AMENDMENTS TO THE CLAIMS

Please cancel claims 1-5 and 7-12:

Claim 13 (New): A turbo decoder having a state metric, comprising: branch metric calculation means for calculating a branch metric by receiving symbols through an input buffer;

state metric calculation means for calculating a reverse state metric by using the calculated branch metric at said branch metric calculating means, storing the reverse state metric in a memory, calculating a forward state metric; and

log likelihood ratio calculation means for calculating a log likelihood ratio by receiving the forward state metric from said state metric calculation means and reading the reverse state metric saved at a memory in said state metric calculation means,

wherein the log likelihood ratio L_k is calculated by using an equation $\overset{2^{v}-1}{E}(A_k^{l,m}+B_k^{s(m)})-\overset{2^{v}-1}{E}(A_k^{0,m}+B_k^m)$ wherein m is a state of a trellis diagram; k is a stage; s(m) is a function a number complemented a Most Significant Bit(MSB)of binary number of m; $\overset{1}{E}$ is a function defined as $\overset{1}{E}A_k^{j}=A_k^0EA_k^{1}=\log_e(e^{A_k^0}+e^{A_k^1})$; j is a $(k-1)^{th}$ input for a reverse state metric; $A_k^{l,m}$ is a k^{th} forward state metric with state m and input 1; $B_k^{s(m)}$ is a k^{th} reverse state metric with state m and input m and m is a m-reverse state metric with state m.

Claim 14 (New): The turbo decoder in recited as claim 13, wherein said state metric calculation means includes:

reverse state metric calculation means for calculating a reverse state metric in case an input i is 0 according to states of the branch metric; and

forward state metric calculation means for calculating a forward state metric in case an input i is 0 or in case the input i is 1 according to states of the branch metric.

Claim 15 (New): A calculation method implemented to a turbo decoder, comprising steps of:

- a) calculating a branch metric by receiving symbols;
- b) calculating a reverse state metric in case an input i is 0 by using the calculated branch metric and saving the calculated reverse state metric in a memory;
- c) calculating a forward state metric in case an input i is 0 or in case the input i is 1 by using the calculated branch metric;
- d) calculating a log likelihood ratio by using the forward state metric and the reverse state metric; and
 - e) storing the log likelihood ratio,

wherein the log likelihood ratio L_k is calculated by using an equation $\overset{2^v-1}{E}(A_k^{1,m}+B_k^{s(m)})-\overset{2^v-1}{E}(A_k^{0,m}+B_k^m)$ wherein m is a state of a trellis diagram; s(m) is a function provides a number complemented a Most Significant Bit (MSB) of binary number of m; $\overset{1}{E}$ is a function defined as $\overset{1}{E}_{j=0}A_k^j=A_k^0$ $\overset{1}{E}_{j=0}A_k^j=\log_e(e^{A_k^0}+e^{A_k^1})$; j is a $(k-1)^{th}$ input for a reverse state metric; k is a stage; $A_k^{1,m}$ is a k^{th} forward state metric with state m and input 1; $B_k^{s(m)}$ is a k^{th} reverse state metric with state s(m); $A_k^{0,m}$ is a k^{th} forward state metric with state m.

Claim 16 (New): The calculation method as recited in claim 15, wherein the reverse state metric B_k^m , which is k^{th} reverse state metric with state m, is calculated by using an equation $\sum_{j=0}^{1} (B_{k+1}^{F(j,m)} + D_{k+1}^{j,f(m)})$, wherein m is a state of a trellis diagram; k is a stage; j is a $(k-1)^{th}$ input for a reverse state metric; f(m) is the state of $(k+1)^{th}$ stage related to the state m of k^{th} stage; F(j,m) is a function defined as F(j,m)=f(m) for j=0 and F(j,m)=s(f(m)) for j=1; s(m) is a function provides a number complemented for a Most Significant Bit (MSB) of binary number of m; $\sum_{j=0}^{t}$ is a function defined as

 $\stackrel{!}{\underset{j=0}{E}} A_{k}^{j} = A_{k}^{0} \stackrel{!}{\underset{k=1}{E}} log_{e}(e^{A_{k}^{0}} + e^{A_{k}^{1}}); \quad B_{k+1}^{F(j,m)} \text{ is a } (k+1)^{th} \text{ reverse state metric with state } F(j,m)$ and $D_{k+1}^{j,f(m)}$ is (k+1)th branch metric with state m and $(k+1)^{th}$ input.

Claim 17 (New): The calculation method as recited in claim 15, wherein the forward state metric A_k^m , which is k^{th} forward state metric with state m, is calculated by using an equation $\sum_{j=0}^{l} (D_k^{j,b(j,m)} + A_{k-1}^{b(j,m)})$ wherein m is a state of a trellis diagram; k is a stage; b(j,m) is the reverse state of the $(k-1)^{th}$ stage; j is a $(k+1)^{th}$ input for a reverse state metric; $\sum_{j=0}^{l}$ is a function defined as $\sum_{j=0}^{l} A_k^j = A_k^0 E_{k-1} A_k^1 = \log_e(e^{A_k^0} + e^{A_k^1})$; $A_{k-1}^{b(j,m)}$ is a $(k-1)^{th}$ forward state metric with state b(j,m) and $D_k^{j,b(j,m)}$ is k^{th} branch metric with state b(j,m).

Claim 18 (New): The calculation method as recited in claim 15, wherein the reverse state metric B_k^m , which is k^{th} reverse state metric with state m, is calculated by using an equation $\sum_{j=0}^1 (B_{k+1}^{F(j,m)} + D_{k+1}^{J,f(m)})$, wherein m is a state of a trellis diagram; k is a stage; j is a $(k-1)^{th}$ input for a reverse state metric; f(m) is a state of $(k+1)^{th}$ stage related to k^{th} state with state m; F(j,m) is a function defined as F(j,m)=f(m) for j=0 and F(j,m)=s(f(m)) for j=1; s(m) is a function provides a number complemented for a Most Significant Bit (MSB) of binary number of m; $\sum_{j=0}^{1}$ is a function defined as $\sum_{j=0}^{1} A_k^j = A_k^0 2 A_k^1 = log_2(2^{A_k^0} + e^{A_k^1}); B_{k+1}^{F(j,m)}$ is a $(k+1)^{th}$ reverse state metric with state F(j,m) and $D_{k+1}^{J,f(m)}$ is (k+1)th branch metric with state m and $(k+1)^{th}$ input.

Claim 19 (New): The calculation method as recited in claim 15, wherein the forward state metric A_k^m , which is k^{th} forward state metric with state m, is calculated by

using an equation $\sum_{j=0}^{1} (D_k^{j,b(j,m)} + A_{k-1}^{b(j,m)})$ wherein m is a state of a trellis diagram; k is a stage; b(j,m) is a $(k-1)^{th}$ reverse state; j is a $(k+1)^{th}$ input for a reverse state metric; $\sum_{j=0}^{1}$ is a function defined as $\sum_{j=0}^{1} A_k^j = A_k^0 2 A_k^1 = \log_2(2^{A_k^0} + 2^{A_k^1})$; $A_{k-1}^{b(j,m)}$ is a $(k-1)^{th}$ forward state metric with state b(j,m) and $D_k^{j,b(j,m)}$ is k^{th} branch metric with state b(j,m).

Claim 20 (New): The calculation method as recited in claim 15, wherein the log likelihood ratio L_k is calculated by using an equation $\sum_{m=0}^{2^v-1} (A_k^{1,m} + B_k^{s(m)}) - \sum_{m=0}^{2^v-1} (A_k^{0,m} + B_k^m)$ wherein m is a state of a trellis diagram; k is a stage; s(m) is a function provides a number complemented for a Most Significant Bit (MSB) of binary number of m; $\sum_{j=0}^{1}$ is a function defined as $\sum_{j=0}^{1} A_k^j = A_k^0 2 A_k^1 = log_2(2^{A_k^0} + 2^{A_k^1})$; $A_k^{1,m}$ is a k^{th} forward state metric with state m and input 1; j is a k^{th} forward state metric with state k^{th} is a k^{th} forward state metric with state k^{th} is a k^{th} forward state metric with state k^{th} is a k^{th} forward state metric with state k^{th} reverse state metric with state k^{th} forward state k^{th} forward state k^{th} forward state metric with state k^{th} reverse state metric with state k^{th} forward state k^{th}

Claim 21 (New): A computer-readable recording medium storing instructions for executing a calculation method implemented to a turbo decoder, comprising functions of:

calculating a branch metric by receiving symbols;

calculating a reverse state metric in case an input i is 0 by using the calculated branch metric and saving the calculated reverse state metric in a memory;

calculating a forward state metric in case an input i is 0 or in case the input i is 1 by using the calculated branch metric;

calculating a log likelihood ratio by using the forward state metric and the reverse state metric; and

storing the log likelihood ratio,

wherein the log likelihood ratio L_k is calculated by using an equation $\sum_{k=0}^{2^{v}-1} (A_k^{1,m} + B_k^{s(m)}) - \sum_{k=0}^{2^{v}-1} (A_k^{0,m} + B_k^m)$ wherein m is a state of a trellis diagram; k is a stage; j is a $(k-1)^{th}$ input for a reverse state metric; s(m) is a function provides binary number of m with a most significant bit complemented; $\sum_{j=0}^{1} is$ a function defined as $\sum_{j=0}^{1} A_k^j = A_k^0 E A_k^1 = \log_e(e^{A_k^0} + e^{A_k^1}); A_k^{1,m} is a k^{th} forward state metric with state <math>m$ and input k1; k2; k3; k4 forward state metric with state k4 forward state metric with state k5; k6; k7 forward state metric with state k8.

Claim 23 (New): The turbo decoder having a state metric as recited in claim 13, wherein the log likelihood ratio L_k is calculated by using an equation $\sum_{m=0}^{2^{v}-1} (A_k^{1,m} + B_k^{s(m)}) - \sum_{m=0}^{2^{v}-1} (A_k^{0,m} + B_k^m)$ wherein m is a state of a trellis diagram; k is a stage; j is a $(k-1)^{th}$ input for a reverse state metric; s(m) is a function provides binary number of m with a most

significant bit complemented; $\sum_{j=0}^{1}$ is a function defined as $\sum_{j=0}^{1}$ $A_k^{j} = A_k^0 2$ $A_k^{1} = log_2(2^{A_k^0} + 2^{A_k^1})$; $A_k^{1,m}$ is a k^{th} forward state metric with state m and input 1; $B_k^{s(m)}$ is a k^{th} reverse state metric with state s(m); $A_k^{0,m}$ is a k^{th} forward state metric with state m and input n and n and n is a n n reverse state metric with state n.