Véletlen folyamatok házi feladatai. 1. hét. Beadási határidő: Feb. 21, 12:00.

(1) (10pt)

Véletlen és valóság.

- (a) Próbáljunk emlékezni arra az eseményre, amivel kapcsolatban először gondoltunk véletlenszerűségre. Miért tekintettük az eseményt véletlennek, s mit gondoltunk a jelenség hátteréről?
- (b) Emlékezzünk olyan, az életünkben megtörtént eseményre, amikor kiszámoltunk valószínű-ségeket (az adott ismereteinkből kiindulva), s ezek a valószínűségek határozták meg a tetteinket!
- (c) Találjunk olyan véletlenszerű jelenséget környezetünkben, amelyre a Brown-mozgás típusú leírás jó közelítést adna!

(2) (10 pt)

Egyszerű valószínűségszámítási példák.

Feldobott érme leesése után egyenlő valószínűséggel fej (F) vagy írás (I).

- (a) Dobjuk fel az érmét kétszer. Milyen valószí nűséggel kapunk két fejet (FF), illetve írás-fej (IF) sorrendet? Ugyanaz a két valószínűség?
- (b) Játsszuk a következő játékot! Addig dobálunk, amíg vagy két fej (FF én nyerek), vagy fej-írás (FI te nyersz) jön ki. Igazságos ez a játék?

(3) (20 pt)

Egydimenziós mozgást végző részecske τ időközönként véletlen irányú erő hatására előző helyzetétől ℓ távolságra ugrik (egyenlő $p_+=p_-=1/2$ valószínűséggel jobbra vagy balra). A részecske az $x_0=0$ pontból indul.

Határozzuk meg a $t=N\tau$ idő alatti elmozdulás és az elmozdulás négyzetének átlagát, $\langle x_t \rangle$ -t és $\langle x_t^2 \rangle$ -t!

Vizsgáljuk a fenti problémát $p_+ = 4p_-$ esetre és számítsuk ki az $\langle x_t \rangle$, $\langle x_t^2 \rangle$ és $\langle x_t^2 \rangle - \langle x_t \rangle^2$ átlagokat!

(4) (20 pt)

Vizsgáljuk a Brown mozgás előadáson tárgyalt, Einstein féle leírását, s legyen sodródás is a rendszerben (szél fúj a víz felett). Ekkor a τ időnként megtett ugrások hosszának (Δ) valószínűségi eloszlása nem szimmetrikus $\Phi(-\Delta) \neq \Phi(\Delta)$, s várhatóan $\overline{\Delta} = \int \Delta \Phi(\Delta) d\Delta \neq 0$.

- (a) Írjuk fel a Chapman-Kolmogorov egyenletet, s deriváljuk a részecske megtalálási valószínű-ségét, P(x,t)-t meghatározó Fokker-Plack egyenletet! Mennyiben különbözik ez az egyenlet az előadáson tárgyalt diffúziós egyenlettől?
- (b) Írjuk fel az egyenlet megoldását arra az esetre, ha a virágporszem az origóból indul!

(5) Nem kötelező, bármikor beadható az év folyamán. Azoknak írtam ki, akik érdeklődnek a köz által vitatott kérdések iránt (de esetleg az évvégi jóindulatú kerekítéseknél figyelembe veszem a megoldását).

A Föld átlagos hőmérsékletében megfigyelhető 100 éves melegedési trendet a mérések $a=0.7^{0}C/100$ év-nek adják. Ezt az értéket úgy számítják, hogy a megfigyelt évi átlagértékek-hez $(T_{i}, i=1,2,...,N=100)$ lineáris függvényt fittelnek

$$T_i = a\frac{i}{N} + b \quad , \tag{1}$$

s a adja a trend N évre vonatkoztatott értékét.

A fittelés a legkisebb négyzetes eltérést keresve történik, azaz a és b paramétereket a

$$\sum_{i=1}^{N} [T_i - (a\frac{i}{N} + b)]^2 \tag{2}$$

kifejezést minimalizálásal számítják.

A melegedéssel kapcsolatos vita részben azzal kapcsolatos, hogy a megfigyelt a érték statisztikus fluktuáció-e. A problémát nulladik közelítésben a következőképpen tárgyalhatjuk. Tegyük fel, hogy

- 1. Nincs trend, s az évi átlaghőmérsékletek egy \bar{T} átlag körül ingadoznak.
- 2. Legyenek az éves ingadozások függetlenek egymástól.
- 3. Legyen az éves ingadozások eloszlásfüggvénye Gauss függvény, σ szórással.
- 4. Legyen $\sigma \approx 0.5^{\circ}C$. Ezt az értéket a következő becslésből kaphatjuk: A napi hőmérsékletfluktuációkat $\delta T \approx 5 10^{\circ}C$ -nak tekinthetjük, s mivel az évi átlaghőmérséklet 365 napi átlagból adódik össze, ezért $\sigma \approx (5-10)^{\circ}C/\sqrt{365} \approx 0.5^{\circ}C$.

Világos, hogy ha a fentiekből kiindulva az $a>0.7^0C/100$ év-et kapnánk, akkor nincs értelme melegedési trendről beszélni. Az is világos, hogy a fenti problémában a átlaga $\bar{a}=0$. Tehát a alatt a $\sqrt{\bar{a}^2}$ mennyiséget kell értenünk.

A kérdés: Mekkora $\sqrt{\bar{a^2}}$, ha N=100, s mekkora, ha N=10?