JPL Activities (relevant to ACE)

Geoff Toon

Jet Propulsion Laboratory
California Institute of Technology

Developed three empirical pseudo-linelists:

- C₂H₆ based on lab measurements of Harrison et al. [2010]
- CHF₃ based on lab measurements from Chung and Varanasi
- HCFC-141b based on Clerbaux [1993] cross-sections

These are all heavy molecules – so difficult to generate complete and accurate linelists from spectroscopic first principles.

Instead use an empirical approach.

An empirical C₂H₆ Pseudo-linelist covering 2720-3100 cm⁻¹

I made a presentation at the ACE meeting 3 years ago complaining about the C₂H₆ spectroscopy in the 3000 cm⁻¹ region.

Since than the situation has improved considerably thanks to lab measurements performed at the RAL and recently published in:

Jeremy J. Harrison, Nicholas D. C. Allen, and Peter F. Bernath, Infrared absorption cross-sections for ethane (C2H6) in the 3 um region, JQSRT, 111, 357–363, 2010

Using 27 lab spectra of Harrison et al., covering a wide range of T/P, a pseudo-linelist covering the 2720-3100 cm⁻¹ region was developed.

In this presentation I will compare it to HITRAN_2008.

Fits to ACE Spectra – HITRAN 2008

Fit to an ACE spectrum acquired at 13.88 km tangent altitude in the tropics. Strongest absorptions due to CH_4 , H_2O , O_3 , and C_2H_6 (red).

Largest residuals due to the 2986 and 2997 cm⁻¹ C₂H₆ PQ-branches (red circles) Residuals also seen due to missing PQ-branches (Red arrows). Noise level is about 0.3% (Red rectangle), so residuals are mainly systematic.

C₂H₆ lab spectrum: 1 atm, 297K

Zoom into region of PQ branches

Fits to Lab spectra of PQ₃ branch

Fits to an ACE spectrum at 14 km

Impact of empirical C₂H₆ pseudo-lines on ACE spectral fits of CH₃Cl

No C₂H₆ absorption lines in this interval.

Large systematic residuals due to missing C₂H₆ lines

Using empirical C₂H₆ pseudo-lines instead of HITRAN 2008 lines.

RMS residual is reduced by nearly a factor 3

C₂H₆ Summary

- •In atmospheric spectra, the 2850-3050 cm⁻¹ region contains absorptions from many gases of interest (e.g. everything having a C-H stretch).
- •This interval also contains the strongest infrared absorptions of C_2H_6 , which can exceed 50% in depth in tropical limb spectra.
- •Although the HITRAN 2008 C_2H_6 captures the 9 strongest C_2H_6 PQ-branches, it omits all of the weaker absorptions features.
- •Quantum-mechanical analysis of the C_2H_6 spectrum is very difficult and therefore lacking, with the exception of the PQ_3 branch.
- •As a temporary fix, an empirical C_2H_6 linelist containing 80,000 pseudo-lines has been developed based on laboratory measurements by Harrison et al. [2010].
- •Use of this pseuso-linelist results in much smaller residuals to fits to lab spectra and to atmospheric spectra (e.g. ACE) and can significantly improve retrievals of other minor gases (e.g. CH₃Cl).

CHF₃ (HFC-23)

Laboratory Measurements made by Chung/Varanasi

Cross-sections were "re-normalized" by Jeremy Harrison

Pseudo-linelist developed by fitting these lab spectra

Fits to lab spectra using pseudo-lines

Fits to MkIV balloon spectra

Strong interferences from N₂O, O₃, H₂O, CCl₂F₂ HDO, CH₄

Fits to MkIV balloon spectra

MkIV CHF₃ balloon profiles

Summary/Conclusions CHF₃

An empirical pseudo-linelist has been developed covering 1100-1240 cm⁻¹ with 14,001 lines.

It is based on unpublished lab measurements by Chung and Varanasi

Fits to lab spectra were poor (up to 4% residuals) for unknown reasons

Absorption due to CHF₃ of up to 3-4% is observable in solar occultation spectra of the atmospheric limb.

Atmospheric CHF₃ vmrs retrieved from MkIV balloon spectra strongly increase from 10 ppt in 1990 to 30 ppt in 2007.

Pseudo-Linelists - Rationale

Definition: A list of discreet lines whose intensities, E", (perhaps positions) have been chosen to give the best possible fit to available lab spectra. This choice is made blindly (least-squares) without any spectroscopic insight.

Why create a pseudo-linelist – why not use the cross-sections directly?

- Better interpolation/extrapolation of T and P:
 - Partition functions provide better T-dependence
 - Lab spectra are often made at low- or high-P only (e.g. PNNL)
- Allows input of multiple lab data-sets simultaneously
- Uses the same code as the HITRAN linelist
- Identification of inconsistencies between lab data (e.g. outliers)
- Opportunity for correcting systematic errors such as:
 - Contamination
 - Zero level offsets
 - Channel fringes
 - ILS of lab spectrometer

HCFC-141b (CH₃CCl₂F)

Derived empirical pseudo-linelist for HCFC-141b from HITRAN cross-sections, which are based on the work of Clerbaux [1993]

720- 790 cm⁻¹ 7001 lines 900- 950 cm⁻¹ 5001 lines 1055-1200 cm⁻¹ 14501 lines 1365-1465 cm⁻¹ 10001 lines

36004 lines total

HFC-141b

Example of fit to a 253K lab spectrum in the strongest band

Incorrect band strength in HITRAN

Molecule	Integration Limits, cm ⁻¹	Integrated Cross Sections			_	
		287 K	270 K	253 K	Uncertainties	
HCFC22	765–855	2.36	2.32	2.25	(0.09)	
(CHClF ₂)	1060-1210	6.83	6.73	6.64	(0.17)	
	1275-1380	1.08	1.11	1.09	(0.09)	
HCFC123	740-900	2.39	2.30	2.08	(0.14)	
(CHCl ₂ CF ₃)	1080–1450	10.49	10.26	10.09	(0.37)	
HCFC124	675–715	0.53	-	-	(0.04)	
(CHClFCF ₃)	790-920	1.81	-	-	(0.14)	
	1035–1430	12.09	-	-	(0.52)	
HCFC141b	710–790	2.37	2.22	2.16	(0.08)	
(CH ₃ CCl ₂ F)	895–955	1.09	1.02	1.00	(0.06)	
	990-1210	3.95	0.33	3.33	(0.20) (0.12)	
	1325–1470	0.34	0.33	0.34	(0.12)	
HCFC142b	650-705	0.75	0.69	0.68	(0.05)	Value = 0
(CH ₃ CClF ₂)	875-1030	2.58	2.51	2.40	(0.14)	in HITRA
	1075–1265 1360–1475	7.19 0.61	7.11 0.64	6.96 0.78	(0.20) (0.09)	

Table from Clerbaux et al. [1993]

HCFC-141b – CH₃OH contamination

270K spectrum is contaminated with v_8 band CH_3OH (methanol), used as a coolant in the original lab studies.

Not a problem for HCFC-141b itself. Might be a problem when fitting 1033 cm^{-1} region for CH_3OH --absorption is incorrectly attributed to HCFC-141b.

HCFC-141b Summary

Pseudo-linelist covers all significant absorptions in 700-1500 cm⁻¹ region

In deriving PLL, contamination from the v₈ band of CH₃OH was removed

HITRAN 270K cross-sections 1325-1470 cm⁻¹ were re-normalized (x 1.75) to bring them back into consistency with original Clerbaux (1993) measurements.