Guiding Question

• What does "Markov" mean in "Markov Decision Process"?

• A stochastic process is a collection of R.V.s indexed by time.

- A stochastic process is a collection of R.V.s indexed by time.
- ullet $\{x_t\}_{t=1}^\infty$ or just $\{x_t\}$ (shorthand for $\{x_1,x_2,x_3,\ldots\}$)

- A stochastic process is a collection of R.V.s indexed by time.
- ullet $\{x_t\}_{t=1}^\infty$ or just $\{x_t\}$ (shorthand for $\{x_1,x_2,x_3,\ldots\}$)

- A stochastic process is a collection of R.V.s indexed by time.
- ullet $\{x_t\}_{t=1}^\infty$ or just $\{x_t\}$ (shorthand for $\{x_1,x_2,x_3,\ldots\}$)

$$x_0 = 0$$

- A stochastic process is a collection of R.V.s indexed by time.
- ullet $\{x_t\}_{t=1}^\infty$ or just $\{x_t\}$ (shorthand for $\{x_1,x_2,x_3,\ldots\}$)

$$x_0=0 \hspace{1cm} x_{t+1}=x_t+v_t$$

- A stochastic process is a collection of R.V.s indexed by time.
- ullet $\{x_t\}_{t=1}^\infty$ or just $\{x_t\}$ (shorthand for $\{x_1,x_2,x_3,\ldots\}$)

$$x_0 = 0$$
 $x_{t+1} = x_t + v_t$ $v_t \sim \mathcal{U}(\{0,1\})$ (i.i.d.)

- A stochastic process is a collection of R.V.s indexed by time.
- ullet $\{x_t\}_{t=1}^\infty$ or just $\{x_t\}$ (shorthand for $\{x_1,x_2,x_3,\ldots\}$)

$$x_0 = 0$$
 $x_{t+1} = x_t + v_t$ Shorthand: $v_t \sim \mathcal{U}(\{0,1\})$ (i.i.d.) $x' = x + v$

- A stochastic process is a collection of R.V.s indexed by time.
- ullet $\{x_t\}_{t=1}^\infty$ or just $\{x_t\}$ (shorthand for $\{x_1,x_2,x_3,\ldots\}$)

$$x_0 = 0$$
 $x_{t+1} = x_t + v_t$ Shorthand: $v_t \sim \mathcal{U}(\{0,1\})$ (i.i.d.) $x' = x + v$

- A stochastic process is a collection of R.V.s indexed by time.
- ullet $\{x_t\}_{t=1}^\infty$ or just $\{x_t\}$ (shorthand for $\{x_1,x_2,x_3,\ldots\}$)

$$x_0 = 0$$
 $x_{t+1} = x_t + v_t$ Shorthand: $v_t \sim \mathcal{U}(\{0,1\})$ (i.i.d.) $x' = x + v$

- A stochastic process is a collection of R.V.s indexed by time.
- ullet $\{x_t\}_{t=1}^\infty$ or just $\{x_t\}$ (shorthand for $\{x_1,x_2,x_3,\ldots\}$)

$$x_0 = 0$$
 $x_{t+1} = x_t + v_t$ Shorthand: $v_t \sim \mathcal{U}(\{0,1\})$ (i.i.d.) $x' = x + v$

- A stochastic process is a collection of R.V.s indexed by time.
- ullet $\{x_t\}_{t=1}^\infty$ or just $\{x_t\}$ (shorthand for $\{x_1,x_2,x_3,\ldots\}$)

$$x_0 = 0$$
 $x_{t+1} = x_t + v_t$ Shorthand: $v_t \sim \mathcal{U}(\{0,1\})$ (i.i.d.) $x' = x + v$

- A stochastic process is a collection of R.V.s indexed by time.
- ullet $\{x_t\}_{t=1}^\infty$ or just $\{x_t\}$ (shorthand for $\{x_1,x_2,x_3,\ldots\}$)

Example:

Conditional

$$x_0 = 0$$
 $x_{t+1} = x_t + v_t$ $v_t \sim \mathcal{U}(\{0,1\})$ (i.i.d.)

Shorthand:

$$x' = x + v$$

- A stochastic process is a collection of R.V.s indexed by time.
- $\{x_t\}_{t=1}^{\infty}$ or just $\{x_t\}$ (shorthand for $\{x_1, x_2, x_3, \ldots\}$)

Example:

$$x_0 = 0$$
 $x_{t+1} = x_t + v_t$ Shorthands $v_t \sim \mathcal{U}(\{0,1\})$ (i.i.d.) $x' = x + v_t$

Shorthand:
$$x' = x + v$$

Conditional

- A stochastic process is a collection of R.V.s indexed by time.
- $\{x_t\}_{t=1}^{\infty}$ or just $\{x_t\}$ (shorthand for $\{x_1, x_2, x_3, \ldots\}$)

Example:

$$x_0 = 0$$
 $x_{t+1} = x_t + v_t$ $v_t \sim \mathcal{U}(\{0,1\})$ (i.i.d.)

Shorthand:

$$x' = x + v$$

Conditional

Joint

- A stochastic process is a collection of R.V.s indexed by time.
- $\{x_t\}_{t=1}^{\infty}$ or just $\{x_t\}$ (shorthand for $\{x_1, x_2, x_3, \ldots\}$)

Example:

$$x_0 = 0$$
 $x_{t+1} = x_t + v_t$ Shorthand: $v_t \sim \mathcal{U}(\{0,1\})$ (i.i.d.) $x' = x + v_t$

Shorthand:

$$x' = x + v$$

Conditional

Joint

х0	x1	x2	P(x1, x2, x3)	
0	0	0	0.25	
0	0	1	0.25	
0	1	1	0.25	
0	1	2	0.25	

- A stochastic process is a collection of R.V.s indexed by time.
- $\{x_t\}_{t=1}^{\infty}$ or just $\{x_t\}$ (shorthand for $\{x_1, x_2, x_3, \ldots\}$)

Example:

$$x_0 = 0$$

$$x_{t+1} = x_t + v_t$$

$$v_t \sim \mathcal{U}(\{0,1\})$$
 (i.i.d.)

Shorthand:

$$x' = x + v$$

Conditional

Joint

x0	x1	x2	P(x1, x2, x3)
0	0	0	0.25
0	0	1	0.25
0	1	1	0.25
0	1	2	0.25

Marginal

- A stochastic process is a collection of R.V.s indexed by time.
- ullet $\{x_t\}_{t=1}^\infty$ or just $\{x_t\}$ (shorthand for $\{x_1,x_2,x_3,\ldots\}$)

Example:

$$x_0 = 0$$

$$x_{t+1} = x_t + v_t \ v_t \sim \mathcal{U}(\{0,1\})$$
 (i.i.d.)

Shorthand:

$$x' = x + v$$

Conditional

Joint

x0	x1	x2	P(x1, x2, x3)	
0	0	0	0.25	
0	0	1	0.25	
0	1	1	0.25	
0	1	2	0.25	

Marginal

- A stochastic process is a collection of R.V.s indexed by time.
- $\{x_t\}_{t=1}^{\infty}$ or just $\{x_t\}$ (shorthand for $\{x_1, x_2, x_3, \ldots\}$)

Example:

$$x_0 = 0$$
 $x_{t+1} = x_t + v_t$ $v_t \sim \mathcal{U}(\{0,1\})$ (i.i.d.)

Shorthand:

$$x' = x + v$$

Conditional

Joint

x0	x1	x2	P(x1, x2, x3)	
0	0	0	0.25	
0	0	1	0.25	
0	1	1	0.25	
0	1	2	0.25	

Marginal

- A stochastic process is a collection of R.V.s indexed by time.
- $\{x_t\}_{t=1}^{\infty}$ or just $\{x_t\}$ (shorthand for $\{x_1,x_2,x_3,\ldots\}$)

 $P(x_{++1}|x_{+}) = P(x_{++1}|x_{+})$ $P(x_{++1}|x_{+}) = P(x_{++1}|x_{+})$ P(x_{++1}|x_{+}) | in a stationary stochastic process (all in this class), this

Example:

$$x_0=0$$
 $x_{t+1}=0$

$$v_t \sim \mathcal{U}(\{0,1\})$$
 (i.i.d.)

Shorthand:

$$x' = x + v$$

relationship does not change with time

X+41

Conditional

P(x+=1 |x+)

Joint

х0	x1	x2	P(x1, x2, x3)
0	0	0	0.25
0	0	1	0.25
0	1	1	0.25
0	1	2	0.25

Marginal

v . \	×3 \	
0 0.5	0	0.25
1 0.5	1	0.5
	2	0.25

Simulating a Stochastic Process

030-Stochastic-Processes.ipynb

Markov Process

Markov Process

• A stochastic process $\{x_t\}$ is Markov if

$$P(x_t \mid x_{t-1}, \underline{x_{t-2}, \dots, x_0}) = P(x_t \mid x_{t-1})$$

Markov Process

- A stochastic process $\{x_t\}$ is *Markov* if $P(x_t \mid x_{t-1}, x_{t-2}, \dots, x_0) = P(x_t \mid x_{t-1})$
- x_t is called the "state" of the process

Is
$$\{x_{+}\}\$$
 a Markov Process? No

$$\begin{bmatrix} x_{++1} \\ \vdots \\ x_{++1} \end{bmatrix} = \begin{bmatrix} 1 & \Delta t \\ -\frac{k}{M} & 1 \end{bmatrix} \begin{bmatrix} x_{+} \\ x_{+} \end{bmatrix} + \begin{bmatrix} 6 \\ 1 \end{bmatrix} v_{+}$$

$$\begin{cases} v_{+} & v_{+} \\ v_{+} & v$$

Name

- Name
- Suppose you want to create a Markov model that describes whether you will test positive for COVID on a given day. What information should be included the state of that model?

Name

- Name
- Suppose you have a factory with an entrance/exit road, and you want to define a Markov process to model when trucks will reach the intersection. What should be in the state?

- Name
- Suppose you have a factory with an entrance/exit road, and you want to define a Markov process to model when trucks will reach the intersection. What should be in the state?

- Name
- Suppose you have a factory with an entrance/exit road, and you want to define a Markov process to model when trucks will reach the intersection. What should be in the state?

- Name
- Suppose you have a factory with an entrance/exit road, and you want to define a Markov process to model when trucks will reach the intersection. What should be in the state?

- Name
- Suppose you have a factory with an entrance/exit road, and you want to define a Markov process to model when trucks will reach the intersection. What should be in the state?

- Name
- Suppose you have a factory with an entrance/exit road, and you want to define a Markov process to model when trucks will reach the intersection. What should be in the state?

Hidden Markov Model

(Often you can't measure the whole state)

A *Bayesian Network* is a directed acyclic graph (DAG) that encodes probabilistic relationships between R.V.s

A *Bayesian Network* is a directed acyclic graph (DAG) that encodes probabilistic relationships between R.V.s

• Nodes: R.V.s

A *Bayesian Network* is a directed acyclic graph (DAG) that encodes probabilistic relationships between R.V.s

• Nodes: R.V.s

• Edges: Direct probabilistic relationships

A *Bayesian Network* is a directed acyclic graph (DAG) that encodes probabilistic relationships between R.V.s

Nodes: R.V.s

• Edges: Direct probabilistic relationships

Concretely:

A *Bayesian Network* is a directed acyclic graph (DAG) that encodes probabilistic relationships between R.V.s

- Nodes: R.V.s
- Edges: Direct probabilistic relationships

Concretely:
$$P(x_i \mid \underline{x_{1:n \setminus i}}) = P(x_i \mid Pa(x_i))$$

XI

A *Bayesian Network* is a directed acyclic graph (DAG) that encodes probabilistic relationships between R.V.s

- Nodes: R.V.s
- Edges: Direct probabilistic relationships

Concretely:
$$P(x_i \mid x_{1:n\setminus i}) = P(x_i \mid Pa(x_i))$$

A *Bayesian Network* is a directed acyclic graph (DAG) that encodes probabilistic relationships between R.V.s

- Nodes: R.V.s
- Edges: Direct probabilistic relationships

$$P(B \mid A, C) = P(B \mid A)$$

Concretely:
$$P(x_i \mid x_{1:n\setminus i}) = P(x_i \mid Pa(x_i))$$

A *Bayesian Network* is a directed acyclic graph (DAG) that encodes probabilistic relationships between R.V.s

- Nodes: R.V.s
- Edges: Direct probabilistic relationships

$$P(B \mid A, C) = P(B \mid A)$$

Concretely:
$$P(x_i \mid x_{1:n\setminus i}) = P(x_i \mid Pa(x_i))$$

Markov Process

A *Bayesian Network* is a directed acyclic graph (DAG) that encodes probabilistic relationships between R.V.s

- Nodes: R.V.s
- Edges: Direct probabilistic relationships

$$P(B \mid A, C) = P(B \mid A)$$

Concretely:
$$P(x_i \mid x_{1:n\setminus i}) = P(x_i \mid Pa(x_i))$$

$$P(B \mid A, C) = P(B \mid A)$$
 Concress
$$P(\varsigma_3 \mid \varsigma_1 \mid \varsigma_2) = P(\varsigma_3 \mid \varsigma_2)$$
Markov Process

A *Bayesian Network* is a directed acyclic graph (DAG) that encodes probabilistic relationships between R.V.s

- Nodes: R.V.s
- Edges: Direct probabilistic relationships

$$P(B \mid A, C) = P(B \mid A)$$

Concretely:
$$P(x_i \mid x_{1:n\setminus i}) = P(x_i \mid Pa(x_i))$$

Markov Process

A *Bayesian Network* is a directed acyclic graph (DAG) that encodes probabilistic relationships between R.V.s

- Nodes: R.V.s
- Edges: Direct probabilistic relationships

$$P(B \mid A, C) = P(B \mid A)$$

Concretely:
$$P(x_i \mid x_{1:n\setminus i}) = P(x_i \mid Pa(x_i))$$

Markov Process

 $P(B \mid A, C) = P(B \mid A)$

A Bayesian Network is a directed acyclic graph (DAG) that encodes probabilistic relationships between R.V.s

- Nodes: R.V.s
- Edges: Direct probabilistic relationships

Concretely:
$$P(x_i \mid x_{1:n\setminus i}) = P(x_i \mid Pa(x_i))$$

Markov Process

 $P(B \mid A, C) = P(B \mid A)$

A Bayesian Network is a directed acyclic graph (DAG) that encodes probabilistic relationships between R.V.s

- Nodes: R.V.s
- Edges: Direct probabilistic relationships

Concretely:
$$P(x_i \mid x_{1:n\setminus i}) = P(x_i \mid Pa(x_i))$$

Markov Process

Dynamic Bayesian Network

A *Bayesian Network* is a directed acyclic graph (DAG) that encodes probabilistic relationships between R.V.s

- Nodes: R.V.s
- Edges: Direct probabilistic relationships

$$P(B \mid A, C) = P(B \mid A)$$
 Concrete

Concretely:
$$P(x_i \mid x_{1:n\setminus i}) = P(x_i \mid Pa(x_i))$$

Markov Process

Dynamic Bayesian Network

(One step)

A *Bayesian Network* is a directed acyclic graph (DAG) that encodes probabilistic relationships between R.V.s

- Nodes: R.V.s
- Edges: Direct probabilistic relationships

$$P(B \mid A, C) = P(B \mid A)$$
 Concretel

Concretely:
$$P(x_i \mid x_{1:n\setminus i}) = P(x_i \mid Pa(x_i))$$

Markov Process

 (S_2) (S_2) (S_3) (S_4) (S_4) (S_4)

Dynamic Bayesian Network

ian Network (One step)

A *Bayesian Network* is a directed acyclic graph (DAG) that encodes probabilistic relationships between R.V.s

- Nodes: R.V.s
- Edges: Direct probabilistic relationships

$$P(B \mid A, C) = P(B \mid A)$$
 Concre

Concretely:
$$P(x_i \mid x_{1:n\setminus i}) = P(x_i \mid Pa(x_i))$$

Markov Process

Hidden Markov Model

Dynamic Bayesian Network

(One step)

Decision Network

Decision Network

Decision Network

Chance node

Decision Network

Chance node

Decision Network

Chance node

Decision node

Decision Network

Chance node

Decision node

Decision Network

Chance node

Decision node

Utility node

Decision Network

MDP Dynamic Decision Network

Chance node

Decision node

Utility node

Decision Network

MDP Dynamic Decision Network

Chance node

Decision node

Utility node

Decision Network

Decision node

Utility node

MDP Dynamic Decision Network

Decision Network

Decision node

Utility node

MDP Dynamic Decision Network

Decision Network

Decision node

MDP Dynamic Decision Network

Decision Network

Decision node

MDP Dynamic Decision Network

$$ext{maximize} \quad \mathrm{E}\left[\sum_{t=1}^{\infty} r_t
ight]$$

Decision Network

Decision node

MDP Dynamic Decision Network

$$ext{maximize} \quad \mathrm{E}\left[\sum_{t=1}^{\infty} r_t
ight] \qquad \mathsf{Not well formulated!}$$

Decision Network

Decision node

MDP Dynamic Decision Network

Finite MDP Objectives

1. Finite time

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T} r_{t}
ight]$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T}r_{t}
ight]$$

2. Average reward

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T} r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty} \mathrm{E}\left[\sum_{t=0}^n r_t
ight]$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T} r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty} \mathrm{E}\left[\sum_{t=0}^n r_t
ight]$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T} r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty} \mathrm{E}\left[\sum_{t=0}^n r_t
ight]$$

$$\mathrm{E}\left[\sum_{t=0}^{\infty}\gamma^{t}r_{t}
ight]$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T} r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty} \mathrm{E}\left[\sum_{t=0}^n r_t
ight].$$

3. Discounting

$$\mathrm{E}\left[\sum_{t=0}^{\infty}\gamma^{t}r_{t}
ight]$$

discount $\gamma \in [0,1)$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T} r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty}\!\mathrm{E}\left[\sum_{t=0}^n r_t
ight]$$

$$ext{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t
ight] \qquad egin{aligned} ext{discount } \gamma \in [0,1) \ ext{typically 0.9, 0.95, 0.99} \end{aligned}$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T} r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty}\!\mathrm{E}\left[\sum_{t=0}^n r_t
ight]$$

$$\mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t
ight] \qquad egin{aligned} \mathsf{discount} \ \gamma \in [0,1) \ \mathsf{typically} \ \mathsf{0.9,0.95,0.99} \end{aligned}$$

if
$$\underline{r} \leq r_t \leq ar{r}$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T} r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty}\!\mathrm{E}\left[\sum_{t=0}^n r_t
ight]$$

$$\mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t
ight] \qquad egin{aligned} \mathsf{discount} \ \gamma \in [0,1) \ \mathsf{typically} \ \mathsf{0.9,0.95,0.99} \end{aligned}$$

if
$$\underline{r} \leq r_t \leq ar{r}$$

$$rac{r}{1-\gamma} \leq \sum_{t=0}^{\infty} \gamma^t r_t \leq rac{ar{r}}{1-\gamma}$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T}r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty}\!\mathrm{E}\left[\sum_{t=0}^n r_t
ight]$$

3. Discounting

$$ext{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t
ight] \qquad egin{aligned} ext{discount } \gamma \in [0,1) \ ext{typically 0.9, 0.95, 0.99} \end{aligned}$$

if
$$\underline{r} \leq r_t \leq ar{r}$$

4. Terminal States

$$rac{r}{1-\gamma} \leq \sum_{t=0}^{\infty} \gamma^t r_t \leq rac{ar{r}}{1-\gamma}$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T} r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty}\!\mathrm{E}\left[\sum_{t=0}^n r_t
ight]$$

3. Discounting

$$ext{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t
ight] \qquad egin{aligned} ext{discount } \gamma \in [0,1) \ ext{typically 0.9, 0.95, 0.99} \end{aligned}$$

if
$$\underline{r} \leq r_t \leq ar{r}$$

4. Terminal States

Infinite time, but a terminal state (no reward, no leaving) is always reached with probability 1.

$$rac{ar{r}}{1-\gamma} \leq \sum_{t=0}^{\infty} \gamma^t r_t \leq rac{ar{r}}{1-\gamma}$$

Guiding Question

What does "Markov" mean in "Markov Decision Process"?

$$P(x_{+}|x_{+-1}...x_{o}) = P(x_{+}|x_{+-1})$$