Logistic Regression

Original Slides by:

Courtney Anne Ngo Daniel Stanley Tan, PhD Arren Antioquia

Updated (AY 2024 – 2025 T1) by:

Thomas James Tiam-Lee, PhD

Logistic Regression

- Supervised, classification learning algorithm
- Example:
 - predict whether a tumor is malignant or benign based on its size

Why Not Just Use Linear Regression?

- Predicted value can exceed the 0 – 1 range (does not make sense for binary classification)
- Lacks flexibility to handle certain configurations

Sigmoid Function

 Solution: "map" the output of a linear regression model to a 0 – 1 range using a sigmoid function

Sigmoid Function

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Logistic Regression Model

$$z = \frac{1}{1 + e^{-(\theta_1 x_1 + \theta_2 x_2 + \dots + \theta_d x_d + \theta_0)}}$$

Sigmoid function is S-shaped, and always returns a value from 0 to 1 (exclusive)

Interpretation of Model Output

- We interpret the output as the probability that the input is classified as the positive class.
- Mapping to class:
 - Set a threshold (i.e., 0.5)
 - If output ≥ threshold, classify as "yes"
 - If output ≤ threshold, classify as "no"

Problem: this value can tend to be very small

 Solution: We use the log probability instead of the probability. This operation preserves the order (monotonic)

 Final issue: in a typical loss function, we want lower scores to be better!

Solution: just negate everything!

• Optimization problem: $argmin_{\theta} l(\theta, X, y)$

Derivative of Loss Function

$$\frac{\partial}{\partial \theta} \left(-\sum_{i=1}^{n} y^{(i)} \log(z^{(i)}) + \left(1 - y^{(i)}\right) \log(1 - z^{(i)}) \right)$$

$$= (X\theta - y)^T X$$

(essentially the same as the derivative of mean squared error)

Gradient Descent

procedure gradientdescent(θ): while not converged do:

$$\theta \coloneqq \theta - \alpha \frac{\partial}{\partial \theta} l(\theta)$$
return θ

 α is the learning rate, determines how large the update will be

$$\frac{\partial}{\partial \theta_i} l(\theta)$$
 is the gradient of the loss

Decision Boundary

this is the case.

Shows the prediction results across the feature space.

Multinomial Logistic Regression

What if we have more than 2 classes?

0.25

W

1.5

1.3

0.2

-0.5

 x_i

56

231

 It's like we just created 3 "separate" classifiers, and choose the largest score.

Softmax Function

$$prob_i = \frac{e^{z_i}}{\sum_{j=1}^k e^{z_j}}$$

be =1

 Goal: Convert the scores into a probabilistic representation, that totals into 1.

- We can also just get the largest score, but we do softmax because:
 - We want to interpret results as probability
 - We need to get the derivative, especially later in neural networks

Multinomial Log. Reg. Loss Function

$$l(\theta, X, y) = -\sum_{i=1}^{n} y^{(i)} \log(p^{(i)})$$

 Note: In multiclass classification the "label" for a single instance is converted to a one-hot encoded vector.

Predictions	
[0.5, 0.2, 0.3]	
[0.6, 0.1, 0.4]	
[0.1, 0.8, 0.1]	
[0.8, 0.1, 0.1]	
[0.7, 0.2, 0.1]	
[0.1, 0.8, 0.1]	
[0.3, 0.5, 0.2]	
[0.2, 0.2, 0.6]	
[0.5, 0.4, 0.1]	

Multinomial Log. Reg. Loss Function

$$l(\theta, X, y) = -\sum_{i=1}^{n} y^{(i)^T} \log(p^{(i)})$$

The loss function totals the log of these probabilities and negates it

 Note: In multiclass classification the "label" for a single instance is converted to a one-hot encoded vector.

Class	Class
Red	[1, 0, 0]
Red	[1, 0, 0]
Blue	[0, 1, 0]
Red	[1, 0, 0]
Blue	[0, 1, 0]
Green	[0, 0, 1]
Green	[0, 0, 1]
Green	[0, 0, 1]
Blue	[0, 1, 0]

Predictions			
[0.5, 0.2, 0.3]			
[0.6, 0.1, 0.4]			
[0.1, 0.8, 0.1]			
[0.8, 0.1, 0.1]			
[0.7, 0.2, 0.1]			
[0.1, 0.8, 0.1]			
[0.3, 0.5, <mark>0.2</mark>]			
[0.2, 0.2, 0.6]			
[0.5, 0.4, 0.1]			

Decision Boundary for Multiclass

Evaluation of Classification Models

- Confusion Matrix
- Accuracy
- Precision
- Recall
- F1-Score

Confusion Matrix

Shows us the statistics of the prediction

		1	0
Labe	1	48	2
leal	0	1	49

Confusion Matrix

Shows us the statistics of the prediction

		1	0
Label	1	True positive	False negative
Real	0	False positive	True negative

Accuracy

Number of correctly classified instances over all instances

$$TP + TN$$

$$TP + TN + FP + FN$$

		1	0
Label	1	True positive	False negative
Keal	0	False positive	True negative

Precision

 Out of all instances predicted as positive, how many are really positive?

$$\blacksquare \frac{TP}{TP + FP}$$

		1	0
Labei	1	True positive	False negative
Neal	0	False positive	True negative

Recall

Out of all positive instances, how many are predicted as positive?

$$\blacksquare \frac{TP}{TP + FN}$$

		1	0
Lanci	1	True positive	False negative
שב	0	False positive	True negative

Why is Accuracy Not Enough?

- Very high accuracy (98%),
 but very stupid model (just predicts 0 all the time)
- Imbalanced datasets amplify this problem
- In some domains, need to consider which metrics are important!

		1	0
Labei	1	0	2
Neal Neal	0	0	98

F1-Score

Harmonic mean of the precision and recall

$$= 2 \times \frac{precision \times recall}{precision + recall}$$

Multiclass Classification

 For multi-class classification, you have a separate precision / recall / F1-score for each class!

Predicted

