שם המגיש: עומר גרייף

2082000154 : ת"ז

תאריך הגשה: 04/07/23

: IPSEC - 1 שאלה

1. התרחיש שתואר אפשרי במידה וd מתפקד getway tunnel_mode בנוסף להיותו ipba socketh IPI IPsec של socketh gwa וPi IPsec של המקורית נעטפת בשכבה של gwab gwa לamp עם gwA. כלומר הפקטה שתצא מd תתעטף אצלו ותעבור דרך gwab שם תבדק נכונות הIP ומשם הפקטה תעבור לa המבוקש השורה המתאימה:

rule	direction	Src.	Dst.	protocol	Src.	Dst.	ack	action	Additional
		adrs	adrs		port	port			Parameters
Forwarding out secure b	out	IPb	IPgwA	IPSEC	ANY	ANY	ANY	forward	

- 2. תכני ה SAD אינם תקינים מכיוון שהפרוטוקולים המצוינים בטבלת SAD של כל אחד מהשל GW אינם מתאימים ועל כן הGW יזרוק את החבילות ולא יוכל לאמת ולוודא את תוכנן. כלומר, בעת שליחת פקטה כאשר היא תעבור בGWB היא תעבור הצפנה וחתימה כחלק מפרוטוקול ESP אבל כאשר היא תקלט בGWA היא תיזרק עקב אי תאימות לפרוטוקול שמצפה לקבל AH.
- 3. כעת תכני הSAD תקינים זאת מכיוון שהפקטה שנשלחת מקיימת את כל התנאים הבאים: ראשית הSPI היוצא אכן מתאים לSPI הנכנס, הפרוטוקולים זהים במוד תעלה הבאים: ראשית הSPI זהה עבור שניהם ועל כן הפקטה תצליח לעבור את אימות הGWD. עם זאת מבחינת הצפנה הפרוטוקול אינו בטוח מכיוון שמופיע הערך null_siper שמהווה אינדיקציה לכך.
- 4. ראשית נבחין כי הטבלאות תקינות, תואמות ובעלי מפתחות הצפנה כך שהפרוטוקול יכול לפעול בהצלחה. עם זאת ישנו חסרון משמעותי בערכים הנתונים מכיוון שהמפתחות הצפנה והפענוח למפתחות נכנסים ויוצאים זהים. דבר שתוקף יכול לנצל למשל על ידי התקפת, תוקף יכול לתפוס פקטה בתעבורה מB לA למשל ולשנות לה את כתובת הPI החיצונית שאינה מוצפנת שתהא מGWB לGWA. הפקטה בסיכוי סביר תאושר מכיוון שהיא תענה על כל הקריטריונים (בהנחה ש sequnce_number מתקיים) ועל ידי כך לחדור את GWB עם פקטה שלא הייתה אמורה לחדור.

צריך להיות גדול מ1023 ולא קטן. עבור פקטות שיוצאות בגלל שעוברים קודם בSPD וזה עוד לפני שינויים כלשהם במעטפת הפקטה הכל קשורה.

rule	direction	Src.	Dst.	protocol	Src.	Dst.	ack	action	Additional
		adrs	adrs		port	port			Parameters
http out	out	b	а	AH	<1023	80	ANY	secure	Tunnel
									Mode to
									GWA, ESP
http in	in	а	b	AH	80	<1023	ANY	secure	Tunnel
									Mode to
									GWA, ESP

SSL - 2 שאלה

- 1. הפרוטוקול מקיים את תכונת PFS. כלומר חשיפה של מפתח מסוים לא תוביל לגילו מפתח שהיה בשימוש. בפרוטוקול הנ"ל קיימת סיסמה ארוכת טווח שיא pass שמוסכמת על ידי שהיה בשימוש. בפרוטוקול הנ"ל קיימת סיסמה ארוכת טווח שיא DH להתקשרות כך שלאחר המשתמש ובעזרתה הלקוח מעביר את החלק שלו במפתח Pass בשיח הנוכחי והערכים שנקבעו ה pass של יצירת מפתחות DH אין שימוש בסיסמה pass בשיח הנוכחי והערכים שנקבעו לו לא מושפעים מערכי הpass. בנוסף המפתח של הemaster שממנו נגזר המפתח של הesssion. בסיום תהליך היצירה נהוג להשמיד את מפתחות DH כדי למנוע כל יכולת שחזור של מפתחות אלו ועל כן הם יהוו סיסמא טווח קצר ומתוקף כל אי התליות אכן מתקיים עקרון הPFS.
- 2. הפרוטוקול בטוח, מכיוון שהשרת והלקוח מסכימים על master_key שנשאר רלוונטי רק לחסכימים ומועבר באופן מוצפן בהתבסס על Session בנוסף גם סיסמא ארוכת session הרלוונטי ומועבר באופן מוצפן בהתבסס על DH של הלקוח לשרת, כלומר לא עוברת באופן גלוי ברשת כך שניסיונות התקפה אקטיביים לא יוכלו לקבל את התוכן או ליצור התחזות כלשהי.
- 3. הפרוטוקול עמיד בפני תקיפת מילון מתוקף פסיבי מכיוון שהצירופים היחידים שיכולים להיות משמעותיים עבור התוקף הם הצירופים המוצפנים של מפתח DH ושל pre_master_key . עם זאת הוא לא יכול לקבל אתpre_master_key מכיוון שהוא מוצפן על ידי DH שחלקו בעצמו מוצפן על ידי ה-pass. כל ניסיון פסיבי (על ידי האזנה בלבד) לפענוח חלק זה לא יישא פרי שכן באף שלב החלק המוצפן של מפתח DH לא עובר בצורה גלויה ועל כן לא ניתן לבדוק את הפענוח.
- 4. הפרוטוקול לא עמיד בפני תקיפת מילון אקטיבית. למשל התוקף יכול להתחזות לשרת ולשלוח לו ערכים מתאימים ובפרט עם חלק ממפתח DH שלו כך שהלקוח יחזיר לו את הודעות 3 ו4 שמכילות את המפתח המוצפן של החלק של הלקוח בPre_master_secret ועל מוצפן DAS. כעת התוקף יכול לבצע התקפת מילון של ערכים ידועים עבור הסיסמא g^ymodp שממנו ייגזר די כך למצוא את g^ymodp שממנו ייגזר א שממנו יגזר מלומר מכיוון שאין לנו את g^ymodp התקפת מילון סטנדרטית לא תעזור כי finish_client. כלומר מכיוון שאין לנו את finish שניתן לבדוק האם הערך שאנו מנחשים מגיע להתאמה עם ערך זה ועל כן לאפשר התחזות וגילו 8.

5. כעת הפרוטוקול בטוח מכיוון שכפי שהסברתי בסעיף הקודם הסמכנו על ידיעת הfinish של הלקוח על מנת לאפשר בדיקת ניסיונות של התקפת המילון. כעת מכיוון שעלינו להעביר finish מהשרת בטרם קיבלנו הודעת finish מהלקוח לא נוכל להשוות את הנתונים ולהצליח להתחזות לשרת. בנוסף הכיוון ההפוך של התחזות ללקוח גם אינה אפשרית מכיוון שאין ברשותנו את הpass ועל כן אנו אמורים להעביר מפתח dh בתחילת ההתקשרות מוצפן בהתאם לpass.

Wireless Security - 3 שאלה

:EAP-Request/Challenge .1

AS to router

PSEC מוצפן ומאומת על ידי שכבה – APP	(מוצפן*) Challenge
- מוצפן ומאומת על ידי שכבה TRANSPOT	UDP
IPSEC	Next Protocol -> Radius over EAP
IPSEC	TYPE: ESP Next protocol -> UDP
IP	IP_{AS} to IP_{router}
	Next protocol -> IPSEC
PHYS+MAC	$\mathit{MAC}_{\mathit{AS}}$ to MAC_{router}

router to AP

וPSEC מוצפן ומאומת על ידי שכבה – APP	(מוצפן*)Challenge
- מוצפן ומאומת על ידי שכבה TRANSPOT	UDP
IPSEC	Next Protocol -> Radius over EAP
IPSEC	TYPE: ESP Next protocol -> UDP
IP	IP_{AS} to IP_{AP}
	Next protocol -> IPSEC
PHYS+MAC	MAC_{router} to MAC_{AP}

AP to laptop

Challenge
UDP
IP_{AS} to IP_{AP}
Next protocol -> UDP
MAC_AP to $\mathit{MAC}_\mathit{laptop}$

: PMK הודעת.**2** AS to router

IPSEC מוצפן ומאומת על ידי שכבה – APP	(מוצפן PMK (מוצפן)
מוצפן ומאומת על ידי שכבה - TRANSPOT	UDP
IPSEC	Next Protocol -> Radius over EAP
IPSEC	TYPE: ESP Next protocol -> UDP
IP	IP_{AS} to IP_{router}
	Next protocol -> IPSEC
PHYS+MAC	MAC_{AS} to MAC_{router}

Router to AP

IPSEC מוצפן ומאומת על ידי שכבה – APP	(מוצפן PMK (מוצפן)
- מוצפן ומאומת על ידי שכבה - TRANSPOT	UDP
IPSEC	Next Protocol -> Radius over EAP
IPSEC	TYPE: ESP Next protocol -> UDP
IP	IP_{AS} to IP_{AP}
	Next protocol -> IPSEC
PHYS+MAC	MAC_{router} to $\mathit{MAC}_{\mathit{AP}}$

3. בקשת HTTP שנשלחת כמתואר:

Laptop to AP

APP	TYPE: HTTP data
TRANSPOT	TYPE: TCP dest_port: 80
	orig_port:<1024 Next protocol->
	http
IP	IP_{laptop} to IP_{google}
	ack:yes
	Next protocol -> TCP
PHYS+MAC	MAC_{laptop} to $\mathit{MAC}_{\mathit{AP}}$

AP to router

	ta
— ·	
024 Next protocol-> h	ttp
ack: _\	/es
to IP_{google}	
Next protocol -> T	СР
MAC_{AP} to MAC_{rou}	ter
	TYPE: TCP dest_port: 024 Next protocol-> had ack:yeto IP_{google} Next protocol -> T MAC_{AP} to MAC_{row}

Router to ... to google

TYPE: HTTP data	APP
TYPE: TCP dest_port: 80	TRANSPOT
rig_port:<1024 Next protocol-> http	
ack:yes	
IP_{router} to IP_{google}	IP
Next protocol -> TCP	
MAC_{router} to MAC_{google}	PHYS+MAC
nge many MACS before get google)	