mathcad.lic.e

$$\begin{split} & M \coloneqq \begin{bmatrix} 3 & t & 0 & 0 \\ 0 & 2 & t & 0 \\ 0 & 0 & 8 & t \end{bmatrix} = \begin{bmatrix} 3000 & 0 & 0 \\ 0 & 2000 & 0 \\ 0 & 0 & 8000 \end{bmatrix} kg \\ & k_3 \coloneqq 2 \cdot 12 \frac{1.5 \cdot 10^6 \ N \cdot m^2}{(3.75 \ m)^3} = 682666.667 \frac{N}{m} \\ & k_2 \coloneqq k_3 = 682666.667 \frac{kg}{s^2} \\ & k_1 \coloneqq 2 \cdot 12 \cdot \frac{1.5 \cdot 10^6 \ N \cdot m^2}{(4.5 \ m)^3} = 395061.728 \frac{N}{m} \\ & K \coloneqq \begin{bmatrix} k_1 + k_2 & -k_2 & 0 \\ -k_2 & k_2 + k_3 & -k_3 \\ 0 & -k_3 & k_3 \end{bmatrix} = \begin{bmatrix} 1077.728 & -682.667 & 0 \\ -682.667 & 1365.333 & -682.667 \end{bmatrix} \frac{kN}{m} \\ & A \coloneqq \det(-N \cdot M + K) = 0 \\ & \lambda_1 = 871.384 \frac{1}{s^2} & \lambda_2 \coloneqq \text{Re}(\lambda_1) = 871.384 \frac{1}{s^2} \\ & \lambda_2 = 18.549 \frac{1}{s^2} & \lambda = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} \\ & \lambda_3 = 237.31 \frac{1}{s^2} & \lambda_3 \coloneqq \text{Re}(\lambda_3) = 237.31 \frac{1}{s^2} \\ & \omega_1 \coloneqq \sqrt{\lambda_2} = 4.307 \frac{1}{s} \\ & \omega_2 \coloneqq \sqrt{\lambda_3} = 15.405 \frac{1}{s} \\ & \omega_3 \coloneqq \sqrt{\lambda_1} = 29.519 \frac{1}{s} & \omega \coloneqq \begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{bmatrix} = \begin{bmatrix} 4.307 \\ 15.405 \\ 15.405 \end{bmatrix} \frac{1}{s} \end{aligned}$$

	[1022082.102	-682666.667	0 1	
$B := K - \omega 1^2$		1328235 804	-682666 667	\underline{kg}
	0	-682666 667	534276 551	\boldsymbol{s}^2
	L	002000.007	034210.001	
Т 111	$\Phi_{-}21 \coloneqq -\frac{B(0,0)}{B(0,1)} \cdot d$	5 11 - 1 407		
$\Psi_{-}11 \coloneqq 1$	$\Psi_{-21} = -\frac{1}{B(0,1)} \cdot \Psi$	2_11=1.497		
	2 (0,1)			
	B(1,2)			
	$\Phi_{31} := -\frac{B(1,2)}{B(2,2)} \cdot d$	$5_21 = 1.913$		
	B(2,2)			
$\left[\Phi\ 11\right]$				$\begin{bmatrix} 0.523 \end{bmatrix}$
Φ 1:= Φ 21	$ = _{1.497} $	$\max(\Phi 1) = 1.9$	013 Φ 1:=:	Φ_{-1} = 0.783
$\frac{1}{\Phi}$ 31	1 913		710	(Φ_{11})
L = 31.				$\max \Phi_{21} $
				$\frac{\boldsymbol{\Phi}_{-1}}{\max \left(\begin{bmatrix} \boldsymbol{\Phi}_{-11} \\ \boldsymbol{\Phi}_{-21} \\ \boldsymbol{\Phi}_{-31} \end{bmatrix} \right)} = \begin{bmatrix} 0.523 \\ 0.783 \\ 1 \end{bmatrix}$
				\L J/
$B \cdot \Phi_{-} 1 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	ka			
$B \cdot \Phi_1 = 0 $	2			
0	8"			
	365797.286	-682666.667	0]
$B := K - \omega 2^2$	$M = \begin{bmatrix} -682666.667 \end{bmatrix}$	890712 594	-682666 667	
Z - 11 W_Z		_682666 667	_1215816 20	$ s^2 $
				.
F 10 1	$\Phi_{22} \coloneqq -\frac{B(0,0)}{B(0,1)} \cdot d$. 10 0 700		
$\Phi_{-}12 := 1$	$\Phi_2 22 := -\frac{(\cdot)^2}{R(0,1)} \cdot \Phi$	$P_112 = 0.536$		
	D(0,1)			
	R(1,2)			
	$\Phi_32 := -\frac{B(1,2)}{B(2,2)} \cdot d$	$5_{22} = -0.301$		
	B(2,2)			
[A 19	1			r 4 1
Φ_{-12}	0.526	(Д O) 1	A 0	Φ_{-2}
$\varphi_{-}z \coloneqq \varphi_{-}22$	$ \begin{vmatrix} 1 \\ -0.536 \\ -0.301 \end{vmatrix} $	$\max(\Psi_2) = 1$	$\Psi_2 :=$	$ \frac{\Phi_{2}}{\operatorname{ax}\left(\begin{bmatrix} \Phi_{12} \\ \Phi_{22} \\ \Phi_{32} \end{bmatrix}\right)} = \begin{bmatrix} 1 \\ 0.536 \\ -0.301 \end{bmatrix} $
μ_{32}	[-0.301]		mo	$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \end{bmatrix}$
			1116	$ A_{1} ^{2}$
				([4-97])
[0]				
$B \cdot \Phi_{2} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	κg			
0	$ \boldsymbol{s}^2 $			
LOJ				

	г	1500400 5	00 6006	00 007		1	
$B \coloneqq K - \omega_3^2$	N -	699666	98 - 0820	22.00	0	\sqrt{kg}	
$B := K - \omega_{3}$	· IVI = -	-082000.0	6006	33.995	-082000.00	7 2	
	L-	U	-6826	66.667	-6288402.648	8] 8	
T 10 1	T 00	B(0,0)	T 10	0.051			
$\Phi_{-}13 \coloneqq 1$	$\Phi_2 23 \coloneqq 0$	$\frac{B(0,1)}{B(0,1)}$	$\Phi_{13} = -1$	2.251			
		D(0,1)					
		B(1, 2)					
	$\Phi_33 \coloneqq 0$	$-\frac{B(1,2)}{B(2,2)}$	$\Phi_{2} = 0.$	244			
		B(2,2)					
	_						
$\Phi_3 \coloneqq \begin{bmatrix} \Phi_13 \\ \Phi_23 \\ \Phi_33 \end{bmatrix}$	1					Ф 3	0.444
$\Phi_3 \coloneqq \Phi_23 $	= -2.25	51	$\max (\Phi_{-})$	(3) = 1	Φ_3:=	/[& 19]\	-= -1
$oxedsymbol{\Phi}_33$	0.2	44				$\left(\left \left \Psi_{-}13\right \right \right)$	$\begin{bmatrix} 0.109 \end{bmatrix}$
					ma	$\left[\begin{array}{c c} \alpha x & \varphi_2 & \beta \end{array} \right]$	
						([\P_33])	
[0]	1						
$B \cdot \Phi_{3} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	κg						
	\boldsymbol{s}^2						
L J							
		1	0.523 - 1	(0.4441		
$\Phi \coloneqq \text{augment}($	<i>т</i> д д д	2 Ф 3)-	0.525 1	536 _	1		
$\Psi := augment$	Ψ_1,Ψ_1	2,4_3)-	1 0	201 (100		
		- L	0	.301 (0.109]		
	[100	11 770	0		1		
$M_s \coloneqq \Phi^{\mathrm{T}} M \cdot$	10C	0.44.776	0	0	,		
$M_s := \Phi^- M \cdot$	$\varphi = $	0 42	298.401	0	kg		
	L L	0	0 2	686.548	J		
	-						
TD.	1863	318.177	0		$0 \mid N$		
$K_s \coloneqq \Phi^{\mathrm{T}} K \cdot \epsilon$	<i>P</i> =	0 10	020055.12	7	0 17		
	Ĺ	0	0	23410	014.211 m		
	459]						
$T \coloneqq \frac{2 \pi}{\omega} = \begin{bmatrix} 1.6 \\ 0.6 \\ 0.5 \end{bmatrix}$	408 <i>s</i>	$S_1 := 1$	$1.4 \frac{m}{}$	S_2 :	$=4.225 \frac{m}{}$	$S_3 := 4.22$	5 <u>m</u>
ω 0.5	213	Ī	\boldsymbol{s}^2		\boldsymbol{s}^2		s ²
	7						
		Г	[1,108	81	[4.307]		
$\Gamma := M s^{-1} \Phi^{\mathrm{T}}$	$\cdot M$ ider	tity(3)	= 0.38'	7	$\omega = 15.405$	1	
$\Gamma \coloneqq M_s^{-1} \Phi^{\mathrm{T}}$	1,1 1001	, (0)	0.00	5	20 510	8	
		L'	[0.07	,]	[23.019]	1	

5

4

 2 m/s 2

0,01

$$\begin{aligned} q_-1_max &:= \Gamma(0) \cdot \frac{1}{\omega_- 1^2} \cdot S_-1 = 0.084 \ m \\ q_-2_max &:= \Gamma(1) \cdot \frac{1}{\omega_- 2^2} \cdot S_-2 = 0.007 \ m \\ q_-3_max &:= \Gamma(2) \cdot \frac{1}{\omega_- 3^2} \cdot S_-3 = 0 \ m \\ \left((\varPhi_-1 \cdot q_-1_max)^2 + (\varPhi_-2 \cdot q_-2_max)^2 + (\varPhi_-2 \cdot q_-2_max)^2 \right)^{\frac{1}{2}} = \begin{bmatrix} 0.045 \\ 0.066 \\ 0.084 \end{bmatrix} m \\ u_-1_max &:= q_-1_max \cdot \varPhi_-1 = \begin{bmatrix} 0.044 \\ 0.065 \\ 0.084 \end{bmatrix} m \\ s_-1 &:= \Gamma(0) \cdot M \cdot \varPhi_-1 = \begin{bmatrix} 1738.168 \\ 1734.912 \\ 8867.068 \end{bmatrix} kg \\ 8s_-1 &:= \Gamma(0) \cdot M \cdot \varPhi_-1 = \begin{bmatrix} 2433.435 \\ 2428.877 \\ 12413.896 \end{bmatrix} N \\ V_-1 &:= \begin{bmatrix} F_-1_max(2) + F_-1_max(1) + F_-1_max(0) \\ F_-1_max(2) + F_-1_max(1) \end{bmatrix} = \begin{bmatrix} 17.276 \\ 14.843 \\ 12.414 \end{bmatrix} kN \\ v_-2 &:= \Gamma(1) \cdot M \cdot \varPhi_-2 = \begin{bmatrix} 0.007 \\ 0.004 \\ -0.002 \end{bmatrix} m \\ s_-2 &:= \Gamma(1) \cdot M \cdot \varPhi_-2 = \begin{bmatrix} 1161.883 \\ 415.053 \\ -932.189 \end{bmatrix} N \\ F_-2_max &:= s_-2 \cdot S_-2 = \begin{bmatrix} 4908.958 \\ 1753.597 \\ -3938.497 \end{bmatrix} N \\ V_-2 &:= \begin{bmatrix} F_-2_max(2) + F_-2_max(1) + F_-2_max(0) \\ F_-2_max(2) + F_-2_max(1) + F_-2_max(0) \end{bmatrix} = \begin{bmatrix} 2.724 \\ -2.155 \\ -3.938 \end{bmatrix} kN \\ -3.938 \end{bmatrix} kN \end{aligned}$$

