# KU-STAR Research Internship

#### Tejas Anand

IIT Delhi Kyoto University

June 3, 2024







# **Presentation Overview**

#### Overview

About me Research Topic at Kyoto University Essential things for Kyoto University for research Future Research Interests Thank You

#### About me

- ▶ JEE Advanced 2021 AIR 119
- ► Incoming 4th year CS Student (Integrated Dual Degree) at IIT Delhi
- Previously worked as a research intern at the Algorithms, Biology Structure Lab at INRIA, Cote d'Azur, Nice France.
- Working with Professor Kohei Suenaga and Atsushi Igarashi on extending approximation algorithms for model counting to integers and lists.
- Hobbies include playing the piano, table tennis and relaxing.





# Research Topic at Kyoto University

Approximating the number of **equivalence classes** of a given relation.

# Research Topic at Kyoto University

Approximating the number of **equivalence classes** of a given relation.

And how does it help?



# Research Topic at Kyoto University

Approximating the number of **equivalence classes** of a given relation.

And how does it help?

Well, It helps in quantifying the sensitive **information leaked** by a computer program as **entropy**.



# A question for the audience

**Example**: How many equivalence classes does the following relation have, where x, y are 32 bit integers?

$$x \sim y \Leftrightarrow x \equiv y \equiv 0 \mod 8 \text{ or } x = y$$
 (1)



#### A question for the audience

**Example**: How many equivalence classes does the following relation have, where x, y are 32 bit integers?

$$x \sim y \Leftrightarrow x \equiv y \equiv 0 \mod 8 \text{ or } x = y$$
 (1)

**Answer:**  $7 \cdot 2^{29} + 1$ . All of the multiples of 8 form 1 equivalence class, and the remaining  $7/8^{ths}$  of the total  $2^{32}$  integers form singleton equivalence classes of their own.



# A question for the audience

**Example**: How many equivalence classes does the following relation have, where x, y are 32 bit integers?

$$x \sim y \Leftrightarrow x \equiv y \equiv 0 \mod 8 \text{ or } x = y$$
 (1)

**Answer:**  $7 \cdot 2^{29} + 1$ . All of the multiples of 8 form 1 equivalence class, and the remaining  $7/8^{ths}$  of the total  $2^{32}$  integers form singleton equivalence classes of their own.

$$(x \equiv y \equiv 0 \mod 8) \lor (x = y) \rightarrow \boxed{\textbf{Our Algorithm}} \rightsquigarrow 7 \cdot 2^{29}$$



#### Research Topic at Kyoto University

- Model counting is the problem of counting the number of solutions to a given set of constraints.
- ▶ The problem of Model Counting (#SAT) is #P-complete.
- ▶ Therefore, we work with an  $(\epsilon, \delta)$  approximation algorithm  $\mathcal{A}$ , whose output n over a problem instance  $\mathcal{F}$  satisfies.

$$\Pr[\mathsf{n} \leftarrow \mathcal{A}(\mathcal{F}) : \frac{\#\mathcal{F}}{1+\epsilon} \leq \mathsf{n} \leq \#\mathcal{F}(1+\epsilon)] \geq 1-\delta$$

- ▶ In simple words, it gives a good enough number with high probability, for small values of  $\epsilon$  and  $\delta$ .
- For instance, we might want to count the number of equivalence classes of the given relation

$$x \sim y \Leftrightarrow x \equiv y \equiv 0 \mod 8 \lor x = y$$
 (2)



### Research Topic at Kyoto University

- Recently, a scalable approximation algorithm for model counting over boolean constraints was propsed by Chakraborty et al.
- ▶ We want to generalize this algorithm to simple arithmetic constraints like modulo, addition, subtraction, etc. over integers (finite fields like  $Z_n$ ) and lists, using SMT solvers (SAT modulo theory) like Z3.
- ► This has applications in computer security, it would be the main ingredient to quantify the sensitive information leaked by a computer programme.



#### Essential things at Kyoto University for research

- One of the most important things for me that Kyoto University offers is the peaceful and serene environment, which in my opinion is essential for research.
- ► I would also like to thank my Advisors Professor Kohei Suenaga and Atsushi Igarashi for hosting me and providing me with a wonderful topic to work on.



#### **Future Research Interests**

- Haven't yet decided on a specific area of research as of now.
- ▶ For now, I would like to explore more by taking courses in different areas of computer science like verification, ML, systems etc.
- ► This internship would be really helpful in helping me explore approximation algorithms.



# Thank You for your Attention!





