Digital Image Processing HW#2

2D Discrete Cosine Transform

Instructor: Chih-Wei Tang (唐之瑋) TA: Yu-Ting Huang (黃郁婷) Visual Communications Lab Department of Communication Engineering National Central University

Date: 2018/10/26

Outline

- **♦** Flow Chart
- Homework Details
 - 2D Discrete Cosine Transform
 - JPEG Format
 - MASK
 - Peak Signal to Noise Ratio(PSNR)
- **♦** Grading
- ◆ Due Date & Demo Schedule
- **♦** Note
- **♦** Reference

Flow Chart (1/2)

Flow Chart (2/2)

2D Discrete Cosine Transform

DCT is a Fourier-related transform similar to the discrete Fourier transform (DFT), but using only real numbers.

The 8x8 DCT

$$F(u,v) = \frac{1}{4}C(u)C(v)\left[\sum_{x=0}^{7}\sum_{y=0}^{7}f(x,y)*\cos\frac{(2x+1)u\pi}{16}\cos\frac{(2y+1)v\pi}{16}\right]$$

The 8x8 IDCT

$$f(x,y) = \frac{1}{4} \sum_{u=0}^{7} \sum_{v=0}^{7} \left[C(u)C(v)F(u,v) * \cos \frac{(2x+1)u\pi}{16} \cos \frac{(2y+1)v\pi}{16} \right]$$

$$where \ C(u), C(v) = \begin{cases} \frac{1}{\sqrt{2}} & for \ u, v = 0 \\ 1 & otherwise \end{cases} \begin{cases} f(x,y) : spatail \ domain \ image \\ F(u,v) : frequency \ domain \ image \\ (x,y) : index \ of \ spatail \ domain \\ (u,v) : index \ of \ frequency \ domain \end{cases}$$

Image Source: https://zh.wikipedia.org/wiki/%E7%A6%BB%E6%95%A3%E4%BD%99%E5%BC%A6%E5%8F%98%E6%8D%A2

JPEG Format (1/2)

An Example of JPEG (1/2)

52	55	61	66	70	61	64	73	
63	59	66	90	109	85	69	72	
62	59	68	113	144	104	66	73	
63	58	71	122	154	106	70	69	
67	61	68	104	126	88	68	70	
79	65	60	70	77	68	58	75	
85	71	64	59	55	61	65	83	
87	79	69	68	65_	76	78	94	
			_		The same of the same of	1	the Real Property lies	1 1001
					Level	shif	ting	(-128)
-76	-73	-67	-62	-58	Leve l -67	-64	-55	(-128)
-76 -65	-73 -69	-67 -62	-62 -38					(-128)
				-58	-67	-64	-55	(-128)
-65	-69	-62	-38	-58 -19	-67 -43	-64 -59	-55 -56	(-128)
-65 -66 -65	-69 -69 -70	-62 -60 -57	-38 -15 -6	-58 -19 16 26	-67 -43 -24	-64 -59 -62 -58	-55 -56 -55 -59	(-128)
-65 -65 -61	-69 -69 -70 -67	-62 -60 -57 -60	-38 -15 -6 -24	-58 -19 16 26 -2	-67 -43 -24 -22	-64 -59 -62 -58 -60	-55 -56 -55 -59 -58	(-128)
-65 -65 -61 -49	-69 -69 -70 -67 -63	-62 -60 -57 -60 -68	-38 -15 -6 -24 -58	-58 -19 16 26 -2 -51	-67 -43 -24 -22 -40	-64 -59 -62 -58 -60 -70	-55 -56 -55 -59 -58 -53	(-128)

JPEG Format (2/2)

DCT

Coefficients

An Example of JPEG (2/2)

```
-415
                                  55
                                 11
                                                6
                                     Quantization
round[-415/16]
                   -3
```

0

1	16	11	10	16	24	40	51	61
1	12	12	14	19	26	58	60	55
1	14	13	16	24	40	57	69	56
1	14	17	22	29	51	87	80	62
1	18	22	37	56	68	109	103	77
2	24	35	55	64	81	104	113	92
4	19	64	78	87	103	121	120	101
7	72	92	95	98	112	100	103	99

Quantization Matrix

MASK

Ordering of DCT coefficients
Zigzag arrangement

Peak Signal to Noise Ratio (PSNR)

- $\bullet PSNR = 10 * \log(\frac{255^2}{MSE})$
- •MSE(Mean Square Error) = $\frac{\sum_{n=1}^{Image \ size} (I_n P_n)^2}{Image \ Size}$

- $> I_n$: The nth pixel value of the original image.
- $\triangleright P_n$: The nth pixel value of the image processed by (IDCT).
- ➤ Image size: Image length * image width.

Grading

- ◆ Demo Code(70%)
 - -HW2-1(JPEG 30%)
 - HW2-1-1 (15%)
 - HW2-1-2 (10%)
 - HW2-1-3 (5%)
 - -HW2-2(40%)
 - HW2-2-1 (5%)
 - HW2-2-2 (15%)
 - HW2-2-3 (15%)
 - HW2-2-3 (5%)

- ◆ Report (30%)
 - Flow Chart (10%)
 - Experiment Results (10%)
 - Discussions (10%)

Please discuss:

To observe the experiment result when using different image after IDCT .(PSNR)

Using the C/C++ only. Matlab or OpenCV is not allowed.

Due Date & Demo Schedule

Demo Date: Monday Nov.12 or Tuesday Nov.13

Demo time: 13:30 ~ 17:30.

- ◆ The domo schedule will be announced at the TA webpage.
- ♦ You should send your project and report to LMS before Nov.12, 13:00.
- ◆ No delay. (If you have special case, please send email tell us early.)
- You will get a zero when you delay or fail to operation in demo(code and demo part), but you can still get points in report part.

Note

The details will be announced on our course website. (http://140.115.154.40/vclab/html/course/DIP2018.html)

- Do it yourself.
- ◆ The TA will use another image to test your code.
- ◆ If you have a notebook, please bring your own notebook. Otherwise, some people may not be able to execute the code during the demo.
- **♦** Cannot use 『Remote Connection』.

Reference

- ◆ Gonzalez, Rafael C., and Richard E. Woods, "Digital image processing, "Prentice Hall, 2007.
- ◆ 8 bits Lena.bmp download : https://www.ece.rice.edu/~wakin/images/

Any Questions?