The LNM Institute of Information Technology Jaipur, Rajsthan

MATH-I ■ Assignment #1

(Real Number System, Sequences)

- Q1. Let x be a real number such that x^2 is irrational. Show that x is also irrational. Deduce that $\sqrt{2} + \sqrt{3}$ is irrational.
- Q2. Using the result "Let $m \in \mathbb{Z}$, $n \in \mathbb{N}$ and p be a prime. If $p|m^n$, then p|m." show that
 - 1. \sqrt{p} is irrational for any prime p.
 - 2. $\sqrt{15}$, $\sqrt[3]{2}$, $\sqrt[5]{16}$ are irrational.
- Q3. Find the infimum and supremum (if exists) of the sets $S_1 = \left\{ \frac{m}{m+n} : m, n \in \mathbb{N} \right\}, S_2 =$ $\left\{\frac{1}{n}:n\in\mathbb{N}\right\}.$
- Q4. Using Archimedean property of real numbers show that for any $a \in \mathbb{R}$, there is some $m, n \in \mathbb{N}$ such that -m < a < n.
- Q5. Use the Archimedean property of real numbers to show that $\bigcap_{n\in\mathbb{N}} \left(0,\frac{1}{n}\right] = \Phi$.
- Q6. Let $a_n \to a$ and $a \neq 0$. Then show that there is $m \in \mathbb{N}$ such that $a_n \neq 0$ for all $n \geq m$.
- Q7. Investigate the convergence/divergence of the following sequences:

(a)
$$x_n = \frac{1}{n^2+1} + \frac{2}{n^2+2} + \dots + \frac{n}{n^2+n}$$

(b)
$$x_n = \frac{n^2}{n^3 + n + 1} + \frac{n^2}{n^3 + n + 2} + \dots + \frac{n^2}{n^3 + 2n}$$

(a)
$$x_n = \frac{1}{n^2+1} + \frac{2}{n^2+2} + \dots + \frac{n}{n^2+n}$$

(b) $x_n = \frac{n^2}{n^3+n+1} + \frac{n^2}{n^3+n+2} + \dots + \frac{n^2}{n^3+2n}$
(c) $x_n = (n+1)^{\alpha} - n^{\alpha}$ for some $\alpha \in (0,1)$

(c)
$$x_n = (n+1)^n - n^n$$
 for some $\alpha \in (0,1)$
(d) $x_n = \left(\sqrt{2} - 2^{\frac{1}{3}}\right) \left(\sqrt{2} - 2^{\frac{1}{5}}\right) \cdots \left(\sqrt{2} - 2^{\frac{1}{2n+1}}\right)$
(e) $x_n = \frac{n!}{(2n+1)!!}$.

(e)
$$x_n = \frac{n!}{(2n+1)!!}$$

Q8. Let a>0 and $x_1>0$. Define $x_{n+1}=\frac{1}{2}\left(x_n+\frac{a}{x_n}\right)$ for all $n\in\mathbb{N}$. Prove that the sequence (x_n) converges to \sqrt{a} . These sequences are used in the numerical calculation of \sqrt{a} .