Feature Selection : Backward Feature Elimination

Common Dimensionality Reduction Techniques

- Missing value ratio
- Low variance
- High correlation
- Backward feature elimination
- Forward feature selection

Common Dimensionality Reduction Techniques

- Missing value ratio
- Low variance
- High correlation
- Backward feature elimination
- Forward feature selection

Common Dimensionality Reduction Techniques

- Missing value ratio
- Low variance
- High correlation
- Backward feature elimination
- Forward feature selection

Feature Selection : Backward Feature Elimination

ID	Calories_bumt	Gender	Plays_Sport?	Fitness Level
1	121	М	Yes	Fit
2	230	М	No	Fit
3	342	F	No	Unfit
4	70	М	Yes	Fit
5	278	F	Yes	Unfit
6	146	М	Yes	Fit
7	168	F	No	Unfit
8	231	F	Yes	Fit
9	150	М	No	Fit
10	190	F	No	Fit

Feature Selection : Backward Feature Elimination

No missing values in the dataset

Variance of the variables is high

Low correlation between the independent

variables

Backward Feature Elimination

1. Train the model using all the variables (n)

1. Train the model using all the variables (n)

ID	Calories_bumt	Gender	Plays_Sport?	Fitness_Level
1	121	М	Yes	Fit
2	230	M	No	Fit
3	342	F	No	Unfit
4	70	М	Yes	Fit
5	278	F	Yes	Unfit
6	146	М	Yes	Fit
7	168	F	No	Unfit
8	231	F	Yes	Fit
9	150	М	No	Fit
10	190	F	No	Fit

- 1. Train the model using all the variables (n)
- 2. Calculate the performance of the model

- 1. Train the model using all the variables (n)
- 2. Calculate the performance of the model

- 1. Train the model using all the variables (n)
- 2. Calculate the performance of the model
- 3. Eliminate a variable, train the model on remaining variables (n-1)

ID	Calories_bumt	Gender	Plays_Sport?	Fitness_Level
1	121	М	Yes	Fit
2	230	М	No	Fit
3	342	F	No	Unfit
4	70	М	Yes	Fit
5	278	F	Yes	Unfit
6	146	М	Yes	Fit
7	168	F	No	Unfit
8	231	F	Yes	Fit
9	150	М	No	Fit
10	190	F	No	Fit

- 1. Train the model using all the variables (n)
- 2. Calculate the performance of the model
- 3. Eliminate a variable, train the model on remaining variables (n-1)
- 4. Calculate the performance of the model on new data

ID	Calories_bumt	Gender	Plays_Sport?	Fitness_Level
1	121	М	Yes	Fit
2	230	М	No	Fit
3	342	F	No	Unfit
4	70	М	Yes	Fit
5	278	F	Yes	Unfit
6	146	М	Yes	Fit
7	168	F	No	Unfit
8	231	F	Yes	Fit
9	150	М	No	Fit
10	190	F	No	Fit

Accuracy = 90%

ID	Calories_bumt	Gender	Plays_Sport?	Fitness_Level
1	121	М	Yes	Fit
2	230	М	No	Fit
3	342	F	No	Unfit
4	70	М	Yes	Fit
5	278	F	Yes	Unfit
6	146	М	Yes	Fit
7	168	F	No	Unfit
8	231	F	Yes	Fit
9	150	М	No	Fit
10	190	F	No	Fit

ID	Calories_bumt	Gender	Plays_Sport?	Fitness_Level
1	121	М	Yes	Fit
2	230	М	No	Fit
3	342	F	No	Unfit
4	70	М	Yes	Fit
5	278	F	Yes	Unfit
6	146	М	Yes	Fit
7	168	F	No	Unfit
8	231	F	Yes	Fit
9	150	М	No	Fit
10	190	F	No	Fit

Accuracy = 91.6%

ID	Calories_bumt	Gender	Plays_Sport?	Fitness_Level
1	121	М	Yes	Fit
2	230	M	No	Fit
3	342	F	No	Unfit
4	70	M	Yes	Fit
5	278	F	Yes	Unfit
6	146	М	Yes	Fit
7	168	F	No	Unfit
8	231	F	Yes	Fit
9	150	М	No	Fit
10	190	F	No	Fit

ID	Calories_bumt	Gender	Plays_Sport?	Fitness_Level
1	121	М	Yes	Fit
2	230	М	No	Fit
3	342	F	No	Unfit
4	70	М	Yes	Fit
5	278	F	Yes	Unfit
6	146	М	Yes	Fit
7	168	F	No	Unfit
8	231	F	Yes	Fit
9	150	М	No	Fit
10	190	F	No	Fit

Accuracy = 88%

- 1. Train the model using all the variables (n)
- 2. Calculate the performance of the model
- 3. Eliminate a variable, train the model on remaining variables (n-1)
- 4. Calculate the performance of the model on new data
- 5. Identify the eliminated variable which does not impact the performance much

Accuracy using all the variables = 92%

Accuracy using all the variables = 92%

Variable_dropped	Accuracy
Calories_burnt	90%
Gender	91.60%
Plays_Sport?	88%

Accuracy using all the variables = 92%

Variable_dropped	Accuracy
Calories_burnt	90%
Gender	91.60%
Plays_Sport?	88%

Accuracy using all the variables = 92%

Variable_dropp ed

Gender

Variable_dropped	Accuracy
Calories_burnt	90%
Gender	91.60%
Plays_Sport?	88%

- 1. Train the model using all the variables (n)
- 2. Calculate the performance of the model
- 3. Eliminate a variable, train the model on remaining variables (n-1)
- 4. Calculate the performance of the model on new data
- 5. Identify the eliminated variable which does not impact the performance much
- 6. Repeat until no more variables can be dropped

Thank You!

