A JOURNEY

IN

PURE MATHEMATICS

A JOURNEY

IN

PURE MATHEMATICS

MAT3006 & 3040 & 4002 Notebook

Prof. Daniel Wong

The Chinese University of Hongkong, Shenzhen

Contents

Ackno	owledgments	xi
Notat	ions	xiii
1	Week1	. 1
1.1	Monday for MAT3040	1
1.1.1	Introduction to Advanced Linear Algebra	. 1
1.1.2	Vector Spaces	. 2
1.2	Monday for MAT3006	5
1.2.1	Overview on uniform convergence	. 5
1.2.2	Introduction to MAT3006	. 6
1.2.3	Metric Spaces	. 7
1.3	Monday for MAT4002	10
1.3.1	Introduction to Topology	. 10
1.3.2	Metric Spaces	. 11
1.4	Wednesday for MAT3040	14
1.4.1	Review	. 14
1.4.2	Spanning Set	. 14
1.4.3	Linear Independence and Basis	. 16
1.5	Wednesday for MAT3006	20
1.5.1	Convergence of Sequences	. 20
1.5.2	Continuity	. 24
1.5.3	Open and Closed Sets	. 25
1.6	Wednesday for MAT4002	27
1.6.1	Forget about metric	. 27
162	Topological Spaces	30

1.6.3	Closed Subsets	31
2	Week2	33
2.1	Monday for MAT3040	33
2.1.1	Basis and Dimension	33
2.1.2	Operations on a vector space	36
2.2	Monday for MAT3006	39
2.2.1	Remark on Open and Closed Set	39
2.2.2	Boundary, Closure, and Interior	43
2.3	Monday for MAT4002	46
2.3.1	Convergence in topological space	46
2.3.2	Interior, Closure, Boundary	48
2.4	Wednesday for MAT3040	52
2.4.1	Remark on Direct Sum	52
2.4.2	Linear Transformation	53
2.5	Wednesday for MAT3006	60
2.5.1	Compactness	60
2.5.2	Completeness	65
2.6	Wednesday for MAT4002	67
2.6.1	Remark on Closure	67
2.6.2	Functions on Topological Space	69
2.6.3	Subspace Topology	71
2.6.4	Basis (Base) of a topology	73
3	Week3	75
3.1	Monday for MAT3040	75
3.1.1	Remarks on Isomorphism	75
312	Change of Basis and Matrix Representation	76

3.2	Monday for MAT3006	83
3.2.1	Remarks on Completeness	83
3.2.2	Contraction Mapping Theorem	84
3.2.3	Picard Lindelof Theorem	87
3.3	Monday for MAT4002	89
3.3.1	Remarks on Basis and Homeomorphism	89
3.3.2	Product Space	92
3.4	Wednesday for MAT3040	94
3.4.1	Remarks for the Change of Basis	94
3.5	Wednesday for MAT3006	100
3.5.1	Remarks on Contraction	100
3.5.2	Picard-Lindelof Theorem	101
3.6	Wednesday for MAT4002	105
3.6.1	Remarks on product space	105
3.6.2	Properties of Topological Spaces	108
4	Week4	111
4.1	Monday for MAT3040	111
4.1.1	Quotient Spaces	111
4.1.2	First Isomorphism Theorem	114
4.2	Monday for MAT3006	117
4.2.1	Generalization into System of ODEs	117
4.2.2	Stone-Weierstrass Theorem	119
4.3	Monday for MAT4002	123
4.3.1	Hausdorffness	123
4.3.2	Connectedness	124
4.4	Wednesday for MAT3040	128
441	Dual Space	133

4.5	Wednesday for MAT3006	136
4.5.1	Stone-Weierstrass Theorem	. 137
4.6	Wednesday for MAT4002	142
4.6.1	Remark on Connectedness	. 142
4.6.2	Completeness	. 144
5	Week5	147
5.1	Monday for MAT3040	147
5.1.1	Remarks on Dual Space	. 148
5.1.2	Annihilators	. 150
5.2	Monday for MAT3006	154
5.2.1	Stone-Weierstrass Theorem in $\mathbb C$. 155
5.2.2	Baire Category Theorem	. 157
5.3	Monday for MAT4002	159
5.3.1	Continuous Functions on Compact Space	. 159
5.4	Wednesday for MAT3040	162
5.4.1	Adjoint Map	. 163
5.4.2	Relationship between Annihilator and dual of quotient spaces	. 166
5.5	Wednesday for MAT3006	167
5.5.1	Remarks on Baire Category Theorem	. 167
5.5.2	Compact subsets of $\mathcal{C}[a,b]$. 169
5.6	Wednesday for MAT4002	171
5.6.1	Remarks on Compactness	. 171
5.6.2	Quotient Spaces	. 172
6	Week6	177
6.1	Monday for MAT3040	177
6.1.1	Polynomials	. 177

6.2	Monday for MAT3006	180
6.2.1	Arzela-Ascoli Theorem	180
6.2.2	Baire Category Theorem	181
6.2	Wednesday for MAT3040	180
6.2.1	Eigenvalues & Eigenvectors	183
7	Week7	. 187
7.1	Monday for MAT3040	187
7.1.1	Minimal Polynomial	187
7.2	Monday for MAT3006	193
7.3	Monday for MAT4002	197
7.3.1	Quotient Map	197
7.3.2	Simplicial Complex	198
7.4	Wednesday for MAT3040	201
7.4.1	Cayley-Hamiton Theorem	202
7.5	Wednesday for MAT4002	206
7.5.1	Simplicial Sub-complex	206
7.5.2	Some properties of simplicial complex	208

Acknowledgments

This book is from the MAT3006, MAT3040, MAT4002 in spring semester, 2018-2019.

CUHK(SZ)

Notations and Conventions

 \mathbb{R}^n *n*-dimensional real space \mathbb{C}^n *n*-dimensional complex space $\mathbb{R}^{m \times n}$ set of all $m \times n$ real-valued matrices $\mathbb{C}^{m \times n}$ set of all $m \times n$ complex-valued matrices *i*th entry of column vector \boldsymbol{x} x_i (i,j)th entry of matrix \boldsymbol{A} a_{ij} *i*th column of matrix *A* \boldsymbol{a}_i $\boldsymbol{a}_{i}^{\mathrm{T}}$ *i*th row of matrix **A** set of all $n \times n$ real symmetric matrices, i.e., $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $a_{ij} = a_{ji}$ \mathbb{S}^n for all *i*, *j* \mathbb{H}^n set of all $n \times n$ complex Hermitian matrices, i.e., $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\bar{a}_{ij} = a_{ji}$ for all i, j

 \mathbf{A}^{T} transpose of \mathbf{A} , i.e, $\mathbf{B} = \mathbf{A}^{\mathrm{T}}$ means $b_{ji} = a_{ij}$ for all i, j

 A^{H} Hermitian transpose of A, i.e, $B = A^{H}$ means $b_{ji} = \bar{a}_{ij}$ for all i, j

trace(A) sum of diagonal entries of square matrix A

1 A vector with all 1 entries

0 either a vector of all zeros, or a matrix of all zeros

 e_i a unit vector with the nonzero element at the ith entry

C(A) the column space of A

 $\mathcal{R}(\mathbf{A})$ the row space of \mathbf{A}

 $\mathcal{N}(\mathbf{A})$ the null space of \mathbf{A}

 $\operatorname{Proj}_{\mathcal{M}}(\mathbf{A})$ the projection of \mathbf{A} onto the set \mathcal{M}

Chapter 7

Week7

7.1. Monday for MAT3040

Reviewing. Define the characteristic polynomial for an linear operator *T*:

$$\mathcal{X}_T(x) = \det((T)_{A,A} - x\mathbf{I})$$

We will use the notation "I/I" in two different occasions:

- 1. *I* denotes the identity transformation from *V* to *V* with $I(\mathbf{v}) = \mathbf{v}, \forall \mathbf{v} \in V$
- 2. *I* denotes the identity matrix $(I)_{\mathcal{A},\mathcal{A}}$, defined based on any basis \mathcal{A} .

7.1.1. Minimal Polynomial

Definition 7.1 [Linear Operator Induced From Polynomial] Let $f(x) := a_m x^m + \cdots + a_0$ be a polynomial in $\mathbb{F}[x]$, and $T: V \to V$ be a linear operator. Then the mapping

$$f(T) = a_m T^m + \dots + a_1 T + a_0 I: \quad V \to V,$$

is called a linear operator induced from the polynomial f(x).

Definition 7.2 [Minimal Polynomial] Let $T: V \to V$ be a linear operator. The **minimal** polynomial $m_T(x)$ is a **nonzero monic polynomial** of least (minimal) degree such that

$$m_T(T) = \mathbf{0}_{V \to V}.$$

■ Example 7.1 1. Let
$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, then \mathbf{A} defines a linear operator:

$$A: \mathbb{F}^2 \to \mathbb{F}^2$$
 with $\mathbf{x} \mapsto \mathbf{A}\mathbf{x}$

Here
$$\mathcal{X}_A(x)=(x-1)^2$$
 and $\pmb{A}-\pmb{I}=\pmb{0}$, which gives $m_A(x)=x-1$.

2. Let $\pmb{B}=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, which implies

2. Let
$$\mathbf{B} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
, which implies

$$\mathcal{X}_B(x) = (x-1)^2,$$

The question is that can we get the minimal polynomial with degree 1?

The answer is no, since
$$\mathbf{B} - k\mathbf{I} = \begin{pmatrix} 1 - k & 1 \\ 0 & 1 - k \end{pmatrix} \neq \mathbf{0}$$
.

In fact, $m_B(x) = (x-1)^2$, since

$$(\mathbf{B} - \mathbf{I})^2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Two questions naturally arises:

- 1. Does $m_T(x)$ exist? If exists, is it unique?
- 2. What's the relationship between $m_T(x)$ and $\mathcal{X}_T(x)$?

Regarding to the first question, the minimal polynomial $m_T(x)$ may not exist, if V has infinite dimension:

Example 7.2 Consider $V = \mathbb{R}[x]$ and the mapping

$$T: V \to V$$

$$p(x) \mapsto \int_0^x p(t) dt$$

In particular, $T(x^n) = \frac{1}{n+1}x^{n+1}$. Suppose $m_T(x)$ is with degree n, i.e.,

$$m_T(x) = x^n + \dots + a_1 x + a_0,$$

then

$$m_T(T) = T^n + \cdots + a_0 I$$
 is a zero linear transformation

It follows that

$$[m_T(T)](x) = \frac{1}{n!}x^n + a_{n-1}\frac{1}{(n-1)!}x^{n-1} + \dots + a_1x + a_0 = 0_{\mathbb{F}},$$

which is a contradiction since the coefficients of x^k is nonzero on LHS for $k=1,\ldots,n$, but zero on the RHS.

Proposition 7.1 The minimal polynomial $m_T(x)$ always exists for dim(V) = n < ∞.

Proof. It's clear that $\{I, T, ..., T^n, T^{n+1}, ..., T^{n^2}\} \subseteq \text{Hom}(V, V)$. Since $\dim(\text{Hom}(V, V)) = n^2$, we imply $\{I, T, ..., T^n, T^{n+1}, ..., T^{n^2}\}$ is linearly dependent, i.e., there exists a_i 's that are not all zero such that

$$a_0I + a_1T + \dots + a_{n^2}T^{n^2} = 0$$

i.e., there is a polynomial g(x) of degree less than n^2 such that g(T) = 0.

The proof is complete.

Proposition 7.2 The minimal polynomial $m_T(x)$, if exists, then it exists uniquely.

Proof. Suppose f_1 , f_2 are two distinct minimal polynomials with $deg(f_1) = deg(f_2)$. It follows that

- $\deg(f_1 f_2) < \deg(f_1)$.
- $f_1 f_2 \neq 0$

•
$$(f_1 - f_2)(T) = f_1(T) - f_2(T) = 0_{V \to V}$$

By scaling $f_1 - f_2$, there is a monic polynomial g with lower degree satisfying g(T) = 0, which contradicts the definition for minimal polynomial.

Proposition 7.3 Suppose $f(x) \in \mathbb{F}[x]$ satisfying f(T) = 0, then

$$m_T(x) \mid f(x)$$
.

Proof. It's clear that $deg(f) \ge deg(m_T)$. The division algorithm gives

$$f(x) = q(x)m_T(x) + r(x).$$

Therefore, for any $v \in V$

$$[r(T)](\mathbf{v}) = [f(T)](\mathbf{v}) - [q(T)m_T(T)](\mathbf{v}) = \mathbf{0}_V - q(T)\mathbf{0}_V = \mathbf{0}_V - \mathbf{0}_V = \mathbf{0}_V$$

Therefore, $r(T) = \mathbf{0}_{V \to V}$. By definition of minimal polynomial, we imply $r(x) \equiv 0$.

Proposition 7.4 If $A, B \in \mathbb{F}^{n \times n}$ are similar to each other, then $m_A(x) = m_B(x)$.

Proof. Suppose that $\mathbf{B} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$, then

$$m_A(x) = x^k + \dots + a_1 x + a_0, \ m_B(x) = x^\ell + \dots + b_0$$

It follows that

$$m_A(\mathbf{B}) = \mathbf{B}^k + \dots + a_0 I$$

 $= \mathbf{P}^{-1} \mathbf{A}^k \mathbf{P} + \dots + a_0 \mathbf{P}^{-1} \mathbf{P}$
 $= \mathbf{P}^{-1} (\mathbf{A}^k + \dots + a_0 \mathbf{I}) \mathbf{P}$
 $= \mathbf{P}^{-1} (m_A(\mathbf{A})) \mathbf{P}$

By proposition, $m_B(x) \mid m_A(x)$. Similarly, $m_A(x) \mid m_B(x)$. Since $m_A(x)$ and $m_B(x)$ are monic, we imply $m_A(x) = m_B(x)$.

Recall that we also have $\mathcal{X}_A(x) = \mathcal{X}_B(x)$.

We now focus on vanishing of a single vector $\mathbf{v} \in V$.

Proposition 7.5 Let $T: V \to V$ be a linear operator and $\mathbf{v} \in V$. Consider $m_{T,\mathbf{v}}(x)$, the unique monic polynomial of least possible degree such that $m_{T,\mathbf{v}}(T)(\mathbf{v}) = 0$. Then

$$\deg(m_{T,\boldsymbol{v}}(x)) \leq \dim(V).$$

Proof. Let dim(V) = n, and since

$$\{\boldsymbol{v},T\boldsymbol{v},\ldots,T^n\boldsymbol{v}\}\subseteq V,$$

we imply there exists a_i 's that are not all zero suc h that

$$a_n T^n \boldsymbol{v} + \cdots + a_0 I = 0$$

i.e., $deg(m_{T,v}(x)) \le n$.

Proposition 7.6 Suppose that $m_{T,\mathbf{v}}(x) = f_1(x)f_2(x)$, where f_1, f_2 are both monic. Let $\mathbf{w} = f_1(T)\mathbf{v}$, then

$$m_{T,\boldsymbol{w}}(x) = f_2(x)$$

Proof. Note that

$$f_2(T) w = f_2(T) f_1(T) v = m_{T,v}(T) v = 0$$

Therefore, $m_{T,\boldsymbol{w}}|f_2$.

On the other hand,

$$\mathbf{0} = m_{T, w}(T)(w) = m_{T, w}(T)(f_1(T)v)$$

Therefore, $\mathbf{0} = f_1(T)m_{T,\boldsymbol{w}}(T)\boldsymbol{v}$, which implies that

$$m_{T,\boldsymbol{v}}(x) \mid f_1(x)m_{T,\boldsymbol{w}}(x),$$

i.e.,

$$f_1 \cdot f_2 \mid f_1 \cdot m_{T,\boldsymbol{w}} \implies f_2 \mid m_{T,\boldsymbol{w}}.$$

The proof is complete.