Algoritmi și structuri de date (I). Seminar 6: Verificarea corectitudinii algoritmilor.

- Formulare precondiții și postcondiții
- Identificare proprietăți invariante
- Demonstrarea corectitudinii

Problema 1 Demonstrați că algoritmul identic6 (din sem 3) returnează True dacă toate elementele din x[1..n] sunt identice și False în caz contrar.

```
\begin{split} & \mathsf{identic6}(x[1..n]) \\ & rez \leftarrow True \\ & i \leftarrow 1 \\ & \mathsf{while} \ i < n \ \mathsf{do} \\ & i \leftarrow i+1 \\ & \mathsf{if} \ x[i-1]! = x[i] \ \mathsf{then} \\ & rez \leftarrow False \\ & \mathsf{end} \ \mathsf{if} \\ & \mathsf{end} \ \mathsf{while} \\ & \mathsf{return} \ rez \end{split}
```

Indicație. Se stabilește starea algoritmului înainte de intrarea în ciclul while (precondiția) și postcondiția specificată în enunț. Se arată că afirmația "dacă x[1..i] are toate elementele identice atunci rez este True altfel rez este False" satisface cerințele specifice unui invariant.

Problema 2 Scrieți un algoritm pentru calculul puterii întregi a unei valori reale nenule (a^p cu $a \in \mathbb{R}^*$ și $p \in \mathbb{Z}$)și demonstrați corectitudinea algoritmului.

Indicație. Se calculează $a^{|p|} = \prod_{i=1}^{|p|} a$ și se analizează semnul lui p pentru a decide dacă se returnează $a^{|p|}$ sau $1/a^{|p|}$. Pentru demonstrarea corectitudinii se descrie prelucrarea repetitivă folosind while și se identifică o proprietate invariantă.

Problema 3 Să se analizeze corectitudinea algoritmilor conversie_10_q şi conversie_q_10 care realizează conversia unui număr din baza 10 în baza q ($q \ge 2$) respectiv din baza q în baza 10.

```
conversie_q_10(integer c[0..k], q)
conversie_10_q(integer n, q)
integer c[0..k], k, m
                                              integer i, n
 1: m \leftarrow n
                                                1: i \leftarrow k
 2: k \leftarrow 0
                                                2: n \leftarrow c[i]
 3: c[k] \leftarrow m \text{ MOD } q
                                                3: while i > 0 do
 4: m \leftarrow m DIV q
                                                      i \leftarrow i - 1
 5: while m > 0 do
                                                      n \leftarrow n * q + c[i]
 6:
       k \leftarrow k + 1
                                                6: end while
       c[k] \leftarrow m \text{MOD} q
                                                7: return n
 7:
       m \leftarrow m \text{DIV} q
 9: end while
10: return c[0..k]
```

Indicație. (a) Pentru primul algoritm se poate folosi ca proprietate invariantă: $n = m \cdot q^{k+1} + \sum_{i=0}^{k} c[i] \cdot q^{i}$. (b) Pentru al doilea algoritm se poate folosi ca proprietate invariantă: $n = \sum_{j=i}^{k} c[j]q^{j-i}$

Problema 4 Demonstrați punând în evidență un invariant și o funcție de terminare că după execuția algoritmului de mai jos variabila n va conține valoarea în baza 10 corespunzătoare șirului binar b[0..k] $(b[i] \in \{0,1\}, i = \overline{0,k})$.

```
alg(integer b[0..k])

integer n, i

1: i \leftarrow 0

2: n \leftarrow 0

3: while i \le k do

4: n \leftarrow n * 2 + b[k - i]

5: i \leftarrow i + 1

6: end while

7: return n
```

Indicație. Se arată că $n = \sum_{j=0}^{i-1} b[k-j]2^{i-j-1}$ este proprietate invariantă iar $F(p) = (k+1) - i_p$ este funcție de terminare.

Problema 5 Să se demonstreze corectitudinea algoritmului de determinare a valorii obținute prin inversarea ordinii cifrelor unui număr natural. Considerând că $n=c_kc_{k-1}\dots c_1c_0$ este numărul inițial, valoarea căutată este $m=c_0c_1\dots c_k$. Prin urmare precondiția este: $n=\sum_{i=0}^k c_i10^i$ iar postcondiția este $m=\sum_{i=0}^k c_i10^{k-i}$. Metoda de calcul a lui m este descrisă în algoritmul inversare descris în continuare.

```
inversare(integer n)

integer m, p

1: m \leftarrow 0

2: p \leftarrow 0

3: while n > 0 do

4: p \leftarrow p + 1

5: m \leftarrow m * 10 + n \text{ MOD } 10

6: n \leftarrow n \text{ DIV } 10

7: end while

8: return m
```

Indicație. Dacă se notează cu p contorul implicit al ciclului se poate utiliza $\{n = \sum_{i=p}^k c[i]10^{i-p}, m = \sum_{i=0}^{p-1} c[i]10^{p-1-i}\}$ ca proprietate invariantă.

Problema 6 Să se demonstreze că algoritmul produs calculează corect produsul a două numere naturale nenule.

```
produs(integer a,b)
integer s
 1: x \leftarrow a
 2: y \leftarrow b
 3: p \leftarrow 0
 4: s \leftarrow 0
 5: while x > 0 do
         p \leftarrow p + 1
        if x \text{ MOD } 2 == 1 \text{ then}
 7:
 8:
            s \leftarrow s + y
         end if
 9:
10:
         x \leftarrow x \text{ DIV } 2
         y \leftarrow 2 * y
11:
12: end while
13: \mathbf{return} s
```

Indicație. Se observă că algoritmul corespunde metodei de înmulțire descrisă "à la russe". Pornim de la ipoteza că valoarea a poate fi reprezentată în baza 2 prin k+1 cifre binare $c_k c_{k-1} ... c_1 c_0$ specificate în tabloul c[0..k].

Problema 7 Să se demonstreze că algoritmul inversare_sir descris în continuare realizează inversarea ordinii elementelor din tabloul x[1..n] primit ca parametru.

```
\begin{array}{l} \text{inversare\_sir}(x[1..n]) \\ 1: \ i \leftarrow 0 \\ 2: \ \mathbf{while} \ i < \lfloor (n+1)/2 \rfloor \ \mathbf{do} \\ 3: \quad i \leftarrow i+1 \\ 4: \quad x[i] \leftrightarrow x[n+1-i] \\ 5: \ \mathbf{end} \ \mathbf{while} \\ 6: \ \mathbf{return} \ \ x[1..n] \end{array}
```

Indicație. Fie $x_0[1..n]$ conținutul inițial al tabloului. Cu această notație precondiția poate fi specificată prin $P = \{x[i] = x_0[i], i = \overline{1,n}\}$ iar postcondiția prin $Q = \{x[i] = x_0[n+1-i], i = \overline{1,n}\}$.

Problema 8 Identificați proprietăți invariante pentru prelucrările repetitive din algoritmii alg1 și alg2 descriși în continuare și stabiliți ce returnează fiecare dintre ei când este apelat pentru valori naturale nenule.

$alg1(integer \ a, b)$	$\mathtt{alg2}(\mathbf{integer}\ a, b)$
integer x, y, z	integer x, y, z
1: $x \leftarrow a$	1: $x \leftarrow a$
$2: y \leftarrow b$	$2: y \leftarrow b$
$3: z \leftarrow 0$	$3: z \leftarrow 0$
4: while $y > 0$ do	4: while $x \geq y$ do
5: $z \leftarrow z + x$	5: $x \leftarrow x - y$
6: $y \leftarrow y - 1$	6: $z \leftarrow z + 1$
7: end while	7: end while
8: \mathbf{return} z	8: return z,x

Indicație. Notăm cu p contorul prelucrării iterative (p va avea valoarea 0 înainte de intrarea în ciclu și este incrementat cu 1 la fiecare execuție a ciclului). Folosind această notație (chiar dacă p nu este variabilă explicită în cadrul algoritmului) se pot identifica proprietăți invariante.

Problema 9 Să se demonstreze că algoritmul adunare descris în continuare corespunde adunării în baza 2 a două numere reprezentate în binar pe n + 1 poziții.

```
adunare(integer a[0..n], b[0..n])
integer c[0..n+1], s, report

1: c[0..n+1] \leftarrow 0

2: report \leftarrow 0

3: i \leftarrow 0

4: while i \leq n do

5: s \leftarrow a[i] + b[i] + report

6: c[i] \leftarrow s \text{ MOD } 2

7: report \leftarrow s \text{ DIV } 2

8: i \leftarrow i+1

9: end while

10: c[n+1] \leftarrow report

11: return c[0..n+1]
```

Indicație. Notând cu $x_{0..i}$ valoarea corespunzătoare tabloului de cifre binare x[0..i] se poate arăta că proprietatea $\{c_{0..i} = a_{0..i-1} + b_{0..i-1}\}$ este invariantă în raport cu ciclul, iar la ieșirea din ciclu implică $c_{0..(n+1)} = a_{0..n} + b_{0..n}$ adică tabloul c[0..n+1] conține suma valorilor corespunzătoare reprezentărilor binare din a[0..n] și b[0..n].

Problema 10 Se consideră algoritmul **alg** descris în continuare. Să se identifice o proprietate invariantă corespunzătoare ciclului și să se stabilească care este efectul algoritmului.

```
alg(real a[1..n])
integer i
1: i \leftarrow 1
2: while i \leq n-1 do
3: if a[i] > a[i+1] then
4: a[i] \leftrightarrow a[i+1]
5: end if
6: i \leftarrow i+1
7: end while
8: return a[1..n]
```

Indicație. După prima execuție a corpului ciclului va fi satisfăcută proprietatea $a[1] \leq a[2]$. După a două execuție a ciclului va fi satisfăcută proprietatea $a[2] \leq a[3]$ (de remarcat faptul că valoarea elementului de pe poziția 2 nu este neapărat aceeași cu cea obținută după prima etapă a algoritmului ceea ce înseamnă că nu e în mod necesar adevărată afirmația că $a[1] \leq a[2] \leq a[3]$ ci doar afirmația că $a[3] \geq a[2]$ și $a[3] \geq a[1]$). Acestea sugerează că după execuția pasului i al ciclului este adevărată afirmația $a[i] = \max_{j=\overline{1,i}} a[j]$. In continuare se poate demonstra că această afirmație este proprietate invariantă.

Problema 11 Propuneți un algoritm care transformă un tablou a[1..n] prin interschimbări de elemente vecine astfel încât valoarea minimă ajunge pe prima poziție a tabloului. Demonstrați corectitudinea algoritmului identificând un invariant și o funcție de terminare.

Indicație. Se parcurge tabloul pornind de la ultimul element și se compară fiecare element cu predecesorul său. Dacă elementul curent este mai mic decât predecesorul atunci se interschimbă elementele.

Problema 12 Se consideră un polinom cu coeficienți numere reale, $a_nX^n + a_{n-1}X^{n-1} + \ldots + a_1X + a_0$, specificat prin tabloul coeficienților a[0..n]. Demonstrați (prin stabilirea precondiției, postcondiției, identificarea unui invariant și verificarea proprietăților acestuia) că algoritmul de mai jos determină valoarea polinomului pentru un argument x.

```
alg(real a[0..n], real x)

integer i; real v

1: i \leftarrow n; v \leftarrow a[n]

2: while i > 0 do

3: i \leftarrow i - 1

4: v \leftarrow v * x + a[i]

5: end while

6: return v
```

 $\mathit{Indicație}.$ Se poate utiliza $v = \sum_{j=i}^n a[j] x^{j-i}$ ca proprietate invariantă.

Problema 13 Să se demonstreze că algoritmii $\mathsf{cmmdc1}$ şi $\mathsf{cmmdc2}$ descrişi în continuare determină cel mai mare divizor comun al numerelor nenule a şi b.

1	1.0 (* 1.
$\mathtt{cmmdc1}\ (\mathbf{integer}\ a, b)$	$\verb cmmdc2 (\textbf{integer} \ a, b)$
1: while $a! = 0$ and $b! = 0$ do	1: while $a! = b \ \mathbf{do}$
2: $a \leftarrow a \text{ MOD } b$	2: if $a > b$ then
3: if $a! = 0$ then	$a \leftarrow a - b$
4: $b \leftarrow b \text{ MOD } a$	4: else
5: end if	5: $b \leftarrow b - a$
6: end while	6: end if
7: if $a = 0$ then	7: end while
8: $d \leftarrow a$	8: $d \leftarrow a$
9: else	9: return d
10: $d \leftarrow b$	
11: $\mathbf{end}\ \mathbf{if}$	
12: \mathbf{return} d	

Indicație. Dacă notăm cu a_0 şi b_0 valorile inițiale ale variabilelor a respectiv b atunci precondițiile sunt $P = \{a = a_0, b = b_0\}$ iar postcondiția este $Q = \{d = \operatorname{cmmdc}(a_0, b_0)\}$. Pentru ambele variante de algoritm proprietatea invariantă este cmmdc $(a, b) = \operatorname{cmmdc}(a_0, b_0)$.

Problema 14 Se consideră un tablou x[1..n] care conține valoarea x_0 . Să se demonstreze că: (a) algoritmul cauta1 determină prima poziție pe care se află valoarea x_0 ;(b) algoritmul cauta2 determină toate pozițiile pe care se află x_0 în tabloul x.

cauta1 $(x[1n],x0)$	$\mathtt{cauta2}\ (x[1n],\!x0)$
$i \leftarrow 1$	$i \leftarrow 1$
while $x[i]! = x0$ do	$m \leftarrow 0$
$i \leftarrow i + 1$	while $i \leq n \operatorname{\mathbf{do}}$
end while	if $x[i] == x0$ then
$\mathbf{return} \ \ i$	$m \leftarrow m + 1$
	poz[m] = i
	end if
	$i \leftarrow i + 1$
	end while
	return $poz[1m]$

Indicație. Pentru algoritmul cauta1 se poate folosi ca invariant relația $\{x[j] \neq x_0, j = \overline{1, i-1}\}$ iar pentru algoritmul cauta2 $\{poz[k] = x_{i_k}, k = \overline{1, m} \text{ (unde } \{i_k, k = \overline{1, m}\} \text{ reprezintă pozițiile din tablou pe care se află valoarea căutată, } x_0).$

Probleme suplimentare.

- 1. Se consideră un hol pe care sunt n uși numerotate de la 1 la n. La început toate ușile sunt închise. Se trece pe hol de n ori de la prima ușă către ultima. La prima parcurgere se deschid toate ușile. La a doua parcurgere se închid ușile numerotate cu valori pare. La a treia parcurgere se schimbă starea ușilor numerotate cu valori care sunt multiplu de 3 s.a.m.d. (la trecerea cu numul i se schimba starea ușilor care au număr un multiplu de i). A schimba starea unei uși înseamnă a o deschide dacă este închisă și a o închide dacă este deschisă. Să se stabilească starea ușii i după n treceri.
 - Indicație. Numărul de schimbări ale stării ușii cu numărul i depinde de numărul de divizori ai lui i. Dacă i are un număr impar de divizori atunci ușa va fi deschisă, iar dacă i are un număr par de divizori atunci ușa i va fi închisă. Rămâne de stabilit care dintre valorile cuprinse între 1 și n au un număr par de divizori și care au un număr impar de divizori.
- 2. Se consideră o scară cu n trepte. Să se stabilească numărul de moduri în care poate fi urcată scara efectuând paşi de 1 sau 2 trepte.

Indicație. Dacă n=1 atunci există un singur mod. Dacă n=2 atunci există două moduri (se fac doi pași de câte o treaptă sau un pas de două trepte). Dacă n=3 atunci sunt 3 variante: (1,1,1), (1,2) și (2,1). Fie K(n) numărul de variante de a urca scara. Ultimul pas efectuat poate fi de o treaptă (în acest caz există K(n-1) variante pentru a se ajunge la treapta n-1) sau de două trepte (în acest caz există K(n-2) variante pentru a se ajunge la treapta n-2). Prin urmare K(n)=K(n-1)+K(n-2) iar K(1)=2, K(2)=2.

- 3. Se consideră două valori naturale a și b iar d = cmmdc(a, b). Să se determine numerele întregi x și y care au proprietatea $x \cdot a + y \cdot b = d$. Argumentați corectitudinea algoritmului propus.

 Indicație. x și y pot fi determinate folosind varianta generalizată a algoritmului lui Euclid.
- 4. Se consideră două cuvinte constituite din litere ale alfabetului latin. Propuneți un algoritm care să verifice dacă unul dintre cuvinte este anagrama celuilalt. Stabiliți ordinul de complexitate a algoritmului și demonstrați că algoritmul propus este corect.

Indicație. Se pot utiliza tabele de frecvențe.