Lógica de Predicados, Sintaxis

Dante Zanarini

LCC

26 de Octubre de 2020

- Consideremos el siguiente razonamiento:
 - Todos los polinomios son derivables
 - $p(x) = x^2 + 3x + 9$ es un polinomio
 - $p(x) = x^2 + 3x + 9$ es derivable
- ¿Se puede formalizar en lógica proposicional?

- Consideremos el siguiente razonamiento:
 - Todos los polinomios son derivables
 - $p(x) = x^2 + 3x + 9$ es un polinomio
 - $p(x) = x^2 + 3x + 9$ es derivable
- ¿Se puede formalizar en lógica proposicional?

 p_0

 p_1

 p_2

2/1

- Consideremos el siguiente razonamiento:
 - Todos los polinomios son derivables
 - $p(x) = x^2 + 3x + 9$ es un polinomio
 - $p(x) = x^2 + 3x + 9$ es derivable

- p_0
- p_1
- p_2

- ¿Se puede formalizar en lógica proposicional?
- Sí, deberíamos ver que $p_0, p_1 \vdash p_2$

- Consideremos el siguiente razonamiento:
 - Todos los polinomios son derivables
 - $p(x) = x^2 + 3x + 9$ es un polinomio
 - $p(x) = x^2 + 3x + 9$ es derivable

- p_0
- p_1
- p_2

- ¿Se puede formalizar en lógica proposicional?
- Sí, deberíamos ver que $p_0, p_1 \vdash p_2$
- Sin embargo, este secuente no es válido, a pesar que el razonamiento parece serlo

- Consideremos el siguiente razonamiento:
 - Todos los polinomios son derivables
 - $p(x) = x^2 + 3x + 9$ es un polinomio
 - $p(x) = x^2 + 3x + 9$ es derivable

- p_0
- p_1
- p_2
- ¿Se puede formalizar en lógica proposicional?
- Sí, deberíamos ver que $p_0, p_1 \vdash p_2$
- Sin embargo, este secuente no es válido, a pesar que el razonamiento parece serlo

Si estamos usando la lógica para identificar los buenos razonamientos, algo está fallando

2/1

Lógica de Predicados como Lenguaje Formal

En Lógica de Predicados utilizaremos dos lenguajes formales:

 El Lenguaje de términos, que describe los objetos con los que trabajamos

Lógica de Predicados como Lenguaje Formal

En Lógica de Predicados utilizaremos dos lenguajes formales:

- El Lenguaje de términos, que describe los objetos con los que trabajamos
- El Lenguaje de fórmulas, que describe relaciones entre los objetos de estudio, así como también permite expresar propiedades universales y existenciales sobre ellos

El alfabeto está compuesto por los siguientes símbolos:

On conjunto $\mathcal{F} = \{f_1, f_2, \dots f_n\}$ de símbolos de función, junto con una función $\operatorname{ar}: \mathcal{F} \to \mathbb{N}$. Decimos que $\operatorname{ar}(f_i)$ es la *aridad* de f_i

4/1

- O Un conjunto $\mathcal{F} = \{f_1, f_2, \dots f_n\}$ de símbolos de función, junto con una función $\operatorname{ar}: \mathcal{F} \to \mathbb{N}$. Decimos que $\operatorname{ar}(f_i)$ es la *aridad* de f_i
- On conjunto $\mathcal{P} = \{P_1, P_2, \dots, P_n\}$ de símbolos de predicados, también acompañados por su aridad (utilizaremos $\operatorname{ar}(P_i)$ para denotar la aridad de P_i)

- On conjunto $\mathcal{F} = \{f_1, f_2, \dots f_n\}$ de símbolos de función, junto con una función $\operatorname{ar}: \mathcal{F} \to \mathbb{N}$. Decimos que $\operatorname{ar}(f_i)$ es la *aridad* de f_i
- Un conjunto $\mathcal{P} = \{P_1, P_2, \dots, P_n\}$ de símbolos de predicados, también acompañados por su aridad (utilizaremos $\operatorname{ar}(P_i)$ para denotar la aridad de P_i)
- **9** Un conjunto infinito $Var = \{x_0, x_1, ...\}$ de variables

- On conjunto $\mathcal{F} = \{f_1, f_2, \dots f_n\}$ de símbolos de función, junto con una función $\operatorname{ar}: \mathcal{F} \to \mathbb{N}$. Decimos que $\operatorname{ar}(f_i)$ es la *aridad* de f_i
- Un conjunto $\mathcal{P} = \{P_1, P_2, \dots, P_n\}$ de símbolos de predicados, también acompañados por su aridad (utilizaremos $\operatorname{ar}(P_i)$ para denotar la aridad de P_i)
- **9** Un conjunto infinito $Var = \{x_0, x_1, ...\}$ de variables
- **O** Conectivos, $C = \{\neg, \land, \lor, \rightarrow, \bot, \forall, \exists\}$
- **⑤** Símbolos auxiliares, $A = \{(,)\}$

- O Un conjunto $\mathcal{F} = \{f_1, f_2, \dots f_n\}$ de símbolos de función, junto con una función $\operatorname{ar}: \mathcal{F} \to \mathbb{N}$. Decimos que $\operatorname{ar}(f_i)$ es la *aridad* de f_i
- O Un conjunto $\mathcal{P} = \{P_1, P_2, \dots, P_n\}$ de símbolos de predicados, también acompañados por su aridad (utilizaremos $\operatorname{ar}(P_i)$ para denotar la aridad de P_i)
- **9** Un conjunto infinito $Var = \{x_0, x_1, ...\}$ de variables
- **②** Conectivos, $C = \{\neg, \land, \lor, \rightarrow, \bot, \forall, \exists\}$
- - Si $ar(f_i) = 0$, decimos que f_i es una constante
 - Si $ar(P_i) = 0$, decimos que P_i es una proposición
 - Al par $(\mathcal{F}, \mathcal{P})$ le llamaremos signatura

Lenguaje de Términos

Definición (TERM)

El conjunto de términos se define inductivamente por las siguientes reglas:

- **1** Para todo $i \in \mathbb{N}$, $x_i \in \text{TERM}$
- ② $Si \operatorname{ar}(f_i) = 0$, entonces $f_i \in \operatorname{TERM}$
- $Si \operatorname{ar}(f_i) = n > 0 \ y \ t_1, t_2, \dots, t_n \in \operatorname{TERM}, \ entonces \ f_i(t_1, t_2, \dots, t_n) \in \operatorname{TERM}$

Lenguaje de Términos

Ejemplo

Si
$$\mathcal{F} = \{f, g, h, c\}$$
 con $\operatorname{ar}(f) = 2$, $\operatorname{ar}(g) = \operatorname{ar}(h) = 1$ y $\operatorname{ar}(c) = 0$, tenemos
$$f(g(x_5), c) \in \operatorname{TERM}$$
$$h(f(c, g(c))) \in \operatorname{TERM}$$
$$c \in \operatorname{TERM}$$
$$h(g(h(x_{15}))) \in \operatorname{TERM}$$

Definición (FORM)

Sea $(\mathcal{F}, \mathcal{P})$ una signatura. El conjunto de fórmulas $\mathrm{FORM}_{(\mathcal{F}, \mathcal{P})}$ se define inductivamente por las siguientes reglas:

Definición (FORM)

Sea $(\mathcal{F}, \mathcal{P})$ una signatura. El conjunto de fórmulas $\mathrm{Form}_{(\mathcal{F}, \mathcal{P})}$ se define inductivamente por las siguientes reglas:

Definición (FORM)

Sea $(\mathcal{F}, \mathcal{P})$ una signatura. El conjunto de fórmulas $\mathrm{Form}_{(\mathcal{F}, \mathcal{P})}$ se define inductivamente por las siguientes reglas:

① $\bot \in \text{FORM}_{(\mathcal{F},\mathcal{P})}$ $Si \text{ ar}(P_i) = 0$, entonces $P_i \in \text{FORM}_{(\mathcal{F},\mathcal{P})}$ $Si \text{ ar}(P_i) = n > 0$, $y \ t_1, t_2, \dots, t_n \in \text{TERM}$, entonces $P_i(t_1, t_2, \dots, t_n) \in \text{FORM}_{(\mathcal{F},\mathcal{P})}$

Definición (FORM)

Sea $(\mathcal{F}, \mathcal{P})$ una signatura. El conjunto de fórmulas $\mathrm{FORM}_{(\mathcal{F}, \mathcal{P})}$ se define inductivamente por las siguientes reglas:

- ① $Si \ \phi \in \text{FORM}_{(\mathcal{F},\mathcal{P})}$, entonces $(\neg \phi) \in \text{FORM}_{(\mathcal{F},\mathcal{P})}$

Definición (FORM)

Sea $(\mathcal{F}, \mathcal{P})$ una signatura. El conjunto de fórmulas $\mathrm{FORM}_{(\mathcal{F}, \mathcal{P})}$ se define inductivamente por las siguientes reglas:

- \bullet Si $\phi \in \text{FORM}_{(\mathcal{F},\mathcal{P})}$, entonces $(\neg \phi) \in \text{FORM}_{(\mathcal{F},\mathcal{P})}$
- Si $\phi, \psi \in \text{FORM}_{(\mathcal{F}, \mathcal{P})}$, entonces $(\phi \land \psi), (\phi \lor \psi), (\phi \to \psi) \in \text{FORM}_{(\mathcal{F}, \mathcal{P})}$

Definición (FORM)

Sea $(\mathcal{F}, \mathcal{P})$ una signatura. El conjunto de fórmulas $\mathrm{Form}_{(\mathcal{F}, \mathcal{P})}$ se define inductivamente por las siguientes reglas:

- ① $Si \ \phi \in \text{FORM}_{(\mathcal{F},\mathcal{P})}$, entonces $(\neg \phi) \in \text{FORM}_{(\mathcal{F},\mathcal{P})}$
- Si $\phi, \psi \in \text{FORM}_{(\mathcal{F}, \mathcal{P})}$, entonces $(\phi \land \psi), (\phi \lor \psi), (\phi \to \psi) \in \text{FORM}_{(\mathcal{F}, \mathcal{P})}$
- \circ Si $x_i \in \text{Var } y \phi \in \text{Form}_{(\mathcal{F},\mathcal{P})}$, entonces $(\forall x_i \phi), (\exists x_i \phi) \in \text{Form}_{(\mathcal{F},\mathcal{P})}$

Definición (FORM)

Sea $(\mathcal{F}, \mathcal{P})$ una signatura. El conjunto de fórmulas $\mathrm{Form}_{(\mathcal{F}, \mathcal{P})}$ se define inductivamente por las siguientes reglas:

- ① $Si \ \phi \in \text{FORM}_{(\mathcal{F},\mathcal{P})}$, entonces $(\neg \phi) \in \text{FORM}_{(\mathcal{F},\mathcal{P})}$
- Si $\phi, \psi \in \text{FORM}_{(\mathcal{F}, \mathcal{P})}$, entonces $(\phi \land \psi), (\phi \lor \psi), (\phi \to \psi) \in \text{FORM}_{(\mathcal{F}, \mathcal{P})}$
- \circ Si $x_i \in \text{Var } y \phi \in \text{Form}_{(\mathcal{F},\mathcal{P})}$, entonces $(\forall x_i \phi), (\exists x_i \phi) \in \text{Form}_{(\mathcal{F},\mathcal{P})}$

Convenciones sintácticas

• Cuando podamos, omitiremos los paréntesis más externos en $(\forall x_i \phi)$ y $(\exists x_i \phi)$

• Orden de precedencia de los operadores: $\forall, \exists, \neg, \land, \lor, \rightarrow$

• Agregaremos \dots, w, x, y, z al conjunto de variables

8/1

Ejemplo

Sean
$$\mathcal{F} = \{p, i, e\}$$
, con $ar(p) = 2$, $ar(i) = 1$, $ar(e) = 0$; $y = \{L, \dot{=}\}$, con $ar(L) = ar(\dot{=}) = 2$

Ejemplo

Sean
$$\mathcal{F} = \{p, i, e\}$$
, con $ar(p) = 2$, $ar(i) = 1$, $ar(e) = 0$; $y = \{L, \dot{=}\}$, con $ar(L) = ar(\dot{=}) = 2$

Algunos términos: $p(e, x_2)$, $p(i(x_1), i(p(x_2, e)))$

Algunas fórmulas:

- L(e, i(e))
- $\bullet \ (i(x_1) \doteq i(e)) \rightarrow (x_1 \doteq e)$
- $\bullet \ (\forall x_1((\neg(x_1 \doteq e)) \rightarrow L(e, x_1)))$
- $\bullet \ (\exists x_3 L(x_3, e)) \rightarrow (e \doteq i(x_3))$

Variables libres

Definimos el conjunto de variables libres de una fórmula ϕ por recursión en ϕ :

$$\begin{array}{lll} FV & : & \operatorname{FORM} \to 2^{\operatorname{Var}} \\ FV(\bot) & = & \emptyset \\ FV(P_i) & = & \emptyset & \operatorname{si} \operatorname{ar}(P_i) = 0 \\ FV(P_i(t_1,\ldots,t_n)) & = & \bigcup_{i=1}^n FV_T(t_i) & \operatorname{si} \operatorname{ar}(P_i) = n > 0 \\ FV(\neg\phi) & = & FV(\phi) \\ FV(\phi\Box\psi) & = & FV(\phi) \cup FV(\psi) \\ FV(\forall x_i\phi) & = & FV(\phi) - \{x_i\} \\ FV(\exists x_i\phi) & = & FV(\phi) - \{x_i\} \end{array}$$

Ejercicios:

- Definir $FV_T: {
 m TERM} \to 2^{
 m Var}$, que calcula el conjunto de variables libres de un término
- \bullet Definir $BV: {\rm FORM} \to 2^{\rm Var},$ que determina el conjunto de variables ligadas de una fórmula

Fórmulas cerradas

- Un término t (una fórmula ϕ) se dice cerrado (cerrada) si no tiene variables libres
- A una fórmula cerrada la llamaremos sentencia
- $\bullet \ \mathrm{SENT}_{(\mathcal{F},\mathcal{P})}$ es el conjunto de sentencias sobre una signatura, y
- $\mathrm{TERM}_{\mathcal{F}}^{\mathcal{C}}$ es el conjunto de términos cerrados

Sustitución para Términos

Definición

Sean s, t términos $y x_i \in Var$. Definimos la sustitución de x_i por t en s por recursión en s:

$$\begin{array}{lll} \textit{(vars)} & \textit{x}_j[t/\textit{x}_i] & = & \left\{ \begin{array}{ll} \textit{x}_j & \textit{si } i \neq j \\ t & \textit{si } i = j \end{array} \right. \\ \textit{(ctes)} & \textit{c}[t/\textit{x}_i] & = & \textit{c} \\ \textit{(func)} & \textit{f}(t_1, \dots t_n)[t/\textit{x}_i] & = & \textit{f}(t_1[t/\textit{x}_i], \dots t_n[t/\textit{x}_i]) \end{array}$$

Definición

$$\begin{array}{rcl}
\bot[t/x_i] & = & \bot \\
P_i[t/x_i] & = & P_i
\end{array}$$

$$(\operatorname{ar}(P_i) = 0)$$

Definición

$$\begin{array}{rcl}
\bot[t/x_i] & = & \bot \\
P_i[t/x_i] & = & P_i \\
P_i(t_1, \dots, t_n)[t/x_i] & = & P_i(t_1[t/x_i], \dots t_n[t/x_i])
\end{array} (ar(P_i) = 0)$$

Definición

$$\begin{array}{rcl}
\bot[t/x_i] & = & \bot \\
P_i[t/x_i] & = & P_i \\
P_i(t_1,\ldots,t_n)[t/x_i] & = & P_i(t_1[t/x_i],\ldots t_n[t/x_i])
\end{array}$$

$$(\neg \phi)[t/x_i] & = & \neg(\phi[t/x_i]) \\
(\phi \Box \psi)[t/x_i] & = & \phi[t/x_i] \Box \psi[t/x_i]$$

Definición

$$\begin{array}{lll}
\bot[t/x_i] & = & \bot \\
P_i[t/x_i] & = & P_i \\
P_i(t_1, \dots, t_n)[t/x_i] & = & P_i(t_1[t/x_i], \dots t_n[t/x_i])
\end{array}$$

$$(\neg \phi)[t/x_i] & = & \neg (\phi[t/x_i]) \\
(\phi \Box \psi)[t/x_i] & = & \phi[t/x_i] \Box \psi[t/x_i]$$

$$(\forall x_j \phi)[t/x_i] & = & \begin{cases}
(\forall x_j \phi) & \text{si } i = j \\
(\forall x_j \phi[t/x_i]) & \text{si } i \neq j
\end{cases}$$

Definición

$$\begin{array}{rcl}
\bot[t/x_{i}] & = & \bot \\
P_{i}[t/x_{i}] & = & P_{i} \\
P_{i}(t_{1}, \dots, t_{n})[t/x_{i}] & = & P_{i}(t_{1}[t/x_{i}], \dots t_{n}[t/x_{i}])
\end{array}$$

$$\begin{array}{rcl}
(\neg \phi)[t/x_{i}] & = & \neg(\phi[t/x_{i}]) \\
(\phi \Box \psi)[t/x_{i}] & = & \phi[t/x_{i}] \Box \psi[t/x_{i}]
\end{array}$$

$$(\forall x_{j}\phi)[t/x_{i}] & = & \begin{cases}
(\forall x_{j}\phi) & \text{si } i = j \\
(\forall x_{j}\phi[t/x_{i}]) & \text{si } i \neq j
\end{cases}$$

$$(\exists x_{j}\phi)[t/x_{i}] & = & \begin{cases}
(\exists x_{j}\phi) & \text{si } i = j \\
(\exists x_{j}\phi[t/x_{i}]) & \text{si } i \neq j
\end{cases}$$

Captura de Variables

- Un problema de la operación de sustitución, es que puede cambiar el significado de una fórmula
- Por ejemplo,

$$\exists x P(x, y)$$

• Si sustituimos la variable y con t = x, obtenemos:

$$(\exists x P(x,y))[x/y] = (\exists x P(x,y)[x/y]) = (\exists x P(x,x))$$

Este problema se conoce como captura de variables libres

Evitando la captura

• Para no alterar el significado (que veremos más adelante) en $\phi[t/x_i]$ de una fórmula, necesitamos que t esté libre para x_i en ϕ .

Definición

Un término t está libre para una variable x en una fórmula ϕ sii

- lacktriangle ϕ es atómica
- $\phi \equiv \phi_1 \Box \phi_2$ y t está libre para x en ϕ_1 y ϕ_2 .
- **3** $\phi \equiv \neg \phi_1$ y t está libre para x en ϕ_1
- $\phi \equiv \forall y \phi_1 \ y \ si \ x \neq y$, se cumple:
 - \star t está libre para imes en ϕ_1
 - $\star y \notin FV(t)$