Algorithms Analysis - Handout 6

Konrad Wojda, 9307820244

Exercise 1

Output of topological sort of the graph above will be:

[p, n, o, s, m, x, q, r, y, v, w, z, u, t]

Exercise 2

I can use discovery and finishing times from exercise in previous homework:

Then, I can compute transposed graph and run DFS on it, considering vertices in decreasing order of finishing times from previous run, giving the following result:

Which gives us separate groups of strongly connected components as follows:

$$\{r\}$$
 , $\{u\}$, $\{q, y, t\}$, $\{x, z\}$, $\{s, w, v\}$

Exercise 3

The number of strongly connected components (SCCs) in a graph either **decreases** or **remains the same** when a new edge is added.

- Number of SCCs **decreases**:

 If the new edge connects two previously separate SCCs, merging them into one.
- Number of SCCs **remains the same**:

 If the new edge connects two vertices already in the same SCC.