

Figure 5.3: The double ratio of  $R_{AA}^c(p_T)$  to  $R_{AA}^b(p_T)$  predictions for LHC using Eq. (5.1) for AdS/CFT and WHDG [152] for pQCD with a wide range of input parameters. The generic difference between the pQCD results tending to unity contrasted to the much smaller and nearly  $p_T$ -independent results from AdS/CFT can be easily distinguished at LHC. The "(" and "]" denote momenta after which possible string theoretic corrections may need to be considered; the curves' increasing transparency from "(" to "]" is meant to additionally emphasize this, see text.

 $\kappa L^2 \hat{q} \log(p_T/M_Q)/p_T$ , with  $\kappa$  a proportionality constant and  $\hat{q} = \mu_D^2/\lambda_g$ . The most important feature in pQCD relative to AdS/CFT is that  $\bar{\epsilon}_{pQCD} \to 0$  asymptotically at high- $p_T$  while  $\bar{\epsilon}_{AdS}$  remains constant.  $n_Q(p_T)$  is a slowly increasing function of momentum, Fig. 5.4; thus  $R_{AA}^{pQCD}$  increases with  $p_T$  whereas  $R_{AA}^{AdS}$  decreases. This generic difference can be observed in Fig. 5.2, which shows representative predictions from the full numerical calculations of