CALCULO AVANZADO / MATEMATICA AVANZADA

DERIVACIÓN E INTEGRACIÓN DE FUNCIONES VECTORIALES PARTE 1

1. Derivación de funciones vectoriales.

Definición general de la derivada; si $\vec{r}(t)$ es una función vectorial entonces:

$$\vec{r}'(t) = \lim_{\Delta t \to 0} \frac{\vec{r}(t + \Delta t) - \vec{r}(t)}{\Delta t}$$

Teorema general para derivadas:

i) En el plano, para: $\vec{r}(t) = f(t)\hat{i} + g(t)\hat{j}$, enfonces:

$$\vec{r}'(t) = f'(t)\hat{\imath} + g'(t)\hat{\jmath}$$

ii) En el espacio, para: $\vec{r}(t) = f(t)\hat{i} + g(t)\hat{j} + h(t)\hat{k}$, enfonces:

$$\vec{r}'(t) = f'(t)\hat{\imath} + g'(t)\hat{\jmath} + h'(t)\hat{k}$$

Demostración.

Aplicando la definición general de la derivada para una función vectorial en el plano tenemos que:

$$\vec{r}'(t) = \lim_{\Delta t \to 0} \frac{f(t + \Delta t)\hat{\imath} + g(t + \Delta t)\hat{\jmath} - f(t)\hat{\imath} - g(t)\hat{\jmath}}{\Delta t}$$

Ordenando las componentes y aplicando propiedades tanto de limites como de fracciones, se tiene que:

$$\vec{r}'(t) = \lim_{\Delta t \to 0} \frac{f(t + \Delta t) - f(t)}{\Delta t} \hat{i} + \lim_{\Delta t \to 0} \frac{g(t + \Delta t) - g(t)}{\Delta t} \hat{j}$$

Por lo tanto, se concluye que:

$$\vec{r}'(t) = f'(t)\hat{\imath} + g'(t)\hat{\jmath}$$

*Esta demostración aplica de igual manera para funciónes vectoriales en el espacio.

NOTA: Las derivadas de orden superior se obtiene derivando sucesivamente las funciones componente:

$$\vec{r}''(t) = f''(t)\hat{\imath} + g''(t)\hat{\jmath} + h''(t)\hat{k}$$

En el espacio tridimensional

Reglas de derivación – funciones vectoriales.

i.	$\frac{d}{dt}[c\mathbf{r}(t)] = c\mathbf{r}'(t)$	Múltiplo escalar
ii.	$\frac{d}{dt}[\mathbf{r}(t) \pm \mathbf{u}(t)] = \mathbf{r}'(t) \pm \mathbf{u}'(t)$	Suma y diferencia
iii.	$\frac{d}{dt}[f(t)\mathbf{u}(t)] = f'(t)\mathbf{u}(t) + f(t)\mathbf{u}'(t)$	Producto escalar
iv.	$\frac{d}{dt}[\mathbf{r}(t)\cdot\mathbf{u}(t)] = \mathbf{r}'(t)\cdot\mathbf{u}(t) + \mathbf{r}(t)\cdot\mathbf{u}'(t)$	Producto punto
v.	$\frac{d}{dt}[\mathbf{r}(t) \times \mathbf{u}(t)] = \mathbf{r}'(t) \times \mathbf{u}(t) + \mathbf{r}(t) \times \mathbf{u}'(t)$	Producto cruz

Donde:

c es una constante.

f(t) es una función escalar.

 $\mathbf{r}(t)$ y $\mathbf{u}(t)$ son funciones vectoriales.