AlMustafa University Jamiat AlMustafa

Cybersecurity Technical Engineering

Lecture 1

Linux Operating System

Instructor: Dr. Husam Alkinani

Ph.D. in Computer Science and Engineering

Second Year - Cybersecurity Technical Engineering

Linux Operating System

Linux Operating System

Linux is an open-source operating system developed in 1991 by Linus Torvalds. It was designed as an open-source alternative to Unix and quickly gained popularity due to its flexibility and high security. Over time, Linux became one of the most widely used systems in various fields, such as servers and cloud computing, thanks to its ability to handle heavy loads and maintain consistent stability.

For cybersecurity professionals, Linux serves as the foundation for most security tools and infrastructure. The transparent nature of open-source software allows security experts to audit code for vulnerabilities, making it essential for cybersecurity applications.

Operating System Principles

Fundamental Operating System Concepts

An operating system serves as the critical interface between computer hardware and user applications, managing system resources and providing essential services for program execution and user interaction.

Core Operating System Functions

Operating System Core Functions		
Process Management	Memory Management	
Program execution	• RAM allocation	
 Task scheduling 	• Virtual memory	
Resource allocation	Memory protection	
File System Management	Device Management	
Data organization	Hardware communication	
• File operations	 Driver interfaces 	
• Storage retrieval	• I/O coordination	

Figure 1: Four Fundamental Operating System Functions

Linux Philosophy and Open Source Principles

Open Source Software

Open source software allows users to run, study, redistribute, and modify the software freely.

Figure 2: Linux Open Source Development Cycle

Security Through Design Principles

Security-First Architecture

Linux implements security as a fundamental design principle, making it inherently more secure than systems with security added later.

Figure 3: Linux Multi-Layer Security Architecture

Cybersecurity Advantages of Open Source

Cl1 C	O C (I :)
Closed Source	Open Source (Linux)
Few developers	Thousands of developers
(FEW)	(MANY MANY MANY)
Slow vulnerability discovery	Fast vulnerability discovery
BUG (months/years)	BUG (hours/days)
Hidden security issues	Transparent security
LOCKED?	OPEN CHECK
Vendor-dependent patches	Community-driven fixes
SLOW	FAST

Figure 4: Security Comparison: Closed Source vs Open Source

Linux Kernel Architecture

Layer	Components	Cybersecurity Relevance
User Space	Applications, Libraries, Shell	Attack surface, input validation
System Calls	Kernel API, Security checks	Access control enforcement point
Kernel Space	Process scheduler, Memory manager	Core security mechanisms
Hardware	CPU, Memory, Devices	Hardware-based security features

Table 1: Linux System Architecture Layers

In cybersecurity contexts, this layered architecture provides multiple defensive positions where security controls can be implemented and monitored, creating a defense-in-depth strategy essential for protecting critical systems.

Linux Distributions

There are several Linux distributions (or "distros") that vary based on usage goals and user interfaces. Each distribution serves specific purposes and target audiences, as shown in Figure 5.

Figure 5: Linux Distributions by Category

Key Distributions for Cybersecurity Students:

The distributions highlighted in Figure 5 are particularly important for cybersecurity professionals:

▶ **Ubuntu**: Ideal starting point - easy installation, large community, good hardware support

- ▶ **Kali Linux**: Essential for cybersecurity pre-installed security tools, penetration testing platform
- ▶ **Debian**: Server environments stable, secure, long-term support
- ▶ **CentOS/RHEL**: Enterprise security government compliance, business environments

What Makes Linux Stand Out

Linux offers several advantages that make it a preferred choice in many fields. One of its key benefits is stability, allowing the system to run for extended periods without requiring a reboot, making it ideal for servers that need continuous uptime. Additionally, Linux provides a high level of security, thanks to its strict permissions system that restricts access to system files and resources, reducing the likelihood of breaches and attacks.

Moreover, Linux is highly efficient in resource management, capable of running smoothly even on low-spec devices. This efficiency makes it a preferred choice not only for servers but also for older machines. Its ability to make the most of available resources makes Linux suitable for applications requiring high performance without consuming large amounts of resources.

Security Advantages:

- ▷ Strong file permission system (User, Group, Others)
- ▶ Minimal attack surface when properly configured
- ▶ Regular security updates from the community
- ▶ Built-in firewall capabilities

Linux Usage

Linux is widely used in various fields. In the server industry, Linux is the most common choice due to its stability and security, with over 90% of servers on the internet running on Linux. Linux also serves as the backbone of many cloud computing platforms, such as AWS and Google Cloud. Due to its flexibility and power, it is also used in supercomputing centers for scientific computing and big data processing.

Cybersecurity Applications:

- ▷ Security Operations Centers (SOC) infrastructure
- Network security appliances and firewalls
- ▶ Penetration testing and vulnerability assessment

- Digital forensics and incident response
- Malware analysis and reverse engineering

Installing Linux

When installing Linux, the first step is to prepare the device by partitioning the hard drive and setting up the file system. This process involves dividing the drive into multiple partitions for storing the system and data in an organized manner. Typically, three main partitions are created: the root partition (/) which contains the core system files, the home partition (/home) for personal user files, and the swap partition, which acts as virtual memory to assist the system when RAM runs low. After partitioning, the sections are formatted using a suitable file system like ext4, which is the most commonly used in modern Linux distributions.

When installing Linux distributions such as Ubuntu or CentOS, the steps vary depending on the distribution. For example, installing Ubuntu is one of the easiest processes, where users can choose to install the system alongside another OS like Windows or format the entire disk for the new system. The Ubuntu installer provides a graphical interface that simplifies the process and allows users to customize the necessary settings, such as language and time zone. In contrast, installing CentOS, which is server-focused, may require more advanced configuration, such as network settings and selecting the appropriate packages for server purposes.

Installation Methods Comparison:

Method	Virtual Machine	Dual-Boot	USB Portable
Safety	Very Safe	Moderate Risk	Safe
Performance	Reduced	Full Speed	Variable
Learning	Excellent	Good	Excellent
Use Case	Testing	Daily Work	Field Work

Table 2: Linux Installation Methods for Cybersecurity

Security Considerations During Installation:

- ▶ Enable disk encryption for data protection
- Use strong passwords for user accounts
- Disable unnecessary services during installation
- ▶ Configure network settings securely

Post-installation Setup

After completing the installation, system setup is required to ensure it runs efficiently. One of the essential steps is managing hardware and drivers. In most Linux distributions, devices are automatically recognized during installation, but in some cases, users may need to install custom drivers for certain devices, such as NVIDIA or AMD graphics cards. Tools like "Additional Drivers" in Ubuntu can be used to easily install these drivers.

In addition to driver management, users need to configure basic system settings, such as time and network settings. To set the time, users can use the graphical settings interface or command-line tools like timedatectl to configure the time zone. For network settings, wired or wireless networks can be easily configured using tools like Network Manager, either through the graphical interface or by using commands like nmcli or ifconfig to set IP addresses and control network configurations.

These steps represent the primary operations for installing and configuring Linux after installation, ensuring that the system runs efficiently and is ready for use.

Basic Security Hardening:

After installation, implement these basic security measures:

- ▶ Update system packages: sudo apt update && sudo apt upgrade
- ▶ Enable firewall: sudo ufw enable
- Configure automatic security updates
- Review and disable unnecessary services
- Set up regular system backups

Essential Linux Commands for Cybersecurity:

```
System Information Commands
# System identification
                          # Complete system information
uname -a
                        # Distribution details
lsb_release -a
hostnamectl
                         # System hostname and OS info
# Hardware information
                          # CPU details
lscpu
lsblk
                          # Block devices
lsusb
                          # USB devices
                          # PCI devices
lspci
```

File System Commands

```
# Navigation and file operations
                         # Current directory
pwd
ls -la
                         # Detailed file listing
find / -name "filename" # Search for files
                      # Set permissions
chmod 755 filename
chown user:group filename # Change ownership
# File analysis
stat filename
                         # File information
file filename
                         # File type
md5sum filename
                          # Generate MD5 hash
```

```
Security Commands
# Process monitoring
                           # Running processes
ps aux
                           # Real-time monitor
top
netstat -tuln
                           # Network connections
ss -tuln
                           # Socket statistics
# User and system security
sudo passwd username
                           # Change password
last
                           # User login history
who
                           # Currently logged users
sudo ufw status
                           # Firewall status
```

Command	Description	Use
timedatectl	Time date control	timedatectl set-timezone Asi-
		a/Riyadh
nmcli	Network Manager	nmcli device wifi connect [SSID]
	Command Line Inter-	password [password]
	face	
ifconfig	Interface configuration	ifconfig [interface-name] [IP-
_ (+		address] netmask [netmask]
ufw	Uncomplicated Fire-	ufw allow ssh
	wall	
systemctl	System service control	systemctl status ssh

Linux Directory Structure:

```
# Root directory
|-- bin/
                          # Essential commands
|-- etc/
                          # Configuration files
   |-- passwd
                         # User accounts
   |-- shadow
                         # Password hashes
   +-- hosts
                         # Network hosts
I-- home/
                          # User directories
   +-- username/
                        # User home folder
|-- var/
                          # Variable data
   +-- log/
                         # System logs
|-- tmp/
                          # Temporary files
                          # User programs
|-- usr/
+-- root/
                          # Root user home
```

Figure 6: Important Linux Directories for Cybersecurity

Linux in Cybersecurity Education

For Cybersecurity Engineering students, Linux provides essential foundational knowledge required for:

- ▶ Understanding operating system security concepts
- ▶ Learning command-line interface for security tools
- ▶ Preparing for industry certifications (CEH, OSCP, Security+)
- ▶ Building practical skills for cybersecurity careers

Laboratory Exercise

Practical Task: Install Ubuntu or Kali Linux in a virtual environment and perform the following:

- 1. Create a virtual machine with proper resource allocation
- 2. Install the chosen Linux distribution
- 3. Configure basic security settings (firewall, user accounts)
- 4. Update the system and install essential security tools
- 5. Document the installation and configuration process

Virtual Machine Requirements:

Component	Minimum	Recommended
RAM Memory	2 GB	4 GB or more
Hard Disk	25 GB	50 GB or more
Processor	1 CPU	2 CPUs
Network	NAT Mode	NAT + Host-Only

Table 3: Virtual Machine Configuration

Post-Installation Checklist:

Security Configuration Steps

1. System Updates:

```
sudo apt update
sudo apt upgrade -y
```

2. Firewall Configuration:

```
sudo ufw enable
sudo ufw default deny incoming
sudo ufw allow ssh
```

3. Essential Tools Installation:

```
sudo apt install -y nmap wireshark htop tree
sudo apt install -y curl wget git vim
```

4. System Information Collection:

```
uname -a > system_info.txt
lsb_release -a >> system_info.txt
ip addr show > network_info.txt
```

Homework

- 1. **Linux Development History**: Briefly explain the history of Linux development by Linus Torvalds in 1991 and its importance in fields such as servers and cloud computing. Include its relevance in cybersecurity infrastructure.
- 2. **Linux Distribution Comparison**: Compare the following Linux distributions: Ubuntu, Kali Linux, Debian, and CentOS, in terms of their intended use and key features. Explain why Kali Linux is essential for cybersecurity professionals.
- 3. **Linux Security Advantages**: What advantages make Linux a stable and secure system, and how is it more efficient in resource management compared to other operating systems? Discuss specific security features that make Linux suitable for cybersecurity applications.
- 4. **Linux Usage in Cybersecurity**: Discuss the major uses of Linux in cybersecurity fields such as Security Operations Centers (SOC), penetration testing, and digital forensics. Why is it preferred in these fields?
- 5. Linux Installation Methods: Compare different Linux installation methods (Virtual Ma-

- chine, Dual-Boot, USB Portable) for cybersecurity learning. Include security considerations during installation and explain which method is best for beginners.
- 6. **Post-Installation Security Setup**: After installing Linux, what essential security steps should be taken? Include system updates, firewall configuration, driver management, and basic network settings configuration.
- 7. **Essential Cybersecurity Commands**: Research and explain five essential Linux commands that are commonly used in cybersecurity operations (from the commands covered in this lecture). Provide examples of how each command is used in security contexts.
- 8. **Laboratory Exercise Planning**: Design a step-by-step plan for setting up a Linux virtual machine for cybersecurity learning. Include hardware requirements, security configuration, and essential tools installation.

Or. Husaminani