Funcții și ecuații exponențiale

Barcaru Cosmin-Florentin

Clasa a X-a B.

Cuprins

- Definiție
- Proprietăți ale funcției exponențiale
- Tipuri de ecuații exponențiale
- Probleme rezolvate

 Ecuația exponențială este ecuația în care necunoscuta este exponent sau exponentul este o expresie care conține necunoscuta.

Definiție:

• Fie a>0, a≠1.

Funcția $f: \mathbf{R} \to (0, +\infty)$, $f(x) = a^x$ se numește funcție exponențială de bază a.

Reprezentarea geometrică a graficului funcțieiexponențiale este o curbă exponențială.

Proprietați:

- 1) $f(0)=a^0=1$.
- 2) Funcţia exponenţială este convexă.
- 3) Monotonia: dacă a>1, atunci f este strict crescătoare; dacă0<a<1, atunci f este strict descrescătoare.
- 4) Dacă a > 1 și x > 0 atunci f(x) > 1; x < 0 atunci f(x) < 1; 0 < a < 1 și x > 0 atunci f(x) < 1; x < 0 atunci f(x) > 1.
- 5) Funcția exponențială este bijectivă.

Tipuri de ecuații exponențiale

- 1) Ecuații exponențiale de forma: $a^{f(x)} = a^{g(x)}$, a>0, a \neq 1.
- 2) Ecuații exponențiale de forma: $a^{f(x)} = b$, a > 0, $a \ne 1$.
- 3) Ecuații exponențiale de forma:

$$a^{f(x)} = b^{g(x)}, a, b \in (0, +\infty) \setminus \{1\}, a \neq b.$$

4) Ecuații exponențiale de forma: $a^{f(x)} \cdot b^{g(x)} = c, a, b \in (0, +\infty) \setminus \{1\}.$

5) Ecuații exponțeniale de forma:

 $ma^{2f(x)} + na^{f(x)} + p = 0$, and $(0, +\infty) \setminus \{1\}$, then \mathbb{R}^* , then \mathbb{R}^* is the proof of the proo

6) Ecuații exponențiale de forma:

$$a^{f(x)} \cdot b^{g(x)} = c^{h(x)} \cdot d^{i(x)}$$
, a, b, c, $d \in (0, +\infty) \setminus \{1\}$.

7) Ecuații exponențiale de forma:

$$m \cdot a^{2f(x)} + n \cdot b^{2f(x)} + p \cdot (a \cdot b)^{f(x)} = 0,$$

 $a, b \in (0, +\infty) \setminus \{1\}, m, n, p \in \mathbb{R}^*.$

8) Ecuații exponențiale de forma:

$$m \cdot a^{f(x)} + n \cdot b^{f(x)} + p = 0$$

9) Ecuații exponențiale cu soluție unică (cu cel mult o soluție).

Probleme rezolvate:

1) Să se determine funcția $f: \mathbf{R} \to (0, +\infty)$ pentru care: $f(x+y) \le f(x)f(y), \forall x,y \in \mathbf{R}.$

• $f(x) \le f(x)f(0) \le f(x) \to f(x) = f(0)f(x) = f = 0(f(0) = 1)$ Dacă f(0) = 1, $1 = f(x - x) \le f(x)2^{-x} \le 2^{x}2^{-x} = 1$ $\to f(x) = 2^{x}(f = 0$ satisface condițiile).

- 2) Să se determine funcțiile $f : \mathbf{R} \to \mathbf{R}$, $f(x+y) = a^y f(x+y) = a^y f(x) + f(y)$, $\forall x, y \in \mathbf{R}$, a > 0, $a \ne 1$.
- f(x+1) = af(x) + f(1) si $f(y+1) = a^y f(1) + f(y)$, $\forall x, y \in \mathbf{R} \to f(x) = \frac{a^{x-1}}{a-1} f(1)$.

3) Să se arate că funcția $f(x) = 32^x + 2^{-2}$ estestrict cresătoare pe $[0,\infty)$.

• Fie 0< x< y
$$\rightarrow$$
 $f(x)$ - $f(y)$ = 2^{5x} - 2^{5y} + $\frac{1}{2^x}$ + $\frac{1}{2^y}$
= $(2^x - 2^y)(2^{4x} + 2^{3x}2^y + 2^{2x}2^{2y} + 2^x2^{3y} + 2^{4y}) - \frac{2^x - 2^y}{2^{x+y}}$
= $(2^x - 2^y)(2^{4x} + 2^{3x}2^y + 2^{2x}2^{2y} + 2^x2^{3y} + 2^{4y} - \frac{1}{2^{x+y}} < 0$, deoarece2^x - 2^y < 0și $\frac{1}{2^{x+y}} < 1$, iarsumacelorlalți cinci termeni este mai mare ca 5.

4) Să se determine funcția

$$f : \mathbf{R} \to \mathbf{R}, f(x) = \max[(1+a)^x, 1+a^x].$$

• Se arată că ecuația $(1+a)^x = 1 + a^x$ are soluție unică x=1.

Funcția $g(x) = (\frac{1}{1+a})^x + (\frac{a}{1+a})^x$ este strict crescătoare si g(1) = 1. Să determinăm valorile pentru care

$$1 + a^x > (1 + x)^x \leftrightarrow (\frac{1}{1+a})^x + (\frac{a}{1+a})^x > 1$$
, adică
 $g(x) > g(1) \to x < 1$. Evident pentru $x > 1, 1 + a^x < (1 + a)^x$.

$$f(x) \begin{cases} 1 + a^x, dacă \ x \in (-\infty, 1] \\ (1 + a)^x, dacă \ x \in [1, \infty) \end{cases}$$

- 5) Să se studieze monotonia funcției $f(x) = a^x + a^{\frac{D}{x}}$ pe intervalul $(0, \infty)$, unde a>0, b>0, a\neq1.
- Considerăm cazul a>1. Vomdemonstra că funcția f este strict crescătoare pe (\sqrt{b}, ∞) și strict descrescătoare pe $(0,\sqrt{b})$. Este suficient să arătăm că este strict crescătoare pe (\sqrt{b}, ∞) , întrucât din relația $f(x)=f\left(\frac{b}{x}\right)$ va rezulta că f este strict descrescătoare pe $(0, \sqrt{b})$.
- Fie x>y> \sqrt{b} \rightarrow xy>b \rightarrow b-xy<0 și f(x)-f(y) = $a^x + a^{\frac{b}{x}}$ $a^y + a^{\frac{b}{y}}$.

 Deoarece din x>y $\rightarrow \frac{1}{x} < \frac{1}{y} \rightarrow \frac{b-xy}{x} > \frac{b-xy}{y}$.
- Dacă a \in (0, 1) funcția va fi strict crescătoare pe (0, \sqrt{b}) și strict descrescătoare pe (\sqrt{b} , ∞).