PROJETO FINAL TECNOLOGIAS DE BIG DATA E INTELIGÊNCIA ARTIFICIAL

GRUPO 8 | INDIGESTION

Nome dos Alunos:

Alan Batista Manuella Paez Mario José C M Prado Wislom Diogo Almeida

Coordenador:

Prof. Fabio Jardim

Agenda

1. Contextualização do trabalho

2. Visão e objetivo do projeto

3. Documentação da solução

i. Diagrama da arquitetura e descrição dos serviços

ii. Detalhamento e configurações técnicas

4. Demonstração da solução e entregáveis

O sistema de transporte público de São Paulo atende milhões de pessoas diariamente, e a eficácia na gestão da frota de ônibus é crucial para assegurar uma boa qualidade do serviço público prestado e, consequentemente, a satisfação da população com o tema.

O trabalho possui como objetivo a construção de uma aplicação que possibilite o monitoramento em tempo quase real dos ônibus em circulação no estado de São Paulo e que ofereça métricas e KPIs importantes para tomada de decisão.

Solução de monitoramento em tempo real dos ônibus em circulação no cidade de São Paulo

Uso dos dados da API OLHO VIVO da SPTrans e dados GTFS

Integração com um data lake para armazenamento e enriquecimento de dados

Business intelligence para monitoramento em tempo quase real e análises para otimização do transporte público de São Paulo, Brasil.

3.i Solução | Arquitetura da solução e descrição dos serviços

3.ii Solução | Detalhamento e configurações técnicas

INGESTÃO E ARMAZENAMENTO

PROCESSAMENTO

ACESSO E DATAVIZ

Credenciais de acesso:

NiFi:

• URL: http://localhost:49090

 Porta padrão para acesso à interface web do NiFi: 9090

MinIO:

Console: http://localhost:49001

Serviço de

Armazenamento: http://localhost:49000

Portas expostas:

• 9000: Porta padrão para acesso ao

serviço MinIO

• 9001: Porta do console de gerenciamento

Credenciais de Acesso:

Usuário: admin / Senha: minioadmin

GITHUB

Detalhamentos adicionais

Configuração:

Imagem Utilizada: apache/nifi:\${NIFI_VERSION}

Container Name: nifi-otmzsp **Hostname**: nifi-otmzsp

Ambiente:

NIFI_WEB_HTTP_PORT: 9090 NIFI_WEB_HTTPS_HOST: nifi Timezone (TZ): America/Sao_Paulo

Volumes:

• ./volumes/nifi/util:/útil | Diretório para utilitários.

- ./volumes/nifi/util/jar:/util/jar | Diretório para arquivos JAR.
- ./volumes/nifi/conf:/opt/nifi/nifi-current/conf | Diretório de configuração do NiFi.

Comando:

sh -c "In -snf /usr/share/zoneinfo/\$\$TZ /etc/localtime && echo \$\$TZ > /etc/timezone" | Configuração do timezone.

Recursos:

Limite de Memória: 2 GB para garantir desempenho adequado.

Configuração:

Imagem Utilizada: minio/minio:\${MINIO_VERSION}

Container Name: minio-otmzsp

Estrutura de Pastas:

- Raw: Diretório para armazenamento de dados brutos.
- Trusted: Diretório para armazenamento de dados confiáveis.

Volumes: Mapeamento do diretório local ./volumes/minio/data para /data no container, garantindo persistência de dados.

Health Check:

• Comando: ["CMD", "mc", "ready", "local"]

Intervalo: 5 segundosRetries: 5 tentativas

• **Timeout**: 5 segundos

3.ii Solução | Detalhamento e configurações técnicas

INGESTÃO E ARMAZENAMENTO

PROCESSAMENTO

ACESSO E DATAVIZ

Credenciais de acesso:

Apache SPARK:

• URL: spark://spark-master-otmzsp:7077

Portas expostas - Master:

- 7077: Porta do master para gerenciar os workers.
- 8080: Interface web do master.
- Portas expostas Worker: 8081: Interface web do worker.

JUPYTER:

Portas expostas:

- 8888: Porta padrão para acessar a interface web do Jupyter Notebook.
- 4040 a 4043: Portas usadas para monitoramento do Spark (UI do Spark).

GITHUB

Configuração:

Imagem Utilizada: apache/spark:\${SPARK_VERSION}
Container Name:

Master: spark-master-otmzspWorker: spark-worker-otmzsp

Modos de Operação:

1. Master:

Variáveis de Ambiente: SPARK MODE: master

SPARK_MASTER_HOST: spark-master-otmzsp

TZ: America/Sao_Paulo Limite de Memória: 2 GB.

Comando: /opt/spark/bin/spark-class org.apache.spark.deploy.master.Master

2. Worker:

Variáveis de Ambiente:

SPARK_MODE: worker

SPARK_MASTER_URL: spark://spark-master-otmzsp:7077

SPARK_WORKER_MEMORY: 1g

TZ: America/Sao_Paulo Limite de Memória: 1 GB.

Comando: /opt/spark/bin/spark-class

org.apache.spark.deploy.worker.Worker spark://spark-master-

otmzsp:7077

Configuração:

Imagem Utilizada: jupyter/pyspark-notebook:latest

Container Name: jupyter-otmzsp

Ambiente:

JUPYTER_TOKEN: "" | Desabilita o token de segurança para acesso.

Volumes:

../notebooks:/home/jovyan/work | Diretório para armazenar notebooks, permitindo persistência de dados e fácil acesso.

Comando:

start-notebook.sh --NotebookApp.token=" -- NotebookApp.password=" | Inicia o servidor Jupyter sem token ou senha, facilitando o acesso.

3.ii Solução | Detalhamento e configurações técnicas

INGESTÃO E ARMAZENAMENTO

PROCESSAMENTO

ACESSO E DATAVIZ

Credenciais de acesso:

Elastic Search:

Portas expostas:

- 9200: Porta padrão para acesso à API REST do Elasticsearch.
- 9300: Porta para comunicação entre nós (cluster).

Kibana:

Portas expostas:

 5601: Porta padrão para acessar a interface web do Kibana.

GITHUB

Detalhamentos Configuração: adicionais Imagem Utiliza

Imagem Utilizada: elasticsearch:7.17.20 Container Name: elasticsearch-otmzsp Hostname: elasticsearch-otmzsp

Ambiente:

discovery.type: single-node | configuração para executar em modo de nó único)

.ES_JAVA_OPTS: "-Xms2g -Xmx2g" | configurações de

memória do Java

.xpack.security.enabled: "false" | desabilita a segurança para simplificar a configuração.

Volumes:

./volumes/elasticsearch/esdata:/usr/share/elasticsearch/d ata | Mapeamento para persistência de dados.

Health Check:

Comando: curl -sS --fail http://elasticsearch-

otmzsp:9200/_cluster/health?wait_for_status=yellow&time

out=0s

Intervalo: 1 segundo Retries: 3 tentativas Start Period: 20 segundos Timeout: 5 segundos

Configuração:

Imagem Utilizada: kibana:7.17.20 Container Name: kibana-otmzsp Hostname: kibana-otmzsp

Ambiente:

ELASTICSEARCH_HOSTS: "http://elasticsearchotmzsp:9200" | configuração para conectar ao Elasticsearch.

Volumes:

./volumes/kibana/data:/usr/share/kibana/data | Mapeamento para persistência de dados, garantindo que as configurações e dashboards sejam mantidos.

Dependências:

Elasticsearch: O Kibana depende do Elasticsearch, sendo necessário garantir que o serviço do Elasticsearch esteja saudável antes do início do Kibana.

PROJETO FINAL DATA ENGINEERING

GRUPO 8 | INDIGESTION

Nome dos Alunos:

Alan Batista Manuella Paez Mario José C M Prado Wislom Diogo Almeida

Coordenador:

Prof. Fabio Jardim

