

BAHRIA UNIVERSITY (KARACHI CAMPUS)

Department of Software Engineering.
Assignment 03 (Fall 2022)

Course Title: Applied Physics

Class: BSE 1B

Course Instructor: Engr. Rizwan Fazal

Submission: 15 Jan 2023

Course Code: GSC-114

Shift: Morning
Date: 04 Jan 2023
Max Marks: 10 Points

Assignment No 03

Submitted By:

Name: Abdu	ıllah
Registration Number:	02-131222-099
Section:	1 B

Question #(2): find if the following vectors are Collinear7 a): A = (3,4.5) and B = (6.8.10). for two collinear vectors: AXB =0 $\overrightarrow{H} \times \overrightarrow{B} = \begin{vmatrix} \widehat{i} & \widehat{j} & \widehat{k} \\ 3 & 4 & 5 \end{vmatrix}$ = | 4 5 | = - | 3 5 | = + | 3 4 | = 8 10 | 6 10 | 5 + | 6 8 | = $= (40-40)\hat{i} - (30-30)\hat{j} + (24-24)\hat{k}$ Hence, of and B are two Collinsor Vecfor b): A= (3,4,0) and B=(22.1) for fue collineor Vectors AXB = 0.

$ \overrightarrow{A} \times \overrightarrow{B} = \widehat{i} \widehat{j} \widehat{k} $ $ 3 4 0 $ $ 2 2 1 $
$= \frac{ 4 \ 0 \hat{i} - 3 \ 0 \hat{j} + 3 \ 4 \hat{k}}{2 \ 1 }$
$= (4-0)\hat{i} - (3-0)\hat{j} + (6-8)\hat{k}$ $\vec{A} \times \vec{B} = 4\hat{i} - 3\hat{j} - 2\hat{k}$
since, $\overrightarrow{A} \times \overrightarrow{B} \neq 0$, hence \overrightarrow{A} and \overrightarrow{B} are not collinear
Question #(2): Find if following vectors are Coplanar?
a): $\overrightarrow{R} = (1,23), \overrightarrow{B} = (2,4,6) \text{ and } \overrightarrow{C} = (3,4,5)$
for three coplanar Vectors (AxB). 2=0.

$$= \begin{vmatrix} 2 & 3 & |\hat{i}| & - \begin{vmatrix} 1 & 3 & |\hat{j}| & + \begin{vmatrix} 1 & 2 & |\hat{i}| \\ 2 & 6 & |\hat{j}| & + \begin{vmatrix} 1 & 2 & |\hat{i}| \\ 2 & 4 & |\hat{i}| & - \begin{vmatrix} 2 & 6 & |\hat{j}| & + \begin{vmatrix} 1 & 2 & |\hat{i}| \\ 2 & 4 & |\hat{i}| & + |\hat{i}| & + |\hat{i}| \\ = & 0 & - & 0 & + 0 \\ = & 0 & - & 0 & + 0 \\ = & 0 & - & 0 & + 0 \\ = & 0 & - & 0 & + 0 \\ (\vec{R} \times \vec{B}) \cdot \vec{C} &= & 0 \end{vmatrix}$$

$$(\vec{R} \times \vec{B}) \cdot \vec{C} &= & 0 \\ (\vec{R} \times \vec{B}) \cdot$$

$= (-4-3)\hat{i} - (20+)\hat{j} + (15-2)\hat{k}$ $= -7\hat{i} -22\hat{j} + 13\hat{k}$
$(\vec{A} \times \vec{B}) \cdot \vec{C} = (-7\hat{i} - 22\hat{j} + 13\hat{k}) \cdot (3\hat{i} + 4\hat{j} + 5\hat{k})$
$(\overrightarrow{A} \times \overrightarrow{B}) \cdot \overrightarrow{C} = -44$
Hence, (AxB)-c = 0. A, B, and Core not coploner
Question # (3):- find the scalar Tripple product of given vectors.
a): $\vec{A} = (1,2,3), \vec{B} = (4,5,6) \text{ and } \vec{C} = (2,6,5)$
= form la [AxB)-c = scolor Tripple product
for AXB =
$\overrightarrow{A} \times \overrightarrow{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \end{vmatrix}$
4 5 6

$$\begin{aligned} &= (-4-0)\hat{i} - (20+2)\hat{j} + (0-2)\hat{k} \\ &= -4\hat{i} - 22\hat{j} - 2\hat{k} \\ &= -4\hat{i} - 22\hat{j} - 2\hat{k} \\ &= -4\hat{i} - 22\hat{j} - 2\hat{k} \\ &= (-4^2-2^2)^2 - 2\hat{k} \\ &= (-4-0)\hat{k} \\ &= (-4-0)\hat{i} - (20+2)\hat{j} + (0-2)\hat{k} \\ &= (-4-0)\hat{i} - (20+2)\hat{j} + (20+2)\hat{k} \\ &= (-4-0)\hat{i} - (20+2)\hat{j} + (20+2)\hat{k} \\ &= (-4-0)\hat{i} - (20+2)\hat{j} + (20+2)\hat{k} \\ &= (-4-0)\hat{i} - (20+2)\hat{k} \\ &= (-4-0)\hat{k} - (20+2)\hat{k} \\ &=$$

$$= \frac{1}{2} \left| (12 - 15)\hat{i} - (6 - 12)\hat{j} + (5 - 5)\hat{i} \right|$$

$$= \frac{1}{2} \left| -3\hat{i} + 6\hat{j} - 3\hat{i} \right|$$

$$= \frac{1}{2} \sqrt{(-3)^2 + (6)^2 + (-3)^2}$$

$$= \frac{1}{2} \sqrt{9 + 36 + 9}$$

$$\Delta = \frac{1}{2} \sqrt{54} \sqrt{9nil^2}$$

$$(b), \vec{R} = (5, -1, 1), \vec{B} = (-23.4)$$

$$-\int_{orm} a$$

$$\Delta = \frac{1}{2} \left| \vec{R} \times \vec{B} \right|$$

$$\int_{or} \vec{R} \times \vec{B} = \hat{i} \hat{j} \hat{k}$$

$$\int_{-2} \vec{3} + 1$$

$$-2 \vec{3} + 1$$

$$= \begin{vmatrix} -1 & 1 \\ 3 & 4 \end{vmatrix}^{2} - \begin{vmatrix} 5 & 1 \\ -2 & 4 \end{vmatrix}^{2} + \begin{vmatrix} 5 & 2 \\ -2 & 3 \end{vmatrix}$$

$$= (-4 - 3)\hat{c} - (20 + 2)\hat{j} + (15 - 2)\hat{c}$$

$$\overrightarrow{A} \times \overrightarrow{B} = -7\hat{c} - 22\hat{j} + 13\hat{c}$$

$$|\overrightarrow{A} \times \overrightarrow{B}| = \sqrt{(-7)^{2} + (-22)^{2} + (13)^{2}}$$

$$= \sqrt{49 + 489 + 169}$$

$$|\overrightarrow{A} \times \overrightarrow{B}| = \sqrt{702}$$

$$|\Delta = \frac{1}{2} \sqrt{702} \quad |\text{Uni}|^{2}$$

$$|\Delta = \frac{1}{2} \sqrt{702} \quad |\text{Uni}|^{2}$$

$$|\overrightarrow{A} = \frac{1}{2} \sqrt{702} \quad |\overrightarrow{A} = \frac{1}{2} \sqrt{702}$$

$$|\overrightarrow{A} = (1,2.3) \quad \overrightarrow{B} = (3,0.6) \quad \text{and} \quad \overrightarrow{C} = (7.8.9)$$

$$|\overrightarrow{C} = (1,2.3) \quad \overrightarrow{B} = (3,0.6) \quad \text{and} \quad \overrightarrow{C} = (7.8.9)$$

$$|\overrightarrow{C} = (1,2.3) \quad \overrightarrow{C} = (7.8.9)$$

for AXB: $\overrightarrow{A} \times \overrightarrow{B} = \begin{vmatrix} \hat{i} & \hat{j} & \widehat{F} \end{vmatrix}$ $\begin{vmatrix} 1 & 2 & 3 \\ 3 & 0 & 6 \end{vmatrix}$ $= \frac{2}{0} \frac{3}{6} = \frac{1}{3} \frac{3}{6} = \frac{1}{3} \frac{2}{6} = \frac{1}{3}$ $= (12 - 0)\hat{i} - (6 - 9)\hat{j} + (0 - 6)\hat{i}$ $\vec{A} \times \vec{B} = 12\hat{i} + 3\hat{j} + 6\hat{i}$ V= [c. (AxB') V= | (7 i+ j+qk)-(12i+3j-6k) (b) A= (5,-2,1), B = (-2,3,4) ondc=(3,4,5) · V= | ?-(AXB')|

—) —)
Now AXB:
$\overrightarrow{A} \times \overrightarrow{B} = \begin{vmatrix} \widehat{i} & \widehat{j} & \widehat{i} \\ 6 & -1 & 1 \end{vmatrix}$ $\begin{vmatrix} -2 & 3 & 4 \end{vmatrix}$
$= \left \frac{-1}{3} \frac{1}{9} \right ^{\frac{7}{5}} - \left \frac{5}{5} \frac{1}{5} \right ^{\frac{7}{5}} + \left \frac{5}{-2} \frac{-1}{3} \right ^{\frac{7}{5}}$
$= (-4-3)\hat{i} - (20+2)\hat{j} + (15-2)\hat{k}$ $\vec{A} \times \vec{B}' = -7\hat{i} - 22\hat{j} + 13\hat{k}$
= V= [c-(AxB)]
V = \$ [(3i+4j+5i)-(-7i-22j+13i)
= -21 -88 + 65 = -44
$V = 44 \text{ Onif}^3$