전자 서명

https://www.youtube.com/watch?v=o6jrjjar4vo

Contents

전자서명과 보안서비스

RSA

RSA 전자서명

DSA 전자서명

전자서명 보안수준

전자서명과 보안서비스

• 보안 서비스

- 1. 기밀성(confidentiality): 정보를 비밀로 하는 것을 보장
- 2. 무결성(integrity): 메시지가 전송 중 변경되지 않았음을 보장
- 3. 메시지 인증(message authentication): 메시 지의 송신자 신원을 보장
- 4. 부인불가(nonrepudiation): 메시지 송신자는 메시지 생성을 부인할 수 없음을 보장

전자 서명: 무결성, 메시지 인증, 부인 불가 제공

RSA

• 정수환 $Z_n = \{0,1,2,...,n-1\}$ 에서 실행

공개키: (N,e) => k_{pub} 개인키:(N,d) => k_{pr}

암호화: $y=e_{k_{pub}}(x)\equiv x^e \bmod n$ 복호화: $x=d_{k_{pr}}(y)\equiv y^d \bmod n$

RSA

$$K_{pub} = (N, e)$$
 $K_{pr} = d$

• 키 생성

$$\Phi(N) = \prod_{i=1}^{n} (p_i^{e_i} - p_i^{e_i-1})$$

$$\text{Ex) } 240 = 2^4 \times 3 \times 5$$

$$= p_1^{e_1} \times p_2^{e_2} \times p_3^{e_3}$$

$$\Phi(240)$$

$$= (2^4 - 2^3) \times (3^1 - 3^0) \times (5^1 - 5^0)$$

- ① 두개의 소수 p & q 선택
- ② $N = p \times q$
- ④ $gcd(e, \Phi(N)) = 1 => \Phi(N)$ 와 서로소 관계인 e 선택
- ⑤ $d = e^{-1} \mod \Phi(N) \Rightarrow d \times e \equiv 1 \mod \Phi(N)$ => d는 e의 역원

RSA

$$y = x^{e_B} \mod N_B$$

$$y^{d_B} = (x^{e_B})^{d_B} \mod N_B$$

$$= x^{e_B*d_B} \mod N_B$$

Bob

1.
$$p = 3 q = 11$$

2.
$$N = p \times q = 33$$

3.
$$\Phi(N) = (3-1) \times (11-1) = 20$$

4.
$$e = 3$$

5.
$$d = e^{-1} \equiv 7 \mod 20$$

 $k_{pub_B} = (N_B, e_B) = (33, 3)$
 $k_{pr_B} = d = 7$

전달할 메시지
$$x = 4$$

암호화: $y = 4^3 \equiv 31 \mod 33$

RSA 전자서명

• 보내는 사람의 개인키로 서명(암호화) 한다.

Alice 가 Bob 한테 메시지를 보내려고함

$$d = k_{pr_A}$$
 $e = k_{pub_A}$
 $sig \ x \Rightarrow x^d mod \ n \Rightarrow s$
 (x,s)
 $s^e = (x^d)^e \equiv x' mod \ n$
 $x' = x \Rightarrow true$

1.
$$p = 3 q = 11$$

2.
$$N = p \times q = 33$$

3.
$$\Phi(N) = (3-1) \times (11-1) = 20$$

4.
$$e = 3$$

5.
$$d = e^{-1} \equiv 7 \mod 20$$

 $k_{pub_A} = (N_A, e_A) = (33, 3)$
 $k_{pr_A} = d = 7$

보낼 메시지
$$x=4$$
 $16^3 \equiv 4 \mod 33$ $s = x^d = 4^7 \equiv 16 \mod 33$ $(x,s)=(4,16)$ $x' = x$ 확인

DSA 전자서명

• Elgamal 전자서명 개량한 방식

키 생성

- ① 소수 p 선택
- ② p-1 의 약수 중 소수인 q 선택
- ③ $ord(\alpha) = q$ 인 원소 α 선택
- ④ 0<d<q 인 임의의 정수 d 선택
- ⑤ $\beta \equiv \alpha^d \mod p$ 계산

$$k_{pub} = (p, q, \alpha, B)$$

 $k_{pr} = (d)$

DSA 서명 생성

- ① $0 < K_E < q$ 임시키 K_E 정수 선택
- ② $r \equiv (\alpha^{k_E} \mod p) \mod q$ 계산
- ③ $s \equiv (SHA(x) + d \times r)K_E^{-1} \mod q$ 계산

DSA 서명 검증

- 1. $\omega \equiv s^{-1} \mod q$ 계산
- 2. $u_1 \equiv \omega \times SHA(x) \mod q$ 계산
- 3. $u_2 \equiv \omega \times r \mod q$ 계산
- 4. $v \equiv (\alpha^{u_1} \times \beta^{u_2} \mod p) \mod q$ 계산

 $v \equiv r \mod q \Rightarrow$ 유효한 서명

DSA 전자서명

Alice

$$\alpha = 3$$
 선택

(5)
$$\beta = \alpha^d = 3^7 \equiv 4 \mod 59$$

서명

$$h(x) = 26$$

1. 임시키
$$K_E = 10$$

2.
$$r = (3^{10} \mod 59)$$

 $\equiv 20 \mod 29$

3.
$$s = (26 + 7 \times 20) \times 3$$

 $\equiv 5 \mod 29$

Bob

$$(x,(r,s)) = (x,(20,5))$$

 $(p,q, \alpha, \beta) = (59,29,3,4)$

검증

- 1. $\omega = 5^{-1} \equiv 6 \mod 29$ 계산
- 2. $u_1 = 6 \times 26 \equiv 11 \mod 29$ 계산
- 3. $u_2 = 6 \times 20 \equiv 4 \mod 29$ 계산
- 4. $v \equiv (3^{11} \times 4^4 \mod 59) \mod 29$ = 20
- 5. *v* ≡ r mod 29 => 유효한 서명

전자서명 보안수준

• RSA : N은 1024bit~ 3072 bit

• DSA

р	q	해시 결과	보안 수준
1024	160	160	80
2048	224	224	112
3072	256	256	128

• 그 외 전자서명 Elgamal algorithm , ECDSA algorithm

• 메시지 인증 코드 (Message Authentication Code,MAC) "부인불가" 제공 x

Q&A

