EQUIVALENCE RELATIONS

Equivalence Relation.

- A (binary) relation R on a set X is an equivalence relation if it is reflexive (R), symmetric (S), and transitive (T).
- We refer to these properties together, in short, as *RST*-properties.

Example.

• An equivalence relation on $X = \{a, b, c, d\}$. A simple way to represent this equivalence relation is to give its equivalence classes (defined below): $\{a\}, \{b, c, d\}$.

Equivalence Class [x] of x in An Equivalence Relation R.

• $[x] = \{y: x \text{ related to } y \text{ in } R, \text{ i.e., } (x, y) \in R\}$. (Note: $x \in [x]$, by reflexivity of R.) We can also say $[x] = \{y: y \text{ related to } x, \text{ i.e., } (y, x) \in R\}$, because R is symmetric.

Two Properties of Equivalence Classes.

- (P.1) If $y \in [x]$, i.e., (x, y), $(y, x) \in R$ then [x] = [y]. (We say x and y are equivalent.)
- (P.2) Two equivalence classes [x] and [y] are either disjoint $([x] \cap [y] = \emptyset)$ or equal.

Three Steps in Proving Property (P.1).

- (1) Suppose $y \in [x]$. For each $z \in [y]$, we have $(z, y) \in R$ and this together with $(y, x) \in R$ imply $(z, x) \in R$, by transitivity of R.
- (2) This means $z \in [x]$, and hence $[y] \subseteq [x]$.
- (3) Also, $(y, x) \in R$ implies $x \in [y]$ and hence $[x] \subseteq [y]$ as in (1)-(2). We now have [x] = [y] because $[y] \subseteq [x]$ and $[x] \subseteq [y]$.

Proof of Property (P.2).

• If $[x] \cap [z] \notin \emptyset$ and $y \in [x] \cap [z]$, then [x] = [y] = [z].

Disjoint Equivalence Classes Form a Partition of *X***.**

- A partition of *X* is decomposition of *X* into 1 or more non-empty disjoint subsets.
- #(Partitions of X) = #(equivalence relations on X).

copyRight@2020Kundu 2

Practice Questions.

1. Shown below are the structures of all relations on |X| = 2. Mark those which correspond to equivalence relations.

- 2. Show the digraph of structures of equivalence relations on n = 3 items. Also, for each digraph show #(equivalence relations) for that structure.
- 3. Show #(equivalence relations on n items with exactly 2 equivalence classes). Verify your answer for n = 2 and 3 from your solutions of Problems 1 and 2.
- 4. Shown below is the graph (undirected links and without loops to simplify the diagram) for the structure of the equivalence relation given in the previous page; show all other structures of equivalence relations on $\{a, b, c, d\}$ items. In each case, show (a) #(equivalence classes of size k) for each $k \ge 1$, and (b) #(equivalence relations for that structure).

- (a) 1 equiv. class of size 1; 1 equiv. class of size 3
- (b) #(equiv. rels.) = 4;
- 5. Complete the code below for printing the equivalence classes of an $n \times n$ equivalence relation-matrix R. Show the output for the equivalence relation with equivalence classes $\{0, 1, 3\}, \{2, 5\}, \{4, 6\}.$

How do you avoid starting from j = 0 every time to find an item not printed yet? How would you modify the above code to count #(equivalence classes)? copyRight@2020Kundu 3

6. Let $0 \le p \le q$ be two fixed numbers and X a non-empty set of numbers. We define the relation $R_{p,q}$ on X by $\{(x, y): x, y \in X \text{ and } p \le |x - y| \le q\}$. Show the missing links in the following graph of the anti-reflexive and symmetric relation $R_{3,5}$ for $X = \{1, 4, 5, 7, 10, 11, 17\}$. Which of the transitive, non-transitive, and anti-transitive properties hold for $R_{3,5}$?

7. Consider the codes (a)-(n) below. We define ES-relation below two codes C and C' as follows: $(C, C') \in ES$ if the flowcharts of C and C' have the same structure when we ignore the contents of tests and assignments. First, argue that ES-relation satisfies RST-properties and hence it is an equivalence relation. Show the ES-equivalent classes of codes. Also, show the flowchart for each equivalence class.

- (a) max = first;
 if (second > max) max = second;
- (c) max = first;
 if (second >= max) max = second;
- (e) max = first;
 if (second > first) max = second;
- (g) max = first;
 if (second >= first) max = second;
- (i) max = second;
 if (first > max) max = first;
- (k) max = second;
 if (first >= max) max = first;
- (m) max = second;
 if (first > second) max = first;

- (b) if (first > second) max = first;
 else max = second;
- (d) if (first >= second) max = first; else max = second;
- (f) if (first > second) max = first;
 if (first <= second) max = second;</pre>
- (h) if (first >= second) max = first;
 if (first < second) max = second;</pre>
- (j) if (first >= second) max = first;
 if (first <= second) max = second;</pre>
- (1) if (first < second) max = second;
 else max = first;</pre>
- (n) if (first <= second) max = second;
 else max = first;</pre>