Underwater Communication using Visible Light

Fang, Jian April 2nd, 2018

Outline

- Problem Formulation
- Related Work
- Idea
- Question and Answer

Problem Formulation

- High demand for underwater communication
 - Worker: Exchange work progress

Problem Formulation

- High demand for underwater communication
 - Workers: Exchange work progress
 - Machine: Know location and direction

Problem Formulation

- Gesture, Pipeline
 - Short distance, less information
- Wired Cable
 - Limited by complex underwater geography
- Wi-Fi
 - Extremely strong fading (transmission distance: around 0.7m)

Where light can reach, it can communicate.

-Visible Light Communication

Visible Light Communication

- Uses visible light between 400 and 800 THz (780-375 nm)
- Speed: 50 Gbps by the end of 2015
- Range: Up to 1 and 2 km (low rate)
- Components: Sensors (photodiodes or cameras) and Light Sources.

Hardware

- Transmitter
 - LED
- Receiver
 - Photodiode: BPW34, PD333, BPV10 etc.
 - Camera: Phone
- Entire prototype costs around 200 yuan (\$30)

A Supplement, Not a Substitute

- Advantages
 - Fast
 - Cheap
- Disadvantages
 - Downwards only
 - Dying in the sun
 - Susceptible to interference

Related Work

- Xinyu Zhang, University of California San Diego.
 - Indoor Localization (Mobicom'17, Mobisys'17, Mobicom'16)
 - Privacy Protection (Mobicom'17)
- Nan Chi, Fudan University.
 - Increasing Speed
- Peking University
 - IoT Application (Mobicom'17)
- National Taiwan University, National Chiao Tung University
 - Localization (Mobisys'17)

Pulsar: Towards Ubiquitous Visible Light Localization

Chi Zhang, Xinyu Zhang

MobiCom'17

Visible Light Localization

- * Photodiodes
 - **Compact**
 - Low-power
 - * RSS Propagation Modeling

† Photodiodes

Channel Model is Unrealistic for Fixtures Partial Shadowing and Blockage Breaks Model

- **Cameras**
 - Accurate
 - **₩** Robust
 - Triangulation with Photogrammetry

Cameras

Narrow Field of View

High Energy Consumption

Long Latency

Achieve Accurate and Low-power Localization

Achieve Accurate and Low-power Localization

$$RSS = P_t A_t(\theta) \alpha(r) A_r(\varphi)$$

RSS =
$$P_t A_t(\theta) \alpha(r) A_r(\phi)$$

RSS₁ = $P_t A_{t1}(\theta_1) \alpha(r_1) A_{r1}(\phi_1)$
RSS₂ = $P_t A_{t2}(\theta_2) \alpha(r_2) A_{r2}(\phi_2)$

$$\varphi(f) = A_c^{-1} \left[\frac{RSS_1(f)}{RSS_2(f)} \right]$$

RSS at each frequency

AoA at each frequency

Triangulation: >= 3 lights required

Triangulation: >= 3 lights required

Separate from spectrum:

Leverage diversity in Characteristic Frequency

This should be easy, right?

Wrong!

Spurious peaks!

• Causes:

- Powerline harmonics
- User motion

• Causes:

- Powerline harmonics
- User motion

Observe:

- AoA unaffected
- Same AoA = from the Same Light

Causes:

- Powerline harmonics
- User motion

Observe:

- AoA unaffected
- Same AoA = from the Same Light

Separate by AoA Clusters

Light Identification

- Frequency to ID:
 - Match individual lights = poor accuracy

Light Identification

- Frequency to ID:
 - Match individual lights = poor accuracy
- Observe:
 - Correct match likely in ones with lowest freq error
 - Lights in Field-of-View are close to each other

Light Identification

Solution:

- Identify by whole group of lights
- Each frequency = 2~3 candidate ID
- ✓ Tightly-packed group with low freq error

Localization

Triangulation:

- 3D coordinates from 3 vector equations
- >= 4 lights: solves orientation

Light Registration

- Registration is hard work
 - Even smart bulbs do not know their own locations!

Light Registration

- Registration is hard work
 - Even smart bulb does not know its own location!
- Motion tracking with Tango
 - Record relative location during survey
 - Map to absolute location on map
 - Eliminates complicated measurements

Implementation

Accuracy of AoA Sensing

Identification

Localization

Orientation

Latency

Energy

Idea

- Feature of Line of Sight (LoS)
- Tracking—>Coarse-grained Localization—>Fine-grained Localization
- Simple, Fast and Energy Efficient

Question and Answer

- For this slides, please scan the QR code and visit my blog.
- For paper and slides mentioned in my talk, please visit the homepage of the author.
 - Zhang C, Zhang X. Pulsar: Towards
 Ubiquitous Visible Light
 Localization[C]//Proceedings of the
 23rd Annual International Conference
 on Mobile Computing and Networking.
 ACM, 2017: 208-221.

http://dword1511.info/me/