Arithmetic Circuits

Logic Design

Iterative Combinational Circuits

- The function implemented often requires that the same subfunction be applied to each bit position.
- Thus, a functional block can be designed for the sub-function
 - used repetitively for each bit position of the overall arithmetic block being designed.

Half Adder

■ TABLE 3-11
Truth Table of Half Adder

Inp	uts	Out	Outputs	
X	Υ	С	S	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	

$$S=AB+AB=A \oplus B$$

 $C=AB$

Full Adder

☐ TABLE 3-12 Truth Table of Full Adder

lr	nput	s	Out	Outputs	
X	Υ	Z	С	S	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

$$S = \overline{X}\overline{Y}Z + \overline{X}Y\overline{Z} + X\overline{Y}\overline{Z} + XYZ$$
$$= X \oplus Y \oplus Z$$

$$C = XY + XZ + YZ$$

$$= XY + Z(XY + XY)$$

$$= XY + Z(X \oplus Y)$$

Copyright ©2016 Pearson Education, All Rights Reserved

4-bit Ripple Carry Adder

 The full adders are connected in cascade, with the carry output from one full adder connected to the carry input of the next full adder.

Adder/Subtractor Circuit

- Using the 2s complement, we have eliminated the subtraction operation and need only the complementer and an adder.
- A B = A + (-B)
 - Take 2's complement of B
 - Perform addition of A and 2's complement of B

