## $\mathcal{S} = \iiint \left( \mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau \left( \Delta + \mathcal{K} \right)_{\alpha\beta} - 4 \, r \, \frac{1}{3} \left( \partial_{\beta} \mathcal{A}_{i \ \theta}^{\ \theta} \, \partial^{i} \mathcal{A}^{\alpha\beta}_{\ \alpha} + \partial_{\alpha} \mathcal{A}^{\alpha\beta i} \, \partial_{\theta} \mathcal{A}_{i \ \beta}^{\ \theta} - 2 \, \partial^{i} \mathcal{A}^{\alpha\beta}_{\ \alpha} \, \partial_{\theta} \mathcal{A}_{i \ \beta}^{\ \theta} + \partial_{\beta} \mathcal{A}_{i \ \theta\alpha}^{\ \theta} \, \partial^{\theta} \mathcal{A}^{\alpha\beta i} \right) + i \, \partial_{\alpha\beta} \mathcal{A}_{i \ \theta\alpha}^{\ \theta} + i \, \partial_{\alpha\beta} \mathcal{A}_{i \ \theta\alpha}^{\ \theta} \, \partial^{\alpha\beta}_{\ \alpha\beta}^{\ \theta} + \partial_{\alpha\beta} \mathcal{A}_{i \ \theta\alpha}^{\ \theta} \, \partial^{\alpha\beta}_{\ \alpha\beta}^{\ \theta} + \partial_{\alpha\beta} \mathcal{A}_{i \ \theta\alpha}^{\ \theta} \, \partial^{\alpha\beta}_{\ \alpha\beta}^{\ \theta} + \partial_{\alpha\beta} \mathcal{A}_{i \ \theta\alpha}^{\ \theta} \, \partial^{\alpha\beta}_{\ \alpha\beta}^{\ \theta} + \partial_{\alpha\beta} \mathcal{A}_{i \ \theta\alpha}^{\ \theta} \, \partial^{\alpha\beta}_{\ \alpha\beta}^{\ \theta} + \partial_{\alpha\beta} \mathcal{A}_{i \ \theta\alpha}^{\ \theta} \, \partial^{\alpha\beta}_{\ \alpha\beta}^{\ \theta} + \partial_{\alpha\beta} \mathcal{A}_{i \ \theta\alpha}^{\ \theta} \, \partial^{\alpha\beta}_{\ \alpha\beta}^{\ \theta} + \partial_{\alpha\beta} \mathcal{A}_{i \ \theta\alpha}^{\ \theta} \, \partial^{\alpha\beta}_{\ \alpha\beta}^{\ \theta} + \partial_{\alpha\beta} \mathcal{A}_{i \ \theta\alpha}^{\ \theta} \, \partial^{\alpha\beta}_{\ \alpha\beta}^{\ \theta} + \partial_{\alpha\beta} \mathcal{A}_{i \ \theta\alpha}^{\ \theta} \, \partial^{\alpha\beta}_{\ \alpha\beta}^{\ \theta} + \partial_{\alpha\beta} \mathcal{A}_{i \ \theta\alpha}^{\ \theta} \, \partial^{\alpha\beta}_{\ \alpha\beta}^{\ \theta} + \partial_{\alpha\beta} \mathcal{A}_{i \ \theta\alpha}^{\ \theta} \, \partial^{\alpha\beta}_{\ \alpha\beta}^{\ \theta} + \partial_{\alpha\beta} \mathcal{A}_{i \ \theta\alpha}^{\ \theta} \, \partial^{\alpha\beta}_{\ \alpha\beta}^{\ \theta} + \partial_{\alpha\beta} \mathcal{A}_{i \ \theta\alpha}^{\ \theta} \, \partial^{\alpha\beta}_{\ \alpha\beta}^{\ \theta} + \partial_{\alpha\beta} \mathcal{A}_{i \ \theta\alpha}^{\ \theta} \, \partial^{\alpha\beta}_{\ \alpha\beta}^{\ \theta} + \partial_{\alpha\beta} \mathcal{A}_{i \ \theta\alpha}^{\ \theta} \, \partial^{\alpha\beta}_{\ \alpha\beta}^{\ \theta} + \partial_{\alpha\beta} \mathcal{A}_{i \ \theta\alpha}^{\ \theta} \, \partial^{\alpha\beta}_{\ \alpha\beta}^{\ \theta} + \partial_{\alpha\beta} \mathcal{A}_{i \ \theta\alpha}^{\ \theta} + \partial_{\alpha\beta} \mathcal{A}_{i \ \theta\alpha}^{\ \theta} \, \partial^{\alpha\beta}_{\ \alpha\beta}^{\ \theta} + \partial_{\alpha\beta} \mathcal{A}_{i \ \theta\alpha}^{\ \theta} \, \partial^{\alpha\beta}_{\ \alpha\beta}^{\ \theta} + \partial_{\alpha\beta} \mathcal{A}_{i \ \theta\alpha}^{\ \theta} \, \partial^{\alpha\beta}_{\ \alpha\beta}^{\ \theta} + \partial_{\alpha\beta} \mathcal{A}_{i \ \theta\alpha}^{\ \theta} \, \partial^{\alpha\beta}_{\ \alpha\beta}^{\ \theta} + \partial_{\alpha\beta} \mathcal{A}_{i \ \theta\alpha}^{\ \theta} \, \partial^{\alpha\beta}_{\ \alpha\beta}^{\ \theta} + \partial_{\alpha\beta} \mathcal{A}_{i \ \theta\alpha}^{\ \theta} \, \partial^{\alpha\beta}_{\ \alpha\beta}^{\ \theta} + \partial_{\alpha\beta} \mathcal{A}_{i \ \theta\alpha}^{\ \theta} \, \partial^{\alpha\beta}_{\ \alpha\beta}^{\ \theta} + \partial_{\alpha\beta} \mathcal{A}_{i \ \theta\alpha}^{\ \theta} +$ $\frac{1}{3} r_{1} \left(9 \partial_{\beta} \mathcal{R}_{\beta}^{\phantom{\beta} \theta} \partial^{\prime} \mathcal{R}_{\alpha}^{\phantom{\alpha} \beta} + 3 \partial_{\beta} \mathcal{R}_{\beta}^{\phantom{\beta} \theta} \partial^{\prime} \mathcal{R}_{\alpha}^{\phantom{\alpha} \beta} + 3 \partial_{\alpha} \mathcal{R}_{\alpha}^{\phantom{\alpha} \beta}{}^{\prime} \partial_{\theta} \mathcal{R}_{\beta}^{\phantom{\beta} \beta}{}^{\phantom{\beta} \beta} - 6 \partial^{\prime} \mathcal{R}_{\alpha}^{\phantom{\alpha} \beta}{}^{\phantom{\alpha} \beta}{}^{\phantom{\beta} \beta}{}^{\phantom{\beta} \beta} \partial_{\alpha} \mathcal{R}_{\beta}^{\phantom{\beta} \beta}{}^{\phantom{\beta} \beta} - 18 \partial^{\prime} \mathcal{R}_{\alpha}^{\phantom{\alpha} \beta}{}^{\phantom{\alpha} \beta} \partial_{\theta} \mathcal{R}_{\beta}^{\phantom{\beta} \beta}{}^{\phantom{\beta} \beta} - 6 \partial^{\prime} \mathcal{R}_{\beta}^{\phantom{\beta} \beta}{}^{\phantom{\beta} \beta}{}^{\phantom{\beta}$ $4\,\partial_{\beta}\mathcal{R}_{\alpha\,i\,\theta}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i} + 2\,\partial_{\beta}\mathcal{R}_{\alpha\,\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i} + 4\,\partial_{\beta}\mathcal{R}_{i\,\theta\,\alpha}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i} - 2\,\partial_{i}\mathcal{R}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i} + 2\,\partial_{\theta}\mathcal{R}_{\alpha\beta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i} + 2\,\partial_{\theta}\mathcal{R}_{\alpha\,i\,\beta}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i} + 2\,\partial_{\theta}\mathcal{R}_{\alpha\,i\,\beta$ $\frac{1}{6}t_{1}\left(2\ \mathcal{R}^{\alpha_{1}}_{\ \alpha}\ \mathcal{R}^{\ \theta}_{\ \beta}-4\ \mathcal{R}^{\ \theta}_{\alpha\ \theta}\ \partial_{i}f^{\alpha_{i}}+4\ \mathcal{R}^{\ \theta}_{\ \beta}\ \partial^{i}f^{\alpha}_{\ \alpha}-2\ \partial_{i}f^{\theta}_{\ \theta}\ \partial^{i}f^{\alpha}_{\ \alpha}-2\ \partial_{i}f^{\alpha_{i}}\ \partial_{\theta}f^{\ \theta}_{\ \alpha}+4\ \partial^{i}f^{\alpha}_{\ \alpha}\ \partial_{\theta}f^{\ \theta}_{\ \beta}-6\ \partial_{\alpha}f_{\ i\,\theta}\ \partial^{\theta}f^{\alpha_{i}}-2\ \partial_{\alpha}f^{\alpha_{i}}\right)$ **Wave operator**

#### ${\stackrel{0^+}{\cdot}} f^{\perp} \dagger$ <sup>0⁻</sup>Æ<sup>||</sup>†

**PSALTer results panel** 

| $\overset{1^{+}}{\cdot}\mathcal{A}^{\parallel}$ † $^{lphaeta}$             | $k^2 r_1 - \frac{t_1}{2}$           | $-\frac{t}{\sqrt{2}}$ |   | 0                                   | 0                                                     | 0 | 0                                                               |                                                               |                                                                 |
|----------------------------------------------------------------------------|-------------------------------------|-----------------------|---|-------------------------------------|-------------------------------------------------------|---|-----------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|
| $\overset{1^*}{\cdot} \mathscr{A}^{\perp} + \overset{\alpha \beta}{\cdot}$ | $-\frac{t_{\frac{1}{1}}}{\sqrt{2}}$ | 0                     | 0 | 0                                   | Θ                                                     | 0 | 0                                                               |                                                               |                                                                 |
| 1.* <i>f</i>    † αβ                                                       | <b>γ</b> 2                          | 0                     | Θ | 0                                   | 0                                                     | 0 | 0                                                               |                                                               |                                                                 |
| ¹-'A" †°                                                                   | 0                                   | 0                     | 0 | t.<br>1<br>6                        | $ \frac{t_{1}}{3\sqrt{2}} $ $ \frac{t_{1}}{3} $ $ 0 $ | 0 | $\frac{ikt.}{\frac{1}{3}}$                                      |                                                               |                                                                 |
| 1- <b>β</b> <sup>1</sup> † α                                               | 0                                   | Θ                     | 0 | $\frac{t_{\frac{1}{1}}}{3\sqrt{2}}$ | $\frac{t}{\frac{1}{3}}$                               |   | $\frac{1}{3} i \sqrt{2} kt.$                                    |                                                               |                                                                 |
| 1⁻- f ∥ † α                                                                | Θ                                   | Θ                     | Θ | 0                                   | Θ                                                     | 0 | 0                                                               |                                                               |                                                                 |
| 1- f <sup>⊥</sup> † α                                                      | Θ                                   | 0                     | Θ | $-\frac{1}{3} ikt.$                 | $-\frac{1}{3} i \sqrt{2} kt$                          | 0 | $\frac{2 k^2 t}{3}$                                             | $\mathcal{A}^{0}_{\alpha\beta} \mathcal{A}^{0}_{\alpha\beta}$ | ${}^{2^{-}}_{\bullet}\mathcal{A}^{\parallel}_{\alpha\beta\chi}$ |
|                                                                            |                                     |                       |   |                                     |                                                       |   | $^{2^{+}}_{\bullet}\mathcal{H}^{\parallel}$ † $^{lphaeta}$      | $\frac{t}{2}$ $-\frac{ikt}{\sqrt{2}}$                         |                                                                 |
|                                                                            |                                     |                       |   |                                     |                                                       |   | ${}^{2^+}_{\bullet}f^{\parallel}\uparrow^{\alpha\beta}$         |                                                               | 0                                                               |
|                                                                            |                                     |                       |   |                                     |                                                       |   | $\mathcal{A}^{-}\mathcal{A}^{\parallel}$ † $^{\alpha\beta\chi}$ |                                                               | $k^2 r_{\bullet} + \frac{t_{\bullet}}{2}$                       |

# Saturated propagator

 $\circ^{\scriptscriptstyle{+}} \tau^{\parallel}$  †  $^{0^+}\tau^{\perp}$  †  ${\stackrel{\scriptscriptstyle{0^{-}}}{\cdot}}\sigma^{\parallel}$  †

|                                                                                                                       | $^{1^{+}}\tau^{\parallel}$ $^{\alpha\beta}$                                                                                                                                        | $\frac{t_{\cdot}+k^2 t_{\cdot}}{t_{\cdot}}$ | $\frac{(1+k^2)^2 t^2}{(1+k^2)^2 t^2}$ | $\frac{1}{(1+k^2)^2} t_1^2$ | 0                                                  | Θ                                                   | 0 | 0                                                      |                                                        |                                                  |     |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------|-----------------------------|----------------------------------------------------|-----------------------------------------------------|---|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------|-----|
|                                                                                                                       | $^{1}$ $\sigma^{\parallel}$ $^{\alpha}$                                                                                                                                            | 0                                           | 0                                     | Θ                           | $\frac{6}{\left(3+4k^2\right)^2t_{\underline{1}}}$ | $\frac{6 \sqrt{2}}{(3+4 k^2)^2 t}$                  | 0 | $\frac{12 i k}{(3+4 k^2)^2 t}$                         |                                                        |                                                  |     |
|                                                                                                                       | $\frac{1}{\cdot}\sigma^{\perp}\uparrow^{\alpha}$                                                                                                                                   | 0                                           | 0                                     | 0                           | $\frac{6 \sqrt{2}}{(3+4 k^2)^2 t}$                 | $\frac{12}{(3+4 k^2)^2 t}$                          | 0 | $\frac{12 i \sqrt{2} k}{(3+4 k^2)^2 t}$                |                                                        |                                                  |     |
|                                                                                                                       | $^{1^{-}}\tau^{\parallel}$ $^{\alpha}$                                                                                                                                             | 0                                           | 0                                     | 0                           | 0                                                  | Θ                                                   | 0 | 0                                                      |                                                        |                                                  |     |
|                                                                                                                       | $1^{-}\tau^{\perp}\uparrow^{\alpha}$                                                                                                                                               | 0                                           | 0                                     | 0                           | $-\frac{12 i k}{\left(3+4 k^2\right)^2 t_1}$       | $-\frac{12 i \sqrt{2} k}{\left(3+4 k^2\right)^2 t}$ | 0 | $\frac{24 k^2}{\left(3+4 k^2\right)^2 t_1}$            | $^{2^{+}}_{\bullet}\sigma^{\parallel}{}_{\alpha\beta}$ | $2^{+}_{\bullet} \tau^{\parallel}_{\alpha\beta}$ | 2   |
|                                                                                                                       |                                                                                                                                                                                    |                                             |                                       |                             |                                                    |                                                     |   | $^{2^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$        | $\frac{2}{\left(1+2k^2\right)^2t}$                     | $-\frac{2i\sqrt{2}k}{\left(1+2k^2\right)^2t}$    |     |
|                                                                                                                       |                                                                                                                                                                                    |                                             |                                       |                             |                                                    |                                                     |   | $^{2^{+}}\tau^{\parallel}\uparrow^{\alpha\beta}$       | $\frac{2 i \sqrt{2} k}{\left(1+2 k^2\right)^2 t}$      | $\frac{4 k^2}{\left(1+2 k^2\right)^2 t_1}$       |     |
|                                                                                                                       |                                                                                                                                                                                    |                                             |                                       |                             |                                                    |                                                     |   | $^{2^{-}}\sigma^{\parallel}\uparrow^{\alpha\beta\chi}$ | 0                                                      | 0                                                | _   |
| Source constra                                                                                                        | ints                                                                                                                                                                               |                                             |                                       |                             |                                                    |                                                     |   |                                                        |                                                        |                                                  |     |
| Spin-parity form                                                                                                      | Covari                                                                                                                                                                             | ant form                                    | n                                     |                             |                                                    |                                                     |   |                                                        |                                                        | Multi                                            | pli |
| 0 <sup>+</sup> τ <sup>⊥</sup> == 0                                                                                    | $\partial_{\beta}\partial_{\alpha}\tau$ ( $\Delta$                                                                                                                                 | + <b>K</b> ) <sup>αβ</sup> ==               | 0                                     |                             |                                                    |                                                     |   |                                                        |                                                        | 1                                                |     |
| <sup>Θ+</sup> τ <sup>  </sup> == Θ                                                                                    | $\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha}$ |                                             |                                       |                             |                                                    |                                                     |   |                                                        | 1                                                      | 1                                                |     |
| $2 i k \left\  \frac{1}{\cdot} \sigma \right\ ^{\alpha} + \left\  \frac{1}{\cdot} \tau^{\perp} \right\ ^{\alpha} = 0$ |                                                                                                                                                                                    |                                             |                                       |                             |                                                    |                                                     |   |                                                        |                                                        | 3                                                |     |

 $\partial_{\chi}\partial^{\alpha}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi}+\partial_{\chi}\partial^{\beta}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\alpha}+\partial_{\chi}\partial^{\chi}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta}+2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta}==$ 

 $3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\chi\beta} - 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\ (\Delta+\mathcal{K})^{\alpha\chi} - 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\ (\Delta+\mathcal{K})^{\chi\alpha} +$ 

 $3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}{}_{\tau}\left(\triangle+\mathcal{K}\right)^{\alpha\beta}+3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}{}_{\tau}\left(\triangle+\mathcal{K}\right)^{\beta\alpha}+4\ i\ k^{\chi}\ \partial_{\epsilon}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\sigma^{\delta}_{\ \delta}{}^{\epsilon}-$ 

 $2\ \eta^{\alpha\beta}\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi\delta}-2\ \eta^{\alpha\beta}\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\tau\left(\Delta+\mathcal{K}\right)^{\chi}_{\ \chi}-4\ i\ \eta^{\alpha\beta}\ k^{\chi}\ \partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial_{\chi}\sigma^{\delta}_{\ \delta}{}^{\epsilon}\right)==0$ 

 $\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+2\;\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$ 

 $\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$ 

 $\partial_{\chi} \partial^{\alpha} \sigma^{\beta}_{\beta}^{\chi} + \partial_{\chi} \partial^{\chi} \sigma^{\beta\alpha}_{\beta} = 0$ 

0

0

licities

3

#### Massive spectrum

Total expected gauge generators:

 $\mathbf{1}^{-}_{\bullet}\mathbf{1}^{\parallel}^{\alpha} = \mathbf{0}$ 

 $\frac{1 \cdot \sigma^{\parallel}^{\alpha} = 1 \cdot \sigma^{\perp}^{\alpha}}{i k \cdot 1 \cdot \sigma^{\perp}^{\alpha\beta} + 1 \cdot \tau^{\parallel}^{\alpha\beta} = 0}$ 



(No particles)

**Unitarity conditions** 

Massless spectrum

### $r_{\cdot} < 0 & t_{\cdot} > 0$