Recurrent Neural Networks

COSC 410: Applied Machine Learning

Spring 2022

Prof. Apthorpe

Outline

- Motivating Tasks
- Challenges with FNNs & CNNs
- Recurrent Network Predictions
- Why Recurrent Connections?
- Training RNNs
- Deep RNNs
- RNN Memory

Motivating Tasks

Predicting sequences

- Predict future elements (forecasting)
 - Commodity prices, vehicle trajectories, text generation, ...

RNNs

Motivating Tasks

Predicting sequences

- Predict future elements (forecasting)
 - Commodity prices, vehicle trajectories, text generation, ...
- Label current state based on past
 - Speech recognition, dynamic hardware control, anomaly detection, ...

Sequence Data

- Input sequences varieties
 - Univariate: one value per step
 - Multivariate: multiple values per step

What are some examples of each?

Challenges with FNNs & CNNs

Expect fixed-size inputs

All examples must have same number of features

- BUT...real-world sequences can be arbitrary lengths
 - Natural language text documents vary in word count...
 - One user may say "Alexa" faster or slower than others...

Deep Neural Network

Challenges with FNNs & CNNs

• Option: Pad all sequences to same length

Pros & cons? When might this be good idea? When might this be a bad idea?

Recurrent Network (RNN) Approach

Process sequence data one step at a time

Make one prediction per step

```
for step in sequence:
    ...
```

- Rather than one prediction per example
- If you only need one prediction per example, use the one from the last step

Works for examples with any number of steps

RNN Prediction Modes

Sequence to Sequence

Sequence to Vector

Vector to Sequence

What are some examples of each?

Recurrent Connections

- FNN and CNN connections go forward through the network
- RNNs have connections **backward** to the same or earlier layers

Why Recurrent Connections

- F
- Recurrent connections provide a network with memory
 - The output at step *t* depends on the input at times [*t-n*, *t*]
 - Why?

Training RNNs

Recurrent connections can be unrolled in time

Time

Training RNNs

Backpropagation through time

Compute weight & bias gradients by propagating errors backward

through unrolled networks

Training RNNs

Backpropagation through time

 Compute weight & bias gradients by propagating errors backward through unrolled networks

Deep RNNs

Challenges of "Simple" RNNs

y₍₀₎ **y**₍₁₎ **y**₍₂₎ **h**₍₀₎ **h**₍₁₎ **x**₍₂₎ Time

Limited memory

- Input at step t only affects output up to step t+n for small n
- Influence of previous inputs decays over successive steps

- Long sequences (with many steps)
 need networks with longer memory to model
 - High-fidelity audio, long text documents, etc.

Challenges of "Simple" RNNs

Techniques to increase RNN memory

Hand-designed recurrent "cells"

Next class!

"Reservoir" networks

Questions?