SmolVLM for Dense Video Captioning

Week 4: Internship Update

Adaptive Thresholding in PySceneDetect

- tested the default threshold and min_scene_len for Contentdetector and they do not work well always because _calculate_frame_score returns 0.0 for the first frame and it needs at least two frames to detect a shot which might be a problem
- still used ContectDetector but with observing all the differences and setting the threshold in two ways:
 - threshold = mean + 2std: in the Gaussian case 95.4% of data
 - threshold = 98th percentile of differences: worked okay and extracted at least two frames

 Dynamic Frame Sampling for Multimodal Large Language Model Video Understanding

Fig. 1: Dynamic frame sampling for multimodal large language model (LLM) video understanding

- DFS-QA: Dynamic Frame Selection for Better Video Question Answering
 - o mostly for the question answering task, not very applicable

- A New Efficient Hybrid Technique for Human Action Recognition Using 2D Conv-RBM and LSTM with Optimized Frame Selection
 - Human Action Recognition task
 - SMART frame selection
 - two-dimensional convolutional restricted Boltzmann machine for spatial feature extraction
 - LSTM for temporal modeling
 - grayscale images
 - SMART Frame Selection for Action Recognition

SMART Frame Selection for Action Recognition

- CNN: MobileNet trained on ImageNet + averaged representation of 10 most likely classes (text embedded with GloVe)
- Single-Frame Selector: MLP BUT I would need classes
- Global Selector: Attention model over the entire video
- Multiplication of weights gives the final weight

 MaxInfo: A Training-Free Key-Frame Selection Method Using Maximum Volume for Enhanced Video Understanding

 MaxInfo: A Training-Free Key-Frame Selection Method Using Maximum Volume for Enhanced Video Understanding

Algorithm 1 MaxInfo Block: SVD + MaxVol for Keyframe Selection

1: **Input:** A set of *n* frames $I = \{i_1, i_2, ..., i_n\}$

Embedding: Convert each frame i_i into a [CLS] embedding:

$$q_n = \text{flatten} \left(\text{clip_model}(i_n) \right), \mathbf{Q} = \begin{bmatrix} q_1 \\ q_2 \\ \vdots \\ q_n \end{bmatrix} \in \mathbb{R}^{n \times d}.$$

3: **SVD Reduction:** Perform truncated SVD on **Q**:

$$\mathbf{Q} \approx \mathbf{U}_r \mathbf{\Sigma}_r \mathbf{V}_r^{\mathsf{T}} \quad \rightarrow \quad \mathbf{Q}_{\mathbf{S}} = \mathbf{U}_r \in \mathbb{R}^{n \times r}.$$

4: MaxVol Selection: Run rect_maxvol(Q_s, tol) to find pivot indices:

$$piv = rect_maxvol(Q_s, Tol),$$

identifying rows (frames) that span the reduced embedding space.

5: Output: Indices piv of the most informative keyframes.

- MaxInfo: A Training-Free Key-Frame Selection Method Using Maximum Volume for Enhanced Video Understanding
 - Truncated SVD(Singular Value Decomposition)
 - Reducing feature dimension
 - Optimal s could be calculated
 - Rectangular MaxVolume Selection
 - Scene-Aware MaxInfo

$$\operatorname{rect-vol}(\mathbf{A}) = \sqrt{\det(\mathbf{A}\mathbf{A}^T)}$$
 $\mathbf{r} = \arg\max_{\mathbf{r}} \operatorname{rect-vol}(\mathbf{Q}_s(\mathbf{r},:))$

MaxInfo: A Training-Free Key-Frame Selection Method Using Maximum Volume for Enhanced Video Understanding

MODEL	SIZE	VIDEOMME (WO/W-SUBS)	EGOSHCEMA	LongVideoBench	
LLAVA-VIDEO (Zhang et al. , <u>2024c</u>)	7B	63.3/69.7 ₍₆₄₎	57.3 ₍₆₄₎	58.2 ₍₆₄₎	
+ Maxinfo	7B	64.2/71.4 _{64→(6,64)}	63.7 _{128→(64,64)}	61.5 _{128→(1,64)}	
Δ		+0.9%/+1.7%	+6.4%	+3.3%	
LLAVA- (Zhang et al. , <u>2024c</u>)	72B	70.5/76.9 ₍₆₄₎	65.6 ₍₆₄₎	61.9 ₍₆₄₎	
+ MaxInfo	72B	70.2/77.6 _{64→(6,64)}	69.4 _{128→(64,64)}	64.9 _{128→(64,1)}	
Δ		-0.3%/+0.7%	+3.8%	+3%	
QWEN2-VL (Wang et al. , <u>2024a</u>)	2B	55.6/60.4 ₍₇₈₆₎	54.9 ₍₁₈₀₎	47.3 ₍₂₅₆₎	
+ Maxinfo	2B	57.0/61.6 _{256→(254,4)}	57.2 _{180→(180,12)}	48.8 _{256→(224,1)}	
Δ		+1.4%/+1.2%	+2.3%	+1.5%	
QWEN2-VL (Wang et al., <u>2024a</u>)	7B	63.3/69.0 ₍₇₆₈₎	66.7 ₍₁₈₀₎	53.7 ₍₂₅₆₎	
+ Maxinfo	7B	62.1/70.0 _{256→(254,4)}	64.3 _{180→(180,12)}	55.7 _{256→(224,1)}	
Δ		-1.2/+1.0%	+2.4%	+2.0%	

Model	Size	Visual encoder	Param.	Acc.
LLAVA-VIDEO	7B	CLIP-VIT-LARGE	427.9 M.	58.94
LLAVA-VIDEO	7B	CLIP-VIT-BASE	149.6 M.	58.79
LLAVA-VIDEO	7B	DINO2-BASE	86.6 M.	58.94
LLAVA-VIDEO	7B	DINO2-LARGE	304.4 M.	58.86
LLAVA-VIDEO	7B	SIGLIP-BASE-224	203.2 M.	59.76
LLAVA-VIDEO	7B	SIGLIP-BASE-384	878 M.	59.24

Figure 3: Accuracy comparison between Uniform Sampling and MaxInfo on Video-MME (Qwen2-VL-2B).