Michael Ehrig
micha.ehrig@outlook.com
michael.ehrig@bit.edu.cn

Assignment 1 - Solutions

Exercise 1. Let X be a space.

- (a) Show that X is contractible if and only if id_X is nullhomotopic.
- (b) Assume that X is contractible and there exists $A \subset X$ together with a retraction $r: X \to A$. Show that A is contractible.
- (c) Show that the following are equivalent
 - (i) X is contractible,
 - (ii) every map $f: X \to Y$ (for a space Y) is nullhomotopic,
 - (iii) every map $f: Y \to X$ (for a space Y) is nullhomotopic.

Solutions: We denote by pt the space consisting of a single point.

(a) Assume that X is contractible with homotopy equivalence $f: X \to \operatorname{pt}$ and a homotopy inverse $g: \operatorname{pt} \to X$. Then $g \circ f \simeq \operatorname{id}_X$ by assumption and $g \circ f$ is the constant map with image $g(\operatorname{pt})$. Thus id_X is nullhomotopic.

Assume that id_X is nullhomotopic with a homotopy $F: X \times I \to X$ such that $f_0 = \mathrm{id}_X$ and f_1 is a constant map, with image $x_0 \in X$. Define $p: X \to \{x_0\}$ via $p(x) = x_0$ and $i: \{x_0\} \to X$ the inclusion. Then $i \circ p = f_0 \simeq \mathrm{id}_X$ by assumption and $p \circ i = \mathrm{id}_{\{x_0\}}$ by construction. Hence X is contractible.

(b) Assume that X is contractible with homotopy equivalence $f: X \to \operatorname{pt}$ and $g: \operatorname{pt} \to X$ a homotopy inverse. Then it holds

$$r = r \circ id_X \simeq r \circ (g \circ f),$$

where the latter is a constant map as it factors through pt. Hence r is nullhomotopic and thus also $id_A = r \circ i$, for $i: A \to X$ the inclusion, is nullhomotopic. Thus by part (a), A is contractible.

- (c) $(i) \Rightarrow (ii)$ Let $g: X \to \operatorname{pt}$ be a homotopy equivalence with homotopy inverse $h: \operatorname{pt} \to X$. For a map $f: X \to Y$ it holds $f = f \circ \operatorname{id}_X \simeq f \circ (h \circ g)$. But the latter is a constant map with image $(f \circ h)(\operatorname{pt})$.
- $(i) \Rightarrow (iii)$ For g and h as above and $f: Y \to X$ it holds $f = \mathrm{id}_X \circ f \simeq (h \circ g) \circ f$. Again the latter is a constant map with image $h(\mathrm{pt})$.
- (ii) or (ii) \Rightarrow (i) In either case choose Y = X and $f = id_X$, then by part (a), X is contractible.

BIT, FALL 2020

Michael Ehrig
micha.ehrig@outlook.com
michael.ehrig@bit.edu.cn

Exercise 2. Let X be a space. Show that the following are equivalent

- (a) Every map $f: S^1 \to X$ is nullhomotopic,
- (b) every map $f: S^1 \to X$ can be extended to a map $\widetilde{f}: D^2 \to X$,
- (c) for any $x_0 \in X$ it holds $\pi_1(X, x_0)$ is trivial.

Solutions: $(a) \Rightarrow (b)$ For $f: S^1 \to X$ let $F: S^1 \times I \to X$ be the homotopy between $f_1 = f$ and a constant map f_0 with image $x_0 \in X$. Define $\widetilde{f}: D^2 \to X$ via $\widetilde{f}(r \cdot e^{2\pi i s}) = F(e^{2\pi i s}, r)$ for $0 \le r, s \le 1$. Then by construction \widetilde{f} is continuous and for r = 1 it agrees with f, hence is an extension of f.

 $(b)\Rightarrow (c)$ Let $f:I\to X$ be a loop in X at x_0 . Since f(0)=f(1) we can regard f as map from S^1 to X. By assumption there exists an extension $\widetilde{f}:D^2\to X$. Let $i:S^1\to D^2$ be the inclusion, then $f=\widetilde{f}\circ i$. Then i is a loop in D^2 , but D^2 is simply-connected, hence i is homotopic to the constant loop $\mathbbm{1}_{(1,0)}$. Then $f=\widetilde{f}\circ i\simeq \widetilde{f}\circ \mathbbm{1}_{(1,0)}=\mathbbm{1}_{x_0}$ and this is a homotopy of path (i.e. relative to the basepoint).

 $(c) \Rightarrow (a)$ Let $f: S^1 \to X$. Then f is a loop in X at $x_0 = f((1,0))$. By assumption $f \simeq \mathbb{1}_{x_0}$ and so f is nullhomotopic.

Michael Ehrig
micha.ehrig@outlook.com
michael.ehrig@bit.edu.cn

Exercise 3. Show that there exists no retraction $r: X \to A$ for the following situations

- (a) $X = \mathbb{R}^n$ and A an arbitrary subspace homeomorphic to S^1 .
- (b) $X = S^1 \times D^2$ and $A = S^1 \times S^1$ the boundary of X.
- (c) $X = D^2 \vee D^2$ and $A = S^1 \vee S^1$ for the pointed spaces $(D^2, (1, 0))$ and $(S^1, (1, 0))$. Hint: One can argue with the methods from the course why A has a non-trivial fundamental group without the use of the van Kampen theorem.
- (d) $X = D^2/_{\sim}$, for $(1,0) \sim (-1,0)$, and $A = \pi(S^1)$ the image of the boundary of D^2 under the quotient map π .

 Hint: There is a natural way to identify A with $S^1 \vee S^1$.
- (e) X the Möbius strip from the course, i.e. $X = I \times I/_{\sim}$ where $(0,s) \sim (1,1-s)$, and $A = \pi(I \times \{0\} \cup I \times \{1\})$ for π the quotient map. Hint: Find a subspace B in X such that $B \cong S^1$ and B is a deformation retract of X to obtain $\pi_1(X)$.

Solutions: We will start each case by assuming that such a retraction r exists together with the inclusion of the subspace i.

- (a) There is an injective map from $\pi_1(A, x_0) \cong \mathbb{Z}$ to $\pi_1(X, x_0) \cong \{0\}$. This is a contradiction.
- (b) There is an injective map from $\pi_1(A, x_0) \cong \pi_1(S^1, x_0) \times \pi_1(S^1, x_0) \cong \mathbb{Z}^2$ to $\pi_1(X, x_0) \cong \pi_1(S^1, x_0) \times \pi_1(D^2, x_0) \cong \mathbb{Z} \times \{0\} \cong \mathbb{Z}$. This is a contradiction.
- (c) There exists a homotopy equivalence from D^2 to pt, using this on both copies of D^2 inside $D^2 \vee D^2$ we obtain that $D^2 \vee D^2$ is contractible and so $\pi_1(X, x_0) = \{0\}$. On the other hand using the constant map to (1,0) on the first factor of $S^1 \vee S^1$ we obtain a retraction from $S^1 \vee S^1$ to S^1 , hence $\pi_1(A, x_0)$ surjects onto $\pi_1(S^1, x_0) \cong \mathbb{Z}$. Thus $\pi_1(A, x_0)$ is non-trivial, again giving a contradiction to the injective map from $\pi_1(A, x_0)$ to $\pi_1(X, x_0)$.
- (d) Let $C = \{(x,0) \mid -1 \le x \le 1\}$ and define $F : D^2 \times I \to D^2$ via F((x,y),t) = (x,(1-t)y). Then F is continuous, $f_0 = \mathrm{id}_{D^2}$ and the image of f_1 is in C and f_1 restricted to C is the identity of C, hence f_1 is a retraction. Thus C is a deformation retract of D^2 . Since (-1,0) and (1,0) are in C and F is independent of its second argument on either point, we get a well-defined deformation retract from X to $C/_{\sim} \cong S^1$ (where we identify the same two points in C as we did in D^2).

Furthermore we can look at the subsets $I_+ = \{(x,y) \mid |(x,y)| = 1, y \ge 0\}$ and $I_- = \{(x,y) \mid |(x,y)| = 1, y \le 0\}$. Then both I_+ and I_- are homeomorphic to I and $\pi(I_+) \cong S^1 \cong \pi(I_-)$. Since they have exactly one point in common we thus get that $A = \pi(S^1) = \pi(I_+ \cup I_-) \cong S^1 \vee S^1$.

Let a_+ be the image of a path from (1,0) to (-1,0) in I_+ under π and a_- the image of a path from (1,0) to (-1,0) in I_- . Then using the retraction $r': S^1 \vee S^1 \to S^1$ onto the first factor (as discussed in part (c)), we see that $r'_*([a_+]) = [\omega_1]$ in S^1 , while $r'_*([a_-]) = 0$. Hence in $\pi_1(A, x_0)$ it holds $[a_+] \neq [a_-]$. Then $[i \circ a_+] \neq [i \circ a_-]$ by assumption on injectivity of i_* . But applying the deformation retract from X to S^1 , we obtain that $[i \circ a_+] = [\omega_1] = [i \circ a_-]$, where $[\omega_1]$ is the image of the path from (1,0) to (-1,0) in C under π . Which is a contradiction to the injectivity of i_* .

BIT, Fall 2020

(e) We first choose three path inside $I \times I$. Define $a_0 : I \to I \times I$ via $a_0(s) = (s,0)$, $a_1 : I \to I \times I$ via $a_1(s) = (s,1)$, and $d : I \to I \times I$ via d(s) = (s,s). Hence (in standard coordinates, i.e. first one horizontal, second one vertical) a_0 is a path connecting the bottom left to the bottom right corner of the rectangle $I \times I$, while a_1 connects the top left to the top right corner, and finally d is on the diagonal from bottom left to top right. Define now $x_0 = \pi((0,0)) = \pi((1,1))$, and $x_1 = \pi((0,1)) = \pi((0,1))$. Then $\overline{a}_0 = \pi \circ a_0$ is a path from $x_0 \to a_1$ is a path from $a_1 \to a_2$ is a loop at $a_2 \to a_3$. Since by construction $a_1 \to a_2$ is two intervals identified at their respective endpoints, we see that $a_2 \to a_3$ and $a_3 \to a_4$ is a loop in $a_1 \to a_3$ and $a_2 \to a_4$ is homotopic to $a_1 \to a_4$ under the homeomorphism.

Let $B \cong S^1$ be the image of \overline{d} , i.e. the image of the diagonal under the quotient map. Then define $F: (I \times I) \times I \to I \times I$ via F((x,y),t) = (x,tx+(1-t)y). This is a continuous map that is the identity for t=0 and for t=1 is a retraction from $I \times I$ onto the image of d, the diagonal. Since $F((0,s),t) = (0,(1-t)s) \sim (1,1-(1-t)s) = F((1,1-s),t)$ we see that F induces a deformation retract f from X to B. We now look at what happens with $[\overline{a}_0 \cdot \overline{a}_1]$ under our maps. First $i_*([\overline{a}_0 \cdot \overline{a}_1])$ is a loop in X, if we apply the homotopy equivalence f to it we obtain $f_* \circ i_*([\overline{a}_0 \cdot \overline{a}_1])$ is a loop in B. But under f, x_1 is send to x_0 by construction. Hence $f_* \circ i_*([\overline{a}_0 \cdot \overline{a}_1]) = [\overline{d}] \cdot [\overline{d}]$. The homotopy inverse of f is just the inclusion of B into X, hence $i_*([\overline{a}_0 \cdot \overline{a}_1]) = [\overline{d}] \cdot [\overline{d}]$, and thus

$$[\overline{a}_0 \cdot \overline{a}_1] = (r \circ i)_*([\overline{a}_0 \cdot \overline{a}_1]) = r_* \circ i_*([\overline{a}_0 \cdot \overline{a}_1]) = [\overline{d}] \cdot [\overline{d}] = r_*([\overline{d}]) \cdot r_*([\overline{d}]).$$

But under our identification of $\pi_1(A, x_0)$ with \mathbb{Z} we have that $[\overline{a}_0 \cdot \overline{a}_1]$ is send to 1, but there is no integer n such that n + n = 1, this is a contradiction.