3. model_selection

- I. model_selection 이란?
 - 학습 데이터와 테스트 데이터 세트를 분리
 train_test_split()
 - 교차 검증 분할 및 평가 (Cross Validation)
 : KFold / Stratified KFold
 - Estimator의 하이퍼파라미터 튜닝을 위한 다양한 함수와 클래스 제공 : GridSearchCV / RandomizedSearchCV

위의 기능을 수행하는 함수와 클래스를 제공하는 모듈

3-1. train_test_split()

- I. data split의 목적
 - 모델을 학습 시킨 후 그 성능을 검증하기 위해 원본 데이터에서 train / test 용 데이터로 나눠줌
 - 모델의 일반화 능력을 평가함

X_train, X_test

X ₁	X ₂	Хp

2. train_test_split(X, y, test_size, random_state, shuffle)

y_train, y_test

- X, y: feature, label 데이터
- test_size : 테스트 데이터셋 크기 결정 (default = 0.25)
- random_state : 동일한 학습/ 테스트 데이터셋 결정
- shuffle : 데이터를 섞어서 학습 진행

3-2. 교차 검증

I. 교차 검증 이란?

만약, 검증 데이터 l개로만 테스트를 한다면, 전체 데이터에 대해 적합한지 판단 불가 즉, 모델의 과적합을 방지하고 일반화된 데이터에 대한 성능을 측정할 방법이 필요!

*** 교차 검증의 등장 > 여러 세트로 구성된 데이터셋을 나눠서 학습과 평가를 진행함

3-2. KFold

2. KFold 교차 검증

전체 데이터를 K개의 데이터 폴드 세트로 만들어서 K번만큼 각 폴드 세트에 학습과 검증 평가를 반복적으로 수행하는 방법 ** 폴드 : 나눠진 각각의 데이터셋

Validation Training
Fold Fold

1st Performance 1

Performance 2

Performance 3

Performance 3

Performance 4

Training
Fold Fold

Performance 4

Performance 5

Performance 5

대략적 순서

- I. 학습 데이터를 K개의 폴드로 나눈다.
- 2. 첫번째 폴드를 검증 데이터로 두고 나머지 데이터로 모델을 학습시킨다. 그 후 모델의 평가를 진행한다.
- 3. 검증 데이터를 바꿔 가면서 K = 5 까지 반복한다.

3-2. KFold의 문제점

0, Setosa	1, Versicolo r	2, Virginica		
50	50	50		

K=3이고, 레이블 0, 2의 데이터로만 학습을 진행하고 레이블 I의 데이터로 검증한다면, 모델의 정확도는 0

<iris datasets>

Q2. 한 레이블이 검증 데이터에만 편향되는 문제점을 극복한 클래스는?

3-2. Stratified KFold

레이블 분포를 먼저 고려한 뒤 이 분포와 동일하게 학습과 검증 데이터 세트를 분배함

KFold vs Stratified KFold

KFold

estimator : 회귀(regressor)

scoring: MSE, MAE, RMSE

Stratified KFold

estimator: 분류(classifier)

scoring: 정확도, 정밀도, 재현율

3-2. cross_val_score

```
# Kfold
SPLITS = 5
kf = KFold(n_splits = SPLITS)
n iter = 0
features = data.iloc[:,:-1]
label = pd.DataFrame(data['label'])
score list = []
for train_idx, test_idx in kf.split(features, label):
 n iter += 1
 print(f'-----')
 print(f'train_idx_len : {len(train_idx)} / test_idx_len : {len(test_idx)}')
 label_train = label.iloc[train_idx]
 label_test = label.iloc[test_idx]
 X_train, X_test = features.iloc[train_idx, :], features.iloc[test_idx, :]
 y_train, y_test = label.iloc[train_idx,:], label.iloc[test_idx,:]
 model.fit(X_train, y_train)
 preds = model.predict(X_test)
 score = accuracy_score(y_test, preds)
 print(f'{n_iter}번째 단일 accuracy_score:{score}')
 score_list.append(score)
print('-----')
print(f'최종 평균 accuracy_socre : {sum(score_list)/len(score_list)}')
```


score = cross_val_score()

위 과정을 한꺼번에 수행해주는 API

- 폴드 세트 설정
- 학습/ 데스트 데이터 추출
- 학습/평가 반복

내부적으로 Stratified KFold 이용

3-3. Hyperparameter Optimization 01. GridSearchCV 02. Random Search

3-3. GridSearchCV -> Optimizaion + CV

GridSearchCV(estimator, param_grid, scoring, cv, refit)

I. estimator : 모델

2.param_grid

: 사용할 파라미터가 정의된 dictionary

가능한 모든 조합 이용

3. scoring : 성능 평가 지표

4. cv : cv 시 폴드 수

5. refit : 최적의 파라미터로 자동 재학습 처리

결정트리

분류모델

Q3. 결정트리에서 최대 깊이와 노드를 분할하기 위한 최소 샘 플 수를 의미하는 2가지 파라미 터는?

3-3. GridSearchCV(결정트리)

- I. max_depth : 트리의 최대 깊이
 - 깊어질수록 과적합 가능성 증가
- 2. min_samples_split: 자식노드 분할을 위한 최소한의 샘플 데이터수

max_depth	min_samples_split
1	2
1	3
2	2
2	3
3	2
3	3
	1 1 2 2 3

Q4. cv = 3, 다음의 파라미터로 모델을 학습시킬 때, 총 학습 / 평가 횟수는?

param_grid = {'max_depth' = [1,2,3], 'min_samples_split' = [2,3]}

3-3. GridSearchCV(결정트리)

	params	mean_test_score	rank_test_score	split0_t	st_score	split1_test_score	split2_test_score
0	{'max_depth': 1, 'min_samples_split': 2}	0.700000	5		0.700	0.7	0.70
1	{'max_depth': 1, 'min_samples_split': 3}	0.700000	5		0.700	0.7	0.70
2	{'max_depth': 2, 'min_samples_split': 2}	0.958333	3		0.925	1.0	0.95
3	{'max_depth': 2, 'min_samples_split': 3}	0.958333	3		0.925	1.0	0.95
4	{'max_depth': 3, 'min_samples_split': 2}	0.975000	1		0.975	1.0	0.95
5	{'max_depth': 3, 'min_samples_split': 3}	0.975000	1		0.975	1.0	0.95

3 X 2 X 3(폴드 수) = 18번

3-3. Random Search

Lasso 의 예시

Grid Layout

Important Parameter 일정한 간격의 모든

하이퍼파라미터의 조합을 시도 파라미터 수, 범위가 작을 때 효과적 Random Layout

Important Parameter

0-I 사이의 랜덤한 (ex.0.178) 수를 파라미터로 설정한 후 성능 검증 데이터가 많은 경우 학습시간 절약