

ROČNÍK III · 1957 · ČÍSLO 1

BUDETE VYSTAVOVAT?

Předpokládáme, že čtenáři RKS jsou lidé, kteří pocitují největší radost, když se jim něco podaří vlastníma rukama zhotovit a uvést do chodu. A předpokládáme, že takovému člověku, který má radost z tvořivé práce, není jedno, zda se raduje sám pro sebe nebo zda radost sdílí s jinými. Sdílená radost - dvojnásobná radost, a tu chceme připomenout příležitost, jakou by bylo škoda si nechat ujít. Isou to výstavy radioamatérských prací. Po zimním období pilné práce v teple dílničky přijde jaro, období sklizně a radostného uzavírání konstruktérských účtů, období výstav radioamatérských prací, jež bude v květnu, na Den radia, vyvrcholeno celostátní výstavou.

Největší význam mají výstavy místní, okresní a krajské, neboť tam mohou exponáty působit účinněji na návštěvníky. Z nich mnozí přijdou tímto způsobem po prvé do bližšího styku s radiotechnikou a elektronikou. Chceme tuto skutečnost připomenout včas, neboť víme, že mnozí konstruktéři počítají pouze s účastí na celostátní výstavě a termín k dodělání exponátů jim pak vychází těsně před 7. května, kdy už je po okresních a krajských výstavách. A tím hodnota exponátu klesá. Nikoliv jeho účelová hodnota, ale propagační. Namísto co by jej mohlo shlédnout několik desítek tisíc diváků a několik desítek z nich být uchváceno natrvalo konstruktérskou vášní, omezí se jeho propagační působení jen na pražské obecenstvo a v těch místech, pro něž by mnohem skromnější výstavka byla společenskou událostí, není radioamatérské práce

propagačně využito. Podívejme se třebas do takového Prešova. Tam donedávna byl zapomenutý kraj a o radiotechnice ani slyšet. A na loňskou krajskou výstavu se podívalo 4949 návštěvníků, kteří se zapsali do knihy během 5 dní. A kolik se jich nezapsalo! Nebo v takové Trstené na severní Oravě. Tam ani v blízkém okolí není radioobchod a přece měla okresní výstava značný úspěch. A snad právě návštěvníci této výstavy, třebas donedávna o radiotechnice nic nevěděli, bůdou zanedlouho vyrábět televisory v nově budované továrně Tesla-Orava v Nižnej. Vidíte, jaký ohromný význam může mít výstavka radioamatérských prací v domněle "zapadlém" místě? A nemusíme chodit ani do tak odlehlých končin. V průmyslovém Místku navštívilo výstavu za 3 dny 1100 osob a v Hradci Králové dokonce 60 000 během 13 dní, t. j. více, než činila návštěva pražské celostátní výstavy. Vidíš, soudruhu, jak důležité je. abys svoji práci ukázal také svým známým doma, v závodě, na místní výstavě, v okresním městě a v krajském středisku? Neříkej, že je Ti jedno, zda kolem díla, které Tě stálo mnoho námahy a času, budou chodit lidé lhostejně, nebo zda je budeš moci předvést v chodu svým známým a zasít i do nich zrnko zájmu o radio a práci ve Svazarmu! A tak bude dobré, když se již nyní zeptáš, jak to stojí s výstavou radioamatérských prací u vás doma. Jestli o tom dosud nikdo nepřemýšlel, proč bys nemohl být iniciátorem výstavky třebas Ty sám? Přemýšlej o tom trochu!

POUŽITÍ TELEFONŮ V AMATÉRSKÉ PRAXI

Ing. Jindřich Čermák

1. 1 Význam telefonu

Málokdo z nás si uvědomuje, jak vážnou roli hraje v moderní lidské společnosti telefon, snad nejdůležitější sdělovací zařízení vůbec. Není to jen v dramatických chvílích, kdy lidé s netrpělivostí vytáčejí číslo požární ochrany, záchranné stanice nebo SNB. Neustále ve dne i v noci letí po telefonních drátech hlášení, objednávky, dotazy a informace. Vždyť naše plánované hospodářství, rozdělené do mnoha odvětví, vyžaduje neustálé spolupráce výrobních podniků, kontroly plnění plánu a harmonické souhry všech závodů.

Telefonní zařízení představují ohromné mnohamiliardové investice a jsou určena k nepřetržitému provozu po několik desítek let. V mnoha případech se jedná o zařízení neobsluhovaná, kontrolovaná a řízená jen složitými soustavami dálkové signalisace a ovládání.

Přenos radiovými vlnami, sloužící rozhlasu, tak jak jej známe z denního života, je poměrně jednoduchý. V první řadě hlavně tím, že vystačí s jednosměrným provozem: od hlasatele, herce ke "spotřebiteli", t. j. majiteli rozhlasového přijimače. Naproti tomu každé telefonní zařízení musí být upraveno k oboustrannému přenosu mezi oběma účastníkymajiteli telefonních přístrojů. Dále se telefon vyznačuje požadavkem bezporuchového přenosu bez zásahu obsluhy. Zde není možno – jako je tomu u rozhlasového přijimače – dolaďovat nebo měnit zisk přenosové cesty. Největší komplikací při dálkovém styku je složitost celé telefonní sítě. Bez nejmenších závad musí spolupracovat venkovní vedení na sloupech s podzemním, směrové radiostanice s podmořskými kabely, zámořské radiostanice dlouhovlnné s mnohacestnými soubory na koaxiálních kabelech. Jestliže tedy účastník nemá podle jakosti rozlišit, hovoří-li meziměstsky ve vnitrozemí nebo s účastníkem za

oceánem, jistě pochopíme, jak přesná a spolehlivá musí být všechna použitá zařízení. Vždyť na uskutečnění dálkového spoje pracuje na příklad několik desítek zesilovačů, jejichž případné chyby se násobí. Jak důkladně musí být tyto zesilovače řešeny, když chyba jediného z nich, jediné elektronky nebo jiné součástky, znamená ztrátu spojení a přerušení hovoru! Právě pro zařízení dálkové telefonie byly vyvinuty dlouhoživotné elektronky, u kterých výrobce zaručuje 20 i více tisíc hodin života, stálé magnetické slitiny a železo-prachové materiály.

Velmi složitým komplexem je na př. automatická telefonní ústředna s desetitisíci relé, statisíci a miliony spojů a pájených míst. Milionové náklady, vynaložené na stavbu jediné ústředny střední velikosti, musí být v budoucnu vyváženy bezporuchovým nepřetržitým provozem po 30 i více let. V blízké době zasáhne i do tohoto oboru elektronika a mechanická relé budou nahrazena elektronkami nebo transistory. Zcela zvláštní místo zaujímá v posledních letech tak zvané interkomunikační zařízení, interkom, hlasitý telefon. V zásadě jde o telefonní zařízení na krátkou vzdálenost, zakončené místo sluchátka reproduktorem. Učastníci nemusí držet v ruce při hovoru mikrotelefon, normálně hovoří u svého pracoviště a slyší hlasitou odpověď svého protějšku, jako kdyby s ním mluvili ve stejné místnosti. Hlasitý telefon má velký význam ve zdravotnictví, dispečerských soupravách pro velké závody, doly, nebo nádraží.

Bývá někdy nadhazována otázka, který z obou druhů dálkových spojů je důležitější: drátový nebo bezdrátový (radiový)? Otázku takto postavenou nelze jednoznačně rozhodnout. Má-li přenos po drátě výhody (malá možnost odposlechu, malá spotřeba zdrojů, necitlivost na vnější rušení), má i řadu nevýhod, hlavně nutnost stavby vedení, snadnou

zranitelnost vedení při náhodném nebo úmyslném poškození a nemožnost konferenčních (oběžníkových) hovorů na normálních ústřednách. Naproti tomu radiový provoz klade sice větší nároky na zdroje energie, může být snadno rušen a podléhá různým vlivům atmosféry a ionosféry, avšak ničím nelze docenit možnost spojení mezi libovolnými dvěma místy bez stavby vedení.

Správná odpověď na otázku zní: obě spojení, drátové i bezdrátové, mají své výhody i nevýhody a lze je posuzovat jen s ohledem na dané podmínky provozu. Tak na příklad až do nedávné doby bylo jediným spojením přes oceán radio a nebylo je možno v telefonním styku ničím nahradit. Naopak ke spojení dvou pevných stanovišť, položených blízko sebe, se lépe hodí telefonní vedení než radiové vlny, jež zabírají zbytečně místo na přeplněných pásmech.

Někteří radisté Svazarmu již měli příležitost ocenit výhody kombinované sítě při organisaci různých spojovacích služeb nebo při spojení několika stanic pracujících z rozličných stanovišť při Polním dnu.

Úkolem tohoto úvodu bylo ukázat čtenáři důležitost telefonu a jeho úzkou souvislost s elektronikou a radiotechnikou. V dalších odstavcích se seznámíme poněkud podrobněji s historií telefonu, jeho principem a základními součástkami. Získané zkušenosti pak uplatníme při návrhu a konstrukci několika zajímavých telefonních přístrojů, jež jistě najdou použití nejen ve výcviku Svazarmu, nýbrž i v domácí praxi.

1.2 Vývoj telefonu

První pokusy o přenos lidského hlasu na dálku nutno hledat v dávném starověku. Historikové totiž tvrdí, že v přepychových palácích velmožů starého Říma byly nalezeny průduchy ve zdech mezi místnostmi i patry, které prý sloužily k předávání rozkazů služebnictvu. Ať již tomu tak je či nikoliv, je jasné, že podobný způsob je primitivní a vystačí jen na vzdálenost několika desítek metrů. Je však naprosto spolehlivý a proto se i dnes používá ke spojení mezi kapitán-

ským můstkem a některými důležitějšími místy zámořských i říčních lodí. Jako zvukovodu se používá kovových trubek. Jistě každý čtenář zná provoz podobného "telefonu" z vltavské flotily nebo některého námořního filmu.

Vzduch nemusí být vždy nejlepším prostředníkem k přenosu zvukových vln. Isou to zvláště pevné látky, jež dobře přenášejí záchvěvy a zvuky. Na tomto principu se zakládá dětská hračka - telefon používající k přenosu zvuku napjaté nitě. Kruhové krabičky o průměru 5—10 cm ze silnější lepenky zbavíme dna a vzniklý otvor přelepíme pergamenovým zavařovacím papírem, který tvoří membránu. Membrána je uprostřed propíchnuta a dírkou je provléknuta obyčejná nit, zajištěná proti vytažení podložkou a uzlíkem. Protější telefonní přístroj je sestrojen zcela obdobně. Stačí napnout spojující nit tak, aby procházela volně vzduchem a při hovoru na jedné stanici reprodukuje membrána protější stanice věrně přenášený hovor. V žádném případě však tento telefon (vynalezený kolem roku 1667 fysikem Robertem Hookem) nepřekoná větší vzdálenost než několik desítek metrů.

Přenos řeči na dálku nedal spát mnoha učencům minulých staletí. Uplynulo však mnoho let od pokusů Hookových, než francouzský telegrafní úředník Charles Bourseul v r. 1854 uverejnil popis telefonu tak, jak si jej představoval na základě dlouholetých studií. Prostředníkem umožňujícím přenos zvuku měla být elektřina. Je zajímavé, že Bourseul ačkoliv sám nikdy nedokázal svůj návrh realisovat - správně pochopil podstatu problému. Jeho řešení se prakticky používá dodnes: v obvodu galvanické baterie je zapojen nestálý - labilní - kontakt, na který se přenášejí pohyby pružné membrány. Změnou jeho odporu se mění i velikost proudu protékajícího obvodem a síla, přitahující membránu v protější stanici k jádru elektromagnetu.

Někteří následovníci použili jeho myšlenek. Z nejúspěšnějších byl známý Filip Reis, který podle Bourseula použil dvou platinových hrotů na pergamenové membráně, avšak při konstrukci přijimače – sluchátka využil magnetostrikčního jevu. Již dříve, v r. 1837, zjistili totiž fysikové Page a Henry, že železná tyčka mění své rozměry vlivem vnějšího magnetického pole. Jestliže bylo pole buzeno cívkou, kterou protékal střídavý proud, předávala tyčka své chvění jako slyšitelný zvuk okolnímu vzduchu. Na tomto principu sestrojil Reis své sluchátko a předvedl celé zařízení s úspěchem na shromáždění fysiků dne 16. října 1861 ve Frankfurtu. Jeho "telefon", jak jej sám nazval, obstojně přenášel hudbu a zpěv. Při hovoru docházelo často k drnčení membránových kontaktů, jež znemožnilo srozumitelný přenos.

Přes 10 let se vědci zabývali otázkou přenosu mluvené řeči na dálku: Elisha Gray v Americe, Machalski v Rusku, v Anglii bratři Wrayové a jiní.

Konečně 14. února 1876 přihlásil Graham Bell svůj slavný patent na první telefon, který dokázal s dostatečnou srozumitelností přenášet lidskou řeč. K příjmu i reprodukci řeči použil dvou stejných sluchátek, zapojených podle obr. 1. Na tyčovém magnetu TM je navléknuta cívka C proti pružné železné membráně M. Při hovoru se membrána chvěje, přibližuje a vzdaluje se od magnetu, mění magnetický odpor vzduchové mezery. Změnou magnetického toku cívkou se indukuje napětí, jež vybudí proud vedením V do protější stanice. Zde se opět průtokem proudu mění výsledná přitažlivá síla magnetu a membrána se chvěje v rytmu původního

zvuku. Energie přenášená vedením je

nepatrná - zlomky miliontin wattu, ne-

boť zde není použit žádný vnější zdroj

Obr. 1. Bellův telefon

Obr. 2. Hughesův mikrofon

energie. Uvážíme-li malou účinnost elektroakustických měničů, není divu, že se Bellův telefon hodil jen k přenosu na krátké vzdálenosti. S tímto vynálezem je spojena zajímavá okolnost. Jiný vynálezce Elisha Gray přihlásil obdobný patent ve stejný den s Bellem jen o dvě hodiny později. Tato okolnost vedla firmy, využívající návrhy obou vynálezců, k dlouhým patentovým sporům.

Uplného úspěchu dosáhl profesor D. E. Hughes, vynálezce prvního tiskacího telegrafu r. 1878. Inspirován pravděpodobně původní prací Bourseulovou, použil Bellova sluchátka a vnějšího zdroje proudu, přerušovaného rozechvívavým kontaktem. Správně však posoudil vady Reisových platinových hrotů a navrhl použít k tomuto účelu uhlíkových tyčinek, sestavených podle obr. 2 na resonanční desce RD. Hlavní uhlíková tyčka T_1 , zahrocená na obou koncích, spočívá v důlcích nosných roubíků T2 a T_3 . Při hovoru se mění odpor přechodů mezi uhlíky, čímž se mění i výsledný proud obvodem. Hughes se tak stal vynálezcem uhlíkového mikrofonu, nezbytné součástky každého dnešního telefonního přístroje.

Práce známých i zapomenutých vynálezců přispěla k nesmírnému rozvoji telefonní sítě. A dnes, po 80 letech, má lidstvo k disposici na 100 milionů telefonních stanic, na kterých se vede přes 60 miliard hovorů ročně. První telefonní ústředna v Praze byla zřízena r. 1882 na Malém náměstí za Staroměstskou rad-

nicí a spojovala 7 telefonních účastníků. Podrobnější údaje o vývoji telefonní sítě naší republiky nejsou dostupné, neboť bývalá rak. uherská správa je shromáždila ve vídeňském ústředním úřadě. Roku 1920 bylo rozhodnuto přebudovat zvláště pražskou síť na automatickou síť. Do r. 1930 bylo uvedeno do provozu na 150 tisíc stanic vedlejších a hlavních. Druhá světová válka přerušila slibný vývoj telefonisace naší republiky. V poválečném dvouletém plánu bylo hlavně pamatováno na telefonisaci venkovských krajů a počet telefonních stanic v r. 1948 přestoupil 200 tisíc. Po zpomalení vývoje v minulých letech předpokládají směrnice k II. pětiletce podstatné rozšíření telefonní sítě. Celkový počet přípojek se zvýší o 70 %, při tom počet soukromých stanic stoupne o 100 %; provoz v 63 okresech a 3 oblastech (krajích) bude zcela automatisován. V blízké době se tedy telefon a rychlé, levné spojení s kterýmkoliv účastníkem stane tak samozřejmým jako rozhlasový přijimač a poslech večerních zpráv.

1.3 Lidský hlas

Tento odstavec bude sice pojednávat o lidském hlasu, avšak začneme tento-krát z opačného konce: od sluchu. Jestliže je citlivý organismus ucha zasažen chvěním vzduchu, vnímá je jako zvuk. Opakují-li se tyto kmity 16 až 20 000krát za vteřinu, vnímá je ucho jako tón. Horní i dolní mez slyšitelných kmitočtů se u různých osob značně mění a uvedené hodnoty možno mít za maximální. Dokonalá akustická soustava, určená k přenosu zvuků (na př. hudby), by tedy měla přenést všechny tyto slyšitelné kmitočty. Naštěstí však není ucho tak náročné a možno je poněkud ošidit.

Citlivost ucha je obdivuhodná. Může ještě sledovat zvuky a řeč ze sluchátka napájeného elektrickým výkonem 1 nW (miliardtina wattu, 10-9 W). Pro srozumitelný a dostatečný poslech je samozřejmě třeba hodnoty vyšší, v řádu 10-4 až 10-5 W. Velmi kvalitní poslech zabezpečí sluchátko napájené 1 mW. Konečně 10 mW stačí k reprodukci řeči a hudby v tichém pokoji. Řeproduktor napájený 50 mW postačí k dobrému ozvučení

kterékoliv běžné obytné místnosti. Pro úplnost nutno dodat, že pro různě hlasité tóny kolísá kmitočet, na který reaguje ucho nejcitlivěji. Tak na př. pro nejtišší zvuky je tento kmitočet 3 až 4 kHz. Pro silný tón klesá na 400 až 600 Hz. Tohoto jevu je možno využít na př. k nastavení záznějů při příjmu nejslabších signálů (příjem telegrafie, vyrovnávání můstků na střídavý proud). Podrobné vysvětlení všech těchto jevů nalezne zájemce v pram. [2] a [3].

Vraťme se nyní k původnímu námětu: hlasu. Lidský hlas obsahuje při řeči celou řadu kmitočtů, jež se mění podle vyslovovaných hlásek 100 od10 000 Hz. Podrobným měřením bylo dokázáno, že zákmity souhlásek jsou přechodné, neperiodické, zatím co samohlásky tvoří pravidelně se opakující kmity. Tvoří je jednak základní kmitočty, v oblasti kolem 100 až 150 Hz u mužů, 150 až 250 Hz u žen a celá řada kmitočtů vyšších, t. zv. formantů. Tyto formanty se mění a jsou charakteristické pro tu či onu samohlásku; nezávisí však na celkovém charakteru hlasu (soprán, bas), tedy na základním kmitočtu. Tak na př. hlavní formanty samohlásek leží vždy v oblasti

```
a 700 až 900; 2500 až 3000 Hz
e 400 až 600; 2500 až 3000 Hz
i 300 až 500; 2500 až 3500 Hz
o 400 až 600 Hz
u 200 až 400 Hz.
```

Je zajímavé, že hlavním nositelem energie jsou nízké kmitočty, zatím co vysoké mají vliv na věrnost přednesu a srozumitelnost.

Tak na př. odfiltrujeme-li z řeči všechny nízké kmitocty do 500 Hz, klesne energie hlasu na 40 % původní hodnoty, avšak na srozumitelnost to nemá praktického vlivu. Odstraníme-li z hovorového spektra vyšší kmitočty s nepatrnou energií, zhorší se přenos některých hlásek a srozumitelnost řeči klesá. Tabulka I udává, jak se změní přenos hlásek, odstraníme-li všechny kmitočty nad mezným kmitočtem f_m , uvedeným v prvním sloupci. Druhý sloupec patří samohláskám a třetí souhláskám. V levé polovině jsou vždy uváděny hlásky, jejichž přenos se zásahem zřetelně pozmě-

ní a v pravé polovině hlásky, které jsou již nesrozumitelné. Podobně je tomu u hudebních nástrojů. Jejich zvuky obsahují základní kmitočet, daný výškou tónu, a celou řadu harmonických kmitočtů, jejichž poměr amplitud je charakteristický pro určitý hudební nástroj. Lze proto umělou změnou, potlačením nebo zvýšením těchto harmonických, zcela setřít původní vjem, takže při reprodukci nerozeznáme jednotlivé hudeb-

ní nástroje. Je nutné – zvláště při přenosu hudby – dbát na přenos nejen nízkých, nýbrž i vysokých tónů. U telefonu požadujeme hlavně dostatečnou srozumitelnost bez velkých nároků na věrnost řeči. Ke zjištění srozumitelnosti se zpravidla používá t. zv. logatomů, vhodně zvolených slabik. Při zkoušce jeden z účastníků tyto slabiky předčítá do zkoušeného zařízení, zatím co druhý je u sluchátka po-slouchá a zapisuje. Z poměru správně zapsaných slabik k celkovému počtu přečtených se vypočte t. zv. slabiková srozumitelnost. Mnoha pokusy bylo zjištěno, jak závisí srozumitelnost celých vět na srozumitelnosti slabikové. Tak na př. větné srozumitelnosti 98 %, jež je považována prakticky za dostačující, odpovídá asi 60% slabiková. Aby byla taková srozumitelnost při telefonním

hovoru zajištěna, nutno přenášet na př. kmitočty v pásmu 300 až 3400 Hz. Je zřejmé, že v tomto směru jsou mezilehlá vedení a zesilovače jednodušší než podobná zařízení pro přenos rozhlasových pořadů. Teoreticky by bylo možno ještě dále zúžit přenášené telefonní pásmo na několik set Hz kolem středního referenčního kmitočtu 800 Hz. Avšak pokles větné srozumitelnosti by vyžadoval časté dotazy a opakování hovořících účastníků.

Samotný hlasový orgán, lidské hlasivky, pracuje velmi účinně. Pramen [2] uvádí, že při normální síle výkon potřebný k vybuzení řeči se pohybuje kolem 100 erg/s (10 µW). Při hlasitém přednesu nebo zvolání tento výkon stoupá až na 2500 erg/s (250 µW). Pokusy, jež konal kdysi i Edison, jak využít hluku nebo hlasu k výrobě elektrické energie, jsou tedy předem odsouzeny k nezdaru. Vždyť při hodinovém normálním hovoru by celková energie hlasu byla schopna na př. ohřát jen 1 g vody o 0,01° C.

2. Základní telefonní součástky a obvody

V minulém oddílu jsme se seznámili se základními vlastnostmi lidského hlasu a sluchu. Z nich pak můžeme odvodit

Tabulka I.

f _m Hz	Samohlásky		Souhlásky		
	změní se	nesrozumitelné	změní se	nesrozumitelné	
6000		· · · · · · · · · · · · · · · · · · ·	s		
4600	le.	-	s, ch		
3700	e, i		f, ch	S	
2600	e, i		š, ch	s, f	
2000	e, i		š, t, p, m, n, l	s, f, ch	
1400	a, o	e, i	t, p, m, n, l, r, k	s, š, f, ch	
1000	le .	řeč 1	řeč málo srozumitelná		
700		řeč nesrozumitelná			

i požadavky, jež budou na telefonní zařízení kladeny, jako na př. přípustný útlum vedení, potřebné pásmo přenosu a pod. Z čeho se vlastně skládá telefonní zařízení? Pro snazší přehled si je můžeme zhruba roztřídit do několika skupin.

V první řadě je to

a) telefonní přístroj, který slouží k přeměně akustické energie na elektrickou a naopak. Mimo to musí být vybaven zařízením k přivolávání obsluhy. Nejčastěji to bývá zvonek, bzučák nebo žárovka, jenž upozorní obsluhu, že volá protější stanice. Zdrojem proudu, napájejícího zvonek volané stanice, je nejčastěji induktor, baterie nebo síťový transformátor. Telefonní přístroj musí být tedy vybaven

aa) hovorovým obvodem, ab) návěstním obvodem.

O jednotlivých součástkách obou obvodů si povíme v dalších odstavcích. Další důležitou složkou telefonního zaří-

zení je

b) vedení, které zprostředkuje přenos elektrických proudů mezi oběma telefonními stanicemi. Vedení musí být konstruováno tak, aby obvody telefonních přístrojů spolu s ním tvořily jediný uzavřený okruh proudu. Proud se tedy nesmí uzavírat nějakou další cestou. jako na př. zkratem na vedení. V tomto případě by byl přenos porušen nebo zcela znemožněn. Nejčastěji používaná vedení tvoří dva navzájem isolované kovové vodiče. Jeden z nich může být v nouzi nahrazen zemí, jak uvidíme později.

Konečně poslední skupinu tvoří

c) pomocná zařízení. Ta mají za úkol zkvalitnit přenos (telefonní zesilovače) a umožnit spolupráci jednotlivých úseků v transkontinentálních, tisíce kilometrů dlouhých linkách. Zařízení nosné telefonie umožní na př. současný přenos desítek a stovek hovorů po jediném vedení. Slouží k vyššímu využití existujících vedení a přináší nepředstavitelné úspory mědi a železa při výstavbě nových vedení. Konečně ústředny všech druhů dovolí spojovat jednotlivé účastníky navzájem.

Všimněme si nyní používaných součástek podrobněji, abychom s nimi uměli zacházet při konstrukci některých po-

kusných telefonních přístrojů.

2.1 Telefonní vložka (sluchátko)

Dnešní naše telefonní (i radiová) sluchátka se principiálně neliší od původního modelu Bellova. Jen moderní technologie a snaha o rychlou a snadnou opravu vadné součástky změnily vnější tvary. Jistě známe dnešní sluchátko, používané ve všech normálních telefonních přístrojích. Při bližší prohlídce vidíme, že je konstruováno jako snadno výměnná součástka, kterou vkládáme do známého bakelitového krytu mikrotelefonu (obr. 8). Z toho se také vytvořil správný název: telefonní vložka. Telefonní vložka je zcela uzavřena, zalisována. Při poruše ji tedy není možno otevřít bez hrubého poškození. Tím se zamezí svévolné manipulaci telefonních účastníků, ke které svádí rozebiratelné přístroje. Vzhledem k masové výrobě všech telefonních součástek je výrobní cena nízká, poškozená vložka se neopravuje, nýbrž se nahrazuje novou.

Na obr. 3 vidíme průřez telefonní vložkou. Kovové lisované pouzdro P nese isolační destičku, na které jsou připevněny pólové nástavce \mathcal{N}_1 a \mathcal{N}_2 . Na těchto nástavcích jsou navlečeny cívky C_1 , C_2 . Jeden konec vinutí je spojen s pouzdrem P, druhý s kontaktní destičkou K. Pouzdro a kontaktní destičkou K. Pouzdro a kontaktní destička tedy tvoří dva přívody elektrického proudu k telefonní vložce. Několik desetin mm od pólových nástavců \mathcal{N}_1 , \mathcal{N}_2 je za okraj přichycena membrána M z ocelového plechu síly 0,15 až 0,25 mm. Oba pólové nástavce spojuje půlkulatý permanentní magnet PM.

Význam tohoto permanentního magnetu si osvětlíme krátkým výpočtem.

Obr. 3. Průřez telefonní vložkou

Z každé učebnice fysiky víme, že přitažlivá síla elektromagnetu F je úměrná čtverci magnetického toku

$$F = k \cdot \Phi^2 \tag{1}$$

V našem případě se magnetický tok Φ skládá z konstantního toku Φ_k , vybuzeného permanentním magnetem, a proměnného Φ_p , vybuzeného průtokem harmonického proudu vinutím obou cívek na pólových nástavcích. Předpokládáme-li, že se tento tok mění podle kosinusovky

$$\varphi_{p} = \Phi_{p} \cos \omega t \tag{2}$$

můžeme dosadit do vztahu (1)

$$F = k \left(\Phi_k + \Phi_D \cos \omega t \right)^2 \qquad (3)$$

Snadnou úpravou dostaneme konečně

$$F = k\Phi_{k}^{2} + \frac{k}{2} \Phi_{p}^{2} + 2k\Phi_{k}\Phi_{p}\cos\omega t + \frac{k}{2} \Phi_{p}^{2}\cos\omega \tag{4}$$

Z tohoto výrazu vidíme, že při průtoku střídavého proudu se zvětší konstantní síla, napínající membránu, o $k\Phi_p^2/2$ proti původní $k\Phi_k^2$. Třetí člen má hlavní vliv na správnou reprodukci přeneseného tónu, neboť působí na membránu v rytmu původního kruhového kmitočtu

Obr. 4. Impedance telefonní vložky a radiových sluchátek

ω. Konečně poslední člen působí vznik nežádoucího skreslení druhou harmonickou 2 ω. Naštěstí je její amplituda zpravidla zanedbatelná proti amplitudě základního kmitočtu. Dále je zřejmý význam předmagnetisace tokem Φ_k . Kdyby nebyla telefonní vložka opatřena permanentním magnetem, bylo by $\Phi_k = 0$. Na membránu by působila jen síla, definovaná posledním výrazem vzorce (4) a všechny reprodukované kmitočty by bylo posunuty o oktávu výše proti původní poloze. Dále je z třetího členu zřejmé, že síla složky základního kruhového kmitočtu ω je úměrná konstantní předmagnetisaci tokem Φ_k . Čím silnější bude permanentní magnet, tím citlivější bude telefonní vložka. Při ztrátě předmagnetisace (hrubým zacházením, průtokem silného proudu, působícího proti směru permanentního magnetu nebo stárnutím) citlivost telefonní vložky klesá a reprodukce je skreslená. Na okraji pouzdra telefonní vložky bývá vyražena velikost stejnosměrného odporu navinutých cívek. Zpravidla jsou vinuty drátem o Ø 0,13 mm, každá po 900 závitech. Stejnosměrný odpor vinutí je zhruba $2 \times 27 = 54 \Omega$. Takový odpor klade vinutí průtoku stejnosměrného proudu. Při průtoku střídavého proudu, t. j. při poslechu řeči, hudby nebo telegrafních značek však ke stejnosměrnému odporu (resistanci) přistupuje induktivní reaktance vinutí. Výsledná impedance telefonní vložky je dána komplexním součtem reálné resistance a imaginární reaktance vinutí. Tato impedance je pak závislá na kmitočtu, jak ukazuje křivka 1. na obr. 4. Při výpočtech bereme zpravidla impedanci při referenčním kmitočtu 800 Hz, t. j. asi 200 Ω. Má-li tedy telefonní vložkou protékat střídavý proud 1 mA, musíme na ni přiložit napětí

$$U = I \cdot Z = 1 \cdot 10^{-3} \cdot 200 = 0.2 \text{ V}$$

Toto výsledné napětí se skládá jako impedance ze dvou složek. Imaginární, jalové a reálné, činné. Pro akustický výkon je nejdůležitější přírůstek činné složky, způsobený odporem vzduchu, s kterým se setkává kmitající membrána. Vzhledem k tomu, že tento přírůstek je

proti původně stejnosměrné resistanci nepatrný, je účinnost telefonní vložky stejně jako většiny, ostatních elektroakustických měničů, velmi malá.

Radiová sluchátka pracují stejně jako telefonní vložka. Rozdíl je v konstrukční úpravě a odporu vinutí. Křivka 2. na obr. 4 udává přibližnou závislost impedance na kmitočtu. Stejnosměrný odpor radiových sluchátek bývá zpravidla kolem 4 k Ω . Dále se vyrábí speciální telefonní vložka o nízkém stejnosměrném odporu vinutí 5 Ω . Tato vložka může být použita na př. k hlasité reprodukci v soupravách elektrický vrátný.

Telefonní vložka nebo radiová sluchátka mohou sloužit také k přeměně akustické energie v elektrickou. Hovoříme-li totiž proti membráně, membrána se rozechvívá, přibližuje a oddaluje se od pólových nástavců. Tím se mění magnetický odpor vzduchové mezery a při konstantní magnetomotorické síle permanentního magnetu se mění i výsledný magnetický tok. Se změnou toku se indukuje napětí v cívkách, sledující přesně pohyb membrány. Při normálním hovoru a vzdálenosti úst od membrány kolem 5 cm dává telefonní vložka o vinutí 2×27 Ω naprázdno napětí 3 až $6 \, \mathrm{mV}$.

Na tomto principu byl založen vynález G. Bella, který dodnes používáme v nejjednodušších telefonních soupravách.

2.2 Mikrofonní vložka (mikrofon)

Ve slaboproudé elektrotechnice se používá celá řada různých typů mikrofonů: dynamické, kondensátorové, krystalové, uhlíkové. Pro svoji neobyčejnou citlivost a nízkou cenu došly právě poslední z nich, uhlíkové, největšího rozšíření v telefonii. Mají sice celou řadu nevýhod (vysoký šum, harmonické skreslení), avšak nepodařilo se je zatím nahradit některým z dokonalejších typů. Teprve miniaturní transistorové zesilovače snad umožní použití dynamických nebo krystalových mikrofonů.

Zatím se však budeme zabývat vlastnostmi uhlíkového mikrofonu, zdokonaleného pravnuka Hughesova vynálezu. Mnoha pokusy bylo zjištěno, že citli-

Obr. 5. Zdokonalený Hughesův mikrofon

vost uhlíkového mikrofonu se zvýší zvětšením počtu dotykových míst. A tak z původní konstrukce na obr. 2 vznikl dokonalejší typ na obr. 5. Ještě v polovině třicátých let jej doporučoval Duroquier ve své slavné Radiotechnice pro každého jako výborný mikrofon pro amatéry vysilače. Lze jej opravdu sestavit z uhlíků z plochých a malých kulatých baterií. Potřebné důlky ve svislých roubících snadno navrtáme ruční vrtačkou.

Hlavní vliv na konstrukci moderního uhlíkového mikrofonu však měl objev Ing. M. Machalského, který hrotové doteky nahradil stykem uhlíkových zrn s uhlíkovou nebo kovovou membránou. Uhlíkový mikrofon je opět řešen jako nerozebiratelný výměnný celek - mikrofonní vložka. Průřez takovou vložkou vidíme na obr. 6. Lisované plechové pouzdro P nese isolační destičku I s uhlíkovou vrubovanou kulatou destičkou D.

Obr. 6. Průřez mikrofonní vložkou

Na tuto kulatou destičku je navlečen plstěný prsten PP, který se lehce opírá o membránu M. Prostor mezi destičkou D a membránou M je vyplněn asi ze $^3/_4$ uhlíkovými zrny \mathcal{Z} . Membrána je chráněna před přímým poškozením krytem K, který je tak profilován, aby prostor mezi ním a membránou M tvořil resonátor. Tím je možno v určitých mezích korigovat závislost citlivosti mikrofonu na kmitočtu. Jeden vývod mikro-fonu tvoří kryt, spojený s kovovou membránou M, druhým je kontaktní nýt KN spojený s uhlíkovou destičkou D. Při hovoru membrána stlačuje nebo uvolňuje uhlíková zrna a mění tak odpor přechodu membrána - uhlíková destička. Znamená to tedy, že v rytmu dopadajících zvukových vln se mění odpor mikrofonu.

Na obr. 7 vidíme nejjednodušší náhradní schema mikrofonního obvodu. Odpor uhlíkového mikrofonu se skládá z konstantní složky R_k a proměnné r_p , o které předpokládejme, že kolísá harmonicky podle vztahu

$$r_p = R_p \cdot \sin \omega t$$

Odpor R_z představuje odpor zátěže, na př. cívek telefonní vložky, který pro jednoduchost pokládejme za reálný. Pak výsledný proud obvodem podle Ohmova zákona je

$$I = \frac{U}{R_k + R_z + R_p \sin \omega t}$$
 (6)

Dělme čitatele i jmenovatele zlomku výrazem $R_k + R_z$, jeho hodnota se nezmě-

Obr. 7. Náhradní schema uhlíkového mikrofonu

ní. Zavedeme-li výraz Io pro klidový proud

$$I_o = \frac{U}{R_k + R_r} \tag{7}$$

dostaneme

$$I = \frac{I_o}{1 + \frac{R_p}{R_k + R_z} \sin \omega t} \tag{8}$$

Odtud matematickou úpravou dostaneme řadu

$$I = I_o - I_o \frac{R_p}{R_k + R_z} \sin \omega t +$$

$$+ I_o \left(\frac{R_p}{R_k + R_z} \sin \omega t \right)^2 -$$

$$- I_o \left(\frac{R_p}{R_k + R_z} \sin \omega t \right)^3 + \dots (9)$$

První člen rovnice (9) je klidový proud známý z rovnice (7). Druhý člen přísluší střídavému harmonickému proudu o kruhovém kmitočtu ω, stejném s kmitočtem akustických vln. Další mocninové členy rovnice (9) však dokazují vznik vyšších harmonických kmitočtů. Pokudbude amplituda proměnné složky R_p malá proti konstantním $R_k + R_z$, bude vznikající harmonické skreslení malé. Při nadměrné hlasitosti řeči nebo křiku stoupají rychle amplitudy harmonických kmitočtů, takže srozumitelnost klesá. Pro staré uhlíkové mikrofony udávala fa Siemens činitel harmonického skreslení k = 30 %. U novějších typů, na př. sovětských MK 10, je k = 10 až 15 %.

Uhlíkové mikrofony dělíme podle velikosti klidového odporu R_k do dvou skupin: na nízkoohmové a vysokoohmové.

Nízkoohmové o $R_k = 20$ až 80 Ω jsou určeny pro napájení z jediného článku o napětí 1,2 až 1,5 V. Telefonní stanice, mající vlastní (místní) baterii, nazýváme stanicemi soustavy "místní baterie" a označujeme zkratkou MB. Stejně jsou označeny i příslušné nízkoohmové mikrofony. Starší výrobky poznáme též podle barevných křížů nebo kruhů na čelním krytu nebo membráně.

Vysokoohmové mikrofony mají odpor $R_k = 90$ až 250 Ω a používají se v tele-

fonních sítích, napájených z ústřední baterie v telefonní ústředně. Proto je tento typ označován zkratkou *ÚB*

(ústřední baterie).

Dynamický (vnitřní) odpor uhlíkového mikrofonu, t. j. odpor, který mikrofon klade průtoku střídavého proudu, silně závisí na velikosti klidového proudu I_0 . Při návrhu mikrofonního obvodu však musíme pamatovat, že nadměrný proud opaluje, po případě spéká jednotlivá uhlíková zrnka a zhoršuje přenosové vlastnosti mikrofonu. Správnou velikost tohoto klidového proudu udává pro jednotlivé typy výrobce. Pokud ji přesně neznáme, lze za maximální hodnotu I_0 považovat zhruba 30 mA.

Mikrofonním vložkám škodí vlhkost a chlad. Zvláště za mrazu sražené páry z dechu mrznou a pevně spojí uhlíková zrna. Taková vložka vůbec nepracuje, nutno ji z mikrotelefonu vyjmout a v suchu na mírném teple vysušit. Pak je teprve možno ji znovu použít.

Závěrem nutno uvést několik poznámek. V elektroprodejnách nalezneme dnes několik typů mikrotelefonních pouzder, mikrofonních a telefonních vložek (obr. 8). Pokud pocházejí všechny součástky od téhož výrobce, jsou pérové kontakty upraveny pro příslušné typy vložek. Stačí je tedy prostě vložit na příslušné místo a přitáhnout svrchní kryt, opatřený závitem. Spojení vložek se šňůrou mikrotelefonu zajistí kontaktní pera. Používáme-li však odlišných typů vložek, než pro které byl mikrotelefon určen, nezbývá než pera přihnout, upravit. V krajním případě je možno vložky k perům připájet. Mikrotelefonní šňůra má obvykle 4 vodiče: 2 patří k telefonní a 2 k mikrofonní vložce. První pár snadno nalezneme pomocí baterie, jež vybudí v telefonní vložce šramot a šelesty. Zbývající pár tedy patří mikrofonní vložce. Různá zapojení obou vložek, jež vyžadují jednotlivé návody, provedeme na vývodech mikrotelefonní šňůry.

2.2 Telefonní vedení

Telefonní vedení zprostředkuje přenos elektrických proudů z jedné stanice do druhé a zpět. Hlavním požadavkem, který na ně klademe, je jakostní, uspo-

kojivý přenos s nejmenšími ztrátami. Podle uspořádání můžeme vedení dělit na vzdušná a kabelová. Vzdušná vedení jsou provedena ze silnějších, mechanicky odolnějších vodičů, většinou své délky visí volně ve vzduchu a jen v určitých místech jsou připevněny ke sloupům, stromům a pod. Stálá (permanentní) vzdušná vedení, jaká na př. staví poštovní správa, jsou provedena ze silných měděných nebo bronzových neisolovaných drátů. Dřevěné sloupy ve vzdálenostech 50 až 100 m jsou opatřeny jakostními porcelánovými isolátory, ke kterým je vodič připevněn. Oba vodiče téhož permanentního vedení se zpravidla napínají ve vzdálenosti 20 až 30 cm a ke zmenšení přeslechů mezi různými linkami si v určitých úsecích vyměňují svoji polohu (t. zv. křižování vedení). K dočasným (provisorním) vedením se používá isolovaných vodičů. Je-li isolace jakostní, je možno vedení bez obav zavěšovat na větve stromů, zdi domů a jiné podpěry. Při rychlé stavbě, kdy není čas takové provisorní vedení zavěšovat, lze je i volně klást na zem a případně místy zakopat. Toto vedení se už svojí povahou blíží kabelovému. Kabely poštovní správy obsahují zpravidla mnoho žil měděného drátu o průměru 0,4 až 1,3 mm, stáčených po párech a čtyřkách do svazku 1 až 5 cm silného. Jednotlivé vodiče jsou isolovány papírem a celý kabel je chráněn jutou, opředením, olověným a ocelovým pancířem. Kabely se

Obr. 8. Mikrotelefon s vyjmutou mikrofonni vložkou

zakopávají do země podél silnic a železničních tratí. Vzhledem k velkému množství vodičů lze po jediném kabelu vést mnoho telefonních hovorů.

Elektricky lze vedení dělit na jednoduchá a dvojitá. Jaký je mezi nimi rozdíl? Vedení musí v každém případě tvořit dva vodiče, aby mohlo být připojeno do uzavřeného elektrického obvodu. Avšak brzy po vynálezu telegrafu v první polovině minulého století bylo zjištěno, že jeden vodič vedení můžeme nahradit zemí (obr. 9). V tomto případě jsou obě koncové stanice opatřeny jakostním uzemněním, které dovolí průchod elektrickému proudu, jak je vyznačeno čárkovanou šipkou. Nejlépe se osvědčuje dutá (plynová) trubka o Ø 2 až 4 cm, zakovaná na spodním konci do tupého hrotu podle obr. 10, opatřená šroubem s křídlovou matkou k přichycení přívodu a kruhem k snadnému vytažení ze země. Ke zmenšení odporu uzemnění stačí občas nalít horním koncem do trubky vodu nebo roztok soli, jež prosakuje otvory zemniče do půdy.

Každý konstruktér ví z praxe, že domácí zvonek pracuje dobře jen při vedení určitého průměru a délky. Pokud je vedení příliš dlouhé nebo má měď malý průměr, zvonek nezvoní. Vedení má příliš velký ohmický odpor a baterie nebo transformátor nestačí protlačit potřebný pracovní proud. Podobně je tomu u telefonních vedení. Jejich vodiče nutno volit a uspořádat tak, aby elektrické proudy byly přeneseny v potřebné síle. U telefonních vedení nestačí jen uvažovat ohmický odpor R. U delších vedení nebo u všech vedení s nekvalitní isolací správnou funkci znemožňuje svod A mezi oběma vodiči, který měříme jako vodivost v mikrosiemensech, μ S (vodivost = převrácená hodnota odporu; A = 1/R; 1 siemens = 1/ohm; 1 μ S = $1/1 \text{ M}\Omega$). Pro větší názornost si tedy můžeme určitý úsek vedení znázornit přenosovým článkem, jehož náhradní schema vidíme na obr. 11.

Mimo základní ohmické členy je zde kondensátor C, který představuje kapacitu obou vodičů proti sobě. Oba vodiče téhož vedení se totiž chovají jako polepy kondensátoru, mezi kterými je isolant dielektrikum – na př. vzduch nebo pevná isolační látka, jako smalt, PVC, guma a pod. Tato kapacita C má největší vliv na přenos vyšších kmitočtů. Rozdíl mezi útlumem přenášeného kmitočtu 300 a 3000 Hz je tak velký, že u dálkových telefonních vedení musí být opravován speciálními korektory. Jsou-li vodiče blízko sebe (v kabelech), je kapacita žil velmi značná. Vedení znemožňuje přenos vyšších kmitočtů. U vedení na sloupech, kde jsou dráty vzdáleny až několik dm a dielektrikem je vzduch o nízké dielektrické konstantě, je vzájemná kapacita vodičů malá a zpravidla ji můžeme zanedbat.

Indukčnost L definuje vliv elektromagnetického pole mezi oběma vodiči,

Obr. 9. Jednoduché a dvojité vedení

Obr. 10. Uzemňovací kolik

vznikajícího při přenosu střídavých proudů vedením. Pokud jsou oba vodiče blízko sebe, je průřez magnetického toku v mezeře mezi nimi malý a indukčnost vedení můžeme zanedbat. Naopak je tomu, jsou-li vodiče daleko od sebe.

Aby bylo možno srovnávat jednotlivé druhy vedení navzájem, bývají v technických příručkách udávány tyto konstanty přepočtené na př. na 1 km vedení. Vzdušné vedení na sloupech, tažené bronzovým drátem o \varnothing 2 mm, má podle pramenu [4] tyto kilometrické konstanty: odpor $R_k = 22 \ \Omega$, kapacitu $C_k = 5.1 \ \text{nF}$, svod $A_k = 0.5 \ \mu\text{S}$ (isolační odpor $1/\text{A}=2 \ \text{M}\Omega$), indukčnost $L_k = 2.4 \ \text{mH}$.

Uvedené konstanty jsou sice velmi důležité pro teorii i praxi, avšak názornější představu o vlastnostech vedení podávají další odvozené veličiny. V první řadě je to t. zv. charakteristická impedance \mathcal{Z}_0 , kterou pro určitý kmitočet f, resp. kruhový kmitočet $\omega = 2 \pi f$ vypočteme ze vzorce

$$Z_0 = \sqrt{\frac{R_k + j \omega L_k}{A_k + j \omega C_k}}$$
 (10)

Představíme-li si, že měříme impedanci prodlužujícího se vedení, pak naměříme zprvu jen kapacitu C a svod žil A. Při několikametrové délce vedení a akustických kmitočtech se při otevřeném konci vedení nemůže ohmický odpor R ani indukčnost L uplatnit. Teprve později, když už proud do dílčích myšlených kapacit vzdálených úseků musí protékat úseky bližšími, uplatní se i ohmický odpor a indukčnost. Kdybychom za současného měření neustále vedení prodlužovali, zjistíme, že naměřená impedance se bude blížit asymptoticky určité mezní hodnotě – charakteristické impedanci Z_0 . Charakteristická impedance je tedy vstupní impedance nekonečně dlouhého vedení. Na takovém vedení se šíří postupné vlny, slábnou a zanikají. Na nekonečném vedení se nevytvoří odražené nebo stojaté vlny. Ve skutečnosti však máme v praxi vždy vedení konečná, zakončená telefonními přístroji. Pro optimální podmínky přenosu je třeba, aby impedance těchto přístrojů byly pokud

možno blízké nebo rovny charakteristické impedanci použitého vedení Z_0 . Pokud se impedance přístrojů zásadně liší od Z_0 , nutno k přizpůsobení vedení a zátěže použít transformátorů (t. zv. translátorů) o vhodném závitovém poměru.

Vstupní impedance všech slaboproudých nf zařízení jsou přizpůsobeny na jednotnou hodnotu, rovnou 600 Ω . Toto opatření umožňuje hladkou spolupráci kteréhokoliv telefonu s libovolným vedením, zesilovačem, komunikačním přijimačem a pod. Zde je nutno upozornit naše radisty - svazarmovce, že i profesionální radiové stanice všech rozsahů mají vstupní a výstupní impedance na nf straně rovny 600 Ω . Kdyby této úpravy použili i amatéři, mohl by kterýkoliv mikrofon pracovat s kterýmkoliv vstupem zesilovače nebo modulátoru kterýkoliv výstup modulátoru s modulačním vstupem koncového stupně. Konečně by bylo možno při rozsáhlých spojovacích službách a závodech spojovat zařízení různých majitelů navzájem, při čemž by byly vždy zaručeny optimální podmínky přenosu.

Další charakteristickou veličinou je konstanta přenosu

$$\gamma = \sqrt{(R_k + j \omega L_k) \cdot (A_k + j \omega C_k)} =$$

$$= \beta + j \alpha \qquad (11)$$

skládající se z reálného měrného útlumu β a imaginární složky měrného posuvu α. Měrný posuv α udává fázový posuv mezi kterýmikoliv dvěma místy na nekonečně

Obr. 11. Náhradní schema vedení

dlouhém vedení, vzdálenými od sebe 1 km. Znamená to tedy, že procházející vlna se neustále opožďuje proti fázi napětí nebo proudu, vstupujícího do vedení.

Měrný útlum β je udáván v neperech, N, nebo decibelech, dB, podle vztahu

$$\beta = \ln \left| \frac{U_1}{U_2} \right| [N] = 20 \log \left| \frac{U_1}{U_2} \right| [dB]$$
(12)

kde U_1 a U_2 jsou napětí, naměřená na nekonečném vedení v kterýchkoliv dvou místech vzdálených od sebe 1 km, při čemž U_1 je napětí, měřené blíže ke zdroji. Svislé čáry ve vzorci (12) naznačují, že vystačíme s absolutními hodnotami napětí bez ohledu na jejich fázi. Čím větší měrný útlum na určitém vedení naměříme, tím více bude vedení tlumit procházející elektrické proudy. Útlum b mezi dvěma místy na vedení o l km vypočteme jako

$$b = l \cdot \beta \tag{13}$$

Měrný útlum kabelových vedení, jejichž vodiče jsou uloženy blízko sebe, je způsoben z velké míry vlastní kapacitou. Jejím vlivem se elektrické proudy uzavírají již po celé délce kabelu, takže malá část původní energie dojde na konec vedení. V druhé polovině minulého století připadl matematik a fysik Heawiside na myšlenku kompensovat kapacitu zvýšením indukčnosti vedení, jehož se dosáhne připojením indukčních cívek.

Obr. 12. Měrný útlum telefonních vedení

Teprve po delší době se návrhu ujal Jihoslovan M. Pupin a praktickými pokusy dokázal jeho výhody. Později byla vypracována celá theorie těchto indukčních cívek, byl nalezen vztah mezi poklesem útlumu vedení, vzdáleností, ve kterých mají být cívky do kabelů připojovány a velikostí jejich indukčnosti. Cívky, které jsou dnes vinuty na nejkvalitnější železoprachová kruhová jádra, byly nazvány po svém konstruktéru Pupinovými cívkami. Téměř všechny dálkové meziměstské kabely jsou pupinovány. Vzdálenost cívek (krok) je asi 1700 m, jejich indukčnost se pohybuje od 9 do 150 mH. Pupinovy cívky jsou uloženy v podzemních litinových skříních, do kterých je zaveden procházející kabel. Pupinovy cívky zmenšily útlum telefonních kabelů téměř na desetinu a umožnily tak konstrukci a hospodárný provoz tisícikilometrových tratí.

Při návrhu nebo volbě vedení vycházíme z tak zvaného překlenutelného útlumu b_p , to je maximálního útlumu, přes který lze ještě uspokojivě telefonovat. Hodnota překlenutelného útlumu samozřejmě závisí na kvalitě telefonních přístrojů, na pozornosti naslouchajícího a pod. Bývá však zpravidla udávána hodnota $b_p = 40 \, \mathrm{dB}$. Podle pramenu [4] lze na př. s úspěchem hovořit po vzdušném vedení o průměru vodičů 4 mm na vzdálenost 1600 km, zatím co po účastnickém kabelu o průměru žil 0,6 mm jen 43 km. Přibližně stejný dosah by měl i meziměstský nepupinovaný kabel. Pupinací se však dosah zvýší téměř na desateronásobek. Všechny uvedené hodnoty platí pro referenční kmitočet 800 Hz. Pro odlišné kmitočty nutno vypočítat nebo změřit křivky v potřebném kmito-. čtovém pásmu. Na obr. 12 jsou informativní průběhy závislosti měrného útlumu pro hlavní druhy vedení: vzdušné vedení měděné průměr 4 mm (křivka 1), pupinovaný meziměstský kabel průměr 1,3 mm, indukčnost 88 mH (křivka 2) a souosý (koaxiální) kabel s průměrem vodiče 2,6 a pláště 9,5 mm (křivka 3). Je zřejmé, že vzdušné vedení a koaxiální kabel se hodí pro přenos vyšších kmitočtů. Utlum pupinovaného kabelu je však nad hovorovým pásmem příliš vysoký.

Seznámili jsme se tak s hlavními vlastnostmi telefonních vedení. I když v běžné amatérské praxi a při pokusech s jednoduchými telefony není nutné s útlumem vedení počítat, podal snad výklad čtenáři informativní obraz o speciálních požadavcích a nárocích, které jsou na dálková vedení kladeny.

2.4 Návěstní obvody

Běžné telefonní přístroje jsou vybaveny zařízením k přivolání obsluhy. Je to zvonek nebo bzučák, uváděný v činnost průtokem stejnosměrného nebo střídavého proudu nízkého kmitočtu. Při návrhu návěstních obvodů musíme vždy vycházet z citlivosti zvonku a odporu vedení, který v tomto případě můžeme považovat za čistě reálný. Výsledkem výpočtu je napětí zdroje (baterie nebo transformátoru) potřebné k průtoku pracovního proudu.

Máme na př. zvonek, o kterém výrobce udává, že ke správné funkci vyžaduje proud 400 mA. Odpor jeho vinutí je $R_z = 5 \Omega$. Délka vedení mezi stanicemi je 50 m, použitý dvojitý zvonkový drát o průměru 0,7 mm s PVC isolací má celkový odpor obou žil asi 5 Ω . Vedení i vinutí zvonku spolu se zdrojem G představuje jednoduchý obvod na obr. 13. Potřebné napětí U, jež by obvodem o odporu $R_v + R_z$ protlačilo proud I, vypočteme z Ohmova zákona

$$U = I.(R_v + R_z) = 0.4.(5 + 5) = 4V.$$

K dobré funkci zvonku postačí baterie nebo zvonkový transformátor o napětí 4 V. S ohledem na vnitřní odpor zdroje G, který jsme ve výpočtu neuvažovali

Obr. 13. Náhradní schema vedení se zvonkem

a s ohledem na nutnou bezpečnost, zvýšíme vypočtené napětí alespoň o 20 %.

Jindy bývá na zvonku uvedeno napětí U_z , potřebné ke správné funkci. Odpor vinutí R_z odečteme ze štítku na cívce a potřebné napětí zdroje U vypočteme ze vzorce

$$\frac{U_z}{R_z} = \frac{U}{R_z + R_v} \tag{14}$$

odkud

$$U = \frac{R_z + R_v}{R_z} \cdot U_z \qquad (15)$$

Máme na př. zvonek, jehož odpor R_z je $10~\Omega$ a napětí potřebné ke spolehlivému vyzvánění $U_z=5~\mathrm{V}$. Ke spojení obou stanic použijeme jednoduchého vedení o odporu $12~\Omega$. Místo druhého vodiče je použito země. Odpor obou uzemnění je asi $50~\Omega$. Celkový odpor vedení je tedy $R_v=50+12=62~\Omega$. Po dosazení do vzorce (15) vypočteme $U=36~\mathrm{V}$. Baterie nebo zvonkový transformátor musí tedy dodávat nejméně napětí $U=36~\mathrm{V}$. Popsaným způsobem je možno navrhovat i instalace domovních zvonků a zvolit nejmenší potřebný průměr vodičů.

V telefonii se používá dvojí druh zvonků: na stejnosměrný a střídavý proud. Pro naše pokusné telefony použijeme střídavých a stejnosměrných zvonků Tesla, jež se od sebe vnějším tvarem ne-

Obr. 14. Zvonky Tesla

liší (obr. 14). Stejnosměrný zvonek pracuje na principu známého Wagnerova kladívka (přerušovače). Při zapnutí baterie (obr. 15) mezi přívody 1, 2 projde proud okruhem: přerušovací kontakt PK, péro P, vinutí elektromagnetu V, který přitáhne ocelové pero P, jež udeří nýtem \mathcal{N} do zvonkové misky $\mathcal{Z}M$. Přitažením pera P se přeruší proud na přerušovacím kontaktu, zruší se síla elektromagnetu a péro P se pružností vrátí do původní polohy. Tím se opět uzavře přerušovací kontakt PK a celý pochod se znovu opakuje. Správná funkce zvonku, jeho citlivost a síla zvuku je nastavitelná změnou tlaku přerušovacího kontaktu PK na pero P. Počet úderů nýtu $\mathcal N$ do zvonkové misky ZM je zhruba dán mechanickou resonancí, t. j. hmotou a pružností pera P.

Stejnosměrný zvonek lze napájet též střídavým proudem. Jeho zvuk je však hrubý, přerušovaný, což je způsobeno nesouhlasem kmitočtu sítě a mechanické

resonance pera P.

Zvonek na střídavý proud je jednodušší, neboť pracuje bez přerušovacího kontaktu. Prochází-li vinutím elektromagnetu střídavý proud, mění se magnetický tok a tím i přitažlivá síla, působící na pero P podle rovnice (4). Dvakrát během jedné periody střídavého proudu je pero P přitaženo, dvakrát uhodí nýt N do zvonkové misky ZM a dvakrát se péro vrací pružností do původní polohy. Nejvyšší citlivosti střídavého zvonku dosáhneme při shodě mechanické resonance pera s dvojnásobkem kmitočtu střídavého proudu. Střídavého zvonku nelze použít ve stejnosměrných obvodech. Při průtoku stejnosměrných obvodech. Při průtoku stejno-

Obr. 15. Stejnosměrný zvonek

směrného proudu se totiž pero P přitáhne, nýt \mathcal{N} udeří do misky $\mathcal{Z}M$ a péro zůstane v této poloze až do přerušení proudu.

V telefonních přístrojích veřejné sítě se často používá střídavého zvonku polarisovaného. Tak jako předmagnetisace zvýší podle odstavce 2.1 citlivost telefonní vložky, lze permanentním magnetem zvýšit citlivost střídavého zvonku. Jako zdroje střídavého proudu se v sítích UB, napájených z ústřední baterie, používá síťového transformátoru nebo malého alternátoru. Ve venkovských nebo provisorních stanicích MB, vybavených místní baterií, se k výrobě střídavého proudu používá malého alternátoru, t. zv. induktoru. Je to v podstatě malý generátor na střídavý proud, poháněný otáčením kličkou. Kmitočet vyráběného proudu závisí na rychlosti otáčení a pohybuje se od 10 do 25 Hz. Napětí naprázdno dosahuje přes 100 V a dovoluje návěštění i přes nekvalitní vedení s velkým ohmickým odporem.

Tam, kde vadí pronikavý zvuk zvonku, lze jej nahradit bzučákem. Stačí sejmout zvonkovou misku a nechat pero volně kmitat. V poslední době nahradila firma Bell telefonní zvonek malým reproduktorem s transistorovým oscilátorem. Výšku tónu si naladí majitel přístroje podle svého vkusu.

Obr. 16. Schema jednoduchého hovorového okruhu. Proměnný odpor má být označen r_b

2.5 Mikrofonní transformátor

Důležitou součástkou hovorového obvodu je mikrofonní transformátor, zvaný někdy indukční cívka. Jeho význam si objasníme na jednoduchém příkladu. Podle dosavadního textu si můžeme zapojit nejjednodušší obvod pro jednosměrný přenos řeči, používaný v domácích telefonech, podle obr. 16a. Mikrofonní a telefonní vložka, vedení V a baterie B jsou zapojeny v serii. Náhradní schema obvodu vidíme na obr. 16b. Vedení a telefonní vložka představují (pro jednoduchost ohmické) odpory R_v a R_T . Odpor mikrofonní vložky se skládá z konstantní složky R_k a proměnné složky, jejíž okamžitou hodnotu označíme r_p . Poměr amplitudy proměnné složky r_p ke všem ostatním odporům obvodu má hlavní vliv na hlasitost přenosu. Při zvolených hodnotách odporů a napětí, zakreslených v obr. 16b, protéká obvodem nejmenší proud, když $R_k + r_p =$ $= 30 + 10 = 40 \Omega$.

$$I_1 = \frac{U_B}{R_k + r_p + R_v + R_T} = \frac{1,5}{40 + 10 + 54} = 14,4 \text{ mA (16a)}$$
a největší pro $R + r = 30 - 10 = 20 \Omega$
 $I_2 = \frac{1,5}{20 + 10 + 54} = 18 \text{ mA (16b)}$

Střídavý proud je skreslen vyššími harmonickými, tak jak bylo vysvětleno v odstavci 2.2 a jeho dvojnásobná amplituda na obr. 17 je poměrně velká:

Obr. 17. Proud mikrofonním obvodem

18 - 14,4 = 3,6 mA. U delšího vedení, jehož $R'_v = 50$, bude $I_1 = 10,4$ mA a $I_2 = 12,1$ mA. Dvojnásobná amplituda je nyní menší, 1,7 mA. Vedení s velkým ohmickým odporem nejen že tlumí procházející telefonní proudy, ale ani neumožní vznik střídavého mikrofonního proudu potřebné velikosti. Je tedy třeba, aby proud procházející mikrofonem, byl uzavřen obvodem s nejmenším odporem.

K tomu účelu sestrojil vynálezce Nikola Tesla ze svého pobytu v Budapešti (podle jiných pramenů to byl Edison) transformátor na obr. 18. Transformátor má primární vinutí I a sekundární vinutí II. Stejnosměrný odpor primárního vinutí s malým počtem závitů R_I je nízký, jen několik ohmů. Sekundární vinutí z tenkého drátu má velký počet závitů. Je jistě známo, že transformátor převádí impedance v poměru čtverců k počtu závitů. Proto se odpor vedení R_v přenáší do obvodu mikrofonu mnohokráte zmenšen, takže poměr amplitudy proměnné složky odporu mikrofonu R_p ke všem pevným, konstantním odporům obvodu je poměrně velký. Kdyby na př. transformátor na obr. 18 měl závitový převod 1:10, transformuje se odpor vedení $R_v = 50 \Omega$ do obvodu mikrofonu v poměru 1:102, t. j. jako 0,5 Ω . Dvojnásobná amplituda střídavé složky je v tomto případě asi 30 mA (zanedbámeli odpory vinutí transformátoru). I když je přesný výpočet obvodu složitější a dává poněkud odlišné výsledky, postačí náš příklad k objasnění důležitosti mikrofonního transformátoru.

Další výhodou mikrofonního transformátoru je oddělení stejnosměrného

Obr. 18. Mikrofonní transformátor

proudu od vnějších obvodů. Stejnosměrný proud, vybuzený na obr. 16 baterií C, protéká totiž nejen mikrofonem, nýbrž i vinutím telefonní vložky a jestliže je – náhodou – polarisován tak, že magnetický tok jím vybuzený pracuje proti magnetomotorické síle permanentního magnetu vložky, zmenšuje citlivost sluchátka. Pokud se jedná o domácí telefony s krátkým vedením, není zmenšení citlivosti na závadu. Avšak u dlouhých vedení je vždy výhodnější použít zapojení s mikrofonním transformátorem podle obr. 18. V neposlední řadě znamená použití mikrofonního transformátoru zvýšení účinnosti přenosu. Představíme-li si spotřebič o odporu $R = 1 \Omega$ (obr. 19a), připojený přes vedení o odporu 10Ω ke zdroji střídavého napětí U=1 V, bude obvodem protékat proud

$$I = \frac{U}{R + R_v} = \frac{1}{1 + 10} = 0.091 \text{ A}$$

Výkon ztracený na vedení $\mathcal{N}_v = I^2$. $R_v = 0.091^2$. 10 = 0.082 W. Výkon dodaný spotřebiči je jen $\mathcal{N}_s = I^2$. $R = 0.091^2$. 1 = 0.0082 W. Kdybychom však podle obr. 19b mezi

Obr. 19. Přenos a ztráty na vedení

zdroj a vedení na začátku, a vedení a spotřebič na konci zapojili stejné transformátory, bude účinnost přenosu vyšší. Náhradní schema tohoto obvodu vidíme na obr. 19c. Transformátor Tr1 zvýšil vstupní napětí na vedení na U'=10 V. Zatěžovací odpor R se transformoval pomocí Tr2 v poměru čtverce napětového převodu na R'=100 Ω . Proud obvodem je tedy

$$I' = \frac{U'}{R' + R_v} = \frac{10}{100 + 10} = 0,091 \text{ A.}$$

Výkon ztracený na vedení bude stejný jako v minulém případě, avšak proud spotřebičem vzroste v poměru závitů vinutí Tr2 na 0,91 A. Výkon odevzdaný spotřebiči je mnohokrát větší než v případě minulém: $N_s = I''^2$. R = 0.82 W. I když zvýšení účinnosti přenosu vlivem vnitřního odporu zdroje, svodu vedení a ztrát v transformátorech není tak značné jako v uvedeném příkladu, znamená podstatné zvýšení dosahu telefonních stanic. Cím vyššího napětí bude dosaženo, tím účinnější bude přenos elektrické energie. A v energetice rozvodná síť o napětí 220 000 V již dávno není novinkou, dnes se již pracuje v některých zemích s transformátory o sekundárním napětí 400 kV.

U telefonních přístrojů systému UB, jejichž mikrofony jsou napájeny z jediné baterie v ústředně, nelze výhod mikrofonního transformátoru zcela využít. Zvětšení střídavé složky mikrofonního proudu se dosahuje zvýšením napětí ústřední baterie na 24 až 60 V. Vliv tohoto napětí na velikost střídavé složky mikrofonního proudu je zřejmý z rovnice (16a), (16b). Ve skutečném zapojení na obr. 18, kdy na svorkách 1, 2 končí připojené telefonní vedení, nutno do sekundárního obvodu transformátoru Tr připojit ještě telefonní vložku. Ve většině případů je spojena se sekundárem i vedením do serie (na př. mezi body 3, 4). Nevýhodou tohoto zapojení je přenos vlastní řeči z mikrofonní vložky M do telefonní. Znamená to tedy, že při hovoru slyší účastník ve vlastním mikrotelefonu z telefonní vložky svůj hlas. Tím se však ucho unavuje a při poslechu se jen pomalu přizpůsobuje slabému

hlasu protější stanice. A jestliže je telefonní stanice instalována v hlučné místnosti, přenáší se hluk i do telefonní vložky a poslech vzdálenějších stanic je téměř znemožněn. Proto se používá v moderních telefonních přístrojích zvláštního zapojení mikrofonního transformátorku, t. zv. anti-side-tónového, jenž potlačí přeněs hluku mikrofonu do vlastního sluchátka.

Mikrofonní transformátor v tomto zapojení vidíme na obr. 20. Obvod primárního vinutí I transformátoru se neliší od obvodů dříve popisovaných. Sekundární vinutí je však rozděleno ve dvě stejné poloviny *Ha*, *Hb*. Na svorky 1, 2 se připojuje telefonní vedení, jehož vstupní impedanci představuje Z_1 . Impedanci Z_2 nazýváme vyvažovačem; je složena z ohmických odporů, kondensátorů a někdy i indukčních cívek tak, aby byla pokud možno přesně rovna impedanci vedení \mathcal{Z}_1 . V tomto případě totiž budou i proudy I'_2 a I''_2 stejné a při průtoku telefonní vložkou T se vyruší. Žnamená to tedy, že přenos z mikrofonního obvodu do vlastního sluchátka je přerušen, nebo alespoň zmenšen. Proud I_2 , protékající vedením, zprostředkuje přenos hovorových proudů k protější stanici. Protože sekundární vinutí IIa a IIb má mnohem více závitů než primární vinutí I, má toto zapojení i všechny výhody jednoduchého mikrofonního transformátoru. Změní-li se vzájemný poměr obou dílů sekundárního vinutí, je nutno ve stejném poměru udržet i impedanci vedení a vyvažovače. Toto nesymetrické uspořádání anti-side-tónového obvodu má ještě jiné výhody a proto se jej dnes nejčastěji používá.

Pro úplnost nutno poznamenat, že obdobná zapojení se používají i v přístrojích systému *UB*. Protože v našich dalších popisech a návodech se nevyskytují, nebudeme se jimi ani zde zabývat.

3. Praktické návody

V dosavadních odstavcích jsme si popsali hlavní součástky, používané v telefonní technice. Protože se tyto součástky poněkud liší od běžných součástek radiotechnických, věnovali jsme výkladu

více místa, než by snad bylo obvykle třeba a nyní tedy můžeme přistoupit ke stavbě jednoduchých, avšak výkonných a užitečných telefonních souprav. Při volbě zapojení i celého systému se budeme snažit, abychom postihli všechny možnosti domácí i amatérské praxe. V první řadě zde nalezneme několik návodů na bytové domácí telefony pro spojení mezi místnostmi nebo byty téhož domu. V dalším návodu bude uveden popis telefonního přístroje s induktorovým vyzváněním, který může spolupracovat s inkurantními polními přístroji, které některé organisace Svazarmu používají při spojovacích službách. Tento přístroj může pracovat i po jednoduchých vedeních a hodí se na př. pro spojení stanovišť jednotlivých stanic při Polním dnu a pod. Konečně v poslední části věnujeme pozornost hlasitým telefonům (interkomunikační zařízení, interkom). Hlasité telefony nabývají v poslední době stále většího významu v poštovních a dispečinkových sítích pro svoji jednoduchou obsluhu a možnost volného pohybu hovořícího účastníka po místnosti. Seznámili jsme se tedy s obsahem tohoto oddílu a můžeme přistoupit k prvnímu nejjednoduššímu telefonu.

3.1 Telefon bez baterií

Ještě dnes po 80 letech se používá nejjednoduššího telefonního zařízení, zcela obdobného původnímu Bellovu patentu. Vnější tvar použitých sluchátek (telefonních vložek) se sice změnil, avšak

Obr. 20. Anti-side-tónové zapojeni

nic se nezměnilo na základním zapojení na obr. 21a. Sluchátek se používá nejen k poslechu, nýbrž i k hovoru. Při hovoru se totiž rozechvívá membrána a změna magnetického toku budí ve vinutí cívek napětí tak, jak již bylo popsáno v odstavci 2.1. K tomuto účelu se hodí jakýkoli typ nízkoohmových telefonních vložek. Zdálo by se, že výhodnější jsou vložky vysokoohmové, v jejichž vinutí se budí poměrně vyšší napětí, které spíše překoná odpor vedení než nízké napětí z nízkoohmových sluchátek. S výhodou použijeme jednotlivých mušlí z radiových sluchátek Tesla 559500, jež jsou dnes v prodeji. Stačí spojit vývody vinutí sluchátek vedením a nejjednodušší telefon je hotov. Spokojíme-li se s jedinou telefonní vložkou na každém konci, musíme ji při hovoru držet před ústy ve vzdálenosti 3 až 5 cm. Po dokončení hovoru ji musíme opět přiložit k uchu, abychom slyšeli odpověď protější stanice. Chceme-li si ušetřit námahu s neustálým překládáním sluchátka, je možné zapojit na každé koncové stanici dvě stejná sluchátka do serie nebo paralelně. Jedno z nich pak stále používáme jako mikrofonu a druhým jen nasloucháme (obr. 21b). K tomuto zapojení je možno použít jakýchkoliv dobrých telefonních sluchátek. Je zajímavé, že přes naprostou jednoduchost je tento telefon schopen překlenout vzdálenost mnoha km. A je dokonce možné použít jednoduchého

vedení, u kterého je druhý vodič nahrazen zemí.

Jedinou nevýhodou popisovaného telefonu je nemožnost vyzvánění a přivolání obsluhy. Lze jej použít jen k příležitostným spojům, kdy obě obsluhy jsou neustále ve styku a naslouchají. Jedním takovým příkladem je dorozumívání při instalaci televisní anteny. Její nasměrování je obvykle třeba hledat zkusmo, podle jakosti přijímaného obrazu. Pak tedy je potřebí dohovoru mezi pozorovatelem u televisoru v bytě a manipulantem na střeše. Nejjednodušší je samozřejmě spojit střechu s bytem dvojitým. provisorním telefonním vedením. Někdy stačí i vedení jednoduché, pokud použijeme za druhý vodič uzemnění bleskosvodu nebo okapu na jedné a vodovodu na druhé straně. Protože však zřízení vedení je vždy spojeno s potížemi, lze využít k telefonnímu spojení i televisního svodu. Umělý vysokofrekvenční střed je u složeného dipólu podle předpisu spojen s uzemněným bleskosvodem (obr. 22). Přerušíme tedy při pokusech tento zemnicí spoj a zapojíme do něho telefonní vložku nebo radiové sluchátko T_1 , blokované pro snadný průchod eventuálních vf proudů kondensátorem C. Podmínkou dobré funkce telefonu však je, aby i televisor byl uzemněn tak, jak vidíme na obrázku.

Není ani možné jmenovat všechny případy, kde s tímto nejjednodušším

Obr. 21. Bezbateriový telefon

Obr. 22. Směrování televisní anteny

Obr. 23. Bezbateriový telefon s návěštěnín

bezbateriovým telefonem vystačíme. Pro obvyklé použití však musí být ještě vybaven návěštním okruhem. Velmi jednoduché uspořádání vidíme na obr. 23. Jako zdroj vyzváněcího proudu nám slouží zvonkový reduktor ZR o napětí 3 až 8 V, jako telefonních vložek použijeme tentokrát nízkoohmových Tesla $2 \times 27 \Omega$ nebo odpovídající typ Siemens. Ke spojení obou stanic potřebujeme tři vodiče. Za hovoru se přenášejí telefonní proudy okruhem: T – vodič 1, 1', 2, 2^{7} – T' a naopak. Při vyzvánění stiskne obšluha stanice tlačítko (na př. 71) a střídavý proud 50 Hz prochází okruhy: transformátor ZR – vodič 3 – tlačítko Tl - telefonní vložka T a T' vodič 2, 2' – transformátor ZR. Průchod síťového kmitočtu telefonní vložkou se projeví silným vrčením, jež upozorní obsluhu stanice, že je volána. Při vyzvánění pracuje i vložka místní (volající)

Obr. 24. Nástěnná stanice

stanice jako kontrola správné funkce okruhu. Pro jednoduchost je na obr. 23 naznačeno na každé koncové stanici jen po jedné telefonní vložce, jež slouží k poslechu i hovoru. Smíříme-li se s poněkud slabším přenosem, zapojíme na obou koncích po dvou vložkách podle obrázku 21b, a vložíme je do mikrotelefonního pouzdra. Ve spojení s bakelitovou krabicí B1 můžeme snadno sestavit jednoduchý telefonní přístroj pro domácí potřebu. Fotografii takového přístroje vidíme na obr. 24. Při zapojování dbáme jen toho, abychom nezaměnili jednotlivé vývody a vodiče vedení. Jako tlačítko se hodí jakékoli zvonkové tla-

Obr. 25. Bezbateriový telefon se zvonky

čítko se zapínacím kontaktem. Vedení mezi oběma stanicemi vedeme místem, kde je můžeme připojit ke zvonkovému reduktoru, kterého se dnes již používá skoro v každé domácnosti. Vyzvánění síťovým kmitočtem má však tu nevýhodu, že může při častém provozu zeslabit předmagnetisaci telefonních vložek. Můžeme proto ke každé stanici připojit zvonek nebo bzučák FE 60600 nebo jiný vhodný typ pro napětí 3 až 8 V. Mimo zvonek Z, Z' na obr. 25 je každá stanice opatřena přepinačem Př, resp. Př', který slouží k zapojování jednotlivých okruhů v klidu (poloha K), při volání (poloha V) a hovoru (poloha H). ${f V}$ prvním případě jsou na vedení ${\it I,\ I'}$ a $\hat{2}$, $\hat{2}'$ připojeny jen zvonky $\hat{\mathcal{Z}}$, $\hat{\mathcal{Z}}'$. Teprve když jedna ze stanic přeloží svůj přepinač do polohy V, odpojí se vlastní zvonek a připojí se zdroj střídavého proudu, zvonkový reduktor ZR. Po chvíli vyzvánění přeloží volající účastník přepinač do polohy H a naslouchá, zda se hlásí protější stanice. Jestliže i ona přepne přepinač do polohy H, jsou propojeny telefonní vložky obou stanic, jejichž účastníci mohou nyní spolu hovořit. Po skončení hovoru je nutno vždy vrátit přepinače obou stanic do klidové polohy K. Jinak by při příštím volání místo zvonku pracovala telefonní vlož-

Nemáme-li po ruce jednoduchý jednopólový, třípolohový přepinač, použijeme radiový přepinač Tesla a přebytečné kontakty necháme nezapojeny. Všechny součástky spolu se zvonkem umístíme do bakelitové krabičky BI nebo B4, podobně jako tomu bylo v minulém návodu. Dvě telefonní vložky na každé ze stanic vložíme opět do mikrotelefonního pouzdra. Ke spojení obou stanic je opět třeba tří drátů. S ohledem na poměrně velký pracovní proud běžných zvonků a bzučáků, je nutno vedení navrhovat tak, aby odpor žádného z vodičů nepřestoupil 2 až 3 Ω .

Mnozí čtenáři si jistě všimli, že naše telefonní stanice, opatřené zvonkem, potřebují ke spojení třídrátové vedení, zatím co normální telefon vystačí s vedením dvoudrátovým. Je to způsobeno tím, že používáme jednoduchých přepinačů a jediného zdroje proudu. Bylo by sice možné vybavit každou ze stanic vlastním vyzváněcím zdrojem, baterií nebo transformátorem. Tím se už blížíme zapojení telefonní stanice s místní baterií. V tomto případě je však už lepší použít uhlíkového mikrofonu, který dává dokonalejší přenos. O tom se přesvědčíme, sestavíme-li si domácí telefon podle následujících návodů.

3.2 Domácí telefon

Základem běžných domácích telefonů je obvod na obr. 16. Po vedení, jehož délka zpravidla nepřesahuje několik desítek metrů, prochází stejnosměrný i střídavý proud hovorového obvodu. Pro vyzváněcí obvod použijeme opět zvonků. Protože domácí telefony jsou napájeny z baterie, musí i použité zvon-

Obr. 26. Domáci telefon s jednou baterii

ky pracovat se stejnosměrným proudem. Nehodí se tedy zvonky na střídavý proud (bez přerušovače), kterých jsme použili v minulém odstavci 3.1. Dnes je v provozu celá řada domácích telefonů tovární výroby, lišících se uspořádáním stanic, počtem drátů spojovacího vedení nebo umístěním baterií. Zásadně lze říci, že při jediné baterii musí být použité třídrátové vedení. Chceme-li naopak použít vedení dvoudrátového, musíme vybavit každou z koncových stanic samostatnou baterií. Moderní polovodiče dovolují dokonce i úsporu jedné baterie. Toto nové zapojení, které si popíšeme na konci odstavce 3.2, je velmi výhodné a lze předpokládat, že se našim čtenářům zalíbí.

Na obr. 26 je schema domácího telefonu s jedinou baterií B a třídrátovým vedením. Mikrofonní vložka M a telefonní T, spojené do serie, jsou umístěny opět v mikrotelefonním pouzdru. Každá z telefonních stanic je opatřena jednopólovým třípolohovým přepinačem s polohami: klid – volání – hovor. V klidové poloze K jsou na vedení 1, 1'; 2, 2' připojeny zvonky obou stanic, napájecí drát 3, 3' je odpojen. Volá-li na př. levá stanice, přeloží svůj přepinač do polohy volání - V, čímž se uzavře okruh: baterie B – vodič 3 – přepinač Př v poloze V – vodič 1, 1' – zvonek \mathcal{Z}' – vodič 2' – baterie B a zvonek Z' vyzvání. Chce-li se volající účastník přesvědčit, zda se volaný přihlásil, přepne Př do polohy hovor - H a naslouchá. Je-li přítomen, přepne i volaný účastník svůj přepinač $P\check{r}'$ do polohy hovor – H, čímž je uzavřen okruh: baterie B – vodič 3' – mikrofonní a telefonní vložka M', $T' - P\check{r}'$ v poloze H – vodič I, I' – $P\check{r}$ v poloze H – mikrofonní a telefonní vložka M, T vodič 2 – baterie B.

Oba účastníci mohou spolu hovořit. Po ukončení hovoru vrátí opět přepinače do klidové polohy K. Jako baterie použijeme jedné ploché baterie do kapesní svítilny, jež stačí k napájení zvonků i hovorového okruhu. Baterie B může být umístěna kdekoli na vedení nebo přímo v některém telefonním přístroji. Ve všech uvedených návodech používáme nízkoohmové mikrofonní a telefonní vložky pro stanice systému MB.

Mnohému čtenáři může vadit složitá obsluha přepinače, jež - i když není nijak komplikovaná – vyžaduje přece jen určité duševní námahy. Popíšeme si nyní úpravu tohoto domácího telefonu, jež zjednoduší obsluhu stanice na nejmenší míru. Použijeme totiž pohyblivé mikrotelefonní vidlice, do které zavěšujeme mikrotelefon. Stejně jako u telefonních přístrojů poštovní správy změní vidlice (nebo závěsný hák u veřejných mincovních automatů) svoji polohu vahou mikrotelefonu a pohyb se přenese na kontaktní pera, která jsou zde použita na místo dosavadního přepinače. Vidlice sama ovšem může zachytit pouze dva stavy: klidový (mikrotelefon zavěšen) a hovorový (mikrotelefon sejmut). Pro třetí případ – vyzvánění – musí být přístroj doplněn volacím, vyzváněcím tlačítkem.

Největší obtíží při konstrukci mikrotelefonní vidlice je opatření vhodných perových svazků. Pokud snad máme k disposici jednotlivá pera nebo svazky relé, můžeme z nich vhodnou kombinaci vybrat. V nouzi sestrojíme kontaktní pera z ocelových pružin a pásků, používaných ke svazování některých beden a obalů. Po nastřihání na vhodnou délku a důkladném očištění konců připájíme na jejich pohyblivé konce kousky měděných, nejlépe postříbřených drátů o průměru 0,7 až 1,5 mm. Ty pak tvoří vlastní dotek místo nespolehlivé, korodující oceli. Nepohyblivé konce v délce 3 až 5 mm důkladně ocínujeme, aby-

Obr. 27. Přepínací svazek

Obr. 28. Uspořádání mikrotelefonní vidlice

chom na ně mohli později snadno připájet přívodní dráty. Veškerá pájená místa čistíme kalafunou nebo nejvýše pájecí pastou prostou kyselin. Jednotlivá pera spojíme pomocí bakelitových nebo dřevěných isolačních vložek, opatřených otvory pro stahovací šrouby. Na obr. 27 vidíme sestavený přepínací svazek. V klidu je sepnut horní kontakt; při pohybu středního pera ve směru šipky se horní kontakt odpojí a sepne se dolní

kontakt. Potřebné vzdálenosti per a tlaky kontaktů jednotlivých per nastavíme opatrným přihýbáním nebo napružením (t. zv. justáž per). Sestavením dvou nebo tří podobných kombinací do týchž isolačních vložek získáme celou řadu kontaktů s nejrůznějšími zapínacími, rozpínacími nebo přepínacími možnostmi.

Příklad konstrukce telefonního přístroje s pohyblivou mikrotelefonní vidlicí VM a volacím tlačítkem Tl vidíme na obr. 28. Vidlice VM je vystřižena a ohnuta z jediného kusu plechu sílv l až 1,5 mm. Její vnější rozměry se řídí rozměry použitého mikrotelefonu. Na jedné straně je plech ohnut do podélné trubičky T, kterou spolu se závěsy 21,22 prochází drát D. Podél tohoto závěsu může celá vidlice vykývnout při sejmutí nebo položení mikrotelefonu. Výběžek vidlice V prochází podélným otvorem O bakelitové krabičky K. Tento výběžek se opírá o střední pero přepínacího svazku PS. Toto pero svojí pružností vytlačí mikrotelefonní vidlici z vodorovné polohy při sejmutém mikrotelefonu. až dosedne na horní pero svazku tak, jak je na obr. vyznačeno. Naopak při zavěšení působí váha mikrotelefonu proti pružnosti pera, které rozpojí horní kontakt a dosedne až na dolní péro. Srouby potřebné k připevnění volacího zvonkového tlačítka Tl slouží současně k připevnění perového svazku PS. Úplnému vyklopení vidlice z krabice brání

Obr. 29. Domácí telefon s mikrotelefonní vidlicí s jednou baterií

jazýček 7, vyříznutý a vyhnutý z výběžku V, jenž dosedá na vnitřní stranu horní stěny krabice K. Mechanické provedení mikrotelefonní vidlice se u továrních přístrojů liší téměř u každého z vyráběných typů. Ani způsob na obr. 28 nelze považovat za nejdokonalejší a domácí konstruktéři si jej jistě upraví podle svého důmyslu a vtipu. Zapojení z obr. 26, ve kterém je přepinač Př nahrazen kontakty vidlice a volacího tlačítka, vidíme na obr. 29. Mikrotelefonní vidlice obou stanic VM a VM' jsou kresleny v klidové poloze (mikrotelefony zavěšeny). Mezi vodiče 1, 1' a 2, 2' jsou připojeny pouze zvonky Ź, Z'. Sejme-li na př. levý účast-ník mikrotelefon, odpojí vidlice vlastní zvonek a připojí na vedení mikrofonní a telefonní vložku M a T. Stisknutím tlačítka Tl se po vodiči 1, 1' vyšle proud k protější stanici, jejíž zvonek se rozezní. Sejme-li volaný účastník svůj mikrotelefon, odpojí vidlice VM' samočinně jeho zvonek a přístroje jsou připraveny k hovoru. Po ukončení spojení oba účastníci zavěsí a tím uvedou přístroje opět do klidového stavu. Kdyby volající účastník stiskl volací tlačítko Tl při zavěšeném mikrotelefonu, zvonily by zvonky obou stanic. Tímto způsobem je na př. možné kontrolovat stav baterie nebo okruh vlastního zvonku.

Na obr. 30 vidíme jiné schema domácího telefonu, jež vystačí s dvěma dráty ke spojení koncových stanic. Každý přístroj však musí být vybaven vlastní baterií. V klidovém stavu jsou na vedení

Obr. 31. Upravené zapojení domácího telefonu

připojeny opět jen zvonky obou stanic. Volá-li levá stanice, zvedne mikrotelefon. Tím se od vedení odpojí vlastní zvonek Za zvonkem Z' protější stanice protéká proud buzený baterií B. Zvonek Z' však nepracuje, neboť proudu stojí v cestě odpor mikrofonní a telefonní vložky M a T. Teprve stisknutím volacího tlačítka Tl se vložky přemostí a vedením projde proud potřebný k napájení zvonku Z'. Zvedne-li volaná stanice svůj mikrotelefon, uzavře vidlice svými kontakty hovorový okruh. Při hovoru pracuje baterie obou stanic B i B' a proto je třeba zapojit je tak, aby se jejich napětí sečítala a nikoli rušila. Při nesprávném pólování baterií lze sice vyzvánět, avšak přenos hovoru je neuspokojivý nebo úplně přerušen. Chceme-li se potížím s pólováním baterií vyhnout, lze jednu

Obr. 30. Domáci telefon s mikrotelefonni vidlici se dvěma bateriemi

Obr. 32. Zapojení nezávislé na polaritě mikrofonní baterie

Obr. 33. Stolní stanice

Obr. 34. Zapojení stanic s přepinačovými voliči

z nich zapojit do serie s volacím tlačítkem do místa, označeného na schematu křížkem. V tomto případě je při hovoru využita baterie protější stanice. Druh baterie je dán jen spotřebou zvonku a zpravidla použijeme jedné ploché baterie v každém z telefonních přístrojů. Na rozdíl od minulého návodu (na obr. 29) lze u posledního zapojení vyzvánět jen při sejmutém mikrotelefonu. Stiskneme-li totiž volací tlačítko při zavěšeném mikrotelefonu, není okruh zvonku uzavřen, jak se přesvědčíme pohledem na obr. 30. Upravíme-li však zapojení telefonních stanic podle obr. 31, je možno volat při zavěšeném i vyvěšeném mikrotelefonu. V prvním případě jsou na vedení stále připojeny oba zvonky a lze tak kontrolovat i správnou funkci vlastní stanice. Druhý případ je obdobný jako u zapojení na obr. 30. Nutno však upozornit, že nové zapojení je též závislé na správném pólování baterií.

Všechna dosud popisovaná zapojení jsou sice velmi jednoduchá, ale protože pracují bez mikrofonního transformátoru, procházejí vedením nejen střídavé hovorové proudy, nýbrž i stejnosměrný proud, napájející mikrofonní vložky. S hlediska přenosu to není při krátkém vedení na závadu, vadí však potřeba správné polarity baterií (obr. 30) nebo rozdílné zapojení přístrojů (obr. 30, baterie v místě X). Není běžně známo, že i bez použití mikrofonního transformátoru lze oddělit stejnosměrný proud od vedení, po kterém při hovoru procházejí jen střídavé složky. Zapojení této stanice vidíme na obr. 32. Při zavěšeném mikrotelefonu je na vedení 1, 2 připojen pouze zvonek Z. Okruh místní baterie je rozpojen. Po vyvěšení mikrotelefonu prochází proud baterie okruhem: baterie - telefonní a mikrofonní vložka T, M – zapínací kontakt mikrotelefonní vidlice VM – baterie. Vinutí telefonní vložky T pracuje v tomto případě jako napájecí tlumivka mikrofonní vložky M. Proměnné hovorové napětí prochází kondensátorem $C - 2 \mu F/160 \text{ V}$ MP, který zadrží stejnosměrnou složku místního obvodu. Při vyzvánění stiskneme tlačítko Tl, čímž připojíme baterii B přímo na vedení. Ze zapojení vidlice VM je zřejmé, že vyzvánět lze jen při

sejmutém mikrotelefonu. Nevýhodou popisovaného zapojení je přídavný útlum, který při poslechu působí mikrofonní vložka, zapojená prakticky paralelně k vedení. Hlavní výhodou však je minimální počet součástek a jednoduchost potřebných přepinačů a tlačítek. Zapojení na obr. 32 není citlivé na polaritu místních baterií ani na záměnu přívodních vodičů. Použijeme je tedy při paralelním provozu několika telefonních stanic na jediném vedení. Obsluhy stanic však musí mít předem domluven způsob vyzvánění (na př. první stanice – $1\times$, druhá stanice – $2\times$, atd.). Ke stavbě stolního telefonního přístroje opět použijeme některé z bakelitových krabiček. Příklad uspořádání vidíme na

Většího počtu vodičů si vyžádá zapojení několika takových stanic s přepinačovými voliči podle obr. 34. Každá z telefonních stanic TS 1 až 4 je mimo normální příslušenství vybavena jednopólovým přepinačem *VPř 1—4*. Všechny první, druhé a další doteky všech přepinačů jsou spojeny paralelně vodiči V1—4. Druhá ze svorek všech přístrojů je propojena společným hlavním vodičem HV. Při větším počtu účastnických stanic je nutno volit průřez tohoto vodiče co největší s ohledem na případné přeslechy. Někdy je výhodné i hvězdicové spojení všech stanic do jediného bodu, tak jak je tečkovaně v obrázku vyznačeno. Máme-li tedy celkem n stanic, přivedeme ke každé z nich n+1 vedení. V klidu je přepinač každé ze stanic přeložen na onom doteku, jenž svým pořadím odpovídá číslu stanice. Chce-li na př. telefonní stanice č. 1 volat č. 3, přeloží svůj *VPř 1* do třetí polohy, tím jsou TS 1 i TS 3 připojeny na totéž vedení a mohou po vyzvonění spolu hovořit jako při přímém spojení. Současně spolu mohou hovořit kterékoli jiné dvě stanice (v našem případě TS 2 a TS 4). Protože se však může na vedení hovořících stanic připojit kterýkoli jiný účastník, je možné i konferenční spojení tří nebo více stanic. Naopak ovšem je nevýhodou, že hovor dvou účastníků může být odposlouchán kteroukoli jinou stanicí. Po skončení hovoru musí oba účastníci vrátit přepinačové voliče

do klidových poloh, jinak by je bylo nutno při každém volání "hledat" na všech vedeních.

Znovu však nutno připomenout, že k provozu podle obr. 34 lze použít jen stanic, vybavených místní baterií a necitlivých na její polaritu (viz na př. schema na obr. 32). Další schemata a velmi podrobné údaje o různých továrních výrobcích – domácích telefonech – najde zájemce v knize prof Strnada [1].

Konečně poslední a pravděpodobně nejzajímavější schema vidíme na obr. 35. Vyniká tím, že při jediné baterii v některé z koncových stanic vystačí pouze s dvoudrátovým vedením. Hlavní a nejdůležitější součástkou je selenová usměrňovací destička U o průměru 35 až 50 mm a vyzváněcí tlačítko Tl' s přepínacím a zapínacím kontaktem. Nemáme-li podobné tlačítko po ruce, můžeme je sestrojit pomocí kontaktních per tak, jak bylo popsáno na začátku tohoto oddílu. V klidu, jsou-li oba mikrotelefony zavěšeny, je uzavřen okruh: baterie B – zvonek Z' – mikrotelefonní vidlice VM' – vedení I, I' – mikrotelefonní vidlice VM – zvonek Z – usměrňovač U – vodič 2, 2' - přepinač tlačítka Tl' baterie B. Proud však okruhem neprochází, neboť baterie je připojena v nepropustném (závěrném) směru usměrňovače U. Vyzvání-li levá stanice, stiskne tlačítko Tl, přemostí usměrňovač i vlastní zvonek a zvonkem Z' projde dostatečný pracovní proud. Hovoří-li oba účastníci, jsou přes mikrotelefonní vidlice VM a VM' připojeny mikrotelefonní soupravy spolu s napájecí baterií B. Chce-li volat pravý účastník, stiskne svoje volací tlačítko Tl', jež svými kontakty přepóluje baterii, která pak v propustném směru usměrňovače napájí zvonek Z v protější stanici. Je zcela zřejmé, že každá ze stanic je jinak zapojena a při výměně baterie je třeba dbát na správnou polaritu. Nesprávná polarita se projeví neustálým více méně hlasitým zvoněním obou zvonků. Při výběru usměrňovače U dbáme toho, aby měl nejmenší odpor v propustném a maximální odpor v nepropustném směru. Nejlépe pravděpodobně vyhoví plošné germaniové diody, v nouzi postačí selenová destička uvedeného průměru.

Obr. 35. Domáci telefon s usměrňovačem

Vhodnost vyzkoušíme zapojením do serie s baterií a používaným zvonkem, který při "propustné" orientaci musí spolehlivě vyzvánět. V klidu protéká sice návěstním obvodem proud; je však nepatrný a při dobrém usměrňovači nemá zásadní vliv na životnost baterie. Hlavní výhodou posledního zapojení je jediná baterie a malá spotřeba vodičů, potřebných ke spojení obou stanic. Vždyť na př. dnešní domácí telefony Tesla, jež jsou v prodeji, potřebují čtyřdrátové vedení.

3.3 Telefony s induktorovým vyzváněním

Všechna dosud popsaná zapojení jsou velmi jednoduchá a spolehlivě pracují. Ke správné funkci hovorových a návěstních okruhů však vyžadují krátké vedení o malém ohmickém odporu. Není na př. možné používat jednoduchých vedení, u kterých je jeden z vodičů nahrazen zemí.

Přístroje, které naši amatéři znají z různých spojovacích služeb nebo závodů, jsou opatřeny jednak jiným způsobem vyzvánění a dále stejnosměrný proud mikrofonního okruhu je oddělen od vedení. Všimněme si nejprve, jak je vyřešena otázka vhodného vyzvánění.

V odstavci 2.5 byl zdůvodněn přenos energie dlouhým vedením pomocí vysokého napětí. Je tedy zřejmé, že vysoký odpor vedení (několik $k\Omega$) lze překonat jen vysokým vyzváněcím napětím. Při dané energii, jež je nutná k rozezvučení zvonku, bude intensita vyzváněcího proudu velmi malá, několik mA. Pokud

má však zvonek nízkoohmové vinutí o malém počtu závitů (a potřebuje tudíž velký pracovní proud), měl by být na přijímací straně připojen k vedení pomocí transformátoru o sestupném poměru závitů. A skutečně by tomu tak bylo, kdybychom použili některý z dříve popisovaných zvonků. Výhodnější však je použít zvonku s vysokoohmovým vinutím, který můžeme na vedení připojit přímo. Je to na př. výprodejní typ 11Fgwckla fy Siemens o stejnosměrném odporu 2500 Ω , který je dnes v prodeji. K vybuzení tohoto zvonku je potřebí opravdu jen malého proudu, neboť jeho citlivost je zvýšena magnetickou polarisací. K jejich vybuzení je však třeba napětí od 10 V výše. V ústřednách s automatickým provozem se jako zdroje vyzváněcího proudu používá speciálního střídavého generátoru o kmitočtu 15 až 50 Hz nebo malého síťového transformátoru se sekundárním napětím od 50 do 70 V. Přístroje zapojené v sítích s manuálním provozem a místní baterií jsou vybaveny vlastním zdrojem k vyzvánění do protější stanice. Je to – jak už bylo řečeno v odstavci 2.4 – malý generátorek všeobecně nazývaný "induktor", poháněný převodem s kličkou, který při normální rychlosti otáčení vysílá proud 15 až 25 Hz při napětí 50 až 100 V. Pro naši domácí potřebu je výroba takového induktoru příliš složitá. Použijeme tedy jiného zapojení. Vlastním zdrojem energie bude místní baterie telefonního přístroje. K přeměně nízkého napětí baterie na vyšší použijeme transformátoru. Bylo by sice možné konstruovat jej jako

Obr. 36. Zdroj vyzváněcího napětí

známý lékařský induktor, t. j. indukční cívku s přerušovačem. Spolehlivost kmitajícího kontaktu v přenosných zařízeních je nevalná a proto raději použijeme k přerušování proudu mechanického přerušovače. Základní schema zdroje vyzváněcího proudu vidíme na obr. 36. Proudový přerušovač *Pp* vysílá z baterie B do primárního vinutí Ía transformátoru Tr proudové impulsy. Ve chvílích zapojení a rozpojení obvodu indukují se do sekundárního vinutí II strmé napěťové impulsy střídavé polarity. Napětí sekundárních špiček dostupuje i hodnot kolem 100 V a bezpečně stačí k napájení vysokoohmového zvonku. Nyní několik slov k provedení jednotlivých součástek.

Proudový přerušovač Pp musí být konstruován tak, aby přechodový odpor jeho kontaktů byl co nejmenší. Dále musí být v klidu kontakt přerušovače vždy rozpojen, aby se baterie nevybíjela do primárního vinutí transformátoru. Mimo to musí být přerušovač konstruován tak, aby při pohodlném otáčení kličkou vznikal střídavý proud o kmitočtu 10 až 20 Hz. Nejlépe vyhoví přepinače, jejichž běžec při přejíždění z jedné polohy do druhé spojí oba sousední kontakty. Přestaneme-li otáčet, musí západkový mechanismus přepinače zastavit běžec na některém doteku, aby byl obvod baterie rozpojen. Kdyby tomu tak nebylo, protékal by primárním vinutím transformátoru neustále proud, takže by se baterie brzy vybila. K našemu účelu se hodí přepinače s dobrým a spolehlivým dotekem na obr. 37. Radiový přepinač Tesla lze sice též použít, avšak jednotlivá pera obou věnců je nutno

Obr .37. Přepinače pro zdroj vyzváněcího napětí

zkontrolovat a upravit tak, aby probíhající kontakt spojil dvě sousední pera spolu. Protože je tento radiový přepinač nejsnáze k dostání, byl v popisovaném vzorku telefonního přístroje použit.

Každý z přepinačů musíme před zamontováním upravit tak, aby mohl být protáčen. U některých přepinačů to značí opilovat koncové dorazy, jež omezují rozsah pohybu běžce. Přepinač Tesla Ta po odvrtání trubičkových nýtů opatrně rozebereme. Vyjmeme osu se západkovým kotoučem, jenž obsahuje zpravidla 3 až 4 zářezy, odpovídající dosavadním 3 nebo 4 polohám. Odměříme rozměry (rozteče) těchto zářezů a přeneseme je na ostatní část kotouče a opatrně vypilujeme. Při správném odměření takto dostaneme 12 zářezů. Stejný počet poloh odpovídá i stejnému počtu kontaktních pér na obvodu přepinače. Pak přepinač opatrně složíme, odvrtané nýty nahradíme novými. Chceme-li dosáhnout snadnějšího otáčení, vyjmeme z přepinače jedno nebo dvě z per, jež tisknou ocelovou kuličku do zářezů západkového kotouče. Při správném postupu lze přepinačem lehce otáčet a po ukončení pohybu se rotor přepinače vždy zastaví v klidové poloze, t. j. obíhající kontakty spojují dvě protilehlá pera. Zádná ze sousedních per nesmí být v klidu spojena. Dobré činnosti přepinače napomáhá i promáznutí třecích ploch jemným olejem.

Všimněme si nyní uspořádání hovorového okruhu telefonní stanice. Použije-

Obr. 38. Mikrofonní obvod

me tentokráte zapojení s mikrofonním transformátorem. Pro jednoduchost a úsporu použijeme na př. autotransformátoru o poměru 1:3 na obr. 38. Mikrofonní proudy, procházející primárním vinutím *Ib*, indukují do další sekce *Ia* vyšší napětí, jež pak odchází po vedení k protější stanici. Kondensátor *C* brání průchodu stejnosměrného proudu do vedení. Jeho kapačita musí být volena tak, aby kladl malý odpor hovorovému proudu.

Popsali jsme si dosud dva základní obvody našeho přístroje. V obou bylo třeba transformátoru. Bude nyní naším úkolem uspořádat celkové zapojení tak, abychom v obou funkcích vystačili s jediným transformátorem. Nejlépe snad vyhovuje zapojení na obr. 39.

Všechny spolupracující telefonní stanice jsou stejné, provoz nezávisí na polaritě vestavěných baterií nebo záměně jednotlivých vodičů vedení. Napětí ploché baterie B je snad poněkud velké pro nízkoohmovou mikrofonní vložku M, avšak zaručí dostatečnou hlasitost přenosu po málo kvalitním vedení.

Rozpojovací kontakt automatického tlačítka ATl (o jehož konstrukci si povíme později) připojuje v klidu zvonek \mathcal{Z} na vedení na svorkách I, 2. Volá-li místní účastník protější stanici, přepne se tlačítko ATl, odpojí od vedení zvonek a připojí na jeho místo sekundární vinutí transformátoru Tr. Otáčením kličky se uvede do pohybu proudový přerušovač Pp, uzavírající okruh baterie B a primárního vinutí Ia. Proudové nárazy vybudí v sekundárním vinutí II střídavý

Obr. 39. Telefonní přístroj s induktivním vyzváněním

proud o napětí několika desítek voltů, jenž projde vedením ke zvonku protější stanice. Chce-li účastník hovořit, zvedne mikrotelefon, spínací kontakty mikrotelefonní vidlice uzavrou okruh mikrotelefonu: baterie B – mikrofonní vložka M – zapínací kontakty VM – vinutí Ib – baterie B. Dále připojí kontakty vidlice tento obvod ke svorce 2, kam je připojen jeden vodič vedení. Neotáčíme-li proudovým přerušovačem Pp, je obvod Ia rozpojen a toto vinutí pracuje s Ib jako autotransformátor ke zvýšení napětí

Obr. 40. Stolní přístroj

hovorových proudů. Do serie s vinutím a vedením na svorce 1 je připojena telefonní vložka T. Kondensátor C brání vstupu stejnosměrného proudu mikrofonního okruhu do vedení. Přicházející hovorové proudy jsou sice poněkud tlumeny obvodem mikrofonní vložky, avšak spolehlivému provozu to nevadí. Hlavní výhodou je sdružení vyzváněcího a mikrofonního transformátoru v jediný.

A nyní konečně ke stavbě vlastního přístroje. Jak je známo z praxe, máme různé typy telefonních přístrojů: nástěnné, stolní, přenosné. Přístroj v tomto odstavci je řešen jako stolní a pokud jej někteří z čtenářů upraví podle svých požadavků, nezmění se nic na elektrickém provedení. Přístroj stolního typu vidíme na obr. 40. Při konstrukci bylo přihlédnuto k osvědčenému tvaru pří-

stroje tovární výroby Tesla.

V dřevěné nebo bakelitové skřínce jsou umístěny všechny součástky přístroje mimo polarisovaný zvonek se dvěma miskami, který je připevněn na zadní stěně pod mikrotelefonní vidlicí. Protože se na celém světě nahrazuje černý bakelit telefonních přístrojů pestrými, barevnými výlisky, ladícími s barvou nábytku, potahů nebo malby místnosti, byl i tento vzorek proveden v hnědokrémové kombinaci. Předběhli jsme tím i náš průmysl, který slibuje barevné telefonní přístroje již několik let. Průřez a rozložení součástek vidíme na obr. 41. Boční stěny 1 jsou opatřeny polokruhovými zářezy k odložení mikrotelefonu. Jejich zadní část je vybrána tak, jak je potřebí k připevnění zvonku Z. Mikroteleson se v klidu opírá o pražec 11, který spolu s ramenem 10 (procházejícím otvorem v zadní stěně 2) a perovým svazkem 6 tvoří mikrotelefonní vidlici. Ta je tlačena proti váze mikrotelefonu pružností pohyblivých per, o které se opírá uhelník 13 a při sejmutí mikrotelefonu vykývne tak, aby se setkaly doteky spínacích per. Pod perovým svazkem je umístěn transformátor Tr. Při přední stěně skřínky 4 je připevněna plochá baterie B k napájení mikrofonního i návěstního okruhu. Bylo by sice možné opatřit boční stěnu 1 v místech, kam doléhají vývodní plíšky baterie, vhodnými protipery, čímž by byla zajištěna snadná a

rychlá výměna. Ze zkušenosti je však známo, že dotekové přívody, zvláště u přenosných přístrojů, nejsou příliš spolehlivé a proto přívodní dráty k baterii raději připájíme. Úhelník 9 slouží k při-

Obr. 41. Průřez stolním přístrojem: 1 – boční stěna, 2 – zadní stěna, 3 – horní stěna, 4 – přední stěna, 5 – spodní stěna s gumovými podložkami, 6 – perový svazek mikrotelefonní vidlice, 7 – perový svazek aut. tlačítka, 8 – držák perového svazku (detail 6), 9 – držák proudového přerušovače, 10 – páka mikrotelefonní vidlice, 11 – pražec mikrotelefonní vidlice, 12 – klička proudového přerušovače, 13 – úhelník páky 10, ovládající perový svazek 6

pevnění proudového přepinače Pp. Na jeho osu je navléknuta klička 12, zhotovená z kovové nebo bakelitové trubky vhodných rozměrů. Klička se opírá o pohyblivé pero přepínacího svazku 7, jež ji vytlačuje z přístroje a doléhá na pravé, rozpínací pero. Tento přepínací svazek tvoří právě automatické tlačítko ATl, o kterém jsme mluvili při popisu elektrických obvodů. Tlačítko má při otáčení přepinačem odpojit zvonek a připojit k vedení sekundární vinutí transformátoru Tr. Znamená to tedy, že se při otáčení musí klička zasunout po ose přepinače do přístroje, přepnout pohyblivé pero svazku a v klidu se opět vrátit do původní polohy. Bylo by možno tento pohyb provádět rukou, zatlačením proti síle pera, jež by po ukončení otáčení vysunulo kličku zpět. Výhodnější však je použít uspořádání na obr. 42. V bakelitové trubce kličky je vypilován zářez Z v délce 6 až 8 mm, skloněný k ose asi o 45°. Stěny tohoto zářezu jsou bezvadně uhlazeny. Osa přepinače je provrtána otvorem se závitem M3. Po nasazení kličky vložíme do zářezu vhodný šroubek S. Otáčíme-li nyní klikou horním obloukem ve směru, označeném šipkou, brání zprvu západkový mechanismus přepinače pohybu, takže klička překonává pouze odpor přepínacího pera P a vedena zářezem Z se šroubovitě pohybuje. Tím se vychyluje přepínací pero a po dosednutí šroubu Š na konec zářezu Z se teprve zvýší krouticí moment na ose přepinače, který se roztočí. Po ukončení otáčení ustane tlak na pero P, jež vrátí kličku zpět do původní polohy.

Obr. 42. Automatické přepínací_tlačítko

Obdobným mechanismem jsou vybaveny i induktory telefonních přístrojů s místní baterií tovární výroby. Pokud by zhotovení popisovaného mechanismu dělalo potíže, můžeme jej nahradit tlačítkem, které při volání stiskneme nebo připojit mezi svorky 1, 2 schematu na obr. 39 zvonek Z i sekundární vinutí II do serie. Sníží se tím sice dosah, na který lze vyzvánět, ale podle výsledku pokusu na vzorku je to způsob nejspolehlivější.

Transformátor Tr zhotovíme navinutím na jádro M42. Vinutí Ia má 125 zásmaltovaného drátu průměru 0,4 mm, vinutí *Ib* má 75 závitů téhož drátu. Mezi tato nízkoohmová vinutí a vinutí sekundární vložíme proklad, na př. 5 × olejový papír 0,1 mm. Sekundární vinutí, které má celkem 4500 zásmaltovaného vitů drátu průměru 0,08 mm, prokládáme asi po 1000 závitech jednou vrstvou olejového papíru. Na primární straně spojíme vinutí *Ia* a *Ib* do serie tak, aby se napětí vzájemně sečítala (t. j. konec Ia se začátkem Ib). Nechceme-li transformátor Tr navíjet, použijeme kteréhokoliv zvonkového reduktoru. Nízkonapěťové vinutí reduktoru zapojíme jako primární vinutí ve shodě s označením napětí 0 - 3 - 5 V ve schematu.

Popisovaný telefonní přístroj je po elektrické stránce zcela jednoduchý. Vyšší nároky klade ovšem na mechanickou dovednost výrobce. Lze jej však zjednodušit. Tak na př. místo proudového přerušovače možno použít tlačítka. Rychlým stiskáním dosáhneme téměř stejného účinku jako v původní úpravě. Mikrotelefonní vidlici spolu s automatickým tlačítkem ovládaným kličkou lze dobře nahradit radiovým třípólovým přepinačem. Jednodušší konstrukce a vyšší spolehlivost je ovšem na druhé straně vyvážena složitější obsluhou. Pokud by někde nebyl k dostání výprodejní telefonní zvonek Siemens, lze v nouzi použít i střídavého zvonku Tesla. Odvineme však původní nízkoohmové vinutí cívky, které nahradíme smaltovaným drátem o průměru 0,09 až 0,12 mm, tak abychom cívku zcela naplnili.

Telefonní přístroj s indukčním vyzváněním je pro domácí použití zbytečně složitý. Je určen k provozu při cvičeních a spojovacích službách Svazarmu v terénu, neboť může pracovat na málo kvalitních a jednoduchých vedeních, kde používáme jako zpětného vodiče země. Mechanická úprava stanice není nijak kritická a konstruktéři ji snadno přizpůsobí svým požadavkům a potřebám.

4. Hlasitý telefon

Telefonní přístroje s mikrotelefonem a zvonkem doznaly širokého použití v běžném denním životě. Mají však několik nevýhod, pro které jsou stále častěji nahrazovány stanicemi s hlasitým provozem. Tyto stanice nemají mikrotelefon. Mikrofonní vložka (u dokonalejších stanic to je dokonce krystalový nebo dynamický mikrofon) je zpravidla umístěna ve vhodném pouzdru nebo stojánku na stole před účastníkem. Telefonní vložka je nahrazena reproduktorem. Učastník může při hovoru volně přecházet po místnosti, není omezen v pohybu délkou mikrotelefonní šňůry a má obě ruce volné.

Všeobecnému rozšíření hlasitých telefonních stanic vadí jednak vysoká cena, jednak nebezpečí nestability celého okruhu. Objasníme si to na obr. 43, kde vidíme schematicky naznačeny dvě koncové stanice hlasitého telefonu A a B. Obě stanice jsou spojeny dvoudrátovým vedením V. Mezi vedení, mikrofon a reproduktory jsou připojena oddělovací zařízení OZ a OZ'^*). Oddělovací zařízení propustí příchozí proudy z vedení do reproduktoru, stejně jako z mikrofonu do vedení. Zcela nebo částečně zabrání vstupu proudů z mikrofonu do vlastního reproduktoru. Hlasitost reprodukce koncových stanic je nyní omezena elektrickou a akustickou vazbou. Elektrické proudy, vycházející na př. z mikrofonu M, projdou nejprve nedokonalostí oddělovacího zařízení OZ do

vlastního reproduktoru R (elektrická vazba), který svým zvukem opět vybudí vlastní mikrofon M. Hlavní část proudu z mikrofonu M však projde vedením a rozezvučí reproduktor R'. Ten opět působí akusticky na blízký mikrofon M', který vysílá proudy do reproduktoru původní vysílací stanice A. Tento pochod, vyznačený na obr. 43 čárkovanými šipkami, se neustále opakuje. Jakmile je zvuk vracející se z reproduktoru do mikrofonu větší než zvuk původní, vznikají samovolné kmity, celý okruh se rozkmitá a znemožní dorozumění. Nebezpečí elektrické vazby lze odstranit (a většina hlasitých dispečerských stanic to též tak dělá) použitím dalšího vedení. První vedení V_1 je pak výlučně určeno pro přenos proudů z A do B, druhé, V_2 , pro přenos v opačném směru z B do A. Akustickou zpětnou vazbu lze odstranit vhodným umístěním mikrofonu a reproduktoru v jednotlivých stanicích. Montujeme je pokud možno daleko od sebe v přibližně stejné vzdálenosti od normálního stanoviště účastníka. Dobře se osvědčuje i upevnění reproduktoru pod deskou nebo k noze stolu, na kterém stojí na pružné podložce mikrofon. Je tedy zřejmé, že hlasitost zvuku v místě posluchače musí být vždy poněkud menší než při bezprostředním hovoru. Dokonalé soupravy používají speciálních mikrofonů, citlivých jen na zvuk z blízkého zdroje (ústa hovořícího) a necitlivých ke zvuku reproduktoru postaveného stranou.

Pokud však hlasitost takového zařízení nepostačuje, nutno použít přepínání směru hovoru. V tomto případě

Obr. 43. Princip hlasitého telefonu

^{*) &}quot;Oddělovací zařízení" bychom měli podle jazykových norem nazývat vidlicí. Protože by však mohlo dojít k záměně s vidlicí mikrotelefonní, je zde použit nezvyklý název a teprve později při popisu konkretních zařízení bude nahrazen správnějším "transformátorová vidlice".

Obr. 44. Hlasitý telefon pomocí rozhlasových přijimačů

jsou mikrofony obou stanic vypnuty. Jen při hovoru tiskne účastník přepinač nebo tlačítko svého přístroje, jímž zapíná svůj mikrofon. V tomto případě je v provozu jen jeden směr hovoru a druhý je vždy vypojen. Nemůže tedy nikdy dojít k rozkmitání okruhu.

S podobnými přístroji se tedy nejčastěji setkáme v dispečerských soupravách závodů, nádraží nebo dolů. Jsou samozřejmě možné nejrůznější úpravy jako na př. řízení provozu jedním z účastníků, řízení hlasem a pod. V dalších odstavcích si ukážeme nejprve, jak zřídíme hlasitý telefon mezi dvěma blízkými místy pomocí nejjednodušších prostředků. V dalším pak nalezneme návod na levný a spolehlivý hlasitý telefon, podle potřeby buď s rukou ovládaným provozem nebo s provozem automatickým, obousměrným.

4.1 Hlasitý telefon pomocí rozhlasových přijimačů

Z výkladu k obrázku 43 je zřejmé, že každá ze stanic hlasitého telefonu musí být vybavena mikrofonem a reproduktorem (pokud ovšem v některých typech reproduktor nepracuje současně jako mikrofon). Další důležitou součástí, jež pro jednoduchost není na obr. zakreslena, jsou zesilovače. Jsou po jednom zapojeny v obou přenosových linkách, jeden pro směr AB a druhý pro směr opačný, t. j. BA. Je samozřejmé, že bez těchto zesilovačů by nemohly mikrofony svým nepatrným výstupním výkonem přímo budit reproduktor.

Obr. 45. Napájení uhlíkového mikrofonu

Máme-li po ruce dva rozhlasové přijimače, stačí připojit do gramofonových zdířek dva mikrofony, položit dvě dvoudrátová vedení podle obr. 44 a hlasitý telefon je hotov. Regulátory hlasitosti obou přijimačů nastavíme přibližně na stejnou hlasitost a mikrofony umístíme tak, aby ležely mimo přímý směr zvukových vln z reproduktoru. Nelze uvést obecně platný návod, protože individuální akustické podmínky v místnosti řešíme případ od případu zkusmo. Při použití krystalových nebo dynamických mikrofonů s poměrně malou citlivostí, není nebezpečí rozkmitání tak kritické, avšak obsluha musí mluvit do mikrofonu z malé vzdálenosti, aby hlasitost reprodukce byla dostatečná. Jako mikrofonu je dokonce možné použít i nízko- nebo vysokoohmové telefonní vložky. Uhlíkový mikrofon, mikrofonní vložka, je sice citlivější, vyžaduje však zvláštního zdroje napájení. Nejjednodušší uspořádání vidíme na obr. 45. Případ A ukazuje zapojení bez mikrofonního transformátoru, příklad B představuje zapojení s mikrofonním transformátorem (M42, vinutí I: 500 závitů smaltovaného drátu o průměru 0,15 až 0,25 mm; vinutí *II*: 2500 až 5000 závitů smaltovaného drátu o průměru 0,05 až 0,1 mm. V nouzi postačí místo předepsaných transformátorových plechů svazek železných drátů nebo pásků o průřezu asi 1 cm2. Cívku slepíme podle rozměrů jádra z lesklé lepenky). Konečně případ C používá anodového napětí z přijimače.

Obr. 46. Vf adaptor

Obr. 47. Jednoduchý hlasitý telefon

Kondensátor $C - 1 \mu F$ musí být zkoušen alespoň na 1500 V ss.

Při použití mikrofonů s vysokým vnitřním odporem (zvláště krystalových) je nutno vedení mezi stanicemi provést stíněným drátem nebo kablíkem, abychom zabránili indukování vnějších rušivých napětí, zvláště síťového brumu. Zapojení s uhlíkovým mikrofonem zpravidla vystačí s obyčejným zvonkovým drátem.

V místnostech s malou pohltivostí zvuku stěn a vnitřního zařízení (kanceláře, chodby a pod.) je často téměř nemožné zabránit rozkmitání. Stabilního provozu lze dosáhnout jen za cenu nedostatečně hlasité reprodukce. V tomto případě je výhodnější oželet obousměrný (duplexní) provoz a spokojit se s provozem, ovládaným přepinačem. Stačí připojit mikrofon přes zapínací zvonkové tlačítko, které účastník při hovoru tiskne. Skončí-li a předá slovo protější stanici, uvolní tlačítko a tím odpojí svůj mikrofon. Jestliže chce hovor protější stanice přerušit, stiskne opět své tlačítko a celý okruh se rozkmitá. To se projeví hlasitým hvizdem v reproduktorech a hovořící účastník je tak upozorněn, že mu protější stanice potřebuje nutně něco říci, že mu chce "skočit do řeči". Při použití uhlíkových mikrofonních vložek zapojíme tlačítko do mikrofonního okruhu v místech, označených na obr. 45 křížkem. Setříme tím mikrofonní baterii, jež pak dodává proud jen ve

chvílích hovoru. Obecně při použití ostatních druhů mikrofonů lze tlačítka připojit v místech vyznačených na obr. 44.

V poslední době se stále častěji používají universální rozhlasové přijimače, jejichž kostra je přímo spojena se sítí. U těchto přijimačů je připojení mikrofonu i gramofonové přenosky nebezpečné, protože hrozí nebezpečí úrazu síťovým napětím. Lze však použít principu telefonie nosnými proudy, řeč z mikrofonu namodulovat na nosný kmitočet a stíněným drátem přivést na antenní zdířku. Ta je totiž oddělena od ostatních částí přijimače malým kvalitním kondensátorem, který brání průchodu síťového proudu. Tímto způsobem je na př. možné zcela dobře použít universální přijimač k připojení na přenosku. V některých zemích je dokonce povoleno přenášet vf kmitočet bezdrátově, vzduchem, takže ke spojení gramofonu s přijimačem není třeba žádného vedení. Program z vlastní přenosky může být přijímán i několika přijimači v bytě nebo rodinném domě. Tento způsob "rozvodu" není u nás zatím dovolen a při použití popisovaného vf adaptoru musíme dbát všech opatření, aby se modulace nemohla šířit ani vzduchem, ani síťovými přívody. Rídíme se tedy pokyny doporučenými pro stavbu signálních zkušebních oscilátorů. Přívod od adaptoru k antenní svorce universálního přijimače musí být stíněn. Stínicí obal

spojíme s uzemňovací svorkou přijimače i vf adaptoru. Schema jednoduchého přístroje, osazeného dvojitou triodou typu 6CC41 (nebo podle možností 6SN7, 6SL7, $2 \times 6BC32$ a pod.) vidíme na obr. 46. Pravý systém pracuje jako vf oscilátor. Oscilační obvod tvoří dlouhovlnná nebo středovlnná cívka L pro přímozesilující přijimače a kondensátor C - 300 až 400 pF. Jeho velikost spolu s cívkou udává délku vlny, na které nalezneme adaptor na stupnici přijimače. Oscilátor je modulován levým systémem elektronky, jenž pracuje jako anodový modulátor. Ní signál, přiváděný na řídicí mřížku je zesílen a v rytmu střídavého napětí na anodě nf triody se mění i napětí napájející oscilátor. Zapojení adaptoru je velmi jednoduché, spotřeba anodového proudu asi 0,5 mA. Usměrňovač i filtrační řetěz mají tedy velmi nepatrné rozměry. Celý oscilátor umístíme do kovového krytu a do síťového přívodu zapojíme vf zádrž podle pramenu [8].

Navržený vf adaptor, pracující na principu zařízení nosné telefonie po vedení, je velmi užitečným přístrojem a dovoluje všestranné využití universálních rozhlasových přijimačů. U ostatních přijimačů, vybavených síťovým transformátorem, je samozřejmě možné připojit mikrofony přímo do zdířek pro gramofon.

4.2 Jednoduchý hlasitý telefon

Hlasitý telefon pomocí rozhlasových přijimačů sice dobře vyhovuje po stránce technické, avšak nelze vždy předpokládat, že zájemce má k disposici dva přijimače. Nadto je provoz takového zařízení neekonomický, neboť většina elektronkových systémů na vf a mf stupních pracuje naprázdno. Proto je výhodnější sestavit hlasitou stanici jako samostatný celek, s použitím nejmenšího množství součástek. Pro domácí a amatérské použití se nejlépe hodí uhlíkové mikrofony pro svoji vysokou citlivost. Nevýhodou je ovšem poměrně vysoký šum a skreslení, zmenšující srozumitelnost řeči. Další závadou je spotřeba napájecího proudu pro mikrofonní obvod.

V literatuře se často vyskytují schemata, jež využívají katodového proudu elektronky k napájení mikrofonní vložky. Nevýhodou tohoto zapojení je malá citlivost, neboť vnitřní odpor mikrofonu je současně katodovým odporem elektronky. Toto zapojení zavádí tedy do katody zápornou zpětnou vazbu, jež snižuje zesílení elektronky. Obvykle je nutné použít ještě dalšího koncového stupně, osazeného výkonovou pentodou typu EBL21 nebo 6L31.

Daleko výhodněji se jeví zapojení na obr. 47, používající jediné výkonové pentody. Hlavní součástkou je transformátor Tr1 s vysokým vzestupným převodem na řídicí mřížku elektronky. Průtokem katodového proudu elektronky vzniká na odporu R_1 napěťový spád, který slouží k napájení mikrofonní vložky M přes primární vinutí I mikrofonního transformátoru Tr1 (jádro M42, plechy skládány střídavě. Vinutí I:200 závitů smaltovaného drátu o průměru 0,1 mm; vinutí *II*: 5000 až 8000 závitů smaltovaného drátu o ø 0,05 mm až 0,08 mm. V nouzi možno opět použít zvonkového reduktoru. Jako primár zapojíme vinutí "8 V", jako sekundár vinutí "220 V"). Elektrolytický kondensátor C₁ zkratuje pro střídavé proudy body 3, 2 a znemožňuje tím vznik záporné zpětné vazby. Do vinutí II se indukují mnohokráte zvýšená střídavá napětí, ovládající anodový proud elektronky. S ohledem na to, že stejnosměrný odpor mikrofonní vložky je poměrně malý a vznikající předpětí je nedostatečné, je v katodovém obvodu další předpěťový odpor R_2 , blokovaný elektrolytem C_2 . Výstupní transformátor Tr2 (na př. Tesla PN 673 12) napájí reproduktor o průměru 8 až 12 cm.

Pozornějšímu čtenáři připomeneme schema na obr. 47 zapojení rázujícího (blocking) oscilátoru. Skutečně tomu tak je a stačí přehodit smysl některého z vinutí transformátoru Tr1 a kmity se projeví hlasitým vytím reproduktoru. Správná funkce tohoto zesilovače je právě podmíněna "degenerativním" zapojením obou vinutí, jež vyhledáme zkusmo. Regulaci hlasitosti provádíme potenciometrem P_1 . Mikrofonní vložku M, opět nejlépe systému MB, připojíme jakýmkoliv zvonkovým drátem. Nízká impedance mikrofonní vložky totiž nedovolí

naindukování vnějších rušivých napětí, zvláště síťového brumu.

Když jsme si vysvětlili funkci jednotlivých obvodů, můžeme si popsat mechanické uspořádání. Předem nutno zdůraznit, že závisí na speciálních požadavcích a podmínkách toho či onoho způsobu použití. V nejjednodušším případě lze tyto dvě stanice sestavit zcela samostatně a použít je po vhodném nastavení hlasitostí a umístění mikrofonů k duplexnímu provozu.

V akusticky nevýhodných poměrech nebo není-li duplexní provoz žádoucí, můžeme do obvodu mikrofonů zapojit do místa X na obr. 47 zapínací zvonková tlačítka.

Někdy je požadován provoz ovládaný přepínáním z jediné účastnické stanice. Pak je jeden směr zapojen stále (příchozí nebo odchozí) a jen k převzetí zprávy, předání příkazu nebo při vzájemném hovoru obsluha jedné ze stanic přepíná směr provozu. V tomto případě vystačíme s jediným zesilovačem, zapojeným podle obr. 47. Jeho svorky 1, 2 a 5, 6 připojíme k dvojpólovému dvojpolohovému přepinači podle obr. 48. Řídicí stanice RS je tedy vybavena zesilovačem Z, mikrofonem M, reproduktorem R a přepinačem směru Př, zatím co podřízená stanice Ps má pouze mikrofon M'a reproduktor R'. S ohledem na nízkoohmový výstup reproduktoru je nutno provést vedení VR vodiči o dostatečném průřezu, aby nedošlo ke zbytečnému ze-

slabení reprodukce ve směru z řídicí do podružné stanice. Při délce vedení pod 20 m se nejlépe hodí zvonkový drát o průměru 1 mm. Delší vedení je nutno položit síťovou šňůrou nebo drátem, aby celkový odpor obou vodičů nebyl vyšší, než 3 až 5 Ω. Jinak je možno místo běžného výstupního transformátoru s nízkoohmovým vývodem použít t. z. stovoltového výstupního transformátoru, který je dnes už v prodeji. Místní reproduktor je připojen na nízkoohmovou odbočku a reproduktor podřízené stanice musí být opatřen dalším transformátorem s převodem ze stovoltové linky na nízkochmovou kmitačku.

Jestliže je na kostře zesilovače umístěn i napaječ se síťovým transformátorem, nutno chránit mikrofonní transformátor před jeho rozptylovým polem. Protože magnetické stínění je zpravidla málo účinné, je lépe eliminovat vliv pole vhodným natočením mikrofonního transformátoru. Hrubou polohu, t. j. střední sloupek svisle nebo vodorovně najdeme zkusmo. V této poloze připevníme transformátor ke kostře, kterou kolem jádra nařízneme. Tím je možné nahýbání transformátoru v dosti širokém úhlu. Optimální polohu nalezneme postupným přihýbáním podle nejmenšího brumu z reproduktoru. Hlasitost a kvalita přenosu u tohoto hlasitého telefonu závisí ve značné míře na kvalitě použité mikrofonní vložky. Ve většině případů je však citlivost tak značná, že účast-

Obr. 48. Řídici a podřízená stanice

níci mohou hovořit na mikrofon ze vzdálenosti l až 2 m při dostatečné hlasité a srozumitelné reprodukci. Fotografii řídicí stanice vidíme na obr. 49.

5. Použití některých telefonních obvodů v radiotechnice

Všeobecné rozšíření telefonu si vyžaduje zjednodušení obsluhy. Ve srovnání s provozem radiového vysilače a přijimače je obsluha telefonní stanice jistě daleko jednodušší. Není zde přepínání přijem-vysilání, účastníka možno k přístroji zavolat zazvoněním a pod. Rozšíření mobilních i stálých radiostanic k obchodním a soukromým účelům si proto vyžádalo některých úprav, které dovolují co nejvíce přiblížit obsluhu radiostanic obsluze telefonu. Všimněme si nyní několika obvodů, jež se používají v některých profesionálních stanicích a které můžeme s úspěchem použít i v amatérské praxi.

V první řadě je to oddělovací zařízení, t. zv. transformátorová vidlice, jehož zapojení vidíme na obr. 50. Stejným způsobem je zapojena i protější radio-

stanice.

V podstatě se jedná o diferenciální transformátor, jehož vinutí Ia, Ib musí mít přesně stejné elektrické a magnetické vlastnosti. Vineme je tedy současně odvíjením dvou drátů ze dvou cívek. Na svorky 5, 6 je připojen vstup modulátoru vysilače, naladěného na kmi-

točet f_1 , na svorky 7, θ výstup přijimače, laděného na kmitočet f_2 . Kmitočty f_1 a f_2 musí být od sebe dostatečně vzdálené, aby nedošlo k zahlcení přijimače vlastním signálem. Jestliže je impedance vedení s telefonním přístrojem ZV stejná s impedancí vyvažovacího odporu R_{V} , nedovolí transformátorová vidlice průchod proudu z výstupu přijimače na vstup vysilače. Kdyby tomu tak nebylo, nastala by mezi výstupy vysilačů a vstupy přijimačů obou stanic elektrická vazba, jako bylo dříve vyloženo na obr. 43 a celý okruh by se rozkmital. Transformátorová vidlice tedy oddělí hovorové proudy z telefonního přístroje a zavede je do vysilače. Naopak dodává telefonnímu přístroji proudy, jež přijimač přijal na kmitočtu f_2 . Duplexní provoz na dvou kmitočtech se u nás běžně používá, vyžaduje však odděleného mikrofonu a sluchátka (nebo reproduktoru) se dvěma dvoudrátovými přívody. Při použití transformátorové vidlice je však možné připojit k radiostanici normální telefonní přístroj s místní baterií a hovořit bez přepínání provozu jako při drátovém spojení obou přístrojů. Podrobnější poučení o transformátorových vidlicích nalezne zájemce v pramenu [9].

Po stránce přenosu hovorových proudů se spojení mezi dvěma radiostanicemi, vybavenými transformátorovou vidlicí, neliší od spojení telefonním vede-

Obr. 49. Kidici stanice

Obr. 50. Transformátorová vidlice

ním. Přenosová cesta totiž začíná a končí dvěma vodiči. Vadí však omezené kmitočtové pásmo, jež nedovolí na př. přenos vyzváněcích proudů 15 až 50 Hz. Profesionální stanice jsou proto vybaveny vyzvaněči. Vyzvaněč na vysílací straně přijme z telefonního přístroje nízkofrekvenční proud, vybuzený induktorem a laděné relé vyšle místo tohoto proudu t nový kmitočet v pásmu 400 až 2000 Hz. Vyzvaněč na přijímací straně je přesně naladěn na tento tónový kmitočet. Jeho příchod se projeví přítahem relé, který svými kontakty vyšle k připojenému telefonnímu přístroji vyzváněcí proud. Vyzvaněčů se zvláště používá u směrových radiostanic. Obsluha připojených telefonních přístrojů je stejná jako při spojení vedením. Spojení, vybudované takovými stanicemi, se pak začlení do telefonní sítě stejně, jako vedení vybudované kovovými vodiči.

Na obr. 51 vidíme příklad transformátorové vidlice s vyzvaněčem, jak je používán v některých profesionálních stanicích. Elektronka El pracuje jako zdroj vyzváněcího kmitočtu 1500 Hz. Volá-li místní účastník, zadrží oddělovací kondensátory C_3 , C_4 nízký kmito-čet. Střídavé relé R typu 1009/54 (viz pramen [11]), laděné kondensátorem C_5 do pásma 15 až 50 Hz, přitáhne a vyšle svým přepínacím kontaktem r do vysilače tón ze zdroje 1500 Hz. Ve vysilači je tón namodulován a vyslán k přijimači protější stanice. Přijimač této stanice, jenž je tentokrát znázorněn na dolní části téhož obr. 51, signál přijme, demoduluje a vyšle mřížkovým transformátorem Tr1 do konçového nf zesilovače, osazeného elektronkou E2. V jejím anodovém obvodu je mimo normální výstupní transformátor Tr2 ještě Tr3, jenž vyzváněcí transformátor svým sekundárním vinutím napájí dva resonanční obvody a vinutí I polarisovaného relé 67s. Ve volbě polarisovaného relé P, či spíše jeho cívky nejsme příliš omezeni. Vhodné pracovní poměry musíme totiž nastavit vždy zkusmo nastavením protiproudu vinutím II pomocí potenciometru P_1 . Pokud přijímaná napětí obsahují různé kmitočty (řeč, poruchy), rozloží se jednotlivé složky na paralelní obvod L_1 C_1 i seriový L_2 C_2

a napětí na usměrňovačích U_1 , U_2 se prakticky ruší. Jestliže však přijde jediný tón 1500 Hz, objeví se na paralelním resonančním obvodu L_1 C_1 , zatím co obvod seriový s nulovou impedancí napětí nevykazuje. Pracuje tedy jediný usměrňovač U_1 a jeho napětí se převede filtračním řetězem R_5 C_6 zpět na řídicí mřížku E2. Tím se změní pracovní bod a anodový proud elektronky klesne. Při správném nastavení citlivosti potenciometrem P_1 kotva relé P přeloží a vyšle k účastníkovi svým kontaktem p vyzváněcí proud ze síťového transformátoru TR4. Ochranné odpory R_7 a R_8 mají za úkol chránit transformátor Tr4 před případným zkratem na vedení k telefonnímu přístroji.

Provoz stanic, vybavených vyzvaněči a transformátorovými vidlicemi Tr5, je velmi jednoduchý. Obsluha nemusí stále vyčkávat u radiostanice, protože připojený telefonní přístroj ji zvonkem

přivolá.

Ukázali jsme princip některých telefonních obvodů, které nalezly v poslední době použití i v radiotechnice. Svědčí to jistě o úzké spolupráci obou druhů přenosu, nezbytné pro úspěšný provoz civilních, drážních a vojenských sdělovacích sítí. Snad i naši amatéři použijí některý z uvedených námětů ve své praxi.

6. Právní dodatek

Stejně jako bezdrátový provoz je řízen řadou zákonných ustanovení a předpisů, je i stavba telefonních zařízení omezena zákonem o telekomunikacích ze dne 18. května 1950, uveřejněným pod číslem 72 v 31. částce Sbírky zákonů RČS.

Zákon definuje pojem telekomunikačních zařízení a vyhrazuje jejich stavbu a provozování poštovnímu podniku, rozhlasu, vojenské správě, dopravě, energetice, letecké správě, vodní správě a požárním útvarům. Mimo tyto orgány musí každý žádat správu spojů o svolení ke zřízení jakéhokoliv radiového, telefonního, telegrafního nebo návěstního zařízení. Zákon však stanoví i výjimku, že povolení není třeba ke zřízení a provozování drátových telegrafů, telefonů a elektrických návěštních zařízení

RADIOVÝ KONSTRUKTÉR Svazarmu, časopis pro radiotechniku a amatérské vysílání. Vydává Svaz pro spolupráci s armádou ve Vydavatelství časopisů ministerstva národní obrany, Praha II, Vladislavova 26. Redakce Praha I, Národní tř. 25 (Metro). Telefon 23-30-27. Řídí František SMOLÍK s redakčním kruhem (Josef ČERNÝ, Vladimír DANČÍK, Antonín HÁLEK, Ing. Miroslav HAVLÍČEK, Karel KRBEC, Arnošt LAVANTE, Ing. Jar. NAVRÁTIL, Václav NEDVĚD, Ing. Ota PETRÁČEK, Josef POHANKA, laureát státní ceny, Antonín RAMBOUSEK, Josef SEDLÁČEK, mistr radioamatérského sportu a nositel odznaku "Za obětavou práci", Josef STEHLÍK, mistr radioamatérského sportu, Aleš SOUKUP, Vlastislav SVO-BODA, laureát státní ceny, Jan ŠÍMA, mistr radioamatérského sportu, Zdeněk ŠKODA, Ladislav ZÝKA). Vychází měsíčně, ročně výide 10 čísel. Tiskne NAŠE VOJSKO n. p., Praha. Otisk povolen jen s písemným svolením vydavatele. Příspěvky redakce vrací, ien byly-li vyžádány a byla-li přiložena frankovaná obálka se zpětnou adresou. Za původnost a veškerá práva ručí autoři příspěvků. Toto číslo vyšlo 10. ledna 1956. A-04886 - PNS 52

DO KNIHOVNY RADIOAMATÉRA

J. Dršťák: RADIOAMATÉROVA DÍLNA A LABORATOŘ

Autor radí radioamatérům, jak vybavit pracovní místnost nebo laboratoř, jakých nástrojů je zapotřebí k práci, uvádí popisy měřicích zařízení, jednoduché výpočty transformátorů, tlumivek a pod. S mnoha vyobrazeními. Kart. 9,50 Kčs.

K. Jordán: JEDNODUCHÉ MALÉ VYSILAČE

Knížka obsahuje návod ke konstrukci jednoduchého vysilače, který si může z dostupných součástek velmi snadno postavit každý amatér. Kart. 1,50 Kčs.

K. Kaminek: JAK SE STÁT RADIOAMATÉREM

Knížka pro začínající radioamatéry, obsahuje hlavní zásady i organisační pokyny, jimiž se řídí výcvikové kroužky radioamatérů ve Svazarmu. Kart. 4 Kčs.

J. Maurenc: JEDNODUCHÝ PŘIJIMAČ PRO ZAČÁTEČNÍKY

Tato knížka seznamuje mladé zájemce o radiotechniku se stavbou přímozesilujícího přijimače a se základními praktickými a částečně theoretickými znalostmi v oboru přijimačů. Doplněno tabulkami a schematy. Kart. 1 Kčs.

J. Maurenc: POZNÁVÁME RADIOTECHNIKU

Zájemce se v publikaci seznámí se základy radiotechniky a elektrotechniky, s elektronkami a jejich sestavením do diod, triod a pentod, jakož i s jednotlivými radiosoučástkami a jejich funkcí. Nákresy, schemata a tabulky. Kart. 6 Kčs.

I. Miškovský: OBRAZOVÉ ELEKTRONKY PRO OSCILOGRAFY A TELEVISI

Knížka probírá podstatu činnosti obrazových elektronek, jejich vnitřní konstrukci, přednosti a nevýhody jednotlivých typů. Je zaměřena jak na oscilografické obrazovky s elektrostatickým ovládáním elektronového svazku, tak i na televisní obrazovky s magnetickým řízením. Váz. 12,25 Kčs.

R. Siegel: PŘIJIMAČE PRO KMITOČTOVOU MODULACI

Základní přehled o možnosti příjmu kmitočtové modulace po stránce theoretické i konstrukční. Seznamuje se základy jejího příjmu, a na vzorových nákresech a výpočtech si zájemce podle navržených konstrukcí vlastní stavbou ověří theoretické závěry první části. Kart. 3,50 Kčs.

V. A. Zarva: MAGNETICKÉ JEVY

Autor vysvětluje fysikální podstatu magnetismu i elektromagnetismu a možnosti využití magnetických jevů v radiotechnice a elektrotechnice. Hlavní pozornost je věnována střídavému magnetickému poli. Kart. 4 Kčs.

NAŠE VOJSKO — DISTRIBUCE — JUNGMANNOVA 13, PRAHA II

uvnitř budov nebo na souvislých pozemcích téhož vlastníka, pokud jejich vedení nepoužívá veřejně přístupné cesty. Tato telekomunikační zařízení nesmějí být bez zvláštního povolení poštovní správy připojena na telekomunikační zařízení jiného provozovatele. Není tedy přípustné připojovat soukromá zařízení k veřejné telefonní síti. Poštovní správa se tím brání neodborným zásahům a úpravám na

← Obr. 51. Vyzváněcí obvod

Data hlavních součástek: Tr 1 – M42, plechy skládány střídavě; vinutí I - 800 závitů smalt. drátu Ø 0,3 mm; vinutí II – 4000 závitů smalt. drátu o Ø 0,08 mm. — Tr 2 -M42, plechy skládány s mezerou 0,5 mm; vinutí I – 3000 závitů smalt. drátu o Ø 0,1 mm; vinutí II – 1000 závitů smalt. drátu o \varnothing 0,15 mm. — Tr 3 – M42, plechy skládány s mezerou 0.35 mm; vinutí I-1000závitů smalt. drátu o Ø 0,2 mm; vinutí II -3000 závitů smalt. drátu o Ø 0,09 mm. — Tr 4 – M42, plechy skládány střídavě; vinutí I - 4800 závitů smalt, drátu o Ø 0.08 mm; vinutí II - 1250 závitů smalt. drátu o Ø 0,12 mm. — Tr 5 - M42, plechy skládány střídavě; vinutí Ia, Ib - vinout současně smalt. drátem o Ø 0,15 mm, obě po 1000 závitech; vinutí II - 1410 závitů smalt. drátu o \varnothing 0,15 mm. — Zr 6 – M42, plechy skládány s mezerou 0,5 mm; vinutí I – 1000 závitů smalt, drátu o Ø 0,22 mm; vinutí II – 150 závitů smalt. drátu o Ø 0,1 mm; vinutí III – 200 závitů smalt. drátu o \varnothing 0,1 mm. — L_1 , L_2 – jádro M42; plechy skládány s mezerou 0,5 mm; vinutí – 1000 závitů smalt. drátu o \varnothing 0,25 mm. Odb. L_1 u 500. závitu. Poznámka: Resonanční obvod oscilátoru i oba resonanční přijímací obvody jsou laděny na týž kmitočet. — Relé R – střídavé relé typu 1009/54. P – polarisované relé 67s, nejlépe s civkou 3000/4 — Různé: $E_1 - 6BC32$; $E_2 - 6L31$, U1, U2 - germaniové diody INN40 nebo kuproxové diody Gl7/3. Z - vyvažovač, jehož impedance senastavuje zkusmo podle vlastnosti pripojeného telefonniho přistroje. Jeho hodnota se obvykle pohybuje od 600 do 1000 Ω . Pokud není vyznačeno jinak, jsou všechny odpory dimensovány na výkon 1/2 W a jejich hodnoty mají vyhovět tolerancím ± 10 %. Podobně je provozní napětí kondensátorů 400 V a jejich tolerance $\pm 25 \%$.

svých přístrojích. Na dotaz autora, jak se pohlíží na dočasná telefonní zařízení, instalovaná příslušníky Svazarmu k různým spojovacím službám, odpovědělo ministerstvo spojů, že zřizování a provozování dočasných drátových telefonů pro výcvik příslušníků Svazarmu v terénu není upraveno žádnou dohodou ani zvláštním předpisem správy spojů.

Všeobecně platné zásady nejsou v odpovědi uvedeny, a správa spojů by mohla řešit jen konkrétní případy.

Prameny:

[1] Strnad, Telefonie II.

[2] Nachtigal, Technická fysika.

[3] Slavík, Akustika kinematografu. [4] Šubrt, Základy theorie slabo-

proudé elektrotechniky.

[5] Krönert, Erdung im Fernmelde-

wessen, ATM, roč. 1952.

[6] Plešingr, Použití polarisovaných relé v elektronickém klíči – Amatérské radio 8/55.

[7] Gorelik, Sacharova, Použití elektrického průzkumu při inženýrsko-geologickém výzkumu na železnicích.

[8] Vaněk, Signální generátor – ná-

vod Elektry č. 12.

[9] Dlouhý, Transformátorové vidlice, Slab. Obzor roč. 1955.

[10] Trůneček, Elektrotechnika.

[11] Čermák, Výprodejné relé, AR č. 2/1955.

Přenos vf signálu po světelné síti.

Vedle odborných a uměleckých škol jsou technické kroužky a kroužky lidov**é** tvořivosti na školách a závodech důležitým pramenem budoucích rozhlasových techniků a uměleckých pracovníků. Také v USA mají studenti na některých školách svoje rozhlasové kroužky, které se starají o zábavu ve chvílích odpočinku. Studenti ubytovaní v kolejích, umístěných zpravidla v blízkosti školních budov, mají možnost přijímat vysílání svého programu na středovlnný rozhlasový přijimač. Místní studentské studio je totiž vybaveno – mimo běžnou nízkofrekvenční aparaturu – i vf výkonovým stupněm, pracujícím na některém ze

středovlnných kmitočtů, vhodně zvoleném podle místních podmínek příjmu. Vf výkon však není veden do anteny, nýbrž do rozvodu světelné sítě, jak je naznačeno na obr. 1.

Tak na př. stanice WCCR na universitě Purdue má výkon 10 W, pracuje na 600 kHz a dodává program do pěti budov s 1600 obyvateli. Pokusy bylo zjištěno, že nejlepším místem k injekci ví energie do rozvodné sítě je sekundární strana posledních transformátorů, převádějících vysoké napětí 2 až 3 kV na napětí rozvodné sítě 110 V. Citlivým přenosným přijimačem byla kontrolována síla vf pole a bylo shledáno, že vysokonapěťový transformátor zabrání vstupu vf kmitočtů do vyšší sítě. Šíření programu je tedy prakticky omezeno na nízkonapěťovou síť jediné obytné budovy nebo školy.

Hlavní část programu zaujímá reprodukovaná hudba ("nekomerční", jak výslovně uvádí citovaná zpřáva) od jazzu přes dixieland až k hudbě klasické. Studentské studio je vybaveno kvalitním přijimačem pro dálkový příjem, zvláště VKV stanic. Má tedy možnost – se svolením jejich majitelů – přijímat normální rozhlasový program i vzdálených stanic, jež by nebylo možno normálním přijimačem zachytit.

V USA je již asi 150 těchto universitních stanic a jejich program je mezi studenty velmi oblíben.

Je zajímavé, že přenos vf signálu po vedení světelné sítě byl před více než 15 lety vynalezen a patentován v Evropě. K širšímu využití však nedošlo. Dnes tedy znovu ožívá v rukou amatérů. Č.

Radio & Television News 6-55.

Osvětlení pistolového pájedla

Při hotovení pistolového pájedla podle A. R. č. 5 sehnal jsem pro transformátor jen dosti malé jádro (s malým okénkem), které jsem použil. Celková velikost pájedla se tím sice zmenšila, klesla i váha pájedla, ale do malého okénka jádra se jen právě tak vešlo primární a sekundární vinutí, takže vinutí pro osvětlovací žárovku jsem byl nucen prostě vynechat.

Abych se však nevzdal výhody osvětlení pracovního místa při spájení, zapojil jsem osvětlovací žárovku do serie s primárním vinutím transformátoru. Osvětlovací žárovka je beztak umístěna v isolační trubičce, takže nehrozí nebezpečí přímého styku se sítí. Vynecháním žhavicího vinutí jsem dosáhl dalšího úbytku na váze páječky, kromě jiných výhod.

Připojením žárovky podle obr. je proud protékající žárovkou stejný, ať páječku používáme na 220 či 120 V.

Použil jsem žárovky od jízdního kola 6 V/0,6 A. Na napětí žárovky zde ani nezáleží (možno použít od 2,5 V do 12 V), zato však přípustný proud žárovky nesmí být menší než primární proud při spájení, jinak by nastalo přepálení vlákna žárovky. Nejlépe je tento primární proud pájedla proměřit a použít žárovky se stejným proudem. Ve většině případů bude proud asi 0,5 až 0,8 A.

Josef Poruba

