Poznámka (Exam)

Oral, similar as in FA1.

Poznámka (Credit) Similar as in FA1.

1 Banach algebras

1.1 Basic properties

Definice 1.1 (Algebra)

 $(A, +, -, 0, \cdot_S, \cdot)$ is algebra over \mathbb{K} , if

- $(A, +, -, 0, \cdot_S)$ is vector space over \mathbb{K} ;
- $(A, +, -, 0, \cdot)$ is ring (that is we have $a \cdot (b+c) = a \cdot b + a \cdot c$, $(a+b) \cdot c = a \cdot c + b \cdot c$ and $(a \cdot b) \cdot c = a \cdot (b \cdot c)$);
- $\forall \lambda \in \mathbb{K} \ \forall x, y \in A : \lambda(x \cdot y) = (\lambda x)y = x(\lambda y).$

Důsledek

1) $e \in A$ is left unit $\equiv e \cdot a = a$, right unit $\equiv a \cdot e = a$, unit $\equiv a \cdot e = e \cdot a = a$ ($\forall a \in A$).

If e_1 is left unit and e_2 is right unit, then $e_1 = e_2$ is unit. $(e_1 = e_1 \cdot e_2 = e_2)$

2) (Algebra) homomorphism $\varphi: A \to B \equiv \varphi$ preserves $+, \cdot, \cdot_S$, that is $\varphi(x+y) = \varphi(x) + \varphi(y)$, $\varphi(x \cdot y) = \varphi(x) \cdot \varphi(y)$ and $\varphi(\alpha \cdot x) = \alpha \cdot \varphi(x)$.

Tvrzení 1.1

Let A be algebra over \mathbb{K} . Put $A_e = A \times \mathbb{K}$ with operations A_e defined coordinate-wise and multiplication defined by

$$(a,\alpha)\cdot(b,\beta):=(a\cdot b+\alpha\cdot b+\beta\cdot a,\alpha\cdot\beta),\qquad a,b\in A\land\alpha,\beta\in\mathbb{K}.$$

Then A_e is algebra with a unit $(\mathbf{o}, 1)$ and $A \equiv A \times \{0\} \subset A_e$. Moreover, if A is commutative, then A_e is commutative.

We have A_e is vector space (from linear algebra). We easy proof from definition, that A_e is algebra, $(\mathbf{o}, 1)$ is a unit in A_e and on $A \times \{0\}$ we have $(a, 0) \cdot (b, 0) = (a \cdot b, 0)$, so $a \mapsto (a, 0)$ is homomorphism. Commutativity is easy too.

Definice 1.2 (Normed algebra)

 $(A, \|\cdot\|)$ is normed algebra $\equiv A$ is algebra and $(A, \|\cdot\|)$ is NLS and $\|a\cdot b\| \leqslant \|a\|\cdot\|b\|$ $(\forall a, b \in A)$.

Definice 1.3 (Banach algebra)

 $(A, \|\cdot\|)$ is Banach algebra $\equiv (A, \|\cdot\|)$ is normed algebra and Banach space.

Například

 $l_{\infty}(I)$ is commutative Banach algebra with a unit (all ones).

If T is Hausdorff topological space, then $C_b(T) = \{f : T \to \mathbb{K} | f \text{ is continuous and bounded}\} \subseteq l_{\infty}(T)$ is closed subalgebra.

If T is locally compact, Hausdorff, not compact. Then $C_0(T) = \{f : T \to \mathbb{K} \text{ continuous } | \forall \varepsilon \} > 0 : \{t \in T \in C_b(T) \text{ is closed subalgebra, which doesn't have unit.} \}$

If X is Banach, dim X > 1, then $\mathcal{L}(X)$, with $S \cdot T := S \circ T$, $S, T \in \mathcal{L}(X)$, is Banach algebra with unit (identity), which isn't commutative.

If X is Banach, dim $X = +\infty$, then $\mathcal{K}(X) \subset \mathcal{L}(X)$ is closed subalgebra which is not commutative and doesn't have unit.

 $(L_1(\mathbb{R}^d), *)$, where * is convolution, is (commutative) Banach algebra (without unit).

 $(l_1(\mathbb{Z}), *)$, where $x * y(n) = \sum_{k=-\infty}^{+\infty} x_k y_{n-k}$ is (commutative) Banach algebra (with unit).

Tvrzení 1.2

If $(A, \|\cdot\|)$ is normed algebra, then $\cdot: A \oplus_{\infty} A \to A$ is Lipschitz on bounded sets.

 \Box $D\mathring{u}kaz$

$$\forall r > 0 : \forall (a, b) \in B_{A \oplus_{\infty} A}(\mathbf{o}, r) \ \forall (c, d) \in B_{A \oplus_{\infty} A}(\mathbf{o}, r) :$$

$$||ab-cd|| \leqslant ||a(b-d)|| + ||(a-c)\cdot d|| \leqslant ||a|| \cdot ||b-d|| + ||a-c|| \cdot ||d|| \leqslant R \cdot (||b-d|| + ||a-c||) \leqslant 2R||(a,b) - (c,d)||.$$

Tvrzení 1.3

Let $(A, \|\cdot\|)$ be a Banach algebra. On A_e we consider the norm

$$\|(a,\alpha)\| := \|a\| + |\alpha|, \qquad (a,\alpha) \in A \times \mathbb{K} = A_e.$$

Then $(A_e, \|\cdot\|)$ is Banach algebra.

 $D\mathring{u}kaz$

It is a Banach space, because $A_e = A \oplus_1 \mathbb{K}$. Now we need only check, that

$$\|(a, \alpha) \cdot (b, \beta)\| \le \|(a, \alpha)\| \cdot \|(b, \beta)\|,$$

which is easy.

Poznámka

There is more (natural) ways to define norm on A_e (unlike \cdot on A_e , which is natural).

A has a unit ... we may still consider A_e .

If $e \in A \setminus \{\mathbf{o}\}$ is a unit, then $||e|| \ge 1$, because $||e|| = ||e^2|| \le ||e||^2$.

Věta 1.4

Let A be a Banach algebra, for $a \in A$ consider $L_a \in \mathcal{L}(A)$ defined as $L_a(x) := a \cdot x$, $x \in A$. Then $I : A \to \mathbb{L}(A)$, $a \mapsto L_a$ is continuous algebra homomorphism, $||I|| \leqslant 1$.

Moreover, if A has a unit e, then I is isomorphism into and I(e) = id.

If $||x^2|| = ||x||^2$, $x \in A$, then I is isometry into.

 $"L_a \in \mathcal{L}(A)$ and $I \in \mathcal{L}(A, \mathcal{L}(A)), ||I|| \leq 1$ ": Linearity is obvious, $||L_a(x)|| = ||a \cdot x|| \leq ||a|| \cdot ||x||$, so $||L_a|| \leq ||a||$ and so $||I|| \leq 1$. Since it is easily I preserves multiplication, so we are left to prove the "Moreover" part.

"A has a unit e": WLOG $A \neq \{\mathbf{o}\}$.

$$\forall a \in A : ||Ia|| = ||L_a|| \geqslant ||L_a\left(\frac{e}{||e||}\right) = \frac{a}{||e||} = \frac{1}{||e||} \cdot a.$$

So I is bounded from below, so I is isomorphism.

$$I(e)(x) = L_e(x) = x$$
, so $I(e) = id$.

Finally, if $||x^2|| = ||x||^2$, $x \in A$, then $\forall a \in A$:

$$||a|| \ge ||I(a)|| = ||L_a|| \ge ||L_a\left(\frac{a}{||a||}\right)|| = \frac{||a^2||}{||a||} = ||a||.$$

So I is isometry.

Poznámka

 $A \neq \{\mathbf{o}\}$ Banach algebra with a unit $\implies \exists$ equivalent norm $\|\cdot\|$ on A such that $(A, \|\cdot\|)$ is Banach algebra and $\|e\| = 1$.

 $D\mathring{u}kaz$

Let $I: A \to \mathcal{L}(A)$ be as before. Put $|\|x\|| := \|I(x)\|$, $x \in A$. Since I is isomorphism, $|\|\cdot\||$ is equivalent norm. Moreover, $|\|x \cdot y\|| = \|I(x \cdot y)\| \le \|I(x)\| \cdot \|I(y)\| = \|\|x\|\| \cdot \|\|y\|\|$, $x, y \in A$. So $(A, |\|\cdot\||)$ is a Banach algebra. Finally

$$|||e||| = ||I(e)|| = ||\operatorname{id}|| = 1.$$

1.2 Inverse elements

Definice 1.4

 (M, \cdot, e) is monoid (\cdot is associative, e is unit). Then invertible elements form a group $(e^{-1} = e, \exists x^{-1}, y^{-1} \implies (x \cdot y)^{-1} = y^{-1} \cdot x^{-1})$; if $x \in M$, and $y \in M$ is its left inverse and $z \in M$ is its right inverse, then y = z is inverse:

$$y = y \cdot e = y \cdot x \cdot z = e \cdot z = z.$$

We denote $M^{\times} := \{x \in M \mid \exists x^{-1}\}\$

Tvrzení 1.5

If (A, \cdot, e) is monoid and $x_1, \dots, x_n \in A$ commute, then $x_1 \cdot \dots \cdot x_n \in A^x \Leftrightarrow \{x_1, \dots, x_n\} \subset A^x$.

 $D\mathring{u}kaz$

It suffices to prove it for n = 2 (and use induction). "If x^{-1} and y^{-1} exists, then $(xy)^{-1}$ is easy from associativity.

If we have $(xy)^{-1}$. Put $z := (xy)^{-1}x$. Then $zy = (xy)^{-1}(xy) = e$, so z is left inverse to y. Next we show that there is also right inverse: Put $\tilde{z} := x(xy)^{-1}$: $y\tilde{z} = (xy)(xy)^{-1} = e$, so \tilde{z} is right inverse. And we already know that if there is left and right inverse, then they are same and they are inverse.

Lemma 1.6

Let A be a Banach algebra with a unit.

•
$$||x|| < 1 \implies \exists (e-x)^{-1} \land (e-x)^{-1} = \sum_{n=0}^{\infty} x^n;$$

•
$$\exists x^{-1} \land \|h\| < \frac{1}{\|x^{-1}\|} \implies \exists (x+e)^{-1} \land \|(x+h)^{-1} - x^{-1}\| \leqslant \frac{\|x^{-1}\|^2 \cdot \|h\|}{1 - \|x^{-1}\| \cdot \|h\|}$$

 $D\mathring{u}kaz$

"First item": We have $||x^n|| \le ||x||^n$, so $\sum_{n=0}^{\infty} x^n$ is absolute convergent series, so $\sum_{n=0}^{\infty} ||x^n|| \le A$. Moreover,

$$(e-x)\cdot\left(\sum_{n=0}^{\infty}x^{n}\right) = \lim_{N\to\infty}(e-x)\cdot(e+x+\ldots+x^{N}) = \lim_{N\to\infty}e-x^{N+1} = e,$$

because $\lim_{N\to\infty} \|x^{n+1}\| \le \lim_{N\to\infty} \|x\|^N = 0$. And similarly $(\sum x^n) \cdot (e-x) = e$.

"Second item": $x+h=x\cdot(e+x^{-1}h)$ we have x^{-1} exists and $(e+x^{-1}h)^{-1}$ exists (from first item), so from previous fact $(x+h)^{-1}$ exists. Moreover

$$(x+h)^{-1} = (e+x^{-1}h)^{-1} \cdot x^{-1} \stackrel{1)}{=} \sum_{n=0}^{\infty} (-x^{-1}h)^n x^{-1},$$

SO

$$\begin{aligned} \|(x+h)^{-1} - x^{-1}\| &= \|\sum_{n=1}^{\infty} \left(-x^{-1}h\right)^n x^{-1}\| \leqslant \|x^{-1}\| \cdot \sum_{n=1}^{\infty} \|x^{-1}h\|^n \leqslant \\ &\leqslant \|x^{-1}\| \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \left(\|x^{-1}\| \cdot \|h\|\right)^n = \|x^{-1}\| \cdot \frac{\|x^{-1}\| \|h\|}{1 - \|x^{-1}\| \cdot \|h\|}. \end{aligned}$$

Důsledek

A Banach algebra with a unit $\implies A^x \subset A$ is open and A^x is topological group.

 $D\mathring{u}kaz$

 $A^x \subset A$ is open by previous lemma (second item). So it remains to prove $x \mapsto x^{-1}$ is continuous:

$$A^{x} \ni x_{n} \to x \in A^{x} \stackrel{?}{\Longrightarrow} x_{n}^{-1} \to x^{-1}.$$

$$\|x_{n}^{-1} - x^{-1}\| \stackrel{h := x_{n} - x}{\leqslant} \frac{\|x^{-1}\|^{2} \cdot \|x_{n} - x\|}{1 - \|x^{-1}\| \cdot \|x_{n} - x\|} \to 0.$$

1.3 Spectral theory

Definice 1.5 (Resolvent set, spectrum and resolvent)

A Banach algebra with a unit, $x \in A$. We define resolvent set of x as $\varrho_A(x) := \{\lambda \in \mathbb{K} | \exists (\lambda \cdot e - x)^{-1} \}$. Next we define spectrum of x as $\sigma_A(x) := \mathbb{K} \setminus \varrho_A(x)$. Finally we define resolvent of x as $R_x : \varrho(x) \to A$, $R_x(\lambda) := (\lambda \cdot e - x)^{-1}$.

If A doesn't have a unit, then notions above are defined with respect to A_e .

Tvrzení 1.7

A Banach algebra

- a) $\forall x \in A : 0 \in \sigma_{A_e}(x)$ (in particular, if A has no unit, then $0 \in \sigma_A(x)$);
- b) A has unit $\implies \sigma_{A_e}(x) = \sigma_A(x) \cup \{0\}.$

 $D\mathring{u}kaz$ (a))

$$\forall (b,\beta) \in A_e : (x,0) \cdot (b,\beta) = (\dots,0) \neq (\mathbf{0},1) \implies \nexists (x,0)^{-1} \implies 0 \in \sigma_{A_e}(x).$$

 $D\mathring{u}kaz$ (b))

By a) we have $0 \in \sigma_{A_e}(x)$. So it suffices: $\forall \lambda \neq 0 : \lambda \in \varrho_A(x) \Leftrightarrow \lambda \in \varrho_{A_e}(x)$. First means $(\lambda \cdot e - x)^{-1}$ exists in A and second means that $((0, \lambda) - (x, 0))^{-1} = (-x, \lambda)^{-1}$ exists in A. We take " $x \to -x$ ".

" \Longrightarrow ": find $(b,\beta) \in A_e$ such that $(x,\lambda) \cdot (b,\beta) = (\mathbf{o},1)$. So $(x \cdot b + \lambda \cdot b + \beta \cdot x, \lambda \cdot \beta) = (\mathbf{o},1)$. So $\beta = \frac{1}{\lambda}$ and $b = -\frac{1}{\lambda}(\lambda e + x)^{-1} \cdot x$. Similarly we find left inverse $\left(-\frac{1}{\lambda}x(x + \lambda e)^{-1}, \frac{1}{\lambda}\right)(x,\lambda)$. And next we prove that they are really inverses.

" = ": Put $(b, \beta) := (x, \lambda)^{-1}$. Then $(\lambda e + x)^{-1} = b + \beta \cdot e$. We have $(x, \lambda) \cdot (b, \beta) = (\mathbf{o}, 1)$, so $\lambda \cdot \beta = 1$ and $x \cdot b + \lambda \cdot b + \beta \cdot x = \mathbf{o}$. Then

$$(\lambda e + x) \cdot (b + \beta \cdot e) = \lambda \cdot b + \lambda \cdot \beta \cdot e + x \cdot b + \beta \cdot x = e.$$

Similarly second inverse.

Věta 1.8

 $\{\mathbf{o}\} \neq A \ complex \ Banach \ algebra, \ x \in A. \ Then \ \sigma(x) \subseteq B_{\mathbb{C}}(0, \|x\|) \ is \ compact, \ nonempty.$

Důkaz

After theory.

Definice 1.6 (Derivative)

Y Banach space, $\Omega \subset \mathbb{K}$, $f:\Omega \to Y$, $a\in\Omega$. Then

$$f'(a) := \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

is the derivative of f at a.

Tvrzení 1.9 (Fact)

 $Y \ Banach, \ \Omega \subset \mathbb{K}, \ f: \Omega \to Y, \ a \in \Omega. \ Then \ f'(a) \ exists \implies f \ is \ continuous \ at \ a \land \forall x^* \in Y^*: (x^* \circ f)'(a) = x^*(f'(a)).$

 $D\mathring{u}kaz$

Continuity: $\lim_{x\to a} f(x) - f(a) = \lim_{x\to a} \frac{f(x) - f(a)}{x - a} \cdot (x - a) = f'(a) \cdot 0 = 0.$

 $x^* \in Y^*$ given, then

$$\lim_{x \to a} \frac{x^*(f(x)) - x^*(f(a))}{x - a} = \lim_{x \to a} x^* \left(\frac{f(x) - f(a)}{x - a} \right) = x^*(f'(a)).$$

Tvrzení 1.10

A Banach algebra with a unit, $x \in A$. Then

- $\varrho(x)$ is open set;
- $\forall |\lambda| > ||x|| : \lambda \in \varrho(x) \land R_x(\lambda) = \sum_{n=0}^{\infty} \frac{x^n}{\lambda^{n+1}};$
- (important!) $\varrho(x) \ni \lambda \mapsto R_x(\lambda)$ has derivative at each $\lambda \in \varrho(x)$;
- $\forall \mu, \nu \in \varrho(x) : R_x(\mu) \cdot R_x(\nu) = R_x(\nu) \cdot R_x(\mu);$
- $\forall \mu, \nu \in \varrho(x) : R_x(\mu) R_x(\nu) = (\nu \mu) \cdot R_x(\mu) \cdot R_x(\nu)$.

 $D\mathring{u}kaz$

First is proved by lemma. Second by lemma we have

$$(\lambda e - x)^{-1} = \lambda^{-1} \left(e - \frac{x}{\lambda} \right)^{-1} = \lambda^{-1} \sum_{n=0}^{\infty} \left(\frac{x}{\lambda} \right)^n.$$

For third we fix $\lambda \in \varrho(x)$ and $t \in (0, \delta)$ for δ small enough $(\lambda + t \in \varrho(x))$ and *). We shall prove that $R'_x(\lambda) = -R_x(\lambda)^2$:

$$0 \stackrel{?}{=} \left\| \frac{R_x(\lambda + t) - R_x(\lambda)}{t} + R_x(\lambda)^2 \right\| = \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} + (\lambda e - x)^{-1} \cdot t \cdot (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} + (\lambda e - x)^{-1} \cdot t \cdot (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} + (\lambda e - x)^{-1} \cdot t \cdot (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} + (\lambda e - x)^{-1} \cdot t \cdot (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} + (\lambda e - x)^{-1} \cdot t \cdot (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} + (\lambda e - x)^{-1} \cdot t \cdot (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} + (\lambda e - x)^{-1} \cdot t \cdot (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} + (\lambda e - x)^{-1} \cdot t \cdot (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} + (\lambda e - x)^{-1} \cdot t \cdot (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} + (\lambda e - x)^{-1} \cdot t \cdot (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} + (\lambda e - x)^{-1} \cdot t \cdot (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} + (\lambda e - x)^{-1} \cdot t \cdot (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} + (\lambda e - x)^{-1} \cdot t \cdot (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|}$$

* for existence of the inverse
$$\frac{1}{|t|} \|(\lambda e - x)^{-1}\| \cdot \|(e + t(\lambda e - x)^{-1})^{-1} - e + (\lambda e - x)^{-1} \cdot t\| = \frac{1}{|t|} \|(\lambda e - x)^{-1}\| \cdot \|(e + t(\lambda e - x)^{-1})^{-1} - e + (\lambda e - x)^{-1} \cdot t\| = \frac{1}{|t|} \|(\lambda e - x)^{-1}\| \cdot \|(e + t(\lambda e - x)^{-1})^{-1} - e + (\lambda e - x)^{-1} \cdot t\| = \frac{1}{|t|} \|(\lambda e - x)^{-1}\| \cdot \|(e + t(\lambda e - x)^{-1})^{-1} - e + (\lambda e - x)^{-1} \cdot t\| = \frac{1}{|t|} \|(\lambda e - x)^{-1}\| \cdot \|(e + t(\lambda e - x)^{-1})^{-1} - e + (\lambda e - x)^{-1} \cdot t\| = \frac{1}{|t|} \|(a + t(\lambda e - x)^{-1})^{-1} - e + (a + t(\lambda e - x)^{-1})^{-1} + e + (a + t(\lambda e - x)^{-1})^{-1}$$

$$= \frac{1}{|t|} \|(\lambda e - x)^{-1}\| \cdot \left\| \sum_{n=0}^{\infty} (-t)^n (\lambda e - x)^{-n} - e + (\lambda e - x)^{-1} \cdot t \right\| \leqslant$$

$$\stackrel{\|x^n\| \leq \|x\|^n}{\leq} \frac{1}{|t|} \|(\lambda e - x)^{-1}\| \cdot \sum_{n=2}^{\infty} \|t(\lambda e - x)^{-1}\|^n =$$

$$= \frac{1}{|t|} \|t(\lambda e - x)^{-1}\| \cdot \frac{\|t(\lambda e - x)^{-1}\|^2}{1 - \|t(\lambda e - x)^{-1}\|} \overset{\text{* for denominator } \leqslant 1/2}{\leqslant} \frac{2|t|^2}{|t|} \|t(\lambda e - x)^{-1}\| \to 0.$$

Fourth: In general $uv = vu \implies u^{-1}v^{-1} = v^{-1}u^{-1}$ (proof: $u^{-1}v^{-1} = (vu)^{-1}$). And we apply it for $u = (\mu e - x)$ and $v = (\nu e - x)$.

Fifth: In general $u \cdot v = v \cdot u \implies u^{-1} \cdot v = v \cdot u^{-1}$ (proof: $u^{-1}v = v \cdot v^{-1}u^{-1}v = v \cdot u^{-1}v^{-1}v = v \cdot u^{-1}$) so:

$$R_x(\mu) - R_x(\nu) = R_x(\mu) R_x(\nu) (R_x(\nu)^{-1}) - R_x(\mu) (R_x(\mu))^{-1} R_x(\nu) = R_x(\mu) R_x(\nu) (R_x(\nu)^{-1}) - R_x(\mu) (R_x(\nu)^{-1}) (R_x(\nu)^{-1}) - R_x($$

[

Věta 1.11 (Liouville for Banach space valued functions)

Y Banach space over \mathbb{C} , $f:\mathbb{C}\to Y$ has derivative at each point, f is bounded ($\equiv \|f\|$ is bounded). Then $f\equiv \mathrm{const.}$

 $D\mathring{u}kaz$

Assume $f \not\equiv \text{const}$, so there are $a \neq b \in \mathbb{C}$: $f(a) \neq f(b) \Longrightarrow$ (by Hahn–Banach theorem) $\exists x^* \in Y^* : x^*(f(x)) \neq x^*(f(x))$. From fact $x^* \in f : \mathbb{C} \to \mathbb{C}$ has derivative at each point is bounded, not constant which is in contradiction with Liouville theorem for complex valued functions.

Důkaz (Theorem before theory)

First case: "A has a unit": Then $\sigma(x) \subseteq B_{\mathbb{C}}(0, ||x||)$ is closed, so $\sigma(x)$ is compact. Assume that $\varrho(x) = \mathbb{C}$. By previous tyrzeni we have $R_x : \mathbb{C} \to A$ has derivative everywhere, and it is bounded because $\lim_{|\lambda| \to \infty} |\lambda| \to \infty$ and $\lim_{|\lambda| \to \infty} \sum_{n=0}^{\infty} \frac{x^n}{\lambda^{n+1}} = 0$. From previous theorem $R_x \equiv \text{const so } \lim_{|\lambda| \to \infty} R_x(\lambda) = 0 \implies R_x \equiv 0$. In particular $0 = R_x(0) = (-x)^{-1}$. 4(If $A \neq \{0\}$ then $x^{-1} \neq 0$ for $x \in A$.)

Second case: "A hasn't a unit", then $\sigma(x) := \sigma_{A_e}((x,0))$ so we apply the already proven case.

Poznámka (Convention)

If not said otherwise, in chapter about Banach algebras, all Banach spaces are complex.

Věta 1.12 (Gelfand–Mazur)

 $\{\mathbf{o}\} \neq A \ Banach \ algebra \ with \ a \ unit. \ Assume \ \forall x \in A \setminus \{\mathbf{o}\} : \exists x^{-1}. \ Then \ A \ is isomorphic \ to \ \mathbb{C}.$ If moreover e is a unit in A and ||e|| = 1, then A is isometrically isomorphic to \mathbb{C} .

 $D\mathring{u}kaz$

Consider $\psi : \mathbb{C} \to A$ defined as $\psi(\lambda) := \lambda \cdot e$. This is algebraic homomorphism and $\|\psi(\lambda)\| = |\lambda| \cdot \|e\|$, so it is isomorphism (and isometry, if $\|e\| = 1$).

It remains " φ is surjective": Pick $a \in A$. From previously proved theorem $\exists \lambda \in \sigma(a)$, then $(\lambda e - a) \notin A^x$. So, $\lambda \cdot e - a = 0$, then $\psi(\lambda) = a$.

Definice 1.7 (Spectral radius)

A Banach algebra, $x \in A$. Then $r(x) := \sup\{|\lambda|, \lambda \in \sigma(x)\}$ is called spectral radius of x.

Věta 1.13 (Beurling–Gelfand)

A Banach algebra, $x \in A \implies r(x) = \inf_{n \in \mathbb{N}} \sqrt[n]{\|x^n\|} = \lim_n \sqrt[n]{\|x^n\|}$.

Lemma 1.14

A Banach algebra with a unit, $x \in A$. For $p(z) = \sum_{j=1}^{n} \alpha_j z^j \in \mathbb{C}$ a polynom (with complex coefficients) we put $p(x) = \sum_{j=1}^{n} \alpha_j x^j \in A$. Then $\sigma(p(x)) = p(a(x))$.

 $D\mathring{u}kaz$

Fix $\lambda \in \mathbb{C}$ and write $(\lambda - p)(z) = c \cdot \prod_{i=1}^{m} (z - z_i)$, where z_1, \ldots, z_m are roots of $\lambda - p$. Then $\lambda \in \sigma(p(x)) \Leftrightarrow (\lambda e - p(x))^{-1}$ does not exists. $(\lambda e - p(x))^{-1} = c \cdot \prod_{i=1}^{m} (x - z_i \cdot e)$, so it does'nt exists if and only if $\exists i \in [m]$, such that $(x - z_i \cdot e)^{-1}$ doesn't exists $\Leftrightarrow z_i \in \sigma(x) \Leftrightarrow \exists \text{ root } \nu \text{ of } \lambda - p \text{ such that } \nu \in \sigma(x) \Leftrightarrow \exists \nu \in \sigma(x) : p(\nu) = \lambda \Leftrightarrow \lambda \in p(\sigma(x))$.

Důkaz (Beurling-Gelfand)

WLOG A has a unit. Step 1, $r(x) \leq \inf_n \sqrt[n]{\|x^n\|}$ ": fix $\lambda \in \sigma(x)$. By previous lemma $\forall n : \lambda^n \in \sigma(x^n)$. By theorem 'Before theory' we have $\forall n : |\lambda|^n \leq \|x^n\|$.

Step 2, $,r(x) \geqslant \limsup_n \sqrt[n]{\|x^n\|}$ ": Pick r > r(x). Claim: $,\frac{x^n}{r^n} \to^w 0$ ": Fix $x^* \in A^*$ and put $f(\lambda) := \lambda \cdot x^*(R_x(\lambda))$. By fact and tvrzeni after it, f has derivative at each $\lambda \in \varrho(x)$. Moreover for $|\lambda| \geqslant \|x\|$ we have $f(\lambda) = \lambda \cdot x^*\left(\sum_{n=0}^{\infty} \frac{x^n}{\lambda^{n+1}}\right) = \sum_{n=0}^{\infty} \frac{x^*(x^n)}{\lambda^n}$. Thus $f(\lambda) = \sum_{n=0}^{\infty} \frac{x^*(x^n)}{\lambda^n}$, $\lambda \in P(0, r(x), \infty)$. From Complex analysis $f \in H(P(0, r, \infty))$ is uniquely given by Laurent series. In particular $f(r) = \sum_{n=0}^{\infty} \frac{x^*(x^n)}{r^n}$, so $x^*\left(\frac{x^n}{r^n}\right) \to 0$.

From princip of unique boundedness (last semester): $\frac{x^n}{r^n}$ if $\|\cdot\|$ -bounded, so $\exists c > 0$: $\|x^n\| \leq cr^n$, $\sqrt[n]{\|x^n\|} \leq \sqrt[n]{c} \cdot r \to r$. So $\limsup \sqrt[n]{\|x^n\|} \leq r$.

Důsledek

A Banach algebra, $x \in A$ and $|\lambda| > r(x)$. Then $\sum_{n=1}^{\infty} \frac{x^n}{\lambda^n}$ is absolutely convergent and $R_x(\lambda) = \sum_{n=0}^{\infty} \frac{x^n}{\lambda^{n+1}}$.

 $D\mathring{u}kaz$

Fix q, such that $\frac{r(x)}{|\lambda|} < q < 1$. By previous theorem, $\exists n_0 \ \forall n \ge n_0 : \frac{\sqrt[n]{\|x^n\|}}{\lambda} < q$, so $\frac{\|x^n\|}{|\lambda|^n} < q^n$, $n \ge n_0$. Thus $\sum \left\|\frac{x^n}{\lambda^n}\right\| \le \infty$, so the sum is absolutely convergent.

Now we easily check that $(\lambda e - x)^{-1} = \sum_{n=0}^{\infty} \frac{x^n}{\lambda^{n+1}}$.

1.4 Subalgebra

Věta 1.15

A Banach algebra with a unit $e, B \subset A$ is closed subalgebra such that $e \in B$. Fix $x \in B$. Then

• $C \subset \varrho_A(x)$ is component (maximum connected subset) $\Longrightarrow C \subseteq \sigma_B(x)$ or $C \cap \sigma_B(x) = \emptyset$;

- $\partial \sigma_B(x) \subseteq \sigma_A(x) \subseteq \sigma_B(x)$;
- $\varrho_A(x)$ is connected $\implies \sigma_A(x) = \sigma_B(x)$;
- int $\sigma_B(x) = \emptyset \implies \sigma_A(x) = \sigma_B(x)$.

 $\sigma_A(x) \subseteq \sigma_B(x)$ ": $(\lambda e - x)^{-1}$ exists in B implies it exists (it's same) in A.

"First item": Let $C \subset \varrho_A(x)$ be component. Pick $\lambda_0 \in C \cap \sigma_B(x)$. Wanted: " $C \setminus \sigma_B(x) = \varnothing$ ". Pick $x^* \in A^* : x^*|_B = 0 \wedge x^*(R_x(\lambda)) = 1$ (separate B and $R_x(\lambda) \notin B$). Then $C \ni \lambda \mapsto x^*(R_x(\lambda))$ is holomorphic function on open (because maximum) connected set C. Which is zero^a on $C \setminus \sigma_B(x)$.

Since $C \setminus \sigma_B(x)$ is open, if it is nonempty it contains a ball, so it has cluster point. Thus $C \ni \lambda \mapsto x^*(R_x(\lambda))$ is such that $\{\lambda \in C | x^*(R_x(\lambda))\} = 0$ has a cluster point, so from complex analysis (uniqueness theorem) it is constant zero. 4with $x^*(R_x(\lambda_0)) = 1$.

"Second item": Pick $\lambda \in \sigma_B(x) \backslash \sigma_A(x)$ and let $C \subset \varrho_A(x)$ be a component containing λ . By first item, $C \subseteq \sigma_B(x)$, C is open, so $\lambda \in C \subseteq \operatorname{int}(\sigma_B(x))$.

"Third item": If $\varrho_A(x)$ is connected, we can apply first item to $C = \varrho_A(x)$, we have either $\varrho_A(x) \subseteq \sigma_B(x)$ or $\varrho_A(x) \cap \sigma_B(x) = \emptyset$. But first is not possible, because $\varrho_A(x)$ is unbounded and $\sigma_B(x)$ is bounded. Therefore $\sigma_B(x) \subseteq \sigma_A(x)$.

"Fourth item": If $\operatorname{int}(\sigma_B(x)) = \emptyset$, then (by second item) $\sigma_B(x) \subseteq \partial \sigma_B(x) \subseteq \sigma_A(x) \subseteq \sigma_B(x)$.

For $\lambda \in C \setminus \sigma_B(x)$, $(\lambda e - x)^{-1}$ exists in B so $R_x(\lambda) \in B$ and therefore, $x^*(R_x(\lambda)) = 0$

Důsledek

A Banach algebra, $B \subseteq A$ closed subalgebra, $x \in B$. Then all items from previous theorem hold as well if we replace $\sigma_A(x)$ and $\sigma_B(x)$ by $\sigma_A(x) \cup \{0\}$ and $\sigma_B(x) \cup \{0\}$.

 $D\mathring{u}kaz$

Without proof. (Basically same that previous; we add unit to A and B, so this unit is same $((\mathbf{o}, 1))$, etc.)

1.5 Holomorphic calculus

Definice 1.8

X Banach, $\gamma:[a,b]\to\mathbb{C}$ path (continuous, piecewise smooth (C^1)), $f:\langle\gamma\rangle\to X$ continuous. Then

$$\int_{\gamma} f := \int_{[a,b]} \gamma'(t) f(\gamma(t)) dt.$$
 (As Bochner integral.)

If $\Gamma = \gamma_1 + \ldots + \gamma_n$ is chain in \mathbb{C} , $f : \langle \Gamma \rangle \to X$ continuous, then

$$\int_{\Gamma} f := \sum_{i=1}^{n} \int_{\gamma_i} f.$$

Lemma 1.16

 Γ chain in \mathbb{C} , X Banach, $f: \langle \Gamma \rangle \to X$, $x \in X$. Then

$$\int_{\Gamma} f = x \Leftrightarrow \forall x^* \in X^* : x^*(x) = \int_{\Gamma} x^* \circ f.$$

 $D\mathring{u}kaz$

 $oxedsymbol{oxed}$

 $, \longleftarrow$ "by Hahn–Banach theorem. $, \Longrightarrow$ ": (by previous semester x^* and \int "commutes")

$$x^* \left(\int_{\Gamma} f \right) = \sum_{i=1}^n x^* \left(\int_{\gamma_i} f \right) = \sum_{i=1}^n \int_{[a_i,b_i]} \gamma_i'(t) x^* (f(\gamma_i(t))) dt = \int_{\Gamma} x^* \circ f.$$

Poznámka (Recall)

If $\Omega \subset \mathbb{C}$ open, $K \subset \Omega$ compact. Then there is a cycle Γ such that $\langle \Gamma \rangle \subset \Omega \backslash K$ and $\operatorname{ind}_{\Gamma} z = 1$ if $z \in K$ and 0 if $z \notin \Omega$.

Then we say that Γ circulates K in Ω .

Definice 1.9

Let A be a Banach algebra with unit, $x \in A$, $\Omega \subset \mathbb{C}$ open and $\sigma(x) \subset \Omega$, $f \in \mathcal{H}(\Omega)$. Then $f(x) := \frac{1}{2\pi i} \int_{\Gamma} f \cdot R_x$, where is any cycle which circulates $\sigma(x)$ in Ω .

Poznámka

f(x) exists $(f \cdot R_x)$ is continuous on $\langle \Gamma \rangle$, f(x) does not depend on the choice of Γ (Pick $x^* \in X^*$, then $(x^* \circ f \cdot R_x)(\lambda) = f(\lambda) \cdot x^*(R_x(\lambda))$ is holomorphic. Pick Γ_1, Γ_2 cycles circulating $\sigma(x)$ in Ω , then $\int_{\Gamma_1 - \Gamma_2} x^* \circ f \cdot R_x = 0$ from Cauchy).

Věta 1.17 (Holomorphic calculus)

A Banach algebra with unit, $x \in A$, $\Omega \subset \mathbb{C}$ open such that $\sigma(x) \subset \Omega$, $f \in \mathcal{H}(\Omega)$. Then $\Phi : \mathcal{H}(\Omega) \to A$ defined as $\Phi(f) = f(x)$ (from definition above) has the following properties:

- Φ is algebra homomorphism, $\Phi(1) = e$, $\varphi(id) = x$;
- $f_n \stackrel{loc.}{\Rightarrow} f$ in $H(\Omega)$, then $f_n(x) \to f(x)$;
- $f(x)^{-1}$ exists $\Leftrightarrow f \neq 0$ on $\sigma(x)$, in this case $f(x)^{-1} = \frac{1}{f}(x)$;

- $\sigma(f(x)) = f(\sigma(x));$
- if Ω_1 is open and $f(\sigma(x)) \in \Omega_1$, $g \in \mathcal{H}(\Omega_1)$, then $(g \circ f)(x) = g(f(x))$;
- if $y \in A$ commutes with x, then y commutes with f(x).

Moreover, if $\psi : \mathcal{H}(\Omega) \to A$ satisfy first two item, then $\psi = \Phi$.

Lemma 1.18

 (Ω, μ) complete measurable space, A Banach algebra, $f \in L_1(\mu, A)$. Let $x \in A$ and $E \subset \Omega$ is measurable. Then

$$x\cdot \left(\int_E f(t)d\mu(t)\right) = \int_E x\cdot f(t)d\mu(t), \qquad \left(\int_E f(t)d\mu(t)\right)\cdot x = \int_E f(t)\cdot xd\mu(t).$$

 $D\mathring{u}kaz$

Easy (by commutation of integral and linear operator from last semester), skipped.

Důkaz (Holomorphic calculus)

"1st item": " Φ is linear" is easy, " Φ is multiplicative": Pick $f, g \in \mathcal{H}(\Omega)$, open set U such that $\sigma(x) \subset U \subset \overline{U} \subset \Omega$. Let Γ cycle circulating $\sigma(x)$ in U, Λ cycle circulating \overline{U} in Ω . Then

because $\langle \Lambda \rangle \cap \langle \Gamma \rangle = \emptyset$, we can use theorem after definition of R_x :

$$= \frac{1}{(2\pi i)^2} \int_{\Gamma} \int_{\Lambda} f(t) \cdot g(s) \cdot \frac{R_x(t) - R_x(s)}{s - t} ds dt$$
 Fubini to $x^*(\dots)$ and lemma

$$=\frac{1}{(2\pi i)^2}\int_{\Gamma}f(t)\left(\int_{\Lambda}\frac{g(s)}{s-t}ds\right)R_x(t)dt-\frac{1}{(2\pi i)^2}\int_{\Lambda}g(s)\left(\int_{\Gamma}\frac{f(t)}{s-t}\right)R_x(s)ds=$$

(Now we use Cauchy theorem $(f(z) \operatorname{ind}_{\Gamma} z = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(w)}{w-z} dw)$. $\forall s \in \langle \Lambda \rangle : (t \mapsto \frac{f(t)}{s-t}) \in \mathcal{H}(U) \land \operatorname{ind}_{\Gamma} z = 0, z \notin U$, so $\int_{\Gamma} \frac{f(t)}{s-t} dt = 0$. $\forall t \in \langle \Gamma \rangle : \operatorname{ind}_{\Lambda} t = 1 \land (s \mapsto g(s)) \in \mathcal{H}(\Omega) \implies g(t) = \frac{1}{2\pi i} \int_{\Lambda} \frac{g(s)}{s-t} ds$.)

$$= \frac{1}{2\pi i} \int_{\Gamma} f(t)g(t)R_x(t)dt - 0.$$

It remains that "if $f(z) = z^k$, $k \in \mathbb{N} \cup \{0\}$ then $f(x) = x^k$ " (we want it for k = 0 and

k=1). Put $\Gamma(t)=r\cdot e^{it},\,t\in[0,2\pi]$, where $r>\|x\|$ arbitrary. By some theorem:

$$R_x(\lambda) = \sum_{n=0}^{\infty} \frac{x^n}{\lambda^{n+1}}, \qquad |\lambda| > ||x||.$$

Thus (we switch integral and sum, because later we realize that sum of integral of absolute value is finite)

$$\forall x^* \in A^* : x^*(f(x)) = \frac{1}{2\pi i} \int_{\Gamma} \lambda^k x^* (\sum_{n=0}^{\infty} \frac{x^n}{\lambda^{n+1}}) d\lambda = \frac{1}{2\pi i} \int_{\Gamma} \sum_{n=0}^{\infty} \frac{x^*(x^n)}{\lambda^{n-k+1}} d\lambda = \frac{1}{2\pi i} \sum_{n=0}^{\infty} \int_{\Gamma} \frac{x^n}{\lambda^{n-k+1}} d\lambda = \frac{1$$

because Γ (is 2π periodic).

",2nd item": For $\Gamma = \gamma_1 + \ldots + \gamma_N$:

$$||f_n(x) - f(x)|| = \frac{1}{2\pi i} ||\int_{\Gamma} (f_n(\lambda) - f(\lambda)) R_x(\lambda) d\lambda|| \leq \frac{1}{2\pi} \int_{\Gamma} |f_n(\lambda) - f(\lambda)| \cdot ||R_x(\lambda)|| d\lambda \leq \frac{1}{2\pi} \sum_{i=1}^{N} \int_{a}^{b_i} |\gamma_i'(t)| \sup_{z \in \langle \Gamma - f(\lambda) \rangle} ||f_n(\lambda) - f(\lambda)|| d\lambda \leq \frac{1}{2\pi i} ||f_n(\lambda) - f(\lambda)|| d\lambda \leq \frac{1$$

"Moreover part": By Runge theorem (and second item) it is enough prove it for rational functions. If R was polynom, then $\Phi(R) = \Psi(R)$ by second item. So it suffices " $\forall p$ polynom: $\frac{1}{p} \in \mathcal{H}(\Omega) \implies \Phi(\frac{1}{p}) = \psi(\frac{1}{p})$ ". Pick p polynom. Then $e = \psi(1) = \psi(p \cdot \frac{1}{p}) = \psi(p) \cdot \psi(\frac{1}{p}) = \Phi(p) \cdot \psi(\frac{1}{p})$ (similarly for $\frac{1}{p} \cdot p$). So $\psi(\frac{1}{p}) = \Phi(p)^{-1} = \Phi(\frac{1}{p})$.

"3rd item": " \Longrightarrow " Let f(z)=0 for some $z\in\sigma(x)$. Then exists $g\in H(\Omega): f(u)=(z-u)g(z)$. By item one, we have (ze-x)g(x)=f(x)=g(x)(ze-x). But $(ze-x)^{-1}$ does not exist, so $f(x)^{-1}$ does not exists.

" \Leftarrow " Suppose $f \neq 0$ on $\sigma(x)$ by compactness. $\exists \Omega_1 \subset \Omega$ open: $\sigma(x) \subset \Omega_1$ and $f \neq 0$ on Ω_1 . Then $\frac{1}{f} \in H(\Omega_1)$ and by first item we have $e = (f \cdot \frac{1}{f})(x) = f(x)\frac{1}{f}(x) = \dots = \frac{1}{f}(x) \cdot f(x) \implies f(x)^{-1} = \frac{1}{f}(x)$.

Poznámka

f=g on a neighbourhood of $\sigma(x) \implies f(x)=g(x)$ (from definition), other implication doesn't hold!

1.6 Multiplicative functionals

Definice 1.10 (Multiplicative functional)

Let A be a Banach algebra. We say $\varphi:A\to\mathbb{C}$ is multiplicative linear functional $\equiv\varphi$ preserves $+,\cdot,\cdot_S$.

 $\Delta(A) := \{ \varphi : A \to \mathbb{C} | \varphi \text{ multiplicative linear functional }, \varphi \not\equiv 0 \}.$

Tvrzení 1.19

A Banach algebra, $\varphi \in \Delta(A) \cup \{0\}$. Then

• $\exists ! \tilde{\varphi} \in \Delta(A_e) : \tilde{\varphi}((x,0)) = \varphi(x), \forall x \in A. \text{ It is given by}$

$$\tilde{\varphi}((x,\lambda)) = \varphi(x) + \lambda.$$

Moreover, $\Delta(A_e) = \{ \tilde{\varphi} | \varphi \in \Delta(A) \cup \{0\} \}.$

- $\forall x \in A : \varphi(x) \in \sigma(x)$ whenever $\varphi \equiv 0$.
- $\Delta(A) \subseteq B_{A^*}$.
- A has a unit, $\varphi \not\equiv 0 \implies \|\varphi\| \geqslant \frac{1}{\|e\|}$. In particular if $\|e\| = 1$, then $\|\varphi\| = 1$.

 \Box $D\mathring{u}kaz$

",1. uniqueness": For $\tilde{\varphi} \in \Delta(A_e)$ such that $\tilde{\varphi}((x,0)) = \varphi(x), x \in A$:

$$\tilde{\varphi}((x,\lambda)) = \varphi(x) + \lambda \tilde{\varphi}((\mathbf{0},1)) = \varphi(x) + \lambda,$$

second equality by $\varphi \in \Delta(A) \implies \varphi(e) = \varphi(e^2) = \varphi^2(e)$. "1. existence" is proven by check that defined $\tilde{\varphi}$ is multiplicative linear functional (and it is nonzero, but $\tilde{\varphi}((0,1)) = 1 \neq 0$). This is easy (omitted).

 $,\Delta(A_e) = \{\tilde{\varphi}|\varphi \in \Delta(A) \cup \{0\}\}$ ": $,\subseteq$ ": $\varphi \in LHS$, put $\varphi(x) := \psi((x,0))$. Then $\varphi \in \Delta(A) \cup \{0\}$ and $\tilde{\varphi} = \psi$ became:

$$\tilde{\varphi}((x,\lambda)) = \varphi(x) + \lambda = \psi((x,0)) + \lambda = \psi((x,\lambda)).$$

 $,\supseteq$ ": We know already that $\tilde{\varphi} \in \Delta(A_e)$.

"2. with A has unit e": $\varphi \neq 0$, $\varphi \in \Delta(A)$: If $\lambda \in \varrho(x)$, then $\varphi(\lambda e - x) \neq 0$ ($\varphi(x) \neq 0$ if x^{-1} exists). $0 \neq \varphi(\lambda e - x) = \lambda - \varphi(x) \implies \lambda \neq \varphi(x)$. Thus $\varphi(x) \notin \varrho(x)$, so $\varphi(x) \in \sigma(x)$. "2. with A hasn't unit", then $\varphi(x) = \tilde{\varphi}((x,0)) \in \sigma_{A_e}((x,0)) = \sigma_A(x)$.

",3.": $\varphi \in \Delta(A)$. Then $\forall x \in A : \varphi(x) \in \sigma(x) \subseteq B(\mathbf{0}, ||x||)$, so $|\varphi(x)| \leq ||x||$.

"4.": A has a unit e, then $\|\varphi\| \geqslant \left|\varphi\left(\frac{e}{\|e\|}\right)\right| = \frac{1}{\|e\|}$.

Věta 1.20

A Banach algebra, $M := \Delta(A) \cup \{0\}$. Then $M \subset (B_{A^*}, w^*)$ is compact, $\Delta(A)$ is locally compact and if A has u unit, then $\Delta(A)$ is compact. The mapping $\Phi : M \to \Delta(A_e)$, $\Phi(\varphi) = \tilde{\varphi}$ is w^*-w^* homeomorphism.

By previous proposition, $M \subset (B_{A^*}, w^*)$ ((B_{A^*}, w^*) is compact by previous semester). So, it suffices to check that M is w^* -closed.

$$M = \bigcap_{x,y \in A} \{ \varphi \in A^* | \varphi(x \cdot y) = \varphi(x) \cdot \varphi(y) \}.$$

Sets from RHS is closed by previous semester, so, M is closed. Thus M is compact.

 $\Delta \subset M$ is open, so $\Delta(A)$ is locally compact (and M is 1-point compactification of $\Delta(A)$). If Δ has a unit, then $\Delta(A) = \{\varphi \in M | \varphi(e) = 1\}$ is w^* -closed, so $\Delta(A)$ is compact (and 0 is isolated in M).

Finally, by previous proposition, Φ is bijection. Φ is w^* -continuous:

$$\varphi_i \stackrel{w^*}{\to} \varphi \implies \forall (x,\lambda) : \tilde{\varphi}_i((x,\lambda)) = \varphi_i(x) + \lambda \to \varphi(x) + \lambda = \tilde{\varphi}((x,\lambda)) \implies \tilde{\varphi}_i \stackrel{w^*}{\to} \tilde{\varphi}$$

So, Φ is homeomorphism (continuous bijection on compact, last semester?).

Například

 $\Delta(\mathcal{C}(K)) = \{\delta_x | x \in K\}. \ (f \mapsto f(x) \text{ is multiplicative. Suppose } \varphi \in \Delta(\mathcal{C}(K)), \varphi \notin \{\delta_x | x \in K\}.$ So for $x \in K$ there is $g_x \in C(x) : \varphi(g_x) \neq g_x(x)$. Consider $f_x = g_x - \varphi(g_x)$. Then $\varphi(f_x) = 0$, $f_x(x) \neq 0$. So there is U_x open neighbourhood of x such that $f_x \neq 0$ on U_x . Compactness implies $\exists x_1, \ldots, x_n \in K : K \subset \bigcup_{i=1}^n U_{x_i}$. Consider $h := \sum_{i=1}^n |f_{x_i}|^2$. Then h > 0 on K, so h^{-1} exists and therefore $\varphi(h) \neq 0$. But $\varphi(h) = \sum_{i=1}^n \varphi(f_{x_i}) \overline{\varphi_{x_i}} = 0$.)

 $\Delta\{M_n\} = \emptyset$, $n \ge 2$, where M_n is (non-commutative) algebra of $n \times n$ matrices. $(M_n = \text{LO}\{E^{i,j}\}, E^{ij} \cdot E^{kl} = E^{il} \text{ if } j = k$, else 0. So $\varphi(E^{ij}) \cdot \varphi(E^{ij}) = \varphi(E^{ij} \cdot E^{ij}) = 0$ if $i \ne j$. $\varphi(E^{ii}) = \varphi(E^{in}E^{ni}) = \varphi(E^{in})\varphi(E^{in}) = 0$.

Definice 1.11 (Ideal, maximal ideal)

A Banach algebra. Ideal in A is a subspace $I \subset A$ if $\forall x \in I \ \forall y \in A : x \cdot y \in I \land y \cdot x \in I$.

Maximal ideal \equiv proper $(I \neq A)$ ideal and it is maximal proper ideal with respect to inclusion.

 $Nap\check{r}iklad$ (2021, Johnson-Schetman, Acta mathematica) $\mathcal{L}(L_p)$ has $2^{2^{\omega}}$ non-isomorphic closed ideals.

Tvrzení 1.21

A Banach algebra with a unit. Then:

• Any proper ideal is contained in a maximum ideal. (From Zorn's lemma. And $I \subset A$ ideal is proper $\Leftrightarrow e \notin I$.)

• $I \subset A$ proper ideal $\Longrightarrow \overline{I} \in A$ is proper ideal. In particular, maximal ideals are closed. (Easy: \overline{I} is ideal. Moreover, $I \cap A^* = \emptyset$ (if $x \in I$ was invertible thus $e = x \cdot x^{-1} \in I$, but $e \notin I$). So $(A^*$ is open) $\overline{I} \cap A^* = \emptyset$ and therefore $e \notin \overline{I}$.)

Tvrzení 1.22

A Banach algebra, $I \subseteq A$ closed ideal $\implies A/I$ is Banach algebra $([x] \cdot [y] := [x \cdot y])$.

Důkaz

Straightforward from definition. (Omitted.)

Poznámka

From now on, A will be commutative.

Step 1: "Hahn-Banach": $I \subset A$ closed ideal $\implies \exists \varphi \in \Delta(A) : \varphi/I \equiv \dots$

Věta 1.23

A commutative Banach algebra with a unit. Then $\Phi : \Delta(A) \to \{\text{maximal ideals in } A\},\$ $\Phi(\varphi) := \text{Ker } \varphi, \text{ is bijection.}$

Pick $\varphi \in \Delta(A)$. Then "Ker φ is maximal ideal": ideal: $y \in \text{Ker } \varphi, x \in A : \varphi(x \cdot y) = \varphi(x) \cdot \varphi(y) = \ldots \cdot 0 = 0$, proper: $\varphi \not\equiv 0$, maximal: codim Ker $\varphi = 1$: pick $x_0 : \varphi(x_0) \neq 0$, $a = a - \varphi(a) \cdot \frac{x_0}{\varphi(x_0)} + \varphi(a) \cdot \frac{x_0}{\varphi(x_0)} \in \text{Ker } \varphi \oplus \mathbb{R}$.

" Φ is one-to-one": Pick $\varphi, \psi \in \Delta(A)$: Ker $\varphi = \text{Ker } \psi$. Then (by lemma from previous semester) $\varphi = c \cdot \psi$ for some $c \in \mathbb{K}$. But $\varphi(e) = 1 = \psi(1)$ so $\varphi = \psi$.

" Φ is surjective": Let $I \subset A$ be maximal ideal (\Longrightarrow closed). Step 1 "Any nonzero element in A/I is invertible": For contradiction assume $\exists q(x) \in A/I$ (q(x) = [x]), $q(x) \ne 0 \land q(x)^{-1}$ does not exist. By next lemma q(x)(A/I) is proper ideal. Then $q^{-1}(q(x)(A/I))$ is an ideal in A which is proper and $I \subsetneq q^{-1}(q(x)(A/I))$, which contradicts maximality of I. It follows from: ideal: follows from the fact that q is algebra homomorphism; proper: $q(e) = [e] \notin q(x)A/I$; $I \subseteq q^{-1}(\ldots)$: $0 \in q(x)A/I$; $I \ne q^{-1}(\ldots)$: $q(x) \ne 0 \Longrightarrow x \notin I$, but $q(x) = q(x)q(e) \in q(x)(A/I)$, so $x \in q^{-1}(\ldots)$.

From Gelfand–Mazur theorem \exists surjective isomorphism $j:A/I\to\mathbb{C}$. Then $\varphi:=j\circ q\in\Delta(A)$. It remains $_{,}I=\operatorname{Ker}\varphi^{,}:x\in\operatorname{Ker}\varphi\Leftrightarrow j(q(x))=0\Leftrightarrow q(x)=0\Leftrightarrow x\in I.$

Lemma 1.24

A commutative Banach algebra with a unit, $x \in A$ does not have inverse $\implies xA$ is proper ideal.

xA is ideal, because A is commutative. Then xA is proper $(e \notin xA)$.

Důsledek (Hahn–Banach like theorem)

A is commutative Banach algebra with a unit, $I \subset A$ proper ideal. Then $\exists \varphi \in \Delta(A): \varphi/I \equiv 0$.

 $D\mathring{u}kaz$

Let $\tilde{I} \supseteq I$ be maximal ideal. By previous theorem there is $\varphi \in \Delta(A)$: $\tilde{I} = \operatorname{Ker} \varphi$.

Tvrzení 1.25

 $A,\ B\ Banach\ algebras,\ \Phi:A\to B\ algebraic\ isomorphism.$ Then $\Phi^\#:\Delta(B)\to\Delta(A)$ defined as $\Phi^\#(\varphi):=\varphi\circ\Phi$ is homeomorphism.

 $D\mathring{u}kaz$

$$\Phi^{\#}(\varphi) \in \Delta(A)$$
": $\Phi^{\#}(\varphi) = \varphi \circ \Phi \in \Delta(A) \cup \{0\} \text{ and } \varphi \not\equiv 0 \land \Phi \text{ is onto } \Longrightarrow \varphi \circ \Phi \neq 0.$

$$,\Phi^{\#}$$
 is w^* - W^* continuous": $\varphi_i \xrightarrow{w^*} \varphi \implies \varphi_i \circ \Phi \xrightarrow{w^*} \varphi \circ \Phi$.

Apply the proven part to Φ^{-1} , obtain that $(\Phi^{-1})^{\#}: \Delta(A) \to \Delta(B)$ is w^*-W^* continuous. Moreover we have $\Phi^{\#} \circ (\Phi^{-1})^{\#} = \mathrm{id} \wedge (\Phi^{-1})^{\#} \circ \Phi^{\#}$.

Tvrzení 1.26

L locally compact T_2 . Then $\delta: L \to \Delta(C_0(L)), x \mapsto \delta_x$ is homeomorphism onto.

 $D\mathring{u}kaz$

"Case 1: L is compact": By example δ is onto. Of course, δ is one-to-one, continuous. So δ is homeomorphism.

"Case 2: L is not compact": Then there is $K = L \cup \{\infty\}$, one-point compactification, and $\{f \in \mathcal{C}(K) | f(\infty) = 0\} \ni f \mapsto f|_L \in C_0(L)$ is isometric isomorphism. Moreover $\Phi : \mathcal{C}_0(L)_e \to \mathcal{C}(K), \ \Phi(f, \lambda) := f + \lambda$, is algebraic isomorphism.

So, we have $K \xrightarrow{\eta} \Delta(C(K)) \xrightarrow{\Phi^{\#}} \Delta(C_0(L)_e) \xrightarrow{\psi} \Delta(C_0(L)) \cup \{0\}$, where η is homeomorphism from case 1 and $\psi(\varphi) := \varphi|_{C_0(L)}$.

Thus $\delta := \psi \circ \Phi^{\#} \circ \eta$ is homeomorphism between $L \cup \{\infty\}$ and $\Delta(C_0(L)) \cup \{0\}$. Finally, for $x \in K$ and $f \in C_0(L)$:

$$\Phi^{\#} \circ \eta(x)(f) = (\eta(x) \circ \Phi)(f) = f(x),$$

so $\psi \circ \Phi^{\#} \circ \eta(x) = \Phi^{\#} \circ \eta(x)|_{C_0(L)} = \delta_x|_{C_0(L)}.$

Věta 1.27

K, L locally compact T_2 . Then following is ekvivalent

- $C_0(K) \equiv C_0(L)$ as Banach algebra;
- $C_0(K) \equiv C_0(L)$ as algebras;
- $K \approx L$ as topological spaces.

Důkaz $,1 \implies 2$ " trivial. $,2 \implies 3$ ": $K \approx \Delta(\mathcal{C}_0(K)) \approx \Delta(\mathcal{C}_0(L)) \approx L$ from previous two tvrzeni. "3 \implies 1": Given $h:K\to L$ homeomorphism, $f\mapsto f\circ h$ is isometry between Banach algebras.