

(a) deeplearning.ai

(a) deeplearning.ai Sentiment analysis Classify Positive: 1

Vocabulary

Tweets:

[tweet_1, tweet_2, ..., tweet_m]

I am happy because I am learning NLP ...

I hated the movie

V =

[I, am, happy, because, learning, NLP, ... hated, the, movie]

(a) deeplearning.ai

Positive and negative counts

Corpus

I am happy because I am learning NLP

I am happy

I am sad, I am not learning NLP

I am sad

l am happy because learning NLP sad

not

@ deeplearning.ai

Feature extraction

I am happy because I am learning NLP

A lot of zeros! That's a sparse representation.

@ deeplearning.ai

Positive and negative counts

Positive tweets

I am <u>happy</u> because I am learning NLP
I am <u>happy</u>

Vocabulary	PosFreq (1)
1	3
am	3
happy	2
because	1
learning	1
NLP	1
sad	0
not	0

Positive and negative counts

Vocabulary	NegFreq (0)
1	3
am	3
happy	0
because	0
learning	1
NLP	1
sad	2
not	1

Negative tweets
I am sad, I am not learning NLP
I am sad

@ deeplearning.ai

Feature extraction

freqs: dictionary mapping from (word, class) to frequency

$$X_m = \begin{bmatrix} 1, \sum_{w} freqs(w, 1), \sum_{w} freqs(w, 0) \end{bmatrix}$$
 Features of tweet m Bias Sum Pos. Frequencies Frequencies Frequencies

@ deeplearning.ai

Word frequency in classes

Vocabulary	PosFreq (1)	NegFreq (0)	
I	3	3	-
am	3	3	fregs: dictionary mapping from
happy	2	0	(word, class) to frequency
because	1	0	(wor a, class) to mequency
learning	1	1	
NLP	1	1	
sad	0	1	
not	0	1	

@ deeplearning.ai

Feature extraction

Vocabulary	NegFreq (0)
1	3
am	3
happy	0
because	0
learning	_1_
NLP	_1_
sad	2
not	1

I am sad, I am not learning NLP

$$X_m = [1, \sum_{w} freqs(w, 1), \sum_{w} freqs(w, 0)]$$

Feature extraction

I am sad, I am not learning NLP

$$X_{m} = [1, \sum_{w} \frac{freqs}{\downarrow}(w, 1), \sum_{w} \frac{freqs}{\downarrow}(w, 0)]$$
$$X_{m} = [1, 8, 11]$$

@ deeplearning.ai

Preprocessing: Stemming and lowercasing

Preprocessed tweet: [tun, great, ai, model]

@ deeplearning.ai

Preprocessing: stop words and punctuation

@YMourri @AndrewYNg tuning GREAT AI model https://deeplearning.ai!!!

@YMourri @AndrewYNg tuning GREAT AI model https://deeplearning.ai

Stop words	Punctuation
and	,
is	
а	:
at	<u>!</u>
has	u
for	
of	

@ deeplearning.ai

General overview

I am Happy Because i am learning NLP @deeplearning Preprocessing

[happy, learn, nlp]

Feature Extraction

Bias — [1, 4, 2] — Sum negative frequencies

Sum positive frequencies

General overview

```
I am Happy Because i am

learning NLP

@deeplearning

I am sad not learning NLP

...

[sad]

[1, 40, 20],
[1, 20, 50],
...
[1, 5, 35]]

I am sad :(
```

@ deeplearning.ai

General Implementation

@ deeplearning.ai

General overview

@ deeplearning.ai

Overview of logistic regression

Overview of logistic regression

@ deeplearning.ai

Training LR

@ deeplearning.ai

Overview of logistic regression

@ deeplearning.ai

Testing logistic regression

•
$$X_{val} \ Y_{val} \ \theta$$

$$h(X_{val}, \theta)$$

$$pred = h(X_{val}, \theta) \ge 0.5$$

$$\begin{bmatrix} 0.3 \\ 0.8 \\ 0.5 \\ \vdots \\ h_m \end{bmatrix} \ge 0.5 = \begin{bmatrix} 0.3 \ge 0.5 \\ 0.8 \ge 0.5 \\ 0.5 \ge 0.5 \\ \vdots \\ pred_m \ge 0.5 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ \frac{1}{\vdots} \\ pred_m \end{bmatrix}$$

@ deeplearning.ai

Testing logistic regression

$$Y_{val} = \begin{bmatrix} 0\\1\\1\\0\\1 \end{bmatrix} \ pred = \begin{bmatrix} 0\\1\\0\\0\\1 \end{bmatrix} \ (Y_{val} == pred) = \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}$$
 accuracy $= \frac{4}{5} = 0.8$

@ deeplearning.ai

Testing logistic regression

•
$$X_{val} Y_{val} \theta$$

$$h(X_{val}, \theta)$$

$$pred = h(X_{val}, \theta) \ge 0.5$$

$$\sum_{i=1}^{m} \frac{(pred^{(i)} == y_{val}^{(i)})}{m}$$

$$\begin{bmatrix} \frac{0}{1} \\ 1 \\ \vdots \\ pred_m \end{bmatrix} == \begin{bmatrix} \frac{0}{0} \\ 1 \\ \vdots \\ Y_{val_m} \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{0} \\ 1 \\ \vdots \\ Y_{val_m} \end{bmatrix}$$

@ deeplearning.ai

Cost function for logistic regression

