

TSA08 – Multivariate Time Series Models Jakey BLUE

When there are more than one time series

- If h time series: $\{y_{1,t}, y_{2,t}, ..., y_{h,t}\}$, are having interactive and dynamic correlation structure, we can use the multivariate stochastic models to characterize these time series.
 - MA, AR, ARMA, ARIMA, SARIMA → VMA, VAR, VARMA, VARIMA, VSARIMA

$$\mathbf{y}_{t} = \begin{bmatrix} y_{1,t} \\ y_{2,t} \\ \vdots \\ y_{h,t} \end{bmatrix} = \begin{bmatrix} y_{1,1} & y_{1,2} & \cdots & y_{1,t} \\ y_{2,1} & y_{2,2} & \cdots & y_{2,t} \\ \vdots & \vdots & \ddots & \vdots \\ y_{h,1} & y_{h,2} & \cdots & y_{h,t} \end{bmatrix}, \mathbf{a}_{t} \sim N_{h} \left(\mathbf{0}, \Sigma = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1h} \\ \sigma_{12} & \sigma_{22} & \cdots & \sigma_{2h} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1h} & \sigma_{2h} & \cdots & \sigma_{hh} \end{bmatrix} \right)$$

VMA(q) Models

Bivariate VMA(1), i.e., h = 2

$$\begin{bmatrix} y_{1,t} \\ y_{2,t} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} + \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} \theta_{11} & \theta_{12} \\ \theta_{21} & \theta_{22} \end{bmatrix} B \right) \begin{bmatrix} a_{1,t} \\ a_{2,t} \end{bmatrix}.$$

$$y_{1,t} = \mu_1 + a_{1,t} - \theta_{11}a_{1,t-1} - \theta_{12}a_{2,t-1} = \mu_1 + (1 - \theta_{11}B)a_{1,t} - \theta_{12}a_{2,t-1}$$

$$y_{2,t} = \mu_2 + a_{2,t} - \theta_{21}a_{1,t-1} - \theta_{22}a_{2,t-1} = \mu_2 + (1 - \theta_{22}B)a_{2,t} - \theta_{21}a_{1,t-1}$$

• Without loss of generality, \mathbf{y}_t is centered, i.e., $\mathbf{\mu} = \mathbf{0}$.

$$\mathbf{y}_t = (\mathbf{I}_2 - \mathbf{\Theta}B)\mathbf{a}_t$$

Invertible Form:

$$\mathbf{a}_t = (\mathbf{I}_2 - \mathbf{\Theta}B)^{-1}\mathbf{y}_t = (\mathbf{I}_2 + \mathbf{\Theta}B + \mathbf{\Theta}^2B^2 + \mathbf{\Theta}^3B^3 + \cdots)\mathbf{y}_t$$

h Variates VMA(1)

• Model:
$$\mathbf{y}_t = \mathbf{\mu} + \mathbf{a}_t - \mathbf{\Theta} \mathbf{a}_{t-1} = \mathbf{\mu} + (\mathbf{I}_h - \mathbf{\Theta} B) \mathbf{a}_t$$

$$\begin{bmatrix} y_{1,t} \\ y_{2,t} \\ \vdots \\ y_{h,t} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_h \end{bmatrix} + \begin{pmatrix} \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} - \begin{bmatrix} \theta_{11} & \theta_{12} & \cdots & \theta_{1h} \\ \theta_{21} & \theta_{22} & \cdots & \theta_{2h} \\ \vdots & \vdots & \ddots & \vdots \\ \theta_{h1} & \theta_{h2} & \cdots & \theta_{hh} \end{bmatrix} B \end{pmatrix} \begin{bmatrix} a_{1,t} \\ a_{2,t} \\ \vdots \\ a_{h,t} \end{bmatrix}$$

- In fact, each marginal series $y_{i,t}$ can be seen as an univariate MA(1).
- The invertible condition lies in: the roots to $|(\mathbf{I}_h \mathbf{\Theta}B)| = 0$ are outside the unit circle.

h Variates VMA(q)

• Model:
$$\mathbf{y}_t = \mathbf{\mu} + (\mathbf{I}_h - \mathbf{\Theta}_1 B - \mathbf{\Theta}_2 B^2 - \dots - \mathbf{\Theta}_q B^q) \mathbf{a}_t$$

$$\mathbf{\Theta}_{i} \triangleq \begin{bmatrix} \theta_{11}^{(i)} & \theta_{12}^{(i)} & \cdots & \theta_{1h}^{(i)} \\ \theta_{21}^{(i)} & \theta_{22}^{(i)} & \cdots & \theta_{2h}^{(i)} \\ \vdots & \vdots & \ddots & \vdots \\ \theta_{h1}^{(i)} & \theta_{h2}^{(i)} & \cdots & \theta_{hh}^{(i)} \end{bmatrix}$$

- Each marginal series $y_{i,t}$ can be seen as an univariate MA(q).
- The invertible condition lies in: the roots to $|(\mathbf{I}_h \mathbf{\Theta}_1 B \mathbf{\Theta}_2 B^2 \cdots |\Theta_a B^q| = 0$ are outside the unit circle.

Inverted Form of VMA(q)

 \bullet Let \mathbf{y}_t be centered, i.e, $\mathbf{y}_t = \mathbf{y}_t - \mathbf{\mu}$.

$$\mathbf{a}_{t} = \left(\mathbf{I}_{h} - \mathbf{\Theta}_{1}B - \mathbf{\Theta}_{2}B^{2} - \dots - \mathbf{\Theta}_{q}B^{q}\right)^{-1}\mathbf{y}_{t} \triangleq \left(\mathbf{I}_{h} - \mathbf{\Pi}_{1}B - \mathbf{\Pi}_{2}B^{2} - \dots\right)\mathbf{y}_{t}$$
$$\left(\mathbf{I}_{h} - \mathbf{\Theta}_{1}B - \mathbf{\Theta}_{2}B^{2} - \dots - \mathbf{\Theta}_{q}B^{q}\right)\left(\mathbf{I}_{h} - \mathbf{\Pi}_{1}B - \mathbf{\Pi}_{2}B^{2} - \dots\right) = \mathbf{I}_{h}$$

 \odot By comparing the coefficients in front of B^i

$$\Pi_1 = -\mathbf{\Theta}_1$$

$$\Pi_2 = -\mathbf{\Theta}_1^2 - \mathbf{\Theta}_2$$

$$\Pi_j = \mathbf{\Theta}_1 \Pi_{j-1} + \mathbf{\Theta}_2 \Pi_{j-2} + \dots + \mathbf{\Theta}_q \Pi_{j-q}$$

 \odot Therefore, the inverted form of VMA(q):

$$\mathbf{y}_{t} = \mathbf{a}_{t} + \mathbf{\Pi}_{1} \mathbf{y}_{t-1} + \mathbf{\Pi}_{2} \mathbf{y}_{t-2} + \cdots$$

VAR(p) Models

Bivariate VAR(1)

- With the same fashion, the stationary condition for VAR(1) is to have the roots, i.e., b_1 and b_2 , $|(\mathbf{I}_2 \mathbf{\Phi}B)| = 0$ outside the unit circle.
- \bullet Each marginal series, $y_{i,t}$, can be viewed as an ARMA(2,1) model.

h Variates VAR(p)

$$\mathbf{\Phi}_{i} \triangleq \begin{bmatrix} \phi_{11}^{(i)} & \phi_{12}^{(i)} & \cdots & \phi_{1h}^{(i)} \\ \phi_{21}^{(i)} & \phi_{22}^{(i)} & \cdots & \phi_{2h}^{(i)} \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{h1}^{(i)} & \phi_{h2}^{(i)} & \cdots & \phi_{hh}^{(i)} \end{bmatrix}.$$

- Stationary conditions of VAR(p): the roots to $|(\mathbf{I}_h \mathbf{\Phi}_1 B \mathbf{\Phi}_2 B^2 \cdots \mathbf{\Phi}_p B^p)| = 0$ are outside the unit circle.
- Each marginal series, $y_{i,t}$, is following an ARMA(hp, hp p) model.

Random Shock Form of VAR(1)

 \bullet Let \mathbf{y}_t be centered, i.e, $\mathbf{y}_t = \mathbf{y}_t - \mathbf{\mu}$.

$$\mathbf{y}_{t} = \left(\mathbf{I}_{h} - \mathbf{\Phi}_{1}B - \mathbf{\Phi}_{2}B^{2} - \dots - \mathbf{\Phi}_{p}B^{p}\right)^{-1}\mathbf{a}_{t} \triangleq \left(\mathbf{I}_{h} + \mathbf{\Psi}_{1}B + \mathbf{\Psi}_{2}B^{2} + \dots\right)\mathbf{a}_{t}$$

$$\left(\mathbf{I}_{h} - \mathbf{\Phi}_{1}B - \mathbf{\Phi}_{2}B^{2} - \dots - \mathbf{\Phi}_{p}B^{p}\right)\left(\mathbf{I}_{h} + \mathbf{\Psi}_{1}B + \mathbf{\Psi}_{2}B^{2} + \dots\right) = \mathbf{I}_{h}$$

$$\Psi_1 = \Phi_1$$

$$\Psi_2 = \Phi_1 \Psi_1 + \Phi_2$$

$$\Psi_j = \Phi_1 \Psi_{j-1} + \Phi_2 \Psi_{j-2} + \dots + \Phi_p \Psi_{j-p}, \text{ for } j \ge 3.$$

h Variates VARMA(p, q)

 \bullet Model: $(\mathbf{y}_t = \mathbf{y}_t - \mathbf{\mu})$

$$(\mathbf{I}_h - \mathbf{\Phi}_1 B - \mathbf{\Phi}_2 B^2 - \dots - \mathbf{\Phi}_p B^p) \mathbf{y}_t = (\mathbf{I}_h - \mathbf{\Theta}_1 B - \mathbf{\Theta}_2 B^2 - \dots - \mathbf{\Theta}_q B^q) \mathbf{a}_t$$

- The invertible and stationary conditions are the same as those in VMA(q) and VAR(p).
 - Invertibility: $\left| \left(\mathbf{I}_h \mathbf{\Theta}_1 B \mathbf{\Theta}_2 B^2 \dots \mathbf{\Theta}_q B^q \right) \right| = 0$
 - Stationarity: $|(\mathbf{I}_h \mathbf{\Phi}_1 B \mathbf{\Phi}_2 B^2 \dots \mathbf{\Phi}_p B^p)| = 0$

Inverted & Random Shock Forms

Inverted Form

$$\mathbf{a}_{t} = (\mathbf{I}_{h} - \mathbf{\Theta}_{1}B - \mathbf{\Theta}_{2}B^{2} - \dots - \mathbf{\Theta}_{q}B^{q})^{-1}(\mathbf{I}_{h} - \mathbf{\Phi}_{1}B - \mathbf{\Phi}_{2}B^{2} - \dots - \mathbf{\Phi}_{p}B^{p})\mathbf{y}_{t}$$

$$\triangleq (\mathbf{I}_{h} - \mathbf{\Pi}_{1}B - \mathbf{\Pi}_{2}B^{2} - \dots)\mathbf{y}_{t}$$

Random Shock Form

$$\mathbf{y}_t = (\mathbf{I}_h - \mathbf{\Phi}_1 B - \mathbf{\Phi}_2 B^2 - \dots - \mathbf{\Phi}_p B^p)^{-1} (\mathbf{I}_h - \mathbf{\Theta}_1 B - \mathbf{\Theta}_2 B^2 - \dots - \mathbf{\Theta}_q B^q) \mathbf{a}_t$$
$$= (\mathbf{I}_h + \mathbf{\Psi}_1 B + \mathbf{\Psi}_2 B^2 + \dots) \mathbf{a}_t$$

VARMA(1, 1)

Inverted Form

$$\mathbf{a}_t = (\mathbf{I}_h - \mathbf{\Theta}B)^{-1}(\mathbf{I}_h - \mathbf{\Phi}B)\mathbf{y}_t = (\mathbf{I}_h + \mathbf{\Theta}B + \mathbf{\Theta}^2B^2 + \cdots)(\mathbf{I}_h - \mathbf{\Phi}B)\mathbf{y}_t$$

$$\triangleq (\mathbf{I}_h - \mathbf{\Pi}_1B - \mathbf{\Pi}_2B^2 - \cdots)\mathbf{y}_t$$

$$\Pi_1 = \mathbf{\Phi} - \mathbf{\Theta}$$

$$\Pi_j = \mathbf{\Theta}^{j-1} \Pi_1 = \mathbf{\Theta}^{j-1} (\mathbf{\Phi} - \mathbf{\Theta})$$

Random Shock Form

$$\mathbf{y}_t = (\mathbf{I}_h - \mathbf{\Phi}B)^{-1}(\mathbf{I}_h - \mathbf{\Theta}B)\mathbf{a}_t = (\mathbf{I}_h + \mathbf{\Phi}B + \mathbf{\Phi}^2B^2 + \cdots)(\mathbf{I}_h - \mathbf{\Theta}B)\mathbf{a}_t$$

$$\triangleq (\mathbf{I}_h + \mathbf{\Psi}_1B + \mathbf{\Psi}_2B^2 + \cdots)\mathbf{a}_t$$

$$\Psi_1 = \mathbf{O} - \mathbf{\Phi}$$

$$\Psi_j = \mathbf{\Phi}^{j-1} \Psi_1 = \mathbf{\Phi}^{j-1} (\mathbf{O} - \mathbf{\Phi})$$

h Variates VARIMA(p, d, q)

 \bullet Model: $(\mathbf{y}_t = \mathbf{y}_t - \mathbf{\mu})$

$$(\mathbf{I}_h - \mathbf{\Phi}_1 B - \mathbf{\Phi}_2 B^2 - \dots - \mathbf{\Phi}_p B^p)(\mathbf{I}_h - B)^d \mathbf{y}_t$$

= $(\mathbf{I}_h - \mathbf{\Theta}_1 B - \mathbf{\Theta}_2 B^2 - \dots - \mathbf{\Theta}_q B^q) \mathbf{a}_t$

- Special Case: VARIMA(0,1,1) = VIMA(1,1), $(\mathbf{I}_h - B)\mathbf{y}_t = (\mathbf{I}_h - \mathbf{\Theta}B)\mathbf{a}_t$
 - is also known as the "multivariate exponential smoothing model".

Seasonal VARIMA → VSARIMA

• h variates VSARIMA $(p, \{d_i\}_{1}^{h}, q) \times (P, \{D_i\}_{1}^{h}, Q)_{s}$, model is expressed as

$$\begin{aligned} & \mathbf{\Phi}(B)\mathbf{\Phi}_{S}(B^{S})\mathbf{D}(B)\mathbf{D}(B^{S})\mathbf{y}_{t} = \mathbf{\Theta}(B)\mathbf{\Theta}_{S}(B^{S})\mathbf{a}_{t} \\ & \mathbf{\Phi}(B) = \mathbf{I}_{h} - \mathbf{\Phi}_{1}B - \mathbf{\Phi}_{2}B^{2} - \dots - \mathbf{\Phi}_{p}B^{p} \\ & \mathbf{\Theta}(B) = \mathbf{I}_{h} - \mathbf{\Theta}_{1}B - \mathbf{\Theta}_{2}B^{2} - \dots - \mathbf{\Theta}_{q}B^{q} \\ & \mathbf{\Phi}_{S}(B^{S}) = \mathbf{I}_{h} - \mathbf{\Phi}_{S}^{*}B^{S} - \mathbf{\Phi}_{2S}^{*}B^{2S} - \dots - \mathbf{\Phi}_{PS}^{*}B^{P} \\ & \mathbf{\Theta}_{S}(B^{S}) = \mathbf{I}_{h} - \mathbf{\Theta}_{S}^{*}B^{S} - \mathbf{\Theta}_{2S}^{*}B^{2S} - \dots - \mathbf{\Theta}_{QS}^{*}B^{Q} \\ & \mathbf{D}(B) = \begin{bmatrix} (1 - B)^{d_{1}} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & (1 - B)^{d_{h}} \end{bmatrix}, \mathbf{D}(B^{S}) = \begin{bmatrix} (1 - B^{S})^{D_{1}} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & (1 - B^{S})^{D_{h}} \end{bmatrix} \end{aligned}$$

An Example: Investment, Consumption, and Income

 Investment usually works as an external factor, while consumption and income interact internally.

$$\begin{cases} y_{1,t} - \beta_1 y_{2,t} - \alpha_{11} y_{1,t-1} - \alpha_{12} y_{2,t-1} - \gamma_{11} x_t - \gamma_{12} x_{t-1} = a_{1,t} \\ y_{2,t} - \beta_2 y_{1,t} - \alpha_{21} y_{1,t-1} - \alpha_{22} y_{2,t-1} - \gamma_{21} x_t - \gamma_{22} x_{t-1} = a_{2,t} \\ x_t - \omega x_{t-1} = a_{3,t} \end{cases}$$

$$\begin{bmatrix} 1 & -\beta_1 & -\gamma_{11} \\ -\beta_2 & 1 & -\gamma_{21} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} y_{1,t} \\ y_{2,t} \\ x_t \end{bmatrix} - \begin{bmatrix} \alpha_{11} & \alpha_{12} & \gamma_{12} \\ \alpha_{21} & \alpha_{22} & \gamma_{22} \\ 0 & 0 & \omega \end{bmatrix} \begin{bmatrix} y_{1,t-1} \\ y_{2,t-1} \\ x_{t-1} \end{bmatrix} = \begin{bmatrix} a_{1,t} \\ a_{2,t} \\ a_{3,t} \end{bmatrix}$$

$$\mathbf{A}\mathbf{z}_t - \mathbf{C}\mathbf{z}_{t-1} = \mathbf{a}_t \text{ or } \mathbf{z}_t - \mathbf{A}^{-1}\mathbf{C}\mathbf{z}_{t-1} = \mathbf{A}^{-1}\mathbf{a}_t$$

Constructing a Multivariate Time Series Model

Identification, Estimation, Diagnosis

Multivariate Time Series Model Construction

Identifying VAR, VMA, VARMA

- ullet Recall the art of identifying AR(p), MA(q), ARMA(p, q)
 - ACF, PACF, EACF
- To identify VAR, VMA, VARMA, we need
 - CCM (Cross Covariance Matrix) ← ACF
 - PAR (Partial Autoregressive Matrix) ← PACF
 - ECCM (Extended Cross Covariance Matrix) ← EACF

CCM (Cross Covariance Matrix)

• Let $\mathbf{y}_t = \mathbf{y}_t - \mathbf{\mu}$, the lag k CCM is defined as:

$$\Gamma(k) = \operatorname{cov}[\mathbf{y}_{t}, \mathbf{y}_{t-k}] = \operatorname{E}[\mathbf{y}_{t}\mathbf{y}_{t-k}'] = \operatorname{E}\begin{bmatrix}\begin{bmatrix}y_{1,t}\\y_{2,t}\\\vdots\\y_{h,t}\end{bmatrix}[y_{1,t-k} \quad y_{2,t-k} \quad \dots \quad y_{h,t-k}]\end{bmatrix}$$

$$= \begin{bmatrix}\sigma_{11}(k) & \sigma_{12}(k) & \cdots & \sigma_{1h}(k)\\\sigma_{21}(k) & \sigma_{22}(k) & \cdots & \sigma_{2h}(k)\\\vdots & \vdots & \ddots & \vdots\\\sigma_{h1}(k) & \sigma_{h2}(k) & \cdots & \sigma_{hh}(k)\end{bmatrix}, \text{ where } \sigma_{ii}(k) = \operatorname{E}[y_{i,t}y_{i,t-k}], \text{ and } \sigma_{ij}(k) = \operatorname{E}[y_{i,t}y_{j,t-k}]$$

CCM (Cross Correlation Matrix)

$$\rho_{ii}(k) = \frac{\text{cov}[y_{i,t}, y_{i,t-k}]}{V[y_{i,t}]} = \frac{\sigma_{ii}(k)}{\sigma_{ii}(0)}, \rho_{ij}(k) = \frac{\text{cov}[y_{i,t}, y_{j,t-k}]}{\sqrt{V[y_{i,t}]V[y_{j,t}]}} = \frac{\sigma_{ij}(k)}{\sqrt{\sigma_{ii}(0)\sigma_{jj}(0)}}$$

The Cross Correlation Matrix is expressed as:

$$P(k) = \begin{bmatrix} \rho_{11}(k) & \rho_{12}(k) & \cdots & \rho_{1h}(k) \\ \rho_{21}(k) & \rho_{22}(k) & \cdots & \rho_{2h}(k) \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{h1}(k) & \rho_{h2}(k) & \cdots & \rho_{hh}(k) \end{bmatrix}$$

CCM Properties

$$P(k) = \Lambda^{-1}\Gamma(k)\Lambda^{-1}, \text{ where } \Lambda = \begin{bmatrix} \sqrt{\sigma_{11}(0)} & 0 & \cdots & 0 \\ 0 & \sqrt{\sigma_{22}(0)} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sqrt{\sigma_{hh}(0)} \end{bmatrix}$$

CCM of VMA(1): $\mathbf{y}_t = \mathbf{a}_t - \mathbf{\Theta} \mathbf{a}_{t-1}$

$$\Gamma(k) = E[y_t y'_{t-k}] = E[a_t y'_{t-k}] - E[\Theta a_{t-1} y'_{t-k}] = E[a_t y'_{t-k}] - \Theta E[a_{t-1} y'_{t-k}].$$

 \bullet If k=0,

$$\Gamma(0) = E[\mathbf{y}_t \mathbf{y}_t'] = E[\mathbf{a}_t (\mathbf{a}_t' - \mathbf{a}_{t-1}' \mathbf{\Theta}')] - \mathbf{\Theta} E[\mathbf{a}_{t-1} (\mathbf{a}_t' - \mathbf{a}_{t-1}' \mathbf{\Theta}')]$$

$$= E[\mathbf{a}_t \mathbf{a}_t'] - E[\mathbf{a}_t \mathbf{a}_{t-1}'] \mathbf{\Theta}' - \mathbf{\Theta} E[\mathbf{a}_{t-1} \mathbf{a}_t'] + \mathbf{\Theta} E[\mathbf{a}_{t-1} \mathbf{a}_{t-1}'] \mathbf{\Theta}'$$

$$= \mathbf{\Sigma} + \mathbf{\Theta} \mathbf{\Sigma} \mathbf{\Theta}'$$

 \bullet If k=1,

$$\Gamma(1) = E[y_t y'_{t-1}] = E[a_t(a'_{t-1} - a'_{t-2} \Theta')] - \Theta E[a_{t-1}(a'_{t-1} - a'_{t-2} \Theta')] = -\Theta \Sigma$$

• For $k \geq 2$, $\Gamma(k) = 0$.

What do you observe?

CCM of VAR(1): $\mathbf{y}_t = \mathbf{\Phi} \mathbf{y}_{t-1} + \mathbf{a}_t$

$$\mathbf{\Gamma}(k) = \mathrm{E}[\mathbf{y}_t \mathbf{y}_{t-k}'] = \mathbf{\Phi} \mathrm{E}[\mathbf{y}_{t-1} \mathbf{y}_{t-k}'] - \mathrm{E}[\mathbf{a}_t \mathbf{y}_{t-k}'].$$

 \bullet If k=0,

$$\Gamma(0) = \Phi\Gamma(-1) + \Sigma = \Phi\Gamma'(1) + \Sigma$$

 \bullet If k=1,

$$\Gamma(1) = \Phi\Gamma(0) + \mathbf{0} = \Phi\Gamma(0)$$

 \bullet If k=2,

$$\Gamma(2) = \Phi\Gamma(1) = \Phi^2\Gamma(0)$$

 \bullet For $k \geq 2$,

$$\mathbf{\Gamma}(k) = \mathbf{\Phi}^k \mathbf{\Gamma}(0)$$

What do you observe?

Furthermore,

$$\mathbf{P}(k) = \mathbf{\Lambda} \mathbf{\Phi}^k \mathbf{\Gamma}(0) \mathbf{\Lambda} = \mathbf{\Lambda} \mathbf{\Phi}^k \mathbf{\Lambda}^{-1} \mathbf{\Lambda} \mathbf{\Gamma}(0) \mathbf{\Lambda} = \left(\mathbf{\Lambda} \mathbf{\Phi}^k \mathbf{\Lambda}^{-1} \right) \mathbf{P}(0) \triangleq \widetilde{\mathbf{\Phi}}^k \mathbf{P}(0)$$

CCM of ARMA(1, 1): $y_t = \Phi y_{t-1} + a_t - \Theta a_{t-1}$

$$\mathbf{\Gamma}(k) = \mathbf{E}[\mathbf{y}_t \mathbf{y}'_{t-k}] = \mathbf{\Phi} \mathbf{E}[\mathbf{y}_{t-1} \mathbf{y}'_{t-k}] + \mathbf{E}[\mathbf{a}_t \mathbf{y}'_{t-k}] - \mathbf{E}[\mathbf{\Theta} \mathbf{a}_{t-1} \mathbf{y}'_{t-k}]$$

 \bullet For $k \geq 2$,

$$\Gamma(k) = \Phi^k \Gamma(k-1)$$

 \bullet If k=1,

$$\Gamma(1) = \Phi\Gamma(0) - \Theta\Sigma$$

$$\bullet$$
 If $k=0$,

$$\Gamma(0) = \Phi\Gamma(-1) + \Sigma - \ThetaE[\mathbf{a}_{t-1}(\mathbf{y}'_{t-1}\Phi' + \mathbf{a}'_t - \mathbf{a}'_{t-1}\Theta')]$$

$$= \Phi\Gamma'(1) + \Sigma - \Theta\Sigma\Phi' + \Theta\Sigma\Theta'$$

$$= \Phi[\Gamma'(0)\Phi' - \Sigma\Theta'] + \Sigma - \Theta\Sigma\Phi' + \Theta\Sigma\Theta'$$

$$= \Sigma + \Phi\Gamma'(0)\Phi' - \Phi\Sigma\Theta' - \Theta\Sigma\Phi' + \Theta\Sigma\Theta'$$
What do

= ...

What do you observe?

The Significance of CCM

With Bartlett formula, the sample cross correlation is approximately following a centered Normal distribution with the variance $\frac{1}{2}$, i.e.,

$$\hat{\rho}_{ij}(k) \sim N\left(0, \frac{1}{n}\right).$$

- To reject H_0 : $\rho_{ij}(k) = 0$, one needs $|\hat{\rho}_{ij}(k)| > \frac{2}{\sqrt{n}}$, given type I error 5%.
 - In most packages, you see

 - +, when $\hat{\rho}_{ij}(k) > \frac{2}{\sqrt{n}}$,
 -, when $\hat{\rho}_{ij}(k) > \frac{2}{\sqrt{n}}$, and
 - , when $\left|\hat{\rho}_{ij}(k)\right| \leq \frac{2}{\sqrt{n}}$.

Bivariate VMA(1) CCM Example

$$P(k), k = 1, ..., 12$$

$$\begin{bmatrix} -0.28 & -.021 \\ 0.37 & -.019 \end{bmatrix} \begin{bmatrix} 0.03 & 0.02 \\ 0.08 & 0.01 \end{bmatrix} \begin{bmatrix} 0.04 & -0.01 \\ -0.03 & -0.08 \end{bmatrix} \begin{bmatrix} -0.11 & -0.03 \\ 0.04 & 0.09 \end{bmatrix} \begin{bmatrix} -0.02 & -0.02 \\ -0.09 & -0.08 \end{bmatrix} \begin{bmatrix} 0.1 & 0.01 \\ 0.01 & 0.00 \end{bmatrix} \begin{bmatrix} -0.11 & -0.17 \\ -0.06 & -0.12 & -0.16 \end{bmatrix} \begin{bmatrix} -0.01 & 0.08 \\ -0.06 & 0.10 \end{bmatrix} \begin{bmatrix} 0.00 & 0.01 \\ 0.02 & -0.04 \end{bmatrix} \begin{bmatrix} 0.03 & 0.08 \\ 0.00 & 0.08 \end{bmatrix} \begin{bmatrix} 0.06 & -0.01 \\ 0.04 & 0.01 \end{bmatrix}$$

\bullet The significance of P(k)

1 1 1 1	1					y	1, <i>t</i>				 		 					y	2,t					
$y_{1,t}$	-	•	•	•	•	•	•	•	•	•	•	•	<u> </u>	•	•	•	•	•	_	•	•	•	•	•
$y_{2,t}$	+	•	•	•	•	•		•	•	•	•		_	•	•	•	•	•	•	-		•	•	•

Bivariate VAR(1) CCM Example

$$P(k), k = 1, ..., 12$$

$$\begin{bmatrix} 0.41 & 0.51 \\ 0.13 & 0.88 \end{bmatrix} \begin{bmatrix} 0.14 & 0.46 \\ -0.04 & 0.74 \end{bmatrix} \begin{bmatrix} 0.01 & 0.04 \\ -0.10 & 0.61 \end{bmatrix} \begin{bmatrix} -0.04 & 0.33 \\ -0.12 & 0.50 \end{bmatrix} \begin{bmatrix} -0.06 & 0.27 \\ -0.11 & 0.40 \end{bmatrix} \begin{bmatrix} -0.06 & 0.22 \\ -0.10 & 0.32 \end{bmatrix} \begin{bmatrix} 0.39 & 0.54 \\ -0.12 & 0.64 \end{bmatrix} \begin{bmatrix} 0.08 & 0.49 \\ -0.12 & 0.47 \end{bmatrix} \begin{bmatrix} 0.02 & 0.42 \\ -0.16 & 0.47 \end{bmatrix} \begin{bmatrix} -0.08 & 0.29 \\ -0.19 & 0.32 \end{bmatrix} \begin{bmatrix} -0.04 & 0.25 \\ -0.15 & 0.23 \end{bmatrix} \begin{bmatrix} 0.02 & 0.23 \\ -0.11 & 0.16 \end{bmatrix}$$

\bullet The significance of P(k)

	1					y	1, <i>t</i>						1					y	2,t					
$y_{1,t}$	+	•	•	•	•	•	_	_	•	•	•	•	+	+	+	+	+	+	•	•	•	•	•	•
$y_{2,t}$	•	•	•	_	•		_	•	•	•	•	•	+	+	+	+	+	•	•		•	•	•	•

PAR (Partial Autoregressive Matrix)

$$y_{t} = \Phi_{11}y_{t-1} + a_{t}$$

$$y_{t} = \Phi_{21}y_{t-1} + \Phi_{22}y_{t-2} + a_{t}$$

$$y_{t} = \Phi_{31}y_{t-1} + \Phi_{32}y_{t-2} + \Phi_{33}y_{t-3} + a_{t}$$

$$\vdots$$

$$y_{t} = \Phi_{k1}y_{t-1} + \Phi_{k2}y_{t-2} + \dots + \Phi_{kk}y_{t-k} + a_{t}$$

- Estimate all the $\{\Phi_{jj}\}_{j=1}^k$ using LSE.
- VAR(p) model has Φ_{ij} cut-off after lag p, i.e., $\Phi_{ij} = \mathbf{0}$ for j > p.
- \bullet VMA(q) and VARMA(p, q) models have Φ_{ij} exponentially decayed.

The Significance of PAR

 \odot After fitting a VAR(k) model, we get the residual error matrix.

$$\mathbf{S}(k) = \sum_{t=k+1}^{n} \left[\mathbf{y}_{t} - \sum_{j=1}^{k} \widehat{\mathbf{\Phi}}_{kj} \mathbf{y}_{t-j} \right] \left[\mathbf{y}_{t} - \sum_{j=1}^{k} \widehat{\mathbf{\Phi}}_{kj} \mathbf{y}_{t-j} \right]'$$

• Using Sequential Likelihood Ratio Test:

$$M(k) = -\left(n - k - \frac{3}{2} - kh\right) \ln \frac{|\mathbf{S}(k)|}{|\mathbf{S}(k-1)|} \sim \chi_{h^2}^2.$$

• The hypothesis: H_0 : $\Phi_{kk} = 0$, is rejected if $M(k) \ge \chi_{h^2}^2 (1 - \alpha)$

Bivariate VAR(1) PAR Example

k	$\widehat{m{\Phi}}_{kk}$	$M(k) \sim \chi_4^2$	$\widehat{oldsymbol{\Sigma}}$ diagnoals
1	$\begin{bmatrix} 1.70 & 5.79 \\ -16.28 & 32.90 \end{bmatrix}$	356.96	[5.30 1.08]
2	$\begin{bmatrix} -1.68 & 1.98 \\ -1.64 & 2.39 \end{bmatrix}$	7.04	[5.16 1.03]
3	$\begin{bmatrix} 1.20 & -0.54 \\ 0.30 & 2.39 \end{bmatrix}$	2.63	[5.07 _{1.03}]
4	$\begin{bmatrix} 0.90 & -1.25 \\ -0.85 & 0.76 \end{bmatrix}$	4.38	[5.01 1.02]
5	$\begin{bmatrix} 0.51 & 0.10 \\ 1.11 & -0.56 \end{bmatrix}$	2.42	[4.95 1.01]

Bivariate VMA(1) PAR Example

 $M(k) = \{123.2, 75.9, 35.2, 27.5, 16.6, 13.5, 16.5, 8.1\}$

The Ultimate Way of Identify p, q

Recall EACF for ECCM (Extended Cross Correlation Matrix).

Tiao, G., & Tsay, R. (1983). <u>Multiple Time Series Modeling and Extended Sample Cross-Correlations</u>. *Journal of Business & Economic Statistics, 1*(1), 43-56. doi:10.2307/1391772

Look for the NW corner.

R MA	0	1	2	3	4
		a. 1	The ESCC Matrices		
	.86 .60 .48 .71 .76 .65 .85 .55 .58 .85	.71 .66 .53 .63 .76 .62 .67 .45 .52 .75	.61 .70 .56 .56 .73 .56 .55 .47 .40 .67	.56 .69 .50 .55 .70 .50 .51 .50 .32 .62	.47 .58 .41 .48 . .43 .50 .48 .27 .
0	.30 .77 .77 .25 .74 .83 .54 .29 .74 .61 .68 .87 .65 .58 .93	.24 .73 .56 .21 .65 .77 .51 .37 .72 .63 .62 .78 .58 .52 .85	.27 .60 .41 .21 .55 .67 .52 .41 .62 .61 .56 .68 .54 .44 .76	.33 .42 .33 .15 .47 .57 .57 .42 .60 .59 .49 .59 .51 .36 .68	.28 .28 .32 .10 .55 .58 .42 .54 .42 .53 .47 .29
	.15 .10 .16 .11 .17 01 .12040201	06 .06 .060606 .020202 .02 .02	00 .03 .020303 0700 .00 .00 .04	.1004 .070107 11 .0504 .0311	1005 .03060 .0900 .06 .04
1	.30 .12 .25 .27 .29	.020202 .02 .02	.03 .09 .05 .0101	.2507 .1412 .15	.05200519
	2823253128	03 .04 .040303	02060403 .05	17 .0611 .1610	.08 .14 .13 .10 .
	.05 .02 .03 .03 .06	03 .03 .030302	.09 .06 .02 .06 .05	.05 .01 .0903 .06	.0602 .0401
	.21 .18 .01 .06 .19	050205 .06 .05	02 .0202 .0202	.02 .00 .0403 .04	.0001 .0403
	.3327 .2327 .11	35 .0729 .27 .32	.0101 .0101 .01	04 .04 .02 .0104 .0904 .0516 .06	060404 .06 .09 .00 .0300
2	.12 .05 .393602 .210008 .05 .17	020302 .05 .04 06080205 .03	01 .0101 .0101 .0202 .0202 .02	.0904 .0516 .06 06 .0101 .1705	.09 .00 .0300 03 .0001 .01
	.16 .11 .212521	0104 .0102 .00	02 .0201 .0202	04 .01 .010706	.02 .0603 .02
	03 .00 .0101 .07	0606 .0505 .05	01 .00 .020201	02 .01 .0204 .04	.0000 .0000 -
3	.05 .1505 .07 .03 1210 .070903	0605 .0607 .06 .06 .0305 .0505	0908 .1010 .11 .11 .1409 .0905	.08 .0206 .1007 .06 .21061206	01 .0001 .01 .0100 .0101 -
3	0503 .0706 .07	0706 .0707 .07	1516 .1716 .08	071906 .15 .06	01 .0001 .01
	2017 .161601	.09 .0609 .0811	0805 .0909 .05	.01 .0307 .0606	00 .0000 .00
			Indicator Symbols		
	+++++	++++	+++++	+++++	+++++
0	+++++	+++++	+++++	+++++	+++++
U	*****	+++++	+++++	+++++	+++++
	+++++	+++++	+++++	+++++	+++++
	1111				
1	+.+++				
2	+-+	++			
2	+				
	:::-:				
3					
	1.1.1.1				

Multivariate Time Series Model Construction

Estimation of the Coefficients VARMA(p, q)

$$\mathbf{a}_t = \mathbf{y}_t - \mathbf{\Phi}_1 \mathbf{y}_{t-1} - \cdots - \mathbf{\Phi}_p \mathbf{y}_{t-p} + \mathbf{\Theta}_1 \mathbf{a}_{t-1} + \mathbf{\Theta}_2 \mathbf{a}_{t-2} + \cdots + \mathbf{\Theta}_q \mathbf{a}_{t-q}$$

$$\mathbf{L}(\mathbf{\Phi}_i, \mathbf{\Theta}_j, \mathbf{\Sigma}) = (2\pi)^{-\frac{nh}{2}} |\mathbf{\Sigma}|^{\frac{n}{2}} \exp\left(-\sum_{t=1}^n \mathbf{a}_t' \mathbf{a}_t\right).$$

- Conditional vs. Exact MLE
 - Exact MLE will be slow (backcasting method to get the initial values).
 - Exact MLE has smaller bias, especially, when $q \neq 0$.

Multivariate Time Series Model Construction

Model Diagnostics

$$\mathbf{e}_{t} = \mathbf{y}_{t} - \widehat{\mathbf{\Phi}}_{1} \mathbf{y}_{t-1} - \dots - \widehat{\mathbf{\Phi}}_{p} \mathbf{y}_{t-p} + \widehat{\mathbf{\Theta}}_{1} \mathbf{a}_{t-1} + \widehat{\mathbf{\Theta}}_{2} \mathbf{a}_{t-2} + \dots + \widehat{\mathbf{\Theta}}_{q} \mathbf{a}_{t-q}$$
$$: \mathbf{a}_{t} \sim^{iid} N_{h}(\mathbf{0}, \mathbf{\Sigma})$$

- lacktriangle We need to check the multi-normality on $oldsymbol{e}_t$: Normal Probability Plot
- \odot Evaluate SCCM, SPAR, ECCM to see if \mathbf{e}_t is autocorrelated.

Forecasting Multivariate Time Series

VAR(1) Forecasts

 \bullet $\mathbf{y}_t = \mathbf{\Phi} \mathbf{y}_{t-1} + \mathbf{a}_t$, and \mathbf{y}_{t+1} to be forecasted.

$$\bullet$$
 $l = 1, \hat{\mathbf{y}}_t(1) = \Phi \mathbf{y}_t, \hat{\mathbf{e}}_t(1) = \mathbf{y}_{t+1} - \hat{\mathbf{y}}_t(1) = \mathbf{a}_{t+1}.$

•
$$l = 2, \hat{\mathbf{y}}_t(2) = \Phi \hat{\mathbf{y}}_t(1) = \Phi^2 \mathbf{y}_t, \hat{\mathbf{e}}_t(2) = \Phi \hat{\mathbf{e}}_t(1) + \mathbf{a}_{t+2}.$$

•
$$l \ge 3$$
, $\hat{\mathbf{y}}_t(l) = \mathbf{\Phi}\hat{\mathbf{y}}_t(l-1)$, $\hat{\mathbf{e}}_t(l) = \mathbf{\Phi}^{l-1}\mathbf{a}_{t+1} + \mathbf{\Phi}^{l-2}\mathbf{a}_{t+2} + \dots + \mathbf{a}_{t+l}$.

- For a stationary VAR(1)
 - $\bullet \quad \lim_{l \to \infty} \hat{\mathbf{y}}_t(l) = 0$
 - $\bullet \quad \lim_{l \to \infty} V[\hat{\mathbf{e}}_t(l)] = \mathbf{\Gamma}(0)$

VARIMA(0, 1, 1) Forecasts

$$(\mathbf{I}_h - B)\mathbf{y}_t = (\mathbf{I}_h - \mathbf{\Theta}B)\mathbf{a}_t$$

VARIMA(p, d, q) Forecasts

$$(\mathbf{I}_h - \mathbf{\Phi}_1 B - \mathbf{\Phi}_2 B^2 - \dots - \mathbf{\Phi}_p B^p)(\mathbf{I}_h - B)^d \mathbf{y}_t$$

= $(\mathbf{I}_h - \mathbf{\Theta}_1 B - \mathbf{\Theta}_2 B^2 - \dots - \mathbf{\Theta}_q B^q) \mathbf{a}_t$

Updating the Forecasts

• Given the random shock form out of the VARIMA model:

$$\mathbf{y}_{t} = \mathbf{a}_{t} + \mathbf{\Psi}_{1} \mathbf{a}_{t-1} + \mathbf{\Psi}_{2} \mathbf{a}_{t-2} + \mathbf{\Psi}_{3} \mathbf{a}_{t-3} \dots$$

It is the same as what has been proposed in the univariate models.
 Standing at time T,

$$\hat{\mathbf{y}}_{T+1}(l) = \hat{\mathbf{y}}_{T}(l+1) + \Psi_{l}\hat{\mathbf{a}}_{T+1}$$

Summary

- Ultimate form of the h variates VSARIMA $(p, \{d_i\}_1^h, q) \times (P, \{D_i\}_1^h, Q)_s$, model: $\Phi(B)\Phi_s(B^s)\mathbf{D}(B)\mathbf{D}(B^s)\mathbf{y}_t = \Theta(B)\Theta_s(B^s)\mathbf{a}_t$.
- All the properties of univariate models have the twin in the multivariate world.

Univariate	Multivariate							
ACF (MA cut-off)	CCM (VMA cut-off)							
PACF (AR cut-off)	PAR (VAR cut-off)							
EACF (ARMA north-west corner)	ECCM (ARMA north-west corner)							
Stationarity $oldsymbol{\phi}(B)=0$	Stationarity $ \mathbf{\Phi}(B) = 0$							
Invertibility $\theta(B)=0$	Invertibility $\mathbf{\Theta}(B)=0$							
3 Explicit Forms (Difference Equation, Random Shock, Inverted)								
MLE based on N $(0,\sigma_a^2)$	MLE based on $N(0, \Sigma)$							
Residuals diagnosed by ACF, PACF	Residuals diagnosed by CCM, PAR							