Component Specification & Project Plan

Components

Visualization:

Description: The visualization is the interface the user uses when deciding if they are using the Guest Visualization or the Host Visualization. Uses a bash command to run and open

Interactions: The visualization uses a dataframe that is constructed by the data gathering and cleaning modules, and the results of the price prediction model.

bokeh_plot.py

Description: User interface for the Guest to view the price listings and Hosts to estimate the

listing price for their listing.

Inputs: cleaned listings file

Outputs: data visualization and user interface

Data Gathering and Cleaning:

Description: A group of modules used to read in data from <u>Inside Airbnb</u> and clean and aggregate the data into forms that the machine learning model can use.

Interactions: These modules are used to create a cleaned dataframe that can be used by the machine learning model and the visualization/user interface

convert to matrix.py

Description: Converts dataframe into numerical array to be used in our model

Inputs: Cleaned dataframe of airbnb listings

Outputs: Numerical array of features and array of prices

get calendar summary.py

Description: creates aggregate prices for each listing by weekday price, weekend price, and

seasonal price (fall, spring, summer, winter)

Inputs: a dataframe of calendar information

Outputs: a dataframe and .csv with average price by weekday, weekend, summer, winter,

spring and fall

get cleaned listings.py

Description: cleans listing data pulled from <u>Inside Airbnb</u>, and splits the combined amenities

column into individual amenities columns

Inputs: listings data

Outputs: a cleaned dataframe and a .csv file

get data.py

Description: used to read in datasets off of <u>Inside Airbnb</u>

Inputs: city, state abbreviation, country, date of data compilation (yyyy_mm_dd), and

filename.

Outputs: a dataframe

sentiment.py

Description: performs a sentiment analysis on the reviews of the Airbnb listings

Inputs: a dataframe of the listings reviews

Outputs: a dataframe and .csv of the mean, variance and count of the reviews by listing

transform_input.py

Description: Uses boxcox transformation on the input to be fed into the model

Inputs: Data of the listings in array form

Outputs: Data of the listings in array form boxcox transformed

zillowbnb.py

Description: main module to run to read in data, identify specific columns to use in the

predicting price model, run cleaning procedures, and sentiment analysis.

Inputs: city, state abbreviation, country, date of data compilation (yyyy_mm_dd), and

filename

Outputs: a merged dataset of the sentiment analysis, cleaned listings data, and price data

Price Prediction Model:

Description: Machine Learning model used to predict listing prices of Airbnb listings

Interactions: requires a cleaned dataset that is created from running the data cleaning modules

price prediction.py

Description: Creates price predictions off of the listing data provided **Inputs:** Data of the listings in array form and name of the city

Outputs: Array of predicted prices

Project Plan

Week 1:

- Visualization tool Tech Review -
 - Create preliminary visualizations for each technology
 - o Dash, Tableau, Bokeh
- Clean Airbnb datasources
 - listings
 - o calendar
 - reviews
- Import data sources into format for model

Week 2:

- PCA (Feature Selection) for Listings Data
- Simplify Calendar Data
- Perform Sentiment Analysis
- More Bokeh commit initial work
- Begin creating unit tests
 - Input file matches the correct criteria
 - Valid address input from host
 - Typing filter on visualization returns error when invalid value
- Create model and define features users can filter by
 - Validation
 - Start visualizations and user filters

Week 3:

- Update Bokeh visualizations using features selected by PCA
- Convert user input into array for model
- Finalize model and store model coefficients
- Run evaluation metric on listing dataset: Good, bad, meh metric (Too Low (-50%), Low (-25%),
 Average(+-10%), High (+25%), Too High (+50%)) Probably not these values, but something like this.
 Don't really know until we get model running
- Begin drafting Final Presentation
 - Future work: increase scope (other cities)

Week 4:

- Final Presentation dry run
- Complete user test
- Clean up git repo and finalize Functional Specifications and Component Specifications

Week 5:

Final presentation