Bootstrapping & Confidence Intervals (Accuracy of Proportions)

Sampling Data | Sample Surveys

© University of Sydney DATA1001/1901

Unit Overview

Understanding Chance

What is chance?

Chance Variability

How can we model chance variability by a box model?

Sample Surveys

How can we model the chance variability in sample surveys?

Data Story | Same-Sex Marriage Polls

Estimating the population proportion using bootstrapping

Confidence Intervals

Summary

Data Story

Same-Sex Marriage Polls

Same-Sex Marriage Polls

In the lead up to the plebiscite, the following three opinion polls were conducted in August 2017.

Date	Firm	Support	Oppose	Undecided
17-22 August 2017	Essential	57%	32%	11%
17-21 August 2017	YouGov	59%	33%	8%
17-20 August 2017	Newspoll	63%	30%	7%

Statistical Thinking

With the person next to you discuss:

- · Could you have predicted the final result from these polls?
- · See SMH visualisation

Estimating the population proportion using bootstrapping

The gap in information

We want to predict the population proportion from the sample proportion.

Previously, we found these results:

• The EV of the **Sample** Proportion is equal to the **population** proportion.

$$EV_{proportion} = mean_{box} = population proportion$$

• The chance error is related to the SE of the Sample Proportion, which is:

$$ext{SE}_{proportion} = rac{ ext{SD}_{box}}{\sqrt{ ext{sample size}}}$$

@

What is the problem with using these formulas? What could be a solution?

Solution?

Bootstrapping

Bootstrapping

- Bootstrapping is estimating the properties of the population, by using the properties of a particular sample.
- When sampling from a 0-1 box, we replace the unknown proportion of 1's in the box (population) by the known proportion of 1's in a particular sample.

Bootstrapping the population proportion

Step1: Create an approximate box (box1) - which has the same proportion of 0s and 1s as the sample.

Step2: Use the Box Model

Focus in the Sample	EV	SE
Sum	$\text{sample size} \times \text{mean}_{box1}$	$\sqrt{ ext{sample size}} imes ext{SD}_{box1}$
Proportion (Mean)	$mean_{box1}$	$rac{ ext{SD}_{box1}}{\sqrt{ ext{sample size}}}$

Statistical Thinking

Consider the YouGov survey which gave support of 59%, opposed 33%, and undecided 8%, with a sample size of 1012.

- How would you estimate the proportion of support in the population?
- · What do you need to assume?
- · Using bootstrapping, find the chance that the proportion of support in the population is less than 0.625.

Bootstrapping assumptions

For the YouGov survey:

- **1.** Assume the population proportion of support to be $\frac{59}{59+33}\% \approx 64\%.$
- **2.** We assume the Australian population of eligible voters to be approximately 16,655,856 at the time of the poll.
- · Note there is bias as only 79.5% voted.

Step1: Draw the (approximate) box model

Use the box model

- The estimate of the population proportion is the EV of the Sample Proportion = 0.64.
- The chance error is related to the SE of the Sample Proportion, which is $\frac{0.48}{\sqrt{1012}}=0.015.$

```
# Using the short cut formula for SD of 0-1 box (with sample proportions)

(1 - 0) * sqrt(0.64 * 0.36)

## [1] 0.48

# Or: calculating SD of box with sample proportions direct

N = 16655856
box = c(rep(1, 0.64 * N), rep(0, 0.36 * N))
sd(box) * sqrt((N - 1)/N)

## [1] 0.48
```

Final Result

• We could estimate the proportion of Australians supporting the final plebiscite to be 0.64, with a chance error of around 0.015.

Note: We should adjust the SE by the finite population correction factor
$$\sqrt{(N-n)/(N-1)} = \sqrt{(16,655,856-1012)/(16,655,856-1)}$$
.

However, here the fpc is close to 1.

Bootstrapping a distribution

```
set.seed(123)
N = 16655856
box = c(rep(1, 0.64 * N), rep(0, 0.36 * N))
means = round(replicate(10000, mean(sample(box, 1012, rep = F))), 3)
cumsum(table(means))
```

```
## 0.584 0.587 0.588 0.59 0.591 0.592 0.593 0.594 0.595 0.596 0.597 0.598
## 1 2 5 6 8 10 12 15 16 19 25
        0.6 0.601 0.602 0.603 0.604 0.605 0.606 0.607 0.608 0.609 0.61
## 0.599
## 36 40 48 51 65 78 93 114 133 154 181 209
## 0.611 0.612 0.613 0.614 0.615 0.616 0.617 0.618 0.619 0.62 0.621 0.622
## 246 297 335 388 462 540 620 709 791 895 1024 1142
## 0.623 0.624 0.625 0.626 0.627 0.628 0.629 0.63 0.631 0.632 0.633 0.634
## 1275 1443 1763 1935 2136 2332 2547 2770 2985 3216 3447 3681
## 0.635 0.636 0.637 0.638 0.639 0.64 0.641 0.642 0.643 0.644 0.645 0.646
## 3921 4185 4447 4682 4941 5216 5492 5753 5998 6242 6476 6697
## 0.647 0.648 0.649 0.65 0.651 0.652 0.653 0.654 0.655 0.656 0.657 0.658
## 6934 7141 7342 7574 7799 7989 8179 8369 8511 8647 8775 8896
## 9012 9138 9237 9335 9421 9486 9565 9622 9680 9732 9764 9794
## 0.671 0.672 0.673 0.674 0.675 0.676 0.677 0.678 0.679 0.68 0.681 0.682
## 9824 9859 9879 9906 9924 9937 9944 9951 9956 9964 9972 9975
## 0.683 0.684 0.685 0.686 0.687 0.688 0.689 0.69 0.693 0.7
## 9977 9983 9986 9989 9993 9994 9996 9998 9999 10000
```

hist(means, breaks = 20, freq = F)

Histogram of means

Using the output, we can approximate $P(Proportion < 0.625) = 1746/10000 \approx 0.17.$

Confidence Intervals

Chance Error and Standard Error

- Up to now, we have often taken the estimate of the chance error to be 1 unit of the SE. Hence, the proportion of Australians supporting the final plebiscite could be anywhere between 0.64 \pm 0.015.
- · However, the chance error could be out by as much as 2 or even 3 SEs.
- · Now we generalise, using Confidence Intervals.

Confidence Intervals (CI)

Confidence Intervals for population proportion

68% confidence interval

sample proportion $\pm 1 \times SE$

95% confidence interval

sample proportion $\pm~2 \times {
m SE}$

99.7% confidence interval

sample proportion \pm 3 \times SE

Interpreting Confidence Intervals

For a 95% Confidence Interval:

- It is a mistake to say "the probability that the interval contains the unknown parameter is 0.95".
- Rather, we say 'if we worked out a series of CIs for a series of samples, then 95% of the CIs would contain the unknown parameter."

Vis	Visualising a series of CI					

Simulating a series of Cls

Here we simulate the data story:

- Create a population of size 1000000, where the proportion of 1s ("Yes" votes) is 0.67.
- Draw a sample of size 1000 from the population, and calculate a 95% CI (black line) for the population proportion.
 - Repeat this sampling 100 times, forming 100 CIs.
 - Graph the 100 CIs.
- Draw a red line to represent the true population proportion (0.67) and check how many CIs fall inside and outside the red line.
 - We expect approximately 95% of CIs to "cover" the true proportion.

Note: Unless we draw without replacement, the fpc applies for the SE, though here it is very close to 1 for the sample survey.

plots of 100 68 percent CIs

The true value of p was captured in the CI 72 percent of times

Justifying the CI formulas

- We assume the Sample Proportion (estimating the population proportion) follows a Normal distribution.
- Recall all Normal distributions satisfy the "68%-95%-99.7% Rule.

1,2 and 3 standard deviations from mean: N(0,1)

pnorm(1) - pnorm(-1)
[1] 0.6826895
pnorm(2) - pnorm(-2)
[1] 0.9544997
pnorm(3) - pnorm(-3)
[1] 0.9973002

Statistical Thinking

- Using the YouGov survey, what is the 95% confidence interval for the support of same sex marriage plebiscite?
- · What does it represent?

Methods of Sampling

- The methods described above, relate to simple random samples.
- In practise, sampling can be much more complex, requiring more sophisticated statistical reasoning and approaches.

Summary

We use bootstrapping to estimate the proportions within the population from the proportions within the sample. This allows us to work out the EV, the SE and confidence intervals.

Key Words

plebiscite, opinion polls, simple random sample

Further Practise

App:Brown

App:Kristoffer Magnusson

App:Rossman

Understanding Confidence Intervals: Statistics Help	

