Data Preprocessing

Li, Jia

DSAA 5002 HKUST Guangzhou

> 2025 Fall Sep 1

Detect fraud accounts

- Number of accounts is huge
- A feature vector for an account
- Many attributes
 - Gender
 - Number of friends
 - Location ID
 - Age
 - Chat timestamp
 - Report count
- Noisy, incomplete, even misleading

What is Data?

- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object
 - Examples: eye color of a person, temperature, etc.
 - Attribute is also known as variable, field, characteristic, or feature
- A collection of attributes describe an object
 - Object is also known as record, point, case, sample, entity, or instance

Attributes

)
Tid	Gen der	Location	No. of Friend s	Fraud
1	F	Hongkong	125	No
2	М	Shenzhen	100	No
3	М	Cambodia	70	No
4	F	Vietnam	120	No
5	M	Beijing	95	Yes
6	M	Hangzhou	60	No
7	F	Guangzhou	220	No
8	М	Shanghai	85	Yes
9	F	U.S.A	75	No
10	F	U.K.	90	Yes

Objects

Types of Attributes

- There are different types of attributes
 - Nominal
 - Examples: ID numbers, eye color, zip codes
 - Ordinal
 - Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height in {tall, medium, short}
 - Interval
 - Examples: calendar dates.
 - Ratio
 - Examples: number of friends, time, report counts

Properties of Attribute Values

 The type of an attribute depends on which of the following properties it possesses:

```
• Distinctness: = \neq
```

- Order: < >
- Addition: + -
- Multiplication: * /
- Nominal attribute: distinctness
- Ordinal attribute: distinctness & order
- Interval attribute: distinctness, order & addition
- Ratio attribute: all 4 properties

Discrete and Continuous Attributes

Discrete Attribute

- Has only a finite or countably infinite set of values
- Examples: zip codes, counts, or the set of words in a collection of documents
- Often represented as integer variables.
- Note: binary attributes are a special case of discrete attributes

Continuous Attribute

- Has real numbers as attribute values
- Examples: temperature, height, or weight.
- Practically, real values can only be measured and represented using a finite number of digits.
- Continuous attributes are typically represented as floating-point variables.

Measuring the Central Tendency of Data

• Mean: An algebraic measure

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \mu = \frac{\sum x}{N}$$

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \mu = \frac{\sum x}{N}$$

- sample vs. population mean: $\sum_{i=1}^{n} w_i x_i$
- Weighted arithmetic mean: $\bar{x} = \frac{\sum_{i=1}^{n} w_i}{\sum_{i=1}^{n} w_i}$
- Trimmed mean: chopping extreme values
- Median: A holistic measure
 - Middle value if odd number of values, or average of the middle two values otherwise
- Mode
 - Value that occurs most frequently in the data
 - Empirical formula: $mean-mode = 3 \times (mean-median)$

Symmetric vs. Skewed Data

 Median, mean and mode of symmetric, positively and negatively skewed data

Measuring the Dispersion of Data

- Quartiles, outliers and boxplots
 - Quartiles: Q₁ (25th percentile), Q₃ (75th percentile)
 - Inter-quartile range: $IQR = Q_3 Q_1$
 - Five number summary: min, Q_1 , M, Q_3 , max
 - Outlier: usually, a value more than 1.5 x IQR above Q3 or below Q1
- Variance and standard deviation (sample: s, population: σ)
 - Variance:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} x_{i} \right)^{2} \right] \quad \sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} (x_{i} - \mu)^{2} = \frac{1}{N} \sum_{i=1}^{n} x_{i}^{2} - \mu^{2}$$

• Standard deviation $s(or \sigma)$ is the square root of variance $s^2(or \sigma^2)$

Box Plot

3.9, 4.1, 4.2, 4.2, 4.3, 4.4, 4.4, 4.4, 4.5, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1

$$Q_1 = (4.2 + 4.3)/2 = 4.25$$

$$Median = 4.4$$

$$Q_3 = (4.7 + 4.8)/2 = 4.75$$

Data Quality

- What kinds of data quality problems?
- How can we detect problems with the data?
- What can we do about these problems?

- Examples of data quality problems:
 - Noise and outliers
 - missing values
 - duplicate data

Noise

- Noise refers to modification of original values
 - Examples: distortion of a person's voice when talking on a poor phone and "snow" on television screen

Two Sine Waves

Two Sine Waves + Noise

Outliers

• Outliers are data objects with characteristics that are considerably different than most of the other data objects in the data set.

Missing Values

- Reasons for missing values
 - Information is not collected
 (e.g., people decline to give their age and weight)
 - Attributes may not be applicable to all cases (e.g., annual income is not applicable to children)
- Handling missing values
 - Eliminate Data Objects
 - Estimate Missing Values
 - Ignore the Missing Value During Analysis
 - Replace with all possible values (weighted by their probabilities)

Duplicate Data

- Data set may include data objects that are duplicates, or almost duplicates of one another
 - Major issue when merging data from heterogeneous sources
- Examples:
 - Same person with multiple email addresses
- Data cleaning
 - Process of dealing with duplicate data issues

Data Preprocessing

- Aggregation
- Sampling
- Discretization and Binarization
- Attribute Transformation

Aggregation

 Combining two or more attributes (or objects) into a single attribute (or object)

- Purpose
 - Data reduction
 - Reduce the number of attributes or objects
 - Change of scale
 - Cities aggregated into regions, states, countries, etc
 - More "stable" data
 - Aggregated data tends to have less variability

Aggregation

Daily login activities, from timestamp to 24 hours (day or night)

Sampling

- Sampling is the main technique employed for data selection.
 - It is often used for both the preliminary investigation of the data and the final data analysis.
- Statisticians sample because obtaining the entire set of data of interest is too expensive or time consuming.
- Sampling is used in data mining because processing the entire set of data of interest is too expensive or time consuming.

Sampling

- The key principle for effective sampling is the following:
 - using a sample will work almost as well as using the entire data sets, if the sample is representative
 - A sample is representative if it has approximately the same property (of interest) as the original set of data

Types of Sampling

- Simple Random Sampling
 - There is an equal probability of selecting any particular item
- Sampling without replacement
 - As each item is selected, it is removed from the population
- Sampling with replacement
 - Objects are not removed from the population as they are selected for the sample.
 - In sampling with replacement, the same object can be picked up more than once
- Stratified sampling
 - Split the data into several partitions; then draw random samples from each partition

Sample Size

Sample Size

• What sample size is necessary to get at least one object from each of 10 groups.

Mapping Data to a New Space

Fourier transform
Wavelet transform

Two Sine Waves

Two Sine Waves + Noise

Frequency

Discretization Using Class Labels

Discretization Without Using Class Labels

Attribute Transformation

- A function that maps the entire set of values of a given attribute to a new set of replacement values such that each old value can be identified with one of the new values
 - Simple functions: x^k, log(x), e^x, |x|
 - Standardization/Normalization

Attribute Transformation: Normalization

Min-max normalization: from [min_A, max_A] to [new_min_A, new_max_A]

$$v' = \frac{v - min_A}{max_A - min_A} (new_max_A - new_min_A) + new_min_A$$

- Ex. Let income range \$12,000 to \$98,000 normalized to [0.0, 1.0]. Then \$73,000 is mapped to $\frac{73,600-12,000}{98,000-12,000}(1.0-0)+0=0.716$
- Z-score normalization (μ : mean, σ : standard deviation):

$$v' = \frac{v - \mu_A}{\sigma_A}$$

• Ex. Let $\mu = 54,000$, $\sigma = 16,000$. Then

$$\frac{73,600 - 54,000}{16,000} = 1.225$$

Similarity and Dissimilarity

- Similarity
 - Numerical measure of how alike two data objects are.
 - Is higher when objects are more alike.
 - Often falls in the range [0,1] or [-1,1]
- Dissimilarity (e.g. distance)
 - Numerical measure of how different are two data objects
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies
- Proximity refers to a similarity or dissimilarity

Similarity/Dissimilarity for Simple Attributes

p and q are the attribute values for two data objects.

Attribute	Dissimilarity	Similarity
Type		
Nominal	$d = \left\{ egin{array}{ll} 0 & ext{if } p = q \ 1 & ext{if } p eq q \end{array} ight.$	$s = \left\{ egin{array}{ll} 1 & ext{if } p = q \ 0 & ext{if } p eq q \end{array} ight.$
Ordinal	$d = \frac{ p-q }{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s = 1 - \frac{ p-q }{n-1}$
Interval or Ratio $ d = p - q $		$s = -d, s = \frac{1}{1+d}$ or $s = 1 - \frac{d-min_d}{max_d-min_d}$
		$s = 1 - \frac{d - min_d}{max_d - min_d}$

Table 5.1. Similarity and dissimilarity for simple attributes

Euclidean Distance

$$dist = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

Where n is the number of dimensions (attributes) and p_k and q_k are, respectively, the k^{th} attributes (components) or data objects p and q.

Standardization is necessary, if scales differ.

Minkowski Distance

Minkowski Distance is a generalization of Euclidean Distance

$$dist = \left(\sum_{k=1}^{n} |p_k - q_k|^r\right)^{\frac{1}{r}}$$

Where r is a parameter, n is the number of dimensions (attributes) and p_k and q_k are, respectively, the kth attributes (components) or data objects p and q.

Minkowski Distance: Examples

- r = 1. City block (Manhattan, taxicab, L₁ norm) distance.
 - A common example of this is the Hamming distance, which is just the number of bits that are different between two binary vectors
- r = 2. Euclidean distance
- $r \to \infty$. "supremum" (L_{max} norm, L_{∞} norm) distance.
 - This is the maximum difference between any component of the vectors
- Do not confuse r with n, i.e., all these distances are defined for all numbers of dimensions.

Common Properties of a Distance

- Distances, such as the Euclidean distance, have some well known properties.
 - 1. $d(p, q) \ge 0$ for all p and q and d(p, q) = 0 only if p = q. (Positive definiteness)
 - 2. d(p, q) = d(q, p) for all p and q. (Symmetry)
 - 3. $d(p, r) \le d(p, q) + d(q, r)$ for all points p, q, and r. (Triangle Inequality) where d(p, q) is the distance (dissimilarity) between points (data objects), p and q.
- A distance that satisfies these properties is a metric

Common Properties of a Similarity

- Similarities, also have some well known properties.
 - 1. s(p, q) = 1 (or maximum similarity) only if p = q.
 - 2. s(p, q) = s(q, p) for all p and q. (Symmetry)

where s(p, q) is the similarity between points (data objects), p and q.

Cosine Similarity

• If d_1 and d_2 are two document vectors, then

$$\cos(d_1, d_2) = (d_1 \bullet d_2) / ||d_1|| ||d_2||,$$

where \bullet indicates vector dot product and ||d|| is the length of vector d.

• Example:

$$d_1 = 3205000200$$

 $d_2 = 1000000102$

$$d_{1} \bullet d_{2} = 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5$$

$$||d_{1}|| = (3*3 + 2*2 + 0*0 + 5*5 + 0*0 + 0*0 + 0*0 + 2*2 + 0*0 + 0*0)^{0.5} = (42)^{0.5} = 6.481$$

$$||d_{2}|| = (1*1 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 0*0 + 2*2)^{0.5} = (6)^{0.5} = 2.245$$

$$\cos(d_1, d_2) = .3150$$

Correlation

- Correlation measures the linear relationship between objects
- To compute correlation, we standardize data objects, p and q, and then take their dot product

$$p'_k = (p_k - mean(p))/std(p)$$

$$q_k' = (q_k - mean(q))/std(q)$$

$$correlation(p,q) = p' \bullet q'$$

Correlation Analysis (Categorical Data)

• X² (chi-square) test

$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

- The larger the X² value, the more likely the variables are related
- The cells that contribute the most to the X² value are those whose actual count is very different from the expected count
- Correlation does not imply causality
 - # of hospitals and # of car-theft in a city are correlated
 - Both are causally linked to the third variable: population

Chi-Square Calculation: An Example

	Play chess	Not play chess	Sum (row)
Like science fiction	250 (90)	200 (360)	450
Not like science fiction	50 (210)	1000 (840)	1050
Sum (col.)	300	1200	1500

• X² (chi-square) calculation (numbers in parenthesis are expected counts calculated based on the data distribution in the two categories)

$$\chi^2 = \frac{(250 - 90)^2}{90} + \frac{(50 - 210)^2}{210} + \frac{(200 - 360)^2}{360} + \frac{(1000 - 840)^2}{840} = 507.93$$

• It shows that like_science_fiction and play_chess are correlated in the group

Other similarity metric

Mutual information

$$I(X;Y) = KL(\frac{P(X,Y)}{P(X)P(Y)})$$

KL here denotes Kullback-Leibler divergence.

- It should hold the properties of nonnegativity and symmetry.
- Is mutual information a valid similarity metric?
- What is the relation between mutual information and correlation?

MI as a Loss Function

• MI involves joint distribution, which is only tractable for discrete variable.

$$|(X;Y) = KL\left(\frac{P(X,Y)}{P(X)P(Y)}\right) \ge \sup E_{P(X,Y)}[T] - \log E_{P(X)P(Y)}[e^T]$$

T is an arbitrary function that projects the joint distribution or marginals into scalars.

- Parameterize T by a deep neural network.
- Estimate the joint and marginal distribution with samples.

Deep Graph Infomax

• MI between the input graph and node representations to train node embeddings unsupervisedly.

Slides Credit

Many slides are adopted from Lecture Notes for Chapter 2 Introduction to Data Mining By Tan, Steinbach, Kumar

Other references:

- [1] Belghazi et al. MINE: Mutual Information Neural Estimation. ICML 2018
- [2] Veličković et al. Deep Graph Infomax. ICLR 2019.