Designing objective functions: a probability approach

Thibaut Astic

SimPEG Meeting 28/02/2017

Motivation

Basics

 Consider the data d as a realization of a multivariate probability distribution

$$d_{obs} \sim P(d|A, m, \Sigma)$$

- *m*: the model
- A: the physics operator
- Σ : The covariance matrix of your data

Uncorrelated Gaussian Example

$$d_{obs} \sim P(d|A, m, \Sigma)$$

- Assume:
 - P: multivariate Gaussian distribution
 - Mean is A*m
 - Covariance: uncorrelated noise:

$$\Sigma = diag(\sigma_i^2)$$

$$P(d|A, m, \Sigma) \propto \exp(-\frac{1}{2}(Am - d)^T \Sigma^{-1}(Am - d))$$

Uncorrelated Gaussian Example

$$d_{obs} \sim P(d|A, m, \Sigma)$$

- Assume:
 - P: multivariate Gaussian distribution
 - Mean is A*m
 - Covariance: uncorrelated noise:

$$\Sigma = diag(\sigma_i^2)$$

$$P(d|A, m, \Sigma) \propto \exp(-\frac{1}{2}(Am - d)^T \Sigma^{-1}(Am - d))$$

- Uncorrelated Gaussian Example
 - Given *d*, we typically want to maximize the likelihood of *d* by playing on the model *m*. This is equivalent to minimize the negative log-likelihood,

$$\underset{m}{\operatorname{argmax}} P(d|A, m, \Sigma) = \underset{m}{\operatorname{argmin}} - \log(P(d|A, m, \Sigma))$$

which then give the familiar:

$$m_{opt} = \underset{m}{\operatorname{argmin}} \frac{1}{2} (Am - d)^T \Sigma^{-1} (Am - d)$$

= $\underset{m}{\operatorname{argmin}} \frac{1}{2} ||Am - d||_{\Sigma^{-1}}^2$

Uncorrelated Gaussian Example

$$m_{opt} = \underset{m}{\operatorname{argmin}} \frac{1}{2} (Am - d)^T \Sigma^{-1} (Am - d)$$
$$= \underset{m}{\operatorname{argmin}} \frac{1}{2} ||Am - d||_{\Sigma^{-1}}^2$$

- But all models m are here equally good!
- The real question is then not (only) to maximize the likelihood of d, but:
- Given d, what is the most likely model? $P(m|A,d,\Sigma)$

Maximum A Posteriori Estimation

- How likely is my model?
 - Using Bayes rule:

$$P(m|A,d,\Sigma) = \frac{P(d|A,m,\Sigma)P(m)}{P(d)}$$

Data Fitting

Prior/

Regularizer

Normalization term

- Need to choose a Prior:
 - For example: Multivariate Gaussian Prior

$$m \sim \mathcal{N}(m_{ref}, \frac{1}{\beta})$$

Maximum A Posteriori

- Uncorrelated Gaussian
 - Building on our previous example, we get the wellknown Tikhonov regularization:

$$\underset{m}{\operatorname{argmin}} - \log(P(m|A, d, \Sigma, m_{ref}, \beta)) = \frac{1}{2} ||Am - d||_{\Sigma^{-1}}^2 + \frac{\beta}{2} ||m - m_{ref}||_2^2$$

- Take home:
 - Everything on the right side of 'P(m|...)' are our assumptions
 - L2-norm assumes a Gaussian Distribution of the parameters values
 - Beta-cooling: the smaller is Beta, the more likely become values far from the mean

Use a different probability distribution

Very useful if your model is sparse in some basis (Space, Fourier...)

Use a different probability distribution

• Compose different distributions to promote structures

- Some parts of the model will be sparse, others will be smooth
- Can also define dependencies between variables
 - Ex: If m1=0 then m2=0, else both are smoothed

- My interest these days:
- Mixture of Gaussians prior

$$P(m) = \sum_{i=1}^{k} \pi_i p(m|z_i = c)$$

- Can fit any parameter distributions
- Can describe complex dependencies
- Easily scalable (as long as data keep up with dimensionality)
- Englobe k-means, Parzen Windows as special cases

Mixture of Gaussians as prior

MAP estimator

$$\underset{m}{\operatorname{argmin}} \frac{1}{2} ||Am - d||_{\Sigma^{-1}}^{2} - log(\sum_{i=1}^{\kappa} \pi_{i} p(m|z_{i} = c))|$$

- Where things get complicated numerically:
 - Log(sum(exp(...))): well-known to underflow or overflow easily (there are some tricks fortunately)
 - Gradient and Hessian define everywhere (exp>0) but can get arbitrary large
 - No guarantee to have a positive negative log-likelihood

Mixture of Gaussians as prior

