

BE/BAT 485/585 Remote Sensing Data and Methods Lab - 4

Instructor: Kamel Didan^{1,2}

Helpers: Dr. Armando Barreto^{1,2}

Mr. Truman Combs^{1,2}

¹BE Dept., University of Arizona, ²VIP Lab.

NEON

NEON AOP single path flight file

A NEON Airborne Observation Platform (AOP) is an array of instruments installed into a light aircraft to collect high resolution remote sensing data at low altitude.

Hyperspectral NEON Data: Narrow spectral bands extending from 380 to 2500 nm with a spectral sampling of five nm. Approximately one meter, at 1000 meters above ground level (AGL).

What happens if the plane flies at a lower altitude (AGL)? Why is the image to the left wavy?

Data and Specs

NEON_GreenValley.bsq

NumRows: 500 NumCols: 500 NumBands: 426

DataType: INT16 (16 bits)

NEON_wave.txt

What is the number of data levels?

Blue

Green

Red

NIR

SWIR1

							_				
	Wavelength	51	636.687622	10		887.094116		151		201	
0	381.27301	52	641.695679	10		892.102173		152	1142.508667	202	
1	386.281097	53	646.703796	10)3	897.110291	T	153	1147.516846	203	1397.92334
2	391.289215	54	651.711975	10)4	902.118408		154	1152.524902	204	1402.93139
3	396.297302	55	656.720093	10)5	907.126587		155	1157.533081	205	1407.93957
4	401.305511	56	661.72821	10)6	912.134705		156	1162.54126	206	1412.947754
5	406.313599	57	666.736328	10)7	917.142822		157	1167.549316	207	1417.95581
6	411.321686	58	671.744507	10	8(922.151001		158	1172.557495	208	1422.96386
7	416.329895	59	676 752625	10)9	927.159119		159	1177.565552	209	1427.97204
8	421.338013	60	681.760681	11	10	932.167175		160	1182.57373	210	1432.98022
9	426.3461	61	686.768921	11	11	937.175415		161	1187.581787	211	1437.98828
10	431.354309	62	691.776978	11	12	942.183472		162	1192.589966	212	1442.9964
11	436.362396	63	696.785095	11	13	947.191589		163	1197.598145	213	1448.00463
12	441.370514	64	701.793274	11	14	952.199707		164	1202.606201	214	1453.01269
13	446.378601	65	706.801392	11	15	957.207886		165	1207.61438	215	1458.02087
14	451.38681	66	711.809509	11	16	962.216003		166	1212.622559	216	
15	456.394897	67	716.817627	11		967.224121		167	1217.630615	217	2100102500
16	461.403015	68	721.825806	11		972.2323		168	1222.638794	218	
17	466.411194	69	721.823800	11		977.240417		169	1227.646851	219	
18	471.419312	70	731.84198	12		982.248474		170	1232.655029	220	
19	476.427399	71	731.84138	12		987.256714		171	1237.663086	221	1488.0695
20	481.435486	72	741.858276	12		992.264771		172	1242.671265	222	
21 22	486.443695	73	746.866394	12		997.272888		173	1247.679443	223	
22	491.451813	74		12				174		223	
23	496.4599	75	751.874573	12	-	1002.281006		175	1252.6875	224	
25	501.468109	76	756.88269			1007.289185		176	1257.695679		
26	506.476196	77	761.890808	12		1012.297302			1262.703857	226	
27	511.484314 516.492493		766.898926			1017.30542		177	1267.711914	227	1518.11840
28		78	771.907104	12		1022.313599		178	1272.720093	228	
20	521.50061 526.508728	79	776.915222	12		1027.321655		179	1277.728149	229	
30	531.516785	80	781.923279	13	-	1032.329834		180	1282.736328	230	
31	536.525024	81	786.931519	13		1037.338013		181	1287.744385	231	1538.15087
32	541.533081	82	791.939575	13	-	1042.346069		182	1292.752563	232	
33	546.541199	83	796.947693	13	-	1047.354248		183	1297.760742	233	
34	551.549377	84	801.955872	13	-	1052.362305		184	1302.768799	234	2000127023
35	556.557495	85	806.963989	13		1057.370483		185	1307.776978	235	2000.2000
36	561.565613	86	811.972107	13		1062.37854		186	1312.785156	236	
37	566.573792	87	816.980225	13		1067.386719		187	1317.793213	237	
38	571.581909	88	821.988403	13		1072.394897		188	1322.80127	238	
39	576.590027	89	826.996521	13	39	1077.402954		189	1327.809448	239	1578.21594
40	581,598083	90	832.004578	14	10	1082.411133		190	1332.817627	240	1583.22412
41	586,606323	91	837.012817	14	11	1087.419312		191	1337.825684	241	1588.23217
42	591.61438	92	842.020874	14	12	1092.427368		192	1342.833862	242	1593.24035
43	596.622498	93	847.028992	14	13	1097.435547		193	1347.842041	243	1598.24853
44	601.630676	94	852.03717	14	14	1102.443604		194	1352.850098	244	1603.25659
45	606.638794	95	857.045288	14	15	1107.451782		195	1357.858276	245	1608.26464
46	611.646912	96	862.053406	14	16	1112.459961		196	1362.866455	246	1613.27294
47	616.65509	97	867.061523	14		1117.468018		197	1367.874512	247	
48	621.663208	98	872.069702	14		1122.476196		198	1372.882568	248	
49	626.671326	99	877.07782	14		1127.484253		199	1377.890747	249	
50	631.679382	100	882.085876	15		1132.492432		200	1382.898926	250	
	302.073302		302.000070		-				_552.556520		2000,0004

Color Combinations

- Colors are at the heart of images and images are at the heart of remote sensing
- There are many ways to create a color image
 - A natural image is made up of Red-Green-Blue combinations that maps the image data to R-G-B computer colors
 - Natural (True Color Image) are the most common
 - Basically, you assign the Red to Red, Green to Green, and Blue to Blue (need some stretching at times)
 - But there are other interesting band combinations that could be displayed using other bands instead of the natural RGB. These are called <u>False Color Composite</u> (False to say they are not natural)

Landsat 8

Purpose	Band Combinations	Landsat 8/9		Landsat 8/9			
Natural Color	R-G-B	Band Name	<u>Bandwidth</u> (μm)	Resolution (m)	Band Name	<u>Bandwidth</u> (μm)	Resolution (m)
False Color (Urban)	SWIR2-SWIR1-R	Band 1 Coastal	0.43 – 0.45	30	Band 1 Coastal	0.43 - 0.45	30
Color Infrared (Vegetation)	N-R-G	Band 2 Blue	0.45 - 0.51	30	Band 2 Blue	0.45 - 0.51	30
Agriculture	SWIR1-N-B	Band 3 Green	0.53 - 0.59	30	Band 3 Green	0.53 - 0.59	30
Atmospheric penetration	SWIR2-SWIR1-5	Band 4 Red	0.64 – 0.67	30	Band 4 Red	0.64 - 0.67	30
Healthy Vegetation	N-SWIR1-B	Band 5 NIR	0.85 – 0.88	30	Band 5 NIR	0.85 - 0.88	30
Land/Water	N-SWIR1-R	Band 6 SWIR 1	1.57 – 1.65	30	Band 6 SWIR-1	1.57 - 1.65	30
Natural With Atmospheric	SWIR2-N-G	Band 7 SWIR 2 Band 8 Pan	2.11 – 2.29 0.50 – 0.68	30 15	Band 7 SWIR-2 Band 8 Pan	2.11 - 2.29 0.50 - 0.68	30 15
Removal	3WIN2-W-0	Band 9 Cirrus	1.36 – 1.38	30	Band 9 Cirrus	1.36 - 1.38	30
Shortwave Infrared	SWIR2-N-R	Band 10 TIRS 1	10.6 – 11.19	100	Band 10 TIRS-1	10.6 - 11.19	100
Vegetation Analysis	SWIR1-N-R	Band 11 TIRS 2	11.5 – 12.51	100	Band 11 TIRS2	11.5 - 12.51	100

Color Combinations

- Colors are at the heart of images and images are at the heart of remote sensing
- There are many ways to create a color image
 - A natural image is made up of Red-Green-Blue combinations that maps the image data to R-G-B computer colors
 - Natural (True Color Image) are the most common
 - Basically, you assign the Red to Red, Green to Green, and Blue to Blue (need some stretching at times)
 - But there are other interesting band combinations that could be displayed using other bands instead of the natural RGB. These are called False Color Composite (False to say they are not natural)

There are two Images

• Green Valley, AZ

Harvard Forest

Color Assignment or Indexing ≠ FCC

• The color of each **pixel** is represented by a number; each number (the *index*) corresponds to a color in the color table

(the *palette*).

	0	0	1	2	3
ı	0	1	2	3	2
ı	1	2	3	2	1
ı	2	3	2	1	0
ı	3	2	1	0	0
	C) =			
	1	. =			
	2	! =			
	2				

Exercise #1: Color Images

Read Hyperspectral data

- Read bands from a BSQ file
 - We will learn what a BSQ file is later.
 - BSQ stands for Band Sequential (meaning all pixels for one band are stored first, then next band, etc.)

Create some images from this data

- Gray scale Image which is the norm (grey level depict signal strength or sensed energy by the sensor)
- Colored greyscale images (assigning a color ramp to the grey levels) to make it easier to interpret
 - This is indexed Color Images
- True color composite (RGB)
 - A true-color image resemble natural colors
- False color composite (any combination of bands assigned to RGB)
 - A false-color is a way to emphasize a particular object or land features

Homework:

- Can you add/display a <u>color legend</u> next to the image? Search the web for help
- Try different band combinations and explain what is happening (see the previous slide)
 - Recall how green vegetation reflects in the NIR region, try to assign the NIR to one of the RGB colors (Ex: Red), and see what the image will look like?

Instructions:

- From D2L download these files:
 - GreenValley.jpg or HarvardForest.jpg
 - NEON_GreenValley.bsq or NEON_HarvardForest.bsq [NEON Sensor Data]
 - BE484-585-Lab4-Ex1.ipynb [Notebook that you will work with and modify]

Color Ramp/Scale for Grey Level Images

Exercise #2 : Exploring & Plotting Your Image & Data

Data Input

- Read a BSQ file(s) (file Ex1)
- Read a text file (provides information about the bands and their wavelengths) so you can use as labels

Plots

- Histograms (how the data is distributed)
 - What is the most common data/value for example

Scatter Plots

- Capture how data and bands correlate with each other (this is useful to understand covariance and redundancy)
- Linear regression with a Machine Learning algorithm (Sklearn library)
- Generate the prediction model form this linear regression

Spectral signature plots

- We've looked at this in class and this is one of the main basis for Remote Sensing
 - · So be creative and explore different locations (pixel locations) in the image
- Each object has a specific signature (a curve that illustrates how it interacts with radiation/energy)

Homework

- What kind of information these plots capture? Explain?
- Create a scatter plot of RED vs NIR band (or any other combination)
- Create a semi-simulated image from predicted spectral bands
- Create spectral signature plots for:
 - A Vegetated pixel, Asphalt, Soil, Roof, Water, etc. (you will need the Row x Column location)

Instructions:

- Download from D2L files:
 - NEON GreenValley.bsq or NEON HarvardForest.bsq [NEON Sensor Data]
 - NEON wavelength values.txt
 - BE484-585-Lab4-Ex2.ipynb

Exercise #2: Example outputs

Be creative and label your figures and plots properly and use colors.

You Should Notice

 The (spectral signature, Ex-2) code has the following

DataAll [35,78,:]

DataAll [205,67,:]

 Can you guess what this refers to?

- This is called array slicing
 - Please read about it (see reference material on D2L)
 - It is very useful and powerful

