Projeto: Pedal eletrônico

Objetivos: controlar a velocidade de rotação do eixo de um motor DC sujeito à diferentes condições de entrada.

Etapas a serem desenvolvidas e implementadas

1. Seleção da rotação desejada

A seleção da rotação desejada deve ser realizada por intermédio de um potenciômetro rotativo emulando a função de um pedal mecânico acoplado a um sensor de posição. Ao girar o eixo do potenciômetro a partir de uma posição de repouso (resistência mínima) até uma posição desejada temporária, a rotação do eixo do motor deve aumentar linearmente e em tempo real com o aumento da resistência do potenciômetro e permanecer na rotação desejada, determinada pela interrupção do giro do eixo do potenciômetro. Uma vez que a rotação do eixo do motor atinja o valor definido pelo usuário, ela deve ser mantida pelo sistema de controle e acionamento enquanto o eixo do potenciômetro é retornado para sua posição de repouso.

- (i) Caso o eixo do potenciômetro seja rotacionado novamente sob uma rotação suave a partir da sua posição de repouso (resistência mínima), a rotação do eixo do motor deve ser atualizada instantaneamente para a rotação determinada pelo novo valor da resistência do potenciômetro;
- (ii) Quando for detectado um giro rápido de curta extensão no sentido horário-anti-horário do eixo do potenciômetro, o motor deve ser desligado e assim permanecer até que a condição (i) ocorra novamente.

2. Lógica para o controle da rotação e acionamento

A lógica para o controle e o acionamento do motor deve ser implementada no microcontrolador. Descreva-a.

3. Estágio de potência

Um estágio de acionamento de potência envolvendo transistores MOSFETs deve ser previsto para acionar o motor a partir do sinal de baixa potência produzido pelo microcontrolador. Justifique o estágio proposto.

Certifique-se de polarizar corretamente os MOSFETs para sua maior eficiência energética, observando que o motor pode estar sujeito à diferentes cargas e, portanto, à diferentes consumos de potência elétrica. Justifique.

Certifique-se de proteger adequadamente o microcontrolador contra sobrecargas decorrentes do acionamento adequado dos MOSFETs. Justifique.

Certifique-se de proteger os MOSFETs e o microcontrolador de força contra-eletromotriz gerada pelo motor em aberto e sob condições de carga (dentro dos limites do motor). Justifique.

Não generalize circuitos. Etapas de acionamento distintas (*e.g.*, *Half-bridge vs. Full-bridge*) podem demandar estratégias de proteção diferentes.

4. Leitura da rotação do motor

A leitura da rotação do motor deve ser realizada por intermédio de um *encoder* incremental acoplado mecanicamente ao eixo de saída do motor. Considere o *kit* do motor DC utilizado nas práticas regulares.

Somente o motor e o *encoder* serão utilizados. Quaisquer outros circuitos elétricos e/ou eletrônicos deverão ser projetados e implementados como parte do projeto.

5. Proteção

Para condições de carga (emuladas na bancada) fora de limites seguros para o sistema de acionamento e o motor devem ser detectadas pelo microcontrolador para produzir o desligamento automático do motor.

6. Visualização do valor da rotação

A velocidade de rotação, o sentido de giro do eixo do motor, bem como alerta de proteção devem ser exibidos em tempo real no mostrador digital da placa didática ARM.

7. Reversão de sentido de giro

Para todas as funcionalidades acima, incorpore o recurso de reversão de sentido de giro do eixo do motor. A seleção do sentido de giro deve ocorrer pelo acionamento duplo do pedal até o seu fim de curso.

Data da apresentação do projeto e entrega de relatório: 23/08/2023 nos respectivos horários das práticas.

Tempo de apresentação e arguição por grupo: máximo de 15 minutos.

Não considerem o dia da apresentação para finalizar o projeto. <u>A data da apresentação é reservada unicamente</u> para esta finalidade.

Relatório:

Tópicos, não únicos, que devem compor o relatório de duas páginas: diagrama de blocos e esquemático elétrico completo dos sistemas, memória de cálculo e justificava para escolha dos componentes utilizados.

Em uma folha à parte, apresente o código computacional completo, devidamente documentado.

Observações gerais:

- Não haverá a realização de práticas regulares nas semanas destinadas ao projeto. No entanto, o laboratório estará disponível para o desenvolvimento do projeto somente nos horários das respectivas turmas.
- O acesso ao laboratório, bem como a retirada de componentes com os técnicos, deverá respeitar o horário destinado à cada turma. Para melhor controle da retirada de componentes, os técnicos em cópia –, possuem uma relação de horário das turmas.
- Não é permitida a retirada de quaisquer componentes, equipamentos, instrumentos, e afins, para fora das dependências dos laboratórios do NuLEEn.
- Cada *pront-o-labor* com o circuito montado ao longo das semanas é identificado por uma letra e ficará guardado no laboratório de ensino. Identifique seu grupo pela letra.
- O kit do motor DC é de uso compartilhado e deve ser devolvido à estante logo após o uso pelo seu grupo.

Materiais a serem utilizados

- Componentes disponíveis para uso nos laboratórios de ensino.
- Não é obrigatório, mas sintam-se à vontade para providenciar com recursos próprios quaisquer outros componentes.

Esclarecimentos de dúvidas

Estarei no departamento no horário das práticas. Para otimizarmos nossa comunicação, não me enviem e-mails e procurem comparecer à minha sala para esclarecer eventuais dúvidas sobre aspectos técnicos do projeto.

Critérios de avaliação

O projeto será avaliado com base, mas não unicamente, nos seguintes critérios: organização e conteúdo do relatório aos moldes das práticas regulares, apresentação oral, arguição independente para cada integrante do grupo, funcionamento do circuito, uso eficaz de componentes, organização da bancada e dos componentes no *pront-o-labor*.

Observação: danos à componentes ou equipamentos do laboratório devem ser comunicados aos técnicos. Componentes elétricos e/ou eletrônicos danificados no decorrer das atividades não serão repostos.