UNIT 1: Vector Space

Lecture 1: Binary Operator

Dr. P. Venugopal

Professor of Mathematics

School of Science & Humanities

Shiv Nadar University Chennai

Number System

REVIEW OF BASIC CONCEPTS

Set

A set is a collection of elements or numbers or objects, represented within the curly brackets { }.

Binary Operation

A *binary operation* or *dyadic operation* * is a rule for combining two elements (called operands) a and b of a set S to produce another element a*b of the set S.

Let S be a non-empty set and * is said to be a *binary operation* on S, if a * b is defined for all $a, b \in S$.

That is, the binary operation * is an operation performed on a set S and is given by $*: S * S \rightarrow S$.

Note:

It is denoted by (S,*).

Properties of Binary Operations

1. Closure property:

An operation * on a non-empty set A has closure property, if $a, b \in A$, $\Rightarrow a * b \in A$.

2. Commutative property:

A binary operation * on a nonempty set A is commutative if a*b=b*a, for all $a,b\in A$.

3. Associative property:

The associative property of binary operations hold if, for a non-empty set A, we can write (a * b) * c = a * (b * c) for all $a, b, c \in A$.

4. Distributive property:

Let + and . be two binary operations defined on a non-empty set A. The binary operations are distributive if

$$a.(b + c) = (a.b) + (a.c)$$
 or

$$(b + c). a = (b . a) + (c . a).$$

5. Identity property:

Let A be a non-empty set and * be the binary operation on A. An element e is the identity element of the set A, if a*e=a=e*a, for all $a \in A$. If the binary operation is addition (+), e=0 and for multiplication(-), e=1.

6. Inverse property:

Let A be a non-empty set and * be the binary operation on A. An element b is said to be the inverse element of $a \in A$, if a * b = b * a = e, for all $a, b \in A$.

In this case, we can write b as a^{-1} .

This implies $a * a^{-1} = a^{-1} * a = e$

Thank you

