Corrigés des exercices Ensembles et applications

N'hésitez pas à m'envoyer un mail si vous avez des questions. 1

1 Ensembles

Exercice 1. Echauffements I (\star)

Soit E un ensemble. Que dire de deux sous-ensembles A et B de E tels que $A \cup B = A \cap B$?

Solution de l'exercice 1.

Faire un dessin pour se convaincre que dans une telle situation, A = B. Montrons que c'est bien le cas. Pour ce faire, nous allons utiliser une technique très importante : la double inclusion. Le principe est d'utiliser l'équivalence suivante : A = B équivaut à $A \subseteq B$ et $B \subseteq A$. On peut donc montrer le second pour en déduire le premier.

Montrons que $A \subseteq B$. Par définition de l'inclusion, nous devons donc montrer que :

Pour tout $a \in A$, on a que $a \in B$.

Soit $a \in A$. Par définition de l'union, an a alors que $a \in A \cup B$. Or, $A \cup B = A \cap B$, donc $a \in A \cap B$. Par définition de l'intersection, on a alors $a \in B$. Conclusion: Pour tout $a \in A$, on a que $a \in B$, donc $A \subseteq B$.

Montrons que $B \subseteq A$. L'énoncé est symétrique en A et B, et $A \subseteq B$, donc $B \subseteq A$.

Conclusion : On a bien montré que $A \subseteq B$ et $B \subseteq A$, i.e A = B.

Exercice 2. Echauffements II (\star)

Soit E un ensemble et soient A, B et C trois parties de E telles que $A \cup B = A \cup C$ et $A \cap B = A \cap C$. Montrer que B = C.

Solution de l'exercice 2.

On procède à nouveau par double inclusion.

^{1.} vadim.lebovici@ens.fr

Montrons que $B \subseteq C$. Soit $b \in B$. On a alors que $b \in A \cup B$. Comme $A \cup B = A \cup C$, on a $b \in A \cup C$. Par définition de l'union, l y a alors deux possibilités :

1er cas: $b \in C$. on a ce qu'on voulait, $b \in C$.

2nd cas: $b \in A$. on a alors $b \in A \cap B = A \cap C$ et donc $b \in C$. Dans tous les cas, on a bien $b \in C$.

<u>Conclusion</u>: pour tous $b \in B$, on a $b \in C$, donc $B \subseteq C$.

Montrons que $C \subseteq B$. Le problème est symétrique en B et C et $B \subseteq C$, donc $C \subseteq B$.

Conclusion. On a montré que $B \subseteq C$ et $C \subseteq B$, donc B = C.

Exercice 3. Des parties (\star)

Soient E et F deux ensembles. Quelles relations d'inclusion y a-t-il entre :

- 1. $\mathcal{P}(E \cup F)$ et $\mathcal{P}(E) \cup \mathcal{P}(F)$?
- 2. $\mathcal{P}(E \cap F)$ et $\mathcal{P}(E) \cap \mathcal{P}(F)$?

Solution de l'exercice 3.

1. Montrons que $\mathcal{P}(E) \cup \mathcal{P}(F) \subseteq \mathcal{P}(E \cup F)$. Pour montrer qu'une union est incluse dans un ensemble, il suffit de montrer que chaque terme de l'union est inclus dans l'ensemble.

Montrons que $\mathcal{P}(E) \subseteq \mathcal{P}(E \cup F)$. Soit $A \in \mathcal{P}(E)$, montrons que $A \in \mathcal{P}(E \cup F)$. Pour tout $a \in A$, on a que $a \in E$, et donc $a \in E \cup F$, donc $A \subseteq E \cup F$, i.e. $A \in \mathcal{P}(E \cup F)$. Ceci étant vrai pour tout élément A de $\mathcal{P}(E)$, on a bien $\mathcal{P}(E) \subseteq \mathcal{P}(E \cup F)$.

Montrons que $\mathcal{P}(F) \subseteq \mathcal{P}(E \cup F)$. Comme E et F jouent des rôles symétriques et que $\mathcal{P}(E) \subseteq \mathcal{P}(E \cup F)$, on a également $\mathcal{P}(F) \subseteq \mathcal{P}(E \cup F)$.

Conclusion: On a montré que $\mathcal{P}(E) \subseteq \mathcal{P}(E \cup F)$ et $\mathcal{P}(F) \subseteq \mathcal{P}(E \cup F)$, donc

$$\mathcal{P}(E) \cup \mathcal{P}(F) \subseteq \mathcal{P}(E \cup F).$$

Montrons qu'en général, on a pas $\mathcal{P}(E \cup F) \subseteq \mathcal{P}(E) \cup \mathcal{P}(F)$. Pour cela, il faut que l'on exhibe un contre-exemple à cette proposition. Prenons $E = \{0\}$ et $F = \{1\}$. On a alors $E \cup F = \{0,1\}$ et donc :

$$\mathcal{P}(E) = \{\emptyset, \{0\}\},\$$

$$\mathcal{P}(F) = \{\emptyset, \{1\}\},\$$

$$\mathcal{P}(E) \cup \mathcal{P}(F) = \{\emptyset, \{0\}, \{1\}\},\$$

$$\mathcal{P}(E \cup F) = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\},\$$

ce qui montre bien que dans cet exemple $\mathcal{P}(E) \cup \mathcal{P}(F) \neq \mathcal{P}(E \cup F)$.

2. Montrons que $\mathcal{P}(E \cap F) = \mathcal{P}(E) \cap \mathcal{P}(F)$. Pour A un ensemble, on a que $A \subseteq E \cap F$ équivaut $A \subseteq E$ et $A \subseteq F$, par définition de l'intersection. Autrement dit, on a équivalence entre $A \in \mathcal{P}(E \cap F)$ et $A \in \mathcal{P}(E) \cap \mathcal{P}(F)$, d'où le résultat.

Exercice 4. Différence symétrique (***)

Soient A et B deux parties d'un ensemble E. On appelle différence symétrique de A et B, et on note $A\Delta B$ l'ensemble défini par :

$$A\Delta B = (A \cup B) \setminus (A \cap B).$$

- 1. Faire un dessin, puis calculer $A\Delta B$ pour $A = \{0, 1, 2, 3\}$ et $B = \{2, 3, 4\}$.
- 2. Montrer que $A\Delta B = (A \setminus A \cap B) \cup (B \setminus A \cap B)$.
- 3. Supposons que $A\Delta B = A \cap B$. Montrer que $A = B = \emptyset$.
- 4. Soit $C \in \mathcal{P}(E)$. Montrer que $A\Delta B = A\Delta C$ si, et seulement si B = C.
- 5. Résoudre l'équation d'inconnue $X \in \mathcal{P}(E)$, $A\Delta X = \emptyset$.

Solution de l'exercice 4.

1. De beaux dessins sont disponibles sur la page wikipédia de la différence symétrique. Pour $A = \{0, 1, 2, 3\}$ et $B = \{2, 3, 4\}$, on a

$$A\Delta B = \{0, 1, 4\}.$$

2. Procédons par double-inclusion.

Montrons que $A\Delta B \subseteq (A \setminus A \cap B) \cup (B \setminus A \cap B)$. Soit $x \in A\Delta B$. Par définition, $x \in A \cup B$, donc $x \in A$ ou $x \in B$. Supposons d'abord que $x \in A$, l'autre cas étant symétrique. Par définition de la différence symétrique $x \notin A \cap B$, on a donc bien $x \in A \setminus A \cap B$. Par symétrie, si $x \in B$, on aura $x \in B \setminus A \cap B$.

<u>Conclusion</u>: On a montré que pour tout $x \in A\Delta B$, on a $x \in A \setminus A \cap B$ ou $x \in B \setminus A \cap B$, i.e $A\Delta B \subseteq (A \setminus A \cap B) \cup (B \setminus A \cap B)$.

Montrons que $(A \setminus A \cap B) \cup (B \setminus A \cap B) \subseteq A \Delta B$. La preuve est similaire.

3. Supposons $A\Delta B=A\cap B$. Pour montrer que $A=B=\emptyset$, il nous suffit de montrer que $A=\emptyset$, car A et B jouent des rôles symétriques. Montrons donc que $A=\emptyset$. Supposons par l'absurde qu'il existe $a\in A$. Deux cas sont alors possibles :

1er cas : $a \in B$. On $a \ a \in A \cap B = A\Delta B$. Or, par définition de la différence symétrique, $a \notin A \cap B$, une contradiction.

2nd cas: $a \notin B$. On a alors que $a \notin A \cap B$. Puisque $a \in A$, on a que $a \in A \cup B$, et donc $a \in A \Delta B$. Or, $A \Delta B = A \cap B$, donc $a \in A \cap B$, donc $a \in B$, une contradiction. Conclusion: Tous les cas mènent à une contradiction, c'est donc qu'il n'existe pas de $a \in A$, et donc $A = \emptyset$.

^{2.} Si vous n'êtes pas convaincu, prouvez-le, en prenant des éléments $a \in A$ et en montrant l'équivalence.

- **4.** Si B = C, alors il est clair que $A\Delta B = A\Delta C$. Supposons maintenant $A\Delta B = A\Delta C$, et montrons que B = C. A nouveau, nous allons procéder par double inclusion. **Montrons que** $B \subseteq C$. Soit $b \in B$. Il y a plusieurs possibilités :
 - 1. Si $b \in A$, alors il est dans $A \cap B$, et ne peut donc pas être dans $A\Delta B$. Comme $A\Delta B = A\Delta C$ par hypothèse, $b \notin A\Delta C$. Comme $b \in A$, c'est qu'il doit être dans $A \cap C$, et $b \in C$.
 - 2. Si $b \notin A$, alors il est dans $A \cup B \setminus A \cap B = A\Delta B = A\Delta C$. Donc $b \in A \cup C$, mais $b \notin A$, donc $b \in C$.

Dans tous les cas, $b \in C$. Ceci étant vrai pour tous $b \in B$, on a bien $B \subseteq C$. Montrons que $C \subseteq B$. L'énonce est symétrique en B et C, et $B \subseteq C$. Conclusion : B = C.

5. *On a que*

$$A\Delta A = A \cup A \setminus A \cap A = A \setminus A = \emptyset,$$

donc A est solution de l'équation. De plus, n'importe quelle partie X de E satisfaisant $A\Delta X=\emptyset$ satisferait $A\Delta X=A\Delta A$. Or, par la question précédente, on a dans ce cas X=A.

Conclusion: La seule solution de l'équation est la partie A.