# TP557 - Tópicos avançados em IoT e Machine Learning: Detecção de anomalias







Samuel Baraldi Mafra samuelbmafra@inatel.br

 A detecção de anomalias examina pontos de dados específicos e detecta ocorrências raras que parecem suspeitas porque são diferentes do padrão de comportamento estabelecido





Aplicações

# Real world use cases of anomaly detection

Anomaly detection is influencing business decisions across verticals



⟨∑⟩ STREAMANALYTIX
IMPETUS



#### Aprendizado não supervisionado

- O aprendizado não supervisionado, também conhecido como aprendizado de máquina não supervisionado, usa algoritmos de aprendizado de máquina para analisar e agrupar conjuntos de dados não rotulados.
- Esses algoritmos descobrem padrões ocultos ou agrupamentos de dados sem a necessidade de intervenção humana.



Aprendizado supervisionado versus não supervisionado

#### SUPERVISED LEARNING





- O objetivo do agrupamento é dividir a população ou conjunto de pontos de dados em vários grupos, de modo que os pontos de dados dentro de cada grupo sejam mais comparáveis entre si e diferentes dos pontos de dados dentro dos outros grupos.
- É essencialmente um agrupamento de coisas com base em quão semelhantes e diferentes elas são entre si.





#### K-means clustering

- O objetivo do K-means é simples: agrupar pontos de dados semelhantes e descobrir padrões subjacentes.
- Para atingir este objetivo, o K-means procura um número fixo (k) de clusters em um conjunto de dados.





#### K-means clustering

- Primeiro, inicializamos aleatoriamente k pontos, chamados de médias ou centróides de cluster.
- Categorizamos cada item de acordo com sua média mais próxima e atualizamos as coordenadas da média, que são as médias dos itens categorizados naquele cluster até o momento.
- Repetimos o processo para um determinado número de iterações ou variação de posição dos clusters e ao final temos nossos clusters.







• Exemplo: Centros de distribuição



https://medium.com/programadores-ajudando-programadores/k-means-o-que-%C3%A9-como-funciona-aplica%C3%A7%C3%B5es-e-exemplo-em-python-6021df6e2572



• Exemplo: Centros de distribuição





Exemplo: Centros de distribuição

```
dataset = np.array(
#matriz com as coordenadas geográficas de cada loja
[[-25, -46], #são paulo
[-22, -43], #rio de janeiro
[-25, -49], #curitiba
[-30, -51], #porto alegre
[-19, -43], #belo horizonte
[-15, -47], #brasilia
[-12, -38], #salvador
[-8, -34], #recife
[-16, -49], #goiania
[-3, -60], #manaus
[-22, -47], #campinas
[-3, -38], #fortaleza
[-21, -47], #ribeirão preto
[-23, -51], #maringa
[-27, -48], #florianópolis
[-21, -43], #juiz de fora
[-1, -48], #belém
[-10, -67], #rio branco
[-8, -63] #porto velho])
```



Exemplo: Centros de distribuição





• Exemplo: Centros de distribuição





Exemplo: Centros de distribuição

- [-7, -63.3333333] Humaitá/AM
- [-6, -39.5] Acopiara/CE
- [-22.16666667, -47] Mogi Guaçu/SP



• Exemplo: Centros de distribuição

Considerar a adição de mais lojas: sendo 21 só em São Paulo.



• Exemplo: Centros de distribuição





• Exemplo: Centros de distribuição





• Exemplo: Centros de distribuição

1. [-5, -61.66666667] — Beruri/AM

2. [-5.125, -39.75] — Boa Viagem/CE

3. [-22.55384615, -45.90769231] — Consolação/MG



Exemplo: Centros de distribuição



#### Dados de meios de transporte:

- Rodovias
- Ferrovias
- Aeroportos
- Rios navegáveis
- Portos



#### Dados de meios de transporte:

- Custo de frete;
- Quantidade de empresas transportadoras;
- Índice de sinistros (roubos de carga e acidentes).



#### Dados de meios de transporte:

- •Oferta e custo de mão de obra;
- •Oferta e custo de mão de obra "qualificada" (técnicos, engenheiros, gerentes, executivos);
- •Tributos municipais e estaduais;
- •Localização dos fornecedores
- •Preços de aluguel de galpões



#### K ótimo



$$WSS = \sum_{i=1}^{N_C} \sum_{x \in C_i} d(\mathbf{x}, \bar{\mathbf{x}}_{C_i})^2$$



#### **Outliers**

- Os dados de treinamento contêm valores discrepantes que são definidos como observações distantes das demais.
- Os estimadores de detecção de outliers tentam, portanto, ajustar as regiões onde os dados de treinamento estão mais concentrados, ignorando as observações desviantes.

#### Novelty

- Os dados de treinamento não são poluídos por valores discrepantes e estamos interessados em detectar se uma **nova** observação é um valor discrepante.
- Neste contexto, um outlier também é chamado de novidade



# ML-based Novelty Detection and Classification of Security Threats in IoT Networks

Marcelo V. C. Aragão, Gabriel P. Ambrósio, Felipe A. P. de Figueiredo





Ameaças à segurança em redes IoT

- Aumento rápido de dispositivos conectados;
- Troca intensa de dados sensíveis através de redes;
- Disponibilidade de conjuntos de dados de tráfego de rede do mundo real.

Detecção e classificação de novidades baseadas em ML

- Análise Automatizada de Tráfego de Rede (NTA);
- Detecção: identifique ameaças nunca antes vistas;
- Classificação: categoriza vestígios de ameaças conhecidas.



IoT Network Intrusion:

10% of ≈3M samples

- Mirai,
- Man-in-the-middle,
- DoS,
- Scanning

https://ieee-dataport.org/open-access/iot-network-intrusion-dataset







#### TABLE I: Novelty detection accuracy.

| Scenario | Elliptic Envelope |       | Isolation Forest  |       | Local Outlier Factor |       | SGD One-Class SVM |       |
|----------|-------------------|-------|-------------------|-------|----------------------|-------|-------------------|-------|
|          | Mean ± SD         | Max   | Mean ± SD         | Max   | Mean ± SD            | Max   | Mean ± SD         | Max   |
| DoS      | $0.557 \pm 0.494$ | 1.000 | $0.594 \pm 0.465$ | 1.000 | $0.109 \pm 0.105$    | 0.263 | $0.620 \pm 0.485$ | 1.000 |
| Mirai    | $0.747 \pm 0.293$ | 0.991 | $0.913 \pm 0.087$ | 0.993 | $0.414 \pm 0.128$    | 0.574 | $0.650 \pm 0.477$ | 1.000 |
| MITM     | $0.391 \pm 0.395$ | 1.000 | $0.074 \pm 0.093$ | 0.474 | $0.208 \pm 0.119$    | 0.330 | $0.740 \pm 0.439$ | 1.000 |
| Scan     | $0.537 \pm 0.466$ | 1.000 | $0.828 \pm 0.238$ | 0.949 | $0.601 \pm 0.311$    | 0.894 | $0.595 \pm 0.491$ | 1.000 |

#### TABLE III: Classification accuracy.

| Scenario | Decision Tree     |       | LightGBM          |       | Random Forest     |       | XGBoost           |       |
|----------|-------------------|-------|-------------------|-------|-------------------|-------|-------------------|-------|
|          | Mean ± SD         | Max   |
| DoS      | $0.875 \pm 0.141$ | 0.969 | $0.765 \pm 0.241$ | 0.954 | $0.917 \pm 0.054$ | 0.957 | $0.947 \pm 0.008$ | 0.957 |
| Mirai    | $0.851 \pm 0.162$ | 0.969 | $0.781 \pm 0.243$ | 0.953 | $0.917 \pm 0.057$ | 0.958 | $0.948 \pm 0.008$ | 0.957 |
| MITM     | $0.864 \pm 0.152$ | 0.967 | $0.798 \pm 0.213$ | 0.953 | $0.916 \pm 0.060$ | 0.959 | $0.947 \pm 0.008$ | 0.956 |
| Scan     | $0.865 \pm 0.154$ | 0.966 | $0.776 \pm 0.242$ | 0.953 | $0.916 \pm 0.057$ | 0.957 | $0.947 \pm 0.008$ | 0.955 |



Movimentação de containers ao longo do ciclo logístico





Movimentação de containers ao longo do ciclo logístico

Classificação de 5 estados do container

- Parado
- Sendo erguido
- No mar
- No caminhão
- Anomalia (ex. container caindo no mar, empilhadeira tombando)



#### Trabalho:

Incluir e analisar no edge impulse possíveis anomalias nos dados da movimentação da cadeira de rodas pela cabeça.



Acompanhamento do trabalho final

