```
In [1]:
```

```
import sklearn
import numpy as np
import pandas as pd
import seaborn as sns
```

In [2]:

```
iris_df = pd.read_csv('iris.data', header=None, names=['sepal length', 'sepal width', 'p
etal length', 'petal width', 'class'])
glass_df = pd.read_csv('glass.data', index_col=0, header=None, names=['Id', 'RI', 'Na',
'Mg', 'Al', 'Si', 'K', 'Ca', 'Ba', 'Fe', 'Type of glass'])
wine_df = pd.read_csv('wine.data', header=None, names=['class', 'Alcohol', 'Malic acid',
'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phe
nols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Pro
line'])
```

Iris

In [3]:

ser	oal length	sepal width	petal length	petal width	class
1	5.1	3.5	1.4	0.2	Iris-setosa
	4.9	3.0	1.4	0.2	Iris-setosa
	4.7	3.2	1.3	0.2	Iris-setosa
	4.6	3.1	1.5	0.2	Iris-setosa
	5.0	3.6	1.4	0.2	Iris-setosa
5	6.7	3.0	5.2	2.3	Iris-virginica
)	6.3	2.5	5.0	1.9	Iris-virginica
7	6.5	3.0	5.2	2.0	Iris-virginica
3	6.2	3.4	5.4	2.3	Iris-virginica
9	5.9	3.0	5.1	1.8	Iris-virginica

[150 rows x 5 columns]

3 klasy oznaczające gatunki irysów, po 50 instancji każdej

pierwsze 2 kolumny sepal length i sepal width oznaczają długość i szerokość działki kielicha w cm petal length i petal width oznaczają długość i szerokość płatków w cm

Iris-versicolor i Iris-virginica są do siebie mniej więcej podobne patrząc na dowolne atrybuty, podaczas gdy Irissetosa wyróżnia się kiedy patrzymy na dowolny wymiar płatka lub oba wymiary działki kielicha

In [4]:

```
sns.lmplot(x='petal width', y='petal length', hue='class', data=iris_df, fit_reg=False)
```

Out[4]:

<seaborn.axisgrid.FacetGrid at 0x14981d82580>

class

In [5]:

```
iris_grid = sns.PairGrid(iris_df, hue='class')
iris_grid.map_diag(sns.histplot)
iris_grid.map_offdiag(sns.scatterplot)
iris_grid.add_legend()
```

Out[5]:

<seaborn.axisgrid.PairGrid at 0x14984ef8670>

Glass

In [6]:

print(glass_df)

	RI	Na	Mg	Al	Si	K	Ca	Ва	Fe	Type of glass
Id										
1	1.52101	13.64	4.49	1.10	71.78	0.06	8.75	0.00	0.0	1
2	1.51761	13.89	3.60	1.36	72.73	0.48	7.83	0.00	0.0	1
3	1.51618	13.53	3.55	1.54	72.99	0.39	7.78	0.00	0.0	1
4	1.51766	13.21	3.69	1.29	72.61	0.57	8.22	0.00	0.0	1
5	1.51742	13.27	3.62	1.24	73.08	0.55	8.07	0.00	0.0	1
210	1.51623	14.14	0.00	2.88	72.61	0.08	9.18	1.06	0.0	7
211	1.51685	14.92	0.00	1.99	73.06	0.00	8.40	1.59	0.0	7
212	1.52065	14.36	0.00	2.02	73.42	0.00	8.44	1.64	0.0	7
213	1.51651	14.38	0.00	1.94	73.61	0.00	8.48	1.57	0.0	7
214	1.51711	14.23	0.00	2.08	73.36	0.00	8.62	1.67	0.0	7

[214 rows x 10 columns]

kolumna Id zawiera indeksy próbek szkła

kolumna RI zawiera współczynniki załamania szkła

ostatnia kolumna Type of glass zawiera indeksy 1-7 różnych typów szkła

liczba instacji każdej klasy:

- 1. 70
- 2.76
- 3. 17
- 4. 0
- 5. 13
- 6.9
- 7. 29

pozostałe kolumny zawierają procentową zawartość odpowiadających pierwiastków

patrząc na wykresy jedynym jakimkolwiek wyróżniającym się typem szkła jest szkło reflektorów (7), głównie z powodu wyższej zawartości baru

In [7]:

```
sns.lmplot(x='RI', y='Ba', hue='Type of glass', data=glass_df, fit_reg=False)
```

Out[7]:

<seaborn.axisgrid.FacetGrid at 0x14985187070>


```
glass_grid = sns.PairGrid(glass_df, hue='Type of glass')
glass_grid.map_diag(sns.histplot)
glass_grid.map_offdiag(sns.scatterplot)
glass_grid.add_legend()
```

Out[8]:

<seaborn.axisgrid.PairGrid at 0x149858df7f0>

Wine

In [9]:

prir	<pre>print(wine_df)</pre>									
	class	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	\			
0	1	14.23		2.43	15.6	127				
1	1	13.20	1.78	2.14	11.2	100				
2	1	13.16	2.36	2.67	18.6	101				
3	1	14.37	1.95	2.50	16.8	113				
4	1	13.24	2.59	2.87	21.0	118				
173	3	13.71	5.65	2.45	20.5	95				
174	3	13.40	3.91	2.48	23.0	102				
175	3	13.27	4.28	2.26	20.0	120				
4 6	^	40 40	^ - ^	~ ~ -	^ ^ ^					

T / 6	3	13.17	2.59	2.37	2	U.U	120
177	3	14.13	4.10	2.74	2	4.5	96
0 1 2 3 4	Total	2.80 2.65 2.80 3.85 2.80	3.06 2.76 3.24 3.49 2.69	Nonflavano	0.28 0.26 0.30 0.24 0.39	Proanthocya	2.29 1.28 2.81 2.18 1.82
173 174 175 176 177		1.68 1.80 1.59 1.65 2.05	0.61 0.75 0.69 0.68 0.76		0.52 0.43 0.43 0.53 0.56		1.06 1.41 1.35 1.46 1.35
0 1 2 3 4 173 174 175 176	Color	intensity 5.64 4.38 5.68 7.80 4.32 7.70 7.30 10.20 9.30 9.20	1.04 3.1.05 3.1.03 0.86 2.1.04 0.64 0.70 0.59 0.60	80/OD315 of	3 3 3 2 1 1 1 1	nes Proline .92 1065 .40 1050 .17 1185 .45 1480 .93 73574 740 .56 750 .56 835 .62 840 .60 560	5 0 5 0 5

[178 rows x 14 columns]

kolumna class zawiera indeksy 1-3 oznaczające różne odmiany wina z liczbami instancji

- 1. 59
- 2.71
- 3. 48

pozostałe kolumny zawierają informacje o właściwościach chemicznych wina

wszystkie 3 klasy są częściowo rozróżnialne patrząc na różne atrybuty, np. odmiana 1. ma większą zawartość proliny, odmiana 2. ma mało intensywny kolor i próbki odmiany 3. mają podobny do siebie odcień

In [10]:

```
sns.lmplot(x='Color intensity', y='Hue', hue='class', data=wine_df, fit_reg=False)
```

Out[10]:

<seaborn.axisgrid.FacetGrid at 0x14985b03190>

2 4 6 8 10 12 Color intensity

In [11]:

```
wine_grid = sns.PairGrid(wine_df, hue='class')
wine_grid.map_diag(sns.histplot)
wine_grid.map_offdiag(sns.scatterplot)
wine_grid.add_legend()
```

Out[11]:

<seaborn.axisgrid.PairGrid at 0x14989ea5880>

PCA

In [12]:

```
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
```

Iris

In [13]:

```
features = ['sepal length', 'sepal width', 'petal length', 'petal width']
x = iris_df.loc[:, features].values
y = iris_df.loc[:,['class']].values
x = StandardScaler().fit_transform(x)
pca = PCA(n_components=2)
principalComponents = pca.fit_transform(x)
principalDf = pd.DataFrame(data = principalComponents, columns = ['principal component 1
', 'principal component 2'])
finalDf = pd.concat([principalDf, iris_df[['class']]], axis = 1)
sns.lmplot(x='principal component 1', y='principal component 2', hue='class', data=finalD
f, fit_reg=False)
```

Out[13]:

<seaborn.axisgrid.FacetGrid at 0x14992fa1190>

Glass

In [14]:

```
features = ['RI', 'Na', 'Mg', 'Al', 'Si', 'K', 'Ca', 'Ba', 'Fe']
x = glass_df.loc[:, features].values
y = glass_df.loc[:,['Type of glass']].values
x = StandardScaler().fit_transform(x)
pca = PCA(n_components=2)
principalComponents = pca.fit_transform(x)
principalDf = pd.DataFrame(data = principalComponents, columns = ['principal component 1
', 'principal component 2'])
finalDf = pd.concat([principalDf, glass_df[['Type of glass']]], axis = 1)
sns.lmplot(x='principal component 1', y='principal component 2', hue='Type of glass', dat a=finalDf, fit_reg=False)
```

Out[14]:

<seaborn.axisgrid.FacetGrid at 0x14992fa12e0>

Wine

In [15]:

```
features = ['Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phe
nols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue'
, 'OD280/OD315 of diluted wines', 'Proline']
x = wine_df.loc[:, features].values
y = wine_df.loc[:, ['class']].values
x = StandardScaler().fit_transform(x)
pca = PCA(n_components=2)
principalComponents = pca.fit_transform(x)
principalDf = pd.DataFrame(data = principalComponents, columns = ['principal component 1
', 'principal component 2'])
finalDf = pd.concat([principalDf, wine_df[['class']]], axis = 1)
sns.lmplot(x='principal component 1', y='principal component 2', hue='class', data=finalD
f, fit_reg=False)
```

Out[15]:

<seaborn.axisgrid.FacetGrid at 0x1499301e310>

