Die Bschlangaul-Sammlung Synthesealgorithmus

Synthesealgorithmus

(Relation A-H)

Stichwörter: Synthese-Algorithmus

Überführen Sie das Relationenschema mit Hilfe des Synthesealgorithmus in die 3. Normalform!

$$FA = \left\{ \begin{array}{c} \{F\} \rightarrow \{E\}, \\ \{A\} \rightarrow \{B, D\}, \\ \{A, E\} \rightarrow \{D\}, \\ \{A\} \rightarrow \{E, F\}, \\ \{A, G\} \rightarrow \{H\}, \end{array} \right.$$

Lösungsvorschlag

(a) Kanonische Überdeckung

(i) Linksreduktion

— Führe für jede funktionale Anhängigkeit $\alpha \to \beta \in F$ die Linksreduktion durch, überprüfe also für alle $A \in \alpha$, ob A überflüssig ist, d. h. ob $\beta \subseteq A$ ttrHülle $(F, \alpha - A)$.

Wir betrachten nur die zusammengesetzten Attribute:

$$\{A, E\} \rightarrow \{D\}$$

$$D \in \text{AttrHülle}(F, \{A, E \setminus E\}) = \{A, E, F, B, D\}$$

$$D \notin \text{AttrHülle}(F, \{A, E \setminus A\}) = \{E\}$$

$$\{A, G\} \rightarrow \{H\}$$

$$H \notin \text{AttrHülle}(F, \{A, G \setminus G\}) = \{A, E, F, B, D\}$$

$$H \notin \text{AttrHülle}(F, \{A, G \setminus A\}) = \{G\}$$

$$FA = \left\{ \begin{cases} F \rightarrow \{E\}, \\ \{A\} \rightarrow \{B, D\}, \\ \{A\} \rightarrow \{D\}, \\ \{A\} \rightarrow \{E, F\}, \\ \{A, G\} \rightarrow \{H\}, \end{cases} \right.$$

(ii) Rechtsreduktion

— Führe für jede (verbliebene) funktionale Abhängigkeit $\alpha \to \beta$ die Rechtsreduktion durch, überprüfe also für alle $B \in \beta$, ob $B \in AttrH\"ulle(F - (\alpha \to \beta) \cup (\alpha \to (\beta - B)), \alpha)$ gilt. In diesem Fall ist

Die Bschlangaul-Sammlung Synthesealgorithmus

B auf der rechten Seite überflüssig und kann eleminiert werden, d. h. $\alpha \to \beta$ wird durch $\alpha \to (\beta - B)$ ersetzt.

Nur die Attribute betrachten, die rechts doppelt vorkommen:

E

AttrHülle(
$$F \setminus \{F\} \to \{E\}, \{F\}) = \{F\}$$

AttrHülle($F \setminus \{A\} \to \{E, F\} \cup \{A\} \to \{E\}, \{A\}) = \{A, B, D, F, E\}$

D

 $AttrH\ddot{u}lle(F \setminus \{A\} \rightarrow \{D\}, \{A\}) = \{A, B, \mathbf{D}, F, E\}$

 $\{A\} \rightarrow \{D\}$ kann wegen der Armstrongschen Dekompositionsregel weggelassen werden. Wenn gilt $\{A\} \rightarrow \{B,D\}$, dann gilt auch $\{A\} \rightarrow \{B\}$ und $\{A\} \rightarrow \{D\}$

$$FA = \begin{cases} \{F\} \rightarrow \{E\}, \\ \{A\} \rightarrow \{B, D\}, \\ \{A\} \rightarrow \{\emptyset\}, \\ \{A\} \rightarrow \{F\}, \\ \{A, G\} \rightarrow \{H\}, \end{cases}$$

(iii) Löschen leerer Klauseln

— Entferne die funktionalen Abhängigkeiten der Form $\alpha \to \emptyset$, die im 2. Schritt möglicherweise entstanden sind.

$$FA = \left\{ \begin{array}{c} \{F\} \rightarrow \{E\}, \\ \{A\} \rightarrow \{B, D\}, \\ \{A\} \rightarrow \{F\}, \\ \{A, G\} \rightarrow \{H\}, \end{array} \right.$$

(iv) Vereinigung

— Fasse mittels der Vereinigungsregel funktionale Abhängigkeiten der Form $\alpha \to \beta_1, \dots, \alpha \to \beta_n$, so dass $\alpha \to \beta_1 \cup \dots \cup \beta_n$ verbleibt.

$$FA = \left\{ \begin{array}{c} \{F\} \rightarrow \{E\}, \\ \{A\} \rightarrow \{B, D, F\}, \\ \{A, G\} \rightarrow \{H\}, \end{array} \right.$$

Die Bschlangaul-Sammlung Synthesealgorithmus

(b) Relationsschemata formen

— Erzeuge für jede funktionale Abhängigkeit $lpha oeta\in F_c$ ein Relationenschema $\mathcal{R}_lpha:=lpha\cupeta$.

 $R_1(\underline{F}, E)$ $R_2(\underline{A}, B, D, F)$ $R_3(A, G, H)$

(c) Schlüssel hinzufügen

— Falls eines der in Schritt 2. erzeugten Schemata R_{α} einen Schlüsselkandidaten von \mathcal{R} bezüglich F_c enthält, sind wir fertig, sonst wähle einen Schlüsselkandidaten $\mathcal{K} \subseteq \mathcal{R}$ aus und definiere folgendes zusätzliche Schema: $\mathcal{R}_{\mathcal{K}} := \mathcal{K}$ und $\mathcal{F}_{\mathcal{K}} := \emptyset$

 $R_1(\underline{F}, E)$ $R_2(\underline{A}, B, D, F)$ $R_3(\underline{A}, \underline{G}, H)$ $R_4(\overline{A}, C, G)$

(d) Entfernung überflüssiger Teilschemata

— Eliminiere diejenigen Schemata R_{α} , die in einem anderen Relationenschema $R_{\alpha'}$ enthalten sind, d. h. $R_{\alpha} \subseteq R_{\alpha'}$.

Ø Nichts zu tun

Die Bschlangaul-Sammlung

Hermine Bschlangaul and Friends

Eine freie Aufgabensammlung mit Lösungen von Studierenden für Studierende zur Vorbereitung auf die 1. Staatsexamensprüfungen des Lehramts Informatik in Bayern.

Diese Materialsammlung unterliegt den Bestimmungen der Creative Commons Namensnennung-Nicht kommerziell-Share Alike 4.0 International-Lizenz.

Hilf mit! Die Hermine schafft das nicht allein! Das ist ein Community-Projekt! Verbesserungsvorschläge, Fehlerkorrekturen, weitere Lösungen sind herzlich willkommen - egal wie - per Pull-Request oder per E-Mail an hermine bschlangaul@gmx.net.Der TEX-Quelltext dieses Dokuments kann unter folgender URL aufgerufen werden: https://github.com/bschlangaul-sammlung/examens-aufgaben/blob/main/Module/10_DB/50_Relationale-Entwurfstheorie/30_Normalformen/10_Synthesealgorithmus/Aufgabe_Relation-A-H.tex