Exercise 6: Quantize the network using calibration data

```
%% Quantize the pretrained network
qLocal = dlquantizer(net, ExecutionEnvironment="MATLAB");
calResults = calibrate(qLocal, xTrain) %#ok<NASGU>
```

 $calResults = 23 \times 5 table$

Optimized Layer Name Learnables / Activations Network Layer Name 1 'conv_1' "conv_1_Weights" "Weights" 2 "conv_1_Bias" 'conv_1' "Bias" 3 "conv_2_Weights" 'conv_2' "Weights" 4 "conv 2 Bias" 'conv_2' "Bias" 5 "conv_3_Weights" 'conv_3' "Weights" 6 "conv_3_Bias" 'conv_3' "Bias" 7 "fc Weights" 'fc' "Weights" 8 "fc_Bias" 'fc' "Bias" 9 "Activations" "imageinput" 'imageinput' 10 "imageinput normalization" 'imageinput' "Activations" 11 "conv_1" 'conv_1' "Activations" 12 "batchnorm_1" "Activations" 'batchnorm_1' "relu_1" "Activations" 'relu_1' 14 "maxpool_1" "Activations" 'maxpool_1' 15 "conv_2" 'conv_2' "Activations" "batchnorm 2" 'batchnorm 2' "Activations" 17 "relu_2" "Activations" 'relu_2' 18 "maxpool 2" 'maxpool 2' "Activations" 19 "conv 3" "Activations" 'conv 3' 20 "batchnorm_3" "Activations" 'batchnorm_3' 21 "relu 3" 'relu_3' "Activations" 22 "fc" 'fc' "Activations" 23 "softmax" 'softmax' "Activations"

```
qNet = qLocal.quantize();

%% test the Quantized network
scoresQuantized = minibatchpredict(qNet,xTest);
YQuantized = onehotdecode(scoresQuantized,classNames,2);
confusionchart(label_Test,YQuantized);
```



```
accuracyQuantized = mean(YQuantized == label_Test)
```

accuracyQuantized = 0.7844

```
%% Export
% will encounter warning
exportONNXQuantizedNetwork(qNet, "net_Quantized.onnx");
```

Start exporting Quantized Network to ONNX

Try in Dev Cloud

```
web("https://stm32ai-cs.st.com/home");
```