Mini curso de Probabilidade e Estatística

Por tutor Mestre Omar Barroso Khodr

Aula 6

- Aula 6: Distribuições de probabilidade contínuas
- Distribuição Normal
- Pontuação Z

- * Também conhecida como curva de sino.
- A distribuição normal (DN) é um tipo de probabilidade contínua para uma variável aleatória de valor real. A forma geral de sua função de densidade de probabilidade é:

$$f(x)=rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

- O parâmetro μ é a média populacional ou valor esperado da distribuição.
- Nesse caso específico podemos utilizar também e mediana (por ser o ponto que divide a área da curva) ou moda (por ser o valor de maior densidade).
- σ^2 : a variância populacional
- σ : O desvio padrão

- Axiomas...
- Notação: $N \sim (\mu, \sigma^2)$
- Parâmetros: $\mu \in \mathbb{R}$ = média ou localização central.
- $\sigma^2 \in \mathbb{R}_{>0}$ = variância

Nota: População Vs. Amostra

- Em estatística, uma população refere-se a todo o grupo de indivíduos ou objetos sobre os quais se deseja informação ou Ω , enquanto uma amostra é um subconjunto dessa população usado para coleta e análise de dados.
- Nos exemplos teóricos estamos supondo [ou teorizando] experimentos sobre a população!
- Todavia, em experimentos práticos estamos lidando com a amostra...

- Quando estamos falando da DN, nos referimos a distribuição normal padronizada...
- No caso, podem existir outros tipos de distribuição (e.g., Cauchy, t de student e logística).
- O caso da DN é quando assumimos o caso [teórico] quando $\mu=0$ e $\sigma^2=1$.

- Em termos matemáticos dizemos que:
- Uma variável aleatória Z é dita como normal [ou Gaussiana] quando a variável aleatória é:
- Z ~(0,1).
- Nesse caso, podemos dizer $\operatorname{que} f_z(z) \equiv \mu$
- Existe uma simetria em relação ao centro.
- 50% dos valores são maiores do que a média, enquanto isso 50% deles são menores.

Fonte: Pishro-Nik, 2014

Desvio Padrão (σ)

- Lembrando que, o σ é uma medida de quão dispersos os números estão ou a distância da média.
- Quando calculamos o DP aproximadamente temos que:
- 68% dos dados estão dentro de 1 desvio padrão da média.
- 95% dos dados estão dentro de 2 desvio(s) padrões da média.
- 99.7% estão dentro de 3 desvio(s) padrões da média.

Desvio Padrão (σ)

- É bom saber o desvio padrão, pois podemos dizer que qualquer valor:
- Provavelmente está dentro de 1 desvio padrão (68 em 100)
- Muito provavelmente está dentro de 2 desvios padrão (95 em 100)
- Quase certamente dentro de 3 desvios padrão (997 em 1000)

Exemplo

- Estamos querendo saber a proporção que alunos em uma sala de aula estão entre 1,1m e 1,7m em uma escola.
- Nesse contexto, supomos que a média seja 1,4m e o desvio padrão seja 0,15m.
- Vamos desenhar nossa distribuição normal...

Fonte: Institute of Management and Strategy. Lembre de sempre desenhar nessas proporções.

Exemplo

 Nesse caso, nossa análise sugere que 95% dos alunos na escola têm entre 1,1 m e 1,7 m de altura.

- O número de desvios-padrão da média também é chamado de "Pontuação Padrão", "sigma" ou "Z". Acostume-se com esses termos...
- Podemos ver que na distribuição, que 1,85 m está a 3 desvios-padrão da média de 1,4, então:
- A altura do seu amigo tem um "Z" de 3,0

- Podemos calcular quantos σ 1,85 está da média.
- Qual a distância de 1,85 da média?
- A distância da média é 1,85 1,4
 = 0,45 m.
- Dado que o desvio-padrão é 0,15 m, então:
- 0,45 m / 0,15 m = 3 desviospadrão

- Exemplo 2:
- Uma pesquisa sobre o tempo de deslocamento diário teve estes resultados (em minutos):
- t <- (26, 33, 65, 28, 34, 55, 25, 44, 50, 36, 26, 37, 43, 62, 35, 38, 45, 32, 28, 34)

- Exemplo 2:
- Uma pesquisa sobre o tempo de deslocamento diário teve estes resultados (em minutos):
- t <- (26, 33, 65, 28, 34, 55, 25, 44, 50, 36, 26, 37, 43, 62, 35, 38, 45, 32, 28, 34)
- Após calcular, podemos ver que a média é: 38,8 e o desvio padrão fica em cerca de: 11,7
- Vamos encontrar o Z, ou seja, queremos nesse caso encontrar o quanto longe 26 está da média.
- A distância = 26 38,8 = -12,8
- Agora dividimos por σ : -12,8/11,7 = -1,094

• Nos exemplos anteriores estávamos utilizando a fórmula do 'Z', no qual é essencialmente as operações que realizamos:

•
$$Z = \frac{X - \mu}{\sigma}$$

- X: a distância que queremos encontrar em relação a média.
- μ : a média.
- σ : Desvio Padrão

Distribuição Normal com Probabilidade (LE)

- Exemplo: O tempo de recuperação do paciente de um procedimento cirúrgico específico é normalmente distribuído com uma média de 5,3 dias e um desvio padrão de 2,1 dias.
- Qual seria a probabilidade de um paciente passar mais de dois dias em recuperação?
- Lembrando a nossa formula: $Z = \frac{X-\mu}{\sigma} = \frac{2-5,3}{2,1} \sim -1,57$
- $\mu = 5.3$
- $\sigma = 2,1$
- $X = 2 \equiv P > 2$
- * Lado Esquerdo (LE)

Distribuição Normal com Probabilidade (LE)

- Lembrando a nossa formula: $Z = \frac{X-\mu}{\sigma} = \frac{2-5,3}{2,1} \sim -1,57$
- $\mu = 5.3$
- $\sigma = 2,1$
- $X = 2 \equiv P > 2$
- Agora devemos encontrar na tabela Z (slides 26 e 27) o valor de -1,57 para determinar a probabilidade...
- Segundo a tabela, o valor é de: 0,05821
- Como queremos saber P>2, fazemos a operação: 1-0,05821 =~0,9418
- Ou seja, a probabilidade do paciente permanecer mais de 2 dias para recuperação é de 94,18%.

Distribuição Normal com Probabilidade (LD)

- Exemplo: O tempo de espera da manutenção de um veículo específico é normalmente distribuído, com uma média de 6,7 dias e um desvio padrão de 1,8 dias.
- Qual seria a probabilidade de passar menos de 8 dias em manutenção?
- Lembrando a nossa formula: $Z = \frac{X \mu}{\sigma} = \frac{8 6.7}{1.8} \sim 0.722$
- $\mu = 6.7$
- $\sigma = 1.8$
- $X = 8 \equiv P \le 8$
- * Lado Direito (LD)

Distribuição Normal com Probabilidade (LD)

- Lembrando a nossa formula: $Z = \frac{X-\mu}{\sigma} = \frac{8-6.7}{1.8} \sim 0.722$
- $\mu = 6.7$
- $\sigma = 1.8$
- $X = 8 \equiv P \le 8$
- Agora devemos encontrar na tabela Z (slides 26 e 27) o valor de 0,772 para determinar a probabilidade...
- Segundo a tabela, o valor é de: 0,7642
- Ou seja, a probabilidade do veículo permanecer menos 8 dias para manutenção é de ~ 76,42%.

Distribuição Normal com Probabilidade (inter.)

- Exemplo: As notas dos alunos de uma determinada turma são distribuídas normalmente, com média de 75 e desvio-padrão de 10.
- Qual é a probabilidade de a nota de um aluno selecionado aleatoriamente estar entre 70 e 90?
- Nesse caso, teremos que aplicar o Z duas vezes...
- Lembrando a nossa formula: $Z = \frac{X \mu}{\sigma}$
- $\mu = 75$
- $\sigma = 10$
- $X_1 = 70$; $X_2 = 90$; $\equiv 70 \le P \le 90$
- $Z_1 = \frac{70-75}{10} = -0.5 \equiv 0.30854 (na tabela z)$
- $Z_2 = \frac{90-75}{10} = 1,5 \equiv 0,93319 (na tabela z)$
- * inter = em um intervalo

Distribuição Normal com Probabilidade (inter.)

- Lembrando a nossa formula: $Z = \frac{X \mu}{\sigma}$
- $\mu = 75$
- $\sigma = 10$
- $X_1 = 70$; $X_2 = 90$; $\equiv 70 \le P \le 90$
- $Z_1 = \frac{70-75}{10} = -0.5 \equiv 0.30854 (na tabela z)$
- $Z_2 = \frac{90-75}{10} = 1,5 \equiv 0,93319 (na tabela z)$
- Para encontrar a probabilidade no intervalo desejado, devemos encontrar a diferença entre Z_1 e Z_2 .
- :. 0.93319-0.30854 = 0.6247
- Com isso, podemos sugerir que existe uma probabilidade de 62,47% que a nota dos alunos fique entre 70 e 90.

A Tabela Z

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.										
Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.9	.00005	.00005	.00004	.00004	.00004	.00004	.00004	.00004	.00003	.00003
-3.8	.00007	.00007	.00007	.00006	.00006	.00006	.00006	.00005	.00005	.00005
-3.7	.00011	.00010	.00010	.00010	.00009	.00009	.00008	.00008	.00008	.00008
-3.6	.00016	.00015	.00015	.00014	.00014	.00013	.00013	.00012	.00012	.00011
-3.5	.00023	.00022	.00022	.00021	.00020	.00019	.00019	.00018	.00017	.00017
-3.4	.00034	.00032	.00031	.00030	.00029	.00028	.00027	.00026	.00025	.00024
-3.3	.00048	.00047	.00045	.00043	.00042	.00040	.00039	.00038	.00036	.00035
-3.2	.00069	.00066	.00064	.00062	.00060	.00058	.00056	.00054	.00052	.00050
-3.1	.00097	.00094	.00090	.00087	.00084	.00082	.00079	.00076	.00074	.00071
-3.0	.00135	.00131	.00126	.00122	.00118	.00114	.00111	.00107	.00104	.00100
-2.9	.00187	.00181	.00175	.00169	.00164	.00159	.00154	.00149	.00144	.00139
-2.8	.00256	.00248	.00240	.00233	.00226	.00219	.00212	.00205	.00199	.00193
-2.7	.00347	.00336	.00326	.00317	.00307	.00298	.00289	.00280	.00272	.00264
-2.6	.00466	.00453	.00440	.00427	.00415	.00402	.00391	.00379	.00368	.00357
-2.5	.00621	.00604	.00587	.00570	.00554	.00539	.00523	.00508	.00494	.00480
-2.4	.00820	.00798	.00776	.00755	.00734	.00714	.00695	.00676	.00657	.00639
-2.3	.01072	.01044	.01017	.00990	.00964	.00939	.00914	.00889	.00866	.00842
-2.2	.01390	.01355	.01321	.01287	.01255	.01222	.01191	.01160	.01130	.01101
-2.1	.01786	.01743	.01700	.01659	.01618	.01578	.01539	.01500	.01463	.01426
-2.0	.02275	.02222	.02169	.02118	.02068	.02018	.01970	.01923	.01876	.01831
-1.9	.02872	.02807	.02743	.02680	.02619	.02559	.02500	.02442	.02385	.02330
-1.8	.03593	.03515	.03438	.03362	.03288	.03216	.03144	.03074	.03005	.02938
-1.7	.04457	.04363	.04272	.04182	.04093	.04006	.03920	.03836	.03754	.03673
-1.6	.05480	.05370	.05262	.05155	.05050	.04947	.04846	.04746	.04648	.04551
-1.5	.06681	.06552	.06426	.06301	.06178	.06057	.05938	.05821	.05705	.05592
-1.4	.08076	.07927	.07780	.07636	.07493	.07353	.07215	.07078	.06944	.06811
-1.3	.09680	.09510	.09342	.09176	.09012	.08851	.08691	.08534	.08379	.08226
-1.2	.11507	.11314	.11123	.10935	.10749	.10565	.10383	.10204	.10027	.09853
-1.1	.13567	.13350	.13136	.12924	.12714	.12507	.12302	.12100	.11900	.11702
-1.0	.15866	.15625	.15386	.15151	.14917	.14686	.14457	.14231	.14007	.13786
-0.9	.18406	.18141	.17879	.17619	.17361	.17106	.16853	.16602	.16354	.16109
-0.8	.21186	.20897	.20611	.20327	.20045	.19766	.19489	.19215	.18943	.18673
-0.7	.24196	.23885	.23576	.23270	.22965	.22663	.22363	.22065	.21770	.21476
-0.6	.27425	.27093	.26763	.26435	.26109	.25785	.25463	.25143	.24825	.24510
-0.5	.30854	.30503	.30153	.29806	.29460	.29116	.28774	.28434	.28096	.27760
-0.4	.34458	.34090	.33724	.33360	.32997	.32636	.32276	.31918	.31561	.31207
-0.3	.38209	.37828	.37448	.37070	.36693	.36317	.35942	.35569	.35197	.34827
-0.2	.42074	.41683	.41294	.40905	.40517	.40129	.39743	.39358	.38974	.38591
-0.1	.46017	.45620	.45224	.44828	.44433	.44038	.43644	.43251	.42858	.42465
-0.0	.50000	.49601	.49202	.48803	.48405	.48006	.47608	.47210	.46812	.46414

Fonte: University of Arizona. A tabela representa a área ao lado esquerdo da pontuação Z.

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.										
Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.50000	.50399	.50798	.51197	.51595	.51994	.52392	.52790	.53188	.53586
0.1	.53983	.54380	.54776	.55172	.55567	.55962	.56356	.56749	.57142	.57535
0.2	.57926	.58317	.58706	.59095	.59483	.59871	.60257	.60642	.61026	.61409
0.3	.61791	.62172	.62552	.62930	.63307	.63683	.64058	.64431	.64803	.65173
0.4	.65542	.65910	.66276	.66640	.67003	.67364	.67724	.68082	.68439	.68793
0.5	.69146	.69497	.69847	.70194	.70540	.70884	.71226	.71566	.71904	.72240
0.6	.72575	.72907	.73237	.73565	.73891	.74215	.74537	.74857	.75175	.75490
0.7	.75804	.76115	.76424	.76730	.77035	.77337	.77637	.77935	.78230	.78524
0.8	.78814	.79103	.79389	.79673	.79955	.80234	.80511	.80785	.81057	.81327
0.9	.81594	.81859	.82121	.82381	.82639	.82894	.83147	.83398	.83646	.83891
1.0	.84134	.84375	.84614	.84849	.85083	.85314	.85543	.85769	.85993	.86214
1.1	.86433	.86650	.86864	.87076	.87286	.87493	.87698	.87900	.88100	.88298
1.2	.88493	.88686	.88877	.89065	.89251	.89435	.89617	.89796	.89973	.90147
1.3	.90320	.90490	.90658	.90824	.90988	.91149	.91309	.91466	.91621	.91774
1.4	.91924	.92073	.92220	.92364	.92507	.92647	.92785	.92922	.93056	.93189
1.5	.93319	.93448	.93574	.93699	.93822	.93943	.94062	.94179	.94295	.94408
1.6	.94520	.94630	.94738	.94845	.94950	.95053	.95154	.95254	.95352	.95449
1.7	.95543	.95637	.95728	.95818	.95907	.95994	.96080	.96164	.96246	.96327
1.8	.96407	.96485	.96562	.96638	.96712	.96784	.96856	.96926	.96995	.97062
1.9	.97128	.97193	.97257	.97320	.97381	.97441	.97500	.97558	.97615	.97670
2.0	.97725	.97778	.97831	.97882	.97932	.97982	.98030	.98077	.98124	.98169
2.1	.98214	.98257	.98300	.98341	.98382	.98422	.98461	.98500	.98537	.98574
2.2	.98610	.98645	.98679	.98713	.98745	.98778	.98809	.98840	.98870	.98899
2.3	.98928	.98956	.98983	.99010	.99036	.99061	.99086	.99111	.99134	.99158
2.4	.99180	.99202	.99224	.99245	.99266	.99286	.99305	.99324	.99343	.99361
2.5	.99379	.99396	.99413	.99430	.99446	.99461	.99477	.99492	.99506	.99520
2.6	.99534	.99547	.99560	.99573	.99585	.99598	.99609	.99621	.99632	.99643
2.7	.99653	.99664	.99674	.99683	.99693	.99702	.99711	.99720	.99728	.99736
2.8	.99744	.99752	.99760	.99767	.99774	.99781	.99788	.99795	.99801	.99807
2.9	.99813	.99819	.99825	.99831	.99836	.99841	.99846	.99851	.99856	.99861
3.0	.99865	.99869	.99874	.99878	.99882	.99886	.99889	.99893	.99896	.99900
3.1	.99903	.99906	.99910	.99913	.99916	.99918	.99921	.99924	.99926	.99929
3.2	.99931	.99934	.99936	.99938	.99940	.99942	.99944	.99946	.99948	.99950
3.3	.99952	.99953	.99955	.99957	.99958	.99960	.99961	.99962	.99964	.99965
3.4	.99966	.99968	.99969	.99970	.99971	.99972	.99973	.99974	.99975	.99976
3.5	.99977	.99978	.99978	.99979	.99980	.99981	.99981	.99982	.99983	.99983
3.6	.99984	.99985	.99985	.99986	.99986	.99987	.99987	.99988	.99988	.99989
3.7	.99989	.99990	.99990	.99990	.99991	.99991	.99992	.99992	.99992	.99992
3.8	.99993	.99993	.99993	.99994	.99994	.99994	.99994	.99995	.99995	.99995
3.9	.99995	.99995	.99996	.99996	.99996	.99996	.99996	.99996	.99997	.99997

Fonte: University of Arizona. A tabela representa a área ao lado esquerdo da pontuação Z.

Bibliografia

- BUSSAB, W. O.; MORETTIN, P. A. Estatística Básica. Saraiva, 2017.
- LARSON, R.; FARBER, B. Estatística Aplicada. Pearson, 2016.
- **Pishro-Nik; H.** Introduction to Probability, Statistics, and Random Processes. Kappa Research, 2014.
- TRIOLA, M. F. Introdução à Estatística. Pearson, 2018.