## Problem 1. Gaussian Integrals and moment generating functions

**Motivation:** Consider a harmonic oscillator with potential energy  $U(x) = \frac{1}{2}kx^2$ . If the harmonic oscillator is subjected to an additional constant force f in the x direction its potential energy is  $U(x, f) = \frac{1}{2}kx^2 - fx$ . As we will see shortly, the probability to find the harmonic oscillator coordinate between x and x + dx is

$$P(x)dx = Ce^{-U(x,f)/k_BT}dx. (1)$$

This motivated people to study integrals of the form

$$I(f) \equiv C \int_{-\infty}^{\infty} \mathrm{d}x \, e^{-\frac{1}{2}x^2 + fx} \tag{2}$$

where f is a real number and C is a normalizing constant.

**Method:** Consider integrals of the following form

$$I_n = \langle x^n \rangle = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \mathrm{d}x \, e^{-\frac{1}{2}x^2} x^n \tag{3}$$

which come up a lot in this course. There is a neat trick for evaluating the integrals  $I_n$ , known as the moment generating (or characteristic) function.

Instead of considering  $I_n$ , consider the average of  $\langle e^{ax} \rangle$ .

$$I(a) \equiv \langle e^{ax} \rangle = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}x^2} e^{ax}$$
 (4)

with a a fixed real number. Why would one ever want to do this? Well, if you differentiate with respect to a (under the integral sign) and then set a = 0, you pull down an x:

$$\frac{d}{da}e^{ax}\bigg|_{a=0} = e^{ax}x\bigg|_{a=0} = x. \tag{5}$$

Thus, we may differentiate under the integral sign and find  $\langle x \rangle$  from I(a):

$$\frac{d}{da}I(a)\Big|_{a=0} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}x^2} x = \langle x \rangle \tag{6}$$

The trick can be repeated any number of times. For instance since

$$\left(\frac{d}{da}\right)^4 e^{ax}\Big|_{a=0} = e^{ax} x^4\Big|_{a=0} = x^4$$
 (7)

We have

$$\left(\frac{d}{da}\right)^4 I(a) \bigg|_{a=0} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}x^2} x^4 = \left\langle x^4 \right\rangle \tag{8}$$

In summary, knowing I(a) amounts to know all moments of the probability distribution

$$\langle x^n \rangle$$
 (9)

by differentiation<sup>1</sup>. That is why I(a) is called the moment generating function. This procedure works for any probability distribution and not just the Gaussian (or bell-curve). Now we only need to find I(a)

(a) (Optional) Show that

$$I_0 = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \, e^{-\frac{1}{2}x^2} = 1$$
(13)

(b) Show that

$$I(a) = e^{\frac{1}{2}a^2} \tag{14}$$

*Hint:* Complete the square

$$-\frac{1}{2}x^2 + ax = -\frac{1}{2}(x-a)^2 + \frac{1}{2}a^2$$
 (15)

and then do the integral by a change of variables.

(c) Use the method of generating functions outlined above to prove that

$$\langle x^2 \rangle = 1 \qquad \langle x^4 \rangle = 3 \qquad \langle x^6 \rangle = 15$$
 (16)

If you are interested, try to prove the general result for yourself

$$I_{2n} = \frac{2n!}{n!2^n} \tag{17}$$

Hint: expand the result of (b) and compare with Eq. (12)

(d) For a distribution of the form

$$P(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-x^2/2\sigma^2}$$
 (18)

where  $\sigma$  and x have units of length, determine  $\langle x^2 \rangle$  and  $\langle x^4 \rangle$  using the results of part (c) and a change of variables to  $u = x/\sigma$ .

$$e^{ax} = 1 + ax + \frac{1}{2!}a^2x^2\dots ag{10}$$

we can see that the Taylor series of I(a) takes the form

$$I(a) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \, e^{-\frac{1}{2}x^2} \left( 1 + ax + \frac{1}{2!} a^2 x^2 + \dots \right)$$
 (11)

$$=1 + \langle x \rangle a + \langle x^2 \rangle \frac{a^2}{2!} + \langle x^3 \rangle \frac{a^3}{3!} + \dots$$
 (12)

Thus knowing they Taylor series of I(a) amounts to knowing all  $I_n = \langle x^n \rangle$ . Once simply needs to Taylor expand I(a) in a and read off the coefficients in frount of  $a^n$  – that coefficient is  $I_n/n!$ .

An entirely equivalent way of saying this is that the since the Taylor series of  $e^{ax}$  is

The results of this problem show that for a Gaussian probability distribution as presented

$$\left| \langle x^n \rangle = \sigma^n \frac{(2n)!}{n!2^n} \right| \tag{19}$$

#### Problem 2. Exponential distribution

A particle is created at time t = 0 and flies a distance x (greater than zero) before being destroyed. The probability of surviving up to a given distance between x and x + dx is

$$P(x)dx = Ae^{-x/\ell}dx \tag{20}$$

with x > 0. For parts (a), (b), you should do the integrals yourself (showing your work explicitly) and dont use Mathematica. For practice switch to some dimensionless variables i.e.  $u = x/\ell$  before trying to do the integrals. In part (d) you will prove the boxed integral.

- (a) Find the value of A that makes P(x) a well defined normalized probability distribution with  $\int_0^\infty dx \, P(x) = 1$ . What are the units of A?
- (b) Show that the mean survival length is  $\ell$ , i.e. show that  $\langle x \rangle = \int_0^\infty \mathrm{d}x \, x P(x) = \ell$ .
- (c) Show that variance and std. deviation of the survival length are  $\ell^2$  and  $\ell$  respectively. For any dimensionfull integrals that come up you *must* do the following:
  - (i) First switch to a dimensionless variable  $u = x/\ell$  (x in units of  $\ell$ ), to express the dimensionfull result as  $\ell$  to some power (so that the units are correct), times a dimensionless integral. In this case the dimensionless integrals can be done analytically using the results of the next item, which you may just quote
- (d) For simplicity set  $\ell = 1$  in what follows. This is the equivalent to saying we will measure x in units of  $\ell$ . Use the generating function method of a previous problem, and calculate  $\langle \exp(ax) \rangle$ . Use the result to prove that

$$\langle x^n \rangle = n!$$

The taylor series can be helpful but not essential:

$$\frac{1}{1-a} = 1 + a + a^2 + a^2 + \dots {21}$$

This problem establishes that

$$n! = \int_0^\infty e^{-x} x^n \, \mathrm{d}x$$
 (22)

### Problem 3. The $\Gamma$ function

The  $\Gamma(x)$  function can be defined as<sup>2</sup>

$$\Gamma(x) = \int_0^\infty du e^{-u} u^{x-1}$$
(23)

A plot of  $\Gamma(x)$  is shown below.  $\Gamma(n)$  provides a generalization of (n-1)! when when n is not an integer, and even negative. It will come up a number of times in this course and is good to know.



Fig. C.1 The gamma function  $\Gamma(n)$  showing the singularities for integer values of  $n \leq 0$ . For positive, integer n,  $\Gamma(n) = (n-1)!$ .

Figure 1: Appendix C.2 of our book

- (a) Explain briefly why  $\Gamma(n) = (n-1)!$  for n integer.
- (b) Prove that  $\Gamma(\frac{1}{2}) = \sqrt{\pi}$ . Hint: try a substitution  $y = \sqrt{u}$ .

The following identity is needed below.

$$\Gamma(x+1) = x\Gamma(x), \qquad (24)$$

or

$$x! = x \cdot (x-1)!, \qquad (25)$$

but now x is a real number, and x! is defined by  $\Gamma(x+1)$ .

(c) (Optional. Dont turn in) Use integration by parts to prove the identity.

- (d) Use the results of this problem to show that  $\Gamma(\frac{7}{2}) = 15\sqrt{\pi}/8$ . What is the result numerically? 7/2 is between two integers. Show that  $\Gamma(7/2)$  is between the appropriate factorials related to those two integers?
- (e) The "area" (i.e. circumference) of a "sphere" in two dimensions (i.e. the circle) is  $2\pi r$ . The area of a sphere in three dimensions is  $4\pi r^2$ . A general formula for the area of the sphere in d dimensions is derived in the book is (the proof is simple, using what we know)

$$A_d(r) = \frac{2\pi^{d/2}}{(\frac{d}{2} - 1)!} r^{d-1} = \frac{2\pi^{d/2}}{\Gamma(d/2)} r^{d-1}$$
(26)

Show that this formula gives the familiar result for d=2 and d=3.

# Problem 4. Combinatorics and The Stirling Approximation

Consider a chain of  $6 \times 10^{23}$  atoms, laid out in a row. The atoms can be in two states, a ground state, and an excited state. 1/3 of them are in the excited states. Show that the number of configurations with this number of excited states is approximately

$$10^{1.67 \times 10^{23}} \tag{27}$$

For instance, if the number of atoms is five, and the number of excited atoms (shown by the black circles) is 2, then two possible configurations are shown below.



## Problem 5. Central Limit Theorem and Random Walk

In a random walk, a collegiate drunkard starts at the origin and takes a step of size a, to the right with probability p and to the left with probability 1 - p.

- (a) What is the mean and variance variance in his position X after one step, and after two steps.
- (b) After n steps (with  $n \gg 1$ ) find his mean position  $\langle X \rangle$ , and the std. deviation in his position  $\sigma_X = \sqrt{\langle \delta X^2 \rangle}$ . You can check your result by comparing with the figure below

Hint: X is a sum N independent events  $x_i$  where  $x_i = \pm a$ . Use results from class on the probability distribution of a *sum* of independent events.



Figure 2: Probability of our drunkard having position X after n=10 steps (the blue points). Of course after 10 steps the drunkard will be between -10...10, and it is easy to show that he will be only at the even sites, i.e. -10, -8, -6, ...10. For p=0.6, I find  $\langle X \rangle = 2.0$ . Twice the std deviation,  $2\sigma_X$ , is shown in the figure and is about six in this case. The orange curve is a gaussian (a.k.a the "bell-shaped" curve) approximation discussed in class and approximately agrees with the points – this is the central limit theorem. Recall that the central limit theorem says that if the number of steps n is large, the probability of X (a sum of n independent events) is approximately  $P(x) dX \propto \exp(-(X - \langle X \rangle)^2/2\sigma_X^2)$ . Evidently the gaussian approximation works well already for n=10.