Exercise 1a

Question 1.

Find the domain and range of the relation

$$R = \{(-1, 1), (1, 1), (-2, 4), (2, 4)\}.$$

Answer:

dom (R) = $\{-1, 1, -2, 2\}$ and range (R) = $\{1, 4\}$

Question 2.

Let $R = \{(a, a^3) : a \text{ is a prime number less than 5}\}.$

Find the range of R.

Answer:

range $(R) = \{8 \ 27\}$

Question 3.

Let $R = \{(a, a^3) : a \text{ is a prime number less than } 10\}.$

Find (i) R (ii) dom (R) (iii) range (R).

Answer:

(i)
$$R = \{(2, 8), (3, 27), (5, 125), (7, 343)\}$$

(ii) dom (R) =
$$\{2, 3, 5, 7\}$$

(iii) range (R) = $\{8, 27, 125, 343\}$

Question 4.

Let R = (x, y) : x + 2y = be are relation on N.

Write the range of R.

Answer:

 ${3, 2, 1}$

Question 5.

Let $R = \{(a, b): a, b \in N \text{ and } a + 3b = 12\}.$

Find the domain and range of R.

Answer:

dom (R) = $\{3, 6, 9\}$ and range (R) = $\{3, 2, 1\}$

Question 6.

Let $R = \{(a, b) : b = |a - 1|, a \in Z \text{ and } |a| < 3\}.$

Find the domain and range of R.

Answer:

dom (R) = $\{-2, -1, 0, 1, 2\}$ and range (R) = $\{3, 2, 1, 0\}$

Question 7.

Let
$$R = \left\{ \left(a, \frac{1}{a}\right) : a \in N \text{ and } 1 < a < 5 \right\}.$$

Find the domain and range of R.

Answer:

dom (R) = {2, 3, 4} and range
$$(R) = \left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}\right\}$$

Question 8.

Let $R = \{(a, b) : a, b \in N \text{ and } b = a + 5, a < 4\}.$

Find the domain and range of R.

Answer:

dom (R) = $\{1, 2, 3\}$ and range (R) = $\{6, 7, 8\}$

Question 9.

Let S be the set of all sets and let $R = \{(A, B) : A \subset B)\}$, i.e., A is a proper subset of B. Show that R is (i) transitive (ii) not reflexive (iii) not symmetric.

Answer:

Let $R = \{(A, B) : A \subset B)\}$, i.e., A is a proper subset of B, be a relation defined on S.

Now,

Any set is a subset of itself, but not a proper subset.

$$\Rightarrow$$
 (A,A) \notin R \forall A \in S

 \Rightarrow R is not reflexive.

Let
$$(A,B) \in R \forall A, B \in S$$

- ⇒ A is a proper subset of B
- ⇒ all elements of A are in B, but B contains at least one element that is not in A.
- ⇒ B cannot be a proper subset of A

$$\Rightarrow$$
 (B,A) \notin R

For e.g., if $B = \{1,2,5\}$ then $A = \{1,5\}$ is a proper subset of B. we observe that B is not a proper subset of A.

⇒ R is not symmetric

Let
$$(A,B) \in R$$
 and $(B,C) \in R \forall A, B,C \in S$

- ⇒ A is a proper subset of B and B is a proper subset of C
- ⇒ A is a proper subset of C

$$\Rightarrow$$
 (A,C) \in R

For e.g. , if $B = \{1,2,5\}$ then $A = \{1,5\}$ is a proper subset of B .

And if $C = \{1,2,5,7\}$ then $B = \{1,2,5\}$ is a proper subset of C.

We observe that $A = \{1,5\}$ is a proper subset of C also.

⇒ R is transitive.
Thus, R is transitive but not reflexive and not symmetric.
Question 10. Let A be the set of all points in a plane and let O be the origin. Show that the relation $R = \{(P, Q) : P, Q \in A \text{ and } OP = OQ) \text{ is an equivalence relation.}$
Answer: In order to show R is an equivalence relation, we need to show R is Reflexive, Symmetric and Transitive.
Given that, A be the set of all points in a plane and O be the origin. Then, R = $\{(P, Q) : P, Q \in A \text{ and } OP = OQ)\}$
Now,
R is Reflexive if $(P,P) \in R \forall P \in A$
\forall P \in A , we have
OP=OP
\Rightarrow (P,P) \in R
Thus, R is reflexive.
R is Symmetric if $(P,Q) \in R \Rightarrow (Q,P) \in R \forall P, Q \in A$
Let P, $Q \in A$ such that,
$(P,Q) \in R$
\Rightarrow OP = OQ
\Rightarrow OQ = OP

 \Rightarrow (Q,P) \in R

Thus, R is symmetric.

R is Transitive if $(P,Q) \in R$ and $(Q,S) \in R \Rightarrow (P,S) \in R \forall P, Q, S \in A$

Let $(P,Q) \in R$ and $(Q,S) \in R \forall P, Q, S \in A$

$$\Rightarrow$$
 OP = OQ and OQ = OS

$$\Rightarrow$$
 OP = OS

$$\Rightarrow$$
 (P,S) \in R

Thus, R is transitive.

Since R is reflexive, symmetric and transitive it is an equivalence relation on A.

Question 11.

On the set S of all real numbers, define a relation $R = \{(a, b) : a \le b\}$.

Show that R is (i) reflexive (ii) transitive (iii) not symmetric.

Answer:

Let $R = \{(a, b) : a \le b\}$ be a relation defined on S.

Now,

We observe that any element $x \in S$ is less than or equal to itself.

$$\Rightarrow (x,x) \in R \ \forall \ x \in S$$

⇒ R is reflexive.

Let
$$(x,y) \in R \ \forall \ x, \ y \in S$$

 \Rightarrow x is less than or equal to y

But y cannot be less than or equal to x if x is less than or equal to y.

$$\Rightarrow$$
 (y,x) \notin R

For e.g., we observe that $(2,5) \in R$ i.e. 2 < 5 but 5 is not less than or equal to $2 \Rightarrow (5,2) \notin R$

⇒ R is not symmetric

Let $(x,y) \in R$ and $(y,z) \in R \ \forall \ x, \ y, z \in S$

$$\Rightarrow$$
 x \leq y and y \leq z

$$\Rightarrow X \leq Z$$

$$\Rightarrow$$
 (x,z) \in R

For e.g., we observe that

$$(4,5) \in \mathbb{R} \Rightarrow 4 \le 5 \text{ and } (5,6) \in \mathbb{R} \Rightarrow 5 \le 6$$

And we know that $4 \le 6 : (4,6) \in R$

⇒ R is transitive.

Thus, R is reflexive and transitive but not symmetric.

Question 12.

Let
$$A = \{1, 2, 3, 4, 5, 6\}$$
 and let $R = \{(a, b) : a, b \in A \text{ and } b = a + 1\}$.

Show that R is (i) not reflexive, (ii) not symmetric and (iii) not transitive.

Answer:

Given that,

$$A = \{1, 2, 3, 4, 5, 6\}$$
 and $R = \{(a, b) : a, b \in A \text{ and } b = a + 1\}.$

$$\therefore R = \{(1,2),(2,3),(3,4),(4,5),(5,6)\}$$

Now,

R is Reflexive if $(a,a) \in R \ \forall \ a \in A$

Since, $(1,1),(2,2),(3,3),(4,4),(5,5),(6,6) \notin R$

Thus, R is not reflexive.

R is Symmetric if $(a,b) \in R \Rightarrow (b,a) \in R \forall a,b \in A$

We observe that (1,2) \in R but (2,1) $\not\in$ R .

Thus, R is not symmetric.

R is Transitive if $(a,b) \in R$ and $(b,c) \in R \Rightarrow (a,c) \in R \forall a,b,c \in A$

We observe that $(1,2) \in R$ and $(2,3) \in R$ but $(1,3) \notin R$

Thus, R is not transitive.