Stoichiometry

 1.) In the reaction C₂H₆ + O₂ → CO₂ + H₂O a.) How many oxygen molecules react with 6 mol of C₂H₆? b.) How many H₂O molecules are produced when 12 mol of C₂H₆ react? c.) How many moles of oxygen molecules are needed to produce 18 mol of CO₂? d.) How many moles of CO₂ are produced when 13 mol of C₂H₆ are used up?
 2.) In the reaction Fe + H₂O → Fe₃O₄ + H₂ a.) How many molecules of Fe₃O₄ are produced when 12 mol of Fe react? b.) How many moles of Fe are required to produce 16 mol of H₂? c.) How many H₂ molecules are made when 40 mol of Fe₃O₄ are produced? d.) How many moles of H₂O are required to react with 14.5 mol of Fe?
3.) How many moles of H_2O are produced when 9.6 mol of O_2 (g) react according to the equation: H_2 (g) + O_2 (g) \rightarrow H_2O (g)
 4.) Consider the equation l₂ (g) + F₂ (g) → IF₅ (g) + l₄F₂ (g) a.) How many moles of l₄F₂ (g) are produced by 5.40 mol of F₂ (g)? b.) How many moles of F₂ (g) are required to produce 4.50 mol of IF₅ (g)? c.) How many moles of l₂ (g) are required to react with 7.60 mol of F₂ (g)?
5.) A student decomposes some hydrogen peroxide, H_2O_2 , according to the following reaction $H_2O_2 \rightarrow H_2O_3 + O_2$ If a total of 0.125 mol of reactants and products are involved in the reaction, how many moles of O_2 are produced

More Stoichoimetry

1.) ____
$$NH_3(g) +$$
___ $O_2(g) \rightarrow$ ___ $H_2O(g) +$ ___ $NO(g)$

- a.) What mass of NO (g) is produced when 2.00 g of NH₃ (g) are reacted with excess O₂ (g)?
- b.) What mass of H₂O (g) is produced when 4.00 g of O₂ (g) are reacted with excess NH₃ (g)?
- c.) What volume of NH₃ (g) at STP is required to react with 3.00 g of O₂?
- d.) What volume of NH₃ (g) at STP is required to react with 0.750 g of H₂O (g)?

2.) ____
$$C_5H_{12}$$
 (I) + ____ O_2 (g) \rightarrow ____ CO_2 (g) + ____ H_2O (g)

- a.) What mass of CO₂ (g) is produced when 100.0 g of C₅H₁₂ (I) is burned?
- b.) What mass of O₂ is required to produce 60.0 g of H₂O (I)?
- c.) What mass of C₅H₁₂ (I) is required to produce 90.0 g of CO₂ (g) at STP?
- d.) What volume of O₂ (g) at STP is required to produce 70.0 g of CO₂ (g)?
- e.) What volume of O₂ (g) at STP is required to produce 48.0 g of CO₂ (g)?
- f.) What mass of H₂O (I) is made when the burning of C₅H₁₂ gives 106 g of CO₂ (g) at STP?
- **3.)** Tetraethyl lead, $Pb(C_2H_5)_4$, is an "antiknock" ingredient which was added to some gasoline. Tetraethyl lead burns according to this equation:

$$2\;Pb(C_2H_5)_4\;(I)\;+\;27\;O_2\;(g)\rightarrow 2\;PbO\;(s)\;+\;16\;CO_2\;(g)\;+\;20\;H_2O\;(g)$$

- a.) What volume of O2 (g) at STP is consumed when 100.0 g of PbO (s) are formed?
- b.) How many molecules of CO₂ are formed when 1.00 × 10²⁴ molecules of tetraethyl lead are burned?
- c.) How many molecules of H₂O are formed when 135 g of O₂ react?
- d.) What volume of O_2 (g) at STP, in mL, is required to react with 1.00 × 10^{23} molecules of tetraethyl lead?

Molarity
1.) A student wants to put 50.0 L of hydrogen gas at STP into a plastic bag by reacting excess aluminum metal with 3.00 M of sodium hydroxide solution according to the reaction below. What volume of NaOH solution is required? Al (s) + NaOH (aq) + H ₂ O (l) \rightarrow NaAlO ₂ (aq) + H ₂ (g)
2.) What volume of 0.250 M HCl is required to completely neutralize 25.0 mL of 0.318 M NaOH? (Hint: balance the equation)
3.) A technician analyzes a sample of water from a mine's tailings pond for mercury. After treatment, a 25.0 mL water sample reacts with 15.4 mL of 0.0148 M Cl $^-$ solution. Hg $^{2^+}$ (aq) + 2 Cl $^-$ (aq) \rightarrow HgCl $_2$ (s) a.) What is the molar concentration of mercury in the water sample? b.) What mass of HgCl $_2$ is formed in the reaction?
 4.) A 0.10 mL sample of saturated Ca(OH)₂ solution reacts with 23.5 mL of 0.0156 M HCl. a.) What is the molarity of Ca(OH)₂ in the saturated solution? b.) What mass of Ca(OH)₂ is dissolved in 250.0 mL of the saturated solution?
5.) A student titrates a 2.00 mL sample of hydrogen peroxide (H_2O_2) solution: 2 MnO_4^- (aq) + 5 H_2O_2 (aq) + 6 H^+ (aq) $\rightarrow 2 \text{ Mn}^{2+}$ (aq) + 5 O_2 (g) + 8 H_2O (I) The solution is labeled as "3.00% by volume" = 1.24 M H_2O_2 . a.) What volume of 0.0496 M MnO_4^- is required for the titration? b.) What volume of O_2 (g) at STP is produced during the reaction?
6.) A 1.00 mL sample of pure phosphoric acid (H_3PO_4) is titrated with 43.8 mL of 0.853 M NaOH. NaOH + $H_3PO_4 \rightarrow$ Na $_2HPO_4 +$ H_2O_4 a.) What is the molar concentration of pure H_3PO_4 ? b.) Calculate the density of pure H_3PO_4 .
7.) The iron in a sample of iron ore is converted to Fe^{2+} and titrated with dichromate: $Cr_2O_7^{2-} + 6 Fe^{2+} + 14 H^+ \rightarrow 2 Cr^{3+} + 6 Fe^{3+} + 7 H_2O$ A 25.0 mL sample of Fe^{2+} requires 17.6 mL of 0.125 M dichromate. a.) What is the molarity of Fe^{2+} ? b.) What mass of iron is present in the 25.0 mL sample?
8.) A chemist dissolves 15.5 g of pure NH ₄ NO ₃ and dilutes it to 500.0 mL. They titrate 10.0 mL of

this solution, and it requires 25.0 mL of NaOH.

 NH_4NO_3 (aq) + NaOH (aq) $\rightarrow NH_3$ (g) + H_2O (I) + NaNO₃ (aq)

- a.) What is the molarity of NaOH they should use?
- b.) What volume of NH3 (g) at STP is produced?
- 9.) The CO₂ content of a 10.0 L sample of air at STP is determined by bubbling it through 25.0 mL of 0.0538 M Ba(OH)₂.

 $Ba(OH)_2$ (aq) + CO_2 (g) \rightarrow $BaCO_3$ (s) + H_2O (l)

- a.) How many moles of Ba(OH)2 are present in the solution?
- b.) The remaining $Ba(OH)_2$ is titrated with 23.0 mL of 0.104 M HCl. How many moles of $Ba(OH)_2$ remain?
- c.) How many moles of Ba(OH)₂ reacted with CO₂?
- d.) How many moles of CO₂ are in the air sample?

1.5 M solution?

e.) How many litres of CO_2 at STP are in the 10.0 L air sample? What percentage of the air is CO_2 ?

	luations
	How much concentrated 18 M sulturic acid is needed to prepare 200 thic of a 6.0 M solution?
_	How much concentrated 12 M hydrochloric acid is needed to prepare 100 mL of a 2.0 M solution?
_	
	To what volume should 25 mL of 15 M nitric acid be diluted to prepare a 3.0 M solution?
	·
_	
•	To how much water should 50. mL of 12 M hydrochloric acid be added to produce a 4.0 M solution?

Limiting Reagent

1a) What mass of CS_2 is produced when 17.5 g of C are reacted with 39.5 g of SO_2 according to the equation:

$$5 C + 2 SO_2 \rightarrow CS_2 + 4 CO$$

- 1b) What mass of the excess reactant will be left over?
- 2a) What mass of NO is produced when 87.0 g of Cu are reacted with 225 g of HNO₃? Reaction: $3 \text{ Cu} + 8 \text{ HNO}_3 \rightarrow 3 \text{ Cu}(\text{NO}_3)_2 + 2 \text{ NO} + 4 \text{ H}_2\text{O}$
- 2b) What mass of the excess reactant will be left over?
- 3a) What mass of P_4 is produced when 41.5 g of $Ca_3(PO_4)_2$, 26.5 g of SiO_2 , and 7.80 g of C are reacted?

Equation:
$$2 \text{ Ca}_3(PO_4)_2 + 6 \text{ SiO}_2 + 10 \text{ C} \rightarrow P_4 + 6 \text{ CaSiO}_3 + 10 \text{ CO}$$

- 3b) How many grams of each excess reactant will remain unreacted?
- 4a) What mass of Br₂ is produced when 25.0 g of K₂Cr₂O₇, 55.0 g of KBr, and 60.0 g of H₂SO₄ are reacted?

Reaction:
$$K_2Cr_2O_7 + 6 \text{ KBr} + 7 \text{ H}_2SO_4 \rightarrow 4 \text{ K}_2SO_4 + Cr_2(SO_4)_3 + Br_2 + 7 \text{ H}_2O_4$$

- 4b) How many grams of each excess reactant will remain unreacted?
 - 5. What volume of CO₂ (g) at STP can be made when 0.0250 L of C₅H₁₂ (l) (density = ____ g/mL) is reacted with 40.0 L of O₂ (g) at STP? Equation: C₅H₁₂ + 8 O₂ \rightarrow 5 CO₂ + 6 H₂O
 - 6. If 50.0 mL of 0.100 M HCl is allowed to react with 30.0 mL of 0.200 M NaOH, which is the reactant in excess?
 - 7. If 0.250 g of Ba(OH)₂ is mixed with 15.0 mL of 0.125 M HBr, what mass of BaBr₂ can be formed?

Percentage Yield

1.)

The roasting of siderite ore, FeCO₃, produces iron(III) oxide:

 $4 \; FeCO_3 + O_2 \rightarrow 2 \; Fe_2O_3 + 4 \; CO_2$

A 35.0 g sample of siderite ore produces 22.5 g of Fe₂O₃.

What is the percentage yield of the reaction?

2.)

The reaction $SiO_2 + 4$ HF $\rightarrow SiF_4 + 2$ H₂O produces 2.50 g of H₂O when 12.20 g of SiO_2 is treated with excess HF.

- a) What mass of SiF₄ is formed?
- b) What mass of SiO₂ is left unreacted?
- c) What is the percentage yield of SiF₄?

3.)

When 5.00 kg of malachite ore containing 4.30% Cu₂(OH)₂CO₃ is heated, the product is copper(II) oxide:

 $Cu_2(OH)_2CO_3 \rightarrow CO_2 + 2 \; CuO + H_2O$

If the reaction has an 84.0% yield, how many grams of CuO are produced?

4.)

A mine produces silver ore named argentite, Ag₂S. The ore is smelted:

$$Ag_2S + C + 2 O_2 \rightarrow 2 Ag + CO_2 + SO_2$$

A 152.6 g sample of pure Ag₂S produces 117.4 g of pure silver.

What is the percentage yield of the smelting process?