CHAPTER 18: ELECTRICAL PROPERTIES

- Electrical Conduction
- > Mobility
- > Conductor
- Jonic Materials
- Conducting Polymer
- Amorphous Materials
- > Semiconductor
- Dielectrics

INTRODUCTION

• electrical properties of materials is important when selecting a material for integrated circuits, transistor, semiconductor or insulator.

Basic components of integrated circuits (bipolar). The dark areas are the contact pads.

An Intel 16K static random-access 5167 memory (SRAM) where the squares at the side and lower edges are 100-µm Al thin-film pads contacted by wire bonds.

VIEW OF AN INTEGRATED CIRCUIT

Scanning electron microscope images of an IC:

- A dot map showing location of Si (a semiconductor):
 - --Si shows up as light regions.

- A dot map showing location of AI (a conductor):
 - --Al shows up as light regions.

ELECTRONIC MATERIALS

ELECTRCAL CONDUCTION

> Ohm's law

$$V = IR ([V]=[A][\Omega])$$

$$R = \rho \frac{l}{A}$$
 (\rho: resistivity [\Om])

$$\sigma = \frac{1}{\rho} \ (\sigma: conductivity \ [\Omega^{-1}m^{-1}])$$

$$J=\sigma E$$
 $(J=I/A,\ E=V/l)$ Variable resistor

Ammeter

Cross-sectional area, A

5

Voltmeter

ELECTRCAL CONDUCTIVITY

Conducting range	Material	Conductivity, σ $(\Omega^{-1} \cdot m^{-1})$	
Conductors	Aluminum (annealed)	35.36×10^{6}	
	Copper (annealed standard)	58.00×10^6	
	Iron (99.99 + %)	10.30×10^6	
	Steel (wire)	$5.71 - 9.35 \times 10^6$	
Semiconductors	Germanium (high purity)	2.0	
	Silicon (high purity)	0.40×10^{-3}	
	Lead sulfide (high purity)	38.4	
Insulators	Aluminum oxide	$10^{-10} - 10^{-12}$	
	Borosilicate glass	10^{-13}	
	Polyethylene	$10^{-13} - 10^{-15}$	
	Nylon 66	$10^{-12} - 10^{-13}$	

TABLE 18-2 Some useful relationships, constants, and units

Electron volt = $1 \text{ eV} = 1.6 \times 10^{-19} \text{ Joule} = 1.6 \times 10^{-12} \text{ erg}$ 1 amp = 1 coulomb/second 1 volt = $1 \text{ amp} \cdot \text{ohm}$ k_B T at room temperature (300 K) = 0.0259 eV $c = \text{speed of light } 2.998 \times 10^{-8} \text{ m/s}$ $\varepsilon_0 = \text{perimitivity of free space} = 8.85 \times 10^{-12} \text{ F/m}$ $q = \text{charge on electron} = 1.6 \times 10^{-19} \text{ C}$ Avogadro's number $N_A = 6.023 \times 10^{23}$ k_B = Boltzmann's constant = $8.63 \times 10^{-5} \text{ eV/K} = 1.38 \times 10^{-23} \text{ J/K}$ h = Planck's constant $6.63 \times 10^{-34} \text{ J-s} = 4.14 \times 10^{-15} \text{ eV-s}$

(d)

- charge carrier electron (e=1.602x10⁻¹⁹ C) electron hole cation anion

BAND STRUCTURE OF SOLIDS

□ Valence band

- The energy levels filled by electrons in their lowest energy states.

□ Conduction band

- The unfilled energy levels into which electrons can be excited to provide conductivity.

□ Holes

 Unfilled energy levels in the valence band. Because electrons move to fill these holes, the holes move and produce a current.

□ Energy gap (Bandgap)

- The energy between the top of the valence band and the bottom of the conduction band that a charge carrier must obtain before it can transfer a charge.

NUMBER OF CHARGE CARRIER

energy band

ENERGY BAND

ENERGY BAND

ELECTRON BAND STRUCTURE

Empty conduction band

Band gap

Filled valence band

Empty conduction band

Band gap

Filled valence band

metal Ex) Cu (3d¹⁰4s¹)

 $Mg(3s^2)$

insulator > 2eV

semiconductor < 2eV

ENERGY BAND FOR CONDUCTOR

(e)

(d)

(f)

CONDUCTION IN TERMS OF BAND AND ATOMIC BONDING MODELS

metals

> insulators and semiconductors

CONDUCTION & ELECTRON TRANSPORT

- Metals:
- -- Thermal energy puts many electrons into a higher energy state.

- Energy States:
- -- the cases below for metals show that nearby energy states are accessible by thermal fluctuations.

ENERGY STATES: INSULATORS AND SEMICONDUCTORS

- Insulators:
 - --Higher energy states not accessible due to gap.

- Semiconductors:
 - --Higher energy states separated by a smaller gap.

ELECTRON DISTRIBUTION WITHIN AN ENERGY BAND

ELECTRON DISTRIBUTION WITHIN AN ENERGY BAND

$$N_e = \int_{E_C}^{\infty} f(E)g(E)dE$$
 $g(E)$: density of state

$$=N_o \exp(\frac{-E_g}{2kT})$$

DENSITY OF STATE

g(E)dE= number of electron states per unit volume in the energy range (E, E+dE)

Fig. 5.27 The position of the Fermi energy in (a) a monovalent metal, and (b) a divalent metal.

The position of the Fermi energy in an insulator.

EXAMPLE

- Ex1) This example deals with the Fermi-Dirac distribution function.
- a. Show that $f(E_f)=0.5$ at any temperature.
- b. Show that at 0K, $f(E>E_f)=0$ and $f(E<E_f)=1.0$.
- c. Calculate the values of $f(E_f+0.5 \text{ eV})$ at 0, 300, and 600K.
- d. Repeat part c for f(Ef+2.0 eV).
- Ex2) What is the probability of an electron being thermally promoted to the conduction band in diamond (E_g =5.6eV) and silicon (E_a =1.07eV) at room temperature.

Electron

> electron motion under electric field

 $\overline{v}_d = a\overline{t} \ (\overline{v}_d: drift velocity, \overline{t}: mean time)$

 $\overline{v}_d = \mu_e E (\mu_e : electron mobility)$

random velocity: v_r drift velocity: v_d

$$v_{r}/v_{d} \sim 10^{8}$$

> conductivity

 $\sigma = n |e| \mu$ n: number of mobile charge carrier per unit volume [m⁻³] |e|: charge per carrier [C] μ : mobility of charge carrier [m²/Vs]

> For metals

$$\sigma = 5 \times 10^7 \ \Omega^{-1} \text{m}^{-1} \quad \text{n} = 10^{29} \ \text{m}^{-3} \quad \text{e} = 1.6 \times 10^{-19} \ \text{C}$$

 $\mu = 3.1 \times 10^{-3} \ \text{m}^2/\text{Vs}$

Electrical Conductivities and Other Transport Parameters for Metals

Ele- ment	σ, ohm ⁻¹ m ⁻¹	<i>N</i> , m ⁻³	τ, s	v _F , m/s	l, Å	Ε _F , eV	$E_{\rm F}$ (obs.), eV	m^*/m_0
Li	1.07×10 ⁷	4.6×10 ²⁸	0.9×10 ⁻¹⁴	1.3×10 ⁶	110	4.7	3.7	1.2
Na	2.11	2.5	3.1	1.1	350	3.1	2.5	1.2
K	1.39	1.3	4.3	0.85	370	2.1	1.9	1.1
Rb	0.80	1.1	2.75	0.80	220	1.8		_
Cs	0.50	0.85		0.75	160	1.5		
Cu	5.88	8.45	2.7	1.6	420	7.0	7.0	1.0
Ag	6.21	5.85	4.1	1.4	570	5.5		
Au	4.55	5.90	2.9	1.4	410	5.5	,	
Zn	1.69	13.10		1.82	_	9.4	11.0	0.85
Cd	1.38	9.28	<u></u> 2	1.62	· <u></u>	7.5	5-7	_
Hg	0.10					-	4	-
Al	3.65	18.06		2.02	<u> 2 (14)</u>	11.6	11.8	
Ga	0.67	15.30		1.91		10.3		
In	1.14	11.5	_	1.74	1	8.6		· · · · · · · · · · · · · · · · · · ·
	m ¹ 2							

Values quoted are for metals at room temperature. The concentration is found by using the usual chemical valences. The Fermi velocity v_F and E_F are evaluated by using $m^* = m_0$ and the appropriate equation from Section 4.6. The Fermi energy E_F (observed) is the experimentally determined value as discussed in Chapter 6. The effective mass m^* is determined by using the experimental value E_F (observed) and the relation $E_F = (\hbar/2m^*)(3\pi^2N)^{2/3}$, Eq. (4.34).

M.A. Omar, Elementary Solid State Physics

ELECTRICAL CONDUCTIVITY

- > free electron model
 - current is carried equally by all electrons, each moving with a very small velocity v_d
 - current is carried by very few electrons only, all

moving at high velocity

$$\sigma = \frac{Ne^2\tau}{m^*}$$

- band theory
 - depends on the Fermi velocity and the collision time, but also on the density of states at the Fermi surface

$$\sigma = \frac{1}{3}e^2 v_F^2 \tau_F g(E_F)$$

$$\frac{\partial \mu}{\partial T} < 0$$

/h)

$$\frac{\partial \mu}{\partial N_d} < 0$$

- $\sigma = N_e q_e \mu_e$
- $N_e q_e$: independent of temp. and microstructure
- scattering $\rightarrow \mu_e$
- $\rho_{total} = \rho_t + \rho_i + \rho_d$

(Matthiessen's rule)

> temperature

$$-\partial \mu/\partial T < 0 \rightarrow \partial \sigma/\partial T < 0$$

$$-\rho_t = \rho_o + \alpha T$$

> impurities

$$-\rho_i = Ac_i(1-c_i)$$

$$-\rho_i = \rho_\alpha V_\alpha + \rho_\beta V_\beta$$

APPLICATIONS

> thermocouple

Туре	Common name	Positive element ^a	Negative element ^a	Recommended service environment(s)	Maximum service temp. (°C)
В	Platinum-rhodium/ platinum-rhodium	70 Pt-30 Rh	94 Pt-6 Rh	Oxidizing Vacuum Inert	1,700
E	Chromel/constantan	90 Ni-9 Cr	44 Ni-55 Cu	Oxidizing	870
J	Iron/constantan	Fe	44 Ni-55 Cu	Oxidizing Reducing	760
K	Chromel/alumel	90 Ni-9 Cr	94 Ni–Al, Mn, Fe, Si, Co	Oxidizing	1,260
R	Platinum/platinum-rhodium	87 Pt-13 Rh	Pt	Oxidizing Inert	1,480
S	Platinum/platinum-rhodium	90 Pt-10 Rh	Pt	Oxidizing Inert	1,480
T	Copper/constantan	Cu	44 Ni–55 Cu	Oxidizing Reducing	370

Source: Data from *Metals Handbook*, 9th ed., Vol. 3, American Society for Metals, Metals Park, OH, 1980.

^a Alloy compositions expressed as weight percents.