Digital Logic Design

Sung-Soo Lim

Today's Topic

Tabular Method

Tabular Method: Quine-McCluskey

- Developed in the mid-50's
- Finds the minimized representation of a Boolean function
- Provides systematic way of generating all prime implicants then extracting a minimum set of primes covering the on-set
- Accomplishes this by repeatedly applying the Uniting theorem
 - Uniting theorem: ab + ab' = a(b+b') = a*1 = a

Quine-McCluskey Algorithm

- Algorithm steps
 - Find all the prime implicants
 - Find all the essential prime implicants
 - Select a minimal set of remaining prime implicants that covers remaining 1s

- Minimize F = a'b'c' + a'b'c + ab'c + abc' + abc
 - Step 1: Find all the prime implicants
 - List all elements of on-set and don't care set, represented as a binary number
 - Group minterms according to the number of 1's in the minterm

a'b'c'	(0) 000	G0	(0) 000	}	group G0 contains all minterms containing zero 1's
a'b'c	(1) 001	G1	(1) 001	}	group G1 contains all minterms containing one 1
ab'c	(5) 101	G2	(5) 101	_	group C2 contains all minterms containing two 4's
abc'	(6) 110		(6) 110	}	group G2 contains all minterms containing two 1's
abc	(7) 111	G3	(7) 111	_}	group G3 contains all minterms containing three 1's

this grouping strategy will help us compare the minterms systematically

- Step 1: Find all the prime implicants (cont')
 - Compare each entry in G_i to each entry in G_{i+1}
 - If they differ by 1 bit, we can apply the uniting theorem and eliminate a literal
 - Add check to minterm/implicant to remind us that it is not a prime implicant (combined with another element to form a larger implicant)

no new implicants are generated – end of step 1

we have found all prime implicants (ones without check marks)

- Step 2: Find all essential prime implicants
 - Create prime implicant chart
 - Columns are minterm indicies, rows are the prime implicants we determined

derived in Step1

- Step 2: Find all essential prime implicants (cont')
 - Place "X" in a row if the prime implicant covers the minterm
 - Essential prime implicants are found by looking for rows with a single "X"
 - If minterm is covered by one and only one prime implicant it's an essential prime implicant
 - Add essential prime implicants to the cover

- Step 3: Select a minimal set of remaining prime implicants that covers remaining 1s
 - Step 2 determined essential prime implicants, and added to cover
 - Essential prime implicants may cover other minterms, cross out all minterms covered by the prime implicants
 - Minterm only needs to be covered once

- Step 3: Select a minimal set of remaining prime implicants that covers the on set of the function (cont')
 - Based on which minterms are left, add minimal set of prime implicants to cover

Minimize F = w'x'y'z' + w'x'yz + w'x'yz' + w'xy'z' + w'xyz + w'xyz' + wxyz + wx'y'z + wx'yz

G0	(0) 0000
G1	(2) 0010
	(4) 0100
G2	(3) 0011
	(6) 0110
	(9) 1001
G3	(7) 0111
	(11) 1011
	(13) 1101
G4	(15) 1111

		(0.2) 2		
G0	/ (0) 0000	(0,2) ?	G0 🧹	(0,2) 00-0
		(2,3) ?	J	(0,4) 0-00
G1	/ (2) 0010	(2,6) ?		
	(4) 0100	(2,9) ? N	G1 🗸	(2,3) 001-
	(-)	(4,3) ? N	J	(2,6) 0-10
G2	(3) 0011	(4,6)?	,	
	√ (6) 0110	(4,9) ? N	•	(4,6) 01-0
	/ (9) 1001	(3,7)?	G2 /	(3,7) 0-11
	•	(3,11) ?	.	-
G3	√ (7) 0111	(3,13) ? N	✓	(3,11) -011
00	√ (/) 0111	(6,7)?	,	(6,7) 011-
	√ (11) 1011	(6,11) ? N	₩	
	/ (13) 1101	(6,13) ? N	✓	(9,11) 10-1
	• • •	(9,7) ? N	1	(9,13) 1-01
	. (45) 4444	(9,11) ?	•	
G4	√ (15) 1111	(9,13) ?	G3 /	(7,15) -111
		(7,15) ?	ν,	
		(11,15)?	✓	(11,15) 1-11
		(13,15) ?	✓	(13,15) 11-1

Minimize the following function

•
$$f(x_1,...,x_4) = \sum m(0,4,8,10,11,12,13,15)$$

List 1 List 2

0	0 0 0 0	~
4 8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V
10 12	1 0 1 0 1 1 0 0	\ \
11 13	1 0 1 1 1 1 0 1	\ \
15	1 1 1 1	\ \

0,4 0,8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	✓
8,10 4,12 8,12	1 0 x 0 x 1 0 0 1 x 0 0	✓
10,11 12,13	1 0 1 x 1 1 0 x	
11,15 13,15	1 x 1 1 1 1 x 1	

List 3

• What is the set of prime implicants?

$$P = \{10x0, 101x, 110x, 1x11, 11x1, xx00\}$$

= \{p1, p2, p3, p4, p5, p6\}

Prime implicant	Minterm 0 4 8 10 11 12 13 15
$p_1 = 1 \ 0 \ x \ 0$	
$p_2 = 1 \ 0 \ 1 \ x$	✓ ✓
$p_3 = 1 \ 1 \ 0 \ x$	✓ ✓
$p_4 = 1 \times 1 1$	✓
$p_5 = 1 \ 1 \ x \ 1$	✓ ✓
$p_6 = \mathbf{x} \times 0 0$	✓ ✓ ✓ ✓

e.p.i.

Prime		Min	term	
implicant	10	11	13	15
p_1	✓			
p_2	✓	✓		
p_3			\checkmark	
p_4		✓		\checkmark
p_5			\checkmark	V

row dominance

p2 dominates p1 and p5 dominates p3

The final cover is : $C = \{p2, p5, p6\}$ $= \{101x, 11x1, xx00\}$

Minimize the following function

•
$$f(x_1,...,x_4) = \sum m(0,2,5,6,7,8,9,13) + D(1,12,15)$$

List 1

		•
0	0 0 0 0	✓
1 2 8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	✓✓
5 6 9 12	0 1 0 1 0 1 1 0 1 0 0 1 1 1 0 0	
7 13	0 1 1 1 1 1 1 1 0 1	✓ ✓
15	1 1 1 1	✓

List 2

0,1	0	0	0	X
0,2	0	0	X	0
0,8	X	0	0	0
1,5	0	X	0	1
2,6	0	X	1	0
1,9	X	0	0	1
8,9	1	0	0	X
8,12	1	X	0	0
5,7	0	1	X	1
6,7	0	1	1	X
5,13	X	1	0	1
9,13	1	X	0	1
12,13	1	1	0	X
7,15	X	1	1	1
1,10				

List 3

0,1,8,9	x 0 0 x
1,5,9,13 8,9,12,13	x x 0 1 1 x 0 x
5,7,13,15	x 1 x 1

$$P = \{00x0,0x10,011x,x00x,xx01,1x0x,x1x1\}$$
$$= \{p1,p2,p3,p4,p5,p6,p7\}$$