ee25btech11063-vejith

Question:

a,b,c are three orthogonal vectors. Given that $\mathbf{a} = \hat{i} + 2\hat{j} + 5\hat{k}$ and $\mathbf{b} = \hat{i} + 2\hat{j} - \hat{k}$, the vector \mathbf{c} is parallel to (IN 2019)

(a)
$$\hat{i} + 2\hat{j} + 3\hat{k}$$

(b)
$$2\hat{i} + \hat{j}$$

(c)
$$2\hat{i} - \hat{j}$$

(d)
$$4\hat{k}$$

Solution:

Given

$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix} \tag{1}$$

$$\mathbf{b} = \begin{pmatrix} 1\\2\\-1 \end{pmatrix} \tag{2}$$

$$\mathbf{a}^{\mathsf{T}}\mathbf{c} = 0 \tag{3}$$

$$\mathbf{b}^{\mathsf{T}}\mathbf{c} = 0 \tag{4}$$

(3) and (4) can be written as

$$\begin{pmatrix} \mathbf{a}^{\mathsf{T}} \\ \mathbf{b}^{\mathsf{T}} \end{pmatrix} \mathbf{c} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 (5)

$$\begin{pmatrix} \mathbf{a}^{\mathsf{T}} \\ \mathbf{b}^{\mathsf{T}} \end{pmatrix} \mathbf{c} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\implies \begin{pmatrix} 1 & 2 & 5 \\ 1 & 2 & -1 \end{pmatrix} \mathbf{c} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
(6)

Forming the augmented matrix

$$\begin{pmatrix} 1 & 2 & 5 & 0 \\ 1 & 2 & -1 & 0 \end{pmatrix} \xrightarrow{R_2 \to R_2 - R_1} \begin{pmatrix} 1 & 2 & 5 & 0 \\ 0 & 0 & -6 & 0 \end{pmatrix}$$
 (7)

vector \mathbf{c} can be written in general as $\mathbf{c} = \begin{pmatrix} 2k \\ -k \\ 0 \end{pmatrix}$ (for some scalar k)

vector **c** is parallel to $2\hat{i} - \hat{j}$

Vectors a, b, and c (c \parallel 2i - j)

Fig. 4