

ESTADÍSTICA

Contraste de Hipótesis 2 parámetros

CONTRASTE PARA LA DIFERENCIA DE DOS MEDIAS POBLACIONALES. DOS POBLACIONES NORMALES. MUESTRAS INDEPENDIENTES. VARIANZAS CONOCIDAS

Test	Estadístico de prueba d	RA	RC	p-Valor
$H_0 \mu_X - \mu_Y = D$ $H_1 \mu_X - \mu_Y \neq D$ $\sigma_X \qquad y \qquad \sigma_Y$ Conocidas	$\frac{\bar{x} - \bar{y} - D}{\sqrt{\frac{\sigma_x^2}{n} + \frac{\sigma_y^2}{m}}} \sim Z$	$\frac{\left \overline{x} - \overline{y} - D\right }{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} \le + z_{\alpha/2}$	$\frac{\left \overline{x} - \overline{y} - D\right }{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} > + z_{\alpha/2}$	$P(Z \ge d_0)$
$H_0 \mu_X - \mu_Y = D$ $H_1 \mu_X - \mu_Y > D$ $\sigma_X \qquad y \qquad \sigma_Y$ Conocidas	ídem		$\frac{\overline{x} - \overline{y} - D}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} > z_\alpha$	$P(Z \ge d_0)$
$H_0 \mu_X - \mu_Y = D$ $H_1 \mu_X - \mu_Y < D$ $\sigma_X \qquad y \qquad \sigma_Y$ Conocidas	ídem		$\frac{\overline{x} - \overline{y} - D}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} < -z_\alpha$	$P(Z \le d_0)$

CONTRASTE PARA LA DIFERENCIA DE DOS MEDIAS POBLACIONALES. DOS POBLACIONES NORMALES. MUESTRAS INDEPENDIENTES. VARIANZAS DESCONOCIDAS E IGUALES

Test	Estadístico de prueba d	RA	RC	p-Valor
$H_0 \mu_X - \mu_Y = D$	$(\bar{x} - \bar{y}) - D$	$ d \le t_{n+m-2,\alpha/2}$	$ d > t_{n+m-2,\alpha/2}$	$P(t_{n-1} \ge d_0)$
$H_1 \mu_X - \mu_Y \neq D$	$\frac{(\bar{x} - \bar{y}) - D}{s^* \sqrt{\frac{1}{n} + \frac{1}{m}}} \sim t_{n+m-2}$,		11
$\sigma_X = \sigma_Y = \sigma$	\sqrt{n} m			
desconocidas				
	$s^* = \frac{(n-1)s_{1x}^2 + (m-1)s_{1y}^2}{n+m-2}$			
$H_0 \mu_X - \mu_Y = D$	ídem		$d > t_{n+m-2,\alpha}$	$P(t_{n-1} \ge d_0)$
$H_1 \mu_X - \mu_Y > D$,	
$\sigma_X = \sigma_Y = \sigma$				
desconocidas				
$H_0 \mu_X - \mu_Y = D$	ídem		$d < -t_{n+m-2,\alpha}$	$P(t_{n-1} \le d_0)$
$H_1 \mu_X - \mu_Y < D$				
$\sigma_X = \sigma_Y = \sigma$				
desconocidas				

CONTRASTE PARA LA DIFERENCIA DE DOS MEDIAS POBLACIONALES. DOS POBLACIONES NORMALES. MUESTRAS INDEPENDIENTES Y GRANDES. VARIANZAS DESCONOCIDAS

Test	Estadístico de prueba d	RA	RC	p-Valor
$H_0 \mu_X - \mu_Y = D$ $H_1 \mu_X - \mu_Y \neq D$ $\sigma_X y \sigma_Y \text{ desconocidas}$ $n y m \text{ grandes}$	$\frac{(\bar{x} - \bar{y}) - D}{\sqrt{\frac{s_{1x}^2}{n} + \frac{s_{1y}^2}{m}}} \sim Z$	$ d \le + z_{\alpha/2}$	$ d > +z_{\alpha/2}$	$P(Z \ge d_0)$
H ₀ $\mu_X - \mu_Y = D$ $H_1 \mu_X - \mu_Y > D$ $\sigma_X y \sigma_Y desconocidas$ n y m grandes	ídem		$d > z_{\alpha}$	$P(Z \ge d_0)$
$H_0 \mu_X - \mu_Y = D$ $H_1 \mu_X - \mu_Y < D$ $\sigma_X y \sigma_Y \text{ desconocidas}$ $n y m \text{ grandes}$	ídem		$d < -z_{\alpha}$	$P(Z \le d_0)$

CONTRASTE PARA EL COCIENTE DE DOS VARIANZAS POBLACIONALES. DOS POBLACIONES NORMALES. MUESTRAS INDEPENDIENTES.

Test	Estadístico de prueba d	RA	RC	p-Valor
$H_0 \sigma_X^2 = \sigma_Y^2$ $H_1 \sigma_X^2 \neq \sigma_Y^2$	$\frac{s_{1X}^2}{s_{1Y}^2} \sim F_{n-1,m-1}$	$F_{n-1,m-1,1-\alpha/2} \leq d \leq F_{n-1,m-1,\alpha/2}$ Donde $F_{n-1,m-1,1-\alpha/2} = \frac{1}{F_{m-1,n-1,\alpha/2}}$	$d > F_{n-1,m-1,\alpha/2}$ o $d < F_{n-1,m-1,1-\alpha/2}$	$2 \cdot \min \left[P\left(F_{n-1,m-1,\alpha/2} \ge d_0\right), \\ P\left(F_{n-1,m-1,\alpha/2} \le d_0\right) \right]$
$H_0 \sigma_X^2 = \sigma_Y^2$ $H_1 \sigma_X^2 > \sigma_Y^2$			$d > F_{n-1,m-1,\alpha}$	$P(F_{n-1,m-1,\alpha/2} \ge d_0)$
$H_0 \sigma_X^2 = \sigma_Y^2$ $H_1 \sigma_X^2 < \sigma_Y^2$			$d < F_{n-1,m-1,1-\alpha}$	$P(F_{n-1,m-1,\alpha/2} \le d_0)$

CONTRASTE PARA LA DIFERENCIA DE DOS PROPORCIONES. MUESTRAS INDEPENDIENTES Y GRANDES.

Test	Estadístico de prueba d	RA	RC	p-Valor
$H_0: p_X - p_Y = p_0$ $H_1: p_X - p_Y \neq p_0$	$\frac{\left(\widehat{p_x} - \widehat{p_y}\right) - p_0}{\sqrt{\frac{\widehat{p_x}\widehat{q_x}}{n} + \frac{\widehat{p_y}\widehat{q_y}}{m}}} \sim Z$	$ d \le +z_{\alpha/2}$	$ d > +z_{\alpha/2}$	$P(Z \ge d_0)$
$H_0: p_X - p_Y = p_0 H_1: p_X - p_Y > p_0$	ídem		$d > z_{\alpha}$	$P(Z \ge d_0)$
$H_0: p_X - p_Y = p_0 H_1: p_X - p_Y < p_0$	ídem		$d < -z_{\alpha}$	$P(Z \le d_0)$