Mathematical Bockground

- o Sets + DeMorgans laws
- · Sequences and Utheir limits
- · Infinite somes
- The geometric Sane's
- · Suns with Multiple indices
- · Countable + uncountable sets.

Sets

· A Collection of district elements.

Ea, b, c, d3 finite IR: real numbers wifinite

XES I is in a Set X≠S I is NoT in a Set

one we restrict the set further by looking only at values where

 Ω : Universal Set \emptyset : Empty Set $(S^c)^c = S$ $T \in X \in \Omega, X \notin S$

 $SCT: x \in S =) x \in T$

If ∞ is in a Subset of T, which in this case is S. Then ∞ also belongs to T and is either $\geq T$. * Can also be written C.

SUT: XE SUT (=) XES OR XET

SAT: QE SAT (=) RES AND RET. - Intersection

Infinite Sets

Sn n=1,2,3,4,5...

XEUSn (=) XESn FOR SOME N

DE CUSN (=) DE SN N FOR ALL N

Set properties

2nd Law

The couplinent of a union is the same as the cite section of the couplinents.

Which is the same as the Compliments of the Compliments intersection is the same as union of the sols.

$$(SUT)^c = S^c \wedge T^c =$$

$$= (S^c \wedge T^c)^c = SUT = ((S^c \cup T^c)^c)^c$$

* Basically flip from union to Intersection and add or remove the Cayphinent. • If there are two compliments thay cancel out. Otherwise.

$$\left(\bigcap_{n} \operatorname{sn} \right)^{c} = \bigcap_{n} \operatorname{sn}^{c}$$
 $\left(\bigcup_{n} \operatorname{sn} \right)^{c} = \bigcap_{n} \operatorname{sn}^{c}$

Sequences and their limits

{ } = A sequence.

Excliden space in 12 dimentions, Sth

* Formally a sequence is a function that associates an element of S to any natural number. $f: N \rightarrow S$.

$$\int_{0}^{2} = \alpha^{2}$$

$$\alpha^{2} \xrightarrow{2 \to \infty} \alpha$$

$$\lim_{x \to \infty} \alpha^{2} = \alpha$$

Consergerce of a sequence

For any ε 70. There exists a fine (20) where if $\varepsilon \geq 0$, then the element of the sequence is within epsilon of a.

| ai - a | < E

$$ai - p a = 3$$
 = $ai + bi - p a + b = 9(ai) - p g(ai)$
 $bi - p b = 3$ = $aibi - p ab$

Only if a Continuous function

- If ai≤ ai+1 for all 2.
- The Sequence Converges to ∞
- The Sequence Converges to a real Number

o If |ai - a| ≤ bi, for all i AND bi - D O, then ai - D a.

- If the bound (bi) goes to O. then a: will converge to a.

Infinite series

$$\sum_{i=1}^{\infty} ai = \lim_{n \to \infty} \sum_{i=1}^{n} ai$$
 If a limit exists!

- A high exists

 If ai ≥ 0: (All terms are lon-legative)

 * Monotonic Sequence (always increasing)
- If ai terms do lot all have the Same Sign (+ or-)

 o Limit way lot exist

 o Limit way exist, but change depending on SUM order.

* Solution: Take the sun of the absolute values.

- Basically disregard the Sign.

 $\sum |ai| < \infty$

Georgetric Series

$$S = \sum_{i=0}^{\infty} ai = 1 + a + a^2 + \dots \qquad |a| < 1$$
There sum
$$a < 1 \text{ Means the terms go to } 0$$

 $(1-\alpha)(1+\alpha+...+\alpha^n) = 1-\alpha^{n+1}$ the limit of the finite series is the infinite series

- We folk the limit as n goes to infinity.

$$(1-\alpha)S = 1$$
 α^{K+X} (Converges to 0)

$$S = \frac{1}{1-\alpha}$$
 Formula for the infinite geometric Series

$$\sum |aij| < \infty$$

If values are absolute and cess than infinity order does Not matter.

-D Furtherwore +1-1 Couline La infinity. So order does Matter.

Z ais

$$\sum_{i=1}^{\infty} \sum_{\beta=1}^{i} aij$$

$$\sum_{j=1}^{\infty} \sum_{i=j}^{\infty} a_{ij}^{*}$$

* Sum over all 3's then over all i's.

* Sun over all is then over all 35.

Countable VS uncountable infinite sets

Countable: Can be put in 1-1 Correspondence with positive integers (in a sequence).

o Positive integers 1,2,3,...

{a1, a2, a3,...} = 1

- 0 Integers 0, 1, -1, 2, -2, 3, -3...
- · Pair's of positive integers
- rational numbers q, with 0 < q < 1

之,言,音,年,春,至,言,言...

- uncountable:

· Continuous Subsets of the real line.

E.g. He interval [0,1]

* Basically anything Continuous.

Contors diagonalisation argument (uncountable senés)

The diagonal number does not appear 21:2743215 in the sequence, and so all decimals cannot X2: 311 24811 x3; 1.892473 be Courted.

Bonferroni inequality (union bound) - very four students are south A2 - very four students are beautiful · Then very fow are smart

OR beautifuli

 $P(A_1 \cup A_2) \leq P(A_1) + P(A_2)$ # If A, and Az are snall, then there union will be small. $P(A_1 \cap A_2) \geq P(A_1) + P(A_2) - 1$

$$P((A_1 \cap A_2)^c) = P(A_1^c + A_2^c) \leq P(A_1^c) + P(A_2^c)$$

$$\leq Y - P(A_1) + P(A_2)$$

* All this really shows is that theirs a relationship between Set size and Set intersection or union. Which can be proved using DeMorgon's laws, set theorical appearations and the union board.