Embedded Systems Design: A Unified Hardware/Software Introduction

Chapter 10: IC Technology

Outline

- Anatomy of integrated circuits
- Full-Custom (VLSI) IC Technology
- Semi-Custom (ASIC) IC Technology
- Programmable Logic Device (PLD) IC Technology

CMOS transistor

- Source, Drain
 - Diffusion area where electrons can flow
 - Can be connected to metal contacts (via's)
- Gate
 - Polysilicon area where control voltage is applied
- Oxide
 - Si O₂ Insulator so the gate voltage can't leak

End of the Moore's Law?

- Every dimension of the MOSFET has to scale
 - (PMOS) Gate oxide has to scale down to
 - Increase gate capacitance
 - Reduce leakage current from S to D
 - Pinch off current from source to drain
 - Current gate oxide thickness is about 2.5-3nm
- That's about 25 atoms!!!

Proposed Structures: FinFET

Body is a Thin Silicon Film Double Gate Structure + Raised Source Drain

X. Huang, et al, 1999 IEDM, p.67-70

20Ghz +

- FinFET has been manufactured to 18nm
 - Still acts as a very good transistor
- Simulation shown that it can be scaled to 10nm
 - Quantum effect start to kick in
 - Reduce mobility by ~10%
 - Ballistic transport become significant
 - Increase current by about ~20%

NAND

- Metal layers for routing (~10)
- PMOS don't like 0
- NMOS don't like 1
- A stick diagram form the basis for mask sets

Silicon manufacturing steps

- Tape out
 - Send design to manufacturing
- Spin
 - One time through the manufacturing process
- Photolithography
 - Drawing patterns by using photoresist to form barriers for deposition

Full Custom

- Very Large Scale Integration (VLSI)
- Placement
 - Place and orient transistors
- Routing
 - Connect transistors
- Sizing
 - Make fat, fast wires or thin, slow wires
 - May also need to size buffer
- Design Rules
 - "simple" rules for correct circuit function
 - Metal/metal spacing, min poly width...

Full Custom

- Best size, power, performance
- Hand design
 - Horrible time-to-market/flexibility/NRE cost...
 - Reserve for the most important units in a processor
 - ALU, Instruction fetch...
- Physical design tools
 - Less optimal, but faster...

Semi-Custom

Gate Array

- Array of prefabricated gates
- "place" and route
- Higher density, faster time-to-market
- Does not integrate as well with full-custom

Standard Cell

- A library of pre-designed cell
- Place and route
- Lower density, higher complexity
- Integrate great with full-custom

Semi-Custom

- Most popular design style
- Jack of all trade
 - Good
 - Power, time-to-market, performance, NRE cost, per-unit cost, area...
- Master of none
 - Integrate with full custom for critical regions of design

Programmable Logic Array (PLA)

Programmable Logic Device

- Programmable Logic Device
 - Programmable Logic Array, Programmable Array Logic, Field Programmable Gate Array
- All layers already exist
 - Designers can purchase an IC
 - To implement desired functionality
 - Connections on the IC are either created or destroyed to implement
- Benefits
 - Very low NRE costs
 - Great time to market
- Drawback
 - High unit cost, bad for large volume
 - Power
 - Except special PLA
 - slower

1600 usable gate, 7.5 ns \$7 list price

Xilinx FPGA

Configurable Logic Block (CLB)

Figure 1: Simplified Block Diagram of XC4000-Series CLB (RAM and Carry Logic functions not shown)

I/O Block

Simplified Block Diagram of XC4000E IOB