I was working in project Indiana Clean Lakes monitoring program from 1988-2010. Below are my 3 research questions

- How does nutrient concentration (nitrate, ammonia, phosphorus) affect water clarity in Indiana lakes?
- What factors influence algal growth (as measured by chlorophyll-a) in Indiana lakes?
- What is the suitability of lake water in Indiana for treatment into potable drinking water, and how can it be efficiently supplied to households?

<u>Research Question -1: How does nutrient concentration (nitrate, ammonia, phosphorus) affect water clarity in Indiana lakes?</u>

1. Hypothesis –

Null Hypothesis (H0): There is no significant relationship between nutrient concentrations (nitrate, ammonia, phosphorus) and water clarity (Secchi Depth).

Alternative Hypothesis (H1): There is a significant relationship between nutrient concentrations (nitrate, ammonia, phosphorus) and water clarity.

Statistical Test: Multiple linear regression

Secchi =
$$\beta$$
0+ β 1xNO3_epi + β 2xNH3_epi + β 03xTotal_Phos_epi + ϵ

If the p-values for any of the coefficients (β 1, β 2, or β 3) are < 0.05, the null hypothesis is rejected for that variable.

For calculating coefficients below is the code

```
data = pd.read_csv('/Users/abhijitghosh/Documents/DataScience/IN_chemistry.csv')
model1 = smf.ols('Secchi ~ NO3_epi + NH3_epi + Total_Phos_epi', data=data).fit()

# Summary of the model
print(model1.summary())
```

Output for coefficient/p value from summary table

	coef	std err	t	P> t	[0.025	0.975]
Intercept	2.3268	0.044	52.401	0.000	2.240	2.414
NO3_epi	-0.1530	0.027	-5.573	0.000	-0.207	-0.099
NH3_epi	-0.1633	0.198	-0.823	0.410	-0.552	0.226
Total_Phos_epi	-2.6125	0.331	-7.904	0.000	-3.261	-1.964

Decision: Reject the null hypothesis since all p-values are < 0.05. Nutrient concentrations significantly reduce water clarity.

Assumption:

- There is normality in residuals. From q-q plot we can verify it. Below is the plot.
- Plot residuals vs y^. Should not have fanning out or funneling in
- Plot residuals vs y^. Residuals shouldn't be uniformly above 0 or uniformly below 0 for any subsection.
- Plot residuals vs y^/ Shouldn't see any clear patterns.

Visualization: I'm trying to draw a pairplot.

Research Question -2: What factors influence algal growth (as measured by chlorophyll-a) in Indiana lakes?

Null Hypothesis (H0): Nutrient levels (phosphorus, nitrogen) and water clarity (Secchi depth) have no significant impact on algal growth (Chlorophyll_a).

Alternative Hypothesis (H1): Nutrient levels and water clarity significantly influence algal growth.

Dependent Variable: Chlorophyll_a (indicator of algal growth). Independent Variables: Total_Phos_epi, TKN_epi, Secchi.

Statistical Test: Multiple linear regression

Chlorophyl_a = $\beta 0 + \beta 1 x Total_Phos_epi + \beta 2 x TKN_epi + \beta 3 \cdot Secchi + \epsilon$ If the p-values for any of the predictors ($\beta 1$, $\beta 2$, or $\beta 3$) are < 0.05, the null hypothesis is rejected for that variable.

For calculating coefficients below is the code

Linear regression: Chlorophyll_a ~ Total_Phos_epi + TKN_epi + Secchi model2 = smf.ols('Chlorophyll_a ~ Total_Phos_epi + TKN_epi + Secchi', data=data).fit()

```
# Summary of the model print(model2.summary())
```

Summary output

	coef	std err	t	P> t	[0.025	0.975]
Intercept Total_Phos_epi TKN_epi Secchi	6.7937 89.7723 8.9230 -3.0093	1.355 8.616 0.909 0.356	5.013 10.420 9.820 -8.454	0.000 0.000 0.000 0.000	4.135 72.870 7.140 -3.708	9.452 106.674 10.706 -2.311
Omnibus: Prob(Omnibus): Skew: Kurtosis:		1730.900 0.000 6.594 106.099	Durbin-Wat Jarque-Ber Prob(JB): Cond. No.	son:		1.823 35.598 0.00 47.0

Decision: Reject the null hypothesis since all predictors have p-values < 0.05. Nutrient levels and water clarity significantly influence algal growth, with higher phosphorus and nitrogen increasing algae, and clearer water reducing it.

Assumption:

- There is normality in residuals. From q-q plot we can verify it (Shown below).
- Plot residuals vs y^. Should not have fanning out or funneling in
- Plot residuals vs y^. Residuals shouldn't be uniformly above 0 or uniformly below 0 for any subsection.
- Plot residuals vs y^/ Shouldn't see any clear patterns.

● ● Figure 1

(x, y) = (-0.511, -4.33e-15)

Visualization: Scatter plot

<u>Research Question - 3:</u> What is the suitability of lake water in Indiana for treatment into potable drinking water, and how can it be efficiently supplied to households?

Null Hypothesis (H0): The average concentrations of nitrate, ammonia, and water clarity (Secchi depth) in Indiana lakes meet the suitability thresholds:

- NO3 epi $\leq 10 \text{ mg/L}$
- NH3 epi ≤ 0.5 mg/L
- Secchi depth $\geq 1.5 \text{ m}$

Alternative Hypothesis (H1): The average concentrations of nitrate, ammonia, or water clarity do not meet the suitability thresholds.

Statistical Test:

One-sample t-tests to compare the mean of each parameter against its threshold (this threshold value I got from internet):

```
NO3_epi against 10 mg/L.
NH3_epi against 0.5 mg/L.
Secchi depth against 1.5 m.
```

Null hypothesis is rejected if p-value < 0.05 for any test.

We are running one sample t test because we are trying to compare sample mean and population mean. Below is the python code and output.

```
nitrate_levels = data['NO3_epi'] # Example nitrate data (mg/L)
ammonia_levels = data['NH3_epi'] # Example ammonia data (mg/L)
secchi_depths = data['Secchi'] # Example Secchi depth data (m)

# Thresholds for suitability
nitrate_threshold = 10.0
ammonia_threshold = 0.5
secchi_threshold = 1.5

# One-sample t-tests
# Nitrate
nitrate_t_stat, nitrate_p_value = ttest_1samp(nitrate_levels, nitrate_threshold)
print("Nitrate:")
print("T-Statistic: {nitrate_t_stat}, P-Value: {nitrate_p_value}")
if nitrate_p_value < 0.05:
    print("Reject the null hypothesis: Nitrate levels exceed the threshold.")
else:
    print("Fail to reject the null hypothesis: Nitrate levels meet the threshold.")

# Ammonia
```

```
ammonia_t_stat, ammonia_p_value = ttest_1samp(ammonia_levels, ammonia_threshold)

print("\nAmmonia:")

print(f"T-Statistic: {ammonia_t_stat}, P-Value: {ammonia_p_value}")

if ammonia_p_value < 0.05:
    print("Reject the null hypothesis: Ammonia levels exceed the threshold.")

else:
    print("Fail to reject the null hypothesis: Ammonia levels meet the threshold.")

# Secchi_Depth

secchi_t_stat, secchi_p_value = ttest_1samp(secchi_depths, secchi_threshold)

print("\nSecchi Depth:")

print(f"T-Statistic: {secchi_t_stat}, P-Value: {secchi_p_value}")

if secchi_p_value < 0.05:
    print("Reject the null hypothesis: Secchi depth is below the threshold.")

else:
    print("Fail to reject the null hypothesis: Secchi depth meets the threshold.")
```

Nitrate:

T-Statistic: -411.07875042113716, P-Value: 0.0

Reject the null hypothesis: Nitrate levels exceed the threshold.

Ammonia:

T-Statistic: -83.33584956058084, P-Value: 0.0

Reject the null hypothesis: Ammonia levels exceed the threshold.

Secchi Depth:

T-Statistic: 14.384530495241984, P-Value: 1.7567647265826735e-43

Reject the null hypothesis: Secchi depth is below the threshold.

In all three cases we can reject the null hypothesis.

Assumption:

- Data are normally distributed for each variable. We can verify with q-q plot. (one example for Secchi depth is shown below)
- Observations are independent.

Final Visualization of Data:

● ● Figure 1

(x, y) = (Nitrate, 39.9)