

LIRA: Learnable, Imperceptible Backdoor Attack

Khoa D. Doan, Yingjie Lao, Weijie Zhao, Ping Li Baidu Research, USA

HIGHLIGHTS

We study the problem of backdoor attack in DNNs

- We simultaneously learn to generate a conditional (dynamic) trigger pattern and to poison the model via a novel non-convex, constrained optimization problem.
- We solve this optimization problem with an efficient, alternating-update optimization algorithm.
- The proposed method LIRA can generate invisible triggers that vary across samples to samples and achieves state-of-the-art targeted attacks during inference while preserving the clean-sample performance of the model.
- In this case, the "secret" kept by the attacker is the trigger generator, instead of a pattern as in patch-based attacks.
- LIRA is also stealthy against existing backdoor defenses.

THREAT MODEL

Trained

Input Data

Prediction

STOP STOP

Prediction: STOP

Prediction: GO

This is a paramount security concern in the model building supply chain, as the increasing complexity of machine learning models has promoted training outsourcing and machine learning as a service (MLasS).

APPROACH

Simultaneously learn to generate an invisible trigger & optimally poison the model in a constrained optimization:

$$\arg\min_{\theta} \sum_{i=1}^{N} \underbrace{\alpha \mathcal{L}(f_{\theta}(x_i), y_i)}_{\text{clean data objective}} + \underbrace{\beta \mathcal{L}\big(f_{\theta}\big(\mathcal{T}_{\xi(\theta)}(x_i)\big), \eta(y_i)\big)}_{\text{triggered data objective}}$$

$$s.\,t.\;(1)\,\xi^{\cdot} = rg\min_{\xi} \sum_{i=1}^{N} \mathcal{L}(f_{ heta}(\mathcal{T}_{\xi}(x_i)), \eta(y_i))$$

$$(2) d(T(x), x) \leq \epsilon$$

generate dynamic trigger

Transformation Function: $T_{\xi}(x)=x+g_{\xi}(x),$ $||g_{\xi}(x)||_{\infty}\leq\epsilon$

ALGORITHM

LIRA's learning process is separated in 2 stages.

- Stage I: both f and T are trained (trigger generation).
- Stage II: f is trained while T is fixed (backdoor injection).

ATTACK PERFORMANCE

All-to-One Attack $\eta(y) = 0 \, \forall y$

All-to-One Attack $\eta(y) = (y+1)\%|\mathcal{C}|$

Dataset	WaNet		LIRA		Dataset	WaNet		LIRA	
	Clean	Attack	Clean	Attack	Dataset	Clean	Attack	Clean	Attack
MNIST	0.99	0.99	0.99	1.00	MNIST	0.99	0.95	0.99	0.99
CIFAR10	0.94	0.99	0.94	1.00	CIFAR10	0.94	0.93	0.94	0.94
GTSRB	0.99	0.98	0.99	1.00	GTSRB	0.99	0.98	0.99	1.00
T-ImageNet	0.57	0.99	0.58	1.00	T-ImageNet	0.58	0.58	0.58	0.59

DEFENSE TESTS

Pass defense if Anomaly

Index ≤ 2

GradCam Visualization