SEMINAR 1

Saturday, November 6, 2021 4:38 PM

1 ANALIZA LEXICALA

· speci ficații lixicale

(1) (10/01) + 0 (2) OA+

- - (3) N(01/0)+

3 3 3

(1) (a+ f-) * C Um vir con un bark & monvoint ; so fe

- (i) afc*
- catcobtcatbeat
- (2) ANALIZA SINTACTICĂ

- · E recursina la danga? · Ca ûnxamma recursinatabela danga?

RECURSIVITATE LA STANGA

ELIMINARE REC. LA STÂNGA

EXERCITY

PASI GENERALI:

- \mathfrak{D}^{\pm} ellimi marca \mathfrak{p} radu chiclor \mathfrak{E} \mathfrak{T} Touch put in probabil on the neval \mathfrak{D}^{\pm} ellimi marca \mathfrak{C} circle \mathfrak{T} \mathfrak{T}
- 3) elimi nava sucusi mila (3)

D ELIMINARE PROBUÇTU E

capul 2-32

- D 5 -> Xx 20 -> Xx/x/x -> casel X-> E

 - X->aX+\\(\varepsilon\) X -> aX+\alpha\(\varepsilon\) = X -> aX+\\(\varepsilon\)

 - 2 1 2x/E) 2 1 ad | a | tx/ x 2

uzel 2-58

- Q 5-> AB => 5-> 5/ €
 - As AaA / E
- A-> Aatlat/Aala
- B-2 BG-B/E
 - B-> B&B/&B/B6/&
- => aici au fort eliminate boots productive E, mai putin cele pendru regula 5' cou mu apove en decape (KHS) néceini alk moducin

3 ELIMINARE CICLURI

· O gramatia ave un viele , atama cand existe a productie 5 artel encet 5 = 5

example: 5-1 X XP-155 X-55 /a

=> cidu 5=55 , X=5X

D Eliminoua ciducilor ne face numai DVPA eliminoua E-productilor P

Se ce aven mesoie se eliminam ciclusia?

2/44/4 - 4/44/4 - A/44/4 - A/44/4 - A/44/4

=) mu murge sã aplic algorit mul

CUM FACEM?

- square with with in nolliula ireas min min mile.
- en 63 XKG/65 => 5-2 a/a6/55

 - (X-> 51a
- X -> Xf /55/a

3 ELIMINIRE RECURSIVITATE

- 0 E→E+T \T ⇒ E→TE'
- (1) A-> ABox | Aa | a , A -> a A' A' -> bx A' | a A' | E
- 3 A -> AC | A ad | Bd | C -> A -> BdA' | Ca' A' -> CA' | ad A' | E
- 4) CAZ STECIAL => Ce ox inhâmple docă nu orien nicin p?
 A-> AA! AB -> A-> AA! L&A' LE
- € 5 3 5 a 15 \ ε -> 5 -> a 5 | ε
- (C) CAZ SPE CIAL => recoveri aitate indirecta

5-> 5X | 556 | X5 | a X-> 5a | X4

2> 5-> X55' a5' => mu am eliminat re working later

5' -> x5' | 56-5' | E 5ax'55'

X -> Sax'

x' -> fx' \ E

=> CUM facem ?

- & 5-> 5×155+ |×5 | a =>) mu anum prod. € X -> X+ | 5a | 4
- De alimină sucusuini fata la shânga din peima sugulă (3) $5 \rightarrow X55' \mid a5'$ $5' \rightarrow X5' \mid 5f 5' \mid E$ $X \rightarrow Xf \mid 5a \mid f$
- into wim numeri without pentru producto X $X \rightarrow as'a X' \mid b X'$ $X' \rightarrow 55'a X' \mid b X' \mid E$
- =>) 5-> x55' | a5' S' -> x5' | 5 f + 5' | E x-> a5' ax' | f + x' x'-> 55' ax' | f - x' | E

A-Ac/Sd/E

- meno unce 2/2Ac- 6 me, suc manife @ co
 - C= A me & og missosie @ A-stel And I Bd \ E
 - 3 eliminam ruc. din A => A -> Ed A' /A'

3/ Abol As C- 'A

(8) Eliminate left recursion from the following grammar:

$$S \rightarrow STS \mid ST \mid T$$

$$T \rightarrow Ta \mid Tb \mid U$$

 $U \rightarrow T \mid c$

PACTORIZARE (LA STANGA)

 $E \rightarrow int \mid int + E \mid int - E \mid E - (E) \mid E * E$

(b) Eliminate left-recursion from the following grammar:

anowing grammar:
$$A \to A + B \mid B$$

$$B \to int \mid (A) \mid B * int$$

-, eliminare rue. Ly + facto ristare

$$B \rightarrow b \mid BC$$

$$C \rightarrow c \mid cC$$

Elinimare gucursinifate

- (1) Ce ar trubui sa adau gam gramaticie de mai sus f. a me mai f. ambigua?
- 5 -> ash |sh |h

 Este amliqua?

 => gain un ; in ou a arbori de duinare defuifi
 al-l
 5 -> ash 2-> ash 3-> abh-b

 5 2-> sh -> ash-b 3-> abh-b

RECURSIVE DESCENT

-> face backtraking a productile in ordine paint gasete o patrinite

5-> ha Sab | bas | b

sin habab

5-> ha Sab | basab ab | baha hasab ahab

baha hasab ahab

baha hasabab

baha basab ab

baha basab ab

Cou con f: cea mai surlà nerianta posibilà?

5-s ha Sab -s ha hab (maximand cout de sucurière descent)

3 5-, has | f | hasal 5-, has -, ha has -, ha ha has x

FIRST , FOLLOW

FIRST

- Tirof (x) = x ; First (xx) = \alpha }
- (x) X->E => E = First(x)
- (af..., p) &uff (x) &uff (=) f..., pc- x @

Frank (Jo Jz ... JK) =

- a) Fint (y), dava E& Fint (y)
- (Jz... JK) #WIF(Jz... JK)
- (sy) that (if) that I shook a 3 inab (s) => Fint (y, ... yk) U { E}

FOLLOW

- (5) \$ = \$ dlow (5)
- 2) A-1 XBB=) Fallow(B) = First(B) 1/E]
- 3) A-) &B ~> Follow (B) ≥ Follow (A)
- 4 1 H -> XBB =) Follow(B) = Follow(A) First (B) continu &

axib un sangurat faminalisi sunt recount

EXERCITY

5-> A(5)B 1E

A-> 5158 X1E

B-> 5B17

	First
5	٤, ٢, ١,٧
A	E,x,(,4
B	x1, (0

FIRST

D E+ torminali

First (5) 2/ 23

First (A) = 1x, E)

First (6) = { 4}

@ Find(5) = Find(A) \ 1 E} U Find ('(')

2 1x, ()

Fint (A) 2 Fint(S) \ [E] U \ E]

= Finst(5) (\ E] U Finst(B) = 1 x, (, y)

Fint (B) = First (5) 1/23 UFint (B)

= 7 x2 (12)

FOLLOW

5-2 A(5)B 1E

A-> 515B X1E

B-) SB17

	First	+ollow-
5	£,1,x,3	\$,(, x,y,),
A	Excly	(
9	4.x. (),\$,(,x,y

Follow

m alabaisim

0 \$ c Follow-(s)

@ tollow (A) 2 / (4)

Follow (5) 2 /17

6) Follow (8) 2 Follow (5)

Follow (G) 2 Follow (A)

Tollow (5) = Finst (B) 1/ E7

Follow (B) = Follow (A)

Follow (B) = Follow (B)

TABEL LL

*	7 ()	\$
ALSIB ALS	5)B 4(5)B E E	٤	٤
5 56 ×	5 5 58 58 E		
	SB SB		
	se se X		

TABEL LL(1) -, Left he right, Leftmost derivation

LLLK) => aven nervoie pt. maxim K toleni de lookahead pt. a seleta o product, ie

exemple

1) Exemple de LL(2) core me este LL(1)

A-> al-| ac -> me puleur anna dour 1 token, pt ia me nim ce groductie så alegem -> dana arem 2, e clarica pulem alege

- (1) Multe gramatici factorizabile la danga nu nunt LL(1). De a)

 2 exemplul de mai sus I (gramatica factorizabila; me sim ce sa alegem)
- 3 Exemplu de gramatica fadorizabila la sty, dan LL(1)

1	FIRST	Follow		
A	مري	\$		
X	٤	a,\$		

Gramatici non-LL(1)

- Valori multiple ale intrărilor din tabel în caz de gramatică:
 - Ambiguă
 - Recursivă la stânga
 - Nefactorizată la stânga
 - Precum și în alte situații

CONSTRUIRE THEEL

5-><A5> | [B5] (5)

3/Ac-A

B > 4-B/E

	Front	Follow
5	42,6	\$ >>,7,7,1
A	0,2	45,6
B	R. E	48,6

- 1 theyam o regular (x: 5)
- (dulam Firstles) pontru fixou productie 5-> x, [x2].. | am (x: First (AS>), First (EBST), First (5))
- (e) wollet in within an co (e) that 3 3 and (
 - i purem & such topi tournimalis din Follow (S)
- (Car. S) Ruman Gecore productie (ci) la interpretin dintra:
 - " coloana tormi malului din Firest (xi)

ex:	First (CASS)	= } < 3	2)	 (
		•	3	 450	

	_	7	1	7	()	a	S	\$
5	4457		CBSJ		(5)	120.50			
A	٤		٤		٤		aA		
B	٤		٤		2			8-B	

Este LL(1) ? => ba, mu anem 2 pood. intr-o celula.

First

Finat (B) = { < , E, (} Finat (B) = { < , E} Finat (B) = { < , E}

Follow

0 \$ = Follow (5)

3 tollow (5) = {>,],)}

AUALIZA BOTTOM - UP

SHIFT - REDUCE

5 stiFT = diplasaria curso rului "1" la druagla Likebuce = aplicaria uni producti la stânga "1"

Conflicte LP(0) - Left to right, Rightmost derivation

Conflict shift-reduce, în cazul existenței unei stări cu câte un item de fiecare tip:

$$X_1 \rightarrow \beta_1 \bullet$$
 -> to determine $X_1 \rightarrow \beta_1 \bullet$

de fiecare tip:
$$X_1 \to \beta_1 \bullet \qquad \longrightarrow \text{ where}$$

$$X_2 \to \beta_2 \bullet \gamma \longrightarrow \text{ where}$$

► Conflict reduce-reduce, în cazul existenței unei stări cu cel putin doi itemi reduce:

$$\begin{bmatrix} X_1 \to \beta_1 \bullet \\ X_2 \to \beta_2 \bullet \end{bmatrix}$$
 and in sunt reduce

Analiză SLR(1)

► SLR(1): Simple LR

- SLR(1): utilizarea unui token de lookahead pentru reducerea numărului stărilor conflictuale
- ▶ Îmbunătățire: **Reduce** cu $X \rightarrow \beta$, dacă s conține

· SLRI) aduce o embunatatire core spure ce nom alge hedus door dave lokenel went din input I e Follow (B)

~- \$1\$

down to Tollow (x) in our sons so facem leduce (t mu poale woma niciodata dupa X)

1 5-56-la

1 revisión dasa e LL(1)

5h a => 2 intrări sub a => mu est LL(1)

(a amenta 2 productii)

Constructie ATA:

SLR(1)		Follow
	5	\$,(, x,y,),
	A	(
	9	J,*,(,×,7
	c1	

RR: Follow (5) n Follow (A) = () => pt tokenul " nom are conflict RR In ce care putern cruea conflict RR pt tokened womator din input "t"? => dará f & Follow(5) n Follow(A)

SR: X & Follow-(5) => (outlide 5R

left rumrion own right rumrion in strategia shift-rudua? (5) De a paferam 0 5-205|€ MS @ 5-250 |€ aaaa => se shifterà dot imputed pe stinà, inainte sà se faià reducerea © se fau reducrea 5-se sion apoi re albornază shift a u reduce 5-s6a l'a pulerà est rucursion et stift-rudure parsure pt. cà fot. mai putima stima

(this this + this + this) (int + int + int + int) =) mu pulum face reduce of ca(T+) me apare in gramatica