Design Description: SN54LS153(Dual 1-of-4 Data Selectors)

[Function Table]

FUNCTION TABLE

INPUTS							
SELECT		DATA				STROBE	OUTPUT
В	Α	C0	C1	C2	C3		_ '
X	Х	Х	X	X	Х	Н	L
L	L	L	X	X	X	L	L
L	L	Н	Χ	Χ	X	L	н
L	Н	Х	L	Χ	X	L	L
L	Н	Х	Н	Χ	X	L	н
Н	L	Х	X	L	X	L	L
Н	L	Х	X	Н	X	L	н
Н	Н	Х	Χ	Χ	L	L	L
Н	Н	Х	Χ	Χ	Н	L	Н

[Logic Diagram]

logic diagram (positive logic)

Question

- SN54LS153.v 파일 내의 "EXAM: behavioral modeling" 부분을 작성하고,
 tb_sn54ls153.v 를 사용하여 검증하라.
 - 2 개의 MUX 를 모두 <u>Behavioral Modeling</u>을 사용하여 Design 하라
 - DUT 의 신호는 tb sn54ls153.v 내의 DUT Instantiation 을 참조하여 정의하라
 - 검증은 out_1Y 의 출력으로만 수행한다(Testbench 참조)
- Testbench 의 출력은 다음과 같다.

```
$time=10 ns strobe = |1 sel1 = 0 sel0 = |0 in_c0 = 0 in_c1 = 0 in_c2 = 0 in_c3 = |0 out = 0
$time=20 ns strobe = |0 sel1 = 0 sel0 = |0 in_c0 = 1 in_c1 = 0 in_c2 = 0 in_c3 = |0 out = 1
$time=30 ns strobe = |0 sel1 = 0 sel0 = |1 in_c0 = 0 in_c1 = 1 in_c2 = 0 in_c3 = |0 out = 1
$time=40 ns strobe = |0 sel1 = 1 sel0 = |0 in_c0 = 0 in_c1 = 0 in_c2 = 1 in_c3 = |0 out = 1
$time=50 ns strobe = |0 sel1 = 1 sel0 = |1 in_c0 = 0 in_c1 = 0 in_c2 = 0 in_c3 = |1 out = 1
```

Caution

• 시험이 종료된 후 시험 디렉토리에 접근이나 파일을 업데이트하면 안 됨(실격처리)