DATA 607 Project 2 Part 3

Subhalaxmi Rout

03/08/2020

State Marriage Rates

Discussion thread created by : Gabriel Abreu

1. Introduction

These gives state marriage rates breaking down the data into regions and years. We can group the data by census region or census division. Then organize the rates according to year, changing it from wide data to long data.

URL: Dataset link

2.Load library

```
#install.packages("dplyr")
\#install.packages("tidyr")
#install.packages("ggplot2")
#install.packages("DT")
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(tidyr)
library(ggplot2)
library(DT)
```

3. Data load and cleaning

Data is stored in the **Github** and loaded data from Github to Rstudio using **read.csv()** method.

3.1 Gather year from 1990 to 2016

This dataset year has given from 1990 to 2016. Each year mentioned as a column. Using **tidyr** convert these columns to **Year** column.

```
# using gather() convert column to row
data <- data %>% gather(Year, Marriage_Rate, X2016:X1990, na.rm = TRUE)

# remove "X" from the year
data$Year <- sub('X','',data$Year)

# arrange Marriage_Rate by desc order
data <- data %>% arrange(desc(Marriage_Rate))

# round Marriage Rate till 2 decimal
data$Marriage_Rate <- round(data$Marriage_Rate,2)

# display data using datatable
datatable(data,options = list(scrollX = TRUE, paging=TRUE,fixedHeader=TRUE))</pre>
```

Show	10 • entries					5	Search:		
	state	<pre>census_division</pre>	⇒ ceι	nsus_region	#	Year	\$	Marriage	e_Rate 🌲
1	Nevada	Mountain	West		19	990			99
2	Nevada	Mountain	West		19	995			85.2
3	Nevada	Mountain	West		19	999			82.3
4	Nevada	Mountain	West		20	000			72.2
5	Nevada	Mountain	West		20	001			69.6
6	Nevada	Mountain	West		20	002			67.4
7	Nevada	Mountain	West		20	003			63.9
8	Nevada	Mountain	West		20	004			62.1
9	Nevada	Mountain	West		20	005			57.4
10	Nevada	Mountain	West		20	006			52.1
Showir	ng 1 to 10 of 1,0	113 entries	P	revious	1 2	3 4	5	 102	Next

3.2 Rename column name

```
# rename census_divison and census_region i.e "Division" and "Region"
data <- data %>% rename( Division = census_division, Region = census_region)

# replace null value to NA
data$Region[data$Region == ""] <- NA

# display data using datatable
datatable(data,options = list(scrollX = TRUE, paging=TRUE,fixedHeader=TRUE))</pre>
```

Show 10	entries					Search:		
	state	Division	Re	gion 🝦 Year	\$		Marria	ge_Rate 🌲
1	Nevada	Mountain	West	1990				99
2	Nevada	Mountain	West	1995				85.2
3	Nevada	Mountain	West	1999				82.3
4	Nevada	Mountain	West	2000				72.2
5	Nevada	Mountain	West	2001				69.6
6	Nevada	Mountain	West	2002				67.4
7	Nevada	Mountain	West	2003				63.9
8	Nevada	Mountain	West	2004				62.1
9	Nevada	Mountain	West	2005				57.4
10	Nevada	Mountain	West	2006				52.1
Showing	1 to 10 of 1,013 e	entries		Previous 1 2	3	4 5	102	Next

3.3 Region wise Marriage rate

Apply group by on Region and plot the graph using region wise marriage rate.

- ## Warning: Removed 186 rows containing non-finite values (stat_boxplot).
- ## Warning: Removed 186 rows containing non-finite values (stat_summary).
- ## Warning: Removed 186 rows containing non-finite values (stat_summary).

Rate of Marriage by Region


```
# get all unique Division
Regions = unique(data1$Region)
Regions
## [1] "West"
                    "South"
                                 NA
                                              "Midwest"
                                                           "Northeast"
# summary for all Region
data4 <- data1 %>%
  group_by(Region) %>%
  summarize(Min. = min(Marriage_Rate),
             "1st Qu." = round(quantile(Marriage_Rate, 0.25),2),
             Median = round(median(Marriage Rate),2),
            Mean = round(mean(Marriage_Rate),2),
             "3rd Qu." = round(quantile(Marriage_Rate, 0.75),2),
             Max. = max(Marriage_Rate)
# display summary using datatable
datatable(data4,options = list(scrollX = TRUE, paging=TRUE,fixedHeader=TRUE))
                                                                       Search:
Show 10 ▼ entries
                         Min. 🌲
                                                                              3rd Qu.
          Region
                                     1st Qu. 崇
                                                   Median +
                                                                 Mean +
                                                                                           Max.
1
                                                                                            11.1
      Midwest
                          5.22
                                         6.1
                                                       6.7
                                                                  6.79
                                                                                 7.2
 2
      Northeast
                           4.8
                                        5.76
                                                       6.7
                                                                  6.87
                                                                                 7.8
                                                                                            10.9
```

Showing 1 to 5 of 5 entries Previous

6.82

6.9

4.85

7.42

7.8

6.15

8.13

12.16

6.61

9

9.83

8.21

15.9

99

11.82

Next

3.4 Division wise Marriage rate

3

4

South

West

Apply group by on Division and plot the graph using region wise marriage rate.

4.8

4

4

```
xlab("Division") + ylab("Marriage Rate") +
theme(axis.text.x=element_text(angle=30,hjust=1),plot.title = element_text(hjust = 0.5)) +
ggtitle("Rate of Marriage by Division")
```

- ## Warning: Removed 186 rows containing non-finite values (stat_boxplot).
- ## Warning: Removed 186 rows containing non-finite values (stat_summary).
- ## Warning: Removed 186 rows containing non-finite values (stat_summary).

Rate of Marriage by Division


```
# get all unique Division
Divisions = unique(data2$Division)
Divisions
```

Show	10 entries					Sear	ch:	
	Division	*	Min.	1st Qu.	Median 🌲	Mean 🌲	3rd Qu.	Max.
1			4	4.85	6.15	6.61	8.21	11.82
2	East North Central		5.22	5.8	6.25	6.5	7	9.6
3	East South Central		4.8	7.19	8.43	8.74	9.65	15.5
4	Middle Atlantic		4.8	5.58	5.9	6.18	6.8	8.6
5	Mountain		4	7.32	8.08	13.86	10	99
6	New England		5.02	5.9	7.14	7.22	8.3	10.9
7	Pacific		5.8	6.46	7.2	9.44	8.67	22.6
8	South Atlantic		5.2	6.6	7.2	7.45	8.12	15.9
9	West North Central		5.3	6.49	6.82	7	7.3	11.1
10	West South Central		5.7	7.09	8	8.89	10.07	15.4
Showi	ng 1 to 10 of 10 entries						Previous 1	Next

4. Analysis

We will analyze, yealy Marriage rate over Division and Region. We will look the trend, how the trend is changing over 26 years.

4.1 Yealy Average Marriage Rate over Division

```
# group by data by Division and Year
data5 <- data.frame(data) %>% group_by(Division, Year) %>% summarise(mean(Marriage_Rate)) %>% filter(!i

# rename Avg Marriage Rate column
data5 <- data5 %>% rename( Avg_Marriage_Rate = `mean(Marriage_Rate)`)

# round Avg_Marriage_Rate till 2 decimal places
data5$Avg_Marriage_Rate <- round(data5$Avg_Marriage_Rate,2)

# display data using datatable
datatable(data5,options = list(scrollX = TRUE, paging=TRUE,fixedHeader=TRUE))</pre>
```

Show 10	▼ entries						Sear	rch:			
	Division	*	Year	#					Avg_l	Marriag	e_Rate 🌲
1	East North Central	1990									8.7
2	East North Central	1995									7.56
3	East North Central	1999									7.28
4	East North Central	2000									7.2
5	East North Central	2001									7.1
6	East North Central	2002									6.86
7	East North Central	2003									6.56
8	East North Central	2004									6.6
9	East North Central	2005									6.3
10	East North Central	2006									6.28
Showing	1 to 10 of 180 entries		Previous	1	2	3	4	5		18	Next

```
ggplot(data5, aes(x = reorder(Year, desc(Year)), y = Avg_Marriage_Rate)) +
  geom_bar(stat = "identity",fill = "steelblue") + facet_grid(~Division) + coord_flip() +
  xlab("Year") + ylab("Average Marriage Rate")+ggtitle("Yealy Average Marriage Rate over Division") +
  theme(plot.title = element_text(hjust = 0.5),panel.background = element_rect(fill = "white", color = geom_text(aes( y = Avg_Marriage_Rate,label=Avg_Marriage_Rate), hjust = -0.20, color="black", size=3.5"
```

Yealy Average Marriage Rate over Division

4.2 Yealy Average Marriage Rate over Region

```
# group by data by Division and Year
data6 <- data.frame(data) %>% group_by(Region, Year) %>% summarise(mean(Marriage_Rate)) %>% filter(!is.:
# rename Avg Marriage Rate column
data6 <- data6 %>% rename( Avg_Marriage_Rate = `mean(Marriage_Rate)`)
# round Avg_Marriage_Rate till 2 decimal places
data6$Avg_Marriage_Rate <- round(data6$Avg_Marriage_Rate,2)
# display data using datatable</pre>
```

datatable(data6,options = list(scrollX = TRUE, paging=TRUE,fixedHeader=TRUE))

Show 10	entries							Searc	h:			
	Region	÷	Year	÷						Avg_M	arriag	e_Rate 🏺
1	Midwest	1990										8.8
2	Midwest	1995										7.8
3	Midwest	1999										7.46
4	Midwest	2000										7.5
5	Midwest	2001										7.29
6	Midwest	2002										7.12
7	Midwest	2003										6.88
8	Midwest	2004										6.87
9	Midwest	2005										6.7
10	Midwest	2006										6.61
Showing 1	to 10 of 80 entries			Previou	ıs 1	2	3	4	5		8	Next

```
ggplot(data6, aes(x = reorder(Year, desc(Year)), y = Avg_Marriage_Rate)) +
  geom_bar(stat = "identity",fill = "steelblue") + facet_grid(~Region) + coord_flip() +
  xlab("Year") + ylab("Average Marriage Rate")+ggtitle("Yealy Average Marriage Rate over Region") +
  theme(plot.title = element_text(hjust = 0.5),panel.background = element_rect(fill = "white", color = geom_text(aes( y = Avg_Marriage_Rate,label=Avg_Marriage_Rate), hjust = -0.20, color="black", size=3.5"
```


5. Conclusion

The plot 4.1 and plot 4.2 shows the Average Marriage Rate is decrasing from year 1990 to 2016.

- Yealy Average Marriage Rate over Division: The Average Marriage Rate in Mountain division has decreased from 21.5 to 10.01 which is a decrease of 11.5%. The Average Marriage Rate in Middle Atlantic division has decreased from 7.7 to 6.29 which is a decrease of 1.4%. So, the Average Marriage Rate in Middle Atlantic division decreased less as compared to Mountain division.
- Yealy Average Marriage Rate over Region: The Average Marriage Rate in Westregion has decreased from 17.3 to 9.41 which is a decrease of 7.9%. The Average Marriage Rate in Midwest region has decreased from 8.8 to 6.19 which is a decrease of 2.6%. So, the Average Marriage Rate in Midwest region decreased less as comparaed to West region.