Lecture 3: Trees

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

Trees

A tree is a connected graph T with no cycles

Properties

- Theorem (1.2.18, W, Kőnig 1936)
- A graph is bipartite ⇔ it contains no odd cycle
- (Ex 3, S1.3.1, H) A tree of order $n \ge 2$ is a bipartite graph

```
• Recall that Proposition (1.2.14, W)

An edge e is a bridge \Leftrightarrow e lies on no cycle of G

• Or equivalently, an edge e is not a bridge \Leftrightarrow e lies on a cycle of G
```

- ⇒ Every edge in a tree is a bridge
- T is a tree \iff T is minimally connected, i.e. T is connected but T-e is disconnected for every edge $e \in T$

Equivalent definitions (Theorem 1.5.1, D)

- T is a tree of order n
 - \Leftrightarrow Any two vertices of T are linked by a unique path in T
 - $\Leftrightarrow T$ is minimally connected
 - i.e. T is connected but T-e is disconnected for every edge $e \in T$
 - $\Leftrightarrow T$ is maximally acyclic
 - i.e. T contains no cycle but T+xy does for any non-adjacent vertices $x,y\in T$
 - \Leftrightarrow (Theorem 1.10, 1.12, H) T is connected with n-1 edges
 - \Leftrightarrow (Theorem 1.13, H) T is acyclic with n-1 edges

Leaves of tree

- A vertex of degree 1 in a tree is called a leaf
- Theorem (1.14, H; Ex9, S1.3.2, H) Let T be a tree of order $n \ge 2$. Then T has at least two leaves
- (Ex3, S1.3.2, H) Let T be a tree with max degree Δ . Then T has at least Δ leaves
- (Ex10, S1.3.2, H) Let T be a tree of order $n \geq 2$. Then the number of leaves is

$$2 + \sum_{v:d(v)\geq 3} (d(v) - 2)$$

• (Ex8, S1.3.2, H) Every nonleaf in a tree is a cut vertex

The center of a tree is a vertex or an 'edge'

• Theorem (1.15, H) In any tree, the center is either a single vertex or a pair of adjacent vertices

Any tree can be embedded in a 'dense' graph

• Theorem (1.16, H) Let T be a tree of order k+1 with k edges. Let G be a graph with $\delta(G) \geq k$. Then G contains T as a subgraph

Spanning tree

- Given a graph G and a subgraph T, T is a spanning tree of G if T is a tree that contains every vertex of G
- Example: A telecommunications company tries to lay cable in a new neighbourhood
- Proposition (2.1.5c, W) Every connected graph contains a spanning tree

Minimal spanning tree - Kruskal's Algorithm

- Given: A connected, weighted graph *G*
- 1. Find an edge of minimum weight and mark it.
- 2. Among all of the unmarked edges that do not form a cycle with any of the marked edges, choose an edge of minimum weight and mark it
- 3. If the set of marked edges forms a spanning tree of G, then stop. If not, repeat step 2

Example

FIGURE 1.43. The stages of Kruskal's algorithm.

Theoretical guarantee of Kruskal's algorithm

• Theorem (1.17, H) Kruskal's algorithm produces a spanning tree of minimum total weight

Prim's Algorithm

- Given: A connected, weighted graph G.
- 1. Choose a vertex v, and mark it.
- 2. From among all edges that have one marked end vertex and one unmarked end vertex, choose an edge *e* of minimum weight. Mark the edge *e*, and also mark its unmarked end vertex.
- 3. If every vertex of G is marked, then the set of marked edges forms a minimum weight spanning tree. If not, repeat step 2

Cayley's tree formula

• Theorem (1.18, H). There are n^{n-2} distinct labeled trees of order n

FIGURE 1.45. Labeled trees on three vertices.

FIGURE 1.46. Labeled trees on four vertices.

Example

Trees with fixed degrees

• Corollary (2.2.4, W) Given positive integers d_1,\ldots,d_n summing to 2n-2, there are exactly $\frac{(n-2)!}{\prod (d_i-1)!}$ trees with vertex set [n] such that vertex i has degree d_i for each i

• Example (2.2.5, W) Consider trees with vertices [7] that have degrees (3,1,2,1,3,1,1)

Matrix tree theorem - cofactor

• For an $n \times n$ matrix A, the i, j cofactor of A is defined to be

$$(-1)^{i+j}\det(M_{ij})$$

where M_{ij} represents the $(n-1) \times (n-1)$ matrix formed by deleting row i and column j from A

3 × 3 generic matrix [edit]

Consider a 3×3 matrix

$$\mathbf{A} = egin{pmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{pmatrix}.$$

Its cofactor matrix is

$$\mathbf{C} = egin{pmatrix} + egin{bmatrix} a_{22} & a_{23} \ a_{32} & a_{33} \end{bmatrix} & - egin{bmatrix} a_{21} & a_{23} \ a_{31} & a_{33} \end{bmatrix} & + egin{bmatrix} a_{21} & a_{22} \ a_{31} & a_{32} \end{bmatrix} \ - egin{bmatrix} a_{12} & a_{13} \ a_{32} & a_{33} \end{bmatrix} & + egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} & a_{23} \end{bmatrix} & + egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} & a_{23} \end{bmatrix} & + egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} & a_{23} \end{bmatrix} & + egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} & a_{23} \end{bmatrix} & + egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} & a_{23} \end{bmatrix} & + egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} & a_{23} \end{bmatrix} & + egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} & a_{23} \end{bmatrix} & + egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} & a_{23} & a_{23$$

Matrix tree theorem

- Theorem (1.19, H; 2.2.12, W; Kirchhoff) If G is a connected labeled graph with adjacency matrix A and degree matrix D, then the number of unique spanning trees of G is equal to the value of any cofactor of the matrix D-A
- If the row sums and column sums of a matrix are all 0, then the cofactors all have the same value
- Exercise Read the proof part
- Exercise (Ex7, S1.3.4, H) Use the matrix tree theorem to prove Cayley's theorem

Example

FIGURE 1.49. A labeled graph and its spanning trees.

The degree matrix D and adjacency matrix A are

$$D = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}, \quad A = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix},$$

and so

$$D - A = \begin{bmatrix} 2 & 0 & -1 & -1 \\ 0 & 2 & -1 & -1 \\ -1 & -1 & 3 & -1 \\ -1 & -1 & -1 & 3 \end{bmatrix}.$$

The (1,1) cofactor of D-A is

$$\det \begin{bmatrix} 2 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix} = 8.$$

Score one for Kirchhoff!

Wiener index

- In a communication network, large diameter may be acceptable if most pairs can communicate via short paths. This leads us to study the average distance instead of the maximum
- Wiener index $D(G) = \sum_{u,v \in V(G)} d_G(u,v)$
- Theorem (2.1.14, W) Among trees with n vertices, the Wiener index D(T) is minimized by stars and maximized by paths, both uniquely
- Over all connected n-vertex graphs, D(G) is minimized by K_n and maximized by paths
 - (Corollary 2.1.16, W) If G is a connected n-vertex graph, then $D(G) \le D(P_{n-1})$
 - (Lemma 2.1.15, W) If H is a subgraph of G, then $d_G(u,v) \leq d_H(u,v)$

Prefix coding

- A binary tree is a rooted plane tree where each vertex has at most two children
- Given large computer files and limited storage, we want to encode characters as binary lists to minimize total length
- Prefix coding: no code word is an initial portion of another

Example: 11001111011

Huffman coding

- Input: Weights (frequencies or probabilities) p_1, \dots, p_n
- Output: Prefix-free code (equivalently, a binary tree)
- Idea: Infrequent items should have longer codes; put infrequent items deeper by combining them into parent nodes.
- Recursion: replace the two least likely items with probabilities p,p' with a single item of weight p+p'

Example (2.3.14, W)

а	5	100
b	1	00000
С	1	00001
d	7	01
е	8	11
f	2	0001
g	3	001
h	6	101

The average length is
$$\frac{5\times3+5+5+7\times2+\cdots}{33} = \frac{30}{11} < 3$$

Huffman coding is optimal

• Theorem (2.3.15, W) Given a probability distribution $\{p_i\}$ on n items, Huffman's Algorithm produces the prefix-free code with minimum expected length

Huffman coding and entropy

• The entropy of a discrete probability distribution $\{p_i\}$ is that

$$H(p) = -\sum_{i} p_i \log_2 p_i$$

- $H(p) \le$ average length of Huffman coding $\le H(p) + 1$
- When each p_i is a power of $\frac{1}{2}$, average length of Huffman coding is

$$H(p)$$
 s₁

S ₁	.5 0	Codewords 0	average length = $(1)\left(\frac{1}{2}\right) + (2)\left(\frac{1}{4}\right) + (3)\left(\frac{1}{8}\right) + (3)\left(\frac{1}{8}\right)$ = 1.75 bits/symbol
S_2	.25	10	$H = \frac{1}{2}\log_2 2 + \frac{1}{4}\log_2 4 + \frac{1}{8}\log_2 8 + \frac{1}{8}\log_2 8$
S_3	.125 0	110	$= \frac{1}{2} + \frac{1}{2} + \frac{3}{8} + \frac{3}{8}$
S_4	.125 1	111	= 1.75

Summary

• Trees

Shuai Li

https://shuaili8.github.io

Questions?