ML Clustering Algorithm

Unsupervised Learning

INTRODUCTION

What is Clustering?

- Learning from an **unlabeled dataset** to identify patterns, groups, or clusters.
- Output: A set of clusters that group similar data points together.

Key Applications:

- Customer segmentation
- Market basket analysis
- Image segmentation

Clustering is part of Unsupervised Learning.

Popular Clustering Algorithms

Algorithm	Туре	Key Features	
K-Means	Partitional	Predefined clusters (K), groups data around centroids.	
Hierarchical Clustering	Hierarchical	Builds clusters in a tree-like structure.	
Affinity Propagation	Message Passing	Identifies exemplars, no predefined clusters.	
Mean Shift	Density-Based	Groups points by moving toward density peaks.	
Spectral Clustering	Graph-Based	Maps points to low-dimensional space for clustering.	
DBSCAN	Density-Based	Groups dense areas; identifies outliers.	
OPTICS	·		
	Density-Based	Handles clusters with varying densities.	
BIRCH	Hierarchical	Summarizes large datasets for efficient clustering.	

Assignment

Problem Statement:

 A new customer joins. Predict which group or category they belong to so marketing campaigns or SMS messages can be customer-focused.

K-Mean

How It Works:

- 1. Choose the number of clusters (K).
- 2. Assign each point to the nearest cluster center.
- 3. Adjust centers and repeat until stable.

kmeans = KMeans(n_clusters=3) labels = kmeans.fit_predict(X)

- Requires K to be predefined.
- Works well for **spherical**, **evenly distributed data**.

Assignment Problem Statement:

A new customer joins. Predict which group or category they belong to so marketing campaigns or SMS messages can be cu

GitHub: GeekPri/ML-Clustured-Algorithm-Unsupervised-

Output:

from sklearn.cluster import KMeans

Hierarchical Algorithm

Type 1: Agglomerative

Starts with each point as its own cluster, margae iteratively into larger clusters

Type 2: Divise

from sklearn.cluster import AgglomerativeClustering
clusmodel = AgglomerativeClustering(n_clusters=5)
labels = clusmodel.fit_predict(X)

Start with one big cluster containing an data points

Agglomerative Output:

Divisive Output:

Assignment Problem Statement:

A new customer joins. Predict which group or category they belong to so marketing campaigns or SMS messages can be customer-focused.

GitHub: ML-Clustured-Algorithm-Unsupervised-/Hierarchical -Agglomerative Clustering MallCustomers.jpynb at main · GeekPri/ML-Clustured-Algorithm-Unsupervised

Affinity Propagation - message passing

How It Works:

Data points "talk" to each other through iterative message passing.

Key Features:

Automatically determines the number of clusters by identifying exemplars (representative points).

from sklearn.cluster import AffinityPropagation
affinity_propagation = AffinityPropagation()
labels = affinity_propagation.fit_predict(X)

Assignment Problem Statement:

A new customer joins. Predict which group or category they belong to so marketing campaigns or SMS messages can be customer-focused.

GitHub: Affinity Propagation

Mean Shift

Key Feature:

- No predefined number of clusters.
- Points move toward densest regions iteratively (bandwidth-controlled).

```
from sklearn.cluster import MeanShift
mean_shift = MeanShift(bandwidth=2)
labels = mean_shift.fit_predict(X)
```

GitHib:Mean Shift

Spectral Clustering

Key Feature:

- Useful for complex, non-linear data.
- Treats points as nodes in a graph, clusters them by mapping to low-dimensional space.

```
from sklearn.cluster import SpectralClustering
spectral = SpectralClustering(n_clusters=2)
labels = spectral.fit_predict(X)
```

Github: Spectral Clustering

DBSCAN Density based

Key Feature:

- Does not require the number of clusters.
- Groups densely packed points; labels sparse points as outliers.

```
from sklearn.cluster import DBSCAN
dbscan = DBSCAN(eps=0.5, min_samples=5)
labels = dbscan.fit_predict(X)
```

Github: DBScan

OPTICS - Ordering the data points

Key Feature:

- Similar to DBSCAN but detects clusters of varying densities.
- Orders points to reflect density structure.

```
from sklearn.cluster import OPTICS
optics = OPTICS(min_samples=5)
labels = optics.fit_predict(X)
```

Github:

<u>ML-Clustured-Algorithm-Unsupervised-/Optics Clustering_MallCustomers.ipynb at main · GeekPri/ML-Clustured-Algorithm-Unsupervised-</u>

Birch Algorithm

Key Feature:

- Summarizes large datasets into smaller representations (CF Tree).
- Fast and memory-efficient.

```
from sklearn.cluster import Birch
birch = Birch(n_clusters=5)
labels = birch.fit_predict(X)
```

Githib: Birch Algorithm

Algorithm Comparison

Algorithm	Class Name	Logic	Predefined Clusters	Density-Based	Scalable for Large Data
Aigoriann	Oluss Hullic	Logic	r reactified Oldsters	Deliaity-Basea	Ocalable for Large Data
K-Means	KMeans	Groups data by finding K centroids	Yes	No	Medium
Hierarchical	AgglomerativeClustering	Builds a tree by merging or splitting clusters	No	No	Low
Affinity Propagation	AffinityPropagation	Passes messages to find leaders (exemplars)	No	No	Low
Mean Shift	MeanShift	Shifts points to the mean density region	No	Yes	Low
Spectral Clustering	SpectralClustering	Clusters using the spectrum (graph) of data	Yes	No	Low
DBSCAN	DBSCAN	Groups dense areas and labels sparse points	No	Yes	Medium
OPTICS	OPTICS	Orders points to reflect density structure	No	Yes	Medium
BIRCH	Birch	Summarizes data into a compact tree	Yes	No	High