CS/DS 552: Class 13

Jacob Whitehill

Generative models

Shallow/Linear

Deep/Non-linear

Latent variable model (LVM)

Continuous

Discrete

Autoregressive

Continuous

Discrete

k-means^{*†} GMM[†]

linear dynamical system,[†] AR(p)^{*†}

conditional probability tables

Attentional

Adversarial

probabilistic PCA[†]

VAE,[†] diffusion[†]

VQ-VAE

RNN,*† S3 (& related) models* †

transformer*†

GAN*†

^{*} Squared-error / log-loss minimization

[†] Maximum likelihood estimation (MLE)

- So far, the deep generative models we have seen used a neural decoder to generate an image from latent vector **z**.
 - VAE
 - GAN
 - Diffusion
- In all 3 cases, the image was generated globally, i.e., all pixels of the image were sampled at once.

- An alternative approach is to generate an image pieceby-piece in an autoregressive manner.
- This is enabled by factoring the joint probability:

$$p(x_1, \dots, x_m) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_1, x_2) \dots p(x_m \mid x_1, \dots, x_{m-1})$$
$$= \prod_{i=1}^m p(x_i \mid x_1, \dots, x_{i-1})$$

- In homework 1, you used hard-coded conditional probability tables $p(x_1), p(x_2 \mid x_1), p(x_3 \mid x_1, x_2)...$ to sample images from $p(\mathbf{x})$.
- While conceptually simple, this approach is impractical:
 - Inefficient to compute & store (exponential costs)
 - No ability to generalize beyond the dataset itself

- A more promising approach is to train a parametric model that can approximate each conditional distribution.
- One intuitive architecture is a *single* RNN (with parameters θ) that takes x_{i-1} (or a start symbol) as input and produces $p(x_i \mid x_1, ..., x_{i-1})$ as output at each timestep i.

• We then sample $x_i \sim p(x_i \mid x_1, ..., x_{i-1})$ and iterate.

• Images are fundamentally *continuous* signals $(i \mapsto x_i \in \mathbb{R})$, but for autoregression, it's much easier to model *discrete* probability distributions.

• Images are fundamentally *continuous* signals $(i \mapsto x_i \in \mathbb{R})$, but for autoregression, it's much easier to model *discrete* probability distributions.

• Hence, we typically quantize the pixel intensity as $x_i \in \{0,...,255\}$.

 $p(x_i \mid x_1, ..., x_{i-1})$

 X_{i-1}

- Images are fundamentally *continuous* signals $(i \mapsto x_i \in \mathbb{R})$, but for autoregression, it's much easier to model *discrete* probability distributions.
- Hence, we typically quantize the pixel intensity as $x_i \in \{0,...,255\}$.
- For RGB images with *m* pixels, we can model each $\mathbf{x} = (x_1, ..., x_{3m}) \in \{0, ..., 255\}^{3m}$.

softmax

 X_{i-1}

- Images are fundamentally *continuous* signals $(i \mapsto x_i \in \mathbb{R})$, but for autoregression, it's much $p(x_i \mid x_1, ..., x_{i-1})$ easier to model *discrete* probability distributions. $0 \mid 1 \mid 2 \mid ... \mid 255 \mid 0 \mid 170 \mid 23 \mid 0 \mid 011 \mid 0 \mid 011 \mid$
- Hence, we typically quantize the pixel intensity as $x_i \in \{0,...,255\}$.
- For RGB images with m pixels, we can model each $\mathbf{x} = (x_1, ..., x_{3m}) \in \{0, ..., 255\}^{3m}$.
- Then we can just use a softmax with 256 outputs to represent $p(x_i \mid x_1, ..., x_{i-1})$.

RNN: training

• Given an image $\mathbf{x} = (x_1, ..., x_m)$, we can use MLE to train the RNN (with parameters θ):

$$p_{\theta}(\mathbf{x}) = \prod_{i=1}^{m} p_{\theta}(x_i \mid x_1, ..., x_{i-1})$$

i.e., what probability does the model assign this sequence of pixel values?

RNN: training

• Given an image $\mathbf{x} = (x_1, ..., x_m)$, we can use MLE to train the RNN (with parameters θ):

$$p_{\theta}(\mathbf{x}) = \prod_{i=1}^{m} p_{\theta}(x_i \mid x_1, ..., x_{i-1})$$

i.e., what probability does the model assign this sequence of pixel values?

 It turns out that maximizing this likelihood = minimizing the sum of cross-entropies...

• Consider a NN (with parameters θ) for binary classification of \mathbf{x} whose output $\hat{y} \in (0,1)$ estimates $p(Y=1 \mid \mathbf{x})$.

- Consider a NN (with parameters θ) for binary classification of \mathbf{x} whose output $\hat{y} \in (0,1)$ estimates $p(Y=1 \mid \mathbf{x})$.
- Given a labeled training example (x,y), we can ask: "how likely does our model think label y is for the input x?"
 - $p(y \mid \mathbf{x}; \theta) = \hat{y}$ if y = 1
 - $p(y \mid \mathbf{x}; \theta) = 1 \hat{y} \text{ if } y = 0$

- Consider a NN (with parameters θ) for binary classification of \mathbf{x} whose output $\hat{y} \in (0,1)$ estimates $p(Y=1 \mid \mathbf{x})$.
- Given a labeled training example (x,y), we can ask: "how likely does our model think label y is for the input x?"
 - $p(y \mid \mathbf{x}; \theta) = \hat{y}$ if y = 1
 - $p(y \mid \mathbf{x}; \theta) = 1 \hat{y} \text{ if } y = 0$
- Hence:
 - $p(y \mid \mathbf{x}; \theta) = \hat{y}^y (1 \hat{y})^{1-y}$

• Now, for a single training example (\mathbf{x}, \mathbf{y}) , where $\mathbf{y} \in \{0, 1\}$, how can we find the "best" θ ?

$$p(y \mid \mathbf{x}; \theta) = \hat{y}^y (1 - \hat{y})^{1-y}$$

• Now, for a single training example (\mathbf{x}, \mathbf{y}) , where $\mathbf{y} \in \{0, 1\}$, how can we find the "best" θ ?

$$p(y \mid \mathbf{x}; \theta) = \hat{y}^y (1 - \hat{y})^{1-y}$$

$$\log p(y \mid \mathbf{x}; \theta) = \log \hat{y}^y (1 - \hat{y})^{1-y}$$

$$= y \log \hat{y} + (1 - y) \log(1 - \hat{y})$$

$$= -f_{\log}(\theta; \hat{y}, y)$$

• Now, for a single training example (\mathbf{x}, \mathbf{y}) , where $\mathbf{y} \in \{0, 1\}$, how can we find the "best" θ ?

$$p(y \mid \mathbf{x}; \theta) = \hat{y}^y (1 - \hat{y})^{1-y}$$

$$\log p(y \mid \mathbf{x}; \theta) = \log \hat{y}^y (1 - \hat{y})^{1-y}$$

$$= y \log \hat{y} + (1 - y) \log(1 - \hat{y})$$

$$= -f_{\log}(\theta; \hat{y}, y)$$

• In other words, the MLE for θ is the argmin of f_{log} .

Cross-entropy is just MLE for multi-class classification

- Now consider a NN (with parameters θ) for multi-class classification of \mathbf{x} whose output \hat{y}_k estimates $p(Y=k \mid \mathbf{x})$.
- Given a labeled training example (x,y), we can ask: "how likely does our model think label y is for the input x?"

$$p(\mathbf{y} \mid \mathbf{x}; \theta) = \prod_{k=1}^{K} \hat{y}_k^{y_k}$$

Cross-entropy is just MLE for multi-class classification

• Similarly, for $y \in \{1, ..., K\}$, the "best" θ can be found as:

$$p(\mathbf{y} \mid \mathbf{x}; \theta) = \prod_{k=1}^{K} \hat{y}_k^{y_k}$$
$$\log p(\mathbf{y} \mid \mathbf{x}; \theta) = \log \prod_{k=1}^{K} \hat{y}_k^{y_k}$$
$$= \sum_{k=1}^{K} y_k \log \hat{y}_k$$
$$= -f_{CE}(\theta; \hat{\mathbf{y}}, \mathbf{y})$$

• In other words, the MLE for θ is the argmin of f_{CE} .

 Inference: O(1) per timestep i since h_{i-1} is already computed

 Inference: O(1) per timestep i since h_{i-1} is already computed

• Inference: O(1) per timestep i since \mathbf{h}_{i-1} is already computed, or O(d) for a multi-layer RNN.

- Inference: O(1) per timestep i since \mathbf{h}_{i-1} is already computed, or O(d) for a multi-layer RNN.
- **Training**: $O(d^*m)$ total work for m pixels

- Inference: O(1) per timestep i since \mathbf{h}_{i-1} is already computed, or O(d) for a multi-layer RNN.
- **Training**: $O(d^*m)$ total work for m pixels, but generally not parallelizable since the **span** (longest sequence of dependent computations) is O(d+m).

RNNs: a suboptimal fit

- Also, RNNs do not respect the 2-d structure of images, e.g., local pixel correlations, translation invariance.
- Consider: an RNN to model $p(\mathbf{x})$ for a $w \times h$ image must learn to discontinuously "jump" from $p(x_w \mid x_1, ..., x_{w-1})$ to $p(x_{w+1} \mid x_1, ..., x_w)$.

Is there an autoregressive architecture that is better suited?

PixelCNN (van den Oord et al. 2016)

- PixelCNN harnesses masked convolution to enforce translationinvariant features in the autoregression: pixel x_i is predicted from neighboring pixels in RF(i) using a fixed convolution filter.
 - RF(i) is the receptive field of pixel i.
 - The mask prevents information leakage from future timesteps.

PixelCNN (van den Oord et al. 2016)

- PixelCNN harnesses masked convolution to enforce translationinvariant features in the autoregression: pixel x_i is predicted from neighboring pixels in RF(i) using a fixed convolution filter.
 - RF(i) is the receptive field of pixel i.
 - The mask prevents information leakage from future timesteps.

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5
<i>X</i> ₆	X 7	<i>X</i> 8	X 9	<i>X</i> ₁₀
<i>X</i> 11	<i>X</i> 12	<i>X</i> 13	<i>X</i> 14	<i>X</i> 15
<i>X</i> 16	<i>X</i> 17	<i>X</i> 18	<i>X</i> 19	<i>X</i> 20
<i>X</i> 21	X22	X ₂₃	<i>X</i> 24	X25

PixelCNN (van den Oord et al. 2016)

- PixelCNN harnesses masked convolution to enforce translationinvariant features in the autoregression: pixel x_i is predicted from neighboring pixels in RF(i) using a fixed convolution filter.
 - RF(i) is the receptive field of pixel i.
 - The mask prevents information leakage from future timesteps.

<i>X</i> 1	<i>X</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5
<i>X</i> ₆	X 7	<i>X</i> 8	X 9	<i>X</i> 10
<i>X</i> 11	<i>X</i> 12	<i>X</i> 13	<i>X</i> 14	<i>X</i> 15
<i>X</i> 16	<i>X</i> 17	<i>X</i> 18	<i>X</i> 19	X ₂₀
<i>X</i> 21	X22	X23	<i>X</i> 24	X25

PixelCNN (van den Oord et al. 2016)

- PixelCNN harnesses masked convolution to enforce translationinvariant features in the autoregression: pixel x_i is predicted from neighboring pixels in RF(i) using a fixed convolution filter.
 - RF(i) is the receptive field of pixel i.
 - The mask prevents information leakage from future timesteps.

PixelCNN (van den Oord et al. 2016)

- PixelCNN harnesses masked convolution to enforce translationinvariant features in the autoregression: pixel x_i is predicted from neighboring pixels in RF(i) using a fixed convolution filter.
 - RF(i) is the receptive field of pixel i.
 - The mask prevents information leakage from future timesteps.

PixelCNN (van den Oord et al. 2016)

- PixelCNN harnesses masked convolution to enforce translationinvariant features in the autoregression: pixel x_i is predicted from neighboring pixels in RF(i) using a fixed convolution filter.
 - RF(i) is the **receptive field** of pixel i.
 - The mask prevents information leakage from future timesteps.
- PixelCNN approximates $p(x_i \mid x_1, ..., x_{i-1})$ as $p(x_i \mid \{x_j\}_{j \in \mathsf{RF}(i)})$

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> 4	X 5
<i>X</i> ₆	X 7	<i>X</i> 8	X 9	<i>X</i> ₁₀
<i>X</i> 11	<i>X</i> 12	<i>X</i> 13	<i>X</i> 14	<i>X</i> 15
<i>X</i> 16	<i>X</i> 17	<i>X</i> 18	<i>X</i> 19	X ₂₀
<i>X</i> 21	X ₂₂	X23	X24	X25

$$p(x_7 \mid x_1, ..., x_6) \approx p(x_7 \mid x_1, x_2, x_3, x_6)$$

Receptive fields

 Each neuron i in a convolutional layer l depends only on neurons in a local region around i in the previous layer l-1.

Receptive fields

 Each neuron i in a convolutional layer l depends only on neurons in a local region around i in the previous layer l-1.

Receptive fields

 Each neuron i in a convolutional layer l depends only on neurons in a local region around i in the previous layer l-1.

 In general, we define the receptive field of neuron i in layer I w.r.t. layer k as the set of neurons in k that influence i in I.

 In general, we define the receptive field of neuron i in layer / w.r.t. layer k as the set of neurons in k that influence i in l.

 In general, we define the receptive field of neuron i in layer / w.r.t. layer k as the set of neurons in k that influence i in l.

 In general, we define the receptive field of neuron i in layer / w.r.t. layer k as the set of neurons in k that influence i in l.

Receptive field of neuron (l=2, i=4) w.r.t. k=1.

 In general, we define the receptive field of neuron i in layer I w.r.t. layer k as the set of neurons in k that influence i in I.

Receptive field of neuron (l=2, i=9) w.r.t. k=1.

Exercise

• What is the receptive field of neuron (*l*=3, *i*=2) w.r.t. *k*=1?

Receptive field of neuron (l=3, i=4) w.r.t. k=1.

Solution

• What is the receptive field of neuron (*l*=3, *i*=2) w.r.t. *k*=1?

Receptive field of neuron (l=3, i=4) w.r.t. k=1.

- PixelCNN harnesses masked convolution to enforce translationinvariant features in the autoregression: pixel x_i is predicted from neighboring pixels in RF(i) using a fixed convolution filter.
 - RF(i) is the **receptive field** of pixel i.
 - The mask prevents information leakage from future timesteps.
- PixelCNN approximates $p(x_i \mid x_1, ..., x_{i-1})$ as $p(x_i \mid \{x_j\}_{j \in \mathsf{RF}(i)})$

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	X 4	X 5
X 6	X 7	<i>X</i> 8	X 9	<i>X</i> 10
<i>X</i> 11	<i>X</i> 12	<i>X</i> 13	<i>X</i> 14	<i>X</i> 15
<i>X</i> 16	<i>X</i> 17	<i>X</i> 18	<i>X</i> 19	<i>X</i> 20
<i>X</i> 21	X22	X23	<i>X</i> 24	<i>X</i> 25

 Through multiple convolution layers, the receptive field is enlarged, thus providing more global context.

- PixelCNN harnesses masked convolution to enforce translationinvariant features in the autoregression: pixel x_i is predicted from neighboring pixels in RF(i) using a fixed convolution filter.
 - RF(i) is the receptive field of pixel i.
 - The mask prevents information leakage from future timesteps.
- PixelCNN approximates $p(x_i \mid x_1, ..., x_{i-1})$ as $p(x_i \mid \{x_j\}_{j \in \mathsf{RF}(i)})$

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> 4	X 5
<i>X</i> ₆	X 7	<i>X</i> 8	X 9	<i>X</i> ₁₀
<i>X</i> 11	<i>X</i> ₁₂	<i>X</i> 13	<i>X</i> 14	<i>X</i> 15
<i>X</i> 16	<i>X</i> 17	<i>X</i> 18	<i>X</i> 19	X ₂₀
<i>X</i> 21	X22	X23	<i>X</i> 24	X 25

 Through multiple convolution layers, the receptive field is enlarged, thus providing more global context.

The original PixelCNN method had "blind spots".

- The original PixelCNN method had "blind spots".
- In a modified PixelCNN, these were fixed using a more
 - elaborate multi-stage autoregression process (unmasked information from previous row).
- With the modified scheme, $RF(i) \rightarrow \{x_1, ..., x_{i-1}\}$ as d grows.

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	X 4	X 5
<i>X</i> ₆	X 7	<i>X</i> 8	X 9	<i>X</i> ₁₀
<i>X</i> 11	<i>X</i> ₁₂	<i>X</i> 13	<i>X</i> 14	<i>X</i> 15
<i>X</i> 16	<i>X</i> 17	<i>X</i> 18	<i>X</i> 19	X ₂₀
<i>X</i> 21	X22	X23	<i>X</i> 24	X25

- The causal mask is essential to prevent the CNN from depending on information that is not available at test time.
- In a multi-layer PixelCNN, which is the correct causal mask for layers 2+?

- The causal mask is essential to prevent the CNN from depending on information that is not available at test time.
- The first convolutional layer must exclude x_i , but subsequent layers can (and should) include h_i .
- This is harmless because h_i was computed based only on pixels { x_{j<i} }.

PixelCNN: time costs

• Inference: O(d) per pixel, where d is number of layers.

PixelCNN: time costs

- Inference: O(d) per pixel, where d is number of layers.
- Training: O(d*m) total work, which can be parallelized over pixel locations since the span is only d.

PixelCNN: conditional generation

- PixelCNN can also be used for conditional generation p(x | y), e.g., create an image
 x conditional on a class y.
- One approach is to give each convolution layer a class-dependent bias term by that depends on y (e.g., 1-hot class label), which is multiplied by a learned weight matrix.

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> 4	X 5
<i>X</i> ₆	X 7	<i>X</i> 8	X 9	<i>X</i> ₁₀
<i>X</i> 11	<i>X</i> ₁₂	<i>X</i> 13	<i>X</i> 14	<i>X</i> 15
<i>X</i> 16	<i>X</i> 17	<i>X</i> 18	<i>X</i> 19	X ₂₀
<i>X</i> 21	X22	X23	<i>X</i> 24	<i>X</i> 25

Latent-space autoregression for image generation

Latent-space autoregression for image generation

- Autoregressing large images pixel-by-pixel is slow.
- Rather than generate pixels directly, we can instead autoregress the (discrete) variables of a latent feature map z.
- We can then decode z into x using a trained autoencoder.
- We typically use a VQ-VAE since it is discrete and suitable for generation.

- We can generalize this idea into a deep VQ-VAE:
 - 1. Transform each $\mathbf{x} \in \mathbb{R}^m$ into a feature vector $\mathbf{h} \in \mathbb{R}^{l \times d}$.

- We can generalize this idea into a deep VQ-VAE:
 - 1. Transform each $\mathbf{x} \in \mathbb{R}^m$ into a feature vector $\mathbf{h} \in \mathbb{R}^{l \times d}$.
 - 2. Split **h** into multiple (*l*) vectors $\mathbf{h}_1, ..., \mathbf{h}_l \in \mathbb{R}^d$.

- We can generalize this idea into a deep VQ-VAE:
 - 1. Transform each $\mathbf{x} \in \mathbb{R}^m$ into a feature vector $\mathbf{h} \in \mathbb{R}^{l \times d}$.
 - 2. Split **h** into multiple (*l*) vectors $\mathbf{h}_1, ..., \mathbf{h}_l \in \mathbb{R}^d$.

- We can generalize this idea into a deep VQ-VAE:
 - 1. Transform each $\mathbf{x} \in \mathbb{R}^m$ into a feature vector $\mathbf{h} \in \mathbb{R}^{l \times d}$.
 - 2. Split **h** into multiple (*l*) vectors $\mathbf{h}_1, ..., \mathbf{h}_l \in \mathbb{R}^d$.
 - 3. Using running estimates of K cluster centroids over $\{\mathbf{h}_{j}^{(i)}\}_{i,j}$,

- We can generalize this idea into a deep VQ-VAE:
 - 1. Transform each $\mathbf{x} \in \mathbb{R}^m$ into a feature vector $\mathbf{h} \in \mathbb{R}^{l \times d}$.
 - 2. Split **h** into multiple (*l*) vectors $\mathbf{h}_1, ..., \mathbf{h}_l \in \mathbb{R}^d$.
 - 3. Using running estimates of K cluster centroids over $\{\mathbf{h}_{j}^{(i)}\}_{i,j}$, quantize each \mathbf{h}_{j} into \mathbf{h}_{j}' using the nearest centroid $\mathbf{e}^{(z)}$.

- We can generalize this idea into a deep VQ-VAE:
 - 1. Transform each $\mathbf{x} \in \mathbb{R}^m$ into a feature vector $\mathbf{h} \in \mathbb{R}^{l \times d}$.
 - 2. Split **h** into multiple (*l*) vectors $\mathbf{h}_1, ..., \mathbf{h}_l \in \mathbb{R}^d$.
 - 3. Using running estimates of K cluster centroids over $\{\mathbf{h}_{j}^{(\iota)}\}_{i,j}$, quantize each \mathbf{h}_{j} into \mathbf{h}_{j}' using the nearest centroid $\mathbf{e}^{(z)}$.

This maps **x** into an array of discrete codes.

- We can generalize this idea into a deep VQ-VAE:
 - 1. Transform each $\mathbf{x} \in \mathbb{R}^m$ into a feature vector $\mathbf{h} \in \mathbb{R}^{l \times d}$.
 - 2. Split **h** into multiple (*l*) vectors $\mathbf{h}_1, ..., \mathbf{h}_l \in \mathbb{R}^d$.
 - 3. Using running estimates of K cluster centroids over $\{\mathbf{h}_{j}^{(i)}\}_{i,j}$, quantize each \mathbf{h}_{j} into \mathbf{h}_{j}' using the nearest centroid $\mathbf{e}^{(z)}$.
 - 4. Concatenate the $\mathbf{h}_1', \dots, \mathbf{h}_l'$ into \mathbf{h}' , and then transform \mathbf{h}' into $P(\mathbf{x} \mid \mathbf{h}') = P(\mathbf{x} \mid \{z_i\})$.

D_{KL} for VQ-VAEs

• For VQ-VAEs, we want $P(z) = \mathcal{U}(1,...,K) = \frac{1}{K} \ \forall z.$

D_{KL} for VQ-VAEs

- For VQ-VAEs, we want $P(z) = \mathcal{U}(1, \ldots, K) = \frac{1}{K} \ \forall z.$
- We have a deterministic encoder:

$$Q(z \mid \mathbf{x}) = \begin{cases} 1 & \text{if } z = \arg\min_{k} \|\mathbf{x} - \mathbf{e}^{(k)}\|^2 \\ 0 & \text{otherwise} \end{cases}$$

By definition of KL divergence, we have:

$$D_{KL}(Q_{\phi}(z \mid \mathbf{x}) \mid P(z)) = \sum_{z=1}^{K} Q(z \mid \mathbf{x}) \log \frac{Q(z \mid \mathbf{x})}{P(z)}$$
$$= 1 \log \frac{1}{\frac{1}{K}} + \sum_{\dots} 0 \log \frac{0}{\frac{1}{K}}$$
$$= \log K$$

D_{KL} for VQ-VAEs

- Since $\log K$ does not depend on any of the VQ-VAE's parameters $(\phi, \theta, \mathbf{E})$, it can be ignored from the ELBO.
- That just leaves:

$$-D_{\mathrm{KL}}(Q_{\phi}(z \mid \mathbf{x}) \mid P(z)) + \mathbb{E}_{Q_{\phi}}[\log P(\mathbf{x} \mid z)]$$

- In practice, this means that $Q(\mathbf{z} \mid \mathbf{x})$ and $P(\mathbf{z})$ in VQ-VAEs tend to be very different from the uniform distribution.
- Hence, sampling from P(z) and then decoding naively tends to produce very bad results.
- Instead, we can train an autoregressor to model $P(\mathbf{z})$.
- Note the same problem can also occur for continuous VAEs but is generally less severe.

- Early VQ-VAEs used PixelCNN for latent-space autoregression.
- This yields a 2-stage VQ-VAE training procedure:
 - 1. Train the VQ-VAE encoder and decoder jointly.
 - 2. Train a PixelCNN on the latent codes { **z** }.

- Inference procedure for generation:
 - 1. Using the PixelCNN, autoregress the latent code z.

<i>Z</i> ₁	Z 2	Z 3	Z 4
Z 5			
		<i>Z</i> /-1	Zı

- Inference procedure for generation:
 - 1. Using the PixelCNN, autoregress the latent code z.
 - 2. Map **z** to their cluster centroids $(\mathbf{h}'_1, ..., \mathbf{h}'_l) = \mathbf{h}'$.

<i>Z</i> 1	Z 2	Z 3	Z 4
Z 5			
		<i>Z</i> /-1	Zı

Features

- Inference procedure for generation:
 - 1. Using the PixelCNN, autoregress the latent code z.
 - 2. Map **z** to their cluster centroids $(\mathbf{h}'_1, ..., \mathbf{h}'_l) = \mathbf{h}'$.

Z2

Z3

Z4

3. Decode h' into x.

- VQ-VAE + latent-space autoregression (using Transformers) can generate images with state-of-the-art quality (rivaling diffusions).
- In particular, VQ-VAE typically produce sharper images compared to continuous VAEs:
 - The KL regularization term in continuous VAEs is necessary to shape $P(\mathbf{z}) \approx \mathcal{N}(\mathbf{0}, \mathbf{I})$.
 - However, it leads to multiple x sharing similar z, causing the decoder to "blur" the reconstruction to minimize MSE.
 - In theory, the same could happen to VQ-VAEs, but in practice, without the KL term, the problem is less severe.

Autoregressive text generation

Autoregressive text generation

- Text is an inherently **discrete** domain consisting of a sequence of tokens (e.g., words, word-parts).
- While unconditional generation $p(\mathbf{x})$ is possible, conditional generation $p(\mathbf{x} \mid \mathbf{y})$ is more common, e.g.:
 - Translate a sentence from one language to another.
 - Respond to a prompt.
 - Text captioning of an image

Autoregressive text generation: notation

- Sometimes we define "generation" to be $p(\mathbf{x} \mid \mathbf{y})$:
 - Machine translation: y is input sentence, and x is a translation.
 - Text captioning: y is an image, and x is a caption.
- Other times we define it as $p(x_{T+T'}, ..., x_{T+1} \mid x_T, ..., x_1)$:
 - Respond to a prompt, which consists of first T tokens.
- The choice of notation is subjective.

Autoregressive text generation

- Since the generated text is typically variable-length, a natural architecture is an RNN.
 - Keep autoregressing until an end-of-sentence (EOS) symbol is sampled.
- As of 2025, Transformers (rather than RNNs) are dominant, but hybrid attentional-recurrent models (e.g., Mamba) are also gaining traction.