Universidad Politécnica de Madrid www.upm.es

MECÁNICA DEL VUELO Vehículos Aeroespaciales

Trabajo de ACTUACIONES DEL AVIÓN REACTOR

Profesores: Miguel A. Barcala Montejano, Ángel A. Rodríguez Sevillano

OBJETIVO

- Partiendo de un modelo de aeronave REACTOR:
 - CALCULAR alguna de sus actuaciones (performances) más relevantes.

• Datos:

- Avión ➤ Janés "All the world's aircraft".
- Página web del fabricante.
- Otras páginas http://www.airliners.net/
- Desarrollo para:
 - 3 pesos.
 - 6 alturas.

Escuela de Ingeniería Aeronáutica y del Espacio

SUMARIO

- 1. Datos del avión.
- 2. Características aerodinámicas:
 - Pendiente curva sustentación y C_{lmáx}.
 - Polar del avión (régimen incompresible; configuración crucero).
 - Velocidad de pérdida.
 - Mcrítico.
- 3. Curvas de empuje disponible $E_D = f(V, hi)$.
- 4. Curvas de empuje necesario $E_N = f(V, hi, Wj)$.
- 5. Velocidades máximas y mínimas en crucero.
 - Envolvente de vuelo. h=f(V), h=f(M).
 - Velocidad de pérdida.
- 6. Vuelo en subida R/C=f(V, hi, Wj).
 - Velocidad de subida máxima R/C _{máx}=f(hi, Wj).
 - Techos.
 - Ángulo subida máximo γ_{máx}=f(hi, Wj).

SUMARIO

- 7. Tiempos de subida $t_s=f(hi, Wj)$.
- 8. Autonomía y alcance.
- 9. Aterrizaje y despegue.
- 10. Diagrama carga de pago-alcance (PL vs R).

Universidad Politécnica de Madrid Escuela de Ingeniería Aeronáutica y del Espacio

Datos del Avión

(a completar a lo largo del desarrollo del trabajo)

- Superficie alar, Envergadura, Flecha, Alargamiento, Diedro, Estrechamiento.
- Estabilizadores: Superficie horizontal, Superficie vertical.
- Dimensiones de fuselaje: Longitud, Diámetro máximo.
- Dimensiones de las góndolas de los motores: Longitud, Diámetro máximo.
- Perfil del ala: Mach crítico, Coeficiente de sustentación máximo.
- Datos del motor: Planta motriz, Relación de derivación, Empuje máximo continuo (a nivel del mar), Empuje al despegue, Consumo específico de combustible.
- Pesos:
 - MTOW: peso máximo al despegue
 - MPL: máxima carga de pago
 - OEW: peso operativo en vacío
 - MFW: peso máximo de combustible
- Otros datos de interés:
 - Dimensiones, configuración general, plano a escala (del Jane's), misión.
 Descripción breve.

Cálculo de Actuaciones

Universidad Politécnica de Madrid Escuela de Ingeniería Aeronáutica y del Espacio

Datos del Avión

- Definir los pesos, para los que se calcularán las actuaciones:
 - MTOW
 - TOW2 = OEW + PL1(%) + FW1(%)
 - TOW3 = OEW + PL2(%) + FW1(%)

PASSENGER	s :	165		75
PASS. BAG	GAGE :	40		18 - TOURIST CLAS
		60	:	7 - FIRST CLASS
BAGGAGE S	PEC. DENSIT	7: 12 L	B/FT ³ (192 KG/	ˈพ ³ > .
FUEL	SPECIFIC	HEAT	SPECIFIC W	EIGHT*
	BTU/LB	KCAL/KG	LB/U.S. GAL	KG/LITER
01 001 TIT	: 18,700	10, 389	5.85	.701
GASULINE		10,000	6.32	.767
JP - 3	: 18,000	,		
JP - 3	: 18,550	•	6.50	.779

*AT 59°F (15°C)

Table 8-14. Standard weights of payload, fuel and oil

Características aerodinámicas

Pendiente curva sustentación.

$$\frac{C_{L\alpha}}{C_{l\alpha}} = \frac{AR}{\frac{a_o}{\pi} + \left[\left(\frac{a_o}{\pi} \right)^2 + \left(\frac{AR}{\cos \Lambda_{c/2}} \right)^2 \right]^{\frac{1}{2}}}$$

Conocido o estimado el C_{lmáx} del perfil, al Re ~ Re vuelo, obtendremos el del ala:

$$C_{Lm\acute{a}x} \approx 0.9 C_{lm\acute{a}x} \cdot \cos \Lambda_{\frac{c}{4}}$$
 $C_{Lm\acute{a}x} \approx 1.2 \div 1.4$

C_{Imáx} del perfil; C_{L máx} del ala; Λ: flecha

Características aerodinámicas

Figure 3.9 Aerodynamic characteristics of the NACA 651-212 a = 0.6 airfoil.

"Ingeniamos el futuro"

Universidad Politécnica de Madrid Escuela de Ingeniería Aeronáutica y del Espacio

Características aerodinámicas

• Selección perfil, datos:

Table 9.2 Effect of Airfoil, Flap Type and Flap Deflec-

tion on Drag and on High Lift

art			<u>A</u>	DAPT	ED	FRON	4 BE	F. 51							
t VI	FLAP TYPE	FLAP GEOMETRY	NACA AIFFOIL	FLAP CHORD %C	R _N	C _{lymax} t.o.	(DEC)	Cdo for Ce	Cd. Sf Wit	δ _f at t.o. with C _ℓ =		= LAND.		cd° €or ε ^{E=0}	SOURCE:
	DOUBLE SLOT-	0	23012	0,467	3,8.10	1,00	28,45	0,20	-	0,072	0,096	3,35	24,70	0,0066,	NACA ARR 3LIO
	/	000	Ħ	0,2270 0,2566	11	3,15	\$0,60	0*4	_	0,055	0,076	3,46	10,70	11	NACA Rep. 723
	1	\bigcirc	23021	0,1467	'n	3,00	20,60	0,10	_	0,140	0,175	3,32	21	0,0122	NACA ARR L4305
	/	0	11	0,8267	и	3,00	20,50	O _p i š	0,048	0,066	0,095	3,66	39,60	**	NACH Rep. 723
Ω	1	\bigcirc	23020	0,2400	11	3,30	11	0,52	0,100	0,110	Oyles	3,90	40,60	010175	
n ago	/	0	65,3-168	0,509	6,0.10*	2,68	35	0,026	0,009	0,017	0,088	3,40	65	0,0047	MACA ACR 3120
Chapter	/		452- 418	0,29	1,9.10	2,92	40	_	0,024	_	_	5,61	11	0,0061	NACA TN 1071
	SINGLE SLOT-		23012	940	3,5.10	2,60	40	0,16	0,018	0,043	9092	2,91	50	0,0100	NACA TN 715
9	1	0	23021	11	11	2,62	20	0,13	0,43	0,014	0,075	2,07	"	0,0140	NACA TN 728
	/	0	23030	0,40		2,40	17	0,14	0,062	0,007	_	2,86	11	0,0230	NACA TN 755
	/		63,4-420	0,26	6,0.10	2,83	30	0,0297	орня	0,0153	0,0232	3,00	40	0,000#	NACA ACR 3121
	VANED SLOT-	○ §	23012	0,25	3,4.10	1,70	. 50	0)13	0,076	0,009	0,110	1,70	50	0,0150	NACA TN 639
	SLOTTED FLAP+		"	0,9546	11	2,74	30,60	0,12	0,016	0,000	0,074	2,85	40,70	0,0260	NACA Rep. 675
	SLOTTED FLAP+	9	и	19		2,96	40,60	o _g ies	-	0,083	9,44	4,99	17	0,0120	• •
_	PLAIN FLAP		11	0,20	11	2,98	60	0,19	0/198	0,154	_	2,40	75	0,0090	NACA Rep. 664
Page	JUNKERS FLAP	0	11	0,2447	η	2,20	50,2	0,000	0/024	9044	_	2,37	40,5	90100	
	SPLIT FLAP	$\overline{}$	15	0,20	19	2,29	30	оуня	0,000	0,003	_	2,64	75	0,0090	- "
35	FOWLER FLAP	0	11	0,80	-11	3,30	40	O ₃ 15	п	0,094	0,113	8,30	40	11	NACA TN 808
00	QUAD. SLOTTED FOWLER FLAP	.IOC EACH ?	1	0,40	ij	3,28	30	9,14	0,028	0,031	0,000	3,60	40,50 50,70	11	NACA REP 689
	FOWLER FLAP	OTSC EACH	n	0,50	и	5,40	30,50 40,50	915	-	0,068	4,050	3,40	20,30 40,50	11	NACA REP 742

Table 9.2 Effect of Airfoil, Flap Type and Flap Deflec-

tion on Drag and on High Lift

ADAPTED	FROM	BEF. 51
---------	------	---------

				DAYI	<u> </u>	FHUL	1 775	r. <u>-</u>								
	FLAP TYPE	FLAP GEOMETRY	NACA AIFFOIL	FLAP CHORD %C	R _N	C _L _{ynax} t.o.	(DEC)	Codo Eor Eor	Cd. St wit	for at 7 h C		C _M	الباتانان	Cd° for S€=0	s 0	URCE:
	TED FLAP	7	23012	0,447 0,8500	3/8.10*	1,00	20,45	0,20	_	0,072	0,094	3,35	24,70	0,0064	MACA	ARR 3L10
	1	<i>→•°′</i>	11	0,2270 0,2544	11	3,15	50,50	0,47		0,055	0,076	3,46	10,70	11	NACA	Rep. 723
	1		23024	0,1449	Ħ	3,00	20,40	0,20		0,140	0,175	3,32	27	0,0188	NACA	ARR L4305
	/		11	0,1267 0,1564	М	3,00	20,50	0,18	0,048	0,066	0,075	5,66	39,60	11	NACH	Rep. 723
	1		23020	0,2600	11	3,30	n	eryset	o _j ioa.	Оуно	Oyles	3,50	40,60	010175		•
	/		65,3-168	0,509	6,0.10*	2,64	35	0,005	0,009	0,017	0,088	3,40	65	0,0047	NACA	ACR 3120
	/		453- 418	0,29	1,9.10	2,92	40		0,0348	_	_	5,64	19	0,0061	NACA	TN 1071
	SINGLE SLOT. TED FLAP		23012	0,40	3,5.10	2,40	40	0,16	0,018	0,043	0,092	2,91	50	0,0100	NACA	TN 715
l	/	0	23-021	11	11	2,62	20	9,0	0,43	0,014	0,075	2,07	11	0/0140	NACA	TN 724
	/	8	23030	0,40		2,44	11	0,14	0,042	9,007		2,88	11	0,0230	NACA	TN 755
	1	0	63 ₁ 4 =420	0,28	6,0.10	2,83	30	0,0297	орив	0,0153	0,0232	3,00	40	9,0008	NACA	ACR 3121
	VANED SLOT-	○ §	23012	0,25	3,4.10	2,70	. 50	0)13	0,074	0,019	0,110	2,50	\$0	0,0160	NACA	TN 698
	SLOTTED FLAP+	0	11	0,2546	ч	2,74	30,60	0/12	0,016	0,000	0,074	2,01	40,70	0,0260	MACA	Rep. 673
	SIDTTED FLAP+		M	19	· #	2,94	40,60	o _s iss		0,083	0,414	2,90	17	0,0120	-	4
	PLAIN FLAP		11	0,20	H.	2,34	60	0,19	0,192	0,154		2,60	75	0,0090	MACA	Rep. 664
	JUNKERS FLAP		11	0,2447	77	2,20	50,2	0,054	0,024	0,044		2,39	40,5	90100	-	μ
	SPLIT FLAP		15	0,20	15	2,29	30	0,45	0,000	o _i ces		2,64	75	0,0090		
	FOWLER FLAP	5	11	0,30	-11	3,30	40	a ₁ 15	19	0,014	0,613	8,50	40	11	NACA	TN 808
	QUAD SLOTTED FOWLER FLAP	. IOC EACH .	3	0,40	ū	3,28	30	0,14	0,018	0,031	0,000	3,60	40,50 50,70	и	NACA	Rch 489
	FOWLER FLAP	OTSC EACH	11	0,50	**	5,40	20 ₁ 10 40 ₁ 50	94	_	0,068	9,090	3,40	20,50 40,50	11	NACA	REÞ 742

Características aerodinámicas

- Datos de perfiles NACA en "Theory of wing sections".
- Perfil conocido.
- Selección perfil, datos:
 - http://www.ae.uiuc.edu/m-selig/ads/aircraft.html

Características aerodinámicas. Velocidad de pérdida

Velocidad de pérdida:

$$V_{\scriptscriptstyle STALL} = \sqrt{\frac{2W}{\rho SC_{\scriptscriptstyle L\,\text{máx}}}}$$

Jane's:

 alguno de los dos valores, o en el caso de V_{STALL} alguna velocidad característica de despegue/aterrizaje relacionada con V_{STALL}.

Características aerodinámicas. Velocidad de pérdida

Opción 1:

Table 2.1 C_{Lmax} for High Lift Device

High Lit	ft Device	Typical Flag	Angle (deg)	$C_{Lmax}/cos(\Lambda_{c/4})$		
Trailing	Leading Edge	Takeoff	Landing	Takeoff	Landing	
Plain		20	60	1.4→1.6	1.7→2.0	
Single slot		20	40	1.5 → 1.7	1.8→2.2	
Fowler		15	40	2.0→2.2	2.5 → 2.9	
Double sltd.		20	50	1.7→2.0	2.3→2.7	
Double sltd.	slat	20	50	2.3→2.6	2.8→3.2	
Triple sltd.	slat	20	40	2.4→2.7	3.2→3.5	

Cálculo de Actuaciones

Características aerodinámicas. Velocidad de pérdida

Opción 2:

Fig. 5.3 Maximum lift coefficient.

Características aerodinámicas. Hipersustentadores

Fig. 12.19 "Flapped" wing area.

Universidad Politécnica de Madrid Escuela de Ingeniería Aeronáutica y del Espacio

Características aerodinámicas

Clasificación de categoría aeronaves (según Doc 8168 PANS-OPS):

Tabla III-1-1. Velocidades para el cálculo de los procedimientos en kilómetros por hora (km/h)

Categoría		Gama de velocidades para	Gama de velocidades para	Velocidades máximas para maniobrar en	Velocidades máximas para aproximación frustrada			
de la aeronave	V_{at}	aproximación inicial	aproximación final	condiciones de vuelo visual (en circuito)	Intermedia	Final		
A	<169	165/280(205*)	130/185	185	185	205		
В	169/223	220/335(260*)	155/240	250	240	280		
C	224/260	295/445	215/295	335	295	445		
D	261/306	345/465	240/345	380	345	490		
E	307/390	345/467	285/425	445	425	510		

V_{at} — Velocidad en el umbral a base de un valor de 1,3 veces la velocidad de pérdida en la configuración de aterrizaje con la masa de aterrizaje máxima certificada.

Nota. — Las velocidades V_{at} indicadas en la columna 1 de la Tabla III-1-1 se han convertido exactamente a partir de las velocidades indicadas en la Tabla III-1-2, puesto que determinan la categoría de la aeronave. Las velocidades indicadas en las columnas restantes se convierten y redondean al múltiplo más próximo de cinco, por razones operacionales, y desde el punto de vista de la seguridad de las operaciones, esas velocidades se consideran equivalentes.

Cálculo de Actuaciones

^{*} Velocidad máxima para los procedimientos de inversión y de circuito de hipódromo.

Características aerodinámicas. Mach crítico

Estimación de M_{c:}

- Que venga en el Jane's el M_c , o el M_{DD} .
- Alguna velocidad máxima a alguna altura de donde se pueda estimar el \underline{M}_c .
- $M_{DD} = 1.08 M_{c}$

Utilizar alguna correlación: Roskam, Raymer o
 Torenbeek:

$$M_c = 1.0 - 0.065\cos^{0.6} \Lambda_{LE} \left[100 \left(\frac{t}{c} \right)_{max} \right]^{0.6}$$
 para un ala

 $\left(\frac{t}{C}\right)_{max}$: espesor máx. ala, dato que generalmente viene en Jane's.

 $\Lambda_{\!L\!E}^{}$: flecha en borde ataque.

Características aerodinámicas. Polar

- Régimen incompresible y crucero.
 - Methods for estimating drag polars of subsonic airplanes, Jan Roskam.
 - Polar parabólica:

$$C_{_{D}}=C_{_{D_{_{L=0}}}}+rac{C_{_{L}}^{^{2}}}{\pi Ae}$$

Universidad Politécnica de Madrid Escuela de Ingeniería Aeronáutica y del Espacio

Características aerodinámicas. Polar

Polar. Valores típicos.

$$C_{D} = C_{D_{L=0}} + \frac{C_{L}^{2}}{\pi A e}$$

	c _{po}	e			
high-subsonic jet					
aircraft	.014020	.7585*			
large turbopropel-					
ler aircraft	.018024	.8085			
twin-engine pis-					
ton aircraft	.022028	.7580			
small single en-					
gine aircraft					
retractable gear	.020030	.7580			
fixed gear	.025040	.6575			
agricultural air-					
craft:					
- spray system re-					
moved	.060	.6575			
-spray system in-					
stalled	.070080	.6575			

^{*} The higher the sweep angle, the lower the e-factor

Table 5-1. Drag figures for various aircraft types

Características aerodinámicas. Polar

Obtención del C_{DO}, avión reactor: $C_{DO} = \frac{1}{S_{REF}} \sum C_{D\pi} A_{\pi}$

COMPONENTE	$C_{D\pi}$	${f A}_{\pi}$						
Ala	.0030	(≈2S)						
Fuselaje	.0024	$(\approx 0.75\pi d_f l_f)$						
Góndolas	.0060	$(\approx \pi d_n l_n)$						
Superficie cola	.0025	$(\approx 2(S_H + S_V))$						
Interferencias, rugosidades, protuberancias: 10% de C _{DO}								

Cálculo de Actuaciones

"Ingeniamos el futuro"

Escuela de Ingeniería Aeronáutica y del Espacio

Características aerodinámicas. Polar

Obtención de e

$$\frac{1}{e} = \frac{1}{e_{wing}} + \frac{1}{e_{fuselaje}} + \frac{1}{e_{other}} \qquad \frac{1}{e_{other}}$$

$$\frac{1}{e_{other}} = 0.05$$

Características aerodinámicas. Polar

Obtención de e:

$$e_W = \frac{2}{2 - AR + \sqrt{4 + AR^2 (1 + \tan^2 \Lambda_{\frac{t}{c})_{\text{max}}}}}$$

$$e = 4,61(1 - 0,045A^{0,68})(\cos \Lambda_{LE})^{0,15} - 3,1$$

Polar compresible

• Compresible:

$$C_{\scriptscriptstyle D}\left(M_{\scriptscriptstyle \infty}\right) = f\!\left(M_{\scriptscriptstyle \infty}\right)\!\cdot C_{\scriptscriptstyle D_{\scriptscriptstyle L=0}}\, + g\!\left(M_{\scriptscriptstyle \infty}\right)\!\cdot C_{\scriptscriptstyle D_{\scriptscriptstyle L}}$$

- para $M > M_{cr}$:

$$\Delta \, C_{\scriptscriptstyle D_{\scriptscriptstyle ONDA}} = rac{K}{10^3} \Biggl[rac{10(M-M_{\scriptscriptstyle cr})}{\Biggl[rac{1}{\cos\Lambda_{\scriptscriptstyle BA}} - M_{\scriptscriptstyle cr}\Biggr]} \Biggr]^n$$

K = 0,35 serie 6 NACA (delgados).0,4 perfil 6% de espesor.0,5 serie 6 NACA (gruesos).

$$n = \frac{3}{1 + \frac{1}{A}}$$

Características aerodinámicas

Relaciones máximas C_L/C_D:

$$\begin{split} & \left(\frac{\mathbf{C_{L}}}{\mathbf{C_{D}}}\right)_{\mathrm{máx}} = \sqrt{\frac{1}{4\mathbf{k}\mathbf{C_{Do}}}} \quad siendo \ C_{Do} \equiv C_{D_{L=0}} \\ & C_{Lopt1} = \sqrt{\frac{\mathbf{C_{Do}}}{\mathbf{k}}} \Rightarrow C_{Dopt1} = 2\mathbf{C_{Do}} \\ & -V_{opt1} = \sqrt{\frac{2W}{\rho S}} \sqrt[4]{\frac{\mathbf{k}}{\mathbf{C_{Do}}}} \end{split}$$

$$\left(\frac{C_{L}^{\frac{1}{2}}}{C_{D}}\right)_{\text{máx}} = \frac{3}{4} \left(\frac{1}{3kC_{Do}^{3}}\right)^{1/4}$$

$$C_{Lopt3} = \sqrt{\frac{C_{Do}}{3k}} \Rightarrow C_{Dopt3} = \frac{4}{3}C_{Do}$$

$$V_{opt2} = \sqrt{\frac{2W}{\rho S}} \sqrt[4]{\frac{3k}{C_{Do}}}$$

- 1. Disponer datos del fabricante.
- 2. Modelizarlo con alguna correlación:
 - 1. Reactor puro:

$$\frac{E_{_h}}{E_{_{SL}}} = \frac{\rho}{\rho_{_{SL}}}$$

- 2. TURBOFAN:
 - Para turbofan: 0<M<0,9:

$$E_h = \tau \left(\frac{\rho}{\rho_{SL}}\right)^{0.65} E_{SL}$$

3. TURBOFAN. Otras correlaciones:

$$\frac{E_{_h}}{E_{_{SL}}} = \tau \cdot \left[0,568 + 0,25 \cdot \left(1,2-M\right)^3\right] \cdot \sigma^{_{0,6}}$$

$$\frac{E_{_h}}{E_{_{SL}}} = \tau \cdot \left[1 + \left(-0.6 - 0.04 \cdot BPR\right)M\right] \cdot \sigma^{_{0.7}}$$

- 3. Dibujarlas a 8 alturas, a elegir, siendo:
 - Una de ellas, NM.
 - Otra de ellas, entre 10 y 12 Km.

$$\begin{aligned} h_0 &= 0 \\ h_1 &= \\ h_2 &= \\ h_3 &= \\ h_4 &= \\ \dots \\ h_7 &= \end{aligned} \right\}$$

4. Consideraciones sobre empujes característicos:

- Ralentí: ~~5% del máx
- Máximo despegue:~ 100%
- Nominal o máximo continuo: ~90-96%
- Crucero: ~75%-80%
- Ralentí de crucero: ~40-50%
- Máximo: ~105%

"Ingeniamos el futuro"

Universidad Politécnica de Madrid

Escuela de Ingeniería Aeronáutica y del Espacio

Curvas empuje disponible
Data for some civil gas turbine engines

		Takeoff				Cruis					
Model no.	Manufacturer	Thrust (lb)	BR	OPR π_c	Airflow (lb/sec)	Alt. (kft)	Mo	Thrust (lb)	TSFC [(lbm/hr)/lbf]	Aircraft application	
CF6-50C2	General Electric	52,500	4.31	30.4	1,476	35	0.80	11,555	0.630	DC10-10, A300B, 747-200	
CF6-80C2	General Electric	52,500	5.31	27.4	1.650	35	0.80	12,000	0.576	767-200, -300, -200ER	
GE90-B4	General Electric	87,400	8.40	39.3	3.037	35	0.80	17,500		777	
JT8D-15A	Pratt & Whitney	15,500	1.04	16.6	327	30	0.80	4,920	0.779	727, 737, DC9	
JT9D-59A	Pratt & Whitney	53,000	4.90	24.5	1.639	35	0.85	11,950	0.646	DC10-40, A300B, 747-200	
PW2037	Pratt & Whitney	38,250	6.00	27.6	1.210	35	0.85	6,500	0.582	757-200	
PW4052	Pratt & Whitney	52,000	5.00	27.5	1,700					767, A310-300	
PW4084	Pratt & Whitney	87,900	6.41	34.4	2,550	35	0.83			777	
CFM56-3	CFM International	23,500	5.00	22.6	655	35	0.85	4,890	0.667	737-300, -400, -500	
CFM56-5C	CFM International	31,200	6.60	31.5	1.027	35	0.80	6,600	0.545	A340	
RB211-524B	Rolls Royce	50,000	4.50	28.4	1.513	35	0.85	11,000	0.643	L1011-200, 747-200	
RB211-535E	Rolls Royce	40,100	4.30	25.8	1.151	35	0.80	8,495	0.607	757-200	
RB211-882	Rolls Royce	84,700	6.01	39.0	2.640	35	0.83	16,200	0.557	777	
V2528-D5	International Aero Engines	28,000	4.70	30.5	825	35	0.80	5,773	0.574	MD-90	
ALF502R-5	Textron Lycoming	6,970	5.70	12,2		25	0.70	2,250	0.720	BAe 146-100,200	
TFE731-5	Garrett	4,500	3.34	14.4	140	40	0.80	986	0.771	BAe 125-800	
PW300	Pratt & Whitney Canada	4,750	4.50	23.0	180	40	0.80	1,113	0.675	BAe 1000	
FJ44	Williams Rolls	1,900	3.28	12.8	63.3	30	0.70	600	0.750		
Olympus 593	Rolls Royce/SNECMA	38,000	0	*11.3	410	53	2.00	10,030	1.190	Concorde	

OPR = overall pressure ratio

TSFC = thrust specific fuel consumption

BR = bypass ratio.

* At cruise.

Sources: Reference 87 and manufacturers' literature.

Table 6.2 Summary of Gas Turbine Engines

Manufacturer	Design Civil	mation Military	Bypass Ratio	Dry Weight (1b)	Overall Pressure Ratio	Max T.O. T _{SLS} /SFC (1b)/(1b/1b-hr)	Cruise Thrust/SFC (1b)/(1b/lb-hr)	Dimensions Dia./Length (in)/(in)	Aircraft Application
	47.05034		6.6	1070		7200/0.41	(16)/(16/16-11)	47.8/56.4	Dassault Falcon 30
Avco Lycoming	ALF502A		6	630		2894/0.44		32.5/47.6	
Avco Lycoming	ALF301B				24	4050/0.45		32.8/98.3	
Garrett Airesearch	ATF3	F104-GA-100	3	900	24	3500/0.49	755/0.815 ³	39/49.7	Dessault Falcon 10
Garrett Airesearch	TFE731		2.66	710	19		3500/1.00 ⁴	21/112.5	F-5E
General Electric		J85-21	0	675	8	5000/2.131	2925/0.96		
General Electric	CJ610-9		0	400	8	3100/0.98		18/51.1	B-1
General Electric		F101-GE-100	0.7	4000	27	30000/1	17000/4	55/181	
General Electric		J79-GE-17	0	3835		17900/1.97	11870/0.84 ⁴	39/208.7	F-4E
General Electric		TF-34	6.23	1421	21	9275/0.363	2	51/101	A-10&S-3A
General Electric	CF6-50A	F103-GE-100	4.4	8225	30	49000/0.394	10800/0.6542	108/190	DC-10-30&A-300B
General Electric		TF-39-GE-1	8	7026	26	41100/0.315	8065/0.582	100/271	C-5A
General Electric		J101-GE-100	0	1790	25	14300/2.03 ¹	2000/0.96 ²	32.6/141.5	YF-17
Pratt & Whitney	JT12	J60	0	450	6.5	3000/0.96		21.9/	Jet Star, T-39, & T-2B
Pratt & Whitney	JT8D-11		1.1	3309	17.5	15000/0.62		42.5/120	DC-9 & 727-200
Pratt & Whitney	JT11D-20	J58	0			30000/			YF-12A & SR-71
Pratt & Whitney	JT9D-7	F105-PW-100	5.15	8870	22	47000/0.62 ²	9872/0.62 ²	95.6/128	747-200&DC-10-20
Pratt & Whitney	JTF10A-27	TF-30-P-7		4121		20000/3,01		50/	F-111 & F-14
Pratt & Whitney	JTF10A-9	TF-30-P-8		2526		12200/0.63		42/	A-7B
Pratt & Whitney	JTF22	F-100PW-100	0.71	2737		23000/2.481	3000/0.852	44/190	F-15 & YF-16
Pratt & Whitney	JT3C-8	J57-P-59	0	4320		11200/0.763	/0.935	38.9/167.3	KC-135
Pratt & Whitney	JT3D-8	TF-33-P-7		4490		21000/0.6	3500/0.772	54/142.3	C-141
Pratt & Whitney	JT4A-29	J75-P-19	0	5960		26500/2.2 ¹		43/	F-105G
Teledyne CAE		J69-T-406	. 0	360		1920/1.11		22.5/44.8	BQM-34F
Teledyne CAE		J100-CA-100	Ō	430	6.3	2700/1,10		26/48.2	
Williams Research	WR2		0	30	4.1	121/1.2		11/19	
Williams Research	WR19	F107	1	68	8	430/0.7		12/24	SCAD Missile
Rolls-Royce	RB-211-52	4	5	9375	27	48000/0.638 ²	9450/0.6382	85.5/119.4	L-1011
Rolls-Royce	RB-163-51		0.64	2332	21	10940/0.612	3070/0.7704	37/114.6	Gulfstream
Ames Industrial	TRS-18		0	71	4	200/1.12	150/1.45 ⁵	12/23	BD-5J

NOTES: 1 - With afterburner; 2 - Mach .8 at 35,000 ft; 3 - Mach .8 at 40,000 ft; 4 - Mach .8 at 32,000 ft; 5 - 200 knots at 5,000 ft.

Curvas empuje necesario

Empuje necesario en régimen incompresible:

$$D = \frac{1}{2} \rho V^2 S \left(C_{D_{L=0}} + \frac{C_L^2}{\pi A e} \right) \qquad k = \frac{1}{\pi A e} \quad C_L = \frac{2W_i}{\rho V^2 S}$$

$$V\Big(para \quad D_{\min}\Big) = \sqrt{rac{2W_i}{
ho S}} \cdot \sqrt[4]{rac{K}{C_{D_{L=0}}}} \; \mathbf{D}_{\mathbf{A}}$$

$$D_{\min} = 2W_i \sqrt{C_{D_{\!\scriptscriptstyle L=0}} k}$$

Curvas empuje necesario

Aumento de resistencia para M> Mc

$$D = \frac{1}{2} \rho v^2 S \left(C_{DO} + \frac{C_L^2}{\pi A e} + \Delta C_{Drise} \right)$$

$$D_{min} = E_{base}$$

$$D_{min} = E_{base}$$

Velocidades máximas y mínimas de vuelo

Hallar los puntos de corte, a cada altura, entre E_D y E_N (compresibilidad).

Velocidades máximas y mínimas de vuelo

Si T constante con V, y D incompresible. Techo.

Pero tiene unas limitaciones:

- T=f(V).
- D no incluye $\Delta C_{D rise}$.
- Por tanto, será una estimación optimista (techo mayor).

$$V = \left[\frac{\frac{T}{W} \frac{W}{S} \pm \frac{W}{S} \sqrt{\left(\frac{T}{W}\right)^2 - 4C_{D_0}} \frac{1}{\pi Ae}}{\rho \ C_{D_0}} \right]^{1/2}$$

Envolvente de vuelo

Velocidades máximas y mínimas de vuelo

Puntos de corte, incluyendo V_{STALL} . También representar la envolvente, pero en función del M.

 h_T : techo teórico para cada peso; lo obtendremos más delante de las curvas de $V_{submáx}$ =f(h).

Altura (m)

12000

10000

8000

6000

4000

2000

0

Velocidades máximas y mínimas de vuelo

Envolventes H vs M.

Máxima Velocidad de subida:

$$V_{(R/C)_{máx}} = \left\{ \frac{(T/W)(W/S)}{3\rho C_{Do}} \left[1 + \sqrt{1 + \frac{3}{(L/D)_{máx}^2 (T/W)^2}} \right] \right\}^{1/2} \frac{R/C}{V} = \frac{T-D}{W}$$

$$(R/C)_{máx} = \left[\frac{(W/S)Z}{3\rho C_{Do}}\right]^{1/2} \left(\frac{T}{W}\right)^{3/2} \left[1 - \frac{Z}{6} - \frac{3}{2(T/W)^2 (L/D)_{máx}^2 Z}\right]$$

$$Z \equiv 1 + \sqrt{\frac{3}{(L/D)_{máx}^2 (T/W)^2}}$$

Subida máxima

Velocidades de subida maximas en función de la altura

Ángulo subida máximo:

$$\begin{split} & \operatorname{sen}\, \gamma_{\text{máx}} = \frac{T}{W} - \sqrt{\frac{4\,C_{\text{Do}}}{\pi \text{Ae}}} \\ & V_{\gamma_{\text{máx}}} = \sqrt{\frac{2}{\rho} \bigg(\frac{1}{\pi \text{AeC}_{\text{Do}}}\bigg)^{1/2} \frac{W}{S} \cos \gamma_{\text{máx}}} \\ & R/C_{\gamma_{\text{máx}}} = V_{\gamma_{\text{máx}}} \sin \gamma_{\text{max}} \end{split}$$

- Ángulos y pendientes de subida.
- Margen franqueamiento de obstáculos.
- Subida con un motor inoperativo.

Figura II-2-2. Pendiente de diseño del procedimiento

Tiempo de subida mínimo

Tiempos de subida a techo teórico, práctico y altura de crucero.

- h_⊤: techo teórico
- R/C_{máx SI}: velocidad subida máx. a NM(SL)

 $t = \frac{h_{T}}{\left(R / C\right)_{\max SL}} L_{n} \frac{h_{T}}{h_{T} - h}$

Tiempo subida TOW3

→ Ts → Ht → Hp → Tp → Hc → Tc

Tiempo de subida mínimo

Techos. Expresiones en ISA:

$$troposfera: \quad \rho = \left(1,05-23,7\cdot 10^{-6}\cdot h\right)^{4,26}$$

estratosfera:
$$\rho = 2,06214 \cdot e^{-0,1577 \cdot 10^{-3} \cdot h}$$

Autonomía y Alcance

Consumo de Combustible

- CEC (TSFC): Dato del Jane's que deberemos conocer a la altura de vuelo en crucero.
- Si no es así, valores representativos en crucero $(M=0.8 \div 0.9 \text{ y } 35000 \div 40000 \text{ ft})$, típicos:

$$F_{R} = \frac{TSFC}{TSFC\left(\max{thrust}\right)} = \left(0,2452 + 2,9671\varepsilon - 4,5139\varepsilon^{2} + 3,2937\varepsilon^{3} + 0,9921\varepsilon^{4}\right)^{-1}$$

$$\varepsilon = \frac{E_{h}}{TSFC\left(\max{thrust}\right)} = \left(0,2452 + 2,9671\varepsilon - 4,5139\varepsilon^{2} + 3,2937\varepsilon^{3} + 0,9921\varepsilon^{4}\right)^{-1}$$

- Otra posibilidad:
$$SFC_{cruise} = 0,88 \exp \left(-0,05BPR\right)$$

$$cruise: \quad a \; 36000 \; pies \; y \; M = 0,9$$

Autonomía y alcance. Ángulo ataque cte y altitud cte

Autonomía:

$$E_{2} = rac{1}{sfc} rac{C_{L}}{C_{D}} L_{n} rac{TOW}{LW} \hspace{1cm} sfc \equiv CEC \ W_{f} = TOW \ W_{i} = LW$$

Alcance:

$$R_{2} = \frac{1}{sfc} \cdot \sqrt{\frac{TOW}{\frac{1}{2}\rho S}} \cdot \frac{\sqrt{C_{L}}}{C_{D}} \cdot 2 \cdot \left(1 - \sqrt{\frac{LW}{TOW}}\right)$$

p: generalmente a 11 km ó 12 km (suponiendo que el techo NO sea inferior).

Carrera de despegue y aterrizaje

$$\begin{split} S_{\scriptscriptstyle D} &= \frac{1,44W^2}{g\rho_{\scriptscriptstyle \infty}SC_{\scriptscriptstyle L\,\text{max}}^{\scriptscriptstyle D}\Big[E - \Big(D + \mu_{\scriptscriptstyle r} \big(W - L\big)\!\Big)_{\scriptscriptstyle medio}\Big]} \\ \Big(D + \mu_{\scriptscriptstyle r} \big(W - L\big)\!\Big)_{\scriptscriptstyle medio} \quad valor \; medio \; calculado \; para \; 0,7 \; V_{\scriptscriptstyle LO} \\ V_{\scriptscriptstyle LO} &= 1,2V_{\scriptscriptstyle STALL} \end{split}$$

Fig. 17.17 Takeoff analysis.

Carrera de despegue y aterrizaje

$$\begin{split} S_{A} &= \frac{1,69W^{2}}{g\rho_{\infty}SC_{L\,\text{max}}^{A}\left(D + \mu_{r}\left(W - L\right)\right)_{medio}} \\ \left(D + \mu_{r}\left(W - L\right)\right)_{medio} & valor \ medio \ calculado \ para \ 0,7 \ V_{\scriptscriptstyle T} \\ V_{\scriptscriptstyle T} &= 1,3V_{\scriptscriptstyle STALL} \end{split}$$

Fig. 17.18 Landing analysis.

Carrera de aterrizaje y aterrizaje

Diagrama Carga de Pago vs Alcance

Cálculo de Actuaciones 49

- Transparencias de clase. Miguel Barcala. Plataforma moodle.
- Mecánica del Vuelo. M.A. Gómez Tierno, M. Pérez Cortés y C. Puentes Márquez.
 IBERGACETA PUBLICACIONES, S.L. Segunda Edición. Madrid, 2012. ISBN: 978-84-1545-201-0.
- *Mecánica del Vuelo*. Ángel Barcala y Fernando Gandía. Publicaciones EIAE.
- Aerodinámica y Mecánica del Vuelo. Tomo II. Aerodinámica. Ángel Barcala y Fernando Gandía. Publicaciones EIAE.
- Aircraft Performance and Design. J.D. Anderson, Jr. Mc Graw-Hill, 1999.
- *Theory of Wing Sections*. Abbott, I.H. and Von Doenhoff, A.E.. Dover Publications Inc (1959).
- **Synthesis of subsonic airplane Design.** Egbert Torenbeek. Delft University Press. Kluwer Academic, 1976.
- Introduction to flight. John D. Anderson. 3ª Edición. New York, Mc. Graw-Hill, 1989.
- Methods for estimating drag polars of subsonic airplanes, Jan Roskam, 1971.
- Aircraft Design: A conceptual approach. Daniel P. Raymer. AIAA Education Series. 1992.
- Aircraft Conceptual Design Synthesis. Denis Howe. Professional Engineering Publising 2000.
- AIAA Aerospace Design Engineers Guide. Fourth Edition. AIAA, 1998.
- Airplane Design. Jan Roskam. Roskam Aviation and Engineering Corporation, 1985.
- Introducción a la ingeniería aeroespacial. Sebastián Franchini y Oscar López García. E.T.S.I. Aeronáuticos, UPM, Madrid, 2008. ISBN: 978-84-935350-1-8.
- Aerodynamics, Aeronautics and Flight Mechanics. Barnes W. McCormick. John Wiley & Sons, Inc. 1995.

Cálculo de Actuaciones