1)

Figura 1: Distribuciones de ϕ y de la pseudorapidez del muón.

(b)

0

-50

-100

50

100

150 | | | | | | | |

-150

2)

Figura 2: Distribuciones de ϕ y de la pseudorapidez del muón separando por carga positiva y negativa.

Se observa que la distribución angular para los dos tipos de muones es bastante similar. Yo esperaría este comportamiento debido a que ambos muones provienen de decaimientos de partículas, como por ejemplo el mesón J/ψ y vienen siempre en pares $\mu^+ - \mu^-$. Además, no hay ningún agente externo, como un campo magnético por ejemplo, para cambiar la distribución angular de cada partícula.

Momento transverso

Figura 3: Momento transverso para ambas cargas y haciendo la separación para positiva y negativa. El momento transverso promedio para la muestra de todos los muones es $P_t=5.94655~{\rm GeV/c}$

Figura 4: Distribución de la masa en reposo para eventos donde únicamente haya un muón y un antimuón.

Podemos identificar al pico que está cerca de 3 ${\rm GeV}/c^2$ como la partícula J/ψ , que decae en muones y además tiene una masa de 3.096 ${\rm GeV}/c^2$. Entre 9 y 10 ${\rm GeV}/c^2$ observamos otro pico de menor tamaño que corresponde a un mesón upsilon cuya masa es $m_\Upsilon \simeq 9.46~{\rm GeV}/c^2$ y que también puede decaer en $\mu^+ + \mu^-$, de acuerdo con el Particle Data Group [1]

Referencias

[1] P.A. Zyla et al. Review of Particle Physics. Prog. Theor. Exp. Phys., 2020:083C01, 2020.