Termodynamika z elementami fizyki statystycznej

Tydzień 11 (19 maja 2023)

Kombinatoryka, mikrostany, entropia układu izolowanego

Zadanie 1

Gęstość rozkładu prawdopodobieństwa masy truskawek z transportu jest zadana wzorem: $dN = A \cdot m \cdot \exp\{(-m/M)\} \cdot dm = f(m) \cdot dm$, gdzie parametr M = 30 g.

- a) Wyznacz stałą A.
- b) Gdzie leży maksimum rozkładu f(m)? Jaka jest średnia waga truskawki?
- c) Kontrahent potrzebuje truskawek o masach zawartych pomiędzy 27 g a 33 g. Jaki procent truskawek możemy mu sprzedać? Oszacować wynik jako $f(m) \cdot \Delta m$ i porównać z wynikiem dokładnym otrzymanym przez całkowanie f(m).

Zadanie 2

Znaleźć liczbę mikrostanów w układzie układu N nierozróżnialnych kulek rozmieszczonych w pudełku z V przegródkami (V oraz N definiują makrostan układu). Wykonać obliczenia dla V=20 i N=10 za pomocą ścisłego wzoru oraz przybliżając wynik używając wzór Stirlinga: $n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$.

Zadanie 3

Rozważyć układy N niezależnych cząstek:

- a) klasycznych,
- b) kwantowych o spinie całkowitym (tj. bozonów),
- c) kwantowych o spinie połówkowym (tj. fermionów).

Zakładając, że pojedyncza cząstka może przebywać w R stanach jednocząstkowych, obliczyć ile wynosi liczba mikrostanów każdego z wymienionych układów.

Zadanie 4

Rozważyć układ składający się z dwóch odizolowanych od siebie części: A oraz B, z których każda zawiera dwie rozróżnialne cząstki mogące przebywać w dyskretnych stanach energetycznych o energiach będących całkowitą wielokrotnością ε . Niech energie podukładów wynoszą odpowiednio $E_A = 5 \varepsilon$ i $E_B = \varepsilon$.

- a) Obliczyć ile wynosi liczba mikrostanów $\Omega_{A\cdot B}$ opisanego układu.
- b) Jaka będzie liczba mikrostanów Ω_{A+B} tego układu, jeśli dopuścimy swobodny przepływ energii pomiędzy podukładami A i B (tzn. usuniemy adiabatyczną przegrodę pomiędzy podukładami)?
- c) Przyjmując postulat, że w równowadze termodynamicznej wszystkie mikrostany realizujące dany makrostan układu izolowanego są jednakowo prawdopodobne, obliczyć jakie jest prawdopodobieństwo, że po usunięciu przegrody energia podukładu A wzrośnie?
- d) Jaki podział energii między podukładami A i B jest najbardziej prawdopodobny (tzn. odpowiada stanowi równowagi układu A+B)?
- e) Znajdź entropię układów $A \cdot B$ i A + B.

Zadanie 5

Model Einsteina drgań sieci krystalicznej ciał stałych (model nieoddziałujących oscylatorów)

Rozważyć układ N rozróżnialnych cząstek, z których każda może przebywać w dyskretnych stanach energetycznych o energiach będących całkowitą wielokrotnością pewnego ε (tzn. 0, ε , 2 ε , 3 ε , etc.) — czyli że są one kwantowymi oscylatorami harmonicznymi. Wyprowadzić wzór na liczbę możliwych stanów (mikrostanow) $\Omega(N,q)$ tego układu realizujących warunek, że całkowita energia układu wynosi $E=q\cdot\varepsilon$. Wykonaj przybliżone obliczenia dla N=30 i q=30 przy zastosowaniu wzoru Stirlinga i podaj entropię układu.

Zadanie 6

Rozważyć dwa mogące wymieniać energię układy zawierające N cząstek każdy: $N_A = N_B = N$, o całkowitej energii równej $q_A \cdot \varepsilon + q_B \cdot \varepsilon = q \cdot \varepsilon$ (gdzie ε jest pewnym kwantem energii). Stosując model nieoddziałujących oscylatorów oraz zakładając że energia obu podukladów jest duża $(q_i \gg N)$, pokazać, że:

- a) całkowita liczba mikrostanów układu $\Omega_{tot} = \Omega_A \cdot \Omega_B$ ma maksimum dla $q_A = q_B = q/2$,
- b) Ω_{tot} w okolicy swego maksimum jest funkcją Gaussa parametru x (gdzie: $q_A = \frac{q}{2} + x$ oraz $q_B = \frac{q}{2} x$), której względna szerokość jest rzędu $1/\sqrt{N}$.

Zadanie domowe 1

Obliczyć entropię jednowymiarowego łańcucha przedstawionego na rysunku, przy założeniu, że składa się on z N elementów $(N\gg 1)$ o długości ℓ każdy. Przyjąć, że odległość pomiędzy początkowym i końcowym punktem tego łańcucha wynosi L.

Odpowiedź: $S = k(\log N! - \log N_+! - \log N_-!)$.

Zadanie domowe 2

Rozpatrz dwa izolowane układy rozróżnialnych, nieruchomych i nieoddziałujących cząstek. Każda cząstka znajduje się w jednym z trzech stanów o energiach: $-\varepsilon$, 0, ε . Pierwszy układ (układ **A**) zawiera jedną cząstkę, a jego całkowita energia wynosi $E_A = \varepsilon$. Drugi układ (układ **B**) zawiera trzy cząstki, a jego całkowita energia wynosi $E_B = -\varepsilon$.

- (a) Policz liczbę mikrostanów całości złożonej z obu izolowanych układów.
- (b) Układy doprowadzono do kontaktu ze sobą tak, że mogą one wymieniać energię. Jaka jest teraz liczba mikrostanów?
- (c) Ile wynosi teraz najbardziej prawdopodobna energia układu A?
- (d) Ile wynosi entropia całego układu w punktach a) i b)?

Odpowied "z: a) $\Omega_A = 1$, $\Omega_B = 6$, b) $\Omega = 19$, c) 0, $S = k \log \Omega$.

Zadanie domowe 3

Energia wewnętrzna układu N atomów tworzących N-punktową idealną sieć krystaliczną wynosi U_0 . Atomy mogą jednak zajmować także miejsca pomiędzy punktami sieci (defekt sieci, takich miejsc dyslokacji też jest N). Atom znajdujący się poza punktami sieci ma dodatkową energię ϵ i może z równym prawdopodobieństwem wybrać każdy niezajęty punkt dyslokacji. Znajdź entropię układu, jeżeli jego energia wewnętrzna wynosi $U_0 + n\epsilon$.

Odpowied"z: Liczba kombinacji bez powt"orze"n $\binom{N}{n}$.