(41 -s 41) Λ(42 -s 42) a (41 Λ 42) -s (41 Λ 42) platia a bloré mie.

Riesenil:

Roxoberieme všelby mošnosti pravdivosti bodení 41,42,41,42.

φ1	42	y1	ψ²	41-, 41	42 -> 42	(41->41)1(45->)	91142	41/1 42	(P1/P2)->P4/1932)
0 0 0 0	0 0 0 0	0 0 1 1	0 1 0 1	1 1 1	1 1 1 1	1 1 1 1	0 0 0 0	0001	1111
0 0 0	1 1 1 1	0011	0 1 0 1	1 1 1	9	0 1 0 1	0 0 0	000	1111
1 1 1 1	9000	0011	0101	0 0 1 1	111	0011	0 0 0	00001	1
1 1 1 1	1 1 1 1 1	0011	0101	0 0	01 01	0 0 0 1	1111	0001	0001

Nedže ršeby hodrody slípea hordenia $(4'->4')\Lambda(4^2->4^2)$ sú rajniae haže, abo prislúchajúce hodrody slípea hordenia $(4'1)^{4}->(4'1)^{4}$, na prvého vypliva druhý.

Kedne však seisleje aspon jeden riadok (a to pialy, siedny, devialy a desialy), v klorom je hodnola prvého tordenia mensia ato hednola drulého, a druhého nevyplica prvý pre kasidu volbu 91, 42, 41, 42.

Oo kombapullad slace vaial bordenia:

- · 41: 1=2
- . 42: 1=1
- · 41: 1=2
- . 42: 1=2

V habom gripade je boliž hrdenie (P1->41) 1 (P2->42)

(t.j. ((1=2)-5(1=2)) 1((1=1)->(1=2))) repravdive, ale bordenie (41/42)-5(41/42)

(t.j. ((1=2))(1=1)) -> ((1=2)) (1=2))) pravclive.

2 Vymyslile vlashvá situáciu o valahoch chlapeor a dievial a napišle ju vo forme malemalistiko hordinia.

Riesenie:

Nech x Oy mamera , ñe x ma rad y. Nech C je , mnozina "dlapov a D, mnozina" diescal.

Eislige diesia, kloré ma rado nejakého dlapca, khorý ma rád iba ju. $(\exists d_1 \in D)(\exists c \in C)(d_1 \cup c_1 \land (\forall d_2 \in D)(d_1 \neq d_2 \rightarrow 7C \cup d_2) \land C \cup d_1)$

- 3) Zislile, blore jmplitacie medsi nasledujúcimi bordinimi platea pre lubovolné bordina Pa 4:

 Ix (P14) a Ix P1 Ix P;
 - · Kx (914) a Vx 91 Vx 4,

Riesenie:

Jx (PAY) a Jx PA Jx Y

Dobažeme, že z prveho svrdenia vyplýva druhé, ale nie naojaž:

- typok $\exists x (PNY)$ aramena, ne existiye x pre store plate Pa saroven Y.

 At take x existiye, tak to anamena, ne pren plate Pa saroven Y.

 Bretože pre toto x plate Pa saroven Y, tak existiye aj x (sonkretne toto), pre

 klore plate Pa xaroven & aj x (sonkretne toto), pre store plate Y.

 Bali teda, ne $\exists x$ Pa seeveren $\exists x$ Y a leda aj $\exists x$ PN $\exists x$ Y.
- Ned 4 je Avrdenil: x 1 a 4: x = 2. Polom Svrdenie Ix 41 I x 4 je pravdive, ak svrdenie Ix (914) je nepravdivé. Z sobo vyplýva, xe (časť výroku s) neinylýskuje (časť nýroku a).

Yx (414) a Vx41 Vx4

Dobaxeme platnost oboch implibacii:

- · týrok $\forall x (\forall \Lambda \forall)$ mnamená, až pre kandé x platí 4 a nároven \forall . Preloxe pre všelžy x platí 4 a nároven pre všelžy x platí aj \forall tak se toto vyplýva, se platí aj tvolenie $\forall x \ \forall \Lambda \ \forall \forall$.
- · Výrok Vx 41 Vx 4 snamena , ne pre basidé x plalí 4 a nároven pre basidé x plalí 4. Preloxe pre basidé x plalí 4 a nároven 4 plalí aj bordenil Vx (914).