Задачи к лекциям по выпуклому анализу

Локуциевский Л.В.

2017

1. Выпуклые множества и операции над ними.

- **1.1.** Доказать, что если точки x_1 , ..., x_{d+1} из \mathbb{R}^d не лежат в одном аффинном пространстве размерности d-1 или меньше, то множество $\Delta = \operatorname{conv}\{x_1, \dots, x_{d+1}\}$ (называемое d-мерным симплексом) имеет непустую внутренность.
- **1.2.** Привести пример замкнутого множества, выпуклая оболочка которого не замкнута.
- **1.3.** Верны ли включения $\operatorname{conv} \operatorname{cl} E \subset \operatorname{cl} \operatorname{conv} E$ и $\operatorname{cl} \operatorname{conv} E \subset \operatorname{conv} \operatorname{cl} E$?
- **1.4.** Пусть C_1 и C_2 выпуклые замкнутые множества. Докажите, что если гі $C_1 \subset C_2$ и гі $C_2 \subset C_1$, то $C_1 = C_2$
- **1.5.** Показать, что сумма по Минковскому замкнутого и компактного множеств замкнута.
- **1.6.** Показать, что сумма по Минковскому двух замкнутых выпуклых множеств может быть не замкнута

2. Теоремы отделимости

- **2.1.** Докажите, что если множество $C \subset \mathbb{R}^d$ выпукло, то его граница совпадает с границей его замыкания: $\partial C = \partial \operatorname{cl} C$. Приведите контр пример для случая, когда множество не выпукло.
- **2.2.** Пусть $C \subset \mathbb{R}^d$ выпуклое множество. Докажите, что если $x_0 \in \text{гi } C$ можно отделить от C гиперплоскостью, то только несобственным образом. Равносильно: разделяющая гиперплоскость содержит aff C. Равносильно: разделяющий ковектор p перпендикулярен aff C. Равносильно: $C \subset \{x \in \mathbb{R}^d : \langle p, x \rangle = c_0\}$.
- **2.3.** Докажите (используя теоремы отделимости), что если C_1 и C_2 выпуклые подмножества \mathbb{R}^d , то $\mathrm{ri}(C_1+C_2)=\mathrm{ri}\,C_1+\mathrm{ri}\,C_2$. Попробуйте также придумать еще одно доказательство, не использующее теорему отделимости.
- **2.4.** Доказать, что если C_1 и C_2 выпуклые множества в \mathbb{R}^d , гі $C_1 \cap$ гі $C_2 \neq \emptyset$ и $\dim(C_1 + C_2) = d$, то множества C_1 и C_2 нельзя разделить
- **2.5.** Доказать, что если $E \subset \mathbb{R}^d$, то любая точка $x \in \text{conv } E$ лежит в относительной внутренности некторого (невырожденного) симплекса размерности $\leq d$ и с вершинами из E.

3. Простейшие свойства выпуклых функций

- **3.1.** Описать все несобственные выпуклые функции с замкнутым надграфиком.
- **3.2.** Докажите, что собственная выпуклая функция f на \mathbb{R}^d ограничена на любом компактном множестве $K \subset \mathrm{ridom} f$.
- **3.3.** Докажите, что собственная выпуклая замкнутая функция на \mathbb{R}^1 непрерывна на $\mathrm{dom} f$.
- **3.4.** (i) Пусть f_1 и f_2 выпуклые замкнутые функции на \mathbb{R}^d . Докажите, что если $f_1(x) \geqslant f_2(x)$ для всех $x \in \operatorname{ridom} f_1$ и $f_2(x) \geqslant f_1(x)$ для всех $x \in \operatorname{ridom} f_2$, то $f_1(x) = f_2(x)$ для всех x. (ii) Останется ли утверждение верным, если заменить оба неравенства на противоположные?
- **3.5.** Докажите, что функция расстояния $f(x) = \operatorname{dist}(x, C)$ от точки до выпуклого множества C является выпуклой.
- **3.6.** Докажите, что функция $f:\mathbb{R}^d \to \bar{\mathbb{R}}$ непрерывна, если и только если ее график замкнут.
- **3.7.** Верно ли, что если собственная функция f выпукла, то выпуклы множества $f^{-1}(-\infty;c]$ для всех $c \in \mathbb{R}$? Верно ли обратное утверждение: если все множества $f^{-1}(-\infty;c]$ выпуклы при всех $c \in \mathbb{R}$, то собственная функция f выпукла?

4. Субдифференциал

- **4.1.** Докажите, что если $\partial f(x) \neq \emptyset$, то функция f полунепрерывна снизу в x.
- **4.2.** Предположим f выпуклая собственная функция на \mathbb{R}^d и $k=\dim \dim f < d$. Пусть φ : aff $\dim f \to \mathbb{R}^k$ линейный изоморфизм. Тогда f можно рассмотреть как функцию на \mathbb{R}^k , $g=f\circ \varphi^{-1}$, которая тоже будет выпуклой функцией. Пусть L^\perp обозначает множество ковекторов, перпендикулярных подпространству L. Докажите, что для $x_0 \in \dim f$ выполнено

$$\partial f(x_0) = (\operatorname{affdom} f)^{\perp} \oplus \varphi^* [\partial g(\varphi(x_0))].$$

- **4.3.** Докажите, что в любой точке $x_0 \in \operatorname{ridom} f$ субдифференциал $\partial f(x_0)$ есть сумма линейного подпространства (aff dom f) $^{\perp}$ и компактного выпуклого множества, аффинная оболочка которого трансверсальна (aff dom f) $^{\perp}$.
- 4.4. Вычислить субдифференциал нормы в 0.

5. Выпуклый принцип Лагранжа

5.1. Докажите лемму Фаркаша: пусть f_0, f_1, \dots, f_n – линейные (однородне) функции на \mathbb{R}^d , тогда если для любого $x \in \mathbb{R}^d$ из неравенств $f_i(x) \geqslant 0$ при $i \geqslant 1$ следует неравенство $f_0(x) \geqslant 0$, то найдутся неотрицательные числа $\lambda_1, \dots, \lambda_n$, что $f_0 = \sum_{i=1}^n \lambda_i f_i$.

- **5.2.** Остается ли верной теорема о разрешимости системы выпуклых неравенств если отказаться от требования собственности?
- **5.3.** Остается ли верной модификация теоремы о разрешимости системы выпуклых неравенств, если в первом пункте заменить строгое неравенство $f_i(x) < 0$ нестрогим $f_i(x) \le 0$, а во втором наоборот нестрогое $\sum_i \lambda_i f_i(x) \ge 0$ на строгое $\sum_i \lambda_i f_i(x) > 0$.

6. Основные выпуклые функции

- **6.1.** Доказать, что если множество C выпукло и $0 \in \operatorname{ri} C$, то $\mu_C = \mu_{\operatorname{cl} C}$
- **6.2.** Привести примеры (i) такого выпуклого множества C, что $0 \in C$, но $\mu_C \neq \mu_{\operatorname{cl} C}$ и (ii) такого множества C, что $0 \in \operatorname{int} C$, но $\mu_C \neq \mu_{\operatorname{cl} C}$.
- **6.3.** Описать все такие функции $g: \mathbb{R}^d \to \mathbb{R}^{d*}$, что g и -g монотонны, т.е. (g(x) g(y), x y) = 0 для всех $x, y \in \mathbb{R}^d$.
- **6.4.** Пусть $f: \mathbb{R}^d \to \mathbb{\bar{R}}$ положительно однородная неотрицательная функция и f(0)=0. Доказать, что $f=\mu_{\{x:f(x)\leqslant 1\}}$.
- **6.5.** Пусть $\|\cdot\|$ какая-либо норма на \mathbb{R}^d и $B = \{x : \|x\| \le 1\}$ единичный шар в этой норме. Докажите, что B выпуклое, компактное множество, $0 \in \operatorname{int} B$ и $\mu_B(x) = \|x\|$.
- **6.6.** Пусть C не пустое, выпуклое, компактное множество. Докажите, что s_C является полунормой на \mathbb{R}^{d*} , если и только если только если -C = C.
- **6.7.** Пусть C не пустое, выпуклое, компактное множество. При каких условиях опорная функция s_C будет нормой?

7. Выпуклые операции

- **7.1.** Построить пример такой функции f, что epi conv $f \neq$ conv epi f.
- **7.2.** Привести пример такой замкнутой функции f, что функция conv f не замкнута. Этот же пример показывает, что, вообще rosops, $clconv f \neq conv cl f$.
- **7.3.** Докажите, что если выпуклая функция f является собственной, то ее замыкание $\operatorname{cl} f$ также является собственной функцией.
- **7.4.** Пусть f выпуклая функция. Докажите, что если $x_1 \in \mathrm{ridom} f$, то для любой точки x_0 существует предел $\lim_{\lambda \to +0} f(x_{\lambda})$ и он равен $\mathrm{cl} f(x_0)$.
- **7.5.** Зафиксируем произвольное выпуклое множество $C \subset \mathbb{R}^d$. Выразите функцию расстояния d(x,C) от точки до множества через стандартные выпуклые функции (\mathbf{s}_C , δ_C , μ_C , |x|) и операции ($\mathbf{cl} f$, $\mathbf{conv} f$, f+g, $f \Box g$, $f \lor g$, $f \land g$).
- **7.6.** Докажите, если если линейное отображение $A: \mathbb{R}^d \to \mathbb{R}^d$ обратимо, то $Af = fA^{-1}$.

7.7. Привести пример двух таких выпуклых функций f и g, что $\operatorname{cl}(f+g) \neq \operatorname{cl} f + \operatorname{cl} g$. Доказать, что если $\operatorname{ridom} f \cap \operatorname{ridom} g \neq \emptyset$, то все же $\operatorname{cl}(f+g) = \operatorname{cl} f + \operatorname{cl} g$.

8. Двойственность выпуклых объектов

- **8.1.** Докажите, что результат теоремы о геометрии выпуклой двойственности верен только для выпуклых замкнутых множеств.
- **8.2.** Остается ли верной теорема о геометрии выпуклой двойственности, если вместо замкнутых полупростраснтв рассмотреть открытые?
- **8.3.** Доказать, что любое относительно открытое выпуклое множество совпадает с пересечением открытых полупространств его содержащих.
- **8.4.** Попробуйте, не используя теорему Фенхеля-Моро, доказать предложение о том, что две выпуклые замкнутые положительно однородные функции f_1 и f_2 совпадают если и только если $\partial f_1(0) = \partial f_2(0)$.
- **8.5.** Пусть $f = f^{**}$. Что можно сказать об f?
- **8.6.** Докажите теорему Минковского о том, любая выпуклая замкнутая собственная функция $f: \mathbb{R}^d \to \bar{\mathbb{R}}$ есть поточечный супремум аффинных функций $l_{p,b}(x) = \langle p, x \rangle b, \ p \in \mathbb{R}^{d*}, \ b \in \mathbb{R}$, ее не превосходящих.
- **8.7.** Докажите, что для любого множества A выполнено $A^{00} = \operatorname{cl}\operatorname{conv}(A \cup \{0\})$.