NOME: TURMA

Departamento de Engenharia Electrotécnica e de Computadores

Sistemas Digitais (2001/2002)

1^a chamada – 26/Junho/2002

Duração: 2horas, sem consulta.

Antes de iniciar a prova, tenha em atenção as seguintes recomendações:

- Leia atentamente toda a prova antes de a iniciar.
- Mostre e justifique adequadamente todos os passos das suas respostas.
- A prova deverá ser resolvida no enunciado. Se necessário, utilize o verso para continuar a sua resolução.
- Assine todas as folhas que entregar, indicando em cada uma o número de páginas/folhas que entregou.
- **1** O sistema electrónico de navegação de um barco à vela é composto, entre outros equipamentos, por uma bússola e um catavento electrónicos (ver figura). A bússola indica a direcção do norte (Db, entre -180 e +180 graus) e o catavento indica a direcção do vento (Dv, entre -180 e +180 graus), ambas em relação ao eixo longitudinal do barco.

a) Mostre que são necessários 9 bits para representar em complemento para dois cada um dos valores referidos com uma resolução de 1 grau. Utilizando toda a gama permitida por esse número de bits, qual seria a resolução mínima (em graus) com que se poderiam representar essas grandezas?

b) Quando o barco está a navegar para Este (Db=-90°), qual é o valor binário produzido pela bússola electrónica, considerando que a unidade mínima representada é 1°? E qual é esse valor se for utilizada toda a gama (9 bits) para representar os valores compreendidos entre -180° e +180°?

c) A direcção real do vento (em relação ao norte) pode ser obtida calculando a diferença entre os valores da direcção do barco (Db) e da direcção do vento em relação ao barco (Dv). Determine a direcção real do vento quando o barco navega para Sul (Db=-180°) e o catavento indica uma direcção do vento igual a Dv=+170°, efectuando a operação aritmética em binário com 9 bits. Comente o resultado obtido (utilize o verso da folha).

2 - Considere o seguinte circuito lógico que realiza a função F(A,B,C,D):

a) Obtenha uma expressão booleana da função F(A,B,C,D) e construa a sua tabela de verdade.

b) Utilizando mapas de Karnaugh, obtenha a forma simplificada produto de somas (POS) da função F(A,B,C,D).

c) Realize a função F(A,B,C,D) utilizando apenas portas lógicas do tipo NAND de duas entradas (utilize o verso da folha).

NOME: TURMA

3 — Considere uma máquina para fazer gelados constituídos por 3 doses (uma dose é uma bola de gelado) que podem ser de nata, café ou baunilha. Quando recebe a ordem para fazer um gelado, o sistema de controlo desta máquina coloca um cone sob a unidade de doseamento, inicia o processo de saída dos diversos sabores de gelado, e finalmente coloca o gelado pronto na saída da máquina (ver figura).

A unidade de controlo do doseador que se pretende projectar é uma máquina de estados cuja entrada é um código de 3 bits $(b_2b_1b_0)$ que especifica o tipo de gelado pretendido. O período do sinal de relógio que comanda esta máquina de estados (2 segundos) corresponde ao tempo necessário para depositar no cone uma das doses de gelado. De acordo com o código $b_2b_1b_0$ recebido, a máquina deve dosear cada um dos sabores segundo as regras seguintes:

- o custo dos sabores é, por ordem crescente, nata (o mais barato), café e baunilha (o mais caro).
- a ordem do doseamento dos sabores seleccionados deverá ser, quando existam, primeiro nata, depois café e no fim baunilha.
- o bit b₂=1 selecciona o sabor nata, b₁=1 selecciona o sabor café e b₀=1 selecciona o sabor baunilha.
- se o código tiver um único bit igual a 1, o gelado é composto por 3 bolas desse sabor.
- se o código tiver 2 bits iguais a 1, é repetido o sabor mais barato.
- se o código tiver 3 bits iguais a 1 o gelado terá os 3 sabores.
- o código 000 é ilegal (nunca ocorre).

Por exemplo, se o código for 011 deverá ser feito um gelado com duas bolas de café e uma bola de baunilha; se for 100 deverá ter 3 bolas de nata.

As saídas d_1d_0 da máquina de estados comandam o doseador para controlar a saída de cada tipo de gelado, de acordo com a tabela seguinte:

$\mathbf{d}_1\mathbf{d}_0$	tipo de gelado
00	nenhum
01	nata
10	café
11	baunilha

A figura (ver próxima folha) representa um diagrama de estados incompleto do sistema de controlo, relativo à unidade de doseamento de gelado. No estado POS_CONE é posicionado um cone sob a saída da unidade de doseamento e no estado SAI_CONE o gelado pronto é colocado na saída da máquina. Complete a parte do diagrama entre estes dois estados (POS_CONE e SAI_CONE), que gera a sequência de sinais de controlo apropriada (d_1d_0) para fabricar o gelado seleccionado pelo código $b_2b_1b_0$.

4 — Considere a máquina sequencial cuja tabela de transições de estados se mostra. Os estados S0, S1 e S2 são codificados respectivamente na forma $Q_1Q_0 = 00$, 01 e 10.

	X			
S	0	1		
S0	S0,0	S1,1		
S1	S2,0	S1,0		
S2	S0,0	S1,1		
	S* Z			

a) Identifique as entrada e saídas da máquina e diga, justificando, se se trata de uma máquina de Moore ou Mealy.

- b) Obtenha o circuito respectivo utilizando flip-flops tipo D e um critério de custo mínimo (utilize o verso da folha).
- c) Supondo que a máquina arranca no estado não definido (em que Q₁Q₀ = 11), e tendo por base a solução encontrada, indique, justificando, quais os estados seguintes se a entrada X for igual a 0 ou igual a 1.

NOME: TURMA

5 — Pretende-se projectar um circuito sequencial que conte ciclicamente de 59 até zero, em formato BCD (dois dígitos decimais codificados em binário), afixando o resultado em dois mostradores de 7 segmentos (por exemplo, como se mostra na figura, quando o contador das dezenas tem as saídas Q_DQ_CQ_BQ_A=0011 e o contador das unidades tem as saídas Q_DQ_CQ_BQ_A=0110, o valor afixado nos mostradores é 36).

a) Projecte o circuito referido utilizando apenas 2 contadores UP/DOWN do tipo 74x169.

74x169			estado presente			próximo estado							
	$\mathtt{UP}\overline{\mathtt{DWN}}$	LD	ENT	ENP	QD	QC	QΒ	QA	RCO	QD*	QC*	QB*	QA*
	ж	0	x	x	×	x	x	x	a)	D	С	В	A
	x	1	1	x	×	x	x	x	1	QD	QC	QB	QA
	x	1	x	1	×	x	x	x	a)	QD	QC	QB	QA
	1	1	0	0	N	(se	e N	<15)	1		N +	- 1	
	1	1	0	0	1	1	1	1	0	0	0	0	0
	0	1	0	0	N	(se	e N	>0)	1		N -	- 1	
	0	1	0	0	0	0	0	0	0	1	1	1	1
	1	1	0	0	1 N	1 (se	1 = N	1>0)	0	0	0 N -	0	0

a) $\overline{\text{RCO}}=0$ se $\overline{\text{ENT}}=0$ e ((N=15 e UPDWN=1) ou (N=0 e UPDWN=0))

b) Modifique o circuito anterior por forma a acrescentar uma entrada (activa no nível lógico zero) que permita iniciar o contador no valor 59 (identifique apenas as alterações a efectuar no circuito anterior e se necessário utilize o verso da folha).

6 – Considere o circuito seguinte baseado no registo de deslocamento 74x194:

Universal Shift-register 74x194

função	S1	s0	QA* QB* QC* QD*
hold	0	0	QA QB QC QD
shift right	0	1	RIN QA QB QC
shift left	1	0	QB QC QD LIN
load	1	1	A B C D

a) Determine a sequência nas saídas $Q_AQ_BQ_CQ_D$, supondo que o estado inicial é $Q_AQ_BQ_CQ_D = 0000$.

b) Indique o estado seguinte a $Q_AQ_BQ_CQ_D = 1111$ e altere o circuito por forma a que esse estado seguinte passe a ser $Q_AQ_BQ_CQ_D = 0000$ (mostre as alterações na figura).

- FIM -