МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственное образовательное учреждение высшего профессионального образования МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (государственный университет)

Разработка кроссплатформенного динамического анализатора бинарного кода на основе QEMU

Дипломная работа студента 919 группы ФРТК Перова Максима Николаевича

Научный руководитель: кандидат военных наук, доцент Семенихин Игорь Викторович

Актуальность темы

- > Компьютеризация
- Значительное число устройств, ПО которых не поставляется с исходным кодом
- Появление новых процессорных архитектур
- > Развитие существующих архитектур

Цель и задачи работы

Цель дипломной работы — создание инструмента динамического анализа бинарного кода, поддерживающего множество архитектур, встраивание новой архитектуры в который будет происходить в полуавтоматизированном режиме.

Задачи:

- 1) Исследовать инструменты, основанные на технологии DBI.
- 2) Разработать инструмент идентификации переполнения буфера в стеке в бинарном исполняемом файле.
- 3) Разработать технологию автоматизации процесса встраивания новой архитектуры в QEMU.

Dynamic Binary Instrumentation

Существующие решения

- Наиболее популярные
 - o PIN
 - закрытый исходный код
 - Valgrind
 - малое количество поддерживаемых архитектур
 - анализ только прикладных программ
 - открытые исходные коды

- На основе QEMU
 - TEMU
 - больше не поддерживается
 - часть исходного кода закрыта
 - DECAF
 - не везде работает
 - открытые исходные коды

QEMU

• Трансляция кода в QEMU происходит при помощи Tiny Code Generator

Для добавления новой архитектуры требуется только реализация трансляции гостевого набора инструкций в промежуточное представление

• Данное преобразование кода является сюръективным отображением.

Идентификация переполнения буфера

Единственная трудность:

в соответствии с преобразованием кода в QEMU, для каждого **х** необходимо найти соответствующий **у**

x - инструкция гостевого кода

у - инструкция промежуточного кода

Добавление новой архитектуры

codegen.py

new_arch.xml

```
<OPERATOR name=" = ">
2.
     <LST name="GrN">
        <ARG name="GRk"/>
     </LST>
5.
     <OPERATOR name="-">
6.
        <LST name="GrN">
          <ARG name="GRj" />
8.
       </LST>
       <LST name="GrN">
10.
          <ARG name="GRi" />
11.
        </LST>
12.
     </OPERATOR>
13. </OPERATOR>
```

translate.c

- 1. TCGv_i64 Gri = tcg_temp_new_i64();
- TCGv_i64 Grj = tcg_temp_new_i64();
- 3. tcg_gen_extu_i32_i64(ta, cpu_R[ra]);
- tcg_gen_extu_i32_i64(tb, cpu_R[rb]);
- tcg_gen_add_i64(cpu_GR[Gri], cpu_GR[Grj], tcy);

Исходные коды QEMU организованы так, что поддержка новой архитектуры сводится к добавлению нового модуля, почти не затрагивая существующий исходный код

Результаты работы

- ✓ Описаны существующие инструменты динамического анализа бинарного кода
- ✓ Разработан инструмент идентификации переполнения буфера в стеке
- ✓ Реализована программа для встраивания новой архитектуры в QEMU
- ✓ Участие в 57-й научной конференции МФТИ
- ✓ Публикация на конференции «Комплексная защита информации»

В аспирантуре планирую разработать DBI Framework на основе QEMU.

Спасибо за внимание!