Резюме к главе 2

В главе 2 главе введены линейные операции с матрицами, операции умножения и транспонирования матриц, описаны свойства этих операций. Для квадратной матрицы введено понятие обратной матрицы, сформулирована и доказана теорема о существовании и единственности обратной матрицы. Рассмотрены способы вычисления обратной матрицы. В конце главы введено понятие ранга матрицы и рассмотрены способы его вычисления.

Вопросы и задачи для самоконтроля к гл. 2, раздел 1

- 1. Какие две матрицы называются равными? Равны ли матрицы A и B, если $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$?
- 2. Дайте определение действия сложения матриц. Можно ли сложить две матрицы с размерами 2×3 и 3×2 ?
- 3. Даны матрицы $A_{k \times l}$ и $B_{m \times n}$. При каких соотношениях между числами k,l,m,n операции сложения и умножения определены для данных матриц одновременно?
- 4. Матрица A имеет размерность 3×4 . Какой размерности должна быть матрица B, чтобы было определено произведение: a) AB? б) BA? в) B^2A ? г) AB^2 ?
- 5. Дана матрица A. В каком случае справедливо равенство $A^T = A$?
- 6. Докажите, что всегда определены произведения AA^{T} и $A^{T}A$.
- 7. Известно, что для матрицы A выполняется равенство: $(1\ 2\ 3)\ A=(0\ 1)$. Каковы размеры матрицы A?
- 8. Дайте понятие единичной матрицы. Какая из матриц:
- 9. а) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$; б) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$; в) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ является единичной?
- 10.Известно, что $\det A_{5\times 5} = 3$. Чему равен: а) $\det 2A$; б) $\det A^{T}$; в) $\det A^{-1}$?
- 11. Найдите $\det(ABC)$, если A, B, C квадратные матрицы одного порядка, при этом одна из них вырожденная.
- 12. Докажите, что если $A^2 = A$, то матрица B = 2A E удовлетворяет условию $B^2 = E$.
- 13.Какими должны быть матрицы A, B, C, чтобы было определено выражение: а) (AB)C; б) (A+B)C; в) A(B+C); г) $A^2(BC)$; д) $(A^2+2B)C$?
- 14. Пусть A и B две квадратные матрицы. Докажите, что сумма элементов, находящихся на главной диагонали, для матриц AB и BA одна и та же.
- 15. Какая матрица всегда имеет обратную? Сколько обратных матриц она имеет? Как найти обратную матрицу?
- 16. Используя обратную матрицу, найдите матрицу X из уравнения AX = B,

если
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$$
, $B = \begin{pmatrix} 4 & -6 \\ 2 & 1 \end{pmatrix}$.

- 17. Решите в матричном виде уравнение AXC + D = F, где A, C, D, F данные матрицы (какая у них должна быть размерность?), X – искомая матрица.
- 18.Найдите ранг матрицы $A = \begin{pmatrix} 1 & 2 & -1 & 1 \\ -1 & 1 & -1 & 2 \\ 0 & 3 & -2 & 3 \end{pmatrix}$.

Ответы, указания, решения к задачам для самоконтроля к гл. 2, раздел 1

1. Неравны, ибо не равны их соответствующие элементы. 2. Нельзя, ибо они имеют неодинаковый размер. **3.** k = l = m = n. **4.** a) $4 \times k$, б) $k \times 3$, где k - 1любое натуральное число; в) B – квадратная матрица 3-го порядка; г) B – квадратная матрица 4-го порядка. 5. Матрица A должна быть квадратной и симметричной относительно главной диагонали. 7. Матрица А имеет размер 3×2. **9.** в). **10.** а) 96; б) 3; в) 1/3. **11.** 0. **13.** а) Матрицы должны иметь размеры: $A - k \times m$, $B - m \times n$, $C - n \times p$, где k, m, n, p – любые действительные числа; б) матрицы A и B должны иметь одинаковый размер $k \times m$, а матрица C – размер $m \times n$, где k, m, n – любые действительные числа; в) матрица A может иметь размер $k \times m$, а матрицы B и C должны иметь одинаковый размер $m \times n$, а, где k, m, n – любые действительные числа; г) матрица A – квадратная k-го порядка, матрица B должна иметь размер $k \times m$, а матрица C – размер $m \times n$, где k, m, n – любые действительные числа; д) матрицы A, B – квадратные k-порядка, матрица Cдолжна иметь размер $k \times m$, где k, m – любые действительные числа. **16.** $A^{-1} = \begin{pmatrix} 5 & -2 \\ -2 & 1 \end{pmatrix}, \quad X = \begin{pmatrix} 16 & -32 \\ -6 & 13 \end{pmatrix}.$ **17.** $X = A^{-1}(F - D)C^{-1}, A, C, D, F$

квадратные матрицы одного порядка. 18.2.