Laboratorul/Seminarul 7 FLP

Puncte fixe. Teorema Knaster-Tarski.

Teorie pentru Exercitiul 1

O multime partial ordonata (poset) **mpo** este o pereche (M,\leq) , unde $\leq\subseteq M^2$ care respecta urmatoarele proprietati:

- reflexiva;
- · antisimetrica;
- tranzitiva.

O multime partial ordonata este completa **cpo** daca exista un prim element $\bot \in M$ astfel incat oricum alegem $x \in M, \bot \leq x$ si, in plus, pentru orice lant $x_1 \leq x_2 \leq \ldots \leq x_n$ exista un supremum, notat $\vee_n x_n$, care exista in aceasta multime.

Fie (C,\leq) **cpo**. Un element al lui C - $c\in C$ se numeste punct fix pentru o functie f, daca f(c)=c. Numim cel mai mic punct fix al lui f - lpf acel element care este mai mic decat toate celelalte puncte fixe. Pentru orice $p\in C$ punct fix, $lpf\leq p$.

Exercitiul 1

Care sunt punctele fixe pentru urmatoarele functii? Indicati si care este cel mai mic punct fix pentru fiecare situatie data.

1.
$$f_1: \mathcal{P}(\{1,2,3\}) \to \mathcal{P}(\{1,2,3\}), f_1(Y) = Y \cup \{1\}.$$

Observatie: toate submultimile care il contin pe $\{1\}$ sunt puncte fixe.

Aceste elemente sunt: $\{1\}, \{1, 2\}, \{1, 3\}, \{1, 2, 3\}.$

Care este cel mai mic punct fix? $\{1\}$

2.
$$f_2:\mathcal{P}(\{1,2,3\}) o\mathcal{P}(\{1,2,3\}), f_2(Y)=egin{cases} \{1\} & 1\in Y \\ \emptyset & ext{altfel} \end{cases}$$
 $f_2(\emptyset)=\emptyset$ punct fix $f_2(\{1\})=\{1\}$ punct fix

$$f_2(\{2\}) = \emptyset \ f_2(\{1,2\}) = \{1\}$$

•••

Singurele doua puncte fixe sunt \emptyset si $\{1\}$, iar cel mai mic punct fix este \emptyset .

3.
$$f_3:\mathcal{P}(\{1,2,3\}) o\mathcal{P}(\{1,2,3\})$$
, $f_3(Y)=egin{cases}\emptyset&1\in Y\\\{1\}& ext{altfel}\end{cases}$

Observam ca nu avem puncte fixe.

Teorie pentru Exercitiul 2

Fie (A, \leq_A) , (B, \leq_B) doua multimi partial ordonate **mpo**. O functie $f: A \to B$ este monotona (crescatoare) daca $a_1 \leq_A a_2$ implica $f(a_1) \leq_B f(a_2)$, pentru orice $a_1, a_2 \in A$.

O clauza definita propozitionala este o formula care poate avea una dintre urmatoarele doua forme:

- q (clauza unitate).
- $p_1 \wedge p_2 \wedge ... \wedge p_n o q$ unde $p_1, p_2, ... p_n, q$ sunt variabile propozitionale.

Fie S o multime de clauze definite propozitionale. Fie $\mathcal A$ multimea variabilelor propozitionale $p_1,p_2,...,p_n$ care apar in S. Fie $Baza=\{p_i|p_i\in S\}$ multimea clauzelor unitate. Definim functia $f_S:\mathcal P(\mathcal A)\to\mathcal P(\mathcal A)$ prin

$$f_S(Y) = Y \cup Baza \cup \{a \in \mathcal{A} | (s_1 \wedge ... \wedge s_n
ightarrow a) \in S, s_1 \in Y, ..., s_n \in Y\}$$

Exercitiul 2

Sa se demonstreze ca functia f_S este monotona.

Solutie.

Fie Y_1 si Y_2 astfel incat $Y_1 \subseteq Y_2$. Trebuie sa demonstrez ca $f_S(Y_1) \subseteq f_S(Y_2)$.

$$f_S(Y_1) = Y_1 \cup Baza \cup Z_1 \ f_S(Y_2) = Y_2 \cup Baza \cup Z_2$$

Trebuie sa demonstrez ca $Z_1 \subseteq Z_2$.

$$Z_1 = \{a \in \mathcal{A} | (s_1 \wedge ... \wedge s_n
ightarrow a), s_1, ..., s_n \in Y_1 \} \ Z_2 = \{a \in \mathcal{A} | (s_1 \wedge ... \wedge s_n
ightarrow a), s_1, ..., s_n \in Y_2 \}$$

Fie $a\in Z_1$. Inseamna ca exista $s_1,...s_n\in Y_1$ astfel incat $s_1\wedge...\wedge s_n\to a$. Dar $Y_1\subseteq Y_2$ (din ipoteza). Inseamna ca $s_1,...,s_n\in Y_2$. Rezulta ca $a\in Z_2$. Am demonstrat $Z_1\subseteq Z_2$.

Deci $f_S(Y_1) \subseteq f_S(Y_2)$, deci f_S este monotona.

Teorie Exercitiul 3

Fie (A, \leq_A) , (B, \leq_B) doua **cpo**. O functie $f: A \to B$ este continua daca $f(\vee_n a_n) = \vee_n f(a_n)$ pentru orice lant $\{a_n\}_n$ din A.

Observam ca orice functie continua este si crescatoare.

Pentru orice multime de clauze definite propozitionale S, functia f_S este continua.

Teorema Knaster-Tarski. Fie (C,\leq) o multime partial ordonata completa si $F:C\to C$ o functie continua. Atunci, elementul

$$a=ee_n F^n(ot)$$

este cel mai mic punct fix al lui F.

Exercitiul 3

Calculati cel mai mic punct fix pentru functia f_S pentru urmatoarele multimi de clauze definite propozitionale.

1.
$$S_1 = \{x_1 \land x_2 \to x_3, x_4 \land x_2 \to x_5, x_2, x_6, x_6 \to x_1\}$$

$$\mathcal{A} = \{x_1, x_2, x_3, x_4, x_5, x_6\} \ Baza = \{x_2, x_6\}$$

$$egin{aligned} f_S(\emptyset) &= Baza = \{x_2, x_6\} \ f_S(\{x_2, x_6\}) &= \{x_2, x_6, x_1\} \end{aligned}$$

$$egin{aligned} f_S(\{x_2,x_6,x_1\}) &= \{x_2,x_6,x_1,x_3\} \ f_S(\{x_2,x_6,x_1,x_3\}) &= \{x_2,x_6,x_1,x_3\} \end{aligned}$$

am obtinut, conform th. Knaster-Tarski, ca $\{x_1,x_2,x_3,x_6\}$ este cel mai mic punct fix al lui f_S .

2.
$$S_2 = \{x_1 \wedge x_2 o x_3, x_4 o x_1, x_5 o x_2, x_2 o x_5, x_4\}$$

$$\mathcal{A} = \{x_1, x_2, x_3, x_4, x_5\} \ Baza = \{x_4\}$$

$$egin{aligned} f_S(\emptyset) &= Baza = \{x_4\} \ f_S(\{x_4\}) &= \{x_4, x_1\} \ f_S(\{x_4, x_1\}) &= \{x_4, x_1\} \end{aligned}$$

am obtinut, conform th. Knaster-Tarski, ca $\{x_1,x_4\}$ este cel mai mic punct fix al lui f_S .

x4.

3.
$$S_3 = \{x_1 o x_2, x_1 \wedge x_3 o x_1, x_3\}.$$

$$\mathcal{A} = \{x_1, x_2, x_3\}$$
 $Baza = \{x_3\}$

$$egin{aligned} f_S(\emptyset) &= Baza = \{x_3\} \ f_S(\{x_3\}) &= \{x_3\} \end{aligned}$$

Am obtinut ca $\{x_3\}$ este cel mai mic punct fix, conform th. Knaster-Tarski.

x3.

x2 :- x1.

x1 :- x1, x3.