# **AVIDD ASAP: MVMPROA c907 (c900 Arg mutant) Sequencing Ex pression and Purification**

PAGE23-00183

Author: **Fairhead, Michael** Date Started: **2023-Jan-24** 

Experiment Started:

Projects: Cloning; Expression; Purification; ASAP

Related Pages: Referenced by:

Tags:

#### Title missing - double click to edit

Received two plasmids from MArco at DLS F1 and F3 both should be Arginine mutant

MVMPROA-c900 (icludes corrections in cloning regions)

gctcctgggcaacgtgctggttattgtgctgtctcatcattttggcaaagaattggatcggaccgaaattaatacgactcactataggggaattgtgagcggataa aaattacattttatttacaatcaaaqqaqatataccatqqqtaqcaqccatcaccatcatcatcacqqqaqcqataqcqaaqtqaaccaqqaaqcqaaaccqq aaqttaaaccqqaaqtqaaaccqqaaacccatattaatctqaaaqttaqcqacqqcaqcaqcqaaatcttttttaaaattaaaaaaaccacccqctqcqtcqc ctgatggaagcctttgcgaaacgtcagggtaaagaaatggatagcctgcgctttctgtatgacggcatccgtattcaggccgatcagaccccggaagacctgga tatggaagacaacgatattattgaagcgcatcGCGAACAGATCGGTGGTTCGGGCCTGGTAAAGATGTCACATCCAAGCGGTGATGTAGAAGCGTGCATGGTGCAGGTTACGTGCGGGTCTATGACGCTTAATGGTCTTTGGCTTGATAACACAGTGTGGTGCCCGCGC CATGTTATGTGCCCAGCGGATCAGTTGAGTGACCCTAATTATGACGCGCTGTTAATTAGTATGACTAATCACTCCTTCTCCGTT CAGAAACATATCGGCGCACCGGCGAACCTTCGCGTCGTTGGACACGCTATGCAAGGGACACTTCTTAAGTTGACGGTTGATG CGTCCGACGGGAACATTCACTGTTGTTATGCGCCCTAATTATACGATTAAAGGTAGTTTCCTGTGTGGATCATGTGGCAGTGT AGGGTATACCAAAGAAGGGTCCGTTATTAACTTCTGTTACATGCACCAAATGGAATTGGCCAACGGAACTCACACCGGTTCA GCTTTCGACGGAACTATGTACGGAGCGTTTATGGATAAGCAGGTACACCAGGTACAACTTACAGATAAGTATTGTTCAGTGAA CGTGGTTGCCTGGCTTTACGCGGCTATTTTGAATGGGTGTGCATGGTTTGTCAAACCCAACCGTACAAGTGTAGTGTCATTC CTATTGAGCAATTATTATATGCCATCCAGCAGTTATATACCGGCTTCCAGGGTAAGCAAATTTTAGGTAGCACTATGCTGGAAG ACGAGTTCACTCCCGAAGACGTTAATATGCAGATCATGGGAGTGGTGATGCAATGAAGCTTTCTAGACCAGtttgtgattaacctca gcaaatcatttaaaacatcagaatgagtatttggtttagagtttggcaacatatgcccatatgtaactagcataaccccttggggcctctaaacgggtcttgaggg gttttttgctgaaagcatgcggaggaaattctccttgaagtttccctggtgttcaaagtaaaggagtttgc

MGSSHHHHHHGSDSEVNQEAKPEVKPETHINLKVSDGSSEIFFKIKKTTPLRRLMEAFAKRQGKEMDSLRFLYDGIRIQADQTPEDLDMEDNDIIEAHREQIGGSGLVK
MSHPSGDVEACMVQVTCGSMTLNGLWLDNTVWCPRHVMCPADQLSDPNYDALLISMTNHSFSVQKHIGAPANLRVVGHAMQGTLLKLTVDVANPSTPAYTFTTVKPGAAFSVL
ACYNGRPTGTFTVVMRPNYTIKGSFLCGSCGSVGYTKEGSVINFCYMHOMELANGTHTGSAFDGTMYGAFMDKOVHOVOLTDKYCSVNVVAWLYAAILNGCAWFVKPNRTSVV

 ${\tt SFNEWALANQFTEFVGTQSVDMLAVKTGVAIEQLLYAIQQLYTGFQGKQILGSTMLEDEFTPEDVN} {\color{red}{\bf M}} {\color{red}{\bf Q}IMGVVMQ-1} {\color{red}{\bf Q}IMQVMQ-1} {\color{re$ 

Arg mutant F1 clone **Sequencing** 

472782801 1 T7F A08.seq

| s      | core    | Expect     | Identities      | Gaps         | Strand                   |     |
|--------|---------|------------|-----------------|--------------|--------------------------|-----|
| 2108 b | oits(11 | 41) 0.0    | 1163/1177(99%)  | 4/1177 (0%)  | Plus/Plus                |     |
| Query  | 1       | ATGGGTAGCA | GCCATCACCATCATC | CATCACGGGAGC | GATAGCGAAGTGAACCAGGAAGCG | 60  |
| Sbjct  | 152     |            |                 |              |                          | 211 |
| Query  | 61      | AAACCGGAAG | TTAAACCGGAAGTGA | AAACCGGAAACC | CATATTAATCTGAAAGTTAGCGAC | 120 |
| Sbjct  | 212     |            |                 |              |                          | 271 |
| Query  | 121     | GGCAGCAGCG | AAATCTTTTTAAAA  | ATTaaaaaaaCC | ACCCCGCTGCGTCGCCTGATGGAA | 180 |
| Sbjct  | 272     |            |                 |              |                          | 331 |
| Query  | 181     | GCCTTTGCGA | AACGTCAGGGTAAAG | GAAATGGATAGC | CTGCGCTTTCTGTATGACGGCATC | 240 |
| Sbjct  | 332     |            |                 |              |                          | 391 |
| Query  | 241     | CGTATTCAGG | CCGATCAGACCCCGG | GAAGACCTGGAT | ATGGAAGACAACGATATTATTGAA | 300 |
| Sbjct  | 392     |            |                 |              |                          | 451 |
| Query  | 301     | GCGCATCGCG | AACAGATCGGTGGTT | CGGGCCTGGTA  | AAGATGTCACATCCAAGCGGTGAT | 360 |
| Sbjct  | 452     |            |                 |              |                          | 511 |
| Query  | 361     | GTAGAAGCGT | GCATGGTGCAGGTTA | ACGTGCGGGTCT | ATGACGCTTAATGGTCTTTGGCTT | 420 |
| Sbjct  | 512     |            |                 |              |                          | 571 |
| Query  | 421     | GATAACACAG | TGTGGTGCCCGCGCC | CATGTTATGTGC | CCAGCGGATCAGTTGAGTGACCCT | 480 |
| Sbjct  | 572     |            |                 |              |                          | 631 |
| Query  | 481     | AATTATGACG | CGCTGTTAATTAGTA | ATGACTAATCAC | TCCTTCTCCGTTCAGAAACATATC | 540 |
| Sbjct  | 632     |            |                 |              |                          | 691 |
| Query  | 541     | GGCGCACCGG | CGAACCTTCGCGTCG | STTGGACACGCT | ATGCAAGGGACACTTCTTAAGTTG | 600 |
| Sbjct  | 692     |            |                 |              |                          | 751 |
| Query  | 601     | ACGGTTGATG | TTGCAAATCCTAGCA | ACCCCAGCATAC | ACTTTCACGACCGTTAAGCCCGGT | 660 |
| Sbjct  | 752     |            |                 |              |                          | 811 |

| Query          | 661  | GCCGCATTTAGTGTCCTTGCTTGCTACAATGGACGTCCGACGGGAACATTCACTGTTGTT   | 720  |
|----------------|------|----------------------------------------------------------------|------|
| Sbjct          | 812  |                                                                | 871  |
| Query          | 721  | ATGCGCCCTAATTATACGATTAAAGGTAGTTTCCTGTGTGGATCATGTGGCAGTGTAGGG   | 780  |
| Sbjct          | 872  |                                                                | 931  |
| Query          | 781  | TATACCAAAGAAGGGTCCGTTATTAACTTCTGTTACATGCACCAAATGGAATTGGCCAAC   | 840  |
| Sbjct          | 932  |                                                                | 991  |
| Query          | 841  | GGAACTCACACCGGTTCAGCTTTCGACGGAACTATGTACGGAGCGTTTATGGATAAGCAG   | 900  |
| Sbjct          |      |                                                                | 1051 |
|                | 0.01 |                                                                | 0.60 |
| Query<br>Sbjct |      | GTACACCAGGTACAACTTACAGATAAGTATTGTTCAGTGAACGTGGTTGCCTGGCTTTAC   | 960  |
|                |      |                                                                |      |
| Query          | 961  | GCGGCTATTTTGAATGGGTGTGCATGGTTTGTCAAACCCAACCGTACAAGTGTAGTGTCA   | 1020 |
| Sbjct          | 1112 | C                                                              | 1171 |
| Query          | 1021 | $\tt TTCAATGAGTGGGCGTTAGCTAATCAATTCACCGAATTTGTTGGCACCCAGTCAGT$ | 1080 |
| Sbjct          | 1172 |                                                                | 1231 |
| Query          | 1081 | ATGCTGGCAGTGAAAACTGGAGTCGCTATTGAGCAATTATT-ATATGCCATCCAGCAGTT   | 1139 |
| Sbjct          | 1232 |                                                                | 1291 |
| 0115           | 1140 | AMAMACO CCCMMOCACCCMAACCAAAMMMMACCCMAC 1175                    |      |
| Query          |      | ATATACC-GGCTTCCAGGGTAAGCAAATTTTAGGTAG 1175                     |      |
| Sbjct          | 1292 | TN.NN.NN                                                       |      |

 ${\tt MGSSHHHHHHGSDSEVNQEAKPEVKPETHINLKVSDGSSEIFFKIKKTTPLRRLMEAFAKRQGKEMDSLRFLYDGIRIQADQTPEDLDMEDNDIIEAHREQIGGSGLVK\\ {\tt MSHPSGDVEACMVQVTCGSMTLNGLWLDNTVWCPRHVMCPADQLSDPNYDALLISMTNHSFSVQKHIGAPANLRVVGHAMQGTLLKLTVDVANPSTPAYTFTTVKPGAAFSVL\\ {\tt ACYNGRPTGTFTVVMRPNYTIKGSFLCGSCGSVGYTKEGSVINFCYMHQMELANGTHTGSAFDGTMYGAFMDKQVHQVQLTDKYCSVNVVAWLYPAILNGCAWFVKPNRTSVV\\ {\tt MGSSHHHHHHGSDSEVNQEAKPEVKPETHINLKVSDGSSEIFFKIKKTTPLRRLMEAFAKRQGKEMDSLRFLYDGIRIQADQTPEDLDMEDNDIIEAHREQIGGSGLVK\\ {\tt MSHPSGDVEACMVQVTCGSMTLNGLWLDDIIEAHREQIGGSGLVK\\ {\tt MSHPSGDVEACMVQVTCGSMTLNGLWLDIIEAHREQIGGSGLVK\\ {\tt MSHPSGDVEACMVQVTCGSMTLNGLWLDIIEAHREQIGGSCMVGMTLNGLWLDIIEAHREQIGGSCMVGMTLNGLWLDIIEAHREQIGGSCMVGMTLNGLWLDIIEAHREQIGGSCMVGMTLNGLWLDIIEAHREQIGGSGLVK\\ {\tt MSHPSGDVCMVGMTLNGLWLDIIEAHREQIGGSCMVGMTLNGLWLDIIEAHREQIGGSCMVGMTLNGLWLDIIEAHREQIGGSCMVGMTLNGLWLDIIEAHREQIGGSCMVGMTLNGLWLDIIEAHREQIGGSCMVGMTLNGLWLDIIEAHREQIGGSCMVGMTLNGLWLDIIEAHREQIGGSCMVGMTLNGLWLDIIIAHREQIGGSCMVGMTLNGLWLDIIIAHREQIGGSCMVGMTLNGLWLDIIIAHREQIGGSCMVGMTLNGLWLDIIIAHREQIGGSCMVGMTLNGLWLDIIIAHREQIGGSCMVGMTLNGLWLDIIIAHREQIGGSCMVGMTLNGLWLDIIIAHREQIGGSCMVGMTLNGLWLDIIIAHREQIGGSCMVGMT$ 

 ${\tt SFNEWALANQFTEFVGTQSVDMLAVKTGVAIXQXLICHPAVYXXLQXXQIXG}$ 

| :     | Score      | Expect   | Method                      | Identities     | Positives    | Gaps      |  |
|-------|------------|----------|-----------------------------|----------------|--------------|-----------|--|
| 763 b | oits(1969) | 0.0      | Compositional matrix adjust | . 364/379(96%) | 365/379(96%) | 0/379(0%) |  |
| Query | 13 DSF     | EVNQEAKP | EVKPEVKPETHINLKVSDGSSEIFFKI | KKTTPLRRLMEAFA | KRQGKEMDS 72 |           |  |
| Sbjct | 13         |          |                             |                | 72           |           |  |

| Query | 73  | LRFLYDGIRIQADQTPEDLDMEDNDIIEAHREQIGGSGLVKMSHPSGDVEACMVQVTCGS         | 132 |
|-------|-----|----------------------------------------------------------------------|-----|
| Sbjct | 73  |                                                                      | 132 |
| Query | 133 | MTLNGLWLDNTVWCPRHVMCPADQLSDPNYDALLISMTNHSFSVQKHIGAPANLRVVGHA         | 192 |
| Sbjct | 133 |                                                                      | 192 |
|       |     |                                                                      |     |
| Query | 193 | ${\tt MQGTLLKLTVDVANPSTPAYTFTTVKPGAAFSVLACYNGRPTGTFTVVMRPNYTIKGSFL}$ | 252 |
| Sbjct | 193 |                                                                      | 252 |
|       |     |                                                                      |     |
| Query | 253 | ${\tt CGSCGSVGYTKEGSVINFCYMHQMELANGTHTGSAFDGTMYGAFMDKQVHQVQLTDKYCS}$ | 312 |
| Sbjct | 253 |                                                                      | 312 |
|       |     |                                                                      |     |
| Query | 313 | VNVVAWLYAAILNGCAWFVKPNRTSVVSFNEWALANQFTEFVGTQSVDMLAVKTGVAIEQ         | 372 |
| Sbjct | 313 | <b>PX</b> .                                                          | 372 |
|       |     |                                                                      |     |
| Query | 373 | LLYAIQQLYTGFQGKQILG 391                                              |     |
| Sbjct | 373 | X.ICHPAV.XXL.XXX. 391                                                |     |
|       |     |                                                                      |     |
|       |     |                                                                      |     |

Need reverse

-----

Arg mutant F3 clone

472782801 2 T7F B08.seq

 ${\tt AAACTGGAGTCCCTATTGNGCAATTNTTTNATTGCCATCCAGCAGTTNNTTACCGGCTTCCAGGGTAAGCAAATTTTA}$ 

 ${\tt MGSSHHHHHHGSDSEVNQEAKPEVKPEVKPETHINLKVSDGSSEIFFKIKKTTPLRRLMEAFAKRQGKEMDSLRFLYDGIRIQADQTPEDLDMEDNDIIEAHREQIGGSGLVK\\ {\tt MSHPSGDVEACMVQVTCGSMTLNGLWLDNTVWCPRHVMCPADQLSDFNYDALLISMTNHSFSVQKHIGAPANLRVVGHAMQGTLLKLTVDVANPSTPAYTFTTVKPGAAFSVL\\ {\tt ACYNGRPTGTFTVVMRPNYTIKGSFLCGSCGSVGYTKEGSVINFCYMHQMELANGTHTGSAFDGTMYGAFMDKQVHQVQLTDKYCSVNVVAWLYAAILNGCAWFVKPNRTSVV\\ {\tt MSHPSGDVEACMVQVTCGSMTLNGLWLDGSMTVMCPADQLSDFNYDALLISMTNHSFSVQKHIGAPANLRVVGHAMQGTLLKLTVDVANPSTPAYTFTTVKPGAAFSVL\\ {\tt ACYNGRPTGTFTVVMRPNYTIKGSFLCGSCGSVGYTKEGSVINFCYMHQMELANGTHTGSAFDGTMYGAFMDKQVHQVQLTDKYCSVNVVAWLYAAILNGCAWFVKPNRTSVV\\ {\tt MSHPSGDVEACMVQNTCGSMTLNGLWLDGSMTVMCPADQLSDFNYDALLISMTNHSFSVQKHIGAPANLRVVGHAMQGTLLKLTVDVANPSTPAYTFTVKPGAAFSVL\\ {\tt MSHPSGDVEACMVQNTCGSMTLNGLWLDGSMTVMCPADQLSDFNYDALLISMTNHSFSVQKHIGAPANLRVVGHAMQGTLLKLTVDVANPSTPAYTFTVKPGAAFSVL\\ {\tt MSHPSGDVEACMVQNTCGSMTLNGLWLDGSMTVMCPADQLSDFNYDALLISMTNHSFSVQKHIGAPANLRVVGHAMQGTLLKLTVDVANPSTPAYTFTVKPGAAFSVL\\ {\tt MSHPSGDVEACMVQNTCGSMTLNGLWLDGSMTVMCPADQLSDFNYDALLISMTNHSFSVQKHIGAPANLRVVGHAMQGTLLKLTVDVANPSTPAYTFTVKPGAAFSVL\\ {\tt MSHPSGDVAMPAQAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGAGNAMAGAGAGNAMAGAGNAMAGAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAGNAMAGAG$ 

 ${\tt SFNEWALANQFTEFVGTQSVXLLAVKTGVPIXQXFXCHPAVXYRLPG}$ 

| S      | core      | Expect      | Identities      | Gaps        | Strand                   |     |
|--------|-----------|-------------|-----------------|-------------|--------------------------|-----|
| 2111 b | its(1143) | 0.0         | 1160/1171(99%)  | 1/1171(0%)  | Plus/Plus                |     |
| Query  | 1 AT      | GGGTAGCA    | GCCATCACCATCATC | ATCACGGGAGC | GATAGCGAAGTGAACCAGGAAGCG | 60  |
| Sbjct  | 151       | . <b></b> . |                 |             |                          | 210 |

| Query | 61  | AAACCGGAAGTTAAACCGGAAGTGAAACCGGAAACCCATATTAATCTGAAAGTTAGCGAC         | 120 |
|-------|-----|----------------------------------------------------------------------|-----|
| Sbjct | 211 |                                                                      | 270 |
| Query | 121 | GGCAGCAGCGAAATCTTTTTTAAAATTaaaaaaaCCACCCCGCTGCGTCGCCTGATGGAA         | 180 |
| Sbjct | 271 |                                                                      | 330 |
| Query | 181 | GCCTTTGCGAAACGTCAGGGTAAAGAAATGGATAGCCTGCGCTTTCTGTATGACGGCATC         | 240 |
| Sbjct | 331 |                                                                      | 390 |
| Query | 241 | CGTATTCAGGCCGATCAGACCCCGGAAGACCTGGATATGGAAGACAACGATATTATTGAA         | 300 |
| Sbjct | 391 |                                                                      | 450 |
| Query | 301 | GCGCATCGCGAACAGATCGGTGGTTCGGGCCTGGTAAAGATGTCACATCCAAGCGGTGAT         | 360 |
| Sbjct | 451 |                                                                      | 510 |
| Query | 361 | GTAGAAGCGTGCATGGTGCAGGTTACGTGCGGGTCTATGACGCTTAATGGTCTTTGGCTT         | 420 |
| Sbjct | 511 |                                                                      | 570 |
| Query | 421 | GATAACACAGTGTGGCCCGCGCCATGTTATGTGCCCAGCGGATCAGTTGAGTGACCCT           | 480 |
| Sbjct | 571 |                                                                      | 630 |
| Query | 481 | AATTATGACGCGCTGTTAATTAGTATGACTAATCACTCCTTCTCCGTTCAGAAACATATC         | 540 |
| Sbjct | 631 |                                                                      | 690 |
| Query | 541 | GGCGCACCGGCGAACCTTCGCGTCGTTGGACACGCTATGCAAGGGACACTTCTTAAGTTG         | 600 |
| Sbjct | 691 |                                                                      | 750 |
| Query | 601 | ${\tt ACGGTTGATGTTGCAAATCCTAGCACCCCAGCATACACTTTCACGACCGTTAAGCCCGGT}$ | 660 |
| Sbjct | 751 |                                                                      | 810 |
| Query | 661 | GCCGCATTTAGTGTCCTTGCTTGCTACAATGGACGTCCGACGGGAACATTCACTGTTGTT         | 720 |
| Sbjct | 811 |                                                                      | 870 |
| Query | 721 | ATGCGCCCTAATTATACGATTAAAGGTAGTTTCCTGTGTGGATCATGTGGCAGTGTAGGG         | 780 |

| Query | 781  | TATACCAAAGAAGGGTCCGTTATTAACTTCTGTTACATGCACCAAATGGAATTGGCCAAC                                  | 840  |
|-------|------|-----------------------------------------------------------------------------------------------|------|
| Sbjct | 931  |                                                                                               | 990  |
|       |      |                                                                                               |      |
| Query | 841  | GGAACTCACACCGGTTCAGCTTTCGACGGAACTATGTACGGAGCGTTTATGGATAAGCAG                                  | 900  |
| Sbjct | 991  |                                                                                               | 1050 |
|       |      |                                                                                               |      |
| Query | 901  | GTACACCAGGTACAACTTACAGATAAGTATTGTTCAGTGAACGTGGTTGCCTGGCTTTAC                                  | 960  |
| Sbjct | 1051 |                                                                                               | 1110 |
|       |      |                                                                                               |      |
| Query | 961  | GCGGCTATTTTGAATGGGTGTGCATGGTTTGTCAAACCCAACCGTACAAGTGTAGTGTCA                                  | 1020 |
| Sbjct | 1111 |                                                                                               | 1170 |
| 0     | 1001 |                                                                                               | 1000 |
| Sbjct |      | TTCAATGAGTGGGCGTTAGCTAATCAATTCACCGAATTTGTTGGCACCCAGTCAGT                                      |      |
| 55,00 | 11/1 | •••••••••••••••••••••••••••••••••••••••                                                       | 1230 |
| Query | 1081 | ATGCTGGCAGTGAAAACTGGAGTCGCTATTGAGCAATTATTATA-TGCCATCCAGCAGTT                                  | 1139 |
| Sbjct | 1231 | T                                                                                             | 1290 |
|       |      |                                                                                               |      |
| Query | 1140 | ATATACCGGCTTCCAGGGTAAGCAAATTTTA 1170                                                          |      |
| Sbjct | 1291 | NNT                                                                                           |      |
|       |      |                                                                                               |      |
|       |      | Expect Method Identities Positive 06) 0.0 Compositional matrix adjust. 368/372(99%) 369/372(9 | _    |
| Query | 1    | MGSSHHHHHHGSDSEVNQEAKPEVKPEVKPETHINLKVSDGSSEIFFKIKKTTPLRRLME                                  | 60   |
| Sbjct | 1    |                                                                                               | 60   |
|       |      |                                                                                               |      |
| Query | 61   | AFAKRQGKEMDSLRFLYDGIRIQADQTPEDLDMEDNDIIEAHREQIGGSGLVKMSHPSGD                                  | 120  |
| Sbjct | 61   |                                                                                               | 120  |
|       |      |                                                                                               |      |
| Query | 121  | VEACMVQVTCGSMTLNGLWLDNTVWCPRHVMCPADQLSDPNYDALLISMTNHSFSVQKHI                                  | 180  |
| Sbjct | 121  |                                                                                               | 180  |
|       |      |                                                                                               |      |
| Query | 181  | GAPANLRVVGHAMQGTLLKLTVDVANPSTPAYTFTTVKPGAAFSVLACYNGRPTGTFTVV                                  | 240  |

Sbjct 871 ..... 930

Assuming sequencing is OK will do expression and purification

T7termalt

caaggggttatgctagttac

472800501\_F1\_T7term\_T7term\_C11.seq

NNNNNNGNNNTCNNNNNAATACTCATTCTGATGTTTTAAATGATTTGCCCTCCCATATGTCCTTCCGAGTGAGAGACAC AAAAAATTCCAACACACTATTGCAATGAAAATAAATTTCCTTTATTAGCCAGAAGTCAGATGCTCAAGGGGGCTTCATGATGTCC CCATAATTTTTGGCAGAGGGAAAAAGATCGATCTCAGTGGTATTTGTGAGCCAGGGCATTGGCCACACCAGCCACCACCTTC TGATAGGCAGCCTGCACCTGAGGTTAATCACAAACTGGTCTAGAAAGCTTCATTGCATCACCACTCCCATGATCTGCCGATTA ACGTCTTCGGGAGTGAACTCGTCTTCCAGCATAGTGCTACCTAAAATTTGCTTACCCTGGAAGCCGGTATATAACTGCTGGAT GATTAGCTAACGCCCACTCATTGAATGACACTACACTTGTACGGTTTGGGTTTGACAAACCATGCACACCCATTCAAAATAGCC GCGTAAAGCCAGGCAACCACGTTCACTGAACAATACTTATCTGTAAGTTGTACCTGGTGTACCTGCTTATCCATAAACGCTCC GTACATAGTTCCGTCGAAAGCTGAACCGGTGTGAGTTCCGTTGGCCAATTCCATTTGGTGCATGTAACAGAAGTTAATAACG GACCCTTCTTTGGTATACCCTACACTGCCACATGATCCACACAGGAAACTACCTTTAATCGTATAATTAGGGCGCATAACAACA GTGAATGTTCCCGTCGGACGTCCATTGTAGCAAGCAAGGACACTAAATGCGGCACCGGGCTTAACGGTCGTGAAAGTGTAT GCTGGGGTGCTAGGATTTGCAACATCAACCGTCAACTTAAGAAGTGTCCCTTGCATAGCGTGTCCAACGACGCGAAGGTTC GCCGGTGCGCCGATATGTTTCTGAACGGAGAAGGAGTGATTAGTCATACTAATTAACAGCGCGTCATAATTAGGGTCACTCA ACTGATCCGCTGGGCACATAACATGGCGCGGGCACCACACTGTGTTATCAAGCCAAAGACCATTAAGCGTCATAGACCCGCA CGTAACCTGCACCATGCACGCTTCTACATCACCGCTTGGATGNNAANTCTTTTCCAGGCCCGAACCACCGATCTGTTCGNAN TGNNCTTCAATAATATCCGTTGGCTTCCATNTCCAGGTCTTCCGGGGGTCTGATCGGCCTGAATACGGATCCNGTCATAANNA AAAGNNNAGGCTNTCNTTTNNTTNACCCTGANGTTNCN

MXGSVFRPIRPRKTWXWKPTDIIEXXXEQIGGSGLEKXXHPSGDVEACMVQVTCGSMTLNGLWLDNTVWCPRHVMCPADQL SDPNYDALLISMTNHSFSVQKHIGAPANLRVVGHAMQGTLLKLTVDVANPSTPAYTFTTVKPGAAFSVLACYNGRPTGTFTVV MRPNYTIKGSFLCGSCGSVGYTKEGSVINFCYMHQMELANGTHTGSAFDGTMYGAFMDKQVHQVQLTDKYCSVNVVAWLYA AILNGCAWFVKPNRTSVVSFNEWALANQFTEFVGTQSVDMLAVKTGVAIEQLLYAIQQLYTGFQGKQILGSTMLEDEFTPEDV NRQIMGVVMQ

| SDJCt | 1255 .G                                                                        |
|-------|--------------------------------------------------------------------------------|
| -     | 600 TCCAAGCGGTGATGTAGAAGCGTGCATGGTGCAGGTTACGTGCGGGTCTATGACGCTTAA 659 1195 1136 |
| -     | 660 TGGTCTTTGGCTTGATAACACAGTGTGGTGCCCGCGCCATGTTATGTGCCCAGCGGATCA 719 1135 1076 |
|       | 720 GTTGAGTGACCCTAATTATGACGCGCTGTTAATTAGTATGACTAATCACTCCTTCTCCGT 779 1075 1016 |
|       | 780 TCAGAAACATATCGGCGCACCGGCGAACCTTCGCGTCGTTGGACACGCTATGCAAGGGAC 839 1015      |
| _     | 840 ACTTCTTAAGTTGACGGTTGATGTTGCAAATCCTAGCACCCCAGCATACACTTTCACGAC 899 955       |
|       | 900 CGTTAAGCCCGGTGCCGCATTTAGTGTCCTTGCTTGCTACAATGGACGTCCGACGGGAAC 959 895       |
| -     | 960 ATTCACTGTTGTTATGCGCCCTAATTATACGATTAAAGGTAGTTTCCTGTGTGGATCATG 1019<br>835   |
|       | 1020 TGGCAGTGTAGGGTATACCAAAGAAGGGTCCGTTATTAACTTCTGTTACATGCACCAAAT 1079 775     |
|       | 1080 GGAATTGGCCAACGGAACTCACACCGGTTCAGCTTTCGACGGAACTATGTACGGAGCGTT 1139 715     |
|       | 1140 TATGGATAAGCAGGTACACCAGGTACAACTTACAGATAAGTATTGTTCAGTGAACGTGGT 1199 655     |
|       | 1200 TGCCTGGCTTTACGCGGCTATTTTGAATGGGTGTGCATGGTTTGTCAAACCCAACCGTAC 1259 595     |
| ~ _   | 1260 AAGTGTAGTGTCATTCAATGAGTGGGCGTTAGCTAATCAATTCACCGAATTTGTTGGCAC 1319 535     |
|       | 1320 CCAGTCAGTGGATATGCTGGCAGTGAAAACTGGAGTCGCTATTGAGCAATTATTATATGC 1379 475     |
|       | 1380 CATCCAGCAGTTATATACCGGCTTCCAGGGTAAGCAAATTTTAGGTAGCACTATGCTGGA 1439 415     |
|       | 1440 AGACGAGTTCACTCCCGAAGACGTTAATATGCAGATCATGGGAGTGGTGATGCAATGAAG 1499 355     |
|       | 1500 CTTTCTAGACCAGTTTGTGATTAACCTCAGGTGCAGGCTGCCTATCAGAAGGTGGTGGCT 1559 295     |
| _     | 1560 GGTGTGGCCAATGCCCTGGCTCACAAATACCACTGAGATCGATC                              |
|       | 1620 AAATTATGGGGACATCATGAAGCCCCTTGAGCATCTGACTTCTGGCTAATAAAGGAAATT 1679 175 116 |
|       | 1680 TATTTTCATTGCAATAGTGTGTTGGAATTTTTTTGTGTCTCTCACTCGGAAGGACATATGG 1739 115    |
| Query | 1740 GAGGGCAAATCATTTAAAACATCAGAATGAGTATT 1774                                  |

ScoreExpectMethodIdentitiesPositivesGaps650 bits(1677) 0.0Compositional matrix adjust. 311/318(98%) 311/318(97%) 0/318(0%)Query97DIIEAHREQIGGSGLVKMSHPSGDVEACMVQVTCGSMTLNGLWLDNTVWCPRHVMCPADQ156

| SDJCL | Z1 <b>AAA</b>                                                        | U |
|-------|----------------------------------------------------------------------|---|
|       | 157 LSDPNYDALLISMTNHSFSVQKHIGAPANLRVVGHAMQGTLLKLTVDVANPSTPAYTFTT 3   |   |
|       | 217 VKPGAAFSVLACYNGRPTGTFTVVMRPNYTIKGSFLCGSCGSVGYTKEGSVINFCYMHQM 2   |   |
|       | 277 ELANGTHTGSAFDGTMYGAFMDKQVHQVQLTDKYCSVNVVAWLYAAILNGCAWFVKPNRT 201 |   |
|       | 337 SVVSFNEWALANQFTEFVGTQSVDMLAVKTGVAIEQLLYAIQQLYTGFQGKQILGSTMLE 261 |   |
|       | 397 DEFTPEDVNMQIMGVVMQ 414<br>321                                    |   |

has expected Arg mutation

472800501 F3 T7term T7term B11.seq

E----

NNNNNNGNCAAACTCTNNNNNNACTCATTCTGATGTTTTAAATGATTTTGCCCTCCCATATGTCCTTCCGAGTGAGAGACA CAAAAAATTCCAACACTATTGCAATGAAAATAAATTTCCTTTATTAGCCAGAAGTCAGATGCTCAAGGGGCTTCATGATG TTCTGATAGGCAGCCTGCACCTGAGGTTAATCACAAAATGGTCTAGAAAGCTTCATTGCATCACCACTCCCATGATCTGCCG ATTAACGTCTTCGGGAGTGAACTCGTCTTCCAGCATAGTGCTACCTAAAATTTGCTTACCCTGGAAGCCGGTATATAACTGC TGAATTGATTAGCTAACGCCCACTCATTGAATGACACTACACTTGTACGGTTTGGGTTTGACAAACCATGCACACCCATTCAA AATAGCCGCGTAAAGCCAGGCAACCACGTTCACTGAACAATACTTATCTGTAAGTTGTACCTGGTGTACCTGCTTATCCATA AACGCTCCGTACATAGTTCCGTCGAAAGCTGAACCGGTGTGAGTTCCGTTGGCCAATTCCATTTGGTGCATGTAACAGAAGT TAATAACGGACCCTTCTTTGGTATACCCTACACTGCCACATGATCCACACAGGAAACTACCTTTAATCGTATAATTAGGGCG AAAGTGTATGCTGGGGTGCTAGGATTTGCAACATCAACCGTCAACTTAAGAAGTGTCCCTTGCATAGCGTGTCCAACGACGC GAAGGTTCGCCGGTGCGCCGATATGTTTCTGAACGGAGAAGGAGTGATTAGTCATACTAATTAACAGCGCGTCATAATTAGG GTCACTCAACTGATCCGCTGGGCACATAACATGGCGCGGGCACCACACTGTGTTATCAAGCCAAAGACCATTAAGCGTCATA GACCCGCACGTAACCTGCACCATGCACGCTTCTACATCACCGCTTGGATGTGACATCTTTACCAGGCCCGAACCACCGATCT GTTCGCGATGNGCTTCAATAATNTCGTTGTCTTCCATATCCAGGTCTTCCGGGGNCTGATCGGCCTGAATACGGATGCCGTC ATANNGAAAGGCCAGGCNATCCATTTCTTTACCCTGACGTTTCNNAAAGGCTTCCATCAGGNNACCAACGGGG

EAFXKRQGKEMDXLAFXYDGIRIQADQXPEDLDMEDNXIIEXHREQIGGSGLVKMSHPSGDVEACMVQVTCGSMTLNGLWLD NTVWCPRHVMCPADQLSDPNYDALLISMTNHSFSVQKHIGAPANLRVVGHAMQGTLLKLTVDVANPSTPAYTFTTVKPGAAF SVLACYNGRPTGTFTVVMRPNYTIKGSFLCGSCGSVGYTKEGSVINFCYMHQMELANGTHTGSAFDGTMYGAFMDKQVHQVQ LTDKYCSVNVVAWLYAAILNGCAWFVKPNRTSVVSFNEWALANQFTEFVGTQSVDMLAVKTGVAIEQLLYAIQQLYTGFQGK QILGSTMLEDEFTPEDVNRQIMGVVMQ

| Sc     | ore Expect Identities Gaps Strand                                                 |
|--------|-----------------------------------------------------------------------------------|
| 2438 b | its(1320) 0.0 1345/1362(99%) 1/1362(0%) Plus/Minus                                |
|        | 410 CCCCGCTGCGTCGCCTGATGGAAGCCTTTGCGAAACGTCAGGGTAAAGAAATGGATAGCC 469 1385TNNN1327 |
| Ouerv  | 470 TGCGCTTTCTGTATGACGGCATCCGTATTCAGGCCGATCAGACCCCGGAAGACCTGGATA 529              |
| -      | 1326GCNN                                                                          |
| Query  | 530 TGGAAGACAACGATATTATTGAAGCGCATCGCGAACAGATCGGTGGTTCGGGCCTGGTAA 589              |
| Sbjct  | 1266 1207                                                                         |
|        | 590 AGATGTCACATCCAAGCGGTGATGTAGAAGCGTGCATGGTGCAGGTTACGTGCGGGTCTA 649              |
| Sbjct  | 1206 1147                                                                         |
|        | 650 TGACGCTTAATGGTCTTTGGCTTGATAACACAGTGTGGTGCCCGCGCCCATGTTATGTGCC 709             |
| Sbjct  | 1146 1087                                                                         |
|        | 710 CAGCGGATCAGTTGAGTGACCCTAATTATGACGCGCTGTTAATTAGTATGACTAATCACT 769              |
| Sbjct  | 1086 1027                                                                         |

|       | 770 CCTTCTCCGTTCAGAAACATATCGGCGCACCGGCGAACCTTCGCGTCGTTGGACACGCTA 829<br>L026 967                                                                                                                |   |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|       | TGCAAGGGACACTTCTTAAGTTGACGGTTGATGTTGCAAATCCTAGCACCCCAGCATACA 889                                                                                                                                |   |
|       | 390 CTTTCACGACCGTTAAGCCCGGTGCCGCATTTAGTGTCCTTGCTTG                                                                                                                                              |   |
| _     | 950 CGACGGGAACATTCACTGTTGTTATGCGCCCTAATTATACGATTAAAGGTAGTTTCCTGT 1009<br>346                                                                                                                    |   |
|       | 1010 GTGGATCATGTGGCAGTGTAGGGTATACCAAAGAAGGGTCCGTTATTAACTTCTGTTACA 106                                                                                                                           | 9 |
| _     | 1070 TGCACCAAATGGAATTGGCCAACGGAACTCACACCGGTTCAGCTTTCGACGGAACTATGT 112                                                                                                                           | 9 |
|       | 130 ACGGAGCGTTTATGGATAAGCAGGTACACCAGGTACAACTTACAGATAAGTATTGTTCAG 118                                                                                                                            | 9 |
|       | 190 TGAACGTGGTTGCCTGGCTTTACGCGGCTATTTTGAATGGGTGTGCATGGTTTGTCAAAC 124                                                                                                                            | 9 |
| _     | L250 CCAACCGTACAAGTGTAGTGTCATTCAATGAGTGGGCGTTAGCTAATCAATTCACCGAAT 130                                                                                                                           | 9 |
|       | 1310 TTGTTGGCACCCAGTCAGTGGATATGCTGGCAGTGAAAACTGGAGTCGCTATTGAGCAAT 136                                                                                                                           | 9 |
|       | 1370 TATTATATGCCATCCAGCAGTTATATACCGGCTTCCAGGGTAAGCAAATTTTAGGTAGCA 142                                                                                                                           | 9 |
|       | 430 CTATGCTGGAAGACGAGTTCACTCCCGAAGACGTTAATATGCAGATCATGGGAGTGGTGA 148                                                                                                                            | 9 |
|       | 1490 TGCAATGAAGCTTTCTAGACCAGTTTGTGATTAACCTCAGGTGCAGGCTGCCTATCAGAA 154                                                                                                                           | 9 |
|       | L550 GGTGGTGGCTGTGGCCAATGCCCTGGCTCACAAATACCACTGAGATCGATC                                                                                                                                        | 9 |
|       | 1610 CCTCTGCCAAAAATTATGGGGACATCATGAAGCCCCTTGAGCATCTGACTTCTGGCTAAT 166                                                                                                                           | 9 |
|       | 1670 AAAGGAAATTTATTTTCATTGCAATAGTGTGTTGGAATTTTTTTGTGTCTCTCACTCGGAA 172                                                                                                                          | 9 |
|       | 1730 GGACATATGGGAGGGCAAATCATTTAAAACATCAGAATGAGT 1771<br>56 25                                                                                                                                   |   |
| Query | re Expect Method Identities Positives Gaps [1884) 0.0 Compositional matrix adjust. 347/355(98%) 347/355(97%) 0/355(0%) [50 EAFAKRQGKEMDSLRFLYDGIRIQADQTPEDLDMEDNDIIEAHREQIGGSGLVKMSHPSG 119 [80 |   |
|       | L20 DVEACMVQVTCGSMTLNGLWLDNTVWCPRHVMCPADQLSDPNYDALLISMTNHSFSVQKH 179                                                                                                                            |   |
| _     | 180 IGAPANLRVVGHAMQGTLLKLTVDVANPSTPAYTFTTVKPGAAFSVLACYNGRPTGTFTV 239                                                                                                                            |   |
| Query | 240 VMRPNYTIKGSFLCGSCGSVGYTKEGSVINFCYMHQMELANGTHTGSAFDGTMYGAFMDK 299                                                                                                                            |   |

| Query  | 300   | QVHQVQLTDKYCSVNVVAWLYAAILNGCAWFVKPNRTSVVSFNEWALANQFTEFVG | STQSV | 359 |
|--------|-------|----------------------------------------------------------|-------|-----|
| Sbjct  | 241   |                                                          |       | 300 |
|        |       |                                                          |       |     |
| Query  | 360   | DMLAVKTGVAIEQLLYAIQQLYTGFQGKQILGSTMLEDEFTPEDVNMQIMGVVMQ  | 414   |     |
| Sbjct  | 301   |                                                          | 355   |     |
|        |       |                                                          |       |     |
| Also h | nas e | expected Arg mutation                                    |       |     |

#### Title missing - double click to edit

ccatcatcatcacqqqaqcqataqcqaaqtqaaccaqqaaqcqaaaccqqaaqttaaaccqqaaqtqaaaccqqaaacccatattaatctqaaaqttaqcq acggcagcagcgaaatcttttttaaaattaaaaaaaccaccccgctgcgtcgcctgatggaagcctttgcgaaacgtcagggtaaagaaatggatagcctgcgc tttctgtatgacggcatccgtattcaggccgatcagaccccggaagacctggatatggaagacaacgatattattgaagcgcatcGCGAACAGATCGGTGGTTCGGGCCTGGTAAAGATGTCACATCCAAGCGGTGATGTAGAAGCGTGCATGGTGCAGGTTACGTGCGGGTCTATGACGC TTAATGGTCTTTGGCTTGATAACACAGTGTGGTGCCCGCGCCATGTTATGTGCCCAGCGGATCAGTTGAGTGACCCTAATTAT GACGCGCTGTTAATTAGTATGACTAATCACTCCTTCTCCGTTCAGAAACATATCGGCGCACCGGCGAACCTTCGCGTCGTTG GACACGCTATGCAAGGGACACTTCTTAAGTTGACGGTTGATGTTGCAAATCCTAGCACCCCAGCATACACTTTCACGACCGTT AAGCCCGGTGCCGCATTTAGTGTCCTTGCTTGCTACAATGGACGTCCGACGGGAACATTCACTGTTGTTATGCGCCCTAATTA TACGATTAAAGGTAGTTTCCTGTGTGGATCATGTGGCAGTGTAGGGTATACCAAAGAAGGGTCCGTTATTAACTTCTGTTACA TGCACCAAATGGAATTGGCCAACGGAACTCACACCGGTTCAGCTTTCGACGGAACTATGTACGGAGCGTTTATGGATAAGCA GGTACACCAGGTACAACTTACAGATAAGTATTGTTCAGTGAACGTGGTTGCCTGGCTTTACGCGGCTATTTTGAATGGGTGT GCATGGTTTGTCAAACCCAACCGTACAAGTGTGGTGTCATTCAATGAGTGGGCGTTAGCTAATCAATTCACCGAATTTGTTGG CACCCAGTCAGTGGATATGCTGGCAGTGAAAACTGGAGTCGCTATTGAGCAATTATTATATGCCATCCAGCAGTTATATACCG GCTTCCAGGGTAAGCAAATTTTAGGTAGCACTATGCTGGAAGACGAGTTCACTCCCGAAGACGTTAATCGGCAGATCATGGG AGTGGTGATGCAATGAAGCTTTCTAGACCAGtttgtgattaacctcaggtgcaggctgcctatcagaaggtggtggctggtgtggccaatgccctgg ctcacaaataccactgagatcg

MGSSHHHHHHGSDSEVNQEAKPEVKPEVKPETHINLKVSDGSSEIFFKIKKTTPLRRLMEAFAKRQGKEMDSLRFLYDGIRIQA DQTPEDLDMEDNDIIEAHREQIGGSGLVKMSHPSGDVEACMVQVTCGSMTLNGLWLDNTVWCPRHVMCPADQLSDPNYDA LLISMTNHSFSVQKHIGAPANLRVVGHAMQGTLLKLTVDVANPSTPAYTFTTVKPGAAFSVLACYNGRPTGTFTVVMRPNYTIK GSFLCGSCGSVGYTKEGSVINFCYMHQMELANGTHTGSAFDGTMYGAFMDKQVHQVQLTDKYCSVNVVAWLYAAILNGCAW FVKPNRTSVVSFNEWALANQFTEFVGTQSVDMLAVKTGVAIEQLLYAIQQLYTGFQGKQILGSTMLEDEFTPEDVNRQIMGVV MQ

```
Number of amino acids: 414

Molecular weight: 45710.05
```

Theoretical pI: 5.87

Extinction coefficients:

```
Extinction coefficients are in units of M^{-1} cm^{-1}, at 280 nm measured in water. Ext. coefficient 46005 Abs 0.1% (=1 g/1) 1.006, assuming all pairs of Cys residues form cystines
```

SGLVKMSHPSGDVEACMVQVTCGSMTLNGLWLDNTVWCPRHVMCPADQLSDPNYDALLISMTNHSFSVQKHIGAPANLRVV GHAMQGTLLKLTVDVANPSTPAYTFTTVKPGAAFSVLACYNGRPTGTFTVVMRPNYTIKGSFLCGSCGSVGYTKEGSVINFCY MHQMELANGTHTGSAFDGTMYGAFMDKQVHQVQLTDKYCSVNVVAWLYAAILNGCAWFVKPNRTSVVSFNEWALANQFTE FVGTQSVDMLAVKTGVAIEQLLYAIQQLYTGFQGKQILGSTMLEDEFTPEDVNRQIMGVVMQ

Number of amino acids: 306

Molecular weight: 33355.28

Theoretical pI: 6.03

## Extinction coefficients:

Extinction coefficients are in units of  $\mathrm{M}^{-1}$  cm $^{-1}$ , at 280 nm measured in water.

Ext. coefficient 44515

Abs 0.1% (=1 g/l) 1.335, assuming all pairs of Cys residues form cystines

## MagneHis 1mL test purification



MagneHis 1mL test purification

1 = MVMPROA-c901 (Arg mutant "F3")

2 = MVMPROA-c901 (Arg mutant "F1")

3 = MVMPROA-c900(WT)

### Title missing - double click to edit



## **IDs and Expression & Purification**

#### MVMPROA-c907

MHHHHHHGSDSEVNQEAKPEVKPETHINLKVSDGSSEIFFKIKKTTPLRRLMEAFAKRQGKEMDSLRFLYDGIRIQADQ TPEDLDMEDNDIIEAHREQIGGSGLVKMSHPSGDVEACMVQVTCGSMTLNGLWLDNTVWCPRHVMCPADQLSDPNYDALLI SMTNHSFSVQKHIGAPANLRVVGHAMQGTLLKLTVDVANPSTPAYTFTTVKPGAAFSVLACYNGRPTGTFTVVMRPNYTIKGS FLCGSCGSVGYTKEGSVINFCYMHQMELANGTHTGSAFDGTMYGAFMDKQVHQVQLTDKYCSVNVVAWLYAAILNGCAWFV KPNRTSVVSFNEWALANQFTEFVGTQSVDMLAVKTGVAIEQLLYAIQQLYTGFQGKQILGSTMLEDEFTPEDVNRQIMGVVMQ

Number of amino acids: 411

Molecular weight: 45478.85

Theoretical pI: 5.87

Extinction coefficients are in units of  $M^{-1}$  cm<sup>-1</sup>, at 280 nm measured in water.

Ext. coefficient 46005 Abs 0.1% (=1 g/l) 1.012, assuming all pairs of Cys residues form cystines

## MVMPROA-c907 cut

SGLVKMSHPSGDVEACMVQVTCGSMTLNGLWLDNTVWCPRHVMCPADQLSDPNYDALLISMTNHSFSVQKHIGAPANLRVV GHAMQGTLLKLTVDVANPSTPAYTFTTVKPGAAFSVLACYNGRPTGTFTVVMRPNYTIKGSFLCGSCGSVGYTKEGSVINFCY MHQMELANGTHTGSAFDGTMYGAFMDKQVHQVQLTDKYCSVNVVAWLYAAILNGCAWFVKPNRTSVVSFNEWALANQFTE FVGTQSVDMLAVKTGVAIEQLLYAIQQLYTGFQGKQILGSTMLEDEFTPEDVNRQIMGVVMQ

Number of amino acids: 306

Molecular weight: 33355.28

Theoretical pI: 6.03

Extinction coefficients are in units of  $M^{-1}$  cm<sup>-1</sup>, at 280 nm measured in water.

Ext. coefficient 44515 Abs 0.1% (=1 g/l) 1.335, assuming all pairs of Cys residues form cystines

MVMPROA-k002/MVMPROA-e002/MVMPROA-p002

# **Expression**

Transformed BL21[DE3]RR with MVMPROA-c901 (AmpR)

Grew 100 mL o/n in SOC + Amp

Used 10 mL to inoculate 1 L FORM-TB + Amp (6 L total)

Grew 4h 37C 180 rpm shaking (OD600 = 1)

Grew 18C 180 rpm shaking 1h

Added 0.5 mM IPTG final conc.

Grew o/n 18C 180 rpm shaking

Harvested 4000g 12C 20 minutes

Froze pellet -80C (final wcw = g/L g total)

## **Formedium TB custom**

12 g/L tryptone

24 g/L yeast extract

3.3 g/L Ammonium Sulphate (NH4)2SO4

6.8g /L Potassium Dihydrogen Phosphate KH2PO4

7.1 g/L DiSodium Hydrogen Phosphate Na2HPO4 7.1

0.15 g/L Magnesium Sulphate MgSO4

0.03 g/L Trace Elements

55.85 g/L in MilliQ water added 20 mL 50 % glycerol

**Autoclave** 

Add 1 mL 10% Antifoam 204 and Antibiotic

### **Purification**

Dissolve pellet in 4 mL per g using Lysis buffer (10 mM HEPES pH 7.5, 500 mM NaCl, 5 % glycerol, 0.5 mM TCEP, 1 % TX-100, 30 mM Imidazole, 0.5 mg/mL lysozyme, 0.01 mg/mL benzonase)

After dissolveing (1h RT stirring) incubate on ice 1h and then centrifuge 30000 g 1h 4C

Pass over 20 mL Ni-Sepharose-FF

Wash 3 x 100 mL Wash buffer (10 mM HEPES pH 7.5, 500 mM NaCl, 5 % glycerol, 0.5 mM TCEP, 30 mM Imidazole)

Elute 3 x 25 mL Elution Buffer (10 mM HEPES pH 7.5, 500 mM NaCl, 5 % glycerol, 0.5 mM TCEP, 500 mM Imidazole)

Pool peak fractions

50 mL at A280 of 15 (750 mg)

Add 1:100 sumo protease (Ulp1) and dialyse o/n against 1 L Wash Buffer

Pass over 20 mL Ni-Sepharose-FF (collect flow through)

Wash with 2 x 25 mL Wash Buffer (collect flow through)

Pool peak fractions

Calculate yield and check on gel, looks good

Concentrate to 40 mg/mL using 10,000 MWCO concentrator

Yield at this stage is approx 12 mL with A280 of 39, about 470 mg (One of the concnetrators leaked)

Do SEC using 5 mL aliquots (approx. 20 mg) on 125 mL superose 12 pg using 10 mM HEPES pH 7.5, 500 mM NaCl, 5 % glycerol, 0.5 mM TCEP as mobile phase

Still elutes as monomer even loading at this high concentration

Concentrate peak fractions to 0.42 mM (13.9 mg/mL, A280 of 18.5)

Do MS to confirm MW and flash freeze in LN2 and store in 100 µL single use aliquots (11.2 mL 155 mg total)

Scale up purification



SUMO cleavage (Ulp1) 1 = MVMPROA-c907, 33798.76 Da 2 = rev IMAC

MVMPROA\_c907\_125mL\_SUPEROSE\_12\_PG\_SEC\_PROFILE\_Large\_Scale

