

Frequent Pattern Mining

-FP-Tree Algorithm, Mining Multilevel Association Rules, Mining Multidimensional Association Rules, Mining Rare Patterns, Mining Negative Patterns

FP-Growth Algorithm

- The Apriori Algorithm has a major shortfall
 - required multiple scans of the databases (datasets) to check the support count of each item and itemsets
- FP-growth is an improved version of the Apriori Algorithm
 - scans the database twice and used a tree structure (FP-tree) to store all the information

FP-Tree Algorithm

- Step 1: Deduce the ordered frequent items. For items with the same frequency, the order is given by the alphabetical order.
- Step 2: Construct the FP-tree from the above data
- Step 3: From the FP-tree above, construct the FP-conditional tree for each item (or itemset).
- Step 4: Determine the frequent patterns.

Transactional Database

TID	List of item_IDs
T100	I1, I2, I5
T200	I2, I4
T300	I2, I3
T400	I1, I2, I4
T500	I1, I3
T600	I2, I3
T700	I1, I3
T800	I1, I2, I3, I5
T900	I1, I2, I3

Transactional data for an AllElectronics branch.

Minimum support count = 2

	C_3		C_3		Compare candidate	L_3	
Generate C_3	Itemset	Scan D for	Itemset	Sup. count		Itemset	Sup. count
candidates from	{I1, I2, I3}	count of each	{I1, I2, I3}	2	minimum support	{I1, I2, I3}	2
L_2		candidate			count		
→	{I1, I2, I5}	→	{I1, I2, I5}	2	→	{I1, I2, I5}	2

Generation of candidate itemsets and frequent itemsets, where the minimum support count is 2.

An FP-tree registers compressed, frequent pattern information.

Mining the FP-Tree by Creating Conditional (Sub-)Pattern Bases

Item	Conditional Pattern Base	Conditional FP-tree	Frequent Patterns Generated
I5	{{I2, I1: 1}, {I2, I1, I3: 1}}	(I2: 2, I1: 2)	{I2, I5: 2}, {I1, I5: 2}, {I2, I1, I5: 2}
I4	{{I2, I1: 1}, {I2: 1}}	(I2: 2)	{12, 14: 2}
I3	{{I2, I1: 2}, {I2: 2}, {I1: 2}}	(I2: 4, I1: 2), (I1: 2)	{12, 13: 4}, {11, 13: 4}, {12, 11, 13: 2}
I 1	{{I2: 4}}	(I2: 4)	{I2, I1: 4}

The conditional FP-tree associated with the conditional node I3.

Algorithm: FP_growth. Mine frequent itemsets using an FP-tree by pattern fragment growth.

Input:

- \blacksquare D, a transaction database;
- *min_sup*, the minimum support count threshold.

Output: The complete set of frequent patterns.

Method:

- 1. The FP-tree is constructed in the following steps:
 - (a) Scan the transaction database *D* once. Collect *F*, the set of frequent items, and their support counts. Sort *F* in support count descending order as *L*, the *list* of frequent items.
 - (b) Create the root of an FP-tree, and label it as "null." For each transaction *Trans* in *D* do the following.
 Select and sort the frequent items in *Trans* according to the order of *L*. Let the sorted frequent item list in *Trans* be [p|P], where p is the first element and P is the remaining list. Call insert_tree([p|P], T), which is performed as follows. If T has a child N such that N.item-name = p.item-name, then increment N's count by 1; else create a new node N, and let its count be 1, its parent link be linked to T, and its node-link to the nodes with the same item-name via the node-link structure. If P is nonempty, call insert_tree(P, N) recursively.
- 2. The FP-tree is mined by calling FP_growth(FP_tree, null), which is implemented as follows.

```
procedure FP_growth(Tree, \alpha)
```

- (1) **if** *Tree* contains a single path *P* **then**
- (2) **for each** combination (denoted as β) of the nodes in the path P
- (3) generate pattern $\beta \cup \alpha$ with support_count = minimum support count of nodes in β ;
- (4) **else for each** a_i in the header of *Tree* {
- (5) generate pattern $\beta = a_i \cup \alpha$ with support_count = a_i .support_count;
- (6) construct β 's conditional pattern base and then β 's conditional FP_tree $Tree_{\beta}$;
- (7) **if** $Tree_{\beta} \neq \emptyset$ **then**
- (8) call $\mathsf{FP_growth}(\mathit{Tree}_{\beta}, \beta); \}$

Benefits of the FP-tree

Completeness

- Preserve complete information for frequent pattern mining
- Never break a long pattern of any transaction

Compactness

- Reduce irrelevant info—infrequent items are gone
- Items in frequency descending order: the more frequently occurring,
 the more likely to be shared
- Never be larger than the original database

Concept Hierarchy Generation

- Concept Hierarchy Generation for Numeric Data
 - A concept hierarchy for a given numerical attribute defines a discretization of the attribute
 - Recursively reduce the data by collecting and replacing low level concepts by higher level concepts
- Concept Hierarchy Generation for Categorical Data
 - Specification of an ordering of attributes explicitly at the schema level by users or experts
 - street < city < state < country
 - Automatic Concept Hierarchy Generation
 - Based on the number of distinct values per attributes

Mining Multilevel Association Rules

- Data mining systems should provide capabilities for mining association rules at multiple levels of abstraction
- Items often form hierarchies
- Flexible support settings
 - Items at the lower level are expected to have lower support

Concept Hierarchy for Computer Items

TID	Items Purchased
T100	Apple 17" MacBook Pro Notebook, HP Photosmart Pro b9180
T200	Microsoft Office Professional 2010, Microsoft Wireless Optical Mouse 5000
T300	Logitech VX Nano Cordless Laser Mouse, Fellowes GEL Wrist Rest
T400	Dell Studio XPS 16 Notebook, Canon PowerShot SD1400
T500	Lenovo ThinkPad X200 Tablet PC, Symantec Norton Antivirus 2010
•••	

Mining Multilevel Association Rules

- For each level, any algorithm for discovering frequent itemsets may be used, such as Apriori or FP-tree
 - Using uniform minimum support for all levels (referred to as uniform support)
 - Using reduced minimum support at lower levels (referred to as reduced support)
 - Using item or group-based minimum support (referred to as group_based support)

Using uniform minimum support for all levels (referred to as uniform support)

Using reduced minimum support at lower levels (referred to as reduced support):

Flexible Min-Support Thresholds

- Using item or group-based minimum support (referred to as group-based support):
 - For example, a user could set up the minimum support thresholds based on product price or on items of interest
 - E.g., {diamond, watch, camera}: 0.05%; {bread, milk}: 5%; ...

Mining Multilevel Association Rules

- The generation of many redundant rules across multiple levels of abstractions due to the ancestor relationships among items
- A rule is redundant if its support is close to the "expected" value, based on the rule's ancestor
 - buys(X, "laptop computer") ⇒ buys(X, "HP printer") [support = 8%, confidence = 70%]
 - buys(X, "IBM laptop computer") ⇒ buys(X, "HP printer") [support = 2%, confidence = 70%]

Mining Multidimensional Association Rules

- Single-dimensional rules: buys(X, "milk") ⇒ buys(X, "bread")
- Multi-dimensional rules: ≥ 2 dimensions or predicates
 - Inter-dimension assoc. rules (no repeated predicates) age(X,"19-25") \land occupation(X,"student") ⇒ buys(X, "coke")
 - hybrid-dimension assoc. rules (repeated predicates) $age(X,"19-25") \land buys(X, "popcorn") ⇒ buys(X, "coke")$

Mining Rare Patterns

 In jewelry sales data, sales of diamond watches are rare; however, patterns involving the selling of diamond watches could be interesting.

Mining Negative Patterns

 In supermarket data, if we find that customers frequently buy Coca-Cola Classic or Diet Coke but not both, then buying Coca-Cola Classic and buying Diet Coke together is considered a negative (correlated) pattern