Problema C — Cebando mate

Carolina tiene la costumbre de juntarse todas las tardes a tomar mate con sus amigos. Como han vivido equivocados toda su vida, les gusta tomar mate dulce. Últimamente, se han preocupado por su ingesta calórica y han decidido probar un nuevo edulcorante cero calorías que salió al mercado: el Ingrediente Caramelizador de Productos Cebables (ICPC). El ICPC tiene la extraña propiedad de que al aplicarlo dura exactamente K cebadas endulzando el mate y luego se evapora completamente.

Carolina y sus amigos se ubican alrededor de una mesa circular, y se numeran del 0 al N-1 en el sentido de las agujas del reloj. Luego comienzan a tomar mate durante varias rondas. En cada ronda, ella ceba un mate para cada integrante, comenzando por la persona 0 y continuando en orden ascendente hasta llegar a la persona N-1. Por lo tanto, luego de que toma la persona N-1 es nuevamente el turno de la persona 0. Carolina decide una cantidad fija **entera** y positiva E_i de ICPC para agregar al mate antes de cebar a la persona i. La cantidad de ICPC que recibe cada persona en su mate será entonces la suma de lo agregado por la cebadora en las últimas K cebadas. Formalmente, la cantidad de ICPC que recibe la persona i a partir de la segunda ronda es

$$T_i = \sum_{d=0}^{K-1} E_{i-d \ (mod \ N)}$$

donde $x \pmod{N}$ es un entero entre 0 y N-1 que indica el resto de x en la división entera por N.

Por ejemplo, si la ronda constara de N=5 amigos, la duración del edulcorante fuera de K=3 cebadas y las cantidades de ICPC agregado fueran $E_0=10$, $E_1=4$, $E_2=0$, $E_3=2$ y $E_4=1$, entonces las cantidades de ICPC que recibirían los amigos serían $T_0=13$, $T_1=15$, $T_2=14$, $T_3=6$ y $T_4=3$.

Carolina conoce muy bien los gustos de sus amigos y quisiera complacerlos a todos. Dado un arreglo $G_0, G_1, \ldots, G_{N-1}$ con las cantidades de edulcorante que quieren recibir los N amigos, ustedes deben determinar si existe un arreglo $E_0, E_1, \ldots, E_{N-1}$ con las cantidades de ICPC a agregar antes de cebar a cada persona, tal que a partir de la segunda ronda todos los amigos estén satisfechos (esto es, $T_i = G_i$ para $i = 0, 1, \ldots, N-1$).

Entrada

La primera línea de la entrada contiene dos enteros N y K, que representan la cantidad de amigos y la duración del ICPC, respectivamente $(1 \le N \le 1000 \text{ y } 1 \le K \le N)$. La segunda línea contiene N enteros $G_0, G_1, \ldots, G_{N-1}$, siendo G_i para $i = 0, 1, \ldots, N-1$ la cantidad de edulcorante que quiere recibir la persona i $(0 \le G_i \le 10^6)$.

Salida

Imprimir en la salida una línea conteniendo un carácter que representa si es posible satisfacer a todos los amigos. El carácter debe ser una 'S' si es posible, y una 'N' en caso contrario.

Torneo Argentino de Programación — ACM–ICPC 2017

Entrada de ejemplo	Salida para la entrada de ejemplo
5 3	S
13 15 14 6 3	

Entrada de ejemplo	Salida para la entrada de ejemplo
3 2	N
2 3 7	

Entrada de ejemplo	Salida para la entrada de ejemplo
5 2	N
1 1 1 1 1	