Mit dem Sinus modellieren

Kirill Heitzler

7. April 2021

Mit dem Sinus modellieren

Beispiel

Winkel α mit $0^{\circ} \leq \alpha \leq 90^{\circ}$

Erweiterter Winkel α mit $90^{\circ} < \alpha \leq 360^{\circ}$

Erweiterter Winkel lpha mit 90° $< lpha \le$ 360° - Aufgabe

Funktion f mit $f(\alpha)$

Sinusfunktion im Gradmaß - Definition

Graph einer Sinusfunktion zeichnen

Einen Zeitlichen Vorgang modellieren

Grundlagen

Rechtwinkliges Dreieck - Beschriftung

Abbildung 1: Rechtwinkliges Dreieck

► Gegen den Uhrzeigersinn

Abbildung 1: Rechtwinkliges Dreieck

- ► Gegen den Uhrzeigersinn
- ► A

Abbildung 1: Rechtwinkliges Dreieck

- ► Gegen den Uhrzeigersinn
- ► A
- ▶ B

Abbildung 1: Rechtwinkliges Dreieck

- ► Gegen den Uhrzeigersinn
- ► A
- B
- C

Abbildung 1: Rechtwinkliges Dreieck

Die Ecken werden mit den Buchstaben A, B, C gegen den Uhrzeigersinn bei A angefangen beschriftet.

Abbildung 1: Rechtwinkliges Dreieck

Abbildung 2: Rechtwinkliges Dreieck

Abbildung 2: Rechtwinkliges Dreieck

- $\triangleright \alpha$
- **▶** β

Abbildung 2: Rechtwinkliges Dreieck

- $\triangleright \alpha$
- **>** £
- $ightharpoonup \gamma$

Abbildung 2: Rechtwinkliges Dreieck

Die Winkel α , β , γ werden in die Ecken der entsprechenden Buchstaben A, B, C gesetzt.

Abbildung 2: Rechtwinkliges Dreieck

Abbildung 3: Rechtwinkliges Dreieck

ightharpoonup "Ankathete von lpha"

Abbildung 3: Rechtwinkliges Dreieck

- ightharpoonup "Ankathete von lpha"
- ightharpoonup "Gegenkathete von α "

Abbildung 3: Rechtwinkliges Dreieck

Die anliegende Kathete zu Winkel α wird "Ankathete von α " genannt und die Kathete gegenüber von α wird "Gegenkathete von α " genannt.

Abbildung 3: Rechtwinkliges Dreieck

Hypotenuse

Abbildung 4: Rechtwinkliges Dreieck

Hypotenuse

"Hypotenuse"

Abbildung 4: Rechtwinkliges Dreieck

Hypotenuse

Die Hypotenuse liegt gegenüber des rechten Winkels $\gamma.$

Abbildung 4: Rechtwinkliges Dreieck

Der Sinus

In einem rechtwinkligen Dreieck (Abbildung \ref{Model}) nennt man zu einem Winkel α des Dreiecks das Streckenverhältnis

Abbildung 5: Rechtwinkliges Dreieck

In einem rechtwinkligen Dreieck (Abbildung \ref{Model}) nennt man zu einem Winkel lpha des Dreiecks das Streckenverhältnis

$$sin(\alpha) =$$

Abbildung 5: Rechtwinkliges Dreieck

In einem rechtwinkligen Dreieck (Abbildung \ref{Model}) nennt man zu einem Winkel α des Dreiecks das Streckenverhältnis

$$\sin(\alpha) = \frac{\mathsf{Gegenkathete\ von\ }\alpha}{}$$

Abbildung 5: Rechtwinkliges Dreieck

In einem rechtwinkligen Dreieck (Abbildung \ref{Model}) nennt man zu einem Winkel α des Dreiecks das Streckenverhältnis

$$\sin(\alpha) = \frac{\mathsf{Gegenkathete\ von\ }\alpha}{\mathsf{Hypotenuse}}$$

Abbildung 5: Rechtwinkliges Dreieck

In einem rechtwinkligen Dreieck (Abbildung \ref{Model}) nennt man zu einem Winkel α des Dreiecks das Streckenverhältnis

$$\sin(\alpha) = \frac{\mathsf{Gegenkathete\ von\ }\alpha}{\mathsf{Hypotenuse}}$$

den Sinus von α .

Abbildung 5: Rechtwinkliges Dreieck

Sinus - Beispiel Gegenkathete von α mithilfe des Sinus berechnen

Aufgabe

Berechne die Höhe des Freiburger Münsters. Das rechtwinklige Dreieck in Abbildung ?? besitzt einen rechten Winkel (90°), die Hypotenuse 164,05 Meter und die Winkelweite des Winkels α mit 45°. Berechne die Gegenkathete von α namens x.

Abbildung 6: Rechtwinkliges Dreieck am Münster

$$\sim \alpha = 45^{\circ}$$

- $\sim \alpha = 45^{\circ}$
- ▶ Hypotenuse = 164,05m

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164, 05 m
- ▶ Gegenkathete von $\alpha = x$

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164, 05 m
- Gegenkathete von $\alpha = x$

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}} \tag{1}$$

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164,05m
- ▶ Gegenkathete von $\alpha = x$

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}}$$
 (1) $\sin(45^\circ) =$

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164, 05 m
- Gegenkathete von $\alpha = x$

$$sin(\alpha) = \frac{Gegenkathete \ von \ \alpha}{Hypotenuse}$$

$$sin(45^{\circ}) = \frac{x}{}$$
(1)

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164,05m
- Gegenkathete von $\alpha = x$

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}}$$
 $\sin(45^\circ) = \frac{x}{164,05m}$
(1)

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164, 05 m
- ightharpoonup Gegenkathete von $\alpha = x$

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}}$$

$$\sin(45^\circ) = \frac{x}{164,05m}$$

$$| \cdot 164,05m$$
 (2)

$$\sin(45^\circ) = \frac{x}{164.05m} \qquad |\cdot 164,05m \quad (2)$$

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164,05m
- Gegenkathete von $\alpha = x$

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}}$$
 (1)
 $\sin(45^\circ) = \frac{x}{164,05m}$ $|\cdot 164,05m$ (2)

$$\sin(45^\circ)\cdot 164,05\,m =$$

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164, 05 m
- ightharpoonup Gegenkathete von $\alpha = x$

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}}$$
 (1)
 $\sin(45^\circ) = \frac{x}{164,05m}$ $|\cdot 164,05m$ (2)

$$\sin(45^\circ) = \frac{x}{164,05m} \qquad |\cdot 164,05m \quad (2)$$

$$\sin(45^{\circ}) \cdot 164,05m = x$$
 (3)

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164, 05 m
- ightharpoonup Gegenkathete von $\alpha = x$

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}}$$
 (1)
 $\sin(45^\circ) = \frac{x}{164,05m}$ $|\cdot 164,05m$ (2)

$$\sin(45^\circ) = \frac{x}{164,05m}$$
 | · 164,05m (2)

$$\sin(45^\circ) \cdot 164,05m = x$$

$$x \cong$$
(3)

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164, 05 m
- ightharpoonup Gegenkathete von $\alpha = x$

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}}$$
 (1)
 $\sin(45^\circ) = \frac{x}{164,05m}$ $|\cdot 164,05m$ (2)

$$\sin(45^\circ) = \frac{x}{164,05m}$$
 | \cdot 164,05m (2)

$$\sin(45^\circ) \cdot 164,05m = x \tag{3}$$

$$x \cong 116m \tag{4}$$

Antwort

Abbildung 7: Rechtwinkliges Dreieck am Münster

Antwort

Die Gegenkathete von α beträgt etwa 116 Meter, somit ist das Münster auch etwa 116 Meter groß.

Abbildung 7: Rechtwinkliges Dreieck am Münster

Der Kosinus und der Tangens

Sinus von α

Abbildung 8: Rechtwinkliges Dreieck

Sinus von α

$$\sin(lpha) = rac{\mathsf{Gegenkathete} \ \mathsf{von} \ lpha}{}$$

Abbildung 8: Rechtwinkliges Dreieck

Sinus von α

$$\sin(\alpha) = \frac{\mathsf{Gegenkathete\ von\ }\alpha}{\mathsf{Hypotenuse}}$$

Abbildung 8: Rechtwinkliges Dreieck

Cosinus von α

$$\cos(\alpha) =$$

Abbildung 9: Rechtwinkliges Dreieck

Cosinus von α

$$\cos(lpha) = rac{\mathsf{Ankathete} \ \mathsf{von} \ lpha}{}$$

Abbildung 9: Rechtwinkliges Dreieck

Cosinus von α

$$\cos(\alpha) = \frac{\text{Ankathete von } \alpha}{\text{Hypotenuse}}$$

Abbildung 9: Rechtwinkliges Dreieck

Tangens von α

$$tan(\alpha) =$$

Abbildung 10: Rechtwinkliges Dreieck

Tangens von α

$$an(lpha) = rac{\mathsf{Gegenkathete} \; \mathsf{von} \; lpha}{}$$

Abbildung 10: Rechtwinkliges Dreieck

Tangens von α

$$\tan(\alpha) = \frac{\mathsf{Gegenkathete\ von\ }\alpha}{\mathsf{Ankathete\ von\ }\alpha}$$

Abbildung 10: Rechtwinkliges Dreieck

Einheitskreis

Einheitskreis - Beispiel

Aufgaben-Text

Auf einem Koordinatensystem eines Radarschirms (Abbildung ??) wird die Lage von zwei Schiffen durch die Entfernung zum Hafen(0) und durch den Kurs gegenüber der x-Achse beschrieben.

Abbildung 11: Radar

Aufgaben A

Ein Schiff A ist mit dem Kurs 30° gegenüber der x-Achse einen Kilometer weit gefahren. Welche Koordinaten im x-y-Kooradinatensystem hat es?

Abbildung 12: Radar

Lösung A Schätzungen?

Abbildung 13: Radar Lösung

Lösung A

Das Schiff A mit dem Kurs 30° befindet sich auf der x-Achse: etwa 0,86 Kilometer und y-Achse: 0,5 Kilometer. Also auf dem Punkt A(0,86|0,5)

Abbildung 13: Radar Lösung

Aufgaben B

Welche Koordinaten hat das Schiff B, das mit dem Kurs **75**° einen Kilometer weit gefahren ist?

Abbildung 14: Radar

Lösung B Schätzungen?

Abbildung 15: Radar Lösung

Lösung B

Das Schiff B mit dem Kurs 75° befindet sich auf der x-Achse: etwa 0,25 Kilometer und y-Achse: 0,96 Kilometer. Also auf dem Punkt A(0,25|0,96)

Abbildung 15: Radar Lösung

Der Sinus und Kosinus am Einheitskreis

Dreieck mit Hypotenusenlänge 1

Dreiecke mit der **Hypotenusenlänge 1** kann man in einem Koordinatensystem auf folgenden Weise darstellen:

Abbildung 16: Dreieck mit Hypotenusenlänge 1

Die Endpunkte der **Hypotenuse** sind der Ursprung O und ein Punkt **P**, der auf einem Kreis um O mit dem **Radius 1** liegt. Diesen Kreis nennt man den **Einheitskreis**.

Abbildung 17: Sinus und Kosinus am Einheitskreis

Die Ecke mit dem rechten Winkel liegt auf der x-Achse senkrecht unter P. Der Punkt P hat somit Koordinaten $P(\cos(\alpha)|\sin(\alpha))$

Abbildung 18: Sinus und Kosinus am Einheitskreis

Beziehungen zwischen Sinus, Kosinus und Tangens

Für 0° < α < 90° nimmt $\sin(\alpha)$ mit wachsendem α zu und $\cos(\alpha)$ ab(Abbildung $\ref{abs:eq:ab$

Abbildung 19: $0^{\circ} < \alpha < 90^{\circ}$

Für $0^{\circ} < \alpha < 90^{\circ}$ nimmt $\sin(\alpha)$ mit wachsendem α zu und $\cos(\alpha)$ ab(Abbildung ??). $\sin(0^{\circ}) = 0$, $\cos(0^{\circ}) = 1$ (Abbildung ??),

Abbildung 19: $sin(0^\circ) = 0$, $cos(0^\circ) = 1$

Für $0^{\circ} < \alpha < 90^{\circ}$ nimmt $\sin(\alpha)$ mit wachsendem α zu und $\cos(\alpha)$ ab(Abbildung \ref{about}). $\sin(0^{\circ}) = 0$, $\cos(0^{\circ}) = 1$ (Abbildung \ref{about}), $\sin(90^{\circ}) = 1$, $\cos(90^{\circ}) = 0$ (Abbildung \ref{about}).

Abbildung 19: $\sin(90^{\circ}) = 1$, $\cos(90^{\circ}) = 1$

Wendet man auf das im Einheitskreis dargestellte Dreieck den Satz des Pythagoras an(??), so erhält man den für jede Winkelweite gültigen Zusammenhang $\sin^2(\alpha) + \cos^2(\alpha) = 1$.

Abbildung 20: Einheitskreis Dreieck Satz des Pythagoras

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$\sin^2(\alpha) + \cos^2(\alpha) = 1$$

$$(\sin(45))^2 +$$

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$(\sin(45))^2 + (\cos(45))^2 = 1 \tag{2}$$

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$(\sin(45))^2 + (\cos(45))^2 = 1 \tag{2}$$

$$\left(rac{\sqrt{2}}{2}
ight)^2 +$$

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$(\sin(45))^2 + (\cos(45))^2 = 1 \tag{2}$$

$$\left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2$$

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$(\sin(45))^2 + (\cos(45))^2 = 1 \tag{2}$$

$$\left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2 = 1 \tag{3}$$

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$(\sin(45))^2 + (\cos(45))^2 = 1 \tag{2}$$

$$\left(\frac{\sqrt{2}}{2}\right)^{2} + \left(\frac{\sqrt{2}}{2}\right)^{2} = 1$$

$$\frac{\sqrt{2^{2}}}{2^{2}} +$$
(3)

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$(\sin(45))^2 + (\cos(45))^2 = 1 \tag{2}$$

$$\left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2 = 1$$

$$\frac{\sqrt{2^2}}{2^2} + \frac{\sqrt{2^2}}{2^2}$$
(3)

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$(\sin(45))^2 + (\cos(45))^2 = 1 \tag{2}$$

$$\left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2 = 1 \tag{3}$$

$$\frac{\sqrt{2^2}}{2^2} + \frac{\sqrt{2^2}}{2^2} = 1 \tag{4}$$

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$(\sin(45))^2 + (\cos(45))^2 = 1 \tag{2}$$

$$\left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2 = 1 \tag{3}$$

$$\frac{\sqrt{2^2}}{2^2} + \frac{\sqrt{2^2}}{2^2} = 1 \tag{4}$$

$$\frac{2}{4} + \frac{2}{4} = 1 \tag{5}$$

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$(\sin(45))^2 + (\cos(45))^2 = 1 \tag{2}$$

$$\left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2 = 1 \tag{3}$$

$$\frac{\sqrt{2^2}}{2^2} + \frac{\sqrt{2^2}}{2^2} = 1 \tag{4}$$

$$\frac{2}{4} + \frac{2}{4} = 1 \tag{5}$$

$$\frac{2}{4} + \frac{2}{4} = 1 \tag{5}$$

$$\frac{1}{2} + \frac{1}{2} = 1 \tag{6}$$

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$(\sin(45))^2 + (\cos(45))^2 = 1 \tag{2}$$

$$\left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2 = 1 \tag{3}$$

$$\frac{\sqrt{2^2}}{2^2} + \frac{\sqrt{2^2}}{2^2} = 1 \tag{4}$$

$$\frac{2}{4} + \frac{2}{4} = 1 \tag{5}$$

$$\frac{1}{2} + \frac{1}{2} = 1 \tag{6}$$

$$0,5+0,5=1 \tag{7}$$

In Abbildung ?? sieht man: $\sin(90^{\circ} - \alpha) = x = \cos(\alpha)$ und $\cos(90^{\circ} - \alpha) = y = \sin(\alpha)$

Abbildung 21: $\sin(90^{\circ} - \alpha)$; $\cos(90^{\circ} - \alpha)$

$$\sin(90^{\circ} - \alpha) = x \qquad = \cos(\alpha) \tag{1}$$

Abbildung 22: $sin(90^{\circ} - \alpha)$; $cos(90^{\circ} - \alpha)$

$$\sin(90^{\circ} - \alpha) = x \qquad = \cos(\alpha) \tag{1}$$

$$\sin(90^{\circ} - 30^{\circ}) =$$

Abbildung 22: $sin(90^{\circ} - \alpha)$; $cos(90^{\circ} - \alpha)$

$$\sin(90^{\circ} - \alpha) = x \qquad = \cos(\alpha) \tag{1}$$

$$\sin(90^{\circ} - 30^{\circ}) = \frac{\sqrt{3}}{2} \qquad =$$

Abbildung 22: $sin(90^{\circ} - \alpha)$; $cos(90^{\circ} - \alpha)$

$$\sin(90^{\circ} - \alpha) = x \qquad = \cos(\alpha) \tag{1}$$

$$\sin(90^{\circ} - 30^{\circ}) = \frac{\sqrt{3}}{2}$$
 = $\cos(30^{\circ})$ (2)

Abbildung 22: $sin(90^{\circ} - \alpha)$; $cos(90^{\circ} - \alpha)$

$$tan(\alpha) =$$

Abbildung 23: $\sin(90^{\circ} - \alpha)$; $\cos(90^{\circ} - \alpha)$

$$an(lpha) = rac{\mathsf{Gegenkathete} \ \mathsf{von} \ lpha}{} =$$

Abbildung 23: $\sin(90^{\circ} - \alpha)$; $\cos(90^{\circ} - \alpha)$

$$\tan(\alpha) = \frac{\mathsf{Gegenkathete\ von\ }\alpha}{\mathsf{Ankathete\ von\ }\alpha} =$$

Abbildung 23: $\sin(90^{\circ} - \alpha)$; $\cos(90^{\circ} - \alpha)$

$$\tan(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Ankathete von } \alpha} = \frac{y}{x} = \frac{\sin(\alpha)}{\cos(\alpha)}$$

Abbildung 23: $\sin(90^{\circ} - \alpha)$; $\cos(90^{\circ} - \alpha)$

$$\tan(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Ankathete von } \alpha} = \frac{y}{x} = \frac{\sin(\alpha)}{\cos(\alpha)}$$

$$tan(90) =$$

$$\tan(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Ankathete von } \alpha} = \frac{y}{x} = \frac{\sin(\alpha)}{\cos(\alpha)}$$

$$\tan(90) = \frac{\sin(90)}{\cos(90)} =$$

$$\tan(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Ankathete von } \alpha} = \frac{y}{x} = \frac{\sin(\alpha)}{\cos(\alpha)}$$

$$\tan(90) = \frac{\sin(90)}{\cos(90)} = \frac{1}{0} =$$

$$\tan(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Ankathete von } \alpha} = \frac{y}{x} = \frac{\sin(\alpha)}{\cos(\alpha)}$$

$$\tan(90) = \frac{\sin(90)}{\cos(90)} = \frac{1}{0} = 1$$

Einheitskreis - Definition

- $ightharpoonup \sin(90^{\circ} \alpha) = \cos(\alpha) \text{ und } \cos(90^{\circ} \alpha) = \sin(\alpha)$

$$ightharpoonup \sin(90^{\circ} - \alpha) = \cos(\alpha) \text{ und } \cos(90^{\circ} - \alpha) = \sin(\alpha)$$

▶
$$tan(\alpha) = \frac{sin(\alpha)}{cos(\alpha)}, \ \alpha \neq 90^{\circ}$$

Einheitskreis - Aufgabe

 $sin(\alpha) = 0,6$. Bestimme:

 $sin(\alpha) = 0,6$. Bestimme:

ightharpoonup a) $\cos(\alpha)$

 $sin(\alpha) = 0,6$. Bestimme:

- ightharpoonup a) $\cos(\alpha)$
- ightharpoonup b) $tan(\alpha)$

 $sin(\alpha) = 0,6$. Bestimme:

- ightharpoonup a) $cos(\alpha)$
- ightharpoonup b) $tan(\alpha)$
- ightharpoonup c) $\sin(90^{\circ} \alpha)$

 $sin(\alpha) = 0, 6$. Bestimme:

- ightharpoonup a) $cos(\alpha)$
- ightharpoonup b) $tan(\alpha)$
- ightharpoonup c) $\sin(90^{\circ} \alpha)$
- ightharpoonup d) $\cos(90^{\circ} \alpha)$

Aufgabe

 $sin(\alpha) = 0,6$ Bestimme:

- ightharpoonup a) $cos(\alpha)$
- ightharpoonup b) $tan(\alpha)$
- ightharpoonup c) $\sin(90^{\circ} \alpha)$
- ightharpoonup d) $\cos(90^{\circ} \alpha)$
- ightharpoonup e) tan(90° $-\alpha$)

$$sin(\alpha) = 0,6$$

 $cos(\alpha)$:

$$\sin(\alpha) = 0.6$$

 $\cos(\alpha)$:

$$\sin^2(\alpha) + \cos^2(\alpha) = 1$$
(1)

$$\sin(\alpha) = 0.6$$
 $\cos(\alpha)$:
$$\sin^2(\alpha) + \cos^2(\alpha) = 1$$

$$0.6^2 +$$
(1)

$$\sin(\alpha) = 0,6$$

$$\cos(\alpha):$$

$$\sin^2(\alpha) + \cos^2(\alpha) = 1$$

$$0,6^2 + \cos^2(\alpha) = 1$$
(1)

$$\sin(\alpha) = 0.6$$

$$\cos(\alpha):$$

$$\sin^2(\alpha) + \cos^2(\alpha) = 1$$

$$0.6^2 + \cos^2(\alpha) = 1$$

$$|-0.6^2|$$
(2)

$$\sin(\alpha) = 0.6$$

$$\cos(\alpha):$$

$$\sin^2(\alpha) + \cos^2(\alpha) = 1$$

$$0.6^2 + \cos^2(\alpha) = 1$$

$$\cos^2(\alpha) = 1$$

$$(1)$$

$$(2)$$

$$\sin(\alpha) = 0.6$$
 $\cos(\alpha)$:
$$\sin^{2}(\alpha) + \cos^{2}(\alpha) = 1$$

$$0.6^{2} + \cos^{2}(\alpha) = 1$$

$$\cos^{2}(\alpha) = 1 - 0.36$$
(1)

$$\sin(\alpha) = 0.6$$

 $\cos(\alpha)$:

$$\sin^{2}(\alpha) + \cos^{2}(\alpha) = 1$$
 (1)

$$0.6^{2} + \cos^{2}(\alpha) = 1$$
 $|-0.6^{2}$ (2)

$$\cos^{2}(\alpha) = 1 - 0.36$$
 $|-/$ (3)

$$sin(\alpha) = 0,6$$

 $cos(\alpha)$:

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$0,6^2 + \cos^2(\alpha) = 1$$
 $|-0,6^2$ (2)

$$\cos(\alpha) = \sqrt{1 - 0.36} \tag{4}$$

$$sin(\alpha) = 0,6$$

 $cos(\alpha)$:

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$0,6^2 + \cos^2(\alpha) = 1$$
 $|-0,6^2$ (2)

$$\cos(\alpha) = \sqrt{1 - 0.36} \tag{4}$$

$$\cos(\alpha) = \sqrt{0.64} \tag{5}$$

$$sin(\alpha) = 0,6$$

 $cos(\alpha)$:

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$0,6^2 + \cos^2(\alpha) = 1 \qquad |-0,6^2 \qquad (2)$$

$$\cos(\alpha) = \sqrt{1 - 0.36} \tag{4}$$

$$\cos(\alpha) = \sqrt{0.64} \tag{5}$$

$$\cos(\alpha) = 0.8 \tag{6}$$

```
\sin(\alpha) = 0,6

\cos(\alpha) = 0,8

\tan(\alpha):
```

$$\sin(\alpha) = 0,6$$

 $\cos(\alpha) = 0,8$
 $\tan(\alpha)$:

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} \tag{1}$$

$$\sin(\alpha) = 0,6$$

 $\cos(\alpha) = 0,8$
 $\tan(\alpha)$:

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}$$
 (1)
$$\tan(\alpha) =$$

$$sin(\alpha) = 0,6$$

 $cos(\alpha) = 0,8$
 $tan(\alpha)$:

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}$$

$$\tan(\alpha) = \frac{0,6}{}$$
(1)

$$sin(\alpha) = 0,6$$

 $cos(\alpha) = 0,8$
 $tan(\alpha)$:

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}$$

$$\tan(\alpha) = \frac{0, 6}{0.8}$$
(1)

$$sin(\alpha) = 0,6$$

 $cos(\alpha) = 0,8$
 $tan(\alpha)$:

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} \tag{1}$$

$$\tan(\alpha) = \frac{0.6}{0.8} = \frac{\frac{6}{10}}{\frac{8}{10}} \tag{2}$$

$$sin(\alpha) = 0,6$$

 $cos(\alpha) = 0,8$
 $tan(\alpha)$:

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} \tag{1}$$

$$\tan(\alpha) = \frac{0.6}{0.8} = \frac{\frac{6}{10}}{\frac{8}{10}} \tag{2}$$

$$tan(\alpha) =$$

$$sin(\alpha) = 0,6$$

 $cos(\alpha) = 0,8$
 $tan(\alpha)$:

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} \tag{1}$$

$$\tan(\alpha) = \frac{0.6}{0.8} = \frac{\frac{6}{10}}{\frac{8}{10}} \tag{2}$$

$$tan(\alpha) = \frac{\frac{6}{\cancel{10}}}{\frac{8}{\cancel{10}}} =$$

$$sin(\alpha) = 0,6$$

 $cos(\alpha) = 0,8$
 $tan(\alpha)$:

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} \tag{1}$$

$$\tan(\alpha) = \frac{0.6}{0.8} = \frac{\frac{6}{10}}{\frac{8}{10}} \tag{2}$$

$$\tan(\alpha) = \frac{\frac{6}{\cancel{10}}}{\frac{8}{\cancel{10}}} = \frac{6}{8} \tag{3}$$

$$sin(\alpha) = 0,6$$

 $cos(\alpha) = 0,8$
 $tan(\alpha)$:

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} \tag{1}$$

$$\tan(\alpha) = \frac{0.6}{0.8} = \frac{\frac{6}{10}}{\frac{8}{10}} \tag{2}$$

$$\tan(\alpha) = \frac{\frac{6}{\cancel{10}}}{\frac{\cancel{10}}{\cancel{10}}} = \frac{6}{8}$$

$$\tan(\alpha) = \frac{3}{4}$$
(3)

Lösung

$$sin(\alpha) = 0,6$$

 $cos(\alpha) = 0,8$
 $tan(\alpha)$:

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} \tag{1}$$

$$\tan(\alpha) = \frac{0.6}{0.8} = \frac{\frac{6}{10}}{\frac{8}{10}} \tag{2}$$

$$\tan(\alpha) = \frac{\frac{6}{\cancel{10}}}{\frac{8}{\cancel{10}}} = \frac{6}{8}$$

$$\tan(\alpha) = \frac{3}{4} = 0,75$$
(4)

$$\tan(\alpha) = \frac{3}{4} = 0.75 \tag{4}$$

$$cos(\alpha) = 0, 8$$

 $sin(90^{\circ} - \alpha)$:

$$cos(\alpha) = 0, 8$$

 $sin(90^{\circ} - \alpha)$:

$$sin(90^{\circ} - \alpha) =$$

$$cos(\alpha) = 0, 8$$

 $sin(90^{\circ} - \alpha)$:

$$sin(90^{\circ} - \alpha) = cos(\alpha) =$$

$$cos(\alpha) = 0.8$$

 $sin(90^{\circ} - \alpha)$:

$$\sin(90^{\circ} - \alpha) = \cos(\alpha) = 0.8 \tag{1}$$

$$\sin(\alpha) = 0.6$$

 $\cos(90^{\circ} - \alpha)$:

$$\sin(\alpha) = 0.6$$

 $\cos(90^{\circ} - \alpha)$:

$$cos(90^{\circ} - \alpha) =$$

$$sin(\alpha) = 0,6$$

 $cos(90^{\circ} - \alpha)$:

$$cos(90^{\circ} - \alpha) = sin(\alpha) =$$

$$sin(\alpha) = 0,6$$

 $cos(90^{\circ} - \alpha)$:

$$\cos(90^{\circ} - \alpha) = \sin(\alpha) = 0.6 \tag{1}$$

$$\sin(90^{\circ} - \alpha) = 0.8$$

 $\cos(90^{\circ} - \alpha) = 0.6$
 $\tan(90^{\circ} - \alpha)$:

$$\sin(90^{\circ} - \alpha) = 0.8$$

$$\cos(90^{\circ} - \alpha) = 0.6$$

$$\tan(90^{\circ} - \alpha):$$

$$\tan(90^{\circ} - \alpha) = 0.6$$

$$\begin{aligned} \sin(90^\circ - \alpha) &= 0,8\\ \cos(90^\circ - \alpha) &= 0,6\\ \tan(90^\circ - \alpha) &: \end{aligned}$$

$$tan(90^\circ - \alpha) = \frac{\sin(90^\circ - \alpha)}{\cos(90^\circ - \alpha)}$$

$$\begin{aligned} \sin(90^\circ - \alpha) &= 0,8\\ \cos(90^\circ - \alpha) &= 0,6\\ \tan(90^\circ - \alpha) &: \end{aligned}$$

$$tan(90^\circ - \alpha) = \frac{sin(90^\circ - \alpha)}{cos(90^\circ - \alpha)}$$

$$\sin(90^{\circ} - \alpha) = 0.8$$

 $\cos(90^{\circ} - \alpha) = 0.6$
 $\tan(90^{\circ} - \alpha)$:

$$\tan(90^{\circ} - \alpha) = \frac{\sin(90^{\circ} - \alpha)}{\cos(90^{\circ} - \alpha)} = \frac{0.8}{0.6}$$
 (1)

e) Lösung:

$$\sin(90^{\circ} - \alpha) = 0.8$$

$$\cos(90^{\circ} - \alpha) = 0.6$$

$$\tan(90^{\circ} - \alpha):$$

$$tan(90^{\circ} - \alpha) = \frac{\sin(90^{\circ} - \alpha)}{\cos(90^{\circ} - \alpha)} = \frac{0.8}{0.6}$$

$$tan(90^{\circ} - \alpha) = (1)$$

e) Lösung:

$$sin(90^{\circ} - \alpha) = 0, 8
cos(90^{\circ} - \alpha) = 0, 6
tan(90^{\circ} - \alpha):$$

$$tan(90^{\circ} - \alpha) = \frac{sin(90^{\circ} - \alpha)}{cos(90^{\circ} - \alpha)} = \frac{0, 8}{0, 6}
tan(90^{\circ} - \alpha) = \frac{8}{6} =$$
(1)

e) Lösung:

$$\sin(90^{\circ} - \alpha) = 0.8$$

 $\cos(90^{\circ} - \alpha) = 0.6$
 $\tan(90^{\circ} - \alpha)$:

$$\tan(90^{\circ} - \alpha) = \frac{\sin(90^{\circ} - \alpha)}{\cos(90^{\circ} - \alpha)} = \frac{0.8}{0.6}$$
 (1)

$$\tan(90^{\circ} - \alpha) = \frac{8}{6} = \frac{4}{3} \tag{2}$$

Mit dem Sinus modellieren

Mit dem Sinus modellieren - Beispiel

Aufgabe

Bei einem Shaufelraddampfer dreht sich das Rad mit dem Durchmesser 2 Meter einmal vollständig in 60 Sekunden(Abbildung 4). In welcher Höhe über dem Wasserspiegel liegt der rot markierte Punkt A?

Erstelle eine Wertetabelle in 5 Sekunden-Schritten.

Abbildung 23: Schaufelraddampfer

Aufgabe

Bei einem Shaufelraddampfer dreht sich das Rad mit dem Durchmesser 2 Meter einmal vollständig in 60 Sekunden(Abbildung 4). In welcher Höhe über dem Wasserspiegel liegt der rot markierte Punkt A?

Erstelle eine Wertetabelle in 5 Sekunden-Schritten.

Abbildung 23: Schaufelraddampfer

Zeit t (in s)	0	5	10	 60
Winkel α	0°	30°	60°	360°
Höhe h (in m)	0	0,5	0,87	0

Zeit t (in s)	0	5	10		30
Winkel $lpha$	0°	30°	60°		
Höhe h (in m)	0	0,5	0,87		

Abbildung 24: Schaufelraddampfer

Zeit t (in s)	0	5	10	15		30
Winkel $lpha$	0°	30°	60°			
Höhe h (in m)	0	0,5	0,87			

Abbildung 24: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	30
Winkel $lpha$	0°	30°	60°			
Höhe h (in m)	0	0,5	0,87			

Abbildung 24: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°				
Höhe h (in m)	0	0,5	0,87				

Abbildung 24: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°			
Höhe h (in m)	0	0,5	0,87				

Abbildung 24: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°		
Höhe h (in m)	0	0,5	0,87				

Abbildung 24: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	
Höhe h (in m)	0	0,5	0,87				

Abbildung 24: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87				

Abbildung 24: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1			

Abbildung 24: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87		

Abbildung 24: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	

Abbildung 24: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Abbildung 24: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35			
Winkel $lpha$				
Höhe h (in m)				

Abbildung 25: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35	40		
Winkel $lpha$				
Höhe h (in m)				

Abbildung 25: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35	40	45		
Winkel $lpha$					
Höhe h (in m)					

Abbildung 25: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35	40	45	50	
Winkel $lpha$					
Höhe h (in m)					

Abbildung 25: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35	40	45	50	55	
Winkel $lpha$						
Höhe h (in m)						

Abbildung 25: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35	40	45	50	55	60
Winkel $lpha$						
Höhe h (in m)						

Abbildung 25: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35	40	45	50	55	60
Winkel $lpha$	210°					
Höhe h (in m)						

Abbildung 25: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35	40	45	50	55	60
Winkel $lpha$	210°	240°				
Höhe h (in m)						

Abbildung 25: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35	40	45	50	55	60
Winkel $lpha$	210°	240°	270°			
Höhe h (in m)						

Abbildung 25: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35	40	45	50	55	60
Winkel $lpha$	210°	240°	270°	300°		
Höhe h (in m)						

Abbildung 25: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel α	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35	40	45	50	55	60
Winkel $lpha$	210°	240°	270°	300°	330°	
Höhe h (in m)						

Abbildung 25: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35	40	45	50	55	60
Winkel $lpha$	210°	240°	270°	300°	330°	360°
Höhe h (in m)						

Abbildung 25: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35	40	45	50	55	60
Winkel $lpha$	210°	240°	270°	300°	330°	360°
Höhe h (in m)	-0,5					

Abbildung 25: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35	40	45	50	55	60
Winkel $lpha$	210°	240°	270°	300°	330°	360°
Höhe h (in m)	-0,5	-0,87				

Abbildung 25: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35	40	45	50	55	60
Winkel $lpha$	210°	240°	270°	300°	330°	360°
Höhe h (in m)	-0,5	-0,87	-1			

Abbildung 25: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35	40	45	50	55	60
Winkel $lpha$	210°	240°	270°	300°	330°	360°
Höhe h (in m)	-0,5	-0,87	-1	-0,87		

Abbildung 25: Schaufelraddampfer

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35	40	45	50	55	60
Winkel $lpha$	210°	240°	270°	300°	330°	360°
Höhe h (in m)	-0,5	-0,87	-1	-0,87	-0,5	

Abbildung 25: Schaufelraddampfer

Lösung

Zeit t (in s)	0	5	10	15	20	25	30
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0

Zeit t (in s)	35	40	45	50	55	60
Winkel $lpha$	210°	240°	270°	300°	330°	360°
Höhe h (in m)	-0,5	-0,87	-1	-0,87	-0,5	0

Abbildung 25: Schaufelraddampfer

Lösung

Zeit t (in s)	0	5	10	15	20	25	30	35	40	45	50	55	60
Winkel $lpha$	0°	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°	360°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0	-0,5	-0,87	-1	-0,87	-0,5	0

Abbildung 26: Schaufelraddampfer

Winkel lpha mit $0^\circ \le lpha \le 90^\circ$

Winkel α mit $0^{\circ} < \alpha < 90^{\circ}$

Am Einheitskreis entspricht $\sin(\alpha)$ der y-Koordinate des Punktes P(Abbildung 5). $\sin(40^\circ) \approx 0.64$

Abbildung 27: Winkel α mit $0^{\circ} \leq \alpha \leq 90^{\circ}$

Erweiterter Winkel lpha mit $90^\circ < lpha \leq 360^\circ$

Erweiterter Winkel α mit $90^{\circ} < \alpha \leq 360^{\circ}$

Wird α über 90° vergrößert, wird der Sinuswert von α ebenso als y-Koordinate des Punktes P festgelegt(Abbildung 6). $\sin(120^\circ) \approx 0.87$

Abbildung 28: Erweiterter Winkel α mit $90^{\circ} < \alpha \leq 360^{\circ}$

Erweiterter Winkel α mit $90^{\circ} < \alpha \leq 360^{\circ}$

Wird α über 90° vergrößert, wird der Sinuswert von α ebenso als y-Koordinate des Punktes P festgelegt(Abbildung 6). $\sin(310^\circ) \approx -0.77$

Abbildung 28: Erweiterter Winkel α mit $90^{\circ} < \alpha \leq 360^{\circ}$

Erweiterter Winkel lpha mit 90° $< lpha \le$ 360° - Aufgabe

Ein Punkt P bewegt sich auf dem Einheitskreis (Abbildung 7) gegen den Uhrzeigersinn. Für $\alpha=0^{\circ}$ befindet er sich im Punkt (1|0).

Abbildung 29: $\alpha = 0^{\circ}$

Ein Punkt P bewegt sich auf dem Einheitskreis(Abbildung 7) gegen den Uhrzeigersinn. Für $\alpha=0^\circ$ befindet er sich im Punkt(1|0). Bestimme

Abbildung 29: $\alpha = 0^{\circ}$

Ein Punkt P bewegt sich auf dem Einheitskreis(Abbildung 7) gegen den Uhrzeigersinn. Für $\alpha=0^\circ$ befindet er sich im Punkt(1|0). Bestimme

▶ a) Gib die x- und y-Koordinaten des Punktes P für $\alpha=140^\circ$ und für $\alpha=310^\circ$ an.

Abbildung 29: $\alpha = 0^{\circ}$

Ein Punkt P bewegt sich auf dem Einheitskreis(Abbildung 7) gegen den Uhrzeigersinn. Für $\alpha=0^\circ$ befindet er sich im Punkt(1|0). Bestimme

- ▶ a) Gib die x- und y-Koordinaten des Punktes P für $\alpha=140^\circ$ und für $\alpha=310^\circ$ an.
- **b**) Bestimme zwei verschiedene Werte für α , sodass seine y-Koordinate 0,8 beträgt.

Abbildung 29: $\alpha = 0^{\circ}$

Für $\alpha=140^\circ$

Für
$$\alpha=140^\circ$$

$$\sin(\alpha) = y \tag{1}$$

Für
$$\alpha=$$
 140 $^{\circ}$

$$\sin(\alpha) = y \tag{1}$$
$$\sin(140^\circ) \approx$$

Für
$$\alpha=140^\circ$$
: Punkt ($|0,64)$
$$\sin(\alpha)=y \ \ \, \sin(140^\circ)\approx 0,64 \ \ \, (2)$$

Für
$$\alpha = 140^{\circ}$$
: Punkt ($|0,64)$

$$\sin(\alpha) = y \tag{1}$$

$$\sin(140^\circ) \approx 0,64 \tag{2}$$

$$\cos(\alpha) = x \tag{3}$$

Für
$$\alpha=140^\circ$$
: Punkt ($|0,64\rangle$
$$\sin(\alpha)=y \qquad \qquad (1)$$

$$\sin(140^\circ)\approx 0,64 \qquad \qquad (2)$$

$$\cos(\alpha)=x \qquad \qquad (3)$$

$$\cos(140^\circ)\approx$$

Für
$$\alpha = 140^{\circ}$$
: Punkt (-0,77|0,64)

$$\sin(\alpha) = y \tag{1}$$

$$\sin(140^\circ) \approx 0,64 \tag{2}$$

$$\cos(\alpha) = x \tag{3}$$

$$\cos(140^\circ) \approx -0.77 \tag{4}$$

Für
$$\alpha = 140^{\circ}$$
: Punkt (-0,77|0,64)

$$\sin(\alpha) = y \tag{1}$$

$$\sin(140^\circ) \approx 0,64 \tag{2}$$

$$\cos(\alpha) = x \tag{3}$$

$$\cos(140^\circ) \approx -0.77 \tag{4}$$

Für $\alpha = 310^{\circ}$

Für
$$\alpha = 140^{\circ}$$
: Punkt (-0,77|0,64)

$$\sin(\alpha) = y \tag{1}$$

$$\sin(140^\circ) \approx 0,64 \tag{2}$$

$$\cos(\alpha) = x \tag{3}$$

$$\cos(140^\circ) \approx -0.77 \tag{4}$$

Für
$$\alpha = 310^{\circ}$$

$$\sin(\alpha) = y \tag{1}$$

Für
$$\alpha = 140^{\circ}$$
: Punkt (-0,77|0,64)

$$\sin(\alpha) = y \tag{1}$$

$$\sin(140^\circ) \approx 0,64 \tag{2}$$

$$\cos(\alpha) = x \tag{3}$$

$$\cos(140^\circ) \approx -0.77 \tag{4}$$

Für
$$\alpha = 310^{\circ}$$

$$\sin(\alpha) = y \tag{1}$$
$$\sin(310^\circ) \approx$$

Für
$$\alpha = 140^{\circ}$$
: Punkt (-0,77|0,64)

$$\sin(\alpha) = y \tag{1}$$

$$\sin(140^\circ) \approx 0,64 \tag{2}$$

$$\cos(\alpha) = x \tag{3}$$

$$\cos(140^\circ) \approx -0.77 \tag{4}$$

Für
$$\alpha = 310^{\circ}$$
: Punkt (|-0,77)

$$\sin(\alpha) = y \tag{1}$$

$$\sin(310^\circ) \approx -0.77 \tag{2}$$

Für
$$\alpha = 140^{\circ}$$
: Punkt (-0,77|0,64)

$$\sin(\alpha) = y \tag{1}$$

$$\sin(140^\circ) \approx 0,64 \tag{2}$$

$$\cos(\alpha) = x \tag{3}$$

$$\cos(140^\circ) \approx -0.77 \tag{4}$$

Für
$$\alpha = 310^{\circ}$$
: Punkt (|-0,77)

$$\sin(\alpha) = y \tag{1}$$

$$\sin(310^\circ) \approx -0.77 \tag{2}$$

$$\cos(\alpha) = x \tag{3}$$

Für
$$\alpha = 140^{\circ}$$
: Punkt (-0,77|0,64)

$$\sin(\alpha) = y \tag{1}$$

$$\sin(140^\circ) \approx 0,64 \tag{2}$$

$$\cos(\alpha) = x \tag{3}$$

$$\cos(140^\circ) \approx -0.77 \tag{4}$$

Für
$$\alpha = 310^{\circ}$$
: Punkt (|-0,77)

$$\sin(\alpha) = y \tag{1}$$

$$\sin(310^\circ) \approx -0.77 \tag{2}$$

$$\cos(\alpha) = x \tag{3}$$

$$cos(310^{\circ}) \approx$$

Für
$$\alpha = 140^{\circ}$$
: Punkt (-0,77|0,64)

$$\sin(\alpha) = y \tag{1}$$

$$\sin(140^\circ) \approx 0,64 \tag{2}$$

$$\cos(\alpha) = x \tag{3}$$

$$\cos(140^\circ) \approx -0.77 \tag{4}$$

Für $\alpha = 310^{\circ}$: Punkt (0,64|-0,77)

$$\sin(\alpha) = y \tag{1}$$

$$\sin(310^\circ) \approx -0.77 \tag{2}$$

$$\cos(\alpha) = x \tag{3}$$

$$\cos(310^\circ) \approx 0,64 \tag{4}$$

$$\sin^{-1}(y) = \alpha \tag{1}$$

$$\sin^{-1}(y) = \alpha$$

$$\sin^{-1}(0,8) \approx$$
(1)

Für
$$\alpha_1$$
: $sin(53, 1^\circ) \approx 0.8$

$$\sin^{-1}(y) = \alpha \tag{1}$$

$$\sin^{-1}(0,8) \approx 53,1^{\circ}$$
 (2)

Für α_1 : $sin(53, 1^\circ) \approx 0, 8$

$$\sin^{-1}(y) = \alpha \tag{1}$$

$$\sin^{-1}(0,8) \approx 53,1^{\circ}$$
 (2)

Für α_1 : $sin(53, 1^\circ) \approx 0, 8$

$$\sin^{-1}(y) = \alpha \tag{1}$$

$$\sin^{-1}(0,8) \approx 53,1^{\circ}$$
 (2)

Für α_2

$$\sin^{-1}(y) = \alpha \tag{1}$$

Für α_1 : $sin(53, 1^\circ) \approx 0.8$

$$\sin^{-1}(y) = \alpha \tag{1}$$

$$\sin^{-1}(0,8) \approx 53,1^{\circ}$$
 (2)

$$\sin^{-1}(y) = \alpha$$
 (1)
53, 1° - 180° =

Für α_1 : $sin(53, 1^\circ) \approx 0.8$

$$\sin^{-1}(y) = \alpha \tag{1}$$

$$\sin^{-1}(0,8) \approx 53,1^{\circ}$$
 (2)

Für α_2 : $\sin(126, 9^\circ) \approx 0.8$

$$\sin^{-1}(y) = \alpha \tag{1}$$

$$53,1^{\circ} - 180^{\circ} = 126,9^{\circ} \tag{2}$$

Funktion f mit $f(\alpha)$

Funktion f mit $f(\alpha)$

Ordnet man jedem Winkel α mit $0^{\circ} \le \alpha \le 360^{\circ}$ seinen Sinuswert zu, so erhält man eine Funktion f mit $f(\alpha) = \sin(\alpha)$.

Funktion f mit $f(\alpha)$

Ordnet man jedem Winkel α mit $0^{\circ} \le \alpha \le 360^{\circ}$ seinen Sinuswert zu, so erhält man eine Funktion f mit $f(\alpha) = \sin(\alpha)$.

Man kann mithilfe des Graphen von f (Abbildung 8) zu gegebenem Winkel den Sinuswert näherungsweise ablesen oder näherungsweise Winkel mit vorgegebenem Sinuswert ermitteln.

Abbildung 30: $f(\alpha) = \sin(\alpha)$

Sinusfunktion im Gradmaß - Definition

Definition

Die Funktion f mit $f(\alpha) = \sin(\alpha)$ heißt **Sinusfunktion im Gradmaß**.

Graph einer Sinusfunktion zeichnen

Graph einer Sinusfunktion zeichnen

Winkel α	0°	30°	60°	90°	120°	150°	180°	210°	240°	2700	300°	330°	360°
$sin(\alpha)$	0	0, 5	0,87	1	0,87	0, 5	0	-0,5	-0,87	-1	-0,87	-0,5	0

Abbildung 31: Sinuswelle Zeichnen

Einen Zeitlichen Vorgang modellieren

Einen Zeitlichen Vorgang modellieren

In einem Hafenbecken schwankt der Wasserstand periodisch um seinen Durchschnittswert (Abbildung 10)

Abbildung 32: Wasserstand

▶ a) Erläutere, wie man zu einem gegebenenen Zeitpunkt t die Winkelweite α erhält und umgekehrt. Bestimme für t = 5 (t in h) den zugehörigen Winkel.

- ▶ a) Erläutere, wie man zu einem gegebenenen Zeitpunkt t die Winkelweite α erhält und umgekehrt. Bestimme für t = 5 (t in h) den zugehörigen Winkel.
- **b**) Mit welcher Funktion kann man zu einem gegebenen Winkel α den Wasserstand berechnen? Berechne den Wasserstand 5 Stunden nach Beobachtungsbeginn.