3

5

6

CLAIMS

I claim:

1 1.	A method comprising
------	---------------------

pruning local graphs representing local problems, the local problems corresponding to separately compilable components in a software program, each of the local graphs having edges and vertices, each edge having a transfer function, each vertex having a value, values of each of the local graph forming a lattice under a partial ordering.

1 2. The method of claim 1 wherein pruning the local graphs 2 comprising:

associating a use attribute to each one of the vertices in each of the local
 graphs, the use attribute being asserted for each vertex reachable from a named
 vertex;

associating an affect attribute to each one of the vertices in each of the local graphs, the affect attribute is asserted for a vertex if a named vertex is reachable from the former vertex; and

9 pre-solving a subgraph of each of the local graphs, the subgraph including 10 subgraph edges, each of the subgraph edges connecting a tail vertex to a head 11 vertex, the tail vertex having a negated use attribute.

l	3.	The method of claim 2 wherein pruning the local graphs further
2	comprising:	

- 3 shrinking the local graphs.
- 1 4. The method of claim 3 further comprising solving a global problem
 2 to optimize a recompilation of the separately compilation components by an inter3 procedural analysis (IPA) solver, the global problem being represented by a global
 4 graph formed from the pruned local graphs.
- 5 5. The method of claim 4 wherein pruning the local graphs further 6 comprising:
- 7 determining final edges and vertex values of the local graphs to be sent to 8 IPA solver; and
- 9 sending the final edges and vertex values to the IPA solver, the final edges 10 and vertex values forming the pruned local graphs.
- 1 6. The method of claim 2 wherein associating the use attribute 2 comprises:
- 3 negating use attributes for all vertices in the local graph; and
- invoking a mark use operation on u for each named vertex u in the local
 graph.

1	7. The method of claim 6 wherein invoking the mark use operation or
2	u comprises:
3	asserting the use attribute associated with u if the use attribute is negated;
4	and
5	recursively invoking the mark use operation on v for each edge connecting
6	the named vertex u to a vertex v.
1	8. The method of claim 2 wherein associating the affect attribute
2	comprises:
3	negating use attributes for all vertices in the local graph;
4	invoking a mark affect operation on y for each named vertex y in the local
5	graph.
1	9. The method of claim 8 wherein invoking the mark affect operation
2	on y comprises:
3	asserting the use attribute associated with y if the use attribute is negated;
4	and
5	recursively invoking the mark affect operation on x for each edge
6	connecting the vertex x to a named vertex y.

functions; and

1	10. The method of claim 2 wherein pre-solving the subgraph
2	comprises:
3	finding a greatest fix-point solution to the subgraph.
1	11. The method of claim 3 wherein shrinking comprises:
2	removing an incoming edge having a head value of a lattice-bottom.
1	12. The method of claim 3 wherein shrinking further comprises:
2	transforming a subgraph having first and second edges, the first and
3	second edges having first and second functions, the first edge connecting a first
4	vertex to an anonymous vertex having a value v, the second edge connecting the
5	anonymous vertex to a second vertex having a value w.
1	13. The method of claim 12 wherein transforming comprises:
2	removing the anonymous vertex;
3	removing first and second edges;
4	adding a third edge having a third function and connecting the first and
5	second vertices, the third function being combined by the first and second

- 7 changing value of the second vertex to a lattice meet of the second 8 function of the value v and the value w.
- 1 14. The method of claim 5 wherein determining the final edges and 2 vertex values comprises:
- determining each of the final edges as edge having asserted use and affect
 attributes for tail and head vertices, respectively; and
- 5 eliding each of the vertex values having a top value.
- 1 15. A computer program product comprising:
- a machine useable medium having computer program code embedded
 therein, the computer program product having:
- computer readable program code to prune local graphs representing local
 problems, the local problems corresponding to separately compilable components
- 6 in a software program, each of the local graphs having edges and vertices, each
- 7 edge having a transfer function, each vertex having a value, values of each of the
- 8 local graph forming a lattice under a partial ordering.
- 16. The computer program product of claim 15 wherein the computer
 readable program code to prune the local graphs comprising:

10

11

12

1

2

3	computer readable program code to associate a use attribute to each one of
4	the vertices in each of the local graphs, the use attribute being asserted if there is
5	an edge connecting a named vertex to the each one of the vertices;
6	computer readable program code to associate an affect attribute to each
7	one of the vertices in each of the local graphs, the affect attribute is asserted if
8	there is an edge connecting the each one of the vertices to a named vertex; and

computer readable program code to pre-solve a subgraph of each of the local graphs, the subgraph including subgraph edges, each of the subgraph edges connecting a tail vertex to a head vertex, the tail vertex having a negated use attribute.

- 17. The computer program product of claim 16 wherein the computer readable program code to prune the local graphs further comprising:
- 3 computer readable program code to shrink the local graphs.
- 1 18. The computer program product of claim 15 further comprising:
- computer readable program code to solve a global problem to optimize a recompilation of the separately compilation components by an inter-procedural analysis (IPA) solver, the global problem being represented by a global graph
- 5 formed from the pruned local graphs.
- The computer program product of claim 18 wherein the computer
 readable program code to prune the local graphs further comprising:

3	computer readable program code to determine final edges and vertex
4	values of the local graphs to be sent to IPA solver; and
5	computer readable program code to send the final edges and vertex values
6	to the IPA solver, the final edges and vertex values forming the pruned local
7	graphs.
1	20. The computer program product of claim 16 wherein the computer
	program product of claim to wherein the computer
2	readable program code to associate the use attribute comprises:
3	computer readable program code to negate use attributes for all vertices in
4	the local graph;
5	computer readable program code to invoke a mark use operation on u for
6	each named vertex u in the local graph.
1	21. The computer program product of claim 19 wherein the computer
2	and the computer
2	readable program code to invoke the mark use operation on u comprises:
3	computer readable program code to assert the use attribute associated with
4	u if the use attribute is negated; and
_	
5	computer readable program code to recursively invoke the mark use
6	operation on v for each edge connecting the named vertex u to a vertex v.

22. The computer program product of claim 16 wherein the computer
 readable program code to associate the affect attribute comprises:

head value of a lattice-bottom.

3	computer readable program code to negate use attributes for all vertices
4	the local graph; and
5	computer readable program code to invoke a mark affect operation on y
6	for each named vertex y in the local graph.
1	23. The computer program product of claim 22 wherein the computer
2	readable program code to invoke the mark affect operation on y comprises:
3	computer readable program code to assert the use attribute associated wit
4	y if the use attribute is negated; and
5	computer readable program code to recursively invoke the mark affect
6	operation on x for each edge connecting the vertex x to a named vertex y.
1	24. The computer program product of claim 16 wherein the computer
2	readable program code to pre-solve the subgraph comprises:
3	computer readable program code to find a greatest fix-point solution to th
4	subgraph.
ı	25. The computer program product of claim 17 wherein the computer
2	readable program code to shrink comprises:

computer readable program code to remove an incoming edge having a

2

28.

1 2	26. The computer program product of claim 17 wherein the computer readable program code to shrink further comprises:
3	computer readable program code to transform a subgraph having first and
4	second edges, the first and second edges having first and second functions, the
5	first edge connecting a first vertex to an anonymous vertex having a value v, the
6	second edge connecting the anonymous vertex to a second vertex having a value
7	w.
1	27. The computer program product of claim 26 wherein the computer readable program code to transform comprises:
3	computer readable program code to remove the anonymous vertex;
4	computer readable program code to remove first and second edges;
5	computer readable program code to add a third edge having a third
6	function and connecting the first and second vertices, the third function being
7	combined by the first and second functions; and
8 9	computer readable program code to change value of the second vertex to a lattice meet of the second function of the value ν and the value ν .

readable program code to determine the final edges and vertex values comprises:

The computer program product of claim 19 wherein the computer

vertex to the each one of the vertices;

3	computer readable program code to determine each of the final edges as
4	edge having asserted use and affect attributes for tail and head vertices,
5	respectively; and
6	computer readable program code to elide each of the vertex values having
7	a top value.
1	29. A system comprising:
2	a processor; and
3	a memory coupled to the processor to store instruction code, the
4	instruction code, when executed by the processor, causing the processor to:
5	prune local graphs representing local problems, the local problems
6	corresponding to separately compilable components in a software
7	program, each of the local graphs having edges and vertices, each edge
8	having a transfer function, each vertex having a value, values of each of
9	the local graph forming a lattice under a partial ordering.
l	30. The system of claim 29 wherein the instruction code causing the
2	processor to prune the local graphs causes the processor to:
3	associate a use attribute to each one of the vertices in each of the local
ļ	graphs, the use attribute being asserted if there is an edge connecting a named

6	associate an affect attribute to each one of the vertices in each of the local
7	graphs, the affect attribute is asserted if there is an edge connecting the each one
8	of the vertices to a named vertex; and

- 9 pre-solve a subgraph of each of the local graphs, the subgraph including 10 subgraph edges, each of the subgraph edges connecting a tail vertex to a head 11 vertex, the tail vertex having a negated use attribute.
- 1 31. The system of claim 30 wherein the instruction code causing the 2 processor to prune the local graphs further causes the processor to:
- 3 shrink the local graphs.
- 1 32. The system of claim 31 wherein the instruction code further causing the processor to:
- 3 solve a global problem to optimize a recompilation of the separately
- 4 compilation components by an inter-procedural analysis (IPA) solver, the global
- 5 problem being represented by a global graph formed from the pruned local 6 graphs.
- 7 33. The system of claim 32 wherein the instruction code causing the processor to prune the local graphs further causes the processor to:
- determine final edges and vertex values of the local graphs to be sent to
 IPA solver; and

- send the final edges and vertex values to the IPA solver, the final edges
 and vertex values forming the pruned local graphs.
- 1 34. The system of claim 30 wherein the instruction code causing the 2 processor to pre-solve the subgraph causes the processor to:
- 3 find a greatest fix-point solution to the subgraph.
- 1 35. The system of claim 31 wherein the instruction code causing the processor to shrink causes the processor to:
- 3 remove an incoming edge having a head value of a lattice-bottom.
- 1 36. The system of claim 35 wherein the instruction code causing the
- 2 processor to shrink further causes the processor to:
- transform a subgraph having first and second edges, the first and second
 edges having first and second functions, the first edge connecting a first vertex to
- Cages having first and second functions, the first edge connecting a first vertex
- 5 an anonymous vertex having a value v, the second edge connecting the
- 6 anonymous vertex to a second vertex having a value w.
- 1 37. The system of claim 36 wherein the instruction code causing the processor to transform causing the processor to:
- 3 remove the anonymous vertex:
- 4 remove first and second edges:

5	add a third edge having a third function and connecting the first and
6	second vertices, the third function being combined by the first and second
7	functions; and
8	change value of the second vertex to a lattice meet of the second function

- 8 change value of the second vertex to a lattice meet of the second function
 9 of the value v and the value w.
- 1 38. The system of claim 33 wherein the instruction code causing the 2 processor to determine the final edges and vertex values causes the processor to:
- determine each of the final edges as edge having asserted use and affect
 attributes for tail and head vertices, respectively; and
- 5 elide each of the vertex values having a top value.