TP1 TID

SCAIA Matteo, MARIAC Damien

October 23, 2024

Contents

1	Préambule	3
2	Exercice 1 2.1 Modélisation et variable	3 5
3	Exercice 2	6
	3.1 Recodages	6
	3.1.1 Recodage en 2 variables	
	3.1.2 Recodage en 3 variables	
	3.2 Le meilleur recodage de X pour prédire Y	
4	Exercice 3	8
	4.1 Description	8
	4.2 Calculs	8
	4.2.1 Premiere étape	
	4.2.2 Deuxieme étape : champignons jaune	
	4.3 Arbre de discrimination	

1 Préambule

Pour les calculs, nous avons choisit de faire l'exercice 1 (2) en utilisant le logarithme en base 2, et les exercices 2 et 3 (3 et 4) en logarithme népérien.

Cependant, calculer avec le logarithme népérien ou avec le logarithme en base 2 revient au même. En effet, les deux logarithmes peuvent être reliés par une relation. Cela signifie que toute expression impliquant \log_2 peut être transformée en ln, et cela ne change pas l'interprétation des résulats. Ils ont seulement un facteur multiplicatif constant les différenciant.

Ces deux logarithmes sont reliés par la formule suivante :

$$\log_2(x) = \frac{\ln(x)}{\ln(2)}$$

2 Exercice 1

On considère le tableau ci-dessous, répartissant la population active occupée selon l'âge (A), le sexe (S) et la catégorie socioprofessionnelle (C) (source: INSEE, enquête emploi 2016).

Catégorie socioprofessionnelle des actifs occupés selon le sexe et l'âge							
Âge	De 15 à 29 ans	De 30 à 49 ans	De 30 à 39 ans	De 40 à 49 ans	De 50 à 59 ans	60 ans ou plus	
	Effectifs (en milliers)						
SEXE : Femmes							
Agriculteurs	27,8	189,7	70,0	119,6	187,1	76,9	
Artisans, con	117,4	914,0	357,9	556,1	525,8	184,8	
Cadres et pro	564,9	2 638,5	1 209,0	1 429,5	1 161,6	360,0	
Professions i	1 353,7	3 735,7	1 840,7	1 895,0	1 507,8	256,2	
Employés	1 570,9	3 486,4	1 605,6	1 880,9	1 819,6	397,0	
Ouvriers	1 271,6	2 648,6	1 285,9	1 362,7	1 300,4	180,5	
SEXE : Homm	ies	•		•			
Agriculteurs	24,2	146,0	56,2	89,8	138,0	43,4	
Artisans, con	79,2	645,6	258,4	387,2	378,7	128,7	
Cadres et pro	315,7	1 538,5	685,3	853,2	719,0	240,1	
Professions i	613,3	1 750,4	834,7	915,7	755,9	123,7	
Employés	476,0	865,5	449,5	416,0	329,8	58,3	
Ouvriers	1 085,8	2 133,9	1 068,4	1 065,5	987,9	130,1	

Figure 1: Tableau répartissant la population active occupée selon des catégories

2.1 Modélisation et variable

Tout d'abord de manière intuitive, nous avons envie de modéliser la variable socioprofessionnelle avec les deux autres. Cependant, nous devons le montrer de manière formelle. Grâce au code fourni dans la partie ??, nous calculons l'information mutuelle de chacune des variables.

Premièrement, nous calculons l'entropie de chacune de ces variables. Pour la variable A, nous avons le tableau suivant (en fréquence).

	15-29 ans	30-39 ans	40-49 ans	50-59 ans	60+ ans
Age	0.1866	0.2419	0.2730	0.2441	0.0542

Table 1: Distribution par âge (A)

Nous pouvons calculer l'entropie de A.

$$H(A) = -\sum_{i=1}^{6} p_i \log_2(p_i) = 2{,}1833$$

De même manière, nous calculons l'entropie de C et S.

	Femme	Homme
Proportion	0,6589	0,3411

Table 2: Distribution par sexe (S)

	Agriculteur	Artisans	Cadres	Profession In	Employes	Ouvrier
Proportion	0,0207	0,0740	0,1875	0,2512	0,2240	0,2423

Table 3: Distribution par catégorie socioprofessionnelle (C)

Nous obtenons.

$$H(S) = 0,9258$$
 $H(C) = 2,3266$

A présent, nous devons calculer les valeurs suivantes : H(A, S), H(A, C) et H(S, C).

	15-29 ans	30-39 ans	40-49 ans	50-59 ans	60+
Femme	0,1220	0,1584	0,1803	0,1618	0,0362
Homme	0,0645	0,0834	0,0927	0,0823	0,1802

Table 4: Distribution jointe sexe (S) et âge (A)

	15-29 ans	30-39 ans	40-49 ans	50-59 ans	60+
Agriculteur	0,0013	0,0031	0,0052	0,0081	0,0030
Artisans	0,0049	0,0153	0,0234	0,0225	0,0080
Cadres	0,0219	0,0471	0,0568	0,0468	0,0149
Professions In	0,0489	0,0665	0,0699	0,0563	0,0094
Employes	0,0509	0,0511	0,0571	0,0535	0,0113
Ouvrier	0,0586	0,0586	0,0604	0,0569	0,0077

Table 5: Distribution jointe (C) et âge (A)

		Agriculteur	Artisans	Cadres	Profession IN	Employes	Ouvrier
	Femmes	0.0119	0.0433	0,1175	0.1705	0.1810	0.1344
ĺ	Homme	0.0087	0.0307	0,0700	0.0807	0.0430	0.1079

Table 6: Distribution jointe (C) et (S)

Nous obtenons les valeurs suivantes.

$$H(A,S) = 3,1092$$
 $H(A,C) = 4,4817$ $H(C,S) = 3,2242$

De plus, nous obtenons pour $\mathcal{H}(A,S,C)$ la valeur suivante.

$$H(A, C, S) = -\sum_{n=1}^{72} p_i \log_2(p_i) = 5,3778$$

Nous pouvons calculer les informations mutuelles.

$$I(C, (AS)) = H(C) + H(A, S) - H(A, S, C) = 0,0580$$

$$I(A, (SC)) = 0,029803$$

$$I(S, (CA)) = 0,029813$$

Cherchons le rapport entre l'information mutuelle et la variable conditionnée le plus élevé.

$$R_1 = \frac{I(C, (AS))}{H(A, C)} = 0{,}0187$$

$$R_2 = \frac{I(A, (SC))}{H(S, C)} = 0,0092$$

$$R_3 = \frac{I(S, (CA))}{H(A, C)} = 0,0066$$

Le rapport R_1 est le plus élevé. Donc la variable C modélisé par les deux autres (A et S) nous donne le plus d'information.

2.2 Arbre de segmentation binaire

Grâce à la partie 2.1, nous pouvons calculer les informations mutuelles suivantes.

$$I(A, S) = H(A) + H(S) - H(A, S) = 5,1104 * 10^{-5}$$

 $I(A, C) = 0,02830$
 $I(S, C) = 0,02831$

Faisons, la somme de ses informations mutuelles avec chacune des deux autres.

$$\bar{I}_A = I(A, S) + I(A, C) = 0,02835$$

$$\bar{I}_S = 0,02836$$

$$\bar{I}_C = 0,0566$$

Nous avons donc $\bar{I_C}$ qui est le plus élevé. Ainsi, l'arbre de segmentation commencera avec la variable C.

3 Exercice 2

3.1 Recodages

3.1.1 Recodage en 2 variables

En agrégeant seulement les classes contigues, nous avons 4 possibilités de regroupement binaire de X. NB: Dans cette partie, nous effecturons nos calculs avec le log népérien.

$$Z_1 = \{\{0\%\}, \{0 - 0.5\%, 0.5 - 1\%, 1 - 3\%, > 3\%\}\}$$

$$Z_2 = \{\{0\%, 0 - 0.5\%\}, \{0.5 - 1\%, 1 - 3\%, > 3\%\}\}$$

$$Z_3 = \{\{0\%, 0 - 0.5\%, 0.5 - 1\%\}, \{1 - 3\%, > 3\%\}\}$$

$$Z_4 = \{\{0\%, 0 - 0.5\%, 0.5 - 1\%, 1 - 3\%\}, \{> 3\%\}\}$$

L'entropie de chacun de ses recodages se calcule numeriquement et donne :

$$H(Z_1) = -\left(\frac{29}{72}log_2(\frac{29}{72}) + \frac{43}{72}log_2(\frac{43}{72})\right) = 0.973$$

De la même manière, nous trouvons.

$$H(Z_2) = 0.954$$
 $H(Z_3) = 0.617$ $H(Z_4) = 0.106$

Le meilleur recodage est donc le premiers c'est à dire : $Z1 = \{\{0\%\}, \{0 - 0.5\%, 0.5 - 1\%, 1 - 3\%, > 3\%\}\}$

3.1.2 Recodage en 3 variables

En procédant de la meme facon, on considère alors 6 cas :

$$\begin{split} Z_1 &= \{\{0\%\}, \{0-0.5\%\}, \{0.5-1\%, 1-3\%, > 3\%\}\} \\ Z_2 &= \{\{0\%\}, \{0-0.5\%, 0.5-1\%\}, \{1-3\%, > 3\%\}\} \\ Z_3 &= \{\{0\%\}, \{0-0.5\%, 0.5-1\%, 1-3\%\}, \{> 3\%\}\} \\ Z_4 &= \{\{0\%, 0-0.5\%\}, \{0.5-1\%, 1-3\%\}, \{> 3\%\}\} \\ Z_5 &= \{\{0\%, 0-0.5\%\}, \{0.5-1\%\}, \{1-3\%, > 3\%\}\} \\ Z_6 &= \{\{0\%, 0-0.5\%, 0.5-1\%\}, \{1-3\%\}, \{> 3\%\}\} \end{split}$$

L'entropie est calculé numériquement :

$$H(Z_1) = 1.541$$
 $H(Z_2) = 1.462$ $H(Z_3) = 1.068$ $H(Z_4) = 1.040$ $H(Z_5) = 1.320$ $H(Z_6) = 0.684$

Nous remarquons que le meilleure recodage en 3 variables est Z1.

3.2 Le meilleur recodage de X pour prédire Y

Il sagit ici de recoder X en réduisant l'incertitude sur Y. Nous devons donc trouver le Z_k qui maximise l'information mutuelle entre Z_k et Y.

C'est à dire, trouvons le recodage \mathbb{Z}_k qui maximise :

$$I(Z_k; Y) = \sum_{z \in Z_k} \sum_{y \in Y} p(z, y) \log \left(\frac{p(z, y)}{p(z)p(y)} \right)$$

$$\tag{1}$$

Détaillons le calcul pour le premier recodage :

	0%	$\neq 0\%$
OUI	2/72	20/72
NON	27/72	23/72

Ainsi

$$p(Z_1 = 0\%) = \frac{29}{72}, \quad p(Z_1 \neq 0\%) = \frac{43}{72}$$

 $p(Y = \text{Oui}) = \frac{22}{72}, \quad p(Y = \text{Non}) = \frac{50}{72}$

De plus

$$p(Z_1 = 0\%, Y = \text{Oui}) = \frac{2}{72}, \quad p(Z_1 = 0\%, Y = \text{Non}) = \frac{27}{72}$$

 $p(Z_1 \neq 0\%, Y = \text{Oui}) = \frac{20}{72}, \quad p(Z_1 \neq 0\%, Y = \text{Non}) = \frac{23}{72}$

Nous pouvons calculer l'information mutuelle I(Z1,Y), en utilisant la formule 1.

$$\begin{split} I(Z_1;Y) &= p(Z_1 = 0\%, Y = \text{Oui}) \log_2 \left(\frac{p(Z_1 = 0\%, Y = \text{Oui})}{p(Z_1 = 0\%)p(Y = \text{Oui})} \right) + \dots \\ &+ p(Z_1 = 0\%, Y = \text{Non}) \log_2 \left(\frac{p(Z_1 = 0\%, Y = \text{Non})}{p(Z_1 = 0\%)p(Y = \text{Non})} \right) + \dots \\ &+ p(Z_1 \neq 0\%, Y = \text{Oui}) \log_2 \left(\frac{p(Z_1 \neq 0\%, Y = \text{Oui})}{p(Z_1 \neq 0\%)p(Y = \text{Oui})} \right) + \dots \\ &+ p(Z_1 \neq 0\%, Y = \text{Non}) \log_2 \left(\frac{p(Z_1 \neq 0\%, Y = \text{Non})}{p(Z_1 \neq 0\%)p(Y = \text{Non})} \right) \end{split}$$

Nous trouvons alors:

$$I(Z_1; Y) = 0.176$$

Faisons le même cheminement mais avec les autres variables. Nous obtenons alors les informations mutuelles suivante.

$$I(Z_1, Y) = 0.176$$

$$I(Z_2, Y) = 0.091$$

$$I(Z_3, Y) = 0.033$$

$$I(Z_4, Y) = 0.024$$

On observe que l'information mutuelle la plus élevé est $I(Z_1, Y)$. Donc le recodage avec la variable Z_1 est le meilleur permettant de prédire Y.

4 Exercice 3

4.1 Description

On considère le tableau recensant des espèces de champignons suivant 4 variables qualitatifs.

Table 7: Caractéristiques des espèces de champignons

Espèce	Comestible	Chapeau	Tige	Couleur
a	О	a	e	b
b	O	a	e	j
\mathbf{c}	O	a	e	b
d	O	pl	\mathbf{f}	j
e	O	pl	\mathbf{f}	b
\mathbf{f}	n	po	f	r
g	n	po	f	j
h	n	po	e	\mathbf{r}
i	n	a	\mathbf{f}	j
j	\mathbf{n}	pl	f	j

On cherche à faire un arbre de discrimination qui permet de prédire la comestibilité à partir des autres caractéristiques, tout en étant le plus court possible.

Pour ce faire, on calcul les informations mutuelles de X_1 avec chaque autre variable. En effet, nous allons chercher la variables qui informe le plus sur la commestibilité. Nous effecturons nos calculs avec le logarithme népérien. Nous posons pour la suite

$$X_1 = \{Comestible\}$$
 $X_2 = \{Chapeau\}$ $X_3 = \{Tige\}$ $X_4 = \{Couleur\}$

4.2 Calculs

4.2.1 Premiere étape

On calcul l'information mutuelle avec la formule suivante, $I(X_1, X_2) = H(X_1) + H(X_2) - H(X_1, X_2)$.

Table 8: Croissement entre comestibilité (X_1) et forme du chapeau (X_2)

X1\X2	Po	a	Pl
О	0	3	2
N	3	1	1

Nous trouvons grâce à ce tableau, $I(X_1, X_2) = H(X_1) + H(X_2) - H(X_1, X_2) = 0.277$.

Pour les variables suivantes, nous avons ces tableaux.

Table 9: Croisement entre comestibilité (X_1) et la tige (X_3)

$X_1 \backslash X_3$	e	f
О	3	2
N	1	4

Table 10: Croisement entre comestibilité (X_1) et la couleur (X_4)

$X_1 \backslash X_2$	b	j	r
O	3	2	0
N	0	3	2

De la même manière, nous pouvons calculer l'information mutuelle et nous trouvons :

$$I(X_1, X_3) = 0.106$$
 $I(X_1, X_4) = 0.357$

Nous pouvons conclure a cette étape que la variable qui apporte le plus d'information sur la comestibilité du champignon est la couleur du champignon. En effet, l'information mutuelle $I(X_1, X_4)$ est la plus élevé.

De plus, on se rend compte dans le tableau 7 que les champignons brun sont commestibles alors que les rouges ne le sont pas.

Traitons le cas des champignons jaune.

4.2.2 Deuxieme étape : champignons jaune

En considérant que les champignons jaune, on calcul les informations mutuelles suivant les autres variables (X_2 et X_3). Nous obtenons les tableaux suivant.

Table 11: Tableau de X_1, X_2 avec champignon jaune

$X_1 \backslash X_2$	a	pl	po
O	1	1	0
N	1	1	1

Table 12: Tableau de X_1, X_3 avec champignon jaune

$X_1 \backslash X_3$	е	f
O	1	1
N	0	2

Nous calculons les informations mutuelles et nous obtenons les résultats suivant.

$$I(X_1, X_2) = 0.118$$
 $I(X_1, X_3) = 0.223.$

On considère alors la variable X_3 , celle qui correspond à la tige du champignon. Si le champignon est jaune et épais, alors il est commestible. Sinon il faut distinguer entre le champignon d (commestible) et les champignons g,i,j.

4.3 Arbre de discrimination

 $\label{eq:calcule} A vec \ toutes \ les \ informations \ mutuelles \ calcule, \ on \ obtient \ alors \ l'arbre \ suivant :$

 ${\bf Figure~2:~} {\bf Arbre~} {\bf de~} {\bf discrimination~} {\bf pour~} {\bf la~} {\bf comestibilit\'e~} {\bf d'un~} {\bf champignon~}$