

AD-A234 307

AMSA

TECHNICAL REPORT NO. 489

INNER PRODUCT PERFORMANCE CRITERIA FOR EVALUATING
COMBAT MODELS

HERBERT E. COHEN

FEBRUARY 1991

DTIC
SELECTED
APR 05 1991
S D
8

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

U. S. ARMY MATERIEL SYSTEMS ANALYSIS ACTIVITY
ABERDEEN PROVING GROUND, MARYLAND

DISPOSITION

When this report is no longer needed, Department of the Army organizations will destroy it in accordance with the procedures given in AR 380-5. Navy and Air Force elements will destroy it in accordance with applicable directives. Department of Defense contractors will destroy the report according to the requirements of Section 14 of the Industrial Security Manual for Safe-guarding Classified Information. All others will return the report to the U.S. Army Materiel Systems Analysis Activity, Aberdeen Proving Ground, Maryland 21005-5071.

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so specified by other official documentation.

WARNING

Information and data contained in this document are based on the input available at the time of preparation. The results may be subject to change and should not be construed as representing the AMC position unless so specified.

TRADE NAMES

The use of trade names in this report does not constitute an official endorsement or approval of the use of such commercial hardware or software. The report may not be cited for purposes of advertisement.

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION Unclassified		1b. RESTRICTIVE MARKINGS													
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION / AVAILABILITY OF REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.													
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE															
4. PERFORMING ORGANIZATION REPORT NUMBER(S) TR-489		5. MONITORING ORGANIZATION REPORT NUMBER(S)													
6a. NAME OF PERFORMING ORGANIZATION U.S. Army Materiel Systems Analysis Activity	6b. OFFICE SYMBOL (If applicable) AMXSY-MP	7a. NAME OF MONITORING ORGANIZATION													
6c. ADDRESS (City, State, and ZIP Code) Aberdeen Proving Ground, MD 21005-5071		7b. ADDRESS (City, State, and ZIP Code)													
8a. NAME OF FUNDING / SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER													
8c. ADDRESS (City, State, and ZIP Code)		10. SOURCE OF FUNDING NUMBERS PROGRAM ELEMENT NO. PROJECT NO. TASK NO. WORK UNIT ACCESSION NO.													
11. TITLE (Include Security Classification) Inner Product Performance Criteria for Evaluating Combat Models															
12. PERSONAL AUTHOR(S) Herbert E. Cohen															
13a. TYPE OF REPORT Final	13b. TIME COVERED FROM _____ TO _____	14. DATE OF REPORT (Year, Month, Day) 91/Febr/14	15. PAGE COUNT 16												
16. SUPPLEMENTARY NOTATION															
17. COSATI CODES <table border="1"><tr><th>FIELD</th><th>GROUP</th><th>SUB-GROUP</th></tr><tr><td> </td><td> </td><td> </td></tr><tr><td> </td><td> </td><td> </td></tr><tr><td> </td><td> </td><td> </td></tr></table>		FIELD	GROUP	SUB-GROUP										18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Combat Models, Lanchester Equations Adjoint Equation	
FIELD	GROUP	SUB-GROUP													
19. ABSTRACT (Continue on reverse if necessary and identify by block number) An inner product performance criteria is proposed which has a simple geometric meaning and is easy to calculate for evaluating how well the approximate solutions currently used in an Army model agrees with the exact solution associated with the linear homogeneous Lanchester equation of combat.															
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT <input type="checkbox"/> UNCLASSIFIED/UNLIMITED <input checked="" type="checkbox"/> SAME AS RPT <input type="checkbox"/> DTIC USERS		21. ABSTRACT SECURITY CLASSIFICATION Unclassified													
22a. NAME OF RESPONSIBLE INDIVIDUAL Herbert E. Cohen		22b. TELEPHONE (Include Area Code) (301) 278-2785	22c. OFFICE SYMBOL AMXSY-MP												

ACKNOWLEDGEMENT

The U.S. Army Materiel Systems Analysis Activity (AMSAA) recognizes the following individual for contributing to this report:

Peer Reviewer: Rich Sandmeyer, Combat Support Division (CSD).

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification _____	

_____ Distribution/	
Availability Codes	
Avail and/or Sect Special	
A-1	

INNER PRODUCT PERFORMANCE CRITERIA FOR EVALUATING
COMBAT MODELS

HERBERT E. COHEN

U.S. ARMY MATERIEL SYSTEMS ANALYSIS ACTIVITY
ABERDEEN PROVING GROUND, MARYLAND 21005-5071

The U.S. Army is actively engaged in developing combat models using approximate solutions to the linear homogeneous Lanchester equations. How well these approximate solutions deviate from the true or exact solution is an important issue within the Army if we are going to have any confidence in these approximate solutions. An inner product performance criteria is proposed which has a simple geometric meaning and is easy to calculate for evaluating how well the approximate solution agrees with the exact solution associated with the linear homogeneous Lanchester equation of combat.

It is shown that an inner product performance criteria is a useful measure to evaluate the performance of current combat models against the exact solutions for piecewise linear homogeneous Lanchester equations for all homogeneous or heterogeneous battles.

The Lanchester homogeneous equations in vector form may be given by Eq (1)

$$\dot{x}(t) = A(t) \quad x(t) \quad (t_0 \leq t \leq t_f) \quad (1)$$

where x is an $n \times 1$ vector such that

$$x(t) = (R_1 \quad R_2 \dots R_p, B_1, B_2, \dots B_q)$$

R_i is the i^{th} Red weapon system strength at time t .

B_j is the j^{th} Blue weapon system strength at time t .

and

$$p + q = n$$

R_i and B_j both being nonnegative,

with an initial condition $x(t_0) = x_0$, $A(t)$ is the time varying n by n attrition coefficient matrix. Assuming $A(t)$ is piecewise constant for $t_i \leq t \leq t_{i+1}$ for $i = 0, 1 \dots, n$ where $t_{n+1} = t_f$, then Eq (1) has an exact solution given by

$$\begin{aligned} & (t_{i+1} - t_i) \cdot \\ & x(t_{i+1}) = \varphi \quad x(t_i) \end{aligned} \quad (?)$$

for $i = 0, 1, \dots, n$

We now define the adjoint differential equation of Equation (1) given by

$$\dot{\gamma} = -A^T(t)\gamma \quad (3)$$

with a value of $y(t)$ at $t = t_f$ given by $y(t_f)$.

We now claim that the inner product $y^T(t)x(t)$ is a constant. This can be shown as follows:

$$\begin{aligned} \frac{d}{dt}y^T(t)x(t) &= \dot{y}^T x(t) + y^T(t)\dot{x}(t) \\ &= (-A^T y)^T x(t) + y^T(t)\dot{x}(t) \\ &= y^T(-Ax) + y^T(t)\dot{x}(t) \\ &= -y^T(t)\dot{x}(t) + y^T(t)\dot{x}(t) \\ &= 0 \quad QED. \end{aligned}$$

where we have used Eq (1) and Eq (3).

Thus

$$y^T(t)x(t) = \text{constant} \quad (4)$$

or more specifically at the final time, t_f , of the battle

$$y^T(t_f)x(t_f) = y^T(0)x(0) \quad (5)$$

In fact if we select $y(t_f)$ to be orthogonal to $x(t_f)$ we have

$$y^T(I_f)x^*(I_f) = 0 \quad (6)$$

and the inner product $y^T(t)x(t)$ will remain zero for all t . Hence all solutions of the adjoint equation, $y(t)$ in Eq (3), are orthogonal to the surface containing the solution of the Lanchester equation in Eq (1), even for time varying attrition matrix and all battles. The geometric meaning is simply that the projection of $x(t)$ on the adjoint solution $y(t)$ multiplied by the magnitude of $y(t)$ is zero. Figure 1 provides the geometric relationship and the position of a generic Army Model solution, x_{AM} , in relationship to x and y .

Within the Army, the model given by x_{AM} , for Army Model, uses the Lanchester equation to describe many combat situations. The finite difference equation for Eq (1) is

$$x_{AM}(t + \Delta t) = (I + A\Delta t)x_{AM}(t)$$

which with $\Delta t = 1$

$$x_{AM}(t + 1) = (I + A)x_{AM} \quad (7)$$

If x_{AM} is to be a close approximation to x , then the inner product of x_{AM} with y of the adjoint equation, Eq (3), is the projection of x_{AM} along y and thus the distance from the true solution.

Data is presented in Table 1, x_{AM} is in the second column and the exact solution, $x(t)$, generated by Eq (2) over each time interval is presented in Figures 2 to 6. Runge Kutta solutions are also presented in these figures.

Table 2 provides the results of the inner product $y^T(t)x(t)$ and $y^T(t)x_{AM}$ over each time interval. Clearly $y^T(t)x_{AM}$ is not constant and progressively moves away from the exact solution $x(t)$ with time. This is shown in Figure 7. We have a clear measure of how x_{AM} deviates from the true solution. Thus, the inner product criteria offers a simple method for testing any linear homogeneous Lanchester model of combat for all battles.

In conclusion, we have demonstrated that the inner product criteria using the adjoint differential equation can provide combat modelers with a useful simple criteria for evaluating the performance of approximate solutions to the linear homogeneous Lanchester equation of combat.

FIGURE 1

X = EXACT LANCHESTER SOLUTION

Y = ADJOINT SOLUTION

X_{AM} = ARMY MODEL SOLUTION

$Y^T X_{AM}$ = MEASURE OF DISTANCE FROM TRUE SOLUTION X.

TABLE 1. DATA.

Two-on-Three Scenario
(With Suppression Off and 100% in Quadrant)

1 Blue Initial Strength, 50
2 Blue Initial Strength, 50
3 Red Initial Strength, 50
4 Red Initial Strength, 25
5 Red Initial Strength, 25

<u>Firer</u>	<u>No. of Firers</u>	<u>Target</u>				
		<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>
Time = 0 minutes						
1B	50.0000	0.	0.	0.0063643	0.0000000	0.0001014
2B	50.0000	0.	0.	0.0024091	0.	0.
3R	50.0000	0.0083374	0.	0.	0.	0.
4R	25.0000	0.0008168	0.	0.	0.	0.
5R	25.0000	0.	0.	0.	0.	0.
Time = 1 minute						
1B	23.7626	0.	0.	0.0043994	0.0000000	0.0023342
2B	50.0000	0.	0.	0.0023752	0.0000000	0.0000519
3R	23.6800	0.0083374	0.	0.	0.	0.
4R	24.0009	0.0008168	0.	0.	0.	0.
5R	24.6958	0.	0.	0.	0.	0.
Time = 2 minutes						
1B	10.6916	0.	0.	0.0024300	0.0000816	0.0048297
2B	50.0000	0.	0.	0.0020609	0.0000124	0.0005698
3R	10.2977	0.0083343	0.0000027	0.	0.	0.
4R	24.9896	0.0008168	0.	0.	0.	0.
5R	21.2119	0.	0.	0.	0.	0.
Time = 3 minutes						
1B	4.3175	0.	0.	0.0004420	0.0005786	0.0068515
2B	49.9983	0.	0.	0.0007079	0.0001323	0.0024820
3R	2.6462	0.0079945	0.0003013	0.	0.	0.
4R	24.9000	0.0008046	0.0000623	0.	0.	0.
5R	16.4044	0.	0.	0.	0.	0.
Time = 4 minutes						
1B	1.8461	0.	0.	0.0000143	0.0035953	0.0034569
2B	49.8574	0.	0.	0.0001091	0.0009374	0.0025676
3R	0.4079	0.0062070	0.0018716	0.	0.	0.
4R	24.3531	0.0006816	0.0006921	0.	0.	0.
5R	7.1839	0.	0.	0.	0.	0.

Red unit removed after 4 minutes.

Firer 1 (1B)

FIGURE 2

Firer 2 (2B)

FIGURE 3

Firer 3 (1R)

FIGURE 4

Firer 4 (2R)

FIGURE 5

Firer 5 (3R)

FIGURE 6

TABLE 2.

<u>t</u>	<u>Initial t=0</u>	<u>Initial t=5</u>
0	0	-4.16×10^{-15}
1	-2.58×10^{-14}	1.48×10^{-15}
2	-1.914×10^{-14}	-4.07×10^{-15}
3	-3.689×10^{-14}	-6.31×10^{-17}
4	-4.893×10^{-14}	2.49×10^{-16}

<u>y^T(t) x_{AM}</u>
<u>t</u>
0
1
2
3
4

Projection of X_{AM} on Minus Y

Figure 7.

DISTRIBUTION LIST

No. of Copies	Organization	No. of Copies	Organization
7	Commander Defense Technical Information Center ATTN: DTIC-FDAC Cameron Station, Bldg 5 Alexandria, VA 22304-6145	2	Commander U.S. Army Development and Employment Agency ATTN: MODE-TED-SAB (2 cys) Fort Lewis, WA 98433-5000
2	Commander U.S. Army Materiel Command ATTN: AMXPA AMCDMA-M 5001 Eisenhower Avenue Alexandria, VA 22333-0001	4	Director U.S. Army TRADOC Systems ATTN: ATOR-TSL ATOR-T ATOR-TE ATOR-TF White Sands Missile Range, NM 88002-5502
1	Director Combat Data Information Center AFWAL/FIES/CDIC Wright-Patterson AFB, OH 45433-5000	1	Commandant U.S. Army Infantry School ATTN: ATSH-CD-CS-OR Fort Benning, GA 31905-5400
1	Pentagon Library ATTN: AN-AL-RS (Army Studies) Pentagon, Room 1A518 WASH, DC 20310	3	Commander U.S. Army Tank-Automotive Command ATTN: AMSTA-Z (Tech Lib) AMSTA-ZE AMSTA-ZSA Warren, MI 48090
1	Commander U.S. Army Concepts Analysis Agency ATTN: CSCA-MSL-L 8120 Woodmont Avenue Bethesda, MD 20814-2797	1	HQDA (DACS-CV) WASH, DC 20310
1	Dr. Clint V. Ancker, Jr. 23908 Malibu Knolls Road Malibu, CA 90265	2	Project Manager M1E1 Tank System ATTN: AMCPM-M1E1 Warren, MI 48090
1	Director U.S. Army TRADOC Analysis Command ATTN: ATRC-FMD (Mr. E. Arendt) Fort Leavenworth, KS 66027-5200	1	Director of Research U.S. Army TRADOC Analysis Command ATTN: ATRC-RD (Ms. R. Baird) White Sands Missile Range, NM 88002-5502

DISTRIBUTION LIST (Continued)

No. of Copies	Organization	No. of Copies	Organization
1	Systems Assessment Group Royal Military College of Science, Mr. M. Bathe Shrivenham Swindon Wilts SN6 8LA United Kingdom	1	Colonel C. E. Evans Director Army Model Improvement Program Management Office ATTN: ATZL-CAN-DO Fort Leavenworth, KS 66027-5000
1	Commander Joint Warfare Center ATTN: Mr. E. Blair, Technical Advisor Hurlburst Field Eglin Air Force Base, FL 32544-5000	1	Robert Farrell Vector Research Incorporated PO Box 1506 Ann Arbor, MI 48106
1	Director U.S. Army TRADOC Analysis Command ATTN: ATRC-TD (Mr. F. Campbell) Fort Leavenworth, KS 66027-5200	1	HQDA (SARD-TNT) ATTN: LTCOL R. Fejfar Pentagon WASH, DC 20310-0105
1	Director U.S. Army TRADOC Analysis Command Requirements and Programs Directorate ATTN: ATRC-RP (Mr. K. Carson) Fort Monroe, VA 23651-5143	1	Mr. David Finley General Dynamics, Fort Worth Division PO Box 748 Mail Zone 4091 Fort Worth, TX 76101
1	Director U.S. Army TRADOC Analysis Command ATTN: ATRC-W (Dr. D. Collier) White Sands Missile Range, NM 88002-5502	1	Director Army Model Improvement Program, Management Office ATTN: ATZL-CAN-DO (MAJ Halek) Fort Leavenworth, KS 66027-5000
1	Professor Ralph Disney Department of Industrial Engineering Texas A&M University College Station, TX 77843	1	Defence Operational Analysis Establishment ATTN: Mr. Geoff Hawkins Broadoaks, Parvis Road West Byfleet Weybridge Surrey KT14 6LY United Kingdom
1	Colonel T.N. Dupuy, USA Ret. Data Memory Systems, Inc. 10392 Democracy Lane Fairfax, VA 22030	1	U.S. Army Concepts Analysis Agency ATTN: CSCA-MVM (Dr. R. Hembold) 8210 Woodmont Avenue Bethesda, MD 20814-2797

DISTRIBUTION LIST (Continued)

No. of Copies	Organization	No. of Copies	Organization
1	U.S. Army Concepts Analysis Agency ATTN: CSCA-RSR (Prof. L. Ingber) 8120 Woodmont Avenue Bethesda, MD 20814-2797	1	Director U.S. Army TRADOC Analysis Command ATTN: ATRC-DPS (Dr. H. Sassenfeld) White Sands Missile Range, NM 88002-5502
1	U.S. Army Tank Automotive Command ATTN: AMSTA-RSA (Dr. W. Jackson) Warren, MI 48397-5000	1	Director U.S. Army TRADOC Analysis Command ATTN: ATRC-WC (P. Shugart) White Sands Missile Range, NM 88002-5502
1	Commander HQDA ATTN: DAMO-ZDS (Dr. J. Metzger) WASH, DC 20310	1	U.S. Army Concepts Analysis Agency ATTN: CSCA-RQN (MAJ Staniec) 8120 Woodmont Avenue Bethesda, MD 20814
1	Dr. Louis Moore RAND Corporation 1700 Main Street Santa Monica, CA 90406-2138	1	Professor James Taylor Department of Operations Research Naval Postgraduate School Department 55 (Tw) Monterey, CA 93943-5000
1	Director U.S. Army TRADOC Analysis Command ATTN: ATRC-WEA (Dr. M. Parish) White Sands Missile Range, NM 88002-5502	1	Mr. David Thompson Vector Research Incorporated PO Box 1506 Ann Arbor, MI 48106
1	Professor Sam Parry Commander U.S. Naval Postgraduate School Code 55PY Monterey, CA 93943	1	Dr. Ralph M. Toms Development Projects Manager Conflict Simulation Laboratory, L-315 Lawrence Livermore National Laboratory PO Box 808 Livermore, CA 94550
1	Director U.S. Army TRADOC Analysis Command ATTN: ATRC-WEA (R. Porter) White Sands Missile Range, NM 88002-5502		

DISTRIBUTION LIST (Continued)

No. of Copies	Organization	No. of Copies	Organization
1	U.S. Army Concepts Analysis Agency ATTN: CSCA-RSA (J. Warren) 8120 Woodmont Avenue Bethesda, MD 20814	1	Mr. Patrick Wood Ministry of Defense (PE) CAI RARDE Fort Halsheard Sevenoaks, Kent TN 14 FBP United Kingdom
1	U.S. Army TRADOC Analysis Command ATTN: ATRC-RD (MAJ Welo) Director of Research White Sands Missile Range, NM 88002-5502	1	U.S. Army Concepts Analysis Agency ATTN: CSCA-RQN (MAJ M. Youngren) 8120 Woodmont Avenue Bethesda, MD 20814
1	HQDA ATTN: SAUS-OR (Dr. D. Willard) WASH, DC 20310-0102	1	General Dynamics Land Systems Division ATTN: Mr. J. O'Rourke PO Box 1800 Warren, MI 48090
Aberdeen Proving Ground			
1	Director U.S. Army Human Engineering Laboratory ATTN: SLCHE-SP (Dr. B. Cummings) Aberdeen Proving Ground, MD 21005-5001	1	Director U.S. Army Ballistics Research Laboratory ATTN: AMXBR-OD-ST, Bldg 305 Aberdeen Proving Ground, MD 21005-5066
2	Director U.S. Army Ballistics Research Laboratory ATTN: AMXBR-OD, Bldg 328 AMXBR-SECAD Aberdeen Proving Ground, MD 21005-5066	10	Director U.S. Army Materiel Systems Analysis Activity ATTN: AMXSY-CC (R. Sandmeyer) AMXSY-G AMXSY-GA AMXSY-GB AMXSY-C AMXSY-DA (H. Cohen) AMXSY-PA (RPC, 3 cys) Aberdeen Proving Ground, MD 21005-5071

GIST

 AMSAA	TYPE OF REPORT: Technical Report REPORT NUMBER: TR-439 DATE:	
--	--	---

SUBJECT: Inner Product Performance Criteria for Evaluationing Combat Models.

REASON FOR PERFORMING THIS EFFORT: Investigation of the properties of the linear homogeneous Lanchester equations which are used extensively by Army combat modelers.

MAIN OBJECTIVES OF THE EFFORT: Investigate invariant properties of liniar homogeneous Lanchester equations of combat and to compare theoretical results with those derived from Army combat models.

SCOPE OF EFFORT: Develop solutions for piecewise constant linear homogeneous Lanchester equations in state variables and introduce the role of the adjoint differential equation.

IMPACT OF THE EFFORT: Provides explicit solution, independent of step size, of the linear homogeneous Lanchester equations thus increasing speed of computation and develops a simple performance criteria for evaluating how well the approximate solutions agree with the exact solutions of the equation of combat.

CONTRACTED ADVISORY AND ASSISTANCE SERVICES: None.

SPONSOR: None.

PERFORMING ORGANIZATION/POINT OF CONTACT: U.S. Army Materiel Systems Analysis Activity (AMSAA), Special Studies and Activities Office, Herbert E. Cohen, DSN 298-2785.

DTIC/DLSIE ACCESSION NUMBER: Report sent to DTIC, accession number not available.

AMSAA Form 43R (4 Jun 90)
Previous edition of this form is obsolete

ENCL 3