

2025智慧製造工作坊

提報組別:新竹3

CONTENT

團隊介紹

霽 十 1

霽十 2

3月15日	09:00-10:00					
	10:00-11:00					
	11:00-12:00					
	12:00-13:00					
	13:00-14:00					
	14:00-15:00					
	15:00-16:00					
	16:00-17:00					
	17:00-18:00					
	18:00-19:00					
	19:00-20:00					
	20:00-21:00					
	21:00-22:00					
	22:00-23:00					
	23:00-24:00					
3月16日	09:00-10:00					
	10:00-11:00					
	11:00-12:00					
	12:00-13:00					
	13:00-14:00					
	14:00-15:00					
	15:00-16:00					
	16:00-17:00					
	17:00-18:00					
	18:00-19:00					
	19:00-20:00					
	20:00-21:00					
	21:00-22:00					
	22:00-23:00					
	23:00-24:00					

團隊介紹

簡報製作

推車排程與路由優化模型

兩階段優化:最小化報廢數與總行駛距離

研究背景與目標

● 背景介紹:

- ◆工廠內多台推車運送多筆 WIP 之拯救任務
- ◆需同時考慮推車行駛時間及WIP報廢問題

● 目標:

- ◆最小化違反Q-time(報廢)的 WIP 數
- ◆ 在報廢數固定下,最小化推車總行駛時間

距離矩陣

※此用矩陣用來觀察/檢索不同WIP位置間的距離關係!

- 深紅色爲LOC之間距離近
- 深綠色爲LOC之間距離遠
- 黑色框起來的部分爲WIP實際要運送的路徑

解題流程

●使用軟體 - Matlab

- ◆數據通常以 Excel 格式存儲,方便輸出結果
- ◆代碼結構淸晰,<mark>易讀性方便與團隊共享成果</mark>

●兩階段式求解

- ◆第一階段求取最低報廢數-Minimize Broken WIP count
- ◆第二階段求取最短運送時間-Based on First stage Result Minimize Distance

建立變數

● 生成可能路徑

- ◆ 40個WIP進行兩兩配對,並考慮順序問題,共有P(40,2)=1560個組合,考慮兩種運輸策略PP-DD跟PD-PD,其中PP-DD還會有P1P2-D2D1和P1P2-D1D2等等的多重組合問題
- ◆ 每條路徑包含"WIP_ID"、"Strategy(PD-PD or PP-DD及其變體)"、"arrTime(包含兩個WIP各別到達時間)"、"Routedist(路徑總時間)"等屬性
- ◆ 篩選:透過arrTime中兩個WIP是否違反自身Q-time判斷該路徑是否可行,並註記不可行路徑

建立數學模型

●第一階段目標 - 最小化報廢數

- ◆限制 1 一台車分配一條路徑(Cart-route)
- ◆限制2-不選取不可行路徑
- ◆限制 3 WIP只能被Cart負責或報廢

●第二階段目標 - 最短化總路徑

- ◆限制 1 同上一階段的三個限制
- ◆限制2-報廢數需要等同第一階段結果

●演算法(分支界限法)-聰明的窮舉法

- ◆優勢 保證找到最佳解值,並且透過剪枝去除不必 搜尋的分支
- ◆劣勢 隨問題規模有組合暴增的問題,導致運算時 長過久

★ 這裡表示路徑有確實生成並解決 P1P2-D2D1等多重排序的問題

結果-1

●問題發現:因為採取分支界限法,進行有系統的窮舉,單次運算時間5小時,等產出報表再派工,即使最小化總距離,但必然會損失全部的WIP。

第二階段: 報廢數固定 = 0, 總距離 = 851.00

CART_ID	ORDER	WIP_ID	ACTION	COMPLETE_TIME	CART_ID	ORDER	WIP_ID	ACTION	COMPLETE_TIME
1	1	'W19'	'PICKUP'	22	11	1	'W20'	'PICKUP'	22
1	2	'W19'	'DELIVERY'	27	11	2	'W06'	'PICKUP'	27
1	3	'W18'	'PICKUP'	29	11	3	'W20'	'DELIVERY'	48
1	4	'W18'	'DELIVERY'	34	11	4	'W06'	'DELIVERY'	53
2	1	'W32'	'PICKUP'	16	12	1	'W35'	'PICKUP'	25
2	2	'W05'	'PICKUP'	30	12	2	'W25'	'PICKUP'	35
2	3	'W32'	'DELIVERY'	38	12	3	'W35'	'DELIVERY'	52
2	4	'W05'	'DELIVERY'	58	12	4	'W25'	'DELIVERY'	54
3	1	'W01'	'PICKUP'	0	13	1	'W30'	'PICKUP'	25
3	2	'W01'	'DELIVERY'	7	13	2	'W13'	'PICKUP'	30
3	3	'W12'	'PICKUP'	22	13	3	'W30'	'DELIVERY'	37
3	4	'W12'	'DELIVERY'	32	13	4	'W13'	'DELIVERY'	40
4	1	'W04'	'PICKUP'	23	14	1	'W29'	'PICKUP'	2
4	2	'W21'	'PICKUP'	40	14	2	'W29'	'DELIVERY'	23
4	3	'W21'	'DELIVERY'	53	14	3	'W40'	'PICKUP'	25
4	4	'W04'	'DELIVERY'	56	14	4	'W40'	'DELIVERY'	48
5	1	'W31'	'PICKUP'	16	15	1	'W37'	'PICKUP'	21
5	2	'W02'	'PICKUP'	19	15	2	'W14'	'PICKUP'	35
5	3	'W31'	'DELIVERY'	31	15	3	'W37'	'DELIVERY'	43
5	4	'W02'	'DELIVERY'	36	15	4	'W14'	'DELIVERY'	46
6	1	'W22'	'PICKUP'	8	16	1	'W09'	'PICKUP'	23
6	2	'W22'	'DELIVERY'	36	16	2	'W34'	'PICKUP'	25
6	3	'W26'	'PICKUP'	36	16	3	'W09'	'DELIVERY'	51
6	4	'W26'	'DELIVERY'	39	16	4	'W34'	'DELIVERY'	53
7	1	'W07'	'PICKUP'	3	17	1	'W39'	'PICKUP'	23
7	2	'W28'	'PICKUP'	26	17	2	'W39'	'DELIVERY'	28
7	3	'W07'	'DELIVERY'	31	17	3	'W03'	'PICKUP'	31
7	4	'W28'	'DELIVERY'	33	17	4	'W03'	'DELIVERY'	46
8	1	'W36'	'PICKUP'	3	18	1	'W23'	'PICKUP'	5
8	2	'W33'	'PICKUP'	8	18	2	'W38'	'PICKUP'	28
8	3	'W36'	'DELIVERY'	25	18	3	'W23'	'DELIVERY'	33
8	4	'W33'	'DELIVERY'	28	18	4	'W38'	'DELIVERY'	46
9	1	'W16'	'PICKUP'	17	19	1	'W08'	'PICKUP'	18
9	2	'W10'	'PICKUP'	20	19	2	'W17'	'PICKUP'	20
9	3	'W16'	'DELIVERY'	33	19	3	'W08'	'DELIVERY'	44
9	4	'W10'	'DELIVERY'	35	19	4	'W17'	'DELIVERY'	46
10	1	'W15'	'PICKUP'	20	20	1	'W27'	'PICKUP'	18
10	2	'W15'	'DELIVERY'	25	20	2	'W11'	'PICKUP'	33
10	3	'W24'	'PICKUP'	28	20	3	'W27'	'DELIVERY'	35
10	4	'W24'	'DELIVERY'	28	20	4	'W11'	'DELIVERY'	40

t

衍伸題目

● 規則:若放寬每台推車的負載限制至0~4個WIP

● 理解:開放推車負責更多數量WIP,會造成路徑可能性膨脹至無法列舉的程度,因此能快速找到零報廢數爲主要目標,以最小化時間成本爲次要。

解題思路-挖掘資訊

- 觀察:透過距離矩陣並佐以顏色視覺化,標記每個WIP的from-to,可以知道哪些WIP的起點跟終點較靠近
- 策略: 深線到深紅代表距離遠近,用預分組策略 先將適合一起接送的WIP用顏色分組,可以減少潛 在路徑空間。

解題思路-快速、可行

- 預先分組:將所有的WIP,<mark>透過所處位置進行分組</mark>, 紅區(距離近)、淺綠(距離中等)及深綠(距離遠),並 根據這個特性分組,提前分組有助於<mark>降低計算複雜</mark> 度。
- 演算法:為解決運算速度緩慢的問題,選擇預分 組策略加退火演算法,進行快速求取可行解,目的 在於短時間內找出有0報廢的排程,並盡速派工。

紅區	Remaining Q-Time	FROM	TO
W01	85	1	2
W15	63	19	21
W11	41	24	23
W14	90	25	23
W30	90	26	31
W13	70	29	27
W26	50	30	25
W28	79	33	34
W39	60	38	39
W12	89	39	37
W19	115	43	47
W18	74	45	44
W24	91	18	18
浅綠區			
W29	36	7	16
W40	66	12	1
W02	41	10	22
W37	63	13	34
W31	75	14	35
W25	88	25	17
W03	59	36	3
W33	99	5	46
W36	43	6	42
W38	77	22	40
W21	74	28	48
W27	58	37	30
W16	81	42	24
W10	102	46	32
深綠			
W05	103	23	7
W07	46	4	26
W22	85	8	30
W23	95	9	29
W06	113	36	20
W20	55	43	- 11
W04	78	11	37
W34	81	12	44
W09	73	16	41
W32	91	15	49
W17	55	19	47
W08	60	20	40
W35	97	45	50

結果-2

Fig1

運行20次找到<mark>當前最優解</mark>,並 產出結果在五秒以內(快速)!

最終結果: 違反Q-Time WIP數 = 0, 總距離 = 744.00

Fig2

● 經20次運算結果,我們的<mark>方法保證0報廢量</mark> 以及平均879.6分鐘最短路徑

以目前最好的總距離結果(744mins)為基準比對, 平均有18%的離差比

1	746	0	0.002688
2	796	0	0.069892
3	974	0	0.30914
4	994	0	0.336022
5	752	0	0.010753
б	762	0	0.024194
7	982	0	0.319892
8	788	0	0.05914
9	974	0	0.30914
10	966	0	0.298387
11	978	0	0.314516
12	992	0	0.333333
13	806	0	0.083333
14	810	0	0.08871
15	971	0	0.305108
16	975	0	0.310484
17	1003	0	0.348118
18	802	0	0.077957
19	744	0	0
20	777	0	0.044355
Average	879.6	0	0.18004

Outcome_ID Outcome_Value faliure count Deviation

結果與討論

嘗試過用K-MEANS分群,以為將真正在位置上鄰近的WIP進行 分群會有更好的結果,但這樣會忽略"順路帶來的優勢",因此粗略用 顏色分區未必不是好策略。

將資料視覺化才能透過更淸晰的角度去思考策略!

智能電力管理AIAGENT

智慧調度,穩定供電,從容應對未來挑戰

問題定義:四大困境

困境1

區域供需電力差距

困境3

製程技術發展對能耗影響

困境2

再生能源供應不確定性

困境4

不可控天災之損失

問題定義:四大困境

困境1

區域供需電力差距

- 北部用電需求高,依賴中南部電力輸送
- 2023年北部用電量:931億度,本地發電量:750億度
- 供需差距需靠區域電力調配平衡

困境2

再生能源供應不確定性

- 國際局勢、經濟與碳中和趨勢影響能源成本
- 臺灣能源自給率低,需加速再生能源發展
- 進度延宕,未來供應存在不確定性

問題定義:四大困境

- · 曝光步驟增加:EUV機台比DUV機台耗電更多
- 良率下降,需反覆重製:高階製程缺陷率高,增加檢測與修復工序, 提升能耗

困境3

製程技術發展對能耗影響

- 2025年1月台積電營收報告揭露地震影響
- 生產中晶圓受損,預計2025 Q1認列地震損失約 新台幣53億元

困境4

不可控天災之損失

四大智慧解決方案

方案1

AI 電力需求預測 — 精確預測用電需求

方案3

緊急應變管理 (地震、停電 AI 快速應對)

方案2

智能電力調度 — 優化備電系統與綠電分配

方案4

風冷系統 (輔助冷卻 + 水冷混合)

四大智慧解決方案

方案1

AI 電力需求預測 — 精確預測用電需求 万案2

智能電力調度 化備電系統與線雷分配

輸入數據

預測高峰用電時 段

優化電力調配

在非高峰時段充 電

調整高能耗製程

AI 收集並分析歷史生產、天氣和設備數據

AI 識別高峰用電需求 時段 AI 調整電力使用以提 高效率

AI 在電價低時充電設 備 AI 調整製程時間以減 少高峰負荷

四大智慧解決方案

方案1

AI 電力需求預測

方案2

智能電力調度 — 優化備電系統與綠電分配

智能切換備電系統(

監測電力供應 --切換至UPS或發電機 ---優先供電給關鍵設備 ·-'

(1) 儲能系統智慧調配

監控電力負載

調撥儲能電力

地震應變:

- •AI 連接地震預警系統(P 波感測),提前數秒啟動 UPS 備電,防止關鍵設備斷電。
- •震度過大時,降低機台功耗以減少晶圓報廢。
- •若震後電網不穩,AI 調整產線開機數量,減少不穩定供電風險。

電網異常應變:

- AI 偵測電網頻率異常時,啟動微電網,確保 EUV 產線 與關鍵設備 優先供電。
- 若停電持續 超過 2 小時,AI 降低非必要產線耗電,延長儲能使用時間。

方案3

緊急應變管理 (地震、停電 AI 快速應對) 適用範圍(不適用於半導體核心製程):

- •HPC 高效能運算機房
- •局部散熱需求高的設備
- •電力設備、能源回收系統

適合台灣冬季使用,降低水冷系統負擔,提高冷卻效率。

方案4

風冷系統 (輔助冷卻 + 水冷混合)

四大預期效益

2025智慧製造工作坊

提報組別:新竹3