Отчёт по практическому заданию по ДГСП

Лазар Владислав Игоревич, 416 группа 11 апреля 2025 г.

Содержание

1	Teo	Теоретическая часть			
	1.1	Иссле	дуемое явление	3	
			ма наблюдения		
2	Практическая часть				
	2.1	Значе	ния параметров системы	6	
	2.2		пение работы алгоритмов		
		2.2.1	Оценки траектории		
		2.2.2	Ошибки оценивания x_1		
		2.2.3	Ошибки оценивания x_2		
		2.2.4	Ошибки оценивания $ heta$		
		2.2.5	Ошибки оценивания ϕ		
		2.2.6	Графики ошибок для нерасходящихся траекторий		
		2.2.7	Графики ошибок для всех траекторий		
		2.2.8	Численные результаты		
3	Вы	воды г	ю расчётам	36	

1 Теоретическая часть

1.1 Исследуемое явление

В данной работе рассматривается задача наблюдения за перемещающейся по плоскости тележкой. Состоянием тележки является её положение на плоскости (x, y, ориентация в пространстве) и угол поворота колёс. На плоскости в начале координат установлен локатор, измеряющий расстояние до тележки и угол направления на неё.

Далее будет описана используемая матемаическая модель. Типичная траектория получаемая с её помощью выглядит следующим образом:

1.2 Система наблюдения

Математическая модель описывается системой с дискретным временем:

$$\begin{cases} x_{1,k} = x_{1,k-1} + Tcos(\theta_{k-1})cos(\phi_{k-1})u_{1,k-1} \\ x_{2,k} = x_{2,k-1} + Tsin(\theta_{k-1})cos(\phi_{k-1})u_{1,k-1} \\ \theta_k = \theta_{k-1} + Tsin(\phi_{k-1})\frac{u_{1,k-1}}{l} + \omega_{3,k} \\ \phi_k = \phi_{k-1} + Tu_{2,k-1} + \omega_{4,k} \end{cases}$$

где

- x_1 координата объекта по оси х
- x_2 координата объекта по оси у
- θ угол между направлением движения тележки и положительной полуосью Ох (ориентация на плоскости)
- ullet ϕ угол поворота колёс тележки относительно направления движения
- ullet T параметр дискретизации системы по времени
- l расстояние между осями тележки
- ω шум в модели динамики, $\omega_k \sim \mathcal{N}(0,Q)$
- u_1 управляемая линейная скорость
- ullet u_2 управляемая угловая скорость

Наблюдения определяются следующим образом:

$$\begin{cases} r_k = \sqrt{x_{1,k}^2 + x_{2,k}^2} + \nu_{1,k} \\ \alpha_k = \arctan(\frac{x_{2,k}}{x_{1,k}}) + \nu_{2,k} \end{cases}$$

где

- ullet r_k расстояние от локатора до цели
- ullet α_k угол направления от локатора к цели
- ν шум в наблюдениях, $\nu \sim \mathcal{N}(0,R)$

2 Практическая часть

2.1 Значения параметров системы

В численных экспериментах установим следующие параметры системы:

$$l = 0.1, u_1 = 3, u_2 = 0$$

Шаги по времени:

$$\delta_1 = \delta_2 = 10^{-3}, \ \delta_1 = 10^{-2}, \ T_{max} = 1$$

Заметим, что равенство δ_1 и δ_2 следует из того, что система заране дискретизирована.

Также для наблюдений вместо arctan возьмём \arctan_2 . Это обусловлено тем, что область действия $\arctan - \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$, а \arctan_2 - вся тригонометрическая окружность. Благодаря этому мы сможем избежать ошибки наблюдений с неправильным определением полуплоскости.

Матрицы шумов возьмём следующими:

$$Q = \begin{bmatrix} 3 \cdot 10^{-7} & 0 & 0 & 0 \\ 0 & 3 \cdot 10^{-7} & 0 & 0 \\ 0 & 0 & 3 \cdot 10^{-5} & 0 \\ 0 & 0 & 0 & 3 \cdot 10^{-5} \end{bmatrix}$$

$$R = 5 \cdot 10^{-3} \cdot I_2$$

Начальное значение траектории моделируется следующим образом:

$$X_0 \sim \mathcal{N}(0, 0.3 \cdot I_4)$$

Все необходимые для фильтрации параметры были посчитаны аналитически во время работы программы с помощью соответствующих пакетов Python (filterpy, sympy). Реализации всех фильтров также взяты из соответствующих пакетов на Python. Для достижения большей точности были использованы 128-битные числа с плавающей точкой (стандарт IEEE 754).

2.2 Сравнение работы алгоритмов

2.2.1 Оценки траектории

Рис. 1: Оценка x_1

~

Рис. 2: Оценка x_2

9

Рис. 4: Оценка ϕ

Рис. 5: Ошибка x_1

Рис. 7: Ошибка θ

Рис. 8: Ошибка ϕ

2.2.7 Графики ошибок для всех траекторий

Рис. 9: Ошибка x_1

Рис. 10: Ошибка x_2

Рис. 11: Ошибка θ

Рис. 12: Ошибка ϕ

2.2.8 Численные результаты

Метод	Процент расходящихся траекторий
UKF	16.72
UKFR	16.72
PF	6.09

Время	UKF	UKFR	PF
0.14	0.01454	0.01454	0.0401
0.43	0.01618	0.01618	0.05342
0.71	0.02032	0.02032	0.04768

Таблица 1: Средние ошибки фильтров на оценивания x_1

Время	UKF	UKFR	PF
0.14	0.01348	0.01348	0.04384
0.43	0.01557	0.01557	0.05537
0.71	0.0187	0.0187	0.0506

Таблица 2: Средние ошибки фильтров оценивания x_2

Время	\mathbf{UKF}	UKFR	\mathbf{PF}
0.14	0.51688	0.51688	0.88597
0.43	0.90071	0.90071	2.43857
0.71	1.44523	1.44523	4.00522

Таблица 3: Средние ошибки фильтров оценивания θ

Время	UKF	UKFR	PF
0.14	0.34427	0.34427	0.34907
0.43	0.4138	0.4138	0.35533
0.71	0.5228	0.5228	0.36586

Таблица 4: Средние ошибки фильтров оценивания ϕ

3 Выводы по расчётам

Из графиков видно, что оценки UKF и его корневой модификации ведут себя абсолютно одинаково. Это логично следует из вышеописанных особенностей реализации для 128-битных чисел. Более подробно о таком поведении фильтров Калмана написано в соответствующем разделе документации.

Также можно заметить, что лучше всего фильтры справляются с оценкой местоположения тележки, а хуже всего - с углами θ и ϕ . Этому есть логичное объяснение: в качестве наблюдений мы получаем полярные координаты тележки. Благодаря этому мы достаточно точно можем строить оценку для x_1 и x_2 . В то же время, в наблюдениях никоим образом не участвуют углы, поэтому информацию о них мы получаем косвенно через перемещение тележки. Более того, поскольку угловая скорость u_2 при расчётах взята равной нулю, поведение ϕ описывается винеровским процессом с соответствующими параметрами. Из-за этого оценивать его сложнее всего, хотя и возможно из изменения θ . Но, поскольку все наблюдения зашумлены, а при изменении состояния также добавляется шум, эффект накопления ошибки сильнее всего виден именно на этой компоненте состояния. Тем не менее, основную задачу можно признать выполненной - полученный алгоритм достаточно точно оценивает траекторию движения цели несмотря на помехи. Также из таблиц можно увидеть, что оценка, полученная фильтром частиц, часто оказывается хуже оценки UKF (ошибка большге примерно в 1.5-1.6 раза), но при этом процент расходящихся траекторий у РГ сильно меньше (6 против почти 17). То есть, в данном случае большая вычислительная сложность оправдывается большей стабильностью. Если также посмотреть на графики средних ошибок на всех и на неразваливающихся траекториях, будет видно, что фильтр частиц ведёт себя и на тех и на других траекториях похожим образом, в то время как средняя ошибка сигма-точечного фильтра сильно зависит от типа траектории.

Если взглянуть на графики средних ошибок на всех траекториях, можно также заметить, что средняя ошибка растёт. Это может быть связано с тем, что, начиная с некоторого момента, тележка может начать кружить вокруг некоторой точки из-за неуправляемого роста угла поворота. В такие моменты становится сложно предсказать траекторию, так как малое изменение местоположения тележки по сравнению с погрешностью наблюдений сильно сказывается на работе фильтра, и для него такое движение с точки зрения постановки задачи становится мало отличимым от броуновского. Возможно, такого поведения цели можно избежать путём изменения управления с константного на зависящее от времени.