Nomor 8

$$L = \{vw : (w \in \{a,b\}^*) \land (v^R \text{ suffix dari } w) \land (2|v| \ge |w|)\}.$$

Akan dibuktikan bahwa bahasa L merupakan bahasa non regular menggunakan pumping theorem. Asumsikan L merupakan bahasa reguler, dan k merupakan pumping length.

Pilih suatu string $s=a^kba^k=a^kba^k$. Perhatikan bahwa pada string ini, salah satu cara untuk mempartisi string menjadi vw ialah $v=a^k$ dan $w=ba^k$. Hal ini valid karena $2|v|\geq |w|\iff 2k\geq k+1$ untuk k>0. String s tersebut dapat dipartisi menjadi:

- $x = a^i, y = a^j, z = a^{k-i-j}ba^k$, dengan $1 \le i+j \le k$ dan $j \ge 1$.
- Berdasarkan teorema pumping, setiap $q \geq 0$ berlaku $xy^qz \in L$. Pilih q=k+1.
- Maka $xy^{k+1}z = a^i a^{(k+1)j} a^{k-i-j} b a^k = a^{k(j+1)} b a^k$.

Akan dibuktikan bahwa tidak ada partisi v dan w sehingga string $xy^{k+1}z$ tersebut merupakan anggota bahasa L.

Bukti.

Kasus 1: Coba partisi $v=a^x$, dengan x>k, maka jelas v^R yang panjangnya >k tidak dapat menjadi suffix string w yang secara trivial diketahui memiliki suffix ba^k .

Kasus 2: Coba partisi $v=a^{k(j+1)}ba^x$, dengan $x\geq 0$, maka jelas v^R yang panjangnya > k tidak dapat menjadi suffix string w yang kini panjangnya < k.

Kasus 3: Coba partisi $v = a^x$, dengan $x \le k$.

- \bullet |v|=x.
- |w| = k(j+1) x + 1 + k = k(j+2) + 1 x.
- Karena $j \ge 1$, maka $|w| = k(j+2) + 2 \ge 3k + 2$.
- Dapat ditulis $2|v|=2x \le 2k < (3k+2) \le |w| \iff 2|v| < w$. Hal ini berkontradiksi dengan syarat bahasa ini anggota dari bahasa L.

Sehingga, terbukti bahwa $xy^{k+1}z \notin L$. Sehingga berdasarkan *pumping theorem*, dapat disimpulkan L merupakan bahasa non-regular.