

PROJEKT INŻYNIERSKI

Aplikacja do symulacji rozprzestrzeniania się zarażeń

Jakub CIOŁEK Nr albumu: 295618

Kierunek: Infromatyka

Specjalność: Bazy danych i Inżynieria Systemów

PROWADZĄCY PRACĘ

Dr inż. Ewa Płuciennik

KATEDRA Informatyki Stosowanej

Wydział Automatyki, Elektroniki i Informatyki

Gliwice 2024

Tytuł pracy

Aplikacja do symulacji rozprzestrzeniania się zarażeń

Streszczenie

(Streszczenie pracy – odpowiednie pole w systemie APD powinno zawierać kopię tego streszczenia.)

Słowa kluczone

Modelowanie epidemii, Aplikacja edukacyjna, Bezpieczeństwo zdrowotne, Interaktywne narzędzie edukacyjne, Matematyczne modele epidemiologiczne

Thesis title

Application for simulating the spread of infections.

Abstract

(Thesis abstract – to be copied into an appropriate field during an electronic submission – in English.)

Keywords

Epidemic modeling, Educational application, Health safety, Interactive educational tool, Mathematical epidemiological models

Spis treści

1	W_{S1}	tęp		1
2	Mo	dele sy	ymulacji rozprzestrzeniania się zarażeń	3
	2.1	Mode	ele bazujące na SIR	4
	2.2	Mode	ele agentowe	5
	2.3	Inne	aplikacje do symulacji zarażeń	7
		2.3.1	EpiSimdemics - równoległy algorytm symulacji epidemii	7
		2.3.2	Zastosowanie rozszerzonej rzeczywistości w symulacji za-	
			rażeń	8
3	Wy	magan	aia i narzędzia	11
	3.1	Wym	agania funkcjonalne i niefunkcjonalne	11
		3.1.1	Wymagania funkcjonalne	11
		3.1.2	Wymagania niefunkcjonalne	13
	3.2	Wybı	rana technologia	13
	3.3	Mode	el symulacji rozprzestrzeniania się zarażeń zastosowany w	
		Infek	\mathbf{toSym}	14
		3.3.1	Równania opisujące model symulacji	15
		3.3.2	Symulacja zachowań ludzkich	15
4	Spe	cyfika	cja zewnętrzna	17
	4.1	Opis A	Aplikacji	17
	4.2	Wyma	agania Sprzętowe	17
	4.3	Wyma	agania Programowe	18
	4.4	Obsłu	ga Aplikacji	18
	4.5	Uruch	amianie Aplikacji	18
5	$[\mathbf{W}]$	łaściwy	y dla kierunku – np. Specyfikacja wewnętrzna]	21
6	We	ryfikad	cja i walidacja	23
7	Pos	leumor	vanjo i vrnjeski	25

Bibliografia	28
Spis skrótów i symboli	31
Źródła	33
Lista dodatkowych plików, uzupełniających tekst pracy	35
Spis rysunków	37
Spis tabel	39

Wstep

W świecie, który dopiero co doświadczył globalnej pandemii COVID-19, zauważamy potrzebę skutecznych narzędzi zarówno do przewidywania rozprzestrzeniania się infekcji, jak i podnoszenia świadomości społeczeństwa na temat konieczności przestrzegania restrykcji i ochrony zdrowia. Pandemia wywołała potrzebę innowacyjnych rozwiązań, w obszarze przewidywania i zrozumienia dynamiki rozprzestrzeniania się wirusa. W kontekście informatyki, praca skupia się na wykorzystaniu komputerów do opracowania aplikacji, która nie tylko pozwala na modelowanie dynamicznych scenariuszy rozprzestrzeniania się wirusa, ale także stawia na edukację społeczną w zakresie efektywnych praktyk prewencyjnych [4].

Dziedzina informatyki w znacznym stopniu przyczynia się do rozwiązania problemów związanych z pandemią, dowodem na to jest niezliczona ilość artykułów naukowych związanych z tym tematem opublikowanych w czasie pandemii [9][1][6]. Mając do dyspozycji technologię, jesteśmy w stanie opracować zaawansowane algorytmy symulacyjne, które umożliwiają modelowanie złożonych interakcji społecznych i ruchu ludzi w różnych środowiskach. Komputery stają się potężnym narzędziem do analizy danych, identyfikowania wzorców i prognozowania potencjalnych scenariuszy rozprzestrzeniania się infekcji.

Symulacje komputerowe pozwalają nam przewidywać, jak różne warunki środowiskowe i społeczne wpływają na tempo i zasięg rozprzestrzeniania się wirusa. Dodatkowo, umożliwiają szybkie testowanie różnych scenariuszy i strategii reakcji na sytuacje kryzysowe, co przyczynia się do skuteczniejszego przygotowania się do potencjalnych zagrożeń zdrowotnych [3].

Niniejsza praca w obszarze informatyki nie tylko skupia się na technicznej strukturze aplikacji, ale również na zastosowaniu narzędzi informatycznych w celu zwiększenia świadomości społecznej. Komputery służą jako platforma, na której możemy nie tylko symulować scenariusze, ale także efektywnie komunikować się z użytkownikami spoza środowiska medycznego, edukując ich na temat istoty zachowania się w sposób, który zmniejsza ryzyko zakażenia.

Pracę podzielono na siedem rozdziałów. Na początku pracy dokonano analizy ist-

niejących modeli symulacji zarażeń. Następnie sprecyzowano wymagania projektowe i narzędzia, które posłużyły do realizacji projektu. W dalszej części opisano specyfikacje wewnętrzną i zewnętrzną programu oraz scenariusze dotyczące walidacji i testowania. Na końcu przedstawiono wnioski i dalsze możliwości rozwoju aplikacji.

Modele symulacji rozprzestrzeniania się zarażeń

Symulacje komputerowe są niezwykle istotnym narzędziem badawczym, umożliwiającym przygotowanie się do różnych sytuacji kryzysowych oraz testowanie scenariuszy. To przyczynia się do lepszego zrozumienia i skutecznego zarządzania w przypadku wystąpienia lokalnych epidemii, co może przeciwdziałać ich przerodzeniu się w globalną pandemię.

Aby skutecznie symulować rozprzestrzenianie się zarażeń, konieczne jest w pierwszej kolejności zrozumienie mechanizmów, które kierują postępującą zarazą. Początek naszej pracy powinien poprzedzić dogłębne zbadanie natury patogenu, jego zdolności i ograniczeń wynikających z procesów selekcji naturalnej. Wirus, aby przetrwać, musi zdolnością zarażania przewyższać zdolność zabijania, co sprowadza się do utrzymania współczynnika rozprzestrzeniania większego niż jeden. Dodatkowo, uwzględnienie okresu inkubacji jest kluczowe, ponieważ wirus potrzebuje czasu na rozmnożenie się w organizmie nosiciela.

Jednakże, natura patogenu to tylko jeden z elementów, na które należy zwrócić uwagę w kontekście symulacji. Równie istotnym aspektem jest człowiek. Analiza funkcjonowania współczesnego społeczeństwa pomoże nam określić skalę, na jaką może rozprzestrzeniać się zaraza. Zrozumienie tego kontekstu umożliwi nam lepsze odzwierciedlenie rzeczywistości w modelowaniu.

Zebraną wiedzę należy następnie przełożyć na język matematyki i modelować komputerowo. W tym procesie istotne jest zidentyfikowanie obszarów, które mogą być uproszczone, oraz tych, które wymagają szczegółowego odwzorowania, aby osiągnąć postawione cele symulacji. W ten sposób, połączenie wiedzy o patogenie i społeczeństwie, przełożone na modele matematyczne, pozwoli nam skutecznie symulować i analizować procesy rozprzestrzeniania się zarażeń.

Wzmożone prace w dziedzinie modelowania epidemiologicznego miały miejsce na początku XX wieku, przez takich badaczy jak Ronald Ross[12] i Hilda Phoebe Hudson[10][11]. Świat po I wojnie światowej stanął przed pandemią grypy hiszpanki, która zarażając 1/3 ówczesnej populacji i powodując więcej ofiar niż dopiero co zakończony globalny konflikt zbrojny[5], spowodowała pilną potrzebę zrozumienia i kontrolowania takich masowych zjawisk. W odpowiedzi na konieczność zbadania dynamiki pandemii grypy hiszpanki, powstało wiele matematycznych modeli symulacyjnych dotyczących rozprzestrzeniania się chorób zakaźnych, na przykład teoria Kermacka-McKendricka[14] uważaną jako podstawę modelu SIR (podatni-zainfekowani-ozdrowieńcy). Model ten, stał się punktem wyjścia dla wielu kolejnych prac nad matematycznym modelowaniem epidemii, ukazując potencjał tego podejścia do zrozumienia i przewidywania rozprzestrzeniania się patogenów w społeczeństwie.

2.1 Modele bazujące na SIR

We współczesnych badaniach często rozwija się model SIR tak aby mógł lepiej dokładniej odzwierciedlać rozprzestrzenianie się choroby. Takimi modyfikacjami najczęściej są dalsze podzielenie populacji na grupy czy dodanie dodatkowych czynników wpływających na zarazę. Jednym z takich modeli jest K-SEIR [7] .

We wspomniany model rozszerza oryginalny SIR o dodatkową grupę E - Exposed (narażeni) oraz dodaje czynnik K, który określa działania przeciwdziałające zarazie podejmowane przez ludzi. Na podstawie modelu, dodatkowych parametrów oraz danych epidemiologicznych Covid-19 z miasta Wuhan zostały opracowane równania do matematycznego modelowania postępu rozprzestrzeniania się choroby, które autorzy przedstawili w tabeli2.1.

Rysunek 2.1: Schemat działania modelu K-SEIR[7]

Teoretyczny model K-SEIR został przekształcony w prosty oprogramowanie, zaimplementowane w języku PYTHON, przy użyciu inżynierii oprogramowania. W szczególności, ukończono zadania związane z projektowaniem interfejsu graficznego użytkownika, logiką sterowania, logiką operacji, kontrolą precyzji, kontrolą prędkości, wizualizacją danych, importem i eksportem danych, dopasowaniem parametrów, wyświetlaniem kluczowych danych oraz innymi konkretnymi treściami.

Tabela 2.1: Opis modelu epidemiologicznego K-SEIR opracowany na podstawie[7].

Populacja	Równanie	Parametry
Podatni (S)	$\frac{ds}{dt} = -\frac{\lambda si}{N} + \mu h$	λ : średnia dzienna ilość za-
		rażeń
		s: liczba populacji (S) w
		czasie t
		i: liczba populacji (I) w cza-
		sie t
		μ : średnia dzienna ilość po-
		nownych zarażeń
		h: liczba populacji (H) w
		czasie t
		N: liczba całkowitej popula-
	do Noi	cji w danym regionie
Narażeni (E)	$\frac{de}{dt} = \frac{\lambda si}{N} - \sigma e$	σ: wskaźnik zachorowań na
		dzień
		e: liczba populacji (E) w
7 · · /I)	di	czasie t
Zarażeni (I)	$\frac{di}{dt} = \sigma e - \gamma i$	γ : średni dzienny współ-
		czynnik zmniejszania grupy
Harrieri (D)	dr:	zarażonych pacjentów
Usunięci (R)	$\frac{dr}{dt} = \gamma i$	Suma wyleczonych i zmar-
Ozdrowieńcy	$h = \alpha r$	łych r: liczba populacji (R) w
(H)	$n - \alpha n$	czasie t
		α : średnia dzienna współ-
		czynnik zdrowienia
Zmarli (D)	$d = \beta r$	β : średnia dzienny współ-
		czynnik śmiertelności
	$\alpha + \beta = \gamma$	
	$s_0 + e_0 + i_0 + r_0 = N \text{(dla } t = 0)$	$0: \operatorname{czas} t = 0$
	$\lambda_k = (1 - k_1)\lambda$	K: współczynnik interwen- cji ludzkiej
	$\gamma_k = k_2 \gamma$	k_1 : miara izolacji fizycznej,
		współczynnik λ
	$\alpha_k = k_3 \alpha$	k_2 : zdolność przyjęcia do
		szpitala, współczynnik γ
		k_3 : zdolność leczenia, współ-
		czynnik α

2.2 Modele agentowe

Modele agentowe stanowią komputerowe symulacje, w których agenci, reprezentujący różne jednostki, mogą wejść w interakcję między sobą. Agentami mogą być jednostki takie jak osoby, organizacje, a nawet obszary geograficzne, takie jak województwa czy kraje. Wzajemne oddziaływania między agentami są określone przez zdefiniowane zasady progra-

mowe. Każdy z agentów podejmuje decyzje indywidualnie, co może obejmować zarówno proste wybory, na przykład decyzję o kierunku ruchu, jak i bardziej złożone decyzje, takie jak znalezienie konkretnego innego agenta lub sekwencję zdarzeń. W kontekście symulacji zarażeń, tego typu podejście pozwala na realistyczne uwzględnienie nieprzewidywalnych decyzji, jakie może podjąć jednostka.

Jednym z artykułów naukowych, poruszających temat modelowania agentowego pod tytułem: "An open-data-driven agent-based model to simulate infectious disease outbreaks" [8] dostarczy nam cennych informacji na temat implementacji takich rozwiązań.

W artykule możemy przeczytać szczegółowe informacje na temat tego co badacze wzięli po uwagę podczas tworzenia swojego modelu. był on oparty o dane populacji, umiejscowienia szkół i miejsc pracy a także danych dotyczących szczepień. Rzeczywiste dane są używane do określenia struktury wiekowej i płciowej naszych populacji, wraz z właściwym rozkładem wielkości gospodarstw domowych oraz innymi cechami takimi jak wiek dzieci. Następnie dane opisujące lokalizację szkół oraz miejsc pracy dają możliwość wiernego odwzorowania interakcji pomiędzy ludźmi. Na koniec aby ocenić podatność populacji na rozprzestrzenianie się choroby uwzględniono ilość szczepień (badanie opierało się na badaniu epidemii odry). Następnym krokiem badaczy było wybranie testowanego obszaru i podzielenie go na mniejsze jednostki, w których przebywający ludzie są uznawani za mający kontakt ze sobą. Później należało rozmieścić agentów w odpowiednich domach według danych o populacji. Na koniec należało uwzględnić dodatkowe czynniki między innymi transport. Ostatnim krokiem było matematyczne opisane szans na zarażeniem, w tym celu autorzy wykorzystali równanie:

$$R_0 = cpd$$

gdzie:

 R_0 - prawdopodobieństwo infekcji.

c - liczba kontaktów na jednostkę czasu.

p - szansa na zarażenie podczas kontaktu.

d - długość trwania infekcji

Poprzez przekształcenie równania otrzymano:

$$p = \frac{R_0}{cd}$$

Dodatkowo w scenariuszach testowych, w których brano pod uwagę szczepienia użyto dodatkowego równania. Jest ono oparte na odporność zbiorowej jednak zmodyfikowane aby uwzględniać skuteczność szczepionki:

$$V_c = \frac{\left(1 - \frac{1}{R_0}\right)}{V_e}$$

gdzie:

 V_c - objęcie szczepieniami populacji

 V_e - skuteczność szczepionki.

Badacze przetestowali swój program na wielu miastach w Irlandii, ze względu na dostępne dane co do ich struktury oraz populacji. Dodatkowo model został porównany z rzeczywistymi danych dotyczącymi epidemii odry w Schull, Irlandia w 2012 roku. Ze względu na losowość w modelu efekty każdej z symulacji było nieco inne.

cyt. " (...) Średnia liczba zainfekowanych agentów w różnych próbach wyniosła 17, przy maksymalnej liczbie 90 zainfekowanych agentów w jednym przypadku. Dwadzieścia pięć procent prób skończyło się wybuchem, w którym więcej niż 30 agentów zostało zainfekowanych. Wyniki pokazują, że chociaż średnia dla wszystkich prób jest niższa niż liczba zainfekowanych w przypadku wybuchu w Schull, to liczba faktycznie zainfekowanych osób znajduje się w 75. centylu wyników modelu." (...) [8]

Podsumowując, przewagą modeli agentowych nad modelami takimi jak SEIR jest uwzględnienie decyzji jednostki, przykładowo jeżeli mimo choroby osoba zdecyduje się pójść do szkoły lub pracy, ilość zarażeń wzrośnie lub odwrotnie jeżeli zdecyduje się zostać w domu, ilość zarażeń zmaleje, takie niuanse są wychwytywane dzięki skupieniu się na jednostce. Niestety takie podejście dużo gorzej radzi sobie w miarę zwiększania populacji, dlatego idealnie nadają się do symulacja epidemii w małych miastach ale nie w obrębie całego kraju lub świata.

2.3 Inne aplikacje do symulacji zarażeń

Ta część zwróci uwagę na dwie innowacyjne metody modelowania zarażeń, które stanowią wyjątkowe podejście w szerokim spektrum dostępnych metod. Ze względu na obecności różnorodnych podejść do modelowania zarażeń, skoncentrujemy się teraz na dwóch szczególnie interesujących metodach. Pierwszą z nich jest ambitny projekt symulacyjny oparty na algorytmach równoległych, korzystający z obszernych danych dotyczących populacji w Stanach Zjednoczonych. Drugą, szczególnie oryginalną, jest aplikacja wykorzystująca technologię rozszerzonej rzeczywistości do wizualizacji, jak wirus może utrzymywać się na różnych powierzchniach i w konsekwencji jak może się szerzyć. Przechodząc do analizy tych dwóch wyjątkowych podejść w celu zidentyfikowania ich specyficznych zalet.

2.3.1 EpiSimdemics - równoległy algorytm symulacji epidemii

"EpiSimdemics: an efficient algorithm for simulating the spread of infectious disease over large realistic social networks" [2] Jest bardzo ambitnym projektem wykorzystującym do obliczeń równoległy algorytm do symulowania rozprzestrzeniania się zarażeń w dużych

i realistycznych symulowanych społeczeństwach. Badacze postanowili zasymulować niemalże statystycznie nierozróżnialną populację Stanów Zjednoczonych. Każdy z agentów w symulacji jest inny i opisany przez nawet do 163 zmiennych demograficznych z spisu ludności. Algorytm *EpiSimdemics* opiera się na:

- kolekcji jednostek z wartościami stanu i lokalnych reguł przejść między stanami
- grafie interakcji przechwytującego lokalną zależność jednostki od swoich sąsiednich jednostek
- sekwencji aktualizacji lub harmonogramu, takiego że związek przyczynowo-skutkowy w systemie jest reprezentowany przez składanie lokalnych odwzorowań

Z tych założeń są formułowane równania przejść stanów dla każdego z osobników w symulacji. Reprezentujące w jaki sposób stan wierzchołka (osobnika) i jego sąsiadujących wierzchołków będzie zmieniał się w trakcie trwania programu. Innymi słowy definiuje proces rozprzestrzeniania się choroby w siatce wierzchołków reprezentujących społeczeństwo. Dzięki zastosowaniu tak skomplikowanego systemu, program *EpiSimdemics* posiada zdolność dostarczania szczegółowych informacji na temat rozprzestrzeniania się choroby w populacji, obejmujących takie detale jak konkretny zestaw osób zainfekowanych, miejsce zarażenia oraz kto ich zarażał.

2.3.2 Zastosowanie rozszerzonej rzeczywistości w symulacji zarażeń

Zainspirowani globalną pandemią COVID-19, badacze postanowili stworzyć innowacyjną aplikację pokazującą rozprzestrzenianie się wirusa poprzez różnego rodzaju powierzchnie i przedmioty, z którymi stykamy się w codziennym życiu. Udało się to dzięki wykorzystaniu rozszerzonej rzeczywistości, co pozwoliło na dokładne zobrazowanie, jak wirusy i bakterie mogą pozostawać na tych powierzchniach oraz jak łatwo mogą być przenoszone poprzez kontakty ręczne i inne interakcje. Aplikacja umożliwia użytkownikowi stworzenie własnego patogenu lub wybranie istniejącego, a następnie korzystając z kamery pozwala umieścić go w świecie wirtualnym. Użytkownik może śledzić, jak długo patogen utrzymuje się w danym miejscu, potencjalnie stanowiąc ryzyko przeniesienia się na inną osobę. Swoje spostrzeżenia i wnioski badacze zawarli w artykule Bio-Virus Spread Simulation in Real 3D Space using Augmented Reality [13]

Rysunek 2.2: Demonstracja działania aplikacji: (a) dostosowywanie niestandardowego wirusa, (b) wprowadzenie wirusa w rzeczywistego świata, (c) wirus widoczny w rozszerzonej rzeczywistości z panelem informacyjnym [13].

Wymagania i narzędzia

Rozdział omawia kluczowe aspekty dotyczące aplikacji do symulowania rozprzestrzeniania się zarażeń o nazwie InfektoSym. Rozpocznie się analizy i przedstawienia wymagań funkcjonalnych oraz niefunkcjonalnych. Następnie przybliży technologie wykorzystane w aplikacji. Dodatkowo, dokładnie wyjaśni działanie zaimplementowanego modelu symulacji rozprzestrzeniania się choroby, a także w jaki sposób aplikacja oddziałuje z użytkownikiem i jakie rezultaty może dostarczyć. Ten rozdział stanowi istotne wprowadzenie do zrozumienia zarówno technicznego, jak i funkcjonalnego aspektu projektu.

3.1 Wymagania funkcjonalne i niefunkcjonalne

3.1.1 Wymagania funkcjonalne

• Symulacja Ruchu i Interakcji:

Aplikacja pozwala na śledzenie trajektorii ruchu każdej postaci w biurze w czasie rzeczywistym. Interakcje pomiędzy postaciami są symulowane z uwzględnieniem różnych scenariuszy, takich jak rozmowy, wspólna praca, czy przerwy. W momencie, gdy jedna postać zostaje zarażona, aplikacja monitoruje, czy i jak szybko choroba rozprzestrzenia się na inne postacie poprzez ich bezpośrednie kontakty.

• Wizualizacja Stanów Zdrowia:

Na ekranie widoczne są dynamiczne wskaźniki zdrowia każdej postaci, pozwalające użytkownikowi śledzić ich aktualny stan (zdrowy, narażony, zarażony). Symulacja obejmuje także wizualizację okresów inkubacji oraz wyzdrowienia, umożliwiając obserwację zmian stanów zdrowia w czasie rzeczywistym.

• Monitorowanie Kontaktów i Narażenia:

Aplikacja zbiera dane dotyczące kontaktów pomiędzy postaciami, identyfikując te, które mogą prowadzić do potencjalnego zarażenia. Wizualizacja narażeń obejmuje

różne aspekty, takie jak dystans, czas trwania kontaktu oraz ewentualne zastosowane środki ochrony osobistej.

• Wariacje Scenariuszy:

Aplikacja umożliwia zmianę warunków symulacji, pozwalając użytkownikowi eksperymentować z różnymi scenariuszami zarażenia. Możliwość wprowadzania dynamicznych zmian w otoczeniu biurowym, takich jak nowe stanowiska pracy czy przeniesienie osób, dla lepszego zrozumienia wpływu organizacji przestrzeni na rozprzestrzenianie się infekcji.

• Wysoce Parametryzowalna Symulacja:

1. Dystans Zarażenia:

Użytkownik ma możliwość określenia maksymalnego dystansu, na jakim wirus może się przenosić między agentami.

2. Czas do Zarażenia:

Określenie czasu, jaki musi upłynąć w bliskim kontakcie z zarażoną postacią, aby doszło do zarażenia.

3. Zaraźliwość Patogenu:

Parametr definiujący zdolność wirusa do zarażania innych postaci w danym środowisku symulacyjnym.

4. Średni Okres Inkubacji:

Ustalenie czasu, jaki upływa od momentu zarażenia do pojawienia się objawów u zarażonej postaci.

5. Procent Populacji Noszący Maseczki:

Możliwość określenia odsetka populacji, który stosuje ochronę w postaci noszenia maseczek.

6. Skuteczność Maseczek:

Parametr określający, o ile procent zmniejsza się dystans zarażenia dla osób noszących maseczki.

7. Liczebność Populacji:

Określenie ogólnej liczby postaci uczestniczących w symulacji.

8. Odporność Populacji:

Ustalenie procenta populacji posiadającego naturalną odporność na wirusa.

9. Długość Symulacji:

Określenie czasu trwania symulacji w jednostkach czasu.

10. Prędkość Symulacji:

Umożliwienie regulacji prędkości symulacji, włączając przyspieszenie do 100-krotności normalnej prędkości.

11. Pauzowanie Symulacji:

Dodatkowa funkcjonalność, która pozwala na zatrzymywanie symulacji w dowolnym momencie i jej późniejsze wznowienie.

3.1.2 Wymagania niefunkcjonalne

• Intuicyjny Interfejs: Interfejs użytkownika powinien być zaprojektowany w sposób intuicyjny, umożliwiając łatwe poruszanie się po aplikacji i korzystanie z jej funkcji. Elementy graficzne, przyciski i opcje powinny być jasne i zrozumiałe dla użytkownika końcowego.

• Stabilność:

Aplikacja powinna charakteryzować się stabilnością działania, eliminując nieoczekiwane błędy, które mogą prowadzić do awarii. Wszystkie funkcje aplikacji powinny działać zgodnie z oczekiwaniami, zapewniając płynne doświadczenie użytkownika.

Odporność na Awarie:

Aplikacja powinna być odporne na awarie poprzez implementację mechanizmów zabezpieczających, takich jak obsługa błędów, przywracanie stanu aplikacji po awarii, oraz minimalizacja wpływu awarii na całość systemu.

• Płynność Symulacji:

Aplikacja powinna zapewniać płynną symulację nawet przy dużej ilości agentów uczestniczących w scenariuszu. Optymalizacje i zoptymalizowany kod powinny umożliwiać utrzymanie odpowiedniej prędkości symulacji, niezależnie od skomplikowania scenariusza.

• Responsywność Interfejsu:

Interfejs użytkownika powinien reagować szybko na akcje użytkownika, zapewniając natychmiastowe odpowiedzi na interakcje, co przyczyni się do lepszego doświadczenia użytkownika.

3.2 Wybrana technologia

Rozważając wybór technologii do stworzenia aplikacji *InfektoSym*, zdecydowano się na silnik gier Unity. Ten wybór był podyktowany kilkoma kluczowymi czynnikami, mającymi istotne znaczenie dla skuteczności i efektywności projektu.

Przede wszystkim, istnienie dużej społeczności użytkowników stanowiło istotny argument. Unity cieszy się uznaniem ze względu na szeroki dostęp do materiałów szkoleniowych wideo, aktywność na forum dyskusyjnych oraz obfite źródła dokumentacji online. Ta społeczność stanowi nie tylko źródło wsparcia, lecz także umożliwia szybsze rozwiązywanie potencjalnych problemów napotkanych podczas procesu tworzenia aplikacji.

Duże możliwości rozwoju były kolejnym czynnikiem decydującym o wyborze Unity. Silnik ten oferuje elastyczność i skalowalność, co pozwala na rozbudowę aplikacji w miarę ewentualnych zmian w wymaganiach projektu.

Aspekt wydajności miał kluczowe znaczenie dla płynności symulacji. Unity, dzięki zoptymalizowanym mechanizmom renderowania i obsługi fizyki - pierwotnie zaprojektowanych do tworzenia gier komputerowych, świetnie odnajduj się w przeprowadzaniu wszelkiego rodzaju symulacji gdzie ważna jest reprezentacja graficzna.

Gotowe narzędzia dostarczane przez Unity, takie jak edytory interfejsu użytkownika czy wbudowany system nawigacji dla poruszających się obiektów, znacząco skracają czas potrzebny na rozwój aplikacji. To ułatwienie pozwala skupić się na kluczowych aspektach projektu.

Podsumowując, wybór Unity jako platformy do tworzenia *InfektoSym* wynikał z korzyści płynących z bogatego ekosystemu, wydajności silnika oraz dostępności narzędzi ułatwiających pracę, co zapewniło efektywny i skuteczny proces realizacji projektu.

3.3 Model symulacji rozprzestrzeniania się zarażeń zastosowany w InfektoSym

Model symulacji zaimplementowany w *InfektoSym* stanowi połączenie modelu SEIR z podejściem opartym na agentach, mając na celu dokładne odwzorowanie rozprzestrzeniania się zarażeń. Struktura modelu zakłada podział populacji na cztery główne grupy, analogiczne do SEIR:

- Zdrowi (Susceptible)
- Narażeni (Exposed) grupa osób, które miały kontakt z zarażonym i są potencjalnie podatne na zakażenie.
- Zarażeni (Infected) grupa osób, u których choroba jest aktywna, co stanowi źródło dalszego zarażania.
- Usunięci (Removed) osoby, które zostały zidentyfikowane jako chore i zostały izolowane.

Symulacja opiera się na podejściu agentowym, skupiając uwagę na indywidualnych decyzjach każdego z osobników. Ten szczególny nacisk na indywidualność umożliwia uchwyce-

nie subtelności wprowadzanych przez decyzje jednostki, co jest istotne dla precyzyjnego modelowania dynamiki rozprzestrzeniania się zarażeń.

3.3.1 Równania opisujące model symulacji

Założenia modelu oraz parametry symulacji pozwalają wyizolować równania opisujące prawdopodobieństwo zarażenia w określonych warunkach.

Przejście agenta ze stanu zdrowego do narażonego obliczane jest według następujących parametrów i równań:

Jeżeli zdrowa osoba przebywa w odległości $x < d_{maks}$, gdzie x to odległość od zarażonego, a d to maksymalny dystans, na jaki patogen może się przenosić w czasie $t_k > t_z$, gdzie t_k to czas kontaktu, a t_z to minimalny czas potrzebny do zakażenia. Szansa na przeniesienie do grupy narażonych (exposed) określana jest przez parametr zdolności zarażania patogenu R_0 (jeżeli $R_0 = 50$, przy każdym kontakcie szansa na narażenie wynosi 50%). Dodatkowymi parametrami grającymi tu rolę jest posiadanie maseczki i jej skuteczność.

Kiedy agent zostanie uznany za narażonego, program ponownie wylicza procentowe szanse na rozwój choroby, czyli zostanie zarażonym.

$$P_z = R_0 \cdot (1 - I)$$

gdzie:

 $P_z \in <0,100>$ - szansa na zostanie zarażonym, wyrażona w %

 $R_0 \in <0,100>$ - współczynnik zakażalności patogenu

 $I \in <0, 1>$ - odporność jednostki.

Wykonywane jest losowanie; jeżeli tak, osobnik zostanie przeniesiony do grupy zarażonych (Infected), jeżeli nie, wróci do puli zdrowych (Susceptible). W obu przypadkach stanie się to po czasie $T_{inkubacji} \pm 24$ godziny (czasu symulacji).

Osoba zakażona jest usuwana z symulacji po czasie $T_{wykrycia} \pm 24$ godziny (czasu symulacji).

3.3.2 Symulacja zachowań ludzkich

W ramach symulacji zachowań ludzkich w aplikacji, agenci mają zdefiniowane konkretne czynności, które mogą wykonywać. Poniżej przedstawiono proces realizacji tych aktywności(poniższe wartości czasowe odnoszą się do czasu symulacji):

• Początkowe Losowanie:

 Kiedy agent pojawiając się w symulacji, losuje jedną z czterech podstawowych akcji: losowe spacerowanie, praca, przerwa lub lunch.

Rysunek 3.1: Schemat działania modelu użytego w *InfektoSym*

Każda akcja(oprócz losowego spacerowania) trwa od 1 do 4 godzin.

• Zmiana Akcji:

- Po zakończeniu aktualnej akcji, agent wybiera nową spośród losowego spacerowania, pracy, przerwy lub lunchu.
- Ten proces powtarza się, co pozwala agentowi na cykliczne zmiany działań.

• Rozmowy:

- Kiedy agenci się mijają, mają 4% szansę na rozpoczęcie rozmowy.
- Rozmowa trwa od 10 minut do 1 godziny, a po jej zakończeniu agent wybiera nową akcję.

• Praca, Odpoczynek i Lunch:

- Jeśli agent zdecyduje się pracować, odpoczywać lub coś zjeść sprawdza dostępność odpowiednio biurek, miejsc na kanapie, stolików w kuchni.
- Siada przy pierwszym wolnym miejscu i wykonuje czynność od 1 do 4 godzin, po czym wybiera nową akcję.
- W przypadku braku wolnych miejsc agent rozpoczyna losowe spacerowanie.

Ten proces symulacyjny pozwala na odwzorowanie różnorodnych działań agentów, obejmujących pracę, odpoczynek, jedzenie i społeczne interakcje. Losowanie czasu trwania i zmiana akcji wprowadza naturalność w zachowaniach agentów.

Specyfikacja zewnętrzna

Jeśli "Specyfikacja zewnętrzna":

- wymagania sprzętowe i programowe
- sposób instalacji
- sposób aktywacji
- sposób obsługi
- kwestie bezpieczeństwa
- przykład działania
- scenariusze korzystania z systemu (ilustrowane zrzutami z ekranu lub generowanymi dokumentami)

4.1 Opis Aplikacji

Aplikacja została stworzona w środowisku Unity i zapewnia interaktywną symulację rozprzestrzeniania się zarażeń w przestrzeni biurowej. Pozwala na zmianę wielu parametrów wpływających na przebieg symulacji. Ma na celu w prosty i zrozumiały dla każdego sposób pokazywać rozprzestrzenianie się choroby. Przeznaczona jest głównie dla użytkowników korzystających z komputerów osobistych z systemem operacyjnym Windows.

4.2 Wymagania Sprzętowe

- Komputer z systemem operacyjnym Windows.
- Ekran o rozdzielczości co najmniej 1280x720 pikseli.
- Karta graficzna wspierająca OpenGL 3.2 lub nowszy.

4.3 Wymagania Programowe

- System operacyjny: Windows 7/8/10 i nowsze.
- Zainstalowany runtime Unity w wersji zgodnej z aplikacją.

4.4 Obsługa Aplikacji

Do obsługi aplikacji wystarczy myszka, która umożliwia interakcję z interfejsem graficznym. Aplikacja nie wymaga dodatkowego sprzętu.

- Ustawianie Parametrów Symulacji odbywa się poprzez wybranie odpowiednich wartości na suwakach.
- Rozpoczęcie symulacji i jej kontrola
 aby rozpocząć symulacje należy po ustawieniu parametrów wcisnąć przycisk. W
 trakcie trwania symulacji jej prędkość można ustawiać odpowiednim suwakiem. Aby
 zatrzymać symulację należy wcisnąć przycisk pauzy. Aby zrestartować symulację

4.5 Uruchamianie Aplikacji

należy wcisnąć przycisk restartu.

Aby skorzystać z aplikacji, należy wykonać poniższe kroki:

- 1. Pobrać folder zawierający aplikację.
- 2. Rozpakować pobrany folder w wybranym miejscu na dysku.
- 3. Kliknąć w folder aplikacji.
- 4. Kliknąć dwukrotnie plik wykonywalny (exe) aplikacji.

Aplikacja uruchomi się bez konieczności instalacji.

Rysunek 4.1: Ekran początkowy aplikacji.

Rysunek 4.2: Ekran podczas działającej symulacji: 1. Suwaki do ustawiania parametrów, 2. Przyciski kontrolujące 3. Aktualne statystyki i czas, 4. Wizualizacja

Rysunek 4.3: Ekran zakończenia symulacji

Rysunek 4.4: Mapa biura: 1. Biurka do pracy, 2. Kuchnia ze stolikami, 3. Miejsce wypoczynku

[Właściwy dla kierunku – np. Specyfikacja wewnętrzna]

Jeśli "Specyfikacja wewnętrzna":

- przedstawienie idei
- architektura systemu
- opis struktur danych (i organizacji baz danych)
- komponenty, moduły, biblioteki, przegląd ważniejszych klas (jeśli występują)
- przegląd ważniejszych algorytmów (jeśli występują)
- szczegóły implementacji wybranych fragmentów, zastosowane wzorce projektowe
- diagramy UML

Krótka wstawka kodu w linii tekstu jest możliwa, np. **int** a; (biblioteka listings). Dłuższe fragmenty lepiej jest umieszczać jako rysunek, np. kod na rys 5.1, a naprawdę długie fragmenty – w załączniku.

Rysunek 5.1: Pseudokod w listings.

Weryfikacja i walidacja

- sposób testowania w ramach pracy (np. odniesienie do modelu V)
- organizacja eksperymentów
- przypadki testowe zakres testowania (pełny/niepełny)
- wykryte i usunięte błędy
- opcjonalnie wyniki badań eksperymentalnych

Tabela 6.1: Nagłówek tabeli jest nad tabelą.

				metoda			
				alg. 3			$\gamma = 2$
ζ	alg. 1	alg. 2	$\alpha = 1.5$	$\alpha = 2$	$\alpha = 3$	$\beta = 0.1$	$\beta = -0.1$
0	8.3250	1.45305	7.5791	14.8517	20.0028	1.16396	1.1365
5	0.6111	2.27126	6.9952	13.8560	18.6064	1.18659	1.1630
10	11.6126	2.69218	6.2520	12.5202	16.8278	1.23180	1.2045
15	0.5665	2.95046	5.7753	11.4588	15.4837	1.25131	1.2614
20	15.8728	3.07225	5.3071	10.3935	13.8738	1.25307	1.2217
25	0.9791	3.19034	5.4575	9.9533	13.0721	1.27104	1.2640
30	2.0228	3.27474	5.7461	9.7164	12.2637	1.33404	1.3209
35	13.4210	3.36086	6.6735	10.0442	12.0270	1.35385	1.3059
40	13.2226	3.36420	7.7248	10.4495	12.0379	1.34919	1.2768
45	12.8445	3.47436	8.5539	10.8552	12.2773	1.42303	1.4362
50	12.9245	3.58228	9.2702	11.2183	12.3990	1.40922	1.3724

Podsumowanie i wnioski

- uzyskane wyniki w świetle postawionych celów i zdefiniowanych wyżej wymagań
- kierunki ewentualnych danych prac (rozbudowa funkcjonalna ...)
- problemy napotkane w trakcie pracy

Bibliografia

- [1] David Adam. "Special report: The simulations driving the world's response to COVID-19". W: Nature 580.7802 (2020). Gale Academic OneFile, s. 316. URL: https://link.gale.com/apps/doc/A619849970/AONE?u=anon~b61079c3&sid=googleScholar&xid=ea3f7606.
- [2] Chris Barrett, Keith Bisset, Stephen Eubank, Xizhou Feng i Madhav Marathe. "EpiSimdemics: an efficient algorithm for simulating the spread of infectious disease over large realistic social networks". W: sty. 2008, s. 37. DOI: 10.1145/1413370. 1413408.
- [3] Dirk Brockmann. "Global Connectivity and the Spread of Infectious Diseases". W: Nova Acta Leopoldina. 419. Robert Koch-Institut, 2017. DOI: http://dx.doi.org/10.25646/2797.
- [4] Y-S Tsai C-Y Huang i T-H Wen. "Simulations for epidemiology and public health education". W: *Journal of Simulation* 4.1 (2010), s. 68–80. DOI: 10.1057/jos. 2009.13. eprint: https://doi.org/10.1057/jos.2009.13. URL: https://doi.org/10.1057/jos.2009.13.
- [5] CDC. The Discovery and Reconstruction of the 1918 Pandemic Virus. Centers for Disease Control and Prevention. 2019.
- [6] Kathy Kotiadis Thomas Monks Bhakti Stephan Onggo Duncan A. Robertson Christine S.M. Currie John W. Fowler i Antuela A. Tako. "How simulation modelling can help reduce the impact of COVID-19". W: Journal of Simulation 14.2 (2020), s. 83–97. DOI: 10.1080/17477778.2020.1751570. eprint: https://doi.org/10.1080/17477778.2020.1751570.
- [7] Chaobao Zhang Xiaona Wei Xiangqi Li Hongzhi Wanga Zhiying Miao. "K-SEIR-Sim: A simple customized software for simulating the spread of infectious diseases". W: Computational and Structural Biotechnology Journal 19 (2021), s. 1966–1975.
- [8] Elizabeth Hunter, Brian Mac Namee i John Kelleher. "An open-data-driven agent-based model to simulate infectious disease outbreaks". W: *PLOS ONE* 13.12 (grud.

- 2018), s. 1-35. DOI: 10.1371/journal.pone.0208775. URL: https://doi.org/10.1371/journal.pone.0208775.
- [9] Mohammad Amin Khazeei Tabari, Hooman Khoshhal, Alireza Tafazoli, Mohanna Khandan i Abouzar Bagheri. "Applying computer simulations in battling with COVID-19, using pre-analyzed molecular and chemical data to face the pandemic". W: Informatics in Medicine Unlocked 21 (2020), s. 100458. ISSN: 2352-9148. DOI: https://doi.org/10.1016/j.imu.2020.100458. URL: https://www.sciencedirect.com/science/article/pii/S2352914820306080.
- [10] Hilda P. Hudson Ronald Ross. "An application of the theory of probabilities to the study of a priori pathometry.—Part II". W: *Proc. R. Soc. Lond. A* 93 (maj 1917), s. 212–225. DOI: https://doi.org/10.1098/rspa.1917.0014.
- [11] Hilda P. Hudson Ronald Ross. "An application of the theory of probabilities to the study of a priori pathometry.—Part III". W: *Proc. R. Soc. Lond. A* 93 (maj 1917), s. 225–240. DOI: https://doi.org/10.1098/rspa.1917.0015.
- [12] Ronald Ross. "An application of the theory of probabilities to the study of a priori pathometry.—Part I". W: *Proc. R. Soc. Lond. A* 92 (lut. 1916), s. 204–230. DOI: https://doi.org/10.1098/rspa.1916.0007.
- [13] Kostandinos Tsaramirsis, Akshet Patel, Pranav Sharma, Nikunj Polasani, Princy Randhawa, Georgios Tsaramirsis, Athanasia Pavlopoulou, Zeynep Kocer i Dimitrios Piromalis. "Bio-Virus Spread Simulation in Real 3D Space using Augmented Reality". W: Engineered Science (sty. 2021). DOI: 10.30919/es8d592.
- [14] A. G. McKendrick William Ogilvy Kermack. "An application of the theory of probabilities to the study of a priori pathometry.—Part III". W: *Proc. R. Soc. Lond. A* 115 (sierp. 1927), s. 700–721. DOI: https://doi.org/10.1098/rspa.1927.0118.

Dodatki

Spis skrótów i symboli

```
{\bf SIR\ Suceptible,\ Infected,\ Removed\ (podatni-zainfekowani-ozdrowieńcy)}
```

SEIR Suceptible, Exposed, Infected, Removed (podatni-wystawieni-zainfekowani-ozdrowieńcy)

MVC model – widok – kontroler (ang. model-view-controller)

 ${\cal N}\,$ liczebność zbioru danych

 $\mu\,$ stopnień przyleżności do zbioru

 $\mathbb E$ zbiór krawędzi grafu

 ${\cal L}\,$ transformata Laplace'a

Źródła

Jeżeli w pracy konieczne jest umieszczenie długich fragmentów kodu źródłowego, należy je przenieść w to miejsce.

Lista dodatkowych plików, uzupełniających tekst pracy

W systemie do pracy dołączono dodatkowe pliki zawierające:

- źródła programu,
- dane testowe,
- film pokazujący działanie opracowanego oprogramowania lub zaprojektowanego i wykonanego urządzenia,
- itp.

Spis rysunków

2.1	Schemat działania modelu K -SEIR θ [7]	4
2.2	Demonstracja działania aplikacji: (a) dostosowywanie niestandardowego	
	wirusa, (b) wprowadzenie wirusa w rzeczywistego świata, (c) wirus wi-	
	doczny w rozszerzonej rzeczywistości z panelem informacyjnym [13]	9
3.1	Schemat działania modelu użytego w <i>InfektoSym</i>	16
4.1	Ekran początkowy aplikacji	19
4.2	Ekran podczas działającej symulacji: 1. Suwaki do ustawiania parametrów,	
	2. Przyciski kontrolujące 3. Aktualne statystyki i czas, 4. Wizualizacja	19
4.3	Ekran zakończenia symulacji	20
4.4	Mapa biura: 1. Biurka do pracy, 2. Kuchnia ze stolikami, 3. Miejsce wypo-	
	czynku	20
5.1	Pseudokod w listings	22

Spis tabel

2.1	Opis modelu epidemiologicznego $K\text{-}SEIR$ opracowany na podstawie[7].	 5
6.1	Nagłówek tabeli jest nad tabelą	 24