CSE 467
Pattern Recognition

Pre Requisite:

CSE 351: Artificial Intelligence

Courtesy: https://www.google.com/

Scenario:

Suppose that a fish packing plant wants to automate the process of sorting incoming fish on a conveyor belt according to species. As a pilot project it is decided to try to separate sea bass from salmon using optical sensing.

Collect Data

- take some sample images
- some physical differences between the two types of fish length, lightness, width, number and shape of fins, position of the mouth, and so on
- these suggest **features** to explore for use in our classifier

Model

- there truly are differences between the population of sea bass and that of salmon, we model view them as having different models — different descriptions, which are typically mathematical in form.
- process the sensed data to eliminate noise
- for any sensed pattern choose the model that corresponds best

Steps

- Camera captures an image of the fish
- Signals are preprocessed to simplify subsequent operations without loosing relevant information
- Segmentation
- Feature selection or extraction
- Choose training and testing samples
- Creating model
- Evaluate Model (cost)
- Decision

Pattern Recognition: Learning Steps or Cycle

Data Collection Pre Processing Train/Test Samples Model Creation (Cost)

- Image through camera
- Statistical Survey
- Transaction Information
- Web data
- Speech etc.

- Segmentation
- Noise Removing
- Feature Extraction

- 80-20 rules
- K-fold cross validation
- Manual Selection

- Classification
- Cluster
- Regression

Justify the
Decision
Boundary with
different
metrics such as
accuracy,
sensitivity,
RMSE etc

Decision Boundary With Single feature

Showing poor performance: Cost increase

Decision Boundary With Two features

Feature Vector:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Still Poor Performance

Curse of Dimensionality

- ☐ The two features obviously separate the classes much better than one alone.
- ☐ This suggests adding a third feature. And a fourth feature. And so on.
- ☐ Key questions
 - ✓ How many features are required?
 - ✓ Is there a point where we have too many features?
 - ✓ How do we know beforehand which features will work best?

Decision Boundary: Underfitting Problem [High Bias]

Decision Boundary: Overfitting Problem [High Variance]

Decision Boundary : Generalization [Low Bias ,Low Variance]

Pattern Recognition

Pattern is everything around in this digital world. A pattern can either be seen physically or it can be observed mathematically by applying algorithms.

Pattern recognition — the act of taking in raw data and taking an action based on the "category" of the pattern.

Examples: automated speech recognition, fingerprint identification, optical character recognition, DNA sequence identification and much more.

Learning and Adaptation

Some Terminologies

Model Selection Noise Feature Extraction Overfitting Missing Features Computational Complexity Segmentation Context Prior Knowledge Mereology **Evidence Pooling** Costs and Risks

Thank You