Algorithms and Data Structures

US-Cela

Syllabus

- Introduction (1)
- Correctness, analysis of algorithms (2,3,4)
- Sorting (1,6,7)
- Elementary data structures, ADTs (10)
- Searching, advanced data structures (11,12,13,18)
- Dynamic programming (15)
- Graph algorithms (22,23,24)
- Computational Geometry (33)
- NP-Completeness (34)

Data Structures and Algorithms

- Algorithm
 - Outline, the essence of a computational procedure, <u>step-by-step instructions</u>
- Program an implementation of an algorithm in some programming language
- Data structure
 - Organization of data needed to solve the problem

Algorithmic problem

Specification of output as a function of input

Infinite number of input instances satisfying the specification.

Algorithmic Solution

Input instance, adhering to the specification

Output related to the input as required

- Algorithm describes actions on the input instance
- Infinitely many correct algorithms for the same algorithmic problem

Example: Sorting

INPUT

sequence of numbers

OUTPUT

a permutation of the sequence of numbers

$$b_1,b_2,b_3,\ldots,b_n$$

$$2 \quad 4 \quad 5 \quad 7 \quad 10$$

Correctness

For any given input the algorithm halts with the output:

- $b_1 < b_2 < b_3 < \dots < b_n$
- b_1 , b_2 , b_3 ,, b_n is a permutation of a_1 , a_2 , a_3 ,...., a_n

Running time

Depends on

- number of elements (n)
- how (partially) sorted they are
- algorithm

Strategy

- Start "empty handed"
- Insert a card in the right position of the already sorted hand
- Continue until all cards are inserted/sorted

```
for j=2 to length(A)
  do key=A[j]
  "insert A[j] into the
  sorted sequence A[1..j-1]"
   i=j-1
  while i>0 and A[i]>key
    do A[i+1]=A[i]
   i--
  A[i+1]:=key
```


Analysis of Algorithms

- Efficiency:
 - Running time
 - Space used
- Efficiency as a function of input size:
 - Number of data elements (numbers, points)
 - A number of bits in an input number

The RAM model

- Very important to choose the level of detail.
- The RAM model:
 - Instructions (each taking constant time):
 - Arithmetic (add, subtract, multiply, etc.)
 - Data movement (assign)
 - Control (branch, subroutine call, return)
 - Data types integers and floats

Analysis of Insertion Sort

Time to compute the running time as a function of the input size

	cost	times
for j=2 to length(A)	\mathtt{c}_1	n
do key=A[j]	C ₂	n-1
"insert A[j] into the	0	n-1
sorted sequence A[1j-1]"		
i=j-1	C ₃	n-1
<pre>while i>0 and A[i]>key</pre>	\mathtt{C}_4	$\sum_{j=2}^{j} t_j$
do A[i+1]=A[i]	C ₅	$\left \sum_{j=2}^{n}(t_{j}-1)\right $
i	C ₆	$\sum_{j=2}^{n} (t_j - 1)$ $\sum_{j=2}^{n} (t_j - 1)$
A[i+1]:=key	C ₇	n-1

Best/Worst/Average Case

- **Best case**: elements already sorted \rightarrow $t_i=1$, running time = f(n), i.e., *linear* time.
- Worst case: elements are sorted in inverse order
 → t_j=j, running time = f(n²), i.e., quadratic time
- Average case: $t_j = j/2$, running time = $f(n^2)$, i.e., *quadratic* time

Best/Worst/Average Case (2)

For a specific size of input n, investigate running times for different input instances:

Best/Worst/Average Case (3)

For inputs of all sizes:

Best/Worst/Average Case (4)

- Worst case is usually used:
 - It is an upper-bound and in certain application domains (e.g., air traffic control, surgery) knowing the worst-case time complexity is of crucial importance
 - For some algorithms worst case occurs fairly often
 - The average case is often as bad as the worst case
 - Finding the average case can be very difficult

Growth Functions

Growth Functions (2)

That's it?

- Is insertion sort the best approach to sorting?
- Alternative strategy based on divide and conquer
- MergeSort
 - sorting the numbers <4, 1, 3, 9> is split into
 - sorting <4, 1> and <3, 9> and
 - merging the results
 - Running time f(n log n)

Example 2: Searching

INPUT

- sequence of numbers (database)
- a single number (query)

OUTPUT

• an index of the found number or *NIL*

Se

Searching (2)

```
j=1
while j<=length(A) and A[j]!=q
   do j++
if j<=length(A) then return j
else return NIL</pre>
```

- Worst-case running time: f(n), average-case: f(n/2)
- We can't do better. This is a lower bound for the problem of searching in an arbitrary sequence.

Example 3: Searching

INPUT

- sorted non-descending sequence of numbers (database)
- a single number (query)

OUTPUT

• an index of the found number or *NIL*

Binary search

 Idea: Divide and conquer, one of the key design techniques

```
left=1
right=length(A)
do
    j=(left+right)/2
    if A[j]==q then return j
    else if A[j]>q then right=j-1
    else left=j+1
while left<=right
return NIL</pre>
```


Binary search – analysis

- How many times the loop is executed:
 - With each execution its length is cult in half
 - How many times do you have to cut n in half to get 1?
 - Ig n