Evaluation Metrics for Time Series Forecasting

Defining the Problem Statement

Problem Statement: Forecast the number of passengers who will onboard the jetrail day in the next two quarter.

Evaluation Metrics for Regression

- Regression metric
 - Mean Absolute Error
 - Mean Squared Error
 - Root Mean Squared Error
 - Root Mean Squared Log Error

Evaluation Metrics for Time Series Forecasting

- Regression metric
 - Mean Absolute Error
 - Mean Squared Error
 - Root Mean Squared Error
 - Root Mean Squared Log Error
- Other Evaluation Metrics
 - Mean Absolute Percentage Error
 - Mean Absolute Scaled Error

What is Error?

What is Error?

Actual Values	Predicted Values
19	28
37	33
25	20
9	16
22	15

What is Error?

Actual Values	Predicted Values	Error
19	28	9
37	33	-4
25	20	-5
9	16	7
22	15	-7

Mean Absolute Error

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

Mean Absolute Error

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

Actual Values	Predicted Values	Absolute Error
19	28	9
37	33	4
25	20	5
9	16	7
22	15	7

MAE = 6.4

Mean Squared Error

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Mean Squared Error

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Actual Values	Predicted Values	Squared Error
19	28	81
37	33	16
25	20	25
9	16	49
22	15	49

 $MSE = 44 \text{ meter}^2$

Root Mean Squared Error

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (Predicted_i - Actual_i)^2}{N}}$$

Root Mean Squared Error

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (Predicted_i - Actual_i)^2}{N}}$$

Actual Values	Predicted Values	Squared Error
19	28	81
37	33	16
25	20	25
9	16	49
22	15	49

 $MSE = 44 \text{ meter}^2$

RMSE = 6.63 meters

Actual	Predicted
1	401

Actual	Predicted
10,001	10,401

Actual	Predicted
1	401

Actual	Predicted
10,001	10,401

Actual	Predicted
1	401

Actual	Predicted
10,001	10,401

Root Mean Squared Log Error

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (Predicted_{i} - Actual_{i})^{2}}{N}}$$

$$RMSLE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\log(Y_i + 1) - \log(\hat{Y}_i + 1) \right)^2}$$

Root Mean Squared Log Error

Actual	Predicted
1	401

RMSE = 400

RMSLE = 5.3

Actual	Predicted
10,001	10,401

RMSE = 400

RMSLE = 0.039

Evaluation Metrics for Time Series Forecasting

- Mean Absolute Error
- Mean Squared Error
- Root Mean Squared Error
- Root Mean Squared Log Error
- Mean Absolute Percentage Error
- Mean Absolute Scaled Error

Problems with Error Metrics

- Lower the error, better the model performance
- No defined range
- Compare the values with benchmark

MAPE =
$$\frac{100\%}{n} \sum_{i=1}^{n} \left| \frac{y_i - \widehat{y}_i}{y_i} \right|$$

$$MAPE = \frac{100\%}{n} \sum_{i=1}^{n} \left| \frac{y_i - \widehat{y}_i}{y_i} \right|$$

$$MAPE = \frac{100\%}{n} \sum_{i=1}^{n} \left| \frac{y_i - \widehat{y}_i}{y_i} \right|$$
mean
absolute

MAPE =
$$\frac{100\%}{n} \sum_{i=1}^{n} \left| \frac{y_i - \widehat{y}_i}{y_i} \right|$$

- Calculates the relative error
- Cannot handle yi = 0

$$MAPE = \frac{100\%}{n} \sum_{i=1}^{n} \left| \frac{y_i - \widehat{y}_i}{y_i} \right|$$

- Alternative to MAPE
- Used for comparing forecast across different time series

- Alternative to MAPE
- Used for comparing forecast across different time series

Actual Values

	Actual Values	Naive Forecast
t 1	19	
t 2	37	←
t 3	25	
t 4	9	
t 5	22	

Actual Values	Naive Forecast
19	
37	19
25	4
9	
22	

Actual Values	Naive Forecast
19	
37	19
25	37
9	
22	

Actual Values	Naive Forecast
19	
37	19
25	37
9	25
22	9

Actual Values	Naive Forecast	Predicted Values
19		28
37	19	33
25	37	20
9	25	16
22	9	15

Actual Values	Naive Forecast	Predicted Values
19		28
37	19	33
25	37	20
9	25	16
22	9	15

Mean Absolute Error (model)

MASE =

Naive Forecast MAE

$$e_{t} = \text{MAE} = \frac{1}{N} \sum_{i=1}^{N} |y_{i} - \hat{y}_{i}|$$

$$q_t = \frac{e_t}{\frac{1}{n-1} \sum_{i=2}^{n} |Y_i - Y_{i-1}|}$$

$$e_{t} = \text{MAE} = \frac{1}{N} \sum_{i=1}^{N} |y_{i} - \hat{y}_{i}|$$

$$q_t = \frac{e_t}{\frac{1}{n-1} \sum_{i=2}^{n} |Y_i - Y_{i-1}|}$$

Scaling factor

- Alternative to MAPE
- Used for comparing forecast across different time series
 - If MASE >1 ---> worse than naive forecast
 - If MASE <1 ----> better than naive forecast

Thank You

