Mercedes Benz Greener Manufacturing

Introduction

The first luxury car maker Benz Patented Motor Car in 1886, Mercedes-Benz has stood for important automotive innovations. These include, for example, the passenger safety cell with crumple zone, the airbag and intelligent assistance systems. Mercedes-Benz applies for nearly 2000 patents per year, making the brand the European leader among premium car makers. Daimler's Mercedes-Benz cars are leaders in the premium car industry. With a huge selection of features and options, customers can choose the customized Mercedes-Benz of their dreams.

To ensure the safety and reliability of each and every unique car configuration before they hit the road, Daimler's engineers have developed a robust testing system. But, optimizing the speed of their testing system for so many possible feature combinations is complex and time-consuming without a powerful algorithmic approach. As one of the world's biggest manufacturers of premium cars, safety and efficiency are paramount on Daimler's production lines.

<u>Overview</u>

In an automobile industry, there is a testing department in which every vehicle that comes out from production manufacturing. Safety and reliable testing is a crucial part in the automobile manufacturing process. The Mercedes -Benz automobile industry every day manufactures a huge rate in producing vehicles and send to the testing department which is a final stage in production. Every possible vehicle combination must undergo a test bench to ensure the vehicle is robust enough to keep passengers safe and withstand in daily use. More tests result in more time spent on the test stand, increasing costs to the company and generating carbon dioxide, a polluting greenhouse gas.

<u>Aim</u>

The main objective of this project is to optimize/reduce the testing time in process of every production vehicle that comes under the test bench. By this optimization it certainly decreases the Carbon dioxide emission associated with the testing procedure.

Preliminary tasks

Let us now import the required libraries and datasets.

```
In [144...
```

!pip install xgboost

Requirement already satisfied: xgboost in c:\users\ruben\anaconda3\lib\site-packages (1.5. 1) Requirement already satisfied: scipy in c:\users\ruben\anaconda3\lib\site-packages (from x gboost) (1.7.1) Requirement already satisfied: numpy in c:\users\ruben\anaconda3\lib\site-packages (from x gboost) (1.20.3)

In [145...

```
#Load the libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.decomposition import PCA
import xgboost as xgb
from sklearn.metrics import r2_score
from sklearn.model_selection import train_test_split
%matplotlib inline
```

In [146	<pre>#Load the data train = pd.read_csv("C:/Users/ruben/OneDrive/Documents/Python_DS/Projects/Mercedes Benz G test = pd.read_csv("C:/Users/ruben/OneDrive/Documents/Python_DS/Projects/Mercedes Benz Groupents/Python_DS/Projects/Mercedes Benz Groupents/Python_DS/Projects/Python_DS/Python_</pre>																			
In [147	t	rain	.head(1	.0) 7	#Тор	10	rows	of	trai	in se	et									
Out[147		ID	у	Х0	X1	X2	Х3	X4	X5	Х6	X8		X375	X376	X377	X378	X379	X380	X382	>
	0	0	130.81	k	V	at	а	d	u	j	0		0	0	1	0	0	0	0	
	1	6	88.53	k	t	av	е	d	У	I	0		1	0	0	0	0	0	0	
	2	7	76.26	az	W	n	С	d	Х	j			0	0	0	0	0	0	1	
	3	9	80.62	az	t	n	f	d	X	-1			0	0	0	0	0	0	0	
	4 5	13 18	78.02 92.93	az t	v b	n e	f c	d	h g	d h			0	0	0	0	0	0	0	
	6	24	128.76	al	r	e	f	d	g f	h			0	0	0	0	0	0	0	
	7	25	91.91	0	·	as	f	d	f	j	a		0	0	0	0	0	0	0	
	8	27	108.67	W	s	as	е	d	f	i			1	0	0	0	0	0	0	
	9	30	126.99	j	b	aq	С	d	f	а	е		0	0	1	0	0	0	0	
	10 rows × 378 columns																			
In [148	train.shape																			
Out[148	(4	(4209, 378)																		
In [149	t	est.	head(10)) #7	Гор .	10 r	OWS	of t	est	set										

10 rows \times 377 columns

Out[149...

ID

1

2

3 az

4

5

8

12

14

0

1

2

3

4

5

6 10

7 11

X0

az

t

az

W

y aa

Х

f

ар

0

X1

٧

b

٧

s

b

S

X2

n

ai

as

n

as

ai

ae

ae

S

as

X3

f

а

f

f

С

е

d

С

С

X4

d

d

d

d

d

d

d

d

d

d

X6

а

g

j

i m

g

d

d

j

X5

t

b

а

Z

У

Χ

Х

h

h

X8

W

j

S

У

а

X10

0

0

0

0

0

0

0

0

0

...

X375

0

0

0

0

1

1

0

0

0

0

X376

0

0

0

0

0

0

0

0

0

0

X377

0

1

0

0

0

0

0

1

0

X378

1

0

1

1

0

0

0

0

0

0

X379

0

0

0

0

0

0

0

0

0

0

X380

0

0

0

0

0

0

1

0

0

0

X382

0

0

0

0

0

0

0

0

0

0

X38

Data Preparation

for more info

Loading [MathJax]/extensions/Safe.js

```
In [150...
          train.describe()
                          ID
                                                  X10
                                                                      X12
                                                                                   X13
                                                                                                X14
                                                         X11
Out [150...
                                        У
          count 4209.000000
                              4209.000000
                                          4209.000000 4209.0
                                                              4209.000000
                                                                            4209.000000 4209.000000 4209.0
          mean 4205.960798
                               100.669318
                                              0.013305
                                                          0.0
                                                                  0.075077
                                                                               0.057971
                                                                                            0.428130
                                                                                                         0.0
            std 2437.608688
                                12.679381
                                              0.114590
                                                          0.0
                                                                  0.263547
                                                                               0.233716
                                                                                            0.494867
                                                                                                         0.0
                    0.000000
                                72.110000
                                              0.000000
                                                                  0.000000
                                                                               0.000000
                                                                                            0.000000
            min
                                                          0.0
                                                                                                         0.0
           25%
                 2095.000000
                                90.820000
                                              0.000000
                                                                  0.000000
                                                                               0.000000
                                                                                            0.000000
                                                          0.0
                                                                                                         0.0
           50% 4220.000000
                                99.150000
                                              0.000000
                                                          0.0
                                                                  0.000000
                                                                               0.000000
                                                                                            0.000000
                                                                                                         0.0
           75% 6314.000000
                               109.010000
                                              0.000000
                                                          0.0
                                                                  0.000000
                                                                               0.000000
                                                                                            1.000000
                                                                                                         0.0
                                              1.000000
                                                          0.0
                                                                               1.000000
                                                                                            1.000000
                                                                                                         1.0
           max 8417.000000
                               265.320000
                                                                  1.000000
         8 \text{ rows} \times 370 \text{ columns}
In [151...
          train.info() #Structure of the dataframe
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 4209 entries, 0 to 4208
          Columns: 378 entries, ID to X385
          dtypes: float64(1), int64(369), object(8)
          memory usage: 12.1+ MB
In [152...
           #Finding the number of null values
          print("Number of NaN values in train dataset is:",len(train[train.isna().any(axis=1)]))
          print("Number of NaN values in test dataset is:",len(test[test.isna().any(axis=1)]))
          Number of NaN values in train dataset is: 0
          Number of NaN values in test dataset is: 0
In [153...
          #Finding if there are any duplicates w.r.t ID column
          print("Number of duplicated values in train dataset is:",train['ID'].duplicated().sum())
           print("Number of duplicated values in test dataset is:",test['ID'].duplicated().sum())
          Number of duplicated values in train dataset is: 0
          Number of duplicated values in test dataset is: 0
In [154...
          len(train.select dtypes(include="int").columns) #number of Numerical columns
          369
Out[154...
In [155...
           len(train.select dtypes(include="object").columns) #number of categorical columns
Out[155...
In [156...
          train = train.drop('ID',axis =1)
In [157...
           test = test.drop('ID',axis =1)
```

There are no missing data or duplicated data, hence we can proceed further with the analysis on the 369 numerical columns and 8 columns.

Exploratory Data Analysis (EDA)

The first step is to split the dataset into the feature and target dataframes. proceed with some visualizations to give some proper insight into the dataset. This provides a statistical characteristic and behavior of distribution of the data and also provide an insights in data.

```
In [158...
           #Feature and target selection of variables
           X train = train.drop('y',axis=1)
           y train = train['y']
In [159...
           X train.head()
             X0 X1 X2 X3 X4 X5 X6 X8 X10 X11 ... X375 X376 X377 X378 X379 X380 X382
Out [159...
                                                                                      0
                                                                                             0
               k
                       at
                                d
                                                  0
                                                        0
                                                                  0
                                                                         0
                                                                                1
                                                                                                    0
                                                                                                           0
                           а
                                         j
                                             0
                                                  0
                                                                  1
                                                                         0
                                                                                0
                                                                                      0
                                                                                             0
                                                                                                    0
                                                                                                           0
          1
               k
                      av
                           е
                                d
                                         0
                                                        0
                                                                         0
                                                                                0
                                                                                      0
                                                                                             0
                                                                                                    0
          2
              az
                                d
                                         j
                                             Χ
                                                  0
                                                                  0
                                                                                                           1
                                                                                             0
          3
              a7
                       n
                                d
                                                                  0
                                                                         0
                                                                                0
                                                                                      0
                                                                                             0
                                                                                                    0
                                                                                                           0
                                d
                                        d
                                                  0
                                                        0 ...
                                    h
                                             n
              az
```

5 rows × 376 columns

```
In [160... y_train.head()

Out[160... 0 130.81
    1 88.53
    2 76.26
    3 80.62
    4 78.02
    Name: y, dtype: float64
```

train.select dtypes(include="object").columns #Selecting which is the categorical columns

Analyzing and visualization of Categorical Variables

Bar plots for all the categorical variables

```
In [161...
#For all categorical feature
plt.figure(figsize = (15,15),)
sns.set_style('whitegrid')
for i in range(0,8):
    plt.subplot(4,2,i+1)
    sns.countplot(x=X_train.iloc[:,i], data=X_train)
plt.show()
```


From the above plot it can observe that X4 features have less variance in it.

Variation of different variables with time

```
In [162...
    plt.figure(figsize = (15,15),)
    sns.set_style('whitegrid')
    for i in range(0,8):
        plt.subplot(4,2,i+1)
        sns.scatterplot(x=X_train.iloc[:,i], y= y_train, data=X_train)
    plt.show()
```


The observations made from the following plots:

- In the x0 plot, "y" category has a data point present faraway from normally distributed of that category and can be considered as outlier.
- In the x1 plot, "r" category has a data point present faraway from normally distributed of that category and can be considered as an outlier.
- In the x2 plot, "ai" category has a data point present faraway from normally distributed of that category and can be considered as an outlier.
- In the x3 plot, most of the categories lies in the range of 85 to 120 values of output variable. But in category "f" has a data point present faraway from normally distributed of that category and can be considered as an outlier.
- In the x4 plot, "d" category distributed in the range of 90 to 110 range of values. The category "b" and "c" are present with just few in numbers and mostly at the point of 120 and 130 output value.
- The x5 plot, represent most of the categorical values distributed at the range of 85 to 120 output values. This features shows that most of the features occurs and uniformly distributed

Loading [MathJax]/extensions/Safe.js

- and it can observe some of the features which are present in few numbers.
- The x6 plot, which represent the most of the category's PDF curve lies under the range of 75 to 125 output y variable. We can observe that category "i" is highly skewed and shows that this category have an outlier with respect to output variable y.
- The x8 plot show all the categorical values are present in uniformly and almost PDF curve lies in the range of 75 to 125 values of output y variable. We can observe that category "t" is highly skewed and shows that this category have an outlier with respect to output variable y.

Data Preprocessing

If for any column(s), the variance is equal to zero, then you need to remove those variable(s). In this step,we apply label encoding.

```
In [164...
           X test = test.copy()
            usable columns = list(set(X train.columns))
In [165...
            test.head()
                       X2 X3 X4 X5 X6 X8 X10 X11 ... X375 X376 X377 X378 X379
                                                                                                     X380
              X0 X1
                                                                                                            X382 X
Out [165...
                                                     0
                                                                      0
                                                                             0
                                                                                    0
                                                                                           1
                                                                                                  0
                                                                                                         0
           0
               az
                    ٧
                         n
                             f
                                 d
                                      t
                                           а
                                               W
                                                           0
                                                                                                                0
           1
                                                     0
                                                                      0
                                                                             0
                                                                                           0
                                                                                                  0
                                                                                                         0
                                                                                                                0
                t
                    b
                        ai
                                  d
                                      b
                                           g
                                                           0
           2
                                                     0
                                                                             0
                                                                                    0
                                                                                           1
                                                                                                  0
                                                                                                         0
               az
                        as
                             f
                                 d
                                      а
                                           j
                                                j
                                                           0
                                                              ...
                    V
           3
                                  d
                                                     0
                                                           0
                                                                      0
                                                                             0
                                                                                    0
                                                                                           1
                                                                                                  0
                                                                                                         0
                                                                                                                0
               az
                         n
                                                                                           0
                                                                                                  0
                                                                                                         0
                                                                                                                0
                                  d
                                                     0
                                                           0
                                                                      1
                                                                             0
                                                                                    0
                                               m
```

 $5 \text{ rows} \times 376 \text{ columns}$

```
#If for any column(s), the variance is equal to zero, then you need to remove those varia
for col in usable_columns:
    cardinality = len(np.unique(X_train[col]))
    if cardinality == 1:
        X_train.drop(col, axis=1) # Column with only one, value is useless so we drop it
        X_test.drop(col, axis=1)
    if cardinality > 2: # Column is categorical
        mapper = lambda x: sum([ord(digit) for digit in x])
        X_train[col] = X_train[col].apply(mapper)
        X_test[col] = X_test[col].apply(mapper)
        X_train.head()
```

Out[166		X0	X1	X2	Х3	X4	X5	X6	X8	X10	X11	 X375	X376	X377	X378	X379	X380	Х3
	0	107	118	213	97	100	117	106	111	0	0	 0	0	1	0	0	0	
	1	107	116	215	101	100	121	108	111	0	0	 1	0	0	0	0	0	
	2	219	119	110	99	100	120	106	120	0	0	 0	0	0	0	0	0	
	3	219	116	110	102	100	120	108	101	0	0	 0	0	0	0	0	0	
	4	219	118	110	102	100	104	100	110	0	0	 0	0	0	0	0	0	

5 rows × 376 columns

Out[167		ΧO	X1	X2	ХЗ	X4	X5	Х6	X8	X10	X11	 X375	X376	X377	X378	X379	X380	X382	X:
	0	az	V	n	f	d	t	а	W	0	0	 0	0	0	1	0	0	0	
	1	t	b	ai	a	d	b	g	У	0	0	 0	0	1	0	0	0	0	
	2	az	V	as	f	d	а	j	j	0	0	 0	0	0	1	0	0	0	
	3	az	I	n	f	d	Z	1	n	0	0	 0	0	0	1	0	0	0	
	4	W	S	as	С	d	У	i	m	0	0	 1	0	0	0	0	0	0	

5 rows × 376 columns

test.head()

Perform Principal Component Analysis (PCA)

Principal component analysis, or PCA, is a statistical procedure that allows you to summarize the information content in large data tables by means of a smaller set of "summary indices" that can be more easily visualized and analyzed. The goal is to extract the important information from the data and to express this information as a set of summary indices called **principal components**. Singular Value Decomposition or SVD is a computational method used to calculate principal components of a dataset. Linear dimensionality reduction using SVD of the data projects it to a lower dimensional space.

```
In [168...
           #Dimensionality Reduction
           n comp = 12
           pca = PCA(n components=n comp, random state=420)
           pca train = pca.fit transform(X train)
           pca test = pca.transform(X test)
 In [169...
           pca train,pca test
           (array([[-49.08156207,
                                   -4.90948084, -17.25085325, ...,
                                                                     1.65808085,
 Out[169...
                      0.93316413,
                                    1.67767261],
                                   -7.22674339, -13.7631947 , ..., -0.21429673,
                   [-48.94680383,
                      0.10928689,
                                   0.44858868],
                   [ 92.62761708,
                                   31.9940341 , -26.17503456, ...,
                                                                    -0.62195512,
                      2.92579792,
                                   -0.52629181],
                   [ 89.47970814, 20.44554421,
                                                 48.11999819, ..., -1.27199613,
                     -0.28730646,
                                   2.00870035],
                                                 49.20059282, ..., 0.14362369,
                   [ 96.97110845, 31.50977186,
                     -0.98010171,
                                   0.99232435],
                   [-17.21024322, -14.22166025,
                                                 55.38091289, ..., -0.28904254,
                     -0.31644227, 0.6915868 ]]),
            array([[ 9.22615149e+01, 3.29260839e+01, -3.01130736e+01, ...,
                    -4.11406384e-01, 3.62106392e+00, -1.20778172e+00],
                   [-3.48622379e+01, 6.87132606e+00, -3.74760829e+01, ...,
                     6.09253697e-01, -6.95870836e-01, -4.24945581e-01],
                   [ 4.36560426e+01, -5.05939489e+01, -6.10591086e+01, ...,
                    -3.20458181e-01, 2.60144802e+00, -1.53707632e+00],
                   [-2.52437784e+01, -2.63794193e+01, 5.40742341e+01, ...,
                     6.03516083e-01, 2.60866858e-02, 3.68490704e-02],
                   [ 4.53823778e+01, -6.38062446e+01, 3.58666036e+01, ...,
                    -9.15187206e-01, -6.72291446e-01, 5.15293180e-01],
                   [-4.23807477e+01, -2.52862351e+01, 6.10815522e+01, ...,
                    -2 98836314e-01, -9.77070805e-01, 5.34362801e-02]]))
Loading [MathJax]/extensions/Safe.js
```

Now the data is ready for modelling purposes

Data Modelling

Since there is already a test set, usually it isnt necessary to use the train test split for the dataset. However to improve model accuracy, it is better to have another test set from the train set i.e. validation set. This is helpful as this ensures a more accurate calculation of model performance.

```
In [170...
#Splitting the train test into Train and validation sets
X_train, X_valid, y_train, y_valid = train_test_split(pca_train, y_train, test_size=0.2,
```

Here we use xgboost regression which is boosting technique in ensemble to reduce bias while training the model. We begin by adding the datasets into the DMatrix or data matrix, which is an internal data structure that is used by XGBoost, which is optimized for both memory efficiency and training speed.

```
In [171...
            #Creating D matrices
            d train = xgb.DMatrix(X train, label=y train)
            d_valid = xgb.DMatrix(X_valid, label=y_valid)
            \#d \ test = xgb.DMatrix(x \ test)
            d test = xgb.DMatrix(pca test)
 In [172...
            #Hyperparameters for the XGboost
            params = {}
            params['objective'] = 'reg:linear'
            params['eta'] = 0.02
            params['max_depth'] = 4
 In [173...
            #Defining the function to compute the R2 score
            def xgb r2 score(preds, dtrain):
                labels = dtrain.get label()
                return 'r2', r2 score(labels, preds)
 In [174...
            #Creating the list of validation sets for which metrics will evaluated during training to
            watchlist = [(d train, 'train'), (d valid, 'valid')]
 In [175...
            clf = xgb.train(params, d train,
                            1000, evals=watchlist, early stopping rounds=50,
                            feval=xgb r2 score, maximize=True, verbose eval=10)
           [23:29:39] WARNING: C:/Users/Administrator/workspace/xgboost-win64 release 1.5.1/src/objec
           tive/regression obj.cu:188: reg:linear is now deprecated in favor of reg:squarederror.
                   train-rmse:98.85892 train-r2:-60.19578 valid-rmse:99.44724
                                                                                             valid-r2:-
           [0]
           59.09219
           [10]
                   train-rmse:81.02473
                                            train-r2:-40.10786
                                                                    valid-rmse:81.62129
                                                                                             valid-r2:-
           39.47991
           [20]
                   train-rmse:66.49194
                                            train-r2:-26.68393
                                                                    valid-rmse:67.08800
                                                                                             valid-r2:-
           26.34780
           [30]
                   train-rmse:54.66175
                                            train-r2:-17.70926
                                                                    valid-rmse:55.26186
                                                                                             valid-r2:-
           17.55596
                                            train-r2:-11.70754
                                                                    valid-rmse:45.67114
                                                                                             valid-r2:-
           [40]
                   train-rmse:45.04908
           11.67407
                                            train-r2:-7.69118
                                                                    valid-rmse:37.89442
                                                                                             valid-r2:-
           [50]
                   train-rmse:37.25586
           7.72535
Loading [MathJax]/extensions/Safe.js $e:30.96523
                                            train-r2:-5.00397
                                                                    valid-rmse:31.62873
                                                                                             valid-r2:-
```

5.07849 [70]	train-rmse:25.89201	train-r2:-3.19780	valid-rmse:26.61757	valid-r2:-
	train-rmse:21.84406	train-r2:-1.98783	valid-rmse:22.62199	valid-r2:-
	train-rmse:18.63692	train-r2:-1.17489	valid-rmse:19.46038	valid-r2:-
	train-rmse:16.11725	train-r2:-0.62657	valid-rmse:17.00610	valid-r2:-
	train-rmse:14.15940	train-r2:-0.25539	valid-rmse:15.12156	valid-r2:-
0.38939 [120] 0.13842	train-rmse:12.66217	train-r2:-0.00394	valid-rmse:13.68786	valid-r2:-
	train-rmse:11.52109	train-r2:0.16886	valid-rmse:12.62682	valid-r2:
	train-rmse:10.68079	train-r2:0.28567	valid-rmse:11.84419	valid-r2:
[150] 0.22602	train-rmse:10.05614	train-r2:0.36678	valid-rmse:11.28621	valid-r2:
0.27944	train-rmse:9.59897	train-r2:0.42305	valid-rmse:10.88979	valid-r2:
0.31679	train-rmse:9.26316	train-r2:0.46271	valid-rmse:10.60380	valid-r2:
0.34284	train-rmse:9.01222	train-r2:0.49143	valid-rmse:10.39966	valid-r2:
0.36126	train-rmse:8.82391	train-r2:0.51246	valid-rmse:10.25291	valid-r2:
0.37481	train-rmse:8.67304	train-r2:0.52899	valid-rmse:10.14354	valid-r2:
0.38471	train-rmse:8.55986 train-rmse:8.47603	train-r2:0.54120 train-r2:0.55014	valid-rmse:10.06293 valid-rmse:10.00510	<pre>valid-r2: valid-r2:</pre>
0.39176	train-rmse:8.41103	train-r2:0.55702	valid-rmse:9.96356	valid-r2:
0.39680	train-rmse:8.36463	train-r2:0.56189	valid-rmse:9.93332	valid-r2:
0.40046	train-rmse:8.32923	train-r2:0.56559	valid-rmse:9.90829	valid-r2:
0.40347	train-rmse:8.29794	train-r2:0.56885	valid-rmse:9.89063	valid-r2:
0.40560	train-rmse:8.26746	train-r2:0.57201	valid-rmse:9.87484	valid-r2:
0.40749 [280]	train-rmse:8.23202	train-r2:0.57567	valid-rmse:9.86564	valid-r2:
	train-rmse:8.19694	train-r2:0.57928	valid-rmse:9.85346	valid-r2:
	train-rmse:8.17540	train-r2:0.58149	valid-rmse:9.84843	valid-r2:
	train-rmse:8.14618	train-r2:0.58447	valid-rmse:9.83957	valid-r2:
	train-rmse:8.12154	train-r2:0.58698	valid-rmse:9.83655	valid-r2:
0.41208 [330] 0.41245	train-rmse:8.09927	train-r2:0.58925	valid-rmse:9.83342	valid-r2:
	train-rmse:8.07813	train-r2:0.59139	valid-rmse:9.83117	valid-r2:
	train-rmse:8.05792	train-r2:0.59343	valid-rmse:9.82747	valid-r2:
	train-rmse:8.03630	train-r2:0.59561	valid-rmse:9.82287	valid-r2:
	train-rmse:8.00681	train-r2:0.59857	valid-rmse:9.82217	valid-r2:
[380] 0.41442	train-rmse:7.98149	train-r2:0.60111	valid-rmse:9.81698	valid-r2:
Loading [MathJax]/extensi	ons/Safe.js se:7.95326	train-r2:0.60392	valid-rmse:9.81526	valid-r2:

0.41462			
[400] train-rmse:7.92849	train-r2:0.60639	valid-rmse:9.81171	valid-r2:
0.41505			
[410] train-rmse:7.90173	train-r2:0.60904	valid-rmse:9.81202	valid-r2:
0.41501			
[420] train-rmse:7.87597	train-r2:0.61158	valid-rmse:9.80904	valid-r2:
0.41536		3.1.1	7.1.
[430] train-rmse:7.85423	train-r2:0.61372	valid-rmse:9.80795	valid-r2:
0.41549		1.1	1
[440] train-rmse:7.82935	train-r2:0.61617	valid-rmse:9.80941	valid-r2:
0.41532		1:1 0.00100	1:1 2
[450] train-rmse:7.80591	train-r2:0.61846	valid-rmse:9.80192	valid-r2:
0.41621	+ ~ ~ ~ ~ ~ ~ . 0 62002	volid mag. 0 00240	valid mo.
[460] train-rmse:7.78180	train-r2:0.62082	valid-rmse:9.80249	valid-r2:
0.41614 [470] train-rmse:7.76132	train-r2:0.62281	valid-rmse:9.80010	valid-r2:
0.41643	(10111-12:0.02201	vaciu-imse:9.00010	vatiu-12:
[480] train-rmse:7.73317	train-r2:0.62554	valid-rmse:9.80203	valid-r2:
0.41620	CT a111-12.0.02554	Vaciu-1 iiise. 9.00203	vatiu-12.
[490] train-rmse:7.71659	train-r2:0.62714	valid-rmse:9.80219	valid-r2:
0.41618	Crain 12:0:02/14	Vacia 1 m3c. 3.00213	Vacia 12.
[500] train-rmse:7.69134	train-r2:0.62958	valid-rmse:9.80437	valid-r2:
0.41592	114111 1210102000	vacia imperpresión,	74124 121
[510] train-rmse:7.67415	train-r2:0.63123	valid-rmse:9.80081	valid-r2:
0.41635			
[520] train-rmse:7.64949	train-r2:0.63360	valid-rmse:9.80355	valid-r2:
0.41602			
[530] train-rmse:7.62429	train-r2:0.63601	valid-rmse:9.80267	valid-r2:
0.41612			
[540] train-rmse:7.60201	train-r2:0.63814	valid-rmse:9.80357	valid-r2:
0.41602			
[550] train-rmse:7.58272	train-r2:0.63997	valid-rmse:9.80376	valid-r2:
0.41599			
[560] train-rmse:7.56369	train-r2:0.64177	valid-rmse:9.80368	valid-r2:
0.41600			
[565] train-rmse:7.55255	train-r2:0.64283	valid-rmse:9.80344	valid-r2:
0.41603			

At the end of the training, we have attained an optimal train R2 score of 0.642 and an optimal validation R2 score of 0.416. we can now proceed to predict the values with our test set.

```
#Predicting the time taken with respect to variables in the test set
           predictions = clf.predict(d test)
In [177...
           test['Estimated Time'] = predictions
In [178...
           test.head()
Out[178...
             X0 X1 X2 X3 X4 X5 X6 X8 X10 X11 ... X376 X377 X378 X379 X380 X382 X383 X
             az
                       n
                           f
                               d
                                   t
                                       а
                                           W
                                                 0
                                                                       0
                                                                             1
                                                                                    0
                                                                                          0
                                                                                                 0
                                                                                                       0
                                                                0
                                                                             0
                                                                                    0
                                                                                          0
                                                                                                 0
                                                                                                       0
          1
                               d
                                   b
                                                 0
                                                      0 ...
                      ai
                                       g
                                           У
                                                                                    0
                                                                                          0
                                                                                                 0
          2
                           f
                               d
                                                 0
                                                                0
                                                                       0
                                                                             1
                                                                                                       0
             az
                      as
                                       j
                                           j
                                                      0 ...
                                   а
                                                      0 ...
                               d
                                                                                                       0
              az
                       n
                                   Z
                                                                       0
                                                                             0
                                                                                    0
                                                                                          0
                                                                                                 0
                                                                                                       0
                           С
                               d
                                        i
                                                 0
                                                      0 ...
                                                                0
              W
                   S
                      as
                                           m
```

 $5 \text{ rows} \times 377 \text{ columns}$

In [176...

Results & Conclusion

We analysed the train set of each utility category variable of a vehicle with respect to its frequency and its variation with time and made some key observations. We concluded that there is very less variance of X4 feature variable with each categorical feature having some set of outliers. After implementing PCA reduction into 12 components, we created an xgboost model with an r2 score of 0.642. Finally the test set run through the model to estimate the minimum time taken for each vehicle configuration in the test set in order to enable faster testing, resulting in lower carbon dioxide emissions without reducing Mercedes-Benz's standards.