HDLC DATA LINK CONTROL

- High-level data link control gives the set of standards for operating
- a data link over bit synchronous physical layers.
- It is derived from SDLC (Synchronous Data Link Control) developed by IBM.
- It supports both Half-duplex and Full-duplex communication.

HDLC Basics

Stations:

- Primary: sends data, controls the link with commands
- Secondary: receives data, responds to control messages
- Combined: can issue both commands and responses
- Link configuration:
 - Unbalanced: one primary station, one or more secondary stations
 - Balanced: two combined stations

HDLC

 Two common transfer mode: normal response mode (NRM) and asynchronous balanced mode (ABM)

High-level Data Link Control (HDLC)

- Frame Format: HDLC frames contains six fields
 - Flag Field: 8-bit contains 01111110 to identify the beginning and end of a frame and serves as a synchronization
 - Address Field: one or several byte long field contains address of either the originator or the destination of the frame. If primary creates the frame, it contains a to address. If a secondary creates the frame, it contains a from address.
 - Control Field: one or two byte long contains flow/error info.
 - Information Field: variable length field contains user's information from network layer or network management info.
 - FCS Field: frame-check-sequence is an error detection field contains 2 to 4 byte CRC data.

- I(information)-frames, S(supervisory)-frames, U(unnumbered frame)-frames
- Flag field: 01111110 to identify both the beginning and the end of a frame and serve as synchronization pattern for receiver
- FCS field: 2- or 4-byte ITU-T CRC for error detection

- Control Field: 1- or 2-byte segment of the frame used for flow and error control
- Determine the type of frame and define its functionality
- Control field for I-frame: P/F (poll/final bit for primary/secondary)

- Control field for S-frame
- Receive ready (RR), Receive not ready (RNR), Reject (REJ) Selective reject (SREJ)

Code		Command
00	RR	Receive ready
01	REJ	Reject
10	RNR	Receive not ready
11	SREJ	Selective-reject

• Control field for U-frame

Code	Command	Response	Meaning
00 001	SNRM		Set normal response mode
11 011	SNRME		Set normal response mode, extended
11 100	SABM	DM	Set asynchronous balanced mode or disconnect mode
11 110	SABME		Set asynchronous balanced mode, extended
00 000	UI	UI	Unnumbered information
00 110		UA	Unnumbered acknowledgment
00 010	DISC	RD	Disconnect or request disconnect
10 000	SIM	RIM	Set initialization mode or request information mode
00 100	UP		Unnumbered poll
11 001	RSET		Reset
11 101	XID	XID	Exchange ID
10 001	FRMR	FRMR	Frame reject

HDLC: Example 1

• Connection and disconnection

HDLC: Example 2

• Piggybacking without error

HDLC: Example 3

Piggybacking with error

HDLC: Bit Stuffing and Unstuffing

POINT-TO-POINT PROTOCOL

- PPP can be used as a data link control to connect two routers
- It can be used to connect a personal computer to an internet service provider (ISP)
- -It can operate over asynchronous -links, bit asynchronous links
- The PPP protocol uses HDLC —like frame format to encapsulate data grams over point-to-point links

Point-to-Point Protocol: PPP

PPP defines/provides

- the format of the frame to be exchanged between devices
- how two devices negotiate the establishment of the link and the exchange of data
- how network layer data are encapsulated in the data link frame
- how two devices can authenticate each other
- multiple network layer services
- connection over multiple links
- Network address configuration

But, several services are missing for simplicity

 no flow control, simple error control (detection and discard), no sophisticate addressing for multipoint configuration

PPP Frame

- Flag: 01111110 the same as HDLC, but it treated as a byte because of PPP is a byte-oriented protocol
- Address: 11111111 (broadcast address)
- Control: No need because PPP has no flow control and limited error control
- PPP is a byte-oriented protocol using byte stuffing with the escape byte 01111101

PPP: Transition States

PPP: Multiplexing

- PPP uses another set of other protocols to establish the link, authenticate the parties, and carry the network layer data
- Three sets of protocols defined for powerful PPP: LCP, two APs, several NCPs

LCP: Encapsulated in a Frame

Code	Packet Type	Description
0x01	Configure-request	Contains the list of proposed options and their values
0x02	Configure-ack	Accepts all options proposed
0x03	Configure-nak	Announces that some options are not acceptable
0x04	Configure-reject	Announces that some options are not recognized
0x05	Terminate-request	Request to shut down the line
0x06	Terminate-ack	Accept the shutdown request
0x07	Code-reject	Announces an unknown code
0x08	Protocol-reject	Announces an unknown protocol
0x09	Echo-request	A type of hello message to check if the other end is alive
0x0A	Echo-reply	The response to the echo-request message
0x0B	Discard-request	A request to discard the packet

LCP: Common Options

 Options are inserted in the information field of the configuration packets

Option	Default
Maximum receive unit (payload field size)	1500
Authentication protocol	None
Protocol field compression	Off
Address and control field compression	Off

Authentication

- Authentication means validating the identity of a user who needs to access
- PPP is designed for use over dial-up links ⇒ User authentication is necessary
- PPP has two protocols for authentication
 - Password Authentication Protocol (PAP)
 - Challenge Handshake Authentication
 Protocol (CHAP)

Password Authentication Protocol (PAP)

Challenge Handshake Authentication Protocol (CHAP)

Three-way hand-shaking authentication protocol with greater security than PAP

Network Control Protocol: NCP

- PPP is a multiple-network layer protocol.
- It can carry a network data packet from protocols defined by the Internet, OSI, Xerox, DECnet, AppleTalk, Novel
- IPCP (IP Control Protocol)
 - Configures the link used to carry IP packets in the Internet

Example (1)

Example (2)

