Limity, skupina Alpha α -i

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n\to\infty} \frac{2-4n}{-1-5n}$$
 ??? 4/5

(b)
$$\lim_{n\to\infty} \frac{-3(-6-4n)}{(-6n-1)^2}$$
 ... ??? ... ∞

(c)
$$\lim_{n\to\infty} \frac{(-1-4n)^2}{n^2+3n+6}$$
 ??? 0

(d)
$$\lim_{n\to\infty} \frac{2^{n+1}}{2^{n-1}}$$
 ??? 4

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{3}\right)^n + 4}{2n^{-9}}$$
 ??? ∞

(f)
$$\lim_{n\to\infty} \frac{-4 \cdot 2^{n+1} - 9 \cdot 3^{n+2}}{-2 \cdot 3^{n+1} + 6 \cdot 2^{n+1}}$$
 ??? $3/2$

1.

Písmeno Braillovej abecedy

Limity, skupina Alpha α -ii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n\to\infty} \frac{-6+5n}{-2-9n}$$
 ??? $^{-5}/_{9}$

(b)
$$\lim_{n\to\infty} \frac{6(-2+3n)}{(-5n-4)^2}$$
 ... ??? ... $-3/5$

(c)
$$\lim_{n\to\infty} \frac{(4+3n)^2}{n^2+2n-2}$$
 ... ??? ... $^3/_2$

(d)
$$\lim_{n\to\infty} \frac{2^{n-2}}{2^{n-2}}$$
 ??? 1

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{2}{3}\right)^n - 2}{3n^{16}} \quad \dots \quad ??? \quad \dots \quad -\infty$$

(f)
$$\lim_{n\to\infty} \frac{-4\cdot 2^{n-2}-6\cdot 3^{n-2}}{-3\cdot 3^{n-2}-6\cdot 2^{n-1}}$$
 ??? 1

2.

Písmeno Braillovej abecedy

Limity, skupina Alpha α -iii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{-5 + 6n}{3 + 6n}$$
 ??? 1

(b)
$$\lim_{n\to\infty} \frac{6(4-2n)}{(-5n+2)^2}$$
 ??? 0

(c)
$$\lim_{n\to\infty} \frac{(-1+8n)^2}{n^2+2n-8}$$
 ??? 64

(d)
$$\lim_{n\to\infty} \frac{2^{n-1}}{2^{n+3}}$$
 ??? 0.5

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{3}{4}\right)^n + 4}{-3n^{-6}}$$
 ???

(f)
$$\lim_{n\to\infty} \frac{12\cdot 3^{n+1} + 16\cdot 4^{n-1}}{-9\cdot 4^{n-1} + 9\cdot 3^{n-2}}$$
 ??? $^{-16}/_{27}$

3.

Písmeno Braillovej abecedy

Limity, skupina Alpha α -iv

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{-4 + 2n}{-6 + 5n}$$
 ??? $2/5$

(b)
$$\lim_{n \to \infty} \frac{-6(-4+3n)}{(-9n-3)^2}$$
 ... ??? ... ∞

(c)
$$\lim_{n \to \infty} \frac{(2+4n)^2}{n^2 - 4n - 4}$$
 ??? ∞

(d)
$$\lim_{n\to\infty} \frac{2^{n+2}}{2^{n-1}}$$
 ??? $\frac{1}{8}$

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{4}\right)^n + 1}{n^{-12}}$$
 ??? 0

(f)
$$\lim_{n \to \infty} \frac{9 \cdot 2^{n-2} + 3 \cdot 3^{n+1}}{-2 \cdot 3^{n-1} - 4 \cdot 2^{n-1}}$$
 ???? $-1/2$

Písmeno Braillovej abecedy

Limity, skupina $Beta \beta$ -i

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{-5+2n}{-8-n}$$
 ??? 0

(b)
$$\lim_{n\to\infty} \frac{-5(2-2n)}{(-n+3)^2}$$
 ??? 0

(c)
$$\lim_{n \to \infty} \frac{(-9+6n)^2}{n^2-4n+9}$$
 ??? 36

(d)
$$\lim_{n\to\infty} \frac{2^{n-2}}{2^{n-3}}$$
 ??? $\frac{1}{2}$

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{3}\right)^n + 3}{-n^{-8}}$$
 ??? $-\infty$

(f)
$$\lim_{n\to\infty} \frac{-2 \cdot 2^{n-2} - 2 \cdot 3^{n+2}}{-6 \cdot 3^{n+2} - 9 \cdot 2^{n-1}}$$
 ??? $\frac{1}{3}$

1.

Písmeno Braillovej abecedy

Limity, skupina $Beta \beta$ -ii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{-1 - 7n}{4 - n}$$
 ??? 7

(b)
$$\lim_{n\to\infty} \frac{-9(1-5n)}{(4n-1)^2}$$
 ??? 0

(c)
$$\lim_{n\to\infty} \frac{(-6+3n)^2}{n^2+n-2}$$
 ??? 9

(d)
$$\lim_{n\to\infty} \frac{3^{n-3}}{3^{n+1}}$$
 ??? 0

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{4}{2}\right)^n + 3}{-3n^{16}}$$
 ??? ∞

(f)
$$\lim_{n\to\infty} \frac{3\cdot 2^{n+1} - 3\cdot 3^{n+1}}{4\cdot 3^{n+2} + 4\cdot 2^{n+2}}$$
 ??? $-9/4$

2.

Písmeno Braillovej abecedy

Limity, skupina $Beta\ \beta$ -iii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{6 - 6n}{-3 + 6n}$$
 ??? -1

(b)
$$\lim_{n \to \infty} \frac{-8(-4-2n)}{(n-1)^2}$$
 ... ??? ... ∞

(c)
$$\lim_{n\to\infty} \frac{(5-8n)^2}{n^2-2n-3}$$
 ??? 0

(d)
$$\lim_{n \to \infty} \frac{3^{n+1}}{3^{n-3}}$$
 ??? ∞

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{2}{4}\right)^n - 2}{-4n^{-6}}$$
 ??? $-\infty$

(f)
$$\lim_{n\to\infty} \frac{-6\cdot 2^{n+1} + 3\cdot 3^{n+1}}{2\cdot 3^{n-1} + 6\cdot 2^{n+1}}$$
 ??? $1/2$

3.

Písmeno Braillovej abecedy

Limity, skupina $Beta \beta$ -iv

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n\to\infty} \frac{-1-2n}{-5+3n}$$
 ??? $-2/3$

(b)
$$\lim_{n\to\infty} \frac{-4(-2+2n)}{(-4n+1)^2}$$
 ... ??? ... ∞

(c)
$$\lim_{n\to\infty} \frac{(-2+4n)^2}{n^2+n+4}$$
 ??? 16

(d)
$$\lim_{n\to\infty} \frac{3^{n+2}}{3^{n+2}}$$
 ???? 9

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{2}{4}\right)^n - 3}{-n^{-12}}$$
 ??? 3

(f)
$$\lim_{n\to\infty} \frac{3 \cdot 2^{n-1} - 9 \cdot 3^{n-1}}{2 \cdot 3^{n+1} + 6 \cdot 2^{n+1}}$$
 ??? $-27/2$

4.

Písmeno Braillovej abecedy

Limity, skupina $Gamma \ \gamma$ -i

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n\to\infty}\frac{2+6n}{4+8n} \quad \dots \quad ??? \quad \dots \quad \infty$$

(b)
$$\lim_{n\to\infty} \frac{-5(4-6n)}{(9n-3)^2}$$
 ... ??? ... -5

(c)
$$\lim_{n\to\infty} \frac{(-5+4n)^2}{n^2+9n-3}$$
 ... ??? ... 16

(d)
$$\lim_{n\to\infty} \frac{4^{n-2}}{4^{n-1}}$$
 ??? $^{1}/_{4}$

(e)
$$\lim_{n\to\infty} \frac{\left(\frac{1}{3}\right)^n - 1}{n^{-12}}$$
 ??? -12

(f)
$$\lim_{n \to \infty} \frac{4 \cdot 2^{n-2} - 3 \cdot 3^{n+1}}{6 \cdot 3^{n+1} + 4 \cdot 2^{n+1}} ??? -1/2$$

1.

Písmeno Braillovej abecedy

Limity, skupina $Gamma \gamma$ -ii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n\to\infty}\frac{5-5n}{1-2n} \quad \dots \qquad ??? \quad \dots \quad \infty$$

(b)
$$\lim_{n\to\infty} \frac{-1(6-8n)}{(7n-3)^2}$$
 ??? 0

(c)
$$\lim_{n \to \infty} \frac{(-7-4n)^2}{n^2-3n+1}$$
 ??? 16

(d)
$$\lim_{n\to\infty} \frac{2^{n-1}}{2^{n+2}}$$
 ∞

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{2}{3}\right)^n - 2}{-2n^{-6}}$$
 ??? $-\infty$

(f)
$$\lim_{n\to\infty} \frac{2 \cdot 2^{n+2} + 9 \cdot 3^{n+1}}{-9 \cdot 3^{n+2} + 4 \cdot 2^{n+2}}$$
 ??? $-1/3$

2.

Písmeno Braillovej abecedy

Limity, skupina Gamma γ -iii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(b)
$$\lim_{n\to\infty} \frac{6(6-4n)}{(n-3)^2}$$
 ??? 0

(c)
$$\lim_{n \to \infty} \frac{(2+2n)^2}{n^2+6n-3}$$
 ??? 4

(d)
$$\lim_{n\to\infty} \frac{2^{n-2}}{2^{n-4}}$$
 ??? 0.25

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{2}\right)^n - 4}{-4n^{-16}}$$
 ??? ∞

(f)
$$\lim_{n\to\infty} \frac{-16\cdot 3^{n+1} + 16\cdot 4^{n+1}}{-16\cdot 4^{n-2} + 9\cdot 3^{n-2}}$$
 ??? -64

3.

Písmeno Braillovej abecedy

Limity, skupina $Gamma \ \gamma$ -iv

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{5 - 6n}{8 - n}$$
 ??? 6

(b)
$$\lim_{n\to\infty} \frac{-3(-1-4n)}{(2n-9)^2}$$
 ??? ∞

(c)
$$\lim_{n\to\infty} \frac{(-1+n)^2}{n^2+n+4}$$
 ???

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{3}{2}\right)^n + 4}{n^6}$$
 ??? 0

(f)
$$\lim_{n \to \infty} \frac{-2 \cdot 2^{n-1} + 16 \cdot 4^{n-2}}{-4 \cdot 4^{n+2} + 8 \cdot 2^{n-2}} ??? -16$$

Písmeno Braillovej abecedy

Limity, skupina $Delta\ \delta$ -i

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{7+5n}{3-7n}$$
 ??? $^{-5}/_{7}$

(b)
$$\lim_{n\to\infty} \frac{-9(1+2n)}{(-2n+3)^2}$$
 ??? ∞

(c)
$$\lim_{n\to\infty} \frac{(-1+6n)^2}{n^2+5n+4}$$
 ??? 36

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{2}\right)^n - 2}{-n^6}$$
 ??? 0

(f)
$$\lim_{n\to\infty} \frac{-3\cdot 3^{n+2} - 9\cdot 4^{n-1}}{3\cdot 4^{n-2} - 16\cdot 3^{n-2}}$$
 ??? $-3/4$

1.

Písmeno Braillovej abecedy

Limity, skupina $Delta\ \delta$ -ii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{-2+3n}{2+4n}$$
 ??? 0

(b)
$$\lim_{n\to\infty} \frac{-3(-3+4n)}{(3n-1)^2}$$
 ... ??? ... 0

(c)
$$\lim_{n\to\infty} \frac{(-7+n)^2}{n^2+8n+4}$$
 ??? 1

(d)
$$\lim_{n\to\infty} \frac{4^{n+2}}{4^{n+4}}$$
 ??? ∞

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{2}{4}\right)^n - 3}{-4n^6}$$
 ??? $-\infty$

(f)
$$\lim_{n \to \infty} \frac{8 \cdot 2^{n+1} + 16 \cdot 4^{n-2}}{-2 \cdot 4^{n-2} + 8 \cdot 2^{n-1}}$$
 ??? -8

2.

Písmeno Braillovej abecedy

Limity, skupina $Delta\ \delta$ -iii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{-4 - 5n}{-1 - 5n}$$
 ??? 1

(b)
$$\lim_{n\to\infty} \frac{1(2+6n)}{(-6n-5)^2}$$
 ... ??? ... -1

(c)
$$\lim_{n\to\infty} \frac{(-5+n)^2}{n^2-4n+6}$$
 ??? 0

(d)
$$\lim_{n \to \infty} \frac{2^{n-1}}{2^{n-3}}$$
 ??? ∞

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{2}\right)^n + 1}{n^{12}}$$
 ??? 0

(f)
$$\lim_{n \to \infty} \frac{8 \cdot 2^{n+1} - 16 \cdot 4^{n-1}}{16 \cdot 4^{n+1} + 2 \cdot 2^{n+2}} \quad ??? \quad -4$$

3.

Písmeno Braillovej abecedy

 \mathbf{c}

 \mathbf{d}

Limity, skupina $Delta\ \delta$ -iv

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{7 + 8n}{4 - 4n}$$
 ??? -2

(b)
$$\lim_{n\to\infty} \frac{4(1-8n)}{(-3n+5)^2}$$
 ??? 0

(c)
$$\lim_{n\to\infty} \frac{(-5-3n)^2}{n^2-4n+5}$$
 ??? 9

(d)
$$\lim_{n\to\infty} \frac{3^{n-2}}{3^{n-1}}$$
 ??? 0

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{4}\right)^n - 3}{n^{-8}}$$
 ??? -3

(f)
$$\lim_{n \to \infty} \frac{-6 \cdot 2^{n+1} + 9 \cdot 3^{n-2}}{-4 \cdot 3^{n-2} + 2 \cdot 2^{n+2}}$$
 ??? $-9/8$

4.

Písmeno Braillovej abecedy

Limity, skupina $Epsilon \epsilon$ -i

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n\to\infty} \frac{-2-6n}{4+9n}$$
 ??? $^{-2}/_3$

(b)
$$\lim_{n\to\infty} \frac{3(-2+3n)}{(6n+3)^2}$$
 ??? 0

(c)
$$\lim_{n \to \infty} \frac{(-2-2n)^2}{n^2-8n+2}$$
 ??? 4

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{4}{2}\right)^n + 2}{-3n^{-12}}$$
 ??? $-\infty$

(f)
$$\lim_{n \to \infty} \frac{-3 \cdot 3^{n+1} - 16 \cdot 4^{n-1}}{4 \cdot 4^{n+1} - 4 \cdot 3^{n+2}}$$
 ??? -16

(b

e

Písmeno Braillovei abecedy

Limity, skupina $Epsilon \epsilon$ -ii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n\to\infty} \frac{-7+4n}{-6-8n}$$
 ???

(b)
$$\lim_{n\to\infty} \frac{3(-1+8n)}{(-n-4)^2}$$
 ??? $-\infty$

(c)
$$\lim_{n\to\infty} \frac{(1-4n)^2}{n^2+n+4}$$
 ??? ∞

(d)
$$\lim_{n\to\infty} \frac{2^{n+1}}{2^{n+2}}$$
 ??? $-\infty$

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{2}{3}\right)^n + 3}{-2n^{-8}}$$
 ??? 0

(f)
$$\lim_{n\to\infty} \frac{-4\cdot 2^{n-2}-4\cdot 4^{n+1}}{16\cdot 4^{n-2}+4\cdot 2^{n-2}}$$
 ??? $-1/16$

Písmeno Braillovej abecedy

Limity, skupina Epsilon ϵ -iii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n\to\infty} \frac{2+n}{2-3n}$$
 ???

(b)
$$\lim_{n\to\infty} \frac{-2(-7+9n)}{(-n+8)^2}$$
 ??? 0

(c)
$$\lim_{n\to\infty} \frac{(7+n)^2}{n^2+2n-9}$$
 ??? 1

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{3}\right)^n + 2}{3n^8}$$
 ??? 0

(f)
$$\lim_{n\to\infty} \frac{-2\cdot 2^{n+1} - 2\cdot 3^{n-2}}{-6\cdot 3^{n+2} - 2\cdot 2^{n+1}}$$
??? $^{1}/_{243}$

3.

Písmeno Braillovej abecedy

Limity, skupina Epsilon ϵ -iv

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{-1 - 3n}{-3 + 3n}$$
 ??? 0

(b)
$$\lim_{n\to\infty} \frac{4(4+6n)}{(3n+2)^2}$$
 ??? 0

(c)
$$\lim_{n\to\infty} \frac{(2-4n)^2}{n^2-n+6}$$
 ... ??? ... 16

(d)
$$\lim_{n\to\infty} \frac{4^{n+1}}{4^{n+1}}$$
 ??? $-\infty$

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{3}{2}\right)^n - 3}{-2n^{-6}}$$
 .. ??? .. $-\infty$

(f)
$$\lim_{n\to\infty} \frac{2 \cdot 2^{n+2} + 6 \cdot 3^{n-2}}{2 \cdot 3^{n-2} - 6 \cdot 2^{n-1}}$$
 ??? 3

Písmeno Braillovej abecedy

Limity, skupina Zeta ζ -i

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{-1+n}{2-n}$$
 ??? -1

(b)
$$\lim_{n\to\infty} \frac{4(-5+7n)}{(n-2)^2}$$
 ... ??? ... $-7/4$

(c)
$$\lim_{n\to\infty} \frac{(-9-6n)^2}{n^2+3n-4}$$
 ... ??? ... $-\infty$

(d)
$$\lim_{n \to \infty} \frac{3^{n-3}}{3^{n-4}}$$
 ??? $-\infty$

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{2}\right)^n - 1}{-2n^{12}}$$
 ??? 0

(f)
$$\lim_{n\to\infty} \frac{-4\cdot 2^{n+1} + 4\cdot 4^{n-2}}{8\cdot 4^{n-1} - 8\cdot 2^{n+1}}$$
 ???? 2

1.

Písmeno Braillovej abecedy

Limity, skupina Zeta ζ -ii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{1+5n}{1-n}$$
 ??? -5

(b)
$$\lim_{n\to\infty} \frac{-4(-8+6n)}{(-n+6)^2}$$
 . ??? . $-1/2$

(c)
$$\lim_{n\to\infty} \frac{(-3+5n)^2}{n^2-n-8}$$
 ??? 25

(d)
$$\lim_{n\to\infty} \frac{3^{n+3}}{3^{n+3}}$$
 ??? 1

(e)
$$\lim_{n\to\infty} \frac{\left(\frac{2}{3}\right)^n + 2}{-4n^{12}}$$
 ??? 12

(f)
$$\lim_{n\to\infty} \frac{6 \cdot 2^{n-2} - 6 \cdot 3^{n-2}}{2 \cdot 3^{n-2} + 9 \cdot 2^{n+1}}$$
 ??? $-3/2$

2.

Písmeno Braillovej abecedy

Limity, skupina Zeta ζ -iii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{4+2n}{-3-n}$$
 ??? -2

(b)
$$\lim_{n\to\infty} \frac{-4(2-6n)}{(2n-5)^2}$$
 ??? 0

(c)
$$\lim_{n\to\infty} \frac{(-5+2n)^2}{n^2-8n+2}$$
 ??? 4

(d)
$$\lim_{n \to \infty} \frac{2^{n-2}}{2^{n-3}}$$
 ??? $-\infty$

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{3}{2}\right)^n - 2}{-4n^{-4}}$$
 ??? $-\infty$

(f)
$$\lim_{n\to\infty} \frac{-2\cdot 2^{n+2} + 2\cdot 3^{n-2}}{-9\cdot 3^{n+1} + 6\cdot 2^{n-2}}$$
 ??? $-2/3$

3.

Písmeno Braillovej abecedy

Limity, skupina Zeta ζ -iv

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{-7 - 3n}{-5 - 2n}$$
 ??? $^{3/2}$

(b)
$$\lim_{n \to \infty} \frac{-3(-5-6n)}{(n+2)^2}$$
 . ??? . $-\infty$

(c)
$$\lim_{n \to \infty} \frac{(5+2n)^2}{n^2+4n+4}$$
 ??? 4

(d)
$$\lim_{n\to\infty} \frac{4^{n+4}}{4^{n+3}}$$
 ??? 256

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{2}{3}\right)^n - 1}{-4n^{-8}}$$
 ??? ∞

(f)
$$\lim_{n\to\infty} \frac{8 \cdot 2^{n-2} - 2 \cdot 4^{n+1}}{4 \cdot 4^{n+1} - 2 \cdot 2^{n-1}}$$
 ???? $-1/4$

4.

Písmeno Braillovej abecedy

Limity, skupina $Eta~\eta$ -i

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{4+3n}{-3-n}$$
 ??? 0

(b)
$$\lim_{n\to\infty} \frac{2(-5+4n)}{(-6n+6)^2}$$
 ??? 0

(c)
$$\lim_{n \to \infty} \frac{(4-3n)^2}{n^2-2n-3}$$
 .. ??? .. $-\infty$

(d)
$$\lim_{n\to\infty}\frac{4^{n+2}}{4^{n+1}} \quad \dots \quad ??? \quad \dots \quad -\infty$$

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{3}{4}\right)^n - 3}{n^{-8}}$$
 ... ??? ... $-\infty$

(f)
$$\lim_{n \to \infty} \frac{4 \cdot 2^{n+2} + 6 \cdot 3^{n-2}}{4 \cdot 3^{n-1} + 6 \cdot 2^{n-1}} \quad ??? \quad 1/2$$

1.

Písmeno Braillovej abecedy

Limity, skupina $Eta \eta$ -ii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n\to\infty} \frac{6+7n}{2-5n}$$
 ??? $^{-7}/_5$

(b)
$$\lim_{n\to\infty} \frac{-3(-6-8n)}{(-3n+6)^2}$$
 ... ??? ... $-\infty$

(c)
$$\lim_{n \to \infty} \frac{(5+n)^2}{n^2+3n+1}$$
 ??? 0

(d)
$$\lim_{n\to\infty} \frac{3^{n-2}}{3^{n-3}}$$
 ??? 0

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{3}{2}\right)^n - 2}{-2n^{-4}}$$
 ??? 0

(f)
$$\lim_{n\to\infty} \frac{-4\cdot 2^{n+1} - 4\cdot 4^{n+2}}{8\cdot 4^{n-2} + 4\cdot 2^{n+2}}$$
 ??? $-1/8$

2.

Písmeno Braillovej abecedy

Limity, skupina Eta η -iii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{-7 - 2n}{5 + 4n}$$
 ??? $^{-1/2}$

(b)
$$\lim_{n\to\infty} \frac{-5(-8-2n)}{(-5n-5)^2}$$
 ... ??? ... $-\infty$

(c)
$$\lim_{n\to\infty} \frac{(-9+6n)^2}{n^2+5n-3}$$
 ??? 36

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{2}{4}\right)^n + 4}{2n^{-9}}$$
 ??? ∞

(f)
$$\lim_{n \to \infty} \frac{-4 \cdot 3^{n+2} + 12 \cdot 4^{n-1}}{-12 \cdot 4^{n-1} - 4 \cdot 3^{n-2}} \quad ??? \quad -1$$

3.

Písmeno Braillovej abecedy

c

 \mathbf{d}

Limity, skupina $Eta \eta$ -iv

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{4+2n}{-1+3n}$$
 ??? 2/3

(b)
$$\lim_{n \to \infty} \frac{-3(-3-2n)}{(5n-5)^2}$$
 .. ??? .. ∞

(c)
$$\lim_{n\to\infty} \frac{(3+4n)^2}{n^2+2n-4}$$
 ... ??? ... $^{-3}/_4$

(d)
$$\lim_{n \to \infty} \frac{3^{n+2}}{3^{n+2}}$$
 ??? ∞

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{2}{4}\right)^n + 1}{2n^{-4}}$$
 ??? 0

(f)
$$\lim_{n\to\infty} \frac{6 \cdot 2^{n+1} - 9 \cdot 3^{n+2}}{2 \cdot 3^{n-2} + 2 \cdot 2^{n+2}}$$
 ??? $-3/2$

Písmeno Braillovej abecedy

Limity, skupina $Theta \theta$ -i

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{-4+2n}{-5-2n}$$
 ??? -1

(b)
$$\lim_{n\to\infty} \frac{7(-7-n)}{(4n+1)^2}$$
 ??? 0

(c)
$$\lim_{n\to\infty} \frac{(-3-3n)^2}{n^2+8n+6}$$
 ??? 9

(d)
$$\lim_{n\to\infty} \frac{3^{n-1}}{3^{n+2}}$$
 ??? 0

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{3}\right)^n - 2}{3n^6}$$
 ??? 0

(f)
$$\lim_{n\to\infty} \frac{4 \cdot 2^{n-2} - 16 \cdot 4^{n-1}}{-16 \cdot 4^{n+2} + 16 \cdot 2^{n-2}}$$
 ??? 4

1.

(b

e

Písmeno Braillovej abecedy

Limity, skupina $Theta \theta$ -ii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{1+7n}{-6-n}$$
 ??? -7

(b)
$$\lim_{n\to\infty} \frac{-4(8+4n)}{(n+9)^2}$$
 ... ??? ... ∞

(c)
$$\lim_{n \to \infty} \frac{(6-3n)^2}{n^2 - 3n - 4}$$
 ... ??? ... $-\infty$

(d)
$$\lim_{n\to\infty} \frac{2^{n+3}}{2^{n+1}}$$
 ??? $^{1}/_{4}$

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{3}\right)^n - 2}{3n^{-4}}$$
 ??? ∞

(f)
$$\lim_{n \to \infty} \frac{8 \cdot 2^{n+1} - 8 \cdot 4^{n-2}}{2 \cdot 4^{n-1} - 2 \cdot 2^{n-2}}$$
 ??? -16

2.

Písmeno Braillovej abecedy

Limity, skupina $Theta \theta$ -iii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n\to\infty} \frac{5+7n}{-4-4n}$$
 ??? $-7/4$

(b)
$$\lim_{n\to\infty} \frac{1(1+2n)}{(3n-4)^2}$$
 ??? $^{-1}/_{12}$

(c)
$$\lim_{n \to \infty} \frac{(6+3n)^2}{n^2+2n-5}$$
 ... ??? ... $-\infty$

(d)
$$\lim_{n\to\infty} \frac{3^{n+2}}{3^{n+1}}$$
 ??? $\frac{1}{3}$

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{4}\right)^n + 1}{-n^{-4}}$$
 ??? $-\infty$

(f)
$$\lim_{n\to\infty} \frac{3 \cdot 2^{n-2} + 9 \cdot 3^{n+2}}{-3 \cdot 3^{n+1} - 2 \cdot 2^{n+1}}$$
 ??? -9

3.

Písmeno Braillovej abecedy

Limity, skupina $Theta \theta$ -iv

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{7 - 4n}{-2 - 7n}$$
 ??? 4/7

(b)
$$\lim_{n\to\infty} \frac{6(1+4n)}{(3n+5)^2}$$
 ??? 4/3

(c)
$$\lim_{n \to \infty} \frac{(-2+4n)^2}{n^2+6n+7}$$
 ??? ∞

(d)
$$\lim_{n \to \infty} \frac{4^{n+2}}{4^{n-2}}$$
 ??? $-\infty$

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{3}\right)^n - 2}{-n^{-12}}$$
 ??? 2

(f)
$$\lim_{n \to \infty} \frac{-6 \cdot 2^{n-2} - 2 \cdot 3^{n-2}}{-9 \cdot 3^{n-2} + 2 \cdot 2^{n-2}}$$
 ??? 1/9

4.

Písmeno Braillovej abecedy

Limity, skupina $lota \iota$ -i

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n\to\infty} \frac{-1-n}{7+4n}$$
 ??? $^{-1}/_{7}$

(b)
$$\lim_{n\to\infty} \frac{-2(-3-6n)}{(-n-1)^2}$$
 ... ??? ... 0

(c)
$$\lim_{n \to \infty} \frac{(-6+n)^2}{n^2+n-3}$$
 ??? 1

(d)
$$\lim_{n \to \infty} \frac{2^{n+2}}{2^{n+3}}$$
 ??? ∞

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{4}\right)^n + 2}{-2n^{-6}}$$
 ??? ∞

(f)
$$\lim_{n \to \infty} \frac{4 \cdot 2^{n-2} - 6 \cdot 3^{n+2}}{9 \cdot 3^{n+2} - 4 \cdot 2^{n-1}}$$
 ??? $-2/3$

(b

Písmeno Braillovej abecedy

Limity, skupina $Iota \iota$ -ii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n\to\infty} \frac{-4+7n}{-3+6n}$$
 ??? 7/6

(b)
$$\lim_{n\to\infty} \frac{-7(1+4n)}{(-4n-9)^2}$$
 ??? 0

(c)
$$\lim_{n\to\infty} \frac{(8-3n)^2}{n^2-6n+5}$$
 ??? 9

(d)
$$\lim_{n\to\infty} \frac{3^{n+1}}{3^{n-1}}$$
 ??? 3

(e)
$$\lim_{n\to\infty} \frac{\left(\frac{1}{2}\right)^n - 2}{-3n^6}$$
 ??? 2/3

(f)
$$\lim_{n\to\infty} \frac{9 \cdot 3^{n+1} - 16 \cdot 4^{n+1}}{9 \cdot 4^{n+2} - 4 \cdot 3^{n+2}}$$
 ??? $-64/9$

Písmeno Braillovej abecedy

Limity, skupina $Iota \iota$ -iii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{-1+5n}{-5+5n}$$
 ??? 1

(b)
$$\lim_{n \to \infty} \frac{5(-3-n)}{(4n-1)^2}$$
 ??? $-\infty$

(c)
$$\lim_{n\to\infty} \frac{(1-n)^2}{n^2-3n-7}$$
 ??? 1

(d)
$$\lim_{n\to\infty} \frac{3^{n-2}}{3^{n-1}}$$
 ??? 0.1111111111111111

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{3}{2}\right)^n - 1}{4n^{-4}}$$
 ??? ∞

(f)
$$\lim_{n\to\infty} \frac{16\cdot 2^{n+2} - 2\cdot 4^{n+1}}{-8\cdot 4^{n-1} - 16\cdot 2^{n+2}}$$
 ??? $\frac{1}{16}$

3.

Písmeno Braillovej abecedy

Limity, skupina $Iota \iota$ -iv

Meno:

(a)
$$\lim_{n \to \infty} \frac{2 - 5n}{-6 + 2n}$$
 ??? $-5/2$

(b)
$$\lim_{n \to \infty} \frac{5(-3-5n)}{(n-1)^2}$$
 ??? ∞

(c)
$$\lim_{n \to \infty} \frac{(-8-5n)^2}{n^2+6n-2}$$
 ??? 25

(d)
$$\lim_{n\to\infty} \frac{3^{n+2}}{3^{n+1}} \quad \dots \qquad ??? \quad \dots \quad \infty$$

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{4}\right)^n + 1}{3n^{-8}}$$
 ??? ∞

(f)
$$\lim_{n \to \infty} \frac{8 \cdot 2^{n+1} + 16 \cdot 4^{n-2}}{4 \cdot 4^{n+1} + 4 \cdot 2^{n-1}} \quad ??? \quad \frac{1}{16}$$

Písmeno Braillovej abecedy

Limity, skupina Kappa κ -i

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{-1 - 3n}{-1 - 5n}$$
 ??? $3/5$

(b)
$$\lim_{n\to\infty} \frac{3(-7-5n)}{(-n+2)^2}$$
 ??? 0

(c)
$$\lim_{n \to \infty} \frac{(-6+7n)^2}{n^2+3n-1}$$
 ??? 49

(d)
$$\lim_{n\to\infty} \frac{2^{n-3}}{2^{n+1}}$$
 ??? 16

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{4}{2}\right)^n - 2}{-2n^{16}}$$
 ??? $-\infty$

(f)
$$\lim_{n\to\infty} \frac{-3\cdot 2^{n+1} + 6\cdot 3^{n-1}}{-4\cdot 3^{n-2} + 4\cdot 2^{n+1}}$$
 ??? $-1/2$

1.

Písmeno Braillovej abecedy

Limity, skupina Kappa κ -iii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n\to\infty} \frac{1+2n}{2-3n}$$
 ??? $-2/3$

(b)
$$\lim_{n\to\infty} \frac{9(-4-n)}{(-3n-1)^2}$$
 ??? 0

(c)
$$\lim_{n \to \infty} \frac{(-3-2n)^2}{n^2-5n+4}$$
 ... ??? ... $-\infty$

(d)
$$\lim_{n\to\infty} \frac{3^{n+1}}{3^{n-2}}$$
 ??? $-\infty$

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{3}\right)^n + 2}{2n^4} \quad \dots \quad ??? \quad \dots \quad -\infty$$

(f)
$$\lim_{n \to \infty} \frac{-4 \cdot 2^{n+2} - 4 \cdot 4^{n-1}}{-4 \cdot 4^{n+2} + 8 \cdot 2^{n+1}}$$
??? 4

3.

Písmeno Braillovej abecedy

Limity, skupina $Kappa \kappa$ -ii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{3-3n}{1+7n}$$
 ??? $^{-3/7}$

(b)
$$\lim_{n\to\infty} \frac{-5(-1+2n)}{(3n+2)^2}$$
 ... ??? ... $^{1}/_{6}$

(c)
$$\lim_{n\to\infty} \frac{(-4+3n)^2}{n^2+n+7}$$
 ??? 9

(d)
$$\lim_{n\to\infty} \frac{2^{n+4}}{2^{n+4}}$$
 ??? 1

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{3}\right)^n - 1}{-2n^{-6}}$$
 ??? ∞

(f)
$$\lim_{n\to\infty} \frac{6 \cdot 2^{n-2} + 4 \cdot 3^{n+1}}{-3 \cdot 3^{n-2} - 4 \cdot 2^{n-1}}$$
 ???? -36

2.

Písmeno Braillovej abecedy

Limity, skupina $Kappa \kappa$ -iv

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{4+2n}{8-9n}$$
 ??? $-2/9$

(b)
$$\lim_{n\to\infty} \frac{1(-6+2n)}{(-9n+1)^2}$$
 ... ??? ... $^{-2/9}$

(c)
$$\lim_{n \to \infty} \frac{(2-4n)^2}{n^2 - 2n - 3}$$
 ??? ∞

(d)
$$\lim_{n\to\infty} \frac{3^{n+3}}{3^{n-1}}$$
 ??? $\frac{1}{81}$

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{2}\right)^n - 1}{-n^{-6}}$$
 ??? -6

(f)
$$\lim_{n\to\infty} \frac{4\cdot 2^{n-1} - 4\cdot 4^{n-1}}{-8\cdot 4^{n-2} - 8\cdot 2^{n+1}}$$
 ???? 1/8

Písmeno Braillovej abecedy

Limity, skupina Lambda λ -i

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n\to\infty} \frac{-1-3n}{1+4n}$$
 ??? $^{-3}/_4$

(b)
$$\lim_{n\to\infty} \frac{3(5+5n)}{(-3n-3)^2}$$
 ??? 0

(c)
$$\lim_{n \to \infty} \frac{(-1+4n)^2}{n^2-2n+3}$$
 ??? 16

(e)
$$\lim_{n\to\infty} \frac{\left(\frac{3}{4}\right)^n + 1}{3n^{-4}}$$
 ??? 1/3

(f)
$$\lim_{n\to\infty} \frac{-3\cdot 2^{n+2}-9\cdot 3^{n-2}}{2\cdot 3^{n-1}+2\cdot 2^{n-2}}$$
 ??? $-27/2$

1.

(b

e

Písmeno Braillovej abecedy

Limity, skupina $Lambda \lambda$ -ii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{-7 + 4n}{1 + 6n}$$
 ??? $\frac{2}{3}$

(b)
$$\lim_{n\to\infty} \frac{7(7+2n)}{(3n+3)^2}$$
 ??? 0

(c)
$$\lim_{n \to \infty} \frac{(5+5n)^2}{n^2 - 5n - 6}$$
 ??? 25

(d)
$$\lim_{n\to\infty} \frac{2^{n-2}}{2^{n-1}}$$
 ??? 0.25

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{4}{3}\right)^n - 4}{n^{-8}}$$
 ??? -4

(f)
$$\lim_{n\to\infty} \frac{-4\cdot 2^{n-2}-4\cdot 4^{n+2}}{4\cdot 4^{n+2}-8\cdot 2^{n+2}}$$
 ??? $-1/2$

2.

Písmeno Braillovej abecedy

Limity, skupina Lambda λ -iii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{-9 - 4n}{-2 + 6n}$$
 ??? $-2/3$

(b)
$$\lim_{n \to \infty} \frac{3(5-3n)}{(n-5)^2}$$
 ??? ∞

(c)
$$\lim_{n\to\infty} \frac{(1+2n)^2}{n^2+2n-3}$$
 .. ??? .. $^{-1}/_3$

(d)
$$\lim_{n\to\infty} \frac{3^{n+2}}{3^{n+1}}$$
 ??? $-\infty$

(e)
$$\lim_{n\to\infty} \frac{\left(\frac{1}{2}\right)^n - 1}{-2n^6}$$
 ??? $^{1}/_{2}$

(f)
$$\lim_{n\to\infty} \frac{4\cdot 2^{n-1} + 4\cdot 4^{n+1}}{8\cdot 4^{n-1} + 16\cdot 2^{n-2}}$$
 ??? $\frac{1}{8}$

3.

Písmeno Braillovej abecedy

c

d`

Limity, skupina Lambda λ -iv

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{4+5n}{-4-3n}$$
 ??? -5/3

(b)
$$\lim_{n\to\infty} \frac{-2(-7-4n)}{(4n+9)^2}$$
 ??? -2

(c)
$$\lim_{n \to \infty} \frac{(-1-4n)^2}{n^2-3n+8}$$
 ??? 16

(d)
$$\lim_{n\to\infty} \frac{3^{n-4}}{3^{n-2}}$$
 ??? 0.012345679012345678

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{4}\right)^n + 2}{-n^6}$$
 ??? -2

(f)
$$\lim_{n\to\infty} \frac{-2\cdot 2^{n-2}-8\cdot 4^{n-1}}{4\cdot 4^{n-2}+4\cdot 2^{n-2}}$$
 . ??? . $-1/2$

4.

Písmeno Braillovej abecedy

Limity, skupina Mu μ -i

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{6+4n}{4+3n}$$
 ??? $\frac{4}{3}$

(b)
$$\lim_{n\to\infty} \frac{-9(-2-4n)}{(n+7)^2}$$
 . ??? . 0

(c)
$$\lim_{n\to\infty} \frac{(-1+2n)^2}{n^2-n+2}$$
 .. ??? .. ∞

(d)
$$\lim_{n\to\infty} \frac{3^{n-3}}{3^{n-3}}$$
 ???? $-\infty$

(e)
$$\lim_{n\to\infty} \frac{\left(\frac{1}{3}\right)^n + 4}{-n^{-4}}$$
 ??? 0

(f)
$$\lim_{n\to\infty} \frac{2 \cdot 2^{n+1} + 4 \cdot 3^{n-2}}{6 \cdot 3^{n+2} + 9 \cdot 2^{n+1}} \quad ??? \quad 2$$

1.

Písmeno Braillovej abecedy

Limity, skupina Mu μ -ii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{1-n}{6-9n}$$
 ??? $^{1/9}$

(b)
$$\lim_{n\to\infty} \frac{5(-1+2n)}{(n+6)^2}$$
 ??? 2

(c)
$$\lim_{n \to \infty} \frac{(-6+n)^2}{n^2 - 5n - 1}$$
 ??? 1

(d)
$$\lim_{n\to\infty}\frac{4^{n-1}}{4^{n+1}} \quad \dots \qquad ??? \quad \dots \quad \infty$$

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{4}{2}\right)^n + 1}{n^{-6}}$$
 ??? ∞

(f)
$$\lim_{n\to\infty} \frac{-12\cdot 3^{n+2} - 4\cdot 4^{n-2}}{-16\cdot 4^{n+1} + 9\cdot 3^{n+2}}$$
 ??? 1

2.

Písmeno Braillovej abecedy

Limity, skupina Mu μ -iii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n\to\infty} \frac{3-n}{5+3n} \quad \dots \quad ??? \quad \dots \quad \infty$$

(b)
$$\lim_{n\to\infty} \frac{1(2-7n)}{(-3n+3)^2}$$
 ??? 0

(c)
$$\lim_{n\to\infty} \frac{(-6-4n)^2}{n^2-n-1}$$
 ??? 16

(d)
$$\lim_{n\to\infty} \frac{3^{n+1}}{3^{n+1}}$$
 ??? ∞

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{3}{2}\right)^n - 2}{-2n^{-12}}$$
 ??? $-\infty$

(f)
$$\lim_{n\to\infty} \frac{12 \cdot 3^{n+2} + 4 \cdot 4^{n+2}}{4 \cdot 4^{n-2} + 16 \cdot 3^{n-2}}$$
 ??? 256

3.

Písmeno Braillovej abecedy

Limity, skupina Mu μ -iv

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{-1 - 7n}{-2 - n}$$
 ??? 7

(b)
$$\lim_{n\to\infty} \frac{3(-3+2n)}{(-2n-3)^2}$$
 ??? ∞

(c)
$$\lim_{n\to\infty} \frac{(2-4n)^2}{n^2+3n-4}$$
 ... ??? ... $^{-4}/_3$

(d)
$$\lim_{n \to \infty} \frac{3^{n-1}}{3^{n-3}}$$
 ??? $-\infty$

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{3}{4}\right)^n + 2}{-2n^{-9}}$$
 ??? -1

(f)
$$\lim_{n \to \infty} \frac{-4 \cdot 2^{n-1} - 6 \cdot 3^{n-2}}{9 \cdot 3^{n-1} - 3 \cdot 2^{n-1}}$$
 ??? -2

4.

Písmeno Braillovej abecedy

Limity, skupina $Nu \nu$ -i

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{5+6n}{2-2n}$$
 ??? -3

(b)
$$\lim_{n\to\infty} \frac{3(-5-4n)}{(n-5)^2}$$
 ... ??? ... 0

(c)
$$\lim_{n\to\infty} \frac{(-2+3n)^2}{n^2+5n-2}$$
 ... ??? ... 9

(d)
$$\lim_{n\to\infty} \frac{2^{n+3}}{2^{n+1}}$$
 ??? 4

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{2}\right)^n + 4}{2n^{-4}}$$
 .. ??? .. $-\infty$

(f)
$$\lim_{n \to \infty} \frac{4 \cdot 2^{n+2} + 6 \cdot 3^{n-2}}{6 \cdot 3^{n+2} + 2 \cdot 2^{n+1}} \quad ??? \quad 3$$

(b

e

Písmeno Braillovei abecedy

Limity, skupina $Nu \nu$ -ii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n\to\infty} \frac{-4-4n}{2+7n}$$
 ??? $^{-4}/_{7}$

(b)
$$\lim_{n\to\infty} \frac{3(-4-2n)}{(-n+2)^2}$$
 ??? 3

(c)
$$\lim_{n\to\infty} \frac{(-3+n)^2}{n^2+5n+4}$$
 ... ??? ... ∞

(d)
$$\lim_{n\to\infty}\frac{2^{n+1}}{2^{n-2}}\quad\ldots\qquad ???\ldots\qquad \infty$$

(e)
$$\lim_{n\to\infty} \frac{\left(\frac{2}{3}\right)^n - 4}{n^{-6}}$$
 ??? 0

(f)
$$\lim_{n \to \infty} \frac{-4 \cdot 2^{n-1} + 4 \cdot 4^{n-1}}{2 \cdot 4^{n+2} - 4 \cdot 2^{n+2}}$$
 ??? 8

Písmeno Braillovei abecedy

Limity, skupina $Nu \nu$ -iii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{-1 - 6n}{4 - n}$$
 ??? 6

(b)
$$\lim_{n\to\infty} \frac{-2(7+n)}{(-8n-5)^2}$$
 ??? -2

(c)
$$\lim_{n \to \infty} \frac{(-3+n)^2}{n^2+5n-3}$$
 ??? 1

(d)
$$\lim_{n\to\infty} \frac{2^{n+2}}{2^{n-1}}$$
 ??? 0

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{2}{3}\right)^n + 4}{n^9}$$
 ??? 0

(f)
$$\lim_{n \to \infty} \frac{-8 \cdot 2^{n-2} - 4 \cdot 4^{n+2}}{16 \cdot 4^{n-2} - 2 \cdot 2^{n-1}}$$
 ??? -64

3.

Písmeno Braillovej abecedy

c

 \mathbf{d}

Limity, skupina $Nu \nu$ -iv

Meno:

(a)
$$\lim_{n \to \infty} \frac{1+2n}{4+4n}$$
 ??? $^{1/2}$

(b)
$$\lim_{n \to \infty} \frac{-3(-3-3n)}{(-2n+4)^2}$$
 .. ??? .. ∞

(c)
$$\lim_{n \to \infty} \frac{(-2+2n)^2}{n^2-3n-8}$$
 ... ??? ... $-\infty$

(d)
$$\lim_{n \to \infty} \frac{3^{n-2}}{3^{n-3}}$$
 ??? $-\infty$

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{2}{3}\right)^n + 3}{3n^9}$$
 ??? 9

(f)
$$\lim_{n \to \infty} \frac{4 \cdot 2^{n-2} - 16 \cdot 4^{n-1}}{2 \cdot 4^{n-2} - 4 \cdot 2^{n+2}} \quad ??? \quad -2$$

Písmeno Braillovej abecedy

Limity, skupina $Xi \xi$ -i

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{2+2n}{2+6n}$$
 ??? $\frac{1}{3}$

(b)
$$\lim_{n\to\infty} \frac{-2(-7-9n)}{(2n-4)^2}$$
 .. ??? .. -2

(c)
$$\lim_{n \to \infty} \frac{(-8-4n)^2}{n^2+5n+4}$$
 ... ??? ... 16

(d)
$$\lim_{n\to\infty} \frac{2^{n+1}}{2^{n+4}}$$
 ??? $\frac{1}{8}$

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{2}{3}\right)^n + 1}{-2n^{16}}$$
 ??? 0

(f)
$$\lim_{n\to\infty} \frac{2 \cdot 2^{n+2} - 6 \cdot 3^{n+1}}{2 \cdot 3^{n+1} - 2 \cdot 2^{n-2}}$$
 ??? $-3/2$

Písmeno Braillovej abecedy

Limity, skupina $Xi \xi$ -ii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{6-2n}{-2-4n}$$
 ??? $^{1}/_{2}$

(b)
$$\lim_{n\to\infty} \frac{-5(4-3n)}{(4n+9)^2}$$
 . ??? . $-\infty$

(c)
$$\lim_{n \to \infty} \frac{(-3+5n)^2}{n^2-2n-1}$$
 .. ??? .. 25

(d)
$$\lim_{n\to\infty} \frac{2^{n+3}}{2^{n-1}}$$
 ??? 16

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{2}{3}\right)^n - 3}{3n^{-12}}$$
 ... ??? ... -1

(f)
$$\lim_{n\to\infty} \frac{2\cdot 2^{n+2} + 6\cdot 3^{n+1}}{3\cdot 3^{n+2} - 9\cdot 2^{n+1}}$$
 ??? 6

Písmeno Braillovei abecedy

Limity, skupina $Xi \xi$ -iii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{-2 + 5n}{1 - n}$$
 ??? -5

(b)
$$\lim_{n\to\infty} \frac{2(3-n)}{(-2n+4)^2}$$
 ??? 0

(c)
$$\lim_{n \to \infty} \frac{(3-3n)^2}{n^2+n+6}$$
 ??? ∞

(d)
$$\lim_{n\to\infty} \frac{2^{n+4}}{2^{n+1}}$$
 ??? $\frac{1}{8}$

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{2}{3}\right)^n + 3}{-n^6}$$
 ??? $-\infty$

(f)
$$\lim_{n\to\infty} \frac{4\cdot 2^{n-1} + 2\cdot 4^{n+1}}{-2\cdot 4^{n+2} + 2\cdot 2^{n+2}}$$
 ??? -4

3.

Písmeno Braillovej abecedy

Limity, skupina $Xi \xi$ -iv

Meno:

(a)
$$\lim_{n\to\infty} \frac{4-5n}{5+7n}$$
 ??? $-5/7$

(b)
$$\lim_{n\to\infty} \frac{-8(-2+5n)}{(4n+8)^2}$$
 ... ??? ... 0

(c)
$$\lim_{n \to \infty} \frac{(6-5n)^2}{n^2-8n+5}$$
 ??? 25

(d)
$$\lim_{n\to\infty} \frac{3^{n+2}}{3^{n+2}} \quad \dots \qquad ??? \quad \dots \quad \infty$$

(e)
$$\lim_{n\to\infty} \frac{\left(\frac{2}{3}\right)^n - 1}{-4n^{12}}$$
 ??? 0

(f)
$$\lim_{n\to\infty} \frac{4\cdot 2^{n+1} - 6\cdot 3^{n-1}}{-4\cdot 3^{n+2} + 9\cdot 2^{n+1}}$$
 ???? 9/2

Písmeno Braillovej abecedy

Limity, skupina Omicron o -i

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n\to\infty} \frac{-8+8n}{4-3n}$$
 ??? $^{-8}/_3$

(b)
$$\lim_{n\to\infty} \frac{4(-6-5n)}{(3n+6)^2}$$
 ??? $-\infty$

(c)
$$\lim_{n \to \infty} \frac{(-3+5n)^2}{n^2+n+2}$$
 ??? 0

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{2}\right)^n + 3}{2n^8}$$
 ??? $^{3/2}$

(f)
$$\lim_{n\to\infty} \frac{9 \cdot 2^{n-1} - 4 \cdot 3^{n-2}}{-9 \cdot 3^{n+1} + 9 \cdot 2^{n-2}}$$
 ??? $\frac{4}{243}$

1.

Písmeno Braillovej abecedy

Limity, skupina Omicron o -iii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{-5 - 2n}{8 + 4n}$$
 ??? $-1/2$

(b)
$$\lim_{n \to \infty} \frac{-7(-1+4n)}{(2n+1)^2}$$
 ... ??? ... $-\infty$

(c)
$$\lim_{n\to\infty} \frac{(4-2n)^2}{n^2-3n-4}$$
 ??? 4

(d)
$$\lim_{n \to \infty} \frac{2^{n+3}}{2^{n+2}}$$
 ??? $-\infty$

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{3}{2}\right)^n + 2}{n^4}$$
 ??? ∞

(f)
$$\lim_{n\to\infty} \frac{-9\cdot 2^{n+1}+6\cdot 3^{n-1}}{-6\cdot 3^{n+1}-6\cdot 2^{n-1}}$$
 ??? $^{-1}/_{9}$

3.

Písmeno Braillovej abecedy

Limity, skupina *Omicron o* -ii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n\to\infty} \frac{-4-4n}{-1+5n}$$
 ??? $^{-4}/_{5}$

(b)
$$\lim_{n\to\infty} \frac{1(5+6n)}{(-2n-1)^2}$$
 ??? ∞

(c)
$$\lim_{n\to\infty} \frac{(-7-4n)^2}{n^2+n+1}$$
 ... ??? ... $-\infty$

(d)
$$\lim_{n \to \infty} \frac{3^{n-1}}{3^{n-4}}$$
 ??? ∞

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{2}{4}\right)^n + 1}{-4n^8}$$
 ??? 0

(f)
$$\lim_{n\to\infty} \frac{8\cdot 2^{n-1} - 4\cdot 4^{n+1}}{4\cdot 4^{n-1} + 8\cdot 2^{n-1}}$$
 ??? $-1/4$

2.

Písmeno Braillovej abecedy

Limity, skupina *Omicron o* -iv

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n\to\infty} \frac{-3+7n}{-4+6n}$$
 ??? 7/6

(b)
$$\lim_{n \to \infty} \frac{-2(3-2n)}{(n-1)^2}$$
 .. ??? .. $-\infty$

(c)
$$\lim_{n \to \infty} \frac{(-4+n)^2}{n^2 - 4n - 1}$$
 ??? 4

(d)
$$\lim_{n \to \infty} \frac{3^{n+2}}{3^{n+1}}$$
 ??? ∞

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{2}{4}\right)^n + 1}{3n^{-6}}$$
 ??? 0

(f)
$$\lim_{n\to\infty} \frac{6 \cdot 2^{n-2} - 2 \cdot 3^{n+2}}{-2 \cdot 3^{n+2} - 3 \cdot 2^{n+2}}$$
 ??? $\frac{1}{2}$

Písmeno Braillovej abecedy

Limity, skupina $Pi \pi$ -i

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{-5 - 3n}{6 - 7n}$$
 .. ??? .. $^{-5}/_{6}$

(b)
$$\lim_{n\to\infty} \frac{-5(-3+n)}{(8n-6)^2}$$
 .. ??? .. 0

(c)
$$\lim_{n \to \infty} \frac{(2-6n)^2}{n^2-n+6}$$
 ... ??? ... ∞

(d)
$$\lim_{n\to\infty} \frac{2^{n-1}}{2^{n-3}}$$
 ??? 0

(e)
$$\lim_{n\to\infty} \frac{\left(\frac{1}{2}\right)^n + 1}{3n^{-6}}$$
 ??? 0

(f)
$$\lim_{n \to \infty} \frac{9 \cdot 2^{n-1} + 3 \cdot 3^{n-1}}{9 \cdot 3^{n-2} - 6 \cdot 2^{n+2}}$$
??? 1

1.

(b

e

Písmeno Braillovei abecedy

Limity, skupina $Pi \pi$ -ii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{3-4n}{7+n}$$
 ??? -4

(b)
$$\lim_{n\to\infty} \frac{-5(-4-3n)}{(-3n+5)^2}$$
 ??? 0

(c)
$$\lim_{n \to \infty} \frac{(-7+5n)^2}{n^2-4n+2}$$
 ??? ∞

(d)
$$\lim_{n\to\infty} \frac{2^{n-2}}{2^{n+1}}$$
 ∞

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{4}{2}\right)^n + 1}{-3n^{-9}}$$
 ??? $-\infty$

(f)
$$\lim_{n\to\infty} \frac{-2\cdot 2^{n-1} + 2\cdot 3^{n-1}}{-4\cdot 3^{n-2} - 4\cdot 2^{n+1}}$$
 ??? $-3/2$

Písmeno Braillovej abecedy

Limity, skupina Pi π -iii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n\to\infty} \frac{-9+n}{-5-9n}$$
 ... ??? ... $^{-1}/_{9}$

(b)
$$\lim_{n \to \infty} \frac{-2(-3-3n)}{(-2n+8)^2}$$
 . ??? . 0

(c)
$$\lim_{n\to\infty} \frac{(1-n)^2}{n^2+2n+1}$$
 ... ??? ... 1

(d)
$$\lim_{n \to \infty} \frac{4^{n+2}}{4^{n-2}}$$
 ??? $-\infty$

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{3}{2}\right)^n + 3}{-n^8}$$
 ??? 0

(f)
$$\lim_{n \to \infty} \frac{6 \cdot 2^{n+2} + 3 \cdot 3^{n-1}}{3 \cdot 3^{n+1} - 9 \cdot 2^{n-1}}$$
???? 3

3.

Písmeno Braillovej abecedy

Limity, skupina $Pi \pi$ -iv

Meno:

(a)
$$\lim_{n \to \infty} \frac{-9 - 8n}{3 + n}$$
 ??? -8

(b)
$$\lim_{n\to\infty} \frac{1(1-n)}{(-3n+4)^2}$$
 ??? ∞

(c)
$$\lim_{n\to\infty} \frac{(3-6n)^2}{n^2+4n-8}$$
 ??? 36

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{2}\right)^n - 3}{4n^{-4}}$$
 ??? 0

(f)
$$\lim_{n \to \infty} \frac{-3 \cdot 2^{n+2} + 4 \cdot 3^{n+2}}{-3 \cdot 3^{n+1} - 2 \cdot 2^{n-1}} \quad ??? \quad -4/9$$

Písmeno Braillovej abecedy

Limity, skupina $Rho \rho$ -i

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{-6+n}{-7-2n}$$
 ??? $^{-1}/_2$

(b)
$$\lim_{n\to\infty} \frac{-1(-4+4n)}{(-n+3)^2}$$
 ??? 0

(c)
$$\lim_{n \to \infty} \frac{(-4+6n)^2}{n^2-3n+6}$$
 ??? 0

(d)
$$\lim_{n \to \infty} \frac{3^{n-2}}{3^{n+1}}$$
 ???

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{4}{3}\right)^n - 2}{2n^{-8}}$$
 ??? -8

(f)
$$\lim_{n\to\infty} \frac{-2\cdot 2^{n-1} - 16\cdot 4^{n-1}}{8\cdot 4^{n+1} - 8\cdot 2^{n+1}}$$
 ??? -8

1.

(c) (d)

Písmeno Braillovej abecedy

Limity, skupina $Rho \rho$ -ii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{2 - 4n}{-7 - 6n}$$
 ??? $^{2}/_{3}$

(b)
$$\lim_{n\to\infty} \frac{-4(3+3n)}{(-5n-2)^2}$$
 ... ??? ... $^{3/20}$

(c)
$$\lim_{n\to\infty} \frac{(3-n)^2}{n^2+4n-7}$$
 ... ??? ... $^{-1}/_4$

(d)
$$\lim_{n\to\infty} \frac{3^{n+3}}{3^{n-1}}$$
 ??? 81

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{2}\right)^n - 1}{-n^9}$$
 ??? $-\infty$

(f)
$$\lim_{n\to\infty} \frac{16 \cdot 3^{n-2} - 4 \cdot 4^{n-1}}{12 \cdot 4^{n-1} - 3 \cdot 3^{n+2}}$$
 ??? $-1/9$

2.

Písmeno Braillovej abecedy

Limity, skupina $Rho \rho$ -iii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{-1 - 2n}{8 + 2n}$$
 ??? -1

(b)
$$\lim_{n\to\infty} \frac{-3(9+4n)}{(-4n+2)^2}$$
 ??? 0

(c)
$$\lim_{n\to\infty} \frac{(9-9n)^2}{n^2+6n+6}$$
 ??? 0

(d)
$$\lim_{n \to \infty} \frac{4^{n-3}}{4^{n-1}}$$
 ???

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{2}{3}\right)^n - 1}{n^6}$$
 ??? -1

(f)
$$\lim_{n\to\infty} \frac{-6\cdot 2^{n-2} + 9\cdot 3^{n-2}}{4\cdot 3^{n+1} + 4\cdot 2^{n+1}}$$
 ??? $27/4$

3.

 \mathbf{d}

Písmeno Braillovej abecedy

c

Limity, skupina Rho ρ -iv

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{-1+7n}{4-2n}$$
 ??? $-7/2$

(b)
$$\lim_{n\to\infty} \frac{-3(1+4n)}{(-2n+4)^2}$$
 ??? ∞

(c)
$$\lim_{n \to \infty} \frac{(-8+5n)^2}{n^2+2n-1}$$
 ??? 8

(d)
$$\lim_{n\to\infty} \frac{3^{n-1}}{3^{n-4}}$$
 ??? 1/27

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{4}\right)^n + 1}{-2n^9}$$
 ??? 9

(f)
$$\lim_{n \to \infty} \frac{3 \cdot 3^{n-1} + 16 \cdot 4^{n+2}}{-9 \cdot 4^{n-2} - 16 \cdot 3^{n-1}}$$
 ??? $-4/9$

4.

Písmeno Braillovej abecedy

Limity, skupina $Sigma\ \sigma$ -i

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n\to\infty} \frac{-1+4n}{-9+3n}$$
 ??? 4/3

(b)
$$\lim_{n\to\infty} \frac{4(-2-3n)}{(-5n-2)^2}$$
 ??? 4

(c)
$$\lim_{n \to \infty} \frac{(-3+5n)^2}{n^2-6n+7}$$
 ... ??? ... 25

(d)
$$\lim_{n \to \infty} \frac{3^{n+3}}{3^{n+2}}$$
 ??? $-\infty$

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{2}{4}\right)^n - 2}{2n^{-12}}$$
 ??? 0

(f)
$$\lim_{n \to \infty} \frac{8 \cdot 2^{n+2} - 16 \cdot 4^{n+1}}{-16 \cdot 4^{n+1} + 2 \cdot 2^{n-1}}$$
??? 1

1.

(c) (d)

Písmeno Braillovej abecedy

Limity, skupina $Sigma\ \sigma$ -ii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n\to\infty} \frac{-2-5n}{-8+3n}$$
 ??? $^{-5}/_3$

(b)
$$\lim_{n\to\infty} \frac{5(3-2n)}{(-4n-2)^2}$$
 ??? 5

(c)
$$\lim_{n \to \infty} \frac{(1+2n)^2}{n^2 - 9n + 2}$$
 ??? 4

(d)
$$\lim_{n\to\infty} \frac{3^{n-3}}{3^{n-3}}$$
 ??? 0.037037037037035

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{3}\right)^n + 3}{-2n^{12}}$$
 ??? 0

(f)
$$\lim_{n \to \infty} \frac{-4 \cdot 2^{n-2} - 2 \cdot 3^{n+2}}{-3 \cdot 3^{n+1} + 6 \cdot 2^{n+2}}$$
 . ??? . $\frac{2}{9}$

2.

Písmeno Braillovej abecedy

Limity, skupina $Sigma\ \sigma$ -iii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{4+2n}{-8+n} \quad \dots \quad ??? \quad \dots \quad \infty$$

(b)
$$\lim_{n\to\infty} \frac{6(-4-7n)}{(7n+9)^2}$$
 ??? 0

(c)
$$\lim_{n\to\infty} \frac{(4-7n)^2}{n^2+3n+1}$$
 ... ??? ... 49

(d)
$$\lim_{n\to\infty} \frac{3^{n+1}}{3^{n+1}} \quad \dots \qquad ??? \quad \dots \quad \infty$$

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{2}\right)^n - 3}{2n^{-12}}$$
 ??? ∞

(f)
$$\lim_{n \to \infty} \frac{2 \cdot 2^{n-1} - 6 \cdot 3^{n+2}}{4 \cdot 3^{n+1} + 6 \cdot 2^{n+2}} ??? -9/2$$

3.

Písmeno Braillovej abecedy

Limity, skupina $Sigma\ \sigma$ -iv

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{-2 + 3n}{3 - 9n}$$
 ??? ∞

(b)
$$\lim_{n\to\infty} \frac{-7(3+4n)}{(6n+2)^2}$$
 ??? 0

(c)
$$\lim_{n\to\infty} \frac{(4-2n)^2}{n^2+6n+3}$$
 ??? 4

(d)
$$\lim_{n\to\infty} \frac{3^{n+3}}{3^{n+2}}$$
 ??? 0

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{4}\right)^n + 4}{n^{-8}}$$
 ??? ∞

(f)
$$\lim_{n \to \infty} \frac{16 \cdot 2^{n-1} + 4 \cdot 4^{n-1}}{16 \cdot 4^{n+1} + 16 \cdot 2^{n-2}}$$
 ??? $\frac{1}{64}$

Písmeno Braillovej abecedy

Limity, skupina $Tau \tau$ -i

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{4+3n}{4-9n}$$
 ??? 0

(b)
$$\lim_{n\to\infty} \frac{2(1-4n)}{(-2n+4)^2}$$
 ??? 0

(c)
$$\lim_{n\to\infty} \frac{(-1-2n)^2}{n^2-n+4}$$
 ??? 4

(d)
$$\lim_{n\to\infty} \frac{4^{n-1}}{4^{n+2}}$$
 ???? 0

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{3}\right)^n + 2}{n^{-12}}$$
 ??? ∞

(f)
$$\lim_{n\to\infty} \frac{-9\cdot 2^{n+2} + 4\cdot 3^{n+2}}{4\cdot 3^{n-2} - 2\cdot 2^{n+1}}$$
 ??? 81

(b

$$\bigcirc$$
 \bigcirc \bigcirc

Písmeno Braillovei abecedy

Limity, skupina $Tau \tau$ -iii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{-1 - 3n}{-2 - 2n}$$
 ??? $^{1}/_{2}$

(b)
$$\lim_{n\to\infty} \frac{5(-6+7n)}{(-9n+2)^2}$$
 ??? 0

(c)
$$\lim_{n \to \infty} \frac{(6+3n)^2}{n^2 - 3n - 4}$$
 ??? 9

(d)
$$\lim_{n\to\infty} \frac{2^{n-1}}{2^{n-4}}$$
 ??? $\frac{1}{8}$

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{2}\right)^n - 4}{n^{-6}}$$
 ??? $-\infty$

(f)
$$\lim_{n \to \infty} \frac{6 \cdot 2^{n-2} - 4 \cdot 3^{n+1}}{9 \cdot 3^{n+2} + 6 \cdot 2^{n-2}} \quad ??? \quad ^{-4}/_{27}$$

3.

Písmeno Braillovej

abecedy

Limity, skupina $Tau \tau$ -ii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{-2+4n}{8-5n}$$
 ??? $^{-4/5}$

(b)
$$\lim_{n\to\infty} \frac{-7(3-6n)}{(-3n+6)^2}$$
 ... ??? ... $^{1}/_{6}$

(c)
$$\lim_{n\to\infty} \frac{(-6-4n)^2}{n^2-4n+1}$$
 ... ??? ... -6

(d)
$$\lim_{n\to\infty} \frac{3^{n-2}}{3^{n+2}}$$
 ??? $^{1}/_{81}$

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{2}{3}\right)^n - 1}{n^{-6}}$$
 ??? ∞

(f)
$$\lim_{n\to\infty} \frac{3\cdot 2^{n-1} - 3\cdot 3^{n-1}}{-3\cdot 3^{n-2} + 4\cdot 2^{n-2}}$$
 ??? $\frac{1}{3}$

Písmeno Braillovei abecedy

Limity, skupina $Tau \tau$ -iv

Meno:

(a)
$$\lim_{n \to \infty} \frac{9 - 5n}{3 - 3n}$$
 ??? 5/3

(b)
$$\lim_{n\to\infty} \frac{2(-1-6n)}{(6n+5)^2}$$
 ??? $-\infty$

(c)
$$\lim_{n \to \infty} \frac{(-2-4n)^2}{n^2+5n+7}$$
 ??? ∞

(d)
$$\lim_{n\to\infty} \frac{3^{n-1}}{3^{n-2}}$$
 ??? $-\infty$

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{2}{3}\right)^n + 4}{n^{-6}} \quad \dots \quad ??? \quad \dots \quad -\infty$$

(f)
$$\lim_{n\to\infty} \frac{2\cdot 2^{n-1} + 4\cdot 4^{n-2}}{-8\cdot 4^{n-2} + 4\cdot 2^{n+1}}$$
 ??? $^{-1}/_4$

Písmeno Braillovej abecedy

Limity, skupina $Upsilon \ \upsilon$ -i

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n\to\infty} \frac{-8-n}{-2+3n}$$
 ??? $^{-1}/_3$

(b)
$$\lim_{n\to\infty} \frac{7(1+4n)}{(-4n+2)^2}$$
 ??? 0

(c)
$$\lim_{n \to \infty} \frac{(-4+4n)^2}{n^2-n+9}$$
 ... ??? ... 16

(d)
$$\lim_{n \to \infty} \frac{2^{n+2}}{2^{n-2}}$$
 ??? ∞

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{3}{4}\right)^n + 3}{-n^4}$$
 ??? 0

(f)
$$\lim_{n \to \infty} \frac{3 \cdot 2^{n+1} + 9 \cdot 3^{n+1}}{6 \cdot 3^{n+2} - 3 \cdot 2^{n+1}}$$
 ??? 9/2

1.

Písmeno Braillovej abecedy

Limity, skupina $Upsilon \ \upsilon$ -ii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n\to\infty} \frac{-3-2n}{-5-3n}$$
 ??? $^{2}/_{3}$

(b)
$$\lim_{n\to\infty} \frac{-6(8-2n)}{(6n+3)^2}$$
 .. ??? .. $^{-1}/_3$

(c)
$$\lim_{n\to\infty} \frac{(6-8n)^2}{n^2+7n+4}$$
 ... ??? ... $^3/_2$

(d)
$$\lim_{n\to\infty} \frac{2^{n+3}}{2^{n+3}}$$
 ??? 0

(e)
$$\lim_{n\to\infty} \frac{\left(\frac{4}{2}\right)^n + 1}{-2n^{-6}}$$
 ... ??? ... $^{-1}/_2$

(f)
$$\lim_{n\to\infty} \frac{2 \cdot 2^{n-1} - 6 \cdot 3^{n-2}}{-2 \cdot 3^{n-1} + 6 \cdot 2^{n+2}}$$
 ??? 9

2.

Písmeno Braillovej abecedy

Limity, skupina $\mathit{Upsilon}\ \upsilon$ -iii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{1 - 9n}{3 - 5n}$$
 ??? 1/3

(b)
$$\lim_{n\to\infty} \frac{4(-6-9n)}{(-2n-3)^2}$$
 ??? 0

(c)
$$\lim_{n \to \infty} \frac{(4+6n)^2}{n^2+5n+3}$$
 ??? 36

(d)
$$\lim_{n\to\infty} \frac{3^{n+1}}{3^{n+1}}$$
 ??? 0

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{3}\right)^n + 2}{-3n^{-4}}$$
 ??? -4

(f)
$$\lim_{n\to\infty} \frac{-12\cdot 3^{n-2} + 4\cdot 4^{n-2}}{-9\cdot 4^{n-1} + 4\cdot 3^{n-1}}$$
 ??? $^{-1/9}$

3.

Písmeno Braillovej abecedy

Limity, skupina $Upsilon \ \upsilon$ -iv

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{-3 - 3n}{3 + 6n}$$
 ??? $-1/2$

(b)
$$\lim_{n\to\infty} \frac{7(-9-5n)}{(6n-3)^2}$$
 ??? $-\infty$

(c)
$$\lim_{n\to\infty} \frac{(1+2n)^2}{n^2+8n+9}$$
 ??? $^{1}/_{4}$

(d)
$$\lim_{n \to \infty} \frac{3^{n+1}}{3^{n-1}}$$
 ???

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{2}\right)^n + 2}{-3n^6}$$
 ??? $-\infty$

(f)
$$\lim_{n\to\infty} \frac{-16\cdot 3^{n-1} + 4\cdot 4^{n+1}}{12\cdot 4^{n+2} - 12\cdot 3^{n+2}}$$
 ??? $4/3$

Písmeno Braillovej abecedy

Limity, skupina $Phi \phi$ -i

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{2+2n}{7+7n}$$
 ??? $^{2}/^{7}$

(b)
$$\lim_{n\to\infty} \frac{-5(4-n)}{(-5n-4)^2}$$
 ??? $-\infty$

(c)
$$\lim_{n\to\infty} \frac{(-9-7n)^2}{n^2-n+2}$$
 ??? 49

(d)
$$\lim_{n\to\infty} \frac{2^{n+4}}{2^{n+2}}$$
 ??? $-\infty$

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{4}\right)^n + 2}{n^{12}}$$
 ???? 0

(f)
$$\lim_{n\to\infty} \frac{-6 \cdot 2^{n-1} + 3 \cdot 3^{n+2}}{-9 \cdot 3^{n-1} + 3 \cdot 2^{n-1}}$$
 ??? -9

Písmeno Braillovei abecedy

Limity, skupina $Phi \phi$ -ii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n\to\infty} \frac{-4+4n}{1-7n}$$
 ??? $^{-4}/^{7}$

(b)
$$\lim_{n\to\infty} \frac{7(-2-6n)}{(-3n-9)^2}$$
 ... ??? ... $-\infty$

(c)
$$\lim_{n\to\infty} \frac{(1-5n)^2}{n^2+2n-1}$$
 ... ??? ... 25

(d)
$$\lim_{n\to\infty} \frac{3^{n+3}}{3^{n+2}}$$
 ??? $-\infty$

(e)
$$\lim_{n\to\infty} \frac{\left(\frac{1}{2}\right)^n - 4}{n^6}$$
 ??? 0

(f)
$$\lim_{n \to \infty} \frac{-4 \cdot 2^{n+1} + 9 \cdot 3^{n+1}}{3 \cdot 3^{n-2} + 9 \cdot 2^{n-2}}$$
 ??? 1

Písmeno Braillovei abecedy

Limity, skupina $Phi \phi$ -iii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{8-n}{8-6n}$$
 ??? $\frac{1}{6}$

(b)
$$\lim_{n\to\infty} \frac{1(-2+2n)}{(n-2)^2}$$
 ??? 0

(c)
$$\lim_{n\to\infty} \frac{(1-2n)^2}{n^2-n+8}$$
 ??? 4

(d)
$$\lim_{n\to\infty} \frac{2^{n+2}}{2^{n-2}}$$
 ??? $1/16$

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{2}\right)^n + 1}{-n^{-8}}$$
 ??? $-\infty$

(f)
$$\lim_{n \to \infty} \frac{-4 \cdot 2^{n+2} - 4 \cdot 4^{n+2}}{4 \cdot 4^{n-2} + 16 \cdot 2^{n-1}} \quad ??? \quad ^{-1/4}$$

3.

Písmeno Braillovej abecedy

Limity, skupina $Phi \phi$ -iv

Meno:

(a)
$$\lim_{n \to \infty} \frac{2 - 2n}{6 - 2n}$$
 ??? 1

(b)
$$\lim_{n\to\infty} \frac{-6(1-3n)}{(-4n+3)^2}$$
 ??? -6

(c)
$$\lim_{n\to\infty} \frac{(8-n)^2}{n^2+8n+5}$$
 ... ??? ... $^{-1}/_8$

(d)
$$\lim_{n\to\infty} \frac{4^{n-2}}{4^{n-3}}$$
 ??? 0.0625

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{3}{2}\right)^n + 2}{n^{-6}}$$
 ??? 2

(f)
$$\lim_{n \to \infty} \frac{6 \cdot 2^{n+1} - 2 \cdot 3^{n+2}}{-9 \cdot 3^{n-2} + 2 \cdot 2^{n-1}}$$
 ??? $^{2}/_{27}$

Písmeno Braillovej abecedy

Limity, skupina $Chi \chi$ -i

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{-3-n}{-7+5n}$$
 ??? 0

(b)
$$\lim_{n\to\infty} \frac{7(4+4n)}{(8n-8)^2}$$
 ??? 0

(c)
$$\lim_{n \to \infty} \frac{(4-6n)^2}{n^2-6n+5}$$
 ... ??? ... 36

(d)
$$\lim_{n \to \infty} \frac{2^{n+2}}{2^{n+3}}$$
 ??? $-\infty$

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{4}{2}\right)^n + 1}{-n^{-12}}$$
 ???? 0

(f)
$$\lim_{n \to \infty} \frac{4 \cdot 2^{n+1} - 3 \cdot 3^{n+2}}{4 \cdot 3^{n+2} - 6 \cdot 2^{n-1}}$$
 ??? $-3/4$

Písmeno Braillovej abecedy

Limity, skupina $Chi \chi$ -ii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{4-5n}{-8-n}$$
 ??? 5

(b)
$$\lim_{n\to\infty} \frac{-5(-8-2n)}{(-4n-3)^2}$$
 ... ??? ... -5

(c)
$$\lim_{n \to \infty} \frac{(2+2n)^2}{n^2 - 3n - 8}$$
 ... ??? ... $-\infty$

(d)
$$\lim_{n\to\infty} \frac{3^{n-1}}{3^{n+3}}$$
 ??? 0

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{2}{3}\right)^n - 3}{n^4}$$
 ??? 0

(f)
$$\lim_{n\to\infty} \frac{2 \cdot 2^{n+1} + 4 \cdot 4^{n-1}}{-16 \cdot 4^{n+2} - 4 \cdot 2^{n+2}}$$
 ???? -1

Písmeno Braillovei abecedy

Limity, skupina $Chi \chi$ -iii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n\to\infty} \frac{3+5n}{-1+9n}$$
 ??? 5/9

(b)
$$\lim_{n \to \infty} \frac{-8(7-5n)}{(9n+5)^2}$$
 ??? $-\infty$

(c)
$$\lim_{n\to\infty} \frac{(-3+5n)^2}{n^2-7n-9}$$
 ??? 25

(d)
$$\lim_{n\to\infty} \frac{2^{n+1}}{2^{n-1}}$$
 ??? 0

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{2}\right)^n + 1}{4n^{-12}}$$
 ??? ∞

(f)
$$\lim_{n\to\infty} \frac{-3\cdot 2^{n-1} + 9\cdot 3^{n+1}}{-4\cdot 3^{n-1} - 4\cdot 2^{n+2}}$$
 ??? $-81/4$

3.

Písmeno Braillovej abecedy

Limity, skupina $Chi \chi$ -iv

Meno:

(a)
$$\lim_{n \to \infty} \frac{2+n}{-4-7n}$$
 ??? $-1/7$

(b)
$$\lim_{n\to\infty} \frac{-8(5+6n)}{(8n+3)^2}$$
 ??? $^{1}/_{8}$

(c)
$$\lim_{n \to \infty} \frac{(-1+n)^2}{n^2 - 9n + 2}$$
 ??? 1

(d)
$$\lim_{n \to \infty} \frac{4^{n+2}}{4^{n+1}}$$
 ??? 16

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{2}\right)^n + 3}{n^9}$$
 ??? 0

(f)
$$\lim_{n \to \infty} \frac{-9 \cdot 3^{n-2} - 12 \cdot 4^{n+2}}{-3 \cdot 4^{n-1} + 9 \cdot 3^{n-1}}$$
??? 1

Písmeno Braillovej abecedy

Limity, skupina $Psi \ \psi$ -i

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n\to\infty} \frac{-4-2n}{-3+4n}$$
 ??? 4/3

(b)
$$\lim_{n\to\infty} \frac{-2(4+4n)}{(-3n+5)^2}$$
 ??? 0

(c)
$$\lim_{n\to\infty} \frac{(2+3n)^2}{n^2+2n+6}$$
 ??? 9

(d)
$$\lim_{n\to\infty} \frac{2^{n-2}}{2^{n+1}}$$
 ??? $\frac{1}{8}$

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{2}{4}\right)^n + 2}{n^{-9}}$$
 ??? 0

(f)
$$\lim_{n\to\infty} \frac{-6\cdot 2^{n-2}-2\cdot 3^{n+1}}{3\cdot 3^{n+2}+4\cdot 2^{n+2}}$$
 ??? $-2/9$

Písmeno Braillovei abecedy

Limity, skupina $Psi \ \psi$ -iii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{-4 - 2n}{-6 - 6n}$$
 ??? 0

(b)
$$\lim_{n\to\infty} \frac{6(6-5n)}{(3n-3)^2}$$
 ??? 0

(c)
$$\lim_{n\to\infty} \frac{(-1+n)^2}{n^2+4n+3}$$
 ??? 1

(d)
$$\lim_{n\to\infty} \frac{2^{n-2}}{2^{n-3}}$$
 ??? 0.25

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{3}\right)^n - 2}{-n^{-8}}$$
 ??? ∞

(f)
$$\lim_{n \to \infty} \frac{12 \cdot 3^{n+2} + 4 \cdot 4^{n-2}}{3 \cdot 4^{n+2} + 16 \cdot 3^{n-2}}$$
??? \frac{1}{192}

3.

d` \mathbf{c}

Písmeno Braillovej abecedy

Limity, skupina $Psi \ \psi$ -ii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{9+2n}{-5-n}$$
 ??? $-9/5$

(b)
$$\lim_{n\to\infty} \frac{-7(-3-2n)}{(-n-3)^2}$$
 ??? 0

(c)
$$\lim_{n\to\infty} \frac{(1+3n)^2}{n^2+2n-2}$$
 ??? $^{3/2}$

(d)
$$\lim_{n\to\infty} \frac{4^{n-1}}{4^{n+1}}$$
 ??? ∞

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{4}{2}\right)^n + 1}{3n^{-12}}$$
 ??? -12

(f)
$$\lim_{n\to\infty} \frac{-4\cdot 2^{n+2} + 4\cdot 4^{n-1}}{8\cdot 4^{n+1} - 8\cdot 2^{n-2}}$$
 ??? $\frac{1}{32}$

Písmeno Braillovei abecedy

Limity, skupina $Psi \psi$ -iv

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{-4 + 2n}{-5 + 8n}$$
 ??? $\frac{1}{4}$

(b)
$$\lim_{n\to\infty} \frac{2(-1+3n)}{(-7n+1)^2}$$
 ... ??? ... $^{-3}/_{14}$

(c)
$$\lim_{n \to \infty} \frac{(-2 - 6n)^2}{n^2 + n - 3}$$
 ??? 36

(d)
$$\lim_{n \to \infty} \frac{3^{n-1}}{3^{n-2}}$$
 ??? $-\infty$

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{2}\right)^n + 1}{-n^{-9}}$$
 ??? $-\infty$

(f)
$$\lim_{n\to\infty} \frac{3 \cdot 2^{n+2} - 6 \cdot 3^{n-2}}{4 \cdot 3^{n-1} + 3 \cdot 2^{n+2}}$$
 ??? $-9/2$

Písmeno Braillovej abecedy

Limity, skupina $Omega\ \omega$ -i

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n\to\infty} \frac{-4+2n}{2-4n}$$
 ??? $^{-1}/_2$

(b)
$$\lim_{n\to\infty} \frac{-7(-1-7n)}{(-n-9)^2}$$
 ??? -7

(c)
$$\lim_{n \to \infty} \frac{(1+n)^2}{n^2 + 8n - 2}$$
 ??? 1

(d)
$$\lim_{n\to\infty} \frac{4^{n-1}}{4^{n-4}}$$
 ??? 64

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{3}{4}\right)^n + 1}{n^8}$$
 ??? 0

(f)
$$\lim_{n\to\infty} \frac{-6 \cdot 2^{n+1} - 2 \cdot 3^{n+1}}{6 \cdot 3^{n-2} + 9 \cdot 2^{n-1}}$$
 ??? $^{-1/9}$

1.

Písmeno Braillovej abecedy

Limity, skupina $Omega \omega$ -ii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n\to\infty} \frac{-1-4n}{-5+2n}$$
 ??? $^{1}/_{5}$

(b)
$$\lim_{n\to\infty} \frac{2(-3-7n)}{(2n-2)^2}$$
 ??? 0

(c)
$$\lim_{n \to \infty} \frac{(2+6n)^2}{n^2+7n+2}$$
 ??? 1

(d)
$$\lim_{n\to\infty} \frac{3^{n+1}}{3^{n-2}}$$
 ∞

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{3}\right)^n + 2}{n^{-8}}$$
 ??? 0

(f)
$$\lim_{n \to \infty} \frac{-4 \cdot 2^{n-1} + 4 \cdot 4^{n-2}}{-4 \cdot 4^{n-2} - 16 \cdot 2^{n+1}}$$
 ???? -1

2.

Písmeno Braillovej abecedy

Limity, skupina $Omega~\omega$ -iii

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{1-n}{4+2n}$$
 ???

(b)
$$\lim_{n\to\infty} \frac{2(3+n)}{(6n-1)^2}$$
 ??? $^{-1}/_{12}$

(c)
$$\lim_{n \to \infty} \frac{(3-7n)^2}{n^2-n-8}$$
 ??? 49

(d)
$$\lim_{n\to\infty} \frac{2^{n-3}}{2^{n+1}}$$
 ??? 0

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{2}\right)^n + 4}{-2n^4}$$
 ??? 4

(f)
$$\lim_{n\to\infty} \frac{8 \cdot 2^{n-2} + 2 \cdot 4^{n-2}}{-2 \cdot 4^{n+2} + 8 \cdot 2^{n-2}}$$
 ??? $^{-1}/_{256}$

3.

Písmeno Braillovej abecedy

Limity, skupina $Omega \omega$ -iv

Meno:

Vypočti limity. Pokud se výsledky shodujú s tými za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$\lim_{n \to \infty} \frac{4+2n}{7-n}$$
 ??? -2

(b)
$$\lim_{n\to\infty} \frac{8(3-2n)}{(-3n+2)^2}$$
 ??? ∞

(c)
$$\lim_{n\to\infty} \frac{(-8-5n)^2}{n^2-7n-9}$$
 ??? ⁵/₇

(d)
$$\lim_{n\to\infty} \frac{2^{n-1}}{2^{n-1}}$$
 ∞

(e)
$$\lim_{n \to \infty} \frac{\left(\frac{1}{2}\right)^n - 1}{n^6}$$
 ??? $-\infty$

(f)
$$\lim_{n \to \infty} \frac{-12 \cdot 3^{n-1} - 9 \cdot 4^{n+2}}{3 \cdot 4^{n-1} - 9 \cdot 3^{n-1}} ??? -3/4$$

Písmeno Braillovej abecedy

Limity (riešenia)

(f) 27/2 X (f) 2 X (f) -16/9 X		(f) $-1/2 \checkmark$ (f) $-1/3 \checkmark$ (f) $-64 \checkmark$ (f) $-1/64 \checkmark$	(f) $-12 X$ (f) $-8 \angle$ (f) $-1/16 X$ (f) $-9/4 X$	(f) $-1/4 X$ (f) $-16 X$ (f) $1/243 \checkmark$ (f) $3 \checkmark$	(f) $^{1}/8 \times$ (f) $^{-3} \times$ (f) $^{-2}/243 \times$ (f) $^{-1}/2 \times$	(f) $\frac{1}{2}$ (f) -128 x (f) -128 x (f) -14 (f) -729 /2 x	(f) $\frac{1}{64}$ X (f) -1 X (f) -9 (f) $\frac{2}{9}$ X	(f) $-2/3\checkmark$ (f) $-4/9x$ (f) $4x$ (f) $1/16\checkmark$	(f) $-9/2 X$ (f) $-36 \checkmark$ (f) $^{1}/64 X$ (f) $^{2} X$	(f) $-3/2 X$ (f) $-1 X$ (f) $8 X$ (f) $-8 X$	(f) 2/243 X (f) 1/256 X (f) 256 √ (f) −2/9 X
x % - (e) x % (e)	x x x 8 (a) x x x 8 (a) x x x 8 (a) x x x 8 (a) x x x 8 (a)	(e) × × (e) × × (e) × × (e) × × (e)	(e) 0 x (e) 0 x (e) 0 x	(e) - \(\infty \)	, \omega (e) , \omega (e) , \omega (e) , \omega (e)	(e) × × (e) × × (e)	(e) 0 × × (e) (e) × × × (e)	(e) 0 x (e) 0 x (e) 0 x	(e) 0 x (e)	x0 (a) x0 (a) x (a) x (b)	*
(d) 4 \((d) 1 \((d) 1 \) (d) (d) (d) (d)	(d) 2 <i>x</i> (d) 1/81 <i>x</i> (d) 81 <i>x</i> (d) 11 <i>x</i>	(d) 1/4 \((d) 1/8 \) (d) 4 \((d) 4 \) (d) 8 \((d) 8 \) (d) 8 \((d) 8 \)	(d) 16 <i>x</i> (d) 1/16 <i>x</i> (d) 4 <i>x</i> (d) 1/3 <i>x</i>	(d) 1/3 \(d) (d) 1/2 \(d) 81 \(d) 11 \(d) (d) 11 \(d)	(d) 3x (d) 1 (d) 2x(d) 4x	(d) 4 <i>X</i> (d) 3 <i>X</i> (d) 4 <i>X</i> (d) 1 <i>X</i>	(d) 1/27 X (d) 4 X (d) 3 X (d) 256 X	(d) 1/2 X (d) 9 X (d) 1/3 X (d) 3 X	(d) 1/16 x (d) 1 \langle (d) 27 x (d) 81 x	(d) 1/4 × (d) 1/2 × (d) 3 × (d) 1/9	(d) 1 <i>x</i> (d) 1/16 <i>x</i> (d) 1/ <i>x</i> (d) 9 <i>x</i>
(c) 16 x (c) 9 x (c) 64 \langle		(c) 16 \((c) 16 \((c) 16 \) (c) 4 \((c) 1 X \)	(c) 36 \(\) (c) 1 \(\) (c) 1 \(\) (c) 9 \(\)	(c) 4 \((c) 16 \) (c) 16 \((c) 16 \) (c) 16 \((c) 16 \)	(c) 36 x (c) 25 \ (c) 4 \ (c) 4 \	(c) 9 <i>x</i> (c) 1 <i>x</i> (c) 36 \(c) 16 <i>x</i>	(c) 9 × (c) 9 × (c) 9 × (c) 16 ×	(c) 1 / (c) 9 / (c) 1 / (c) 25 /	(c) 49 \(c) 9 \(c) 4 \text{ (c) 4 \text{ (c) 16 \text{ x}}}	(c) 16 \(\times \) (d) 25 \(\times \) (e) 4 \(\times \) (f) 4 \(\times \) (c) 16 \(\times \)	(c) 4 <i>X</i> (c) 1 \(c) 16 \(c) 16 \(c) 16 X
x 0 (q) (q) (q) (q)		(b) 0 x (b) 0 0 x (c) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(b) 0 <i>x</i> (b) 0 <i>x</i> (c) 0 <i>x</i> (d) 0 <i>x</i>	(b) 0 x (b) 0 x (c) 0 0 x (d) 0 x	(b) 0 x (b) 0 x (c) (c) 0 x (c) 0 x (c) 0	(b) 0 <i>x</i> (b) 0 <i>x</i> (c) (c) 0 <i>x</i> (d) 0 <i>x</i>	(b) 0 x (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	(b) 0 x (b) 0 x (c) 0 (c	x 0 (q)	4 (b) 0 (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	(b) 0% (b) 0% (c) 0% (d) 0%
(a) 4/5 \((a) -5/9 \((a) 1 \)	(a) -7.5 (b) (a) -2 (c) (a) -2 (d) -1 (d) $-2/3$ (e) $-2/3$	 (a) 3/4 X (a) 5/2 X (a) 2/3 X (a) 6 ✓ 	(a) $-5/7$ \((a) $3/4$ \((a) 1 \((a) -2 \((a) -2 \((a) -2 \)	(a) $-2/3\checkmark$ (a) $-1/2\checkmark$ (a) $-1/3$ X (a) -1 X	(a) -1 / (a) -5 / (a) -2 / (a) $3/2$ /	(a) $-3 \times$ (a) $-7/5 \checkmark$ (a) $-1/2 \checkmark$ (a) $2/3 \checkmark$	(a) -1 \((a) $-7/4$ \((a) $4/7$ \((a) $4/7$ \)	(a) $-1/4 \times$ (a) $7/6 \checkmark$ (a) $1 \checkmark$ (a) $-5/2 \checkmark$	(a) $3/5$ \((a) $-3/7$ \((a) $-2/3$ \((a) $-2/9$ \((a) $-2/9$ \((a) 2/3 \ (b) 2/3 \ (c) 2/3 \ (d) -5/3 \	(a) $\frac{4}{3}$ (a) $\frac{1}{9}$ (a) $-\frac{1}{3}$ (a) 7
$i: \dot{\mathbf{X}}$ $i: \dot{\mathbf{X}}$ $ii: \mathbf{A}$ $ii: \mathbf{L}$			i: O $i: S$ $ii: S$ $iii: E$ $iv: E$	$i: \mathbf{W}$ $ii: \mathbf{A}$ $iii: \mathbf{T}$ $iv: \mathbf{T}$	$i : \mathbf{E}$ $ii : \mathbf{U}$ $iii : \mathbf{R}$ $iv : \mathbf{O}$	$i: \mathbf{J}$ $ii: \mathbf{A}$ $iii: \mathbf{N}$ $iv: \mathbf{A}$	$i: \mathbf{R}$ $ii: \mathbf{A}$ $iii: \mathbf{D}$ $iv: \mathbf{A}$	$i: \mathbf{S}$ $i: \mathbf{L}$ $i: \mathbf{L}$ $ii: \mathbf{O}$ $iv: \mathbf{O}$	$i: \mathbf{R}$ $i: \mathbf{R}$ $ii: \mathbf{Y}$ $iii: \mathbf{B}$ $iv: \mathbf{A}$	$i: \mathbf{V}$ $ii: \mathbf{L}$ $iii: \mathbf{A}$ $iv: \mathbf{K}$	$i: \mathbf{B}$ $ii: \mathbf{O}$ $iii: \mathbf{T}$ $iv: \mathbf{A}$
	B										

Limity (riešenia)

	(f) $-64 \checkmark$ (f) $-32 ×$	(f) $-3 \times$ (f) $2/3 \times$ (f) $-1/4 \times$ (f) $1/18 \times$	(f) $4/243$ \checkmark (f) -16 $×$ (f) $-1/9$ \checkmark (f) 1 $×$	(f) 1 \((f) -3/2 \\ (f) 1/9 \((f) -4 \) \((f) -4 \)	(f) $-1/8 \times$ (f) $-1/3 \times$ (f) $1/12 \times$ (f) $-4096/9 \times$	(f) 1 \((f) 2 \) (f) 2 \((f) -9/2 \) (f) 1/64 \((f) 1/64 \)	(f) 81 ✓ (f) 3 x (f) -4/27 ✓ (f) -1/2 x	(f) $1/2 X$ (f) $1 X$ (f) $1 X$ (f) $1/12 X$	(f) -9 \((f) 81 \(x\) (f) -256 \(x\) (f) 18 \(x\)	(f) $-3/4$ \checkmark (f) $-1/256$ X (f) $-81/4$ \checkmark (f) 256 X	(f) $-2/9 \checkmark$ (f) $1/32 \checkmark$ (f) $1/192 \checkmark$ (f) $-1/2 ×$	(f) $-9x$ (f) $-1\checkmark$ (f) $-1/256\checkmark$ (f) $-192x$
(e) ×× (e)	(e) 0 x (e)	(a)(b)(c)(d)(e)(e)(f)(f)(g)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)<l< th=""><th>x \times (a) y \times (a) x 0 (a) x 0 (a)</th><th>x \otimes - (e) x \otimes - (e) x \otimes - (e)</th><th>x 0 (e) x 0 (e) x 0 (e)</th><th>x \otimes - (e) x \otimes - (e) x \otimes - (e) y \otimes - (e)</th><th>(e) × × (e) × × (e) × × (e) × × (e)</th><th>(e) 0 x (e) (e) 0 x (e</th><th>√ ⊗ − (e) √ (e) √ (e) √ (e)</th><th>(e) 0 / (e) 0 / (e) 0 / (e) 0 /</th><th>* \(\text{\chi} \) \(\</th><th>(e) 0 x (e) x (e) x (e) (e) 0 x (e) 0</th></l<>	x \times (a) y \times (a) x 0 (a) x 0 (a)	x \otimes - (e) x \otimes - (e) x \otimes - (e)	x 0 (e) x 0 (e) x 0 (e)	x \otimes - (e) x \otimes - (e) x \otimes - (e) y \otimes - (e)	(e) × × (e) × × (e) × × (e) × × (e)	(e) 0 x (e) (e) 0 x (e	√ ⊗ − (e) √ (e) √ (e) √ (e)	(e) 0 / (e) 0 / (e) 0 / (e) 0 /	* \(\text{\chi} \) \(\	(e) 0 x (e) x (e) x (e) (e) 0 x (e) 0
`	x 8 (b) x 8 (d)	(d) 1/8 \((d) 16 \((d) 8 \) (d) 8 \((d) 1 \) (d) 1 \((d) 1 \) (d) 1 \((d) 1 \) (d) 1 \((d) 1 \)	(d) 64 <i>x</i> (d) 27 <i>x</i> (d) 2 <i>x</i> (d) 3 <i>x</i>	(d) 4 <i>x</i> (d) 1/8 <i>x</i> (d) 256 <i>x</i> (d) 8	(d) 1/27 X (d) 81 \cdot (d) 1/16 X (d) 27 X	(d) 3x (d) 1x (d) 1x (d) 3x	(d) 1/64 x (d) 1/81 √ (d) 8 x (d) 3 x	(d) 16x (d) 1x (d) 1x (d) 9x	(d) 4 <i>X</i> (d) 3 <i>X</i> (d) 16 <i>X</i> (d) 4 <i>X</i>	(d) 1/2 <i>X</i> (d) 1/81 <i>X</i> (d) 4 <i>X</i> (d) 4 <i>X</i>	(d) 1/8 (d) 1/16 × (d) 2 × (d) 3 ×	(d) 64 \((a) 27 \) (d) 27 \((b) \) 1/16 \((d) 1 \) (d) 1 \((d) 1 \)
	(c) 1 \(\text{(c)} 4 \text{ \text{x}} \)	(c) 16 \((c) 25 \((c) 9 \) (c) 25 \((c) 25 \((c) 25 \)	(c) 25 x (c) 16 x (c) 4 4 (c) 1 x	(c) 36 x (c) 25 x (c) 1 \lambda (c) 36 \lambda	(c) 36 x (c) 1 x (c) 81 x (c) 25 x	(c) 25 \((c) 4 \\ (c) 49 \\ (c) 4 \\ (d) 4 \\ (d) 4 \\ (e) 4 \\ (e) 4 \\ (find (e) 4 \) (find (e) 4 \\ (find (e) 4 \) (find (e) 4 \\ (find (e) 4 \\ (find (e) 4 \\ (find (e) 4 \\ ((c) 4 \((c) 16 \(x \) (c) 9 \((c) 16 \(x \) (c) 16 \(x \) (c) 16 \(x \)	(c) 16 \((c) 64 \) (c) 36 \((c) 4 \) (c) 4 \((c) 4 \)	(c) 49 \(c) 25 \(c) 4 \(c) 4 \(c) 1 \)	(c) 36 \(\) (c) 4 \(\) (c) 25 \(\) (c) 1 \(\)	(c) 9 × (c) 9 × (c) 1 × (c) 36 ×	(c) 1 (c) 36 \times (c) 49 \sqrt{(c) 25 \times (c) 2
	x 0 (q)	(a)(b)(c)(d)(d)(e)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)<l< th=""><th>(b) 0X (b) 0X (c) 0X (d) 0X</th><th>(b) 0 (d) (b) 0 (d) (d) (d) (d) (d) (d) (d) (d) (d) (d)</th><th>(a) (b) 0 (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d</th><th>(b) 0x (b) 0x (b) 0x (c) 00x</th><th>(b) 0 x (b) 0 x (c) 0 0 (d)</th><th>(a) (b) (c) (d) (d) (d)</th><th>(b) 0 x (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d</th><th>(b) 0 x (d) (d) (d) (e) 0 x (d) (d) (e) 0 x (e</th><th>(b) 0 (d) (b) 0 (d) (d) (d) (d) (d) (d) (d) (d) (d) (d)</th><th>x 0 (q) x 0 (q) x 0 0 0 x</th></l<>	(b) 0X (b) 0X (c) 0X (d) 0X	(b) 0 (d) (b) 0 (d)	(a) (b) 0 (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	(b) 0x (b) 0x (b) 0x (c) 00x	(b) 0 x (b) 0 x (c) 0 0 (d)	(a) (b) (c) (d) (d) (d)	(b) 0 x (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	(b) 0 x (d) (d) (d) (e) 0 x (d) (d) (e) 0 x (e	(b) 0 (d) (b) 0 (d)	x 0 (q) x 0 (q) x 0 0 0 x
(a) -3 \(\)	(a) 6 / (a) 1/2 /	(a) $1/3 \checkmark$ (a) $1/2 \checkmark$ (a) $-5 \checkmark$ (a) $-5/7 \checkmark$	(a) -8/3 \((a) -4/5 \((a) -1/2 \((a) 7/6 \)	(a) 3/7 X (a) -4 \((a) \) -1/9 \((a) \) -8 \((a) \)	(a) $-1/2$ \((a) $2/3$ \((a) $-1/2$ \((a) $-1/2$ \((a) $-7/2$ \((a	(a) 4/3 \((a) -5/3 \((a) 2 \) (a) 2 \((a) 2 \) (b) 1/3 \((a) -1/3 \)	(a) $-1/3 \times$ (a) $-4/5 \checkmark$ (a) $3/2 \times$ (a) $5/3 \checkmark$	(a) $-1/3$ \((a) $2/3$ \((a) $9/5$ \((a) $-1/2$ \((a)	(a) 2/7 \(a) -4/7 \(a) 1/6 \(a) 1 \(a) 1 \)	(a) $-1/5 \times$ (a) $5 \checkmark$ (a) $5/9 \checkmark$ (a) $-1/7 \checkmark$	(a) $-1/2 \times$ (a) $-2 \times$ (a) $1/3 \times$ (a) $1/4 \checkmark$	(a) $-1/2$ \((a) -2 \(x) (a) -2 \((a) $-1/2$ \((a) $-1/2$ \((a) -2 \)
	$iii: \mathbf{N}$ $iv: \mathbf{A}$	$i: \mathbf{Z}$ $ii: \mathbf{U}$ $iii: \mathbf{B}$ $iv: \mathbf{R}$	i : C ii : E iii : N iii : N iv : A	$i: \mathbf{I}$ $ii: \mathbf{G}$ $iii: \mathbf{L}$ $iv: \mathbf{U}$	$i: \mathbf{B}$ $ii: \mathbf{A}$ $iii: \mathbf{A}$ $iv: \mathbf{B}$ $iv: \mathbf{A}$	i: M ii: O iii: S iv: T	$i: \mathbf{T}$ $ii: \hat{\mathbf{A}}$ $iii: \mathbf{T}$ $iv: \mathbf{A}$	$\begin{array}{c} i : \mathbf{R} \\ ii : \mathbf{R} \\ iii : \mathbf{S} \\ iv : \mathbf{A} \end{array}$	$i: \mathbf{N}$ $ii: \mathbf{O}$ $iii: \mathbf{R}$ $iv: \mathbf{A}$	$i: \mathbf{S}$ $ii: \mathbf{E}$ $iii: \mathbf{N}$ $iv: \mathbf{O}$	$i: \dot{\mathbf{Z}}$ $ii: \mathbf{I}$ $iii: \mathbf{I}$ $iii: \mathbf{T}$ $iv: \mathbf{O}$	$i: \mathbf{Z}$ $ii: \mathbf{I}$ $iii: \mathbf{M}$ $iv: \mathbf{A}$
	<u> </u>	*		E	Q	ь	F	a	φ	X	$ \Phi $	3