

Lecture 02 Divide and Conquer

CSE373: Design and Analysis of Algorithms

Divide and Conquer

Recursive in structure

Divide the problem into independent sub-problems that are similar to the original but smaller in size

Conquer the sub-problems by solving them recursively. If they are small enough, just solve them in a straightforward manner.

Combine the solutions to create a solution to the original problem

6 18 56 62 1 9 15 43

6 18 56 62 1 9 15 43

6 18 56 62 1 9 15 43

6 18 56 62 1 9 15 43

6 18 56 62 1 9 15 43

6 18 56 62 1 9 15 43

6 18 56 62 1 9 15 43

6 18 56 62 1 9 15 43

6 18 56 62 1 9 15 43

6 **18 56 62** 1 9 15 **43**

6 18 <mark>56 62</mark> 1 9 15 43

6 18 56 62 1 9 15 43

6 18 56 62 1 9 15 43

6 18 56 62 1 9 15 43

1 6 9 15 18 43 56 62

```
Merge(A, p, q, r)
1 n_1 \leftarrow q - p + 1
2 n_2 \leftarrow r - q
                                                                       Input: Array containing
        for i \leftarrow 1 to n_1
3
                                                                       sorted subarrays A[p..q] and
            \operatorname{do} L[i] \leftarrow A[p+i-1]
4
                                                                       A[q+1..r].
5
        for j \leftarrow 1 to n_2
                                                                       Output: Merged sorted
            \operatorname{do} R[j] \leftarrow A[q+j]
6
                                                                       subarray in A[p..r].
        L[n_1+1] \leftarrow \infty
        R[n_2+1] \leftarrow \infty
8
9
        i \leftarrow 1
10
        j \leftarrow 1
        for k \leftarrow p to r
11
                                                                      Sentinels, to avoid having to
12
            do if L[i] \leq R[j]
                                                                      check if either subarray is
13
               then A[k] \leftarrow L[i]
                                                                      fully copied at each step.
14
                      i \leftarrow i + 1
15
               else A[k] \leftarrow R[j]
16
                     j \leftarrow j + 1
```

Divide: Divide the n-element sequence to be sorted into two subsequences of n/2 elements each

Conquer: Sort the two subsequences recursively using merge sort.

Combine: Merge the two sorted subsequences to produce the sorted answer.

```
MergeSort (A, p, r) // sort A[p..r] by divide & conquer

1 if p < r

2 then q \leftarrow \lfloor (p+r)/2 \rfloor

3 MergeSort (A, p, q)

4 MergeSort (A, q+1, r)

5 Merge (A, p, q, r) // merges A[p..q] with A[q+1..r]
```

Initial Call: MergeSort(A, 1, n)

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
18	26	32	6	43	15	9	1	22	26	19	55	37	43	99	2

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	2	6	9	15	18	19	22	26	26	32	37	43	43	55	99

Analysis of Merge Sort

Time complexity of divide and conquer approach: The original problem is divided into a sub-problems, each of which is 1/b the size of the original. The cost for dividing is D(n) and the cost for combining is C(n).

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \le c \\ aT\left(\frac{n}{b}\right) + D(n) + C(n) & \text{otherwise} \end{cases}$$

[Divide]
$$D(n) = \Theta(1)$$

[Conquer] $2 * T(n/2)$
[Combine] $C(n) = \Theta(n)$

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 2T(\frac{n}{2}) + \Theta(n) & \text{if } n > 1 \\ & = \Theta(n \log_2 n) \end{cases}$$

Recurrence Relations

Equation or an inequality that characterizes a function by its values on smaller inputs.

Recurrence relations arise when we analyze the running time of iterative or recursive algorithms.

Ex: Divide and Conquer.

```
T(n) = \Theta(1)
 T(n) = a T(n/b) + D(n) + C(n)
```

if $n \le c$ otherwise

Solution Methods

Substitution Method.

Recursion-tree Method.

Master Method.

Substitution Method

<u>Guess</u> the form of the solution, then <u>use mathematical induction</u> to show it correct.

Substitute guessed answer for the function when the inductive hypothesis is applied to smaller values – hence, the name.

Works well when the solution is easy to guess.

No general way to guess the correct solution.

Substitution Method

Recurrence:
$$T(n) = 1$$
 if $n = 1$
 $T(n) = 2T(n/2) + n$ if $n > 1$

- Guess: $T(n) = n \lg n + n$.
- Induction:

```
• Basis: n = 1 \Rightarrow n \text{ lgn} + n = 1 = T(n).
```

• Hypothesis: $T(k) = k \lg k + k \text{ for all } k < n.$

•Inductive Step:
$$T(n) = 2 T(n/2) + n$$

 $= 2 ((n/2) | g(n/2) + (n/2)) + n$
 $= n (| g(n/2)) + 2n$
 $= n | g(n - n) + 2n$
 $= n | g(n + n)$

Recursion-tree Method

Making a good guess is sometimes difficult with the substitution method.

Use recursion trees to devise good guesses.

Recursion Trees

Show successive expansions of recurrences using trees.

Keep track of the time spent on the subproblems of a divide and conquer algorithm.

Help organize the algebraic bookkeeping necessary to solve a recurrence.

Recursion-tree – Example

Running time of Merge Sort:

$$T(n) = \Theta(1)$$
 if $n = 1$
 $T(n) = 2T(n/2) + \Theta(n)$ if $n > 1$

Rewrite the recurrence as

$$T(n) = c$$
 if $n = 1$
 $T(n) = 2T(n/2) + cn$ if $n > 1$

 c > 0: Running time for the base case and time per array element for the divide and combine steps.

Recursion Tree for Merge Sort

For the original problem, we have a cost of cn, plus two subproblems each of size (n/2) and running time T(n/2).

Each of the size n/2 problems has a cost of cn/2 plus two subproblems, each costing T(n/4).

Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1.

Recursion Tree: Another Example

$$T(n) = T(n/3) + T(2n/3) + cn$$

Level
$$0: cn = \left(\frac{1}{3} + \frac{2}{3}\right)^0 cn$$

Level $1: \left(\frac{1}{3}\right)^1 \left(\frac{2}{3}\right)^0 cn + \left(\frac{1}{3}\right)^0 \left(\frac{2}{3}\right)^1 cn = \left(\frac{1}{3} + \frac{2}{3}\right)^1 cn$

$$\text{Level 2} : \sum_{i=0}^{2} {2 \choose i} \left(\frac{1}{3}\right)^{2-i} \left(\frac{2}{3}\right)^{i} = \left(\frac{1}{3} + \frac{2}{3}\right)^{2} cn$$

$$\vdots$$

$$\text{Level } k : \sum_{i=0}^{k} {k \choose i} \left(\frac{1}{3}\right)^{k-i} \left(\frac{2}{3}\right)^{i} = \left(\frac{1}{3} + \frac{2}{3}\right)^{k} cn$$