1

Control Systems

G V V Sharma*

		Contents		10	Oscilla	ntor	3
	G! 1.		1		10.1	Introduction	3
1	_	Flow Graph	1		10.2	Example	3
	1.1	Mason's Gain Formula	1				
	1.2	Matrix Formula	1	Abstract—This manual is an introduction to control			
2	Bode Plot		1			on GATE problems.Links to sample P	ython
2	2.1 Introduction		1 1	codes	s are avail	able in the text.	
	2.1		3	Download python codes using			
	2.2	Example	3				
3	Second order System		3			github.com/gadepall/school/trun	k/
	3.1 Damping		3	COULOU/COORS			
	3.2	Example	3				
	3.2	Example	3				
4	Routh Hurwitz Criterion		3	1 C F C			
	4.1	4.1 Routh Array		1 Signal Flow Graph			
	4.2	Marginal Stability	3	1 1	Mason's	Gain Formula	
	4.3	Stability	3	1.1	wason s	Gain Formuia	
	4.4	Example	3	1.2	Matrix F	ormula	
						0 D D	
5	State-Space Model		3	2 Bode Plot			
	5.1	Controllability and Observ-		2.1	Introduct	ion	
		ability	3	2.1	Іпітойисі	ion	
	5.2	Second Order System	3 2	2.1.1.	The asyı	nptotic Bode phase plot of	
	5.3	Example	3			k	
	5.4	Example	3		G(s)	$= \frac{k}{(s+0.1)(s+10)(s+p_1)} $ (2.1)	1.1.1)
	5.5	Example	3			, , , , , , , , , , , , , , , , , , , ,	
		-				nd p_1 both positive, is shown in	_
6	Nyquist	t Plot	3			apress it as a piecewise linear fun	iction
					of $\log (a)$	<i>)</i>).	
7	Compe		3				
	7.1	Phase Lead	3		<u> </u>		
	7.2	Example	3	0°		1 0.1 1 10 100	
_		_		•	:	ra	ad/s
8	Gain Margin		3	-45			
	8.1	Introduction	3				
	8.2	Example	3	-135			
9	Phase I	Maroin	3	-22	eo :		
_	1 11450 1	· Ama Batt	5				
*Tl	ne author is	with the Department of Electrical Enginee	ring,	-270	0		

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU

GPL. Free and open source.

Fig. 2.1.1

Solution: The desired expression is

$$\phi(\omega) = \begin{cases} 0 & 0 < \omega < 0.01 \\ -90 - 45 \log(\omega) & 0.01 < \omega < 0.1 \\ -135 - 90 \log(\omega) & 0.1 < \omega < 10 \\ -180 - 45 \log(\omega) & 10 < \omega < 100 \\ -90 & 100 < \omega \end{cases}$$

$$(2.1.1.2)$$

2.1.2. Find p_1 .

Solution: Bode phase plot for a transfer function having a single pole at p_1

$$\phi_{1}(\omega) = \begin{cases} 0 & 0 < \omega < \frac{p_{1}}{10} \\ -45 \times \left(\log\left(\frac{10\omega}{p_{1}}\right)\right) & \frac{p_{1}}{10} < \omega < 10p_{1} \\ -90 & 10p_{1} < \omega \end{cases}$$
(2.1.2.1)

phase plot by considering only 0.1 and 10 poles is

$$\phi_2(\omega) = \begin{cases} 0 & 0 < \omega < 0.01 \\ -90 - 45 \log(\omega) & 0.01 < \omega < 100 \\ -180 & 100 < \omega \end{cases}$$
(2.1.2.2)

phase plot of the given transfer function is sum of the phase plots (2.1.2.1) and (2.1.2.2)

$$\phi(\omega) = \phi_1(\omega) + \phi_2(\omega) \tag{2.1.2.3}$$

and from (2.1.1.2) and (2.1.2.2)

$$\phi(\omega) = \phi_2(\omega) \text{ for } 0 < \omega < 0.1$$
 (2.1.2.4)

$$\implies \phi_1(\omega) = 0 \text{ for } 0 < \omega < 0.1 \quad (2.1.2.5)$$

By comparing (2.1.2.5) to (2.1.2.1),

$$\frac{p_1}{10} = 0.1 \implies p_1 = 1$$
 (2.1.2.6)

the bode phase plots corresponding to the poles 0.1 and 10.

2.1.3. Find the value of p_1 using phase of the transfer function.

Solution:

$$\phi(\omega) = -\tan^{-1}\left(\frac{\omega}{0.1}\right) - \tan^{-1}\left(\frac{\omega}{10}\right) - \tan^{-1}\left(\frac{\omega}{p_1}\right)$$
(2.1.3.1)

Fig. 2.1.2

From the plot 2.1.1,

$$-45^{\circ} = -\tan^{-1}\left(\frac{0.1}{0.1}\right) - \tan^{-1}\left(\frac{0.1}{10}\right) - \tan^{-1}\left(\frac{0.1}{p_1}\right)$$
(2.1.3.2)

 p_1 is approximately 1, i.e, for p_1 in 0.95 to 1.05 the ϕ is approximately equals to -45° . The following code plots Fig. 2.1.2

codes/ee18btech11037.py

- 2.2 Example
- 3 SECOND ORDER SYSTEM
- 3.1 Damping
- 3.2 Example
 - 4 ROUTH HURWITZ CRITERION
- 4.1 Routh Array
- 4.2 Marginal Stability
- 4.3 Stability
- 4.4 Example
- 5 STATE-SPACE MODEL
- 5.1 Controllability and Observability
- 5.2 Second Order System
- 5.3 Example
- 5.4 Example
- 5.5 Example
- 6 Nyquist Plot
- 7 Compensators
- 7.1 Phase Lead
- 7.2 Example
- 8 Gain Margin
- 8.1 Introduction
- 8.2 Example
- 9 Phase Margin
- 10 OSCILLATOR
- 10.1 Introduction
- 10.2 Example