EM for Gaussian mixtures

9 questions

1 point

1.

(True/False) While the EM algorithm maintains uncertainty about the cluster assignment for each observation via soft assignments, the model assumes that every observation comes from only one cluster.

- True
- C False

1 point

2.

(True/False) In high dimensions, the EM algorithm runs the risk of setting cluster variances to zero.

- O True
- False

1 point

3.

In the EM algorithm, what do the E step and M step represent, respectively?

- **E**stimate cluster responsibilities, **M**aximize likelihood over parameters
- 0

_	E stimate likelihood over parameters, M aximize cluster responsibilities
0	Estimate number of parameters, Maximize likelihood over parameters
0	E stimate likelihood over parameters, M aximize number of parameters
1 point	
4. Suppose we have data that come from a mixture of 6 Gaussians (i.e., that is the true data structure). Which model would we expect to have the highest log-likelihood after fitting via the EM algorithm?	
0	A mixture of Gaussians with 2 component clusters
0	A mixture of Gaussians with 4 component clusters
0	A mixture of Gaussians with 6 component clusters
0	A mixture of Gaussians with 7 component clusters
0	A mixture of Gaussians with 10 component clusters
1 point	
5. Which of the following correctly describes the differences between EM for mixtures of Gaussians and k-means? Choose all that apply.	
	k-means often gets stuck in a local minimum, while EM tends not to
	EM is better at capturing clusters of different sizes and orientations
	EM is better at capturing clusters with overlaps
	EM is less prone to overfitting than k-means
	k-means is equivalent to running EM with infinitesimally small diagonal covariances.

1 point

6.

Suppose we have a Gaussian mixture model of 3-dimensional data with 4 component clusters, and we use a model with full covariance matrices. How many parameters are in the model?

40

1 point

7.

Suppose we have a Gaussian mixture model of 4-dimensional data with 5 component clusters, and we instead assume diagonal covariance matrices. How many parameters are in the model?

45

1 point

8.

Which of the following contour plots describes a Gaussian distribution with diagonal covariance? Choose all that apply.

- (1)
- (2)
- (3)
- (4)
- **(**5)

2 points

9.

Suppose we initialize EM for mixtures of Gaussians (using full covariance matrices) with the following clusters:

Which of the following best describes the updated clusters after the first iteration of EM?

Submit Quiz

