MATH 2111: Tutorial 12 Inner Product and Orthogonality

T1A&T1B QUAN Xueyang T1C&T2A SHEN Yinan T2B&T2C ZHANG Fa

Department of Mathematics, HKUST

- Inner product, length, and orthogonality
- Orthogonal sets
- Orthogonal projections

Determine which pairs of vectors are orthogonal.

$$\mathbf{a} = \begin{bmatrix} 8 \\ -5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -2 \\ -3 \end{bmatrix}$$

$$\mathbf{u} = \begin{bmatrix} 12 \\ 3 \\ -5 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 2 \\ -3 \\ 3 \end{bmatrix}$$

$$\mathbf{u} = \begin{bmatrix} 3 \\ 2 \\ -5 \\ 0 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} -4 \\ 1 \\ -2 \\ 6 \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} -3 \\ 7 \\ 4 \\ 0 \end{bmatrix}, \mathbf{z} = \begin{bmatrix} 1 \\ -8 \\ 15 \\ -7 \end{bmatrix}$$

(1) Verify the parallelogram law for vectors \mathbf{u} and $\mathbf{v} \mathbb{R}^n$: $\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2 \|\mathbf{u}\|^2 + 2 \|\mathbf{v}\|^2$

(2) Let $W = Span\{v_1, ..., v_p\}$. Show that if x is orthogonal to each v_j , then for $1 \le j \le p$, then x is orthogonal to every vector in W.

Show that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthogonal basis for \mathbb{R}^3 , Then express \mathbf{x} as a linear combination of the \mathbf{u} 's.

$$\mathbf{u}_1 = \begin{bmatrix} 3 \\ -3 \\ 0 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix}$, and $\mathbf{x} = \begin{bmatrix} 5 \\ -3 \\ 1 \end{bmatrix}$

Find the closest point to y in the subspace W spanned by \mathbf{v}_1 and \mathbf{v}_2 .

$$\mathbf{y} = \begin{bmatrix} 3 \\ 1 \\ 5 \\ 1 \end{bmatrix}, \mathbf{v}_1 = \begin{bmatrix} 3 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} 3 \\ -1 \\ 1 \\ 13 \end{bmatrix}, \mathbf{v}_1 = \begin{bmatrix} 1 \\ -2 \\ -1 \\ 2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -4 \\ 1 \\ 0 \\ 3 \end{bmatrix}$$

Let W be a subspace of \mathbb{R}^n with an orthogonal basis $\{\mathbf{w}_1, ..., \mathbf{w}_p\}$, and let $\{\mathbf{v}_1, ..., \mathbf{v}_q\}$ be an orthogonal basis for W^{\perp} .

- a. Explain why $\{\mathbf{w}_1, \dots, \mathbf{w}_p, \mathbf{v}_1, \dots, \mathbf{v}_q\}$ is an orthogonal set.
- b. Explain why the set in part (a) spans \mathbb{R}^n .
- c. Show that dim dim $W + \dim W^{\perp} = n$.