迪杰斯特拉(dijkstra)算法

- 用邻接矩阵GA来表示带权有向图; s为已找到从v出发的最短路径的终点的集合,它的初始状态为空集。那么,从v出发到图上其余各顶点可能达到的最短路径长度的初值为: dist[i]=cost[v₀,v_i](v_i∈V)
- 选择v_j,使得dist[j]=min{dist[i]|(v_i∈V-s)} v_j就是当前求得的 一条从v₀出发的最短路径的终点。令s=s∪{j}
- 修改从v出发到集合v-s上任一顶点v_k可达的最短路径长度。 如果dist[j]+cost[j,k]<disk[k],则修改dist[k]为 dist[k]=dist[j]+cost[j,k]
- 重复上两步共n-1次,求得从到图上各顶点的最短路径是依路径长度递增的序列。

求从C1到各顶点的最短路径


```
□Procedure dijkstra(GA,dist,path,i); {表示求Vi到图G中其余顶点的最短路
径, GA为图G的邻接矩阵, dist和path为变量型参数, 其中path的基类型为集合}
□begin
                         {初始化}
\Box for j:=1 to n do
                 begin
                    if j<>i then s[j]:=0 else s[j]:=1;
                    dist[j]:=GA[i,j];
                    if dist[j]<maxint then path[j]:=[i]+[j]
else path[j]:=[];
                  end;
  for k:=1 to n-2 do
     begin
        w:=maxint; m:=i;
                       {求出第k个终点Vm}
        for j:=1 to n do
          if (s[j]=0) and (dist[j]<w) then begin m:=j;w:=dist[j];end;
         if m<>i then s[m]:=1 else exit; {若条件成立,则把Vm加入到s中,否则
退出循环,因为剩余的终点,其最短路径长度均为maxint,无需再计算下去}
         for j:=1 to n do {对 s [ j ] = 0 的 更优元素作必要修改}
            if (s[j] =0 ) and (dist[m]+GA(m,j)<dist[j])
                   then begin
                          dist[i]:=dist[m]+GA(m,i);
                          path[i]:=path[m]+[i];
                         end;
      end;
□end;
```

初
始
H

	1	2	3	4	5	6
dist	0	4	8	maxint	maxint	maxint
path	C1	C1,C2	C1,C3			

第一次:选择m=2,则s=[c1,c2],计算比较dist[2]+GA[2,j]与dist[j]的大小(3<=j<=6)

	1	2	3	4	5	6
dist	0	4	7	8	10	maxint
path	C1	C1,C2	C1,c2,C3	C1,c2,c4	C1,c2,c5	

第二次:选择m=3,则s=[c1,c2,c3],计算比较dist[3]+GA[3,j]与dist[j]的大小(4<=j<=6)

	1	2	3	4	5	6
dist	0	4	7	8	9	maxint
path	C1	C1,C2	C1,c2,C3	C1,c2,c4	C1,c2,c3,c5	

第三次:选择m=4,则s=[c1,c2,c3,c4],计算比较dist[4]+GA[4,j]与dist[j]的大小(5<=j<=6)

The state of the s	and the second s					Market Control of the
	1	2	3	4	5	6
dist	0	4	7	8	9	17
path	C1	C1,C2	C1,c2,C3	C1,c2,c4	C1,c2,c3,c5	C1,c2,c4,c6

第四次:选择m=5,则s=[c1,c2,c3,c4,c5],计算比较dist[5]+GA[5,j]与dist[j]的大小(j=6)

	1	2	3	4	5	6
dist	0	4	7	8	9	13
path	C1	C1,C2	C1,c2,C3	C1,c2,c4	C1,c2,c3,c5	C1,c2,c3,c5,c6

迪杰斯特拉(dijkstra)算法

```
For i:=1 to vtxnum do
 begin dist[i]:=cost[v0,i];
       if dist[i]<max then path[i]:=[v0]+[i]
       else path[i]:=[];
 end;
S:=[v0];
For k:=1 to vtxnum-1 do
 begin wm:=max; j:=v0;
       for i:=1 to vtxnum do
        if not (i in s) and (dist[i]<wm) then
          begin j:=i; wm:=dist[i] end;
       s:=s+[j];
       for i:=1 to vtxnum do
        if not (i in s) and (dist[j]+cost[j,i]<dist[i]) then
    begin dist[i]:=dist[j]+cost[j,i]; path[i]:=path[j]+[i] end
 end
```