-种新颖的 RAD系统在线扩容方案*

冯 丹. 彭

(华中科技大学 计算机科学与技术学院 信息存储系统教育 部重点实验室、湖北 武汉 430074)

摘 要: 在考虑到算法通用性,实现简易性,以及在扩容过程中能够改变阵列分块大小等特性,以带区为基本导 向给出了 一种 RA D 系统在线扩容方案。它的新颖之处在于:在整 个在线扩容过程中只用维护新 旧两份不同的 磁盘阵列配置信息来实现不同 RAD 级别系统中的在线数据迁移,以及负载平衡等功能。

关键词: 廉价冗余磁盘阵列; 在线扩容; 逻辑卷管理器; 负载均衡

中图法分类号: TP311 文章编号: 1001-3695 (2006) 12-0244-03 文献标识码: A

Novel Scheme for On-line Capacity Expansion in RAID System

FENG Dan PENG Li

(National Lab of Storage System, College of Camputer, Sci. & Tech. Huazhong University of Sci. & Tech., Wuhan Hubei 430074, China)

Abstract To be a perfect RAD system, the on-line capacity expansion mechanism is necessary. Capacity expansion algorithms is not only disk-oriented, but also stripe-oriented. In view of generality, leasiness and dynamic striping size, present a novel stripe-oriented on-line capacity expansion algorithm, which the key point lies in using two deferent configuration tables of RAID to implement the on-line datam ignation and bad balancing in deferent RAID system.

Key words RAID; On-line Capacity Expansion, LVM; Load Balancing

1 引言

随着计算机和网络在社会中的普及,人们对不同应用的需 求越来越多,原有的老应用设备已经不能满足需求,必须提升 设备的性能。作为系统中重要的组成部分,存储系统也需要提 升其容量和性能。而当前主要联机大容量存储采用磁盘阵列, 所以随着容量增长的要求,就必须增加磁盘阵列系统的容量。 传统的 增加 廉价 冗余 磁盘 阵 列系 统的 容量的 方式 是将 RA D^[4]系统中所有数据备份出来,重新配置,建立 RAID存储 空间, 然后将数据恢复到 RAID系统中。这种方式显然影响了 用户的正常使用, 所以考虑到在线扩容, 如 1.1节所介绍。传 统在线扩容方法大多是从磁盘的 数据布 局以及 磁盘带 宽的使 用角度来考虑。从磁盘的角度作考虑虽然对用户响应影响会 相对小一些, 但是由于涉及到磁盘数据布局, 所以实现上相当 复杂, 适用范围上有磁盘阵列级别和分块大小上的局限性, 且 不能在扩容过程中动态改变阵列分块大小, 故不能在扩容的同 时进行负载的均衡[23]。为了解决这些问题,并且提高方案的 通用性,本文提出了一种新颖的、通用性很强的磁盘阵列系统 在线扩容方案。它无须局限于 RAID 级别, 也无须局限于 RA D分块大小, 并且在扩容过程中可以实现同构系统[1]中的 负载均衡。

1.1 RA D系统在线扩容的基本概念

不使用在线扩容技术时,要想增加原有 RA D系统的容量 就意味着将 RAID系统中的所有数据备份出来,重新配置,建 立 RA D存储空间, 然后将数据恢复到 RA D系统中。显然在 数据转移过程中读写不能进行。而 RAID扩展技术让用户可 以通过在线添加新磁盘、或用大容量磁盘拷贝并替换原磁盘的 方法来扩展 RA ID空间, 无须关闭计算机、重新启动系统, 也无 须备份数据、暂停应用。本文只讨论了用户在线添加新盘的情 况, 如图 1所示。在线扩容保证了在将数据重新条带化分配于 成员盘中时, 原来的数据完好, 容量保持不变, 在重新条带化及 重新分配过程中,数据仍然可以读写,不影响应用。

1.2 逻辑卷管理器

逻辑卷管理器[5]用于维护一个逻辑卷管理配置表,表中 包括所有的磁盘配置表、逻辑卷配置表、逻辑卷组配置表以及 逻辑单元号映射表。物理盘与逻辑卷之间的归属关系、逻辑卷 和逻辑卷组之间的归属关系以及逻辑卷组和逻辑单元号的映 射关系都通过查 询各表中相应字段即可确定。

阵列程序与主机端的存储管理控制台之间均需维护逻辑 卷管理配置表,用户配置阵列或者修改阵列参数,必须将修改

收稿日期: 2005-09-28 修返日期: 2005-11-01

基金项目: 国家"973"计划资助项目 (2004CB318201)
© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

过的配置表传送给阵列的程序: 当阵列程序查询到发现新加入 的物理磁盘时,必须将其报告给主机端的存储管理控制台,而 传递双方信息的桥梁就是逻辑卷管理配置表。本系统中采用 了 In-B and的管理方式,即直接通过 SCSI总线传递配置表信 息。其中自定义了两个 SCSI命令, 即 READ CONFIG (FOh)和 WRITE CONFIG(F1h)。主机端发出 READ CONFIG 命令后, 阵列的逻辑卷管理器识别出该命令,即将配置表从 DOM (Disk On Module)盘上读出并通过光纤通道传递给主机: 主机端发出 WRITE CONFIG 命令后, 阵列的逻辑卷管理器识别出该命令, 即通过光纤通道接收到配置表,并将其写入到 DOM 盘上。

2 RAD系统在线扩容算法

通常,在阵列内存中只用维护一份配置表[5]信息。为了 扩容的需要, 作如下的代码实现: ①需要 两套配置表数 据结构 来保持新旧两份配置信息;②通过未使用的扩展 SCSI命令作 为扩容命令来触发扩容任务,也就是通过主机端的存储管理控 制台发送扩容命令给阵列。情况②为当阵列监测模块检测到 用户在线加盘操作, 填充一份新的阵列配置表信息, 从而触发 扩容任务。

扩容过程: 当主机端发送扩容命令给阵列端或阵列端检测 到有加盘操作后产生了新的配置表信息时, 便触发了扩容任 务。阵列将新的配置信息放在先前分配好的配置表结构中,此 时内存中维护两份配置表信息。此时扩容任务将两份配置表 信息进行比较, 当检测到阵列中某个卷的 盘数增加时, 进入真 正的扩容流程, 然后开始数据的动态迁移操作。在线扩容算法 如下: 当前使用的 RAID系统是由多卷按 JBOD方式组成,每个 卷又为任意的组成方式。算法中选取在其中的某个卷中加盘, M 代表该卷中原先的磁盘个数, N-M 代表在线添加的盘数。

Dο

- (1)确定这次要转移的起始地址和长度;
- (2)设置锁,禁止用户对该区域数据的访问;
- (3)使得内存中的配置表信息为旧的M 盘阵列配置信息:
- (4)产生一个低优先级的读请 \bar{x} , 按照 M 个盘 阵列布局 读取扩容 前阵列中确定数据区域的数据到我们先前申请的扩容缓冲区中;
 - (5)等待所有读操作完成;
 - (6)设置一个全局变量的值, 其中保存当前扩容读操作的起始地
 - (7)释放对这个区域的锁;
 - (8)设置锁,禁止用户对要写的数据区域的访问;
 - (9) 使得内存中的配置信息为新的 N 盘阵列配置信息;
- (10)产生一个低优先级的写请求,将读出的数据按照 N 个盘阵列 布局方式重新分布到现存的盘上, 其中写操作的起始地址、长度和扩容 读操作一样;
 - (11)等待所有写操作完成:
 - (12)恢复内存中的配置表信息为旧的M 盘配置信息;
- (13)判断若是最后一次转移,更新内存中的配置信息为新的 N 盘 配置信息,且将新的配置信息写到 DOM 盘上去;
 - (14)释放对该区域的锁。
 - Until(所有需要转移的数据都得到了转移)。

保证此时扩容进程不读取数据。②在扩容过程中,新用户数据 的写操作与扩容的写操作存在冲突的可能性。

基于在线的原因,在阵列主控程序[4]中应对各种读写命 令先加一些判断,然后再对其进行恰当的处理。读写请求可能 有下列几种情况: ①扩容过程中构造的读命令: ②扩容过程中 构造的写命令: ③没有触发扩容任务之前或是扩容操作全部结 束之后传来的正常用户读写命令; ④扩容读操作完成, 但是扩 容写操作还没有进行期间传来的正常用户读写命令: ⑤在一次 完整的扩容操作完成之后,但全部扩容操作没有完成之前来的 正常用户读写命令。其中前三种情况均应按照正常的读写命 令处理流程来进行处理:后两种应进行特殊处理。在情况 ④下 读写命令应该与扩容的缓冲区进行交互,如图 2所示。图中的 命中与否表示当 前读写操作的 数据区域是否与扩容读写操作 的数据区域有重叠。在情况 ⑤下读写命令无须与扩容缓冲区 进行交互, 但是仍然应考虑按照新或旧配置来进行读写的问 题. 类似干情况 ④的处理。

3 性能测试

阵列配置为 CPU: Intel Pentium 4 X eon 2 4GH z 内存: 512MB DDR; FC 适配器: QLogic QLA 2310F; SCSI 适配器: LSI22320双通道适配器; SCS I硬盘: Seagate ST3146807LC (硬 盘参数: 平均寻道时间为 4.7ms 邻道寻道时间为 0.5ms 转速 为 10 000 mm; 峰值数传率为 320M bps) RA D级别为 RA D 5, 阵 列分块大小设置为 64KB 共八个盘,两个通道,每个通道四个 盘。扩容前阵列内部三个盘组成 RA ID5的卷, 该卷构成 JBOD 卷组。扩容后五个盘组成 RAIDO的卷,该卷组成 JBOD卷组。 阵列控制软件未采用流水 I/O 调度策略。软件平台为 Vx-Works 5. 5.测试工具为 IOM eter(2004.07.30)。

在 IOM eter中将传输请求块设置为 128KB。在不同的工 作负载中, Outstanding I/O 个数分别为 1, 2, 4, 8, 16 时, 分别测 试了在线扩容前后以及扩容过程中阵列对 100% 顺序读写请 求的数传率和平均响应时间。上述实验条件下的测试结果如 表 1和表 2所示。

表 1 100% 顺序读 RAID5

在该算法中,低优先级的读请求一直要到磁盘访问队列中	Outstanding	扩容前		扩容过程中		扩容完成后	
没有其他正常优先级的读请求时,才开始发出。一旦发出,低	I/O 个数		平均响应 时间 (ms)		平均响应 时间 (ms)	数传率 (M bps)	平均响应 时间 (ms)
优先级的读请求就不会被高优先级的访问请求中断。用低优	1	19. 50	6 400 3	2 38	72 4664	29. 77	4 247 1
先级的读请求的目的是为了减少对用户响应时间的影响,因为	2	24 68	10 1246	2 48	144 500	38 53	6 360 7
普通商用磁盘并不支持抢先式访问。同样,用于扩容的写请求	4	25 49	19 6790	2 50	289 134	43 15	11. 597 9
也是低优先级的。算法中对正处于扩容过程中的读写数据区	8	25 37	39, 4862	2 51	578 199	46 86	21. 506 0
域设置保护锁是因为;;①用户写操作会导致数据不一致,必须。	16	25 23	79. 174 6	2 52	998 656	46 56	42 798 5
© 1994-2010 Clinia Academic Journal Electronic Fublish	ing House.	All ligi	112 16261	veu.	nup.//w	ww.ciir	AI.IICt

表 2 100% 顺序写 RAID5

Outstanding I/O 个数	扩容前		扩容过程中		扩容完成后		
	数传率 (M bps)	平均响应 时间 (ms)	数传率 (M bps)	平均响应 时间 (ms)	数传率 (M bps)	平均响应 时间 (ms)	
1	23 51	5 307 8	3 38	54 460 9	28 28	4 4276	
2	28 29	8 847 2	3 48	108 964	35 21	7. 0438	
4	28 31	17. 666 5	3 50	206 136	35 47	14 086 8	
8	28 23	35 959 7	3 52	413 133	35 55	28 286 8	
16	28 12	71. 202 6	3 53	827. 122	35 53	56 279 5	

表 1、表 2表明: 在 RA D5的在线扩容过程中, 虽然阵列系 统对用户读写请求的数传率会变小,且平均响应时间会变长,但 最关键是保证了在增加阵列容量的同时不影响用户的正常使 用。由于 RA D0的实现比 RA ID5容易, 既然 RA ID5的扩容过 程没有影响用户的使用,证明以上提出的在线扩容方案是切实 可行的,并可将其推广于大规模存储系统的在线扩容过程中。

4 算法分析

- (1)本文提出的在线扩容方案的创新之处是:
- ①它无须考虑 RAID 级别, 普适性很强, 既可以用于 RA DQ 也可以用于 RA ID5。相对于受限于 RA D 级别的扩容 算法这是一个很大的优势。
- ②它不用考虑扩容前 RA D 中数据在盘上的布局, 也不用 考虑扩容后数据在阵列中的布局,数据在阵列中的布局可以交 给阵列主控[4]去实现,且在整个实现过程中关键是维护两份 配置信息,实现容易。相对于以磁盘为导向的算法这也是一种 优势。
- ③该算法允许在进行负载均衡和在线扩容的同时改变阵 列卷一级的分块大小。例如可按照 64KB 的阵列分块大小将 数据从阵列中 M 个盘上读出来, 然后按照 16KB的分块大小将 数据重新分布到扩容后的阵列中去。显然在此过程中就可以 将某个盘上频繁访问的物理段迁移到其他磁盘上,这样便可提 高存储的效率。同理,可以将阵列的分块大小由 16KB 变为 64KB 便可以在某些逻辑块不被频繁访问时将它合并后放到 某个磁盘上。
 - (2)该算法由于有很强的通用性,很可能会在其他性能指

(上接第 243页)下一步的工作重点是网格相关的技术、标准以 及实际应用的开发与推广。

参考文献:

- [1] 顾翊,张申生,朱祥飞.一种企业应用集成(EAI)方案的研究[J]. 计算机工程与应用, 2003 1(6): 209-212.
- [2] 周航滨,夏安邦,张长昊. 基于 Web服务的 跨企业 信息集 成框架 [J]. 计算机集成制造系统-CMS, 2003, 9(1): 2-5.
- [3] 黄双喜,范玉顺,赵大哲,等. 基于 Web服务的企业应用集成[J]. 计算机集成制造系统-CMS, 2003, 9(10): 864-867.
- [4] 孙晋文,肖建国.企业应用集成与基于Web Services的构架应用 [J]. 计算机工程与应用, 2003, 39(21): 205-208.
- [5] 刘英 丹, 董传良. 利用 Web Service 实现企业应用集成 [J]. 计算机 应用, 2003 23(7): 124-126.

标上低于其他的扩容算法,如用户的响应时间可能相对其他针 对磁盘作考虑的算法来说会长一些。但是在用户响应时间稍 长的同时, 扩容的时间就会相对短一些。 在实际应用中, 可以 尽量在存储系统比较空闲的时候进行在线扩容操作。但很多 类型的应用还是要求尽可能短的响应时间, 今后应在缩短用户 响应时间上再作进一步研究。

5 结论

本文提出并实现了一种新的 RAID 系统在线扩容方案,由 于它无需考虑数据在磁盘上的布局问题, 故与阵列级别无关, 通用性很强。该扩容算法的新颖之处在于只需维护新旧两份 不同的磁盘阵列配置信息就可以实现不同 RAD 级别系统中 的在线数据迁移,且该算法能对动态负载平衡以及动态 RA ID 级别更改等功能的实现起到一定的导向作用。实验结果也表 明这是一种很可取的在线扩容方案。在今后的研究中,还要针 对不同的用户请求优化算法。

参考文献:

- [1] Gregory R. Ganger. Disk Subsystem Load Balancing. Disk Striping vs. Convention al Data Placement [C]. Proceedings of the Hawaii Internar tional Conference on System Sciences 1993 40-49.
- [2] Scheuermann P, Weikum G, Zabback P. Data Partitioning and Load Balancing in Parallel Disk Systems [J]. The VLDB Journal 1988 (2): 48-66
- [3] Asit Dan, Dink ar Sitaram. An Online Video Placement Policy Based on Bandwidth to Space Ratio (BSR) [C]. Proceedings of the ACM SIGM OD International Conference on Management of Data, 1995 376-385
- [4] 张江陵, 冯丹. 海量信息存储[M]. 北京: 科学出版社, 2003 23-31.
- [5] 陈安定, 谢汶. Linux下的逻辑卷管理[J]. 四川电力技术, 2003, 26 (1): 47-48

作者简介:

冯丹(1970),女,湖北京山人,教授,博导,主要研究方向为计算机存 储系统; 彭丽 (1982-), 女, 湖北监利人, 硕士研究生, 主要研究方向为 计算机存储系统。

工程, 2003 29(13): 133-134.

- [7] I Foster C Kesselman, S Tuecke. The Anatomy of the Grid Enabling Scalable Virtual Organizations [J]. Intl Journal of High Performance Computing Applications 2001, 15(3): 200-222
- [8] I Foster What is the Grid? A Three Point Check list [EB/OL]. ht tp //www. grid today. com /02/0722/100136. htm] 2002-07-22
- [9] I Foster, C Kesselman, S Tuecke, et al. The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems Integra tion [EB/OL]. http://www.globus.org/research/papers/ogsa.pdf 2004-11-11

作者简介:

于锋(1980-), 男, 山东烟台人, 硕士, 研究方向为网格、分布式计算、嵌 入式系统等; 香乾(1962-), 男, 山东荣成人, 教授, 硕士, 研究方向为

[6] 黄允中, 顾志松, 张世永. 网格技术框架的探讨和研究[J]. 计算机 网络 1994-2010 China Academic Journal Electronic Publishing) 网格、CMS、嵌入式系统等。 ling House. All rights reserved. http://www.cnki.net