GreenFlow: Reducering af brændsstofforbug ved hastighedstilpasning til trafiklys

Karsten Jakobsen og Sabrine Mouritsen Kandidatstuderende i datalogi ved Aalborg Universitet

28. januar 2013

Introduktion

Udregn anbefalet hastighed

Analyse

Demonstration

Evaluering

Introduktion

Udregn anbefalet hastighed

Analyse

Demonstration

Evaluering

ldé

Kan man med **information** om trafiksignaler og evt. trængsel **spare brændstof** for den enkelte bil uden **nævneværdig negativ påvirkning** af anden trafik samt **øge det generelle trafikflow**?

Problemstilling

Miljøvenlig køreadfærd

- Minimere acceleration
- Undgå fuld stop

Trafiklys er en forhinding

► Tilpasse bilers hastighed til trafiklysene

Hastighedstilpasning

Hastighedstilpasning

Vision

Metode

Potentiale fra første bil

- ▶ Ingen kommunikation mellem biler
- Aflæsning af trafiklys signalopsætning

Fordele

- Ingen ombygning af eksisterende lys
- ► Fuld udbytte ved lav penetrationsrate
- ► Få invisteringsudgifter

Ulemper

- Kræver biler løbende kan aflæse trafiksignaler
- Påvirkning af øvrig trafik?
- Hastighedsbegrænsinger?

Introduktion

Udregn anbefalet hastighed

Analyse

Demonstration

Evaluering

Modellen

- Biler
- ► Faser (fx. ⟨(green, 30), (yellow, 4), (red, 30), (yellow, 2)⟩)
- ► Kort (orienteret graf med kanter, knuder og forbindelser)
- Kryds (samling af forbindelser)
- Ruter (sekvens af kanter forbundet med forbindelser)

Kort

Bruger SUMO's model

- Orienteret kanter mellem to knuder
 - ► Tilknyttet fartgrænse og antal baner
- Orienteret forbindelser:
 - Art kanter med tilknyttet fase
 - Angiver tilladte forbindelser mellem kanters baner

Modellen

- Biler
- ► Faser (fx. ⟨(green, 30), (yellow, 4), (red, 30), (yellow, 2)⟩)
- ► Kort (orienteret graf med kanter, knuder og forbindelser)
- Kryds (samling af forbindelser)
- Ruter (sekvens af kanter forbundet med forbindelser)

Udregn anbefalet hastighed

Procedure

- ▶ 1. Udregn afstand til næste trafiklys
- 2. Udregn grønne tidsrum
- 3. Find signal, der kan nås
- 4. Udregn og tilpas hastighed

Udregn afstand til næste trafiklys

Måles som euklidisk afstand mellem bilen og næste trafik lys.

Der tages ikke højde for blokerende biler

Afstanden er ∞ hvis der ikke er flere trafiklys på ruten Hvis afstanden er for stor, returneres fartgrænsen

Udregn grønne tidsrum

Find signal, der kan nås

Langsomste hastighed regnes som afstand over tid

$$\frac{d}{t_r} \le v_{max}$$

Tager ikke højde for accelerationstiden

- I forvejen mange ukendte faktorer
- Genberegner hvert sekund
- Grænsetilfælde hvor et grønt signal godt kunne nås

Udregn hastighed og tilpas hastighed

Anbefalet hastighed regnes som afstand over tid

$$v = rac{d}{t_g}$$

Tilpas hastighed til øvre og nedre grænse

- Altid under fartgrænsen
- ► Antager man ikke kan køre under 15 km/t

Introduktion

Udregn anbefalet hastighed

Analyse

Demonstration

Evaluering

Kompleksitet

Tidskompleksitet

 $ightharpoonup O(|p| \cdot circ_{future})$

Hvor |p| er antallet af indstillinger i et omløb og $circ_{future}$ er antallet af omløb vi ønsker at beregne ud i fremtiden.

Netværksforbrug med én updatering i sekundet

- $ightharpoonup O(|p| \cdot circ_{future}) \cdot 2 \cdot size_of(integer)$
- ▶ 84 *bytes/s*, ca. 5 kilobytes per minut
 - ▶ Da $|p| \cdot circ_{future}$ sjælent er større en 10

Introduktion

Udregn anbefalet hastighed

Analyse

Demonstration

Evaluering

Simulatoren

Implementationen

- Dimensioner fra OpenStreetMap
- SUMO: Mikrosimulator
- Benytter "car-following-model"
- Standardkørsel: Kører efter hastighedsgrænsen når muligt
- Interfaced med TraCl
- GreenFlow skrevet i Python

Demonstration

- 1. Alle kører efter simulatorens standardkørsel
- 2. Alle kører med GreenFlow
 - Viser virkningen bedst

Introduktion

Udregn anbefalet hastighed

Analyse

Demonstration

Evaluering

Testopsætning

Simularing af Hobrovei

- Fokus på nordgående retning af Hobrovej
- Trængsel baseret på GPS målinger og lokalt kendskab
- ► Trafiksignaler baseret på 100 sekunders omløbstid
- Simulatorens brændstofsudregninger (HBEFA-baseret)

Afstand - GPS målinger

158 biler kørt i hverdage mellem 10:00 og 14:00

Afstand - Simuleret standardkørsel

158 biler simuleret uden systemet

Validering af simulatoren

- SUMO med et trængselsniveau på 0.8 køretøjer per sekund
- GPS data er samlet fra tidsrummet mellem kl 10 og 14 på hverdage

	SUMO		GPS	
	Værdi	σ	Værdi	σ
gns. hastighed (km/h)	37.45	7.86	35.03	6.28
gns. ventetid (s)	66.90	33.97	70.35	33.07
gns. antal stop	1.91	0.66	1.80	1.08

Brændsstofforbrug - Sammenligning

Gennemsnitlig brændstofforbrug for alle biler

Gennemsnitlig rejsetid for alle biler

Resultater

Procent brugere	Med/Uden	Brændstof		Tid	
af GreenFlow	GreenFlow	ml	Forskel	5	Forskel
0%	Uden	125.8	0%	139	0%
10%	Med	88.7	29.5%	136	2.5%
	Uden	125.3	0.4%	135	2.9%
50%	Med	88.1	30.0%	131	5.8%
	Uden	121.8	3.2%	127	8.6%
100%	Med	86.8	31.0%	121	12.9%

Forskelen er beregnet i forhold til 0 % brugere af GreenFlow

Introduktion

Udregn anbefalet hastighed

Analyse

Demonstration

Evaluering

Konklusion

- Brugere får en betydelig reduktion af brændstofsforbrug
 - Stort set uafhænig af antallet af brugere
 - ▶ Bilister, der ikke bruger GreenFlow, ser også en lille besparelse
- Bedre samlet trafik flow
 - Biler bevæger sig samlet set hurtigere gennem netværket
 - Effekt stiger ved højere trængsel

Fremtidigt arbejde

- Modellen
 - ► Tidstyret lyssignaler med spoler til periodeforlængelse
 - Adaptive lyssignaler
- Smartphone app
 - Realtidsbehandling af lyssignalerne
 - Test af systemet i praktisk