Probability, likelihood, sampling and expectation

© 2019 Philipp Krähenbühl and Chao-Yuan Wu

Overview

- Probabilities and likelihood
- Sampling
- Linearity of expectation

What is a (discrete) distribution?

- Informal: bunch of positive numbers that some to one
- Distribution: $P: a \rightarrow [0,1]$
- Event: $a \in [0,...,n-1]$
- Probability: P(a)
 - Chance of a occurring

What is a conditional probability?

• Conditional probability:

 $P(a|\theta)$

P(910)

1-G

- Chance of a occurring given θ
- Example θ 's:
 - Other event
 - Model parameters

What is the likelihood?

- Informal: same as probability
- Formal: a function of parameter θ that describes the probability of observing data x^n given θ .
- Definition: $L(\theta) \equiv L(\theta; x^n) = P(x^n | \theta)$
- Usually refers to past events

Expectation

- Definition:
 - $\mathbb{E}_{a \sim P}[f]a$
- ullet For any function f

Linearity of expectation

•
$$\mathbb{E}_{a \sim P}[\alpha f(a)] = \alpha \mathbb{E}_{a \sim P}[f(a)]$$

•
$$\mathbb{E}_{a \sim P}[f(a) + g(a)] = \mathbb{E}_{a \sim P}[f(a)] + \mathbb{E}_{a \sim P}[g(a)]$$

•
$$\mathbb{E}_{a \sim P}[f(a)g(a)] \neq \mathbb{E}_{a \sim P}[f(a)]\mathbb{E}_{a \sim P}[g(a)]$$

Summary

- Event: $a \in [0,...,n-1]$
- Distribution: $P: a \rightarrow [0,1]$
- Probability: P(a)
- Sampling: $a \sim P$
- Expectation: $\mathbb{E}_{a \sim P}[f(a)]$

[Introduction to Probability, Bertsekas and Tsitsiklis 2002] [All of Statistics, Wasserman 2004]