Chapter 32 Dimension

Exercice 1 (32.0)

Soit $F = \{ (x, y, z) \in \mathbb{R}^3 \mid x - y + 2z = 0 \}.$

Prouver que F est un sous-espace vectoriel de \mathbb{R}^3 , en déterminer une base et calculer sa dimension.

Exercice 2 (32.0)

Soit $F = \{ (x, y, z) \in \mathbb{R}^3 \mid x - y + z = 0 \text{ et } -x - y + z = 0 \}.$

Prouver que F est un sous-espace vectoriel de \mathbb{R}^3 , en déterminer une base et calculer sa dimension.

Exercice 3 (32.0)

Montrer que le sous-ensemble

$$F = \{ (\alpha + \beta, \beta, 2\alpha - \beta - \alpha) \mid \alpha, \beta \in \mathbb{R} \}$$

est un sous-espace vectoriel de \mathbb{R}^4 dont on déterminera la dimension et une base.

Exercice 4 (32.0)

On considère les ensembles

$$U = \left\{ \begin{pmatrix} -1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} -1\\2\\5 \end{pmatrix} \right\} \qquad W = \left\{ \begin{pmatrix} -1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 1\\2\\5 \end{pmatrix} \right\}$$

Décrire les sous-espace vectoriel Vect(U) et Vect(W). Donner une base pour chacun d'eux.

Montrer que l'un des deux est un plan vectoriel et déterminer une équation cartésienne de celui-ci.

Exercice 5 (32.0)

Soit V le sous-espace vectoriel de \mathbb{R}^4 engendré par les vecteurs

$$v_1 = (1, 2, 3, 4),$$
 $v_2 = (2, 3, 4, 5),$ $v_3 = (3, 4, 5, 6),$ $v_4 = (4, 5, 6, 7).$

Déterminer une base de V et dim V.

Exercice 6 (32.0)

Soient

$$P_1 = X^2 + 1$$
 $P_2 = X^2 + X - 1$ $P_3 = X^2 + X$.

Montrer que la famille (P_1, P_2, P_3) est une base de $\mathbb{K}_2[X]$.

Exercice 7 (32.0)

On considère n+1 polynômes P_0, \ldots, P_n de $\mathbb{K}_n[X]$ vérifiant

$$\forall k \in [0, n], \deg P_k = k.$$

Montrer que (P_0, P_1, \dots, P_n) est une base de $\mathbb{K}_n[X]$.

Exercice 8 (32.0)

Soient $\alpha \in \mathbb{R}$ et

$$P_1 = (1 + \alpha)X^2 + X + 1,$$
 $P_2 = X^2 + (1 + \alpha)X + 1,$ $P_3 = X^2 + X + (1 + \alpha).$

Donner une condition nécessaire et suffisante sur α pour que la famille (P_1, P_2, P_3) soit une base de $\mathbb{R}_2[X]$.

Exercice 9 (32.0)

Soit $x_1 < x_2 < \dots < x_n$ des réels. On pose $x_0 = -\infty$ et $x_{n+1} = +\infty$. On note E l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} de classe \mathcal{C}^1 dont la restriction à chaque $]x_i, x_{i+1}[$ est un polynôme d degré 2 au plus.

Montrer que E est un espace vectoriel. En donner la dimension et une base.

Exercice 10 (32.0)

Soit la famille de vecteurs $\mathcal{B} = (v_1, v_2, v_3)$, où

$$v_1 = (1, 1, 0)^T$$
, $v_2 = (-4, 0, 3)^T$ et $v_3 = (3, 5, 1)^T$.

- **1.** Montrer que \mathcal{B} est une base de \mathbb{R}^3 .
- **2.** Soit $w = (-1, 7, 5)^T$ et $e_1 = (1, 0, 0)^T$. Déterminer les coordonnées de w et de e_1 relativement à la base \mathcal{B} .

Exercice 11 (32.0)

On pose $E = \mathbb{C}^3$ et on s'intéresse aux trois vecteurs

$$u_1 = (i, 1, -1),$$
 et $u_2 = (i, -1, 1)$ et $u_3 = (-1, i, 1).$

- **1.** Démontrer que la famille $\mathcal{B} = (u_1, u_2, u_3)$ est une base de E.
- **2.** Déterminer les coordonnées de w = (3 + i, 1 i, 2) dans \mathcal{B} .

Exercice 12 (32.0)

Soient

$$P_1 = 2X^2 - X + 1,$$
 $P_2 = X^2 + 2X,$ $P_3 = X^2 - 1.$

Montrer que la famille (P_1, P_2, P_3) est un base de $\mathbb{R}_2[X]$.

Déterminer les coordonnées de $P = 3X^2 + 5X - 3$ dans cette base.

Exercice 13 (32.0)

1. Montrer que

$$\mathcal{B} = \left(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right)$$

est une base de l'espace vectoriel $E = \mathcal{M}_2(\mathbb{R})$.

2. Déterminer les coordonnées de $u = \begin{pmatrix} 2 & 3 \\ 4 & -7 \end{pmatrix}$ dans la base \mathcal{B} .

Exercice 14 (32.0)

Soit
$$F = \left\{ \begin{pmatrix} a+b+c & b & c \\ c & a+b+c & b \\ b & c & a+b+c \end{pmatrix} \middle| (a,b,c) \in \mathbb{R}^3 \right\}.$$

- **1.** Montrer que F est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$, dont on précisera une base \mathcal{B} et la dimension.
- 2. Quelles sont les coordonnée de $\begin{pmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 3 \end{pmatrix}$ dans la base \mathcal{B} ?

3. Calculer *tous* les produits deux à deux des éléments de la base *B* (*indiquer uniquement le résultat sur la copie*).

Vérifier qu'ils appartiennent bien à F.

4. En déduire que pour tout $(M, N) \in F^2$, on a $MN \in F$.

Exercice 15 (32.0)

Soient (x_1, x_2, x_3) les coordonnées d'un vecteur u dans la base canonique de \mathbb{R}^3 . Exprimer les coordonnées (y_1, y_2, y_3) de ce même vecteur dans la base de \mathbb{R}^3 formée des vecteurs

$$\epsilon_1 = (1, 1, 0),$$
 $\epsilon_2 = (1, 0, 1),$ $\epsilon_3 = (0, 1, 1).$

Exercice 16 (32.0)

Soit E un K-espace vectoriel de dimension 3 et $e = (e_1, e_2, e_3)$ une base de E. On pose

$$f_1 = e_1 + 2e_2 + 2e_3$$
 $f_2 = e_2 + e_3$.

Montrer que (f_1, f_2) est libre et compléter cette famille en une base de E.

Exercice 17 (32.0)

Soit A une matrice de type $m \times k$. On suppose que les colonnes de A sont linéairement indépendantes. Montrer

- **1.** $A^T A$ est une matrice symétrique de type $k \times k$,
- **2.** $A^T A$ est une matrice inversible.

Vérifier les résultats précédents pour la matrice $M = \begin{pmatrix} 1 & -2 \\ 3 & 0 \\ 1 & 1 \end{pmatrix}$.

Exercice 18 (32.0)

Soit B une matrice $m \times k$ tel que $\text{Im}(B^T)$ est un plan de \mathbb{R}^3 admettant pour équation cartésienne 4x - 5y + 3z = 0.

- 1. Peut-on déterminer m ou k? Le faire si possible.
- **2.** Déterminer le noyau de B. Écrire la solution générale de l'équation Bx = 0.

Exercice 19 (32.0)

Soit $S = \mathbb{R}^{\mathbb{N}}$ l'espace vectoriel des suites à valeurs réelles. Soit W l'ensemble des suites nulles à partir du rang 3.

Montrer que W est un sous-espace vectoriel de S de dimension 3.

Problème 20 (32.0)

On donne une partie d'une matrice A ainsi que sa forme échelonnée réduite

$$A = \begin{pmatrix} 1 & 4 & * & * \\ 2 & -1 & * & * \\ 3 & 2 & * & * \end{pmatrix} \sim \cdots \sim \begin{pmatrix} 1 & 0 & -1 & 5 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

- 1. Déterminer une base de l'image de A, Im(A), une base du noyau de A, ker(A), ainsi qu'une base de $Im(A^T)$.
- **2.** Soit $b = (9, 0, a)^T$ où $a \in \mathbb{R}$. L'équation matricielle Ax = b représente un système linéaire. Quel est son nombre d'équations? Son nombre d'inconnue?

Déterminer une condition nécessaire et suffisante sur a pour que le système Ax = b soit compatible.

3. Déterminer si possible les colonnes de *A* manquantes.