

UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERIA Y TECNOLGIAS AVANZADAS - IPN

Nombre: Sánchez Moreno Mauricio Fabián

Fecha: 21/12/2020

Semestre Agosto de 2020 – Diciembre de 2020

Segundo examen parcial de Dispositivos Programables

Las siguientes preguntas deberá contestarlas en forma individual. Debe activar su webcam durante el tiempo que dure el examen. Solo coloque las respuestas a las preguntas. LA DESHONESTIDAD SERÁ SEVERAMENTE PENALIZADA. NO SE EXPONGA.

1. (1.0 puntos) Suponga el siguiente filtro IIR, el cual será implementado con una **estructura de una sola etapa**. En el dispositivo programable (el cual trabaja a con un reloj de 50 MHz), cada multiplicación se realiza en 5 ciclos de reloj y cada suma se realiza en 2 ciclos de reloj. La frecuencia de muestreo es de 16000 muestras por segundo. Calcular:

$$H(z) = \frac{0.1470 + 0.6888\,z^{-1} + 1.8014z^{-2} + 3.2133z^{-3} + 4.2323z^{-4} + 4.2323z^{-5} + 3.2133z^{-6} + 1.8014z^{-7}}{1.0000 + 2.0679z^{-1} + 3.7189z^{-2} + 4.2970z^{-3} + 3.9943z^{-4} + 2.7983z^{-5} + 1.5129z^{-6} + 0.5971z^{-7}}$$

Orden=7

- a) Número total de multiplicaciones por muestra de entrada $N_{\rm M}$ =16 multiplicaciones por muestra
- b) Número total de sumas por muestra de entrada $N_S = 14$ sumas por muestra
- c) Tasa mínima de multiplicaciones que requiere el sistema R_{Mmin} =256K multiplicaciones por segundo
- d) Tasa mínima de sumas que requiere el sistema R_{smax} =224k sumas por segundo
- e) Tiempo máximo por multiplicación que requiere el sistema T_{Mmax} =3.906 us
- f) Tiempo máximo por suma que requiere el sistema $T_{Smax} = 4.4642$ us
- g) Tiempo de procesamiento que requiere el sistema $T_{p \text{ requerido}} = 125 \text{ us}$
- h) Tiempo de procesamiento que ofrece el DSP T_{p DSP}.= 2.16 us
- 2. (1.5 puntos) Los filtros FIR de 147 coeficientes que se muestran en la figura trabajan a 8000 muestras por segundo y está implementado en un dispositivo que opera a 25 MHz. Si la multiplicación se realiza en 5 ciclos y la suma se realiza en 2 ciclos de reloj. Si se asume que solo hay una unidad MAC y todas las operaciones son secuenciales, obtenga:
 - a) Nm= **147 por muestra**
 - b) Ns=146 sumas por muestra
 - c) Lasa mínima de multiplicaciones =1176000 multiplicaciones por segundo
 - d) La tasa mínima de sumas=1168000 sumas por segundo
 - e) El tiempo máximo de multiplicación=.85034 us
 - f) El tiempo máximo de suma=.85616 us
 - g) Obtenga la máxima frecuencia de muestreo que soportará el sistema= 24.342 KHz

- 3. (1.5 puntos) Los filtros FIR de 147 coeficientes que se muestran en la figura trabajan a 8000 muestras por segundo y está implementado en un DSP que opera a 25 MHz. Si la multiplicación se realiza en 5 ciclos y la suma se realiza en 1 ciclo de reloj. Si se asume que **hay dos unidades MAC que trabajan en paralelo** (Una para cada filtro), obtenga:
 - a) Nm= 74 multiplicaciones por muestra
 - b) Ns =73 multiplicaciones por muestra
 - c) Lasa mínima de multiplicaciones =588K muestras por segundo
 - d) La tasa mínima de sumas=834J muestras por segundo
 - e) El tiempo máximo de multiplicación =1.7 us
 - f) El tiempo máximo de suma=1.200 us
 - g) Obtenga la máxima frecuencia de muestreo que soportará el sistema=14.188 KHz

- 4. (2.0 puntos) Utilizando el **BobinasDeTeslaHimnoCCCP_4TM1.wav** que incluye con el examen, aplicar filtraje IIR apropiado para quitar la interferencia. Analizar el archivo en el intervalo de 5 a 10 seg. Reportar las gráficas siguientes usando **Python**:
 - a) Gráfica de la señal en la frecuencia sin filtrar

- b) Gráfica del filtro IIR en la frecuencia
- c) Gráfica de la señal en la frecuencia después de filtrar.

Nota: etiquetar adecuadamente las gráficas

- 5. (2.0 puntos) Utilizando el archivo **BobinasDeTeslaHimnoCCCP_4TM1.wav** que incluye con el examen, diseñar un filtro FIR apropiado para quitar la interferencia. Analizar el archivo en el intervalo de 5 a 10 seg. Reportar las gráficas siguientes usando **Python**:
 - a) Gráfica de la señal en la frecuencia sin filtrar

b) Gráfica del filtro FIR en la frecuencia Filtro 1 FIIR

 \times

Filtro tipo rechaza banda: el tamaño del filtro es 215

Fpass1=3400

Fstop1=3200

Fpass2=3600

Fstop2 = 3800

Filtro 2 FIIR

Filtro tipo rechaza banda: El tamaño del filtro es 215

Fpass1=2000

Fstop1=1800

c) Gráfica de la señal en la frecuencia después de filtrar.

6. (2 puntos) En proteus hacer un sumador de las frecuencias senoidales de 50 Hz, 100 Hz y 150 Hz. Diseñar un filtro IIR que extraiga la frecuencia de 150 Hz. Capture la pantalla del osciloscopio y reportar:

b) La señal del bucle transparente

c) La señal de salida del filtro