MATH 410 Project: The Asymptotics of Cross-Validation for Model Selection in the Regression Setting

Supervised by: Prof. Mehdi Dagdoug

Diego Urdapilleta de la Parra

McGill University

2025

Table of Contents

- Introduction
- 2 Variable Selection for Linear Models
- 3 Selection of Nonparametric Procedures
- 4 Conclusion

The problem of model selection

Setting: Multiple competing candidate models for a regression task. **Some considerations:**

- Striking a balance: Simpler models offer efficiency and stability, but may underfit; complex models capture structure, but risk overfitting.
- Theoretical assumptions behind models are often unverifiable, motivating comparisons among alternatives.

This work explores the asymptotic behavior of cross-validation as a model selection critetion.

Outline

- Introduction
- Variable Selection for Linear Models
- 3 Selection of Nonparametric Procedures
- 4 Conclusion

Setup and Notation

For positive integers n and p_n , let $(y, \mathbf{x}) : \Omega \to \mathbb{R} \times [0, 1]^{p_n}$ be a real-valued random vector with distribution $\mu_{\mathbf{y}, \mathbf{x}}$ such that

- $\mathbb{E}|y|^2 < \infty$
- $\mathbb{E}\|\mathbf{x}\|^2 < \infty$
- $\mathbb{E}\left[\mathbf{x}\mathbf{x}^{\top}\right] \succ 0$

A Borel-measurable function $f:[0,1]^{p_n}\to\mathbb{R}$ that satisfies

$$f(\mathbf{x}) \stackrel{\mathrm{a.s.}}{=} \mathbb{E}[y \mid \mathbf{x}]$$

is called the *regression* function of y on x.

Let $\mathcal{D}_n := \{(y_i, \mathbf{x}_i) : i \in [n]\}$ be a sample of independent data points drawn from $\mu_{y,\mathbf{x}}$. Define the residual $\epsilon_i := y_i - f(\mathbf{x}_i)$, which yields the decomposition

$$y_i = f(\mathbf{x}_i) + \epsilon_i, \quad i \in [n],$$

Cross-validation

Let J be an index set and let $\{E_j\}_{j\in J}$ be a family of subsets $E_j\subset [n]$ such that $|E_j|=n_1$ for all $j\in J$, and write $V_j:=E_j^c$.

For each subset E_j , we consider the estimation sample $\mathcal{D}_n^{E_j}$ of n_1 data ponts given by

$$\mathcal{D}_n^{E_j} = \{(y_i, \boldsymbol{x}_i) \in \mathcal{D}_n : i \in E_j\}.$$

For each $j \in J$, we fit the model \hat{f} on the estimation sample $\mathcal{D}_n^{E_j}$ and compute the *hold-out* loss against the remaining $n-n_1=:n_2$ data points in $\mathcal{D}_n^{V_j}$:

$$\hat{R}_{n}^{E_{j}} := \frac{1}{n_{2}} \sum_{i \in V_{j}} \left(y_{i} - \hat{f}\left(\mathbf{x}_{i}; \mathcal{D}_{n}^{E_{j}}\right) \right)^{2}$$

Cross-validation

The cross-validation loss estimator is

$$\hat{R}_n^{CV} := \frac{1}{|J|} \sum_{j \in J} \hat{R}_n^{E_j}.$$

Different choices of J and estimation size n_1 yield different variants of cross-validation.

Examples:

- $n_1 = n 1$ for the *leave-one-out* estimator,
- |J| = k and $n_1 = n(k-1)/k$ for the k-fold estimator.

Table of Contents

- Introduction
- Variable Selection for Linear Models
- Selection of Nonparametric Procedures
- 4 Conclusion

Linear models: Setup

We let $A_n \subset 2^{[p_n]}$ be a family of index sets representing candidate models. For $\alpha \in A_n$, we write by $p_n(\alpha) := |\alpha|$ and consider

$$f_{\alpha}(\mathbf{X}) = \mathbf{X}_{\alpha} \boldsymbol{\beta}_{\alpha},$$

- We say $\alpha \in \mathcal{A}_n$ is *correct* if $\mathbf{X}\boldsymbol{\beta} \stackrel{\text{a.s.}}{=} f_{\alpha}(\mathbf{X})$, and we denote by \mathcal{T}_n the set of correct models in \mathcal{A}_n .
- ② We say $\alpha \in \mathcal{A}_n$ is *wrong* if it is not correct, and we denote by \mathcal{T}_n^c the set of wrong models in \mathcal{A}_n .
- **3** We say A_n is *embedded* if there exists an enumeration $\alpha_1, \alpha_2, \ldots, \alpha_k$ of all elements in A_n such that

$$\alpha_1 \subset \alpha_2 \subset \cdots \subset \alpha_k$$
.

Linear models: Consistency and efficiency

Define the losses

$$L_n(\alpha) := \frac{1}{n} \|f(\mathbf{X}) - \hat{f}_{\alpha}(\mathbf{X})\|^2$$
 and $R_n(\alpha) := \mathbb{E}[L_n(\alpha) \mid \mathbf{X}]$

for $\alpha \in \mathcal{A}_n$, with $\hat{f}_{\alpha}(\mathbf{X}) := \mathbf{X}_{\alpha}\hat{\boldsymbol{\beta}}_{\alpha}$.

Let \hat{R}_n be a model selection criterion and let $\hat{\alpha}_n$ be the model selected by minimizing \hat{R}_n over \mathcal{A}_n . Let α_n^* denote the model minimizing R_n over \mathcal{A}_n . We say that \hat{R}_n is consistent if

$$\mathbb{P}\left\{\hat{\alpha}_{n} = \alpha_{n}^{*}\right\} \to 1$$

as $n \to \infty$. We say that \hat{R}_n is assymptotically loss efficient if

$$\frac{L_n(\hat{\alpha}_n)}{L_n(\alpha_n^*)} \stackrel{\mathbb{P}}{\to} 1.$$

The leave-one-out

We define the leave-one-out loss estimator for a model $\alpha \in \mathcal{A}_n$ to be

$$\hat{R}_n^{(1)}(\alpha) := \frac{1}{n} \sum_{i=1}^n \left((y_i - \boldsymbol{x}_{i\alpha}^{\top} \hat{\boldsymbol{\beta}}_{\alpha}^{(i)}) \right).$$

Proposition

For $\alpha \in \mathcal{A}_n$, the leave-one-out estimator $\hat{R}_n^{(1)}(\alpha)$ satisfies the following equality:

$$\hat{R}_n^{(1)}(\alpha) = \frac{1}{n} \sum_{i=1}^n \left(\frac{y_i - \mathbf{x}_{i\alpha}^{\top} \hat{\boldsymbol{\beta}}_{\alpha}}{1 - h_{ii,\alpha}} \right)^2,$$

where $h_{ii,\alpha} = \mathbf{x}_{i\alpha}^{\top} (\mathbf{X}_{\alpha}^{\top} \mathbf{X}_{\alpha})^{-1} \mathbf{x}_{i\alpha}$ denotes the *i*th leverage and $\hat{\boldsymbol{\beta}}_{\alpha}$ is the OLS estimator for model α fitted on the whole data set.

The leave-one-out

Proposition (Shao 1993)

Suppose that \mathcal{T}_n is non-empty and let $\hat{\alpha}^{(1)}$ be the model minimizing $\hat{R}_n^{(1)}(\alpha)$.

1 Under H1, H2, and H3,

$$\lim_{n\to\infty}\mathbb{P}\left\{\hat{\alpha}^{(1)}\in\mathcal{T}_n^c\right\}=0.$$

2 If $p(\alpha^*) < p$,

$$\lim_{n\to\infty}\mathbb{P}\left\{\hat{\alpha}^{(1)}=\alpha^*\right\}\neq 1.$$

The leave-one-out

Interpretation: The leave-one-out places too much weight on the estimation and too little on the evaluation.

- $R_{n_1}(\alpha) = \sigma^2 p(\alpha)/n_1$ for $\alpha \in \mathcal{T}_n$.
- The larger n_1 , the closer $R_{n_1}(\alpha)$ is to a flat line.
- The leave-one-out, adopts the largest possible $n_1 = n 1$, making it difficult for the estimator to distinguish between correct models.

Conjecture: A smaller estimation set and a larger validation set might improve the performance of cross-validation procedures for model selection.

A general perspective: the GIC

A large portion of selection criteria in the literature can be reduced to a general penalized criterion with a penalty of the type

$$pen_{\lambda_n}(\alpha) = \frac{1}{n} \lambda_n \hat{\sigma}_n^2 p_n(\alpha),$$

for some some estimator $\hat{\sigma}_n^2$ of σ^2 and a sequence of real numbers $\{\lambda_n\}_{n\geq 1}$ satisfying $\lambda_n\geq 2$ and $\lambda_n/n\to 0$. This penalty yields the Generalized Information Criterion (Shao 1997):

$$\hat{R}_{n,\lambda_n}(\alpha) := \frac{1}{n} \|\mathbf{y} - \mathbf{X}_{\alpha} \hat{\boldsymbol{\beta}}_{\alpha}\|^2 + \frac{1}{n} \lambda_n \hat{\sigma}_n^2 p_n(\alpha) \quad \text{for } \alpha \in \mathcal{A}_n,$$

We consider two cases: $\lambda_n \equiv 2$ and $\lambda_n \to \infty$

GIC: The case of $\lambda_n \equiv 2$

Theorem

Suppose that $\hat{\sigma}_n^2$ is consistent for σ^2 . Under some regularity assumptions,

- **1** If $|\mathcal{T}_n| \leq 1$ for all but finitely many n, then $\hat{R}_{n,2}$ is asymptotically loss efficient.
- ② Suppose that $|\mathcal{T}_n| > 1$ for all but finitely many n. If there exists a positive integer m such that $\mathbb{E}\left[y_1 \mathbf{x}_1^{\top} \boldsymbol{\beta}\right]^{4m} < \infty$ and

$$\sum_{\alpha \in \mathcal{T}_n} \frac{1}{(p_n(\alpha))^m} \xrightarrow{n \to \infty} 0 \quad \text{or} \quad \sum_{\substack{\alpha \in \mathcal{T}_n, \\ \alpha \neq \alpha^*}} \frac{1}{(p_n(\alpha) - p_n(\alpha^*))^m} \xrightarrow{n \to \infty} 0,$$

then $\hat{R}_{n,2}$ is asymptotically loss efficient.

◆□▶◆圖▶◆臺▶◆臺▶ 臺 釣۹@

GIC: The case of $\lambda_n \equiv 2$

Theorem (continued)

• Suppose that $|\mathcal{T}_n| > 1$ for all but finitely many n. If $|\mathcal{T}_n|$ is bounded, then the condition that

$$p_n(\alpha_n^*) \to \infty$$
 or $\min_{\substack{\alpha \in \mathcal{T}_n, \\ \alpha \neq \alpha^*}} (p_n(\alpha) - p_n(\alpha^*)) \to \infty$ (2)

is necessary and sufficient for the asymptotic loss efficiency of $\hat{R}_{n,2}$.

Takeaway: The GIC estimator with $\lambda_n \equiv 2$ is asymptotically loss efficient whenever there is at most one correct model with fixed dimension.

GIC: The case of $\lambda_n \to \infty$

Theorem (Shao 1997)

Suppose that

$$\limsup_{n \to \infty} \sum_{\alpha \in \mathcal{T}_n} \frac{1}{p_n(\alpha)^m} < \infty \tag{3}$$

for some $m \geq 1$ with $\mathbb{E}\left[e_i^{4m}\right] < \infty$. Under some regularity conditions,

- If $\lambda_n \to \infty$ and $\lambda_n p_n/n \to 0$ are satisfied, then \hat{R}_{n,λ_n} is asymptotically loss efficient.
- ② Suppose that $\lambda_n \to \infty$ and $\lambda_n/n \to 0$. If there exists $\alpha_0 \in \mathcal{T}_n$ with $p_n(\alpha_0)$ constant for all but finitely many n, then \hat{R}_{n,λ_n} is consistent.

Takeaway: The GIC with $\lambda_{n\to\infty}$ performs well when there exist fixed-dimension correct models.

Cross-validation and the GIC

Theorem (Shao 1997)

Under regularity conditions, the following hold.

- The assertions in about the GIC with $\lambda_n \equiv 2$ apply for the leave-one-out cross-validation estimator $\hat{R}_n^{(1)}$.
- ② If $d_n \leq n$ is chosen so that $d_n/n \to 1$ as $n \to \infty$, then the delete- d_n cross-validation estimator $\hat{R}_n^{(d_n)}$ has the same asymptotic behavior as the GIC with $\lambda \to \infty$. Specifically, if

$$\frac{p_n}{n-d_n}\to 0$$

and the splits are well "balanced," then $\hat{R}_n^{(d_n)}$ is consistent in selection whenever \mathcal{A}_n contains at least one correct model with fixed dimension.

Cross-validation and the GIC

Letting $n_1 := n - d_n$ and $n_2 := d_n$, the conditions in 2. of the latter Theorem can be written as

$$rac{n_2}{n}
ightarrow 1$$
 and $rac{
ho_n}{n_1}
ightarrow 0$.

If p_n is fixed for large enough n, we can equivalently write

$$\frac{n_2}{n_1} \to \infty$$
 and $n_1 \to \infty$. (4)

This confirms our conjecture from before: a dominating validation size is necessary for cross-validation methods to be able to discriminate among correct models.

Table of Contents

- Introduction
- 2 Variable Selection for Linear Models
- 3 Selection of Nonparametric Procedures
- 4 Conclusion

The nonparametric setting

- In many applications, the goal is accurate prediction, not a precise model of the data-generating process.
- The idea of a single "true" or "correct" model is less relevant.
- For many estimators, we can prove risk bounds of the form

$$\sup_{f\in\mathcal{F}} \mathbb{E}||f - \hat{f}_n||^2 \le C\psi_n^2$$

for certain constants C, positive sequences $\psi_n \to 0$, and classes of functions \mathcal{F} .

Inclusion/exclusion of relevant covariates remains important.

The nonparametric setting

We will consider the simplified scenario of selecting between two regression procedures, denoted δ_1 and δ_2 , that yield estimators $\hat{f}_{n,1}$ and $\hat{f}_{n,2}$ of the regression function f.

Definition: Let L_n be a loss function. We say δ_1 is asymptotically better than δ_2 under L_n if, for $0 < \varepsilon < 1$, there exists $c_{\varepsilon} > 0$ such that

$$\mathbb{P}\left\{L_{n}\left(\hat{f}_{n,2}\right) \geq (1+c_{\epsilon})L_{n}\left(\hat{f}_{n,2}\right)\right\} \geq 1-\varepsilon$$

for all but finitely many n.

Given that δ_1 is asymptotically better than δ_2 , we say that a selection procedure is consistent if it selects δ_1 with probability tending to 1 as $n \to \infty$.

Recall the hold-out loss estimator, defined by

$$\hat{R}_{\text{ho}}(\hat{f}_{n,j}) = \sum_{i=n_1+1}^{n} \left(y_i - \hat{f}_{n_1,j}(\mathbf{x}_i) \right)^2 \quad \text{for } j = 1, 2.$$
 (5)

We write $\hat{f}_n^{(\text{ho})}$ to denote the estimator selected by \hat{R}_{ho} . To show the consistency of \hat{R}_{ho} , we establish two assumptions:

• We assume the existance of two positive sequences $\{A_n\}_{n\geq 1}$ and $\{M_n\}_{n\geq 1}$ such that

$$\|f - \hat{f}_{n,j}\|_{\infty} = O_{\mathbb{P}}(A_n) \quad \text{and} \quad \frac{\|f - f_{n,j}\|_4}{\|f - \hat{f}_{n,j}\|_2} = o_{\mathbb{P}}(M_n)$$
 (6)

• We will assume that one of δ_1 and δ_2 is asymptotically better than the other.

Theorem (Yang 2007)

Suppose that the conditions established above hold. Suppose, furthermore, that

- \bullet $n_1 \to \infty$ as $n \to \infty$
- 2 $n_2 \to \infty$ as $n \to \infty$

Then, the hold-out CV procedure is consistent.

Example

Suppose that $\hat{f}_{n,1}$ and $\hat{f}_{n,2}$ are two nonparametric estimators with rates of convergence $p_n=O\left(n^{-4/9}\right)$ and $q_n=O\left(n^{-1/3}\right)$, respectively. Suppose that (6) is satisfied with $A_n=O(1)$ and $M_n=O(1)$. If we choose splits such that $n_1\to\infty$ and $n_2\to\infty$ as $n\to\infty$, then $n_2M_{n_1}^{-4}$ is clearly satisfied and

$$\frac{\sqrt{n_2}\max(p_{n_1},q_{n_1})}{1+A_{n_1}}\geq \frac{n_2^{1/2}}{n_1^{1/3}}\to\infty$$

is satisfied if $n_1 = o\left(n_2^{3/2}\right)$. In other words, it is possible for the estimation size n_1 to be dominating.

Example

On the other hand, if at least one of $\hat{f}_{n,1}$ and $\hat{f}_{n,2}$ has a parametric rate of convergence $O(n^{-1/2})$, then

$$\sqrt{n_2} \max(p_{n_1},q_{n_1}) \geq \left(rac{n_2}{n_1}
ight)^{1/2}
ightarrow \infty$$

is satisfied whenever $n_2/n_1 \to \infty$. This agrees with the conclusion from Section 2, in which we showed that cross-validation is often consistent if the validation size dominates.

We introduce the majority-vote cross-validation: For each permutation $i \mapsto \pi(i)$ of the data, we compute the estimators $\hat{f}_{n_1,1}$ and $\hat{f}_{n_1,2}$ using the first n_1 data points,

$$\mathcal{D}_n^{E_1} = \left\{ \left(y_{\pi(1)}, \boldsymbol{x}_{\pi(1)} \right), \dots, \left(y_{\pi(n_1)}, \boldsymbol{x}_{\pi(n_1)} \right) \right\},\,$$

as the training sample and the remaining $n_2=n-n_1$ elements as the validation sample. We then find the estimator that minimizes the hold-out loss

$$\hat{R}_{\pi}(\hat{f}_{n,j}) = \sum_{i=n_1+1}^{n} \left(y_{\pi(i)} - \hat{f}_{n_1,j} \left(\mathbf{x}_{\pi(i)} \right) \right)^2$$
 for $j = 1, 2$.

The chosen estimator is the one favored by the majority of the permutations. Let

$$au_{\pi} = \mathbb{1}_{\left[\hat{R}_{\pi}(\hat{f}_{n,1}) \leq \hat{R}_{\pi}(\hat{f}_{n,2})\right]}$$

The majority-vote estimator selection rule is as follows:

$$\hat{f}_n = egin{cases} \hat{f}_{n,1} & ext{if } \sum_{\pi \in \Pi} au_\pi \geq n!/2, \\ \hat{f}_{n,2} & ext{otherwise,} \end{cases}$$

where Π denotes the set of all permutations of [n].

Theorem (Yang 2007)

Under the conditions of the previous Theorem and the condition that the data is iid, the majority-vote cross-validation method is consistent.

Proof: Suppose that δ_1 is asymptotically better than δ_2 . For $\pi \in \Pi$, we have that

$$\mathbb{P}\left\{\hat{L}_{\pi}\left(\hat{f}_{n,1}\right) \leq \hat{L}_{\pi}\left(\hat{f}_{n_{1},2}\right)\right\} = \mathbb{E}\left[\tau_{\pi}\right] \stackrel{(*)}{=} \mathbb{E}\left[\frac{1}{n!}\sum_{\pi \in \Pi}\tau_{\pi}\right].$$

The equality at (*) follows from the fact that the data are iid, hence exchangeable, and thus the τ_{π} are identically distributed. By the previous theorem, the right-hand side converges to 1 as $n \to \infty$. Since the average $1/n! \sum_{\pi} \tau_{\pi}$ is almost surely at most 1, it follows that $1/n! \sum_{\pi} \tau_{\pi} \to 1$ in probability, and the majority-vote cross-validation method is consistent. (□) (□) (□) (□) (□) (□)

Remark 1: The proof does not require using the entire set Π of permutations for the majority vote.

Remark 2: These conditions are not merely sufficient but necessary \implies The number of splits does not affect consistency. In other words, multiple splits in cross-validation cannot rescue an inconsistent single-split procedure.

Nonparametric selection: Key points

- Key distinction: In nonparametric settings, training set dominance is acceptable for consistency, unlike the parametric case.
- Cross-validation is effective for comparing estimators with different convergence rates.
- Both single-split and voting methods can yield consistent selection under suitable norm conditions.
- Leave-one-out CV is generally inadequate due to its small validation size.
- Averaging approaches may retain more data and are likely asymptotically equivalent to voting methods (Yang 2007).

Table of Contents

- Introduction
- Variable Selection for Linear Models
- 3 Selection of Nonparametric Procedures
- 4 Conclusion

Conclusion: Cross-Validation for Model Selection

Linear Models:

- For consistent model selection, validation set size must dominate: $\frac{n_2}{n_1} \to \infty$ as $n \to \infty$
- The leave-one-out CV is effective only when at most one correct model with fixed dimension exists.
- The delete-d method performs well when fixed-dimension correct models exist.

Nonparametric Setting:

- Training set dominance can be acceptable for consistency.
- Single-split and voting methods can both yield consistent selection under suitable norm conditions.
- Leave-one-out CV remains inadequate due to minimal validation size
- Multiple splits alone cannot rescue an inconsistent single-split procedure

Conclusion

Practical Implications:

- Though computationally costly, cross-validation may be worth using.
- The result on the majority-vote approach suggests that few splits can still yield consistency (i.e., k-fold remains useful).

Remain to be addressed:

- Split ratios.
- Number of splits.
- Voting versus averaging.

Questions?

- How do you use cross-validation?
- What behaviors have you observed in practice?