Small world and scale free networks

Python tutorial

Suzana Santos FGV-EMAp

August 2th 2022

Some characteristics observed in real world networks

- Small world phenomenon
- Scale free property

Watts-Strogatz model

Regular lattice

Watts-Strogatz model

The probability to reconnect an edge is $\ensuremath{p_{r}}$

Watts-Strogatz model

The probability to reconnect an edge is $\ensuremath{p_{r}}$

Scale free networks

Power law degree distribution:

$$P(k) = Ck^{-\gamma}$$

How can we estimate the degree exponent?

Some considerations...

 In real networks, very small degrees or very high degrees are farther from the power law distribution.

Para cada K_{min}:

$$\gamma = 1 + N \left[\sum_{i=1}^{N} \ln \frac{k_i}{K_{\min} - \frac{1}{2}} \right]^{-1}$$

Resulting pdf:

$$p_k = \frac{1}{\zeta(\gamma, K_{\min})} k^{-\gamma}$$

Resulting cdf:

$$P_{k} = 1 - \frac{\zeta(\gamma, k)}{\zeta(\gamma, K_{\min})}$$

Choose the K_{min} that minimizes the Kormogorov-Smirnov distance

$$D = \max_{k \ge K_{\min}} |S(k) - P_k|$$

Goodness of fit

- 1. Compute D with the real data (Dreal)
- 2. Fit the power law distribution to the observed degrees. Use the resulting theoretical pdf to generate a synthetic sequence of N degrees
- 3. Compute D^{synthetic} using the synthetic data
- 4. Repeat steps 2-3 M times.
- 5. Is D^{real} within the range of D^{synthetic} values?

Goodness of fit

