

QUÍMICA
NIVEL SUPERIOR
PRIJERA 2

Número del alumno							

Martes 18 de mayo de 2004 (tarde)

2 horas 15 minutos

INSTRUCCIONES PARA LOS ALUMNOS

- Escriba su número de alumno en la casilla de arriba.
- No abra esta prueba hasta que se lo autoricen.
- Sección A: conteste toda la sección A en los espacios provistos.
- Sección B: conteste dos preguntas de la sección B. Conteste a las preguntas en las hojas de respuestas. Escriba su número de alumno en cada una de las hojas de respuestas, y adjúntelas a este cuestionario de examen y a su portada empleando los cordeles provistos.
- Cuando termine el examen, indique en las casillas correspondientes de la portada de su examen los números de las preguntas que ha contestado y la cantidad de hojas que ha utilizado.

224-165 11 páginas

SECCIÓN A

Conteste todas las preguntas en los espacios provistos.

1. El óxido de nitrógeno(II) reacciona con el hidrógeno como se muestra en la siguiente ecuación.

$$2NO(g) + 2H_2(g) \rightarrow N_2(g) + 2H_2O(g)$$

La tabla siguiente muestra cómo varía la velocidad de la reacción a medida que varía la concentración de los reactivos.

Experimento	[NO] inicial / mol dm ⁻³	[H ₂] inicial / mol dm ⁻³	$ \begin{array}{c} \textbf{Velocidad inicial /} \\ \textbf{mol N}_2 \ \textbf{dm}^{-3} \ \textbf{s}^{-1} \end{array} $
1	0,100	0,100	2,53×10 ⁻⁶
2	0,100	0,200	$5,05 \times 10^{-6}$
3	0,200	0,100	10,10×10 ⁻⁶
4	0,300	0,100	22,80×10 ⁻⁶

(a)	determiné el orden de reacción con respecto al NO y con respecto al H ₂ . Explique como determinó el orden con respecto al NO.	[3]
	NO	
	H_2	
(b)	Escriba la expresión de velocidad para la reacción.	[1]
(c)	Calcule el valor de la constante de velocidad, incluyendo sus unidades.	[2]

(Esta pregunta continúa en la siguiente página)

(Pregunta 1: continuación)

(d)	El siguiente es uno de los mecanismos propuestos para esta reacción.	
	$H_2 + NO \rightleftharpoons X$ etapa rápida $X + NO \rightarrow Y + H_2O$ etapa lenta $Y + H_2 \rightarrow N_2 + H_2O$ etapa rápida	
	Indique y explique si este mecanismo concuerda con la expresión de velocidad experimental escrita en el apartado (b).	[4]
(e)	Explique por qué no es probable que una reacción de este tipo transcurra por medio de un mecanismo de etapa única.	[2]
(f)	Deduzca cómo se compara la velocidad inicial de formación de $\rm H_2O(g)$ con la del $\rm N_2(g)$ en el experimento 1. Explique su respuesta.	[2]

224-165 Véase al dorso

(a)	Escriba la ecuación que representa la combustión completa del eteno.
(b)	Calcule el volumen de dióxido de carbono obtenido y el volumen de oxígeno sobrante.
(a)	Escriba una ecuación que represente la formación de yoduro de zinc a partir de yodo y zinc.
(a)	Escriba una ecuación que represente la formación de yoduro de zinc a partir de yodo y zinc.
(a) (b)	Escriba una ecuación que represente la formación de yoduro de zinc a partir de yodo y zinc. Se hacen reaccionar 100,0 g de zinc con 100,0 g de yodo produciendo yoduro de zinc. Calcule los moles de zinc y de yodo y, a partir de ellos, determine cuál es el reactivo en exceso.
	Se hacen reaccionar 100,0 g de zinc con 100,0 g de yodo produciendo yoduro de zinc. Calcule los moles de zinc y de yodo y, a partir de ellos, determine cuál es el reactivo en exceso.
	Se hacen reaccionar 100,0 g de zinc con 100,0 g de yodo produciendo yoduro de zinc. Calcule los moles de zinc y de yodo y, a partir de ellos, determine cuál es el reactivo en exceso.
	Se hacen reaccionar 100,0 g de zinc con 100,0 g de yodo produciendo yoduro de zinc. Calcule los moles de zinc y de yodo y, a partir de ellos, determine cuál es el reactivo en exceso.
	Se hacen reaccionar 100,0 g de zinc con 100,0 g de yodo produciendo yoduro de zinc. Calcule los moles de zinc y de yodo y, a partir de ellos, determine cuál es el reactivo en exceso.
	Se hacen reaccionar 100,0 g de zinc con 100,0 g de yodo produciendo yoduro de zinc. Calcule los moles de zinc y de yodo y, a partir de ellos, determine cuál es el reactivo en exceso.
	Se hacen reaccionar 100,0 g de zinc con 100,0 g de yodo produciendo yoduro de zinc. Calcule los moles de zinc y de yodo y, a partir de ellos, determine cuál es el reactivo en exceso.
	Se hacen reaccionar 100,0 g de zinc con 100,0 g de yodo produciendo yoduro de zinc. Calcule los moles de zinc y de yodo y, a partir de ellos, determine cuál es el reactivo en exceso.

4.	(a)	Defina el término isótopo.	[2]
	(b)	Una muestra de galio está formada por dos isótopos, ⁶⁹ Ga, con una abundancia relativa de 61,2 %, y ⁷¹ Ga, con una abundancia relativa de 38,8%. Calcule la masa atómica relativa del galio.	[1]
5.	(a)	Los espectros de líneas proporcionan una prueba de la existencia de niveles energéticos en los átomos. Indique cómo se diferencia un espectro de líneas de un espectro continuo.	[1]
	(b)	En el diagrama de abajo, dibuje cuatro líneas del espectro de líneas visible del hidrógeno.	[1]
		Baja energía Alta energía	
	(c)	Explique cómo la formación de líneas explica la existencia de niveles energéticos.	[1]

Véase al dorso

6.	Desc	Describa en términos moleculares los procesos que ocurren cuando						
	(a)	una mezcla de hielo y agua se mantiene en el punto de fusión;	[2]					
	(b)	una muestra de un líquido muy volátil (como el etoxietano) se coloca sobre la piel de una persona.	[2]					

	$2NO_2(g) \rightleftharpoons N_2O_4(g)$ $\Delta H = \text{negativo}$ $K_c = 1 \text{ at } 328 \text{ K}$	
(a)	Escriba la expresión de la constante de equilibrio, $K_{\rm c}$.	[1]
(b)	Indique y explique el efecto de un aumento de temperatura sobre el valor de $K_{\rm c}$.	[2]
(c)	Indique y explique qué variación visible se produce como resultado de una disminución de presión.	[2]
(d)	En un recipiente vacío de $1\mathrm{dm^3}$ se introdujeron dos moles de $\mathrm{NO_2}(g)$ y dos moles de $\mathrm{N_2O_4}(g)$ y se dejó alcanzar el equilibrio a 328 K. Prediga, con referencia al valor de K_c , si	[2]
	la mezcla en equilibrio contendrá más o menos que dos moles de NO ₂ (g).	[2]

Véase al dorso

SECCIÓN B

Conteste **dos** preguntas. Conteste a las preguntas en las hojas de respuestas provistas. Escriba su número de alumno en cada una de las hojas de respuestas, y adjúntelas a este cuestionario de examen y a su portada empleando los cordeles provistos.

8.	(a)	(i)	Indique la configuración electrónica completa del argón.	[1]
		(ii)	Escriba las fórmulas de dos iones de carga opuesta que tengan la misma configuración electrónica del argón.	[2]
	(b)	Dibu	aje la estructura de Lewis (punto-electrón) de los siguientes iones.	
			$NO_2^ NO_2^+$	
		Dete	ermine y explique la forma de cada ion.	[6]
	(c)	(i)	Enumere las siguientes sustancias en orden creciente respecto de sus puntos de ebullición (el menor primero).	[2]
			CH_3CHO C_2H_6 CH_3COOH C_2H_5OH	
		(ii)	Indique si cada compuesto es polar o no polar, y explique el orden de los puntos de ebullición propuesto en el apartado (c) (i).	[8]
	(d)	(i)	Indique y explique la diferencia de conductividad eléctrica entre el diamante y el grafito.	[4]
		(ii)	Resuma cómo el cloruro de potasio es capaz de actuar como conductor eléctrico.	[2]

Explique, en términos de ΔG^{\ominus} , por qué una reacción para la cual tanto ΔH^{\ominus} como ΔS^{\ominus} son 9. [4] positivos, en algunas ocasiones es espontánea y en otras no.

(b) Considere la siguiente reacción:

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

(i) Calcule la variación de entalpía estándar para esta reacción usando los valores de las entalpías medias de enlace que encontrará en la tabla 10 del cuadernillo de datos.

[4]

Los valores absolutos de entropía, S, a 300 K para el N₂(g), el H₂(g) y el NH₃(g) son (ii) 193, 131 y 192 J K⁻¹ mol⁻¹ respectivamente. Calcule ΔS^{\oplus} para la reacción y explique el signo de ΔS^{\ominus} .

[3]

(iii) Calcule el valor de ΔG^{\ominus} para esta reacción a 300 K.

[1]

(iv) Si el amoníaco se obtuviera al estado líquido y no como un gas, indique y explique el efecto que tendría este hecho sobre el valor de ΔH^{\ominus} de la reacción.

[2]

Defina el término entalpía estándar de formación, y escriba la ecuación para la entalpía (c) estándar de formación del etanol.

[5]

Los valores de entalpías de enlace están tabulados como entalpías medias de enlace. (d) Explique qué significa este término.

[2]

Es posible calcular la entalpía de las reacciones, por ejemplo una combustión, usando las (e) entalpías medias de enlace o las entalpías de formación. Los dos métodos dan resultados similares para el ciclohexano pero diferentes para el benceno. Explique esta diferencia.

[4]

Véase al dorso 224-165

(a)	En la	a tabla 15 del cuadernillo de datos encontrara algunos potenciales estandar de electrodo.	
	(i)	Indique tres condiciones bajo las cuales se le asigna valor cero al potencial del electrodo de hidrógeno.	[3]
	(ii)	Calcule el potencial de una celda formada por electrodos estándar de cobre y zinc. Indique la dirección del flujo electrónico en el circuito externo cuando la celda está produciendo corriente. Resuma los cambios que se producen en los electrodos y en las soluciónes cuando tiene lugar este proceso.	[5]
(b)		la información de la tabla 15 para determinar si la reacción entre el cobre metálico y una ción que contiene iones hidrógeno es espontánea o no.	[2]
(c)	iones	la información de la tabla 15 para identificar una sustancia que sea capaz de oxidar a los s bromuro pero no a los iones cloruro. Explique su elección y escriba una ecuación que esente la reacción redox que ha elegido.	[5]
(d)	en c	ace pasar corriente a través de cloruro de sodio fundido. Identifique la sustancia formada ada electrodo y escriba una ecuación para representar la formación de cada sustancia. rmine la relación molar entre las sustancias formadas.	[5]
(e)	Se el	ectroliza cloruro de sodio en solución acuosa.	
	(i)	Identifique las sustancias formadas, y sus cantidades relativas, cuando se usa una solución concentrada.	[2]
	(ii)	Identifique las sustancias formadas, y sus cantidades relativas, cuando se usa una solución muy diluida.	[2]
	(iii)	Escriba una ecuación para representar la reacción que se produce cuando se electroliza cloruro de sodio acuoso, pero no cloruro de sodio fundido.	[1]

10.

[5]

[2]

11. Esta pregunta se refiere a los compuestos de la siguiente secuencia de reacciones.

$$\begin{array}{cccc} C_3H_7Br & \xrightarrow{NaOH} & C_3H_8O & \xrightarrow{oxidación} & C_3H_6O & \xrightarrow{oxidación} & C_3H_6O_2 \\ \textbf{A} & \textbf{B} & \textbf{C} & \textbf{D} \end{array}$$

- (a) Los espectros de ¹H RMN de los compuestos **C** y **D** presentan tres picos con relación de área 3:2:1. Los espectros infrarrojos de los compuestos **C** y **D** presentan agudas absorciones cercanas a los 1720 cm⁻¹.
 - (i) Explique qué indica esta información espectral sobre la estructura de C y D y deduzca sus estructuras.
 - (ii) Sugiera **dos** rangos infrarrojos para los cuales el compuesto **D** presente absorción pero no el compuesto **C**.
- (b) Deduzca la estructura de **B** y prediga la relación de áreas bajo los picos de su espectro de ¹H RMN. [2]
- (c) Indique un reactivo adecuado para la oxidación de **B** a **C** y de **C** a **D**. Explique cómo lograr sólo la oxidación de **B** a **C** sin que prosiga la oxidación a **D**. [3]
- (d) La conversión de $\bf A$ a $\bf B$ transcurre por medio de un mecanismo $S_N 2$. Indique qué se entiende por el término $S_N 2$ y describa el mecanismo de esta conversión usando las "flechas curvas" para mostrar el movimiento de los pares electrónicos.
- (e) Deduzca cómo se compara la velocidad de reacción de **A** con NaOH con la del compuesto CH₂CH₂CH₂Cl con NaOH. Explique su respuesta haciendo referencia a la tabla 10 del cuadernillo de datos. [2]
- (f) Los compuestos **B** y **D** reaccionan entre sí cuando se los calienta con ácido sulfúrico concentrado. Indique el nombre de este tipo de reacción y deduzca la estructura del producto. [2]
- (g) Escriba la estructura de un éster isómero de **D** y explique por qué es menos soluble en agua que **D**. [3]