ME2 Computing- Session 2: Numerical Integration

Learning outcomes:

- ☐ Being able to compute numerically the integration of a proper integral
- ☐ Being able to compute numerical integration for a set of points not positioned equidistantly
- ☐ Being able to compute numerically integration of multi-dimensional functions

Before you start

In your H drive create a folder H:\ME2MCP\Session2 and work within it.

Task A: Trapezium rule for functions with equidistant nodes

- 1. Write a Python function, *trapzeqd*, receiving a set of points *x* and *y*, and outputting the numerical integral of *y* within the interval specified by *x*. Assume that the nodes *x* are equidistant.
 - Test the Python function by integrating:

$$I = \int_0^b \frac{1}{\sqrt{x^{17.10} + 2023}} dx$$

in the interval x = [0:b=2] with 5 nodes and then with 11 nodes.

- 2. Increase the interval of integration with b = 10, 100, 1000, 10000, and recompute the integral with same number of nodes (5). Plot the values of l vs b.
- 3. Repeat the numerical integration for the intervals in Part 2, but retaining the same interval h = 0.5, i.e. by increasing progressively the number of nodes. Replot the values of l vs b.

Task B: Numerical integration of diverging improper integrals

4. Recompute the numerical integrations as in Task A2 and A3, but with the integrand function:

$$I = \int_0^b \frac{1}{\sqrt{x^{1.10} + 2023}}$$

Task C: Trapezium rule for functions with non-equidistant nodes

1. Write another Python function, *trapz*, receiving a set of points *x* and *y*, and outputting the numerical integral of *y* within the interval specified by *x*. The values in x might not be distanced at same intervals.

Task D: The river Thames basin in London

The file *Thames.txt* contains N=72 spatial coordinates (x_i,y_i) of the north and south banks of the river Thames (units in meters), within the Central London region (between Chiswick and Woolwich).

The nodal points are organised in the file within N=72 lines, as follows:

x North bank	y North bank	x South bank	y South bank
xn_o	yn_o	xs_o	ys_o
xn_1	yn_1	xs_1	ys_1
xn_{N-1}	yn_{N-1}	xs_{N-1}	ys_{N-1}

- 1. Read in the data from the files and plot the two banks of the river together, to visualise the shape of the basin. (To plot with aspect ratio 1:1 for the two axes use pl.axis('equal'), after plotting.
- 2. Compute the surface occupied by the basin in Km².

Task E: Multiple integrals (with given analytical function): volume of the dome of the Royal Albert Hall

A two-dimensional integral has the form of:

$$I = \iint\limits_A z(x,y)dA = \int_a^b dx \int_{m(x)}^{p(x)} z(x,y)dy = \int_a^b G(x)dx$$

where A is the domain of integration.

The two-dimensional integral can be computed numerically, by applying the trapezium method twice. Firstly, the integral

$$G(x) = \int_{m(x)}^{p(x)} z(x, y) dy$$

is computed for all values of x. Then, the total integral is obtained as: $I = \int_a^b G(x) dx$.

1. The dome of the Royal Albert Hall is described by the ellipsoid function:

$$z(x,y) = \sqrt{h^2 \left(1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}\right)}$$

with height h = 25m.

The base of the dome A (domain of integration) is described by an ellipse, A: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, with major and minor axes a = 67m and b = 56m,

Determine the numerical value of the dome volume, by discretising the domain A with a mesh of equidistant intervals both along the x and y axes, i.e., dx = dy = 0.5m.

- 2. Compare the numerical value against the analytical value. Repeat the calculation for a mesh with elements size: dx = dy = 0.05m
- 3. Plot the function z(x, y).

Task F: Multiple integrals (with given nodes): volume of an aerofoil

The file *Aerofoil.txt* contains the nodal coordinates of an aerofoil. The aerofoil is defined by two surfaces $Z_t(x,y)$ and $Z_b(x,y)$, each defining the top surface and the bottom surface of the aerofoil, respectively. The domain has been discretised with a mesh of dimension $(N_x=100,N_y=15)$.

Nodes in the file are organised within $N_x \cdot N_y = 1500$ lines, as follows:

x_o	y_o	$Z_t(x_o, y_o)$	$Z_b(x_o, y_o)$
x_1	y_o	$Z_t(x_1, y_o)$	$Z_b(x_1, y_o)$
x_{Nx-1}	y_o	$Z_t(x_{Nx-1}, y_o)$	$Z_b(x_{Nx-1}, y_o)$
x_o	y_1	$Z_t(x_0, y_1)$	$Z_b(x_0, y_1)$
x_1	y_1	$Z_t(x_1, y_1)$	$Z_b(x_1, y_1)$
x_{Nx-1}	y_1	$Z_t(x_{Nx-1}, y_1)$	$Z_b(x_{Nx-1}, y_1)$
etc.			

- 1. Compute the volume of the aerofoil.
- 2. Plot the aerofoil.

