МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ М. В. ЛОМОНОСОВА ФИЛИАЛ МОСКОВСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА ИМЕНИ М.В. ЛОМОНОСОВА В ГОРОДЕ СЕВАСТОПОЛЕ

Факультет «Компьютерной математики» Направление подготовки «Прикладная математика и информатика» 01.03.02 (бакалавр)

ОТЧЁТ

по вычислительной задаче №7

«Построение инвариантных мер методом балансировки для дискретной динамической системы (отображение Жюлиа)»

Работу выполнил: Студент группы ПМ-401 Воронец Владимир Олегович

Руководитель: профессор кафедры прикладной математики и информатики Осипенко Георгий Сергеевич

ОГЛАВЛЕНИЕ

ПОСТАНОВКА ЗАДАЧИ	3
ТЕОРЕТИЧЕСКАЯ ЧАСТЬ	3
РЕШЕНИЕ ПОСТАВЛЕННОЙ ЗАДАЧИ	4
КОМПЬЮТЕРНАЯ РЕАЛИЗАЦИЯ	5
СПИСОК ЛИТЕРАТУРЫ	7

ПОСТАНОВКА ЗАДАЧИ

Построить с помощью метода балансировки инвариантную меру для дискретной динамической системы (отображения Жюлиа):

$$x \to x^2 - y^2 + a$$
$$y \to 2xy + b$$

в области R^2 : [-2; 2]x[-2; 2]

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Пусть $f: M \to M$ — гомеоморфизм компактного многообразия М. Мера μ на М называется инвариантной для гомеоморфизма f, если для любого измеримого множества $A \subset M$ выполнены равенства

$$\mu(f^{-1}(A)) = \mu(A) = \mu(f(A)).$$

Пусть G – ориентированный граф. Потоком на G называется распределение $\{m_{ij}\}$ на дугах $\{i \to j\}$ такое, что

$$m_{ij} \geq 0;$$

$$\sum_{ij} m_{ij} = 1;$$

$$\sum_{k} m_{ki} = \sum_{j} m_{ij} \, , \forall i.$$

Для потока на графе мера і-ой вершины можно определить как

$$m_i = \sum_k m_{ki} = \sum_j m_{ij}.$$

Для построения потока на графе используется метод балансировки, заключающийся в применении к исходной матрице $x=(x_{ij})$ преобразований:

$$x_{ij}^{t+1} = x_{ij}^{t} \left(\frac{\sum_{k \neq i} x_{ki}^{t}}{\sum_{l \neq i} x_{il}^{t}} \right)^{\frac{1}{2}}$$

для $j \neq i$ – преобразование i-ой строки,

$$x_{ij}^{t+1} = x_{ij}^{t} \left(\frac{\sum_{l \neq i} x_{il}^{t}}{\sum_{m \neq i} x_{mi}^{t}} \right)^{\frac{1}{2}}$$

для $k \neq i$ – преобразование і-го столбца,

$$x_{ii}^{t+1} = x_{ii}^t.$$

Чтобы применить метод балансировки для нахождения инвариантной меры динамической системы, необходимо в качестве начального распределения рассмотреть матрицу допустимых переходов символического образа при $t \to \infty$.

Метод балансировки последовательным приближением преобразует исходную матрицу в поток $\{m_{ij}\}$ на символическом образе. Полученное распределение $\{m_i = \sum_j m_{ij}\}$ вероятностной меры на вершинах символического образа задаёт меру ячеек $\{M(i)\}$ и является приближением к инвариантной мере [1].

РЕШЕНИЕ ПОСТАВЛЕННОЙ ЗАДАЧИ

- 1. Построить достаточно малую окрестность компонент цепнорекуррентного множества для отображения Жюлиа при выбранных параметрах;
- 2. Применить к символическому образу метод балансировки.
- 3. Изобразить распределение вычисленной инвариантной меры в виде трёхмерного графика, где в плоскости (xy) лежит окрестность компонент цепно-рекуррентного множества, а по оси z откладывается величина меры ячейки.

КОМПЬЮТЕРНАЯ РЕАЛИЗАЦИЯ

Вычислительная задача 7 — ¬ ×
Построение инвариантных мер методом балансировки для отображения Жюлия
$x_n = x_{n-1}^2 - y_{n-1}^2 + a$ $y_n = 2x_{n-1}y_{n-1} + b$
a = 0.0 b = -0.6
Координаты изначальной области
x0 -2 x1 2
y0 -2 y0 2
Количество итераций 8
Построить решение Запуск программы Следующая итерация
Диаметр ячейки
Затраченное время (s)
Количество ячеек
Компонент сильной связности

Рисунок 1: Пользовательский интерфейс программы

Рисунок 2: Полученный результат при 10 итерациях и значениях параметров $a=0,\,b=-0.6.$

Рисунок 3: Полученные информационные значения после отработки программы

ХАРАКТЕРИСТИКА ПРОГРАММЫ

Время выполнения программы зависит от количества итераций: 10 итераций выполнено за 116 секунд.

Было использовано 343 мегабайт памяти компьютера при подсчете ячеек и около 92 мегабайт при графическом построении результата.

Нагрузка на процессор (AMD Ryzen 3 3200U) доходила до ~80% при подсчете ячеек и ~40% при графическом отображении.

Программа была написана самостоятельно на языках программирования С++ для выполнения основного алгоритма и Python3 [2] с использованием графической библиотеки Matplotlib [3] для графического отображения ячеек и библиотеки для создания оконных приложений Tkinter [4]. Программа ориентирована на UNIX-подобные системы. Необходимо предварительно установить все вышеперечисленные Python библиотеки.

СПИСОК ЛИТЕРАТУРЫ

- 1. Осипенко Г.С. Компьютерно-ориентированные методы динамических систем: учебное пособие. М: ИНФРА-М, 2023, 295 с.
- 2. https://www.python.org/doc/
- 3. https://matplotlib.org/
- 4. https://docs.python.org/3/library/tkinter.html#module-tkinter