TD 2: Interpolation polynômiale

Exercice1

Soient x_0, \ldots, x_n des réels deux à deux distincts et $(\lambda_0, \lambda_2, \ldots, \lambda_n) \in \mathbb{R}^{n+1}$.

1. Montrer que :

$$P(x) = \sum_{i=0}^{n} \lambda_i L_i(x)$$
, où $L_i(x) = \prod_{j=0, j \neq i}^{n} \frac{(x-x_j)}{(x_i-x_j)}$

Est l'unique polynôme de $R_n[X]$ qui vérifie $P(x_i) = \lambda_i$, $0 \le i \le n$.

- 2. Soit la fonctions définie sur R par $f(x) = x + 2^x$. Calculer le polynôme d'interpolation de f aux points -1,0,1 :
- a. En calculant le polynôme de base de Lagrange.
- b. Par la méthode des différences divisées.
- c. Donner une estimation de l'erreur d'interpolation pour chaque méthode d'interpolation utilisée.

Exercice2

Soient x_0, \ldots, x_n (n+1) points deux à deux distincts de [a, b]. Soit $f \in C^1[a, b]$.

1. Montrer qu'il existe un polynôme de degré $P \in P_{2n+1}$ tel que :

$$\forall i = 0, \ldots, n$$
 $P(x_i) = f(x_i)$ et $P'(x_i) = f'(x_i)$

2. Montrer qu'il existe un polynôme et un seule $P \in P_{2n+1}$ tel que :

$$\forall i = 0, \dots, n \qquad P(x_i) = f(x_i) \qquad et \qquad P'(x_i) = f'(x_i)$$

3. Soient L_k , 0 < k < n, les polynômes de base de Lagrange associés aux points x_0, \ldots, x_n . On pose

$$H_k(x) = (x - x_k).(L_k(x))^2$$

$$\widetilde{H}_k(x) = (1 - 2(x - x_k).L_k'(x)).(L_k(x))^2$$

- 4. Calculer $H_k(x_i)$, $\widetilde{H}_k(x_i)$, $H'_k(x_i)$ et $\widetilde{H'}_k(x_i)$ pour i = 0,...n.
- 5. Endéduire une expression de P(x)où P est le polynôme d'interpolation d'Hermite de f aux points x_0, \ldots, x_n tel que

$$P(x_i) = f(x_i)$$
 et $P'(x_i) = f'(x_i)$

Exercice3

Dans cet exercice, nous souhaitons interpoler $f \in C^2([a,b],R)$ par une fonction cubique par morceaux. C'est ce que nous appelons une spline cubique.

Pour cela nous définissons $(x_i)_{0 \le i \le n+1}$, qui déterminent une partition de l'intervalle [a, b], avec $x_0 = a$ et $x_{n+1} = b$.

Nous appelons spline cubique une fonction S vérifiant

- 1. $S \in C^2([a,b],R)$,
- 2. $S_{|[x_i,x_{i+1}]}$ est un polynôme de degré 3 pour $i=0,\ldots,n$.

Pour construire une telle approximation, nous cherchons à définir une spline S en fonction seulement de ses valeurs aux points x_i et de sa dérivée seconde en x_i .

- 1. Sur un intervalle $[\alpha, \beta]$, montrer qu'il existe un unique polynôme P de degré inférieur ou égale à 3 défini par ses valeurs $P(\alpha)$, $P(\beta)$, $P''(\alpha)$ et $P''(\beta)$.
- 2. Déterminer les valeurs des dérivées premières en α et β en fonction des données.
- 3. En-déduire qu'il existe une unique spline cubique S qui interpole f au sens suivant :

$$\begin{cases} S(x_i) = f(x_i), & pour \ i = 0: n+1 \\ S'(a) = f'(a), & S'(b) = f'(b) \end{cases}$$

4. En prenant pour $i \in \{0, \dots, n+1\}$ la fonction S_i telle que

$$S_i(x_j) = \delta_{i,j}$$
 et $S_i'(a) = S_i'(b) = 0$,

Puis les splines S_a et S_b telles que $S_a(x_i) = S_b(x_i) = 0$ et $S'_a(a) = S'_b(b) = 1$ Et $S'_b(a) = S'_a(b) = 0$ montrer que S interpolant f sur [a, b].