Manual for Using Memristor Models

(Written by: Dmitry Fliter & Keren Talisveyberg EE dept. Technion, Israel, December 2011)

Note: Before running any simulation we recommend using the MATLAB model for proper parameter selection.

- 1. Download both: MemristorGui.fig, MemristorGui.m for MATLAB
- 2. Run MemristorGui in MATLAB prompt.

The next steps apply both for MATLAB and for SPICE users:

- 3. Choose the Memristor model (other option are not allowed):
 - 0. Linear Ion Drift
 - 1. Simmons Tunnel Barrier
 - 2. TEAM Threshold Adaptive Memristor
 - 3. Nonlinear Ion Drift
- 4. Choose the window (other options are not allowed):
 - 0. No window
 - 1. Jogelkar window
 - 2. Biolek window
 - 3. Prodromakis window
 - 4. Kvatinsky window (only for Team model)
- 5. In case the selection is Team model specify the I-V relation:
 - 0. Linear I-V => V=IR
 - 1. Nonlinear I-V => V=IR*exp(..)
- 6. Select the desired parameters (the parameters are described in the end of this document).

In the table below we include the suggested parameters.

Parameters		Linear	Simmons	Nonlinear	TEAM
Name [Units]	Description	Ion Drift	Tunnel Barrier	Ion Drift	
Frequency [Hz]	Source frequency (Sine input)	2	2e6	2	2e6
Source amp	Source amplitude	0.003	0.003	1	0.003
Ron [Ohm]	Memristor's minimum resistance	100	100		100
Roff [Ohm]	Memristor's maximum resistance	2e5	2e5		2e5
D [m]	Physical width of the memristor	10e-09	3e-09		3e-09
V_threshold [V]	Threshold voltage (for linear ion drift models, originally threshold was not included in the Linear ion drift model, added in order to suit the physical expected behavior of the memristor)	0	0		0
uv [m^2/Vsec]	Linear ion mobility for linear ion drift model	10e-14			
P coeff	The value of p in the window functions	2		1	2
Initial state [0:1]	The initial state of the state variable	0.5	0.5	0.5	0.5
i	j in Prodomakis window function	1		1	1.5
Alpha	Alpha in nonlinear ion drift			2	
Beta	Beta in nonlinear ion drift			9	
С	χ in nonlinear ion drift			0.01	
g	V in nonlinear ion drift			4	
n	n in nonlinear ion drift (odd positive integer)			13	
q	q in nonlinear ion drift (odd positive integer)			13	
a	a in nonlinear ion drift			4	
a_on [m]	Upper bound of undoped region (Simmons tunnel barrier)		2e-09		2.3e-09
a_off [m]	Lower bound of undoped region (Simmons tunnel barrier)		1.2e-09		1.2e-09
i_on [A]	Threshold current in TEAM/ i _{on} in Simmons tunnel barrier		8.9e-06		-1e-06
i_off [A]	Threshold current in TEAM/ i _{off} in Simmons tunnel barrier		115e-06		1e-06
c_on [m/s]	State derivative coefficient for Simmons tunnel barrier		40e-06		
c_off [m/s]	State derivative coefficient for Simmons tunnel barrier		3.5e-06		
b [A]	Normalized current for Simmons tunnel barrier		500e-06		
X_c [m]	Normalized length for Simmons tunnel barrier		107e-12		107e-11
k_on [m/sec]	k _{on} in TEAM				-8e-13
k_off [m/sec]	k _{off} in TEAM				8e-13
x_on [m]	Lower bound of undoped region (TEAM)				0
x_off [m]	Upper bound of undoped region (TEAM)				D=3e-09
alpha_off	Nonlinearity power coefficient for TEAM				3
alpha_on	Nonlinearity power coefficient for TEAM				3
Num of cycles	The number of source cycles to simulate in MATLAB				
model	The required model – 0,1,2,3	0	1	3	2
window_type	The required window function – 0,1,2,3,4	2 – Biolek	not needed	2 – Biolek	4 – Kvatinsky
dt	Numeric simulation time step (for virtuoso).	When running a transient Simulation (ADEXL), always declare "dt" in the Memristor the same as max_step size in transient simulation. Usually dt should be 3 orders less than 1/f. for Example: f=2Hz, dt~1e-03.			
W_multiplied	A normalization for the state variable (for virtuoso)	1e9	1e9	1	1e9
P_window_noise	A small noise in order to avoid boundary problems in window functions (for virtuoso)	1e-18	1e-18	1e-18	1e-18

7. Plot state Variable and I-V curve and Change the parameters till you get the wanted I-V relation (unfortunately, the GUI does not support figure export to file).

For example:

8. Apply the same parameters on SPICE Memristor.

Opening a Memristor model in SPICE tool (e.g., CADENCE Virtuoso):

- 1. Download Memristor.va
- 2. Open Virtuoso (Cadence).
- 3. Create new Library and Cellview. File -> new >Cellview. Choose the type of the Cellview to be VerilogA. To a <u>Blank</u> .va file, Copy the code from Memristor.va to the new Cellview. Exit "insert" mode with Esc and save and create new Symbol by entering ":wq". You can edit the symbol and draw a memristor symbol.
- 4. Open new Schematic and add Memristor instance from the library you created it above.
- 5. Connect the wanted Design.
- 6. In order to change the Memristor model or settings (in Virtuoso), press Q on the Memristor and on the CDF parameter to view select VerilogA.

