FK Experimentalphysik 3, Lösungen 3

1 Transmissionsgitter

Ein Spalt, der von einer Lichtquelle beleuchtet wird, befindet sich im Abstand von 10 cm vor einem Beugungsgitter (Strichzahl N=1000, Strichabstand d=0,01 mm). Hinter dem Gitter befindet sich in 1 m Entfernung ein unendlich großer Schirm.

- a) Bestimmen Sie die Breite x, die der Spalt höchstens haben darf, damit das Interferenzmuster des Gitters für Wellenlängen im Bereich von $\lambda=500$ nm nicht beeinträchtigt wird.
- b) Wie viele Interferenzmaxima sind auf dem Schirm zu sehen.
- c) Wie weit liegen die Maxima 2. Ordnung für die Wellenlängen $\lambda_1=400$ nm und $\lambda_2=410$ nm auseinander?

2 Dreifachspalt

Abbildung 1: Dreifachspalt

Gegeben ist ein Dreifachspalt 1. Alle Spaltbreiten seien gleich. Die Spaltabstände seien d bzw. 3=2d.

- a) Bei welchem Winkel θ tritt das erste Hauptmaximum auf?
- b) Das Ergebnis aus a) sei θ_1 . Die Intensität in Richtung des Maximums nullter Ordnung sei I_0 . Wie groß ist die Intensität in Richtung $\frac{\theta_1}{2}$?

3 Ölschicht auf Wasser

Das an einer auf Wasser (n=1,3) schwimmenden dünnen Ölschicht (n=1,6) reflektierte Sonnenlicht erscheint bei schräger Beleuchtung unter dem Winkel $\alpha=45^{\circ}$ grün ($\lambda=500$ nm).

- a) Wie dick ist die Schicht
- b) Welche Wellenlänge würde bei senkrechter ($\alpha=0$) Beobachtung bevorzugt reflektiert?

4 Bragg-Reflexion an kubischem Kristall

Abbildung 2: Schematische Darstellung

An einem kubischen Kristall (Dichte $\rho=8,5\frac{g}{cm^3}$, Atomgewicht A=63,5u)(1 $u=1,66\cdot10^{-27}$ kg) soll mit Hilfe der Bragg-Reflexion die Wellenlänge von Röntgenlicht gemessen werden. Die Reflexion soll in der x-z-Ebene erfolgen. Der Röntgenstrahl fällt mit einem Einfallswinkel von $\delta=45^\circ$ zur x-y-Ebene auf den Kristall.

- a) Berechnen Sie die Gitterkonstante a.
- b) Welche Wellenlänge haben Röntgenstrahlen, die um 90° abgelenkt wurden?

5 Michelson-Interferometer

Abbildung 3: Schematische Darstellung

- a) Die Quelle S emittiere zunächst monochromatische Strahlung der Wellenlänge λ . Im Punkt B beobachtet man das Auftreten von 10 Interferenzmaxima, wenn der Spiegel M1 um die Strecke $d=2,25\mu m$ in Strahlrichtung verschoben wird. Bestimmen sie die Wellenlänge λ .
- b) Zwischen Strahlteiler T und Spiegel M1 wird nun eine evakuierte Zelle der länge L=10 cm gestellt. Während des Auffüllens der Zelle mit CO2- Gas bis zum Atmosphärendruck wird das Auftreten von 200 Interferenzmaxima beobachtet. Bestimmen Sie den Brechungsindex n von CO_2 bei Atmosphärendruck. Wie lang muss dazu die Köheränzzeit des Lasers sein?
- c) Mit dem Michelson-Interferometer können zwei eng benachbarte Wellenlängen aufgelöst werden. In Abhängigkeit von der Verschiebung d des Spiegels M1 beobachtet man maximale Intensität, wenn die einzelnen Interferenzbilder für die Strahlung der beiden Wellenlängen zusammenfallen. Die Quelle S emittiere nun zwei Strahlungen der Wellenlangen λ und λ' mit $\lambda \approx \lambda' = 450$ nm. Die Strecke, die der Spiegel M1 zwischen zwei benachbarten maximaler Intensität verschoben werden muss, ist $d = 90 \mu m$. Bestimmen Sie $\Delta \lambda = |\lambda \lambda'|$.
- d) Wieviele Spalte muss ein Gitterspektrograph mindestens besitzen, wenn dieselben Wellenlängen λ und λ' in erster Ordnung aufgelöst werden sollen.

6 Photoeffekt

Blaues Licht der Wellenlänge $\lambda=430$ nm falle auf eine Photozelle, deren lichtelektrische Schicht eine Quantenausbeute von $\eta=\frac{N_e}{N_{ph}}=0$, 14 vorweist.

- (a) Wie groß ist die Strahlungsleistung des auf die Photozelle fallenden blauen Lichts, wenn ein maximaler Photoelektronenstrom von 0.5 mA fließt?
- (b) Welche Austrittsarbeit W_A hat das Material der lichtelektrischen Schicht, wenn durch ein Gegenfeld der Spannung U = 0.94 V der Strom vollständig unterdrückt werden kann?
- (c) Berechnen sie die Geschwindigkeit der Photoelektronen wenn keine Gegenspannung angelegt ist.
- (d) Ab welcher Wellenlänge tritt kein Strom auf, wenn sie annehmen, dass die lichtelektrische Schicht aus Cäsium besteht, dessen Austrittsarbeit $W_A = 2,14$ eV beträgt?