Chapitre 1

Premier degré

1 Équations du premier degré

Définitions

- \cdot On appelle **équation à une inconnue** une égalité dans laquelle figure un nombre inconnu, généralement noté x.
- On dit qu'un nombre est **une solution** de l'équation si et seulement si l'égalité est vérifiée lorsqu'on remplace x par ce nombre.
- Résoudre l'équation, c'est trouver toutes les solutions de cette équation.

Exemples

· Voici deux équations à une inconnue :

$$2x+1 = -4, 2x+6$$
 et $2\sqrt{x+1} = 3x-4$

• On peut **vérifier que** 2 est **une solution** de l'équation $3x^3 - 1 = 5x^2 + x + 1$. En effet :

$$3 \times 2^3 - 1 = 3 \times 8 - 1$$
 d'une part, et d'autre part $5 \times 2^2 + 2 + 1 = 5 \times 4 + 2 + 1$ = 23

Vérifier qu'un nombre donné est une solution d'une équation ne suffit pas, pour deux raisons :

1

- · si on ne devine aucune solution, on est « coincé ».
- · vérifier qu'un nombre est **une** solution ne nous les fournit pas toutes.

Exercice 1

- 1. Vérifier que 31 est une solution de 10x 11 = 8x + 51.
- 2. Vérifier que 7 est une solution de $\frac{3}{4}x + \frac{2}{5} = \frac{3}{2}x \frac{97}{20}$.
- 3. Vérifier que $\sqrt{2}$ est une solution de $\sqrt{2}x-\sqrt{6}=-\sqrt{3}x+2$.

Définition

On appelle équation du premier degré toute équation de la forme

$$ax + b = cx + d$$

où a, b, c et d sont quatre nombres réels.

Remarque

ax + b et cx + d sont appelées des **expressions du premier degré**.

Exemples

$$34x - 5 = 23x + 50$$

$$\cdot 34x - 5 = 23x + 50$$

$$\cdot 2, 4x - 3 = -5, 7x + 8$$

$$\cdot \sqrt{2}x - 2 = \pi x + \sqrt{5}$$

$$\cdot \sqrt{2}x - 2 = \pi x + \sqrt{5}$$

•
$$7x - 2 = 7x + 9$$

$$\cdot 7x - 2 = 7x + 9$$

$$\cdot \frac{3}{4}x + 1 = \frac{7}{10}x - \frac{2}{7}$$

$$\cdot 2x - 3(4x - 5) = 17$$

•
$$2x - 3(4x - 5) = 17$$

Pour résoudre les équations du premier degré on utilise les propriétés suivantes :

Propriétés

Soient A, B et k trois nombres réels.

Lorsqu'on dispose d'une égalité, on obtient une égalité équivalente en ajoutant ou en soustrayant le même nombre aux deux membres de l'égalité.

$$A = B \iff A + k = B + k$$

$$A = B \iff A - k = B - k$$

On obtient une égalité équivalente en multipliant ou en divisant les deux membres par un même nombre non nul.

Pour $k \neq 0$:

$$A = B \iff kA = kB$$

$$A = B \qquad \Longleftrightarrow \qquad \frac{A}{k} = \frac{B}{k}$$

Ces propriétés nous permettent d'énoncer la propriété ci dessous :

Propriété: Résolution des équations du premier degré

On considère l'équation du premier degré

$$ax + b = cx + d$$

• Si
$$a \neq c$$
 alors $S = \left\{ \frac{d-b}{a-c} \right\}$.

• Si a = c alors ou bien b = d et $S = \mathbb{R}$, ou bien $b \neq d$ et $S = \emptyset$.

Preuve

$$\begin{array}{lll} ax+b=cx+d &\Leftrightarrow & ax+b-cx=cx+d-cx\\ &\Leftrightarrow & (a-c)x+b=d\\ &\Leftrightarrow & x=\frac{d-b}{a-c} & \text{si } a\neq c & \text{et} &\Leftrightarrow & b=d & (*) & \text{sinon}. \end{array}$$

Or

- si b = d alors (*) est vérifiée quelle que soit la valeur de x;
- sinon $b \neq d$ et quelle que soit la valeur de x, (*) n'est pas vérifiée.

Remarque

En pratique, on n'utilise pas cette propriété, on « isole les x » dans un des membres de l'égalité, les constantes de l'autre, puis on divise les deux membres de l'équation par le coefficient de x (pour peu qu'il soit non nul).

Exercice 2

Résoudre les équations suivantes :

1.
$$34x - 5 = 23x + 50$$

2.
$$3x + 1 = 3x - 7$$

3.
$$2,4x-3=-5,7x+8$$

4.
$$\frac{3}{4}x + 1 = \frac{7}{10}x - \frac{2}{7}$$

5.
$$\sqrt{2}x - 2 = \pi x + \sqrt{5}$$

6.
$$2x - 3(4x - 5) = 17$$

2 Équations se ramenant à des équations du premier degré

Grâce à la propriété suivante, on peut ramener la résolution de certaines équations de degré supérieur à 1 à une résolution d'équation de degré 1.

Propriété

Un produit de facteurs est nul si, et seulement si, au moins l'un de ses facteurs est nul.

Cette propriété permet de résoudre des équations produit-nul ou des équation s'y ramenant.

Exemples

- -(3x-5)(4x+8)=0 est une équation produit-nul.
- $x^2 + 3x 5 = x^2 7x 4$ est une équation du second degré. Après soustraction de x^2 à chacun de ses membres, on obtient l'équation équivalente 3x - 5 = -7x - 4 qui est une équation du premier degré.

Exercice 3

Résoudre les équations suivantes :

1.
$$(3x-5)(4x+8)=0$$

4.
$$(2x-1)(3x+2) + (2x-1)(7-x) = 0$$

$$2. \ x^2 + 3x - 5 = x^2 - 7x - 4$$

5.
$$(4x-1)(x-7)-(x-7)^2=0$$

3.
$$(x-5)^2 = (x+4)^2$$

3 Inéquations du premier degré

On retrouve ici beaucoup de notions similaires à celles de la partie précédente.

Définitions

- · On appelle inéquation à une inconnue une inégalité dans laquelle figure un nombre inconnu, généralement noté x.
- On dit qu'un nombre est une solution de l'inéquation si et seulement si l'inégalité est vérifiée lorsqu'on remplace x par ce nombre.
- · Résoudre l'inéquation, c'est trouver toutes les solutions de cette équation.

Exemples

· Voici deux inéquations à une inconnue :

$$x-1 < -5x+6$$

$$x - 1 < -5x + 6$$
 et $2\sqrt{x + 2} \ge 3x + 4$

• On peut vérifier que -2 est une solution de l'inéquation $3x^2 - 1 < 2x^2 + x + 10$. En effet :

$$3 \times (-2)^2 - 1 = 3 \times 4 - 1$$

$$3 \times (-2)^2 - 1 = 3 \times 4 - 1$$
 et d'autre part $2 \times (-2)^2 + (-2) + 10 = 8 - 2 + 10$

Pour résoudre les inéquations du premier degré on utilise les propriétés suivantes :

Propriétés

Valables avec <, >, \geqslant , \leqslant :

Soient A, B et k trois nombres réels.

Lorsqu'on dispose d'une inégalité, on obtient une inégalité équivalente en ajoutant ou en soustrayant le même nombre aux deux membres de l'égalité.

$$A < B \iff A + k < B + k$$

$$A < B \iff A - k < B - k$$

On obtient une inégalité équivalente en multipliant ou en divisant les deux membres par un même nombre strictement positif.

Pour k > 0:

$$A < B \iff kA < kB$$

$$A < B \qquad \iff \qquad \frac{A}{k} < \frac{B}{k}$$

Lorsqu'on multiplie ou qu'on divise les deux membres par un même nombre **strictement négatif**, on obtient une inégalité équivalent **en «retournant» le symbole de comparaison**.

Pour k < 0:

$$A < B \iff kA > kB$$
 $A < B \iff \frac{A}{k} > \frac{B}{k}$

Méthode

Résoudre $4x-5\leqslant 7x+40$:

$$4x - 5 \leqslant 7x + 40 \quad \Leftrightarrow \quad 4x - 5 + 5 \leqslant 7x + 40 + 5$$

$$\Leftrightarrow \quad 4x \leqslant 7x + 45$$

$$\Leftrightarrow \quad 4x - 7x \leqslant 7x + 45 - 7x$$

$$\Leftrightarrow \quad 4x - 7x \leqslant 7x + 45 - 7x$$

$$\Leftrightarrow \quad -3x \leqslant 45 \qquad \text{on va diviser par un nombre négatif.}$$

$$\Leftrightarrow \quad x \geqslant \frac{45}{-3}$$

$$\Leftrightarrow \quad x \geqslant -15 \quad \text{ainsi} \quad \mathcal{S} = [-15 \; ; \; +\infty[$$

Schéma de l'ensemble des solutions

Exercice 4

Résoudre les inéquations suivantes et faire un schéma de l'ensemble des solutions.

1.
$$2x - 5 < 7x - 35$$

4.
$$1.4x - 3 \ge -5.7x - 18$$

2.
$$3x + 1 > -8x - 7$$

5.
$$\frac{2}{5}x + 1 \leqslant \frac{7}{10}x + \frac{2}{3}$$

3.
$$-1,2x-8,1>3,2x+5,7$$

6.
$$\frac{3}{2}x + \frac{2}{3} > -\frac{1}{4}x + \frac{1}{5}$$

4 Signe d'une expression du premier degré et applications

Propriété

Soit ax + b une expression du premier degré, où a et b sont deux réels et $a \neq 0$. On a le tableau de signe suivant :

si a>0:

x	$-\infty$		$-\frac{b}{a}$		$+\infty$
signe de $ax + b$		_	0	+	

si a < 0:

x	$-\infty$		$-\frac{b}{a}$		$+\infty$
signe de $ax + b$		+	0	_	

Preuve

Exercice 5

Donner le tableau de signes des expressions suivantes :

1.
$$3x + 2$$

4.
$$\sqrt{3}x - 3$$

2.
$$-4x - 9$$

5.
$$(2x-1)(-3x+2)$$

3.
$$\frac{3}{5}x - \frac{2}{7}$$

6.
$$\frac{5x-2}{-7x-8}$$

Pour les deux dernières on étudiera le signe de chaque expression du premier degré puis on utilisera la règle des signes.

5 Équations de droites

Le plan est muni d'un repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$.

Propriété

Soit (d) une droite d'équation y = mx + p dans le repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$.

- p s'appelle **l'ordonnée à l'origine** : (d) passe par le point de coordonnées (0;p).
- \cdot m s'appelle le **coefficient directeur** : dès que A et B sont deux points distincts de (d) alors

$$m = \frac{y_B - y_A}{x_B - x_A}$$

Exercice 6

Sans justifier, lire les équations des droites (d_1) à (d_5) du graphique suivant :

Méthode

Déterminer par le calcul l'équation réduite d'une droite passant par 2 points donnés :

Déterminons l'équation réduite de (MN): $x_M \neq x_N$ donc cette droite n'est pas parallèle à l'axe des ordonnées, elle admet donc une unique équation du type y = mx + p.

$$m = \frac{y_N - y_M}{x_N - x_M}$$

$$= \frac{-5 - (-7)}{-2 - (-4)}$$

$$= \frac{2}{4}$$

$$= \frac{1}{2}$$

Puisque
$$(MN)$$
 : $y=\frac{1}{2}x+p$ et que $M\left(-6\;;\;-7\right)\in\left(MN\right)$ alors

$$y_M = \frac{1}{2}x + p$$
 \Leftrightarrow $-7 = \frac{1}{2} \times (-6) + p$
 \Leftrightarrow $-7 = -3 + p$
 \Leftrightarrow $p = -4$

Ainsi
$$(MN) : y = \frac{1}{2}x - 4.$$

Exercice 7

Déterminer les équations réduites des droites (SR) et (DU) du graphique précédent.

Déterminer et tracer sur le graphique précédent l'équation réduite de la droite passant par B(300; -95) et T(-111; 42).

6 Fonctions affines

Définition

Une fonction f est dite **affine** si :

- · elle est **définie sur R**;
- on peut écrire : pour tout $x \in \mathbb{R}$, f(x) = mx + p où m et p sont deux nombres réels.

Exemples

- f définie sur **R** par f(x) = 3x + 2 est affine (m = 3 et p = 2).
- g définie sur **R** par $g(x)=-\frac{7}{3}x+\frac{2}{5}$ l'est également ($m=-\frac{7}{3}$ et $p=\frac{2}{5}$).
- En dépit des apparences, h définie sur \mathbf{R} par $h(x)=(x+2)^2-(x-1)^2$ est une fonction affine car on peut écrire pour tout $x\in\mathbf{R}$

$$h(x) = x^2 + 4x + 4 - (x^2 - 2x + 1)$$

$$= x^2 + 4x + 4 - x^2 + 2x - 1$$

$$= 6x + 3$$
 et donc $m = 6$ et $p = 3$.

Remarques

 \cdot Si p=0 alors f est définie sur ${f R}$ par f(x)=mx : c'est une fonction linéaire.

6. FONCTIONS AFFINES

9

courbe représentative de f définie sur R par $f(x)=\frac{1}{2}x$

 \cdot Si m=0 alors f est définie sur ${f R}$ par f(x)=p : c'est une fonction constante.

courbe représentative de f définie sur \mathbf{R} par f(x)=2

Propriété et définition

Soit f une fonction affine définie sur \mathbf{R} par f(x) = mx + p.

- · p est **l'image de 0** par f, donc \mathcal{C}_f passe par le point $P\left(0\;;\;p\right)$.
- \cdot \mathcal{C}_f est une droite.

• Le nombre m s'appelle le taux d'accroissement de f. Pour tous nombres distincts x_1 et x_2 on a

$$m = \frac{f(x_2) - f(x_1)}{x_2 - x_2}$$

Preuve

- $\begin{array}{ll} \cdot \ f(0) = m \times 0 + p \\ &= p & \text{donc } P(0;p) \in \mathcal{C}_f. \end{array}$
- $C_f: y = mx + p$ On reconnait l'équation d'une droite de coefficient directeur m et d'ordonnée à l'origine p.
- Soient $M_1(x_1; f(x_1))$ et $M_2(x_2; f(x_2))$.

 M_1 et M_2 appartiennent à \mathcal{C}_f , donc $m=rac{y_{M_2}-y_{M_1}}{x_{M_2}-x_{M_1}}$ $=rac{f(x_2)-f(x_1)}{x_2-x_1}$

Méthode: déterminer l'expression algébrique d'une fonction affine

f est une fonction affine. f(-3)=2 et f(2)=-4. Déterminons l'expression algébrique de f.

- Puisque f est affine, pour tout $x \in \mathbf{R}$ on a f(x) = mx + p.
- · Déterminons m :

$$m = \frac{f(2) - f(-3)}{2 - (-3)}$$
$$= \frac{-4 - 2}{2 + 3}$$
$$= \frac{-6}{5}$$

Ainsi pour tout $x \in \mathbf{R}$ on a $f(x) = -\frac{6}{5}x + p$.

· Déterminons p :

Puisque f(-3) = 2 on peut écrire :

$$\underbrace{-\frac{6}{5} \times (-3) + p}_{f(-3)} = 2 \quad \Leftrightarrow \quad \frac{18}{5} + p = 2$$

$$\Leftrightarrow \quad p = 2 - \frac{18}{5}$$

$$\Leftrightarrow \quad p = \frac{10}{5} - \frac{18}{5}$$

$$\Leftrightarrow \quad p = -\frac{8}{5}$$

· Ainsi, pour tout $x \in \mathbf{R}$, on a $f(x) = -\frac{6}{5}x - \frac{8}{5}$.

6. FONCTIONS AFFINES 11

Remarque

Pour déterminer p on aurait tout aussi bien pu écrire que f(2)=-4, on aurait également abouti à $p=-\frac{8}{5}$.

Propriété : signe d'une fonction affine

Soit f une fonction affine définie sur R par f(x)=mx+p. Si $m\neq 0$ alors f admet le tableau de signe suivant :

· Si m>0:

x	$-\infty$		$-\frac{p}{m}$		$+\infty$
f(x)		_	0	+	

· Si m < 0:

x	$-\infty$		$-\frac{p}{m}$		$+\infty$
f(x)		+	0	_	

• Si m < 0:

Preuve

Par disjonction de cas:

• Si m > 0:

$$f(x) > 0 \quad \Leftrightarrow \quad mx + p > 0$$

$$\Leftrightarrow \quad mx > -p$$

$$\Leftrightarrow \quad x > -\frac{p}{m}$$

$$\Leftrightarrow \quad mx - \frac{p}{m}$$

7 Systèmes linéaires d'équations

Définitions

 \cdot Un système linéaire de deux équations à deux inconnues x et y est un système qui peut s'écrire sous la forme :

$$\begin{cases} ax + by = c \\ a'x + b'y = c' \end{cases}$$
 où a, b, c, a', b' et c' sont des réels fixés.

• Une solution de ce système est un **couple** (x;y) de deux nombres réels tel que x et y vérifient simultanément les deux équations.

Exemples

- $\cdot \begin{cases} x + 5y = 19 \\ -2x + y = -5 \end{cases}$ est un système linéaire de deux équations à deux inconnues.
- Le couple (4;3) est solution de ce système car il vérifie les deux équations en même temps. En effet: $4 + 5 \times 3 = 19$ et $-2 \times 4 + 3 = -5$.
- Le couple (9 ; 2) n'est pas solution de ce système car il vérifie que la première équation mais pas la seconde.

En effet:
$$9 + 5 \times 2 = 19$$
 et $-2 \times 9 + = -16 \neq -5$.

Exercice 8

- 1. Le couple (4;-2) est-il solution du système $\begin{cases} 2x+y=6\\ y=x-6 \end{cases}$?
- 2. Le couple (2;1) est -il solution du système $\begin{cases} 2x+3y=8\\ 3x-2y=-1 \end{cases}$?

Propriété

On obtient un système équivalent à un système donné en :

- · remplaçant une équation par un équation équivalente;
- · substituant une expression par une expression équivalente;
- remplaçant une des équations par la somme ou la différence membre à membre des équations.

Méthode

Résoudre graphiquement un système linéaire

On cherche à résoudre le système linéaire $\begin{cases} -2x+y&=4\\ x+y&=1 \end{cases}$ On transforme ce système en un système équivalent : $\begin{cases} y&=2x+4\\ y&=-x+1 \end{cases}$

y = 2x + 4 et y = -x + 1 sont les équations de deux droites (d_1) et (d_2) . On représente graphiquement ces droites. Les solutions de ce système sont les coordonnées des points appartenant aux deux droites.

Les droites (d_1) et (d_2) sont sécantes en P(-1; 2). La solution du système est donc le couple (-1; 2).

Remarques

- · Cette méthode de résolution est assez limitée. Parfois, les coordonnées du point d'intersection ne sont pas évidentes à lire de manière exacte. On préférera alors des méthodes calculatoires.
- · Si les deux droites sont sécantes, alors le système a un unique couple solution. Si les deux droites sont parallèles, alors le système a :
 - soit aucune solution dans le cas où les droites sont strictement parallèles;
 - soit une infinité de solutions dans le cas où les droites sont confondues.

Exercice 9

Résoudre graphiquement les systèmes suivants : 1. $\begin{cases} y=2x+1 \\ y=-3x+6 \end{cases}$

1.
$$\begin{cases} y = 2x + 1 \\ y = -3x + 6 \end{cases}$$

3.
$$\begin{cases} y = x - 3 \\ 2x + y = 3 \end{cases}$$

$$2. \begin{cases} y = 5x + 6 \\ x = -2 \end{cases}$$

2.
$$\begin{cases} y = 5x + 6 \\ x = -2 \end{cases}$$
 4.
$$\begin{cases} x - 2y = -7 \\ 2x - y = -5 \end{cases}$$

Méthode

Résolution par substitution

- Étape 1: on isole une inconnue dans une des équations.
- Étape 2 : on la remplace dans l'autre équation par l'expression trouvée.
- Étape 3 : on résout l'équation à une inconnue obtenue.
- Étape 4 : on en déduit l'autre inconnue puis le couple solution.

Résolvons par substitution le système (S): $\begin{cases} 3x + y = 14 \\ 7x - 4y = 1 \end{cases}$

Étape 1: on isole y dans la première équation.

$$(S) \Leftrightarrow \begin{cases} y = -3x + 14 \\ 7x - 4y = 1 \end{cases}$$
$$(S) \Leftrightarrow \begin{cases} y = -3x + 14 \\ 7x - 4(-3x + 14) = 1 \end{cases}$$

Étape 2: on remplace y par l'expression trouvée dans la deuxième équation

$$(S) \Leftrightarrow \begin{cases} y = -3x + 14 \\ 7x - 4(-3x + 14) = 1 \end{cases}$$

Étape 3: on résout l'équation ainsi obtenue qui ne comporte plus qu'une seule inconnue x

$$(S) \Leftrightarrow \begin{cases} y = -3x + 14 \\ 19x - 56 = 1 \end{cases}$$
$$(S) \Leftrightarrow \begin{cases} y = -3x + 14 \\ x = \frac{57}{19} = 3 \end{cases}$$

Étape 4 : on peut alors calculer l'autre inconnue et obtenir le couple solution.

$$(S) \Leftrightarrow \begin{cases} y = -3 \times 3 + 14 \\ x = 3 \end{cases}$$

$$(S) \Leftrightarrow \begin{cases} y = 5 \\ x = 3 \end{cases}$$

Le couple (3;5) est la solution de ce système.

Remarques

La méthode de résolution par substitution est efficace lorsqu'il est facile d'exprimer une inconnue en fonction de l'autre.

Dans l'exemple précédent on a choisit d'écrire $3x+y=14 \Leftrightarrow y=-3x+14$. On aurait pû écrire $3x+y=14 \Leftrightarrow x=-\frac{1}{3}y+\frac{14}{3}$ mais cette expression est plus difficile à utiliser ensuite (du fait des fractions).

Exercice 10

Résoudre chacun des systèmes par substitution. 1. $\begin{cases} x+3y=8\\ 2x-5y=-17 \end{cases}$ 3. $\begin{cases} 4x-3y=-13\\ 4x-y=1 \end{cases}$ 4. $\begin{cases} 8x+3y=-4\\ x+5y=1 \end{cases}$

1.
$$\begin{cases} x + 3y = 8 \\ 2x - 5y = -17 \end{cases}$$

3.
$$\begin{cases} 4x - 3y = -1 \\ 4x - y = 1 \end{cases}$$

$$2. \begin{cases} 2x + y = 4 \\ 5x + 3y = 9 \end{cases}$$

4.
$$\begin{cases} 8x + 3y = -4 \\ x + 5y = 1 \end{cases}$$

Méthode

Résolution par combinaisons linéaires

- Étape 1 : on remplace les équations par des équations équivalentes dans lesquelles une inconnue a le même coefficient (ou des coefficients opposés).
- Étape 2 : on la remplace une équation par la somme ou ka différence membre à membre des deux équations.
- Étape 3 : on résout l'équation à une inconnue obtenue.
- Étape 4: on en déduit l'autre inconnue puis le couple solution.

Résolvons par combinaisons linéaires le système

Étape 1: on multiplie par 4 chaque membre de la première équation pour obtenir 4y dans les deux équations.

Étape 2 : on remplace la première équation par la somme membre à membre des deux équations.

L'inconnue y disparaît de la nouvelle équation ainsi obtenue.

Étape 3 : on résout cette équation qui ne com- $(S)\Leftrightarrow \left\{ \begin{array}{c} x=3\\ 7x-4y=1 \end{array} \right.$ porte plus qu'une seule inconnue x

Étape 4 : on peut alors calculer l'autre inconnue et obtenir le couple solution.

$$(S): \begin{cases} 3x + y = 14 \\ 7x - 4y = 1 \end{cases}$$

$$(S) \Leftrightarrow \begin{cases} 4(3x + y) = 4 \times 14 \\ 7x - 4y = 1 \end{cases}$$

$$(S) \Leftrightarrow \begin{cases} 12x + 4y = 56 \\ 7x - 4y = 1 \end{cases}$$

$$(S) \Leftrightarrow \begin{cases} 12x + 7x + 4y - 4y = 56 + 1 \\ 7x - 4y = 1 \end{cases}$$

$$(S) \Leftrightarrow \begin{cases} 19x &= 57\\ 7x - 4y &= 1 \end{cases}$$

$$(S) \Leftrightarrow \begin{cases} x = 3 \\ 7x - 4y = 1 \end{cases}$$

$$(S) \Leftrightarrow \begin{cases} x = 3 \\ 7 \times 3 - 4y = 1 \end{cases}$$

$$(S) \Leftrightarrow \begin{cases} x = 3 \\ y = 5 \end{cases}$$

Le couple (3;5) est la solution de ce système.

Exercice 11

Résoudre chacun des systèmes par combinaisons linéaires.

1.
$$\begin{cases} 2x + 3y = 5 \\ 5x - 3y = -19 \end{cases}$$

2.
$$\begin{cases} 3x + 4y = -6 \\ 5x + y = -10 \end{cases}$$

3.
$$\begin{cases} 4x - 6y = 3 \\ 5x + 7y = 1 \end{cases}$$

4.
$$\begin{cases} x + 3y = 4 \\ 8x - 4y = 5 \end{cases}$$

Exercice 12

Résoudre par le calcul les systèmes suivants avec la méthode de votre choix.

1.
$$\begin{cases} y=2\\ x-y=3 \end{cases}$$

2.
$$\begin{cases} -2x + 2y = -6 \\ x + 2y = 6 \end{cases}$$

3.
$$\begin{cases} x + 4y = 2 \\ 3x - 2y = 1 \end{cases}$$

4.
$$\begin{cases} 3x + 9y = 20 \\ -2x - 6y + 7 = 0 \end{cases}$$

Application

Dans une boulangerie, Flavie achète 3 pains au chocolat et 2 croissants. Elle paie 5,60 €. Dans la même boulangerie, Bob achète 2 pains au chocolat et 3 croissants. Il paie 5,40 €. Calculer le prix d'un pain au chocolat et d'un croissant.

Modélisation:

On appelle x le prix d'un pain au chocolat et y celui d'un croissant.

D'après les informations de l'énoncé, on a le système suivant :
$$(S)$$
 :
$$\begin{cases} 3x + 2y = 5, 6 \\ 2x + 3y = 5, 4 \end{cases}$$

Résolution du système (par combinaisons linéaires) :

$$(S) \Leftrightarrow \begin{cases} 3(3x+2y) = 3 \times 5, 6 \\ -2(2x+3y) = -2 \times 5, 4 \end{cases}$$

$$\Leftrightarrow \begin{cases} 9x+6y=16, 8 \\ -4x-6y=-10, 8 \end{cases}$$

$$\Leftrightarrow \begin{cases} 5x=6 \qquad \text{en aditionnant membre à membre les deux équations} \\ 2x+3y=5, 4 \quad \text{en gardant la deuxième équation} \end{cases}$$

$$\Leftrightarrow \begin{cases} x=\frac{6}{5}=1, 2 \\ 2\times 1, 2+3y=5, 4 \end{cases}$$

$$\Leftrightarrow \begin{cases} x=1, 2 \\ 2, 4+3y=5, 4 \end{cases}$$

$$\Leftrightarrow \begin{cases} x=1, 2 \\ 3y=3 \end{cases}$$

$$\Leftrightarrow \begin{cases} x=1, 2 \\ y=1 \end{cases}$$

Conclusion:

Le couple (1, 2; 1) est la solution du système.

Un pain au chocolat coûte 1,20 € et un croissant coûte 1 €.

Exercice 13

1. Dans un parc zoologique, la visite coûte 30 € pour les adultes et 18 € pour les enfants. A la fin de la journée, on sait que 630 personnes ont visité le zoo et que la recette du jour est 14 220 €.

Parmi les personnes qui ont visité le zoo ce jour-là, quel est le nombre d'enfants?

- 2. Pour l'achat d'un livre et d'un stylo, la dépense est de 35 €. Après une réduction de 20%, sur le prix du livre et de 30% sur le prix du stylo, la dépense n'est que de 26 €. Calculer le prix d'un livre et celui d'un stylo avant la réduction.
- Jean et Paul désirent acheter en commun un lecteur de CD qui coûte 200 €.
 Les économies de Paul représentent les ⁴/₅ de celles de Jean et, s'ils réunissent leurs économies, il leur manque 27,20 € pour pouvoir effectuer leur achat.
 Calculer le montant des économies de chacun des deux garçons.

4. Trois amis pêcheurs achètent des poches d'hameçons et des bouchons. Les poches sont toutes au même prix, les bouchons aussi.

Le premier prend 3 poches et 2 bouchons. Le second, 2 poches et 4 bouchons. Le troisième, 4 poches et 1 bouchon. Le premier a dépensé 4,60 €, le second 6 €. Combien a dépensé le troisième?