Last Week

Introduction

- Lecturer
- Course Details
- A.M. Turing Award Winners for Algorithms
- What Is This Course About
- What Are Algorithms
- What Does It Mean to Analyze An Algorithm
- Comparing Time Complexity

Asymptotic Notations and Recurrences

- Asymptotic Notations (新近记号)
 - Big-Oh
 - Big-Omega
 - Big-Theta
 - Algorithm Design and Algorithm Turing
- Solving Recurrences
 - Recursion-tree Method (递归树法)
 - Substitution Method (代入法/替代法)
 - Master Method and Master Theorem (主方法)

Some Thoughts on Algorithm Design

- Algorithm Design, as taught in this class, is mainly about designing algorithms that have big-Oh running times.
- As n gets larger and larger, O(nlogn) algorithms will run faster than O(n²) ones and O(n) algorithms will beat O(nlogn) ones.
- Good algorithm design & analysis allows you to identify the hard parts of your problem and deal with them effectively.
- Too often, programmers try to solve problems using brute force techniques and end up with slow complicated code!
- A few hours of abstract thought devoted to algorithm design often results in faster, simpler, and more general solutions.

Algorithm Tuning

- After algorithm design one can continue on to Algorithm tuning
 - concentrate on improving algorithms by cutting down on the constants in the big O() bounds.
 - needs a good understanding of both algorithm design principles and efficient use of data structures.
- In this course we will not go further into algorithm tuning
 - For a good introduction, see chapter 9 in Programming Pearls,
 2nd ed by Jon Bentley

Outline

- Asymptotic Notations (新近记号)
 - Big-Oh
 - Big-Omega
 - Big-Theta
 - Algorithm Design and Algorithm Turing
- Solving Recurrences
 - Recursion-tree Method (递归树法)
 - Substitution Method (代入法/替代法)
 - Master Method and Master Theorem (主方法)

Solving recurrences: Recursion-tree method

- A recursion tree models the costs (time) of a recursive execution of an algorithm.
 - Each node represents the cost of a single subproblem.

$$T(n) = \begin{cases} 2T(n/2) + n, & \text{if } n > 1, \\ 1, & \text{if } n = 1. \end{cases}$$

$$T(n) = \begin{cases} 3T(n/4) + n^2, & \text{if } n > 1, \\ 1, & \text{if } n = 1. \end{cases}$$

$$T(n) = \begin{cases} 3T(n/4) + n^2, & \text{if } n > 1, \\ 1, & \text{if } n = 1. \end{cases}$$

$$T(n) = \begin{cases} 3T(n/4) + n^2, & \text{if } n > 1, \\ 1, & \text{if } n = 1. \end{cases}$$

$$T(n) = \begin{cases} 3T(n/4) + n^2, & \text{if } n > 1, \\ 1, & \text{if } n = 1. \end{cases}$$

$$T(n) = \begin{cases} 3T(n/4) + n^2, & \text{if } n > 1, \\ 1, & \text{if } n = 1. \end{cases}$$

$$T(n) = \begin{cases} 3T(n/4) + n^2, & \text{if } n > 1, \\ 1, & \text{if } n = 1. \end{cases}$$

$$T(n) = \begin{cases} 3T(n/4) + n^2, & \text{if } n > 1, \\ 1, & \text{if } n = 1. \end{cases}$$

$$T(n) \le n^2 + \frac{3}{16}n^2 + \left(\frac{3}{16}\right)^2 n^2 + \cdots$$

= $O(n^2)$. geometric series

几何级数(又称为等比级数)

$$T(n) = \begin{cases} 3T(n/4) + n^2, & \text{if } n > 1, \\ 1, & \text{if } n = 1. \end{cases}$$

$$T(n) \le n^2 + \frac{3}{16}n^2 + \left(\frac{3}{16}\right)^2 n^2 + \cdots$$

= $O(n^2)$. geometric series

Since T(n) = 3T(n/4) + n², it follows that T(n) ≥ n²

$$T(n) = \begin{cases} 3T(n/4) + n^2, & \text{if } n > 1, \\ 1, & \text{if } n = 1. \end{cases}$$

$$T(n) \le n^2 + \frac{3}{16}n^2 + \left(\frac{3}{16}\right)^2 n^2 + \cdots$$

= $O(n^2)$. geometric series

- Since T(n) = 3T(n/4) + n², it follows that T(n) ≥ n²
- So, $T(n) = \Omega(n^2)$.
- Thus, $T(n) = \Theta(n^2)$

Outline

- Asymptotic Notations (新近记号)
 - Big-Oh
 - Big-Omega
 - Big-Theta
 - Algorithm Design and Algorithm Turing
- Solving Recurrences
 - Recursion-tree Method (递归树法)
 - Substitution Method (代入法/替代法)
 - Master Method and Master Theorem (主方法)

$$T(n) = \begin{cases} 3T(n/4) + n^2, & \text{if } n > 1, \\ 1, & \text{if } n = 1. \end{cases}$$

Prove $T(n) \le cn^2$ by induction, where c is a large constant.

$$T(n) = \begin{cases} 3T(n/4) + n^2, & \text{if } n > 1, \\ 1, & \text{if } n = 1. \end{cases}$$

Prove $T(n) \le cn^2$ by induction, where c is a large constant.

Proof.

• Base (n=1) : obviously holds for any $c \ge 1$

$$T(n) = \begin{cases} 3T(n/4) + n^2, & \text{if } n > 1, \\ 1, & \text{if } n = 1. \end{cases}$$

Prove $T(n) \le cn^2$ by induction, where c is a large constant.

Proof.

- Base (n=1) : obviously holds for any $c \ge 1$
- Induction:

$$T(n) = 3T(n/4) + n^2$$

 $\leq 3c(n/4)^2 + n^2$
 $= cn^2 - (13c/16 - 1)n^2$
 $\leq cn^2$,

whenever $13c/16 - 1 \ge 0$, or $c \ge 16/13$.

$$T(n) = \begin{cases} T(n/3) + T(2n/3) + n, & \text{if } n > 2, \\ 1, & \text{if } n = 1, 2. \end{cases}$$

$$T(n) = \begin{cases} T(n/3) + T(2n/3) + n, & \text{if } n > 2, \\ 1, & \text{if } n = 1, 2. \end{cases}$$

$$T(n)$$

$$T(n) = \begin{cases} T(n/3) + T(2n/3) + n, & \text{if } n > 2, \\ 1, & \text{if } n = 1, 2. \end{cases}$$

$$T(n) = \begin{cases} T(n/3) + T(2n/3) + n, & \text{if } n > 2, \\ 1, & \text{if } n = 1, 2. \end{cases}$$

$$T(n) = \begin{cases} T(n/3) + T(2n/3) + n, & \text{if } n > 2, \\ 1, & \text{if } n = 1, 2. \end{cases}$$

$$T(n) = \begin{cases} T(n/3) + T(2n/3) + n, & \text{if } n > 2, \\ 1, & \text{if } n = 1, 2. \end{cases}$$

$$T(n) = \begin{cases} T(n/3) + T(2n/3) + n, & \text{if } n > 2, \\ 1, & \text{if } n = 1, 2. \end{cases}$$

Prove $T(n) \le cn \log n$ by induction, where c is a large constant.

$$T(n) = \begin{cases} T(n/3) + T(2n/3) + n, & \text{if } n > 2, \\ 1, & \text{if } n = 1, 2. \end{cases}$$

Prove $T(n) \le cn \log n$ by induction, where c is a large constant.

Proof.

• Base (n=2) : obviously holds for any $c \ge 1/2$

$$T(n) = \begin{cases} T(n/3) + T(2n/3) + n, & \text{if } n > 2, \\ 1, & \text{if } n = 1, 2. \end{cases}$$

Prove $T(n) \le cn \log n$ by induction, where c is a large constant.

Proof.

- Base (n=2) : obviously holds for any $c \ge 1/2$
- Induction:

$$T(n) = T(n/3) + T(2n/3) + n$$

$$\leq c(n/3) \log(n/3) + c(2n/3) \log(2n/3) + n$$

$$= cn \log n - c((n/3) \log 3 + (2n/3) \log(3/2)) + n$$

$$= cn \log n - cn(\log 3 - 2/3) + n$$

$$\leq cn \log n,$$

as long as $c \ge 1/(\log 3 - 2/3)$.

Outline

- Asymptotic Notations (新近记号)
 - Big-Oh
 - Big-Omega
 - Big-Theta
 - Algorithm Design and Algorithm Turing
- Solving Recurrences
 - Recursion-tree Method (递归树法)
 - Substitution Method (代入法/替代法)
 - Master Method and Master Theorem (主方法)

Master Theorem

If $T(n) = aT\left(\left[\frac{n}{b}\right]\right) + O(n^d)$ for some constant a > 0, b > 1 and $d \ge 0$, then

$$T(n) = \begin{cases} O(n^d), & \text{if } d > \log_b a \\ O(n^d \log n), & \text{if } d = \log_b a \\ O(n^{\log_b a}), & \text{if } d < \log_b a \end{cases}$$

Proof of the Master Theorem

If $T(n) = aT(\left[\frac{n}{b}\right]) + O(n^d)$ for some constant a > 0, b > 1 and $d \ge 0$, then

$$T(n) = \begin{cases} O(n^d), & \text{if } d > \log_b a \\ O(n^d \log n), & \text{if } d = \log_b a \\ O(n^{\log_b a}), & \text{if } d < \log_b a \end{cases}$$

For the sake of convenience, we assume that n is a power of b. This will not influence the final bound in any important way—n is at most a multiplicative factor of b away from some power of b—and it will allow us to ignore the rounding effect in $\lceil \frac{n}{b} \rceil$.

Proof of the Master Theorem

Proof of the Master Theorem

If $T(n) = aT\left(\frac{n}{b}\right) + O(n^d)$ for some constant a > 0, b > 1 and $d \ge 0$, then

$$T(n) = \begin{cases} O(n^d), & \text{if } d > \log_b a \\ O(n^d \log n), & \text{if } d = \log_b a \\ O(n^{\log_b a}), & \text{if } d < \log_b a \end{cases}$$

- The size of the subproblems decreases by a factor of b with each level of recursion, and therefore reaches the base case after log_bn levels. This is the height of the recursion tree.
- The k-th level of the tree is made up of a^k subproblems, each of size n/b^k
- The total work done at this level is

$$a^k \times O\left(\frac{n}{h^k}\right)^d = O(n^d) \times \left(\frac{a}{h^d}\right)^k$$

Proof of the Master theorem

It comes down to the following three cases.

• The ratio a/b^d is less than 1 ($a/b^d < 1$). Then the series is decreasing, and its sum is just given by its first term, $O(n^d)$.

Proof of the Master theorem

It comes down to the following three cases.

- The ratio a/b^d is less than 1 (a/b^d <1). Then the series is decreasing, and its sum is just given by its first term, $O(n^d)$.
- The ratio a/b^d is greater than 1 (a/b^d>1). The series is increasing and its sum is given by its last term, $O(n^{\log_b a})$:

$$n^d \left(\frac{a}{L^d}\right)^{\log_b n} = 1$$

It comes down to the following three cases.

- The ratio a/b^d is less than 1 (a/b^d <1). Then the series is decreasing, and its sum is just given by its first term, $O(n^d)$.
- The ratio a/b^d is greater than 1 ($a/b^d > 1$). The series is increasing and its sum is given by its last term, $O(n^{\log_b a})$:

$$n^d \left(\frac{a}{b^d}\right)^{\log_b n} = n^d \left(\frac{a^{\log_b n}}{\left(b^{\log_b n}\right)^d}\right) =$$

It comes down to the following three cases.

- The ratio a/b^d is less than 1 (a/b^d <1). Then the series is decreasing, and its sum is just given by its first term, $O(n^d)$.
- The ratio a/b^d is greater than 1 (a/b^d>1). The series is increasing and its sum is given by its last term, $O(n^{\log_b a})$:

$$n^d \left(\frac{a}{\ln d}\right)^{\log_b n} = n^d \left(\frac{a^{\log_b n}}{\left(b^{\log_b n}\right)^d}\right) = a^{\log_b n} = a^{(\log_a n)(\log_b a)}$$

=

It comes down to the following three cases.

- The ratio a/b^d is less than 1 (a/b^d <1). Then the series is decreasing, and its sum is just given by its first term, $O(n^d)$.
- The ratio a/b^d is greater than 1 ($a/b^d > 1$). The series is increasing and its sum is given by its last term, $O(n^{\log_b a})$:

$$n^{d} \left(\frac{a}{b^{d}}\right)^{\log_{b} n} = n^{d} \left(\frac{a^{\log_{b} n}}{\left(b^{\log_{b} n}\right)^{d}}\right) = a^{\log_{b} n} = a^{(\log_{a} n)(\log_{b} a)}$$
$$= n^{\log_{b} a}$$

It comes down to the following three cases.

- The ratio a/b^d is less than 1 ($a/b^d < 1$). Then the series is decreasing, and its sum is just given by its first term, $O(n^d)$.
- The ratio a/b^d is greater than 1 ($a/b^d > 1$). The series is increasing and its sum is given by its last term, $O(n^{\log_b a})$:

$$n^{d} \left(\frac{a}{b^{d}}\right)^{\log_{b} n} = n^{d} \left(\frac{a^{\log_{b} n}}{\left(b^{\log_{b} n}\right)^{d}}\right) = a^{\log_{b} n} = a^{(\log_{a} n)(\log_{b} a)}$$
$$= n^{\log_{b} a}$$

The ratio a/b^d is exactly 1 (a/b^d=1).
 In this case all O(log n) terms of the series are equal to O(n^d).

If $T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$ for some constant a > 0, b > 1 and $d \ge 0$, then

$$T(n) = \begin{cases} O(n^d), & \text{if } d > \log_b a \\ O(n^d \log n), & \text{if } d = \log_b a \\ O(n^{\log_b a}), & \text{if } d < \log_b a \end{cases}$$

Example 1:
$$T(n) = 3T\left(\frac{n}{2}\right) + n$$

If $T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$ for some constant a > 0, b > 1 and $d \ge 0$, then

$$T(n) = \begin{cases} O(n^d), & \text{if } d > \log_b a \\ O(n^d \log n), & \text{if } d = \log_b a \\ O(n^{\log_b a}), & \text{if } d < \log_b a \end{cases}$$

Example 1:
$$T(n) = 3T(\frac{n}{2}) + n$$

• a = 3, b = 2, d = 1, $d < log_b a$

If $T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$ for some constant a > 0, b > 1 and $d \ge 0$, then

$$T(n) = \begin{cases} O(n^d), & \text{if } d > \log_b a \\ O(n^d \log n), & \text{if } d = \log_b a \\ O(n^{\log_b a}), & \text{if } d < \log_b a \end{cases}$$

Example 1:
$$T(n) = 3T(\frac{n}{2}) + n$$

- a = 3, b = 2, d = 1, $d < log_b a$
- $T(n) = O(n^{\log_b a}) = O(n^{\log 3})$

If $T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$ for some constant a > 0, b > 1 and $d \ge 0$, then

$$T(n) = \begin{cases} O(n^d), & \text{if } d > \log_b a \\ O(n^d \log n), & \text{if } d = \log_b a \\ O(n^{\log_b a}), & \text{if } d < \log_b a \end{cases}$$

Example 2:
$$T(n) = 3T(\frac{n}{4}) + n^5$$

If $T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$ for some constant a > 0, b > 1 and $d \ge 0$, then

$$T(n) = \begin{cases} O(n^d), & \text{if } d > \log_b a \\ O(n^d \log n), & \text{if } d = \log_b a \\ O(n^{\log_b a}), & \text{if } d < \log_b a \end{cases}$$

Example 2:
$$T(n) = 3T(\frac{n}{4}) + n^5$$

• a = 3, b = 4, d = 5, $d > log_b a$

If $T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$ for some constant a > 0, b > 1 and $d \ge 0$, then

$$T(n) = \begin{cases} O(n^d), & \text{if } d > \log_b a \\ O(n^d \log n), & \text{if } d = \log_b a \\ O(n^{\log_b a}), & \text{if } d < \log_b a \end{cases}$$

Example 2:
$$T(n) = 3T(\frac{n}{4}) + n^5$$

- a = 3, b = 4, d = 5, $d > log_b a$
- $T(n) = O(n^d) = O(n^5)$

If $T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$ for some constant a > 0, b > 1 and $d \ge 0$, then

$$T(n) = \begin{cases} O(n^d), & \text{if } d > \log_b a \\ O(n^d \log n), & \text{if } d = \log_b a \\ O(n^{\log_b a}), & \text{if } d < \log_b a \end{cases}$$

Example 3:
$$T(n) = 4T(\frac{n}{2}) + n^2$$

If $T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$ for some constant a > 0, b > 1 and $d \ge 0$, then

$$T(n) = \begin{cases} O(n^d), & \text{if } d > \log_b a \\ O(n^d \log n), & \text{if } d = \log_b a \\ O(n^{\log_b a}), & \text{if } d < \log_b a \end{cases}$$

Example 3:
$$T(n) = 4T(\frac{n}{2}) + n^2$$

• a = 4, b = 2, d = 2, $d = log_b a$

If $T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$ for some constant a > 0, b > 1 and $d \ge 0$, then

$$T(n) = \begin{cases} O(n^d), & \text{if } d > \log_b a \\ O(n^d \log n), & \text{if } d = \log_b a \\ O(n^{\log_b a}), & \text{if } d < \log_b a \end{cases}$$

Example 3:
$$T(n) = 4T(\frac{n}{2}) + n^2$$

- a = 4, b = 2, d = 2, $d = log_b a$
- $T(n) = O(n^d \log n) = O(n^2 \log n)$

Part I: Divide and Conquer

Maximum Contiguous Subarray Problem and Counting Inversion Problem

Outline

- Introduction to Part I
- Maximum Contiguous Subarray Problem
 - Problem definition
 - A brute force algorithm
 - A data-reuse algorithm
 - A divide-and-conquer algorithm
 - Analysis of the divide-and-conquer algorithm
- Counting Inversions Problem
 - Problem definition
 - A brute force algorithm
 - A divide-and-conquer algorithm
 - Analysis of the divide-and-conquer algorithm

Outline

- Introduction to Part I
- Maximum Contiguous Subarray Problem
 - Problem definition
 - A brute force algorithm
 - A data-reuse algorithm
 - A divide-and-conquer algorithm
 - Analysis of the divide-and-conquer algorithm
- Counting Inversions Problem
 - Problem definition
 - A brute force algorithm
 - A divide-and-conquer algorithm
 - Analysis of the divide-and-conquer algorithm

• Divide-and-conquer (D&C) is an important algorithm design paradigm.

• Divide-and-conquer (D&C) is an important algorithm design paradigm.

Divide

Dividing a given problem into two or more subproblems (ideally of approximately equal size)

 Divide-and-conquer (D&C) is an important algorithm design paradigm.

Divide

Dividing a given problem into two or more subproblems (ideally of approximately equal size)

Conquer

Solving each subproblem (directly if small enough or recursively)

 Divide-and-conquer (D&C) is an important algorithm design paradigm.

Divide

Dividing a given problem into two or more subproblems (ideally of approximately equal size)

Conquer

Solving each subproblem (directly if small enough or recursively)

Combine

Combining the solutions of the subproblems into a global solution

- In Part I, we will illustrate Divide-and-Conquer using several examples:
 - Maximum Contiguous Subarray (最大子数组)
 - Counting Inversions (逆序计数)
 - Integer Multiplication (整数乘法)
 - Polynomial Multiplication (多项式乘法)
 - QuickSort and Partition (快速排序与划分)
 - Deterministic and Randomized Selection (确定性 与随机化选择)

Outline

- Introduction to Part I
- Maximum Contiguous Subarray Problem
 - Problem definition
 - A brute force algorithm
 - A data-reuse algorithm
 - A divide-and-conquer algorithm
 - Analysis of the divide-and-conquer algorithm
- Counting Inversions Problem
 - Problem definition
 - A brute force algorithm
 - A divide-and-conquer algorithm
 - Analysis of the divide-and-conquer algorithm

ACME Corp¹ – PROFIT HISTORY

Year	1	2	3	4	5	6	7	8	9
Profit M\$	-3	2	1	-4	5	2	-1	3	-1

¹A Company that Makes Everything

ACME Corp¹ – PROFIT HISTORY

Year	1	2	3	4	5	6	7	8	9
Profit M\$	-3	2	1	-4	5	2	-1	3	-1

Between years 1 and 9:

• ACME earned
$$-3 + 2 + 1 - 4 + 5 + 2 - 1 + 3 - 1 = 4$$
 M\$

¹A Company that Makes Everything

ACME Corp¹ – PROFIT HISTORY

Year	1	2	3	4	5	6	7	8	9
Profit M\$	-3	2	1	-4	5	2	-1	3	-1

Between years 1 and 9:

• ACME earned
$$-3 + 2 + 1 - 4 + 5 + 2 - 1 + 3 - 1 = 4$$
 M\$

Between years 2 and 6:

• ACME earned 2 + 1 - 4 + 5 + 2 = 6 M\$

¹A Company that Makes Everything

ACME Corp¹ – PROFIT HISTORY

Year	1	2	3	4	5	6	7	8	9
Profit M\$	-3	2	1	-4	5	2	-1	3	-1

Between years 1 and 9:

• ACME earned
$$-3 + 2 + 1 - 4 + 5 + 2 - 1 + 3 - 1 = 4$$
 M\$

Between years 2 and 6:

• ACME earned
$$2+1-4+5+2=6$$
 M\$

Between years 5 and 8:

• ACME earned 5 + 2 - 1 + 3 = 9 M\$

¹A Company that Makes Everything

ACME Corp¹ – PROFIT HISTORY

Year	1	2	3	4	5	6	7	8	9
Profit M\$	-3	2	1	-4	5	2	-1	3	-1

Between years 1 and 9:

• ACME earned
$$-3 + 2 + 1 - 4 + 5 + 2 - 1 + 3 - 1 = 4$$
 M\$

Between years 2 and 6:

• ACME earned
$$2+1-4+5+2=6$$
 M\$

Between years 5 and 8:

• ACME earned 5 + 2 - 1 + 3 = 9 M\$

Problem: Find the span of years in which ACME earned the most

¹A Company that Makes Everything

ACME Corp¹ – PROFIT HISTORY

Year	1	2	3	4	5	6	7	8	9
Profit M\$	-3	2	1	-4	5	2	-1	3	-1

Between years 1 and 9:

• ACME earned
$$-3 + 2 + 1 - 4 + 5 + 2 - 1 + 3 - 1 = 4$$
 M\$

Between years 2 and 6:

• ACME earned
$$2+1-4+5+2=6$$
 M\$

Between years 5 and 8:

• ACME earned
$$5 + 2 - 1 + 3 = 9$$
 M\$

如果所有数组元素 都是非负数,整个 数组和肯定是最大

Problem: Find the span of years in which ACME earned the most

Answer: Year 5-8, 9 M\$

¹A Company that Makes Everything

Formal Definition

• Input: An array of reals A[1...n]

Formal Definition

- Input: An array of reals A[1...n]
- The value of subarray A[i...j] is

$$V(i,j) = \sum_{x=i}^{j} A(x)$$

Formal Definition

- Input: An array of reals A[1...n]
- The value of subarray A[i...j] is

$$V(i,j) = \sum_{x=i}^{j} A(x)$$

Definition (Maximum Contiguous Subarray Problem)

Find $i \leq j$ such that V(i,j) is maximized.

Outline

- Introduction to Part I
- Maximum Contiguous Subarray Problem
 - Problem definition
 - A brute force algorithm
 - A data-reuse algorithm
 - A divide-and-conquer algorithm
 - Analysis of the divide-and-conquer algorithm
- Counting Inversions Problem
 - Problem definition
 - A brute force algorithm
 - A divide-and-conquer algorithm
 - Analysis of the divide-and-conquer algorithm

```
VMAX \leftarrow A[1];
```

```
VMAX \leftarrow A[1];
for i \leftarrow 1 to n do
     for j \leftarrow i to n do
          // calculate V(i,j)
          V \leftarrow 0;
          for x \leftarrow i to j do
            V \leftarrow V + A[x];
          end
```

```
VMAX \leftarrow A[1];
for i \leftarrow 1 to n do
    for j \leftarrow i to n do
         // calculate V(i,j)
         V \leftarrow 0;
         for x \leftarrow i to j do
           V \leftarrow V + A[x];
         end
         if V > VMAX then
             VMAX \leftarrow V;
         end
    end
end
return VMAX
```

A Brute Force Algorithm

Calculate the value of V(i,j) for each pair $i \leq j$ and return the maximum value

```
VMAX \leftarrow A[1];
for i \leftarrow 1 to n do
    for j \leftarrow i to n do
         // calculate V(i,j)
         V \leftarrow 0;
         for x \leftarrow i to j do
           V \leftarrow V + A[x];
         end
         if V > VMAX then
             VMAX \leftarrow V;
         end
    end
end
return VMAX
```

 $O(n^3)$ arithmetic additions

Outline

- Introduction to Part I
- Maximum Contiguous Subarray Problem
 - Problem definition
 - A brute force algorithm
 - A data-reuse algorithm
 - A divide-and-conquer algorithm
 - Analysis of the divide-and-conquer algorithm
- Counting Inversions Problem
 - Problem definition
 - A brute force algorithm
 - A divide-and-conquer algorithm
 - Analysis of the divide-and-conquer algorithm

Idea:

• don't need to calculate each V(i, j) from scratch

Idea

- don't need to calculate each V(i, j) from scratch
- exploit the fact: $V(i,j) = \sum_{x=i}^{j} A[x] = V(i,j-1) + A[j]$

Idea:

- don't need to calculate each V(i, j) from scratch
- exploit the fact: $V(i,j) = \sum_{x=i}^{j} A[x] = V(i,j-1) + A[j]$

```
VMAX \leftarrow A[1];
for i \leftarrow 1 to n do
     V \leftarrow 0;
     for j \leftarrow i to n do
          // calculate V(i,j)
          V \leftarrow V + A[j];
```

Idea:

- don't need to calculate each V(i, j) from scratch
- exploit the fact: $V(i,j) = \sum_{x=i}^{j} A[x] = V(i,j-1) + A[j]$

```
VMAX \leftarrow A[1];
for i \leftarrow 1 to n do
     V \leftarrow 0:
    for j \leftarrow i to n do
         // calculate V(i,j)
       V \leftarrow V + A[j];
         if V > VMAX then
          | VMAX \leftarrow V;
         end
    end
end
return VMAX
```

Idea:

- don't need to calculate each V(i, j) from scratch
- exploit the fact: $V(i,j) = \sum_{x=i}^{j} A[x] = V(i,j-1) + A[j]$

```
VMAX \leftarrow A[1];
for i \leftarrow 1 to n do
    V \leftarrow 0:
    for j \leftarrow i to n do
         // calculate V(i,j)
       V \leftarrow V + A[j];
        if V > VMAX then
          VMAX \leftarrow V;
         end
    end
end
return VMAX
```

 $O(n^2)$ arithmetic additions

Outline

- Introduction to Part I
- Maximum Contiguous Subarray Problem
 - Problem definition
 - A brute force algorithm
 - A data-reuse algorithm
 - A divide-and-conquer algorithm
 - Analysis of the divide-and-conquer algorithm
- Counting Inversions Problem
 - Problem definition
 - A brute force algorithm
 - A divide-and-conquer algorithm
 - Analysis of the divide-and-conquer algorithm

Set
$$m = \lfloor (n+1)/2 \rfloor$$

 $A_1 = MCS$ on left containing A[M] $A_2 = MCS$ on right containing A[M+1] $A = A_1 U A_2$

Set
$$m = \lfloor (n+1)/2 \rfloor$$

The MCS S must be one of

Set
$$m = \lfloor (n+1)/2 \rfloor$$

 $A_1 = MCS$ on left containing A[M] $A_2 = MCS$ on right containing A[M+1] A = A + 1 + U + A + 2

The MCS S must be one of

• S_1 : the MCS in $A[1 \dots m]$

Set
$$m = \lfloor (n+1)/2 \rfloor$$

 $A_1 = MCS$ on left containing A[M] $A_2 = MCS$ on right containing A[M+1] A = A + 1 + U + A + 2

The MCS S must be one of

- **①** S_1 : the MCS in $A[1 \dots m]$
- ② S_2 : the MCS in A[m+1...n]

Set
$$m = \lfloor (n+1)/2 \rfloor$$

 $A_1 = MCS$ on left containing A[M] $A_2 = MCS$ on right containing A[M+1] A = A + 1 + U + A + 2

The MCS S must be one of

- S_1 : the MCS in $A[1 \dots m]$
- ② S_2 : the MCS in A[m+1...n]
- A: the MCS across the cut.

Set
$$m = \lfloor (n+1)/2 \rfloor$$

The MCS S must be one of

- \circ S_1 : the MCS in $A[1 \dots m]$
- ② S_2 : the MCS in A[m+1...n]
- **3** A: the MCS across the cut.

So,

最终,在S₁,S₂和A(跨越中点的最大子数组)这三种情况中选取和最大者

$$S =$$
the best among $\{S_1, S_2, A\}$

1 -5 4 2 -7 3 6 -1 2 -4 7 -10 2 6 1 -3

• $S_1 =$

1 -5 4 2 -7 3 6 -1 2 -4 7 -10 2 6 1 -3

• $S_1 = [3, 6]$ and $S_2 =$

1 -5 4 2 -7 3 6 -1 2 -4 7 -10 2 6 1 -3

• $S_1 = [3, 6]$ and $S_2 = [2, 6, 1]$

1 | -5 | 4 | 2 | -7 | 3 | 6 | -1 | | 2 | -4 | 7 | -10 | 2 | 6 | 1 | -3

• $A_1 =$

1 -5 4 2 -7 3 6 -1 2 -4 7 -10 2 6 1 -3

• $S_1 = [3, 6]$ and $S_2 = [2, 6, 1]$

1 | -5 | 4 | 2 | -7 | 3 | 6 | -1 | 2 | -4 | 7 | -10 | 2 | 6 | 1 | -3

• $A_1 = [3, 6, -1]$ and $A_2 =$

- $A_1 = [3, 6, -1]$ and $A_2 = [2, -4, 7]$
- $A = A_1 \cup A_2 =$

- $A_1 = [3, 6, -1]$ and $A_2 = [2, -4, 7]$
- $A = A_1 \cup A_2 = [3, 6, -1, 2, -4, 7]$

- $A_1 = [3, 6, -1]$ and $A_2 = [2, -4, 7]$
- $A = A_1 \cup A_2 = [3, 6, -1, 2, -4, 7]$

- $Value(S_1) = 9$; $Value(S_2) = 9$; Value(A) = 13
- solution:

- $A_1 = [3, 6, -1]$ and $A_2 = [2, -4, 7]$
- $A = A_1 \cup A_2 = [3, 6, -1, 2, -4, 7]$

- $Value(S_1) = 9$; $Value(S_2) = 9$; Value(A) = 13
- solution: A

Divide: MCS across The Cut

Set
$$m = \lfloor (n+1)/2 \rfloor$$

 $A_1 = MCS$ on left containing A[M] $A_2 = MCS$ on right containing A[M+1] $A = A_1 U A_2$

Divide: MCS across The Cut

Set
$$m = \lfloor (n+1)/2 \rfloor$$

$$A = A_1 \cup A_2$$

A₁: MCS among contiguous subarrays ending at A[m]

Divide: MCS across The Cut

Set
$$m = \lfloor (n+1)/2 \rfloor$$

$$A = A_1 \cup A_2$$

- A₁: MCS among contiguous subarrays ending at A[m]
- A₂: MCS among contiguous subarrays starting at A[m+1]

 A_1 is in the form $A[i \dots m]$, V(i, m) = V(i + 1, m) + A[i]

```
\mathsf{MAX} \leftarrow A[m];
\mathsf{SUM} \leftarrow A[m];
```


 A_1 is in the form $A[i \dots m]$, V(i, m) = V(i + 1, m) + A[i]

```
MAX \leftarrow A[m];
SUM \leftarrow A[m];
for i \leftarrow m-1 downto 1 do
    SUM \leftarrow SUM + A[i];
```



```
MAX \leftarrow A[m];
SUM \leftarrow A[m];
for i \leftarrow m-1 downto 1 do
    SUM \leftarrow SUM + A[i];
    if SUM > MAX then
        MAX \leftarrow SUM;
    end
end
```



```
MAX \leftarrow A[m];
SUM \leftarrow A[m];
for i \leftarrow m-1 downto 1 do
    SUM \leftarrow SUM + A[i];
    if SUM > MAX then
        MAX \leftarrow SUM;
    end
end
A_1 = MAX;
```

There are only m sequences of the form

- There are only m sequences of the form
 - A_1 can be found in O(m) time

- There are only m sequences of the form
 - A_1 can be found in O(m) time

• Similarly, A_2 is in the form A[m+1...j]

- There are only m sequences of the form
 - A_1 can be found in O(m) time

- Similarly, A_2 is in the form A[m+1...j]
 - there are only n-m such sequences

- There are only m sequences of the form
 - A_1 can be found in O(m) time

- Similarly, A_2 is in the form A[m+1...j]
 - there are only n-m such sequences
 - A_2 can be found in O(n-m) time

- There are only m sequences of the form
 - A_1 can be found in O(m) time

- Similarly, A_2 is in the form A[m+1...j]
 - there are only n-m such sequences
 - A_2 can be found in O(n-m) time

• $A = A_1 \cup A_2$ can be found in O(n) time

- There are only m sequences of the form
 - A_1 can be found in O(m) time

- Similarly, A_2 is in the form A[m+1...j]
 - there are only n-m such sequences
 - A_2 can be found in O(n-m) time

- $A = A_1 \cup A_2$ can be found in O(n) time
 - linear to the input size

MCS(A, s, t)

Input: $A[s \dots t]$ with $s \leq t$

Output: MCS of $A[s \dots t]$

```
Input: A[s \dots t] with s \le t
Output: MCS of A[s...t]
begin
   if s = t then return A[s];
```

```
Input: A[s \dots t] with s \le t
Output: MCS of A[s...t]
begin
    if s = t then return A[s];
    else
         m \leftarrow \lfloor \frac{s+t}{2} \rfloor;
         Find MCS(A, s, m);
```

```
Input: A[s \dots t] with s \le t
Output: MCS of A[s...t]
begin
    if s = t then return A[s];
    else
        m \leftarrow \lfloor \frac{s+t}{2} \rfloor;
        Find MCS(A, s, m);
        Find MCS(A, m + 1, t);
```

```
Input: A[s \dots t] with s \le t
Output: MCS of A[s...t]
begin
   if s = t then return A[s];
    else
        m \leftarrow \lfloor \frac{s+t}{2} \rfloor;
        Find MCS(A, s, m);
        Find MCS(A, m + 1, t);
        Find MCS that contains both A[m] and A[m+1];
```

```
Input: A[s \dots t] with s \le t
Output: MCS of A[s...t]
begin
   if s = t then return A[s];
   else
       m \leftarrow \lfloor \frac{s+t}{2} \rfloor;
       Find MCS(A, s, m);
       Find MCS(A, m + 1, t);
       Find MCS that contains both A[m] and A[m+1];
       return maximum of the three sequences found
   end
```

```
Input: A[s \dots t] with s \le t
Output: MCS of A[s...t]
begin
   if s = t then return A[s];
   else
       m \leftarrow \lfloor \frac{s+t}{2} \rfloor;
       Find MCS(A, s, m);
       Find MCS(A, m + 1, t);
       Find MCS that contains both A[m] and A[m+1];
       return maximum of the three sequences found
   end
end
```

MCS(A, s, t)

```
Input: A[s \dots t] with s \le t
Output: MCS of A[s...t]
begin
   if s = t then return A[s];
   else
       m \leftarrow \lfloor \frac{s+t}{2} \rfloor;
       Find MCS(A, s, m);
       Find MCS(A, m + 1, t);
       Find MCS that contains both A[m] and A[m+1];
       return maximum of the three sequences found
   end
end
```

First Call: MCS(A, 1, n)

6 -4 7 -4 0 1

6 -4 7 -4 0 1

Divide

Divide

Divide

Divide

MCS={6} | MCS={-4} A={6,-4} Value(A)=2 MCS={6}

Divide

MCS={6} MCS={-4} \A={6,-4} \Value(A)=2 MCS={6} MCS={7}

Divide

Outline

- Introduction to Part I
- Maximum Contiguous Subarray Problem
 - Problem definition
 - A brute force algorithm
 - A data-reuse algorithm
 - A divide-and-conquer algorithm
 - Analysis of the divide-and-conquer algorithm
- Counting Inversions Problem
 - Problem definition
 - A brute force algorithm
 - A divide-and-conquer algorithm
 - Analysis of the divide-and-conquer algorithm

- n: problem size (n = t s + 1)
- T(n): time needed to run MCS(A, s, t)

- n: problem size (n = t s + 1)
- T(n): time needed to run MCS(A, s, t)

begin if s = t then return A[s] // O(1)

- n: problem size (n = t s + 1)
- T(n): time needed to run MCS(A, s, t)

```
begin

if s = t then return A[s] // O(1)

else

m \leftarrow \lfloor \frac{s+t}{2} \rfloor;
Find MCS(A, s, m); // T(\lceil \frac{n}{2} \rceil)
```

- n: problem size (n = t s + 1)
- T(n): time needed to run MCS(A, s, t)

- n: problem size (n = t s + 1)
- T(n): time needed to run MCS(A, s, t)

- n: problem size (n = t s + 1)
- T(n): time needed to run MCS(A, s, t)

- n: problem size (n = t s + 1)
- T(n): time needed to run MCS(A, s, t)

```
begin
    if s = t then return A[s] // O(1)
    else
         m \leftarrow \left| \frac{s+t}{2} \right|;
         Find MCS(A, s, m); // T(\lceil \frac{n}{2} \rceil)
         Find MCS(A, m + 1, t); // T(\lfloor \frac{n}{2} \rfloor)
         Find MCS that contains both A[m] and A[m+1]; // O(n)
         return maximum of the three sequences found // 0(1)
    end
end
```

- n: problem size (n = t s + 1)
- T(n): time needed to run MCS(A, s, t)

```
begin
    if s = t then return A[s] // O(1)
    else
         m \leftarrow \left| \frac{s+t}{2} \right|;
         Find MCS(A, s, m); // T(\lceil \frac{n}{2} \rceil)
         Find MCS(A, m + 1, t); // T(\lfloor \frac{n}{2} \rfloor)
         Find MCS that contains both A[m] and A[m+1]; // O(n)
         return maximum of the three sequences found // 0(1)
    end
end
```

$$T(1) = O()$$

- n: problem size (n = t s + 1)
- T(n): time needed to run MCS(A, s, t)

```
begin
    if s = t then return A[s] // O(1)
    else
         m \leftarrow \left| \frac{s+t}{2} \right|;
         Find MCS(A, s, m); // T(\lceil \frac{n}{2} \rceil)
         Find MCS(A, m + 1, t); // T(\lfloor \frac{n}{2} \rfloor)
         Find MCS that contains both A[m] and A[m+1]; // O(n)
         return maximum of the three sequences found // 0(1)
    end
end
```

$$T(1) = O(1)$$

- n: problem size (n = t s + 1)
- T(n): time needed to run MCS(A, s, t)

```
begin
    if s = t then return A[s] // O(1)
    else
         m \leftarrow \left| \frac{s+t}{2} \right|;
         Find MCS(A, s, m); // T(\lceil \frac{n}{2} \rceil)
         Find MCS(A, m + 1, t); // T(\lfloor \frac{n}{2} \rfloor)
         Find MCS that contains both A[m] and A[m+1]; // O(n)
         return maximum of the three sequences found // 0(1)
    end
end
```

To simplify the analysis, we assume that n is a power of 2

$$T(n) = \begin{cases} 2T(n/2) + n, & \text{if } n > 1, \\ 1, & \text{if } n = 1. \end{cases}$$

To simplify the analysis, we assume that n is a power of 2

$$T(n) = \begin{cases} 2T(n/2) + n, & \text{if } n > 1, \\ 1, & \text{if } n = 1. \end{cases}$$

In the MCS problem, we saw 3 different algorithms for solving the maximum contiguous subarray problem

A O(n³) brute force algorithm

In the MCS problem, we saw 3 different algorithms for solving the maximum contiguous subarray problem

- A O(n³) brute force algorithm
- A O(n²) algorithm that reuses data

In the MCS problem, we saw 3 different algorithms for solving the maximum contiguous subarray problem

- A O(n³) brute force algorithm
- A O(n²) algorithm that reuses data
- A O(n log n) divide-and-conquer algorithm

In the MCS problem, we saw 3 different algorithms for solving the maximum contiguous subarray problem

- A O(n³) brute force algorithm
- A O(n²) algorithm that reuses data
- A O(n log n) divide-and-conquer algorithm

Can you solve the problem in O(n) time?

Outline

- Introduction to Part I
- Maximum Contiguous Subarray Problem
 - Problem definition
 - A brute force algorithm
 - A data-reuse algorithm
 - A divide-and-conquer algorithm
 - Analysis of the divide-and-conquer algorithm
- Counting Inversions Problem
 - Problem definition
 - A brute force algorithm
 - A divide-and-conquer algorithm
 - Analysis of the divide-and-conquer algorithm