Rozmaite cierpienia

Spis treści

1		iniowanie rozmaitości	3
	1.1	Rozmaitość topologiczna	3
	1.2	Mapy, współrzędne lokalne	
	1.3	Rozmaitości gładkie (różniczkowalne)	
	1.4	Warianty pojęcia rozmaitości różniczkowalnej	
	1.5		
		Rozmaitość gładka z brzegiem	
2	Roz	kład iedności	13
2		kład jedności Lokalnie skończone rozdrobnienie	
	2.1	Lokalnie skończone rozdrobnienie	
	2.1 Wek	Lokalnie skończone rozdrobnienie	13 14
	2.1 Wek	Lokalnie skończone rozdrobnienie	13 14 14

1. Definiowanie rozmaitości

1.1. Rozmaitość topologiczna

Definicja 1.1. Przestrzeń topologiczna M jest n-wymiarową rozmaitością (n-rozmaitością) topologiczną, jeśli:

- jest Hausdorffa
- · ma przeliczalną bazę topologii
- jest lokalnie euklidesowa wymiaru n, tzn. każdy punkt posiada otoczenie otwarte homeomorficzne z otwartym podzbiorem w \mathbb{R}^n

Warunkiem równoważnym do lokalnej euklidesowości jest posiadanie przez każdy punkt $p \in M$ otoczenia U takiego, że istnieje homeomorfizm U $\xrightarrow{\cong}$ $B_r \subseteq \mathbb{R}^n$. [ćwiczenia]

Hausdorffowość

Dzięki warunkowi Hausdorffowości wykluczone są np. patologie pokroju

gdzie punktów A i B nie da się rozdzielić za pomocą rozłącznych zbiorów otwartych.

Ogólniej, warunek ten mówi, że lokalnie topologiczne własności z \mathbb{R}^n przenoszą się na M przez homeomorfizmy, np dla podzbioru U \subseteq M i homeomorfizmu $\phi: U \to \overline{U} \subseteq \mathbb{R}^n$:

Dodatkowo, dla dowolnego zwartego $\overline{K}\subseteq \overline{U}$ jego odpowiednik na M, czyli $K=\phi^{-1}(\overline{K})\subseteq U$, jest domknięty i zwarty [ćwiczenia]. Jeśli zaś \overline{K} jest zbiorem domknięty w \overline{U} , ale niezwartym, to nie zawsze K jest domknięty w K. Weźmy np. $\phi:U\to \overline{U}=\mathbb{R}^n$ i zbiór domknięty $\overline{K}=\mathbb{R}^n$ (cała przestrzeń jest jednocześnie domknięta i otwarta). Wtedy $K=\phi^{-1}(\overline{K})=U$ jest otwartym podzbiorem K0 mimo, że K1 jest otwarte.

Skończone podzbiory rozmaitości będącej przestrzenią Hausdorffa są zawsze domknięte i co ważne, granice ciągów na rozmaitościach topologicznych są jednoznacznie określone.

Przeliczalna baza

Warunek przeliczalnej bazy został wprowadzony, by rozmaitości nie były "zbyt duże". Nieprzeliczalna suma parami rozłącznych kopii \mathbb{R}^n nie może być roz-

maitością. Warunek ten implikuje, że każde pokrycie zbiorami otwartymi zawiera przeliczalne podpokrycie [ćwiczenia], co jest nazywane warunkiem Lindelöfa.

Przeliczalność bazy implikuje również, że każda rozmaitość topologiczna jest wstępującą sumą zbiorów otwartych

$$U_1 \subseteq U_2 \subseteq ... \subseteq U_n \subseteq ...$$

które po domknięciu są nadal zawarte w niej. Pozwala ona również na włożenie M do \mathbb{R}^n dla odpowiednio dużego n. Czyli na przykład S^2 , sfera, ma naturalne włożenie w \mathbb{R}^3 pomimo lokalnej euklidesowości z \mathbb{R}^2 .

Rodzina $\mathscr X$ podzbiorów M jest *lokalnie skończona*, jeżeli każdy punkt $p \in M$ ma otoczenie, które przecina się co najwyżej ze skończoną liczbą zbiorów z $\mathscr X$. Jeżeli M ma dwa pokrycia: $\mathscr U$ i $\mathscr V$ takie, że dla każdego $V \in \mathscr V$ znajdziemy $U \in \mathscr U$ takie, że $V \subseteq U$, to $\mathscr V$ jest *pokryciem włożonym/rozdrobnieniem* $\mathscr U$. Dzięki przeliczalności bazy M, każda rozmaitość jest **parazwarta**, czyli zawiera lokalnie skończone rozdrobnienie.

Lokalna euklidesowość

Twierdzenie 1.2. *Twierdzenie Brouwer'a* Dla m \neq n otwarty podzbiór \mathbb{R}^n nie może być homeomorficzny z żadnym otwartym podzbiorem \mathbb{R}^m .

Z twierdzenia wyżej wynika, że liczba n jest przypisana do M jednoznacznie i nazywa się wymiarem M ($\dim(M) = n$). Jeśli wymiar rozmaitości M wynosi n, to nazywamy ją czasem n-rozmaitościq.

Tutaj warto zaznaczyć, że zbiór pusty zaspokaja definicję rozmaitości topologicznej dla dowolnego n. Wygodnie jest go jednak móc użyć, więc w definicji niepustość M nie jest przez nas wymagana.

Inne własności rozmaitości topologicznych:

- Każda rozmaitość ma przeliczalną bazę złożoną ze zbiorów homeomorficznych z kulami w \mathbb{R}^n , których domknięcia są zbiorami zwartymi.
- Każda rozmaitość jest lokalnie spójna, tzn. ma bazę otwartych zbiorów łukowo spójnych.
- Każda rozmaitość jest lokalnie zwarta (tzn. każdy punkt posiada zwarte otoczenie).

1.2. Mapy, współrzędne lokalne

Definicja 1.3. Mapą na rozmaitości topologicznej M nazywamy parę (U, ϕ), gdzie U jest otwartym podzbiorem M, zaś $\phi: U \to \overline{U} = \phi(U) \subseteq \mathbb{R}^n$ jest homeomorfizmem na otwarty podzbiór w \mathbb{R}^n . Zbiór U nazywamy wtedy **zbiorem mapowym**

Ponieważ każda rozmaitość topologiczna jest lokalnie euklidesowa, to M jest pokrywana zbiorami mapowymi.

Dla mapy (U, ϕ) takiej, że $p \in U$ i $\phi(p) = 0 \in \mathbb{R}^n$ mówimy, że jest *mapą wokół* p.

Mapy nazywa się też czasem lokalnymi współrzędnymi na M lub lokalną parametryzacją M.

Przykłady:

- Każdy otwarty podzbiór n-rozmaitości topologicznej jest n-rozmaitością [ćwiczenia].
- 2. Wykresy ciągłych funkcji: Niech U $\subseteq \mathbb{R}^n$ i f : U $\to \mathbb{R}^k$ jest funkcją ciągłą. Wykresem f nazywamy zbiór

$$\Gamma(f) = \{(x,y) : x \in U, y = f(x)\} \subseteq \mathbb{R}^n \times \mathbb{R}^k$$

Oznaczmy przez $\pi_1:\mathbb{R}^n\times\mathbb{R}^k\to\mathbb{R}^n$ projekcję na \mathbb{R}^n , tzn. $\pi_1(x,y)=x\in\mathbb{R}^n$. Wtedy funkcja $\phi:\Gamma(f)\to U$ będąca obcięciem π_1 do $\Gamma(f)$. Ponieważ ϕ jest obcięciem funkcji ciągłej, to samo również jest ciągłe. W dodatku, funkcja $\phi^{-1}:\mathbb{R}^n\to\Gamma(f)$ dana przez $\phi^{-1}(x)=(x,f(x))\in\Gamma(f)$, jest ciągłą funkcją odwrotną do ϕ . W takim razie, ϕ jest homeomorfizmem między U a $\Gamma(f)$ i wykres funkcji ciągłych jest lokalnie euklidesowy. Jako podzbiór $\mathbb{R}^n\times\mathbb{R}^k$ jest też przestrzenią Hausdorffa oraz ma przeliczalną bazę. W takim razie, wykres ciągłej funkcji jest rozmaitością topologiczną.

3. Sfery Sⁿ są n-rozmaitościami, które wkładają się w \mathbb{R}^{n+1} (Sⁿ = {(x₁,...,x_{n+1}) $\in \mathbb{R}^{n+1}: \sum x_i^2$ = 1}).

Rozważmy rodzinę par $\{(U_i^\pm,\phi_i^\pm): i$ = 1, ..., n + 1 $\}$ na Sⁿ zdefiniowanych jako:

$$U_i^+ = \{x \in S^n : x_i > 0\}$$

$$U_i^- = \{x \in S^n : x_i < 0\}$$

$$\phi_i^{\pm}(\mathbf{x}) = (\mathbf{x}_1, ..., \mathbf{x}_{i-1}, \widehat{\mathbf{x}_i}, \mathbf{x}_{i+1}, ..., \mathbf{x}_n).$$

Zbiory U_i^\pm pokrywają całe S^n , gdyż każdy punkt posiada co najmniej jedną niezerową współrzędną, a funkcje ϕ_i^\pm są ciągłe jako obcięcia rzutów \mathbb{R}^{n+1} na \mathbb{R}^n . Obrazem zbioru U_i^\pm przez ϕ_i^\pm jest zbiór

$$\overline{\mathsf{U}_{\mathsf{i}}^{\pm}} = \phi_{\mathsf{i}}^{\pm}(\mathsf{U}_{\mathsf{i}}^{\pm}) = \{(\mathsf{x}_{\mathsf{1}},...,\mathsf{x}_{\mathsf{n}}) : \sum \mathsf{x}_{\mathsf{i}}^{2} < 1\}$$

czyli otwarta kula w \mathbb{R}^n .

Odwzorowania $\phi_{\mathbf{i}}^{\pm}$ są bijekcjami o odwzorowaniach odwrotnych:

$$(\phi_i^\pm)^{-1}(x_1,...,x_n)=(x_1,...,x_{i-1},\pm\sqrt{1-\sum x_i^2},x_i,...,x_n)$$

które są ciągłe. W takim razie $\phi_{\bf i}^\pm$ są homeomorfizmami między otwartymi podzbiorami S^n a otwartymi podzbiorami R^n.

Pokazaliśmy lokalną euklidesowość S^n , natomiast bycie przestrzenią Hausdorffa o przeliczalnej bazie S^n dziedziczy z \mathbb{R}^{n+1} .

- 4. Produkt kartezjański dwóch (lub k) rozmaitości topologicznych rozmaitością topologiczną [ćwiczenia].
- 5. n-torus jest przestrzenią produktową \mathbb{T}^n = $S^1 \times ... \times S^1$ i n-rozmaitością topologiczną. \mathbb{T}^2 nazywamy po prostu torusem.

1.3. Rozmaitości gładkie (różniczkowalne)

Dla funkcji f : M $\to \mathbb{R}$ chcemy rozpoznawać je różniczkowalność za pomocą map (U, ϕ) na M.

Funkcja f : M $\to \mathbb{R}$ wyrażona w mapie (U, ϕ) to złożenie f $\circ \phi^{-1} : \overline{\mathsf{U}} \to \mathbb{R}$.

Definicja 1.4. Funkcja $f: M \to \mathbb{R}$ jest **gładka**, jeśli dla każdej mapy (U, ϕ) na M $f \circ \phi^{-1}$ jest gładka.

W tej definicji pojawia się pewien problem: dla jednej mapy (U, ϕ) f może gładka, ale jeśli przejdziemy z obrazu mapy (U, ψ) to może się okazać, że f₂ = f₁ \circ ψ \circ ϕ ⁻¹ nie jest gładka:

Dlatego chcemy móc założyć, że $\phi\circ\psi^{-1}$ jest przekształceniem gładkim.

Definicja 1.5. Mapy (U, ϕ), (V, ψ) nazywamy (gładko) **zgodnymi**, gdy $\phi \circ \psi^{-1}$ i $\psi \circ \phi^{-1}$ są odwzorowaniami gładkimi.

Odwzorowania $\phi\psi^{-1}$ nazywamy *odwzorowaniami przejścia* z jednej mapy do drugiej. Jeśli $\phi\psi^{-1}$ i $\psi\phi^{-1}$ są gładkie, to są one wzajemnie do siebie odwrotnymi bijekcjami. Takie odwzorowania nazywamy **dyfeomorfizmami** pomiędzy otwartymi podzbiorami \mathbb{R}^n . Zauważmy, że w każdym punkcie Jakobian, czyli wyznacznik macierzy pochodnych cząstkowych, jest dla dyfeomorfizmów niezerowy [ćwiczenia].

W ogólnym przypadku, gdy U \cap V $\neq \emptyset$, rysunek wygląda:

Mapy (U, ϕ) i (V, ψ) nazywamy zgodnymi, jeśli:

- U ∩ V = ∅
- · odwzorowania przejścia

$$\phi\psi^{-1}:\psi(U\cap V)\to\phi(U\cap V)$$

oraz

$$\psi\phi^{-1}:\phi(U\cap V)\to\psi(U\cap V)$$

są gładkie (\iff są dyfeomorfizmami podzbiorów $\phi(U \cap V)$ i $\psi(U \cap V)$).

Definicja 1.6. Gładkim atlasem \mathscr{A} na rozmaitości M nazywamy zbiór map $\{(U_{\alpha}, \phi_{\alpha})\}$ takich, że:

- $\{U_{\alpha}\}$ pokrywają całe M
- każde dwie mapy z tego zbioru są zgodne.

Przykłady:

Rodzina map {(U_i[±], φ_i[±])} na sferze Sⁿ jest atlasem gładkim na Sⁿ. Dla przykładu zbadamy zgodność map (U_i⁺, φ_i⁺) i (U_j⁺, φ_i⁺) dla i < j.

Popatrzmy jak wyglądają interesujące nas zbiory:

$$U_i^+ \cap U_i^+ = \{x \in S^n \ : \ x_i > 0, x_j > 0\}$$

$$\phi_i^{\star}(U_i^{\star}\cap U_i^{\star}) = \{x \in \mathbb{R}^n \ : \ |x| < 1, x_{j-1} > 0\}$$

bo usuwamy i-tą współrzędną i numery poprzednich współrzędnych spadają o 1 w dół,

$$\phi_{\mathbf{i}}^{\scriptscriptstyle +}(\mathsf{U}_{\mathbf{i}}^{\scriptscriptstyle +}\cap\mathsf{U}_{\mathbf{i}}^{\scriptscriptstyle +}) = \{x\in\mathbb{R}^n \ : \ |x|<1, x_{\mathbf{i}}>0\}$$

bo w tym przypadku usunęliśmy współrzędną na prawo od i, więc jej położenie nie zmienia się.

Czyli odwzorowanie przejścia jest zadane wzorem:

$$\phi_i^+(\phi_i^+)^{-1}(x_1,...,x_n) = (x_1,...,x_{i-1},x_{i+1},...,x_{i-1},\sqrt{1-|x|^2},x_i,...,x_n)$$

i widać, że jest ono gładkie. Pozostałe rachunki przechodzą analogicznie.

Definicja 1.7. Rozmaitością gładką nazywamy parę (M, \mathscr{A}), gdzie M jest rozmaitością topologiczną, zaś \mathscr{A} jest pewnym atlasem gładkim na M.

Zdarza się, że różne atlasy na tej samej rozmaitości topologicznej M mogą zadawać tę samą rozmaitość gładką. Na przykład dla M = \mathbb{R}^n istnieje atlas zawierający jedną mapę $\{(\mathbb{R}^n, id_{\mathbb{R}^n})\}$ oraz atlas $\{(B_x(r), id_{B_x(r)}): x \in \mathbb{R}^n, r > 0\}$, który jest tak naprawdę "rozdrobnieniem" pierwszego atlasu.

Definicja 1.8. Niech \mathscr{A} będzie gładkim atlasem na M.

- 1. Mapa (U, ϕ) jest zgodna z \mathscr{A} , jeśli jest zgodna z każdą mapą $(V, \psi) \in \mathscr{A}$.
- 2. Dwa atlasy \mathcal{A}_1 , \mathcal{A}_2 na M są zgodne, jeśli każda mapa z \mathcal{A}_1 jest zgodna z \mathcal{A}_2 .

Warto zaznaczyć, że zgodność atlasów jest relacją zwrotnią i przechodnią [ćwiczenia]. Zgodne atlasy zadają tę samą strukturę rozmaitości gładkiej na topologicznej rozmaitości M. Wszystkie zgodne atlasy należą do jednego większego atlasu, co było przyczyną powstania definicji atlasu maksymalnego.

Definicja 1.9. \mathscr{A} jest atlasem maksymalnym na rozmaitości M, jeśli każda mapa zgodna z \mathscr{A} należy do \mathscr{A} .

Każdy atlas \mathscr{A} na M zawiera się w dokładnie jednym atlasie maksymalnym, złożonym ze wszystkich map zgodnych z \mathscr{A} [ćwiczenia]. Dodatkowo, zgodne atlasy zawierają się w tym samym atlasie maksymalnym. Wtedy można definiować rozmaitość gładką jako parę (M, \mathscr{A}), gdzie M jest rozmaitością topologiczną, a \mathscr{A} jest pewnym gładkim atlasem maksymalnym.

Dopowiedzenie o funkcjach gładkich

Funkcja f : M $\to \mathbb{R}$ jest gładka względem atlasu \mathscr{A} na M, jeśli dla każdej mapy $(U,\phi)\in\mathscr{A}$ f \circ ϕ^{-1} jest gładka.

Fakt 1.10.

- Jeśli f : M $\to \mathbb{R}$ jest gładka względem \mathscr{A} , zaś (U, ϕ) jest mapą zgodną z \mathscr{A} , to f $\circ \phi^{-1}$ jest gładka.
- Jeśli \mathscr{A}_1 i \mathscr{A}_2 są zgodnymi atlasami, to $f: M \to \mathbb{R}$ jest gładka względem $\mathscr{A} \iff$ f jest gładka względem atlasu maksymalnego \mathscr{A}_{max} zawierającego \mathscr{A}_1 i \mathscr{A} .

Dowód. Ćwiczenia

1.4. Warianty pojęcia rozmaitości różniczkowalnej

Mówimy, że mapy (U, ϕ), (V, ψ) są C^k -zgodne jeśli $\phi \circ \psi^{-1}$ i $\psi \circ \phi^{-1}$ są funkcjami klasy C^k (posiadają pochodne cząstkowe rzędów $\leq k$). C^k -atlas to z kolei rodzina C^k -zgodnych map, która określa strukturę C^k -rozmaitości na M. Struktura C^k -rozmaitości jest słabsza niż rozmaitości gładkiej i nie da się na niej zdefiniować map klasy C^m dla m > k.

 ${\rm C}^0$ rozmaitość to określenie na rozmaitość topologiczną, a ${\rm C}^\infty\text{-rozmaitość}$ jest tym samym co rozmaitość gładka.

Dychotomia C^0 **i** C^k **dla** k > 0 aka dykresja

Z każdego maksymalnego atlasu C^1 -rozmaitości można wybrać atlas złożony z map C^∞ -zgodnych. Zatem, każda C^1 -rozmaitość posiada C^1 -zgodną strukturę C^∞ -rozmaitości [Whitney, 1940]. Istnieją jednak C^0 -rozmaitości, które nie dopuszczają żadnej zgodnej struktury gładkiej [Quinn '82, Friedmann '82].

- Na rozmaitości analitycznej mapy są analitycznie zgodne [C^{ω}]. Mapy są analitycznie zgodne, gdy wyrażają się za pomocą szeregów potęgowych.
- Rozmaitość zespolona ma mapy będące funkcjami w \mathbb{C}^n zamiast $\mathbb{R}^n.$
- W rozmaitości konforemnej mapy zachowują kąty między punktami.
- Istnieją też rozmaitości kawałkami liniowe (PL)...

1.5. Definiowanie rozmaitości gładkiej X za pomocą samego atlasu

Lemat 1.11. Niech X będzie zbiorem (bez zadanej topologii) i $\{U_{\alpha}\}$ będzie kolekcją podzbiorów w X taką, że dla każdego α istnieje $\phi_{\alpha}:U_{\alpha}\to\mathbb{R}^n$ różniczkowalne takie, że

- 1. dla każdego α $\phi_{\alpha}(u_{\alpha})$ = $\overline{U_{\alpha}} \subseteq \mathbb{R}^{n}$ jest otwarty
- 2. dla dowolnych α , β $\phi_{\alpha}(U_{\alpha} \cap U_{\beta})$ oraz $\phi_{\beta}(U_{\alpha} \cap U_{\beta})$ są otwarte w \mathbb{R}^{n} .

- 3. jeśli $U_{\alpha} \cap U_{\beta} \neq \emptyset$, to $\phi_{\beta} \circ \phi_{\alpha}^{-1} : \phi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \phi_{\beta}(U_{\alpha} \cap U_{\beta})$ jest gładkie (a nawet dyfeomorficzne, bo odwzorowanie odwrotne $\phi_{\alpha} \circ \phi_{\beta}^{-a}$ też jest gładkie)
- 4. przeliczalnie wiele spośród U_{α} pokrywa X
- 5. dla każdego p, q \in X, jeśli p \neq q, to istnieją α , β oraz otwarte $V_p \subseteq \overline{U_\alpha}$ i $V_q \subseteq \overline{U_\beta}$ takie, że p $\in \phi_\alpha^{-1}(V_p)$, q $\in \phi_\beta^{-1}(V_q)$ oraz $\phi_\alpha^{-1}(V_p) \cap \phi_\beta^{-1}(V_q) = \emptyset$ (oddzielanie punktów otwartymi zbiorami mapowymi).

Wówczas na X istnieje jedyna struktura rozmaitości topologicznej, dla której zbiory U_{α} są otwarte. Ponadto rodzina $\{(U_{\alpha}, \phi_{\alpha})\}$ tworzy wtedy gładki atlas na X.

Dowód. A dokładniej szkic dowodu.

Określimy topologię na X przy pomocy przeciwobrazów przez ϕ_{α} otwartych podzbiorów $\overline{U_{\alpha}} = \phi_{\alpha}(U_{\alpha}) \subseteq \mathbb{R}^{n}$. Sprawdzenie, że jest to bazą topologii jest ćwiczeniem. Dzięki temu zbadanie lokalnej euklidesowości jest trywialne.

Dzięki warunkowi 4 nietrudno jest wybrać wtedy bazę przeliczalną [ćwiczenie], a warunek Hausdorffowości wynika z 5.

Przykłady:

1. \mathscr{L} jest zbiorem prostych na płaszczyźnie. Na takim zbiorze nie ma dogodnej topologii, którą możnaby od razu wykorzystać. Zdefiniujmy zbiory:

U_h = {proste niepionowe}

oraz funkcje ϕ_h , ϕ_V :

$$U_h \ni L = \{y = ax + b\} \stackrel{\phi_h}{\mapsto} (a, b) \in \mathbb{R}^2$$

$$U_V \ni L = \{x = cy + d\} \stackrel{\phi_V}{\mapsto} (c, d) \in \mathbb{R}^2$$

Obie te funkcje są różnowartościowe i ich obrazy to \mathbb{R}^2 , czyli warunek 1 jest spełniony. Ponieważ jest ich tylko 2 sztuki i pokrywają całęgo X, to również 4. został spełniony. Sprawdźmy teraz 2:

 $U_h \cap U_V = \{ \text{proste niepionowe i niepoziome} \} = \{ y = ax+b : a \neq 0 \} = \{ x = cy+d : c \neq 0 \}$

$$\phi_h(U_h \cap U_V) = \{(a, b) \in \mathbb{R}^2 : a \neq 0\}$$

 $\phi_V(U_h \cap U_V) = \{(c, d) : c \neq 0\}$

są otwarte, więc 2 jest spełniona. Teraz kolej na 3.

Weźmy prostą L = $\{x = cy + d\} = \{y = \frac{1}{c}x - \frac{d}{c}\} \in U_h \cap U_v$.

$$\left(\frac{1}{c}, -\frac{d}{c}\right) \stackrel{\phi_h}{\longleftarrow} L \stackrel{\phi_v}{\longrightarrow} (c, d)$$

Zatem $\phi_h \phi_V^{-1}(c, d) = \left(\frac{1}{c}, -\frac{d}{c}\right)$ jest gładkie (podobnie $\phi_V \phi_h^{-1}$).

Warunek 5. jest łatwy do sprawdzenia [ćwiczenie].

Z tą naturalną (mimo wszystko) topologią $\mathcal L$ jest w istocie homeomorficzne z wnętrzem wstęgi Möbiusa. Stąd do opisania $\mathcal L$ nie wystarcza jedna mapa.

O notaciach:

• W dalszej części rozważań będziemy utożsamiać mapowe otoczenie $U\subseteq M$ z obrazem przez mapę, czyli $\overline{U}=\phi(U)\subseteq\mathbb{R}^n$. Można o tym myśleć, że przenosimy siatkę współrzędnych $(x_1,...,x_n)$ z \overline{U} przez ϕ^{-1} na $U\subseteq M$.

- Za pomocą translacji współrzędnych zawsze możemy przyjąć, że p = (0, ..., 0) w mapie, czyli możemy założyć, że (U, ϕ) jest mapą o początku w p.
- Często będziemy przechodzić do mniejszych zbiorów mapowych, za mapę biorąc odwzorowanie obcięte (jest to mapa zgodna z atlasem). Będziemy wtedy mówić, że przyjmujemy, iż mapa wokół p ma zbiór mapowy tak mały, jak nam akurat potrzeba, np. że jest rozłączny z pewnym zbiorem domkniętym F ⊆ M niezawierającym p.

1.6. Rozmaitość gładka z brzegiem

Rzeczywistą półprzestrzeń oznaczamy

$$H^n = \{(x_1, ..., x_n) \in \mathbb{R}^n : x_n \geq 0\},\$$

jej brzegiem nazywamy

$$\partial H^{n} = \{(x_{1}, ..., x_{n}) \in \mathbb{R}^{n} : x_{n} = 0\}$$

a wnętrzem:

$$int(H^n) = \{(x_1,...,x_n) \in \mathbb{R}^n \ : \ x_n > 0\}.$$

Dla U \subseteq Hⁿ oznaczymy ∂ U = U \cap ∂ H oraz int(U) = U \cap int(Hⁿ), czyli definicja brzegu i wnętrza jest nieco inna niż na topologii. Użyjemy Hⁿ oraz definicji jej brzegu i wnętrza, by zdefiniować rozmaitość gładką z brzegiem.

Dla $U\subseteq H^n$ otwartego i $f:U\to\mathbb{R}^m$ mówimy, że f jest **gładka**, gdy jest obcięciem do U gładkiej funkcji $\hat{f}:\widehat{U}\to\mathbb{R}^m$, $\widehat{U}\subseteq\mathbb{R}^n$ otwartego, $U\subseteq\widehat{U}$. Pochodne cząstkowe funkcji f są dobrze określone na int(U), a ponieważ są ciągłe, to są również dobrze określone na ∂U (tzn. nie zależą od wyboru rozszerzenia \hat{f}). Z analizy matematycznej wiemy, że rozszerzenia \hat{f} istnieje \iff wszystkie pochodne cząstkowe f w int(U) w sposób ciągły rozszerzają się do ∂U .

Definicja 1.12. M jest gładką rozmaitością z brzegiem, jeśli posiada atlas $\{(U_{\alpha},\phi_{\alpha})\}$, $U_{\alpha}\subseteq M$ i $\phi_{\alpha}:U_{\alpha}\to H^n$ i $\overline{U_{\alpha}}=\phi_{\alpha}(U_{\alpha})$ jest otwarty w H^n , gdzie odwzorowania przejścia są gładkie (tzn. $\phi_{\alpha}\phi_{\beta}^{-1}$ są dyfeomorfizmami pomiędzy otwartymi podzbiorami w H^n).

Fakt 1.13. Jeśli w pewnej mapie $(U_{\alpha}, \phi_{\alpha}), \phi_{\alpha}(p) \in \partial H^{n}$, to w każdej innej mapie $(U_{\beta}, \phi_{\beta})$ zawierającej p $\phi_{(p) \in \partial H^{n}}$.

Dowód. Wynika to z twierdzenia o odwzorowaniu otwartym, wraz z nieosobliwością Jakobianu odwzorowań przejścia.

Dla rozmaitości topologicznych z brzegiem analogiczny fakt wymaga w dowodzie twardego twierdzenia Brouwera o niezmienniczności obrazu - analogicznego twierdzenia o odwzorowaniu otwartym dla ciągłych injekcji.

Definicja 1.14. Brzegiem n-rozmaitości M z brzegiem nazywamy zbiór

 ∂M = {p \in M : w pewnej (każdej) mapie p \in (U $_{\alpha}$, ϕ_{α}) zachodzi ϕ (p) \in ∂H^{n} wnętrze M nazywa się

$$int(M) = \{p \in M : (\exists (U_{\alpha}, \phi_{\alpha}) \phi_{\alpha}(p) \in int(H^{n})\}$$

Fakt 1.15. Wnętrze int(M) n-rozmaitości gładkiej M jest n-rozmaitością bez brzegu.

Dowód. Jako atlas bierzemy $\{(U'_{\alpha}, \phi'_{\alpha})\}$, gdzie

$$\mathsf{U}_\alpha' = \phi_\alpha^{-1}(\mathsf{int}(\overline{\mathsf{U}_\alpha})) = \mathsf{U}_\alpha \cap \mathsf{int}(\mathsf{M}), \quad \phi_\alpha' = \phi_\alpha \upharpoonright \mathsf{U}_\alpha'$$

Odwzorowania przejścia $\phi_{\alpha}'(\phi_{\beta}')^{-1}$ są obcięciami $\phi_{\alpha}\phi_{\beta}^{-1}$, więc są gładkie.

Przykłady:

1. Dysk D^n = { $x \in \mathbb{R}^n$: $|x| \le 1$ } jest n-rozmaitością z brzegiem ∂D^n = S^{n-1} = { $x \in \mathbb{R}^n$: |x| = 1}.

Dowód. Skonstruujemy mapy, pomijając sprawdzanie gładkości odwzorowań przejścia.

Mapa (U_0, ϕ_0):

$$U_0 = \{x : |x| < 1\}, \ \phi_0 : U_0 \to H^n, \ \phi_0(x_1, ..., x_n) = (x_1, ..., x_{n-1}, x_n + 2)$$

Mapy $(U_i^{\pm}, \phi_i^{\pm})$

2. Inny atlas na Dⁿ, składający się tylko z dwóch map:

Niech A i B będą punktami styczności dwóch prostych równoległych do dysku Dⁿ. Rozważmy zbiory

$$U_A = D^n \setminus \{A\}$$

$$U_B = D^n \setminus \{B\}$$

oraz odwzorowania $\phi_A:U_A\to H_A^n\,i\,\phi_B:U_B\to H_B^n$ będące inwersjami dysku względem sfer S^n o środkach w A i B oraz promieniu 2.

2. Rozkład jedności

Rozważmy rozmaitość z brzegiem M. Chcielibyśmy mieć narzędzie, które pozwoli nam tworzyć gładkie funkcje $f: M \to \mathbb{R}$ takie, że f(p) = 0 gdy $p \in \partial M$ oraz f(p) > 0 dla dowolnego $p \in Int(M)$.

Bardziej ogólnie, możemy chcieć dla dowolnego zbioru domkniętego D \subseteq M znaleźć funkcję, która dla p \in D jest równa zero, a na M \ D ma wartości ściśle dodatnie.

Lokalnie, na zbiorze mapowym (U_{α} , ϕ) możemy funkcję spełniającą wymagania wyżej zadać przy pomocy funkcji wychodzącej z $\overline{U_{\alpha}}$ = $\phi(U_{\alpha})$

$$f_{\alpha}: \overline{U_{\alpha}} \to \mathbb{R}$$
, $f(x_1, ..., x_n) = x_n$,

gdyż ostatnia współrzędna punktów z ∂M jest zawsze zerowa (gdyż są one w ∂H^n). Stąd w prosty sposób dostajemy funkcję:

$$f_{lpha}: U_{lpha}
ightarrow \mathbb{R}$$
, $f_{lpha} = \overline{f_{lpha}} \circ \phi$

która lokalnie spełnia nasze wymagania. Nie możemy jednak w prosty sposób przełożyć lokalne f_{α} na funkcję $f: M \to \mathbb{R}$.

2.1. Lokalnie skończone rozdrobnienie

Przypomnijmy definicje, które będą przydatne przy rozkładach jedności:

Definicja 2.1. Pokrycie $\{A_{\alpha}\}$ podzbiorami przestrzeni topologicznej X jest **lokalnie skończone**, jeśli dla każdego $p \in X$ istnieje otoczenie U_p takie, że $U_p \cap A_{\alpha} \neq \emptyset$ tylko dla skończenie wielu α .

Definicja 2.2. Pokrycie $\{V_{\beta}\}$ przestrzeni X zbiorami otwartymi nazywamy **rozdrobnieniem pokrycia** $\{U_{\alpha}\}$, jeśli każdy V_{β} zawiera się w pewnym U_{α} .

Warto nadmienić, że relacja bycia rozdrobnieniem jest przechodnia. Będziemy oznaczać ją przez $\{V_{\beta}\} \prec \{U_{\alpha}\}$.

$$\begin{array}{l} \{ \mathsf{W}_{\gamma} \} \prec \{ \mathsf{V}_{\beta} \} \prec \{ \mathsf{U}_{\alpha} \} \\ \Longrightarrow \{ \mathsf{W}_{\gamma} \} \prec \{ \mathsf{U}_{\alpha} \} \end{array}$$

Definicja 2.3. Przestrzeń topologiczna X jest parazwarta, jeśli każde jej pokrycie $\{U_{\alpha}\}$ zbiorami otwartymi posiada lokalnie skończone rozdrobnienie $\{V_{\beta}\}$.

Warto przypomnieć, że każda rozmaitość topologiczna jest parazwarta. Dowód tego lematu wykorzystuje w istotny sposób lokalną zwartość, czyli istnienie dla każdego punktu otoczeń prezwartych (po domknięciu zwartych). Własność ta została udowodniona na ćwiczeniach.

Dowód: patrz Lee strona 36-37

Uwaga 2.4. Rozdrobnienie wynikające z parazwartości rozmaitości topologicznych można z góry uznać za składające się z prezwartych zbiorów mapowych.

Dowód. Niech $\{U_{\alpha}\}$ będzie pokryciem M. Łatwo jest znaleźć rozdrobnienie $\{U_{\gamma}'\} \prec \{U_{\alpha}\}$ złożone ze zbiorów prezwartych mapowych. Wystarczy obraz każdego U_{α} w \mathbb{R}^n pokryć zbiorami prezwartymi i wrócić z nimi na M. Z faktu, że rozmaitości są parazwarte dostajemy lokalnie skończone rozdrobnienie $\{V_{\beta}\} \prec \{U_{\gamma}'\}$, które z przechodności \prec jest też rozdrobnieniem $\{U_{\alpha}\}$. Dodatkowo, każdy V_{β} zawiera się w pewnym U_{γ}' , które były mapowe i prezwarte, więc i V_{β} taki jest.

JESTEM NA 2 UWADZE Z ROZKLADOW JEDNOSCI

3. Wektory styczne

Oznaczenia z analizy matematycznej:

• dla gładkiej funkcji $f:(a,b)\to\mathbb{R}^n$ takiej, że $f=(f_1,...,f_n)$ i dla $t\in(a,b)$ pochodną nazywamy wektor

$$f'(t) = \frac{\partial f}{\partial t}(t) = \begin{pmatrix} f'_1(t) \\ f'_2(t) \\ \dots \\ f'_n(t) \end{pmatrix}$$

• dla gładkiego odwzorowania $f:U\to\mathbb{R}^m$, $U\subseteq\mathbb{R}^n$ i $p\in U$ oznaczamy macierz pierwszych pochodnych cząstkowych w punkcie p przez D_pf . Dokładniej, jeśli $f=(f_1,...,f_m)$ i $f_i:U\to\mathbb{R}^m$ są wszystkie gładkie, to

$$D_{p}f = \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}}(p) & \frac{\partial f_{1}}{\partial x_{2}}(p) & \dots & \frac{\partial f_{1}}{\partial x_{n}}(p) \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}}(p) & \frac{\partial f_{m}}{\partial x_{2}}(p) & \dots & \frac{\partial f_{m}}{\partial x_{n}}(p) \end{pmatrix}$$

Tym samym symbolem oznaczamy też odwzorowanie liniowe $\mathbb{R}^n \to \mathbb{R}^m$ zadane tą macierzą (różniczka f w p).

3.1. Przestrzeń styczna - definicja kinematyczna

Przestrzeń styczną będziemy definiować przez styczność krzywych gładkich.

Niech M będzie gładką rozmaitością. **Krzywą gładką** na M nazywamy gładkie odw-zorowanie $c:(a,b)\to M$. O krzywej gładkiej c takiej, że $c(t_0)=p$ mówimy, że jest zbazowana w p. Zbiór par (c,t_0) krzywych zbazowanych w p oznaczamy C_pM .

J.M. Lee definiuje przestrzeń styczną przy pomocy derywacji oraz przedstawia możliwość użycia m.in. kiełków funkcji gładkich

Definicja 3.1. Niech $\phi: U \to \mathbb{R}^n$ będzie mapą wokół p. Krzywe (c_1, t_1) i (c_2, t_2) zbazowane w p są do siebie styczne w mapie (U, ϕ) jeśli $(\phi \circ c_1)'(t_1) = (\phi \circ c_2)'(t_2)$.

Lemat 3.2. Jeżeli $(c_1, t_1), (c_2, t_2) \in C_pM$ są styczne w mapie (U, ϕ) wokół p, to są też styczne w dowolnej innej mapie (W, ψ) wokół p (zgodnej z (U, ϕ)).

Dowód.

$$\begin{split} (\psi \circ c_1)'(t_1) &= [(\psi \circ \phi^{-1}) \circ (\phi \circ c_1)(t_1)]' = D_{\phi(p)}(\psi \circ \phi^{-1}) \circ [(\phi \circ c_1)'(t_1)] = \\ &= D_{\phi(p)}(\psi \circ \phi^{-1})[(\phi \circ c_2)'(t_2)] = [(\psi \circ \phi^{-1}) \circ (\phi \circ c_2)(t_2)]' \\ &= (\psi \circ c_2)'(t_2) \end{split}$$

Definicja 3.3. Krzywe $(c_1, t_1), (c_2, t_2) \in C_pM$ są styczne, jeżeli są styczne w pewnej (równoważnie każdej) mapie wokół p.

Relacja styczności krzywych jest relacją równoważności na C_pM , bo jest zwrotnia, symetryczna i przechodnia $((\phi \circ c_1)'(t_1) = (\phi \circ c_2)'(t_2)$ i $(\phi \circ c_2)'(t_2) = (\phi \circ c_3)'(t_3) \Longrightarrow (\phi \circ c_1)'(t_1) = (\phi \circ c_3)'(t_3)$).

Definicja 3.4. Przestrzenią styczną do M w punkcie p nazywamy zbiór klas abstrakcji relacji styczności krzywych zbazowanych w p

$$T_pM := C_pM/stycznosc$$

Klasę abstrakcji krzywej $(c,t_0) \in C_pM$ oznaczamy przez $[c,t_0]$ lub $c'(t_0)$. Elementy przestrzeni T_pM nazywamy **wektorami stycznymi** do M w punkcie p.

3.2. Struktura wektorowa przestrzeni TpM

Dla mapy $\phi: U \to \mathbb{R}^n$ wokół $p \in M$ określamy dwa odwzorowania:

$$\begin{split} \phi_p^*: \mathsf{T}_p \mathsf{M} &\to \mathbb{R}^n \quad \phi_p^*([\mathsf{c},\mathsf{t}_0]) = (\phi \circ \mathsf{c})'(\mathsf{t}_0) \in \mathbb{R}^n \\ \lambda_{\phi,p}: \mathbb{R}^n &\to \mathsf{T}_p \mathsf{M} \quad \lambda_{\phi,p}(\mathsf{v}) = [\mathsf{c}_\mathsf{v},\mathsf{0}] \end{split}$$

Odwzorowanie ϕ_p^* jest dobrze określone z definicji $T_p M$ (wszystkie krzywe z jednej klasy abstrakcji mają tę samą pochodną w jednej mapie).

gdzie $c_{V}(t) = \phi^{-1}(\phi(p) + tv)$.

Lemat 3.5. $\phi_p^* \circ \lambda_{\phi,p} = \mathrm{id}_{\mathbb{R}^n}$ oraz $\lambda_{\phi,p} \circ \phi_p^* = \mathrm{id}_{\mathsf{T}_p\mathsf{M}}$, czyli ϕ_p^* i $\lambda_{\phi,p}$ są one wzajemnie jednoznacze i do siebie odwrotne.

Dowód. Niech $v \in \mathbb{R}^n$, wtedy

$$\begin{split} \phi_p^* \circ \lambda_{\phi,p}(v) &= \phi_p^*([c_v, 0]) = (\phi \circ c_v)'(0) = \frac{d}{dt}_{|t=0} \phi(\phi^{-1}(\phi(p) + t \cdot v)) = \\ &= \frac{d}{dt}_{|t=0} (\phi(p) + tv) = v \end{split}$$

 $\text{Niech}\,[c,t_0]\in T_pM$

$$\lambda_{\phi,p} \circ \phi_p^*([c,t_0]) = \lambda_{\phi,p}((\phi \circ c)'(t_0)) = [c_{(\phi \circ c)'(t_0)},0]$$

gdzie $c_{(\phi \circ c)'(t_0)}(t) = \phi^{-1}(\phi(p) + t(\phi \circ c)'(t_0))$. W mapie ϕ zachodzi więc:

$$(\phi \circ c_{(\phi \circ c)(t_0)})'(0) = \frac{d}{dt}_{t=0} [\phi(p) + t \cdot (\phi \circ c)'(t_0)] = (\phi \circ c)'(t_0)$$

W takim razie (c, t₀) i (c_{(ϕ \circ c)'(t₀)}, 0) są krzywymi stycznymi i mamy [c, t₀] = [(c_{(ϕ \circ c)'(t₀)}, 0] i w takim razie $\lambda_{\phi,p} \circ \phi_p^*([c,t_0]) = [c,t_0] \quad \checkmark$.

Fakt 3.6. Na przestrzeni stycznej T_pM istnieje dokładnie jedna struktura przestrzeni wektorowej, dla której odwzorowania ϕ_p^* oraz $\lambda_{\phi,p}$ dla wszystkich map ϕ wokół p są liniowymi izomorfizmami.

Struktura ta jest zadana przez operacje dodawania wektorów i mnożenia ich przez skalary następująco:

- dla X, Y \in T_pM: X + Y := $\lambda_{\phi,p}(\phi_p^*(X) + \phi_p^*(Y))$ (suma w środku jest sumą w \mathbb{R}^n)
- dla a $\in \mathbb{R}$: a · X := $\lambda_{\phi,p}$ (a · ϕ_p^* (X)) (mnożenie przez skalar w \mathbb{R}^n).

Dowód. Struktura przestrzeni wektorowej musi być przeniesiona z \mathbb{R}^n przez $\lambda_{\phi,p}$. Wystarczy więc uzasadnić, że dla różnych map ϕ , ψ wokół p przeniesione z \mathbb{R}^n na T_pM struktury liniowe pokrywają się, to znaczy złożenie odwzorowań

$$\mathbb{R}^{\mathsf{n}} \xrightarrow{\lambda_{\phi,\mathsf{p}}} \mathsf{T}_{\mathsf{p}}\mathsf{M} \xrightarrow{\psi_{\mathsf{p}}^{*}=\lambda_{\psi,\mathsf{p}}^{-1}} \mathbb{R}^{\mathsf{n}}$$

jest liniowe.

$$\psi_{p}^{*} \circ \lambda_{\phi,p}(v) = \psi_{p}^{*}([c_{v}, 0]) = (\psi \circ c_{v})'(0) = \frac{d}{dt}_{|t=0} \psi \circ \phi^{-1}(\phi(p) + tv) =$$

$$= D_{\phi(p)}(\psi \circ \phi^{-1})[\frac{d}{dt}_{|t=0}(\phi(p) + tv)] = D_{\phi(p)}(\psi \circ \phi^{-1})(v)$$

Przekształcenie $\psi_{\mathbf{p}}^* \circ \lambda_{\phi,\mathbf{p}}$ pokrywa się z działaniem macierzy $\mathbf{D}_{\phi(\mathbf{p})}(\psi \circ \phi^{-1})$, a więc jest liniowe.

₩

O odwzorowaniu $\phi_p^*: T_pM \to \mathbb{R}^n$ można myśleć jak o "mapie" dla T_pM stowarzyszonej z mapą ϕ otoczenia punktu p. W tej mapie działania na wektorach z T_pM sprowadzają się do zwykłych działań na wektorach w \mathbb{R}^n .

Przykład:

- Dla M = \mathbb{R}^n mamy wyróżnioną mapę $\phi: M = \mathbb{R}^n \to \mathbb{R}^n$, $\phi = \mathrm{id}_{\mathbb{R}^n}$. Dla każdego $p \in M$ mapa ta, poprzez $\phi_p^* = (\mathrm{id}_{\mathbb{R}^n})^*$ kanonicznie utożsamia $T_p\mathbb{R}^n$ z \mathbb{R}^n .
- Analogiczna sytuacja zachodzi z M = U $\subseteq \mathbb{R}^n$ otwartego podzbioru i p \in U, gdzie inkluzja i : U $\to \mathbb{R}^n$ jest traktowana jako mapa.

Dla rozmaitości M z brzegiem i p $\in \partial M$ dopuszczamy dodatkowo krzywe gładkie $c:[t_0,b) \to M$ oraz $c:(a,t_0[\to M$ takie, że $c(t_0)$ = p oraz pary (c,t_0) jako elementy C_pM . Inaczej dla niektórych "kierunków" wektorów nie istniałyby odpowiednie krzywe reprezentujące te wektory. Styczność na T_pM określa się potem w sposób analogiczny jak dla rozmaitości bez brzegu.

Wektory styczne do M = \mathbb{R}^n (lub U $\subseteq \mathbb{R}^n$) w punkcie p odpowiadające wektorom bazowym e_1 = (1,0,0,...,0), e_2 = (0,1,0,...,0), ..., e_n = (0,0,0,...,1) oznaczamy przez $\frac{\partial}{\partial x_1}(p)$, $\frac{\partial}{\partial x_2}(p)$, ..., $\frac{\partial}{\partial x_n}(p)$. Tworzą one bazę $T_p\mathbb{R}^n$ (T_p U), zaś dowolny wektor z $T_p\mathbb{R}^n$ (T_p U) ma postać $\sum_{i=1}^n a_i \frac{\partial}{\partial x_i}(p)$. [0cm]

Analogicznie, dla dowolnej rozmaitości M i p \in M oraz mapy ϕ wokół p przeciwobraz przez $\phi_{\rm p}^*: {\sf T_pM} \to \mathbb{R}^{\sf n}$ wersorów ${\sf e_1},...,{\sf e_n}$ oznaczamy:

Sens wprowadzenia takiego oznaczenia stanie się jasny później, gdy wektory utożsamimy z tzw. derywaciami

$$(\phi_{\mathbf{p}}^*)^{-1}(\mathbf{e_i}) = \frac{\partial}{\partial \phi_{\mathbf{i}}}(\mathbf{p}).$$

Elementy te tworzą bazę T_pM i dowolny wektor z T_pM ma postać $\sum a_i \frac{\partial}{\partial \phi_i}(p)$.

3.3. Różniczka

Rozważmy funkcję gładką $f: M \to N$ i $p \in M$, $f(p) = q \in N$. Dla krzywej zbalansowanej $(c, t_0) \in C_p M$ mamy $(f \circ c, t_0) \in C_q N$.

Lemat 3.7. Jeżeli $(c_1,t_1),(c_2,t_2)\in C_pM$ są styczne, to $(f\circ c_1,t_1),(f\circ c_2,t_2)\in C_qN$ też są styczne

Dowód. Niech ϕ będzie mapą wokół p, $\phi: U \to \mathbb{R}^m$, zaś ψ mapą wokół q, $\psi: W \to \mathbb{R}^n$

$$\begin{split} (\psi \circ f \circ c_1)'(t_1) &= [(\psi \circ f \circ \phi^{-1}) \circ (\phi \circ c_1)]'(t_1) = D_{\phi(p)}(\psi \circ f \circ \phi^{-1}) \cdot [(\phi \circ c_1)'(t_1)] = \\ &= D_{\phi(p)}(\psi \circ f \circ \phi^{-1}) \cdot [(\phi \circ c_2)'(t_2)] = [(\psi \circ f \circ \phi^{-1}) \circ (\phi \circ c_2)]'(t_2) = \\ &= (\psi \circ f \circ c_2)'(t_2) \end{split}$$

Zatem krzywe ($f \circ c_1, t_1$) i ($f \circ c_2, t_2$) są styczne.

Definicja 3.8. Różniczką f w punkcie p nazywamy odwzorowanie $df_p: T_pM \to T_{f(p)}N$ określone przez $df_p([c,t_0])$ = $[f\circ c,t_0]$.

Odwzorowanie różniczkowe jest dobrze określone na mocy Lematu 3.7.

Lemat 3.9. $df_p : T_pM \to T_{f(p)}N$ jest odwzorowaniem liniowym.

Dowód. Wystarczy sprawdzić, że odwzorowanie

$$\mathbb{R}^m \xrightarrow{\lambda_{\phi,p}} \mathsf{T}_p\mathsf{M} \xrightarrow{\mathsf{df}_p} \mathsf{T}_{\mathsf{f}(p)}\mathsf{N} \xrightarrow{\psi_{\mathsf{f}(p)}^*} \mathbb{R}^n$$

jest liniowe (analogicznie jak przy dowodzie 3.6).

$$\begin{split} \psi_{f(p)} \circ df_{p} \circ \lambda_{\phi,p}(v) &= \psi_{f(p)}^{*} \circ df_{p}([c_{v},0]) = \psi_{f(p)}^{*}([f \circ c_{v},0]) = \\ &= (\psi \circ f \circ c_{v})'(0) = [(\psi \circ f \circ \phi^{-1}) \circ (\phi \circ c_{v})]'(0) = \\ &= D_{\phi(p)}(\psi \circ f \circ \phi^{-1}) \cdot [(\phi \circ c_{v})'(0)] = \\ &= D_{\phi(p)}(\psi \circ f \circ \phi^{-1})[v] \end{split}$$

jest to przekształcenie zadane macierzą, a więc liniowe.

Dla gładkiej funkcji $f:M\to N$ odwzorowanie $df_p:T_pM\to T_{f(p)}N$ wyznaczyliśmy w mapach ϕ wokół p i ψ wokół f(p) jako

$$\psi_{f(p)}^* df_p \lambda_{\phi,p}(p) = D_{\phi(p)}(\psi f \phi^{-1})(v).$$

Stąd, odwzorowanie df $_p$ w bazach $\{\frac{\partial}{\partial \phi_i}(p)\}$ w T_pM i $\{\frac{\partial}{\partial \psi_j}(p)\}$ w $T_{f(p)}N$ zapisuje się macierzą

$$\begin{split} D_{\phi(p)}(\psi f \phi^{-1}) &= \left(\frac{\partial (\psi f \phi^{-1})_i}{\partial x_j}(\phi(p))\right)_{ij} \\ df_p \left[\sum a_i \frac{\partial}{\partial \phi_i}(p)\right] &= \sum_i \left[\sum_j \frac{\partial (\psi f \phi^{-1})}{\partial x_j}(\phi(p)) \cdot a_j\right] \frac{\partial}{\partial \psi_i}(f(p)) \end{split}$$

Przykłady:

• Niech $\phi: U \to \mathbb{R}^n$ będzie mapą wokół $p \in M$. Możemy ją potraktować jako gładkie odwzorowanie między dwiema rozmaitościami. Wówczas różniczka $\mathrm{d}\phi_p: \mathsf{T}_p U \to \mathsf{T}_{\phi(p)}\mathbb{R}^n$ jest wówna odwzorowaniu "mapowemu" $\phi_p^*: \mathsf{T}_p M \to \mathbb{R}^n$.

Dowód. Niech $[c, t_0] \in T_pM$, wtedy

$$\mathsf{d}\phi_{\mathsf{p}}([\mathsf{c},\mathsf{t}_0])$$
 = $[\phi\circ\mathsf{c},\mathsf{t}_0]\in\mathsf{T}_{\phi(\mathsf{p})}\mathbb{R}^\mathsf{n}$

Mapę $(id_{\mathbb{R}^n})_{\phi(n)}^*: T_{\phi(p)}\mathbb{R}^n \to \mathbb{R}^n$ kanonicznie utożsamiliśmy z $id_{\mathbb{R}^n}$, stąd też

$$d\phi_p([c,t_0]) = (id_{\mathbb{R}^n} \circ \phi \circ c)'(t_0) = (\phi \circ c)'(t_0),$$

a z kolei

$$\phi_{\mathsf{p}}^*([\mathsf{c},\mathsf{t}_0])$$
 = $(\phi \circ \mathsf{c})'(\mathsf{t}_0) \in \mathbb{R}^{\mathsf{n}}$

z definicji tego odwzorowania.

- Dla gładkiej krzywej $c:(a,b) \to M$ oraz $t_0 \in (a,b)$, różniczka $dc_{t_0}: T_{t_0}(a,b) \to T_{c(t_0)}M$ jest jedynym przekształceniem liniowym, które wersor z $\mathbb{R} \cong T_{t_0}(a,b)$ przekształca na wersor $[c,t_0]=c'(t_0)\in T_{c(t_0)}M$.
- Rozważmy gładką funkcję $f:M\to\mathbb{R}$ i $p\in M$. Różniczka $df_p:T_pM\to T_{f(p)}\mathbb{R}\cong\mathbb{R}$ jest funkcjonałem liniowym na T_pM .

Definicja 3.10. Dla funkcji $f: M \to \mathbb{R}$ możemy wybrać wektor styczny $X = [c, t_0] \in T_pM$ i zdefiniować **pochodną kierunkową** funkcji f w kierunku wektora X:

$$Xf = df_p(X) = df_p([c, t_0]) = (f \circ c)'(t_0).$$

Pochodna kierunkowa ma następujące własności:

- X(f + g) = Xf + Xg
- $X(f \cdot g) = g(p) \cdot Xf + f(p) \cdot Xg (reguła Leibniza)$

Dowód.

$$\begin{split} X(f \cdot g) &= [(f \cdot g) \circ c]'(t_0) = [(f \circ c) \cdot (g \circ c)]'(t_0) = \\ &= (f \circ c)'(t_0) \cdot (g \circ c)(t_0) + (f \circ c)(t_0) \cdot (g \circ c)'(t_0) = \\ &= Xf \cdot g(p) + f(p) \cdot Xg \end{split}$$

- dla $a \in \mathbb{R}$ (aX)f = a(Xf)
- jeśli X, Y \in T_DM, to (X + Y)f = Xf + Yf

Dowód.

$$(X + Y)f = df_{D}(X + Y) = df_{D}(X) + df_{D}(Y) = Xf + Yf$$

Przykłady:

- Jeśli X = $\frac{\partial}{\partial x_i}(p) \in T_p\mathbb{R}^n$ i mamy gładką funkcję $f: \mathbb{R}^n \to \mathbb{R}$, to wówczas Xf = $\frac{\partial f}{\partial x_i}(p)$.
- Jeśli X = $\frac{\partial}{\partial \phi_i}(p) \in T_p M$ i f : $M \to \mathbb{R}$ jest funkcją gładką, to oznaczamy

$$Xf = \frac{\partial (f\phi^{-1})}{\partial x_i}(\phi(p) =: \frac{\partial f}{\partial \phi_i}(p)$$

• Podobnie jak wyżej, jeśli X = $\sum a_i \frac{\partial}{\partial \phi_i}(p)$, to

$$Xf = \sum a_i \frac{\partial f}{\partial \phi_i}(p) = \sum a_i \frac{\partial f \circ \phi^{-1}}{\partial x_i}(\phi(p))$$

Stąd oznaczenie $\frac{\partial}{\partial x_i}(p)$, które ma charakter operatorowy związany z działaniem tego wektora na funkcjach f_n

 $\frac{\partial \mathbf{f}}{\partial \phi_{\mathbf{i}}}$ jest to i-ta pochodna cząstkowa f w mapie ϕ w punkcie p

Spis twierdzeń

1.1	Definicja: przestrzeń topologiczna	3
1.2	Twierdzenie: twierdzenie brouwer'a	4
1.3	Definicja: mapa	4
1.4	Definicja: $funkcja \ f: M o \mathbb{R}$ $jest \ gladka \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	6
1.5	Definicja: zgodność map	7
1.6	Definicja: atlas gładki	7
1.7	Definicja: rozmaitość gładka	8
1.8	Definicja: zgodność atlasów, mapy z atlasem	8
1.9	Definicja: atlas maksymalny	9
1.10	Fakt: gładkość względem atlasu	9
1.11	Lemat	9
1.12	Definicja: rozmaitość z brzegiem	11
1.13	Fakt: raz w brzegu, zawsze w brzegu	11
1.14	Definicja: brzeg, wnętrze	11
1.15	Fakt	
2.1	Definicja: pokrycie lokalnie skończone	13
2.2	Definicja: rozdrobnienie	13
2.3	Definicja: przestrzeń parazwarta	13
2.4	Uwaga	13
3.1	Definicja: styczność krzywych w mapie	14
3.2	Lemat: styczność w jednej mapie ←⇒ styczność w każdej mapie	14
3.3	Definicja: styczność krzywych	14
3.4	Definicja: przestrzeń styczna	14
3.5	Lemat	
3.6	Fakt: struktura przestrzeni wektorowej na przestrzeni stycznej	15
3.7	Lemat: krzywe styczne po przejściu przez f:M->N są nadal styczne	17
3.8	Definicja: różniczka	17
3.9	Lemat: df jest odwzorowaniem liniowym	17
3.10	Definicia: pochodna kierunkowa	