Math 197 Week 3 Exercises

George Luan

January 23, 2024

Problem 2.2

Proof. For all $s \in G$ and all $x \in X$, e_x is an eigenvector of $\rho(s)$ if and only if $\rho(s)e_x = e_x$, which is equivalent to s * x = x. Thus, $\chi_X(s) = tr(\rho_s)$ is the sum of the eigenvalues of ρ_s counted with algebraic multiplicity. Since each ρ_s represents a permutation, the only possible eigenvalue is 1 and the algebraic multiplicity coincides with geometric multiplicity (the total number of eigenvectors among $(e_x)_{x \in X}$), so $\chi_X(s) = |G(s)|$ as desired.

Problem 2.3

Proof. (Uniqueness) Suppose $\rho', \rho^{\#}: G \to GL(V')$ are two linear representations such that $\langle \rho_s x, \rho_s' x' \rangle = \langle x, \rho_s^t \rho_s^{\#} x' \rangle = \langle x, x' \rangle$ for all $s \in G, x \in V, x' \in V'$. Then for all $s \in G, x \in V, x' \in V'$, $\langle x, \rho_s^t \rho_s^{\#} x' \rangle = \langle x, \rho_s^t \rho_s' x' \rangle = \langle x, x' \rangle$ for all $s \in G, x \in V, x' \in V'$, so $\rho_s^t \rho_s' = \rho_s^t \rho_s^{\#} = Id_{V'}$. As a result $\rho^{\#} = \rho_s' = (\rho_s^t)^{-1} = (\rho_s^{-1})^t = (\rho_{s-1})^t$ for all $s \in G$, and $\rho' = \rho^{\#}$ as desired. (Existence) Define ρ' by $\rho'(s) := \rho(s^{-1})^t$ for all $s \in G$.

Problem 2.4

Proof. Let $r, s \in G$. Then for all $f \in W$, $\rho_s \circ \rho_r f = \rho_{2,s} \circ \rho_{2,r} \circ f \circ \rho_{1,r}^{-1} \circ \rho_{1,s}^{-1} = \rho_{2,sr} \circ f \circ \rho_{1,sr}^{-1}$, so ρ defines a linear representation.

Since ρ is isomorphic to $\rho'_1 \otimes \rho_2$, $\chi_{\rho} = \chi_1^* \cdot \chi_2$.

Problem 2.5

Proof. The trivial representation of dimmension 1 is irreducible and has character 1. By Theorem 4, the statement holds as desired. \Box