Name: David Meriin

ID: 304472038

Name: Yossef Yakobi

ID: 301752267

Report

1. עבור טסט 1 קיבלנו את התוצאות

	Serial	TAS	Beckoff	CLH	MCS
Avrage throughput	148277.3	39199	37968.67	12631.33333	24513.66667
speedUp		0.264363	0.256065	0.085187217	0.165323088

התוצאות הללו הגיוניות כיוון שבטסט זה רץ רק חוט אחד בכל מקרה והשימוש במנעולים מסובכים גורם לביצועים הרבה פחות טובים כי מתבזבז זמן רב בטיפול במנגנוני הנעילה והשיחרור של המנעולים דבר שגורם לתפוקה הרבה יותר נמוכה מאשר לריצה הסדרתית שבה הזמן הזה מנוצל לביצוע הפעולה הרצויה במקרה זה הגדלת המונה.

ניתן גם לראות שככל שמנגנון הנעילה מסובך יותר ב CLH וב MCS התפוקה שלהם הכי קטנה לעומת מנעולים פשוטים יותר כמו TAS ו BECKOFF שלהם ביצועים יותר טובים.

2. עבור טסט 2 קיבלנו את התוצאות

	Serial	TAS	Beckoff	CLH	MCS	n
Throughput	148277.3	39299.67	39192.33	12722	24549.33	1
SpeedUp	1	0.265042	0.264318	0.085799	0.165564	1
		548.6667	22603.33	1244.333	1456	8
		0.0037	0.15244	0.008392	0.009819	8
		123.6667	9859.667	1226.667	1097	64
		0.000834	0.066495	0.008273	0.007398	64

אנו רואים כי עבור חוט אחד , המימוש הכי פשוט - TAS הוא גם הכי יעיל (ביחד עם Backoff), עובדה שמצביעה על כך כי המימושים המסובכים יותר יעילים במספר חוטים גדול. נצפה גם לראות במימושים המסובכים יותר של CLH ו MCS שמנהלים תור שיהיה יותר הגינות בין החוטים.

עבור 8,64 חוטים אנו רואים כי היעילות של MCS,CLH קרובה בין המימושים. בנוסף אנו רואים כי במימושים אלו אין ירידה משמעותית בביצועים בין 8 ל64 חוטים. עבור 8 ו64 חוטים הביצועים של TAS הכי נמוכים , מה שמצביע לנו כי המימוש הפשוט של TAS טוב לשימוש רק במספר קטן של חוטים.

כלומר אנו מסיקים כי כאשר יש מנעול אחד שפונים אילו הרבה חוטים, כדאי לבחור במימושים המורכבים יותר. בנוסף, הרנדומיזציה באלגוריתם Backoff נראת כפתרון הכי יעיל במקרה של מנעול אחד והרבה חוטים.

: 3 התוצאות שקיבלנו עבור טסט

	MCS
deviation	Inc/ms
104.032	938
93.751	1097
80.041	1027
118.060	958
96.403	951
94.632	1027
92.786	1020

CLH					
deviation	Inc/ms				
116.568	1153				
116.241	1118				
658.612	892				
149.205	892				
159.962	1196				
133.085	1145				
127.265	1054				

BECKOFF						
Inc/ms						
11589						
13940						
14665						
15205						
16921						
15790						
12731						

•								
		TAS						
	deviation	Inc/ms						
	8542.900	237						
	8299.754	252						
	7631.034	237						
	8641.944	233						
	6806.455	252						
	7828.278	237						
	8491.234	242						

כיוון שסטיית התקן של מנעול Beckoff גדולה מאוד ללעומת סטיית התקן של שאר המנעולים וגם של TAS לעומת CLH ו WCS נציג את התוצאות בכמה גרפים כדי לקבל זום יותר גדול ולראות יותר את פיזור הנקודות בגרף :

גרף שמציג את כל המנעולים ניתן לראות בו את פיזור התוצאות של Beckoff בצורה ברורה:

גרף שמציג את המנעולים ללא Beckoff ניתן לראות בו את פיזור התוצאות עבור מנעול TAS בצורה ברורה:

גרף שמציג את המנעולים CLH ו CCR בלבד וניתן לראות את פיזור התוצאות שלהם בצורה ברורה :

לכל מנעול ביצענו 7 מדידות וראינו סוג של התכנסות בתוצאות של מספר הגדלות המונה למילי שניות והתכנסות עבור הסטיית תקן.

התוצאות תאמו את ההנחה שלנו שבמספר חוטים גדול יותר המימושים היותר מסובכים כגון CLH התוצאות תאמו את ההנחה שלנו שבמספר חוטים גדול יותר של Beckoff ו WCS

בנוסף המימושים המסובכים יותר של CLH ו MCS שומרים על הגינות בהרצה של החוטים כמו שלמדנו ולכן הסטיית תקן בהרבה יותר קטנה במימושים של CLH ו MCS מאשר במימושים של TAS ו Beckoff שבהם מי שתופס ראשון תופס וחוטים מסויימים יכולים כמעט אף פעם לא להצליח לנעול את המנעול ולכן בהם הסטיית תקן מאוד גדולה.

: עבור טסט 1 בPacket Tests, קיבלנו

W	S	Lock	throughput	SpeedUp	Data For Graph		
25	LockFree	Tas	1456	0.629121	SpeedUp	W	Lock
25	LockFree	BackOff	1347	0.713437	0.629121	25	TAS
25	LockFree	CLH	1079	0.969416	0.754902	200	TAS
25	LockFree	MCS	1489	0.684352	0.936508	800	TAS
25	HomeQueue	Tas	916				
25	HomeQueue	BackOff	961		0.713437	25	BackOff
25	HomeQueue	CLH	1046		0.941889	200	BackOff
25	HomeQueue	MCS	1019		0.918812	800	BackOff
200	LockFree	Tas	1326	0.754902			
200	LockFree	BackOff	1239	0.941889	0.969416	25	CLH
200	LockFree	CLH	1224	0.680556	0.680556	200	CLH
200	LockFree	MCS	1309	0.665393	0.750503	800	CLH
200	HomeQueue	Tas	1001				
200	HomeQueue	BackOff	1167		0.684352	25	MCS
200	HomeQueue	CLH	833		0.665393	200	MCS
200	HomeQueue	MCS	871		0.926295	800	MCS
800	LockFree	Tas	504	0.936508			
800	LockFree	BackOff	505	0.918812			
800	LockFree	CLH	497	0.750503			
800	LockFree	MCS	502	0.926295			
800	HomeQueue	Tas	472				
800	HomeQueue	BackOff	464				
800	HomeQueue	CLH	373				
800	HomeQueue	MCS	465				

התוצאות בטסט זה תואמות את התובנות שלנו מהטסטים של המונה שכאשר יש חוט אחד שרץ ככל שיש יותר טיפול במנעולים יש פגיעה בתפוקה והביצועים פחות טובים ורואים זאת טאן ככל שיש יותר טיפול במנעולים יש פגיעה בשיטת HomeQueue שמשתמש בנעילה של התור פחות טובים מאשר בשיטה של LockFree שבו אין נעילה של התור. בהשוואה לתוצאות של Worker Rate מהתרגיל הקודם אנחנו רואים שיש ירידה כאן לעומת התרגיל הקודם וזאת כתוצאה מהמימושים היותר מסובכים של המנעולים שמגיעים עם

overhead של טיפול בנעילה ושיחרור המנעול. יש ירידה גדולה יותר עבור W=25 (מ overhead לפחות מ 1500) שכן הזמן לטיפול בחבילה הוא קטן יותר ולכן יש יותר נעילות ושיחרורים של המנעול דבר שגורם להרעה בביצועים.

: קיבלנו , Packet Testsב 2 עבור טסט.

	Serial				
		W	throughput	•	
	n 1	1000	throughput 445		
	4	1000	449		
	10	1000	449		
	10	1000	430		
	1	6000	70		
	4	6000	78		
		6000	78		
	10	6000	78		
Devellel					
Parallel	147	tle me verele met		ll-	01
n	W	throughput	speedup	Lock	Strategy
1	1000	377	0.847191	TAS	LockFree
1	1000	340	0.764045	TAS	RandomQueue
1	1000	366	0.822472	TAS	LastQueue
1	1000	410	0.921348	BackOff	LockFree
1	1000	349	0.78427	BackOff	RandomQueue
1	1000	399	0.896629	BackOff	LastQueue
4	1000	948	2.111359	TAS	LockFree
4	1000	891	1.98441	TAS	RandomQueue
4	1000	901	2.006682	TAS	LastQueue
4	1000	912	2.03118	BackOff	LockFree
4	1000	844	1.879733	BackOff	RandomQueue
4	1000	864	1.924276	BackOff	LastQueue
10	1000	1242	2.76	TAS	LockFree
10	1000	655	1.455556	TAS	RandomQueue
10	1000	396	0.88	TAS	LastQueue
10	1000	1730	3.844444	BackOff	LockFree
10	1000	1232	2.737778	BackOff	RandomQueue
10	1000	1207	2.682222	BackOff	LastQueue
1	6000	77	0.987179	TAS	LockFree
1	6000	74	0.948718	TAS	RandomQueue
1	6000	70	0.897436	TAS	LastQueue
1	6000	77	0.987179	BackOff	LockFree
1	6000	76	0.974359	BackOff	RandomQueue
1	6000	77	0.987179	BackOff	LastQueue
4	6000	175	2.24359	TAS	LockFree
4	6000	296	3.794872	TAS	RandomQueue
4	6000	281	3.602564	TAS	LastQueue

4	6000	176	2.25641	BackOff	LockFree	
4	6000	288	3.692308	BackOff	RandomQueue	
4	6000	270	3.461538	BackOff	LastQueue	
10	6000	436	5.589744	TAS	LockFree	
10	6000	703	9.012821	TAS	RandomQueue	
10	6000	656	8.410256	TAS	LastQueue	
10	6000	433	5.551282	BackOff	LockFree	
10	6000	696	8.923077	BackOff	RandomQueue	
10	6000	605	7.75641	BackOff	LastQueue	

W=1000

W=6000

באופן כללי עבור w=1000 יש יותר "מאבק" על מנעולים לעומת w=6000, זאת מכיוון שכאשר w=6000 החוט משקיע יותר זמן ב"עבודה" ובעצם ניגש פחות פעמים לנסות להוציא איבר מהתור. כלומר כל חוט מנסה לנעול פחות פעמים. אנו רואים שכאשר w=1000 נראה שלפתרון הlock-free הביצועים הטובים ביותר בכל החוטים , זאת מכיוון שכל שאר החוטים מבזבזים משאבים על נעילת התור לעצמם, וכן הרצת הלוגיקה של התור כרוכה בתקורה מסוימת גם כן. כפי שראינו בסעיף 2 לTAS אין ביצועים טובים כאשר הרבה חוטים מנסים לנעול את אותו המנעול. מכיוון שיש "מעט" עבודה, החוטים ינסו לנעול כל הזמן מנעולים וחלק גדול הזמן לא יצליחו. כאשר משתמשים באסטרטגיית רנדומית בבחירת תור מקבלים ביצועים יותר טוב מאלו של Last-Queue. זאת מכיוון שבLast-Queue מנעולים ולא מנעול אחד ספציפי , זה גורם לתחרות עוד יותר גדולה בין החוטים על המנעולים מאשר בRandom-Queue.

לעומת זאת , כאשר w=6000 לביצועים הכי נמוכים, זאת מכיוון שכל התורים בעומח . מצב מקבלים כמות עבודה שווה , אך חלק עובדים הרבה יותר מאחרים ולא עומדים בעומח . מצב dispatcher יכול להתקע זמן מסוים על לנסות ולהכניס לתור, כי הוא מנסה זה גורם לכך שהrandom queue יכול להתקע זמן מסוים על לנסות ולהכניס לתור כל עוד זה מלא. עבור אסטרטגיית הBackoff תוצאה זו מצביעה על כך הביצועים הטובים ביותר . גם עבור מנעול TAS וגם Backoff תוצאה זו מצביעה על כך שעבור בקרת עומסים ניתן להשתמש באלגוריתם פשוט כמו רנדומיזציה . אלגוריתם זה תורם בכך שכל חוט בוחר תור ממנו הוא יוציא פקטה , בכל פעם שהוא מוכן לעבוד על פקטה. גישה זו תגרום לכך שתורים יתרוקנו בממוצע יותר מאשר בLock-Free , כי כאשר תור פנוי לשחוט כלשהו יבחר בו ויקח איבר ממנו . זאת בניגוד ל-Lock Free , שם התור יאלץ לחכות עד שהחוט יסיים לעבוד על הפקטה (שכנראה העבודה "ארוכה" ביחס לעבודה שהחוט היה עובד בw=1000).

Last-Queue מניב ביצועים פחות טובים מRandomQueue מכיוון שיש יותר מאבקים על מנעולים, גם בזמן החיפוש של המנעול הזמין וגם כאשר מוצאים תור פנוי לנעילה. יכול להיות ששני חוטים מצאו תור פנוי לנעילה, וכעת שניהם רצים עליו וכל פעם כל חוט מחכה שהחוט השני ישחרר את המנעול על אותו התור.

: עבור טסט 3 בPacket Tests, קיבלנו 6.

	W	S	Lock	throughput	n	Speedup
Serial	1000	-	-	444	1	
Serial	1000	-	-	450	8	
Serial	1000	-	-	450	64	
Serial	6000	-	-	78	1	
Serial	6000	-	-	78	8	
Serial	6000	-	-	79	64	
Parallel	1000	Lock-Free	0	360	1	0.810811
Parallel	1000	Random-Queue	0	350	1	0.788288
Parallel	1000	Last-Queue	0	389	1	0.876126
Parallel	1000	Lock-Free	1	406	1	0.914414
Parallel	1000	Random-Queue	1	397	1	0.894144
Parallel	1000	Last-Queue	1	361	1	0.813063
Parallel	1000	Lock-Free	0	1409	8	3.131111
Parallel	1000	Random-Queue	0	626	8	1.391111
Parallel	1000	Last-Queue	0	491	8	1.091111
Parallel	1000	Lock-Free	1	1479	8	3.286667
Parallel	1000	Random-Queue	1	1252	8	2.782222
Parallel	1000	Last-Queue	1	1207	8	2.682222
Parallel	1000	Lock-Free	0	209	64	0.464444
Parallel	1000	Random-Queue	0	429	64	0.953333
Parallel	1000	Last-Queue	0	115	64	0.255556
Parallel	1000	Lock-Free	1	501	64	1.113333
Parallel	1000	Random-Queue	1	471	64	1.046667
Parallel	1000	Last-Queue	1	51	64	0.113333
Parallel	6000	Lock-Free	0	72	1	0.923077
Parallel	6000	Random-Queue	0	73	1	0.935897
Parallel	6000	Last-Queue	0	75	1	0.961538
Parallel	6000	Lock-Free	1	77	1	0.987179
Parallel	6000	Random-Queue	1	75	1	0.961538
Parallel	6000	Last-Queue	1	77	1	0.987179
Parallel	6000	Lock-Free	0	335	8	4.294872
Parallel	6000	Random-Queue	0	580	8	7.435897
Parallel	6000	Last-Queue	0	533	8	6.833333
Parallel	6000	Lock-Free	1	336	8	4.307692
Parallel	6000	Random-Queue	1	552	8	7.076923
Parallel	6000	Last-Queue	1	399	8	5.115385
Parallel	6000	Lock-Free	0	420	64	5.316456
Parallel	6000	Random-Queue	0	362	64	4.582278
Parallel	6000	Last-Queue	0	200	64	2.531646
Parallel	6000	Lock-Free	1	537	64	6.797468
Parallel	6000	Random-Queue	1	358	64	4.531646
Parallel	6000	Last-Queue	1	227	64	2.873418

W=1000

W=6000

גם כאן אנו רואים כי עבור Lock-Free w=1000 הוא פתרון טוב (עד מספר חוטים 8), שכן כמות העבודה נמוכה והפתרונות עם מנעולים בעיקר נאבקים על לתפוס מנעול של תור. ב64 חוטים אנו רואים ירידה משמעותית מכיוון שהdispatcher לא מספיק למלא את התורים בהרבה מן החוטים, דבר שגורם לחוטים לזרוק הרבה שגיאות של תור ריק, פעולות שידועות להיות בזבזניות. פתרון הbackoff_Random-queue הוא הכי יעיל עבור 64 חוטים שכן הרנדומיזיציה מקטינה את הסיכוי לבחור בתור ריק כאשר אנחנו רוצים להוציא ממנו פקטה, וכן גם אם התור ריק החוט ינסה לבחור שוב תור אחר ולא לנסות להוציא מאותו התור. פתרון הbackoff יותר טוב מזה של הCAS שכן ההמתנה לנעילה נוספת מפחיתה ניסיונות חסרי טעם של נעילת המנעול.

עבור w=6000 , עד 8 חוטים אנו רואים תוצאות דומות ביחסים בין השיטות לניסוי הקודם. כאן מכיוון שיש לכל חוט יותר עבודה , וכן ישנם פחות דרישות לנעילות והתנגשויות בין החוטים השיפור לעומת הריצה הסדרתית גדול יותר מכאשר w=1000. ב64 חוטים Lock-Free הוא בעל הביצועים הטובים ביותר. זאת מכיוון שתחרות על מנעול Lock-Free עם מספר רב של חוטים מאטה את הריצה לעומת מספר קטן של חוטים. אמנם כאשר W=1000 ו- Backoff_Random-queue הראו ביצועים שבור 64 חוטים w=6000 הצורך במנעולים הוא קטן יותר שכן כל חוט עובד יותר זמן על w=6000 הציא מהתור. מכיוון שיש צורך במנועולים קטן יותר ותקורה גדולה עבור הפקטה אותה הוציא מהתור. מכיוון שיש צורך במנועולים לטן יותר ותקורה גדולה עבור פתרון מאבקי מנעולים, לאורך זמן הפתרון של Lock-Free

נסיק כי נעדיף פתרון עם 8 חוטים , שם הביצועים הכי טובים. זאת מכיוון שכמו שציינו המיק כי נעדיף פתרון עם 8 חוטים , שם הביצועים המיך לאורך להשאיר את כל החוטים "עסוקים" מספיק לאורך הריצה.