Badanie właściwości sprężystych sprężyny: metoda 1

Cel eksperymentu

✓ Sprawdzenie doświadczalne zależności pomiędzy silą F a wydłużeniem sprężyny ΔL , $F = -k\Delta L$, i wyznaczenie stałej sprężystości k

1. Wiadomości teoretyczne

Zgodnie z prawem Hooke'a siła zachowawcza sprężyny jest proporcjonalna do wychylenia i stałego współczynnika charakteryzującego daną sprężynę k. Zależność ta dana jest wzorem

$$mg = -k \cdot \Delta L \tag{1}$$

Znak minus oznacza, że siła F=mg, z jaką działa sprężyna jest odwrotnie skierowana do wychylenia ΔL . Jeżeli sprężyna jest ściśnięta to ΔL jest ujemne.

Współczynnik sprężystości można wyznaczyć doświadczalnie. Gdy na końcu sprężyny zawiesimy ciało o masie m, to pod wpływem ciężaru Q=mg sprężyna wydłuży się o ΔL =l-l₀, gdzie l jest aktualną długością sprężyny a l₀ jest długością spoczynkową.

2. Opis aparatury pomiarowej

Ćwiczenie laboratoryjne wykonuje się na makiecie zawierającej skalę, uchwyt sprężyny i zestaw odważników. Zadanie polega na pomiarze zmian wychylenia sprężyny ΔL wywołanych zmianą masy m. W drugiej części ćwiczenia realizuje się pomiar częstotliwości drgań odważników zawieszonych na sprężynie.

3. Przebieg eksperymentu

3.1 Dla sprężyny wskazanej przez prowadzącego wyznaczyć odpowiednie stałą sprężystości k w jednostkach układu SI. Dla zestawu ciężarków od 0 do 200g należy zmierzyć wychylenie ΔL sprężyny. Wyniki zapisać do poniższej tabeli.

Tabela 1. Wyniki pomiarów i obliczeń dot. badań współczynnika sprężystości sprężyny z wykorzystaniem prawa Hook'a ($F = -k\Delta L$)

mem prawa mook a (1 – NZIZ)								
i	<i>m</i> /g	ΔL /cm	k /Nm ⁻¹	$k_{sr} = \frac{\sum_{i=1}^{N} k_i}{N}$ /Nm ⁻¹	$\Delta k = \sqrt{\frac{\sum_{i=1}^{N} (k_i - k_{sr})^2}{N - 1}}$ /Nm ⁻¹	$\Delta k/k_{ m \acute{s}r}$		
1								
2								
•••								
10								

4. Opracowanie wyników pomiarów

- 1. Na podstawie danych z tabeli 1 wykonać wykres zależności wydłużenia sprężyny $\Delta L = f(m)$.
- 2. Dla każdego z pomiarów wyliczyć współczynnik sprężystości sprężyny k
- 3. Za pomocą wzorów przedstawionych w tabeli 1 wyznaczyć wartość średnią współczynnika sprężystości $k_{\acute{s}r}$ i niepewność pomiaru Δk oraz niepewność względną $\Delta k/k_{\acute{s}r}$
- 4. Przeanalizuj otrzymane wyniki badań i sformułuj odpowiednie wnioski.

Protokół pomiarowy

	Laboratorium z fizyki						
Rok akadem:	Temat:						
	Badanie właściwości sprężystych sprężyny						
Kierunek:	Imię i Nazwisko:						
Grupa:							
	Ocena	Data Zaliczenia	Podpis				
L							
S							
K							

Tabela 1. Wyniki pomiarów i obliczeń dot. badań współczynnika sprężystości sprężyny z wykorzystaniem prawa Hook'a $(F = -k\Delta L)$

i	m/g	ΔL /cm	k /Nm ⁻¹	$k_{sr} = \frac{\sum_{i=1}^{N} k_i}{N}$ /Nm ⁻¹	/Nm ⁻¹	$\Delta k/k_{ m \acute{s}r}$
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						