Rob J Hyndman George Athanasopoulos

FORECASTING PRINCIPLES AND PRACTICE

9. ARIMA models

9.5 Non-seasonal ARIMA models
OTexts.org/fpp3/

AR: autoregressive (lagged observations as inputs)

I: integrated (differencing to make series stationary)

MA: moving average (lagged errors as inputs)

AR: autoregressive (lagged observations as inputs)

I: integrated (differencing to make series stationary)

MA: moving average (lagged errors as inputs)

An ARIMA model is rarely interpretable in terms of visible data structures like trend and seasonality. But it can capture a huge range of time series patterns.

Autoregressive Moving Average models:

$$y_{t} = c + \phi_{1}y_{t-1} + \dots + \phi_{p}y_{t-p}$$
$$+ \theta_{1}\varepsilon_{t-1} + \dots + \theta_{q}\varepsilon_{t-q} + \varepsilon_{t}.$$

Autoregressive Moving Average models:

$$y_{t} = c + \phi_{1}y_{t-1} + \dots + \phi_{p}y_{t-p}$$
$$+ \theta_{1}\varepsilon_{t-1} + \dots + \theta_{q}\varepsilon_{t-q} + \varepsilon_{t}.$$

- \blacksquare Predictors include both **lagged values of** y_t **and lagged errors.**
- Conditions on AR coefficients ensure stationarity.
- Conditions on MA coefficients ensure invertibility.

Autoregressive Moving Average models:

$$y_{t} = c + \phi_{1}y_{t-1} + \dots + \phi_{p}y_{t-p}$$
$$+ \theta_{1}\varepsilon_{t-1} + \dots + \theta_{q}\varepsilon_{t-q} + \varepsilon_{t}.$$

- \blacksquare Predictors include both **lagged values of** y_t **and lagged errors.**
- Conditions on AR coefficients ensure stationarity.
- Conditions on MA coefficients ensure invertibility.

Autoregressive Integrated Moving Average models

- Combine ARMA model with differencing.
- \blacksquare $(1 B)^d y_t$ follows an ARMA model.

Autoregressive Integrated Moving Average models

ARIMA(p, d, q) model

AR: p = order of the autoregressive part

I: d =degree of first differencing involved

MA: q = order of the moving average part.

- White noise model: ARIMA(0,0,0)
- Random walk: ARIMA(0,1,0) with no constant
- Random walk with drift: ARIMA(0,1,0) with const.
- \blacksquare AR(p): ARIMA(p,0,0)
- \blacksquare MA(q): ARIMA(0,0,q)

Backshift notation for ARIMA

ARMA model:

$$\mathbf{y}_{t} = \mathbf{c} + \phi_{1}\mathbf{B}\mathbf{y}_{t} + \dots + \phi_{p}\mathbf{B}^{p}\mathbf{y}_{t} + \varepsilon_{t} + \theta_{1}\mathbf{B}\varepsilon_{t} + \dots + \theta_{q}\mathbf{B}^{q}\varepsilon_{t}$$
or
$$(1 - \phi_{1}\mathbf{B} - \dots - \phi_{p}\mathbf{B}^{p})\mathbf{y}_{t} = \mathbf{c} + (1 + \theta_{1}\mathbf{B} + \dots + \theta_{q}\mathbf{B}^{q})\varepsilon_{t}$$

ARIMA(1,1,1) model:

Backshift notation for ARIMA

ARMA model:

$$y_t = c + \phi_1 B y_t + \dots + \phi_p B^p y_t + \varepsilon_t + \theta_1 B \varepsilon_t + \dots + \theta_q B^q \varepsilon_t$$
or
$$(1 - \phi_1 B - \dots - \phi_p B^p) y_t = c + (1 + \theta_1 B + \dots + \theta_q B^q) \varepsilon_t$$

ARIMA(1,1,1) model:

$$(1 - \phi_1 B)$$
 $(1 - B)y_t = c + (1 + \theta_1 B)\varepsilon_t$
 \uparrow \uparrow \uparrow \uparrow
AR(1) First MA(1)
difference

Expand: $y_t = c + y_{t-1} + \phi_1 y_{t-1} - \phi_1 y_{t-2} + \theta_1 \varepsilon_{t-1} + \varepsilon_t$

R model

Intercept form

$$(1 - \phi_1 B - \dots - \phi_p B^p) y_t' = c + (1 + \theta_1 B + \dots + \theta_q B^q) \varepsilon_t$$

Mean form

$$(1 - \phi_1 B - \dots - \phi_p B^p)(y_t' - \mu) = (1 + \theta_1 B + \dots + \theta_q B^q)\varepsilon_t$$

- $y_t' = (1 B)^d y_t$
- \blacksquare μ is the mean of \mathbf{y}'_t .
- $c = \mu(1 \phi_1 \cdots \phi_p).$
- fable uses intercept form

6

```
global_economy |>
  filter(Code == "EGY") |>
  autoplot(Exports) +
  labs(y = "% of GDP", title = "Egyptian Exports")
```



```
fit <- global_economy |>
 filter(Code == "EGY") |>
 model(ARIMA(Exports))
report(fit)
## Series: Exports
## Model: ARIMA(2,0,1) w/ mean
##
## Coefficients:
##
          ar1 ar2 ma1 constant
## 1.676 -0.8034 -0.690 2.562
## s.e. 0.111 0.0928 0.149 0.116
##
## sigma^2 estimated as 8.046: log likelihood=-142
## AIC=293 AICc=294 BIC=303
```

```
fit <- global economy |>
 filter(Code == "EGY") |>
 model(ARIMA(Exports))
report(fit)
## Series: Exports
## Model: ARIMA(2,0,1) w/ mean
##
## Coefficients:
##
          ar1 ar2 ma1 constant
  1.676 -0.8034 -0.690 2.562
##
## s.e. 0.111 0.0928 0.149 0.116
##
## sigma^2 estimated as 8.046: log likelihood=-142
```

ARIMA(2,0,1) model:

$$y_t = 2.56 + 1.68y_{t-1} - 0.80y_{t-2} - 0.69\varepsilon_{t-1} + \varepsilon_t,$$

where ε_t is white noise with a standard deviation of 2.837 = $\sqrt{8.046}$.


```
fit |>
  forecast(h = 10) |>
  autoplot(global_economy) +
  labs(y = "% of GDP", title = "Egyptian Exports")
```


Understanding ARIMA models

- If c = 0 and d = 0, the long-term forecasts will go to zero.
- If c = 0 and d = 1, the long-term forecasts will go to a non-zero constant.
- If c = 0 and d = 2, the long-term forecasts will follow a straight line.
- If $c \neq 0$ and d = 0, the long-term forecasts will go to the mean of the data.
- If $c \neq 0$ and d = 1, the long-term forecasts will follow a straight line.
- If $c \neq 0$ and d = 2, the long-term forecasts will follow a quadratic trend.

Understanding ARIMA models

Forecast variance and d

- The higher the value of d, the more rapidly the prediction intervals increase in size.
- For d = 0, the long-term forecast standard deviation will go to the standard deviation of the historical data.

Cyclic behaviour

- For cyclic forecasts, $p \ge 2$ and some restrictions on coefficients are required.
- If p = 2, we need $\phi_1^2 + 4\phi_2 < 0$. Then average cycle of length $(2\pi)/\left[\arccos(-\phi_1(1-\phi_2)/(4\phi_2))\right]$.

Partial autocorrelations

Partial autocorrelations measure relationship between y_t and y_{t-k} , when the effects of other time lags $-1, 2, 3, \ldots, k-1$ — are removed.

Partial autocorrelations

Partial autocorrelations measure relationship

between y_t and y_{t-k} , when the effects of other time lags $-1, 2, 3, \ldots, k-1$ — are removed.

```
\alpha_k = kth partial autocorrelation coefficient
= equal to the estimate of \phi_k in regression:
y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \cdots + \phi_k y_{t-k} + \varepsilon_t.
```

Partial autocorrelations

Partial autocorrelations measure relationship

between y_t and y_{t-k} , when the effects of other time lags $-1, 2, 3, \ldots, k-1$ — are removed.

$$\alpha_k$$
 = kth partial autocorrelation coefficient
= equal to the estimate of ϕ_k in regression:
 $y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \cdots + \phi_k y_{t-k} + \varepsilon_t$.

- Varying number of terms on RHS gives α_k for different values of k.
- $\alpha_1 = \rho_1$
- **same** critical values of $\pm 1.96/\sqrt{T}$ as for ACF.
- Last significant α_k indicates the order of an AR model.

```
egypt <- global_economy |> filter(Code == "EGY")
egypt |> ACF(Exports) |> autoplot()
egypt |> PACF(Exports) |> autoplot()
```



```
global_economy |>
  filter(Code == "EGY") |>
  gg_tsdisplay(Exports, plot_type = "partial")
```


AR(1)

$$\rho_k = \phi_1^k$$
 for $k = 1, 2, ...$;
 $\alpha_1 = \phi_1$ $\alpha_k = 0$ for $k = 2, 3, ...$

So we have an AR(1) model when

- autocorrelations exponentially decay
- there is a single significant partial autocorrelation.

AR(p)

- ACF dies out in an exponential or damped sine-wave manner
- PACF has all zero spikes beyond the pth spike

So we have an AR(p) model when

- the ACF is exponentially decaying or sinusoidal
- \blacksquare there is a significant spike at lag p in PACF, but none beyond p

MA(1)

$$\rho_1 = \theta_1/(1 + \theta_1^2) \qquad \rho_k = 0 \qquad \text{for } k = 2, 3, ...;$$

$$\alpha_k = -(-\theta_1)^k/(1 + \theta_1^2 + \dots + \theta_1^{2k})$$

So we have an MA(1) model when

- the PACF is exponentially decaying and
- there is a single significant spike in ACF

MA(q)

- PACF dies out in an exponential or damped sine-wave manner
- ACF has all zero spikes beyond the qth spike

So we have an MA(q) model when

- the PACF is exponentially decaying or sinusoidal
- \blacksquare there is a significant spike at lag q in ACF, but none beyond q