

Re-Livestock

RESILIENT FARMING SYSTEMS

Discussion: Estimation of genetic parameters for methane emissions

Birgit Gredler-Grandl, Coralia Manzanilla-Pech, Ester Teran and Oscar González-

Examples of variance components for methane traits: Relivestock

Birgit Gredler-Grandl, Coralia Manzanilla-Pech, Ester Teran and Oscar González-Recio

WAGENINGEN
UNIVERSITY & RESEARCH

Standardizing the phenotype

- Weekly records, no correction diurnal variation
- Minimum number of visits per week = 5
- Average all visits within a calendar week R lubridate (epidemiological week) epiyear(x) + epiweek(x)
- Background correction within visit: average 5 lowest measurements per visit
- Duration of visit: each partners keeps own filter
- Max duration: 5min
- Lactation grouping 1,2,3+
- Lactation stage: 3 levels in Spain:
 - o 0-90,91-150,151-365
 - DIM max 365 days

Methane phenotypes

CONCENTRATION conc Average methane concentration per visit (ppm) METHANE 2. #peaks Number of methane peaks per minute 3. Sumpeaks Sum of 2 maximum values within each peak CO2 conc Average carbon dioxide concentration per visit (ppm) 4. 5. ratio between methane and carbon dioxide concentration PRODUCTION 6. Madsen Based on Madsen et al. 2010 equation METHANE 7. Chagunda Based on Chagunda et al. 2009 equation 8. Kjeldsen Based on Kjeldsen et al. 2024 equation2 9. Kjeldsen Based on Kjelsen et al. 2024 equation3 (g/d)Tier2 Based on Tier2 (IPCC) equation

Pedigree and Genotypes per country

Averages and standard deviations

Phenotypes		Pooled dataset	Netherlands	Spain	Poland
			Average	(SD)	
CH	average	397.1 (181.4)	388.1 (167.8)	377.0 (186.2)	534.9 (142.2)
CH ₄ concentration	#peaks	1.4(0.5)	1.5 (0.4)	0.57 (0.1)	1.00 (0.1)
	speaks	902.6 (471.4)	931.3 (442.0)	464.8 (318.9)	716.8 (210.1)
CO ₂ concentration	average	5543.0 (1844.0)	5637.0 (1812.0)	5115.0 (1736.0)	7037.0 (1707.0)
Ratio*	CH ₄ /CO ₂	0.07 (0.02)	0.07 (0.02)	0.07 (0.02)	0.08 (0.01)
	Madsen	311.9 (122.9)	296.4 (131.9)	344.3 (102.0)	379.4 (94.6)
CH ₄ production	Chagunda	139.5 (103.2)	180.9 (97.2)	65.2 (45.0)	94.3 (31.3)
	Kjeldsen2	299.3 (117.8)	309.3 (135.1)	287.8 (84.9)	354.2 (62.4)
	Kjeldsen3	321.7 (127.0)	318.5 (128.8)	356.5 (103.4)	358.3 (61.5)
	Tier2	402.6 (89.31)	356.7 (68.8)	468.7 (77.3)	334.5 (54.7)
CH ₄ Intensity**	CH ₄ /MY	9.9 (4.7)	9.9 (4.8)	9.2 (3.3)	10.5 (2.8)

Variation between the phenotypes' averages

Averages and standard deviations

Phenotypes		Pooled dataset	Netherlands	Spain	Poland
			Average	(SD)	
CH	average	397.1 (181.4)	388.1 (167.8)	377.0 (186.2)	534.9 (142.2)
CH ₄ concentration	#peaks	1.4(0.5)	1.5 (0.4)	0.57 (0.1)	1.00 (0.1)
	speaks	902.6 (471.4)	931.3 (442.0)	464.8 (318.9)	716.8 (210.1)
CO ₂ concentration	average	5543.0 (1844.0)	5637.0 (1812.0)	5115.0 (1736.0)	7037.0 (1707.0)
Ratio*	CH ₄ /CO ₂	0.07 (0.02)	0.07 (0.02)	0.07 (0.02)	0.08 (0.01)
	Madsen	311.9 (122.9)	296.4 (131.9)	344.3 (102.0)	379.4 (94.6)
CH ₄ production	Chagunda	139.5 (103.2)	180.9 (97.2)	65.2 (45.0)	94.3 (31.3)
	Kjeldsen2	299.3 (117.8)	309.3 (135.1)	287.8 (84.9)	354.2 (62.4)
	Kjeldsen3	321.7 (127.0)	318.5 (128.8)	356.5 (103.4)	358.3 (61.5)
	Tier2	402.6 (89.31)	356.7 (68.8)	468.7 (77.3)	334.5 (54.7)
CH ₄ Intensity**	CH ₄ /MY	9.9 (4.7)	9.9 (4.8)	9.2 (3.3)	10.5 (2.8)

Variation between the phenotypes' averages

Genetic correlations between countries

Phenotype		Netherlands-Spain	Netherlands-Poland	Spain-Poland		
		Genetic correlations				
CH ₄ concentration	average	0.53 (0.14)	0.67 (0.20)	0.56 (0.28)		
City Concentration	#peaks	-0.52 (0.07)	0.99 (0.25)	0.18 (0.27)		
	speaks	-0.34 (0.12)	0.74 (0.16)	0.10 (0.27)		
CO ₂ concentration average		0.82 (0.91)	0.86 (0.28)	0.99 (1.00)		
Ratio*	CH ₄ /CO ₂	0.50 (0.17)	0.34 (0.22)	0.48 (0.46)		
	Madsen	0.98 (0.72)	0.30 (0.81)	0.48 (0.46)		
CH ₄ production	Chagunda	0.17 (0.24)	0.35 (0.33)	-0.28 (0.31)		
	Kjeldsen2	0.47 (0.19)	0.22 (0.22)	0.80 (0.36)		
	Kjeldsen3	0.47 (0.19)	0.29 (0.22)	0.84 (0.35)		
	Tier2	0.73 (0.29)	0.57 (0.42)	0.36 (0.42)		
CH ₄ Intensity**	CH ₄ /MY	0.69 (0.17)	0.81 (0.23)	0.88 (0.41)		

0.53-0.66 r_a between countries for CH₄ conc

High r_a for CO₂ cond

Moderate to high r_a for some Methane Production

High r_a for Methane Intensity

Genetic correlations with CH₄ concentration average

Phen	otype	Pooled database	Netherlands	Spain	Poland
		Ge	netic correlation	s with CH ₄ aver	age
CH ₄ concentration	#peaks	0.32 (0.04)	0.74 (0.05)	0.72 (0.22)	0.80 (0.31)
	speaks	0.78 (0.02)	0.76 (0.03)	0.73 (0.07)	0.99 (0.03)
CO ₂ concentration	average	0.82 (0.03)	0.82 (0.03)	0.78 (0.19)	0.85 (0.07)
Ratio*	CH ₄ /CO ₂	-0.10 (0.08)	0.86 (0.03)	0.38 (0.66)	-0.03 (0.67)
	Madsen	0.47 (0.10)	0.65 (0.13)	0.94 (0.08)	0.43 (0.24)
CH ₄ production	Chagunda	0.74 (0.05)	0.70 (0.08)	0.95 (0.05)	0.58 (0.12)
	Kjeldsen2	0.77 (0.07)	0.81 (0.10)	0.99 (0.07)	0.70 (0.14)
	Kjeldsen3	0.84 (0.03)	0.85 (0.03)	0.99 (0.06)	0.80 (0.12)
	Tier2	-0.02 (0.11)	-0.16 (0.12)	0.38 (0.20)	-0.03 (0.24)
CH ₄ Intensity**	CH₄/MY	0.70 (0.05)	0.62 (0.08)	0.38 (0.59)	0.43 (0.52)

Moderate to high r_a with num peaks and sum of max peaks

High r_a with CO₂ cond

High r_a with ratio (NL)

High correlation with all Methane Production phenotypes except Tier2

Moderate correlation with Methane Intensity

Genetic correlations all phenotypes for Netherlands

Genetic correlations all phenotypes for Netherlands

Examples of variance components for methane traits

Birgit Gredler-Grandl, Coralia Manzanilla-Pech, Ester Teran and Oscar González-Recio

Heritabilities

Trait	h ²	r²
Mean CH4 (ppm)	0.08 (0.05-0.11)	0.54 (0.52;0.56)
Mean CH4 5 s(ppm)	0.08 (0.05-0.11)	0.54 (0.53;0.56)
Sum of peaks CH4 (ppm) Sum of peaks CH4 5s	0.09 (0.06;0.12)	0.55 (0.53;0.57)
(ppm)	0.10 (0.06;0.13)	0.55 (0.53;0.57)
Sum of max peaks (ppm)	0.08 (0.05;0.11)	0.52 (0.50;0.54)
AUC CH4 (ppm)	0.10 (0.07;0.13)	0.55 (0.53;0.57)
CO ₂ (ppm)	(0.004;0.04)	0.58 (0.56;0.60)
CO ₂ (L/d)*	0.02 (0.004;0.05)	0.61 (0.59;63
Ratio CH4/CO ₂	0.10 (0.05;0.16)	0.42 (0.39;0.45)
MeP (g/d) (Madsen eq)	0.12 (0.06;0.17)	0.51 (0.48;0.54)
_ MeP (g/d)*	0.10 (0.04.0.15)	Ი 55 <i>(</i> Ი 52∙Ი 5ጰ\

Larger heritabilities with multicountry analyses

Results: Genetic correlations between methane traits

				Sum of max	
Traits	Mean 2H ₄	MeP (g/d)*	Sum of peaks CH ₄	peaks	AUC CH₄
	0.08	0.99	0.82	0.77	0.83
Mean CH ₄	V.08	0.33	(0.74;0.90)	(0.67;0.85)	(0.74;0.89)
MaD (a/d)*		0.10) .	-	-
MeP (g/d)*					
Company of the college CIII			0.09	0.99	0.99
Sum of peaks CH ₄			/		
Sum of max peaks				0.08	0.99
AUC CH ₄					0.10

METH	http://pubmed.ncbi.nlm.nih.gov/31640130/ https://pubmed.ncbi.nlm.nih.gov/22612952/	https://brill.com/doi/10.3920/978-90-8686-940-4_32 https://www.sciencedirect.com/science/article/pii/S0168169924009505
ANE ARTIC	https://pubmed.ncbi.nlm.nih.gov/32580811/	https://www.sciencedirect.com/science/article/pii/S0022030216308335
LES AND	https://www.sciencedirect.com/science/article/pii/S0022030212002925 https://www.cambridge.org/core/journals/animal/article/review-selecting-for-improved-feed-efficiency-and-reduced-methane-emissions-in-dairy-	https://pubmed.ncbi.nlm.nih.gov/34246599/ https://pubmed.ncbi.nlm.nih.gov/22118100/
MANY MORE	cattle/684C3B9F1E62559508DCD241D3FE81DF https://www.sciencedirect.com/science/article/pii/S002203022100597X	https://academic.oup.com/jas/article/95/11/4813/4807441?login=true https://www.nature.com/articles/s41598-018-33327-9
MORE	https://www.sciencedirect.com/science/article/pii/S1751731120001561	https://www.sciencedirect.com/science/article/pii/S0022030219303030
	https://www.sciencedirect.com/science/article/pii/S0168169918306124 https://doi.org/10.3390/ani9080563	https://www.mdpi.com/2076-2615/11/11/3175 https://www.sciencedirect.com/science/article/pii/S0022030219306393
	https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2022.885932/full	https://pubmed.ncbi.nlm.nih.gov/37080783/
	https://www.sciencedirect.com/science/article/pii/S0022030220300175	https://www.sciencedirect.com/science/article/pii/S0022030222001722
	https://www.sciencedirect.com/science/article/pii/S0022030220305713	https://www.sciencedirect.com/science/article/pii/S0022030224005666
	https://www.sciencedirect.com/science/article/pii/S0022030222005860	https://pubmed.ncbi.nlm.nih.gov/38490557/
	https://www.sciencedirect.com/science/article/pii/S0022030221010134	https://www.sciencedirect.com/science/article/pii/S0022030220303982
	https://www.cambridge.org/core/journals/advances-in-animal-biosciences/article/abs/genetic-control-of-greenhouse-gas-emissions/47D5F7A7643B6BA700218CDBEA01C032	https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007580
	https://www.sciencedirect.com/science/article/pii/S0022030220303994	https://www.sciencedirect.com/science/article/pii/S0022030217308615 15