TEEP-DEVICE

The National Institute of Advanced Industrial Science and Technology

2022-02-08

1	Overview of TEEP-DEVICE	1
	1.1 Features	1
	1.2 Keys used on teep-device	1
	1.3 Diagram	2
2	TEEP-DEVICE Operations	2
	2.1 Step1	2
	2.2 Step2	2
3	Clone and Building	2
	3.1 Install Doxygen-1.9.2	2
	3.1.1 Install Required Packages	2
	3.1.2 Build and Install	2
	3.2 Tamproto Setup	2
	3.3 Keystone	3
	3.3.1 Clone and Build	3
	3.3.2 Check teep-device by running hello-app and teep-broker-app	3
	3.3.3 Run Tamproto (TAM Server)	3
	3.3.4 Copy the hello-app and teep-broker-app binaries to Unleased	4
	3.3.5 Check hello-app and teep-broker-app on Unleased	4
	3.4 OPTEE	6
	3.4.1 Clone and Build	6
	3.4.2 Check teep-device by running hello-app and teep-broker-app on RPI3	6
	3.4.3 Run Tamproto (TAM Server)	6
	3.4.4 Copy the hello-app and teep-broker-app binaries to RPI3	7
	3.4.5 Check hello-app and teep-broker-app on RPI3	7
	3.5 SGX	8
	3.5.1 Clone and Build on SGX	8
	3.5.2 Check teep-device by running hello-app & teep-broker-app on SGX	8
	3.5.3 Run Tamproto (TAM Server)	8
	3.5.4 Copy hello-app & teep-broker-app binaries to SGX	8
	3.5.5 Check hello-app and teep-broker-app on SGX	9

1 Overview of TEEP-DEVICE

1.1 Features

• AIST will prepare

1.2 Keys used on teep-device

· AIST will prepare

1.3 Diagram

· AIST will prepare

2 TEEP-DEVICE Operations

2.1 Step1

• TO DO by Arun after getting refence from Tsukamoto-san

2.2 Step2

• TO DO by Arun after getting refence from Tsukamoto-san

3 Clone and Building

Clone the teep-device source code and build it for Keystone, OPTEE and SGX. To build please refer to ta-ref.pdf->preparation section

```
• https://192.168.100.↔ 100/rinkai/ta-ref/-/blob/teep-device-tb-slim/docs/ta-ref.pdf
```

3.1 Install Doxygen-1.9.2

This PDF was generated using Doxygen version 1.9.2. To install doxygen-1.9.2 following procedure is necessary.

3.1.1 Install Required Packages

Install following packages on Ubuntu 18.04

```
sudo apt install doxygen-latex graphviz texlive-full texlive-latex-base latex-cjk-all
```

Above packages required to generate PDF using doxygen.

3.1.2 Build and Install

```
git clone https://github.com/doxygen/doxygen.git
cd doxygen
mkdir build
cd build
cmake -G "Unix Makefiles" ..
make
sudo make install
```

3.2 Tamproto Setup

To test teep-device, have to run TAM server on the PC.

Prerequisites

3.3 Keystone

```
sudo apt install rustc npm sudo pip3 install --upgrade git+https://github.com/ARMmbed/suit-manifest-generator.git@v0.0.2
```

Build and Install

```
git clone https://github.com/ko-isobe/tamproto.git cd tamproto git checkout cef99c07b669a49c2748b0c0ff0412ec1628b686 -b 2020-12-18 npm install
```

Make sure your PC is configures with IP address for network connectivity with TEEP device for further testing.

3.3 Keystone

Build teep-device with Keystone. Make sure Keystone and its supporting sources have been build already.

3.3.1 Clone and Build

Prepare the environment setup

```
export TEE=keystone
export KEYSTONE_DIR=<path to keystone dir>
export PATH=$PATH:$KEYSTONE_DIR/riscv/bin
export KEYEDGE_DIR=<path tokeyedge dir>
export KEEDGER8R_DIR=<path to keedger8r dir>
```

Clone and Build

```
git clone https://192.168.100.100/rinkai/teep-device.git
cd teep-device
git submodule sync --recursive
git submodule update --init --recursive
make
```

3.3.2 Check teep-device by running hello-app and teep-broker-app

To check teep-device on Unleased, we need to run TAM server and networking with Unleased dev board

3.3.3 Run Tamproto (TAM Server)

First start the TAM server on PC. Make sure IP address configured on PC and Unleased development board.

```
cd tamproto
npm app.js
JWKBaseKeyObject {
  keystore: JWKStore {},
  length: 4096,
  kty: 'RSA',
  kid: 'sWpWma0lDp_RfHKdtkGSVTYQaMIVQaKhESVmzjaW9jc',
  use: ",
  alg: " }
192.168.0.5
Express HTTP server listening on port 8888
Express HTTPS server listening on port 8443
```

Once TAM server is up, you see above messages

3.3.4 Copy the hello-app and teep-broker-app binaries to Unleased

3.3.4.1 Manual Copy

- Connect to Unleased over serial console then assign IP address ifconfig eth0 192.168.0.6
- · Copy the binaries from build PC over SSH (user:root, password: sifive)

Here 192.168.0.6 is IP Address of Unleased board

```
scp platform/keystone/build/hello-ta/hello-ta root@192.168.0.6:/root/teep-device scp platform/keystone/build/hello-app/hello-app root@192.168.0.6:/root/teep-device scp platform/keystone/build/teep-agent-ta/teep-agent-ta root@192.168.0.6:/root/teep-device scp platform/keystone/build/teep-broker-app/teep-broker-app root@192.168.0.6:/root/teep-device scp $KEYSTONE_DIR/sdk/rts/eyrie/eyrie-rt root@192.168.0.6:/root/teep-device scp platform/keystone/build/libteep/ree/mbedtls/library/lib* root@192.168.0.6:/usr/lib/ scp platform/keystone/build/libteep/ree/libwebsockets/lib/lib* root@192.168.0.6:/usr/lib/
```

3.3.4.2 Write to SD card

Please follow below steps to write the teep-device binaries to SD-card

- · Insert SD card to your PC for Unleashed
- Edit platform/keystone/script/sktinst.sh
 - Check SD-card device name detected on yor PC and fix prefix=?
 - export prefix=/dev/mmcblk0
- execute script/sktinst.sh as follows
 - cd platform/keystone; script/sktinst.sh
- · Move the sd to unleashed board and boot it

3.3.5 Check hello-app and teep-broker-app on Unleased

There are two methods to connect to Unleased.

- · Serial Port using minicom (/dev/ttyUSB0)
- Over SSH: ssh root@192.168.0.6; password is sifive

Setup envrionment in Unleased (create /root/env.sh file and add following lines)

```
export PATH=$PATH:/root/teep-device
export TAM_HOST=tamproto_tam_api_1
export TAM_PORT=8888
insmod keystone-driver.ko
```

3.3.5.1 Run hello-app

```
$ source env.sh
[ 2380.618514] keystone_driver: loading out-of-tree module taints kernel.
```

3.3 Keystone 5

```
[ 2380.625305] keystone_enclave: keystone enclave v0.2
$ cd teep-device/
$ ./hello-app hello-ta eyrie-rt
hello TA
$
```

3.3.5.2 Run teep-broker-app

Use the TAM server IP address (i.e 192.168.0.5)

```
./teep-broker-app --tamurl http://192.168.0.5:8888/api/tam_cbor
```

Upon execution, you see following log

```
teep-bro[ 2932.269897] ------[ cut here ]------[ 2932.274191] WARNING: CPU: 4 PID: 164 at /home/arun/projects/ks-0.3/keystone/riscv-linux/mm/page_alloc c:3926
         _alloc_pages_nodemask+0x150/a
[ 2932.287053] Modules linked in: keystone_driver(0)
[ 2932.291716] CPU: 4 PID: 164 Comm: teep-broker-app Tainted: G
                                                                            W O 4.15.0-00060-g65e929792fb9-dirty
       #4
[ 2932.301867] Call Trace:
  2932.304314] [<0000000036e46dc0>] walk_stackframe+0x0/0xa2
 2932.309686] [<00000000893dfe1c>] show_stack+0x26/0x34
  2932.314725] [<00000000c57ed7ce>] dump_stack+0x5e/0x7c
  2932.319759] [<00000000a68ce031>] __warn+0xca/0xe0
  2932.324445] [<00000000bec1f8a6>] warn_slowpath_null+0x2c/0x3e
  2932.330176] [<00000000e8c56bf2>] __alloc_pages_nodemask+0x14c/0x8da
 2932.336426] [<00000000ec1f9596>] __get_free_pages+0xc/0x52
  2932.341920] [<000000003e8cccc8>] epm_init+0x158/0x1a0 [keystone_driver]
  2932.348502] [<0000000032e4188b>] create_enclave+0x56/0xb0 [keystone_driver]
  2932.355447] [<000000008a656a96>] keystone_create_enclave+0x16/0x40 [keystone_driver]
  2932.363174] [<000000003bbf2147>] keystone_ioctl+0x132/0x164 [keystone_driver]
 2932.370288] [<00000000755f7993>] do_vfs_ioctl+0x76/0x4f4
 2932.375582] [<00000000b88b9c1d>] SyS_ioctl+0x36/0x60
2932.380533] [<00000000aae667a5>] check_syscall_nr+0x1e/0x22
2932.386132] ---[ end trace 66814e3a8c80ec12 ]---
ker.c compiled at Feb 16 2021 11:17:21
uri = http://192.168.0.5:8888/api/tam_cbor, cose=0, talist=
[1970/01/01 00:48:56:0796] NOTICE: POST: http://192.168.0.5:8888/api/tam_cbor [1970/01/01 00:48:56:0798] NOTICE: (hexdump: zero length) [1970/01/01 00:48:56:0801] NOTICE: created client ssl context for default
[1970/01/01 00:48:56:0802] NOTICE: http://192.168.0.3:8888/api/tam_cbor
[1970/01/01 00:48:56:0861] NOTICE:
[1970/01/01 00:48:56:0862] NOTICE: 0000: 83 01 A4 01 81 01 03 81 00 14 1A 77 77 77 77 04
               ....WWWW.
[1970/01/01 00:48:56:0862] NOTICE: 0010: 43 01 02 03 02
                                                                                                    C....
[1970/01/01 00:48:56:0862] NOTICE:
[1970/01/01 00:48:56:0871] NOTICE: POST: http://192.168.0.5:8888/api/tam_cbor
[1970/01/01 00:48:56:0871] NOTICE:
[1970/01/01 00:48:56:0871] NOTICE: 0000: 82 02 A4 14 1A 77 77 77 77 08 80 0E 80 0F 80
          ...WWWW....
[1970/01/01 00:48:56:0872] NOTICE:
[1970/01/01 00:48:56:0873] NOTICE: created client ssl context for default
[1970/01/01 00:48:56:0874] NOTICE: http://192.168.0.5:8888/api/tam_cbor
[1970/01/01 00:48:56:0962] NOTICE:
[1970/01/01 00:48:56:0962] NOTICE: 0000: 82 03 A2 0A 81 59 01 37 A2 02 58 72 81 58 6F D2
          ...Y.7..Xr.Xo.
[1970/01/01 00:48:56:0963] NOTICE: 0010: 84 43 A1 01 26 A0 58 24 82 02 58 20 75 80 7C 54
       .C..&.X$..X u.|T
[1970/01/01 00:48:56:0963] NOTICE: 0020: 62 40 D2 14 E5 7B D5 C4 6A 7C E5 2D ED B0 3D 0E
[1970/01/01 00:48:56:0964] NOTICE: 0030: CC 80 75 F3 F7 E0 65 B3 60 CE AD 85 58 40 54 81
        ..u...e.`...X@T.
[1970/01/01 00:48:56:0964] NOTICE: 0040: 49 CD CA D8 17 72 CC EA 61 4A 19 99 05 AB 97 33
       I....r..aJ.....3
[1970/01/01 00:48:56:0965] NOTICE: 0050: EA 48 D7 1F 13 AE 33 0D 47 FF F5 B8 6C 5C 9B 7A
[1970/01/01 00:48:56:0965] NOTICE: 0060: BB 12 BC 2D FE 9C 20 6A C8 7F E2 28 58 74 E0 74
        j...(Xt.t
[1970/01/01 00:48:56:0965] NOTICE: 0070: A3 BD C4 DA B9 20 C4 37 35 8F 67 46 90 76 03 58
        .75.gF.v.X
[1970/01/01 00:48:56:0966] NOTICE: 0080: BE A5 01 01 02 01 03 58 60 A2 02 44 81 81 41 00
          .....X'...D...A
[1970/01/01 00:48:56:0966] NOTICE: 0090: 04 58 56 86 14 A4 01 50 FA 6B 4A 53 D5 AD 5F DF
        .XV....P.kJS..
[1970/01/01 00:48:56:0967] NOTICE: 00A0: BE 9D E6 63 E4 D4 1F FE 02 50 14 92 AF 14 25 69
[1970/01/01 00:48:56:0967] NOTICE: 00B0: 5E 48 BF 42 9B 2D 51 F2 AB 45 03 58 24 82 02 58
```

```
^H.B.-Q..E.X$..X
[1970/01/01 00:48:56:0968] NOTICE: 00CO: 20 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE
        .. "3DUfw..
[1970/01/01 00:48:56:0968] NOTICE: 00D0: FF 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32
        ..#Eg....vT2
[1970/01/01 00:48:56:0969] NOTICE: 00E0: 10 0E 19 87 D0 01 F6 02 F6 09 58 4E 86 13 A1 15
              ....XN...
[1970/01/01 00:48:56:0969] NOTICE: 00F0: 78 44 68 74 74 70 3A 2F 2F 31 39 32 2E 31 36 38
       xDhttp://192.168
[1970/01/01 00:48:56:0970] NOTICE: 0100: 2E 31 31 2E 33 3A 38 38 38 38 2F 54 41 73 2F 38
        .0.5:8888/TAs/8
[1970/01/01 00:48:56:0970] NOTICE: 0110: 64 38 32 35 37 33 61 2D 39 32 36 64 2D 34 37 35
       d82573a-926d-475
[1970/01/01 00:48:56:0971] NOTICE: 0120: 34 2D 39 33 35 33 2D 33 32 64 63 32 39 39 39 37
       4-9353-324c29997
[1970/01/01 00:48:56:0971] NOTICE: 0130: 66 37 34 2E 74 61 15 F6 03 F6 0A 43 82 03 F6 14
       f74.ta.....C...
[1970/01/01 00:48:56:0972] NOTICE: 0140: 1A 77 77 78
                                                                                                     . WWWX
[1970/01/01 00:48:56:0972] NOTICE:
[1970/01/01 00:48:56:0983] NOTICE: GET: http://192.168.0.5:8888/TAs/8d82573a-926d-4754-9353-32dc29997f74 ta
[1970/01/01 00:48:56:0984] NOTICE: created client ssl context for default
[1970/01/01 00:48:56:0985] NOTICE: http://192.168.0.5:8888/TAs/8d82573a-926d-4754-9353-32dc29997f74.ta
teep_message_unwrap_ta_image: msg len 234110
Decrypt
Decrypt OK: length 174887
Verify
Signature OK 0 130552
ta_store_install: ta_image_len = 130552 ta_name=8d82573a-926d-4754-9353-32dc29997f74 [1970/01/01 00:49:01:9453] NOTICE: POST: http://192.168.0.5:8888/api/tam_cbor
[1970/01/01 00:49:01:9454] NOTICE:
[1970/01/01 00:49:01:9454] NOTICE: 0000: 82 05 A1 14 1A 77 77 77
.....wwww
[1970/01/01 00:49:01:9454] NOTICE:
[1970/01/01 00:49:01:9456] NOTICE: created client ssl context for default [1970/01/01 00:49:01:9457] NOTICE: http://192.168.0.5:8888/api/tam_cbor
[1970/01/01 00:49:01:9505] NOTICE: (hexdump: zero length)
```

3.4 OPTEE

Build teep-device with OPTEE. So make sure OPTEE and its supporting sources have been build already.

3.4.1 Clone and Build

Prepare the environment setup

```
export TEE=optee
export OPTEE_DIR=<optee_3.9.0_rpi3 dir>
export PATH=$PATH:$OPTEE_DIR/toolchains/aarch64/bin:$OPTEE_DIR/toolchains/aarch32/bin
```

Clone and Build

```
git clone https://192.168.100.100/rinkai/teep-device.git
cd teep-device
git submodule sync --recursive
git submodule update --init --recursive
make
```

3.4.2 Check teep-device by running hello-app and teep-broker-app on RPI3

To check teep-device on RPI3, we need to run TAM server on PC and networking with RPI3 board

3.4.3 Run Tamproto (TAM Server)

First start the TAM server on PC. Make sure IP address configured on PC and RPI3 board.

3.4 OPTEE 7

```
cd tamproto
npm app.js
JWKBaseKeyObject {
  keystore: JWKStore {},
  length: 4096,
  kty: 'RSA',
  kid: 'sWpWma0lDp_RfHKdtkGSVTYQaMIVQaKhESVmzjaW9jc',
  use: ",
  alg: " }
192.168.0.5
Express HTTP server listening on port 8888
Express HTTPS server listening on port 8443
```

Once TAM server is up, you see above messages

3.4.4 Copy the hello-app and teep-broker-app binaries to RPI3

3.4.4.1 Copy binaries over SSH to RPI3

- Connect to RPI3 over serial console(/dev/ttryUSB0) then assign IP address <code>ifconfig</code> eth0 192. \leftarrow 168.0.7
- Copy the binaries from build PC over SSH (user:root) to RPI3

```
TODO - Further update required
```

3.4.4.2 Write to SD card

Please follow below steps to write the teep-device binaries to SD-card

- · Insert SD card to your PC for Unleashed
- · Copy the binaries to SD card
- · Move the sd to RPI3 board and boot it

```
TODO - Further update required
```

3.4.5 Check hello-app and teep-broker-app on RPI3

There are two methods to connect to RPI3.

- · Serial Port using minicom (/dev/ttyUSB0)
- Over SSH: ssh root@192.168.0.7

```
TODO - Further update required
```

3.4.5.1 Run hello-app

```
TODO - Further update required
```

3.4.5.2 Run teep-broker-app

Use the TAM server IP address (i.e 192.168.0.3)

```
./teep-broker-app --tamurl http://192.168.0.3:8888/api/tam_cbor
```

Execution logs

```
TODO - Further update required
```

3.5 SGX

Build teep-device with SGX. Make sure SGX and its supporting sources have been build already.

3.5.1 Clone and Build on SGX

Prepare the environment setup

```
export TEE=pc
source /opt/intel/sgxsdk/environment
```

Clone and Build

```
git clone https://192.168.100.100/rinkai/teep-device.git cd teep-device git submodule sync --recursive git submodule update --init --recursive make
```

3.5.2 Check teep-device by running hello-app & teep-broker-app on SGX

To check teep-device on SGX, we need to run TAM server on PC and networking with SGX machine

3.5.3 Run Tamproto (TAM Server)

First start the TAM server on PC. Make sure IP address configured on PC and SGX machine.

```
cd tamproto
npm app.js
JWKBaseKeyObject {
   keystore: JWKStore {},
   length: 4096,
   kty: 'RSA',
   kid: 'sWpWma01Dp_RfHKdtkGSVTYQaMIVQaKhESVmzjaW9jc',
   use: ",
   alg: " }
192.168.0.5
Express HTTP server listening on port 8888
Express HTTPS server listening on port 8443
```

Once TAM server is up, you see above messages

3.5.4 Copy hello-app & teep-broker-app binaries to SGX

Copy the binaries to SGX/NUC machine over SSH

3.5 SGX 9

TODO - Further update required

If source is build natively on the SGX/NUC machine, then just copy the binaries to test PATH.

TODO - Further update required

3.5.5 Check hello-app and teep-broker-app on SGX

TODO - Further update required

3.5.5.1 Run hello-app

TODO - Further update required

3.5.5.2 Run teep-broker-app

If your TAM server IP address is 192.168.0.3, then you

./teep-broker-app --tamurl http://192.168.0.3:8888/api/tam_cbor

Execution logs

TODO - Further update required