

Department Of Computer Science, CUI Lahore Campus

CSC102 - Discrete Structures

By

Mahwish Waqas

Lecture Outline

- Proofs
 - Vacuous Proof
 - Trivial Proof
 - Direct Proof
 - Indirect Proof
 - Proof by Contraposition
 - Proof by Contradiction

Proofs

Proof:

A proof is a valid argument that establishes the truth of a mathematical statement.

- Proofs are essential in mathematics and computer science.
- Some applications of proof methods
 - Proving mathematical theorems
 - Designing algorithms and proving they meet their specifications
 - Verifying computer programs
 - Establishing operating systems are secure
 - Making inferences in artificial intelligence
 - Showing system specifications are consistent
 - ...

Terminology

- Theorem: A statement that can be shown true. Sometimes called facts.
- Lemma: A less important theorem that is useful to prove a theorem.
- Proof: Demonstration that a theorem is true. A convincing explanation of why the theorem is true.
- Axiom: A statement that is assumed to be true.
- Corollary: A theorem that can be proven directly from a theorem that has been proved.
- Conjecture: A statement that is being proposed to be a true statement.

Stating Theorems

- Theorem: If x > y, where x and y are positive real numbers, then $x^2 > y^2$.
- Theorem: For all positive real numbers x and y, if x > y, then $x^2 > y^2$.

Theorem

- Conditional statement (review):
 - p \rightarrow q is true unless p is true and q is false.

р	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Methods of Proving Theorems

- Vacuous Proof
- Trivial Proof
- Direct Proof
- Indirect Proof
 - Contraposition
 - Contradiction

Vacuous Proof

- Consider an implication: $p \rightarrow q$
- If it can be shown that p is false, then the implication is always true.

CSC102 - Discrete Structures

- By definition of an implication
- Note that you are showing that the hypothesis is false.

Vacuous Proof Example

• Assume P(n) is "if n > 0, then n^2 > 0". Show that P(0) is true.

Vacuous Proof Example

• Assume P(n) is "if n > 0, then n^2 > 0". Show that P(0) is true.

• Proof:

P(0) is "if 0 > 0, then $0^2 > 0$ ".

Since the hypothesis of P(0) is false, then P(0) is true.

Vacuous proof:

 $p \rightarrow q$ is true when p is false.

Vacuous Proof Example

• If n is both odd and even then $n^2 = n + n$

Trivial Proof

- Consider an implication: $p \rightarrow q$
- If it can be shown that q is true, then the implication is always true.
 - By definition of an implication
- Note that you are showing that the conclusion is true.

Trivial Proof Example

• Assume P(n) is "if ab > 0, then $(ab)^n > 0$ ". Show that P(0) is true.

Trivial Proof Example

• Assume P(n) is "if ab > 0, then $(ab)^n > 0$ ". Show that P(0) is true.

• Proof:

P(0) is "if ab >0, then $(ab)^0 > 0$ ".

$$(ab)^0 = 1 > 0$$

Since the conclusion of P(0) is true, P(0) is true.

Trivial proof:

 $p \rightarrow q$ is true when q is true.

Trivial Proof Example

• If n is the sum of two prime numbers, then either n is odd or n is even.

• If x is in CSD101 then x is a student.

- A direct proof of a conditional statement p → q is constructed when the first step is the assumption that p is true; use axioms, definitions, and previously proven theorems, together with rules of inference, with the final step showing that q must also be true.
- A direct proof shows that a conditional statement $p \rightarrow q$ is true by showing that if p is true, then q must also be true, so that the combination p true and q false never occurs.

- Direct proof of $p \rightarrow q$:
- Assume p is true.

q must be true.

Direct Proof

- Odd Number: n is odd if n = 2k + 1 for some k of type integer.
- Even Number: n is even if n = 2k for some k of type integer.

• Theorem:

If n is an odd integer, then n^2 is odd.

Theorem:

If n is an odd integer, then n^2 is odd.

Proof:

Assume n is an odd integer.

By definition, ∃ integer k,

such that n = 2k + 1

$$n^2 = (2k + 1)^2$$

$$n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$$

Let $m = 2k^2 + 2k$.

$$n^2 = 2m + 1$$

So, by definition, n^2 is odd.

• Theorem:

If n and m are both perfect squares then nm is also a perfect square.

Definition:

An integer a is perfect square if \exists integer b such that $a = b^2$.

Theorem:

If n and m are both perfect squares then nm is also a perfect square.

Proof:

Assume n and m are perfect squares.

By definition, ∃ integers s and t

such that $n = s^2$ and $m = t^2$.

$$nm = s^2t^2 = (st)^2$$

Let k = st.

$$nm = k^2$$

So, by definition, nm is a perfect square.

Definition:

An integer a is perfect square if \exists integer b such that $a=b^2$.

• Prove If n and m are odd integers then n + m is even.

Example

Theorem:

The sum of two rational numbers is rational.

Proof:

Assume r and s are rational.

$$\exists$$
 p,q r = p/q q \neq 0
 \exists t,u s = t/u u \neq 0
r+s = p/q + t/u = (pu+tq) / (qu)
Since q \neq 0 and u \neq 0 then qu \neq 0.

Let m=(pu+tq) and n=qu where $n \neq 0$.

So, r+s = m/n, where $n \neq 0$.

So, r+s is rational.

Definition:

The real number r is rational if r=p/q, \exists integers p and q that $q \neq 0$.

Proof Techniques

 Direct proof leads from the hypothesis of a theorem to the conclusion.

 Proofs of theorems that do not start with the hypothesis and end with the conclusion, are called indirect proofs.

Proof By Contraposition

- In a proof by contraposition of p → q, we take ¬q as a hypothesis and we show that ¬p must follow.
- Thus, show that if ¬q is true, then ¬p is true
- Proof by contraposition is an indirect proof.

Proof By Contraposition

- Proof by contraposition of p → q:
- Assume ¬q is true.

¬p must be true.

Proof by contraposition

Theorem:

If n is an integer and 3n + 2 is odd, then n is odd.

Theorem:

If n is an integer and 3n + 2 is odd, then n is odd.

Proof (by contraposition):

Assume n is even.

 \exists integer k, such that n = 2k

$$3n+2 = 3(2k)+2 = 2(3k+1)$$

Let m = 3k+1.

3n+2 = 2m

So, 3n+2 is even.

By contraposition, if 3n+2 is odd, then n is odd.

• Theorem:

If n = ab, where a and b are positive integers, then $b \le \sqrt{n}$ or $a \le \sqrt{n}$.

Proof (by contraposition):

• Assume b $>\sqrt{n}$ and a $>\sqrt{n}$.

$$ab > (\sqrt{n}) \cdot (\sqrt{n})$$

So,
$$n \neq ab$$
.

By contraposition, if n = ab, then $b \le \sqrt{n}$ or $a \le \sqrt{n}$.

Example

Theorem:

If n is an integer and n^2 is even, then n is even.

Direct proof or proof by contraposition?

Proof (direct proof):

Assume n^2 is an even integer.

$$n^2 = 2k$$
 (k is integer)

$$n = \pm \sqrt{2k}$$

???

dead end!

Example

Theorem:

If n is an integer and n^2 is even, then n is even.

Direct proof or proof by contraposition?

Proof (By contraposition):

Assume n is an odd integer.

$$n = 2k+1$$
 (k is integer)

$$n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$$

Assume integer $m = 2 k^2 + 2k$.

$$n^2 = 2m + 1$$

So, n^2 is odd.

By contraposition, If n^2 is even, then n is even.

Proof By Contradiction

- How to prove a proposition by contradiction?
 - Assume the proposition is false.
 - Using the assumption and other facts to reach a contradiction.
 - This is another kind of indirect proof.

Proof By Contradiction

- Proof by contradiction of p → q:
- Assume p and ¬q is true.

• Prove if 3n + 5 is even then n is odd.

- Prove if 3n + 5 is even then n is odd.
- Proof (proof by contradiction):

Assume 3n + 5 is even and n is even.

n = 2k (k is some integer)

3n+5 = 3(2k) + 5 = 6k + 5 = 2(3k + 2) + 1

Assume m = 3k+2.

3n+5 = 2m + 1

So, 3n+5 is odd.

Which contradicts over assumption that 3n + 5 is even So by contradiction, if 3n + 5 is even then n is odd.

• Prove if n^2 is odd then n is odd.

- Prove if n^2 is odd then n is odd.
- Proof (proof by contradiction):

Assume n^2 is odd and n is even.

 \exists integer k n = 2k

$$n^2 = 4k^2 = 2(2k^2)$$

Let $m = 2k^2$

$$n^2 = 2m$$

So, n^2 is even.

Which contradicts over assumption that is " n^2 is odd".

So by contradiction, if n^2 is odd then n is odd.

 Prove that the difference of any rational number and any irrational number is irrational.

- Prove The difference of any rational number and any irrational number is irrational.
- Proof:

[We take the negation of the theorem and suppose it to be true.] Suppose \exists a rational number x and an irrational number y such that (x - y) is rational. By definition of rational, we have

and
$$x = a/b$$
 for some integers a and b with $b \ne 0$.
 $x - y = c/d$ for some integers c and d with $d \ne 0$.
 $x - y = c/d$
 $a/b - y = c/d$
 $y = a/b - c/d$
 $= (ad - bc)/bd$

But (ad - bc) are integers and bd \neq 0. Therefore, by definition of rational, y is rational. This contradicts the supposition that y is irrational. [Hence, the supposition is false and the theorem is true.]

• Prove that $\sqrt{2}$ is not rational by contradiction.

- Prove that $\sqrt{2}$ is not rational by contradiction.
- Proof (proof by contradiction):

Assume $\sqrt{2}$ is rational.

$$\exists a, b \qquad \sqrt{2} = a/b \qquad b \neq 0$$

$$b \neq 0$$

If a and b have common factor, remove it

by dividing a and b by it

$$2 = a^2 / b^2$$

$$2 b^2 = a^2$$

So, a^2 is even and by previous theorem, a is even.

$$\exists k \quad a = 2k$$

$$2 b^2 = 4 k^2$$

$$b^2 = 2 k^2$$

So, b^2 is even and by previous theorem, b is even.

$$\exists m b = 2m.$$

So, a and b have common factor 2 which contradicts the Assumption.

Definition:

The real number r is rational if r=p/q, ∃ integers p and q that $q \neq 0$.

Practice Exercise and Chapter Reading

- Q 1,2,3,6,9,10,17,18,19
- Chapter 1, Kenneth H. Rosen, Discrete Mathematics and Its Applications, Section 1.7