HW#3

□ Question1

□ Question2

Name: 張嵩禾

StudentID: B083040041

Compute the definite integral value of the function over [0, 0.8] and the relative error using the two-point Gauss-Legendre formula, which is **3.293615895056088e-14.** It is known that $fI^{(4)}(\xi) = \theta$ and indeed, the **relative error is a very small number close to zero**.

3.293615895056088e-14

Furthermore, since the fourth derivative of f2 is a linear function, I conjecture that the relative error is proportional to the fourth-order coefficient. This result can be seen from the plot.

2a

2a and 2b are written in 2a.py. For the high-frequency wave part, I set the range to 30 and delete its signal, resulting in the following effect in the image. If the **High-frequency filtering range smaller, which results in a clearer image.**

Origin image & Spectrum

After HPF

2a

2a written in 2a.py. For the high-frequency wave part, I set the range to 30 and delete its signal, resulting in the following effect in the image. If we increase the range of low-frequency filter, the image will become clearer.

Origin image & Spectrum

After LPF

2b

In 2b, we use a Gaussian low-pass filter to process the image, and since FWHM = 64, we can calculate the sigma and perform subsequent processing.

Origin image & Spectrum

After Gaussian LPF

Original Image

Low-Pass Filtered Image

2c

In 2c, we use a Gaussian high-pass filter to process the image, and since FWHM = 64, we can calculate the sigma and perform subsequent processing.

Origin image & Spectrum

After Gaussian LPF

Original Image

Low-Pass Filtered Image

2d

For 2d, we need to combine two images using Gaussian high-pass and lowpass filters to generate the X-Y illusion image. I set the FWHM of the lowpass filter to 32 and the FWHM of the high-pass filter to 128, with LPF threshold = 50dB and HPF threshold = 25dB, which can produce a better effect as seen below:

Original Image

Low-Pass Filtered Image Threshold: 50 dB

Spectrum of Original Image

Spectrum of LPF Image

Original Image

High-Pass Filtered Image Threshold: 25 dB

X-Y Illusion

Spectrum of Original Image

Spectrum of HPF Image

2e

After going through these steps, I discovered that designing an X-Y illusion image requires finding similar images and adjusting the filter threshold and FWHM to achieve the best effect. After several tests, I found that the effect shown in 2d was the best, so I presented this result.

Original Image

Low-Pass Filtered Image Threshold: 50 dB

Spectrum of Original Image

Spectrum of LPF Image

Original Image

High-Pass Filtered Image Threshold: 25 dB

Spectrum of Original Image

X-Y Illusion

