$$\Xi$$
(1530) 3/2⁺

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$$
 Status: ***

This is the only Ξ resonance whose properties are all reasonably well known. Assuming that the Λ_c^+ has $J^P=1/2^+$, AUBERT 08AK, in a study of $\Lambda_c^+\to\Xi^-\pi^+K^+$, finds conclusively that the spin of the $\Xi(1530)^0$ is 3/2. In conjunction with SCHLEIN 63B and BUTTON-SHAFER 66, this proves also that the parity is +.

We use only those determinations of the mass and width that are accompanied by some discussion of systematics and resolution.

Ξ(1530) POLE POSITIONS

Ξ(1530) ⁰ REAL PART	DOCUMENT ID	<u>COMMENT</u>
1531.6±0.4	LICHTENBERG74	Using HABIBI 73
Ξ(1530) ⁰ IMAGINARY PART	DOCUMENT ID	<u>COMMENT</u>
4.45±0.35	LICHTENBERG74	Using HABIBI 73
≡(1530) [−] REAL PART	DOCUMENT ID	<u>COMMENT</u>
1534.4±1.1	LICHTENBERG74	Using HABIBI 73
Ξ(1530) ⁻ IMAGINARY PART	<u>DOCUMENT</u> ID	<u>COMMENT</u>
$3.9^{+1.75}_{-3.9}$	LICHTENBERG74	Using HABIBI 73

≡(1530) MASSES

≡(1530)⁰ MASS

- (1000) 1117 100					
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1531.80±0.32 OUR I	FIT Error i	ncludes scale factor	of 1.	3.	
1531.78±0.34 OUR <i>b</i> elow.	AVERAGE	Error includes scale	facto	or of 1.4	. See the ideogram
1532.2 ± 0.7		DEBELLEFON	75 B	HBC	$K^- p \rightarrow \Xi^- \overline{K} \pi$
1533 ± 1		ROSS	73 B	HBC	$K^- p \rightarrow \Xi \overline{K} \pi(\pi)$
1531.4 ± 0.8	59	BADIER	72	HBC	$K^- p \ 3.95 \ \text{GeV}/c$
1532.0 ± 0.4	1262	BALTAY	72	HBC	$K^- p \ 1.75 \ {\sf GeV}/c$
1531.3 ± 0.6	324	BORENSTEIN	72	HBC	$K^- p \ 2.2 \ {\rm GeV}/c$
1532.3 ± 0.7	286	KIRSCH	72	HBC	$K^- p \ 2.87 \ \text{GeV}/c$
1528.7 ± 1.1	76	LONDON	66	HBC	$K^- p \ 2.24 \ {\sf GeV}/c$

• • • We do not use the following data for averages, fits, limits, etc. • • •

1532.1	± 0.4	1244	ASTON	85 B	LASS	K^-p 11 GeV/ c
1532.1	± 0.6	2700	¹ BAUBILLIER	81 B	HBC	$K^- p$ 8.25 GeV/c
1530	± 1	450	BIAGI	81	SPEC	SPS hyperon beam
1527	± 6	80	SIXEL	79	HBC	K^-p 10 GeV/ c
1535	± 4	100	SIXEL	79	HBC	K^-p 16 GeV/ c
1533.6	± 1.4	97	BERTHON	74	HBC	Quasi-2-body σ

WEIGHTED AVERAGE 1531.78±0.34 (Error scaled by 1.4)

Ξ(1530)[−] MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1535.0±0.6 OUR FIT	<u> </u>				
1535.2±0.8 OUR AV	ERAGE				
1534.5 ± 1.2		DEBELLEFON	75 B	HBC	$K^- p \rightarrow \Xi^- \overline{K} \pi$
$1535.3 \!\pm\! 2.0$		ROSS	73 B	HBC	$K^- p \rightarrow \Xi \overline{K} \pi(\pi)$
1536.2 ± 1.6	185	KIRSCH	72	HBC	K^-p 2.87 GeV/ c
1535.7 ± 3.2	38	LONDON	66	HBC	K^-p 2.24 GeV/ c
\bullet \bullet We do not use	the following	g data for averages	, fits,	limits,	etc. • • •
1540 ± 3	48	BERTHON	74	HBC	Quasi-2-body σ
$1534.7\!\pm\!1.1$	334	BALTAY	72	HBC	$K^- p \ 1.75 \ {\sf GeV}/c$

$m_{\Xi(1530)^-} - m_{\Xi(1530)}$

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
3.2±0.6 OUR FIT				
2.9±0.9 OUR AVERAGE				
2.7 ± 1.0	BALTAY	72	HBC	$K^- p \ 1.75 \ {\sf GeV}/c$
2.0 ± 3.2	MERRILL	66	HBC	$K^- p 1.7–2.7 \text{ GeV}/c$
5.7 ± 3.0	PJERROU	65 B	HBC	K^-p 1.8–1.95 ${\sf GeV}/c$
• • • We do not use the following	data for average	s, fits,	limits,	etc. • • •
3.9 ± 1.8 7 ± 4	² KIRSCH ² LONDON	72 66		K ⁻ p 2.87 GeV/c K ⁻ p 2.24 GeV/c

≡(1530) WIDTHS

Ξ(1530)⁰ WIDTH

<i>Ξ</i> (1530)° WIDTH					
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
9.1±0.5 OUR AVERA	GE				
$9.5 \!\pm\! 1.2$		DEBELLEFON	75 B	HBC	$K^- p \rightarrow \Xi^- \overline{K} \pi$
9.1 ± 2.4		ROSS	73 B	HBC	$K^- p \rightarrow \Xi \overline{K} \pi(\pi)$
11 ± 2		BADIER	72	HBC	$K^- p \ 3.95 \ \text{GeV}/c$
9.0 ± 0.7		BALTAY	72	HBC	K^-p 1.75 GeV/ c
8.4 ± 1.4		BORENSTEIN	72	HBC	$\Xi^-\pi^+$
11.0 ± 1.8		KIRSCH	72	HBC	$\Xi^-\pi^+$
7 ±7		BERGE	66	HBC	$K^- p 1.5 – 1.7 \text{ GeV}/c$
8.5 ± 3.5		LONDON	66	HBC	$K^- p \ 2.24 \ \text{GeV}/c$
7 ± 2		SCHLEIN	63 B	HBC	$K^- p$ 1.8, 1.95 GeV/ c
• • • We do not use th	e following o	data for averages	, fits,	limits, e	etc. • • •
12.8 ± 1.0		¹ BAUBILLIER	81 B	HBC	$K^- p \ 8.25 \ \text{GeV}/c$
19 ± 6	80	³ SIXEL	79	HBC	K^-p 10 GeV/ c
14 ± 5	100	³ SIXEL	79	HBC	K^-p 16 GeV/ c
=/1E20\- \\/IDTU					
≡ (1530) [−] WIDTH		DOCUMENT ID		TECN	COMMENT
VALUE (MeV)		DOCUMENT ID		<u>TECN</u>	COMMENT
$9.9^{f +1.7}_{f -1.9}$ our avera	GE				
9.6 ± 2.8		DEBELLEFON	75 B	HBC	$K^- p \rightarrow \Xi^- \overline{K} \pi$
8.3 ± 3.6		ROSS	73 B	HBC	$K^- p \rightarrow \Xi \overline{K} \pi(\pi)$
$7.8^{+3.5}_{-7.8}$		BALTAY	72	НВС	K^-p 1.75 GeV/ c
16.2 ± 4.6		KIRSCH	72	HBC	$\equiv -\pi^0$, $\equiv 0\pi^-$

Ξ (1530) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Confidence level
$\overline{\Gamma_1}$	$\equiv \pi$	100 %	
Γ_2	$\equiv \gamma$	<4 %	90%

≡(1530) BRANCHING RATIOS

$\Gamma(\Xi\gamma)/\Gamma_{total}$				Γ_2/Γ
VALUE	CL%	DOCUMENT ID	TECN	COMMENT
<0.04	90	KALBFLEISCH 75	HBC	$K^- p$ 2.18 GeV/ c

Ξ (1530) FOOTNOTES

Ξ(1530) REFERENCES

- OTHER RELATED PAPERS -

MAZZUCATO	81	NP B178 1	M. Mazzucato et al.	(AMST, CERN, NIJM+)
BRIEFEL	77	PR D16 2706	E. Briefel et al.	(BRAN, UMD, SYRA+)
BRIEFEL	75	PR D12 1859	E. Briefel et al.	(BRAN, UMD, SYRA+)
HUNGERBU	74	PR D10 2051	V. Hungerbuhler <i>et al.</i>	(YALE, FNAL, BNL+)
BUTTON	66	PR 142 883	J. Button-Shafer et al.	(LRL) JP

 $^{^{1}}$ BAUBILLIER 81B is a fit to the inclusive spectrum. The resolution (5 MeV) is not unfolded.

2 Redundant with data in the mass Listings.

3 SIXEL 79 doesn't unfold the experimental resolution of 15 MeV.