মৌলের পর্যায়বৃত্ত ধর্ম ও রাসায়নিক বন্ধন Periodic Properties and Bonding in Elements

রাসায়নিক বন্ধন

রাসায়নিক বন্ধন: রাসয়নিক ক্রিয়ার সময় দুটি পরমানুর বহিঃস্তরে এক বা একাধিক ইলেকট্রন আদান প্রদান বা শেয়ারকরণ দ্বারা উভয় পরমানু নিকটবর্তী নিষ্ক্রিয় গ্যাসের দ্বিত্ব বা অষ্টক কাঠামো লাভ করে। এ সময় পরমানুদ্বয়ের মধ্যে যে শক্তি তাদেরকে যুক্ত করে অনু গঠন করে তাকে রাসায়নিক বন্ধন বলে।

রাসায়নিক বন্ধনের শ্রেণি বিভাগ:

তড়িৎ/আয়নিক বন্ধন: যার যার মধ্যে ঘটে: ightarrow ধাতু ও অধাতুর মধ্যে

→তড়িৎ ঋনাত্বকতার পার্থক্য খুব বেশি হলে।

কিভাবে হয়: এক পরমানুর বহি:ন্তর হতে অপর পরমানুর বহি:ন্তরে এক বা একাধিক ইলেকট্রন স্থানান্তরিত হয়ে যথাক্রমে ধনাত্মক ও ঋণাত্মক আয়ন সৃষ্টির মাধ্যমে।

স্থির বৈদ্যুতিক আকর্ষণ বল দারা আয়নসমূহ যুক্ত হয়।

বৈশিষ্ট্য:

- (১) যৌগসমূহ পোলার।
- (২) কঠিন অবস্থায় বিদ্যুৎ পরিবহন করে না কিন্তু বিগলিত অবস্থায় বা দ্রবনে আয়নিত অবস্থায় করে।
- (৩) যৌগসমূহ পানি ও সকল পোলার দ্রাবকে দ্রবনীয়।
- (৪) গলনাংক ও স্কুটনাংক উচ্চ।

উদাহরণ: NaCl, K_2O , Al_2O_3 , MgOইত্যাদি।

সমযোজী বন্ধন: যার যার মধ্যে ঘটে ightarrow দুটি অধাতু পরমানুর মধ্যে

→ তড়িৎ ঋণাত্মক তার পার্থক্য কম হলে।

কিভাবে হয়: দুটি পরমানুর সমান সংখ্যক ইলেকট্রন সরবরাহ করে এক বা একাধিক ইলেকট্রন জোড় সৃষ্টি করে এবং উভয় পরমানু তা সমানভাবে শেয়ার করে।

বৈশিষ্ট্য:

- (১) যৌগসমূহ অপোলার।
- (২) বিগলিত অবস্থায় বা দ্রবনে আয়নিত হয় না এবং বিদ্যুৎ পরিবহন করে না।
- (৩) যৌগসমূহ পানিতে অদ্রবনীয় এবং জৈব দ্রাবকে দ্রবনীয়
- (৪) গলনাংক ও স্ফুটনাংক নিম্ন।

উদাহরণ: C₂H₆, C₂H₂,H₂O, HCl ইত্যাদি।

সন্নিবেশ সমযোজী বন্ধন:

যার যার মধ্যে ঘটে: দুটি অধাতু অথবা একটি ধাতু ও একটি অধাতু পরমানু ।

কিভাবে ঘটে: একটি পরমানু একজোড়া ইলেকট্রন দান করে কিন্তু অপর পরমাণু কোন ইলেকট্রন না দিয়েই তা সমভাবে শেয়ার করে বৈশিষ্ট্যঃ

- (১) একটি বিশেষ ধরণের সমযোজী বন্ধন এবং এর বন্ধন দ্বারা জটিল যৌগসমূহ গঠিত হয়।
- (২) গলিত অবস্থায় বা দ্রবণে বিদ্যুৎ পরিবাহী।
- (৩) তড়িৎ পরিবাহিতা আয়নিক যৌগের চেয়ে কম।
- (৪) সমযোজী যৌগের মত সমানুতা প্রকাশ করে।

উদাহরণ: NaCl, [Ag(NH3)2]Cl ইত্যাদি।

ধাতব বন্ধন:

যার যার মধ্যে ঘটে: ধাতুর পরমানুসমূহ

কিভাবে ঘটে: সঞ্চরনশীল ইলেকট্রনের শেয়ার দ্বারা।

বৈশিষ্ট্য:

- (১) ধাতব বন্ধন থাকায় এটির ঔজ্বল্য বৃদ্ধিপায়
- (২) নমনীয় ও ঘাত সহনশীল এবং বিদ্যুৎ ও তাপ সুপরিবাহী।
- (৩) গলনাংক ও ফুটনাংক উচ্চ।
- (৪) কেলাস কাঠামোর অধিকারী।

উদাহরণ: Na, Mg, Al ইত্যাদি ধাতুর পরমানুসমূহের মধ্যে।

হাইড্রোজেন বন্ধনঃ

যার যার মধ্যে হয় : দুটি ডাইপোল।

কিভাবে ঘটে : দুটি উচ্চ তড়িৎ ঋণাত্বক প্রমানুর মধ্যে ।

H একটি সেতু বন্ধন তৈরি করে।

বৈশিষ্ট্য:

- (১) গলনাংক ও স্ফুটনাংক সমযোজী যৌগের চেয়ে বেশি ।
- (২) ছোট অনু বিশিষ্ট যৌগ পানিতে দ্রবনীয়।
- (৩) হাইড্রোজেন বন্ধনের কারনেই পানিতে টান ও দ্রাব্যতা বৃদ্বি পায়।

উদাহরন :

HF, H₂O ইত্যাদি

অষ্টক তত্ত্ব :

বিঙ্গানী লুইস ও কোজেল এর মতে, সমযোজী বন্ধন গঠনকালে পরমানুর সর্ববহিঃস্থ শক্তি স্তরে নিষ্ক্রিয় গ্যাসের ইলেকট্রনীয় কাঠামো তথা আটটি ইলেকট্রন অর্জিত হয়।এ মতবাদকে অষ্ঠক তত্ত্ব বলে।

অষ্টক তত্ত্বের ব্যাতিক্রম (সমযোজী বন্ধনের সীমাবদ্বতা)

(১) অষ্টক সম্প্রসারন :

যৌগ গঠনের সময় অনুর কেন্দ্রীয় পরমানুর যোজ্যতা স্তরে আটটির ও বেশি সংখ্যক ইলেকট্রন থাকে।

উদাহরন : SF_{6} PCl_{5} ইত্যাদি।

(২) অষ্টক সংকোচন:

এ ক্ষেত্রে যৌগ গঠনের সময় কেন্দ্রীয় পরমানুর যোজ্যতা স্তরে আটটির চেয়ে কম সংখ্যক ইলেকট্রন থাকে।

উদাহরন : BCl₃, B_eCl₂় SO₃ ইত্যাদি।

একই যৌগে বিভিন্ন ধরনের বন্ধন:

[CO(NH₃)₆]Cl₃, KBf₄, NH₄Cl, Na₂SO₄

সমযোজী ,সনিবেশ,আয়নিক।

#আয়নিক বন্ধনের সমযোজী বৈশিষ্ট্য:

*পোলারায়ন: আয়নিক যৌগ দুটি বিপরীত চার্জযুক্ত। আয়নগুলো পরস্পরেরে কাছাকাছি আসলে ক্যাটানের ধনাতৃক চার্জ অ্যানায়নের ঋনাতৃক ইলেকট্রন মেঘকে নিজের দিকে আকর্ষণ করে।ফলে সুষম ইলেকট্রন মেঘ একটু বিকৃত হয়ে দুই নিউক্লিয়াসের মাঝামাঝি স্থানে পরিব্যাপ্ত হয়। ইলেক্ট্রন মেঘের এ আংশিক স্থানান্তরকে পোলারন বলে। পোলারন প্রভাব যত বেশি হয় তড়িৎ যোজী বন্ধনের সমাযোজী বৈশিষ্ট্য তত অধিক হয়।

ফাযানের নীতি:

- (১) ক্যাটায়নের আকার যত ক্ষুদ্র হতে পোলারণ তত বেশি হতে এবং বন্ধনের সমযোজী বৈশিষ্ট্য ও বেশি হবে।
- অ্যানায়ন যত বৃহদাকার হবে বন্ধনের সমযোজী বৈশিষ্টও তত বেশি হবে।
- ক্যাটায়ন ও অ্যানায়নের চার্জ যত বেশি হবে বন্ধনের সমযোজী বৈশিষ্ট্য তত বেশি হবে।
- (8) ক্যাটায়ন ও অ্যানায়নের d ও f অরবিটালে ইলেক্ট্রন থাকলে পোলারনের মাত্রা বেশি হয়। ফলে সমযোজী বৈশিষ্ট বৃদ্ধি পায়।
- * বিভিন্ন লবনের উপর পোলারণের প্রভাব:
 - ightarrow পোলারণের ফলে সমযোজী বৈশিষ্ট্য বৃদ্ধি পায়, ফলে গলানাংক ও স্ফুটাংক কমে যায়।
 - → পোলারনের ফলে সমযোজী ধর্ম বৃদ্ধি পায় ফলে যৌগসমূহ ক্রমশ উদ্বায়ী হয়।
 - → পোলারনের ফলে যৌগসমূহের পানিতে দ্রবনীয় হওয়ার প্রবনতা হারিয়ে যায়।

*সমযোজী বন্ধনের আয়নিক বৈশিষ্ট্য: সমযোজী বন্ধনে আবদ্ধ দুটি পরমানুর মধ্যে যদি তড়িৎ ঋনাত্মকতার পার্থক্য থাকে তবে অধিক তড়িৎ ঋনাত্মক পরমানুটির আকর্ষণে শেয়ারকৃত ইলেট্রেন জোড়া তার দিকে আংশিকভাবে স্থানান্তরিত হয়। ফলে অধিক তড়িৎ ঋনাত্মক পরমানুটি আংশিক ঋনাত্মক চার্জ এবং অপর পরমানুটি আংশিক ধনাত্মক চার্জ লাভ করে। এভাবে আংশিক মেরুকৃত সমযোজী অনুকে ডাইপোল বলে।

*তড়িৎ ঋনাত্মকতার পার্থক্য ও অনুর প্রকৃতি:

তড়িৎ ঋনাত্মকতার পার্থক্য	অনুর প্রকৃতি	উদাহরণ
শূন্য হলে	বিশুদ্ধ সমযোজী	H_2,Cl_2
<০.৫ হলে	অপোলার	CH_{4} , C_2H_2
০.৫-১.৭ হলে	পোলার	HCl
> ১.৭ হলে	প্রধানত আয়নিক	NaCl, K ₂ SO ₄

বিভিন্ন অনুর আকৃতি:

যৌগের নাম	bl সংজ্ঞানুসারে	bp ইলেট্রন	lp ইলেট্ৰন	আকৃতি	বন্ধনকোন
BeF ₂ , BeCl ₂	sp	2	0	সরলযৌগিক	180°
BF ₃ , BCl ₃	sp ²	3	0	ত্রিভুজ আকৃতি	120°
CH ₄	sp ³	4	0	চতুম্ভলকীয়	109.5°
NH ₃	sp ³	4	1	ত্রিকোণীয় পিরামিড	107°
H ₂ O	sp ³	4	2	v-আকৃতি	104.5°
PCl ₅	dsp ³	5	0	ত্রিভুজীয় দ্বিপিরামিড	90°, 120°
SF ₆	d ² sp ³	6	0	অষ্টতলকীয়	90°

^{*} P-block মৌল ও সংশ্লিষ্ট যৌগসমূহের চৌম্বকীয় ধর্ম নির্ণয় পদ্ধতি:

দুটি P-অরবিটালে মোট 2,6 বা 10 টি ইলেট্রন থাকলে তা হবে ডায়াম্যাগনেটিক এবং মোট 3,4,5,7 8,9 হলে তা হবে প্যারাম্যাগনেটিক

যৌগ বা মৌল বা আয়ন	P- অরবিটালে মোট ইলেকট্রন সংখ্যা	ম্যাগনেটিক ধর্ম
CO	C(6)=15 ² 25 ² 2p ²	ডায়াম্যাগনেটিক
	O(8)=15 ² 25 ² 2p ⁴	
	P- ইলেকট্ৰন সংখ্যা =6	
CN	C(6)=15 ² 25 ² 2p ²	প্যারাম্যাগনেটিক
	$N(7)=15^225^22p^3$	
	P- ইলেকট্ৰন সংখ্যা =5	
02+	O(8)=15 ² 25 ² 2p ⁴	প্যারাম্যাগনেটিক
	O ²⁺ এ P- ইলেকট্রন সংখ্যা =7	

^{*} সিগমা বন্ধন ও পাই বন্ধন:

অনু গঠনে দুটি পরমানুর একই অক্ষে অবস্থিত দুটি অরবিটালের সামনি সামনি অধিক্রমন দ্বারা যে বন্ধন সৃষ্টি হয় তা হল সিগমা বন্ধন এবং পাশাপাশি অধিক্রমন দ্বারা বন্ধনের সৃষ্টি হয় তা হল পাই বন্ধন।

সিগমা বন্ধন গঠনের পরই কেবল পাই বন্ধন গঠিত হতে পারে।

VSEPR তত্ত্ব: যেসব ইলেকট্রন বন্ধনে অংশগ্রণে করে তাদেরকে বন্ধন জোড় ইলেকট্রন এবং যারা অংশগ্রহণ করে না তাদেরকে মুক্ত জোড় ইলেকট্রন বলে।

কোন অনুতে কেন্দ্রীয় পরমানুর যোজ্যতা স্তরের ইলেকট্রন জোড় বিশিষ্ট অরবিটালগুলো যদি ত্রিমাত্রিকস্থানে এমনভাবে বিন্যস্ত হয় যাতে তারা পরস্পর থেকে সর্বাধিক দুরত্ব অবস্থান করে তবে অরবিটালগুলোর মধ্যে বিকর্ষণ সবচেয়ে কম এবং অনুটি স্থিতিশীল হয়।

বিকর্ষণের ক্ষেত্রে lp-lp>lp-bp>bp-bp এখনে, lp= lone pair & bp=bond pair এই বিকর্ষণের ফলে অনুর স্বাভাবিক গঠনের পরিবর্তন হয়। যেমন NH3 অনুতে একজোড়া lp থাকায় তার আকৃতি চতুম্ভলকীয় না হয়ে ত্রিকোণাকার পিরামিডীয়।

* সংকরিত অরবিটালের প্রকৃতি নির্ণয়ঃ

সূত্র: $x=rac{1}{2} imes (যোজ্যতা সেলে ইলেকট্রন সংখ্যা+একযোজী পরমানুর সংখ্যা- ক্যাটায়নের চার্জ+অ্যানায়নের চার্জ)$

$$\therefore x = \frac{1}{2}[V+M-C+A]$$
, $x=$ হাইব্রিড অরবিটাল সংখ্যা।

χ এর মান	২	•	8	¢	৬	٩
হাইব্রিডাইজেশন	sp	sp ²	sp ³	sp ³ d	sp ³ d ²	sp ³ d ³

^{*} কেন্দ্রীয় পরমানুর চারপাশে একযোজী পরমানু থাকলে যেমন

H₂O,PCl₅,BeF₂, SF₆, CH₄, NH₃ ইত্যাদি।

 NH_3 এ N এর যোজ্যতা ইলেকট্রন = 5, H=3 টি

$$\therefore x = \frac{1}{2}(5 + 3 - 0 + 0) = \frac{8}{2} = 4 \rightarrow sp^{3}$$

 NH_3 তে $\therefore sp^3$ সংকরণ আছে।

* रकन्द्रीय পরমানুর চারপাশে দ্বিযোজী পরমাণু থাকলে যেমন,

 CO_2 , SO_2 , SO_3 ,ইত্যাদি

$$SO_{2}$$
, $\le x = \frac{1}{2}(6+0+0) = 3 \rightarrow sp^2$

 $m : SO_{2,}$ এ sp^2 সংকরণ আছে।

st কেন্দ্রীয় পরমানুর চারপাশে একযোজী এবং দ্বিযোজী পরমানু যেমন $XeOF_2$, $POcl_3$, $COCl_2$ ইত্যাদি

$$COCl_2$$
 এ $x = \frac{1}{2}(4 + 2 - 0 + 0) = 3 \rightarrow sp^2$ সংকরণ

$$XeO_2F_2$$
 এ $x=rac{1}{2}(8+2-0+0)=5 o sp^3d$ সংকরণ

st ক্যাটায়ন ও অ্যানায়নের ক্ষেত্রে যেমন H_3O^+ , CH_3^{+}, NH_4^{+} CO_3^{2-} SO_4^{2-}, NO_3^{-}

$$CH_3^+$$
 এ $x = \frac{1}{2}(4+3-1+0) = 3 \rightarrow sp^2$ সংকরণ

$$Co_3^{2-}$$
 এ $x = \frac{1}{2}(4+0-0+2) = 3 \rightarrow sp^2$ সংকরণ

Written Exam:

- (i) AgF সাদা বর্ণের কিন্তুAgBr হালকা হলুদ বর্ণের কেন?
- (ii) NaCl পানিতে দ্রবনীয় কিন্তুAgCl নয় কেন?
- (iii) গ্রাফাইট নরম কেন?
- (iv) বরফ পানিতে ভাসে কেন?
- (v) NH_3 এর বন্ধন কোণ 109.5° না হয়ে 107° কেন?
- (vi) NCl₅ গঠিত না হলেও PCl₅ গঠিত হয় কেন?
- (Vii) AlF_5 আয়নিক হলেও $AlCl_3$ সমযোজী কেন?
- (viii) HF একটি পোলার যৌগ ব্যাখ্যা কর।

পর্যায়সারনি

এর নজরে আধুনিক পর্যায় সারনি:

- (১) এতে 118 টি মৌলকে পারমানবিক সংখ্যার অনুসারে সাজানো হয়েছে।
- (২)এতে 7 টি পর্যায় ও 16 টি গ্রুপে সাজানো হয়েছে।

- (৩)এতে ১ম পর্যায়ে দুটি ,২য় ও ৩য় পর্যায়ে আটটি ৪র্থ ও ৫ম পর্যায়ে 18 টি ,৬ষ্ট পর্যায়ে 32 টি এবং সপ্তম পর্যায়ে 26 টি (112 পর্যন্ত হিসাব করে) মৌলকে বসানো হয়েছে।
- (4) অবশ্য La (57) এর 58-71 পর্যন্ত 14টি মৌলকে ৬ষ্ঠ পর্যায়ে IIIB গ্রুপে আলাদা করে নিচে ল্যান্থানাইড সিরিজে দেখানো হয়েছে। এবং Ac (89) এর পরে 90-103 পর্যন্ত 14 টি ৭ম পর্যায়ের মৌলকে IIIB অ্যাকটিনাইড সিরিজে অন্তর্ভুক্ত করা হয়েছে।

* বিভিন্ন পর্যায়ের বিকল্প নামঃ

১ম পর্যায় → অতিক্ষুদ্র পর্যায়

২য়+৩য় পর্যায় → ক্ষুদ্র পর্যায়

 $8\cancel{v}$ + \cancel{c} ম পর্যায় \rightarrow দীর্ঘ পর্যায়

৬ষ্ঠ পর্যায় →অতি দীর্ঘ পর্যায়

৭ম পর্যায় → অসম্পূর্ণ পর্যায়

* ব্লুক সংক্রান্ত তথ্য:

ব্লক	মৌলের সংখ্যা	সাধারণ ইলেকট্রন বিন্যাস	১ম মৌল	শেষ মৌল
S	14 ਹਿ	$(n-1)s^2(n-1)p^6ns^{1-2}$	Н	Ra
р	30 টਿ	ns^2np^{1-6}	В	তাপধাতু কি ?
d	40 টি	$(n-1)d^{1-10}ns^2$	Sc	109
f	28 টি	$(n-2)f^{1-14}ns^2$	Се	101

* কর্ণ সম্পর্ক ঃ

পর্যায় সারণীর অনেক মৌলের ধর্ম পর্যালোচনা করে দেখা যায় যে, ঠিক পরবর্তী পর্যায়ের পরবর্তী গ্রুপে অবস্থিত মৌলের ধর্মের সাথে এর অনেক মিল বিদ্যমান। প্রতি দুটি মৌলের এরূপ সাদৃশ্যপূর্ণ ধর্মের সম্পর্ককে কর্ণ সম্পর্ক বলা হয়।

- * IB গ্রুপের মৌলসমূহকে (Cu, Ag, Au) মুদ্রা ধাতু বলা হয়। IIB গ্রুপ এর ধাতুসমূহ উদ্বায়ী হয়।
- * ল্যান্থানাইড সিরিজের মৌলগুলোকে বিরল মৃত্তিকা ধাতু বলা হয়।

বিভিন্ন গ্রুপের মৌসমুহ মনে রাখার উপায়:

লি	ন	কে	রুবি	ছেচে	ফেলেছে
Li	Na	K	Rb	Cs	Fr

IIA গ্রুপের মৌল বা মৃৎফার ধাতু

বি	মা	কে	সরি	বলেছে	রাধা
Be	Mg	Ca	Sr	Ва	Ra

AIII

ভাইয়া	আ	বৈগ	ইভিয়া	থাকতো
В	Al	Ga	In	TI

IVA

কাকা	সাহেবের	জার্মানীর	টিকিট	লাগবে	
С	Si	Ge	Sn	Pb	

VA

নদী	পার্কে	আ সে	সকালে	বিকালে
N	Р	As	Sb	Bi

VIA (চালকোজেন গ্রুপ)

অ	সি	সাহেব	টেলিগ্রাম	পড়ছে
0	S	Se	Te	Po

VIIA (হ্যালোজেন গ্রুপ)

रु	করুল	ভাই	আজ	আসবে
F	Cl	Br	I	At

উপধাতু

Ge, Bi, Si, As, Sb, Te, B

নাম ধাতু

Pb, Na, k, Ca

তরল ধাতু

Fr, Ga, Hg, Cs

* পরমাণুর আকারঃ

সমযোজী ব্যাসার্ধঃ কোন মৌলের দুটি পরমাণুর একক সমযোজী বন্ধনে যুক্ত অবস্থায় উভয় পরমাণুর নিউক্লিয়াসের মধ্যকার দূরত্বের অর্ধেক কে ঐ পরমাণুর সমযোজী ব্যাসার্ধ বা পারমাণবিক ব্যাসার্ধ বলে। দুটি পরমাণুর সমযোজী ব্যাসার্ধের যোগফলই হল তাদের দ্বারা গঠিত অণুর বন্ধন দূরত্ব।

ধাতব ব্যসার্ধঃ ধাতুর কেলাসে অন্তর্ভুক্ত দুটি পরমাণুর আন্তঃনিউক্লিয়ার দূরত্বের অর্ধেককে ঐ ধাতুর ধাতব ব্যাসার্ধ সমযোজী ব্যাসার্ধ অপেক্ষা প্রায় 10%-20% বেশি হয়।

ভ্যানডার ওয়ালস ব্যাসার্ধঃ কোন কঠিন পদার্থের কেলাসে বিদ্যমান পাশাপাশি দুটি অণুর মধ্যে একটি অণুর ম্যধকার একটি পরমাণুর নিউক্লিয়াস হতে অপর অণুর মধ্যকার আর একটি পরমাণুর নিউক্লিয়াসের মধ্যবর্তী দূরত্বকে ভ্যান্ডার ওয়ালস্ আন্তঃনিউক্লিয়ার দূরত্ব এবং এ দূরত্বের অর্ধেককে ভ্যানডার ওয়ালস ব্যাসার্ধ বলা হয়। কোন পরমাণুর ভ্যান্ডার ওয়ালস ব্যাসার্ধ তার সমযোজী ব্যাসার্ধ অপেক্ষা একটু বেশি হয়।

গ্রুপ রসায়নের কিছু ব্যাখ্যামূলক সমস্যাঃ

st $AlCl_3$ এর ডাইমার $(Al_2 \ Cl_6)$ গঠনঃ

 Al^{3+} এর চার্জ ঘনত্ব (চার্জ/ব্যাসার্ধ) অত্যাধিক বেশি হওয়াই তা ঋণাত্মক আয়ন Cl^- এর পোলারায়ন ঘটায় ফলে Al এর যোজ্যতা স্তরে তিন জোড়া বন্ধন ইলেক্ট্রন থাকে, তাই অষ্টক পূরণের জন্য দুটি করে $AlCl_3$ অণুর Al পরমাণু পার্শ্ববর্তী Cl পরমাণুর নিঃসঙ্গ ইলেক্ট্রন যুগলের সাথে সন্নিবেশ বন্ধন দ্বারা ডাইমার অণু Al_2Cl_6 সৃষ্টি করে।

 * $NH_{_{3}}$ ও $PH_{_{3}}$ এর মধ্যে কোনটি অধিক ক্ষারধর্মী ?

P এর চেয়ে N এর তড়িৎ ঋণাত্মকতা বেশি, তাই P এর চেয়ে N এর ইলেকট্রন ঘনত্ব বেশি বলে ইলেকট্রন দান করার ক্ষমতাও N এর বেশি্ তাই লুইস মতবাদ অনুসারে NH_3 অধিক ক্ষারধর্মী।

* NCl_3 গঠিত হলেও NCl_5 গঠিত হয় না কিন্তু PCl_3 ও PCl_5 উভয়ই গঠিত হয় কেন?

$$N(7) \rightarrow 1s^2 \ 2s^2 \ 2p_x^{-1} \ 2p_y^{-1} \ 2p_z^{-1}$$

N এর যোজ্যতা স্তরে তিনটি অযুগ্ম ইলেক্ট্রন হাইড্রোজেনের সাথে তিনটি একক বন্ধন গঠন করতে পারে, তাই NCl_3 সম্ভব। কিন্তু N এর যোজ্যতা স্তরে d -অরবিটাল থাকে না তাই উত্তেজিত করে 2s এর জোড়া ভেঙ্গে d -তে যেতে পারে না।

$$P(15) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p_x^{-1} 3p_y^{-1} 3p_z^{-1} 3d^o$$

$$P \rightarrow 1s^2 \ 2s^2 \ 2p^6 \ 3s^1 \ 3p_x^{-1} \ 3p_y^{-1} \ 3p_z^{-1} \ 3d^1$$

কিন্তু P কে উত্তেজিত করলে যোজ্যতা স্তরের ফাঁকা d অরবিটালে s অরবিটাল থেকে 1টি ইলেক্ট্রন উন্নীত হয়ে যোজ্যতা স্তরে 5টি অযুগ্ম ইলেক্ট্রন থাকে ফলে PCl_s গঠিত হয়।

* NCl_5 গঠিত হয় না কিন্তু N_2O_5 গঠিত হয় কিভাবে?

সন্নিবেশ সমযোজী বন্ধনের মাধ্যমে।

* NF_3 আর্দ্র বিশ্লেষিত হয় না কিন্তু NCl_3 আর্দ্র বিশ্লেষিত হয় কেন?

$$NCl_3 + 3H_2O \rightarrow NH_3 + 3HOCl$$

আর্দ্র বিশ্লেষণকালে প্রথমে ট্রাই হ্যালাইড অণুর সাথে একটি নতুন সন্নিবেশ বন্ধন গঠন করে। তখন গ্রুপ-15 এর মৌল অথবা সংশ্লিষ্ট হ্যালোজেন পরমাণু -এ দুটির কোন একটিতে ফাঁকা d -অরবিটাল থাকা প্রয়োজন। যেটি NF_3 এর N বা F কোনটিতেই নেই। কিন্তু NCl_3 এর N পরমাণুর দ্বিতীয় শক্তিস্তরে d অরবিটাল না থাকলেও Cl এর তৃতীয় শক্তিস্তরে ফাঁকা d অরবিটাল বর্তমান থাকায় NCl_3 অণুর Cl পরমাণুর সাথে H_2O এর অক্সিজেন পরমাণুর নিঃসঙ্গ ইলেক্ট্রন যুগল দ্বারা সন্নিবেশ বন্ধন গঠন করতে পারে।

$$Cl_2N - Cl + H_2O \longrightarrow Cl_2NH + HOCl \longrightarrow NH_3 + 2HOCl$$

* NCl3 এর তুলনায় PCl3 এর আর্দ্র বিশ্লেষণ দ্রুত ঘটে কেন?

কারণ N এর চেয়ে P এর তড়িৎ ঋণাত্মকতা কম এবং Cl এর অধিকতর তড়িৎ ঋণাত্মকতার প্রভাবে $(P^{\delta^+}-Cl^{\delta^-})$ এর বন্ধনে পোলারিটির মাত্রা বেশি হয়। ফলে আর্দ্র বিশ্লেষণও দ্রুত ঘটে।

$$PCl_{3} + 3H_{2}O \rightarrow H_{3}PO_{3} + HCl \rightarrow Cl_{2} P-Cl + H_{2}O$$

$$Cl_{2} P-Cl$$

$$\uparrow$$

$$H - O - H \longrightarrow Cl_{2}P - OH + HCl \longrightarrow H_{3}PO_{3} + 2HCl$$

কিছু যৌগের আর্দ্র বিশ্লেষণ বিক্রিয়াঃ

(iii) $PCl_5 + H_2O \rightarrow POCl_3 + 2HCl$

(i) $NCl_3 + 3H_2O \rightarrow NH_3 + 3HOCl$

 $POCl_3 + 3H_2O \rightarrow H_3PO_4 + 3HCl$

(ii) $PCl_3 + 3H_2O \rightarrow H_3PO_3 + HCl$

 $PCl_5 + 4H_2O \rightarrow H_3PO_4 + 5HCl$

* SO_2 বিজারকঃ

$$SO_2 + H_2O + FeCl_3 \rightarrow FeCl_2 + HCl + H_2SO_4$$

$$SO_2 + KMnO_4 + H_2O \rightarrow K_2SO_4 + MnSO_4 + H_2SO_4$$

$$SO_2 + K_2Cr_2O_7 + H_2SO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + H_2O_4$$

* SO₂ জারকঃ

* *SO*₂ বিরঞ্জকঃ

$$SO_2 + H_2S \rightarrow H_2O + S$$
 (এখানে H_2S বিজারক)

$$SO_2 + 2H_2O \rightarrow H_2SO_4 + 2(H)$$

$$SO_2 + HI \rightarrow H_2O + I_2 + S$$
 (এখানে HI বিজারক)

রঙ্গিন যৌগ \longrightarrow বিজারিত বর্ণহীন যৌগ

st SO_2 পানির অনুপস্থিতিতে বিরঞ্জকরূপে ক্রিয়া করে না।

st গাঢ় H_2SO_4 নিরুদকঃ

$$C_{12}H_{22}O_{11}+11H_2SO_4 \rightarrow 12C+H_2SO_4.11H_2O_4$$

$$C_2 H_5 OH + H_2 SO_4 \rightarrow C_2 H_4 + H_2 SO_4 . H_2 O$$

st H_2S জারক হিসাবে কাজ করতে পারেনা।

$$H_2S \Leftrightarrow 2H^+ + S^{2-}$$

$$S(16) \rightarrow 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^4$$

$$S^{2-} \rightarrow 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6$$

অষ্টক পূর্ণ তাই S^{2-} আয়ন আর e^- গ্রহণ করতে চায় না। তবে ত্যাগ করে S^{2-} থেকে S^o বা S^{4+} (SO_2) বা S^{6+} (SO_3) হতে পারে।

*~FeS থেকে H_2S গ্যাস প্রস্তুতিতে লঘু H_2SO_4 বা HCl এর পরিবর্তে লঘু HNO_3 বা গাঢ় H_2SO_4 ব্যবহৃত হয় না কেন?

উত্তর : গাঢ় H_2SO_4 বা HNO_3 ও FeS এর বিক্রিয়ায় H_2S গ্যাস উৎপন্ন হয় কিন্তু উৎপন্ন বিজারণধর্মী H_2S গ্যাস জারণধর্মী গাঢ় H_2SO_4 বা HNO_3 দারা জারিত হয়ে S ও পানি উৎপন্ন হয়ে থাকে। লঘু H_2SO_4 বা HCl এর কোন জারণধর্ম নেই।

গাঢ় H_2SO_4 ঃ

$$FeS + H_2SO_4$$
 (ঘন) $\rightarrow FeSO_4 + H_2S$

$$H_2S + H_2SO_4 \rightarrow H_2O + S$$

বিজারক জারক

লঘু *HNO*₂:

$$FeS+HNO_3 \rightarrow Fe(NO_3)_2 + H_2S$$

$$H_2S + HNO_3 \rightarrow H_2O + NO + S$$

st Cl_2 বিরঞ্জক হিসাবে কাজ করে।

$$Cl_2 + H_2O \rightarrow HCl + HOCl$$

$$HOCl \rightarrow HCl + (O)$$

$$Cl_2 + H_2O \rightarrow 2HCl + (O)$$

রঙ্গিণ বস্তু $\stackrel{(O)}{\longrightarrow}$ বর্ণহীন বস্তু SO_2 এর চেয়ে Cl_2 উত্তম বিরঞ্জক।

* অসামঞ্জস্য বিক্রিয়াঃ

$$\begin{array}{c} NaOH + Cl_2 \xrightarrow{\quad 15^{o}C\quad} NaCl + NaOCl + H_2O \\ (o) \qquad \qquad (-1) \qquad (+1) \end{array}$$

$$NaOH + Cl_2 \xrightarrow{70^{\circ}C} NaCl + NaClO_3 + H_2O$$

$$(0)$$
 (-1) $(+5)$

Written Exam:

- (1) বোরনের আয়নীকরণ বিভব বেরিলিয়াম অপেক্ষা কম ব্যাখ্যা কর।
- (2) ফ্লোরিনের ইলেকট্রন আসক্তি ক্লোরিন অপেক্ষা কম কেন?
- (3) তৃতীয় পর্যায়ের মৌলসমূহের সাথে পানির বিক্রিয়া দেখাও।
- (৪) তড়িৎ ঋণাত্মকতা কি কি বিষয়ের উপর নির্ভরশীল?
- (৫) অধাতু হওয়া সত্ত্বেও Si এর গলনাংক ও স্ফুটনাংক উচ্চ কেন?
- (৬) পর্যায় সারণিতে অবস্থান নির্ণয় কর।
- (1) Cu (2) k (3) Ag (4) Au (5) Zn

MCQ Exam:

(1) নিচের কোন দুটি মৌলের মধ্যে কর্ণ সম্পর্ক বিদ্যামান ?

(a) Li, Al	(b) Li, Si	(c) Bi, Mg	(d) B, Si			
(2) কোনটিঅবস্থান্তর ধাতু						
(a) Cu,	(b) K	(c) Na	(d) Ba			
(3) নিচের কোনটি পর্যায়বৃত্ত		() -	(1) 6			
(a) আয়নীকরণ শক্তি	• •	(c) ইলেকট্রন আসক্তি	(d) তড়িৎ ঋনাত্মকতা			
(4) d ব্রকের মৌলের সাধারন ইলেকট্রন বিন্যাস কোনটি						
(a) ns^2np^6 (b) $(n^6)^{1/2}$		(c) $ns^2np^6(n-d)^{11}$	(d) $ns^2(n-d)^{1-10}$			
()	ং ঋণাত্মকতা যে ক্রমে পড়ে (৮) C:১D১C১N	(a) N < C < D < a;	(d) a < C; < N < D			
(a) c <n<si<p (6) পর্যায় সারনীতে Cu এর</n<si<p 		(c) N <c<p<si< td=""><td>(d) c<si<n<p< td=""></si<n<p<></td></c<p<si<>	(d) c <si<n<p< td=""></si<n<p<>			
		(c) পর্যায় ৩ ,শ্রেনী IB	(d) পর্যায় ৪,শ্রেণী IB			
(7) পর্যায় সারনীতে একটি গ্রুপের নিচের দিকে গেলে পরমানুর আকার সাধারনত -						
(a) হ্রাস পায় (b) বু			ম বাড়ে এবং পরে কমে			
(৪) , + এবং -এর আকার নি	্ নিচের কোন ক্রম অনুসরন করে ?					
(a) +> ->	(b) l>l+>l	(c) I->I>I+	(d) +> > -			
(9) কোন মৌলের ইলেকট্রন বিন্যাস NeSS ² 3P ⁴ হলে পর্যায় সারনিতে উক্ত মৌলের ঠিক নিচে অবস্থিত মৌলের পারমানবিক সংখ্যা কত -						
(a) 33	(b) 34	(c) 31	(d)49			
(10) পর্যায় সারনিতে একটি গ্রুপের নিচের দিকে গেলে পরমানুর আকার সাধারনত -						
(a) বৃদ্ধি পায়	(b) হ্রাস পায়	(c) ধ্রুবক	(d) কোনটি নয়			
(11) শক্তিশালী আয়নিক দ্বারা গঠিত হওয়ায় কোন যৌগ স্থিতিশীল -						
$(a)MgCl_2$	(b) $CaCl_2$	(c) NaCl	(d) a ও c			
(12) কোনটি টেট্রাহেড্রাল? -	/h\ C.C.	(a) V - C	(d) [NI:/CO) 12-			
$(a)BF_4$	(b) <i>SF</i> ₄	(c) XeF_4	$(d) \left[Ni(CO)_4 \right]^{2-}$			
(13) নিচের কোনটির ইলেকট্রন আসক্তি সবচেয়ে কম –						
(a) Cl	(b) Br	(c) I	(d) F			
(14) F,Cl এবং I এর ব্যাসার্থে	ৰ ক্ৰেয় হল					
(a)F>CL>Br>I	(b) Br>I>CL>I	(c) CL>Br>I>F	(d) I>Br>CL>F			
(15) ইলেকট্রনিক আসক্তি নির্ভ		(০) নিটকিয়ার ভাগেন	(d) 2 × 2			
(a) পারমানবিক আকার	(b) পারমানবিক সংখ্যা	(c) নিউক্লিয়ার আধান	(d) a ⋴ c			
(16) ClO_2 - কোন প্রকৃতির অক্সাইড ?						

(a) অ	रोश	(b) ক্ষারীয়	(c) উভয়	(d) কোনটিই নয়		
	${\it Cl}_2$ সরাররি কার সঙ্গে বিতি	ক্রয়া করে না (b) S	(c) O ₂	(d) Al		
(a) N_2		, ,	(c) O_2	(u) Ai		
, ,	কোন দুটি কেলাস সমযোর্জ $2S, NaF$	(b)) N_2S , MgO	(c) $MgCl_2$	(d) NaF,MgO		
19) কোন অনুর আকৃতি সমতলীয় সুষম ত্রিভুজাকার						
(a) <i>B</i> e	eCl_2	(b) BCl ₃	(c) $AlCl_3$	(d) NH_3		
$(20) \qquad Ag(NH_3)_2Cl$ অনুতে কয় প্রকার বন্ধন আছে ?						
(a) 1		(b) 2	(c) 3	(d) 4		
	(21) CO এর সংকরন কি প্রকৃতির					
(a) sp (22)		(b) sp^2 ড়া মুক্ত জোড় ইলেকট্রন থাকে	(c) sp^3	(d) কোনটিই নয়		
(a) N		(b) H_2O	(c) <i>CH</i> ₄	(d) কোনটিই নয়		
(23) \mathcal{C}_2H_2 যৌগে কয়টি σ ও π বন্ধন আছে ?						
(a)3 ਹਿੱ	$ec{b}$ 6 এবং ২ টি π	(b) 2 টি 6 এবং ৩ টি π	(c) 4 টি 6 এবং 2 টি π	(d) কোনটিই নয়		
(24) নিচের কোনটি পোলার দ্রাবকে অধিক দ্রবনীয় ?						
(a) <i>Al</i>	Cl_3	(b) <i>CH</i> ₂	(c) CCl_4	(d) KCI		
(25) PH_3 যৌগে বন্ধন ও নিঃসঙ্গ ইলেকট্রন জোড় যথাক্রমে -						
(a) 2 v	₃ 3	(b)3 & 3	(c)3 ও 1	(d)3		
(26) N_2O_3 যৌগে কয়টি বন্ধন বিদ্যমান -						
(a) 2		(b)4	(c)6	(d) 8		
(27) কোনটি সমযোজী যৌগের বৈশিষ্ট্য নয় -						
(a)উদ্বা	ায়তা	(b) সমানুতা	(c) ইলেকট্রন শেয়ার	(d) তড়িৎ পরিবাহিতা		
(28)	কোনটি অপোলার দ্রাবক ?		(a) CCI	(d) <u>ratull'à</u>		
(a) H ₂	σ	(b) NH_3	(c) CCl_{4}	(d) কোনটিই নয়		