SP601 Hardware User Guide

UG518 (v1.7) September 26, 2012

© Copyright 2009–2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials, or to advise you of any corrections or update. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

Revision History

The following table shows the revision history for this document.

Date	Version	Revision
07/15/09	1.0	Initial Xilinx release.
08/19/09	1.1	 Added Appendix B, VITA 57.1 FMC LPC Connector Pinout. Updated Figure 1-17. Updated Table 1-4, Table 1-19, and Table 1-22. Added introductory paragraph to Appendix C, SP601 Master UCF. Miscellaneous typographical edits and new user guide template.
05/17/10	1.2	 Updated Figure 1-1, Figure 1-2, Figure 1-14, Figure 1-18, Table 1-9, Table 1-1, Table 1-11, and Table 1-16. Added Figure 1-7, Figure 1-8, and Table 1-13. Updated 9. VITA 57.1 FMC-LPC Connector, page 25, Appendix B, VITA 57.1 FMC LPC Connector Pinout, and Appendix C, SP601 Master UCF.
06/16/10	1.3	Reversed order of 15. Configuration Options and 16. Power Management. Updated 1. Spartan-6 XC6SLX16-2CSG324 FPGA and 2. 128 MB DDR2 Component Memory. Added Table 1-26. Added <u>UG394</u> , Spartan-6 FPGA Power Management User Guide to Appendix D, References.
09/24/10	1.4	Added Power System Test Points, including Table 1-25.
02/16/11	1.5	Added note and revised header description to indicate the I/Os support LVCMOS25 signaling on page 34. Revised oscillator manufacturer information from Epson to SiTime on page page 23 and page 51.
07/18/11	1.6	Corrected wording from "PPM frequency jitter" to "PPM frequency stability" in section Oscillator (Differential), page 23. Added Table 1-15, page 27.
09/26/12	1.7	Added Regulatory and Compliance Information, page 53.

Table of Contents

Revision History	
Preface: About This Guide	
Guide Contents	5
Additional Documentation	
Additional Support Resources	
Additional Support Resources	0
Chapter 1: SP601 Evaluation Board	
Overview	7
Additional Information	
Features	8
Block Diagram	
Related Xilinx Documents	
Detailed Description	10
1. Spartan-6 XC6SLX16-2CSG324 FPGA	
Configuration	11
I/O Voltage Rails	12
2. 128 MB DDR2 Component Memory	12
3. SPI x4 Flash	
4. Linear Flash BPI	
5. 10/100/1000 Tri-Speed Ethernet PHY	
6. USB-to-UART Bridge	
7. IIC Bus	
8-Kb NV Memory	
8. Clock Generation	
Oscillator (Differential)	
Oscillator Socket (Single-Ended, 2.5V or 3.3V)	
SMA Connectors (Differential)	
9. VITA 57.1 FMC-LPC Connector	
10. Status LEDs	
11. FPGA Awake LED and Suspend Jumper	29
12. FPGA INIT and DONE LEDs	
14. FPGA_PROG_B Pushbutton Switch	
15. Configuration Options	
16. Power Management	
AC Adapter and 5V Input Power Jack/Switch	
Onboard Power Supplies	
Power System Test Points	
101101010000000000000000000000000000000	

Appendix A:	Default Jumper and Switch Settings
Appendix B:	VITA 57.1 FMC LPC Connector Pinout
Appendix C:	SP601 Master UCF
Appendix D:	References
Appendix E:	Regulatory and Compliance Information
Directives.	53
Standards.	53
Electro	magnetic Compatibility 53
•	
Markings .	

About This Guide

This manual accompanies the Spartan®-6 FPGA SP601 Evaluation Board and contains information about the SP601 hardware and software tools.

Guide Contents

This manual contains the following chapters:

- Chapter 1, SP601 Evaluation Board, provides an overview of the SP601 evaluation board and details the components and features of the SP601 board.
- Appendix A, Default Jumper and Switch Settings.
- Appendix B, VITA 57.1 FMC LPC Connector Pinout.
- Appendix C, SP601 Master UCF.
- Appendix D, References.

Additional Documentation

The following documents are available for download at http://www.xilinx.com/products/spartan6.

- Spartan-6 Family Overview
 - This overview outlines the features and product selection of the Spartan-6 family.
- Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
 This data sheet contains the DC and switching characteristic specifications for the Spartan-6 family.
- Spartan-6 FPGA Packaging and Pinout Specifications
 This specification includes the tables for device/package combinations and maximum I/Os, pin definitions, pinout tables, pinout diagrams, mechanical drawings, and thermal specifications.
- Spartan-6 FPGA Configuration User Guide
 This all-encompassing configuration guide includes chapters on configuration interfaces (serial and parallel), multi-bitstream management, bitstream encryption, boundary-scan and JTAG configuration, and reconfiguration techniques.
- Spartan-6 FPGA SelectIO Resources User Guide
 This guide describes the SelectIOTM resources available in all Spartan-6 devices.
- Spartan-6 FPGA Clocking Resources User Guide

This guide describes the clocking resources available in all Spartan-6 devices, including the DCMs and PLLs.

- Spartan-6 FPGA Block RAM Resources User Guide
 This guide describes the Spartan-6 device block RAM capabilities.
- Spartan-6 FPGA DSP48A1 Slice User Guide
 This guide describes the architecture of the DSP48A1 slice in Spartan-6 FPGAs and provides configuration examples.
- Spartan-6 FPGA Memory Controller User Guide
 This guide describes the Spartan-6 FPGA memory controller block, a dedicated embedded multi-port memory controller that greatly simplifies interfacing Spartan-6 FPGAs to the most popular memory standards.
- Spartan-6 FPGA PCB Designer's Guide
 This guide provides information on PCB design for Spartan-6 devices, with a focus on strategies for making design decisions at the PCB and interface level.

Additional Support Resources

To search the database of silicon and software questions and answers or to create a technical support case in WebCase, see the Xilinx website at:

http://www.xilinx.com/support.

SP601 Evaluation Board

Overview

The SP601 board enables hardware and software developers to create or evaluate designs targeting the Spartan®-6 XC6SLX16-2CSG324 FPGA.

The SP601 provides board features for evaluating the Spartan-6 family that are common to most entry-level development environments. Some commonly used features include a DDR2 memory controller, a parallel linear flash, a tri-mode Ethernet PHY, general-purpose I/O (GPIO), and a UART. Additional functionality can be added through the VITA 57.1.1 expansion connector. Features, page 8 provides a general listing of the board features with details provided in Detailed Description, page 10.

Additional Information

Additional information and support material is located at:

• http://www.xilinx.com/sp601

This information includes:

- Current version of this user guide in PDF format
- Example design files for demonstration of Spartan-6 FPGA features and technology
- Demonstration hardware and software configuration files for the SP601 linear and SPI memory devices
- Reference Design Files
- Schematics in PDF format and DxDesigner schematic format
- Bill of materials (BOM)
- Printed-circuit board (PCB) layout in Allegro PCB format
- Gerber files for the PCB (Many free or shareware Gerber file viewers are available on the internet for viewing and printing these files.)
- Additional documentation, errata, frequently asked questions, and the latest news

For information about the Spartan-6 family of FPGA devices, including product highlights, data sheets, user guides, and application notes, see the Spartan-6 FPGA website at http://www.xilinx.com/support/documentation/spartan-6.htm.

Features

The SP601 board provides the following features (see Figure 1-2 and Table 1-1):

- 1. Spartan-6 XC6SLX16-2CSG324 FPGA
- 2. 128 MB DDR2 Component Memory
- 3. SPI x4 Flash
- 4. Linear Flash BPI
- 5. 10/100/1000 Tri-Speed Ethernet PHY
- 7. IIC Bus
 - 8Kb NV memory
 - External access 2-pin header
 - VITA 57.1 FMC-LPC connector
- 8. Clock Generation
 - Oscillator (Differential)
 - Oscillator Socket (Single-Ended, 2.5V or 3.3V)
- SMA Connectors (Differential)
- 9. VITA 57.1 FMC-LPC Connector
- 10. Status LEDs
 - FPGA_AWAKE
 - INIT
 - DONE
- 13. User I/O
 - User LEDs
 - User DIP switch
 - User pushbuttons
 - GPIO male pin header
- 14. FPGA_PROG_B Pushbutton Switch
- 15. Configuration Options
 - 3. SPI x4 Flash (both onboard and off-board)
 - 4. Linear Flash BPI
 - JTAG Configuration
- 16. Power Management
 - AC Adapter and 5V Input Power Jack/Switch
 - Onboard Power Supplies

Block Diagram

Figure 1-1 shows a high-level block diagram of the SP601 and its peripherals.

Figure 1-1: SP601 Features and Banking

Related Xilinx Documents

Prior to using the SP601 Evaluation Board, users should be familiar with Xilinx resources. See the following locations for additional documentation on Xilinx tools and solutions:

- ISE: www.xilinx.com/ise
- Answer Browser: <u>www.xilinx.com/support</u>
- Intellectual Property: <u>www.xilinx.com/ipcenter</u>

Detailed Description

Figure 1-2 shows a board photo with numbered features corresponding to Table 1-1 and the section headings in this document.

Figure 1-2: SP601 Board Photo

The numbered features in Figure 1-2 correlate to the features and notes listed in Table 1-1.

Table 1-1: SP601 Features

Number	Feature	Notes	Schematic Page
1	Spartan-6 FPGA	XC6SLX16-2CSG324	
2	DDR2 Component	Elpida EDE1116ACBG 1 Gb DDR2 SDRAM	5
3	SPI x4 Flash and Headers	SPI select and External Headers	8
4	Linear Flash BPI	StrataFlash 8-bit (J3 device), 3 pins shared w/ SPI x4	8

Table 1-1: SP601 Features (Cont'd)

Number	Feature	Notes	
5	10/100/1000 Ethernet PHY	GMII Marvell Alaska PHY	7
6	RS232 UART (USB Bridge)	Uses CP2103 Serial-to-USB connection	10
7	IIC	Goes to Header and VITA 57.1 FMC	10
8	Clock, socket, SMA	Differential, Single-Ended, Differential	9
9	VITA 57.1 FMC-LPC connector	LVDS signals, clocks, PRSNT	6
10	LEDs	Ethernet PHY Status	7
11	LED, Header	FPGA Awake LED, Suspend Header	8
12	LEDs	FPGA INIT, DONE	9
	LED	User I/O (active-High)	9
	DIP Switch	User I/O (active-High)	9
13	Pushbutton	User I/O, CPU_RESET (active-High)	9
	12-pin (8 I/O) Header	6 pins x 2 male header with 8 I/Os (active-High)	10
14	Pushbutton	FPGA_PROG_B	9
15	USB JTAG	Cypress USB to JTAG download cable logic	14, 15
16	Onboard Power	Power Management	11,12,13

1. Spartan-6 XC6SLX16-2CSG324 FPGA

A Xilinx Spartan-6 XC6SLX16-2CSG324 FPGA is installed on the SP601 Evaluation Board.

References

See the Spartan-6 FPGA Data Sheet. [Ref 1]

Configuration

The SP601 supports configuration in the following modes:

- Master SPI x4
- Master SPI x4 with off-board device
- BPI
- JTAG (using the included USB-A to Mini-B cable)

For details on configuring the FPGA, see 15. Configuration Options.

The Mode DIP switch SW2 is set to M[1:0] = 01 Master SPI default.

References

See the Spartan-6 FPGA Configuration User Guide for more information. [Ref 2]

I/O Voltage Rails

There are four available banks on the LX16-CSG324 device. Banks 0, 1, and 2 are connected for 2.5V I/O. Bank 3 is used for the 1.8V DDR2 component memory interface of Spartan-6 FPGA's hard memory controller. The voltage applied to the FPGA I/O banks used by the SP601 board is summarized in Table 1-2.

Table 1-2: I/O Voltage Rail of FPGA Banks

FPGA Bank	I/O Voltage Rail
0	2.5V
1	2.5V
2	2.5V
3	1.8V

References

See the Spartan-6 FPGA documentation for more information at http://www.xilinx.com/support/documentation/spartan-6.htm.

2. 128 MB DDR2 Component Memory

There are 128 MB of DDR2 memory available on the SP601 board. A 1-Gb Elpida EDE1116ACBG (84-ball) DDR2 memory component is accessible through Bank 3 of the LX16 device. The Spartan-6 FPGA hard memory controller is used for data transfer across the DDR2 memory interface's 16-bit data path using SSTL18 signaling. The SP601 board supports the "standard" VCCINT setting of 1.20V \pm 5%. This setting provides the standard memory controller block (MCB) performance of 625 Mb/s for DDR2 memory in a -2 speed grade device. Signal integrity is maintained through DDR2 resistor terminations and memory on-die terminations (ODT), as shown in Table 1-3 and Table 1-4.

Table 1-3: Termination Resistor Requirements

Signal Name	Board Termination	On-Die Termination
DDR2_A[14:0]	49.9Ω to V_{TT}	
DDR2_BA[2:0]	49.9Ω to V_{TT}	
DDR2_RAS_N	49.9Ω to V_{TT}	
DDR2_CAS_N	49.9Ω to V_{TT}	
DDR2_WE_N	49.9Ω to V_{TT}	
DDR2_CS_N	100Ω to GND	
DDR2_CKE	4.7KΩ to GND	
DDR2_ODT	4.7KΩ to GND	
DDR2_DQ[15:0]		ODT
DDR2_UDQS[P,N], DDR2_LDQS[P,N]		ODT
DDR2_UDM, DDR2_LDM		ODT

Table 1-3: Termination Resistor Requirements (Cont'd)

Signal Name	Board Termination	On-Die Termination
DDR2_CK[P,N]	100Ω differential at memory component	

Notes:

1. Nominal value of V_{TT} for DDR2 interface is 0.9V.

Table 1-4: FPGA On-Chip (OCT) Termination External Resistor Requirements

FPGA U1 Pin	FPGA Pin Number	Board Connection for OCT	
ZIO	L6	No Connect	
RZQ	C2	100Ω to GROUND	

Table 1-5 shows the connections and pin numbers for the DDR2 Component Memory.

Table 1-5: DDR2 Component Memory Connections

FPGA U1	Schematic Net Name	Memory U2			
Pin		Pin Number	Pin Name		
J7	DDR2_A0	M8	A0		
J6	DDR2_A1	M3	A1		
H5	DDR2_A2	M7	A2		
L7	DDR2_A3	N2	A3		
F3	DDR2_A4	N8	A4		
H4	DDR2_A5	N3	A5		
Н3	DDR2_A6	N7	A6		
Н6	DDR2_A7	P2	A7		
D2	DDR2_A8	P8	A8		
D1	DDR2_A9	Р3	A9		
F4	DDR2_A10	M2	A10		
D3	DDR2_A11	P7	A11		
G6	DDR2_A12	R2	A12		
L2	DDR2_DQ0	G8	DQ0		
L1	DDR2_DQ1	G2	DQ1		
K2	DDR2_DQ2	H7	DQ2		
K1	DDR2_DQ3	НЗ	DQ3		
H2	DDR2_DQ4	H1	DQ4		
H1	DDR2_DQ5	Н9	DQ5		
Ј3	DDR2_DQ6	F1	DQ6		

Table 1-5: DDR2 Component Memory Connections (Cont'd)

FPGA U1	Schematic Net Name	Memory U2		
Pin		Pin Number	Pin Name	
J1	DDR2_DQ7	F9	DQ7	
M3	DDR2_DQ8	C8	DQ8	
M1	DDR2_DQ9	C2	DQ9	
N2	DDR2_DQ10	D7	DQ10	
N1	DDR2_DQ11	D3	DQ11	
T2	DDR2_DQ12	D1	DQ12	
T1	DDR2_DQ13	D9	DQ13	
U2	DDR2_DQ14	B1	DQ14	
U1	DDR2_DQ15	В9	DQ15	
F2	DDR2_BA0	L2	BA0	
F1	DDR2_BA1	L3	BA1	
E1	DDR2_BA2	L1	BA2	
E3	DDR2_WE_B	K3	WE	
L5	DDR2_RAS_B	K7	RAS	
K5	DDR2_CAS_B	L7	CAS	
K6	DDR2_ODT	K9	ODT	
G3	DDR2_CLK_P	Ј8	CK	
G1	DDR2_CLK_N	K8	CK	
H7	DDR2_CKE	K2	CKE	
L4	DDR2_LDQS_P	F7	LDQS	
L3	DDR2_LDQS_N	E8	LDQS	
P2	DDR2_UDQS_P	В7	UDQS	
P1	DDR2_UDQS_N	A8	UDQS	
К3	DDR2_LDM	F3	LDM	
K4	DDR2_UDM	В3	UDM	

References

See the Elpida DDR2 SDRAM Specifications for more information. [Ref 11]

Also, see the Spartan-6 FPGA Memory Controller User Guide. [Ref 3]

3. SPI x4 Flash

The Xilinx Spartan-6 FPGA hosts a SPI interface which is accessible to the Xilinx iMPACT configuration tool. The SPI memory device operates at 3.0V; the Spartan-6 FPGA I/Os are 3.3V tolerant and provide electrically compatible logic levels to directly access the SPI flash through a 2.5V bank. The XC6SLX16-2CSG324 is a master device when accessing an external SPI flash memory device.

The SP601 SPI interface has two parallel connected configuration options (see Figure 1-4): an SPI X4 (Winbond W25Q64VSFIG) 64-Mb flash memory device and a flash programming header (J12). J12 supports a user-defined SPI mezzanine board. The SPI configuration source is selected via SPI select jumper J15. For details on configuring the FPGA, see 15. Configuration Options.

Figure 1-3: J12 SPI Flash Programming Header

Figure 1-4: SPI Flash Interface Topology

Table 1-6: SPI x4 Memory Connections

FPGA U1 Pin		SPI MEM U17		SPI HDR J12	
	Schematic Net Name	Pin #	Pin Name	Pin Number	Pin Name
V2	FPGA_PROG_B			1	
V14	FPGA_D2_MISO3	1	IO3_HOLD_B	2	
T14	FPGA_D1_MISO2_R	9	IO2_WP_B	3	
V3	SPI_CS_B			4	TMS
T13	FPGA_MOSI_CSI_B_MISO0	15	DIN	5	TDI
R13	FPGA_D0_DIN_MISO_MISO1	8	IO1_DOUT	6	TDO
R15	FPGA_CCLK	16	CLK	7	TCK
				8	GND
				9	VCC3V3
J15.2	SPIX4_CS_B	7	CS_B		

References

See the Winbond *Serial Flash Memory Data Sheet* for more information. [Ref 12] See the XPS Serial Peripheral Interface Data Sheet for more information. [Ref 4]

4. Linear Flash BPI

An 8-bit (16 MB) Numonyx linear flash memory (TE28F128J3D-75) (J3D type) is used to provide non-volatile bitstream, code, and data storage. The J3D devices operate at 3.0V; the Spartan-6 FPGA I/Os are 3.3V tolerant and provide electrically compatible logic levels to directly access the linear flash BPI through a 2.5V bank. For details on configuring the FPGA, see 15. Configuration Options.

Figure 1-5: Linear Flash BPI Interface

Table 1-7: BPI Memory Connections

EDOA III Din	Cabamatia Nat Nama	BPI Mem	ory U10
FPGA U1 Pin	Schematic Net Name	Pin Number	Pin Name
K18	FLASH_A0	32	A0
K17	FLASH_A1	28	A1
J18	FLASH_A2	27	A2
J16	FLASH_A3	26	A3
G18	FLASH_A4	25	A4
G16	FLASH_A5	24	A5
H16	FLASH_A6	23	A6
H15	FLASH_A7	22	A7
H14	FLASH_A8	20	A8
H13	FLASH_A9	19	A9
F18	FLASH_A10	18	A10
F17	FLASH_A11	17	A11
K13	FLASH_A12	13	A12
K12	FLASH_A13	12	A13
E18	FLASH_A14	11	A14
E16	FLASH_A15	10	A15
G13	FLASH_A16	8	A16

Table 1-7: BPI Memory Connections (Cont'd)

EDOA III Din	Cahamatia Nat Nama	BPI Mem	ory U10
FPGA U1 Pin	Schematic Net Name	Pin Number	Pin Name
H12	FLASH_A17	7	A17
D18	FLASH_A18	6	A18
D17	FLASH_A19	5	A19
G14	FLASH_A20	4	A20
F14	FLASH_A21	3	A21
C18	FLASH_A22	1	A22
C17	FLASH_A23	30	A23
F16	FLASH_A24	56	A24
R13	FPGA_D0_DIN_MISO_MISO1	33	DQ0
T14	FPGA_D1_MISO2	35	DQ1
V14	FPGA_D2_MISO3	38	DQ2
U5	FLASH_D3	40	DQ3
V5	FLASH_D4	44	DQ4
R3	FLASH_D5	46	DQ5
Т3	FLASH_D6	49	DQ6
R5	FLASH_D7	51	DQ7
M16	FLASH_WE_B	55	WE_B
L18	FLASH_OE_B	54	OE_B
L17	FLASH_CE_B	14	CE0
В3	FMC_PWR_GOOD_FLASH_RST_B	16	RP_B

Note: Memory U10 pin 56 address A24 is not connected on the 16 MB device. It is made available for larger density devices.

References

See the Numonyx *Embedded Flash Memory Data Sheet* for more information. [Ref 13] In addition, see the *Spartan-6 FPGA Configuration User Guide* for more information. [Ref 2]

5. 10/100/1000 Tri-Speed Ethernet PHY

The SP601 uses the onboard Marvell Alaska PHY device (88E1111) for Ethernet communications at 10, 100, or 1000 Mb/s. The board supports a GMII/MII interface from the FPGA to the PHY. The PHY connection to a user-provided Ethernet cable is through a Halo HFJ11-1G01E RJ-45 connector with built-in magnetics.

On power-up, or on reset, the PHY is configured to operate in GMII mode with PHY address 0b00111 using the settings shown in Table 1-8. These settings can be overwritten via software commands passed over the MDIO interface.

Table 1-8: PHY Configuration Pins

Pin	Connection on Board	Bit[2] Definition and Value	Bit[1] Definition and Value	Bit[0] Definition and Value
CFG0	V _{CC} 2.5V	PHYADR[2] = 1	PHYADR[1] = 1	PHYADR[0] = 1
CFG1	Ground	ENA_PAUSE = 0	PHYADR[4] = 0	PHYADR[3] = 0
CFG2	V _{CC} 2.5V	ANEG[3] = 1	ANEG[2] = 1	ANEG[1] = 1
CFG3	V _{CC} 2.5V	ANEG[0] = 1	ENA_XC = 1	DIS_125 = 1
CFG4	V _{CC} 2.5V	$HWCFG_MD[2] = 1$	HWCFG_MD[1] = 1	$HWCFG_MD[0] = 1$
CFG5	V _{CC} 2.5V	DIS_FC = 1	DIS_SLEEP = 1	$HWCFG_MD[3] = 1$
CFG6	PHY_LED_RX	SEL_BDT = 0	INT_POL = 1	$75/50\Omega = 0$

Table 1-9: Ethernet PHY Connections

FPGA U1 Pin	Schematic Net Name	U3 M8	88E111	
PPGA UT PIII	Schematic Net Name	Pin Number	Pin Name	
P16	PHY_MDIO	33	MDIO	
N14	PHY_MDC	35	MDC	
J13	PHY_INT	32	INT_B	
L13	PHY_RESET	36	RESET_B	
M13	PHY_CRS	115	CRS	
L14	PHY_COL	114	COL	
L16	PHY_RXCLK	7	RXCLK	
P17	PHY_RXER	8	RXER	
N18	PHY_RXCTL_RXDV	4	RXDV	
M14	PHY_RXD0	3	RXD0	
U18	PHY_RXD1	128	RXD1	
U17	PHY_RXD2	126	RXD2	
T18	PHY_RXD3	125	RXD3	
T17	PHY_RXD4	124	RXD4	
N16	PHY_RXD5	123	RXD5	

Table 1-9: Ethernet PHY Connections (Cont'd)

EDCA III Din	Cohomotic Not Name	U3 M8	8E111
FPGA U1 Pin	Schematic Net Name	Pin Number	Pin Name
N15	PHY_RXD6	121	RXD6
P18	PHY_RXD7	120	RXD7
A9	PHY_TXC_GTPCLK	14	GTXCLK
В9	PHY_TXCLK	10	TXCLK
A8	PHY_TXER	13	TXER
B8	PHY_TXCTL_TXEN	16	TXEN
F8	PHY_TXD0	18	TXD0
G8	PHY_TXD1	19	TXD1
A6	PHY_TXD2	20	TXD2
В6	PHY_TXD3	24	TXD3
E6	PHY_TXD4	25	TXD4
F7	PHY_TXD5	26	TXD5
A5	PHY_TXD6	28	TXD6
C5	PHY_TXD7	29	TXD7

References

See the Marvell *Alaska Gigabit Ethernet Transceivers* product page for more information. [Ref 16]

Also, see the *LogiCORE™ IP Tri-Mode Ethernet MAC User Guide*. [Ref 5]

6. USB-to-UART Bridge

The SP601 contains a Silicon Labs CP2103GM USB-to-UART bridge device (U4) which allows connection to a host computer with a USB cable. The USB cable is supplied in this evaluation kit (Type A end to host computer, Type Mini-B end to SP601 connector J9). Table 1-10 details the SP601 J9 pinout.

Xilinx UART IP is expected to be implemented in the FPGA fabric. The FPGA supports the USB-to-UART bridge using four signal pins, transmit (TX), receive (RX), Request to Send (RTS), and Clear to Send (CTS).

Silicon Labs provides royalty-free Virtual COM Port (VCP) drivers which permit the CP2103GM USB-to-UART bridge to appear as a COM port to host computer communications application software (for example, HyperTerm or TeraTerm). The VCP device driver must be installed on the host PC prior to establishing communications with the SP601. Refer to the *SP601 Getting Started Guide* for driver installation instructions.

Table 1-10: USB Type B Pin Assignments and Signal Definitions

USB Connector Pin	Signal Name	Description	
1	VBUS	+5V from host system (not used)	
2	USB_DATA_N	Bidirectional differential serial data (N-side)	
3	USB_DATA_P	Bidirectional differential serial data (P-side)	
4	GROUND	Signal ground	

Table 1-11: CP2103GM Connections

FPGA U1 Pin	UART Function in FPGA	Schematic Net Name	U4 CP2103GM Pin	UART Function in CP2103GM
U10	RTS, output	USB_1_CTS	22	CTS, input
T5	CTS, input	USB_1_RTS	23	RTS, output
L12	TX, data out	USB_1_RX	24	RXD, data in
K14	RX, data in	USB_1_TX	25	TXD, data out

References

Refer to the <u>Silicon Labs</u> website for technical information on the CP2103GM and the VCP drivers.

In addition, see some of the Xilinx UART IP specifications at:

- http://www.xilinx.com/support/documentation/ip_documentation/xps_uartlite.pdf
- http://www.xilinx.com/support/documentation/ip_documentation/xps_uart16550.pdf

7. IIC Bus

The SP601 IIC bus hosts four items:

- FPGA U1 IIC interface
- 2-pin IIC external access header
- 8-Kb NV Memory
- VITA 57.1 FMC Connector J1

The SP601 IIC bus topology is shown in Figure 1-6.

Figure 1-6: IIC Bus Topology

The IIC Bus on the SP601 provides access to a 2-pin header, the onboard 8-Kb EEPROM, and the VITA 57.1 FMC interface. The user must ensure there are no IIC address conflicts with the onboard EEPROM address when attaching additional IIC devices via FMC or the IIC 2-pin header. Note that FMC Mezzanine cards are designed with 2-Kb IIC EEPROMs and will not conflict with the Carrier Card (SP601) 8-Kb EEPROM address range. This is because 2-Kb EEPROMs reside below the 8-Kb EEPROM space. See the VITA 57.1 specification along with any IIC 2-Kbit EEPROM data sheet for more details.

8-Kb NV Memory

The SP601 hosts a 8-Kb ST Microelectronics M24C08-WDW6TP IIC parameter storage memory device (U7). The IIC address of U7 is 0b1010100, and U7 is not write protected (WP pin 7 is tied to GND).

Table 1-12: IIC Memory Connections

FPGA U1 Pin	Schematic Net Name	SPI Mer	mory U7
	Schematic Net Name	Pin Number	Pin Name
Not Applicable	Tied to GND	1	A0
Not Applicable	Tied to GND	2 A1	

Table 1-12: IIC Memory Connections (Cont'd)

FPGA U1 Pin	Schematic Net Name	SPI Memory U7		
FPGA UT PIII	Schematic Net Name	Pin Number	Pin Name	
Not Applicable	Pulled up (0Ω) to VCC3V3	3	A2	
N10	IIC_SDA_MAIN	5	SDA	
P11	IIC_SCL_MAIN	6	SCL	
Not Applicable	Tied to GND	7	WP	

References

See the ST Micro M24C08 Data Sheet for more information. [Ref 17]

In addition, see the Xilinx XPS IIC Bus Interface Data Sheet. [Ref 6]

Also, see 9. VITA 57.1 FMC-LPC Connector, page 25.

8. Clock Generation

There are three clock sources available on the SP601.

Oscillator (Differential)

The SP601 has one 2.5V LVDS differential 200 MHz oscillator (U5) soldered onto the board and wired to an FPGA global clock input.

- Crystal oscillator: SiTime SiT9102AI-243N25E200.00000
- PPM frequency stability: 50 ppm

References

See the SiTime SiT9102 Data Sheet for more information. [Ref 14]

Oscillator Socket (Single-Ended, 2.5V or 3.3V)

One populated single-ended clock socket (X2) is provided for user applications. The option of 3.3V or 2.5V power may be selected via a 0Ω resistor selection. The SP601 board is shipped with a 27 MHz 2.5V oscillator installed.

Figure 1-7 shows the unpopulated user oscillator socket, indicating the socket pin 1 location. Figure 1-8 shows the oscillator installed, indicating its pin 1 location.

Figure 1-7: SP601 Oscillator Socket Pin 1 Location Identifiers

Figure 1-8: SP601 Oscillator Pin 1 Location Identifiers

SMA Connectors (Differential)

A high-precision clock signal can be provided to the FPGA using differential clock signals through the onboard 50Ω SMA connectors J8 (N) and J7 (P).

Table 1-13: SP601 Clock Source Connections

Source	FPGA U1 Pin	Schematic Net Name	Pin Number	Pin Name
U5 200 MHz OSC	K16	SYSCLK_N	5	OUT_B
03 200 WIT IZ OSC	K15	SYSCLK_P	4	OUT
X2 27 MHz OSC	V10	USER_CLOCK	5	OUT
USER_SMA_CLOCK	H18	SMACLK_N	J8.1	-
SMA Connectors	H17	SMACLK_P	J7.1	-

9. VITA 57.1 FMC-LPC Connector

The VITA 57.1 FMC expansion connector (J1) on the SP601 implements the VITA 57.1.1 LPC format of the VITA 57.1 FMC standard specification. The VITA 57.1 FMC-LPC connector provides 68 single-ended (34 differential) user-defined signals. The VITA 57.1 FMC standard calls for two connector densities: a High Pin Count (HPC) and a Low Pin Count (LPC) implementation. A common 10 x 40 position (400 pin locations) connector form factor is used for both versions. The HPC version has 400 pins present, the LPC version, 160 pins. The Samtec connector system is rated for signaling speeds up to 9 GHz (18 Gb/s) based on a -3dB insertion loss point within a two-level signaling environment. Refer to the Samtec website for data sheets and characterization information for the RoHS-compliant VITA 57.1 FMC-LPC connector (ASP-134603-01) and its mate.

Note: The SP601 board VADJ voltage for the FMC LPC connector (J1) is fixed at 2.5V (non-adjustable). The 2.5V rail cannot be turned off. The FMC LPC J1 connector is a keyed connector oriented so that a plug-on card faces *away* from the SP601 board. The SP601 VITA 57.1 FMC interface is compatible with 2.5V mezzanine cards capable of supporting 2.5V VADJ.

Table 1-14 shows the VITA 57.1 FMC LPC connections. The connector pinout is in Appendix B, VITA 57.1 FMC LPC Connector Pinout.

Any signal named FMC_HPC_xxxx that is wired between a U1 FPGA pin and some other device does not appear in this table.

The SP601 supports all FMC LA Bus connections available on the FMC LPC connector, (LA[00:33]) along with all available FMC M2C clock pairs (CLK0_M2C_P/N and CLK1_M2C_P/N). The SP601 does not support the FMC DP Bus connections since the SP601 does not support any Gigabit Transceivers on the FMC DP Bus. Therefore, DP0_C2M_P/N, DP0_M2C_P/N and GBTCLK0_M2C_P/N are not supported by the SP601 FMC interface.

For more details about FMC, see the VITA57.1 specification available at http://www.vita.com/fmc.html.

Table 1-14: VITA 57.1 FMC LPC Connections

J1 FMC LPC Pin	Schematic Net Name	U1 FPGA Pin	J1 FMC LPC Pin	Schematic Net Name	U1 FPGA Pin
C10	FMC_LA06_P	D12	D1	FMC_PWR_GOOD_FLASH_RST_B	В3
C11	FMC_LA06_N	C12	D8	FMC_LA01_CC_P	D11
C14	FMC_LA10_P	D8	D9	FMC_LA01_CC_N	C11
C15	FMC_LA10_N	C8	D11	FMC_LA05_P	B14
C18	FMC_LA14_P	B2	D12	FMC_LA05_N	A14
C19	FMC_LA14_N	A2	D14	FMC_LA09_P	G11
C22	FMC_LA18_CC_P	R10	D15	FMC_LA09_N	F10
C23	FMC_LA18_CC_N	T10	D17	FMC_LA13_P	B11
C26	FMC_LA27_P	R11	D18	FMC_LA13_N	A11
C27	FMC_LA27_N	T11	D20	FMC_LA17_CC_P	R8
C30	IIC_SCL_MAIN	P11	D21	FMC_LA17_CC_N	T8
C31	IIC_SDA_MAIN	N10	D23	FMC_LA23_P	N5

Table 1-14: VITA 57.1 FMC LPC Connections (Cont'd)

J1 FMC LPC Pin	Schematic Net Name	U1 FPGA Pin	J1 FMC LPC Pin	Schematic Net Name	U1 FPGA Pin
			D24	FMC_LA23_N	P6
			D26	FMC_LA26_P	U7
			D27	FMC_LA26_N	V7
G2	FMC_CLK1_M2C_P	Т9	H2	FMC_PRSNT_M2C_L	U13
G3	FMC_CLK1_M2C_N	V9	H4	FMC_CLK0_M2C_P	C10
G6	FMC_LA00_CC_P	D9	H5	FMC_CLK0_M2C_N	A10
G7	FMC_LA00_CC_N	C9	H7	FMC_LA02_P	C15
G9	FMC_LA03_P	C13	H8	FMC_LA02_N	A15
G10	FMC_LA03_N	A13	H10	FMC_LA04_P	B16
G12	FMC_LA08_P	F11	H11	FMC_LA04_N	A16
G13	FMC_LA08_N	E11	H13	FMC_LA07_P	E7
G15	FMC_LA12_P	D6	H14	FMC_LA07_N	E8
G16	FMC_LA12_N	C6	H16	FMC_LA11_P	B12
G18	FMC_LA16_P	C7	H17	FMC_LA11_N	A12
G19	FMC_LA16_N	A7	H19	FMC_LA15_P	G9
G21	FMC_LA20_P	N7	H20	FMC_LA15_N	F9
G22	FMC_LA20_N	P8	H22	FMC_LA19_P	N6
G24	FMC_LA22_P	R7	H23	FMC_LA19_N	P7
G25	FMC_LA22_N	T7	H25	FMC_LA21_P	T4
G27	FMC_LA25_P	M11	H26	FMC_LA21_N	V4
G28	FMC_LA25_N	N11	H28	FMC_LA24_P	U8
G30	FMC_LA29_P	M8	H29	FMC_LA24_N	V8
G31	FMC_LA29_N	N8	H31	FMC_LA28_P	U11
G33	FMC_LA31_P	Т6	H32	FMC_LA28_N	V11
G34	FMC_LA31_N	V6	H34	FMC_LA30_P	T12
G36	FMC_LA33_P	M10	H35	FMC_LA30_N	V12
G37	FMC_LA33_N	N9	H37	FMC_LA32_P	U15
			H38	FMC_LA32_N	V15

Table 1-15: Power Supply Voltages for LPC Connector

Voltage Supply	Voltage	Number of Pins	Maximum Current	Tolerance
VADJ	Fixed 2.5V	2	2A	±5%
VIO_B_M2C	NC	0	0A	N/A
VREF_A_M2C	0-VADJ	1	0.001A	±2%
VREF_B_M2C	NC	0	0A	N/A
3P3VAUX	3.3V	1	0.020A	± 5%
3P3V	3.3V	4	3A	±5%
12P0V	12V	2	1A	±5%

10. Status LEDs

Table 1-16 defines the status LEDs.

Table 1-16: Status LEDs

Reference Designator	Signal Name	Color	Label	Description
DS1	FMC_PWR_GOOD_FLASH_RST_B	Green	PWR GOOD	Indicates power available for VITA 57.1 FMC expansion connector.
DS2	PHY_LED_LINK10	Green	10	Indicates link speed 10 Mb/s.
DS3	PHY_LED_LINK100	Green	100	Indicates link speed 100 Mb/s.
DS4	PHY_LED_LINK1000	Green	1000	Indicates link speed 1 Gb/s.
DS5	PHY_LED_DUPLEX	Green	DUP	Indicates duplex data.
DS6	PHY_LED_RX	Green	RX	Indicates RX data activity.
DS7	PHY_LED_TX	Green	TX	Indicates TX data activity.
DS8	FPGA_AWAKE	Green	AWAKE	FPGA is not in low-power suspend mode.
DS9	FPGA_DONE	Green	DONE	Illuminates to indicate the status of the DONE pin when the FPGA is successfully configured.
DS10	FPGA_INIT	Red	INIT	Illuminates after power-up to indicate that the FPGA has successfully powered up and completed its internal power-on process.
DS15	VCC5	Green		Illuminates when 5V supply is applied.
DS16	LED_GRN, LED_RED	Green/ Red	STATUS	USB to JTAG logic.
DS17	LTC_PWR_GOOD	Green		Illuminates to indicate that the board power is good.

11. FPGA Awake LED and Suspend Jumper

The suspend mode jumper permits the FPGA to enter an inactive, "suspend" mode. The FPGA Awake LED DS8 will go out when the FPGA enters this mode.

Figure 1-9: FPGA Awake LED and Suspend Jumper

Table 1-17: FPGA Awake/Suspend Mode Jumper Connections

FPGA U1 Pin	Schematic Net Name	Suspend Mode I/O
P15	FPGA_AWAKE	Awake LED DS8.2
R16	FPGA_SUSPEND	Suspend J14.2

See the Spartan-6 FPGA Power Management User Guide for more information. [Ref 10]

12. FPGA INIT and DONE LEDs

The typical Xilinx FPGA power up and configuration status LEDs are present on the SP601. The INIT LED DS10 comes on after the FPGA powers up and completes its internal power-on process. The DONE LED DS9 comes on after the FPGA programming bitstream has been downloaded and the FPGA successfully configured.

Figure 1-10: FPGA INIT and DONE LEDs

Table 1-18: FPGA INIT and DONE LED Connections

FPGA U1 Pin	Schematic Net Name	Controlled LED
U3	FPGA_INIT_B	DS10 INIT
V17	FPGA_DONE	DS9 DONE

13. User I/O

The SP601 provides the following user and general purpose I/O capabilities:

- User LEDs
- User DIP switch
- Pushbutton switches
- CPU Reset pushbutton switch
- GPIO male pin header

User LEDs

The SP601 provides four active high, green LEDs, as described in Figure 1-11 and Table 1-19.

Figure 1-11: User LEDs

Table 1-19: User LEDs

Reference Designator	Signal Name	Color	Label	FPGA Pin
DS11	GPIO_LED_0	Green		E13
DS12	GPIO_LED_1	Green		C14

Table 1-19: User LEDs (Cont'd)

Reference Designator	Signal Name	Color	Label	FPGA Pin
DS13	GPIO_LED_2	Green		C4
DS14	GPIO_LED_3	Green		A4

User DIP switch

The SP601 includes an active high four pole DIP switch, as described in Figure 1-12 and Table 1-20.

Figure 1-12: User DIP Switch

Table 1-20: User DIP Switch Connections

FPGA U1 Pin	Schematic Net Name	SW8 Pin Number
D14	GPIO_SWITCH_0	1
E12	GPIO_SWITCH_1	2
F12	GPIO_SWITCH_2	3
V13	GPIO_SWITCH_3	4

User Pushbutton Switches

The SP601 provides five active high pushbutton switches: SW6, SW4, SW5, SW7 and SW9. The five pushbuttons all have the same topology as the sample shown in Figure 1-13. Four pushbuttons are assigned as GPIO, and the fifth is assigned as a CPU_RESET. Figure 1-13 and Table 1-21 describe the pushbutton switches.

Figure 1-13: User Pushbutton Switch (Typical)

Table 1-21: Pushbutton Switch Connections

FPGA U1 Pin	Schematic Net Name	Switch Pin
P4	GPIO_BUTTON_0	SW6.2
F6	GPIO_BUTTON_1	SW4.2
E4	GPIO_BUTTON_2	SW5.2
F5	GPIO_BUTTON_3	SW7.2
N4	CPU_RESET	SW9.2

GPIO Male Pin Header

The SP601 provides a 2X6 GPIO male pin header supporting 3.3V power, GND and eight I/Os which support LVCMOS25 signaling. Figure 1-14 and Table 1-22 describe the J13 GPIO Male Pin Header.

Note: I/Os connected to J13 are powered by 2.5V.

Figure 1-14: GPIO Male Pin Header Topology

Table 1-22: GPIO Header Pins

FPGA U1 Pin	Signal Name	J13 Pin
N17	GPIO_HDR0	1
M18	GPIO_HDR1	3
A3	GPIO_HDR2	5
L15	GPIO_HDR3	7
F15	GPIO_HDR4	2
B4	GPIO_HDR5	4
F13	GPIO_HDR6	6
P12	GPIO_HDR7	8

14. FPGA_PROG_B Pushbutton Switch

The SP601 provides one dedicated, active low FPGA_PROG_B pushbutton switch, as shown in Figure 1-15.

Figure 1-15: FPGA_PROG_B Pushbutton Switch Topology

Table 1-23: FPGA_PROG_B Pushbutton Switch Connections

FPGA U1 Pin	Schematic Net Name	SW3 Pin
V2	FPGA_PROG_B	1

15. Configuration Options

The FPGA on the SP601 Evaluation Board can be configured by the following methods:

- 3. SPI x4 Flash, page 15
- 4. Linear Flash BPI, page 17
- JTAG Configuration, page 36

For more information, refer to the Spartan-6 FPGA Configuration User Guide. [Ref 2]

Table 1-24: Mode Pin Settings (M2 = 0)

Mode Pins (M1, M0)	Configuration Mode
00	Master Byte Peripheral Interface (BPI)
01	Master SPI x1, x2, or x4
10	Not implemented on SP601
11	Not implemented on SP601

JTAG Configuration

JTAG configuration is provided through onboard USB-to-JTAG configuration logic where a computer host accesses the SP601 JTAG chain through a Type-A (computer host side) to Type-Mini-B (SP601 side) USB cable.

The JTAG chain of the board is illustrated in Figure 1-16. JTAG configuration is allowable at any time under any mode pin setting. JTAG initiated configuration takes priority over the mode pin settings.

FMC bypass jumper J4 must be connected between pins 1-2 for JTAG access to the FPGA on the basic SP601 board, as shown in Figure 1-16. When the VITA 57.1 FMC expansion connector is populated with an expansion module that has a JTAG chain, then jumper J4 must be set to connect pins 2-3 in order to include the FMC expansion module's JTAG chain in the main SP601 JTAG chain.

UG518_31_070809

Figure 1-16: JTAG Chain

Figure 1-17: VITA 57.1 FMC JTAG Bypass Jumper

The JTAG chain can be used to program the FPGA and access the FPGA for hardware and software debug.

The JTAG connector (USB Mini-B J10) allows a host computer to download bitstreams to the FPGA using the iMPACT software tool, and also allows debug tools such as the ChipScopeTM Pro Analyzer tool or a software debugger to access the FPGA.

The iMPACT software tool can also program the SPI x4 flash or the BPI flash via the USB J10 connection. iMPACT can download a temporary design to the FPGA through the JTAG. This provides a connection within the FPGA from the FPGA's JTAG port to the FPGA's SPI or BPI interface. Through the connection made by the temporary design in the FPGA, iMPACT can indirectly program the SPI flash or BPI flash from the JTAG USB J10 connector.

16. Power Management

AC Adapter and 5V Input Power Jack/Switch

The SP601 is powered from a 5V source that is connected through a 2.1 mm x 5.5 mm type plug (center positive). SP601 power can be turned on or off through a board mounted slide switch. When the switch is in the on position, a green LED (DS15) is illuminated.

Onboard Power Supplies

The diagram in Figure 1-18 shows the power supply architecture and maximum current handling on each supply. The typical operating currents are significantly below the maximum capable. The board is normally shipped with a 15W power supply, which should be sufficient for most applications. The SP601 uses power solutions from Linear Technology Corporation (LTC).

Power System Test Points

The SP601 has 17 Keystone 5002 miniature PC test points, TP1 to TP17. These test points are identified in the SP601 board schematic, and the function of each is listed in Table 1-25.

Table 1-25: SP601 Power System Test Points

REFDES	Function				
TP1	5.0V Input Voltage				
TP2	GND				
TP3	2.5V VCCO and Logic				
TP4	3.3V FMC and Logic				
TP5	LTM4616 U15 ITH pin M8 for 2.5V regulator				
TP6	LTM4616 U15 ITH pin F8 for 3.3V regulator				
TP7	1.2V VCCINT				
TP8	1.8V DDR2				
TP9	LTM4616 U19 ITH pin M8 for 1.2V regulator				
TP10	LTM4616 U19 ITH pin F8 for 1.8V regulator				
TP11	0.9V VTT_DDR2 memory termination voltage				
TP12	12V FMC				
TP13	3.0V J3D U10 Flash				
TP14	GND				
TP15	GND				
TP16	GND				
TP17	GND				

UG518_03_060210

Figure 1-18: Power Supply

Table 1-26: Onboard Power System Devices

Device Type	Reference Designator	Description	Power Rail Net Name	Power Rail Voltage (V)	Schematic Page
LTM4616IV#PBF	U19	1/2 Dual 8A Switching uModule	VCCINT ⁽¹⁾	1.20	12
LTM4616IV#PBF	U19	1/2 Dual 8A Switching uModule	VCC1V8	1.80	12
LTM4616IV#PBF	U15	1/2 Dual 8A Switching uModule	VCC2V5	2.50	11
LTM4616IV#PBF	U15	1/2 Dual 8A Switching uModule	VCC3V3	3.30	11
LTC3413EFE#PBF	U18	3A Memory Term. Switching Regulator	VTT_DDR2	0.9	13
LTC1763CS8#TRPBF	U11	500 mA LDO Linear Regulator	VCC3V0	3.0	13
LT1371CR#TRPBF	U8	3A Switching Regulator	VCC12V_P	12	13

Notes:

1. V_{CCINT} tolerance meets or exceeds the V_{CCINT} ±5% specification in the Recommended Operating Conditions table in the Spartan-6 FPGA Data Sheet. [Ref 1]

Default Jumper and Switch Settings

Table A-1 shows the default jumper and switch settings for the SP601.

Table A-1: Default Jumper and Switch Settings

REFDES	Type/Function	Default
SW1	SLIDE, POWER ON-OFF	OFF
SW2	DIP, 2-POLE, MODE	
1	M0	ON (1)
2	M1	OFF (0)
SW8	DIP, 4-POLE, GPIO	
1		OFF
2		OFF
3		OFF
4		OFF
J4	HDR_1X3, JTAG BYPASS	JUMP 1-2 (EXCLUDE FMC)
J14	HDR_1X2, SUSPEND	OPEN (0 = AWAKE)
J15	HDR_1X2, SPI SELECT	ON (U17 SPI MEM SELECTED)

VITA 57.1 FMC LPC Connector Pinout

Figure B-1 shows the pinout of the FMC LPC connector. Pins marked NC are not connected.

	K	J	Н	G	F	E	D	С	В	Α
						_	_		_	
1	NC	NC	VR EF_A_M2C	GND	NC	NC	PG_C2M	GND	NC	NC
2	NC	NC	PR SNT_M2C_L	CLK1_M2C_P	NC	NC	GND	DP 0_C2M_P	NC	NC
3	NC	NC	GND	CLK1_M2C_N	NC	NC	GND	DP 0_C2M_N	NC	NC
4	NC	NC	CLK0_M2C_P	GND	NC	NC	GBTCLK0_M2C_P	GND	NC	NC
5	NC	NC	CLK0_M2C_N	GND	NC	NC	GBTCLK0_M2C_N	GND	NC	NC
6	NC	NC	GND	LA00_P_CC	NC	NC	GND	DP 0_M2C_P	NC	NC
7	NC NC	NC	LA02_P	LA00_N_CC	NC	NC	GND	DP 0_M2C_N	NC	NC
8		NC	LA02_N	GND	NC	NC	LA01_P_CC	GND	NC	NC
9	NC	NC	GND	LA03_P	NC	NC	LA01_N_CC	GND	NC	NC
10	NC	NC	LA04_P	LA03_N	NC	NC	GND	LA06_P	NC	NC
11	NC NC	NC NC	LA04_N	GND	NC	NC	LA05_P	LA06_N	NC	NC
12			GND	LA08_P	NC	NC	LA05_N	GND	NC	NC
13	NC	NC	LA07_P	LA08_N	NC	NC	GND	GND	NC	NC
14	NC	NC	LA07_N	GND	NC	NC	LA09_P	LA10_P	NC	NC
15	NC	NC NC	GND	LA12_P	NC	NC NC	LA09_N	LA10_N	NC	NC NC
16	NC		LA11_P	LA12_N	NC		GND	GND	NC	
17	NC	NC	LA11_N	GND	NC	NC	LA13_P	GND	NC	NC
18	NC	NC	GND	LA16_P	NC	NC	LA13_N	LA14_P	NC	NC
19	NC	NC	LA15_P	LA16_N	NC	NC	GND	LA14_N	NC	NC
20	NC	NC	LA15_N	GND	NC	NC	LA17_P_CC	GND	NC	NC
21	NC	NC	GND	LA20_P	NC	NC	LA17_N_CC	GND	NC	NC
22	NC	NC	LA19_P	LA20_N	NC	NC	GND	LA18_P_CC	NC	NC
23	NC	NC	LA19_N	GND	NC	NC	LA23_P	LA18_N_CC	NC	NC
24	NC	NC	G ND	LA22_P	NC	NC	LA23_N	GND	NC	NC
25	NC	NC	LA21_P	LA22_N	NC	NC	GND	GND	NC	NC
26	NC	NC	LA21_N	GND	NC	NC	LA26_P	LA27_P	NC	NC
27	NC	NC	GND	LA25_P	NC	NC	LA26_N	LA27_N	NC	NC
28	NC	NC	LA24_P	LA25_N	NC	NC	GND	G ND	NC	NC
29	NC	NC	LA24_N	GND	NC	NC	TCK	GND	NC	NC
30	NC	NC	G ND	LA29_P	NC	NC	TDI	S CL	NC	NC
31	NC	NC	LA28_P	LA29_N	NC	NC	TDO	S DA	NC	NC
32	NC	NC	LA28_N	GND	NC	NC	3P3VAUX	GND	NC	NC
33	NC	NC	G ND	LA31_P	NC	NC	TMS	GND	NC	NC
34	NC	NC	LA30_P	LA31_N	NC	NC	TRST_L	GA0	NC	NC
35	NC	NC	LA30_N	GND	NC	NC	GA1	12P0V	NC	NC
36	NC	NC	G ND	LA33_P	NC	NC	3P 3V	GND 40D0V	NC	NC
37	NC	NC	LA32_P	LA33_N	NC	NC	GND	12P0V	NC	NC
38	NC	NC	LA32_N	GND	NC	NC	3P3V	G ND	NC	NC
39	NC	NC	G ND	VADJ	NC	NC	GND	3P3V	NC	NC
40	NC	NC	VADJ	GND	NC	NC	3P 3V	GND	NC	NC

Figure B-1: FMC LPC Connector Pinout

For more information, refer to the VITA 57.1 FMC LPC Connections table (Table 1-14).

Appendix C

SP601 Master UCF

The UCF template is provided for designs that target the SP601. Net names provided in the constraints below correlate with net names on the SP601 schematic. On identifying the appropriate pins, the net names below should be replaced with net names in the user RTL. See the Constraints Guide for more information.

The latest version of the UCF can be found on the SP601 board documentation website at http://www.xilinx.com/sp601.

```
NET "CPU RESET"
                                                          LOC = "N4"; ## 2 on SW9 pushbutton
##
NET "DDR2 A0"
                                                          LOC = "J7"; | IOSTANDARD = SSTL18 II ; ## M8 on U2
NET "DDR2 A1"
                                                          LOC = "J6"; | IOSTANDARD = SSTL18 II ; ## M3 on U2
NET "DDR2 A2"
                                                         LOC = "H5"; | IOSTANDARD = SSTL18 II ; ## M7 on U2
NET "DDR2 A3"
                                                         LOC = "L7"; | IOSTANDARD = SSTL18 II ; ## N2 on U2
NET "DDR2 A4"
                                                        LOC = "F3"; | IOSTANDARD = SSTL18 II ; ## N8 on U2
NET "DDR2 A5"
                                                        LOC = "H4"; | IOSTANDARD = SSTL18 II ; ## N3 on U2
NET "DDR2 A6"
                                                        LOC = "H3"; | IOSTANDARD = SSTL18 II ; ## N7 on U2
                                                        LOC = "H6"; | IOSTANDARD = SSTL18_II ; ## P2 on U2
NET "DDR2 A7"
                                                       LOC = "D2"; | IOSTANDARD = SSTL18_II ; ## P8 on U2
NET "DDR2 A8"
NET "DDR2 A9"
                                                         LOC = "D1"; | IOSTANDARD = SSTL18_II ; ## P3 on U2
                                                   LOC = "F4"; | IOSTANDARD = SSTL18_II ; ## M2 on U2
LOC = "D3"; | IOSTANDARD = SSTL18_II ; ## P7 on U2
LOC = "G6"; | IOSTANDARD = SSTL18_II ; ## R2 on U2
LOC = "F2"; | IOSTANDARD = SSTL18_II ; ## L2 on U2
LOC = "F1"; | IOSTANDARD = SSTL18_II ; ## L3 on U2
LOC = "E1"; | IOSTANDARD = SSTL18_II ; ## L1 on U2
LOC = "E1"; | IOSTANDARD = SSTL18_II ; ## L7 on U2
LOC = "K5"; | IOSTANDARD = SSTL18_II ; ## L7 on U2
LOC = "H7"; | IOSTANDARD = SSTL18_II ; ## K2 on U2
LOC = "G1"; | IOSTANDARD = SSTL18_II ; ## K8 on U2
LOC = "G3"; | IOSTANDARD = SSTL18_II ; ## K8 on U2
LOC = "L2"; | IOSTANDARD = SSTL18_II ; ## G8 on U2
LOC = "L1"; | IOSTANDARD = SSTL18_II ; ## G2 on U2
LOC = "K2"; | IOSTANDARD = SSTL18_II ; ## H7 on U2
LOC = "K2"; | IOSTANDARD = SSTL18_II ; ## H7 on U2
LOC = "K1"; | IOSTANDARD = SSTL18_II ; ## H3 on U2
                                                         LOC = "F4"; | IOSTANDARD = SSTL18 II ; ## M2 on U2
NET "DDR2 A10"
NET "DDR2 A11"
NET "DDR2_A12"
NET "DDR2 BA0"
NET "DDR2 BA1"
NET "DDR2 BA2"
NET "DDR2 CAS B"
NET "DDR2 CKE"
NET "DDR2 CLK N"
NET "DDR2 CLK P"
NET "DDR2 DQ0"
NET "DDR2_DQ1"
NET "DDR2 DO2"
NET "DDR2 DQ3"
                                                       LOC = "K1"; | IOSTANDARD = SSTL18 II ; ## H3 on U2
NET "DDR2 DQ4"
                                                       LOC = "H2"; | IOSTANDARD = SSTL18 II ; ## H1 on U2
                                                       LOC = "H1"; | IOSTANDARD = SSTL18_II ; ## H9 on U2
NET "DDR2 DQ5"
NET "DDR2 DQ6"
                                                       LOC = "J3"; | IOSTANDARD = SSTL18_II ; ## F1 on U2
NET "DDR2 DQ7"
                                                       LOC = "J1"; | IOSTANDARD = SSTL18_II ; ## F9 on U2
                                                     LOC = "M3"; | IOSTANDARD = SSTL18_II; ## F9 ON U2
LOC = "M3"; | IOSTANDARD = SSTL18_II; ## C8 on U2
LOC = "M1"; | IOSTANDARD = SSTL18_II; ## C2 on U2
LOC = "N2"; | IOSTANDARD = SSTL18_II; ## D7 on U2
LOC = "N1"; | IOSTANDARD = SSTL18_II; ## D3 on U2
LOC = "T2"; | IOSTANDARD = SSTL18_II; ## D1 on U2
NET "DDR2 DO8"
NET "DDR2 DQ9"
NET "DDR2_DQ10"
NET "DDR2_DQ11"
NET "DDR2 DQ12"
NET "DDR2 DQ13"
                                                       LOC = "T1"; | IOSTANDARD = SSTL18 II ; ## D9 on U2
                                                     LOC = "U2"; | IOSTANDARD = SSTL18_II; ## B1 on U2
LOC = "U1"; | IOSTANDARD = SSTL18_II; ## B9 on U2
LOC = "K3"; | IOSTANDARD = SSTL18_II; ## F3 on U2
NET "DDR2 DQ14"
NET "DDR2_DQ15"
NET "DDR2 LDM"
NET "DDR2 LDQS N"
                                                        LOC = "L3"; | IOSTANDARD = SSTL18_II ; ## E8 on U2
NET "DDR2 LDQS P"
                                                         LOC = "L4"; | IOSTANDARD = SSTL18 II ; ## F7 on U2
```



```
NET "DDR2 ODT"
                                   LOC = "K6"; | IOSTANDARD = SSTL18 II ; ## K9 on U2
NET "DDR2 RAS B"
                                   LOC = "L5"; | IOSTANDARD = SSTL18 II ; ## K7 on U2
NET "DDR2 UDM"
                                   LOC = "K4"; | IOSTANDARD = SSTL18 II ; ## B3 on U2
NET "DDR2 UDQS N"
                                   LOC = "P1"; | IOSTANDARD = SSTL18_II ; ## A8 on U2
NET "DDR2_UDQS_P"
                                   LOC = "P2"; | IOSTANDARD = SSTL18_II ; ## B7 on U2
NET "DDR2 WE B"
                                   LOC = "E3"; | IOSTANDARD = SSTL18 II ; ## K3 on U2
NET "FLASH A0"
                                   LOC = "K18"; ## 32 on U10
NET "FLASH A1"
                                   LOC = "K17"; ## 28 on U10
NET "FLASH A2"
                                   LOC = "J18"; ## 27 on U10
NET "FLASH A3"
                                   LOC = "J16"; ## 26 on U10
                                   LOC = "G18"; ## 25 on U10
NET "FLASH A4"
NET "FLASH A5"
                                   LOC = "G16"; ## 24 on U10
NET "FLASH_A6"
                                   LOC = "H16"; ## 23 on U10
                                  LOC = "H15"; ## 22 on U10
NET "FLASH A7"
NET "FLASH A8"
                                  LOC = "H14"; ## 20 on U10
NET "FLASH A9"
                                  LOC = "H13"; ## 19 on U10
NET "FLASH A10"
                                  LOC = "F18"; ## 18 on U10
NET "FLASH A11"
                                   LOC = "F17"; ## 17 on U10
NET "FLASH A12"
                                   LOC = "K13"; ## 13 on U10
NET "FLASH A13"
                                   LOC = "K12"; ## 12 on U10
NET "FLASH A14"
                                   LOC = "E18"; ## 11 on U10
NET "FLASH_A15"
                                   LOC = "E16"; ## 10 on U10
                                  LOC = "G13"; ## 8 on U10
NET "FLASH A16"
                                  LOC = "H12"; ## 7 on U10
NET "FLASH A17"
NET "FLASH_A18"
                                  LOC = "D18"; ## 6 on U10
NET "FLASH A19"
                                  LOC = "D17"; ## 5 on U10
NET "FLASH A20"
                                  LOC = "G14"; ## 4 on U10
                                  LOC = "F14"; ## 3 on U10
NET "FLASH A21"
NET "FLASH A22"
                                   LOC = "C18"; ## 1 on U10
NET "FLASH A23"
                                   LOC = "C17"; ## 30 on U10
                                   LOC = "F16"; ## 56 on U10
NET "FLASH A24"
NET "FLASH_CE_B"
                                  LOC = "L17"; ## 14 on U10
                                  LOC = "U5"; ## 40 on U10
NET "FLASH D3"
NET "FLASH D4"
                                  LOC = "V5"; ## 44 on U10
NET "FLASH D5"
                                  LOC = "R3"; ## 46 on U10
NET "FLASH_D6"
                                   LOC = "T3"; ## 49 on U10
                                   LOC = "R5"; ## 51 on U10
NET "FLASH D7"
NET "FLASH OE B"
                                   LOC = "L18"; ## 54 on U10
NET "FLASH WE B"
                                   LOC = "M16"; ## 55 on U10
NET "FMC_CLK0_M2C_N"
                                   LOC = "A10"; ## H5 on J1
NET "FMC CLK0 M2C P"
                                   LOC = "C10"; ## H4 on J1
                                  LOC = "V9"; ## G3 on J1
NET "FMC CLK1 M2C N"
NET "FMC CLK1 M2C P"
                                  LOC = "T9"; ## G2 on J1
NET "FMC LA00 CC N"
                                  LOC = "C9"; ## G7 on J1
                                  LOC = "D9"; ## G6 on J1
NET "FMC_LA00_CC_P"
NET "FMC_LA01_CC_N"
                                   LOC = "C11"; ## D9 on J1
NET "FMC LA01 CC P"
                                   LOC = "D11"; ## D8 on J1
NET "FMC LA02 N"
                                   LOC = "A15"; ## H8 on J1
NET "FMC LA02 P"
                                   LOC = "C15"; ## H7 on J1
                                  LOC = "A13"; ## G10 on J1
NET "FMC LA03 N"
NET "FMC LA03 P"
                                  LOC = "C13"; ## G9 on J1
NET "FMC LA04_N"
                                  LOC = "A16"; ## H11 on J1
NET "FMC LA04 P"
                                   LOC = "B16"; ## H10 on J1
NET "FMC LA05 N"
                                   LOC = "A14"; ## D12 on J1
NET "FMC_LA05_P"
                                   LOC = "B14"; ## D11 on J1
NET "FMC LA06 N"
                                   LOC = "C12"; ## C11 on J1
                                   LOC = "D12"; ## C10 on J1
NET "FMC LA06 P"
NET "FMC LA07 N"
                                   LOC = "E8"; ## H14 on J1
                                   LOC = "E7"; ## H13 on J1
NET "FMC_LA07_P"
NET "FMC LA08 N"
                                  LOC = "E11"; ## G13 on J1
                                  LOC = "F11"; ## G12 on J1
NET "FMC LA08 P"
NET "FMC LA09 N"
                                  LOC = "F10"; ## D15 on J1
NET "FMC_LA09_P"
                                  LOC = "G11"; ## D14 on J1
```



```
NET "FMC LA10 N"
                                    LOC = "C8"; ## C15 on J1
NET "FMC_LA10 P"
                                    LOC = "D8"; ## C14 on J1
NET "FMC LA11 N"
                                    LOC = "A12"; ## H17 on J1
NET "FMC LA11 P"
                                    LOC = "B12"; ## H16 on J1
                                   LOC = "C6"; ## G16 on J1
NET "FMC LA12_N"
NET "FMC LA12 P"
                                   LOC = "D6": ## G15 on J1
NET "FMC LA13 N"
                                  LOC = "A11"; ## D18 on J1
NET "FMC LA13 P"
                                  LOC = "B11"; ## D17 on J1
NET "FMC_LA14_N"
                                  LOC = "A2"; ## C19 on J1
NET "FMC LA14 P"
                                   LOC = "B2"; ## C18 on J1
NET "FMC_LA15_N"
                                   LOC = "F9"; ## H20 on J1
                                   LOC = "G9"; ## H19 on J1
LOC = "A7"; ## G19 on J1
NET "FMC LA15 P"
NET "FMC LA16 N"
                                   LOC = "C7"; ## G18 on J1
NET "FMC_LA16_P"
NET "FMC LA17 CC N"
                                  LOC = "T8"; ## D21 on J1
NET "FMC LA17 CC P"
                                  LOC = "R8"; ## D20 on J1
NET "FMC LA18 CC N"
                                  LOC = "T10"; ## C23 on J1
                                   LOC = "R10"; ## C22 on J1
NET "FMC LA18 CC P"
                                   LOC = "P7"; ## H23 on J1
NET "FMC LA19 N"
NET "FMC_LA19_P"
                                   LOC = "N6"; ## H22 on J1
                                    LOC = "P8"; ## G22 on J1
LOC = "N7"; ## G21 on J1
NET "FMC LA20 N"
NET "FMC LA20 P"
                                   LOC = "V4"; ## H26 on J1
NET "FMC LA21 N"
NET "FMC LA21 P"
                                   LOC = "T4"; ## H25 on J1
NET "FMC LA22 N"
                                   LOC = "T7"; ## G25 on J1
NET "FMC LA22_P"
                                  LOC = "R7"; ## G24 on J1
NET "FMC LA23 N"
                                  LOC = "P6"; ## D24 on J1
NET "FMC_LA23_P"
                                   LOC = "N5"; ## D23 on J1
NET "FMC_LA24_N"
                                  LOC = "V8"; ## H29 on J1
NET "FMC LA24 P"
                                   LOC = "U8"; ## H28 on J1
NET "FMC LA25 N"
                                   LOC = "N11"; ## G28 on J1
NET "FMC LA25 P"
                                   LOC = "M11"; ## G27 on J1
NET "FMC_LA26_N"
                                  LOC = "V7"; ## D27 on J1
NET "FMC LA26 P"
                                  LOC = "U7"; ## D26 on J1
NET "FMC LA27 N"
                                  LOC = "T11"; ## C27 on J1
NET "FMC_LA27_P"
                                  LOC = "R11"; ## C26 on J1
NET "FMC LA28 N"
                                   LOC = "V11"; ## H32 on J1
NET "FMC_LA28_P"
                                   LOC = "U11"; ## H31 on J1
                                   LOC = "N8"; ## G31 on J1
LOC = "M8"; ## G30 on J1
NET "FMC_LA29_N"
NET "FMC LA29 P"
                                    LOC = "V12"; ## H35 on J1
NET "FMC LA30 N"
NET "FMC_LA30_P"
                                   LOC = "T12"; ## H34 on J1
NET "FMC LA31_N"
                                  LOC = "V6"; ## G34 on J1
NET "FMC LA31 P"
                                   LOC = "T6"; ## G33 on J1
NET "FMC LA32 N"
                                   LOC = "V15"; ## H38 on J1
NET "FMC LA32 P"
                                   LOC = "U15"; ## H37 on J1
NET "FMC_LA33_N"
                                   LOC = "N9"; ## G37 on J1
NET "FMC_LA33_P"
                                    LOC = "M10"; ## G36 on J1
NET "FMC PRSNT M2C L"
                                    LOC = "U13"; ## H2 on J1
NET "FMC PWR GOOD FLASH RST B"
                                    LOC = "B3"; ## D1 on J1, 16 on U10
##
NET "FPGA AWAKE"
                                    LOC = "P15"; ## 2 on DS8 LED
NET "FPGA CCLK"
                                    LOC = "R15"; ## 16 on U17, 7 on J12
NET "FPGA_CMP_CLK"
                                   LOC = "U16"; ## 3 on J3
NET "FPGA CMP CS B"
                                   LOC = "P13"; ## 4 on J3
NET "FPGA CMP MOSI"
                                   LOC = "V16"; ## 2 on J3
NET "FPGA DO DIN MISO MISO1"
                                 LOC = "R13"; ## 8 on U17 (thru series R187 100 ohm), 33 on U10, 6 on J12
NET "FPGA D1 MISO2"
                               LOC = "T14"; ## 9 on U17 (thru series R186 100 ohm), 35 on U10, 3 on J12
                                   LOC = "V14"; ## 1 on U17, 38 on U10, 2 on J12
NET "FPGA D2 MISO3"
                                    LOC = "V17"; ## 2 on DS9 LED
NET "FPGA DONE"
                                   LOC = "D4"; ## 1 on R81 100 ohm to GND
NET "FPGA_HSWAPEN"
                                   LOC = "U3"; ## 1 on DS10 (thru series R90 27.4 ohm)
NET "FPGA_INIT_B"
NET "FPGA MO CMP MISO"
                                  LOC = "T15"; ## 1 on J3, 1 on SW2 DIP Sw
NET "FPGA M1"
                                   LOC = "N12"; ## 2 on SW2 DIP Sw
NET "FPGA_MOSI_CSI_B_MISOO"
                                   LOC = "T13"; ## 15 on U17, 5 on J12
```



```
NET "FPGA ONCHIP TERM1"
                                    LOC = "L6"; ## ZIO no connect (R86 is DNP)
NET "FPGA ONCHIP TERM2"
                                   LOC = "C2"; ## RZQ 100 ohm to GND
NET "FPGA PROG B"
                                   LOC = "V2"; ## 1 on SW3 pushbutton
NET "FPGA_SUSPEND"
                                   LOC = "R16"; ## 2 on J14
NET "FPGA_TCK_BUF"
                                   LOC = "A17"; ## 14 on U21, D29 on J1
NET "FPGA TDI BUF"
                                   LOC = "D15"; ## 18 on U21
NET "FPGA TDO"
                                  LOC = "D16"; ## 1 on J4, D30 on J1
NET "FPGA TMS BUF"
                                  LOC = "B18"; ## 16 on U21, D31 on J1
NET "FPGA VTEMP"
                                   LOC = "P3"; ## 2 on R87 150 ohm p/u to VCC1V8
##
                                   LOC = "P4"; ## 2 on SW6 pushbutton
NET "GPIO BUTTONO"
NET "GPIO BUTTON1"
                                   LOC = "F6";
                                                ## 2 on SW4 pushbutton
                                   LOC = "E4"; ## 2 on SW5 pushbutton
NET "GPIO BUTTON2"
NET "GPIO_BUTTON3"
                                   LOC = "F5"; ## 2 on SW7 pushbutton
##
NET "GPIO HDRO"
                                   LOC = "N17"; ## 1 on J13 (thru series R100 200 ohm)
NET "GPIO HDR1"
                                   LOC = "M18"; ## 3 on J13 (thru series R102 200 ohm)
NET "GPIO HDR2"
                                   LOC = "A3"; ## 5 on J13 (thru series R101 200 ohm)
NET "GPIO HDR3"
                                   LOC = "L15"; ## 7 on J13 (thru series R103 200 ohm)
NET "GPIO HDR4"
                                   LOC = "F15"; ## 2 on J13 (thru series R99 200 ohm)
NET "GPIO HDR5"
                                   LOC = "B4"; ## 4 on J13 (thru series R98 200 ohm)
NET "GPIO HDR6"
                                   LOC = "F13"; ## 6 on J13 (thru series R97 200 ohm)
                                   LOC = "P12"; ## 8 on J13 (thru series R96 200 ohm)
NET "GPIO HDR7"
##
NET "GPIO LED 0"
                                   LOC = "E13"; ## 2 on DS11 LED
NET "GPIO LED_1"
                                   LOC = "C14"; ## 2 on DS12 LED
NET "GPIO LED 2"
                                   LOC = "C4"; ## 2 on DS13 LED
NET "GPIO_LED_3"
                                   LOC = "A4"; ## 2 on DS14 LED
##
NET "GPIO SWITCH 0"
                                   LOC = "D14"; ## 1 on SW8 DIP Sw
NET "GPIO SWITCH 1"
                                   LOC = "E12"; ## 2 on SW8 DIP Sw
NET "GPIO SWITCH 2"
                                   LOC = "F12"; ## 3 on SW8 DIP Sw
NET "GPIO_SWITCH_3"
                                   LOC = "V13"; ## 4 on SW8 DIP Sw
##
                                LOC = "P11"; ## 6 on U7 (thru series R203 0 ohm), C30 on J1, 2 on J16
NET "IIC SCL MAIN"
NET "IIC_SDA_MAIN"
                                 LOC = "N10"; ## 5 on U7 (thru series R204 0 ohm), C31 on J1, 1 on J16
##
NET "PHY_COL"
                                   LOC = "L14"; ## 114 on U3
NET "PHY CRS"
                                   LOC = "M13"; ## 115 on U3
                                   LOC = "J13"; ## 32 on U3
NET "PHY INT"
NET "PHY MDC"
                                   LOC = "N14"; ## 35 on U3
NET "PHY_MDIO"
                                   LOC = "P16"; ## 33 on U3
                                   LOC = "L13"; ## 36 on U3
NET "PHY RESET"
NET "PHY RXCLK"
                                  LOC = "L16"; ## 7 on U3
NET "PHY RXCTL RXDV"
                                  LOC = "N18"; ## 4 on U3
NET "PHY RXDO"
                                  LOC = "M14"; ## 3 on U3
                                  LOC = "U18"; ## 128 on U3
NET "PHY_RXD1"
NET "PHY_RXD2"
                                   LOC = "U17"; ## 126 on U3
NET "PHY RXD3"
                                   LOC = "T18"; ## 125 on U3
NET "PHY_RXD4"
                                   LOC = "T17"; ## 124 on U3
NET "PHY RXD5"
                                   LOC = "N16"; ## 123 on U3
NET "PHY_RXD6"
                                  LOC = "N15"; ## 121 on U3
                                  LOC = "P18"; ## 120 on U3
NET "PHY RXD7"
NET "PHY RXER"
                                  LOC = "P17"; ## 8 on U3
NET "PHY TXCLK"
                                   LOC = "B9"; ## 10 on U3
NET "PHY TXCTL TXEN"
                                   LOC = "B8"; ## 16 on U3
                                   LOC = "A9"; ## 14 on U3
NET "PHY_TXC_GTXCLK"
NET "PHY TXD0"
                                   LOC = "F8"; ## 18 on U3
                                   LOC = "G8";
NET "PHY_TXD1"
                                                ## 19 on U3
NET "PHY_TXD2"
                                   LOC = "A6";
                                                ## 20 on U3
                                   LOC = "B6"; ## 24 on U3
NET "PHY TXD3"
                                   LOC = "E6"; ## 25 on U3
NET "PHY TXD4"
                                  LOC = "F7"; ## 26 on U3
NET "PHY TXD5"
NET "PHY TXD6"
                                  LOC = "A5"; ## 28 on U3
NET "PHY_TXD7"
                                   LOC = "C5"; ## 29 on U3
```



```
NET "PHY_TXER"
                                     LOC = "A8"; ## 13 on U3
##
NET "SMACLK N"
                                     LOC = "H18"; ## 1 on J8 SMA
NET "SMACLK_P"
                                     LOC = "H17"; ## 1 on J7 SMA
##
NET "SPI_CS_B"
                                    LOC = "V3"; ## 1 on J15, 4 on J12
##
NET "SYSCLK N"
                                    LOC = "K16"; ## 5 on U5 EG2121CA, 5 of U20 SI500D (DNP)
NET "SYSCLK_P"
                                    LOC = "K15"; ## 6 on U5 EG2121CA, 4 of U20 SI500D (DNP)
##
NET "USB_1_CTS"
                                     LOC = "U10"; ## 22 on U4
                                    LOC = "T5"; ## 23 on U4
LOC = "L12"; ## 24 on U4
NET "USB 1 RTS"
NET "USB 1 RX"
                                     LOC = "K14"; ## 25 on U4
NET "USB_1_TX"
##
NET "USER_CLOCK"
                                   LOC = "V10"; ## 5 on X2 USER OSC Socket
```


Appendix D

References

This section provides references to documentation supporting Spartan-6 FPGAs, tools, and IP. For additional information, see www.xilinx.com/support/documentation/index.htm.

Documents supporting the SP601 Evaluation Board:

- 1. <u>DS162</u>, Spartan-6 FPGA Data Sheet: DC and Switching Characteristics
- 2. <u>UG380</u>, Spartan-6 FPGA Configuration User Guide
- 3. UG388, Spartan-6 FPGA Memory Controller User Guide
- 4. DS570, XPS Serial Peripheral Interface (SPI) Data Sheet
- 5. UG138, $LogiCORE^{TM}$ IP Tri-Mode Ethernet MAC v4.2 User Guide
- 6. DS606, XPS IIC Bus Interface (v2.00a) Data Sheet
- 7. <u>UG381</u>, Spartan-6 FPGA SelectIO Resources User Guide
- 8. DS614, Clock Generator (v3.01a) Data Sheet
- 9. DS643, Multi-Port Memory Controller (MPMC) (v5.02a) Data Sheet
- 10. UG394, Spartan-6 FPGA Power Management User Guide

Additional documentation:

- 11. Elpida, DDR2 SDRAM Specifications (EDE1116ACBG)
- 12. Winbond, Serial Flash Memory Data Sheet (W25Q64VSFIG)
- 13. Numonyx, Embedded Flash Memory Data Sheet (TE28F128J3D-75)
- 14. SiTime, Oscillator Data Sheet (SiT9102AI-243N25E200.00000)
- 15. PCI SIG, PCI Express Specifications
- 16. Marvell, Alaska Gigabit Ethernet Transceivers Product Page
- 17. ST Micro, M24C08 Data Sheet

Regulatory and Compliance Information

This product is designed and tested to conform to the European Union directives and standards described in this section.

Directives

2006/95/EC, Low Voltage Directive (LVD) 2004/108/EC, Electromagnetic Compatibility (EMC) Directive

Standards

EN standards are maintained by the European Committee for Electrotechnical Standardization (CENELEC). IEC standards are maintained by the International Electrotechnical Commission (IEC).

Electromagnetic Compatibility

EN 55022:2010, Information Technology Equipment Radio Disturbance Characteristics – Limits and Methods of Measurement

EN 55024:2010, Information Technology Equipment Immunity Characteristics – Limits and Methods of Measurement

This is a Class A product. In a domestic environment, this product can cause radio interference, in which case the user might be required to take adequate measures.

Safety

IEC 60950-1:2005, Information technology equipment – Safety, Part 1: General requirements EN 60950-1:2006, Information technology equipment – Safety, Part 1: General requirements

Markings

This product complies with Directive 2002/96/EC on waste electrical and electronic equipment (WEEE). The affixed product label indicates that the user must not discard this electrical or electronic product in domestic household waste.

This product complies with Directive 2002/95/EC on the restriction of hazardous substances (RoHS) in electrical and electronic equipment.

This product complies with CE Directives 2006/95/EC, *Low Voltage Directive (LVD)* and 2004/108/EC, *Electromagnetic Compatibility (EMC) Directive*.