Introdução ao Aprendizado de Máquina

Lucas Gonçalves de Moura Leite

Aula de hoje

- Aprendizado Supervisionado
 - Naive Bayes
 - Random Forest
 - Gradient Boosted Decision Tree
 - Redes Neurais
- Aprendizado Não-supervisionado
 - Redução de dimensionalidade
 - Clustering

Naive Bayes

Naive Bayes

- Assume que os atributos são descorrelacionados
- Hipótese simplifica o modelo
 - Custo de treinamento
- Em geral possui desempenho pior que outros classificadores
- Pode ter bom desempenho para algumas aplicações
- Calcular a probabilidade de um determinado dado pertencer a uma das classes

Naive Bayes – Scikit-learn

- Bernoulli
 - Atributos binários
- Multinomial
 - Atributos discretos
- Gaussian
 - Atributos reais

Naive Bayes

- Criar modelo independente para cada atributo
 - Custo computacional baixo
- Classificador Linear/Quadrático
- Sem hiperparâmetros
- Muito utilizado para dados com alta dimensão
 - Classificação de textos

Exercício

Usar o Gaussian Naive Bayes para os dados breast cancer

```
from sklearn.naive_bayes import GaussianNB
X_train, X_test, y_train, y_test = train_test_split(X_C2, y_C2, random_state=0)
nbclf = GaussianNB().fit(X_train, y_train)
```


Ensemble Models (Comitê de maquinas)

- Foi demonstrado que a combinação de modelos tende a gerar melhores resultados que os seus componentes individuais.
- Diferentes modelos cometem erros diferentes (overfitting de formas diferentes)
- A combinação alivia o efeito do overfitting
 - Os modelos devem ser diversos

- Ensemble de árvores
- Muito usada
 - Excelentes resultados em muitas aplicações
- Modulo sklearn.ensemble
 - RandomForestClassifier
 - RandomForestRegressor
- Como tornar as árvores diversas ?

- Dados
 - Bootstrap
- Atributos
 - Seleção aleatória
- Resultado
 - Regressão
 - Média da saídas das árvores
 - Classificação
 - Probabilidade fornecida por cada árvore
 - Probabilidade média para cada classe

Vantagens

- Boa performance
- Não é muito sensível a escolha dos parâmetros
- Facilmente paralelizável

Desvantagens

- Sem interpretabilidade
- Desempenho deficiente para dados com muitos atributos

Exercício

Usar o Random Forest para os dados breast cancer

```
from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier(max_features = 8, random_state = 0)
```

- Ensemble model
- Random Forest
 - Arvores em paralelo
- GBDT
 - Arvores em série

- Weak Learners
- Cada nova árvore busca corrigir os erros da anterior

Parâmetros

- learning_rate: define o quanto uma nova árvore tentará corrigir os erros da anterior
- max_depth:profundidade da árvore
- n_estimators:numero de árvores

Vantagens

- Boa performance
- Não é muito sensível a escolha dos parâmetros
- Uso do modelo tem baixo custo computacional

Desvantagens

- Sem interpretabilidade
- Treinamento é custoso
- Desempenho deficiente para dados com muitos atributos

Exercício

- Usar o GBDT para os dados breast cancer
- Usar os parâmetros
 - learning rate=0.1,max depth=3
 - learning_rate=0.1,max_depth=2

```
from sklearn.ensemble import GradientBoostingClassifier
clf = GradientBoostingClassifier(random_state = 0)
```

Redes Neurais

Redes Neurais

- Funcionamento inspirado no neurônio biológico.
- ▶ Tarefas de Aprendizado de Máquina
 - Classificação
 - Regressão

Neurônio Biológico x Neurônio Artificial

Figura 2: Representação do neurônio artificial.

Neurônio Biológico x Neurônio Artificial

McCulloch-Pitts

Figura 2: Representação do neurônio artificial.

Modelo de McCulloch-Pitts

Figura 2: Representação do neurônio artificial.

$$v_j = w_1 x_1 + w_2 x_2 + \dots - b$$

 $\phi(v_j) = 1 \text{ se } v_j > 0$
 $\phi(v_j) = 0 \text{ se } v_j < 0$

Modelo + Regra de aprendizado

Figura 2: Representação do neurônio artificial.

Entrada (x)	Saída (y)
0,0	0
0,1	1
1,0	1
1,1	0

Entrada (x)	Saída (y)
0,0	0
0,1	1
1,0	1
1,1	0

Entrada (x)	Saída (y)
0,0	0
0,1	1
1,0	1
1,1	0

Perceptron

Perceptron

Perceptron

Perceptron de Múltiplas Camadas

- Rede MLP (MultiLayer Perceptron)
 - Problemas não linearmente separáveis

Redes MLP

Redes com múltiplas camadas de neurônios artificiais

Redes MLP

Scikit-learn

Parâmetros

- Função de ativação
- Número de camadas
- Número de neurônios por camada
- Parâmetro de regularização (alpha)

Funções de Ativação

▶ RELU - default

Efeito de numero de neurônios

Efeito de numero de camadas

Efeito de alfa

Dataset 2: NN classifier, alpha = 0.010 Train score = 0.97, Test score = 0.72 10.0 7.5 5.0 2.5 0.0 -2.5-5.0 -7.5 -10.0-7.5 -5.0 -2.5 0.0 5.0 7.5 10.0 2.5

MLP para regressão

Semelhante a classificação

Rede MLP

Vantagens

- Boa performance
- Formam a base para algoritmos estado da arte em muitas aplicações

Desvantagens

- Grande tempo de treinamento
- Grande quantidade de hiperparâmetros

Aprendizado Não Suervisionado

Aprendizado Não Supervisionado

- Tarefa de analisar dados que não possuem rótulos
- Inferir a estrutura do conjunto de dados
- Tarefas não supervisionadas
 - Visualizar a estrutura de dados multidimensionais
 - Comprimir ou sumarizar dados
 - Descobrir agrupamentos (clusters) ou outliers

Agrupamento (clustering)

- Segmentação
- Tratamento diferenciado

Redução de dimensionalidade

 Encontrar aproximação do conjunto de dados original em um espaço de dimensão reduzido

Redução de dimensionalidade

Redução de dimensionalidade

- Visualização dos dados
- Redução da complexidade de modelos de AM

Análise de Componentes Principais (PCA)

Idéia

PCA

- ▶ Informação = Variância
- Rotacionar os dados
 - Transformação linear
 - Novos atributos são um combinação linear dos atributos originais

PCA na prática

- Toma os dados de entrada
- Subtrai as médias
- Calcula a matriz de covariância
- Calcula os autovalores e autovetores
- Escolhe os k maiores autovalores
- Utiliza os k autovetores correspondentes para criar k novos atributos

Escalonamento Muldimensional (MDA)

- Transformação nos dados que preserva relações de vizinhança
- Somente visualização

Clustering

- Quantos grupos existem ?
- Quais os componentes destes grupos ?

- Quantos grupos existem ?
- Quais os componentes destes grupos ?
- Métodos de Agrupamento
 - Hierárquico
 - Não Hierárquico

- Os dados iniciam em grupos definidos
- Dados similares são agrupados formando pequenos grupos
- Pequenos grupos são agrupados formado grupos maiores
- Procedimento é repetido até que todos pertençam a um grupo

Dados são ditos semelhantes de acordo com alguma medida de distância.

- Dados são ditos semelhantes de acordo com alguma medida de distância.
 - Euclidiana

$$D_E(\mathbf{r},\mathbf{s}) = \sqrt{\sum_{j=1}^p (r_j - s_j)^2}$$

Manhattan

$$D_M(\mathbf{r},\mathbf{s}) = \sum_{j=1}^p |r_j - s_j|$$

- Dados são ditos semelhantes de acordo com alguma medida de distância.
 - Euclidiana

$$D_E(\mathbf{r},\mathbf{s}) = \sqrt{\sum_{j=1}^p (r_j - s_j)^2}$$

Manhattan

$$D_M(\mathbf{r},\mathbf{s}) = \sum_{j=1}^p |r_j - s_j|$$

- Similaridade entre grupos pode ser medida pela distância entre centróides
- Gráfico semelhante a uma árvore

- Exemplo
 - Dados
 - ► [1 2],[1 1],[3 3] e [4 3]
 - ▶ Calcula-se uma matriz de distâncias (d²)

	1	2	3	4
1	0	1	5	10
2	1	0	8	13
3	5	8	0	1
4	10	13	1	0

▶ [1 2],[1 1],[3 3] e [4 3]

	1	2	3	4
1	0	1	5	10
2	1	0	8	13
3	5	8	0	1
4	10	13	1	0

▶ [1 2],[1 1],[3 3] e [4 3]

	1,2	3	4
1,2	0		
3		0	1
4		1	0

$$c_{1,2} = [I \ I,5]$$

3

4

▶ [I I.5],[3 3] e [4 3]

	1,2	3	4
1,2	0	6.25	11.25
3	6.25	0	1
4	11.25	1	0

$$c_{1,2} = [I \ I,5]$$

▶ [I I.5],[3 3] e [4 3]

	1,2	3	4
1,2	0	6.25	11.25
3	6.25	0	1
4	11.25	1	0

$$c_{1,2} = [I \ I,5]$$

▶ [I I.5],[3 3] e [4 3]

	1,2	3,4
1,2	0	
3,4		0

$$C_{3,4} = [3.5 3]$$

▶ [I I.5] e [3.5 3]

	1,2	3,4
1,2	0	8
3,4	8	0

$$C_{3,4} = [3.5 3]$$

▶ [I I.5] e [3.5 3]

	1,2	3,4
1,2	0	8
3,4	8	0

$$C_{3,4} = [3.5 3]$$

▶ [1 1.5] e [3.5 3]

	1,2	3,4
1,2	0	8
3,4	8	0

$$C_{3,4} = [3.5 3]$$

Dendrograma

- Pontos pertencem a algum grupo
- Pontos mudam de grupo de forma a satisfazer um determinado critério

- É necessário conhecer o número de clusters
- k centroides são escolhidos aleatoriamente (podem ser escolhidos k membros da população)
- Calcula-se a distância deste pontos para todos os outros
- Os pontos passarão a pertencer ao grupo cuja distância é a menor
- Centróides são recalculados como a média dos pontos do grupo

I – Calcular distâncias

- I Calcular distâncias
- 2 Atribuir Grupos

- I Calcular distâncias
- 2 Atribuir Grupos
- 3 Recalcular centróides

- I Calcular distâncias
- 2 Atribuir Grupos
- 3 Recalcular centróides

- I Calcular distâncias
- 2 Atribuir Grupos
- 3 Recalcular centróides

Limitações do K-médias

- Funciona bem para clusters de tamanhos parecidos, bem separados e com aspecto de hyper-esfera
- Atributos numéricos

DBSCAN

- Density based spatial clustering for applications with noise
 - Não precisa especificar o numero de classes
 - Clusters mais complexos
 - Identifica outliers automaticamente

Idéia

- Clusters são áreas onde existem muitos pontos separados por regiões vazias
- Parâmetros
 - min_samples, eps

DBSCAN

Feature 1

- Core Points Ponto que possui pelo menos min_samples dentro da região definida por eps
- Todos os Core points que estão a uma distancia eps, são colocados no mesmo cluster
- Pontos que não pertencem a um grupo são outliers
- Pontos a uma distancia eps de Core points que não são core points, serão boundary points