Erstes Semester Hardwareaufgaben

Farin Lippmann

Raspberry Pi - Welches OS?

Ansprüche:

- Vielseitige Einsetzbarkeit
- Einfachheit / Ease of Use
- Verfügbarkeit
- Verbreitung / Community

Einige Kandidaten:

- Raspbian
- Pidora
- Ubuntu Mate
- Archlinux
- Windows 10 IoT Version

Entscheidung

Ubuntu Mate: + relativ weit verbreitet

- macht GPIO schwierig

Archlinux: + großer Spielraum

+ totaler Allrounder

- überwältigend komplex

Pidora: + vielseitig nutzbar

+ relativ simpel - etwas instabil

- weniger stark verbreitet

Windows 10 IoT + z.T. bekannte Oberfläche

- nur auf IoT zugeschnitten

Raspbian:

+ riesige Community

+ vielseitig genug für mich

+ simpel

+ viele Tutorials u. Guides

+ 100% für den Pi optimiert

-> Sieger:

Access Point

- 1. apt-get install dnsmasq hostapd
- 2. nano /etc/dhcpcd.conf
 interface wlan0
 static ip_address=192.168.4.2
 nohook wpa_supplicant

Access Point

```
4. nano /etc/hostapd/hostapd.conf
     interface=wlan0
     driver=nl80211
     wmm enabled=0
     wpa=2
     wpa key mgmt=WPA-PSK
     wpa pairwise=TKIP
```

```
5. nano /etc/default/hostapd

DAEMON_CONF:"/etc/hostapd/hostapd.conf"
```

- 6. iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
- 7. sh -c "iptables-save > /etc/ iptables.ipv4.nat"
- 8. nano /etc/rc.local
 iptables-restore < /etc/iptables.ipv4.nat</pre>

Bridge

- 1. apt-get install hostapd bridge-utils systemctl stop hostapd
- 4. brctl addbr br0 brctl addif br0 eth0
- 5. nano /etc/network/interfaces
 auto br0
 iface br0 inet manual
 bridge ports eth0 wlan0

Router

- 1. Bridge entfernen
- 2. nano hostapd.conf
 ht_capab=[HT=40][SHORT-GI-40][DSSS_CCK-40]
- 2. nano /etc/dhcpcd.conf
 interface wlan0
 static ip_address=192.168.4.2
 static routers=192.168.4.2
 static domain name servers=192.168.13.1
- 3. nano /etc/dnsmasq.conf
 interface wlan0
 domain-needed
 bogus-priv
 dhcp-range:...
- 4. -A POSTROUTING -o eth0 -j MASQUERADE
 -A FORWARD -i eth0 -o wlan0 -m state --state
 RELATED, ESTABLISHED -j ACCEPT
 -A FORWARD -i wlan0 -o eth0 -j ACCEPT

Bridge vs. Router

- OSI: Data-Link Layer (2. Schicht)
- verbindet nur homogene Netzwerke
- leitet Daten nach MAC-Adr. weiter
- kann Netzwerke nicht unterscheiden
- transparente Bridges erstellen eine Weiterleitungstabelle, ansonsten werden Daten gebroadcastet
- nur nützlich wenn Subnetting nicht möglich ist

- OSI: Network Layer (3. Schicht)
- verbindet auch heterogene Netzwerke
- leitet Daten nach IP-Adressen weiter
- unterscheidet Netzwerke mit Netzmaske
- erstellen eine Routingtabelle
- kann Daten filtern
- meist effizienter, nützlicher als Bridge

Zeitliche Verfügbarkeit des AP

```
0 6 * * * sudo service dhcpcd start
     0 17 * * * sudo service dhcpcd stop
     @reboot sh /home/pi/Documents/script.sh
2. nano /home/pi/Documents/script.sh
     #!/bin/sh
     Stunde=$(date +%H)
     if [ $Stunde -qt 16 ]
       sudo service dhcpcd stop
     if [ $Stunde -lt 7 ]
       sudo service dhcpcd stop
     fi
```

3. chmod +x /home/pi/Documents/script.sh

IP-Adressen

- Adresse zum Transport von Daten in Computernetzen
- OSI: Network Layer (3. Schicht)
- Aufbau (IPv4): xxx.xxx.xxx
- jedes verschickte Datenpaket hat Quelladresse und Zieladresse
- Subnetting: Zerlegen von Netzwerken durch Teilung der IP-Adresse in Netzwerkteil und Hostteil

Beispiel mit Netmask 255.255.255.0:

Proxy

- OSI: Application Layer (7. Schicht)
- ein Server, der statt dem eigentlichen Ziel angefragt wird, und dann dieses selbst anfragt
- kann Performance verbessern, durch Caching von
 oft genutzten http Seiten
- Ziel sieht nur Anfrage des Proxy -> Anonymisiert
- Firewall / Filter kann unerwünschte / gefährliche
 Seiten blockieren -> Sicherheit

Proxy

- 1. apt-get install squid
- 2. apt-get install apache2-utils
- 3. sudo nano /etc/dhcpcd.conf
 interface eth0
 static ip_address=192.168.13.38
 static routers=192.168.13.1
 static domain name servers=192.168.13.1
- 4. cp /etc/squid/squid.conf
 /etc/squid/squidoriginal.conf.bak

- 6. (Alle lokalen durchlassen)
 acl localnet src 192.168.4.0/24
 http access allow localnet
- 7. (Bestimmte URLs blocken)
 acl bad_url dstdomain .google.com
 http access deny bad url
- 8. (Basic Authentifizierung)

 auth_param basic program

 /usr/lib/squid3/basic_ncsa_auth

 /etc/squid/passwords

 auth_param basic realm proxy acl

 authenticated proxy_auth REQUIRED

 http access allow authenticated
- 9. (Im Browser oder Handy Proxy einstellen)
 Proxy: 192.168.13.38
 Port: 3128

DNS

- Server, der Liste mit Domainnamen und IP-Adressen verwaltet
- Beispiel:

- DNS Lookups funktionieren auch andersherum

- 1. apt-get install dnsmasq
- 2. nano /etc/dnsmasq.conf
 interface=wlan0
- 3. nano /etc/hosts (Bsp:) 8.8.8.8 dns.google.com
- 4. nano /etc/resolv.conf nameserver 127.0.0.1
- 5. service dnsmasq restart

Mail Server

quit

Ausführliches Tutorial mit Dovecot und IMAP:

https://samhobbs.co.uk/raspberry-pi-email-server

```
1. apt-get install postfix
     (wähle "Internet Site")
   cp master.cf master.cf.BAK
3. nano /etc/postfix/main.cf
     home mailbox = Maildir/
4. apt-get install telnet
5. telnet localhost 25
   data
   Testmail
```