Assignment 1 Due: 2-08-2024

Q1

Let $G := \mathbb{R}^*$, and define the binary operation $* : G \times G \rightarrow G$ by:

$$a * b = \begin{cases} ab & a > 0 \\ a/b & a < 0 \end{cases}$$

Which is well-defined as $a, b \neq 0$ so $ab, a/b \in G$ and all cases are covered.

- (a) Checking the group axioms:
 - Associativity: For all $a, b, c \in G$:

Thus, all cases are covered and (G, *) satisfies the associative property.

• *Identity:* Claim e = 1 is an identity element. For any $a \in G$: Since 1 > 0, we have 1 * a = 1a = a. Now consider:

$$a * e = \begin{cases} a \cdot 1 & a > 0 \\ a/1 & a < 0 \end{cases} \implies a * e = a$$

Thus a * e = a = e * a so e = 1 is an identity.

• *Inverse:* Claim: For any $a \in G$, the inverse is given by:

$$b = \begin{cases} 1/a & a > 0 \\ a & a < 0 \end{cases}$$

Note that $a > 0 \iff b > 0$ therefore:

- Case: a, b > 0, then:

$$a * b = a \cdot (1/a) = 1 = e$$

 $b * a = (1/a) \cdot a = 1 = e$

- Case: a, b < 0, then a = b so:

$$b * a = a * b = a * a = a/a = 1 = e$$

Thus, we have show b is an inverse of a in (G, *).

(b) Checking the *Two-step Test*: First note $\mathbb{Q}^* \neq \emptyset$ and $\mathbb{Q} \subset \mathbb{R}^*$. Thus, $H = (\mathbb{Q}^*, *)$ is a subgroup of G if and only if for all $a, b \in H$ have $ab \in H$ and $b^{-1} \in H$.

For any $x \in \mathbb{Q}^+$, we can write $x = \frac{p}{q}$ where $p, q \in \mathbb{Z}^+$. Thus, for any $a, b \in \mathbb{Q}^*$ for some $\alpha, \beta, \gamma, \delta \in \mathbb{Z}^+$:

$$a > 0 \implies a * b = \frac{\alpha}{\beta} * \frac{\gamma}{\delta} = \frac{\alpha}{\beta} \cdot \frac{\gamma}{\delta} = \frac{\alpha\gamma}{\beta\delta} \in \mathbb{Q}^*$$
$$a < 0 \implies a * b = \frac{\alpha}{\beta} * \frac{\gamma}{\delta} = \frac{\alpha}{\beta} / \frac{\gamma}{\delta} = \frac{\alpha\delta}{\beta\gamma} \in \mathbb{Q}^*$$

Thus, $a * b \in H$. Take any $a \in H$, for some $\alpha, \beta \in \mathbb{Z}^*$ we have $a = \alpha/\beta$ so:

$$a^{-1} \in \left\{ \frac{\alpha}{\beta}, \frac{\beta}{\alpha} \right\} \subset H$$

Thus, the *Two-Step Test* is satisfied so $H = (\mathbb{Q}^*, *)$ is a subgroup of G.

- (c) Consider the element $2 \in \mathbb{Z}^*$, if $(\mathbb{Z}^*, *)$ were a subgroup (and thus a group), then 2 should have an inverse $b \in \mathbb{Z}^*$ such that 1 = 2 * b = 2b, no such element exists in \mathbb{Z}^* , therefore \mathbb{Z}^* is not a subgroup.
- (d) Consider the elements $-1, 2 \in G$, then:

$$(-1) * 2 = -1/2 \land 2 * (-1) = 2 \cdot (-1) = -2$$

Yet $-1/2 \neq -2$ so * is not commutative, hence (G, *) is not an abelian group.

- (e) Let $a = 5 \in G$. Consider $a^k > 0$ and apply induction on k.
 - Base case: k = 1, it satisfied as $a^1 = a = 5 > 0$.
 - Inductive Step: Assume $a^k > 0$, then by definition of * we have that $a^k * a = a^k \cdot a > 0$ as a > 0. Thus, $a^{k+1} > 0$.

Therefore, $a^k > 0$ for all $k \in \mathbb{Z}^+$.

Find elements for k < 0.

- (f) By part (a), for a = -5, we have that the inverse $a^{-1} = -5$.
- (g) We want elements where $x^1 \neq 1$ but $x^2 = 1$, for any x > 0 where $x \neq 1$ we have $x \star x = xx \neq 1$. For x < 0, we have $x^2 = x/x = 1$ so all $x \in \mathbb{R}^*$ where x < 0 are of order 2.
- (h) Take any $g \in \mathbb{R}^*$, we check for potential elements of Z(G).
 - For g > 0 let z < 0, then:

$$z * g = g * z$$

$$\iff z/g = gz$$

$$\iff 1 = g^2$$

Which holds only for g = 1, since the only g > 0 with $|g| \le 2$ is g = 1.

• For g < 0 let z > 0, then:

$$z * g = g * z$$

$$\iff zg = g/z$$

$$\iff z^2 = 1$$

Which does not hold for all z, therefore, this does not hold for any g < 0.

Verifying the g=1 case, take any $z \in \mathbb{R}^*$, then zg=z=gz, so $g=1 \in Z(G)$.

(a) We check the conditions for the Two-step Test:

First $1_G = x^0 y^0 \in H$, so H is non-empty.

To show $\forall_{\alpha,\beta\in H}\alpha\beta\in H$:

For any $\alpha, \beta \in H$ there are $n, m \in \mathbb{N}$ with $a, b \in \mathbb{Z}^n$ and $a', b' \in \mathbb{Z}^m$ such that for some $x, y \in G$ we have:

$$\alpha = x^{a_1} y^{b_1} \dots x^{a_n} y^{b_n}, \quad \beta = x^{a'_1} y^{b'_1} \dots x^{a'_m} y^{b'_m}$$

Therefore:

$$\alpha\beta = x^{a_1}y^{b_1} \dots x^{a_n}y^{b_n}x^{a'_1}y^{b'_1} \dots x^{a'_m}y^{b'_m} \in H$$

Since $n + m \in \mathbb{N}$ and $(a_1, ..., a_n, a'_1, ..., a'_m), (b_1, ..., b_n, b'_1, ..., b'_m) \in \mathbb{Z}^{n+m}$.

To show $\forall_{\alpha \in H} \alpha^{-1} \in H$:

For any $\alpha \in H$ there are $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}^n$ such that for some $x, y \in G$ we have:

$$\alpha = x^{a_1} y^{b_1} \dots x^{a_n} y^{b_n}$$

Now define $a', b' \in \mathbb{Z}^{n+1}$ where:

$$a_i' = \begin{cases} 0 & i = 1 \\ -a_{n+2-i} & i > 1 \end{cases} \qquad b_i' = \begin{cases} -b_{n+1-i} & i < n+1 \\ 0 & i = n+1 \end{cases}$$

So there is a $\beta \in H$ where:

$$\beta = x^{a_1'} y^{b_1'} \dots x^{a_{n+1}'} y^{b_{n+1}'}$$

And so we have:

$$\alpha\beta = x^{a_1}y^{b_1} \dots x^{a_n}y^{b_n}x^{a'_1}y^{b'_1} \dots x^{a'_{n+1}}y^{b'_{n+1}}$$

$$= x^{a_1}y^{b_1} \dots x^{a_n}y^{b_n}ey^{-b_n}x^{-a_n} \dots y^{-b_1}x^{-a_1}e$$

$$= x^{a_1}y^{b_1} \dots x^{a_n}y^{b_n}ey^{-b_n}x^{-a_n} \dots y^{-b_1}x^{-a_1}e$$

$$= x^{a_1}y^{b_1} \dots x^{a_n}y^{b_n}y^{-b_n}x^{-a_n} \dots y^{-b_1}x^{-a_1}$$

$$= e$$

$$= e$$

$$\beta\alpha = x^{a'_1}y^{b'_1} \dots x^{a'_{n+1}}y^{b'_{n+1}}x^{a_1}y^{b_1} \dots x^{a_n}y^{b_n}$$

$$= ey^{-b_n}x^{-a_n} \dots y^{-b_1}x^{-a_1}ex^{a_1}y^{b_1} \dots x^{a_n}y^{b_n}$$

$$= e$$

$$= e$$

As consecutive terms cancel from the middle, hence $a^1 = \beta \in H$.

So by the *Two-step Test*, we have show *H* is a subgroup of *G*.

(b) Using the same construction from Part a, construct H' using group (L, \cdot) as $x, y \in L$:

$$H' = \left\{ x^{a_1} y^{b_1} \dots x^{a_n} y^{a_n}, a_i, b_j \in \mathbb{Z}, n \in \mathbb{N} \right\} \le L$$

But H' = H so $H \le L$. Now by definition notice that:

$$\langle x, y \rangle = \bigcap_{\{x,y\} \subset L \leq G} L$$

Since $\langle x, y \rangle \leq G$, we have that $H \leq \langle x, y \rangle$, however, $\langle x, y \rangle$ is the smallest subgroup of G containing $\{x, y\}$ so we must have $H = \langle x, y \rangle$.

(c) First let $n \in \mathbb{Z}$ with $n \ge 0$ for $a, b \in -1, 1, a/b = ab$ so x^n in G is $(-1)^k$ in \mathbb{Z} . IE:

$$x^n = \begin{cases} 1 & n \equiv_2 0 \\ -1 & n \equiv_2 1 \end{cases}$$

Now consider:

$$y^{2n} = (y^2)^n = (-2/-2)^n = 1$$

Therefore

$$y^{2n+1} = y^{2n}y = 1y = -2$$
$$y^{n} = \begin{cases} 1 & n \equiv_{2} 0 \\ -2 & n \equiv_{2} 1 \end{cases}$$

Clearly for any $a \in \mathbb{R}^*$ we have $a^{-n} = (a^n)^{-1}$ since $a^{-n}a^n = 1$. Using the inverse found in *Part 1*:

$$x^{-n} = x^n, \qquad y^{-n} = y^n$$

Therefore we have:

$$\{x^n: n \in \mathbb{Z}\} = \{1, -1\}, \qquad \{y^n: n \in \mathbb{Z}\} = \{1, -2\}$$

Hence:

$$\begin{aligned} \langle x, y \rangle &= \left\{ x^{a_1} y^{b_1} \dots x^{a_n} y^{a_n}, a_i, b_j \in \mathbb{Z}, n \in \mathbb{N} \right\} \\ &= \left\{ g_1 \dots g_n : n \in \mathbb{N}, g_i \in \{1, -1, -2\} \right\} \\ &= \left\{ 2^n : n \in \mathbb{N} \right\} \cup \left\{ -2^n : n \in \mathbb{N} \right\} \cup \left\{ 1, -1 \right\} \end{aligned}$$

Q3

(a) We can compute $U(20) = \{1, 3, 7, 911, 13, 17, 19\}$. The Caley Table can be constructed by computed for the upper right entries and mirrored as $(U(20), \times_{20})$ is an abelian group.

\times_{20}	1	3	7	9	11	13	17	19
	1							
	3							
7	7	1	9	3	17	11	19	13
9	9	7	3	1	19	17	13	11
11	11	13	17	19	1	3	7	9
13	13	19	11	17	3	9	1	7
17	17	11	19	13	7	1	9	3
19	19	17	13	11	9	7	3	1

(b) Let g correspond to the label of a row in the Caley table, then the inverse of g is given by the column h where the cell corresponding to $g \times_{20} h$ contains a 1. Thus, we can read off the inverses from the Caley table:

(c) Since all elements have finite order, we use the Caley table to compute repeated multiplication for each element, and find the lowest exponent where $g^i = 1$, thus determining the order of each element:

$$\frac{g \in U(20) \mid 1 \quad 3 \quad 7 \quad 9 \quad 11 \quad 13 \quad 17 \quad 19}{|g| \quad | \quad 1 \quad 4 \quad 4 \quad 2 \quad 2 \quad 4 \quad 4 \quad 2}$$

For any $g \in U(20)$, we have seen that $|g| \le 4$ so $|\langle g \rangle| \le 4$, since |U(20)| = 8, there is no $g \in U(20)$ where $\{g\}$ generates U(20). Therefore U(20) is not a cyclic group.

(a) Computing the powers g^n for each $g \in \{a, b, ba\}$:

$$a^{1} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, \qquad a^{2} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \qquad a^{3} = \begin{pmatrix} 2 & 2 \\ 2 & 1 \end{pmatrix}, \qquad a^{4} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$b^{1} = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}, \qquad b^{2} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \qquad b^{3} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}, \qquad b^{4} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$(ba)^{1} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}, \quad (ba)^{2} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \quad (ba)^{3} = \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}, \quad (ba)^{4} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

For each g, we find that the smallest n with $g^n = 1_G$ is n = 4 so a, b, ba are all order 4.

(b) From part (a), we have already found 8 distinct *g* which must be present in any group containing both *a* and *b*.

1 2 3	4	5	6	7	8	ļ,,
a b (ba)	$a^2 = b^2 = (ba)^2$	a^3	b ³	(ba) ³	$e = a^4 = b^4 = (ba)^4$	

Thus, $8 \le |Q|$.

NOW SHOW THAT $|Q| \le 8$

(c) From Example 3 of Week 2's Notes, we see that for a field F:

$$Z(GL_2(F)) = \{\alpha I : \alpha \in F^*\}$$

Since we have $F = \mathbb{Z}_3$, we have $F^* = \{1, 2\}$ and so:

$$Z(\mathsf{GL}_2(F)) = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \right\}$$

(d) Consider any $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in Q$, then:

$$g \in C_{\mathbb{Q}}(ba)$$

$$\iff \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \cdot g = g \cdot \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\iff \begin{bmatrix} 2a+1c & 2b+1d \\ 1a+1c & 1b+1d \end{bmatrix} = \begin{bmatrix} 2a+1b & 1a+1b \\ 2c+1d & 1c+1d \end{bmatrix} \quad \text{Multiplying Matrices}$$

$$\iff \begin{bmatrix} c & b+d \\ a & b \end{bmatrix} = \begin{bmatrix} b & a \\ c+d & c \end{bmatrix} \quad \text{Cancelling}$$

$$\iff \begin{bmatrix} 0 & b+d \\ a & 0 \end{bmatrix} = \begin{bmatrix} 0 & a \\ b+d & 0 \end{bmatrix} \quad \text{As } b = c$$

Thus, the elements in $C_Q(ba)$ are exactly those where a = b + d and c = b. Since we already know the elements of Q, by checking these conditions we find:

$$C_{\mathsf{Q}}(ba) = \left\{ \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

6

Let $H = \langle h \rangle$ be cyclic group of infinite order, $a = h^n \in H$ and $b = h^m \in H$ where $n, m \in \mathbb{Z}$.

(a) Consider $\langle a, b \rangle$, from Question 2, we know that:

$$\begin{split} \langle a,b\rangle &= \left\{a^{\alpha_1}b^{\beta_1}\dots a^{\alpha_k}b^{\beta_k} \,:\, \alpha_i,\beta_i\in\mathbb{Z},k\in\mathbb{N}\right\} \\ &= \left\{(h^n)^{\alpha_1}(h^m)^{\beta_1}\dots (h^n)^{\alpha_k}(h^m)^{\beta_k} \,:\, \alpha_i,\beta_i\in\mathbb{Z},k\in\mathbb{N}\right\} \\ &= \left\{(h^{\alpha_1n})(h^{\beta_1m})\dots (h^{\alpha_kn})(h^{\beta_km}) \,:\, \alpha_i,\beta_i\in\mathbb{Z},k\in\mathbb{N}\right\} \\ &= \left\{(h^{\alpha_1n+\beta_1m+\dots+\alpha_kn+\beta_km}) \,:\, \alpha_i,\beta_i\in\mathbb{Z},k\in\mathbb{N}\right\} \\ &= \left\{(h^{\alpha n+\beta m}) \,:\, \alpha,\beta\in\mathbb{Z}\right\} \end{split}$$

To show $\alpha n + \beta m$ is equivalent to $k \cdot \gcd(n, m)$ for some $k \in \mathbb{Z}$.

For any
$$\alpha, \beta \in \mathbb{Z}$$
, let $p = \frac{n}{\gcd(n,m)} \in \mathbb{Z}$ and $q = \frac{m}{\gcd(n,m)} \in \mathbb{Z}$, then:

$$\alpha n + \beta m = k \cdot \gcd(n, m) \iff \alpha p + \beta q = k$$

Hence $(\alpha p + \beta q) \in \mathbb{Z}$ so there must exist $k \in \mathbb{Z}$ satisfying the equation.

Now to show that for any $k \in \mathbb{Z}$ we can write $k \cdot \gcd(n, m)$ in the form $\alpha n + \beta m$, for some $\alpha, \beta \in \mathbb{Z}$. For any $k \in \mathbb{Z}$, let $p = \frac{n}{\gcd(n,m)}$ and $q = \frac{m}{\gcd(n,m)}$, then p, q must be coprime, so there are $a, b \in \mathbb{Z}$ such that:

$$ap + bq = 1$$

 $\implies k \gcd(n, m)ap + k \gcd(n, m)bq = k \gcd(n, m)$
 $\implies akn + bkm = k \gcd(n, m)$

So let $\alpha = ak$ and $\beta = bk$ to obtain a solution.

Thus, we have:

$$\langle a,b\rangle = \left\{ (h^{\alpha n + \beta m}) \, : \, \alpha,\beta \in \mathbb{Z} \right\} = \left\{ h^{k \cdot \gcd(n,m)} \, : \, k \in \mathbb{Z} \right\} = \left\langle h^{\gcd(n,m)} \right\rangle$$

(b) First see that:

$$\begin{split} \langle a \rangle \cap \langle b \rangle &= \left\{ a^i \, : \, i \in \mathbb{Z} \right\} \cap \left\{ b^i \, : \, i \in \mathbb{Z} \right\} \\ &= \left\{ h^{in} \, : \, i \in \mathbb{Z} \right\} \cap \left\{ h^{im} \, : \, i \in \mathbb{Z} \right\} \\ &= \left\{ h^k \, : \, k \in \mathbb{Z}, \exists_{i,j \in \mathbb{Z}} \left[in = k = jm \right] \right\} \end{split}$$

We want to show that all such k are of the form $t \cdot \text{lcm}(n, m)$ for some $t \in \mathbb{Z}$. Consider Euclidean Division:

$$k = t \cdot lcm(n, m) + r$$

Where $0 \le r < \text{lcm}(n, m)$. Now note that both n, m divide k and $t \cdot \text{lcm}(n, m)$, so they must also divide r, since $0 \le r < \text{lcm}(n, m)$, we must have r = 0. Hence, for some $t \in \mathbb{Z}$:

$$k = t \cdot lcm(n, m)$$

Now notice that lcm(n, m) is divisible by n, m so $t \cdot lcm(n, m) = in = jm$ for some $i, j \in \mathbb{Z}$. Thus:

$$\langle a \rangle \cap \langle b \rangle = \left\{ h^k \, : \, k \in \mathbb{Z}, \exists_{i,j \in \mathbb{Z}} \left[in = k = jm \right] \right\} = \left\{ h^{t \cdot \mathsf{lcm}(n,m)} \, : \, t \in \mathbb{Z} \right\} = \left\langle h^{\mathsf{lcm}(n,m)} \right\rangle$$

Note that by *Theorem 2* of the *Week 2 Lecture Notes*, if $G = \langle a \rangle$ is finite then |a| = |G|.

(a) Since |G| = 28, we have that |a| = 28. Thus, by *Theorem 4 of Week 3's Notes*:

$$|a^{10}| = \frac{28}{\gcd(10, 28)} = \frac{28}{2} = 14$$

Hence $H = \langle a^{10} \rangle$ has $|H| = |a^{10}| = 14$.

(b) Since $G = \langle a \rangle$ is a finite cyclic group of order n = 28 generated by a, by Theorem 8 of Week 2's Notes, the set of all generators of G is:

$$\left\{a^k: k \in U(28)\right\} = \left\{a^1, a^3, a^5, a^9, a^{11}, a^{13}, a^{15}, a^{17}, a^{19}, a^{23}, a^{25}, a^{27}\right\}$$

(c) By the Fundamental Theorem of Cyclic Groups, since $G = \langle a \rangle$ and |G| = 28, there is a unique subgroup of order k = 14, $K = \left\langle a^{\frac{28}{14}} \right\rangle = \left\langle a^2 \right\rangle$. The generators of this subgroup are the elements of order 14. Applying Theorem 8 of Week 2's Notes, these are:

$$\left\{\left(a^{2}\right)^{i}: i \in U(14)\right\} = \left\{a^{2}, a^{6}, a^{10}, a^{18}, a^{22}, a^{26}\right\}$$

(d) By Fundamental Theorem of Cyclic Groups, each H subgroup of $G = \langle a \rangle$ must have order k = |H| where k divides n, and there is a unique subgroup for each $k \in \mathbb{N}$ where k divides n. Thus, there are subgroups of orders:

$$k \in \{1, 2, 4, 7, 14\}$$

The fundamental theorem also gives us the generators $a^{\frac{n}{k}}$ for a subgroup of order k: