

Nuestro Semestre 2016-1

				AST0212		C0 ✓	
10	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
ř	Semana 1		8	9	10	" C1 ✓	12
	Semana 2	TL1	¹⁵ TM1	16	17	¹⁸ C2 ✓	← Control 1
	Semana 3	TL2	²² TM2	23	24	²⁵ Feriado	Reparto Tarea 1
	Semana 4	TL3	²⁹ TM3	30	31	¹Apr C3 ✓	2
	Semana 5	TL4	⁵ TM4	6	7	⁸ C4 ✓	9
	Semana 6	TL5	¹² TM5	13	14	15 C5 ✓	← Control 2
	Semana 7	TL6	TM6	20	21	C6√-SNM	← Reparto T2
	Semana 8	TL7	← Entrega	T1	28	C7 √ – SM2	50
	Semana 9	TL8	TM8	4	5	C8 – SM3	
ř	Semana 10	TL9 En	ntrega T2→	11	← Repart	to T3 - SM4	← Control 3
	Semana 11	TL10	TM10	16	19	C10	21
	Semana 12	TL1: En	trega T3→	25	20	[C11	28
	Semana 13	TL12	TM12	1 Jun	-	Feriado	
	Semana 14	TL13	TM13	8	ä	C12	
	Semana 15	TL14	^{1⁴} TM14	10	10	C13	18
uto	rías día lunes		21	Tutorías día	martes	24	
	dulo 4:		1.0	Módulo 6:	30.	1 Jul	€ Examen
lico	olás Castro		P	Francisco Ar	os	Notas	OF Calendar by www.pdlcalendar.com

Preguntas guía para "Introducción al análisis de datos"

- ¿Qué es un histograma? ¿Cómo se construye? ¿Cómo puede caracterizarse?
- ¿Qué es una FDP?
- 3) ¿Cuál es la relación entre la FDP de una cierta variable y el histograma de valores que medimos para esta misma variable?
- Dado un conjunto de medidas (datos) de valores directamente comparables entre sí, defina el valor medio, la mediana, la moda, y la dispersión.
- 5) ¿En qué clase de experimentos la dispersión de una variable observada proporciona una medida de la incerteza en la medición?
- 6) ¿Cuál es la diferencia entre una incerteza en la precisión y una en la exactitud?
- 7) Si queremos conocer una variable t, que no podemos medir, pero que se relaciona con otras variables x, y, z, que sí podemos medir directamente, por la ecuación

$$t = f(x, y, z)$$

- a. Dadas K medidas de x, N medidas de y, y M medidas de z, explique cómo haría para calcular \bar{t} y σ_t .
- b. Puede imaginar una estrategia diferente para calcular \bar{t} y σ_t para el caso de disponer de N medidas de x,y,z? (i.e. la misma cantidad de medidas en cada variable)

REPASO

1. Herramienta Linux de selección de datos en archivos organizados en columnas: awk

2. Repaso de temas críticos de la clase previa 🗸

- 1. Test modelo vs. realidad: χ^2 explicado.
- 2. FDP de χ^2 .

4. Correlación. ✓

5. Incerteza de parámetros en la correlación lineal 🗸

6. Corrección de error sistemático. Extrapolación. 🗸

7. Coeficiente de correlación. X

Esta clase (Clase 8):

- 1. Repaso de temas críticos de la clase previa
 - 1. Correlación.
 - 2. Incerteza de parámetros en la correlación lineal.
 - 3. Corrección de error sistemático. Extrapolación.
- 2. Coeficiente de correlación.
- 3. Significación de diferencia en media y varianza

Correlación: Peso medido con ≠ balanzas

Método de "cuadrados mínimos" REPASO

$$peso_{(balanza\ X)} = a * peso_{(balanza\ 7)} + b$$

$$y_{i} = ax_{i} + b$$

$$\chi^{2} = \sum_{i=1}^{N} \left(\frac{y_{i} - ax_{i} - b}{\sigma_{i}} \right)^{2}$$

$$\frac{\partial \chi^{2}}{\partial a} = \frac{\partial}{\partial a} \left[\sum_{i=1}^{N} \left(\frac{y_{i} - ax_{i} - b}{\sigma_{i}} \right)^{2} \right] = 0$$

$$\frac{\partial \chi^{2}}{\partial b} = \frac{\partial}{\partial b} \left[\sum_{i=1}^{N} \left(\frac{y_{i} - ax_{i} - b}{\sigma_{i}} \right)^{2} \right] = 0$$

$$\sum_{i=1}^{N} \left[\frac{1}{\sigma_i^2} (y_i - ax_i - b) \right] = 0 \qquad \sum_{i=1}^{N} \frac{y_i}{\sigma_i^2} = b \sum_{i=1}^{N} \frac{1}{\sigma_i^2} + a \sum_{i=1}^{N} \frac{x_i}{\sigma_i^2}$$

$$\sum_{i=1}^{N} \left[\frac{x_i}{\sigma_i^2} (y_i - ax_i - b) \right] = 0 \qquad \sum_{i=1}^{N} \frac{x_i y_i}{\sigma_i^2} = b \sum_{i=1}^{N} \frac{x_i}{\sigma_i^2} + a \sum_{i=1}^{N} \frac{x_i^2}{\sigma_i^2}$$

Método de "cuadrados mínimos" REPASO

$$\sum_{i=1}^{N} \frac{y_i}{\sigma_i^2} = b \sum_{i=1}^{N} \frac{1}{\sigma_i^2} + a \sum_{i=1}^{N} \frac{x_i}{\sigma_i^2}$$

$$\sum_{i=1}^{N} \frac{x_i y_i}{\sigma_i^2} = b \sum_{i=1}^{N} \frac{x_i}{\sigma_i^2} + a \sum_{i=1}^{N} \frac{x_i^2}{\sigma_i^2}$$

$$\Delta = \sum_{i=1}^{N} \frac{1}{\sigma_i^2} \sum_{i=1}^{N} \frac{x_i^2}{\sigma_i^2} - \left(\sum_{i=1}^{N} \frac{x_i}{\sigma_i^2}\right)^2$$

$$a = \frac{1}{\Delta} \left(\sum_{i=1}^{N} \frac{1}{\sigma_i^2} \sum_{i=1}^{N} \frac{x_i y_i}{\sigma_i^2} - \sum_{i=1}^{N} \frac{x_i}{\sigma_i^2} \sum_{i=1}^{N} \frac{y_i}{\sigma_i^2} \right)$$

$$b = \frac{1}{\Delta} \left(\sum_{i=1}^{N} \frac{x_i^2}{\sigma_i^2} \sum_{i=1}^{N} \frac{y_i}{\sigma_i^2} - \sum_{i=1}^{N} \frac{x_i}{\sigma_i^2} \sum_{i=1}^{N} \frac{x_i y_i}{\sigma_i^2} \right)$$

Incerteza en los parámetros calculac BEPASO

$$\Delta = \sum_{i=1}^{N} \frac{1}{\sigma_i^2} \sum_{i=1}^{N} \frac{{x_i}^2}{{\sigma_i}^2} - \left(\sum_{i=1}^{N} \frac{{x_i}}{{\sigma_i}^2}\right)^2 \qquad a = \frac{1}{\Delta} \left(\sum_{i=1}^{N} \frac{1}{{\sigma_i}^2} \sum_{i=1}^{N} \frac{{x_i}{y_i}}{{\sigma_i}^2} - \sum_{i=1}^{N} \frac{{x_i}}{{\sigma_i}^2} \sum_{i=1}^{N} \frac{{y_i}}{{\sigma_i}^2}\right)$$

$$da = \sum_{j=1}^{N} \frac{\partial a}{\partial y_j} dy_j \qquad db = \sum_{j=1}^{N} \frac{\partial b}{\partial y_j} dy_j \qquad b = \frac{1}{\Delta} \left(\sum_{i=1}^{N} \frac{x_i^2}{\sigma_i^2} \sum_{i=1}^{N} \frac{y_i}{\sigma_i^2} - \sum_{i=1}^{N} \frac{x_i}{\sigma_i^2} \sum_{i=1}^{N} \frac{x_i y_i}{\sigma_i^2} \right)$$

$$\sigma_a^2 = \sum_{j=1}^N \left(\frac{\partial a}{\partial y_j}\right)^2 \sigma_j^2$$
 $\sigma_b^2 = \sum_{j=1}^N \left(\frac{\partial b}{\partial y_j}\right)^2 \sigma_j^2$

$$\frac{\partial a}{\partial y_j} = \frac{1}{\Delta} \left(\frac{x_j}{\sigma_j^2} \sum_{i=1}^{N} \frac{1}{\sigma_i^2} - \frac{1}{\sigma_j^2} \sum_{i=1}^{N} \frac{x_i}{\sigma_i^2} \right) \sigma_a^2 = \frac{1}{\Delta^2} \sum_{j=1}^{N} \sigma_j^2 \left(\frac{x_j}{\sigma_j^2} \sum_{i=1}^{N} \frac{1}{\sigma_i^2} - \frac{1}{\sigma_j^2} \sum_{i=1}^{N} \frac{x_i}{\sigma_i^2} \right)^2$$

$$\frac{\partial b}{\partial y_j} = \frac{1}{\Delta} \left(\frac{1}{\sigma_j^2} \sum_{i=1}^{N} \frac{x_i^2}{\sigma_i^2} - \frac{x_j}{\sigma_j^2} \sum_{i=1}^{N} \frac{x_i}{\sigma_i^2} \right) \quad \sigma_b^2 = \frac{1}{\Delta^2} \sum_{j=1}^{N} \sigma_j^2 \left(\frac{1}{\sigma_j^2} \sum_{i=1}^{N} \frac{x_i^2}{\sigma_i^2} - \frac{x_j}{\sigma_j^2} \sum_{i=1}^{N} \frac{x_i}{\sigma_i^2} \right)^2$$

Incerteza en los parámetros calculac REPASO

$$\Delta = \sum_{i=1}^{N} \frac{1}{\sigma_i^2} \sum_{i=1}^{N} \frac{x_i^2}{\sigma_i^2} - \left(\sum_{i=1}^{N} \frac{x_i}{\sigma_i^2}\right)^2$$

$$a = \frac{1}{\Delta} \left(\sum_{i=1}^{N} \frac{1}{\sigma_i^2} \sum_{i=1}^{N} \frac{x_i y_i}{\sigma_i^2} - \sum_{i=1}^{N} \frac{x_i}{\sigma_i^2} \sum_{i=1}^{N} \frac{y_i}{\sigma_i^2} \right)$$

$$b = \frac{1}{\Delta} \left(\sum_{i=1}^{N} \frac{x_i^2}{\sigma_i^2} \sum_{i=1}^{N} \frac{y_i}{\sigma_i^2} - \sum_{i=1}^{N} \frac{x_i}{\sigma_i^2} \sum_{i=1}^{N} \frac{x_i y_i}{\sigma_i^2} \right)$$

$$\sigma_a^2 = \frac{1}{\Delta} \sum_{i=1}^N \frac{1}{{\sigma_i}^2}$$

$$\sigma_b^2 = \frac{1}{\Delta} \sum_{i=1}^N \frac{x_i^2}{\sigma_i^2}$$

Correlación: Error sistemático de GAREPASO

Correlación: Error sistemático de GAREPASO

Correlación: Error sistemático de GAIREPASO

El problema fundamental que enfrentamos acá es la ausencia de una "teoría" del instrumento. No sabemos como responde.

Un criterio de decisión posible, y usualmente aceptado en ciencias físicas es el llamado "La navaja de Occam" (Occam's razor en inglés; Lex parsimoniae en Latín). Éste es un principio general atribuido a William de Ockham (c. 1287–1347). En una formulación moderna sería: En igualdad de condiciones, debe ser preferida la explicación que descanse en la menor cantidad de hipótesis.

En otras palabras: Es preferible lo simple.

Queda a criterio de ustedes cómo se aplica ese principio en este caso particular (¿amarillo, verde o rojo?).

OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT

Adam G. Riess,1 Al PETER M. GARNAVI B. LEIBUNDGUT,

RIESS ET AL.

Vol. 116

We present spectra range $0.16 \le z \le 0.62$ relations between S.

Fig. 5.— $\Delta m_{1.5}(B)$ SN Ia Hubble diagram. The upper panel shows the Hubble diagram for the low-redshift and high-redshift SNe Ia samples with distances measured from the template-fitting method parameterized by $\Delta m_{1.5}(B)$ (Hamuy et al. 1995, 1996d). Overplotted are three cosmologies: "low" and "high" Ω_M with $\Omega_A = 0$ and the best fit for a flat cosmology,

Comparación de dos distribucione REPASO observadas

$$\chi^2 = \sum_{j=1}^{M} \frac{\left(n_{1,j} - n_{2,j}\right)^2}{n_{1,j} + n_{2,j}}$$
, donde M es el número de bins.

La FDP de este χ^2 es la misma que mostré antes. ¿Qué es ν ahora? Si los datos son recogidos de forma tal que la suma de n_1 es necesariamente igual a la de n_2 tendremos que el número de grados de libertad es $\nu=M-1$ (el caso usual). Si este requerimiento no existe, entonces $\nu=M$.

Ejemplo: Un observador de aves que desea comparar dos años de observaciones, tomando un bin por cada especie.

- 1: Base de datos es los 1000 primeros pájaros que observa cada año ($\nu=M-1$)
- 2: Base de datos es todos los pájaros que vio en un número de días al azar, siendo el número de días el mismo en los dos años ($\nu = M$).

En el segundo caso puede comparar los totales. Ese es el grado de libertad adicional.

Comparación de dos distribuciones observadas: Significación de la diferencia de promedios

Dados:

$$\bar{x}_1 = \frac{1}{N_1} \sum_{i=1}^{N_1} x_{1,i}$$

$$\bar{x}_1 = \frac{1}{N_1} \sum_{i=1}^{N_1} x_{1,i} \quad \sigma_1 = \frac{1}{N_1 - 1} \sum_{i=1}^{N_1} x_{1,i} \quad \bar{x}_2 = \frac{1}{N_2} \sum_{i=1}^{N_2} x_{2,i} \quad \sigma_2 = \frac{1}{N_2 - 1} \sum_{i=1}^{N_2} x_{2,i}$$

$$\bar{x}_2 = \frac{1}{N_2} \sum_{i=1}^{N_2} x_{2,i}$$

$$\sigma_2 = \frac{1}{N_2 - 1} \sum_{i=1}^{N_2} x_{2,i}$$

Tendremos el error del promedio:

$$\sigma_{\bar{x}_1} = \frac{\sigma_1}{\sqrt{N_1}}$$

(Se obtienen de aplicar propagación de errores a las definiciones de \bar{x}_1 y \bar{x}_2 .)

$$\sigma_{\bar{x}_2} = \frac{\sigma_2}{\sqrt{N_2}}$$

Con estos elementos podemos construir el estimador t, con $\nu = N_1 + N_2 - 2$ grados de libertad:

$$t = \frac{\bar{x}_1 - \bar{x}_2}{S_D}$$
 donde

$$t = \frac{\bar{x}_1 - \bar{x}_2}{S_D} \quad \text{donde} \quad S_D = \sqrt{\frac{\sum_{N_1} (x_{1,i} - \bar{x}_1)^2 + \sum_{N_2} (x_{2,i} - \bar{x}_2)^2}{N_1 + N_2 - 2} \left(\frac{1}{N_1} + \frac{1}{N_2}\right)}$$

 S_D es el error estándar de la diferencia de promedios. t tiene FDP tipo t-Student.

Distribución t de Student

La FDP de t, A(t|v), denota la probabilidad de que t sea, por azar, menor que el valor medido si los promedios \bar{x}_1 y \bar{x}_2 son realmente iguales. Un valor grande (por ejemplo 0.99) indica una alta chance de medir un valor menor que el observado si $\bar{x}_1 = \bar{x}_2$. Esto es una indicación de que los promedios muy probablemente no sean los mismos. El valor complementario 1 - A(t|v) es la probabilidad de medir un valor tan grande como t si $\bar{x}_1 = \bar{x}_2$ (0.01 en el caso previo).

$$A(t|\nu) = \frac{1}{\nu^{\frac{1}{2}}B(\frac{1}{2},\frac{\nu}{2})} \int_{-t}^{t} \left(1 + \frac{x^{2}}{\nu}\right)^{\frac{\nu+1}{2}} dx = 1 - I_{\frac{\nu}{\nu+t^{2}}} \left(\frac{\nu}{2},\frac{1}{2}\right)$$

Donde $I_{\chi}(a,b)$ es la función Beta incompleta para $x=\frac{\nu}{\nu+t^2}$, $a=\nu/2$ y b=1/2.

Hay calculadores on-line para estas funciones, por ejemplo para 1 - A(t|v): http://onlinestatbook.com/2/calculators/t_dist.html

Distribución t de Student

$$A(t|\nu) = \frac{1}{\nu^{\frac{1}{2}}B(\frac{1}{2}, \frac{\nu}{2})} \int_{-t}^{t} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}} dx$$

El gráfico muestra A(t|v) como área blanca bajo la línea azul, y 1-A(t|v) como área azul en los extremos derecho e izquierdo de la distribución. Por simetría, debemos considerar ambas colas (ya que el orden en que hacemos la resta en la definición de t es arbitrario.

Coeficiente de correlación

Partamos con un recordatorio de las ecuaciones de ajuste lineal de cuadrados mínimos: $y_i = ax_i + b$

$$\sum_{i=1}^{N} \frac{y_i}{\sigma_i^2} = b \sum_{i=1}^{N} \frac{1}{\sigma_i^2} + a \sum_{i=1}^{N} \frac{x_i}{\sigma_i^2}$$

$$\sum_{i=1}^{N} \frac{x_i y_i}{\sigma_i^2} = b \sum_{i=1}^{N} \frac{x_i}{\sigma_i^2} + a \sum_{i=1}^{N} \frac{x_i^2}{\sigma_i^2}$$

$$\chi^{2} = \sum_{i=1}^{N} \left(\frac{y_{i} - (ax_{i} + b)}{\sigma_{i}} \right)^{2}$$

$$\Delta = \sum_{i=1}^{N} \frac{1}{\sigma_{i}^{2}} \sum_{i=1}^{N} \frac{x_{i}^{2}}{\sigma_{i}^{2}} - \left(\sum_{i=1}^{N} \frac{x_{i}}{\sigma_{i}^{2}} \right)^{2}$$

$$a = \frac{1}{\Delta} \left(\sum_{i=1}^{N} \frac{1}{\sigma_i^2} \sum_{i=1}^{N} \frac{x_i y_i}{\sigma_i^2} - \sum_{i=1}^{N} \frac{x_i}{\sigma_i^2} \sum_{i=1}^{N} \frac{y_i}{\sigma_i^2} \right)$$

$$b = \frac{1}{\Delta} \left(\sum_{i=1}^{N} \frac{x_i^2}{\sigma_i^2} \sum_{i=1}^{N} \frac{y_i}{\sigma_i^2} - \sum_{i=1}^{N} \frac{x_i}{\sigma_i^2} \sum_{i=1}^{N} \frac{x_i y_i}{\sigma_i^2} \right)$$

Simplifiquemos para un caso sin σ (es idéntico a imaginar $\sigma=1$)

Coeficiente de correlación (caso sin σ)

¿Tiene sentido la correlación $y_i = ax_i + b$? Prestemos atención a la pendiente.

$$a = \frac{1}{\Delta} \left(N \sum_{i=1}^{N} x_i y_i - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} y_i \right) = \frac{\Delta_s}{\Delta} \qquad \Delta = N \sum_{i=1}^{N} x_i^2 - \left(\sum_{i=1}^{N} x_i \right)^2$$

$$x_i = a' y_i + b' \qquad a' = \frac{\Delta_s}{\Delta'} \qquad \Delta' = N \sum_{i=1}^{N} y_i^2 - \left(\sum_{i=1}^{N} y_i \right)^2$$

Si hay una correlación real entre x e y deberá existir una relación entre a, a', b y b'.

$$x_i = \frac{1}{a}y_i - \frac{b}{a} \Rightarrow a' = \frac{1}{a}; b' = -\frac{b}{a} \Rightarrow aa' = 1$$
 $aa' = 1$

Definimos $r = \sqrt{aa'}$ cantidad llamada "coeficiente de correlación lineal", que nos da una medida experimental del grado de correlación lineal, con valor entre 0 y ± 1 .

$$r = \frac{N \sum_{i=1}^{N} x_i y_i - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} y_i}{\sqrt{N \sum_{i=1}^{N} x_i^2 - (\sum_{i=1}^{N} x_i)^2} \sqrt{N \sum_{i=1}^{N} y_i^2 - (\sum_{i=1}^{N} y_i)^2}}$$

(Raimundo, antes de que tomáramos la raiz cuadrada, el numerador era un cuadrado)

Coeficiente de correlación (caso sin σ)

Continuum Foreground Polarization and Na I Absorption in Type Ia SNe¹

Fig. 8.— Correlation between the parameters b and P_{mean} the tinuum polarization (see text and Fig. 2). The solid line sho

Fig. 10.— Correlation between the extinction in the visual band and P_{mean}. The solid line shows the linear fit to all points and the dashed line the linear fit when SN 2006X is excluded (correlation coefficients r₁ and r₂ respectively). Down pointing triangles are upper limits to

Coeficiente de correlación (caso sin σ)

Continuum Foreground Polarization and Na I Absorption in Type Ia SNe¹

P. Zelaya^{2,3}, A. Clocchiatti^{3,2}, D. Baade⁴, P. Höflich⁵, J. Maund⁶, F. Patat⁴, J.R. Quinn³,

Fin de ppt de Clase 8