SECTION 1.5: Sequences & Series of C-numbers.

A sequence of complex numbers is an ordered list $a_1, a_2, a_3, ..., a_n, ...$ where $a_n \in \mathbb{C}$ (a: N $\rightarrow \mathbb{C}$).

Notations: {an}, and (an) =.

Examples

•
$$a_n = \frac{1}{n}, n \in \mathbb{N}$$
. So
$$\begin{cases} a_n \zeta_{n=1}^{\infty} = \left\{ 1, \frac{1}{2}, \frac{1}{3}, \dots \right\}. \\
(a_n)_{n=1}^{\infty} = (1, \frac{1}{2}, \frac{1}{3}, \dots).
\end{cases}$$

•
$$a_n = i^n$$
, $n \in \mathbb{N}$. So $\{a_n\}_{n=1}^{\infty} = \{i, -1, -i, 1, i, -1, -i, 1, ...\}$

Convergence of sequences

Example: For $\{(1+i)/n\}_{n=1}^{\infty}$, as n gets bigger and bigger, $\frac{1+i}{n}$ gets closer and closer to O. How big n should be to get $|a_n| < 0.001$?

 $\Rightarrow \frac{\sqrt{2}}{n} < \frac{1}{1000} \iff 1000\sqrt{2} < n$

We would require n> L1000√z] + 1=1414+1 ⇔ n> [415].

Def. A sequence $\{an\}_{n=1}^{\infty}$ converges to a $a \in C$ if $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ such that if $n \ge N$, then $|an-a| < \epsilon$. If $\{an\}_{n=1}^{\infty}$ dues not converge, we say it diverges.

Remarks:

- 1) Notation: an -> a or lim an = a.
 - Divergent: an →a.

 Negation: ∃E>0, YNEIN, ∃n≥N s.t.

 |an-a|≥E.

Proof. (=>) Assume that an -> xxiy. Let E>0. Notice that $|x_n-x| \leq |a_n-(x+iy)| \quad \forall n \in \mathbb{N}.$ From the def. of an- xxiy, there's an NEW oil. Jan-12 tigy/ < E, YnzN. So, if n>N, then |2n-x| = |an-(xtiy)| < E. so, xn->x by def. Similarly, you get yr -> y. (=) Assume xn->x and yn->y. Recall: | Z | E | Rez | + | Imz | , YZEC. Let E>0. then |an- (x+iy)| < bcn-x1+ yn-y1 Let NIEN o.t. if n≥ N, , then Let N2EIN o.t. if n=N2, then |yn-y| < E/2

Let N = max { N, Nz3. If n > N, then $|an-(x+iy)| \leq |xn-x| + |yn-y|$ $\leq |x| + |x| = |x|$ So, an -> ztig. Properties: 1 Prop. 1.5.2: an-sa => a is unique. 2) Prop. 1.5.4: an-sa => (an) is bounded. (bounded: 3H>0 o.t. lan1 ≤ H, yn). (3) Pop. 1.5.6: Let (an), (bn) be two seq. (i) an so and Ibn/ = lan/ => bn so. (ii) an so and (bn) bounded => anbn >0. (4) Prop. 1.5.7: Assume an->a and bn->b. (i) xan+ Bbn -> da+Bb d,BEC. (ii) anbn -> ab. (iii) If $b \neq 0$, $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$. (iv) an -> a (lim an = lim an). (v) lant -> lat (lim lant = | lim an).

From the properties:

=
$$(3+2i)^2$$
 lim $\frac{1}{n+1}$ + $\lim_{n\to\infty} \frac{n+n^2i}{n^3i}$

$$= 0 + \lim_{n\to\infty} \frac{h + n^2 i}{n^3 i}$$

$$=\lim_{n\to\infty}\left(\frac{1}{n^2i}+\frac{1}{n}\right)$$

$$=\frac{1}{i}\lim_{n\to\infty}\frac{1}{n^2}+\lim_{n\to\infty}\frac{1}{n}=0.$$

Example 1.5.9

(a) If
$$|z| < 1$$
, then compute lim z^n .

Sol.

(a) If we want to show that
$$z^n \to 0$$
, then we have to consider:

 $|z^n - 0| = |z|^n$.

From Calculus, lim r = 0, 0 < r < 1. Put r= |z| => lim |z| = 0. (b) Assume $z \neq 1$ and $|z| \geq 1$. For a proof by contradiction, assume lin z'= L, for some LEC. he have $L = \lim_{n\to\infty} z^n = z \lim_{n\to\infty} z^{n-1} = zL$ ⇒ L=ZL Since $|z| \ge 1 \Rightarrow |z|^n \ge 1 \Rightarrow |L| \ge 1$ So, $L \neq 0 \Rightarrow \frac{L}{L} = \frac{zL}{L}$ => 1=2 #. So, lim z 7. DEF. A sequence fan]n=1 is a Cauchy sequence if YE>O, JNEW such that it nim > N, then |an-am| < E.

THM 1.5.11 Let rangn=1 be a sequence, anEC.

(i) If fand is convergent, then it is Cauchy.

(ii) If fand is Cauchy, then hand converges.

Series of complex numbers

An infinite peries is an expression of the form $\frac{\infty}{\sum_{n=0}^{\infty} a_n} = a_0 + a_1 + a_2 + \cdots$

Partial sums: $S_n = \sum_{j=0}^n a_j = a_0 + a_1 + \dots + a_n$

DEF. 1.5.12 \(\sigma \) an converges to some \\ \text{A \in C} \) I'm sn exists and \\ \text{N=0} \)

lim Sn = A.

DIGIRESSION Summable theory.

Example $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{T^2}{6}$ (converges)

Example
$$\sum_{n=1}^{\infty} \frac{1}{n} = +\infty$$
 (DNC)

Example $\sum_{n=1}^{\infty} (-1)^n$
 $S_1 = -1$, $S_2 = 0$, $O_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $O_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, $S_3 = -1$, ...

 $S_1 = -1$, $S_2 = 0$, $S_3 = -1$, $S_3 = 0$

We can show that $\sigma_n \rightarrow \frac{1}{2}$.

DEF. We say that
$$\sum_{n=1}^{\infty}$$
 an is
Cesaro convergent if
· $\lim_{n\to\infty} \sigma_n = \lim_{n\to\infty} \frac{a_1 + a_2 + \dots + a_n}{n}$
exist
In this, $\sum_{n=1}^{\infty} a_n = \lim_{n\to\infty} \sigma_n$.

COME BACK TO OUR SHEEPS

Example 1.5.13

If
$$|z| < 1$$
, then $\sum_{n=0}^{\infty} z^n$ converges and $\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$.

Proof:
We have
$$S_n = \frac{1-z^{n+1}}{1-z}$$
 (n=1)
take $n \to \infty$, then
 $\lim_{n\to\infty} S_n = \frac{1}{1-z} - 0 = \frac{1}{1-z}$.

Properties of series and tests:

Prop. 1.5.15 \sum and \sum bn (convern=0 h=0

gent series, then

(1) $\frac{\infty}{2}$ (α ant β bn) = α $\sum_{n=0}^{\infty}$ bn.

 $2 \sum_{h=0}^{\infty} \overline{a_h} = \sum_{h=0}^{\infty} a_h$

3 $\sum_{n=0}^{\infty} Re(an) = Re(\sum_{n=0}^{\infty} an)$

and $\sum_{n=0}^{\infty} Im(a_n) = Im(\sum_{n=0}^{\infty} a_n)$

Prop 1.5.17 $\sum_{n=0}^{\infty} a_n$ converges \Rightarrow $\lim_{n\to\infty} a_n = 0$.

In other words, Lim an \$0 => \sum_{n=0}^{\infty} an DIV.

Prop. 1.5.18 (Tail goes to 0)
$$\frac{\infty}{2} \text{ an converges} \Rightarrow \lim_{N\to\infty} \sum_{n=m+1}^{\infty} a_n = 0$$

$$\frac{N}{N} = \sum_{n=1}^{\infty} a_n = \lim_{N\to\infty} \sum_{n=m+1}^{\infty} \sum_{n=m+1}^{\infty} \sum_{n=m+1}^{\infty} a_n = \sum_{n=m+1}^{\infty} \sum_{n=m+1}^{\infty} a_n = \sum_{n=m+1}^{\infty} a_n = \sum_{n=m+1}^{\infty} a_n = \sum_{n=m+1}^{\infty} a_n = \sum_{n=m+1}^{\infty} \sum_{n=m+1}^{\infty} a_n = \sum_{n=m+1}^{\infty} \sum_{n=m+1}^{\infty} \sum_{n=m+1}^{\infty} a_n = \sum_{n=m+1}^{\infty} a_n$$

DEF 1.5.19

Zeron is absolutely convergent if

Zeron converges.

N=0

THH 1.5.21 (Comparison test) Zan series with an EC and \$\frac{1}{200} bn is convergent with bnERT and lan1 = bn, then

Zan is absolutely convergent.

THM 1.5.23 (Ratio Test) Let an # 0 be complex numbers. Define p:= lim | ant | an and assume the limit exists or is infinite.

(1) If p < 1, then $\sum_{n=0}^{\infty}$ converges absolutely.

(2) If $\rho > 1$, then $\sum_{n=0}^{\infty}$ an DIV.

(3) If $\rho = 1$, then the test is

inconclusive.

THH 1.5.25 (Root test)

Let an E C and assume

$$P = \lim_{n \to \infty} \Im [an]$$

exists.

(1)
$$p < 1 \Rightarrow \sum_{n=0}^{\infty} a_n$$
 absolutely converges.

$$(2) p > 1 \Rightarrow \sum_{n=0}^{\infty} a_n DIV.$$

(3)
$$p=1 \Rightarrow \text{ test is incondusive.}$$

Cauchy Product (Def 1.5.27)

$$= a_0b_0 + a_0b_1x + a_0b_2x^2$$

$$+ a_1b_0x + a_1b_1x^2 + a_1b_2x^3$$

$$+ a_2b_0x^2 + a_2b_1x^3 + a_2b_2x^4$$

=
$$a \circ b \circ$$

+ $(a \circ b_1 + a_1 b \circ) \times$

+ $(a \circ b_2 + a_1 b_1 + a_2 b \circ) \times^2$

+ $(a \circ b_2 + a_2 b_1) \times^3$

+ $a_2 b_2 \times^4$

DEF. The product $\sum_{n=0}^{\infty} c_n$ of two series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ is defined as the series with coefficients

 $c_n = a \circ b_n + a_1 b_{n-1} + \cdots + a_n b_0$

= $\sum_{j=0}^{\infty} a_j b_{n-j}$

Aralogy: $c_1 c_2$
 $a_0 b_0 c_0 b_1 c_1 b_2 \cdots$
 $a_2 b_0 c_2 b_1 c_2 b_2 \cdots$

 $\frac{7}{2} \frac{1.5.28}{2}$ $\frac{2}{2} \frac{1}{2} \frac{1}{$