Digital Signatures

Introduction

- * Digital signature is an authentication mechanism.
- * The signature guarantees the source & integrity of the message.
- * The other authentication mechanisms protects the two parties from any third party.
- * They doesn't provide protection of two parties against each other.
- * The relationship between the signature and message are one to one.

Requirements for a digital signature

* The signature depends on the message being signed.

* The signature must use some information unique to the sender, to prevent forgery & denial.

x It must be relatively easy to produce the digital signature.

* It must be relatively easy to recognize & verify the digital signature.

* It must be computationally infeasible to forge a digital signature.

Digital signature process

- * A digital signature needs a public-key crptosystem.
- * The signer signs with her private key; the verifier verifies with the signer's public key.
- Symmetric key cryptosystem is not used because the secret key is known only to two entities.

Signing the digest

* Asymmetric key cryptosystems are very inefficient in dealing with long messages.

- × In digital signature the messages we are having are long.
- * The solution is to sign the digest of the message which is much shorter than message.

Signing the digest

Services

- * A digital signature provides
- Message authentication.
- Message Integrity
- Non repudiation
 - + It can be provided only by using trusted third party.

* Alice creates a signature from her message and sends the message, her identity, receiver's identity, the signature to the trusted center.

- * The center verifies that the message came from Alice through Alice's public key.
- * The center then saves a copy of the message with senders identity, receivers identity and a timestamp.
- * The center uses its private key to create another signature from the message.

* The center then sends the message, the new signature, Alice's identity, Bob's identity to Bob.

* Bob verifies the message using the public key of the trusted center.

* If in future Alice denies that she sent a message, the center can show the copy of the saved message.

- * Digital signature does not provide confidentiality.
- * It can be provided only by using the encryption schemes.
- * Confidentiality can be provided by either symmetric or asymmetric encryption schemes.

ATTACKS ON DIGITAL SIGNATURE

Key only attack

> Eve has the access to the public information of sender.

Known message attack

- > Eve has access to one or more message signature pairs.
- > Eve tries to create another message and forge Alice's signature on it.

Chosen Message Attack

- > Eve makes Alice sign one or more messages for him.
- > Eve later creates another message with the contents he want and forge's Alice's signature on it.

× Forgery types

× If the attack is successful the result is a forgery.

× Existential forgery

Eve may be able to create a valid message signature pair but she cannot use it.

× Selective forgery

- Eve may be able to forge Alice's signature on a message with the content selectively chosen.
- The probability of such a forgery is less.

RSA Digital Signature Scheme

* RSA algorithm can be used for signing and verifying a message.

* The sender uses its own private key to sign the document.

* The receiver uses senders public key to verify it.

General idea of RSA Digital Signature Scheme

× Key Generation

- × Sender chooses two prime numbers p and q.
- \times Calculates n = p * q
- $\star \phi (n) = (p-1) * (q-1)$
- * Then an integer e is chosen and its public.
- **x** d is calculated such that e * d \equiv 1 mod ϕ (n) and d is private.

Signing and Verifying

- × Signing
- * Alice creates a signature from the message using her private key.
- \times S = M^d mod n
- * Then sends the message and signature to bob.

Verifying

- **×** Bob receives M and S.
- * Bob applies Alice's public key to the signature to retrieve the message and the retrieved message is denoted as M'.
- \times M' = Se mod n
- **×** Bob then compares the value of M and M'.
- × If the two values are congruent Bob accepts the message.
- \times M ' \equiv M mod n

***** Example :Suppose that Alice chooses p = 823 and q = 953, and calculates n = 784319. The value of $\phi(n)$ is 782544. Now she chooses e = 313 and calculates d = 160009. At this point key generation is complete. Now imagine that Alice wants to send a message with the value of M = 19070 to Bob. She uses her private exponent, 160009, to sign the message:

M: $19070 \rightarrow S = (19070^{160009}) \mod 784319 = 210625 \mod 784319$

* Alice sends the message and the signature to Bob. Bob receives the message and the signature. He calculates.

$$M' = 210625^{313} \mod{784319} = 19070 \mod{784319} \longrightarrow M \equiv M' \mod n$$

* Bob accepts the message because he has verified Alice's signature.

Known message attack

- * Assume that attacker has intercepted two message signature pairs (M1, S1) and (M2,S2).
- * The two pairs have been created using the same private key.
- \times If M = (M1 * M2) mod n, then S = (S1 * S2) mod n.
- * The attacker can create $M = (M1 * M2) \mod n$ and can also create $S = (S1 * S2) \mod n$.
- * Thus the attacker fool Bob that S is signature of Alice on the message M.
- × It's an existential forgery.

Chosen message attack

- \star Eve makes Alice sign two legitimate messages M_1 and M_2 .
- \star Eve then creates a message $M = M_1 \times M_2$
- **×** Eve later claims that Alice has signed on M.
- × It's a selective forgery.

RSA Signature on the message digest

Key only attack

a) Eve intercepts the pair (S,M) and tries to find another message M' that creates the same digest

$$h(M) = h(M').$$

The attack is difficult if the hash algorithm is second pre image resistant.

b) Eve finds two messages M and M 'such that h(M) = h (M').

- * If eve makes Alice to sign h (M) to get S, then eve has a pair (M', S).
- × This pair can pass the verifying test.
- * The attack is difficult if the hash algorithm is collision resistant.

× Known message attack

- * Assume that the attacker is having two message signature pairs (M1,S1) and(M2,S2).
- \times The attacker calculates S = S1 * S2
- If the attacker can find a message M such that h (M) = h
 (M1) * h (M2) the attacker has a forged new message.

Chosen message attack

- \times Alice signs two messages M_1 and M_2 for eve.
- \times Eve then creates a new signature $S = S_1 \times S_2$.
- \star Eve can calculate h (M) = h (M₁) \times h (M₂)
- ★ Given h (M) if eve can find a message M, the new message is forgery.

ELGAMAL DIGITAL SIGNATURE SCHEME

Key Generation

- **×** Let P be a large prime number.
- \star Let e_1 be the primitive element in \mathbb{Z}_p^*
- * Alice chooses her private key as d which is less than p-1.
- $\mathbf{x} \ \mathbf{e}_2 = \mathbf{e}_1^{\mathrm{d}} \bmod \mathbf{p}$
- \times The public key is (e_1, e_2, p) .

Fig: ElGamal digital signature scheme

SIGNING

- * Alice chooses a secret no r.
 - > Public and private keys can be used repeatedly.
 - Sender needs a new r each time she signs a new message.
- \star Alice calculates the first signature $S_1 = e_1^r \mod p$
- **×** Alice calculates the second signature $S_2 = (M d \times S_1) \times r^{-1} \mod (p-1)$
- \times Alice sends M, S_1 , and S_2 to Bob

VERIFYING

- \times Bob checks if $0 < S_1 < p$
- \star Bob checks if $0 < S_2 < p 1$
- \star Bob calculates $V_1 = e_1^M \mod p$
- \times Bob calculates $V_2 = e_2^{S1} \times S_1^{S2} \mod p$
- \times If V_1 is congruent to $V_{2,}$, the message is accepted, otherwise it's rejected.