ЛАБОРАТОРНАЯ РАБОТА №1

ИССЛЕДОВАНИЕ ФУНКЦИИ СЕРДЦА МЕТОДОМ ЭЛЕКТРОКАРДИОГРАФИИ

1. Цель работы:

Освоить метод электрокардиографии. Провести съем ЭКГ в покое и после функциональной пробы. Проанализировать снятую электрокардиограмму.

2. Используемое оборудование:

- 1. Электрокардиограф ЭК1Т 03М.
- 2. Набор электродов.
- 3. 5% раствор хлорида натрия (NaCl).
- 4. Вата, марля.

3. Программа работы:

- 1. Ознакомиться с принципами регистрации ЭКГ и основными ее характеристиками.
- 2. Изучить основные технические приемы, используемые для снятия ЭКГ с помощью электрокардиографа.
- 3. Ознакомиться со структурной схемой электрокардиографа ЭК1Т 03M, основными его частями и элементами управления, а также приемами работы с ним.
- 4. Провести съем ЭКГ в трех стандартных отведениях в состоянии покоя.
- 5. Зарегистрировать ЭКГ после функциональных проб.
- 6. Проанализировать снятые электрокардиограммы. Графически найти и построить электрическую ось сердца.
- 7. Составить отчет по работе.

4. Схема основных ЭКГ отведений:

В практической работе в большинстве случаев ограничиваются 12-ю отведениями: 3 стандартных (рис. 1, a), 3 усиленных от конечностей (рис. 1, $\delta - \varepsilon$), 6 грудных (рис. 1, δ).

В усиленных отведениях (предложены Гольдбергером в 1942 г.) один электрод накладывается на точки: L, R или F – активный электрод ("L" – left, "R" – right, "F" – foot), а второй через сопротивление (5 кОм) соединяется с остальными двумя конечностями. Они обозначаются соответственно: aVL, aVF, aVR ("a" – augmented (увеличенный), "V" – voltage (потенциал)).

Рис. 1. Схема отведений, применяемых для регистрации ЭКГ

5. Функциональная схема электрокардиографа:

Одноканальный портативный электрокардиограф ЭКГ1Т-03М с тепловой записью предназначен для эксплуатации в условиях неотложной помощи, а также в стационарных условиях лечебно-профилактических учреждений. Структурная схема прибора изображен на рис. 2.

Рис. 2. Структурная схема электрокардиографа

6. Основные элементы управления электрокардиографа и их назначение:

Биоэлектрические сигналы через кабель отведений и переключатель отведений (ПО) подаются на вход усилителя напряжения (УН). Ко входу усилителя напряжения подключается также источник калиброванного напряжения (ИК). Усиленный сигнал с выхода усилителя напряжения подается на вход усилителя мощности (УМ), после которого сигнал поступает на электромеханический преобразователь (ПЭМ), осуществляющий преобразование электрического сигнала в перемещение теплового пера. Термочувствительная бумага движется равномерно относительно пера с помощью лентопротяжного механизма (ЛПМ). Для питания усилителя биопотенциалов, электродвигателя лентопротяжного механизма, теплового пера в приборе имеется блок питания (БП).

7. Фрагменты записи электрокардиограмм, зарегистрированные в трех стандартных отведениях (состояние покоя), с калибровочным сигналом:

8. Фрагменты записи электрокардиограмм (II стандартное отведение) после функциональных проб:

9. Результаты измерений и расчетов:

Таблица 1 Таблица для записи результатов определения временных параметров ЭКГ (I стандартное отведение)

Результаты измерений и расчетов	Интервалы ЭКГ						
т сзультаты измерении и расчетов	P – Q	Q - S	Q – T	$R_1 - R_2$			
Расстояния между зубцами (мм)	3	2	11	29			
Длительности интервалов (с)	0.12	0.08	0.44	1.16			

Таблица 2 Таблица для записи результатов определения амплитудных параметров ЭКГ в состоянии покоя

Верхити тети	Виды зубцов и типы отведений														
Результаты измерений и	P		Q		R		S		Т						
расчетов	I	II	III	I	II	III	I	II	III	I	II	III	I	II	III
Высота зубцов (мм)	0.5	0.8	0.3	0	0.7	1.6	2.9	9.7	11	3.2	2	0	1.5	2.9	1
Амплитуды зубцов (мВ)	0.05	0.08	0.03	0	0.07	0.16	0.29	0.97	1.1	0.32	0.2	0	0.15	0.29	0.1

Таблица 3 Таблица для записи результатов амплитудно-временных характеристик ЭКГ после функциональных проб (II стандартное отведение)

Состояние	Длите	Амплитуда зубцов, мВ						
пациента	P–Q	QRS	S-T	R–R	P	Q	R	S
Покой	0.12	0.12	0.16	1.16	0.08	0.07	0.97	0.2
Физич.нагрузка	0.1	0.08	0.072	1.05	0.09	0.04	0.85	0.19
Ортостатическая проба	0.16	0.08	0.16	1.26	0.09	0.028	1.1	0.15
до/после	0.14	0.08	0.14	0.64	0.11	0.1	1.1	0.2

10. Анализ снятой ЭКГ:

1) Проверка правильности техники:

Значительных помех при проведении ЭКГ не обнаружено. Амплитуда контрольного милливольта 10мм. Скорость движения бумаги во время регистрации ЭКГ 25 мм/с.

2) Оценка регулярности сердечных сокращений в покое:

Таблица 4

Интервал	R_1-	R_2-R_3	средний	Погрешность (%)
	R_2			
Расстояние	29	33	31	13
между зубцами				
(MM)				
Длительность	1.16	1.32	1.24	
(c)				
ЧСС			48.4	

3) Определение источника возбуждения:

В норме водителем ритма является синоатриальный (СА) узел.

Синусовый ритм характеризуется:

- а. наличием во II-ом стандартном отведении **положительных** зубцов P, предшествующих каждому комплексу QRS;
- b. постоянной одинаковой формой всех зубцов P в одном и том же отведении;
- с. наличием **отрицательных** P зубцов в αVR отведении.

4) Оценка функции проводимости:

При оценке функции проводимости необходимо:

- измерить длительность зубца P, которая характеризует скорость проведения электрического импульса по предсердиям;
- продолжительность интервала P-Q(R) (скорость проведения по предсердиям, атриовентрикулярному узлу и системе Гисса);
- общую длительность желудочкового комплекса *QRS* (проведение возбуждения по желудочкам).

Интервал	P	P - Q	QRS
Длительность измеренная (с)	0.08	0.12	0.12
Длительность норма (с)	0.1	0.12-0.20	до 0.12

12. Вывод:

Оценивая регулярность сердечных сокращений в покое (на основании данных в Таблице 4 разброс R-R интервалов больше 10%), диагностируется неправильный (нерегулярный) сердечный ритм – аритмия.

У здорового человека в покое норма ЧСС составляет: у мужчин — от 60 до 75 в минуту, у женщин — от 65 до 80. <u>Средняя частота сердечных сокращений</u> (из Таблицы 4 - ЧСС=48.4 уд/мин) <u>менее 60 ударов в минуту</u>. Можно сделать вывод о том, что у испытуемого ярко выражена **брадикардия**.

Определяя источник возбуждения, нужно учитывать характеристики синусового ритма. Так как на кардиограмме <u>нет постоянной одинаковой формой всех зубцов Р в одном и том же отведении,</u> диагностируются различные варианты **несинусового ритма**.

Оценивая функцию проводимости и сравнивая измеренные интервалы и интервала нормы (Таблица 5), можно сделать вывод о том, что <u>скорость проведения электрического импульса по предсердиям</u> в норме; <u>скорость проведения по предсердиям</u>, <u>атриовентрикулярному узлу и системе Гисса</u> в норме; <u>проведение возбуждения по желудочкам</u> в норме.

При построении треугольника Эйнтховена и определении положения электрической оси сердца можно сделать вывод о том, что на данной ЭКГ ($\alpha = 96^{\circ}$) блокада задней ветви левой ножки пучка Гисса.