SPAZI METRICI E SPAZI NORMATI

petivinoue

una coppia $(X_1 d)$ con X un insieme, $d: X \times X \rightarrow [0, \infty)$ def una funcione si duce spatio metrico re si verifica:

(i)
$$d(x,y) = d(y,x)$$
 (simmetrue)

2)
$$X = \mathbb{C}$$
 $d(z_1 w) = |z - w|$ e' SM

3) $X = IR$ $d(x_1 y) = \sqrt{|x - y|}$ e' SM

4) $X = IR^n$ $d(x_1 y) = \sqrt{\sum (x_1 - y_1)^2}$ e' SM (euclideo)

5) X invience qualitari

suc
$$d: X \times X \rightarrow (0, \infty)$$

$$d(x,y) = \begin{cases} 0 & x=y \\ 4 & x\neq y \end{cases}$$

e' JM (durneto).

Se (XId) è uno SM e 4CX auona (4Id) è uno SM. Oll

Jua (Xid) une SM. Per X. EX e 1>0 fistati definiamo def B(x0,r) = B(X0) = {X = X : d(x, x0) < r} < X

La PALLA centrata in Xo du raggio r.

tulo ipsuo nethoo nikello (4,d) suremo : By (yo, r)= Bx (yo, r) AY

IR" con dust. euclidea

indichiamo con (·,·) il prodotto scalare

$$\langle x_1 y \rangle = |x_1 y_1 + \dots + |x_n y_n| = \sum_{i=1}^{n} |x_i y_i|^2$$

Definance $|\cdot|:\mathbb{R}^n\to (0,\infty)$

$$|X| \mapsto \sqrt{\langle X, X \rangle} \quad x \in \mathbb{R}^n$$

so de ran ca duriguaghanta de CS: ¥x,y∈R°

(emma Per ogne x, y ∈ IR^, n>1, vele la fubeddutività alle norma Euclidea:

Ona fu IR" definamo

Affermo de (IR) d) e' uno sm: verifichismolo.

(i)
$$d(x,y) = d(y,x)$$

(iii)
$$d(x,y) \leq d(x,z) + d(z,y) + x_1y_2 \in \mathbb{R}^n$$

$$d(x,y) = |x-y| = |x-z+z-y| \leq |x-z| + |z-y| = d(x,z) + d(z,y)$$

Sport normati

out una cappia $(V_1|I|\cdot II)$ e'una iPAZIO NORMATO re V e'uno ip. vett. (fu.IR) e $|I|\cdot II:V \to (O_1\infty)$ e'una funuare (outta NORMA) de verifica:

- iii) + x14 EV whe

(fub?dduiwa' dlla norma)

oss for $(V, ||\cdot||)$ space normate posse due intro $d: V \times V \to CO_1 \infty)$ $d(X, y) = || X - y|| \quad X, y \in V$ Allora (V, d) e SM

couragents in 2W

See (xid) who say, considerano $x: N \rightarrow X$

Potremmo inducario (Xx) HEIN.

bato x = EX duramo dre

$$\chi_{\kappa} \xrightarrow{(X_1 d)} \chi_{\infty}$$

भ वक्ष १ भ

Potentia ande kinere

oss for IR fittiano la dustate standard. Ila (Xx) HEN una successione de punti XX ER, XEN. Avieno che

$$X_{k \to \infty} \xrightarrow{(R^{n}, d)} X_{\infty} \in \mathbb{R}^{n} \left(\left\langle -\right\rangle \left(x_{k} - x_{\infty} \right) \xrightarrow{k \to \infty} 0 \right)$$

the fold the conduction is the substitution of the substitution of

Erempio

$$V = C(CO_1A)$$
) e'uno SV. befiniamo $||\cdot||_{\infty}: V \to Co_1 \infty$)
$$||f||_{\infty} = \sup_{x \in CO_1A} |f(x)| = \max_{x \in CO_1A} |f(x)|$$

(VIII) è SN.

Allowar
$$\mathcal{J}_{\nu} \xrightarrow{\nu \to \infty} \mathcal{J}_{\nu} \stackrel{\sim}{\longrightarrow} \mathcal{J}_{\nu} \xrightarrow{\alpha_{\nu}, \nu_{\alpha}, \nu_{\alpha}} \mathcal{J}_{\nu}$$

Eperau

exercine for
$$e^{\infty}(\mathbb{R}) = \{(2n)_{n \in \mathbb{N}} : 2n \in \mathbb{R} \mid \forall n \in \mathbb{N} \mid 2n \mid 2n \mid 2\infty\}$$
.

$$e^{\infty}(\mathbb{R}) = \{(2n)_{n \in \mathbb{N}} : e^{\infty}(\mathbb{R}) \rightarrow \mathbb{C}_{0,\infty}\}$$

$$|| \partial_n || = \sup_{n \in \mathbb{N}} |\partial_n |$$

Provare the $(e^{\infty}(\mathbb{N}), \|\cdot\|_{\infty})$ e' and SN .

everation land
$$a_1,...,a_n>0$$
. Provate the $\left(\sum_{i=1}^n a_i\right)\left(\sum_{i=1}^n \frac{1}{a_i}\right) \geqslant n^2$.

corrolero i vettori de IRª

Uso la olis. oli cs

$$n = \sum_{i=1}^{n} a_i \cdot \frac{1}{a_i} \in \left(\sum_{i=1}^{n} a_i\right)^{n} \left(\sum_{i=1}^{n} \frac{1}{a_i}\right)^{n}$$

CAPITOLO 1

Spazi metrici e spazi normati

1. Definizioni ed esempi

Enunciamo la definizione di *spazio metrico*.

DEFINIZIONE 1.1.1. Uno spazio metrico è una coppia (X, d) dove X è un insieme e $d: X \times X \to [0, \infty)$ è una funzione, detta metrica o distanza, che per ogni $x, y, z \in X$ verifica le seguenti proprietà:

- 1) $d(x,y) \ge 0$ e d(x,y) = 0 se e solo se x = y;
- 2) d(x,y) = d(y,x) (simmetria);
- 3) $d(x,y) \le d(x,z) + d(z,y)$ (disuguaglianza triangolare).

Primi esempi di spazi metrici sono costituiti da:

- 1) \mathbb{R} con la funzione $d(x,y)=|x-y|,\,x,y\in\mathbb{R}$, è uno spazio metrico. 2) \mathbb{R} con la funzione $d(x,y)=|x-y|^{1/2},\,x,y\in\mathbb{R}$, è uno spazio metrico.
- 3) \mathbb{C} con la funzione $d(z, w) = |z w|, z, w \in \mathbb{C}$, è uno spazio metrico.
- 4) \mathbb{R}^n , $n \geq 1$, con la funzione distanza

$$d(x,y) = |x - y| = \left(\sum_{i=1}^{n} |x_i - y_i|^2\right)^{1/2}, \quad x, y \in \mathbb{R}^n,$$

è uno spazio metrico (si veda la successiva Sezione 2).

Ecco altri esempi di spazi metrici.

ESEMPIO 1.1.2 (Spazio metrico discreto). Sia X un insieme e definiamo la funzione $d: X \times X \to [0, \infty)$

$$d(x,y) = \begin{cases} 0 & \text{se } x = y, \\ 1 & \text{se } x \neq y. \end{cases}$$

È facile verificare che d verifica gli assiomi della funzione distanza.

ESEMPIO 1.1.3 (Distanza centralista). Su \mathbb{R}^2 definiamo la funzione $d: \mathbb{R}^2 \times \mathbb{R}^2 \to$ $[0,\infty)$ nel seguente modo

$$d(x,y) = \left\{ \begin{array}{ll} |x-y| & \text{se } x,y \in \mathbb{R}^2 \text{ sono collineari con } 0, \\ |x|+|y| & \text{altrimenti.} \end{array} \right.$$

Lasciamo come esercizio il compito di provare che (\mathbb{R}^2, d) è uno spazio metrico.

Esempio 1.1.4. I numeri naturali $\mathbb{N} = \{1, 2, \ldots\}$ con la distanza

$$d(m,n) = \left| \frac{1}{m} - \frac{1}{n} \right|, \quad m, n \in \mathbb{N},$$

sono uno spazio metrico.

Sia X uno spazio metrico con distanza $d: X \times X \to [0, \infty)$. Fissato un punto $x \in X$ ed un raggio $r \geq 0$, l'insieme

$$B_r(x) = B(x,r) = B_X(x,r) = \{ y \in X : d(x,y) < r \}$$

si dice sfera o palla (aperta) di centro x e raggio r.

OSSERVAZIONE 1.1.5 (Spazio metrico restrizione). Dato un sottoinsieme $Y \subset X$, possiamo restringere la funzione distanza d ad $Y: d: Y \times Y \to [0, \infty)$. Allora anche (Y, d) è uno spazio metrico. La palle nella distanza d di Y sono fatte nel seguente modo:

$$B_Y(y,r) = B_X(y,r) \cap Y$$
,

per ogni $y \in Y$ ed r > 0.

2. \mathbb{R}^n come spazio metrico

Indichiamo con \mathbb{R}^n lo spazio Euclideo *n*-dimensionale, $n \in \mathbb{N}$ con $n \geq 1$, dotato della usuale struttura di spazio vettoriale.

DEFINIZIONE 1.2.1 (Prodotto scalare). Definiamo l'operazione $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$

$$\langle x, y \rangle = x_1 y_1 + \dots + x_n y_n.$$

Tale operazione si dice prodotto scalare (standard) di \mathbb{R}^n .

Il prodotto scalare è bilineare (ovvero lineare in entrambe le componenti), simmetrico e non degenere. Precisamente, per ogni $x, y, z \in \mathbb{R}^n$ e per ogni $\alpha, \beta \in \mathbb{R}$ valgono le seguenti proprietà:

- 1) $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle;$
- 2) $\langle x, y \rangle = \langle y, x \rangle$;
- 3) $\langle x, x \rangle = 0$ se e solo se x = 0.

Talvolta, il prodotto scalare si indica anche con il simbolo (x, y) oppure con il simbolo $x \cdot y$.

DEFINIZIONE 1.2.2 (Norma Euclidea). La norma Euclidea su \mathbb{R}^n , $n \geq 1$, è la funzione $|\cdot|: \mathbb{R}^n \to [0, \infty)$ così definita

$$|x| = \left(\sum_{i=1}^{n} x_i^2\right)^{1/2}, \quad x = (x_1, ..., x_n) \in \mathbb{R}^n.$$

Equivalentemente, $|x| = \sqrt{\langle x, x \rangle}$.

La norma Euclidea verifica le proprietà di una norma (si veda la successiva Sezione 3). Precisamente, per ogni $x, y \in \mathbb{R}^n$ e per ogni $\lambda \in \mathbb{R}$ si verifica:

- 1) $|x| \ge 0$ e |x| = 0 se e solo se x = 0;
- 2) $|\lambda x| = |\lambda||x|$ (omogeneità);
- 3) $|x+y| \le |x| + |y|$ (subadittività).

La verifica delle proprietà 1) e 2) è elementare. La subadittività segue osservando che

$$|x+y|^2 = \langle x+y, x+y \rangle = \langle x, x \rangle + 2\langle x, y \rangle + \langle y, y \rangle \leq |x|^2 + 2|x||y| + |y|^2 = (|x|+|y|)^2,$$

dove nella disuguaglianza si è utilizzata la disuguaglianza di Cauchy-Schwarz, che ora dimostriamo.

PROPOSIZIONE 1.2.3 (Disuguaglianza di Cauchy-Schwarz). Per ogni $x,y\in\mathbb{R}^n$ vale la disuguaglianza

$$|\langle x, y \rangle| \le |x||y|.$$

DIM. Il polinomio reale della variabile $t \in \mathbb{R}$

$$P(t) = |x + ty|^2 = |x|^2 + 2t\langle x, y \rangle + t^2|y|^2$$

non è mai negativo, $P(t) \ge 0$ per ogni $t \in \mathbb{R}$, e dunque il suo discriminante verifica $\Delta = 4\langle x,y\rangle^2 - 4|x|^2|y|^2 \le 0$. La tesi segue estraendo le radici. Non abbiamo usato la forma specifica del prodotto scalare Euclideo ma solo le proprietà 1)-2)-3).

Verifichiamo la subadittività della norma Euclidea. Dalla disuguaglianza di Cauchy-Schwarz si ha

$$|x+y|^2 = \langle x+y, x+y \rangle = |x|^2 + 2\langle x,y \rangle + |y|^2 \le |x|^2 + 2|x||y| + |y|^2 = (|x|+|y|)^2$$
 ed estraendo le radici si ottiene la proprietà 3).

La norma Euclidea induce su \mathbb{R}^n la funzione distanza $d: \mathbb{R}^n \times \mathbb{R}^n \to [0, \infty)$,

$$d(x,y) = |x-y|, \quad x, y \in \mathbb{R}^n,$$

Lo spazio metrico (\mathbb{R}^n , d) si dice spazio metrico Euclideo. Le proprietà 1), 2), e 3) si verificano in modo elementare. In particolare, si ha:

$$d(x,y) = |x - y| = |x - z + z - y| \le |x - z| + |z - y| = d(x,z) + d(z,y), \quad x, y, z \in \mathbb{R}^n.$$

L'insieme

$$B_r(x) = \left\{ y \in \mathbb{R}^n : |x - y| < r \right\}$$

è la palla Euclidea di raggio r > 0 centrata in $x \in \mathbb{R}^n$.

3. Spazi metrici indotti da spazi normati

Spazi metrici possono essere generati a partire dagli spazi normati.

DEFINIZIONE 1.3.1 (Spazio normato). Uno spazio normato (reale) è una coppia $(V, \|\cdot\|)$ dove V è uno spazio vettoriale reale e $\|\cdot\|: V \to [0, \infty)$ è una funzione, detta norma, che per ogni $x, y \in V$ e per ogni $\lambda \in \mathbb{R}$ verifica le seguenti proprietà:

- 1) $||x|| \ge 0$ e ||x|| = 0 se e solo se x = 0;
- 2) $\|\lambda x\| = |\lambda| \|x\|$ (omogeneità);
- 3) $||x+y|| \le ||x|| + ||y||$ (subadittività o disuguaglianza triangolare).

Chiaramente, \mathbb{R} , \mathbb{C} ed \mathbb{R}^n sono spazi normati con le norme naturali. Una norma $\|\cdot\|$ su uno spazio vettoriale V induce canonicamente una distanza d su V definita nel seguente modo:

$$d(x,y) = ||x - y||, \quad x, y \in V.$$

La disuguaglianza triangolare per la distanza d deriva dalla subadittività della norma $\|\cdot\|$. Infatti, per ogni $x,y,z\in V$ si ha:

$$d(x,y) = ||x - y|| = ||x - z + z - y|| < ||x - z|| + ||z - y|| = d(x,z) + d(z,y).$$

ESEMPIO 1.3.2 (Lo spazio $\ell^2(\mathbb{R})$). Sia $\ell^2(\mathbb{R})$ l'insieme delle successioni reali $(a_n)_{n\in\mathbb{N}}$ di quadrato sommabile:

$$\sum_{n=1}^{\infty} a_n^2 < \infty.$$

Indichiamo con $x \in \ell^2(\mathbb{R})$ un generico elemento di $\ell^2(\mathbb{R})$. La funzione $\|\cdot\|_{\ell^2(\mathbb{R})}$: $\ell^2(\mathbb{R}) \to [0, \infty)$ così definita

$$\|\mathbf{x}\|_{\ell^2(\mathbb{R})} = \left(\sum_{n=1}^{\infty} a_n^2\right)^{1/2}$$

è una norma. La proprietà di subadittività si prova come in \mathbb{R}^n . Definiamo su $\ell^2(\mathbb{R})$ il prodotto scalare

$$\langle \mathbf{x}, \mathbf{y} \rangle_{\ell^2(\mathbb{R})} = \sum_{n=1}^{\infty} a_n b_n, \quad \mathbf{x} = (a_n)_{n \in \mathbb{N}}, \quad \mathbf{y} = (b_n)_{n \in \mathbb{N}}.$$

La disuguaglianza $2|a_nb_n| \leq a_n^2 + b_n^2$ prova che la serie converge assolutamente. In particolare, avremo $\|\mathbf{x}\|_{\ell^2(\mathbb{R})} = \langle \mathbf{x}, \mathbf{x} \rangle_{\ell^2(\mathbb{R})}^{1/2}$. La disuguaglianza di Cauchy-Schwarz

$$|\langle x, y \rangle_{\ell^2(\mathbb{R})}| \le ||x||_{\ell^2(\mathbb{R})} ||y||_{\ell^2(\mathbb{R})},$$

si può dimostrare in modo analogo a quanto fatto in \mathbb{R}^n ; da qui segue che $\|\mathbf{x}+\mathbf{y}\|_{\ell^2(\mathbb{R})} \le \|\mathbf{x}\|_{\ell^2(\mathbb{R})} + \|\mathbf{y}\|_{\ell^2(\mathbb{R})}$.

In conclusione, $\ell^2(\mathbb{R})$ con la funzione distanza

$$d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_{\ell^{2}(\mathbb{R})} = \left(\sum_{n=1}^{\infty} (a_{n} - b_{n})^{2}\right)^{1/2}$$

è uno spazio metrico.

4. Successioni in uno spazio metrico

Una successione in uno spazio metrico (X,d) è una funzione $x: \mathbb{N} \to X$. Si usa la notazione $x_n = x(n)$ per ogni $n \in \mathbb{N}$ e la successione si indica con $(x_n)_{n \in \mathbb{N}}$.

DEFINIZIONE 1.4.1. Una successione $(x_n)_{n\in\mathbb{N}}$ converge ad un punto $x\in X$ nello spazio metrico (X,d) se

$$\lim_{n \to \infty} d(x_n, x) = 0,$$

ovvero se per ogni $\varepsilon > 0$ esiste $\bar{n} \in \mathbb{N}$ tale che per ogni $n \geq \bar{n}$ si abbia $d(x_n, x) \leq \varepsilon$. In questo caso si scrive

$$x_n \xrightarrow[n \to \infty]{(X,d)} x$$
 oppure $\lim_{n \to \infty} x_n = x$ in (X,d) ,

e si dice che la successione è convergente ad x ovvero che x è il limite della successione.

Se il limite di una successione esiste allora è unico. Se infatti $x, y \in X$ sono entrambi limiti di $(x_n)_{n\in\mathbb{N}}$, allora risulta

$$0 \le d(x,y) \le d(x,x_n) + d(x_n,y) \to 0, \quad n \to \infty,$$

e quindi d(x,y) = 0 ovvero x = y.

5. ESERCIZI 9

ESEMPIO 1.4.2 (Successioni in \mathbb{R}^m). Sia $X = \mathbb{R}^m$, $m \ge 1$, con la distanza Euclidea e consideriamo una successione $(x_n)_{n \in \mathbb{N}}$ in \mathbb{R}^m . Ogni punto $x_n \in \mathbb{R}^m$ ha m coordinate, $x_n = (x_n^1, \dots, x_n^m)$ con $x_n^1, \dots, x_n^m \in \mathbb{R}$. Sia infine $x = (x^1, \dots, x^m) \in \mathbb{R}^m$ un punto fissato. Sono equivalenti le seguenti affermazioni:

- (A) $\lim_{n \to \infty} x_n = x$ in \mathbb{R}^m ;
- (B) $\lim_{n\to\infty} x_n^i = x^i$ in \mathbb{R} per ogni $i = 1, \dots, m$.

5. Esercizi

ESERCIZIO 1.5.1. Siano $x, y \in \mathbb{R}^n$ tali che $|\langle x, y \rangle| = |x||y|$. Provare che esiste $\lambda \in \mathbb{R}$ tale che $y = \lambda x$. Questo è il caso dell'uguaglianza nella disuguaglianza di Cauchy-Schwarz.

ESERCIZIO 1.5.2. Sia $R_{\vartheta}: \mathbb{R}^2 \to \mathbb{R}^2$ la rotazione di un angolo $\vartheta \in [0, 2\pi]$. Verificare che per ogni $x, y \in \mathbb{R}^2$ si ha

$$\langle R_{\vartheta}(x), R_{\vartheta}(y) \rangle = \langle x, y \rangle.$$

Ovvero: il prodotto scalare e quindi la distanza Euclidea sono invarianti per trasformazioni ortogonali.

Esercizio 1.5.3. Siano $a_1, \ldots, a_n > 0$ numeri reali positivi. Verificare che

$$\left(\sum_{i=1}^{n} a_i\right) \left(\sum_{i=1}^{n} \frac{1}{a_i}\right) \ge n^2.$$

ESERCIZIO 1.5.4. Sia (X, d) uno spazio metrico e definiamo la funzione $\delta: X \times X \to [0, \infty)$

$$\delta(x,y) = \frac{d(x,y)}{1 + d(x,y)}, \quad x, y \in X.$$

Verificare che (X, δ) è uno spazio metrico.

Esercizio 1.5.5. Sia $d: \mathbb{R}^2 \times \mathbb{R}^2 \to [0, \infty)$ la funzione così definita:

$$d(x,y) = \left\{ \begin{array}{ll} |x-y| & \text{se } x,y \text{ e 0 sono collineari,} \\ |x|+|y| & \text{altrimenti.} \end{array} \right.$$

Provare che d è una metrica su \mathbb{R}^2 e descrivere (graficamente) le palle in questa metrica.

ESERCIZIO 1.5.6. Sia $d: \mathbb{R}^n \times \mathbb{R}^n \to [0, \infty), n \geq 1$, la funzione definita in ciascuno dei seguenti tre casi per $x, y \in \mathbb{R}^n$: A) $d(x, y) = |x - y|^{1/2}$; B) $d(x, y) = |x - y|^2$; C) $d(x, y) = \log(1 + |x - y|)$. Dire in ciascuno dei tre casi se d è una distanza su \mathbb{R}^n oppure no. Provare ogni affermazione.

ESERCIZIO 1.5.7. Sia $\alpha \in (0,1]$ e definiamo la funzione $d: \mathbb{R}^n \times \mathbb{R}^n \to [0,\infty)$

$$d(x,y) = |x - y|^{\alpha}, \quad x, y \in \mathbb{R}^n,$$

dove $|\cdot|$ indica la norma Euclidea di \mathbb{R}^n . Provare che (\mathbb{R}^n, d) è uno spazio metrico.

Esercizio 1.5.8. Sia $\ell^{\infty}(\mathbb{R})$ l'insieme di tutte le successioni reali limitate:

$$\ell^{\infty}(\mathbb{R}) = \{(a_n)_{n \in \mathbb{N}} \text{ successione in } \mathbb{R} \text{ limitata} \}.$$

Indichiamo con $\mathbf{x} = (a_n)_{n \in \mathbb{N}}$ un generico elemento di $\ell^{\infty}(\mathbb{R})$.

- 1) Verificare che $\ell^{\infty}(\mathbb{R})$ è uno spazio vettoriale reale con le usuali operazioni di somma e moltiplicazione scalare per le successioni.
- 2) Verificare che la funzione $\|\cdot\|_{\infty}:\ell^{\infty}(\mathbb{R})\to\mathbb{R}$ così definita

$$\|\mathbf{x}\|_{\infty} = \sup \{|a_n| \in \mathbb{R} : n \in \mathbb{N}\}$$

definisce una norma.

3) Verificare che la funzione $d_{\infty}: \ell^{\infty}(\mathbb{R}) \times \ell^{\infty}(\mathbb{R}) \to [0, \infty)$ così definita

$$d_{\infty}(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_{\infty}$$

è una distanza su $\ell^{\infty}(\mathbb{R})$.