

BLUE MATH LESSON 8A: FUNCTIONS - TRANSFORMATIONS AND COMPOSITIONS Race to the Finish

Directions: Answer each question below.

HOMEWORK SET (NO CALCULATOR)

- 1. The graph of $f(x) = x^3$ crosses the y-axis at the point (0, 0). At which point will the graph $y = 2(x - 1)^3 - 1$ cross the *y*-axis?
 - A) (0,1)
 - B) (1,0)
 - C) (0, -3)
 - D) (-1,0)
- 2. The definition of $f^{-1}(x)$ is that $f^{-1}(f(x)) = x$. If $f(x) = \frac{x-5}{3}$, then which of the following is equal to $f^{-1}(x)$?
 - A) 5x + 3
 - B) 5x 3
 - C) 3x + 5
 - D) 3x 5
- 3. The graph of a circle has a radius of 2, and a center at (-4, -6). Which of the following is the equation of that circle?
 - A) $(x + 4)^2 + (y 6)^2 = 2$
 - B) $(x-4)^2 + (y+6)^2 = 2$
 - C) $(x-4)^2 + (y-6)^2 = 4$
 - D) $(x + 4)^2 + (y + 6)^2 = 4$

- 4. The graph of $f(x) = \frac{1}{x}$ has a vertical asymptote at x = 0 and a horizontal asymptote at y = 0. What would be the equation of the function with a vertical asymptote at x = -3 and a horizontal asymptote at y = 2?

 - A) $\frac{1}{x-3} + 2$ B) $\frac{1}{x+3} + 2$
 - C) $\frac{1}{x-3} 2$ D) $\frac{1}{x+3} 2$
- 5. What is the resulting function when you vertically stretch the graph of $f(x) = x^3$ by a factor of $\frac{1}{4}$, shift it left 3 units, up 2 units, and reflect it over the y-axis?
 - A) $\frac{1}{4}(-x-3)^3+2$
 - B) $\frac{1}{4}(-x + 3)^3 + 2$
 - C) $\frac{1}{4}(x-3)^3+2$
 - D) $-\frac{1}{4}(x+3)^3+2$
- 6. You have a circle centered on the origin with a radius of 6. You wish to move the circle so that the edge of the circle is tangent to both the *x*and y-axis. What is a possible equation of your new circle?
 - A) $(x + 3)^2 + (y 3)^2 = 6$
 - B) $(x + 6)^2 + (y 6)^2 = 6$
 - C) $(x + 6)^2 + (y + 6)^2 = 36$
 - D) $(x 3)^2 + (y 3)^2 = 36$

7. Which parent function best describes the graph of the function above?

A)
$$y = a^x$$

B)
$$y = \ln x$$

C)
$$y = \sqrt[3]{x}$$

D)
$$y = a^{\frac{1}{x}}$$

- Which of the following functions best describes the graph above?

A)
$$f(x) = \left(-\frac{1}{3}x + 1\right)^2 + 3$$

B)
$$f(x) = -3(x+1)^2 + 3$$

C)
$$f(x) = 3(-x-1)^2 + 3$$

D)
$$f(x) = -3(x-1)^2 - 3$$

8. If $f(x) = 2x^2 + 2$, and g(x) = x - 1, then which of the following is equal to f(g(x))?

A)
$$2x^2 + 4$$

B)
$$2x^2 - 2x + 4$$

C)
$$2x^2 - 4x + 3$$

D)
$$2x^2 - 4x + 4$$

11. Let f(x) = x + 3 and g(x) = 2x - 2. First, g(x) is halved. Then, f(x) is shifted up 2 units and left 3 units. What is the product of the roots of the transformations of both functions?

B)
$$-\frac{9}{2}$$

- 9. A function f(x) has the form $x^2 + bx + c$. Reflecting f(x) across the *y*-axis yields the same translation as shifting f(x) to the right 8 units. What value must c hold if f(x) = 0 has only one solution?
 - A) 2
 - B) 4
 - C) 8
 - D) 16

- 12. Let h(x + 3) = 3x 15 and $g(x) = 4x^2$. If h(x)g(x - 2) = 0 what one possible value of χ ?

 - A) -3
 - B) -2
 - C) 0
 - D) 8

- HW
- 13. The function $f(x) = -2(x+1)^2 2$ is translated from it parent function $f(x) = x^2$ by which of the following transformations?
 - A) Shift 1 unit to the right, 2 units down, and reflect it over the *x*-axis
 - B) Shift 1 unit to the left, 2 units down and reflect it over the *x*-axis
 - C) Stretch it vertically by a factor of 2, shift 1 unit to the right, 2 units down, and reflect it over the *x*-axis
 - D) Stretch it vertically by a factor of 2, shift 1 unit to the left, 2 units down, and reflect it over the *x*-axis

C)

15. Let $f(x) = x^2$. First, f(x) is translated 2 units to the left and 1 unit downward. Then, f(x) is reflected across the x-axis. If c and d are both distinct roots of f(x) after the transformations,

what is $(c+d)^2$?

B)

B) -3

C) -1

D) 16

16. If $f(x) = x^2$ and $g(x) = \sqrt{x}$, which of the following could be the graph of g(f(x))?

- 17. The vertex of f(x) = |x| is located at the point (0, 0). What is the x-coordinate of the vertex of f(x) = 2|x-3| + 2?
- 18. Let f(x) = x 2, $g(x) = x^2$. What is a possible value of x for which f(x) = g(f(x))?
- 19. If the graph of $f(x) = -(x-3)^2 + 6$ is shifted 3 units to the right and 2 units up to form g(x), what is the *y*-coordinate of the vertex of g(x)?
- 20. What is the *y*-intercept of the graph of $f(x) = 3(2^{x-2})$?

