Planejamento de Vendas de modal Ferroviário

Seminário 1 - Pesquisa Operacional Matheus Cascalho dos Santos

Sumário

- O problema;
- Restrições;
- As instâncias de teste;
- Algoritmo;
- Bibliografia

O Problema

S&OP (Sales and Operations Planning) é um processo de planejamento integrado que busca gerir as áreas de um negócio alinhando demanda, suprimento e planejamento financeiro.

Uma das diversas áreas que pode se utilizar do processo de S&OP é o setor de **logística ferroviária**. Decisões como a melhor alocação de ativos (e.g.: vagões, locomotivas), planejamento de manutenções e o aceite de demandas ferroviárias pode direcionar o **lucro** que a empresa irá ter

Caracteriza do problema

Uma empresa de transporte ferroviário possui uma frota de $\bf N$ trens. Cada trem pode fazer uma quantidade $\bf x$ de viagens partindo do ponto $\bf i$ e indo até um terminal de carregamento $\bf j$, carregando um determinado produto e descarregando em terminal de descarga $\bf k$. Em cada viagem, o trem $\bf n$ irá transportar um determinado volume $\bf v_{ik}$ que é o volume do trem partindo de $\bf j$ para $\bf k$.

Na reunião de S&OP, os responsáveis pelo planejamento ferroviário recebem um conjunto de demandas **D** que estabelece as quantidades máximas de volume a ser transportado entre cada ponto j e k. Dado que cada fluxo j-k tem um custo associado às restrições da ferrovia, os responsáveis precisam então definir o volume que irão atender de cada fluxo de forma a *maximizar* o atendimento da demanda

Variável de decisão e Função objetivo

<u>Variável de decisão</u>: x_{nijk} - Quantidade de viagens que o trem n faz a partir do ponto de descarga i, carrega no ponto de carregamento j e descarrega no ponto de descarga k.

<u>Domínio:</u> x_{nijk} é uma variável inteira positiva

<u>Função objetivo</u>: Seja *N* o conjunto de trens da frota, *U* o conjunto de terminais de descarregamento e *L* o conjunto de terminais de carregamento, temos como função objetivo:

$$\max z = \sum_{n=1}^{N} \sum_{i=1}^{U} \sum_{j=1}^{L} \sum_{k=1}^{U} v_{jk} x_{nijk}$$

Restrições

Capacidade de carregamento

Cada terminal de carregamento \mathbf{j} possui uma capacidade de carregamento $C_{\mathbf{j}}$ (dada em toneladas) que impõe a seguinte restrição para o problema:

$$\sum_{n=1}^{N} \sum_{i=1}^{U} \sum_{k=1}^{U} v_{jk} x_{nijk} \le C_j \ \forall j \in L$$

Restrição de intercâmbio

Por questões contratuais, cada destino possui um limite \boldsymbol{B}_k de viagens que pode receber. Esse limite é expresso na restrição:

$$\sum_{n=1}^{N} \sum_{i=1}^{U} \sum_{j=1}^{L} x_{nijk} \le B_k \,\forall k \in U$$

Horizonte de tempo

Cada viagem realizada pelo trem n dura um tempo definido por t_{ijk} . As demandas precisam ser atendidas em determinado horizonte de tempo H, o que é expresso pela seguinte equação:

$$\sum_{i=1}^{U} \sum_{j=1}^{L} \sum_{k=1}^{U} x_{nijk} t_{ijk} \le H \ \forall n \in N$$

Demanda

Cada fluxo *jk* tem uma demanda máxima que é o que cada cliente está disposto a contratar de entrega ferroviária, e também pode definir valor mínimos de demanda que devem ser respeitadas a fim de evitar multas contratuais

· Demanda Máxima:

$$\sum_{n=1}^{N} \sum_{i=1}^{U} v_{jk} x_{nijk} \le D_{jk}^{max} \, \forall j \in L \, \forall k \in U$$

• Demanda Mínima:

$$\sum_{n=1}^{N} \sum_{i=1}^{U} v_{jk} x_{nijk} \ge D_{jk}^{min} \, \forall j \in L \, \forall k \in U$$

As instâncias de teste

Terminal de Carregamento - j	Capacidade de carregamento [ton]	
1	165000	
2	179000	
3	45000	

Terminal de Descarregamento - k	Max Viagens - B
1	30
2	10
3	20

fluxo	Tamanho do trem [ton]	
V _{1k}	7630	
V _{2k}	4500	
V _{3k}	4500	

Terminal de Carregamento - j	Tempo de viagem [dias]
X _{i1k}	4,5
X _{i2k}	3,75
x _{i3k}	5,9

Teste 1: cenário com 3 terminais de carregamento e 3 terminais de descarga

Origem (j)	Destino (k)	Demanda mínima	Demanda máxima
1	1	10000	45900
1	2	11750	65000
2	1	20000	63400
3	1	0	23000
3	2	0	45000
3	3	4900	80000

Teste 1: Demandas. Esse cenário tem uma disponibilidade de 10 trens na frota e o horizonte de tempo será de 30 dias

Algoritmo

Branch and Cut

Por se tratar de um problema de Programação Linear Inteira, o algoritmo utilizado para encontrar a solução ótima será o Branch & Cut, realizando **busca em profundidade**.

Caso o tempo de execução seja muito demorado, estabeleceremos como critérios de parada tempo e GAP máximo.

Bibliografia

"O que é planejamento de vendas e operações (S&OP)?"
https://www.sap.com/brazil/products/scm/integrated-business-planning/what-is-supply-chain-planning/sop-sales-operations.html>