RPLIDAR A1

低成本 360 度激光扫描测距雷达

开发套装使用手册

型号: A1M8

目录1
简介3
套件包含的组件3
RPLIDAR A1 模组4
USB 转接器4
设备连接5
模组连接与使用介绍5
USB 适配器驱动程序安装5
使用评估软件7
故障排除9
开发参考与 SDK 使用10
RPLIDAR A1 模块引脚规格与定义10
USB 适配器引脚定义11
对 RPLIDAR A1 扫描频率进行控制12
使用 SDK 进行开发12
操作建议13
预热与最佳工作时间13
环境温度13
环境光照
修订历史
附录15
图表索引15

RPLIDAR A1 开发套装包含了方便用户对 RPLIDAR A1 进行性能评估和早期开发 所需的配套工具。用户只需要将 RPLIDAR A1 模组与 PC 机连接,即可在配套的 评估软件中观测 RPLIDAR A1 工作时采集得到的环境扫描点云画面或者使用 SDK 进行开发。

套件包含的组件

RPLIDAR A1 开发套装包含了如下组件:

- o RPLIDAR A1 模组(内置 PWM 电机驱动器)
- o USB 适配器
- O RPLIDAR A1 模组通讯排线

注意:另需自备 USB 线缆用于连接。

图表 1-1 RPLIDAR A1 开发套件实物图

RPLIDAR A1 模组

图表 1-2 RPLIDAR A1 模组实物图

RPLIDAR A1 开发套装中包含了标准版本的 RPLIDAR 模组(A1M1-R1)。同时,模组内集成了可以使用逻辑电平(3.3v)驱动的电机控制器。开发者可以使用该电机驱动器使用 PWM 信号对电机转速进行控制,从而控制 RPLIDAR A1 扫描的频率或者在必要时刻关闭电机节能。

关于模组的使用、接口信号定义等请参考后续介绍。

USB 转接器

图表 1-3 RPLIDAR A1 USB 转接器实物图

开发套装包含一个 USB 适配器模块,用于对 RPLIDAR 模组进行供电驱动,并使用 USB 接口与 PC 等外部设备进行通讯。只要使用配套的通讯排线与 RPLIDAR 模组相连,用户只需要一条 USB 线缆即可使用 RPLIDAR。

设备连接

1) 将开发套装中提供的信号连接排线分别与 RPLIDAR A1 模组及 USB 适配器 进行连接。RPLIDAR A1 模组的对应接口插座位于模组的底部。

图表 2-1 连接 RPLIDAR A1 与 USB 转接器图

2) 将 USB 适配器通过 Micro-USB 线缆与 PC 连接。如果 PC 已经启动,在 USB 线 缆连接后,可以观测到 RPLIDAR A1 底部的电源指示灯点亮,并且 RPLIDAR A1 开始转动。

图表 2-2 连接 USB 转接器与 Micro-USB 实物图

USB 适配器驱动程序安装

USB 适配器采用 CP2102 芯片实现串口(UART)至 USB 信号的转换。因此需要在 PC 系统中安装对应的驱动程序。其驱动程序可以在配套的 SDK 包中找到,或者从 Silicon Labs 的官方网站中下载:

http://www.silabs.com/products/interface/usb-bridges/Pages/usb-bridges.aspx

这里以 Windows 系统下为例, 演示安装过程。

通过前几步操作将 USB 适配器与 PC 相连后,执行 CP2102 的 Windows 驱动程序安装文件(CP210x VCP Windows)。请按照操作系统的版本选择执行 32 位版本(x86)或者 64 位版本(x64)的安装程序。

图表 2-3 选择 USB 转接器驱动程序进行安装

图表 2-4 USB 转接器驱动程序开始安装界面

按照系统提示完成安装过程后,可以在[控制面板]->[设备和打印机]窗口中看到识别到的 USB 适配器所对应的串口名。(下图为 COM65)

图表 2-5 识别到的 USB 转接器所对应的串口名

使用评估软件

SLAMTEC 提供了 RPLIDAR A1 扫描画面的可视化软件 frame_grabber。通过该软件客户可以直观的观测到 RPLIDAR A1 实时的测距扫描结果,并且可以保存测距结果至外部文件供进一步分析。同时配套的 SDK 中包含了该工具的源代码,方便用户参考开发。

目前该软件需要运行在 Windows 平台下,对于 Linux 和 MacOS 用户,可以使用 SDK 中提供的其他示例程序。

请确保 RPLIDAR A1 模组已经通过 USB 转接器连接至 PC, 且已经安装了前文所述的驱动程序。运行演示软件: framegrabber.exe, 选择 USB 转接器对应的串口号:

图表 2-6 USB 选择转接器所对应的串口号

如果连接正常,则将看到如下画面:

图表 2-7 演示软件初始化界面

其中标题栏显示了目前样机的固件/硬件版本和序列号信息。所有对 RPLIDAR A1 可进行的操作均已在工具栏列出:

按钮	操作	说明
	开始扫描	扫描数据将在测距核心开始转动并稳定后显示
	停止扫描	测距核心将进入节电空闲模式
<u> </u>	数据采样保存	采集当前测距结果到外部文本文件
©	重启 RPLIDAR A1	命令测距核心重启,用于清除内部错误

图表 2-8 RPLIDAR A1 图形演示软件操作按钮说明

点击扫描采集按钮●,则可以在演示工具中看到当前的扫描图:

图表 2-9 RPLIDAR A1 图形演示软件显示的扫描轮廓

可以使用鼠标滚轮对扫描画面进行缩放。将鼠标移至任意采样点,可以在画面红字中看到该点的距离值以及相对于 RPLIDAR A1 朝向的角度。

测距核心的扫描速度(转速)可以通过画面最后的文字读出。

故障排除

在内部测距系统工作异常或激光器发射功耗异常时,测距核心将自动进入保护状态。演示工具以及 SDK 接口可以获得当前测距核心的工作状态。如果发生故障,则可发送重启命令♥️要求测距核心重启。

RPLIDAR A1 模块引脚规格与定义

开发套装中 RPLIDAR A1 模块底部使用 5267-7A 规范的 2.5mm 间距 7pin 插座。 用户可以使用带有符合 5264-7 规范端子的排线与其连接。其信号定义如下:

5267-7A

编号	信号名	类型	描述	最小值	典型值	最大值
P1	VMOTO	供电	RPLIDAR A1 扫描电机供电	-	5V	9V
P2	MOTOCTL	输入	RPLIDAR A1 扫描电机使能 /PWM 控制信号 (高电平有效)	0V	+	VMOTO
Р3	GND	供电	RPLIDAR A1 扫描电机地线	-	0V	-
P4	V5.0	供电	RPLIDAR A1 测距核心供电	4.9V	5V	6V
P5	TX	输出	RPLIDAR A1 测距核心串口 输出	0V	-	5V
P6	RX	输入	RPLIDAR A1 测距核心串口 输入	0V	-	5V
P7	GND	供电	RPLIDAR A1 测距核心地线	-	0V	V5.0

图表 3-1 RPLIDAR A1 模块引脚示意图

外部系统必须给 VMOTO 以及 V5.0 同时提供符合要求的供电,方可使得 RPLIDAR A1 的测距核心以及扫描电机工作。在要求不高的场合, VMOTO 以及 V5.0 可以共用同一组电源。

MOTOCTL 引脚可以用以控制电机的运行或者定转控制,也可以使用 PWM 信号对电机的旋转速度进行调制,从而控制 RPLIDAR A1 扫描频率。其等效电路如下:

图表 3-2 RPLIDAR A1 MOTOCTL 等效电路示意图

○ 参考系统设计

图表 3-3 RPLIDAR A1 系统参考设计

USB 适配器引脚定义

USB 适配器同样采用 5267-7A 规范的 2.5mm 间距 7pin 插座,并通过通讯排线与 RPLIDAR A1 模块对接。其引脚定义如下:

5267-7A

编号 信号名 描述

P1	V5.0	RPLIDAR A1 扫描电机供电, USB 5V 输出
P2	HIGH	恒定的 5V 高电平输出
P3	GND	RPLIDAR A1 扫描电机地线, USB GND
P4	V5.0	RPLIDAR A1 测距核心供电, USB 5V 输出
P5	RX	USB 串口模块信号输入
P6	TX	USB 串口模块信号输出
P7	GND	RPLIDAR A1 测距核心地线, USB GND

图表 3-4 RPLIDAR A1 USB 适配器引脚定义

对 RPLIDAR A1 扫描频率进行控制

由于 USB 适配器中将电机控制信号 MOTOCTL 设置为高电平,因此 RPLIDAR A1 扫描电机将始终保持在最高转速下,此时 RPLIDAR A1 扫描也保持在较快的频率上。如果希望控制 RPLIDAR A1 的扫描频率,则需要控制电机转速。

可以将 MOTOCTL 信号连接至具有 PWM 信号输出能力的设备中,比如 MCU 的 PWM 输出 IO 上。并通过从 RPLIDAR A1 测距核心反馈的到的当前扫描频率作为 反馈,调节 PWM 的占空比。从而实现对将 RPLIDAR A1 扫描频率锁定在一个希望的数值上。

请参考 RPLIDAR A1 协议规范与应用文档了解详情,或者参考 SDK 中关于获取 RPLIDAR A1 扫描频率的代码。

使用 SDK 进行开发

SLAMTEC 提供了对 RPLIDAR A1 进行开发的配套 SDK。该 SDK 支持 Windows、Linux 操作系统,并且用户也可以通过 SLAMTEC 提供的 SDK 源代码快速将 SDK 移植到其他的操作系统或者嵌入式系统当中。请参考 SDK 文档了解详情。

预热与最佳工作时间

由于测距核心在工作中将产生热量,建议在 RPLIDAR A1 工作(开启扫描模式、扫描电机开始运转)2分钟后使用。此时测距精度将达到最佳水平。

环境温度

当环境温度与常温差距过大将影响测距系统的精度,并可能对扫描系统的结构产生损害。请避免在高温(>40 摄氏度)以及低温(<-10 摄氏度)的条件中使用。

环境光照

RPLIDAR A1 的理想工作环境为室内,室内环境光照(包含无光照)不会对 RPLIDAR A1 工作产生影响。但请避免使用强光源(如大功率激光器)直接照射 RPLIDAR A1 的视觉系统。

如果需要在室外使用,请避免 RPLIDAR A1 的视觉系统直接面对太阳照射,这将这可能导致视觉系统的感光芯片出现永久性损伤,从而使测距失效。

RPLIDAR A1 标准版本在室外强烈太阳光反射条件下的测距范围将缩短。

修订历史

修订日期	修订内容
2013-3-5	本手册草案版本
2014-2-8	针对最终产品进行了修改
2016-05-19	更新了部分不合适的图片
2016-08-17	更新了 USB 转接器图片

图表索引

图表 1-1 RPLIDAR A1 开发套件实物图	3
图表 1-2 RPLIDAR A1 模组实物图	4
图表 1-3 RPLIDAR A1 USB 转接器实物图	4
图表 2-1 连接 RPLIDAR A1 与 USB 转接器图	5
图表 2-2 连接 USB 转接器与 Micro-USB 实物图	5
图表 2-3 选择 USB 转接器驱动程序进行安装	6
图表 2-4 USB 转接器驱动程序开始安装界面	6
图表 2-5 识别到的 USB 转接器所对应的串口名	7
图表 2-6 USB 选择转接器所对应的串口号	7
图表 2-7 演示软件初始化界面	8
图表 2-8 RPLIDAR A1 图形演示软件操作按钮说明	8
图表 2-9 RPLIDAR A1 图形演示软件显示的扫描轮廓	9
图表 3-1 RPLIDAR A1 模块引脚示意图	10
图表 3-2 RPLIDAR A1 MOTOCTL 等效电路示意图	11
图表 3-3 RPLIDAR A1 系统参考设计	11
図表 3-4 RPUIDAR A1 USR 活研哭引脚完ツ	12