| Peak Efficiency Aware | Scheduling for Highly Energy | Proportional Servers

Daniel Wong

dwong@ece.ucr.edu

University of California, Riverside

Department of Electrical and Computer Engineering

Main Observations

- Servers are nearly energy proportional
- > Peak energy efficiency does not occur at peak utilization
- Current data center scheduling techniques are unaware
- Peak Efficiency Aware Scheduling
 - Achieves better-than-ideal cluster-wide energy proportionality

Measuring Energy Proportionality

Dynamic Range

$$DR = \frac{Power_{peak} - Power_{idle}}{Power_{peak}}$$

Energy Proportionality

$$EP = 1 - \frac{Area_{actual} - Area_{ideal}}{Area_{ideal}}$$

- > EP range: (0,2), 1 = Ideal EP, 0 = Energy disproportional
- More metrics in [1]

[1] D. Wong and M. Annavaram. "Knightshift: Scaling the energy proportionality wall through server-level heterogeneity." MICRO 2012.

Servers are nearly energy proportional

- Published SPECpower results
 - 426 servers
 - 12/2007 9/2015

 Most servers today are nearly energy proportional

What is the limit of EP?

- Identified Pareto frontier between DR and EP
- With ideal dynamic range, best possible EP = 1.35
- Hypothetical server where non-processor components are as proportional as processor
 - Pareto frontier still holds true for this extreme case
- Practical EP limit = 1.2

Peak Energy Efficiency ≠ Peak Utilization

• EP = 1.0 servers achieve peak efficiency @ 60% utilization

- Future super EP servers (EP = 1.2) can achieve peak efficiency @ 50% utilization
- Peak Efficiency point shifts as EP improves

Schedulers are not peak efficiency aware^[2]

Uniform scheduling

 Cluster-wide EP reflects underlying server's EP

• If server's EP is poor, then cluster's EP is poor

Packing Scheduling

 Have exact number of servers for load

• Cluster's EP is ideal

[2] D. Wong and M. Annavaram. "Implications of high energy proportional servers on cluster-wide energy proportionality" HPCA 2014.

One-size does not fit all

- Prior work^[2] identified that Packing is better for low EP servers, while Uniform is better for high EP servers
- We also identified that different utilization favors different scheduling policies

Peak Efficiency Scheduling (PEAS)

Goal:

- Capture behavior of both Packing and Uniform scheduling
- > 1. Pack servers up to peak efficiency point
- > 2. Then issue requests uniformly

Intuition:

- Quickly get servers to peak efficiency point
- Move away from peak efficiency point as slowly as possible

PEAS Design

- Per server local energy efficiency profiler (LEEP)
 - Identify peak energy efficiency point
- Global peak efficiency aware scheduler (PEAS)
 - Schedule workloads to server with highest energy efficiency

Local energy efficiency profiler (LEEP)

 Daemon periodically samples utilization and power consumption

- Dynamically captures energy efficiency curve of individual server configuration and workload
- Generates energy efficiency curve to identify peak efficiency point

Global peak efficiency aware scheduler (PEAS)

- Scheduler maintain sorted list of servers based on peak energy efficiency
- Receives utilization update from servers
- Pack servers up to peak efficiency point, then issue requests uniformly

PEAS provide better-than-ideal EP and efficiency!

Energy proportionality

Energy efficiency

- Always outperform ideal EP
- Sustain peak energy efficiency

Evaluation Methodology

- BigHouse data center simulator
- > 100 servers
 - Dual-socket 18-core processors (similar to recently reported SPECpower results)
- > Four levels of EP: Low=0.24, Med=0.73, High=1.0, Super=1.2
- Evaluated 5 workloads
 - > DNS (csedns), Mail (newman), Apache (www), Search and Shell

Power Consumption

Packing-based scheduling is most effective at low-med EP

PEAS matches performance of Packing at low-med EP

Power Consumption

Uniform outperforms packing at high EP

PEAS outperforms both uniform and packing!

Heterogeneous Cluster

Mix of 25% Low, Med, High, and Super EP servers

 Uniform performs worst due to inability to mask low-med EP servers Mix of 50% High and Super EP servers

 PEAS consistently outperform other schedulers across various mixes of servers

Latency

- Observed tail latency similar to Uniform scheduling
 - Holds true across various sleep transition times

Os transition time

More in the paper

> Analytical Best-case Cluster-wide EP analysis **

TCO impact

Effect on power capping

Conclusion

- Servers are nearly energy proportional
- > Peak energy efficiency no longer occurs at peak utilization
- Peak Efficiency Scheduling (PEAS) can achieve better-thanideal cluster-wide energy proportionality
 - Consistently outperforms Uniform and Packing scheduling

Thank you! Questions?

| Peak Efficiency Aware | Scheduling for Highly Energy | Proportional Servers

Daniel Wong

dwong@ece.ucr.edu

University of California, Riverside

Department of Electrical and Computer Engineering

