EFREI 2017/2018

L3 APP ES

Devoir Ecrit - Mathématiques pour l'Informatique

Eléments de correction

Q1. Déterminisation

Déterminiser l'automate A1. Le compléter si besoin. Votre réponse doit être fournie sous la forme d'une table des transitions.

Automate A1:

Al	-D	а	b
\rightarrow	1	2	1
	2	3	3
←	3		
→ ←	4	5	2
	5	3	

Automate déterministe complet :

AF	DC	а	b
→	1,4	2,5	1,2
	2,5	3	3
	1,2	2,3	1,3
←	3	Р	Р
←	2,3	3	3
←	1,3	2	1
	2	3	3
	1	2	1
	Р	Р	Р

Q2. Langage complémentaire

Modifier le graphe des états de l'automate A2 afin d'obtenir un automate reconnaissant le langage complémentaire de celui reconnu par A2.

Q3. Standardisation

Standardiser l'automate A3.

Fournir l'automate standard en modifiant directement le schéma de l'automate A3.

Q4. Minimisation

Calculer l'automate minimal correspondant à l'automate A4 Donner l'automate minimal sous la forme d'une table des transitions.

		а	b
\rightarrow	1	2	3
	2	4	
	3	5	
←	4	6	6
+ + +	5	7	7
←	6	6	
(7	7	
- 1			

Automate A4

Partitions successives:

		а	b	P0	а	b	P1	а	b	P2	а	b	Р3
\rightarrow	1	2	3	N	N	Ν	N1	N2	N2	N11	N2	N2	N11
	2	4	Р	Ν	T	Ν	N2	T1	N1	N2	T1	N12	N2
	3	5	Р	Ν	T	Z	N2	T1	N1	N2	T1	N12	N2
←	4	6	6	Т	T	T	T1	T2	T2	T1	T2	T2	T1
(5	7	7	T	T	Т	T1	T2	T2	T1	T2	T2	T1
←	6	6	Р	Т	T	Ν	T2	T2	N1	T2	T2	N12	T2
←	7	7	Р	T	Т	N	T2	T2	N1	T2	T2	N12	T2
_	Р	Р	Р	N	N	N	N1	N1	N1	N12	N12	N12	N12

Table de transitions de l'AFDCM:

	P2	а	b
\rightarrow	N11	N2	N2
	N2	T1	N12
←	T1	T2	T2
←	T2	T2	N12
	N12	N12	N12

Q5. Construction automatique d'automate asynchrone

En utilisant les règles de constructions automatiques vues en cours, fournir un automate reconnaissant le langage correspondant à l'expression rationnelle :

a (b + c*)* (d +
$$\epsilon$$
)

Q6. Fermetures epsilon

Calculer les fermetures epsilon pour chaque état de l'automate A5.

Donner votre réponse en complétant le tableau cidessous.

Automate A5

Etat	Fermeture epsilon
1	1,2,4
2	2
3	2,3
4	4
5	5
6	1,2,4,6

Q7. Reconnaissance de mot sur un automate asynchrone

Le mot « b b a b a a b » est-il reconnu par l'automate A5 ? Justifier votre réponse.

La lecture des symboles permet de passer d'état en état comme illustré ci-dessous (transitions epsilon non indiquées) :

$$1 \rightarrow 4 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 3 \rightarrow 3 \rightarrow ?$$
b b a b a a b

Il n'y a pas de transition (3,b,q) donc chaîne non reconnue.

Q8. Expression rationnelle correspondant à un automate

Donner l'expression rationnelle correspondant à l'automate A5.

Utiliser pour cela l'une des méthodes vues en cours (équations ou élimination d'états). Fournir les différentes étapes du calcul, selon la méthode utilisée.

Automate A5

Elimination d'états :

Equations:

$$L = X_{1,t}$$

Xe,t = ce qui permet de passer de l'état e à un état terminal

(1)
$$X_{1,t} = a X_{1,t} + b X_{2,t} + \varepsilon$$

(2)
$$X_{2,t} = a X_{2,t} + \varepsilon$$

$$(2) \Rightarrow X_{2,t} = a^* \varepsilon = a^*$$
 (3)

$$(1)+(3) \Rightarrow X_{1,t} = a X_{1,t} + b a^* + \varepsilon$$
 (4)
 $(4) \Rightarrow X_{1,t} = a^* (b a^* + \varepsilon)$

(4)
$$\Rightarrow$$
 X_{1,t} = a* (b a* + ϵ)

$$L = a^* (ba^* + \varepsilon)$$

ou:

$$L = X_{i,1} + X_{i,2}$$

X_{i.e} = ce qui permet de passer d'un état initial à l'état e

(1)
$$X_{i,1} = X_{i,1} a + \varepsilon$$

(2)
$$X_{i,2} = X_{i,1} b + X_{i,2} a + \varepsilon$$

$$(1) \Rightarrow X_{i,1} = \varepsilon a^* = a^*$$
 (3)

(2)+(3)
$$\Rightarrow$$
 X_{i,2} = a* b + X_{i,2} a + ϵ (4)

(4)
$$\Rightarrow$$
 X_{i,2} = (a*b + ϵ) a* = a* b a* + a*

$$L = a^* + a^* b a^* + a^* = a^* (b a^* + \epsilon)$$