

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SÃO PAULO

Campus São Paulo

SAU PAULU			
Aluno: Igor Domingos da Silva Mozetic		Prontuário: SP3027422	Nota
Curso: Informática	Ano/Semestre: 2020 / 3º Bimestre.		
Avaliação: 2ª Lista de Exercícios - QUI	Professores: Gouveia/Matsumoto	Código Disciplina: QUI	

INSTRUÇÕES:

A resposta deve ser acompanhada da linha de raciocínio utilizada na resolução da questão.

SOLUÇÕES - Densidade de solução, título e porcentagem

1. Em um procedimento laboratorial, obedecendo às medidas de segurança necessárias, 200 g de KOH foram dissolvidos em 800 mL de água, fornecendo 840 mL de solução. Calcule:

a) a concentração da solução expressa em g/L;

Resposta:

Dados:

200 g de KOH

800 mL ou 0,8L de H₂O

840 mL ou 840 cm3 ou 0,84 de solução

$$C = \frac{m}{v} \rightarrow C = \frac{200g}{0.84L} \rightarrow C = 238g/L$$

b) a densidade da solução expressa em g/L e em g/cm³

Resposta:

Dados:

200 g de KOH

800 mL ou 0,8L de H₂O

840 mL ou 0,84 de solução

$$d = \frac{m}{v} \rightarrow d = \frac{800g + 200g}{840cm} \rightarrow d = \frac{1000g}{840cm} \rightarrow d = 1,190g/cm^3 \rightarrow d = 1190g/L$$

2. O principal componente do vinagre é o ácido acético (massa molar 60 g/mol), cuja faixa de concentração deve se situar entre 4% a 6% (m/v). Em um teste de controle de qualidade realizado pelos alunos do curso integrado em informática do IFSO-SPO, foram analisadas cinco marcas de diferentes vinagres, e as concentrações de ácido acético, em mol/L, se encontram na tabela abaixo.

Amostra	1	2	3	4	5
Concentração de ácido acético (mol/L)	0,007	0,070	0,150	0,400	0,700

Determine qual amostra de vinagre se encontra dentro do limite de concentração tolerado de ácido acético.

Resposta:

Dados 60g/mol de ácido acético

```
Limite mínimo = 4% (m/v) 

4g \rightarrow 100 \text{mL} \rightarrow x = 40 \text{g/L} \ 1 \ \text{mol} \rightarrow 60 \text{g} \rightarrow x = 0,670 \ \text{mol} 

x \rightarrow 1000 \text{mL} x \ \text{mol} \rightarrow 40 \text{g} 

Limite máximo = 6% (m/v) 

6g \rightarrow 100 \text{mL} \rightarrow x = 60 \text{g/L} \ 1 \ \text{mol} \rightarrow 60 \text{g} \rightarrow x = 1 \ \text{mol} 

x \rightarrow 1000 \text{mL} x \ \text{mol} \rightarrow 60 \text{g}
```

Como o intervalo ficou entre 0,670 e 1 mol, a única amostra dada que contém a concentração entre as duas extremidades é a amostra 5.

3. Uma solução cuja densidade é igual a 1,25 g/cm³ foi preparada pela adição de 160 g de KI em 760 mL de água. Determine a concentração dessa solução expressa em g/dm³.

Resposta:

d = 1,25g/cm³ ou 0,00125g/dm³
m = 160g
v = 760mL ou 0,76L
d =
$$\frac{m}{v} \rightarrow$$
 1,25g/cm³ = $\frac{760 + 160}{x} \rightarrow$ 1,25g/cm³ = $\frac{920g}{x} \rightarrow$ x = $\frac{920g}{1,25g/cm3} \rightarrow$ x = 736cm³ ou 736mL \rightarrow x = 0,736dm³
c = $\frac{m}{v} \rightarrow$ c = $\frac{160g}{0.736dm3} \rightarrow$ c = 217,391g/dm³