

INSTITUTO POLITÉCTICO NACIONAL ESCUELA SUPERIOR DE CÓMPUTO ESCOM

Carrera:

Ingeniería en sistemas computacionales

Unidad de Aprendizaje:

Sistemas Embebidos

Practica 1:

Práctica de display de 7 segmentos - Verilog

Integrantes:

Cazares Cruz Jeremy Sajid
Bazo Machuca Ilse Paola
Acosta Cortes Gerardo
Guzmán Ballesteros
Armando

Fecha de entrega

03 de octubre de 2023

Reporte Práctica 1

Descripción General

Este proyecto implementa una mini Unidad Lógica Aritmética (ALU) en una FPGA de la familia Cyclone IV E (modelo EP4CE115F29C7). La ALU realiza operaciones lógicas y aritméticas básicas en dos entradas (`a_i` y `b_i`) basadas en la selección de operación (`seleccion_i`). El resultado se muestra en tres displays de 7 segmentos (`disp0`, `disp1`, y `disp2`). El código está diseñado en Verilog y utiliza un módulo separado (`disp7`) para convertir números de 4 bits en representaciones de 7 segmentos.

Descripción Detallada de los Módulos:

Módulo `practica1`

Puertos:

- Entradas (`a_i`, `b_i`, `seleccion_i`)
- Salidas (`disp0`, `disp1`, `disp2`)

Declaración de Señales:

• `reg [11:0] res_o`: Almacena el resultado de las operaciones.

Módulo 'disp7'

```
module disp7 (
   input [3:0] numero_i,
   output reg [6:0] disp_o
-); _ ...
```

Puertos:

- Entrada (`numero_i`)
- Salida (`disp_o`)

Sección de Ciclo `always`:

```
always @(a_i,b_i,seleccion_i)
 case(seleccion_i)
        res_o = a_i + b_i;
  3 b001:
        res_o= a_i - b_i;
  3'b010:
        res_o= a_i * b_i;
  3 b011:
        res_o= a_i | b_i;
   3 b100:
        res_o= a_i & b_i;
  3 b101:
        res_o= a_i >> b_i;
  3 b110:
        res_o= a_i << b_i;
        res_o= a_i ^ b_i;
 endcase
end
```

En el Módulo `practica1`:

- Bloque `always` (sensibilidad a `a_i`, `b_i`, `seleccion_i`):
- Utiliza un caso `case` para determinar la operación a realizar basada en `seleccion_i`.
- Asigna el resultado al registro `res_o`.
- Llama al módulo `disp7` tres veces para mostrar los segmentos en los displays.

- En el Módulo `disp7:

```
always @(numero_i)
begin
  case(numero_i)
         disp_o = 7'b1000000;
   4 h1:
         disp_o = 7'b1111001;
  4 h2:
         disp_o = 7'b0100100;
  4'h3:
         disp_o = 7'b0110000;
  4 h4:
         disp_o = 7'b0011001;
  4 h5:
         disp_o = 7'b0010010;
  4 h6:
         disp_o = 7'b0000010;
   4'h7:
         disp_o = 7'b1111000;
```

- Bloque `always` (sensibilidad a `numero_i`):
- Utiliza un caso `case` para asignar valores a `disp_o` basados en `numero_i`.

Instanciando disp7

```
disp7 display0 (
    .numero_i (res_o[3:0]),
    .disp_o (disp0)
);

disp7 display1 (
    .numero_i (res_o[7:4]),
    .disp_o (disp1)
);

disp7 display2 (
    .numero_i (res_o[11:8]),
    .disp_o (disp2)
);
```

Estos módulos disp7 son responsables de convertir un número de 4 bits en la representación adecuada para mostrar en un display de 7 segmentos. Vamos a desglosar esta sección para entenderla mejor.

Aquí, se están creando tres instancias del módulo disp7. Para cada instancia:

- numero_i se conecta a una porción específica del resultado (res_o) de la ALU.
 En este caso, res_o[3:0] se conecta a numero_i del primer disp7, res_o[7:4] se conecta al numero_i del segundo disp7, y res_o[11:8] se conecta al numero_i del tercer disp7.
- disp_o se conecta a las salidas de los displays de 7 segmentos (disp0, disp1 y disp2), respectivamente. Esto significa que las conversiones de los números realizadas por los módulos disp7 se mostrarán en los displays correspondientes.

Conexiones Externas:

- Hay que asegurar que las entradas (`a_i`, `b_i`, `seleccion_i`) estén correctamente conectadas a fuentes de datos externas.
- Las salidas ('disp0', 'disp1', 'disp2') deben estar conectadas a los pines correspondientes de los displays de 7 segmentos.

Configuración de la FPGA:

Antes de la síntesis, asegúrate de tener configurada correctamente la FPGA para utilizar el modelo específico (`EP4CE115F29C7`) y los pines necesarios para las conexiones.

PIN PLANNER

Entradas

Salidas

Limitaciones del Display de 7 Segmentos:

 Asegurar que las conversiones de números a segmentos estén correctamente definidas para el tipo de display de 7 segmentos que se está utilizando.

Simulación:

Fpga:

Conclusión:

Este proyecto presenta una implementación funcional de una mini ALU con displays de 7 segmentos en una FPGA Cyclone IV E. Los módulos `practica1` y `disp7` están diseñados para realizar operaciones y convertir números en representaciones de 7 segmentos, respectivamente. Asegurando las conexiones correctas y las configuraciones adecuadas, este diseño proporcionará una interfaz visual para las operaciones realizadas por la mini ALU