Linear Algebra – Part II

A summary for MIT 18.06SC

Jiaxin Hu

July 6, 2020

1 Orthogonality

1.1 Orthogonal vectors and subspaces

Definition 1 (Orthogonal vectors). Suppose two vectors $x, y \in \mathbb{R}^n$. The vectors x and y are orthogonal iff $x^Ty = y^Tx = 0$, denoted $x \perp y$.

Definition 2 (Orthogonal subspaces). Suppose two subspaces S, T. The subspaces S and T are orthogonal **iff** for any $s \in S$ and for any $t \in T$, $s^T t = t^T s = 0$, denoted $S \perp T$.

Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, there are four subspaces related to \mathbf{A} : column space $C(\mathbf{A})$, row space $C(\mathbf{A}^T)$, nullspace $N(\mathbf{A})$, and left nullspace $N(\mathbf{A}^T)$. Suppose the matrix rank of \mathbf{A} is $rank(\mathbf{A}) = r$, the dimensions of these subspaces are:

$$dim(C(\boldsymbol{A})) = dim(C(\boldsymbol{A}^T)) = r, \quad dim(N(A)) = n - r, \quad dim(N(\boldsymbol{A}^T)) = m - r.$$

Theorem 1.1 (Orthogonality of matrix subspaces). Suppose a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$. The row space $C(\mathbf{A}^T)$ and the nullspace $N(\mathbf{A})$ are orthogonal; the column space $C(\mathbf{A})$ and the left nullspace $N(\mathbf{A}^T)$ are orthogonal i.e.

$$C(\mathbf{A}^T) \perp N(\mathbf{A}); \quad C(\mathbf{A}) \perp N(\mathbf{A}^T).$$

Proof. Consider the matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$. For any vector $x \in N(\mathbf{A})$, we have $\mathbf{A}x = 0$.

$$\mathbf{A}x = \begin{bmatrix} a_1^T x \\ \vdots \\ a_m^T x \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix},$$

where $a_i \in \mathbb{R}^n, i \in [m]$ is the *i*-th row of \mathbf{A} . By the definition 1, x is orthogonal with the rows in matrix \mathbf{A} . For any vector $v \in C(\mathbf{A}^T)$, v is a linear combination of the rows, i.e. $v = c_1 a_1 + ... + c_m a_m$, where $c_i, i \in [m]$ are constants. Multiplying vectors v and x,

$$v^T x = c_1 a_1^T x + \dots + c_m a_m^T x = 0.$$

Therefore, $v \perp x$, and $N(\mathbf{A}) \perp C(\mathbf{A}^T)$. Similarly, for any $x \in N(\mathbf{A}^T)$, we have $\mathbf{A}^T x = 0$, which implies $N(\mathbf{A}^T) \perp C(\mathbf{A})$.

Theorem 1.2 (Relationship between A^TA and A). Consider a matrix $A \in \mathbb{R}^{m \times}$. We have

$$N(\mathbf{A}^T \mathbf{A}) = N(\mathbf{A}); \quad rank(\mathbf{A}^T \mathbf{A}) = rank(\mathbf{A}).$$

Proof. Consider the matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$.

If $x \in N(\mathbf{A})$, then $\mathbf{A}x = 0 \Rightarrow \mathbf{A}^T 0 = 0$, which implies that for any $x \in N(\mathbf{A})$, the vector $x \in N(\mathbf{A}^T \mathbf{A})$. Therefore, we only need to prove that for any $x \in N(\mathbf{A}^T \mathbf{A})$, the vector $x \in N(\mathbf{A})$. We prove this by contradiction.

Suppose a vector $x \in N(\mathbf{A}^T \mathbf{A}^T)$ but $x \notin N(\mathbf{A})$. We have

$$\mathbf{A}x = b \neq 0, \quad \mathbf{A}^T \mathbf{A}x = 0 \quad \Rightarrow \quad \mathbf{A}^T b = 0.$$

By the first equation $b \in C(\mathbf{A})$, and by the third equation $b \in N(\mathbf{A}^T)$. This contradicts the theorem 1.1, i.e. $C(\mathbf{A}) \perp N(\mathbf{A}^T)$.

Next, given $N(\mathbf{A}^T \mathbf{A}) = N(\mathbf{A})$, the rank of matrix $rank(\mathbf{A}^T \mathbf{A}) = n - dim(N(\mathbf{A}^T \mathbf{A})) = n - dim(N(\mathbf{A}^$

Corollary 1 (Invertibility of A^TA). If A has independent columns, then A^TA is invertible.

Proof. If $\mathbf{A} \in \mathbb{R}^{m \times n}$ has independent columns, then $rank(\mathbf{A}) = n$. By the theorem 1.2, $rank(\mathbf{A}^T \mathbf{A}) = rank(\mathbf{A}) = n$. Since $\mathbf{A}^T \mathbf{A} \in \mathbb{R}^{n \times n}$ is a square matrix, $\mathbf{A}^T \mathbf{A}$ is invertible.

1.2 Projections onto subspaces

Definition 3 (Projection and projection matrix). Consider a vector $x \in \mathbb{R}^m$ and a matrix $\mathbf{A}^{m \times n}$ that has independent columns. Suppose a vector $p \in C(\mathbf{A})$, such that

$$(x-p) \perp C(\mathbf{A}). \tag{1}$$

The vector p is the projection of vector x onto the space C(A). Since $p \in C(A)$, there exists a vector \hat{x} such that $p = A\hat{x}$. By equation (1), we have

$$\mathbf{A}^T(x-p) = \mathbf{A}^T(x-\mathbf{A}\hat{x}) \quad \Rightarrow \quad \hat{x} = (\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^Tx, \quad p = \mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^Tx.$$

The matrix $\mathbf{P} = \mathbf{A}(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$ is called projection matrix.

Theorem 1.3 (Properties of projection matrix). Consider a projection matrix P to the column space C(A), where $A \in \mathbb{R}^{m \times n}$ is a matrix. Then,

$$P^T = P$$
; $P^2 = P$.

Proof. Since the projection matrix $P = A(A^TA)^{-1}A^T$ and A^TA is symmetric, then

$${m P}^T = ({m A}({m A}^T{m A})^{-1}{m A}^T)^T = {m A}({m A}^T{m A})^{-1}{m A}^T = {m P}.$$
 ${m P}^2 = {m P}^T{m P} = {m A}({m A}^T{m A})^{-1}{m A}^T{m A}({m A}^T{m A})^{-1}{m A}^T = {m A}({m A}^T{m A})^{-1}{m A}^T = {m P}.$

Corollary 2 (Projection onto $N(\mathbf{A}^T)$). Suppose \mathbf{P} is a projection matrix in theorem 1.3, then $I - \mathbf{P}$ is also a projection matrix to the left nullspace $N(\mathbf{A}^T)$.

Proof. For any $x \in \mathbb{R}^m$, we have $x - \mathbf{P}x \perp C(\mathbf{A})$

$$x - Px \perp C(A) \quad \Rightarrow \quad (I - P)x \perp C(A) \quad \Rightarrow \quad (I - P)x \in N(A^T) \text{ and } (x - (I - P)x) \perp N(A^T).$$

Therefore, I - P is a projection matrix to the left nullspace $N(A^T)$.

1.3 Projection matrices and least squares

Given observation vector $y \in \mathbb{R}^n$ and the design matrix $X \in \mathbb{R}^{n \times (k+1)}$, we propose the linear regression model

$$y = X\beta + \epsilon$$
,

where $\beta = (\beta_0, \beta_1, ..., \beta_k)$ are coefficients of our interests and ϵ is the noise. The least square estimate of β minimizes the loss

$$\hat{\beta}_{LS} = \operatorname*{arg\,min}_{\beta \in \mathbb{R}^{k+1}} \|y - \boldsymbol{X}\beta\|^2,$$

where $\|\cdot\|$ is the euclidean norm. The vector $X\hat{\beta}_{LS}$ can be considered as a the projection of y onto the column space of X. Therefore, we may use projection tools to solve the least square estimate. The projection $X\hat{\beta}_{LS}$ satisfies

$$\mathbf{X}^T(y - \mathbf{X}\hat{\beta}_{LS}) = 0 \quad \Rightarrow \quad \hat{\beta}_{LS} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^Ty.$$

The estimate $\hat{\beta}_{LS}$ is identical to the estimates solved by other methods using the derivative.

1.4 Orthogonal matrices and Gram-Schimidt

Definition 4 (Orthonormal vectors). The vectors $q_1, ..., q_n$ are orthonormal if

$$q_i^T q_j = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}.$$

Orthonormal vectors are always independent.

Definition 5 (Orthonormal matrix and orthogonal matrix). Consider a matrix $Q \in \mathbb{R}^{m \times n}$. If the columns of Q are orthonormal, the matrix Q is an orthonormal matrix. If m = n, the square matrix Q is a orthogonal matrix.

If $Q \in \mathbb{R}^{m \times n}$ is an orthonormal matrix, $Q^T Q = I_n$. If Q is an orthogonal matrix, $Q^T = Q^{-1}$. For orthonormal matrix Q, the projection matrix to C(P) becomes $P = I_m$.

Definition 6 (Gram-Schimidt Process and QR decomposition). Consider a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ with $rank(\mathbf{A}) = n$. Gram-Schimidt process finds the orthonormal basis for $C(\mathbf{A})$. Let $a_i \in \mathbb{R}^m, i \in [m]$ be the columns of matrix \mathbf{A} .

$$u_{1} = a_{1}, e_{1} = \frac{u_{1}}{\|u_{1}\|}$$

$$u_{2} = a_{2} - \frac{u_{1}^{T} a_{2}}{u_{1}^{T} u_{1}} u_{1}, e_{2} = \frac{u_{2}}{\|u_{2}\|}$$

$$u_{3} = a_{3} - \frac{u_{1}^{T} a_{3}}{u_{1}^{T} u_{1}} u_{1} - \frac{u_{2}^{T} a_{3}}{u_{2}^{T} u_{2}} u_{2}, e_{2} = \frac{u_{3}}{\|u_{3}\|}$$

$$\vdots$$

The vectors $e_1, ..., e_n$ are orthonormal basis of the $C(\mathbf{A})$. By matrix operations, we obtain a decomposition of matrix \mathbf{A}

$$\mathbf{A} = [a_1, ..., a_n] = [e_1,, e_2] \begin{bmatrix} e_1^T a_1 & e_1^T a_2 & \cdots & e_1^T a_n \\ 0 & e_2^T a_2 & \cdots & e_2^T a_n \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & e_n^T a_n \end{bmatrix} = \mathbf{Q} \mathbf{R}$$
 (2)

where $Q \in \mathbb{R}^{m \times n}$ is an orthonormal matrix and $R \in \mathbb{R}^{n \times n}$ is a upper triangular matrix. We call the matrix decomposition as equation (2) QR decomposition.