

Description

The VSM100N10 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 100V, I_D = 100A$ $R_{DS(ON)} < 13m\Omega @ V_{GS} = 10V$ (Typ:9.9m Ω)
- Special process technology for high ESD capability
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM100N10-TC	VSM100N10	TO-220C	-	-	-

Absolute Maximum Ratings (T_c=25 ℃ unless otherwise noted)

Symbol	Parameter	Limit	Unit
V _{DS}	Drain-Source Voltage	100	V
V _G S	Gate-Source Voltage	±20	V
I _D	Drain Current-Continuous	100	А
I _D (100°C)	Drain Current-Continuous(TC=100℃)	80	Α
I _{DM}	Pulsed Drain Current	380	Α
P _D	Maximum Power Dissipation	200	W
	Derating factor	1.33	W/℃
E _{AS}	Single pulse avalanche energy (Note 5)	800	mJ
T_{J}, T_{STG}	Operating Junction and Storage Temperature Range	-55 To 175	$^{\circ}\!\mathbb{C}$

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

$R_{ heta JC}$	Thermal Resistance, Junction-to-Case (Note 2)	0.75	°C/W	ĺ
----------------	---	------	------	---

Electrical Characteristics (T_C=25°C unless otherwise noted)

	Symbol Parameter	Condition	Min	Тур	Max	Unit
Off Characteris	stics			•		
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V I _D =250μA	100	110	-	V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =100V,V _{GS} =0V	-	-	1	μA
I _{GSS}	Gate-Body Leakage Current	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteris	etics (Note 3)					
V _{GS(th)}	Gate Threshold Voltage	V _{DS} =V _{GS} ,I _D =250μA	2	3	4	V
R _{DS(ON)}	Drain-Source On-State Resistance	V _{GS} =10V, I _D =40A	-	9.9	13	mΩ
g FS	Forward Transconductance	V _{DS} =50V,I _D =40A	100	-	-	S
Dynamic Chara	acteristics (Note4)					•
C _{lss}	Input Capacitance	\/ F0\/\/ 0\/	-	4800	-	PF
C _{oss}	Output Capacitance	V_{DS} =50V, V_{GS} =0V, F=1.0MHz	-	340	-	PF
C _{rss}	Reverse Transfer Capacitance	F-1.UIVIDZ	-	150	-	PF
Switching Cha	racteristics (Note 4)					•
t _{d(on)}	Turn-on Delay Time		-	15	-	nS
t _r	Turn-on Rise Time	V _{DD} =50V,I _D =40A	-	50	-	nS
t _{d(off)}	Turn-Off Delay Time	V_{GS} =10V, R_{GEN} =2.5 Ω	-	40	-	nS
t _f	Turn-Off Fall Time		-	55	-	nS
Qg	Total Gate Charge	\/ -90\/ -404	-	85	-	nC
Q _{gs}	Gate-Source Charge	$V_{DS}=80V,I_{D}=40A,$ $V_{GS}=10V$	-	18	-	nC
Q _{gd}	Gate-Drain Charge	V _{GS} -10V	-	28	-	nC
Drain-Source D	Diode Characteristics					
V _{SD}	Diode Forward Voltage (Note 3)	V _{GS} =0V,I _S =40A	-	-	1.2	V
Is	Diode Forward Current (Note 2)	-	-	-	57	Α
t _{rr}	Reverse Recovery Time	TJ = 25°C, IF = 40A	-	38	80	nS
Qrr	Reverse Recovery Charge	di/dt = 100A/µs(Note3)	-	53	100	nC
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition:Tj=25 $^{\circ}\text{C}$,VDD=50V,VG=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 9 BV_{DSS} vs Junction Temperature

Figure 10 V_{GS(th)} vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance