

UNIVERSIDAD PERUANA LOS ANDES

"FACULTAD DE INGENIERÍA"

ESCUELA PROFESIONAL "SISTEMAS Y COMPUTACIÓN"

Informe Tecnico Comparativo

CÁTEDRA: Base de Datos II

CATEDRÁTICO: Ing. Fernandez Bejarano Raul Enrique

ESTUDIANTE: Quispe Segama Franklin Noe

CICLO: V

SECCIÓN: B1

HUANCAYO PERÚ 2025

Informe Técnico Comparativo

Tema: Arquitecturas Centralizadas, Cliente-Servidor y Distribuidas

Introducción

La arquitectura de un sistema determina cómo se organiza y gestiona el flujo de información entre los componentes de hardware y software. Dependiendo de las necesidades de las organizaciones, se pueden emplear diferentes modelos de arquitectura.

Entre las más utilizadas se encuentran:

- Centralizada, que concentra el procesamiento en un único sistema.
- **Cliente-Servidor**, que divide funciones entre un servidor que provee servicios y clientes que los consumen.
- **Distribuida**, que reparte el procesamiento entre múltiples nodos interconectados.

Este informe presenta un análisis comparativo de estas arquitecturas, destacando sus características, ventajas y desventajas.

Desarrollo

1. Arquitectura Centralizada

- Todo el procesamiento se realiza en un único equipo central (mainframe o servidor).
- Los terminales son "tontos", es decir, solo permiten ingresar y visualizar datos.

Ventajas:

- Administración y control centralizados.
- Mayor seguridad de la información.
- Fácil mantenimiento al concentrarse en un solo sistema.

Desventajas:

• Alta dependencia del servidor central.

- Escasa escalabilidad.
- Si el servidor falla, el sistema completo se detiene.

2. Arquitectura Cliente-Servidor

- Divide las funciones en dos roles:
 - o **Servidor**: procesa, almacena y administra los recursos.
 - o **Cliente**: solicita servicios o información al servidor.

Ventajas:

- Mayor distribución de la carga de trabajo.
- Flexibilidad para agregar más clientes.
- Seguridad controlada desde el servidor.

Desventajas:

- El servidor puede convertirse en un cuello de botella.
- Si el servidor falla, los clientes pierden acceso.
- Requiere infraestructura de red adecuada.

3. Arquitectura Distribuida

- El procesamiento se reparte entre múltiples nodos (servidores y clientes) conectados en red.
- Cada nodo puede actuar como cliente y servidor al mismo tiempo (modelo peer-to-peer o multinivel).

Ventajas:

• Alta escalabilidad (se pueden agregar más nodos fácilmente).

- Mayor tolerancia a fallos (si un nodo falla, los demás siguen trabajando).
- Optimiza recursos al repartir la carga de trabajo.

Desventajas:

- Mayor complejidad de administración.
- Problemas de sincronización y consistencia de datos.
- Requiere infraestructura de red robusta y confiable.

Cuadro Comparativo

Característica	Centralizada	Cliente-Servidor	Distribuida
Procesamient o	En un solo servidor central	Dividido entre servidor y clientes	Repartido entre múltiples nodos
Dependencia	Total del servidor central	Moderada: depende del servidor principal	Baja, ya que hay redundancia
Escalabilidad	Muy limitada	Moderada (añadiendo clientes)	Alta (se agregan nodos fácilmente)
Seguridad	Alta por centralización	Controlada desde el servidor	Más compleja por múltiples puntos
Tolerancia a fallos	Muy baja	Baja (si falla el servidor principal)	Alta (los nodos pueden reemplazarse)
Complejidad	Baja	Media	Alta
Ejemplos	Mainframes, sistemas antiguos	Aplicaciones web, bases de datos	Redes P2P, microservicios, blockchain

Conclusión

Cada arquitectura responde a necesidades específicas:

• La **centralizada** es adecuada para entornos pequeños o de control estricto, aunque limitada en escalabilidad.

- La **cliente-servidor** ofrece un equilibrio entre control y flexibilidad, siendo la más usada en aplicaciones empresariales y web.
- La distribuida es la más robusta y escalable, ideal para sistemas modernos como la nube, big data y aplicaciones críticas, aunque requiere mayor infraestructura y gestión.

La elección de la arquitectura depende de factores como la **escala del sistema**, disponibilidad de recursos, seguridad y tolerancia a fallos.