Lecture 19 BUS ADMITTANCE MATRIX AND ELECTRIC LOAD MODELS

Agenda

- ANNOUNCEMENTS
- LECTURE

R.D. del Mundo Ivan B.N.C. Cruz Christian. A. Yap

Announcements

- Long Quiz 2 is on March 25, 2019 from 7 to 9AM
 - Early Exam(6 to 8AM) Takers should answer the survey in UVLE.

POWER SYSTEM MODELLING FOR ANALYSIS RECALL NODAL ANALYSIS

Lecture Outcomes

at the end of the lecture, the student must be able to ...

- Derive the bus admittance matrix of an electric power network
- Observe the effect of using one of Z-I-P load models in the analysis

Perspective

- Circuit Theory
- Per Unit
- Balanced and Unbalanced System

Generator

Sequence Networks

em

Pifferent voltage

transformer transmisque transformer

Transmission Distribution

DRAW THE PER **UNIT CIRCUIT DRAW THE SEQUENCE NETWORKS** P65145

Recall Node Voltage Analysis

Equivalence of Sources

The two sources will be equivalent if V_L and I_L are the same for both circuits.

One-Line Diagram

One-Line Diagram

Impedance Diagram

Admittance Diagram

$$I_1 = E_a/z_a$$
$$y_{01} = 1/z_a$$

$$I_2 = E_b/z_b$$
$$y_{02} = 1/z_b$$

$$I_3 = E_c/z_c$$
$$y_{03} = 1/z_c$$

$$y_{13} = 1/z_d$$
 $y_{14} = 1/z_f$
 $y_{23} = 1/z_e$ $y_{24} = 1/z_g$
 $y_{34} = 1/z_h$

Admittance Diagram

Nodal Analysis

Applying Kirchhoff's Current Law (KCL):

at node 1:

$$I_1 = V_1 y_{01} + (V_1 - V_3) y_{13} + (V_1 - V_4) y_{14}$$

at node 2:

$$I_2 = V_2 y_{02} + (V_2 - V_3) y_{23} + (V_2 - V_4) y_{24}$$

at node 3:

$$I_3 = V_3 y_{03} + (V_3 - V_2) y_{23} + (V_3 - V_4) y_{34} + (V_3 - V_1) y_{13}$$

at node 4:

$$0 = (V_4 - V_1)y_{14} + (V_4 - V_2)y_{24} + (V_4 - V_3)y_{34}$$

Rearranging the equations,

$$I_1 = V_1(y_{01} + y_{13} + y_{14}) - V_3y_{13} - V_4y_{14}$$

$$I_2 = V_2(y_{02} + y_{23} + y_{24}) - V_3y_{23} - V_4y_{24}$$

$$I_3 = V_3(y_{03} + y_{23} + y_{34} + y_{13}) - V_1y_{13} - V_2y_{23} - V_4y_{34}$$

$$0 = V_4(y_{14} + y_{24} + y_{34}) - V_1y_{14} - V_2y_{24} - V_3y_{34}$$

In matrix form,

$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ 0 \end{bmatrix} = \begin{bmatrix} y_{01} + y_{13} + y_{14} & 0 & -y_{13} & -y_{14} \\ 0 & y_{02} + y_{23} + y_{24} & -y_{23} & -y_{24} \\ -y_{13} & -y_{23} & y_{03} + y_{23} + y_{34} + y_{13} & -y_{34} \\ -y_{14} & -y_{24} & -y_{34} & y_{14} + y_{24} + y_{34} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \\ V_4 \end{bmatrix}$$

The standard form of n independent equations:

$$\begin{bmatrix} I_{1} \\ I_{2} \\ I_{3} \\ \vdots \\ I_{n} \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} & Y_{13} & \cdots & Y_{1n} \\ Y_{21} & Y_{22} & Y_{23} & \cdots & Y_{2n} \\ Y_{31} & Y_{32} & Y_{33} & \cdots & Y_{3n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ Y_{n1} & Y_{n2} & Y_{n3} & \cdots & Y_{nn} \end{bmatrix} \begin{bmatrix} V_{1} \\ V_{2} \\ V_{3} \\ \vdots \\ V_{n} \end{bmatrix}$$

$$[I] = [Y_{bus}][V]$$
 $[y] = [A][x]$

Y_{bus} is also called Bus Admittance Matrix

$$[Y_{BUS}] = \begin{bmatrix} Y_{11} & Y_{12} & Y_{13} & \cdots & Y_{1n} \\ Y_{21} & Y_{22} & Y_{23} & \cdots & Y_{2n} \\ Y_{31} & Y_{32} & Y_{33} & \cdots & Y_{3n} \\ \vdots & \vdots & \vdots & \vdots \\ Y_{n1} & Y_{n2} & Y_{n3} & \cdots & Y_{nn} \end{bmatrix}$$

 Y_{ii} = self-admittance, the sum of all admittances terminating on the node (diagonal elements)

 Y_{ij} = mutual admittance, the negative of the admittances connected directly between the nodes identified by the double subscripts

Example

Find the Y-bus for the following power system:

ADMITTANCE DIAGRAM

-j (1+2,5 +2)=55	-(-j2.5) 12-5	- (-52) - JZ		5
1/2/2/	-162-5+ 4+5)	(L,)		45
12	<u>'</u>	J (2+915)		
		-58	J(2+8)	12
	5		72	+0.8

Load Models

LOAD PROFILE

Load Models

$$Load = \%Z + \%I + \%P$$

$$P_i = rac{|V_a^2|}{|V_n^2|} * |S_n| * Z_\% * cos(Z_ heta) + rac{|V_a|}{|V_n|} * |S_n| * I_\% * cos(I_ heta) + |S_n| * P_\% * cos(P_ heta) \ Q_i = rac{|V_a^2|}{|V_n^2|} * |S_n| * Z_\% * sin(Z_ heta) + rac{|V_a|}{|V_n|} * |S_n| * I_\% * sin(I_ heta) + |S_n| * P_\% * sin(P_ heta)$$

where:

- P_i: Real power consumption of the ith load
 - ullet Q_i : Reactive power consumption of the ith load
 - V_a: Actual terminal voltage
 - V_n: Nominal terminal voltage
 - S_n: Apparent Power consumption at nominal voltage
 - ullet $Z_{\%}$: Percent of load that is constant impedance
 - ullet $I_{\%}$: Percent of load that is constant current
 - $P_{\%}$: Percent of load that is constant power
 - Z_{θ} : Phase angle of constant impedance fraction
 - $I_{ heta}$: Phase angle of constant current fraction
 - P_{θ} : Phase angle of constant power fraction

Load Models

If V_R, I_R are known, calculate V_s, I_s if load is defined as:

- a. P + jQ (constant power)
- b. Z (constant impedance)
- c. I (constant current)

$$\frac{V_S = ZJ_R + V_R}{J_S}$$

$$V_{S} = 2+2U$$
 $V_{S} = (2+2)I_{R}$

C.) Constant current

Load Models

If V_s , I_s are known, calculate V_R , I_R if load is defined as:

- a. P + jQ (constant power)
- b. Z (constant impedance)
- c. I (constant current)

$$V_{R} = V_{S} - ZI_{S}$$

$$I_{S} = I_{R}$$

a) constant current

Je 2 Whitant

VR = VS-ZIS

In= Is

FIGURE 6.18

Sample System Diagram

Homework 5

Determine the bus admittance matrix for the following power three phase system) Assume a three phase 100 MVA per unit base. You are given a partial bus admittance matrix. Ignore generator reactance and loads. Numbers are exact.

TABLE 6.9

Bus input data for Problem 6.30

Bus-to-Bus	R per unit	X per unit	B per unit
1-2	0.02	0.06	0.06
1-3	0.08	0.24	0.05
2-3	0.06	0.18	0.04
2-4	0.08	0.24	0.05
2-5	0.02	0.06	0.02
3-4	0.01	0.04	0.01
4-5	0.03	0.10	0.04

Assume Medium Length Lines.

TABLE 6.10

Partially Completed Bus Admittance Matrix (Y_{bus})

6.25 - j18.695 -5.00 + j15.00	-5.00 + j15.00 $12.9167 - j38.665$	-1.25 + j3.75	0	0

Complete Bus matrix is 5x5