# **DEEP LEARNING ASSIGNMENT - 2**

(Sai Vamshi S D - S20160010080)

(1) Implement the basic GAN model for Generating the images in the given dataset. The input noise may be approximated by any suitable distribution.

#### **Deliverables:**

Implemented the basic GAN model on the given dataset and stored the generated images from the generator which were tested by Discriminator.

#### **Final Output Images:**







We can generate better images by increasing the number of epochs. The above images were generated by setting epoch value 10.

(2) Find a good latent representation of length 100 using autoencoder for the given dataset of images. Write the latent vector in a csv file with corresponding class label.

#### **Deliverables:**

Implemented autoencoder to find a good latent representation of length 100 for the given dataset

#### Output:

These are some of the generated images.





Here a  $CSV(2^{nd}$  \_question) file of latent vector with its corresponding class label is generated.

(3) Implement another GAN to reproduce images of the same dataset, where the previous

autoencoder is used as generator.

### **Deliverables:**

Implemented GANS using autoencoder as generator.

## **Output Images:**



We can get better images by increasing the number of epochs.

# **Thank You**