

NGS в медицинской генетике

Школа анализа данных

Применение NGS-технологий в медицинской генетике. Эффективность. Ограничения

Скоблов Михаил Юрьевич

заведующий лабораторией функциональной геномики ФГБНУ "Медико-генетический научный центр"

Осенняя школа MGNGS'2019

U.S. next generation sequencing market, by application, 2012-2022 (USD Million)

Из 13 тысяч молекулярных анализов в год:

- 20 геномов
- 700 экзомов
- 2000 панелей
- 10 тысяч секвенирований по Сэнгеру

NGS – Next Generation Sequencing

MPS - Massively Parallel Sequencing

Применение NGS в медицинской генетике

Whole genome sequencing

Whole exome sequencing

- Sequencing region : whole genome
- Sequencing Depth: >30X
- Covers everything can identify all kinds of variants including SNPs, INDELs and SV.

- Sequencing region: whole exome
- Sequencing Depth: >50X ~ 100X
- Identify all kinds of variants including SNPs, INDELs and SV in coding region.
- Cost effective

Targeted sequencing

- Sequencing region: specific regions (could be customized)
- Sequencing Depth: >500X
- Identify all kinds of variants including SNPs, INDELs in specific regions
- Most Cost effective

Применение NGS в медицинской генетике

Применение NGS в медицинской генетике

Panel	Total cases	Number of genes ^a	Diagnostic findings	Possible diagnostic findings	Negative findings	Diagnostic yield (%) (Diagnostic + Possible diagnostic)
Phenylketonuria	52	1	49	1	2	96
Fanconi anemia	39	1-18	30	4	5	87
Epidermolysis bullosa	27	1-13	20	3	4	85
Retinal dystrophy panel	69	32-315	40	15	14	80
Adrenoleukodystrophy	18	1	13	1	4	78
Albinism	42	1-24	20	12	10	76
Congenital hyperinsulinism	12	7–14	3	5	4	67
Craniosynostosis	13	1-20	5	2	6	54
Hearing loss (all subpanels combined)	173	2-149	50	37	86	50
Achondroplasia	10	1	5	0	5	50
Congenital myopathy	35	1-29	9	8	18	49
Alport syndrome	48	3	20	3	25	48
Stickler Syndrome	13	1-6	5	1	7	46
Ataxia/Hereditary Spastic Parapresis	23	28-101	3	7	13	43
Hereditary spastic paraparesis	26	1-74	7	4	15	42
Limb girdle muscular dystrophy	24	1-36	6	4	14	42
Ataxia	25	21-67	3	7	15	40
Carnitine acetyltransferase deficiency	10	1	1	3	6	40
Cystic fibrosis	10	1	3	1	6	40
Noonan syndrome	40	5-22	15	0	25	38
Hereditary hemorrhagic telangiectasia	11	1–4	4	0	7	36
Periodic paralysis syndromes	11	2-5	3	1	7	36
Polycystic kidney disease	11	1-9	3	1	7	36
Charcot Marie Tooth	117	1-58	32	9	76	35
Glycogen storage disease	17	1-25	5	0	12	29
Complex neurologic	45	6–266	4	88	33	27
Marfan syndrome	38	1-3		3	33	13
Li Fraumeni syndrome	25	1-3	3	0	22	12
Macrocephaly/Overgrowth	10	3–18	1	0	9	10
Hereditary breast/ovarian cancer	126	2–18	11	1	114	10
Connective tissue disorder	48	2–29	2	2	44	8
Developmental eye panel	12	14–31	1	0	11	8
Renal coloboma syndrome	13	1	1	0	12	8
Ehlers Danlos syndrome	111	1–16	5	2	104	6
Dystonia	17	1–18	1	0	16	6
Motor neuron disease	19	5–85	1	0	18	5
Myoclonus dystonia	20	1-3	1	0	19	5
ng seconds approna	20	10	•	J		/doi.org/10.1016/j.ymgmr.2019.100464

• The proportion of samples reported with diagnostic findings and as negative remained relatively stable over time while there was a decrease in the number of samples reported with possible diagnostic findings from 16.3% in 2013 to 5.13% in 2017.

Whole Genome Sequencing Increases Molecular Diagnostic Yield Compared with Current Diagnostic Testing for Inherited Retinal Disease

- 562 individuals underwent clinical analysis of genetic variation within 105 genes known to underpin IRD.
- A subset of 46 of 562 patients underwent WGS, and we compared mutation detection rates and molecular diagnostic yields.

No. of Cases Referred for Targeted NGS	No. of Cases Referred for WGS
268	20
78	4
43	5
49	5
41	8
39	3
27	1
8	-
5	•
4	
	for Targeted NGS 268 78 43 49 41 39 27

NGS = next-generation sequencing; RP = retinitis pigmentosa; WGS = whole genome sequencing.

Whole Genome Sequencing Increases Molecular Diagnostic Yield Compared with Current Diagnostic Testing for Inherited Retinal Disease

- WGS identified 14 clinically relevant genetic variants through WGS that had not been identified by NGS diagnostic testing for the 46 individuals with IRD.
- Weighted estimates, accounting for population structure, suggest that WGS methods could result in an overall 29% uplift in diagnostic yield.

Patient ID	Gene	Zygosity	cDNA	Protein
Large Deletions				
12002355	PCDH15	Heterozygous	c189197_c.610-5166del	Removes start codon
065240	MERTK	Homozygous	c8163_c.1145-1213del	Removes start codon
11012351	GPR98	Heterozygous	c.16079-1455_c.16196+155del	p.(Ser5361Profs*25)
12008422	USH2A	Heterozygous	c.6326-3582_6658-1028del	p.(Asp2109Glyfs*11)
067429	RPGRIP1	Heterozygous	c.2710+485_3238+810del	p.(Gly904_Asn1079del)
Intronic Varian	ts			
09006916	ABCA4	Heterozygous	c.5461-10T>C	n/a
12007903	ABCA4	Heterozygous	c.5461-10T>C	n/a
11012351	GPR98	Heterozygous	c.1239-8C>G	n/a
Insertions-Delet	ions			
11001193	PDE6B	Heterozygous	c.1923_1969delinsTCTGGG	p.(Asn643Glyfs*29)
11013807	USH2A	Heterozygous	c.5614delinsTTAACTTGGCAT	p.(Ala1872Metfs*4)
12003183	CRX	Heterozygous	c.648delC	p.(Ser216Argfs*3)
Missed by Infor	matics Errors			
065238	ABCA4	Heterozygous	c.5714+5G>A	n/a
13012708	ABCA4	Heterozygous	c.5714+5G>A	n/a
Variants in Add	litional 75 Gen	nes		
11012959	TRPM1	Homozygous	c.707T>C	p.(Leu236Pro)

Полный экзом vs полный геном

	Полный экзом	Полный геном
Область исследование	95% код. части генома (1- 2% от всего генома)	98% всего генома
Варианты из HGMD, которые не будут обнаружены	2,1%	0,3%
CNV	Возможна по анализу покрытия. Необходимо подтверждение другим методом	Разрешение точных границ перестроек выше XMA высокого разрешения.
Другие перестройки	-	+
Некодирующая область	-	+
мтДНК	-	С прочтением 2000Х
Экспансия тринуклеотидных повторов	-	Возможен в некоторых случаях

Схема процесса NGS анализа

Understanding the limitations of next generation sequencing informatics, an approach to clinical pipeline validation using artificial data sets

Robert Daber*, Shrey Sukhadia, Jennifer J.D. Morrissette

Center for Personalized Diagnostics, University of Pennsylvania School of Medicine, Philadelphia, PA

The advantages of massively parallel sequencing are quickly being realized through the adoption of comprehensive genomic panels across the spectrum of genetic testing. Despite such widespread utilization of next generation sequencing (NGS), a major bottleneck in the implementation and capitalization of this technology remains in the data processing steps, or bioinformatics. Here we describe our approach to defining the limitations of each step in the data processing pipeline by utilizing artificial amplicon data sets to simulate a wide spectrum of genomic alterations. Through this process, we identified limitations of insertion, deletion (indel), and single nucleotide variant (SNV) detection using standard approaches and described novel strategies to improve overall somatic mutation detection. Using these artificial data sets, we were able to demonstrate that NGS assays can have robust mutation detection if the data can be processed in a way that does not lead to large genomic alterations landing in the unmapped data (i.e., trash). By using these pipeline modifications and a new variant caller, AbsoluteVar, we have been able to validate SNV mutation detection to 100% sensitivity and specificity with an allele frequency as low 4% and detection of indels as large as 90 bp. Clinical validation of NGS relies on the ability for mutation detection across a wide array of genetic anomalies, and the utility of artificial data sets demon-

Программы и алгоритмы для аннотации генов

	RefSeq	Ensembl	Gencode (v. 29)
Total No of Genes	6118	57365	58721
Protein-coding genes	20216	20418	19940
Long non-coding RNA genes	18533	15014	16066
Small non-coding RNA genes	10333	4871	7577
Pseudogenes	16435	15195	14505

Сравнение разных аннотаций генов

Transcript

doi: 10.1101/gr.135350.111

Пример разницы аннотаций генов

Реализация кодирующего потенциала РНК

Protein existence in neXtProt

Где могут быть патогенные варианты?

Черная пятница: 178 евро

Сравнение
результатов
секвенирования
индивидуальных
геномов человека
Canada la marci C Lundi ID Cibba DA
Gonzaga-Jauregui C, Lupski JR, Gibbs RA. Human genome sequencing in health and disease. Annu Rev Med. 2012;63:35-61.

ndividual
enter
Vatson
hinese
(YH)
frican
(NA18507)*
frican
(NA18507)*
orean
(SJK)
orean
(AK1)
hoisan
(KB1)
. Tutu
(ABT)
upski

Ploidy

2n

Technology	
Sanger	
Roche 454	
Illumina	
Illumina	
AB SOLiD	
Illumina	
Illumina	
Roche 454	
AB SOLiD	
AB SOLiD	

Total

SNPs

[**M**]

3.21

3.32

3.07

3.61

3.86

3.43

3.45

4.05

3.62

3.42

 $\mathbf{A}\mathbf{v}$

Depth

 $7.5 \times$

 $7.4 \times$

 $36.0 \times$

 $40.6 \times$

 $17.9 \times$

 $28.9 \times$

 $27.8 \times$

 $10.2 \times$

 $30.0 \times$

29.6×

3'415'465 персональных вариаций

56001801066408A.snp.vcf

860 Mb

56001801066408A-6584-Phar macogenetics Report.pdf

Genetic Report

Confidential Report Number

1226918

Wellness & Longevity App

- The Report analyzes a large amount of genomic data, associating genetic variants found in the **genomic files** with variants known from the scientific literature. While this Report does not require FDA/EMA approval, we do want to point out that it has not been approved by the FDA/EMA for such use.
- We do not independently judge the validity or accuracy of such published scientific information.
- Because scientific and medical information changes over time, your risk assessment and genetically tailored prevention for one or more of the medications contained within this report may also change over time.
- Therefore, this report may not be 100% accurate (e.g., new research could mean different results) and may not predict actual results or outcomes.

GWAS Catalog

As of May 2019

- 3,989 publications
- 138,312 variant-trait associations
- >6,000 full summary statistics files

controls (n=1,000) people without heart disease

«Genetic Report» на 163 страницах

• 3'450 описанных вариаций

«Genetic Report» на 163 страницах

Lactose Intolerance

Increased risk of becoming lactose intolerant as an adult

Asthma

RISK DETECTED

No Resistance Detected

Resistance to HIV Infection

«Genetic Report» на 163 страницах

CONDITION NAME	RESULTS	MAIN MESSAGE
Ethanol	②	No variants detected
Heroin	②	No variants detected
Metformin	Ø	No variants detected
Methadone	<u> </u>	We found a variant related to your reaction to Methadone
Methotrexate		We found a variant related to your reaction to Methotrexate
Mirtazapine	<u> </u>	We found a variant related to your reaction to Mirtazapine
Morphine	<u> </u>	We found a variant related to your reaction to Morphine

Результаты данного исследования могут быть правильно интерпретированы
только врачом-генетиком.