MATH 318, Assignment 4

Kyle Rubenok, 260667187

October 2019

- 1. The set $\{\lor, \land\}$ is not functionally complete. We can prove this by showing it is not 1-complete. Take the \neg operator. Regardless of what input we give to any combination of $\{\lor, \land\}$, $T \land T \leftrightarrow T$ and $F \land F \leftrightarrow F$. There is no way to invert the input and achieve equivalence to \neg
- 2. Take for example the formula $p \vee \neg p$. If we attempt to replicate this with the set $\{\oplus\}$. Considering the operations available, it's clear that outside of the identity function of p = T any formulas constructed with combinations of p and \oplus such as $p \oplus p$ and so on will be logically false. This makes replicating the formula $p \vee \neg p$ and many others impossible. Thus $\{\oplus\}$ is not functionally complete.