Diagnostics

Subrata Paul 6/4/2020

What we need to check?

- Nonlinearity of regression function
- Nonconstancy of error variance
- Nonindependence of error terms
- Nonnromality of error terms
- Presence of outliers and influencial observations

Residual Plots

Importance

- Diagnostic plots of the response variable are not very useful
- Residual plots usually (indirectly) carries out diagnostics of the response variable
- Residuals gives us information about model structure and the nature of unobserved randomness.

Different plots of residuals

- Plots of residuals against predictor variables
- Plot of residuals against fitted values
- Plot of absolute or squared residuals against fitted values or predictor variables
- Plot of residuals against time or other sequence
- Plots of residuals against omited predictor variables
- Box plot and density plot of residuals
- · Q-Q plot of residuals

Reminder

Simulated scenarios

Example (Non-constant error variance)

Test for non-constatnt variance

- · If the data is separable in some way then a F test works
- Brown_Forsythe test (a t-test)
- Breusch-Pegan test (also known as Cook-Weisberg score test)
 - It is a chi-squared test

Residual Plots

- It can be used to check
 - Nonlinear structure
 - Non-constant error variance
 - Non-zero error mean
- Though it is not used directly to detect unusual observations but gives us an overview of the observations.
- Though it indicates potential structural problem it does not clearly suggest transformation because it fails to distinguish between monotonic and nonmonotonic transformation.
- Does not show the nature of the marginal effect of a predictor variable, given the other predictor variables in the model.

Interesting Extreme Example

```
library(faraway)
set.seed(123)
male = 600
female = 400
bp = c(rnorm(male, 85, 2), rnorm(female, 75, 1))
bmi = c(rnorm(male, 24, 4), rnorm(female, 28, 2))
chol = c(rnorm(male, 200, 10), rnorm(female, 150, 15))
gender = c(rep(1, male), rep(0, female))
dat = data.frame(bp = bp, bmi= bmi ,chol = chol, gender = gender)
lmod = lm(bmi \sim bp + chol, data = dat)
sumary(lmod)
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 48.4499279 2.1428433 22.6101 < 2.2e-16
## bp
              -0.2169564 0.0388197 -5.5888 2.95e-08
## chol
              -0.0286526 0.0074002 -3.8719 0.000115
##
## n = 1000, p = 3, Residual SE = 3.38723, R-Squared = 0.23
```

Interesting Extreme Example (Residual Plot)

What does the residual plot suggests?

Test for non-constatnt variance

- If the data is separable in some way then a F test works
- Brown_Forsythe test (a t-test)
- Breusch-Pegan test (also known as Cook-Weisberg score test)
 - It is a chi-squared test

Added variable plot

- · Gives marginal relationship given the other predictors are in the model
- · Can be used to investigate if a new variable is worthy to include in the model
- · Provide clearer picture compared to residual vs predictor plot

Simulated Scenarios

- 1. No additional information from the predictor
- 2. Helpful addition of the predictor
- 3. Inclusion of the predictor with some transformation.

AV plot example

Added-Variable Plot: Income

Component plus residual (CR) plot

The **component plus residual (cr) plot** (a.k.a, **partial residual plot**) is a competitor to the added variable plot.

The **cr plot** shows $\hat{\beta}_i x_i + \hat{\epsilon}$ versus x_i .

- **cr** plots are useful for checking nonlinear relationships in the variable being considered for inclusion in the model.
- They can also suggest potential transformation of the data so that the relationship is linear.
- If the scatter plot does not appear to be linear, then there is a nonlinear relationship between the regressor and the response (after accounting for the other regressors).
- The slope of the line fit to the cr plot is $\hat{\beta}_i$.

Unusual observations

Leverage

- · A **leverage** point is an observation that is unusual in the predictor space.
- h_{ii} is called the leverage value of the i th observation.
- h_{ii} is a measure of distance between the X values for the ith observation from the mean of the X values of all n observations.
- · h_{ii} measures the role of the X values in determining how important y_i is in affecting \hat{y}_i
- A half-normal plot of the leverage values can be used to identify observations with unusually high leverage.
- · A leverage value h_i is usually considered large if it is more than twice as large as the mean leverage value.

Example

Outlier

An outlier is a point that does not fit the current model.

 An outlier is context specific! An outlier for one model may not be an outlier for a different model.

externally studentized residual

$$t_i = \frac{y_i - \hat{y}_{(i)}}{\hat{\sigma}_{(i)} \sqrt{1 + x_i^T (X_{(i)}^T X_{(i)})^{-1} x_i}} \sim T_{n-p-1}.$$

Bonferroni correction is needed

Example

Influential observations

- An influential observation is one whose removal from the dataset would cause a large change in the fitted model.
- · An influential observation is usually a leverage point, an outlier, or both.

The Cook's distance is a popular inferential tool because it reduces influence information to a single value for each observation.

The Cook's distance for the ith observation is

$$D_i = \frac{(\hat{y} - \hat{y}_{(i)})^T (\hat{y} - \hat{y}_{(i)})}{p\hat{\sigma}^2} = \frac{1}{p} r_i^2 \frac{h_i}{1 - h_i}$$

Example

Influence plot

##	+		StudRes	Hat	CookD
##	Chile		-2.3134295	0.03729796	0.03781324
##	Japan		1.6032158	0.22330989	0.14281625
##	United	States	-0.3546151	0.33368800	0.01284481
##	Zambia		2.8535583	0.06433163	0.09663275

Correct or Delete the Observation(s)

- · If they're data entry errors, correct the problem. If they can't be fixed, remove them (they're wrong, so they don't tell us anything useful).
- Remove them if they're not part of the population of interest (you are studying dogs, but this observation is a cat).
- Remove them because they break the model.
- This is a bad idea.
- Make sure to indicate that you removed them from the data set and explain why.
- THIS IS A BAD IDEA.

Fit a Different Model

- · An outlier/influential point for one model may not be for another.
- Examine the physical context—why did it happen?
- An outlier/influential point may be interesting in itself.
 - An outlier in a statistical analysis of credit card transactions may indicate fraud!
- This may suggest a better model.
- Use robust regression, which is not as affected by outliers/influential observations.
- Never automatically remove outliers/influential points!
- They provide important information that may otherwise be missed.
- Fit the model with and without the influential observation(s).
- Do your results substantively change?

Checking Error

Summary of methods for checking error assumptions

- Mean-zero error assumption:
 - Plot of residuals versus fitted values
- Constant error variance assumption:
 - Plot of residuals versus fitted values
 - Plot of $\sqrt{(|\epsilon^*|)}$ versus fitted values.
- Normal error assumption:
 - q-q of residuals
 - Shapiro-wilk test
- Autocorrelated errors:
 - Plot of residuals versus time
 - Plot of successive pairs of residuals
 - Durbin-Watson test

Weighted Least Squares

Model

The generalized multiple regression model:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \dots + \beta_{p-1} X_{i,p-1} + \epsilon_i$$

where,

- $\beta_0, \beta_1, \dots, \beta_{p-1}$ are parameters
- $X_{i1}, \dots X_{i,p-1}$ are known constants
- ϵ_i are independent $N(0, \sigma_i^2)$

Variance-covariance matrix

$$Var(\epsilon) = \begin{bmatrix} \sigma_1^2 & 0 & \dots & 0 \\ 0 & \sigma_2^2 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & \sigma_n^2 \end{bmatrix}$$

- · OLS assumes equal variance: $\sigma_1^2 = \cdots = \sigma_n^2 = \sigma^2$
- Using OLS we would get unbiased estimation of the parameters
- The OLS estimates no longer have minimum variance
- We must account for unequal variance in the estimation process
- Consider three cases:
 - Error variances are known (unrealistic)
 - Error variances are known up to proportionality constant
 - Error variances are known (realistic)

Error variances are known

Likelihood

$$L(\beta) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left[-\frac{1}{2\sigma_i^2} (Y_i - \beta_0 - \beta_1 X_{i1} - \dots - \beta_{p-1} X_{i,p-1})^2\right]$$

Define

$$w_i = \frac{1}{\sigma_i^2}$$

$$L(\beta) = \left[\prod_{i=1}^{n} \frac{\sqrt{w_i}}{\sqrt{2\pi}} \right] \exp \left[-\frac{1}{2} \sum_{i=1}^{n} w_i (Y_i - \beta_0 - \beta_1 X_{i1} - \dots - \beta_{p-1} X_{i,p-1})^2 \right]$$

Minimize

In matrix notation

$$W = \begin{bmatrix} w_1 & 0 & \dots & 0 \\ 0 & w_2 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & w_n \end{bmatrix}$$

Normal Equation

$$(X^T W X)\hat{\beta}_w = X^T W Y$$

Estimators

$$\hat{\beta}_w = (X^T W X)^{-1} X^T W Y$$

Variance of the estimators

$$Var(\hat{\beta}_w = (X^T W X)^{-1})$$

Properties of the estimators

- · Unbiased
- Consistent
- Minimum variance among unbiased linear estimators
- ' When weights are known $\mathrm{Var}(\hat{eta}_w)$ is generally less than $\mathrm{Var}(\hat{eta})$

Error variances unknown

- · We need to estimate the error variances.
- Residuals from an OLS gives valuable information about the error variances
- · Two methods:
 - Estimation of variance function
 - Use of replicates or near replicates

Estimation of variance

- Squared residual $\hat{\epsilon}^2$ is an estimator of σ_i^2
- · Absolute residual $|\hat{\epsilon}|$ is an estimator for σ_i
- · Idea
 - We can estimate the variance function describing the relation of σ_i^2 to relevant predictor variables by first fitting the regression model using unweighted least squares and then regressing $\hat{\epsilon}^2$ or $|\hat{\epsilon}|$ against the appropriate predictor variables.
- · $|\hat{\epsilon}|$ is preferred if outliers exist.

General guidelines

- 1. A residual plot against X_l exhibits a megaphone shape. \Rightarrow Regress the absolute residuals against X_l
- 2. A residual plot against \hat{Y} exhibits a megaphone shape. \Rightarrow Regress the absolute residuals against \hat{Y}
- 3. A plot of the squared residuals against X_l exhibits an upward tendency. \Rightarrow Regress the squared residuals against X_l
- 4. A plot of the squared residuals against X_l suggests that the variance increases rapidly with increases in X_l up to a point and then increases more slowly. \Rightarrow Regress the absolute residuals against X_l and X_l^2 .

What next?

After the variance function or the standard deviation function is estimated, the fitted values from this function are used to obtain the estimated weights:

$$w_i = \frac{1}{\hat{s}_i^2}$$
 where \hat{s}_i is fitted value from standard deviation function

$$w_i = \frac{1}{\hat{v}_i}$$
 where \hat{v}_i is fitted value from variance function

The parameters are then estiamted as

$$\hat{\beta}_w = (X^T W X)^{-1} X^T W Y$$

Use of Replicates or Near Replicates

- In designed experiments σ_i^2 is estimated suing replicate observations at each combination of levels of the predictor variables.
- In observation studies, near replicates many be used.
- For example, if the residual plot against X_l shows a megaphone appearance, cases with X_1 values can be grouped together and the variance of the residuals in each group calculated.
 - The reciprocal of these variances are the weights.

Example (Strong Interaction ALR4 page 157)

- Response: scattering cross-section (y), Predictor: square of total energy in the center of mass frame of reference (s)
- Designed experiment
- A very large number of particles was counted at each setting of s
- The variance of *y* is thus known almost exactly

Example (Strong Interaction ALR4 page 157)

```
##
## Call:
## lm(formula = y \sim x, data = alr4::physics, weights = 1/SD^2)
##
## Weighted Residuals:
##
      Min
               10 Median
                              30
                                    Max
## -2.3230 -0.8842 0.0000 1.3900 2.3353
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 148.473 8.079 18.38 7.91e-08 ***
## x
               530.835 47.550 11.16 3.71e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.657 on 8 degrees of freedom
## Multiple R-squared: 0.9397, Adjusted R-squared: 0.9321
## F-statistic: 124.6 on 1 and 8 DF, p-value: 3.71e-06
```

Example (Blood pressure)

- 1. \Rightarrow linear relationship (unweighted)
- 2. \Rightarrow confirms the nonconstant error variance
- 3. \Rightarrow a linear relation between Age and standard error is reasonable

Example (Blood pressure)

Regress absolute residuals against Age

Variance function

$$\hat{s} = -1.5494776 + 0.1981723Age$$

· Weights

```
w = 1/lmod_abs_res$fitted.values^2
head(w)

## 1 2 3 4 5 6
## 0.06920928 0.14655708 0.12661657 0.09725115 0.08625993 0.11048521
head(blood$Age)

## [1] 27 21 22 24 25 23
```

Example (Blood pressure)

· OLS

```
##
        Estimate Std. Error t value Pr(>|t|)
## (Intercept) 56.156929 3.993674 14.0615 < 2.2e-16
## Age
        0.580031 0.096951 5.9827 2.05e-07
##
## n = 54, p = 2, Residual SE = 8.14575, R-Squared = 0.41
WLS
wls mod = lm(BP \sim Age, weights = w, data = blood)
sumary(wls mod)
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 55.565766 2.520918 22.042 < 2.2e-16
## Age
        0.596342 0.079238 7.526 7.187e-10
##
## n = 54, p = 2, Residual SE = 1.21302, R-Squared = 0.52
```