به نام خدا

درس فیلترهای تطبیقی

تمرین سری سوم

نيمسال اول ٩٩-٩٨

1- فرض کنید که شکل زیر مدل یک سیستم مخابراتی باشد و هدف طراحی یک همسانساز (Equalizer) برای سیستم زیر باشد

 $\sigma_v^2 = v[n]$ پاسخ ضربه کانال را به صورت v[n] در نظر گرفته و نویز v[n] در نظر گرفته و نویز v[n] را نویز سفید با واریانس v[n] در نظر گرفته و نویز v[n] در نظر کرفته و نویز v[n] در نباله v[n] فرض نمایید. دنباله v[n] در نباله المنابع و المنابع و

الف- فرض کنید $\Delta=\Delta_0$ و $\Delta=0$ فیلتر بهینه ω_{opt} را بدست آورید و حداقل مربع خطای آن را محاسبه کنید. سپس با شرط ω_{opt} اولیه ω_{opt} اولیه ω_{opt} و با استفاده از روش Steepest-Descent و با ω_{opt} و با استفاده از روش ω_{opt} از روی آنها به ω_{opt} را نیز رسم نمایید. منحنی های یادگیری را برای ω_{opt} را برای و غملی محاسبه و مقایسه نمایید. ω_{opt} نیز رسم نمایید و ثابت زمانی های آنها را به صورت تئوریک و عملی محاسبه و مقایسه نمایید.

 μ وزنهای بهینه را بدست آورید ω باشد. ω بهینه را برای این مسئله پیدا کنید و سپس برای مقدار تعیین شده ω وزنهای بهینه را بدست آورید ω و حداقل مربع خطای آن را حساب کنید. در این حالت نیز با روش Steepest-Descent و با شرط اولیه ω و ω و ω و حداقل مربع خطای آن را حساب کنید. ω منحنی یادگیری را رسم نمایید.

 $\hat{s}[n-\Delta]$ را تخمین بزنید و احتمال خطای سیستم فوق را $\hat{s}[n-\Delta]$ را تخمین بزنید و احتمال خطای سیستم فوق را محالید \hat{s}

. یک آرایه خطی با تعداد M آنتن ایزوتروپ همهجهتی (Omni-directional) در نظر بگیرید.

الف- فرض کنید میخواهیم ضرایب ω_i را طوری تعیین نمائیم که از جهت $\theta=30^\circ$ دریافت داشته باشیم و کل توان دریافتی حداقل باشد. مسئله را به صورت ریاضی فرمولبندی کرده و جواب آن را بدست آورید.

 $heta_-$ فرض کنید یک منبع $s_1(t)$ در جهت $s_2(t)$ و یک منبع $s_2(t)$ در جهت $s_2(t)$ واقع هستند. سیگنال ارسالی این منابع را متغیرهای تصادفی گوسی مختلط با میانگین صفر و واریانس σ_1^2 و σ_2^2 در نظر بگیرید. نویز حرارتی روی آنتنها را مستقل از هم و فرآیند سفید گوسی مختلط با واریانس $\sigma_1^2=\sigma_1^2$ فرض نمائید. در این حالت ضرایب m_i را طوری تعیین نمائید که از جهت $m_i^2=m_i$ دریافت داشته باشیم و کل توان دریافتی حداقل باشد.جواب را به طور بسته بدست آورید و الگوی تشعشعی آنتن را به ازای ضرایب بدست آمده برای $m_1^2=m_2^2=m_1^2=m_1^2=m_1^2=m_1^2$ رسم نمائید.

ج- فرض کنید که تنها مایل هستیم منبع $s_1(t)$ را دریافت نماییم. در این حالت ضرایب ω_i را طوری طراحی نمایید که برای $\sigma_1^2=\sigma_2^2=10$ و $\sigma_1^2=\sigma_2^2=10$ برک نول ایجاد شودو کل توان دریافتی حداقل باشد. الگوی تشعشعی آنش را در این حالت نیز رسم نمائیدو با قسمت ب مقایسه نمایید.

-3 مطابق شکل مسئله ۲ دو منبع گوسی مختلط و مستقل با توانهای $\sigma_1^2 = \sigma_2^2 = 10$ و نویز سفید گوسی مختلط روی هر آنتن با $\sigma_1^2 = \sigma_2^2 = 10$ و $\sigma_1^2 = 10$ و $\sigma_1^2 = 10$ و $\sigma_1^2 = 10$ آنتن شبیه سازی نمایید. اگر سیگنال $\sigma_1^2 = 1$ آنتن أم در لحظه $\sigma_1^2 = 1$ نمایش دهیم بردار $\sigma_1^2 = 1$ نمایش دهیم بردار $\sigma_1^2 = 1$ تعریف کرده و ماتریس کوریلیشن $\sigma_1^2 = 1$ تخمین بزنید:

$$\hat{R}_{u} = \frac{1}{N} \sum_{k=1}^{N} \underline{u}(k) \underline{u}(k)^{H}$$

همانطور که در کلاس بیان شد جواب مسئله بهینه سازی $\begin{cases} \min \ J(\underline{W}) = \underline{W}^H R_u \underline{W} \\ s.t. \ \underline{W}^H \underline{c}(\theta) = 1 \end{cases}$ که $\underline{c}(\theta)$ بردار دریافت آرایه متناظر با

$$J_{\min} = J(\underline{W}_{opt}) = \frac{1}{\underline{c}(\theta)^H R_u^{-1} \underline{c}(\theta)}$$
 جهت θ میباشد و مقدار حداقل $\underline{W}_{opt} = \frac{R_u^{-1} \underline{c}(\theta)}{\underline{c}(\theta)^H R_u^{-1} \underline{c}(\theta)}$ جبهت θ میباشد. تابع \hat{R}_u را بصورت تابعی از θ برای $\theta \in [0,180]$ و با جایگذاری θ با با θ رسم نمایید. یعنی

متناظر با $J_{\min} \approx \frac{1}{\underline{c}(\theta)^H \hat{R}_u^{-1} \underline{c}(\theta)}$ متناظر با $J_{\min} \approx \frac{1}{c(\theta)^H \hat{R}_u^{-1} \underline{c}(\theta)}$ محل منابع میباشد؟ چرا؟

دقت کنید این تمرین روشی برای تخمین جهت منابع بدست میدهد که به روش Capon مشهور میباشد.

4- شكل كلى طراحي يك فيلتر بهينه به صورت زير را در نظر بگيريد كه هدف حداقل كردن ميانگين مربع خطا است.

$$J(\boldsymbol{\omega}) = E\{|d[n] - y[n]|^2\}$$

$$\omega_{opt} = R^{-1}p$$
 $R = E\{u[n]u^{H}[n]\}$ $p = E\{u[n]d^{*}[n]\}$

روش Steepest-Descent با step-size متغیر زیر را در نظر بگیرید.

$$\boldsymbol{\omega}[n+1] = \boldsymbol{\omega}[n] - \frac{1}{2}\mu[n](\nabla J(\boldsymbol{\omega}[n])) \tag{*}$$

 $J(\boldsymbol{\omega}[n]) > J(\boldsymbol{\omega}[n+1])$ الف – با استفاده از رابطه (*)، (*)، ([n+1])را حساب کرده و $\mu[n]$ را طوری حساب کنید که

ب- با استفاده از قسمت الف مقدار بهینه $\mu[n]$ را بدست آورید.

ج-منحنی یادگیری مسئله ۱ قسمت ب برای M=9 را برای روش بالا با $\mu[n]$ رسم کرده و با منحنی با مقدار μ ثابت برابر با μ مقایسه کنید. μ مقایسه کنید.

w(n) کنید میخواهیم ضرایب یک فیلتر تطبیقی در مرحله n+1 را با فرض معلوم بودن w(n) از حل مسئله بهینه سازی زیر بدست آوریم:

$$\min \|w(n+1) - w(n)\|^2$$
s.t. $r(n) = (1 - \mu \|\underline{u}(n)\|^2) e(n)$

که $e(n) = d(n) - \underline{w}(n+1)^H \underline{u}(n)$ و $e(n) = d(n) - \underline{w}(n)^H \underline{u}(n)$ میباشند. جواب مسئله را به ساده ترین صورت بدست آورید.