Cheng-Han Li

■ (+1)281-508-7355 | ■ peterli3819@gmail.com | ★ peterli3819.github.io | **■** linkedin.com/in/chl37

Education _

Texas A&M University (TAMU)

College Station, TX

Ph.D. Candidate in Chemistry (GPA: 4.0/4.0)

Sept 2019 - 2024 (expected defense)

Advisor: Daniel P. Tabor

National Taiwan University (NTU)

Taipei, Taiwan

B.S. in Chemistry (GPA: 3.9/4.3)

Sept 2015 - Jan 2019

Advisor: Sheng-Hsien Chiu

Research Experience

Tabor group, Chemistry Department, TAMU

College Station, TX

Graduate Research Assistant

Oct 2019 - Current

- Designed machine learning models (Graph Neural Network, Gaussian Process Regression) for molecular property prediction and highthroughput virtual screening for organic electronics.
- Maintained PostgreSQL database and software package for high-throughput virtual screening in the research group.
- Developed methods using molecular dynamics simulation and electronic structure calculation for elucidating structure–property relationships of redox-active polymers for organic battery design.
- · Mentored two undergraduate students, teaching them molecular dynamics simulations and the basics of electronic structure.

Chiu group, Chemistry Department, NTU

Taipei, Taiwan

Undergraduate Research Assistant

Jul 2016 - Feb 2019

• Synthesized water-soluble [2]rotaxane using the clipping method.

Awards

2022	Departmental Travel Award, Chemistry Department, TAMU	College Station, TX
2022	Air Force Scholarship, American Conference on Theoretical Chemistry	Tahoe, CA
2018	Undergraduate Research Project Grant, Ministry of Science and Technology	Taiwan

Publications

- 1. **C.-H. Li**, D.P. Tabor, Accelerating Organic Electronic Materials Design with Low-Cost Molecular Reorganization Energy Predictions, *in preparation*
- 2. T. Ma, **C.-H. Li**, R.M. Thakur, D.P. Tabor, J.L. Lutkenhaus, Uncovering the Origin of the Electrolyte's Role in Metal-free, Aqueous Radical Batteries, *in revision*
- 3. **C.-H. Li**, D.P. Tabor, Discovery of lead low-potential radical candidates for organic radical polymer batteries with machine-learning-assisted virtual screening, *J. Mater. Chem. A* **10**, 8273-8282 (2022).

Presentations ___

Contributed Talk

1. Inverse Design of Organic Radical Batteries with Redox-Active Polymers for Energy Storage through Multi-scale Modelling, Texas A&M Conference on Energy. September 2022. College Station, TX.

Poster Presentations

- 2. Accelerating Design of Redox-Active Polymers for Organic Radical Batteries by Machine-Learning-Assisted Virtual Screening and Insights from Molecular Simulations, American Conference on Theoretical Chemistry. July 2022. Tahoe, CA.
- 3. Leveraging Molecular Simulation to Analyze and Design Redox-Active Polymers for Energy Storage, Molecular Systems Design & Engineering Symposium. June 2021. (Virtual Poster).

Skills_

Programming Languages Python, Shell scripting, SQL **Software Knowledge** PyTorch, PostgreSQL, Django, Git

Computational Chemistry LAMMPS, GROMACS, VMD, Q-Chem, Gaussian, NWChem, ORCA, MDAnalysis, RDKit

November 23, 2022