A Comparative Analysis of Deep Learning & Numerical Methods for Estimating Influenza Cases

Project Presentation - CS-5513: Numerical Computation

Presentation by:

Mohammed Rakib & S M Rafiuddin

Date: May 3rd, 2024

Table of Contents

- 1. Introduction
- 2. Motivation
- 3. Dataset
- 4. Methodology
- 5. Result
- 6. Application
- 7. Conclusion

Introduction

- What is influenza?
 - A highly infectious respiratory illness characterized by seasonal outbreaks and pandemics
- Objective:
 - O To explore and compare two distinct approaches in predicting the no. of influenza cases

Introduction

- Numerical Methods:
 - O Midpoint Method
 - O Modified Euler Method
 - O RK4 Method
- ML & DL Methods:
 - O 1D-CNN
 - O LSTM
 - O FTA-LSTM
 - O Random Forest

Motivation for Comparative Analysis

- Understanding Methodological Differences:
 - O Mechanistic Insights vs. Pattern Recognition
- Evaluating Performance:
 - O Accuracy in Peak Forecasting
 - O Overall Forecast Accuracy
- Insightfulness and Interpretability:
 - O Overall Understanding

Dataset

Analysis of H1N1 Outbreak in Sao Paulo, Brazil.

- Infected individual at the beginning of the outbreak in 2009.
- The prevalence of H1N1 influenza weekly cases from 2009 to 2010.

Fig. 01: H1N1 outbreak using the SVIR model, supported by numerical computations and real-world data from Sao Paulo, Brazil.

Dataset

- Consists of 394 entries.
- Approximately 7.5 years if each entry corresponds to a week.
- Two columns, which seem to indicate the year-week combination (e.g., 200923) and the number of cases reported during that week.

200923	1
200924	1
200925	2
200926	6
200927	14
200928	71
200929	297
200930	480
200931	774
200932	514
200933	377
200934	328

Fig. 02: Snapshot of the dataset consists of Weeks and Infected Cases

Methodology: SVIR Model

The SVIR model is an epidemiological model used to describe the spread of infectious diseases within a population.

$$\begin{split} \frac{dS}{dt} &= mN - \beta \frac{SI}{N} + \gamma R - vS - \mu S, \\ \frac{dV}{dt} &= vS - \xi \frac{VI}{N} - \mu V, \\ \frac{dI}{dt} &= \beta \frac{SI}{N} + \xi \frac{VI}{N} - rI - \mu I, \\ \frac{dR}{dt} &= rI - \gamma R - \mu R, \end{split}$$

Here,

S = Susceptible Individuals

V = Vaccinated Individuals

I = Infected Individuals

R = Recovered Individuals

Methodology: SVIR Model

Model Parameters	Value
Natural recovery rate	r = 1.17
Total population	N = 42075716
Immunity loss rate	γ = 0.003 (Assumption)
Death rate	$\mu = 0.00025$
Birth rate	m = 0.0006298
Infection rate	$\beta = 2.8$ (Assumption)
Vaccination rate	v = 0.108 (Assumption)
Infection rate among vaccinated	xi = 0.3

Methodology: 1D-CNN

1D CNN:

Fig. 3: 1D CNN for Time Series Data

Methodology: LSTM

Long Short-Term Memory

An unrolled recurrent neural network.

Fig. 4: Basic Unit of LSTM

Methodology: LSTM

Long Short-Term Memory

The repeating module in an LSTM contains four interacting layers.

Fig. 05: Structure of LSYTM Model

Methodology: FTA-LSTM

Fig. 06: Structure of FTA-LSTM

13

Methodology: Random Forest

Fig. 07: Structure of Random Forrest Model

Result: Evaluation Metric

 Mean Absolute Error quantifies the average magnitude of the errors in a set of predictions, without considering their direction (i.e., no positive or negative sign distinction).

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \widehat{y}_i|$$

where,

n: number of observation

 y_i : the actual value of the i^{th} observation

 \hat{y}_{i} : the predicted value of the i^{th} observation

Result: Midpoint Method

Result: Modified Euler Method

Result: Range-Kutta Order 4

Result: 1D CNN - Direct Forecast

Result: 1D CNN - Rolling Forecast

Result: LSTM - Direct Forecast

Result: LSTM - Rolling Forecast

Result: FTA-LSTM - Direct Forecast

Result: FTA-LSTM - Rolling Forecast

Result: Random Forest - Direct Forecast

Result: Random Forecast - Rolling Forecast

Result: Main Table Comparison

Approach	Model	Training MAE	Testing MAE
Numerical Methods	Midpoint	12.25	44.35
	Modified Euler	11.56	44.31
	RK4	11.67	44.35
ML & DL Methods	1D CNN - Direct	10.06	25.05
	LSTM - Direct	11.35	20.49
	FTA-LSTM - Direct	10.26	24.16
	<u>Random Forest - Direct</u>	2.09	<u>14.67</u>
	1D CNN - Rolling	11.19	46.88
	LSTM - Rolling	6.97	44.42
	FTA-LSTM - Rolling	12.76	44.39
	Random Forest - Rolling	<u>2.11</u>	<u>47.28</u>

Result: Window Size Comparison

Approach	Models	MAE		
		w=1	w=4	W=8
Direct Forecast	1D CNN	16.63	25.05	26.70
	LSTM	26.39	19.96	23.53
	FTA-LSTM	<u>16.48</u>	34.66	40.27
	Random Forest	20.35	<u>16.35</u>	<u>19.16</u>
Rolling Forecast	1D CNN	46.50	46.88	46.35
	LSTM	45.08	45.22	<u>44.81</u>
	FTA-LSTM	46.56	47.74	47.82
	Random Forest	44.20	46.22	48.33

Numerical SVIR VS DL Approach

Aspect	Numerical SVIR Approach	Deep Learning Approach
Foundation	Compartmental models based on differential equations describing population flows	Data-driven models that learn from large datasets without predefined structures
Interpretability	High; parameters have clear epidemiological meanings	Low; often seen as a "black box" due to complex model architectures
Data Requirements	Requires known parameters and initial conditions from epidemiological data	Requires large datasets and can integrate diverse data types (text, numbers, images)
Computational Demand	Lower; simpler calculations but may require fine- tuning	<pre>Higher; needs substantial computational power for</pre>
Scalability	Scalable with complexity dependent on model design	Highly scalable with data volume and complexity but computationally intensive
Flexibility	Less flexible; relies on accurate disease dynamics modeling	More flexible; capable of identifying patterns and adapting to new data
Use Case	Well-suited for diseases with well-understood dynamics and available epidemiological data	Ideal for situations where extracting patterns from large-scale data can inform outcomes

Application

- Public Health Monitoring.
- Finance and Stock Market Forecasting.
- Soil Moisture Forecasting.
- Multi-Domain Adaptation e.g. Supply Chain Inventory Management.

Conclusion

- We perform a thorough analysis & comparison of deep-learning based approaches with numerical SVIR model approximations.
- Our findings indicate that Random Forest outperforms other models for influenza forecasting.
- Direct Forecast Approach expectedly works better compared to Rolling Forecast Approach

Thank You!

Questions?