4.4 Multipliers (array-style)

Assuming unsigned binary numbers, an N-bit **multiplier** multiplies two N-bit numbers to yield a 2N-bit product. A multiplier by mimicking multiplication by hand. Each multiplier digit is multiplied with the multiplicand and appended with 0's based c location, yielding a partial product, all of which are summed to yield the product.

<u>Р</u> 8

PARTICIPATION ACTIVITY

4.4.2: Multiplying binary numbers.

Multiply the following 3-bit values. Include any leading zeros.

010

x 110

1) pp1 = ???

Check Show answer

2) pp2 = ????

Check Show answer

3) pp3 = ?????

Check Show answer

4)	product = ???	???			
	Check	Show answer			

PARTICIPATION 4.4.3: Multiplier.	
Assume a 4-bit array-style multiplier. (Note: Assume every gate input requires 2 transistors a ignore inverters.)	and
1) Which component performs 1-bit multiplication?	
O AND gate	
O Adder	
2) The product is the sum of partial products.	
O True	
O False	
3) What is the size (in transistors) used to compute all partial products?	
O 16	
O 64	
4) What is the size (in transistors) of a 5-bit carry-ripple adder built from full adders, if a full adder has 50 transistors?	
O 100	

250	
5) What is close in size (in transistors) of a 4-bit array-style multiplier? Assume: 6- bit adder has 300 transistors, 7-bit adder has 350.	
2501000	
6) What is the delay (in gate-delays) to compute all partial products?O 1O 4	
7) What is the delay (in gate-delays) of a 5-bit carry-ripple adder built from full adders, assuming a full adder's delay is 2 gate-delays? O 2	
O 10	
8) Which is closer to the total delay of a 4-bit array-style multiplier?	
O 10	
O 15	
Provide feedback on this section	