Faster homomorphic comparison operations for BGV and BFV

<u>Ilia Iliashenko</u> imec-COSIC, KU Leuven, Belgium

Vincent Zucca

DALI, Université de Perpignan Via Domitia,
LIRMM, Université Montpellier,
France

Privacy Enhancing Technologies Symposium

July 12, 2021

Our data is kept in the cloud

Our data is kept in the cloud

How to work with encrypted data in the cloud?

Security

Functionality

Homomorphic encryption

1978

ON DATA BANKS AND PRIVACY HOMOMORPHISMS

Ronald L. Rivest Len Adleman Michael L. Dertouzos

$$f(Ctxt(m)) = Ctxt(f'(m))$$

$$f(Ctxt(m)) = Ctxt(f'(m))$$

• Fully HE: f'(X) is any computable function

$$f(Ctxt(m)) = Ctxt(f'(m))$$

- Fully HE: f'(X) is any computable function
- Somewhat HE: f'(X) is any arithmetic circuit of bounded depth

$$f(Ctxt(m)) = Ctxt(f'(m))$$

- Fully HE: f'(X) is any computable function
- Somewhat HE: f'(X) is any arithmetic circuit of bounded depth

More efficient in practice

Many useful functions are not arithmetic

- Trigonometric functions
- Sigmoid/step functions
- Comparison functions:
 - logical predicates "is equal", "is less than"
 - $\max(x, y)$, $\min(x, y)$
 - $\operatorname{argmax}(x_1, \dots, x_n)$, $\operatorname{argmin}(x_1, \dots, x_n)$

Many useful functions are not arithmetic

- Trigonometric functions
- Sigmoid/step functions
- Comparison functions:
 - logical predicates "is equal", "is less than"
 - $\max(x, y)$, $\min(x, y)$
 - $\operatorname{argmax}(x_1, \dots, x_n)$, $\operatorname{argmin}(x_1, \dots, x_n)$

Cheap operations	Expensive operations
Plaintext + ciphertext	Ciphertext * ciphertext
Ciphertext + ciphertext	
Plaintext * ciphertext	

Cheap operations	Expensive operations
Plaintext + ciphertext	Ciphertext * ciphertext
Ciphertext + ciphertext	
Plaintext * ciphertext	

$$P(X) = a_0 + a_1 X + a_2 X^2 + \dots + a_{n-1} X^{n-1}$$
, a_i 's are public.

Cheap operations	Expensive operations
Plaintext + ciphertext	Ciphertext * ciphertext
Ciphertext + ciphertext	
Plaintext * ciphertext	

$$P(X) = a_0 + a_1 X + a_2 X^2 + \dots + a_{n-1} X^{n-1}$$
, a_i 's are public.

$$P(ctxt) = a_0 + a_1 \cdot ctxt + a_2 \cdot ctxt^2 + \dots + a_{n-1} \cdot ctxt^{n-1}$$

Scalar multiplications are cheap, non-scalar ones are expensive.

Non-scalar multiplicative depth

Context

HE schemes

Arithmetic	HE schemes
Bit-wise	FHEW, TFHE
Integers	BGV, BFV
Approximate (fixed-point)	CKKS/HEAAN

HE schemes

Arithmetic	SHE/FHE schemes				
Bit-wise	FHEW, TFHE				
Integers	BGV, BFV				
Approximate (fixed-point)	CKKS/HEAAN				

BGV and BFV can

- evaluate arithmetic circuits
- encode data as elements of \mathbb{F}_{p^d}

Plaintext space

$$\mathbb{F}_{p^d}^{\ell}$$

Plaintext space

Parallel (SIMD) operations on ℓ slots!

Possibility to add, multiply, rotate, select the different slots.

Plaintext encoding of large integers

• Decompose an integer a in base $p' \le p$: $a = \sum a_i p'^i$

 $a_0 \mid a_1 \mid ... \mid a_i \mid ... \mid a_{r-1}$

Each a_i is also an element of \mathbb{F}_p

Plaintext encoding of large integers

• Decompose an integer a in base $p' \le p$: $a = \sum a_i p'^i$

Each a_i is also an element of \mathbb{F}_p

• Every group of d digits can be mapped to an element of \mathbb{F}_{p^d}

$$\mathbb{F}_p^d$$

$$\boxed{a_{id} \mid \dots \mid a_{i(d+1)-1}}$$

$$\boxed{b_i = a_{id} + a_{id+1}X + \cdots \cdot a_{i(d+1)-1}X^{d-1}}$$

Plaintext encoding of large integers

• Decompose an integer a in base $p' \le p$: $a = \sum a_i p'^i$

Each a_i is also an element of \mathbb{F}_p

• Every group of d digits can be mapped to an element of \mathbb{F}_{p^d}

$$\mathbb{F}_p^r$$

$$a_0 \mid a_1 \mid \dots \mid a_{r-1}$$

$$b_0 \mid b_1 \mid \dots \mid b_{r/d-1}$$

Computations over \mathbb{F}_p

Equality function over \mathbb{F}_p :

$$EQ_{\mathbb{F}_p}(x, y) = 1 - (x - y)^{p-1} = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{otherwise} \end{cases}$$

Computations over \mathbb{F}_p

Equality function over \mathbb{F}_p :

$$EQ_{\mathbb{F}_p}(x, y) = 1 - (x - y)^{p-1} = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{otherwise} \end{cases}$$

Lagrange Interpolation

Every function $f: \mathbb{F}_p^n \to \mathbb{F}_p$ can be interpolated by a unique polynomial of degree at most p-1 in each variable

$$P_f(X_1, \dots, X_n) = \sum_{\boldsymbol{a} \in \mathbb{F}_p^n} f(\boldsymbol{a}) \prod_{i=1}^n \mathrm{EQ}_{\mathbb{F}_p}(X_i, a_i)$$

Input: two encrypted integers x and y encoded into $\mathbb{F}_{p^d}^\ell$

Input: two encrypted integers x and y encoded into $\mathbb{F}_{p^d}^\ell$

1. Extract digits from \mathbb{F}_p

2. Compare corresponding digits by computing the equality function

3. Compare corresponding digits by computing the less-than function

$$LT_{\mathbb{F}_p}(x, y) = \begin{cases} 1 \text{ if } x < y \\ 0 \text{ otherwise} \end{cases}$$

4. Compute the lexicographical order

$$LT_{\mathbb{F}_p^d}(x_i, y_i) = \sum_{j=0}^{d-1} LT_{\mathbb{F}_p}(x_{j,i}, y_{j,i}) \prod_{k=j+1}^{d-1} EQ_{\mathbb{F}_p}(x_{k,i}, y_{k,i}),$$

$$EQ_{\mathbb{F}_p^d}(x_i, y_i) = \prod_{j=0}^{d-1} EQ_{\mathbb{F}_p}(x_{j,i}, y_{j,i})$$

4. Compute the lexicographical order

$$LT_{\mathbb{F}_p^d}(x_i, y_i) = \sum_{j=0}^{d-1} LT_{\mathbb{F}_p}(x_{j,i}, y_{j,i}) \prod_{k=j+1}^{d-1} EQ_{\mathbb{F}_p}(x_{k,i}, y_{k,i}),$$

$$EQ_{\mathbb{F}_p^d}(x_i, y_i) = \prod_{j=0}^{d-1} EQ_{\mathbb{F}_p}(x_{j,i}, y_{j,i})$$

$$\operatorname{LT}(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i=0}^{\ell-1} \operatorname{LT}_{\mathbb{F}_p^d}(x_i, y_i) \prod_{j=i+1}^{\ell-1} \operatorname{EQ}_{\mathbb{F}_p^d}(x_j, y_j)$$

Contributions

Core part of integer comparison

4. Compute the lexicographical order

$$LT(x_{i}, y_{i}) = \sum_{j=0}^{d-1} LT_{\mathbb{F}_{p}}(x_{j,i}, y_{j,i}) \prod_{k=j+1}^{d-1} EQ_{\mathbb{F}_{p}}(x_{k,i}, y_{k,i}),$$

$$EQ(x_{i}, y_{i}) = \prod_{j=0}^{d-1} EQ_{\mathbb{F}_{p}}(x_{j,i}, y_{j,i})$$

$$LT(x, y) = \sum_{i=0}^{\ell-1} LT(x_i, y_i) \prod_{j=i+1}^{d-1} EQ(x_j, y_j)$$

How to compute $LT_{\mathbb{F}_p}(x,y)$: bivariate method Let $x,y \in [0,p-1]$.

How to compute $LT_{\mathbb{F}_p}(x,y)$: bivariate method

Let $x, y \in [0, p - 1]$.

 $LT_{\mathbb{F}_p}(x,y)$ is defined by the following lookup table

x y	0	1	2	3	 p-1
0	0	1	1	1	 1
1	0	0	1	1	 1
2	0	0	0	1	 1
3	0	0	0	0	 1
p-1	0	0	0	0	 0

How to compute $LT_{\mathbb{F}_p}(x,y)$: bivariate method

Let $x, y \in [0, p - 1]$.

 $LT_{\mathbb{F}_n}(x,y)$ is defined by the following lookup table

x y	0	1	2	3	 p-1
0	0	1	1	1	 1
1	0	0	1	1	 1
2	0	0	0	1	 1
3	0	0	0	0	 1
p-1	0	0	0	0	 0

$$P_{\mathrm{LT}_{\mathbb{F}_p}}(X,Y) = \sum_{a=0}^{p-2} \mathrm{EQ}_{\mathbb{F}_p}(X,a) \sum_{b=a+1}^{p-1} \mathrm{EQ}_{\mathbb{F}_p}(Y,b)$$

Let $x, y \in [0, p - 1]$.

 $LT_{\mathbb{F}_p}(x,y)$ is defined by the following lookup table

x y	0	1	2	3	 p-1
0	0	1	1	1	 1
1	0	0	1	1	 1
2	0	0	0	1	 1
3	0	0	0	0	 1
p-1	0	0	0	0	 0

$$P_{\mathrm{LT}_{\mathbb{F}_p}}(X,Y) = \sum_{a=0}^{p-2} \mathrm{EQ}_{\mathbb{F}_p}(X,a) \sum_{b=a+1}^{p-1} \mathrm{EQ}_{\mathbb{F}_p}(Y,b)$$

3p - 5 non-scalar multiplications [TLW+20]

Let $x, y \in [0, p/2)$ for odd p.

Let $x, y \in [0, p/2)$ for odd p.

$$LT_{\mathbb{F}_p}(x, y) = IsNegative_{\mathbb{F}_p}(x - y, 0)$$

x - y	$-\frac{p-1}{2}$	 -3	-2	-1	0	1	2	3	 $\frac{p-1}{2}$
IsNegative $_{\mathbb{F}_p}$	1	 1	1	1	0	0	0	0	 0

Let $x, y \in [0, p/2)$ for odd p.

$$LT_{\mathbb{F}_p}(x, y) = IsNegative_{\mathbb{F}_p}(x - y, 0)$$

x - y	$-\frac{p-1}{2}$	 -3	-2	-1	0	1	2	3	 $\frac{p-1}{2}$
$IsNegative_{\mathbb{F}_p}$	1	 1	1	1	0	0	0	0	 0

$$Q_{\mathrm{LT}_{\mathbb{F}_p}}(X - Y) = \sum_{a = -(p-1)/2}^{-1} \mathrm{EQ}_{\mathbb{F}_p}(X - Y, a)$$

Let $x, y \in [0, p/2)$ for odd p.

$$LT_{\mathbb{F}_p}(x, y) = IsNegative_{\mathbb{F}_p}(x - y, 0)$$

x-y	$-\frac{p-1}{2}$	 -3	-2	-1	0	1	2	3	 $\frac{p-1}{2}$
IsNegative $_{\mathbb{F}_p}$	1	 1	1	1	0	0	0	0	 0

$$Q_{\mathrm{LT}_{\mathbb{F}_p}}(X-Y) = \sum_{a=-(p-1)/2}^{-1} \mathrm{EQ}_{\mathbb{F}_p}(X-Y,a)$$

 $\sqrt{2p-2} + \mathcal{O}(\log p)$ non-scalar multiplications [PS73,SFR20]

$$P_{\mathrm{LT}_{\mathbb{F}_p}}(X,Y) = \sum_{a=0}^{p-2} \mathrm{EQ}_{\mathbb{F}_p}(X,a) \sum_{b=a+1}^{p-1} \mathrm{EQ}_{\mathbb{F}_p}(Y,b)$$

Our results:

• $P_{\mathrm{LT}_{\mathbb{F}_p}}(X,Y)$ has total degree p and not 2p-2

$$P_{\mathrm{LT}_{\mathbb{F}_p}}(X,Y) = \sum_{a=0}^{p-2} \mathrm{EQ}_{\mathbb{F}_p}(X,a) \sum_{b=a+1}^{p-1} \mathrm{EQ}_{\mathbb{F}_p}(Y,b)$$

Our results:

• $P_{\mathrm{LT}_{\mathbb{F}_p}}(X,Y)$ has total degree p and not 2p-2

•
$$P_{\mathrm{LT}_{\mathbb{F}_p}}(X,Y) = Y(X-Y)(X+1)f(X,Y)$$

$$f(X,Y) = \sum_{i=0}^{(p-3)/2} f_i(X)Z^i$$

with Z = Y(X - Y) and $\deg f_i(X) = p - 3 - 2i$

$$P_{\mathrm{LT}_{\mathbb{F}_p}}(X,Y) = \sum_{a=0}^{p-2} \mathrm{EQ}_{\mathbb{F}_p}(X,a) \sum_{b=a+1}^{p-1} \mathrm{EQ}_{\mathbb{F}_p}(Y,b)$$

Our results:

• $P_{\mathrm{LT}_{\mathbb{F}_p}}(X,Y)$ has total degree p and not 2p-2

•
$$P_{\mathrm{LT}_{\mathbb{F}_p}}(X,Y) = Y(X-Y)(X+1)f(X,Y)$$

$$f(X,Y) = \sum_{i=0}^{(p-3)/2} f_i(X)Z^i$$

with Z = Y(X - Y) and $\deg f_i(X) = p - 3 - 2i$

Non-scalar multiplications:

$$2p - 6 < 3p - 5$$
 [TLW+20]

$$Q_{\mathrm{LT}_{\mathbb{F}_p}}(X-Y) = \sum_{a=-(p-1)/2}^{-1} \mathrm{EQ}_{\mathbb{F}_p}(X-Y,a)$$

Our results:

• $Q_{LT_{\mathbb{F}_p}}(X-Y) = \frac{p+1}{2}(X-Y)^{p-1} + (X-Y)g((X-Y)^2)$ with deg g = (p-3)/2.

$$Q_{\mathrm{LT}_{\mathbb{F}_p}}(X-Y) = \sum_{a=-(p-1)/2}^{-1} \mathrm{EQ}_{\mathbb{F}_p}(X-Y,a)$$

Our results:

- $Q_{LT_{\mathbb{F}_p}}(X-Y) = \frac{p+1}{2}(X-Y)^{p-1} + (X-Y)g((X-Y)^2)$ with deg g = (p-3)/2.
- Non-scalar multiplications: $\sqrt{p-3} + \mathcal{O}(\log p) < \sqrt{2p-2} + \mathcal{O}(\log p)$ [SFR20]

$$Q_{\mathrm{LT}_{\mathbb{F}_p}}(X-Y) = \sum_{a=-(p-1)/2}^{-1} \mathrm{EQ}_{\mathbb{F}_p}(X-Y,a)$$

Our results:

- $Q_{LT_{\mathbb{F}_p}}(X-Y) = \frac{p+1}{2}(X-Y)^{p-1} + (X-Y)g((X-Y)^2)$ with deg g = (p-3)/2.
- Non-scalar multiplications: $\sqrt{p-3} + \mathcal{O}(\log p) < \sqrt{2p-2} + \mathcal{O}(\log p)$ [SFR20]
- $EQ_{\mathbb{F}_p}(X, Y) = 1 (X Y)^{p-1}$ is almost for free

$$Q_{\mathrm{LT}_{\mathbb{F}_p}}(X-Y) = \sum_{a=-(p-1)/2}^{-1} \mathrm{EQ}_{\mathbb{F}_p}(X-Y,a)$$

Our results:

- $Q_{LT_{\mathbb{F}_p}}(X-Y) = \frac{p+1}{2}(X-Y)^{p-1} + (X-Y)g((X-Y)^2)$ with deg g = (p-3)/2.
- Non-scalar multiplications: $\sqrt{p-3} + \mathcal{O}(\log p) < \sqrt{2p-2} + \mathcal{O}(\log p)$ [SFR20]
- $EQ_{\mathbb{F}_p}(X, Y) = 1 (X Y)^{p-1}$ is almost for free
 - \Rightarrow save $\mathcal{O}((d-1)\log p)$ non-scalar multiplications for the lexicographical order!

Min/max

$$\min(x, y) = y + (x - y) LT(x, y)$$

Min/max

$$\min(x, y) = y + (x - y) LT(x, y)$$

use the univariate approach

$$Q_{\min}(X,Y) = \frac{p+1}{2}(X+Y)^{p-1} + g((X-Y)^2)$$

Min/max

$$\min(x, y) = y + (x - y) LT(x, y)$$

use the univariate approach

$$Q_{\min}(X,Y) = \frac{p+1}{2}(X+Y)^{p-1} + g((X-Y)^2)$$

- Saves one multiplicative level.
- Same complexity as for evaluating $\mathrm{LT}_{\mathbb{F}_p}$
- Similar method can be applied to evaluate ReLU(x) = max(x, 0)

Let $A = [a_0, a_1, ..., a_{N-1}]$ be an array of numbers

$$A = [5,1,7,2]$$

Let $A = [a_0, a_1, ..., a_{N-1}]$ be an array of numbers

$$A = [5,1,7,2]$$

1. Compute the comparison matrix $\mathbf{L} = \left\{ \mathrm{LT}_{\mathbb{F}_p} \left(a_i, a_j \right) \right\}_{i,j}$ $\mathbf{L} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}$

Complexity: N(N-1)/2 homomorphic comparisons

Let $A = [a_0, a_1, ..., a_{N-1}]$ be an array of numbers

$$A = [5,1,7,2]$$

1. Compute the comparison matrix $\mathbf{L} = \left\{ \mathrm{LT}_{\mathbb{F}_p} (a_i, a_j) \right\}_{i,j}$

$$L = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix} \xrightarrow{\text{Sum the rows}} M = [2,0,3,1]$$

Let $A = [a_0, a_1, ..., a_{N-1}]$ be an array of numbers

$$A = [5,1,7,2]$$

1. Compute the comparison matrix $\mathbf{\mathit{L}} = \left\{ \mathrm{LT}_{\mathbb{F}_p} \big(a_i, a_j \big) \right\}_{i,j}$

$$L = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix} \xrightarrow{\text{Sum the rows}} M = [2,0,3,1]$$

Positions in the sorted array

Let $A = [a_0, a_1, ..., a_{N-1}]$ be an array of numbers

$$A = [5,1,7,2]$$

 $M = [2,0,3,1]$

2. Select element with index i in the sorted array A_{sorted}

$$\mathrm{EQ}_{\mathbb{F}_p}(M[j],i) \cdot a_j = \left\{ \begin{array}{c} a_j \text{ if } M[j] = i \\ 0 \text{ otherwise} \end{array} \right.$$

Let $A = [a_0, a_1, ..., a_{N-1}]$ be an array of numbers

$$A = [5,1,7,2]$$

 $M = [2,0,3,1]$

2. Select element with index i in the sorted array A_{sorted}

$$\mathrm{EQ}_{\mathbb{F}_p}(M[j], \mathbf{i}) \cdot a_j = \begin{cases} a_j \text{ if } M[j] = i \\ 0 \text{ otherwise} \end{cases} A_{sorted}[\mathbf{i}] = \sum_j \mathrm{EQ}_{\mathbb{F}_p}(M[j], \mathbf{i}) \cdot a_j$$

Let $A = [a_0, a_1, ..., a_{N-1}]$ be an array of numbers

$$A = [5,1,7,2]$$

 $M = [2,0,3,1]$

2. Select element with index i in the sorted array A_{sorted}

$$\mathrm{EQ}_{\mathbb{F}_p}(M[j], \mathbf{i}) \cdot a_j = \begin{cases} a_j \ \mathrm{if} \ M[j] = i \\ 0 \ \mathrm{otherwise} \end{cases} \qquad A_{sorted}[\mathbf{i}] = \sum_j \mathrm{EQ}_{\mathbb{F}_p}(M[j], \mathbf{i}) \cdot a_j$$

$$A_{sorted} = [a_1, a_3, a_0, a_2] = [1,2,5,7]$$

Let $A = [a_0, a_1, ..., a_{N-1}]$ be an array of numbers

• Use the sorting algorithm $\Rightarrow N(N-1)/2$ homomorphic comparisons \times

Let $A = [a_0, a_1, ..., a_{N-1}]$ be an array of numbers

- Use the sorting algorithm $\Rightarrow N(N-1)/2$ homomorphic comparisons \times
- N-1 successive comparisons \Rightarrow depth too big \times

Let $A = [a_0, a_1, ..., a_{N-1}]$ be an array of numbers

Use the tournament method to mix both strategies an obtain the best trade-off

 a_0

 a_1

 a_2

 a_3

Let $A = [a_0, a_1, ..., a_{N-1}]$ be an array of numbers

Use the tournament method to mix both strategies an obtain the best trade-off

Use T stages of the tournament method

Let $A = [a_0, a_1, ..., a_{N-1}]$ be an array of numbers

Use the tournament method to mix both strategies an obtain the best trade-off

- Use T stages of the tournament method
- Extract the minimum by sorting

 Only need to sort $N' = N/2^T$ elements

Let $A = [a_0, a_1, ..., a_{N-1}]$ be an array of numbers

Use the tournament method to mix both strategies an obtain the best trade-off

- Use T stages of the tournament method
- Extract the minimum by sorting

 Only need to sort $N' = N/2^T$ elements

Complexity: (N - N') min + N'(N' - 1)/2 less-than functions

Implementation

Less-than function for 64-bits integers

Less-than function for 64-bits integers

Best running time

	Prior work (TLW+20)	This work
p	5	131
Total	24.97s	16.07s
Amortized per integer	36ms	11ms

Sorting N 32-bits integers

N	Total time (s)	Amortized time (ms)	Amortized time [CDS+15]
4	299	64	200
8	1,356	290	944
16	5,700	1,219	4,280
32	23,017	4,922	18,600
64	89,972	19,241	49,700

Time to sort *N* 32-bits integers with 92 bits of security

Minimum of N 32-bits integers

N	Total time (s)	Amortized time (ms)
2	38	15
4	158	60
8	506	194
16	1,694	649
32	6,440	2,467
64	24,986	9,573

Time to extract the minimum of N 32-bits integers with 121 bits of security

Comparison with other FHE schemes

Bit length	FHE scheme	Bits of Security	Total time (s)	Amortized time (ms)
12	TFHE*	156	0.002	2.04
	CKKS	128	127.5	1.95
	BGV	126	7.09	1.23
16	TFHE*	156	0.003	2.72
	CKKS	128	297.0	4.53
	BGV	126	12.11	2.10
20	TFHE*	156	0.003	3.40
	CKKS	128	373.8	5.70
	BGV	126	8.66	3.01

Timings for the less-than function

^{*} TFHE timings are estimated from [CGG+20]

• Comparison functions over finite fields are fully described.

- Comparison functions over finite fields are fully described.
- We designed 3 times faster circuits to compare 64-bit integers using BGV.
 - Corresponding speed up for sorting and array min/max.

- Comparison functions over finite fields are fully described.
- We designed 3 times faster circuits to compare 64-bit integers using BGV.
 - Corresponding speed up for sorting and array min/max.
- For integer comparison, BGV is
 - · as fast as TFHE,
 - slightly faster than CKKS/HEAAN (approximate HE).

- Comparison functions over finite fields are fully described.
- We designed 3 times faster circuits to compare 64-bit integers using BGV.
 - Corresponding speed up for sorting and array min/max.
- For integer comparison, BGV is
 - as fast as TFHE,
 - slightly faster than CKKS/HEAAN (approximate HE).

Future work: other useful functions over rings/fields with efficient circuits?

Thank you!