! This class has been made inactive. No posts will be allowed until an instructor reactivates the class.		
? question @9 ⊕ ★	stop following 13 v	views
Problem 6.34(b)		Actions ▼
Does anyone know how to find the answers for 6.34b? I was able to find the answers $Var(Y)=(1-\frac{\pi}{4})\theta$) but not how to get them.	online $(E(Y) = \frac{\sqrt{\pi \theta}}{2}$ and	
hw1		
Edit good question 0	Updated 5 years ago by Charles	s Hwang
S the students' answer, where students collectively construct a single answer		
$h^{-1}(u) = sqrt(u); dh/du = (1/2) * (1/sqrt(u));$		Actions ▼
Plugging that in using the transformation method should result in the following (after o	ancellations):	
f_Y(u) = (1 / theta) * e ^ (-u / theta)		
That should look familiar. Too lazy to bother with Latex right now, sorry.		
My bad. Misread the question. :(
Another edit:		
You have to use properties of gamma functions when calculating $E[Y] = E[sqrt(U)]$. Bacancellations, since gamma(z) is equal to the integral of $x^{(z - 1)} e^{-x}$	asically it's a bunch of	
No clue if you've used gamma functions before. I certainly haven't, so it was a godda	mn mess.	
Edit thanks! 0	Updated 5 years ago by Grady	Flanary
followup discussions for lingering questions and comments		

Start a new followup discussion

Compose a new followup discussion