ELITON TRINDADE GOMES

PROPAGAÇÃO DE PULSOS DE LUZ EM SISTEMAS ATÔMICOS

JI-PARANÁ, RO MÊS E ANO DA DEFESA

ELITON TRINDADE GOMES

PROPAGAÇÃO DE PULSOS DE LUZ EM SISTEMAS ATÔMICOS

Trabalho de Conclusão de Curso apresentado ao Departamento de Física de Ji-Paraná, Universidade Federal de Rondônia, Campus de Ji-Paraná, como parte dos quesitos para a obtenção do Título de Bacharel em Física, sob orientação do Prof. Dr. Marco Polo Moreno de Souza.

JI-PARANÁ, RO MÊS E ANO DA DEFESA

ATA DE AVALIAÇÃO DO TRABALHO DE CONCLUSÃO DE CURSO DE (LICENCIATURA PLENA/BACHARELADO) EM FÍSICA

Aos xxx dias do mês de xxx do ano de xxx, às xxx, no xxx, reuniu-se a Banca Julgadora composta pelo professor orientador Dr. Marco Polo Moreno de Souza e pelos examinadores Nome do professor da banca e Nome do professor da banca, para avaliarem o Trabalho de Conclusão de Curso, do Curso de Bacharelado em Física, intitulado "PROPAGAÇÃO DE PULSOS DE LUZ EM SISTEMAS ATÔMICOS", do discente *ELITON TRINDADE GOMES*. Após a apresentação, o candidato foi arguido pelos integrantes da Banca Julgadora por xxx (xxx) minutos. Ao final da arguição, a Banca Julgadora, em sessão reservada, aprovou o candidato com nota xxx (xxx), em uma avaliação de 0 (zero) a 10 (dez). Nada mais havendo a tratar, a sessão foi encerrada às xxx, dela sendo lavrada a presente ata, assinada por todos os membros da Banca Julgadora.

Prof. Dr. Marco Pol	lo Moreno de Souza - DEFIJI/CJP/UNIF
	Orientador
D C M 1	
Prof. Nome do pr	rofessor da banca - DEFIJI/CJP/UNIR
D C M 1	rofessor da banca - DEFIJI/CJP/UNIR

DEDICATÓRIA

Digite a dedicatória aqui.

AGRADECIMENTOS

Digite os agradecimentos aqui.

EPÍGRAFE

Digite a epígrafe aqui.

RESUMO

O resumo em língua portuguesa deverá conter no mínimo 150 e no máximo 500 palavras. Bla Bla

Palavras-chave: palavra-chave 1. palavra-chave 2. palavra-chave 3.

LISTA DE TABELAS

4.1	Funções trigonométricas e hiperbólicas.	 23
5.1	Funções trigonométricas e hiperbólicas.	 25

LISTA DE FIGURAS

4.1	Níveis de energia de um hipotético "átomo de dois níveis". A "dessintonia" $\delta =$					
	$\omega_0 - \omega$ é a diferença entre $(E_2 - E_1)/\hbar$ e ω . A radiação da frequência angular					
	ω é quase ressonante com a transição $E_1 \to E_2$, quando $\delta \ll \omega_0 - \omega$	22				
5.1	Espectro de um laser de femtossegundos	25				

SUMÁRIO

1	Introdução					
2	Mecânica Quântica e Operador Densidade (ρ) 2.1 Matriz densidade					
3	PROPAGAÇÃO DE ONDAS ELETROMAGNETICA EM MEIOS POLARIZA DOS 3.1 Equações de Maxwell	9 9 11				
4	Interação sistema atômico de dois níveis com radiação 4.1 Hamiltoniano para um sistema de dois níveis	22 23 23 24				
5	Outro capítulo	25				
6 Conclusão						
Tí	ılo do Primeiro Apêndice	31				
Tí	ılo do Segundo Apêndice	33				

1 INTRODUÇÃO

Digite a introdução aqui.

2 MECÂNICA QUÂNTICA E OPERADOR DENSIDADE

Neste capítulo nos dedicamos a apresentar o formalismo do operador densidade, desenvolvido por J. von Neumann em 1927, e suas vantagens em relação à representação de autoestados e autovetores no estudo de sistemas quânticos [1].

2.1 MATRIZ DENSIDADE

Como sabemos, o formalismo usual da mecânica quântica, onde trabalhamos com autoestados e autovalores de um determinado observável (formalismo de Dirac), nos permite fazer previsões sobre um conjunto de sistemas físicos elaborados de forma idêntica [2]. Em termos mais específicos, garantimos que todos os sistemas membros deste ensemble sejam caracterizados por um mesmo ket de estado $|\alpha\rangle$. Assim, este formalismo não é válido se considerarmos, por exemplo, que 70% desses sistemas são caracterizados pelo ket de estado $|\alpha\rangle$ e 30% pelo ket de estado $|\beta\rangle$ (ensemble misto). Para lidar com essa situação, precisamos introduzir o conceito de operador densidade, que nos permitirá descrever quantitativamente conjuntos de sistemas quântico para ensemble puros ou, até mesmo, ensemble mistos completamente aleatórios.

Consideremos o ensemble misto, onde uma fração de sistemas com população relativa w_1 estão no estado $|\alpha^{(1)}\rangle$; outra fração w_2 estão no estado $|\alpha^{(2)}\rangle$, e assim sucessivamente. Podemos dizer, com certa precisão, que um ensemble misto pode ser visto como uma mistura de ensembles puros. As populações w_i devem satisfazer a condição de normalização, ou seja,

$$\sum_{i} w_i = 1. \tag{2.1}$$

Não é necessário que $|\alpha^{(1)}\rangle$, $|\alpha^{(2)}\rangle$,..., $|\alpha^{(i)}\rangle$ sejam ortogonais entre si e o número de termos na soma em i na equação (2.1) não precisa ser igual ao número de dimensões N no espaço de Hilbert.

Vamos supor que realizamos a medida de um operador \hat{A} num ensemble misto. É possível calcular o valor médio se houver um número grande de medidas. O resultado é dado pela média sobre o ensembles, definida por:

$$[\hat{A}] \equiv \sum_{i} w_{i} \langle \alpha^{(i)} | \hat{A} | \alpha^{(i)} \rangle$$

$$= \sum_{i} w_{i} \langle \alpha^{(i)} | \hat{A} \sum_{a'} | a' \rangle \langle a' | | \alpha^{(i)} \rangle$$

$$= \sum_{i} \sum_{a'} w_{i} \langle \alpha^{(i)} | \hat{A} | a' \rangle \langle a' | | \alpha^{(i)} \rangle$$

$$= \sum_{i} \sum_{a'} w_{i} \langle \alpha^{(i)} | a' \rangle \langle a' | \alpha^{(i)} \rangle a'$$

$$= \sum_{i} \sum_{a'} w_{i} \langle \alpha^{(i)} | a' \rangle^{*} \langle \alpha^{(i)} | a' \rangle a'$$

$$= \sum_{i} \sum_{a'} w_{i} | \langle a' | \alpha^{(i)} \rangle | ^{2} a', \qquad (2.2)$$

sendo que $|a'\rangle$ é um autovetor do operador \hat{A} e que $\langle \alpha^{(i)} | \hat{A} | \alpha^{(i)} \rangle$ trata-se do valor esperado habitual para \hat{A} em relação a um estado $|\alpha^{(i)}\rangle$. Vemos na equação (2.2) que este valores esperados precisam ser ponderados pelas populações relativas w_i . É possível observar também que que $\|\langle a' | \alpha^{(i)} \rangle\|^2$ é a probabilidade do estado $|\alpha(i)\rangle$ de ser encontrado em um autoestado $|a'\rangle$ após colapso do ket de estado e que w_i identifica a quantidade relativa de sistemas no estado estado quântico caracterizado por $|\alpha^{(i)}\rangle$.

Se considerarmos uma base genérica $\{|b'\rangle\}$, podemos reescrever a média sobre o ensemble (2.2) da seguinte forma:

$$[\hat{A}] = \sum_{i} w_{i} \langle \alpha^{(i)} | \sum_{b'} |b'\rangle \langle b'| \hat{A} \sum_{b''} |b''\rangle \langle b''| |\alpha^{(i)}\rangle$$

$$= \sum_{i} \sum_{b'} \sum_{b''} w_{i} \langle \alpha^{(i)} | b'\rangle \langle b'| \hat{A} |b''\rangle \langle b'' | \alpha^{(i)}\rangle$$

$$= \sum_{i} \sum_{b'} \sum_{b''} w_{i} \langle b'' | \alpha^{(i)}\rangle \langle \alpha^{(i)} | b'\rangle \langle b'| \hat{A} |b''\rangle$$

$$= \sum_{b'} \sum_{b''} \left(\sum_{i} w_{i} \langle b'' | \alpha^{(i)}\rangle \langle \alpha^{(i)} | b'\rangle \right) \langle b'| \hat{A} |b''\rangle. \tag{2.3}$$

O termo destacado entre parenteses é o elemento de matriz de um certo operador hermitiano, que denominamos **matriz densidade** ou ainda, **operador densidade** $\hat{\rho}$, conforme equações (2.4) e (2.5):

$$\langle b''|\hat{\rho}|b'\rangle = \sum_{i} w_{i} \langle b''|\alpha^{(i)}\rangle \langle \alpha^{(i)}|b'\rangle$$
(2.4)

De forma geral, o operador densidade é definido como

$$\hat{\rho} \equiv \sum_{i} w_i \left| a^{(i)} \middle\langle a^{(i)} \right|. \tag{2.5}$$

Uma vez determinado o operador densidade do sistema, podemos caracterizar o en-

semble quântico em questão, de modo a obter todas as informações físicas encerradas por tal operador. Substituindo (2.4) em (2.3), podemos reescrever o valor esperado de \hat{A} como:

$$[\hat{A}] = \sum_{b'} \sum_{b''} \langle b'' | \hat{\rho} | b' \rangle \langle b' | \hat{A} | b'' \rangle$$

$$= \operatorname{Tr}(\hat{\rho} \hat{A}), \qquad (2.6)$$

onde a operação $\mathrm{Tr}\left(\hat{\rho}\hat{A}\right)$ corresponde ao traço do operador resultante do produto entre $\hat{\rho}$ e \hat{A} , ficando assim explícito o poder desta construção, pois o traço independe da representação e pode ser calculado usando uma base conveniente.

2.1.1 Propriedades do Operador Densidade

Vamos agora nos ater a algumas propriedades do operador densidade:

Primeira propriedade: O operador densidade é hermitiano, ou seja:

$$\hat{\rho} = \hat{\rho}^{\dagger}. \tag{2.7}$$

Segunda propriedade: O operador densidade satisfaz a condição de normalização

$$\operatorname{Tr} \rho = \sum_{i} \sum_{b'} w_{i} \left\langle b' \middle| \alpha^{(i)} \right\rangle \left\langle \alpha^{(i)} \middle| b' \right\rangle$$

$$= \sum_{i} w_{i} \left\langle \alpha^{(i)} \middle| \alpha^{(i)} \right\rangle$$

$$= 1. \tag{2.8}$$

Terceira propriedade: Podemos substituir o operador \hat{A} em (2.6) pelo próprio operador densidade, obtendo:

$$\operatorname{Tr}(\hat{\rho}^{2}) = \operatorname{Tr}(\hat{\rho}\hat{\rho})$$

$$= \sum_{i} w_{i} \langle \alpha^{(i)} | \left(\sum_{j} w_{j} | \alpha^{(j)} \rangle \langle \alpha^{(j)} | \right) | \alpha^{(i)} \rangle$$

$$= \sum_{i} \sum_{j} w_{i} w_{j} \langle \alpha^{(i)} | \alpha^{(j)} \rangle \langle \alpha^{(j)} | \alpha^{(i)} \rangle$$

$$= \sum_{i} \sum_{j} w_{i} w_{j} \langle \alpha^{(i)} | \alpha^{(j)} \rangle \langle \alpha^{(i)} | \alpha^{(j)} \rangle^{*}$$

$$= \sum_{i} \sum_{j} w_{i} w_{j} || \langle \alpha^{(i)} | \alpha^{(j)} \rangle||^{2}. \tag{2.9}$$

Esse resultado precisa ser analisado, observando a desigualdade de Cauchy-Schwarz

$$\left\| \left\langle \alpha^{(i)} \middle| \alpha^{(j)} \right\rangle \right\|^2 \le \left\langle \alpha^{(i)} \middle| \alpha^{(i)} \right\rangle \left\langle \alpha^{(j)} \middle| \alpha^{(j)} \right\rangle. \tag{2.10}$$

Como os kets $|\alpha^{(i)}\rangle$ são normalizados, ou seja, $\langle \alpha^{(i)}|\alpha^{(i)}\rangle=\langle \alpha^{(j)}|\alpha^{(j)}\rangle=1$, obtemos a seguinte propriedade:

$$\operatorname{Tr}(\hat{\rho}^2) \le 1. \tag{2.11}$$

É possível observar que quando se trata de um ensemble puro, ou seja, quando um dos pesos w_i tem valor 1 e o restante de valor 0, então

$$\hat{\rho} = \left| a^{(i)} \middle\langle a^{(i)} \right|. \tag{2.12}$$

Nesse caso, $Tr(\hat{\rho}^2)$ tem valor máximo, isto é,

$$\operatorname{Tr}(\hat{\rho}^2) = 1. \tag{2.13}$$

Assim, é fácil provar que o operador densidade de um ensemble puro é idempotente, ou seja:

$$\hat{\rho}^2 = \hat{\rho} \tag{2.14}$$

Para melhor compreensão dessas propriedades, vamos supor, por exemplo, um sistema de dois níveis onde o operador densidade é dado pela matriz

$$\hat{\rho} = \begin{pmatrix} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{pmatrix}. \tag{2.15}$$

No primeiro caso, consideramos que 100% dos sistemas estão no ket estado $|\alpha\rangle$, onde

$$|\alpha\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle. \tag{2.16}$$

Então, calculamos:

$$\hat{\rho} = |\alpha\rangle\langle\alpha|$$

$$= \left(\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle\right) \times \left(\frac{1}{\sqrt{2}}\langle0| + \frac{1}{\sqrt{2}}\langle1|\right)$$

$$= \frac{1}{2}(|0\rangle\langle0| + |0\rangle\langle1| + |1\rangle\langle0| + |1\rangle\langle1|)$$

$$= \left(\frac{\frac{1}{2}}{\frac{1}{2}}, \frac{\frac{1}{2}}{\frac{1}{2}}\right). \tag{2.17}$$

Neste caso, é fácil observar que $\hat{\rho}$ satisfaz condição de normalização e, como esperado, representa um caso puro, pois

$$\operatorname{Tr}(\hat{\rho}^{2}) = \operatorname{Tr}\left\{\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \times \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}\right\}$$

$$= \operatorname{Tr}\left\{\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}\right\}$$

$$= \operatorname{Tr}(\hat{\rho})$$

$$= 1 \tag{2.18}$$

Em um segundo caso, temos que 50% dos sistemas estão no ket estado $|\alpha\rangle$ (2.16) e 50% estão no ket estado $|\beta\rangle$, onde

$$|\beta\rangle = \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle. \tag{2.19}$$

Assim temos:

$$\hat{\rho} = \frac{1}{2} |\alpha\rangle\langle\alpha| + \frac{1}{2} |\beta\rangle\langle\beta|$$

$$= \frac{1}{2} \left(\frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle\right) \times \left(\frac{1}{\sqrt{2}} \langle 0| + \frac{1}{\sqrt{2}} \langle 1|\right)$$

$$+ \frac{1}{2} \left(\frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle\right) \times \left(\frac{1}{\sqrt{2}} \langle 0| - \frac{1}{\sqrt{2}} \langle 1|\right)$$

$$= \frac{1}{2} (|0\rangle\langle0| + |1\rangle\langle1|)$$

$$= \begin{pmatrix} \frac{1}{2} & \frac{0}{0} \\ \frac{0}{0} & \frac{1}{2} \end{pmatrix}.$$
(2.20)

O segundo caso também obedece a condição de normalização, mas diferente do primeiro caso, se trata de ensemble misto, pois

$$\operatorname{Tr}(\hat{\rho}^{2}) = \operatorname{Tr}\left\{ \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \times \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \right\}$$

$$= \operatorname{Tr}\left\{ \begin{pmatrix} \frac{1}{4} & 0 \\ 0 & \frac{1}{4} \end{pmatrix} \right\}$$

$$= \frac{1}{2}, \tag{2.21}$$

ou seja,

$$\operatorname{Tr}(\hat{\rho}^2) < 1. \tag{2.22}$$

2.1.2 Evolução Temporal do Operador Densidade

Agora, precisamos determinar como o operador densidade evolui no tempo. Para isso, devemos supor que para um tempo t_0 o operador densidade corresponde à

$$\hat{\rho}(t_0) = \sum_{i} w_i \left| \alpha^{(i)}(t_0) \middle\langle \alpha^{(i)}(t_0) \middle| \right. \tag{2.23}$$

Consideremos que o ensemble não sofre pertubação conforme evolui no tempo, ou seja, as populações relativas w_i se mantém estáticas. Assim, a alteração de $\hat{\rho}$ acontece unicamente pela evolução temporal dos kets de estado $|\alpha^{(i)}(t_0)\rangle$.

$$\left|\alpha^{(i)}(t_0)\right\rangle \xrightarrow{\text{evolução temporal}} \left|\alpha^{(i)}(t)\right\rangle$$
 (2.24)

Sabemos que $|\alpha^{(i)}(t)\rangle$ satisfaz equação de Schrödinger

$$i\hbar \frac{\partial}{\partial t} \left| \alpha^{(i)}(t) \right\rangle = \hat{H} \left| \alpha^{(i)}(t) \right\rangle,$$
 (2.25)

então podemos derivar a equação (2.23) de modo que:

$$\frac{\partial}{\partial t}\hat{\rho}(t) = \frac{\partial}{\partial t} \sum_{i} w_{i} \left| \alpha^{(i)}(t) \right\rangle \left\langle \alpha^{(i)}(t) \right|$$

$$= \sum_{i} w_{i} \frac{\partial}{\partial t} \left(\left| \alpha^{(i)}(t) \right\rangle \right) \left\langle \alpha^{(i)}(t) \right| + \sum_{i} w_{i} \left| \alpha^{(i)}(t) \right\rangle \frac{\partial}{\partial t} \left(\left\langle \alpha^{(i)}(t) \right| \right). \tag{2.26}$$

Substituindo (2.25) em (2.26), obtemos a equação

$$\frac{\partial}{\partial t}\hat{\rho}(t) = \frac{1}{i\hbar}\hat{H}\left(\sum_{i}w_{i}\left|\alpha^{(i)}(t)\right\rangle\left\langle\alpha^{(i)}(t)\right|\right) - \frac{1}{i\hbar}\left(\sum_{i}w_{i}\left|\alpha^{(i)}(t)\right\rangle\left\langle\alpha^{(i)}(t)\right|\right)\hat{H}$$

$$= \frac{1}{i\hbar}\hat{H}\hat{\rho} - \frac{1}{i\hbar}\hat{\rho}\hat{H}$$

$$= -\frac{1}{i\hbar}\left[\hat{\rho},\hat{H}\right],$$
(2.27)

conhecida como equação de **Liouville-von Neumann**, que descreve a evolução temporal do operador densidade [1, 3]. Embora essa equação seja semelhante a equação de Heisenberg, exceto por um sinal negativo (-), é preciso lembrar que estamos trabalhando na formulação Schrödinger, visto que $\hat{\rho}$ é construído a partir de kets e bras que evoluem no tempo e obedecem a equação de Schrödinger.

3 PROPAGAÇÃO DE ONDAS ELETROMAGNÉTICAS EM MEIO LINEAR

Neste capítulo, revisitamos conceitos importantes do eletromagnetismo, que permitirá estudarmos a propagação de pulsos eletromagnéticos no meio atômico de 2 níveis. Para isso, primeiramente apresentaremos a propagação num meio linear e depois expandiremos para o caso de um meio atômico.

3.1 EQUAÇÕES DE MAXWELL

Em princípio, sabemos que as leis do electromagnetismo para um meio podem ser resumidas nas quatro equações de Maxwell [4, 5]:

$$\nabla \cdot \mathbf{D} = \varrho_l \text{ (Lei de Gauss)},$$
 (3.1)

$$\nabla \times \mathbf{H} - \frac{\partial \mathbf{D}}{\partial t} = \mathbf{J}_l \text{ (Lei de Ampère)},$$
 (3.2)

$$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0$$
 (Lei de Faraday), (3.3)

$$\nabla \cdot \mathbf{B} = 0$$
 (Lei de Gauss para o magnetismo). (3.4)

A lei de Gauss apresenta a existência de cargas elétricas positiva e negativa, sendo $\varrho_l\ (C/m^3)$ a densidade de carga elétrica livre. A lei de Àmpere estabelece que uma densidade de corrente elétrica $\mathbf{J}_l\ (A/m^2)$, ou, um deslocamento elétrico $\mathbf{D}\ (C/m^2)$ variável no tempo produz uma distribuição de campo magnetizante $\mathbf{H}\ (A/m)$. A lei de Faraday estabelece que a variação no campo magnético $\mathbf{B}\ (Wb/m^2)$ produz uma distribuição de campo elétrico $\mathbf{E}\ (V/m)$. A lei de Gauss para o magnetismo informa a não existência de cargas magnéticas. O deslocamento elétrico $\mathbf{D}\ e$ o campo magnetizante $\mathbf{H}\ se$ relacionam com $\mathbf{E}\ and\ \mathbf{B}\ a$ partir das equações:

$$\mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P} \tag{3.5}$$

e

$$\mathbf{B} = \mu_0 \mathbf{H} + \mathbf{M},\tag{3.6}$$

sendo P a polarização elétrica e M magnetização de um meio material. A polarização ocorre quando sujeitamos um dielétrico a um campo elétrico. Isso acarreta uma distorção da distribuição interna de cargas, gerando dipolo elétricos que contribuem com o campo elétrico interno total no meio, ou seja, o campo externo separa as carga positiva e negativa do material, e esta contribui para uma componente adicional para o campo. Assim, o momento dipolar por unidade de volume é o que chamamos de polarização elétrica e obedece a seguinte definição:

$$\mathbf{P} \equiv \frac{1}{V} \sum_{i} \mathbf{p_i}.\tag{3.7}$$

A magnetização da matéria ocorre quando é aplicado um campo magnético externo. Dois mecanismos atômicos que justificam esse fenômeno são: o paramagnetismos, em que os dipolos

referentes aos spin (momento angular intrínseco) de elétrons sem par se alinham ao campo magnético externo, e o diamagnetismo, no qual o campo magnético externo provoca mudança na velocidade orbital, ocasionado, mudança no momento de dipolo orbital em sentido oposto a campo magnético externo. Portanto, podemos definir a magnetização M como momento do dipolo magnético resultante por unidade de volume, conforme equação:

$$\mathbf{P} \equiv \frac{1}{V} \sum_{i} \mathbf{p_i}.$$
 (3.8)

Levando em conta que o meio atômico estudado neste TCC é eletricamente neutro e não magnético, podemos desconsiderar ρ_l , \mathbf{J}_l e \mathbf{M} , fazendo

$$|\varrho_l| = |\mathbf{J}_l| = |\mathbf{M}| = 0. \tag{3.9}$$

Aplicando o operador rotacional à lei de Faraday (3.3), obtemos:

$$\nabla \times (\nabla \times \mathbf{E}) + \nabla \times \frac{\partial \mathbf{B}}{\partial t} = 0$$

$$\nabla (\nabla \cdot \mathbf{E}) - \nabla^2 \mathbf{E} + \frac{\partial}{\partial t} (\nabla \times \mathbf{B}) = 0.$$
(3.10)

Usando as relações (3.5) e (3.6) na lei de Ampère (3.2), respeitando as condições (3.11), obtemos:

$$\nabla \times \mathbf{B} = \mu_0 \frac{\partial}{\partial t} (\epsilon_0 \mathbf{E} + \mathbf{P}).$$
 (3.11)

Substituindo esse resultado em (3.12) e usando o fato de que $\nabla(\nabla \cdot \mathbf{E}) = 0$, obtemos a seguinte equação de onda para o campo elétrico que se propaga no eixo z [6]:

$$\frac{\partial^2 \mathbf{E}}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = \mu_0 \frac{\partial^2}{\partial t^2} \mathbf{P}.$$
 (3.12)

Veja que o termo a esquerda da igualdade é equivalente equação de ondas para a propagação da luz no vácuo, enquanto que o termo no lado direito representa a interação do campo eletromagnético com o meio material.

A polarização P pode ser decomposta em duas partes :

$$\mathbf{P} = \mathbf{P}^{\mathbf{L}} + \mathbf{P}^{\mathbf{NL}},\tag{3.13}$$

onde **P**^L representa contribuições que variam de forma linear e **P**^{NL} as contribuições que variam de forma não-linear com o campo elétrico aplicado [7, 8].

No próximo subcapítulo 3.2 apresentamos a solução para um pulso de campo eletromagnético que interagem com material linear e, posteriormente, no subcapítulo 3.3, apresentamos o caso não linear que se aplica ao sistema atômico de dois níveis, ao qual estudaremos no Capítulo 4.

3.2 PROPAGAÇÃO DE ONDA EM MEIO LINEAR

A equação de propagação da onda (3.14), normalmente é resolvida somente usando métodos numéricos. No entanto, podemos realizar simplificações e aproximações que, ainda assim, nos permita lidar com problemas práticos da propagação de pulsos em um meio material [8]. Para um meio linear, podemos reescrever a equação (3.14) da seguinte forma:

$$\frac{\partial^2}{\partial z^2} E(z,t) - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} E(z,t) = \mu_0 \frac{\partial^2}{\partial t^2} P^L(z,t). \tag{3.14}$$

Sabemos que em um meio linear, a polarização se relaciona com o campo elétrico a partir da susceptibilidade elétrica χ_e [4, 5], seguindo a seguinte expressão:

$$P^{L}(z,t) = \epsilon_0 \int_{-\infty}^{t} dt' \, \chi_e(t-t') E(z,t'). \tag{3.15}$$

Isso nos diz que um material não pode polarizar instantaneamente em reposta a um campo aplicado, ou seja, a polarização é uma convolução do campo elétrico em tempos anteriores, onde a susceptibilidade é dada por $\chi_e(\Delta t)$. Podemos estender o limite superior desta integral ao infinito considerando que

$$\chi_e(\Delta t) = 0 \text{ para } \Delta t < 0. \tag{3.16}$$

Reescrevendo (3.17) no domínio da a frequência, obtemos:

$$\tilde{P}^{L}(z,\omega) = \epsilon_{0} \int_{-\infty}^{-\infty} dt \, P^{L}(z,t) e^{-i\omega t}
= \epsilon_{0} \int_{-\infty}^{-\infty} dt \int_{-\infty}^{\infty} dt' \chi_{e}(t-t') E(z,t') e^{-i\omega t}
= \epsilon_{0} \int_{-\infty}^{-\infty} dt \int_{-\infty}^{\infty} dt' \chi_{e}(t) E(z,t') e^{-i\omega(t+t')}
= \epsilon_{0} \int_{-\infty}^{-\infty} dt' \, E(z,t') \int_{-\infty}^{\infty} dt \, \chi_{e}(t) e^{-i\omega(t+t')}
= \epsilon_{0} \int_{-\infty}^{\infty} dt \, \chi_{e}(t) e^{-i\omega t} \int_{-\infty}^{-\infty} dt' \, E(z,t') e^{-i\omega t'}
= \epsilon_{0} \tilde{\chi}_{e}(\omega) \tilde{E}(z,\omega).$$
(3.17)

Realizando transformada de Fourier inversa sobre (3.16), obtemos:

$$\left[\frac{\partial^{2}}{\partial z^{2}} - \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right] E(z,t) = \mu_{0} \frac{\partial^{2}}{\partial t^{2}} P^{L}(z,t)$$

$$\left[\frac{\partial^{2}}{\partial z^{2}} - \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right] \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega \tilde{E}(z,\omega) e^{i\omega t}\right] = \mu_{0} \frac{\partial^{2}}{\partial t^{2}} \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega \tilde{P}^{L}(z,\omega) e^{i\omega t}\right]$$

$$\left[\frac{\partial^{2}}{\partial z^{2}} + \frac{\omega^{2}}{c^{2}}\right] \tilde{E}(z,\omega) = -\mu_{0} \omega^{2} \tilde{P}^{L}(z,\omega).$$
(3.18)

Substituindo (3.19) em (??) e usando o fato de que $c^2 = \frac{1}{\mu_0 \epsilon_0}$, obtemos:

$$\left[\frac{\partial^{2}}{\partial z^{2}} + \mu_{0}\omega^{2}\epsilon_{0}\right]\tilde{E}(z,\omega) = -\mu_{0}\omega^{2}\epsilon_{0}\tilde{\chi}_{e}(\omega)\tilde{E}(z,\omega)$$

$$\left[\frac{\partial^{2}}{\partial z^{2}} + \mu_{0}\omega^{2}\epsilon_{0}(1 + \chi_{e}(\omega))\right]\tilde{E}(z,\omega) = 0$$

$$\left[\frac{\partial^{2}}{\partial z^{2}} + \mu_{0}\omega^{2}\epsilon(\omega)\right]\tilde{E}(z,\omega) = 0,$$
(3.19)

onde

$$\epsilon(\omega) = \epsilon_0 (1 + \chi_e(z, \omega)) \tag{3.20}$$

é a permissividade elétrica do material. Para resolvermos a equação (??), assumimos a susceptibilidade elétrica e a permissividade elétrica do material são reais. Assim, a solução da E.D.O. na direção +z é:

$$\tilde{E}(z,\omega) = \tilde{E}(0,\omega)e^{-ik(\omega)z},\tag{3.21}$$

onde $k(\omega)$ é a constante de propagação, obtida a partir da relação de dispersão da óptica linear

$$k^{2}(\omega) \equiv \omega^{2} \epsilon(\omega) \mu_{0} = \frac{\omega^{2}}{c^{2}} n(\omega),$$
 (3.22)

em que $n(\omega)$ é o índice de refração do material. Para uma análise mais minuciosa, precisamos expandir $k(\omega)$ em série de Taylor, fixando ω_0 na frequência central ω_c

$$k(\omega) = k(\omega_c) + \underbrace{\frac{\partial k}{\partial \omega} \Big|_{\omega_c} (\omega - \omega_c) + \frac{1}{2} \frac{\partial^2 k}{\partial \omega^2} \Big|_{\omega_c} (\omega - \omega_c)^2 + \cdots}_{\Delta \kappa}$$
(3.23)

Assim,

$$k(\omega) = k(\omega_c) + \Delta\kappa. \tag{3.24}$$

Substituindo (3.27) na equação de onda (3.23), temos:

$$\tilde{E}(z,\omega) = \tilde{E}(0,\omega)e^{-ik_c z}e^{-i\Delta\kappa z},$$
(3.25)

onde

$$k_c^2 = k^2(\omega_c) = \omega_c^2 \epsilon(\omega_c) \mu_0 = \frac{\omega_c^2}{c^2} n(\omega_c).$$
 (3.26)

Para o caso prático que nos interessa neste TCC, centralizamos a amplitude de Fourier em um número de onda médio k_c , tendo valor significativo apenas quando o intervalo $\Delta \kappa$ é pequeno comparado a k_c . No apêndice A é introduzido uma função da envoltória que varia lentamente no tempo, após a separação de um termo que oscila rapidamente. Partindo desse princípio, podemos definir uma envoltória que varia lentamente na coordenada espacial:

$$\tilde{\mathcal{E}}(\omega, z) \equiv \tilde{E}(\omega + \omega_c, 0)e^{-i\Delta\kappa z}.$$
 (3.27)

Isso requer que

$$\left| \frac{\mathrm{d}}{\mathrm{d}z} \tilde{\mathcal{E}}(\omega, z) \right| \ll k_c \left| \tilde{\mathcal{E}}(\omega, z) \right|, \tag{3.28}$$

pois partimos do fato que:

$$\left| \frac{\Delta \kappa}{k_c} \right| \ll 1. \tag{3.29}$$

Aplicando a transformada de Fourier inversa à equação (3.27), obtemos:

$$E(z,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega \tilde{E}(z,\omega) e^{i\omega t}$$

$$= \frac{1}{2\pi} \int_{0}^{\infty} d\omega \tilde{E}(z,\omega) e^{i\omega t} + c.c.$$

$$= \frac{1}{2\pi} \int_{0}^{\infty} d\omega \tilde{E}(0,\omega) e^{-ik_{c}z - i\delta z} e^{i\omega t} + c.c.$$

$$= \frac{1}{2\pi} \int_{0}^{\infty} d\omega \tilde{E}(0,\omega + \omega_{c}) e^{-ik_{c}z - i\delta z} e^{i(\omega + \omega_{c})t} + c.c.$$

$$= \frac{1}{2\pi} \left[\int_{0}^{\infty} d\omega \tilde{E}(0,\omega + \omega_{c}) e^{-i\delta z} e^{i\omega t} \right] e^{iw_{c}t - ik_{c}z} + c.c.$$
(3.30)

Substituindo (3.30) em (3.33), temos:

$$E(z,t) = \frac{1}{2} \left[\frac{1}{\pi} \int_0^\infty d\omega \tilde{\mathcal{E}}(z,\omega) e^{i\omega t} \right] e^{iw_c t - ik_c z} + c.c.$$
 (3.31)

Assim, ao aplicarmos a relação do apêndice A, obtemos

$$E(z,t) = \frac{1}{2}\tilde{\mathcal{E}}(z,t)e^{iw_ct - ik_cz} + c.c.$$
(3.32)

onde $\mathcal{E}(z,t)$ é a envoltória do pulso que varia lentamente no espaço e no tempo.

Agora, precisamos obter uma expressão para $P^L(z,t)$. Para isso, reescrevemos (3.18) em termos de $\epsilon(\omega)$ e expandimos $\epsilon(\omega)$ em série de Taylor em torno de ω_c , assim como fizemos para $k(\omega)$, de forma que:

$$\tilde{P}^{L}(z,\omega) = \left[\epsilon(\omega) - \epsilon_{0}\right] \tilde{E}(z,\omega)$$

$$= \left[\epsilon(\omega_{c}) + (\omega - \omega_{c}) \frac{\partial \epsilon}{\partial \omega} \Big|_{\omega_{c}} + \frac{(\omega - \omega_{c})^{2}}{2!} \frac{\partial^{2} \epsilon}{\partial \omega^{2}} \Big|_{\omega_{c}} + \cdots + \frac{(\omega - \omega_{c})^{n}}{n!} \frac{\partial^{n} \epsilon}{\partial \omega^{n}} \Big|_{\omega_{c}} - \epsilon_{0}\right] \tilde{E}(z,\omega)$$

$$= \left[\epsilon(\omega_{c}) - \epsilon_{0} + \sum_{n=1}^{\infty} \frac{(\omega - \omega_{c})^{n}}{n!} \frac{\partial^{n} \epsilon}{\partial \omega^{n}} \Big|_{\omega_{c}}\right] \tilde{E}(z,\omega). \tag{3.33}$$

Aplicando transformada de Fourier inversa à equação (3.36), temos:

$$\tilde{P}^{L}(z,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega \left[\epsilon(\omega_{c}) - \epsilon_{0} + \sum_{n=1}^{\infty} (\omega - \omega_{c})^{n} \frac{\partial^{n} \epsilon}{\partial \omega^{n}} \Big|_{\omega_{c}} \right] \tilde{E}(z,\omega) e^{i\omega t}$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega \left[\epsilon(\omega_{c}) - \epsilon_{0} + \sum_{n=1}^{\infty} (\omega - \omega_{c})^{n} \frac{\partial^{n} \epsilon}{\partial \omega^{n}} \Big|_{\omega_{c}} \right] \tilde{E}(0,\omega) e^{-ik_{c}z - i\Delta\kappa z} e^{i\omega t}$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega \left[\epsilon(\omega_{c}) - \epsilon_{0} + \sum_{n=1}^{\infty} \omega^{n} \frac{\partial^{n} \epsilon}{\partial \omega^{n}} \Big|_{\omega_{c}} \right] \tilde{E}(0,\omega + \omega_{c}) e^{-ik_{c}z - i\Delta\kappa z} e^{i(\omega + \omega_{c})t}$$

$$= \frac{1}{2\pi} \left\{ \int_{-\infty}^{\infty} d\omega \left[\epsilon(\omega_{c}) - \epsilon_{0} + \sum_{n=1}^{\infty} \omega^{n} \frac{\partial^{n} \epsilon}{\partial \omega^{n}} \Big|_{\omega_{c}} \right] \tilde{E}(0,\omega + \omega_{c}) e^{-i\Delta\kappa z} e^{i\omega t} \right\} e^{i\omega_{c}t - ik_{c}z}$$
(3.34)

Substituindo (3.30) em (3.37) e fazendo a mudança de notação $\frac{\partial^n \epsilon}{\partial \omega^n}\Big|_{\omega_c} = \epsilon^{(n)}(\omega_c)$, obtemos:

$$P^{L}(z,t) = \frac{1}{2} \left\{ \frac{1}{\pi} \int_{0}^{\infty} d\omega \left[\epsilon(\omega_{c}) - \epsilon_{0} + \sum_{n=1}^{\infty} \frac{\epsilon^{(n)}(\omega_{c})}{n!} \omega^{n} \right] \tilde{\mathcal{E}}(z,\omega) e^{i\omega t} \right\} e^{i\omega_{c}t - ik_{c}z} + c.c.$$

$$= \frac{1}{2} \left\{ \frac{1}{\pi} \int_{0}^{\infty} d\omega \left[\epsilon(\omega_{c}) - \epsilon_{0} + \sum_{n=1}^{\infty} \frac{(-1)^{n} \epsilon^{(n)}(\omega_{c})}{n!} \frac{\partial^{n}}{\partial t^{n}} \right] \tilde{\mathcal{E}}(z,\omega) e^{i\omega t} \right\} e^{i\omega_{c}t - ik_{c}z} + c.c.$$

$$= \frac{1}{2} \left\{ \left[\epsilon(\omega_{c}) - \epsilon_{0} + \sum_{n=1}^{\infty} \frac{(-1)^{n} \epsilon^{(n)}(\omega_{c})}{n!} \frac{\partial^{n}}{\partial t^{n}} \right] \frac{1}{\pi} \int_{0}^{\infty} d\omega \tilde{\mathcal{E}}(z,\omega) e^{i\omega t} \right\} e^{i\omega_{c}t - ik_{c}z} + c.c.$$

$$= \frac{1}{2} \left\{ \left[\epsilon(\omega_{c}) - \epsilon_{0} + \sum_{n=1}^{\infty} \frac{(-1)^{n} \epsilon^{(n)}(\omega_{c})}{n!} \frac{\partial^{n}}{\partial t^{n}} \right] \tilde{\mathcal{E}}(z,t) \right\} e^{i\omega_{c}t - ik_{c}z} + c.c.$$

$$= \frac{1}{2} \tilde{\mathcal{P}} \mathcal{L}(z,t) e^{i\omega t - ik_{c}z} + c.c., \tag{3.35}$$

onde $\mathcal{P}^{\mathcal{L}}(z,t)$ é a envoltória da polarização que varia lentamente em relação ao espaço e o tempo. O próximo passo é substituir o campo elétrico (3.35) e a polarização (3.38) na equação de propagação de onda (3.16). Assim, temos:

$$\left[\frac{\partial^{2}}{\partial z^{2}} - 2ik_{c}\frac{\partial}{\partial z} - k_{c}^{2}\right]\tilde{\mathcal{E}}(z,t) = \frac{1}{c^{2}}\left[\frac{\partial^{2}}{\partial t^{2}} + 2i\omega_{c}\frac{\partial}{\partial t} - \omega_{c}^{2}\right]\tilde{\mathcal{E}}(z,t) + \mu_{0}\left[\frac{\partial^{2}}{\partial t^{2}} + 2i\omega_{c}\frac{\partial}{\partial t} - \omega_{c}^{2}\right]\tilde{\mathcal{E}}(z,t) - \omega_{c}^{2}\tilde{\mathcal{E}}(z,t)$$

$$- \omega_{c}^{2}\tilde{\mathcal{E}}(z,t)$$

$$\left[\frac{\partial^{2}}{\partial z^{2}} - 2ik_{c}\frac{\partial}{\partial z} - k_{c}^{2}\tilde{\mathcal{E}}(z,t)\right] = \mu_{0}\epsilon_{0}\left[\frac{\partial^{2}}{\partial t^{2}} + 2i\omega_{c}\frac{\partial}{\partial t} - \omega_{c}^{2}\tilde{\mathcal{E}}(z,t) + \frac{\mu_{0}}{2}\left[\frac{\partial^{2}}{\partial t^{2}} + 2i\omega_{c}\frac{\partial}{\partial t} - \omega_{c}^{2}\tilde{\mathcal{E}}(z,t)\right]$$

$$- \omega_{c}^{2}\int \left[\epsilon(\omega_{c}) - \epsilon_{0} + \sum_{n=1}^{\infty} \frac{(-i)^{n}}{n!}\epsilon^{(n)}(\omega_{c})\frac{\partial^{n}}{\partial t^{n}}\right]\tilde{\mathcal{E}}(z,t). \quad (3.36)$$

Levando e conta que $(c^2)^{-1}=\mu_0\epsilon_0$, temos:

$$\begin{split} \left[\frac{\partial^{2}}{\partial z^{2}}-2ik_{c}\frac{\partial}{\partial z}-k_{c}^{2}\right]&\tilde{\mathcal{E}}(z,t) &= \mu_{0}\epsilon_{0}\left[\frac{\partial^{2}}{\partial t^{2}}+2i\omega_{c}\frac{\partial}{\partial t}-\omega_{c}^{2}\right]\tilde{\mathcal{E}}(z,t)+\mu_{0}\epsilon(\omega_{c})\left[\frac{\partial^{2}}{\partial t^{2}}+k_{c}^{2}\frac{\partial}{\partial t}-k_{c}^{2}\right]\tilde{\mathcal{E}}(z,t)-\mu_{0}\epsilon_{0}\left[\frac{\partial^{2}}{\partial t^{2}}+2i\omega_{c}\frac{\partial}{\partial t}-k_{c}^{2}\right]\tilde{\mathcal{E}}(z,t)+\sum_{n=1}^{\infty}\frac{(-i)^{n}}{n!}\mu_{0}\epsilon^{(n)}(\omega_{c})\left[\frac{\partial^{n+2}}{\partial t^{n+2}}+k_{c}^{2}\frac{\partial^{n}}{\partial t^{n+1}}-\omega_{c}^{2}\frac{\partial^{n}}{\partial t^{n}}\right]\tilde{\mathcal{E}}(z,t) \\ &\left[\frac{\partial^{2}}{\partial z^{2}}-2ik_{c}\frac{\partial}{\partial z}-k_{c}^{2}\right]\tilde{\mathcal{E}}(z,t) &= \mu_{0}\epsilon(\omega_{c})\left[\frac{\partial^{2}}{\partial t^{2}}+2i\omega_{c}\frac{\partial}{\partial t}-\omega_{c}^{2}\right]\tilde{\mathcal{E}}(z,t)-k_{c}^{2}\left[2i\omega_{c}\epsilon^{(1)}(\omega_{c})\frac{\partial^{2}}{\partial t^{2}}-\omega_{c}^{2}\epsilon^{(1)}(\omega_{c})\frac{\partial}{\partial t}+k_{c}^{2}\left[2i\omega_{c}\epsilon^{(1)}(\omega_{c})\frac{\partial^{2}}{\partial t^{2}}\right]\tilde{\mathcal{E}}(z,t)-k_{c}^{2}\left[2i\omega_{c}\epsilon^{(1)}(\omega_{c})\frac{\partial^{2}}{\partial t^{2}}\right]\tilde$$

Partindo do fato que $k_c^2 = \mu_0 \epsilon(\omega_c) \omega_c^2$, temos

$$\left[\frac{\partial^{2}}{\partial z^{2}} - 2ik_{c}\frac{\partial}{\partial z} - k_{c}^{2}\right]\tilde{\mathcal{E}}(z,t) = -\underline{k}_{c}^{2}\tilde{\mathcal{E}}(z,t) + i\mu_{0}\omega_{c}\left[\omega_{c}\epsilon^{(1)}(\omega_{c}) + 2\epsilon(\omega_{c})\right]\frac{\partial}{\partial t}\tilde{\mathcal{E}}(z,t)
+ \mu_{0}\left[\epsilon(w_{c}) + 2\omega_{c}\epsilon^{(1)}(w_{c}) + \frac{\omega_{c}^{2}\epsilon^{(2)}(\omega_{c})}{2}\right]\frac{\partial^{2}}{\partial t^{2}}\tilde{\mathcal{E}}(z,t)
- \sum_{n=3}^{\infty}\frac{(-i)^{n}}{2n!}\left[n(n-1)\mu_{0}\epsilon^{(n-2)}(\omega_{c}) + 2n\mu_{0}\omega_{c}\epsilon^{(n-1)}(\omega_{c}) \right]
+ \mu_{0}\omega_{c}^{2}\epsilon^{(n)}(\omega_{c})\left[\frac{\partial^{n}}{\partial t^{n}}\tilde{\mathcal{E}}(z,t)\right].$$
(3.38)

Calculando a velocidade de grupo $(v_g)^{-1} = \frac{\partial k}{\partial \omega}\big|_{\omega_c}$ e $k_c'' = \frac{\partial^2 k}{\partial \omega^2}\big|_{\omega_c}$, obtemos:

$$\frac{1}{v_g} = \frac{\mu_0 \omega_c}{2k_c} \left[\omega_c \epsilon^{(1)}(\omega_c) + 2\epsilon(\omega_c) \right]$$
(3.39)

e

$$k'' = -\frac{1}{k_c v^2} + \frac{\mu_0}{k_c} \left[\epsilon(w_c) + 2\omega_c \epsilon^{(1)}(w_c) + \frac{\omega_c^2 \epsilon^{(2)}(\omega_c)}{2} \right].$$
 (3.40)

Substituindo (3.42) e (3.43) em (3.41), obtemos:

$$\left[\frac{\partial^{2}}{\partial z^{2}} - 2ik_{c}\frac{\partial}{\partial z}\right]\tilde{\mathcal{E}}(z,t) = \frac{ik_{c}}{v_{g}}\frac{\partial}{\partial t}\mathcal{E}(z,t) + \frac{k_{c}k''}{2}\frac{\partial^{2}}{\partial t^{2}}\tilde{\mathcal{E}}(z,t) + \frac{1}{2v_{g}^{2}}\frac{\partial^{2}}{\partial t^{2}}\tilde{\mathcal{E}}(z,t) - \\
- \sum_{n=3}^{\infty} \frac{(-i)^{n}}{2n!} \left[n(n-1)\mu_{0}\epsilon^{(n-2)}(\omega_{c}) + 2n\mu_{0}\omega_{c}\epsilon^{(n-1)}(\omega_{c}) + \\
+ \mu_{0}\omega_{c}^{2}\epsilon^{(n)}(\omega_{c})\right]\frac{\partial^{n}}{\partial t^{n}}\tilde{\mathcal{E}}(z,t)$$

$$\left[\frac{\partial^{2}}{\partial z^{2}} - 2ik_{c}\frac{\partial}{\partial z}\right]\tilde{\mathcal{E}}(z,t) = \left[\frac{1}{2v_{g}^{2}}\frac{\partial^{2}}{\partial t^{2}} + \frac{ik_{c}}{v_{g}}\frac{\partial}{\partial t}\right]\tilde{\mathcal{E}}(z,t) + \frac{k_{c}k''}{2}\frac{\partial^{2}}{\partial t^{2}}\tilde{\mathcal{E}}(z,t) + \\
- \sum_{n=3}^{\infty} \frac{(-i)^{n}}{2n!} \left[n(n-1)\mu_{0}\epsilon^{(n-2)}(\omega_{c}) + 2n\mu_{0}\omega_{c}\epsilon^{(n-1)}(\omega_{c}) + \\
+ \mu_{0}\omega_{c}^{2}\epsilon^{(n)}(\omega_{c})\right]\frac{\partial^{n}}{\partial t^{n}}\tilde{\mathcal{E}}(z,t). \tag{3.41}$$

Partindo da aproximação no qual

$$\left| \frac{\partial^2}{\partial z^2} \tilde{\mathcal{E}}(z, t) \right| \ll k_c \left| \frac{\partial}{\partial z} \tilde{\mathcal{E}}(z, t) \right| \tag{3.42}$$

e

$$\left| \frac{\partial^2}{\partial t^2} \tilde{\mathcal{E}}(z, t) \right| \ll \omega_c \left| \frac{\partial}{\partial t} \tilde{\mathcal{E}}(z, t) \right|, \tag{3.43}$$

finalmente, reduzimos a equação de propagação de onda (3.44) à:

$$\frac{\partial}{\partial z}\tilde{\mathcal{E}}(z,t) + \frac{1}{v_q}\frac{\partial}{\partial t}\tilde{\mathcal{E}}(z,t) - \frac{ik''}{2}\frac{\partial^2}{\partial t^2}\tilde{\mathcal{E}}(z,t) + \mathcal{D} = 0$$
(3.44)

onde $k_c^{\prime\prime}$ é o termos de dispersão de velocidade de grupo GVD e

$$\mathcal{D} = \frac{i\mu_0}{2k_c} \sum_{n=3}^{\infty} \frac{(-i)^n}{2n!} \left[n(n-1)\epsilon^{(n-2)}(\omega_c) + 2n\omega_c \epsilon^{(n-1)}(\omega_c) + \omega_c^2 \epsilon^{(n)}(\omega_c) \right] \frac{\partial^n}{\partial t^n} \tilde{\mathcal{E}}(z,t)$$
(3.45)

é o termo que representa a dispersão de ordem superior.

Não temos interesse de resolver esta equação. Apenas utilizaremos essa aproximação para derivar a equação para o meio atômico de dois níveis no subcapítulo 3.3.

3.3 PROPAGAÇÃO DE ONDA EM UM MEIO ATÔMICO DE 2 NÍVEIS

A discussão sobre propagação de onda no subcapítulo 3.2 se limitava a interação com meios lineares. Porém, o que nos interessa neste TCC é descrever a interação de campo elétrico com meio atômico de dois níveis, que possui polarização não linear em ressonância com o campo elétrico. Para isso, precisamos complementar a equação (3.47) adicionando a polarização do meio atômico não linear, definindo que essa polarização também pode ser decomposta em uma envoltória que varia lentamente no tempo e no espaço e outra contribuição que oscila rapidamente:

$$P^{NL}(z,t) \equiv \tilde{\mathcal{P}}^{NL}(z,t)e^{iw_c t - ik_c z} + c.c. \tag{3.46}$$

Assim, obtemos a seguinte equação de propagação

$$\frac{\partial}{\partial z}\tilde{\mathcal{E}}(z,t) + \frac{1}{v_g}\frac{\partial}{\partial t}\tilde{\mathcal{E}}(z,t) - \frac{ik_c''}{2}\frac{\partial^2}{\partial t^2}\tilde{\mathcal{E}}(z,t) + \mathcal{D} = \frac{i\mu_0}{2k_c}\left(\frac{\partial^2}{\partial t^2} + 2i\omega_c\frac{\partial}{\partial t} - \omega_c^2\right)\tilde{\mathcal{P}}^{NL}(z,t). \quad (3.47)$$

Como estamos interessados em efeito não lineares da matéria, desconsideramos o termo de dispersão de velocidade de grupo GVD e os termos de ordem superior ($k_c'' = \mathcal{D} = 0$) e partimos do fato que

$$\left| \frac{\partial^2}{\partial t^2} \tilde{\mathcal{P}}^{NL}(z,t) \right| \ll \omega_c \left| \frac{\partial}{\partial t} \tilde{\mathcal{P}}^{NL}(z,t) \right| \ll \omega_c^2 \left| \tilde{\mathcal{P}}^{NL}(z,t) \right|, \tag{3.48}$$

para obtermos, a seguinte aproximação para equação de onda:

$$\frac{\partial}{\partial z}\tilde{\mathcal{E}}(z,t) + \frac{1}{v_q}\frac{\partial}{\partial t}\tilde{\mathcal{E}}(z,t) = -\frac{i\mu_0}{2k_c}\omega_c^2\tilde{\mathcal{P}}^{NL}(z,t). \tag{3.49}$$

Por conveniência, vamos fazer uma mudança para um sistema de coordenadas (η,τ) movendo-se com a velocidade do grupo $v_g=\left(\frac{\mathrm{d}k}{\mathrm{d}\omega}\Big|_{w_c}\right)^{-1}$, realizando as seguintes trocas de variáveis:

$$\eta = z \qquad \tau = t - \frac{z}{v_g} \tag{3.50}$$

e

$$\frac{\partial}{\partial z} = \frac{\partial}{\partial \eta} - \frac{1}{v_q} \frac{\partial}{\partial \tau} \qquad \frac{\partial}{\partial t} = \frac{\partial}{\partial \tau}.$$
 (3.51)

Desse modo, podemos reescrever a equação (3.50) da seguinte forma:

$$\frac{\partial}{\partial \eta} \tilde{\mathcal{E}}(\eta, \tau) = -\frac{i\mu_0}{2k_c} \omega_c^2 \tilde{\mathcal{P}}^{NL}(\eta, \tau). \tag{3.52}$$

Este resultado final é a equação de onda em sua forma reduzida que permite descrever o comportamento da propagação do campo eletromagnético através de um certo meio atômico. Ela será aplicada no capitulo 4 para meio atômico de dois níveis.

4 INTERAÇÃO SISTEMA ATÔMICO DE DOIS NÍVEIS COM RADIAÇÃO

Neste capítulo aplicaremos a equação von-Newmann, que obtemos no capitulo 2, e a equação reduzida, obtida ao final do capitulo 3, a um sistema de dois níveis que sofre pertubação de um pulso de campo elétrico. Para isso, primeiramente, vamos obter o hamiltoniano que descreve a interação do átomo de dois níveis com a onda eletromagnética.

4.1 HAMILTONIANO PARA UM SISTEMA ATÔMICO DE DOIS NÍVEIS

Antes de obtermos o hamiltoniano para um sistema de dois níveis, vamos nos ater a um sistema clássico composto de uma partícula carregada na presença de um campo eletromagnético. Nesta condição, a força que atua para a partícula com carga q corresponde à

$$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B}). \tag{4.1}$$

Podemos reescrever o campo elétrico (${\bf E}$) e magnético (${\bf B}$), escolhendo o potencial escalar $\phi({\bf r},t)$ e o potencial vetor ${\bf A}({\bf r},t)$

$$\mathbf{E} = -\frac{\partial \mathbf{A}}{\partial t} - \nabla \phi \tag{4.2}$$

$$\mathbf{B} = \mathbf{\nabla} \times \mathbf{A}. \tag{4.3}$$

Assim, reescrevendo a força de Lorentz (4.1) em termos destes potenciais, temos que

$$\mathbf{F} = q \left(-\frac{\partial \mathbf{A}}{\partial t} - \mathbf{\nabla}\phi + \mathbf{v} \times \mathbf{\nabla} \times \mathbf{A} \right). \tag{4.4}$$

Usando a identidade vetorial

$$\mathbf{v} \times \nabla \times \mathbf{A} = \nabla(\mathbf{v} \cdot \mathbf{A}) - (\mathbf{v} \cdot \nabla)\mathbf{A},\tag{4.5}$$

obtemos

$$\mathbf{F} = q \left[-\frac{\partial \mathbf{A}}{\partial t} - \nabla \phi + \nabla (\mathbf{v} \cdot \mathbf{A}) - (\mathbf{v} \cdot \nabla) \mathbf{A} \right]. \tag{4.6}$$

Partindo do fato que A varia no tempo e no espaço, temos que sua derivada total é

$$d\mathbf{A} \equiv \mathbf{A}(\mathbf{r} + \mathbf{v}dt, t + dt) - \mathbf{A}(\mathbf{r}, t)$$

$$= \left(v_x \frac{\partial \mathbf{A}}{\partial x} + v_y \frac{\partial \mathbf{A}}{\partial y} + v_z \frac{\partial \mathbf{A}}{\partial z} + \frac{\partial \mathbf{A}}{\partial t}\right) dt$$

$$= \left[(\mathbf{v} \cdot \nabla)\mathbf{A} + \frac{\partial \mathbf{A}}{\partial t}\right] dt. \tag{4.7}$$

Logo,

$$\frac{\mathrm{d}\mathbf{A}}{\mathrm{d}t} = (\mathbf{v} \cdot \nabla)\mathbf{A} + \frac{\partial \mathbf{A}}{\partial t}.$$
(4.8)

Substituindo esse resultado na equação (4.6), temos:

$$\mathbf{F} = q \left[-\frac{\mathrm{d}\mathbf{A}}{\mathrm{d}t} - \mathbf{\nabla}\phi + \mathbf{\nabla}(\mathbf{v} \cdot \mathbf{A}) \right]. \tag{4.9}$$

Assim, a equação de movimento para uma partícula carregada se torna

$$m\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = q\left[-\frac{\mathrm{d}\mathbf{A}}{\mathrm{d}t} - \nabla\phi + \nabla(\mathbf{v}\cdot\mathbf{A})\right]. \tag{4.10}$$

ou

$$m\frac{\mathrm{d}}{\mathrm{d}t}[\mathbf{v} + q\mathbf{A}] = -\nabla[q\phi + q(\mathbf{v} \cdot \mathbf{A})]. \tag{4.11}$$

examinando esta equação, podemos reescreve-la na forma de uma equação de Euler-Lagrange

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \mathbf{v}} \right) = \mathbf{\nabla} L,\tag{4.12}$$

se adotarmos a lagrangiana

$$L = \frac{1}{2}m\mathbf{v}^2 + q(\mathbf{v} \cdot \mathbf{A}) - q\phi. \tag{4.13}$$

Como vamos trabalhar com um sistema atômico, é necessário adicionar a essa equação o potencial eletrostático $V(\mathbf{r})$, referente a interação do elétron com o núcleo atômico, e usar a carga do elétron q=e. Assim, obtemos

$$L = \frac{1}{2}m\mathbf{v}^2 + e(\mathbf{v} \cdot \mathbf{A}) - e\phi - V(\mathbf{r}). \tag{4.14}$$

Aplicando a transformação de legendre apropriada a lagrangiana, usando a definição de momento conjugado $p_i \equiv \frac{\partial L}{\partial \dot{r}_i} = m v_i + e A_i$, obtemos o hamiltoniano de acoplamento mínimo

$$H = (\mathbf{p} - e\mathbf{A})^2 + e\phi + V(\mathbf{r}). \tag{4.15}$$

Esse hamiltoniano é invariante à transformação de calibre

$$\mathbf{A}' = A + \nabla \gamma \tag{4.16}$$

$$\phi' = \phi - \frac{\partial \gamma}{\partial t},\tag{4.17}$$

onde λ é a função de calibre.

A equação de schrödinger dependente do tempo é

$$\hat{H}\psi = i\hbar \frac{\partial}{\partial t}\psi. \tag{4.18}$$

Para resolvermos esta equação é ideal realizar uma transformação unitária \hat{U} , considerando que $\psi'=\hat{U}\psi$. Isso é necessário para simplificarmos a equação que obteremos do termo responsável pela interação da radiação com o átomo. Precisamos manter a equação de Schrödinger invariante a esta transformação unitária, então escrevemos o novo hamiltoniano da seguinte forma:

$$\hat{H}' = \hat{U}\hat{H}\hat{U}^{\dagger} + i\hbar \frac{\partial \hat{U}}{\partial t}\hat{U}^{\dagger}. \tag{4.19}$$

Escolhendo a transformação unitária $\hat{U} = e^{i\frac{e}{\hbar}\gamma}$, obtemos o seguinte hamiltoniano \hat{H}'

$$\hat{H}' = (\mathbf{p} - e\mathbf{A}')^2 + q\phi' + V(\mathbf{r}),\tag{4.20}$$

onde A' e ϕ' são dados pelas equações (4.16) e (4.17).

Fazendo $\phi = 0$ e realizando a escolha do calibre de Coulomb, onde $\nabla \cdot \mathbf{A} = 0$, temos:

$$\hat{H}' = (\mathbf{p} - e\mathbf{A} - e\mathbf{\nabla}\gamma)^2 - e\frac{\partial\gamma}{\partial t} + V(\mathbf{r}). \tag{4.21}$$

Supondo que os átomos estão imersos em uma onda plana monocromática, podemos escrever o potencial vetor da seguinte forma [?]:

$$\mathbf{A}(\mathbf{r},t) = \frac{A_0(\omega)\hat{\epsilon}}{2}e^{i(\mathbf{K}\cdot\mathbf{r}-\omega t)} + c.c. \tag{4.22}$$

 $\mathbf{k} \cdot \mathbf{r} = 2\pi \cdot \frac{r}{\lambda}$, onde λ é o comprimento de onda do campo. Em geral, o comprimento de onda é muito maior, $4000 \le 8000 \le^0 A$, comparadas as dimensões atômicas, $|\mathbf{r}| \simeq 10^0 A$. Por isso, $\mathbf{k} \cdot \mathbf{r} \ll 1$. Assim, podemos desconsiderar os termos de ordem maior que 0 da seguinte expansão em série de Taylor de $\mathbf{A}(\mathbf{r},t)$

$$\mathbf{A}(\mathbf{r},t) = \frac{A_0(\omega)\hat{\epsilon}}{2}e^{-i\omega t}\left[1 + (i\mathbf{k}\cdot\mathbf{r}) + \frac{1}{2}(i\mathbf{k}\cdot\mathbf{r})^2 + \cdots\right],\tag{4.23}$$

implicando que $\mathbf{A}(\mathbf{r},t)\simeq\mathbf{A}(t)=\frac{A_0(\omega)\hat{\epsilon}}{2}e^{-i\omega t}$. Agora, escolhendo a função de calibre de Coulomb como $\gamma=-\mathbf{A}(t)\cdot\mathbf{r}$, obtemos

$$\nabla \lambda = -\mathbf{A}(t) \tag{4.24}$$

e

$$\frac{\partial \lambda}{\partial t} = -\mathbf{r} \frac{\partial \mathbf{A}(t)}{\partial t} = \mathbf{r} \cdot \mathbf{E}(t). \tag{4.25}$$

Substituindo estes resultados na equação do hamiltoniano \hat{H}' (4.21), obtemos

$$\hat{H}' = \frac{\mathbf{p}^2}{2m} + V(\mathbf{r}) - \mathbf{d} \cdot \mathbf{E},\tag{4.26}$$

onde $\mathbf{d} = e\mathbf{r}$ é o momento de dipolo elétrico e e é a carga do elétron. Os dois primeiro termos se referem ao átomo não perturbado ($H_0 = \mathbf{p}^2/2m + V(\mathbf{r})$) e o último termo é referente a interação com o campo elétrico na aproximação de dipolo ($H_{int} = -\mathbf{dE}$). Esta aproximação será utilizada no decorrer deste trabalho.

4.2 SISTEMA ATÔMICO DE DOIS NÍVEIS

Neste TCC, usaremos o sistema de dois níveis, sistema quântico simples que é descrito em duas dimensões no espaço de Hibert. Com esse sistema, poderemos estudar de maneira simples e detalhada as principais propriedades físicas inerentes ao processo de iteração de radiação com a matéria. Isso é possível, pois, apesar de sua simplicidade, existem fenômenos quânticos em que a sua utilização é satisfatória. Alguns exemplos são problemas que envolvem polarização de fótons, spin do elétron, oscilações dos neutrino e o caso em que aplicaremos, um sistema atômico que possui dois níveis em ressonância (ou próximo da ressonância) com o campo eletromagnético aplicado e os demais níveis estão em dessintonia total com esse campo [6].

Para um sistema de dois níveis interagindo com campo eletromagnético, utilizamos o Hamiltoniano com aproximação dipolar, que apresentamos no subcapítulo anterior.

$$H_{int} = -\mathbf{d} \cdot \mathbf{E}. \tag{4.27}$$

Essa equação representa a energia de um dipolo elétrico inserido num campo elétrico E. Para isso, consideramos que um único elétron é o responsável pelo surgimento pelo momento de dipolo elétrico[].

O sistema de dois níveis sem pertubação possui dois valores prováveis de energia. O estado $|1\rangle$ com energia $E_1=\hbar\omega_1$ e o estado $|2\rangle$ com energia $E_2=\hbar\omega_2$. De acordo com descrição de Bohr, a transição entre os níveis atômicos $|1\rangle$ e $|2\rangle$ é dada pela frequência

$$\omega_{21} = \omega_2 - \omega_1 \tag{4.28}$$

$$= (E_2 - E_1)/\hbar. (4.29)$$

Figura 4.1: Níveis de energia de um hipotético "átomo de dois níveis". A "dessintonia" $\delta = \omega_0 - \omega$ é a diferença entre $(E_2 - E_1)/\hbar$ e ω . A radiação da frequência angular ω é quase ressonante com a transição $E_1 \to E_2$, quando $\delta \ll \omega_0 - \omega$.

A função de onda para o sistema de dois níveis é

$$|\psi\rangle = c_1 |1\rangle + c_2 |2\rangle, \tag{4.30}$$

onde c_1 e c_2 as amplitudes de probabilidade de encontrar o átomo nos estados $|1\rangle$ e $|2\rangle$, respectivamente. Apesar de ser possível obter as equações de movimento para nosso sistema utilizando a representação de Schrödinger, é mais conveniente utilizarmos o formalismo de matriz densidade, que apresentamos no capitulo 2. Isso é necessário, pois estamos trabalhando com um grande número de átomos interagindo com o campo. Neste caso, o cálculo das amplitudes de probabilidade seria muito complexo, pois teríamos que calcular esta amplitude para cada átomo do nosso sistema. Em contrapartida, no formalismo de matriz densidade não precisamos ter a informação completa do vetor onda, pois nos importamos apenas com as informações estatísticas do operador densidade. Assim, diminuímos o custo computacional para lidar com um número grande de átomos interagindo com o campo.

O hamiltoniano do átomo livre, com aproximação de dois níveis, é dado por

$$\hat{H}_0 = \hbar\omega_1 |1\rangle\langle 1| + \hbar\omega_2 |2\rangle\langle 2| \tag{4.31}$$

sendo $\hbar\omega_1$ e $\hbar\omega_2$ são os valores de energia para os estado $|1\rangle$ e $|2\rangle$, respectivamente. Assim, o hamiltoniano do átomo interagindo com o campo é

$$\hat{H} = \hbar\omega_1 |1\rangle\langle 1| + \hbar\omega_2 |2\rangle\langle 2| - \hat{d}\mathbf{E}$$
(4.32)

No capitulo 2 nos obtemos a equação de J. von - Newman, que descreve a evolução temporal da matriz densidade.

4.3 EQUAÇÕES

Exemplo de equação centralizada:

$$a^2 = b^2 + c^2. (4.33)$$

Substituindo esse resultado o hamiltoniana H'

Exemplo de equação no texto: $e^{ix} = \cos x + i \sin x$. Citação de equação: 4.33.

4.4 TABELAS

Exemplo de tabela:

$\sin x$	$\cos x$	$\tan x$
$\sec x$	$\csc x$	$\cot x$
$\arcsin x$	$\arccos x$	$\arctan x$
$\sinh x$	$\cosh x$	$\tanh x$

Tabela 4.1: Funções trigonométricas e hiperbólicas.

4.5 CÓDIGOS

Exemplo de código (linguagem C):

```
#include<stdio.h>

int k;

main()

for (k=1; k<=5; k++)

printf("Física - UNIR - Ji-Paraná\n");
}</pre>
```

4.6 CITAÇÃO

Exemplo de citação:

Citando um trabalho: (ARAÚJO, 2004).

5 OUTRO CAPÍTULO

Digite aqui o conteúdo de outro capítulo.

$\sin x$	$\cos x$	$\tan x$
$\sec x$	$\csc x$	$\cot x$
$\arcsin x$	$\arccos x$	$\arctan x$
$\sinh x$	$\cosh x$	$\tanh x$

Tabela 5.1: Funções trigonométricas e hiperbólicas.

Figura 5.1: Espectro de um laser de femtossegundos.

6 CONCLUSÃO

Digite a conclusão do TCC aqui.

REFERÊNCIAS

- [1] J. Sakurai, J. Napolitano, and S. Dahmen, Mecânica quântica moderna. Bookman, 2013.
- [2] H.-P. Breuer, F. Petruccione, et al., The theory of open quantum systems. Oxford University Press on Demand, 2002.
- [3] R. Field and A. Tokmakoff, 5.74 Introductory Quantum Mechanics II. Massachusetts Institute of Technology: MIT OpenCourseWare, Spring 2004.
- [4] J. Jackson, CLASSICAL ELECTRODYNAMICS, 3RD ED. Jhon Wiley, 1998.
- [5] D. Griffiths, *Eletrodinâmica*. Pearson Addison Wesley, 2011.
- [6] L. Allen and J. Eberly, *Optical Resonance and Two-level Atoms*. Dover books on physics and chemistry, Dover, 1987.
- [7] R. W. Boyd, "The nonlinear optical susceptibility," *Nonlinear optics*, vol. 3, pp. 1–67, 2008.
- [8] J. Diels, W. Rudolph, P. Liao, and P. Kelley, *Ultrashort Laser Pulse Phenomena*. Electronics & Electrical, Elsevier Science, 2006.

TÍTULO DO PRIMEIRO APÊNDICE

Digite o primeiro apêndice aqui.

TÍTULO DO SEGUNDO APÊNDICE

Digite o segundo apêndice aqui.