Deloitte Auto ML project

Summer - 2018

Contents:

- 1. Problem Statement
- 2. Optimization methods
- 3. AutoML Python implementations
 - a. AutoWEKA
 - b. Auto sklearn
 - c. TPOT
- 4. Our proposed AutoML approach for time-series forecasting

Problem statement

AutoML problem

Criteria of good model:

- 1) High quality
- 2) Interpretation

Optimization space

- feature selection
- feature engineering
- data transformation
- model selection
- hyperparameter optimization
- parameter optimization (fitting)

AutoML state-of-the-art approaches

Sequential optimization

Global optimization

Mega - hyperparameter: combination of parameters of full pipeline

Example (discrete parameters):

The idea of conditional hyperparameters:

Review of Optimization methods

Review of optimization methods

Popular approaches of hyperparameters tuning:

- Grid search
- 2. Random search
- 3. *SMBO*:
 - a. Greedy algorithms
 - b. Bayesian optimization:
 - i. Gaussian processes
 - *ii.* Random Forest (or ensembles)
 - iii. Hybrid (Parzen estimator) -TPE
 - c. Hyperband (Bandit-Based Approach, RL)
- **4.** Experience of experts

Approximation of loss function

f(heta) - loss function, e.g. error on validation set

parameters of the model

- Where is the minimum of f?
- Where should we evaluate the function next?

SMBO

1. Approximation of loss function

We have to construct model that approximate >> How to deal with this problem? f and construct **confidence intervals**

Gaussian Processes

Ensemble of models

Bagging, bootstrap

Choose base models (e.g. Random forest)

Train and make predictions

Calculate mean and std

Construct distribution Normal(mean, std)

Example of construction confidence interval using ensemble approach:

SMBO

2. How to choose next point (next parameters) to evaluate function (loss function)?

We need to construct function G(parameters) that can somehow measure that we go to minimum

- 1. Find $\theta^* = argminf(\theta)$
- 2. Calculate $G(parameters|\theta^*)$
- 3. Find new point $\tilde{\theta}$ based on knowledge of $G(parameters|\theta^*)$ Example: argmax G, median of distribution based on values of G

Example of the G function: Expected Improvement

Calculate positive improvement function

$$I_{f_{min}(\theta)} := max\{f_{min} - f(\theta), 0\}$$

Problem! We can't calculate f directly

Solution

Calculate mathematical expectation of improvement function

$$\mathbb{E}[I_{f_{min}(heta)}] := \int_{-\infty}^{f_{min}} max\{f_{min} - f(heta), 0\}p(f| heta)df$$

SMBO

3. Evaluate loss for new point sampled according El function

Loss function (for which we want to find min)

SMAC (special name for SMBO applied to AutoML)

Main concepts:

- Random forest of regression trees to model the objective function
- Normal distribution with predictive mean and variance obtained by individual trees to construct predictive distribution

Advantages:

- perform well with discrete and high-dimensional input data
- handles conditional parameters (a graph-structured generative process)

Implementations (Python):

• SMAC3

TPE

Main concepts:

- construct prior posterior distribution of parameters
- kind of hybrid algorithm with GP for continuous variables and discrete distributions for discrete variables
- also uses regression trees
- as SMAC uses graph-structured generative process

Implementations (Python):

- Hyperopt
- Optunity

Auto - ML algorithms (python packages)

AutoML algorithms (python packages)

AutoWEKA (2.0)

Main concepts:

- Classification/regression algorithms;
- Performs only feature selection;
- The idea of conditional hyperparameters;
- 786 hyperparameters;
- TPE / SMAC (authors claim SMAC is better)

Auto-sklearn

Auto-sklearn approach

- extension of AutoWEKA;
- meta-learning is used as a warmstart for the Bayesian optimization procedure;
- tree based Bayesian models (SMAC);
- > an automated ensemble construction step allows to use all classifiers that were found by Bayesian optimization;

Meta-learning - finding good instantiations of machine learning frameworks

1. Offline stage:

2. Online stage:

TPOT

Process

An example tree-based pipeline from TPOT

Genetic Programming for hyperparameter optimization

Time Series Auto ML - proposed approach

Adaptation of auto-sklearn approach for time-series analysis

References:

Future work

Future work

Comparative analysis of Auto-sklearn, TPOT, Auto_ML and human created expert models on Time Series data sets

TS-Fresh + Auto - sklearn

Ensemble of TS-Fresh + Auto - sklearn and Sarimax

TS-Fresh + Deep Learning approach

Thank you for your attention!