lie groups and lie algebras

This is just Lee, Introduction to smooth manifolds, Second Edition.

1	classical lie groups	1
2	the lie algebra of a lie group	3
3	the exponential map	5

classical lie groups

Definition. A *Lie group* is a smooth manifold G without boundary that is also a group in the algebraic sense, with the property that the multiplication map and the inversion map are both smooth.

Example.

- 1. The *general linear group* $GL(n, \mathbb{R})$ is the set of invertible $n \times n$ matrices with real entries.
- 2. $GL^+(n,\mathbb{R})$, the subset of $GL(n,\mathbb{R})$ consisting of matrices with positive determinant.
- 3. If G is any Lie group and $H \subset G$ is an open subgroup, H is a Lie group (because restrictions of the operations are smooth).
- 4. The *complex generar linear group* $GL(n, \mathbb{C})$.
- 5. If V is any real or complex vector space, GL(V) denotes que set of invertible linear maps from V to itself. If V is finite dimensional, there is an isomorphism with either of $GL(n, \mathbb{R})$ or $GL(n, \mathbb{C})$.
- 6. \mathbb{R}^n and \mathbb{C}^n .
- 7. The set \mathbb{R}^* of nonzero real numbers. In fact, it is $GL(1,\mathbb{R})$. Also \mathbb{C}^* .
- 8. The circle \mathbb{S}^1 .
- 9. Direct product of Lie groups.
- 10. The n-torus \mathbb{T}^n .
- 11. Any discrete group.
- 12. The set $SL(n,\mathbb{R})$ of $n \times n$ real matrices with determinant equal to 1 is called the *special linear group of degree* n. It is the kernel of the group homomorphism $\det: GL(n,\mathbb{R}) \to \mathbb{R}^*$. Because the determinan function is surjective, it is a smooth submersion by the global rank theorem so $SL(n,\mathbb{R})$ has dimension $n^2 1$.
- 13. Let n be a positive integer and define the map $\beta:GL(n,\mathbb{C})\to GL(2n,\mathbb{R})$ by replacing each complex matrix entry by a 2×2 block matrix. Thus $GL(n,\mathbb{C})$ is isomorphic to a Lie subgroup of $GL(2n,\mathbb{R})$.

- 14. The subgroup $SL(n, \mathbb{C}) \subseteq GL(n, \mathbb{C})$ consisting of complex matrices of determinant 1 is called the *complex special linear group of degree* n. By similar arguments the real case, it is of codimension dim $\mathbb{C}^* = 2$ and therefore of dimension $2n^2 2$.
- 15. A real $n \times n$ matrix A is said to be *orthogonal* if as a linear map it preserves the Euclidean dor ptoduct. The set O(n) of orthogonal $n \times n$ matrices is a subgroup of $GL(n,\mathbb{R})$ called the *orthogonal group of degree* n. A matrix A is orthogonal if and only if it takes the standard basis of \mathbb{R}^n to an orthonormal basis, which is equivalent to the columns of A being orthonormal. Since the (i,j)-entry of the matrix A^TA is the dot product of the ith and jth columns of A, this condition is also equivalent to the requirement that $A^TA = I_n$. Also, O(n) is the level set $\Phi^{-1}(I_n)$ of the map $\Phi: GL(n,\mathbb{R}) \to M(n,\mathbb{R})$ given by $A \mapsto A^TA$, so it is a closed set and an embedded Lie subgroup. It is also bounded because every $A \in O(n)$ has colomuns of norm 1, and therefore satisfies that $|A| = \sqrt{n}$. It has dimension n(n-1)/2.
- 16. The *special orthogonal group of degree* n is defined as $SO(n) = O(n) \cap SL(n, \mathbb{R}) \subseteq GL(n, \mathbb{R})$. Notice that every matrix $A \in O(n)$ satisfies

$$1 = \det I_n = \det(A^T A) = \det A \det A^T = (\det A)^2,$$

it follows that $\det A = \pm 1$. Therefore SO(n) is the open subgroup of O(n) consisting of matrices with positive determinant, and is therefore also an embedded Lie subgroup of dimension n(n-1)/2 in $GL(n,\mathbb{R})$. It is a compact group because it is a closed subset of O(n).

- 17. For any complex matrix A, the *adjoint of* A is the matrix A^* formed by conjugating the entries of A and taking the transpose: $A^* = \overline{A}^T$. For any positive integer n, the *unitary group of degree* n is the subgroup $U(n) \subseteq GL(n,\mathbb{C})$ consisting of complex $n \times n$ matrices whose columns form an orthogonal basis for \mathbb{C}^n with respect to the Hermitian dot product $z \cdot w = \sum_i z^i \overline{w^i}$. It is straightforward to check that U(n) consists of those matrices A such that $A^*A = I_n$. It is a properly embedded Lie subgroup of $GL(n,\mathbb{C})$ of dimension n^2 .
- 18. The group $SU(n) = U(n) \cap SL(n, \mathbb{C})$ is called the *complex special unitary group of degree* n. It is a properly embedded Lie subgroup of U(n) of dimension $n^2 1$. It is also embedded in $GL(n, \mathbb{C})$ because composition of embeddings is an embedding.
- 19. The *real symplectic group* is the subgroup $Sp(2n,\mathbb{R})\subseteq GL(2n,\mathbb{R})$ consisting of all $2n\times 2n$ matrices that leave the standard symplectic tensor $\omega=\sum_{i=1}^n dx^i\wedge dy^i$ invariant, that is, the set of invertible linear maps $Z:\mathbb{R}^{2n}\to\mathbb{R}^{2n}$ such that $\omega(Zx,Zy)=\omega(x,y)$ for all $x,y\in\mathbb{R}^{2n}$.

Definition (Extra). If G is any Lie group, a *(finite-dimensional) representation of* G is a Lie group homomorphism grom G to GL(V) for some V. If a representation is injective, it is said to be *faithful*.

the lie algebra of a lie group

Suppose G is a Lie group. Recall that G acts smoothly and transitevely on itself by left translation $L_g(h) = gh$. A vector field X on G is said to be *left-invariant* if it is invariant under all left translations:

$$d(L_g)_{g'}(G_{g'}) = X_{gg'}$$
 for all $g, g' \in G$.

Since L_g is a diffeomorphism, the pushforward of a vector field is well defined and we may write our condition as $(L_g)_*X = X$ for every $g \in G$.

Because $(L_g)_*(aX+bY)=a(L_g)_*+b(L_g)_*$, the set of left-invariant vector fields on G is a linear subspace of $\mathfrak{X}(G)$. But there's more

Proposition 2.1. Let G be a Lie group and suppose that X and Y are left-invariant vector fields on G. Then [X, Y] is also left-invariant.

Definition. A *Lie algebra* (over \mathbb{R}) is a real vector space \mathfrak{g} endowed with a map called the *bracket* from $\mathfrak{g} \times \mathfrak{g}$ to \mathfrak{g} usually denoted by $(X,Y) \mapsto [X,Y]$ that satisfies the following properties for all $X,Y,Z \in \mathfrak{g}$:

1. BILINEARITY: For $a, b \in \mathbb{R}$,

$$[\alpha X + bY, Z] = \alpha[X, Z] + b[Y, Z],$$

$$[\mathsf{Z}, \mathfrak{a}\mathsf{X} + \mathsf{b}\mathsf{Y}] = \mathfrak{a}[\mathsf{Z}, \mathsf{X}] + \mathsf{b}[\mathsf{Z}, \mathsf{Y}].$$

2. Antisymmetry:

$$[X, Y] = -[Y, X].$$

3. Jacobi Identity:

$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.$$

Notice that the Jacobi identity is a substitute for associativity, which does not hold in general for brackets in a Lie algebra. We may also define Lie algebras over \mathbb{C} .

Definition.

- If $\mathfrak g$ is a Lie algebra, a linear subspace $\mathfrak h\subseteq \mathfrak g$ is called a *Lie subalgebra of* $\mathfrak g$ if it is closed under brackets.
- If g and hf are Lie algebras, a linear map $A : \mathfrak{g} \to \mathfrak{h}$ is called a *Lie algebra homomorphism* if it preserves brackets: A[X,Y] = [AX,AY]. An invertible Lie algebra homomorphism is called a *Lie algebra isomorphism*.

Example.

- 1. The space $\mathfrak{X}(M)$ of all smooth vector fields on a smooth manifold M is a Lie algebra under the Lie bracket.
- 2. If G is a Lie group, the set of all left-invariant vector fields on G is a Lie subalgebra of $\mathfrak{X}(G)$. This is called the *Lie algebra of* G and it is denoted by Lie(G).

3. The vector space $M(n, \mathbb{R})$ of $n \times n$ real matrices is an n^2 -dimensional Lie algebra under the *commutator bracket*

$$[A, B] = AB - BA$$
.

When regarding $M(n, \mathbb{R})$ as a Lie algebra with this bracket, we denote it by $\mathfrak{gl}(n, \mathbb{R})$.

- 4. Similarly, $\mathfrak{gl}(n,\mathbb{C})$ is the $2n^2$ -dimensional (real) Lie algebra obtained by endowing $M(n,\mathbb{C})$ with the commutator bracket.
- 5. If V is a vector space, the vector space of all linear maps from V to itself becomes a Lie algebra which we denote gl(V) with the commutator bracket:

$$[A, B] = A \circ B - B \circ A.$$

Under the usual identification of $n \times n$ matrices with linear maps from \mathbb{R}^n to itself, $\mathfrak{gl}(\mathbb{R}^n)$ is the same as $\mathfrak{gl}(n,\mathbb{R})$.

6. Any vector space V becomes a lie algebra if we define all brackets to be zero. Such a Lie algebra is said to be *abelian*.

Theorem 2.2. Let G be a Lie group. The evaluation map $\varepsilon: \text{Lie}(G) \to T_eG$ given by $\varepsilon(X) = X_e$ is a vector space isomorphism. Thus Lie(G) is finite-dimensional with dimension equal to dim G.

Corollary 2.3. Every left-invariant rough vector field on a Lie group is smooth.

Corollary 2.4. Every Lie group admits a left-invariant smooth global frame, and therefore every Lie group is parallelizable.

Example.

- 1. Lie(\mathbb{R}^n) $\cong \mathbb{R}^n$.
- 2. Lie(\mathbb{S}^1) $\cong \mathbb{R}$.
- 3. Lie(\mathbb{T}^n) $\cong \mathbb{R}^n$.
- 4. Lie(GL(n, \mathbb{R})) \cong $\mathfrak{gl}(n$, \mathbb{R}). (long proof)
- 5. If V is any finite-dimensional real vector space, $Lie(GL(V)) \cong \mathfrak{gl}(V)$.
- 6. Lie(GL(\mathfrak{n}, \mathbb{C})) $\cong \mathfrak{gl}(\mathfrak{n}, \mathbb{C})$.
- 7. $\mathfrak{o}(\mathfrak{n}) = \{\text{skew-symmetric } \mathfrak{n} \times \mathfrak{n} \text{ matrices}\} \subseteq \mathfrak{gl}(\mathfrak{n}, \mathbb{R}) \text{ is Lie}(O(\mathfrak{n})).$
- 8. Lie(GL(\mathfrak{n}, \mathbb{C})) $\cong \mathfrak{gl}(\mathfrak{n}, \mathbb{C})$. (long proof)

Theorem 2.5 (Ado's Theorem). Every finite-dimensional real Lie algebra admits a faithful finite-dimensional representation.

Corollary 2.6. Every finite-dimensional real Lie algebra is isomorphic to a Lie subalgebra of some matrix algebra $\mathfrak{gl}(n,\mathbb{R})$ with the commutator bracket.

the exponential map

Definition. Suppose G is a Lie group. A *one-parameter subgroup of* G is defined to be a Lie group homomorphism $\gamma : \mathbb{R} \to G$ with R considered as a lie group under addition. Notice that by this definition, a one-parameter subgroup is not a Lie subgroup of G but rather a homomorphism into G.

Theorem 3.1. The one-parameter subgroups of G are precisely the maximal integral curves of left-invariante vector fields starting at the identity.

Definition. Given $X \in \text{Lie}(G)$, the one-parameter subgroup determined by X in this way is called the *one-parameter subgroup generated by* X.

Because left-invariant vector fields are uniquely determined by their values at the identity, it follows that each one-parameter subgroup is unequely determined by its initial velocity in T_eG, and thus there are one-to-one correspondences

 $\{\text{one-parameter subgroups of }G\} \leftrightarrow \text{Lie}(G) \leftrightarrow T_eG.$

Proposition 3.2. For any $A \in \mathfrak{gl}(n, \mathbb{R})$, let

$$\varepsilon^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k = I_n + A + \frac{1}{2} A^2 + \dots$$

This series converges to an invertible matrix $e^A \in GL(n,\mathbb{R})$ and the one-parameter subgroup of $GL(n,\mathbb{R})$ generated by $A \in \mathfrak{gl}(n,\mathbb{R})$ is $\gamma(t) = e^{tA}$.

Proposition 3.3. Suppose G is a Lie group and $H \subseteq G$ is a Lie subgroup. The one-parameter subgroups of H are precisely those one-parameter subgroups of G whose initial velocities lie in T_eH .

Example. If H is a Lie subgroup of $GL(n,\mathbb{R})$, the precding proposition shows that the one-parameter subgroups of H are precisely the maps of the form $\gamma(t)=e^{tA}$ for $A\in\mathfrak{h}$, where $h\subseteq\mathfrak{gl}(n,\mathbb{R})$ is the subalgebra cooresponding to Lie(H). For example, taking H=O(n) this shows that the one-parameter subgroups of O(n) are the maps of the form $\gamma(t)=e^{tA}$ for an arbitrary skew-symmetric A. In particular, this shows that the exponential of any skew-symmetric matrix is orthogonal.

Definition. Given a Lie group G with Lie algebra \mathfrak{g} , we define the map $\exp : \mathfrak{g} \to G$ called the *exponential map of* G as follows: for any $X \in \mathfrak{g}$, we set

$$\exp X = \gamma(1)$$
,

where γ is the one-parameter subgroup generated by X, or equivalently the integral curve of X starting at the identity.

Proposition 3.4. Let G be a Lie group. For any $X \in \text{Lie}(G)$, $\gamma(s) = \exp sX$ is the one-parameter subgroup of G generated by X.

Example.

- 1. $\exp A = e^{A}$.
- 2. If V is any finite-dimensional real vector space, a choice of basis for V yields isomorphisms $GL(V) \cong GL(n,\mathbb{R})$ and $\mathfrak{gl}(V) \cong \mathfrak{gl}(n,\mathbb{R})$. The analysis of the $GL(n,\mathbb{R})$ case then shows that the exponential map of GL(V) can be written in the form

$$\exp A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k$$

when we consider $A \in \mathfrak{gl}(V)$ as a linear map from V to itself and $A^k = A \circ ... \circ A$.

Proposition 3.5. Let G be a Lie group and g be its Lie algebra.

- 1. The exponential map is a smooth map from g to G.
- 2. For any $X \in \mathfrak{g}$ and $s, t \in \mathbb{R}$, exp(s+t)X = exp sX exp tX.
- 3. For any $X \in \mathfrak{g}$, $(\exp X)^{-1} = \exp(-X)$.
- 4. For any $X \in \mathfrak{g}$ and $\mathfrak{n} \in \mathbb{Z}$, $(\exp X)^{\mathfrak{n}} = \exp(\mathfrak{n}X)$.
- 5. The differential $(d \exp)_0 : T_0 \mathfrak{g} \to T_e G$ is the identity map, under the canonical identifications of both $T_0 \mathfrak{g}$ and $T_e G$ with \mathfrak{g} itself.
- 6. The exponential map restricts to a diffeomorphism from some neighborhood of 0 in g to a neighborhood of e in G.

Notice that $\exp(X + Y) = \exp X \exp Y$ for arbitrary X, Y in the Lie algebra. In fact, for connected groups, this is only true when the group is abelian.

Theorem 3.6 (The Lie correspondence). There is a one-to-one correspondence between isomorphism classes of finite-dimensional Lie algebras and isomorphism classes of simply connected Lie groups given by associating each simply connected Lie group with its Lie algebra.