

Université de Genève Faculté des Lettres Département de linguistique

ANALYSE DES CHAMPS LEXICAUX DANS LE FONDS PATRIMONIAL DE JEAN-MARTIN CHARCOT

Mémoire présenté en vue de l'obtention du Certificat de spécialisation en Linguistique

Étudiante:

Ljudmila PETKOVIC

N° de matricule : 19-337-757

ljudmila.petkovic@etu.unige.ch

Directeur:

Prof. Dr Christopher LAENZLINGER

Co-encadrant:

D^r Luka NERIMA

TABLE DES MATIÈRES

In	trodı	action	1			
1	La r	upture épistémologique en médecine : la notion d'hystérie	2			
	1.1	L'erreur comme source de la connaissance scientifique	2			
	1.2	Jean-Martin Charcot : un médecin polymathe à l'aube de la neurologie				
		moderne	4			
2	Pister la circulation du discours médical au prisme du numérique					
	2.1	Modalités des circulations des savoirs	6			
	2.2	Constitution d'un concept historique	7			
	2.3	Études numériques des circulations culturelles	8			
3	Valorisation du fonds Charcot					
	3.1	Description du fonds Charcot	10			
	3.2	Constitution du corpus Charcot	12			
4	Résultats					
	4.1	Exploration du corpus Charcot: OBVIE et TEXTPAIR	13			
	4.2	Extraction des phrases-clés : méthodes statistiques	13			
	4.3	Extraction des phrases-clés : méthode à base d'apprentissage profond	15			
Co	nclu	sion	17			
Aı	nexe		18			
		Liste des termes et expressions popularisées par Charcot	20			
Re	fere	nces	23			

Introduction

motivation

Ce mémoire, à la jonction de l'histoire des sciences et de la linguistique computationnelle, propose une étude interdisciplinaire dont l'objectif est la valorisation numérique du fonds patrimonial de Jean-Martin Charcot, fondateur de la neurologie moderne au XIX^e siècle en France. Si l'importance de ses travaux scientifiques est un sujet largement étudié (Bogousslavsky, 2011 ; Broussolle et al., 2012 ; Camargo et al., 2024), il n'existe pas, à notre connaissance, d'initiatives en humanités numériques visant l'exploitation de son fonds volumineux et d'une grande importance scientifique. Nous souhaitons donc mesurer informatiquement l'impact scientifique des travaux de Charcot sur ses collaborateurs et successeurs, membres de son réseau scientifique 1. Cette mesure se fonde sur l'analyse des concepts-clés en matière de son discours scientifique, et plus particulièrement sur l'opérationnalisation du terme « influence », définie ici comme une intertextualité uni-directionnelle, allant des écrits de Charcot (ci-après corpus « Charcot ») vers ceux de ses collaborateurs et successeurs (ci-après corpus « Autres »). Il s'agit donc in fine d'aborder computationnellement la question des circulations, non pas des artefacts matériels comme les manuscrits (Gabay et al., 2021) et les images (Joyeux-Prunel, 2019), mais des phénomènes textuels complexes (Manjavacas et al., 2019) ayant une dimension théorique forte.

structure

Le présent mémoire est structuré en quatre parties principales : après l'introduction, nous traçons l'évolution du progrès médical dans le cadre épistémologique, où Charcot a joué un rôle important, avant de présenter ses contributions principales (chapitre 1). Dans le chapitre 2, nous soulignons les aspects des circulations des savoirs et proposons une revue de la littérature portant sur ce sujet du point de vue numérique. Le fonds Charcot et la constitution du corpus de recherche correspondant sont abordés dans le chapitre 3. Ensuite, le chapitre 4 présente les premières tentatives d'analyse computationnelle de l'impact de Charcot sur ses élèves et collègues, ainsi que les limites de ces approches, en proposant de nouvelles méthodes pour la quantification de la pertinence des expressions polylexicales. Enfin, le dernier chapitre est consacré à la conclusion du travail et aux pistes pour des recherches futures.

^{1.} Par ailleurs, le présent travail fait partie du projet doctoral de l'autrice en cours, cf. https://theses.fr/s382733.

CHAPITRE 1 LA RUPTURE ÉPISTÉMOLOGIQUE EN MÉDECINE : LA NOTION D'HYSTÉRIE

1.1 L'erreur comme source de la connaissance scientifique

« Les vraies révolutions sont lentes et elles ne sont jamais sanglantes. »

— Anouilh (1956)

progrès de science La science progresse en corrigeant constamment les erreurs, c'est-à-dire que les erreurs précèdent nécessairement l'établissement de la connaissance scientifique. Bien que ce processus de correction des erreurs puisse être observé de manière diachronique, il est de nature circulaire. En outre, si une doctrine devient obsolète avec le temps et l'avènement des technologies avancées permettant de recueillir de nouvelles preuves, une doctrine actuellement en vigueur deviendra tout de même à son tour obsolète à un moment ¹.

Un tel cycle des observations empiriques peut être bouleversé, selon Bachelard (1934, p. 26), p. 26, par la « rupture et non pas continuité entre l'observation et l'expérimentation ». Autrement dit, la rupture épistémologique survient lors d'un renversement fondamental dans la façon d'établir une connaissance dans un domaine particulier. De fait, ce phénomène caractérise une « révolution scientifique » (Koyré, 1957), terme apparenté avec celui du « changement de paradigme », introduit par Kuhn (1962). D'après ce dernier, les paradigmes désignent les « découvertes scientifiques universellement reconnues qui, pour un temps, fournissent à une communauté de chercheur euse · x · s des problèmes types et des solutions ».

changement de paradigme

^{1.} L'un des exemples le plus connu de l'obsolescence scientifique est sans doute le passage du modèle géocentrique de l'univers, défendu par Aristote et Ptolémée (selon lesquels la Terre est immobile au centre de l'Univers), à la conception héliocentrique de Nicolas Copernic, qui affirmait que la Terre tournait autour du Soleil.

FIGURE 1.1 – Conception kuhnienne du progrès scientifique, adaptée de Amiri (2012).

Dans cette optique, la structure des révolutions scientifiques désigne un modèle épistémique constitué des épisodes non cumulatifs du développement scientifique (Figure 1.1), marqués par des passages radicaux d'un paradigme à un autre. Le nouveau paradigme ne désigne donc pas une extension de l'ancien paradigme; au contraire, ce dernier est entièrement ou partiellement remplacé par un nouveau paradigme incompatible avec le précédent.

Cela est bel et bien un signe de l'émergence d'une nouvelle théorie ou découverte, tout en prouvant que le développement historique des théories est fondamentalement discontinu. Dans un esprit similaire, Bachelard (1970, p. 72) souligne :

erreurs premières « Il ne saurait y avoir de vérité première. Il n'y a que des erreurs premières. On ne doit donc pas hésiter à inscrire à l'actif du sujet son expérience essentiellement malheureuse. La première et la plus essentielle fonction de l'activité du sujet est de se tromper. Plus complexe sera son erreur, plus riche sera son expérience. L'expérience est très précisément le souvenir des erreurs rectifiées. L'être pur est l'être détrompé. »

évolution de l'hystérie Un exemple du changement de paradigme est l'évolution du terme *hystérie*, introduit par Hippocrate dans l'Antiquité au Ve s. av. J.-C., qui expliquait cette maladie par un déplacement de l'utérus dans le corps féminin ². Au Moyen Âge, surtout à partir du XIIIe s., les *hystériques* étaient considérées par l'Église comme possédées par le diable et, par conséquent, chassées, torturées ou soumises aux exorcismes dans une perspective religieuse (Tasca *et al.*, 2012). Néanmoins, certains scientifiques de la Renaissance commencent progressivement à s'éloigner de l'étiologie démonologique de cette maladie; un cas notable est celui du médecin Charles Le Pois (1563-1633), qui fut le premier à désigner le cerveau, et plus précisément, le *sensorium commune* ³, comme siège de la maladie hystérique en 1618 ⁴, en associant l'hystérie autant aux hommes qu'aux femmes (Wright, 1980).

Pour mieux comprendre l'importance de ce changement de pensée radical, il convient également de souligner que notre compréhension actuelle du système nerveux central

^{2.} Ce terme est issu du mot grec ὑστέρα, par le latin *hystera*, « matrice ». Par dérivation, le terme hystérique se référait à une personne « (femme) malade de l'utérus », selon Rey (2011).

^{3.} ce que Kant (1863) appelle plus tard « siège commun de la sensibilité » pour désigner l'ensemble des perceptions.

^{4.} Le Pois (1618, p. 101), p. 101 a noté que les symptômes communément appelés hystériques se référaient à l'épilepsie, mais qu'il était prouvé que l'épilepsie elle-même était une maladie *idiopathique* (existant par elle-même, sans lien avec une autre maladie) de la tête, et non pas provoquée par les troubles de l'utérus ou des intestins.

est basée sur les premières descriptions faites de manière rigoureuse par Constanzo Varolio (1543-1575) au XVIe s. (Tubbs *et al.*, 2008) ⁵. À l'époque des Lumières en Angleterre (fin XVIIe – début XVIIIe s.), Thomas Willis (1621-1675), créateur du terme *neurologia* en 1664 ⁶, maintint et développa cette conception en caractérisant cette maladie comme principalement convulsive en raison des explosions des « esprits animaux » dans le cerveau (Willis, 1681). Enfin, l'histoire de la neurologie trouve son ancrage à la fin du XIXe siècle dans les travaux de Jean-Martin Charcot (1825-1893). Ce n'est qu'à cette période que la maladie en question a été systématiquement traitée comme un trouble neurologique (Tasca *et al.*, 2012). La sous-section 1.2 évoque certains de ses apports principaux dans le domaine scientifique.

trouble cérébral

1.2 Jean-Martin Charcot : un médecin polymathe à l'aube de la neurologie moderne

Figure emblématique et directeur de l'illustre École de la Salpêtrière (basée à l'actuelle hôpital de la Pitié-Salpêtrière à Paris), Charcot a laissé une trace indélébile dans le domaine de la neurologie. Il est essentiellement connu pour ses études portant sur les troubles névrotiques, notamment l'hystérie. Selon lui, l'hystérie découle d'une dégénérescence héréditaire du système nerveux (Tasca et al., 2012), en montrant qu'elle est en fait plus fréquente chez les hommes que chez les femmes. Charcot a été reconnu pour ses travaux de recherche sur l'hypnose qu'il a utilisée afin d'induire l'état modifié de conscience d'un sujet, permettant l'analyse des symptômes hystériques, ainsi que comme méthode de traitement. Son nom est également associé aux descriptions de nombreuses pathologies connues aujourd'hui, comme la maladie de Parkinson, la sclérose en plaques disséminées, abbr. SEP (ou sclérose multiple), la sclérose latérale amyotrophique, abbr. SLA (soit la maladie de Charcot, ou maladie Lou-Gehriq) etc 7.

appellations

contributions

Ces explorations des abîmes de l'esprit humain lui ont valu de nombreuses appellations : à part avoir été globalement considéré comme le père de la neurologie française et moderne (Teive et al., 2022; Broussolle et al., 2012), d'autres noms plus symboliques lui ont été associés, notamment « Napoléon des névroses », « Paganini de l'hystérie » (Marmion, 2015), ou même « César de la Faculté » (Camargo et al., 2024). Dans la même lignée de pensée, l'École de la Salpêtrière était caractérisée comme la « Mecque de la neurologie » grâce aux activités de Charcot (Teive et al., 2014; Goetz, 2017; Camargo et al., 2024). En outre, de nombreuses références à Charcot et des descriptions d'attaques hystériques figurent non seulement dans la littérature médicale, mais aussi dans des romans natura-

Charcot dans la littérature

^{5.} Il s'agit de l'identification et de la description de la structure cérébrale agissant comme un relai entre le cerveau et le cervelet, appelée *pont* (lat. *pons*) par Varolio (1573), soit *pont de Varole* (lat. *pons Varolii*), en l'honneur du célèbre anatomiste, qui fut le premier à examiner le cerveau de sa base vers le haut.

^{6.} Cf. Willis (1664).

^{7.} Pour un aperçu détaillé des contributions majeures de Charcot dans le domaine de la médecine, voir Camargo et al. (2024).

listes français et européens, notamment en Pays-Bas, Russie, pays scandinaves, Espagne, Italie et Allemagne (Koehler, 2013).

influences

Charcot a créé un véritable réseau scientifique autour de soi grâce à ses idées novatrices qui ont eu un grand retentissement parmi ses collaborateurs, élèves et savants polymathes, dont nous ne nommons que quelques figures majeures souvent citées dans la littérature (Gomes & Engelhardt, 2013; Bogousslavsky, 2014b; Camargo *et al.*, 2024), notamment:

- Paul Richer (1849-1933), anatomiste, neurologue et sculpteur, qui a résumé les premières études de Charcot sur l'hystérie dans ses Études cliniques sur l'hystéro-épilepsie ou grande hystérie;
- Georges Gilles de la Tourette (1857-1904), psychiatre et neurologue, qui a décrit les symptômes de la *maladie des tics*, renommée *syndrôme de Tourette* en son hommage par Charcot lui-même;
- Pierre Janet (1839-1916), philosophe, neurologue et psychiatre, concepteur des termes *dissociation* et *sous-conscient*;
- Désiré Magloire Bourneville (1840-1909), homme politique et neurologue, qui a publié le premier tome de l'ouvrage monumental l'*Iconographie photographique de la Salpêtrière*, dédiée à l'hystérie, sous l'égide de Charcot;
- Joseph Babinski (1857-1932), neurologue et neurobiologiste, concepteur du terme pithiatisme, qui a découvert le réflexe cutané plantaire, appelé également signe de Babinski.

L'impact colossal de Charcot sur sa propre discipline se reflète aussi dans le changement d'intérêt radical du célèbre psychanalyste Sigmund Freud (1856-1939), caractérisé par le passage de la neurologie générale à l'hystérie, l'hypnose et d'autres troubles psychologiques. En effet, son séjour dans le service de Charcot à Paris en 1885-1886 a donné lieu au développement de la théorie psychanalytique (Camargo et al., 2018). Néanmoins, certains scientifiques ont fortement contesté le raisonnement scientifique de Charcot, comme le neurologue Hippolyte Bernheim (1840-1919) avec l'École de Nancy pendant les années 1880-1890. Cette polémique porte sur la nature de l'hypnose qui, pour Charcot, représentait un état pathologique propre aux hystériques, et non pas un état de sommeil obtenu par suggestion qui est susceptible d'applications thérapeutiques (et donc, applicable à pratiquement n'importe qui), comme le soutenait Bernheim (1891).

avis partagés

pont

Étant donné l'interdisciplinaire des travaux de Charcot et ses contributions dans le domaine de la neurologie, nous souhaitons explorer la notion de la circulation des savoirs au prisme du numérique à travers son impact. Avant d'aborder la question d'opérationnalisation de son impact, nous tenons d'abord à décortiquer les mécanismes à l'origine des circulations des savoirs à grande échelle, ainsi que de définir la notion d'un « concept » pouvant véhiculer les informations importantes concernant les circulations en question.

CHAPITRE 2 PISTER LA CIRCULATION DU DISCOURS MÉDICAL AU PRISME DU NUMÉRIQUE

2.1 Modalités des circulations des savoirs

De nombreux·ses chercheur·se·s·x partagent le point de vue selon lequel la notion de « circulation des savoirs » constitue un champ de recherche vaste, ainsi qu'un nouveau paradigme de la connaissance depuis le début du XXIe siècle et l'avènement du Web 2.0 ¹ (Landais, 2014; Quet, 2014). Le terme en question reste toutefois assez complexe en raison de visions différentes sur la façon de le définir. Afin d'éclairer cette problématique, Quet (2014) souligne trois aspects suivants :

3 aspects

1. **Éléments de la circulation**. Qu'est-ce qui circule?

- individus (savants, techniciens, traducteurs, etc.)
- objets matériels (instruments scientifiques, ouvrages etc.)
- constructions symboliques (théories, concepts etc.)

2. Conceptions de la circulation et méthodes de son analyse

- définition de la circulation comme « traduction », « diffusion », « accès » ou « succès »
- critères méthodologiques possibles pour étudier la circulation p. ex. d'une théorie :
- circulations géographiques des principaux concepteurs qu'on lui reconnaît
- circulations et lectures des textes produits par leurs concepteurs
- usages et applications analogiques qui en sont faits dans d'autres domaines
- enjeux d'articulation de ces différents niveaux d'observation du point de vue méthodologique et de celui de la production du texte de recherche, dans le cas des croisements de ces niveaux

3. Conceptions analytiques et normatives des savoirs

• affaiblissement des catégories des « savoirs profanes » et « savoirs scientifiques », ainsi que de l'opposition entre eux

^{1.} Cette phase de l'évolution du Web se caractérise notamment par la transformation majeure de l'Internet en vue du développement des réseaux sociaux, des blogs et des sites participatifs, tout en permettant aux utilisateur·trice·s·x de créer, partager et interagir avec du contenu Web. Nous traversons actuellement l'ère du Web 3.0 qui repose sur des technologies telles que la chaîne de blocs (angl. blockchain), le NFT (angl. non-fungible token), l'intelligence artificielle, métavers et le Web sémantique (Varet, 2023).

- revalorisation des savoirs implicites et de la dimension pratique des connaissances
- glorification de la circulation comme porteuse de valeurs *a priori* positives : confrontation à l'autre, hybridation, production de nouveauté, etc.

Dans le cadre de l'analyse de l'impact scientifique de Charcot, nous étudions in fine la circulation de ses théories et des concepts médicaux dont il était inventeur (p. ex. SLA) et transmetteur (p. ex. hystérie)². La section 2.2 élabore les différentes approches pour définir plus globalement la notion des concepts historiques qui nous orienteront vers une définition des concepts médicaux en particulier.

pont

2.2 Constitution d'un concept historique

Le mot « concept » est un terme générique qui renvoie à un grand nombre de définitions provenant de divers domaines de pensée, sans qu'il en existe une qui soit exhaustive et universellement acceptée. En mathématiques et en sciences cognitives (philosophie, psychologie, intelligence artificielle etc.), un concept représente une catégorie basique axiomatique qui est indétectable et comprise de manière intuitive. On peut le comprendre également comme une unité de connaissance, une idée, un cadre, un script, un *gestalt* ³ ou un hypéronyme d'une notion (Лихачёв, 1997).

concept mathématique

En revanche, selon les linguistes, un concept a une structure double, constituée du sens linguistique et culturel (Nemickienė, 2011). Sa couche intérieure est constituée du noyau étymologique sur lequel repose ensuite la couche périphérique qui hérite les éléments formés par la culture, les traditions et les expériences humaines (Степанов, 2007). En linguoculturologie, on retrouve le terme « concept linguo-culturel » qui reflète cette nature double du concept. Il peut être exprimé par de différentes éléments du langage, soit : lexèmes, idiomes, collocations, phrases ou textes entiers.

concept linguistique

Concept / circulation en analyse du discours / TAL / HN?

TAL : concept = groupe de mots, créé manuellement ou extrait à partir des ontologies ou des thésaurus

Afin de pouvoir analyser les concepts médicaux liés à Charcot, il est essentiel de déterminer à partir de quel moment un mot ou un groupe de mots devient un concept en sciences humaines et sociales (ci-après SHS). Du point de vue de l'histoire des concepts (allem. Begriffsgeschichte), cette transformation survient lorsqu'un seul mot comprend toute la gamme des significations dérivées d'un contexte sociopolitique (Koselleck & Richter, 2011, p. 258). À titre d'exemple, le concept d'un état ne peut être interprété qu'à travers ses différents constituants, dont souveraineté territoriale, législation, fiscalité, parmi

Begriffsgeschichte

^{2.} Comme déjà expliqué dans la sous-section 1.1, Charcot n'a pas inventé ce terme, mais en réinterprété le sens

^{3.} Allem. « forme, figure ». Le terme provient du domaine de la psychologie de la forme (théorie de la gestalt ou gestaltisme) dans les années 1920. Selon ce courant, un individu observe les phénomènes dans leur ensemble de manière holistique, et non pas comme les parties individuelles juxtaposées ou additionnées (p. ex. cinq cercles qui se chevauchent, lesquels l'œil humain perçoit comme le logo se référant au concept des Jeux olympiques).

maints d'autres. Les concepts sont donc les concentrations par défaut ambiguës d'une multitude de contenus sémantiques, uniquement interprétables et indéfinissables, par contraste avec des significations des mots qui peuvent être définies de manière exacte (Koselleck & Richter, 2011, p. 20).

collectifs singuliers

Sattelzeit

concepts nomades De plus, les concepts comme *histoire* ou *progrès* sont caractérisés comme « collectifs singuliers » qui marquent un passage du domain concret d'un individu (plusieurs *histoires* et *progrès* individuels) au domain abstrait et général du collectif social (une *histoire* ou un *progrès* général ou collectif). Ce phénomène linguistique, ainsi que la création des concepts comme *industrie*, *usine*, *classe moyenne* etc., reflète un changement de paradigme dans l'organisation sociale survenu lors des révolutions politiques et industrielles (Hobsbawm, 2010, p. 1). Cela traduit donc le lien fort entre l'histoire du langage et l'histoire des idées. La conceptosphere est un ensemble des concepts considerés comme caractéristique d'une nation particulière. Koselleck nomme cette période charnière *Sattelzeit* 4 (2011, p. 8, p. 8), entre 1750 et 1830, durant laquelle les concepts historiques deviennent abstraits, singularisés, respatialisés et retemporalisés.

Ces considérations peuvent s'appliquer à d'autres constructs en SHS, comme travail, intelligencija, Ancien Régime, avant-garde, Occident etc. Elles ont acquis le statut des concepts « nomades » en raison de leur circulation spatio-temporelle et linguistique (Ghermani, 2011, p. 117). Plusieurs questionnements ont été soulevés par la même autrice à l'égard de leur émergence, notamment pour déterminer à quel moment un concept devient une entrée dans un dictionnaire des SHS: « Pourquoi un concept fait-il son entrée dans un dictionnaire? Au terme de quel processus? À l'inverse, comment cette percée lexicale est-elle parfois impossible ou refusée? ». Les processus permettant à un concept d'obtenir le statut de scientificité sont la propagation, la bifurcation, la capture ⁵, mais aussi les pratiques scientifiques conduisant aux masquages de sens (p. ex. dans le cas du terme « confession [religieuse] », dont le sens varie en fonction du pays dans lequel il est utilisé).

2.3 Études numériques des circulations culturelles

Incontestablement, l'époque actuelle est profondément marquée par le « déluge des données », phénomène représentatif de la quatrième paradigme de la science, selon Jim Gray (Hey *et al.*, 2009). Par conséquent, les recherches numériques sont aujourd'hui « pilotées par les données » ⁶ et celles qui sont centrées sur les explorations des circulations culturelles au prisme du numérique se concrétisent à grande échelle. Certains chaires universitaires, comme celle des Humanités numériques à l'université de Genève (Joyeux-Prunel & Gabay, 2022), ainsi que de divers évènements scientifiques (Humanistica 2023 ⁷,

^{4.} Trad. allem. « époque de selle ».

^{5.} Termes employés par Stengers (1987), représentatrice de la conception constructiviste du savoir scientifique.

^{6.} Traduction du terme « data-driven » introduit par (Johns, 1991) issu du terme data-driven learning.

^{7.} https://humanistica2023.sciencesconf.org/

ACFAS 2023 ⁸ etc.) sont fortement axés sur cette thématique.

SotA Ce mémoire est basé sur la contribution de Petkovic *et al.* (2023) s'inscrivant dans l'optique de l'exploration des circulations scientifiques.

 $^{8.\} https://www.crihn.org/nouvelles/2022/12/11/colloque-de-la-transformation-des-sciences-humaines-par-les-humanites-numeriques-acfas-2023/$

CHAPITRE 3 VALORISATION DU FONDS CHARCOT

3.1 Description du fonds Charcot

fonds Charcot

Le fonds patrimonial de Jean-Martin Charcot est conservé à la Bibliothèque de Neurosciences Jean-Martin Charcot par la Bibliothèque numérique patrimoniale de Sorbonne Université (BSU)¹. Ce fonds regroupe des ouvrages suivants :

- fonds historique Charcot (bibliothèque personnelle de Charcot): ouvrages, périodiques, collection de thèses et de tirés à part, manuscrits, observations, collection neurologique couvrant la seconde partie du XIXe siècle, fonds bibliophilique ancien;
- collections de la bibliothèque des Internes de la Salpêtrière : ouvrages, périodiques, thèses en neurologie et psychiatrie pour la période 1800-1950;
- donations en ouvrages du docteur Achille Souques.

Dans un souci de préservation d'ouvrages originaux et de valorisation de collections ayant un caractère iconographique notable, une partie de ce fonds a été numérisée. Ces archives numérisées sont disponibles sur le portail numérique SorbonNum², porte d'entrée unique vers les collections scientifiques patrimoniales et numériques de Sorbonne Université, ainsi que sur Gallica, bibliothèque numérique de la Bibliothèque nationale de France (BNF)³.

documents:

Le fonds numérisé a été décrit et divisé par la BSU en quatre grandes typologies de documents :

4 typologies de docs

SorbonNum

Gallica

- 1. Fonds iconographique
 - **Album des internes** : Album des promotions annuelles d'internes, photographiées et classées par établissements de l'Assistance Publique, entre 1860 et 1963;
 - Photographies sur les aliénés de Bicêtre par Désiré Magloire Bourneville :

^{1.} https://www.sorbonne-universite.fr/bu/decouvrir-nos-bibliotheques/la-bibliotheque-charcot.

^{2.} anc. Bibliothèque numérique patrimoniale de l'université Pierre et Marie Curie, https://patrimoine.sorbonne-universite.fr/collection/Fonds-Charcot

^{3.} https://gallica.bnf.fr/services/engine/search/sru?operation=searchRetrieve&version=1.2&query=%28gallica%20all%20%22Charcot%2C%20Jean-Martin%22%29&lang=fr&suggest=0.

deux albums présentant les photographies des « petits enfants anormaux » hospitalisés à Bicêtre dans le service du docteur Bourneville, collaborateur de Charcot.

2. Leçons et manuscrits des leçons de Charcot

- Manuscrits des leçons et observations de Charcot (1825-1893) : leçons orales de Charcot, rédigées intégralement de sa main et annotées;
- Leçons de Charcot : numérisation des volumes de l'Œuvre Complète de Charcot consacrés au système nerveux et à l'enseignement clinique, comme par exemple les célèbres leçons du Mardi, sur l'hystérie notamment.

3. Périodiques

- Les Recherches cliniques et thérapeutiques sur l'épilepsie, l'hystérie et l'idiotie (1872 -1903) de Bourneville. Y est retracée toute l'activité du Service des Enfants Idiots, à la Salpêtrière puis à Bicêtre, par le biais des compte-rendu illustrés de photographies et rédigés par Bourneville;
- Revue de l'Hypnotisme (1887-1910) : périodique consacré à l'hypnotisme que Charcot a réhabilité, publiant les principaux articles théoriques sur cette discipline;
- *Journal du magnétisme* (1845-1861) : la collection reflète les recherches sur le magnétisme, renouvelées au milieu du XIX^e siècle;
- Revue photographique des hôpitaux de Paris (1869-1872). Première revue exposant les applications de la photographie à la médecine, notamment la médecine hospitalière, à travers les études menées à l'Hôpital Saint Louis, et à la Salpêtrière;
- Iconographie Photographique de la Salpêtrière (1875-1879). La collection présente les observations de patientes examinées à la Salpêtrière, accompagnées de photographies d'Albert Londe, présentant les divers stades de la crise d'hystérie;
- Nouvelle Iconographie de la Salpêtrière (1888-1918). La revue est fondée sous la direction de Charcot par Paul Richer, Gilles de la Tourette et Albert Londe, directeur du service photographique. Elle réunit la collection de clichés constituée à la Salpêtrière a pour but la représentation objective des pathologies observées. Elle prend la relève de l'Iconographie Photographique de la Salpêtrière. Les articles sont illustrés de photographies, de dessins et de lithographies;
- Archives de neurologie (1880-1907). Sous-titrée « Revue trimestrielle des maladies nerveuses et mentales », les Archives de neurologie sont publiées sous la direction de Charcot par Bourneville. La revue édite, groupe, catégorise et compare la masse des travaux de pathologie nerveuse. Les Archives de neurologie sont devenues bisannuelles en 1881.

4. Ouvrages de la bibliothèque de Charcot

- Collection d'atlas d'anatomie et de pathologie du système nerveux, publiés durant le XIX^e siècle. L'iconographie de ces ouvrages est remarquable, à commencer par l'*Atlas de Vicq d'Azyr*, médecin du roi Louis XVI;
- Traités. Cette collection regroupe à la fois des traités sélectionnés dans la bibliothèque de Charcot (comme l'*Opera omnia*. . . de Thomas Willis, 1682, comportant

des gravures), des atlas et des textes significatifs des successeurs de Charcot, issus de la bibliothèque des Internes de la Salpêtrière (par exemple l'*Anatomie des centres nerveux* des Déjerine).

3.2 Constitution du corpus Charcot

Le corpus de travail est constitué de 201 documents OCRisés (sans post-correction), fournis au format XML par la BSU. Nous avons procédé, dans un premier temps, à une restructuration des textes en XML-TEI à l'aide de l'outil TEINTE ⁴, afin de permettre la fouille avancée du corpus Charcot à travers des outils développés au sein de l'équipe-projet OBTIC. D'une part, le moteur de recherche OBVIE ⁵ permet de repérer des textes similaires par ordre de pertinence à partir des termes en commun. D'autre part, l'algorithme TEXTPAIR génère une liste de passages similaires, c'est-à-dire les séquences de mots qui se chevauchent (n-grammes de mots) pour chaque texte, en comparant ensuite ces résultats avec ceux de séquences dans d'autres textes ⁶.

Afin de mesurer l'impact de Charcot sur son entourage et d'analyser la circulation de concepts véhiculés dans le corpus, nous avons commencé par séparer les documents rédigés par Charcot de ceux rédigés par ses co-auteurs (p. ex. Bourneville) ou les auteurs thématiquement proches de lui (p. ex. de la Tourette). Nous avons obtenu respectivement 68 (corpus « Charcot ») et 133 (corpus « Autres ») documents, comme présenté dans le tableau 3.1.

Corpus	Nombre de documents	Nombre de tokens
Charcot textes rédigés par Charcot	68	12 190 649 (38,12%)
Autres textes rédigés par les membres de son réseau scientifique	133	19 788 830 (61,88%)
TOTAL	201	31 979 479 (100%)

TABLEAU 3.1 – Répartition du fonds Charcot selon les auteurs.

Les deux corpus issus du fonds Charcot sont librement disponibles et interrogeables sur les deux plateformes OBVIE ⁷ et TEXTPAIR ⁸.

^{4.} https://github.com/OBVIL/teinte_obtic

^{5.} https://obtic.huma-num.fr/obvie/. Pour d'amples informations sur le fonctionnement de cet outil, cf. Alrahabi (2022).

^{6.} https://artfl-project.uchicago.edu/text-pair.

^{7.} https://obtic.huma-num.fr/obvie/charcot/?view=corpus

^{8.} https://anomander.uchicago.edu/

CHAPITRE 4 RÉSULTATS

4.1 Exploration du corpus Charcot: OBVIE et TEXTPAIR

Une première exploration du corpus Charcot à travers l'application OBVIE nous a permis d'identifier les substantifs les plus importants de chaque corpus en utilisant les fréquences brutes ou des méthodes plus fines comme TF-IDF, BM25 (détaillées dans la partie 4.2), χ^2 ou le TEST GAMMA. Cependant, l'application ne permet pas de quantifier la pertinence des expressions polylexicales, soit les n-grammes de mots, très fréquentes dans les deux corpus et dont la décomposition entraînerait une perte d'information (p. ex. le terme polysémique « bulbe » qui a une valeur spécifique dans l'expression figée bulbe rachidien). En observant la figure 4.1, nous constatons que l'abscisse donne l'information sur les dates de publication des ouvrages compris dans les corpus, alors que l'ordonnée indique le nombre d'occurrences par million de mots, soit parties par million $(ppm)^1$.

Concernant l'alignement des séquences similaires aux deux corpus, TextPair nous a permis, par une lecture attentive, de faire des comparaisons entre les textes et de rechercher des termes au sein des passages similaires, malgré le nombre de résultats assez conséquent (cf. la figure 4.2). En raison de sa capacité de détecter les passages similaires, notamment les citations directes, les plagiats ou les réemplois, ce logiciel, ainsi qu'un autre logiciel de détection de plagiat, peut nous servir de baseline pour comparer ses résultats avec ceux proposés dans la partie 4.2.

4.2 Extraction des phrases-clés : méthodes statistiques

Afin de surmonter les limites rencontrées avec ces deux outils, nous avons proposé une nouvelle méthode pour identifier des concepts dans les deux corpus en nous basant sur le poids de leur apparition, calculé selon trois différentes mesures de pondération ²:

^{1.} Cf. le guide d'utilisation d'OBVIE détaillé : https://obtic.huma-num.fr/obvie//static/aide.html.

^{2.} Le code est disponible en ligne: https://github.com/ljpetkovic/Charcot_circulations.

FIGURE 4.1 – Distribution des fréquences des tokens avec la frise chronologique pour ceux constituant l'expression *bulbe rachidien* (issus du corpus « Charcot » et du corpus « Autres ») dans le logiciel OBVIE.

FIGURE 4.2 – Alignement et comparaison des textes de Charcot à celui de Georges Gilles de la Tourette (le seul résultat) en lançant la requête *sclérose latérale amyotrophique*.

- TF-IDF est une méthode qui permet d'évaluer l'importance d'un terme contenu dans un document relativement à un corpus plus large en récompensant la fréquence des termes, sans tenir compte des variations de longueur du document;
- BM25 est une fonction de classement qui classe un ensemble de documents en fonction des termes de requête apparaissant dans chaque document, quelle que soit l'interrelation entre les termes de requête au sein d'un document (par exemple, leur proximité relative). Il s'agit d'une tentative d'amélioration de TF-IDF, notamment pour prendre en compte divers facteurs tels que la longueur du document et les problèmes engendrés par la possible saturation des termes (Robertson & Jones, 1976);

• BERT (Devlin *et al.*, 2019) est un modèle pré-entraîné qui utilise l'apprentissage nonsupervisé sur de grandes quantités de données textuelles pour apprendre des représentations de mots et de phrases, et comprendre le contexte et la sémantique. Il est basé sur l'architecture des *transformeurs*, qui est un type de réseau de neurones utilisé pour le traitement du langage naturel.

La liste des concepts retenus pour l'étude est composée de termes ou expressions popularisés par Charcot, comme *hystérie*, *sclérose latérale* etc. (Camargo *et al.*, 2024)³. Pour chaque entrée, nous avons pris en compte les formes du singulier et du pluriel obtenues grâce à des expressions régulières. La liste provient du croisement entre la liste des termes obtenus avec OBVIE et l'index d'une édition des œuvres complètes de Charcot (1892), dont nous avons retiré les termes génériques (*os, cerveau*, etc.).

Comme nous pouvons l'observer sur la figure 4.3, la mesure BM25 révèle une intensification du lexique de Charcot dans le corpus « Autres ». Autrement dit, tous les termes évalués sont identifiés comme plus signifiants dans le discours des « Autres » que dans celui de Charcot, les scores étant plus élevés pour 14 termes (sur 14 évalués) utilisés par le réseau de Charcot. D'ailleurs, d'après le tableau 5 (en annexe), c'est la seule mesure dont les valeurs témoignent clairement d'un lexique partagé entre Charcot et ses successeurs et collaborateurs, a contrario des deux autres mesures, où le rapport en question est inversé (la grande majorité des termes étant plus pertinente dans le discours de Charcot, et son impact étant donc moins accentué). Concrètement, les termes les plus pertinents semblent être sclérose en plaque disséminées (score 0,83), paralysie rhumatismale (0,68), atrophie progressive (0,53) et arthrite déformante (0,50).

D'autre part, nous avons utilisé BERT pour mesurer le poids des termes dans les deux corpus. Bien que ce type de modèle ne fournisse pas directement de poids pour les mots, nous pourrions cependant en extraire des informations utiles pour estimer l'importance ou le poids des mots dans les textes. Différentes approches sont généralement utilisées pour obtenir une représentation de l'importance des mots, en exploitant les informations des plongements lexicaux et des mécanismes d'attention (Vaswani et al., 2023). Pour ce travail en cours, nous avons utilisé le modèle bert-base-multilingual-cased. Les premiers résultats obtenus se trouvent dans le tableau 5 et restent à améliorer. Cependant, nous avons observé que les termes les plus pertinents pour le discours de Charcot étaient ceux qui désignent les noms des différentes pathologies (diplopie, myélite partielle, état de mal épileptique, paralysie labio-glosso-laryngée etc.), contrairement à d'autres notions plus abstraites (préambule, délire, miracle) qui sont prédominantes dans le corpus « Autres » (termes non renseignés dans le tableau en question).

4.3 Extraction des phrases-clés : méthode à base d'apprentissage profond

^{3.} Cf. la liste exhaustive des termes et des expressions popularisées par Charcot en annexe, partie 5.

FIGURE 4.3 – Visualisation de pertinence des concepts dans les deux corpus suivant la métrique BM25. Les valeurs des concepts associées au corpus « Autres » sont représentées en bleu, alors que celles du corpus « Charcot » en jaune.

CONCLUSION

Ce travail constitue la première phase d'exploration du corpus de Charcot. Les deux outils, OBVIE et Textpair, nous offrent des fonctionnalités avancées de recherche et de comparaison de textes dans le cadre d'une analyse de textes assistée par ordinateur. Cependant, ils ne proposent pas de fonctionnalité de lecture distante permettant de rendre compte de l'impact de Charcot sur son réseau scientifique à travers les concepts principaux de ses travaux. L'analyse effectuée à l'aide d'un nouveau script nous a alors permis de quantifier les concepts polylexicaux dans les deux corpus, selon trois différentes métriques de pondération. La visualisation des résultats nous a permis d'observer des phénomènes qu'il serait nécessaire de valider auprès de spécialistes de Charcot. Cette expérience répond partiellement à notre question de recherche, puisqu'elle ne comprend pas de dimension chronologique de l'impact des concepts médicaux et de leur étendue sur le long terme.

Pour la suite, trois pistes de recherche devraient être suivies. . .

CONCLUSION

Annexe

LISTE DES TERMES ET EXPRESSIONS POPULARISÉES PAR CHARCOT

amblyopie hystérique achromatopsie hystérique

amyotrophie protopathique amyotrophie symptomatique

analgésie

anesthésie angioneuroses

apoplexie spinale arthrite déformante

arthropathie des ataxiques

articulations

ataxie locomotrice

atrophie musculaire

atrophie progressive attaque-accès

attaque apoplectiforme

attaque hystérique

 $attitude\ passionnelles$

attraction

aura hystérique

avant-mur

bromure de camphre bulbe rachidien

capsule interne capsule surrénale

catalepsie

cellule nerveuse

chloroforme

chorée

chorée rythmique hystérique

cicatrice vicieuse cirrhose de muscles

cœlialgie

compression de l'ovaire

congestion

contractilité électrique contracture hystérique permanente

contracture permanente

contracture tardive

contracture des uretères

contractare des di etere

convulsionnaire

convulsion corde du tympan

corps granuleux

corps opto-strié

courant électrique

crise gastrique

danse

décubitus aigu

dégénération cireuse délire

diplopie

dynamométrie ecchymoses

ecthyma

electro-diagnostic

embolie

encéphalite endocardite

épilepsie

épilepsie spinale

éruption

érythème pernios escarre des fesses

escarre sacrée

état de mal épileptique

état de mal hystéro-épileptique

excitabilité

faisceau radiculaire interne

faradisation fève de calabar glossy skin

globe hystérique

griffe

hématomyélie

hémianesthésie hystérique

hémianesthésie de cause encéphalique

hémichorée hémiopie

hémiparaplégie

hémiplégie histologie

hypérémié

hyperesthésie ovarienne

4.3. EXTRACTION DES PHRASES-CLÉS: MÉTHODE À BASE D'APPRENTISSAGE PROFOND

hystérie

hystérie épileptiforme hystérie ovarienne hystérie grave

hystérie infantile

hystérie locale

hystérie locale traumatique

hystéro-épilepsie immobilisation

incoordination motrice

ischémie

latéropulsion

lèpre

ischurie

lésion lésion oculaire

maladie de Parkinson méningite ascendante

méningite ascendante

métalloscopie miracle

moëlle épinière

myélite aiguë centrale myélite partielle

myélite traumatique

myodynie myopathie

néphro-cystite

néphrotomie

nerf dilatateur

nerf facial

nerf glandulaire

nerf sciatique

nerf sécréteur nerf trijumeau nerf trophique

nerf vaso-moteur

névrite névroglie

nitrite d'amyle nystagmus oblitération

oligurie hystérique
ovarie hystérique
paralysie agitante
paralysie bulbaire

paralysie consécutive

paralysie générale progressive paralysie générale spinale paralysie hystérique

paralysie labio-glosso-laryngée paralysie pseudo-hypertrophique

paralysie rhumatismale paraplégie traumatique

paralysie infantile

parésie
petit mal
phlegmon
pied bot
putamen

putamen rémission rétention rétropulsion

rigidité salivation sclérodermie sclérose fasciculée

sclérose descendante sclérose latérale

sclérose postérieure

sclérose en plaque disséminées

somnambulisme tarentisme

torticolis thermoanesthésie tremblement

trépidation

trismus

trouble trophiques tubercule de la moëlle

tympanisme urticaire vertige

vision

vomissement hystérique vomissement urémique vomissement de sang

zona

	Charcot			Autres				
Terme	Fréquence	TF-IDF	BM25	BERT	Fréquence	TF-IDF	BM25	BERT
Arthrite déformante	30	0,16	0,45	0,80	24	0,02	0,50	0,40
Ataxie locomotrice	559	0,35	0,05	0,83	169	0,08	0,25	0,39
Atrophie musculaire	1105	0,20	0,02	0,84	1465	0,43	0,15	0,42
Atrophie progressive	40	0,14	0,27	0,72	22	0,02	0,53	0,39
Catalepsie	681	0,54	0,07	0,88	975	0,28	0,15	0,39
Épilepsie	414	0,09	0,02	0,78	577	0,12	0,10	0,41
Hystérie	5775	0,51	0,01	0,74	4934	0,45	0,05	0,41
Langue	2695	0,24	0,01	0,72	3591	0,11	0,02	0,41
Maladie de Parkinson	75	0,21	0,23	0,81	130	0,09	0,35	0,37
Paralysie bulbaire	149	0,27	0,15	0,89	93	0,09	0,52	0,40
Paralysie rhumatismale	8	0,07	0,67	0,86	14	0,02	0,68	0,44
Sclérose latérale	445	0,30	0,06	0,88	127	0,09	0,37	0,41
Sclérose en plaque disséminées	45	0,25	0,47	0,87	12	0,02	0,83	0,40
Somnambulisme	847	0,49	0,05	0,89	3410	1	0,15	0,43

TABLEAU 5.1 – Calcul de pertinence des concepts selon les métriques TF-IDF, BM25 et BERT dans les corpus « Charcot » et « Autres ».

- Alrahabi, M. (2022). Obvie: interface web pour la fouille et la comparaison de textes. In Atelier DigitAl Humanities and cuLtural herItAge: data and knowledge management and analysis durant la conférence francophone sur l'Extraction et la Gestion des Connaissances (eqc2022). https://hal.science/hal-03543362/. (page 12)
- Amiri, V. V. (24 novembre 2012). T. S. Kuhn. *Histo Philo Sciences*. https://histoirephilosciences.wordpress.com/depuis-le-20eme-siecles/une-nouvelle-epistemologie/t-s-kuhn/. (page 3)
- Anouilh, J. (1956). Pauvre Bitos ou le dîner de têtes. Gallimard, coll. « Folio », n° 301. https://archive.org/details/anouilh-pauvre-bitos-ou-le-diner-de-tetes-1979. (page 2)
- Bachelard, G. (1934). La formation de l'esprit scientifique: contribution à une psychanalyse de la connaissance. Vrin. https://gastonbachelard.org/wp-content/uploads/2015/07/formation_esprit.pdf. (page 2)
- Bachelard, G. (1970). *Idéalisme discursif*. Vrin, présentation de Georges Canguilhem: Paris. https://www.academia.edu/27217437/BACHELARD_Gaston_%C3%89tudes_Vrin_1970_. (page 3)
- Bernheim, H. (1891). *De la suggestion et de ses applications à la thérapeutique*. Paris : Octave Doin. https://gallica.bnf.fr/ark:/12148/bpt6k97805169. (page 5)
- Bogousslavsky, J. (2011). Following Charcot: A Forgotten History of Neurology and Psychiatry, volume 29. Karger Medical and Scientific Publishers. https://nah.sen.es/en/issues/lastest-issues/135-journals/volume-2/issue-2/270-the-mysteries-of-hysteria. (page 1)
- Bogousslavsky, J. (2014a). Jean-Martin Charcot and His Legacy. In *Hysteria: The rise of an Enigma*, volume 35 (pp. 44–55). Karger Publishers. https://doi.org/10.1159/000359991.

Bogousslavsky, J. (2014b). The Mysteries of Hysteria. *Neurosciences and History*, 2(2), 54-73. https://nah.sen.es/vmfiles/abstract/NAHV2N2201454_73EN.pdf. (page 5)

- Broussolle, E., Poirier, J., Clarac, F., & Barbara, J.-G. (2012). Figures and institutions of the neurological sciences in Paris from 1800 to 1950. Part III: Neurology. *Revue Neurologique*, 168(4), 301–320. https://doi.org/10.1016/j.neurol.2011.10.006. (pages 1, 4)
- Camargo, C. H. F., Coutinho, L., Correa Neto, Y., Engelhardt, E., Maranhão Filho, P., Walusinski, O., & Teive, H. A. G. (2024). Jean-Martin Charcot: the polymath. *Arquivos de Neuro-psiquiatria*, 81, 1098–1111. https://www.thieme-connect.de/products/ejournals/pdf/10.1055/s-0043-1775984.pdf. (pages 1, 4, 5, and 15)
- Camargo, C. H. F., Marques, P. T., de Oliveira, L. P., Germinian, F. M., de Paola, L., & Teive, H. A. G. (2018). Jean-Martin Charcot's Influence on Career of Sigmund Freud, and the Influence of this Meeting for the Brazilian Medicine. *Revista Brasileira de Neurologia*, 54(2). https://docs.bvsalud.org/biblioref/2018/07/907032/revista542v4-artigo6.pdf. (page 5)
- Charcot, J. M. (1892). Oeuvres complètes de J. M. Charcot. Leçons sur les maladies du système nerveux., volume 1. Bureaux du progrès medical. https://patrimoine.sorbonne-universite.fr/viewer/3468/?offset=1#page= 2&viewer=picture&o=&n=0&q=. (page 15)
- Christin, O. (2011). Dictionnaire des concepts nomades en sciences humaines. Métailié. https://www.academia.edu/31022748/Dictionnaire_des_concepts_nomades_en_sciences_humaines_vol_1.
- Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). Bert: Pre-training of Deep Bidirectional Transformers for Language Understanding. (page 14)
- Лихачёв, Д. С. (1997). Концептосфера русского языка. *Русская словесность: Антология*. https://www.lihachev.ru/pic/site/files/fulltext/ocherk_po_philos/13.pdf. (page 7)
- Степанов, Ю. С. (2007). *Концепты. Тонкая пленка цивилизации*. Москва: Языки славянских культур. (раде 7)
- Gabay, S., Petkovic, L., Bartz, A., Levenson, M. G., & Du Noyer, L. R. (2021). Katabase: À la recherche des manuscrits vendus. In *Humanistica 2021* (pp. 1–7). https://hal.science/hal-03066108. (page 1)
- Ghermani, N. (2011). Confessions. In O. Christin (Ed.), Dictionnaire des concepts nomades en sciences humaines (pp. 117-133). Métailié. https://www.academia.edu/5335160/_Confession_. (page 8)

```
Goetz, C. (2017). Charcot: Past and present. Revue Neurologique, 173(10), 628–636. https://doi.org/10.1016/j.neurol.2017.04.004. (page 4)
```

- Gomes, M. d. M. & Engelhardt, E. (2013). Jean-Martin Charcot, father of modern neurology: an homage 120 years after his death. *Arquivos de Neuro-Psiquiatria*, 71, 815–817. https://doi.org/10.1590/0004-282X20130128. (page 5)
- Hey, T., Tansley, S., & Tolle, K. M. (2009). Jim Gray on eScience: A Transformed Scientific Method. In T. Hey, S. Tansley, & K. M. Tolle (Eds.), *The Fourth Paradigm*. Microsoft Research. http://languagelog.ldc.upenn.edu/myl/JimGrayOnE-Science.pdf. (page 8)
- Hobsbawm, E. (2010). *Age of revolution:* 1789-1848. Hachette UK. https://files.libcom.org/files/Eric%20Hobsbawm%20-%20Age%20Of%20Revolution%201789%20-1848.pdf. (page 8)
- Johns, T. F. (1991). Should you be persuaded. two samples of data-driven learning materials. https://api.semanticscholar.org/CorpusID:53988458. (page 8)
- Joyeux-Prunel, B. (2019). Visual Contagions, the Art Historian, and the Digital Strategies to Work on Them. *Artl@s Bulletin*, 8(3), 128–144. https://docs.lib.purdue.edu/artlas/vol8/iss3/8/. (page 1)
- Joyeux-Prunel, B. & Gabay, S. (2022). Circulations des savoirs, de la recherche à l'enseignement. *Arabesques*. https://doi.org/10.35562/arabesques.2847. (page 8)
- Kant, É. (1863). Anthropologie d'un point de vue pragmatique (trad. J. Tissot). Librairie Ladrange (originalement publié en 1798). https://fr.wikisource.org/wiki/Anthropologie_d%E2%80%99un_point_de_vue_pragmatique. (page 3)
- Kneib, M. (2011). Étude fonctionnelle d'un circuit inhibiteur du cortex cérébelleux de la souris : Importance pour la physiopathologie des retards mentaux. PhD thesis, Strasbourg. https://publication-theses.unistra.fr/public/theses_doctorat/2011/KNEIB_Marie_2011.pdf.
- Koehler, P. J. (2013). Chapter 6 Charcot, La Salpêtrière, and Hysteria as Represented in European Literature. In S. Finger, F. Boller, & A. Stiles (Eds.), *Literature, Neurology, and Neuroscience: Neurological and Psychiatric Disorders*, volume 206 of *Progress in Brain Research* (pp. 93–122). Elsevier. https://www.sciencedirect.com/science/article/pii/B9780444633644000235. (page 5)
- Koselleck, R. & Richter, M. (2011). Introduction and Prefaces to the Geschichtliche Grundbegriffe: (Basic Concepts in History: A Historical Dictionary of Political and Social Language in Germany). Contributions to the History of Concepts, 6(1), 1–37. https://www.berghahnjournals.com/view/journals/contributions/6/1/choc060102.xml. (pages 7, 8)

Koyré, A. (1957). From the Closed World to the Infinite Universe, volume 1. Baltimore, Johns Hopkins Press. https://archive.org/details/fromclosedworldt0000koyr/page/n13/mode/2up?q=revolution. (page 2)

- Kuhn, T. S. (1962). The Structure of Scientific Revolutions. University of Chicago Press. https://www.lri.fr/~mbl/Stanford/CS477/papers/Kuhn-SSR-2ndEd.pdf. (page 2)
- Landais, É. (2014). « Frédéric Darbellay, éd., La circulation des savoirs. Interdisciplinarité, concepts nomades, analogies, métaphores » : Berne, P. Lang, 2012, 245 pages. Questions de communication, 26, 331-333. https://doi.org/10.4000/questionsdecommunication.9367. (page 6)
- Le Pois, C. (1618). Selectiorum observationum et consiliorum de praetervisis hactenus morbis affectibusque praeter naturum, ab aqua seu serosa colluvie et diluvie ortis, liber singularis. Authore Carolo Pisone, Ponte ad Monticulum, apud Carolum Mercatorem. https://archive.org/details/BIUSante_05814/page/n3/mode/2up. (page 3)
- Manjavacas, E., Long, B., & Kestemont, M. (2019). On the Feasibility of Automated Detection of Allusive Text Reuse. In *Proceedings of the 3rd Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature* (pp. 104–114). Minneapolis, USA: Association for Computational Linguistics. https://doi.org/10.18653/v1/W19-2514. (page 1)
- Marmion, J.-F. (2015). Freud hypnotiseur. In *Freud et la psychanalyse* (pp. 22-29).: Sciences Humaines. https://www.cairn.info/freud-et-la-psychanalyse-9782361063542-page-22.htm. (page 4)
- Nemickienė, Ž. (2011). "Concept" in Modern Linguistics: the Component of the Concept "Good". Filologija, 16, 26–36. https://core.ac.uk/outputs/62656539?source=oai. (page 7)
- Petkovic, L., Alrahabi, M., & Roe, G. (2023). Circulation du discours médical de jean-martin charcot. In *Humanistica 2023*. https://hal.science/HUMANISTICA-2023/hal-04107099v1. (page 9)
- Quet, M. (2014). « Frédéric Darbellay, La circulation des savoirs. Interdisciplinarité, concepts nomades, analogies, métaphores ». Revue d'anthropologie des connaissances, 8(8-1). https://doi.org/10.3917/rac.022.0221. (page 6)
- Rey, A. (2011). Dictionnaire historique de la langue française. Le Robert. https://ia601001.us.archive.org/2/items/alainreyetal.dictionnairehistoriquedelalanguefrancaise4eed.lerobert2010/Alain%20Rey%20et%20al.%20-%20Dictionnaire%20historique%20de%20la%

```
20langue%20francaise%204e%20%C3%A9d.%20-%20Le%20Robert%20%282010%29.pdf.(page 3)
```

- Robertson, S. E. & Jones, K. S. (1976). Relevance Weighting of Search Terms. Journal of the American Society for Information science, 27(3), 129–146. https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/asi.4630270302?casa_token=TfyVkMGkDQsAAAAA:
 TCuXWzGHjo31RdxGR9jECRG2rZzqv0K3G0zHF7yAa2NfxtDFqxe-MmSHMC6e80FiFxI4sLj2aW60yDk. (page 14)
- Roudinesco, É. & Plon, M. (2023). Dictionnaire de la psychanalyse. Fayard. https://www.fayard.fr/sciences-humaines/dictionnaire-de-la-psychanalyse-nouvelle-edition-9782213725277.
- Stengers, I. (1987). D'une science à l'autre.: Des concepts nomades. https://archive.org/details/dunesciencealaut0000unse. (page 8)
- Tasca, C., Rapetti, M., Carta, M. G., & Fadda, B. (2012). Women And Hysteria In The History Of Mental Health. *Clinical Practice & Epidemiology in Mental Health: CP & EMH*, 8, 110–119. https://doi.org/10.2174/1745017901208010110. (pages 3, 4)
- Teive, H. A. G., Coutinho, L., Camargo, C. H. F., Munhoz, R. P., & Walusinski, O. (2022). Thomas Willis' legacy on the 400th anniversary of his birth. *Arquivos de Neuro-Psiquiatria*, 80, 759–762. https://doi.org/10.1055/s-0042-1755278. (page 4)
- Teive, H. A. G., Germiniani, F., Munhoz, R. P., & Paola, L. d. (2014). 126 hysterical years the contribution of Charcot. *Arquivos de Neuro-Psiquiatria*, 72, 636–639. https://doi.org/10.1590/0004-282x20140068.PMID:25098481. (page 4)
- Tubbs, R. S., Loukas, M., Shoja, M. M., Apaydin, N., Ardalan, M. R., Shokouhi, G., & Oakes, W. J. (2008). Costanzo Varolio (Constantius Varolius 1543–1575) and the Pons Varolli. *Neurosurgery*, 62(3), 734–737. https://doi.org/10.1227/01.neu.0000317323.63859.2a. (page 4)
- Varet, V. (2023). Les nouvelles modalités numériques : blockchain, Web 3.0, NFT, métavers... Legipresse, 68(HS1), 59-70. https://doi.org/10.3917/legip.hs68.0059. (page 6)
- Varolio, C. (1573). De nervis opticis nonnullisq: aliis praeter communem opinionem in humano capite observatis. Patavii: apud P. et A. Meiettos fratres. https://gallica.bnf.fr/ark:/12148/bpt6k325486q. (page 4)
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2023). Attention Is All You Need. https://arxiv.org/abs/1706.03762. (page 15)

Willis, T. (1664). Cerebri anatome: cui accessit nervorum descriptio et usus. Londini: Typis Ja. Flesher, impensis Jo. Martyn & Ja. Allestry, apud insigne Campanæ in Cœmeterio, D. Pauli. https://books.google.fr/books/?id=L2xEAAAAcAAJ&pg=PP9#v=onepage&q&f=false. (page 4)

- Willis, T. (1681). An Essay of the Pathology of the Brain and Nervous Stock in which Convulsive Diseases are Treated of. London: Printed by J. B. for T. Dring. https://quod.lib.umich.edu/e/eebo/A66496.0001.001?rgn=main; view=fulltext. (page 4)
- Wright, J. P. (1980). Hysteria and Mechanical Man. *Journal of the History of Ideas*, 41(2), 233–247. https://doi.org/10.2307/2709458. (page 3)