Scilab Textbook Companion for Process Systems Analysis And Control by S. E. LeBlanc And D. R. Coughanowr¹

Created by
K. Dheemanth
B.Tech. (pursuing)
Chemical Engineering
UCT (A), Osmania University
College Teacher
Dr. V. Ramesh Kumar, UCT (A), Osmania University
Cross-Checked by
Prashant Dave, IIT Bombay

May 18, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Process Systems Analysis And Control

Author: S. E. LeBlanc And D. R. Coughanowr

Publisher: McGraw - Hill International

Edition: 2

Year: 1991

ISBN: 0-07-100807-1

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

LIS	at of Schab Codes	4
2	The Laplace Transform	6
3	Inversion by Partial Fractions	7
4	Further Properties of Transforms	11
5	Response of First Order Systems	13
6	Physical Examples of First Order Systems	16
7	Response of First Order Systems in Series	18
10	Controllers and Final Control Elements	19
12	Closed Loop Transfer functions	21
14	Stability	23
15	Root Locus	27
16	Introduction To Frequency Response	30
17	Control System Design By Frequeny Response	35
18	Advanced Control Strategies	41
19	Controller Tuning And Process Identification	44

20	Control Valves	49
22	Sampling And Z Transforms	52
24	Stability	53
	Sampled Data Control Of A First Order Process With Transport Lag	54
29	Transfer Function Matrix	56
30	Multivariable Control	58

List of Scilab Codes

Exa 2.1	Laplace transform	6
Exa 2.3	Laplace transform	6
Exa 3.1	Inverse laplace transform	7
Exa 3.2	Inverse laplace transform	7
Exa 3.3	Inverse laplace transform	8
Exa 3.4	Inverse laplace transform	8
Exa 3.5	Inverse laplace transform	9
Exa 3.6	Inverse laplace transform	9
Exa 4.1	Final value theorem	11
Exa 4.2	Final value theorem	11
Exa 4.4	Laplace transform	12
Exa 5.1	First order systems	13
Exa 5.2	First order systems	13
Exa 6.1	First order systems	16
Exa 7.1	First order systems	18
Exa 10.1	Control system	19
Exa 12.1	Transfer functions	21
Exa 12.2	Transfer functions	21
Exa 14.1	Stability	23
Exa 14.2	Stability	24
Exa 14.3	Stability	24
Exa 14.4	Stability	25
Exa 15.1	Root locus	27
Exa 15.2	Root locus	27
Exa 16.1	Frequency Response	30
Exa 16.2	Frequency Response	30
Exa 16.4	Bode diagram	31
Eva 16.5	Bode diagram	33

Exa	17.1	Frequency Response	5
Exa	17.3	Tuning Rules	6
Exa	17.4	Tuning Rules	7
Exa	18.3	Tuning Rules	1
Exa	18.5	Internal Model Control 4	1
Exa	18.6	Internal Model Control 4	2
Exa	19.1	Tuning Rules	4
Exa	19.2	Tuning Rules	5
Exa	20.1	Control Valves	9
Exa	20.2	Control Valves	9
Exa	20.3	Control Valves	0
Exa	22.1	Z transforms	2
Exa	22.2	Z transforms	2
Exa	24.1	Stability	3
Exa	26.1.a	Sampled data system	4
Exa	26.1.b	Sampled data system	5
Exa	29.1	Transfer function matrix	6
Exa	29.2	Transfer function matrix	6
Exa	30.1	Multivariable control	8
Exa	30.2	Multivariable control	9
Exa	30.3	Multivariable control 6	0

List of Figures

5.1	First order systems	.5
15.1	Root locus	28
15.2	Root locus	29
16.1	Bode diagram	32
16.2	Bode diagram	4
17.1	Frequency Response	36
17.2	Funing Rules	39
17.3	Tuning Rules	10
19.1	Funing Rules	16
19.2	Funing Rules	8

The Laplace Transform

Scilab code Exa 2.1 Laplace transform

```
1 //Example 2.1
2 syms t s;
3 fs=laplace('1',t,s);
4 disp(fs,'f(s)=')
```

Scilab code Exa 2.3 Laplace transform

```
1 //Example 2.3
2 clc
3 s=%s;
4 xs=2/(s+3);
5 disp(xs,'x(s)=')
6 syms t;
7 xt=ilaplace(xs,s,t);
8 disp(xt,'x(t)=')
```

Inversion by Partial Fractions

Scilab code Exa 3.1 Inverse laplace transform

```
1 //Example 3.1
2 clc
3 s=%s;
4 xs=1/(s*(s+1));
5 disp(xs,'x(s)=')
6 syms t;
7 [A]=pfss(xs)
8 F1=ilaplace(A(1),s,t);
9 F2=ilaplace(A(2),s,t);
10 xt=F1+F2;
11 disp(xt,'x(t)=')
```

Scilab code Exa 3.2 Inverse laplace transform

```
1 //Example 3.2
2 clc
3 s=%s;
4 syms t;
```

```
5 num=poly([-8 9 -6 0 1], 's', 'coeff');
6 den=s*(s-2)*poly([-2 -1 2 1], 's', 'coeff');
7 xs=syslin('c',num/den);
8 disp(xs, 'x(s)=')
9 A=pfss(xs)
10 F1=ilaplace(A(1),s,t);
11 F2=ilaplace(A(2),s,t);
12 F3=ilaplace(A(3),s,t);
13 F4=ilaplace(A(4),s,t);
14 F5=ilaplace(A(5),s,t);
15 xt=F1+F2+F3+F4+F5;
16 disp(xt, 'x(t)=')
```

Scilab code Exa 3.3 Inverse laplace transform

```
1 //Example 3.3
2 clc
3 s=%s;
4 syms t;
5 xs=2/(s*(s^2+2*s+2));
6 disp(xs, 'x(s)=')
7 [A]=pfss(xs)
8 F1=ilaplace(A(1),s,t);
9 F2=ilaplace(A(2),s,t);
10 xt=F1+F2;
11 disp(xt, 'x(t)=')
```

Scilab code Exa 3.4 Inverse laplace transform

```
1 //Example 3.4
2 clc
3 s=%s;
4 syms t;
```

```
5  xs=2/((s^2+4)*(s+1));
6  disp(xs, 'x(s)=')
7  [A]=pfss(xs)
8  F1=ilaplace(A(1),s,t);
9  F2=ilaplace(A(2),s,t);
10  xt=F1+F2;
11  disp(xt, 'x(t)=')
```

Scilab code Exa 3.5 Inverse laplace transform

```
1 //Example 3.5
2 clc
3 s=%s;
4 syms t;
5 xs=1/(s*(s^2-2*s+5));
6 disp(xs, 'x(s)=')
7 [A]=pfss(xs)
8 F1=ilaplace(A(1),s,t);
9 F2=ilaplace(A(2),s,t);
10 xt=F1+F2;
11 disp(xt, 'x(t)=')
```

Scilab code Exa 3.6 Inverse laplace transform

```
1 //Example 3.6
2 clc
3 s=%s;
4 syms t;
5 xs=1/(s*(s^3+3*s^2+3*s+1));
6 disp(xs, 'x(s)=')
7 [A]=pfss(xs)
8 F1=ilaplace(A(1),s,t);
9 F2=ilaplace(A(2),s,t);
```

```
10 xt=F1+F2;
11 disp(xt,'x(t)=')
```

Further Properties of Transforms

Scilab code Exa 4.1 Final value theorem

```
1 //Example 4.1
2 clc
3 s=%s;
4 num=poly(1, 's', 'coeff');
5 den=s*poly([1 3 3 1], 's', 'coeff');
6 xs=num/den;
7 disp(xs, 'xs=')
8 syms s;
9 xt=limit(s*xs,s,0);//final value theorem
10 disp(xt, 'x(t)=')
```

Scilab code Exa 4.2 Final value theorem

```
1 //Example 4.2
2 clc
3 s=%s;
```

Scilab code Exa 4.4 Laplace transform

```
1 //Example 4.4  
2 clc  
3 syms t s a k;  
4 xt=laplace('%e^(-a*t)*cos(k*t)',t,s);  
5 disp(xt,'x(t)=')  
6 x
```

Response of First Order Systems

Scilab code Exa 5.1 First order systems

Scilab code Exa 5.2 First order systems

```
1 //Example 5.2
2 clear
3 clc
```

```
4 tau=0.1; //\min
5 xs=100; // Fahrenheit
6 ys=100; // Fahrenheit
7 A=2; // Fahrenheit
8 f=10/\%pi;//cycles/min
9 w=2*%pi*f;//rad/min
10 //From Eq.(5.25), the amplitude of the response and
      the phase angle are calculated; thus
11 disp('Fahrenheit', A/sqrt((tau*w)^2+1), 'A/sqrt((tau*w
      )^2+1)='
12 phi=atan(-w*tau);//radians
13 phi=phi*180/\%pi;//degrees
14 disp('degrees',phi,'phase lag=')
15 t=0:0.01:1;
16 //From Eq. (5.19), the input of the thermometer is
      therefore
17 \operatorname{disp}("X(t) = 2 * \sin(20 * t)");
18 //or
19 xt = xs + 2*sin(20*t);
20 //The response of the thermometer is therefore
21 disp("Y(t)=0.8944*\sin(20*t-63.4349)")
22 //or
23 yt=ys+0.8944*sin(20*t-63.4349);
24 Lag=phi/(360*f);//min
25 Lag=abs(Lag);//min
26 disp('min', Lag, 'Lag=')
27 clf;
28 plot(t,yt)
29 plot(t,xt)
30 xlabel('time')
31 ylabel('x(t), y(t)')
32 title('x(t), y(t) Vs time')
33 xgrid
```


Figure 5.1: First order systems

Physical Examples of First Order Systems

Scilab code Exa 6.1 First order systems

```
1 / Example 6.1
2 clc;
3 syms s t;
4 tau=1; //min
5 R=1/9; //ft/cfm
6 \quad A = 9;
7 //from Equation 6.8
8 \text{ g=R/(tau*s+1)};
9 disp(g, 'H(s)/Q(s)=')
10 //from Example 4.5
11 disp('Q(t) = 90[u(t)-u(t-0.1)')
12 //where u(t) is a unit step function, the laplace
      transform of it gives
13 Qs = 90*(1 - exp(-0.1*s))/s
14 disp(Qs, 'Q(s)=')
15 Hs=Qs*g;
16 disp(Hs, 'H(s)=')
17 //taking first term for t < 0.1, the second term goes
      equals to zero
```

```
18 Ht=ilaplace('10*(1/(s*(s+1)))',s,t);//t<0.1

19 disp(Ht,'H(t)=')

20 disp('H(t)=10(1-yexp(-(-t-0.1)))')//t>0.1

21 Ht=10*((1-exp(-t))-(1-exp(-(-t-0.1)));

22 disp(Ht,'H(t)=')

23 //from Eq.(5.16)

24 Ht=R*A*exp(-(t/tau));//impulse

25 disp(Ht,'H(t)=')
```

Response of First Order Systems in Series

Scilab code Exa 7.1 First order systems

```
1 //Example 7.1
2 clc
3 s=%s;
4 tau1=0.5;
5 tau2=1;
6 R2=1;
7 //From Eq.(7.8)
8 g=R2/((tau1*s+1)*(tau2*s+1))
9 disp(g, 'H2(s)/Q(s)=')
10 Qs=1/s;
11 H2s=g*Qs;
12 disp(H2s, 'H2(s)=')
13 syms t;
14 H2t=ilaplace(H2s,s,t);
15 disp(H2t, 'H2(t)=')
```

Controllers and Final Control Elements

Scilab code Exa 10.1 Control system

```
1 //Example 10.1
2 clear
3 clc
4 t1=60; // Fahrenheit
5 t2=100; // Fahrenheit
6 p1=3; // psi
7 p2=15; //psi
8 T1=71; // Fahrenheit
9 T2=75; // Fahrenheit
10 pb=((T2-T1)/(t2-t1))*100;
11 disp('%',pb,'proportional band=')
12 Gain=(p2-p1)/(T2-T1);
13 \operatorname{disp}('\operatorname{psi}/F',\operatorname{Gain},'\operatorname{Gain}=')
14 //Assume pb is changed to 75% then
15 pb=75; //\%
16 T=(pb*(t2-t1))/100;
17 disp('Fahrenheit',T,'T=')
18 Gain = (p2-p1)/T;
19 \operatorname{disp}('\operatorname{psi}/F',\operatorname{Gain},'\operatorname{Gain}=')
```

Closed Loop Transfer functions

Scilab code Exa 12.1 Transfer functions

```
1 //Example 12.1
2 clc
3 syms Gc G1 G2 G3 H1 H2 R U1;
4 G=Gc*G1*G2*G3*H1*H2;
5 g=Gc*G1*G2*G3/(1+G);
6 disp(g,'C/R=')
7 g1=G2*G3/(1+G);
8 disp(g1,'C/U1=')
9 g2=G3*H1*H2/(1+G);
10 disp(g2,'B/U2=')
11 C1=g*R;
12 C2=g1*U1;
13 disp(C1+C2,'C=')
```

Scilab code Exa 12.2 Transfer functions

```
1 //Example 12.2
2 clc
```

```
3 syms Gc1 Gc2 G1 G2 G3 H1 H2;
4 Ga=Gc2*G1/.H2
5 Gb=G2*G3
6 g=Gc1*Ga*Gb/.H1;
7 g=simple(g);
8 disp(g,'C/R=')
```

Stability

Scilab code Exa 14.1 Stability

```
1 //Example 14.1
2 clear
3 clc
4 s = \%s;
5 G1=10*((0.5*s+1)/s);
6 G2=1/(2*s+1);
7 \text{ H} = 1;
8 G = G1 * G2 * H
9 //The characteristic equation is therefore
10 disp('1+G=0')
11 disp('=0',1+G,'1+G=');
12 //which is equivalent to
13 disp("s^2+3*s+5=0");
14 h=poly([5,3,1],'s','coeff');
15 r=roots(h)
16 disp(r, 'roots=')
17 // Since the real part of roots are negative, the
      system is stable
18 n=length(r);
19 c = 0;
20 \quad for \quad i=1:n
```

```
21 if (real(r(i,1))<0)
22 c=c+1;
23 end
24 end
25 if(c>=1)
26 printf("system is stable\n")
27 else ("system is unstable")
28 end
```

Scilab code Exa 14.2 Stability

```
1 //Example 14.2
2 clear;
3 clc
4 h=poly([2,4,5,3,1],'s','coeff');
5 r=routh_t(h)
6 //Since there is no change in sign in the first
      column, there are no roots having positive real
      parts, and the system is stable.
7 y = coeff(h);
8 n=length(y);
9 c = 0;
10 \text{ for } i=1:n
11 if (r(i,1)<0)
12 c = c + 1;
13 end
14 end
15 \text{ if (c>=1)}
16 printf("system is unstable")
17 else ("system is stable")
18 end
```

Scilab code Exa 14.3 Stability

```
1 //Example 14.3
2 clc
3 syms Kc s s3;
4 G1=1/((s+1)*(0.5*s+1));
5 \text{ H}=3/(s+3);
6 \quad G = Kc * G1 * H;
7 G=simple(G);
8 //The characteristic equation is therefore
9 disp('1+G=0')
10 disp('=0',1+G,'1+G=');
11 //which is equivalent to
12 disp("s^3+6*s^2+11*s+6+6*Kc=0")
13 routh=[1 11;6 6+6*Kc]
14 routh=[routh;-det(routh(1:2,1:2))/routh(2,1),0]
15 routh=[routh;-det(routh(2:3,1:2))/routh(3,1),0]
16 routh=simple(routh)
17 disp('>0',routh(3,1))
18 disp('Kc<10')
19 Kc = 10;
20 routh=horner(routh, Kc);
21 routh=dbl(routh)
22 C=routh(2,1);
23 D=routh(2,2);
24 p=poly([D 0 C],'s','coeff')
25 disp('6*s^2+66=0')
26 \text{ r=roots(p)}
27 disp('=0', simple((s-r(1,1))*(s-r(2,1))*(s-s3)))
28 //On comparing with the equation
29 poly([6+6*Kc 11 6 1], 's', 'coeff')
30 / \text{we get}
31 \text{ s3} = -6;
32 printf ("s1 = 3.3166248*i, s2 = 3.3166248*i, s3 = 6 n")
```

Scilab code Exa 14.4 Stability

```
1 //Example 14.4
2 clc
3 s = %s;
4 tau1=1;
5 \text{ tau2=1/2};
6 \text{ tau3}=1/3;
7 taui=0.25;
8 \text{ Kc} = 5;
9 n=Kc/(tau1*tau2*tau3)*(taui*s+1);
10 d=taui*s*(s+(1/tau1))*(s+(1/tau2))*(s+(1/tau3));
11 G=syslin('c',n/d);
12 //The characteristic equation is therefore
13 disp('1+G=0')
14 disp('=0',1+G,'1+G=');
15 //which is equivalent to
16 disp("s^4+6*s^3+11*s^2+36*s+120=0")
17 h=poly([120 36 11 6 1], 's', 'coeff')
18 r=routh_t(h)
19 y = coeff(h);
20 n = length(y);
21 c = 0;
22 \text{ for } i=1:n
23 \text{ if } (r(i,1)<0)
24 c = c + 1;
25 end
26 \text{ end}
27 \text{ if (c>=1)}
28 printf("system is unstable \n")
29 else ("system is stable")
30 \text{ end}
```

Root Locus

Scilab code Exa 15.1 Root locus

```
1 //Example 15.1
2 clc
3 s=%s;
4 syms K;
5 N=1;
6 D=poly([-1 -2 -3],'s','roots');
7 G=syslin('c',N/D);
8 disp(K*G,'G=')
9 evans(G)
10 v=[-3.5 3.5 -6 6];
11 mtlb_axis(v);
12 xgrid
```

Scilab code Exa 15.2 Root locus

```
1 //Example 15.2
2 clc
```


Figure 15.1: Root locus

Figure 15.2: Root locus

```
3 s=%s;
4 syms Kc;
5 N=1+(2*s/3)+1/(3*s);
6 D=(20*s+1)*(10*s+1)*(0.5*s+1);
7 G=N/D;
8 G=syslin('c',G);
9 disp(Kc*G,'G=')
10 clf
11 evans(G)
12 v=[-2.5 1 -5 5];
13 mtlb_axis(v);
14 xgrid
```

Introduction To Frequency Response

Scilab code Exa 16.1 Frequency Response

```
1 //Example 16.1
2 clc
3 s=%s;
4 j=%i;
5 f=10/%pi;
6 w=2*%pi*f;
7 G=1/(0.1*s+1);
8 s=w*j;
9 Gs=horner(G,s);
10 disp(Gs, 'G(20j)=')
11 [r,theta]=polar(Gs)
12 theta=theta*180/%pi;
13 disp('degrees',theta,'theta=')
```

Scilab code Exa 16.2 Frequency Response

```
1 //Example 16.2
2 clc
3 \; \text{syms} \; \text{tau} \; \text{s} \; \text{zeta} \; \text{w};
4 j = \%i;
5 n=1;
6 d=tau^2*s^2+2*zeta*tau*s+1;
7 G=n/d
8 \quad s = j * w;
9 G=1/(2*s*tau*zeta+s^2*tau^2+1)
10 [num den]=numden(G)
11 d=abs(den)
12 \text{ cof}_a_0=\text{coeffs}(\text{den}, \%i', 0)
13 cof_a_1 = coeffs(den, '\%i', 1)
14 \quad AR = 1/d
15 theta=AR*atan(-cof_a_1/cof_a_0);
16 disp(theta, 'Phase angle=')
```

Scilab code Exa 16.4 Bode diagram

Figure 16.1: Bode diagram

Scilab code Exa 16.5 Bode diagram

```
1 //Example 16.5
2 clc
3 s=poly(0,'s');
4 disp("G=10*(0.5*s+1)*exp(-s/10)/(((s+1)^2)*(0.1*s+1))")
5 printf("exp(-0.1*s)=(2-0.1*s)/(2+0.1*s)\n)")
6 G=10*(0.5*s+1)*(2-0.1*s)/(((s+1)^2)*(0.1*s+1)*(2+0.1*s));
7 Gs=syslin('c',G)
8 clf
9 bode(Gs)
```


Figure 16.2: Bode diagram

Control System Design By Frequeny Response

Scilab code Exa 17.1 Frequency Response

```
1 //Example 17.1
2 clc
3 s = %s;
4~{
m syms}~{
m Kc}
5 tau=1;
6 \text{ taum}=1;
7 \text{ wC}=1;
8 g1=Kc;
9 g2=1/(s+1);
10 g3=1/(s+1);
11 G1=g2*g3;
12 G1=syslin('c',G1)
13 G=g1*g2/.g3;
14 disp(G, 'C(s)/R(s)=')
15 //This equation can be written in the form of Kc*(s
      +1)/((1+Kc)*(tau2^2*s^2+2*tau2*zeta2*s+1)
16 \ tau2=sqrt(1/(1+Kc))
17 \text{ zeta2=sqrt}(1/(1+Kc))
18 clf
```


Figure 17.1: Frequency Response

```
19 bode(G1)
20 show_margins(G1)
21 //To make the open loop gain 1 at w=4
22 phaseangle=-152//degrees
23 phasemargin=180+phaseangle//degrees
24 //At this phase margin, the gain margin is
25 A=0.062//gain margin
26 Kc=1/A
27 zeta2=dbl(zeta2)
```

Scilab code Exa 17.3 Tuning Rules

```
1 //Example 17.3
2 clc;
3 \; \text{syms} \; \text{Kc} \; \text{tauI} \; \text{s};
4 g1=Kc*(1+1/(tauI*s));
5 g2=1/(s+1);
6 g2 = exp(-1.02*s)
7 G=g1*g2*g3//Openloop transfer function
8 //By solving the equation -180 = -a \tan(w) - 57.3 * 1.02 * w,
       we get
9 wc0=2; //rad/min
10 disp('AR=Kcu/sqrt(1+wc0^2)')
11 AR=1;
12 Kcu=AR*sqrt(1+wc0^2);
13 //From Ziegler-Nicholas rules
14 Kc=Kcu*0.45//ultimate gain
15 Pu=2*%pi/wc0;//ultimate period
16 tauI=Pu/1.2;
17 disp('min',tauI,'tauI=')
```

Scilab code Exa 17.4 Tuning Rules

```
14 bode(G)
15 show_margins(G)
16 //From the bode diagrams we get
17 wc0=1.56; // \text{rad} / \text{min}
18 A = 0.145;
19 \text{ Ku}=1/A
20 \text{ Pu=2*\%pi/wc0}
21 //By Z-N rules
22 //For P controller
23 K1=0.5*Ku
24 \, \text{Gc} = \text{K1}
25 \quad G1 = Gc * G/K1
26 //For PI controller
27 K1=0.45*Ku
28 tauI=Pu/1.2
29 Gc=K1*(1+1/(tauI*s))
30 \quad G2 = Gc * G/K1
31 //For PID controller
32 \text{ K1} = 0.6 * \text{Ku}
33 \text{ tauI} = Pu/2
34 \text{ tauD=Pu/8}
35 \text{ Gc}=K1*(1+1/(tauI*s)+tauD*s)
36 \quad G3=Gc*G/K1
37 clf
38 bode([G1;G2;G3])
39 legend(['G1'; 'G2'; 'G3']);
```


Figure 17.2: Tuning Rules

Figure 17.3: Tuning Rules

Advanced Control Strategies

Scilab code Exa 18.3 Tuning Rules

```
1 //Example 18.3
2 clc
3 s=%s;
4 Kf=-1;
5 tp=2;
6 //Applying feedforward control rules
7 T1=1.5*tp
8 T2=0.7*tp
9 Gfs=Kf*(T1*s+1)/(T2*s+1);
10 disp(Gfs, 'Gf(s)=')
```

Scilab code Exa 18.5 Internal Model Control

```
1 //Example 18.5
2 clc
3 syms K tau s l;
4 Gm=K/(tau*s+1);
5 //For this case
```

```
6 Gma=1;
7 Gmm=K/(tau*s+1);
8 Gm=Gma*Gmm;
9 GI=1/Gmm
10 f=1/(1*s+1);
11 //In order to be able to implement this transfer
    function let f(s)=1/(1*s+1)
12 //Thus IMC becomes
13 GI=f/Gmm
14 Gc=GI/(1-GI*Gm)
15 //On simplification, it will be in the form of
16 Gc=tau*(1+1/(tau*s))/(1*s*K)
17 printf("The result is in the form of PI controller")
```

Scilab code Exa 18.6 Internal Model Control

```
1 //Example
2 clc
3 syms K taud s tau t
4 G=K*exp(-taud*s)/(tau*s+1)
5 //we can use an approximation that
6 printf ("exp(-taud*s)=(2-taud*s/2)/(2+taud*s)\n")
7 Gm=K*(2-taud*s/2)/((2+taud*s)*(tau*s+1));//here Gm=G
8 //For this model
9 Gma=(2-taud*s/2)/(2+taud*s);
10 Gmm=K/(tau*s+1);
11 Gm = Gma * Gmm;
12 \quad GI = 1 / Gmm
13 f=1/(1*s+1);
14 //In order to be able to implement this transfer
      function let f(s) = 1/(1*s+1)
15 //Thus IMC becomes
16 \text{ GI=f/Gmm}
17 Gc=GI/(1-GI*Gm)
18 //This may be reduced algebraically to the form
```

```
given by Eq.(18.21) with 19 printf("Kc=(2*tau+taud)/(2*l+taud) \n") 20 printf("tauI=tau+taud/2 \n") 21 printf("tau*taud)/(2*tau+taud)\n") 22 printf("tau1=l*taud/2*(l+taud) \n")
```

Controller Tuning And Process Identification

Scilab code Exa 19.1 Tuning Rules

```
1 //Example 19.1
2 clc
3 s = poly(0, 's');
4 syms tauI Kc
5 Gc=1+1/(tauI*s);
6 g1=1/(s+1);
7 / g2 = \exp(-s);
8 //we can write \exp(-s) as (2-s)/(2+s). Therefore,
9 g2=(2-s)/(2+s);
10 G = g1 * g2;
11 G=syslin('c',G)
12 Gp=Kc*Gc*G
13 Gs=Gp/(1+Gp)//Overall transfer function
14 // Ziegler Nicholas method
15 scf(1);
16 clf
17 bode(G)
18 show_margins(G)
19 //From bode diagrams we get
```

```
20  wc0=2.03
21  Kcu=2.26
22  Pu=2*%pi/wc0
23  //Since Gc is a PI controller, by Z-N rules
24  Kc=0.45*Kcu
25  tauI=Pu/1.2
26  //Cohen-Coon method
27  //Comaparing G with Eq.(19.6), we get
28  T=1;
29  Td=1;
30  Kp=1;
31  Kc=T*(0.9+Td/(12*T))/(Kp*Td)
32  tauI=Td*(30+3*Td/T)/(9+20*Td/T)
```

Scilab code Exa 19.2 Tuning Rules

```
1 //Example 19.2
2 clc
3 s = %s;
4 syms t Kc tauI;
5 Gc=Kc*(1+1/(tauI*s))
6 G=1/(s+1)^4;
7 G=syslin('c',G)
8 Gs=Gc*G/(1+Gc*G)//Overall transfer function
9 Us=1/s;
10 Cs=G*Us;
11 //Cohen-Coon method
12 Ct=ilaplace(Cs,s,t)
13 Ct1=diff(Ct,t)
14 Ct2=diff(Ct1,t)
15 disp('=0',Ct2)
16 //On solving the equation we get
17 t=linsolve(-1,3)
```


Figure 19.1: Tuning Rules

```
18 S=dbl(Ct1)
19 C3=db1(Ct)
20 //From the figure 19.10 (B Vs t)
21 \quad y2=0.353;
22 \text{ y} 1 = 0;
23 \times 2 = 3;
24 \text{ Td} = 3 - (y2 - y1) / S
25 Bu=1; // ultimate value of B
26 //From Eq.(19.4)
27 T = Bu/S
28 Kp = 1;
29 //From Table 19.2
30 \text{ Kc} = T*(0.9+Td/(12*T))/(Kp*Td)
31 \text{ tauI} = \text{Td} * (30 + 3 * \text{Td/T}) / (9 + 20 * \text{Td/T})
32 //By Z-N method
33 clf
34 bode (G)
35 show_margins(G)
36 //From Bode diagrams we get
37 \text{ Kcu}=4:
38 \text{ Pu} = 2 * \% \text{pi};
39 // Since Gc is a PI controller, by Z-N rules
40 \text{ Kc} = 0.45 * \text{Kcu}
41 tauI=Pu/1.2
42 //By fitting the process reaction curve to a first
       order wit transport lag model by means of a least
        square fitting procedure. Applying the least
      square fit procedure out to t=5 produced the
       following results
43 Td=1.5;
44 T = 3;
45 //By applying Cohen-Coon rules, we get
46 Kc=T*(0.9+Td/(12*T))/(Kp*Td)
47 tauI = Td*(30+3*Td/T)/(9+20*Td/T)
```


Figure 19.2: Tuning Rules

Control Valves

Scilab code Exa 20.1 Control Valves

```
1 //Example 20.1
2 clc
3 Cv=4;
4 G=1.26;
5 P=100; // psi
6 q=Cv*sqrt(P/G);
7 disp('gpm',q,'q=')
```

Scilab code Exa 20.2 Control Valves

```
1 //Example 20.2
2 clc
3 L=100;//ft
4 D=1;//ft
5 D1=D/12;//inches
6 D2=D1*2.42;//centimetres
7 rho=62.4;//lb/ft^3
8 mu=1.5;//cp
```

```
9 Cv = 4;
10 pv=100; // psi
11 G=1;
12 q=Cv*sqrt(pv/G);//maximum flow
13 disp('gpm',q,'q=')
14 printf("Let us start flow from q=30 gpm\n")
15 q = 30; //gpm
16 q1=q/(60*7.48); // \text{ft}^3/ \text{sec}
17 q2=q1*60*60; //ft^3/hr
18 Re=4*q2*rho/(%pi*mu*D2)//Reynolds number
19 //For this value of Reynolds number and for smooth
      pipe fanning friction factor is 0.005
20 f=0.005; //fanning friction factor
21 \text{ gc} = 32.2;
22 p=32*f*L*rho*q1^2/(144*\%pi^2*gc*D1^5); //psi
23 P=pv-p
24 \text{ qmax} = \text{Cv} * \text{sqrt}(P/G);
25 disp('gpm',qmax,'qmax=')
26 \text{ x=q/qmax//lift}
```

Scilab code Exa 20.3 Control Valves

```
1 //Example 20.3
2 clc
3 L=200;//ft
4 D=1;//ft
5 D1=D/12;//inches
6 D2=D1*2.42;//centimetres
7 rho=62.4;//lb/ft^3
8 mu=1.5;//cp
9 pv=100;//psi
10 G=1;
11 q=30;//maximum flow
12 disp('gpm',30,'q=')
13 q1=q/(60*7.48);//ft^3/sec
```

```
14 q2=q1*60*60; // ft^3/ hr
15 Re=4*q2*rho/(%pi*mu*D2)//Reynolds number
16 //For this value of Reynolds number and for smooth
       pipe fanning friction factor is 0.005
17 f=0.005; //fanning friction factor
18 \text{ gc} = 32.2;
19 p=32*f*L*rho*q1^2/(144*%pi^2*gc*D1^5);//psi
20 P=pv-p
21 Cv=q/sqrt(P/G)
22 / \text{For } q = 20
23 q = 20; //gpm
24 q1=q/(60*7.48); // \text{ft}^3/ \text{sec}
25 p=32*f*L*rho*q1^2/(144*%pi^2*gc*D1^5); //psi
26 P=pv-p
27 \text{ qmax} = \text{Cv} * \text{sqrt}(P/G);
28 \operatorname{disp}(\operatorname{'gpm'},\operatorname{qmax},\operatorname{'qmax='})
29 \text{ x=q/qmax}//\text{lift}
```

Sampling And Z Transforms

Scilab code Exa 22.1 Z transforms

```
1 //Example 22.1
2 clc
3 disp("f(t)=u(t)=1")
4 disp("f(nT)=1")//for n>=0
5 syms z n
6 //From Eq.(22.8)
7 Z=symsum(z^(-n),n,0,%inf)
```

Scilab code Exa 22.2 Z transforms

```
1 //Example 22.2
2 clc
3 syms T tau z n
4 disp("f(t)=exp(-t/tau)")
5 ft=exp(-n*T/tau)*z^(-n);
6 Z=symsum(ft,n,0,%inf)
```

Stability

Scilab code Exa 24.1 Stability

```
1 //Example 24.1
2 clc
3 syms K b z w;
4 Gz=K*(1-b)/(z-b)
5 / \text{where b} = \exp(-T/\tan t)
6 //From Eq.(24.4)
7 z=w+1/w-1;
8 Gz=eval(Gz)
9 disp('=0',1+Gz,'1+G(z)=')
10 //which is equivalent to
11 \operatorname{disp}('(K+1)*(1-b)*w+(1+b)-K(1-b)=0')
12 routh=[(K+1)*(1-b);(1+b)-K*(1-b)]
13 //b is always positive and less than one and K is
      positive
14 //The first element in the array is positive
15 //For stability, the Routh test requires that all
      elements of the first column be positive
16 //Therefore,
17 disp('>0',routh(2,1))
18 disp('K<(1+b)/(1-b)')
```

Sampled Data Control Of A First Order Process With Transport Lag

Scilab code Exa 26.1.a Sampled data system

```
1 //Example 26.1(a)
2 clc
3 T=1;
4 tau=1.25;
5 b=exp(-T/tau)
6 //For quarter decay ratio
7 alpha=0.5
8 K=(alpha+b)/(1-b)
9 //Ultimate value of C is
10 Ci=K/(K+1);
11 disp(Ci, 'C(inf)=')
12 Ri=1;
13 Offset=Ri-Ci
14 Period=2*T
```

Scilab code Exa 26.1.b Sampled data system

```
1 //Example 26.1(a)
2 clc
3 T=0.5;
4 tau=1.25;
5 b=exp(-T/tau)
6 //For quarter decay ratio
7 alpha=0.5
8 K=(alpha+b)/(1-b)
9 //Ultimate value of C is
10 Ci=K/(K+1);
11 disp(Ci, 'C(inf)=')
12 Ri=1;
13 Offset=Ri-Ci
14 Period=2*T
```

Transfer Function Matrix

Scilab code Exa 29.1 Transfer function matrix

Scilab code Exa 29.2 Transfer function matrix

```
1 //Example 29.2
2 clc
3 A = [-2 0; 4 -3]
4 B = [1 0; 0 2]
5 syms s H1s H2s
                       U1s U2s
6 I = eye(2,2)
7 Gs = inv(s*I-A)*B
8 \text{ Hs}=[\text{H1s};\text{H2s}]
9 Us=[U1s;U2s]
10 \text{ Hs=Gs*Us}
11 //On comparing
12 H1s=Hs(1,1)
13 H2s=Hs(2,1)
14 \ U2s=0;
15 U1s=1/s;
16 \text{ H1s} = \text{eval}(\text{H1s})
17 H2s = eval(H2s)
18 //On inverse laplace transformations
19 H1t=ilaplace(H1s,s,t)
20 H2s=ilaplace(H2s,s,t)
```

Multivariable Control

Scilab code Exa 30.1 Multivariable control

```
1 //Example 30.1
2 clc
3 \quad A1 = 1;
4 A2=1/2;
5 R1 = 1/2;
6 R2 = 2;
7 R3=1;
8 A = [-1/(R1*A1)-1/(R3*A1) 1/(A1*R1); 1/(R1*A2) -1/(R2*A1)]
      A2)-1/(A2*R1)
9 B = [1/A1 0; 0 1/A2]
10 syms s M1 M2;
11 I = eye(2,2)
12 Gp = inv(s*I-A)*B
13 G11 = Gp(1,1)
14 G12 = Gp(1,2)
15 G21 = Gp(2,1)
16 \text{ G22=Gp (2,2)}
17 M = [M1; M2]
18 Cs = inv(s*I-A)*B*M
19 M1=1/s;
20 M2 = 0;
```

```
21 Cs=eval(Cs)

22 M1=0;

23 M2=1/s;

24 Cs=eval(Cs)
```

Scilab code Exa 30.2 Multivariable control

```
1 //Example 30.2
2 clc
3 \text{ syms s K1 K2}
4 \text{ Gc11=K1};
5 \text{ Gc22=K2};
6 \quad A1 = 1;
7 \quad A2 = 1/2;
8 R2=2;
9 R3=1;
10 //In this problem ,Gv is a unit diagonal matrix i.e
11 Gv1=1;
12 Gv2=1;
13 A = [-1/(R1*A1) - 1/(R3*A1) 1/(A1*R1); 1/(R1*A2) - 1/(R2*A1)]
       A2)-1/(A2*R1)
14 B = [1/A1 0; 0 1/A2]
15 I = eye(2,2)
16 Gp = inv(s*I-A)*B
17 G11 = Gp(1,1)
18 G12=Gp(1,2)
19 G21 = Gp(2,1)
20 \text{ G22=Gp}(2,2)
21 \text{ Gc}12 = -\text{G1}2 * \text{Gv}2 * \text{Gc}22/(\text{G1}1 * \text{Gv}1)
22 Gc21 = -G21 * Gv1 * Gc11 / (G22 * Gv2)
23 Gv = [Gv1 0; 0 Gv2]
24 Gc=[Gc11 Gc12;Gc21 Gc22]
25 \text{ Go=Gp*Gv*Gc};
26 Go=simple(Go)
```

Scilab code Exa 30.3 Multivariable control

```
1 //Example 30.3
2 clc
3 \quad A1 = 1;
4 \quad A2=1/2;
5 R1 = 1/2;
6 R2=2;
7 R3 = 1;
8 \text{ Gc11=K1};
9 Gc22=K2;
10 \text{ Gc} 12 = 0;
11 Gc21=0;
12 A = [-1/(R1*A1) - 1/(R3*A1) 1/(A1*R1); 1/(R1*A2) - 1/(R2*A1)]
       A2)-1/(A2*R1)
13 B = [1/A1 \ 0; 0 \ 1/A2]
14 \text{ syms s};
15 I = eye(2,2)
16 Gp = inv(s*I-A)*B
17 G11 = Gp(1,1)
18 G12 = Gp(1,2)
19 G21 = Gp(2,1)
20 \text{ G22=Gp}(2,2)
21 \text{ Gv1=1};
22 \text{ Gv} 2 = 1;
23 \text{ Gm} = I
24 \text{ Gv} = [\text{Gv1 0;0 Gv2}]
25 Gc=[Gc11 Gc12;Gc21 Gc22]
26 \quad Go = Gp * Gv * Gc;
27 Go=simple(Go)
28 //From Eq.(30.32)
29 P = det(I + Go * Gm)
30 \quad disp('=0', simple(P))
```