19 RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÈTÉ INDUSTRIELLE

PARIS

(A n'utiliser que pour le classement et les commandes de reproduction).

2.230.406

21) N° d'enregistrement national .

74.18030

(A utiliser pour les paiements d'annuités, les demandes de copies officielles et toutes autres correspondances avec l'1.N.P.I.)

DEMANDE DE BREVET D'INVENTION

1re PUBLICATION

- (51) Classification internationale (Int. Cl.) B 01 j 1/22; C 08 h 5/00.
- Déposant : Société dite : MINNESOTA MINING AND MANUFACTURING COMPANY, résidant aux États-Unis d'Amérique.
- 73) Titulaire : Idem (71)
- Mandataire: Cabinet Guerbilsky, S.A. Fedit-Loriot, 38, avenue Hoche, 75008 Paris.
- (54) Mousse absorbante et procédé de sa préparation.
- (72) Invention de :
- (33) (32) (31) Priorité conventionnelle : Demandes de brevets déposées en Grande-Bretagne le 25 mai 1973, n. 25.181/1973 et n. 25.182/1973 au nom de la demanderesse.

To précuse invention conserve ou continue de vivers de particulier de principal de particulier de particulier de particules particules de particules polaires et un procédé de leur préparation.

Le charbon activé est une matière adsorbante coursument utilisée. On peut lui conférer une surface d'adsorméter très importante permettant l'adsorption par phénomène physique de quantitée reladivement importantes de gaz et de vapeurs. L'adsorption physique implique une union relativement faible et on peut donc régénérer le charbon en le chauffant pour 10 éliminer les molécules adsorbées. Le charbon actif n'est pas un très bon adsorbant des molécules polaires et il est donc nécessaire pour adsorber les molécules polaires d'un environnement tel qu'un courant gazeux d'utiliser des quantités importantes de charbon activé pour assurer une adsorption complète des molécules polaires.

15 L'invention concerne une matière sorbante permettant de réaliser la sorption de quantités relativement importantes de molécules polaires de façon très énergique.

Selon un de ses aspects, l'invention concerne une mousse noire, sorbante, thermodurcie que l'on a préparée par pyrolyse d'une composition 20 liquide renfermant au moins un composé aromatique azoté de formule générale :

X - Ar - Y

où Ar représente un noyau aromatique sur lequel les substituants X et Y sont fixés directement et qui porte éventuellement des substituants
25 additionnels, X représentant un substituant ayant une constante sigma de Hammett négative est fixé au noyau aromatique par un atome d'azote, d'oxygène ou de soufre et Y représente un substituant ayant une constante sigma de Hammett positive et est fixé au noyau aromatique par un atome d'azote, les substituants X et/ou Y faisant éventuellement partie d'un 30 cycle condensé avec le noyau aromatique, la mousse thermodurcie ayant une surface spécifique d'au moins 50 m²/g.

On préfère généralement que les matières de départ aromatiques azotées ne renferment pas plus d'environ 50 atomes de carbone par ensemble de groupes X et Y (y compris les atomes de carbone de X et de Y).

35 De préférence, il n'existe pas plus d'environ 30 atomes de carbone par ensemble de groupes X et Y et mieux encore pas plus de 15 atomes de carbone.

Une telle mousse thermodurcie présente de très bonnes propriétés de chimisorption et constitue donc une excellente matière sorbante des molécules polaires telles que par exemple les acides et les bases orga-

eniques, les composés organiques halogénés, les halogènes tels que le chlore, le brome et l'iode, les acides forts tels que l'acide chlorhydrique d'autres acides tels que l'acide fluorhydrique, l'acide sulfurique et l'acide cyanhydrique, des ions métalliques lourds tels que Hg²⁺, Ag⁺ et Pb²⁺ dans les liquides, des oxydes d'azote tels que NO et les oxydes de soufre tels que SO₂ et SO₃. Ces molécules polaires semblent former une liaison chimique avec la matière sorbante et sont fixées très fortement par rapport à l'adsorption physique faible du charbon activé. De plus, les mousses thermodurcies de l'invention conservent à chaud une 10 partie importante de leur capacité de sorption.

Les musses thermodurcies de l'invention constituent de bons sorbants de la plupart des gaz et des vapeurs et peuvent avoir des propriétés d'adsorption physique voisines de celles du charbon activé. Cependant dans la plupart des cas, le charbon activé possède de meilleures propriétés d'adsorption physique vis-à-vis des molécules organiques neutres telles que l'hexane, le benzène et l'acétate d'éthyle et par conséquent il est parfois utile d'utiliser un mélange d'une mousse thermodurcie de l'invention et d'un charbon activé pour obtenir une excellente chimi-sorption des molécules polaires et une excellente alsorption physique 20 des autres molécules.

On pyrolyse le composé aromatique azoté en le chauffant à une tempé-rature relativement faible par exemple d'environ 200 à 230°C, mais dès
que la pyrolyse débute, il se produit une réaction exothermique et on
constate que la température de l'ensemble peut atteindre 300°C. A l'inté25 -rieur de cette masse, on peut localiser des régions où la température
est bien plus élevée. Dès que la réaction exothermique démarre, il est
inutile de chauffer par l'extérieur, le chauffage à la température de
pyrolyse servant uniquement à amorcer la réaction.

Lorsque la réaction se produit, on constate une expansion très brusque 30 et importante formant une éponge de mousse thermodurcie qui peut avoir un volume apparent égal à plusieurs centaines de fois son volume initial. Donc, si on ne prend pas des mesures rigoureuses pour maintenir la température de pyrolyse ou si on ne purifie pas la mousse thermodurcie, elle renferme de la matière n'ayant pas réagi et des constituants 35 fusibles condensés de bas poids moléculaire qui sont cancérigènes ou toxiques pour l'homme à l'occasion de la manipulation.

On dispose de divers procédés pour purifier la mousse thermodurcie obtenue ou l'obtenir sous forme pure. On peut utiliser ces procédés séparément ou en combinaison et ils éliminent les matières étrangères et la matière n'ayant pas réagi de la mousse sorbante.

La façon la plus efficace d'obtenir un produit pur consiste à effectuer la réaction de formation de la mousse jusqu'à son achèvement. Ceci peut être réalisé facilement en maintenant la mousse à sa température de réaction après que la chaleur libérée par la réaction exothermique soit devenue insuffisante pour la maintenir à température élevée. Pour cela on peut surveiller la température réactionnelle et lorsqu'elle commence à s'abaisser, apporter suffisamment de chaleur pour maintenir cette température pendant encore 20 minutes à 3 heures. Si la mousse obtenue s'est refroidie après formation on peut la réchauffer dans une atmosphère inerte pour obtenir le même résultat. Ce type de traitement tend également à augmenter la surface spécifique de la mousse.

On peut également extraire la matière en mousse pour en éliminer les matières dangereuses. Par exemple on peut pulvériser la mousse et la laver successivement avec un acide (tel que l'acide chlorhydrique dilué) ou une base (telle que de l'hydroxyde de sodium dilué) et un solvant organique (tel que l'acétone). Entre chaque lavage, on peut récupérer la poudre par filtration et la laver à l'eau. Ceci facilite l'élimination de toutes les traces de matières de départ et des constituants de bas poids moléculaire.

on peut également former la mousse sous pression élevée (à des pres--sions pouvant atteindre 150 bars et plus) ce qui maintient le produit comprimé (sans réduire de façon importante l'obtention d'une mousse à surface spécifique élevée). La compression assure un chauffage complet 25 des produits et l'achèvement de la réaction.

L'invention concerne également une mousse thermodurcie, sorbante, noire que l'on a préparée par pyrolyse d'une composition liquide renfer--mant au moins un composé azoté aromatique de formule générale :

X - Ar - Y

où Ar représente un noyau aromatique sur lequel sont fixés directement les substituants X et Y et qui éventuellement porte des substituants additionnels, X représentant un substituant ayant une constante sigma de Hammett négative est fixé au noyau aromatique par un atome d'azote, d'oxygène ou de soufre et Y représente un substituant ayant une constante sigma de Hammett positive et est fixé au noyau aromatique par un atome d'azote, les substituants X et/ou Y faisant éventuellement partie d'un cycle fixé sur le noyau aromatique, cette mousse thermodurcie n'étant pas cancérigène ni autrement toxique pour l'homme et étant pratiquement dépourvue de composants toxiques

fusibles de bas poids moléculaire et pouvant donc être manipulée sans risque par l'homme. Les matières fusibles indiquées sont les matières de départ de bas poids moléculaire partiellement fondues.

Une telle mousse thermodurcie ne renferme donc pas de traces de matière de départ ni de composants fusibles de bas poids moléculaire c'est-à-dire pas plus de 0,001 % en poids de l'une ou l'autre de ces matières et les traces résiduelles de ces matières sont généralement incorporées à l'intérieur de la mousse et ne peuvent donc venir au contact des personnes qui la manipulent.

Pour obtenir de façon certaine une mousse thermodurcie non cancéri-gène ni autrement toxique, on peut la préparer à l'état pur par pyrolyse
pratiquement complète en enfermant la matière pendant la réaction de
façon à ce que malgré l'augmentation brusque et importante du volume
apparent, pratiquement toute la matière réagissante soit maintenue à
la température de pyrolyse après la formation ou en la purifiant tota-lement après préparation par exemple par lavage avec des acides dilués,
de l'eau, des bases diluées, de l'eau et des solvants organiques.
L'avantage qu'apporte le lavage avec le solvant organique est de favo-riser le déplacement de l'eau de la mousse et dans le cas où ce solvant
20 est volatil on peut le laisser s'évaporer. Si on le désire, on peut
purifier à fond la mousse thermodurcie puis la réchauffer au moins à
sa température de pyrolyse.

On prépare les mousses noires thermodurcies de l'invention par pyrolyse d'une composition liquide à la température de pyrolyse en 25 obtenant la mousse solide et non par carbonisation d'un solide carboné conduisant à un produit de carbonisation solide. La structure poreuse des mousses de l'invention se forme donc pendant la réaction de pyrolyse et elle n'est pas présente au départ dans la matière à pyrolyser. En pratique, une réaction de condensation semble se produire pendant la pyrolyse et on peut la catalyser par la présence d'un acide fort ou d'une base forte. Donc, le composé aromatique azoté doit avoir une structure se condensant facilement ou le mélange liquide que l'on pyrolyse doit renfermer en plus du composé aromatique azoté, un ou plusieurs composants favorisant la condensation du composé aromatique 35 azoté, par exemple du fait qu'ils sont des agents déshydratants et/ou du fait qu'ils se condensent avec le composé aromatique azoté.

On peut pyrolyser les compositions liquides renfermant le composé aromatique azoté de diverses façons. On peut pyrolyser un composé aromatique azoté liquide à la température de pyrolyse tel quel ou en

lo differences and brevers of passons for leading of passons as for a comparable of the comparable of a le température la produsa, del quiro delange compétéué de composante liquides on une solution diam ou riberishes composantis. Pour que la pyrolyse soit efficace, les oresposante ne delivere pas être trop volacille a le température de pyrolyse. Sa les composants sons gazoux à la tempé--rature de pyrolyse; ila s'évaporent à la composition liquide. On choisit comme précédemment indiqué les sutres somposents de façon à ce qu'ils favorisent la condensation du composé accematique azoté. Un groupe de composés favorisant cette condensation et que l'on considère être 10 des agents déshydratants du composé aromatique azoté, sont les acides organiques ou minéraux forts et les bases fortes. Un autre groupe de composés est constitué par ceux qui se cocondensent avec le composé aromatique azoté et facilitent la formation de réticulations dans la structure en mousse. Ces composés tendent à déterminer la structure 15 poreuse désirée des mousses thermodurcies de l'invention dans un stade précoce de la pyrolyse du composé aromatique azoté. Les acides organiques constituent des exemples de tels composés.

On peut citer comme exemples d'acides forts appropriés des acides minéraux tels que l'acide sulfurique et l'acide phosphorique ou des acides organiques tels que l'acide méthanesulfonique ou l'acide méthanesulfonique fluoré, et des exemples de bases fortes sont des bases minérales telles que l'hydroxyde de sodium ou de potassium. On peut bien entendu utiliser des générateurs d'acide c'est-à-dire des composés qui se décomposent facilement par chauffage à la température de pyrolyse en formant des acides forts. On peut en citer comme exemples les sels d'amine d'acides forts tels que (CH₃)₃NSO₃ et CH₃CBr₃.

On peut également pyrolyser le composé aromatique azoté en mélange avec un acide organique, tel que l'acide oxalique ou l'acide adipique, qui semble se cocondenser avec le composé aromatique azoté et peut dans certains cas former des mousses ayant une surface spécifique accrue. Lorsqu'on les utilise il semble cependant particulièrement souhaitable d'incorporer un acide fort au mélange liquide que l'on pyrolyse.

On peut de plus pyrolyser le composé aromatique azoté en mélange avec un sel soluble de préférence en présence également d'un acide fort ou d'une base forte. Des exemples de sels solubles appropriés sont le sulfate de sodium, le chlorure de sodium, le bisulfate de sodium et le sulfate monosodique. On estime que ces sels solubles se comportent comme une charge formant des couches ou des pores entre les nolécules condensées ayant réagi lors de la pyrolyse en facilitant la détermina-

-tion des structures nécessaires à l'échelle moléculaire. Ensuite, l'élimination de ces sels par lessivage par exemple laisse demeurer la structure poreuse désirée.

La surface spécifique obtenue dépend du composé aromatique azoté particulier ou du mélange de ce composé et des autres composants choisis mais on peut augmenter la surface spécifique par pyrolyse complémentaire par exemple à une température de 300 à 800°C de la mousse thermodurcie en atmosphère contrôlée, par exemple dans une atmosphère d'azote qui peut être saturée de vapeur. Pendant cette pyrolyse complémentaire, il 10 se produit une perte de poids et une augmentation de la surface spéci--fique.

Plus la surface spécifique est importante, plus la quantité de matière pouvant être sorbée est importante. Donc, la mousse thermodurcie non cancérigène et non toxique a de préférence une surface spécifique d'au moins 50 m²/g et de préférence d'au moins 200 m²/g et elle peut atteindre 900 m²/g et même plus pour les matières préférées.

L'augmentation de volume importante et brusque qui se produit lors de . la pyrolyse formant la mousse thermodurcie, est due à la libération de la vapeur et des autres matières volatiles lors de la réaction. La 20 matière obtenue est comparable à une éponge ayant des vides importants. Ces vides ne contribuent pas de façon significative à la surface spéci--fique qui mesure la structure microporeuse de la mousse. On peut mesurer la surface spécifique selon les méthodes BET standards décrites par Brunauer, Emmett et Teller dans Journal of the American Chemical Society, 25 60, page 309 (1938). Il semble que ce soit dans les pores de cette mousse thermodurcie microporeuse que les molécules polaires sont sorbées chimi--quement si bien que plus la surface spécifique est élevée, plus la capacité de sorption de la mousse est importante.

Comme précédemment indiqué le composé aromatique azoté a pour formule générale :

X - Ar - Y

où X, Ar et Y ont la définition précédemment indiquée. Le composé renferme au moins un atome d'azote. Le substituant Y renferme un atome d'azote mais le composé peut renfermer un ou plusieurs atomes d'azote 35 additionnels par exemple dans le substituant X ou dans le noyau aroma--tique.

La valeur sigma de Hammett d'un substituant mesure les propriétés oxydantes ou réductrices du groupe. On trouvera une étude de ces valeurs et de leur mesure par exemple dans "Advanced Organic Chemistry : Reaction

Mechanisms and Structure" par J. March McGraw-Hill, page 238 et Chem. Rev. 53, 191 (1953) - Jaffé.

Le substituant X ayant une valeur sigma de Hammett négative est un substituant ayant une action réductrice. Des exemples de substituants X appropriés sont : -NH₂ ; -OH ; -SH ; -NHR où R représente un radical olkyle, aryle, tel que phényle, ou alcényle, tel que vinyle ; -NRR où R a la même définition que ci-dessus et R représente un radical alkyle, aryle ou alcényle identique ou différent ; -NH - NH₂ ; -NH - NHR² où R représente un radical alkyle ; -NH - NR²R où R a la même définition que 10 ci-dessus et R représente un radical alkyle identique ou différent ; -NHR où R représente un motif répété tel que -CH-CH₂- dans un composé polymère ou les atomes nécessaires pour achever une liaison divalente qui achève un cycle condensé avec le noyau aromatique Ar, tel que -NH-CH = CH- ; -NH - C - R où R représente un radical alkyle, un radical -NH₂, un radical alcényle, tel que vinyle, ou R ; et -N = CH - A où A représente un radical aromatique tel que phényle qui est éventuelle-ment substitué.

A l'exception des groupes -SH et -OH, il semble que beaucoup des groupes ci-dessus, si ce n'est leur totalité, peuvent être des précurseurs 20 du groupe -NH2 et que ces groupes se décomposent au départ en un groupe amino avant ou pendant la réaction de pyrolyse. La taille ou le poids des groupes réunis aux atomes d'azote, d'oxygène ou de soufre de fixation des radicaux X et Y n'a pas de limite stricte car on pense que ces groupes sont chassés lors de la pyrolyse et n'ont pas d'effet important sur le 25 processus réactionnel. Certains des radicaux X et Y peuvent même être totalement éliminés. Pour des raisons d'économie, il est souhaitable de limiter la taille des radicaux alkyles à 1 à 8 atomes de carbone et la taille des radicaux aryles à environ 20 atomes de carbone bien que l'uti--lisation dans la pratique de l'invention de radicaux alkyles renfermant jusqu'à 40 atomes de carbone ne soit pas déraisonnable (bien qu'ils nécessitent des efforts de purification plus importants).

Le substituant Y qui a une valeur sigma de Hammett positive est un substituant ayant une action oxydante. Des exemples de substituants Y

35 appropriés sont : NO₂ ; NO ; -N = N- et -N = N- . On sait que les deux derniers substituants ont un caractère cancérigène et si ils sont présents dans un composé à pyrolyser, on doit manipuler ce composé avec de grandes précautions et purifier soigneusement les mousses obtenues. Les techniques de purification utiles dans la pratique de l'invention sont décrites

par ailleurs.

Les substituants X et Y peuvent faire partie d'un cycle condensé avec le noyau aromatique représenté par Ar. Cependant dans ce cas le composé azoté doit bien entendu comporter deux cycles dont l'un forme le noyau aromatique Ar et l'autre le substituant X ou Y. Ainsi par exemple dans le cas de la 5-nitroindoline, le radical nitro est le substituant Y, le cycle benzène est le noyau Ar et la liaison divalente -NH-CH = CH-condensée avec le noyau benzène est le substituant X.

De préférence le substituant X est un radical amino ou hydroxy et le 10 substituant Y est un radical nitro.

Les positions des substituants sur le noyau aromatique n'ont pas d'importance particulière mais de préférence lorsque X représente un radical amino ou hydroxy et Y représente un radical nitro, le radical amino ou hydroxy est en position ortho ou para par rapport au radical 15 nitro.

Le noyau aromatique représenté par Ar renferme au moins un cycle aromatique. Il peut cependant renfermer plus d'un cycle aromatique par exemple 2, 3 ou plus et ces cycles peuvent être fixés entre eux ou unis par un groupe de liaison. Le noyau aromatique le plus simple est le cycle 20 benzène mais on peut utiliser d'autres noyaux aromatiques renfermant 5 ou 6 atomes de carbone ou des hétérocycles tels que les noyaux bicycliques suivants : naphtalène et

indoline

25

et les noyaux tricycliques suivants :

anthracène et

30

fluorène

lorsqu'ils sont substitués de façon appropriée par X et Y.

Le noyau aromatique peut renfermer des substituants autres que X et Y tels que par exemple des radicaux alkyles inférieurs, par exemple méthyle ou octyle, des radicaux halogéno, par exemple chloro, et des radicaux carboxyliques. De plus, le noyau aromatique peut porter plus d'un substituant X et/ou Y. Les substituants additionnels doivent être tels qu'ils

o promit pas la résorate de aprolasse par sant la sera la literation de type Wohl-Aug. Les groupes que ne la tipse labilles dans les conditions réactionnelles et qui bloquent les conformations des composés aromatiques arotés pendant la pyrolyse sont indésirables. Dans le cas de la pyrolyse de la nitroenilina, on peut sobématiser la réaction de condensation de la façon suivante :

- Des exemples de composés aromatiques azotés que l'on peut pyrolyser séparément ou en mélange en obtenant les mousses de l'invention sont le m-nitroacétanilide, le p-nitroacétanilide, la 2-nitroaniline, la 4-nitroaniline, les amino nitro toluènes, l'amino nitro xylène, la 2,6-dibromo-4-nitroaniline, la 2,6-dichloro-4-nitroaniline, la 4-nitro-20 -phénylhydrazine, la bis-(2-nitrophénylurée), des nitronaphtylamines ayant des positions ortho libres pour des radicaux nitro et amino telles que la 5-nitro-1-naphtylamine, la 5-nitroindoline, la 2-chloro-4-nitro-aniline, la 2-méthyl-4-nitroaniline, l'acide 5-amino-2-nitrobenzoīque, le 2-amino-4-nitrophénol, le 3-méthyl-4-nitrophénol, le 2-amino-7-nitro-25 -fluorène, le 4-nitrosophénol, le 4-nitrophénol, le 4-méthylaminonitro-
- 25 -fluorène, le 4-nitrosophénol, le 4-nitrophénol, le 4-méthylaminonitro--benzène, le 4-diméthylaminonitrobenzène, des résidus de goudron de houille renfermant des composés polycycliques, le polymère de formule :

le composé de formule :

le composé de formule :

Il semble que les mousses thermodurcies de l'invention aient une structure de polyquinoxaline et qu'elles renferment le motif général :

et

avec des liaisons transversales entre les chaînes de ces cycles aromatiques condensés répétés, les positions des liaisons transversales correspondant aux atomes de carbone auxquels les atomes d'hydrogène sont fixés, après

élimination de ces derniers. Cette structure rend la mousse thermodurcie très stable vis-à-vis de la chaleur et de l'oxydation. On peut ainsi maintenir un morceau de mousse dans une flamme et bien qu'elle devienne incandescente et brûle progressivement, elle s'arrête de brûler immédiate5 -ment après qu'on l'ait retirée de la flamme et n'est apparemment pas décomposée par ce traitement. Cette structure est conforme à la couleur noire de la mousse et à l'analyse élémentaire de la mousse qui indique une teneur en azote comprise dans la gamme d'environ 12 à 20 %.

Il semble que dans cette structure en mousse, ce soit les atomes 10 d'azote qui confèrent les propriétés de chimisorption. Il semble donc que plus le pourcentage d'azote de la mousse est élevé meilleures sont les propriétés de chimisorption. On préfère donc que le substituant X soit fixé par un atome d'azote au noyau aromatique. De plus, la mousse peut selon son mode de préparation renfermer certains groupes fonctionnels.

15 Ainsi, lorsqu'on effectue la pyrolyse en présence d'acide sulfurique ou d'acide phosphorique, un certain nombre de groupes sulfonates ou phosphates peuvent remplacer certains atomes d'hydrogène. Beaucoup des groupes fonctionnels tendent à être éliminés par le traitement suivant de pyrolyse.

Bien qu'on puisse pyrolyser séparément un ou plusieurs composés
20 aromatiques azotés, on préfère pyrolyser un mélange d'un ou plusieurs
de ces composés aromatiques azotés et d'un acide tel que l'acide sulfurique
ou l'acide phosphorique ou d'un mélange d'un acide organique tel que
l'acide oxalique et d'un acide minéral ou d'un mélange d'un acide fort
et d'un excès d'un sel tel que le sulfate de sodium ou d'une base forte

25 telle que l'hydroxyde de sodium ou l'hydroxyde de potassium. Un tel mélange est généralement sous forme d'un liquide pâteux à la température ordinaire et lorsqu'on le porte lentement à la température de pyrolyse, généralement dans la gamme d'environ 200 à 230°C, il se forme une solu-tion homogène. Il se produit alors brusquement une réaction énergique

30 avec une libération importante de gaz qui semblent être constitués essen--tiellement de vapeur, et il se forme une éponge noire volumineuse consti--tuée de la mousse thermodurcie.

Ce mode de préparation tend souvent à fournir des mousses thermodurcies qui ont, telles qu'elles sont préparées, des surfaces spécifiques rela35 -tivement faibles, par exemple lorsqu'on effectue la pyrolyse en présence d'acide sulfurique, mais on peut comme précédemment indiqué accroître leur surface spécifique par exemple en les soumettant à une pyrolyse complémentaire. Lorsqu'on réalise la pyrolyse en présence d'acide phospho--rique, les mousses peuvent avoir des surfaces spécifiques assez élevées

à condition que le rapport moléculaire de l'acide au composé aromatique soit compris dans la gamme de 1,7 à 3,0. Lorsque ce rapport est inférieur à 1,7, la pyrolyse tend à former des éponges volumineuses qui ont cependant des surfaces spécifiques faibles.

Lorsque l'éponge noire volumineuse s'est formée, on peut la broyer pour obtenir une poudre de mousse thermodurcie. Ce broyage détruit les gros vides de l'éponge mais conserve la surface spécifique qui est due à la microstructure de la mousse. On peut ensuite utiliser la poudre de mousse ou la traiter (par exemple par pyrolyse complémentaire et/ou extraction totale) pour la purifier en éliminant les matières cancérigènes ou les autres composants toxiques ou simplement pour augmenter sa surface spécifique.

Pour purifier la mousse thermodurcie on peut la pulvériser et laver successivement la poudre par un acide tel que l'acide chlorhydrique dilué 15 ou une base telle que l'hydroxyde de sodium dilué et un solvant organique tel que l'acétone. Entre chaque lavage, on peut récupérer la poudre par filtration et la laver à l'eau. On peut ainsi éliminer toutes les traces des matières de départ et des composants fusibles de bas poids moléculaire. Sinon, ou en plus, on peut pyrolyser la poudre de mousse thermodurcie à des 20 températures élevées par exemple à 400°C dans une atmosphère inerte par exemple une atmosphère d'azote. Ceci tend également à augmenter la surface spécifique de la mousse.

Lorsque la poudre a été préparée et éventuellement purifiée ou pyro-lysée, on peut la granuler pour la façonner en une forme convenant à la
25 manipulation et l'utilisation comme matière sorbante. On peut cependant
la transformer d'autres façons en une forme facile à manipuler par exemple
en la mélangeant avec un liant tel que de la cellulose ou de la tourbe
ou l'incorporer à un tissu tel qu'un feutre en cellulose par exemple.

Comme précédemment indiqué, la mousse thermodurcie permet en particu30 -lier la sorption très énergique de quantités relativement importantes
de molécules polaires. Lorsqu'on désire éliminer les molécules polaires
d'un fluide les renfermant, on place la mousse thermodurcie au contact
du fluide. Dans le cas où le fluide est un gaz, on peut faire passer le
gaz sur ou à travers un lit de la mousse thermodurcie qui peut être sous
35 forme d'une poudre, de granules ou incorporée à un tissu comme précé-demment indiqué tandis que lorsque le fluide est un liquide, on peut
placer la mousse sous une forme physique appropriée au contact du liquide.

Les mousses thermodurcies sont très utiles pour éliminer les gaz toxiques de l'air. Ainsi elles sont très utiles comme matières sorbantes

a trivus dans les masones à gaz on los ffutures de converses d'air provenent Jus pubrisdos chimágicas ou des critaro a no dans le contitionnament de l'u soit seuk soit en combinaison even a autres matières sorbantes commuer. Par exemple lorsqu'on utilise la mittre thermodurale dans des masques 🗀 5 gaz elle élimine de Cogon très efficace dos gaz tomiques ésla que l'acide cyanhydrique ou l'acide fluorhydrique qui penvent être présents au voisi--nage des installations de revêtement flectrochimique. L'acide sulfhydrique et le dioxyde de soufre peuvent être présents dans les gaz résiduels des combustions at les mousses thermodurcies de l'invention sont très utiles 10 pour éliminer ces composés soufrés et empêcher leur dégagement dans l'atmosphère. On peut également utiliser les mousses thermodurcies dans des hottes de cuisson pour éliminer les odeurs de cuisson désagréables des cuisines. Dans toutes ces utilisations on peut mélanger la mousse thermodurcie avec du charbon activé qui tend à avoir une capacité de 15 sorption élevée vis-à-vis des molécules pour lesquelles la mousse de l'invention a une capacité de sorption relativement faible.

On peut également utiliser les mousses thermodurcies de l'invention pour éliminer des molécules indésirables en particulier des molécules polaires telles que des ions de métaux lourds de liquides tels que l'edu.

20 On peut ainsi les utiliser pour sécher des produits humides tels que des hydrocarbures tels que le pétrole cu des hydrocarbures chlorés comme le trichloroéthylène qu'on utilise dans les nettoyages à sec. Les mousses peuvent également éliminer d'autres molécules indésirables de ces liquides de nettoyage à sec pour les purifier avant réutilisation. Une autre 25 utilisation est l'amélioration de la saveur de l'eau potable pour la rendme agréable à boire.

Les mousses thermodurcies de l'invention sont également utiles comme tamis moléculaires. Par exemple on peut utiliser les mousses à la place des zéolites en conditions acides dans l'industrie du pétrole car les zéolites tendent à se décomposer dans ces conditions acides contrairement aux mousses de l'invention. En réglant les conditions de fabrication et de purification ou de pyrolyse ultérieure des mousses de l'invention, on peut obtenir la taille des micropores convenant à l'utilisation comme tamis moléculaires.

L'invention est illustrée par les exemples suivants dans lesquels les parties sont exprimées en poids sauf indication contraire.

EXIMPLE 1

Ch ajoute lentement et en agitant 5 parties d'acide sulfurique concentré à 4 parties de 4-nitroaniline en obtenant une pâte semi-solide. On chauffe lentement le mélange à 210°C en obtenant une solution homogène.

5 Il se produit ensuite une réaction énergique avec libération importante de gaz formant une éponge noire volumineuse dont l'expansion apparente correspond à plusieurs centaines de fois le volume d'origine à l'état liquide.

On fait ensuite macérer l'éponge obtenue dans une solution aqueuse
10 diluée d'acide chlorhydrique pendant environ une demi-heure et on la
recuelle par filtration. On lave le gâteau de filtre successivement par
de l'eau, de l'hydroxyde de sodium dilué, de l'eau et de l'acétone en
redispersant dans le liquide d'extraction et en recueillant par filtration.
Ces stales sont nécessaires pour éliminer toutes les traces de matière de
15 départ n'ayant pas réagi et de produits de condensation fusibles de bas
poids moléculaire.

On sèche ensuite les granules obtenus dans une étuve sous vide pendant une nuit à 150°C et on les cuit à 400°C sous azote pour assurer une conversion pyrolytique complète des composés réagissants ou intermédiaires 20 emprisonnés, en la mousse thermodurcie désirée qui est alors inerte du point de vue physiologique.

La quantité de matière isolée correspond à 76 % de la matière première totale. L'analyse élémentaire du carbone, de l'hydrogène, de l'azote et du soufre est conforme à la formule :

25

30

dans laquelle un certain nombre de groupes sulfoniques sont distribués 35 au hasard, le nombre de ces groupes diminuant avec la durée du traite-ment thermique à 400°C.

La surface spécifique de cette matière après broyage en particulez passant au tanis de 0,15 mm d'ouverture de maille mesurée selon la néthode BET précédemment indiquée avec de l'azote à -196°C est inférieure à 2 m^2/g .

FXFMPLE 2

On fait réagir à 210°C comme décrit dans l'exemple 1 en obtenant une éponge noire volumineuse, une pâte de sulfate de 4-nitroanilinium préparée comme dans l'exemple 1 à partir de 5 parties d'acide sulfurique et de 4 parties de 4-nitroaniline. On garnit ensuite de cette éponge un four cylindrique et on chauffe pendant 6 heures à 250°C sous azote pour provoquer la réaction totale des matièmes de départ et éliminer l'excès d'acide sulfurique par dissociation et volatilisation. On isole dans le distillat de petites quantités de sulfate d'ammonium et de soufre et des 10 traces de sulfate de 4-nitroanilinium.

La perte de poids chservée lors de la pyrolyse complémentaire est essentiellement due à l'élimination de l'eau. La surface spécifique est d'environ $5 \text{ m}^2/\text{g}$.

EXEMPLE 3

15 Cet exemple illustre l'effet d'une pyrolyse complémentaire sur la mousse thermodurcie noire de porosité relativement faible.

On introduit une certaine quantité de mousse thermodurcie noire préparée comme dans les exemples 1 et 2 dans un four maintenu à une température élevée comme indiqué dans le tableau I ci-dessous. On

- 20 introduit dans la mousse un courant d'azote saturé d'eau à 20°C à un débit de 300 cm³/mn. On poursuit la pyrolyse pendant une heure. On retire ensuite la mousse et on mesure la surface spécifique selon la méthode BET en utilisant de l'azote. On effectue la pyrolyse à 300°C, 700°C et 800°C. On constate que la surface spécifique augmente avec la température de
- 25 pyrolyse et que la perte de poids augmente également avec la température comme le montre le tableau I ci-dessous :

	Température de pyrolyse (C°)	Perte de poids %	Surface spécifique (m²/g)
30	Avant traitement	0	2
	300	24	270
	700	5 3	350
	800	66	450

35 EXEMPLE 4

On pulvérise une partie de sulfate de sodium et on la mélange avec trois parties d'acide sulfurique concentré puis on mélange avec deux parties de 4-nitroaniline. On chauffe le mélange à 180°C en agitant en obtenant une solution homogène. On élève lentement la température à 210°C et il se produit une réaction énergique avec formation d'une éponge noire thermodurcie à forte expansion. On fait macérer cette éponge dans de l'eau et on la recueille par filtration. On lave le gâteau de filtre en continu avec de l'eau fraîche jusqu'à ce qu'on ne puisse plus mettre en évidence d'ions sulfates dans le filtrat en utilisant le test au chlorure de baryum. On sèche le produit à 80°C pendant une nuit dans une étuve sous vide puis on le pèse. La matière isolée correspond à 70 % de la quantité théorique correspondant à une structure de polyquinoxaline. La surface spécifique mesurée selon la méthode BET est de 7 m²/g. On voit donc que 10 l'addition d'un sel soluble de l'acide au mélange initial donne une mousse ayant une surface spécifique accrue.

EXEMPLE 5

On mélange 3 parties d'acide orthophosphorique à 2 parties de 4-nitro-aniline et on chauffe à 180°C en obtenant une solution uniforme. On
15 élève la température lentement à 210°C et il se produit une réaction
énergique formant une éponge noire volumineuse que l'on purifie comme
décrit dans l'exemple 1. La surface spécifique est de 670 m²/g.

On reprend le mode opératoire de cet exemple avec des rapports molaires variables de l'acide orthophosphorique à la 4-nitroaniline et on mesure 20 la surface spécifique (par fixation d'azote à -196°C) et la fixation du bleu de méthylène (qu'on détermine selon une technique standard décrite par H.W. Hassler, Activated Carbon, Chemical Publishing Co., Inc., 1963) en obtenant les valeurs figurant dans le tableau II suivant:

25	Rapports molaires H, PO, /nitroaniline	Surface spécifique (m² g-4)	Fixation du blet de méthyléne
,30 35	0,41 0,83 1,67 2,09 2,30 2,52 2,96 2,96 3,35 5,10		12,2 0 3,0 139,1 187,8 90,9 95,1 42,0 23,3 11,9

To page se kak on chamile magalentak Tampotan mendebah mendung bila bempé--rantine danggrolyse.

Comme on le voit, la surface appréfique et la fination du bleu de néthylène dépendent des proportions relatives de l'acide et de la nitro-milline et attelment une valeur optimale pour des comparts molaires compris entre 1,6 et 3,0.

EXEMPLE 6

On mélange 7 parties d'acide polyphosphorique et 3 parties de 4-nitro--aniline on obtenant un mélange visqueux qui devient homogène lorsqu'on 10 élève la température à 180°C. On élève lentement la température de la solution à environ 210°C en obtenant une réaction énergique produisant une éponge noire qu'on traite comme précédemment décrit. La surface spécifique est de 300 m²/g.

Comme le montrent les exemples 5 et 6, l'utilisation d'un acide 15 phosphorique au lieu de l'acide sulfurique fournit une mousse thermo-durcie ayant une surface spécifique accrue à condition que le rapport molaire de l'acide au composé aromatique soit compris dans la gamme de 1,6 à 3,0.

EXEMPLE 7

- On mélange 5 parties d'acide sulfurique à 4 parties de m-nitroacétanilide et on chauffe le mélange à 210°C en obtenant une éponge noire
 volumineuse. On traite le produit comme décrit dans l'exemple 1. La
 mousse noire thermodurcie purifiée a une surface spécifique de 188 m²/g.

 EXEMPLE 8
- 25 Cet exemple illustre la sorption et la rétentivité des gaz par la mousse thermodurcie de l'invention.

On évalue la sorption des mousses préparées selon l'invention en dégazant tout d'abord de petits échantillons dans un vide poussé puis en surveillant la fixation d'un gaz particulier en fonction de l'accrois-

- 30 -sement de la pression en utilisant l'appareil décrit par Gregg et Sing (Adsorption Surface Area and Porosity, p. 308, Academic Press, 1967). On détermine la rétentivité en saturant tout d'abord le produit sorbant par le produit sorbé puis en créant le vide jusqu'à perte de poids constant sous une pression de 10⁻⁵ mm Hg. On mesure la surface spécifique de la 35 mousse selon les néthodes BET standards précédemment décrites.
 - Les résultats correspondant à des gaz particuliers figurent dans le tableau III suivant :

Tableau III

			·	
~	gaz sorbé	Surface spécifique (m² g-l)	Fixation à 23 ° C (moles g-1/mm Hg)	Retentivité à 23 ° C (% pondéral)
5	HC (450 600	3,8/405 10,8/410	4,5
10	so ₂ so ₂	450 600	3,0/380 9,6/750	1,0
15	HCN HCN - HCN	5 554 610	5,8/373 9,4/14 14,8/380	5,6 20,7 38,0
. ,	н ₂ s н ₂ s	450 600	4,1/380 5,0/380	5,0 6,2
•	HF	600	234/760	20,0
20	01-2	5 600	1,3/532 7,4/532	16,1 41,3

A titre comparatif, on mesure la surface spécifique et la rétentivité de deux types de charbon activé du commerce vis-à-vis de divers gaz en obtenant les résultats qui figurent ci-après. L'un des charbons est 25 sous forme granulaire. On réalise toutes les mesures d'adsorption en faisant passer les gaz pratiquement purs figurant dans le tableau IV suivant sur le charbon actif:

Tableau IV

30	Gaz sorbé	surface spécifique (m g)	Retentivité à 23° C (% pondéral)
35	HCL SO ₂ HCN H ₂ S	765 1100 (granulaire) 1100 (granulaire) 1100 (granulaire)	0,5 1,1 0,54
	CL _e	765	0,4 6,4

Comme on le voit, les mousses thermodurcies de l'invention tendent à présenter une rétentivité bien supérieure des gaz polaires sorbés. Egalement comme le montrent les résultats du tableau IV, les mousses de l'invention ont une rétentivité qui augmente avec la surface spécifique. EXEMPLES 9 à 18

En reprenant le mode opératoire de l'exemple 1, on pyrolyse les composés aromatiques azotés figurant dans le tableau V suivant avec de l'acide sulfurique dans le rapport molaire du composé aromatique à l'acide sulfurique de 1/2. On constate que la température initiale à laquelle la 10 pyrolyse se produit varie légèrement d'un composé à l'autre mais est comprise dans la gamme de 200 à 230°C.

On mesure la surface spécifique et la fixation du bleu de méthylène et de l'iode des mousses thermodurcies noires obtenues en obtenant les valeurs figurant dans le tableau V suivant. On mesure la surface spéci15 -fique selon la méthode BET en utilisant de l'azote comme indiqué dans l'exemple 1. On mesure les fixations du bleu de méthylène et de l'iode en déterminant le poids de ces constituants sorbés par la mousse.

20	Exemple N°	COMPOSE AROMATIQUE	Surface Spécifique (m ² g ⁻¹)	Fixation du bleu de méthylène (mg/g)	Fixation de l'iode (mg/g)
	9	5-notroindoline	5	152	1171
	10	5-nitro-1-naphtylamine	2 , 5	0	545
25	11	2-chloro-4-nitroaniline	100	24	389
	12	2-méthyl-4-nitroaniline	30	37	420
	13	acide 5-amino-2-nitro- benzoique	160	46	342
	14	2-amino-4-nitrophénol	15	43	370
	15	3-méthyl-4-nitrophénol	5	34	356
30	16	2-amino-7-nitrofluorène	96	-	_
	17	4-nitrosophénol	57		
	18	4-nitrothiophénol	22,5	-	_
					1

Comme on le voit, les mousses ayant une surface spécifique élevée n'ont pas obligatoirement une fixation importante du bleu de méthylène ou de l'iode. Il semble que ces trois valeurs constituées par la surface spécifique mesurée avec de l'azote, la fixation du bleu de méthylène et la fixation de l'iode, fournissent une indication relative à la distribution de la taille des pores dans la mousse. L'azote est la plus petite molécule, l'iode est la molécule de taille intermédiaire et de bleu de méthylène est la molécule la plus grosse. Les valeurs du tableau V fournissent donc une indication concernant la taille relative des pores 10 et sa distribution dans les diverses mousses.

EXEMPLES 19 à 24

On reprend le mode opératoire de l'exemple V, si ce n'est qu'on pyrolyse divers composés aromatiques azotés figurant dans le tableau VI suivant dans un rapport pondéral avec l'acide phosphorique de 1/1 sauf 15 dans le cas de l'exemple 24 où ce rapport est de 1/2. On mesure la surface spécifique par la fixation de l'azote et on mesure également la fixation du bleu de méthylène et de l'iode des mousses obtenues en obtenant les résultats figurant dans le tableau VI

20	Exemple N°	Composé aromatique	Surface spécifique (m ² g ⁻¹)	Fixation du bleu de méthy lène (mg/g)	Fixation de l'iode (mg/g)
25	19	2-chloro-4-nitroaniline	91	-	_
	20	2-amino-4-nitrophénol	92	23	370
	21	5-nitroindoline	. 44 -	23	354
	22	acide 5-amino-2-nitro- benzoique	219	112	579
30	23	2-amino-7-nitrofluorène	31	-	
	24	4-nitrosophénol	75	-	-

EXEMPLE 25

On reprend le mode opératoire de l'exemple 4 en utilisant une partie 35 d'acide oxalique, une partie d'acide sulfurique et une partie de 4-nitro-aniline. La mousse noire obtenue a une surface spécifique de 280 $\rm m^2/g$. EXEMPLE 26

On mélange une partie de 4-nitroaniline et 2 parties d'hydroxydede sodium et on chauffe comme décrit dans l'exemple 1 en obtenant une éponge nouve volumineuse. On exacts serve éponge comme décatif dans l'exemple 1 to su manure se surface syécifique comme décatif dans l'altemple 1 en obtenant une valeur de 69,2 m²/g.

EXEMPLE 27

On reprend l'exemple 26, si ce n'est qu'on remplace l'hydroxyde de sodium par l'hydroxyde de potassium. La nousse obtenue a une surface spécifique de $163.5 \text{ m}^2/g$.

On étudie la toxicité des mousses purifiées selon l'invention pour déterminer si la pyrolyse complémentaire et la purification totale 10 fournissent des mousses qui ne sont sas cancérigènes ni toxiques pour l'homme.

L'étude de la toxicité aiguë par voie orale de ces mousses a montré que la DL₅₀ chez le rat est supérieure à 5 000 mg par kg de poids corporel et que ces matières sont donc au moins "pratiquement non toxiques" selon

- 15 la définition de Gleason, Cosselin et Hedge "Clinical Toxicology of Commercial Products, 1957" ou "non toxiques" selon la définition du United States Federal Hazardous Substances Labelling Act. Egalement on n'a jamais observé, pendant la période d'étude, de décès ni de signe de pharmacotoxicité ni d'altération macroscopique à l'autopsie.
- Les mousses se sont également révélées non irritantes pour les yeux et la peau du lapin albinos dans les conditions d'étude utilisées. On n'a observé aucun signe d'irritation oculaire ou cutanée chez l'un quelconque des animaux étudiés en un moment quelconque de la période d'étude. On a déterminé la toxicité orale aiguë de la façon suivante :
- Méthode: On fait jeûner pendant 24 heures des rats adultes albinos mâles et femelles de souche Spragse-Dawley, pesant 150 à 250 g puis on leur administre une dose calculée unique et on les place dans des cages à fond grillagé en leur fournissant à volonté de l'eau et un aliment de laboratoire pendant une durée d'observation de deux semaines.
- 30 <u>Administration</u>:

Méthode: On introduit dans les bacs d'alimentation 25 % d'un mélange de mousse et de diluant dans de l'aliment de laboratoire.

Préparation de l'échantillon :

Résultats:

Dose d'administration de la mousse [1] (g/kg) Hortalité

Nombre [2] Jour [3]

- [1] de la mousse étudiée
- [2] nombre de morts/nombre d'animaux étudiés
- [3] Période pendant laquelle on observe les monts

 $\mathrm{DL}_{50}/\mathrm{estim\acute{e}e}$: supérieure à 5 g/kg .

	Numéro de l'animal	Sexe	Poids initial	Poids terminal	Observations à l'autopsie
-	1 2	M	162	230	_ *
5	3	M	172	247	_
	4	M	180	232	_
	5	M	176	246	_
	_	M	16I	218	_
	6	F	160	200	· •••
10	7	F	158	202	_
	8	F	162	211	_
	9	F	157	206	_
Į	10	F	156	200	_

* On me remarque pas d'altération.

15 On ne constate pas de symptôme de toxicité.

On détermine l'irritation cutanée de la façon suivante :

Méthode: On utilise des lapins albinos. On loge des lapins séparément dans des cages à fond grillagé et on les alimente à volonté en eau
et en aliment pour lapin. On tond le dos et les flancs des animaux. On
20 applique le composé à étudier en deux zones à six lapins. Une zone est
abrasée et l'autre intacte et on applique 0,5 ml par zone dans le cas des
liquides et 0,5 g par zone dans le cas des solides. On recouvre les zones
traitées d'une gaze et d'un sparadrap pour maintenir la matière étudiée
au contact de la peau et réduire la vitesse d'évaporation. On munit les
25 animaux de colliers pendant 24 heures puis on retire les pansements et
on note le degré d'érythème et d'oedème selon l'échelle suivante. On
réalise une seconde lecture après 72 heures. On utilise la moyenne des
lectures après 24 et 72 heures pour déterminer la note d'irritation
primaire de l'échantillon.

30 Application:

Concentation de la matière étudiée : telle quelle Diluant ou solvant : néant.

Résultats

Numéro de 35 1 1	24 heures abrasée non abrasée ab	72 heures rasée non abrasée moyenne	
2.			
3	Pas d'irritati	on -toutes les lectures sont r	núcstivas
4		The state of the s	TOBUOTAET.
5			
6			

Note d'irritation cutanée primaire : 0

Echelle d'évaluation des réactions cutanées

	Erythème et formation d'une escarre	Note	Formation d'un oedème	Note
_	Léger érythème	1	Léger cedème (à peine perceptible)	1
ל	Erythème net	2	Oedème net (bords nets en relief)	2
	Erythème modéré à important	3	Oédème modére (éléva- -tion de.1 mm)	3
10	Erythème grave à légère formation d'escarre	4	Oedème grave (élévation supérieure à 1 mm)	4

Les notes sont égales à la somme des valeurs de l'érythème et de l'oedème. L'indice d'irritation cutanée est égal à la moyenne des notes après 24 et 72 heures.

On détermine l'irritation oculaire de la façon suivante :

albinos

Méthode: On place des lapins/néo-zélandais adultes de variété

White dans un collier de façon à ce que les animaux ne puissent se
frotter les yeux. On instille dans un oeil 0,1 ml (0,1 g pour les produits
solides) de la substance à étudier, l'autre oeil non traité servant de
témoin. On utilise pour chaque substance une série de 6 lapins albinos.

- 20 On lit la réaction à la matière étudiée selon une échelle d'atteinte de la cornée, de l'iris et de la conjonctive du globe et des paupières 24, 48 et 72 heures après l'instillation oculaire. On élimine par lavage de l'oeil tous les résidus de matière étudiée et les écoulement accumulés chaque fois où l'on attribue une note.
- 25 Administration:

Concentration de l'échantillon utilisé : telle quelle

Diluant ou solvant : néant Lavage particulier : néant Résultats*:

Resultats.

30

		Numéro du		Cornée			Conjonctiv	o e
		<u>lapin</u>	<u>Opacité</u>	Surface	Iris	Rougeur	Chémosis	Ecoulement
		1 2		• •				<u> </u>
	24	3	-					
5	heures	4	Pas d'i	rritation	- tout	es les le	ctures son	t négatives
		4 5 6						G
			Note d'ir:	ritation o	oculair	e après 2	heures:	0
10	48 heures	1 2 3 4 5					~	t négatives
		-	7.1 24.					
			ote d'irr	itation o	culair	e après 48	heures :	0
15	72 heures	1 2 3 4 5 6		≠ .				négatives
		N	ote diina	i+a+ian			_	

Note d'irritation oculaire après 72 heures : 0 * On ne constate pas d'irritation une heure après l'instillation.

On a constaté dans la pratique de l'invention que l'utilisation de
20 sels métalliques d'acides de Lewis mélangés avec au moins un composé
aromatique azoté augmente la surface spécifique de la mousse thermodurcie.
On pense que le sel métallique d'acide de Lewis favorise la détermination
de la structure moléculaire de la mousse lors de la pyrolyse (comme dans
le cas des sels lessivables) et a une action corrosive sur la mousse
25 thermodurcie en favorisant la formation de vides ou de pores additionnels.

On préfère utiliser les sels d'acides de Lewis les moins volatils pour qu'ils ne soient pas éliminés lors de la pyrolyse. L'utilisation des sels métalliques d'acides de Lewis n'entraîne qu'une différence particu-lière: lorsqu'on chauffe après pyrolyse, on doit éliminer au préalable le sel (par exemple par entraînement avec un solvant). La présence du

sel pendant le traitement complémentaire ne favorise pas l'augmentation de la surface spécifique par le traitement complémentaire.

Les exemples suivants illustrent cet aspect de l'invention. EXEMPLE 28

On mélange deux parties de chlorure de zinc en poudre à une partie de 4-nitroaniline, on chauffe jusqu'à fusion puis on agite à 180°C pendant environ 1 heure. On élève ensuite la température au voisinage de 210°C pour provoquer le second stade de la réaction et la formation brusque d'une éponge expansée thermodurcie noire. On recueille cette éponge, on

le Stoie, on la lave à l'eccide d'hicraydrique délue propositioner par l'essivage le chirrière de cinc pars en lave cuccessificateur par l'eau (à pH 4), de l'hydroxyde de solitte délué, de l'eau (à pH 8) et de l'acétone et on sèche à CC°0 perdart 12 heures. La surface spécifique de cette mousse thermodurcie dépend du rapport du chlorure de zinc à la 4-nitroaniline comme le montrent les résultats du tableau Wisuivant que l'on a obtenus en répétant l'empérience avec des rapports différents.

10	Rapport pondéral ZuCl ₂ /p-nitroaniline	1,5/1	2/1	2,5/1	3/1	4/1
	Fixation du bleude méthylène	140	280	150	50	25
15	Surface spécifique déterminée par l'isotherme de l'azo- te (m²/g)	_	950	645	ı	152

On détermine la fixation du bleu de méthylène selon une technique 20 standard décrite par H. W. Hassler, Activated Carbon, Chemical Pub. Co., Inc., 1963 et on détermine la surface spécifique comme précédemment indiqué selon la méthode BET avec de l'azote à -196°C.

EXEMPLE 29

On mélange deux parties de chlorure d'aluminium anhydre à une partie 25 de 4-nitroaniline et on chauffe lentement le mélange jusqu'à ce qu'une réaction exothermique s'amorce. Dans ce cas, la température de chauffage initiale n'est que de 85°C. On recueille la mousse thermodurcie et on la lave exactement comme décrit dans l'exemple 28, on la sèche à 80°C et on mesure la fixation du bleu de méthylène qui est de 80 mg/g.

30 EXEMPLE 30

On reprend le mode opératoire de l'exemple 28, si ce n'est qu'on utilise du chlorure ferrique anhydre au lieu du chlorure de zinc. La fixation du bleu de méthylène par la mousse thermodurcie isolée est de 140 mg/g.

35 EXEMPLES 31 à 40

On reprend le mode opératoire de l'exemple 28 en faisant réagir des composés aromatiques azotés et du chlorure de zinc dans les proportions pondérales indiquées dans le tablean vil suivant. On mesure les surfaces spécifiques des mousses obtenues et dans certains cas les fixations du tileu de méthylène et de l'iode en obtenant les résultats du tableau Vill

18.- Procédé selon la revendication 4, caractérisé en ce qu'on purifie le produit en chauffant la mousse après que la réaction exothermique de formation ait ralenti pour achever la réaction de formation.

19.- Procédé selon la revendication 4, caractérisé en ce qu'on effectue la pyrolyse à une pression supérieure à la pression atmosphérique.

20.- Procédé selon la revendication 4, caractérisé en ce qu'on effectue la pyrolyse d'au moins un composé aromatique azoté en présence d'un sel métallique d'acide de Lewis.

10

15

20

25

30

			-
	· ,		

- REVENDICATIONS -

1.- Mousse sorbante thermodurcie noire, caractérisée en ce qu'on l'a préparée par pyrolyse d'une composition renfermant au moins un composé aroma tique azoté de formule générale :

X - Ar - Y

où Ar représente un noyau aromatique sur lequel les substituants X et Y sont fixés directement, X représentant un substituant ayant une constante sigma de Hammett négative qui est fixé au noyau aromatique par un atome d'azote, d'oxygène ou de soufre et Y représentant un substituant ayant une constante sigma de Hammett positive fixé au noyau aromatique par un atome d'azote, les substituants X et/ou Y faisant éventuellement partie d'un cycle condensé avec le noyau aromatique, la mousse thermo-durcie ayant une surface spécifique d'au moins 50 m²/g.

2.- Mousse sorbante thermodurcie noire, caractérisée en ce qu'on 15 l'a préparée par pyrolyse d'une composition renfermant au moins un composé aromatique azoté de formule générale:

X - Ar - Y

où.Ar représente un noyau aromatique sur lequel les substituants X et Y sont fixés directement, X représentant un substituant ayant une constante 20 sigma de Hammett négative qui est fixé au noyau aromatique par un atome d'azote, d'oxygène ou de soufre et Y représentant un substituant ayant une constante sigma de Hammett positive fixé au noyau aromatique par un atome d'azote, les substituants X et/ ou Y faisant éventuellement partie d'un cycle condensé avec le noyau aromatique, la mousse thermodur-cie n'étant pas cancérigène ni autrement toxique pour l'homme et étant pratiquement dépourvue de composants toxiques fusibles de bas poids molé-culaire ce qui permet sa manipulation sans danger par l'homme.

- 3.- Mousse thermodurcie selon l'une des revendications 1 ou 2, carac-térisée en ce qu'elle a une surface spécifique d'au moins $200 \text{ m}^2/\text{g}$.
- 4.- Procédé de préparation d'une mousse sorbante thermodurcie noire selon la revendication 1, caractérisé en ce qu'il consiste à chauffer à une température de pyrolyse inférieure à 300°C, de façon à amorcer la réaction, une composition liquide à la température de pyrolyse et consti-tuée d'au moins un composé aromatique azoté de formule générale :

X - Ar - Y

où Ar représente un noyau aromatique sur lequel les substituents X et Y sont fixés directement, X représentant un substituent ayant une constante sigma de Hammett négative qui est fixé au noyau aromatique par un atome d'azote, d'oxygène ou de soufre et Y représentant un substituant ayant

une constante sigma de Memmett positive fixé au novam anchasique par un atome d'azote, les substituants I et/ou Y faisant éventuellement partie d'un cycle condensé avec le royau aromatique.

- 5.- Procédé selon la revendication 4, caractérisé en ce que la composition liquide est un mélange renfermant au moins écdit composé aromatique azoté et au moins un composé favorisent sa condensation.
 - 6.- Procédé selon la revendication 5, caractérisé en ce que la composition liquide est un mélange constitué d'au noins ledit composé aromatique azoté et un acide fort ou une base forte.
- 7.- Procédé selon la revendication 6, caractérisé en ce que l'acide fort est l'acide sulfurique.
 - 8.- Procédé selon la revendication 7, caractérisé en ce que l'acide fort est l'acide phosphorique et le rapport molaire entre l'acide et le ou les composés aromatiques est compris entre 1,6 et 3,0.
- 9.- Procédé selon la revendication 6, caractérisé en ce que la base forte est l'hydroxyde de sodium ou de potassium.
- 10.- Procédé selon la revendication 4, caractérisé en ce que la composition est constituée d'un mélange d'au moins un desdits composés aromatiques azotés et d'un sel soluble et en ce qu'on élimine le sel par 20 lessivage de la mousse formée par pyrolyse.
 - 17.-Procédé selon la revendication 4, caractérisé en ce qu'on soumet la mousse à une pyrolyse complémentaire à une température plus élevée dans une atmosphère inerte pour augmenter sa surface spécifique.
- 12.- Procédé selon la revendication 11, caractérisé en ce qu'on 25 effectue la pyrolyse complémentaire à une température de 300 à 800°C.
 - 13.- Procédé selon la revendication 11, caractérisé en ce qu'on effec--tue la pyrolyse complémentaire dans une atmosphère d'azote saturée de vapeur.
- 14.- Procédé selon la revendication 4, caractérisé en ce que le 30 substituant X dans au moins un desdits composés aromatiques azotés est un radical -NH₂, -OH ou -SH.
 - 15.- Procédé selon la revendication 4, caractérisé en ce que le substituant Y d'au moins un desdits composés aromatiques azotés est un radical -NO₂ ou -NO₃.
- 35 16.- Procédé selon la revendication 4, caractérisé en ce que au moins un desdits composés aromatiques azotés est une nitroaniline.
 - 17.- Procédé pour éliminer les molécules polaires à un fluide les renfermant, caractérisé en ce qu'il consiste à mettre une mousse thermo-durcie selon la revendication 1, au contact du fluide et à laisser se produire la sorption des molécules polaires.

			•• ••	•• ••	•• ••	•• ••		•• ••	·• ••	•• ••	•• •• ••
5	Fixation de : 1 Dde (mg/g)	. 761	1	1	1	726	844	549	820	786	ı
10	Fixation du bleu de métrhylène (mg/g)	24	I.	ı	i .	44	16	23	56	0	1
15	Surface spécifique (m ² g ⁻¹)	140	221,7	178,3	138,5	09	009	09	400	227	653
20 25	Rapport pon- : déral. Compo-: sé/Zncl2 :	1/2	1/1,5	1/2,5	1/2	1/2	1/2	1/2	1/2	1/2	1/2
30	Composé aromatique	4-nitrosophenol	4-nitrosophénol	4-nitrosophénol	4-nitrothiophénol	2-chloro-4-nitroaniline	2-méthyl-4-nitrosniline	2-amino-4-nitrophénol	3-méthyl-4-nitrophénol	5-nitroindoline	5-nitro-1-naphtylamhe
40	Exemple: No.	31	32	33	34	35	36	37	38	39	40

Comme on le voit des mousses ayant une surface spécifique élevée n'ont pas nécessairement une fixation importante du bleu de méthylène ou de l'iode. La surface spécifique mesurée avec de l'azote et la fixation du bleu de méthylène et de l'iode fournissent une indication relative à la distribution de la taille des pores de la mousse. L'azote constitue la molécule la plus petite, l'iode la nolécule de taille intermédiaire et le bleu de méthylène la molécule la plus grosse et les valeurs du tableau Vill fournissent une indication concernant les tailles de pores relatives et leur distribution dans les diverses mousses.

10 EXEMPLE 41

Cet exemple illustre les résultats obtenus lorsqu'on effectue la pyrolyse sous pression élevée dans un environnement clos. On introduit dans une bombe en acier de 1 litre résistant à la pression dans laquelle on a créé le vide, une pâte de sulfate de 4-nitroanilinium préparée comme 15 décrit dans l'exemple 2 puis on crée une pression d'azote d'environ 34,5 bars. On élève progressivement la température en deux heures jusqu'à un maximum de 220°C avec une pression maximale du gaz de 65,5 bars. Après une heure de séjour à cette température on laisse refroidir lentement le réacteur à la température ordinaire et on le détend. On lave 20 soigneusement la mousse fragile obtenue avec de l'acide sulfurique dilué, de l'eau et de l'acétone et dans ce cas on n'observe pas d'extraction de composés nitro ayant réagi incomplétement. On peut donc obtenir de façon pratique une conversion bien plus complète en produit totale--ment insoluble en disposant les composés réagissants et le produit dans 25 un système clos approprié. La surface spécifique du produit purifié est de 15 m^2/g .

Bien entendu, l'invention n'est nullement limitée aux exemples décrits; elle est susceptible de nombreuses variantes, accessibles à l'homme de l'art, suivant les applications envisagées et sans qu'on s'écarte pour 30 cela du cadre de l'invention.