Épreuve écrite

Examen de fin d'études secondaires 2015

Section:

C

Branche:

Mathématiques I

Numéro d'ordre du candidat

I. 1) Soit $P(z) = z^3 + (-3\sqrt{3} + 3i)z^2 + (6 - 6i\sqrt{3})z + 16i$. Résoudre dans \mathbb{C} l'équation P(z) = 0 sachant qu'elle admet une solution imaginaire pure.

2) Mettre $z = \frac{(2+2i)^3}{(-2\sqrt{3}+6i)^2}$ sous forme algébrique et sous forme trigonométrique, puis donner la forme algébrique de z^4 .

13+7=20 points

II. 1) Donner, si c'est possible, les coefficients de x^{12} et de x^{11} du développement de $\left(\sqrt{2}x^3 - \frac{1}{2x}\right)^{13}$.

2) La grille horaire d'une classe de Ière C prévoit pour les lundis les branches : mathématiques I, mathématiques II, biologie, physique, chimie, et français à raison d'une heure par branche.

a) Combien de façons a-t-on pour organiser la journée de lundi?

b) Répondre à la même question si la leçon de mathématiques I est obligatoirement suivie immédiatement de celle de mathématiques II, soit le matin, soit l'aprèsmidi (matin : 4 heures de cours, après-midi : 2 heures de cours).

3) D'un jeu usuel de 24 cartes on tire une main de 4 cartes.

a) Quelle est la probabilité d'avoir exactement deux rois ?

b) Quelle est la probabilité d'avoir une carte de chaque couleur $(\heartsuit, \diamondsuit, \spadesuit, \clubsuit)$?

c) Quelle est la probabilité d'avoir au moins un coeur ?

 $6+6+8 = 20 \ points$

III. 1) a) Déterminer les valeurs du paramètre réel m pour lesquelles le système suivant admet une solution unique : $\begin{cases} mx + y + 2z = 2 \\ 2mx + y + 3z = m \\ x + my + 2mz = 2 \end{cases}$ avec $m \in \mathbb{R}$

b) Résoudre le système ci-dessus pour m = -1 et pour m = 1 et interpréter les résultats géométriquement.

2) Dans un repère orthonormé de l'espace, on considère le plan π_1 d'équation cartésienne : -3x + 2y - z = 4 et le point A(-1; 3; -2).

a) Le point A appartient-il au plan π_1 ? Justifier.

b) Déterminer un système d'équations paramétriques et un système d'équations cartésiennes de la droite d passant par A et perpendiculaire au plan π_1 .

c) Déterminer une équation cartésienne du plan π_2 passant par le point A et parallèle au plan π_1 .

 $10+10 = 20 \ points$