Benemérita Universidad Autónoma de Puebla

Facultad de Ciencias de la Computación

Proc. Dig. de Imágenes

Arturo Olvera López aolvera@cs.buap.mx

Introducción

Imagen

Inicios del concepto imagen:

digital

Imágenes

• Primera Imagen (fotografía) capturada

Joseph Nicéphore Niépce 1825-1826

Imágenes Digitales

- Fundamento en el Procesamiento digital de este tipo de información:
 - Imagen: función bidimensional f(x,y) donde x, y son coordenadas espaciales (planos) y la amplitud de f para cada par (x,y) se llama intensidad o nivel de gris
- Cuando en una imagen x, y, f tienen valores finitos, ésta imagen es una imagen digital

Orígenes del Procesamiento de imágenes

- Primeras aplicaciones:
 - Periódicos: Transmisión de imágenes mediante cables submarinos
 - Sistema Bartlane para la transmisión de datos (Inglaterra-New York, 1920)

Impresoras telegráficas

1920

5 niveles de gris

Codificación en cintas 15 niveles de gris

PDI

- Comienza con la aparición de Computadoras digitales:
 - Transistor (Bell, 1948)
 - COBOL (Common Bussines-Oriented Language), FORTRAN (FORmula TRANslator), 1950-1960
 - Circuito Integrado (Texas inst., 1958)
 - Microprocesador (Intel, 1970)
 - Computadora personal (IBM, 1981)

Era Actual

- -GPUs, Tensor
- -Cómputo de alto desempeño
- -Super cómputo

PDI

- Primera computadora para PDI:
 - Jet Propultion Laboratory (Pasadena, Cal., 1964)

Primera Imagen transmitida por la sonda *Ranger 7*

Algunas áreas de aplicación PDI

Ultrasonido

Resonancia Magnética

- Basada en :
- Magnetismo atómico
- Radio frecuencias

PET

- Detección de contraste
- Basada en marcadores:
 - Fluoro-Deoxy Glucosa
- Receptor de rayos gamma

Termografía

Aplicaciones PDI

• Otras aplicaciones??

Fundamentos

- EE: Conjunto de ondas (senoidales)
 electromagnéticas que viajan a la velocidad de la luz
- Isaac Newton (Siglo XVII) -> La luz solar a través de un prisma emite un rayo de color (violeta-rojo)

 El EE se expresa en términos de la longitud de onda (λ) y frecuencia (ν)

$$\lambda = \frac{C}{\nu}$$
 c= velocidad de la luz (2.998 X 108 m/s)

Ondas electromagnéticas: Partículas viajando en forma de ondas, cada partícula tiene cierta cantidad de energía (fotónes)

- La energiá está dada por: E=hv, h=Constante de Planck (6.62606896×10⁻³⁴Js)
- De acuerdo a la longitud de onda, frecuencia y energía en las ondas, éstas son categorizadas en el EE:

Ojo Humano

Conos: 6-7 Millones (colores)

Bastones 75-150 millones (niveles bajos de iluminación)

• Colores que el ojo humano percibe en un objeto: Luz que un objeto refleja (rechaza)

-Refleja la luz cuya longitud de onda es 500-570*nm* -Absorbe la energía en las otras longitudes de onda

- La luz que carece de color se le denomina monocromática (acromática)
 - Este tipo de luz solo tiene el atributo intensidad
 - Escala de grises: [Negro, Blanco]

- La luz cromática (Color) abarca las ondas con longitud 0.43-0.79μm
 - Para describir la calidad de una fuente cromática de luz:
 - Radiancia: Cantidad total de energía que fluye desde la fuente de luz (medida en Watts)
 - Luminancia: Cantidad de energía que un observador percibe de la fuente de luz (media en Lumens)
 - Si se emite luz operando en la banda infrarroja, un observador no percibe luminancia, luminancia~0
 - Brillo: Descriptor subjetivo de la percepción de la luz (No hay unidades de medición, es una analogía de la noción de intensidad)

Captura de Imágenes Digitales

Adquisición de ID

- Para digitalizar una imagen es necesario usar algún dispositivo:
 - Intensidad de luz (Grises)
 - Reflexión (Color)
- Dispositivos:
 - Scanner
 - Cámaras Digitales

CCD (Coupled Charge Device)

Adquisición de ID

- CCD (Charge Coupled Device):
 - Registra la cantidad de luz que se refleja en la escena
 - Con un arreglo de CCD, se pueden digitalizar renglones de la escena
 - Digitalización:
 - Tono de Gris: Registra intensidad de luz
 - Reflexión: Cantidad

Captura de imágenes digitales

Modelo simple de la formación de una imagen

Modelo simple

- Una ID, es una función f(x,y) -> proporcional a la cantidad de luz que se refleja
- Cuando una imagen es generada por un proceso físico: 0<f(x,y)<∞
- En particular, f(x,y)=i(x,y)r(x,y)
 - Donde: *i*=iluminación, *r*=reflectancia

Sampling and Quantization

Sampling and Quantization

Sampling and Quantization

 Dependen de los arreglos de sensores utilizados en la captura

Representación de una ID

Representación de una ID

Representación de una ID

Rangos de grises

Resolución de intensidad y espacial

Resolución de intensidad

Number of storage bits for various values of N and k. L is the number of intensity levels.

N/k	1(L=2)	2(L=4)	3(L=8)	4(L=16)	5(L=32)	6(L=64)	7(L=128)	8 (L=256)
32	1,024	2,048	3,072	4,096	5,120	6,144	7,168	8,192
64	4,096	8,192	12,288	16,384	20,480	24,576	28,672	32,768
128	16,384	32,768	49,152	65,536	81,920	98,304	114,688	131,072
256	65,536	131,072	196,608	262,144	327,680	393,216	458,752	524,288
512	262,144	524,288	786,432	1,048,576	1,310,720	1,572,864	1,835,008	2,097,152
1024	1,048,576	2,097,152	3,145,728	4,194,304	5,242,880	6,291,456	7,340,032	8,388,608
2048	4,194,304	8,388,608	12,582,912	16,777,216	20,971,520	25,165,824	29,369,128	33,554,432
4096	16,777,216	33,554,432	50,331,648	67,108,864	83,886,080	100,663,296	117,440,512	134,217,728
8192	67,108,864	134,217,728	201,326,592	268,435,456	335,544,320	402,653,184	469,762,048	536,870,912

Resolución de intensidad

Grayscale (Intensity Images):

	,	, ,	
Chan.	Bits/Pix.	Range	Use
1	1	01	Binary image: document, illustration, fax
1	8	0255	Universal: photo, scan, print
1	12	04095	High quality: photo, scan, print
1	14	016383	Professional: photo, scan, print
1	16	065535	Highest quality: medicine, astronomy

Resolución espacial

133 DPI

2400 DPI

Resolución espacial (Ejemplo)

Resolución de intensidad (Ejemplos)

a b c d

FIGURE 2.21
(a) 452 × 374,
256-level image.
(b)-(d) Image
displayed in 128,
64, and 32
intensity levels,
while keeping the
image size
constant.

Resolución de intensidad (Ejemplos)

Modelos de color

Modelos de color

Modelos de color

Modelos de color RGB

RGB Value						
Point	Color	R	G	B		
S	Black	0.00	0.00	0.00		
R	Red	1.00	0.00	0.00		
Y	Yellow	1.00	1.00	0.00		
G	Green	0.00	1.00	0.00		
C	Cyan	0.00	1.00	1.00		
В	Blue	0.00	0.00	1.00		
\mathbf{M}	Magenta	1.00	0.00	1.00		
W	White	1.00	1.00	1.00		
K	50% Gray	0.50	0.50	0.50		
\mathbf{R}_{75}	75% Red	0.75	0.00	0.00		
\mathbf{R}_{50}	50% Red	0.50	0.00	0.00		
\mathbf{R}_{25}	25% Red	0.25	0.00	0.00		
P	Pink	1.00	0.50	0.50		

Representación ID en color RGB

Modelos de color Conjunto de colores seguros

Number System	Color Equivalents					
Hex	00	33	66	99	CC	FF
Decimal		51	102	153	204	255

999999

44444

FIGURE 6.10

(a) The 216 safe RGB colors. (b) All the grays in the 256-color RGB system (grays that are part of the safe color group are shown underlined).

Otros modelos de Color

CMY (Cian, Magenta, Yellow)

- Usualmente utilizado en impresión

Color (Tono)

Pureza Brillo

HSI (Hue, Saturation, Intensity), (Ton., Pur., intens.)

-El más cercano a la manera en que se interpreta el color en los humanos

HSI

