

Automotive Door Control System Design Part 2 Dynamic Design

Name: Sohaib Dar

ECU 1

1- State Machine Diagram for each ECU1 Component

Door Sensor

Light Switch

• Speed Sensor

2- State Machine Diagram for ECU1 Operation

Door Sensor

Light Switch

• Speed Sensor

SWC	Periodicity	Burst	CPU Load
Reading and Sending	10ms	1ms	10 %
Door State			
Reading and Sending	20ms	1ms	5 %
Switch State			
Reading and Sending	5ms	2ms	40 %
Car Speed			

CPU Load = Load-1 + Load-2 + Load-3 = 10 % + 5 % + 40 % = 55 %

✓ All Periodicity and Burst values are assumed to show the proof of concept

ECU 2

1- State Machine Diagram

• Buzzer(B)

• Light Right (LR)

• Light Right (LL)

4- CPU load for ECU2

SWC	Periodicity	Burst	CPU Load
Updating Left Light	10ms	1ms	10 %
State			
Updating Right Light	10ms	1ms	10 %
State			
Updating Buzzer State	10ms	2ms	20 %

CPU Load = Load-1 + Load-2 + Load-3 = 10 % + 10 % + 20 % = 40 %