$12n_{0416} \ (K12n_{0416})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 261u^{16} - 101u^{15} + \dots + 817b + 94, \ 113u^{16} + 166u^{15} + \dots + 817a - 745, \\ u^{17} - 6u^{15} + 15u^{13} - u^{12} - 15u^{11} + 5u^{10} - 5u^9 - 10u^8 + 24u^7 + 11u^6 - 18u^5 - 7u^4 + 4u^3 + 3u^2 + u - 1 \rangle \\ I_2^u &= \langle -1.51873 \times 10^{37}u^{39} - 1.89646 \times 10^{37}u^{38} + \dots + 1.21750 \times 10^{38}b - 1.24577 \times 10^{38}, \\ 2.13718 \times 10^{37}u^{39} + 1.36142 \times 10^{37}u^{38} + \dots + 3.65251 \times 10^{38}a + 1.26689 \times 10^{39}, \ u^{40} + u^{39} + \dots - 24u - 9 \\ I_3^u &= \langle -u^8 + 2u^6 - 2u^4 - u^3 + u^2 + b + 1, \ u^8 - u^7 - 3u^6 + 2u^5 + 4u^4 - 2u^3 - 4u^2 + a + u + 1, \\ u^9 - 3u^7 + 5u^5 + u^4 - 5u^3 - u^2 + 2u + 1 \rangle \\ I_4^u &= \langle u^6 - 2u^4 - u^3 + u^2 + b - 1, \ -2u^9 + 2u^8 + 5u^7 - 4u^6 - 8u^5 + 7u^4 + 8u^3 - 5u^2 + a - 6u + 5, \\ u^{10} - 3u^8 - u^7 + 4u^6 + u^5 - 4u^4 - u^3 + 3u^2 - 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 76 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 261u^{16} - 101u^{15} + \dots + 817b + 94, \ 113u^{16} + 166u^{15} + \dots + 817a - 745, \ u^{17} - 6u^{15} + \dots + u - 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.138311u^{16} - 0.203182u^{15} + \cdots - 0.357405u + 0.911873 \\ -0.319461u^{16} + 0.123623u^{15} + \cdots + 0.422277u - 0.115055 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.00979192u^{16} + 0.206854u^{15} + \cdots + 2.23133u + 0.728274 \\ -0.567931u^{16} - 0.00244798u^{15} + \cdots - 1.58262u + 0.239902 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.297430u^{16} + 0.0917993u^{15} + \cdots - 0.151775u + 1.00367 \\ 0.138311u^{16} + 0.203182u^{15} + \cdots + 0.357405u + 0.0881273 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.134639u^{16} + 0.0942472u^{15} + \cdots + 0.430845u + 0.763770 \\ -0.564259u^{16} + 0.294982u^{15} + \cdots + 0.430845u + 0.763770 \\ -0.198286u^{16} - 0.0611995u^{15} + \cdots + 0.430845u + 0.763770 \\ 0.203182u^{16} + 0.435741u^{15} + \cdots + 0.430845u + 0.763770 \\ 0.203182u^{16} + 0.457772u^{15} + \cdots + 0.430845u + 0.138311 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.0917993u^{16} + 0.435741u^{15} + \cdots + 1.70624u + 0.297430 \\ 0.203182u^{16} + 0.457772u^{15} + \cdots - 1.05018u + 0.138311 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.297430u^{16} + 0.0917993u^{15} + \cdots - 0.151775u + 1.00367 \\ 0.138311u^{16} + 0.203182u^{15} + \cdots + 0.357405u + 0.0881273 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{33}{817}u^{16} - \frac{1856}{817}u^{15} + \dots - \frac{7084}{817}u - \frac{8473}{817}u^{15} + \dots$$

Crossings	u-Polynomials at each crossing
c_1	$u^{17} + 14u^{16} + \dots + 3584u + 1024$
c_{2}, c_{5}	$u^{17} + 10u^{16} + \dots + 160u + 32$
c_3, c_4, c_7 c_{10}	$u^{17} - 6u^{15} + \dots + u + 1$
c_6	$u^{17} - 6u^{16} + \dots - 12u + 8$
c_8,c_{11}	$u^{17} + 12u^{16} + \dots + 7u + 1$
c_9, c_{12}	$u^{17} + 2u^{16} + \dots + 12u + 1$

Crossings	Riley Polynomials at each crossing
c_1	$y^{17} - 22y^{16} + \dots - 4587520y - 1048576$
c_{2}, c_{5}	$y^{17} - 14y^{16} + \dots + 3584y - 1024$
c_3, c_4, c_7 c_{10}	$y^{17} - 12y^{16} + \dots + 7y - 1$
c_6	$y^{17} - 6y^{16} + \dots + 720y - 64$
c_8,c_{11}	$y^{17} - 12y^{16} + \dots + 19y - 1$
c_9, c_{12}	$y^{17} + 24y^{16} + \dots + 34y - 1$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.872688 + 0.309245I		
a = -1.10902 + 0.97065I	-1.17696 + 5.14107I	-6.11359 - 6.50734I
b = 1.22842 + 0.81409I		
u = -0.872688 - 0.309245I		
a = -1.10902 - 0.97065I	-1.17696 - 5.14107I	-6.11359 + 6.50734I
b = 1.22842 - 0.81409I		
u = 0.112694 + 1.077070I		
a = 1.37425 + 0.41818I	-5.24123 + 3.03176I	-5.90001 - 2.22137I
b = -0.905176 - 0.807152I		
u = 0.112694 - 1.077070I		
a = 1.37425 - 0.41818I	-5.24123 - 3.03176I	-5.90001 + 2.22137I
b = -0.905176 + 0.807152I		
u = 0.770678 + 0.254682I		
a = -0.350181 - 0.951046I	-0.500652 - 0.396435I	-8.19182 + 2.68087I
b = 1.009160 - 0.082155I		
u = 0.770678 - 0.254682I		
a = -0.350181 + 0.951046I	-0.500652 + 0.396435I	-8.19182 - 2.68087I
b = 1.009160 + 0.082155I		
u = -1.220540 + 0.157617I		
a = -0.501451 + 0.512731I	-6.48988 + 1.76820I	-13.17903 - 1.70263I
b = -0.500714 + 0.816049I		
u = -1.220540 - 0.157617I		
a = -0.501451 - 0.512731I	-6.48988 - 1.76820I	-13.17903 + 1.70263I
b = -0.500714 - 0.816049I		
u = 1.251960 + 0.260556I		
a = 0.82098 + 1.51753I	-4.75266 - 7.21790I	-11.92961 + 6.92939I
b = -1.079480 + 0.641251I		
u = 1.251960 - 0.260556I		
a = 0.82098 - 1.51753I	-4.75266 + 7.21790I	-11.92961 - 6.92939I
b = -1.079480 - 0.641251I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.329090 + 0.472313I		
a = -0.038538 + 0.181070I	-14.4213 - 7.4571I	-11.51687 + 4.18112I
b = -0.79169 - 1.20549I		
u = 1.329090 - 0.472313I		
a = -0.038538 - 0.181070I	-14.4213 + 7.4571I	-11.51687 - 4.18112I
b = -0.79169 + 1.20549I		
u = -0.246489 + 0.489685I		
a = 1.73580 - 0.42019I	1.66217 - 1.14629I	1.43775 + 2.20534I
b = -0.968967 + 0.317789I		
u = -0.246489 - 0.489685I		
a = 1.73580 + 0.42019I	1.66217 + 1.14629I	1.43775 - 2.20534I
b = -0.968967 - 0.317789I		
u = -1.35873 + 0.57627I		
a = 1.29756 - 0.84527I	-13.0830 + 14.9833I	-9.98102 - 7.51290I
b = -1.17071 - 0.90048I		
u = -1.35873 - 0.57627I	10,0000 11,00007	0.004.00
a = 1.29756 + 0.84527I	-13.0830 - 14.9833I	-9.98102 + 7.51290I
b = -1.17071 + 0.90048I		
u = 0.468027	0.040.400	10.0500
a = 0.541197	-0.819496	-12.2520
b = 0.358302		

II.

$$\begin{array}{l} I_2^u = \langle -1.52 \times 10^{37} u^{39} - 1.90 \times 10^{37} u^{38} + \dots + 1.22 \times 10^{38} b - 1.25 \times 10^{38}, \ 2.14 \times 10^{37} u^{39} + 1.36 \times 10^{37} u^{38} + \dots + 3.65 \times 10^{38} a + 1.27 \times 10^{39}, \ u^{40} + u^{39} + \dots - 24u - 9 \rangle \end{array}$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.0585128u^{39} - 0.0372737u^{38} + \dots + 1.70400u - 3.46855 \\ 0.124742u^{39} + 0.155767u^{38} + \dots + 2.43424u + 1.02322 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.201855u^{39} + 0.202202u^{38} + \dots + 6.51731u + 1.59348 \\ 0.147685u^{39} + 0.0264282u^{38} + \dots + 2.61080u + 0.354275 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.0813577u^{39} - 0.202188u^{38} + \dots + 7.28317u + 1.97309 \\ 0.0286342u^{39} + 0.0928329u^{38} + \dots + 3.22599u + 0.539866 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.200240u^{39} - 0.0544321u^{38} + \dots + 5.36707u - 1.24072 \\ 0.118463u^{39} + 0.127401u^{38} + \dots + 1.05224u + 0.660498 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.200240u^{39} - 0.0544321u^{38} + \dots + 5.36707u - 1.24072 \\ 0.420625u^{39} + 0.140972u^{38} + \dots - 0.644987u - 0.651772 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.835765u^{39} + 0.0374218u^{38} + \dots + 5.71886u - 0.0603670 \\ 0.114623u^{39} + 0.0818378u^{38} + \dots + 4.95360u + 0.359674 \\ -0.0140809u^{39} + 0.0620252u^{38} + \dots + 4.95360u + 0.359674 \\ -0.0140809u^{39} + 0.0620252u^{38} + \dots - 4.27325u + 0.570666 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $0.893186u^{39} + 0.382084u^{38} + \cdots 32.1739u 19.4647$

Crossings	u-Polynomials at each crossing
c_1	$(u^{20} + 30u^{19} + \dots + 881u + 25)^2$
c_2, c_5	$(u^{20} - 4u^{19} + \dots - 9u - 5)^2$
c_3, c_4, c_7 c_{10}	$u^{40} - u^{39} + \dots + 24u - 9$
c_6	$(u^{20} + 2u^{19} + \dots + 2u - 1)^2$
c_8, c_{11}	$u^{40} + 27u^{39} + \dots - 702u + 81$
c_9, c_{12}	$u^{40} + 8u^{39} + \dots - 241750u - 136681$

Crossings	Riley Polynomials at each crossing
c_1	$(y^{20} - 82y^{19} + \dots - 403661y + 625)^2$
c_2, c_5	$(y^{20} - 30y^{19} + \dots - 881y + 25)^2$
c_3, c_4, c_7 c_{10}	$y^{40} - 27y^{39} + \dots + 702y + 81$
c_6	$(y^{20} - 6y^{19} + \dots - 26y + 1)^2$
c_8,c_{11}	$y^{40} - 19y^{39} + \dots - 578178y + 6561$
c_9, c_{12}	$y^{40} - 2y^{39} + \dots + 22299598078y + 18681695761$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.985793 + 0.106099I		
a = 1.47285 + 0.70515I	-0.81957 - 1.24696I	-7.62468 + 0.13280I
b = -1.313450 + 0.406280I		
u = 0.985793 - 0.106099I		
a = 1.47285 - 0.70515I	-0.81957 + 1.24696I	-7.62468 - 0.13280I
b = -1.313450 - 0.406280I		
u = -0.061557 + 0.981252I		
a = -1.42687 + 0.39525I	-10.10780 + 2.32175I	-8.97701 - 0.73874I
b = 0.740083 - 0.981052I		
u = -0.061557 - 0.981252I		
a = -1.42687 - 0.39525I	-10.10780 - 2.32175I	-8.97701 + 0.73874I
b = 0.740083 + 0.981052I		
u = 0.836619 + 0.625265I		
a = -1.68057 + 0.31357I	1.03980 - 5.20042I	-4.45133 + 5.57600I
b = 0.745821 - 0.208249I		
u = 0.836619 - 0.625265I		
a = -1.68057 - 0.31357I	1.03980 + 5.20042I	-4.45133 - 5.57600I
b = 0.745821 + 0.208249I		
u = 1.092520 + 0.041392I		
a = 0.114066 - 0.561701I	-1.84004 - 0.63402I	-8.04331 - 0.15211I
b = 0.687385 - 0.749134I		
u = 1.092520 - 0.041392I		
a = 0.114066 + 0.561701I	-1.84004 + 0.63402I	-8.04331 + 0.15211I
b = 0.687385 + 0.749134I		
u = -0.671937 + 0.604612I		
a = 0.525601 - 0.779399I	-0.81957 - 1.24696I	-7.62468 + 0.13280I
b = -1.313450 + 0.406280I		
u = -0.671937 - 0.604612I		
a = 0.525601 + 0.779399I	-0.81957 + 1.24696I	-7.62468 - 0.13280I
b = -1.313450 - 0.406280I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.10100		
a = -3.54571	-8.45151	-8.71120
b = 0.847094		
u = 0.850304 + 0.713148I		
a = 1.013260 + 0.848398I	1.03533	-6.45138 + 0.I
b = -0.493869		
u = 0.850304 - 0.713148I		
a = 1.013260 - 0.848398I	1.03533	-6.45138 + 0.I
b = -0.493869		
u = -0.562871 + 0.677759I		
a = 1.350220 + 0.203953I	2.60911	-60.518982 + 0.10I
b = -0.846857		
u = -0.562871 - 0.677759I		
a = 1.350220 - 0.203953I	2.60911	-60.518982 + 0.10I
b = -0.846857		
u = -0.069227 + 1.125560I		
a = -1.36033 + 0.39893I	-9.04644 - 8.94980I	-7.77982 + 5.10458I
b = 1.077500 - 0.827760I		
u = -0.069227 - 1.125560I		
a = -1.36033 - 0.39893I	-9.04644 + 8.94980I	-7.77982 - 5.10458I
b = 1.077500 + 0.827760I		
u = -1.093460 + 0.370616I		
a = -0.98200 + 1.09858I	-0.78834 + 4.67433I	-5.30649 - 6.82521I
b = 1.011700 + 0.632363I		
u = -1.093460 - 0.370616I		
a = -0.98200 - 1.09858I	-0.78834 - 4.67433I	-5.30649 + 6.82521I
b = 1.011700 - 0.632363I		
u = -1.157600 + 0.120447I		
a = -0.042441 - 0.362661I	-3.80624 + 5.08920I	-12.34652 - 4.90346I
b = -0.656124 - 1.053570I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.157600 - 0.120447I		
a = -0.042441 + 0.362661I	-3.80624 - 5.08920I	-12.34652 + 4.90346I
b = -0.656124 + 1.053570I		
u = 1.043330 + 0.515865I		
a = 0.976781 + 0.822046I	-3.80624 - 5.08920I	-12.34652 + 4.90346I
b = -0.656124 + 1.053570I		
u = 1.043330 - 0.515865I		
a = 0.976781 - 0.822046I	-3.80624 + 5.08920I	-12.34652 - 4.90346I
b = -0.656124 - 1.053570I		
u = -0.746386		
a = -4.63725	-7.16640	-21.4380
b = -0.254182		
u = -1.096590 + 0.652317I		
a = -0.831505 + 0.847751I	1.03980 + 5.20042I	-4.45133 - 5.57600I
b = 0.745821 + 0.208249I		
u = -1.096590 - 0.652317I		
a = -0.831505 - 0.847751I	1.03980 - 5.20042I	-4.45133 + 5.57600I
b = 0.745821 - 0.208249I		
u = 0.331219 + 0.637366I		
a = -0.382754 - 0.453408I	-1.84004 + 0.63402I	-8.04331 + 0.15211I
b = 0.687385 + 0.749134I		
u = 0.331219 - 0.637366I		
a = -0.382754 + 0.453408I	-1.84004 - 0.63402I	-8.04331 - 0.15211I
b = 0.687385 - 0.749134I		
u = -1.300800 + 0.543331I		
a = 1.58939 - 0.86240I	-13.8803 + 3.1384I	-10.93015 + 0.I
b = -0.919010 - 0.840072I		
u = -1.300800 - 0.543331I		
a = 1.58939 + 0.86240I	-13.8803 - 3.1384I	-10.93015 + 0.I
b = -0.919010 + 0.840072I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.33349 + 0.57768I		
a = -1.40702 - 0.79123I	-9.04644 - 8.94980I	0
b = 1.077500 - 0.827760I		
u = 1.33349 - 0.57768I		
a = -1.40702 + 0.79123I	-9.04644 + 8.94980I	0
b = 1.077500 + 0.827760I		
u = -1.39353 + 0.44049I		
a = -0.061607 + 0.191617I	-10.10780 + 2.32175I	0
b = 0.740083 - 0.981052I		
u = -1.39353 - 0.44049I		
a = -0.061607 - 0.191617I	-10.10780 - 2.32175I	0
b = 0.740083 + 0.981052I		
u = -1.47294		
a = -0.409227	-7.16640	-21.4380
b = -0.254182		
u = 1.47987		
a = 0.579170	-8.45151	-8.71120
b = 0.847094		
u = 1.44287 + 0.49042I		
a = 0.097964 + 0.290556I	-13.8803 + 3.1384I	0
b = -0.919010 - 0.840072I		
u = 1.44287 - 0.49042I		
a = 0.097964 - 0.290556I	-13.8803 - 3.1384I	0
b = -0.919010 + 0.840072I		
u = -0.088339 + 0.296040I		
a = -3.29187 + 1.03172I	-0.78834 + 4.67433I	-5.30649 - 6.82521I
b = 1.011700 + 0.632363I		
u = -0.088339 - 0.296040I		
a = -3.29187 - 1.03172I	-0.78834 - 4.67433I	-5.30649 + 6.82521I
b = 1.011700 - 0.632363I		

III.
$$I_3^u = \langle -u^8 + 2u^6 - 2u^4 - u^3 + u^2 + b + 1, \ u^8 - u^7 + \dots + a + 1, \ u^9 - 3u^7 + 5u^5 + u^4 - 5u^3 - u^2 + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{8} + u^{7} + 3u^{6} - 2u^{5} - 4u^{4} + 2u^{3} + 4u^{2} - u - 1 \\ u^{8} - 2u^{6} + 2u^{4} + u^{3} - u^{2} - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{8} - 3u^{6} + 5u^{4} - 5u^{2} + 2 \\ -u^{8} + 2u^{6} - u^{5} - 3u^{4} + u^{3} + 2u^{2} - 2u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{6} - u^{5} - 2u^{4} + u^{3} + 2u^{2} - u - 1 \\ u^{8} - u^{7} - 3u^{6} + 2u^{5} + 4u^{4} - 2u^{3} - 3u^{2} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{6} - u^{5} - 2u^{4} + u^{3} + 2u^{2} - u - 1 \\ u^{8} - 2u^{6} + 2u^{4} + u^{3} - u^{2} + u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{8} + u^{7} + 3u^{6} - 2u^{5} - 5u^{4} + 2u^{3} + 5u^{2} - u - 2 \\ u^{8} - 2u^{6} + 2u^{4} + u^{3} - u^{2} + u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{8} + u^{7} + 3u^{6} - 2u^{5} + 5u^{4} - 2u^{3} - 2u^{2} + 2u \\ -u^{8} + 2u^{6} - 3u^{4} + 2u^{2} - u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{6} - u^{5} - 2u^{4} + u^{3} + 3u^{2} - u - 1 \\ u^{8} - u^{7} - 3u^{6} + 2u^{5} + 5u^{4} - 2u^{3} - 4u^{2} + u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $u^8 + 6u^7 3u^6 10u^5 + 4u^4 + 15u^3 + 3u^2 11u 7$

Crossings	u-Polynomials at each crossing
c_1	$u^9 - 9u^8 + 28u^7 - 51u^6 + 59u^5 - 48u^4 + 29u^3 - 14u^2 + 5u - 1$
c_2	$u^9 - u^8 - 4u^7 + u^6 + 5u^5 - 2u^4 - 3u^3 + 2u^2 + u - 1$
c_3, c_{10}	$u^9 - 3u^7 + 5u^5 - u^4 - 5u^3 + u^2 + 2u - 1$
c_4, c_7	$u^9 - 3u^7 + 5u^5 + u^4 - 5u^3 - u^2 + 2u + 1$
<i>C</i> ₅	$u^9 + u^8 - 4u^7 - u^6 + 5u^5 + 2u^4 - 3u^3 - 2u^2 + u + 1$
<i>c</i> ₆	$u^9 + u^8 - 2u^7 - 3u^6 + 2u^5 + 5u^4 - u^3 - 4u^2 + u + 1$
c_8, c_{11}	$u^9 + 6u^8 + 19u^7 + 40u^6 + 59u^5 + 63u^4 + 47u^3 + 23u^2 + 6u + 1$
c_9, c_{12}	$u^9 + 4u^8 + 3u^7 - u^6 - 6u^5 - 3u^4 - u^3 + 2u^2 + u + 1$

Crossings	Riley Polynomials at each crossing
c_1	$y^9 - 25y^8 - 16y^7 - 103y^6 - 33y^5 - 48y^4 - 15y^3 - 2y^2 - 3y - 1$
c_{2}, c_{5}	$y^9 - 9y^8 + 28y^7 - 51y^6 + 59y^5 - 48y^4 + 29y^3 - 14y^2 + 5y - 1$
c_3, c_4, c_7 c_{10}	$y^9 - 6y^8 + 19y^7 - 40y^6 + 59y^5 - 63y^4 + 47y^3 - 23y^2 + 6y - 1$
c_6	$y^9 - 5y^8 + 14y^7 - 29y^6 + 48y^5 - 59y^4 + 51y^3 - 28y^2 + 9y - 1$
c_8,c_{11}	$y^9 + 2y^8 - y^7 - 20y^6 - 37y^5 - 47y^4 - 61y^3 - 91y^2 - 10y - 1$
c_{9}, c_{12}	$y^9 - 10y^8 + 5y^7 - 15y^6 + 10y^5 + 5y^4 + 3y^3 - 3y - 1$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.022180 + 0.325067I		
a = 0.587091 + 1.128900I	-2.29340 - 6.07855I	-8.47383 + 8.86704I
b = -0.846738 + 0.986047I		
u = 1.022180 - 0.325067I		
a = 0.587091 - 1.128900I	-2.29340 + 6.07855I	-8.47383 - 8.86704I
b = -0.846738 - 0.986047I		
u = -0.915990 + 0.694675I		
a = -1.58210 + 0.48658I	1.17777 + 6.95533I	-4.27023 - 9.54243I
b = 0.993839 + 0.427672I		
u = -0.915990 - 0.694675I		
a = -1.58210 - 0.48658I	1.17777 - 6.95533I	-4.27023 + 9.54243I
b = 0.993839 - 0.427672I		
u = 1.047510 + 0.647735I		
a = -0.881374 - 0.604152I	0.33154 - 3.66672I	-8.46619 + 1.40357I
b = 0.781614 + 0.355685I		
u = 1.047510 - 0.647735I		
a = -0.881374 + 0.604152I	0.33154 + 3.66672I	-8.46619 - 1.40357I
b = 0.781614 - 0.355685I		
u = -1.31380		
a = -1.61123	-9.54268	-17.4150
b = -0.443802		
u = -0.496798 + 0.288456I		
a = 0.182003 - 0.761275I	0.620620 - 0.259550I	-1.58232 - 1.92541I
b = -1.206810 + 0.297957I		
u = -0.496798 - 0.288456I		
a = 0.182003 + 0.761275I	0.620620 + 0.259550I	-1.58232 + 1.92541I
b = -1.206810 - 0.297957I		

IV.
$$I_4^u = \langle u^6 - 2u^4 - u^3 + u^2 + b - 1, -2u^9 + 2u^8 + \dots + a + 5, u^{10} - 3u^8 - u^7 + 4u^6 + u^5 - 4u^4 - u^3 + 3u^2 - 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 2u^{9} - 2u^{8} - 5u^{7} + 4u^{6} + 8u^{5} - 7u^{4} - 8u^{3} + 5u^{2} + 6u - 5 \\ -u^{6} + 2u^{4} + u^{3} - u^{2} + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 2u^{9} - 5u^{7} - 2u^{6} + 5u^{5} + u^{4} - 4u^{3} - u^{2} + 3u - 1 \\ -u^{9} - u^{8} + 2u^{7} + 3u^{6} - 2u^{4} + u^{3} + 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2u^{9} + u^{8} + 5u^{7} - 6u^{5} + u^{4} + 5u^{3} - 2u^{2} - 4u + 3 \\ u^{9} + u^{8} - 2u^{7} - 4u^{6} + u^{5} + 3u^{4} - u^{3} - 2u^{2} + u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 2u^{9} - u^{8} - 5u^{7} + u^{6} + 7u^{5} - 3u^{4} - 7u^{3} + 2u^{2} + 5u - 3 \\ -u^{6} + 2u^{4} + u^{3} - u^{2} + u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 2u^{9} - u^{8} - 5u^{7} + u^{6} + 7u^{5} - 3u^{4} - 7u^{3} + 2u^{2} + 5u - 3 \\ -u^{9} + 2u^{7} - 2u^{5} + 2u^{4} + 3u^{3} - u^{2} - u + 2 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -2u^{9} + 2u^{8} + 5u^{7} - 3u^{6} - 8u^{5} + 4u^{4} + 7u^{3} - 3u^{2} - 5u + 4 \\ -2u^{9} - u^{8} + 5u^{7} - 6u^{5} + u^{4} + 5u^{3} - 2u^{2} - 4u + 2 \\ -2u^{9} - u^{8} + 5u^{7} - 6u^{5} + u^{4} + 5u^{3} - 2u^{2} - 4u + 2 \\ u^{9} + u^{8} - 2u^{7} - 4u^{6} + u^{5} + 3u^{4} - u^{3} - 3u^{2} + u + 2 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$-5u^9 + 4u^8 + 15u^7 - 2u^6 - 24u^5 + u^4 + 19u^3 - 2u^2 - 14u - 1$$

Crossings	u-Polynomials at each crossing
c_1	$(u^5 - 5u^4 + 8u^3 - 7u^2 + 3u - 1)^2$
c_2	$(u^5 + u^4 - 2u^3 - u^2 + u + 1)^2$
c_3, c_{10}	$u^{10} - 3u^8 + u^7 + 4u^6 - u^5 - 4u^4 + u^3 + 3u^2 - 1$
c_4, c_7	$u^{10} - 3u^8 - u^7 + 4u^6 + u^5 - 4u^4 - u^3 + 3u^2 - 1$
C ₅	$(u^5 - u^4 - 2u^3 + u^2 + u - 1)^2$
<i>c</i> ₆	$(u^5 - u^4 - u^3 + 2u^2 + u - 1)^2$
c_8, c_{11}	$u^{10} + 6u^9 + \dots + 6u + 1$
c_9, c_{12}	$u^{10} + u^9 - 6u^8 + 4u^7 + 5u^6 - 11u^5 + 5u^4 + 4u^3 - 7u^2 + 4u - 1$

Crossings	Riley Polynomials at each crossing
c_1	$(y^5 - 9y^4 - 11y^2 - 5y - 1)^2$
c_2, c_5	$(y^5 - 5y^4 + 8y^3 - 7y^2 + 3y - 1)^2$
c_3, c_4, c_7 c_{10}	$y^{10} - 6y^9 + \dots - 6y + 1$
c_6	$(y^5 - 3y^4 + 7y^3 - 8y^2 + 5y - 1)^2$
c_8, c_{11}	$y^{10} - 2y^9 + \dots - 2y + 1$
c_9, c_{12}	$y^{10} - 13y^9 + 38y^8 - 44y^7 + 31y^6 - 29y^5 + 23y^4 - 8y^3 + 7y^2 - 2y + 1$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.650832 + 0.640961I		
a = 2.13970 + 0.29477I	1.57933 - 1.42206I	-3.99937 + 3.89082I
b = -0.904429 + 0.339760I		
u = 0.650832 - 0.640961I		
a = 2.13970 - 0.29477I	1.57933 + 1.42206I	-3.99937 - 3.89082I
b = -0.904429 - 0.339760I		
u = -0.779988 + 0.768157I		
a = 0.896252 - 0.611916I	1.57933 - 1.42206I	-3.99937 + 3.89082I
b = -0.904429 + 0.339760I		
u = -0.779988 - 0.768157I		
a = 0.896252 + 0.611916I	1.57933 + 1.42206I	-3.99937 - 3.89082I
b = -0.904429 - 0.339760I		
u = 0.799959 + 0.294870I		
a = -0.603978 - 0.208555I	-1.44657 + 3.45949I	-8.68875 - 2.10393I
b = 1.116850 + 0.784420I		
u = 0.799959 - 0.294870I		
a = -0.603978 + 0.208555I	-1.44657 - 3.45949I	-8.68875 + 2.10393I
b = 1.116850 - 0.784420I		
u = -1.100530 + 0.405664I		
a = -0.894237 + 0.771397I	-1.44657 + 3.45949I	-8.68875 - 2.10393I
b = 1.116850 + 0.784420I		
u = -1.100530 - 0.405664I		
a = -0.894237 - 0.771397I	-1.44657 - 3.45949I	-8.68875 + 2.10393I
b = 1.116850 - 0.784420I		
u = -0.658694		
a = -6.32803	-6.84525	4.37620
b = 0.575152		
u = 1.51815		
a = 0.252548	-6.84525	4.37620
b = 0.575152		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$ (u^{5} - 5u^{4} + 8u^{3} - 7u^{2} + 3u - 1)^{2} $ $ \cdot (u^{9} - 9u^{8} + 28u^{7} - 51u^{6} + 59u^{5} - 48u^{4} + 29u^{3} - 14u^{2} + 5u - 1) $ $ \cdot (u^{17} + 14u^{16} + \dots + 3584u + 1024)(u^{20} + 30u^{19} + \dots + 881u + 25)^{2} $
c_2	$(u^{5} + u^{4} - 2u^{3} - u^{2} + u + 1)^{2}$ $\cdot (u^{9} - u^{8} - 4u^{7} + u^{6} + 5u^{5} - 2u^{4} - 3u^{3} + 2u^{2} + u - 1)$ $\cdot (u^{17} + 10u^{16} + \dots + 160u + 32)(u^{20} - 4u^{19} + \dots - 9u - 5)^{2}$
c_3, c_{10}	$(u^{9} - 3u^{7} + 5u^{5} - u^{4} - 5u^{3} + u^{2} + 2u - 1)$ $\cdot (u^{10} - 3u^{8} + \dots + 3u^{2} - 1)(u^{17} - 6u^{15} + \dots + u + 1)$ $\cdot (u^{40} - u^{39} + \dots + 24u - 9)$
c_4, c_7	$(u^{9} - 3u^{7} + 5u^{5} + u^{4} - 5u^{3} - u^{2} + 2u + 1)$ $\cdot (u^{10} - 3u^{8} + \dots + 3u^{2} - 1)(u^{17} - 6u^{15} + \dots + u + 1)$ $\cdot (u^{40} - u^{39} + \dots + 24u - 9)$
c_5	$(u^{5} - u^{4} - 2u^{3} + u^{2} + u - 1)^{2}$ $\cdot (u^{9} + u^{8} - 4u^{7} - u^{6} + 5u^{5} + 2u^{4} - 3u^{3} - 2u^{2} + u + 1)$ $\cdot (u^{17} + 10u^{16} + \dots + 160u + 32)(u^{20} - 4u^{19} + \dots - 9u - 5)^{2}$
c ₆	$(u^{5} - u^{4} - u^{3} + 2u^{2} + u - 1)^{2}$ $\cdot (u^{9} + u^{8} - 2u^{7} - 3u^{6} + 2u^{5} + 5u^{4} - u^{3} - 4u^{2} + u + 1)$ $\cdot (u^{17} - 6u^{16} + \dots - 12u + 8)(u^{20} + 2u^{19} + \dots + 2u - 1)^{2}$
c_8, c_{11}	$(u^{9} + 6u^{8} + 19u^{7} + 40u^{6} + 59u^{5} + 63u^{4} + 47u^{3} + 23u^{2} + 6u + 1)$ $\cdot (u^{10} + 6u^{9} + \dots + 6u + 1)(u^{17} + 12u^{16} + \dots + 7u + 1)$ $\cdot (u^{40} + 27u^{39} + \dots - 702u + 81)$
c_9, c_{12}	$(u^{9} + 4u^{8} + 3u^{7} - u^{6} - 6u^{5} - 3u^{4} - u^{3} + 2u^{2} + u + 1)$ $\cdot (u^{10} + u^{9} - 6u^{8} + 4u^{7} + 5u^{6} - 11u^{5} + 5u^{4} + 4u^{3} - 7u^{2} + 4u - 1)$ $\cdot (u^{17} + 2u^{16} + \dots + 12u + 1)(u^{40} + 8u^{39} + \dots - 241750u - 136681)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y^{5} - 9y^{4} - 11y^{2} - 5y - 1)^{2}$ $\cdot (y^{9} - 25y^{8} - 16y^{7} - 103y^{6} - 33y^{5} - 48y^{4} - 15y^{3} - 2y^{2} - 3y - 1)$ $\cdot (y^{17} - 22y^{16} + \dots - 4587520y - 1048576)$ $\cdot (y^{20} - 82y^{19} + \dots - 403661y + 625)^{2}$
c_2, c_5	$(y^{5} - 5y^{4} + 8y^{3} - 7y^{2} + 3y - 1)^{2}$ $\cdot (y^{9} - 9y^{8} + 28y^{7} - 51y^{6} + 59y^{5} - 48y^{4} + 29y^{3} - 14y^{2} + 5y - 1)$ $\cdot (y^{17} - 14y^{16} + \dots + 3584y - 1024)(y^{20} - 30y^{19} + \dots - 881y + 25)^{2}$
c_3, c_4, c_7 c_{10}	$(y^{9} - 6y^{8} + 19y^{7} - 40y^{6} + 59y^{5} - 63y^{4} + 47y^{3} - 23y^{2} + 6y - 1)$ $\cdot (y^{10} - 6y^{9} + \dots - 6y + 1)(y^{17} - 12y^{16} + \dots + 7y - 1)$ $\cdot (y^{40} - 27y^{39} + \dots + 702y + 81)$
c ₆	$(y^{5} - 3y^{4} + 7y^{3} - 8y^{2} + 5y - 1)^{2}$ $\cdot (y^{9} - 5y^{8} + 14y^{7} - 29y^{6} + 48y^{5} - 59y^{4} + 51y^{3} - 28y^{2} + 9y - 1)$ $\cdot (y^{17} - 6y^{16} + \dots + 720y - 64)(y^{20} - 6y^{19} + \dots - 26y + 1)^{2}$
c_8, c_{11}	$(y^{9} + 2y^{8} - y^{7} - 20y^{6} - 37y^{5} - 47y^{4} - 61y^{3} - 91y^{2} - 10y - 1)$ $\cdot (y^{10} - 2y^{9} + \dots - 2y + 1)(y^{17} - 12y^{16} + \dots + 19y - 1)$ $\cdot (y^{40} - 19y^{39} + \dots - 578178y + 6561)$
c_9, c_{12}	$(y^{9} - 10y^{8} + 5y^{7} - 15y^{6} + 10y^{5} + 5y^{4} + 3y^{3} - 3y - 1)$ $\cdot (y^{10} - 13y^{9} + 38y^{8} - 44y^{7} + 31y^{6} - 29y^{5} + 23y^{4} - 8y^{3} + 7y^{2} - 2y + 1)$ $\cdot (y^{17} + 24y^{16} + \dots + 34y - 1)$ $\cdot (y^{40} - 2y^{39} + \dots + 22299598078y + 18681695761)$