Real-Time Length-based Contention Management for STM

Claim 1: A higher priority job, τ_i^z , suffers from priority inversion for at most number of atomic sections in τ_i^z .

Proof: Assuming three atomic sections, $s_i^k(\theta)$, $s_j^l(\theta)$ and $s_a^b(\theta)$, where $p_j > p_i$ and $s_j^l(\theta)$ interferes with $s_i^k(\theta)$ after α_{ij}^{kl} . Then $s_j^l(\theta)$ will have to abort and retry. At this time, if $s_a^b(\theta)$ interferes with the other two atomic sections, and the LCM decides which transaction to commit based on comparison between each two transactions. So, we have the following cases:-

- p_a < p_i < p_j, then s_a^b(θ) will not abort any one because
 it is still in its beginning and it is of the lowest priority.
 So. τ_j is not indirectly blocked by τ_a.
- $p_i < p_a < p_j$ and even if $s_a^b(\theta)$ interferes with $s_i^k(\theta)$ before α_{ia}^{kb} , so, $s_a^b(\theta)$ is allowed abort $s_i^k(\theta)$. Comparison between $s_j^l(\theta)$ and $s_a^b(\theta)$ will result in LCM choosing $s_j^l(\theta)$ to commit and abort $s_a^b(\theta)$ because the latter is still beginning, and τ_j is of higher priority. If $s_a^b(\theta)$ is not allowed to abort $s_i^k(\theta)$, the situation is still the same, because $s_j^l(\theta)$ was already retrying until $s_i^k(\theta)$ finishes.
- $p_a > p_j > p_i$, then if $s_a^b(\theta)$ is chosen to commit, this is not priority inversion for τ_j because τ_a is of higher priority.
- if τ_a preempts τ_i (τ_i is the job of lowest priority, so it is the one to be preempted), then LCM will compare only between $s_j^l(\theta)$ and $s_a^b(\theta)$. If $p_a < p_j$, then $s_j^l(\theta)$ will commit because of its task's higher priority and $s_a^b(\theta)$ is still at its beginning, otherwise, $s_j^l(\theta)$ will retry, but this will not be priority inversion because τ_a is already of higher priority than τ_i .

So, by generalizing these cases to any number of conflicting jobs, it is seen that when an atomic section, $s_j^l(\theta)$, of a higher priority job is in conflict with a number of atomic sections belonging to lower priority jobs, $s_j^l(\theta)$ can suffer from priority inversion by only one of them. So, if each atomic section belonging to the higher priority job suffers from priority inversion, then Claim follows.

Claim 2: The minimum length atomic section sharing object θ with $s_j^l(\theta)$ and belonging to a lower priority job than τ_j^b , is the one causing maximum delay to $s_j^l(\theta)$ due to priority inversion

Proof: For three atomic sections, $s_i^k(\theta)$, $s_j^l(\theta)$ and $s_h^z(\theta)$, where $p_j > p_i$, $p_j > p_h$ and $len(s_i^k(\theta)) > len(s_h^z(\theta))$, then $\alpha_{ij}^{kl} > \alpha_{hj}^{zl}$ and $c_{ij}^{kl} < c_{hj}^{zl}$. By applying (??) to get the contribution of $s_i^k(\theta)$ and $s_h^z(\theta)$ to the priority inversion of

 $s_i^l(\theta)$ and dividing them, we get

$$\frac{W_j^l(s_i^k(\theta))}{W_j^l(s_h^z(\theta))} = \frac{\left(1 - \alpha_{ij}^{kl}\right) len(s_i^k(\theta))}{\left(1 - \alpha_{hj}^{zl}\right) len(s_h^z(\theta))}$$

By substitution for α s from (??)

$$= \frac{(1 - \frac{ln\psi}{ln\psi - c_{ij}^{kl}})len(s_i^k(\theta))}{(1 - \frac{ln\psi}{ln\psi - c_{ij}^{kl}})len(s_h^z(\theta))} = \frac{(\frac{-c_{ij}^{kl}}{ln\psi - c_{ij}^{kl}})len(s_i^k(\theta))}{(\frac{-c_{hj}^z}{ln\psi - c_{i,i}^{kl}})len(s_h^z(\theta))}$$

By substitution from (??)

$$= \frac{len(s_{j}^{l}(\theta))/(ln\psi - c_{ij}^{kl})}{len(s_{j}^{l}(\theta))/(ln\psi - c_{hj}^{zl})} = \frac{ln\psi - c_{hj}^{zl}}{ln\psi - c_{ij}^{kl}} < 1$$

So, as the length of the interfered atomic section decreases, the greater the effect of priority inversion on the interfering atomic section. Claim follows.

REFERENCES