Name:	key

You must show your work to get full credit.

1. Show that $11^n - 1$ is divisible by 10 for all $n \ge 0$.

Base acre
$$11^{0}-1=1-1=0$$
 is divisible by 10

Induction step show $10|(11^{k}-1)=0$ $10|(11^{k+2}-1)$

Assume $10|(11^{k}-1)$. Then $11^{2}-1=102$ for some 2 . That $15|1|^{2}=102+1$

Then $11^{k+1}-1=11\cdot 11^{k}-1$
 $=1102+10$
 $=102+10$
Thus $10|(11^{k+2}-1)$

2. Show that $n^3 < 3^n$ for all $n \ge 4$.

We that
$$n^3 < 3^n$$
 for all $n \ge 4$.

Buse Cure $n = 4 + 4^3 = 64 < 3^4 = 81$

Enduction step show $k^3 < 3^k = 3^{k+1}3^3 < 3^{k+1}$

Agsume $k^3 < 3^k$. Multiple both sides of this by $(1+k)^3 = (\frac{k+1}{2})^3$
 $k^3 (\frac{n+1}{2})^3 < 3^k (\frac{n+1}{2})^3$

ie $(n+1)^3 < 3^k (\frac{n+1}{2})^3$

ie $(n+1)^3 < 3^k (\frac{n+1}{2})^3$

if $(n+1)^3 = (\frac{n+1}{2})^3 < (1+\frac{1}{2})^3 = (\frac{n+1}{2})^3 = (\frac{n+1}{2})^3$

(k+1)3<38,3=34+1.