Macroeconomics, PhD core Lecture #2

Julieta Caunedo

Lecture Road Map

- ► Transition paths
- Recursive formulation
- Computation
- How do we confront the neoclassical growth model to the data?
- Calibration and accounting exercises.

Dynamics

- ▶ Add a technology level z so that output is zf(k)
- ► FOC

$$c_{t} : u'(c_{t}) = \lambda_{t}$$

$$k_{t+1} : \beta \lambda_{t+1} \left[zf'(k_{t+1}) + (1 - \delta) \right] = \lambda_{t}$$

$$TVC : \lim_{T \to \infty} \beta^{T} \lambda_{T} k_{T+1} = 0$$

$$c_{t} + x_{t} + g_{t} \leq zf(k_{t})$$

$$k_{t+1} \leq x_{t} + (1 - \delta)k_{t}$$

- One could describe the dynamics in terms of consumption or of its shadow value.
- Define

$$u'(c(\lambda)) \equiv \lambda$$

and assume $g_t = g$ "small" for now.

Key Conditions

$$\beta \lambda_{t+1} \left[z f'(k_{t+1}) + (1-\delta) \right] = \lambda_t$$
 (Euler)

$$c_t + k_{t+1} - (1 - \delta)k_t + g_t \le zf(k_t)$$
 (Feasibility)

- ► Phase Diagram? (review?)
- ▶ We can't solve the system of non-linear equations explicitly.
- ► BUT.. you can do it in the computer. https://python.quantecon.org/cass_koopmans_1.html

- Finite difference methods (shooting algorithm)
- Approximate k and c (or λ) with N discrete points in the time dimension. Denote the distance between grid points Δt .
- Let (k_n, c_n) be a point in the grid
- Use the equations in difference that characterize the optimum

$$c_{n+1} = \beta c_n \left[z f'(f(k_n) - (1 - \delta)k_n - c_n) + (1 - \delta) \right]$$

$$k_{n+1} = f(k_n) - (1 - \delta)k_n - c_n$$

and k_0 given

Bringing it to the data: dynamics

Algorithm:

- 1. Guess *c*₀
- 2. obtain (c_n, k_n) for n = 1, ..., N by running the equations above forward
- 3. If the sequence converges to c^* , k^* then you have the correct saddle path. If not, update c_0 and go back to 1.

Sequential problem

$$\max_{\{c_t, k_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t)$$

subject to

$$c_t + k_{t+1} = f(k_t) + (1 - \delta)k_t$$

 c_t , $k_{t+1} \ge 0$ and $k_0 > 0$ given

Value function

$$V(k_0) = \max_{\{(c_t, k_{t+1}) \in \Gamma(k_t)\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t)$$

where

$$\Gamma(k_t) = \{ (c_t, k_{t+1}) : c_t \ge 0, k_{t+1} \ge 0, c_t + k_{t+1} \le f(k_t) + (1 - \delta)k_t \}$$

► Recursive formulation

$$V(k_0) = \max_{(c_0, k_1) \in \Gamma(k_0)} u(c_0) + \beta V(k_1)$$

► In general,

$$V(k) = \max_{(c,k') \in \Gamma(k)} u(c) + \beta V(k')$$

where k is the state variable (or a set of state variables).

► Using differentiability of *u*, the solution to this problem satisfies,

$$k' = f(k) + (1 - \delta)k - c$$
$$\frac{\partial u(c)}{\partial c} = \beta \frac{\partial V(k')}{\partial k}$$

and from the envelope condition

$$\frac{\partial V(k')}{\partial k} = \frac{\partial u(c')}{\partial c} \left[z \frac{\partial f(k')}{\partial k} + (1 - \delta) \right]$$

you can recover the Euler equation.

Numerical solution

- ▶ The solution to this problem is a function $g: K \to K$ such that k' = g(k) and $V^*: K \to \mathbb{R}^+$ (or some bounded subset).
- ▶ We typically construct approximations of g and V numerically. Methods differ on how to approximate function of interest.
- General algorithms:
 - value function iteration
 - policy function can be solved from euler equations directly

Set of non-linear equations to be solved over the state space K (euler eq.)

$$\frac{\partial u(c)}{\partial c} = \beta \frac{\partial u(c')}{\partial c} \left[z \frac{\partial f(k')}{\partial k} + (1 - \delta) \right]$$

$$\frac{\partial u(f(k) + (1 - \delta)k - k')}{\partial c} =$$

$$\beta u'(f(k')(1 - \delta)k' - k'') \left[\frac{\partial f(k')}{\partial k} + (1 - \delta) \right]$$

Discretize K in N nodes, solve the system of equations. Make sure $k = k^*$ belongs to the set K.

$$\begin{split} \frac{\partial u(f(k)+(1-\delta)k-g(k))}{\partial c} &= \\ \beta u'(f(g(k))+(1-\delta)g(k)-g(g(k)))[\frac{\partial f(g(k))}{\partial k}+(1-\delta)] \end{split}$$

- 1. Discretize the state space K.
- 2. Guess for the value function $V_0(k)$
- 3. Use an optimization algorithm to solve for k'(k)
- 4. Compute

$$V_1(k) = u(f(k) + k(1 - \delta) - k'(k)) + \beta V_0(k'(k))$$

- lacktriangle various methods to approximate $V_0({\it k}')$ for "off-grid" points.
- 5. Check the distance between $V_0(k)$ and $V_1(k)$. If larger than a given tolerance update $V_0(k) = V_1(k)$ and go back to 3. Otherwise, stop.

With $u(c) = \ln(c)$ and full depreciation $\delta = 1$, you can do it by hand!

Bringing it to the data: steady state

- Suppose we want to use the neoclassical model to provide quantitative assessments.
 - 1. What is the role of the capital output ratio ...
 - 2. What is the role of productivity

for differences in

output per capita across countries?

Choose functional forms for technology and preferences where parameters have clear economic interpretations, i.e.

$$u(c_t) = \frac{c_t^{1-\sigma} - 1}{1-\sigma}$$

$$f(k) = zk_t^{\alpha}$$

- Set z = 1 in the US for now, (level shifter only).
- We have four parameters to choose, σ , δ , β , α .

Bringing it to the data

- Literature suggest two approaches:
 - Estimation
 - Calibration
- Why not (always) estimate?
 - model is an abstraction in which some features have been deliberately abstracted away from.
 - (many) standard formal statistical procedures use criteria that does not necessarily make economic sense.
- Alternative: choose the aspects of the data that your model was designed to capture.
- Key idea of calibration: choosing parameters boils down to choosing moments in the data to match.
- You can think of calibration as an exactly identified GMM estimation.

- ▶ Model is designed to explain the capital accumulation process.
- Key stats:

$$\frac{k}{y}, \frac{x}{y}, r$$

- Think of US post WWII as fluctuations around s.s., i.e. take averages to calibrate the s.s.
- ▶ 1 period, 1 year, which gives (data)

$$\frac{k}{y} \approx 2.5, \frac{x}{y} \approx 0.2, r \approx 0.04$$

▶ 4 parameters: σ , δ , β , α , but 3 moments!

Bringing it to the data: steady state

- Identification: σ does not affect the s.s., so it cannot be identified from s.s. moments. Estimates in the data range $\sigma=[1,2.5]$. Use $\sigma=1$, log utility
- Targets

$$\frac{k}{y} \approx 2.5, \frac{x}{y} \approx 0.2, r \approx 0.04$$

Steady state conditions

$$\frac{x}{y} = \delta \frac{k}{y} \approx 0.2$$

$$r = \alpha \frac{y}{k} \approx 0.04$$

$$\beta [r + (1 - \delta)] = 1$$

How much of the observed differences in income per capita are accounted for...

- differences in z?
- differences in k/y?

$$Y_t = A_t K_t^{\alpha} H_t^{1-\alpha}$$

 Y_t output, K_t physical capital, H_t "quality-adjusted" labor force, α capital share, A_t TFP, Total Factor Productivity.

Estimate? Orthogonality between TFP and inputs,...VERY unlikely.

$$\ln(Y_t) = \underbrace{\alpha}_{\beta_k} \ln(K_t) + \underbrace{(1-\alpha)}_{\beta_H} \ln(H_t) + \underbrace{\ln(A_t)}_{\epsilon}.$$

Income accounting: framework.

Important take-away from one-sector growth model:

differences in TFP induce differences in K.

but $\frac{\mathcal{K}}{Y}$ is independent from TFP in steady state (s.s.)!

$$1 = \mathsf{discount}[\underbrace{\alpha \frac{Y}{K}}_{\mathsf{MPK}} + (1 - \mathsf{depreciation})] \tag{Euler}$$

Output per worker

$$\frac{Y}{L} = Z \left(\frac{K}{Y}\right)^{\frac{\alpha}{1-\alpha}} \frac{H}{L}$$
 where $Z = A^{\frac{1}{1-\alpha}}$.

In logs

$$\ln\left(\frac{Y}{L}\right) = \ln(Z) + \frac{\alpha}{1-\alpha} \ln\left(\frac{K}{Y}\right) + \ln\left(\frac{H}{L}\right).$$

Income Accounting: Results

Country	$\frac{Y}{L}$	$\left(\frac{K}{Y}\right)^{\frac{\alpha}{1-\alpha}}$	H	Z	share due to TFP
Singapore	1.01	1.12	1.06	0.84	0.59
United States	1.00	1.00	1.00	1.00	0.03
France	0.82	1.33	0.85	0.72	0.61
Germany	0.77	1.18	0.98	0.67	0.64
China, Hong Kong SAR	0.76	1.41	0.87	0.62	0.67
United Kingdom	0.72	1.21	1.01	0.59	0.67
Republic of Korea	0.63	1.21	0.99	0.52	0.69
Japan	0.59	1.22	0.96	0.50	0.70
Argentina	0.40	0.98	0.81	0.50	0.61
Mexico	0.35	1.16	0.73	0.41	0.67
Botswana	0.32	1.17	0.77	0.35	0.72
South Africa	0.30	1.08	0.75	0.37	0.69
Brazil	0.25	1.17	0.79	0.27	0.77
Thailand	0.24	1.18	0.73	0.28	0.76
China	0.19	1.04	0.71	0.26	0.74
Indonesia	0.18	1.30	0.62	0.22	0.79
India	0.13	1.06	0.57	0.22	0.73
Kenya	0.07	0.85	0.62	0.13	0.80
Malawi	0.02	0.61	0.52	0.06	0.84
Average	0.35	1.14	0.71	0.40	
1/Average	2.88	0.88	1.40	2.48	0.67

Github repo to play with the data.

Under the hood of the aggregates

Structural change: reallocation out of agriculture, into manufacturing, into services

Figure 1: Sectoral Shares of Employment and Value Added -Selected Developed Countries 1800-2000

Under the hood of the aggregates

Disparities in agricultural productivity

Larger prod, gaps in agriculture than elsewhere in the economy.

Productivity Gaps in Agriculture vs. Aggregate in 2017

