Nun Jum Baras: Saicho Eso. Wohle S= E/191 (203) donn pill te R mit 1xo-x1<5 $\left|f(x_0) - f(x)\right| = \left|\varphi\right|/x - x_0/<\left|\varphi\right|_{|\varphi|} = \varepsilon$ (iii) Die Exponentio (funktion ist steht (in jedem XoER) Sei xoER beliebig und sci ED. Es pilt |exp(x)-exp(x0) = |exp(x-x0+x0)-exp(x0) | exp(x-x0)·exp(x0) (M, 4.38) $\frac{1/4.40(i)}{2} \exp(x_0) / \exp(x_0 - x) - 1/(x)$ Wir missen olso exp(x-xo)-1) für x nohe xo obschöten, obo exp(y)-1/ für ynohe 0; dos erledyt obe M/4.42 mit N=0 licuns $exp(y) = \sum_{n=0}^{\infty} \frac{y^n}{n!} + R_1(y) = 1 + R_1(y) = 1$ |exp(y)-1/= |R1(1)/≤ 2/y/ foll) /y/<1 (xx) Si oho S:= ming 1, E/(2 exp(xs))]. Donn pilt # 1x-xs/ = S $|exp(x)-exp(x_0)|=exp(x_0)|exp(x-x_0)-1|$ $\leq \exp(x_0) 2 |x-x_0|$ $\leq 2 \exp(x_0) \leq \leq \varepsilon$ (iv) Der Retrop ist skehig (in jedem x & M) Sci x & R, E>0; sehed=E, donn pils VIX-xole & (verhebits 1-4pl) $||X|-|X_0|| \leq ||X-X_0|| \leq ||S||$

Erzbeispiel anslehige Flit 133 (V) Springe sindnicht stelig Si $f(x) = \begin{cases} 1 & 0 \le x \le 1 \\ [0,1] \end{cases} = \begin{cases} 1 & 0 \le x \le 1 \\ 0 & \text{sonst} \end{cases}$ F0.13 Down ist fanslely be x=0: | and elans be xo=1; f(0)= 1 obe beliebig nohe, links bibeold Sonot wot & ols x=0 pill f=0; oles konstante Flot stelig & $x_s = 0$ filf f = 0; oles mus schiefpehen... Sai obs &= 1/2, donn pilt \$\f\$>0 (epol Wie klein) JXEUJ(0), X<0 and somit |f(x)-f(x0)|=|0-1/=1)1/2=E 108. Bett (Sterige and unstetige Flat) (?) Wie wir es in 1.8(v) poten hoben muß li- einen Bevas de Unsklighed and Flet of oneine Stelle xo ED nor ein Versoger-E ongepeben wurden (Vgl M. Z.P. (ii)) annue loutet die Vernainung de Bedingting (1.1) 7/450 /800 HXGD $|x-x_0| < S = |f(x)-f(x_0)| < \varepsilon$ = JE>O YSOO JXED $\frac{1}{|x-x_0|} < \frac{1}{|x-x_0|} < \frac{1}{|x-x_0|} = \frac{1}{|x-x_0|} = \frac{1}{|x-x_0|}$ 2002 in Marxing

	_
(ii) Lie Schon in 1.7(ii) peropt, ist es entscheidend,	1
(ii) Lie Schon in 1.7 (iii) persont, 1st es entscheidend, 1 doss in der Stehigkartsbedingung (1.1)	
Zuerst die Toleront & Vorgegebon Wird	
und erst donn des Sicherheiteintevoll gefunden	
warden mus.	
Kehrt mon dies folschusaic um zu	
(X) HS>0 JE>0 X-x0/cS => fcx)-f(x0) < E	
stehig. Totsouhlich brouche ich Nur E > 1 Zu wöhlen:	
stehig. Totsouchih brouche ich	
nuc Est Ju wohlen:	
Stebig. Totsoithlich brouche ich Nur E > 1 Ju Wohlen: Usland	

(11) Die Frenkhonswerte f(x) liner bei xo Slehjen Flet f blaber oho für x nohe ba xo inde Noheron fixo). Anders our pedricht folls fex) + C, down bleint f(x) notice bei Xo ouch weep von c. Diere Wherlegung protisien Wir im Solpenden - oft sehr broughhoren-Lamms lin c=0; de depensine Fold folpt sofort durch Verschieben des brophen. fus (() >0 1.10 LETTA (Nichtverschwinden out Ump.) 1/2 fus Soi f. D-) R slehig in xoe) und sei f(xo) +0. L> Umpelsung von Xo out der f +0 Donn JSDO soloss ouch (wal > fix)/2 txe DnUs(xo) pilt doss l(x) ≠ 0.

Beray. f(x0) =0 => E = 1f(x0) > 0 $(11) \Longrightarrow JS>0: \forall x \in I); |X-x_0| \leq S = \left| \int_{C} (x) - \int_{C} (x) \right| \leq E = \frac{\int_{C} (x_0)}{2}$ Doher pilet fxelfcxornD (verkehite A-Upl) $|f(x)| = |f(x) - f(x_0) + f(x_0)| \ge |f(x_0)| - |f(x) - f(x_0)|$ Trick $= |f(x_0)| - \varepsilon = |f(x_0)| > 0$ AM POTIVATION (Slehigh cit and Folgen) Die intuitive Idee der Stetigkeit von fin einem PhiloeD lint sich wie folgt umformulieren Epol vie sich x on Q onnohert, es nohert sich f(x) on f(a) on Ceraphisch: f(a)

f(x)

f(x) x nobel sich a Diese Idee lott sich milleb Folgen profisieren: + Folgen X_ -> a => f(x_n) -> f(a), bzw. $\forall Folgen \times_n \rightarrow Q: lim(f(\times_n)) = f(lim \times_n)$ und sie funktioniet such, wie dos folgende Ciscopielle The leht (f vertouscht mit limiten)

1.12 THT (Stetipkat Vis Folpen) Sci f. D-> R and

Sci o e D. Down pill fishstory in a = $x_n \rightarrow 0 \Rightarrow f(x_n) \rightarrow f(0)$. "=>": Si (x_n) eine Folpe in) mit $\lim x_n = a$. Wir mussen zeigen, doss $Cim(f(x_n)) = f(o)$ pill. Si obo $\varepsilon > 0$ $= \int \int \int \int \partial x = \int \int \int \int \partial x = \int \int \int \int \partial x = \int \int \int \partial x = \int \int \partial x = \int$ $\frac{1}{2} = \frac{1}{2} \times 100 \quad \text{fazN} : 1 \times 100 = 0$ Dehe Fr=N = /xn-o/< (*) |f(xn)-f(o)|< E Also lin(f(x)) = f(0) eine Folge (xn) in Dmit xn-) 2 ober f(xn)-> f(0). funstetip bi o => JE20 HS20 JXEUS(O)n]): f(x) & UE(f(O)) Vir fixieren diese E und Wählen suktessive S= 1/4 (XI=h=1). Domit erhalter vir eine Folge (Xn) in) mit (n21) $x_n \in U_1(Q)$, d.h. $|x_n - Q| < \frac{1}{n}$ obso $x_n - Q$ obe · fcxn) & (/s(fco)), d.h. /fcxn)-fca)/2E, 040 fex) - \$ feo).

Donn pibles für jedes ce [2,1] line Folge (Xn) mit Xn->0 and fox)=c the Doho ist fin O nicht stelig obwohl f doct nicht springt, sonden eher vic ine Sich verdichtende Welle owsieht.

(ii) Folgende, Makrepel," die duch in Schulbuthern 74 finder ist, ist sehr problemobisch:

Eine Funktion f. R -> IR ist stebig, wenn mon ?)

sie ohne Abselten teichnen komm.

Estens ist nicht klor, was dos heinen soll. Jucitens ist etua folgende Modifikation van foun (1) stehig out [9,1].

Die Stehy keit bei $X_0=0$ $folph, do fx: f(x) \leq x$ $und dohe fx_n \rightarrow 0:$ $0 \leq f(x_n) \leq x_n \rightarrow 0$

Bein Jaihner expirt sich obe des Problem, doss die Longe des Grephen nicht endlich ist, olso wirklich alle Blashifte diese Welt verbroucht worden sind, beror X=0 areicht wird. Genove pilt für die longe des Gosphen von x=1 (noch links) bis x=1/n

l(1) > 2 In disegent noch 4.7(ii)

Die longe von k-1 bis & ist sicher prister obs Zx die niedripste Hahe de begrenzunden Funktion, ober 2.1/k

(iii) Es gibt Monste. So onschoulich die Def der Skhipfield ouch soin mop - es piht vollig un-Onschouliche, Monster-Funktionen" mit schreipenochigem Sky kartsverholder. So pibles 1.13 and Funkhon f. M-) M. die in ollen inshisnolen Philen sking ist in oller potionales Pkken aber unstetig. So: $f: \mathbb{R} \to \mathbb{R}$ gepchen ob $f(X) = \begin{cases} 1 & \text{falls } X = \frac{1}{9} \in \mathbb{Q} \text{ min} \\ \text{minimal em } p \in \mathbb{N} \end{cases}$ 0 son otDonn pilt (1) I ist anstety in older x = Q: Sci x = P/9 EQ, down schre &= \$ \frac{1}{9} \tall RQ \in R \tall R \ta ober $|f(x)-f(x_0)| = |0-\frac{1}{9}| = \frac{1}{2} \Rightarrow \frac{1}{2} \Rightarrow = \varepsilon$ (2) fish stehig in olden xo ER-Q: Si E>O perohlt. Von ollen Johlen Q > % mit q = 1/2 liegen in jedem Interroll nor endlich vicle and kanes doven ist plach xo (ERIQ). =) Jan Polgo, des Xo om nochsten liegh. Definiere S = |x-Po/go|. Nun pilt \x mit |x-Xold doss |f(x)-f(x0) | < E , dens foll) x ∉ Q => |f(x)-f(x₀)|= |0-0|=0 < ε ex∈Q => x=P/q1 (pekūrad) mit φ >1/ε [olenn in Us(x.) light noch Wohl von & keine Johl P/10/ mit q'=1/2 => f(x)=1/0/ = E unoldohe 1f(x)-f(x)) = |0-1/p1/=1/p1 < E.

(ir) Offensichtlicher Unfag: Wir betroch ten obie Flit 121

f: R. (0) -) R, f(x) = 1/x (1.2(ix)) (Ist fim Punht x= 2 stehis?) Diese Frage ist Untap, un't x6=0\$D, dober ist fin xo pornicht definited and die Froje noch der Stehigkeit Konn gornicht gestellt Werden. P Totsöchlich werden wir plain sehen, doss alle retronden Funktionen ouf ihrem peromten Dafbeech sktij sind. 1.16 MOTIVATION (Grandogerationen und Stehipkeit) Im Folgenden werden wir auf deponte Weise sehen, dow viele (Klossen von) Funktionen stehip sind. Dodu Werden Wir uns der Corundoparationen für Funktionen own 1.3 bedienen (±, 1, -, -) und Zeipen doss diese our skhifer Flot Wiederem skhige Flot mowhen Anders formuliert. Ansenden der Grundoperotionen führt nicht ous de Klosse de Skhijen Funktionen hinaus und ist dohe eine Schreleponte Dethode Jum Boskeln vicle neue Skhje Fl. 1.17 PROP (Grundop f. Slehige Fkt.) So: DER and LER. ((i) Folls f,p: D > R slety in 06) sind, down sind ouch fig: DOR, If: DOR, fig: DOK Skehj in Q. Folls QED:= $\{x \in D: p(x) \neq 0\}$, down ist auch $\begin{cases} \frac{1}{2} : D' \to \mathbb{R} \end{cases}$ Steppin Q.

(ii) Sei ESIR mit f(D)=E und h: E-IR. Folls f

Stehig in DED and h stehig in b:=f(0) = E down isd

Deach die Jusommenselzung hof: D -> R [D-> fase = n R] slehpine. Bera's (i) Wir berusen nor die Ausore für die Samme; die onderen Folle sind ohnlich [UE] So (xn) eine Fedge in i) mit xn > 2. Vir Jeigen (f+p)(xn) -> (f+p)(0), worous mit 1.12 die Skripkail von fig in a Polpt. $(ftg)(x_n) = f(x_n)tp(x_n) \xrightarrow{f:gship} f(o) + p(o) = (f+p)(o) \quad (n \to \infty)$ (ii) Wir varuenden so vie oben 1.12. Si oho (xn) Folgein), xn-) Q. $\begin{cases}
slehig in 0 \Longrightarrow f(x_n) \to f(0) = b \\
\Longrightarrow (y_n) := (f(x_n)) \text{ ist Folge in E mity_n} \to b
\end{cases}$ h slehj in b => h(yn) -> h(b) Also insperomt (hof)(xn)=h(f(xn))=h(yn)-)h(b)=h(f(0))=(hof)(0) 1.18 Kor (Stehijkeit v. Polynomen & sol- Flot) (Polynome und rohonole Funkhonen sind skhip out)

ihrem posamten Definitionsberach. Bergs. [upl. Motivadion 1.16]

Polynome sind endliche Summer and Like Produkte
Konstante Flit mit id [1.4(ii)]. Alle Bousteine "sind
stetip [1.80:), 1.8(ii) mit 0=1], doher folph ous 1.17(i)
[+,] die Schijkeit von Polynomen in jedem Pht ihres
Definitions becartes.
Robinde Flot sind Quistienker von Polynomen, definiat.
allen Penleten, vo der Neme nicht verschwindlet [1.20ix1].
Polynome sind noch obijem skehij out ihrem Deflereich oho
Mach AMil [/] ouch rot. Funktionen in jedem Pht ihres
Defboraichs.
1.18 BSP (Stelije Flit 06) 1.17)
(i) $p(x) = -x^2$ ist ob Polynom slehy out pant $\mathbb{R}\left[1.18\right]$ exp ist slehy out $\mathbb{R}\left[1.8$ (ii) $\mathbb{R}\left[1.8$ (iii) R
exp ist slehy ouf R [18ciii)]. Ahopilt vegen 1-17(ii)
exp ist slehy out K [1.8 ciii) J. Sho pilt vegen 1-11tii) expop: 12 -> 12 glocke
$x \mapsto exp(-x^2)$
expop: $\mathbb{R} \to \mathbb{R}$ $x \mapsto \exp(-x^2)$ ist skhip of \mathbb{R}
(ii) Der hypobolische Sinus & Losinus sind sletig M->M (oshu) Sinhex):= 2 (apax) - exp(-x)
(osh(x)) Sinh(x)
$Sinh(x) := \frac{1}{2}(ap(x) - exp(-x))$
(osh(x):===(exp(x)+exp(-x))
Diece Floorenehasieses die Hosekel 1222 1 (X=cosh(t))
Diese Flot porometrisieren die Hypebel x2y2=1 (X=cosh(t)) in Anologie Fum Krai X2+2=1 (X=cos(t))
Diese Flit porometrisieren die Hypebel $x^2y^2 = 1$ $\begin{cases} x = \cosh(t) \\ y = \sinh(t) \end{cases}$ in Anologie Fum Krui $x^2t_f^2 = 1$ $\begin{cases} x = \cos(t) \\ y = \sinh(t) \end{cases}$ $\begin{cases} y = \sinh(t) \end{cases}$ [UE] $\begin{cases} y = \sinh(t) \end{cases}$

1.20 ROTIVATION (Grantweet von Flit)

Als nachsko vebinden wir den Granzwerkbegriff mit dem Funktionsbegriff. Dos wird uns unter onderem auf line weitwe Chorekterisierung des Statig keitbegrifts führen.

Genouer wollen wir and Flot fentloop beliebige konvupente Folgen (Xn) in Dowswerten ohr fexes betrochken (Diese Idae hispksche nohe zur Folgenslihipkeit, vpl. 1.11, 1.12). Als technische Pankt espihl sich, dass eine Folge (Xn) uin D, die (ols Folge in R) konve piet ihren line) nicht nodermdigen zuse in D hoben muß, 7.3.

(1) = (0,1) obe lim = 0 \$ (0,1).

Gennesete von Folgen in D, die (in R) konvepieren sind der genou die Berührpunkte (vpl. 173.27) von D[M] Pro; 3.30(i)].

Die grandlegende Def ist dohu.

1.21 DEF (Grantweet ain Flot) Sa. f.D. > 11 ain Flot

and si. & ain Berthepht von D. Vir schraben

lim f(x) = c, folls für jede Folge (X.), in 1)

(A) A mit $x_n \rightarrow a$ gilt, doss $f(x_n) \rightarrow c$ (A) CER oder oul $f(x_n) = c$

1.22 BEOSACHTUNG (Jum Grazuet von Flit)

(i) Vic in 1.20 vieduholt gibt es vepen 17] 3.30(i)

lie jeden Berührpht o von D mindesken che

Tolpe (Xn) in D mit Xn) a [i.e. virdes che viele

solcher tolm poben...]

lim f(x)=c	ode lim	f(x) = c	and sopen	126
cist der rechtsse	itige Cerent	retion 19	epen a, folls	
für alle Felpen ((xn) in), Kn-	$Q_{N_n} \rightarrow Q$:	lim f(xn) = C	pill
(ii) Anolog doza d	éprières.	vir den lin	,	
Cima lin fo.	$(x) = \lim_{x \to 0^-} (x)$	(cx).		
(iii) Folls Dnoch	oben un	beschrönkt,	stand for	/ \
jede Folge (xn. donn Schreiben 4.) in /) m	it x,->- più	doss lim ((K))=C
	lim f (. X->0	<i>()=</i> C		
(ir) Andor depiniere schranhte Depinih	in wir lin ions bouche	fer fir,	noch under U	esbe-
1.25 BSD (Nochmols	_		0 <x<1=< th=""><th></th></x<1=<>	
(i) Lx1.2->2			5	
$\lim_{X\to 1} L \times J = 1$) × lim [X-)1-	x = 0	
14x42=> [x]=1		(=0)	0×0	
(ii) f. m\203 -> m;	l(x)=1/x	2.47	(1) f(xh) = 1/xn -	0-00
	X-10-	$f(x) = -\infty$ $f(x) = \infty$	Setto M 2.67	Pcii)
		fcxx=0=	lin lu	
	X-) 00		(-)-0	
	(FK>C	JN Fran	Xn/>K => 1/13	(n1

(iii) So' m21 (end $p(x) = x + a_{m-1}x^{m-1} + \cdots + a_{n}x + a_{n}x + \cdots + a_{n}x + a_{n}x + \cdots + a_{n}x + a_{n}$ $P(X) = X^{m} \left(1 + \frac{O_{m-1}}{X} + \frac{O_{m-2}}{X^{2}} + \dots + \frac{O_{0}}{X^{m}} \right) = X^{m} \left(1 - \frac{|O_{m-1}|}{|X|} - \dots - \frac{|O_{0}|}{|X|^{m}} \right)$ Se: X7 Mi = Zmomox (1,10m-1,-, 1001) donn pilt $P(X) \ge X^m \left(1 - m \frac{1}{2m} \right) = \frac{X^m}{2} \tag{*}$ Simm (Xn) tolpein Rmil X,->0=) X, 2M for N und somit $p(X_{n}) \geq \frac{X_{n}^{m}}{2} \longrightarrow \infty \quad (n \rightarrow \infty)$ oho lim p(x)=0. Um die 2. Behouptung zu ziegen bemelee doss (*)

implifient, doss per 2 M2 ffx 2 T7, dohn ist

1/2 cx, lür olle x 2 T1 definiet und dos Revelhol lolpt

out [1] 2.47 (ii).

In 1.20

onpelindipt

Sei f. D -> R and Funktion und Q & T2. Dompilt

of ist slehij in Q (=) lim f(x) = f(o)

x -> 0

Sei f. D -> Reine Funktion f(x) = f(o) Bevai [gout cirpoil die Pepriffe zwommensche & 1.12] $f_{Sdehipino}(=) f(x_n) in Dmit x_{\rightarrow} g \xrightarrow{1.20} lim f(x) = f(0)$ $f(x_n) - f(0) = f(0)$

Schoften . T(x) = f(x) +x +0 · I slehip out IR

Donn engenommen es pêbe so en f so mitte wegen 1.26 lim f(x) existieren (und plaich f(o) suin). Dien Limes existiert ober nicht, de [vpl. 1.25 (ii)] es Nullfolpen (Xn), lyn) in D. 203 pibl mil $\lim_{n\to\infty} f(x_n) = \lim_{n\to\infty} f(x_n) = \infty \quad \text{aber}$ $\lim_{n\to\infty} f(y_n) \stackrel{\text{y}_n\neq 0}{=} \lim_{n\to\infty} f(y_n) = -\infty.$

[Siehe ouch weite [UE]-Aufpoben doza]

\$2 SATTE UTER STETILE FUNKTIONEN

Noch den ehe proklischen Ausführungen fum Schla I)der \$1 lernen wir nun die wesentlichen theore hischen Aussopen über stehte Funktionen (out Obj. besch. Interollen) kennen

- · den dwischenvertsot
- · die Annohme von Minimum & Paximum
- · die plachmi-Bije Stehipheit · Umkehrsotz f. stohise, streng mon. Flut.

21. Notivation (Die Sandwrolle obj. besch. In levolle)

Bishu hoben Uir slehpe Flit out beliebipen TII DEIK be tochlet. In Folgender vird sich zeigen, doss des objecthlossenen & beschrönkten Interoller [0,6] eine Sonderolle Jakomnd, sokhe Interolle heisen ouch KOMPAKT.

En airfoche Unterschied wird offersichtlich, wenn wir skrige Flit ouf [0,1] in Gegenson que solcher old (0,1) betrachlen: Etus rimme fox = 1/x out (0,1) boliship prose por Verte on [1.27iii)].

Fir eine skripe Fut out [0,1] ist ein solcher Verholken nicht vorslellbor und wir werden Jeigen, doss fohsächlich

Mx (fslug) jede slehige Flut exes [0,1] nur

beschrönlite Weste omnehmen komn

beschrönlite Flit

Wir beginnen mit eine onschodich kloren Ausope, die obe - wiederinne (-essentiell die Vollstondiphat von Revendet