Introducción Planteamiento del problema Objetivos Hipótesis Justificación Metodología Cronograma Bibliografía

#### Detección de posición angular con sensor Kinect.

Rubén Hernández Alemán

Universidad Autónoma de Nuevo León Facultad de Ingeniería Mecánica y Eléctrica

25 Febrero 2015

- Introducción
- Planteamiento del problema
- Objetivos
- 4 Hipótesis
- Justificación
- Metodología
- Cronograma
- Bibliografía

- Introducción
- Planteamiento del problema
- Objetivos
- 4 Hipótesis
- Justificación
- Metodología
- Cronograma
- Bibliografía

- Introducción
- Planteamiento del problema
- Objetivos
- 4 Hipótesis
- Justificación
- Metodología
- Cronograma
- Bibliografía

- Introducción
- Planteamiento del problema
- Objetivos
- 4 Hipótesis
- Justificación
- Metodología
- Cronograma
- Bibliografía

- Introducción
- Planteamiento del problema
- Objetivos
- 4 Hipótesis
- Justificación
- Metodología
- Cronograma
- Bibliografía

- Introducción
- Planteamiento del problema
- Objetivos
- 4 Hipótesis
- Justificación
- Metodología
- Cronograma
- Bibliografía

- Introducción
- Planteamiento del problema
- Objetivos
- 4 Hipótesis
- Justificación
- Metodología
- Cronograma
- Bibliografía

- Introducción
- Planteamiento del problema
- Objetivos
- 4 Hipótesis
- Justificación
- Metodología
- Cronograma
- Bibliografía

### Sistema Multi-Agente (SMA)

¿Que es?

Un sistema multi-agente puede operar bajo los esquemas:





## Sistema Multi-Agente (SMA)

- ullet Un líder  $V_0$
- $V = \{V_1, V_2, \dots, V_N\}$
- $\bullet \ \grave{\varepsilon} = \{(j,i) \in \mathcal{V} \times \mathcal{V}\}$



## Sistema Multi-Agente (SMA)

- Un líder  $V_0$
- $V = \{V_1, V_2, \dots, V_N\}$
- $\grave{\varepsilon} = \{(j, i) \in \mathcal{V} \times \mathcal{V}\}$



## Sistema Multi-Agente (SMA)

- Un líder  $V_0$
- $V = \{V_1, V_2, \dots, V_N\}$
- $\bullet \ \grave{\varepsilon} = \{(j,i) \in \mathcal{V} \times \mathcal{V}\}$



## Sistema Multi-Agente (SMA)

- Un líder  $V_0$
- $V = \{V_1, V_2, \dots, V_N\}$
- $\grave{\varepsilon} = \{(j, i) \in \mathcal{V} \times \mathcal{V}\}$



## Sistema Multi-Agente (SMA)

- Un líder  $V_0$
- $V = \{V_1, V_2, \dots, V_N\}$
- $\dot{\varepsilon} = \{(j, i) \in \mathcal{V} \times \mathcal{V}\}$



- Requiere información local
- Retardos de tiempo
- Ruido en medición



- Requiere información local
- Retardos de tiempo
- Ruido en medición



- Requiere información
- Retardos de tiempo
- Ruido en medición



- Requiere información
- Retardos de tiempo
- Ruido en medición



Introducción
Planteamiento del problema
Objetivos
Hipótesis
Justificación
Metodología
Cronograma
Bibliografía

#### Planteamiento del problema

Realizar una medición de los desplazamientos angulares de alguna extremidad humana en tiempo real.

#### Objetivos

- Diseñar una herramienta de software, basada en técnicas de vision computacional, que permita medir los desplazamientos angulares.
- Acotar los desplazamientos medidos para evitar trayectorias no deseadas.
- Establecer alguna regla, de modo que la función de cada trayectoria sea continuamente diferenciable.

Introducción Planteamiento del problema Objetivos Hipótesis Justificación Metodología Cronograma Bibliografía

#### Hipótesis

Es posible medir los desplazamientos angulares mediante el uso de técnicas de visión computacional.

Con ayuda del procesamiento de los frames obtenidos, es posible discriminar movimientos no deseados.

#### Justificación

- Reducción de costos, sólo se requiere de una cámara o sensor.
- Reduce ruido en la medición, que es muy común en sensores fijos a cuerpo: potenciómetros o giroscopios

#### Justificación

- Reducción de costos, sólo se requiere de una cámara o sensor.
- Reduce ruido en la medición, que es muy común en sensores fijos al cuerpo: potenciómetros o giroscopios

### Metodología

- Revisión bibliográfica de técnicas existentes.
- Revisión de trabajos existentes o con dicha orientación y de librerías:
  - SciPy
  - NumPy
  - OpenCv
  - OpenNI
  - SensorKinect
- Realizar pruebas de visión computacional con sensor **Kinect**.
- Diseñar e implementar software de detección de posición.
- Realizar pruebas finales.

Introducción Planteamiento del problema Objetivos Hipótesis Justificación Metodología **Cronograma** Bibliografía

## Cronograma

|                           | Enero | Febrero | Marzo | Abril | Mayo | Junio |
|---------------------------|-------|---------|-------|-------|------|-------|
| Rev. bibliografica        |       |         |       |       |      |       |
| Rev. Trabajos y Librerias |       |         |       |       |      |       |
| Pruebas previas           |       |         |       |       |      |       |
| Implementación            |       |         |       |       |      |       |
| Pruebas finales           |       |         |       |       |      |       |

- [1] Joseph Howse. "OpenCv Computer Vision with Python". PACKT Publishing, 2013.
- [2] Jan Erik Solem "Programming Computer Vision with Python". Creative Commons 2012.
- [3] Daniel Lelis Baggio "Mastering OpenCV with Practical Computer Vision Projects". PACKT Publishing. 2012
- [4] E. R. Davies (2008). "Computer and Machine Vision: Theory, Algorithms, Practicalities". Fourth Edition, Elsevier 2012.