However, because an assembly language is little more than a different notation for a machine language, two machines with different instruction sets also have different assembly languages. New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. Compilers harnessed the power of computers to make programming easier by allowing programmers to specify calculations by entering a formula using infix notation. New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. In 1206, the Arab engineer Al-Jazari invented a programmable drum machine where a musical mechanical automaton could be made to play different rhythms and drum patterns, via pegs and cams. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. The Unified Modeling Language (UML) is a notation used for both the OOAD and MDA. Techniques like Code refactoring can enhance readability. It is usually easier to code in "high-level" languages than in "low-level" ones. Many factors, having little or nothing to do with the ability of the computer to efficiently compile and execute the code, contribute to readability. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. Various visual programming languages have also been developed with the intent to resolve readability concerns by adopting non-traditional approaches to code structure and display. Debugging is often done with IDEs. Standalone debuggers like GDB are also used, and these often provide less of a visual environment, usually using a command line. He gave the first description of cryptanalysis by frequency analysis, the earliest code-breaking algorithm. Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. Many factors, having little or nothing to do with the ability of the computer to efficiently compile and execute the code, contribute to readability. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" - a series of pasteboard cards with holes punched in them. Trade-offs from this ideal involve finding enough programmers who know the language to build a team, the availability of compilers for that language, and the efficiency with which programs written in a given language execute. It is usually easier to code in "high-level" languages than in "low-level" ones.