Approved For Release STAT 2009/08/19 :

CIA-RDP88-00904R000100120

Approved For Release 2009/08/19 :

CIA-RDP88-00904R000100120

Вторая Международная конференция Организации Объединенных Наций по применению атомной энергии в мирных целях

A/CONF/15/P/2205 USSR ORIGINAL: RUSSIAN

Не подлежит оглашению до официального сообщения на Конференции

ОПРЕДЕЛЕНИЕ ГАЗООБРАЗНЫХ ПРИМЕСЕЙ В КОНСТРУКЦИ-ОННЫХ И ДРУГИХ МАТЕРИАЛАХ

З.М. ТУРОВЦЕВА и Н.Ф. ЛИТВИНСВА

Введение

Наличие газов в металлах оказывает существенное влияние на их физические и механические свойства. В зависимости
от газосодержания изменяются такие свойства как электропроводность, внутреннее трение, пластические характеристики,
термо - ЭДС, магнитная проницаемость и др. Кроме того, наличие газов вызывает ряд дефектов при производстве и обрамотке кеталлов.

Для того, чтобы получить металлы и сплавы повышенного качества необходимо разработать методы контроля содержания в них газообразных примесей. Газами в металлах называются содержащиеся в любой форме элементы /водород, кислород, азот, образующие в обычных условиях газообразные простые вещества. Допустимое содержание газов в металлах в большинстве случаев не должно превышать 10-2 - 10-4%. Поэтому чувствительность применяемых методов должна соответствовать этой величине. Наиболее универсальным методом для этой цели является метод вакуум-плавления в различных его вариантах, успех которого во-многом зависит от используемой аппаратуры.

Прибор системы Института геохимии и аналитической химии для определения газов в метадлах

В Институте геохимии и аналитической химии им.В.И.Вернадского АН СССР сконструирован и изготовлен аппарат, который позволяет определять газообразные примеси в металлах ме-25 YEAR RE-REVIEW тодом вакуум-плавления в различных его вариантах /1/. Бла-годаря малому газоотделению прибора при холостом ходе /холостая поправка = 0,01 мл за 15 мин. при 1800°/, возможно ностям получения температур выше 2000° и определения малых количеств экстрагированных газов, на приборе возможно анализировать все металлы, к которым применим метод вакуум-плавления. Чувствительность определения составляет для кислорода и азота 10°2 - 10°3%, для водорода 1.10°4%. Общий вид прибора изображен на рис. 1, принципиальная схема на рис. 2.

Прибор позволяет проводить илавление анализируемого металла в вакуумной печи с индукционным нагревом или в печи сопротивления при непрерывной откачке выделяющихся газов, собирать и анализировать выделенные газы. Анализ газов проводится отделением водорода через палладиевый фильтр, окислением СО до СО2, конденсацией последней жидким азотом и определением азота по остаточному давлению. Использование палладиевого фильтра для определения водорода позволяет избежать применения циркуляционных систем, что значительно упрощает конструкцию и уменьшает время анализа.

В приборе предусмотрены приспособления для загрузки образцов без нарушения вакуума в системе, а также образцов, находящихся в изолированной атмосфере, без чего невозможно проведение анализа реакционно способных металлов. Основными частями прибора являются: вакуумная печь с индукционным нагревом /или печь сопротивления/, загрузочное устройство, вакуумная система с насосами ДРН-50 и ВН-461, трубка с окысью меди Л сто , палладжевый фильтр П, манометры М-1, М-2, ловушим.

Для откачки системы применяется форвакуумным насос типа ВН—461. Диффузионный ртутный насос типа ДРН-50 служит для создания во всей системе высокого вакуума, а также для перекачки экстрагированных газов из печи в аналитический объём. Необходимо отметить, что во всех других аппаратах применяется несколько высоковакуумных насосов, что усложняет конст рукцию аппарата.

Аналитический объем равен 700 мл; в него входят: соединительные трубки, манометры /M-1, M-2/ и форвакуумная часть ртутного насоса. Манометр Мак-Леода позволяет измерять

давления от 10⁻⁵ до 2-3 мм рт.ст. Манометр /М-2/ представляетссобой лампу ЛТ-2, которая служит для наблюдения за кодом процесса выделения газов, конденсации их в ловушке и
т.д. Кроме того, к аналитическому объему присоединяется палладиевый фильтр /П/ и трубка с окисью меди /Л сшо /. Палладиевый фильтр представляет собой трубку из палладия диаметром 2,5 - 3,0 мм и стенками толщиной 0,15 - 0,20 мм, запаянную с одного конца; нагревание палладиевой трубки осуществляется вольфрамовой спиралью, подача тока к которой производится через молибденовые впаи. Температура нагрева палладиевого фильтра 600-700°. Откачка водорода через фильтр производится ртутным насосом.

В трубке с окисью меди /Л сио / окись углерода окисляется до двускиси, которая вымораживается в ловушке с жид-ким азотом /Л-З/. Ловушка /Л-5/, присоединенная к установке на шлифе, служит для собирания конденсирующихся газов из ловушки /Л-4/. К этому шлифу может присоединяться также ловушка с гранулированным углем для собирания неконденсированных газов. Ловушка с собранными газами переносится на другой прибор, где спектральным методом определяется состав этих газов.

Загрузочное устройство /рис. З/ позволяет вводить образцы в вакуумную печь, не нарушая в последней вакуума: образец загружается через отверстие в ложечку, впаянную в пробку крана, и после поворота пробки на 120° из крана откачивается воздух. При повороте пробки еще на 120° отверстие её совмещается с направляющей трубкой загрузочного устройства и образец падает в тигель.

Кран, описанной конструкции, без дополнительного отверстия в муфте, может быть использован для загрузки образцов, хранящихся в защитной атмосфере /рис. 4/. В этом случае в направляющую трубку 4 вставляется пробка 3, в которой
укреплена трубка с ложечкой на конце. Поворотом пробки можно отсоединить вакуумную печь от этмосферы при отсутствии
крана. После присоединения крана 1 к печи и откачки воздука из соединительной трубки 2 с помощью крана 5, пробка крана 1 поворачивается отверстием вниз, а пробка 3 отверстием
вверх, и проба попадает в ложечку. При повороте пробки 3

проба из ложечки падает в тигель.

При работе с малыми образцами помимо описанных устройств можно пользоваться загрузочным вмеевиком /рис. 5/: образцы закладываются в различные секции вмеевика и при вращении его последовательно падают в тигель.

Для проведения серийных анализов можно пользоваться загрузочным устройством иного типа, применяемым другими авторами. В этом случае перед окончательной сборкой вакуумной печи образцы загружаются в стеклянную трубку, оканчивающуюся пробкой. Образцы сбрасываются в тигель при помощи магнита и железного толкача. Металлы в виде порошка или чешуек предварительно прессуются в небольшие брикеты, от которых откалываются куски требуемого веса.

Вакуумная печь с индукционным нагревом представлена на рис. 6. Она изготовлена из кварцевой трубки диаметром 50 мм и длиной 200 мм, переходящей в трубку диаметром 30 мм и длиной 300мм. Печь и соединительный шлиф охлаждаются проточной водой. Применялись два типь графитовых тиглей / Л —

При определении газов в легкоплавких металлах вместо печи с индукционным нагрегом может использоваться печь со-противления. Низкая холостая поправка в этом случае обеспечивается применением молибденового тигля или графитового ти-

г.ля малых размеров, ток к тиглю подводится через охлаждаемые электроды. Питание печи осуществляется через понижающий трансформатор, в первичную обмотку которого включен вариатор напряжения. Печь сопротивления состоит из плиты, электродов /рис. 7/ и кварцевого колпака с загрузочным устройством /рис.8/. Плита изготовляется из красной меди, внутри плиты имеется полость для водяного охлаждения. В плиту впаяны латунные штуцеры для ввода и вывода воды. В плите вытачиваются три конусных отверстия: два для электродов и третье для шлифа, соединяющего печь с вакуумной системой. Поверхность плиты тщательно притирается на плоскость. Электроды представляют собой закрытые с верхнего конца трубки, выточенные из цельных кусков меди; внутрь этих трубок впаиваются латунные трубки меньшего диаметра, так что между внешней и внутренней трубками образуется завор в 2-3 мм для циркуляции воды. Электроды укрепляются в конических отверстиях плиты, причем в качестве изоляторов служат конусные кварцевые втулки. Поверхности конусов электродов, кварцевых втулок и плиты тщательно пришлифовываются и перед сборкой смазиваются пищеином. На верхней части электродов имеется нарезка для крепления нагревателя тигля при помощи никелевых гаек и шайб.

Колпак изготовляется из плавленого кварца. Его внутренний диаметр должен быть не менее 80 мм. В нижней части колпака имеется фланец шириной 10-15мм, пришлифованный на плоскость. В верхней части колпака имеется специальное приспособбение с сильфоном, в котором закрепляется молибденовая проволока. На конце этой проволоки подвешена крышка тигля и, кроме того, проволока используется для различных маниприяций внутри колпака в процессе загрузки. При помощи шлифа, имеющего водяное охлаждение, сильфонное приспособление соединяется с колпаком. Колпак имеет отросток, который во время проведения анализов может погружаться в сосуд Дюара с жидким азотом.

Применение метода вакуум-плавления в различных вариантах для определения газов в металлах на приборе Института геохимии и аналитической химии

При пределении газов методом вакуум-плавления производится плавлением металла в графитовом тигле с железной

-6-

или платиновой ванной, с крупным графитовым порошком или в графитовых капсулах. Выделяющиеся газы непрерывно откачиваются из печи и собираются для анализа.

Анализ с применением графитового порошка или непосредственно в графитовом тигле используется в тех случаях, когда процессы карбидообразования существенно улучшают условия экстракции, а также, когда в железной ванне образуется пена или не обеспечивается низкая упругость пара летучего компонента. Применение его может быть ограничено из-за образования на поверхности анализируемого металла корки карбида, препятствующей полному выделению газов.

Широкое распространение ванны из расплавленного железа объясняется тем, что многие тугоплавкие металлы образуют
эвтектические сплавы с железом, а это позволяет проводить
анализ при температурах порядка 1600-1800°С, т.е. гораздо
ниже температуры плавления анализируемых металлов. Кроме того, в железной ванне, в которой графит находится во взвешенном состоянии, восстановление многих окислов в значительной
мере облегчается. Еще большим преимуществом обладает платиновая ванна ввиду более низкого давления её паров и меньшей
растворимости в ней углерода. Платина может быть восстановлена с потерей менее 10%.

Определение количественного содержания газов в металлах состоит из следующих основных этапов: обезгаживания тигля, проведения холостого опыта, загрузки образца и проведения опыта с образцом. Графитовый тигель обезгаживается до тех пор, пока количество газов холостого опыта не будет составлять приблизительно 0,025 мг за 15 мин. По мере уменьшения количества выделяющихся газов температура тигля повышается от 1000° до $2100-2200^{\circ}$ С. Температуру необходимо повышать постепенно, чтобы не было выброса мелкого графитового порошка из-за бурного выделения из него газов. При рабочей температуре 1600⁰ для обезгаживания тигля необходимо 2-3 часа, при 1800 несколько больше. В случае применения ванны вводится дополнительное звено - обезгаживание материала ванны, которое должно проводиться после дегазации тигля. Обезгаживать железо более 1 часа не рекомендуется вследствие образования на поверхности расплавленного железа твердой плен-7-

ки раствора углерода в железе, которая мешает образцу пог - ружаться в железо. Дегазация крупного графитового порошка производится одновременно с дегазацией тигля.

Анализ экстрагированных газов на приборе Института геохимии и аналитической химии производится следующим образом: после замера суммарного давления виделившихся газов к аналитическому объему без форвакуумной части ртутного насоса подключается предварительно обезгаженный и нагретый до 600-700° палладиевый фильтр. Водород диффундирует черев нагретый палладий и откачивается ртутным насосом. Количество выделившегося водорода определяется по разности давлений до и после откачки газовой смеси через палладиевый фильтр. В трубке с окисью меди СО окисляется до СО, и вымораживается в ловушке с жидким азотом Лд. Оставшийся азот определяется измерением остаточного давления. Количество кислорода может определяться как по измерению разности давлений газов до окисления и после вымораживания, так и по измерению давления СО, после откачки азота и размораживания ловушки. В окончательных результатах учитывается общее количество выделившихся газов, т.е. не только прознализированные газы, но и газы, находящиеся в форвакуумной части ртутного насоса.

Простейший вариант метода/вакуум-плавления применяется для определения газов в меди, серебре, боре, платине. Условия, при которых проводятся определения и результаты анализа образцов приведены в табл.1-4.

Таблица 1

Определение газов в меди

Рабочая температура 1150°, навески 0,5-2 г, время экстракции 15 мин.

npog	Навес- ки в . Г •	Количес- тво вы- деливше- гося во- дорода в вес.%	во выде-	Количес- тво вы- делившего- ся азота в вес.%	Среднее значе- ние содержания кислорода в вес.%
1	2	3	4	5	6
1	0,86 0,52 1,55 0,68	1.2.10-4	2,3.10-2	< 1,0.10 ⁻⁴ < 1,0.10 ⁻⁴ < 1,0.10 ⁻⁴ < 1,0.10 ⁻⁴	2,1.10 ⁻² +5.10 ³

1	2	3	4	5	6
2	1,34 0,98 0,72 0,92	1,2.10 ⁻⁴ 1,0.10 ⁻⁴	1,3.10 ⁻² 1,9.10 ⁻²	<1,0.10 ⁻⁴ <1,0.10 ⁻⁴ <1,0.10 ⁻⁴ <1,0.10 ⁻⁴	1,7.10 ⁻² ±1,5.10
3	0,68 0,94 2,0 0,99	1,8.10 ⁻⁴ 2,0.10 ⁻⁴ 1,6.10 ⁻⁴ 2,1.10 ⁻⁴	1,4.10 ⁻²	<1,0.10 ⁻⁴ <1,0.10 ⁻⁴ <1,0.10 ⁻⁴ <1,0.10 ⁻⁴	1,5.10 ⁻² ±70.10 ⁻⁴
CuO	0,002		теор. 20,1%		20%

Определение газов в серебре Рабочая температура 1500° , навески ~ 1 г, время экстракции 15 мин.

Вес образца в г	1,26	1,1
H ₂ O ₂	7.10 ⁻⁵ % 8,7.10 ⁻⁴ %	1.10 ⁻⁴ % 9.10 ⁻⁴ %
N ₂	5.10 ⁻⁵ %	7.10-5%

Таблица З

Определение газов в боре Рабочая температура 1900°, навески 3-20 мг, время экст ракции 15 мин. В одном тигле можно анализировать 100-200 Mr.

№ № партий	Величина н авески	Содержание водорода	Содержание кислорода	Содержание азота
1	2	3	4	5
1 55	9,9 10	9.10 ⁻² 9.10 ⁻²	5,0.10 ⁻¹ 4,9.10 ⁻¹	
156	9,7 6	9.10 ⁻² 10.10 ⁻²	1,0 1,0	

<i>ب</i>
0
O
n:

1	2	3	4	5
157	9	1,4.10 ⁻¹	2,4.10 ⁻¹	6.10 ⁻²
	5,6	1,3.10 ⁻¹	2,6.10 ⁻¹	8.10 ⁻²
	9	1,1.10 ⁻¹	2,2.10 ⁻¹	7.10 ⁻²
29	6	1,5.10 ⁻¹	2,1.10 ⁻¹	1,3.10 ⁻²
	6	1,5.10 ⁻¹	2,2.10 ⁻¹	1,1.10 ⁻²
5	6	1,7.10 ⁻¹	5,10 ⁻¹	3,7.10 ⁻²
	4	1,7.10 ⁻¹	5.10 ⁻¹	4,0.10 ⁻²
42	6	4,8.10 ⁻¹	10,4.10 ⁻¹	2,4.10 ⁻²
	5	3,6.10 ⁻¹	8,5.10 ⁻¹	1,9.10 ⁻²
21	9 3,5 3,5	2,6.10 ⁻¹ 2,6.10 ⁻¹ 2,5.10 ⁻¹	8,3.10 ⁻¹ 8,8.10 ⁻¹ 8,2.10 ⁻¹	

Определение газов в платине

Рабочая температура 1850°, навески 0,5-1 г, время экстракции 15 мин.

Вес образца мг	500	380
Водород %	1,0.10 ⁻⁴	1,7.10 ⁻⁴
Кислород %	5,0.10 ⁻⁴	8,3.10 ⁻⁴
Азот %	1,3.10 ⁻⁴	1,3.10 ⁻⁴

Метод вакуум-плавления с использованием крупного графитового порошка применяется для определения газов в титане и марганце. Графитовый порошок засыпается в тигель на 1/3 по высоте во время сборки печи.

Результаты анализа нескольких образцов титана и марганца и условия их проведения представлены в таби. 5 и 6.

Определение газов в титане /2/ Рабочая температура 1850° , время экстракции 35 мин. /начальные 5 мин. экстракция проводится при 1000° , при которой выделяется только водород/. В одном тигле. может быть прознализировано 600-700 мг титана.

разцов В и об-	Водород % вес.	Водор од среднее	Кислород % вес.	Кислород среднее	Кислород % вес.хлор- ный метод
355/643	4,5.10 ⁻³ 4,6.10 ⁻³ 4,6.10 ⁻³	4,6.10	2,4.10 ⁻¹ 2,6.10 ⁻¹ 2,6.10 ⁻¹	2,6.10 ⁻¹	-
1	3,0.10 ⁻¹ 2,4.10 ⁻¹ 3,6.10 ⁻¹	3,0.10 ⁻¹	10.10-2	1,1.10 ⁻¹	1, 0 ⁻¹
19	3,5.10 ⁻¹ 4,5.10 ⁻¹ 2,9.10 ⁻¹		10.10 ⁻² 7.10 ⁻² 8.10 ⁻²	8.10 ⁻²	7.10 ⁻²
28	5,6.10 ⁻¹ 4,7.10 ⁻¹ 4,0.10 ⁻¹	4,8.10 ⁻¹	8.10-2		1,5.10 ⁻¹ 1,0.10 ⁻¹
955	3,1.10 ⁻¹ 4,2.10 ⁻¹ 3,4.10 ⁻¹	3,6.10 ⁻¹	7.10 ⁻² 6.10 ⁻² 7.10 ⁻²	7.10-2	6.10 ⁻² 5.10 ⁻²
2414	3,5.10 ⁻³	3 ,4. 10¯	8,4.10	•	
2415	5,8.10 ⁻³	6.5.10	18,1.10	1,93.10 ⁻ -2	1
2416	9,0.10 ⁻³	9,2.10	19,0.10 3 19,4.10	1,92.10	

`-
~*
10
_7
C

- 1	2	3	4	5	6
0.44	5,5.10 ⁻³	= 6 10 - 3	17,4.10-2	1.77 - 10 ⁻¹	-
2417	5,7.10 ⁻³	5,0.10	18,0.10-2	5 1,77.10 ⁻¹	
	2,4.10-3	S 5 10 - 3	9,8.10-2	8,6.10 ⁻²	-
2418	2,4.10 ⁻³ 2,6.10 ⁻³	2,5.10	7,4.10 ⁻²	5,0.10	

При анализе марганца вместе с образцом добавляется 0,2-0,5 г олова. Анализ марганца может также проводиться и с железной ванной при температуре 1550°. Концентрация марганца в ванне не должна превышать 10%.

Таблица 6.

Определение газов в марганцеx/
Рабочая температура 1250-1550°, навески ~ 4 г, время экстракции 15 мин.

Сбра з– цы	Водород % вес.	Кислород % вес.	Азот % ве с.	Метод ана ли за
1	1,8.10 ⁻² 2,4.10 ⁻² 2,5.10 ⁻²	1,5.10 ⁻¹ 1,8.10 ⁻¹ 2,2.10 ⁻¹	3,2.10 ⁻² 5,5.10 ⁻² 2,5.10 ⁻²	в графитовом порошке при 1250 ⁰
2	1,3.10 ⁻³ 1,6.10 ⁻³ 1,8.10 ⁻³	1.5.10	2,5.10 ⁻² 2,2.10 ⁻² 2,5.10 ⁻²	в графитовом порошке при 16500
3	4,8.10 ⁻⁴ 4,0.10 ⁻⁴	1,8.10 ⁻¹ 1,9.10 ⁻¹		в железной ван- не при 1550. в графитовом порошке при 1250.
	5,0.10 ⁻⁴	1,9.10 ⁻¹		в граўитовом порожке при 1550.

х/ Метод разработан Ю.А.Клячко, Л.А.Куниным и Е.М.Чистя-ковой /ЦНИЛЧМ/.

Методом вакуум-плавления с железной ванной определялись газы в титане, цирконии, ниобии, молибдене, вольфраме.

Образцы титана, циркония загружаются в железную ванну в стальных капсунах /сталь У 10- У 12/. Рабочая температура для титана $1750-1800^{\circ}$, для циркония 1860° , сбрасывание образцов происходит при 1300-1400°. Анализируются навески весом 0,1-0,5 г, время экстракции 15 мин. По окончании экстракции газов из первой пробы в тигель вводится 0,5 г металлического олова. Экстракция газов из образца олова продолжается не более 5 мин., после чего сбрасывается второй образец. Содержание титана или циркония в ванне не должно превышать 3-4%. В таблице 7 собраны данные анализа искусственно приготовленных эталонов титана. Из рассмотрения этой таблицы видно, что найденное содержание хорошо согласуется с введенным.

Таблица 7 Определение кислорода в искусственно приготовленных внатит хвнокате

алона	Уд.вес этало- на	Содержа- ние кис- лорода в вес.% за- данное	содержа- ние кис- лорода в вес.% найден- ное	Полнота экстрак ции ки- слорода
ая проба	4,26		0,55	
			1 -	
ая проба		1	0,50	· [
влен ием Э	3,86	0,95	1,00	105
			1,00	105
an moda			1,00	105
влением 2%	4,01	1,35	1,40	103
			1,48	109
a mode e	4 01	1 85	1,38	102
ением3%	4,01	1,75		100
į		и . ж		100 97
	ая проба ая проба влением ога ая проба влением 2% ая проба с	ая проба влением 2 3,86 ая проба влением 2% 4,01	вес. % за- данное ая проба влением 3,86 0,95 ая проба влением 2% 4,01 1,35	Вес. % за- данное в вес. % найден- ное 0,55 0,55 0,50 ая проба влением 3,86 0,95 1,00 1,00 1,00 1,00 1,48 1,38

-I3-

В таблице 8 представлены данные последовательных анализов одной и той же партии титана в одном тигле.

Таблица 8 Определение кислорода в одной партии титана

I/II 版	Количество ті на 100 г желева	Рабочая температура	Содержание кислорода,% веса
1	0,41	1750	0,44
2	0,80	1750	0,45
3	1,16	1750	0,45
4	1,54	1800	0,44
5	1,2	1750	0,44
6	1,6	1800	0,45
7	2,0	1760	0,46

Условия, при которых проводится определение газов в молибдене, вольфраме и ниобии и результаты анализа несколь-ких образцов собраны в таблицах 9,10,11,13. В таблицах 12, 13 приведены результаты анализа образцов с известным содержанием кислорода и азота.

Перед проведением анализа каждого следующего образца в тигель добавляют, не нарушая вакуум, 3-4 г железа, которое обезгаживается при температуре 1800° в течение 1/2 часа. Концентрация молибдена в железной ванне не должна превышать 30%, а ниобия и вольфрама 20%.

Определение газов в молибдене /в вес.%/

Рабочая температура 1650°, время экстракции 15 мин., вес образцов 2-3 г

Och	азец № 1		000	m 0	
	T		OOpas	вец № 2	
Водород	Asor	Кислород	Водород	ROOT	Кислород
6,0.10 ⁻⁴ 6,2.10 ⁻⁴ 6,0.10 ⁻⁴ 4,4.10 ⁻⁴ 4,9.10 ⁻⁴	1,3 ₋ 10 ⁻³ 1,6 ₋ 10 ⁻³ 1,3 ₋ 10 ⁻³	5,3.10 ⁻³ 4,4,10 ⁻³ 5,0.10 ⁻³ 5,1.10 ⁻³ 7,0.10 ⁻³	5,4.10 ⁻⁴ 6,2.10 ⁻⁴ 7,7.10 ⁻⁴ 5,7.10 ⁻⁴ 7,5.10 ⁻⁴	5.10 ⁻⁴ 7.10 ⁻⁴ 7.10 ⁻⁴ 2.10 ⁻³ 9.10 ⁻⁴	
Среднее 3 5,5.10 ⁻⁴	вначение 1,4.10 ⁻³	5,5.10 ⁻³	6,5.10-4	8.10-4	

Таблица 10

Определение газов в вольфраме /в вес. %/
Рабочая температура 1650°, время экстракции 15 мин,
вес образцов 1-1,5 г

Образ	Образец № 1			Образец № 2		
Во до род	TOEA	Кислород	Водород	Asor	Кислород	
1,6.10 ⁻⁴ 1,5.10 ⁻⁴ 1,9.10 ⁻⁴ 1,7.10 ⁻⁴ 1,5.10 ⁻⁴	1,1.10 ⁻³ 1,2.10 ⁻³	3,4.10 ⁻³ 4,5.10 ⁻³ 3,8.10 ⁻³	4,3.10 ⁻⁴ 3,0.10 ⁻⁴ 6,7.10 ⁻⁴	8,10 ⁻⁴ 4,10 ⁻⁴ 6.10 ⁻⁴ 3.10 ⁻⁴ 8.10 ⁻⁴	1,6.10 ⁻³ 1,3.10 ⁻³ 1,0.10 ⁻³ 1,0.10 ⁻³ 1,5.10 ⁻³	
Среднее з 1,6.10 ⁻⁴	начение 1,3.10	4,1.10 ⁻³	5,0.10-4	6.10-4	1,3.10-3	

Таблица II

Определение газов в ниобии /в вес. %/

Posoчая тешпература IS50°, время экстракции I5 мин., вес образцов I-I,5г

Oc par	разец № 1			Образец № 2	62	06 pa	Образец № 3	
Водород	Азот	Кислород	Водород	Азот	Кислород	Кислород Водород	Asor	Кислород
	1	I,2.10-3	4,5.IO ⁻³	8.IO-4	2,9.IO-I	8,9.IO ⁻¹ 4,0.IO ⁻⁴ 4,5.IO ⁻⁴ 2,4.IO ⁻³	4,5.IO-4	2,4.10-3
1	1	1,5.10-3	4,7.10-3	9.IO-4	3,8.To-T	3,8,10-1 5,7.10-4 3,0.10-4 2,2.10-3	3,0.IO-4	2,2.IO-3
	1	I,0.10 ⁻³	5,8.IO-3	8.010.3	3,0.10_I	3,0.10 ⁻¹ 6,5.10 ⁻⁴ 3,0.10 ⁻⁴ 1,6.10 ⁻³	3,0.10 ⁻⁴	E.0I.9.1
Среднее значение	значение		,					
	ı	1,2.10-3	-8 5,0.10-8	1.2.10-3	3,2.10"I	3,3.10"I 5,4.10"4 3,5.10"4 8,0.10"3	3,5.IO-4	8,0.10-3

Таблица 12

Аналив образцов молибдена, вольфрама и ниобия с известным количеством кислорода /в вес. %/

Молибде	Н	Во ль ф:	Вольфрам Ниобий		ŢŲ.
Введено	Найдено	Введено	Найдено	Введено	Найдено
2,2.10 ⁻² 3,8.10 ⁻²	2,2.10 ⁻² 4,0.10 ⁻²	2,9.10 ⁻² 3,1.10 ⁻²	3,2.10 ⁻²	2,6.10 ⁻² 4,0.10 ⁻²	4,5.10 ⁻² 4,6.10 ⁻² 2,4.10 ⁻² 3,1.10 ⁻²

Таблица 13

Анализ образцов ниобия и молибдена с известным количеством азота/в вес.%/

Ниобий		Молибд	эн
Введено	Найдено	Введено	Найдено
2,9.10 ⁻³ 8,0.10 ⁻³ 1,25.10 ⁻²	3,0.10 ⁻³ 7,0.10 ⁻³ 1,0.10 ⁻²	4,3.10 ⁻² 6,0.10 ⁻²	4,5.10 ⁻² 7,5.10 ⁻²

Методом вакум-плавления с платиновой ванной определялись газы в бериллии, уране, иттрии, тантале и кремнии^X. Платиновая ванна в количестве 3-5 г обезгаживается при 2100° в течение 30 мин. Анализ проводится в тиглях с крышкой в виде графитового шарика.

В таблицах 14-18 приведены условия, при которых анализируются эти металлы и результаты определения газов в них. При анализе бериллия во время сбрасивания образца температура тигля снижается до $1300-1400^{\circ}$, при анализе урана до $1500-1600^{\circ}$.

3505

х/ В разработке методов анализа урана, тантала и кремния принимала участие Н.М.Ростоцкая, бериллия, урана и иттрия - К.Г.Семенюк /ГЕОХИ/.

Таблица 14

Определение кислорода в бериллии
Рабочая температура 2000, время экстракции 7 мин., навески 5-20 мг. Отношение платины к введенному в ванну бериллию должно быть не менее 50:1.

партий	Вес образца Ве в мг	Количество выдел. 02 в вес.%	Средн. значени для 3-х ана- лизов
352 4	7,4 9,0 10,6	3,5.10 ⁻¹ 3,4.10 ⁻¹ 4,2.10 ⁻¹	3,7.10 ⁻¹
1545	8,6 3,8 13,0	2,4.10 ⁻¹ 2,5.10 ⁻¹ 2,4.10 ⁻¹	2,4.10 ⁻¹
1393	7,0 8,4. 9,4	2,7.10 ⁻¹ 2,0.10 ⁻¹ 2,4.10 ⁻¹	2,4.10 ⁻¹
2384	7,2 8,3 10,8	5,0.10 ⁻¹ 5,7.10 ⁻¹ 4,8.10 ⁻¹	5,1 . 10 ⁻¹
1635	11,8 9,2 6,0	2,0.10 ⁻¹ 2,2.10 ⁻¹ 1,9.10 ⁻¹	2,0.10 ⁻¹
1828	12,1 9,1 5,9	1,6.10 ⁻¹ 1,2.10 ⁻¹ 1,4.10 ⁻¹	1,4.10 ⁻¹
1510	9,6 9,5 7,1	2,2.10 ⁻¹ 2,0.10 ⁻¹ 2,1.10 ⁻¹	2,1.10 ⁻¹

1	2	3	0 4
1 383	9,8 7,8 11,0	2,0.10 ⁻¹ 1,8.10 ⁻¹ 2,0.10 ⁻¹	1,9.10-1
1703	9,1 11,2 12,5	1,0.10 ⁻¹ 1,1.10 ⁻¹ 1,0.10 ⁻¹	1,0.10-1

Определение газов в уране Рабочая температура 1900°, время экстракции 10 мин., вес образцов 5-20 мг

воразцов М М	Водород /в вес.%/	Кислород /в вес.%/	Asor /B Bec.%/
1	2,6.10 ⁻³ 2,1.10 ⁻³ 2,3.10 ⁻³ 2,5.10 ⁻³ 1,7.10 ⁻³	7,4.10 ⁻² 6,1.10 ⁻² 7,1.10 ⁻² 9,6.10 ⁻² 6,1.10 ⁻² 8,5.10 ⁻² 8,1.10 ⁻²	8,1.10 ⁻³ 9,0.10 ⁻³ 8,3.10 ⁻³ 8,0.10 ⁻³ 5,0.10 ⁻³
2	1,7.10 ⁻³ 2,0.10 ⁻³ 2,0.10 ⁻³ 4,0.10 ⁻³ 3,0.10 ⁻³ 2,4.10 ⁻³	0,9.10 ⁻² 1,2.10 ⁻² 1,4.10 ⁻² 1,1.10 ⁻² 0,8.10 ⁻² 1,7.10 ⁻²	3,0.10 ⁻³ 4,8.10 ⁻³ 4,0.10 ⁻³ 4,0.10 ⁻³ 4,3.10 ⁻³
3	6,0.10 ⁻³ 5,3.10 ⁻³ 8,0.10 ⁻³	9.10 ⁻² 8.10 ⁻² 10.10 ⁻² 10.10 ⁻²	8,0.10 ⁻³ 7,5.10 ⁻³ 10,0.10 ⁻³

υ ₃ 0 ₈ (0 ₂ 15,2)	Кислород в % 13 12,2 11,9 13,4
	11,2 16,4

Аналив кремния может проводиться также в графитовых капсулах при той же температуре и том же времени экстракции. Используемие навески равны 60 мг.

Определение газов в кремнии
Рабочая температура 1800°, время экстракции 10 мин, навески 100-300 мг

од ра зца	Водород	Кислород	A SOT	Метод анализа
1	3,1.10 ⁻⁴ 2,4.10 ⁻⁴	1,9.10 ⁻³ 1,6.10 ⁻³ 2,06.10 ⁻³	/ B Bec./	в платиновой ванне
		2,4.10 ⁻³		в графитовом капсуле
2	6,0.10 ⁻⁴ 6,0.10 ⁻⁴	4,6.10 ⁻³ 2,06.10 ⁻³ 2,5.10 ⁻³ 1,6.10 ⁻³ 4,06.10 ⁻³		в платиновой ванне в графитовоу капсуле
3	10.10 ⁻⁴ 8.10 ⁻⁴	1,3.10 ⁻³ 1,3.10 ⁻³		в платиновой ванне
510 ₂ (0 ₂ 53,3	3)	Ки сл ород в % 52,6 55,0		в графитовом капсуле

205

- 20 -

Таблица 17

Определение газов в иттрии Рабочая температура 1800°, время экстракции 10 мин. вес образцов 5-50 мг

№ № образца	Водород	Кислород	Asor
1 Y ₂ 0 ₃ /21,2/	1,6.10 ⁻¹ 1,9.10 ⁻¹	1,63 1,63 21,2 21,0 21,0	1,1.10 ⁻² 2,3.10 ⁻²

Таблица 18

Определение газов в тантале рабочая температура $\sim 2000^{\circ}$, время экстракции 15 мин. вес образцов 50-200 мг

4,8.10 ⁻⁴ 1.10 ⁻³ 1	обр а зца	Водор од	Кис ло род	Азот
14,5	1 2 ^{Ta} 2 ^O 5	1.10 ⁻³ 1.10 ⁻³ 1.10 ⁻³ 1,2.10 ⁻³ 2,7.10 ⁻⁴ 2,7.10 ⁻⁴ 1,6.10 ⁻⁴	6,2.10 ⁻³ 9,5.10 ⁻³ 1,1.10 ⁻³ 5,2.10 ⁻³ 5,1.10 ⁻³ 3,7.10 ⁻³ 4,3.10 ⁻³ 4,7.10 ⁻³ 14,7 18,0 18,3 19,7	5.5.10 ⁻³

Применение метода вакуум-плавления к определению газов в щелочных металлах, в частности, к определению кислорода в натрии и сплаве калий-натрийх/

В применении к анализу щелочных металлов метод вакуум-плавления несколько изменен. Анализ проводится таким образом, что вначале отгоняется металл, а затем, при температуре восстановления окислов металла углеродом выделяется
окись углерода. Этот прием позволяет избавиться от поглощения окиси углерода испаряющимся металлом, так как предварительные опыты показали, что окись углерода не поглощается
сплошной пленкой щелочного металла и сильно поглощается тенко дисперсным испаряющимся металлом. Поэтому процессы испарения металла и выделения окиси углерода должны быть разделены.

Методика анализа в этом случае состоит из тех основных звеньев, которые имеют место в методе вакуум-плавления: обезгаживания тигля, определения холостой поправки, загрузки образца в тигель, экстракции газов из образца и анализа собранных газов.

При работе со щелочными металлами существенным является отбор пробы, так как этот процесс должен происходить в изолированной от воздуха атмосфере.

Для выяснения возможности применения метода вакуумплавления к определению кислорода в натрии проводились исследования по восстановлению Na20, Na202, NaOH и Na2CO3
углеродом. В результате опытов было установлено, что проискодит полное восстановление кислородных соединений натрия
углеродом по следующим реакциям:

$$Na_2O_2 + 4C = Na_2C_2 + 2 CO$$

 $2 NaOH + 4C = Na_2C_2 + 2 CO + H_2$
 $Na_2CO_3 + 4C = Na_2C_2 + 3 CO$

При нагревании тигля с перекисью натрия выделение окиси углерода происходит в два этапа: при 600-700°, когда восстанавливается перекись натрия до окиси и при 1100°, когда окись натрия восстанавливается до металла по реакции:

х/ В разработке этого метода принимал участие В.И. Малышев /ФИАН/.

- 22 -

 $Na_20 + 30 = Na_2C_2 + 00$

Определение кислорода в натрии можно свести к определению окиси натрия, так как все кислородсодержащие соединения при нагревании до 400° в присутствии натрия переходят в ма20 . Определение кислорода в натриии производится на приборе ГЕОХИ с печью сопротивления. Для анализа применяется графитовый тигель с притертой графитовой крышкой, который может использоваться только для анализа одного образца из-за образующихся в нем трещин; крышка может использоваться многократно . Кварцевый колпак с загрузочным устройством изображены на рис. 8. Пробы натрия отбираются следующим способом.

Металл хранится под слоем обезгаженного вазелинового масла. От общей массы металла отрезается кусок, который обревается со всех сторон скальпелем и обжимается штампом, изображенным на рис. 9. Шарик-проба извлекается пинцетом из масла, слегка /не досуха/ вытирается куском сухой чистой марли, помещается в загрузочный кран и переносится на установку для анализа. Тигель обезгаживается при температуре 1300-1400° около 3 часов, пока количество окиси углерода, выделившейся при рабочем режиме не будет превышать 0,01 мл за 12 мин. После загрузки образца нагревание тигля начинается с температуры 50-60° и постепенно за 10 мин. увеличивается до 1200°. Основное количество окиси углерода выделяется на 8-9 минуте нагрева и быстро прекращается. Общее время экстракции равно 12 мин. Величина анализируемых навесок сосоставляет 100-200 мг, Отобранная проба должна сразу же загружаться в тигель и анализироваться, Если проба находится в течение нескольких часов в откаченном до 1.10 мм рт.ст. колпаке, то содержание кислорода в ней увеличивается до 2.10^{-2} % вместо 7.10^{-3} %, а после 18-20 часов до 6.10^{-2} %. Было установлено, что вазелиновое масло, под слоем которого производится отбор пробы, испаряется при сравнительно низкой температуре и не дает завышенных результатов по кислороду. Однако длительное хранение отобранной пробы натрия под слоем осущенного вазелинового масла ведет к увеличению содержания кислорода в пробе; так за двое суток содержание

- 23 -

кислорода увеличивается примерно в 3 раза. Поэтому при от-

Полнота выделения кислорода проверялась в опытах с известным количеством перекиси и гидроокиси натрия, вводимым в тигель и нагреваемым при рабочем режиме. Результаты этих опытов представлени в таблице 19.

Анализ образцов натрия с известным количеством различных кислородосодержащих соединений натрия

	Образец	Вес образ- ца в мг	Кол-во 02 /рас- считан. в мл/.	Кол-во О ₂ /по- лучен- ное/ в мл.
1	NaOH NaOH Na $_2$ O $_2$ Na + NaOH Na + Na $_2$ O $_2$	25,0	8,8	9,0
2		34,85	1,5	1,6
3		1,0	0,28	0,28
4		75+2,4	0,75	0,8
5		170+2,4	0,67	0,6
6		190+0,18	0,06	0,06
7		320+0,09	0,035	0,038
8		130+1,0	0,28	0,28

Данные, приведенные в этой таблице, свидетельствуют о хорошем совпадении экспериментально определенного кислорода с рассчитанным.

Опити 4-8 /табл. 19/ с Na₂0₂ и Naoн проводились в присутствии больших количеств натрия, т.е. в условиях, близких к реальным. Завышенное количество выделенного кислорода по сравнению с введенным в опитах 6 и 7 объясняется тем, что при введении малых добавок сказывается количество кислорода, которое присутствует в пробе натрия. При учете этого получается хорошее совпадение результатов. Введение малых количеств Na₂O₂ осуществлялось путем приготовления стандартных смесей Na₂O₂ с графитовым порошком.

Опыты, с введением известных количеств окиси углерода в колпак со свежераспыленным натрием, показали отсутствие потерь окиси углерода за счет поглощения. Воспроизводимость метода проверялась многократным анализом проб одной партии. Результати анализов представлены в таблице 20.

Таблица 20 Многократный анализ одной партии натрия

п/п	Вес образца в мг	Количество выде- ленного кислоро- да в % / вес./
1	150	7,0.10-3
2 3	185	9,9.10 ⁻³
3	185	5,6.10 ⁻³
4	185	6,0.10-3
5	185	$7,0.10^{-3}$
6	185	6,5.10 ⁻³
7	185	7,0.10-3
8	185	5,2.10 ⁻³
9	185	7,0.10 ⁻³
10	185	8,3.10 ⁻³
11	185	9,7.10-3
12	400	9,3.10-3
13	185	8,2.10-3
14	185	7,9.10-3
15	185	6,4.10 ⁻³
16	185	6,6.10 ⁻³
Среднее значение X/ - 7,4.10 ⁻³ ±0,0011		
х/ Среднее значение /из 20 определений/ содержания кислорода в этой же партии натрия, полученное методом ртутной экстракции равно 5,6.10-3%.		

Точность метода около 15%. Чувствительность 5.10^{-3} %.

Аппаратура и методика для анализа сплава совпадает с таковыми для анализа натрия. При анализе сплава используется вместо графитового молибденовый тигель с притертой крышкой. В тигель за сыпается на 1/3 по высоте графитовый порошок размером ~ 1 мм. Применение молибденового тигля было вызвано тем, что графитовый тигель разрушается при

соприкосновении со сплавом. Молибденовый тигель модет быть использован и при определении кислорода в натрии. Кварцевый колпак и загрувочное устройство несколько видоизменены /рис. 10/. К вержней части колпака припаивается шлиф 3, соединяющий колпак с загрузочным устройством, состоящим из крана с отверстием в 2 мм, шестимиллиметровой направляющей трубки 4, которая при повороте шлифа соединяет кран с тиглем и ампулы 1 со сплавом, оканчивающейся тонким оттянутым запаянным капилляром. Проба загружается в тигель, когда поправка холостого опыта не превышает 0,006 мл за 12 мин. Рабочи режим остается таким же, как и в случае анализа кислорода в натрии. Загрузка пробы производится следующим образом. После откачки соединительной трубки и крана разбивают оттянутый запаянный капилляр и сплав заполняет трубку при перекритом капиллярном кране. По мере надобности сплав спускается через кран в направляющую трубку, на которой имеются деления, соответствующие определенному объему или весу пробы. Кран перекрывается, и сплав при легком постукивании стекает в тигель. Вес анализируемой пробы равен примерно 300 мг. Количество сплава в ампуле должно быть рассчитано на проведение нескольких анализов.

После проведения анализа остатки сплава выбрасывают вместе с графитовым порошком в песок, а стеклянные части - колпак и направляющая трубка до крана - промываются сухим этиловым спиртом, а затем водой и ацетоном. Следует заметить, что при этом необходимо соблюдать меры предосторожности, требуемые при работе с легко воспламеняющимися реактивами.

Воспроизводимость метода определения кислорода в сплаве натрий-калий проверялась многократным анализом проб одной партии. Результаты анализа представлены в таблице 21. Точность метода 15%. Чувствительность 1.10⁻³%.

Многократный анализ одной партии сплава

II/II	Вес образца в мг	Количество выде- лезного кислоро- да в % / вес. /
1	300	1,2.10 ⁻³
2	300	1,1.10 ⁻³
3	300	0,9.10-3
4	250	0,9.10 ⁻³
5	450	1,2.10 ⁻³
6	300	1,0.10 ⁻³
Среднее значение - 1,0.10-3 ± 0,0001		

Выводы

- 1. Сконструирован и изготовлен прибор для определения газов в металлах методом вакуум-плавления.
- 2. Разработаны методы и проведено определение газов в Li, Na, K, Cu, Ag, Be, B, Al, Ti, Zr, Si, V, Nb, Ta, Mo, W, Mn, Fe, Co, Ni, Pt, лантанидах и актинидах.
- 3. Предложен принципиально новый вариант метода вакуум-плавления для анализа щелочных металлов, основанный на предварительной отгонке металла в вакууме и последующем восстановлении окислов при более высокой температуре.

- 27 **-**

ЛИТЕРАТУРА

- 1. ТУРОВЦЕВА З.М., ЛИТВИНОВА Н.Ф., МИХАЙЛОВА Г.В., НОСКОВ А.С., ХАЛИТОВ Р.Ш. "Прибор для определения содержания газов в металлах". ЖАХ, 12, 208, /1957/.
- 2. МИХАЙЛОВА Г.В., ТУРОВЦЕВА З.М., ХАЛИТОВ Р.Ш. "Определение кислорода, водорода и азота в молибдене, вольфраме и ниобии". ЖАХ, 12, 338, /1957/.
- 3. ТУРОВЦЕВА З.М., ХАЛИТОВ Р.Ш. "Определение кислорода и водорода в титане". ЖАХ, 12, 720 /1957/.

Рис. 1. Аппарат ГЕОХИ для определения газов в металлах методом вакуумплавления.

Рис. 2. Принципиальная схема аппарата ГЕОХИ. ВП - вакуумная печь, ДРН - 50 - диффузионно-ртутный насос, ВН - 461 - форвакуумный насос, Π_1 - Π_5 - ловушки, П - палладиевый фильтр, $\Pi_{\text{с},\omega}$ - ловушка с окисью меди, M_1 - манометр Мак-Леода, M_2 - манометрическая лампа ЛТ-2, K_1 - K_1 3 - краны.

Рис. З. Загрузочный кран.

Рис. 4. Загрузочное устройство для образцов, хранящихся в защитной атмосфере.

1 — загрузочный кран, 2 — соединительная трубка со шлифом, 3 — пробка, 4 — направляющая трубка с ложечкой, 5 — кран для откачки соединительной трубки.

Рис. 5. Загрузочный змеевик.

1 - направляющая трубка, 2 - пробка,

3 - эмеевик, 4 - ложечка.

Рис. 6. Вакуумная индукционная печь.

1 — кварцевая трубка, 2 — холодильники, 3 — тигель, 4 — экран, 5 — графитовый порошок, 6 — крышка,
7 — загрузочное устройство, 8 — отросток для магнита, управляющего крышкой, 9 — окно, 10 — отросток для присоединения к насосу, 11 — защитные
пластинки, 12 — молибденовая нить.

Рис. 7. Плита печи сопротивления.

1 - штуцера для входа воды в электроды, 2 - штуцер для входа воды в плиту, 3 - фланец пришлифовенный на плоскость, 4 - конус для крепления электрода в плите, 5 - внутренние трубки электродов, 6 - пицеин, 7 - штуцер для выхода воды из плиты, 8 - изолирующий кварцевый конус, 9 - стойка плиты, 10 - конус для шлифа, соединяющего камеру с вакуумной системой, H₁ - гайка для крепления шин, H₂ - шайбы для крепления шин, H₃ - гайка для кре пления лодочки, H₄ - шайбы для крепления подочки.

Рис. 8. Кварцевый колпак.

1 - загрузочный кран, 2 - пробив с направляющей трубкой и ложечкой, 3 - совочек, 4 - направляющим трубка, 5 - ложечка, 6 - сильфон, 7 - молибденовая проволока диаметром 1 мм, 8 - тигель.

Рис. 9. Штамп для отбора проб натрия.

Рис. 10. Кварцевый колпак с загрузочным устройством для анализа сплава натрий-калий.

1 - ампула со сплавом, 2 - кран, 3 - шлиф,

4 - направляющая трубка, 5 - молибденовый ти гель, 6 - крышка, 7 - сильфон, 8 - тонкий конец трубки