ÁLGEBRA RELACIONAL Jesús Reyes Carvajal

¿Qué es el algebra relacional?

El objetivo de la enseñanza del álgebra relacional es facilitar el aprendizaje de la escritura de las sentencias SQL, dado por la manipulación de datos de las relaciones con operaciones.

El resultado de aplicar una operación del álgebra relacional es otra relación. Esto permite entonces, la combinación de operaciones y su anidamiento, ya que la entrada de una operación podría ser la salida de otra operación.

Las operaciones se clasifican en dos grupos.

Operaciones de conjuntos: Unión, diferencia, intersección y producto cartesiano.

Operaciones relacionales: Selección, proyección, reunión , división, agrupación y funciones. Estas operaciones y funciones se crean específicamente para la manipulación de datos en el modelo relacional.

Simbología en el álgebra relacional

Teoría de conjuntos		Relacionales	
U	Unión	σ	Selección
\cap	Intersección	П	Proyección
-	Diferencia	×	Concatenación(join)
X	Producto cartesiano	÷	División

UNION

Esta operación recibe dos relaciones de entrada, las cuales tiene que ser compatibles.

Dos relaciones son compatibles cuando tienen el mismo grado y los dominios de sus atributos o campos son iguales.

Si la relación A posee dos atributos (x1,x2) y B también posee dos atributos (x1,x2) => se puede implementar la unión de A y B.

Si y solo si A:x1 y B:x1 tienen definido el mismo dominio y si A:x2 y B:x2 también tienen el mismo dominio.

DIFERENCIA

Esta operación exige que ambas relaciones sean compatibles.

El resultado de la nueva relación esta formado por todas las filas de A que no están en B.

Ej A - B

INTERSECCIÓN

Esta operación exige que ambas relaciones sean compatibles.

El resultado de la nueva relación esta formado por todas las filas de A que también están en B.

Ej A \cap B

PRODUCTO CARTESIANO

Esta operación trabaja con dos relaciones y exige que ambas no sean compatibles, por tanto exige que las cabeceras no posean atributos con igual nombre, si hubiera algún atributo con igual nombre, habría que renombrarlo.

El resultado de la nueva relación esta formado por la combinación de cada una de las filas de A por las de B.

A

id	nombre	d #
123	Leon	39
234	Tomas	34
143	Josefa	25

В

proyecto	duracion
ACU0034	300
USM7345	60

A x B

id	nombre	d #	proyecto	duracion
123	Leon	39	ACU0034	300
123	Leon	39	USM7345	60
234	Tomas	34	ACU0034	300
234	Tomas	34	USM7345	60
143	Josefa	25	ACU0034	300
143	Josefa	25	USM7345	60

SELECCION

Esta operación permite seleccionar un conjunto de tuplas con una relación de entrada.

Es una operación uno-aria, se simboliza con σ (sigma)

 σ condición (A) Ej: σ edad > 18 (A)

El resultado de la nueva relación esta formado por todas las tuplas de A que cumplan la condición.

En la condición pueden incluirse operadores relacionales y lógicos.

Operadores relacionales	Operadores lógicos
<, <=, <, >= , <>	AND
	OR
	NOT

PROYECCION

Esta operación obtiene determinadas columnas de la relación de entrada.

Es una operación uno-aria, se simboliza con Π listaDecolumnas (A)

El resultado de la nueva relación esta formada por las columnas de A, que están definidas en la listaDecolumnas.

Ej: Π nomb,apel (A)

REUNION

Esta operación binaria amplia los datos de una relación con datos de otra relación, a través de un atributo en común que debe poseer las relaciones.

El atributo en común es llave primaria en una relación y llave foránea en la otra, es decir tienen el mismo dominio.

Se simboliza con \bowtie Sea la relación A(x1,x2,x3) y B(x3,x4,x5) la expresión es: A \bowtie x3=x3 B

El resultado de la nueva relación es x1,x2,x3,x4,x5, donde la columna en común (x3) solo aparece una vez y se obtienen las tuplas en las que el valor de x3 de A, se igual al valor de x3 de B.

REUNION EXTERNA

En el ejercicio anterior de reunión solo aparecen las tuplas que cumplen con los valores del atributo en común, pero no a parece los valores de la llave foránea que son nulos o por el contrario no aparecen los valores de la llave primaria en la otra relación.

REUNIÓN EXTERNA DERECHA

Con esta operación obtenemos los valores de la relación de la derecha que no fueron tenidos en cuenta en la relación de la izquierda.

CLIENTES

#Id	nomb	cod_ciud
1	Juan	C1
2	María	
3	Mario	C2
4	Mary	C3

CIUDADES

#cod_ciud	nombre
C1	Tunja
C2	Bogotá
C3	Pereira
C4	Cali

#id	nomb	cod_ciud	nombre
1	Juan	C1	Tunja
3	Mario	C2	Bogotá
4	Mary	C3	Pereira
Null	Null	C4	Cali

REUNION EXTERNA IZQUIERDA

Con esta operación obtenemos los valores de la relación de la izquierda que no fueron tenidos en cuenta en la relación de la derecha.

Símbolo ⊐≫

Ej: clientes □><1 cod_ciud=cod_ciu (ciudades)

#id	nomb	cod_ciud	nombre
1	Juan	C1	Tunja
2	María	Null	Null
3	Mario	C2	Bogotá
4	Mary	C3	Pereira

REUNION EXTERNA COMPLETA

Con esta operación obtenemos los valores de la relación de la izquierda y de la derecha que no fueron tenidos en cuenta o tienen valores nulos.

Símbolo ⊐×⊏

Ej: clientes ⊐×□ cod_ciud=cod_ciu (ciudades)

Obtenemos la información completa de las dos relaciones

#id	nomb	cod_ciud	nombre
1	Juan	C1	Tunja
2	María	Null	Null
3	Mario	C2	Bogotá
4	Mary	C3	Pereira
Null	Null	C4	Cali

RENOMBRAR

Esta es una operación auxiliar que permite renombrar los atributos de una relación en caso de determinadas situaciones. Como en el caso de otra operación de álgebra relacional o expresiones complejas.

Esta operación se simboliza con p (rho)

Sea la relación A con los atributos (u,v,w)

P s(A) Renombra a la relación A como S

P(a,b,c) (A) Renombra a los atributos de la relación A como a,b,c.

Ps (a,b,c) (A) Renombra a la relación A como S y a sus atributos como a,b,c.

FUNCIONES

Las siguientes funciones proporcionan cálculos con valores de las relaciones.

Las funciones disponibles son:

SUM(atributo): Suma los valores contenidos en el atributo. AVG(atributo): Promedio de valores numéricos del atributo.

MIN(atributo): Menor valor asumido por el atributo. MAX(atributo): Mayor valor asumido por el atributo.

COUNT(atributo): Conteo de ocurrencia de valores en una columna.

f AVG(edad) (estudiantes)

El resultado es una relación de una tupla y una columna.

AVG_edad

22

AGRUPACION

A las funciones mencionadas se les puede aplicar agrupación y nos pueden proporcionar información mas especifica.

Para explicar agrupación tomemos como ejemplo una relación llamada estudiantes, la cual tiene como atributos nombre, código, apellido, sexo y edad, ahora suponga que tenemos que generar un informe de promedio de edad por sexo, para esto tenemos que agrupar la relación por sexo y obtener el promedio de edad por cada agrupación.

La expresión en álgebra relacional quedaría así:

sexo T AVG(edad) (Estudiantes)

El resultado será es una relación con dos columnas y las tuplas según datos filtrados.

sexo	AVG_edad
Masculino	21
Femenino	18
Otro	18

RELACIONES TEMPORALES

Para expresar consultas o expresiones muy largas y complejas, se pueden utilizar expresiones temporales, que hace una expresión compleja se vea como un conjunto de expresiones temporales paso a paso.

Temp \leftarrow (E)

Donde E es una expresión valida del álgebra relacional.

Ejemplo: Listar el nombre y edad de los clientes mayores de 25 años.

Expresión paso a paso:

t1 \leftarrow σ edad > 25 (clientes)

 $T2 \leftarrow \Pi$ nomb, edad (t1)

Expresión compleja:

t1 ← Π nomb, edad (σ edad > 25 (clientes))