world of biodiversity



Moving from biodiversity to functional diversity (also at large spatial scales)

Katrin Böhning-Gaese Senckenberg Biodiversity and Climate Research Centre



#### **Establishment of Future Earth and IPBES**

- Future Earth:
   Network: Global biodiversity monitoring, prediction and reporting
- IPBES: Fast-track assessment of scenarios and modelling of





- biodiversity and ecosystem services
- Furture Earth: Transdisciplinary research: co-design, co-productions of science together with non-scientific knowledge holders

# Framework for linking scenarios, biodiversity and ecosystem services

Fig. 1: Overview of methods and models commonly used for constructing biodiversity scenarios



## **Comparison of model types**

| Type of model                   | Examples                                                       | Represention biodiversity            | Representation ecosystem functions | Representation ecosystem services = demand |
|---------------------------------|----------------------------------------------------------------|--------------------------------------|------------------------------------|--------------------------------------------|
| Statistical biodiversity models | Species distribution models, species richness models, PREDICTS | Strong<br>for specific<br>components | Weak                               | Very weak                                  |

## **Comparison of model types**

| Type of model                   | Examples                                                       | Represention biodiversity            | Representation ecosystem functions   | Representation ecosystem services = demand |
|---------------------------------|----------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------------|
| Statistical biodiversity models | Species distribution models, species richness models, PREDICTS | Strong<br>for specific<br>components | Weak                                 | Very weak                                  |
| Functional biodiversity models  | Dynamic (global) vegetation models, Mandingley                 | Weak                                 | Strong<br>for specific<br>components | Weak                                       |

## **Comparison of model types**

| Type of model                   | Examples                                                       | Represention biodiversity            | Representation ecosystem functions   | Representation ecosystem services = demand |
|---------------------------------|----------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------------|
| Statistical biodiversity models | Species distribution models, species richness models, PREDICTS | Strong<br>for specific<br>components | Weak                                 | Very weak                                  |
| Functional biodiversity models  | Dynamic (global) vegetation models, Mandingley                 | Weak                                 | Strong<br>for specific<br>components | Weak                                       |
| Ecosystem service models        | INVEST<br>ARIES                                                | Very weak                            | Strong<br>for specific<br>components | Strong<br>for specific<br>components       |

## Relationship between biodiversity and ecosystem services

#### **Biodiversity as:**

- 1 Regulator of ecosystem processes
- 2 Final ecosystem service
- 3 Good with value by itself



Other capital

TRENDS in Ecology & Evolution

Mace et al. 2011 TREE

## Relationship between biodiversity and ecosystem services

#### **Biodiversity as:**

- 1 Regulator of ecosystem processes
- 2 Final ecosystem service
- 3 Good with value by itself



Other capital

TRENDS in Ecology & Evolution

Mace et al. 2011 TREE

## Relationship climate, ecosystems, biodiversity, wildlife tourism

Biodiversity strong influence on ecosystem services = number of tourists





64 savannah National Parks



## Relationship between biodiversity and ecosystem services

#### **Biodiversity as:**

- 1 Regulator of ecosystem processes
- 2 Final ecosystem service
- 3 Good with value by itself



Other capital

TRENDS in Ecology & Evolution

Mace et al. 2011 TREE

## Consensus on relationship biodiversity – ecosystem functioning



Conceptual diagram summarizes what we know about the shape of the biodiversity-ecosystem functioning (BEF) relationship based on summaries of several hundred experiments.

## From biodiversity to functional trait space

For example, ecomorphological traits of birds

- Beak traits
- Wing and tail traits
- Tarsus, toe and claw traits





Eck, S. et al. 2011. Measuring birds. Vögel vermessen. *Deutsche Ornithologen-Gesellschaft*.

## Impact of disturbance on functional trait space



Mouillot et al. 2013 TREE

## Impact of climate on functional trait space



beak length, beak width, body mass, wing pointedness

#### **Plants**



fruit length, fruit diameter, crop mass, plant height



**Tropical Andes** 

Higher or lower functional redundancy at low elevations/ in the tropics?



Dehling et al. 2014 Global Ecol Biogeogr

## Impact of traits on specialisation in interaction networks



Specialization increases with morphological specialization

## **Traits and functional roles of species**

Morphology determines distinct functional roles of species



#### Correspondence:

beak size versus fruit size, body mass – crop mass, wing pointedness – tree height





 Scientific challenges and opportunities for global biodiversity monitoring:

Biodiversity not sufficient, we need to link biodiversity to ecosystem functioning and ecosystem services



## Scientific challenges and opportunities for global biodiversity monitoring:

Biodiversity not sufficient, we need to link biodiversity to ecosystem functioning and ecosystem services

#### Interesting problems, specific ideas:

## biodiversity plus traits = functional diversity?

- birds, mammals, amphibians, reptiles, fish, dragonflies, bees, dung beetles, plants, fungi
- terrestrial, freshwater and marine realm
- fossil and present-day species





# Planetary boundaries

#### **Global Change:**

We are leaving the "safe operating space for humanity"

