第十章 重积分

第一节 二重积分的概念与性质

A类题

1. (1)
$$\sqrt[3]{\frac{3}{2}}$$
; (2) 0; (3) $I_2 < I_1 < I_3$; (4) $I_2 < I_1$.

2. (1) 0. $4 \le I \le 0.5$; (2) $0 \le I \le \pi^2$.

B类题

1. $I_2 \leqslant I_1 \leqslant I_3 \leqslant I_4$. 2. 0.

C类是

1. 证明略. 2. $\frac{1}{2}(a+b)$.

第二节 二重积分的计算法

A类是

1. (1)
$$\frac{384}{7}$$
; (2) $\int_0^z dy \int_{\frac{y}{2}}^y f(x,y) dx + \int_z^t dy \int_{\frac{y}{2}}^z f(x,y) dx$; (3) $\int_0^+ \theta d\theta \int_0^z \theta d\rho$; (4) $\frac{1}{2}$.

2.
$$\frac{1}{e}$$
. 3. $\frac{15}{8}$.

4. (1)
$$\int_0^1 dy \int_{e'}^1 f(x,y) dx$$
;

$$(2) \int_0^1 \mathrm{d}y \int_{\sqrt{y}}^{3-2y} f(x,y) \, \mathrm{d}x;$$

(3)
$$\int_{0}^{a} dy \int_{2a-y}^{a+\sqrt{a'-y'}} f(x,y) dx;$$

$$(4) \int_{0}^{a} dx \int_{\sqrt{a^{2}-x^{2}}}^{a} f(x,y) dy + \int_{a}^{2a} dx \int_{x-a}^{2a} f(x,y) dy.$$

5.
$$\frac{1}{6}(1-\frac{2}{e})$$
. 6. (1) $\int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{2R\sin\theta} f(\rho\cos\theta, \rho\sin\theta) \rho d\rho$; (2) $\int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{R} f(\rho^{2}) \rho d\rho$.

7. (1)
$$\frac{\pi}{4}$$
 (2ln2-1); (2) $\sqrt{2}$ -1.

B类题

1.
$$\frac{2}{3}$$
. 2. $\frac{2}{3}(\sqrt{2}-1)+\frac{\pi}{2}$. 3. $(1)\frac{20}{3}-\frac{\pi}{4}$; $(2)\frac{\pi}{4}$ (偶倍奇零). 4. $\frac{R^3 \arctan k}{3}$.

5. $\frac{1}{40}\pi^5$

第三节 三重积分

A类题

1. (1) By; (2)
$$\begin{cases} x = \rho \cos \theta, \\ y = \rho \sin \theta, \ \rho d\rho d\theta dz, \\ z = z, \end{cases}$$

▲ 参考答案 /65

2. 直角坐标系下,投影法: $I = \int_{-1}^{1} dx \int_{-1}^{1} dy \int_{-1}^{1} dx \int_{-1}^{1$

柱面坐标系下:
$$I = \left(\int_{0}^{2\pi} d\theta \int_{0}^{1} \rho d\rho \right)^{\frac{1}{2}} zdz$$
: 计算结果: $\frac{7\pi}{12}$. $I = \int_{0}^{2\pi} d\theta \int_{0}^{2} V dV \int_{\gamma}^{6} d\theta d\theta = \frac{92}{3}$

3. (1) $\frac{5\pi}{6}a^3$; (2) $\frac{1}{2}\ln 2$; (3) $\frac{\pi R^4}{16}$; (4) 2π ; (5) $\frac{31\pi}{10}$; (6) $\frac{59\pi R^5}{480}$; (7) 转化成柱面坐标: $\frac{3\pi}{10}$.

B类题

1. 42π . 2. $F'(t) = 2\pi t \left[\frac{h^3}{3} + hf(t^2)\right]$; $\lim_{t \to 0} \frac{F(t)}{t^2} = \lim_{t \to 0} \frac{F'(t)}{2t} = \pi \left[\frac{h^3}{3} + hf(0)\right]$. 3. $\frac{4}{3}\pi \left(a^3 - b^2\right)^{\frac{3}{2}}$. 第四节 重积分的应用

A类题

1. $2a^{2}(\pi-2)$. 2. $\frac{1}{2}\sqrt{a^{2}b^{2}+b^{2}c^{2}+c^{2}a^{2}}$. 3. $x=0, y=\frac{4b}{3\pi}$. 4. $(\frac{2}{5}a, \frac{2}{5}a)$.

B类品

1.
$$y^2 = \frac{15p}{32}x$$
. 2. $\frac{\pi}{4}a^3b$.

3. 设球顶锥体 Ω 由上半球面 $x^2+y^2+z^2=R^2$ (z>0)和锥面 $z=\frac{\sqrt{3}}{3}\sqrt{x^2+y^2}$ 围成,则 F_x =0, F_y =0,

$$F_z = \frac{1}{4} \pi G m \rho R. \qquad \mathbf{4.9} \pi.$$

第十二章 无穷级数

第一节 常数项级数的概念和性质

A 类题

- 1. (1) D; (2) C; (3) A; (4) D; (5) A.
- 2. (1)发散; (2)收敛, $\frac{1}{3}$; (3)发散; (4)收敛, $\frac{2}{3}$.
- 3. (1)发散;(2)发散;(3)发散;(4)发散. 4.发散. 5.发散.

第二节 常数项级数的审敛法

A类题

(1)发散; (2)收敛; (3)发散; (4)收敛; (5)收敛; (6)发散; (7)发散;

(8)收敛; (9)发散; (10)收敛.

B类题

- 1.(1)绝对收敛; (2)绝对收敛; (3)条件收敛; (4)发散.
- 2. 证明略. 3. $p \le 0$,发散;0 ,条件收敛;<math>p > 1,绝对收敛.

C类是

1. 证明略, 提示: $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} [c_n - (c_n - b_n)].$ 2. 上述证明不对, 提示: $a_n \leq \frac{a_1}{b_1} b_n$.

