## 北京理工大学(三)

## 概率与数理统计试题 (A卷)

| 座号_             | D. M. Li         | 班              | 级             |                                    | _ 学号                |                  | The          | 姓名                 |                       |            |
|-----------------|------------------|----------------|---------------|------------------------------------|---------------------|------------------|--------------|--------------------|-----------------------|------------|
| 不交出             | 【卷共 8 页<br>七页草稿纸 | い 八个ナ          | に題,满分         | 分 100 分                            | ;最后                 | 一页空白             | 纸为草稿         | 纸,可                | 斯下,考·                 | 试结束后       |
| 题号              | -                | =              | 三             | 四                                  | 五                   | 六                | 七            | 八                  | 总分                    | 核分         |
| 得分              |                  | î.             | 3             |                                    | (8)                 |                  |              |                    |                       |            |
| 签名              |                  |                |               |                                    |                     |                  |              |                    |                       |            |
| 附表:             |                  |                |               |                                    |                     |                  |              |                    |                       |            |
| Φ(1.64          | 5)=0.95, 0       | Þ(2)=0.97      | 72, Φ(1.      | 96)=0.975                          | 5, Φ(2.             | 83)=0.997        | 7, Φ(1.0     | 4) = 0.85          | 508, Φ( <sup>2</sup>  | 1.96) = 1, |
| $t_{0.05}(24)$  | ) = 1.7109,      | $t_{0.025}(24$ | ) = 2.063     | 9, $t_{0.05}(2)$                   | (5) = 1.7           | 081, $t_{0.025}$ | (25) = 2.    | 0595,;             | $\chi^2_{0.95}(24) =$ | :13.848,   |
|                 | l) = 36.415      |                |               |                                    |                     |                  |              |                    | 42 (8° B)             |            |
| X 0.05 (2       | ., – 50.112      |                |               | χ <sub>0.05</sub> (2               | <i>23)-37.</i><br>7 | 332              |              |                    |                       |            |
| 一、填             | 空题(12            | 分) [           | 得分            |                                    | ¥                   |                  |              |                    |                       |            |
| 1. 已知           | 事件 A, B          | 满足 P(z         | AB) = P(AB)   | $\overline{A}\cap \overline{B})$ , | 记 P(A)              | =p,则 P           | P(B) =       |                    |                       | · j        |
| 2. 一射           | 手对同一             | 目标独立           | <b>工</b> 重复地: | 进行四次                               | (射击,                | 若至少命             | 宁中一次         | 的概率                | 为80,贝                 | 刂该射手进      |
|                 | 欠射击的命            |                |               |                                    |                     |                  |              |                    | 81                    |            |
| 3. 设随           | 机变量 X            | 服从参数           | 数为1的          | 指数分布                               | ī,已知                |                  |              |                    |                       |            |
|                 | 机变量 X            |                |               |                                    |                     |                  |              |                    |                       |            |
|                 | 几变量 X-           |                |               |                                    |                     |                  |              |                    |                       |            |
| 6. 设X           | 服从参数             | 为1的剂           | 白松分布          | , Y 服从                             | 、参数为                | 12的泊村            | 公分布,         | 而且 X               | 与Y相I                  | 互独立,则      |
| P(max           | $x(X,Y) \neq 0$  | 0) =           | , P(          | $\min(X, Y)$                       | ) ≠ 0) =            | ¥                | •            |                    |                       |            |
| 7. 设 <i>X</i> , | Y是两个             | 相互独立           | 立的随机          | 变量,且                               | 且都服人                | 人 N(1,2),        | 则 <i>E</i> [ | $(X-Y)^2$          | ·]=                   |            |
| 8. 掷一札          | 均匀的骨             | 殳子 420         | 次,则邻          | <b>身到的点</b>                        | 数之和                 | 大于 154           | 0 的概率        | 区近似为               |                       |            |
|                 |                  |                |               |                                    |                     |                  |              |                    |                       | 别是样本均      |
|                 |                  |                |               |                                    |                     |                  |              |                    |                       | ·          |
|                 |                  |                |               |                                    |                     |                  |              |                    |                       | ]样本, 考虑    |
| 假设格             | <b>金验问题</b>      | $H_0: \mu = 0$ | $H_1: \mu$    | =1,若核                              | <u> </u>            | 巨绝域由             | $D = \{(X$   | $X_1, \cdots, X_9$ | $):3 \bar{X} \geq$    | 1.96} 确定。  |
|                 | ὰ验犯第−            |                |               |                                    |                     |                  |              |                    |                       |            |

二、(10分) 得分

口袋中有1个白球、1个黑球。从中任取1个,若取出白球,则试验停止;若取出黑球,则把取出的黑球放回的同时,再加入1个黑球,如此下去,直到取出的是白球为止,试求下列事件的概率:

1. 取到第n次,试验没有结束; 2. 取到第n次,试验恰好结束.



- 1. 设随机变量 X 服从二项分布 b(3, 0.5),  $Y=(X-1)^2$ , 求 Y 的分布律.
- 2. 设随机变量 X 的概率密度函数为

$$f(x) = \begin{cases} xe^{-\frac{x^2}{2}}, & x > 0\\ 0, & 其它 \end{cases}$$

求(1) X的分布函数 F(x); (2) P(X > 2).

四、(16分)

得分

1. 设随机变量(X,Y)的联合概率密度为

$$f(x,y) = \begin{cases} 3x, & 0 < x < 1, & 0 < y < x \\ 0, & 其它 \end{cases}$$

求: (1) X和 Y的边缘密度  $f_X(x)$  和  $f_Y(y)$ ; (2) Z = X + Y的概率密度  $f_Z(z)$ .

2. 设随机变量 X 与 Y 相互独立而且同分布,其中随机变量 X 的分布律为

$$P\{X=1\}=p, P\{X=0\}=1-p,$$

其中 0<p<1. 再设随机变量

$$Z = \begin{cases} 1 & X+Y$$
 为偶数 
$$0 & X+Y$$
 为奇数

(1) 求随机变量(X, Z)的联合分布律; (2)问p取什么值时, 随机变量X与Z相互独立?

- 1. 设X服从均匀分布U(0,2), 令Y=|X-1|. 求:
  - (1) E(Y)和 D(Y); (2) E(XY); (3) X和 Y 的相关系数  $\rho_{XY}$ .
- 2. 设某种商品每周的需求量  $X\sim U(10,30)$  (单位:千克),经销商进货数量是[10,30]中的某个数。商店每销售 1 千克可获利 500 元,若供大于求,则剩余的每千克产品亏损 100 元;若供不应求,则可从外部调剂供应,此时经调剂的每千克商品仅获利 300 元。问:为了使商店每周的平均利润最大,每周的进货量是多少千克?

六、(8分)

得分

设总体 X 服从正态分布  $N(\mu, \sigma^2)$  、  $X_1, X_2, ..., X_m, X_{m1}$  是来自该总体的样本,  $\overline{X} = \frac{1}{n}\sum_{i=1}^n X_i$  , 试 问 :  $\frac{(X_{m1} - \mu)^2}{\sigma^2} + \frac{1}{\sigma^2}\sum_{i=1}^n (X_i - \overline{X})^2$  的分布是什么?并给出证明。

| 也、 | (12分) | 得分 |  |
|----|-------|----|--|
|    |       |    |  |

设总体 X 在  $[\theta, 2\theta]$  上服从均匀分布, $\theta$ >0 未知。 $X_1, X_2, ..., X_n$  是 X 的一个样本。 $x_1, x_2, ..., x_n$  是相应的样本值。求。1.  $\theta$  的矩估计。2.  $\theta$  的最大似然估计。

| (14 | 分)  |
|-----|-----|
|     | (14 |

得分

- 1. 叙述自由度为n的 $\chi^2$ 分布上 $\alpha$ 分位点的定义.
- 2. 某种零件的长度服从正态分布  $N(\mu, \sigma^2)$ , 按规定其方差不得超过  $\sigma_0^2 = 0.016$ . 现从一批零件中随机抽取 25 件测量其长度,得其样本方差为 0.025. 问在显著性水平  $\alpha = 0.05$  下,能否推断这批零件合格?

## 概率与数理统计试题 (A卷)-参考答案(三)

一、填空题(12分,每空1分)

1. 1-p; 2. 2/3; 3.  $\ln 2$ ; 4. 3; 5. 0.9772; 6.  $1-e^{-3}$ ,  $1-e^{-1}-e^{-2}+e^{-3}$ ; 7. 4; 8. 0.0228;

9. 
$$(\frac{\sqrt{n-1}S}{\sqrt{\chi_{\alpha/2}^2(n-1)}}, \frac{\sqrt{n-1}S}{\sqrt{\chi_{1-\alpha/2}^2(n-1)}});$$
 10. 0. 05, 0. 1492;

二、(10分)

解:记事件4为"第i次取到黑球",i=1,2,...。

(1) 所求概率为 $P(A_1A_2 \cdots A_n)$ , 用乘法公式得:

$$P(A_1A_2\cdots A_n) = \frac{1}{2}\cdot\frac{2}{3}\cdots\frac{n}{n+1} = \frac{1}{n+1}$$

(2) 所求概率为 $P(A_1A_2\cdots \overline{A}_n)$ , 用乘法公式得:

$$P\left(A_1 A_2 \cdots \overline{A}_n\right) = \frac{1}{2} \cdot \frac{2}{3} \cdots \frac{n-1}{n} \cdot \frac{1}{n+1} = \frac{1}{n(n+1)}$$

三、(10分)

解: 1.

| X           | 0   | 1   | 2   | 3   |
|-------------|-----|-----|-----|-----|
| $Y=(X-1)^2$ | 1   | 0   | 1   | 4   |
| P           | 1/8 | 3/8 | 3/8 | 1/8 |

所以Y的分布律为

| Y | 0   | 1   | 4   |
|---|-----|-----|-----|
| P | 3/8 | 1/2 | 1/8 |

2. 解: (1) X的分布函数 $F_X(x)$ 为

$$F(x) = \int_{-\infty}^{x} f(t)dt = \begin{cases} \int_{0}^{x} te^{-\frac{t^{2}}{2}}dt, & x > 0 \\ 0, & \text{#$\dot{\Xi}$} \end{cases} = \begin{cases} 1 - e^{-\frac{x^{2}}{2}}, & x > 0 \\ 0, & \text{#$\dot{\Xi}$} \end{cases}$$

(2) 
$$P(X > 2) = 1 - P(X \le 2) = 1 - F(2) = 1 - F(2) = 1 - (1 - e^{-\frac{2^2}{2}}) = e^{-2}$$

四、(16分)

1. 解: (1)

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} \int_0^x 3x dy, 0 < x < 1 \\ 0, & \text{ 其他} \end{cases} = \begin{cases} 3x^2, 0 < x < 1 \\ 0, & \text{ 其他} \end{cases}$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \begin{cases} \int_{y}^{1} 3x dx, 0 < y < 1 \\ 0, & \text{ 其他.} \end{cases} = \begin{cases} \frac{3}{2} (1 - y^{2}), 0 < y < 1 \\ 0, & \text{ 其他.} \end{cases}$$

(2) 
$$f_{z}(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx = \begin{cases} \int_{z/2}^{z} 3x dx, & 0 < z < 1 \\ \int_{z/2}^{1} 3x dx, & 1 \le z < 2 \\ 0, & \text{ 其他.} \end{cases} \begin{cases} \frac{9}{8} z^{2}, & 0 < z < 1 \\ \frac{3}{2} - \frac{3}{8} z^{2}, & 1 \le z < 2 \\ 0, & \text{ 其他.} \end{cases}$$

2. 
$$P\{X=0, Z=0\} = P\{X=0, Y=1\} = P\{X=0\}P\{Y=1\} = p(1-p);$$

$$P\{X=0, Z=1\} = P\{X=0, Y=0\} = P\{X=0\}P\{Y=0\} = (1-p)^2;$$

$$P\{X=1, Z=0\} = P\{X=1, Y=0\} = P\{X=1\}P\{Y=0\} = p(1-p);$$

$$P\{X=1, Z=1\} = P\{X=1, Y=1\} = P\{X=1\}P\{Y=1\} = p^2;$$

即随机变量(X, Z)的联合分布律为

| Z                                     | 0      | 1         |
|---------------------------------------|--------|-----------|
| 0                                     | p(1-p) | $(1-p)^2$ |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | p(1-p) | $p^2$     |

## (2) 将 X 和 Z 的边缘分布律写出:

| Z             | 0       | 1           | $p_{i}$ . |
|---------------|---------|-------------|-----------|
| $\frac{X}{0}$ | p(1-p)  | $(1-p)^2$   | 1-p       |
| 1             | p(1-p)  | $p^2$       | p         |
| $p_{.j}$      | 2p(1-p) | $1-2p+2p^2$ |           |

由独立性的性质可得:

$$P\{X=1, Z=0\} = p(1-p) = P\{X=1\}P\{Z=0\} = p \cdot 2p(1-p),$$

解方程 
$$p(1-p) = p \cdot 2p(1-p)$$
, 得  $p = \frac{1}{2}$ .

五、(18分)

解: 1. 由题设, X的概率密度为

$$f(x) = \begin{cases} \frac{1}{2}, & 0 < x < 2; \\ 0, & \text{ 其他 } . \end{cases}$$

$$E(Y) = E(|X-1|) = \int_{-\infty}^{\infty} |x-1| f(x) dx = \int_{0}^{2} |x-1| \frac{1}{2} dx = \frac{1}{2}.$$

$$E(Y^{2}) = E(|X-1|^{2}) = \int_{-\infty}^{\infty} |x-1|^{2} f(x) dx = \int_{0}^{2} |x-1|^{2} \frac{1}{2} dx = \frac{1}{3}.$$
所以  $D(Y) = E(Y^{2}) - E^{2}(Y) = \frac{1}{3} - \frac{1}{2} - \frac{1}{$ 

(2) 
$$E(XY) = E(X|X-1|) = \int_{-\infty}^{+\infty} x |x-1| f(x) dx = \int_{0}^{2} x |x-1| \frac{1}{2} dx = \int_{-1}^{1} (y+1) |y| \frac{1}{2} dy = \frac{1}{2}$$

(3) 显然有 
$$E(X)=1$$
,  $D(X)=1/3$ , 所以  $cov(X, Y)=E(XY)-E(X)E(Y)=\frac{1}{2}-1\times\frac{1}{2}=0$ 

因此 
$$\rho_{XY} = \frac{\text{cov}(X,Y)}{\sqrt{DX}\sqrt{DY}} = 0$$

2. 设每周进货量为 a, 每周的利润为 Y, 则 Y 满足

$$Y = \begin{cases} 500a + 300(X - a), & a \le X \\ 500X - 100(a - X), & a > X \end{cases} = \begin{cases} 300X + 200a, & a \le X \\ 600X - 100a, & a > X \end{cases}$$

已知 
$$X$$
 的密度函数是  $f(x) = \begin{cases} \frac{1}{20}, & 10 \le x \le 30\\ 0, & \text{其他} \end{cases}$ 

因此

$$E(Y) = \int_{10}^{a} (600x - 100a) \frac{1}{20} dx + \int_{a}^{30} (300x + 200a) \frac{1}{20} dx = -\frac{15}{2} a^2 + 350a + 5250$$
 求导数并令其为 0 得:  $-15a + 350 = 0$ ,解得  $a = \frac{70}{3}$ 

六、(8分)

解:由于
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$
,从而,
$$\frac{(n-1)S^2}{\sigma^2} = \frac{n-1}{\sigma^2} \cdot \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2 = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2 \sim \chi^2(n-1)$$
。

再由于 $X_{n+1}\sim N(\mu,\sigma^2)$ ,从而, $\frac{X_{n+1}-\mu}{\sigma}\sim N(0,1)$ 。那么,

$$\left(\frac{X_{n+1}-\mu}{\sigma}\right)^2 \sim \chi^2(1) \circ$$

由独立性,利用 $\chi^2$ 分布可加性,得

$$\frac{\left(X_{n+1}-\mu\right)^2}{\sigma^2}+\frac{1}{\sigma^2}\sum_{i=1}^n\left(X_i-\overline{X}\right)^2\sim\chi^2(n).$$

七、(12分)

$$F(X) = \frac{3\theta}{2}$$
,用 $\overline{X}$ 代替 $F(X)$ ,得到 $\theta$  的矩估计为 $\hat{\theta} = \frac{2\overline{X}}{3}$ .

(2) 
$$i x_{(1)} = \min(x_1, x_2, ..., x_n), x_{(n)} = \max(x_1, x_2, ..., x_n), X$$
 的概率密度是

第3页共4页

$$f(x;\theta) = \begin{cases} 1/\theta & \theta \le x \le 2\theta, \\ 0 & \sharp \text{ 性.} \end{cases}$$

似然函数为

$$L(\theta) = \begin{cases} 1/\theta^{n} & \theta \leq x_{1}, x_{2}, \dots x_{n} \leq 2\theta, \\ 0 & \sharp \text{ 性.} \end{cases}$$

似然函数可写成

$$L(\theta) = \begin{cases} 1/\theta^{n} & \theta \leq x_{(1)} \leq x_{(n)} \leq 2\theta, \\ 0 & \text{其他.} \end{cases}$$

对于满足条件 $x_{(n)}/2 \le \theta \le x_{(1)}$  的 任意 $\theta$  有

$$L(\theta) = \frac{1}{\theta^n} \le \frac{1}{(x_{(n)}/2)^n},$$

所以 $\theta$  的最大似然估计值为

$$\hat{\theta} = x_{(n)} / 2 = \max_{1 \le i \le n} x_i / 2.$$

 $\theta$  的最大似然估计量为

$$\hat{\theta} = X_{(n)} / 2 = \max_{1 \le i \le n} X_i / 2.$$

八、(14分)

解:1. 对于给定的正数 $\alpha$ , $0<\alpha<1$ ,满足条件 $P(\chi^2>\chi^2_\alpha(n))=\alpha$ 的点 $\chi^2_\alpha(n)$ 称为自由度为n的 $\chi^2$ 分布上 $\alpha$ 分位点.

2. 
$$H_0: \sigma^2 \le 0.016$$
;  $H_1: \sigma^2 > 0.016$ 

检验统计量为 
$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$$

拒绝域为
$$W = \{(x_1, \dots, x_n) : \chi^2 \ge \chi_\alpha^2 (n-1)\}$$

查表得: 
$$\chi_{\alpha}^{2}(n-1) = \chi_{0.05}^{2}(24) = 36.415$$

由 
$$n = 25$$
,  $s^2 = 0.025$  计算得  $\chi^2 = \frac{24S^2}{0.016} = 37.5 > 36.415$ 

因此,拒绝 $H_0: \sigma^2 \leq 0.016$ .