复旦大学数学科学学院 2007~2008 学年第一学期期末考试试卷

A 卷

课程名称: ____高等数学 A (上)___ 课程代码: ___MATH120001__

开课院系: 数学科学学院 考试形式: 闭卷

姓 名:_____ 学 号:_____ 专 业:_____

题号	1	2	3	4	5	6	7	8	总分
得分		,	4						

- 1. (本题共四小题, 每小题 5 分, 共 20 分)
- (1) 求函数 $f(x) = e^x \sin 2x$ 的一阶和二阶导函数;
- (2) 设y = y(x) 是由方程 $xy \ln y = 1$ 所确定的隐函数, 求y'(0);

(3) 求不定积分
$$\int \frac{dx}{\cos^2 x \sqrt[3]{\tan x}}$$
;

(4) 求广义积分
$$\int_1^{+\infty} \frac{\arctan x}{x^2} dx$$
 。

2. (本题共四小题, 每小题 5 分, 共 20 分)

(1) 求矩阵
$$A = \begin{pmatrix} 1 & 0 & 3 & 1 & 2 \\ 2 & 1 & 1 & 0 & 1 \\ 3 & 1 & 4 & 1 & 3 \end{pmatrix}$$
 的秩;

(2)
$$\mathcal{L}\begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} X + \begin{pmatrix} 2 & 5 \\ 0 & 3 \end{pmatrix} = 12 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \;\; \mathcal{L}X;$$

(3) 设
$$\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & a \\ d & e & f \\ b & \frac{1}{\sqrt{2}} & c \end{pmatrix}$$
 为正交阵,求 a,b,c,d,e,f ,其中 $f > 0$;

(4) 求
$$R^3$$
 中向量 $\xi = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$ 在基 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ 下的坐标向量。

3. (本题 10 分) 设
$$\lim_{x\to 0} \left(\frac{1-ax}{1+ax}\right)^{\frac{2}{x}} = \int_a^{+\infty} xe^{-4x} dx$$
 , 求 a .

4. (本题 10 分)在一个底圆半径为 R ,高为 H 的圆锥体中作内接圆柱,圆柱的一个底面位于锥体的底面上,求圆柱体的最大体积。

- 5. (本题 10 分) 当 a,b 为何值时,线性方程组 $\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + 2x_3 + 2x_4 = 1 \\ -x_1 2x_3 + (a-3)x_4 = b \end{cases}$ 无解,有唯 $2x_1 + 3x_2 + ax_3 + x_4 = -1$
- 一解,有无穷组解,并在有无穷组解时求出它的通解。

6.(本题 10 分)设 A 是三阶不可逆的实对称阵,特征值为 $1,2,\lambda$, $\alpha_1=\begin{pmatrix} -1\\-1\\1 \end{pmatrix}$ 和 $\alpha_2=\begin{pmatrix} 1\\-2\\-1 \end{pmatrix}$

分别是A相应于特征值1,2的特征向量,(1)求 λ ,(2)求相应于特征值 λ 的特征向量,(3)求矩阵A。

7. (本题 10 分) 设向量组 $\left\{ \alpha_{_{\!1}},\!\alpha_{_{\!2}},\!\cdots,\!\alpha_{_{\!n}} \right\}$ 是 R^{n} 的基,其中 n>1,

$$\beta_1 = \alpha_1 + 2\alpha_2, \, \beta_2 = 2\alpha_2 + 3\alpha_3, \, \cdots, \, \beta_{n-1} = (n-1)\alpha_{n-1} + n\alpha_n, \, \beta_n = n\alpha_n + \alpha_1$$

(1) 求向量组 $\{\beta_1,\beta_2,\cdots,\beta_n\}$ 的秩。

(2) 设 《 是 R" 上的线性变换,《 $\alpha_i=\beta_i$,《 在基 $\left\{\alpha_i \middle| i=1,2,\cdots,n\right\}$ 下的表示阵为 A,求 $rank(A^*)$,其中 A^* 是 A 的伴随阵。

- 8. (本题 10 分)设水平放置着一根长为L,密度为 ρ 的均匀细棒,
- (1) 如在其左端的垂线上与棒相距l 处有一质量为m 的质点,求棒对质点的引力(设引力常数为k);

(2) 如在棒左端的垂线上放置另一根密度为 ρ 的均匀细棒,其两端与水平放置细棒的距离分别为 L 和 2L ,求两棒间的引力。