as dicofol, CPCBS, BPPS, tetradifon, amitraz, benzomate, fenothiocarb, hexythiazox, fenbutatin oxide, dienochlor, clofentezine, pyridaben, fenpyroximate, tebufenpyrad, pyrimidifen, agrimont and the like and other insecticides, acaricides, fungicides, nematocides, herbicides, plant regulators, fertilizers, soil improving materials, molting inhivitors, JH activators, BT agents, microorganisms-derived toxins, natural or synthetic insect hormone disturbing agents, attractants, repellents, insectpathogenic microorganisms, and small animals and other agricultural chemicals.

Although the compounds of the formula (1) of the invention are stable to light, heat and oxidation, antioxidants or UV absorbers may be added in appropriate amounts, if necessary, including, for example, phenol derivatives or bisphenol derivatives such as BHT (2,6-di-t-butyl-4-methylphenol), BHA (butylhydroxyanisole) and the like, arylamines or benzophenone compounds such as phenyl- α -naphthylamine, phenyl β -naphthylamine, condensates of phenetidine and acetone, thereby obtaining more stable compositions.

The insecticide comprising the compound of the formula (1) of the invention contains the compound in an amount of from 0.000001 to 95 wt.%, preferably from 0.0001 to 50 wt.%.

When the insecticide of the invention is applied, the effective ingredient is used generally at a concentration of from 0.001 to 5,000 ppm, preferably from 0.01 to 1,000 ppm. The application amount per 10 ares is generally in the range of from 1 to 300 g of the effective ingredient.

The present invention is more particularly described by way of the following examples and reference examples.

<u>Example 1</u> Preparation of 1-[{(tetrahydro-3-furanyl)methyl}amino]-1-methylamino-2-nitroethylene (Compound No. 1):

A mixture comprising 7.0 g of (tetrahydro-3-furanyl)methylamine, 12.5 g of 1,1-bis(methylthio)-2-nitroethylene and 100 ml of acetonitrile was refluxed for 5 hours. The reaction mixture was concentrated under a reduced pressure, and purified by silica gel column chromatography (eluent: ethyl acetate/hexane = 1/1) to give 6.6 g of 1-[{tetrahydro-3-furanyl)methyl}amino]-1-methylthio-2-nitroethylene. Then, a mixture comprising 4.0 g of the 1-[{(tetrahydro-3-furanyl)methyl}amino]- 1-methylthio-2-nitroethylene obtained above, 6.0 ml of 40% methylamine in methanol solution, 20 ml of 1N aqueous sodium hydroxide solution and 20 ml of ethanol was stirred at room temperature for 5 hours. The resulting reaction mixture was concentrated under a reduced pressure, and purified by silica gel column chromatography (eluent: ethyl acetate/methanol = 9/1) to obtain 3.2 g of 1-[{(tetrahydro-3-furanyl)methyl}amino]-1-methylamino-2-nitroethylene.

<u>Example 2</u> Preparation of 1-[{(tetrahydro-3-furanyl)methyl}amino}-1-methylamino-2-nitroethylene (Compound No. 1):

A mixture comprising 1.79 g of 1-[{(tetrahydro-3-furanyl)methyl}amino-1-methylthio-2-nitroethylene, 1 ml of 40% methylamine in methanol solution and 30 ml of ethanol was stirred at room temperature for 5 hours. The reaction mixture was concentrated under a reduced pressure to give an oily matter. This was purified by column chromatography to obtain 1.54 g of 1-[{tetrahydro-3-furanyl)methyl}amino]-1-methylamino-2-nitroethylene.

Example 3 Preparation of 1-[{(tetrahydro-3-furanyl)methyl}amino]-1-ethylamino-2-nitroethylene (Compound No. 2):

A mixture comprising 0.51 g of 1-[{(tetrahydro-3-furanyl)methyl}amino]-1-methylthio-2-nitroethylene, 1 ml of 70% aqueous ethylamine solution and 10 ml of ethanol was stirred at room temperature for 5 hours. The reaction mixture was concentrated under a reduced pressure to give an oily matter. This was purified by column chromatography to obtain 0.50 g of 1-[{tetrahydro-3-furanyl)methyl}amino]-1-ethylamino-2-nitroethylene.

10

15

20

25

35

40

Example 4 Preparation of 1-[{(tetrahydro-3-furanyl)methyl}amino}-1-dimethylamino-2-nitroethylene (Compound No. 3):

A mixture comprising 4.0 g of 1-[{(tetrahydro-3-furanyl)methyl}amino]-1-methylthio-2-nitroethylene, 10 ml of 50% aqueous dimethylamine solution and 50 ml of acetonitrile was stirred at room temperature for an hour. The reaction mixture was concentrated under a reduced pressure, and purified by silica gel column chromatography (eluent: ethyl acetate/acetone = 1/1) to obtain 2.8 g of 1-[{(tetrahydro-3-furanyl)-methyl}amino}-1-dimethylamino-2-nitroethylene.

Example 5 Preparation of 1-[{(tetrahydro-3-furanyl)methyl}amino]-1-(1-pyrrolidinyl)-2-nitroethylene (Compound No. 4):

A mixture comprising 1.2 g of 1-[{(tetrahydro-3-furanyl)methyl}amino]-1-methylthio-2-nitroethylene, 1.5 ml of pyrrolidine and 15 ml of acetonitrile was stirred at room temperature for an hour. The reaction mixture was concentrated under a reduced pressure, and purified by silica gel column chromatography (eluent: ethyl acetate/acetone = 1/1) to obtain 0.92 g of 1-[{(tetrahydro-3-furanyl)methyl}amino]-1-(1-pyrrolidinyl)-2-nitroethylene.

Example 6 Preparation of 1-[N-{(tetrahydro-3-furanyl)methyl}-N-methylamino]-1-methylamino-2-nitroethylene (Compound No. 6):

A mixture comprising 1.42 g of (tetrahydro-3-furanyl)methyl tosylate, 0.15 g of sodium iodide, 1.70 g of potassium carbonate and 18 ml of 40% methylamine in methanol solution was heated under reflux for 5 hours. After separation of insoluble matters by filtration, the reaction fluid was concentrated under a reduced pressure to obtain crude N-{(tetrahydro-3-furanyl)methyl}-N-methylamine. To this were added 1.00 g of 1,1-bis(methylthio)-2-nitroethylene and 14 ml of acetonitrile. The mixture was refluxed for 4 hours. The resultant reaction fluid was concentrated under a reduced pressure, and purified by silica gel column chromatography (eluent: ethyl acetate/hexane = 1/1) to obtain 1.00 g of 1-[N-{(tetrahydro-3-furanyl)methyl}-N-methylamino]-1-methylthio-2-nitroethylene. A mixture comprising 0.9 g of the 1-[N-{(tetrahydro-3-furanyl)methyl}-methylamino]-1-methylthio-2-nitroethylene obtained above and 15 ml of 40% methylamine in methanol solution was stirred for 45 minutes at room temperature. The reaction fluid was concentrated under a reduced pressure, and purified by silica gel column chromatography (eluent: ethyl acetate/methanol = 3/1) to obtain 0.45 g of 1-[N-{(tetrahydro-3-furanyl)methyl}-N-methylamino}-1-methylamino-2-nitroethylene.

<u>Example 7</u> Preparation of 1-[N-{(tetrahydro-3-furanyl)methyl}-N-ethylamino}-1-methylamino-2-nitroethyl-ene (Compound No. 12):

35

55

A mixture comprising 4.09g of (tetrahydro-3-furanyl)methyl tosylate, 17 ml of 70% aqueous ethylamine solution and 8.2 ml of 2 N aqueous sodium hydroxide solution was stirred at 75 °C for 6 hours. The reaction fluid was concentrated under a reduced pressure to obtain crude N-{(tetrahydro-3-furanyl)methyl}-N-ethylamine. To this were added 2.00 g of 1,1-bis(methylthio)-2-nitroethylene and 20 ml of acetonitrile. The resulting mixture was refluxed for 3 hours. The reaction fluid was concentrated under a reduced pressure, and purified by silica gel column chromatography (eluent: ethyl acetate/hexane = 1/2) to obtain 0.81 g of 1-[N-{(tetrahydro-3-furanyl)methyl}-N-ethylamino]-1-methylthio-2-nitroethylene.

A mixture comprising 2.5 g of the 1-[N-{(tetrahydro-3-furanyl)methyl}-N-ethylamino]-1-methylthio-2-nitroethylene obtained above and 6 ml of 40% methylamine in methanol solution was stirred for 2 hours at room temperature. The reaction fluid was concentrated under a reduced pressure, and purified by silica gel column chromatography (eluent: ethyl acetate/methanol = 7/1) to obtain 2.0 g of 1-[N-{(tetrahydro-3-furanyl)methyl}-N-ethylamino]-1-methylamino-2-nitroethylene.

<u>Example 8</u> Preparation of 1-[N-{(tetrahydro-3-furanyl)methyl}-N-propylamino]-1-methylamino-2-nitroethylene (Compound No. 15):

A mixture comprising 3.00 g of (tetrahydro-3-furanyl)methyl tosylate, 0.20 g of sodium iodide, 3.50 g of potassium carbonate, 4.00 g of propylamine and 30 ml of ethanol was refluxed for 8 hours. After separation of insoluble matters by filtration, the reaction fluid was concentrated under a reduced pressure to obtain crude N-{(tetrahydro-3-furanyl)methyl}propylamine. To this were added 1.90 g of 1,1-bis(methylthio)-2-

nitroethylene and 16 ml of acetonitrile. The resulting mixture was refluxed for 4 hours. The reaction fluid was concentrated under a reduced pressure, and purified by silica gel column chromatograpy (eluent: ethyl acetate/hexane = 1/2) to obtain 1.00 g of 1-[N-{(tetrahydro-3-furanyl)methyl}-N-propylamino]-1-methylthio-2-nitroethylene. A mixture comprising 0.25 g of the 1-[N-{(tetrahydro-3-furanyl)methyl}-N-propylamino]-1-methylthio-2-nitroethylene obtained above and 3 ml of 40% methylamine in methanol solution was stirred for 40 minutes at room temperature. The reaction fluid was concentrated under a reduced pressure, and purified by silica gel column chromatography (eluent: ethyl acetate/methanol = 7/1) to obtain 0.22 g of 1-[N-{(tetrahydro-3-furanyl)methyl}-1-methylamino-2-nitroethylene.

Example 9 Preparation of 1-[N-{(tetrahydro-3-furanyl)methyl}-N-propylamino]-1-ethylamino-2-nitroethyl ene (Compound No. 16):

A mixture comprising 0.25 g of 1-[N-{(tetrahydro-3-furanyl)methyl}-N-propylamino]-1-methylthio-2-nitroethylene and 1 ml of 70% aqueous ethylamine solution was stirred for an hour at room temperature. After concentration of the mixture under a reduced pressure, the reaction fluid was purified by silica gel column chromatography (eluent: ethyl acetate/methanol = 7/1) to obtain 0.25 g of 1-[N-{(tetrahydro-3-furanyl)methyl}-N-propylamino]-1-ethylamino-2-nitroethylene.

Example 10 Preparation of 1-{(tetrahydro-3-furanyl)methyl}-2-nitro-3-methylguanidine (Compound No. 20):

20

35

45

50

A mixture comprising 10.0 g of (tetrahydro-3-furanyl)methanol, 29.5 g of trifluoromethanesulfonic anhydride, 10.0 g of pyridine and 200 ml of dichloromethane was stirred for an hour at room temperature. Water was poured into the reaction solution to separate the organic layer, which was washed with 1 N hydrochloric acid, water and a saturated saline solution, dried, and concentrated to obtain 20 g of 3-tetrahydro-furanylmethyl triflate. 3.25 g of 60% sodium hydride were added to 12.5 g of 1,5-dimethyl-2-nitroiminohexahydro-1,3,5-triazine and 60 ml of DMF at room temperature, followed by stirring for an hour. 20.0 g of the 3-tetrahydrofuranylmethyl triflate were added thereto, and the mixture was stirred at 50 °C for 2 hours. After cooling the mixture to room temperature, 50 ml of 2 N hydrochloric acid were added thereto, followed by stirring at 50 °C for 2 hours. The resultant mixture was neutralized with sodium bicarbonate and extracted with dichloromethane, and the extract was dried and concentrated. The residue thus obtained was purified by silica gel column chromatography (eluent: ethyl acetate/hexane = 1/1) to obtain 7.8 g of 1-{-(tetrahydro-3-furanyl)methyl}-2-nitro-3-methylguanidine.

Example 11 Preparation of N-{(tetrahydro-3-furanyl)-methyl}-N-(methyl)nitroguanidine (Compound No. 26):

A mixture comprising 0.71 g of (tetrahydro-3-furanyl)methyl tosylate, 0.08 g of sodium iodide, 0.85 g of potassium carbonate and 9 ml of 40% methylamine in methanol solution was refluxed for 5 hours. After separating insoluble matters by filtration, the reaction fluid was concentrated under a reduced pressure to obtain crude N-{(tetrahydro-3-furanyl)methyl)methylamine. To this were added 0.38 g of S-methyl-N-(nitro)-isothiourea and 7 ml of acetonitrile, followed by refluxing for 5 hours. The reaction fluid was concentrated under a reduced pressure, and purified by silica gel column chromatography (eluent: ethyl acetate/hexane = 1/1) to obtain 0.10 g of N-{(tetrahydro-3-furanyl)methyl}-N-(methyl)nitroguanidine.

Example 12 Preparation of 1-{(tetrahydro-3-furanyl)methyl}-2-nitro-3-methylguanidine (Compound No. 20):

A mixture comprising 0.7 g of 1-{(tetrahydro-3-furanyl)methyl}-2-(nitroimino)-3,5-dimethylhexahydro-1,3,5-triazine, 5 ml of 1 N hydrochloric acid and 5 ml of ethanol was stirred at 40 °C for an hour. The reaction fluid was concentrated under a reduced pressure and purified by column chromatography to obtain 0.4 g of 1-{(tetrahydro-3-furanyl)methyl}-2-nitro-3-methylguanidine.

Example 13 Preparation of 1-{(tetrahydro-3-furanyl)methyl}-1-ethyl-2-nitro-3-methylguanidine (Compound No. 29):

A mixture comprising 5.5 g of N-{(tetrahydro-3-furanyl)methyl}-N-ethylamine, 3.0 g of S-methyl-N-nitro-N'-methylsothiourea, 30 ml of ethanol and 0.5 g of DMAP was refluxed for 4 hours. Then, the reaction fluid was concentrated under a reduced pressure to obtain an oily matter, which was purified by column chromatography. 1.1 g of 1-{(tetrahydro-3-furanyl)-methyl}-1-ethyl-2-nitro-3-methylguanidine were obtained.

Example 14 Preparation of N-(tetrahydro-3-furanyl)-methyl-N'-cyano(methylthio)formamidine (Compound No. 50):

A mixture comprising 0.61 g of (tetrahydro-3-furanyl)methylamine, 1.10 g of 90% S,S'-dimethyl-N-cyanocarbonate and 10 ml of acetonitrile was refluxed for 5 hours. The reaction fluid was concentrated under a reduced pressure and purified by silica gel column chromatography (eluent: ethyl acetate/hexane = 1/1) to obtain 0.40 g of N-(tetrahydro-3-furanyl)methyl-N'-cyano(methylthio)formamidine.

Example 15 Preparation of N-cyano-N'-{(tetrahydro-3-furanyl)methyl}acetamidine (Compound No. 55):

10

A mixture comprising 0.6 g of (tetrahydro-3-furanyl)methylamine, 0.7 g of ethyl N-cyanoacetamidate and 10 ml of ethanol was stirred for 3 hours at room temperature. The reaction fluid was concentrated under a reduced pressure and purified by silica gel column chromatography (eluent: ethyl acetate) to obtain 0.40 g of N-cyano-N'-{(tetrahydro-3-furanyl)methyl}acetamidine.

15

Example 16 Preparation of N-cyano-N'-{(tetrahydro-3-furanyl)methyl}-N-methylacetamidine (Compound No. 51):

A mixture comprising 1.0 g of N-{(tetrahydro-3-furanyl)methyl}-N-methylamine, 0.4 g of ethyl N-cyanoacetamidate and 10 ml of ethanol was stirred for 7 hours at room temperature. The reaction fluid was concentrated under a reduced pressure and purified by silica gel column chormatography (eluent: ethyl acetate) to obtain 0.38 g of N-cyano-N'-{(tetrahydro-3-furanyl)methyl}-N-methylacetamidine.

Example 17 Preparation of N-[4-{(2-methyl)tetrahydrofuranyl}methyl]-N'-methyl-N''-nitroguanidine (Compound No. 58):

A solution of 2.91 g of trifluoromethanesulfonic anhydride in 10 ml of dichloromethane was added dropwise over 5 minutes under ice-cooling to a solution of 1.00 g of 2-methyl-4-hydroxymethyl-tetrahydrofuran and 1.05 g of triethylamine in 50 ml of dichloromethane. The reaction fluid was stirred under ice-cooling for 30 minutes and at room temperature for 5 hours. The reaction fluid was concentrated under a reduced pressure to obtain an oily matter. This was added as a solution in 5 ml of dimethylformamide at room temperature to a reaction mixture, which had been obtained by adding at room temperature a solution of 1.24 g of 1-methyl-2-nitroimino-5-methyl-1,3,5-triazine in 5 ml of dimethylformamide to a suspension of 0.32 g of sodium hydride (60%) in 5 ml of dimethylformamide and stirring the mixture at 60 °C for 30 minutes, followed by stirring at 60 °C for 4 hours. 7.2 ml of hydrochloric acid (2M) was added to the resultant reaction fluid, followed by stirring at 60 °C for 3 hours. After cooling the reaction fluid to room temperature, ethyl acetate was added thereto. The resultant reaction fluid was washed with water, and the organic layer was dried over anhydrous magnesium sulfate. The organic layer was concentrated under a reduced pressure to obtain an oily matter, which was purified by silica gel column chromatography (eluent: ethyl acetate) to obtain 77 mg of N-[4-{(2-methyl)tetrahydrofuranyl}methyl]-N'-methyl-N''-nitroguanidine as a red-brown oily matter.

Example 18 Preparation of N-[4{2-methyl})-tetrahydrofuranyl}methyl]-N'-methyl-N''-nitroguanidine (Compound No. 58):

45

A solution of 4.19 g of triethylamine in 5 ml of dichloromethane was added dropwise under ice-cooling over 10 minutes to a solution of 5.70 g of {4-(2-methyl)tetrahydrofurylmethyl}amine hydrochloride and 9.07 g of S-methyl-N-nitro-N'-phthaloylisothiourea in 45 ml of dichloromethane. After stirring the reaction fluid for 2 hours under ice-cooling, insoluble matters were separated by filtration and the filtrate was washed with an aqueous hydrochloric acid solution (1M) and a saturated saline solution. The organic layer was dried over anhydrous magnesium sulfate and concentrated under a reduced pressure to obtain an oily matter. This was purified by silica gel column chromatography (eluent: hexane/ethyl acetate = 1/1) to obtain 7.04 g of S-methyl-N-{(4-(2-methyl)tetrahydrofurylmethyl}-N'-nitroisothiourea as a colorless oily matter. To a solution of 9.39 g of the S-methyl-N-{(4-(2-methyl)tetrahydrofurylmethyl)-N'-nitroisothiourea obtained in this manner in 30 ml of methanol were added 3.43 g of methyl amine (as 40% methanol solution) at room temperature, followed by stirring for 1.5 hours at room temperature. The reaction fluid was concentrated under a reduced pressure to obtain an oily matter, which was purified by silica gel column chromatography (eluent: ethyl acetate) to obtain 7.77 g of N-[4-{(2-methyl)tetrahydrofuranyl}methyl]-N'-methyl-N''-nitroguanidine as a

colorless oily matter.

5

Example 19 Preparation of 1-{(tetrahydro-3-furanyl)methyl}-1,2-dicyclohexylcarbonyl-2-methyl-3-nitroguanidine (Compound No. 33):

0.6 g of 1-{(tetrahydro-3-furanyl)methyl}-2-methyl-3-nitroguanidine, 0.3 g of sodium hydride and 10 ml of acetonitrile were stirred at room temperature until foaming does not occur. A solution of 0.7 g of cyclohexylcarbonyl chloride in 5 ml of acetonitrile was added thereto dropwise under ice-cooling, followed by stirring for 30 minutes at room temperature. The reaction fluid was filtrated and the filtrate was concentrated. The oily matter thus obtained was purified by a silica gel column (eluent: ethyl acetate/hexane = 1/1) to obtain 0.87 g of 1-{(tetrahydro-3-furanyl)methyl}-1,2-dicyclohexylcarbonyl-2-methyl-3-nitroguanidine.

Example 20 Preparation of 1-{(tetrahydro-3-furanyl)methyl}-1,2-diethylcarbonyl-2-methyl-3-nitroguanidine (Compound No. 35):

0.6 g of 1-{(tetrahydro-3-furanyl)methyl}-2-methyl-3-nitroguanidine, 0.3 g of sodium hydride and 10 ml of acetonitrile were stirred at room temperature until foaming does not occur. A solution of 1.0 g of propionyl chloride in 5 ml of acetonitrile was added thereto dropwise under ice-cooling, followed by stirring for 30 minutes at room temperature. The reaction fluid was filtrated and the filtrate was concentrated. The oily matter thus obtained was purified by a silica gel column (eluent: ethyl acetate/hexane = 1:1) to obtain 0.51 g of 1-{(tetrahydro- 3-furanyl)methyl}-1,2-diethylcarbonyl-2-methyl-3-nitroguanidine.

Example 21 Preparation of 1-{(tetrahydro-3-furanyl)methyl}-1,2-dimethoxycarbonyl-2-methyl-3-nitroguanidine (Compound No. 38):

1.0 g of 1-{(tetrahydro-3-furanyl)methyl}-2-methyl-3-nitroguanidine, 0.5 g of sodium hydride and 10 ml of acetonitrile were stirred at room temperature until foaming does not occur. A solution of 1.5 ml of methyl chloroformate in 5 ml of acetonitrile was added thereto dropwise between -5 and 3 °C, followed by stirring for 30 minutes at room temperature. The reaction fluid was filtrated and the filtrate was concentrated. The oily matter thus obtained was purified by a silica gel column (eluent: ethyl acetate/hexane = 1/1) to obtain 1.22 g of 1-{(tetrahydro-3-furanyl)methyl}-1,2-dimethoxycarbonyl-2-methyl-3-nitroguanidine.

Example 22 Preparation of 1-{(tetrahydro-3-furanyl)methyl}-1,2-dibenzoyl-2-methyl-3-nitroguanidine (Compound No. 40):

1.0 g of 1-{(tetrahydro-3-furanyl)methyl}-2-methyl-3-nitroguanidine, 0.5 g of sodium hydride and 10 ml of dimethylformamide were stirred at room temperature until foaming does not occur, and 1 ml of benzoyl chloride was added thereto dropwise, followed by stirring for 30 minutes at room temperature. Water was poured into the reaction fluid, the aqueous solution was extracted with ethyl acetate, and the extract was washed with water, dried, and concentrated. The oily matter thus obtained was purified by a silica gel column (eluent: ethyl acetate/ hexane = 1/2) to obtain 0.15 g of 1-{(tetrahydro-3-furanyl)methyl}-1,2-dibenzoyl- 2-methyl-3-nitroguanidine.

Reference Example 1 Preparation of 1-{(tetrahydro-3-furanyl)methyl}-2-(nitroimino)-3,5-dimethylhexahydro-1,3,5-triazine (Compound No. A1):

A mixture comprising 3.00 g of 1-{(tetrahydro-3-furanyl)methyl}-2-(nitroimino)-5-methylhexahydro-1,3,5-triazine, 0.54 g of sodium hydride and 40 ml of DMF was stirred at 50 °C for 30 minutes. Then, 2.08 g of methyl iodide were added thereto, followed by stirring at 70 °C for 2 hours. The reaction fluid was poured into a saturated saline solution and the mixture was extracted with methylene chloride several times. The methylene chloride solution was dried over anhydrous sodium sulfate and concentrated under a reduced pressure. The crude oily matter thus obtained was purified by column chromatography to obtain 1.43 g of 1-{(tetrahydro-3-furanyl)methyl}-2-(nitroimino)-3,5-dimethylhexahydro-1,3,5-triazine.

Reference Example 2 Preparation of (tetrahydro-3-furanyl)methylamine (Compound No. B1):

10

15

20

25

30

35

40

45

50

55

1 ml of 25% aqueous NaOH solution was added to a suspension of 1.50 g of N-{(tetrahydro-3-furanyl)-methyl}phthalimide in 8 ml of water, followed by stirring at 70 °C for 3 hours. The reaction fluid was added dropwise to an aqueous 10% HCl solution at 70 °C and the mixture was stirred for 5 hours at the same temperature. While the reaction fluid was hot, 12 ml of toluene was added thereto. The aqueous layer was separated, made weakly alkaline with an aqueous 50% NaOH solution, and extracted with dichloromethane. The extract was dried and concentrated under a reduced pressure to obtain 0.55 g of (tetrahydro-3-furanyl)-methaylamine.

Reference Example 3 Preparation of {4-(2-methyl)tetrahydrofurylmethyl}amine hydrochloride (Compound No. B4):

- (1) A solution of 14.1 g of methanesulfonyl chloride in 10 ml of tetrahydrofuran was added dropwise under ice-cooling over 30 minutes to a solution of 13.0 g of {4-(2-methyl)tetrahydrofuran}methanol and 12.5 g of triethylamine in 85 ml of tetrahydrofuran. The reaction fluid was stirred for an hour under ice-cooling and for 2 hours at room temperature. Then, insoluble matters were separated by filtration and the filtrate was concentrated under a reduced pressure to obtain an oily matter. A suspension of this oily matter and 20.7 g of potassium phthalimide in 115 ml of dimethylformamide was stirred at 80 °C for 3 hours. The reaction fluid was cooled to room temperature, to which ethyl acetate was added, and the mixture was washed with water. The organic layer was dried over anhydrous magnesium sulfate and concentrated under a reduced pressure to obtain an oily matter. This was purified by silica gel column chromatography (eluent: hexane/ethyl acetate = 2/1) and recrystallization (from ethylacetate and hexane) to obtain 22.1 g of N-{4-(2-methyl)tetrahydrofurylmethyl}phthalimide as colorless crystals.
- (2) A solution of 21.0 g of N-{4-(2-methyl) tetrahydrofurylmethyl}phthalimide and 4.86 g of hydrazine monohydrate (98%) in 100 ml of ethanol was refluxed for 2 hours. The reaction fluid was cooled to room temperature, to which 8.6 ml of concentrated hydrochloric acid were added, and the mixture was stirred for 1.5 hours at room temperature. Insoluble matters were separated by filtration and the filtrate was concentrated under a reduced pressure to remove ethanol. An aqueous sodium hydroxide solution was added to the resulting filtrate to make it alkaline. The aqueous solution thus obtained was extracted with dichloromethane, and the organic layer was dried over anhydrous potassium carbonate and concentrated under an atmospheric pressure to obtain an oily matter. 60 ml of ethyl acetate was added to the oily matter, followed by addition of 30 ml of a solution of hydrogen chloride in ethyl acetate (4 M) under icecooling. The crystals thus precipitated out were separated by filtration to obtain 5.70 g of {4-(2-methyl)-tetrahydrofurylmethyl}amine hydrochloride as colorless crystals.

Reference Example 4 Preparation of {2-methyl-(4-tetrahydrofuran)}methanol (Compound No. C1):

(1) A solution of 25.0 g of diethyl malonate in 5 ml of dimethylformamide was added dropwise under ice-cooling over 20 minutes to a suspension of 6.55 g of sodium hydride in 90 ml of dimethylformamide. The reaction fluid was stirred for an hour under ice-cooling, to which a solution of 17.3 g of chloroacetone in 5 ml of dimethylformamide was added, and the mixture was stirred for an hour under ice-cooling and for 6 hours at room temperature. Ethyl acetate was added to the reaction fluid and the mixture was washed with water. The organic layer was dried over anhydrous magnesium sulfate. An oily matter obtained by concentrating the organic layer under a reduced pressure was distilled under vacuum to obtain 14.8 g of diethyl 2-oxopropylmalonate as a yellow oily matter.

```
\delta_{TMS}, CDCl<sub>3</sub>(ppm): 1.27 (6H, t, J=7.3), 2.21 (3H, s), 3.06 (2H, d, J=7.3), 3.86 (1H, t, J=7.3), 4.20 (4H, q, J=7.3) (4H, q, J=7.3)
```

ν_{MAX}, neat(cm⁻¹): 2985, 2940, 1732, 1467, 1448, 1406, 1370, 1332, 1273, 1237, 1161, 1098, 1050, 1026, 867

b.p.: 125 - 135 °C (5 mmHg)

(2) A solution of 11.4 g of diethyl 2-oxopropylmalonate in 30 ml of tetrahydrofuran was added dropwise under ice-cooling over 20 minutes to a suspension of 5.00 g of lithium aluminum hydride in 100 ml of tetrahydrofuran. The reaction fluid was stirred for an hour under ice-cooling and for 4.5 hours at room temperature, and 10 ml of water was added thereto dropwise under ice-cooling over 20 minutes. The reaction fluid was refluxed for an hour and filtrated. The unfiltered solid was suspended in 200 ml of ethanol and the suspension was refluxed. The suspension was filtrated, and the filtrate combined with the foregoing filtrate was concentrated under a reduced pressure to obtain 7.08 g of 2-hydroxymethyl-1,4-

pentanediol as a colorless oily matter.

 ν_{MAX} , neat (cm⁻¹): 3313, 2969, 2928, 1706, 1457, 1420, 1375, 1091, 1050

(3) A mixture comprising 7.08 g of 2-hydroxymethyl-1,4-pentanediol and 7.3 ml of phosphoric acid (85%) was stirred at 120 °C for 3 hours. The reaction mixture was cooled to room temperature, to which water was added, and the mixture was extracted with dichloromethane. The organic layer was dried over anhydrous magnesium sulfate and concentrated under a reduced pressure. An oily matter thus obtained was distilled under vacuum to obtain 2.69 g of {2-methyl-(4-tetrahydrofuran)m}ethanol as a colorless oily matter.

10 Reference Example 5 Preparation of N-{(tetrahydro-3-furanyl)methyl}phthalimide (Compound No. D4):

A mixture comprising 30.0 g of (tetrahydro-3-furanyl)methyl tosylate, 23.0 g of potassium phthalimide and 150 ml of DMF was stirred at 80°C for 8 hours. Water was poured into the reaction mixture, and crystals precipitated out was separated by filtration to obtain 27.0 g of N-{(tetrahydro-3-furanyl)methyl}phthalimide.

Reference Example 6 Preparation of (tetrahydro-3-furanyl)methyl tosylate (Compound No. D5):

A mixture comprising 50 g of (tetrahydro-3-furanyl)methanol, 95 g of tosyl chloride, 52 g of triethylamine and 450 ml of THF was refluxed for 8 hours. After separation of insolubles by filtration, the reaction fluid was concentrated under a reduced pressure, and the residue was purified by silica gel column chromatography (eluent: ethyl acetate/hexane = 1/7) to obtain 114.5 g of (tetrahydro-3-furanyl)methyl tosylate.

Reference Example 7 Preparation of (tetrahydro-3-furanyl)methyl bromide (Compound No. D6):

To a mixture comprising 10 g of phosphorus tribromide, 0.8 g of pyridine and 100 ml of ether were added dropwise 10 g of (tetrahydro-3-furanyl)methanol over 30 minutes. The resulting mixture was stirred for 5.5 hours. The reaction fluid was concentrated under a reduced pressure, and the residue was purified by silica gel column chromatography (eluent: ethyl acetate/hexane = 1/1) to obtain 8.6 g of (tetrahydro-3-furanyl)methyl bromide.

Specific examples of the compounds of the formula (1) prepared in accordance with the same procedures as described in Examples 1 through 22 and Reference Examples 1 through 7 and examples of intermediates thereof are illustrated in Tables 1-4 along with the compounds of the Examples and Reference Examples.

40

5

45

50

Table 1 (Z=CH-NO₂, $X_1=X_2=X_3=X_4=X_5=X_6=X_7=H$ in formula (1))

5	Compound No.	Physical Properties
10	R ₂	
	1	δ _{TMS} (DMSO-d ₆)(ppm):1.51-1.63(1H,m),1.90-2.04(1H,m)
15	H	2.42-2.54(1H,m),2.67-2.91(3H,br),3.05-3.25(2H,br)
	NHMe	3.40-3.47(1H,br),3.59-3.81(3H,br),6.45-6.55(1H,br) 7.15-7.28(1H,br),9.90-10.1(1H,br)
20		ν _{max} (KBr) (cm ⁻¹):3186,1637,1584,1222,997
		m.p.:140.0-141.0°C
25	2	$\delta_{\text{TMS}}(\text{CDCl}_3)(\text{ppm}): 1.21-1.41(3\text{H,m}), 1.65-1.82(1\text{H,m})$
	Н	2.05-2.25(1H,m),2.50-2.71(1H,m),3.02-3.35(4H,m)
30	NHEt	3.55-4.01(4H,m),5.41-5.82(1H,br),6.58(1H,s),10.00- 10.90
		(1H, br) ν _{max} (neat) (cm ⁻¹):3274,1615,1233
35		n _D (18.4°C):1.5455
40	3	$\delta_{\text{TMS}}(\text{CDCl}_3)$ (ppm):1.57-1.69(1H,m),2.11-2.29(1H,m)
40	Н	2.45-2.67(1H,m),2.94(6H,s),3.19-3.35(2H,m),3.56
!	NMe ₂	(1H,dd,J=5.2Hz,J=8.8Hz),3.70-3.99(3H,m),6.51(1H,s)
45		9.63 (1H,br)
		ν _{max} (neat) (cm ⁻¹):3261,1615,1515,1435,1271

50

Table 1 (continued) (Z=CH-NO $_2$, $X_1=X_2=X_3=X_4=X_5=X_6=X_7=H$ in formula (1))

5	Compound No.	Physical Properties
10	R ₂	
	4	$\delta_{\text{TMS}}(\text{CDCl}_3)(\text{ppm}): 1.60-1.72(1\text{H,m}), 1.96-2.01(4\text{H,m})$
15	H	2.12-2.24(1H,m),2.51-2.67(1H,m),3.26-3.37(2H,m)
	pyrolidinyl	3.41-3.46(4H,m),3.59(1H,dd,J=5.2Hz,J=8.8Hz),3.71- 3.95(3H,m),6.60(1H,s),10.18(1H,br)
20		ν _{max} (neat) (cm ⁻¹):3267,1597,1457,1270,1235
25	5 ·	$\delta_{\text{TMS}}(\text{CDCl}_3)(\text{ppm}): 1.52-1.65(1\text{H,m}), 2.01-2.14(1\text{H,m})$
25	Me	2.58-2.79(1H,m),2.88(3H,s),3.33(2H,d,J=7.3Hz),3.49-
	H	3.54(1H,m),3.73-3.83(2H,m),3.89-3.97(1H,m),6.63(1H,
30	· ·	d,J=10.3Hz),8.14(1H,d,J=10.3Hz)
		ν_{max} (neat) (cm ⁻¹):1624,1302,1252
35	6	δ _{TMS} (CDC1 ₃)(ppm):1.48-1.58(1H,m),2.01-2.12(1H,m)
	Me	2.61-2.70(1H,m),2.93(3H,s),3.01(3H,d,J=5.1Hz),3.20
40	NHMe	(2H,dd,J=1.5Hz,J=8.8Hz),3.48(1H,dd,J=5.1Hz,J=8.8Hz)
40		3.71-3.82(2H,m),3.89(1H,dt,J=5.1Hz,J=8.8Hz),6.53
		(1H,s),9.73(1H,br)
45		ν_{max} (neat) (cm ⁻¹):3420,1616,1437,1220
		$n_D(21.4^{\circ}C):1.5698$

50

Table 1 (continued) (Z=CH-NO₂, $X_1=X_2=X_3=X_4=X_5=X_6=X_7=H$ in formula (1))

5	Compound No. R_1 R_2	Physical Properties
15	7 H N(Me)Bu-n	$\delta_{\text{TMS}}(\text{CDCl}_3, \text{ppm}): 1.26 (3\text{H,t,J=7.3}), 1.25-1.35 (2\text{H,m})$ $1.55-1.68 (3\text{H,m}), 2.04-2.17 (1\text{H,m}), 2.50-2.64 (1\text{H,m}), 2.89$ $(3\text{H,s}), 3.15-3.28 (2\text{H,m}), 3.38 (2\text{H,t,J=7.3}), 3.56 (1\text{H,dd})$ $J=5.1, J=8.8), 3.70-3.94 (3\text{H,m}), 6.53 (1\text{H,s}), 9.71 (1\text{H,br.})$ $\nu_{\text{max}}(\text{neat}, \text{cm}^{-1}): 3276, 1682, 1560, 1254$
25	8 Me	δ _{TMS} (CDCl ₃)(ppm):1.01(3H,t,J=7.3Hz),1.47-1.59(1H,m) 1.65-1.78(2H,m),1.98-2.10(1H,m),2.65(1H,septet,J=6.6
30	NHPr-n	Hz),2.92(3H,s),3.18-3.26(4H,m),3.49(1H,dd,J=5.1Hz,J=8.1Hz),3.70-3.81(2H,m),3.89(1H,dt,J=5.1Hz,J=8.1Hz) 6.52(1H,s),9.60(1H,br)
35		ν_{max} (KBr) (cm ⁻¹):3430,1588,1235
40	9 Me NHCH ₂ -proparg- y1	δ _{TMS} (CDCl ₃ ,ppm):1.50-1.62(1H,m),1.95-2.12(1H,m) 2.38(1H,t,J=2.2Hz),2.66(1H,septet,J=6.6Hz),2.96(3H,s),3.26(1H,dd,J=5.1Hz,J=8.1Hz),3.49(1H,dd,J=5.1Hz,J=8.1Hz),3.72-3.94(4H,m),4.03(2H,dd,J=2.2Hz,J=6.6Hz)
45	y1	6.51(1H,s),9.57(1H,br.) ν_{max} (neat,cm ⁻¹):3430,2170,1586,1332,1239 n_{D} (20.7°C):1.5682
50		

Table 1 (continued) (Z=CH-N0 $_2$, $X_1=X_2=X_3=X_4=X_5=X_6=X_7=H$ in formula (1))

5	Compound No.	Physical Properties
10	R ₂	
15	10 Me	δ _{TMS} (CDCl ₃ , ppm):1.46-1.60(1H,m),1.99-2.07(1H,m),2.5 7-2.67(1H,m),2.92(3H,s),3.20(2H,dd,J=3.7Hz,J=8.1Hz)
	NHCH2CH2OCH3	3.38-3.49(3H,m),3.41(3H,s),3.58(2H,t,J=5.1Hz),3.71- 3.82(2H,m),3.88(1H,dt,J=5.1Hz,J=8.1Hz),6.51(1H,s)
20		9.53(1H, br.) ν_{max} (neat, cm ⁻¹):3261,1587,1251
25	11	δ _{TMS} (CDCl ₃ ,ppm):1.42-1.57(1H,m),2.00-2.12(1H,m)
	Me	2.59-2.71(1H,m),2.95(6H,s),2.96(3H,s),3.17-3.25(2H,
30	NMe ₂	m),3.42(1H,dd,J=5.1,J=8.8),3.68-3.87(3H,m),6.34(1H,s)
35		ν _{max} (neat,cm ⁻¹):1524,1403,1256
	12	δ _{TMS} (CDCl ₃)(ppm):1.20(3H,t,J=7.3Hz),1.47-1.62(1H,m)
40	Et	1.97-2.10(1H,m),2.54-2.67(1H,m),3.01(3H,d,J=5.1Hz)
	NHMe	3.05-3.17(2H,m),3.25(2H,q,J=7.3Hz),3.49(1H,dd,J=5.1 Hz,J=8.1Hz),3.69-3.79(2H,m),3.89(1H,dt,J=5.1Hz,J=8.1
45		Hz), 6.55(1H,s), 9.89(1H,br) $\nu_{\text{max}} \text{ (neat) (cm}^{-1}\text{):3422,1602,1517,1236}$

55

Table 1 (continued) (Z=CH-NO₂, $X_1=X_2=X_3=X_4=X_5=X_6=X_7=H$ in formula (1))

5	Compound No.	Physical Properties
10	R ₂	
	1 3	$\delta_{\text{TMS}}(\text{CDC1}_3)(\text{ppm}): 1.19(3\text{H,t,J=7.3Hz}), 1.34(3\text{H,t,J=7.3})$
15	Et .	Hz),1.47-1.59(1H,m),1.97-2.09(1H,m),2.62(1H,septet,
	NHEt	J=6.6Hz),3.08-3.17(2H,m),3.20-3.36(4H,m),3.48(1H,dd, J=5.1Hz,J=8.1Hz),3.66-3.82(2H,m),3.88(1H,dt,J=5.1Hz,
20		J=8.1Hz),6.53(1H,s),9.69(1H,br)
		ν _{max} (neat)(cm ⁻¹):3444,1591,1235
25	1 4	δ _{TMS} (CDCl ₃)(ppm):1.01(3H,t,J=7.3Hz),1.19(3H,t,J=7.3
	Et	Hz),1.50-1.78(3H,m),1.94-2.08(1H,m),2.62(1H,septet,
30	NHPr-n	J=6.6Hz),3.13(2H,dq,J=5.1Hz,J=7.3Hz),3.20-3.31(4H,m)
		3.48(1H,dd,J=5.1Hz,J=8.1Hz),3.69-3.78(2H,m),3.88(1H,
		dt, J=5.1Hz, J=8.1Hz), 6.54(1H,s), 9.76(1H,br)
35		ν _{max} (KBr)(cm ⁻¹):3430,1589,1223
40	15	$\delta_{\text{TMS}}(\text{CDCl}_3) \text{ (ppm): 0.91(3H, t, J=7.3Hz), 1.47-1.66(3H,m)}$
	Pr-n	1.97-2.07(1H,m),2.63(1H,septet,J=6.6Hz),3.00(3H,d,J=
	NHMe	5.1Hz),3.11-3.18(4H,m),3.48(1H,dd,J=5.1Hz,J=8.1Hz)
45		3.69-3.84(2H,m),3.88(1H,dt,J=5.1Hz,J=8.8Hz),6.55(1H,
		s),9.88(1H,br)
		ν _{max} (neat) (cm ⁻¹):3258,1593,1236
50		

Table 1 (continued) (Z=CH-NO₂, $X_1=X_2=X_3=X_4=X_5=X_6=X_7=H$ in formula (1))

5	Compound No. R_1 R_2	Physical Properties
	16	$\delta_{\text{TMS}}(\text{CDCl}_3)(\text{ppm}): 0.90(3\text{H}, \text{t}, \text{J}=7.3\text{Hz}), 1.34(3\text{H}, \text{t}, \text{J}=7.3)$
15	Pr-n NHEt	Hz),1.49-1.68(3H,m),1.96-2.08(1H,m),2.63(1H,septet, J=6.6Hz),3.10-3.19(4H,m),3.31(2H,dq,J=5.1Hz,J=7.3Hz) 3.47(1H,dd,J=5.1Hz,J=8.1Hz),3.73(2H,q,J=8.1Hz),3.88
20		$(1H, dt, J=5.1Hz, J=8.1Hz), 6.54(1H,s), 9.69(1H,br)$ $\nu_{\text{max}} (\text{neat}) (\text{cm}^{-1}): 3447, 1590, 1231$
25	17 Pr-n	δ _{TMS} (CDC1 ₃)(ppm):0.92(3H,t,J=7.3Hz),1.51-1.73(3H,m) 2.00-2.12(1H,m),2.44(3H,s),2.66(1H,septet,J=6.6Hz)
30	SMe	3.42-3.60(5H,m),3.70-3.83(2H,m),3.88(1H,dt,J=5.1Hz, J=8.1Hz),6.79(1H,s)
35		ν _{max} (neat) (cm ⁻¹):1542,1260
40	18 (CH ₂) ₃ 0Me NHMe	δ _{TMS} (CDC13) (ppm): 1.47-1.59(1H, m), 1.83(2H, quintet, J=6.6Hz), 1.98-2.11(1H, m), 2.59-2.70(1H, m), 2.80(3H, d, J=5.1Hz), 3.01(2H, d, J=6.6Hz), 3.16(1H, dd, J=3.7Hz, J=8.1
45		Hz),3.31(3H,s),3.31-3.43(3H,m),3.48(1H,dd,J=5.1Hz,J=8.1Hz),3.70-3.92(3H,m),6.56(1H,s),9.85(1H,br) \(\nu_{\text{max}}\) (neat) (cm ⁻¹):3421,1637,1205

50

Table 1 (continued) (Z=CH-NO₂, $X_1=X_2=X_3=X_4=X_5=X_6=X_7=H$ in formula (1))

5	Compound No.	Physical Properties
:	Rı	
10	R ₂	
15	19 (CH ₂) ₃ 0Me	$\delta_{\text{TMS}}(\text{CDCl}_3)(\text{ppm}): 1.53-1.62(1\text{H,m}), 1.87(2\text{H,quintet,J}=6.6\text{Hz}), 1.97-2.11(1\text{H,m}), 2.44(3\text{H,s}), 2.58-2.70(1\text{H,m}), 2.62(6\text{Hz}), 2.$
20	SMe	$3.32(3H,s), 3.39(2H,t,J=6.6Hz), 3.43-3.53(3H,m), 3.63(2H,t,J=6.6Hz), 3.70-3.93(3H,m), 6.80(1H,s)$ $\nu_{\text{max}}(\text{neat})(\text{cm}^{-1}):1542,1270,1114$

Table 1 (continued) (Z=N-NO₂, $X_1=X_2=X_3=X_4=X_5=X_6=X_7=H$ in formula (1))

5	Compound No. R_1 R_2	Physical Properties
15	20 H NHMe	δ_{TMS} (CDCl ₃ ,ppm):1.62-1.74(1H,m),2.09-2.22(1H,m) 2.59-2.79(1H,m),2.96(3H,d,J=5.1Hz),3.35(2H,t,J= 5.1Hz),3.66-3.80(3H,m),3.92-4.08(1H,m) ν_{max} (KBr,cm ⁻¹):3339,3280,1618,1316,1231,1169
20		m.p.:99.5-100.7°C
25	2 1 H N(Me)Bu-n	δ _{TMS} (CDCl ₃ ,ppm):0.95(3H,t,J=7.3),1.22-1.42(2H,m) 1.58-1.77(3H,m),2.07-2.18(1H,m),2.50-2.62(1H,m),3.05 (3H,s),3.29-3.46(4H,m),3.65-3.77(3H,m),3.94(1H,dt, J=5.1,J=8.1),6.51(1H,br.)
35	2.2 H	ν_{max} (neat, cm ⁻¹):3285,1626,1307 δ_{TMS} (CDC1 ₃ ,ppm):1.59-1.72(1H,m),2.06-2.18(1H,m) 2.56-2.72(1H,m),3.40(2H,t,J=6.6Hz),3.64(1H,dd,J=
40	NHOMe	8.8Hz, J=4.4Hz),3.70-3.97(3H,m),3.88(3H,s),6.10(1H,br),10.71(1H,br) \(\nu_{max}\) (neat, cm^{-1}):3293,1602,1525,1433,1215
45		m.p.:95-106°C(dec.)

50

Table 1 (continued) (Z=N-NO $_2$, $X_1=X_2=X_3=X_4=X_5=X_6=X_7=H$ in formula (1))

5	Compound No.	Physical Properties
10	R ₁ R ₂	
15	23 H N(Me) ₂	δ_{TMS} (CDCl ₃ ,ppm):1.55-1.78(1H,m),2.06-2.23(1H,m) 2.48-2.65(1H,m),3.10(6H,s),3.29-3.50(2H,m),3.58-3.82 (3H,m),3.85-4.00(1H,m),6.77(1H,br-s)
20		ν_{max} (KBr, cm ⁻¹):3274,2940,1637,1387,1075 m.p.:127.1-128.8°C
25	24 ·	δ _{TMS} (CDCl ₃ ,ppm):1.56-1.71(2H,m),2.01-2.18(2H,m) 2.48-2.68(2H,m),3.07(3H,s),3.20-3.47(3H,m),3.60-4.01
30	N(Me)(tetrahy-dro-3-furany1) methy1	(9H,m),6.21-6.83(1H,m) \(\nu_{\text{max}}\) (neat, cm^{-1}):3276,2941,2869,1623,1396,1288,1074, 910
35	25 H	δ _{TMS} (CDCl ₃ ,ppm):1.48-1.70(1H,m),1.94-2.17(1H,m) 2.41-2.68(1H,m),3.02(3H,s),3.20-3.97(6H,m),4.62(2H,
40	N(Me)benzyl	s),6.72(1H,br-s),7.21-7.41(5H,m) ν_{max} (neat,cm ⁻¹):3283,1623,1396,1297
45	26 Me NH ₂	δ _{TMS} (DMSO-d ₆ , ppm): 1.47-1.60 (1H, m), 1.85-1.96 (1H, m) 2.51-2.62 (1H, m), 2.97 (3H, s), 3.33-3.51 (3H, m), 3.58-3.71 2H, m), 3.77 (1H, dt, J=5.1Hz, J=8.1Hz), 8.37 (2H, br.)
50		ν _{max} (neat,cm ⁻¹):3367,1623,1577,1270

Table 1 (continued) (Z=N-NO $_2$, $X_1=X_2=X_3=X_4=X_5=X_6=X_7=H$ in formula (1))

5	Compound No. R_1 R_2	Physical Properties
10	2 7	δ _{TMS} (CDC1 ₃ ,ppm):1.50-1.62(1H,m),1.95-2.10(1H,m)
15	Me NMe ₂	2.56-2.69(1H,m),2.96(6H,s),2.99(3H,s),3.26-3.40(2H,m),3.47(1H,dd,J=5.1,J=8.8),3.70-4.02(3H,m) $\nu_{\text{max}} (\text{neat},\text{cm}^{-1}):1439,1244$
20 .		S (CDC) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
25	28 Et NH ₂	δ_{TMS} (CDC1 ₃) (ppm): 1.20(3H, t, J=7.3Hz), 1.55-1.71(1H, m) 1.97-2.08(1H, m), 2.58-2.70(1H, m), 3.32(1H, dd, J=8.1Hz, J=14.7Hz), 3.42-3.50(3H, m), 3.56(1H, dd, J=5.1Hz, J=8.1 Hz), 3.71-3.83(2H, m), 3.93(1H, dt, J=5.1Hz, J=8.1Hz), 8.24
30		(2H, br) ν _{max} (neat) (cm ⁻¹):3385,1616,1575,1263
35	2 9 Et	δ _{TMS} (CDCl ₃)(ppm):1.17(3H,t,J=7.3Hz),1.48-1.72(1H,m) 1.95-2.12(1H,m),2.38-2.52(1H,m),2.98(3H,d,J=5.1Hz)
40	NHMe	3.21-3.39(2H,m),3.52-3.92(6H,m) ν _{max} (KBr)(cm ⁻¹):3299,1632,1320,1235 m.p.:118.5-125.0°C
45		Learner 1991 - 1991 - 1991 - 1991 - 1991 - 1991 - 1991 - 1991 - 1991 - 1991 - 1991 - 1991 - 1991 - 1991 - 1991

50

Table 1 (continued) (Z=N-NO₂, $X_1=X_2=X_3=X_4=X_5=X_6=X_7=H$ in formula (1))

10	Compound No. R_1 R_2	Physical Properties
15	3 O CH ₂ CH=CH ₂ NHMe	δ_{TMS} (CDC1 ₃ ,ppm):1.55-1.72(1H,m),1.92-2.09(1H,m) 2.48-2.62(1H,m),2.78(3H,s),3.19(1H,dd,J=8.0,J=13.9) 3.45(1H,dd,J=7.3,J=13.9),3.49-3.60(1H,m),3.70-3.95 (5H,m),5.15-5.27(2H,m),5.70-5.89(1H,m),8.53(1H,br-s) $_{\text{max}}$ (KBr,cm ⁻¹):3338,2935,1624,1541 semi-solid
25	3 1 benzyl	δ _{TMS} (CDCl ₃ ,ppm):1.38-1.56(1H,m),1.71-1.96(1H,m) 2.08-2.33(1H,m),2.63(3H*1/2,s),2.65(3H*1/2,s),2.73-
30	N(Me)benzyl	2.82(1H,m),2.94-3.04(1H,m),3.30-3.44(1H,m),3.64-3.79 (3H,m),4.27(1H,dd,J=15.4,J=3.7),4.59(1H,d,J=15.4) 4.91(1H*1/2,d,J=14.7),4.99(1H,s),5.08(1H*1/2,d,J=
35		14.7),7.18-7.38(10H,m) $\nu_{\text{max}}(\text{neat,cm}^{-1}):1656,1530,1283,1079$ m.p.:70-74°C
40	32	δ _{TMS} (CDCl ₃ ,ppm):0.98-1.07(4H,m),1.14-1.23(4H,m)
45	CO-cyclopropyl N(Me)CO-cyclo- propyl	1.60-1.75(2H,m),1.81-1.92(1H,m),2.01-2.14(1H,m),2.73 (1H,br),3.24(3H,br-s),3.53-3.58(1H,m),3.71-3.94(5H,m) $\nu_{\text{max}}(\text{neat},\text{cm}^{-1}):1698,1557,1284$
50		oily

Table 1 (continued) (Z=N-NO₂, $X_1=X_2=X_3=X_4=X_5=X_6=X_7=H$ in formula (1))

10	Compound No. R ₁ R ₂	Physical Properties
15	33 CO-cyclohexyl N(Me)CO-cyclo- hexyl	$\delta_{\text{TMS}}(\text{CDCl}_3,\text{ppm}):1.13-1.34(6\text{H,m}),1.42-1.92(15\text{H,m})\\ 2.00-2.13(1\text{H,m}),2.34-2.48(1\text{H,m}),2.57-2.75(2\text{H,m}),3.19\\ 3\text{H,s}),3.49-3.65(3\text{H,m}),3.71-3.93(3\text{H,m})\\ \nu_{\text{max}}(\text{neat},\text{cm}^{-1}):1704,1558,1451,1287$
25	3 4 COCH ₃ · N(Me)COCH ₃	δ_{TMS} (CDC1 ₃ ,ppm):1.52-1.68(1H,m),2.02-2.14(1H,m) 2.20(3H,s),2.40(3H,s),2.62-2.78(1H,m),3.16(3H,s) 3.48-3.95(6H,m) ν_{max} (neat, cm ⁻¹):1706,1558,1274 oily
35	3 5 COC ₂ H ₅ N(Me)COC ₂ H ₅	δ_{TMS} (CDCl ₃ ,ppm):1.11-1.26(6H,m),1.54-1.73(1H,m) 2.00-2.15(1H,m),2.33-2.80(5H,m),3.17(3H,br-s),3.47- 3.94(6H,m) ν_{max} (neat,cm ⁻¹):1709,1558,1461,1374,1285
45 50	36 $COCH(CH3)2$ $N(Me)COCH(Me)2$	$\delta_{\text{TMS}}(\text{CDCl}_3,\text{ppm}):1.15-1.26(12\text{H,m}),1.57-1.70(1\text{H,m})$ $2.02-2.14(1\text{H,m}),2.57-2.76(2\text{H,m}),2.95-3.12(1\text{H,m}),3.22$ $(3\text{H,s}),3.50-3.92(6\text{H,m})$ $\nu_{\text{max}}(\text{neat},\text{cm}^{-1}):1706,1559,1286,1068$ oily

Table 1 (continued) (Z=N-NO₂, $X_1=X_2=X_3=X_4=X_5=X_6=X_7=H$ in formula (1))

5	Compound No.	Physical Properties
10	R ₂	
	37	δ _{TMS} (CDCl ₃ ,ppm):1.50-1.72(1H,m),2.00-2.16(1H,m)
15	COCH=CH ₂	2.57-2.80(1H,m),3.19(3H,s),3.53-3.59(1H,m),3.68-3.96
	NCO(Me) CH=CH ₂	(5H,m),5.80-5.93(2H,m),6.26-6.63(4H,m)
		ν _{max} (neat, cm ⁻¹):1698,1554,1404,1284
20	38 .	δ _{TMS} (CDCl ₃ ,ppm):1.49-1.69(1H,m),2.07-2.18(1H,m)
	COOCH3.	2.60-2.83(1H,br),3.10-3.36(4H,br),3.47-3.62(2H,br)
25	N(Me)COOCH3	3.81(3H,s);3.84(3H,s),3.71-3.94(3H,m)
		ν _{max} (KBr,cm ⁻¹):1690,1542,1263,1057
30	39	δ _{TMS} (CDCl ₃ ,ppm):1.47-1.60(1H,m),2.04-2.17(1H,m)
	Н	2.44-2.57(1H,m),3.22-3.28(2H,m),3.26(3H,s),3.49(1H,
35	N(Me)COObenzy1	dd,J=5.1,J=8.8),3.78-3.82(2H,m),3.88(1H,dt,J=5.1,J=
		8.8),5.25(2H,s),7.35-7.42(5H,m),9.71(1H,br.)
		ν _{max} (neat, cm ⁻¹):3215,1733,1606,1260,1163
40	4 0	δ _{TMS} (CDCl ₃ ,ppm):1.50-1.80(1H,m),1.87-2.03(1H,m)
	COpheny1	2.51(3H,s),2.57-2.70(1H,m),3.03-3.12(1H,m),3.19-3.27
45	N(Me)COpheny1	(1H,m),3.37-3.54(1H,m),3.64-3.90(3H,m),7.43-7.75
		(10H.m)
		ν_{max} (KBr, cm ⁻¹):1698,1545,1450,1263
		m.p.:133-135°C (dec.)
50	L	l

Table 1 (continued) (Z=N-NO₂, $X_1=X_2=X_3=X_4=X_5=X_6=X_7=H$ in formula (1))

5	Compound No. R_1 R_2	Physical Properties
15 20	41 CO(p-t-butyl- phenyl) N(Me)CO(p-t- butylphenyl)	δ_{TMS} (CDC1 ₃ ,ppm):1.34(9H,s),1.35(9H,s),1.54-1.66(1H, m),1.85-1.96(1H,m),2.50(3H,s),2.50-2.62(1H,m),3.03 (1H,dd,J=6.6,J=13.9),3.18(1H,dd,J=8.1,J=13.9),3.35-3.43(1H,m),3.67-3.85(3H,m),7.46-7.64(8H,m) ν_{max} (KBr,cm ⁻¹):1696,1542,1267 m.p.:152.4-153.0°C
25	4 2	δ _{TMS} (CDCl ₃ ,ppm):1.55-1.72(1H,m),1.88-2.05(1H,m)
30	CO(p-C1-Pheny1) N(Me)CO(P-C1- pheny1)	2.53-2.70(1H,m),2.60(3H,s),3.13-3.33(2H,m),3.38-3.52 (1H,m),3.66-3.76(2H,m),3.81-3.89(1H,m),7.49(2H,d, J=8.1),7.51(4H,s),7.62(2H,d,J=8.1) ν_{max} (KBr,cm ⁻¹):1692,1550,1444,1267,1092
35		m.p.:149°C(dec.)
40	43 CO-furyl N(Me)COfuryl	δ _{TMS} (CDC1 ₃ ,ppm):1.64-1.80(1H,m),1.93-2.10(1H,m) 2.66-2.87(1H,m),3.16(3H,s),3.51-3.60(1H,m),3.71-3.93 (5H,m),6.55-6.60(2H,m),7.23-7.27(2H,m),7.60(2H,d,
45		J=2.2) ν _{max} (KBr,cm ⁻¹):1683,1546,1473,1277,1060

55

Table 1 (continued) (Z=N-NO₂, $X_1=X_2=X_3=X_4=X_5=X_6=X_7=H$ in formula (1))

5	Compound No.	Physical Properties
10	R ₂	
15	4 4 COMe NMe ₂	δ_{TMS} (CDC1 ₃ ,ppm):1.55-1.67(1H,m),2.00-2.12(1H,m) 2.16(3H,s),2.47-2.58(1H,m),3.13(6H,br.s),3.40-3.89 (6H,m) ν_{max} (KBr,cm ⁻¹):1692,1590,1501,1240
20		m.p.:89.0-89.7℃
25	4 5 COEt NMe ₂	δ_{TMS} (CDC1 ₃ ,ppm):1.19(3H,t,J=7.3),1.54-1.67(1H,m) 1.97-2.09(1H,m),2.17-2.58(3H,m),3.08(3H,br.s),3.18 (3H,s),3.43-3.55(2H,m),3.67-3.90(4H,m) ν_{max} (neat, cm ⁻¹):1685,1589,1508,1247
30		0 (CDC)
35	46 CO-phenyl NMe ₂	δ_{TMS} (CDC1 ₃ ,ppm):1.64-1.77(1H,m),2.00-2.13(1H,m) 2.55-2.76(7H,m),3.53-3.62(1H,m),3.74-3.95(5H,m),7.36 -7.78(5H,m) ν_{max} (neat, cm ⁻¹):1681,1499,1255
40	47	δ _{TMS} (CDCl ₃ ,ppm):1.55-1.68(1H,m),2.00-2.18(1H,m)
45	CON(CH ₃) ₂ NHMe	2.42-2.64(1H,m),2.81(6H*1/3,s),3.02(6H*2/3,s),3.02 (6H*1/3,s),3.19(6H*2/3,s),3.25-3.32(2H,m),3.50-3.57 (1H,m),3.71-3.93(3H,m),8.99(1H,br) \(\nu_{max}\) (neat, cm ⁻¹):1683,1589,1489,1385,1254,1124
50		oily

Table 1 (continued) (Z=N-NO₂, $X_1=X_2=X_3=X_4=X_5=X_6=X_7=H$ in formula (1))

5	Compound No.	Physical Properties
	R ₁	
10	R ₂	
	4 8	$\delta_{\text{TMS}}(\text{CDC1}_3, \text{ppm}): 1.20-1.34(3\text{H,m}), 1.55-1.70(1\text{H,m})$
15	Et	2.04-2.17(1H,m),2.17(3H,s),2.55-2.85(1H.,m),3.11(3H,
	N(Me)COMe	br.s),3.25-3.60(4H,m),3.70-3.95(4H,m)
20		ν _{max} (neat, cm ⁻¹):1695,1564,1506,1256

Table 1 (continued) (Z=N-CN, $X_1=X_2=X_3=X_4=X_5=X_6=X_7=H$ in formula (1))

5	Compound No. R ₁ R ₂	Physical Properties
15	49 H Me	δ _{TMS} (CDCl ₃ ,ppm):1.55-1.66(1H,m),2.04-2.14(1H,m) 2.34(3H,s),2.51-2.62(1H,m),3.36(2H,t,J=6.6Hz),3.59 (1H,dd,J=5.1Hz,J=8.8Hz),3.69-3.81(2H,m),3.92(1H,dt,J=5.1Hz,J=8.8Hz),6.04(1H,br.)
20		ν _{max} (KBr,cm ⁻¹):3260,2169,1609,1561
25 30	50 H SMe	δ_{TMS} (CDC1 ₃ ,ppm):1.61-1.74(1H,m),2.06-2.19(1H,m) 2.50(3H,br.),2.60(1H,br.),3.38(2H,br.),3.62-3.81(3H,m),3.94(1H,dt,J=5.1Hz,J=8.1Hz),6.30(1H*1/2,br.),6.88 (1H*1/2,br.) ν_{max} (KBr,cm ⁻¹):3263,2165,1553 m.p.:112.8-114.0°C
	51	δ _{TMS} (DMSO-d ₆ , ppm):1.50-1.60(1H, m),1.88-2.00(1H, m)
40	Me Me	2.35(3H*3/5,s),2.36(3H*3/5,s),2.50-2.62(1H,m),2.97 (2/5*3H,s),3.10(3/5*3H,s),3.35-3.55(3H,m),3.58-3.74 (3H,m)
45		ν _{max} (neat, cm ⁻¹):2175,1577

50

Table 1 (continued) (Z=N-CN, $X_1=X_2=X_3=X_4=X_5=X_6=X_7=H$ in formula (1))

Compound No.	Physical Properties
R_1	
R ₂	
52	δ _{TMS} (CDCl ₃ ,ppm):0.92(3H,t,J=7.3Hz),1.54-1.67(3H,n
Pr-n	2.00-2.10(1H,m),2.54-2.68(1H,m),3.15(3H,d,J=4.4Hz)
	3.19-3.40(4H,m),3.57(1H,dd,J=4.4Hz,J=8.8Hz),3.68(1
NHMe	dd, J=5.9Hz, J=8.8Hz), 3.78(1H, dt, J=5.9Hz, J=8.1Hz), 3.
	(1H,dt,J=5.9Hz,J=8.1Hz),5.33(1H,br.)
	ν_{max} (neat, cm ⁻¹):3289,2168,1553,1423

Table 1 (continued) (Z=CH-NO₂, X_1 =Me, X_2 = X_3 = X_4 = X_5 = X_5 = X_7 =H in formula (1))

Compound No.	Physical Properties
R_1	
R ₂	
5 3	δ _{TMS} (CDCl ₃ ,ppm):1.26-1.33(3H,m),1.64-1.76(1H,m)
H	2.14-2.30(2H,m),2.88-2.96(3H,m),3.20-3.26(2H,m),3
NHMe	-3.98(3H,m),6.59(1H,s),10.23-10.33(1H,m)
	ν_{max} (KBr,cm ⁻¹):3277,3212,3096,2968,2872,1626,159
	1433,1375,1239,1171,1139,1010,867,755,735
	m.p.:127.3°C-127.9°C

Table 1 (continued) (Z=CH-NO₂, X_5 =Me, X_1 = X_2 = X_3 = X_4 = X_6 = X_7 =H in formula (1))

5	Compound No. R_1 R_2	Physical Properties
15	5 4 H NHMe	δ _{TMS} (DMSO-d ₆ ,ppm):1.00(3H,d,J=6.6Hz),1.90-2.05(2H,m),2.65-2.85(3H,br.),3.15-3.45(3H,m),3.75-3.90(3H,m)6.47(1H,br.)
20		ν _{max} (KBr,cm ⁻¹):3274,1628,1586,1367,1230,1011 m.p.:127.5-129.0°C
25	55 Et NHMe	δ _{TMS} (CDCl ₃ ,ppm):1.00-1.10(3H,m),1.19(3H,t,J=7.3Hz) 1.87-2.07(2H,m),3.00(3H,d,J=5.1Hz),3.20-4.02(8H,m) 6.54(1H,s),9.88(1H,br.)
30		ν _{max} (neat, cm ⁻¹):3422,1597,1236,1019

Table 1 (continued) (Z=N-NO₂, X_5 =Me, X_1 = X_2 = X_3 = X_4 = X_6 = X_7 =H in formula (1))

40	Compound No. R ₁ R ₂	Physical Properties
45	56 H NHMe	δ _{TMS} (CDCl ₃ ,ppm):1.11(3H,d,J=6.6),2.01-2.14(2H,m) 2.96(3H,d,J=5.1),3.28-3.38(3H,m),3.67(1H,dd,J=4.4, J=8.8),3.90(1H,dd,J=6.6,J=8.8),4.07(1H,t,J=6.6)
50		ν _{max} (neat, cm ⁻¹):3304,1618,1420,1233

Table 1 (continued) (Z=CH-NO₂, X_7 =Me, X_1 = X_2 = X_3 = X_4 = X_5 = X_6 =H in formula (1))

5	Compound No. R_1	Physical Properties
10	1(2	
	5 7	$\delta_{\text{TMS}}(\text{CDCl}_3, \text{ppm}): 1.12-1.30(3\text{H,m}), 1.63-1.90(1\text{H,m})$
15	Н	2.19-2.29(1H,m),2.64(1H,br.),2.87(3H*1/2,d,J=4.4Hz)
	NHMe	3.00(3H*1/2,d, J=4.4Hz).3.19-3.45(2H,m),3.68-4.13(3H,m),6.60(1H,s),10.20-10.25(1H,br.)
20		ν _{max} (KBr, cm ⁻¹):3189,2968,1637,1583,1541,1420,1387
		1222,1171,999,750,700
		m.p.:114.0-120.5°C
25		

Table 1 (continued) (Z=N-NO₂, X_7 =Me, X_1 = X_2 = X_3 = X_4 = X_5 = X_6 =H in formula (1))

5	Compound No.	Physical Properties
10	R ₂	
15	58 Н	δ _{TMS} (CDCl ₃ ,ppm):1.23(3H*2/3,d,J=6.6),1.31(3H*1/3,d, J=5.9),1.81-1.90(1H*2/3,m),2.24-2.34(1H*1/3,m),2.57-
	NHMe	2.71(1H,m),2.96(3H,d,J=5.1),3.32-3.35(2H,m),3.52- 3.57(1H,m),3.75-3.77(1H,m),3.96-4.02(1H,m),4.11-4.19
20		(1H,m)
25		ν _{max} (neat,cm ⁻¹):3305,2967,2934,2869,1618,1561,1419 1328,1236,1174,1145,787
	5 9	δ _{TMS} (CDCl ₃ ,ppm):1.16-1.28(10H,m),1.76-1.78(1H,m)
30	COC₂H₅	2.26-2.85(5H,m),3.17(3H,brs),3.45-4.15(5H,m)
	NCO(Me)C₂H₅	ν _{max} (neat, cm ⁻¹):2975,2944,2875,1710,1559,1457,1376
		1286,1208,1179,1106,1059,953,887,834,816
35		

Table 1 (continued) (Z=CH-N02, $X_5=X_7=Me$, $X_1=X_2=X_3=X_4=X_6=H$ in formula (1))

5	Compound No.	Physical Properties
	R ₁	·
10	R ₂	
	60	$\delta_{\text{TMS}}(\text{CDCl}_3, \text{ppm}): 0.80-1.25(6\text{H}, m), 1.97-2.02(1\text{H}, m)$
15	Н	2.42-2.60(1H,m),2.87-2.96(3H,m),3.08-3.51(3H,m)
	NHMe	3.59-3.76(1H,m),3.98-4.20(1H,m),5.85(1H,br-s),6.21
		(1H,br-s),6.60(1H,s)
20		$\nu_{\rm max}$ (neat, cm ⁻¹):3262,3191,3062,2968,2932,1637,1579
		1421,1374,1220,1170,997,749732.687
		m.p.:144.4°C~145.1°C
25		

Table 1 (continued) (Z=N-NO₂, $X_5=X_7=Me$, $X_1=X_2=X_3=X_4=X_6=H$ in formula (1))

35	Compound No. R ₁ R ₂	Physical Properties
. 40		
!	61	$\delta_{\text{TMS}}(\text{CDC1}_3, \text{ppm}): 0.87-1.30(6\text{H}, m), 1.99-2.05(1\text{H}, m)$
	Н	2.43-2.54(1H,m),2.94-2.98(3H,m),3.21-3.48(3H,m)
45	NHMe	3.63-3.72(1H,m),3.97-4.14(1H,m)
		ν _{max} (neat, cm ⁻¹):3309,2970,2934,2878,1716,1617,1569
50		1560,1420,1328,1227,1174,1145,1046,864,787

Table 1 (continued) (Z=CH-NO₂, $X_6=X_7=Me$, $X_1=X_2=X_3=X_4=X_5=H$ in formula (1))

5	Compound No.	Physical Properties
10	R ₂	
15	62 H NHMe	δ _{TMS} (CDCl ₃ ,ppm):1.22(3H,s),1.33(3H,s),1.44-1.51(1H,m),2.02(1H,dd,J=12.5,J'=8.1),2.69(1H,septet,J=7.3) 2.87(3H*1/2,d,J=4.4),3.00(3H*1/2,d,J=4.4),3.20-3.36
20		(2H,m),3.56-3.62(1H,m),3.94-4.00(1H,m),6.32(1H*1/2,br),6.60(1H,s),6.61(1H*1/2,br),10.25(1H,br)
25		ν _{max} (KBr.cm ⁻¹):3192,2967,1616,1571,1387,1248,1052 988,926,764 m.p.:132.0-133.1°C

Table 1 (continued) (Z=N-NO $_2$, $X_6=X_7=Me$, $X_1=X_2=X_3=X_4=X_5=H$ in formula (1))

10	Compound No. R_1 R_2	Physical Properties
15	63 H SMe	δ_{TMS} (CDCl ₃ ,ppm):1.23(3H,s),1.34(3H,s),1.47(1H,dd,J=13.2,J=7.3),2.04(1H,dd,J=13.2,J=8.1),2.53(3H,s),2.72 (1H,septet,J=7.3),3.36-3.51(2H,m),3.62(1H,dd,J=8.8,J=5.9),4.00(1H,dd,J=8.8,J=6.6),10.11(1H,br) ν_{max} (KBr,cm ⁻¹):3369,2974,1562,1453,1198,1051,794 m.p.:47.1-53.3°C
25	6 4	δ _{TMS} (CDCl ₃ ,ppm):1.22(3H,s),1.33(3H,s),1.43(1H,dd,
30	H: NHMe	J=12.5,J=7.3),2.01(1H,dd,J=12.5,J=8.1),2.68(1H,septet,J=7.3),2.97(3H,d,J=4.4),3.35(1H,t,J=5.1),3.62 (1H,dd,J=8.8,J=5.1),3.95(1H,dd,J=8.8,J=7.3)
35		ν_{max} (neat, cm ⁻¹):3305,2970,1616,1568,1418,1328,1233

Table 1 (continued) (Z=N-NO₂, X_5 =Et, X_1 = X_2 = X_3 = X_4 = X_6 = X_7 =H in formula (1))

5	Compound No.	Physical Properties
	Rı	
10	R ₂	
	6 5	$\delta_{\text{TMS}}(\text{CDCl}_3, \text{ppm}): 1.07-1.14(3\text{H,m}), 1.96-2.20(2\text{H,m})$
15	Н	2.45(3H,s),3.32-3.72(4H,m),3.94-4.06(2H,m),6.58(1H,
	NHMe	s),10.6(1H,br.)
20	·	ν _{max} (neat, cm ⁻¹):3420,1562,1341,1233

Table 2 $(X_1=X_2=X_3=X_4=X_5=X_6=X_7 \text{ in formula (2)})$

5	Compound No.	Physical Properties
10	R ₁₁	
15	A 1 H Me	$\delta_{\text{TMS}}(\text{CDCl}_3, \text{ppm}): 1.61-1.71(1\text{H,m}), 2.01-2.11(1\text{H,m})$ $2.67-2.72(1\text{H,m}), 2.63(3\text{H,s}), 3.41-3.60(2\text{H,m}), 3.78-3.95$ $(4\text{H,m}), 4.30(2\text{H,s}), 4.35(2\text{H,s}), 9.62(1\text{H.br-s})$ $\nu_{\text{max}}(\text{KBr,cm}^{-1}): 3294, 2869, 1596, 1188$
	A 2	m.p.:117.5-118.9°C δ _{TMS} (CDC1, ppm):1.63-1.71(1H, m),2.02-2.12(1H, m),2.54
25	Me Me	-2.63(1H,m),2.67(3H,s),3.05(3H,s),3.26-3.93(6H,m) 4.29(2H,s),4.32(2H,s)
30		ν _{max} (neat, cm ⁻¹):3482,2940,2873,1608,1375,1290
35	A3 Et Me	$\delta_{\text{TMS}}(\text{CDC1}_3,\text{ppm}): 1.24 (3\text{H,t,J}=7.3\text{Hz}), 1.58-1.71 (1\text{H,m}) \\ 1.99-2.19 (1\text{H,m}), 2.59-2.62 (1\text{H,m}), 2.67 (3\text{H,s}), 3.31-3.57 \\ (3\text{H,m}), 3.69-3.92 (4\text{H,m}), 4.36 (2\text{H,s}), 4.39 (2\text{H,s}) \\ \nu_{\text{max}}(\text{neat,cm}^{-1}): 1613, 1325$
40	A 4	$\delta_{\text{TMS}}(\text{CDC1}_3, \text{ppm}): 1.54-1.70(1\text{H,m}), 2.01-2.13(1\text{H,m})$
45	CH ₂ -CH=CH ₂ Me	2.54-2.62(1H,m),2.64(3H,s),3.26-3.94(6H,m),4.01(2H,d,J=6.6Hz),4.27(2H,s),4.34(2H,s),5.28-5.37(2H,m) 5.77-5.92(1H,m)
50		ν _{max} (neat,cm ⁻¹):2956,1594,1298

Table 2 $(X_1=X_2=X_3=X_4=X_5=X_6=X_7 \text{ in formula (2)})$

5	Compound No.	Physical Properties
10	. R ₁₁	
	A 5	δ _{TMS} (CDCl ₃ ,ppm):1.19(3H,t,J=7.3),1.57-1.69(1H,m)
15	Me	1.98-2.10(1H,m),2.50-2.62(1H,m),2.86(2H,q,J=7.3)
	Et	3.04(3H,s),3.42(1H,dd,J=7.3,J=13.9),3.48(1H,dd,J=
		5.1, J=8.8), 3.61(1H, dd, J=7.3, J=13.9), 4.71-4.92(3H, m)
20		4.36(2H,s),4.38(2H,s)
		ν _{MAX} (neat, cm ⁻¹):1606,1379,1273
25	A 6	$\delta_{\text{TMS}}(\text{CDCl}_3, \text{ppm}): 1.19(6\text{H,d,J=}6.6), 1.56-1.67(1\text{H,m})$
	Me	1.98-2.11(1H,m),2.53-2.65(1H,m),3.04(3H,s),3.18(1H,
30	Pr-iso	septet, J=6.6), 3.33(1H,dd, J=7.3, J=13.9), 3.49(1H,dd, J=
		5.9, J=8.8), 3.61(1H,dd, J=7.3, J=13.9), 3.71-3.91(3H,m)
		4.43(2H,s),4.45(2H,s)
35		ν _{MAX} (neat, cm ⁻¹):1609,1386,1272
	A7	δ _{TMS} (CDCl ₃ ,ppm):1.59-1.69(1H,m),1.99-2.10(1H,m)
40	Me	2.46-2.58(1H,m),3.03(3H,s),3.32(1H,dd,J=7.3,J=13.9)
	benzy1	3.45(1H,dd,J=8.8,J=5.9),3.60(1H,dd,J=8.1,J=13.9)
		3.70-3.89(3H,m),3.98(2H,s),4.31(2H,s),4.38(2H,s)
45		7.36-7.40(5H,m)
		ν _{MAX} (KBr,cm ⁻¹):1604,1388,1289
50		m.p.:111-114°C

Table 3 (R_7 =H in formula (4))

5	Compound No. X_1, X_2, X_3, X_4, X_5	Physical Properties
10	X ₆ , X ₇	·
15	B 1 $X_1 = X_2 = X_3 = X_4 = H$ $X_5 = X_6 = X_7 = H$	δ _{TMS} (CDCl ₃ ,ppm):1.36(2H,br.),1.52-1.64(1H,m),1.98- 2.10(1H,m),2.32(1H,septet,J=7.3Hz),2.72(2H,d,J= 7.3Hz),3.51(1H,dd,J=5.9Hz,J=8.8Hz),3.75(1H,q,J= 7.3Hz),3.82-3.91(2H,m)
20		ν _{мах} (neat.cm ⁻¹):3363,1660,1060
25	B 2 $X_1 = X_2 = X_3 = X_4 = H$ $X_5 = Me$ $X_6 = X_7 = H$	δ _{TMS} (CDCl ₃ ,ppm):1.07(3H,d,J=6.6Hz),1.46(2H,br.) 1.78-2.04(2H,m),2.65(1H,dd,J=8.1Hz,J=12.5Hz),2.85 (1H,dd,J=5.1Hz,J=8.1Hz),3.32(1H,t,J=8.1Hz),3.57(1H,dd,J=6.6Hz,J=8.1Hz),3.92-4.03(2H,m)
	В 3	δ _{TMS} (CDC1 ₃ ,ppm):0.92(3H,t,J=7.3),1.29-1.42(1H,m)
35	$X_1 = X_2 = X_3 = X_4 = H$ $X_5 = Et$ $X_6 = X_7 = H$	1.47-1.56(3H,m),1.71-1.95(2H,m),2.66(1H,dd,J=8.8, J=12.5),2.83(1H,dd,J=5.1,J=12.5),3.41(1H,dd,J=6.6,J= 8.8),3.59(1H,dd,J=5.1,J=8.8),3.91-4.00(2H,m)
40	B 4	δ _{TMS} (CDCl ₃ ,ppm):1.12(3H,s),1.21(3H,s),1.41(1H,dd,
45	$X_1=X_2=X_3=X_4=H$ $X_5=X_6=H$ $X_7=Me$ Hydrochloric	J=12.5Hz, J=8.8Hz), 1.87-1.95(1H,m), 2.50-2.63(1H,m) 2.78(2H,d,J=7.3Hz), 3.48(1H,dd,J=8.8Hz,J=6.6Hz), 3.83 (1H,dd,J=8.8Hz,J=7.3Hz)
50	acid salt	

Table 4 (formula (10))

10	Compound No. X_1, X_2, X_3, X_4, X_5 X_6, X_7 W_3	Physical Properties
15	C 1 $X_1 = X_2 = X_3 = X_4 = H$ $X_5 = X_6 = H$ $X_7 = Me$	δ _{TMS} (CDCl ₃ ,ppm):1.23(3H*1/2,d,J=5.9),1.27(3H*1/2,d, J=5.9),1.54-1.65(1H,m),1.78-1.87(1H,m),2.32(1H,br-s) 2.44-2.57(1H,m),3.51-3.66(2H,m),3.70-3.87(1H,m),3.90 -4.11(2H,m)
25 30	$W_3 = 0H$ C 2 $X_1 = X_2 = X_3 = X_4 = H$ $X_6 = H$ $X_5 = X_7 = Me$ $W_3 = 0H$	b.p. (4mmHg):70-74°C δ _{TMS} (CDC1 ₃ ,ppm):0.99(3H*1/2,d,J=7.3),1.22(3H*1/2,d,J=7.3)1.84-2.10(3H,m),3.52-3.63(2H,m),3.67-3.76(2H,m),4.00-4.08(1H,m)
40	C 3 $X_1 = X_2 = X_3 = X_4 = H$ $X_5 = H$ $X_6 = X_7 = Me$ $W_3 = OH$	δ _{TMS} (CDC1 ₃ ,ppm):1.22(3H,s),1.30(3H,s),1.43(1H,dd, J=12.5Hz,J=8.1Hz),1.90(1H,dd,J=12.5Hz,J=8.1Hz),2.54- 2.68(1H,m),2.63(1H,brs),3.56-3.68(3H,m),3.97(1H,t, J=8.1Hz)

50

Table 4 (continued) (formula (10))

5	Compound No. X ₁ , X ₂ , X ₃ , X ₄ , X ₅	Physical Properties
10	X ₆ , X ₇ ₩ ₃	
15	D 1 $X_1 = X_2 = X_3 = X_4 = H$ $X_5 = X_6 = H$	δ_{TMS} (CDC1 ₃ ,ppm):1.24(3H*3/5,d,J=5.9),1.28(3H*2/5,d,J=5.9),1.61-1.72(1H,m),1.81-1.90(1H*3/5,m),2.19-2.27 (1H*2/5,m),2.66-2.79(1H,m),3.02(3H,s),3.53(1H*3/5,
20	$X_7 = Me$ $W_3 = 0SO_2CH_3$	dd, J=9.5,5.9),3.78(1H*2/5,dd, J=9.5,5.9),4.03-4.25 (4H,m).
25		ν _{MAX} (neat,cm ⁻¹):3355,2974,2938,2873,1717,1457,1355 1176,1092,1049,977,956,831,752
30	D 2 $X_1 = X_2 = X_3 = X_4 = H$ $X_5 = X_6 = H$	δ_{TMS} (CDC1 ₃ ,ppm):1.22(3H*3/5,d,J=5.9),1.30(3H*2/5,d,J=5.9),1.53-1.61(1H,m),1.82-1.92(1H*3/5,m),2.08-2.18 (1H*2/5,m),2.72-2.86(1H,m),3.54(1H*3/5,dd,J=6.6,8.8)
35	$X_7 = Me$ $W_3 =$ phthalimide	3.63-3.84(3H+1H*2/5,m),3.97-4.04(1H*3/5,m),4.14-4.21 (1H*2/5,m),7.71-7.90(4H,m)
40	D 3 X ₁ =X ₂ =X ₃ =X ₄ =H	δ _{TMS} (CDC1 ₃ ,ppm):0.94-1.26(6H,m),1.88-2.00(1H,m) 2.30-2.82(1H,m),3.41-4.19(5H,m),7.71-7.89(4H,m)
45	X_6 =H X_5 = X_7 =Me W_3 =	ν _{MAX} (neat, cm ⁻¹):2975,2937,2849,1768,1709,1608,1467 1438,1399,1308,1089,1051,909,720 m.p.:71.5°C~72.3°C
50	phthalimide	

Table 4 (formula (10))

5	Compound No.	Physical Properties
	X_1 , X_2 , X_3 , X_4 , X_5	
10	X ₆ , X ₇	
	W_3	
15	D 4	δ_{TMS} (CDCl ₃ ,ppm):1.69-1.81(1H,m),1.98-2.11(1H,m)
	$X_1 = X_2 = X_3 = X_4 = H$	2.74(1H,septet,J=7.3Hz),3.61(2H,dd,J=5.9Hz,J=8.1Hz)
20	X ₅ =X ₆ =X ₇ =H	3.65-3.88(4H,m),3.95(1H,dt,J=5.9Hz,J=8.1Hz),7.71-
	₩3=	7.80(2H,m),7.84-7.89(2H,m)
	phthalimide	ν _{мах} (neat, cm ⁻¹):1701,1399,1050,719
25		
	D 5	δ _{TMS} (CDC1 ₃ ,ppm):1.55(1H,septet,J=6.6Hz),1.94-2.07
30	$X_1 = X_2 = X_3 = X_4 = H$	(1H,m),2.46(3H,s),2.59(1H,septet,J=6.6Hz),3.49(1H,
30	$X_5 = X_6 = X_7 = H$	dd,J=5.1Hz,J=9.5Hz),3.64-3.81(3H,m),3.92(1H,t,J=
	$W_3 = 0SO_2 - tolyl$	8.8Hz),3.99(1H,dd,J=6.6Hz,J=9.5Hz),7.36(2H,d.J=
35		8.1Hz),7.79(2H,d,J=8.1Hz)
40	D 6	$\delta_{\text{TMS}}(\text{CDC1}_3, \text{ppm}): 1.62-1.76(1\text{H,m}), 2.05-2.16(1\text{H,m})$
40	$X_1 = X_2 = X_3 = X_4 = H$	2.70(1H, septet, J=7.3Hz), 3.40(2H, dd, J=1.5Hz, J=7.3Hz)
	$\chi_5 = \chi_6 = \chi_7 = H$	3.45-3.53(1H,m),3.60(1H,dd,J=5.1Hz,J=8.8Hz),3.80(1H,
45	$W_3 = Br$	t,J=7.3Hz),3.89-3.95(1H,m)

In the same manner as in the preceding Example 1 to 22 and Reference example 1 to 7, comparative compound 1 to 3 and 5 which were used in Test example were prepared.

Comparative compound 1

55

1-{(tetrahydro-2-furanyl)methylamino}-1-methylamino-2-nitroethylene

 δ_{TMS} (CDCl₃, ppm): 1.62-1.75 (1H, m), 1.90-2.08 (3H, m), 2.82 (3H, d, J=5.0Hz), 3.27-3.37 (1H, m), 3.54-3.62 (1H, m), 3.77-3.93 (2H, m), 4.02-4.07 (1H, m), 6.58 (1H, s), 6.94 (1H, br), 10.27 (1H, br)

 $\nu_{\rm MAX}$ (KBr, cm⁻¹):

3265, 3200, 1622, 1584, 1375, 1225, 1010

m.p.:

136-137.5 ° C

Comparative compound 2

5

10

20

1-{(2-furylmethyl)amino}-1-methylamino-2-nitroethylene

 δ_{TMS} (DMSO-d₆, ppm):

2.67-2.92 (3H, br), 4.30-4.56 (2H, br), 6.36 (1H, d, J=2.9Hz), 6.42 (1H, d,

J = 2.9Hz), 6.45-6.57 (1H, br), 7.63 (1H, br), 9.94 (1H, br), 10.19 (1H, br)

 ν_{MAX} (KBr, cm⁻¹):

3261, 1629, 1580, 1438, 1382, 1242

m.p.:

135.1-136.5 °C

Comparative compound 3

1-tetrahydrofurfuryl-2-methyl-3-nitroguanidine

 δ_{TMS} (CDCl₃, ppm):

1.54-1.73 (1H, m), 1.87-2.20 (3H, m), 2.94 (3H, d, J=4.5Hz), 3.18-3.35 (1H, m),

3.54-3.71 (1H, m), 3.75-3.95 (2H, m), 4.01-4.15 (1H, m), 6.93 (1H, br), 9.41 (1H,

 ν_{MAX} (neat)(cm⁻¹):

3300, 1640, 1561, 1307, 1205

m.p.:

79.5-82.5 °C

Next, the insecticidal compositions of the present invention are more particularly described by way of the following formulation examples, in which all "part or parts" are "part or parts by weight".

Formulation Example 1:

20 parts of the compound of the invention, 10 parts of Sorpol 355S (surfactant available from Toho Chem. Co.) and 70 parts of xylene were uniformly stirred and mixed to give an emulsion.

Formulation Example 2:

10 parts of the compound of the invention, 2 parts of sodium alkylnaphthalenesulfonate, one part of sodium ligninsulfonate, 5 parts of white carbon and 82 parts of diatomaceous earth were uniformly stirred and mixed to give 100 parts of a wettable powder.

35

Formulation Example 3:

0.3 part of the compound of the invention and 0.3 part of white carbon were uniformly mixed, and 99.2 parts of clay and 0.2 part of Driless A (available from Sankyo Co.) were added thereto and uniformly ground and mixed to give 100 parts of a powder preparation.

Formulation Example 4:

2 parts of the compound of the invention, 2 parts of white carbon, 2 parts of sodium ligninsulfonate and 94 parts of Dentonite were uniformly ground and mixed, and water was added thereto and kneaded, granulated and dried to give 100 parts of a granular preparation.

Formulation Example 5:

20 parts of the compound of the invention and 5 parts of 20% aqueous solution of polyvinyl alcohol 50 were fully stirred and mixed, and 75 parts of 0.8% aqueous solution of xanthane gum was added thereto and again stirred and mixed to give 100 parts of a flowable preparation.

Formulation Example 6:

55

10 parts of the compound of the invention, 3 parts of carboxymethyl cellulose, 2 parts of sodium ligninsulfonate, one part of sodium dioctylsulfosuccinate and 84 parts of water were uniformly wet-ground to give 100 parts of a flowable preparation.

Next, explanation is made concretely by way of the following test examples to clarify the excellent insecticidal activity exhibited by the compounds of the formula (1) according to the invention.

Test Example 1 Effect on Laodelphax striatellus Fallen - smaller brown planthopper:

The compound of the invention was dissolved in acetone to a predetermined concentration, and 3 ml of the acetone solution was applied over a bundle of several rice seedlings (about third leaf stage). After drying in air, the treated seedling were covered with a metal gauze cylinder, in which ten female adults of smaller brown planthopper were released, followed by placing in a temperature controlled room at 25 °C. After 48 hours, the mortality was checked. The results are shown in Table 5.

Table 5 Effect on <u>Laodelphax striatellus</u> Fallen - smaller brown planthopper

U	ŀ	٠		
4	٠	,		

5	most Command	Mortality (%)		
	Test Compound	1000 ppm	200 ppm	
10	Nos. l	100	100	
	2	100	70	
	3	100	100·	
15	6	100.	100	
	7	100	100	
20	8	100	50	
	11	100	100	
	12	100	100	
25	13	100	100	
	15	100	100	
30	18	100	100	
	20	100	100	
	23	100	100	
35	25	100	100	
	27	100	100	
40	29	100	100	
	31	100	100	
	32	100	100	
45	33	100	100	
	34	100	100	
50	35	100	100	

Table 5 (Cont'd)

5	Test Compound	Mortality (%)		
	rest compound	1000 ppm	200 ppm	
10	Nos. 36	100	100	
	37	100	100	
	38	100	100	
15	39	100	100	
	40	100	100	
20	41	100	70	
	42	100	70	
	43	100	100	
25	44	100	100	
	45	100	100	
30	46	100	70	
	47	100	100	
	48	100	100	
35	54	100	100	
	55	100	100	
40	56	100	100	
	57	100	100	
	58	100	100	
45	59	100	100	
	60	100	100	
50	61	100	100	
00			1	

Table 5 (Cont'd)

Most Compound	Mortality (%)	
Test Compound	1000 ppm	200 ppm
Nos. 62	100	100
Comp. Compound (1)	0	0
Comp. Compound (2)	0	0
Comp. Compound (3)	0	0
Untreated	0	0

Test Example 2 Effect on resistant strain of Nepphotettix cincticeptus Unler - resistant green rice leafhopper:

The compound of the invention was dissolved in acetone to a predetermined concentration and 3 ml of the acetone solution was applied over a bundle of several rice seedlings (about 3rd leaf stage). After drying in air, the treated seedlings were covered with a metal gauze cylinder, in which ten female adults of resistant green rice leafhopper were released, followed by placing in a temperature controlled room at 25 °C. After 48 hours, the mortality was checked. The results are shown in Table 6.

Table 6 Effect on resistant strain of Nephotettix cincticeptus Uhler - resistant green rice leafhopper

5		
10		
15		
20		
25		
30		
35		
40		
45		

most Compound	Mortality (%)	
Test Compound	1000 ppm	200 ppm
Nos. 1	100	100
2	100	100
3	100	100
4	100	70
5	100	70
6	100	100
7	100	100
8	100	70
9	100	100
11	100	100
12	100	100
13	100	100
14	100	70
15	100	100
16	100	70
18	100	100
20	100	100
21	100	100
23	100	100

200 ppm

Table 6 (Cont'd)

5		Mortality (%)	
v	Test Compound	1000 ppm	200
	Nos. 24	100	10
10	25	100	10
	26	100	10
15	28	100	10
	29	100	10
	30	100	10
20	31	.100	7
	32	100	10
25	33	100	10
	34	100	10
	35	100	10
30	36	100	10
	37	100	10
35	38	100	10
	39	100	10
	40	100	10
40	41	100	10
	42	100	10
45	43	100	10

Table 6 (Cont'd)

5	The Company	Mortali	cy (%)
;	Test Compound	1000 ppm	200 ppm
	Nos. 24	100	100
10	25	100	100
	26	100	100
15	28	100	100
	29	100	100
	30	100	100
20	31	.100	70
	. 32	100	100
25	33	100	100
	34	100	100
	35	100	100
30	36	100	100
	37	100	100
35	38	100	100
	39	100	100
	40	100	100
40	41	100	100
	42	100	100
45	43	100	100

55

Table 6 (Cont'd)

5

15

West Compound	Mortality (%)	
Test Compound	1000 ppm	200 ppm
Comp. Compound (1)	0	0
Comp. Compound (2)	0	0
Comp. Compound (3)	0	0
Untreated	0	0

20

25

30

Comparative Compound (1): 1-{(tetrahydro-2-furanyl)-methylamino}-1-methylamino-2-nitroethylene

Comparative Compound (2): 1-{(2-furylmethyl)amino}-1-methylamino-2-nitroethylene

Comparative Compound (3): 1-tetrahydrofuryl-2-methyl-3-nitroguanidine

Test Example 3 Effect on Spodoptera litura Fabricius - Common cutworm

The emulsion of the compound of the invention prepared according to Formulation Example 1 was diluted with distilled water to a predetermined concentration, to which a spreading agent (New Gramin available from Sankyo Co.) was added at a concentration of 0.02%. Leaves of Ipomea batatas were immersed fully in the dilution. After drying in air, the leaves were transferred into a plastic cup with a diameter of 9 cm and a depth of 4 cm. Ten second-instar larvae of Common cutworm were place in the cup at 25 °C to eat the leaves. After 72 hours, the mortality was checked. The results are shown in Table 7.

45

50

Table 7 Effect on <u>Spodoptera</u> <u>litura</u> Fabricius - Common cutworm

5	Mast Company	Mortali	تA (۶)
	Test Compound	1000 ppm	500 ppm
. 10	Nos. 1	100	100
	20	100	100
	23	100	100
15	25	100	80
	32	100	. 60
20	33	100	80
	34	100	80
	35	100	100
25	36	100	80
	37	100	70
30	39	100	80
	41	100	60
	42	100	100
35	43	100 .	80
•	44	100	60
40	45	100 .	60
	57	100	80
	59	100	60
45			

55

Table 7 (Cont'd)

Test Compound	Mortality (%)	
rest Compound	1000 ppm	500 ppm
Comp. Compound (1)	0	0
Comp. Compound (2)	0	0
Comp. Compound (3)	0	0
Untreated	0	0

Comparative Compound (1): 1-{(tetrahydro-2-furanyl)methylamino}-1-methylamino-2-nitroethylene

Comparative Compound (2): 1-{(2-furylmethyl)amino}-1methylamino-2-nitroethylene

Comparative Compound (3): 1-tetrahydrofuryl-2-methyl-3nitroguanidine

Test Example 4 Effect on Myzus persicae Sulzer - Green peach aphid:

The emulsion of the compound of the invention prepared according to formulation Example 1 was diluted with distilled water to a predetermined concentration, to which a spreading agent (New Gramin available from Sankyo Co.) was added at a concentration of 0.02%. The dilution thus prepared was sprayed over eggplant seedlings of 2nd or 3rd leaf stage, on which green peach aphids had been parasitic. The seedlings were grown in a green house. After 48 hours, the number of living aphids was compared to determine the mortality. The results are shown in Table 8.

Table 8 Effect on <u>Myzus persical</u> Suezer - green peach aphid

|--|

0

Most Commend	Mortality (%)	
Test Compound	100 ppm	10 ppm
Nos. 1	100	50
6	100	100
13	100	56
15	100	51
18	100	45
20	100	100
32	99	40
33	100	72
34	100	60
35	100	77
36	100	73
39	94	34
40	97	41
44	94	72
54	93	o
. 56	95	33
57	100	61
58	100	65
62	100	77

Table 8 (Cont'd)

10

15

20

25

30

55

Most Compound	Mortality (%)	
Test Compound	100 ppm	10 ppm
Nos. 64	100	96
Comp. Compound (1)	0	0
Comp. Compound (2)	0	0
Untreated .	. 0	0

Comparative Compound (1): 1-{(tetrahydro-2-furanyl)methylamino}-1-methylamino-2-nitroethylene
Comparative Compound (2): 1-{(2-furylmethyl)amino}-1methylamino-2-nitroethylene

Test Example 5 Effect on Blattella germanica Linne - German cockroach:

The compound of the invention was dissolved in acetone and diluted with acetone to a predetermined concentration. The acetone solution was applied on the bottom face of a Tall-skirted dish (height: 9 cm, diameter: 9 cm). After drying the dish in air, ten male adults of German cockroach were released therein. After 48 hours, the mortality was checked. The results are shown in Table 9.

Table 9

Test Compound	Blattella germanica Linne - german cockroach Mortality (%)		
rest Compound	Wortanty (%)		
	1000 ppm	100 ppm	
Nos. 1	100	100	
20	100	100	
35	100	100	
58	100	100	
Comp. Compound (4) Untreated	0	0	
	0	0	

Next, explanation is made concretely by way of the following test examples to clarify the insecticidal activity of the intermediates of the formula (2) according to the present invention.

Test Example 6 Effect on Laodelphax striatellus Fallen - smaller brown planthopper:

The compound of the invention was dissolved in acetone to a predetermined concentration and 3 ml of the acetone solution was applied over a bundle of several rice seedlings (about 3rd leaf stage). After drying in air, the treated seedlings were covered with a metal gauze cylinder, in which ten female adults of smaller brown planthopper were released, followed by placing in a temperature controlled room at 25 °C. After 48 hours, the mortality was checked. The results are shown in Table 10.

Table 10

10

15

20

25

30

35

azine

Effect on Laodelphax striatellu	s Fallen - smaller brown planthopper	
Test Compound	Mortality (%) 100 ppm	
Nos. A1	30	
A2	100	
A5	100	
A6	100	
Comp. Compound (5)	0	
Untreated	0	
Comparative Compound (5): 1-{(tetrahydro-2-furanyl)methylamino	}-2-nitroimino-5-methylhexahydro-1,3,5-tri-	

Test Example 7 Effect on resistant strain of Nephotetrix cincticeptus Uhler - resistant green rice leafhopper:

The compound of the invention was dissolved in acetone to a predetermined concentration and 3 ml of the acetone solution was applied on a bundle of several rice seedlings (about 3rd leaf stage). After drying in air, the treated seedlings were covered with a metal gauze cylinder, in which ten female adults of resistant green rice leafhopper were released, followed by placing in temperature controlled room at 25 °C. After 48 hours, the mortality was checked. The results are shown in Table 11.

Table 11

Effect on resistant strain of Nephotettix cincticeptus Uhler - resistant green rice leafhopper

Mortality (%)

100 ppm 100

> 100 100

> 100

100

0

0

40

45

50

Untreated

Comparative Compound (5):

Test Compound

Comp. Compound (5)

Nos. A1

A2

A5

A6

A7

1-{(tetrahydro-2-furanyl)-methylamino}-2-nitroimino-5-methylhexahydro- 1,3,5-triazine

Claims

5

15

20

25

30

35

40

45

A (tetrahydro-3-furanyl)methylamine derivative of a formula (1):

$$X_{7} X_{6} X_{5}$$

$$X_{1} X_{2} X_{3} CH_{2} - N C$$

$$X_{1} X_{2} X_{3} CH_{2} - N C$$

$$X_{2} X_{3} CH_{2} - N C$$

$$X_{3} CH_{2} - N C$$

$$X_{4} CH_{2} - N C$$

$$X_{5} CH_{2} - N C$$

$$X_{1} CH_{2} - N C$$

where X₁, X₂, X₃, X₄, X₅, X₆ and X₇ represent each a hydrogen atom or an alkyl group having from 1 to 4 carbon atoms; R₁ represents a hydrogen atom, an alkyl group having from 1 to 5 carbon atoms, an alkenyl group having 3 carbon atoms, a benzyl group, an alkoxyalkyl group having from 2 to 4 carbon atoms (in its whole group), an alkyloxycarbonyl group having from 1 to 3 carbon atoms in its alkyloxy portion, a phenoxy carbonyl group, an alkylcarbonyl group having from 1 to 6 carbon atoms in its alkyl portion, an alkenylcarbonyl group having from 2 to 3 carbon atoms in its alkenyl portion, a cycloalkylcarbonyl group having from 3 to 6 carbon atoms in its cycloalkyl portion, a benzoyl group, a benzoyl group substituted by 1 to 3 alkyl group(s) having from 1 to 4 carbon atoms, a benzoyl group substituted by 1 to 3 halogen atom(s), a 2-furanylcarbonyl group or an N,N-dimethylcarbamoyl group; R2 represents a hydrogen atom, an amino group, a methyl group, an alkylamino group having from 1 to 5 carbon atoms, a di-substituted alkylamino group having from 2 to 5 carbon atoms (in its whole group), a 1-pyrrolidinyl group, an alkenylamino group having 3 carbon atoms, an alkynylamino group having 3 carbon atoms, a methoxyamino group, an alkoxyalkylamino group having from 2 to 4 carbon atoms (in its whole group), a methylthio group, or -N(Y₁)Y₂ (where Y₁ represents an alkyloxycarbonyl group having from 1 to 3 carbon atoms in its alkyloxy portion, a phenoxycarbonyl group, an alkylcarbonyl group having from 1 to 6 carbon atoms in its alkyl portion, an alkenylcarbonyl group having from 2 to 3 carbon atoms in its alkenyl portion, a cycloalkylcarbonyl group having from 3 to 6 carbon atoms in its cycloalkyl portion, a benzoyl group, a benzoyl group substituted by 1 to 3 alkyl group(s) having from 1 to 4 carbon atoms, a benzoyl group substituted by 1 to 3 halogan atom(s), a 2-furanylcarbonyl group, an N,N-dimethylcarbamoyl group, a (tetrahydro-3-furanyl)methyl group or a benzyl group, and Y2 represents a hydrogen atom or an alkyl group having from 1 to 5 carbon atoms); and Z represents = N- NO_2 , = CH- NO_2 or = N-CN.

- The (tetrahydro-3-furanyl)methylamine derivative as claimed in Claim 1, in which X_1 , X_2 , X_3 , X_4 , X_5 , X_6 and X₇ are each a hydrogen atom or an alkyl group having from 1 to 4 carbon atoms; R₁ is a hydrogen atom, an alkyl group having from 1 to 3 carbon atoms or an alkenyl group having 3 carbon atoms; R2 is an alkylamino group having from 1 to 3 carbon atoms or a dimethylamino group; and Z is = CH-NO₂ or $= N-NO_2$.
- The (tetrahydro-3-furanyl)methylamine derivative as claimed in Claim 2, in which X_1 , X_2 , X_3 , X_4 , X_5 , X_6 and X_7 are each a hydrogen atom, or X_1 , X_2 , X_3 , X_4 , X_5 and X_6 are each a hydrogen atom and X_7 is a methyl group, or X_1 , X_2 , X_3 , X_4 , X_6 and X_7 are each a hydrogen atom and X_5 is a methyl group, or X_1 , X_2 , X_3 , X_4 and X_5 are each a hydrogen atom and X_6 and X_7 are each a methyl group; R_1 is a hydrogen atom; R_2 is a methylamino group or a dimethylamino group; and Z is = CH-NO₂ or = N-NO₂.
- The (tetrahydro-3-furanyl)methylamine derivative as claimed in Claim 3, in which X_1 , X_2 , X_3 , X_4 , X_5 , X_6 and X_7 are each a hydrogen atom, or X_1 , X_2 , X_3 , X_4 , X_5 and X_6 are each a hydrogen atom and X_7 is a methyl group; R₁ is a hydrogen atom; R₂ is a methylamino group; and Z is = CH-NO₂.
- The (tetrahydro-3-furanyl)methylamine derivative as claimed in Claim 3, in which X₁, X₂, X₃, X₄, X₅, X₆ and X_7 are each a hydrogen atom, or X_1 , X_2 , X_3 , X_4 , X_5 and X_6 are each a hydrogen atom and X_7 is a 55 methyl group; R_1 is a hydrogen atom; R_2 is a methylamino group; and Z is = $N-NO_2$.

- 6. The (tetrahydro-3-furanyl)methylamine derivative as claimed in Claim 1, in which X_1 , X_2 , X_3 , X_4 , X_5 , X_6 and X_7 are each a hydrogen atom, or X_1 , X_2 , X_3 , X_4 , X_5 and X_6 are each a hydrogen atom and X_7 is a methyl group; R_1 and Y_1 are concurrently an alkyloxycarbonyl group having from 1 to 3 carbon atoms in its alkyloxy portion an alkylcarbonyl group having from 1 to 6 carbon atoms in its alkyl portion, an alkenylcarbonyl group having from 2 to 3 carbon atoms in its alkenyl portion, a cycloalkylcarbonyl group having from 3 to 6 carbon atoms in its cycloalkyl portion, a benzoyl group, a benzoyl group substituted by 1 to 3 alkyl group(s) having from 1 to 4 carbon atoms, a benzoyl group substituted by 1 to 3 halogen atom(s) a 2-furanylcarbonyl group or an N,N-dimethylcarbamoyl group, and Y_2 is a methyl group; and Z is = N-NO₂.
- 7. The (tetrahydro-3-furanyl)methylamine derivative as claimed in Claim 6, in which X_1 , X_2 , X_3 , X_4 , X_5 , X_6 and X_7 are each a hydrogen atom, or X_1 , X_2 , X_3 , X_4 , X_5 and X_6 are each a hydrogen atom and X_7 is a methyl group; R_1 and Y_1 are concurrently an alkylcarbonyl group having from 1 to 4 carbon atoms in its alkyl portion or a cyclopropylcarbonyl group, and Y_2 is a methyl group; and Z is Z is Z is Z is Z in Z is Z is Z is Z in Z is Z is Z is Z is Z is Z is Z in Z is Z in Z is Z is Z in Z in Z is Z in Z is Z in Z in
- 8. The (tetrahydro-3-furanyl)methylamine derivative as claimed in Claim 1, in which X_1 , X_2 , X_3 , X_4 , X_5 , X_6 and X_7 are each a hydrogen atom, or X_1 , X_2 , X_3 , X_4 , X_5 and X_6 are each a hydrogen atom and X_7 is a methyl group; R_1 is an alkylcarbonyl group having from 1 to 4 carbon atoms in its alkyl portion, R_2 is a dimethylamino group; and Z is = $N-NO_2$.
- 9. An insecticide containing as an effective ingredient a compound of a formula (1);

10

15

20

35

40

45

50

55

where X₁, X₂, X₃, X₄, X₅, X₆ and X₇ represent each a hydrogen atom or an alkyl group having from 1 to 4 carbon atoms; R₁ represents a hydrogen atom, an alkyl group having from 1 to 5 carbon atoms, an alkenyl group having 3 carbon atoms, a benzyl group, an alkoxyalkyl group having from 2 to 4 carbon atoms (in its whole group), an alkyloxycarbonyl group having from 1 to 3 carbon atoms in its alkyloxy portion, a phenoxy carbonyl group, an alkylcarbonyl group having from 1 to 6 carbon atoms in its alkyl portion, an alkenylcarbonyl group having from 2 to 3 carbon atoms in its alkenyl portion, a cycloalkylcarbonyl group having from 3 to 6 carbon atoms in its cycloalkyl portion, a benzoyl group, a benzoyl group substituted by 1 to 3 alkyl group(s) having from 1 to 4 carbon atoms, a benzoyl group substituted by 1 to 3 halogan atom(s), a 2-furanylcarbonyl group or an N,N-dimethylcarbamoyl group; R₂ represents a hydrogen atom, an amino group, a methyl group, an alkylamino group having from 1 to 5 carbon atoms, a di-substituted alkylamino group having from 2 to 5 carbon atoms (in its whole group), a 1-pyrrolidinyl group, an alkenylamino group having 3 carbon atoms, an alkynylamino group having 3 carbon atoms, a methoxyamino group, an alkoxyalkylamino group having from 2 to 4 carbon atoms (in its whole group), a methylthio group, or -N(Y1)Y2 (where Y1 represents an alkyloxycarbonyl group having from 1 to 3 carbon atoms in its alkyloxy portion, a phenoxycarbonyl group, an alkylcarbonyl group having from 1 to 6 carbon atoms in its alkyl portion, an alkenylcarbonyl group having from 2 to 3 carbon atoms in its alkenyl portion, a cycloalkylcarbonyl group having from 3 to 6 carbon atoms in its cycloalkyl portion, a benzoyl group, a benzoyl group substituted by 1 to 3 alkyl group(s) having from 1 to 4 carbon atoms, a benzoyl group substituted by 1 to 3 halogen atom(s), a 2-furanylcarbonyl group, an N,N-dimethylcarbamoyl group, a (tetrahydro-3-furanyl)methyl group or a benzyl group, and Y2 represents a hydrogen atom or an alkyl group having from 1 to 5 carbon atoms); and Z represents = N- NO_2 , = CH- NO_2 or = N-CN.

10. The insecticide as claimed in Claim 9, in which X₁, X₂, X₃, X₄, X₅, X₅ and X₇ are each a hydrogen atom or an alkyl group having from 1 to 4 carbon atoms; R₁ is a hydrogen atom, an alkyl group having from 1 to 3 carbon atoms or an alkenyl group having 3 carbon atoms; R₂ is an alkylamino group having

from 1 to 3 carbon atoms or a dimethylamino group; and Z is $= CH-NO_2$ or $= n-NO_2$.

- 11. The insecticide as claimed in Claim 10, in which X₁, X₂, X₃, X₄, X₅, X₆ and X₇ are each a hydrogen atom, or X₁, X₂, X₃, X₄, X₅ and X₆ are each a hydrogen atom and X₇ is a methyl group, or X₁, X₂, X₃, X₄, X₆ and X₇ are each a hydrogen atom and X₅ is a methyl group, or X₁, X₂, X₃, X₄ and X₅ are each a hydrogen atom and X₆ and X₇ are each a methyl group; R₁ is a hydrogen atom; R₂ is a methylamino group or a dimethylamino group; and Z is = CH-NO₂ or = N-NO₂.
- 12. The insecticide as claimed in Claim 11, in which X_1 , X_2 , X_3 , X_4 , X_5 , X_6 and X_7 are each a hydrogen atom, or X_1 , X_2 , X_3 , X_4 , X_5 and X_6 are each a hydrogen atom and X_7 is a methyl group; R_1 is a hydrogen atom; R_2 is a methylamino group; and Z is $= CH-NO_2$.
 - 13. The insecticide as claimed in Claim 11, in which X_1 , X_2 , X_3 , X_4 , X_5 , X_6 and X_7 are each a hydrogen atom, or X_1 , X_2 , X_3 , X_4 , X_5 and X_6 are each a hydrogen atom and X_7 is a methyl group; R_1 is a hydrogen atom; R_2 is a methylamino group; and Z is = N-NO₂.
 - 14. The insecticide as claimed in Claim 9, in which X_1 , X_2 , X_3 , X_4 , X_5 , X_6 and X_7 are each a hydrogen atom, or X_1 , X_2 , X_3 , X_4 , X_5 and X_6 are each a hydrogen atom and X_7 is a methyl group; R_1 and Y_1 are concurrently an alkyloxycarbonyl group having from 1 to 3 carbon atoms in its alkyloxy portion, an alkylcarbonyl group having from 1 to 6 carbon atoms in its alkyl portion, an alkenylcarbonyl group having from 2 to 3 carbon atoms in its alkenyl portion, a cycloalkylcarbonyl group having from 3 to 6 carbon atoms in its cycloalkyl portion, a benzoyl group, a benzoyl group substitute by 1 to 3 alkyl group(s) having from 1 to 4 carbon atoms, a benzoyl group substituted by 1 to 3 halogen atom(s), a 2-furanylcarbonyl group or an N,N-dimethylcarbamoyl group, and Y_2 is a methyl group; and Z is = N-NO₂.
 - 15. The insecticide as claimed in Claim 14, in which X_1 , X_2 , X_3 , X_4 , X_5 , X_6 and X_7 are each a hydrogen atom, or X_1 , X_2 , X_3 , X_4 , X_5 and X_6 are each a hydrogen atom and X_7 is a methyl group; R_1 and Y_1 are concurrently an alkylcarbonyl group having from 1 to 4 carbon atoms in its alkyl portion or a cyclopropylcarbonyl group, and Y_2 is a methyl group; and Z is = N-NO₂.
 - 16. The insecticide as claimed in Claim 9, in which X_1 , X_2 , X_3 , X_4 , X_5 , X_6 and X_7 are each a hydrogen atom, or X_1 , X_2 , X_3 , X_4 , X_5 and X_6 are each a hydrogen atom and X_7 is a methyl group; R_1 is an alkylcarbonyl group having from 1 to 4 carbon atoms in its alkyl portion, R_2 is a dimethylamino group; and Z is = N-NO₂.
 - 17. A compound of a formula (2):

40
$$X_{7} X_{6} X_{5} N$$

$$X_{1} X_{2} X_{3} CH_{2} - N N - R_{11}$$

$$N - NO_{2}$$

$$(2)$$

where X_1 , X_2 , X_3 , X_4 , X_5 , X_6 and X_7 represent each a hydrogen atom or an alkyl group having from 1 to 4 carbon atoms; R_{10} represents an alkyl group having from 1 to 5 carbon atoms or a benzyl group; and R_{11} represents an alkyl group having from 1 to 5 carbon atoms or a benzyl group.

55

50

5

15

20

25

30

EUROPEAN SEARCH REPORT

Application Number EP 94 11 6939

	Citation of document with it	ndication, where appropriate,	Relevant	CLASSIFICATION OF THE
ategory	of relevant pa		to claim	APPLICATION
4	EP-A-0 192 060 (NIH 27 August 1986 * abstract * * page 180; example	ON TOKUSHU SEIZO K.K.) s 718-721 *	1-17	CO7D307/14 CO7D405/06 A01N31/08
D,A	WO-A-91 04965 (NIPP April 1991 * abstract; claims * page 1, line 1 -	ON SODA CO., LTD.) 18 * page 2, line 4 *	1-17	
D,A	EP-A-O 493 369 (TAK INDUSTRIES, LTD.) 1 * page 1, line 24 -	July 1992	1-17	
P,A	EP-A-0 595 125 (BAY 4 May 1994 * page 3, line 1 -	ER AKTIENGESELLSCHAFT) line 56; examples *	1-17	
				TECHNICAL FIELDS SEARCHED (Int.CL.6)
				C07D
	The present search report has b	een drawn up for all claims		
	Place of search	Date of completion of the search		Examiner
	THE HAGUE	10 January 199	5 Pa	isdor, B
X : par Y : par doc A : tec O : nor	CATEGORY OF CITED DOCUMES ticularly relevant if taken alone ticularly relevant if combined with and ument of the same category hnological backgroundwritten disclosure ermediate document	E : earlier patent after the fills ther D : document cits L : document cits	ed in the applications of the second	a sistement on the sistement of the sist