#### Introduction to Networks

CS439: Principles of Computer Systems

April 13, 2015

#### Where We Are In The Course

- We've done:
  - Processes
  - Threads
  - Synchronization
  - Virtual Memory
  - File Systems
  - Disks
- We have our \*almost\* all our building blocks!
- One more: networks
- And then... combinations:
  - Parallel and Distributed Computing
  - Distributed and Cluster File Systems
  - Security

#### This Time

- Introduction to Networks
- What they are
  - Hardware structure
  - Logical structure
- Network communication
  - Protocols, naming, routing
- TCP/IP congestion control mechanisms

### Networks

#### **Networks**

- A system of lines or channel that interconnect
  - railroads, telephones
- Computer networks
  - hierarchical systems of boxes and wires
    - usually concerned with providing efficient, correct, and robust message passing between two separate nodes (which are usually computers)
    - organized by geographical proximity

#### **Networks: OS View**

#### OS see the network as just another device

- Network Interface Controller (NIC) is added to the bus
- Transfer data to/from memory to NIC through DMA or memory-mapped I/O

#### Levels of Networks

- System Area Network (SAN)
  - Connects cluster or machine room
  - e.g., Quadrics
- Local Area Network (LAN)
  - Connects nodes in a single building
  - Needs to be fast and reliable
  - e.g., Ethernet
- Wide Area Network (WAN)
  - Connects nodes across the state, country, or planet
  - Typically slower and less reliable than LAN
  - Often high-speed point-to-point phone lines

#### Next Level: internets

- Multiple incompatible LANs/WANs can be physically connected by specialized computers called *routers*
  - More on routers in a minute



 The Global IP Internet is the most famous example of an internet

# Next Level: internets Plain Text

- Multiple incompatible LANs/WANs can be physically connected by specialized computers called routers
  - More on routers in a minute
- The connected networks are called internet
- The Global IP Capital 'I' Internet is the most famous example of an internet (spelled with a lower-case 'i')
- Physical connections
  - LAN connects to hosts directly
  - WAN lines connect routers
  - Routers connect LAN and WAN together

# Three Steps to Network Communication

- Protocols to encode data
- Naming the machine with which you are communicating
- Routing information from a source to a destination

#### **Layers of the Network**

Open Source Interconnection 7 Layer Model

Provides common vocabulary for network engineers (generally the developers stay out of this level of detail).

Layer 1 is Hardware

Layer 2 is Switching

Layer 3 is Routing

Layer 4 is TCP

Layer 5 is often OS/Library

Layer 6 is often OS/Library

Layer 7 is Application

OSI (Open Source Interconnection) 7 Layer Model

| Layer                                                                                                                              | Application/Example                                                                                                                                                                                                                                                              |       | Central Device/<br>Protocols        |        |                       | DOD4<br>Model   |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------|--------|-----------------------|-----------------|
| Application (7) Serves as the window for users and application processes to access the network services.                           | End User layer Program that opens what was sent or creates what is to be sent Resource sharing • Remote file access • Remote printer access • Directory services • Network management                                                                                            |       | User<br>Applicat                    | ions   |                       |                 |
| Presentation (6)  Formats the data to be presented to the Application layer. It can be viewed as the "Translator" for the network. | Syntax layer encrypt & decrypt (if needed)  Character code translation • Data conversion • Data compression • Data encryption • Character Set Translation                                                                                                                        |       | JPEG/AS<br>EBDIC/TIF<br>PICT        | FF/GIF |                       | Process         |
| Session (5) Allows session establishment between processes running on different stations.                                          | Synch & send to ports (logical po<br>Session establishment, maintenance and termination • Ses<br>support - perform security, name recognition, logging, etc.                                                                                                                     |       | RPC/SQL/<br>NetBIOS n               | NFS    | AT                    |                 |
| Transport (4) Ensures that messages are delivered error-free, in sequence, and with no losses or duplications.                     | TCP Host to Host, Flow Control  Message segmentation • Message acknowledgement •  Message traffic control • Session multiplexing                                                                                                                                                 | FILTE | TCP/SPX/UDP                         |        | W<br>A<br>Y<br>Can be | Host to<br>Host |
| Network (3) Controls the operations of the subnet, deciding which physical path the data takes.                                    | Packets ("letter", contains IP address)  Routing • Subnet traffic control • Frame fragmentation • Logical-physical address mapping • Subnet usage accounting                                                                                                                     | ER-ZG | Routers IP/IPX/ICMP                 |        |                       | Internet        |
| Data Link (2) Provides error-free transfer of data frames from one node to another over the Physical layer.                        | Frames ("envelopes", contains MAC address) [NIC card — Switch—NIC card] (end to end)  Establishes & terminates the logical link between nodes • Frame traffic control • Frame sequencing • Frame acknowledgment • Frame delimiting • Frame error checking • Media access control |       | Switch<br>Bridge<br>WAP<br>PPP/SLIP | Land   | Based                 | Network         |
| Physical (1) Concerned with the transmission and reception of the unstructured raw bit stream over the physical medium.            | Physical structure Cables, hubs, etc.  Data Encoding • Physical medium attachment • Transmission technique - Baseband or Broadband • Physical medium transmission Bits & Volts                                                                                                   |       | Hub                                 | Layers |                       |                 |

### Layers of the Network: Plain Text

- Open Source Interconnection 7 layer model (OSI Model)
- Provides common vocabulary for network engineers (generally the developers stay out of this level of detail)
- Layer 1 is Hardware
  - Is physical: concerned with the transmission and reception of the unstructured raw bit stream over the physical medium
  - Physical structure: cables, hubs etc.
    - · Data encoding, physical medium attachment, transmission technique :baseband or broadband, physical medium transmission bits and volts
  - Central device/protocols: hub and land-based layers
  - DOD4 Model:: Network
- Layer 2 is Switching
  - Data Link provides error-free transfer of data frames from one node to another over the physical layer
  - Frames "envelopes", contains MAC address
    - NIC card switch NIC card, is end to end
    - Establishes and terminates the logical link between nodes, frame traffic control, frame sequencing, frame acknowledgement, frame delimiting, frame error checking, media access control
  - Central device/protocols: switch bridge WAP, PPP/SLIP, and land-based layers
  - DOD4 Model: Network
- Layer 3 is Routing
  - Network: controls the operation of the subnet, deciding which physical path the data takes
  - Packets: "letter", contains IP address
    - · Routing, subnet traffic control, frame fragmentation, logical-physical address mapping, subnet usage accounting
    - Packet filtering
  - Central device/protocols routers, IP/IPX/ICMP
  - DOD4 Model: internet
- Laver 4 is TCP
  - Transport: ensures that message are delivered error-free, in sequence, and with no losses or duplications
  - TCP: host-to-host, flow control
    - Message segmentation, message acknowledgement, message traffic control, session multiplexing
    - Packet filterin
  - Central device/protocols TCP/SPX/UDP
  - DOD4 Model: host-to-host
- Layer 5 is often the OS/Library
  - Session: allows session establishment between processes running on different stations
  - Synch and send to ports logical ports
    - Session establishment, maintenance and termination, session support, perform security, name recognition, logging etc
  - Central devices/protocols: logical parts, RPC/SQL/NFS, NetBIOS names
  - DOD4 Model: process
- Layer 6 is often the OS/Library
  - Presentation: formats the data to be presented to the application layer, it can be viewed as the "Translator" for the network
  - Syntax layer: encrypt and decrypt (if needed)
    - character code translation, data conversion, data compression, data encryption, character set translation
  - Central devices/ protocols JPEG/ASCII/EBDIC/TIFF/GIF/PICT
  - DOD4 Model: process
- Layer 7 is Application
  - Application: serves as window for users and application processes to access the network services
    - End User Layer: program that opens what was sent or creates what is to be sent
    - Resource sharing, remote file access, remote printer access, directory services, network management
  - Central device/protocols: user applications, SMTP
  - DOD4 model: process
- NOTE: All layers have the Gateway as part of Central Device/Protocols

#### THE 7 LAYERS OF OSI



# The 7 Layers of OSI: Text Description

- Data Transmission Layer order
  - application, presentation, session, transport, network, data link, physical
- Between transmission and receiving of data there is a physical link
- Data Receiving Layer Order
  - physical, data link, network, transport, session, presentation, application

#### Structure of Packet



# Structure of Packet: Text Description

- NOTE: in order from beginning to end of packet
- Frame
  - Header includes: MAC destination, MAC source
  - Packet is its payload
  - Trailer includes: FCS/CRC (error checking information)
- Packet
  - Header includes: IP source, IP destination
  - Segment is its payload
- Segment
  - Header includes: Port source, Port destination
  - Data included here

### Layer 2 Example: Ethernet



- Invented Xerox PARC, 1973
  - co-invented by Bob Metcalfe, who is now at UT!
- Connects collection of hosts connected by wires (twisted pairs) to a hub
- Hub slavishly copies each bit from each port to every other port
  - Every host sees every bit
- Each Ethernet adapter (on each host) has a unique 48-bit address (Medium Access Control address)
  - e.g., 00:16:ea:e3:54:e6
- Bandwidth from 3MB/s to 1 GB/s

# Layer 2 Example: Ethernet Plain Text

- Example physical structure
  - Hub connects to hosts via ports
  - Information may travel at speeds up to 100 Mb/s
- Invented Xerox PARC, 1973
  - Co-invented by Bob Metcalfe, who is now at UT
- Connects collection of hosts connected by wires (twisted pairs) to a hub
- Hub slavishly copies each bit from each port to every other port
  - Every host sees every bit
- Each Ethernet adapter (on each host) has a unique 48-bit address
  - Medium Access Control (MAC) address
  - e.g. 00:16:ea:e3:54:e6
- Bandwidth from 3 MB/s to 1 GB/s

#### Example: Connected Ethernet Segments



- Create a Local Area Network (LAN)
- Bridges cleverly learn which hosts are reachable from which ports and then selectively copy frames from port to port
- Becoming cheap enough to replace hubs
- BUT... Ethernet has its own protocol. How do we communicate across network types? (Ethernet, wireless, DSL ...)

# Example: Connected Ethernet Segments

- Plain Text
   Create a Local Area Network (LAN)
- Example LAN physical structure
  - has 2 bridges bridge X and bridge Y
    - are connected by 1 Gb/s connection
  - each bridge connected to 2 hubs with 100 Mb/s connection
  - hubs connected to differing numbers of hosts
- Bridges cleverly learn which hosts are reachable from which ports and then selectively copy frames from port to port
- Becoming cheap enough to replace hubs
- BUT... Ethernet has its own protocol. How do we communicate across network types? (Ethernet, wireless, DSL...)

#### The Notion of an internet Protocol

How is it possible to send bits across incompatible LANs and WANs?

- Protocol software runs on each host and router
- Smooths out the differences between the different networks
- Implements an internet protocol (Layer 3)
  - Lower-case 'i' internet.

#### internet Protocol

- Provides a naming scheme
  - An internet protocol defines a uniform format for host addresses
  - Each host (and router) is assigned at least one of these internet addresses that uniquely identifies it
- Provides a routing mechanism

#### internet Protocol

- Provides a delivery mechanism
  - Governs how hosts and routers should cooperate when they transfer data from network to network
  - Defines a standard transfer unit (packet)
  - Packet consists of header and payload
    - Header contains info such as packet size, source and destination addresses
    - Payload contains data bits sent from source host
- Most computers today speak IP
- TCP/IP is the protocol for the global IP Internet (but it's Layers 3 and 4...)

# Naming

- Every host node has a unique string name and a 32-bit Internet number called its host-id (or thinks it does...)
- Host-ids are numbers (128.83.130.33); one for each level of an address (sloth.cs.utexas.edu)
  - Symbolic names have the most significant field first; numeric names have the least significant field first
- The OS needs to map logical addresses (machine name, application) to the host-id and port for the application
- Each machine has a set of local names and the Gateway to which it sends messages directly
- Gateway routes message to recipient
  - More in a minute

# Routing

- Application sends a message to a name, routing software turns name into an Internet address and send the message on its way
- Packets are routed based on destination IP address
  - Address space is structured to make routing practical at global scale
  - For example, 128.83.\*.\* goes to UT
  - So packets need MAC address and IP addresses (is that it?)
- Also need to send message to right process on the right host
  - A process can create a port on the host
    - UTCS web server: 128.83.120.39:80

#### Domain Name Service

- The Internet maintains a mapping between IP addresses and domain names in a huge worldwide distributed database called DNS
  - Sender finds IP address of intended receiver here
  - Distributed hierarchical database
- To reduce lookup overhead, the Gateway node (which is being used in our example) stores routing tables which contain a cache of internet addresses

# DNS



## **DNS: Text Description**

Connections from and back to the resolver (computer making the request) Example: Assume wants to access www.ox.ac.uk

- 1. From resolver to internal or ISP DNS Server
  - Do you know the IP address for www.ox.ac.uk?
- 2. Internal or ISP DNS Server to Root DNS
  - Asking root...
- 3. Root DNS back to Internal or ISP DNS Server
  - No, but here is how you reach the uk server
- 4. Internal or ISP DNS Server to Top-level DNS
  - UK server, do you know the IP address for www.ox.ac.uk?
- 5. Top-Level DNS back to Internal or ISP DNS Server
  - No, but here is how you reach the ac.uk server
- Internal or ISP DNS Server to Second-level DNS
  - ac.uk server, do you know the IP address for www.ox.ac.uk?
- 7. Second-level DNS back to Internal or ISP DNS Server
  - Sure! It's 129.67.242.155 (or that's one of them...)
- 8. Internal or ISP DNS Server back to resolver
  - Use 129.67.242.155

### Domain Naming System (DNS)

 Conceptually, programmers can view the DNS database as a collection of millions of host entry structures:

• Functions for retrieving host entries from DNS: gethostbyname(): query key is a DNS domain name.

gethostbyaddr(): query key is an IP address.

# Domain Naming System (DNS): Plain Text

 Conceptually, programmers can view the DNS database as a collection of millions of host entry structures

```
struct hostent {
    char *h_name; /*official domain name of host*/
    char **h_aliases; /*null-terminated array of domain names*/
    int h_addrtype; /*host address type (AF_INET)*/
    int h_length; /*length of an address, in bytes*/
    char **h_addr_list; /*null-terminated array of in_addr structs*/ };
```

 Functions for retrieving host entries from DNS gethostbyname(): query key in DNS domain name gethostbyaddr(): query key is an IP address

#### Properties of DNS Host Entries

- Each host entry is an equivalence class of domain names and IP addresses
- Each host has a locally defined domain name localhost which always maps to the loopback address 127.0.0.1
- Different kinds of mappings are possible:
  - Simple case: one-to-one mapping between domain name and IP address:
    - sloth.cs.utexas.edu maps to 128.83.130.33
  - Multiple domain names mapped to the same IP address:
    - eecs.mit.edu and cs.mit.edu both map to 18.62.1.6
  - Multiple domain names mapped to multiple IP addresses:
    - google.com maps to multiple IP addresses
  - Some valid domain names don't map to any IP address:
    - for example: ics.cs.cmu.edu



## TCP/IP Protocol Family

- IP (Internet protocol, Layer 3):
  - Provides basic naming scheme and unreliable delivery capability of packets (datagrams) from hostto-host
- UDP (User Datagram Protocol, Layer 4)
  - Uses IP to provide unreliable datagram delivery from process-to-process
- TCP (Transmission Control Protocol, Layer 4)
  - Uses IP to provide *reliable* byte streams from process-to-process over connections

Note that IP is the base protocol for both UDP and TCP.

#### **UDP** and TCP

- UDP: User Datagram Protocol
  - Sent packets may be dropped, reordered, or duplicated
  - These issues are exposed to the application
- TCP: Transmission Control Protocol
  - Provides illusion of a reliable "pipe" between two processes on two different machines
  - Masks lost & reordered packets so applications don't have to worry
  - Handles congestion and flow control
- UDP and TCP are the most popular protocols on IP
  - Both use 16-bit port number as well as 32-bit IP address
  - Applications bind a port and receive traffic on that port

### **Unreliable Components**

- Network does not deliver packets reliably
- Several types of error can affect packet delivery
  - Bit errors (electrical interference, cosmic rays...)
  - Packet loss
  - Link and node failure
- Properly delivered frames may be delayed, reordered, or duplicated

#### Enter TCP...

- Guaranteed delivery
- Session-oriented

TCP Three-Step Handshake



#### Enter TCP...: Plain Text

- Guaranteed delivery
- Session-oriented
- TCP 3-step handshake sets up the session
  - Host sends SYN to server
  - Server replies SYN/ACK
  - Host replies ACK
- When the handshake is complete, a connection is established

## Getting Reliability from Unreliable Components

- Solution 1: use acks
  - Sender sends a message and sets a timer
  - Receiver receives a message and sends an ack (acknowledgement)
  - Sender receives ack and clears timer
  - (If timer goes off, start again)
- Problems
  - Bandwidth is 1 packet per round trip time (RTT)

## Getting Reliability from Unreliable Components

- Solution 2: Pipeline Solution 1
  - Multiple packets in flight
  - Resend un-ack-ed packets after timeout
- Optimizations
  - Cumulative acks
    - ack i acks packets 1 to i
    - Immediate resend on nack
  - Delayed acks
    - For bidirectional communication, use application response as implicit ack

## TCP Example



## TCP Example: Text Description

- Sever sends data segment 1 to client
- Client responds with ack 1
- Server sends data segments 2 and 3 to client
- Client responds with ack 3
- Server sends data segments 4 and 5 to client
- Client responds with ack 5

#### Uses of TCP

- Most applications use TCP
  - Easier interface (gives you reliability!)
  - Automatically avoids congestion

#### TCP and the OS

OS provides reliability for TCP. Thus, it must:

- Track unacknowledged data
  - Keep a copy, keep timer
  - Receiver re-orders out of order segments
  - Where does it keep all this information?
    - The PCB... Protocol Control Block!
- Must ACK received segments very quickly
- Must decide when to wake processes on receipt
  - Is there more data coming? Should it wait?
- · Must decide when to send data
  - If send is small, should it wait for more?

#### Some more about TCP

#### Implementation Details:

- Buffers at sender, receiver, and router
- Data is acked at the receiver as it is read from the buffer by the application
  - Until that point, packets could still be dropped

#### Goals:

- Want to save network from congestive collapse
  - Can be indicated by packet loss
- Want multiple outstanding packets at a time

#### TCP Window

- Maximum number of bytes that can be sent without acknowledgement (ACK)
  - Prevents sender from overflowing receiver's buffer
- Dynamically sized to the network environment
  - Increases in size until loss occurs
- Implications on performance
  - Larger windows suited to high-latency networks
  - Smaller windows suited to high-loss networks

#### TCP Flow Control

- Sender maintains
  - RcvWindow: estimate of buffer space at receiver
  - Estimated using LastByteSent, LastByteAcked
- Receiver maintains
  - RcvBuffer
  - Size of data in buffer determined by LastByteRead, LastByteRcvd
- To avoid overflowing
  - LastByteRcvd-LastByteRead ≤ RcvBuffer
- Hence, sender ensures
  - LastByteSent LastByteAcked ≤ RcvWindow
     where RcvWindow = RcvBuffer (LastByteRcvd LastByteRead)



## TCP Congestion Control

- Both sides of a connection keep track of congestion window (CongWin)
  - LastByteRcvd-LastByteRead ≤ min(CongWin, RcvBuffer)
    - send rate: CongWin/RTT (assuming negligible retransmission and loss)
- If acks are received regularly, CongWin grows
- If ack loss is detected, CongWin shrinks
  - ack loss detected as timeout or receipt of 3 duplicate acks
- Congestion Control algorithm has five major components
  - additive increase, multiplicative decrease
  - slow start
  - reaction to timeout events
  - round trip variance estimation
  - exponential retransmit timer backoff

## Additive Increase, Multiplicative Decrease

- Multiplicative decrease
  - Half CongWin after loss event
  - Until it reaches 1 Maximum Segment Size (MSS)
- Additive increase
  - Increase CongWin by 1 MSS every roundtrip



# Additive Increase, Multiplicative Decrease: Plain Text

- Multiplicative decrease
  - Half CongWin after loss event
  - Until it reaches 1 Maximum Segment Size (MSS)
- Additive increase
  - Increase CongWin by 1 MSS every round trip
- Graph with Congestion Window on y axis and Time on the x axis
  - Congestion window goes up with a gradual positive slope because of the additive increase
  - Congestion window goes down in a vertical line, because of the multiplicative decrease

#### Slow Start

- At start, CongWin set to 1 MSS
- Too slow to grow linearly
  - During slow start phase, exponential growth...
    - CongWin grows by 1 MSS for each received ack
    - Results in doubling every RTT
  - Until first loss event occurs

#### Reaction to Timeout Events

- TCP actually treats loss events differently
  - On receipt of three duplicate acks
    - Multiplicative decrease, additive increase
  - On a timeout
    - Drop congestion window to 1 MSS
    - Slow start mode until CongWin reaches a threshold (typically half of CongWin before loss)
    - Additive increase after threshold reached
- Why the difference?
  - Receipt of acks, even if duplicate, shows that some packets get to destination
    - fast recovery eliminates slow start phase (TCP Reno)

## RTT Variance and Retransmit Backoff

- Original TCP set timeout to twice the estimated RTT
  - But with high load (above 75%) RTT can vary by 16X
    - Lots of unnecessary sends under load (bad)
- Current versions set timeout to
  - Estimated RTT + 4 x MeanDev(RTT)
- Retransmit backoff is exponential
  - Provably needed for stability
  - This is why web browser stalls for 5 sec, then for 10 then...
    - Hint: hit reload if page no there after 5 sec

#### **Network Costs**

- Overhead: CPU time to put the data on or pull it off the wire
- Latency: time for one byte to go from one place to another
  - Latency from New York to San Francisco:
    - 3000 miles \* 1 sec/186,282 miles= 15 ms
- Throughput: Maximum bytes per second (bandwidth)
- Note: Bandwidth is not the whole story!
- Key to good performance:
  - LAN: minimize overhead
  - WAN: keep the pipeline full!

## Packets, Again



## Packets, Again: Text Description

- NOTE: in order from beginning to end of packet
- Frame header
  - MAC destination
  - MAC source
- Packet
  - IP header
  - IP source
  - IP destination
- Segment
  - segment header
  - port source
  - port destination
- Data
- Frame trailer FCS/CRC

### Transferring Data Over an internet



# Transferring Data Over an internet: Text Description

- Example has 2 LANs connected by a router
- Terminology:
  - PH: Internet packet header
  - FH: LAN frame header
- Steps to transfer:
  - 1: Data is sent from Host A's client application to protocol software
  - 2. The PH and FH1 are appended to the data and sent along to the LAN1 adapter
  - 3. LAN1 adapter sends Data + PH + FH1 along to the router's LAN1 adapter
  - 4. Data + PH + FH1 sent to router's protocol software, which strips off FH1 and creates FH2
  - 5. Data + PH + FH2 sent to router's LAN2 adapter
  - 6. Data + PH + FH2 sent to LAN2 adapter in LAN2
  - 7. Data + PH + FH2 sent along to protocol software where the PH and FH2 are stripped off
  - 8. Data goes along to Host B's server application

#### MTU vs. MSS

- MSS is Maximum Segment Size, a Layer
   4 concept
- Often Confused with Maximum
   Transmission Unit (MTU), a concept of Layers 2 and 3



### MTU vs. MSS: Plain Text

- MSS is Maximum Segment Size, a Layer
   4 concept
- Often confused with maximum transmission unit (MTU), a concept of Layers 2 and 3
- Parts of a frame:
  - Ethernet MTU: IP, TCP and Payload
  - IP MTU: IP, TCP and Payload
  - TCP MSS: Payload

### iClicker Question

The ack in the TCP protocol implies:

- A. Message received
- B. Segment arrived safely
- C. Transmission is complete
- D. Nothing

## Summary

- Data sent into the network is chopped into segments, the network's basic transmission unit
- Frames are sent through the network
- (But we call everything packets)
- Computers at the switching points control the packet flow
- Shared resources can lead to contention
- TCP/IP is careful to avoid bringing down the network through congestive failure
- Unless otherwise stated, assume a reliable end-toend message delivery
- Networks make tradeoffs between speed, reliability, and expense



#### Announcements

- Exams are mostly graded
  - Will be returned in discussion section on Friday
- Project 3 due Friday, 4/17
- Project 4 out Friday
  - Will discuss in discussion section NEXT week
- Homework 9 is posted, due Friday 8:45a