

Section 2.5 Relations to convex geometry

Background on convex sets

A set C is said to be convex if for every 1, 12 EC and every 2 with 0<2<1, 2x+(1-2)x, EC.

ivotersection of convex sets is convex (follows quickly from defin)

Defin The convex hull of a set S, denoted co(s), is the instersection of all convex sets containings. Can also think of as the set of all convex combinations of points in S: co(S)= {x= \ \ \chi_1 \ \chi_2 \ \chi_3 \ \chi_3 \ \chi_5 \

Defn A set C is a cone if XEC implies XXEC for all X>D. As come that is also convex is called a convex come

Examples: line through origin

Solid come

Defin $H_{+} = \{\bar{x}: \bar{a}^{T}\bar{x} > c\}$ closed H_{+}

Example: a=[2], c=4 H_= {[2].[3] > 4}= {x+2y>4}

Defin A set that is the intersection of a finite & of closed half-spaces is called a convex polytope. (set of solhs to system of inequalities a, z=b, ..., am = bm)

Def'n An extreme point x of a convex set C with C is such that there are no two distinct pts x, and x_2 in C s.t. $C = \alpha x_1 + (1-\alpha)x_2$ for some α with $0 < \alpha < 1$

Examples: corners of polytopes boundary of disk @

a line has no extreme pts

Thm: Let A be an mxn metrix of rank m and $b \in \mathbb{R}^m$. Let K be the convex polytope consisting of all $x \in \mathbb{R}^n$. Satisfying $A\bar{x}=\bar{b}$, $\bar{\chi} \ge 0$.

Then a vector is an extreme pt of K iff is a basic feasible solm. * Reduces solving its to looking at corner pts in typical problems.

Readly: Idea: -2 | C=-3 is ninvalue level curves of dijective fin -7x-y

are lines - x-y=c, c= value of obj fin at (x, y)

feasible set y=-x-c

Proof: "E" Suppose $\tilde{z} = \tilde{z}$ is a basic feasible solin to $A\tilde{z} = \tilde{b}, \tilde{z} \geq 0$, with $1^{\frac{1}{2}}$ in columns.

Then $1^{\frac{1}{2}}\tilde{z} = \tilde{z}_{1}\tilde{a}_{1}^{\frac{1}{2}} \cdots + \tilde{z}_{m}\tilde{a}_{m} = \tilde{b}$. We need to show \tilde{z} is an extreme pt.

Suppose it is $\tilde{z} = a\tilde{y} + (1-a)\tilde{z}$, $0 < \alpha < 1$, $\tilde{y} \neq \tilde{z}$ in \tilde{k} . All components of $\tilde{z} = a\tilde{z}$, $\tilde{z} = a\tilde{z}$, sontradicting our assumption there $\tilde{z} = a\tilde{z}$, $\tilde{z} = a\tilde{z}$, $\tilde{z} = a\tilde{z}$, $\tilde{z} = a\tilde{z}$, sontradicting our assumption there $\tilde{z} = a\tilde{z}$, $\tilde{z} = a\tilde{z}$, $\tilde{z} = a\tilde{z}$, $\tilde{z} = a\tilde{z}$, sontradicting our assumption there $\tilde{z} = a\tilde{z}$, $\tilde{z} = a\tilde{z}$,

Suppose \$\bar{v}\$ is an expresse ptof K. Whose assume the nonzero components of \$\bar{v}\$ are \$\bar{v}_1,\cdots, \$\bar{v}_k\$, so \$\bar{v}_1,\bar{q}_1+\cdots + means we need to show \$\bar{q}_1,\cdots, \$\bar{q}_1\bar{s}_1\bar{v}_1\bar{q}_1\bar{v}_2\bar{q}_1\bar{v}_1\bar{q}_1\bar{v}_2\bar{q}_1\bar{v}_1\bar{q}_1\bar{v}_2\bar{q}_1\bar{v}_1\bar{q}_1\bar{v}_2\bar{q}_1\bar{v}_1\bar{q}_1\bar{v}_1\bar{v}_2\bar{v}_2\bar{v}_1\bar{v}_1\bar{v}_1\bar{v}_2\bar{v}_2\bar{v}_1\bar{v}_1\bar{v}_2\bar{v}_2\bar{v}_2\bar{v}_1\bar{v}_1\bar{v}_2\bar{v}_2\bar{v}_1\bar{v}_1\bar{v}_2\bar{v}_2\bar{v}_1\bar{v}_1\bar{v}_2\bar{v}_2\bar{v}_1\bar{v}_1\bar{v}_2\bar{v}_2\bar{v}_1\bar{v}_1\bar{v}_2\bar{v}_2\bar{v}_1\bar{v}_1\bar{v}_2\bar{v}_2\bar{v}_1\bar{v}_1\bar{v}_2\bar{v}_2\bar{v}_1\bar{v}_1\bar{v}_2\bar{v}_2\bar{v}_1\bar{v}_1\bar{v}_2\bar{v}_2\bar{v}_2\bar{v}_1\bar{v}_1\bar{v}_2\bar{v}_2\bar{v}_1\bar{v}_1\bar{v}_2\bar{v}_2\bar{v}_1\bar{v}_1\bar{v}_2\bar{v}_2\bar{v}_1\bar{v}_1\bar{v}_2\bar{v}_2\bar{v}_1\bar{v}_1\bar{v}_2\bar{v}_2\bar{v}_1\bar{v}_1\bar{v}_2\bar{v}_2\bar{v}_1

Exploratory example:

min $\tilde{c}^T \tilde{x}$ subject to $2x_1 + x_2 \le 1$ $\tilde{x} \in \mathbb{R}^2$ $x_1 + 3x_2 \le 1$

7, >0, x2>0

Standard form: 27, +72+72=1

x, +3722+724=1

A=[1 30] rank A=2

7, x2, x3, x4 = 0 B=[1

Basic feasible solins are those with at least 2 zeros

rearrange columns of A to have different pairs of lin ind

(4)=6 ways columns as first two columns, now reduce [A16] to solve,

set free variables to zero (and put in original order)

R script [1/5] [1/5] [1/3] [1/3] [0] Correspond to 4 extreme pts

= [1]: min x+x2 sol'n = [0], min value O

 $\vec{c} = [-1]$: min $-\chi_1 - \chi_2$ $\vec{\chi} = [\frac{3}{16}]$, min value $-\frac{3}{5}$

 $\vec{z} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$: min $-\chi$, $\vec{\chi} = \begin{bmatrix} 1/2 \\ 0 \end{bmatrix}$, min value -1/2

 $\vec{c} = \begin{bmatrix} -1 \end{bmatrix}$: min $-\chi_2$ $\vec{x} = \begin{bmatrix} 1/3 \end{bmatrix}$, min value $-\frac{1}{3}$

 $\vec{c} = \begin{bmatrix} 1 \end{bmatrix}$: min χ , $\vec{\chi} = \begin{bmatrix} 0 \\ \gamma_2 \end{bmatrix}$, $0 \leq \gamma_2 \leq \frac{1}{3}$ with min value 0

If flip inequalities to =, have unbounded region for which

there may be no solin, e.g., c=[-1]. Or there could be empty, so no solin position

How to discount these different cases?

Section 2.6 Farkas' Lemma

· way to check whother a feasible sol'n exists for an LP

Thin (Farkas' Lemma)

Let A be an mxn matrix and BERM.

Then A = b, x = 0 has a feasible sol'n = - y A = 0, y b = 1 has no feasible sol'n y.

(so finding such a ty means the original system is infeasible) for the "atternative" system

Lemma: Let C be the come generated by the columns of A: C= {Ax: 2>03. Then C is a closed and convex set.

Examples:
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 $A\bar{x} = \begin{bmatrix} x_1 \\ x_1 + x_2 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$ $X = \begin{bmatrix} x_1 + x_2 \\ x_1 + x_2 \end{bmatrix} \times X$

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 $A\bar{x} = \begin{bmatrix} x_1 + x_2 \\ x_1 + x_2 \end{bmatrix}$ so $x = y$ $x = y$ $x = y$

$$A = \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix}$$
 $A\bar{x} = \begin{bmatrix} x_1 + x_2 \\ x_1 + x_2 \end{bmatrix}$ so $y = y$

Proof of thm: read pages 33-34.

Geometric interpretation if b is not in this come C, then
there must be a hyperplane separating b and the cone C,
where sol'n y to the alternative system is the normal vector to the hyperplane.

Example:
$$4, -x_3 \le 0$$
 $-x_1 + x_2 \le -1$
 $-x_1 + x_3 \le -1$
 $x_1, x_2 \ge 0$

Standard for $x_1 - x_1 + x_2 + x_4 = 1$
 $x_1, x_2, x_3, x_4 \ge 0$
 $x_1, x_2, x_3, x_4 \ge 0$

Cone
$$C = \{c, [-1] + c_3[-1] + c_3[-1] + c_4[-1] : c_1, c_2, c_3, c_4 \ge 0\}$$

Any #multiple of $[-1]$ can increase x_1 and or x_2

Alt. system $[y_1, y_2][-1] = [-y_1 + y_2] \ge [0]$

and $[y_1, y_2][-1] = [-y_1 + y_2] \ge [0]$

so $y_1 = y_2$

and $[y_1, y_2][-1] = [-y_1 + y_2] \ge [0]$

-42=1 => [42=-1