5. Transformers Computational Music Creativity

Real-time scores

A reference problem

My friends like tomatoes because they are tasty

A reference problem

My friends like tomatoes because they are tasty

Self-attention: Intuition

What matrices do we have in self-attention?

Query, key, value matrices

Query (Q)				Key (K)			Value (V)		
1	1.3	0.8	1	0.6	2.4	1	$\lceil 0.4 \rceil$	1.0	
like	0.7	0.8 3.5 0.1	like	0.6 0.8 2.5	1.7	like	$\begin{bmatrix} 0.4\\1.2\\1.7 \end{bmatrix}$	2.8	
cats	1.9	0.1	cats	2.5	0.3	cats	$\lfloor 1.7$	0.2	

How do we derive Q, K, V?

How do we derive Q, K, V?

- Multiply input matrix by 3 weight matrices
- Learn weights during training

$$IW_Q = Q$$
$$IW_K = K$$
$$IW_V = V$$

Self-attention: Formalisation

$$Z(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

$$Z(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

$$QK^T = \lim_{\text{cats}} \begin{bmatrix} 1.3 & 0.8 \\ 0.7 & 3.5 \\ 1.9 & 0.1 \end{bmatrix} \mathbf{q}_1 \begin{bmatrix} 0.6 & 0.8 & 2.5 \\ 2.4 & 1.7 & 0.3 \\ \mathbf{k}_1 & \mathbf{k}_2 & \mathbf{k}_3 \end{bmatrix} = \begin{bmatrix} q_1k_1 & q_1k_2 & q_1k_3 \\ q_2k_1 & q_2k_2 & q_2k_3 \\ q_3k_1 & q_3k_2 & q_3k_3 \end{bmatrix} = \lim_{\text{cats}} \begin{bmatrix} 2.7 & 2.4 & 3.49 \\ 8.82 & 6.51 & 2.8 \\ 1.38 & 1.69 & 4.78 \end{bmatrix}$$

What are Q and K really?

$$Z(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

What are Q and K really?

$$Z(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

- Normalize similarity scores
- Apply softmax
- Each word vector (row) adds up to 1 (probability)

softmax
$$\left(\frac{QK^T}{\sqrt{d_k}}\right) = \begin{cases} 1 & \text{like Cats} \\ 0.7 & 0.2 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.4 & 0.1 & 0.5 \end{cases}$$

softmax
$$\left(\frac{QK^T}{\sqrt{d_k}}\right)$$

softmax
$$\left(\frac{QK^T}{\sqrt{d_k}}\right)$$

Attention score

Relevance of different parts of the sequence to each other

$$Z(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

Self-attention for word "I"

$$Z = \underset{\text{cats}}{\text{like}} \begin{bmatrix} 0.7 & 0.2 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.4 & 0.1 & 0.5 \end{bmatrix} \xrightarrow{\text{like}} \begin{bmatrix} 0.4 & 1.0 \\ 1.2 & 2.8 \\ 1.7 & 0.2 \end{bmatrix} \overset{\textbf{v}_1}{\overset{\textbf{v}_2}{\textbf{v}_2}} = \underset{\text{cats}}{\text{like}} \begin{bmatrix} 0.69 & 1.28 \\ 1.14 & 1.92 \\ 1.13 & 0.78 \end{bmatrix} = \begin{bmatrix} \vec{z}_1^* \\ \vec{z}_2^* \\ \vec{z}_3^* \end{bmatrix}$$

$$\text{softmax} \left(\frac{QK^T}{\sqrt{d_k}} \right) \qquad V$$

$$ec{z}_1 = 0.7 ec{v}_1 + 0.2 ec{v}_2 + 0.1 ec{v}_3 = 0.7 \begin{bmatrix} 0.4 & 1.0 \end{bmatrix} + 0.2 \begin{bmatrix} 1.2 & 2.8 \end{bmatrix} + 0.1 \begin{bmatrix} 1.7 & 0.2 \end{bmatrix}$$
 like cats

Sum of the value vectors weighted by the scores

A reference problem: Solved

My friends like tomatoes because they are tasty

$$\vec{z}_{they} = 0.0\vec{v}_1 + 0.0\vec{v}_2 + 0.0\vec{v}_3 + 0.9\vec{v}_4 + 0.0\vec{v}_5 + 0.1\vec{v}_6 + 0.0\vec{v}_7 + 0.0\vec{v}_8$$
 my friends like tomatoes because they are tasty

What's multi-head attention?

What's multi-head attention?

- Run multiple instances of the self-attention mechanism in parallel
- Compute as many Q, K, V, Z matrices as the number of heads

$$Z = concatenate(Z_1, Z_2, Z_3, ..., Z_n)W_0$$

Why positional encoding?

Positional encoding: Strategy

$$I^{'} = \begin{bmatrix} 0.2 & 1.2 \\ 0.5 & 4.1 \\ 2.1 & 0.4 \end{bmatrix} + \begin{bmatrix} 0.5 & 1.0 \\ 2.5 & 1.3 \\ 1.1 & 0.3 \end{bmatrix} = \begin{bmatrix} 0.7 & 2.2 \\ 3.0 & 5.4 \\ 3.2 & 0.7 \end{bmatrix}$$
 I

How do we compute P?

How do we compute P?

$$P(pos, 2i) = \sin\left(\frac{pos}{10000^{2i/dimension_{model}}}\right)$$

$$P(pos, 2i + 1) = \cos\left(\frac{pos}{10000^{2i/dimension_{model}}}\right)$$

How do we compute P?

$$P(pos, 2i) = \sin\left(\frac{pos}{10000^{2i/dimension_{model}}}\right)$$

$$P(pos, 2i + 1) = \cos\left(\frac{pos}{10000^{2i/dimension_{model}}}\right)$$

$$P = \begin{bmatrix} \sin\left(\frac{0}{10000^{2 \cdot 0/3}}\right) & \cos\left(\frac{0}{10000^{2 \cdot 1/2}}\right) & \sin\left(\frac{0}{10000^{2 \cdot 2/3}}\right) \\ \sin\left(\frac{1}{10000^{2 \cdot 0/3}}\right) & \cos\left(\frac{1}{10000^{2 \cdot 1/2}}\right) & \sin\left(\frac{1}{10000^{2 \cdot 2/3}}\right) \\ \sin\left(\frac{2}{10000^{2 \cdot 0/3}}\right) & \cos\left(\frac{2}{10000^{2 \cdot 1/2}}\right) & \sin\left(\frac{2}{10000^{2 \cdot 2/3}}\right) \\ \sin\left(\frac{3}{10000^{2 \cdot 0/3}}\right) & \cos\left(\frac{3}{10000^{2 \cdot 1/2}}\right) & \sin\left(\frac{3}{10000^{2 \cdot 2/3}}\right) \end{bmatrix}$$

Other components missing from encoder?

- Feed-forward
- Add & Norm

Other components missing from encoder?

Decoder

Training / inference discrepancy

Training / inference discrepancy

What decoder knows during inference

SOS me gustan

Training / inference discrepancy

What decoder knows during inference SOS me gustan

What decoder knows during training SOS me gustan los gatos

$$Z_i(Q_i, K_i, V_i) = \operatorname{softmax}\left(\frac{Q_i K_i^T}{\sqrt{d_k}}\right) V_i$$

		SOS	me	gustan	los	gatos
$\frac{Q_i K_i^T}{\sqrt{d_k}} =$	SOS	$\lceil 1.3 \rceil$	0.8	1.3	2.8	2.3
	me	2.4	2.8	2.3	6.8	1.9
	gustan	1.6	7.4	1.6	0.3	0.5
	los	2.1	1.2	9.3	5.2	0.2
	sos me gustan los gatos	$\lfloor 4.3$	3.8	6.3	1.8	2.3

		SOS	me		los	
$\frac{Q_i K_i^T}{\sqrt{d_k}} =$	SOS	1.3	0.8	1.3	2.8	2.3
	me	2.4	2.8	2.3	6.8	1.9
	gustan	1.6	7.4	1.6	0.3	0.5
	los	2.1	1.2	9.3	5.2	0.2
	sos me gustan los gatos	$\lfloor 4.3$	3.8	6.3	1.8	2.3

		SOS	me	gustan	los	gatos
$\frac{Q_i K_i^T}{\sqrt{d_k}} =$	SOS	$\lceil 1.3 \rceil$	0.8	1.3	2.8	2.3
	me	2.4	2.8	2.3	6.8	1.9
	gustan	1.6	7.4	1.6	0.3	0.5
	los	2.1	1.2	9.3	5.2	0.2
	sos me gustan los gatos	$\lfloor 4.3$	3.8	6.3	1.8	2.3

		SOS	me	gustan	los	gatos
$\frac{Q_i K_i^T}{\sqrt{d_k}} = \begin{array}{c} \cos \\ \cos \\ \cos \\ \cos \\ \cos \\ \cos \end{array} \begin{array}{c} 1.3 & -\infty & -\infty \\ 2.4 & 2.8 & -\infty \\ 1.6 & 7.4 & 1.6 \\ 2.1 & 1.2 & 9.3 \\ 4.3 & 3.8 & 6.3 \end{array}$	SOS	$\lceil 1.3 \rceil$	$-\infty$	$-\infty$	$-\infty$	$-\infty$
	$-\infty$	$-\infty$				
	gustan	1.6	7.4	1.6	$-\infty$	$-\infty$
	los	2.1	1.2	9.3	5.2	$-\infty$
	gatos	$\lfloor 4.3$	3.8	6.3	1.8	2.3

Deriving Q, K, V

- Query matrix (Q) from masked attention input
- Key (K) and value (V) matrices from encoder representation

$$MW_Q = Q$$
$$RW_K = K$$
$$RW_V = V$$

Deriving Q, K, V

- Q holds representation of target sentence
- K, V hold representation of source sentence

Deriving attention matrix

$$Z = \underset{\text{gatos}}{\text{gatos}} \begin{bmatrix} 0.7 & 0.2 & 0.1 \\ 0.6 & 0.3 & 0.1 \\ 0.1 & 0.8 & 0.1 \\ 0.1 & 0.3 & 0.6 \\ 0.1 & 0.1 & 0.8 \end{bmatrix} \quad \begin{vmatrix} \begin{bmatrix} 0.4 & 1.0 \\ 1.2 & 2.8 \\ \text{cats} \end{bmatrix}_{\mathbf{v}_{3}}^{\mathbf{v}_{1}} \quad \underset{\text{los}}{\text{me}} \begin{bmatrix} \vec{z}_{1} \\ \vec{z}_{2} \\ \vec{z}_{3} \\ \end{bmatrix}$$

$$\vec{z}_3 = 0.1 \vec{v}_1 + 0.8 \vec{v}_2 + 0.1 \vec{v}_3$$
 gustan like cats

What's the deeper meaning?

- Masked multi-head attention
- Multi-head attention
- Feedforward
- Add & Norm

Linear & softmax layers

How can you use a transformer to generate chords?

How can you condition generation on emotion?

How would you evaluate the output of a transformer that generates melodies?

Do we care about overfitting? Do we care about perfect prediction?

Can transformers create truly original music? Can they get us to transformational creativity?

Most capable model

- Most capable model
- Massive amount of music data needed

- Most capable model
- Massive amount of music data needed
- Music theory bozo

- Most capable model
- Massive amount of music data needed
- Music theory bozo
- Music representation is everything

Lack of creative control

Lack of creative control

My idea

- 2-level transformer
- Level 1: Generate high-level music representation
- Level 2: Fill the notes for level 1

My idea: Music representation

My idea: Level 1 music representation

High-level description of symbolic music

My idea: Level 1 music representation

- High-level description of symbolic music
- Easier to learn
- More coherent generation
- Controllable

 Get as much (consistent) data as possible

- Get as much (consistent) data as possible
- Music-informed tokenization

- Get as much (consistent) data as possible
- Music-informed tokenization
- Transpose data to C / Amin

- Get as much (consistent) data as possible
- Music-informed tokenization
- Transpose data to C / Amin
- Augment music data

- Get as much (consistent) data as possible
- Music-informed tokenization
- Transpose data to C / Amin
- Augment music data
- When using pre-trained models:
 - Fine-tune
 - Distillation

Activity 1: Bridging symbolic and audio

Come up with a strategy / new architecture to repurpose the Transformer architecture for audio-based music gen. What challenges would you face?

Instructions:

- Work in groups (5 people)
- 7' to come up with a solution
- 5' to discuss together

Museformer

https://ai-muzic.github.io/museformer/

Activity 2: Transformers go long

Long-term coherence has long been a problem in gen mus. Skim through the *Museformer* paper and answer the questions:

- What's the model about?
- How does it try to address long-term coherence?

Instructions:

- Work in pairs
- 10' to read / study
- 5' to discuss together

Activity 3: LLMs generate music

Use ChatGPT (or any other LLM) to generate music. Try to sonify it.

- Is it any good? What surprised you (good / bad)?
- What are its shortcomings?
- How could you improve the generation?

Instructions:

- Work in groups (5 people)
- 10' to play around
- 5' to discuss together

Assignment 4: Transformer training

Train Transformer on Irish folk tunes dataset.

Deadline: 25 January at midnight