Processamento de Imagens

Operações Lógicas e Tranformações Geométricas

José Luis Seixas Junior

Índice

- Operações matemáticas;
- Operações lógicas;
- Tranformações geométricas;
 - Translação;
 - Escala;
 - Rotação;
- Atividades;

- Como as operações numéricas convencionais:
 - Dados dois pixels p₁ e p₂, p é o resultado da operação.
- Adição: $p = p_1 + p_2$;
- Subtração: $p = p_1 p_2$;
- Divisão: p = p₁/p₂;
- Multiplicação: p = p₁ * p₂;

PROBLEMA?

- Se $p_1 = 150 e p_2 = 200$;
- Adição será?
 - p = 350 → Que cor é essa?
- Subtração será?
 - p = -50 → Que cor é essa?
- Multiplicação será?
 - Cores podem ser normalizadas, o que também gera problema.... Qual?

• Canais:

- R E G;
- R E B;
- G E B;

- É possível fazer $A = \alpha R \Xi \beta G \Xi \gamma B$;
- Onde E pode ser adição, subtração, multiplicação, divisão ou uma outra forma de operação;

Complemento:

- Lógica booleana tem variação binária:
 - Verdadeiro ou falso;
- Portanto imagens binárias;
- Preto ou não?
- Branco ou não?

 Geralmente se utiliza do branco, pela formação numérica;

Translação

Translação:

$$P' = T(\Delta x, \Delta y) *P$$

$$\Rightarrow \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \Delta x \\ 0 & 1 & \Delta y \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \Leftrightarrow \begin{cases} x' = x + \Delta x \\ y' = y + \Delta y \end{cases}$$

$$\Delta x = 1$$
 $\Delta y = 0$

Translação

Escala

Escala

Escala

Qual a diferença entre escala e Zoom?

Rotação

$$x' = r.cos(\alpha + \theta) = r.cos(\alpha).cos(\theta) - r.sin(\alpha).sin(\theta)$$

 $y' = r.sin(\alpha + \theta) = r.cos(\alpha).sin(\theta) + r.sin(\alpha).cos(\theta)$

$$x' = x.\cos(\theta) - y.\sin(\theta)$$

 $y' = x.\sin(\theta) + y.\cos(\theta)$

Rotação

$$P' = R(\theta) * P \Rightarrow \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} x' = x * \cos(\theta) - y * \sin(\theta) \\ y' = x * \sin(\theta) + y * \cos(\theta) \end{cases}$$

Rotação

Atividade 04/1

- Implemente as transformações geométricas bidimensionais em imagens coloridas:
 - Rotação e translação;
 - Entrega dia 01/06;

Atividade 04/2

- Aplique a separação dos canais em formas de tons de cinza para uma imagem colorida.
 - Entrega a definir.

Recomendação

Implementar uma janela de visualização e manipulação de imagens;

Atividade 04/3

- Implemente as operações lógicas E / OU;
 - 1:
 - Receber duas imagens binárias;
 - Entregar uma imagem com a operação lógica escolhida;
 - 2:
 - Receber uma imagem binária;
 - Entregar o complemento da imagem;
 - PARA HOJE!
 - Comecem!