BILL FILE COPY

VOLUME III

RADIOLOGICAL CLOSEOUT **DOCUMENTATION**

Post Remedial Action Report Lansdowne Radioactive Residence Complex Dismantlement/Removal Project

1D-A230 431

June 1990

DISTRIBUTION STATE LEAT

Approved for public A Distribution Unlined

VOLUME III

RADIOLOGICAL CLOSEOUT DOCUMENTATION

Post Remedial Action Report Lansdowne Radioactive Residence Complex Dismantlement/Removal Project

Department of the Army

Baltimore District, Corps of Engineers

P.O. Box 1715

Baltimore, Maryland 21203

under interagency-agreement with

The United States Environmental Protection Agency

841-Chestnut-Building Philadelphia, Pennsylvania 19107

Region-I

June, 1990

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Department and Reports, 1215 Jefferson Davis Hughawa, Suite 1204, Artington, VA 22202-4302, and to the Office of Management and Budget, Papermork Reduction Project (0704-0188), Washington, DC 20503.

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.					
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE June 1990	3. REPORT TYPE AND DATES FINAL (2 June 88	COVERED - 12 Oct 89)		
4. TITLE AND SUBTITLE Post Remedial Action Repo Complex, Dismantlement/Re Volume III, Radiological	moval Project.	ctive Residence	ACW-45-88-C-0213		
6. Author(s) Peter Trujillo, IV					
7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Chem-Nuclear Systems, Inc. 220 Stoneridge Drive, Columbia, S.C. 29210					
9. SPONSORING/MONITORING AGENCE Baltimore District, U.S. Construction Division, CE P.O. Box 1715 Baltimore, Md. 21203-17	Army Corps of Engine NAB-CO	ers `, AGE	NSORING/MONITORING NCY REPORT NUMBER CO/HTW/9001/EPA(S)		
11. SUPPLEMENTARY NOTES This is Volume III of a 4-Volume set. Titles and Performing Organizations of other Volumes are: Volume I, "Government Operations," Baltimore Dist., U.S. Army Corps of Engrs. Volume II, "Contractor Operations," CNSI. Volume IV. "Radiological Oversight and Certification Report," Argonne Natl. Laboratory 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE					
Approved for public relea			and to document the	TANK TANK TANK TANK	
cuccessful completion of contaminated duplex reside This report addresses the of the project from initial plan preparation, training ance, radiological survey techniques, applied by the utilized. The report is each major task or divisi	final remediation of ence and associated Prime Contractor's all award through fing, personnel monitors, verification of contractor, as formatted by major ton of work. Keywoo	The USEPA Superfund properties located in efforts to provide raal verification. The ing, air sampling, enleanup to allowable loil sampling and veri ask, with associated or AS: Radioacr	Cleanup of a radium Lansdowne, Par Per diological coverage report includes vironmental complinimits, radiological fication methods data provided for	i Von;	
Ionizing radiation; Radiation protection/dosage; Airborne/ particles/sampling; Personnel/safety/monitoring; Radiation moniters; Soil surveys; Gamma ray spec- troscopy; Health physics; Radioactive wastes/disposal;— 14. Subject terms radiological, radium, remediation, USEPA Superfund, soil excavation, residence dismantlement, air sampling, 16. PRICE CODE					
radiological monitoring,	airborne radioactivi		16. PRICE CODE 20. LIMITATION OF ABSTRACT UL		

A

(cont)

Alpha particles; Beta particles; Dosimetry;

Water pollution/sampling; Residential section.

(MM) ---

3

RADIOLOGIC CLOSEOUT REPORT

TABLE OF CONTENTS

<u>Chap</u>	<u>ter</u>	Page	No.
1.0	PERSONNEL MONITORING PROGRAM	. 1	- 1
2.0	NON-RADIOLOGICALLY CONTROLLED ZONE SURVEYS	. 2	- 1 ⁻
3.0	HEALTH PHYSICS FILING SYSTEMS	. 3	- 1 ⁻
4.0	PHASE: DISMANTLEMENT OF THE HOUSE	. 4	- 1
5.0	PHASE: DISMANTLEMENT OF THE GARAGES	. 5	- 1
6.0	PHASE: SOIL REMEDIATION	. 6	- 1·
7.0	INSTRUMENTATION	. 7	- 1

Acces	sion Fo	r		
NTIS GRA&I				
DTIC :	TAB			
Unann	ounced			
Just1	ficatio	n		
By Distr	By			
Ava1	labilit	y Codes		
	Avail	and/or		
Dist	Spec	ial		
P		Ĉ,		

TABLE OF CONTENTS

	CHAPTER 1	1-1
	PERSONNEL MONITORING PROGRAM	
0	Introduction	1-3
2.0	General	1-3
3.0	Urinalysis	1-3
4.0	Dosimetery	1-4
5.0	Whole-Body Counts	1-5
	Appendix 1-A: Urinalysis Results	1-A-7
	Appendix 1-B: Dosimetry Results	1-B-19
	Investigation Report on R. Fello	1-B-22
	Appendix 1-C: Whole-Body Count Results	1-C-25
	CHAPTER 2	
	NON-RADIOLOGICAL CONTROLLED ZONE SURVEYS	2-41
1.0	Introduction	2-43
2.0	General,	2-43
3.0	Routine Surveys	2-43
4.0	Warrant to the L. D. Tarrant C. or	0 44
5.0	Unrestricted Release Surveys	2-44
	Water Release Surveys	2-44
	•	
	Water Release Surveys	2-44
	Water Release Surveys	2-44
	Water Release Surveys	2-44

SURVEYS OUTSIDE RADIOLOGICALLY CONTROLLED ZONES (CONTINUED)

	<u>Appen</u>	dix 2-A: Administra	tive Area Surveys (C	ontinued)	
	Readings	(2/15/89-3/21/89)	• • • • • • • • • • • • • • • • • • • •	2-A-56	
	Readings	(3/23/89-4/06/89)	• • • • • • • • • • • • • • • • • • • •	2-A- 58	
	Readings	(4/07/89-4/18/89)	• • • • • • • • • • • • • • • • • • • •	2-A- 59	
	Readings	(4/20/89-4/24/89)		2-A- 60	
		<u> List</u>	of Plans		
	CNSI Offi	ce Trailer		2-A- 51	
	Crew Brea	k Trailer		2-A- 53	
	Operation	s Support Facility		2-A- 55	
	Army Corp	s of Engineers Trai	ler	2-A- 57	
		Appendix 2-B: Unres	tricted Release Surv	<u>reys</u> 2-B-61	
	Releases	(9/28/88-3/22/89)		2-B-63	
	Releases	(3/22/89-4/26/89)		2-B-64	
	Releases	(5/01/89-5/06/89)		2-B-65	
	Releases	(5/06/89-5/09/89)		2-B-66	
	Releases	(5/15/89)		2-B-67	
		Appendix 2-C:	Water Analyses	2-C-69	
	Releases	(9/12/88-12/15/88)		2-C-71	
	Releases	(12/20/88-5/03/89)		2-C-72	
		СН	APTER 3		
		HEALTH PHYS	ICS FILING SYSTEM		3-73
1.0	Introduction	•••••			3-75
2.0	General				3-75

HEALTH PHYSICS FILING SYSTEM (CONTINUED)

Health Ph	ysics	Filing	System	Diagram_

	Dosimetry 3-76	
	Bioassay 3-76	
	Environmental Air Samples 3-76	
	Occupational Air Samples 3-76	
	Gamma Surveys 3-77	
	Routine Swipe Surveys 3-77	
	Site Soil Sampling Program 3-77	
	Water Sampling Program 3-78	
	Counting Instrument Checks 3-78	
	Weekly Highlights 3-78	
	HP Correspondence 3-79	
	Instrument Calibration Data 3-79	
	Audits 3-79	
	Personnel Files 3-79	
	Source Inventory 3-79	
	Borrow Material Survey 3-79	
	Visitor Files 3-79	
	Training Files 3-79	
	Special Surveys 3-80	
	Industrial Hygiene 3-80	
	CHAPTER 4	
	PHASE: DISMANTLEMENT OF THE HOUSE	4-81
1.0	Introduction	4-83
2.0	General	4-83
3.0	Air Sampling Program (Occupational)	4-83

3.1	General	4-83
3.2	High Volume Samples	4-84
3.3	Low Flow Rate Samples	4-85
3.4	Lapel Air Samples	4-85
3.5	Radon Progeny Measurements (Working Levels)	4-85
4.0	Environmental Air Sampling Program	4-86
4.1	General	4-86
4.2	Air Particulate Samples	4-86
4.3	Radon Progeny (Working Levle) Measurements	4-87
5.0	Work Area Gamma Surveys	4-88
5.1	General	4-88
	Containment Criteria	4-88
	Weather Cover (Tarpaulin) Criteria	4-88
	Open Air Dismantlement Criteria	4-88
	105 E. Stratford Ave. Gamma Surveys	4-89
	107 E. Stratford Ave. Gamma Surveys	4-90
6.0	Beta Gamma Surveys	4-90
	hable of Activity Ranges for Items Removed During	4 - 90
	Dismantlement	4-91
7.0	Surveys for Removable Activity	4.91
7.1	General	4.91
7.2	105 E. Stratford Surveys	4.91
	Table of Removable Beta-Gamma Activity Measurements, 105 Stratford Residence	4-92
7.3	107 E. Stratford Surveys	4.93
	Table of Removable Beta-Gamma Activity Measurements, 107 Stratford Residence	4-93
80	Phase Hazard Analysis	4.94
9 0	Tool Box Safety Discussion	4-95

Appendix 4-A: Occupational Air Samples	4-A-97
Identification Key to Measurements	4-A-99
Occupational Air Concentration Data During Construction of Containment	4-A-101
Occupational Air Concentration Data During Clean Up of 105 Interior	4-A-101
Occupational Air Concentration Data During Dismantlement of 105 Interior	4-A-103
Occupational Air Concentration Data During Clean-Up of 107 Interior	4-A-103
Occupational Air Concentration Data During Dismantlement of 107 Interior	4-A-104
Occupational Air Concentration Data During Preparations for 105 Exterior Dismantlement	4-A-104
Air Concentration Data During Exterior Dismantlement, 3rd Floor, 105 Side	4-A - 105
Air Concentration Data During Exterior Dismantlement, 3rd Floor, 107 Side	4-A-106
Air Concentration Data During Exterior Dismantlement, 2nd Floor, 107 Side	4-A-107
Air Concentration Data During Exterior Dismantlement, 2nd Floor, 105 Side	4A-108
Air Concentration Data During Exterior Dismantlement, Porch and 1st Floor, 107 Side	4-A-109
Air Concentration Data During Exterior Dismantlement, Porch and 1st Floor, 105 Side	4- A-110
Air Concentration Data During Exterior Dismantlement, 105 and 107 Porch Floors	4-A- 110
Air Concentration Data During Dismantlement of 107 Basement	4-A- 112
Air Concentration Data During Dismantlement of 105 Basement	4- A-118
Occupational Airborne Activity (Projected Radium) .	4- A-119
Occupational Airborne Activity (Cumulative Ave.)	4- A-120
Occupational Radon Progeny Data (Working Levels)	4- A-121

Appendix 4-A: Occupational Air Samples (Continue	<u>d)</u>
Occupational Radon Progeny Data (Working Level Daily Averages)	4-A-123
Figure of Occupational Working Levels (11/29/88-2/17/89)	4-A-125
Appendix 4-B: Environmental Air Samples	4-B-127
Identification Key to Types of Measurements	'4-B-129
Example of CAM Log	4-B-130
Figure of Environmental Airborne Activity, Gross Alpha	4-B-131
Environmental Data for CAM Station #1	4-B-132
Weekly Averages for CAM Station #1	4-B-133
Figure of Environmental Data, CAM Station #1 (8/22/88-2/5/89)	4-B- <u>1</u> 34
Environmental Data for CAM Station #2	4-B-135
Weekly Averages for CAM Station #2	4-B-136
Figure of Environmental Data, CAM Station #2 (8/22/88-2/5/89)	4-B-137
Environmental Data for CAM Station #3	4-B-138
Weekly Averages for CAM Station #3	4-B-139
Figure of Environmental Data, CAM Station #3 (8/22/88-2/5/89)	4-B-140
Environmental Data for CAM Station #4	4-B-141
Weekly Averages for CAM Station #4	4-B-142
Figure of Environmental Data, CAM Station #4 (8/22/88-2/5/89)	4-B-143
Environmental Radon Progeny Data	4-B-144
Figure of Daily Environmental Radon Progeny	4-B-146

Ap	pendix 4-C: Summary of Phase Hazard Analyses and Health and Safe	ty Topics	4-C-147
	Phase Hazard Analysis Summary for Traterior/Exterior Dismantlement Operations 4-C-1	49	
	Summary of Tool Box Safety Discussions 4-C-1	51	
	Appendix 4-D: Site Maps 4-D-1	53	
	CAM Station Locations 4-D-1	55	
	105 E. Stratford Basement 4-D-1	56	
	105 E. Stratford 1st Floor 4-D-1	57	
	105 E. Stratford 2nd Floor 4-D-1	58	
	105 E. Stratford 3rd Floor 4-D-1	59	
	107 E. Stratford Basement 4-D-1	60	
	107 E. Stratford 1st Floor 4-D-1	61	
	107 E. Stratford 2nd Floor 4-D-1	62	
	107 E. Stratford 3rd Floor 4-D-1	63	
	CHAPTER 5		
	PHASE: DISMANTLEMENT OF THE GARAGES	5-165	
1.0	Introduction	5-167	
2.0	General	5-167	
3:.0	Air Sampling Program (Occupational)	5-167	
31	General	5-167	
3.2	High Flow Rate Air Particulate Samples	5-168	
3.3	Low Flow Rate Air Particulate Samples	5-168	
3.4	Lapel (Breathing Zone) Air Samples	5-168	
4.0	Air Sampling Program (Environmental)	5-168	
4.1	General	5-168	
4.2	Low Flow Rate Air Particulate Samples	5-168	

PHASE: DISMANTLEMENT OF THE GARAGES (CONTINUED)

5.0	Work Area Gamma Surveys		5- 169	
5.1	General		5- 169	
	Table of Exposure Rate Measurements		5- 169	
6.0	Beta Gamma Surveys		5- 169	
	Table of Activity Ranges by Material Type		5- 170	
7.0	Surveys for Removable Activity		5- 170	
7.1	General		5- 170	
7.2	Surveys		5- 170	
	Table of Total and Removable Contamination Survey Data		5- 171	
8.0	Phase Hazard Analyses	• • • •	5- 171	
9.0	Tool Box Syfety Discussions	• • • •	5- 172	
	Appendix 5-A: Occupational Air Samples		5-A-173	3
	Identification Key to Types of Measurements During Dismantlement of Stratford Ave. Garages	5-A-	175	
	Air Sampling Data, 105 E. Stratford Garage	5-A-	177	
	Air Sampling Data, 107 E. Stratford Garage	5-A-	177	
	Identification Key to Types of Measurements During Dismantlement of Stewart Ave. Garages	5-A-	178	
	Air Sampling Data, 110 Stweart Garage	5-A-	179	
	Air Sampling Data, 112 Stewart Garage	5-A-	179	
	Graph of Monthly Occupational Airborne Concentrations	5-A-	18:	
	Table of Occupational Radon Progeny Data During Dismantlement of Garages (Working Levels)	5-A-	181	
	Graph of Daily Occupational Radon Progeny	5-A-	182	
	Appendix 5-B: Environmental Air Samples During Garage Dis	smant]	Lement	5-B-183
	Map of Garage Locations	5-B-	185	
	Identification Key to Types of Measurements	5-B-	186	

PHASE: DISMANTLEMENT OF THE GARAGES (CONTINUED)

Ap	<u>pendix 5-B: Environmental Air Samples During Garage Dismantlement</u>	(Cont'd)
	Table of Environmental Air Sample Data 5-B- 1	37
	Graph of Monthly Environmental Airborne Activity 5-B- 1	38
	Table of Radon Progeny Data 5-B- 1	39
	Graph of Daily Environmental Radon Progeny 5-B- 1	90
	Appendix 5-C: Phase Hazard Analysis Summary for Dismantlement of	
	105/107 E. Stratford, 110/112 Stewart 5-C- 1	93
	Summary of Tool Box Safety Discussions for Garage Dismantlement	94
	CHAPTER 6	
	PHASE: SOIL REMEDIATION	6-195
1.0	Introduction	6-197
2.0	General	6-197
3.0	Air Sampling Program (Occupational)	6-197
3.1	General	6-197
3.2	High Flow Rate Samples	6-197
3.3	Air Particulate Samples	6-198
3.4	Lapel (Breathing Zone) Air Sampling	6-198
4.0	Air Sampling Program (Environmental)	6-198
4.1	General	6-198
4.2	Air Particulate Samples	6- 198
4.3	Radon Progeny Measurements (Working Levels)	6- 199
5.0	Gamma Surveys	6- 199
5.1	General	6- 199
5.2	Collimated Probe Gamma Measurements	6- 200
5 3	Uncollimated Probe Measurements	6 200

6.0	Soil Analysis	6-201
6.1	General	6-201
6.2	Types of Samples Collected	6-201
6.3	Radium Analysis	6-201
6.4	Other Analysis	6-202
7.0	Background Soil Analysis	6-202
	Table of Background Soil Activity Concentrations	6 - 202
8.0	Beta Gamma Surveys	6-202
	Table of Rubble Activity Ranges Greater Than 2-Sigma Above Background	6-203
9.0	Phase Hazard Analysis	6-203
10.0	Tool Box Safety Discussion	6 - 203
	Appendix 6-A: Occupational Air Samples	6-A-205
	Key to Identification of Types of Measurements 6-A-2	07
	Graph of Monthly Occupational Airborne Activity 6-A-2	209
	Graph of Cumulative Average Occupational Airborne Activity 6-A-2	210
	Table of Occupational Air Sampling Data 6-A-2	211
	Table of Daily Average Activity Concentrations 6-A-2	222
	Graph of Monthly Occupational Radon Progeny 6-A-2	223
	Table of Daily Occupational Radon Progeny 6-A-2	224
	Table of Daily Average Occupational Radon Progeny 6-A-2	228
	Appendix 6-B: Environmental Air Samples 6-B-2	31
	Key to Identification of Types of Measurements 6-B-2	233
	Graph of Environmental Airborne Concentrations 6-B-	234
	Table of Air Sampling Data for CAM Station #1 6-B-	235
	Weekly Averages for CAM Station #1 6-B-	236

PHASE: SOIL REMEDIATION (CONTINUED)

Appendix 6-B: Environmental Air Samples (Continued)

Graph of Air Sampling Data for CAM Station "	6-B- 237
Table of Air Sampling Data for CAM Station #2	6-B- 238
Weekly Averages for CAM Station #2	6-B- 239
Graph of Air Sampling Data for CAM Station #2	6-B- 240
Table of Air Sampling Data for CAM Station #3	6-B- 241
Weekly Averages for CAM Station #3	6-B- 242
Graph of Air Sampling Data for CAM Station #3	6-B- 243
Table of Air Sampling Data for CAM Station #4	6-B- 244
Weekly Averages for CAM Station #4	6-B- 245
Graph of Air Sampling Data for CAM Station #4	6-B- 246
Table of Environmental Radon Progeny Data	6-B- 247
Table of Daily Average Radon Progeny Data	6-B- 250
Graph of Environmental Radon Progeny Data (11/19/88-3/27/89)	6-B- 252
Appendix 6-C: Pre and Post Remedial Gamma Soil Su	rveys 6-C-253
Grid Blocks A-1 thru A-15, B-1 thru B-15, C-1 thru C-13	6-C- 255
Grid Blocks C-14 thru C-15, D-1 thru D-15, E-1 thru E-15, F-1 thru F-10	6-C- 256
Grid Blocks F-11 thru F-15, G-1 thru G-15, H-1 thru H-15, J-1 thru J-9	6-C- 257
Grid Blocks J-10 thru J-15, K-1 thru K-15, L-1 thru L-15, M-1 thru M-7	6-C- 258
Grid Blocks M-8 thru M-15, N-1 thru N-15, P-1 thru P-15, R-1 thru R-6	6-C- 259
Grid Blocks R-7 thru R-15, CA-1 thru CA-11, CB-1 thru CB-12, CC-1 thru CC-11	6-C- 260
Grid Blocks CD-1 thru CD-11, CE-4 thru CE-11, GA-1 thru GA-8, GB-1 thru GB-8, GC-1 thru GC-6, GD-1, KA-1	6-C- 261

Appendix 6-C: Pre and Post Remedial Gamma Soil Surveys	(Continued)
Grid Blocks KA-2 thru KA-5, KB-1 thru KB-5, KC-1 thru KC-5, KD-1 thru KD-5, KE-1 thru KE-5, KF-1 thru KF-5, KG-1 thru KG-3, KH-1 thru KH-2, KJ-1 thru KJ-2, KK-1 thru KK-2	6-C- 262
Grid Blocks KL-1 thru KL-2, KM-1 thru KM-2, KN-1 thru KN-2, KP-1 thru KP-2, KR-1	6-C- 263
Graph of micro-R/hr. vs CPTM with Ludlum 2220, Instrument #48403	6-C- 264
Graph of micro-R/hr. vs CPTM with Ludlum 2220, Instrument #1469	6-C- 265
Table of Counts Per 0.1 Minute Versus Micro-Roentgen Per Hour with Ludlum 2220 and 43-10, Instrument #48403	6-C- 266
Table of Counts Per 0.1 Minute Versus Micro-Roentgen Per Hour with Ludlum 2220 and 43-10, Instrument #1469	6-C- 267
Appendix 6-D: Initial Soil Sample Activity by Gamma Sp	ectroscopy 6-D-269
Grid Blocks A-1 thru A-7	6-D- 271
Grid Blocks A-8 thru A-13	6-D- 272
Grid Blocks A-14 thru A-15, KA-1 thru KA-4	6-D- 273
Grid Blocks KA-5, B-1 thru B-3	6-D- 274
Grid Blocks B-5 thru B-8	6-D- 275
Grid Blocks B-9 thru B-15	6-D- 276
Grid Blocks KB-1 thru KB-2, C-2 thru C-6	6-D- 277
Grid Blocks C-7 thru C-10	6-D- 278
Grid Blocks C-11 thru C-15, KC-1 thru KC-2, D-1	6-D- 279
Grid Blocks D-2 thru D-7	6-D- 280
Grid Blocks D-7 thru D-9	6-D- 281
Grid Blocks D-10 thru D-15, KD-1 thru KD-2	6-D- 282
Grid Blocks KD-3, E-1 thru E-6	6-D- 283
Grid Blocks E-7 thru E-10	6-D- 284

Appendix 6-D: Initial Soil Sample Activity by Camma Spectros	copy (Continued)
Grid Blocks E-11 thru E-15, KE-1 thru KE-3	6-D- 285
Grid Blocks F-1 thru F-6	6-D- 286
Grid Blocks F-9 thru F-15, KF-1	6-D- 287
Grid Blocks G-1 thru G-7	6-D- 288
Grid Blocks G-8 thru G-14, KG-1	6-D- 289
Grid Blocks H-1 thru H-8	6-D- 290
Grid Blocks H-9 thru H-14, KH-1	6-D- 291
Grid Blocks J-1 thru J-14, K-2, KJ-2	6-D- 292
Grid Blocks K-3 thru K-9	6-D- 293
Grid Blocks K-8 thru K-14, L-1 thru L-6	6-D- 294
Grid Blocks L-7 thru L-15, KL-1, M-1	6-D- 295
Grid Blocks M-2 thru M-9	6-D- 296
Grid Blocks M-10 thru M-13, N-2 thru N-9	6-D- 297
Grid Blocks N-10 thru N-14, P-1 thru P-5	6-D- 298
Grid Blocks P-6 thru P-12, R-1 thru R-2	6-D- 299
Grid Blocks R-3 thru R-8	6-D- 300
Grid Blocks R-7 thru R-12, KR-1 thru KR-2, S-6 thru S-7	6-D- 301
Grid Blocks S-8 thru S-11	6-D- 302
Grid Blocks S-12 thru S-13, KS-2 thru KS-4, V-6	6-D- 303
Grid Block V-7	6-D- 304
Grid Blocks V-8 thru V-11	6-D- 305
Grid Blocks V-12 thru V-15, KV-1 thru KV-2	6-D- 306
Grid Blocks KV-3, W-6 thru W-13, KW-4 thru KW-5, JW-1 thru JW-2	6-D- 307
Grid Blocks JW-3 thru JW-4, HW-1 thru HW-4	6-D- 308
Grid Blocks HW-5 thru HW-6, AA-1, AC-1, AF-1, AG-1, AJ-1, AL-1	6-D- 309

Appendix 6-D: Initial Soil Sample Activity by Gamma Spectros	copy (Continued)
Grid Blocks CA-1 thru CA-6	6-D- 310
Grid Blocks CA-7 thru CA-12, GA-2 thru GA-3	6-D-311
Grid Blocks GA-4 thru GA-8, CB-1	6-D-312
Grid Blocks CB-2 thru CB-11, GB-1 thru GB-6, CC-1 thru CG-6	6-D-313
Grid Blocks CC-7 thru CC-11, GC-2, CD-4 thru CD-6, CE-1	6-D-314
Appendix 6-E: Final (Verification) Soil Sample Activity by Ga	mma Spectroscopy 6-E-315
Key to Sample Identification	6-E-317
Grid Blocks A-1 thru A-15, B-1 thru B-9	6-E-318
Grid Blocks B-10 thru B-15, C-1 thru C-15, D-1 thru D-2	6-E-319
Grid Blocks D-3 thru D-15, E-1 thru E-11	6-E-320
Grid Blocks E-12 thru E-14, F-1 thru F-15, G-1 thru G-6	6-E-321
Grid Blocks G-6 thru G-15, H-1 thru H-14	6-E-322
Grid Blocks H-15, J-1 thru J-15, K-1 thru K-8	6-E-323
Grid Blocks K-8 thru K-15, L-1 thru L-15	6-E-324
Grid Blocks M-1 thru M-15, N-1 thru N-9	6-E-325
Grid Blocks N-10 thru N-15, P-1 thru P-15	6-E-326
Grid Blocks R-1 thru R-15, S-7 thru S-12, T-7 thru T-9, U-5 thru U-8	6-E-327
Grid Blocks U-8 thru U-18, V-19 thru V-30	6-E-328
Grid Blocks AA-1, AB-1, AC-1 AE-1, AF-1, AG-1, AH-1 AS-1 thru AS-7, BA-1 thru BA-2, BB-1 thru BB-2, BC-1 thru BC-2, BD-1, BE-1, CA-1 thru CA-6	6-E-329
Grid Blocks CA-7 thru CA-12, GB-1 thru GB-12, GC-1 thru GC-4, GD-1 thru GD-4	6-E-330
Grid Blocks CE-1, GA-1 thru GA-8, GB-1 thru GB-6, KA-1 thru KA-3, KB-1 thru KB-2, KC-1 thru KC-2, KD-1, KE-1	6-E-331

<u>Ap</u>	pendix 6-F: Summary of Phase Hazard Analyses and Health and	Safety Topics 6-F-333
	Phase Hazard Analysis Summary for Soil Remediation .	6-F-335
	Summary of Tool Box Safety Discussions for Soil Remediation	6-F-337
	Appendix 6-G: Site Maps	6-G-339
	Grid Block Layout	6-G-341
	Location of Environmental CAM Stations	6-G-342
	Areas of Soil Excavation	6-G-343
	Remediated Structures	6-G-344
	CHAPTER 7	
	INSTRUMENTATION	7–345
1.0	Introduction	7-347
2.0	General	7-347
3.0	Instrumentation	7-347
3.1	Geiger-Mueller Detectors	7-347
32	Alpha Scintillation Detectors	7-348
3.3	Gamma Scintillation Detectors	7≔ 348
3.4	Opposed Crystal System	7-349
3-, 5	Gas Proportional Meters	7-349
3.6	Ionization Chambers	7-349
3.7	Continuous Air Monitors	7- 350

LANSDOWNE

RADIOACTIVE RESIDENCE COMPLEX DISMANTLEMENT/REMOVAL PROJECT

RADIOLOGICAL CLOSEOUT REPORT

CHEM-NUCLEAR SYSTEMS, INC. 220 STONERIDGE DRIVE COLUMBIA, SOUTH CAROLINA

CHAPTER 1
PERSONNEL MONITORING PROGRAM

CLOSEOUT REPORT

PERSONNEL MONITORING PROGRAMS

TABLE OF CONTENTS

Sect:	tion		P	age No.
1.0	INTRODUCTION	 	 •	1-3
2.0	GENERAL	 •	 •	1-3
3.0	URINALYSIS PROGRAM	 •	 •	1-3
4.0	DOSIMETRY PROGRAM	 •	 •	1-4
5.0	WHOLE BODY COUNTS	 •	 •	1-5
	APPENDIX A - URINALYSIS RESULTS	 •	 •	1-A-7
	APPENDIX B - DOSIMETRY RESULTS	 •	 •	1-B-19
	APPENDIX C - WHOLE BODY COUNT RESULTS .	 •		1-C-25

1.0 INTRODUCTION

During the period of August 1, 1988 to May 19, 1988 personnel monitoring programs were established to insure that operations conducted within a radiologically controlled area were performed in a safe manner. The goals of this program were to verify compliance with all Federal and State standards regarding personnel radiation exposure and to insure a high degree of radiological safety for site personnel. This was accomplished by performing all work operations in accord with the plans established prior to beginning site work operations. The following sections of this chapter present a description and summary of the surveys performed to verify compliance.

2.0 GENERAL

In accordance with the Safety Health and Emergency Response Plan and the Contractor's Quality Control Plan a variety of samples and measurements were acquired. On a monthly basis bioassay samples were collected, consisting of approximately 2 liters of urine from each person working continuously in a controlled area. Additional urine samples were collected on occasions where there existed an increased potential for ingestion or inhalation of radioactive material. Thermoluminescent Dosimeters (TLD) were issued on a monthly basis to each individual who routinely performed work in a controlled area. Prior to the performance of activities within the controlled area, initial whole body counting was performed. The whole body counts were repeated at the termination of a worker's employment at the project site. access control point was established to prevent transport of contamination out of the controlled area. Finally, prior to performance of any work at the project site, whether inside or outside the controlled area, long term project workers were trained and tested in the necessary procedures and protocols which were designed to insure a safe work environment.

3.0 URINALYSIS PROGRAM

The urinalysis program covered long term project personnel. The program was designed to detect potential uptake of any of the radionuclides of concern at levels below regulatory limits. Due to the relatively low airborne activity levels expected and the sensitivity limits of the analysis method, the personnel selected for this program were those who spent more than 120 hours in any three consecutive months within a radiologically controlled area. In general, the primary exposure control methodology was based on air sample results, rather than depending on post-exposure bioassay results. Personnel who fell under the auspices of this program were Chem-Nuclear Systems, Incorporated personnel and its sub-contractors, including Carlucci Construction Company, General Security Incorporated, and Hilbert and Associates Incorporated. Also covered under this program were Army Corps of Engineers

personnel who had specifically requested inclusion.

The program provided for collection of an initial urine sample which was analyzed for Radium-226 and Thorium-230. This sample was used as the "baseline" measurement, and served to identify any previously existing concentrations of these isotopes. Subsequent urine samples were collected on a monthly basis (typically, the first of each month). At the end of a worker's employment a final urine sample was collected.

The purpose of the program was to identify any significant change in subsequent samples from the baseline sample and to follow the recommendations set forth in Report 30 by the International Commission for Radiation Protection (ICRP) for uptake of Radium-226 and Thorium-230. In accordance with these purposes, the following criteria were established:

Radium-226	Thorium-230	Action
0.05 pCi/l	0.05 pCi/l	Resample
0.70 pCi/l	0.10 pCi/l	Investigate work conditions
1.00 pCi/l	0.20 pCi/l	Prohibit employee from performing work in a radiologically controlled zone

Data for personnel covered under the urinalysis program are presented in Appendix A of this document. The data indicate no significant difference between the baseline sample results and the final sample results. Although minor deviations from the baselin do exist, these differences are within those expected due to counting statistics and uncertainties associated with the analysis procedures.

4.0 DOSIMETRY PROGRAM

The dosimetry program was designed to measure the beta/gamma dose from site activities to long term project personnel. Such personnel were defined as those who spent more than 120 hours in any three consecutive months within a radiologically controlled area. Personnel who fell under the auspices of this program were CNSI personnel and its sub-contractors, including Carlucci Construction Company, General Security Incorporated, and Hilbert and Associates Incorporated. Also covered under this program were certain Army Corps of Engineers personnel.

Personnel exposure was monitored with Thermoluminescent Dosimeters (TLDs). The TLD dose records are provided for site

personnel as Appendix B to this document. Although the TLDs were exchanged on a monthly basis, the results are reported as a quarterly summary in accordance with normal CNSI dosimetry department procedure. Each quarter (numbered 1 to 4) is further divided to indicate the deep (D) and shallow (S) dose component for that time period. The deep dose component is equivalent to a whole body dose, the shallow dose component is equivalent to a skin dose. The deep dose received in January would therefore appear in the column titled "Q1-D", while the shallow dose received in September would be located in the column titled "Q3-S".

Throughout the course of the project, TLD results were lower than the administrative limits established by CNSI. As can be seen from a review of the Safety Health and Emergency Response Plan, the limits established by CNSI are well below the limits established in Title 10 of the Code of Federal Regulations, Part 20.

One anomalous reading was observed for a TLD issued to R.J. Fello in April of 1989. The accompanying dosimeter investigation report is also provided in Appendix B of this document. The investigation of the work areas indicated the level shown from the TLD was not supported by work area monitoring results or by TLD results for other work crew members. However, even if it was assumed that the results were accurate, the exposure values would still be well below the allowable limit for radiation workers.

5.0 WHOLE BODY COUNTS

The whole body count program covered long term project personnel. The program was designed to perform uptake analysis of personnel who spent more than 120 hours in any three consecutive months within a radiologically controlled area. Personnel who fell under the auspices of this program were Chem-Nuclear Systems, Incorporated personnel, its sub-contractors, including Carlucci Construction Company, General Security Incorporated, and Hilbert and Associates Incorporated. Certain personnel from the Army Corps of Engineers and the United States Environmental Protection Agency were also included.

The program consisted of initial whole body counts which measured the quantities of Radium-226 and Thorium-232 which were present in the body prior to the performance of any site activities, and then final measurements to determine the levels present at the termination of site radiological work. This data was used to compliment the monthly urinalysis program, previously described.

The measurements were accomplished by utilizing a very sensitive sodium iodide detector in conjunction with a multi-channel analyzer. The body counts consisted of two measurements, a whole body scan which surveyed for Radium-226, and a stationary, lung

count which surveyed for Thorium-232. The calculated minimum detectable activity for natural thorium was 4.7 mg, and the calculated minimum detectable activity for Radium-226 was 4.1 nCi. The results of these surveys are provided as Appendix C to this document. It should be noted the values of radionuclides initially present versus the level of radionuclides present at the final count do not constitute a statistically significantly difference. This indicates that there was no measurable intake of these radionuclides due to site activities.

APPENDIX 1-A URINALYSIS RESULTS

URINALYSIS RESULTS

ID: 1905				
Date	Ra-226		Th-230	
8/25/88	0.00 +/-	.10 pCi/l	0.00 +/-	.01 pCi/l
9/01/88	0.00 +/-	.10 pCi/l	0.00 +/-	.01 pCi/l
BASELINE	,	120 120-7 2	,	F,
9/18/88	0.00 +/-	.30 pCi/l	0.00 +/-	.01 pCi/l
10/13/88	0.00 +/-	.20 pCi/l	.02 +/-	.02 pCi/l
11/08/88	0.00 +/-	.30 pCi/l	0.00 +/-	.01 pCi/l
12/12/88	.20 +/-	.30 pCi/l	0.00 +/-	.01 pCi/l
1/07/89	.10 +/-	.30 pCi/l	0.00 +/-	.01 pCi/l
2/07/89	0.00 +/-	.20 pCi/l	0.00 +/-	.01 pCi/l
3/07/89	0.00 +/-	.20 pCi/l	0.00 +/-	.01 pCi/l
3/10/89	0.00 +/-	.20 pCi/l	0.00 +/-	.01 pCi/l
0, 20, 00	0,00	120 POL/ 2	.,	· · · · · · · · · · · · · · · · · · ·
ID: 1913				
Date	Ra-226		Th-230	
8/15/88	0.00 +/-	.10 pCi/l	.01 +/-	.01 pCi/l
9/01/88	0.00 +/-	.10 pCi/l	.01 +/-	.01 pCi/l
BASELINE	.,	710 PO1/1	,	, , , , , , , , , , , , , , , , , , ,
9/07/88	0.00 +/-	.50 pCi/l	0.00 +/-	.01 pCi/l
10/13/88	0.00 +/-	.20 pCi/l	.01 +/-	.01 pCi/l
11/08/88	.10 +/-	.20 pCi/l	0.00 +/-	.01 pCi/l
1/05/89	.10 +/-	.30 pCi/l	0.00 +/-	.01 pCi/l
1/07/89	0.00 +/-	.20 pCi/l	0.00 +/-	.01 pCi/l
2/07/89	0.00 +/-	.20 pCi/l	0.00 +/-	.01 pCi/l
3/07/89	0.00 +/-	.20 pCi/l	.01 +/-	.01 pCi/l
3/10/89	0.00 +/-	.20 pCi/l	.01 +/-	.01 pCi/l
,,	,	L , -	•	- ,
ID: 3155				
Date	Ra-226		Th-230	
8/15/88	.10 +/-	.20 pCi/l	0.00 +/-	.01 pCi/l
9/01/88	.10 +/-	.20 pCi/l	0.00 +/-	.01 pCi/l
BASELINE	•	- ,	•	- '
9/18/88	0.00 +/-	.20 pCi/l	0.00 +/-	.01 pCi/l
10/13/88	0.00 +/-	.20 pCi/l	0.00 +/-	.01 pCi/l
11/08/88	0.00 +/-	.20 pCi/l	0.00 +/-	.01 pCi/l
1/05/89	0.00 +/-	.20 pCi/l	0.00 +/-	.01 pCi/l
1/07/89	-	.10 pCi/l	0.00 +/-	.01 pCi/l
2/07/89	0.00 +/-		0.00 +/-	
3/07/89	0.00 +/-	-	0.00 +/-	
3/10/89	0.00 +/-		0.00 +/-	
, ., .,	•	<u>.</u> ,	•	• • •
ID: 1133				
Date	Ra-226		Th-230	
8/15/88		.20 pCi/l	0.00 +/-	.01 pCi/l
•			· ·	

```
9/01/88
             .10 +/-
                       .20 pCi/l
                                     0.00 + / -
                                                .01 pCi/l
BASELINE
 9/18/88
                  +/-
                            pCi/l
                                     0.00 + / -
                                                .01 pCi/l
INSUFFICIENT SAMPLE FOR RA226 ANALYSIS
10/13/88
            0.00 + / -
                        .20 pCi/l
                                     0.00 +/-
                                                .01 pCi/l
            0.00 +/-
                       .20 pCi/l
11/08/88
                                     0.00 +/-
                                                .01 pCi/l
12/12/88
            0.00 + / -
                       .20 pCi/l
                                     0.00 +/-
                                                .01 pCi/l
12/12/88
            0.00 +/-
                       .20 pCi/l
                                     0.00 +/-
                                                .01 pCi/l
ID: 1655
Date
            Ra-226
                                     Th-230
 8/25/88
                        .20 pCi/l
            0.00 + / -
                                     0.00 + / -
                                                .01 pCi/l
 9/01/88
            0.00 + / -
                                     0.00 +/-
                        .20 pCi/l
                                                .01 pCi/l
BASELINE
 9/18/88
             .20 +/-
                        .20 pCi/l
                                     0.00 + / -
                                                .01 pCi/l
10/13/88
            0.00 +/-
                        .10 pCi/l
                                      .02 +/-
                                                .02 pCi/l
            0.00 +/-
11/05/88
                        .10 pCi/l
                                     0.00 +/-
                                                .01 pCi/l
HIGH POTENTIAL EXPOSURE
12/12/88
            0.00 + / -
                        .10 pCi/l
                                     0.00 + / -
                                                 .01 pCi/l
 1/07/89
            0.00 + / -
                        .20 pCi/l
                                     0.00 + / -
                                                .01 pCi/l
 2/07/89
            1.00 +/-
                        .10 pCi/l
                                     0.00 +/-
                                                .01 pCi/l
            0.00 +/-
 3/07/89
                        .20 pCi/l
                                     0.00 + / -
                                                .01 pCi/l
 3/10/89
            0.00 +/-
                        .20 pCi/l
                                     0.00 +/-
                                                .01 pCi/l
ID: 2043
            Ra-226
Date
                                     Th-230
 8/25/88
            0.00 + / -
                                     0.00 +/-
                        .10 pCi/l
                                                .01 pCi/l
 9/01/88
            0.00 + / -
                                     0.00 +/-
                        .10 pCi/l
                                                .01 pCi/l
BASELINE
 9/18/88
            0.00 + / -
                                     0.00 + / -
                        .10 pCi/l
                                                .01 pCi/l
10/13/88
            0.00 +/-
                        .10 pCi/l
                                     0.00 +/-
                                                .01 pCi/l
11/08/88
             .10 +/-
                        .30 pCi/l
                                     0.00 + / -
                                                .01 pCi/l
            0.00 +/-
                                     0.00 +/-
12/12/88
                        .20 pCi/l
                                                .01 pCi/l
 1/07/89
            0.00 +/-
                        .20 pCi/l
                                     0.00 + / -
                                                .01 pCi/l
 2/07/89
            0.00 +/-
                        .10 pCi/l
                                     0.00 + / -
                                                .01 pCi/l
              .10 +/-
 2/24/89
                        .20 pCi/l
                                     0.00 +/-
                                                .01 pCi/l
HIGH POTENTIAL EXPOSURE
 3/07/89
            0.00 + / -
                        .10 pCi/l
                                     0.00 + / -
                                                .01 pCi/l
 3/10/89
            0.00 + / -
                                     0.00 +/-
                        .10 pCi/l
                                                .01 pCi/l
ID: 1683
Date
            Ra-226
                                     Th-230
 8/25/88
            0.00 +/-
                        .10 pCi/l
                                     0.00 + / -
                                                .01 pCi/l
 9/01/88
            0.00 +/-
                        .10 pCi/l
                                     0.00 +/-
                                                .01 pCi/l
BASELINE
 9/18/88
            0.00 + / -
                        .10 pCi/l
                                     0.00 + / -
                                                .01 pCi/l
INCIDENT REPORT
 9/26/88
            0.00 +/-
                        .10 \text{ pCi/l}
                                     0.00 +/-
                                                .01 pCi/l
INCIDENT RESPONSE
10/13/88
            0.00 +/-
                        .10 pCi/l
                                     0.00 +/-
                                                .01 pCi/l
```

```
11/08/88
            0.00 + / -
                        .10 pCi/l
                                     0.00 +/-
                                                 .02 pCi/l
            0.00 +/-
                                     0.00 +/-
 1/05/89
                        .10 pCi/l
                                                 .01 pCi/l
            0.00 +/-
 1/07/89
                        .10 pCi/l
                                     0.00 +/-
                                                 .01 pCi/l
 2/07/89
            0.00 + / -
                        .10 pCi/l
                                     0.00 + / -
                                                 .01 pCi/l
 3/07/89
            0.00 + / -
                        .10 pCi/l
                                     0.00 + / -
                                                 .01 pCi/l
 3/10/89
            0.00 +/-
                        .10 pCi/l
                                     0.00 + / -
                                                 .01 pCi/l
ID: 1774
Date
            Ra-226
                                     Th-230
 8/25/88
             .10 +/-
                        .20 pCi/l
                                     0.00 +/-
                                                 .01 pCi/l
 9/01/88
             .10 +/-
                                     0.00 + / -
                        .20 pCi/l
                                                 .01 pCi/l
BASELINE
            0.00 + / -
 9/18/88
                                     0.00 + / -
                        .10 pCi/l
                                                 .01 pCi/l
 9/28/88
            0.00 + / -
                        .20 pCi/l
                                     0.00 +/-
                                                 .01 pCi/l
            0.00 +/-
10/13/88
                                     0.00 +/-
                        .10 pCi/l
                                                 .01 \text{ pCi/l}
11/05/88
             .10 +/-
                        .20 pCi/l
                                     0.00 + / -
                                                 .01 pCi/l
HIGH POTENTIAL EXPOSURE
12/12/88
             .10 +/-
                        .20 pCi/l
                                     0.00 +/-
                                                 .01 pCi/l
            0.00 +/-
 1/07/89
                        .10 pCi/l
                                     0.00 +/-
                                                 .01 pCi/l
 2/07/89
            0.00 +/-
                                     0.00 +/-
                        .20 pCi/l
                                                 .01 pCi/l
 3/07/89
            0.00 + / -
                        .10 pCi/l
                                     0.00 +/-
                                                 .01 pCi/l
 3/10/89
            0.00 + / -
                                     0.00 + / -
                        .10 pCi/l
                                                 .01 pCi/l
ID: 0985
Date
            Ra-226
                                     Th-230
             .10 +/-
 8/25/88
                        .20 pCi/l
                                       .02 +/-
                                                 .01 pCi/l
 9/01/88
             .10 +/-
                                      .02 +/-
                        .20 pCi/l
                                                 .01 pCi/l
BASELINE
 9/18/88
            0.00 +/-
                        .10 pCi/l
                                     0.00 +/-
                                                 .01 pCi/l
10/13/88
            0.00 +/-
                        .20 pCi/l
                                     0.00 + / -
                                                 .01 pCi/l
             .10 +/-
11/08/88
                                     0.00 +/-
                        .20 pCi/l
                                                 .01 pCi/l
                        .10 pCi/l
12/12/88
            0.00 +/-
                                     0.00 + / -
                                                 .01 pCi/l
 1/07/89
             .10 +/-
                        .30 pCi/l
                                      .01 +/-
                                                 .01 pCi/l
 2/07/89
            0.00 +/-
                        .20 pCi/l
                                     0.00 +/-
                                                 .01 pCi/l
 3/07/89
            0.00 + / -
                        .40 pCi/l
                                     0.00 + / -
                                                 .01 pci/l
 3/10/89
            0.00 + / -
                                     0.00 +/-
                        .40 pCi/l
                                                 .01 \text{ pCi/l}
ID: 4865
Date
            Ra-226
                                     Th-230
 1/05/89
             .10 +/-
                        .30 \text{ pCi/l}
                                     0.00 +/-
                                                 .01 pCi/l
BASELINE
 1/07/89
            0.00 + / -
                        .20 pCi/l
                                     0.00 +/-
                                                 .01 \text{ pCi/l}
 2/07/89
            0.00 +/~
                        .40 pCi/l
                                     0.00 + / -
                                                 .01 pCi/l
 2/24/89
            0.00 +/-
                        .10 pCi/l
                                     0.00 + / -
                                                 .01 pCi/l
HIGH POTENTIAL EXPOSURE
                        .40 pCi/l
 3/07/89
            0.00 +/-
                                     0.00 +/-
                                                 .01 pCi/l
 3/10/89
            0.00 +/-
                                     0.00 + / -
                        .40 pCi/l
                                                 .01 pCi/l
```

ID: 5476				
Date	Ra-226		Th-230	
8/25/88	.10 +/-	.20 pCi/l	.01 +/~	.01 pCi/l
9/01/88	.10 +/-	.20 pCi/l	.01 +/-	.01 pCi/l
BASELINE	•	- ,	•	
9/18/88	0.00 +/-	.10 pCi/l	0.00 +/-	.01 pCi/l
10/13/88	0.00 +/-	.20 pCi/l	0.00 +/-	.01 pCi/l
11/08/88	0.00 +/-	.20 pCi/l	0.00 +/-	.02 pCi/l
12/12/88	0.00 +/-	.20 pCi/l	0.00 +/-	.01 pCi/l
1/07/89	0.00 +/-	.20 pCi/l	0.00 +/-	.01 pCi/l
2/07/89	0.00 +/-	.20 pCi/l	0.00 +/-	.01 pCi/l
3/07/89	0.00 +/-	.30 pCi/l	0.00 +/-	.01 pCi/l
3/10/89	0.00 +/-	.30 pCi/l	0.00 +/-	.01 pCi/l
3/10/03	0.00 17	.50 pc1/1	0.000	• 01 po1/1
ID: 1206				
Date	Ra-226		Th-230	
8/25/88	0.00 +/-	.30 pCi/l	0.00 +/-	.10 pCi/l
9/01/88	0.00 +/-	.30 pCi/l	0.00 +/-	.01 pCi/l
BASELINE	0.00 ./	.so por, r	0.00	101 201/1
9/18/88	0.00 +/-	.20 pCi/l	0.00 +/-	.01 pCi/l
10/13/88	0.00 +/-	.20 pCi/1	0.00 +/-	.01 pCi/l
11/08/88	0.00 +/-	.20 pCi/1	0.00 +/-	.01 pCi/1
12/12/88		.20 pCi/1		.01 pCi/1
• •	0.00 +/-		0.00 +/-	.01 pCi/1
1/07/89	0.00 +/-	.20 pCi/l	0.00 +/-	- . ·
2/07/89	0.00 +/-	.20 pCi/l	0.00 +/-	.01 pCi/l
3/07/89	0.00 +/-	.10 pCi/l	0.00 +/-	.01 pCi/l
3/10/89	0.00 +/-	.10 pCi/l	0.00 +/-	.01 pCi/l
ID: 2473				
Date	Ra-226		Th-230	,
		20 nci/1		.01 pCi/l
8/25/88	0.00 +/-	.20 pCi/l	.01 +/-	
9/01/88	0.00 +/-	.20 pCi/l	.01 +/-	.01 pCi/l
BASELINE	0 00 17	10 01 /1	0 00 1/-	01 501/1
9/18/88	0.00 +/-	.10 pCi/l	0.00 +/-	.01 pCi/l
10/13/88	0.00 +/-	.10 pCi/l	0.00 +/-	.01 pCi/l
11/08/88	0.00 +/-	.20 pCi/l	0.00 +/-	.01 pCi/l
12/12/88	0.00 +/-	.10 pCi/l	0.00 +/-	.01 pCi/l
1/07/89	0.00 +/-	.20 pCi/l	0.00 +/-	.01 pCi/l
2/07/89	0.00 +/-	.10 pCi/l	0.00 +/-	.01 pCi/l
3/07/89	0.00 +/-	.20 pCi/l	0.00 +/-	.01 pCi/l
3/10/89	0.00 +/-	.20 pCi/l	0.00 +/-	.01 pCi/l
TD. 6654				
ID: 1974			m)	
Date	Ra-226		Th-230	
9/15/88	0.00 +/-	.20 pCi/l	0.00 +/-	.01 pCi/l
9/18/88	0.00 +/-	.20 pCi/l	0.00 +/-	.01 pCi/l
10/13/88	0.00 +/-	.20 pCi/l	0.00 +/-	.01 pCi/l
11/08/88	0.00 +/-	.20 pCi/l	0.00 +/-	.01 pCi/l
12/12/88	0.00 +/-	.10 pCi/l	0.00 +/-	.01 pCi/l
1/07/89	0.00 +/-	.10 pCi/l	0.00 +/-	.01 pCi/1

```
2/07/89
            6.00 +/-
                        .20 pCi/l
                                      0.00 +/-
                                                  .01 pCi/l
 3/07/89
             0.00 +/~
                        .10 pCi/l
                                      0.00 +/-
                                                  .01 pCi/l
 3/10/89
             0.00 +/--
                        .10 pCi/l
                                      0.00 +/-
                                                  .01 pCi/l
ID: 2093
Date
            Ra-226
                                      Th-230
 8/25/88
            0.00 + / -
                        .20 pCi/l
                                      0.00 + / -
                                                  .01 pCi/1
 9/01/88
            0.00 + / -
                        .20 pCi/l
                                      0.00 +/-
                                                  .01 pCi/l
BASELINE
 9/18/88
            0.00 + / -
                        .20 pCi/l
                                      0.00 + / -
                                                  .01 pCi/l
10/13/88
            0.00 + / -
                                                  .01 pCi/l
                        .20 pCi/l
                                      0.00 + / -
11/08/88
            0.00 +/-
                        .20 pCi/l
                                      0.00 + / -
                                                  .01 pCi/l
12/12/88
            0.00 +/-
                                      0.00 +/-
                        .10 pCi/l
                                                  .01 pCi/l
            0.00 +/-
 1/07/89
                        .20 pCi/l
                                      0.00 +/-
                                                  .01 pCi/l
              .20 +/-
 2/07/89
                        .40 pCi/l
                                       .01 +/-
                                                  .01 pCi/l
 3/07/89
             0.00 +/-
                        .10 pCi/l
                                      0.00 +/-
                                                  .01 pCi/l
 3/10/89
            0.00 + / -
                        .10 \text{ pCi/l}
                                      0.00 + / -
                                                  .01 pCi/l
ID:
Date
            Ra-226
                                      Th-230
 8/25/88
            0.00 +/-
                        .10 pCi/l
                                      0.00 + / -
                                                  .01 pCi/l
ID: 4545
Date
            Ra-226
                                      Th-230
 8/25/88
            0.00 +/-
                        .20 pCi/l
                                      0.00 +/-
                                                  .01 pCi/l
 9/01/88
            0.00 +/-
                        .20 pCi/l
                                      0.00 +/-
                                                  .01 pCi/l
BASELINE
 9/18/88
            0.00 + / -
                        .10 pCi/l
                                      0.00 +/-
                                                  .01 pCi/l
10/13/88
            0.00 + / -
                        .20 pCi/l
                                      0.00 +/-
                                                  .01 pCi/l
            0.00 + / -
11/08/88
                        .20 pCi/l
                                      0.00 +/-
                                                  .01 pCi/l
             .20 +/-
 1/05/89
                        .30 pCi/l
                                      0.00 +/-
                                                  .01 pCi/l
 1/07/89
             0.00 +/-
                        .20 pCi/l
                                      0.00 + / -
                                                  .01 pCi/l
 2/07/89
             .10 +/-
                        .20 pCi/l
                                      0.00 +/-
                                                  .01 pCi/l
 3/10/89
             0.00 +/-
                        .20 pCi/l
                                      0.00 +/-
                                                  .01 pCi/l
ID: 1683
Date
            Ra-226
                                      Th-230
 8/25/88
            0.00 + / -
                        .10 pCi/l
                                      0.00 + / -
                                                  .01 pCi/l
 9/01/88
            0.00 +/-
                        .10 \text{ pCi/l}
                                      0.00 + / -
                                                  .01 pCi/l
BASELINE
 9/18/88
            0.00 +/-
                        .10 \text{ pCi/l}
                                      0.00 +/-
                                                  .01 pCi/l
            0.00 +/-
10/13/88
                        .10 pCi/l
                                      0.00 +/-
                                                  .01 pCi/l
11/08/88
            0.00 +/-
                        .20 pCi/l
                                      0.00 +/-
                                                  .01 pCi/l
            0.00 + / -
12/12/88
                        .10 \text{ pCi/l}
                                      0.00 + / -
                                                  .01 pCi/l
 1/07/89
            0.00 + / -
                        .10 pCi/l
                                       .01 +/-
                                                  .01 pCi/l
 2/07/89
            0.00 + / -
                        .10 \text{ pCi/l}
                                      0.00 +/-
                                                  .01 pCi/l
 3/07/89
            0.00 + / -
                        .10 \text{ pCi/l}
                                      0.00 + / -
                                                  .01 pCi/l
 3/10/89
            0.00 +/-
                        .10 \text{ pCi/l}
                                      0.00 + / -
                                                  .01 pCi/l
```

```
ID: 2053
Date
             Ra-226
                                      Th-230
 9/28/88
                  +/-
                             pCi/l
                                       .01 +/-
                                                  .02 pCi/l
INSUFFICIENT SAMPLE FOR RA ANALYSIS
10/13/88
             0.00 +/-
                        .20 pCi/l
                                      0.00 +/-
                                                  .01 pCi/l
11/08/88
             0.00 + / -
                        .20 pCi/l
                                       .01 +/-
                                                  .02 pCi/l
 1/05/89
             0.00 +/-
                        .30 pCi/l
                                      0.00 +/-
                                                  .01 pCi/l
 1/07/89
             0.00 +/-
                        .30 pCi/l
                                      0.00 + / -
                                                  .01 pCi/l
 2/06/89
              .10 +/-
                        .50 pCi/l
                                       .01 +/-
                                                  .01 pCi/l
 3/10/89
             0.00 +/-
                        .20 pCi/l
                                      0.00 +/-
                                                  .01 pci/l
ID: 5152
Date
            Ra-226
                                      Th-230
 8/25/88
            0.00 +/-
                                      0.00 +/-
                        .20 pCi/l
                                                  .01 pCi/l
 9/01/88
             0.00 +/-
                        .20 pCi/l
                                      0.00 + / -
                                                  .01 pCi/l
BASELINE
 9/18/88
             0.00 + / -
                        .20 pCi/l
                                      0.00 + / -
                                                  .01 pCi/l
10/13/88
             0.00 +/-
                        .20 pCi/l
                                      0.00 + / -
                                                  .01 pCi/l
11/08/88
             0.00 +/-
                        .10 pCi/l
                                      0.00 +/-
                                                  .01 pCi/l
12/12/88
             0.00 +/-
                        .20 pCi/l
                                      0.00 + / -
                                                  .01 pCi/l
 1/07/89
             0.00 +/-
                        .30 pCi/l
                                      0.00 + / -
                                                  .01 pCi/l
 2/07/89
             0.00 +/-
                        .20 pCi/l
                                      0.00 + / -
                                                  .01 pCi/l
 3/07/89
            0.00 +/-
                        .20 pCi/l
                                      0.00 + / -
                                                  .01 pCi/l
 3/10/89
            0.00 + / -
                        .20 pCi/l
                                      0.00 + / -
                                                  .01 pCi/l
ID: 1406
Date
            Ra-226
                                      Th-230
 9/18/88
            0.00 +/-
                                                  .01 pCi/l
                        .10 pCi/l
                                      0.00 +/-
BASELINE
10/13/88
            0.00 + / -
                        .10 pCi/l
                                      0.00 + / -
                                                  .01 pCi/l
11/08/88
            0.00 +/-
                        .20 pCi/l
                                      0.00 +/-
                                                 .01 pCi/l
12/12/88
            0.00 +/-
                        .20 pCi/l
                                      0.00 + / -
                                                 .01 pCi/l
 1/07/89
            0.00 +/-
                                      0.00 +/-
                        .20 pCi/l
                                                  .01 pCi/l
 2/07/89
              .10 +/-
                        .20 pCi/l
                                      0.00 +/-
                                                 .01 pCi/l
 3/07/89
            0.00 + / -
                        .10 pCi/l
                                      0.00 +/-
                                                 .01 pCi/1
 3/10/89
            0.00 + / -
                                      0.00 + / -
                        .10 pCi/l
                                                 .01 pCi/l
 9/15/88
            0.00 +/-
                        .10 pCi/l
                                      0.00 +/-
                                                 .01 pCi/l
ID: 2345
Date
            Ra-226
                                      Th-230
 1/05/89
            0.00 +/-
                        .20 pCi/l
                                       .10 +/-
                                                 .10 \text{ pCi/l}
CONTROL SAMPLE-BLANK
ID: 3244
Date
            Ra-226
                                      Th-230
 8/25/88
            0.00 + / -
                        .10 \text{ pCi/l}
                                      0.00 + / -
                                                 .01 pCi/l
 9/01/88
            0.00 +/-
                        .10 \text{ pCi/l}
                                      0.00 +/-
                                                 .01 pCi/l
BASELINE
 9/18/88
              .10 +/-
                        .10 pCi/l
                                      0.00 + / -
                                                 .01 pCi/l
10/13/88
            0.00 + / -
                        .10 \text{ pCi/l}
                                      0.00 + / -
                                                 .01 pCi/l
```

```
11/08/88
            0.00 +/-
                       .20 pCi/l
                                     0.00 + / -
                                                .01 pCi/l
 1/05/89
            0.00 +/-
                        .20 pCi/l
                                     0.00 + / -
                                                .01 pCi/l
            0.00 +/-
 1/07/89
                        .20 pCi/l
                                     0.00 + / -
                                                .01 pCi/l
 2/07/89
             .10 +/-
                        .30 pCi/l
                                     0.00 +/-
                                                .01 pCi/l
 3/07/89
            0.00 + / -
                       .20 pCi/l
                                     0.00 +/-
                                                .01 pCi/l
 3/10/89
            0.00 + / -
                       .20 pCi/l
                                     0.00 + / -
                                                .01 pCi/l
ID: 1774
Date
            Ra-226
                                     Th-230
 8/25/88
             .10 +/-
                        .40 pCi/l
                                     0.00 + / -
                                                .01 pCi/l
 9/01/88
             .10 +/-
                        .40 pCi/l
                                     0.00 + / -
                                                .01 pCi/l
BASELINE
 9/18/88
            0.00 + / -
                        .10 pCi/l
                                     0.00 + / -
                                                .01 pCi/l
10/13/88
            0.00 +/-
                       .20 pCi/l
                                     0.00 + / -
                                                .01 pCi/l
             .20 +/-
11/08/88
                       .20 pCi/l
                                      .01 +/-
                                                .01 pCi/l
12/15/88
            0.00 +/- 3.00 pCi/l
                                     0.00 + / - 4.00 pCi/1
 2/01/89
            0.00 + / -
                      .10 pCi/l
                                     0.00 +/-
                                                .01 pCi/l
ID: 2063
Date
            Ra-226
                                     Th-230
 8/25/88
            0.00 +/-
                        .20 pCi/l
                                     0.00 + / -
                                                .01 pCi/l
 9/01/88
            0.00 +/-
                       .20 pCi/l
                                     0.00 + / -
                                                .01 pCi/l
BASELINE
 9/18/88
            0.00 +/-
                        .10 pCi/l
                                                .01 pCi/l
                                      .01 +/-
            0.00 +/-
10/13/88
                        .20 pCi/l
                                     0.00 + / -
                                                .01 pCi/l
11/08/88
            0.00 +/-
                       .20 pCi/l
                                     0.00 +/-
                                                .01 pCi/l
12/12/88
            0.00 +/-
                       .10 pCi/l
                                     0.00 + / -
                                                .01 pCi/l
 1/07/89
            0.00 +/-
                       .30 pCi/l
                                     0.00 + / -
                                                .01 pCi/l
 2/07/89
            0.00 +/-
                                     0.00 +/-
                       .20 pCi/l
                                                .01 pCi/l
            0.00 +/-
 3/07/89
                       .20 \text{ pCi/l}
                                     0.00 +/-
                                                .01 pCi/l
 3/10/89
            0.00 +/-
                       .20 pCi/l
                                     0.00 +/-
                                                .01 pCi/l
ID: 1745
Date
            Ra-226
                                     Th-230
 8/25/88
            0.00 +/-
                       .40 pCi/l
                                     0.00 + / -
                                                .01 pCi/l
            0.00 +/-
 9/01/88
                       .40 pCi/l
                                     0.00 + / -
                                                .01 pCi/l
BASELINE
 9/28/88
            0.00 +/-
                       .20 pCi/l
                                     0.00 + / -
                                                .01 pCi/l
10/13/88
            0.00 +/-
                       .20 pCi/l
                                     0.00 +/-
                                                .01 pCi/l
11/08/88
             .10 +/-
                       .30 pCi/l
                                      .01 +/-
                                                .02 pCi/l
 1/05/89
             .10 +/-
                       .30 pCi/1
                                      .01 +/-
                                                .02 pCi/l
 1/07/89
            0.00 +/-
                       .20 pCi/l
                                     0.00 +/-
                                                .01 pCi/l
            0.00 +/-
 2/06/89
                       .40 pCi/l
                                     0.00 + / -
                                                .01 pCi/l
 3/07/89
            0.00 + / -
                       .40 pCi/l
                                      .01 +/-
                                                .01 pCi/l
 3/10/89
            0.00 + / -
                       .40 pCi/l
                                      .01 +/-
                                                .01 pCi/l
ID: 3734
Date
            Ra-226
                                     Th-230
                       .20 pCi/l
 8/25/88
            0.00 + / -
                                     0.00 + / -
                                                .01 pCi/l
```

```
9/01/88
            0.00 + / -
                        .20 pCi/l
                                     0.00 + / -
                                                 .01 pCi/l
BASELINE
 9/18/88
            0.00 +/-
                        .10 pCi/1
                                     0.00 + / -
                                                 .01 pCi/l
10/13/88
            0.00 + / -
                        .20 pCi/1
                                     0.00 +/-
                                                 .01 pCi/l
11/08/88
            0.00 +/-
                        .20 pCi/1
                                     0.00 +/-
                                                 .01 pCi/l
            0.00 + / -
                                                 .01 pCi/l
12/12/88
                        .20 pCi/1
                                     0.00 +/-
            0.00 + / -
                                     0.00 + / -
                                                 .01 pCi/l
 1/07/89
                        .30 pCi/1
 2/07/89
            0.00 + / -
                        .10 pCi/1
                                      .01 +/-
                                                 .01 pCi/l
 3/07/89
            0.00 + / -
                        .10 pCi/l
                                      .03 +/-
                                                 .01 pCi/l
INSUFFICIENT VOLUME FOR REANALYSIS
                                      .03 +/-
            0.00 + / -
 3/10/89
                                                 .01 pCi/l
                        .10 pCi/l
INSUFFICIENT SAMPLE FOR REANALYSIS
ID: 2312
            Ra-226
                                     Th-230
Date
 9/18/88
            0.00 + / -
                        .80 pCi/l
                                     0.00 +/-
                                                 .01 pCi/l
BASELINE
10/13/88
            0.00 + / -
                        .20 pCi/l
                                     0.00 + / -
                                                 .01 pCi/l
             .10 +/-
11/08/88
                        .20 pCi/l
                                     0.00 + / -
                                                 .01 pCi/l
12/12/88
             .10 +/-
                        .30 pCi/1
                                     0.00 +/-
                                                 .01 pCi/l
            0.00 + / -
 1/07/89
                        .20 pCi/l
                                     0.00 + / -
                                                 .01 pCi/l
            0.00 +/-
                                     0.00 + / -
 2/07/89
                        .20 pCi/1
                                                 .01 pCi/l
 3/07/89
            0.00 + / -
                        .40 pCi/l
                                      .01 +/-
                                                 .01 pCi/l
                                                 .01 pCi/l
 3/10/89
            0.00 +/-
                        .40 pCi/l
                                      .01 +/-
ID: 1824
Date
            Ra-226
                                     Th-230
 8/25/88
            0.00 +/-
                        .20 pCi/l
                                     0.00 + / -
                                                 .01 pCi/l
            0.00 +/-
                                     0.00 +/-
                                                 .01 pCi/l
 9/01/88
                        .20 pCi/l
BASELINE
 9/18/88
            0.00 + / -
                        .10 pCi/l
                                     0.00 +/-
                                                 .01 pCi/l
10/13/88
            0.00 +/-
                        .30 pCi/1
                                     0.00 + / -
                                                 .01 pCi/l
11/08/88
            0.00 +/-
                        .10 pCi/l
                                     0.00 +/-
                                                 .01 pCi/l
12/12/88
            0.00 + / -
                        .10 pCi/l
                                     0.00 + / -
                                                 .01 pCi/l
                                     0.00 +/-
 1/07/89
            0.00 +/-
                        .10 pCi/l
                                                 .01 pCi/l
 2/07/89
            0.00 +/-
                        .10 pCi/l
                                     0.00 +/-
                                                 .01 pCi/l
            0.00 + / -
                                      .01 +/-
                                                 .01 pCi/l
 3/07/89
                        .10 pCi/l
 3/10/89
            0.00 + / -
                        .10 pCi/l
                                      .01 +/-
                                                 .01 pCi/l
ID: 5241
            Ra-226
                                     Th-230
Date
 9/01/88
            0.00 + / -
                        .20 pCi/l
                                     0.00 +/-
                                                 .01 pCi/l
BASELINE
 9/18/88
            0.00 + / -
                        .10 pCi/l
                                     0.00 + / -
                                                 .01 pCi/l
10/13/88
            0.00 +/-
                        .10 \text{ pCi/l}
                                     0.00 +/-
                                                 .01 pCi/l
             .10 +/-
                                      .01 +/-
11/08/88
                        .20 pCi/l
                                                 .01 pCi/l
            0.00 + / -
                                     0.00 +/-
                                                 .01 pCi/l
 1/05/89
                        .30 pCi/l
 1/07/89
            0.00 + / -
                        .30 pCi/l
                                     0.00 +/-
                                                 .01 pCi/l
 2/07/89
             .10 +/-
                        .30 pCi/l
                                     0.00 +/-
                                                 .01 pCi/l
            0.00 +/-
                                     0.00 +/-
 3/07/89
                        .10 pCi/l
                                                 .01 pCi/l
```

```
3/10/89
            0.00 +/-
                      .10 pCi/l
                                     0.00 +/- .01 pCi/l
ID: 5241
            Ra-226
                                     Th-230
Date
                                                .01 pCi/l
            0.00 +/-
                                     0.00 +/-
 8/25/88
                       .20 pCi/l
ID: 1626
Date
            Ra-226
                                     Th-230
 1/07/89
            0.00 + / -
                                     0.00 + / -
                                                .01 pCi/l
                       .20 pCi/l
                                                .01 pCi/l
 2/07/89
             .10 +/-
                       .20 pci/l
                                      .01 +/-
 2/14/89
            0.00 + / -
                       .10 pCi/l
                                     0.00 + / -
                                                .01 pCi/l
DETECTED SMEARABLE IN RESPIRATOR
                                                .01 pCi/l
                                     0.00 +/-
 3/07/89
            0.00 +/-
                       .20 pCi/l
            0.00 +/-
                       .20 pCi/l
                                     0.00 +/-
                                                .01 pCi/l
 3/10/89
ID: 4356
            Ra-226
                                     230 mh-230
Date
 8/25/88
                                     0.00 +/-
                                                 .01 pCi/l
            0.00 + / -
                        .10 pCi/l
 9/01/88
            0.00 + / -
                       .10 pCi/l
                                     0.00 +/-
                                                .01 pCi/1
BASELINE
 9/18/88
            0.00 + / -
                        .10 pCi/l
                                     0.00 +/-
                                                 .01 pCi/l
            0.00 + / -
                                     0.00 +/-
                                                 .01 pCi/l
                        .10 pCi/l
10/13/88
11/08/88
            0.00 + / -
                        .10 pCi/l
                                      .01 +/-
                                                .01 pCi/l
            0.00 + / -
                                     0.00 +/-
                                                 .01 pCi/l
12/12/88
                        .10 pCi/l
            0.00 +/-
                                     0.00 +/-
 1/07/89
                        .20 pCi/l
                                                 .01 pCi/l
                                                .01 pCi/l
            0.00 + / -
                                     0.00 +/-
 2/07/89
                       .10 pCi/l
            0.00 + / -
                                     0.00 +/-
                                                .01 pCi/l
 3/07/89
                        .10 pCi/l
                                     0.00 +/-
            0.00 +/-
                                                 .01 pCi/l
 3/10/89
                        .10 pCi/l
ID: 1944
            Ra-226
                                     Th-230
Date
                                                 .01 pCi/l
 9/01/88
            0.00 + / -
                        .10 pCi/l
                                     0.00 + / -
BASELINE
                                     0.00 +/-
 9/18/88
            0.00 + / -
                        .20 pCi/l
                                                 .01 pCi/l
10/13/88
            0.00 +/-
                        .20 pCi/l
                                     0.00 +/-
                                                 .01 pCi/l
                                                 .01 pCi/l
              .10 +/-
                                     0.00 + / -
11/08/88
                        .20 pCi/l
            0.00 +/-
                                     0.00 +/-
                                                 .01 pCi/l
12/12/88
                        .20 pCi/l
 1/07/89
            0.00 + / -
                        .20 pCi/l
                                     0.00 +/-
                                                 .01 pCi/l
 3/07/89
            0.00 +/-
                        .20 pCi/l
                                     0.00 +/-
                                                 .01 pCi/1
 3/10/89
            0.00 + / -
                        .20 pCi/l
                                     0.00 +/-
                                                 .01 pCi/l
                                     0.00 +/-
 8/25/88
            0.00 +/-
                                                 .01 pCi/l
                        .10 pCi/l
ID: 1674
            Ra-226
                                     Th-230
Date
                  +/-
                            pCi/l
                                     0.00 +/-
                                                 .01 pCi/l
 8/25/88
ID: 0775
Date
            Ra-226
                                     Th-230
                                     0.00 + / -
 8/25/88
            0.00 +/-
                        .10 \text{ pCi/l}
                                                 .01 pCi/l
```

Date Ra-226 Th-230	
9/01/88 0.00 +/10 pCi/l 0.00 +/01 pC	i/1
BASELINE	
9/18/88 0.00 +/10 pCi/l 0.00 +/01 pC	i/1
10/13/88 0.00 +/20 pCi/l 0.00 +/01 pC	i/1
11/08/88 0.00 +/20 pCi/l 0.00 +/01 pC	i/1
12/12/88 .10 +/20 pCi/l 0.00 +/01 pC	i/1
1/07/89 .10 +/20 pCi/l 0.00 +/01 pC	i/1
$2/07/89$ 0.00 \pm /20 pCi/l 0.00 \pm /01 pC	i/1
2/14/89 0.00 +/10 pCi/l .01 +/02 pC	i/1
DETECTED SMEARABLE IN RESPIRATOR	
3/07/89 0.00 +/20 pCi/l 0.00 +/01 pC	i/l
3/10/89 0.00 +/20 pCi/l 0.00 +/01 pC	i/l

Note: Bioassay result of 0 indicates < MDA

APPENDIX 1-B DOSIMETRY RESULTS

DOSIMETRY RESULTS
MONTHLY RESULTS SUMMARIZED BY QUARTER

ID	Q3 '88 Deep	Q3 '8 Shallow	Q4 '88 Deep	Q4 '88 Shallow	Q1 '89 Deep	Q1 '89 Shallow	Q2 '89 Deep	Q2 '89 Shallow
1905	0	0	0	0	0	0	0	0
1913	0		0		_		_	_
3155	0	0	0	0	0	0	0	0
1815	0	0	0	0	0	0	0	0
2034	0	0	0	0	0	0	0	0
1133	0	0	0	0	0	0	0	0
1655	0		0					
2043	0		0					
1683	0		0					
1774	0	0	0	0	0	0	0	0
0985	0	0	0	0	0	0	0	0
4805	0	0	0	0	0	0	0	0
2508	0	0	0	0	0	0	0	0
5476	0		0					
1206	0	0	0	0	0	0	0	0
2473	0	0	0	0	0	0	0	0
1974	O	0	0	0	0	0	0	0
2093	0	0	0	0	0	0	0	0
4738	0	0	0	0	0	0	0	0
4545	0	0	0	0	0	0	0	0
1683	0		0					
5152	0	0	0	0	0	0	0	0
3244	0	0	0	0	0	0	0	0
1774	0	0	0	0	0	0	ŋ	0
2063	0	0	0	0	0	0	0	0
1745	0	0	0	0	0	0	0	0
3734	0	0	0	0	0	0	0	0
2312	0	0	0	0	0	0	0	0
1824	0	0	0	0	0	0	0	0
5241	0	0	0	0	0	0	0	0
1626	0		0					
1646	0		0					
4356	0	0	0	0	0	0	0	0
2092	0	0	0	0	0	0	0	0
1944	0	0	0	0	0	0	0	0
0775	0	0	0	0	Ō	0	Ö	Ō

Q=quarter, $0 \le MDA$ (approximately 10 mrem), Deep=whole body, Shallow=skin dose

LANSDOWNE RADIOACTIVE RESIDENCE COMPLEX

DISMANTLEMENT / REMOVAL PROJECT

DOSIMETER INVESTIGATION REPORT

Name:	rello	<u>pate:</u>	05/22/89
Social	Security No. 0819	Site	Lansdowne
		Job (Class: Laborer
Type:	Beta-Gamma Film Badge or TLD		
Period	Covered: From 04/01/89	To (04/30/89

Reason for Dosimeter Investigation:
Monthly TLD results showed 220 millirem dose received.

RADIATION MONITORING ESTIMATE OF DOSE DURING PERIOD

Available Dosimeter Results During Period:

The following are TLD results of work performed in the same work area: Randy Fello 220-millirem; William Hazlet 0-millirem; Michael Zigo 0-millirem; Shawn Heffernan 0-millirem.

Methods used for estimating Dose:

Randy J. Fello was personally interviewed on this matter. Mr. Fello stated that his TLD had not been removed from the project site, nor did he receive medical or dental X-Rays during this time period. Additionally, acquired from Mr. Fello was a confirmation of the names of the personnel also associated with the work operations during the period of time in question. A review of the relevant personnel dose results indicate a null dose was received. (i.e. The TLD results show 0 millirem). Receiving a one month dose of this magnitude in this particular work area would require a dose rate of at least 1000 micro-roentgen per hour. A review of the gamma survey results performed in this area, the highest exposure rates encountered were typically less than 70 micro-roentgen per hour. Although contact readings of point sources show levels of 100 to 265 micro-roentgen per hour, inside the portions of the sewer pipe itself which was being removed. It is highly improbable a worker could be in contact with these point sources for a duration sufficient to acquire the dose recorded of 220 millirem. Finally, the vendor, Eberline TMA, responsible for analysis was contacted. The vendor indicated the recorded dose was a valid one and that nothing untoward had been done to the TLD.

A review of all TLDs submitted during the period in question, found a TLD which had been exposed to an X-ray dose. This TLD was issued to Mr. K. Goodwin. It may be possible the vendor has some confusion between the TLDs issued one of which was issued to Mr. Fello and the other issued to Mr. Kenneth Goodwin. A review of the response check data for the instrumentation used on-site shows them to be continuously operative during the period in question. It is unlikely the surveys performed were done using inaccurate instrumentation.

Supplementary Exposure Data:

Estimated Dose: It is recommend a flag be placed on Mr. Fello's file regarding this investigation, or the dose as applied to S. Heffernan, W. Hazlet, and M. Zigo of O millirem be applied to Mr. Fello.

APPENDIX 1-C WHOLE-BODY COUNT RESULTS

BENSON, SHANEL								08/04/88 AT 1724
* **	NCI NCI		86. O				11.	_ · ·
TUTALS	1101		U .	•	0,,		.	% MPBB = 0.0
BOWSER, ROBERT								08/03/88 AT 1829
			9 9. 0.					= * *
TOTALS	1401	_	U.	•	UK		J.	% MPBB = 0.0
CAFDURAS, MARK A								08/02/88 AT 1004
	NC I NC I		114.				10. 3.	- · ·
TOTALS	NC 1	_	0.	т	UK	_	ತ.	% MPBB = 0.0
CAROLLO, CRYSTAL M								08/04/88 AT 1640
	NCI NC1		69. 0.					
TOTALS	NC 1		U.	+	UK		3.	% MPBB = 0.0
ELWOOD, THOMAS								08/03/88 AT 1421
			109.					G/KG = 1.5
RADIUM-226, I	NCI	=	0.	+	OR	-	7.	% MPBB = 0.0
FELLO, RANDY								08/04/88 AT 1807
	-		89.				_	G/KG = 1.5
RADIUM-226, I TOTALS	NCI	*	0.	+	UK	-	3 .	% MPBB = 0.0
FOX, ELDIWAINE								08/02/88 AT 1603
			114.					
RADIUM-226, N TOTALS	NU I	#	0.	+	UK		ડ.	% MPBB = 0.0

GOODWIN, KENNETH,	P							08/02/88 AT 1645
POTASSIUM, RADIUM-226, TOTALS	NC I		101. 0.				12 - 3	
HAZLETT, WILLIAM								08/05/88 AT 1005
POTASSIUM, RADIUM-226,	NC I NC I		134.				14. 3.	
TOTALS	NOI	-	0.	T	UK	_	J.	% MPBB = 0.0
HEFFERNAN, SHAWN M	i							08/02/88 AT 1223
POTASSIUM, RADIUM-226,	NC I NC I		105. 0.		OR OR			
TOTALS	1401		Ü.	•	U.		J.	% MPBB = 0.0
HUSTON, RAYMOND L								08/02/88 AT 1307
POTASSIUM, RADIUM-226,	NC I		116.				12. 3.	
TOTALS	,,,,,		.	·	O.		J.	% MPBB = 0.0
JANOSIK, VICTOR								08/02/88 AT 1518
POTASSIUM, RADIUM-226,	NC I NC I		152. 0.		OR OR			G/KG = 1.9
TOTALS	*** *						σ.	% MPBB = 0.0
JESKE, WILLIAM								08/05/88 AT 1128
POTASSIUM, RADIUM-226,			120. 0.					
TOTALS			•	·			.	% MPBB = 0.0
JOHNSON, SHARON								08/02/88 AT 0923
			80. 0.					
TOTALS			J .	-	,		J .	% MPBB = 0.0

LIVENGOOD, DICK E								08/04/88 AT 1850
POTASSIUM, RADIUM-226,	NC I NC I						10	
TOTALS	.,,,,		٠.	•	—	•		. % MPBB = 0.0
MOJICA, TOM								02/02/88 AT 1139
POTASSIUM	NCI						11	
RADIUM-226, TOTALS	NCI	=	0.	+	OR		3.	% MPBB = 0.0
PEEL, FRANK								08/03/88 AT 1714
POTASSIUM,			94.					
RADIUM-226, TOTALS	NCI	=	0.	+	OR		3.	% MPBB = 0.0
								-7.
RIGBY, WILLIAM II								08/02/88 AT 1435
POTASSIUM,	NCI	=	117.	+	OR	_	10.	G/KG = 1.7
CESIUM-137, RADIUM-226,	NC I NC I						1. 3.	
TOTALS			•••				Ξ.	% MPBB = 0.0
SCHWARTZ, THOMAS								08/03/88 AT 0937
POTASSIUM,	NCI							G/KG = 1.5
RADIUM-226, TOTALS	NCI	=	0.	+	UK	-	3.	% MPBB = 0.0
SEITZ, WILLIAM								08/05/88 AT 1217
POTASSIUM,	NCI :							G/KG = 0.9
RADIUM-226, TOTALS	NCI:	æ	Ο.	+	OR	-	3.	% MPBB = 0.0
								,
SITASZ, KATHLEEN,	P							08/04/88 AT 0753
POTASSIUM,	NCI :							G/KG = 0.8
RADIUM-226, TOTALS	NCI :		0.	+	OR	-	3.	% MPBB = 0.0

SOYAK, JOHN								08/05/88 AT 1353
POTASSIUM, RADIUM-226,	NC I						17 4	
TOTALS								% MPBB = 0.0
STANLEY, NADINE								08/04/88 AT 1556
POTASSIUM, RADIUM-226,	NC I NC I						10. 3.	
TOTALS			.				υ.	% MPBB = 0.0
STANTON, MICHAEL								08/05/88 AT 1041
POTASSIUM, RADIUM-226,	NC T		108. 0.				10. 3.	- · · · · · · · · · · · · · · · · · · ·
TOTALS								% MPBB = 0.0
TRUJILLO, PETER IV								08/05/88 AT 1449
POTASSIUM, RADIUM-226,	NC I NC I		104. 0.				18. 4.	
TOTALS								% MPBB = 0.0
WALKER, WAYMAN								08/03/88 AT 1226
POTASSIUM, RADIUM-226,	NC I NC I		91. 0.		OR OR		12. 3.	G/KG = 1.5
TOTALS								% MPBB = 0.0
WICKBOLD, WALTER								08/03/88 AT 0801
			105. 1.					G/KG = 1.4 % MPBB = 0.0
RADIUM-226, TOTALS	NCI	=	0.	+	OR	-	3.	% MPBB = 0.0
WRIGHT, GERALD								08/03/88 AT 1143
POTASSIUM, RADIUM-226,			110. 0.					G/KG = 1.9
TOTALS	IVO I	_	O.	-7	υĸ	-	J.	% MPBB = 0.0

(BASELINE)

ZARNOSKI, ALFRED .	J JR	08/0	2/88 AT 1046
POTASSIUM, RADIUM-226,		+ OR - 10. + OR - 3.	G/KG = 1.7
TOTALS	NCI - 0.		MPBB = 0.0
ZIGO, MICHAEL R		08/0	2/88 AT 0824
POTASSIUM, RADIUM-226,		+ OR - 10. + OR - 3.	G/KG = 1.4
TOTALS	1101 - 0.		MPBB = 0.0

(BASELINE)

NATURAL

		THORIUM MILLIGRAMS
		MIDDIGRAMS
BENSON, SHANEL I	08/09/88 AT 1743	0 + 3
BOWSER, ROBERT K	08/08/88 AT 1929	334334333333333333333333333333333333333
CAFOURAS, MARK A	08/05/88 AT 1808	0 ∓ 4
ELWOOD, THOMAS E	08/06/88 AT 1321	0 ∓ 3
FELLO, RANDY J	08/08/88 AT 1655	0 T 3
FOX, ELDIWAINE W	08/09/88 AT 0913	0 T 4
GOODWIN, KEN P	08/08/88 AT 1524	o ∓ 3
HAZLETT, WILLIAM C	08/06/88 AT 0754	0 + 3
HEFFERNAN, SHAWN M	08/09/88 AT 0802	0 + 3
HUSTON, RAY L	08/06/88 AT 1216	0 ∓ 3
JANOSIK, VICTOR J	08/05/88 AT 1632	0 <u>∓</u> 3
JESKE, WILLIAM	08/06/88 AT 1705	0 I 3
JOHNSON, SHARON V	08/08/88 AT 1609	0 T 3
LIVENGOOD, DICK E	08/06/88 AT 0956	0 <u>∓</u> 3
MOJICA, TOM	08/08/88 AT 1347	0 ± 3
NAMETH, ROBERT E	08/06/88 AT 0913	0 <u>+</u> 3
PEELE, FRANK	08/08/88 AT 1217	0 <u>∓</u> 3
RIGBY, WILLIAM M	08/08/88 AT 1438	0 ± 3
SCHWARTZ, THOMAS V	08/08/88 AT 1824	0 🛨 3
SEITZ, WILLIAM H	08/09/88 AT 1028	0 🛨 3
SITASZ, KATHLEEN P	08/05/88 AT 1725	0 I 3
SOYAK, JOHN A	08/06/88 AT 1407	0 <u>+</u> 3
STANLEY, NADINE O	08/09/88 AT 1606	0 T 3
STANTON, MICHAEL F	08/06/88 AT 1041	<u>0</u>
TRUJILLO, PETE A	08/06/88 AT 1526	0 T 3
WICKBOLDT, WALTER C	08/08/88 AT 1044	334333333333333333333333333333333333333
WRIGHT, GERALD W	03/08/88 AT 1302	0 ± 4
ZIGO, MICHAEL R	08/06/88 AT 1613	0 = 3

AUSTIN, ROBERT JOB ID = COE

RADIUM-226, NCI = 0. + OR - 3.

NATURAL THORIUM, MG = 0. + OR - 3.

BENSON, SHAREL

JOB ID = SECURITY

05/11/89 AT 1843

RADIUM-226, NCI = 0. + OR - 3.NATURAL THORIUM, MG = 0. + OR - 3.

BOWDEN, DANIEL
JOB ID = COE

05/13/89 AT 0747

RADIUM-226, NCI = 0. + OR - 3.NATURAL THORIUM, MG = 0. + OR - 3.

BOWSER, ROBERT

JOB ID = EQ OPR

05/11/89 AT 1729

RADIUM-226, NCI = 0. + OR - 3.NATURAL THORIUM, MG = 0. + OR - 3.

CAFOURAS, MARK

JOB ID = RCT

05/10/89 AT 1916

RADIUM-226, NCI = 0. + OR - 3.NATURAL THORIUM, MG = 0. + OR - 3.

COX, EDWARD 05/10/89 AT 1653 JOB ID = COE

RADIUM-226, NCI = 0. + OR - 3.

05/10/89 AT 1152 NATURAL THORIUM, MG = 0. + OR -3.

FELLO, RANDY 05/10/89 AT 1827 JOB ID = LABORER

RADIUM-226, NCI = 0. + OR - 3.

05/09/89 AT 1858 NATURAL THORIUM, MG = 0. + OR -3.

FOX, BUCK 05/11/89 AT 1416 JOB ID = EQ ORP

RADIUM-226, NCI = 0. + OR - 3.

05/10/89 AT 0701 NATURAL THORIUM, MG = 0. + OR - 3.

FUNT, BRADFORD 05/10/89 AT 1430 JOB ID = COE

RADIUM-226, NCI = 0. + OR - 3.

05/10/89 AT 1103 NATURAL THORIUM, MG = 0. + OR - 3.

GOODWIN, KENNETH P 05/08/89 AT 1554 JOB ID - TRUCK DRIVER

RADIUM-226, NCI = 0. + OR - 3.

05/09/89 AT 1106

HAZLETT, WILLIAM 05/11/89 AT 1505 JOB ID = LABORER RADIUM-226, NCI = 0. + OR - 3.05/10/89 AT 0744 NATURAL THORIUM, MG = 0. + OR -3. HEFFERNAN, SHAWN 05/11/89 AT 1552 JOB ID = RAD CON RADIUM-226, NCI = 0. + OR - 3.05/10/89 AT 0831 NATURAL THORIUM, MG = 0. + OR -3. HOWIE, LARRY D 05/08/89 AT 1643 JOB ID = RAD CON RADIUM-226, NCI = 0. + OR - 3.05/09/89 AT 1151 NATURAL THORIUM, MG = 0. + OR -3. HUSTON, RA 05/11/89 AT 1639 JOB ID = PROJECT MGR RADIUM-226, NCI = 0. + OR - 3.05/12/89 AT 0842 NATURAL THORIUM, MG = 0. + OR -3. JANOSIK, VICTOR 05/10/89 AT 1604 JOB ID = EPA

05/10/89 AT 0915

 $RADIUM-226, \qquad NCI = 0. + OR - 3.$

JESKE, WILLIAM 05/08/89 AT 1729 JOB ID = RAD CON

RADIUM-226, NCI = 0. + OR - 3.

05/09/89 AT 1236

NATURAL THORIUM, MG = 0. + OR -3.

JOHNSON, SHARON 05/12/89 AT 1844

JOB ID = CNSI

RADIUM-226, NCI = 0. + OR - 3.

05/12/89 AT 0753

NATURAL THORIUM, MG = 0. + OR -

KRINER, WILLIAM 05/13/89 AT 0659 JOB ID = COE

 $RADIUM-226, \qquad NCI = 0. + OR - 3.$

05/13/89 AT 1143

NATURAL THORIUM, MG = 0. + OR -

LEON, MIKE 05/11/89 AT 0702 JOB ID = GUARD

RADIUM-226, NCI = 0. + OR - 3. 05/12/89 AT 0701

NATURAL THORIUM, MG = 0. + OR - 3.

LIVENGOOD, RICHARD 05/08/89 AT 1818 JOB ID = LABOR

RADIUM-226, NCI = 0. + OR - 3.

05/09/89 AT 1331

MOJICA, TOM 05/09/89 AT 0922 JOB ID = RAD CON RADIUM-226. NCI = 0. + OR - 3.05/09/89 AT 1636 NATURAL THORIUM, MG = 0. + OR -3. MOORE, JAMES P 05/10/89 AT 1515 JOB ID = COERADIUM-226, NCI = 0. + OR - 3.05/10/89 AT 1243 NATURAL THORIUM, MG = 0. + OR -3. NAMETH, ROBERT 05/12/89 AT 1755 JOB ID = CARLUCCI RADIUM-226, NCI = 0. + OR - 3.05/12/89 AT 1240 0. + OR -NATURAL THORIUM, MG = 3. PEEL, FRANK 05/11/89 AT 0921 JOB ID = OPS SUPV RADIUM-226, NCI = 0. + OR - 3.COBALT-60, NCI = 2. + OR -1. % MPBB = 0.1TOTALS % MPBB = 0.105/12/89 AT 1100 NATURAL THORIUM, MG = 0. + OR -3. RIGBY, WILLIAM 05/11/89 AT 1009 JOB ID = RCTRADIUM-226, NCI = 0. + OR -05/12/89 AT 1329

3.

WRIGHT, GERALD
JOB ID = SECURITY

05/11/89 AT 0836

RADIUM-226, NCI = 0. + OR - 3.

NATURAL THORIUM, MG = 0. + OR - 3.

ZARUOSKI, ALFRED JR JOB ID = COE

05/13/89 AT 0917

RADIUM-226, NCI = 0. + OR - 3.NATURAL THORIUM, MG = 0. + OR - 3.

ZIGO, MICHAEL 05/11/89 AT 0750 JOB ID = RCT

RADIUM-226, NCI = 0. + OR - 3.NATURAL THORIUM, MG = 0. + OR - 3.

SEITZ, WILLIAM 05/11/89 AT 1142 JOB ID = CARLUCCI RADIUM-226, NCI = 0. + OR - 3.05/12/89 AT 0926 NATURAL THORIUM, MG = 0. + OR - 3.SEITZ, WILLIAM E 04/25/89 AT 0848 JOB ID = OPER RADIUM-226, NCI = 0. + OR - 3.04/25/89 AT 1120 NATURAL THORIUM, MG = 0. + OR - 3.SITASZ, KATHLEEN 05/11/89 AT 1053 JOB ID = EMT RADIUM-226, NCI = 0. + OR - 3.05/12/89 AT 1154 NATURAL THORIUM, MG = 0. + OR -3. SOYAK, JOHN 05/11/89 AT 1233 JOB ID = E SRADIUM-226, NCI = 0. + OR - 3. 05/12/89 AT 1417 NATURAL THORIUM, MG = 0. + OR - 3.STANLEY, NADINE 05/10/89 AT 1738 JOB ID = COE RADIUM-226, NCI = 0. + OR -

NATURAL THORIUM, MG = 0. + OR - 3.

05/09/89 AT 1956

STANTON, MICHAEL 05/09/89 AT 0701 JOB ID = LABORER

RADIUM-226, NCI = 0. + OR - 3.

NATURAL THORIUM, MG = 0. + OR - 3.

TRUJILLO, PETER 05/09/89 AT 0836 JOB ID = H P

RADIUM-226, NCI = 0. + OR - 3.

NATURAL THORIUM, MG = 0. + OR - 3.

UTISS, MARSHALL
JOB ID = LABORER

05/09/89 AT 0748

RADIUM-226, NCI = 0. + OR - 3.

NATURAL THORIUM, MG = 0. + OR - 3.

WICHBOLDT, WALTER
JOB ID = ACE

05/11/89 AT 1331

 $RADIUM-226, \qquad NCI = 0. + OR - 3.$

NATURAL THORIUM, MG = 0. + OR - 3.

WILSON, WILLIAM H

JOB ID = DRILL RIG

04/25/89 AT 0945

RADIUM-226, NCI = 0. + OR - 3.

LANSDOWNE

RADIOACTIVE RESIDENCE COMPLEX
DISMANTLEMENT/REMOVAL PROJECT

RADIOLOGICAL CLOSEOUT REPORT

CHEM-NUCLEAR SYSTEMS, INC. 220 STONERIDGE DRIVE COLUMBIA, SOUTH CAROLINA

CHAPTER 2
NON-RADIOLOGICALLY CONTROLLED ZONE SURVEYS

CLOSEOUT REPORT

SURVEYS OUTSIDE RADIOLOGICALLY CONTROLLED ZONES

TABLE OF CONTENTS

Section		Pa	ge	N	0.
1.0	INTRODUCTION	•	•	•	2-43
2.0	GENERAL	•			2-43
3.0	ROUTINE SURVEYS	•	•	•	2-43
4.0	UNRESTRICTED RELEASE SURVEYS	•	•	•	2-44
5.0	WATER RELEASE SURVEYS	•	•	•	2-44
1	APPENDIX A - ADMINISTRATIVE AREA SURVEYS	•	•	•	2-A-47
	APPENDIX B - UNRESTRICTED RELEASE SURVEYS .	•	•	•	2-B-61
	APPENDIX C - WATER ANALYSES	•	•	•	2-C-69
'	LIST OF MAPS				
D.1	CNSI OFFICE TRAILER	•	•	•	2-A-51
D.2	CREW BREAK TRAILER	•	•	•	2-A-53
D.3	OPERATIONS SUPPORT FACILITY	•	•	•	2-A-55
D.4	ARMY CORPS OF ENGINEERS TRAILER	•			2-A-57

L.O INTRODUCTION

During the period of August 1, 1988 to May 19, 1988 monitoring programs were established to insure that radiological contamination was controlled. The monitoring programs also insured that any contamination which did occur outside controlled zones was quickly detected and removed. This was accomplished by routinely surveying all work areas both inside and outside the controlled zones, by surveying all tools and equipment prior to their removal from the radiologically controlled zone, by controlling access to potentially contaminated areas, surveying personnel prior to their exit from controlled zones, and monitoring the discharge of water used to launder contaminated clothing. The following sections of this document present descriptions and summaries of the surveys performed during this time period.

2.0 GENERAL

In accordance with the Safety, Health and Emergency Response Plan (SHERP) and the Contractor's Quality Control Plan, both swipe and direct reading (total contamination) surveys (routine and unrestricted release) were performed. As indicated in the SHERP, limits for unrestricted release were taken from USAEC Regulatory Guide 1.86, "Termination of Operating Licenses for Nuclear Reactors", Table I. These limits are 100, 300, and 20 dpm/100 cm2 for average, maximum, and removable alpha contamination, respectively. Additionally, in accordance with the Spill Control Plan and a protocol developed on-site, water analysis was performed. Water found to be below the release criteria was discharged into the sanitary sewer.

3.0 ROUTINE SURVEYS

Routine swipe surveys for loose contamination were performed in non-radiologically controlled zones associated with the project site, such as administrative areas, at a minimum of once each week. These surveys were also sometimes performed on a twice-weekly and/or twice-daily basis, depending on the level of traffic through the area and the work activities taking place in the adjacent radiologically controlled zone. These surveys focused on areas where there was an increased potential for contamination, such as the crew trailer, on-site laboratory, and the operational support facility. The swipes collected from the survey were counted using a scaler and detector assembly such as the Eberline MS-2 or Ludlum 2000 scaler and Ludlum 43-10 alpha scintillation detector. Locations with survey results above the limits for unrestricted areas were decontaminated.

In addition to the routine swipe surveys, direct reading surveys were also performed in the various locations in the administrative area. These surveys were performed in conjunction with the swipe surveys. Direct reading (total contamination) surveys were performed with a portable instrument such as the Eberline RM-20 and Eberline HP-210T, or

the Eberline PAC-4-G3 and Eberline AC-21b detector assembly. A direct reading survey was performed by slowly moving the detector parallel to and within one inch of an object's surface. A contact reading was made at the location with the highest result, based on the initial scan. The contact value observed was then recorded and converted to disintegrations per minute.

Appendix D of this document provides a summary of the direct and swipe surveys which were performed throughout the remedial action phase of the project, as well as maps showing the layout of the trailers.

4.0 <u>UNRESTRICTED RELEASE SURVEYS</u>

All equipment and tools which entered the radiologically controlled zone were surveyed prior to removal from the project site. Typically these surveys were performed at a contamination reduction zone to insure that loose surface contamination did not spread into a non-radiologically controlled zone. Both direct and swipe surveys were done on each tool or piece of equipment prior to release.

The swipes collected for a survey were initially counted using a portable geiger-mueller type instrument such as an Eberline RM-20, with an Eberline HP-210T detector assembly. This was done to provide a cursory check of the level of contamination. Final verification of compliance with United States Atomic Energy Commission Guideline 1.86 was accomplished by recounting the collected swipes utilizing a more sensitive scaler and detector assembly such as the Eberline MS-2 or Ludlum 2000.

Direct reading surveys were performed with portable instruments such as the Eberline RM-20 and Eberline HP-210T or the Eberline PAC-4-G3 and Eberline AC-21b detector assembly. A direct reading survey was performed as previously discussed in Section 3.0. Appendix E of this document presents a summary of the unrestricted release surveys performed.

5.0 WATER RELEASE SURVEYS

Throughout the course of the remedial action phase of the project, radiation workers performing job tasks in the radiologically controlled zone(s) were as a minimum required to wear a work uniform of cloth coveralls. These coveralls were machine laundered daily. The waste water from this process was collected within a container until it was full. The water within the container was then agitated and sampled. Typically, a one liter sample was collected and the sample was volume reduced to 100 milliliters. A one milliliter aliquot was evaporated on an aluminum planchet. The planchet was then counted for alpha activity on the Ludlum 2000. To be conservative, all observed activity was considered to be from Radium-226. The release criteria as specified in Title 10 of the Code of Federal Regulations, Part 20 for release of Radium-226 into a sanitary sewer is 4.0 x 10⁻⁷ micro-curies per

milliliter, and is the most restrictive of the four radionuclides of concern at the project site. If a sample was found to be above the criteria, the water was recirculated through a 10 micron filter, then resampled and counted. This process was repeated until such time as the water was found to be below the release criteria. Appendix F contains the water analysis data sets.

APPENDIX 2-A

ADMINISTRATIVE AREA SURVEYS

ADMINISTRATIVE AREA SURVEYS

GENERAL

The following is a summary of the routine swipe surveys performed in the administrative area. To view the data in a tabular form, certain abbreviations were used. Below is a key to define those abbreviations.

DATE	LOCATION	MIN.	MAX.	# READINGS
Sep 20, 1988	Crew trailer	* (B)	2.3 (B)	10D Direct Beta-gamma measurement alue in DPM
		<u> </u>	No detect	able activity

() indicates
measurement is a swipe
initially counted for
beta-gamma activity and
recounted for alpha activity

DATE	LOCATION	MIN. dpm	MAX. /100cm2	# READINGS
Sep 20, 1988	Crew trailer ACOE trailer		*(B) *(B)	10 10
Sep 27, 1988	ACOE trailer	0(A) *(B)	1.3(A) *(B)	(11) 11
	Crew trailer	0 (A) *(B)	7.2(A) 4.5(B)	(20) 20
Sep 28, 1988	CNSI trailer	*(A) *(B)	6.9(A) 20.9(B)	(20) 20
Sep 29, 1988	OSF/CP	11.8(A) 142(B)	17.6(A) 237(B)	(2)
	OSF/CP	0(A) 0(B)	34 (A) 0 (B)	(10) 10
Oct 05, 1988	CNSI trailer	*(A) *(B)	*(A) 49(B)	(10) 10
	ACOE trailer	*(A) *(B)	*(A) 100(B)	(10) 10
	Crew trailer	*(A) *(B)	2 (A) 66 (B)	(10) 10
Oct 11, 1988	CNSI trailer	6.4(A) *(B)	12.9(A) *(B)	(10) 10
2,00	ACOE trailer	0(A) *(B)	12.9(A) 200(B)	(10) 10
	Crew trailer	0(A) *(B)	0(A) 200(B)	(10) 10
	OSF/CP	*(A) *(B)	6.4(A) *(B)	(10) 10
Oct 18, 1988	Crew trailer	*(A) *(B)	*(A) 200(B)	(11) 11
	CNSI trailer	*(A) *(B)	*(A) *(B)	(9) 9
	ACOE trailer	*(A) *(B)	*(A) *(B)	(10) 10
	Guard shack	*(A) *(B)	*(A) *(B)	(4)
	CNSI trailer rew trailer	*(B) 2.2(A) *(B)	26.3(B) 5.14(A) 42.1(B)	7 (11) 11
	ACOE trailer	*(B) *(A) *(B)	2.2(A) 68.4(B)	(3)
	OSF/CP	8.08(A) *(B)	19.85(A) 52.6(B)	(9) 9
	Crew trailer	* (B)	35 (B)	9

INCORPORATE SYSTEMS, TRAILER ш NUCLEAR OFFIC \mathbf{Z} CHE

DATE	LOCATION	MIN. di	MAX. pm/100cm2	# READINGS
Nov 11, 1988	CNSI trailer ACOE trailer OSF/CP	*(A) *(B) *(A) *(B) 4.88(A) *(B)	.91(A) 45(B) 1.19(A) 85(B) 10.73(A) 60(B)	(6) 6 (3) 3 (12) 12
Nov 18, 1988	CNSI trailer	*(A) *(B)	10(A) 61.9(B)	(7) 7
	Crew trailer ACOE trailer fice steps OSF/CP	*(A) (B) *(A) *(B) 14.2(B) 13(A)	148(A) 480.9(B) 1(A) 38(B) 14.2(B) 13(A)	(4) 4 (3) 3 1
	·	* (B)	80.9(B)	11
Nov 22, 1988	CNSI trailer OSF/CP ACOE trailer Crew trailer	*(B) 2(A) *(B) *(B) 2(A)	28.6(B) 20(A) 66.6(B) 14.3(B) 17(A)	(10) 10 3 (12)
	CNSI trailer Crew trailer	*(B) *(B) *(B)	38.1(B) 400(B) 400(B)	12 20 20
Dec 07, 1988	CNSI trailer ACOE trailer Crew trailer OSF/CP		16(A) 50(B) 2(A) 45.5(B) 27.3(B) 25(B) 77.2(B)	(40) 40 (3) 3 7 (12) 12
Dec 14, 1988	CNSI trailer	*(A) 3.4(B) 2(A) 7.9(B)	2 (B) 44.3 (B) 2 (A)	(5) 5 (3) 3
Crew tra	iler OSF/CP Uncont. area	* (B) 5 (A) * (B)	67 (B) 5 (A)	9 (8) 8 35
1988 Jan 03, 1989	Crew trailer	*(A) *(B) 2.2(A)	2.2(A) 42.8(B) 2.2(A)	(10) 10 (10)
ACOE tra		*(B) *(B)	37.8(B)	10 5

MAP D.2 - CREW BREAK TRAILER 2-A-53

DATE	LOCATION	MIN.	MAX. pm/100cm2	# READINGS
Jan 11, 1989	CNSI trailer	*(B)	2(A) 19.5(B)	(5) 5
		*(A) *(B)	2(A) 55.9(B)	(4) 4
	Crew trailer Guard shack	*(B) *(B)	19.5(B) 37.7(B)	4 4
	OSF/CP	*(A)	*(A)	(8)
.Tan 14	Crew trailer		55.9(B) 25.8(B)	8 10
	CNSI trailer		57.4 (B)	10
	Crew trailer	*(B)	54 (B)	10
1989	CNSI trailer		11(A) 40.4(B)	(10) 10
	Guard shack	*(A)	*(A)	(5)
	ACOE trailer	* (B)	45 (B)	5
	ACOE Craffer	*(A) *(B)	*(A) 36(B)	(5) 5
	Port o let 1	*(B)	* (B)	1
	Port o let 2	*(B)	*(B)	1
	Crew trailer			(15)
1989	ACOE trailer		37.75(B) 2.1(A)	15 (5)
		*(B)	52.75(B)	5
	CNSI trailer Guard shack			5 5
Jan 30, 1989	Crew trailer	6 (A)	6 (A)	(10)
1303	CNSI trailer	*(B) 3(A)	85(B) 3(A)	10 (10)
		*(B)	33 (B)	10
	ACOE trailer Guard shack	*(B) 3(A)	18.3(B) 3(A)	5 (5)
	Guard Shack	*(B)	47 (B)	(5) 5
Feb 06,	Crew trailer	*(B)	64.3(B)	10
1989	CNSI trailer	2.1(A)		(10)
	ACOE trailer	*(B) *(B)	73.8(B) 31(B)	10 5
	OSF/CP	2.1(A)	2.1(A)	(15)
Fob 11	Cross tradilar	*(B)	64.3(B)	15
Feb 11, 1989	Crew trailer	2.17(A) *(B)	15.5(A) 24.76(B)	(10) 10
	CNSI trailer	* (B)	* (B)	10
	OSF/CP	8.83(A) *(B)	8.83(A) 34.29(B)	(15) 15
	ACOE trailer	*(B)	9.5(B)	5

FACILITY SUPPORT OPERATIONS

DATE	LOCATION		MAX. pm/100cm2	# READINGS
Feb 15, 1989	Crew trailer	*(B)	2(A) 115.78(B) 1(A) 326.31(B)	(2) 20 (2) 20
	ACOE trailer Guard Shack	*(B) *(B)	52.63(B) 152.63(B)	10 5
Feb 17, 1989	CNSI trailer	*(B)	31.36(B)	25
1989 Arπ Feb 20,	y Trailer 107 Drive Way	*(B)	00 1/0)	20 20 10 5
		*(A) *(B)	*(B) *(A) 29.25(B) 24.25(B)	10 (10) 10 10
	Crew Trailer Army Trailer		39.5(B) 68.1(B)	20 20
Feb 28, 1989	Crew Trailer Army Trailer	*(A) *(B) *(A) *(B)	3(A) 48(B) 1(A) 23(B)	(3) 20 (3) 10
Mar 09, 1989	Crew trailer	*(A) *(B)	1(A) 74.1(B)	(6) 20
	Army Trailer Radcon Office	*(B) *(B)	18.89(B) 2.22(B)	10 5
	Crew TRailer Army Trailer Counting Room Control Point O.S.F. 12	*(B) *(B)	49.7 (B) *(B) 68.4 (B)	20 10 2 2 2
•	Control Point O.S.F. E. STRATFORD Crew Trailer Army Trailer O.S.F.	*(B) *(B) *(B)	47.2(B) 53.4(B) 59.7(B) 59.7(B) *(A)	5 5 10 20 10 (2) 6

S ш ж للا ENGINE RESENTAT (OFFICE) OF L REPREST ER / CORP SH ARMON -

MAP D.4 - ARMY CORPS OF ENGINEERS TRAILER 2-A-57

DATE	LOCATION		MAX. /100cm2	# READING
1989	Radcon Office Radcon Lab	*(B) 4(A) *(B)	9.1(B) 4(A) 177.8(B)	5 (3) 15
deconned	Crew Trailer	* (A)	10(A) 80.6(B)	(8) 20
deconned			(.,	
	Army Trailer		2.3(A)	(3)
Mar 27.	O.S.F. 2	*(B) .2(A)	55.6(B) 5.3(A)	10 (2)
1989		*(B)	46.6(B)	7
	Control Point		5.3(A)	(3)
	E.Stratford St.		65.3(B) 90.3(B)	17 5
	E.SCIACIOIQ SC.	~ (D)	90.3(5)	5
Mar 29,	Radcon Lab	*(A)	1.8(A)	(2)
1989		*(B)	26 (B)	5
	Crew Trailer		5.6(A)	(6)
C	Army Trailer	*(B)	113.6(B)	(deconned) 10
C,			2.6(A) 17.4(A)	(5) (15)
deconned		(/	27.1.(11)	(13)
	O.S.F.	*(B)	52.7(B)	20
Mar 30,	E. Stratford	* (A)	11.36(A)	(8)
1989	sidewalk	* (B)	136 (B)	15
Mar 31,	Crew Trailer	*(A)	5.4(A)	(14)
1989		*(B)	72.65(B)	40
	O.S.F.		5.47(A)	(6)
	Army Trailer		78.53(B)	10
	Wrmh Irgirer		*(A) 37.35(B)	(1) 10
		(2)	37,133(2)	10
Apr 03,	Crew Trailer			(3)
1989			6063 (B)	20
	Army Trailer		1.97(A)	(3)
		* (D)	65.67(B)	11
April 04	, E. Stratford	*(A)	2.0(A)	(7)
	9 Within Gates		72.33 (B)	20
3.000 05	Ones Mac 23	4/33	2 0 = / 3 1	(0)
Apr 05, 1989	Crew Trailer	*(A) *(B)	1.97(A) 79(B)	(9)
	Army Trailer	*(A)	/9(B) *(A)	20 (2)
1989	· ····································		45.67(B)	13
	Crew Trailer	1(A)	1(A)	(1)
		*(B)	52.33(B)	5

DATE	LOCATION	MIN.	MAX. dpm/100cm2	# READING
	Crew Trailer	*(A)	1.72(A)	(6)
1989	DADGON T-b	* (B)	53.24(B)	20
	RADCON Lab	*(A) *(B)	*(A) 23.82(B)	(2) 5
	Army Trailer	*(A)	*(A)	(2)
		* (B)	52 (B)	10
Apr,11,	Guard Shack	* (A)	1.61(A)	(2)
1989		* (B)	72 (B)	5
	Crew Trailer	*(A)	1.61(A)	(5)
	• -	*(B)	58.67(B)	20
	Side Walk	*(B)	58.67(B)	10
	Counting Room	*(A)	* (A)	(1)
	0 0 0 1-1-	*(B)	52 (B)	5
	O.C.S. Lab	* (A)	*(A)	(1)
	Army Trailer	*(B) *(A)	45.33(B) *(A)	5 (3)
	Army Italier	*(B)	52 (B)	10
	E. Stratford	* (A)	1.61(A)	(4)
	St.	* (B)	78.67(B)	20
Apr 13,	Army Trailer	* (A)	*(A)	(2)
1989		*(B)	92 (B)	10
	Guard Shack	*(A)	*(A)	(3)
		*(B)	78.67(B)	5
	Port-O-Let	*(B)	25.33(B)	2
	Crew Trailer	*(A)	*(A)	(11)
	Counting Boom	* (B)	105 (B)	20
	Counting Room	*(A) *(B)	*(A)	(3) 5
	E. Stratford	*(A)	77.33(B) 2.26(A)	(4)
	st.	*(B)	104 (B)	19
Apr 06,	Counting Room	* (A)	*(A)	(1)
1989	codificing Room	*(B)	44 (B)	5
Apr 18.	E. Stratford	* (A)	5.35(A)	(7)
		* (B)		30
	Army Trailer	* (A)	2.13(A)	(10)
	•	* (B)	60 (B)	` 10
	Guard Shack	*(A)	* (A)	(1)
		*(B)	53.33	5
	Counting Room	*(A)	*(A)	(1)
	D. J.	*(B)	6.66(B)	5
	Radcon Lab	* (A)	*(A)	(1)
	Crow massion	*(B)	86.67 (B)	5 (5)
	Crew Trailer	*(A) *(B)	2.13(A) 80(B)	(5) 30
		(D)	30 (B)	30

DATE	LOCATION		MIX. n/100cm2	# READING
Apr 20,	Guard Shack	*(A) *(B)	*(A) 32.67(B)	(1) 5
2303	Crew Trailer	*(A) *(B)	*(A) 32.67(B)	(7) 25
	E. Stratford Army Trailer	*(A) *(A) *(B)	5.32(A) *(A) 12.67(B)	(5) (2) 10
	Crew Trailer TABLE E. Stratford		2.19 39.33(B) 2.19(A)	(5) 5 (5)
	Radcon Lab Fruit Cellar 14x14	*(A)	76.67(B) *(A) 600(B)	30 (1) 20
Apr 22, 1989		*(A) *(B)	11.29(A) 91.33(B)	(6) 25
Apr 24, 1989	Counting room	*(B) *(A) *(B)	22.67(B) *(A) 62.67(B)	5 (1) 5
Crew Tra	ailer		4.84(A) 76.67(B)	(14) 35
	Army Trailer	*(A) *(B)	*(A) 76(B)	(2) 10
	E. Stratford St.	*(A) *(B)	1.61(A) 76(B)	(6) 25

APPENDIX 2-B UNRESTRICTED RELEASE SURVEYS

UNRESTRICTED RELEASE SURVEYS

DATE	ITEM RELEASED	MIN.	MAX. #REdpm/100 cm2	ADINGS	
SEP 28, 1988	12 ROOF JACKS	* * 13.60	(A) * (B) * (B) 32.00	12D 12D 12S	
NOV 14, 1988	SCISSOR LIFT	*		63S 63D 63D	
NOV 23, 1988	AIR TAMPER	*	(B) 43.00 (B) *		
	WOODEN CHEST	*	(B) 38.00	75	
FEB 23, 1989	AIR COMPRESSOR	17.80 * *	(A) 17.80 (B) 132.70 (B) *	1S 6S 6D	
FEB 13, 1989	CHINA CABINET	* *	(B) 119.00 (B) *	10S 10D	
FEB 28, 1989	SCAFFOLD	* * *	(A) .50 (B) 58.00 (B) 155.00	40S	
MAR 1, 1989	25,000 BTU HEATER	* * *	(A) 2.00 (B) * (B) *	4S 21S 21D	
MAR 14, 1989	CANOPY, HIGH L	IFT* *	(B) 52.30 (B) 178.00	5S 5D	
MAR 14, 1989	2000 CFM HEPA	*	(B) 99.00 (B) 44.66	10S 10D	
MAR 15,	CHAIN SAW RED	*	(B) 85.70 (B) 133.33	7S 7D	1989
MAR 15, 1989	125.000 BTU HEATER	25.70 *	(B) 65.70 (B) 190.70	5S 5D	
MAR 20, 1989	CHAIN SAW	2.14 * *	(A) 2.14 (B) 26.25 (B) 47.86	1S 6S 6D	
MAR 22, 1989	HOPPER	* * *	(B) 26.25 (B) 47.86 (A) 5.00 (B) 32.50 (B) *	5S 5S 5D	

DATE	ITEM RELEASED	MIN.	MAX. dpm/100 cm2	#READINGS
MAR 22, 1989	LIFT BOXES	* * *	(A) 1.43 (B) 55.62 (B) *	4S 4S 4D
MAR 22, 1989	HOPPER #2	* * *	(B) * (A) 5.00 (B) 76.25 (B) **	2S 5S 5D
MAR 23, 1989	JACK HAMMER	* * *	(A) 4.30 (B) 49.40 (B) *	4S 4S 4D
MAR 27, 1989	500 CFM HEPA	* * *	(A) * (B) * (B) **	5S 5S 5D
APR 3, 1989	500 CFM HEPA	2.26 * *	(A) 5.48 (B) 53.33 (B) *	2S 8S 8D
APR 3, 1989	POLMAN HOLT VAC.	* *	(A) * (B) 13.30 (B) **	3S 8S 8D
· ·	POLMAN HOLT VAC. WHITE	* * *	(A) 2.26 (B) 46.67 (B) *	4S 9S 9D
APR 4, 1989	O.S.F.	* *	(A) 8.71 (B) 113.00	
APR 4, 1989	BRUSH PILE	*	(B) 71.40	1D
APR 5, 1989	LOCKERS	* * *	(A) 5.09 (B) 79.00 (B) *	4S 12S 12D
APR 14, 1989	HEPA DUCT VENT	* * *	(A) * (B) 78.30 (B) 142.80	1S 3S 3D
APRIL 25, 1989	CARLUCCI LUMBER	* * *	(A) * (B) 75.30 (B) *	20S 20S 20D
APR 26, 1989	1000 CFM HEPA	* * *	(A) 1.90 (B) 60.60 (B) *	4S 10S 12D

DATE	ITEM RELEASED	MIN. dpm/100	cm2	MAX.	#READINGS
MAY 1, 1989 MAY 3, 1989	FORK TRUCK (MANITOUS) POCLAIN	* * * * * *	(A) (B) (B) (A) (B) (B)	78.10 * 2.30	4S 20S 20D 5S 25S 25D
MAY 4, 1989	SHORING JACKS	* * *	(A) (B) (B)	* 55.70 *	2S 5S 5D
MAY 5, 1989	ALPHA CAM'S #665 #614 #619 #623	*		2.17 38.57	6S 28S
MAY 5, 1989	AMS-3 CAM'S #528 #1958 #1962	* * *	(A) (B) (B)	5.50 95.70 *	10S 25S 25D
MAY 5, 1989	EBERLINE PUMP (R.A.S.P.) #0887-1-11	*	(A) (B)		2S 11S
MAY 5, 1989	6 FT. STEP LADDER	2.2 * *	(A) (B) (B)	18.20 80.70 *	3S 5S 5D
MAY 6, 1989	EXT.LADDER	* * *	(A) (B) (B)	* 20.70 *	2S 6S 6D
MAY 6, 1989	AIR COMPRESSOR	2.2 * *		5.50 87.30 *	3S 8S 8D
MAY 06, 1989	BOMAG	* * *	(A) (B) (B)	* 60.70 *	2S 6S 6D
MAY 6, 1989	RUBBER TRACK MATS	* *	(A) (B) (B)		2S 7S 7D

DATE	ITEM RELEASED	MIN.	dpı	MAX. m/100 cm	#READINGS 2
MAY 6, 1989	SOIL WACKER	* * *		2.20 * *	2S 4S 4D
MAY 08, 1989	LOCKERS	* * *		1.83 86.00 *	3S 12S 12D
MAY 08, 1989	WASHER & DRYER	1.83		1.83 119.00	1S 8S
MAY 08, 1989	FUEL TANK	* * *	(B)	* * 119.00	1S 6S 6D
MAY 08, 1989	CAT FORK TRUCK	* * *	(B)	2.00 66.00 48.00	3S 15S 15D
MAY 08, 1989	ARC WELDER	* * *	(A) (B) (B)	12.33	2S 10S 10D
MAY 09, 1989	MISC. TOOLS SHOVELS PIC AXES	* * *	(A) (B) (B)	* 55.00 *	2S 9S 9D
MAY 09, 1989	MISC. TOOLS NINE IRON BARS ONE SHOVEL	* * *	(B)	* 28.67 154.00	2S 10S 10D
MAY 09, 1989	THREE AIR HOSES	* * *		* 15.33 154.00	1S 3S 3D
	ELEVEN SHOVELS ONE HAND TRUCK	* * *	(B)	* 49.00 154.00	2S 12S 12D
MAY 09, 1989	JOHN DEERE BACK HOE	2.0	(B)	5.30 95.33 *	
MAY 09, 1989	HEPA DRUM VAC.	* * *	(B)	2.00 62.00 *	2S 11S 11D

DATE	ITEM RELEASED	MIN.	MAX. dpm/100 cm	#READINGS 2
MAY 15,	MISC. TOOLS	*	(A) 3.10	5S
1989	BROOMS	*	(B) 24.20	14S
	SHOVELS	*	(B) 154.00	14D
MAY 15,	POWER CABLES	*	(A) *	35
1989	AIR HOSES	*	(B) 63.00	18S

APPENDIX 2-C WATER ANALYSES

WATER ANALYSES

SAMPLE	Date Taken	μCi/ml
LD-WW-001	09-12-88	3.92 E-07
LD-WW-002	09-12-88	3.78 E-08
LD-WW-003	09-13-88	-4.73 E-08
LD-WW-006	09-26-88	1.32 E-07
LD-WW-007	09-19-88	* 6.82 E-07
LD-WW-008	09-20-88	1.66 E-07 105 SUMP
LD-WW-009	09-21-88	0.00 E+00 105 BLADDER
LD-WW-010	09-21-88	* 6.54 E-07
LD-WW-011	09-22-88	3.62 E-07
LD-WW-012	09-22-88	* 9.45 E-07
LD-WW-013		2.14 E-07
LD-WW-014		* 4.19 E-07
TD-MM-U.		8.52 E-07
LD-WV		4.11 E-07
LD-W		1.46 E-07
LD-WW-UI/	.5	6.28 E-08
LD-WW-018	09-23-88	1.26 E-07 107 DRUM #11
LD-WW-019	09-30-88	1.6 E-07
LD-WW-020	10-06-88	1.19 E-07
LD-WW-021	10-10-88	4.94 E-08
LD-WW-022	10-14-88	1.14 E-07
LD-WW-023	10-17-88	* 4.23 E-07
LD-WW-024	10-18-88	5.72 E-08
LD-WW-025	10-21-88	7.0 E-08
LD-WW-026	10-26-88	1.08 E-07
LD-WW-027	10-31-88	5.2 E-08
LD-WW-028	11-01-88	5.7 E-08
LD-WW-029	11-03-88	1.95 E-07
LD-WW-030	11-05-88	2.80 E-07
LD-WW-031 LD-WW-032	11-09-88 11-12-88	1.88 E-07
LD-WW-032	11-12-88	1.46 E-07 1.39E-08
LD-WW-034	11-10-88	* 1.57 E-06 RAIN
ACCUMULATION	11-17-88	~ 1.57 E-00 KAIN
LD-WW-035	11-18-88	1.95 E-07
LD-WW-036	11-19-88	3.7 E-07
LD-WW-037	11-23-88	1.26 E-07
LD-WW-038	11-28-88	1.22 E-07 RAIN
ACCUMULATION	11 20 00	I C I I O / I III II
LD-WW-039	11-29-88	8.36 E-08
LD-WW-040	12-03-88	8.36 E-08
LD-WW-041	12-06-88	1.1 E-07
LD-WW-042	12-09-88	3.49 E-08
LD-WW-043	12-15-88	1.03 E-07 105 BASEMENT

SAMPLE	DATE TAKEN	μCi/ml	
LD-WW-044	12-20-88	1.55 E-07	
LD-WW-045	02-01-89	-4.2 E-08 107 BLADD	ER
LD-WW-046	02-14-89	0.00 E+00	
LD-WW-047	02-14-89	1.97 E-08	
LD-WW-048	02-14-89	4.3 E-08	
LD-WW-049	02-15-89	-7.4 E-09 DISTILLED WATER	
LD-WW-050	02-16-89	* 4.81 E-07	
LD-WW-051	02-16-89	5.42 E-08	
LD-WW-052	02-16-89	1.48 E-07	
LD-WW-053	02-17-89	1.7 E-07	
LD-WW-054	02-17- 89	1.26 E-07	
LD-WW-055	02-21-89	* 3.86 E-06	
LD-WW-056	02-21-89	5.58 E-08	
LD-WW-057	02-23-89	* 2.72 E-06	
LD-WW-058	02-23-89	2.79 E-07	
LDWW-059	02-25-89	* 4.3 E-06	
LD-WW-060	02-28-89	1.94 E-07	
LD-WW-061	02-28-89	2.50 E-07	
LD-WW-0(2	02-28-89	2.72 E-07	
LD-WW-063	05-03-89	9.94 E-08	

^{*} Indicates waste water was above release criteria. As previously described, waste water was filtered and re-sampled.

LANSDOWNE

RADIOACTIVE RESIDENCE COMPLEX
DISMANTLEMENT/REMOVAL PROJECT

RADIOLOGICAL CLOSEOUT REPORT

CHEM-NUCLEAR SYSTEMS, INC. 220 STONERIDGE DRIVE COLUMBIA, SOUTH CAROLINA

CHAPTER 3
HEALTH PHYSICS FILING SYSTEM

RADIOLOGIC CLOSEOUT REPORT HEALTH PHYSICS FILING SYSTEM

TABLE OF CONTENTS

Sect	<u>cion</u>																					Page No.
1.0	INTRODUC	CTI	ON.		•	•	•	•	•		•	•	•		•	•		•	•	•	•	3-75
2.0	GENERAL	•		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	3-75
								LI	ST	0	F	TA	BL	ES								
2.1	Health	Ph	ysi	cs	F	il:	in	g s	Sys	ste	em	D:	Lac	gra	am		•	•		•		3-76

LANSDOWNE RADIOACTIVE RESIDENCE COMPLEX DISMANTLEMENT/REMOVAL PROJECT

RADIOLOGICAL AND HEALTH AND SAFETY DATA SUMMARY AND SYNOPSES HEALTH PHYSICS FILING SYSTEM

1.0 INTRODUCTION

Throughout the course of the Lansdowne Project, varied radiologic safety programs were instituted to ensure that all remedial action was performed in a safe manner not only to the worker, but to the public at large. This was accomplished by performing all work operations in accord with the plans established prior to beginning this project. To provide written confirmation that the radiologic safety programs were performed in accordance with various plans, the relevant data generated was retained on-site. These data were recorded on data sheets and filed. To provide more ready access to the data upon transmission to the Army Corps of Engineers at the termination of the project, a filing system was devised.

2.0 GENERAL

The filing system developed for the radiologic records is divided into twenty categories. Each major category contains a varying number of divisions. The function of the divisions was to separate each of the varied data forms which were pertinent to a specific category. Presented in the following is an index of the health physics filing systems.

(2289R)

TABLE 2.1 - HEALTH PHYSICS FILING SYSTEM DIAGRAM

HP-46025-01	DOSIMET	• • • •
	01	TLD ISSUE SUMMARY
	02	VENDOR DOSIMETRY REPORTS
	03	LOST DOSIMETRY REPORTS
	04	QUARTERLY SUMMARY REPORT
	05	(NOT USED)
	06	DAILY SIGN IN SHEET
HP-46025-02	BIOASSA	/A
	01	URINALYSIS REPORTS
	02	FECAL RESULTS - NOT USED
	03	WHOLE BODY RESULTS
	04	INTERNAL DOSE ASSIGNMENTS - NOT USED
		MEMOS CONCERNING BIOASSAY
	06	LABORATORY AUTHORIZATIONS
	00	LABORATORI AUTHORIZATIONS
HP-46025-03	ENVIRON	MENTAL AIR SAMPLES
	01	SAMPLE LOCATION MAP
	02	CONTINUOUS AIR MONITORS
		01 STRIP CHARTS - TRANSMITTED ACOE
		PREVIOUSLY
		02 ON-SITE ANALYSIS CALCULATION SHEET
		03 VENDOR ANALYSIS REPORTS
	03	GRAB AIR SAMPLES
	05	01 ON-SITE ANALYSIS CALCULATION SHEETS
		02 VENDOR ANALYSIS REPORTS
	04	WORKING LEVEL MEASUREMENTS
	05	MEMOS
	06	LABORATORY AUTHORIZATIONS
		01 RECEIPT OF SAMPLES BY VENDOR
	07	WEATHER DATA SHEETS
HP-46025-04	OCCUPAT	TIONAL AIR SAMPLES
	01	AREA MAP
	02	CONTINUOUS AIR MONITOR
		01 STRIP CHART - TRANSMITTED TO ACOE
		PREVIOUSLY
		02 ON-SITE ANALYSIS CALCULATION SHEETS
		03 VENDOR ANALYSIS REPORT
	03	GRAB AIR SAMPLES
	03	01 ON-SITE ANALYSIS CALCULATION SHEETS
	0.4	02 VENDOR ANALYSIS REPORTS
	04	WORKING LEVEL MEASUREMENTS
	05	MEMOS
	06	LABORATORY AUTHORIZATIONS
	07	AIR PARTICULATE DATA

(2289R)

HP-46025-05	GAMMA SURVEYS 01 PIC VS 2220 CORRELATION DATA AND GRAPHS 02 SITE BOUNDARY SURVEYS 03 RAD STORAGE AREAS - NOT USED 04 WORK AREA SURVEY 05 ACCESS CONTROL 01 GAMMA SURVEYS 06 (NOT USED) 07 MISCELLANEOUS
HP-46025-06	ROUTINE SWIPE SURVEYS 01 ACCESS CONTROL 02 (NOT USED) 03 (NOT USED) 04 UNRESTRICTED RELEASE SURVEYS 01 FURNITURE DECONTAMINATION 05 105 E. STRATFORD 01 BASEMENT 02 MAIN FLOOR 03 SECOND FLOOR 04 THIRD FLOOR 06 107 E. STRATFORD 01 BASEMENT 02 MAIN FLOOR 03 SECOND FLOOR 04 THIRD FLOOR 05 MAIN FLOOR 06 107 E. STRATFORD 07 BASEMENT 08 MAIN FLOOR 09 SECOND FLOOR 00 SECOND FLOOR
HP-46025-07	SITE SOIL SAMPLING PROGRAM O1 MAP SHOWING LOCATIONS O2 DELTA CORRELATION DATA AND GRAPI'S O3 OCS CORRELATION DATA AND GRAPHS O4 FINAL EXCAVATION CONTROL OCS RESULTS O5 VENDOR ANALYSIS REPORTS O6 SITE OCS ANALYSIS O7 LABORATORY AUTHORIZATIONS O8 OFF-SITE ANALYSES O9 EXCAVATION PRINTOUTS O1 CONTROL SAMPLES O2a ARGONNE SPLITS INITIAL O2b ARGONNE SPLITS FINAL 10 CERTIFICATION PRINTOUTS O1 INITIAL COUNTS IN-SITU SAMPLES O2 FINAL COUNTS IN-SITU SAMPLES O3 INITIAL COUNTS BACKFILL SAMPLES

HP-46025-08	WATER 8	SAMPLING PROGRAM
	01	MAP SHOWING LOCATIONS - NOT USED
	02	VENDOR ANALYSIS OF WATER
	03	ON-SITE ANALYSIS OF WATER
HP-46025-09	COUNTII	NG INSTRUMENT CHECKS
	01	L2220
		01 PLATEAUS
		02 DAILY RESPONSE CHECK
	02	ESP
		01 PLATEAUS
		02 DAILY RESPONSE CHECK
	03	L2000
		01 PLATEAUS
	04	02 DAILY RESPONSE CHECK (R.F.) BC4
	04	01 PLATEAUS
		02 DAILY RESPONSE CHECK (R.F.)
	05	OCS DATE RESTORED CHECK (K.11.)
		01 DAILY RESPONSE CHECK
		02 RELIABILITY CHECKS
		a. RADIUM
		b. THORIUM
		c. BACKGROUND
		03 OCS MEMOS
	06	PAC 4G
	0.5	01 DAILY RESPONSE CHECK
	07	E520
	08	01 DAILY RESPONSE CHECK E120
	08	01 DAILY RESPONSE CHECK
	09	LUDLUM
	0,5	01 DAILY RESPONSE CHECK
	10	EBERLINE RM 14
		01 DAILY RESPONSE CHECK
	11	EBERLINE RM 20
		01 DAILY RESPONSE CHECK
	12	EBERLINE RM 21
		01 DAILY RESPONSE CHECK
HP-46025-10	NOT US	ED
HP-46025-11	NOT US	ED
	- -	
HP-46025-12		HIGHLIGHTS
	01	WEEKLY REPORTS
	02	PROGRESS MEETINGS
	03	WEEKLY PERSONNEL AGENDA

HP-46025-13	HP CORRESPONDENCE 01 SAFETY VIOLATIONS 02 UNUSUAL OCCURRENCE REPORTS 03 RECORD OF PHONE CONVERSATIONS - NOT USED 04 SAFETY MEETINGS 05 GENERAL 06 MEMOS INCOMING CNSI 07 MEMOS OUTGOING CNSI)
HP-46025-14	INSTRUMENT CALIBRATION DATA 01 CERTIFICATES OF CALIBRATION 02 INSTRUMENT MANUALS - NOT SUBMITTED 03 INVENTORY 04 LOSS/DAMAGE REPORTS 05 MEMOS	
HP-46025-15	AUDITS 01 EPA 02 ACOE 03 INTERNAL	
HP-46025-16	PERSONNEL FILES (kept by name and contractor) O1 PFS O2 TESTS O3 US NRC FORM 4 O4 CURRENT QUARTER HISTORY O5 REQUEST FOR HISTORY O6 RESPIRATORY QUALIFICATIONS O7 WHOLE BODY INFORMATION O8 AUTHORIZATION SUMMARY O9 CLEARANCE LETTER 10 PERSONNEL CONTAMINATION REPORTS 11 REPRIMAND/DISQUALIFICATION	
HP-46025-17	SOURCE INVENTORY	
HP-46025-18	BORROW MATERIAL SURVEY	
HP-46025-19	VISITOR FILES	
HP-46025-20	TRAINING FILE 01 OVERHEADS (RADCON) 02 TRAINING OUTLINE (RADCON) 03 TEST (MASTER RADCON) 04 OVERHEADS (INDUSTRIAL HYGIENE) 05 TRAINING OUTLINE (INDUSTRIAL HYGIENE)	
HP-46025-21	NOT USED	

(2289R)

HP-46025-22	SPECIA	L SURVEYS
	01	GAMMA
	02	SWIPES
	03	WL
	04	AIR PARTICULATE
	05	WATER
	06	SOIL
	07	ALPHA
	80	BETA GAMMA
	09	MEMOS
HP-46025-23	INDUST	RIAL HYGIENE
	01	PHASE HAZARD ANALYSIS
	02	SPECIAL SURVEYS

LANSDOWNE

RADIOACTIVE RESIDENCE COMPLEX DISMANTLEMENT/REMOVAL PROJECT

RADIOLOGICAL CLOSEOUT REPORT

CHEM-NUCLEAR SYSTEMS, INC. 220 STONERIDGE DRIVE COLUMBIA, SOUTH CAROLINA

CHAPTER 4
PHASE: DISMANTLEMENT OF THE HOUSE

RADIOLOGICAL HEALTH AND SAFETY DATA SUMMARY

PHASE: DISMANTLEMENT OF 105 / 107 EAST STRATFORD HOUSE

TABLE OF CONTENTS

Sect	ion	Page No.
1.0	INTRODUCTION	4-83
2.0	GENERAL	4-83
3.0	AIR SAMPLING PROGRAM (OCCUPATIONAL)	4-83
4.0	AIR SAMPLING PROGRAM (ENVIRONMENTAL)	4-86
5.0	WORK AREA GAMMA SURVEYS	4-88
6.0	BETA GAMMA SURVEYS	4-90
7.0	SURVEYS FOR REMOVABLE CONTAMINATION	4-91
8.0	PHASE HAZARD ANALYSIS	4-94
9.0	TOOL BOX SAFETY DISCUSSION	4-95
	APPENDIX A - OCCUPATIONAL AIR SAMPLES	4-A-97
	APPENDIX B - ENVIRONMENTAL AIR SAMPLES	4-B-127
	APPENDIX C - SUMMARY OF HEALTH AND SAFETY TOPICS.	4-C-147
	APPENDIX D - SITE MAPS	4-D-153
	LIST OF TABLES	
5.1	105 EAST STRATFORD GAMMA SURVEYS	4-89
5.2	107 EAST STRATFORD GAMMA SURVEYS	4-90
6.1	ACTIVITY RANGES FOR REMOVED MATERIAL	4-91
7.1	105 EAST STRATFORD SWIPE SURVEYS	4-93
2 2	107 FACE CEDAMEODD CHIDE CHDUEVC	4-03

RADIOLOGICAL HEALTH AND SAFETY DATA SUMMARY PHASE: DISMANTLEMENT OF 105 / 107 EAST STRATFORD HOUSE TABLE OF CONTENTS (CONTINUED)

LIST OF FIGURES

G.1	OCCUPATIONAL AIR CONCENTRATION - RA-226 4	l-A-119
G.2	OCCUPATIONAL AIRBORNE - CUMULATIVE AVERAGES 4	I-A-120
G.3	OCCUPATIONAL WL MEASUREMENTS	I-A-125
H.1	CAM LOG EXAMPLE	l-B-130
H.2	ENVIRONMENTAL AIRBORNE - GROSS ALPHA 4	l-B-131
H.3	CAM STATION #1 DATA	I-B-134
H.4	CAM STATION #2 DATA	I-B-137
H.5	CAM STATION #3 DATA	l-B-140
H.6	CAM STATION #4 DATA	l-B-143
H.7	DAILY WL MEASUREMENTS	I-B-146
	LIST OF MAPS	
	DIST OF MAPS	
J.1	CAM STATION LOCATIONS	I-D-155
J.2	105 EAST STRATFORD - BASEMENT	I-D-156
J.3	105 EAST STRATFORD - 1ST FLOOR	l-D-157
J.4	105 EAST STRATFORD - 2ND FLOOR	l-D-158
J.5	105 EAST STRATFORD - THIRD FLOOR	I-D-159
J.6	107 EAST STRATFORD - BASEMENT	l-D-160
J.7	107 EAST STRATFORD - 1ST FLOOR	-D-161
J.8	107 EAST STRATFORD - 2ND FLOOR	l-D-162
J.9	107 EAST STRATFORD - THIRD FLOOR	I - D-163

1.0 INTRODUCTION

During the periods of August 18, 1988 to November 19, 1988;
January 10, 1989 to January 11, 1989; and February 1, 1989 to
February 28, 1989, the 105 / 107 East Stratford primary
structure was completely dismantled. To insure the dismantlement
was performed in a safe manner not only to the worker but to the
public at large, radiological monitoring programs were
established. This was accomplished by performing all work
operations in accordance with plans, including the Safety,
Health, and Emergency Response Plan (SHERP) and the Contractor's
Quality Control Plan (CQCP), which were developed prior to the
beginning of the project. The following sections present
descriptions and summaries of the surveys performed to verify
compliance with these plans.

2.0 GENERAL

As part of the radiological air monitoring program, the following types of air samples were collected: high flow rate - occupational, low flow rate - occupational and environmental, lapel (personal) - occupational, and radon progeny (working level) - occupational and environmental. On a routine basis surveys for gamma and beta-gamma exposure rates were performed in the work area.

Prior to beginning each new major task of the dismantlement operation, a Phase Hazard Analysis was generated, explained, and signed by each worker. Along with this, weekly "Tool Box Safety Discussions" were held. At the beginning of each day of work, a verbal discussion was held, with all workers on the site attending, encompassing topics relevant to the safety issues of the day.

3.0 AIR SAMPLING PROGRAM (OCCUPATIONAL)

3.1 GENERAL

The data generated from the three types of air samples was compiled to generate a daily Maximum Permissible Concentration-hour (MPC-h) exposure. This MPC-h calculation represented the potential exposure on the site as a whole, and did not take into account personal protective equipment such as respirators or specific area controls such as HEPA ventilation and work area enclosures. The data sets are presented in Appendix G of this document. Graphic representations of the data are also provided as Figures G.1 through G.3 in Appendix G.

The air concentration criteria established for occupational

exposure is listed in Title 10 of the Code of Federal Regulations, Part 20, Appendix B, Table I. The predominant isotope of interest at the Lansdowne Project was Radium-226. The MPC value in air for soluble Radium-226 is 3.0 x 10⁻¹¹ micro-curies per milliliter in air above background. Additional isotopes of concern were:

Actinium-227 2.0 x $10^{-12} \mu \text{Ci/ml}$

Thorium-230 2.0 x $10^{-12} \mu \text{Ci/ml}$

Protactinium-231 1.0 x $10^{-12} \mu \text{Ci/ml}$.

3.2 HIGH VOLUME SAMPLES

Samples were obtained with a Staplex TFIA high flow rate air sampler which drew 19 to 22 cubic feet per minute. The air was pulled through a 0.8 micron millipore glass fiber filter. The samples were collected for 10 to 20 minutes, depending on the specific flow rate, and as required to obtain sufficient volume to meet minimum detectable activity requirements.

At the end of the sampling period, the filter was placed in an envelope to prevent cross contamination of the filter media. Each filter was counted using a Ludlum 2000 scaler and Ludlum 43-10 alpha scintillation detector. Typically, filters were counted after 24 hours of decay and again after 144 hours. The count at 144 hours was used as the final gross alpha activity concentration result.

The filters were then placed in storage. Approximately ten percent of the filters was sent to Barringer Laboratories for radioisotopic analysis. The data acquired at the beginning of the project from Barringer and from the gross alpha measurements made on site were utilized to generate a general scaling factor for Radium-226, Actinium-227, Thorium-230, and Protactinium-231 versus gross alpha activity. The Radium-226 to gross alpha ratio ranged from 17% to 49%, with the average at about 22%. The ratios of the other isotopes to the gross alpha concentration were negligible, ranging from 0% to 0.7%. This indicated that Radium-226 was the predominant radioisotope of concern, and that the Radium-226 air concentration limit should be utilized to control exposures on the project.

During the period of dismantlement, as specified by procedures contained in the SHERP, 429 high volume air samples were collected. The largest potential MPC-h exposure was 2 MPC-h (226 Ra) per day. The minimum was not

measurable above background. The average throughout the period of dismantlement was approximately 0.43 MPC-h (226 Ra) per day, with large differences in daily concentrations based on specific work activities and the radiological conditions within the work area.

3.3 LOW FLOW RATE SAMPLES

Samples were obtained with a Radeco HV-809 air sampler which drew 12 cubic feet per minute. The air was pulled through a 0.8 micron millipore glass fiber filter for a period of 20 minutes. The filters were preserved and counted in the same manner as that used for the high flow rate air samples.

During the period of dismantlement, as specified by procedures contained in the SHERP, 287 low flow rate air samples were collected. The largest measured MPC-h concentration was 9.61 MPC-h of Radium-226. The minimum was not measurable above background. The average throughout the period of dismantlement was approximately 0.48 MPC-h (226 Ra) per day, with large differences in daily concentrations based on specific work activities and the radiological conditions within the work area.

3.4 LAPEL AIR SAMPLING

Measurements were made by collecting samples at two liters per minute over the course of a day. Typically, two Eberline Alpha-1 samplers were issued to two persons on the work crew and run throughout the course of the day. The samplers were deactivated during work break periods. The average run time for these samplers was 7.55 hours. The air was pulled through a 0.8 micron millipore glass fiber filter. The filters were preserved and counted in a manner similar to the procedure employed for the high flow rate air samples.

During the period of dismantlement, 72 lapel (breathing zone) air samples were collected. The largest MPC-h concentration was 0.48 MPC-h of Radium-226. The minimum was not measurable above background. The average throughout the period of dismantlement was approximately 0.10 MPC-h per day of Radium-226.

3.5 RADON PROGENY MEASUREMENTS (WORKING LEVELS)

Measurements were taken with an Eberline Alpha-1 air sampler which drew 2 liters per minute. The air was pulled through a membrane filter, with the sample collected for a 10 minute period.

Upon completion of sampling, the filter was placed in an envelope to prevent cross contamination of the filter media. The filters were counted using a Ludlum 2000 scaler and Ludlum 43-10 alpha scintillation detector. Typically, filters were counted after 40 minutes of decay. As many of the radon progeny are short lived, the filters for radon progeny measurements were not preserved. The data sets are presented in Appendix G of this document. A graphic representation of this data is also provided as Figure G.3 in Appendix G.

During the period of dismantlement, 89 working level measurements were made. The largest measured concentration was 1.3 MPC-h (Radon progeny), the minimum was not measurable above background.

4.0 ENVIRONMENTAL AIR SAMPLING PROGRAM

4.1 GENERAL

The environmental air concentration data sets are presented in Appendix H to this document. Graphic representations of the data are presented as Figures H.1 through H.7 in Appendix H. The air concentration criteria established for environmental exposure is contained in Title 10 of the Code of Federal Regulations, Part 20, Appendix B, Table II. The predominant isotope of interest at the Lansdowne project was Radium-226. The concentration limit for Radium-226 is 3.0 x 10⁻¹² micro-curies per milliliter in air above background. Additional isotopes of concern were:

Actinium-227 8.0 x 10^{-14} μ Ci/ml Thorium-230 8.0 x 10^{-14} μ Ci/ml Protactinium-231 4.0 x 10^{-14} μ Ci/ml.

4.2 AIR PARTICULATE SAMPLES

Air particulate samples were obtained with an Eberline RAP-1 air sampler which drew 1 cubic foot per minute. The air was pulled through a 0.8 micron millipore glass fiber filter, with typical collection periods of 168 hours.

Two samplers were located at each of the four compass points on the site's perimeter. A map showing these locations is presented in Appendix J of this document. The RAP-1 air samplers are an integral part of the Eberline Continuous Air Monitor (CAM). Two types of CAM's were used at the site: the Eberline Alpha-5, an air sampling assembly using a

silicon diffusion junction for alpha radiation detection, and the Eberline AMS-3, an air sampling assembly using geiger-mueller principles for beta-gamma radiation detection. The CAM system provides a graphic representation of the relative air particulate concentration. An example of a CAM log is shown as Figure H.1 of Appendix H to this document. These units, while providing an excellent method for analyzing increasing, steady, or decreasing trends in air particulate concentrations, are primarily designed to provide a qualitative measurement rather than a quantitative one.

To provide a quantitative measurement, the filters employed in the CAM system were analyzed in a manner similar to that used for occupational air particulate samples described above. Upon completion of the sampling period, the filter was placed in an envelope to prevent cross contamination of the filter media. Each filter was then counted using a Ludlum 2000 scaler and Ludlum 43-10 alpha scintillation detector. Typically, filters were counted after 24 hours of decay and again after 144 hours. The count at 144 hours was used as the final gross alpha air concentration activity.

The filters were then placed in storage. Approximately 10 percent of the filters were sent to Barringer Laboratories for radioisotopic analysis. The data acquired at the beginning of the project from Barringer and collected on site was utilized to generate a ratio of Radium-226, Actinium-227, Thorium-230, and Protactinium-231 to gross alpha activity. The Radium-226 to gross alpha ratio ranged from 7% to 28%, with an average of about 12%. The ratios of the other isotopes to the gross alpha concentration was negligible, ranging from 0% to 0.3%. This indicated that Radium-226 was the predominant radioisotope of concern, and that the Radium-226 air concentration limit should be utilized to compare environmental concentrations to regulatory requirements.

During the period of dismantlement, in accordance with procedures contained in the SHERP and CQCP, a total of 139 environmental air particulate samples were collected. The total number of samples collected from each station was as follows: Station #1 (south) - 35, Station #2 (west) - 36, Station #3 (north) - 34, and Station #4 (east) - 34. The environmental air sampling results are presented in Appendix H at the end of this chapter.

4.3 RADON PROGENY (WORKING LEVEL) MEASUREMENTS

Samples were obtained with an Eberline Alpha-1 air sampler which drew 2 liters per minute. The air was pulled through

a membrane filter for a 10 minute period.

Upon completion of the sample period, the filter was placed in an envelope to prevent cross contamination of the filter media. Each filter was then counted using a Ludlum 2000 scaler and Ludlum 43-10 alpha scintillation detector. Typically, filters were counted after 40 minutes of decay. As radon progeny are short lived, the filters for radon progeny measurements were not preserved. During the period of dismantlement, 89 working level measurements were collected. The data sets and a graphic representation of the data are presented in Appendix H and Figure H.7.

5.0 WORK AREA GAMMA SURVEYS

5.1 GENERAL

Exposure rate measurements ($\mu R/hr$) were made with gamma scintillation detectors. The count rate in one tenth of a minute from the scintillometer, either an Eberline ESP-1 and Eberline SPA-3 or a Ludlum-2220 and Ludlum 43-10, was correlated to micro-roentgens per hour by comparison to a Reuter Stokes RS-111 Pressurized Ionization Chamber (PIC).

At the Lansdowne site, criteria were established for use of containment, tarpaulins, and open air dismantlement. The criteria were developed based on project experience and airborne radioactivity measurement results for specific demolition activities on material of known radioactive content. Owing to the unknowns which could have been encountered, the values used were biased on the conservative side. The criteria established were:

Containment

Containment structure using minimum 6 mil polyethylene, HEPA ventilation, respiratory protection,

100 or greater microroentgen per hour

Weather Cover (tarpaulin)

tarpaulin cover, HEPA ventilation, respiratory protection, 50 to 99 microroentgen per hour

Open Air Dismantlement Respiratory protection

less than 50 microroentgen per hour

Naturally, the criteria were tempered by viewing the work area as a whole. For example, in cases where the general gamma exposure rate was greater than 100 micro-roentgens per hour and localized areas were less than 50 micro-roentgens per hour, the more restrictive criteria was applied.

Over the course of the dismantlement, 712 measurements were made on the interior and exterior of the 105 structure, and 106 measurements were performed on the interior and exterior of the 107 structure. The difference in the number of measurements made in the two structures is a result of the higher contamination level in the structure at 105 East Stratford. A summary of the data for the two structures is presented in Tables 5.1 and 5.2 below.

TABLE 5.1

105 EAST STRATFORD AVENUE GAMMA SURVEYS

DATE	LOCATION	μR/hr MIN.	μR/hr MAX. #	READINGS
Aug 23,	basement	50.4	211	20
1988	first floor			36
	second floor		200.8	41.
	third floor		93.3	20
Sep 17, 1988	first floor	49.2	294.2	32
Sep 17, 1988	basement	49.5	850.8	32
Oct 4, 1988	first floor	108.1	463.9	22
Oct 24,	basement	45.5	1013.2	15
1988	first floor	23.0	105.8	10
	second floor	21.0	51.3	10
Oct 31, 1988	first floor	179	831	19
Nov 2, 1988	first floor	46.1	226.1	20
Nov 3, 1988	first floor	64.6	169.5	2
Nov 7, 1988	second floor	45.9	79.3	21
Nov 7, 1988	second floor south roof	29.4	49.5	55
Nov 8, 1988		31.1	406.7	160
	south porch (interior)	30.6	225.7	105
Nov 11,	south porch	35.0	70.0	25

TABLE 5.1 (continued)

105 EAST STRATFORD AVENUE GAMMA SURVEYS

DATE	LOCATION	μR/hr MIN.	μR/hr MAX. #	READINGS
1988 Nov 12, 1988	(exterior) first floor	68.1	934.1	35
Dec 20, 1988	north porch	29.5	163.5	35

TABLE 5.2

107 EAST STRATFORD AVENUE GAMMA SURVEYS

DATE	LOCATION	μR/hr MIN.	μ R/hr MAX. #	READINGS
Sep 20, 1988	chimney	10.2	13.3	6
Oct 24,	basement	18.5	196.2	22
1988	first floor	23.0	70.0	15
	second floor	21.5	51.3	12
Nov 7, 1988	second floor south roof	15.6	25.5	30
Nov 7, 1988	second floor north roof	31.5	61.1	21
Feb 24, 1989	porch	47.3	100.3	15

6.0 BETA GAMMA SURVEYS

6.1 GENERAL

During the course of the structural dismantlement, the criteria established in the Contractor's Quality Control Plan were used to define the rubble removed from the structure as either clean or contaminated. Material was defined as contaminated if it met one or more of the following: survey results greater than two standard deviations above background, the object had a surface which was painted or treated, or the object had inaccessible areas which could not be surveyed.

Due to the number of objects involved, it is not practical to reproduce a complete list of all the items surveyed. Therefore, the following table provides a summary of the ranges, greater than two standard deviations above background, for the general material categories. Ludlum 177 and Ludlum 44-9 or comparable instruments were used to perform the surveys.

Table 6.1 Activity Ranges for Items Removed During Dismantlement

Item	removed	Range of Beta-Gamma Activity (readings in CPM)			
	Stone	100 to 5000			
	Wood	10 to 10000			
	Plaster	100 to 15000			
	Concrete	10 to 500			

Steel 100 to 1000 Miscellaneous* 10 to 50000

7.0 SURVEYS FOR REMOVABLE ACTIVITY

7.1 GENERAL

Prior to, during, and after dismantlement operations were completed, surveys for removable activity were performed by wiping an area of 100 square centimeters with a cloth filter. The surveys were performed to guide contamination control activities and provide general information regarding the contamination levels encountered during the project. The filters were counted on the Eberline BC-4, which is a scaler with a proportional beta-gamma detector. A percentage of these were also counted for alpha activity using a Ludlum-2000 and a Ludlum 43-10 alpha scintillation detector.

105 EAST STRATFORD SURVEYS

A total of 600 removable activity measurements were made in the 105 East Stratford residence during the project. Of this total, 76 were collected in the basement, 255 were collected on the first floor, 131 were collected on the second floor, and 138 were collected on the third floor. The data generated from these surveys is summarized in Table 7.1 below.

^{*} Miscellaneous includes such items as cloth, glass, plastic, etc.

TABLE 7.1
Removable Beta-Gamma Activity Measurements
105 East Stratford Residence

105 Bas	ement	_				
			/100 cm2			_
Date		Min.	Max.	†	of	Swipes
Sep 16,	1988	*	1600			6
Sep 17,	1988	*	11400			20
Oct 12,		400	23800			10
Jan 31,		*	27400			40
105 Fir	st Flo	or				
Aug 19,	1988	*	*			10
Aug 31,	1988	*	1200			12
Sep 02,		*	300			8
Sep 06,		*	800			10
Sep 07,		*	1500			20
Sep 09,		*	1100			10
Sep 10,		*	1000			10
Sep 15,		*	3200			13
Sep 15,		*	5400			14
Sep 17,		800	13400			20
Oct 12,		*	1400			10
Oct 12,		*	1000			7
Oct 28,		*	200			10
Nov 04,		*	1200			10
Nov 04,		*				
Nov 11,		400	400			10
•			12400			19 7
Nov 15,			2400			
Nov 19,			2200			40
Jan 10,	1989	1800	10400			40
105 Sec	ond Flo	oor				
Aug 31,	1988	*	3000			11
Sep 01,	1988	*	600			9
Sep 06,	1988	*	10000			5
Sep 06,	1988	*	4000			19
Sep 07,	1988	*	2400			20
Sep 09,		*	300			10
Sep 10,		200	600			10
Sep 15,		*	200			7
Sep 17,		200	44400			19
Oct 12,		400	800			4
Oct 19,	1988	*	1000			4
Oct 28,	1988	*	800			5
Nov 04,		200	1400			5
Nov 15,		600	1400			3
			background	Wac	deta	
- 110 a		, u20ve	Lackground	#US	uste	Jocq

TABLE 7.1 (continued) Removable Activity Measurements 105 East Stratford Residence

Date	2		dpm/ Min.	100 cm2 Max.	# of Swipes
105	Thi	d Floo	or		
Aug	20,	1988	*	*	15
Aug	31,	1988	400	3000	11
Sep	06,	1988	*	24900	14
Sep	06,	1988	*	25000	9
Sep	07,	1988	*	2000	20
Sep	15,	1988	*	1600	10
Sep	17,	1988	*	3200	20
Sep	21,	1988	*	1200	5
Oct	10,	1988	200	850	20
Oct	12,	1988	*	400	5
Oct	19,	1988	*	1000	4
Nov	15,	1988	400	700	5

^{* =} no activity above background was detected

7.3 107 EAST STRATFORD SURVEYS

A total of 190 removable activity measurements were made in the 107 East Stratford residence, of which 50 were collected in the basement, 90 were collected on the first floor, 26 were collected on the second floor, and 24 were collected on the third floor. A summary of the survey data is presented in Table 7.2 below.

TABLE 7.2
Removable Beta-Gamma Activity Measurements
107 East Stratford Residence

107 Baseme	ent		
	dpm/100	cm2	
Date	Min.	Max. #	of Swipes
Sep 20, 19	88 200	500	5
Oct 14, 19	88 200	400	10
Oct 19, 19	* 88	400	10
Jan 31, 19	200	800	25
107 First	Floor		
Sep 20, 19	88 100	200	5
Sep 22, 19		*	7
Sep 28, 19	100	400	10

TABLE 7.2 (continued) Removable Beta-Gamma Activity Measurements 107 East Stratford Residence

107 First Floor (cont.)					
		dpm/100			_
Date			Max.	# of	Swipes
Oct 05,	1988	800	3300		10
Oct 14.	1988	*	1000		7
Oct 19.	1988	*	8000		6
OCT 28,	1988	*	200		1.0
Nov 04,	1988	*	1600		10
Nov 11,	1988	*	1000		25
107 Sec	ond Floo	or			
Sep 20,	1988	200	500		5
	1988		*		1
Sep 28,	1988	100	800		10
	1988		200		1
			200		2
	1988		200		5
	1988		600		2
107 Thi	rd Floor	2			
Sep 20,	1988	200	1200		5
	1988		*		10
	1988		400		5
	1988		200		2
•	1988		*		2

^{* =} no activity above background was detected

8.0 PHASE_HAZARD ANALYSIS

Prior to beginning each new task in a job phase, a Phase Hazard Analysis was written, reviewed, and approved. A Phase Hazard Analysis is a document which contains not only a list of the appropriate safety apparel and equipment for the job, but also a general work instruction. This document was verbally discussed with the personnel who were to be involved in the specific job phase. Upon completion of the verbal discussion, each worker was given the opportunity to read the document, which they then signed to confirm their understanding of its contents. A summary of the Phase Hazard Analyses used during the structural dismantlement is provided as Appendix I of this document.

9.0 TOOL BOX SAFETY DISCUSSION

At the close of each work week all site personnel participated in a safety discussion. Safety issues of the week were recapped, and a general outline of the next week's activities was presented. This safety meeting was an interactive meeting between management and labor. A summary of the general topics covered at these meetings during the structural dismantlement is provided in Appendix I of this document.

APPENDIX 4-A OCCUPATIONAL AIR SAMPLES

OCCUPATIONAL AIR SAMPLES

PHASE: DISMANTLEMENT OF PRIMARY STRUCTURE

1.0 GENERAL

This appendix contains the data sets for the occupational air sampling program. Shown below is the a key to identify the types of measurements made.

AIR SAMPLE ID

LOCATION CODE

LANSDOWNE OCCUPATIONAL AIR CONCENTRATION DATA

Sample ID	Location	Samp In	Samp Out	Alpha(μ Ci/ml)
LD-HVO-0001-03 LD-HVO-0002-02 LD-HVO-0003-01 LD-HVO-0005-01 LD-HVO-0008-01 LD-HVO-0009-01 LD-HVO-0010-03 LD-HVO-0011-03 LD-HVO-0014-03	-OT 125 -OT 115 -OT 125 -OT 115 -OT 115 -OT 135 -OT 135	18-Aug-88 19-Aug-88 19-Aug-88 19-Aug-88 20-Aug-88 20-Aug-88 21-Aug-88 22-Aug-88 23-Aug-88	18-Aug-88 19-Aug-88 19-Aug-88 19-Aug-88 20-Aug-88 21-Aug-88 22-Aug-88 23-Aug-88	5.46E-13 -2.05E-13 -2.56E-14 1.54E-13 -5.12E-14 1.02E-13 3.58E-13 -3.21E-14 1.79E-13 7.68E-14
Avg./Phase: 1.10E-13 μCi/m	Phase desc l constructi	ription: on of contain	nment	
LD-HVO-0012-00 LD-HVO-0013-01 LD-HVO-0016-01 LD-HVO-0015-03 LD-HVO-0017-00 LD-HVO-0019-01 LD-HVO-0020-00 LD-HVO-0021-03 LD-HVO-0022-01 LD-HVO-0027-00 Avg./Phase: 9.30E-13 μCi/m	-OT 115 -OT 135 -OT 105 -OT 135 -OT 135 -OT 135 -OT 115 -OT 105 -OT 105 -OT 105 -OT 105 -OT 105	23-Aug-88 23-Aug-88 24-Aug-88 24-Aug-88 24-Aug-88 25-Aug-88 25-Aug-88 26-Aug-88 26-Aug-88 29-Aug-88	23-Aug-88 23-Aug-88 24-Aug-88 24-Aug-88 24-Aug-88 25-Aug-88 25-Aug-88 25-Aug-88 26-Aug-88 26-Aug-88	3.58E-13 1.54E-14 2.57E-13 4.50E-13 6.43E-13 1.02E-12 3.86E-13 5.85E-12 5.78E-13 2.25E-13 4.50E-13
LD-HVO-0025-02 LD-HVO-0024-03 LD-HVO-0026-01 LD-HVO-0023-01 LD-HVO-0032-02 LD-HVO-0030-02 LD-HVO-0035-02 LD-HVO-0031-03 LD-HVO-0034-03 LD-HVO-0038-03 LD-HVO-0039-03 LD-HVO-0039-03 LD-HVO-0040-02 LD-HVO-0041-01	-OT 135 -OT 115 -OT 115 -WL 135 -HI 125 -OT 125 -HI 135 -WL 135 -WL 135 -WL 135 -WL 135	29-Aug-88 29-Aug-88 29-Aug-88 29-Aug-88 30-Aug-88 31-Aug-88 31-Aug-88 31-Aug-88 31-Aug-88 31-Aug-88 31-Aug-88 1-Sep-88 1-Sep-88	29-Aug-88 29-Aug-88 29-Aug-88 29-Aug-88 30-Aug-88 31-Aug-88 31-Aug-88 31-Aug-88 31-Aug-88 31-Aug-88 31-Aug-88 1-Sep-88 1-Sep-88 1-Sep-88	3.86E-13 6.38E-13 1.61E-12 1.09E-12 2.85E-11 3.86E-11 1.14E-11 5.35E-11 9.98E-13 1.11E-11 2.13E-11 3.17E-11 5.32E-12 1.07E-13 8.54E-14 1.98E-13

Sample ID	Location	Samp In	Samp Out	Alpha(μCi/ml)
LD-HVO-0036-02-HI	125	1-Sep-88	1-Sep-88	2.96E-11
LD-HVO-0037-03-HI	135	1-Sep-88	1-Sep-88	3.54E-12
LD-HVO-0043-01-OT	115	2-Sep-88	2-Sep-88	1.48E-11
LD-HVO-0042-03-OT	135	2-Sep-88	2-Sep-8-	1.42E-13
LD-HVO-0044-03-OT	135	6-Sep-88	6−Sep−8₺	4.30E-12
LD-HVO-0045-01-OT	115	6-Sep-88	6-Sep-88	1.30E-11
LD-HVO-0046-01-OT	115	6-Sep-88	6-Sep-88	8.70E-11
LD-HVO-0047-02-HI	125	7-Sep-88	7-Sep-88	2.08E-11
LD-HVO-0049-02-HI	125	7-Sep-88	7-Sep-88	5.31E-11
LD-HVO-0051-03-OT	135	7-Sep-88	7-Sep-88	2.75E-12
LD-HVO-0048-03-HI	135	7-Sep-88	7-Sep-88	1.27E-11
LD-HVO-0050-02-OT	125	7-Sep-88	7-Sep-88	7.97E-12
LD-HVO-0058-02-CE	125	8-Sep-88	8-Sep-88	4.43E-11
LD-HVO-0053-02-OT	125	8-Sep-88	8-Sep-88	1.00E-10
LD-HVO-0054-02-OT	125	8-Sep-88	8-Sep-88	1.70E-11
LD-HVO-0059-02-CE	125	8-Sep-88	8-Sep-88	4.28E-12
LD-HVO-0056-02-WL	125	8-Sep-88	8-Sep-88	3.46E-11
LD-HVO-0052-03-WL	135	8-Sep-88	8-Sep-88	4.73E-11
LD-HVO-0055-02-OT	125	8-Sep-88	8-Sep-88	1.95E-11
LD-HVO-0057-02-CE	125	8-Sep-88	8-Sep-88	3.72E-11
LD-HVO-0060-02-OT	125	9-Sep-88	9-Sep-88	1.80E-11
LD-HVO-0062-02-CE	125	9-Sep-88	9-Sep-88	1.77E-10
LD-HVO-0061-02-HI	125	9-Sep-88	9-Sep-88	7.85E-11
LD-HVO-0065-02-OT	125	10-Sep-88	10-Sep-88	3.53E-11
LD-HVO-0070-02-HI	125	10-Sep-88	10-Sep-88	1.87E-12
LD-HVO-0069-02-HI	125	10-Sep-88	10-Sep-88	5.68E-12
LD-HVO-0066-02-OT	125	10-Sep-88	10-Sep-88	2.10E-11
LD-HVO-0068-02-HI	125	10-Sep-88	10-Sep-88	9.06E-12
LD-HVO-0067-02-HI	125	10-Sep-88	10-Sep-88	3.02E-11
LD-HVO-0064-02-HI	125	10-Sep-88	10-Sep-88	3.84E-11
LD-HVO-0071-02-WL		12-Sep-88	12-Sep-88	1.25E-11
LD-HVO-0072-01-HI	115	13-Sep-88	13-Sep-88	1.68E-10
LD-APO-0076-01-WL		14-Sep-88	14-Sep-88	2.10E-11
LD-HVO-0077-01-WL	115	14-Sep-88	14-Sep-88	3.50E-10
LD-HVO-0082-01-HI	115	15-Sep-88	15-Sep-88	1.30E-10
LD-HVO-0079-01-WL		15-Sep-88	15-Sep-88	5.07E-10
LD-HVO-0078-01-WL		15-Sep-88	15-Sep-88	7.73E-10
LD-HVO-0084-01-WL		15-Sep-88	15-Sep-88	5.56E-11
LD-HVO-0080-03-OT	135	15-Sep-88	15-Sep-88	1.80E-10
LD-HVO-0086-01-OT	115	16-Sep-88	16-Sep-88	1.62E-10
LD-HVO-0090-00-OT	105	16-Sep-88	16-Sep-88	5.07E-11
LD-HVO-0091-00-OT	105	16-Sep-88	16-Sep-88	1.81E-11
LD-HVO-0088-00-OT	105	16-Sep-88	16-Sep-88	8.77E-11
LD-HVO-0085-01-WL		16-Sep-88	16-Sep-88	7.65E-10
LD-HVO-0087-01-OT	115	16-Sep-88	16-Sep-88	3.20E-10
LD-HVO-0089-00-OT	105	16-Sep-88	16-Sep-88	1.04E-11
LD-HVO-0089-00-01 LD-HVO-0092-01-WL		10-Sep-88	17-Sep-88	5,18E-11
TO HAC GOAS OT MI	110	T1-265-00	T12eh00	7 * TODTT

Avg./Phase: 7.68E-11µCi/ml

Phase description: dismantlement of interior 105

Sample ID	Location	Samp In	Samp Out	Alpha(μCi/ml)
LD-HVO-0094-01-H LD-HVO-0095-01-0		19-Sep-88 19-Sep-88	19-Sep-88 19-Sep-88	-1.44E-13 2.10E-12
Avg./Phase:	Phase desc	_	15 BGP 00	
9.78E-13 μCi/ml		of 107 interi	.or	
LD-HVO-0093-01-W		19-Sep-88	19-Sep-88	2.85E-10
LD-HVO-0096-03-0		19-Sep-88	19-Sep-88	7.04E-12
LD-HVO-0099-01-0		20-Sep-88	20-Sep-88	1.02E-11
LD-HVO-0102-03-0		20-Sep-83	20-Sep-88	1.20E-12
LD-HVO-0101-03-0		20-Sep-88	20-Sep-88	1.88E-11 3.75E-12
LD-HVO-0100-03-0 LD-HVO-0098-01-0		20-Sep-88 20-Sep-88	20-Sep-88 20-Sep-88	-9.61E-14
LD-HVO-0104-03-W		21-Sep-88	21-Sep-88	2.34E-11
LD-HVO-0103-03-0		21-Sep-88	21-Sep-88	2.42E-12
LD-HVO-0103-03-0		21-Sep-88	21-Sep-88	1.28E-11
LD-HVO-0105-03-H		21-Sep-88	21-Sep-88	3.84E-13
LD-HVO-0106-03-W		21-Sep-88	21-Sep-88	8.11E-12
LD-HVO-0110-03-0		22-Sep-88	22-Sep-88	3.74E-11
LD-HVO-0109-03-W		22-Sep-88	22-Sep-88	3.04E-11
LD-HVO-0111-03-H	I 137	23-Sep-88	23-Sep-88	9.33E-14
LD-HVO-0116-03-0	T 137	23-Sep-88	23-Sep-88	2.16E-12
LD-HVO-0113-02-W		23-Sep-88	23-Sep-88	9.09E-12
LD-HVO-0117-02-W		23-Sep-88	23-Sep-88	1.26E-11
LD-HVO-0118-02-W		24-Sep-88	24-Sep-88	3.69E-11
LD-HVO-0121-02-W		24-Sep-88	24-Sep-88	9.89E-12
LD-HVO-0120-02-W		24-Sep-88	24-Sep-88	1.14E-11
LD-HVO-0119-02-0		24-Sep-88	24-Sep-88	2.37E-11
LD-HVO-0122-02-W		25-Sep-88	25-Sep-88	1.58E-10
LD-HVO-0124-01-W		26-Sep-88	26-Sep-88	1.25E-11
LD-HVO-0125-02-W		26-Sep-88	26-Sep-88	4.64E-12
LD-HVO-0123-02-W		26-Sep-88	26-Sep-88	1.90E-11
LD-HVO-0126-02-C		27-Sep-88	27-Sep-88	1.05E-11
LD-HVO-0127-02-C LD-HVO-0129-02-C		27-Sep-88	27-Sep-88	2.02E-12 2.88E-13
LD-HVO-0129-02-C		27-Sep-88 27-Sep-88	27-Sep-88 27-Sep-88	5.28E-13
LD-HVO-0130-02-C		28-Sep-88	27-Sep-88 28-Sep-88	5.04E-12
LD-HVO-0133-01-H		28-Sep-88	28-Sep-88	3.86E-11
LD-HVO-0132-01-H		28-Sep-88	28-Sep-88	3.31E-10
LD-HVO-0135-01-C		28-Sep-88	28-Sep-88	3.97E-11
LD-HVO-0134-01-0		28-Sep-88	28-Se _.)-88	5.74E-13
LD-HVO-0137-01-W		29-Sep-88	29-Sep-88	1.68E-10
				

Sample ID	Location	Samp In	Samp Out	Alpha(μCi/ml)
LD-HVO-0138-01-	WL 117	29-Sep-88	29-Sep-88	5.15E-11
LD-HVO-0141-01-		30-Sep-88	30-Sep-88	2.25E-10
LD-HVO-0140-00-		30-Sep-88	30-Sep-88	1.49E-12
LD-HVO-0139-00-		30-Sep-88	30-Sep-88	5.51E-11
				
Avg./Phase:	Phase desc	ription:		
$4.45E-11 \mu Ci/ml$	dismantlem	ent 107 inte	rior	
TD 100 0700 01	OF 117	2 0-1 00	0.0-1.00	0.407.44
LD-APO-0723-01-		3-Oct-88	3-0ct-88	3.40E-14
LD-HVO-0146-00-		4-Oct-88	4-0ct-88	5.30E-11
LD-HVO-0148-00-		5-0ct-88	5-0ct-88	1.67E-12
LD-HVO-0147-00-		5-Oct-88	5-0ct-88	1.45E-11
LD-APO-0724-01-		6-0ct-88	6-0ct-88	1.20E-13
LD-APO-0725-01-	OT 117	8-0ct-88	8-0ct-88	3.50E-14
Avg./Phase:	Phase desc	ription: pre	narations fo	~
1.16E-11 μ Ci/ml		lismantlement		T
1.10Ε-11 μC1/111	excerior c	itsmallcremellc	105	
LD-LPO-0170-03-	CE 135	10-Oct-88	10-0ct-88	4.12E-12
LD-HVO-0163-03-	OT 135	10-Oct-88	10-0ct-88	3.39E-12
LD-HVO-0166-03-	CE 135	10-0ct-88	10-0ct-88	9.46E-12
LD-HVO-0164-03-	CE 135	10-0ct-88	10-0ct-88	3.55E-12
LD-HVO-0168-03-	CE 135	10-Oct-88	10-0ct-88	2.84E-11
LD-HVO-0169-03-	CE 135	10-Oct-88	10-0ct-88	2.07E-11
LD-HVO-0167-03-	CE 135	10-Oct-88	10-0ct-88	9.95E-12
LD-HVO-0165-03-		10-Oct-88	10-0ct-88	4.65E-12
LD-HVO-0171-03-		11-Oct-88	11-0ct-88	9.12E-12
LD-HVO-0178-03-		11-Oct-88	11-0ct-88	6.46E-11
LD-HVO-0174-03-		11-Oct-88	11-Oct-88	1.19E-11
LD-HVO-0177-03-		11-Oct-88	11-0ct-88	2.58E-11
LD-HVO-0172-03-		11-Oct-88	11-0ct-88	6.57E-12
LD-HVO-0175-03-	- -	11-Oct-88	11-0ct-88	5.83E-12
LD-HVO-0176-03-		11-Oct-88	11-0ct-88	5.09E-11
LD-HVO-0182-03-		12-Oct-88	12-Oct-88	1.43E-11
LD-HVO-0181-03-		12-Oct-88	12-Oct-88	7.49E-12
LD-HVO-0179-03-		12-Oct-88	12-Oct-88	7.54E-12
LD-APO-0191-03-		12-Oct-88	13-Oct-88	2.40E-12
LD-HVO-0189-03-		13-Oct-88	13-0ct-88	1.58E-10
LD-HVO-0184-03-		13-Oct-88	13-0ct-88	2.20E-11
LD-APO-0192-03-		13-Oct-88	14-Oct-88	7.51E-13
LD-HVO-0190-03-		13-Oct-88	13-0ct-88	1.36E-11
LD-HVO-0190-03-		13-0ct-88	13-0ct-88	2.17E-12
LD-HVO-0186-03-		13-0ct-88	13-0ct-88	8.97E-11
LD-APO-0196-03-		13-0ct-88	14-0ct-88	7.87E-13
LD-HVO-0185-03-		13-0ct-88	13-0ct-88	7.87E-13 2.46E-11
LD-HVO-0185-03-		13-0ct-88 13-0ct-88	13-0ct-88	2.46E-11 6.51E-12
LD-HVO-0187-03-				
TD-UAC-0188-03-	WL 135	13-Oct-88	13-0ct-88	2.73E-10

Sample ID	Location	Samp In	Samp Out	Alpha(μCi/ml)
LD-LPO-0200-03-0		14-0ct-88	14-0ct-88	2.09E-12
LD-HVO-0194-03-W	VL 135	14-0ct-88	14-0ct-88	5.41E-12
LD-HVO-0193-03-W	VL 135	14-0ct-88	14-0ct-88	1.12E-10
LD-HVO-0195-01-0	T 115	14-0ct-88	14-0ct-88	1.64E-11
Avg./Phase: 3.08E-11 μCi/ml	Phase des exterior	cription: dismantlement	3rd floor 1	.05
LD-HVO-0197-03-0	CE 137	14-0ct-88	14-0ct-88	2.92E-12
LD-HVO-0199-03-0	CE 137	14-0ct-88	14-0ct-88	4.66E-12
LD-HVO-0198-03-0	CE 137	14-0ct-88	14-0ct-88	4.66E-12
LD-HVO-0201-03-0	CE 137	15-0ct-88	15-0ct-88	3.28E-11
LD-HVO-0202-03-0	E 137	15-0ct-88	15-0ct-88	7.69E-12
LD-HVO-0206-03-0	CE 137	15-0ct-88	15-0ct-88	4.62E-12
LD-HVO-0205-03-0	CE 137	15-0ct-88	15-0ct-88	6.30E-12
LD-HVO-0203-03-0		15-0ct-88	15-0ct-88	2.29E-12
LD-HVO-0207-03-0		15-0ct-88	15-0ct-88	4.19E-13
LD-HVO-0204-03-0		15-0ct-88	15-0ct-88	1.45E-11
LD-HVO-0208-03-0		16-0ct-88	17-0ct-88	1.82E-13
LD-APO-0225-03-0		17-0ct-88	18-Oct-88	1.05E-13
LD-HVO-0216-03-0		17-0ct-88	17-Oct-88	9.78E-12
LD-HVO-0215-03-W		17-0ct-88	17-0ct-88	4.48E-12
LD-HVO-0208-03-0		17-0ct-88	17-Oct-88	7.64E-12
LD-HVO-0214-03-W		17-0ct-88	17-0ct-88	1.51E-11
LD-HVO-0213-03-V		17-0ct-88	17-0ct-88	6.30E-13
LD-HVO-0211-03-V		17-0ct-88	17-0ct-88	4.71E-12
LD-HVO-0209-02-0		17-0ct-88	17-0ct-88	2.65E-12
LD-HVO-0210-03-0		17-Oct-88	17-0ct-88	1.25E-12
LD-HVO-0212-03-V		17-Oct-88	17-0ct-88	2.42E-11
LD-APO-0216-03-0		17-Oct-88	17-Oct-88	1.45E-12
LD-LPO-0224-03-0		18-0ct-88	18-0ct-88	1.43E-12 1.29E-12
LD-HVO-0221-03-0		18-0ct-88	18-0ct-88	3.45E-12
LD-HVO-0227-03-0		18-0ct-88	19-0ct-88	6.13E-13
			19-00t-88	
LD-HVO-0220-03-0		18-Oct-88		2.83E-11 4.12E-12
LD-HVO-0219-03-0		18-Oct-88	18-Oct-88	
LD-HVO-0218-01-0		18-Oct-88	18-Oct-88	2.63E-12
LD-HVO-0224-02-0		18-Oct-88	18-Oct-88	2.33E-12
LD-HVO-0222-03-0		18-Oct-88	18-Oct-88	3.31E-12
LD-HVO-0223-01-0		18-Oct-88	18-Oct-88	2.33E-12
LD-HVO-0217-03-0		18-Oct-88	18-Oct-88	9.39E-12
LD-HVO-0231-03-V		19-0ct-88	19-0ct-88	5.76E-12
LD-HVO-0229-01-0		19-0ct-88	19-0ct-88	1.29E-12
LD-HVO-0228-01-0		19-0ct-88	19-0ct-88	2.49E-12
LD-HVO-0230-03-0		19-0ct-88	19-0ct-88	1.10E-11
LD-HVO-0233-03-V		20-0ct-88	20-0ct-88	2.59E-12
T.D. 111700227. 02. 1	7T 107	20 00+ 00	20 0~+ 00	2 167 12

20-Oct-88

20-0ct-88

20-Oct-88

20-Oct-88

20-Oct-88

20-Oct-88

2.16E-12

4.71E-12

3.45E-12

137

137

137

LD-HVO-0237-03-WL

LD-HVO-0238-03-WL

LD-APO-0240-03-OT

Sample ID	Location	Samp In	Samp Out	Alpha(μCi/ml)
LD-LPO-0241-03-WL	137	20-Cct-88	20-0ct-88	5.04E-12
LD-HVO-0234-03-WL		20-0ct-88	20-0ct-88	1.20E-12
LD-HVO-0232-03-WL		20-0ct-88	20-0ct-88	1.49E-12
LD-HVO-0239-13-OT		20-Oct-88	20-0ct-88	2.21E-10
LD-HVO-0236-01-OT		20-Oct-88	20-0ct-88	1.34E-12
LD-HVO-0246-03-WL		21-Oct-88	21-Oct-88	6.06E-12
LD-HVO-0247-03-WL		21-Oct-88	21-Oct-88	1.01E-12
LD-LPO-0249-03-WL		21-Oct-88	21-Oct-88	3.15E-12
LD-HVO-0242-03-WL		21-Oct-88	21-Oct-88	3.45E-12
LD-APO-0248-03-OT		21-Oct-88	21-0ct-88	1.34E-13
LD-HVO-0243-01-OT		21-Oct-88	21-Oct-88	1.81E-12
LD-HVO-0244-03-WL		21-0ct-88	21-0ct-88	1.30E-12
LD-HVO-0252-01-OT		22-Oct-88	22-0ct-88	2.63E-12
LD-LPO-0254-03-CE	137	22-0ct-88	22-0ct-88	1.23E-11
LD-APO-0263-23-OT	107	22-0ct-88	24-Oct-88	7.58E-14
	Phase desc			
9.20E-12 μ Ci/ml	exterior d	ismantlement	3rd floor 1	07
ID 11110 00E1 00 OE	125	22 00+ 00	22 0-+ 00	1 500 11
LD-HVO-0251-03-CE		22-Oct-88	22-Oct-88	1.52E-11
LD-HVO-0250-03-CE		22-Oct-88	22-Oct-88	2.57E-12
LD-APO-0255-03-OT		22-Oct-88	23-Oct-88	1.05E-12
LD-HVO-0258-02-CE		24-Oct-88	24-Oct-88	6.92E-11
LD-LPO-0263-23-OT		24-Oct-88	24-Oct-88	1.07E-11
LD-HVO-0260-02-WL		24-Oct-88	24-Oct-88	1.94E-12
LD-HVO-0259-01-OT		24-Oct-88	24-Oct-88	8.03E-11
LD-HVO-0257-01-OT		24-Oct-88	24-Oct-88	5.24E-13
LD-HVO-0261-02-WL		24-Oct-88	24-Oct-88	5.68E-12
LD-HVO-0256-03-CE		24-0ct-88	24-0ct-88	5.35E-13
LD-LPO-0272-02-WL	127	25-0ct-88	25-Oct-88	2.13E-11
LD-HVO-0269-02-OT	127	25-0ct-88	25-Oct-88	5.25E-11
LD-HVO-0268-02-WL	127	25-0ct-88	25-Oct-88	1.42E-11
LD-HVO-0265-01-OT		25-0ct-88	25-Oct-88	5.09E-12
LD-HVO-0266-02-WL		25-Oct-88	25-Oct-88	4.28E-12
LD-HVO-0270-02-WL		25-Oct-88	25-Oct-88	3.91E-11
LD-HVO-0271-02-WL		25-Oct-88	25-Oct-88	4.36E-12
LD-APO-0273-02-WL		25-Oct-88	26-Oct-88	2.30E-13
LD-HVO-0264-02-WL		25-Oct-88	25-Oct-88	3.77E-11
LD-HVO-0277-02-OT		26-0ct-88	26-Oct-88	5.96E-12
LD-HVO-0281-02-WL		26-0ct-88	26-Oct-88	2.19E-12
LD-HVO-0281-02-WE		26-0ct-88	26-0ct-88	
		26-00t-88 26-0ct-88		1.14E-11
LD-LPO-0274-02-WL			26-Oct-88	3.76E-12
LD-HVO-0278-01-OT		26-Oct-88	26-0ct-88	2.53E-11
LD-HVO-0276-01-OT		26-0ct-88	26-Oct-88	1.58E-12
LD-HVO-0279-02-OT		26-Oct-88	26-Oct-88	2.29E-12
LD-APO-0291-23-OT		26-0ct-88	27-Oct-88	1.66E-12
LD-HVO-0283-01-OT		27-0ct-88	27-Oct-88	2.47E-12
LD-HVO-0289-02-WL	127	27-Oct-88	27-0ct-88	3.62E-11

Sample ID	Lo	cation	Samp In	Samp Out	Alpha(μCi/ml)
LD-HVO-0284-01-		117	27-0ct-88	27-0ct-88	1.68E-12
LD-HVO-0288-01-		117	27-0ct-88	27-Oct-88	2.05E-12
LD-HVO-0285-01-		127	27-0ct-88	27-0ct-88	4.85E-12
LD-HVO-0285-02-		127	27-0ct-88	27-0ct-88	3.26E-12
LD-HVO-0287-02-		127	27-0ct-88	27-0ct-88	1.84E-11
LD-APO-0296-23-		105	27-0ct-88	28-0ct-88	3.88E-11
LD-HVO-0290-02-		103	27-0ct-88	27-0ct-88	
					6.06E-12
LD-LPO-0292-02-		127	27-0ct-88	27-Oct-88	4.34E-12
LD-HVO-0294-02-		127	28-0ct-88	28-Oct-88	2.98E-12
LD-LPO-0295-02-	мт	127	28-Oct-88	28-0ct-88	6.26E-11
Avg./Phase:			ription:		
1.55E-11 μ Ci/ml	ext	erior d	lismantlement	2nd floor 1	.07
LD-APO-0303-23-	·OT	105	28-Oct-88	31-0ct-88	4.81E-14
LD-HVO-0297-02-	·CE	125	31-0ct-88	31-0ct-88	3.12E-12
LD-HVO-0301-02-	WL	125	31-0ct-88	31-0ct-88	5.04E-12
LD-HVO-0299-02-	·CE	125	31-0ct-88	31-0ct-88	3.12E-12
LD-HVO-0298-02-	CE	125	31-0ct-88	31-0ct-88	9.75E-12
LD-HVO-0302-02-	WL	125	31-0ct-88	31-Oct-88	5.60E-11
LD-LPO-0304-02-	WL	125	31-0ct-88	31-Oct-88	3.15E-12
LD-HVO-0300-02-		125	31-0ct-88	31-Oct-88	1.28E-11
LD-HVO-0307-02-		125	1-Nov-88	1-Nov-88	1.52E-11
LD-HVO-0306-01-		115	1-Nov-88	1-Nov-88	4.47E-12
LD-HVO-0305-02-		125	1-Nov-88	1-Nov-88	2.71E-12
LD-HVO-0309-01-		115	1-Nov-88	1-Nov-88	5.73E-11
LD-HVO-0311-02-		125	1-Nov-88	1-Nov-88	1.84E-12
LD-APO-0321-12-		105	1Nov-88	2-Nov-88	3.51E-13
LD-HVO-0308-01-		115	1-Nov-88	1-Nov-88	6.16E-12
LD-APO-0310-12-		105	1-Nov-88	1-Nov-88	9.19E-12
LD-HVO-0314-23-		105	2-Nov-88	2-Nov-88	6.33E-11
LD-HVO-0315-23-		105	2-Nov-88	2-Nov-88	3.44E-10
LD-HVO-0316-02-		125	2-Nov-88	2-Nov-88	6.81E-11
LD-HVO-0312-23-		105	2-Nov-88	2-Nov-88	1.41E-11
LD-HVO-0317-02-		125	2-Nov-38	2-Nov-88	3.05E-11
LD-HVO-0317-02-		115	2-Nov-88	2-Nov-88	7.66E-11
LD-HVO-0318-01- LD-HVO-0313-23-					
		105	2-Nov-88	2-Nov-88	5.41E-12
LD-APO-0330-12-		105	2-Nov-88	3-Nov-88	2.82E-12
LD-LPO-0320-02-		125	2-Nov-88	2-Nov-88	1.00E-11
LD-HVO-0322-02-		125	3-Nov-88	3-Nov-88	2.59E-10
LD-HVO-0329-02-	—	125	3-Nov-88	3-Nov-88	1.50E-11
LD-HVO-0327-02-		125	3-Nov-88	3-Nov-88	1.02E-10
LD-HVO-0328-01-		115	3-Nov-88	3-Nov-88	3.23E-10
LD-HVO-0325-02-		125	3-Nov-88	3-Nov-88	3.89E-11
LD-LPO-0331-02-		125	3-Nov-88	3-Nov-88	1.59E-11
LD-HVO-0326-01-		115	3-Nov-88	3-Nov-88	6.96E-11
LD-HVO-0323-02-		125	3-Nov-83	3-Nov-88	1.54E-10
LD-HVO-0324-02-	WL	125	3-Nov-88	3-Nov-88	4.18E-10

Sample ID	Location	Samp In	Samp Out	Alpha(μCi/ml)
LD-HVO-0335-02-WI	125	4-Nov-88	4-Nov-88	2.35E-11
LD-HVO-0334-02-WI		4-Nov-88	4-Nov-88	7.87E-11
LD-HVO-1334-01-07		4-Nov-88	4-Nov-88	1.51E-10
LD-HVO-0336-02-WI		4-Nov-88	4-Nov-88	4.23E-12
LD-HVO-0332-02-WI		4-Nov-88	4-Nov-88	8.38E-11
LD-LPO-0338-01-WI		4-Nov-88	4-Nov-88	7.98E-12
LD-APO-0346-02-07		4-Nov-88	5-Nov-88	3.26E-12
LD-HVO-0337-01-07		4-Nov-88	4-Nov-88	6.83E-11
LD-HVO-0333-02-WI		4-Nov-88	4-Nov-88	1.58E10
LD-HVO-0343-02-WI		5-Nov-88	5-Nov-88	7.54E-11
LD-HVO-0342-01-WI		5-Nov-88	5-Nov-88	4.75E-12
LD-HVO-0344-02-WI		5-Nov-88	5-Nov-88	4.08E-12
LD-APO-0355-01-07		5-Nov-88	7-Nov-88	2.96E-13
LD-HVO-0340-01-07		5-Nov-88	5-Nov-88	5.49E-11
LD-HVO-0342-02-WI		5-Nov-88	5-Nov-88	4.75E-12
LD-HVO-0341-01-07		5-Nov-88	5-Nov-88	2.45E-11
LD-LPO-0345-02-03	_	5-Nov-88	5-Nov-88	2.25E-12
LD-APO-0360-01-07		7-Nov-88	8-Nov-88	5.20E-13
LD-HVO-0351-02-WI		7-Nov-88	7-Nov-88	1.62E-11
LD-HVO-0350-02-WI		7-Nov-88	7-Nov-88	3.01E-11
LD-HVO-0348-01-07		7-Nov-88	7-Nov-88	2.24E-11
LD-HVO-0347-01-03		7-Nov-88	7-Nov-88	2.36E-11
LD-HVO-0352-01-07		7-Nov-88	7-Nov-88	8.77E-11
LD-HVO-0349-02-WI		7-Nov-88	7-Nov-88	1.28E-10
LD-HVO-0356-02-01		8-Nov-88	8-Nov-88	7.33E-11
LD-HVO-0357-02-WI		8-Nov-88	8-Nov-88	1.04E-11
LD-APO-0371-01-07		8-Nov-88	9-Nov-88	3.99E-13
LD-HV0-0358-01-CH		8-Nov-88	8-Nov-88	3.31E-12
LD-LPO-0361-01-07		8-Nov-88	8-Nov-88	9.16E-13
			0 1101 00	J. 10H 15
Avg./Phase:	Phase desc			
5.31E-11 μ Ci/ml	exterior d	lismantlement	2nd floor 1	05
LD-HVO-0359-01-CF	E 117	8-Nov-88	8-Nov-88	1.84E-11
LD-APO-0386-01-07	r 117	9-Nov-88	10-Nov-88	3.00E-12
LD-LPO-0387-01-CF	3 117	10-Nov-88	10-Nov-88	4.92E-12
LD-HVO-0383-01-WI	117	10-Nov-88	10-Nov-88	1.32E-11
LD-HVO-0381-01-07	117	10-Nov-88	10-Nov-88	1.35E-12
LD-HVO-0376-01-SA		10-Nov-88	10-Nov-88	5.64E-12
LD-HVO-0380-01-WI	117	10-Nov-88	10-Nov-88	4.01E-12
LD-APO-0394-01-07		10-Nov-88	11-Nov-88	1.09E-12
LD-HVO-0378-01-07		10-Nov-88	10-Nov-88	8.24E-12
LD-HVO-0385-01-CF		10-Nov-88	10-Nov-88	2.74E-11
LD-HVO-0377-01-WI		10-Nov-88	10-Nov-88	2.21E-11
LD-HVO-0372-01-01		10-Nov-88	10-Nov-88	2.01E-12
LD-HVO-0375-01-01		10-Nov-88	10-Nov-88	1.35E-12
LD-HVO-0382-01-57		10-Nov-88	10-Nov-88	6.20E-12
LD-HVO-0379-01-SA		10-Nov-88	10-Nov-88	4.99E-12
		, 		

Sample ID	Location	Samp In	Samp Out	Alpha (μCi/ml)
LD-HVO-0384-01- LD-HVO-0373-01-		10-Nov-88 10-Nov-88	10-Nov-88 10-Nov-88	1.78E-11 5.13E-12
LD-LPO-0395-01- LD-HVO-0388-01-	-OT 115	11-Nov-88 11-Nov-88	11-Nov-88 11-Nov-88	1.34E-11 2.67E-12
LD-HVO-0389-01-	-WL 117	11-Nov-88	11-Nov-88	1.63E-11
LD-HVO-0390-01-	-OT 117	11-Nov-88	11-Nov-88	9.85E-12

Avg./Phase: Phase description: 9.00E-12 μ Ci/ml exterior dismantlement porch and 1st floor 107

LD-HVO-0391-01-CE	115	11-Nov-88	11-Nov-88	3.24E-10
LD-HVO-0392-01-CE	115	11-Nov-88	11-Nov-88	9.80E-11
LD-HVO-0393-01-CE	115	11-Nov-88	11-Nov-88	1.45E-10
LD-APO-0410-01-OT	115	11-Nov-88	14-Nov-88	1.50E-12
LD-HVO-0396-01-WL	115	12-Nov-88	12-Nov-88	4.26E-10
LD-HVO-0397-01-WL	115	12-Nov-88	12-Nov-88	9.25E-10
LD-LPO-0398-01-WL	115	12-Nov-88	12-Nov-88	1.44E-11
LD-HVO-0407-01-OT	115	14-Nov-88	14-Nov-88	6.47E-11
LD-HVO-0403-01-CE	115	14-Nov-88	14-Nov-88	2.04E-11
LD-HVO-0402-01-CE	115	14-Nov-88	14-Nov-88	5.84E-12
LD-HVO-0405-01-CE	115	14-Nov-88	14-Nov-88	7.04E-12
LD-HVO-0400-01-CE	117	14-Nov-88	14-Nov-88	8.60E-13
LD-LPO-0409-01-OT	115	14-Nov-88	14-Nov-88	1.81E-11
LD-HVO-0399-01-CE	117	14-Nov-88	14-Nov-88	8.60E-13
LD-HVO-0406-01-OT	115	14-Nov-88	14-Nov-88	3.40E-11
LD-HVO-0404-01-CE	115	14-Nov-88	14-Nov-88	9.90E-12
LD-HVO-0408-01-CE	115	14-Nov-88	14-Nov-88	1.93E-11
LD-HVO-0401-01-CE	115	14-Nov-88	14-Nov-88	5.21E-12
LD-HVO-0415-01-WL	115	15-Nov-88	15-Nov-88	6.10E-11
LD-HVO-0411-01-SA	115	15-Nov-88	15-Nov-88	3.09E-12
LD-LPO-0416-01-WL	115	15-Nov-88	15-Nov-88	2.54E-11
LD-HVO-0412-01-SA	115	15-Nov-88	15-Nov-88	4.69E-12
LD-HVO-0414-01-HI	115	15-Nov-88	15-Nov-88	3.74E-10
LD-HVO-0413-01-SA	115	15-Nov-88	15-Nov-88	3.97E-11
LD-HVO-0420-01-WL	115	16-Nov-88	16-Nov-88	1.77E-11
LD-HVO-0422-01-WL	115	16-Nov-88	16-Nov-88	9.50E-11
LD-HVO-0417-01-WL	115	16-Nov-88	16-Nov-88	2.74E-10
LD-HVO-0418-01-WL	115	16-Nov-88	16-Nov-88	1.20E-10
LD-APO-0425-01-OT	115	16-Nov-88	16-Nov-88	7.56E-12
LD-HVO-0421-01-WL	115	16-Nov-88	16-Nov-88	1.21E-10
LD-LPO-0424-01-OT	115	16-Nov-88	16-Nov-88	1.69E-11
LD-HVO-0419-01-WL	115	16-Nov-88	16-Nov-88	1.20E-10
LD-HVO-0423-01-OT	115	16-Nov-88	16-Nov-88	1.32E-10
LD-HVO-0427-01-WL	115	17-Nov-88	17-Nov-88	1.41E-11
LD-HVO-0430-01-WL	115	17-Nov-88	17-Nov-88	1.01E-10
LD-HVO-0426-01-WL	115	17-Nov-88	17-Nov-88	1.36E-10
LD-LPO-0432-01-OT	115	17-Nov-88	17-Nov-88	1.00E-11

Sample ID	Location	Samp In	Samp Out	Alpha(μCi/ml)
LD-APO-0431-01-OT	115	17-Nov-88	17-Nov-88	4.69E~13
LD-HVO-0428-01-WL		17-Nov-88	17-Nov-88	8.43E-11
LD-HVO-0429-01-WL	115	17-Nov-88	17-Nov-88	1.64E-11
LD-HVO-0436-01-WL	115	18-Nov-88	18-Nov-88	1.45E-10
LD-HVO-0433-01-OT	115	18-Nov-88	18-Nov-88	3.64E-11
LD-APO-0437-01-OT	115	18-Nov-88	18-Nov-88	2.22E-13
LD-HVO-0435-01-WL	115	18-Nov-88	18-Nov-88	1.51E-10
LD-HVO-0434-01-WL	115	18-Nov-88	18-Nov-88	2.34E-11
Avg./Phase:	Phase des	cription:		
		dismantlement	porch and 1	st floor 105
•				
LD-APO-0709-01-OT	115	10-Jan-88	10-Jan-88	3.20E-13
LD-APO-0707-01-OT	115	10-Jan-88	10-Jan-88	3.70E-12
LD-APO-0706-01-OT	115	10-Jan-88	10-Jan-88	9.50E-13
LD-APO-0711-01-OT	115	10-Jan-88	10-Jan-88	9.90E-12
LD-APO-0704-01-OT	115	10-Jan-88	10-Jan-88	8.10E-13
LD-APO-0708-01-OT	115	10-Jan-88	10-Jan-88	4.10E-13
LD-APO-0710-01-OT	115	10-Jan-88	10-Jan-88	2.30E-11
LD-APO-0712-01-OT	115	10-Jan-88	10-Jan-88	2.40E-12
LD-APO-0703-01-OT	115	10-Jan-88	10-Jan-88	2.50E-12
LD-APO-0718-01-OT	117	11-Jan-88	11-Jan-88	9.10E-13
LD-APO-0717-01-OT	115	11-Jan-88	11-Jan-88	1.30E-12
LD-APO-0714-01-OT	115	11-Jan-88	11-Jan-88	5.40E-12
LD-APO-0715-01-OT	115	11-Jan-88	11-Jan-88	1.00E-11
LD-APO-0720-01-OT	117	11-Jan-88	11-Jan-88	2.40E-13
LD-APO-0716-01-OT	115	11-Jan-88	11-Jan-88	3.80E-12
LD-APO-0722-01-OT	117	11-Jan-88	11-Jan-88	6.00E-13
LD-APO-0721-01-OT	117	11-Jan-88	11-Jan-88	6.50E-13
LD-LPO-0713-01-OT	115	11-Jan-88	11-Jan-88	3.10E-13
LD-APO-0719-01-OT	117	11-Jan-88	11-Jan-88	3.80E-13
Avg./Phase:	Phase des	cription:		
3.56E-12 μ Ci/ml	exterior (dismantlement	105 & 107 p	orch flcors
TD TD0 0044 00 00		9 Pai 55		
LD-LPO-0811-00-OT	107	1-Feb-88	1-Feb-88	1.40E-12
LD-APO-0809-00-WL	107	1-Feb-88	1-Feb-88	8.60E-13
LD-APO-0806-00-OT	107	1-Feb-88	1-Feb-88	3.90E-13
LD-APO-0808-00-WL	107	1-Feb-88	1-Feb-88	6.40E-13
LD-APO-0807-00-WL	107	1-Feb-88	1-Feb-88	8.60E-13
LD-APO-0810-00-WL	107	1-Feb-88	1-Feb-88	8.60E-13
LD-APO-0814-00-OT	107	2-Feb-88	2-Feb-88	1.89E-12
LD-APO-0819-00-WL	107	2-Feb-88	2-Feb-88	4.31E-12
LD-APO-0820-00-WL	107	2-Feb-88	2-Feb-88	9.82E-13
LD-APO-0815-00-CE	107	2-Feb-88	2-Feb-88	3.28E-13
LD-APO-0821-00-WL	107	2-Feb-88	2-Feb-88	5.72E-13

Sample ID	Location	Samp In	Samp Out	Alpha(μCi/ml)
LD-APO-0818-00-WL	107	2-Feb-88	2-Feb-88	4.98E-13
LD-APO-0816-00-CE	107	2-Feb-88	2-Feb-88	1.02E-13
LD-APO-0817-00-WL	107	2-Feb-88	2-Feb-88	2.17E-12
LD-LPO-0813-00-OT	107	2-Feb-88	2-Feb-88	7.94E-13
LD-APO-0824-00-WL	107	6-Feb-88	6-Feb-88	6.64E-14
LD-APO-0829-00-WL	107	6-Feb-88	6-Feb-88	3.32E-14
LD-APO-0825-00-WL	107	6-Feb-88	6-Feb-88	7.55E-14
LD-APO-0830-00-WL	107	6-Feb-88	6-Feb-88	7.10E-13
LD-APO-0827-00-WL		6-Feb-88	6-Feb-88	6.04E-14
LD-APO-0826-00-WL	107	6-Feb-88	6-Feb-88	3.32E-14
LD-APO-0828-00-WL	107	6-Feb-88	6-Feb-88	2.66E-13
LD-LPO-0822-00-OT	107	6-Feb-88	6-Feb-88	1.08E-12
LD-LPO-0839-00-OT	107	7-Feb-88	7-Feb-88	6.06E-12
LD-APO-0835-00-WL	107	7-Feb-88	7-Feb-88	3.04E-13
LD-LPO-0839-00-OT	107	7-Feb-88	7-Feb-88	6.06E-12
LD-APO-0834-00-WL	167	7-Feb-88	7-Feb-88	1.17E-13
LD-APO-0838-00-WL	107	7-Feb-88	7-Feb-88	2.77E-14
LD-APO-0833-00-WL		7-Feb-88	7-Feb-88	2.77E-14
LD-APO-0836-00-WL	107	7-Feb-88	7-Feb-88	1.38E-14
LD-APO-0837-00-WL	107	7-Feb-88	7-Feb-88	8.79E-14
LD-APO-0831-00-WL	107	7-Feb-88	7-Feb-88	1.38E-14
LD-APO-0832-00-WL	107	7-Feb-88	7-Feb-88	1.38E-14
LD-APO-0846-00-WL	107	8-Feb-88	8-Feb-88	1.28E-13
LD-APO-0841-00-WL	107	8-Feb-88	8-Feb-88	2.56E-13
LD-APO-0845-00-WL	107	8-Feb-88	8-Feb-88	< MDA
LD-APO-0841-00-WL	107	8-Feb-88	8-Feb-88	2.56E-13
LD-APO-0848-00-WL	107	8-Feb-88	8-Feb-88	4.98E-13
LD-APO-0842-00-WL	107	8-Feb-88	8-Feb-88	1.28E-13
LD-APO-0846-00-WL	107	8-Feb-88	8-Feb-88	1.28E-13
LD-APO-0843-00-WL	107	8-Feb-88	8-Feb-88	1.42E-14
LD-APO-0844-00-WL	107	8-Feb-88	8-Feb-88	1.85E-13
LD-APO-0844-00-WL	107	8-Feb-88	8-Feb-88	1.85E-13
LD-APO-0842-00-WL	107	8-Feb-88	8-Feb-88	1.28E-13
LD-LPO-0849-00-OT	107	8-Feb-88	8-Feb-88	1.73E-12
LD-APO-0847-00-WL	107	8-Feb-88	8-Feb-88	2.14E-13
LD-APO-0848-00-WL	107	8-Feb-88	8-Feb-88	4.98E-13
LD-APO-0843-00-WL	107	8-Feb-88	8-Feb-88	1.42E-14
LD-APO-0845-00-WL		8-Feb-88	8-Feb-88	< MDA
LD-LPO-0849-00-OT	107	8-Feb-88	8-Feb-88	1.73E-12
LD-APO-0847-00-WL	107	8-Feb-88	8-Feb-88	2.14E-13
LD-APO-0854-00-OT	107	9-Feb-88	9-Feb-88	1.85E-13
LD-APO-0851-00-OT	107	9-Feb-88	9-Feb-88	7.12E-14
LD-APO-0855-00-OT	107	9-Feb-88	9-Feb-88	1.87E-13
LD-LPO-0860-00-OT	107	9-Feb-88	9-Feb-88	1.07E-12
LD-APO-0853-00-OT	107	9-Feb-88	9-Feb-88	7.48E-13
LD-APO-0858-00-OT	107	9-Feb-88	9-Feb-88	1.71E-13
LD-APO-0855-00-OT	107	9-Feb-88	9-Feb-88	1.87E-13
LD-APO-0857-00-OT	107	9-Feb-88	9-Feb-88	7.12E-14
LD-APO-0857-00-OT	107	9-Feb-88	9-Feb-88	7.12E-14

Sample ID	Location	Samp In	Samp Out	Alpha (μCi/ml)
LD-APO-0851-00-OT	107	9-Feb-88	9-Feb-88	7.12E-14
LD-LPO-0860-00-OT	107	9-Feb-88	9-Feb-88	1.07E-12
LD-APO-0852-00-OT	107	9-Feb-88	9-Feb-88	1.85E-13
LD-APO-0854-00-OT	107	9-Feb-88	9-Feb-88	1.85E-13
LD-APO-0853-00-OT	107	9-Feb-88	9-Feb-88	7.48E-13
LD-APO-0858-00-OT	107	9-Feb-88	9-Feb-88	1.71E-13
LD-APO-0856-00-OT	107	9-Feb-88	9-Feb-88	2.80E-13
LD-APO-0852-00-OT	107	9-Feb-88	9-Feb-88	1.85E-13
LD-APO-0856-00-OT	107	9-Feb-88	9-Feb-88	2.80E-13
LD-LPO-0867-00-OT	105	10-Feb-88	10-Feb-88	2.69E-11
LD-APO-0863-00-OT	105	10-Feb-88	10-Feb-88	1.31E-09
LD-APO-0864-01-OT	107	10-Feb-88	10-Feb-88	5.10E-12
LD-APO-0864-01-OT	107	10-Feb-88	10-Feb-88	5.10E-12

Avg./Phase: Phase description: 1.91E-11 μ Ci/ml dismantlement 107 basement

LD-LPO-0867-00-OT	105	10-Feb-88	10-Feb-88	2.69E-11
LD-APO-0865-00-OT	105	10-Feb-88	10-Feb-88	8.23E-10
LD-APO-0863-00-OT	105	10-Feb-88	10-Feb-88	1.31E-09
LD-APO-0865-00-OT	105	10-Feb-88	10-Feb-88	8.23E-10
ID-APO-0876-00-WL	105	11-Feb-88	11-Feb-88	2.34E-11
LD-APO-0876-00-WL	105	11-Feb-88	11-Feb-88	2.34E-11
LD-APO-0868-00-OT	105	11-Feb-88	11-Feb-88	6.94E-12
LD-APO-0875-00-OT	105	11-Feb-88	11-Feb-88	6.12E-11
LD-APO-0870-00-OT	105	11-Feb-88	11-Feb-88	6.84E-11
LD-APO-0874-00-OT	105	11-Feb-88	11-Feb-88	6.69E-11
LD-APO-0872-00-OT	105	11-Feb-88	11-Feb-88	1.28E-11
LD-APO-0873-00-OT	105	11-Feb-88	11-Feb-88	2.17E-11
LD-APO-0874-00-OT	105	11-Feb-88	11-Feb-88	6.69E-11
LD-APO-0872-00-OT	105	11-Feb-88	11-Feb-88	1.28E-11
LD-APO-0877-00-WL	105	11-Feb-88	11-Feb-88	8.36E-12
LD-APO-0871-00-OT	105	11-Feb-88	11-Feb-88	2.39E-10
LD-LPO-0878-00-OT	105	11-Feb-88	11-Feb-88	3.02E-11
LD-APO-0870-00-OT	105	11-Feb-88	11-Feb-88	6.84E-11
LD-APO-0869-00-OT	105	11-Feb-88	11-Feb-88	9.73E-13
LD-APO-0869-00-OT	105	11-Feb-88	11-Feb-88	9.73E-13
LD-APO-0873-00-OT	105	11-Feb-88	11-Feb-88	2.17E-11
LD-APO-0868-00-OT	105	11-Feb-88	11-Feb-88	6.94E-12
LD-APO-0877-00-WL	105	11-Feb-88	11-Feb-88	8.36E-12
LD-LPO-0878-00-OT	105	11-Feb-88	11-Feb-88	3.02E-11
LD-APO-0871-00-OT	105	11-Feb-88	11-Feb-88	2.39E-10
LD-LPO-0879-00-OT	105	11-Feb-88	11-Feb-88	1.40E-11
LD-APO-0875-00-OT	105	11-Feb-88	11-Feb-88	6.12E-11
LD-LPO-0879-00-OT	105	11-Feb-88	11-Feb-88	1.40E-11
LD-APO-0884-00-WL	105	13-Feb-88	13-Feb-88	1.59E-11
LD-APO-0881-00-WL	105	13-Feb-88	13-Feb-88	5.57E-11
LD-APO-0881-00-WL	105	13-Feb-88	13-Feb-88	5.57E-11

Sample ID	Location	Samp In	Samp Out	Alpha(μCi/ml)
LD-APO-0880-00-OT	105	13-Feb-88	13-Feb-88	6.17E-12
LD-LPO-0889-00-OT	105	13-Feb-88	13-Feb-88	3.02E-11
LD-APO-0880-00-OT	105	13-Feb-88	13-Feb-88	6.17E-12
LD-APO-0887-00-OT	105	13-Feb-88	13-Feb-88	5.72E-13
LD-APO-0882-00-WL	105	13-Feb-88	13-Feb-88	1.68E-10
LD-APO-0885-00-WL	105	13-Feb-88	13-Feb-88	1.05E-10
LD-A90-0883-00-WL	105	13-Feb-88	13-Feb-88	3.76E-11
LD-APO-0883-00-WL	105	13-Feb-88	13-Feb-88	3.76E-11
LU-APO-0885-0C-WL	105	13-Feb-88	13-Feb-88	1.05E-10
LD-LPO-0888-00-OT	105	13-Feb-88	13-Feb-88	2.59E-11
LD-APO-0886-00-WL	105	13-Feb-88	13-Feb-88	1.24E-10
LD-APO-0886-00-WL	105	13-Feb-88	13-Feb-88	1.24E-10
LD-APO-0887-00-OT	105	13-Feb-88	13-Feb-88	5.72E-13
LD-APO-0882-00-WL	105	13-Feb-88	13-Feb-88	1.68E-10
LD-APO-0884-00-WL	105	13-Feb-88	13-Feb-88	1.59E-11
LD-LPO-0888-00-OT	105	13-Feb-88	13-Feb-88	2.59E-11
LD-LPO-0889-00-OT	105	13-Feb-88	13-Feb-88	3.02E-11
LD-APO-0892-00-WL	105	14-Feb-88	14-Feb-88	2.99E-11
LD-APO-0898-00-OT	105	14-Feb-88	14-Feb-88	5.70E-10
LD-APO-0890-00-WL	105	14-Feb-88	14-Feb-88	2.59E-11
LD-APO-0897-00-OT	105	14-Feb-88	14-Feb-88	2.27E-10
LD-LPO-0904-00-OT	105	14-Feb-88	14-Feb-88	1.43E-11
LD-APO-0896-00-0T	105	14-Feb-88	14-Feb-88	6.16E-11
LD-HVO-0210-00-OT	105	14-Feb-88	15-Feb-88	2.38E-11
LD-APO-0895-00-WL	105	14-Feb-88	14-Feb-88	2.02E-11
LD-APO-0893-00-WL	105	14-Feb-88	14-Feb-88	9.62E-12
LD-APO-0894-00-WL	105	14-Feb-88	14-Feb-88	3.26E-10
LD-APO-0900-00-0T	105	14-Feb-88	14-Feb-88	9.31E-11
LD-APO-0890-00-WL	105	14-Feb-88	14-Feb-88	2.59E-11
LD-APO-0902-00-OT	105	14-Feb-88	14-Feb-88	5.72E-13
LD-APO-0399-00-OT	105	14-Feb-88	14-Feb-88	3.13E-10
LD-APO-0902-00-OT	105	14-Feb-88	14-Feb-88	5.72E-13
LD-APO-0898-00-OT	105	14~Feb-88	14-Feb-88	5.70E-10
LD-APO-090U-00-OT	105	14-Feb-88	14-Feb-88	9.31E-11
LD-APO-0897-00-OT	105	14-Feb-88	14-Feb-88	2.27E-10
LD-APO-0891-00-WL	105	14-Feb-88	14-Feb-88	1.57E-11
LD-APO-0896-00-OT	105	14-Feb-88	14-Feb-88	6.16E-11
LD-LPO-0904-00-OT	1.05	14-Feb-88	14-Feb-88	1.43E-11
LD-APO-0895-00-WL	105	14-Feb-88	14-Feb-88	2.02E-11
LD-APO-0901-CO-OT	105	14-Feb-88	14-Feb-88	9.24E-11
LD-APO-0894-00-WL	105	14-Feb-88	14-Feb-88	3.26E-10
LD-APO-0901-00-OT	105	14-Feb-88	14-Feb-88	9.24E-11
LD-APO-0893-00-WL	105	14-Feb-88	14-Feb-88	9.62E-12
LD-APO-0891-00-WL	105	14-Feb-83	14-Feb-88	1.57E-11
LD-APO-0903-00-OT	305	14-Feb-88	14-Feb-88	3.24E-13
LD-APO-0903-00-OT	105	14-Feb-88	14-Feb-88	3.24E-13
LD-HVO-0210-00-OT	105	14-Feb-88	15-Feb-88	2.38E-11
LD-APO-0899-00-OT	105	14-Feb-88	14-Feb-88	3.13E-10
LD-APO-0892-00-WL	105	14-Feb-83	14-Feb-88	2.99E-11

Sample ID	Location	Samp In	Samp Out	Alpha(μCi/ml)
LD-APO-0911-00-WL	105	15-Feb-88	15-Feb-88	2.40E-12
LD-APO-0908-00-WL	105	15-Feb-88	15-Feb-88	7.78E-12
LD-APO-0917-00-OT	105	15-Feb-88	15-Feb-88	8.15E-12
LD-APO-0916-00-OT	105	15-Feb-88	15-Feb-88	3.43E-12
LD-LPO-0919-00-OT	105	15-Feb-88	15-Feb-88	1.46E-11
LD-APO-0915-00-OT	105	15-Feb-88	15-Feb-88	3.53E-12
LD-APO-0917-00-OT	105	15-Feb-88	15-Feb-88	8.15E-12
LD-APO-0914-00-OT	105	15-Feb-88	15-Feb-88	4.51E-11
LD-APO-0915-00-OT	105	15-Feb-88	15-Feb-88	3.53E-12
LD-APO-0913-00-OT	105	15-Feb-88	15-Feb-88	9.73E-13
LD-APO-0913-00-OT	105	15-Feb-88	15-Feb-88	9.73E-13
LD-APO-0912-00-WL	105	15-Feb-88	15-Feb-88	3.04E-12
LD-APO-0911-00-WL	105	15-Feb-88	15-Feb-88	2.40E-12
LD-APO-0907-00-WL	105	15-Feb-88	15-Feb-88	1.89E-11
LD-APO-0909-00-WL	105	15-Feb-88	15-Feb-88	3.43E-12
LD-APO-0910-00-WL	105	15-Feb-88	15-Feb-88	1.41E-11
LD-LPO-0918-00-OT	105	15-Feb-88	15-Feb-88	2.27E-12
LD-APO-0909-00-WL	105	15-Feb-88	15-Feb-88	3.43E-12
LD-LPO-0918-00-OT	105	15-Feb-88	15-Feb-88	2.27E-12
LD-APO-0908-00-WL	105	15-Feb-88	15-Feb-88	7.78E-12
LD-APO-0914-00-OT	105	15-Feb-88	15-Feb-88	4.51E-11
LD-APO-0907-00-WL	105	15-Feb-88	15-Feb-88	1.89E-11
LD-APO-0910-00-WL	105	15-Feb-88	15-Feb-88	1.41E-11
LD-APO-0906-00-WL	105	15-Feb-88	15-Feb-88	9.61E-12
LD-APO-0905-00-WL	105	15-Feb-88	15-Feb-88	8.86E-10
LD-APO-0905-00-WL	105	15-Feb-88	15-Feb-88	8.86E-10
LD-APO-0912-00-WL	105	15-Feb-88	15-Feb-88	3.04E-12
LD-APO-0916-00-OT	105	15-Feb-88	15-Feb-88	3.43E-12
LD-LPO-0919-00-OT	105	15-Feb-88	15-Feb-88	1.46E-11
LD-APO-0906-00-WL	105	15-Feb-88	15-Feb-88	9.61E-12
LD-LPO-0931-00-OT	105	16-Feb-88	16-Feb-88	4.01E-11
LD-APO-0920-00-OT	105	16-Feb-88	16-Feb-88	3.09E-12
LD-LPO-0930-00-OT	105	16-Feb-88	16-Feb-88	9.99E-12
LD-APO-0921-00-OT	105	16-Feb-88	16-Feb-88	6.07E-12
LD-APO-0920-00-OT	105	16-Feb-88	16-Feb-88	3.09E-12
LD-LPO-0931-00-OT	105	16-Feb-88	16-Feb-88	4.01E-11
LD-APO-0922-00-OT	105	16-Feb-88	16-Feb-88	5.11E-12
LD-LPO-0930-00-OT	105	16-Feb-88	16-Feb-88	9.99E-12
LD-APO-0924-00-CE	105	16-Feb-88	16-Feb-88	1.83E-11
LD-APO-0932-00-OT	105	16-Feb-88	16-Feb-88	3.77E-12
LD-APO-0926-00-WL	105	16-Feb-88	16-Feb-88	3.99E-10
LD-APO-0929-00-WL	105	16-Feb-88	16-Feb-88	1.09E-09
LD-APO-0928-00-WL	105	16-Feb-88	16-Feb-88	7.54E-12
LD-APO-0928-00-WL	105	16-Feb-88	16-Feb-88	7.54E-12
LD-APO-0932-00-OT	105	16-Feb-88	16-Feb-88	3.77E-12
LD-APO-0927-00-WL	105	16-Feb-88	16-Feb-88	1.25E-10
LD-APO-0921-00-OT	105	16-Feb-88	16-Feb-88	6.07E-12
LD-APO-0926-00-WL	105	16-Feb-88	16-Feb-88	3.99E-10
LD-APO-0925-00-CE	105	16-Feb-88	16-Feb-88	1.45E-16

Sample ID	Location	Samp In	Samp Out	Alpha(μCi/ml)
LD-APO-0925-00-CE	105	16-Feb-88	16-Feb-88	1.45E-10
LD-APO-0929-00-WL		16-Feb-88	16-Feb-88	1.09E-09
LD-APO-0924-00-CE		16-Feb-88	16-Feb-88	1.83E-11
LD-APO-0923-00-CE		16-Feb-88	16-Feb-88	1.91E-11
LD-APO-0922-00-OT		16-Feb-88	16-Feb-88	5.11E-12
LD-APO-0927-00-WL		16-Feb-88	16-Feb-88	1.25E-10
LD-APO-0923-00-CE		16-Feb-88	16-Feb-88	1.91E-11
LD-APO-0940-00-WL		17-Feb-88	17-Feb-88	6.84E-12
LD-APO-0933-00-WL		17-Feb-88	17-Feb-88	1.02E-10
LD-APO-0933-00-WL	105	17-Feb-88	17-Feb-88	1.02E-10
LD-APO-0934-00-WL	105	17-Feb-88	17-Feb-88	2.44E-11
LD-APO-0935-00-CE	105	17-Feb-88	17-Feb-88	6.36E-11
LD-APO-0935-00-CE	105	17-Feb-88	17-Feb-88	6.36E-11
LD-APO-0937-00-WL	105	17-Feb-88	17-Feb-88	1.26E-10
LD-APO-0936-00-WL	105	17-Feb-88	17-Feb-88	3.28E-12
LD-APO-0939-00-WL	105	17-Feb-88	17-Feb-88	6.40E-11
LD-APO-0937-00-WL	105	17-Feb-88	17-Feb-88	1.26E-10
LD-APO-0941-00-OT	105	17-Feb-88	17-Feb-88	2.06E-12
LD-APO-0938-00-WL	105	17-Feb-88	17-Feb-88	6.32E-11
LD-APO-0945-00-OT	105	17-Feb-88	17-Feb-88	2.99E-10
LD-APO-0939-00-WL	105	17-Feb-88	17-Feb-88	6.40E-11
LD-LPO-0942-00-OT	105	17-Feb-88	17-Feb-88	1.49E-11
LD-APO-0941-00-OT	105	17-Feb-88	17-Feb-88	2.06E-12
LD-APO-0934-00-WL	105	17-Feb-88	17-Feb-88	2.44E-11
LD-APO-0944-00-WL	105	17-Feb-88	17-Feb-88	9.15E-11
LD-APO-0938-00-WL	105	17-Feb-88	17-Feb-88	6.32E-11
LD-APO-0945-00-OT	105	17-Feb-88	17-Feb-88	2.99E-10
LD-APO-0944-00-WL	105	17-Feb-88	17-Feb-88	9.15E-11
LD-APO-0946-00-WL		17-Feb-88	17-Feb-88	2.79E-10
LD-LPO-0943-00-OT		17-Feb-88	17-Feb-88	9.64E-12
LD-LPO-0942-00-OT		17-Feb-88	17-Feb-88	1.49E-11
LD-APO-0940-00-WL		17-Feb-88	17-Feb-88	6.84E-12
LD-APO-0936-00-WL		17-Feb-88	17-Feb-88	3.28E-12
LD-APO-0946-00-WL		17-Feb-88	17-Feb-88	2.79E-10
LD-LPO-0943-00-OT		17-Feb-88	17-Feb-88	9.64E-12
LD-HVO-0958-00-WL		18-Feb-88	18-Feb-88	2.03E-11
LD-HVO-0957-00-WL		18-Feb-88	18-Feb-88	2.18E-11
LD-HVO-0959-00-OT		18-Feb-88	18-Feb-88	2.00E-12
LD-APO-0956-00-WL		18-Feb-88	18-Feb-88	2.90E-11
LD-HVO-0957-00-WL		18-Feb-88	18-Feb-88	2.18E-11
LD-APO-0955-00-WL		18-Feb-88	18-Feb-88	1.45E-11
LD-APO-0955-00-WL	·	18-Feb-88	18-Feb-88	1.45E-11
LD-APO-0954-00-WL		18-Feb-88	18-Feb-88	1.79E-11
LD-APO-0953-00-WL		18-Feb-88	18-Feb-68	8.42E-11
LD-APO-0953-00-WL		18-Feb-88	18-Feb-88	8.42E-11
LD-APO-0951-00-WL		18-Feb-88	18-Feb-88	2.32E-10
LD-APO-0952-00-WL		18-Feb-88	18-Feb-88	3.17E-11
LD-APO-0949-00-WL		18-Feb-88	18-Feb-83	5.32E-12
LD-APO-0951-00-WL	105	18-Feb-88	18-Feb-88	2.32E-10

Sample ID	Location	Samp In	Samp Out	Alpha(μCi/ml)
LD-APO-0947-00-WL	105	18-Feb-88	18-Feb-88	7.87E-11
LD-APO-0950-00-WL	105	18-Feb-88	18-Feb-88	2.11E-11
LD-HVO-0958-00-WL	105	18-Feb-88	18-Feb-88	2.03E-11
LD-APO-0949-00-WL	105	18-Feb-88	18-Feb-88	5.32E-12
LD-APO-0956-00-WL	105	18-Feb-88	18-Feb-88	2.90E-11
LD-APO-0948-00-CE	105	18-Feb-88	18-Feb-88	1.89E-12
LD-APO-0952-00-WL	105	18-Feb-88	18-Feb-88	3.17E-11
LD-APO-0947-00-WL	105	18-Feb-88	18-Feb-88	7.87E-11
LD-APO-0948-00-CE	105	18-Feb-88	18-Feb-88	1.89E-12
LD-HVO-0959-00-OT	105	18-Feb-88	18-Feb-88	2.00E-12
LD-LPO-0960-00-OT	105	18-Feb-88	18-Feb-88	6.16E-12
LD-LPO-0960-00-OT	105	18-Feb-88	18-Feb-88	6.16E-12
LD-APO-0950-00-WL	105	18-Feb-88	18-Feb-88	2.11E-11
LD-APO-0954-00-WL	105	18-Feb-88	18-Feb-88	1.79E-11
LD-LPO-0961-00-OT	105	18-Feb-88	18-Feb-88	4.68E-12
LD-LPO-0961-00-OT	105	18-Feb-88	18-Feb-88	4.68E-12
LD-HVO-0965-00-WL	105	20-Feb-88	20-Feb-88	4.09E-12
LD-APO-0977-00-WL	105	20-Feb-88	20-Feb-88	6.46E-12
LD-HVO-0968-00-WL	105	20-Feb-88	20-Feb-88	3.57E-12
LD-APO-0978-00-OT	105	20-Feb-88	20-Feb-88	1.90E-13
LD-APO-0981-00-WL	105	20-Feb-88	20-Feb-88	1.71E-12
LD-APO-0979-00-WL	105	20-Feb-88	20-Feb-88	2.09E-12
LD-HVO-0963-00-WL	105	20-Feb-88	20-Feb-88	1.52E-11
LD-APO-0980-00-WL	105	20-Feb-88	20-Feb-88	3.80E-13
LD-HVO-0965-00-WL	105	20-Feb-88	20-Feb-88	4.09E-12
LD-APO-0981-00-WL	105	20-Feb-88	20-Feb-88	1.71E-12
LD-HVO-0967-00-WL	105	20-Feb-88	20-Feb-88	1.41E-11
LD-HVO-0962-00-WL	105	20-Feb-88	20-Feb-88	8.37E-12
LD-HVO-0969-00-WL	105	20-Feb-88	20-Feb-88	8.89E-12
LD-HVO-0963-00-WL	105	20-Feb-88	20-Feb-88	1.52E-11
LD-HVO-0971-00-WL	105	20-Feb-88	20-Feb-88	1.80E-11
LD-HVO-0964-00-WL	105	20-Feb-88	20-Feb-88	8.89E-12
LD-HVO-0973-00-WL	105	20-Feb-88	20-Feb-88	9.41E-12
LD-APO-0978-00-OT	105	20-Feb-88	20-Feb-88	1.90E-13
LD-HVO-0975-00-OT	105	20-Feb-88	20-Feb-88	1.04E-12
LD-APO-0979-00-WL	105	20-Feb-88	20-Feb-88	2.09E-12
LD-LPO-0983-00-OT	105	20-Feb-88	20-Feb-88	2.02E-11
LD-HVO-0966-00-WL	105	20-Feb-88	20-Feb-88	5.16E-11
LD-APO-0976-00-WL	105	20-Feb-88	20-Feb-88	5.70E-12
LD-HVO-0967-00-WL	105	20-Feb-88	20-Feb-88	1.41E-11
LD-APO-0980-00-WL	105	20-Feb-88	20-Feb-88	3.80E-13
LD-LPO-0983-00-OT	105	20-Feb-88	20-Feb-88	2.02E-11
LD-HVO-0964-00-WL	105	20-Feb-88	20-Feb-88	8.89E-12
LD-LPO-0982-00-OT	105	20-Feb-88	20-Feb-88	7.66E-12
LD-HVO-0968-00-WL	105	20-Feb-88	20-Feb-88	3.57E-12
LD-HVO-0975-00-OT	105	20-Feb-88	20-Feb-88	1.04E-12
LD-HVO-0972-00-WL	105	20-Feb-88	20-Feb-88	4.22E-12
LD-HVO-0974-00-WL	105	20-Feb-88	20-Feb-88	1.71E-12
LD-LPO-0982-00-OT	105	20-Feb-88	20-Feb-88	7.66E-12

Sample ID	Location	Samp In	Samp Out	Alpha(μCi/ml)
Ln-HVO-0973-00-WL	105	20-Feb-88	20-Feb-88	9.41E-12
LD-APO-0976-00-WL	105	20-Feb-88	20-Feb-88	5.70E-12
LD-HVO-0972-00-WL	105	20-Feb-88	20-Feb-88	4.22E-12
LD-HVO-0966-00-WL	105	20-Feb-88	20-Feb-88	5.16E-11
I''-HVC-0971-00-WL	105	20-Feb-88	20-Feb-88	1.80E-11
LO HVO-0974-00-WL	105	20-Feb-88	20-Feb-88	1.71E-12
TiO **VO-0970-00-WL	105	20-Feb-88	20-Feb-88	1.50E-11
1 1-2 VO-0962-00-WL	105	20-Feb-88	20-Feb-88	8.37E-12
LD-APO-0977-00-WL	105	20-Feb-88	20-Feb-88	6.46E-12
LD-HVO-0970-0C-WL	105	20-Feb-88	20-Feb-88	1.50E-11
LD-HVO-0969-00-WI	105	20-Feb-88	20-Feb-88	8.89E-12
LD-HVO-0986-00-WL	105	23-Feb-88	23-Feb-88	2.22E-12
LD-HVO-0988-00-OT	105	23-Feb-88	23-Feb-88	1.08E-11
LD-AFO-0984-00-WL	105	23-Feb-88	23-Feb-88	3.89E-12
LD-HVO-0987-00-OT	105	23-Feb-88	23-Feb-88	5.12E-12
LD-HVO-0987-00-OT	105	23-Feb-88	23-Feb-88	5.12E-12
LD-HVO-0986-00-WL	105	23-Feb-88	23-Feb-88	2.22E-12
LD-HVO-0989-00-OT	105	23-Feb-88	23-Feb-88	7.90E-12
LD-HVO-0990-00-OT	105	23-Feb-88	23-Feb-88	3.06E-12
LD-HVO-0991-00-OT	105	23-Feb-88	23-Feb-88	5.45E-12
LD-HVO-0991-00-OT	105	23-Feb-88	23-Feb-88	5.45E-12
LD-HVO-0989-00-OT	105	23-Feb-88	23-Feb-88	7.90E-12
LD-HVO-0992-00-OT	105	23-Feb-88	23-Feb-88	1.78E-12
LD-HVO-0988-00-OT	105	23-Feb-88	23-Feb-88	1.08E-11
LD-APO-0985-00-WL	105	23-Feb-88	23-Feb-88	4.67E-12
LD-HVO-0992-00-OT	105	23-Feb-88	23-Feb-88	1.78E-12
LD-HVO-0990-00-OT	105	23-Feb88	23-Feb-88	3.06E-12
LD-APO-0985-00-WL	105	23-Feb-88	23-Feb-88	4.67E-12
LD-APO-0984-00-WL	105	23-Feb-88	23-Feb-88	3.89E-12
LD-HVO-1007-00-WL	105	24-Feb-88	24-Feb-88	1.60E-10
LD-HVO-1009-00-WL	105	24-Feb-88	24-Feb-88	3.53E-10
LD-HVO-1004-00-OT	105	24-Feb-88	24-Feb-88	1.43E-10
LD-HVO-1000-00-OT	105	24-Feb-88	24-Feb-88	1.76E-11
LD-LPO-1008-00-OT	105	24-Feb-88	24-Feb-88	6.58E-11
LD-HVO-1000-00-OT	105	24-Feb-88	24-Feb-88	1.76E-11
LD-HVO-1010-00-OT	105	24-Feb-88	24-Feb-88	1.35E-09
LD-HVO-1004-00-OT	105	24-Feb-88	24-Feb-88	1.43E-10
LD-HVO-1007-00-WL	105	24-Feb-88	24-Feb-88	1.60E-10
LD-HVO-1005-00-WL	105	24-Feb-88	24-Feb-88	5.11E-10
LD-HVO-1005-00-WL	105	24-Feb-88	24-Feb-88	5.11E-10
LD-HVO-1006-00-CE	105	24-Feb-88	24-Feb-88	5.78E-10
LD-HVO-1010-00-OT	105	24-Feb-88	24-Feb-88	1.35E-09
LD-HVO-1006-00-CE	105	24-Feb-88	24-Feb-88	5.78E-10
LD-HVO-1009-00-WL	105	24-Feb-88	24-Feb-88	3.53E-10
LD-LPO-1008-00-OT	105	24-Feb-88	24-Feb-88	6.58E-11
LD-HVO-1013-00-OT	105	25-Feb-88	25-Feb-88	1.08E-11
LD-HVO-1019-00-WL	105	25-Feb-88	25-Feb-88	6.02E-11
LD-HVO-1020-00-OT	105	25-Feb-88	25-Feb-88	9.16E-11
LD-HVO-1018-00-WL	105	25-Feb-88	25-Feb-88	8.71E-11

Sample ID	Location	Samp In	Samp Out	Alpha (µCi/ml)
LD-HVO-1021-00-WL	105	25-Feb-88	25-Feb-88	8.28E-10
LD-HVO-1016-00-WL	105	25-Feb-88	25-Feb-88	1.88E-11
LD-LPO-1022-00-OT	105	25-Feb-88	25-Feb-88	2.60E-12
LD-HVO-1018-00-WL	105	25-Feb-88	25-Feb-88	8.71E-11
LD-LPO-1023-00-OT	105	25-Feb-88	25-Feb-88	1.56E-11
LD-HVO-1016-00-WL	105	25-Feb-88	25-Feb-88	1.88E-11
LD-HVO-1019-00-WL	105	25-Feb-88	25-Feb-88	6.02E-11
LD-LPO-1023-00-01	105	25-Feb-88	25-Feb-88	1.56E-11
LD-HVO-1020-00-OT	105	25-Feb-88	25-Feb-88	9.16E-11
LD-HVO-1017-00-WL	105	25-Feb-88	25-Feb-88	3.47E-11
LD-HVO-1021-00-WL	105	25-Feb-88	25-Feb-88	8.28E-10
LD-HVO-1014-00-OT	105	25-Feb-88	25-Feb-88	2.05E-11
LD-HVO-1017-00-WL	105	25-Feb-88	25-Feb-88	3.47E-11
LD-HVO-1014-00-OT	105	25-Feb-88	25-Feb-88	2.05E-11
LD-LPO-1022-00-OT	105	25-Feb-88	25-Feb-88	2.60E-12
LD-HVO-1028-00-WL	105	27-Feb-88	27-Feb-88	9.49E-13
LD-HVO-1026-00-OT	105	27-Feb-88	27-Feb-88	1.14E-12
LD-HVO-1027-00-OT	105	27-Feb-88	27-Feb-88	1.90E-12
LD-HVO-1027-00-OT	105	27-Feb-88	27-Feb-88	1.90E-12
LD-HVO-1026-00-OT	105	27-Feb-88	27-Feb-88	1.14E-12
LD-HVO-1028-00-WL	105	27-Feb-88	27-Feb-88	9.49E-13
LD-HVO-1024-00-OT	105	27-Feb-88	27-Feb-88	1.67E-12
LD-HVO-1024-00-OT	105	27-Feb-88	27-Feb-88	1.67E-12
LD-HVO-1029-00-WL	105	27-Feb-88	27-Feb-88	< MDA
LD-HVO-1025-00-WL	105	27-Feb-88	27-Feb-88	2.98E-12
LD-HVO-1029-00-WL	105	27-Feb-88	27-Feb-88	< MDA
LD-HVO-1025-00-WL	105	27-Feb-88	27-Feb-88	2.98E-12
Avg./Phase:		escription:		
$1.64E-10 \mu \text{Ci/ml}$	dismant	lement 105 k	pasement	

(Times in-ii)

FIGURE G.1 OCCUPATIONAL AIRBORNE ACTIVITY (PROJECTED RADIUM) 4-A-119

CHILL SOFT BUTTER

(TT-HT-BAUTLL)

FIGURE G.2 OCCUPATIONAL AIRBORNE ACTIVITY

(CUMULATIVE AVERAGE)

4-A-120

Sample ID	Date	Time	Conc. (WL)
LD-WLO-0100	29-Nov-88	1521	2.08E-03
LD-WLO-0102	30-Nov-88	728	7.42E-04
LD-WLO-0104	1-Dec-88		•
		945	2.10E-03
LD-WLO-0105	1-Dec-88	1250	2.18E-03
LD-WLO-0107	2-Dec-88	1133	2.69E-03
LD-WLO-0109	3-Dec-88	1005	1.78E-03
LD-WLO-0112	5-Dec-88	830	3.82E-04
LD=WLO-0113 -	5-Dec-88	1535	1.80E-03
LD=WLO-0115	6-Dec-88	807	2.16E-03
LD-WLO-0117	7-Dec-88	818	3.70E-03
LD-WLO-0118	8-Dec-88	716	9.20E-04
· · · · · · · · · · · · · · · · · · ·			
LD-WLO-0122	9-Dec-88	835	4.96E-03
LD-WLO-0124	9-Dec-88	1538	2.74E-04
LD-WLO-0125	12-Dec-88	1020	4.89E-03
LD-WLO-0128	12-Dec-88	1110	2,10E-03
LD=WLO-0131	13-Dec-88	815	1.29E-03
LD-WLO-0133	13-Dec-88		
		1553	3.67E-03
LD-WLO-0135	14-Dec-88	732	4.20E-03
LD-WLO-0136	15-Dec-88	700	6.48E-04
LD=WLO-0137			i
	15-Dec-88	815	594E-03
LD-WLO-0140	16-Dec-88	1510	1.72E-04
LD-WLO-0142	17-Dec-88	1050	9.73E-04
LD-WLO-0144			
	19-Dec-88	1420	1.29E-03
LD-WLO-0146	20-Dec-88	810	4.13E-03
LD=WLO-0149	21-Dec-88	750	1.19E-03
LD-WLO-0151			
	3-Jan-89	935	2.03E-03
LD-WLO-0153	< 4-Jan-89	820	6.00E-04
LD-WLO-0155	5-Jan-89	1343	5.74E-04
LD-WLO-0157			
	6-Jan-89	719	9.48E-05
LD-WLO-0161	7-Jan-89	933	6.99E-04
LD-WLO-0164	9-Jan-89	746	7.66E-04
LD-WLO-0166			
	10-Jan-89	710	1.09E-03
LD-WLO-0169	11-Jan-89	703	3.37E-03
LD-WLO-0171	13-Jan-89	739	8.27E-04
LD-WLO-0174	13-Jan-89	1554	
			6.49E-04
LD-WLO-0176	14-Jan-89	· 704	2.03E-03
LD-WLO-0178	14-Jan-89	1510	1.18E-03
LD-WLO-0180	16-Jan-89		
		739	4.10E-04
LD-WLO-0182	16-Jan-89	1505	3.80E-04
LD-WLO-0183	17-Jan-89	710	5.20E-03
			· ·
LD-WLO-0186	17-Jan-89	1510	5.90E-05
LD-WLO-0187	18 - Jan-89	700	4.50E-03
LD-WLO-0190	19-Jan-89	725	2.90E-03
LD-WLO-0192	19-Jan-89	1353	1.20E-03
LD-WLO-0194	20-Jan-89	755	3.30E-03
LD-WLO-0196	21-Jan-89	745	5.50E-04
	zi can os	740	J. JOE-04

			- 4000 h
Sample ID	Date	Time	Conc. (WL)
LD-WLO-0200	23-Jan-89	845	8.50E-04
LD-WLO-0201	23-Jan-89	1305	6.20E-04
LD-WLO-0203	24-Jan-89	730	7.30E-03
LD-WLO-0206	24-Jan-89	1325	9.50E-04
LD-WLO-0207	25-Jan-89	720	1.60E-03
LD-WLO-0209	25-Jan-89	1046	3.60E-03
LD-WLO-0210	25-Jan-89	1049	2.60E-03
LD-WLO-0211	25-Jan-89	1112	2.40E-01
LD-WLO-0212	25-Jan-89	1116	4.20E-01
LD-WLO-0214	25-Jan-89	1318	5.30E-04
LD-WLO-0215	26-Jan-89	739	5.00E-02
LD-WLO-0216	26-Jan-89	743	5.50E-02
LD-WLO-0221	27 - Jan-89	1109	6.70E-02
LD-WLO-0222	27-Jan-89	1113	7.20E-02
LD-WLO-0230	31-Jan-89	953	6.30E-02
LD-WLO-0231	31-Jan-89	957	1.00E-01
LD-WLO-0234	1-Feb-89	1010	4.30E-02
LD-WLO-0236	1-Feb-89	1300	7.10E-03
LD-WLO-0238	2-Feb-89	725	4.50E-03
LD-WLO-0240	2-Feb-89	1520	5.30E-04
LD-WLO-0242	6-Feb-89	755	5.60E-04
LD-WLO-0244	6-Feb-89	1527	1.50E-03
LD-WLO-0246	7-Feb-89	935	1.00E-03
LD-WLO-0248	7-Feb-89	1525	2.40E-04
LD-WLO-0249	8-Feb-89	735	2.82E-04
LD-WLO-0252	8-Feb-89	1455	1.58E-03
LD-WLO-0253	9-Feb-89	803	2.82E-04
LD-WLO-0256	9-Feb-89	1350	< MDA
LD-WLO-0260	10-Feb-89	1505	9.36E-03
LD-WLO-0261	11-Feb-89	830	2.36E-03
LD-WLO-0263	11-Feb-89	1250	1.18E-03
LD-WLO-0265	13-Feb-89	710	7.17E-03
LD-WLO-0268	13-Feb-89	1400	6.27E-03
LD-WLO-0269	14-Feb-89	727	4.00E-02
LD-WLO-0272	14-Feb-89	1540	1.30E-02
LD-WLO-0273	15-Feb-89	742	2.00E-02
LD-WLO-0277	16-Feb-89	939	4.50E-02
LD-WLO-0279	16-Feb-89	1310	7.85E-03
LD-WLO-0279	17-Feb-89	750	1.50E-02
LD-WLO-0287	20-Feb-89	756 756	5.14E-03
LD-WLO-0290	20-Feb-89	1308	7.19E-03
LD-WLO-0290	20-reb-89 23-Feb-89	706	1.10E-02
	23-reb-89 24-Feb-89		8.54E-03
LD-WLO-0299	24-16D-03	1400	0.945-03

DAILY AVERAGES

Date	Conc. (WL)
29-Nov-88	2.08E-03
30-Nov-88	7.42E-04
1-Dec-88	2.10E-03
2-Dec-88	2.18E-03
3-Dec-88	2.69E-03
5-Dec-88	1.78E-03
6-Dec-88	3.82E-04
7-Dec-88	1.80E-03
8-Dec-88	2.16E-03
9-Dec-88	3.70E-03
12-Dec-88	9.20E-04
13-Dec-88	4.96E-03
14-Dec-88	2.74E-04
15-Dec-88	4.89E-03
17-Dec-88	2.10E-03
19-Dec-88	1.29E-03
20-Dec-88	3.67E-03
21-Dec-88	4.20E-03
3-Jan-89	6.48E-04
4-Jan-89	5.94E-03
5-Jan-89	1.72E-04
6-Jan-89	9.73E-04
7-Jan-89	1.29E-03
9-Jan-89	4.13E-03
10-Jan-89	1.19E-03
11-Jan-89	2.03E-03
13-Jan-89	6.00E-04
14-Jan-89	5.74E-04
16-Jan-89	9.48E-05
17-Jan-89	6.99E-04
18-Jan-89	7.66E-04
19-Jan-89	1.09E-03
20-Jan-89	3.37E-03
21-Jan-89	8.27E-04
23-Jan-89	6.49E-04
24-Jan-89	2.03E-03
25-Jan-89	1.18E-03
26-Jan-89	4.10E-04
27-Jan-89	3.80E-04
31-Jan-89	5.20E-03
1-Feb-89	5.90E-05

DAILY AVERAGES

Date	Conc. (WL)
2-Feb-89	4.50E-03
6-Feb-89	2.90E-03
7-Feb-89	1.20E-03
8-Feb-89	3.30E-03
9-Feb-89	5.50E-04
10-Feb-89	8.50E-04
11-Feb-89	6.20E-04
13-Feb-89	7.30E-03
14-Feb-89	9.50E-04
15-Feb-89	1.60E-03
16-Feb-89	3.60E-03
17-Feb-89	2.60E-03
20-Feb-89	2.40E-01
23-Feb-89	4.20E-01
24-Feb-89	5.30E-04

\$8,21720 COCUPATIONAL RADON PROCENT PEGSE: HSWANTLEMENT OF HOUSES 869至2716 69/96/16 **60.**603.41 i Series **○**基5 ÷ m\ -----(A) 0.15 \$. \$. \$. ايس دور دور r<u>^</u>:

FIGURE G.3 OCCUPATIONAL WL 4-A-125

APPENDIX 4·B ENVIRONMENTAL AIR SAMPLES

ENVIRONMENTAL AIR SAMPLES

.0 GENERAL

Appendix H contains the data sets for the environmental air sampling rogram. As the environmental data shows low levels of airborne ctivity, it was not corrected to show the actual radium activity. Rather, the gross alpha values were treated as the actual radium values. It should be noted that the actual radium concentrations in air would be ignificantly lower had a correction been applied. Shown below is the a key to identify the types of measurements taken.

AIR SAMPLE ID

LOCATION CODE

) 3	
YIIIIII	BERLINE
	WS FRUMERT CORP
24 5 8 2 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 1 2 2 1	10814.C.114
23 2 4 5 8 2 4 6 8 2	4 6 8 2 4 6 8

FIGURE H.1 EXAMPLE CAM LOG 4-E-130

ENVIRONMENTAL AIRBORNE ACTIVITY

可能证证 经企業也

(ET-ST FRUIL)

ELLUTTIVE WEE SHEED-ORDING
FIGURE H.2 ENVIRONMENTAL AIRBORNE ACTIVITY
GROSS ALPHA 4-B-131

ENVIRONMENTAL DATA FOR CAM STATION #1

PHASE: DISMANTLEMENT OF HOUSE

Sample ID	Location	Samp In	Samp Out	Alpha (μCi/ml)
LD-APE-0001	01	22-Aug-88	3-Sep-88	7.38E-15
LD-APE-0002	11	22-Aug-88	3-Sep-88	1.16E-14
LD-APE-0007	01	3-Sep-88	10-Sep-88	1.80E-15
LD-APE-0008	11	3-Sep-88	10-Sep-88	7.55E-15
LD-APE-0015	01	10-Sep-88	17-Sep-88	8.52E-15
LD-APE-0016	11	10-Sep-88	17-Sep-88	1.91E-14
LD-APE-0023	01	17-Sep-88	24-Sep-88	5.81E-15
LD-APE-0024	11	17-Sep-88	24-Sep-88	7.62E-15
LD-APE-0032	01	24-Sep-88	30-Sep-88	1.30E-14
LD-APE-0033	01	24-Sep-88	30-Sep-88	4.00E-15
LD-APE-0044	01	30-Sep-88	8-0ct-88	6.60E-15
LD-APE ·· 0045	11	30-Sep-88	8-0ct-88	1.50E-15
LD-APE-0053	11	8-0ct-88	15-0ct-88	7.10E-16
LD-APE-0060	01	8-0ct-88	15-0ct-88	7.80E-15
LD-APE-0063	11	15-0ct-88	22-0ct-88	4.50E-15
LD-APE-0071	01	22-0ct-88	28-Oct-88	2.60E-15
LD-APE-0072	11	22-0ct-88	28-Oct-88	4.10E-15
LD-APE-0080	01	28-0ct-88	5-Nov-88	5.20E-15
LD-APE-0081	11	28-0ct-88	5-Nov-88	4.90E-15
LD-APE-0090	01	5-Nov-88	14-Nov-88	4.80E-15
LD-APE-0091	11	5-Nov-88	14-Nov-88	7.30E-15
LD-APE-0099	01	14-Nov-88	19-Nov-88	8.70E-15
LD-APE-0100	11	14-Nov-88	19-Nov-88	4.60E-15
LD-APE-0165	01	7-Jan-88	14-Jan-88	5.10E-15
LD-APE-0166	J. 1	7-Jan-88	14-Jan-88	2.10E-15
LD-APE-0197	11	31-Jan-88	6-Feb-88	2.20E-14
LD-APE-0198	01	31-Jan-88	6-Feb-88	1.52E-15
LD-APE-0201	01	6-Feb-88	11-Feb-88	7.48E-15
LD-APE-0202	11	6-Feb-88	11-Feb-88	3.33E-15
LD-APE-0218	01	11-Feb-88	18-Feb-88	2.64E-15
LD-APE-0219	11	11-Feb-88	18-Feb-88	3.30E-15
LD-APE-0227	01	18-Feb-88	25-Feb-88	1.41E-15
LD-APE-0228	1.1	18-Feb-88	25-Feb-88	0.00E+00
LD-APE-0236	01	25-Feb-88	3-Mar-88	4.24E-15
LD-APE-0237	11	25-Feb-88	3-Mar-88	4.24E-15

Note: Alpha activity of 0 indicates result less than MDA

WEEKLY AVERAGES FOR CAM STATION #1

PHASE: DISMANTLEMENT OF HOUSE

Start date	Stop date	Average Alpha Activity (μ Ci/ml)
22-Aug-88	3-Sep-88	9.49E-15
3-Sep-88	10-Sep-88	4.68E-15
10-Sep-88	17-Sep-88	1.38E-14
17-Sep-88	24-Sep-88	6.71E-15
24-Sep-88	30-Sep-88	8.50E-15
30-Sep-88	8-0ct-88	4.05E-15
8-0ct-88	15-0ct-88	4.26E-15
15-Oct-88	22-0ct-38	4.50E-15
22-0ct-88	28-0ct-88	3.35E-15
28-Oct-88	5-Nov-88	5.05E-15
5-Nov-88	14-Nov-88	6.05E-15
14-Nov-88	19-Nov-88	6.65E-15
7-Jan-88	14-Jan-88	0.00E+00
31-Jan-88	6-Feb-88	3.60E-15
6-Feb-88	12-Feb-88	1.18E-14
11-Feb-88	18-Feb-88	5.40E-15
18-Feb-88	25-Feb-88	2.97E-15
25-Feb-88	3-Mar-88	7.05E-16

Note: Alpha activity of 0 indicates result less than MDA

AMERICA SCOME

Ď

(LIMES TR-TT) MICHO-ODRIES BER WITTILLER

FIGURE H.3 ENVIRONMENTAL DATA - CAM STATION #1 4-B-134

ENVIRONMENTAL DATA FOR CAM STATION #2

PHASE: DISMANTLEMENT OF HOUSE

Sample ID	Location	Samp In	Samp Out	Alpha (μ Ci/ml)
LD-APE-0004	02	22-Aug-88	3-Sep-88	5.27E-15
LD-APE-0003	12	22-Aug-88	3-Sep-88	3.16E-15
LD-APE-0009	02	3-Sep-88	10-Sep-88	2.16E-15
LD-APE-0010	12	3-Sep-88	10-Sep-88	3.59E-15
LD-APE-0017	02	10-Sep-88	17-Sep-88	1.06E-14
LD-APE-0018	12	10-Sep-88	17-Sep-88	2.05E-15
LD-APE-0025	02	17-Sep-88	24-Sep-88	8.30E-15
LD-APE-0026	12	17-Sep-88	24-Sep-88	3.96E-15
LD-APE-0034	02	24-Sep-88	30-Sep-88	1.10E-14
LD-APE-0035	12	24-Sep-88	30-Sep-88	7.10E-15
LD-APE-0046	02	30-Sep-88	8-0ct-88	7.80E-15
LD-APE-0047	12	30-Sep-88	8-0ct-88	5.90E-15
LD-APE-0054	02	8-0ct-88	15-0ct-88	4.20E-15
LD-APE-0055	12	8-0ct-88	15-0ct-88	3.90E-15
LD-APE-0064	02	15-0ct-88	22-0ct-88	8.80E-15
LD-APE-0065	12	15-0ct-88	22-0ct-88	3.40E-15
LD-APE-0073	02	22-Oct-88	28-Oct-88	3.20E-15
LD-APE-0074	12	22-Oct-88	28-Oct-88	7.60E-15
LD-APE-0082	02	28-Oct-88	5-Nov-88	1.10E-14
LD-APE-0083	12	28-Oct-88	5-Nov-88	7.40E-15
LD-APE-0092	02	5-Nov-88	14-Nov-88	6.30E-15
LD-APE-0093	12	5-Nov-88	14-Nov-88	5.00E-15
LD-APE-0101	02	14-Nov-88	19-Nov-88	7.50E-15
LD-APE-0102	12	14-Nov-88	19-Nov-88	1.10E-14
LD-APE-0167	02	7-Jan-88	14-Jan-88	5.10E-15
LD-APE-0168	12	7-Jan-88	14-Jan-88	2.80E-15
LD-APE-0196	02	31-Jan-88	6-Feb-88	3.19E-15
LD-APE-0195	12	31-Jan-88	6-Feb-88	4.14E-16
LD-APE-0203	02	6-Feb-88	12-Feb-88	4.77E-15
LD-APE-0204	12	6-Feb-88	12-Feb-88	7.90E-16
LD-APE-0220	02	11-Feb-88	18-Feb-88	4.61E-15
LD-APE-0221	12	11-Feb-88	18-Feb-88	0.00E+00
LD-APE-0229	02	18-Feb-88	25-Feb-88	1.07E-14
LD-APE-0230	12	18-Feb-88	25-Feb-88	4.19E-15
LD-APE-0238	02	25-Feb-88	3-Mar-88	8.67E-15
LD-APE-0239	12	25-Feb-88	3-Mar-88	2.83E-15

Note: Alpha activity of 0 indicates result less than MDA

WEEKLY AVERAGES FOR CAM STATION #2

PHASE: DISMANTLEMENT OF HOUSE

Start date	Stop date	Average Alpha Activity (μ Ci/ml)
22-Aug-88	3-Sep-88	4.21E-15
3-Sep-88	10-Sep-88	2.88E-15
10-Sep-88	17-Sep-88	6.32E-15
17-Sep-88	24-Sep-88	6.13E-15
24-Sep-88	30-Sep-88	9.05E-15
30-Sep-88	8-0ct-88	6.85E-15
8-0ct-88	15-0ct-88	4.05E-15
15-0ct-88	22-0ct-88	6.10E-15
22-0ct-88	28-0ct-88	5.40E-15
28-0ct-88	5-Nov-88	9.20E-15
5-Nov-88	14-Nov-88	5.65E-15
14-Nov-88	19-Nov-88	9.25E-15
19-Nov-88	7-Jan-88	0.00E+00
7-Jan-88	14-Jan-88	3.95E-15
31-Jan-88	6-Feb-88	1.80E-15
6-Feb-88	12-Feb-88	2.78E-15
11-Feb-88	18-Feb-88	2.31E-15
18-Feb-88	25-Feb-88	7.45E-15
25-Feb-88	3-Mar-88	5.75E-15

Note: Alpha activity of 0 indicates result less than MDA

CHOSE SUMM

WOSO-CORRERANTELES

FIGURE H.4 ENVIRONMENTAL DATA - CAM STATION #2 4-B-137

ENVIRONMENTAL DATA FOR CAM STATION #3

PHASE: DISMANTLEMENT OF HOUSE

Sample ID	Location	Samp In	Samp Out	Alpha (μ Ci/ml)
LD-APE-0005	03	22-Aug-88	3-Sep-88	4.21E-15
LD-APE-0006	13	22-Aug-88	3-Sep-88	5.80E-15
LD-APE-0011	03	3-Sep-88	10-Sep-88	3.49E-15
LD-APE-0019	13	10-Sep-88	17-Sep-88	8.22E-15
LD-APE-0027	03	17-Sep-88	24-Sep-88	3.59E-15
LD-APE-0028	13	22-Sep-88	24-Sep-88	5.02E-14
LD-APE-0036	03	24-Sep-88	30-Sep-88	9.50E-15
LD-APE-0037	13	24-Sep-88	30-Sep-88	3.60E-15
LD-APE-0048	03	30-Sep-88	8-0ct-88	4.00E-14
LD-APE-0049	13	30-Sep-88	8-0ct-88	8.70E-15
LD-APE-0056	03	8-0ct-88	15-0ct-88	3.30E-15
LD-APE-0057	13	8-0ct-88	15-0ct-88	1.20E-14
LD-APE-0066	03	15-0ct-88	22-0ct-88	6.80E-15
LD-APE-0067	13	15-0ct-88	22-Oct-88	9.20E-15
LD-APE-0075	03	22-0ct-88	28-Oct-88	4.70E-15
LD-APE-0076	13	22-0ct-88	28-Oct-88	4.50E-15
LD-APE-0084	03	28-Oct-88	5-Nov-88	9.20E-15
LD-APE-0085	13	28-0ct-88	5-Nov-88	6.50E-15
LD-APE-0094	03	5-Nov-88	14-Nov-88	7.10E-15
LD-APE-0095	13	5-Nov-88	14-Nov-88	7.00E-15
LD-APE-0103	03	14-Nov-88	19-Nov-88	1.40E-14
LD-APE-0104	13	14-Nov-88	19-Nov-88	1.20E-14
LD-APE-0169	03	7-Jan-88	14-Jan-88	1.00E-15
LD-APE-0170	13	7-Jan-88	14-Jan-88	5.10E-15
LD-APE-0193	13	31-Jan-88	6-Feb-88	9.22E-16
LD-APE-0194	03	31-Jan-88	6-Feb-88	2.07E-15
LD-APE-0205	03	6-Feb-88	12-Feb-88	7.10E-15
LD-APE-0206	13	6-Feb-88	12-Feb-88	0.00E+00
LD-APE-0222	03	11-Feb-88	18-Feb-88	7.31E-15
LD-APE-0223	13	11-Feb-88	18-Feb-88	1.66E-15
LD-APE-0231	03	18-Feb-88	25-Feb-88	1.41E-14
LD-APE-0232	13	18-Feb-88	25-Feb-88	2.44E-14
LD-APE-0240	03	25-Feb-88	3-Mar-88	1.64E-14
LD-APE-0241	13	25-Feb-88	3-Mar-88	7.30E-15

Note: Alpha activity of O indicates result less than MDA

WEEKLY AVERAGES FOR CAM STATION #3

PHASE: DISMANTLEMENT OF HOUSE

Start date	Stop date	Average Alpha Activity (μ Ci/ml)
22-Aug-88	3-Sep-88	5.00E-15
3-Sep-88	10-Sep-88	3.49E-15
10-Sep-88	17-Sep-88	8.22E-15
17-Sep-88	24-Sep-88	3.59E-15
22-Sep-88	24-Sep-88	5.02E-14
24-Sep-88	30-Sep-88	6.55E-15
30-Sep-88	8-0ct-88	2.44E-14
8-0ct-88	15-0ct-88	7.65E-15
15-0ct-88	22-0ct-88	8.00E-15
22-Oct-88	28-0ct-88	4.60E-15
28-Oct-88	5-Nov-88	7.85E-15
5-Nov-88	14-Nov-88	7.05E-15
14-Nov-88	19-Nov-88	1.30E-14
19-Nov-88	7-Jan-88	0.00E+00
7-Jan-88	14-Jan-88	3.05E-15
31-Jan-88	6-Feb-88	1.50E-15
6-Feb-88	12-Feb-88	3.55E-15
11-Feb-88	18-Feb-88	4.49E-15
18-Feb-88	25-Feb-88	1.92E-14
25-Feb-88	3-Mar-88	1.19E-14

Note: Alpha activity of 0 indicates result less than MDA

(FT MT SOURL)

MELITITION MEL SEMMING-OMOUM

FIGURE H.5 ENVIRONMENTAL DATA - CAM STATION #3
4-B-140

ENVIRONMENTAL DATA FOR CAM STATION #4

PHASE: DISMANTLEMENT OF HOUSE

Sample ID	Location	Samp In	Samp Out	Alpha (μ Ci/ml)
LD-APE-0012	04	3-Sep-88	10-Sep-88	1.44E-15
LD-APE-0013	04	3-Sep-88	10-Sep-88	3.95E-15
LD-APE-0020	04	10-Sep-88	17-Sep-88	4.45E-15
LD-APE-0021	14	10-Sep-88	17-Sep-88	2.05E-15
LD-APE-0029	04	17-Sep-88	24-Sep-88	2.51E-15
LD-APE-0030	14	17-Sep-88	24-Sep-88	2.15E-15
LD-APE-0038	04	24-Sep-88	30-Sep-88	7.10E-15
LD-APE-0039	14	24-Sep-88	30-Sep-88	7.80E-15
LD-APE-0050	14	30-Sep-88	8-0ct-88	1.90E-15
LD-APE-0051	04	30-Sep-88	8-Oct-88	4.30E-15
LD-APE-0058	04	8-0ct-88	15-Oct-88	4.70E-15
LD-APE-0059	14	8-0ct-88	15-Oct-88	5.70E-15
LD-APE-0068	04	15-0ct-88	22-Oct-88	1.50E-15
LD-APE-0069	14	15-0ct-88	22-Oct-88	6.70E-15
LD-APE-0077	04	22-Oct-88	28-Oct-88	3.00E-15
LD-APE-0078	14	22-Oct-88	28-Oct-88	7.20E-15
LD-APE-0087	04	28-Oct-88	5-Nov-88	8.20E-15
LD-APE-0088	14	28-Oct-88	5-Nov-88	9.20E-15
LD-APE-0096	04	5-Nov-88	14-Nov-88	1.30E-14
LD-APE-0097	14	5-Nov-88	14-Nov-88	8.20E-15
LD-APE-0105	04	14-Nov-88	19-Nov-88	1.50E-14
LD-APE-0106	14	14-Nov-88	19-Nov-88	9.10E-15
LD-APE-0171	04	7-Jan-88	14-Jan-88	4.00E-15
LD-APE-0172	14	7-Jan-88	14-Jan-88	5.50E-15
LD-APE-0191	14	31-Jan-88	6-Feb-88	2.30E-15
LD-APE-0192	04	31-Jan-88	6-Feb-88	1.26E-15
LD-APE-0207	04	6-Feb-88	12-Feb-88	9.51E-15
LD-APE-0208	14	6-Feb-88	12-Feb-88	6.34E-15
LD-APE-0224	04	11-Feb-88	18-Feb-88	5.59E-15
LD-APE-0225	14	11-Feb-88	18-Feb-88	2.30E-15
LD-APE-0233	04	18-Feb-88	25-Feb-88	0.00E+00
LD-APE-0234	14	18-Feb-88	25-Feb-88	2.68E-15 /
LD-APE-0242	04	25-Feb-88	3-Mar-88	7.34E-15
LD-APE-0243	14	25-Feb-88	3-Mar-88	0.00E+00/

Note: Alpha activity of 0 indicates result less than MDA

WEEKLY AVERAGES FOR CAM STATION #4

PHASE: DISMANTLEMENT OF HOUSE

Start date	Stop date	Average Alpha Activity (μCi/ml)
3-Sep-88	10-Sep-88	2.70E-15
10-Sep-88	17-Sep-88	3.25E-15
17-Sep-88	24-Sep-88	2.33E-15
24-Sep-88	30-Sep-88	7.45E-15
30-Sep-88	8-0ct-88	3.10E-15
8-0ct-88	15-0ct-88	5.20E-15
15-0ct-88	22-0ct-88	4.10E-15
22-0ct-88	28-0ct-88	5.10E-15
28-Oct-88	5-Nov-88	8.70E-15
5-Nov-88	14-Nov-88	1.11E-14
14-Nov-88	19-Nov-88	1.16E-14
19-Nov-88	7-Jan-88	0.00E+00
7-Jan-88	14-Jan-88	6.55E-15
31-Jan-88	6-Feb-88	3.90E-15
6-Feb-88	12-Feb-88	5.39E-15
11-Feb-88	18-Feb-88	5.96E-15
18-Feb-88	25-Feb-88	1.15E-15
25-Feb-88	3-Mar-88	5.01E-15

Note: Alpha activity of 0 indicates result less than MDA

FWTRUREWILL DALL CAR SIA, #4

mainiming may darbodreeded (b.e. To secure)

FIGURE H.6 ENVIRONMENTAL DATA = CAM STATION #4
4-B-143

ENVIRONMENTAL RADON PROGENY DATA (WORKING LEVELS)

PHASE: DISMANTLEMENT OF HOUSE

Sample ID	Date	Location	Time	Conc. (WL)
LD-WLE-0167		CAM STA #1	732	1.15E-03
LD-WLE-0168	11-Jan-88	CAM STA #1	654	1.13E 03
LD-WLE-0170	11-Jan-88			
TD-MTE-01/0	11-3411-88	CAM STA #1	1505	5.08E-04
Average per	sub-phase: 9.	.09E-04 WL		
Cample ID	Date	Tanakian	m.i	0
Sample ID	Date	Location	Time	Conc. (WL)
LD-WLE-0233	1-Feb-88	CAM STA #1	730	1.10E-03
LD-WLE-0235	1-Feb-88	CAM STA #1	1245	8.70E-04
LD-WLE-0237	2-Feb-88	CAM STA #1	720	1.20E-03
LD-WLE-0239	2-Feb-88	CAM STA #1	1517	1.00E-03
LD-WLE-0241	6-Feb-88	CAM STA #1	738	2.30E-04
LD-WLE-0243	6-Feb-88	CAM STA #1	1406	2.50E-03
LD-WLE-0245	7-Feb-88	CAM STA #1	827	1.00E-03
LD-WLE-0247	7-Feb-88	CAM STA #1	1530	6.80E-04
LD-WLE-0250	8-Feb-88	CAM STA #1	954	6.21E-04
LD-WLE-0251	8-Feb-88	CAM STA #1	1414	3.39E-04
LD-WLE-0254	9-Feb-88	CAM STA #1	947	9.14E-04
LD-WLE-0255	9-Feb-88	CAM STA #1		
LD-WLE-0258	10-Feb-88		1322	3.95E-04
TD-WTR-0226	10-160-88	CAM STA #1	1125	1.19E-03
Average per	sub-phase: 9.	26E-04 WL		
Sample ID	Date	Location	Time	Com = (137.)
LD-WLE-0262	11-Feb-88			Conc. (WL)
LD-WLE-0264		CAM STA #1	1007	2.62E-03
	11-Feb-88	CAM STA #1	1242	1.23E-03
LD-WLE-0266	13-Feb-88	CAM STA #1	944	8.47E-04
LD-WLE-0267	13-Feb-88	CAM STA #1	1342	6.21E-04
LD-WLE-0270	14-Feb-88	CAM STA #1	950	3.73E-03
LD-WLE-0271	14-Feb-88	CAM STA #1	1533	3.61E-03
LD-WLE-0274	15-Feb-88	CAM STA #1	745	6.32E-03
LD-WLE-0275	15-Feb-88	CAM STA #1	1351	1.81E-03
LD-WLE-0276	15-Feb-88	CAM STA #6	1620	2.50E-02
LD-WLE-0278	16-Feb-88	CAM STA #1	955	9.54E-04
LD-WLE-0280	16-Feb-88	CAM STA #1	1405	6.50E-04
ID-WLE-0282	17-Feb-88	CAM STA #1	1250	1.02E-03
LD-WLE-0283	17-Feb-88	CAM STA #1	1330	4.52E-04
LD-WLE-0284	18-Feb-88	CAM STA #1	1407	1.19E-03
LD-WLE-0285	18-Feb-88			
LD-WLE-0286		The state of the s	1510	1.20E-02
	18-Feb-88	CAM STA #1	1525	1.69E-04
LD-WLE-0288	20-Feb-88	CAM STA #1	840	2.33E-04
LD-WLE-0289	20-Feb-88	CAM STA #1	1254	9.50E-04
LD-WLE-0291	22-Feb-88	CAM STA #6	940	9.48E-04
LD-WLE-0292	22-Feb-88	CAM STA #1	1100	2.37E-03
LD-WLE-0295	23-Feb-88	CAM STA #1	1505	1.98E-03
LD-WLE-0298	24-Feb-88	SOUTH OSF	800	2.84E-03

ENVIRONMENTAL RADON PROGENY DATA (WORKING LEVELS)

PHASE: DISMANTLEMENT OF HOUSE

Sample ID	Date	Location	Time	Conc. (WL)
LD-WLE-0300	24-Feb-88	SOUTH OSF	1510	1.19E-03
LD-WLE-0302	25-Feb-88	SOUTH OSF	943	1.24E-03
LD-WLE-0304	25-Feb-88	SOUTH OSF	1541	6.80E-03
LD-WLE-0305	27-Feb-88	SOUTH OSF	1505	4.96E-03
LD-WLE-0307	28-Feb-88	SOUTH OF OSF	1240	6.50E-03
LD-WLE-0309	28-Feb-88	SOUTH OSF	1342	9.80E-03

Average per sub-phase: 3.64E-03 WL

DALLI ENVIRONMENTAL RADON PROGENY

(F) THATH DMINHOM
FIGURE H.7 DAILY WL CONCENTRATIONS
4-B-146

SUMMARY OF PHASE HAZARD ANALYSES AND HEALTH AND SAFETY TOPICS

PHASE: DISMANTLEMENT OF PRIMARY STRUCTURE

PHASE HAZARD ANALYSIS SUMMARY FOR INTERIOR/EXTERIOR DISMANTLEMENT OPERATIONS

- August 17, 1988, PROJECT PHASE: First Entry and Inspection of the Structure's Interior. SUMMARY: Operation conducted to determine structural integrity, containment requirements, identification of radiological and non-radiological hazards.
 - August 17, 1988, PROJECT PHASE: Initial operations on the structure's Exterior. SUMMARY: Installation of anchorage system for safety lines and roof jacks.
- August 17, 1988, PROJECT PHASE: Preparation of Chimney Containment Systems and Sealing Interior of the Structure. SUMMARY: Installation of roof mounted chimney containment systems and activation of HEPA units within the structure.
- August 23, 1988, PROJECT PHASE: Continuous Operations Requiring Entry to the Structure and Dismantlement of the Third Floor Interior and Chimney above the Roof Line on 105 East Stratford. SUMMARY: The operations consisted of the removal of all non-fixed items within the structure to include debris, dismantlement of the chimneys, and dismantlement of the third floor interior.
 - September 16, 1988, PROJECT PHASE: Demolition Operations North Chimney 107 East Stratford Avenue. SUMMARY: The operation consisted of the demolition of the north chimney to the roof line and installation of the HEPA unit.
- September 21, 1988, PROJECT PHASE: Demolition Operation of the South Chimney 107 East Stratford. SUMMARY: The operation consisted of the demolition of the south chimney to the roof line and installation of the HEPA unit.
- October 6, 1988, PROJECT PHASE: Exterior Dismantlement of 105/107 East Stratford. SUMMARY: The operations consisted of the dismantlement of the structure to the first level flooring. The operations were divided into three phases: roof and third level, second level, and finally the first level.
- October 14, 1988, PROJECT PHASE: Addendum Number 1, Exterior Dismantlement of 105/107 East Stratford. SUMMARY: The addendum consisted of dismantlement of the three dormers on the 107 East Stratford side of the structure without a tarpaulin cover. The remaining openings were covered with 6 mil plastic sheeting.

October 25, 1988, PROJECT PHASE: Addendum Number 2, Exterior Dismantlement of 105/107 East Stratford. SUMMARY: The addendum consisted of modifying the dismantlement of the exterior walls to allow dismantlement as a unit for those wall sections located between doors and windows, dismantlement of the 107 East Stratford front and connecting side porch to be conducted in an open environment, and safety boots without covers was authorized for interior dismantlement activities provided they remain within the porch doffing area prior to leaving the control area.

November 8, 1989, PROJECT PHASE: Addendum Number 3, Exterior Dismantlement of 105/107 East Stratford. SUMMARY: The addendum consisted of modifying the dismantlement of the front and rear porches to allow dismantlement activities in an open environment.

January 9, 1989, PROJECT PHASE: Addendum Number 4, Exterior Dismantlement of 105/107 East Stratford. SUMMARY: The addendum consisted of modifying the dismantlement of the porches to include the adjoining concrete steps, hand rails, and sidewalks.

January 31, 1989, PROJECT PHASE: Basement and Foundation Dismantlement. SUMMARY: Dismantlement activities were preceded by terminating the fire suppression systems, removal of the 107 interior heating oil tank, furnaces, hot water tanks, and drums of mixed domestic chemical wastes from the structure. The 107 East Stratford basement and foundation was dismantled in an open environment with a rubble packaging area located near the 105 East Stratford Avenue driveway. The 105 East Stratford basement and foundation was dismantled in a HEPA ventilated containment system. All rubble packaging was conducted within a separate HEPA ventilated containment structure within the basement structure.

April 30, 1989, PROJECT PHASE: Addendum Number 1, Basement and Foundation Dismantlement. SUMMARY: The modification consisted of procedures for the removal of a 1,000 gallon underground heating oil storage tank which serviced the 105 East Stratford Avenue structure.

SUMMARY OF TOOL BOX SAFETY DISCUSSIONS FOR

DISMANTLEMENT OF 105/107 EAST STRATFORD STRUCTURE

Topics Presented

- 1. Respiratory Protection Using Racal Airstream Helmets, AH3.
- 2. Safety Procedures Enforceable at Project Site.
- 3. Security Badge Procedures.
- 4. Phase Hazard Analysis and Worker Information.
- 5. Medical Monitoring Procedures.
- 6. Heat Stress Monitoring Procedures.
- 7. Emergency Medical Evacuation Procedures.
- 8. Tetanus Booster Immunizations.
- 9. First Aid Treatment Procedures.
- 10. Safety Violation Occurrence and Worker Discussion.
- 11. Procedures for Issue of Respiratory Protective Equipment.
- 12. Fire Extinguisher Utilization and Location of Units.
- 13. Fire Suppression System Operation Procedures for Structure.
- 14. Respiratory Protection Using Negative Pressure Facepieces.
- 15. Cold Stress Prevention.
- 16. Standing Operating Procedures for Respiratory Protection Program.
- 17. Safe Work Practices when Wearing Respiratory Protection Devices.

APPENDIX 4-D
SITE MAPS

Basement

MAP J.2 - 105 EAST STRATFORD - BASEMENT 4-D-156

First Floar

Second Floor

Third Floor

Sasement

MAP J.6

4-D-160

First Floor

Second Floor

Third Floor

MAP J.9 4-D-163

CLOSEOUT REPORT

DISMANTLEMENT OF GARAGES

TABLE OF CONTENTS

Sect	ion	Page No.
1.0	INTRODUCTION	5-167
2.0	GENERAL	5-167
3.0	AIR SAMPLING PROGRAM (OCCUPATIONAL)	5-167
4.0	AIR SAMPLING PROGRAM (ENVIRONMENTAL)	5-168
5.0	WORK AREA GAMMA SURVEYS	5-168
6.0	BETA GAMMA SURVEYS	5-169
7.0	SURVEYS FOR REMOVABLE CONTAMINATION	5-170
8.0	PHASE HAZARD ANALYSIS	5-171
9.0	TOOL BOX SAFETY DISCUSSION	5-172
	APPENDIX A - OCCUPATIONAL AIR SAMPLES	5-A-173
	APPENDIX B - ENVIRONMENTAL AIR SAMPLES	5-B-183
	APPENDIX C - SUMMARY OF HEALTH AND SAFETY TOPICS.	5-C-191
	LIST OF TABLES	
5.1	GARAGE(S) GAMMA SURVEYS	5-169
6.1	GARAGE(S) BETA - GAMMA SURVEYS	5-170
7.1	GARAGE(S) CONTAMINATION SURVEYS	5-171
	LIST OF GRAPHS	
K.1	OCCUPATIONAL AIRBORNE CONCENTRATIONS	5-A-180
K.2	OCCUPATIONAL WL	5-A-182
L.1	ENVIRONMENTAL AIRBORNE CONCENTRATIONS	5-B-185
L.2	ENVIRONMENTAL WL	5-B-190
	LIST OF MAPS	
L.1	GARAGE LOCATIONS	5-B-185

1.0 INTRODUCTION

During the period of October 3, 1988 to October 8, 1988 the garage at 105 East Stratford was dismantled. On January 12 and 13, 1989 the shed at 107 East Stratford was surveyed, demolished, and disposed of as radioactive waste. Between February 22 and February 25, 1989 the garage at 107 East Stratford was dismantled. From April 18 to 22, 1989 the 110 and 112 Stewart garages were surveyed, dismantled, and disposed of as radioactive waste. To insure these dismantlement activities were performed in a safe manner, not only to the worker but to the public at large, the radiological monitoring programs which had been established for the work on the 105/107 East Stratford residences were continued. All work was performed in accordance with the Safety Health and Emergency Response Plan (SHERP) and the Contractor's Quality Control Plan (CQCP). The following sections present a description and summary of the surveys performed during the operations associated with the dismantlement of the four garages and one shed associated with the project site.

2.0 GENERAL

During this phase of the work, the following types of air samples were collected: high flow rate - occupational, low flow rate - occupational and environmental, lapel (breathing zone) - occupational, and radon progeny (WL) - occupational and environmental. During the periods of dismantlement, surveys for gamma and beta-gamma exposure rates were performed in the work areas.

Prior to beginning the structural dismantlement operations Phase Hazard Analyses were generated, discussed, and signed by each worker. At the beginning of each day of operation, a verbal discussion was held, with all workers on the site attending, to discuss topics relevant to the safety issues of the day.

3.0 AIR SAMPLING PROGRAM (OCCUPATIONAL)

3.1 GENERAL

The data generated from the three types of air samples was compiled to generate a daily Maximum Permissible Concentration-hour (MPC-h) exposure. The data sets are presented in Appendix K at the end of this chapter. Graphic representations are also provided in Appendix K. Air concentration limits and sample analysis methodology are discussed in detail in Section 3 of Chapter 4 of this document. The procedures used for this phase of the Lansdowne Project were the same as those used previously.

3.2 HIGH FLOW RATE AIR PARTICULATE SAMPLES

During this part of the dismantlement project, a total of 18 high flow rate air samples were collected. The largest MPC-h concentration was 0.183 MPC-h per day of Radium-226. The minimum was not measurable above background. The average throughout the period of dismantlement was approximately 0.126 MPC-h per day of Radium-226.

3.3 LOW FLOW RATE AIR PARTICULATE SAMPLES

Twenty-nine low flow rate air samples were collected during this work phase. The highest concentration was 0.016 MPC-h of Radium-226. The minimum was not measurable above background. The average throughout the period of dismantlement was approximately 0.0065 MPC-h per day of Radium-226.

3.4 <u>LAPEL (BREATHING ZONE) AIR SAMPLES</u>

During this period of dismantlement, 7 lapel (breathing zone) air samples were collected. The highest concentration was 0.167 MPC-h of Radium-226. The minimum was not measurable above background. The average throughout the period of dismantlement was about 0.064 MPC-h per day of Radium-226.

4.0 AIR SAMPLING PROGRAM (ENVIRONMENTAL)

4.1 GENERAL

The environmental air sampling data sets are presented in Appendix L at the end of this chapter. Graphic representations are also provided in the appendix. Air concentration limits and sample analysis methodology are discussed in detail in Section 4 of Chapter 4 of this document. The procedures used for this phase of the Lansdowne Project were the same as those used previously.

4.2 LOW FLOW RATE AIR PARTICULATE SAMPLES

Thirty-two air samples were taken at the CAM stations during this work phase. The highest value, 4.00E-14 μ Ci/ml, was obtained at station #3 during the sampling period beginning September 30, 1988. This value is less than two percent of the applicable limit of 3.0E-12 μ Ci/ml. The minimum concentration was not measurable above background.

5.0 WORK AREA GAMMA SURVEYS

5.1 GENERAL

Exposure rate measurements and contamination control criteria are discussed in detail in Section 5 of Chapter 4 of this document. Procedures were not changed during this phase of the project. Due to the nature of the work performed during this phase, the criteria applied was predominantly open air dismantlement. The only exception was the 105 East Stratford garage, which was dismantled applying the weather cover criteria.

During this dismantlement period, 20 measurements were made on the interior and exterior of the 105 East Stratford structure; 23 readings were taken on the interior and exterior of the 107 East Stratford structure; 33 survey measurements were performed on the interior and exterior of the 110 Stewart structure; and 12 readings were collected on the interior and exterior of the 112 Stewart structure. Results of the surveys are presented below.

TABLE 5.1
EXPOSURE RATE MEASUREMENTS

LOCATION	DATE	MIN. μR/hr	MAX. μR/hr	# READINGS
105 GARAGE	OCT 4, 1988	27	173	20
107 GARAGE	JAN 24, 1989	13.8	28	23
107 SHED	JAN 3, 1989	14.2	20	25
110 STEWART GARAGE	MAR 30, 1989	*	53	33
112 STEWART GARAGE	APR 13, 1989	14.4	100	5

^{*} no activity detectable above background

6.0 BETA GAMMA SURVEYS

During the course of the structural dismantlement, the criteria established in the CQCP were used to define the rubble removed as either clean or contaminated. Material

was defined as contaminated if it met one or more of the following: survey results greater than two standard deviations above background, the object had a surface which was painted or treated, or the object had inaccessible areas which could not be surveyed.

The following table provides a summary of the ranges, greater than two standard deviations above background, for the general material categories. Ludlum 177 and Ludlum 44-9 or comparable instruments were used to perform the surveys.

TABLE 6.1
BETA-GAMMA ACTIVITY RANGES BY MATERIAL TYPE

Item	removed	Range			Gamma Activity s in CPM)	
	Wood		*	to	30000	•
	Concrete		*	to	2900	
	Miscellaneou	s**	10	to	50000	

* Indicates no detectable activity above background ** Miscellaneous includes such items as cloth, glass plastic, etc.

7.0 SURVEYS FOR REMOVABLE ACTIVITY

7.1 GENERAL

Surveys were performed for removable activity by wiping a cloth filter over an area of 100 square centimeters. The survey results were used to direct contamination control efforts and to provide information regarding the extent of contamination within the structures. Direct radiological measurements were utilized to determine fixed contamination levels on building materials, which were used to determine the final radiological deposition.

7.2 SURVEYS

A total of 70 swipe measurements were made during this phase of the project. Fifty-six direct measurements with alpha and beta-gamma radiation detection instruments were made on various building materials. Twenty-nine swipes and direct measurements were collected in the garage at 105 East Stratford. Measurements were collected on the first and second floors of both the 105 and 107 East Stratford

garages. Surveys were also performed in the 110 and 112 Stewart garages. Survey data for each structure is presented in the following tables.

TABLE 7.1

TOTAL AND REMOVABLE CONTAMINATION SURVEY DATA

Location	Date	Min dpm/1	Max. .00cm2	# of READINGS
105 GARAGE	OCT 3,	*	1471(A)	105
	1988	*	3200(B)	10S
		500	30000(B)	10D
	OCT 4,	*	132(A)	20S
	1988	*	400(B)	20S
		59	294 (A)	18D
		6000	300000(B)	18D
	OCT 6, 1 1988	10000	29000(A)	11D
	FEB 23, 1989	500	2000	DIRECT SCAN
	FEB 25,	600	2000	DIRECT SCAN
	1989	500	1000	DIRECT SCAN
110 GARAGE	MAR 3,	*	15(A)	20
	1989	*	116 (B)	20
	MAR 30,	*	2 (A)	20
	1989	*	70 (B)	20
112 GARAGE	MAR 30,	*	5(A)	10
	1989	*	56(B)	10
		400	106000	27D

Notes:

* indicates no detectable activity above

background

(A)=alpha activity, (B)=beta-gamma activity

D=direct reading, S=swipe

8.0 PHASE HAZARD ANALYSIS

Prior to beginning dismantlement operations, a Phase Hazard Analysis was written. A phase hazard analysis is a document which contains a list of the appropriate safety apparel for the job, and general work instructions. This document was verbally discussed with the personnel who were to be involved in the particular phase. Each worker was then given the opportunity to read the document and required to sign it to confirm that they understood the instructions. A summary of the Phase Hazard Analyses used during this work phase is provided as Appendix M of

this document.

9.0 TOOL BOX SAFETY DISCUSSION

At the close of each work week all site personnel participated in a safety discussion. Safety issues of the week were recapped, and a general outline of the next week's activities was presented. This safety meeting was an interactive meeting between management and labor. A summary of the general topics covered at these meetings during this work phase is provided in Appendix M of this document.

APPENDIX 5-A OCCUPATIONAL AIR SAMPLES

OCCUPATIONAL AIR SAMPLES

DISMANTLEMENT OF GARAGES

GENERAL

This appendix contains the data sets for the occupational air sampling program. Shown below is the a key to identify the types of measurements made at the 105 and 107 East Stratford garages.

AIR SAMPLE ID

105 EAST STRATFORD GARAGE

Sample ID	Location	Sample in	μCi/ml (alpha)
LD-HVO-0142-01-OT LD-HVO-0144-01-OT LD-HVO-0145-01-OT LD-HVO-0150-01-OT LD-APO-0156-01-OT LD-HVO-0151-01-OT LD-HVO-0152-01-OT LD-HVO-0155-01-OT LD-HVO-0155-01-OT LD-HVO-0157-01-WL	015 015 015 015 015 015 015 015 015	3-0ct-88 3-0ct-88 4-0ct-88 5-0ct-88 6-0ct-88 6-0ct-88 6-0ct-88 6-0ct-88 7-0ct-88	3.19E-13 2.86E-13 1.80E-12 2.24E-13 1.52E-12 4.29E-13 4.62E-13 1.09E-12 2.29E-12 1.17E-12
LD-HVO-0158-01-WL LD-HVO-0159-01-WL LD-HVO-0160-01-WL LD-HVO-0161-01-WL LD-APO-0339-00-OT	015 015 015 015 015	7-Oct-88 7-Oct-88 8-Oct-88 8-Oct-88 4-Nov-88	5.48E-11 2.79E-12 3.67E-13 8.29E-13 3.17E-13

AVERAGE PEN SUBPHASE: 4.58E-12 µCi/ml

107 EAST STRATFORD GARAGE

Sample ID	Location	Sample in	μCi/ml (alpha)
LD-HVO-0006-01-OT LD-HVO-0007-01-OT		20-Aug-88 20-Aug-88	4.51E-14 -2.24E-14
LD-APO-0861-01-OT		10-Feb-88	0.00E+00
LD-APO-0862-01-OT	017	10-Feb-88	1.06E-13
LD-L1-0-0866-01-OT	017	10-Feb-8°	2.84E-12
LD-APO-0993-01-OT	017	23-Feb-88	5.39E-13
LD-APO-0994-01-OT	017	23-Feb-88	3.76E-14
LD-APO-0995-01-OT	017	23-Feb-88	8.78E-14
LD-APO-0996-01-OT		23-Feb-88	1.25E-14
LD-LPO-0997-01-OT		23-Feb-88	2.09E-12
LD-LPO-0998-01-OT		23-Feb-88	2.73E-12
LD-APO-0999-01-OT	017	24-Feb-88	2.77E-13
LD-AFO-1001-01-OT	017	24-Feb-88	8.45E-14
LD-APO-1002-01-OT	017	24-Feb-88	6.27E-15
LD-APO-1003-01-OT	017	24-Feb-88	5.48E-14
LD-LPO-1012-01-OT	017	24-Feb-88	1.30E-13
LD-APO-1015-01-OT	017	25 - Feb-88	3.21E-14
LD-LPO-1030-01-OT	017	27-Feb-88	3.12E-12
LD-LPO-1031-01-OT	017	27-Feb-88	2.09E-13
LD-LPO-1032-01-0T	017	28-Feb-88	1.56E-12

AVERAGE PER SUBPHASE: 6.97E-13 μ Ci/ml

APPENDIX K, Continued

GENERAL

Presented in this part of the appendix are the data sets for the occupational air sampling program for the 110 and 112 Stewart garages. A key to identify the types of measurements taken is shown below. The 110 Stewart garage was demolished rather than being dismantled piece by piece. Soil excavation activities were occurring concurrent with the garage dismantlements.

AIR SAMPLE ID

110 STEWART GARAGE

Sample ID	Location	Sample In	μCi/ml (alpha)
LD-APO-1234-04-BB LD-APO-1235-04-BB LD-APO-1238-04-C LD-APO-1239-04-C LD-APO-1244-04-C LD-LPO-1245-03-B LD-APO-1247-05-C LD-APO-1248-05-D LD-APO-1264-04-CC LD-APO-1265-04-CC LD-APO-1267-04-CC LD-APO-1267-04-CC LD-HVO-1268-14-V	345 345 345 345 345 345 345 345 345 345	19-Apr-88 19-Apr-88 20-Apr-88 20-Apr-88 20-Apr-88 22-Apr-88 22-Apr-88 21-Apr-88 21-Apr-88 21-Apr-88 21-Apr-88	1.77E-13 1.77E-13 4.67E-13 1.24E-13 2.18E-13 2.72E-12 1.30E-13 1.50E-13 1.49E-13 2.32E-13 1.66E-13 8.30E-14 4.51E-13
LD-LPO-1269-05-CC	345	21-Apr-88	6.24E-13

Average per subphase: 4.19E-13 μ Ci/ml

112 STEWART GARAGE

Sample ID	Location	Sample In	μCi/ml (alpha)
LD-APO-1231-02-BC	345	19-Apr-88	1.28E-13
LD-APO-1233-04-BB	345	19-Apr-88	8.04E-14
LD-LPO-1237-01-OT	345	19-Apr-88	5.02E-12
LD-APO-1241-03-D	345	20-Apr-88	1.09E-13
LD-APO-1242-04-E	345	20-Apr-88	4.67E-14
LD-APO-1243-04-D	345	20-Apr-88	1.71E-13
LD-HVO-1250-04-C	345	22-Apr-88	5.26E-13
LD-HVO-1251-03-D	345	22-Apr-88	4.51E-13
LD-LPO-1252-01-OT	345	22-Apr-88	6.24E-15

Average per subphase: $7.26E-13 \mu Ci/ml$

MICRO-CURIES PER MILLILITER (11-11) K.1 OCCUPATIONAL AIRBORNE CONCENTRATIONS

110 STEWART GARAGE

ø

5-A-180

OCCUPATIONAL RADON PROGENY DATA (WORKING LEVELS)

DISMANTLEMENT OF GARAGES

Sample ID	Date	Time	Conc. (WL)
LD-WLO-0174	13-Jan-88	1554	6.49E-04
LD-WLO-0171	13-Jan-88	739	8.27E-04
LD-WLO-0294	23-Feb-88	750	7.00E-04
LD-WLO-0297	24-Feb-88	740	1.28E-03
LD-WLO-0303	25-Feb-88	1500	1.24E-03
LD-WLO-0301	25-Feb-88	800	1.81E-03
LD-WI-0-0430	18-Apr-88	1350	7.85E-04
LD-WLO-0428	18-Apr-88	1000	1.51E-03
LD-WLO-0433	19-Apr-88	1036	7.28E-04
LD-WLO-0437	20-Apr-88	818	1.03E-03
LD-WLO-0438	20-Apr-88	1520	6.79E-04
LD-WLO-0439	20-Apr-88	1525	3.02E-04
LD-WLO-0446	22-Apr-88	1511	1.25E-04

OCCUPATIONAL RADON PROGENY DATA (WORKING LEVELS) DAILY AVERAGES

Date	Conc. (WL)
13-Jan-88	7.38E-04
23-Feb-88	7.00E-04
24-Feb-88	1.28E-03
25-Feb-88	1.52E-03
18-Apr-88	1.15E-03
19-Apr-88	7.28E-04
20-Apr-88	6.70E-04
22-Apr-88	1.25E-04

DAILY OCCUPATIONAL RADON PROGENY

110/112 STEWART

107 E. STRATFORD

MOBKING FEAEF(2)

JW JANOITAQUOOD 2.X

281-A-2

APPENDIX 5-B

ENVIRONMENTAL AIR SAMPLES DURING GARAGE DISMANTLEMENT

ENVIRONMENTAL AIR SAMPLES

1.0 GENERAL

Appendix L contains the data sets for the environmental air sampling program during this work phase. As the environmental data shows low levels of airborne activity, it was not corrected to show the actual radium activity. Rather, the gross alpha values were treated as the actual radium values. It should be noted that the actual radium concentrations in air would be significantly lower had a correction been applied. Shown below is the a key to identify the types of measurements taken.

AIR SAMPLE ID

LOCATION CODE

ENVIRONMENTAL AIR SAMPLE DATA

GARAGE DISMANTLEMENT PHASE

Í

Sample ID		Lo	ocation	Samp.	Start	μCi	i/ml (Alpha)
LD-APE-004	4		01	30-Se	o−88	_	6.60E-15
LD-APE-004	5		11	30-Sej			1.50E-15
LD-APE-004	6		02	30-Se			7.80E-15
LD-APE-004			12	30-Se			5.90E-15
LD-APE-004			03	30-Se			4.00E-14
LD-APE-004			13	30-Se			8.70E-15
LD-APE-005			14	30-Se			1.90E-15
LD-APE-005			04	30-Sej			4.30E-15
	_		.	50 50	, 00		1.502 20
A	verage	per	sub-phase:	3.40E-1	4 μCi/ml	(105	GARAGE)
LD-APE-022	7		01	18-Fel	o-88		1.41E-15
LD-APE-022	8		11	18-Fel			0.00E+00
LD-APE-022			02	18-Fel			1.07E-14
LD-APE-023			12	18-Fel			4.19E-15
LD-APE-023			03	18-Fe)			1.41E-14
LD-APE-023			13	18-Fel			2.44E-14
LD-APE-023			04	18-Fel			0.00E+00
LD-APE-023			14	18-Fel			2.68E-15
LD-APE-023			01	25-Fel			4.24E-15
LD-APE-023			11	25-Fel			4.24E-15
LD-APE-023			02	25-Fel			8.67E-15
LD-APE-023			12	25-Fel			2.83E-15
LD-APE-024			03	25-Fel			1.64E-14
LD-APE-024			13	25-Fel			7.30E-15
LD-APE-024			04	25-Fel			7.34E-15
LD-APE-024			14	25-Fe)			0.00E+00
A	verage	per	sub-phase:	3.240E-	15 μ Ci/ml	(107	GARAGE)
LD-APE-029	3		01	17-Ap	r-88		3.80E-14
LD-APE-029			02	17-Ap:			8.00E-16
LD-APE-029			11	17-Ap:			3.10E-15
LD-APE-029			12	17-Ap:			3.60E-15
LD-APE-029			03	17-Ap			2.30E-14
LD-APE-029			13	17-Ap:			4.70E-15
	-			χ, <u>π</u> ρ.			

Average per sub-phase: 1.27E-14 μ Ci/ml (110/112 Stewart Ave. Garages)

17-Apr-88

17-Apr-88

2.30E-14

5.50E-15

04

14

LD-APE-0300

LD-APE-0301

Note: Alpha activity of 0 indicates result less than MDA

WICEO-CURIES PER MILLILITER SNOITENTHANOUS AND ALPRACE TO THE SNOITENTHANOUS AND SNOTATION 1.7 (Times 18-14)

ENVIRONMENTAL RADON PROGENY DATA (WORKING LEVELS)

DISMANTLEMENT OF GARAGES

Sample ID	Date	Time	Conc. (WL)
LD-WLE-020	3-0ct-88	1542	4.92E-04
LD-WLE-017	3-0ct-88	920	2.14E-02
LD-WLE-019	3-0ct-88	1540	9.36E-03
LD-WLE-018	3-0ct-88	925	1.58E-03
LD-WLE-021	4-0ct-88	933	1.59E-03
LD-WLE-023	5-0ct-88	1110	1.59E-03
LD-WLE-026	7-0ct-88	1100	9.47E-04
LD-WLE-027	7-0ct-88	1500	3.41E-03
LD-WLE-028	8-0ct-88	905	1.54E-03
LD-WLE-0173	13-Jan-88	1416	2.24E-04
LD-WLE-0172	13-Jan-88	802	1.08E-03
LD-WLE-0292	22-Feb-88	1100	2.37E-03
LD-WLE-0291	22-Feb-88	940	9.48E-04
LD-WLE-0295	23-Feb-88	1505	1.98E-03
TD-MTE-0300	24-Feb-88	1510	1.19E-03
LD-WLE-0298	24-Feb-88	800	2.84E-03
LD-WLE-0302	25-Feb-88	943	1.24E-03
LD-WLE-0304	25-Feb-88	1541	6.80E-03
LD-WLE-0443	22-Apr-88	1420	2.34E-04
LD-WLE-0441	22-Apr-88	855	7.48E-04
LD-WLE-0444	22-Apr-88	715	1.00E-03
LD-WLE-0447	22-Apr-88	1515	1.12E-03
LD-WLE-0448	24-Apr-88	710	1.69E-03
LD-WLE-0452	25-Apr-88	815	2.12E-03
LD-WLE-0454	25-Apr-88	1505	4.72E-04
LD-WLE-0455	26-Apr-88	720	5.92E-03
LD-WLE-0460	27-Apr-88	710	2.50E-03
LD-WLE-0461	27-Apr-88	1515	1.20E-03

ENVIRONMENTAL RADON PROGENY DATA (WORKING LEVELS) DAILY AVERAGES

Date	Conc. (WL)
3-0ct-88	8.21E-03
4-0ct-88	1.59E-03
5-0ct-88	1.59E-03
7-0ct-88	2.18E-03
8-0ct-88	1.54E-03
13-Jan-88	6.52E-04
22-Feb-88	1.66E-03
23-Feb-88	1.98E-03
24-Feb-88	2.01E-03
25-Feb-88	4.02E-03
22-Apr-88	7.76E-04

MOBKING TEAET(2) JW JATNAMNORIVNA 2.J

APPENDIX 5-C

PHASE HAZARD ANALYSIS SUMMARY FOR DISMANTLEMENT OF GARAGES

PHASE HAZARD ANALYSIS SUMMARY FOR DISMANTLEMENT OF GARAGES

(105/107 E. Stratford, 110/112 Stewart)

August 20, 1988, Project Phase: First Entry and Inspection of the 107 East Stratford Garage Interior, Summary: Evaluation of decontamination requirements to facilitate use of the garage as a project storage facility.

September 30, 1988, Project Phase: Initial Entry and Interior Dismantlement of 105 East Stratford Garage, Summary: Identification of radiological and non-radiological hazards and removal of all loose and non-structural items from its interior.

October 5, 1988, Project Phase: Exterior Dismantlement of 105 East Stratford Garage, Summary: Dismantlement of the garage to it's concrete slab foundation. Areas of the concrete slab having contamination were scabbled using HEPA vacuums and ventilation.

January 9, 1989, Project Phase: Dismantlement of 107 East Stratford Garage, Summary: Removal of all loose and non-structural items from the garage interior followed by structural dismantlement and removal of the concrete slab foundation.

April 17, 1989, Project Phase: Dismantlement of 110/112 East Stewart Avenue Garages Summary: Dismantlement activities were preceded by removal of all personal property from both garage interiors and the items surveyed for radiological activity. The items were placed into temporary storage pending construction of two new garages. The 112 East Stewart garage was manually dismantled in accordance with site criteria for radiological contaminated structures. The 110 East Stewart garage was dismantled by demolition based upon radiological survey data which demonstrated that it was free of contamination but had a high potential for structural damage due to pending extensive soil excavation immediately adjacent to and under it's foundation.

SUMMARY OF TOOL BOX SAFETY DISCUSSIONS

FOR DISMANTLEMENT OF GARAGES

Topics Presented

- 1. Respiratory Protection Using Negative Pressure Facepieces.
- 2. Safe Work Practices When Wearing Respiratory Protection Devices.
- 3. Accidents Requiring Emergency Medical Assistance.
- 4. First Aid Treatment
- 5. Worker Safe Work Practices
- 6. Laundry Procedures.
- 7. Smoking within Crew Trailer.

LANSDOWNE

RADIOACTIVE RESIDENCE COMPLEX DISMANTLEMENT/REMOVAL PROJECT

RADIOLOGICAL CLOSEOUT REPORT

CHEM-NUCLEAR SYSTEMS, INC. 220 STONERIDGE DRIVE COLUMBIA, SOUTH CAROLINA

CHAPTER 6
PHASE: SOIL REMEDIATION

CLOSEOUT REPORT - SOIL REMEDIATION

TABLE OF CONTENTS

Sect	ion ,	Page No.
1.0	INTRODUCTION	6-197
2.0	GENERAL	6-197
3.0	AIR SAMPLING PROGRAM (OCCUPATIONAL)	6-197
4.0	AIR SAMPLING PROGRAM (ENVIRONMENTAL)	6-198
5.0	GAMMA SURVEYS	6-199
6.0	SOIL ANALYSIS	6-201
7.0	BACKGROUND SOIL ANALYSIS	6-202
8.0	BETA GAMMA SURVEYS	6-202
9.0	PHASE HAZARD ANALYSIS	6-203
10.0	TOOL BOX SAFETY DISCUSSION	6-203
	APPENDIX A - OCCUPATIONAL AIR SAMPLES	6-A-205
	APPENDIX $_{\rm B}$ - ENVIRONMENTAL AIR SAMPLES	6-B-231
	APPENDIX C - PRE AND POST REMEDIAL GAMMA SURVEYS.	6-C-253
	APPENDIX D - EXCAVATION CONTROL AND VERIFICATION SOIL SAMPLE RESULTS	6-D-269
	APPENDIX E - SUMMARY OF HEALTH AND SAFETY TOPICS.	6-E-315
	APPENDIX F - SUMMARY OF PHASE HAZARD ANALYSES AND HEALTH AND SAFETY TOPICS	
	APPENDIX G - SITE MAPS	6-G-339
	LIST OF TABLES	
7.1	Background Soil Concentration Summary	6-202
8.1	Rubble Activity Ranges	6-202
	LIST OF FIGURES	
N.1	Occupational Airborne Concentrations	6-A-209
N.2	Occupational Cumulative Average	6-A-210
N.3	Occupational WL	6-A-203

TABLE OF CONTENTS

LIST OF FIGURES (CONT.)

Sect	ion	Page No.
0.1	Environmental Airborne Concentrations	6-B-234
0.2	CAM Station #1 Air Sample Results	6-B-237
0.3	CAM Station #2 Air Sample Results	6 - B-243
0.4	CAM Station #3 Air Sample Results	6-B-246
0.5	CAM Station #4 Air Sample Results	6-B-252
0.6	Daily Environmental WL	6-C-264
P.1	μ R/hr vs. CPTM for 2220 SN48403	6-C-265
P.2	μ R/hr vs. CPTM for ESP-1 SN1469	6-G-341
	LIST OF MAPS	
s.1	Site Grid Layout	6-G-341
S.2	Location of Environmental CAM Stations	6-G-342
s.3	Areas of Soil Excavation	6-G-343
S.4	Remediated Structures	6-G-344

1.0 INTRODUCTION

During several work phases between November 21, 1988 and May 8, 1989 the contaminated soil associated 105 / 107 East Stratford, the associated sewer lateral, and contiguous properties was excavated. To insure the excavations were performed in a safe manner not only to the worker but to the public at large, radiological monitoring programs were established. This was accomplished by performing all work operations in accordance with the plans established prior to the beginning of the project. The following sections of this document present descriptions and summaries of the surveys performed to verify compliance with plans covering operations associated with the excavation of contaminated soil.

2.0 GENERAL

In accordance with the Safety Health and Emergency Response Plan (SHERP) and the Contractor's Quality Control Plan (CQCP) the following types of air samples were collected: high flow rate - occupational, low flow rate - occupational and environmental, lapel (breathing zone) - occupational, and radon progeny (Working Level) - occupational and environmental. On a routine basis surveys for gamma and beta-gamma exposure rates were performed in the work area.

Prior to beginning each new major task which was an integral part of soil excavation operations, a Phase Hazard Analysis was generated, explained, and signed by each worker. Along with this, weekly "Tool Box Safety Discussions" were held. At the beginning of each day of operation, a verbal discussion was held, with all workers on the site attending, to talk about topics relevant to the safety issues of the day.

3.0 AIR SAMPLING PROGRAM (OCCUPATIONAL)

3.1 GENERAL

The data generated from the three types of air samples was compiled to generate a daily_Maximum_Permissible Concentration_hour (MPC-h) exposure. The occupational air sampling data sets are presented in Appendix N of this document. Graphs are also provided in the appendix.

Air concentration limits and sample analysis methodology are discussed in detail in Section 3 of Chapter 4 of this document. The procedures used during soil remediation activities were the same as those discussed previously.

3.2 <u>HIGH FLOW RATE SAMPLES</u>

During the periods of soil excavation, 182 high flow rate air samples were collected. The largest MPC-h concentration was 0.0476 MPC-h per day of Radium-226. The minimum was not measurable above background. The average throughout the periods of soil excavation was approximately 0.008 MPC-h of Radium-226.

3.3 AIR PARTICULATE SAMPLES

During the periods of soil excavation, 257 low flow rate air samples were collected. The highest MPC-h concentration was 0.087 MPC-h of Radium-226. The minimum was not measurable above background. The average throughout the period of dismantlement was about 0.001 MPC-h of Radium-226.

3.4 LAPEL (BREATHING ZONE) AIR SAMPLING

During the period of dismantlement, 89 lapel (breathing zone) air samples were collected. The highest MPC-h concentration was 0.178 MPC-h of Radium-226. The minimum was not measurable above background.

3.4 RADON PROGENY MEASUREMENTS (WORKING LEVELS)

During the period of soil excavation, 197 working level measurements were made. The highest MPC-h concentration was 0.28 MPC-h of Radon progeny. The minimum was not measurable above background. The average throughout the period of dismantlement was about 0.006 MPC-h of Radon progeny.

4.0 AIR SAMPLING PROGRAM (ENVIRONMENTAL)

4.1 GENERAL

The environmental air monitoring data sets are presented in Appendix O of this document. Graphs are also provided for easier viewing of the data, and are included as Figures O.1 through O.4 in the Appendix.

Air concentration limits and sample analysis methodology are discussed in detail in Section 4 of Chapter 4 of this document. The procedures used for this phase of the Lansdowne Project were the same as those used previously.

4.2 AIR PARTICULATE SAMPLES

During the periods of soil excavation a total of 273 environmental air particulate samples were collected. The total number of samples collected from each station was as follows: Station #1 (south) - 69, Station #2 (west) - 69, Station #3 (north) - 66, and Station #4 (east) - 69. The air sample results are shown in Appendix O at the end of

this chapter.

4.3 RADON PROGENY MEASUREMENTS (WORKING LEVELS)

During the periods of soil excavation, 186 working level measurements were collected. The highest MPC-h concentration was 0.219 MPC-h of Radon progeny. The minimum was not measurable above background. The average throughout the periods of soil excavation was approximately 0.042 MPC-h of Radon progeny.

5.0 GAMMA SURVEYS

5.1 GENERAL

Prior to the performance of any soil excavations the entire site was gridded. The grid size was ten feet by ten feet. An origin point was established at the northwest corner of the site fence. This origin point was located two feet south of the northwest property corner. To uniquely identify each grid block, a typical civil surveying identifier was assigned to each grid point. For example, 0+10, 10L would identify a grid point ten feet south and ten feet east of the origin point.

To avoid the cumbersome use of multiple coordinates to identify each corner of a grid block, a single identifier was assigned based on the coordinates for the center point of the grid. The result was that a grid block which would have been described by the coordinates 0+00, 00R; 0+00, 10L; 0+10, 00R; 0+10, 10L became 0+05, 05L. At a later point in time, at the request of the Army Corps of Engineers, a secondary alpha-numeric grid identifier system was employed. This system identified each grid block with a sequential letter from the alphabet, starting with A at the origin point and moving through the alphabet for blocks to the south of the origin. A sequential number was also assigned, which was incremented for grids to the east of the origin. The result was that a grid which was originally identified as 0+00, 00R; 0+00, 10L; 0+10, 00R; 0+10, 10L, then simplified to 0+05, 05L, would become known as grid block A-1. A map of the site showing the grid identification system is included in Appendix S as Map S.1.

Prior to soil excavation activities, a gamma survey was done in each of the grid blocks. A gamma survey was also performed following remediation of the grid block. The data set summaries are provided in Appendix P of this document. Both the pre and post excavation gamma surveys were performed with gamma scintillation detectors. The instruments used on the Lansdowne site were the Eberline

ESP-1 with an Eberline SPA-3, and the Ludlum-2220 with a Ludlum 43-10.

During the soil excavation phase the scintillation detectors were used to provide an initial estimate of the level of contamination present in the soil. Presented in the following section is a brief description of how the contamination levels in soil were estimated.

5.2 COLLIMATED PROBE GAMMA MEASUREMENTS

"Delta gamma" measurements were performed utilizing a gamma scintillometer and a cylindrical lead shield which collimated the detector. This type of measurement was particularly useful in areas with high background or "shine" from nearby areas of contamination. This instrument assembly provides a "field of view" restricted to a cylinder of approximately eight inches diameter by six inches thick. Based on a comparison of instrument response to soil analysis results, it is possible to generate an approximation of the pico-curie per gram concentration in soil versus observed count rate, for a soil column of the same size and thickness as the instrument's field of view.

5.3 UNCOLLIMATED PROBE MEASUREMENTS

The "open probe" measurements were performed utilizing a gamma scintillation detectors without shielding. These measurements were useful in areas without excessive background interference. The field of view for an uncollimated probe can be described essentially as an ellipsoid with foci at either end of the sodium iodide crystal. The linear distance, along the long axis, between the surface of the ellipsoidal field of view and the nearest foci is approximately 1.5 feet. The field of view contracts as the detector is pressed closer to a surface or object. Based on this description of the scintillation detector and soil analysis results, it is possible to develop a loose relationship between pico-curie per gram concentration in soil and observed count rate, which can then be used to quide soil excavation.

Uncollimated probes were also used to measure exposure rates. This was accomplished by developing a regression analysis of micro-roentgens per hour measured with a Reuter Stokes RS-111 Pressurized Ionization Chamber (PIC) versus the count rate in one tenth of a minute from a gamma scintillation detector. Both types of measurement were made in the same location and about the same time, to minimize variability of the geometry and the gamma field.

6.0 SOIL ANALYSIS

6.1 GENERAL

Throughout the course of the soil remediation phase soil analysis for Radium-226 was performed. The soil analysis results were used to determine whether the site cleanup criteria, as defined in Section 9.0 of the Safety, Health and Emergency Response Plan, had been reached. The criteria was 5.0 pico-curies per gram in soil above the established background for the following radionuclides: Radium-226, Actinium-227, Thorium-230, and Protactinium-231. A soil sample consisted of an aliquot of soil which was defined as representative of the area in question. The sample consisted of approximately 500 to 700 grams of soil. The soil was placed into an aluminum can, sealed, then counted for 500 seconds on the opposed crystal multi-channel analyzer system to quantify the level of Radium-226 in the soil based on analysis of the Bi-214 daughter.

6.2 TYPES OF SAMPLES COLLECTED

Soil samples were collected for several purposes, including excavation control, verification, cross-correlation, and backfill. Although the use of the samples varied, each sample was collected in the manner described in Section 6.1.

Excavation control samples were collected to determine if additional excavation was needed.

Verification samples were collected to confirm and document that an area had been adequately remediated to the established criteria for soil. All verification samples were collected in duplicate to confirm the contaminant level remaining in the soil.

Cross-correlation samples were collected to support comparisons of activity concentration versus exposure rate measurements made with gamma scintillation detectors, as discussed in section 5.2 and 5.3 of this document.

Backfill samples were collected to confirm that the fill material used on the site was below the site criteria for radium-226 contaminants in soil.

6.3 RADIUM ANALYSIS

Analysis of the soil concentration within an area of concern was accomplished by selectively sampling the area and then analyzing the sample. The instrument which Chem-Nuclear Systems, Incorporated employed to quantify the radium concentration in soil was the Opposed Crystal System (OCS).

The OCS is a multi-channel analyzer used in conjunction with two three inch diameter sodium iodide crystals installed in a lead shield. The sample was placed in a standardized aluminum can to maintain a reproducible geometry. The can fits between the two crystals in the center of the shield. The analysis is based on detection of the Bi-214 daughter of Ra-226, which has been allowed to come to equilibrium by sealing the sample container and then counting after an ingrowth period of at least twenty days. Appendix Q provides a summary of the excavation control and verification samples collected for the Lansdowne project.

6.4 OTHER ANALYSES

The OCS worked well for the analysis of Radium-226, but was not capable of analyzing Actinium-227, Thorium-230, or Protactinium-231. Such analyses were performed by Chem-Nuclear Systems, Incorporated's sub-contractor, Barringer Laboratory Services. More than 10% of the verification samples collected were sent to Barringer Laboratory Services for isotopic analysis. These samples were also analyzed for radium-226 as a quality control check of the OCS.

7.0 BACKGROUND SOIL ANALYSIS

Prior to soil remediation activities, Chem-Nuclear collected a series of soil samples to quantify the concentration levels of the four radionuclides of concern in uncontaminated (background) soil. The results of this survey are presented in the following table.

Table 7.1
Chem-Nuclear Systems, Inc.
Background Soil Concentration Summary

Nuclide	Maximum (pCi/g)	Minimum (pCi/g)	Mean (pCi/g)
Radium-226	1.6 +/- 0.6	0.8 +/-0.5	1.2 +/- 0.6
Actinium-227	0.7 + /- 0.4	0.3 + /-0.3	0.5 + /- 0.3
Thorium-230	1.6 + /- 0.6	0.4 + /-0.3	1.0 +/- 0.4
Protactinium-231	0.2 + / - 1.2	0.0 + / -1.2	0.1 + / - 1.2

8.0 BETA GAMMA SURVEYS

During the course of soil remediation various items were demolished, in uding concrete sidewalks, foundation slabs, and

asphalt driveways. The criteria established in the Contractor's Quality Control Plan were used to define the rubble as either clean or contaminated. Material was defined as contaminated if it met one or more of the following: survey results greater than two standard deviations above background, the object had a surface which was painted or treated, or the object had inaccessible areas which could not be surveyed.

Due to the number of objects involved, it is not practical to reproduce a complete list of all the items surveyed. Therefore, the following table provides a summary of the ranges, greater than two standard deviations above background, for the general material categories. Ludlum 177 and Ludlum 44-9 or comparable instruments were used to perform the surveys. It should be noted that, owing to the restrictive criteria applied, only a few items were found to be uncontaminated.

Table 8.1 Rubble Activity Ranges Greater Than 2 Sigma Above Background

Item removed	Range of Beta-Gamma Activity (readings in CPM)		
Stone	100 to 5000		
Concrete	100 to 1000		

10 to 10000

9.0 PHASE HAZARD ANALYSIS

Asphalt

Prior to beginning each a new task in a job phase, a Phase Hazard Analysis was written, reviewed, and approved. A Phase Hazard Analysis covers not only the appropriate safety apparel, but also a general work instruction. This document was verbally discussed with the personnel who were to be involved in the particular phase. Upon completion of the verbal discussion each worker was given the opportunity to read the document, and then signed it to indicate their understanding of its contents. A summary of the Phase Hazard Analyses for the soil remediation phase is provided in Appendix R of this document.

10.0 TOOL BOX SAFETY DISCUSSION

At the close of each work week all site personnel participated in a safety discussion. It was at this point that safety issues of

the week were recapped, and in a general manner the next week's activities were outlined. This safety meeting was a interactive discussion between management and labor. A summary of the Tool Box Safety Discussion topics for the soil remediation phase is provided in Appendix R of this document.

APPENDIX 6-A OCCUPATIONAL AIR SAMPLES

OCCUPATIONAL AIR SAMPLES

1.0 GENERAL

The data sets for the occupational air sampling program are presented in this appendix. A key to identify the types of measurements taken is shown below.

AIR SAMPLE ID

MICRO—CURIES PER MILLILITER (Times 1E—12)

FIGURE N.1 OCCUPATIONAL AIRBORNE ACTIVITY 6-A-209

(Limes 1E-12)
WICKO-COKIES BER MILLILITER
ADARAVA AVITAJUMOD 2.0 AND 14
012-4-6

والهجولي يواريها بالمهد البلاء ويوها والواريد المداعية ومائلا فالمائلان المائلان والمائلان والمائلان والمائلان المائلان والمائلان والمائ

OCCUPATIONAL AIR SAMPLING DATA

Sample ID	Location	Samp Date	Alpha Act. (μCi/ml)
LD-HVO-0438-07-R	345	19-Nov-88	1.76E-13
LD-HVO-0439-07-R	345	19-Nov-88	8.80E-14
LD-HVO-0440-07-R	345	19-Nov-88	2.27E-13
LD-APO-0450-02-B	345	21-Nov-88	2.62E-12
LD-HVO-0441-01-A	345	21-Nov-88	4.40E-13
LD-HVO-0442-01-A	345	21-Nov-88	2.75E-13
LD-HVO-0443-01-A	345	21-Nov-88	3.01E-13
LD-HVO-0444-01-A	345	21-Nov-88	3.23E-13
LD-HVO-0445-01-A	345	21-Nov-88	2.33E-13
LD-HVO-0446-01-A	345	21-Nov-88	3.50E-13
LD-HVO-0447-01-A	345	21-Nov-88	3.63E-13
LD-HVO-0448-01-A	345	21-Nov-88	4.93E-13
LD-LPO-0449-02-B	345	21-Nov-88	2.29E-12
LD-HVO-0451-02-B	345	22-Nov-88	3.76E-13
LD-HVO-0452-02-B	345	22-Nov-88	2.46E-13
LD-HVO-0453-02-B	345	22-Nov-88	4.03E-13
LD-HVO-0454-02-B	345	22-Nov-88	1.43E-12
LD-HVO-0455-02-B	345	22-Nov-88	4.66E-13
LD-HVO-0456-02-B	345	22-Nov-88	2.08E-13
LD-LPO-0457-02-B	345	22-Nov-88	5.35E-12
LD-LPO-0458-02-B	345	22-Nov-88	4.25E-12
LD-HVO-0459-02-B	345	23-Nov-88	2.08E-13
LD-HVO-0460-02-B	345	23-Nov-88	2.33E-13
LD-HVO-0461-02-B	345	23-Nov-88	1.46E-13
LD-HVO-0462-02-B	345	23-Nov-88	4.14E-13
LD-HVO-0463-02-B	345	23-Nov-88	2.68E-14
LD-HVO-0464-02-B	345	23-Nov-88	2.73E-13
LD-HVO-0465-02-B	345	23-Nov-88	3.23E-13
LD-HVO-0466-02-B	345	23-Nov-88	1.69E-13
LD-HVO-0466-02-B	345	23-Nov-88	2.84E-13
LD-LPO-0468-02-B	345	23-Nov-88	2.40E-13
LD-LPO-0469-02-B	345	23-Nov-88	4.16E-13
LD-HVO-0470-02-D	345	29-Nov-88	7.57E-13
LD-HVO-0471-02-D	345	29-Nov-88	6.16E-13
LD-HVO-0472-02-D	345	29-Nov-88	6.42E-13
LD-HVO-0474-02-D	345	29-Nov-88	3.76E-13
LD-HVO-0475-02-D	345	29-Nov-88	3.28E-13
LD-HVO-0476-02-D	345	29-Nov-88	1.13E-13
LD-HVO-0477-02-D	345	29-Nov-88	1.35E-13
LD-HVO-0478-02-D	345	29-Nov-88	1.13E-13
LD-HVO-0479-02-D	345	29-Nov-88	1.39E-13
LD-LPO-0480-02-B	345	29-Nov-88	1.03E-12
LD-LPO-0481-02-D	345	29-Nov-88	4.82E-13
LD-HVO-0482-02-D	345	30-Nov-88	1.89E-13
LD-HVO-0483-02-D	345	30-Nov-88	1.52E-13
LD-HVO-0484-02-D	345	30-Nov-88	1.76E-13
LD-HVO-0485-02-D	345	30-Nov-88	2.38E-13

Sample ID	Location	Samp Date	Alpha Act. (μCi/ml)
LD-HVO-0486-02-D	345	30-Nov-88	1.13E-13
LD-HVO-0487-02-D	345	30-Nov-88	2.14E-13
LD-HVO-0488-02-D	345	30-Nov-88	3.76E-13
LD-HVO-0489-02-D	345	30-Nov-88	2.27E-13
LD-HVO-0490-02-D	345	30-Nov-88	2.51E-14
LD-HVO-0491-02-D	345	30-Nov-88	1.64E-13
LD-HVO-0492-02-D	345	30-Nov-88	1.49E-13
LD-LPO-0493-U2-D	345	30-Nov-88	5.24E-13
LD-HVO-0494-02-D	345	1-Dec-88	2.08E-13
LD-HVO-0495-02-D	345	1-Dec-88	1.51E-13
LD-HVO-0496-02-D	345	1-Dec-88	3.67E-13
LD-HVO-0497-05-B	345	1-Dec-88	1.89E-13
LD-HVO-0498-05-B	345	1-Dec-88	2.33E-13
LD-HVO-0499-05-B	345	1-Dec-88	2.90E-13
LD-HVO-0500-05-B	345	1-Dec-88	2.33E-13
LD-HVO-0501-01-E	345	1-Dec-88	1.89E-13
LD-HVO-0502-01-E	345	1-Dec-88	3.89E-13
LD-HVO-0508-01-E	345	2-Dec-88	1.34E-13
LD-HVO-0509-01-E	345	2-Dec-88	9.83E-14
LD-HVO-0510-01-E	345	2-Dec-88	1.87E-13
LD-LPO-0516-01-E	345	2-Dec-88	3.63E-13
LD-LPO-0517-01-E	345	2-Dec-88	4.55E-13
LD-HVO-0511-01-E	345	3-Dec-88	2.38E-13
LD-HVO-0512-01-E	345	3-Dec-88	8.03E-14
LD-HVO-0513-01-E	345	3-Dec-88	3.52E-13
LD-HVO-0514-01-E	345	3-Dec-88	1.60E~13
LD-HVO-0515-01-E	345	3-Dec-88	1.51E~13
LD-HVO-0518-01-E	345	3-Dec-88	1.34E-13
LD-HVO-0519-01-E	345	3-Dec-88	1.34E-13
LD-HVO-0520-01-E	345	3-Dec-88	1.61E-13
LD-HVO-0521-02-F	345	3-Dec-88	4.00E-14
LD-HVO-0522-02-F	345	3-Dec-88	2.68E-13
LD-HVO-0523-02-F	345	3-Dec-88	1.07E-13
LD-HVO-0524-02-F	345	3-Dec-88	3.78E-14
LD-HVO-0525-02-F	345	3-Dec-88	1.87E-13
LD-HVO-0526-02-F	345	3-Dec-88	1.64E-13
LD-HVO-0527-02-F	345	3-Dec-88	2.27E-13
LD-HVO-0528-02-F	345	3-Dec-88	2.77E-13
LD-LPO-0529-02-F	345	3-Dec-88	7.02E-14
LD-LPO-0530-02-F	345	3-Dec-88	1.74E-12
LD-LPO-0531-02-F	345	3-Dec-88	7.02E-13
LD-HVO-0572-04-A	345	5-Dec-88	2.01E-13
LD-HVO-0573-04-A	345	5-Dec-88	4.14E-13
LD-HVO-0574-04-B	345	5-Dec-88	7.55E-13
LD-HVO-0575-04-B	345	5-Dec-88	2.27E-13
LD-HVO-0576-04-B	345	5-Dec-88	2.77E-13
LD-HVO-0577-04-B	345	5-Dec-88	2.66E-13
LD-HVO-0578-05-B	345	5-Dec-88	2.51E-13
LD-HVO-0579-05-B	345	5-Dec-88	5.21E-13

Sample ID	Location	Samp Date	Alpha Act. (µCi/ml)
LD-HVO-0580-05-B	345	5-Dec-88	5.54E-13
LD-HVO-0581-05-B		5-Dec-88	1.61E-13
LD-HVO-0582-05-B		5-Dec-88	1.39E-13
LD-HVO-0583-06-B		5-Dec-88	2.40E-13
LD-HVO-0584-06-A		5-Dec-88	2.40E 13 2.27E-13
LD-HVO-0585-06-A		5-Dec-88	6.80E-13
LD-LPO-0586-06-A		5-Dec-88	4.99E-13
LD-LPO-0587-06-A		5-Dec-88	4.16E-13
LD-HVO-0589-06-A		6-Dec-88	3.32E-13
LD-HVO-0590-06-B		6-Dec-88	2.06E-13
LD-HVO-0591-06-B		6-Dec-88	3.54E-13
LD-HVO-0592-06-A		6-Dec-88	1.39E-13
LD-HVO-0593-06-B		6-Dec-88	1.52E-13
LD-HVO-0594-07-B		6-Dec-88	2.19E-13
LD-HVO-0595-07-B		6-Dec-88	2.19E-13
LD-HVO-0596-07-A		6-Dec-88	1.37E-13
LD-HVO-0597-07-B		6-Dec-88	1.79E-13
LD-HVO-0598-07-A		6-Dec-88	3.01E-13
LD-HVO-0599-08-B		6-Dec-88	4.53E-14
LD-HVO-0600-08-B		6-Dec-88	2.51E-14
LD-HVO-0601-08-B	345	6-Dec-88	2.14E-13
LD-HVO-0602-08-B	345	6-Dec-88	3.76E-13
LD-LPO-0603-08-B	345	6-Dec-88	5.85E-13
LD-HVO-0532-07-A	345	7-Dec-88	1.12E-13
LD-HVO-0533-07-B	345	7-Dec-88	5.87E-14
LD-HVO-0534-08-A	345	7-Dec-88	8.56E-14
LD-HVO-0535-08-A	345	7-Dec-88	1.52E-13
LD-HVO-0536-08-B	35	7-Dec-88	5.35E-15
LD-HVO-0537-08-A	3 1 5	7-Dec-88	5.04E-15
LD-HVO-0538-08-B	345	7-Dec-88	1.12E-13
LD-HVO-0539-08-B	345	7-Dec-88	1.06E-13
LD-LPO-0588-06-A	345	7-Dec-88	5.35E-13
LD-APO-0547-09-B	347	8-Dec-88	2.75E-14
LD-APO-0548-09-A	347	8-Dec-88	1.20E-13
LD-APO-0549-09-A		8-Dec-88	3.65E-14
LD-APO-0550-09-B		8-Dec-88	4.11E-14
LD-HVO-0540-08-B	345	8-Dec-88	2.01E-13
LD-HVO-0541-09-B	347	8-Dec-88	2.46E-13
LD-HVO-0542-09-B	347	8-Dec-88	1.61E-13
LD-HVO-0543-09-A	347	8-Dec-88	1.69E-13
LD-HVO-0544-09-A	347	8-Dec-88	1.95E-13
LD-HVO-0545-09-A	347	8-Dec-88	2.55E-13
LD-HVO-0546-09-B	347	8-Dec-88	1.30E-13
LD-LPO-0551-09-B	347	8-Dec-88	2.27E-12
LD-APO-0552-11-A	347	9-Dec-88	4.97E-14
LD-APO-0553-11-A		9-Dec-88	5.81E-14
LD-APO-0554-11-A		9-Dec-88	8.56E-14
LD-APO-0555-11-A		9-Dec-88	4.51E-14
LD-APO-0556-11-A	347	9-Dec-88	3.76E-14

Sample	ID	Location	Samp Date	Alpha Act. (#Ci/ml)
LD-APO-	·0557-11-A	347	9-Dec-88	4.18E-14
	-0558-11-B	347	9-Dec-88	2.05E-14
	·0559-11-B	347	9-Dec-88	4.51E-14
	·0560-11-B	347	9-Dec-88	5.72E-13
	·0561-11-B	347	10-Dec-88	4.20E-14
LD-APO-	·0562-11-A	347	10-Dec-88	2.75E-14
	·0563-11-B	347	10-Dec-88	4.84E-14
	-0564-12-B	347	10-Dec-88	1.37E-14
	·0565-12-B	347	10-Dec-88	1.37E-14
	·0565-12-B	347	10-Dec-88	2.57E-14
	·0566-11-C	347	10-Dec-88	1.71E-14
	·0567-11-D	347	10-Dec-88	2.57E-14
LD-APO-	-0568-11-D	347	10-Dec-88	2.40E-14
LD-APO-	-0569-10-D	347	10-Dec-88	4.20E-14
LD-APO-	0570-09-D	347	10-Dec-88	3.43E-15
LD-LPO-	-0571-09-D	347	10-Dec-88	3.98E-13
LD-APO-	-0605-10-D	347	11-Dec-88	3.43E-14
LD-APO-	-0606-10-C	347	11-Dec-88	1.71E-14
LD-APO-	-0607-08-D	347	11-Dec-88	3.08E-14
LD-APO-	-0608-07-D	347	11-Dec-88	1.71E-14
LD-APO-	·0609-06-D	345	11-Dec-88	4.44E-14
LD-APO-	-0610-06-D	345	11-Dec-88	2.40E-14
LD-APO-	·0611-06-A	345	11-Dec-88	4.44E-14
LD-APO-	·0612-06-C	345	11-Dec-88	2.40E-14
LD-LPO-	·0604-10-D	347	11-Dec-88	4.99E-13
LD-LPO-	·0613-06-D	345	11-Dec-88	4.66E-13
LD-APO-	·0614-06-C	345	12-Dec-88	5.15E-14
	·0615-06-D	345	12-Dec-88	5.83E-14
	·0616-06-D	345	12-Dec-88	9.24E-14
	·0617-06-D	345	12-Dec-88	3.08E-14
	·0618-06-C	345	12-Dec-88	3.43E-15
	·0619-06-D	345	12-Dec-88	6.51E-14
	·0620-06-D	345	12-Dec-88	1.03E-14
	0621-06-D	345	12-Dec-88	4.11E-14
	·0622-06-D	345	12-Dec-88	5.96E-13
	·0623-06-D	345	13-Dec-88	2.75E-14
	·0624-03-C	345	13-Dec-88	3.70E-14
	·0625-03-C	345	13-Dec-88	2.05E-14
	·0626-03-C	345	13-Dec-88	6.12E-14
	0627-03-C	345	13-Dec-88	3.76E-14
	0628-03-C	345	13-Dec-88	2.90E-14
	0629-05-R	345	13-Dec-88	2.57E-14
	·0631-05-E	345	14-Dec-88	1.37E-13
	0632-05-E	345	14-Dec-88	3.76E-14
	0633-04-E	345	14-Dec-88	3.76E-14
	0634-04-C	345	14-Dec-88	4.80E-14
	0635-05-E	345	14-Dec-88	3.54E-14
	0636-05-E	345	14-Dec-88	2.73E-14
LD-APO-	0637-04-E	345	14-Dec-88	3.76E-14

Sample ID	Location	Samp Date	Alpha Act. (μCi/ml)
LD-LPO-0638-04-		14-Dec-88	2.49E-16
LD-APO-0639-05-	E 345	15-Dec-88	2.40E-14
LD-APO-0640-05-		15-Dec-88	1.37E-14
LD-APO-0641-05-		15-Dec-88	<mda< td=""></mda<>
LD-APO-0642-05-		15-Dec-88	2.05E-13
LD-APO-0643-03-		15-Dec-88	2.05E-14
LD-APO-0644-02-		15-Dec-88	<mda< td=""></mda<>
LD-APO-0645-02-		15-Dec-88	3.08E-14
LD-LPO-0646-02-		15-Dec-88	2.20E-13
LD-APO-0647-02-		16-Dec-88	<mda< td=""></mda<>
LD-APO-0648-02-		16-Dec-88	5.48E-14
LD-APO-0649-02-		16-Dec-88	1.37E-14
LD-APO-0650-02-		16-Dec-88	3.41E-15
LD-APO-0651-03-		16-Dec-88	1.37E-14
LD-LPO-0652-03-		16-Dec-88	2.75E-13
LD-APO-0653-03-		17-Dec-88	3.41E-15
LD-APO-0554-04-		17-Dec-88	2.73E-14
LD-APO-0655-01-		17-Dec-88	3.41E-14
LD-APO-0656-01-		17-Dec-88	3.08E-14
LD-APO-0657-01-		17-Dec-88	4.80E-14
LD-LPO-0658-01-		17-Dec-88	3.23E-13
LD-APO-0659-04-		19-Dec-88	2.73E-14
LD-APO-0660-04-		19-Dec-88	2.40E-14
LD-APO-0661-03-		19-Dec-88	4.44E-14
LD-APO-0662-04-		19-Dec-88	3.41E-14
LD-LPO-0663-04-		19-Dec-88	4.97E-13
LD-APO-0664-04-		20-Dec-88	6.84E-15
LD-APO-0665-04-		20-Dec-88	2.73E-14
LD-APO-0666-04-		20-Dec-88	1.03E-14
LD-APO-0667-04-		20-Dec-88	3.41E-15
LD-APO-0668-04-		20-Dec-88	6.84E-15
LD-APO-0669-04-		20-Dec-88	1.71E-14
LD-APO-0670-02-		21-Dec-88	4.99E-14
LD-APO-0671-02-		21-Dec-88	1.71E-14
LD-LPO-0672-02-		21-Dec-88	5.72E-13
LD-APO-0674-04-		3-Jan-89	6.84E-15
LD-APO-0675-05-		3-Jan-89	2.33E-14
LD-APO-0676-05-		3-Jan-89	6.84E-15
LD-APO-0677-05-		3-Jan-89	2.33E-14
LD-LPO-0673-04-		3-Jan-89	3.94E-13
LD-APO-0679-03-		4-Jan-89	3.43E-15
LD-APO-0680-03-		4-Jan-89	4.44E-14
LD-APO-0681-05-		4-Jan-89	7.96E-13
LD-APO-0682-05-		4-Jan-89	2.05E-14
LD-APO-0683-03-		4-Jan-89	<mda< td=""></mda<>
LD-LPO-0678-03-		4-Jan-89	2.66E-13
LD-APO-0685-04-		5-Jan-89	1.99E-14
LD-APO-0686-05-		5-Jan-89	1.33E-14
LD-APO-0687-05-	CA 345	5-Jan-89	<mda< td=""></mda<>

Sample	ID	Location	Samp Date	Alpha Act. (µCi/ml)
T-D-APO-	0688-05-C	345	5-Jan-89	6.64E-15
	0684-04-CA		5-Jan-89	<mda< td=""></mda<>
	0690-07-CE		6-Jan-89	1.29E-14
	0689-04-CI		6-Jan-89	1.93E-12
	0692-09-CA		7-Jan-89	6.45E-15
LD-APO-	0693-08-CA		7-Jan-89	1.61E-14
LD-APO-	0694-09-CA	347	7-Jan-89	<mda< td=""></mda<>
LD-APO-	0695-09-CA	347	7-Jan-89	<mda< td=""></mda<>
LD-LPO-	0691-08-CA	345	7-Jan-89	<mda< td=""></mda<>
LD-APO-	0697-04-A	345	9-Jan-89	1.55E-14
LD-APO-	0698-09-CA	347	9-Jan-89	2.31E-15
LD-APO-	0699-06-A	345	9-Jan-89	2.29E-14
LD-APO-	0700-06-A	345	9-Jan-89	1.12E-14
LD-APO-	0701-06-A	345	9-Jan-89	1.33E-14
	0696-09-C		9-Jan-89	2.31E-13
	0738-02-K		14-Jan-89	5.72E-14
	0739-02-K		14-Jan-89	3.74E-14
	0740-02-K		14-Jan-89	3.30E-14
	0741-02-K		14-Jan-89	2.64E-14
-	0742-07-G		14-Jan-89	6.38E-15
= -	0743-07-G		14-Jan-89	1.72E-14
	0744-07-GI		14-Jan-89	6.38E-15
	0745-07-G		14-Jan-89	3.52E-14
	0746-07-G		14-Jan-89	2.20E-14
	0756-05-C	345	17-Jan-89	3.52E-14
	0757-05-C	345	17-Jan-89	4.62E-14
	0758-05-C	345	17-Jan-89	2.00E-14
	0759-05-C	345	17-Jan-89	3.08E-14
	0755-05-C	345	17-Jan-89	3.74E-13
	0760-02-K		18-Jan-89	<mda< td=""></mda<>
	0761-02-KA		18-Jan-89	5.94E-14
	0762-02-K		18-Jan-89	3.52E-14
	0763-05-KA		18-Jan-89	<mda< td=""></mda<>
	0765-02-GI		19-Jan-89	1.03E-13
	0766-08-CI		19-Jan-89	<mda< td=""></mda<>
	0767-09-CI		19-Jan-89	<mda< td=""></mda<>
	0768-11-CI		19-Jan-89	4.62E-14
	0764-12-CF 0770-12-CF		19-Jan-89 20-Jan-89	6.16E-13 1.61E-14
	0771-12-A	3 347 347	20-Jan-89	2.86E-14
	0772-01-G		20-Jan-89	2.20E-14 2.20E-14
	0773-01-GA		20-Jan-89	6.38E-14
	0769-14-A	347	20-Jan-89	1.96E-12
	0775-13-C	347	21-Jan-89	6.16E-14
	0774-13-C	347	21-Jan-89	5.50E-13
	0780-14-E	347 347	21-Jan-89 23-Jan-89	3.52E-14
	0781-14-B	347	23-Jan-89	7.70E-14
	0781-14-B	347	23-Jan-89	2.86E-14
	0799-14-E	347	23-Jan-89	3.30E-13
ביי אור פיי	OIDD IT IS	J41	LJ Jan Jy	3.505 15

Sample ID	Location	Samp Date	Alpha Act. (μCi/ml)
LD-APO-0784-11-H	H 347	24-Jan-89	1.87E-14
LD-APO-0785-11-F	E 347	24-Jan-89	3.52E-14
LD-APO-0786-11-E	347	24-Jan-89	2.18E-14
LD-APO-0787-11-1	F 347	24-Jan-89	1.87E-14
LD-LPO-0783-11-E	E 347	24-Jan-89	2.20E-13
LD-APO-0789-11-3	J 347	25-Jan-89	6.38E-15
LD-APO-0790-11-3	J 347	25-Jan-89	3.30E-14
LD-APO-6791-12-E	K 347	25-Jan-89	3.30E-14
LD-APO-0792-10-E	347	25-Jan-89	3.30E-15
LD-LPO-0788-11-3	J 347	25-Jan-89	6.38E-14
LD-LPO-0793-10-E	347	26-Jan-89	5.72E-13
LD-APO-0795-07-1	345	27-Jan-89	3.52E-14
LD-APO-0796-07-1	E 345	27-Jan-89	3.96E-14
LD-APO-0797-09-1	E 347	27-Jan-89	3.52E-14
LD-APO-0798-07-0	345	27-Jan-89	1.94E-14
LD-LPO-0794-05-0	345	27-Jan-89	7.04E-14
LD-APO-0800-07-1	B 345	28-Jan-89	9.68E-15
LD-APO-0301-06-0	345	28-Jan-89	3.96E-14
LD-APO-0802-06-0	345	28-Jan-89	9.68E-15
LD-LPO-0799-03-I	345	28-Jan-89	1.89E-13
LD-APO-0804-06-2	A 345	31-Jan-89	2.64E-14
LD-APO-0805-06-8	345	31-Jan-89	4.84E-14
LD-LPO-0803-06-2		31-Jan-89	1.01E-13
LD-LPO-0812-00-2		2-Feb-89	1.23E-13
LD-LPO-0823-00-2	A 347	6-Feb-89	9.28E-14
LD-LPO-0840-00-2	A 347	7-Feb-89	3.61E-13
LD-LPO-0850-00-2	A 347	8-Feb-89	9.61E-13
LD-LPO-0859-00-2	A 347	9-Feb-89	6.36E-13
LD-APO-1039-01-2	A 047	1-Mar-89	3.76E-14
LD-APO-1040-01-2	A 047	1-Mar-89	1.28E-14
LD-APO-1041-14-1	D 347	1-Mar-89	<mda< td=""></mda<>
LD-APO-1042-01-2	A 347	2-Mar-89	<mda< td=""></mda<>
LD-APO-1043-01-2		2-Mar-89	9.39E-15
LD-APO-1044-01-2		2-Mar-89	<mda< td=""></mda<>
LD-APO-1045-01-2		2-Mar-89	1.88E-14
LD-APO-1062-13-1		9-Mar-89	<mda< td=""></mda<>
LD-APO-1063-13-1		9~Mar-89	2.75E-14
LD-APO-1064-13-		9-Mar-89	3.04E-14
LD-APO-1065-13-3		9-Mar-89	1.83E-14
LD-APO-1066-13-3		10-Mar-89	8.91E-15
LD-APO-1067-13-2		10-Mar-89	1.22E-14
LD-APO-1068-13-2		10-Mar-89	1.83E-14
LD-APO-1069-13-2		10-Mar-89	<mda< td=""></mda<>
LD-APO-1078-11-1		13-Mar-89	3.32E-15
LD-APO-1079-11-1		13-Mar-89	6.64E-15
LD-APO-1080-08-1		13-Mar-89	<mda< td=""></mda<>
LD-APO-1081-08-1		13-Mar-89	3.08E-14
LD-LPO-1082-00-2		13-Mar-89	1.08E-13
LD-APO-1086-07-1		14-Mar-89	<mda< td=""></mda<>
TD - WEG-T000-01-1	u 545	TA MOT-03	\mun

Sample ID	Location	Samp Date	Alpha Act. (μCi/ml)
LD-APO-1087-09-G	347	14-Mar-89	<mda< td=""></mda<>
LD-LPO-1088-00-A	347	14-Mar-89	5.54E-13
LD-APO-1090-09-H	347	15-Mar-89	3.04E-14
LD-APO-1091-09-H	347	15-Mar-89	1.88E-14
LD-APO-1092-10-K	347	15-Mar-89	<mda< td=""></mda<>
LD-APO-1093-10-K	347	15-Mar-89	<mda< td=""></mda<>
LD-LPO-1094-01-A	345	15-Mar-89	3.08E-13
LD-LPO-1095-01-A	345	15-Mar-89	7.96E-14
LD-APO-1096-08-K	345	16-Mar-89	<mda< td=""></mda<>
LD-APO-1097-08-K	345	16-Mar-89	<mda< td=""></mda<>
LD-APO-1098-09-K	347	16-Mar-89	<mda< td=""></mda<>
LD-APO-1101-09-R	347	17-Mar-89	3.32E-15
LD-APO-1103-09-N	347	17-Mar-89	3.32E-15
LD-APO-1104-07-L	345	17-Mar-89	<mda< td=""></mda<>
LD-LPO-1105-09-N	347	17-Mar-89	<mda< td=""></mda<>
LD-LPO-1106-09-C	347	17-Mar-89	<mda< td=""></mda<>
LD-APO-1107-08-L	345	18-Mar-89	3.21E-15
LD-APO-1108-07-R	345	18-Mar-89	1.61E-14
LD-APO-1109-07-P	345	18-Mar-89	9.68E-15
LD-APO-1110-07-P	345	18-Mar-89	1.93E-14
LD-LPO-1111-07-S	345	18-Mar-89	2.73E-13
LD-LPO-1112-07-S	345	18-Mar-89	2.00E-13
LD-APO-1113-07-P	345	20-Mar-89	1.66E-14
LD-APO-1114-07-M	345	20-Mar-89	1.71E-14
LD-APO-1115-04-R	345	20-Mar-89	<mda< td=""></mda<>
LD-APO-1116-04-R	345	20-Mar-89	6.64E-15
LD-APO-1117-03-R	345	20-Mar-89	2.33E-14
LD-APO-1118-07-G	345	20-Mar-89	6.45E-15
LD-APO-1119-06-E	345	20-Mar-89	3.21E-15
LD-LPO-1120-05-B	345	20-Mar-89	2.14E-13
LD-LPO-1121-04-R		20-Mar-89	2.18E-13
LD-APO-1123-04-D	345	21-Mar-89	<mda< td=""></mda<>
LD-APO-1124-04-P	345	21-Mar-89	<mda< td=""></mda<>
LD-APO-1125-04-P		21-Mar-89	<mda< td=""></mda<>
LD-LPO-1126-05-B		21-Mar-89	1.04E-14
LD-APO-1127-04-E		22-Mar-89	2.05E-14
LD-APO-1128-04-B		22-Mar-89	2.57E-14
LD-APO-1129-06-B		22-Mar-89 22-Mar-89	1.61E-14 9.68E-15
LD-APO-1130-05-B			4.22E-13
LD-LPO-1131-01-A		22-Mar-89	1.70E-13
LD-LPO-1132-01-A		22-Mar-89 23-Mar-89	1.70E-13 1.03E-14
LD-APO-1133-05-B	345	23-Mar-89	3.43E-15
LD-APO-1134-05-C LD-APO-1135-04-S	345	23-Mar-89	1.66E-14
LD-APO-1135-04-S LD-APO-1136-06-D	345 345	23-Mar-89 23-Mar-89	2.05E-14
LD-LPO-1137-01-A		23-Mar-89	1.80E-13
LD-LPO-1137-01-A LD-LPO-1138-01-A		23-Mar-89	2.57E-13
LD-APO-1139-04-S		27-Mar-89	2.57E-13 2.05E-14
LD-APO-1139-04-5 LD-APO-1140-06-D		27-Mar-89	3.43E-15
TD-VEO-1140-00-D	242	Z/ Mal-03	2.4277 77

Sample ID	Location	Samp Date	Alpha Act. (µCi/ml)
LD-APO-1141-05-D	345	27-Mar-89	2.73E-14
LD-APO-1143-06-D	345	27-Mar-89	<mda< td=""></mda<>
LD-HVO-1142-12-V	347	27-Mar-89	2.64E-13
LD-HVO-1144-19-V	347	27-Mar-89	2.33E-13
LD-HVO-1145-04-S	345	27-Mar-89	1.55E-13
LD-LPO-1146-01-A	345	27-Mar-89	8.36E-14
LD-LPO-1147-01-A	345	27-Mar-89	1.88E-13
LD-HVO-1180-04-S	345	28-Mar-89	1.70E-13
LD-HVO-1181-07-V	345	28-Mar-89	9.04E-14
LD-HVO-1182-06-E	345	28-Mar-89	2.17E-13
LD-HVO-1183-06-E	345	28-Mar-89	3.41E-13
LD-HVO-1184-05-F	345	28-Mar-89	2.49E-13
LD-HVO-1185-04-S	345	28-Mar-89	1.39E-13
LD-HVO-1186-07-V	345	28-Mar-89	<mda< td=""></mda<>
LD-LPO-1187-01-A	345	28-Mar-89	1.38E-13
LD-LPO-1183-01-A	345	28-Mar-89	9.13E-14
LD-HVO-1148-05-F	345	29-Mar-89	1.12E-13
LD-HVO-1149-04-F	345	29-Mar-89	1.92E-13
LD-HVO-1150-06-F	345	29-Mar-89	1.76E-13
LD-HVO-1151-07-V	345	29-Mar-89	1.24E-13
LD-HVO-1152-C7-V	345	29-Mar-89	2.49E-13
LD-LPO-1153-01-A	345	29-Mar-89	4.27E-13
LD-LPO-1154-01-A	345	29-Mar-89	3.63E-13
LD-HVO-1155-04-S	345	30-Mar-89	1.39E-13
LD-HVO-1156-05 -G	345	30-Mar-89	1.55E-13
LD-HVO-1157-05-G	345	30-Mar-89	2.95E-13
LD-HVO-1158-03-S	345	30-Mar-89	1.86E-13
LD-HVO-1159-05-H	345	30-Mar-89	2.01E-13
LD-HVO-1160-07-V	345	30-Mar-89	3.56E-13
LD-LPO-1161-01-A	345	30-Mar-89	4.03E-13
LD-LPO-1162-01-A		30-Mar-89	8.27E-13
LD-HVO-1163-04-S	345	31-Mar-89	4.03E-14
LD-HVQ-1164-05-H	345	31-Mar-89	1.33E-13 2.57E-13
LD-HV0-1165-05-J	345	31-Mar-89 31-Mar-89	1.12E-13
LD-HVO-1166-04-S LD-HVO-1167-06-V		31-Mar-89	1.12E-13 1.28E-13
LD-HVO-1168-06-V		31-Mar-89	4.91E-13
LD-HVO-1168-06-V		31-Mar-89	5.06E-13
LD-LPO-1170-01-A		31-Mar-89	5.85E-13
LD-LPO-1171-01-A		31-Mar-89	3.59E-13
LD-HVO-1172-04-S		1-Apr-89	5.13E-13
LD-HVO-1173-06-L		1-Apr-89	2.08E-13
LD-HVO-1174-08-V		1-Apr-89	1.76E-13
LD-HV0-1174-08-V		1-Apr-89	9.59E-14
LD-HVO-1176-06-L		1-Apr-89	2.08E-13
LD-HVO-1177-04-S		1-Apr-89	1.60E-13
LD-LPO-1178-01-A		1-Apr-89	3.08E-13
LD-LPO-1179-01-A		1-Apr-89	6.05E-13
I:D-HVO-1191-26-V		5-Apr-89	1.20E-13

Sample ID	Location	Samp Date	Alpha Act. (μCi/ml)
LD-HVO-1192-06-S	345	5-Apr-89	6.40E-14
LD-HVO-1193-06-S	345	5-Apr-89	9.59E-14
LD-HVO-1194-05-P	345	5-Apr-89	6.40E-14
LD-HVO-1195-04-S	345	5-Apr-89	1.60E-13
LD-LPO-1196-01-A	345	5-Apr-89	1.59E-13
LD-APO-1199-21-V	347	7-Apr-89	3.54E-15
LD-APO-1200-21-V	347	7-Apr-89	7.06E-15
LD-APO-1201-05-S	345	7-Apr-89	<mda< td=""></mda<>
LD-APO-1202-03-S	345	7-Apr-89	7.06E-15
LD-APO-1203-17-V	347	7-Apr-89	2.12E-14
LD-HVO-1197-04-P	345	7-Apr-89	4.31E-13
LD-HVO-1198-04-S	345	7-Apr-89	<mda< td=""></mda<>
LD-LPO-1204-01-A	345	7-Apr-89	<mda< td=""></mda<>
LD-APO-1205-20-V	347	10-Apr-89	<mda< td=""></mda<>
LD-APO-1206-18-V	347	10-Apr-89	2.82E-14
LD-APO-1207-20-V	347	10-Apr-89	2.82E-14
LD-LPO-1208-01-A	347	10-Apr-89	<mda< td=""></mda<>
LD-APO-1209-04-P	345	11-Apr-89	4.25E-14
LD-APO-1210-04-P	345	11-Apr-89	1.06E-14
LD-APO-1211-04-P	345	11-Apr-89	2.46E-14
LD-APO-1212-17-V	347	11-Apr-89	<mda< td=""></mda<>
LD-APO-1213-15-V	347	11-Apr-89	3.19E-14
LD-APO-1214-05-R	345	12-Apr-89	3.08E-14
LD-APO-1215-05-R	345	12-Apr-89	2.05E-14
LD-APO-1216-05-S	345	12-Apr-89	2.40E-14
LD-APO-1217-12-V	345	12-Apr-89	1.03E-14
LD-APO-1218-05-V	345	12-Apr-89	2.05E-14
LD-APO-1219-04-V	345	12-Apr-89	2.73E-14
LD-LPO-1220-01-A	345	12-Apr-89	8.45E-14
LD-APO-1221-10-V	347	13-Apr-89	4.22E-15
LD-APO-1222-10-V	347	13-Apr-89	1.13E-14
LD-LPO-1223-01-A	347	13-Apr-89	1.18E-14
LD-APO-1224-11-V	347	14-Apr-89	3.54E-14
LD-APO-1225-09-V		14-Apr-89	4.11E-14
LD-APO-1228-25-V		17-Apr-89	1.03E-14
LD-APO-1229-17-V		17-Apr-89	2.12E-14
LD-HVO-1227-07-V		17-Apr-89	3.89E-14
LD-APO-1230-12-V		18-Apr-89	4.60E-14
LD-APO-1231-02-B		19-Apr-89	2.82E-14
LD-APO-1232-07-V		19-Apr-89	1.41E-14
LD-APO-1233-04-B		19-Apr-89	1.77E-14
LD-APO-1234-04-B		19-Apr-89	3.89E-14
LD-APO-1235-04-B		19-Apr-89	3.89E-14
LD-APO-1236-08-V	345	19-Apr-89	4.25E-14
LD-LPO-1237 ·01-A		19-Apr-89	1.10E-12
LD-APO-1238-04-C		20-Apr-89	1.03E-13
LD-APO-1239-04-C		20-Apr-89	2.73E-14
LD-APO-1241-03-D		20-Apr-89	2.40E-14
LD-APO-1242-04-E	345	20-Apr-89	1.03E-14

Sample	ID	Location	Samp Date	Alpha Act. (µCi/ml)
LD-APO	-1243-04-D	345	20-Apr-89	3.76E-14
LD-APO	-1244-04-C	345	20-Apr-89	4.80E-14
LD-HVO	-1240-09-V	345	20-Apr-89	1.38E-14
LD~LPO	-1245-03-B	345	20-Apr-89	5.98E-13
LD-APO	-1264-04-C	C 345	21-Apr-89	3.28E-14
LD-APO	-1265-04-C	C 345	21-Apr-89	5.10E-14
LD-APO	-1266-04-C	C 345	21-Apr-89	3.65E-14
LD-APO	-1267-04-C	C 345	21-Apr-89	1.83E-14
LD-HVO	-1268 - 14-V	347	21-Apr-89	9.92E-14
LD-LPO	-1269-05-0	C 345	21-Apr-89	1.37E-13
LD-APO	-1247-05-0	345	22-Apr-89	2.86E-14
LD-APO	-1248-05-D	345	22-Apr-89	3.30E-14
LD-HVO	-1246-05-V	345	22-Apr-89	2.49E-13
LD-HVO	-1249-18-V	347	22-Apr-89	1.41E-13
LD-HVO-	-1250-04-0	345	22-Apr-89	1.16E-13
LD-HVO-	-1251-03-D	345	22-Apr-89	9.92E-14
LD-LPO	-1252-01-A	345	22-Apr-89	1.37E-15
LD-APO	-1254-04-D	345	24-Apr-89	5.94E-14
LD-APO	-1255 - 03-0	C 345	24-Apr-89	3.74E-14
LD-APO	-1256-04-0	E 345	24-Apr-89	3.74E-14
LD-APO	-1257-04-0	D 345	24-Apr-89	8.14E-14
	-1253-18-V		24-Apr-89	4.84E-13
LD-LPO	-1258-01-A	345	24-Apr-89	7.04E-14
LD-HVO	-1259-02-E	345 BD 345	25-Apr-89	5.72E-13
	-1260-04-0		25-Apr-89	6.60E-14
LD-HVO	-1261-04-E	345 BD 345	25-Apr-89	6.60E-14
LD-HVO	-1262-04-E	345	26-Apr-89	1.11E-12
LD-HVO	-1263-03-E	345 345	26-Apr-89	2.64E-13
LD-LPO	-1262-01-A	345	26-Apr-89	1.27E-12
LD-HVO	-1293-12-V	347	3-May-89	4.31E-13
LD-HVO	-1287-10-V	347	4-May-89	1.39E-13
	-1291-08-V		4-May-89	4.31E-13
	-1292-12-V		5-May-89	7.99E-14
	-1288-12-V		6-May-89	9.31E-14
	-1289-12-V		6-May-89	1.39E-13
	-1290-07-V		6-May-89	<mda< td=""></mda<>
	-1283-07-V		8-May-89	1.70E-13
	-1284-01-V		8-May-89	3.10E-14
	-1285-01-V		8-May-89	<mda< td=""></mda<>
	-1286-12-V		8-May-89	1.70E-13

OCCUPATIONAL AIR SAMPLE RESULTS DAILY AVERAGE ACTIVITY CONCENTRATION

Date	Daily Avg. Act. (µCi/ml)
19-Nov-88	1.64E-13
23-Nov-88	4.81E-13
3-Dec-88	3.83E-13
11-Dec-88	2.95E-13
17-Dec-88	1.80E-13
21-Dec-88	1.38E-13
7-Jan-88	1.47E-13
14-Jan-88	9.14E-14
21-Jan-88	1.43E-13
28-Jan-88	1.12E-13
2-Feb-88	9.33E-14
9-Feb-88	3.03E-13
2-Mar-88	1.57E-13
10-Mar-88	8.58E-14
18-Mar-88	7.27E-14
23-Mar-88	6.97E-14
1-Apr-88	1.50E-13
7-Apr-88	1.15E-13
14-Apr-88	6.93E-14
22-Apr-88	8.63E-14
26-Apr-88	2.15E-13
6-May-88	2.01E-13
8-May-88	1.47E-13

MOBKING FEAETS

JW JANOITAQUOOD E.N BRUDIF

822-A-6

OCCUPATIONAL RADON PROGENY DATA (WORKING LEVELS)

PRASE: SOIL REMEDIATION

LD-WLO-0100 29-Nov-88 1521 2.08E-03 LD-WLO-0102 30-Nov-88 728 7.42E-04 LD-WLO-0104 1-Dec-88 945 2.10E-03 LD-WLO-0105 1-Dec-88 1250 2.18E-03 LD-WLO-0107 2-Dec-88 1133 2.69E-03 LD-WLO-0109 3-Dec-88 1005 1.78E-03
LD-WLO-0102 30-Nov-88 728 7.42E-04 LD-WLO-0104 1-Dec-88 945 2.10E-03 LD-WLO-0105 1-Dec-88 1250 2.18E-03 LD-WLO-0107 2-Dec-88 1133 2.69E-03 LD-WLO-0109 3-Dec-88 1005 1.78E-03
LD-WLO-0104 1-Dec-88 945 2.10E-03 LD-WLO-0105 1-Dec-88 1250 2.18E-03 LD-WLO-0107 2-Dec-88 1133 2.69E-03 LD-WLO-0109 3-Dec-88 1005 1.78E-03
LD-WLO-0105 1-Dec-88 1250 2.18E-03 LD-WLO-0107 2-Dec-88 1133 2.69E-03 LD-WLO-0109 3-Dec-88 1005 1.78E-03
LD-WLO-0107 2-Dec-88 1133 2.69E-03 LD-WLO-0109 3-Dec-88 1005 1.78E-03
LD-WLO-0109 3-Dec-88 1005 1.78E-03
LD-WLO-0112 5-Dec-88 830 3.82E-04
LD-WLO-0113 5-Dec-88 1535 1.80E-03
LD-WLO-0115 6-Dec-88 807 2.16E-03
LD-WLO-0117 7-Dec-88 818 3.70E-03
LD-WLO-0118 8-Dec-88 716 9.20E-04
LD-WLO-0122 9-Dec-88 835 4.96E-03
LD-WLO-0124 9-Dec-88 1538 2.74E-04
LD-WLO-0125 12-Dec-88 1020 4.89E-03
LD-WLO-0128 12-Dec-88 1110 2.10E-03
LD-WLO-0131 13-Dec-88 815 1.29E-03
LD-WLO-0133 13-Dec-88 1553 3.67E-03
LD-WLO-0135 14-Dec-88 732 4.20E-03
LD-WLO-0136 15-Dec-88 700 6.48E-04
LD-WLO-0137 15-Dec-88 815 5.94E-03
LD-WLO-0140 16-Dec-88 1510 1.72E-04
LD-WLO-0142 17-Dec-88 1050 9.73E-04
LD-WLO-0144 19-Dec-88 1420 1.29E-03
LD-WLO-0146 20-Dec-88 810 4.13E-03
LD-WLO-0149 21-Dec-88 750 1.19E-03
LD-WLO-0151 3-Jan-88 935 2.03E-03
LD-WLO-0153 4-Jan-88 820 6.00E-04
LD-WLO-0155 5-Jan-88 1343 5.74E-04
LD-WLO-0157 6-Jan-88 719 9.48E-05
LD-WLO-0161 7-Jan-88 933 6.99E-04
LD-WLO-0164 9-Jan-88 746 7.66E-04
LD-WLO-0166 10-Jan-88 710 1.09E-03
LD-WLO-0169 11-Jan-88 703 3.37E-03
LD-WLO-0171 13-Jan-88 739 8.27E-04
LD-WLO-0174 13-Jan-88 1554 6.49E-04
LD-WLO-0176 14-Jan-88 704 2.03E-03
LD-WLO-0178 14-Jan-88 1510 1.18E-03
LD-WLO-0180 16-Jan-88 739 4.10E-04
LD-WLO-0182 16-Jan-88 1505 3.80E-04
LD-WLO-0183 17-Jan-88 710 5.20E-03
LD-WLO-0186 17-Jan-88 1510 5.90E-05
LD-WLO-0187 18-Jan-88 700 4.50E-03
LD-WLO-0190 19-Jan-88 725 2.90E-03
LD-WLO-0192 19-Jan-88 1353 1.20E-03
LD-WLO-0194 20-Jan-88 755 3.30E-03
LD-WLO-0196 21-Jan-88 745 5.50E-04

Sample ID	Date	Time Conc.(WL)
LD-WLO-0200	23-Jan-88	845 8.50E-04
LD-WLO-0201	23-Jan-88	1305 6.20E-04
LD-WLO-0203	24-Jan-88	730 7.30E-03
LD-WLO-0206	24-Jan-88	1325 9.50E-04
LD-WLO-0207	25-Jan-88	720 1.60E-03
LD-WLO-0209	25-Jan-88	1046 3.60E-03
LD-WLO-0210	25-Jan-88	1049 2.60E-03
LD-WLO-0214	25-Jan-88	1318 5.30E-04
LD-WLO-0215	26-Jan-88	739 5.00E-02
LD-WLO-0216	26-Jan-88	743 5.50E-02
LD-WLO-0218	26-Jan-88	1240 <mda< td=""></mda<>
LD-WLO-0219	27-Jan-88	715 5.60E-04
LD-WLO-0221	27-Jan-88	1109 6.70E-02
LD-WLO-0222	27-Jan-88	1113 7.20E-02
LD-WLO-0223	27-Jan-88	1515 1.80E-03
LD-WLO-0225	28-Jan-88	730 3.40E-03
LD-WLO-0228	31-Jan-88	656 1.40E-03
LD-WLO-0230	31-Jan-88	953 6.30E-02
LD-WLO-0234	1-Feb-88	1010 4.30E-02
LD-WLO-0236	1-Feb-88	1300 7.10E-03
LD-WLO-0238	2-Feb-88	725 4.50E-03
LD-WLO-0240	2-Feb-88	1520 5.30E-04
LD-WLO-0242	6-Feb-88	755 5.60E-04
LD-WLO-0244	6-Feb-88	1527 1.50E-03
LD-WLO-0246	7-Feb-88	935 1.00E-03
LD-WLO-0248	7-Feb-88	1525 2.40E-04
LD-WLO-0249	8-Feb-88	735 2.82E-04
LD-WLO-0252	8-Feb-88	1455 1.58E-03
LD-WLO-0253	9-Feb-88	803 2.82E-04
LD-WLO-0256	9-Feb-88	1350 <mda< td=""></mda<>
LD-WLO-0311	1-Mar-88	1010 3.16E-03
LD-WLO-0312	1-Mar-88	1032 2.37E-03
LD-WLO-0313	1-Mar-88	1535 1.69E-03
LD-WLO-0314	2-Mar-88	947 2.70E-03
LD-WLO-0315	2-Mar-88	1000 1.34E-03
LD-WLO-0316	2-Mar-88	1318 1.69E-03
LD-WLO-0317	2-Mar-88	1500 1.47E-03
LD-WLO-0318	7-Mar-88	1034 2.22E-03
LD-WLO-0319	7-Mar-88	1040 4.60E-03
LD-WLO-0320	7-Mar-88	1515 8.54E-04
LD-WLO-0321	7-Mar-88	1516 1.99E-00
LD-WLO-0322	8-Mar-88	936 3.02E-03
LD-WLO-0323	8-Mar-88	1237 1.40E-03
LD-WLO-0324	8-Mar-88	1303 9.85E-04
LD-WLO-0325	8-Mar-88	1500 1.20E-03
LD-WLO-0326	9-Mar-88	810 1.88E-04
LD-WLO-0327	9-Mar-88	1018 3.13E-04
LD-WLO-0328	9-Mar-88	1300 1.88E-04
LD-WLO-0329	9-Mar-88	1507 3.13E-04
LD-MTO-0330	10-Mar-88	809 3.89E-04

Sample ID	Date	Time Conc.(WL)
LD-WLO-0331	10-Mar-88	1235 3.89E-04
LD-WLO-0332	10-Mar-88	1315 2.59E-04
LD-WLO-0333	10-Mar-88	1500 1.30E-04
LD-WLO-0334	11-Mar-88	816 5.84E-05
LD-WLO-0335	11-Mar-88	1008 5.84E~05
LD-WLO-0336	11-Mar-88	1344 2.92E-04
LD-WLO-0337	11-Mar-88	1455 5.84E-05
LD-WLO-0339	13-Mar-88	1346 6.21E-04
LD-WLO-0343	14-Mar-88	746 3.28E-04
LD-WLO-0341	14-Mar-88	1517 8.75E-04
LD-WLO-0347	15-Mar-88	820 1.06E-03
LD-WLO-0345	15-Mar-88	1256 1.19E-03
LD-WLO-0348	16-Mar-88	814 1.69E-03
LD-WLO-0350	16-Mar-88	1404 9.66E-04
LD-WLO-0352	17-Mar-88	837 1.19E-03
LD-WLO-0354	17-Mar-88	1322 4.38E-04
LD-WLO-0357	20-Mar-88	801 2.59E-04
LD-WLO-0358	20-Mar-88	1337 7.78E-04
LD-MTO-0360	22-Mar-88	710 1.00E-03
LD-WLO-0361	22-Mar-88	1510 8.75E-04
LD-WLO-0363	23-Mar-88	723 1.56E-03
LD-WLO-0362	23-Mar-88	935 1.19E-03
LD-WLO-0364	23-Mar-88	1320 1.06E-03
LD-WLO-0365	23-Mar-88	1410 1.19E-03
LD-WLO-0369	27-Mar-88	725 1.00E-03
LD-WLO-0372	27-Mar-88	1520 6.25E-04
LD-WLO-0373	28-Mar-88	715 5.63E-04
LD-WLO-0375	28-Mar-88	1513 3.13E-04
LD-WLO-0378	29-Mar-88	716 1.09E-03
LD-WLO-0380	30-Mar-88	825 1.62E-03
LD-WLO-0381	30-Mar-88	825 1.37E-03
LD-WLO-0382	30-Mar-88	1325 1.12E-03
LD-WLO-0383	30-Mar-88	1339 1.00E-03
LD-WLO-0385	31-Mar-88	739 2.11E-03
LD-WLO-0384	31-Mar-88	1001 1.03E-03
LD-WLO-0387	31-Mar-88	1326 7.85E-04
LD-WLO-0389	1-Apr-88	715 5.43E-03
LD-WLO-0390	1-Apr-88	738 4.23E-04
TD-MTO-0388	1-Apr-88	808 1.51E-03
LD-WLO-0391	3-Apr-88	820 1.04E-03
LD-WLO-0392	3-Apr-88	944 4.83E-04
LD-WLO-0394	4-Apr-88	737 6.25E-04
LD-WLO-0393	4-Apr-88	820 7.50E-04
LD-WLO-0395	5-Apr-88	836 1.21E-03
LD-WLO-0396	5-Apr-88	1340 1.69E-03
LD-WLO-0397	5-Apr-88	1410 1.00E-03
LD-WLO-0398	6-Apr-88	1010 1.27E-03
LD-WLO-0399	6-Apr-88	1012 1.27E-03
LD-WLO-0401	7-Apr-88	755 1.50E-03
LD-WLO-0402	7-Apr-88	930 2.00E-03

Sample ID	Date	Time Conc.(WL)
LD-WLO-0403	7-Apr-88	1430 8.75E-04
LD-WLO-0404	7-Apr-88	1459 1.25E-03
LD-WLO-0405	10-Apr-88	830 1.03E-03
LD-WLO-0406	10-Apr-88	1015 1.27E-03
LD-WLO-0407	10-Apr-88	1515 3.02E-04
LD-WLO-0408	10-Apr-88	1522 5.43E-04
LD-WLO-0409	11-Apr-88	752 2.41E-04
LD-WLO-0410	11-Apr-88	828 7.24E-04
LD-WLO-0411	11-Apr-88	1319 9.66E-04
LD-WLO-0412	11-Apr-88	1354 4.83E-04
LD-WLO-0413	11-Apr-88	1520 6.04E-04
LD-WLO-0414	12-Apr-88	740 1.34E-03
LD-WLO-0415	12-Apr-88	751 1.63E-03
LD-WLO-0417	12-Apr-88	1508 7.85E-04
LD-WLO-0416	12-Apr-88	1520 6.64E-04
LD-WLO-0418	13-Apr-88	820 5.00E-04
LD-WLO-0420	13-Apr-88	1304 8.68E-04
LD-WLO-0421	13-Apr-88	1408 1.21E-03
LD-WLO-0422	14-Apr-88	1110 1.00E-03
LD-WLO-0424	17-Apr-88	956 1.09E-03
LD-WLO-0425	17-Apr-88	1110 8.45E-04
LD-WLO-0426	17-Apr-88	1300 9.66E-04
LD-WLO-0427	17-Apr-88	1301 7.24E-04
LD-WLO-0429	18-Apr-88	955 1.20E-03
LD-WLO-0428	18-Apr-88	1000 1.51E-03
LD-WLO-0431	18-Apr-88	1326 9.37E-04
LD-WLO-0430	18-Apr-88	1350 7.85E-04
LD-WLO-0432	19-Apr-88	1005 5.99E-04
LD-WLO-0433	19-Apr-88	1036 7.28E-04
LD-WLO-0434	19-Apr-88	1408 4.14E-04
LD-WLO-0435	19-Apr-88	1505 4.69E-04
LD-WLO-0436	20-Apr-88	752 1.63E-03
LD-WLO-0437	20-Apr-88	818 1.03E-03
LD-WLO-0438	20-Apr-88	1520 6.79E-04
LD-WLO-0439	20-Apr-88	1525 3.02E-04
LD-WLO-0445	22-Apr-88	744 3.75E-04
LD-WLO-0440	22-Apr-88	802 1.51E-03
LD-WLO-0442	22-Apr-88	1345 6.04E-04
LD-WLO-0446	22-Apr-88	1511 1.25E-04
LD-WLO-0449	24-Apr-83	714 1.93E-03
LD-WLO-0451	24-Apr-88	1335 6.04E-04
LD-WLO-0451	25-Apr-88	724 3.50E-03
LD-WLO-0453	25-Apr-88	1415 6.25E-04
LD-WLO-0456	26-Apr-88	726 4.82E-03
LD-WLO-0457	26-Apr-88	1418 3.62E-04
LD-WLO-0459	27-Apr-88	755 1.50E-03
LD-WLO-0458	27-Apr-88	1500 1.00E-03
LD-WLO-0462	1-May-88	952 6.90E-04
LD-WLO-0463	1-May-88	1510 5.60E-04

OCCUPATIONAL RADON PROGENY DATA (WORKING LEVELS) DAILY AVERAGES

Date	Conc.	(WL)
29-Nov-88 30-Nov-88	2.08E- 7.42E-	-04
1-Dec-88 2-Dec-88 3-Dec-88	2.14E- 2.69E- 1.78E-	-03
5-Dec-88 6-Dec-88	1.09E- 2.16E-	-03
7-Dec-88 8-Dec-88	3.70E- 9.20E-	-04
9-Dec-88 12-Dec-88 13-Dec-88	2.62E- 3.50E- 2.48E-	-03
14-Dec-88 15-Dec-88	4.20E- 3.29E-	-03 -03
16-Dec-88 17-Dec-88 19-Dec-88	1.72E- 9.73E- 1.29E-	-04
20-Dec-88 21-Dec-88	4.13E- 1.19E-	-03 -03
3-Jan-88 4-Jan-88 5-Jan-88	2.03E- 6.00E- 5.74E-	-04
6-Jan-88 7-Jan-88	9.48E- 6.99E-	-05
9-Jan-88 10-Jan-88 11-Jan-88	7.66E- 1.09E- 3.37E-	-03
13-Jan-88 14-Jan-88	7.38E·	-04
16-Jan-88 17-Jan-88	3.95E- 2.63E-	-03
18-Jan-88 19-Jan-88 20-Jan-88	4.50E- 2.05E- 3.30E-	-03
21-Jan-88 23-Jan-88	5.50E- 8.57E-	-04 -04
24-Jan-88 25-Jan-88 26-Jan-88	4.12E- 2.60E- 3.50E-	-03
27-Jan-88 28-Jan-88	3.53E- 3.40E-	-02 -03
31-Jan-88 1-Feb-88 2-Feb-88	3.22E- 2.50E- 2.52E-	-02
6-Feb-88 7-Feb-88	1.03E- 6.20E-	-03 -04
8-Feb-88	9.31E	-04

OCCUPATIONAL RADON PROGENY DATA (WORKING LEVELS) DAILY AVERAGES (continued)

9-Feb-88 1-Mar-88 2-Mar-88 1-80E-03 7-Mar-88 1-87E-03 8-Mar-88 1-65E-03 9-Mar-88 1-65E-03 9-Mar-88 1-17E-04 10-Mar-88 1-17E-04 11-Mar-38 1-17E-04 13-Mar-88 1-12E-03 16-Mar-88 1-12E-03 16-Mar-88 1-12E-03 16-Mar-88 1-12E-03 16-Mar-88 1-12E-03 17-Mar-88 1-25E-03 27-Mar-88 1-25E-03 27-Mar-88 1-28E-03 31-Mar-88 1-28E-03 31-Mar-88 1-31E-03 1-Apr-88 1-31E-03 1-Apr-88 1-31E-03 1-Apr-88 1-30E-03 6-Apr-88 1-27E-03 7-Apr-88 1-10E-03 13-Apr-88 1-10E-03 13-Apr-88 1-10E-03 13-Apr-88 1-10E-03 13-Apr-88 1-10E-03 13-Apr-88 1-10E-03 13-Apr-88 1-10E-03 17-Apr-88 10E-04	Date	Conc. (WL)
1-Mar-88 2-Mar-88 1.80E-03 7-Mar-88 1.87E-03 8-Mar-88 1.65E-03 9-Mar-88 2.50E-04 10-Mar-88 2.92E-04 11-Mar-38 1.17E-04 13-Mar-88 6.21E-04 14-Mar-88 1.12E-03 16-Mar-88 1.33E-03 17-Mar-88 1.32E-03 17-Mar-88 2.94E-04 22-Mar-88 27-Mar-88 1.25E-03 27-Mar-88 1.25E-03 27-Mar-88 1.26E-03 31-Mar-88 1.28E-03 31-Mar-88 3	9-Feb-88	1.41E-04
2-Mar-88 1.80E-03 7-Mar-88 1.87E-03 8-Mar-88 1.65E-03 9-Mar-88 2.50E-04 10-Mar-88 2.92E-04 11-Mar-38 1.17E-04 13-Mar-89 6.21E-04 14-Mar-88 6.01E-04 15-Mar-88 1.32E-03 16-Mar-88 1.33E-03 17-Mar-88 9.37E-04 22-Mar-88 9.37E-04 23-Mar-88 1.25E-03 27-Mar-88 4.38E-04 29-Max-88 1.09E-03 30-Mar-88 1.28E-03 31-Mar-88 1.31E-03 1-Apr-88 1.30E-03 4-Apr-88 1.30E-03 6-Apr-88 1.27E-03 7-Apr-88 1.41E-03 10-Apr-88 1.00E-03 17-Apr-88 1.00E-03 17-Apr-88 1.00E-03 17-Apr-88 1.11E-03 19-Apr-88 1.11E-03 19-Apr-88 1.27E-03 25-Apr-88 2.59E-03 25-Apr-88 2.59E-03 27-Apr-88 1.25E-03		
7-Mar-88 8-Mar-88 1.65E-03 9-Mar-88 2.50E-04 10-Mar-88 2.92E-04 11-Mar-38 1.17E-04 13-Mar-88 6.21E-04 14-Mar-88 6.01E-04 15-Max-88 1.12E-03 16-Mar-88 1.33E-03 17-Mar-88 8.14E-04 20-Mar-88 9.37E-04 23-Mar-88 9.37E-04 23-Mar-88 1.25E-03 27-Mar-88 8.13E-04 29-Max-88 1.09E-03 30-Mar-88 1.28E-03 31-Mar-88 1.31E-03 1-Apr-88 1.31E-03 1-Apr-88 1.30E-03 3-Apr-88 1.30E-03 7-Apr-88 1.27E-03 7-Apr-88 1.10E-03 13-Apr-88 1.10E-03 13-Apr-88 1.10E-03 13-Apr-88 1.10E-03 17-Apr-88 1.10E-03 13-Apr-88 1.10E-03 17-Apr-88 1.10E-03 13-Apr-88 1.10E-03 17-Apr-88 1.27E-03 25-Apr-88 2.06E-03 25-Apr-88 2.59E-03 27-Apr-88		
8-Mar-88 9-Mar-88 1.65E-03 9-Mar-88 2.50E-04 10-Mar-88 1.17E-04 11-Mar-38 1.17E-04 13-Mar-88 6.21E-04 14-Mar-88 6.01E-04 15-Mar-88 1.12E-03 16-Mar-88 1.33E-03 17-Mar-88 8.14E-04 20-Mar-88 9.37E-04 23-Mar-88 9.37E-04 23-Mar-88 1.25E-03 27-Mar-88 8.13E-04 29-Mar-88 1.09E-03 30-Mar-88 1.28E-03 31-Mar-88 1.31E-03 1-Apr-88 1.31E-03 1-Apr-88 1.30E-03 3-Apr-88 1.27E-03 7-Apr-88 1.27E-03 7-Apr-88 1.10E-03 13-Apr-88 1.26E-04 11-Apr-88 1.27E-03 17-Apr-88 1.10E-03 13-Apr-88 1.10E-03 17-Apr-88 1.10E-03	7-Mar-88	1.87E-03
9-Mar-88 10-Mar-88 10-Mar-88 11-TE-04 11-Mar-88 601E-04 14-Mar-88 601E-04 15-Mar-88 10-Mar-88 10		1.65E-03
11-Mar-88 13-Mar-88 14-Mar-88 16-01E-04 15-Mar-88 1.12E-03 16-Mar-88 1.33E-03 17-Mar-88 1.3E-04 20-Mar-88 22-Mar-88 23-Mar-88 27-Mar-88 28-Mar-88 29-Mar-88 29-Mar-88 31-Mar-88 31-Nap-88	9-Mar-88	2.50E-04
13-Mar-88 14-Mar-88 16.01E-04 15-Mar-88 1.12E-03 16-Mar-88 1.33E-03 17-Mar-88 8.14E-04 20-Mar-88 9.37E-04 22-Mar-88 9.37E-04 23-Mar-88 1.25E-03 27-Mar-88 4.38E-04 29-Mar-88 1.09E-03 30-Mar-88 1.28E-03 31-Mar-88 1.31E-03 1-Apr-88 7.61E-04 4-Apr-88 6.87E-04 5-Apr-88 1.27E-03 7-Apr-88 1.10E-03 10-Apr-88 1.10E-03 13-Apr-88 1.10E-03 17-Apr-88 1.10E-03	10-Mar-88	2.92E-04
14-Mar-88 6.01E-04 15-Mar-88 1.12E-03 16-Mar-88 1.33E-03 17-Mar-88 8.14E-04 20-Mar-88 5.18E-04 22-Mar-88 9.37E-04 23-Mar-88 1.25E-03 27-Mar-88 4.38E-04 29-Mar-88 1.09E-03 30-Mar-88 1.28E-03 31-Mar-88 1.31E-03 1-Apr-88 2.45E-03 3-Apr-88 7.61E-04 4-Apr-88 1.30E-03 6-Apr-88 1.27E-03 7-Apr-88 1.41E-03 10-Apr-88 1.10E-03 13-Apr-88 1.10E-03 13-Apr-88 1.00E-03 17-Apr-88 1.11E-03 19-Apr-88 1.12E-03 19-Apr-88 1.27E-03 20-Apr-88 7.23E-04 24-Apr-88 1.27E-03 25-Apr-88 2.59E-03 27-Apr-88 1.25E-03 25-Apr-88 2.59E-03 27-Apr-88 1.25E-03	11-Mar-38	1.17E-04
15-Mar-88 16-Mar-88 16-Mar-88 17-Mar-88 17-Mar-88 17-Mar-88 18-04 20-Mar-88 22-Mar-88 22-Mar-88 27-Mar-88 28-Mar-88 29-Mar-88 29-Mar-88 31-Mar-88	13-Mar-88	6.21E-04
16-Mar-88 17-Mar-88 20-Mar-88 20-Mar-88 3.14E-04 22-Mar-88 3.7E-04 23-Mar-88 1.25E-03 27-Mar-88 4.38E-04 29-Mar-88 1.09E-03 30-Mar-88 1.28E-03 31-Mar-88 1.31E-03 1-Apr-88 2.45E-03 3-Apr-88 1.30E-03 3-Apr-88 1.30E-03 6-Apr-88 1.27E-03 7-Apr-88 1.41E-03 10-Apr-88 1.41E-03 10-Apr-88 1.00E-03 13-Apr-88 1.10E-03 13-Apr-88 1.10E-03 13-Apr-88 1.10E-03 13-Apr-88 1.10E-03 17-Apr-88 1.11E-03 19-Apr-88 20-Apr-88 20-Apr-88 20-Apr-88 20-Apr-88 20-Be-04 21-Apr-88 20-Be-04 21-Apr-88 20-Be-03 25-Apr-88 20-Be-03 25-Be-03 25-Apr-88	14-Mar-88	6.01E-04
17-Mar-88 8.14E-04 20-Mar-88 5.18E-04 22-Mar-88 9.37E-04 23-Mar-88 1.25E-03 27-Mar-88 4.38E-04 28-Mar-88 1.09E-03 30-Mar-88 1.28E-03 31-Mar-88 1.31E-03 1-Apr-88 2.45E-03 3-Apr-88 7.61E-04 4-Apr-88 1.30E-03 6-Apr-88 1.27E-03 7-Apr-88 1.41E-03 10-Apr-88 1.10E-03 13-Apr-88 1.00E-03 17-Apr-88 1.11E-03 19-Apr-88 1.11E-03 19-Apr-88 1.27E-03 20-Apr-88 7.23E-04 24-Apr-88 1.27E-03 25-Apr-88 2.06E-03 26-Apr-88 2.59E-03 27-Apr-88 1.25E-03	15-Mar-88	1.12E-03
20-Mar-88 5.18E-04 22-Mar-88 9.37E-04 23-Mar-88 1.25E-03 27-Mar-88 8.13E-04 28-Mar-88 4.38E-04 29-Mar-88 1.09E-03 30-Mar-88 1.28E-03 31-Mar-88 1.31E-03 1-Apr-88 2.45E-03 3-Apr-88 7.61E-04 4-Apr-88 1.30E-03 6-Apr-88 1.27E-03 7-Apr-88 1.41E-03 10-Apr-88 1.10E-03 13-Apr-88 1.10E-03 13-Apr-88 1.00E-03 17-Apr-88 1.11E-03 19-Apr-88 1.11E-03 19-Apr-88 5.53E-04 20-Apr-88 7.23E-04 24-Apr-88 1.27E-03 25-Apr-88 2.59E-03 27-Apr-88 1.25E-03	16-Mar-88	1.33E-03
22-Mar-88 9.37E-04 23-Mar-88 1.25E-03 27-Mar-88 8.13E-04 28-Mar-88 4.38E-04 29-Mar-88 1.09E-03 30-Mar-88 1.28E-03 31-Mar-88 1.31E-03 1-Apr-88 2.45E-03 3-Apr-88 7.61E-04 4-Apr-88 1.30E-03 6-Apr-88 1.27E-03 7-Apr-88 1.41E-03 10-Apr-88 7.86E-04 11-Apr-88 1.10E-03 13-Apr-88 1.00E-03 17-Apr-88 1.11E-03 19-Apr-88 1.11E-03 19-Apr-88 5.53E-04 20-Apr-88 7.23E-04 24-Apr-88 1.27E-03 25-Apr-88 2.06E-03 26-Apr-88 2.59E-03 27-Apr-88 1.25E-03	17-Mar-88	8.14E-04
23-Mar-88 27-Mar-88 27-Mar-88 3.13E-04 28-Mar-88 4.38E-04 29-Mar-88 1.09E-03 30-Mar-88 1.28E-03 31-Mar-88 1.31E-03 1-Apr-88 2.45E-03 3-Apr-88 7.61E-04 4-Apr-88 6.87E-04 5-Apr-88 1.27E-03 7-Apr-88 1.41E-03 10-Apr-88 1.10E-03 13-Apr-88 1.10E-03 13-Apr-88 1.10E-03 13-Apr-88 1.00E-03 17-Apr-88 1.11E-03 19-Apr-88 20-Apr-88 20-Apr-88 21-27E-03 25-Apr-88 2.06E-03 25-Apr-88 2.59E-03 27-Apr-88 2.59E-03 27-Apr-88	20-Mar-88	5.18E-04
27-Mar-88 28-Mar-88 4.38E-04 29-Mar-88 1.09E-03 30-Mar-88 1.28E-03 31-Mar-88 1.31E-03 1-Apr-88 2.45E-03 3-Apr-88 7.61E-04 4-Apr-88 6.87E-04 5-Apr-88 1.27E-03 7-Apr-88 1.41E-03 10-Apr-88 1.40E-04 11-Apr-88 1.10E-03 13-Apr-88 1.10E-03 13-Apr-88 1.00E-03 17-Apr-88 1.11E-03 19-Apr-88 20-Apr-88 21-11E-03 19-Apr-88 22-Apr-88 22-Apr-88 25-Apr-88 2.06E-03 25-Apr-88 2.59E-03 27-Apr-88 2.59E-03	22-Mar-88	9.37E-04
28-Mar-88 29-Mar-88 1.09E-03 30-Mar-88 1.28E-03 31-Mar-88 1.31E-03 1-Apr-88 2.45E-03 3-Apr-88 7.61E-04 4-Apr-88 6.87E-04 5-Apr-88 1.30E-03 6-Apr-88 1.27E-03 7-Apr-88 1.41E-03 10-Apr-88 1.10E-03 13-Apr-88 1.10E-03 13-Apr-88 1.10E-03 17-Apr-88 1.00E-03 17-Apr-88 1.11E-03 19-Apr-88 20-Apr-88 21-27E-04 22-Apr-88 20-Apr-88 25-Apr-88 25-Apr-88 25-Apr-88 25-Apr-88 25-E-03 27-Apr-88	23-Mar-88	1.25E-03
29-Max-881.09E-0330-Mar-881.28E-0331-Mar-881.31E-031-Apr-882.45E-033-Apr-887.61E-044-Apr-886.87E-045-Apr-881.30E-036-Apr-881.27E-037-Apr-881.41E-0310-Apr-887.86E-0411-Apr-886.04E-0412-Apr-881.10E-0313-Apr-881.00E-0317-Apr-889.06E-0418-Apr-881.11E-0319-Apr-889.10E-0422-Apr-887.23E-0424-Apr-881.27E-0325-Apr-882.06E-0326-Apr-882.59E-0327-Apr-881.25E-03	27-Mar-88	8.13E-04
30-Mar-88 31-Mar-88 31-Mar-88 1.31E-03 1-Apr-88 2.45E-03 3-Apr-88 7.61E-04 4-Apr-88 6.87E-04 5-Apr-88 1.30E-03 7-Apr-88 1.41E-03 10-Apr-88 1.41E-03 10-Apr-88 1.10E-03 13-Apr-88 1.10E-03 13-Apr-88 1.00E-03 17-Apr-88 1.11E-03 19-Apr-88 20-Apr-88 20-Apr-88 21.27E-03 25-Apr-88 2.59E-04 22-Apr-88 2.59E-03 25-Apr-88 2.59E-03 27-Apr-88	28-Mar-88	4.38E-04
31-Mar-881.31E-031-Apr-882.45E-033-Apr-887.61E-044-Apr-886.87E-045-Apr-881.30E-036-Apr-881.27E-037-Apr-881.41E-0310-Apr-887.86E-0411-Apr-886.04E-0412-Apr-881.10E-0313-Apr-881.00E-0317-Apr-889.06E-0418-Apr-881.11E-0319-Apr-885.53E-0420-Apr-889.10E-0422-Apr-887.23E-0424-Apr-881.27E-0325-Apr-882.59E-0327-Apr-881.25E-03	29-Mar-88	1.09E-03
1-Apr-88 3-Apr-88 7.61E-04 4-Apr-88 6.87E-04 5-Apr-88 1.30E-03 6-Apr-88 1.27E-03 7-Apr-88 1.41E-03 10-Apr-88 1.10E-03 13-Apr-88 1.10E-03 13-Apr-88 1.00E-03 17-Apr-88 1.11E-03 19-Apr-88 20-Apr-88 20-Apr-88 21-27E-04 22-Apr-88 25-Apr-88 25-Apr-88 25-Apr-88 27-Apr-88 2.59E-03 27-Apr-88	30-Mar-88	1.28E-03
3-Apr-88 4-Apr-88 6.87E-04 5-Apr-88 1.30E-03 6-Apr-88 1.27E-03 7-Apr-88 1.41E-03 10-Apr-88 1.10E-03 13-Apr-88 1.10E-03 13-Apr-88 1.00E-03 17-Apr-88 1.00E-03 17-Apr-88 1.11E-03 19-Apr-88 20-Apr-88 21.27E-03 25-Apr-88 2.59E-04 2.59E-03 27-Apr-88 2.59E-03 2.59E-03	31-Mar-88	1.31E-03
4-Apr-88 6.87E-04 5-Apr-88 1.30E-03 6-Apr-88 1.27E-03 7-Apr-88 1.41E-03 10-Apr-88 7.86E-04 11-Apr-88 6.04E-04 12-Apr-88 1.10E-03 13-Apr-88 8.59E-04 14-Apr-88 1.00E-03 17-Apr-88 9.06E-04 18-Apr-88 1.11E-03 19-Apr-88 5.53E-04 20-Apr-88 9.10E-04 22-Apr-88 7.23E-04 24-Apr-88 1.27E-03 25-Apr-88 2.06E-03 26-Apr-88 2.59E-03 27-Apr-88 1.25E-03	_	2.45E-03
5-Apr-88 1.30E-03 6-Apr-88 1.27E-03 7-Apr-88 1.41E-03 10-Apr-88 7.86E-04 11-Apr-88 6.04E-04 12-Apr-88 1.10E-03 13-Apr-88 8.59E-04 14-Apr-88 1.00E-03 17-Apr-88 9.06E-04 18-Apr-88 1.11E-03 19-Apr-88 5.53E-04 20-Apr-88 9.10E-04 22-Apr-88 7.23E-04 24-Apr-88 1.27E-03 25-Apr-88 2.06E-03 26-Apr-88 2.59E-03 27-Apr-88 1.25E-03	_	7.61E-04
6-Apr-88 1.27E-03 7-Apr-88 1.41E-03 10-Apr-88 7.86E-04 11-Apr-88 6.04E-04 12-Apr-88 1.10E-03 13-Apr-88 8.59E-04 14-Apr-88 1.00E-03 17-Apr-88 9.06E-04 18-Apr-88 1.11E-03 19-Apr-88 5.53E-04 20-Apr-88 9.10E-04 22-Apr-88 7.23E-04 24-Apr-88 1.27E-03 25-Apr-88 2.06E-03 26-Apr-88 2.59E-03 27-Apr-88 1.25E-03	-	
7-Apr-88 1.41E-03 10-Apr-88 7.86E-04 11-Apr-88 6.04E-04 12-Apr-88 1.10E-03 13-Apr-88 8.59E-04 14-Apr-88 1.00E-03 17-Apr-88 9.06E-04 18-Apr-88 1.11E-03 19-Apr-88 5.53E-04 20-Apr-88 9.10E-04 22-Apr-88 7.23E-04 24-Apr-88 1.27E-03 25-Apr-88 2.59E-03 27-Apr-88 1.25E-03	-	
10-Apr-887.86E-0411-Apr-886.04E-0412-Apr-881.10E-0313-Apr-888.59E-0414-Apr-881.00E-0317-Apr-889.06E-0418-Apr-881.11E-0319-Apr-885.53E-0420-Apr-889.10E-0422-Apr-887.23E-0424-Apr-881.27E-0325-Apr-882.06E-0326-Apr-882.59E-0327-Apr-881.25E-03	-	
11-Apr-88 6.04E-04 12-Apr-88 1.10E-03 13-Apr-88 8.59E-04 14-Apr-88 1.00E-03 17-Apr-88 9.06E-04 18-Apr-88 1.11E-03 19-Apr-88 5.53E-04 20-Apr-88 9.10E-04 22-Apr-88 7.23E-04 24-Apr-88 1.27E-03 25-Apr-88 2.06E-03 26-Apr-88 2.59E-03 27-Apr-88 1.25E-03	-	
12-Apr-88 1.10E-03 13-Apr-88 8.59E-04 14-Apr-88 1.00E-03 17-Apr-88 9.06E-04 18-Apr-88 1.11E-03 19-Apr-88 5.53E-04 20-Apr-88 9.10E-04 22-Apr-88 7.23E-04 24-Apr-88 1.27E-03 25-Apr-88 2.59E-03 27-Apr-88 1.25E-03	-	
13-Apr-888.59E-0414-Apr-881.00E-0317-Apr-889.06E-0418-Apr-881.11E-0319-Apr-885.53E-0420-Apr-889.10E-0422-Apr-887.23E-0424-Apr-881.27E-0325-Apr-882.06E-0326-Apr-882.59E-0327-Apr-881.25E-03	-	
14-Apr-881.00E-0317-Apr-889.06E-0418-Apr-881.11E-0319-Apr-885.53E-0420-Apr-889.10E-0422-Apr-887.23E-0424-Apr-881.27E-0325-Apr-882.06E-0326-Apr-882.59E-0327-Apr-881.25E-03	-	
17-Apr-88 9.06E-04 18-Apr-88 1.11E-03 19-Apr-88 5.53E-04 20-Apr-88 9.10E-04 22-Apr-88 7.23E-04 24-Apr-88 1.27E-03 25-Apr-88 2.06E-03 26-Apr-88 2.59E-03 27-Apr-88 1.25E-03		
18-Apr-88 1.11E-03 19-Apr-88 5.53E-04 20-Apr-88 9.10E-04 22-Apr-88 7.23E-04 24-Apr-88 1.27E-03 25-Apr-88 2.06E-03 26-Apr-88 2.59E-03 27-Apr-88 1.25E-03		
19-Apr-88 5.53E-04 20-Apr-88 9.10E-04 22-Apr-88 7.23E-04 24-Apr-88 1.27E-03 25-Apr-88 2.06E-03 26-Apr-88 2.59E-03 27-Apr-88 1.25E-03		
20-Apr-889.10E-0422-Apr-887.23E-0424-Apr-881.27E-0325-Apr-882.06E-0326-Apr-882.59E-0327-Apr-881.25E-03	-	
22-Apr-887.23E-0424-Apr-881.27E-0325-Apr-882.06E-0326-Apr-882.59E-0327-Apr-881.25E-03		***************************************
24-Apr-881.27E-0325-Apr-882.06E-0326-Apr-882.59E-0327-Apr-881.25E-03		
25-Apr-88 2.06E-03 26-Apr-88 2.59E-03 27-Apr-88 1.25E-03	=	
26-Apr-88 2.59E-03 27-Apr-88 1.25E-03		
27-Apr-88 1.25E-03		
<u> </u>		
1-may-88 6.25E-04		
	1-may-88	0.25E-04

APPENDIX 6-B ENVIRONMENTAL AIR SAMPLES

ENVIRONMENTAL AIR SAMPLES

1.0 GENERAL

This appendix contains the data sets for the environmental air sampling program. Shown below is the a key to identify the types and locations of measurements taken.

AIR SAMPLE ID

(+1-31 SƏLL)
WICKO-COKIES-BEK MICCICITER

SUOITATIONS JANGBAIA LATMAMONIVMA 1.0 AND 18-8-8-8-8-14

ENVIRONMENTAL AIR SAMPLING DATA FOR CAM STATION #1

Sample ID	Loc	Samp In	Samp Out	Alpha Act. (#Ci/ml)
LD-APE-0099	01	14-Ncv-88	19-Nov-88	3.70E-15
LD-APE-0100	11	14-Nov-88	19-Nov-88	4.60E-15
LD-APE-0108	01	19-Nov-88	29-Nov-88	6.40E-15
LD-APE 0109	11	19-Nov-88	29-Nov-88	4.60E-15
LD-APE-0116	01	29-Nov-88	3-Dec-88	2.50E-15
LD-APE-0118	11	29-Nov-88	3-Dec-88	6.30E-16
LD-APE-0123	01.	3-Dec-83	10Dec-88	1.49E-15
LD-APE-0124	11	3-Dec-88	10-Dec-88	6.35E-15
LD-APE-0131	01	10-Dec-88	17-Dec-88	1.97E-13
LD-APE-0132	11	10-Dec-88	17-Dec-88	1.45E-14
LD-APE-0139	01.	17-Dec-38	22-Dec-88	7.18E-15
LD-APE-0140	11	17-Dec-88	22-Dec-88	6.52E-14
LD-APE-0157	01	3-Jan-88	7-Jan-88	6.50E-16
LD-APE-0158	11	3-Jan-88	7-Jan-88	3.90E-15
LD-APE-0165	01	7-Jan-88	14-Jan-88	5.10E-15
LD-APE-0166	13	7-Jan-88	14-Jan-88	2.10E-15
LD-APE-0173	01	14-Jan-88	21-Jan-88	2.50E-15
LD-APE-0174	11	14-Jan-88	21~Jan-88	3.20E-15
LD-APE-C182	01	21-Jan-88	31-Jan-88	1.30E-15
LD-APE-0183	11	21-Jan-88	31-Jan-88	1.30E-14
LD-APE-0197	11	31-Jan-88	6-Feb-88	2.20E-14
LD-APE-0198	01	31-Jan-38	6-Feb-88	1.52E-15
LD-APE-0201	01	6-Feb-83	12-Feb-88	7.48E-15
LD-APE-0202	11	6-Feb-88	12-Feb-88	3.33E-15
LD-APE-0236	01	25-Feb-88	3-Mar-88	4.24E-15
LD-APE-0237	11	25-Feb-88	3-Mar-88	4.24E-15
LD-APE-0245	01	3-Mar-28	11-Mar-88	2.41E-15
LD-APE-0246	11	3-Mar-88	11-Mar-88	3.84E-15
LD-APE-0253	01	11-Mar-88	18-Mar-88	4.66E-15
LD-APE-0254	3.1	11-Mar-83	18-Mar-88	<mda< td=""></mda<>
LD-APE-0261	01	18-Mar-88	27-Mar-88	3.10E-15
LD-APE-0262	11	18-Mar-88	27-Mar-88	8.46E-16
LD-APE-0269	01	27-Mar-88	3-Apr-88	7.42E-16
LD-APE-0270	11	27-Mar-88	3-Apr-88	<mda< td=""></mda<>
LD-APE-0285	01	10-Apr-88	17-Apr-88	1.92E-15
LD-APE-0286	11	10-Apr-88	17-Apr-88	7.43E-16
LD-APE-0293	01	17-Apr-88	22-Apr-88	3.80E-14
LD-APE-0296	11	17-Apr-38	24-Apr-88	3.10E-15
LD-APE-0294	01	22-Apr-88	24-Apr-88	1.30E-15
LD-APE-0302	01	24-Apr-88	25-Apr-88	<mda< td=""></mda<>
LD-APE-0303	01	25-Apr-88	26-Apr-88	<mda< td=""></mda<>
LD-APE-0304	01	26-Apr-88	1-May-88	2.75E-15
LD-APE-0305	11	24-Apr-88	1-May-88	5.46E-15

WEEKLY AVERAGES FOR CAM STATION #1

Start date	Stop date	Average Alpha Activity (µCi/ml)
14-Nov-88	19-Nov-88	6.65E-15
19-Nov-88	29-Nov-88	5.50E-15
29-Nov-88	3-Dec-88	1.56E-15
3-Dec-88	10-Dec-88	3.92E-15
10-Dec-88	17-Dec-88	1.06E-13
17-Dec-88	22-Dec-88	3.62E-14
3-Jan-88	7-Jan-88	2.28E-15
7-Jan-88	14-Jan-88	3.60E-15
14-Jan-88	21-Jan-88	2.85E-15
21-Jan-88	31-Jan-88	7.15E-15
31-Jan-88	6-Feb-88	1.18E-14
6-Feb-88	12-Feb-88	5.40E-15
25-Feb-88	3-Mar-88	4.24E-15
3-Mar-88	11-Mar-88	3.12E-15
11-Mar-88	18-Mar-88	2.33E-15
18-Mar-88	27-Mar-88	1.97E-15
27-Mar-88	3-Apr-88	3.71E-16
10-Apr-88	17-Apr-88	1.33E-15
17-Apr-88	22-Apr-88	2.06E-14
-	-	
22-Apr-88	1-May-88	1.90E-15

ENVIRONMENTAL DATA CAM STA. #1

MICRO-CURIES PER MILLILITER (Times 1E-13)

FIGURE 0.2 CAM STATION #1 6-B-237

ENVIRONMENTAL AIR SAMPLING DATA FOR CAM STATION #2

Sample ID	Loc	Samp In	Samp Out	Alpha Act. (μCi/ml)
LD-APE-0101	02	14-Nov-88	19-Nov-88	7.50E-15
LD-APE-0102	12	14-Nov-88	19-Nov-88	1.10E-14
LD-APE-0110	02	19-Nov-88	29-Nov-88	2.30E-14
LD-APE-0111	12	19-Nov-88	29-Nov-88	7.80E-15
LD-APE-0117	02	29-Nov-88	3-Dec-88	1.20E-15
LD-APE-0119	12	29-Nov-88	3-Dec-88	4.10E-14
LD-APE-0125	02	3-Dec-88	10-Dec-88	1.87E-15
LD-APE-0126	12	3-Dec-88	10-Dec-88	1.87E-15
LD-APE-0133	02	10-Dec-88	17-Dec-88	1.63E-14
LD-APE-0134	12	10-Dec-88	17-Dec-88	1.37E-14
LD-APE-0141	02	17-Dec-88	22-Dec-88	6.70E-15
LD-APE-0142	12	17-Dec-88	22-Dec-88	6.00E-15
LD-APE-0159	02	3-Jan-88	7-Jan-88	3.30E-15
LD-APE-0160	12	3-Jan-88	7-Jan-88	1.00E-14
LD-APE-0167	02	7-Jan-88	14-Jan-88	5.10E-15
LD-APE-0168	12	7-Jan-88	14-Jan-88	2.80E-15
LD-APE-0175	02	14-Jan-88	21-Jan-88	1.80E-15
LD-APE-0176	12	14-Jan-88	21-Jan-88	7.00E-16
LD-APE-0184	02	21-Jan-88	31-Jan-88	2.50E-15
LD-APE-0185	12	21-Jan-88	25-Jan-88	6.40E-16
LD-APE-0186	12	25-Jan-88	31-Jan-88	1.70E-15
LD-APE-0195	12	31-Jan-88	6-Feb-88	4.14E-16
LD-APE-0196	02	31-Jan-88	6-Feb-88	3.19E-15
LD-APE-0203	02	6-Feb-88	12-Feb-88	4.77E-15
LD-APE-0204	12	6-Feb-88	12-Feb-88	7.90E-16
LD-APE-0238	02	25-Feb-88	3-Mar-88	8.67E-15
LD-APE-0239	12	25-Feb-88	3-Mar-88	2.83E-15
LD-APE-0247	02	3-Mar-88	11-Mar-88	7.34E-15
LD-APE-0248	12	3-Mar-88	11-Mar-88	6.07E-15
LD-APE-0255	02	11-Mar-88	18-Mar-88	7.78E-16
LD-APE-0256	12	11-Mar-88	18-Mar-88	7.54E-16
LD-APE-0263	02	18-Mar-88	27-Mar-88	<mda< td=""></mda<>
LD-APE-0264	12	18-Mar-88	27-Mar-88	2.91E-15
LD-APE-0271	02	27-Mar-88	3-Apr-88	3.78E-16
LD-APE-0272	12	27-Mar-88	3-Apr-88	3.78E-16
LD-APE-0287	02	10-Apr-88	17-Apr-88	2.18E-15
LD-APE-0288	12	10-Apr-88	17-Apr-88	<mda< td=""></mda<>
LD-APE-0295	02	17-Apr-88	24-Apr-88	8.00E-16
LD-APE-0297	12	17-Apr-88	24-Apr-88	3.60E-15
LD-APE-0306	02	24-Apr-88	1-May-88	1.54E-15
LD-APE-0307	12	24-Apr-88	1-May-88	8.27E-15

WEEKLY AVERAGES FOR CAM STATION #2

Start date	Stop date	Average Alpha Activity (µCi/ml)
14-Nov-88	19-Nov-88	9.25E-15
19-Nov-88	29-Nov-88	1.54E-14
29-Nov-88	3-Dec-88	2.11E-14
3-Dec-88	10-Dec-88	1.87E-15
10-Dec-88	17-Dec-88	1.50E-14
17-Dec-88	22-Dec-88	6.35E-15
3-Jan-88	7-Jan-88	6.65E-15
7-Jan-88	14-Jan-88	3.95E-15
14-Jan-88	21-Jan-88	1.25E-15
21-Jan-88	31-Jan-88	1.61E-15
31-Jan-88	6-L3p-88	1.80E-15
6-Feb-88	12-Feb-88	2.78E-15
25-Feb-88	3-Mar-88	5.75E-15
3-Mar-88	11-Mar-88	6.71E-15
11-Mar-88	18-Mar-88	7.56E-16
18-Mar-88	27-Mar-88	1.45E-15
27-Mar-88	3-Apr-88	3.78E-16
10-Apr-88	17-Apr-88	1.09E-15
17-Apr-88	24-Apr-88	2.20E-15
24-Apr-88	1-May-88	4.91E-15

ENVIRONMENTAL DATA CAM STA. #2

(+1-31 sewil)
WICKO-COKIES BEK MICCITILEE
FIGURE 0.3 CAM STATION #2
6-B-240

ENVIRONMENTAL AIR SAMPLING DATA FOR CAM STATION #3

Sample ID	Loc	Samp In	Samp Out	Alpha Act. (μCi/ml)
LD-APE-0103	03	14-Nov-88	19-Nov-88	1.40E-14
LD-APE-0104	13	14-Nov-88	19-Nov-88	1.20E-14
LD-APE-0112	03	19-Nov-88	29-Nov-88	6.50E-15
LD-APE-0113	13	19-Nov-88	29-Nov-88	6.10E-15
LD-APE-0120	03	29-Nov-88	3-Dec-88	5.90E-16
LD-APE-0121	13	29-Nov-88	3-Dec-88	1.88E-15
LD-APE-0127	03	3-Dec-88	10-Dec-88	4.80E-15
LD-APE-0128	13	3-Dec-88	10-Dec-88	7.85E-15
LD-APE-0135	03	10-Dec-88	17-Dec-88	1.92E-14
LD-APE-0136	13	10-Dec-88	17-Dec-88	1.41E-14
LD-APE-0143	03	17-Dec-88	22-Dec-88	6.20E-14
LD-APE-0144	13	17-Dec-88	22-Dec-88	9.30E-15
LD-APE-0161	03	3-Jan-88	7-Jan-88	1.10E-14
LD-APE-0162	13	3-Jan-88	7 - Jan-88	9.20E-15
LD-APE-0169	03	7-Jan-88	14 - Jan-88	1.00E-15
LD-APE-0170	13	7-Jan-88	14-Jan-88	5.10E-15
LD-APE-0177	03	14-Jan-88	21-Jan-88	1.80E-15
LD-APE-0178	13	14-Jan-88	21-Jan-88	2.50E-15
LD-APE-0187	03	21-Jan-88	31-Jan-88	3.30E-15
LD-APE-0188	13	21-Jan-88	31-Jan-88	2.30E-16
LD-APE-0193	13	31-Jan-88	6-Feb-88	9.22E-16
LD-APE-0194	03	31-Jan-88	6-Feb-88	2.07E-15
LD-APE-0205	03	6-Feb-88	12-Feb-88	7.10E-15
LD-APE-0206	13	6-Feb-88	12-Feb-88	<mda< td=""></mda<>
LD-APE-0240	03	25-Feb-88	3-Mar-88	1.64E-14
LD-APE-0241	13	25-Feb-88	3-Mar-88	7.30E-15
LD-APE-0249	03	3-Mar-88	11-Mar-88	4.20E-15
LD-APE-0250	13	3-Mar-88	11-Mar-88	3.82E-15
LD-APE-0257	03	11-Mar-88	18-Mar-88	4.15E-15
LD-APE-0258	13	11-Mar-88	18-Mar-88	3.89E-16
LD-APE-0265	03	18-Mar-88	27-Mar-88	4.95E-15
LD-APE-0266	13	18-Mar-88	27-Mar-88	5.82E-16
LD-APE-0273	03	27-Mar-88	3-Apr-88	2.84E-15
LD-APE-0274	13	27-Mar-88	3-Apr-88	2.65E-15
LD-APE-0289 LD-APE-0290 LD-APE-0298	03 13 03	10-Apr-88 10-Apr-88	17-Apr-88 17-Apr-88	2.22E-15 1.11E-15
LD-APE-0299 LD-APE-0308 LD-APE-0309	13 03 13	17-Apr-88 17-Apr-88 24-Apr-88 24-Apr-88	24-Feb-88 24-Apr-88 1-May-88 1-May-88	2.30E-14 4.70E-15 3.13E-15 5.82E-15

WEEKLY AVERAGES FOR CAM STATION #3

Start date	Stop date	Average Alpha Activity (µCi/ml)
14-Nov-88 19-Nov-88 29-Nov-88 3-Dec-88 10-Dec-88 17-Dec-88 3-Jan-88 7-Jan-88 14-Jan-88 21-Jan-88 31-Jan-88 6-Feb-88 25-Feb-88 3-Mar-88 11-Mar-88 18-Mar-88	19-Nov-88 29-Nov-88 3-Dec-88 10-Dec-88 17-Dec-88 22-Dec-88 7-Jan-88 14-Jan-88 21-Jan-88 31-Jan-88 6-Feb-88 12-Feb-88 12-Feb-88 11-Mar-88 18-Mar-88 27-Mar-88 3-Apr-88	1.30E-14 6.30E-15 1.23E-15 6.32E-15 1.66E-14 3.57E-14 1.01E-14 3.05E-15 2.15E-15 1.77E-15 1.50E-15 3.55E-15 1.19E-14 4.01E-15 2.27E-15 2.77E-15 2.77E-15
17-Apr-88 24-Apr-88	24-Apr-88 1-May-88	1.39E-14 4.47E-15

MICRO-CURIES PER MILLILITER (Times 1E-14)

FIGURE 0.4 GAM STATION #3 6-B-243

ENVIRONMENTAL AIR SAMPLING DATA FOR CAM STATION #4

Sample ID	Loc	Samp In	Samp Out	Alpha Act. (μCi/ml)
LD-APE-0105	04	14-Nov-88	19-Nov-88	1.50E-14
LD-APE-0106	14	14-Nov-88	19-Nov-88	9.10E-15
LD-APE-0114	04	19-Nov-88	29-Nov-88	7.50E-15
LD-APE-0115	14	19-Nov-88	29-Nov-88	1.50E-15
LD-APE-0086	04	29-Nov-88	3-Dec-88	2.40E-14
LD-APE-0122	14	29-Nov-88	3-Dec-88	2.35E-15
LD-APE-0129	04	3-Dec-88	10-Dec-88	2.99E-15
LD-APE-0130	14	3-Dec-88	10-Dec-88	2.50E-14
LD-APE-0137	04	10-Dec-88	17-Dec-88	1.55E-14
LD-APE-0138	14	10-Dec-88	17-Dec-88	1.48E-14
LD-APE-0145	04	17-Dec-88	19-Dec-88	3.90E-15
LD-APE-0147	14	17-Dec-88	19-Dec-88	3.80E-14
LD-APE-0148	14	19-Dec-88	22-Dec-88	7.90E-15
LD-APE-0146	04	19-Dec-88	22-Dec-88	1.50E-13
LD-APE-0163	04	3-Jan-88	7-Jan-88	1.50E-14
LD-APE-0164	14	3-Jan-88	7-Jan-88	2.60E-15
LD-APE-0171	04	7-Jan-88	14-Jan-88	4.00E-15
LD-APE-0172	14	7-Jan-88	14-Jan-88	5.50E-15
LD-APE-0179	04	14-Jan-88	21-Jan-88	3.50E-15
LD-APE-0180	14	14-Jan-88	17-Jan-88	5.70E-15
LD-APE-0181	14	17-Jan-88	21-Jan-88	6.20E-16
LD-APE-0189	04	21-Jan-88	31-Jan-88	2.70E-15
LD-APE-0190	14	21-Jan-88	31-Jan-88	7.50E-16
LD-APE-0191	14	31-Jan-88	6-Feb-88	2.30E-15
LD-APE-0192	04	31-Jan-88	6-Feb-88	1.26E-15
LD-APE-0207	04	6-Feb-88	11-Feb-88	9.51E-15
LD-APE-0208	14	6-Feb-88	11-Feb-88	6.34E-15
LD-APE-0242	04	25-Feb-88	3-Mar-88	7.34E-15
LD-APE-0243	14	25-Feb-88	3-Mar-88	<mda< td=""></mda<>
LD-APE-0251	04	3-Mar-88	11-Mar-88	7.33E-15
LD-APE-0252	14	3-Mar-88	11-Mar-88	7.20E-15
LD-APE-0259	04	11-Mar-88	18-Mar-88	3.89E-15
LD-APE-0260	14	11-Mar-88	18-Mar-88	4.30E-15
LD-APE-0267	04	18-Mar-88	27-Mar-88	1.26E-15
LD-APE-0268	14	18-Mar-88	27-Mar-88	9.41E-16
LD-APE-0275	04	27-Mar-88	3-Apr-88	2.84E-15
LD-APE-0276	14	27-Mar-88	3-Apr-88	7.56E-16
LD-APE-0291	04	10-Apr-88	17-Apr-88	1.85E-15
LD-APE-0292	14	10-Apr-88	17-Apr-88	<mda< td=""></mda<>
LD-APE-0300	04	17-Apr-88	24-Apr-88	2.30E-14
LD-APE-0301	14	17-Apr-88	24-Apr-88	5.50E-15
LD-APE-0310	04	24-Apr-88	1-May-88	8.17E-15
LD-APE-0311	14	24-Apr-88	1-May-88	5.01E-15

WEEKLY AVERAGES FOR CAM STATION #4

Start date	Stop date	Average Alpha Activity (µCi/ml)
14-Nov-88	19-Nov-88	1.20E-14
19-Nov-88	29-Nov-88	4.50E-15
29-Nov-88	3-Dec-88	1.32E-14
3-Dec-88	10-Dec-88	1.40E-14
10-Dec-88	17-Dec-88	1.52E-14
17-Dec-88	19-Dec-88	2.09E-14
19-Dec-88	22-Dec-88	5.00E-14
19-Dec-88	22-Dec-88	7.90E-14
3-Jan-88	7-Jan-88	8.80E-15
7-Jan-88	14-Jan-88	4.75E-15
14-Jan-88	21-Jan-88	3.27E-15
21-Jan-88	31-Jan-88	1.72E-15
31-Jan-88	6-Feb-88	1.78E-15
6-Feb-88	11-Feb-88	7.93E-15
25-Feb-88	3-Mar-88	3.67E-15
3-Mar-88	11-Mar-88	7.26E-15
11-Mar-88	18-Mar-88	4.09E-15
18-Mar-88	27-Mar-88	1.10E-15
27-Mar-88	3-Apr-88	1.80E-15
10-Apr-88	17-Apr-88	9.25E-16
17-Apr-88	24-Apr-88	1.42E-14
24-Apr-88	1-May-88	6.59E-15

MICRO-CURIES PER MILLILITER

**FIGHT NOTATS WAS 5.0 BAND 1.0

6-B-246

ENVIRONMENTAL RADON PROGENY DATA (WORKING LEVELS)

Sample	ID	Date	Time	Conc. (WL)
LD-WLE-	-090	19-Nov-88	730	2.73E-03
LD-WLE-	-091	21-Nov-88	831	
LD-WLE-		21-Nov-88	840	1.96E-03
LD-WLE-	-093	22-Nov-88	1011	1.98E-03
LD-WLE-	-094	22-Nov-88	1419	3.34E-03
LD-WLE-	-095	22-Nov-88	1510	1.75E-03
LD-WLE-	-096	23-Nov-88	813	3.18E-03
LD-WLE-		23-Nov-88	1034	5.84E-04
LD-WLE-	-098	29-Nov-88	712	1.64E-03
LD-WLE-	-099	29-Nov-88	830	2.04E-03
LD-WLE-	-0101	30-Nov-88	714	3.08E-03
LD-WLE-	-0103	1-Dec-88	802	3.72E-03
LD-WLE-	-0106	2-Dec-88	749	1.93E-03
LD-WLE-	-0108	3-Dec-88	830	6.04E-03
LD-WLE-	-0110	3-Dec-88	1605	6.37E-04
LD-WLE-	-0111	5-Dec-88	805	1.91E-03
LD-WLE-	-0114	6-Dec-88	726	1.11E-03
LD-WLE-	-0116	7-Dec-88	720	3.40E-03
LD-WLE-	-0119	8-Dec-88	745	3.06E-04
LD-WLE-	-0120	8-Dec-88	1535	9.40E-04
LD-WLE-	-0121	9-Dec-88	820	6.75E-05
LD-WLE-	-0123	9-Dec-88	1525	2.10E-04
LD-WLE-	-0126	12-Dec-88	725	6.82E-04
LD-WLE-	-0127	12-Dec-88	900	5.50E-04
LD-WLE-	-0129	12-Dec-88	1525	3.95E-04
LD-WLE-	-0130	13-Dec-88	710	5.47E-04
LD-WLE-		13-Dec-88	1528	2.36E-04
LD-WLE-		14-Dec-88	718	3.14E-03
LD-WLE-		15-Dec-88	1509	3.83E-04
LD-WLE-		16-Dec-88	815	1.93E-04
LD-WLE-		17-Dec-88	720	1.14E-03
LD-WLE-		19-Dec-88	710	1.53E-03
LD-WLE-		20-Dec-88	735	3.43E-03
LD-WLE-		20-Dec-88	1535	2.36E-04
LD-WLE-		21-Dec-88		1.24E-03
LD-WLE-		3-Jan-89		1.29E-03
LD-WLE-		4-Jan-89		8.20E-04
LD-WLE-		5-Jan-89		4.32E-04
LD-WLE~		5-Jan-89	1532	6.56E-04
LD-WLE-		6-Jan-89		5.12E-04
LD-WLE-		6-Jan-89		2.06E-04
LD-WLE-		7-Jan-89	740	3.04E-04
LD-WLE-		7-Jan-89		7.67E-04
LD-WLE-		9-Jan-89	725	4.96E-04
LD-WLE-		9-Jan-89		6.57E-04
LD-WLE-		10-Jan-89		1.15E-03
LD-WLE-		11-Jan-89	654	1.07E-03
LD-WLE-	-0170	11-Jan-89	1505	5.08E-04

Sample ID	Date	Time	Conc.	(WL)
LD-WLE-0172	13-Jan-89	802	1.08E-	03
LD-WLE-0173	13-Jan-89	1416	2.24E-	04
LD-WLE-0175	14-Jan-89	657	2.07E-	03
LD-WLE-0177	14-Jan-89	1503	6.60E-	04
LD-WLE-0179	16-Jan-89	710	1.25E-	03
LD-WLE-0181	16-Jan-89	1426	5.30E-	04
LD-WLE-0184	17-Jan-89	708	6.70E-	04
LD-WLE-0185	17-Jan-89	1421	9.30E-	04
LD-WLE-0188	18-Jan-89	750	4.90E-	03
LD-WLE-0189	19-Jan-89	649	4.60E-	03
LD-WLE-0191	19-Jan-89	1310	1.60E-	03
LD-WLE-0193	20-Jan-89	745	2.00E-	03
LD-WLE-0195	20-Jan-89	1553	9.00E-	04
LD-WLE-0197	21-Jan-89	810	7.70E-	04
LD-WLE-0198	21~Jan-89	1522	1.10E-	04
LD-WLE-0199	23-Jan-89	722	1.70E-	03
LD-WLE-0202	23-Jan-89	1400	1.10E-	03
LD-WLE-0204	24-Jan-89	742	6.40E-	03
LD-WLE-0205	24-Jan-89	1251	1.10E-	03
LD-WLE-0208	25-Jan-89	737	7.10E-	04
LD-WLE-0213	25-Jan-89	1310	2.70E-	04
LD-WLE-0217	26-Jan-89	828	4.30E-	04
LD-WLE-0220	27-Jan-89	728	6.80E-	04
LD-WLE-0224	27-Jan-89	1522	3.70E-	
LD-WLE-0226	28-Jan-89	735	1.30E-	03
LD-WLE-0227	30-Jan-89	751	1.80E-	03
LD-WLE-0229	31-Jan-89	743	1.20E-	
LD-WLE-0232	31-Jan-89	1548	1.40E-	
LD-WLE-0233	1-Feb-89	730	1.10E-	
LD-WLE-0235	1-Feb-89	1245	8.70E-	
LD-WLE-0237	2-Feb-89	720	1.20E-	
LD-WLE-0239	2-Feb-89	1517	1.00E-	
LD-WLE-0241	6-Feb-89	738	2.30E-	
LD-WLE-0243	6-Feb-89	1406	2.50E-	
LD-WLE-0245	7-Feb-89	827		
LD-WLE-0247	7-Feb-89	1530	6.80E-	
LD-WLE-0250	8-Feb-89	954	6.21E-	
LD-WLE-0251	8-Feb-89	1414	3.39E-	
LD-WLE-0254	9-Feb-89	947	9.14E-	
LD-WLE-0255	9-Feb-89	1322	3.95E-	
LD-WLE-0338	13-Mar-89	1330	1.18E-	
LD-WLE-0342	14-Mar-89	800	4.38E-	
LD-WLE-0346	15-Mar-89	830	8.13E-	
LD-WLE-0344	15-Mar-89	1300	9.38E-	
LD-WLE-0349	16-Mar-89	830	7.24E-	
LD-WLE-0351	16-Mar-89	1501	8.45E-	
LD-WLE-0353	17-Mar-89	840	8.13E-	
LD-WLE-0355	18-Mar-89	1430	1.06E-	
LD-WLE-0356	20-Mar-89	829	2.59E-	
LD-WLE-0359	20-Mar-89	1440	5.19E-	04

Sample ID	Date	Time	Conc. (WL)
LD-WLE-0370	27-Mar-89	910	8.75E-04
LD-WLE-0371	27-Mar-89	1501	1.38E-03
LD-WLE-0374	28-Mar-89	830	6.88E-04
LD-WLE-0376	28-Mar-89	1515	9.38E-04
LD-WLE-0377	29-Mar-89	912	9.66E-04
LD-WLE-0379	29-Mar-89	1545	7.24E-03
LD-WLE-0386	31-Mar-89	1530	6.64E-04
LD-WLE-0422	14-Apr-89	1110	1.00E-03
LD-WLE-0444	22-Apr-89	715	1.00E-03
LD-WLE-0441	22-Apr-89	855	7.48E-04
LD-WLE-0443	22-Apr-89	1420	2.34E-04
LD-WLE-0447	22-Apr-89	1515	1.12E-03
LD-WLE-0448	24-Apr-89	710	1.69E-03
LD-WLE-0452	25-Apr-89	815	2.12E-03
LD-WLE-0454	25-Apr-89	1505	4.72E-04
LD-WLE-0455	26-Apr-89	720	5.92E-03
LD-WLE-0460	27-Apr-89	710	2.50E-03
LD-WLE-0461	27-Apr-89	1515	1.20E-03

ENVIRONMENTAL RADON PROGENY DATA (WORKING LEVELS)

DAILY AVERAGES

Date	Conc.	(WL)
19-Nov-88	2.73	E-03
21-Nov-88	2.24	
22-Nov-88	2.36	
23-Nov-88	5.84	
29-Nov-88	1.84	
30-Nov-88	3.08	
1-Dec-88	3.72	
2-Dec-88	1.93	
3-Dec-88	3.34	
5-Dec-88	1.91	
6-Dec-88	1.11	
7-Dec-88	3.40	
8-Dec-88	6.23	
9-Dec-88	1.39	
12-Dec-88	5.42	
13-Dec-88	3.92	
14-Dec-88	3.141	
15-Dec-88	3.831	
16-Dec-88	1.93	
17-Dec-88	1.14	
19-Dec-88	1.53	
20-Dec-88	1.83	
21-Dec-88	1.24	
3-Jan-89	1.29	
4-Jan-89	8.20	
5-Jan-89	5.44	
6-Jan-89	3.591	
7-Jan-89	5.361	
9-Jan-89	5.771	
10-Jan-89	1.15	
11-Jan-89	7.891	
13-Jan-89	6.521	
14-Jan-89	1.37	
16-Jan-89	8.90	
17-Jan-89	8.001	
18-Jan-89	4.90	
19-Jan-89	3.10	
20-Jan-89	1.45	
21-Jan-89	4.401	
23-Jan-89	1.40	
24-Jan-89	3.75	
25-Jan-89	4.901	
26-Jan-89	4.301	
27-Jan-89	5.251	
28-Jan-89	1.30	
30-Jan-89	1.80	
30-0 all-03	1.001	-03

DAILY AVERAGES

Date	Conc. (WL)
31-Jan-89 1-Feb-89 2-Feb-89 6-Feb-89 7-Feb-89 8-Feb-89 9-Feb-89 13-Mar-89 14-Mar-89 15-Mar-89	1.30E-03 9.85E-04 1.10E-03 1.37E-03 8.40E-04 4.80E-04 6.54E-04 1.18E-03 4.38E-04 8.75E-04 7.84E-04 8.13E-04
18-Mar-89	1.06E-03
20-Mar-89	3.89E-04
27-Mar-89	1.13E-03
28-Mar-89	8.13E-04
29-Mar-89	4.10E-03
31-Mar-89	6.64E-04
14-Apr-89	1.00E-03
22-Apr-89	7.76E-04
24-Apr-89	1.69E-03
25-Apr-89	1.30E-03
26-Apr-89	5.92E-03
27-Apr-89	1.85E-03

MOBKING FEAEF(2)

JW JATHAMHORIVHA YJIAD 8.0 AND SE2-8-8

APPENDIX 6-C

PRE AND POST REMEDIAL GAMMA SOIL SURVEYS

PRE AND POST REMEDIAL GAMMA SURVEYS

GRID BLOCK IDENTIFIER	PRE-REMEDIAL AVG. CPTM	POST-REMEDIAL AVG. CPTM
0+05,05L (A-1)	11070	1650
0+05,15L (A-2)	3626	1971
0+05,25L (A-3)	10318	1531
0+05,35L (A-4)	15764	1632
0+05,45L (A-5)	15354	1770
0+05,55L (A-6)	21644	1924
0+05,65L (A-7)	28977	1891
0+05,75L (A-8)	43702	1660
0+05,85L (A-9)	48876	1994
0+05,95L (A-10)	7270	1768
0+05,105L (A-11)	4840	1618
0+05,115L (A-12)	4940	2622
0+05,125L (A-13)	7605	2624
0+05,135L (A-14)	1469	2486
0+05,145L (A-15)	2920	2619
0+15,05L (B-1)	2500	1620
0+15,15L (B-2)	6000	1850
0+15,25L (B-3)	9509	1576
0+15,35L (B-4)	12431	1610
0+15,45L (B-5)	9241	1975
0+15,55L (B-6)	51136	2172
0+15,65L (B-7)	32660	1694
0+15,75L (B-8)	56679	2240
0+15,85L (B-9)	58141	1909
0+15,95L (B-10)	5400	1792
0+15,105L (B-11)	4321	1778
0+15,115L (B-12)	3400	2622
0+15,125L (B-13)	2307	2539
0+15,135L (B-14)	2826	2645
0+15,145L (B-15)	2896	2804
0+25,05L (C-1)	21600	1704
0+25,15L (C-2)	14224	1840
0+25,25L (C-3)	31088	1556
0+25,35L (C-4)	5884	1650
0+25,45L (C-5)	7335	1913
0+25,55L (C-6)	30426	1635
0+25,65L (C-7)	40880	1889
0+25,75L (C-8)	55022	1890
0+25,85L (C-9)	47087	1757
0+25,95L (C-10)	5184	1824
7+25,105L (C-11)	4280	1997
²⁵ ,115L (C-12)	2474	2755
-25,125L (C-13)	2628	2758

GRID BLOCK IDENTIFIER	PRE-REMEDIAL AVG. CPTM	POST-REMEDIAL AVG. CPTM
0+25,135L (C-14)	2459	3096
0+25,145L (C-15)	3008	3001
0+35,05L (D-1)	*	1675
0+35,05L (D-1) 0+35,15L (D-2) 0+35,25L (D-3)	*	1701
0+35,25L (D-3)	31088	1580
0+35,35L (D-4)	5420	1528
0+35,45L (D~5)	3112	1576
0+35,55L (D-6)	9907	1829
0+35,65L (D-7)	9907 79360 34876 9330 1849	1722
0+35,75L (D-8)	34876	1890
0+35,85L (D-9)	9330	1789
0+35,95L (D-10)	1849	1521
0+35,105L (D-11)	3553 2577	1746
0+35,115b (D-12)	2377	2688 2709
0+35,95E (D-10) 0+35,105E (D-11) 0+35,115E (D-12) 0+35,125E (D-13) 0+35,135E (D-14)	9330 1849 3553 2577 2336 2324	3064
0+35,145L (D-15)	2662	3090
0+35,145L (D-15) 0+45,05L (E-1) 0+45,15L (E-2) 0+45,25L (E-3) 0+45,35L (E-4) 0+45,45L (E-5) 0+45,55L (E-6) 0+45,65L (E-7) 0+45,75L (E-8) 0+45,85L (E-9) 0+45,95L (E-10) 0+45,105L (E-11) 0+45,115L (E-12) 0+45,125L (E-13) 0+45,135L (E-14) 0+45,145L (E-15)	2002	3090
0+45,05L (E-1)	6600	1782
0+45,15L (E-2)	5700	1760
0+45,25L (E-3)	16430	1680
0+45.35L (E-4)	30427	1540
0+45,45L (E-5)	**	1560
0+45,55L (E-6)	**	1814
0+45,65L (E-7)	13631	1720
0+45,75L (E-8)	***	1600
0+45,85L (E-9)	10988	1910
0445,95L (E-10)	1.1533	1504
0+45,105D (E-11)	2075	1619 1728
0+45 125T. (F=13)	2303	1697
0+45,135T. (E-14)	2463	2787
0+45,145L (E-15)	2263	2881
· · · · · · · · · · · · · · · · · · ·	2233	2001
0+55,05L (F-1)	3754	1716
0+55,15L (F-2)	5400	1718
0+55,25L (F-3)	13949	1800
0+55,35L (F-4)	21083	1665
0+55,45L (F-5	***	1453
0+55,55L (F-6	***	1694
0+55,65L (F-7)	***	1699
0+55,75L (F-8)	***	1590
0+55,85L (F-9)	***	1613
0+55,95L (F-10	***	1697

grid obstructed by LSA box grid obstructed by LSA containment grid obstructed by 105/107 east stratford structure

GRID BLOCK IDENTIFIER	PRE-REMEDIAL AVG. CPTM	POST-REMEDIAL AVG. CPTM
0+55,105L (F-11) 0+55,115L (F-12) 0+55,125L (F-13) 0+55,135L (F-14) 0+55,145L (F-15)	2983 2280 2465 2973 2149	1488 1517 1748 1680 1759
0+65,05L (G-1) 0+65,15L (G-2) 0+65,25L (G-3) 0+65,35L (G-4) 0+65,45L (G-5) 0+65,55L (G-6) 0+65,65L (G-7) 0+65,75L (G-8) 0+65,85L (G-9) 0+65,95L (G-10) 0+65,105L (G-11) 0+65,115L (G-12) 0+65,125L (G-13) 0+65,135L (G-14) 0+65,145L (G-15)	5457 6439 10362 10181 2143 *** 2680 2851 4338 4009 3158 2100 2466 2220 1973	1732 1679 1670 1840 1548 1801 1678 1460 1482 1636 1671 1611 1794 1853
0+75,05L (H-1) 0+75,15L (H-2) 0+75,25L (H-3) 0+75,35L (H-4) 0+75,45L (H-5) 0+75,55L (H-6) 0+75,65L (H-7) 0+75,75L (H-8) 0+75,85L (H-9) 0+75,95L (H-10) 0+75,105L (H-11) 0+75,115L (H-12) 0+75,125L (H-13) 0+75,135L (H-14) 0+75,145L (H-15)	3570 5404 8800 9530 3050 *** 8560 3780 4332 2070 2659 2006 2195 2076 1847	1628 1790 1700 1950 1502 1676 1513 1590 1481 1553 1762 1587 1870 1977
0+85,05L (J-1) 0+85,15L (J-2) 0+85,25L (J-3) 0+85,35L (J-4) 0+85,45L (J-5) 0+85,55L (J-6) 0+85,65L (J-7) 0+85,75L (J-8) 0+85,85L (J-9)	1936 5130 10000 7990 3080 *** ***	1633 1700 1690 1867 1632 1695 1503 1780

^{***} grid obstructed by 105/107 east stratford structure

GRID BLOCK IDENTIFIER	PRE-REMEDIAL AVG. CPTM	POST-REMEDIAL AVG. CPTM
0+85,95L (J-10) 0+85,105L (J-11) 0+85,115L (J-12) 0+85,125L (J-13) 0+85,135L (J-14) 0+85L,145L (J-15)	1628 2489 2135 1906 2008 1904	1758 1631 1551 1862 1937 1760
0+95,05L (K-1) 0+95,15L (K-2) 0+95,25L (K-3) 0+95,35L (K-4) 0+95,45L (K-5) 0+95,55L (K-6) 0+95,65L (K-7) 0+95,75L (K-8) 0+95,85L (K-9) 0+95,95L (K-10) 0+95,105L (K-11) 0+95,115L (K-12) 0+95,125L (K-13) 0+95,135L (K-14) 0+95,145L (K-15)	2000 2800 5180 11200 6030 *** *** 1940 3099 2224 1866 1968 2031	1636 1722 1770 2070 1630 1619 1603 1710 1549 1758 1610 1998 1942 1759
1+05,05L (L-1) 1+05,15L (L-2) 1+05,25L (L-3) 1+05,35L (L-4) 1+05,45L (L-5) 1+05,55L (L-6) 1+05,65L (L-7) 1+05,75L (L-8) 1+05,85L (L-9) 1+05,95L (L-10) 1+05,105L (L-11) 1+05,115L (L-12) 1+05,125L (L-13) 1+05,135L (L-14) 1+05,145L (L-15)	* 4900 11200 29900 27046 9396 34206 18484 14500 14841 11728 9107 9263 9266	1669 1666 1750 1827 1900 1714 1718 1569 1725 1560 1508 1673 1951 1726 1743
1+15,05L (M-1) 1+15,15L (M-2) 1+15,25L (M-3) 1+15,35L (M-4) 1+15,45L (M-5) 1+15,55L (M-6) 1+15,65L (M-7)	* 4150 6400 15200 31994 16866	1661 1599 1690 1706 2300 1698 2007

^{*} grid obstructed by LSA box
*** grid obstructed by 105/107 east stratford structure

GRID BLOCK IDENTIFIER	PRE-REMEDIAL AVG. CPTM	POST-REMEDIAL AVG. CPTM
1+15,75L (M-8)	3968	1559
1+15,85L (M-9)	2823	1630
1+15,95L (M-10)	2337	1513
1+15,105L (M-11)	2374	1680
1+15,115L (M-12)	2295	1481
1+15,125L (M-13	1819	1722
1+15,125L (M-14)	1808	1660
•	1663	1613
1+15,145L (M-15)	1003	1013
1+25,05L (N-1)	*	1595
1+25,15L (N-2)	*	1750
1+25,25L (N-3)	2660	1700
1+25,35L (N-4)	3548	1579
1+25,45L (N-5)	12500	2210
1+25,55L (N-6)	8843	1,37
1+25,65L (N-7)	16327	1866
1+25,75L (N-8)	3464	1679
1+25,85L (N-9)	2711	1743
1+25,95L (N-10)	2321	1582
1+25,105L (N-11)	2235	1620
1+25,115L (N-12)	1917	1780
1+25,125L (N-13)	1799	1777
1+25,135L (N-14)	1775	1653
1+25,145L (N-15)	1743	1528
1+35,05L (P-1)	1700	1589
1+35,15L (P-2)	2240	1599
1+35,25L (P-3)	2291	1600
1+35,35L (P-4)	2578	1697
1+35,45L (P-5)	4500	1941
1+35,55L (P-6)	8602	1684
1+35,65L (P-7)	3365	1809
1+35,75L (P-8)	4270	1611
1+35,85L (P-9)	2660	1822
1+35,95L (P-10)	2353	1520
1+35,105L (P-11)	2121	1780
1+35,115L (P-12)	1760	1640
1+35,125L (P-13)	1729	1853
1+35,125L (P-14)	1717	1626
1-35,145L (P-15)	1554	1542
1+45,05L (R-1)	1810	1544
1+45,15L (R-2)	2491	1455
1+45,15L (R-2) 1+45,25L (R-3)	2250	1415
1+45,25L (R-4)	2100	1713
1+45,45L (R-5)	7500	1940
1+45,45L (R-5)	3722	1556
T140,000 (K-0)	J 1 & &	7000

^{*} grid obstructed by LSA box

GRID BLOCK IDENTIFIER	PRE-REMEDIAL AVG. CPTM	POST-REMEDIAL AVG. CPTM
1+45,65L (R-7)	3451	1695
1+45,75L (R-8)	6258	1605
1+45,85L (R-9)	3877	1910
1+45,95L (R-10)	2321	1730
1+45,105L (R-11)	1979	1700
1+45,105L (R-12)	1669	1780
1+45,125L (R-13)	1586	1753
1+45,135L (R-14)	1605	1550
1+45,145L (R-15)	1640	1498
0-5,05L (CA-1)	2090	1656
0-5,15L (CA-2)	2340	1547
0-5,25L (CA-3)	3300	1528
0-5,35L (CA-4)	4330	1645
0-5,45L (CA-5)	3780	1559
0-5,55L (CA-6)	3835	1644
0-5,65L (CA-7)	3370	1644
0-5,75L (CA-8)	3200	1676
0-5,85L (CA-9)	3097	1697
0-5,95L (CA-10)	3491	3078
0-5,105L (CA-11)	2339	2796
0-15,05L (CB-1)	2150	1682
0-15,15L (CB-2)	***	1552
0-15,25L (CB-3)	2430	1547
0-15,35L (CB-4)	2300	1640
0-15,45L (CB-5)	2700	1479
0-15,55L (CB-6)	2459	1608
0-15,65L (CB-7)	2462	1575
0-15,75L (CB-8)	2321	1621
0-15,85L (CB-9)	1984	1555
0-15,95L (CB-10)	2874	2684
0-15,105L (CB-11)	2154	2673
0-05,115L (CB-12)	107 garage	2626
0-25,05L (CC-1)	NOT ACQUIRED	1545
0-25,15L (CC-2)		1438
0-25,25L (CC-3)	NOT ACQUIRED	1565
0-25,35L (CC-4)	2002	1579
0-25,45L (CC-5)	2300	1619
0-25,55L (CC-6)	2212	1522
0-25,65L (CC-7)	1994	1522
0-25,75L (CC-8)	1941	1622
0-25,75L (CC-8)	1847	1701
0-25,85L (CC-10)		NON-EXCAVATED
	2020	
0-25,105L (CC-11)	2300	NON-EXCAVATED

**** grid obstructed by Townsend garage

GRID BLOCK	PRE-REMEDIAL	POST-REMEDIAL
IDENTIFIER	AVG. CPTM	AVG. CPTM
0-35,05L (CD-1)	NOT ACQUIRED	1435
0-35,15L (CD-2)	NOT ACQUIRED	1407
0-35,25L (CD-3)	NOT ACQUIRED	2017
0-35,45L (CD-4)	1590	2507
0-35,55L (CD-5)	1900	NON-EXCAVATED
0-35,65L (CD-6) 0-35,75L (CD-7) 0-35,85L (CD-8) 0-35,95L (CD-9) 0-35,105L (CD-10) 0-35,115L (CD-11)	1721 1877 1502 1915 1800 1802	NON-EXCAVATED NON-EXCAVATED NON-EXCAVATED NON-EXCAVATED NON-EXCAVATED NON-EXCAVATED
0-45,45L (CE-4) 0-45,55L (CE-5) 0-45,65L (CE-6) 0-45,75L(CE-7) 0-45,85L (CE-8) 0-45,95L (CE-9) 0-45,105L (CE-10) 0-45,115L (CE-11)	1420 1526 1251 1139 1258 1746 1751	NON-EXCAVATED NON-EXCAVATED NON-EXCAVATED NON-EXCAVATED NON-EXCAVATED NON-EXCAVATED NON-EXCAVATED NON-EXCAVATED
0-05,125L (GA-1)	1723	2448
0-05,135L (GA-2)	1447	2598
0-05,145L (GA-3)	2368	2861
0-05,155L (GA-4)	1878	2761
0-05,165L (GA-5)	1398	2678
0-05,175L (GA-6)	1485	2869
0-05,185L (GA-7)	1558	2998
0-05,195L (GA-8)	NOT ACQUIRED	3201
0-15,125L (GB-1)	2082	2783
0-15,135L (GB-2)	1830	2593
0-15,145L (GB-3)	1742	2832
0-15,155L (GB-4)	1685	2862
0-15,165L (GB-5)	1606	2529
0-15,175L (GB-6)	1476	2437
0-15,185L (GB-7)	1551	2332
0-15,195L (GB-8)	NOT ACQUIRED	2508
0-25,125L (GC-1) 0-25,135L (GC-2) 0-25,145L (GC-3) 0-25,155L (GC-4) 0-25,165L (GC-5) 0-25,175L (GC-6)	1235 1762 1700 1530 1535 1545	NON-EXCAVATED NON-EXCAVATED NON-EXCAVATED NON-EXCAVATED NON-EXCAVATED NON-EXCAVATED
0-35,125L (GD-1) 0+05,155L (KA-1)	1862 1825	NON-EXCAVATED 2783

GRID BLOCK IDENTIFIER	PRE-REMEDIAL AVG. CPTM	POST-REMEDIAL AVG. CPTM
0+05,165L (KA-2)	1876	2632
0+05,175L (KA-3)	2048	1573
0+05,185L (KA-4)	1724	1607
0+05,195L (KA-5)	BURIED DEPOSIT	1587
0.00,2002 (222-0)		2007
0+15,155L (KB-1)	1958	2832
0+15,165L (KB-2)	1850	2774
0+15,175L (KB-3)	1812	1562
0+15,185L (KB-4)	1724	1532
0+15,195L (KB-5)	NOT ACQUIRED	1516
0+25,155L (KC-1)	1994	2691
0+25,165L (KC-2)	1707	2596
0+25,175L (KC-3)	1676	1601
0+25,185L (KC-4)	8287	1530
0+25,195L (KC-5)	BURIED DEPOSIT	1534
0123,193H (RC-3)	BORIED DEFOSII	1334
0+35,155L (KD-1)	1858	2821
0+35,165L (KD-2)	1787	2647
0+35,175L (KD-3)	1635	1780
0+35,185L (KD-4)	BURIED DEPOSIT	1530
0+35,195L (KD-5)	BURIED DEPOSIT	1506
0+45,155L (KE-1)	1891	3008
0+45,165L (KE-2)	1782	1701
0+45,175L (KE-3)	1725	1605
0+45,185L (KE-4)	BURIED DEPOSIT	1519
0+45,195L (KE-5)	BURIED DEPOSIT	1527
0143,1331 (RD 3)	DONIED DELOCAL	1327
0+55,155L (KF-1)	1869	1964
0+55,165L (KF-2)	1627	1744
0+55,175L (KF-3)	1946	1573
0+55,185L (KF-4)	BURIED DEPOSIT	1609
0+55,195L (KF-5)	BURIED DEPOSIT	1476
0+65,155L (KG-1)	1816	1978
0+65,165L (KG-2)		1493
0+65,175L (KG-3)	1680	NON-EXCAVATED
0105,175H (KG-5)	1000	NON-EXCAVATED
0+75,155L (KH-1)	1889	1996
0+75,165L (KH-2)	1924	1875
0+85,155L (KJ-1)	2028	1840
0+85,165L (KJ-2)	*	1902
0+95,155L (KK-1)	*	1730
0+95,165L (KK-2)	*	1944

^{*} grid obstructed by LSA box

GRID BLOCK IDENTIFIER	PRE-REMEDIAL AVG. CPTM	POST-REMEDIAL AVG. CPTM
1+05,155L (KL-1)	*	1742
1+05,165L (KL-2)	*	1660
1+15,155L (KM-1)	*	1917
1+15,165L (KM-2)	*	1754
1+25,155L (KN-1)	*	1778
1+25,165L (KN-2)	*	1444
1+35,155L (KP-1)	*	1557
1+35,165L (KP-2)	*	1419
1+45,155L (KR-1)	*	1480

^{*} grid obstructed by LSA box

אוכרס-רספחקלפח אפר הטטר FIGURE P.1 uR/hr vs. CPTM SN48403 6-C-264

Jnoy Jed uetbueoJ-ojjuj FIGURE P.2 uR/hr vs. CPTM SN1469 6-C-265

COUNTS PER 0.1 MINUTE VERSUS MICRO-ROENTGEN PER HOUR

INSTRUMENT SERIAL NUMBER: 48403

2220 and 43 2nd ct	3-10 3rd ct	avg. ct	PIC μR/hr
6857	6657	6754	49
1837	1851	1835	15
1935	1918	1902	15
2880	3050	2968	22
2834	2773	2781	20
4433	4533	4445	30
3719	3715	3717	27
8417	8422	8432	57
5646	5841	5727	40
4846	4736	4777	34
1369	1299	1339	12
1321		1326	12
	2nd ct 6857 1837 1935 2880 2834 4433 3719 8417 5646 4846 1369	6857 6657 1837 1851 1935 1918 2880 3050 2834 2773 4433 4533 3719 3715 8417 8422 5646 5841 4846 4736 1369 1299	2nd ct 3rd ct avg. ct 6857 6657 6754 1837 1851 1835 1935 1918 1902 2880 3050 2968 2834 2773 2781 4433 4533 4445 3719 3715 3717 8417 8422 8432 5646 5841 5727 4846 4736 4777 1369 1299 1339

Ludlum 2220 & 43-10 SN48403 Regression Output:

Constant	2.759845
Std Err of Y Est	0.998080
R Squared	0.995877
No. of Observations	12
Degrees of Freedom	10

X Coefficient(s) 0.006518
Std Err of Coef. 0.000132

COUNTS PER 0.1 MINUTE VERSUS MICRO-ROENTGEN PER HOUR

INSTRUMENT SERIAL NUMBER: 1469

ESP-1 and 1st ct	SPA-3 2nd ct	3rd ct	avg. ct	PIC μR/hr
6260	6350	6350	6320	49
1830	1780	1840	1817	15
1760	1870	1840	1823	15
2890	2800	2860	2850	22
2620	2760	2660	2680	20
4550	4400	4470	4473	30
3800	3790	3810	3800	27
8630	8780	8710	8707	57
5790	5640	5690	5707	40
4760	4680	4670	4703	34
1320	1320	1330	1323	12
1360	1300		1330	12

Eberline ESP-1 & SPA-3 SN1469 Regression Output:

Constant	3.351590
Std Err of Y Est	1.905287
R Squared	0.984976
No. of Observations	12
Degrees of Freedom	10

X Coefficient(s) 0.006430
Std Err of Coef. 0.000251

APPENDIX 6-D

INITIAL SOIL SAMPLE ACTIVITY BY GAMMA SPECTROSCOPY

SAMPLE ID	0+05,05L (A-1) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	0+05,15L (A-2) INITIAL SAMPLE ACTIVITY
0161 0162 0163 0167 0186 0509 0510 0512 0546 0597 0604	6.6 8.9 10.4 2.0 19.9 1.5 1.4 8.0 2.2 1.4	0168 0171 0181 0235 0511 1802	40.5 19.6 6.4 9.3 1.0
GRID BLOCK:	0+05,35L (A-4)	GRID BLOCK:	0+05,45L (A-5)
	INITIAL SAMPLE ACTIVITY	SAMPLE ID	ACTIVITY
0164 0165 0238 0343 0344 0706	1.3 7.2 1.3 1.3 1.3	0283 0284 0287	2.2 1.6 0.8
SAMPLE ID	0+05,55L (A-6) INITIAL SAMPLE ACTIVITY	SAMPLE ID	INITIAL SAMPLE ACTIVITY
0161	6.6 46.7 30.1 6.2 7.9 212.7 1.4 0.8 0.5 1.1 1.0 1.0 1.0 1.2 0.9 1.0 18.7 4.8 0.9	0342 0345 0346 0350 0351 0352 0353 0354 0367 0369 0373 0393	4.5 0.3 1.6 2.0 18.6 0.8 1.0 0.4 4.8 9.4 1.2 0.5 0.4 23.5

SAMPLE ID	0+05,75L (A-8) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	O+05,85L (A-9) INITIAL SAMPLE ACTIVITY
0368 0371 0374 0375 0376 0395 0397 0398 0837 0838 0871	2.2 0.3 82.2 1.0 0.6 0.8 1.3 47.2 2.3 8.5 7.8	0402 0399 0400 0406 0407 0408 0409 0410 0411 0412 0414 1159	6.7 1.8 1.6 4.4 8.1 3.4 3.0 5.0 2.3 6.2 24.1
SAMPLE ID	0+05,95L (A-10) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	ACTIVITY
0419 0420 0421 0423 0457 1049	2.4 1.3 0.9 1.5 0.8 6.3	0161 0456 0934	6.6 1.3 3.0
SAMPLE ID	0+05,115L (A-12) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	INITIAL SAMPLE' ACTIVITY
0456 1329 1330 1331 1332 1335 1336 1337 1340 1343	1.3 0.8 1.3 1.5 3.7 6.2 3.2 9.7 1.9 5.8	1327 1328 1334 1342	3.9 3.4 1.4 2.6

GRID BLOCK: SAMPLE ID	0+05,135L (A-14) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	0+05,145L (A-15) INITIAL SAMPLE ACTIVITY
		1086 1096 1435 1436	
SAMPLE ID	0+05,155L (KA-1) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	INITIAL SAMPLE ACTIVITY
	4.0	0844	
SAMPLE ID	0+05,175L (KA-3) INITIAL SAMPLE ACTIVITY	SAMPLE ID	INITIAL SAMPLE ACTIVITY
0842 0848	1.6 4.2 3.1 1.0	0841 0851 0854 0855 0923 0928 0938 0939 0941	

SAMPLE ID	0+05,195L (KA-5) INITIAL SAMPLE ACTIVITY	SAMPLE ID	0+15,05L (B-1) INITIAL SAMPLE ACTIVITY
0935 0936 0937 0947 0948 0963	5.1 6.9 4.2 4.3 1.4 3.1	0153 0154 0155 0156 0157 0158 0159 0160 0166 0169 0170 0172 0173 0176 0177 0179 0180 0187 0187 0197	12.5 4.5 3.5 4.1 4.8 7.2 5.0 2.5 1.8 3.2 2.5 1.8 .92 2.0 2.8 2.4 6.0 16.2 3.8 1.5
SAMPLE ID	O+15,15L (B-2) INITIAL SAMPLE ACTIVITY	SAMPLE ID	0+15,25L (B-3) INITIAL SAMPLE ACTIVITY
0177 0188 0190 0191 0192 0199 0200 0201 0236 0260 0261 0687	2.7 1.8 1.6 1.3 1.7 1.5 1.4 3.0 6.0 3.0 2.7 2.1	0169 0303	1.8 3.6

SAMPLE ID	0+15,45L (B-5) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	0+15,55L (B-6) INITIAL SAMPLE ACTIVITY
0285 0290 0291 0292 0293 0294 0295 0296 0297 0298 0301 0304 0305 0306 0307 0308 0309 0310 0313	96.0 182.0 27.0 231.0 16.1 12.6 2.9 2.0 0.9 3.1 2.5 2.9 1.6 1.2 1.4 1.8 1.9 1.1	0330 0312 0317 0322 0325 0326 0330 0331 0332 0334 0335 0336 0337 0338 0340 0387 0616 0617 0618 1793 1794 1849	0.8 16.2 1.2 0.7 0.7 387.7 0.8 0.7 0.5 0.4 0.8 0.3 11.8 0.3 128.9 3.1 12.7 9.2 0.8 1.6 1.2 6.2
SAMPLE ID	INITIAL SAMPLE ACTIVITY	SAMPLE ID	ACTIVITY
0339 0341 0347 0355 0356 0357 0359 0364 0366 0372 0379 0381 0382 0383 0384 0390 0391 0396 0547	1.5 3.3 30.8 0.7 23.7 0.8 1.0 0.5 7.4 1.1 0.4 10.3 2.3 92.3 81.9 1.4 0.4 0.3	0370 0389 0377 0378 0389 0392 0401 0402 0403 0434-B 0435-A 2065 2066	2.2 0.7 0.9 0.7 0.7 3.7 8.5 6.7 0.7 80.2 34.8 1.2

SAMPLE ID	O+15,85L (B-9) INITIAL SAMPLE ACTIVITY	SAMPLE ID	O+15,105L (B-11) INITIAL SAMPLE ACTIVITY
0402 0413 0415 0416 0417 0418 0422 0428 0430 0431 0432 0433 0587 0591 0592 0839	6.7 24.0 8.8 12.4 14.0 3.4 1.6 1.2 57.6 1.3 28.9 26.5 0.9 1.2 0.9 7.3	0443 0448 0460 0461 0462 0463 0464 0440 0441 0442 0453 0454 0455 0459 0586 0590	3.3 1.2 1.2 0.8 0.9 1.0 0.8 0.7 32.3 5.4 0.7 1.1 1.1
SAMPLE ID	O+15,115L (B-12) INITIAL SAMPLE ACTIVITY	SAMPLE ID	O+15,125L (B-13) INITIAL SAMPLE ACTIVITY
0456	1.3	1135 1344	1.6
GRID BLOCK:	0+15,135L (B-14)	GRID BLOCK:	0+15,145L (B-15)
SAMPLE ID	INITIAL SAMPLE ACTIVITY		INITIAL SAMPLE ACTIVITY
1338 1339 1075 1077 1079 1080 1084 1085 1091	2.5 3.7 1.4 2.0 6.8 0.4 1.3 1.0 0.8 0.7	1069 1071 1072 1074 1076 1078	2.7 1.7 5.2 1.9 0.8 2.6

SAMPLE ID	O+15,155L (KB-1) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	0+15,165L (KB-2) INITIAL SAMPLE ACTIVITY
0952	3.0	0951	1.1
SAMPLE ID	0+15,175L (KB-3) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	0+25,05L (C-1) INITIAL SAMPLE ACTIVITY
0954 0955	1.0	0175 0174 0175 0182 0183 0184 0185 0513	5.0 2.6 5.0 2.8 2.0 0.6 0.8 1.8
SAMPLE ID	ACTIVITY	SAMPLE ID	ACTIVITY
0215 0202 0215 0216	2.3 9.6 2.3 2.5	0678 1773 1774 1775 1776	1.7 6.3 11.3 6.4 5.4
SAMPLE ID	0+25,35L (C-4) INITIAL SAMPLE ACTIVITY	SAMPLE ID	
0689	8.0	0388 1788 1789 1790 1792 1795 1796 1797	1.0 0.7 0.2 0.3 1.1 1.2 5.4 3.2

SAMPLE ID	0+25,65L (C-7) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	0+25,75L (C-8) INITIAL SAMPLE ACTIVITY
0358 0360 0362 0363 0365 0494 0495 0497 0571 0574 1478 1479 1480 1481 1482 1491 1492 1493 1494 2179	1.0 0.3 92.3 0.4 0.02 0.4 0.7 0.3 0.2 0.3 4.8 4.9 4.5 4.0 64.1 0.8 1.7 1.7 3.0 4.5	0361 0429 0476 0477	1.0 34.5 2.6 33.9 12.0 1.0 0.6 4.8
GRID BLOCK: SAMPLE ID	0+25,85L (C-9) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	0+25,95L (C-10) INITIAL SAMPLE ACTIVITY
0424	2.6	0426	27.1
0425 0427	85.5 55.2	0447 0467	1.1
0434-A	12.7	0449	0.6
0435-B	24.0	0452	0.8
0438 0451	0.5 2.5	0467 0468	3.3 1.6
0472	0.9	0469	2.1
0473	0.9	0470 0471	1.5
0474 0475	1.7 3.2	0695	2.3 2.1
0489	0.6	0697	5.6
0562 0567	27.0 12.7	1350 1351	1.8 0.4
0693	1.6	1351	0.8
0700	9.5	1353	1.2
		1354 1355	0.7 0.8

GRID BLOCK: 0+25,105L (C-11) SAMPLE ID INITIAL SAMPLE ACTIVITY	GRID BLOCK: 0+25,115L (C-12) SAMPLE ID INITIAL SAMPLE ACTIVITY
0445 1.4 0450 1.2 0465 12.2 0466 1.0 0662 10.3 0666 5.9 0667 1.1	0995 1.6 1356 6.3
GRID BLOCK: 0+25,125L (C-13) SAMPLE ID INITIAL SAMPLE ACTIVITY	GRID BLOCK: 0+25,135L (C-14) SAMPLE ID INITIAL SAMPLE ACTIVITY
1346	1107
GRID BLOCK: 0+25,145L (C-15) SAMPLE ID INITIAL SAMPLE ACTIVITY	GRID BLOCK: 0+25,155L (KC-1) SAMPLE ID INITIAL SAMPLE ACTIVITY
1105 1.6	0953 1.4 0956 3.3 1155 1.9
GRID BLOCK: 0+25,165L (KC-2) SAMPLE ID INITIAL SAMPLE ACTIVITY	GRID BLOCK: 0+35,05L (D-1) SAMPLE ID INITIAL SAMPLE ACTIVITY
0997 1.3 0998 1.7 0999 1.8	0196 4.9 0203 4.0 0204 2.6 0207 3.9 0208 4.1 0209 1.9

		GRID BLOCK: SAMPLE ID	0+35,05L (D-1) INITIAL SAMPLE ACTIVITY
		0210 0211 0212 0234 0289 0300 0515	0.3 5.4 18.6 2.9 1.0 2.3
SAMPLE ID	O+35,15L (D-2) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	0+35,25L (D-3) INITIAL SAMPLE ACTIVITY
0205 0206 0213 0214 0232 0287 0288	4.4 4.8 1.4 2.7 1.1 1.2 2.4	1777 1778 1779 1780 1783	2.0 4.8 6.0 5.4 0.4
SAMPLE ID	O+35,35L (D-4) INITIAL SAMPLE ACTIVITY	SAMPLE ID	ACTIVITY
1801	3.3	1803 1804 1805 1806	0.1 0.9 0.8 1.2
SAMPLE ID	INITIAL SAMPLE ACTIVITY	SAMPLE ID	0+35,65L (D-7) INITIAL SAMPLE ACTIVITY
1495 1496 1497 1498 0507 0508	2.8 7.5 6.3 3.2 1.0 0.7	0482 0483 0484 0493 0496 0498 0499 0501 1499	8.2 13.8 163.0 0.8 0.8 0.6 0.8 0.8 2.9

GRID BLOCK: SAMPLE ID	0+35,65L (D-7) INITIAL SAMPLE ACTIVITY
=======================================	
1500	4.3
1501	4.0
1502	3.4
1511	1.8
1512	0.4
1513	0.9
1514	0.6
GRID BLOCK: SAMPLE ID	0+35,85L (D-9) INITIAL SAMPLE ACTIVITY
E==========	
0490	1.3
0491	1.1
0561	26.2

GRID BLOCK: SAMPLE ID	0+35,75L (D-8) INITIAL SAMPLE ACTIVITY
	^ ^
0479	0.9
0480	0.6
0481 0485	3.2 4.5
0486	1.7
0487	0.8
0488	1.3
0492	0.9
0840	7.2
1455	1.0
1456	0.6
1457	1.1
1458	0.5
1515	10.8
1516	3.0
1517	1.5
1518	1.7
1527 1528	0.9 0.3
1526	1.2
1530	0.8
1535	1.3
1536	1.2
1537	0.2
1538	0.9
2098	1.4

SAMPLE ID	ACTIVITY	SAMPLE ID	ACTIVITY
0446	1.4 16.5 9.6	1373	1.2
SAMPLE ID	O+35,115L (D-12) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	INITIAL SAMPLE ACTIVITY
1358 1361 1362 1366 1367 1368 1369 1370	3.8 5.8 2.4 3.1 1.6 1.5	1360	
SAMPLE ID	ACT TTY	SAMPLE ID	INITIAL SAMPLE ACTIVITY
		1364	
SAMPLE ID	ACTIVITY	SAMPLE ID	0+35,165L (KD-2) INITIAL SAMPLE ACTIVITY
0962 0967 0974 0975 0976 0977 0978 0979 0980 0981 0996 1000 1012 1094 1156	2.0 3.8 1.4 6.2 3.8 1.2 0.9 1.6 1.5 1.7 1.0 1.2 2.2	0966 1095	3.0 0.7
	6-D-282		

(2273R)

SAMPLE ID	O+35,175L (KD-3) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	INITIAL ACTIVITY	SAMPLE
1004	2.1	0514 0522 0698 0724	8.4 4.6 6.2 2.3	•
SAMPLE ID	O+45,15L (E-2) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	INITIAL ACTIVITY	SAMPLE
0675 0711 0717 0719 0721	9.4 5.5 5.9 4.8 5.1	0255 0257 0259 0262 0263	4.6 9.7 4.1 0.9 2.8 13.5 3.1 1.4 7.8 5.1 4.2	-
SAMPLE ID	O+45,35L (E-4) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	INITIAL ACTIVITY	SAMPLE
0258 0526 0527 0528 0529 1807 1808 1809 1810	18.6 2.4 3.0 2.4 0.8 5.0 7.9 3.9 8.8	1815 1816 1817 1820	5.4 4.3 5.5 7.4	-

SAMPLE ID	0+45,65L (E-7) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	ACTIVITY
0500 0502 0503 0.9	0.8 1.8 15.5	1503 1504 1505 8.7 1519	15.4 10.0 4.60504
0505 0506 1531 1532 1533 1534 1539 1540 1541 1542 1811 1812	1.1 0.9 20.9 7.4 4.4 12.7 1.1 0.9 0.5 0.9 2.2 10.3 2.1 2.3	1520 1521 1522	1.8 0.9 1.4 0.6
SAMPLE ID	0+45,85L (E-9) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	0+45,95L (E-10) INITIAL SAMPLE ACTIVITY
1459 1466 1467 1468 1469 1507 1508 1509 1510 1523 1524 1525 1526 1566 1567 1624 1625 1626 1627 2100 2101	16.4 4.3 5.5 3.7 0.2 4.0 3.8 6.6 26.2 2.4 0.9 1.2 2.7 11.8 2.6 3.1 12.9 10.3 4.9 5.2 3.8	1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454	1.2 1.0 0.9 1.5 1.6 1.7 1.6 1.7 11.2 11.5 19.9

SAMPLE ID	ACTIVITY	GRID BLOCK: SAMPLE ID	INITIAL SAMPLE ACTIVITY
1164 1168	4.2 1.2	1162 1163 1381 1382 1387 1388 1389	8.5 7.1 1.8 1.6 4.0 4.0 3.7
SAMPLE ID	0+45,125L (E-13) INITIAL SAMPLE ACTIVITY	SAMPLE ID	INITIAL SAMPLE ACTIVITY
1383	1.4 2.4 4.3	1088 1092 1113 1114 1115 1116 1117 1119 1122 1379 1380 1385	3.3 2.7 3.8 3.2 1.6 5.1 3.9 2.0 1.6 1.9 2.3 6.2
SAMPLE ID	ACTIVITY	SAMPLE ID	INITIAL SAMPLE ACTIVITY
1070	3.5	0961 0964 0991 0993 1019 1026 1067 1066 1068	0.8 0.9 1.4 4.0 1.8 1.6 1.1 5.2 3.8
SAMPLE ID	0+45,165L (KE-2) INITIAL SAMPLE ACTIVITY		0+45,175L (KE-3) INITIAL SAMPLE ACTIVITY
1007 1065	0.9 1.5	1003	1.3

GRID BLOCK: 0+55,0 SAMPLE ID INITIA ACTIVI	AL SAMPLÉ TY	GRID BLOCK: SAMPLE ID	INITIAL ACTIVITY	SAMPLE
0256 19.2 0267 4.4 0270 1.4 0271 3.4 0272 3.5 0273 2.7 0274 4.0 0282 2.1 0517 2.4 0520 4.8 0532 3.9 0652 1.2 0730 4.3		0276 0277 0281 0731	3.2 12.9 5.4 1.1	=
GRID BLOCK: 0+55,2 SAMPLE ID INITIA ACTIVI	IL SAMPLE TY	GRID BLOCK: SAMPLE ID	INITIAL ACTIVITY	(F-4) SAMPLE
0251 3.4 0252 4.1 0253 18.2 0254 8.2 0265 5.2 0266 1.0 0542 2.6 0651 1.0 0657 1.1 0658 1.1 0661 1.1 0739 4.0 0740 4.7		0537 0539 0540 0541 0544 0648 1836 1837 1838 1839 1840	3.3 2.5 2.9 3.7 1.1 1.5 35.6 7.1 4.3 5.2 7.9	-
ACTIVI	L SAMPLÉ	GRID BLOCK: SAMPLE ID	INITIAL ACTIVITY	SAMPLE
1835 44.4 1843 6.2	======	1844	6.5	:

GRID BLOCK: 0+55,85L (F-9) SAMPLE ID INITIAL SAMPLE ACTIVITY	GRID BLOCK: 0+55,95L (F-10) SAMPLE ID INITIAL SAMPLE ACTIVITY
1470 0.1 1471 0.6 1472 1.2 1473 0.6	1460 2.2 2234 2.7 2235 2.0
GRID BLOCK: 0+55,105L (F-11) SAMPLE ID INITIAL SAMPLE ACTIVITY	SAMPLE ID INITIAL SAMPLE ACTIVITY
1167 4.4 1170 1.2 1171 1.0	1390 1.9
GRID BLOCK: 0+55,125L (F-13) SAMPLE ID INITIAL SAMPLE ACTIVITY	SAMPLE ID INITIAL SAMPLE ACTIVITY
1083 6.4 1144 0.9 1377 1.0 1389 1.4 1391 3.5 1408 3.3 1409 2.5 1410 4.3 14 4.6 14.2 1.4 1413 1.8 1414 2.0	1082 3.0 1139 30.7 1140 5.8 1143 1.5 1157 3.4 1158 2.3 1702 19.1
GRID BLOCK: 0+55,145L (F-15) SAMPLE ID INITIAL SAMPLE ACTIVITY	GRID BLOCK: 0+55,155L (KF-1) SAMPLE ID INITIAL SAMPLE ACTIVITY
0992 4.1 1118 1.6 1120 2.0 1142 3.6	1032 1.2

SAMPLE ID	0+65,05L (G-1) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	0+65,15L (G-2) INITIAL SAMPLE ACTIVITY
0268 0269 0516 0518 0521 0531 0533 0736	4.4 2.3 3.1 2.9 1.0 5.9 3.4 2.8	0275 0278 0530 0535 0548 0549 0550 0551 0552 0741	2.0 1.7 1.2 1.6 2.1 1.9 1.4 1.3 5.4 1.0
SAMPLE ID	0+65,25L (G-3) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	ACTIVITY
0538 0543 0553 0555 0557 0558 0559	3.9 1.8 4.4 6.2 1.0 1.4	0534 0538	2.5 3.9
SAMPLE ID	O+65,45L (G-5) INITIAL SAMPLE ACTIVITY	SAMPLE ID	ACTIVITY
0554 0556	2.8 2.8	1557 1558 1559 1560 1562 1563 1564 1565	1.9 0.7 1.8 1.0 13.3 5.9 7.4 6.8

GRID BLOCK: 0+65,75L (G-8) SAMPLE ID INITIAL SAMPLE ACTIVITY	GRID BLOCK: 0+65,85L (G-9) SAMPLE ID INITIAL SAMPLE ACTIVITY
1547 7.5 1548 4.5 1549 5.9 1550 6.8	1543 5.9 1544 5.9 1545 3.5 1546 4.5 1568 2.6 1569 2.5 1570 2.3 1571 1.7
GRID BLOCK: 0+65,95L (G-10) SAMPLE ID INITIAL SAMPLE ACTIVITY	GRID BLOCK: 0+65,105L (G-11) SAMPLE ID INITIAL SAMPLE ACTIVITY
1487 0.5 1488 1.7 1489 1.0 1490 1.8	1165 1.4 1166 1.4 1172 2.5 1461 2.2 1462 0.8 1463 1.0 1464 0.4
GRID BLOCK: 0+65,115L (G-12) SAMPLE ID INITIAL SAMPLE ACTIVITY	ACTIVITY
1393 8.1 1394 1.4 1395 1.1	1153 2.2 1392 8.6 1404 1.5 1405 2.3 1406 2.4 1407 2.6
GRID BLOCK: 0+65,135L (G-14) SAMPLE ID INITIAL SAMPLE ACTIVITY	GRID BLOCK: 0+65,155L (KG-1) SAMPLE ID INITIAL SAMPLE ACTIVITY
1087 3.3 1121 3.4 1141 7.7 1145 1.3 1146 1.0 1147 1.8	1020 2.2 1034 1.8

SAMPLE ID	0+75,05L (H-1) INITIAL SAMPLE ACTIVITY		0+75,15L (H-2) INITIAL SAMPLE ACTIVITY
	2.8 0.9 -0.1 2.1	0696	2.0
SAMPLE ID	O+75,25L (H-3) INITIAL SAMPLE ACTIVITY		0+75,35L (H-4) INITIAL SAMPLE ACTIVITY
0380		1858 1875 1887	1.2 0.7 1.1
SAMPLE ID	O+75,45L (H-5) INITIAL SAMPLE ACTIVITY	SAMPLE ID	0+75,55L (H-6) INITIAL SAMPLE ACTIVITY
1854	11.3 6.9 9.2 6.7 2.1 2.2	1891	1.5
SAMPLE ID	O+75,65L (H-7) INITIAL SAMPLE ACTIVITY	SAMPLE ID	0+75,75L (H-8) INITIAL SAMPLE ACTIVITY
2104	4.1	1577 1578 1579 1580 1581 1582 1583 1584 1585 2056-A	6.3 25.8 18.8 15.7 35.8 2.0 11.6 2.8 1.6 5.0

SAMPLE ID	0+75,85L (H-9) INITIAL SAMPLE ACTIVITY	SAMPLE ID	0+75,105L (H-11) INITIAL SAMPLE ACTIVITY
1572 1573 1574 1575		1465	1.1
SAMPLE ID	ACTIVITY	GRID BLOCK: SAMPLE ID	INITIAL SAMPLE ACTIVITY
1396 1397 1398 1399	1.4 1.4 1.6 2.1	1151 1152 1154 1400 1401 1402 1403 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424	3.2 2.2 3.4 1.8 1.8 2.0 1.3 1.3 1.9 2.0 0.8 2.5 1.7 0.4 2.3 1.2
SAMPLE ID	ACTIVITY	SAMPLE ID	INITIAL SAMPLE ACTIVITY
1123 1124 1125 1126 1130 1148 1149		1029	1.5

GRID BLOCK: 0+85,05L (J-1) SAMPLE ID INITIAL SAMPLE ACTIVITY	GRID BLOCK: 0+85,15L (J-2) SAMPLE ID INITIAL SAMPLE ACTIVITY
0756 5.4 2977 3.6 2978 7.8 2982 4.6 2983 6.4 2984 1.7	0626 1.2 0776 5.8
GRID BLOCK: 0+85,25L (J-3) SAMPLE ID INITIAL SAMPLE ACTIVITY	GRID BLOCK: 0+85,35L (J-4) SAMPLE ID INITIAL SAMPLE ACTIVITY
0635 3.4 0637 2.4 0673 22.9	0631 19.1 2365 1.6
GRID BLOCK: 0+85,65L (J-7) SAMPLE ID INITIAL SAMPLE ACTIVITY	GRID BLOCK: 0+85,95L (J-10) SAMPLE ID NITIAL SAMPLE ACTIVITY
1311 7.7 1598 9.9 1599 4.0 1600 3.2 1601 8.2 1602 2.3 1603 6.6 1604 4.1 1605 2.6	1483 1.4 1484 1.0 1485 0.5 1486 2.0
GRID BLOCK: 0+85,125L (J-13) SAMPLE ID INITIAL SAMPLE ACTIVITY	GRID BLOCK: 0+85,135L (J-14) SAMPLE ID INITIAL SAMPLE ACTIVITY
1129 1.4 1161 8.6 1425 1.3 1426 4.3	1127 0.6 1128 2.1 1132 1.1 1133 1.5
GRID BLOCK: 0+85,165L (KJ-2) SAMPLE ID INITIAL SAMPLE ACTIVITY	SAMPLE ID INITIAL SAMPLE ACTIVITY
1024 2.5	0788 7.0

SAMPLE ID	O+95,25L (K-3) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	0+95,35L (K-4) INITIAL SAMPLE ACTIVITY
0634 0638 0672	2.3 2.4 5.8	0630 0633 0674 1897 1898	7.8 1.9 30.9 1.4 0.8
SAMPLE ID	0+95,55L (K-6) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	0+95,65L (K-7) INITIAL SAMPLE ACTIVITY
1308 1309	6.4 1.1	1586 1587 1588 1589 1895	1.0 2.3 0.6 0.9 1.6
SAMPLE ID	0+95,75L (K-8) INITIAL SAMPLE ACTIVITY	SAMPLE ID	0+95,85L (K-9) INITIAL SAMPLE ACTIVITY
1590 1591 1592 1593 1594 1595 1596 1597 1606 1607 1608 1609 1611 1612 1613 1614	89.7 120.6 124.2 68.8 1.6 574.5 560.1 106.1 114.4 166.9 205.4 313.7 0.03 0.4 0.2	1278 1279	1.6

SAMPLE ID	0+95,75L (K-8) INITIAL SAMPLE ACTIVITY		
1616 1617 1618 1619 1620 1621 1622 1623	0.4 0.17 2.6 2.2 11.2 9.0 9.8 8.8		
SAMPLE ID	ACTIVITY	SAMPLE ID	0+95,125L (K-13) INITIAL SAMPLE ACTIVITY
1474 1475 1476 1477	0.6 1.0 0.8 0.4	1150 1427 1428	2.8 5.4 1.4
SAMPLE ID	ACTIVITY	SAMPLE ID	1+05,05L (L-1) INITIAL SAMPLE ACTIVITY
1131	0.7	0654 0671 2091 2093 2096	1.7 4.8 21.5 4.5 3.5
SAMPLE ID	ACTIVITY	SAMPLE ID	1+05,25L (L-3) INITIAL SAMPLE ACTIVITY
0605	3.1	0639	7.9
GRID BLOCK: SAMPLE ID	1+05,45L (L-5) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	1+05,55L (L-6) INITIAL SAMPLE ACTIVITY
1901 1902 1903 1904 1910	3.0 1.7 5.6 8.5 2.7	1296 1307 1907	2.5 0.4 5.7

SAMPLE ID	1+05,65L (L-7) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	ACTIVITY
1280 1281 1293 1295 1305 1306 1654 1655 1656	1.2 2.3 2.5 1.2 5.6 2.9 0.03 1.0 0.3	1658 1659 1660 1661 1690 1691 1692 1693	13.4 8.0 8.2 16.2 17.6 37.7 20.6
SAMPLE ID	1+05,85L (L-9) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	ACTIVITY
0881 1636 1637 1638 1639 1640 1641 1642	18.0 7.8 2.7 2.4 5.7 17.5 9.7 24.4	1429 1430 1431 1432	2.0 1.1 1.0 1.8
SAMPLE ID	ACTIVITY	SAMPLE ID	ACTIV1TY
1433 1434 1437 1438	1.4 1.8 0.8 1.7	1137	0.7
GRID BLOCK: SAMPLE ID	1+05,155L (KL-1) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	1+15,05L (M-1) INITIAL SAMPLE ACTIVITY
1136	2.4	0774 0775 2455 2456	7.5 7.8 3.5 2.0

SAMPLE ID	1+15,15L (M-2) INITIAL SAMPLE ACTIVITY		INITIAL ACTIVITY	
0595 0609 0610 0668 0670	2.2 2.4 4.5 7.8 3.2	0664 0665 0822	2.3 6.0 2.8	=
GRID BLOCK: SAMPLE ID	1+15,35L (M-4) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	INITIAL ACTIVITY	
0599 0600 0601 0606 0607 0608 0611 0612 0663	5.8 11.1 10.6 1.0 1.2 1.7 2.4 1.1 3.20669	1917 1918 1970 1971 2195	17.1 5.6 1.2 2.1 1.5	-
SAMPLE ID	1+15,55L (M-6) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	1+15,65L INITIAL ACTIVITY	(M-7) SAMPLE
==========				
0786 1304 1766 1767 1768 1769 1310	1.1 4.2 2.0 1.1 1.6 1.0 2.9	1284 1294 1302 1694 1695 1696 1697	8.9 1.3 6.1 4.4 2.9 2.0 4.7	:
1304 1766 1767 1768 1769 1310 1800	1.1 4.2 2.0 1.1 1.6 1.0 2.9	1284 1294 1302 1694 1695 1696	8.9 1.3 6.1 4.4 2.9 2.0 4.7 1+15,85L INITIAL ACTIVITY	ŠAMPLE

SAMPLE ID	1+15,95L (M-10) INITIAL SAMPLE ACTIVITY	SAMPLE ID	1+15,115L (M-12) INITIAL SAMPLE ACTIVITY
0882	7.5	0884	6.2
SAMPLE ID	INITIAL SAMPLE ACTIVITY	SAMPLE ID	1+25,15L (N-2) INITIAL SAMPLE ACTIVITY
1134	2.1	0594	4.8 2.9 4.2 2.5
SAMPLE ID	INITIAL SAMPLE ACTIVITY	SAMPLE ID	1+25,35L (N-4) INITIAL SAMPLE ACTIVITY
	2.0 3.4	0596 0650 0653	1.7 10.6 5.6 6.2 0.6 1.3 2.1
SAMPLE ID	1+25,55L (N-6) INITIAL SAMPLE ACTIVITY	SAMPLE ID	1+25,65L (N-7) INITIAL SAMPLE ACTIVITY
1297 1298 1299	3.4 5.8 2.4 2.9 3.1 3.4	1275 1303	259.5 4.2 2.2 11.8 12.9 15.2 10.9 2.4 0.6 0.6
SAMPLE ID	1+25,75L (N-8) INITIAL SAMPLE ACTIVITY	SAMPLE ID	1+25,85L (N-9) INITIAL SAMPLE ACTIVITY
0889 0892 0896 0902 1274	24.1 2.1 3.8 9.4 3.1	0886 0891	10.7 5.7

SAMPLE ID	1+25,95L (N-10) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	1+25,105L (N-11) INITIAL SAMPLE ACTIVITY
0874	3.6	1555 1556	1.5 1.6
SAMPLE ID	1+25,115L (N-12) INITIAL SAMPLE ACTIVITY		1+25,125L (N-13) INITIAL SAMPLE ACTIVITY
0856 0857 2.2	2.1 3.8 1441	1439 1440 4.0	3.6 5.10865
		1442	4.9
SAMPLE ID	1+25,135L (N-14) INITIAL SAMPLE ACTIVITY	SAMPLE ID	1+35,05L (P-1) INITIAL SAMPLE ACTIVITY
1138	1.0	0768	1.3
GRID BLOCK: SAMPLE ID	1+35,15L (P-2) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	1+35,25L (P-3) INITIAL SAMPLE ACTIVITY
0573 0577 0583 0584 0647 0649	0.9 67.7 2.9 1.8 3.1 4.8	0645 0646	2.4 3.3
GRID BLOCK: SAMPLE ID	1+35,35L (P-4) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	1+35,45L (P-5) INITIAL SAMPLE ACTIVITY
0570 0585 0588 0589 0643 0644 1983 2060	3.3 2.4 2.2 1.8 2.7 3.2 1.8 1.5	1984 1985 1986	1.5 1.2 1.8

SAMPLE ID			1+35,65L (P-7) INITIAL SAMPLE ACTIVITY
1267 1269 1270 1288 1289 1291 1300	3.6 1.8 2.5 1.8 1.2 3.0 5.1	1266 1285 1286 1287 1290 1314 1315 1725 1726 1727 1728 1729 1730	4.4 3.8 5.4 12.4 1.5 4.3 1.4 2.3 1.2 1.2 1.6 1.4 0.8 0.8
SAMPLE ID	ACTIVITY	SAMPLE ID	1+35,95L (P-10) INITIAL SAMPLE ACTIVITY
0878 0887 1312 1316 1635 1628 1629 1630 1631 1632 1633 1634	3.5 9.7 4.4 2.8 1.0 1.3 2.0 1.4 1.7 0.9 0.6 0.4	0875 0880	3.8 3.0
SAMPLE ID	INITIAL SAMPLE ACTIVITY	SAMPLE ID	1+35,115L (P-12) INITIAL SAMPLE ACTIVITY
1553 1554		0862	1.6
SAMPLE ID	1+45,05L (R-1) INITIAL SAMPLE ACTIVITY	SAMPLE ID	1+45,15L (R-2) INITIAL SAMPLE ACTIVITY
0772	2.0 1.4	0575	1.5

中央のようには、日本のようには 日本のようには、日本のとは、日本のとは、日本のとはは、日本のとは、日本のとは、日本のとは、日本のとは、日本のとはは、日本のとはは、日本のとは、日本のとは、日本のとはは、日本のとはは、日本のとはは、日本のとはは

SAMPLE ID	1+45,25L (R-3) INITIAL SAMPLE ACTIVITY	SAMPLE ID	1+45,35L (R-4) INITIAL SAMPLE ACTIVITY
0564 0568 0701 0703	0.9 4.6 4.3 5.9	0569 0572 0576 0578 0581 0705 2059	1.3 1.1 9.8 1.7 1.0 1.3
SAMPLE ID	1+45,45L (R-5) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	1+45,55L (R-6) INITIAL SAMPLE ACTIVITY
1241 1698 0.4	2.5 1.0 0900	0799 0899 177.0	10.2 28.41699
1700 1701 2194	1.0 0.4 0.9	0908 1245 1246 1247 1248 1251 1252 1254 1258 1260 1271	3.1 1.0 1.5 13.7 2.7 1.8 0.6 1.8 0.7 2.3 2.1
SAMPLE ID	ACTIVITY	SAMPLE ID	1+45,75L (R-8) INITIAL SAMPLE ACTIVITY
0898 0906 1240 1242 1243 1244 1249 1250 1253 1255 1257 1257 1261 1262 1264	16.5 2.8 8.2 0.9 7.8 0.5 3.6 5.6 11.5 0.8 1.4 1.1	0888 0901 0905 1239 1265	11.9 6.2 1.4 2.6 3.3

SAMPLE ID	1+45,65L (R-7) INITIAL SAMPLE ACTIVITY		
1268 1273 1703 1704 1705 1706	7.4 2.0 0.2 0.5 0.2		
SAMPLE ID	1+45,85L (R-9) INITIAL SAMPLE ACTIVITY	SAMPLE ID	1+45,95L (R-10) INITIAL SAMPLE ACTIVITY
0877 0885 1551 1552 1561 1576 1610	3.6 7.1 1.1 1.1 4.6 2.0 1.4	0879	1.7
SAMPLE ID	1+45,105L (R-11) INITIAL SAMPLE ACTIVITY	SAMPLE ID	INITIAL SAMPLE ACTIVITY
	1.7	0864	1.3
SAMPLE ID	1+45,155L (KR-1) INITIAL SAMPLE ACTIVITY	SAMPLE ID	INITIAL SAMPLE ACTIVITY
1031	1.6	2412	7.0
SAMPLE ID	1+55,55L (S-6) INITIAL SAMPLE ACTIVITY	SAMPLE ID	1+55,65L (S-7) INITIAL SAMPLE ACTIVITY
0907 1235 1236 1256	5.4 1.8 2.5 1.2	0895 0897 0903 0904 2853 2895 2896 2897 2900 2901 2902	14.5 2.4 1.8 5.3 7.4 3.9 38.2 8.2 1.9 3.3 4.1

SAMPLE ID	1+55,75L (S-8) INITIAL SAMPLE ACTIVITY	SAMPLE ID	ACTIVITY
0869 0883 0894 1237 1238 2851 2854 2855 2856 2857 2858 2859 2873 2874 2875	31.6 10.2 1.5 1.0 1.8 6.7 5.8 1.4 4.6 5.4 0.4 5.7 7.8 9.7 1.2 2.6	0870 0893 2860 2861 2862 2903 2904 2905 2906	2.7 1.6 2.6 9.6 2.0 3.4 0.7 1.1
SAMPLE ID	ACTIVITY	SAMPLE ID	ACTIVITY
2867 2891 2908 2909 2910	2.1 2.3 1.5 1.7 2.1	1036 1046 2357 2898 2899	4.6 4.9 -3.4 3.9 3.0
SAMPLE ID	ACTIVITY	SAMPLE ID	1+55,105L (S-11) INITIAL SAMPLE ACTIVITY
0863 0868 0876 2863	2.7 2.9 2.3 1.5	0858 0859 0867 2870 2871	4.2 2.1 2.4 2.4 2.8

SAMPLE ID I			1+55,125L (S-13) INITIAL SAMPLE ACTIVITY
0860 1 0866 2 0872 1 0873 1 2868 2 2872 0 2886 4 2889 2	.6 .1 .8 .7 .6 .8 .1	2869	2.3 2.1 2.6
SAMPLE ID I	NITIAL SAMPLE CTIVITY	GRID BLOCK: SAMPLE ID	1+55,175L (KS-3) INITIAL SAMPLE ACTIVITY
2358 5 2427 3 2429 4 2433 2 2436 1 2438 3		2359 2413 2415 2416	3.1 2.8 2.4 3.2 1.4 1.0 3.8 6.5 .02
SAMPLE ID I	NITIAL SAMPLE ACTIVITY	SAMPLE ID	1+75,55L (V-6) INITIAL SAMPLE ACTIVITY
	3.0	2168 2169 2170 2171 2172 2181 2182 2183 2184 2185 2186 2187 2188	2.8 2.7 0.6 7.2 2.7 4.7 4.3 11.5 3.8 6.6 2.3 4.2 2.5

SAMPLE ID	1+75,65L (V-7) INITIAL SAMPLE ACTIVITY	SAMPLE ID	1+75,65L (V-7) INITIAL SAMPLE ACTIVITY
1886 1888 1890 1892 1893 1899 1900 2131 2132 2133 2134 2135 2136 2191 2192 2193 2196 2197 2198 2199 1870 1871 1872 1873 1874 1876 1877 1878 1879	0.9 0.9 1.4 1.1 1.5 1.8 4.8 6.3 4.4 0.9 2.2 1.8 1.8 1.9 1.7 0.5	1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1841 1842 1845 1846 1850 1851 1852 1853 1860 1861 1862 1863 1864	0.9 1.1 7.4 1.3 1.0 0.7 0.6 1.0 1.0 0.5 1.5 4.6 3.1 1.0 0.6 1.2 3.8 2.7 5.1 0.3 2.1 1.4 1.8 16.0 2.1 1.7 9.1
SAMPLE ID	1+75,65L (V-7) INITIAL SAMPLE ACTIVITY ====================================	GRID BLOCK: SAMPLE ID 1865 1866	1+75,65L (V-7) INITIAL SAMPLE ACTIVITY 2.5 1.9
1882 1883 1884 1885	3.5 198.0 2.5 13.6	1867-A 1867 1869	1.4 0.9 0.7

SAMPLE ID	ACTIVITY	SAMPLE ID	ACTIVITY
2118 2128 2129 2208 2209 2210 2213	0.7 1.6 0.6 6.7 7.2 0.9 2.9	2114 2117 2130 2159 2160 2177 2178 2219 2220 2221 2222 2223 2248 2249 2255 2256 2263 2264 2297	1.7 1.0 3.6 14.6 7.7 1.1 10.8 27.6 25.8 13.5 5.0 7.1 2.9 3.1 7.0 16.1 5.5 16.2 2.4
SAMPLE ID	1+75,95L (V-10) INITIAL SAMPLE ACTIVITY	SAMPLE ID	ACTIVITY
2097 2099 2102 2103 2108 2111 2112 2113 2115 2116 2155 2156	1.3 1.2 1.4 2.1 2.0 1.3 2.9 9.7 1.6 1.9 4.0 2.9	2094 2095 2105	1.0 1.5 1.7

SAMPLE ID	1+75,115L (V-12) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	1+75,125L (V-13) INITIAL SAMPLE ACTIVITY
2073 2074 2075 2076 2077 2078 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090	1.5 1.3 2.1 2.0 0.4 42.3 1.1 2.6 3.0 2.3 3.1 1.3 4.9 5.4 1.5 1.8 1.3	2062 2063 2064 2254	1.1 1.3 2.2 3.1
SAMPLE ID	1+75,135L (V-14) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	1+75,145L (V-15) INITIAL SAMPLE ACTIVITY
2054 2055 2056 2057 2058 2279 2283	1.0 0.4 0.8 1.6 1.9 11.8 2.4	2048 2049 2050 2051 2052 2053 2274 2282	0.8 1.1 2.1 0.8 1.4 0.2 1.9 2.6
SAMPLE ID	1+75,155L (KV-1) INITIAL SAMPLE ACTIVITY	SAMPLE ID	1+75,165L (KV-2) INITIAL SAMPLE ACTIVITY
2024 2025 2026 2275 2276 2284	7.1 0.5 0.5 4.8 1.2 4.0	2016 2017 2018 2071 2072 2079 2286	0.9 1.1 1.0 6.9 9.8 2.7 2.8

SAMPLE ID	1+75,175L (KV-3) INITIAL SAMPLE ACTIVITY		1+85,55L (W-6) INITIAL SAMPLE ACTIVITY
	20.6 1.9 2.3	2385 2386	1.6 1.5
	1+85,65L (W-7) INITIAL SAMPLE ACTIVITY		1+85,75L (W-8) INITIAL SAMPLE ACTIVITY
2384	0.9	2374	3.0
SAMPLE ID	1+85,85L (W-9) INITIAL SAMPLE ACTIVITY	SAMPLE ID	1+85,105L (W-11) INITIAL SAMPLE ACTIVITY
	4.2 3.8	2366 2378 2379 2381	3.8 2.3 4.9 2.2
SAMPLE ID	1+85,115L (W-12) INITIAL SAMPLE ACTIVITY	SAMPLE ID	1+85,125L (W-13) INITIAL SAMPLE ACTIVITY
2370	3.1 4.7 1.9	2362 2375 2376	2.5 2.3 3.0
SAMPLE ID	1+85,185L (KW-4) INITIAL SAMPLE ACTIVITY	SAMPLE ID	1+85,195L (KW-5) INITIAL SAMPLE ACTIVITY
2005 2008 2009 2014 2015	1.1 2.1 0.9 3.3 1.3	2003 2006 2327	0.9
SAMPLE ID	1+85,205L (JW-1) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	1+85,215L (JW-2) INITIAL SAMPLE ACTIVITY
2004 2007 2163	1.2 1.8 0.9	2002 2323	0.7

SAMPLE ID	1+85,225L (JW-3) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	1+85,235L (JW-4) INITIAL SAMPLE ACTIVITY
1995 1996 1997 1998 1999 2335	0.8 1.2 1.0 1.9 1.6 2.0	1967 1975 1987 1988 1989 1990 1991 1992 1993 1994	1.0 0.3 0.9 0.7 0.7 0.8 0.9 1.7
SAMPLE ID	1+85,245L (HW-1) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	1+85,255L (HW-2) INITIAL SAMPLE ACTIVITY
1957 1958 1959 1964 1968 1969 1972 1976 1977 2340 2341	0.5 0.7 3.5 1.1 0.7 0.8 0.2 1.1 1.1 1.7	1944 1945 1948 1960 1961	0.6 0.5 0.8 87.2 0.6
SAMPLE ID	1+85,265L (HW-3) INITIAL SAMPLE ACTIVITY	SAMPLE ID	INITIAL SAMPLE ACTIVITY
1934 1935 1936 1937 1938 1939 1949 1962	0.5 0.8 0.3 10.5 0.2 2.8 1.0 0.6 1.0	1927 1928 1932 1933	0.6 0.7 0.6 0.6

SAMPLE ID	ACTIVITY	SAMPLE ID	ACTIVITY
1929 2347	1.0 2.3	1905 1906 1908 1909 1913 1914 1915 1916 1919 1920 1923 1924 1925	9.3 4.0 0.9 0.7 0.4 0.8 0.9 1.4 0.6 1.2 0.5 1.1 0.6 2.4
SAMPLE ID	0+5,05R (AA-1) INITIAL SAMPLE ACTIVITY	SAMPLE ID	ACTIVITY
0602 0603	2.1 1.0	0545	3.1
SAMPLE ID	ACTIVITY	SAMPLE ID	ACTIVITY
0625	1.4	0615	15.4
SAMPLE ID	ACTIVITY	SAMPLE ID	ACTIVITY
0613 0614 0619 0620 0621 0622 0623	1.5 2.2 1.9 1.8 1.5 2.6 1.8	0524	128.4

GRID BLOCK: 0-5,05L (CA- SAMPLE ID INITIAL SAME ACTIVITY	PLË SAMPLE ID	0-5,15L (CA-2) INITIAL SAMPLE ACTIVITY
0640 30.8 0641 4.4 0642 1.8 2303 8.8	1770 1772 1798 2217 2218	1.0 0.5 1.2 0.9 1.5
GRID BLOCK: 0-5,25L (CA- SAMPLE ID INITIAL SAME ACTIVITY	PLE SAMPLE ID	0-5,35L (CA-4) INITIAL SAMPLE ACTIVITY
0679 4.1 0680 11.9 0681 2.8 0682 26.0 0683 1.5 0684 26.2 0685 2.8 0690 77.9 0708 1.7 0709 0.9 0710 1.5 0715 2.0 0716 13.1 1771 0.7	0676 0677 0691 0692 0702 0714 0958 1781 1782 1784 1786 1787 2321	1.4 4.1 12.0 7.6 4.3 4.0 5.3 0.3 1.2 7.2 3.3 2.7 10.1 13.8
GRID BLOCK: 0-5,45L (CASAMPLE ID INITIAL SAMPLE ACTIVITY	PLÉ SAMPLE ID	ACTIVITY
0712 4.8 0713 13.7 0718 5.5 0722 5.1 0723 1.8 0750 3.3 0752 3.5 0959 4.2 1785 1.0 2265 8.2 2266 5.4	0725 0727 0732	3.7 4.5 14.1 11.5 4.2 2.4 16.8 2.0

SAMPLE ID	O-5,65L (CA-7) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	0-5,75L (CA-8) INITIAL SAMPLE ACTIVITY
0734 0743 0745 0748 0749 0987 0988 0990	2.9 2.4 5.8 48.4 2.8 2.9 5.0 19.4 2.4 2.2	0746 0747 0986 1023	4.7 2.9 4.0 1.3
GRID BLOCK: SAMPLE ID	O-5,85L (CA-9) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	0-5,95L (CA-10) INITIAL SAMPLE ACTIVITY
0753 0754	3.1 2.4 2.7 3.8	0757 0989 1008 1015 1017 1018 1022 1025 1027	5.5 2.4 2.7 1.7 1.8 1.8 1.0 1.4
SAMPLE ID	0-5,105L (CA-11) INITIAL SAMPLE ACTIVITY	SAMPLE ID	0-5,115L (CA-12) INITIAL SAMPLE ACTIVITY
0926	0.2	1054	3.5
SAMPLE ID	0-5,135L (GA-2) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	0-5,145L (GA-3) INITIAL SAMPLE ACTIVITY
1051 1098 1099 1101	0.6 0.7 0.8 1.2	0946 0957 1052 1053 1056 1058 1064	2.0 6.5 1.6 1.2 3.6 27.6 11.3

SAMPLE ID	0-5,155L (GA-4) INITIAL SAMPLE ACTIVITY	GRID BLOCK: SAMPLE ID	ACTIVITY
0909 0910 0913 0945 0949 1059 1062 1089 1093	7.8 10.4 1.2 1.6 4.3 2.8 3.3 0.9 2.4	0845 0912 0917	2.0 5.0 4.3
SAMPLE ID	ACTIVITY	SAMPLE ID	0-5,185L (GA-7) INITIAL SAMPLE ACTIVITY
0843 0852 0940	4.9 2.0 1.7	0847 0849 0850 0853 0914 0915 0916 0919 0920 0921	1.2 4.1 11.7 1.7 1.3 2.2 1.5 1.0 1.6 3.2 2.7
SAMPLE ID	ACTIVITY	SAMPLE ID	0-15,05L (CB-1) INITIAL SAMPLE ACTIVITY
0924 0925 0927 0929 0931 0932 0942 1319	5.2 1.4 1.0 6.1 3.1 6.4 1.0 6.5 3.7	2306	16.4

ACTIV	AL SAMPLE ITY	SAMPLE ID	O-15,35L (CB-4) INITIAL SAMPLE ACTIVITY
0971 1.8 1799 0.8 2305 3.4	=======	0704 0707	6.4 4.2
ACTIV	AL SAMPLE ITY	SAMPLE ID	0-15,75L (CB-8) INITIAL SAMPLE ACTIVITY
0994 1.5 1009 1.3 1055 22.8 1061 4.5 1063 3.8 1160 4.2		0972	5.6
GRID BLOCK: 0-15, SAMPLE ID INITI ACTIV	AL SAMPLE ITY	SAMPLE ID	ACTIVITY
0968 5.1 0969 5.7 1028 2.3	=======	0982 0984 1042	7.8 1.4 1.9
ACTIV	AL SAMPLE ITY	SAMPLE ID	ACTIVITY
1037 1.5 1047 3.0		1053	0.8
ACTIV	AL SAMPLE ITY	SAMPLE ID	0-25,05L (CC-1) INITIAL SAMPLE ACTIVITY
1041 3.6 5.2		2304 2308	1.9
ACTIV	AL SAMPLE ITY	SAMPLE ID	0-25,55L (CC-6) INITIAL SAMPLE ACTIVITY
1791 1.1 2307 2.9	=======	1010	1.9

GRID BLOCK: SAMPLE ID SAMPLE		GRID BLOCK: SAMPLE ID	0-25,95L (CC-10) INITIAL
=========	ACTIVITY	==========	ACTIVITY
1013		0970 0973 0985 1038 1040 1044 1045 1057 1169	3.1 3.3 17.2 3.7 4.5 5.6 4.2 3.8 1.7
SAMPLE ID	0-25,105L (CC-11) INITIAL SAMPLE ACTIVITY	SAMPLE ID	ACTIVITY
	4.0 2.5	1043	5.5
SAMPLE ID	ACTIVITY	SAMPLE ID	0-35,45L (CD-5) INITIAL SAMPLE ACTIVITY
2348	2.1	2271 2272 2273 2277 2278	8.5 7.5 7.4 4.9 12.6
SAMPLE ID	0-35,55L (CD-6) INITIAL SAMPLE ACTIVITY	SAMPLE ID	0-45,05L (CE-1) INITIAL SAMPLE ACTIVITY
	14.4 8.5	2393 2394	180.4 1.4

APPENDIX 6-E

FINAL (VERIFICATION) SOIL SAMPLE ACTIVITY BY GAMMA SPECTROSCOPY

GENERAL

Shown below is a legend of the sample identification system employed of the verification sample collected.

NOTE: Final Ra-226 results denoted by a dash (-) were less than minimum detectable activity.

(2272R)

SAMPLE ID	LOCATION	FINAL Ra-226	AVERAGE PER GRID
LD-SV-0217-A-0+05-005-L	A-01	4.4	
LD-SV-0218-A-0+05-005-L	A-01	5.0	4.7
LD-SV-0239-A-0+05-015-L	A-02	2.9	0.0
LD-SV-0240-A-0+05-015-L LD-SV-0249-A-0+05-025-L	A-02 A-03	2.7 3.5	2.8
LD-SV-0250-A-0+05-025-L	A-03	.7	2.1
LD-SV-0343-A-0+05-035-L	A-04	1.3	
LD-SV-0344-A-0+05-035-L	A-64	1.3	1.3
LD-SV-0405-A-0+05-045-L	A-05	5.3	
LD-SV-0404-A-0+05-045-L LD-SV-2793-A-0+05-055-L	A-05 A-06	4.1 3.7	4.7
LD-SV-2794-A-0+05-055-L	A-06	3.7	3.5
LD-SV-0832-A-0+05-065-L	A-07	2.6	0.0
LD-SV-0831-A-0+05-065-L	A-07	3.2	2.9
LD-SV-2821-A-0+05-075-L	A-08	2.2	
LD-SV-2822-A-0+05-075-L LD-SV-0836-A-0+05-085-L	A-08	3.2	2.7
LD-SV-0835-A-0+05-085-L	A-09 A-09	4.3 3.6	4.0
LD-SV-0833-A-0+05-095-L	A-10	3.8	4.0
LD-SV-0834-A-0+05-095-L	A-10	4.1	4.0
LD-SV-1717-A-0+05-105-L	A-11	3.0	
LD-SV-1718-A-0+05-105-L	A-11	3.2	3.1
LD-SV-1756-A-0+05-115-L LD-SV-1755-A-0+05-115-L	A-12 A-12	2.1	2 2
LD-SV-1667-A-0+05-125-L	A-12 A-13	2.5 1.6	2.3
LD-SV-1666-A-0+05-125-L	A-13	2.2	1.9
LD-SV-1764-A-0+05-135-L	A-14	2.3	
LD-SV-1763-A-0+05-135-L	A-14	3.3	2.8
LD-SV-1685-A-0+05-145-L	A-15	2.6	
LD-SV-1684-A-0+05-145-L LD-SV-0219-B-0+15-005-L	A-15 B-01	2.6 4.2	2.6
LD-SV-0220-B-0+15-005-L	B-01	3.9	4.1
LD-SV-0241-B-0+15-015-L	B-02	5.4	7.1
LD-SV-0242-B-0+15-015-L	B-02	4.0	4.7
LD-SV-0245-B-0+15-025-L	B-03	3.2	
LD-SV-0246-B-0+15-025-L	B-03	2.7	3.0
LD-SV-2756-B-0+15-035-L LD-SV-2755-B-0+15-035-L	B-04 B-04	4.4 4.7	16
LD-SV-2784-B-0+15-045-L	B-04 B-05	3.4	4.6
LD-SV-2783-B-0+15-045-L	B-05	2.0	2.7
LD-SV-2465-B-0+15-055-L	B-06	3.4	
LD-SV-2466-B-0+15-055-L	B-06	3.2	3.3
LD-SV-2790-B-0+15-065-L	B-07	2.7	^ ^
LD-SV-2789-B-0+15-065-L LD-SV-2832-B-0+15-075-L	B-07 B-08	2.0 3.0	2.3
LD-SV-2832-B-0+15-075-L	B-08	4.0	3.5
LD-SV-2788-B-0+15-085-L	B-09	1.8	3.3
LD-SV-2787-B-0+15-085-L	B-09	2.0	1.9

SAMPLE ID	LOCATION	FINAL Ra-226	AVERAGE PER GRID
LD-SV-2231-B-0+15-095-L	B-10	2.1	2.3
LD-SV-2230-B-0+15-095-L	B-10	2.5	
LD-SV-1722-B-0+15-105-L	B-11	3.6	3.1
LD-SV-1721-B-0+15-105-L	B-11	2.6	
LD-SV-1739-B-0+15-115-L	B-12	3.1	2.8
LD-SV-1740-B-0+15-115-L	B-12	2.5	
LD-SV-1679-B-0+15-125-L LD-SV-1679-B-0+15-125-L	B-13 B-13 B-14	2.2 2.4 1.3	2.3
LD-SV-1762-B-0+15-135-L LD-SV-1761-B-0+15-135-L LD-SV-1672-B-0+15-145-L	B-14 B-15	1.3 1.7 2.2	1.5
LD-SV-1673-B-0+15-145-L LD-SV-0244-C-0+25-005-L	B-15 C-01	2.1	2.2
LD-SV-0243-C-0+25-005-L	C-01	2.4	2.4
LD-SV-0246-C-0+25-015-L	C-02	3.2	
LD-SV-0247-C-0+25-015-L	C-02	3.7	3.5
LD-SV-2673-C-0+25-025-L	C-03	3.2	
LD-SV-2674-C-0+25-025-L	C-03	2.2	2.7
LD-SV-2746-C-0+25-035-L	C-04	2.8	
LD-SV-2745-C-0+25-035-L	C-04	2.7	2.7
LD-SV-2767-C-0+25-045-L	C-05	2.7	
LD-SV-2768-C-0+25-045-L LD-SV-2798-C-0+25-055-L LD-SV-2797-C-0+25-055-L	C-05 C-06 C-06	2.2 2.0 3.0	2.5 2.5
LD-SV-2837-C-0+25-065-L	C-07	1.6	1.5
LD-SV-2838-C-0+25-065-L	C-07	1.7	
LD-SV-2819-C-0+25-075-L	C-08	1.6	1.7
LD-SV-2820-C-0+25-075-L	C-08	1.8	
LD-SV-2796-C-0+25-085-L	C-09	1.0	1.1
LD-SV-2795-C-0+25-085-L	C-09	1.2	
LD-SV-0565-C-0+25-095-L LD-SV-0566-C-0+25-095-L	C-10 C-10	1.1	1.4
LD-SV-1735-C-0+25-105-L	C-11	2.3	2.6
LD-SV-1736-C-0+25-105-L	C-11	2.9	
LD-SV-1724-C-0+25-115-L	C-12	2.0	
LD-SV-1724-C-0+25-115-L LD-SV-1723-C-0+25-115-L LD-SV-1688-C-0+25-125-L	C-12 C-13	2.4 4.2	2.2
LD-SV-1689-C-0+25-125-L	C-13	3.6	3.9
LD-SV-1707-C-0+25-135-L	C-14	1.2	
LD-SV-1708-C-0+25-135-L	C-14	1.3	1.3
LD-SV-1751-C-0+25-145-L	C-15	2.3	
LD-SV-1752-C-0+25-145-L	C-15	2.0	2.2
LD-SV-0299-D-0+35-005-L	D-01	3.8	
LD-SV-0300-D-0+35-005-L LD-SV-0279-D-0+35-015-L	D-01 D-02	3.2	3.8
LD-SV-0280-D-0+35-015-L	D-02	2.3	2.7

SAMPLE ID	LOCATION	FINAL Ra-226	AVERAGE PER GRID
LD-SV-2681-D-0+35-025-L	D-03	3.3	2.3
LD-SV-2682-D-0+35-025-L	D-03	1.4	
LD-SV-2779-D-0+35-035-L	D-04	2.0	2.5
LD-SV-2780-D-0+35-035-L	D-04	2.9	
LD-SV-2765-D-0+35-045-L	D-05 D-05	1.6 1.7	1.6
LD-SV-2766-D-0+35-045-L LD-SV-2812-D-0+35-055-L	D-06	2.2	
LD-SV-2811-D-0+35-055-L	D-06	1.4	1.8
LD-SV-2844-D-0+35-065-L	D-07	2.8	
LD-SV-2843-D-0+35-065-L	D-07	3.7	3.2
LD-SV-2825-D-0+35-075-L	D-08	2.7	3.0
LD-SV-2826-D-0+35-075-L	D-08	3.2	
LD-SV-2772-D-0+35-085-L	D-09	5.7	4.8
LD-SV-2771-D-0+35-085-L	D-09	6.4	
LD-SV-2228-D-0+35-095-L	D-10 D-10	3.3 2.9	
LD-SV-2229-D-0+35-095-L LD-SV-1757-D-0+35-105-L	D-11	3.4	3.2
LD-SV-1758-D-0+35-105-L	D-11	2.3	2.2
LD-SV-1676-D-0+35-115-L	D-12	2.1	
LD-SV-1677-D-0+35-115-L	D-12	1.8	2.2
LD-SV-1670-D-0+35-125-L	D-13	2.7	
LD-SV-1671-D-0+35-125-L	D-13	2.5	.2.5
LD-SV-1737-D-0+35-135-L	D-14	2.4	3.7
LD-SV-1738-D-0+35-135-L	D-14	2.7	
LD-SV-1674-D-0+35-145-L	D-15	4.6	4.4
LD-SV-1675-D-0+35-145-L	D-15	4.4	
LD-SV-0809-E-0+45-005-L	E-01	2.9	
LD-SV-0810-E-0+45-005-L	E-01	2.5	2.7
LD-SV-0811-E-0+45-015-L	E-02	4.1	
LD-SV-0812-E-0+45-015-L	E-02	4.8	4.4
LD-SV-2686-E-0+45-025-L	E-03	3.4	
LD-SV-2685-E-0+45-025-L	E-03	3.4	3.4
LD-SV-2779-E-0+45-035-L	E-04	1.2	1.6
LD-SV-2777-E-0+45-035-L	E-04	2.0	
LD-SV-2791-E-0+45-045-L LD-SV-2792-E-0+45-045-L	E-05 E-05	2.4	1.9
LD-SV-2809-E-0+45-055-L	E-06	1.4	
LD-SV-2810-E-0+45-055-L	E-06	.8	1.1
LD-SV-2836-E-0+45-065-L	E-07	3.6	
LD-SV-2835-E-0+45-065-L	E-07	4.8	4.2
LD-SV-2834-E-0+45-075-L	E-08	3.4	
LD-SV-2833-E-0+45-075-L	E-08	4.4	3.9
LD-SV-2773-E-0+45-085-L	E-09	1.5	1.5
LD-SV-2774-E-0+45-085-L	E-09	1.6	
LD-SV-2232-E-0+45-095-L	E-10	.9	1.5
LD-SV-2233-E-0+45-095-L	E-10	2.1	
LD-SV-1734-E-0+45-105-L	E-11	3.9	
LD-SV-1733-E-0+45-105-L	E-11	4.0	4.0

SAMPLE ID	LOCATION	FINAL Ra-226	AVERAGE PER GRID
LD-SV-1749-E-0+45-115-L LD-SV-1750-E-0+45-125-L LD-SV-1664-E-0+45-125-L LD-SV-1665-E-0+45-125-L LD-SV-1720-E-0+45-135-L LD-SV-1719-E-0+45-135-L LD-SV-0803-F-0+55-005-L LD-SV-0804-F-0+55-015-L LD-SV-2467-F-0+55-015-L LD-SV-2468-F-0+55-015-L LD-SV-2752-F-0+55-035-L LD-SV-2751-F-0+55-035-L LD-SV-2776-F-0+55-035-L LD-SV-2776-F-0+55-055-L LD-SV-2776-F-0+55-055-L LD-SV-2776-F-0+55-055-L LD-SV-2845-F-0+55-055-L LD-SV-2846-F-0+55-055-L LD-SV-2846-F-0+55-055-L LD-SV-2846-F-0+55-055-L LD-SV-2846-F-0+55-055-L LD-SV-2636-F-0+55-065-L LD-SV-2636-F-0+55-095-L LD-SV-2636-F-0+55-095-L LD-SV-2671-F-0+55-105-L LD-SV-1668-F-0+55-115-L LD-SV-1668-F-0+55-125-L LD-SV-1668-F-0+55-125-L LD-SV-1681-F-0+55-125-L LD-SV-1681-F-0+55-135-L LD-SV-1682-F-0+55-145-L LD-SV-0762-G-0+65-015-L LD-SV-0763-G-0+65-015-L LD-SV-0763-G-0+65-025-L LD-SV-2759-G-0+65-035-L LD-SV-2759-G-0+65-035-L LD-SV-2759-G-0+65-035-L LD-SV-2760-G-0+65-035-L LD-SV-2760-G-0+65-035-L LD-SV-2760-G-0+65-035-L LD-SV-2760-G-0+65-035-L LD-SV-2760-G-0+65-035-L	E-12 E-13 E-14 E-14 F-01 F-02 F-03 F-04 F-05 F-06 F-07 F-08 F-09 F-10 F-11 F-12 F-13 F-14 F-15 G-02 G-03 G-04	Ra-226 3.1 3.85.46.70.697.025.0028.07.923.4.21.22.5.826.838.8999.4.88.063.70.0028.06.37.002.0028.00000000000000000000000000000	PER GRID 3.2 1.1 2.5 2.3 3.2 4.3 1.9 2.0 3.0 2.8 5.1 1.3 1.7 2.9 2.0 2.8 1.9 2.7 2.8 3.3 2.0
LD-SV-2770-G-0+65-045-L LD-SV-2769-G-0+65-045-I LD-SV-2802-G-0+65-055-L	G-04 G-05 G-05 G-06	2.2 1.6 1.3 2.3	2.1 1.4

SAMPLE ID	LOCATION	FINAL A Ra-226	VERAGE PER GRID
LD-SV-2801-G-0+65-055-L	G-06	3.4	2.8
LD-SV-2842-G-0+65-065-L	G-07	3.1	2.0
LD-SV-2841-G-0+65-065-L	G-07	3.3	3.2
LD-SV-2817-G-0+65-075-L LD-SV-2818-G-0+65-075-L	G-08	1.5	0.7
LD-SV-2242-G-0+65-085-L	G-08 G-09	4.0 2.2	2.7
LD-SV-2243-G-0+65-085-L	G-09	1.1	1.6
LD-SV-2586-G-0+65-095-L	G-10	2.0	1.0
LD-SV-2258-G-0+65-095-L	G-10	1.1	1.6
LD-SV-2555-G-0+65-105-L	G-11	1.9	
LD-SV-2556-G-0+65-105-L	G-11	1.1	1.5
LD-SV-2667-G-0+65-115-L LD-SV-2668-G-0+65-115-L	G-12 G-12	.7 1.2	0.0
LD-SV-1710-G-0+65-125-L	G-12 G-13	1.6	0.9
LD-SV-1709-G-0+65-125-L	G-13	1.9	1.8
LD-SV-1687-G-0+65-135-L	G-14	3.1	1.0
LD-SV-1688-G-0+65-135-L	G-14	4.1	3.6
LD-SV-1754-G-0+65-145-L	G-15	3.8	
LD-SV-1753-G-0+65-145-L LD-SV-0771-H-0+75-005-L	G-15	4.0	3.9
LD-SV-0770-H-0+75-005-L	H-01 H-01	3.1 3.2	2 2
LD-SV-0761-H-0+75-015-L	H-02	2.3	3.2
LD-SV-0760-H-0+75-015-L	H-02	3,2	2.7
LD-SV-0738-H-0+75-025-L	H-03	2.3	
LD-SV-0737-H-0+75-025-L	H-03	1.8	2.0
LD-SV-2757-H-0+75-035-L	H-04	2.2	
LD-SV-2758-H-0+75-035-L LD-SV-2781-H-0+75-045-L	H-04	1.6	1.9
LD-SV-2782-H-0+75-045-L	H-05 H-05	1.9 1.8	1.0
LD-SV-2814-H-0+75-055-L	H-05	3.8	1.9
LD-SV-2813-H-0+75-055-L	H-06	.8	2.3
LD-SV-2839-H-0+75-065-L	H-07	2.2	2.0
LD-SV-2840-H-0+75-065-L	H-07	2.7	2.5
LD-SV-2828-H-0+75-075-L	H-08	2.5	
LD-SV-2827-H-0+75-075-L	H-08	3.6	3.0
LD-SV-2227-H-0+75-085-L LD-SV-2226-H-0+75-085-L	H-09 H-09	1.4	1.0
LD-SV-2570-H-0+75-095-L	н-09 Н-10	.6 3.4	1.0
LD-SV-2569-H-0+75-095-L	H-10	1.2	2.3
LD-SV-2577-H-0+75-105-L	H-11	1.3	2.3
LD-SV-2578-H-0+75-105-L	H-11	1.6	1.5
LD-SV-2676-H-0+75-115-L	H-12	.7	
LD-SV-2675-H-0+75-115-L	H-12	.7	0.7
LD-SV-2474-H-0+75-125-L	H-13	1.6	
LD-SV-2473-H-0+75-125-L LD-SV-2475-H-0+75-135-L	H-13 H-14	1.0	1.3
LD-SV-2476-H-0+75-135-L	н-14 Н-14	1.9 3.4	2.7

SAMPLE ID	LOCATION	FINAL Ra-226	
LD-SV-1711-H-0+75-145-L LD-SV-1712-H-0+75-145-L LD-SV-0755-J-0+85-005-L		3.6 3.2	3.4
LD-SV-0756-J-0+85-005-L	J-01	2.4 5.4	3.9
LD-SV-0759-J-0+85-015-L LD-SV-0777-J-0+85-015-L LD-SV-0778-J-0+85-025-L	J-02 J-02	2.4 4.9	3.7
LD-SV-0779-J-0+85-025-L	J-03	4.1	4.0
LD-SV-0779-J-0+85-025-L	J-03	3.8	
LD-SV-2483-J-0+85-035-L	J-04	2.6	
LD-SV-2484-J-0+85-035-L	J-04	4.3	3.5
LD-SV-2763-J-0+85-045-L	J-05	1.6	
LD-SV-2764-J-0+85-045-L	J-05	3.6	2.6
LD-SV-2803-J-0+85-055-L	J-06	1.2	
LD-SV-2804-J-0+85-055-L LD-SV-2849-J-0+85-065-L	J-06 J-07	1.8	1.5
LD-SV-2850-J-0+85-065-L LD-SV-2823-J-0+85-075-L	J-07 J-08	1.5	1.5
LD-SV-2824-J-0+85-075-L LD-SV-2224-J-0+85-085-L	J-08 J-09	1.5	1.5
LD-SV-2225-J-0+85-085-L LD-SV-2557-J-0+85-095-L	J-09 J-10	.03	1.1
LD-SV-2558-J-0+85-095-L	J-10	.8	1.0
LD-SV-2671-J-0+85-105-L	J-11	1.0	
LD-SV-2672-J-0+85-105-L	J-11	.9	0.9
LD-SV-2589-J-0+85-115-L	J-12	.5	
LD-SV-2590-J-0+85-115-L	J-12	1.7	1.1
LD-SV-2477-J-0+85-125-L	J-13	1.4	
LD-SV-2478-J-0+85-125-L	J-13	2.4	1.9
LD-SV-2479-J-0+85-135-L	J-14	1.4	
LD-SV-2480-J-0+85-135-L	J-14	1.9	1.6
LD-SV-2481-J-0+85-145-L	J-15	3.6	
LD-SV-2482-J-0+85-145-L	J-15	=	3.6
LD-SV-0782-K-0+95-005-L	K-01	4.8	
LD-SV-0783-K-0+95-005-L LD-SV-2679-K-0+95-015-L	K-02	5.6 1.9	5.2
LD-SV-2680-K-0+95-015-L	K-02	3.8	2.8
LD-SV-0789-K-0+95-025-L	K-03	5.5	
LD-SV-0790-K-0+95-025-L	K-03	4.7	5.1
LD-SV-0784-K-0+95-035-L	K-04	3.3	
LD-SV-0785-K-0+95-035-L	K-04	3.3	3.3
LD-SV-2753-K-0+95-045-L	K-05	3.7	
LD-SV-2754-K-0+95-045-L	K-05	3.8	3.8
LD-SV-2805-K-0+95-055-L	K-06	2.9	
LD-SV-2806-K-0+95-055-L	K-06	1.8	2.3
LD-SV-2847-K-0+95-065-L	K-07	2.4	
LD-SV-2848-K-0+95-065-L LD-SV-2799-K-0+95-075-L	K-07 K-08	3.1	2.7

SAMPLE ID	LOCATION	FINAL Ra-226	AVERAGE PER GRID
LD-SV-2800-K-0+95-075-L	K-08	1.4	1.4
LD-SV-2240-K-0+95-085-L LD-SV-2241-K-0+95-085-L	K-09 K-09	1.4 1.8	1.6
LD-SV-2587-K-0+95-095-L	K-10	1.5	
LD-SV-2588-K-0+95-095-L LD-SV-2573-K-0+95-105-L	K-10 K-11	1.2 .9	1.4
LD-SV-2696-K-0+95-105-L	K-11	1.4	1.1
LD-SV-2687-K-0+95-115-L LD-SV-2688-K-0+95-115-L	K-12 K-12	.9 1.3	1.1
LD-SV-2485-K-0+95-125-L	K-13	.9	
LD-SV-2486-K-0+95-125-L LD-SV-2529-K-0+95-135-L	K-13 K-14	1.5 1.9	1.2
LD-SV-2530-K-0+95-135-L	K-14	3.0	2.5
LD-SV-2487-K-0+95-145-L LD-SV-2488-K-0+95-145-L	K-15 K-15	3.4 4.2	3.8
LD-SV-0780-L-1+05-005-L	L-01	6.2	
LD-SV-0781-L-1+05-005-L LD-SV-0816-L-1+05-015-L	L-01 L-02	5.9 5.1	6.1
LD-SV-0817-L-1+05-015-L	L-02	4.6	4.8
LD-SV-0792-L-1+05-025-L LD-SV-0794-L-1+05-025-L	L-03 L-03	3.7 4.6	4.2
LD-SV-0791-L-1+05-035-L	L-04	4.3	7.6
LD-SV-0793-L-1+05-035-L LD-SV-2503-L-1+05-045-L	L-04 L-05	4.7 2.5	4.5
LD-SV-2504-L-1+05-045-L	L-05 L-05	2.5	2.5
LD-SV-2489-L-1+05-055-L	L-06	1.9	
LD-SV-2490-L-1+05-055-L LD-SV-2527-L-1+05-065-L	L-06 L-07	1.2 1.9	1.5
LD-SV-2528-L-1+05-065-L	L-07	2.1	2.0
LD-SV-2609-L-1+05-075-L	L-08	.5	2.0
LD-SV-2610-L-1+05-075-L	L-08	1.0	8.0
LD-SV-2619-L-1+05-085-L	L-09	2.0	
LD-SV-2620-L-1+05-085-L LG-SV-2645-L-1+05-095-L	L-09	1.7	1.9
LD-SV-2646-L-1+05-095-L	L-10 L-10	4.7 2.7	3.7
LD-SV-2647-L-1+05-105-L	L-11	2.3	4.7
LD-SV-2648-L-1+05-105-L	L-11	=	2.3
LD-SV-2611-L-1+05-115-L	L-12	1.3	
LD-SV-2612-L-1+05-115-L	L-12	2.4	1.9
LD-SV-2493-L-1+05-125-L LD-SV-2494-L-1+05-125-L	L-13 L-13	2.2 1.9	2.0
LD-SV-2525-L-1+05-125-L	L-13 L-14	2.2	2.0
LD-SV-2526-L-1+05-135-L	L-14	4.6	3.4
LD-SV-2543-L-1+05-145-L	L-15	3.9	
LD-SV-2544-L-1+05-145-L	L-15	3.4	3.7

SAMPLE ID	LOCATION	FINAL Ra-226	AVERAGE PER GRID
LD-SV-0813-M-1+15-005-L	M-01	3.0	
LD-SV-0814-M-1+15-005-L LD-SV-2509-M-1+15-015-L	M-01 M-02	3.2	3.1
LD-SV-2510-M-1+15-015-L	M-02 M-02	6.4 6.2	6.3
LD-SV-0665-M-1+15-025-L	M-03	6.0	0.5
LD-SV-0823-M-1+15-025-L	M-03	4.6	5.3
LD-SV-0663-M-1+15-035-L	M-04	3.2	
LD-SV-0669-M-1+15-035-L LD-SV-2494-M-1+15-045-L	M-04	4.4	3.8
LD-SV-2494-M-1+15-045-L LD-SV-2496-M-1+15-045-L	M-05 M-05	3.5 3.8	3.7
LD-SV-2491-M-1+15-055-L	M-06	3.7	3.7
LD-SV-2864-M-1+15-055-L	M-06	4.0	3.8
LD-SV-2545-M-1+15-065-L	M-07	6.4	
LD-SV-2546-M-1+15-065-L	M-07	4.8	5.6
LD-SV-2663-M-1+15-075-L LD-SV-2664-M-1+15-075-L	M-08 M-08	1.5	1 1
LD-SV-2607-M-1+15-075-L	M-09	.8 1.3	1.1
LD-SV-2608-M-1+15-085-L	M-09	1.8	1.5
LD-SV-2650-M-1+15-095-L	M-10	2.4	1.0
LD-SV-2649-M-1+15-095-L	M-10	2.7	2.5
LD-SV-2657-M-1+15-105-L	M-11	2.2	
LD-SV-2658-M-1+15-105-L	M-11	2.3	2.2
LD-SV-2677-M-1+15-115-L LD-SV-2678-M-1+15-115-L	M-12 M-12	2.9	2 E
LD-SV-2497-M-1+15-125-L	M-12 M-13	2.2 2.7	2.5
LD-SV-2498-M-1+15-125-L	M-13	2.5	2.6
LD-SV-2523-M-1+15-135-L	M-14	4.4	2.0
LD-SV-2524-M-1+15-135-L	M-14	=	4.4
LD-SV-2540-M-1+15-145-L	M-15	3.0	
LD-SV-2539-M-1+15-145-L	M-15	3.5	3.2
LD-SV-0766-N-1+25-005-L LD-SV-0767-N-1+25-005-L	N-01 N-01	3.6	A 1
LD-SV-0659-N-1+25-015-L	N-01 N-02	4.5 4.2	4.1
LD-SV-0660-N-1+25-015-L	N-02	2.5	3.3
LD-SV-0655-N-1+25-025-L	N-03	3.4	0.0
LD-SV-0656-N-1+25-025-L	N-03	4.3	3.8
LD-SV-0650-N-1+25-035-L	N-04	5.6	
LD-SV-0653-N-1+25-035-L LD-SV-2501-N-1+25-045-L	N-04	6.2	5.9
LD-SV-2501-N-1+25-045-L LD-SV-2502-N-1+25-045-L	N-05 N-05	3.6 3.0	2 2
LD-SV-2522-N-1+25-055-L	N-05 N-06	3.0	3.3
LD-SV-2521-N-1+25-055-L	N-06	4.0	3.6
LD-SV-2506-N-1+25-065-L	N-07	1.6	
LD-SV-2505 N-1+25-065-L	N-07	3.0	2.3
LD-SV-2613-N-1+25-075-L	N-08	1.3	
LD-SV-2614-N-1+25-075-L LD-SV-2621-N-1+25-085-L	N-08 N-09	1.7	1.5
LD-SV-2622-N-1+25-085-L	N-09 N-09	2.0 1.5	1.7
,,, _, _, _, _, _, _, _,	., 03	1.0	1.7

SAMPLE ID	LOCATION	FINAL Ra-226	AVERAGE PER GRID
LD-SV-2655-N-1+25-095-L LD-SV-2656-N-1+25-095-L	N-10 N-10	1.2	1.7
LD-SV-2651-N-1+25-105-L	N-11	2.3	2.0
LD-SV-2652-N-1+25-105-L	N-11	1.8	
LD-SV-2683-N-1+25-115-L	N-12	3.2	3.0
LD-SV-2684-N-1+25-115-L	N-12	2.9	
LD-SV-2499-N-1+25-125-L LD-SV-2500-N-1+25-125-L	N-13 N-13 N-14	2.6 2.8	2.7
LD-SV-2512-N-1+25-135-L	N-14	3.2	3.5
LD-SV-2511-N-1+25-135-L	N-14	3.8	
LD-SV-2517-N-1+25-145-L	N-15	2.4	
LD-SV-2517-N-1+25-145-L LD-SV-2518-N-1+25-145-L LD-SV-0825-P-1+35-005-L	N-15 P-01	3.1 4.0	2.7
LD-SV-0824-P-1+35-005-L	P-01	3.5	3.8
LD-SV-0649-P-1+35-015-L	P-02	4.8	
LD-SV-0647-P-1+35-015-L LD-SV-0645-P-1+35-025-L	P-02 P-03	2.4	4.8
LD-SV-0646-P-1+35-025-L	P-03	3.3	2.8
LD-SV-0643-P-1+35-035-L	P-04	2.7	
LD-SV-0644-P-1+35-035-L	P-04	3.2	3.0
LD-SV-2552-P-1+35-045-L	P-05	1.6	
LD-SV-2551-P-1+35-045-L	P-05	2.0	1.8
LD-SV-2542-P-1+35-055-L	P-06	1.9	
LD-SV-2541-P-1+35-055-L	P-06	2.0	2.0
LD-SV-2533-P-1+35-065-L	P-07	2.6	
LD-SV-2534-P-1+35-065-L	P-07	2.7	2.7
LD-SV-2617-P-1+35-075-L	P-08	2.2	
LD-SV-2618-P-1+35-075-L	P-08	3.3	2.7
LD-SV-2653-P-1+35-085-L	P-09	2.3	
LD-SV-2654-P-1+35-085-L	P-09	2.5	2.4
LD-SV-2661-P-1+35-095-L	P-10	3.3	
LD-SV-2662-P-1+35-095-L	P-10	2.7	3.0
LD-SV-2625-P-1+35-105-L	P-11	2.9	
LD-SV-2626-P-1+35-105-L	P-11	1.6	2.2
LD-SV-2631-P-1+35-115-L	P-12	3.1	
LD-SV-2632-P-1+35-115-L	P-12	3.4	3.?
LD-SV-2547-P-1+35-125-L	P-13	2.2	
LD-SV-2548-P-1+35-125-L	P-13	2.7	2.5
LD-SV-2513-P-1+35-135-L	P-14	2.3	
LD-SV-2514-P-1+34-135-L	P-14	3.1	2.7
LD-SV-2520-P-1+35-145-L	P-15	3.2	
LD-SV-2519-P-1+35-145-L	P-15	2.9	3.0

SAMPLE ID	LOCATION	FINAL Ra-226	AVERAGE PER GRID
LD-SV-0826-R-1+45-005-L	R-01	4.6	3.8
LD-SV-0827-R-1+45-005-L	R-01	3.0	
LD-SV-2549-R-1+45-045-L	R-05	2.0	
LD-SV-2550-R-1+45-045-L	R-05	2.5	2.2
LD-SV-2532-R-1+45-055-L	R-06	2.1	
LD-SV-2531-R-1+45-055-L LD-SV-2507-R-1+45-065-L	R-06	3.9	3.0
LD-SV-2508-R-1+45-065-L	R-07 R-07	2.1 1.7	1.9
LD-SV-2628-R-1+45-075-L	R-08	2.6	2.6
LD-SV-2659-R-1+45-085-L	R-09	2.6	
LD-SV-2660-R-1+45-085-L	R-09	2.0	2.3
LD-SV-2623-R-1+45-095-L	R-10	2.7	
LD-SV-2624-R-1+45-095-L	R-10	3.1	2.9
LD-SV-2615-R-1+45-105-L	R-11	2.0	
LD-SV-2616-R-1+45-105-L LD-SV-2666-R-1+45-115-L	R-11 R-12	2.4	2.0
LD-SV-2665-R-1+45-115-L LD-SV-2537-R-1+45-125-L	R-12 R-13	2.3	2.3
LD-SV-2538-R-1+45-125-L	R-13	3.2	3.2
LD-SV-2535-R-1+45-135-L	R-14	4.2	
LD-SV-2536-R-1+45-135-L LD-SV-2515-R-1+45-145-L	R-14 R-15	4.3	4.2
LD-SV-2516-R-1+45-145-L	R-15	3.1 3.5	3.3
LD-SV-2913-S-1+55-065-L	S-07	2.8	3.0
LD-SV-2914-S-1+55-065-L	S-07	3.2	
LD-SV-2915-S-1+55-075-L	S-08	3.5	3.5
LD-SV-2916-S-1+55-075-L	S-08	3.4	
LD-SV-2911-S-1+55-085-L	S-09	2.3	3.0
LD-SV-2912-S-1+55-085-L	S-09	3.8	
LD-SV-2919-S-1+55-095-L	S-10	3.3	3.2
LD-SV-2920-S-1+55-095-L	S-10	3.1	
LD-SV-2925-S-1+55-105-L	S-11	3.8	3.8
LD-SV-2926-S-1+55-105-L	S-11	3.8	
LD-SV-2923-S-1+55-115-L	S-12	3.4	3.3
LD-SV-2924-S-1+55-115-L	S-12	3.2	
LD-SV-2917-T-1+65-065-L	T-07	3.8	2.7
LD-SV-2918-T-1+65-065-L	T-07	1.7	
LD-SV-2921-T-1+65-085-L	T-09	5.1	3.0
LD-SV-2922-T-1+65-085-L	T-09	.9	
LD-SV-2409-U-1+75-045-L LD-SV-2410-U-1+75-045-L	U-05	4.6	
LD-SV-2407-U-1+75-055-L	U-05 U-06	3.7 2.3	4.2
LD-SV-2399-U-1+75-055-L	U-06	3.2	2.7
LD-SV-2399-U-1+75-065-L	U-07	1.8	
LD-SV-2400-U-1+75-065-L	U-07	2.6	2.2
LD-SV-2397-U-1+75-075-L	U-08	4.4	

SAMPLE ID	LOCATION	FINAL Ra-226	AVERAGE PER GRID
LD-SV-2398-U-1+75-075-L	U-08	4.5	4.4
LD-SV-2267-U-1+75-085-L	U-09	4.1	4.8
LD-SV-2268-U-1+75-085-L	U-09	5.6	
LD-SV-2259-U-1+75-095-L	U-10	6.1	6.2
LD-SV-2260-U-1+75-095-L	U-10	6.2	
LD-SV-2401-U-1+75-105-L	U-11	4.5	4.2
LD-SV-2402-U-1+75-105-L	U-11	3.9	
LD-SV-2387-U-1+75-115-L	U-12	2.1	2.0
LD-SV-2388-U-1+75-115-L	U-12	1.9	
LD-SV-2389-U-1+75-125-L	U-13	3.6	3.6
LD-SV-2390-U-1+75-125-L	U-13	3.6	
LD-SV-2164-U-1+75-135-L	U-14	2.4	2.5
LD-SV-2165-U-1+75-135-L	U-14	2.5	
LD-SV-2294-U-1+75-145-L	U-15	3.5	3.0
LD-SV-2295-U-1+75-145-L	U-15	2.6	
LD-SV-2290-U-1+75-155-L	U-16	1.9	2.0
LD-SV-2291-U-1+75-155-L	U-16	2.0	
LD-SV-2288-U-1+75-165-L LD-SV-2289-U-1+75-165-L	U-17 U-17	2.4	2.7
LD-SV-2067-U-1+75-175-L	U-18	3.3	2.6
LD-SV-2068-U-1+75-175-L	U-18	1.9	
LD-SV-2301-V-1+85-185-L	V-19	.9	1.2
LD-SV-2302-V-1+85-185-L	V-19	1.5	
LD-SV-2329-V-1+85-195-L LD-SV-2330-V-1+85-195-L	V-20 V-20	1.5	2.0
LD-SV-2331-V-1+85-205-L	V-21	1.7	1.8
LD-SV-2332-V-1+85-205-L	V-21	1.9	
LD-SV-2333-V-1+85-215-L LD-SV-2334-V-1+85-215-L	V-22	2.4	
LD-SV-2336-V-1+75-225-L	V-22 V-23	2.9 3.0	2.7
LD-SV-2337-V-1+75-225-L	V-23	3.0	3.0
LD-SV-2338-V-1+85-235-L	V-24	1.7	
LD-SV-2339-V-1+85-235-L LD-SV-2345-V-1+85-245-L		3.5 2.5	2.6
LD-SV-2346-V-1+85-245-L	V-25	1.3	1.9
LD-SV-2342-V-1+85-255-L	V-26	2.6	
LD-SV-2343-V-1+85-255-L	V-26	2.6	2.6
LD-SV-2349-V-1+85-265-L	V-27	1.2	
LD-SV-2350-V-1+85-265-L	V-27	1.2	1.2
LD-SV-2351-V-1+85-275-L	V-28	.8	
LD-SV-2352-V-1+85-275-L	V-28	1.2	1.0
LD-SV-2353-V-1+85-285-L	V-29	3.4	
LD-SV-2354-V-1+85-285-L LD-SV-1921-V-1+85-295-L	V-29 V-30	2.0	2.7

SAMPLE ID	LOCATION	FINAL Ra-226	AVERAGE PER GRID
LD-SV-2999-AA-0+05-05-R	AA-01	-	
LD-SV-3000-AA-0+05-05-R	AA-01	2.6	2.6
LD-SV-3011-AB-0+15-05-R LD-SV-3012-AB-0+15-05-R	AB-01 AB-01	5.4	0.0
LD-SV-3012-AB-0+13-03-R LD-SV-3013-AC-0+25-05-R	AC-01	1.9 2.4	2.8
LD-SV-3014-AC-0+25-05-R	AC-01	5.0	3.7
LD-SV-3021-AE-0+45-05-R	AE-01	_	
LD-SV-3022-AE-0+45-05-R LD-SV-2997-AF-0+55-05-R	AE-01 AF-01	4.6	4.6
LD-SV-2998-AF-0+55-05-R	AF-01	2.0	2.0
LD-SV-3005-AG-0+65-05-R	AG-01	-	
LD-SV-3006-AG-0+65-05-R	AG-01	5.8	5.8
LD-SV-3007-AH-0+75-05-R LD-SV-3008-AH-0+75-05-R	AH-01	4.9	4.0
LD-SV-2461-AS-1+55-05-R	AH-01 AS-01	4.9	4.9
LD-SV-2462-AS-1+55-05-R	AS-01	4.7	4.7
LD-SV-2463-AS-1+55-15-R	AS-02	4.7	
LD-SV-2464-AS-1+55-15-R	AS-02	4.1	4.4
LD-SV-2448-AS-1+55-65-R LD-SV-2449-AS-1+55-65-R	AS-07 AS-07	4.2 4.9	4.6
LD-SV-2581-BA-0-05-05-R	BA-01	2.4	4.0
LD-SV-2582-BA-0-05-05-R	BA-01	1.5	2.0
LD-SV-2583-BA-0-05-15-R	BA-02	1.5	
LD-SV-2584-BA-0-05-15-R	BA-02 BB-01	1.8 1.2	1.6
LD-SV-2565-BB-0-15-05-R LD-SV-2566-BB-0-15-05-R	BB-01	1.4	1.3
LD-SV-2575-BB-0-15-15-R	BB-02	.7	2.0
LD-SV-2576-BB-0-15-15-R	BB-02	1.7	1.2
LD-SV-2567-BC-0-25-05-R	BC-01	1.5	
LD-SV-2568-BC-0-25-05-R LD-SV-2591-BC-0-25-15-R	BC-01 BC-02	1.5 2.5	1.5
LD-SV-2591-BC-0-25-15-R LD-SV-2592-BC-0-25-15-R	BC-02 BC-02	2.2	2.3
LD-SV-2563-BD-0-35-05-R	BD-01	4.2	2.0
LD-SV-2564-BD-0-35-05-R	BD-01	3.2	3.7
LD-SV-2877-BE-0-45-05-R	BE-01	2.0	0.0
LD-SV-2878-BE-0-45-05-R LD-SV-2309-CA-0-05-005-L	BE-01 CA-01	1.0	2.0
LD-SV-2310-CA-0-05-005-L	CA-01	1.6	1.3
LD-SV-2315-CA-0-05-015-L	CA-02	2.9	-110
LD-SV-2316-CA-0-05-015-L	CA-02	2.1	2.5
LD-SV-2737-CA-0-05-025-L	CA-03	4.8 4.1	4.4
LD-SV-2738-CA-0-05-025-L LD-SV-2733-CA-0-05-035-L	CA-03 CA-04	5.0	4.4
LD-SV-2734-CA-0-05-035-L	CA-04	1.5	3.2
LD-SV-2579-CA-0-05-045-L	CA-05	3.5	
LD-SV-2580-CA-0-05-045-L	CA-05	3.7	3.6
LD-SV-2553-CA-0-05-055-L LD-SV-2554-CA-0-05-055-L	CA-06 CA-06	6.2 4.4	5.3
FD-34-7334-0W-0-03-033-F	CV-00	7.7	J.J

LD-SV-2605-CA-0-05-065-L CA-07 3.5 LD-SV-2606-CA-0-05-065-L CA-07 3.2 3.3 LD-SV-2597-CA-0-05-075-L CA-08 5.5 LD-SV-2598-CA-0-05-075-L CA-08 5.5 LD-SV-2641-CA-0-05-105-L CA-11 1.4 LD-SV-2642-CA-0-05-105-L CA-11 1.4 LD-SV-2642-CA-0-05-115-L CA-12 1.7 LD-SV-2595-CA-0-05-115-L CA-12 1.7 LD-SV-2595-CA-0-05-115-L CA-12 3.7 2.7 LD-SV-2311-CB-0-15-005-L CB-01 1.3 LD-SV-2312-CB-0-15-005-L CB-01 1.3 LD-SV-2312-CB-0-15-015-L CB-02 1.5 LD-SV-2319-CB-0-15-015-L CB-02 1.5 LD-SV-2743-CB-0-15-015-L CB-02 1.6 1.5 LD-SV-2744-CB-0-15-025-L CB-03 1.8 LD-SV-2701-CB-0-15-035-L CB-04 1.5 LD-SV-2703-CB-0-15-035-L CB-04 1.5 LD-SV-2703-CB-0-15-045-L CB-05 1.3 LD-SV-2703-CB-0-15-045-L CB-05 1.3 LD-SV-2703-CB-0-15-045-L CB-05 1.3 LD-SV-2705-CB-0-15-055-L CB-06 1.0 LD-SV-2706-CB-0-15-055-L CB-06 1.0 LD-SV-2707-CB-0-15-055-L CB-06 1.5 LD-SV-2709-CB-0-15-055-L CB-06 1.5 LD-SV-2709-CB-0-15-055-L CB-07 1.4 1.4 LD-SV-2709-CB-0-15-055-L CB-08 3.6 LD-SV-2711-CB-0-15-065-L CB-07 1.4 1.5 LD-SV-2711-CB-0-15-065-L CB-01 1.6 2.5 LD-SV-2711-CB-0-15-065-L CB-01 1.6 2.5 LD-SV-2711-CB-0-15-065-L CB-10 1.6 2.5 LD-SV-2713-CB-0-15-105-L CB-11 4.3 LD-SV-2735-CB-0-15-105-L CB-11 4.3 LD-SV-2736-CB-0-15-105-L CB-11 4.3 LD-SV-2736-CB-0-15-105-L CB-11 4.3 LD-SV-2739-CC-0-25-005-L CC-01 1.7 LD-SV-2739-CC-0-25-035-L CC-04 1.4 LD-SV-2731-CD-0-25-035-L CC-04 1.4 LD-SV-2731-CD-0-25-035-L CC-04 1.4 LD-SV-2731-CD-	SAMPLE ID	LOCATION	FINAL Ra-226	AVERAGE PER GRID
LD-SV-2598-CA-0-05-075-L CA-08 S.0 S.2	LD-SV-2606-CA-0-05-065-L	CA-07	3.2	3.3
LD-SV-2642-CA-0-05-105-L CA-11 2.2 LD-SV-2526-CA-0-05-115-L CA-12 1.7 LD-SV-2595-CA-0-05-115-L CA-12 3.7 2.7 LD-SV-2311-CB-0-15-005-L CB-01 1.3 LD-SV-2312-CB-0-15-005-L CB-01 1.1 1.2 LD-SV-2319-CB-0-15-015-L CB-02 1.5 LD-SV-2319-CB-0-15-015-L CB-02 1.6 1.5 LD-SV-2743-CB-0-15-025-L CB-03 1.8 LD-SV-2743-CB-0-15-025-L CB-03 2.3 2.0 LD-SV-2701-CB-0-15-035-L CB-04 1.5 LD-SV-2701-CB-0-15-035-L CB-04 1.5 LD-SV-2702-CB-0-15-035-L CB-04 1.5 LD-SV-2702-CB-0-15-035-L CB-04 1.8 1.1 LD-SV-2703-CB-0-15-045-L CB-05 1.3 LD-SV-2704-CB-0-15-045-L CB-05 1.3 LD-SV-2705-CB-0-15-055-L CB-06 1.0 LD-SV-2705-CB-0-15-065-L CB-06 1.5 L3 LD-SV-2707-CB-0-15-065-L CB-07 1.7 LD-SV-2709-CB-0-15-065-L CB-07 1.7 LD-SV-2709-CB-0-15-065-L CB-07 1.4 1.5 LD-SV-2710-CB-0-15-065-L CB-07 1.4 1.5 LD-SV-2710-CB-0-15-065-L CB-09 2.4 LD-SV-2711-CB-0-15-065-L CB-09 2.4 LD-SV-2711-CB-0-15-085-L CB-09 2.4 LD-SV-2711-CB-0-15-085-L CB-09 2.4 LD-SV-2713-CB-0-15-095-L CB-10 3.5 LD-SV-2713-CB-0-15-105-L CB-11 4.3 LD-SV-2733-CB-0-15-105-L CB-11 4.3 LD-SV-2733-CC-0-25-005-L CC-01 1.7 LD-SV-2317-CC-0-25-005-L CC-01 1.7 LD-SV-2317-CC-0-25-005-L CC-01 1.7 LD-SV-2733-CC-0-25-005-L CC-01 1.7 LD-SV-2733-CC-0-25-005-L CC-02 L2 LD-SV-2733-CC-0-25-005-L CC-03 2.5 LD-SV-2733-CC-0-25-035-L CC-04 1.4 LD-SV-2723-CC-0-25-035-L CC-04 1.4 LD-SV-2723-CC-0-25-035-L CC-04 1.4 LD-SV-2723-CC-0-25-035-L CC-04 2.3 1.9 LD-SV-2723-CC-0-25-035-L CC-04	LD-SV-2598-CA-0-05-075-L	CA-08	5.0	5.2
LD-SV-2595-CA-0-05-115-L CA-12 3.7 2.7 LD-SV-2311-CB-0-15-005-L CB-01 1.3 LD-SV-2312-CB-0-15-005-L CB-01 1.1 LD-SV-2319-CB-0-15-015-L CB-02 1.5 LD-SV-2320-CB-0-15-015-L CB-02 1.5 LD-SV-2744-CB-0-15-025-L CB-03 1.8 LD-SV-2744-CB-0-15-025-L CB-03 2.3 2.0 LD-SV-2701-CB-0-15-035-L CB-04 1.5 LD-SV-2702-CB-0-15-035-L CB-04 1.5 LD-SV-2703-CB-0-15-035-L CB-05 1.3 LD-SV-2704-CB-0-15-045-L CB-05 1.3 LD-SV-2704-CB-0-15-045-L CB-05 1.3 LD-SV-2706-CB-0-15-055-L CB-06 1.0 LD-SV-2706-CB-0-15-055-L CB-06 1.0 LD-SV-2707-CB-0-15-055-L CB-06 1.5 1.3 LD-SV-2707-CB-0-15-055-L CB-06 1.5 LD-SV-2709-CB-0-15-055-L CB-08 3.6 LD-SV-2710-CB-0-15-075-L CB-08 3.5 LD-SV-2711-CB-0-15-085-L CB-09 2.4 LD-SV-2711-CB-0-15-085-L CB-09 2.4 LD-SV-2713-CB-0-15-085-L CB-09 2.4 LD-SV-2713-CB-0-15-085-L CB-09 2.4 LD-SV-2713-CB-0-15-085-L CB-10 1.6 2.5 LD-SV-2735-CB-0-15-105-L CB-11 4.3 LD-SV-2735-CB-0-15-105-L CB-11 4.3 LD-SV-2593-CB-0-15-115-L CB-12 4.0 LD-SV-2594-CB-0-15-115-L CB-12 4.0 LD-SV-2594-CB-0-15-115-L CB-12 4.0 LD-SV-2318-CC-0-25-005-L CC-01 1.7 LD-SV-2318-CC-0-25-005-L CC-01 1.7 LD-SV-2884-CC-0-25-025-L CC-02 2.5 LD-SV-2739-CC-0-25-015-L CC-02 2.5 LD-SV-2740-CC-0-25-035-L CC-04 1.4 LD-SV-2723-CC-0-25-035-L CC-04 2.3	LD-SV-2642-CA-0-05-105-L	CA-11	2.2	1.8
LD-SV-2312-CB-0-15-005-L CB-01 1.1 1.2 LD-SV-2319-CB-0-15-015-L CB-02 1.5 LD-SV-2320-CB-0-15-015-L CB-02 1.6 1.5 LD-SV-2743-CB-0-15-025-L CB-03 1.8 LD-SV-2744-CB-0-15-025-L CB-03 2.3 2.0 LD-SV-2701-CB-0-15-035-L CB-04 1.5 LD-SV-2702-CB-0-15-035-L CB-04 1.5 LD-SV-2703-CB-0-15-035-L CB-04 1.5 LD-SV-2703-CB-0-15-045-L CB-05 1.3 LD-SV-2704-CB-0-15-045-L CB-05 1.3 LD-SV-2704-CB-0-15-045-L CB-05 1.4 1.4 LD-SV-2705-CB-0-15-055-L CB-06 1.0 LD-SV-2706-CB-0-15-055-L CB-06 1.0 LD-SV-2707-CB-0-15-065-L CB-07 1.7 LD-SV-2880-CB-0-15-065-L CB-07 1.7 LD-SV-2709-CB-0-15-075-L CB-08 3.6 LD-SV-2710-CB-0-15-075-L CB-08 3.6 LD-SV-2711-CB-0-15-075-L CB-08 3.5 LD-SV-2711-CB-0-15-085-L CB-09 2.4 LD-SV-2712-CB-0-15-085-L CB-09 2.4 LD-SV-2713-CB-0-15-095-L CB-10 3.5 LD-SV-2713-CB-0-15-105-L CB-11 4.3 LD-SV-2736-CB-0-15-105-L CB-11 4.3 LD-SV-2736-CB-0-15-105-L CB-11 4.3 LD-SV-2736-CB-0-15-105-L CB-11 4.3 LD-SV-2739-CC-0-25-005-L CC-01 1.7 LD-SV-2318-CC-0-25-005-L CC-01 1.7 LD-SV-2318-CC-0-25-005-L CC-01 1.7 LD-SV-2318-CC-0-25-015-L CC-02 2.5 LD-SV-2739-CC-0-25-015-L CC-02 1.2 LD-SV-2739-CC-0-25-015-L CC-02 1.2 LD-SV-2738-CC-0-25-035-L CC-03 3.0 2.7 LD-SV-2723-CC-0-25-035-L CC-04 2.3 1.9	LD-SV-2595-CA-0-05-115-L	CA-12	3.7	2.7
LD-SV-2320-CB-0-15-015-L CB-02	LD-SV-2312-CB-0-15-005-L	CB-01	1.1	1.2
LD-SV-2701-CB-0-15-035-L CB-04	LD-SV-2320-CB-0-15-015-L	CB-02	1.8	
LD-SV-2703-CB-0-15-045-L CB-05 1.3 LD-SV-2704-CB-0-15-045-L CB-05 1.4 LD-SV-2705-CB-0-15-055-L CB-06 1.0 LD-SV-2706-CB-0-15-055-L CB-06 1.5 LD-SV-2707-CB-0-15-065-L CB-07 1.7 LD-SV-2880-CB-0-15-065-L CB-07 1.4 1.5 LD-SV-2709-CB-0-15-075-L CB-08 3.6 LD-SV-2710-CB-0-15-075-L CB-08 3.5 LD-SV-2711-CB-0-15-085-L CB-09 2.4 LD-SV-2712-CB-0-15-085-L CB-09 2.4 LD-SV-2713-CB-0-15-095-L CB-10 3.5 LD-SV-2714-CB-0-15-095-L CB-10 1.6 2.5 LD-SV-2735-CB-0-15-105-L CB-11 4.3 LD-SV-2736-CB-0-15-105-L CB-11 4.3 LD-SV-2593-CB-0-15-115-L CB-12 4.0 LD-SV-2594-CB-0-15-115-L CB-12 4.0 LD-SV-2317-CC-0-25-005-L CC-01 1.7 LD-SV-2318-CC-0-25-005-L CC-01 1.7 LD-SV-2739-CC-0-25-015-L CC-02 2.5 LD-SV-2882-CC-0-25-025-L CC-03 2.5 LD-SV-2884-CC-0-25-035-L CC-04 1.4 LD-SV-2723-CC-0-25-035-L CC-04 1.4 LD-SV-2723-CC-0-25-035-L CC-04 1.4 LD-SV-2724-CC-0-25-035-L CC-04 2.3 1.9	LD-SV-2701-CB-0-15-035-L	CB-04	1.5	
LD-SV-2705-CB-0-15-055-L CB-06	LD-SV-2703-CB-0-15-045-L	CB-05	1.3	
LD-SV-2707-CB-0-15-065-L CB-07 1.7 LD-SV-2880-CB-0-15-065-L CB-07 1.4 1.5 LD-SV-2709-CB-0-15-075-L CB-08 3.6 LD-SV-2710-CB-0-15-075-L CB-08 3.5 3.5 LD-SV-2711-CB-0-15-085-L CB-09 2.4 LD-SV-2712-CB-0-15-085-L CB-09 2.4 LD-SV-2713-CB-0-15-095-L CB-10 3.5 LD-SV-2714-CB-0-15-095-L CB-10 1.6 2.5 LD-SV-2735-CB-0-15-105-L CB-11 4.3 LD-SV-2736-CB-0-15-105-L CB-11 4.3 LD-SV-2736-CB-0-15-115-L CB-11 4.3 LD-SV-2593-CB-0-15-115-L CB-12 4.0 LD-SV-2594-CB-0-15-115-L CB-12 3.5 3.8 LD-SV-2317-CC-0-25-005-L CC-01 1.7 LD-SV-2318-CC-0-25-005-L CC-01 1.7 LD-SV-2739-CC-0-25-015-L CC-02 2.5 LD-SV-2740-CC-0-25-015-L CC-02 1.2 1.9 LD-SV-2882-CC-0-25-025-L CC-03 2.5 LD-SV-2884-CC-0-25-025-L CC-03 2.5 LD-SV-2723-CC-0-25-035-L CC-04 1.4 LD-SV-2724-CC-0-25-035-L CC-04 1.4 LD-SV-2724-CC-0-25-035-L CC-04 2.3 1.9	LD-SV-2705-CB-0-15-055-L	CB-06	1.0	
LD-SV-2709-CB-0-15-075-L CB-08 3.6 LD-SV-2710-CB-0-15-075-L CB-08 3.5 LD-SV-2711-CB-0-15-085-L CB-09 2.4 LD-SV-2712-CB-0-15-085-L CB-09 2.4 LD-SV-2713-CB-0-15-085-L CB-09 2.4 LD-SV-2713-CB-0-15-095-L CB-10 3.5 LD-SV-2714-CB-0-15-095-L CB-10 1.6 2.5 LD-SV-2735-CB-0-15-105-L CB-11 4.3 LD-SV-2736-CB-0-15-105-L CB-11 4.3 LD-SV-2736-CB-0-15-115-L CB-12 4.0 LD-SV-2593-CB-0-15-115-L CB-12 3.5 3.8 LD-SV-2594-CB-0-15-115-L CB-12 3.5 3.8 LD-SV-2317-CC-0-25-005-L CC-01 1.7 LD-SV-2318-CC-0-25-005-L CC-01 1.7 LD-SV-2739-CC-0-25-015-L CC-02 2.5 LD-SV-2740-CC-0-25-015-L CC-02 2.5 LD-SV-2882-CC-0-25-025-L CC-03 2.5 LD-SV-2884-CC-0-25-025-L CC-03 3.0 2.7 LD-SV-2723-CC-0-25-035-L CC-04 1.4 LD-SV-2724-CC-0-25-035-L CC-04 1.4 LD-SV-2724-CC-0-25-035-L CC-04 2.3 1.9	LD-SV-2707-CB-0-15-065-L	CB-07	1.7	
LD-SV-2711-CB-O-15-085-L CB-09	LD-SV-2709-CB-0-15-075-L	CB-08	3.6	
LD-SV-2714-CB-O-15-095-L CB-10 1.6 2.5 LD-SV-2735-CB-O-15-105-L CB-11 4.3 LD-SV-2736-CB-O-15-105-L CB-11 4.3 LD-SV-2593-CB-O-15-115-L CB-12 4.0 LD-SV-2594-CB-O-15-115-L CB-12 3.5 3.8 LD-SV-2317-CC-O-25-005-L CC-01 1.7 LD-SV-2318-CC-O-25-005-L CC-01 .4 1.0 LD-SV-2739-CC-O-25-015-L CC-02 2.5 LD-SV-2740-CC-O-25-015-L CC-02 1.2 1.9 LD-SV-2882-CC-O-25-025-L CC-03 2.5 LD-SV-2884-CC-O-25-025-L CC-03 2.7 LD-SV-2723-CC-O-25-035-L CC-04 1.4 LD-SV-2724-CC-O-25-035-L CC-04 2.3 1.9	LD-SV-2711-CB-0-15-085-L	CB-09	2.4 2.4	2.4
LD-SV-2736-CB-0-15-105-L CB-11 4.3 4.3 LD-SV-2593-CB-0-15-115-L CB-12 4.0 LD-SV-2594-CB-0-15-115-L CB-12 3.5 3.8 LD-SV-2317-CC-0-25-005-L CC-01 1.7 LD-SV-2318-CC-0-25-005-L CC-01 .4 1.0 LD-SV-2739-CC-0-25-015-L CC-02 2.5 LD-SV-2740-CC-0-25-015-L CC-02 1.2 1.9 LD-SV-2882-CC-0-25-025-L CC-03 2.5 LD-SV-2884-CC-0-25-025-L CC-03 3.0 2.7 LD-SV-2723-CC-0-25-035-L CC-04 1.4 LD-SV-2724-CC-0-25-035-L CC-04 2.3 1.9	LD-SV-2714-CB-0-15-095-L	CB-10	1.6	2.5
LD-SV-2594-CB-0-15-115-L CB-12 3.5 3.8 LD-SV-2317-CC-0-25-005-L CC-01 1.7 LD-SV-2318-CC-0-25-005-L CC-01 .4 1.0 LD-SV-2739-CC-0-25-015-L CC-02 2.5 LD-SV-2740-CC-0-25-015-L CC-02 1.2 1.9 LD-SV-2882-CC-0-25-025-L CC-03 2.5 LD-SV-2884-CC-0-25-025-L CC-03 3.0 2.7 LD-SV-2723-CC-0-25-035-L CC-04 1.4 LD-SV-2724-CC-0-25-035-L CC-04 2.3 1.9	LD-SV-2736-CB-0-15-105-L	CB-11	4.3	4.3
LD-SV-2318-CC-0-25-005-L CC-01 .4 1.0 LD-SV-2739-CC-0-25-015-L CC-02 2.5 LD-SV-2740-CC-0-25-015-L CC-02 1.2 1.9 LD-SV-2882-CC-0-25-025-L CC-03 2.5 LD-SV-2884-CC-0-25-025-L CC-03 3.0 2.7 LD-SV-2723-CC-0-25-035-L CC-04 1.4 LD-SV-2724-CC-0-25-035-L CC-04 2.3 1.9	LD-SV-2594-CB-0-15-115-L	CB-12	3.5	3.8
LD-SV-2882-CC-0-25-025-L CC-03 2.5 LD-SV-2884-CC-0-25-025-L CC-03 3.0 2.7 LD-SV-2723-CC-0-25-035-L CC-04 1.4 LD-SV-2724-CC-0-25-035-L CC-04 2.3 1.9	LD-SV-2318-CC-0-25-005-L	CC-01	.4 2 5	1.0
LD-SV-2884-CC-0-25-025-L CC-03 3.0 2.7 LD-SV-2723-CC-0-25-035-L CC-04 1.4 LD-SV-2724-CC-0-25-035-L CC-04 2.3 1.9	LD-SV-2740-CC-0-25-015-L	CC-02	1.2	1.9
LD-SV-2724-CC-0-25-035-L CC-04 2.3 1.9	LD-SV-2884-CC-0-25-025-L	CC-03	3.0	2.7
	LD-SV-2731-CD-0-35-005-L	CC-04 CD-01	5.1	
LD-SV-2732-CD-0-35-005-L CD-01 4.2 4.7 LD-SV-2561-CD-0-35-015-L CD-02 .4	LD-SV-2561-CD-0-35-015-L	CD-02	.4	
LD-SV-2562-CD-0-35-015-L CD-02 1.8 1.1 LD-SV-2881-CD-0-35-025-L CD-03 .7	LD-SV-2881-CD-0-35-025-L	CD-03	.7	
LD-SV-2882-CD-0-35-025-L CD-03 .7 0.7 LD-SV-2689-CD-0-35-035-L CD-04 1.7 LD-SV-2690-CD-0-35-035-L CD-04 2.3 2.0	LD-SV-2689-CD-0-35-035-L	CD-04	1.7	

SAMPLE ID	LOCATION	FINAL Ra-226 PER	AVERAGE GRID
LD-SV-2741-CE-0-45-005-L LD-SV-2742-CE-0-45-005-L LD-SV-2603-GA-0-05-125-L	CE-01 CE-01 GA-01	.7 1.9 2.7	1.3
LD-SV-2604-GA-0-05-125-L LD-SV-2637-GA-0-05-135-L	GA-01 GA-02	3.2 4.3	3.0
LD-SV-2638-GA-0-05-135-L LD-SV-2643-GA-0-05-145-L	GA-02 GA-03	4.7 4.3	4.5
LD-SV-2644-GA-0-05-145-L LD-SV-2600-GA-0-05-155-L	GA-03 GA-04	2.2 3.2	3.2
LD-SV-2599-GA-0-05-155-L	GA-04	2.5	2.8
LD-SV-2640-GA-0-05-165-L LD-SV-2639-GA-0-05-165-L LD-SV-1325-GA-0-05-175-L	GA-05 GA-05	2.5 2.2	2.3
LD-SV-1325-GA-0-05-175-L LD-SV-1326-GA-0-05-175-L LD-SV-1324-GA-0-05-185-i	GA-06 GA-06	3.2 3.0	3.1
LD-SV-1323-GA-0-05-185-1	GA-07 GA-07	3.2 2.9	3.0
LD-SV-2601-GA-0-05-195-C LD-SV-2602-GA-0-05-195-L	GA-08 GA-08	3.7 4.8	4.2
LD-SV-2698-GB-0-15-125-L LD-SV-2697-GB-0-15-125-L	GB-01 GB-01	2.9 2.6	2.7
LD-SV-2700-GB-0-15-135-L LD-SV-2699-GB-3-15-135-L	GB-02 GB-02	5.4 3.8	4.6
LD-SV-2719-GB-0-15-145-L LD-SV-2720-GB-0-15-145-L	GB-03 GB-03	5.1 4.1	4.6
LD-SV-2717-GB-0-15-155-L LD-SV-2718-GB-0-15-155-L	(-1)-04 GB-04	2.4 3.5	3.0
LD-SV-2716-GB-0-15-165-L LD-SV-2715-GB-0-15-165-L	GB-05 GB-05	2.8 3.3	3.0
LD-SV-2727-GB-0-15-175-L LD-SV-2728-GB-0-15-175-L	GB-06 GB-06	2.8 2.8	2.8
LD-SV-3019-KA-0+05-155-L LD-SV-3020-KA-0+05-155-L	KA-01 KA-01	2.4	1.2
LD-SV-2989-KA-0+05-165-L LD-SV-2990-KA-0+05-165-L	KA-02 KA-02	1.8	0.9
LD-SV-2992-KA-0+05-175-L LD-SV-3016-KA-0+05-175-L	KA-03 KA-03	3.7 4.9	4.3
LD-SV-2987-KB-0+15-155-L LD-SV-2988-KB-0+15-155-L	KB-01 KB-01	3.3	1.6
LD-SV-3003-KB-0+15-165-L LD-SV-3004-KB-0+15-165-L	KB-02 KB-02	6.0	3.0
LD-SV-3009-KC-0+25-155-L LD-SV-3010-KC-0+25-155-L	KC-01 KC-01	3.9	2.0
LD-SV-2993-KC-0+25-165-L LD-SV-2994-KC-0+25-165-L	KC-02 KC-02	6.6	3.3
LD-SV-2995-KD-0+35-155-L LD-SV-2996-KD-0+35-155-L	KD-01 KD-01	3.1	1.5
LD-SV-3017-KE-0+45-155-L LD-SV-3018-KE-0+45-155-L	KE-01 KE-01	3.9	2.0

APPENDIX 6-F

SUMMARY OF PHASE HAZARD ANALYSES AND HEALTH AND SAFETY TOPICS

PHASE HAZARD ANALYSIS SUMMARY

FOR SOIL REMEDIATION

October 3, 1988, Project Phase: Sanitary Sewer Sample Collection, Summary: Project personnel collected, using nondestructive methods, radiological samples from the sanitary sewer manholes located on Stratford Avenue and Union Avenue to determine to extent of contamination associated with the sewer system.

November 11, 1988, Project Phase: Test Methodologies for Soil Excavation, Summary: Comparison of Argonne National Laboratory subsurface investigation procedures for radiological contamination against Chem-Nuclear iterative excavation methodology within a test plot on 105/107 East Stratford Avenue of approximately twenty feet by sixty feet.

November 17, 1988, Project Phase: Remediation of Contaminated Soil, 105/107 East Stratford Avenue Lot, Summary: The lot was divided into ten feet by ten feet grids. Each grid initially received an areal gamma grid survey to verify and document locations of gamma anomalies and to determine approximate depth contours associated with the subsurface contamination. Initial elevation points were then established for each grid in order to compare against final elevations after backfilling the excavated grids. Excavation was conducted using heavy equipment and manual methods with the contaminated soil placed directly into B-25 Boxes. Contaminated soil was removed to a depth where direct survey results indicated that the contamination was at or below 5 pCi/gram level. Verification soil samples were then collected and analyzed within the opposed crystal system.

December 6, 1988, Project Phase: Addendum Number 1, Remediation of Contaminated Soil, 105/107 East Stratford Avenue Lot, Summary: Respiratory protection during soil excavation was documented by Chem-Nuclear Systems, Inc. as not warranted during these activities and the U.S. Army Corps of Engineers approved the downgrade for the use of no respiratory protection. However, personnel within a six foot radius of the B-25 Box during tamping operations were directed by the U.S. Army Corps of Engineers to wear disposable dust masks to prevent mud and dirt splatter to their mouth and surrounding facial areas.

December 9, 1988, Project Phase: Exploratory Soil Testing for Radioactivity Levels, Summary: Argonne National Laboratory conducted a survey of the entire 105/107 East Stratford Avenue lot and surrounding private properties to determine the extent of subsurface radioactive contamination.

January 9, 1989, Project Phase: Addendum Number 2, Remediation

of Contaminated Soil, 105/107 East Stratford Avenue Lot, Summary: Safety procedures established for the removal of a 1,000 gallon underground heating oil storage tank located on the west side of the 105 East Stratford lot to include atmospheric sampling for explosive gas concentration, draining operations, and disposal.

February - March, 1989, Project Phase: Addendum Number 1 - 6, Sanitary Sewer Sample Collection, Summary: Argonne National Laboratory, using nondestructive methods, surveyed the sanitary sewer on East Stratford Avenue and North Union Avenue to include the associated manholes for radiological contamination. These surveys were conducted on February 17, 20, 21, 22, 23, and on March 10, 1989. The addendum to the Phase Hazard Analysis was used as a "Confined Space Entry Permit" for survey activities conducted on each of the above days.

March 1, 1989, Project Phase: U.S. Army Corps of Engineers Exploratory Soil Testing, Summary: Baltimore District under technical direction from Argonne National Laboratory conducted soil boring for subsurface radioactive contamination through the pavement on North Union Avenue to determine if Radium-226 concentration exceeded 5 pCi/gram above the local natural background concentration.

March 10, 1989, Project Phase: Stratford Avenue Sewer Line Replacement, Summary: A new eight inch vitrified clay sewer line was installed parallel to the existing East Stratford Avenue line, with the establishment of a new manhole.

SUMMARY OF TOOL BOX SAFETY DISCUSSIONS

FOR SUIL REMEDIATION

Topics Presented

- Phase Hazard Analysis, Test Methodologies for Soil Excavation.
- 2. Standing Operating Procedures for Cold Stress Prevention.
- 3. Safe Work Practices for Soil Excavation.
- 4. Winter Driving Safety.
- 5. Safety Procedures for Entry into B-25 Boxes.
- 6. Safe Work Practices for Poclain Use.
- 7. Procedure for Obtaining Whole Body Counts.
- B. Decontamination Responsibilities for Personal Clothing and Boots.
- First Aid Services and Relocation of Aid Station.
- 10. Lansdowne Avenue Sewer Construction Activities.
- 11. Establishment of Clean Zones within the Control Area.
- 12. Safe Work Practices within the Control Area.
- 13. Safe Work Practices for Sewer Excavation Activities.
- 14. Exit Medical Examinations and Whole Body Counts.

APPENDIX 6-G

SITE MAPS

6-G-341

LANSDOWNE RADIOACTIVE RESIDENCE COMPLEX 105 - 107 EAST STRATFORD AVENUE

فعلاما المخيصها والمراجعين بأدم كالشاباة والأنجين كالمحالية المتعالية والمتحاط كمويط والتكلط ملهوبه الإنجاء والم

FIGURE S.2 LOCATION OF ENVIRONMENTAL CAM STATIONS
6-G-342

LANSDOWNE

RADIOACTIVE RESIDENCE COMPLEX DISMANTLEMENT/REMOVAL PROJECT

RADIOLOGICAL CLOSEOUT REPORT

CHEM-NUCLEAR SYSTEMS, INC. 220 STONERIDGE DRIVE COLUMBIA, SOUTH CAROLINA

CHAPTER 7
INSTRUMENTATION

INSTRUMENTATION DATA SUMMARY

TABLE OF CONTENTS

Sect	ion													Pag	e No.
1.0	INTRODUCTION.	•	•	•	•	•	•	•	•	•	•	•	•	•	7-1
2.0	GENERAL	•	•	•	•	•	•	•	•	•	•	•	•	•	7-1
3.0	INSTRUMENTATIO	N.			•	•		•		•	•	•			7-1

1.0 INTRODUCTION

The instruments utilized on this project included gamma scintillation detectors, alpha scintillation detectors, Geiger-Mueller detectors, gas proportional meters, and ion chambers. This section summarizes how each instrument was used and what types of checks were performed to insure the accuracy of that performance.

2.0 GENERAL

In accordance with the Contractor's Quality Control Plan, daily response checks were performed and documented for all portable survey instruments.

Instruments were sent to an off-site facility on a semi-annual basis to be calibrated against standards traceable to the National Institute of Standards and Technology. Each day of use, ten one-minute source checks were made on each portable instrument. These ten readings were used to generate an operational range for each instrument. The acceptable operational range was within two standard deviations of the mean, based on the ten one-minute source checks. The operational range values for each instrument were typically recalculated on a bi-weekly basis, immediately following return from repair, or when other external conditions such as a change in background level made the calculated range obsolete. In the event that the equipment did not meet the daily pre-utilization response check requirements or failed in use, the instrument was withdrawn from use and labeled "Hold For Inspection". If the instrument was found to be defective, it was returned to the CNSI Barnwell facility, in the case of CNSI equipment, or a certified vendor in the case of rental equipment, for repair and recalibration. records of pre-utilization response checks were maintained.

3.0 INSTRUMENTATION

3.1 GEIGER-MUELLER DETECTORS

The Geiger-Mueller detectors used at this site included the Ludlum 44-9, Eberline HP-260, and Eberline HP-210. These detectors were used with the Ludlum-177, Eberline E-120, Eberline RM-14, or Eberline RM-21-1 ratemeters. An Eberline BC-4 scaler, which has a built in detector, was also used. These instruments detect beta and gamma radiation, and are highly sensitive. Because of their sensitivity, they were used at the access control point to detect contamination on personnel. The BC-4 scaler was used for analyzing swipes. Other uses at Lansdowne consisted of surveying rubble, controlled release of tools and equipment, and free release

of all tools and equipment used at the site. All instruments were response checked, daily prior to utilization, with a Tc-99 source having an activity of 18,200 disintegrations per minute (DPM). Detection efficiency was calculated by dividing the counts per minute (CPM) by the DPM of the source. The average efficiency of these instruments ranged from 13 and 16 percent.

3.2 ALPHA SCINTILLATION DETECTORS

The alpha scintillation detectors used at this site were two M-2000 alpha scalers. They were used to analyze air samples, water samples, and swipe samples. To insure the accuracy of their performance, reliability factors were calculated on a daily basis, and documented. To determine a reliability factor, a series of 10 one-minute source counts were made with a Th-230 source having an activity of 13,700 DPM. The average count was calculated, as well as the standard deviation. The reliability factor was calculated by dividing the standard deviation by the square root of the average. The reliability factor was acceptable if the value was greater than 0.64 and less than 1.22.

Once the reliability factors were determined to be in the acceptable range, instrument detection efficiencies were determined. The average efficiency of these instruments ranged between 29 and 33 percent. Variations in the calculated efficiency of greater than 1.5% in consecutive calculations was considered suspect, and the operational status of the instruments was investigated further. Each time the instrument was repaired and re-coated with phosphorous material, the efficiency changed.

3.2 GAMMA SCINTILLATION DETECTORS

The gamma scintillation detectors used at the site included the Ludlum-44-10 and the Eberline SPA-3, both of which use 2" by 2" NaI(Tl) crystals. The detectors were used with the Ludlum-2220 and Eberline ESP-1 portable scaler/ratemeters. The Opposed Crystal System (OCS), which uses two 3" by 3" NaI(Tl) crystals connected to an MCA, was used in the laboratory trailer to analyze soil samples. Gamma scintillation detectors provide a sensitive method for detecting low levels of low energy gamma radiation. Cross-correlating the scintillation detectors with the Reuter-Stokes RS-111 Pressurized Ionization Chamber (PIC) provided the capability of converting the observed count rate readings to exposure rate in micro-roentgen per hour. Data from these correlations is shown in Appendix P at the end of Chapter 6.

3. OPPOSED CRYSTAL SYSTEM

The Opposed Crystal System is a gamma spectroscopy system developed by Argonne National Laboratories and successfully utilized for the Department of Energy by Chem-Nuclear Systems, Incorporated since 1983. The gamma spectroscopy system used for the Lansdowne Project consisted of a Canberra Model 35 Plus Multichannel analyzer with two Bicron Model 3M3 3 inch by 3 inch Sodium Iodide detectors.

The Opposed Crystal System was utilized at Lansdowne for analyzing all soil samples, using the following procedure. Samples were collected and placed into aluminum, teflon coated cans, which were then weighed. The sample was counted in the Opposed Crystal System for a period of 500 This was an initial count which was used to estimate the soil activity. The initial count was useful when making decisions regarding the need to continue excavation in an area. After the initial count, the can was sealed to allow the radium daughters to ingrow and come to equilibrium over a period of at least twenty days. After at least twenty days, the sample was again counted to get the final radium concentration based on measurement of the Bi-The Opposed Crystal System had a minimum 214 daughter. detectable activity of 1.046 picocuries per gram.

3.5 GAS PROPORTIONAL METERS

The gas proportional meters used at this site were PAC-4G's with AC-21 probes. The AC-21 is an alpha detector, and the PAC-4G is a ratemeter. This instrument was utilized for surveys to free release furniture and personal property belonging to the owners of the 105/107 structure. It was also used to determine initial CPM values on air samples taken in the field.

3.6 IONIZATION CHAMBERS

The ionization meters used at this site were the Eberline E-520, the Reuter-Stokes RS-111 Pressurized Ionization Chamber, and Self Reading Pocket Dosimeters (SRPD). The ionization chamber differs from the other instruments used at the site in that it measures gamma exposure rates rather than gamma events.

The E-520's were used for determining contact dose rates in the structures as part of the determination of whether tarpaulins or containments would be necessary for dismantlement, and for dose rating B-25 boxes prior to shipment. The Pressurized Ionization Chamber was used for determining dose rates in work areas prior to soil excavation, and for cross-correlating the

gamma-scintillometers.

In accordance with Appendix D of the Contractor's Quality Control Plan, SRPD's were available to all on site personnel and visitors upon specific request. While the gamma radiation levels encountered on site were greater than background gamma radiation levels, the typical external dose to workers did not exceed 500 millirem per year, which is the limit for nonoccupationally exposed personnel.

3.7 CONTINUOUS AIR MONITORS

Throughout the remedial action phase of the project, the site utilized seven Continuous Air Monitors (CAM's) which monitored for alpha radiation and five Continuous Air Monitors (CAM's) which monitored for beta-gamma radiation. This group included several units used as backup and to replace units sent off-site for repair or calibration. The units were operated in the following manner:

Air was drawn through a 0.8 micron glass fiber filter which was continuously monitored by a built-in detector. The detector data was output to a printer, which logged the real-time reading of the airborne concentration on a strip recorder.

These instruments provided a graphic representation of the relative airborne concentration. While they provide an excellent method for analyzing an increasing, steady, or decreasing trend in the airborne concentration, they are not designed to provide a quantitative measurement. Therefore, gross alpha and radiochemical analysis of the filters which were used in the CAM(s) was performed. In this way a quantitative measurement of the environmental airborne concentrations was made.