Honors Peer-graded Assignment

Supervised Machine Learning: Regression

Michał Bożyk

1. Dataset summary

Chosen was Life Expectancy (WHO) dataset that includes various factors that influence life expectancy (target feature). It consists of 2938 and has 22 features. Features describe for example whether person suffers from various diseases or consumes alcohol. They are mostly numerical however "Country" and "Status" features have types "object". In some columns a vast number of null values was spotted. The main goal of this is to determine Life Expectancy values based on other features as well as to check which transformation, scaling and regularization techniques best suit the analyzed dataset.

0	<pre><class 'pandas.core.frame.dataframe'=""> PangaTrdov. 2020 antrias 0 to 2027</class></pre>				
<u> </u>	_	eIndex: 2938 entries, 0 to 2937 columns (total 22 columns):			
تک	#	Column	Non-Null Count	Dtype	
	#	Column	NOII-NUII COUIIC	осуре	
	0	Country	2938 non-null	object	
	1	Year	2938 non-null	int64	
	2	Status	2938 non-null	object	
	3	Life expectancy	2928 non-null	float64	
	4	Adult Mortality	2928 non-null	float64	
	5	infant deaths	2938 non-null	int64	
	6	Alcohol	2744 non-null	float64	
	7	percentage expenditure	2938 non-null	float64	
	8	Hepatitis B	2385 non-null	float64	
	9	Measles	2938 non-null	int64	
	10	BMI	2904 non-null	float64	
	11	under-five deaths	2938 non-null	int64	
	12	Polio	2919 non-null	float64	
	13	Total expenditure	2712 non-null	float64	
	14	Diphtheria	2919 non-null	float64	
	15	HIV/AIDS	2938 non-null	float64	
	16	GDP	2490 non-null	float64	
	17	Population	2286 non-null	float64	
	18	thinness 1-19 years	2904 non-null	float64	
	19	thinness 5-9 years	2904 non-null		
	20	Income composition of resources	2771 non-null		
	21	Schooling	2775 non-null	float64	
	dtypes: float64(16), int64(4), object(2)				
	memoi	ry usage: 505.1+ KB			
		·			

2. Plan for the data analysis

First, data will be cleansed, namely, NaN values will be replaced using forward fill. Next, "object" type features will be changed to numerical. Later, normally distribution of target variable will be examined by plotting the histogram and performing statistical test which will output p-value. Transformations will be performed if the normality won't be sufficient:

- log,
- square root,
- BoxCox.

Next, data will be scaled. Three separate scaling techniques will be used and compared.:

- Standard Scaler,
- MinMaxScaler,
- MaxAbsScaler.

Two types of regularization will be applied: Lasso and Ridge. Different values of hyperparameters will be tested. Finally, Lasso and Ridge regression with optimized hyperparameters performance will be compared to each other.

3. Comparison of transformation techniques

First, plotted was the distribution of target variable.

Applying log, sqrt and boxcox transformations yielded following results:

Results of D'Agostino K-squared test for normality for the non-transformed dataset:

statistic=177.33620410175092,

pvalue=3.1040775189334384e-39

The value of statistic suggests that that there is strong deviation from normality and the extremely small value of p-value indicates strong evidence against the null hypothesis that the data is normally distributed. Transformations will be applied and compared.

Next, the effectiveness of these transformation techniques was compared utilizing D'Agostino K-squared test for normality:

Transformation	Statistics (deviation from	p-value (significance of the	
	normality)	null hypothesis)	
log	331.50266735668373	1.0354053755454299e-72	
sqrt	240.082434121537	7.358034665336535e-53	
boxcox	80.0253258744376	4.194896790656272e-18	

Deviation from normality is still high even after applying transformation (in case of log and sqrt is even higher than it used to be). As it comes to p-value in each case is still incredibly low. It leads to the conclusion that relatively simple transformation methods are not efficient in terms of improving normality. It can be due to the high randomness of data what is characteristic for medical and health-related datasets. Further analysis was based on the original, non-transformed dataset.

4. Comparison of scaling techniques and degrees of polynomial features

Compared were StandardScaler, MinMaxScaler and MaxAbsScaler. All of the techniques yielded similar results as it comes to R² score and Mean Squared Error.

Scaler	R ² score	Mean Squared Error	
StandardScaler	0.8018505304833281	17.886983956038968	
MinMaxScaler	0.8018505304833284	17.886983956038936	
MaxAbsScaler	0.8018505304833285	17.88698395603893	

Values for R² score and MSE are virtually the same meaning that scaling does not significantly influence the relationship between input features and target variables. However, by analyzing R² score it can be observed that 80% of variance is explained suggesting that linear regression was the right choice for this task. StandardScaler was chosen for further analysis.

Next, three degrees of polynomial features were tested. The results are presented in the table.

Degree	R ² score	Mean Squared Error	
1	0.8018505304833281	17.886983956038968	
<mark>2</mark>	<mark>0.89025803810732</mark>	<mark>9.90642425875104</mark>	
3	154532.77834922334	13949788.615336515	

Degree 1 did not change anything what was expected since it is a simple linear model. As it comes to degree 2 the fit to the data is improved since the model captures more complex relationships between input features and the target. Degree 3 suggests overfitting due to abnormality of MSE and R^2 score. For further analysis degree 2 polynomial was chosen.

5. Comparison of regularization techniques and various alpha values

Lastly, two regularization techniques were tested and compared, namely Lasso and Ridge, together with various alpha values. The results were presented in form of the table as well as bar plot.

Regularization	Alpha	R ² score	Mean Squared Error
Lasso	<mark>0.01</mark>	0.9059227209407579	8.492370861577712
	0.1	0.8872622769204516	10.176852094951373
	1	0.7691087712632807	20.842587739839175
	10	0.06530616254485921	84.37496055452172
Ridge	0.01	0.8933505663159597	9.62726124818904
	0.1	0.897686704390565	9.235837378315347
	1	0.9009357541825015	8.94254513967097
	<mark>10</mark>	<mark>0.9016175860693514</mark>	8.880996067394632

It turns out that lower values of alpha results in good performance for both Lasso and Ridge and the use of regularization techniques provides further improvements for linear regression. When it comes to larger values of alpha in case of Ridge regression the model still maintains reasonable performance, however Lasso regression's one is significantly worse than it used to be.

6. Conclusions

Analyzed was Life Expectancy WHO dataset. First, it was cleaned and NaN values were filled. Next, tested were various techniques to improve the robustness of linear regression model. It turned out that the use of transformation techniques to improve the normality of distribution is irrelevant, probably due to the high randomness of target feature. Various scaling techniques yielded similar results. However, when it comes to the degree of polynomial features the most suitable one was deemed to be 2. As for the regularization technique the most fitting seems to be Lasso alpha equal to 0.01. Model, after improvements, explain more than 90% of variance with relatively low MSE (close to 8.5). When it comes to future perspective of this project, the robustness of chosen parameters can be confirmed by Cross-validation.