MATHEMATICS FOR PROGRAMMING

NUMBER SYSTEM

- Remember Decimal and Binary?
- How many digits $\rightarrow base$
- Base 10: Decimal [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
- Base 2: Binary [0, 1]
- Base 8: Octal [0, 1, 2, 3, 4, 5, 6, 7]
- Base 16: Hexadecimal [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F]

Decimal	Binary	Octal	Hexadecimal
0	0000	000	0000
1	0001	001	0001
2	0010	002	0002
3	0011	003	0003
4	0100	004	0004
5	0101	005	0005
6	0110	006	0006
7	0111	007	0007
8	1000	010	0008
9	1001	011	0009
10	1010	012	A
11	1011	013	В
12	1100	014	С
13	1101	015	D
14	1110	016	Е
15	1111	017	F

CONVERT DECIMAL TO DECIMAL

Just for the fun of it!

$$273$$

$$= 200 + 70 + 3$$

$$= 2 \times 100 + 7 \times 10 + 3 \times 1$$

$$= 2 \times 10^{2} + 7 \times 10^{1} + 3 \times 10^{0}$$

$$= 2 \times b^{2} + 7 \times b^{1} + 3 \times b^{0}$$

For decimal: b = 10

CONVERT BINARY TO DECIMAL

1101 $= 1 \times b^{3} + 1 \times b^{2} + 0 \times b^{1} + 1 \times b^{0}$ $= 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$ $= 1 \times 8 + 1 \times 4 + 0 \times 2 + 1 \times 1$ = 8 + 4 + 0 + 1 = 13

For binary: b = 2

CONVERT DECIMAL TO BINARY

- Decimal value $13 \rightarrow binary$?
- $13 \div 2 = 6$; remainder = 1 (LSB: goes to the right)
- $6 \div 2 = 3$; remainder = 0
- $3 \div 2 = 1$; remainder = 1
- $1 \div 2 = 0$; remainder = 1 (MSB: goes to the left)

• *Binary*: 1101

TYPES OF NUMBERS

Real number: any point on the number line

Positive number (right to the zero)

Negative number (left to the zero)

Non-ne gative number (Positive and zero)

Natural Numbers: {1,2,3, ...}

Whole Numbers: {0,1,2,3, ...}

Integers: $\{..., -3, -2, -1, 0, 1, 2, 3, ...\}$

Rational and Irrational numbers

LET'S LEARN ABOUT DIVISION

DIVISIBILITY CHECK

- How to tell if a number P is divisible by another number Q?
 - Pause the video!
 - Think about applying what we have just learned
- There are two ways:
 - Check if the remainder is zero.
 - $12 \% 3 = 0 \rightarrow 12$ is divisible by 3
 - $12 \% 5 = 2 \rightarrow 12 \text{ is NOT divisible by } 5$
 - What do we get if we just do the division?
 - $12/3 = 4 \rightarrow Integer \rightarrow 12$ is divisible by 3
 - $12/5 = 2.4 \rightarrow NOT \ integer \rightarrow 12 \ is \ NOT \ divisible \ by \ 5$

PRIME AND COMPOSITE NUMBERS

- Think of natural numbers / counting numbers
 - **–** 1,2,3,4,5, ...
- Factor: What does it mean when we say

P is a "factor" of Q?

Answer: P divides Q evenly (Remainder is 0). Example: 3 is a factor of 12.

- **Prime**: Only two factors. 1 and itself.
- Composite: There exists at least one factor other than 1 and itself.

PRIME AND COMPOSITE NUMBERS

- ls 15 a prime number?
 - 15 is divisible by: 1,3,5,15. Not prime!
- Is 19 a prime number?
 - 19 is divisible by: 1,19. Prime!
- What about 1? Is it a prime or composite?
 - Special case. Neither!

EVEN AND ODD NUMBERS

- Even:জোড সংখ্যা
- Odd: বিজোড় সংখ্যা
- *Even*: 0,2,4,8,10, ...
- *Odd*: 1,3,5,7,9, ...
- How to check?
 - Pause the video again and think!
 - Divide the number with 2
 - If remainder is 0, even! Otherwise, odd!
- Dividing by 2 sounds binary, right?
 - Convert the numbers to binary and see if you can find a pattern for even and odd numbers there.

SUMMARY

- We are more comfortable with the number systems
 - Especially binary numbers!
- Learned the types of numbers and how they are related
- Reviewed the division process and terminologies.
- Divisibility check and its use
- Prime numbers and how to detect them when you see one!
- Even odd numbers, with a brain teaser!

NEXT

NEXT

PRACTICE DAY

- 1101011 is a binary number. Find its equivalent decimal number.
- Find the binary representation for 73 (a decimal number).
- Is 77 a prime number?
- What about 169? Prime or composite?
- Find out the 12th prime number.
- Find out sum of first n odd numbers. Try n = 1,2,3,...
 - Can you see any pattern?