

Igniting Potential: SiC-Powered 6.6kW Isolated Bidirectional Energy Storage Designed with CLLLC Topology

Sep 28, 2023

Tony Tan

Tony.tan@arrow.com

Content

- Arrow-ST Industrial Joint Lab
- Energy Storage Bidirectional 6.6kW/ 60-90Vdc
 - Bidirectional 6.6kW AC/DC board
 - Bidirectional 6.6kW DC/DC board
 - ➤ DCDC Board Feature
 - ➤ Topology Selection
 - ➤ Designing Introduction
 - ➤ Testing Result
 - ➤ Main issues

Arrow-ST Industrial Joint Lab solutions

Power & Energy Lab

Automation Lab

Motor Control Lab

Bidirectional Charger 250-450V/19.6A, 6600W for EV, PFC

		Charger for EV	
	PTD	SCTW40N120G2VAG->	Γ
	PTD	SCT040W120G3-4AG	
	IPC	STGAP2SiCS	Π
VANCON	GPA	A6986I*	Г
	IPC	VIPER31*	Γ
	ADG	STL8N10LF3*	Γ
	MDG	STM32G474VBT6	

Energy Storage (ESS) bi-directional 60-80V/82.5A Output, 6600W, PFC & DC-DC

Energy Storage

P/N: 2021P005, 2021P006

PTD	SCTWA60N120G2-4 ->	16
PTD	SCT040W120G3-4AG	16
IPC	STGAP2SiCS	8
GPA	A6986I	12
ADG	STP75NF20	32
IPC	VIPER319HDTR	1
DFD	STPS1150A	2
IPC	STISO621WTR	2
ADG	STL8N10LF3*	6
	HDMIULC6-4SC6Y	3
DFD	ESDCAN03-2BWY	2
	STM32G474VBT6	2

15 kW Bidirectional PFC

P/N: 2022P001

	15kW PFC	Qty
	SCT070W120G3-4AG	6
	SCT055W65G3-4AG	6
MDG	STM32G474RET6	1
	STGAP2HSCM	12
IPC	VIPER26HD	1
GPA	TSV912IDT	10
GPA	TSV914IDT	6

8-CH Master w/

P/N: 2021W004

STM32H743ZIT6

SLVU2.8-4A1

SMA4F28A

STKNX

STM32G070CBT6 1

Building

*Partner module

Automation

M24256-BRDW6TP 1

Ethernet IP

STEVAL-CTM010V1

8-CH Digital Input

Sensors/Actuators

IO-link Slave -

P/N: 2021W002

	DI Module	Qty
	SM15T33CA	1
	SMA4F5.0A	1
	STM32G071RBT6	1
	STISO621WTR	2
DFD	CLT01-38SQ7-TR	1
GPA	L7986ATR	1
DFD	SPT01-335DEE	1
GPA	LD39050PU33R	1
	L6364Q	1
DFD	STPS140Z	8
	STPS3L60UFN	1
	STPS340AFN	1

8-CH Digital Output

P/N: 2021W003

,		
	DO Module	Qty
	STPS3L60UFN	1
	STPS340AFN	1
	SM15T33CA	1
DFD	SMA4F5.0A	1
GPA	L7986ATR	1
	SPT01-335DEE	1
GPA	LD39050PU33R	1
IPC	L6364Q	1
	ISO8200AQ	1
	STM32G071RBT6	1

P/N: 2021W005

Air-conditioning Compressor

P/N: 2019M002 Customization

	HVAC – 2kW	Qty
PTD	STGIB15CH60TS-L	1
MDG	STM32F302RBT6	1
PTD	STP4LN80K5	2
IPC	PM8834	1
DFD	STTH30AC06C	2
DFD	T435-800B	1
IPC	STSPIN820	1

110 krpm BLDC Motor Driver

P/N: 2021M001

1kW Servo Motor Driver

P/N: 2022M001

ETP01-1621RL

Power & Energy solutions

Bidirectional Power Converter for EV (6600W)

PFC Released P/N: 2021P004

DC-DC Released

P/N: 2020P003

Unidirectional Power Converter for EV (30kW) – designed by ST Power & Energy CC

PFC
Released
P/N:STDES30KWVRECT

DC-DC Soon to Release P/N: STDES-#####

Bidirectional Energy Storage System (ESS) PFC & DC-DC (6600W)

On-grid PFC
Released

P/N: 2021P005

Soon to Release

P/N: 2021P006

3 Phase 3 Level T-Type Bidirectional Power Converter (15kW)

PFC

In Development

P/N: 2022P001

Feature

- Max. **6.6kW** Bidirectional Power Conversion
- Power factor >0.99 @ R load
- THDi < 3% @Full load
- Peak Efficiency >98%
- Input Voltage: 200-265 VAC 50Hz
- Output voltage: 390~550VDC
- Inversion Rated Input: 390~550VDC
- Inversion Rated Output: 220VAC 50Hz
- Dimension: 450mmx150mmx100mm (LxWxH)

Functions

- 1) PFC (AC to DC)
- 2) Off Grid Inverter(DC to AC)
- 3) On Grid Inverter(DC to AC)

- Switch Frequency 100KHz
- **Unipolar PWM**
- 4*SiC

Core Chip

- MCU control:
 - ST STM32G474VBT6
- SiC MOS:
 - **ST** SCTWA60N120G2-4
 - -> SCT040W120G3-4AG
- Isolated gate driver:
 - **ST** STGAP2SiCS
- Isolated DC-DC module:
 - ST L69861
 - **ST** VIPER329HDTR
- CAN:
 - ST L9616
- **ESD** protection:
 - ST HDMIULC6-4SC6Y
 - **ST** ESDCAN03-2BWY
- Hi-Precision OP-AMP:
 - ST TSZ181IYLT
- Current sensor:
 - Allegro ACS772LCB-050B-PFF-T
 - Allegro ACS772LCB-100B-PFF-T
- Relay:
 - **TE** T9VV1K15-12S

- Magnetic component:
 - knitter-switch ICSI15312700LVJ61
 - knitter-switch ICSI28175700LVK14
 - knitter-switch ICST75311000LVK61
 - knitter-switch ICSC30330600LVS2
 - knitter-switch ICSC64415600LHS61 knitter-switch ICST90211100SHSST61

Charging mode@380V output

Input voltage (VAC)	Input current (A)	Input power (W)	PF	Athd (%)	Output voltage (VDC)	Output current (A)	Output power (W)	Eff. (%)
229.7	4.7	1079.3	0.994	4.91	379.8	2.8	1053.9	97.7
228.0	9.2	2091.3	0.998	3.02	379.7	5.4	2057.8	98.4
226.4	13.7	3093.0	0.999	2.46	379.8	8.0	3045.5	98.5
224.8	18.4	4120.1	0.999	2.16	379.9	10.7	4054.6	98.4
223.0	23.1	5140.7	0.999	2.06	380.0	13.3	5056.3	98.4
221.0	28.0	6173.3	0.999	2.04	380.1	15.9	6067.8	98.3
219.7	30.8	6770.6	0.999	2.02	380.2	17.4	6645.4	98.2

Charging mode@550V output

Input voltage (VAC)	Input current (A)	Input power (W)	PF	Athd (%)	Output voltage (VDC)	Output current (A)	Output power (W)	Eff. (%)
229.5	5.0	1134.2	0.994	5.40	548.5	2.0	1103.6	97.3
228.0	9.3	2123.9	0.998	3.35	548.6	3.8	2082.0	98.0
226.5	13.7	3106.1	0.999	2.54	548.6	5.6	3048.7	98.2
224.84	18.6	4172.3	0.999	2.04	548.7	7.5	4095.2	98.2
223.2	23.0	5117.4	0.999	1.73	548.7	9.1	5017.8	98.1
221.4	27.8	6149.1	0.999	1.50	548.6	11.0	6018.9	97.9
220.0	30.7	6749.7	0.999	1.42	548.8	12.0	6595.2	97.7

Off grid Inversion mode

Input voltage (VDC)	Input current (A)	Input power (W)	PF	Vthd (%)	Output voltage (VAC)	Output current (A)	Output power (W)	Eff. (%)
550.2	2.0	1112.3	0.998	0.85	225.7	4.8	1081.0	97.2
550.1	3.9	2118.1	0.999	0.84	225.5	9.2	2078.2	98.1
550.0	5.7	3139.0	0.999	0.88	225.3	13.7	3086.9	98.3
550.0	7.5	4146.0	0.999	0.88	225.2	18.1	4077.2	98.3
549.6	9.4	5171.4	0.999	0.99	224.9	22.6	5083.1	98.3
548.5	11.3	6170.5	0.999	1.14	224.6	27.0	6058.5	98.2
547.3	12.4	6760.3	0.999	1.33	224.5	29.5	6628.3	98.1

On grid Inversion mode

Input voltage (VDC)	Input current (A)	Input power (W)	PF	Vthd (%)	Output voltage (VAC)	Output current (A)	Output power (W)	Eff. (%)
550.1	2.9	1590.0	0.991	0.55	211.0	7.5	1564.2	98.4
550.0	4.5	2452.8	0.996	0.54	211.5	11.5	2414.0	98.4
549.9	7.0	3857.2	0.998	0.51	213.7	17.8	3794.6	98.4
549.5	8.9	4879.7	0.999	0.47	214.1	22.4	4793.1	98.23
547.4	12.4	6762.8	0.999	0.43	217.4	30.5	6633.9	98.1

Test Waveform

Off Grid inverter

Topology Selection

> Advance:

- High Effciency
- Full Range Soft Switch
- Low EMI at low voltage side

≻ Challenge:

- The gain adjustment range is small
- Cost
- High Power

Topology Selection

Feature

- Dual Symmetric CLLLC DCDC converter
- Max. **6.6kW** Bidirectional Power Conversion
- Efficiency > 96%
- Input Voltage: 420~650VDC
- Output voltage: 60-90VDC
- Inversion Rated Input: 80VDC
- Inversion Rated Output: 550VDC
- Dimension: 450mmx330mmx100mm (LxWxH)

Arrow Design ID: 2021P006

Auxiliary Power & Gate Driver

AC to 12V isolated auxiliary power board

12V to 12V isolated auxiliary power board

Isolated gate driver board with DCDC module

Isolated gate driver board with iso-buck converter

Core Chip

- MCU control:
 - **ST** STM32G474VBT6
- SiC MOS:
 - **ST** SCTWA60N120G2-4
 - -> SCT040W120G3-4AG
- Isolated gate driver:
 - ST STGAP2SiCS
 - **ST** STGAP2SM
- Isolated Aux. Power:
 - **ST** A69861
- CAN:
 - **ST** L9616
- ESD protection:
 - ST HDMIULC6-4SC6Y
 - **ST** ESDCAN03-2BWY
- Hi-Precision OP-AMP:
 - ST TSZ181IYLT

- Current sensor:
 - Allegro ACS37002LMABTR-050B5-M
 - Allegro ACS72981LLRATR-100B5
- Magnetic component:
 - knitter-switch ICSI15312700LVJ61
 - knitter-switch ICSI28175700LVK14
 - knitter-switch ICST75311000LVK61
 - knitter-switch ICSC30330600LVS2
 - knitter-switch ICSC64415600LHS61
 - knitter-switch ICST90211100SHSST61

Parameter Design

MCU digital platform - STM32G474

functional block diagram

PWM configuration

PWM configuration

SR Control

SR enable/disable

SR control

<= Fr: Fixed pulse width for SR

>Fr: Increased Deadtime

Soft start

Discharging startup Vds stress

Software: Step 1: 500kHz, duty from 10% to 15%; Step 2: 500kHz, duty=15% for 10ms.

Step 3: 500kHz, duty from 15% to 30%, 200ms. Step 4: 500kHz -> 300khz

Note: a) Capacitors provides the nearest path for voltage spikes

b) The software method reduced the current of resonant current at start-up

Power load capacity test

Discharging mode

Charging mode

Note: For Discharging mode and charging mode, at low voltage input, the output power should be derated

Efficiency

■ Discharging mode at different input voltage

Charging mode at different output voltage

Discharging mode efficiency

Charging mode efficiency

6.6kW bidirectional CLLLC can implement bidirectional charging mode and discharging mode. Already finished key items as following list:

Mode	Items	Test results
Discharge	The voltage spike of MOS under different input voltage	V _{spike-80V} =124V
Discharge	Under different input voltage, Power load capacity test	Power derating
Discharge	Under different input voltage, Efficiency test	η _{max} =96.7%
Discharge	Current sharing test	ΔI _{max} =4.2A
Discharge	Thermal stress test(normal temperature)	Tmosmax=81°C
Charge	The voltage spike of MOS under different input voltage	V _{spike-80V} =100V
Charge	Under different input voltage, Power load capacity test	Power derating
Charge	Under different output voltage, Efficiency test	η _{max} =97.1%
Charge	Current sharing test	ΔI _{max} =3.5A

Charging mode

	1、LLC2+	LC1闭环测	试									
测试条件	2、Lm更ì	亥为200uH										
输出电流	输出电压	输入电压	输入电流	输出功率	输入功率	Ploss		LLC1-rms	LLC2-rms	fs	SR	ΔΙ
22.896	75.373	550.28	3.29	1725.74	1810.421	84.68099	95.32%	2.342	2.349	174	off	0.051333
26.696	75.432	550.24	3.83	2013.733	2107.419	93.68653	95.55%	2.632	2.626	170	off	-0.044
26.696	75.423	550.24	3.78	2013.492	2079.907	66.41479	96.81%	2.648	2.65		on	0.014667
40.096	75.434	550.21	5.66	3024.602	3114.189	89.58694	97.12%	3.546	3.593		on	0.344667
49.796	75.404	550.2	7.03	3754.818	3867.906	113.0884	97.08%	4.303	4.237	167.6	on	-0.484
53.396	75.393	550.2	7.54	4025.685	4148.508	122.8234	97.04%	4.505	4.566	166.6	on	0.447333
61.196	75.376	550.18	8.66	4612.71	4764.559	151.8491	96.81%	5.108	5.154	164.5	on	0.337333
66.896	75.366	550.18	9.47	5041.684	5210.205	168.5207	96.77%	5.564	5.582	163	on	0.132
73.696	75.357	550.17	10.45	5553.509	5749.277	195.767	96.59%	6.116	6.094	162	on	-0.16133
77.096	75.338	550.16	10.94	5808.258	6018.75	210.492	96.50%	6.401	6.342	161	on	-0.43267
80.396	75.331	550.16	11.42	6056.311	6282.827	226.5161	96.39%	6.677	6.591	160.4		-0.63067
83.096	75.318	550.16	11.81	6258.625	6497.39	238.7651	96.33%	6.899	6.782	160		-0.858

Discharging mode

LLC2+LLC1	闭环测试		将LLC1的I									
输出电流	输出电压	输入电压	输入电流	输出功率	输入功率	Ploss		LLC1-rms	LLC2-rms	fs	SR	ΔΙ
2.505	449.37	60.014	20.09	1125.67	1205.68	80.0094	93.36%	1.447	1.892	152	off	3.26333
3.005	449.24	59.978	23.99	1349.97	1438.87	88.906	93.82%	1.702	2.231	145	off	3.87933
3.216	449.29	59.964	25.61	1444.92	1535.68	90.7614	94.09%	1.824	2.36	142	off	3.93067
3.216	449.29	59.968	25.4	1444.92	1523.19	78.2706	94.86%	1.992	2.196	167	on	1.496
3.516	449.32	59.945	27.71	1579.81	1661.08	81.2668	95.11%	2.13	2.4	162	on	1.98
4.015	449.11	59.913	31.52	1803.18	1888.46	85.2811	95.48%	2.358	2.778	156	on	3.08
4.516	448.89	59.881	35.31	2027.19	2114.4	87.2109	95.88%	2.56	3.188	148	on	4.60533
5.006	448.84	59.848	39.13	2246.89	2341.85	94.9592	95.95%	2.82	3.49	142	on	4.91333
5.615	448.32	59.804	43.91	2517.32	2625.99	108.677	95.86%	3.2	3.86	138	on	4.84
6.736	446.91	59.729	52.67	3010.39	3145.93	135.541	95.69%	3.92	4.56	135	on	4.69333

The current waveform of resonant tank

Input 60V, output 450V Input 65V, output 450V

Challenges

description	Solution	Effect
Discharging mode, the low side MOS Vds stress at the steady-state operate and no load situation	the primary inductance of transformer increase to 200uH.	Voltage stress decreased 25%, and efficiency increase 6%~7%
Discharging mode, Vds stress issue at startup	PWM + PFM hybrid control +C@DS+C@input port	Voltage stress decreased 27%, Vmax=124V@80V
Discharging mode, excessive temperature of resonant capacitor(96°C@2100W)	The model changed to mkp21224/400VDC	Temperature of resonant capacitor 65°C@3000W
Discharging mode, the working frequency suddenly changes near 180kHz, and the gain curve is not monotonic.	SRMOS fixed turn-on time frequency point below 180 kHz	Gain curve is monotonic
Charging mode ,working state is asymmetry in positive and negative half-cycle	changed MOS model	Working state is the same

