Report Title:	Introduction to MATLAB		
Lab Report No:	01	Date of Submission:	08-06-2022
Submitted by:	Samira Kabir Rima	ID:	20-42406-1
Semester:	Summer 21-22	Program:	BSc. CSE
Course Code:	COE3103	Course Title:	Data Communication
Course Instructor:	Afsah Sharmin	Section:	В

Problem:

Performance Task for Lab Report: (your ID = AB-CDEFG-H)

```
**Generate two CDEF hertz sinusoids with different amplitudes and phases. x_1(t) = A_1 \cos(2\pi(\text{CDEF})t + j_1) x_2(t) = A_2 \cos(2\pi(\text{CDEF})t + j_2)
```

- (a) Select the value of the amplitudes as follows: let $A_1 = AB$ and $A_2 = GH$. For the phases, use $j_1 = DG$ (in degrees), and take $j_2 = 30^\circ$. When doing computations in Matlab, make sure to convert degrees to radians.
- (b) Make a plot of both signals over a range of t that will exhibit approximately 3 cycles. Make sure the plot starts at a negative time so that it will include t = 0, and make sure that you have at least 20 samples per period of the wave.
- (c) Verify that the phase of the two signals $x_1(t)$ and $x_2(t)$ is correct at t = 0, and also verify that each one has the correct maximum amplitude.
- (d) Use subplot(3,1,1) and subplot(3,1,2) to make a three-panel subplot that puts both of these plots on the same window. See help subplot.
- (e) Create a third sinusoid as the sum: $x_3(t) = x_1(t) + x_2(t)$. In Matlab this amounts to summing the vectors that hold the samples of each sinusoid. Make a plot of $x_3(t)$ over the same range of time as used in the previous two plots. Include this as the third panel in the window by using subplot (3,1,3).

Solution:

	MATLAB Code	Output	
a	<pre>%AB-CDEFG-H %20-42406-1 %A1=AB;A2=GH;j1=DG 4 A1=20 5 A2=61 CDEF=4240 7 j1=26*(pi/180) %converting degree to radian j2=30*(pi/180) %converting degree to radian</pre>	A1 = 20 A2 = 61 CDEF = 4240 j1 = 0.4538 j2 = 0.5236	
b	9 M fs=60000; dur=0.00033 11 t=-dur:1/fs:dur; 12 x1=A1*cos((2*pi*CDEF*t)+j1); 13 x2=A2*cos((2*pi*CDEF*t)+j2); plot(t,x1,t,x2) xlabel('X'); ylabel('Y');	dur = 3,3000e-04	
c	$X_1(t)$ leads $X_2(t)$; $X_2(t)$ reaches peak value after t=0 while $X_1(t)$ reaches peak value before t=0 $X_1(t)$ reaches peak value A_1 =19.98 at t=0.018 $X_2(t)$ reaches peak value A_2 =61.01 at t=0.01	-60 -80 -80 -4 -3 -2 -1 0 1 2 3 4 X × 10 ⁻⁴	
d	<pre>17 M</pre>	20 -20 -3 -2 -1 0 1 2 3 4 1 ×10 ⁻⁴ X2 50 -50 -4 -3 -2 -1 0 1 2 3 4 1 1 ×10 ⁻⁴	
e	<pre>subplot(3,1,1) plot(t,x1); title('X1'); % A1*cos((2*pi*CDEF*t)+j1); xlabel('t'); ylabel('A1'); subplot(3,1,2) plot(t,x2); title('X2'); % A2*cos((2*pi*CDEF*t)+j2); xlabel('t'); ylabel('A2'); x3=x1+x2 %3rd sinusoid subplot(3,1,3) plot(t,x3); title('X3'); % x3=x1+x2; xlabel('t'); ylabel('t'); ylabel('A3');</pre>	x3 = 1×40 -33.8311 1.0466 35.7212 63.4685 78.9075 79.0439	