Reg. No					
Acg. 110	 - 1	1 1	1 1	1 1 1	- 1

B.Tech DEGREE EXAMINATION, NOVEMBER 2023

Fourth Semester

18EEC208T - GENERATION, TRANSMISSION AND DISTRIBUTION

(For the candidates admitted during the academic year 2018-19 to 2021-22)

OPEN BOOK EXAMINATION

18EFC208TD

Note:

i. Specific approved THREE text books (Printed or photocopy) recommended for the course. ii. Handwritten class notes (certified by the faculty handling the course / Head of the Department).

Time: 3 Hours				Max. Marks: 100		
Answer FIVE Questions (Question No. 1 is compulsory)			ts BL	CO		
1 Load factor of a consumer is 35% and the mof electricity is Rs 250 per kW of maximum a. The monthly bill and the average cost per b. The overall cost per kWh; if the consumpt factor.	demand plus Rs 4.00 per kWh, find kWh	10	3	1		
ii. The following two tariffs are offered; (i) Rs.100 plus 15 paise per unit (ii) A flat rate of 40 paise per unit. At what consumption is the first tariff econor	mical?	8	2	1		
cm = 3 hours and 1 cm = 1000 kW. The total cm ² . Then what will be the average demand (A) 1875 kW (C) 1675kW	utes peak of 3000 kW is drawn to scale of 1 al area under the load curve is measured 15 (B) 1785 kW (D) 1125 kW	1	2	1		
iv. Two areas have equal connected loads; how than in area B, then: (A) Maximum demand of two areas is small (C) The maximum demand of B is greater than maximum demand of A	(B) The maximum demand of A is greater than maximum demand of B (D) The maximum demand of B is less than maximum demand of A	1	4	1		
2 A three-phase, 50 Hz, 60 kV overhead transmission line has its conductors arranged at the corners of an equilateral triangle of 4 m sides and the diameter of each conductor is 1.5 cm. Determine the inductance and capacitance per phase, if the length of line is 100 km and calculate the charging current.			3	2		
if. A single phase transmission line has two conductors each of 10 mm radius. These are fixed at a center to center of 1 m in a horizontal plane. Now this is converted into a three phase transmission line by introducing a third conductor of the same radius. This conductor is fixed at an equal distance D from the two single phase conductors. The three phase line is fully transposed. The positive sequence inductance per phase of the three phase system is to be 5% more than that of the inductance per conductor of the single phase system. Find the equilateral distance 'D' of the three phase system.			4	2		
iii. Calculate the resistivity of the conductor if re the wire is 20m and its area of cross section is (A) 8 Ωm (C) 8 kΩm	sistance of conductor is 40 Ω, the length of 4m. (B) 16 Ωm (D) 16 kΩm	1	2	2		

ار الح					
	a equilaterally spaced conductors of an untra	nsposed 3-phase line is characterized by 1	1	2	
(A)	Balanced receiving end voltage and no communication interference (B) Unbalanced receiving end voltage and no communication interference) Unbalanced receiving end voltage and communication interference			
A •	A single-phase, 11 kV line with a length of 1 reactance of the line is 0.6 Ω /km and the efficiency and regulation for a power factor ounity.	resistance is 0.25 Ω /km. Calculate the	12	3	3
b. it.	A 50Hz, 275kV line of length 400km has the Resistance R=0.035 ohm/km; Inductance L=1 mH/km; Capacitance C=0.01 μ F/km The line is represented by nominal π model. V receiving end voltages of the line maintained between V_S and V_R required for maximum preceiving end.	With the magnitudes of the sending end and at 275 kV, Find the phase angle difference	6	3	3
C "iii.	Find the A and D constant of a 132kV Resistance/Phase = 64Ω , XL/phase= 100Ω and (A) 0.9190 (C) 0.9590	,400km long transmission line with its d shunt admittance = j0.0006. (B) 0.9290 (D) 0.9890	1	3	3
iv.	For a medium line of T network type, while t 140.86kV, the value of line constant A= 0.9 kV, then the percentage regulation calculated (A) 2% (C) 15%	35 and receiving end phase voltage is 130	1	2	3
4 .i.	A string of suspension insulators consists of pin and earth is 25% of the self-capacitance per unit is not to exceed 30 kV, determine the efficiency.	of the unit. If the maximum peak voltage	12	2	4
b.ii	Three insulating materials with breakdown kV/cm and permittivity's of 2.5, 3.0 and 3.5 of safety for the materials is 5, then what is core of the cable, give your inference.	are used in a single core cable. If the factor	6	3	4
iii. C.	Calculate the ice load on the transmission I thickness of ice coating on the transmission diameter is 27mm?(assume ice density as 920 (A) 1.503kg/m (C) 150.3kg/m	on line is 13mm and the conductor outer	1	4	4
سننر . اد	A single core cable has conductor diameter maximum stress on the cable is 51.55 kV /c rating of the cable(A) 82.96kV (C) 55.45 kV	of 2cm and sheath of inside radius 5cm, if cm in RMS. what will be the RMS voltage (B) 11.9 kV (D) 27.65 kV	1	5	4

5

Find the voltage at point C,D and E for the given 2 wire DC distribution system 1000 m long as shown in figure below. Each section has same distance of 250 m. The resistance of one conductor is 0.6 W/km.

- ii An electric train runs between two sub-stations 6 km apart maintained at voltages 600 V and 590 V respectively and draws a constant current of 300 A while in motion. The track resistance of go and return path is 0.04 Ω/km. Calculate: (i) the point along the track where minimum potential occurs (ii) the current supplied by the two sub-stations when the train is at the point of minimum potential.
- iii. Out of the given bus bar schemes, in which schemes doing any type of maintenance work is difficult.

(A) Single Bus

- (B) Main Bus and Transfer
- (C) Double Bus Double Breaker
- (D) Double Bus Single Breaker

A DC ring main WXYW is fed at point W from a 230V supply source. The resistance at R_{wx} =0.02 Ω , R_{xy} =0.025 Ω and R_{yw} =0.018 Ω . What is the current through I_{wx} I_{xy} and I_{yw} , If the current drawn at the point X and Y is 150A and 250A?

- (A) 173.80A, -23.80 A and 226.2 A
- (B) 173.80 A, -23.80 A and -226.2 A
- (C) 173.80 A, 23.80 A and -376.2 A
- (D) 173.80 A, 23.80 A and -226.2A
- 6 i. The daily load curve for a power plant is given by the following equation:

 $L = 480 + 6t - t^2$

Where, t is time in hours from 0 to 24 hours and L is in MW. Calculate:

- a. The maximum load and its occurrance.
- b. Load factor of the plant.
- ii. Find the most economical size for a conductor required to transmit a maximum loading of 5000 kVA over a three-phase overhead line operated at 33 kV, the annual load factor being 50%, with 10% of allowable interest and depreciation. The cost per kilometre length of line is Rs. (24000a + 1000) where a is cross-sectional area of the conductor in cm², the cost of energy waste is 10 paise/kWh and $K = I_{rms} / I_{av} = 1.2$ for a load factor of 50%. The resistance per kilometre of a conductor with 1 cm² cross-section area is 0.173
 - 10
 - iii. Calculate the economic tariff and its financial consumption unit range for the following two tariffs offered. Tariff-A: Rupees 50 plus 20 paise per unit. Tariff-B: A flat rate of 50 paise.
 - (B) Tariff-B is economical if consumption (A) Tariff-A is economical if
 - (C) Tariff-A is economical if consumption is more than 167 units

consumption is more than 250 units

- is more than 250 units
- (D) Tariff-B is economical if consumption is more than 167 units

- v. A 200 MW power station delivers 200 MW for 3 hours,40 MW for 5 hours and its shut down for the each day. With a maintenance for 50days in each year, what will be the total energy supplied per year?
 - (A) $252*10^3$ MWh

(B) 800*10³ MWh

(C) 315*10³ MWh

- (D) 292*10³ MWh
- 7 ... The horizontally spaced conductors of a single phase line operating at 50Hz are having outside diameter of 1.6cm and the spacing between centre's of conductors is 6m. The permittivity of free space is 8.854*10-12 f/m. Evaluate the capacitance to ground per km of each line.
- 8 5 2
- A 300 kV, three-phase bundle conductor line with two sub conductor per phase has a horizontal configuration as shown in Figure. Find the inductance per phase, if the radius of each sub-conductor is 1.2 cm.
- 10 2 2

2

2

3

- iii. A long over head line is composed of a smooth round conductor running parallel to the ground (Assumed to be a large conducting plane). A high voltage exists between the conductor and the ground. The maximum electric stress occurs at -----
 - (A) The upper surface of the conductor
- (B) The lower surface of the conductor

(C) The ground surface

- (D) Midway between the conductor and the ground
- Two arrangements of conductors are proposed for a 3 phase transmission line is: one with equilateral spacing of 4 m and the other is a flat with 4 m between the conductors. The conductor diameter in each case is 2 cm. Assuming that the line is transposed in both cases, which one of the following statements would be true?
 - (A) $C_{n1} = C_{n2}$ and $L_1 > L_2$

(B) $C_{n1} > C_{n2}$ and $L_1 < L_2$

(C) $C_{n1} = < C_{n2}$ and $L_1 > L_2$

(D) $C_{n1} > C_{n2}$ and $L_1 = L_2$

* * * * *