1. A compound of the formula (I):

$$V O N = Q$$

$$V O N = Q$$

$$V O O O$$

$$V O O$$

$$V$$

123

wherein:

5

CLAIMS

W is (C₁-C₄)haloalkyl;

Z is CH or N;

=Q is a group of formula (A) or (B):

10

15

 R^1 and R^6 are each independently H, (C_1-C_8) alkyl, (C_3-C_6) alkenyl, (C_3-C_6) alkynyl, (C_1-C_6) alkoxy, (C_3-C_6) alkenyloxy, (C_3-C_6) alkynyloxy, (C_1-C_6) alkylamino, di- (C_1-C_6) alkylamino, NHCO(C_1-C_6)alkyl, NHSO $_2$ (C_1-C_6)alkyl, CO(C_1-C_6)alkyl or SO $_2$ (C_1-C_6)alkyl which last twelve mentioned groups are unsubstituted or substituted by one or more R^8 groups; or are (C_3-C_8) cycloalkyl or (C_3-C_8) cycloalkyl- (C_1-C_6) alkyl- which cycloalkyl radicals are unsubstituted or substituted by one or more (C_1-C_6) alkyl, (C_1-C_6) haloalkyl or R^8 groups; or are - $(CR^9R^{10})_pR^{11}$, - $(CR^9R^{10})_p$ heterocyclyl, OH, SO $_2R^{11}$, NH $_2$, NHCOR $_1^{11}$, NH (C_3-C_8) cycloalkyl, NH $(CR^9R^{10})_sR^{11}$, O $(CR^9R^{10})_rR^{11}$, - $(CR^9R^{10})CO_2CH_2R^{11}$, O $(CH_2)_r$ heterocyclyl, N=C[(C_1-C_6) alkyl] $_2$, COR $_1^{11a}$ or CO-heterocyclyl; or are (C_3-C_6) alkenyl substituted by (C_1-C_6) alkyl) (C_1-C_6) alkyl] (C_1-C_6) a

CO-heterocyclyl; or are (C₃-C₆)alkenyl substituted by R^{11a};
R², R³, R⁴ and R⁵ are each independently H, (C₁-C₈)alkyl, (C₂-C₆)alkenyl or (C₂-C₆)alkynyl, which last three mentioned groups are unsubstituted or substituted by one or more R⁸ groups; or are (C₃-C₈)cycloalkyl or (C₃-C₈)cycloalkyl-(C₁-C₆)alkyl-

which cycloalkyl radicals are unsubstituted or substituted by one or more (C_1 - C_6)alkyl, (C_1 - C_6)haloalkyl or R^8 groups; or are (C_1 - C_6)alkyl-SH, -(CR^9R^{10}) $_pR^{11}$, -(CR^9R^{10}) $_p$ heterocyclyl or O(CH_2) $_rR^{11}$;

- or R² and R³, or R⁴ and R⁵ together with the respective attached carbon atom form a carbonyl or thiocarbonyl group or a (C₃-C₈)cycloalkyl ring; or an imino group which is unsubstituted or substituted by (C₁-C₆)alkyl, CO(C₁-C₆)alkyl or R^{11a};
 - R^7 is (C_3-C_6) alkenyl, (C_3-C_6) alkynyl, $-(CR^9R^{10})_pR^{11}$, $-(CR^9R^{10})_p$ heterocyclyl, $CO(C_1-C_6)$ alkyl or a (C_3-C_8) cycloalkyl ring; or (C_1-C_8) alkyl unsubstituted or substituted by one or more radicals selected from halogen and $-OC(=O)-(C_1-C_4)$ alkyl;
- R⁸ is halogen, (C₁-C₆)alkoxy, (C₁-C₆)haloalkoxy, S(O)_nR¹², CN, CO₂(C₁-C₆)alkyl, CO₂H, NO₂, OH, amino, (C₁-C₆)alkylamino, di-(C₁-C₆)alkylamino, carbamoyl, (C₁-C₆)-alkylcarbamoyl, di-(C₁-C₆)-alkylcarbamoyl, CH[O(C₁-C₆)alkyl]₂, (C₃-C₆)alkenyloxy, (C₃-C₆)alkynyloxy or O(CH₂)_rR¹¹; R⁹ and R¹⁰ are each independently H, (C₁-C₆)alkyl or (C₁-C₆)haloalkyl;
- R¹¹ is aryl unsubstituted or substituted by one or more radicals selected from the group consisting of (C_1-C_6) alkyl, (C_1-C_6) haloalkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, (C_3-C_6) cycloalkyl, $-(CH_2)_uR^{11a}$, heterocyclyl, halogen, (C_1-C_6) alkoxy, (C_1-C_6) haloalkoxy, $S(O)_nR^{12}$, CN, $CO_2(C_1-C_6)$ alkyl, NO_2 , amino, (C_1-C_6) alkylamino, di- (C_1-C_6) alkylamino and $CO(C_1-C_6)$ alkyl;
- 20 R^{11a} is aryl unsubstituted or substituted by one or more radicals selected from the group consisting of (C₁-C₆)alkyl, (C₁-C₆)haloalkyl, halogen, (C₁-C₆)alkoxy, (C₁-C₆)haloalkoxy, S(O)_nR¹², CN, CO₂(C₁-C₆)alkyl, CO₂H, NO₂, OH, amino, (C₁-C₆)alkylamino and di-(C₁-C₆)alkylamino; R¹² is (C₁-C₆)alkyl or (C₁-C₆)haloalkyl;
- X is O, S, NR^{13} or NOR^{13} ; R^{13} is H, (C_1-C_8) alkyl, (C_3-C_6) alkenyl, (C_3-C_6) alkynyl or (C_3-C_8) cycloalkyl which last four mentioned groups are unsubstituted or substituted by one or more R^8 groups; or is (C_3-C_8) cycloalkyl- (C_1-C_6) alkyl- which cycloalkyl is unsubstituted or substituted by one or more (C_1-C_6) alkyl, (C_1-C_6) haloalkyl or R^8 groups; or is $-(CR^9R^{10})_pR^{11}$ or
- -(CR⁹R¹⁰)_pheterocyclyl;
 m, s and u are each independently 0 or 1;
 n is 0, 1 or 2;

p is 0, 1, 2 or 3;

r is 0 or an integer from 1 to 6; and each heterocyclyl in the above mentioned radicals is independently a heterocyclic radical having 3 to 7 ring atoms and 1 to 4 hetero atoms selected from N, O and S, and is unsubstituted or substituted by one or more radicals selected from the group consisting of (C₁-C₆)alkyl, (C₁-C₆)haloalkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, -(CH₂)_uR^{11a}, halogen, (C₁-C₆)alkoxy, (C₁-C₆)haloalkoxy, S(O)_nR¹², CN, CO₂(C₁-C₆)alkyl, NO₂, OH, amino, (C₁-C₆)alkylamino and di-(C₁-C₆)alkylamino; or a pesticidally acceptable salt thereof.

10

5

- 2. A compound or a salt thereof as claimed in claim 1, wherein W is CF₃.
- 3. A compound or a salt thereof as claimed in claim 1 or 2, wherein Z is CH.
- 4. A compound or a salt thereof as claimed in claim 1, 2 or 3, wherein R^1 and R^6 are each independently H, (C_1-C_8) alkyl, (C_3-C_6) alkenyl, $CO(C_1-C_6)$ alkyl or $SO_2(C_1-C_6)$ alkyl; or are $-(CR^9R^{10})_pR^{11}$.
- 5. A compound or a salt thereof as claimed in any one of claims 1 to 4, wherein R², R³, R⁴ and R⁵ are each independently H, (C₁-C₈)alkyl, (C₃-C₆)alkenyl, (C₃-C₆)alkynyl, -(CR⁹R¹⁰)_pR¹¹, -(CR⁹R¹⁰)_pheterocyclyl or O(CH₂)_rR¹¹; or R² and R³ together with the attached carbon atom form a carbonyl or thiocarbonyl group, or an imino group which is unsubstituted or substituted by (C₁-C₆)alkyl, CO(C₁-C₆)alkyl or R^{11a}; or R² and R³, or R⁴ and R⁵ together with the respective attached carbon atom form a (C₃-C₈)cycloalkyl ring.
 - 6. A compound or a salt thereof as claimed in any one of claims 1 to 5 wherein: W is CF₃;

-Z is CH:

30 R^1 and R^6 are each independently H, (C_1-C_8) alkyl, (C_3-C_6) alkenyl, $CO(C_1-C_6)$ alkyl or $SO_2(C_1-C_6)$ alkyl; or are $-(CR^9R^{10})_pR^{11}$;

R², R³, R⁴ and R⁵ are each independently H, (C₁-C₈)alkyl, (C₃-C₆)alkenyl, (C₃-C₆)alkynyl, -(CR⁹R¹⁰)_pR¹¹, -(CR⁹R¹⁰)_pheterocyclyl or O(CH₂)_rR¹¹; or R² and R³ together with the attached carbon atom form a carbonyl or thiocarbonyl group, or an imino group which is unsubstituted or substituted by (C₁-C₆)alkyl, CO(C₁-C₆)alkyl or R^{11a}; or R² and R³ or R⁴ and R⁵ together with the respective attached earlier atom.

5 R^{11a}; or R² and R³, or R⁴ and R⁵ together with the respective attached carbon atom form a (C₃-C₈)cycloalkyl ring;

 R^7 is (C₁-C₈)alkyl, (C₃-C₆)alkenyl, (C₃-C₆)alkynyl, -(CR $^9R^{10})_pR^{11}$ or -(CR $^9R^{10})_p$ heterocyclyl;

 R^8 is (C_1-C_4) alkoxy or OH;

- R⁹ and R¹⁰ are each independently H, (C₁-C₄)alkyl or (C₁-C₄)haloalkyl; R¹¹ is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of (C₁-C₄)alkyl, (C₁-C₄)haloalkyl, (C₂-C₄)alkenyl, (C₂-C₄)alkynyl, (C₃-C₆)cycloalkyl, -(CH₂)_uR^{11a}, heterocyclyl, halogen, (C₁-C₄)alkoxy, (C₁-C₄)haloalkoxy, S(O)_nR¹², CN, CO₂(C₁-C₄)alkyl, NO₂, amino, (C₁-C₄)alkylamino and di-(C₁-
- C₄)alkylamino; (more preferably R¹¹ is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of (C₁-C₄)alkyl, halogen, (C₁-C₄)alkoxy, NO₂ and amino);

 R^{11a} is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of (C_1-C_4) alkyl, (C_1-C_4) haloalkyl, halogen, (C_1-C_4) alkoxy, (C_1-C_4) alkoxy

C₄)haloalkoxy, S(O)_nR¹², CN, CO₂(C₁-C₄)alkyl, CO₂H, NO₂, OH, amino, (C₁-C₄)alkylamino and di-(C₁-C₄)alkylamino;

 R^{12} is (C_1-C_4) alkyl or (C_1-C_4) haloalkyl;

X is O or S;

m is 0;

- p, r, s and u are each independently 0 or 1; and each heterocyclyl in the above mentioned radicals is independently a heterocyclic radical having 3 to 7 ring atoms and 1 to 4 hetero atoms selected from N. O and S.
 - 7. A compound or a salt thereof as claimed in any one of claims 1 to 6 wherein:
- 30 W is CF₃;

Z is CH;

=Q is a group of formula (A1):

WO 2005/005412 PCT/EP2004/006610

127

 R^1 and R^6 are each independently H, (C_1-C_8) alkyl, (C_3-C_6) alkenyl, $CO(C_1-C_6)$ alkyl or $SO_2(C_1-C_6)$ alkyl; or are $-(CR^9R^{10})_pR^{11}$;

 R^2 and R^3 are each independently H, (C_1-C_8) alkyl, (C_3-C_6) alkenyl, (C_3-C_6) alkynyl, $-(CR^9R^{10})_pR^{11}$, $-(CR^9R^{10})_p$ heterocyclyl or $O(CH_2)_rR^{11}$;

Y is O or S; and

5

15

heterocyclyl is a heterocyclic radical having 3 to 7 ring atoms and 1 to 4 hetero atoms selected from N, O and S.

10 8. A process for the preparation of a compound of formula (I) or a salt thereof as defined in any one of claims 1 to 7, which process comprises:

a) where =Q is a formula (A), R² and R³ are as defined in claim 1 excluding where together with the attached carbon atom they form a carbonyl, thiocarbonyl or imino group, R⁴ and R⁵ together with the attached carbon atom form a thiocarbonyl group, R¹ and R⁶ are each a hydrogen atom and m is zero, the cyclisation-rearrangement reaction of a compound of formula (II):

wherein W and Z are as defined in claim 1, R² and R³ are as defined in claim 1 excluding where together with the attached carbon atom they form a carbonyl, thiocarbonyl or imino group, by heating and/or reaction in the presence of a base, via an intermediate of formula (III):

(III)

wherein W, Z, R^2 and R^3 are as defined in claim 1, which rearranges to the compound of formula (I); or

b) where W and Z are as defined in claim 1, =Q is a formula (A), R² and R³ are as defined in claim 1 excluding where they form a carbonyl, thiocarbonyl or imino group, R⁴ and R⁵ together with the attached carbon atom form a thiocarbonyl group, R¹ and R⁶ are each a hydrogen atom and m is zero, reacting a compound of formula (IV):

5

10

15

20

25

wherein W and Z are as defined in claim 1, with a compound of formula (V):

$$H_2NCR^2(R^3)CN$$
 (V)

(IV)

wherein R² and R³ are as defined in claim 1 excluding where together with the attached carbon atom they form a carbonyl, thiocarbonyl or imino group, to give the corresponding compound of formula (II), followed by cyclisation and rearrangement as described in process a) above; or

c) where =Q is a formula (A), R^1 is a hydrogen atom, R^2 and R^3 are as defined in claim 1 excluding where together with the attached carbon atom they form a carbonyl, thiocarbonyl or imino group, R^4 and R^5 together with the attached carbon atom form a carbonyl group, W, \mathbb{Z} and R^6 are as defined in claim 1 and m is zero, reacting a compound of formula (VI):

(VI)

wherein W, \mathbb{Z} and \mathbb{R}^6 are as defined in claim 1, with a compound of formula (VII):

15

20

H₂NCR²(R³)CO₂R⁷ (VII)

wherein R² and R³ are as defined in claim 1 excluding where together with the attached carbon atom they form a carbonyl, thiocarbonyl or imino group, and R⁷ is a leaving group, in the presence of a coupling agent to give an intermediate compound of formula (VIII):

wherein the various symbols are as defined above, followed by cyclisation; or

d) where =Q is a formula (A) or (B), m is zero and the other symbols are as defined in claim 1, acylating the corresponding compound of formula (A¹) or (B¹):

wherein the various symbols are as defined in claim 1, with a compound of formula (IX):

wherein W and Z are as defined in claim 1 and L is a leaving group; or

e) where =Q is a formula (B), W, Z, R^1 and R^7 are as defined in claim 1, X is S, m is zero, and R^2 and R^3 are as defined in claim 1 excluding where together with the attached carbon atom they form a carbonyl or thiocarbonyl group, or an imino group

which is unsubstituted or substituted by (C₁-C₆)alkyl, CO(C₁-C₆)alkyl or R^{11a}, reacting a compound of formula (I) which is of formula (X):

$$Z$$
 N
 N
 R^3
 R^3
 R
 R

wherein W, Z, R1, R² and R³ are as defined in claim 1, with a compound of formula 5 (XI):

> R^7L (XI)

wherein R⁷ is as defined in claim 1 and L is a leaving group; or

20

where =Q is a formula (A), W, Z, R¹, R², R³, R⁴ and R⁵ are as defined in claim 10 1, R⁶ is hydrogen and m is zero, cyclising a compound of formula (XII):

wherein W, Z, R¹, R², R³, R⁴ and R⁵ are as defined in claim 1, in the presence of a 15 base: or

- where =Q is a formula (A), W, Z, R¹, R² and R³ are as defined in claim 1, R⁴ g) and R⁵ together with the attached carbon atom form a carbonyl group, R⁶ is hydrogen, and m is zero, oxidising and hydrolysing a compound of formula (I) wherein Q is a group of formula (B), X is S, and W, Z, R¹, R², R³ and R⁷ are as defined in claim 1, and m is zero; or
- where =Q is a formula (B), W, Z, R², R³ and R⁷ are as defined in claim 1, R¹ is h) CO(C₁-C₆)alkyl which is unsubstituted or substituted by one or more R⁸ groups, or is

WO 2005/005412 PCT/EP2004/006610

131

COR^{11a} or CO-heterocyclyl, and m is zero, acylating the corresponding compound of formula (I) wherein R¹ is hydrogen, using a compound of formula (XIII):

 $R^{1}COL$ (XIII)

wherein L is a leaving group; or

5

10

- i) where=Q is a group of formula (A), W, Z, R², R³, R⁴, R⁵ and R⁶ are as defined in claim 1, R¹ is CO(C₁-C₆)alkyl which is unsubstituted or substituted by one or more R⁸ groups, or is COR^{11a} or CO-heterocyclyl, and m is zero, acylating the corresponding compound of formula (I) wherein R¹ is hydrogen, using a compound of formula (XIII) as defined above; or
- j) where Q is as defined in claim 1, and m is 1, oxidising a corresponding compound in which m is 0; and
- if desired, converting a resulting compound of formula (I) into a pesticidally acceptable salt thereof.
 - 9. A pesticidal composition comprising a compound of formula (I) or a pesticidally acceptable salt thereof as defined in any one of claims 1 to 7, in association with a pesticidally acceptable diluent or carrier and/or surface active agent.
 - 10. The pesticidal use of compounds of the formula (I) or their salts as claimed in any of claims 1 to 7, or of a pesticidal composition as claimed in claim 9.

20