1. SELECT column_name, data_type FROM

 $`scaler-dsml-sql-437510.target_sql_business_case. INFORMATION_SCHEMA. COLUMNS`WHERE$

table_name='customers_csv';

Quei	ry results		♣ SAVE RESU
JOB II	NFORMATION RESULTS	CHART JSON	EXECUTION D
Row	column_name ▼	data_type ▼	· //
1	customer_id	STRING	
2	customer_unique_id	STRING	
3	customer_zip_code_prefix	INT64	
4	customer_city	STRING	
5	customer_state	STRING	

OBJ

2. selectmin(order_purchase_timestamp)asstart_date, max(order_purchase_timestamp) as end_date from`target_sql_business_case.orders_csv`

Row	start_date ▼	end_date ▼
1	2016-09-04 21:15:19 UTC	2018-10-17 17:30:18 UTC

3. selectcount(DISTINCTcustomer_city)ascity_count, count(DISTINCT customer_state) as state_count from target_sql_business_case.customers_csv

Row	city_count	· /	state_count	· /	
1		4119		27	

1. SELECT

FORMAT_DATETIME('%y',order_purchase_timestamp)ASyear,

COUNT(*)AStotal_records

from`target_sql_business_case.orders_csv`

GROUP BY

year

ORDERBY

year

Row	year ▼	total_records ▼
1	16	329
2	17	45101
3	18	54011

Thebusinessgrowthfrom2016to2017showsincreasewhichcould indicateabusniessexpansion oramaket demand mayincreaseandtheyaresuccesfulintheir marketingstartegiesthat continued to 2018 if this continues might be theyget further growth in 2019 and beyond

2. SELE

CT

FORMAT_DATETIME('% y-% m', order_purchase_timestamp)ASmonth,

COUNT(*)AStotal_records

from`target_sql_business_case.orders_csv`

GROUP BY

month

ORDERBY

month

Row	month ▼	total_records ▼
1	16-09	4
2	16-10	324
3	16-12	1
4	17-01	800
5	17-02	1780
6	17-03	2682
7	17-04	2404
8	17-05	3700
9	17-06	3245
10	17.07	4026

Investigate what factors may have contributed to the low order volume at the end of 2016. This could have been due to alate launch, ineffective marketing campaigns, or the business still scaling up.

SELECT

FORMAT_timestamp('%H:%M',order_purchase_timestamp)AStime,

 $COUNT(*) A Stotal_records$

from`target_sql_business_case.orders_csv`

GROUP BY

time

order bytime

Row	time ▼	total_records ▼	/
1	00:00	40	
2	00:01	53	
3	00:02	36	
4	00:03	58	
5	00:04	58	
6	00:05	51	
7	00:06	51	

1.selectDISTINCT(customer_state),extract(MONTHfromorder_purchase_timestamp)asmonth, from `target_sql_business_case.customers_csv` c join`target_sql_business_case.orders_csv` o on c.customer_id = o.customer_iD

		_
Row	customer_state ▼	month ▼
1	RN	1
2	RN	12
3	RN	5
4	CE	2
5	CE	3
6	CF	5

```
Q4
1.
WITHcus_detailsAS(
 SELECT
  EXTRACT(YEAR FROM oo.order_purchase_timestamp) AS order_year,
  EXTRACT(MONTHFROMoo.order_purchase_timestamp)ASorder_month,
  SUM(o.price) AS total_order_amount
 FROM
  `target_sql_business_case.order_items` o
 JOIN
  `target_sql_business_case.orders_csv`oo
  ON o.order_id = oo.order_id
 WHERE
  oo.order_purchase_timestampBETWEEN'2017-01-31'AND'2018-08-30' GROUP
 BY
  order_year,order_month
 ORDER BY
  order_year,order_month
)
SELECT
 order_year,
 order_month,
 total_order_amount,
 LAG(total_order_amount)OVER(ORDERBYorder_year,order_month)AS
previous_month_amount,
 SAFE_DIVIDE(
  (total_order_amount-LAG(total_order_amount)OVER(ORDERBYorder_year, order_month)),
  LAG(total_order_amount)OVER(ORDERBYorder_year,order_month)
 )*100ASpercent_increment
FROM cus_details;
```

Row	order_year ▼	order_month ▼	total_order_amount	previous_month_amo	percent_increment
1	2017	9	624401.6900000	573971.6800000	8.786149518735
2	2017	4	359927.2300000	374344.3000000	-3.85128610212
3	2017	11	1010271.370000	664219.4300000	52.09903901787
4	2017	6	433038.6000000	506071.1400000	-14.4312793651
5	2018	2	844178.7100000	950030.3600000	-11.1419228749
6	2017	3	374344.3000000	247303.0199999	51.370694947442
7	2017	5	506071.1400000	359927.2300000	40.60373815007
Ω	2018	2	083213 AANNONN	844178 7100000	16 //6022120251

2.

SELECTAVG(payment_value)ASavg_payment,sum(payment_value)astotal_value from `target_sql_business_case.payments_csv`P join `target_sql_business_case.orders_csv`o on p.order_id = o.order_id join `target_sql_business_case.customers_csv`c on o.customer_id = c.customer_id groupbyc.customer_state

Row	avg_payment ▼	total_value ▼
1	158.5258882235	2144379.689999
2	157.1804057868	890898.5399999
3	137.5046297739	5998226.959999
4	161.1347912885	355141.0800000
5	154.1536259977	811156.3799999
6	195.2289039665	187029.2900000
7	198.8566101694	152523.0200000
8	227.0774238875	96962.05999999

3.

SELECTAVG(payment_value)ASavg_payment,sum(payment_value)as total_value,c.customer_state from `target_sql_business_case.payments_csv`P join `target_sql_business_case.orders_csv`o onp.order_id= o.order_id join`target_sql_business_case.customers_csv`c on o.customer_id = c.customer_id whereorder_status='shipped' group by c.customer_state

Row	avg_payment ▼	total_value ▼	customer_state ▼
1	57.16619047619	2400.98	MT
2	153.4185382059	46178.98	RJ
3	180.4517857142	5052.650000000	SC
4	120.6556756756	8928.519999999	MG
5	137.1792878338	46229.42000000	SP
6	130.5584375	4177.870000000	GO
7	186.5744444444	6716.679999999	PE
8	213.7264864864	7907.880000000	RS
9	161.7182608695	11158.56	BA
10	145 6742857142	1019 72	RN

1

 $select TIMESTAMP_DIFF (order_delivered_customer_date, order_purchase_timestamp, day) as delivery_time \; ,$

 $TIMESTAMP_DIFF (order_delivered_customer_date, order_estimated_delivery_date, day) as \\ diff_estimated_deli$

from`target_sql_business_case.orders_csv` where order_status = 'delivered'

Row	delivery_time ▼	diff_estimated_deli
1	30	-1
2	32	0
3	29	-1
4	43	4
5	40	4
6	37	1
7	33	5
0	00	,

2. selectDISTINCT(customer_state),

avg(freight_value)over(orderbyfreight_valuedesc)aslarger_avg_value from `target_sql_business_case.order_items` io join`target_sql_business_case.orders_csv`o on io.order_id = o.order_id join`target_sql_business_case.customers_csv`c on c.customer_id = o.customer_id limit5

Row	customer_state ▼	larger_avg_value ▼
1	PI	409.68
2	PR	386.7466666666
3	SC	386.7466666666
4	SP	374.9575
5	MT	367.626

selectDISTINCT(customer_state),

avg(freight_value)over(orderbyfreight_valueasc)assmaller_avg_value from

`target_sql_business_case.order_items` io

join`target_sql_business_case.orders_csv`o on

io.order_id = o.order_id

join`target_sql_business_case.customers_csv`c on

c.customer_id = o.customer_id

limit5

Row	customer_state ▼	smaller_avg_value
1	SP	0.0
2	RJ	0.0
3	RS	0.0
4	PR	0.0
5	ES	0.0

3.

#for highest

withreach_time

as

(select DISTINCT

(customer_state), TIMESTAMP_DIFF(order_delivered_customer_date, order_purchase_timestamp,

day) as delivery_time

from`target_sql_business_case.customers_csv`c

join `target_sql_business_case.orders_csv` o

onc.customer_id=o.customer_id

where order_status = 'delivered'

order by delivery_time asc)

selectavg(reach_time.delivery_time)asaverage_deli_time,customer_state

from reach_time

groupbycustomer_state

order byaverage_deli_timedesc

Row	average_deli_time	customer_state ▼
1	54.95833333333	SP
2	52.86734693877	RJ
3	46.74025974025	BA
4	42.32394366197	CE
5	40.10169491525	ES
6	39.44615384615	PA
7	37.77272727272	RS

#forlowestavg

withreach_time

as

(select DISTINCT

order by delivery_time asc)

(customer_state) ,TIMESTAMP_DIFF(order_delivered_customer_date,order_purchase_timestamp, day) as delivery_time from`target_sql_business_case.customers_csv`c join`target_sql_business_case.orders_csv` o onc.customer_id=o.customer_id where order_status = 'delivered'

selectavg(reach_time.delivery_time)asaverage_deli_time,customer_state from reach_time groupbycustomer_state orderbyaverage_deli_timeasc

Row	average_deli_time	customer_state ▼
1	22.88235294117	TO
2	24.26470588235	RO
3	25.41860465116	MS
4	25.82142857142	AC
5	27.23529411764	DF
6	27.83333333333	AM
7	29.93333333333	AP
8	30.18867924528	MT

1

SELECT

 $EXTRACT (MONTHFROMo.order_purchase_timestamp) AS month_number,$

p.payment_type

FROM`target_sql_business_case.payments_csv`p JOIN

`target_sql_business_case.orders_csv` o

ONp.order_id=o.order_id

GROUPBYmonth_number,p.payment_type;

Row	month_number ▼	payment_type ▼
1	5	credit_card
2	4	credit_card
3	1	voucher
4	4	voucher
5	10	voucher
6	9	not_defined
7	8	not_defined
8	6	voucher

Identiftywhichpayment type isusedbymost ofthecustomersand lookforseasonablepayment pattern so we can promote that payment method accordingly .

Encourage payment method review from customers Investigate if different customer segments preferspecificpaymenttypes. This could help indesigning targeted marketing campaigns or loyalty programs.

2.

selectCOUNT(order_id)astotal_orders,payment_installments from `target_sql_business_case.payments_csv` groupbypayment_installments

Row	total_orders ▼	payment_installment
1	2	0
2	52546	1
3	12413	2
4	10461	3
5	7098	4
6	5239	5
7	3920	6

Recommendation

^{*}Offering discounts or rewards for customers who pay installments earlier

^{*}and Collect feedback from customers about their payment experience to identify points and areas for improvement

^{*}Enhance communication with customers regarding their payment statuses ,upcoming due dates, and reminders to payments