

§6.8: Indeterminate Forms & L'Hôpital's Rule

Ch 6: Exponentials, Logs, & Inverse Trig Functions
Math 5B: Calculus II

Dr. Jorge Eduardo Basilio

Department of Mathematics & Computer Science Pasadena City College

Class #9 Notes

March 21, 2019 Spring 2019 §6.8

Dr. Basilio

Jutline

Guiding Questions

Indeterminate Forms

L'Hôpital's Rule

) OI 00/C

 $)\cdot\infty$

 $\infty - \infty$

 0^0 , ∞^0 , or 1^∞

Outline

- Guiding Questions
- 2 Indeterminate Forms
- 3 L'Hôpital's Rule
- 4 Type 0/0 or ∞/∞
- 5 Type $0 \cdot \infty$
- 6 Type $\infty \infty$
- 7 Type 0^0 , ∞^0 , or 1^∞
- 8 Applications of L'Hôpital's Rule

66.8

§6.8

Dr. Basilio

Outline Guiding

ing tions

minate

Guiding Questions for §6.8

Guiding Question(s)

What are indeterminate forms?

What are applications of L'Hôpital's Rule?

What is L'Hôpital's Rule?

§6.8

Dr. Basilio

Guiding Questions

Introducing L'Hôpital's Rule

Back to limits

- In the beginning of Calculus, we studied limits of form $\frac{0}{0}$ since this is what happens in the definition of the derivative.
- For example, if we want to find the slope of the tangent line of the function $f(x) = x^2$, we must compute:

$$\lim_{h\to 0} \frac{(x+h)^2 - x^2}{h} = \frac{0}{0}$$
 when we plug-in $h = 0$

 For many functions, we can use algebra techniques to evaluate them: for example,

$$\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{(x^2 + 2xh + h^2) - x^2}{h} = \lim_{h \to 0} \frac{2xh + h^2}{h}$$
$$= \lim_{h \to 0} 2x + h = 2x.$$

§6.8

Dr. Basilio

Outline

Guiding Questions

Indeterminate Forms

L'Hôpital's Rule

,, o oi ∞ ,

 $\cdot \infty$

 $\circ - \infty$

 0^0 , ∞^0 , or 1^∞

Introducing L'Hôpital's Rule

Back to limits

• A important example from Calc 1 was the derivative of sin(x):

$$\frac{d}{dx}[\sin(x)] = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

which was solved by either a geometric argument or using some trigonometric identities.

• But there are many examples of limits of the form $\frac{0}{0}$ where we can't evaluate with previous tricks. For example,

$$\lim_{x \to 1} \frac{\ln(x)}{x - 1} \quad \text{or} \quad \lim_{x \to 0} \frac{\tan(x)}{x^3}$$

• L'Hôpital's Rule will give us a new technique to help us evaluate such limits

§6.8

Dr. Basilio

Outline

Guiding Questions

Indeterminate Forms

L'Hôpital's Rule

/0 or ∞/∞

 $0\cdot\infty$

 $\infty - \infty$

, ∞^0 , or 1^∞

Introducing L'Hôpital's Rule

Limits like $\frac{0}{0}$ come up often and are given a special name: indeterminate forms. There are other limits that can be found using similar tricks.

Goal: Evaluate
$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

Definition 1: Indeterminate Forms

• An indeterminate form is a limit of the above form that results with one of the following when plugging in x = a:

• Fractions:
$$\frac{0}{0}$$
, $\frac{\infty}{\infty}$

• Products: $0 \cdot \infty$

• Differences: $\infty - \infty$

• Powers: 0^0 , ∞^0 , 1^∞

§6.8

Dr. Basilio

Outline

Guiding Questions

Indeterminate Forms

L'Hôpital's Rule

or ∞/∞

 $|\cdot \infty|$

 $-\infty$

 0^0 , ∞^0 , or 1^∞

L'Hôpital's Rule

Theorem 1: L'Hôpital's Rule

(a) Type $\frac{0}{0}$: Assume that f and g are differentiable functions on an open interval I containing $a \in \mathbb{R}$. If f(a) = g(a) = 0 and $g'(x) \neq 0$ on I (except possibly at a), then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

provided both limits exits or equals $\pm \infty$.

(b) **Type** $\stackrel{\infty}{\approx}$: Assume that f and g are differentiable functions on an open interval I containing $a \in \mathbb{R}$. If $\lim_{x \to a} f(x) = \pm \infty$, $\lim_{x \to a} g(x) = \pm \infty$, and $g'(x) \neq 0$ on I (except possibly at a), then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

provided both limits exits or equals $\pm \infty$.

§6.8

Dr. Basilio

L'Hôpital's Rule

 $\infty - \infty$

 0^0 ∞^0 or 1^∞

L'Hôpital's Rule

Remarks

 It's important to check whether the conditions for using L'Hôpital's Rule are satisfied. You can run into trouble and get wrong answers otherwise.

$$\lim_{x \to 1} \frac{x^2 + 1}{2x + 1} = \lim_{x \to 1} \frac{2x}{2} = 1$$
 FAIL!

- L'Hôpital's Rule works also for one-sided limits $(x \to a^+ \text{ and } x \to a^-)$ and also with limits to infinity $(x \to \pm \infty)$
- When applying L'Hôpital's Rule, differentiate the numerator and denominator separately and do NOT use the quotient rule.
- You can apply L'Hôpital's Rule multiple times (as long as the assumptions are still satisfied)!

§**6**.8

Dr. Basilio

Outline

Guiding Questions

Indeterminate Forms

L'Hôpital's Rule

 $0/0 \text{ or } \infty/\infty$

 $\cdot \infty$

 $\infty - \infty$

 0 , ∞^{0} , or 1^{∞}

L'Hôpital's Rule: Type 0/0 or ∞/∞

Activity 1:

State the type of indeterminate form and evaluate using L'Hôpital's Rule:

(a)
$$\lim_{x\to 2} \frac{x^3-8}{x^4+2x-2}$$

(b)
$$\lim_{x \to 1} \frac{\ln(x)}{x - 1}$$

(c)
$$\lim_{x\to 0} \frac{e^x - x - 1}{\cos(x) - 1}$$

(d)
$$\lim_{x\to\infty} \frac{e^x}{x^2}$$

§6.8

Dr. Basilio

Outline

Guiding Questions

Indeterminate Forms

L'Hôpital's Rule

0/0 or ∞/∞

) · ∞

 $\infty - \infty$

0, ∞^0 , or 1^∞

L'Hôpital's Rule: Type 0/0 or ∞/∞

§**6.8**

Dr. Basilio

Outline

Guiding Questions

Forms

0/0 or ∞/∞

. . .

. ∞

 $\infty - \infty$ 0^0 , ∞^0 , or 1^∞

L'Hôpital's Rule: Type $0 \cdot \infty$

Type $0 \cdot \infty$:

If $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = \infty$ then try

$$\lim_{x \to a} f(x) \cdot g(x) = \lim_{x \to a} \frac{f(x)}{1/g(x)}$$

Activity 2:

State the type of indeterminate form and evaluate using L'Hôpital's Rule:

$$\lim_{x\to\infty} x^3 e^{-x^2}$$

§6.8

Dr. Basilio

utline

Guiding Questions

Forms

- Topical 3 Ivuic

 $0 \cdot \infty$

 $\infty - \infty$

ops of L'Hôp

L'Hôpital's Rule: Type $0 \cdot \infty$

§6.8

Dr. Basilio

Outline

Guiding Questions

orms

nopital s Rui

, - -- ,

 $0\cdot\infty$

o – ~

 0^0 , ∞^0 , or 1^∞

L'Hôpital's Rule: Type $\infty - \infty$

Type $\infty - \infty$:

If $\lim_{x\to a} f(x) = \infty$ and $\lim_{x\to a} g(x) = \infty$ then try to write as a single fraction (using common denominator or factoring).

Activity 3:

State the type of indeterminate form and evaluate using L'Hôpital's Rule:

$$\lim_{x\to 0} \left(\csc(x) - \frac{1}{x} \right)$$

§6.8

Dr. Basilio

 $\infty - \infty$

 0^0 , ∞^0 , or 1^∞

L'Hôpital's Rule: Type $\infty - \infty$

§6.8

Dr. Basilio

Outline

Guiding Questions

orms

/0 or ∞/∞

. --

 $\infty - \infty$

 $\infty - \infty$ $0^0, \infty^0, \text{ or } 1^\infty$

L'Hôpital's Rule: Type 0^0 , ∞^0 , or 1^∞

Type 0^0 , ∞^0 , or 1^∞ :

In this case, use the inverse properties trick: $x = e^{\ln(x)}$ and the fact that e^x is continuous:

$$\lim_{x\to a} f(x)^{g(x)} = e^{\lim_{x\to a} \ln(g(x))}$$

Activity 4:

State the type of indeterminate form and evaluate using L'Hôpital's Rule:

- (a) $\lim_{x\to 0^+} x^{\sqrt{x}}$
- (b) $\lim_{x\to 0^+} (1+4x)^{1/2x}$

§6.8

Dr. Basilio

Outline

Guiding Questions

Indeterminate Forms

'Hôpital's Rule

0 01 00/0

. ∞

 $-\infty$

 0^0 , ∞^0 , or 1^∞

L'Hôpital's Rule: Type 0^0 , ∞^0 , or 1^∞

§6.8

Dr. Basilio

utline

Guiding Questions

orms

/0 or ~ /~

 $\infty - \infty$ 0^0 , ∞^0 , or 1^∞

Applications of L'Hôpital's Rule

§6.8

Dr. Basilio

 $\infty - \infty$

- Two applications of L'Hôpital's Rule:
 - Computing limits at infinity for curve sketching
 - Computing limits at infinity for comparing growth of functions

Applications of L'Hôpital's Rule: Curve Sketching

§**6**.8

Example 1: Curve Sketching

Sketch the graph of $y = x^2 e^{-x}$ using the "CSI technique"

"CSI technique" stands for Curve Sketching Info:

- ① Domain
- Intercepts
- 3 Symmetry (Even, Odd, ...)
- 4 Asymptotes

- Build CSI Line for f': locate CPs and local extrema
- e Build CSI Line for f'': locate CP2s (where f''(c) = 0), concavity, and points of inflection (if any)

Applications of L'Hôpital's Rule: Curve Sketching

"CSI technique" stands for Curve Sketching Info: $y = x^2 e^{-x}$

- ♠ Domain: ℝ
- 2 Intercepts: (0,0) only
- Symmetry: not sure
- 4 Asymptotes: use L'Hop to find: $\lim_{x\to\infty} x^2 e^{-x} = 0$ $\lim_{x\to\infty} x^2 e^{-x} = +\infty$

1 Build CSI Line for f': $f'(x) = 2xe^{-x} - x^2e^{-x} = (2x - x^2)e^{-x} = (2x - x^2$

$$(2x - x^2)e^{-x} = x(2 - x)e^{-x} \Longrightarrow$$

CPs: $x = 0$, $x = 2$. Decreasing:

 $(-\infty,0) \cup (2,\infty),$ Increasing: (0,2)

② Build CSI Line for f'': $f''(x) = (2 - 2x)e^{-x} - (2x - x^2)e^{-x} = (2 - 4x + x^2)e^{-x}$. CP2s: $x = 2 \pm \sqrt{2}$. Concave up:

$$(-\infty,2-\sqrt{2})\cup(2+\sqrt{2},\infty),$$

Concave down: $(2-\sqrt{2},2+\sqrt{2})$.

§6.8

Dr. Basilio

Outline

Guiding Questions

ndeterminate Forms

L'Hôpital's Rule

/**U U U W**/**U**

) ⋅ ∞

 $-\infty$

Applications of L'Hôpital's Rule: Curve Sketching

§6.8

Dr. Basilio

Outline

Guiding Questions

Forms

. / 0

~ - ~

0 ~0 or 1 ~

Applications of L'Hôpital's Rule: Comparing Growth of **Functions**

- - §6.8
 - Dr. Basilio

- Consider two functions f(x) and g(x) that grow to infinity as x grows to infinity.
- There are many applications where we want to compare two functions that are going to infinity and we want to ask: which grows faster for large values of x? That is, who "wins" as $x \to \infty$, f(x) or g(x)?
- Encoding this question using limits, we are interested in:

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0 \quad \text{or} \quad \lim_{x \to \infty} \frac{f(x)}{g(x)} = \infty$$

where, in the first case, g(x) wins and, in the second case, f(x) wins.

• When g(x) wins, we say g(x) grows faster at infinity than f(x), and write: $f(x) \ll g(x)$.

Applications of L'Hôpital's Rule: Comparing Growth of Functions

§6.8

Dr. Basilio

Outline

Guiding Questions

Indeterminate Forms

L'Hôpital's Rule

 $0/0 \text{ or } \infty/\infty$

) · ∞

 $\infty - \infty$

, ∞^0 , or 1^∞

Apps of L'Hôp

Quick Sort vs Bubble Sort

- In Computer Science, we study algorithms and consider the "cost" or "performance" of executing an algorithm. Two examples are sorting algorithms: Quick Sort and Bubble Sort.
 - Quick Sort: the average time it takes to sort a list of size n is $n \ln(n)$
 - Bubble Sort: the average time it takes to sort a list of size n is n^2 .
- If *n* is small, then a computer will sort a list of size *n* pretty quickly and we don't care which algorithm we use. But if *n* is very large, which is better?

Applications of L'Hôpital's Rule: Comparing Growth of **Functions**

 $=\lim_{n\to\infty}\frac{\ln(n)+1}{2n}\frac{\infty}{\infty}$

 $=\lim_{n\to\infty}\frac{1}{2n}=0$

 $= \lim_{n \to \infty} \frac{\frac{1}{n}}{2} \quad \text{(by L'Hop)}$

So, we conclude $n \ln(n) \ll n^2$, or Quick Sort is a faster algorithm than Bubble

 $\lim_{n\to\infty}\frac{n\ln(n)}{n^2}=\frac{\infty}{\infty}$

Sort (for large lists).

Example 2: Quick Sort vs Bubble Sort

We want to know whether $n^2 \ll n \ln(n)$ or $n \ln(n) \ll n^2$. We compute:

§6.8 Dr. Basilio

Apps of L'Hôp

23 / 24

 $= \lim_{n \to \infty} \frac{[1] \ln(n) + n[\frac{1}{n}]}{2n} \quad \text{(by L'Hop)}$

Applications of L'Hôpital's Rule: Comparing Growth of **Functions**

Theorem 2: Rates of Growth

$$ln(x) \ll x \ll x^2 \ll \cdots \ll x^k \ll e^x \ll x! \ll x^x$$

Roughly speaking the key point is: exponential functions grow faster than any polynomial whereas the logarithm grows slow than any polynomial.

§6.8

Dr. Basilio