

Figura 5.1.2 Volumen bajo la gráfica z=1-x y sobre $R=[0,1]\times[0,1].$

Figura 5.1.3 Volumen bajo $z=x^2+y^2$ y sobre $R=[-1,1]\times[0,1].$

Estas ideas son similares a las de la integral simple $\int_a^b f(x) dx$, que representa el área bajo la gráfica de f si $f \ge 0$; véase la Figura 5.1.4.¹

Las integrales simples $\int_a^b f(x) \, dx$ se pueden definir de forma rigurosa, sin recurrir al concepto de área, como el límite de sumas de Riemann. La idea es aproximar $\int_a^b f(x) \, dx$ eligiendo una partición $a = x_0 < x_1 < \cdots < x_n = b$ de [a,b], seleccionando puntos $c_i \in [x_i,x_{i+1}]$ y escribiendo la suma de Riemann

$$\sum_{i=0}^{n-1} f(c_i)(x_{i+1} - x_i) \approx \int_a^b f(x) \, dx$$

(véase la Figura 5.1.5). Vamos a examinar el proceso análogo para integrales dobles en la siguiente sección.

Figura 5.1.4 El área bajo la gráfica de una función continua no negativa f desde x=a a x=b es $\int_a^b f(x) \, dx$.

Figura 5.1.5 La suma de las áreas de los rectángulos sombreados es una suma de Riemann, que aproxima al área bajo f desde x=a hasta x=b.

¹Los lectores que no estén familiarizados con esta idea deberían repasar las secciones apropiadas de su libro de introducción al cálculo.