1 Постановка задачи

Задана выборка

$$\mathfrak{D} = \{(\mathbf{x}_i, y_i)\}, i = 1, \dots, m,\tag{1}$$

состоящая из множества пар «объект-метка»

$$\mathbf{x}_i \in \mathbf{X} \subset \mathbb{R}^n, \quad y_i \in \mathbf{y} \subset \mathbb{Y}.$$

Метка y объекта \mathbf{x} принадлежит либо множеству: $y \in \mathbb{Y} = \{1, \dots, Z\}$ в случае задачи классификации, где Z — число классов, либо некоторому подмножеству вещественных чисел $y \in \mathbb{Y} \subseteq \mathbb{R}$ в случае задачи регрессии. Определим множество архитектур моделей глубокого обучения для дальнейшего выбора оптимальной.

Пусть задан граф V, E. Пусть для каждого ребра $< i, j > \in E$ определено множество функций $\mathbf{o}(i,j)$. Граф V, E с множеством функций \mathbf{O} называется моделью, если функция, задаваемая рекурсивно как

$$f_i(\mathbf{x}) = \sum_{j \in \text{Adj}(v_i)} o(i, j)(f_j(\mathbf{x})),$$

является непрерывной дифференцируемой функцией из \mathbb{R}^n во множество \mathbb{Y} при любом o(i,j), являющемся линейной комбинацией функций из множества $\mathbf{o}(i,j)$.

Пусть \mathbf{w} — множество всех параметров функций из $\mathbf{o}(i,j), < i,j > \in E$. Положим распределение параметров \mathbf{w} нормальным с нулевым средним и диагональной квариационной матрицей:

$$\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{A}^{-1}).$$

Пусть для каждого ребра i,j задан нормированный положительный вектор $\gamma_{i,j} \in \mathbb{R}+^{|\mathbf{o}(i,j)|}$, определяющий веса функций из множества $\mathbf{o}(i,j)$. Будем считать, что вектор $\gamma_{i,j}$ распределен по распределению Дирихле:

$$\gamma_{i,j} \sim \text{Dir}(c, \mathbf{m}_{i,j}).$$

где c — вектор концентрации распределения, $\mathbf{m}_{i,j}$ — вектор средних. Обозначим за структуру модели Γ множество всех векторов γ .

Пусть также определено правдоподобие выборки $p(\mathbf{y}|\mathbf{X},\mathbf{w},\mathbf{\Gamma})$.

Определение Правдоподобием модели **f** назовем следующее выражение:

$$p(\mathbf{y}|\mathbf{X}, \mathbf{A}, \mathbf{m}, c) = \int_{\mathbf{w}, \mathbf{\Gamma}} p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}) p(\mathbf{w}|\mathbf{A}) p(\mathbf{\Gamma}|\mathbf{m}, c) d\mathbf{w} d\mathbf{\Gamma}.$$
 (2)

Пусть задано значение концентрации c. Требуется найти гиперпараметры модели A, m доставляющие максимум правдоподобия модели:

$$\underset{\mathbf{A}, \mathbf{m}}{\operatorname{arg}} \max \log p(\mathbf{y} | \mathbf{X}, \mathbf{A}, \mathbf{m}, c).$$

Утверждение (предварительно). При c << 0 оптимизация (2) эквивалентна оптимизации дискретной оптимизации: $\gamma_{i,j} \in 2^{|\mathbf{o}(i,j)|}$.

2 Вариационная постановка задачи

Пусть заданы распределения q_w, q_γ , аппроксимирующие апостериорные распределения $p(\mathbf{w}|\mathbf{y}, \mathbf{X}, \mathbf{A}, \mathbf{m}, c), p(\mathbf{\Gamma}|\mathbf{y}, \mathbf{X}, \mathbf{A}, \mathbf{m}, c).$

Положим $\boldsymbol{\theta}$ равным параметрам распределений q_w, q_γ . Положим $\mathbf{h} = [\mathbf{A}, \mathbf{m}]$. Пусть L — вариационная оценка правдоподобия:

$$L = \log p(\mathbf{y}|\hat{\mathbf{w}}, \hat{\mathbf{\Gamma}}) - D_{KL}(q_{\gamma}||p(\mathbf{\Gamma})) - D_{KL}(q_{w}||p(\mathbf{w})),$$

где $\hat{\mathbf{w}} \sim q_w, \quad \hat{\mathbf{\Gamma}} \sim q_\gamma.$

Пусть Q — валидационная функция:

$$Q(c, c_1, c_2, c_3, \mathbf{p}) = c_1 \log p(\mathbf{y}||\hat{\mathbf{w}}, \hat{\mathbf{\Gamma}}) + c_2 [-D_{KL}(q_\gamma||p(\mathbf{\Gamma})) - D_{KL}(q_w||p(\mathbf{w}))] + c_3 \sum_{p_k \in \mathbf{p}} D_{KL}(q_\gamma||p_k),$$

где ${\bf p}$ — заданные распределения на структурах, c_1,c_2,c_3 — коэффициенты.

Сформулируем задачу поиска оптимальной модели как двухуровневую задачу.

$$\hat{\mathbf{h}} = \arg\max_{\mathbf{h} \in \mathbb{R}^h} Q(T^{\eta}(\boldsymbol{\theta}_0, \mathbf{h})), \tag{3}$$

где T — оператор оптимизации, решающий задачу оптимизации:

$$L(T^{\eta}(\boldsymbol{\theta}_0, \mathbf{h})) \to \max.$$

Вопрос: в последнем слагаемом априорные или вариационные распределения.

Утверждение. Пусть $D_{KL}(q_w|p(\mathbf{w}|\mathbf{y},\mathbf{X},\mathbf{A},\mathbf{m},c)) = 0, D_{KL}(q_\gamma|p(\mathbf{\Gamma}|\mathbf{y},\mathbf{X},\mathbf{A},\mathbf{m},c)) = 0$, пусть $c_1 = 1, c_2 = 1, c_3 = 0$. Тогда оптимизация (3) эквивалентна оптимизации (2).

Определение (предварительно) Параметрической δ -сложностью модели назовем матожидание следующей величины:

$$C_{\mathbf{p}}(\delta, \mathbf{w}) = \mathsf{E} \sum_{w \in \mathbf{w}} I(|w| > \delta).$$

Определение (**предварительно**) Структурной δ -сложностью модели назовем матожидание следующей величины:

$$C_{\mathrm{s}}(\delta, \mathbf{\Gamma}) = \mathsf{E} \sum_{oldsymbol{\gamma} \in \mathbf{\Gamma}} \sum_{\gamma_i \in oldsymbol{\gamma}} I(\gamma_i > \delta).$$

Утверждение (предварительно). Пусть $c_1 = 1, c_3 = 0, c_2 > 0, c'_2 < c_2$. Пусть \mathbf{w}, \mathbf{w}' — параметры, полученные в результате соответствющих оптимизаций. Тогда $C_p(\delta, \mathbf{w}') \leq C_p(\delta, \mathbf{w})$.

Идея доказательства: для примера: пусть вар. распределение — нормальное. При снижении c_2 до нуля получаем $\mathbf{A}_q \to \infty$.

Утверждение (предварительно). Пусть c' < c. Пусть Γ, Γ' — параметры, полученные в результате соответствющих оптимизаций. Тогда $C_{\rm s}(\delta, {\bf w}') \leq C_{\rm s}(\delta, {\bf w})$.

Утверждение (предварительно, нужно развить). Пусть $c_3>0, c<<0$ и все $p_k\in\mathbf{p}$ отражают распределения на вершинах симплекса. Тогда оптимизация приведет к q_γ , сконцентрированному на одной из остальных вершин симплекса.

Утверждение (очень предварительно). Изменение c позволяет избежать ухода в локальный минимум.

Утверждение (очень предварительно). Изменение c_2 позволяет избежать ухода в локальный минимум.

Утверждение (предварительно). Пусть $c_1 = c_2 = c_3 = 0$. Пусть $q_w \sim \mathcal{N}(\mathbf{0}, \sigma), \sigma \sim 0$. Тогда оптимизация эквивалентна обычной оптимизации параметров с l_2 - регуляризацией.

Далее будем рассматривать $q_w \sim \mathcal{N}(\mathbf{0}, \mathbf{A}_q^{-1}), \quad q_\gamma \sim \text{Gumbel-Softmax}(\mathbf{g}, \tau).$