

Линейное программирование. Симплекс метод

Камзолов Дмитрий

kamzolov.dmitry@phystech.edu

20 ноября 2018

План

- 🚺 Создание задачи линейного программирования
 - Канторович Л.В. (1939 г.)
 - Задача планирования производства
 - Формы задач ЛП
 - Преобразования задач
- Оимплекс-метод
 - Данциг Д. (1949 г.)
 - Многогранное множество
 - Симплекс-Метод для канонической задачи
 - Скорость сходимости
 - Реализации

Создание задачи линейного программирования Канторович Л.В. (1939 г.)

Рис. 1: Канторович Л.В.

портрет вып. Петровым-Водкиным

Создание задачи линейного программирования Задача планирования производства

- Фанерный трест производит два вида продукции: трехслойную и пятислойную фанеру.
- У треста имеется станок, который в каждый момент времени может склеивать лишь один тип фанеры.
- 1 м² первого типа фанеры делается 40 минут, второго типа 70 минут.
- Первый тип требует 2 слоя хвойных и 1 слой лиственный, второй 3 слоя хвойных и 2 лиственных.
- Один хвойный слой стоит 30 рублей за 1 м², один лиственный слой 20 рублей.
- Готовый лист трехслойной фанеры стоит 130 рублей, а пятислойной фанеры 200 рублей.
- Как тресту максимизировать свою прибыль за рабочий день в 8 часов?

Создание задачи линейного программирования Задача планирования производства

Переменные (Decision variables)

 x_i — переменные, которые мы можем изменять в процессе метода для получения оптимального решения.

 x_1, x_2 — количество м 2 трехслойных и пятислойных листов произведенных за день

Целевая функция

 $f(x) = c^T x$ — функция, которую мы хотим минимизировать (максимизировать).

 $130x_1 + 200x_2$ – доход от продажи произведенной фанеры.

Данные и ограничения

 $a_{i,j}$ — известные данные, которые указаны в задаче или подразумеваются природой объекта. На их основе мы можем записать ограничения в задаче оптимизации.

Создание задачи линейного программирования Задача планирования производства

max
$$130x_1 + 200x_2 - 30(y_0) - 20(z_0)$$

 $y_0 = y_1 + y_2, \quad z_0 = z_1 + z_2,$
 $x_1 = z_1, \quad x_1 = y_1/2,$
 $x_2 = z_2/2, \quad x_2 = y_2/3,$
 $40x_1 + 70x_2 \le 480,$
 $x_1, x_2, y_1, y_2, z_1, z_2 \ge 0$

Создание задачи линейного программирования Формы задач ЛП

Ограничения неравенства

$$\min \quad c^T x$$
$$Ax \le b, \quad x \ge 0$$

Ограничения равенства/ Каноническая форма

$$\min \quad c^T x$$
$$Ax = b, \quad x \ge 0$$

Общие ограничения

$$\begin{aligned} & \min \quad c^T x \\ & A_1 x \le b_1 \\ & A_2 x = b_2, \quad x \ge 0 \end{aligned}$$

Создание задачи линейного программирования Преобразования задач

Равенства ⇒ неравенства

$$Ax = b \Rightarrow Ax \le b, -b \le -Ax$$

Неравенства \Rightarrow равенства

$$Ax \le b \Rightarrow Ax + y = b, \ y \ge 0$$

$\mathbb{R} \Rightarrow \mathbb{R}_+$

$$x \in \mathbb{R} \Rightarrow z - y = x, \ z, y \ge 0$$

Замена целевой функции

$$\min c^T x \Rightarrow \min t, \quad c^T x - t = 0$$

Симплекс-метод Данциг Д. (1949 г.)

Рис. 2: Данциг Д.

Многогранное множество

Крайняя точка

x — крайняя точка множества, если она не является внутренней точкой какого-либо отрезка, лежащего в Q

Многогранное множество

Лемма 1

Для многогранного множества крайняя точка имеет n линейно независимых ограничений

Δ ок-во \Rightarrow

Пусть $x_0 \in Q$, $I_0 = \{i: (a_i, x_0) = b_i\}$ — мн-во активных ограничений. Если среди векторов a_i менее чем n линейно независимых, то однородная систма $(a_x, s) = 0$ имеет ненулевое решение s_0 и существуют точки $x_1, x_2 = x_0 \pm \alpha s_0 \in Q$. А значит x_0 не крайняя.

Док-во ←

 a_i-n линейно независимых, а $x_0=rac{x_1+x_2}{2}$. Тогда $b_i=(a_i,x_0)=rac{(a_i,x_1)+(a_i,x_2)}{2}\leq rac{b_i+b_i}{2}=b_i$, значит $x_1=x_2=x_0$.

Многогранное множество

Следствие

Число крайних точек многогранного множества конечно

Симплекс-Метод для канонической задачи

Каноническая задача

min
$$c^T x$$

 $Ax = b, \quad x \ge 0$
 $x \in \mathbb{R}^n, b \in \mathbb{R}^m$

Невырожденная вершина

x — невырожденная вершина, если число положительных компонент в ней равно m

Симплекс-Метод для канонической задачи

Этап 1

Пусть получена вершина x^k и $I_k = \{i : x_i^k\}$, $|I_k| = m$. Разобъем вектор x на две группы $x = \{u, v\}$, где $u \in \mathbb{R}^m$ отвечает за компоненты из I_k , $v \in \mathbb{R}^{n-m}$ компонентам не из I_k . Тогда система Ax = b переписывается, в виде

$$A_1u+A_2v=b$$

Этап 2

Из-за невырожденности вершины

$$u = A_1^{-1}(b - A_2v)$$

$$(c,x) = (c_1, u) + (c_2, v)$$

$$= (c_1, A_1^{-1}(b - A_2v)) + (c_2, v)$$

$$= (c_2 - A_2^T(A_1^{-1})^T c_1, v) + (c_1, A_1^{-1}b)$$

Этап 3

min
$$(c_2 - A_2^T (A_1^{-1})^T c_1, v)$$

 $A_1^{-1} (b - A_2 v) \ge 0, \ v \ge 0$

Этап 4

$$v_{k+1} = v_k + \gamma_k e_i,$$

где e_j — орт, для которого $(c_2-A_2^T(A_1^{-1})^Tc_1)_j$ отрицательна, $\gamma_k=\max\left\{\gamma\geq 0:A_1^{-1}(b-\gamma A_2e_j)\geq 0\right\}$

Симплекс-Метод для канонической задачи

Симплекс-метод Скорость сходимости

Оценка снизу

Так как вершин многогранного множества конечно, метод не зацикливается, значит сходится. А худшая оценка скорости равна кол-ву вершин, т.е. экспоненциальна.

Оценка сверху/ Klee-Minty cube

Существует задача, для которой симплекс-метод проходит по всем вершинам куба, т.е. достигает нижнюю экспоненциальную оценку.

- CPLEX пакет для решения LP и MILP, доступен для разных языков.
- CVXOPT открытый Python пакет для выпуклой оптимизации.
- OSQP открытая С библиотека для выпуклой квадратичной оптимизации.
- GLPK открытая С библиотека для решения LP и MILP.
- GUROBI коммерческий солвер для решения LP и MISOCP.
- MOSEK коммерческий солвер для решения LP и MISOCP, SDP.

Реализации

```
>>> from cvxopt import matrix, solvers
>>> A = matrix([ [-1.0, -1.0, 0.0, 1.0], [1.0, -1.0, -1.0, -2.0] ])
>>> b = matrix([1.0, -2.0, 0.0, 4.0])
>>> c = matrix([ 2.0, 1.0 ])
>>> sol=solvers.lp(c,A,b)
    pcost
               dcost
                       gap
                                 pres
                                        dres
                                              k/t
    2.6471e+00 -7.0588e-01 2e+01 8e-01 2e+00
0:
                                              1e+00
1:
    3.0726e+00 2.8437e+00 1e+00 1e-01 2e-01
                                              3e-01
2:
    2.4891e+00 2.4808e+00 1e-01 1e-02 2e-02
                                              5e-02
3: 2.4999e+00 2.4998e+00 1e-03 1e-04 2e-04 5e-04
4: 2.5000e+00 2.5000e+00 1e-05 1e-06 2e-06 5e-06
5:
    2.5000e+00 2.5000e+00 1e-07 1e-08 2e-08 5e-08
>>> print(sol['x'])
[ 5.00e-01]
[ 1.50e+00]
```

To be continued...

22 / 22