To Do List

Read Chapter 2, Sections 2.1-2.3

Do Problems 1- 4 in Chapter 2

Today's Class: Parameter Estimation

- 1) Definition of a (Point) Estimate of an Unknown Parameter
- 2) Method of Maximum Likelihood
 - i) Definition of the Likelihood Function
 - ii) Definition of the Maximum Likelihood Estimate
- iii) Definition of the Relative Likelihood Function
- iv) Definition of the Log Likelihood Function

From Last Day: Method of Maximum Likelihood

Suppose we have observed data y and we assume a statistical model $f(y; \theta)$, $\theta \in \Omega$ which is completely known except for an unknown parameter θ .

The method of maximum likelihood is a method for estimating this unknown parameter θ .

The method is based on the idea that values of θ that make the observed data probable are the values of θ which are most plausible.

Definitions from Last Day

1) The likelihood function for θ is

$$L(\theta) = L(\theta; y)$$

= $P(\text{observing the data } y; \theta) \text{ for } \theta \in \Omega$

2) The maximum likelihood estimate is the value of θ which maximizes $L(\theta)$.

Likelihood Function and Maximum Likelihood Estimate for Binomial Data - Summary

Let Y = number of successes in n Bernoulli trials with $P(Success) = \theta$. Then $Y \sim$ Binomial(n, θ).

Suppose a Binomial experiment is conducted and y successes are observed. The likelihood function for θ based on the observed data is

$$L(\theta) = P(Y = y; \theta) = P(\text{observing } y \text{ successes in } n \text{ trials})$$

$$= \binom{n}{y} \theta^{y} (1-\theta)^{n-y} \quad for \ \ 0 < \theta < 1.$$

and the maximum likelihood estimate of θ is

$$\hat{\theta} = \frac{y}{n}$$

$L(\theta)$ for Coin Example

Graph of
$$L(\theta) = {25 \choose 10} \theta^{10} (1-\theta)^{15}$$

 $L(\theta)$ is maximized at $\theta = 10/25 = 0.4$

Coin Example

Graph of
$$\theta^{10}(1-\theta)^{15}$$

$$\theta^{10}(1-\theta)^{15}$$
 $\theta^{10}(1-\theta)^{15}$
 $\theta^{10}(1-\theta)^{15}$
 $\theta^{10}(1-\theta)^{15}$
 $\theta^{10}(1-\theta)^{15}$

 $L(\theta)$ is maximized at $\theta = 10/25 = 0.4$

The Likelihood Function

The shape of $L(\theta)$ and the value of θ at which the maximum value occurs are not affected if we multiply $L(\theta)$ by a constant.

Only the scale of the y axis changes.

The Likelihood Ratio

The value of the ratio

$$rac{L(heta_1)}{L(heta_2)}$$

is also unaffected if we multiply $L(\theta)$ by a constant.

If you're a likelihood value, (relative) size matters.

The relative value at two different values of the parameter, e.g. $\frac{L(\theta_1)}{L(\theta_2)}$, is what is most

important.

This ratio indicates how much more or how much less consistent the data are with the value $\theta = \theta_1$ as compared to the value $\theta = \theta_2$.

Definition of the Likelihood Function

Therefore we can also define the likelihood function for θ as

$$L(\theta) = L(\theta; y)$$

= kP(observing the data y; θ) for $\theta \in \Omega$

where k is a positive constant, not depending on θ , which can be chosen to simplify $L(\theta)$.

Binomial Likelihood Function

Therefore for Binomial data we can define $L(\theta)$ as

$$L(\theta) = \binom{n}{y} \theta^y (1-\theta)^{n-y}$$
 and $\theta^y (1-\theta)^{n-y}$

or more simply as

$$L(\theta) = \theta^{y} (1-\theta)^{n-y}$$
 for $0 < \theta < 1$.

Both are maximized at $\theta = y/n$ and have the same shape.

(Only the y axis gets relabeled!)

Relative Likelihood Function

The relative likelihood function is defined as

$$R(\theta) = \frac{L(\theta)}{L(\hat{\theta})}, \quad \theta \in \Omega.$$

Note:
$$0 \le R(\theta) \le 1$$
 for all $\theta \in \Omega$ and $R(\hat{\theta}) = 1$.

Relative Likelihood Function for Binomial

For Binomial data the relative likelihood function is

$$R(\theta) = \frac{\theta^{y} (1 - \theta)^{n - y}}{\hat{\theta}^{y} (1 - \hat{\theta})^{n - y}} \quad \text{for } 0 < \theta < 1$$

where
$$\hat{\theta} = \frac{y}{n}$$

$R(\theta)$ for the Coin Example

Graph of

$$R(\theta) = \frac{\theta^{10} (1 - \theta)^{15}}{(0.4)^{10} (0.6)^{15}}$$

0.9 0.8 0.7 0.6 $R(\theta)$ 0.5 0.4 0.3 0.2 0.1 0.2 0.3 0.5 0.6 0.4 0.7 0.8

Log Likelihood Function

The log likelihood function is defined as

$$l(\theta) = \log L(\theta), \quad \theta \in \Omega.$$

Note:

log = In = natural log
(Mathematicians only ever use
natural log. Why?)

Binomial Log Likelihood

Since the Binomial likelihood function is

$$L(\theta) = \theta^{y} (1 - \theta)^{n-y}$$
 for $0 < \theta < 1$

therefore the Binomial log likelihood function is

$$l(\theta) = \log [L(\theta)]$$

$$= \log[\theta^{y} (1 - \theta)^{n - y}]$$

$$= y \log \theta + (n - y) \log(1 - \theta) \quad \text{for } 0 < \theta < 1$$

Coin Example

Graph of
$$L(\theta) = \theta^{10} (1 - \theta)^{15}$$

Graph of $I(\theta)$ for Coin Example

Graph of $l(\theta) = 10\log\theta + 15\log(1-\theta)$

Log Likelihood Function

The graph of the log likelihood function $I(\theta)$ is typically quadratic in shape.

Often it is easier to maximize the log likelihood function $I(\theta)$ rather than the likelihood function $L(\theta)$. (Sum rule for differentiation is easier to use than product rule.)

Likelihood Function for Independent Experiments

Suppose we have two independent data sets y_1 and y_2 corresponding to independent random variables Y_1 and Y_2 .

Since
$$P(Y_1 = y_1, Y_2 = y_2; \theta)$$

= $P(Y_1 = y_1; \theta) P(Y_2 = y_2; \theta)$
the (combined) likelihood function for θ based
on the data y_1 and y_2 is

$$L(\theta) = L_1(\theta) \times L_2(\theta) \quad \theta \in \Omega$$
where $L_i(\theta) = P(\mathbf{Y}_i = \mathbf{y}_i; \theta)$

Likelihood Function and Maximum Likelihood Estimate for Poisson Model

Suppose we observe data $y_1, y_2, ..., y_n$.

Suppose also that from past experience we know that it is reasonable to assume that these data represent a set of independent and identically distributed observations from a Poisson(θ) model.

We want to find the maximum likelihood estimate of θ based on the data $y_1, y_2, ..., y_n$.

Poisson Relative Likelihood Function (Course Notes page 53)

For Poisson data $y_1, y_2, ..., y_n$

$$L(\theta) = \theta^{n\overline{y}} e^{-n\theta}$$
 for $\theta > 0$

(ignoring constants with respect to θ) and

$$R(\theta) = \frac{L(\theta)}{L(\hat{\theta})} = \frac{\theta^{n\bar{y}}e^{-n\theta}}{\hat{\theta}^{n\bar{y}}e^{-n\hat{\theta}}} \quad for \quad \theta > 0$$

where
$$\hat{\theta} = \overline{y}$$

Poisson Relative Likelihood

$$n = 25$$
 and $\overline{y} = 2$

Example 2.2.4

Please see Example 2.2.4, pages 55-56 of the Course Notes.

A Poisson type example in which the maximum likelihood estimate must be found numerically.