ENGR 308 (Fall 2025) S. Alghunaim

3. Roots of equations: bracketing methods

- nonlinear equation in one variable
- graphical methods
- bisection method
- false position method

Nonlinear equation in one variable

$$f(x) = 0$$

- the root or zero is any solution of the above equation
- we assume f is a univariate continuous function on an interval $[x_l, x_u]$
- there may be one solution, multiple solutions, or no solution

Example: nonlinear resistive circuit

$$g(x) - \frac{E - x}{R} = 0$$

a nonlinear equation in the variable x, with three solutions

Examples

Iterative methods

- nonlinear equations are generally difficult to solve
- obtaining a solution by finite-step algorithm is not feasible
- iterative algorithms start with *initial* or *starting point*, x_0 and compute estimates

$$x_0, x_1, \ldots, x_i, \ldots$$

where x_i is the *ith iterate*

- moving from x_i to x_{i+1} is called an *iteration* of the algorithm
- ideally converge to a root of the target function

$$x_i \to x^*$$
 as $i \to \infty$

where $f(x^*) = 0$

Bracketing methods

- many numerical methods for roots exploit a sign change near the root
- such approaches are called bracketing methods
- two initial guesses are required that lie on either side of the root
- methods reduce the bracket width systematically to converge to the solution

Outline

- nonlinear equation in one variable
- graphical methods
- bisection method
- false position method

Graphical methods

- plot f(x) to identify approximate root locations
- root \approx where f(x) crosses the x-axis
- provides rough estimates of roots
- estimates can be employed as starting guesses for other numerical methods
- useful to visualize:
 - function properties (multiple roots, discontinuities, ill-conditioned intervals)
 - behavior of numerical methods

Example

recall our falling parachutist equation

$$v(t) = \frac{gm}{c} (1 - e^{-(c/m)t})$$

find drag coefficient c so that v = 40 m/s after t = 10 s with m = 68.1 kg

· our equation is

$$f(c) = \frac{9.81 \times 68.1}{c} \left(1 - e^{-(c/68.1)10} \right) - 40 = \frac{668.06}{c} \left(1 - e^{-0.146843c} \right) - 40$$

ullet we evaluate f(c) at trial values and plot or in MATLAB

```
% Define c range (avoid c=0 to prevent division by zero)
c = linspace(1,20,500);  % c from 1 to 200 with 500 points
% Define function
f = (9.81*68.1 ./ c) .* (1 - exp(-(c/68.1)*10))-40;
% Plot
plot(c,f,'LineWidth',2);
grid on;
```

Example

c	f(c)
4	34.190
8	17.712
12	6.114
16	-2.230
20	-8.368

- plot shows crossing between c=12 and $c=16, c^*\approx 14.75$
- substitution check: $f(14.75) \approx 0.100$

Roots in brackets

- if $f(x_l)$ and $f(x_u)$ have same sign \Longrightarrow either 0 or even number of roots
- if $f(x_l)$ and $f(x_u)$ have opposite signs \Longrightarrow odd number of roots in (x_l, x_u)

Roots in brackets: exceptions

- multiple roots: function tangential to x-axis
- discontinuous functions: roots may not follow sign-change logic

Example

$$f(x) = \sin(10x) + \cos(3x), \quad 0 \le x \le 5$$

- initial plot suggests several roots and a possible double root near $x \approx 4.2$
- zooming (3-5) clarifies root structure
- further zoom (4.2–4.3) shows *two distinct roots* near x = 4.23 and x = 4.26

MATLAB code

```
% Define domain
x = linspace(0,5,1000); % 1000 points between 0 and 5
% Define function
f = sin(10*x) + cos(3*x);
% Plot
plot(x, f, 'LineWidth', 2);
```

graphical methods SA — ENGR308 3.12

Outline

- nonlinear equation in one variable
- graphical methods
- bisection method
- false position method

Bisection method idea

• if f is real and continuous on $[x_l, x_u]$ and

$$f(x_l) f(x_u) < 0$$

then there exists at least one real root in (x_l, x_u)

• bisection (binary chopping, interval halving, Bolzano's method): repeatedly bisect $[x_l, x_u]$ at

$$x_r = \frac{x_l + x_u}{2}$$

select the subinterval where the sign change occurs, and iterate

- guarantees bracketing at each step
- interval width halves every iteration

Bisection method

- 1. start with $[x_l, x_u]$ such that $f(x_l)f(x_u) < 0$
- 2. compute midpoint: $x_r = (x_l + x_u)/2$ and $f(x_r)$
- 3. test sign:
 - if $f(x_I)f(x_r) < 0 \Rightarrow x_u = x_r$
 - else if $f(x_u)f(x_r) < 0 \Rightarrow x_l = x_r$
 - else $f(x_r) = 0$ (root found)
- 4. repeat until error criterion is satisfied

Example: bisection for the parachutist drag coefficient

use bisection method to solve

$$f(x) = \frac{668.06}{x} \left(1 - e^{-0.146843x} \right) - 40 = 0$$

and initial bracket from the graph: $x \in [12, 16]$ (true root ≈ 14.8011 for reference)

• iteration 1:

$$x_r = \frac{12+16}{2} = 14, \ f(12) \ f(14) = 6.114 \times 1.611 > 0 \Rightarrow \text{new bracket} \ [14, 16]$$

• iteration 2:

$$x_r = \frac{14+16}{2} = 15, \ f(14) \ f(15) = 1.611 \\ \times (-0.384) < 0 \Rightarrow \text{new bracket} \ [14,15]$$

- iteration 3: $x_r = \frac{14+15}{2} = 14.5 \Rightarrow$ new bracket decided similarly
- ... interval width halves each iteration; root remains bracketed

Example: bisection for the parachutist drag coefficient

bisection method SA-ENGR308 3.16

Termination: approximate relative error

without knowing the true root, use the approximate percent relative error

$$\varepsilon_a = \left| \frac{x_r^{\text{new}} - x_r^{\text{old}}}{x_r^{\text{new}}} \right| \times 100\%$$

stop when $\varepsilon_a < \varepsilon_s$ (user-specified tolerance) or when iteration cap is reached

Example: continue previous example until $\varepsilon_a < 0.5\%$

iter	x_l	x_u	x_r	ε_a (%)	ε_t (%)
1	12	16	14	_	5.413
2	14	16	15	6.667	1.344
3	14	15	14.5	3.448	2.035
4	14.5	15	14.75	1.695	0.345
5	14.75	15	14.875	0.840	0.499
6	14.75	14.875	14.8125	0.422	0.077

stop at iteration 6 since $\varepsilon_a < 0.5\%$

True and approximate relative errors

- suggests that ε_a captures the general downward trend of ε_t
- ε_a is greater than ε_t
- when $\varepsilon_a < \varepsilon_s$, the computation could be terminated with confidence

Bisection error bound

 ε_a is always greater than ε_t

- approximate root is located using bisection as $x_r = \frac{x_l + x_u}{2}$
- we know that the true root lies somewhere within an interval

$$\pm \frac{x_u - x_l}{2} = \pm \frac{\Delta x}{2}$$

of our estimate

Bisection error bound

observe that

• hence, $\varepsilon_a = |\frac{x_n^{\text{new}} - x_n^{\text{old}}}{x_n^{\text{new}}}| \times 100\%$ provides an exact upper bound on the true error

Alternative approximate error expression: since

$$x_r^{\text{new}} - x_r^{\text{old}} = \frac{x_u - x_l}{2}, \qquad x_r^{\text{new}} = \frac{x_l + x_u}{2}$$

we have

$$\varepsilon_a = \left| \frac{x_r^{\text{new}} - x_r^{\text{old}}}{x_r^{\text{new}}} \right| \times 100\% = \left| \frac{x_u - x_l}{x_u + x_l} \right| \times 100\%$$

allows error estimate from the very first iteration

How many iterations do we need?

- initial absolute bracket width: $\Delta x_0 = x_{u,0} x_{l,0}$
- the bracket is halved after each iteration
- after n iterations, the absolute error satisfies

$$E_a^n = \frac{\Delta x_0}{2^n}$$

• to guarantee $E_a^n \leq E_{a,d}$, choose

$$n \ge \log_2\left(\frac{\Delta x_0}{E_{a,d}}\right)$$

Example: in last example with $\Delta x_0 = 16 - 12 = 4$

- after 6 iterations $E_a = \frac{x_{u,6} x_{l,6}}{2} = \frac{14.875 14.75}{2} = 0.0625$ (or $E_a = 4/2^6$)
- using this as upper bound gives $n = \log_2(4/0.0625) = 6$

Bisection: pros and cons

Pros

- guaranteed convergence if f continuous and initial bracket valid
- simple, robust, and monotonic interval reduction
- clean error bounds; iteration count predictable

Cons

- linear (slow) convergence rate
- requires bracketing; does not exploit derivative or curvature information

The bisection method

given: x_l, x_u with $x_l < x_u, f(x_l)f(x_u) < 0$, and tolerance ε_s repeat

- 1. $x_r = (x_l + x_u)/2$
- 2. compute $f(x_r)$; if $f(x_r) = 0$, return x_r
- 3. if $f(x_r) f(x_l) < 0$, $x_u = x_r$, else, $x_l = x_r$
- 4. stop if $\varepsilon_a = \left| \frac{x_u x_l}{x_{v_l} + x_l} \right| \times 100\% < \varepsilon_s$

- condition $f(x_l) f(x_u) < 0$ ensures a root exists between x_l, x_u
- x_l, x_u can be chosen from graphing the function

MATLAB implementation of bisection

```
function [root,fx,ea,iter]=bisect(func,xl,xu,es,maxit,varargin)
if nargin<3.error('at least 3 input arguments required').end
test = func(x1,varargin{:})*func(xu,varargin{:});
if test>0.error('no sign change').end
if nargin<4 || isempty(es), es=0.0001;end
if nargin<5 || isempty(maxit), maxit=50;end
iter = 0: xr = xl: ea = 100:
while (1)
xrold = xr; xr = (xl + xu)/2;
iter = iter + 1:
if xr = 0, ea = abs((xr - xrold)/xr) * 100; end
test = func(xl.varargin{:})*func(xr.varargin{:}):
if test < 0
xu = xr;
elseif test > 0
x1 = xr;
else
ea = 0:
end
if ea <= es || iter >= maxit.break.end
end
root = xr; fx = func(xr, varargin{:});
```

bisection method Sa_FNGR308 3.24

Outline

- nonlinear equation in one variable
- graphical methods
- bisection method
- false position method

False-position method

- bisection is valid but inefficient: it always divides the interval into equal halves
- false position (regula falsi, linear interpolation method) provides a more efficient alternative
- idea: use the relative magnitudes of $f(x_l)$ and $f(x_u)$ to improve the root estimate
- if $f(x_l)$ is much closer to zero than $f(x_u)$, then the root is likely closer to x_l

false position method SA_ENGR308 3.25

Graphical insight of false position

instead of bisecting the interval, connect a straight line to the points

$$(x_l, f(x_l))$$
 and $(x_u, f(x_u))$

- intersection of this line with the x-axis is taken as the new root estimate
- this point is called the false position because the curve is replaced by a line

False-position formula

using similar triangle (equating slope):

$$\frac{f(x_l)}{x_r - x_l} = \frac{f(x_u)}{x_r - x_u}$$

solving for x_r gives the false-position formula

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$

- uses both function values and endpoints
- if $f(x_l) f(x_r) < 0$, the root lies between x_l and x_r
- if $f(x_r) f(x_u) < 0$, the root lies between x_r and x_u
- the interval is updated accordingly, and the process repeats

Example: false-position on the parachutist equation

use the false-position method to determine the root of

$$f(x) = \frac{668.06}{x} \left(1 - e^{-0.146843 \, x} \right) - 40$$

with initial guesses: $x_l = 12$, $x_u = 16$

First iteration

$$f(12) = 6.1139,$$
 $f(16) = -2.2303$

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)} = 16 - \frac{(-2.2303)(12 - 16)}{6.1139 - (-2.2303)} = 14.309$$

true relative error $\approx 0.88\%$ (for reference)

since $f(x_l) f(x_r) < 0$, the new bracket is $[x_l, x_{tt}] = [12, 14.309]$ (i.e., $x_{tt} = x_r$)

false position method SA = ENGR308 3.28

Example: false-position on the parachutist equation

Second iteration

$$x_l = 12$$
, $f(x_l) = 6.1139$, $x_u = 14.9309$, $f(x_u) = -0.2515$
 $x_r = 14.9309 - \frac{(-0.2515)(12 - 14.9309)}{6.1139 - (-0.2515)} = 14.8151$

true and approximate relative errors: $\varepsilon_t \approx 0.09\%$, $\varepsilon_a \approx 0.78\%$

further iterations refine the estimate similarly

false position method SA = ENGR308 3.29

False position versus bisection

- false position can decrease true error faster than bisection (more informative placement of x_r)
- unlike bisection, the interval need not shrink symmetrically; one endpoint can remain fixed while the other approaches the root
- consequence: the interval width is *not* a reliable error bound for false position
- using $\varepsilon_a = \left| \frac{x_r^{\text{new}} x_r^{\text{old}}}{x_r^{\text{new}}} \right| 100\%$ is conservative when convergence is rapid: numerator largely reflects the previous iteration's discrepancy

Example: pitfalls of false position

locate the root of $f(x) = x^{10} - 1$ on [0, 1.3] using bisection and false-position true root x = 1

Bisection

iter	x_l	x_u	x_r	$\varepsilon_a(\%)$	$\varepsilon_t(\%)$
1	0	1.3	0.65	100.0	35
2	0.65	1.3	0.975	33.3	2.5
3	0.975	1.3	1.1375	14.3	13.8
4	0.975	1.1375	1.05625	7.7	5.6
5	0.975	1.05625	1.015625	4.0	1.6

after 5 iterations, $\varepsilon_t < 2\%$

Example: pitfalls of false position

False position

iter	x_l	x_u	x_r	$\varepsilon_a(\%)$	$\varepsilon_t(\%)$
1	0	1.3	0.09430	_	90.6
2	0.09430	1.3	0.18176	48.1	81.8
3	0.18176	1.3	0.26287	30.9	73.7
4	0.26287	1.3	0.33811	22.3	66.2
5	0.33811	1.3	0.40788	17.1	59.2

- very slow progress; also note cases with $\varepsilon_a < \varepsilon_t$ (misleading)
- interpretation: function shape violates: "closer f-value \Rightarrow closer to root"
- one-sidedness: one endpoint often remains fixed while the other moves, causing poor convergence with strong curvature

false position method SA = ENGR308 3.32

Checking for all roots

- beyond verifying a single root, ensure all possible roots are located
- incremental search:
 - evaluate f(x) at small increments across region
 - sign change ⇒ root in that subinterval
 - endpoints serve as initial guesses for bracketing methods
- always supplement with:
 - function plots (plotting f(x) is a useful first step)
 - insight from physical meaning of the problem

false position method SA FNGR308 3.3

Summary

Method	Formulation	Graphical Interpretation	Errors and Stopping Criteria
Bisection	$x_{i} = \frac{x_{i} + x_{u}}{2}$ If $f(x_{i})f(x_{i}) < 0$, $x_{u} = x_{i}$, $f(x_{i})f(x_{i}) > 0$, $x_{i} = x_{i}$	Bracketing methods: f(x) A Root Zi L Z x L/2 L/4	Stopping criterion: $\left \frac{x_{r}^{\text{prew}}-x_{r}^{\text{old}}}{x_{r}^{\text{prew}}}\right 100\% \le \varepsilon_{\sigma}$
False position	$x_{r} = x_{u} - \frac{f(x_{u})(x_{t} - x_{u})}{f(x_{t}) - f(x_{u})}$ If $f(x_{t})f(x_{t}) < 0$, $x_{u} = x_{r}$ $f(x_{t})f(x_{t}) > 0$, $x_{t} = x_{r}$	7(x) A	Stopping criterion: $\left \frac{x_r^{\text{new}} - x_r^{\text{old}}}{x_r^{\text{new}}}\right 100\% \le \epsilon_s$

References and further readings

- S. C. Chapra and R. P. Canale. Numerical Methods for Engineers (8th edition). McGraw Hill, 2021. (Ch.5)
- S. C. Chapra. Applied Numerical Methods with MATLAB for Engineers and Scientists (5th edition).
 McGraw Hill, 2023. (Ch.5)

references SA FIGRROR 3.35