Matriz Diagonalizable

Autovectores

Álgebra II

1 Diagonalización de Matriz de T.L.

Dado $A \in \mathbb{R}^{nxn} \Rightarrow$ siempre existe una $f: \mathbb{R}^n \to \mathbb{R}^n / f(\vec{x}) = A \cdot \vec{x}$. En otras palabras, f es una T.L. y $||f||_{CC} = A$

1.1 Definición

Decimos que A es una matriz diagonalizable si y sólo si, al definir $f: \mathbb{R}^n \to \mathbb{R}^n / f(\vec{x}) = A \cdot \vec{x}$ existe una base B tal que $||f||_{BB}$ es una matriz diagonal, o sea existe una matriz $P = ||id||_{BC} / ||f||_{B} = P^{-1} \cdot A \cdot P$ (¿Por qué?)

1.2 Proposición

A es diagonalizable \leftrightarrow existe una base $B = \{\vec{v}_1, \vec{v}_2, ... \vec{v}_n\}$ base de \mathbb{R}^n y escalares λ_i tal que $A \cdot \vec{v}_i = \lambda_i \cdot \vec{v}_i$ \Rightarrow) **Hipótesis:** A es diagonalizable, o sea si $f \colon \mathbb{R}^n \to \mathbb{R}^n \ / \ f(\vec{x}) = A \cdot \vec{x}$ existe una base B tal que $\|f\|_{BB}$ es una matriz diagonal

Tesis: Existen escalares λ_i tal que $A \cdot \vec{v}_i = \lambda_i$

Demostración: Como
$$||f||_{BB}$$
 es diagonal $\Rightarrow ||f||_{BB} = M = \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ & \ddots & \ddots & \ddots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}$

Para interpretar esta matriz, recordamos la definición de matriz de T.L. dada una base:

$$f(\vec{v}_1) = a_{11} \cdot \vec{v}_1 + 0 \cdot \vec{v}_2 + \dots 0 \cdot \vec{v}_n = a_{11} \cdot \vec{v}_1$$

$$f(\vec{v}_2) = 0 \cdot \vec{v}_1 + a_{22} \cdot \vec{v}_2 + \dots 0 \cdot \vec{v}_n = a_{22} \cdot \vec{v}_2$$

$$\vdots$$

 $f(\vec{v}_n) = 0 \cdot \vec{v}_1 + 0 \cdot \vec{v}_2 + \dots a_{nn} \cdot \vec{v}_n = a_{nn} \cdot \vec{v}_n$

Con lo que queda demostrada la tesis. Veamos ahora la otra implicación.

 \Leftarrow) **Hipótesis:** \exists base $B = \{\vec{v}_1, \vec{v}_2, ... \vec{v}_n\}$ base de R^n y escalares λ_i tal que $A \cdot \vec{v}_i = \lambda_i$ Tesis: A es diagonalizable

Demostración: Debemos probar que si $f: \mathbb{R}^n \to \mathbb{R}^n / f(\vec{x}) = A \cdot \vec{x}$ entonces $||f||_{BB}$ es diagonal.

Para esto, armemos $||f||_{BB}$:

$$f(\vec{v}_1) = \mathbf{A} \cdot \vec{v}_1 = \lambda_1 \cdot \vec{v}_1 \Rightarrow \text{la 1ra columna de } ||f||_B \text{ será} \begin{pmatrix} \lambda_1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$f(\vec{v}_1) = \mathbf{A} \cdot \vec{v}_1 = \lambda_1 \cdot \vec{v}_1 \Rightarrow \text{la 1ra columna de } ||f||_B \text{ será} \begin{pmatrix} \lambda_1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
$$f(\vec{v}_2) = \mathbf{A} \cdot \vec{v}_2 = \lambda_2 \cdot \vec{v}_2 \Rightarrow \text{la 2da columna de } ||f||_B \text{ será} \begin{pmatrix} 0 \\ \lambda_2 \\ \vdots \\ 0 \end{pmatrix}$$

.
$$f(\vec{v}_n) = \mathbf{A} \cdot \vec{v}_n = \lambda_n \cdot \vec{v}_n \Rightarrow \text{la n columna de } ||f||_B \text{ será} \begin{pmatrix} 0 \\ 0 \\ \vdots \\ \lambda_n \end{pmatrix}$$

Por lo tanto,
$$||f||_B = \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ & & \ddots & \ddots & \dots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}$$
 que es una matriz diagonal.

2 Autovalores y Autovectores

Dada una matriz $A \in \mathbb{R}^{nxn}$ llamaremos autovalor de A a un número $\lambda \in \mathbb{R}$ si existe un vector $\vec{v} \in \mathbb{R}^n, \vec{v} \neq \vec{0}$ al que llamaremos autovector de A asociado al autovalor λ tal que $A \cdot \vec{v} = \lambda \cdot \vec{v}$

2.1 Proposiciones

2.1.1 C.L. vectores asociados

Si $\vec{v}_1, \vec{v}_2, \dots \vec{v}_n$ son autovectores de una matriz A asociados a un autovalor λ , entonces cualquier combinación lineal de ellos será autovector de A asociado a λ .

Demostración: Sabiendo que $A \cdot \vec{v}_i = \lambda \cdot \vec{v}_i$

 $A \cdot (\alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2 + \dots \alpha_n \vec{v}_n) \to \text{Planteo C.L. de los vectores}$

 $\alpha_1 A \vec{v}_1 + \alpha_2 A \vec{v}_2 + \dots + \alpha_n A \vec{v}_n \rightarrow \text{Distribuyo A}$

 $\alpha_1 \lambda \vec{v}_1 + \alpha_2 \lambda \vec{v}_2 + \dots + \alpha_n \lambda \vec{v}_n \rightarrow \text{Uso hipótesis}$

 $\lambda \cdot (\alpha_1 \vec{v_1} + \alpha_2 \vec{v_2} + \dots \alpha_n \vec{v_n}) \to \text{Factor Común } \lambda$

Por lo tanto $A \cdot (\alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2 + \dots + \alpha_n \vec{v}_n) = \lambda \cdot (\alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2 + \dots + \alpha_n \vec{v}_n)$

2.1.2 Relación entre autovalor y determinante

 λ es un autovalor asociado a $\vec{v},$ autovector de una matriz A \Leftrightarrow |A - $\lambda I|=0$

Hipótesis: $A \in \mathbb{R}^{nxn}$, λ y \vec{v} autovalor y autovector de A tal que $A \cdot \vec{v} = \lambda \cdot \vec{v}$ siendo $\vec{v} \neq \vec{0}$ (¿Por qué?)

Tesis: $|A - \lambda I| = 0$

Demostración: En $A \cdot \vec{v} = \lambda \cdot \vec{v}$ con $\vec{v} \neq \vec{0}$, \vec{v} es solución del sistema homogéneo (A - λI)· $\vec{x} = \vec{0}$ (¿Por qué?). Luego este es un sistema compatible indeterminado: por lo tanto el determinante de su matriz es = 0. Es decir, $|A - \lambda I| = 0$

La otra implicación queda a cargo de ustedes , pues es muy parecida a ésta

2.1.3 Concepto Geométrico

f: Dada $\mathbb{R}^2 \to \mathbb{R}^2$ o f: $\mathbb{R}^3 \to \mathbb{R}^3$ podemos decir que \vec{x} es autovector de f si al transformarse conserva la misma dirección.

Ejemplos:

a)
$$f: \mathbb{R}^2 \to \mathbb{R}^2 / f(x, y) = (x, -y)$$

b)
$$f: \mathbb{R}^3 \to \mathbb{R}^3 / f(x, y, z) = (x + y, x - y, 0)$$

Luego halla los autovalores y autovectores de A y verifica lo que dice el enunciado anterior.

2.2 Propiedades de los Autovectores

- 1) S = $\{\vec{x} \mid \vec{x} = \vec{0} \text{ o } \vec{x} \text{ es un autovector asociado al autovalor } \lambda \}$ es un subespacio. (Queda como ejercicio)
- 2) Los autovectores correspondientes a autovalores distintos son L.I.

Hipótesis: A $\in \mathbb{R}^{nxn}$, $\{\vec{x}_1, \vec{x}_2, ... \vec{x}_n\}$ autovectores de A . $\lambda_1, \lambda_2, ... \lambda_n$ sus autovalores asociados tales que $\lambda_i \neq \lambda_j \ \forall \ i \neq j$

Tesis: $\{\vec{x}_1, \vec{x}_2, ... \vec{x}_n\}$ es un conjunto L.I.

Demostración: La demostración habría que hacerla usando el principio de inducción completa. Nosotros vamos a probar que vale para n=2 y luego usando que vale para n=2 demostraremos que vale para n=3 y así sucesivamente se puede demostrar para cualquier valor de n.

a) Probaremos para n=2, es decir que $\{\vec{x}_1,\vec{x}_2\}$ es un conjunto L.I. Sea:

$$\alpha_1 \vec{x}_1 + \alpha_2 \vec{x}_2 = \vec{0} \tag{1}$$

Multiplicamos ambos miembros por A y nos queda: $\alpha_1 A \vec{x}_1 + \alpha_2 A \vec{x}_2 = \vec{0}$

Pero $A\vec{x}_1 = \lambda_1 \vec{x}_1$ y $A\vec{x}_2 = \lambda_2 \vec{x}_2 \rightarrow$ nos queda:

$$\alpha_1 \lambda_1 \vec{x}_1 + \alpha_2 \lambda_2 \vec{x}_2 = \vec{0} \tag{2}$$

Las incógnitas son entonces α_1 y α_2 , las cuales debemos despejar de (1) y (2).

- Multiplico (1) por λ_1 : $\alpha_1 \lambda_1 \vec{x}_1 + \alpha_2 \lambda_1 \vec{x}_2 = \vec{0}$
- Le resto la ecuación (2): $\alpha_2 \lambda_1 \vec{x}_2 \alpha_2 \lambda_2 \vec{x}_2 = \vec{0}$

Nos queda entonces $\alpha_2 \vec{x}_2 \cdot (\lambda_1 - \lambda_2) = \vec{0}$

Pero $\vec{x}_2 \neq \vec{0}$ y $(\lambda_1 - \lambda_2) \neq \vec{0}$ (¿Por qué?). Por lo tanto $\alpha_2 = 0$

Reemplazando en (1) nos queda $\alpha_2 = 0$. Hemos probado que $\{\vec{x}_1, \vec{x}_2\}$ es un conjunto L.I.

b) Veamos ahora para n=3 o sea tenemos $\vec{x}_1, \vec{x}_2, \vec{x}_3$ autovectores de A y $\lambda_1, \lambda_2, \lambda_3$ diferentes entre sí. Queremos mostrar que $\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$ es un conjunto L.I.

Sea:

$$\alpha_1 \vec{x}_1 + \alpha_2 \vec{x}_2 + \alpha_3 \vec{x}_3 = \vec{0} \tag{3}$$

Multiplicando por A y reemplazando por los autovectores nos queda:

$$\alpha_1 \lambda_1 \vec{x}_1 + \alpha_2 \lambda_2 \vec{x}_2 + \alpha_3 \lambda_3 \vec{x}_3 = \vec{0} \tag{4}$$

Hacemos $\lambda_1 \cdot (3) \cdot (4)$ y nos queda $\alpha_2(\lambda_1 - \lambda_2)\vec{x}_2 + \alpha_3(\lambda_1 - \lambda_3)\vec{x}_3 = \vec{0}$

Como \vec{x}_2 y \vec{x}_3 son 2 autovectores asociados a autovalores diferentes son L.I. Luego si tengo una combinación lineal de ellos igualada a $\vec{0}$ sos escalares son igual a 0.

$$\alpha_2(\lambda_1 - \lambda_2) = 0$$
; $\alpha_3(\lambda_1 - \lambda_3) = 0 \rightarrow \alpha_2 = \alpha_3 = 0$ (¿Por qué?)

Reemplazando en (3) nos queda $\alpha_1 = 0$

Entonces hemos probado que $\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$ es un conjunto L.I.

2.3 Consecuencias

- 1. $A \in \mathbb{R}^{n\times n}$ es una matriz diagonalizable \Leftrightarrow
 - a) Existe B = $\{\vec{v}_1, \vec{v}_2, ... \vec{v}_n\}$ base de $\in \mathbb{R}^n$ formada por autovectores
 - b) Tiene n autovectores L.I.
- 2. Si A tiene n autovalores diferentes \rightarrow A es diagonalizable (No vale el recíproco)
- 3. Si A tiene algun autovalor múltiple (λ_0) pero la $\dim(S)_{\lambda_0} = multiplicidad_{\lambda_0} \to A$ es diagonalizable (No vale el recíproco)

3 Diagonalización de matrices simétricas

- 1. Las matrices simétricas son siempre diagonalizables (sin demostración)
- 2. Los autovectores de matrices simétricas correspondientes a autovalores diferentes son ortogonales

Hipótesis: A $\in \mathbb{R}^{nxn}$ matriz simétrica, $\{\vec{x}_1, \vec{x}_2\}$ autovectores de A asociados a λ_1, λ_2 donde $\lambda_1 \neq \lambda_2$ **Tesis:** $\vec{x}_1 \perp \vec{x}_2$ es decir $(\vec{x}_1 \cdot \vec{x}_2) = 0$

Demostración: Consideramos el producto interno canónico en el que se cumple que $(\vec{x} \cdot \vec{y}) = \vec{x}^\mathsf{T} \cdot \vec{y}$ Hacemos

$$(\vec{x}_1)^{\mathsf{T}} A \cdot \vec{x}_2 = (\vec{x}_1)^{\mathsf{T}} \lambda_2 \vec{x}_2 = \lambda_2 (\vec{x}_1 \cdot \vec{x}_2)$$
$$(\vec{x}_1)^{\mathsf{T}} A \cdot \vec{x}_2 = (\vec{x}_1)^{\mathsf{T}} A^{\mathsf{T}} \vec{x}_2 = (A \cdot \vec{x}_1)^{\mathsf{T}} \vec{x}_2 = \lambda_1 (\vec{x}_1 \cdot \vec{x}_2)$$

Podemos igualar ambas igualdades finales dado que parten de la misma expresión:

 $\lambda_2\cdot(\vec{x}_1\cdot\vec{x}_2)=\lambda_1\cdot(\vec{x}_1\cdot\vec{x}_2),$ luego pasamos restando y factor común:

$$(\lambda_2 - \lambda_1)(\vec{x}_1 \cdot \vec{x}_2) = 0$$
 y como $\lambda_1 \neq \lambda_2 \rightarrow (\vec{x}_1 \cdot \vec{x}_2) = 0$

- 3. A es una matriz simétrica \leftrightarrow tiene una base ortogonal de autovectores
 - →)Hipótesis: A es simétrica

Tesis: \exists una base ortonormal de ${\rm I\!R}^n$ formada por autovectores

Demostración: Siendo A simétrica consideraremos 2 casos posibles:

- a) Tiene n autovalores distintos, los autovectores asociados serían ortogonales (probado anteriormente) y dividiendo cada uno por su norma tendremos una base ortonormal de autovectores
- b) Hay algún autovalor múltiple (λ_0) , como sabemos que es diagonalizable, la $\text{Dim}(S)_{\lambda_0} = \text{multiplicidad}$ de $\lambda_0 \to \text{dentro}$ de ese subespacio podré encontrar una base ortonormal y junto con los otros formarán una base ortonormal de \mathbb{R}^n formada por autovectores
- ←)Hipótesis: A tiene una base ortonormal de autovectores

Tesis: A es simétrica

Demostración: Como A tiene una base ortogonal de autovectores \rightarrow

 \exists D diagonal tal que $A = P \cdot D \cdot P^{\mathsf{T}}$

Por lo tanto
$$A^{\mathsf{T}} = (P \cdot D \cdot P^{\mathsf{T}})^{\mathsf{T}} = (P^{\mathsf{T}})^{\mathsf{T}} \cdot D^{\mathsf{T}} \cdot P^{\mathsf{T}} = P \cdot D \cdot P^{\mathsf{T}} = A$$

Queda demostrado que A es simétrica