This is Volume 4 of the five-volume book Mathematical Inequalities, which introduces and develops the main types of elementary inequalities. The first three volumes are a great opportunity to look into many old and new inequalities, as well as elementary procedures for solving them: Volume 1 -Symmetric Polynomial Inequalities, Volume 2 - Symmetric Rational and Nonrational Inequalities, Volume 3 - Cyclic and Noncyclic Inequalities. As a rule, the inequalities in these volumes are increasingly ordered according to the number of variables: two, three, four, ..., n-variables. The last two volumes (Volume 4 - Extensions and Refinements of Jensen's Inequality, Volume 5 - Other Recent Methods for Creating and Solving Inequalities) present beautiful and original methods for solving inequalities, such as Half/Partial convex function method, Equal variables method, Arithmetic compensation method, Highest coefficient cancellation method, pgr method etc. The book is intended for a wide audience: advanced middle school students, high school students, college and university students, and teachers. Many problems and methods can be used as group projects for advanced high school students.

Vasile Cirtoaje

Mathematical Inequalities Volume 4

Extensions and Refinements of Jensen's Inequality

The author, Vasile Cirtoaje, is a Professor at the Department of Automatic Control and Computers from the University of Ploiesti, Romania. He is the author of many well-known interesting and delightful inequalities, as well as strong methods for creating and proving mathematical inequalities.

978-613-9-91148-6

MATHEMATICAL INEQUALITIES

Volume 4

EXTENSIONS AND REFINEMENTS OF JENSEN'S INEQUALITY

LAP LAMBERT Academic Publishing
EDITURA UNIVERSITĂȚII PETROL-GAZE DIN PLOIEȘTI
2021

Contents

1	Half Convex Function Method	1	
	1.1 Theoretical Basis	. 1	
	1.2 Applications	. 9	
	1.3 Solutions	. 23	
2	Half Convex Function Method for Ordered Variables	147	
	2.1 Theoretical Basis	. 147	
	2.2 Applications	. 155	
	2.3 Solutions		
3	Partially Convex Function Method	211	
	3.1 Theoretical Basis	. 211	
	3.2 Applications	. 217	
	3.3 Solutions	. 225	
4	Partially Convex Function Method for Ordered Variables		
	4.1 Theoretical Basis	. 297	
	4.2 Applications	. 303	
	4.3 Solutions	. 307	
5	EV Method for Nonnegative Variables	323	
	5.1 Theoretical Basis	. 323	
	5.2 Applications	. 333	
	5.3 Solutions	. 349	
6	EV Method for Real Variables	489	
	6.1 Theoretical Basis	. 489	
	6.2 Applications	. 497	
	6.3 Solutions		
Α	Glosar	539	
В	Bibliography	549	

Chapter 1

Half Convex Function Method

1.1 Theoretical Basis

Let \mathbb{I} be a real interval, s an interior point of \mathbb{I} and

$$\mathbb{I}_{>s} = \{u | u \in \mathbb{I}, u \ge s\}, \quad \mathbb{I}_{\leq s} = \{u | u \in \mathbb{I}, u \le s\}.$$

The following statement is known as the Right Half Convex Function Theorem (RHCF-Theorem).

Right Half Convex Function Theorem (Vasile Cîrtoaje, 2004). Let f be a real function defined on an interval \mathbb{I} and convex on $\mathbb{I}_{>s}$, where $s \in int(\mathbb{I})$. If

$$f(x) + (n-1)f(y) \ge nf(s)$$

for all $x, y \in \mathbb{I}$ so that $x \le s \le y$ and x + (n-1)y = ns, then the inequality

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf\left(\frac{a_1 + a_2 + \dots + a_n}{n}\right) \tag{1}$$

holds for all $a_1, a_2, \ldots, a_n \in \mathbb{I}$ satisfying $a_1 + a_2 + \cdots + a_n = ns$. In addition, the inequality (1) holds for all $a_1, a_2, \ldots, a_n \in \mathbb{I}$ satisfying $a_1 + a_2 + \cdots + a_n = ns_1$, where $s_1 \in int(\mathbb{I})$, $s_1 > s$.

Proof. Assume that

$$a_1 \leq a_2 \leq \cdots \leq a_n$$
.

If $a_1 \ge s$, then the required inequality is just Jensen's inequality for convex functions. Otherwise, if $a_1 < s$, then there exists

$$k \in \{1, 2, \dots, n-1\}$$

so that

$$a_1 \le \cdots \le a_k < s \le a_{k+1} \le \cdots \le a_n$$
.

Since f is convex on $\mathbb{I}_{\geq s}$, we may apply Jensen's inequality to get

$$f(a_{k+1}) + \dots + f(a_n) \ge (n-k)f(z),$$

where

$$z = \frac{a_{k+1} + \dots + a_n}{n - k}, \quad z \in \mathbb{I}.$$

Thus, it suffices to show that

$$f(a_1) + \dots + f(a_k) + (n-k)f(z) \ge nf(s).$$
 (2)

Let b_1, \ldots, b_k be defined by

$$a_i + (n-1)b_i = ns, i = 1, ..., k.$$

We claim that

$$z \ge b_1 \ge \cdots \ge b_k > s$$
,

which involves

$$b_1, \ldots, b_k \in \mathbb{I}_{\geq s}$$
.

Indeed, we have

$$b_1 \ge \dots \ge b_k,$$

$$b_k - s = \frac{s - a_k}{n - 1} > 0,$$

and

$$z \geq b_1$$

because

$$(n-1)b_1 = ns - a_1 = (a_2 + \dots + a_k) + a_{k+1} + \dots + a_n$$

$$\leq (k-1)s + a_{k+1} + \dots + a_n$$

$$= (k-1)s + (n-k)z \leq (n-1)z.$$

Since $b_1, \ldots, b_k \in \mathbb{I}_{\geq s}$, by hypothesis we have

$$f(a_1) + (n-1)f(b_1) \ge nf(s),$$

. . .

$$f(a_k) + (n-1)f(b_k) \ge nf(s),$$

hence

$$f(a_1) + \dots + f(a_k) + (n-1)[f(b_1) + \dots + f(b_k)] \ge knf(s),$$

$$f(a_1) + \dots + f(a_k) \ge knf(s) - (n-1)[f(b_1) + \dots + f(b_k)].$$

According to this result, the inequality (2) is true if

$$knf(s) - (n-1)[f(b_1) + \dots + f(b_k)] + (n-k)f(z) \ge nf(s),$$

which is equivalent to

$$pf(z) + (k-p)f(s) \ge f(b_1) + \dots + f(b_k), \quad p = \frac{n-k}{n-1} \le 1.$$

By Jensen's inequality, we have

$$pf(z) + (1-p)f(s) \ge f(w), \quad w = pz + (1-p)s \ge s.$$

Thus, we only need to show that

$$f(w) + (k-1)f(s) \ge f(b_1) + \dots + f(b_k).$$

Since the decreasingly ordered vector $\vec{A_k} = (w, s, ..., s)$ majorizes the decreasingly ordered vector $\vec{B_k} = (b_1, b_2, ..., b_k)$, this inequality follows from Karamata's inequality for convex functions.

According to this result, the inequality (1) holds for all $a_1, a_2, \ldots, a_n \in \mathbb{I}$ satisfying $a_1 + a_2 + \cdots + a_n = ns_1$ if $f(x_1) + (n-1)f(y_1) \ge nf(s_1)$ for all $x_1, y_1 \in \mathbb{I}$ so that $x_1 \le s_1 \le y_1$ and $x_1 + (n-1)y_1 = ns_1$. Thus, we need to show that if

$$f(x) + (n-1)f(y) \ge nf(s)$$

for all $x, y \in \mathbb{I}$ so that $x \le s \le y$ and x + (n-1)y = ns, then

$$f(x_1) + (n-1)f(y_1) \ge nf(s_1) \tag{3}$$

for all $x_1, y_1 \in \mathbb{I}$ so that $x_1 \le s_1 \le y_1$ and $x_1 + (n-1)y_1 = ns_1$. Since this is true for $x_1 \ge s$ (by Jensen's inequality), consider next $x_1 < s$. By hypothesis, we have

$$f(x_1) + (n-1)f(y_2) \ge nf(s),$$

where $y_2 \in \mathbb{I}$ such that

$$x_1 + (n-1)y_2 = ns$$
, $y_2 > s$.

Thus, (3) is true if

$$nf(s) - (n-1)f(y_2) + (n-1)f(y_1) \ge nf(s_1),$$

that is

$$(n-1)f(y_1) + nf(s) \ge (n-1)f(y_2) + nf(s_1).$$

Since

$$(n-1)y_1 + ns = (n-1)y_2 + ns_1$$

and the decreasingly ordered vector $\vec{C_{2n-1}} = (y_1, \dots, y_1, s, \dots, s)$ majorizes the vector $\vec{D_{2n-1}} = (y_2, \dots, y_2, s_1, \dots, s_1)$, this inequality follows from Karamata's inequality for convex functions.

Similarly, we can prove the Left Half Convex Function Theorem (LHCF-Theorem).

Left Half Convex Function Theorem. *Let* f *be a real function defined on an interval* \mathbb{I} *and convex on* $\mathbb{I}_{\leq s}$, *where* $s \in int(\mathbb{I})$. *If*

$$f(x) + (n-1)f(y) \ge nf(s)$$

for all $x, y \in \mathbb{I}$ so that $x \ge s \ge y$ and x + (n-1)y = ns, then the inequality

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf\left(\frac{a_1 + a_2 + \dots + a_n}{n}\right)$$
 (4)

holds for all $a_1, a_2, \ldots, a_n \in \mathbb{I}$ satisfying $a_1 + a_2 + \cdots + a_n = ns$. In addition, the inequality (4) holds for all $a_1, a_2, \ldots, a_n \in \mathbb{I}$ satisfying $a_1 + a_2 + \cdots + a_n = ns_1$, where $s_1 \in int(\mathbb{I})$, $s_1 < s$.

From the RHCF-Theorem and the LHCF-Theorem, we find the HCF-Theorem (Half Convex Function Theorem).

Half Convex Function Theorem. Let f be a real function defined on an interval \mathbb{I} and convex on \mathbb{I}_{s} or \mathbb{I}_{s} , where $s \in int(\mathbb{I})$. The inequality

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf\left(\frac{a_1 + a_2 + \dots + a_n}{n}\right)$$

holds for all $a_1, a_2, \ldots, a_n \in \mathbb{I}$ satisfying

$$a_1 + a_2 + \cdots + a_n = ns$$

if and only if

$$f(x)+(n-1)f(y) \ge nf(s)$$

for all $x, y \in \mathbb{I}$ so that x + (n-1)y = ns.

The following LCRCF-Theorem is also useful to prove some symmetric inequalities.

Left Convex-Right Concave Function Theorem (Vasile Cîrtoaje, 2004). Let $a \le c$ be real numbers, let f be a continuous function defined on $\mathbb{I} = [a, \infty)$, strictly convex on [a, c] and strictly concave on $[c, \infty)$, and let

$$E(a_1, a_2, ..., a_n) = f(a_1) + f(a_2) + ... + f(a_n).$$

If $a_1, a_2, \ldots, a_n \in \mathbb{I}$ so that

$$a_1 + a_2 + \cdots + a_n = S = constant$$
,

then

- (a) E is minimum for $a_1 = a_2 = \cdots = a_{n-1} \le a_n$;
- (b) E is maximum for either $a_1 = a$ or $a < a_1 \le a_2 = \cdots = a_n$.

Proof. Without loss of generality, assume that $a_1 \le a_2 \le \cdots \le a_n$. Since the sum $E(a_1, a_2, \ldots, a_n)$ is a continuous function on the compact set

$$\Lambda = \{(a_1, a_2, \dots, a_n) : a_1 + a_2 + \dots + a_n = S, a_1, a_2, \dots, a_n \in \mathbb{I}\},\$$

E attains its minimum and maximum values.

(a) For the sake of contradiction, suppose that E is minimum at $(b_1, b_2, ..., b_n)$ with

$$b_1 \le b_2 \le \dots \le b_n, \quad b_1 < b_{n-1}.$$

For $b_{n-1} \le c$, by Jensen's inequality for strictly convex functions we have

$$f(b_1) + f(b_{n-1}) > 2f\left(\frac{b_1 + b_{n-1}}{2}\right),$$

while for $b_{n-1} > c$, by Karamata's inequality for strictly concave functions we have

$$f(b_{n-1}) + f(b_n) > f(c) + f(b_{n-1} + b_n - c).$$

The both results contradict the assumption that E is minimum at (b_1, b_2, \ldots, b_n) .

(b) For the sake of contradiction, suppose that E is maximum at $(b_1, b_2, ..., b_n)$ with

$$a < b_1 \le b_2 \le \cdots \le b_n$$
, $b_2 < b_n$.

There are three cases to consider.

Case 1: $b_2 \ge c$. By Jensen's inequality for strictly concave functions, we have

$$f(b_2) + f(b_n) < 2f\left(\frac{b_2 + b_n}{2}\right).$$

Case 2: $b_2 < c$ and $b_1 + b_2 - a \le c$. By Karamata's inequality for strictly convex functions, we have

$$f(b_1) + f(b_2) < f(a) + f(b_1 + b_2 - a).$$

Case 3: $b_2 < c$ and $b_1 + b_2 - c \ge a$. By Karamata's inequality for strictly convex functions, we have

$$f(b_1) + f(b_2) < f(b_1 + b_2 - c) + f(c).$$

Clearly, all these results contradict the assumption that E is maximum at (b_1, b_2, \ldots, b_n) .

Note 1. Let us denote

$$g(u) = \frac{f(u) - f(s)}{u - s}, \quad h(x, y) = \frac{g(x) - g(y)}{x - y}.$$

In many applications, it is useful to replace the hypothesis

$$f(x) + (n-1)f(y) \ge nf(s)$$

in the RHCF-Theorem, the LHCF-Theorem and the HCF-Theorem by the equivalent condition

$$h(x,y) \ge 0$$
 for all $x,y \in \mathbb{I}$ so that $x + (n-1)y = ns$.

This equivalence is true because

$$f(x) + (n-1)f(y) - nf(s) = [f(x) - f(s)] + (n-1)[f(y) - f(s)]$$

$$= (x - s)g(x) + (n-1)(y - s)g(y)$$

$$= \frac{n-1}{n}(x - y)[g(x) - g(y)]$$

$$= \frac{n-1}{n}(x - y)^{2}h(x, y).$$

Note 2. Assume that f is differentiable on \mathbb{I} , and let

$$H(x,y) = \frac{f'(x) - f'(y)}{x - y}.$$

The desired inequality of Jensen's type in the RHCF-Theorem, the LHCF-Theorem and the HCF-Theorem holds true by replacing the hypothesis

$$f(x) + (n-1)f(y) \ge nf(s)$$

with the more restrictive condition

$$H(x,y) \ge 0$$
 for all $x,y \in \mathbb{I}$ so that $x + (n-1)y = ns$.

To prove this, we will show that the new condition $H(x, y) \ge 0$ implies

$$f(x) + (n-1)f(y) \ge nf(s)$$

for all $x, y \in \mathbb{I}$ so that x + (n-1)y = ns. Write this inequality as

$$f_1(x) \ge nf(s),$$

where

$$f_1(x) = f(x) + (n-1)f(y) = f(x) + (n-1)f\left(\frac{ns - x}{n-1}\right).$$

From

$$f_1'(x) = f'(x) - f'\left(\frac{ns - x}{n - 1}\right)$$
$$= f'(x) - f'(y)$$
$$= \frac{n}{n - 1}(x - s)H(x, y),$$

it follows that f_1 is decreasing on $\mathbb{I}_{\leq s}$ and increasing on $\mathbb{I}_{\geq s}$; therefore,

$$f_1(x) \ge f_1(s) = nf(s).$$

Note 3. From the proof of the RHCF-Theorem, it follows that the RHCF-Theorem, the LHCF-Theorem and the HCF-Theorem are also valid in the case when f is defined on $\mathbb{I} \setminus \{u_0\}$, where $u_0 \in \mathbb{I}_{< s}$ for the RHCF-Theorem, and $u_0 \in \mathbb{I}_{> s}$ for the LHCF-Theorem.

Note 4. The desired inequalities in the RHCF-Theorem, the LHCF-Theorem and the HCF-Theorem become equalities for

$$a_1 = a_2 = \dots = a_n = s.$$

In addition, if there exist $x, y \in \mathbb{I}$ so that

$$x + (n-1)y = ns$$
, $f(x) + (n-1)f(y) = nf(s)$, $x \neq y$,

then the equality holds also for

$$a_1 = x$$
, $a_2 = \cdots = a_n = y$

(or any cyclic permutation). Notice that these equality conditions are equivalent to

$$x + (n-1)y = ns$$
, $h(x, y) = 0$

(x < y for the RHCF-Theorem, and x > y for the LHCF-Theorem).

Note 5. The part (a) in LCRCF-Theorem is also true in the case where $\mathbb{I} = (a, \infty)$ and $f(a_{\perp}) = \infty$.

Note 6. Similarly, we can extend the *weighted* Jensen's inequality to right and left half convex functions establishing the WRHCF-Theorem, the WLHCF-Theorem and the WHCF-Theorem (*Vasile Cîrtoaje*, 2008).

WHCF-Theorem. Let p_1, p_2, \ldots, p_n be positive real numbers so that

$$p_1 + p_2 + \dots + p_n = 1, \quad p = \min\{p_1, p_2, \dots, p_n\},\$$

and let f be a real function defined on an interval \mathbb{I} and convex on $\mathbb{I}_{\geq s}$ or $\mathbb{I}_{\leq s}$, where $s \in int(\mathbb{I})$. The inequality

$$p_1 f(a_1) + p_2 f(a_2) + \dots + p_n f(a_n) \ge f(p_1 a_1 + p_2 a_2 + \dots + p_n a_n)$$

holds for all $a_1, a_2, ..., a_n \in \mathbb{I}$ so that

$$p_1a_1+p_2a_2+\cdots+p_na_n=s,$$

if and only if

$$pf(x) + (1-p)f(y) \ge f(s)$$

for all $x, y \in \mathbb{I}$ satisfying

$$px + (1-p)y = s.$$

1.2 Applications

1.1. If a, b, c are real numbers so that a + b + c = 3, then

$$3(a^4 + b^4 + c^4) + a^2 + b^2 + c^2 + 6 \ge 6(a^3 + b^3 + c^3).$$

- **1.2.** If $a_1, a_2, \dots, a_n \ge \frac{1-2n}{n-2}$ so that $a_1 + a_2 + \dots + a_n = n$, then $a_1^3 + a_2^3 + \dots + a_n^3 \ge n$.
- **1.3.** If $a_1, a_2, \dots, a_n \ge \frac{-n}{n-2}$ so that $a_1 + a_2 + \dots + a_n = n$, then $a_1^3 + a_2^3 + \dots + a_n^3 \ge a_1^2 + a_2^2 + \dots + a_n^2.$
- **1.4.** If $a_1, a_2, ..., a_n$ are real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then $(n^2 3n + 3)(a_1^4 + a_2^4 + \cdots + a_n^4 n) \ge 2(n^2 n + 1)(a_1^2 + a_2^2 + \cdots + a_n^2 n).$
- **1.5.** If a_1, a_2, \ldots, a_n are nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$(n^2 + n + 1)(a_1^3 + a_2^3 + \dots + a_n^3 - n) \ge (n + 1)(a_1^4 + a_2^4 + \dots + a_n^4 - n).$$

- **1.6.** If a, b, c are real numbers so that a + b + c = 3, then
 - (a) $a^4 + b^4 + c^4 3 + 2(7 + 3\sqrt{7})(a^3 + b^3 + c^3 3) \ge 0;$
 - (b) $a^4 + b^4 + c^4 3 + 2(7 3\sqrt{7})(a^3 + b^3 + c^3 3) \ge 0.$
- **1.7.** Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$. If k is a positive integer satisfying $3 \le k \le n+1$, then

$$\frac{a_1^k + a_2^k + \dots + a_n^k - n}{a_1^2 + a_2^2 + \dots + a_n^2 - n} \ge (n - 1) \left[\left(\frac{n}{n - 1} \right)^{k - 1} - 1 \right].$$

1.8. Let $k \ge 3$ be an integer number. If a_1, a_2, \ldots, a_n are nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$\frac{a_1^k + a_2^k + \dots + a_n^k - n}{a_1^2 + a_2^2 + \dots + a_n^2 - n} \le \frac{n^{k-1} - 1}{n - 1}.$$

1.9. If a_1, a_2, \ldots, a_n are positive real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$n^{2}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}-n\right)\geq 4(n-1)(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}-n).$$

1.10. If a_1, a_2, \dots, a_8 are positive real numbers so that $a_1 + a_2 + \dots + a_8 = 8$, then

$$\frac{1}{a_1^2} + \frac{1}{a_2^2} + \dots + \frac{1}{a_8^2} \ge a_1^2 + a_2^2 + \dots + a_8^2.$$

1.11. If a_1, a_2, \ldots, a_n are positive real numbers so that $\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} = n$, then

$$a_1^2 + a_2^2 + \dots + a_n^2 - n \ge 2\left(1 + \frac{\sqrt{n-1}}{n}\right)(a_1 + a_2 + \dots + a_n - n).$$

1.12. If a, b, c, d, e are positive real numbers so that $a^2 + b^2 + c^2 + d^2 + e^2 = 5$, then

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} + \frac{1}{e} - 5 + \frac{4(1+\sqrt{5})}{5} (a+b+c+d+e-5) \ge 0.$$

1.13. If *a*, *b*, *c* are nonnegative real numbers, no two of which are zero, then

$$\frac{1}{3a+b+c} + \frac{1}{3b+c+a} + \frac{1}{3c+a+b} \le \frac{2}{5} \left(\frac{1}{b+c} + \frac{1}{c+a} + \frac{1}{a+b} \right).$$

1.14. If $a, b, c, d \ge 3 - \sqrt{7}$ so that a + b + c + d = 4, then

$$\frac{1}{2+a^2} + \frac{1}{2+b^2} + \frac{1}{2+c^2} + \frac{1}{2+d^2} \ge \frac{4}{3}.$$

1.15. If $a_1, a_2, \dots, a_n \in [-\sqrt{n}, n-2]$ so that $a_1 + a_2 + \dots + a_n = n$, then

$$\frac{1}{n+a_1^2} + \frac{1}{n+a_2^2} + \dots + \frac{1}{n+a_n^2} \le \frac{n}{n+1}.$$

1.16. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

$$\frac{3-a}{9+a^2} + \frac{3-b}{9+b^2} + \frac{3-c}{9+c^2} \ge \frac{3}{5}.$$

1.17. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

$$\frac{1}{1-a+2a^2} + \frac{1}{1-b+2b^2} + \frac{1}{1-c+2c^2} \ge \frac{3}{2}.$$

1.18. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

$$\frac{1}{5+a+a^2} + \frac{1}{5+b+b^2} + \frac{1}{5+c+c^2} \ge \frac{3}{7}.$$

1.19. If a, b, c, d are nonnegative real numbers so that a + b + c + d = 4, then

$$\frac{1}{10+a+a^2} + \frac{1}{10+b+b^2} + \frac{1}{10+c+c^2} + \frac{1}{10+d+d^2} \le \frac{1}{3}.$$

1.20. Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$. If

$$k \ge 1 - \frac{1}{n},$$

then

$$\frac{1}{1+ka_1^2} + \frac{1}{1+ka_2^2} + \dots + \frac{1}{1+ka_n^2} \ge \frac{n}{1+k}.$$

1.21. Let a_1, a_2, \ldots, a_n be real numbers so that $a_1 + a_2 + \cdots + a_n = n$. If

$$0 < k \le \frac{n-1}{n^2 - n + 1}$$

then

$$\frac{1}{1+ka_1^2} + \frac{1}{1+ka_2^2} + \dots + \frac{1}{1+ka_n^2} \le \frac{n}{1+k}.$$

1.22. Let a_1, a_2, \ldots, a_n be nonnegative numbers so that $a_1 + a_2 + \cdots + a_n = n$. If

$$k \ge \frac{n^2}{4(n-1)},$$

then

$$\frac{a_1(a_1-1)}{a_1^2+k}+\frac{a_2(a_2-1)}{a_2^2+k}+\cdots+\frac{a_n(a_n-1)}{a_n^2+k}\geq 0.$$

1.23. If a_1, a_2, \ldots, a_n are nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$\frac{a_1-1}{(n-2a_1)^2}+\frac{a_2-1}{(n-2a_2)^2}+\cdots+\frac{a_n-1}{(n-2a_n)^2}\geq 0.$$

1.24. If a_1, a_2, \ldots, a_n are nonnegative real numbers so that

$$a_1 + a_2 + \dots + a_n = n$$
, $a_1, a_2, \dots, a_n > -k$, $k \ge 1 + \frac{n}{\sqrt{n-1}}$,

then

$$\frac{a_1^2-1}{(a_1+k)^2}+\frac{a_2^2-1}{(a_2+k)^2}+\cdots+\frac{a_n^2-1}{(a_n+k)^2}\geq 0.$$

1.25. Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$. If $0 < k \le 1 + \sqrt{\frac{2n-1}{n-1}}$, then

$$\frac{a_1^2 - 1}{(a_1 + k)^2} + \frac{a_2^2 - 1}{(a_2 + k)^2} + \dots + \frac{a_n^2 - 1}{(a_n + k)^2} \le 0.$$

1.26. If $a_1, a_2, \dots, a_n \ge n - 1 - \sqrt{n^2 - n + 1}$ so that $a_1 + a_2 + \dots + a_n = n$, then

$$\frac{a_1^2-1}{(a_1+2)^2}+\frac{a_2^2-1}{(a_2+2)^2}+\cdots+\frac{a_n^2-1}{(a_n+2)^2}\leq 0.$$

1.27. Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$. If $k \ge \frac{(n-1)(2n-1)}{n^2}$, then

$$\frac{1}{1+ka_1^3} + \frac{1}{1+ka_2^3} + \dots + \frac{1}{1+ka_n^3} \ge \frac{n}{1+k}.$$

1.28. Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$. If $0 < k \le \frac{n-1}{n^2 - 2n + 2}$, then

$$\frac{1}{1+ka_1^3} + \frac{1}{1+ka_2^3} + \dots + \frac{1}{1+ka_n^3} \le \frac{n}{1+k}.$$

1.29. Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$. If $k \ge \frac{n^2}{n-1}$, then

$$\sqrt{\frac{a_1}{k-a_1}} + \sqrt{\frac{a_2}{k-a_2}} + \dots + \sqrt{\frac{a_n}{k-a_n}} \le \frac{n}{\sqrt{k-1}}.$$

1.30. If a_1, a_2, \ldots, a_n are nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$n^{-a_1^2} + n^{-a_2^2} + \dots + n^{-a_n^2} \ge 1.$$

1.31. If a, b, c, d are nonnegative real numbers so that a + b + c + d = 4, then

$$(3a^2+1)(3b^2+1)(3c^2+1)(3d^2+1) \le 256.$$

1.32. If $a, b, c, d, e \ge -1$ so that a + b + c + d + e = 5, then

$$(a^2+1)(b^2+1)(c^2+1)(d^2+1)(e^2+1) \ge (a+1)(b+1)(c+1)(d+1)(e+1).$$

1.33. Let a_1, a_2, \ldots, a_n be positive numbers so that $a_1 + a_2 + \cdots + a_n = n$. If

$$k \le \frac{2\sqrt{n-1}}{n} + 2\sqrt{\frac{2\sqrt{n-1}}{n}}, \quad k \le 3,$$

then

$$k(\sqrt{a_1} + \sqrt{a_2} + \dots + \sqrt{a_n}) + \frac{1}{\sqrt{a_1}} + \frac{1}{\sqrt{a_2}} + \dots + \frac{1}{\sqrt{a_n}} \ge (k+1)n.$$

1.34. If a_1, a_2, \ldots, a_n $(n \ge 3)$ are positive numbers so that $a_1 + a_2 + \cdots + a_n = 1$, then

$$\left(\frac{1}{\sqrt{a_1}} - \sqrt{a_1}\right) \left(\frac{1}{\sqrt{a_2}} - \sqrt{a_2}\right) \cdots \left(\frac{1}{\sqrt{a_n}} - \sqrt{a_n}\right) \ge \left(\sqrt{n} - \frac{1}{\sqrt{n}}\right)^n.$$

1.35. Let a_1, a_2, \ldots, a_n be positive real numbers so that $a_1 + a_2 + \cdots + a_n = n$. If

$$k \le \left(1 + \frac{2\sqrt{n-1}}{n}\right)^2,$$

then

$$\left(ka_1+\frac{1}{a_1}\right)\left(ka_2+\frac{1}{a_2}\right)\cdots\left(ka_n+\frac{1}{a_n}\right)\geq (k+1)^n.$$

1.36. If a, b, c, d are nonzero real numbers so that

$$a, b, c, d \ge \frac{-1}{2}, \quad a + b + c + d = 4,$$

then

$$3\left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{d^2}\right) + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} \ge 16.$$

1.37. If a_1, a_2, \ldots, a_n are nonnegative real numbers so that $a_1^2 + a_2^2 + \cdots + a_n^2 = n$, then

$$a_1^3 + a_2^3 + \dots + a_n^3 - n + \sqrt{\frac{n}{n-1}} (a_1 + a_2 + \dots + a_n - n) \ge 0.$$

1.38. If a, b, c, d, e are nonnegative real numbers so that $a^2 + b^2 + c^2 + d^2 + e^2 = 5$, then

$$\frac{1}{7-2a} + \frac{1}{7-2b} + \frac{1}{7-2c} + \frac{1}{7-2d} + \frac{1}{7-2e} \le 1.$$

1.39. Let $0 \le a_1, a_2, \dots, a_n < k$ so that $a_1^2 + a_2^2 + \dots + a_n^2 = n$. If

$$1 < k \le 1 + \sqrt{\frac{n}{n-1}},$$

then

$$\frac{1}{k-a_1} + \frac{1}{k-a_2} + \dots + \frac{1}{k-a_n} \ge \frac{n}{k-1}.$$

1.40. If a, b, c are nonnegative real numbers, no two of which are zero, then

$$\sqrt{1 + \frac{48a}{b+c}} + \sqrt{1 + \frac{48b}{c+a}} + \sqrt{1 + \frac{48c}{a+b}} \ge 15.$$

1.41. If *a*, *b*, *c* are nonnegative real numbers, then

$$\sqrt{\frac{3a^2}{7a^2 + 5(b+c)^2}} + \sqrt{\frac{3b^2}{7b^2 + 5(c+a)^2}} + \sqrt{\frac{3c^2}{7c^2 + 5(a+b)^2}} \le 1.$$

1.42. If a, b, c are nonnegative real numbers, then

$$\sqrt{\frac{a^2}{a^2 + 2(b+c)^2}} + \sqrt{\frac{b^2}{b^2 + 2(c+a)^2}} + \sqrt{\frac{c^2}{c^2 + 2(a+b)^2}} \ge 1.$$

1.43. Let a, b, c be nonnegative real numbers, no two of which are zero. If

$$k \ge k_0$$
, $k_0 = \frac{\ln 3}{\ln 2} - 1 \approx 0.585$,

then

$$\left(\frac{2a}{b+c}\right)^k + \left(\frac{2b}{c+a}\right)^k + \left(\frac{2c}{a+b}\right)^k \ge 3.$$

1.44. If $a, b, c \in [1, 7 + 4\sqrt{3}]$, then

$$\sqrt{\frac{2a}{b+c}} + \sqrt{\frac{2b}{c+a}} + \sqrt{\frac{2c}{a+b}} \ge 3.$$

1.45. Let a, b, c be nonnegative real numbers so that a + b + c = 3. If

$$0 < k \le k_0$$
, $k_0 = \frac{\ln 2}{\ln 3 - \ln 2} \approx 1.71$,

then

$$a^{k}(b+c) + b^{k}(c+a) + c^{k}(a+b) \le 6.$$

1.46. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

$$\sqrt{a} + \sqrt{b} + \sqrt{c} - 3 \ge 13 \left(\sqrt{\frac{a+b}{2}} + \sqrt{\frac{b+c}{2}} + \sqrt{\frac{c+a}{2}} - 3 \right).$$

1.47. Let a, b, c be nonnegative real numbers so that a + b + c = 3. If k > 2, then

$$a^{k} + b^{k} + c^{k} + 3 \ge 2\left(\frac{a+b}{2}\right)^{k} + 2\left(\frac{b+c}{2}\right)^{k} + 2\left(\frac{c+a}{2}\right)^{k}.$$

1.48. If a_1, a_2, \dots, a_n are nonnegative real numbers so that $a_1 + a_2 + \dots + a_n = n$, then

$$\sqrt{a_1} + \sqrt{a_2} + \dots + \sqrt{a_n} + n(k-1) \le k \left(\sqrt{\frac{n-a_1}{n-1}} + \sqrt{\frac{n-a_2}{n-1}} + \dots + \sqrt{\frac{n-a_n}{n-1}} \right),$$

where

$$k = (\sqrt{n} - 1)(\sqrt{n} + \sqrt{n - 1}).$$

1.49. If a, b, c are the lengths of the sides of a triangle so that a + b + c = 3, then

$$\frac{1}{a+b-c} + \frac{1}{b+c-a} + \frac{1}{c+a-b} - 3 \ge 4(2+\sqrt{3}) \left(\frac{2}{a+b} + \frac{2}{b+c} + \frac{2}{c+a} - 3 \right).$$

1.50. Let $a_1, a_2, ..., a_5$ be nonnegative numbers so that $a_1 + a_2 + a_3 + a_4 + a_5 \le 5$. If

$$k \ge k_0$$
, $k_0 = \frac{29 + \sqrt{761}}{10} \approx 5.66$,

then

$$\sum \frac{1}{ka_1^2 + a_2 + a_3 + a_4 + a_5} \ge \frac{5}{k+4}.$$

1.51. Let a_1, a_2, \ldots, a_5 be nonnegative numbers so that $a_1 + a_2 + a_3 + a_4 + a_5 \le 5$. If

$$0 < k \le k_0, \qquad k_0 = \frac{11 - \sqrt{101}}{10} \approx 0.095,$$

then

$$\sum \frac{1}{ka_1^2 + a_2 + a_3 + a_4 + a_5} \ge \frac{5}{k+4}.$$

1.52. Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n \le n$. If

$$0 < k \le \frac{1}{n+1},$$

then

$$\frac{a_1}{ka_1^2 + a_2 + \dots + a_n} + \frac{a_2}{a_1 + ka_2^2 + \dots + a_n} + \dots + \frac{a_n}{a_1 + a_2 + \dots + ka_n^2} \ge \frac{n}{k + n - 1}.$$

1.53. If
$$a_1, a_2, a_3, a_4, a_5 \le \frac{7}{2}$$
 so that $a_1 + a_2 + a_3 + a_4 + a_5 = 5$, then

$$\frac{a_1}{a_1^2 - a_1 + 5} + \frac{a_2}{a_2^2 - a_2 + 5} + \frac{a_3}{a_3^2 - a_3 + 5} + \frac{a_4}{a_4^2 - a_4 + 5} + \frac{a_5}{a_5^2 - a_5 + 5} \le 1.$$

1.54. Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n \ge n$. If

$$0 < k \le \frac{1}{1 + \frac{1}{4(n-1)^2}},$$

then

$$\frac{a_1^2}{ka_1^2 + a_2 + \dots + a_n} + \frac{a_2^2}{a_1 + ka_2^2 + \dots + a_n} + \dots + \frac{a_n^2}{a_1 + a_2 + \dots + ka_n^2} \ge \frac{n}{k + n - 1}.$$

1.55. Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n \le n$. If $k \ge n - 1$, then

$$\frac{a_1^2}{ka_1^2 + a_2 + \dots + a_n} + \frac{a_2^2}{a_1 + ka_2^2 + \dots + a_n} + \dots + \frac{a_n^2}{a_1 + a_2 + \dots + ka_n^2} \le \frac{n}{k + n - 1}.$$

1.56. Let
$$a_1, a_2, \dots, a_n \in [0, n]$$
 so that $a_1 + a_2 + \dots + a_n \ge n$. If $0 < k \le \frac{1}{n}$, then

$$\frac{a_1 - 1}{ka_1^2 + a_2 + \dots + a_n} + \frac{a_2 - 1}{a_1 + ka_2^2 + \dots + a_n} + \dots + \frac{a_n - 1}{a_1 + a_2 + \dots + ka_n^2} \ge 0.$$

1.57. If a, b, c are positive real numbers so that abc = 1, then

$$\sqrt{a^2-a+1} + \sqrt{b^2-b+1} + \sqrt{c^2-c+1} \ge a+b+c.$$

1.58. If
$$a, b, c, d \ge \frac{1}{1 + \sqrt{6}}$$
 so that $abcd = 1$, then

$$\frac{1}{a+2} + \frac{1}{b+2} + \frac{1}{c+2} + \frac{1}{d+2} \le \frac{4}{3}.$$

1.59. If a, b, c are positive real numbers so that abc = 1, then

$$a^2 + b^2 + c^2 - 3 \ge 2(ab + bc + ca - a - b - c).$$

1.60. If a, b, c are positive real numbers so that abc = 1, then

$$a^{2} + b^{2} + c^{2} - 3 \ge 18(a + b + c - ab - bc - ca).$$

1.61. If a_1, a_2, \ldots, a_n are positive real numbers so that $a_1 a_2 \cdots a_n = 1$, then

$$a_1^2 + a_2^2 + \dots + a_n^2 - n \ge 6\sqrt{3} \left(a_1 + a_2 + \dots + a_n - \frac{1}{a_1} - \frac{1}{a_2} - \dots - \frac{1}{a_n} \right).$$

1.62. If a_1, a_2, \dots, a_n $(n \ge 4)$ are positive real numbers so that $a_1 a_2 \cdots a_n = 1$, then

$$(n-1)(a_1^2+a_2^2+\cdots+a_n^2)+n(n+3)\geq (2n+2)(a_1+a_2+\cdots+a_n).$$

1.63. Let a_1, a_2, \ldots, a_n $(n \ge 3)$ be positive real numbers so that $a_1 a_2 \cdots a_n = 1$. If p and q are nonnegative real numbers so that $p + q \ge n - 1$, then

$$\frac{1}{1+pa_1+qa_1^2} + \frac{1}{1+pa_2+qa_2^2} + \dots + \frac{1}{1+pa_n+qa_n^2} \ge \frac{n}{1+p+q}.$$

1.64. Let a, b, c, d be positive real numbers so that abcd = 1. If p and q are nonnegative real numbers so that p + q = 3, then

$$\frac{1}{1+pa+qa^3} + \frac{1}{1+pb+qb^3} + \frac{1}{1+pc+qc^3} + \frac{1}{1+pd+qd^3} \ge 1.$$

1.65. If a_1, a_2, \ldots, a_n are positive real numbers so that $a_1 a_2 \cdots a_n = 1$, then

$$\frac{1}{1+a_1+\cdots+a_1^{n-1}} + \frac{1}{1+a_2+\cdots+a_2^{n-1}} + \cdots + \frac{1}{1+a_n+\cdots+a_n^{n-1}} \ge 1.$$

1.66. Let a_1, a_2, \ldots, a_n be positive real numbers so that $a_1 a_2 \cdots a_n = 1$. If

$$k \ge n^2 - 1$$
,

then

$$\frac{1}{\sqrt{1+ka_1}} + \frac{1}{\sqrt{1+ka_2}} + \dots + \frac{1}{\sqrt{1+ka_n}} \ge \frac{n}{\sqrt{1+k}}.$$

1.67. Let a_1, a_2, \ldots, a_n be positive real numbers so that $a_1 a_2 \cdots a_n = 1$. If $p, q \ge 0$ so that 0 , then

$$\frac{1}{1+pa_1+qa_1^2} + \frac{1}{1+pa_2+qa_2^2} + \dots + \frac{1}{1+pa_n+qa_n^2} \le \frac{n}{1+p+q}.$$

1.68. Let a_1, a_2, \ldots, a_n $(n \ge 3)$ be positive real numbers so that $a_1 a_2 \cdots a_n = 1$. If

$$0 < k \le \frac{2n-1}{(n-1)^2},$$

then

$$\frac{1}{\sqrt{1+ka_1}} + \frac{1}{\sqrt{1+ka_2}} + \dots + \frac{1}{\sqrt{1+ka_n}} \le \frac{n}{\sqrt{1+k}}.$$

1.69. If a_1, a_2, \dots, a_n are positive real numbers so that $a_1 a_2 \cdots a_n = 1$, then

$$\sqrt{a_1^4 + \frac{2n-1}{(n-1)^2}} + \sqrt{a_2^4 + \frac{2n-1}{(n-1)^2}} + \dots + \sqrt{a_n^4 + \frac{2n-1}{(n-1)^2}} \ge \frac{1}{n-1}(a_1 + a_2 + \dots + a_n)^2.$$

1.70. If a_1, a_2, \ldots, a_n are positive real numbers so that $a_1 a_2 \cdots a_n = 1$, then

$$a_1^{n-1} + a_2^{n-1} + \dots + a_n^{n-1} + n(n-2) \ge (n-1) \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} \right).$$

1.71. Let a_1, a_2, \ldots, a_n be positive real numbers so that $a_1 a_2 \cdots a_n = 1$. If $k \ge n$, then

$$a_1^k + a_2^k + \dots + a_n^k + kn \ge (k+1) \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} \right).$$

1.72. If a_1, a_2, \dots, a_n are positive real numbers so that $a_1 a_2 \cdots a_n = 1$, then

$$\left(1 - \frac{1}{n}\right)^{a_1} + \left(1 - \frac{1}{n}\right)^{a_2} + \dots + \left(1 - \frac{1}{n}\right)^{a_n} \le n - 1.$$

1.73. If a, b, c are positive real numbers so that abc = 1, then

$$\frac{1}{1+\sqrt{1+3a}} + \frac{1}{1+\sqrt{1+3b}} + \frac{1}{1+\sqrt{1+3c}} \le 1.$$

1.74. If a_1, a_2, \dots, a_n are positive real numbers so that $a_1 a_2 \cdots a_n = 1$, then

$$\frac{1}{1+\sqrt{1+4n(n-1)a_1}} + \frac{1}{1+\sqrt{1+4n(n-1)a_2}} + \dots + \frac{1}{1+\sqrt{1+4n(n-1)a_n}} \ge \frac{1}{2}.$$

1.75. If a, b, c are positive real numbers so that abc = 1, then

$$\frac{a^6}{1+2a^5} + \frac{b^6}{1+2b^5} + \frac{c^6}{1+2c^5} \ge 1.$$

1.76. If a, b, c are positive real numbers so that abc = 1, then

$$\sqrt{25a^2 + 144} + \sqrt{25b^2 + 144} + \sqrt{25c^2 + 144} \le 5(a + b + c) + 24.$$

1.77. If a, b, c are positive real numbers so that abc = 1, then

$$\sqrt{16a^2+9} + \sqrt{16b^2+9} + \sqrt{16c^2+9} \ge 4(a+b+c) + 3.$$

1.78. If ABC is a triangle, then

$$\sin A \left(2\sin\frac{A}{2} - 1 \right) + \sin B \left(2\sin\frac{B}{2} - 1 \right) + \sin C \left(2\sin\frac{C}{2} - 1 \right) \ge 0.$$

1.79. If ABC is an acute or right triangle, then

$$\sin 2A\left(1-2\sin\frac{A}{2}\right)+\sin 2B\left(1-2\sin\frac{B}{2}\right)+\sin 2C\left(1-2\sin\frac{C}{2}\right)\geq 0.$$

1.80. If a, b, c, d are real numbers so that a + b + c + d = 4, then

$$\frac{a}{a^2-a+4} + \frac{b}{b^2-b+4} + \frac{c}{c^2-c+4} + \frac{d}{d^2-d+4} \le 1.$$

1.81. Let a, b, c be nonnegative real numbers so that a + b + c = 2. If

$$k_0 \le k \le 3$$
, $k_0 = \frac{\ln 2}{\ln 3 - \ln 2} \approx 1.71$,

then

$$a^k(b+c)+b^k(c+a)+c^k(a+b)\leq 2.$$

1.82. If a_1, a_2, \ldots, a_n are positive real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$(n+1)^2\left(\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}\right) \ge 4(n+2)(a_1^2+a_2^2+\cdots+a_n^2)+n(n^2-3n-6).$$

1.83. If a, b, c, d, e are positive real numbers such that a + b + c + d + e = 5, then

$$27(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} + \frac{1}{e}) \ge 4(a^3 + b^3 + c^3 + d^3 + e^3) + 115.$$

1.84. If a, b, c are nonnegative real numbers so that a + b + c = 12, then

$$(a^2 + 10)(b^2 + 10)(c^2 + 10) \ge 13310.$$

1.85. If a_1, a_2, \ldots, a_n are nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$(a_1^2+1)(a_2^2+1)\cdots(a_n^2+1) \ge \frac{(n^2-2n+2)^n}{(n-1)^{2n-2}}.$$

1.86. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

$$(a^2+2)(b^2+2)(c^2+2) \le 44.$$

1.87. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

$$(a^2+1)(b^2+1)(c^2+1) \le \frac{169}{16}.$$

1.88. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

$$(2a^2+1)(2b^2+1)(2c^2+1) \le \frac{121}{4}.$$

1.89. If a, b, c are nonnegative real numbers so that $a + b + c \ge k_0$, where

$$k_0 = \frac{3}{8}\sqrt{66 + 10\sqrt{105}} \approx 4.867,$$

then

$$\sqrt[3]{(a^2+1)(b^2+1)(c^2+1)} \le \left(\frac{a+b+c}{3}\right)^2 + 1.$$

1.90. If a, b, c, d are nonnegative real numbers so that a + b + c + d = 4, then

$$(a^2+3)(b^2+3)(c^2+3)(d^2+3) \le 513.$$

1.91. If a, b, c, d are nonnegative real numbers so that a + b + c + d = 4, then

$$(a^2+2)(b^2+2)(c^2+2)(d^2+2) \le 144.$$

1.92. If a, b, c, d are nonnegative real numbers such that

$$a + b + c + d = 4$$
,

then

$$\frac{a}{3a^3 + 2} + \frac{b}{3b^3 + 2} + \frac{c}{3c^3 + 2} + \frac{d}{3d^3 + 2} \le \frac{4}{5}.$$

1.93. If $a_1, a_2, ..., a_n$ are nonnegative real numbers such that $a_1 + a_2 + \cdots + a_n = 1$, then

$$a_1^3 + a_2^3 + \dots + a_n^3 \le \frac{1}{8} + a_1^4 + a_2^4 + \dots + a_n^4.$$

1.3 Solutions

P 1.1. If a, b, c are real numbers so that a + b + c = 3, then

$$3(a^4 + b^4 + c^4) + a^2 + b^2 + c^2 + 6 \ge 6(a^3 + b^3 + c^3).$$

(Vasile C., 2006)

Solution. Write the inequality as

$$f(a) + f(b) + f(c) \ge 3f(s), \quad s = \frac{a+b+c}{3} = 1,$$

where

$$f(u) = 3u^4 - 6u^3 + u^2, \quad u \in \mathbb{R}.$$

From

$$f''(u) = 2(18u^2 - 18u + 1),$$

it follows that f''(u) > 0 for $u \ge 1$, hence f is convex on $[s, \infty)$. By the RHCF-Theorem, it suffices to show that $f(x) + 2f(y) \ge 3f(1)$ for all real x, y so that x + 2y = 3. Let

$$E = f(x) + 2f(y) - 3f(1).$$

We have

$$E = [f(x) - f(1)] + 2[f(y) - f(1)]$$

$$= (3x^{4} - 6x^{3} + x^{2} + 2) + 2(3y^{4} - 6y^{3} + y^{2} + 2)$$

$$= (x - 1)(3x^{3} - 3x^{2} - 2x - 2) + 2(y - 1)(3y^{3} - 3y^{2} - 2y - 2)$$

$$= (x - 1)[(3x^{3} - 3x^{2} - 2x - 2) - (3y^{3} - 3y^{2} - 2y - 2)]$$

$$= (x - 1)[3(x^{3} - y^{3}) - 3(x^{2} - y^{2}) - 2(x - y)]$$

$$= (x - 1)(x - y)[3(x^{2} + xy + y^{2}) - 3(x + y) - 2]$$

$$= \frac{(x - 1)^{2}[27(x^{2} + xy + y^{2}) - 9(x + y)(x + 2y) - 2(x + 2y)^{2}]}{6}$$

$$= \frac{(x - 1)^{2}(4x - y)^{2}}{6} \ge 0.$$

The equality holds for a = b = c = 1, and also for $a = \frac{1}{3}$ and $b = c = \frac{4}{3}$ (or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

• If $a_1, a_2, ..., a_n$ are real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$(a_1^2 - a_1)^2 + (a_2^2 - a_2)^2 + \dots + (a_n^2 - a_n)^2 \ge \frac{n-1}{n^2 - 3n + 3}(a_1^2 + a_2^2 + \dots + a_n^2 - n),$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = \frac{1}{n^2 - 3n + 3}$$
, $a_2 = a_3 = \dots = a_n = 1 + \frac{n - 2}{n^2 - 3n + 3}$

(or any cyclic permutation).

P 1.2. If $a_1, a_2, ..., a_n \ge \frac{1-2n}{n-2}$ so that $a_1 + a_2 + \cdots + a_n = n$, then $a_1^3 + a_2^3 + \cdots + a_n^3 \ge n$.

(Vasile C., 2000)

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = u^3, \quad u \ge \frac{1 - 2n}{n - 2}.$$

From f''(u) = 6u, it follows that f is convex on $[s, \infty)$. By the RHCF-Theorem and Note 1, it suffices to show that $h(x, y) \ge 0$ for all $x, y \ge \frac{1-2n}{n-2}$ so that x+(n-1)y = n. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = u^2 + u + 1,$$

$$h(x, y) = \frac{g(x) - g(y)}{x - y} = x + y + 1 = \frac{(n - 2)x + 2n - 1}{n - 1} \ge 0.$$

From x + (n-1)y = n and h(x, y) = 0, we get

$$x = \frac{1-2n}{n-2}$$
, $y = \frac{n+1}{n-2}$.

Therefore, according to Note 4, the equality holds for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = \frac{1-2n}{n-2}$$
, $a_2 = a_3 = \dots = a_n = \frac{n+1}{n-2}$

(or any cyclic permutation).

P 1.3. If $a_1, a_2, ..., a_n \ge \frac{-n}{n-2}$ so that $a_1 + a_2 + \cdots + a_n = n$, then $a_1^3 + a_2^3 + \cdots + a_n^3 \ge a_1^2 + a_2^2 + \cdots + a_n^2$.

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = u^3 - u^2, \quad u \ge \frac{-n}{n-2}.$$

From f''(u) = 6u - 2, it follows that f is convex on $[s, \infty)$. According to the RHCF-Theorem and Note 1, it suffices to show that $h(x, y) \ge 0$ for $x, y \ge \frac{-n}{n-2}$ so that x + (n-1)y = n. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = u^{2},$$

$$g(x) - g(y) \qquad (n - 2)x + n$$

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = x + y = \frac{(n-2)x + n}{n-1} \ge 0.$$

From x + (n-1)y = n and h(x, y) = 0, we get

$$x = \frac{-n}{n-2}, \quad y = \frac{n}{n-2}.$$

Therefore, in accordance with Note 4, the equality holds for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = \frac{-n}{n-2}$$
, $a_2 = a_3 = \dots = a_n = \frac{n}{n-2}$

(or any cyclic permutation).

P 1.4. If
$$a_1, a_2, ..., a_n$$
 are real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then
$$(n^2 - 3n + 3)(a_1^4 + a_2^4 + \cdots + a_n^4 - n) \ge 2(n^2 - n + 1)(a_1^2 + a_2^2 + \cdots + a_n^2 - n).$$
 (Vasile C.. 2009)

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = (n^2 - 3n + 3)u^4 - 2(n^2 - n + 1)u^2, \quad u \in \mathbb{I} = \mathbb{R}.$$

For $u \ge s = 1$, we have

$$\frac{1}{4}f''(u) = 3(n^2 - 3n + 3)u^2 - (n^2 - n + 1)$$

$$\ge 3(n^2 - 3n + 3) - (n^2 - n + 1) = 2(n - 2)^2 \ge 0;$$

therefore, f is convex on $\mathbb{I}_{\geq s}$. By the RHCF-Theorem and Note 1, it suffices to show that $h(x, y) \geq 0$ for $x, y \in \mathbb{R}$ so that x + (n-1)y = n, where

$$h(x,y) = \frac{g(x) - g(y)}{x - y}, \quad g(u) = \frac{f(u) - f(1)}{u - 1}.$$

We have

$$g(u) = (n^2 - 3n + 3)(u^3 + u^2 + u + 1) - 2(n^2 - n + 1)(u + 1)$$

and

$$h(x,y) = (n^2 - 3n + 3)(x^2 + xy + y^2 + x + y + 1) - 2(n^2 - n + 1)$$

= $[(n^2 - 3n + 3)y - n^2 + n + 1]^2 \ge 0$.

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = -1 + \frac{2}{n^2 - 3n + 3}$$
, $a_2 = a_3 = \dots = a_n = 1 + \frac{2n - 4}{n^2 - 3n + 3}$

(or any cyclic permutation).

P 1.5. If a_1, a_2, \ldots, a_n are nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$(n^2 + n + 1)(a_1^3 + a_2^3 + \dots + a_n^3 - n) \ge (n + 1)(a_1^4 + a_2^4 + \dots + a_n^4 - n).$$

(Vasile C., 2009)

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = (n^2 + n + 1)u^3 - (n + 1)u^4, u \in \mathbb{I} = [0, n].$$

The function f is convex on $\mathbb{I}_{<_{\mathcal{S}}}$ because

$$f''(u) = 6u[n^2 + n + 1 - 2(n+1)u] \ge 6u[n^2 + n + 1 - 2(n+1)]$$
$$= 6(n^2 - n - 1)u \ge 0.$$

By the LHCF-Theorem and Note 1, it suffices to show that $h(x, y) \ge 0$ for $x, y \ge 0$ so that x + (n-1)y = n, where

$$h(x,y) = \frac{g(x) - g(y)}{x - y}, \quad g(u) = \frac{f(u) - f(1)}{u - 1}.$$

We have

$$g(u) = (n^2 + n + 1)(u^2 + u + 1) - (n + 1)(u^3 + u^2 + u + 1)$$

= -(n + 1)u³ + n²(u² + u + 1)

and

$$h(x,y) = -(n+1)(x^2 + xy + y^2) + n^2(x+y+1)$$

$$= -(n+1)(x^2 + xy + y^2) + n(x+y)[x+(n-1)y] + [x+(n-1)y]^2$$

$$= (n^2 + n - 3)xy + 2n(n-2)y^2 \ge 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = n$$
, $a_2 = a_3 = \cdots = a_n = 0$

(or any cyclic permutation).

P 1.6. Let a, b, c be real numbers so that a + b + c = 3. If

$$-14 - 6\sqrt{7} \le k \le -14 + 6\sqrt{7}$$
,

then

$$a^4 + b^4 + c^4 - 3 \ge k(a^3 + b^3 + c^3 - 3).$$

(Vasile C., 2009)

Solution. Write the desired inequalities as

$$f(a) + f(b) + f(c) \ge 3f(s), \quad s = \frac{a+b+c}{3} = 1,$$

where

$$f(u) = u^4 - ku^3, \quad u \in \mathbb{R}.$$

From

$$f''(u) = 6u(2u^2 - k),$$

it follows that f''(u) > 0 for $u \ge 1$, hence f is convex on $[s, \infty)$. By the RHCF-Theorem, it suffices to show that $f(x) + 2f(y) \ge 3f(1)$ for all real x, y so that x + 2y = 3. Using Note 1, we only need to show that $h(x, y) \ge 0$, where

$$h(x,y) = \frac{g(x) - g(y)}{x - y}, \quad g(u) = \frac{f(u) - f(1)}{u - 1}.$$

We have

$$g(u) = u^3 + u^2 + u + 1 - k(u^2 + u + 1) + u + 1 = u^3 + (1 - k)(u^2 + u + 1),$$

$$h(x,y) = x^2 + xy + y^2 + (1-k)(x+y+1) = 3y^2 - (10-k)y + 13 - 4k$$
$$= 3\left(y - \frac{10-k}{6}\right)^2 + \frac{(6\sqrt{7} + 14 + k)(6\sqrt{7} - 14 - k)}{12} \ge 0.$$

The equality holds for a = b = c = 1. If $k = -14 - 6\sqrt{7}$, then the equality holds also for

$$a = -5 - 2\sqrt{7}$$
, $b = c = 4 + \sqrt{7}$

(or any cyclic permutation). If $k = -14 + 6\sqrt{7}$, then the equality holds also for

$$a = -5 + 2\sqrt{7}$$
, $b = c = 4 - \sqrt{7}$

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• Let a_1, a_2, \ldots, a_n be real numbers so that $a_1 + a_2 + \cdots + a_n = n$. If $k_1 \le k \le k_2$, where

$$k_1 = \frac{-2(n^2-n+1)-2\sqrt{3(n^2-n+1)(n^2-3n+3)}}{(n-2)^2},$$

$$k_2 = \frac{-2(n^2 - n + 1) + 2\sqrt{3(n^2 - n + 1)(n^2 - 3n + 3)}}{(n - 2)^2},$$

then

$$a_1^4 + a_2^4 + \dots + a_n^4 - n \ge k(a_1^3 + a_2^3 + \dots + a_n^3 - n).$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$. If $k \in \{k_1, k_2\}$, then the equality holds also for

$$a_1 = \frac{-2(n^2 - 3n + 1) + (n - 1)(n - 2)k}{2(n^2 - 3n + 3)},$$

$$a_2 = a_3 = \dots = a_n = \frac{2(n^2 - n - 1) - (n - 2)k}{2(n^2 - 3n + 3)}$$

(or any cyclic permutation).

P 1.7. Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$. If k is a positive integer satisfying $3 \le k \le n + 1$, then

$$\frac{a_1^k + a_2^k + \dots + a_n^k - n}{a_1^2 + a_2^2 + \dots + a_n^2 - n} \ge (n - 1) \left[\left(\frac{n}{n - 1} \right)^{k - 1} - 1 \right].$$

(Vasile C., 2012)

Solution. Denote

$$m = (n-1) \left[\left(\frac{n}{n-1} \right)^{k-1} - 1 \right] = \left(\frac{n}{n-1} \right)^{k-2} + \left(\frac{n}{n-1} \right)^{k-3} + \dots + 1,$$

and write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = u^k - mu^2, \quad u \in [0, n].$$

We will show that f is convex on [1, n]. Since

$$f''(u) = k(k-1)u^{k-2} - 2m \ge k(k-1) - 2m$$

we need to show that

$$\frac{k(k-1)}{2} \ge \left(\frac{n}{n-1}\right)^{k-2} + \left(\frac{n}{n-1}\right)^{k-3} + \dots + 1.$$

Since $n \ge k - 1$, this inequality is true if

$$\frac{k(k-1)}{2} \ge \left(\frac{k-1}{k-2}\right)^{k-2} + \left(\frac{k-1}{k-2}\right)^{k-3} + \dots + 1.$$

By Bernoulli's inequality, we have

$$\left(\frac{k-1}{k-2}\right)^{j} = \frac{1}{\left(1 - \frac{1}{k-1}\right)^{j}} \le \frac{1}{1 - \frac{j}{k-1}} = \frac{k-1}{k-j-1}, \quad j = 0, 1, \dots, k-2.$$

Therefore, it suffices to show that

$$\frac{k(k-1)}{2} \ge (k-1)\left(1 + \frac{1}{2} + \dots + \frac{1}{k-1}\right).$$

This is true if

$$\frac{k}{2} \ge 1 + \frac{1}{2} + \dots + \frac{1}{k-1}$$

which can be easily proved by induction. According to the RHCF-Theorem and Note 1, we only need to show that $h(x, y) \ge 0$ for $x, y \ge 0$ so that x + (n-1)y = n, where

$$h(x,y) = \frac{g(x) - g(y)}{x - y}, \quad g(u) = \frac{f(u) - f(1)}{u - 1}.$$

We have

$$g(u) = \frac{(u^{k} - 1) - m(u^{2} - 1)}{u - 1} = (u^{k-1} + u^{k-2} + \dots + 1) - m(u + 1),$$

$$h(x,y) = \left(\frac{x^{k-1} - y^{k-1}}{x - y} + \frac{x^{k-2} - y^{k-1}}{x - y} + \dots + 1\right) - m$$
$$= \sum_{j=1}^{k-2} \left[\frac{x^{j+1} - y^{j+1}}{x - y} - \left(\frac{n}{n-1}\right)^{j}\right].$$

It suffices to show that $f_j(y) \ge 0$ for $y \in \left[0, \frac{n}{n-1}\right]$ and j = 1, 2, ..., k-2, where

$$f_j(y) = x^j + x^{j-1}y + \dots + xy^{j-1} + y^j - \left(\frac{n}{n-1}\right)^j, \quad x = n - (n-1)y.$$

For j = 1, we have

$$f_1(y) = x + y - \frac{n}{n-1} = \frac{(n-2)x}{n-1} \ge 0.$$

For $j \ge 2$, from x' = -(n-1) and $n-1 \ge k-2 \ge j$, we get

$$\begin{split} f_j'(y) &= -(n-1)[jx^{j-1} + (j-1)x^{j-2}y + \dots + y^{j-1}] + x^{j-1} + 2x^{j-2}y + \dots + jy^{j-1} \\ &\leq -j[jx^{j-1} + (j-1)x^{j-2}y + \dots + y^{j-1}] + x^{j-1} + 2x^{j-2}y + \dots + jy^{j-1} \\ &= -(j\cdot j-1)x^{j-1} - [j\cdot (j-1)-2]x^{j-2}y - \dots - (j\cdot 2-j+1)xy^{j-2} \leq 0. \end{split}$$

As a consequence, f_j is decreasing, hence it is minimum for $y = \frac{n}{n-1}$ (when x = 0):

$$f_j(y) \ge f_j\left(\frac{n}{n-1}\right) = 0.$$

From x + (n-1)y = n and h(x, y) = 0, we get

$$x = 0$$
, $y = \frac{n}{n-1}$.

Therefore, the equality holds for

$$a_1 = 0$$
, $a_2 = a_3 = \dots = a_n = \frac{n}{n-1}$

(or any cyclic permutation).

Remark. For k = 3 and k = 4, we get the following statements (*Vasile C.*, 2002):

• If a_1, a_2, \ldots, a_n are nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$(n-1)(a_1^3+a_2^3+\cdots+a_n^3-n) \ge (2n-1)(a_1^2+a_2^2+\cdots+a_n^2-n),$$

which is equivalent to

$$\frac{3}{n-2} \sum_{1 \le i < j < k \le n} a_i a_j a_k + n^2 \ge \frac{3n-1}{n-1} \sum_{1 \le i < j \le n} a_i a_j,$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = 0$$
, $a_2 = a_3 = \dots = a_n = \frac{n}{n-1}$

(or any cyclic permutation).

• If $a_1, a_2, ..., a_n$ ($n \ge 3$) are nonnegative real numbers so that

$$a_1 + a_2 + \dots + a_n = n,$$

then

$$(n-1)^2(a_1^4+a_2^4+\cdots+a_n^4-n) \ge (3n^2-3n+1)(a_1^2+a_2^2+\cdots+a_n^2-n),$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = 0$$
, $a_2 = a_3 = \dots = a_n = \frac{n}{n-1}$

(or any cyclic permutation).

P 1.8. Let $k \ge 3$ be an integer number. If a_1, a_2, \ldots, a_n are nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$\frac{a_1^k + a_2^k + \dots + a_n^k - n}{a_1^2 + a_2^2 + \dots + a_n^2 - n} \le \frac{n^{k-1} - 1}{n - 1}.$$

(Vasile C., 2012)

Solution. Denote

$$m = \frac{n^{k-1} - 1}{n-1} = n^{k-2} + n^{k-3} + \dots + 1,$$

and write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = mu^2 - u^k, \quad u \in [0, n].$$

We will show that f is convex on [0,1]. Since

$$f''(u) = 2m - k(k-1)u^{k-2} \ge 2m - k(k-1),$$

we need to show that

$$n^{k-2} + n^{k-3} + \dots + 1 \ge \frac{k(k-1)}{2}.$$

This is true if

$$2^{k-2} + 2^{k-3} + \dots + 1 \ge \frac{k(k-1)}{2}$$
,

which is equivalent to

$$2^{k-1} - 1 \ge \frac{k(k-1)}{2},$$
$$2^k > k^2 - k + 2.$$

Since

$$2^{k} = (1+1)^{k} \ge 1 + {k \choose 1} + {k \choose 2} + {k \choose 3}$$
$$= 1 + k + \frac{k(k-1)}{2} + \frac{k(k-1)(k-2)}{6},$$

it suffices to show that

$$1+k+\frac{k(k-1)}{2}+\frac{k(k-1)(k-2)}{6}\geq k^2-k+2,$$

which reduces to

$$(k-1)(k-2)(k-3) \ge 0.$$

According to the LHCF-Theorem and Note 1, we only need to show that $h(x, y) \ge 0$ for $x, y \ge 0$ so that x + (n - 1)y = n, where

$$h(x,y) = \frac{g(x) - g(y)}{x - y}, \quad g(u) = \frac{f(u) - f(1)}{u - 1}.$$

We have

$$g(u) = \frac{m(u^2 - 1) - (u^k - 1)}{u - 1} = m(u + 1) - (u^{k-1} + u^{k-2} + \dots + 1)$$

and

$$h(x,y) = m - \frac{x^{k-1} - y^{k-1}}{x - y} - \frac{x^{k-2} - y^{k-1}}{x - y} - \dots - 1$$

$$= \left(n^{k-2} - \frac{x^{k-1} - y^{k-1}}{x - y}\right) + \left(n^{k-3} - \frac{x^{k-2} - y^{k-2}}{x - y}\right) + \dots + \left(n - \frac{x^2 - y^2}{x - y}\right).$$

It suffices to show that

$$n^{j} \ge \frac{x^{j+1} - y^{j+1}}{x - y}, \quad j = 1, 2, \dots, k - 2.$$

We will show that

$$n^{j} \ge (x+y)^{j} \ge \frac{x^{j+1} - y^{j+1}}{x - y}.$$

The left inequality is true since

$$n-(x+y) = x + (n-1)y - (x+y) = (n-2)y \ge 0.$$

The right inequality is also true since

$$(x+y)^{j} = x^{j} + {j \choose 1} x^{j-1} y + \dots + {j \choose j-1} x y^{j-1} + y^{j}$$

and

$$\frac{x^{j+1} - y^{j+1}}{x - y} = x^j + x^{j-1}y + \dots + xy^{j-1} + y^j.$$

The equality holds for $a_1 = n$ and $a_2 = a_3 = \cdots = a_n = 0$ (or any cyclic permutation).

Remark. For k = 3 and k = 4, we get the following statements (*Vasile C.*, 2002):

• If a_1, a_2, \ldots, a_n are nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$a_1^3 + a_2^3 + \dots + a_n^3 - n \le (n+1)(a_1^2 + a_2^2 + \dots + a_n^2 - n),$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = n$$
, $a_2 = a_3 = \cdots = a_n = 0$

(or any cyclic permutation).

• If a_1, a_2, \ldots, a_n are nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$a_1^4 + a_2^4 + \dots + a_n^4 - n \le (n^2 + n + 1)(a_1^2 + a_2^2 + \dots + a_n^2 - n),$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = n$$
, $a_2 = a_3 = \dots = a_n = 0$

(or any cyclic permutation).

P 1.9. If a_1, a_2, \ldots, a_n are positive real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$n^{2}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}-n\right)\geq 4(n-1)(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}-n).$$

(Vasile C., 2004)

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = \frac{n^2}{u} - 4(n-1)u^2, \quad u \in \mathbb{I} = (0, n).$$

For $u \in (0,1]$, we have

$$f''(u) = \frac{2n^2}{u^3} - 8(n-1) \ge 2n^2 - 8(n-1) = 2(n-2)^2 \ge 0.$$

Thus, f is convex on $\mathbb{I}_{\leq s}$. By the LHCF-Theorem and Note 1, it suffices to show that $h(x, y) \geq 0$ for x, y > 0 so that x + (n-1)y = n, where

$$h(x,y) = \frac{g(x) - g(y)}{x - y}, \quad g(u) = \frac{f(u) - f(1)}{u - 1}.$$

We have

$$g(u) = \frac{-n^2}{u} - 4(n-1)(u+1)$$

and

$$h(x,y) = \frac{n^2}{xy} - 4(n-1) = \frac{[x + (n-1)y]^2}{xy} - 4(n-1) = \frac{[x - (n-1)y]^2}{xy}.$$

In accordance with Note 4, the equality holds for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = \frac{n}{2}$$
, $a_2 = a_3 = \dots = a_n = \frac{n}{2n-2}$

(or any cyclic permutation).

P 1.10. If a_1, a_2, \ldots, a_8 are positive real numbers so that $a_1 + a_2 + \cdots + a_8 = 8$, then

$$\frac{1}{a_1^2} + \frac{1}{a_2^2} + \dots + \frac{1}{a_8^2} \ge a_1^2 + a_2^2 + \dots + a_8^2.$$

(Vasile C., 2007)

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_8) \ge 8f(s), \quad s = \frac{a_1 + a_2 + \dots + a_8}{8} = 1,$$

where

$$f(u) = \frac{1}{u^2} - u^2, \quad u \in (0,8).$$

For $u \in (0,1]$, we have

$$f''(u) = \frac{6}{u^4} - 2 \ge 6 - 2 > 0.$$

Thus, f is convex on (0,s]. By the LHCF-Theorem and Note 1, it suffices to show that $h(x,y) \ge 0$ for x,y > 0 so that x + 7y = 8, where

$$h(x,y) = \frac{g(x) - g(y)}{x - y}, \quad g(u) = \frac{f(u) - f(1)}{u - 1}.$$

We have

$$g(u) = -u - 1 - \frac{1}{u} - \frac{1}{u^2}$$

and

$$h(x,y) = -1 + \frac{1}{xy} + \frac{x+y}{x^2y^2}.$$

From $8 = x + 7y \ge 2\sqrt{7xy}$, we get $xy \le 16/7$. Therefore,

$$h(x,y) \ge -1 + \frac{1}{xy} + \frac{7(x+y)}{16xy} = \frac{112y^2 - 170y + 72}{16xy}$$
$$> \frac{112y^2 - 176y + 72}{16xy} = \frac{14y^2 - 22y + 9}{2xy} > 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_8 = 1$.

Remark. In the same manner, we can prove the following generalization:

• If $a_1, a_2, ..., a_n$ ($n \ge 4$) are positive real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$\frac{1}{a_1^2} + \frac{1}{a_2^2} + \dots + \frac{1}{a_n^2} + 8 - n \ge \frac{8}{n} \left(a_1^2 + a_2^2 + \dots + a_n^2 \right).$$

P 1.11. If a_1, a_2, \ldots, a_n are positive real numbers so that $\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} = n$, then

$$a_1^2 + a_2^2 + \dots + a_n^2 - n \ge 2\left(1 + \frac{\sqrt{n-1}}{n}\right)(a_1 + a_2 + \dots + a_n - n).$$

(Vasile C., 2006)

Solution. Replacing each a_i by $1/a_i$, we need to prove that

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = \frac{1}{u^2} - \frac{2k}{u}, \quad k = 1 + \frac{\sqrt{n-1}}{n}, \quad u \in (0, n).$$

For $u \in (0,1]$, we have

$$f''(u) = \frac{6-4ku}{u^4} \ge \frac{6-4k}{u^4} = \frac{2(\sqrt{n-1}-1)^2}{nu^4} \ge 0.$$

Thus, f is convex on (0,s]. By the LHCF-Theorem and Note 1, it suffices to show that $h(x,y) \ge 0$ for x,y > 0 so that x + (n-1)y = n, where

$$h(x,y) = \frac{g(x) - g(y)}{x - y}, \quad g(u) = \frac{f(u) - f(1)}{u - 1}.$$

We have

$$g(u) = \frac{-1}{u^2} + \frac{2k - 1}{u}$$

and

$$h(x,y) = \frac{1}{xy} \left(\frac{1}{x} + \frac{1}{y} + 1 - 2k \right).$$

We only need to show that

$$\frac{1}{x} + \frac{1}{y} \ge 2k - 1.$$

Indeed, using the Cauchy-Schwarz inequality, we get

$$\frac{1}{x} + \frac{1}{y} \ge \frac{(1 + \sqrt{n-1})^2}{x + (n-1)y} = \frac{(1 + \sqrt{n-1})^2}{n} = 2k - 1,$$

with equality for $x = \sqrt{n-1}y$. From x + (n-1)y = n and h(x, y) = 0, we get

$$x = \frac{n}{1 + \sqrt{n-1}}, \quad y = \frac{n}{n-1 + \sqrt{n-1}}.$$

In accordance with Note 4, the original equality holds for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = \frac{1 + \sqrt{n-1}}{n}$$
, $a_2 = a_3 = \dots = a_n = \frac{n-1 + \sqrt{n-1}}{n}$

(or any cyclic permutation).

P 1.12. If a, b, c, d, e are positive real numbers so that $a^2 + b^2 + c^2 + d^2 + e^2 = 5$, then

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} + \frac{1}{e} - 5 + \frac{4(1+\sqrt{5})}{5} (a+b+c+d+e-5) \ge 0.$$

(Vasile C., 2006)

Solution. Replacing a, b, c, d, e by $\sqrt{a}, \sqrt{b}, \sqrt{c}, \sqrt{d}, \sqrt{e}$, respectively, we need to prove that

$$f(a) + f(b) + f(c) + f(d) + f(e) \ge 5f(s), \quad s = \frac{a+b+c+d+e}{5} = 1,$$

where

$$f(u) = \frac{1}{\sqrt{u}} + k\sqrt{u}, \quad k = \frac{4(1+\sqrt{5})}{5} \approx 2.59, \quad u \in (0,5).$$

For $u \in (0, 1]$, we have

$$f''(u) = \frac{3 - ku}{4u^2 \sqrt{u}} > 0;$$

therefore, f is convex on (0,s]. By the LHCF-Theorem and Note 1, it suffices to show that $h(x,y) \ge 0$ for x,y > 0 so that x + 4y = 5. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{k\sqrt{u} - 1}{u + \sqrt{u}}$$

and

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = \frac{\sqrt{x} + \sqrt{y} + 1 - k\sqrt{xy}}{\sqrt{xy}(\sqrt{x} + \sqrt{y})(\sqrt{x} + 1)(\sqrt{y} + 1)}.$$

Thus, we only need to show that

$$\sqrt{x} + \sqrt{y} + 1 - k\sqrt{xy} \ge 0,$$

which is true if

$$2\sqrt[4]{xy} + 1 - k\sqrt{xy} \ge 0.$$

Let

$$t = \sqrt[4]{xy}.$$

From

$$5 = x + 4y \ge 4\sqrt{xy} = 4t^2,$$

we get

$$t \le \frac{\sqrt{5}}{2}.$$

Thus,

$$\begin{split} 2\sqrt[4]{xy} + 1 - k\sqrt{xy} &= 2t + 1 - kt^2 \\ &= \left(1 - \frac{2}{\sqrt{5}}t\right) \left[1 + 2\left(1 + \frac{1}{\sqrt{5}}\right)t\right] \ge 0. \end{split}$$

The equality holds for a = b = c = d = e = 1.

P 1.13. If a, b, c are nonnegative real numbers, no two of which are zero, then

$$\frac{1}{3a+b+c} + \frac{1}{3b+c+a} + \frac{1}{3c+a+b} \leq \frac{2}{5} \left(\frac{1}{b+c} + \frac{1}{c+a} + \frac{1}{a+b} \right).$$

(Vasile C., 2006)

Solution. Due to homogeneity, we may assume that a + b + c = 3. So, we need to show that

$$f(a) + f(b) + f(c) \ge 3f(s), \quad s = \frac{a+b+c}{3} = 1,$$

where

$$f(u) = \frac{2}{3-u} - \frac{5}{2u+3}, \quad u \in [0,3).$$

For $u \in [1,3)$, we have

$$f''(u) = \frac{4}{(3-u)^3} - \frac{40}{(2u+3)^3} = \frac{36[2u^3 + 3u^2 + 9(u-1)(3-u)]}{(3-u)^3(2u+3)^3} > 0;$$

therefore, f is convex on [s,3). By the RHCF-Theorem and Note 1, it suffices to show that $h(x,y) \ge 0$ for $x,y \ge 0$ so that x + 2y = 3, where

$$h(x,y) = \frac{g(x) - g(y)}{x - y}, \quad g(u) = \frac{f(u) - f(1)}{u - 1}.$$

We have

$$g(u) = \frac{1}{3-u} + \frac{2}{2u+3}$$

and

$$h(x,y) = \frac{1}{(3-x)(3-y)} - \frac{4}{(2x+3)(2y+3)}$$
$$= \frac{9(2x+2y-3)}{(3-x)(3-y)(2x+3)(2y+3)}$$
$$= \frac{9x}{(3-x)(3-y)(2x+3)(2y+3)} \ge 0.$$

The equality holds for a = b = c, and also for a = 0 and b = c (or any cyclic permutation).

P 1.14. If $a, b, c, d \ge 3 - \sqrt{7}$ so that a + b + c + d = 4, then

$$\frac{1}{2+a^2} + \frac{1}{2+b^2} + \frac{1}{2+c^2} + \frac{1}{2+d^2} \ge \frac{4}{3}.$$

Solution. Write the inequality as

$$f(a) + f(b) + f(c) + f(d) \ge 4f(s), \qquad s = \frac{a+b+c+d}{4} = 1,$$

where

$$f(u) = \frac{1}{2+u^2}, \quad u \ge 3 - \sqrt{7}.$$

For $u \ge s = 1$, f(u) is convex because

$$f''(u) = \frac{3(3u^2 - 2)}{(2 + u^2)^3} > 0.$$

By the RHCF-Theorem and Note 1, it suffices to show that $h(x, y) \ge 0$ for $x, y \ge 3 - \sqrt{7}$ so that x + 3y = 4. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{-1 - u}{3(2 + u^2)}$$

and

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = \frac{xy + x + y - 2}{3(2 + x^2)(2 + y^2)},$$

where

$$xy + x + y - 2 = \frac{-x^2 + 6x - 2}{3} = \frac{(3 + \sqrt{7} - x)(x - 3 + \sqrt{7})}{3}$$
$$= \frac{(-1 + \sqrt{7} + 3y)(x - 3 + \sqrt{7})}{3} \ge 0.$$

In accordance with Note 4, the equality holds for a = b = c = d = 1, and also for

$$a = 3 - \sqrt{7}$$
, $b = c = d = \frac{1 + \sqrt{7}}{3}$

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• If
$$a_1, a_2, ..., a_n \ge n - 1 - \sqrt{n^2 - 3n + 3}$$
 so that $a_1 + a_2 + \cdots + a_n = n$, then

$$\frac{1}{2+a_1^2} + \frac{1}{2+a_2^2} + \dots + \frac{1}{2+a_n^2} \ge \frac{n}{3},$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = n - 1 - \sqrt{n^2 - 3n + 3},$$
 $a_2 = a_3 = \dots = a_n = \frac{1 + \sqrt{n^2 - 3n + 3}}{n - 1}$

(or any cyclic permutation).

P 1.15. If $a_1, a_2, ..., a_n \in [-\sqrt{n}, n-2]$ so that $a_1 + a_2 + ... + a_n = n$, then

$$\frac{1}{n+a_1^2} + \frac{1}{n+a_2^2} + \dots + \frac{1}{n+a_n^2} \le \frac{n}{n+1}.$$

(Vasile C., 2008)

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = \frac{-1}{n+u^2}, \quad n \ge 3, \quad u \in [-\sqrt{n}, n-2].$$

For $u \in [-\sqrt{n}, 1]$, we have

$$f''(u) = \frac{2(n-u^2)}{(n+u^2)^3} \ge 0,$$

hence f is convex on $[-\sqrt{n}, s]$. By the LHCF-Theorem and Note 1, it suffices to show that $h(x, y) \ge 0$ for $x, y \in [-\sqrt{n}, n-2]$ so that x + (n-1)y = n. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{u + 1}{(n + 1)(n + u^2)}$$

and

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = \frac{n - x - y - xy}{(n+1)(n+x^2)(n+y^2)}$$
$$= \frac{(n-x)(n-2-x)}{(n^2-1)(n+x^2)(n+y^2)} \ge 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = n - 2$$
, $a_2 = a_3 = \dots = a_n = \frac{2}{n - 1}$

(or any cyclic permutation).

P 1.16. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

$$\frac{3-a}{9+a^2} + \frac{3-b}{9+b^2} + \frac{3-c}{9+c^2} \ge \frac{3}{5}.$$

(Vasile C., 2013)

Solution. Write the inequality as

$$f(a) + f(b) + f(c) \ge 3f(s), \quad s = \frac{a+b+c}{3} = 1,$$

where

$$f(u) = \frac{3-u}{9+u^2}, \quad u \in [0,3].$$

For $u \in [1,3]$, we have

$$\frac{1}{2}f''(u) = \frac{u^2(9-u) + 27(u-1)}{(9+u^2)^3} > 0.$$

Thus, f is convex on [s,3]. By the RHCF-Theorem and Note 1, it suffices to show that $h(x,y) \ge 0$ for $x,y \ge 0$ so that x+2y=3, where

$$h(x,y) = \frac{g(x) - g(y)}{x - y}, \quad g(u) = \frac{f(u) - f(1)}{u - 1}.$$

We have

$$g(u) = \frac{-(6+u)}{5(9+u^2)}$$

and

$$h(x,y) = \frac{xy + 6x + 6y - 9}{5(9 + x^2)(9 + y^2)} = \frac{x(9 - x)}{10(9 + x^2)(9 + y^2)} \ge 0.$$

The equality holds for a = b = c = 1, and also for a = 0 and $b = c = \frac{3}{2}$ (or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

• If a_1, a_2, \ldots, a_n are nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$\frac{n-a_1}{n^2+(n^2-3n+1)a_1^2}+\frac{n-a_2}{n^2+(n^2-3n+1)a_2^2}+\cdots+\frac{n-a_n}{n^2+(n^2-3n+1)a_n^2}\geq \frac{n}{2n-1},$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = 0$$
, $a_2 = a_3 = \dots = a_n = \frac{n}{n-1}$

(or any cyclic permutation).

P 1.17. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

$$\frac{1}{1-a+2a^2} + \frac{1}{1-b+2b^2} + \frac{1}{1-c+2c^2} \ge \frac{3}{2}.$$

(Vasile C., 2012)

Solution. Write the inequality as

$$f(a) + f(b) + f(c) \ge 3f(s), \quad s = \frac{a+b+c}{3} = 1,$$

where

$$f(u) = \frac{1}{1 - u + 2u^2}, \quad u \in [0, 3].$$

For $u \in [1,3]$, we have

$$\frac{1}{2}f''(u) = \frac{12u^2 - 6u - 1}{(1 - u + 2u^2)^3} > 0.$$

Thus, f is convex on [s,3]. By the RHCF-Theorem and Note 1, it suffices to show that $h(x,y) \ge 0$ for $x,y \ge 0$ so that x + 2y = 3, where

$$h(x,y) = \frac{g(x) - g(y)}{x - y}, \quad g(u) = \frac{f(u) - f(1)}{u - 1}.$$

We have

$$g(u) = \frac{-(1+2u)}{2(1-u+2u^2)}$$

and

$$h(x,y) = \frac{4xy + 2x + 2y - 3}{2(1 - x + 2x^2)(1 - y + 2y^2)} = \frac{x(1 + 4y)}{2(1 - x + 2x^2)(1 - y + 2y^2)} \ge 0.$$

The equality holds for a = b = c = 1, and also for a = 0 and $b = c = \frac{3}{2}$ (or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

• Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$. If

$$k \ge k_1, \qquad k_1 = \frac{3n - 2 + \sqrt{5n^2 - 8n + 4}}{2n},$$

then

$$\frac{1}{1-a_1+ka_1^2}+\frac{1}{1-a_2+ka_2^2}+\cdots+\frac{1}{1-a_n+ka_n^2}\geq \frac{n}{k},$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$. If $k = k_1$, then the equality holds also for

$$a_1 = 0$$
, $a_2 = a_3 = \dots = a_n = \frac{n}{n-1}$

(or any cyclic permutation).

P 1.18. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

$$\frac{1}{5+a+a^2} + \frac{1}{5+b+b^2} + \frac{1}{5+c+c^2} \ge \frac{3}{7}.$$

(Vasile C., 2008)

Solution. Write the inequality as

$$f(a) + f(b) + f(c) \ge 3f(s), \quad s = \frac{a+b+c}{3} = 1,$$

where

$$f(u) = \frac{1}{5 + u + u^2}, \quad u \in [0, 3].$$

For $u \ge 1$, from

$$f''(u) = \frac{2(3u^2 + 3u - 4)}{(5 + u + u^2)^3} > 0,$$

it follows that f is convex on [s,3]. By the RHCF-Theorem and Note 1, it suffices to show that $h(x, y) \ge 0$ for $x, y \ge 0$ so that x + 2y = 3. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{-2 - u}{7(5 + u + u^2)}$$

and

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = \frac{xy + 2(x + y) - 3}{7(5 + x + x^2)(5 + y + y^2)}$$
$$= \frac{x(5 - x)}{14(5 + x + x^2)(5 + y + y^2)} \ge 0.$$

According to Note 4, the equality holds for a = b = c = 1, and also for a = 0 and $b = c = \frac{3}{2}$ (or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$. If

$$0 < k \le k_1, \qquad k_1 = \frac{2(2n-1)}{n-1},$$

then

$$\frac{1}{k+a_1+a_1^2} + \frac{1}{k+a_2+a_2^2} + \dots + \frac{1}{k+a_n+a_n^2} \ge \frac{n}{k+2},$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$. If $k = k_1$, then the equality holds also for

$$a_1 = 0$$
, $a_2 = a_3 = \dots = a_n = \frac{n}{n-1}$

(or any cyclic permutation).

P 1.19. If a, b, c, d are nonnegative real numbers so that a + b + c + d = 4, then

$$\frac{1}{10+a+a^2} + \frac{1}{10+b+b^2} + \frac{1}{10+c+c^2} + \frac{1}{10+d+d^2} \le \frac{1}{3}.$$

(Vasile C., 2008)

Solution. Write the inequality as

$$f(a) + f(b) + f(c) + f(d) \ge 4f(s), \quad s = \frac{a+b+c+d}{4} = 1,$$

where

$$f(u) = \frac{-1}{10 + u + u^2}, \quad u \in [0, 4].$$

For $u \in [0, 1]$, we have

$$f''(u) = \frac{6(3 - u - u^2)}{(10 + u + u^2)^3} > 0.$$

Thus, f is convex on [0,s]. By the LHCF-Theorem and Note 1, it suffices to show that $h(x,y) \ge 0$ for $x,y \ge 0$ so that x+3y=4. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{2 + u}{12(10 + u + u^2)}$$

and

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = \frac{8 - 2(x + y) - xy}{12(10 + x + x^2)(10 + y + y^2)}$$
$$= \frac{3y^2}{12(10 + x + x^2)(10 + y + y^2)} \ge 0.$$

The equality holds for a = b = c = d = 1, and also for a = 4 and b = c = d = 0 (or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• Let a_1, a_2, \ldots, a_n $(n \ge 4)$ be nonnegative real numbers so that

$$a_1 + a_2 + \dots + a_n = n.$$

If $k \ge 2n + 2$, then

$$\frac{1}{k+a_1+a_1^2} + \frac{1}{k+a_2+a_2^2} + \dots + \frac{1}{k+a_n+a_n^2} \le \frac{n}{k+2},$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$. If k = 2n + 2, then the equality holds also for

$$a_1 = n$$
, $a_2 = a_3 = \dots = a_n = 0$

(or any cyclic permutation).

P 1.20. Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$. If

$$k \ge 1 - \frac{1}{n},$$

then

$$\frac{1}{1+ka_1^2} + \frac{1}{1+ka_2^2} + \dots + \frac{1}{1+ka_n^2} \ge \frac{n}{1+k}.$$

(*Vasile C., 2005*)

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = \frac{1}{1 + ku^2}, \quad u \in [0, n].$$

For $u \in [1, n]$, we have

$$f''(u) = \frac{2k(3ku^2 - 1)}{(1 + ku^2)^3} \ge \frac{2k(3k - 1)}{(1 + ku^2)^3} > 0.$$

Thus, f is convex on [s, n]. By the RHCF-Theorem and Note 1, it suffices to show that $h(x, y) \ge 0$ for $x, y \ge 0$ so that x + (n - 1)y = n. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{-k(u + 1)}{(1 + k)(1 + ku^2)}$$

and

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = \frac{k^2(x + y + xy) - k}{(1 + k)(1 + kx^2)(1 + ky^2)}.$$

We need to show that

$$k(x+y+xy)-1 \ge 0.$$

Indeed, we have

$$k(x+y+xy)-1 \ge \left(1-\frac{1}{n}\right)(x+y+xy)-1 = \frac{x(2n-2-x)}{n} \ge 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$. If $k = 1 - \frac{1}{n}$, then the equality holds also for

$$a_1 = 0$$
, $a_2 = a_3 = \dots = a_n = \frac{n}{n-1}$

(or any cyclic permutation).

P 1.21. Let $a_1, a_2, ..., a_n$ be real numbers so that $a_1 + a_2 + ... + a_n = n$. If

$$0 < k \le \frac{n-1}{n^2 - n + 1},$$

then

$$\frac{1}{1+ka_1^2} + \frac{1}{1+ka_2^2} + \dots + \frac{1}{1+ka_n^2} \le \frac{n}{1+k}.$$

(Vasile C., 2005)

Solution. Replacing all negative numbers a_i by $-a_i$, we need to show the same inequality for

$$a_1, a_2, \dots, a_n \ge 0, \quad a_1 + a_2 + \dots + a_n \ge n.$$

Since the left side of the desired inequality is decreasing with respect to each a_i , is sufficient to consider that $a_1 + a_2 + \cdots + a_n = n$. Write this inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = \frac{-1}{1 + ku^2}, \quad u \in [0, n].$$

For $u \in [0, 1]$, we have

$$f''(u) = \frac{2k(1 - 3ku^2)}{(1 + ku^2)^3} \ge 0,$$

since

$$1 - 3ku^2 \ge 1 - 3k \ge 1 - \frac{3(n-1)}{n^2 - n + 1} = \frac{(n-2)^2}{n^2 - n + 1} \ge 0.$$

Thus, f is convex on [0,s]. By the LHCF-Theorem and Note 1, it suffices to show that $h(x,y) \ge 0$ for $x,y \ge 0$ so that x + (n-1)y = n. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{k(u + 1)}{(1 + k)(1 + ku^2)}$$

and

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = \frac{k - k^2(x + y + xy)}{(1 + k)(1 + kx^2)(1 + ky^2)}.$$

It suffices to show that

$$1 - k(x + y + xy) \ge 0.$$

Indeed, we have

$$1 - k(x + y + xy) \ge 1 - \frac{n-1}{n^2 - n + 1}(x + y + xy) = \frac{(x - n + 1)^2}{n^2 - n + 1} \ge 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$. If $k = \frac{n-1}{n^2 - n + 1}$, then the equality holds also for

$$a_1 = n - 1$$
, $a_2 = a_3 = \dots = a_n = \frac{1}{n - 1}$

(or any cyclic permutation).

P 1.22. Let $a_1, a_2, ..., a_n$ be nonnegative numbers so that $a_1 + a_2 + \cdots + a_n = n$. If $k \ge \frac{n^2}{4(n-1)}$, then

$$\frac{a_1(a_1-1)}{a_1^2+k}+\frac{a_2(a_2-1)}{a_2^2+k}+\cdots+\frac{a_n(a_n-1)}{a_n^2+k}\geq 0.$$

(Vasile C., 2012)

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = \frac{u(u-1)}{u^2 + k}, \quad u \in [0, n].$$

From

$$f'(u) = \frac{u^2 + 2ku - k}{(u^2 + k)^2}, \quad f''(u) = \frac{2(k^2 - u^3) + 6ku(1 - u)}{(u^2 + k)^3},$$

it follows that f is convex on [0,1]. By the LHCF-Theorem and Note 1, it suffices to show that $h(x,y) \ge 0$ for $x,y \ge 0$ so that x + (n-1)y = n, where

$$h(x,y) = \frac{g(x) - g(y)}{x - y}, \quad g(u) = \frac{f(u) - f(1)}{u - 1}.$$

We have

$$g(u) = \frac{u}{u^2 + k}$$

and

$$h(x,y) = \frac{k - xy}{(x^2 + k)(y^2 + k)} \ge \frac{n^2 - 4(n-1)xy}{4(n-1)(x^2 + k)(y^2 + k)}$$
$$= \frac{[x + (n-1)y]^2 - 4(n-1)xy}{4(n-1)(x^2 + k)(y^2 + k)} = \frac{[x - (n-1)y]^2}{4(n-1)(x^2 + k)(y^2 + k)} \ge 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = n/2$$
, $a_2 = a_3 = \cdots = a_n = n/(2n-2)$

(or any cyclic permutation).

P 1.23. If a_1, a_2, \ldots, a_n are nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$\frac{a_1-1}{(n-2a_1)^2} + \frac{a_2-1}{(n-2a_2)^2} + \dots + \frac{a_n-1}{(n-2a_n)^2} \ge 0.$$

(Vasile C., 2012)

Solution. For n = 2, the inequality is an identity. Consider further $n \ge 3$ and write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = \frac{u-1}{(n-2u)^2}, \quad u \in \mathbb{I} = [0,n] \setminus \{n/2\}.$$

From

$$f'(u) = \frac{2u + n - 4}{(n - 2u)^3}, \quad f''(u) = \frac{8(u + n - 3)}{(n - 2u)^4},$$

it follows that f is convex on $\mathbb{I}_{\leq s}$. By the LHCF-Theorem, Note 1 and Note 3, it suffices to show that $h(x,y) \geq 0$ for $x,y \in \mathbb{I}$ so that x + (n-1)y = n. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{1}{(n - 2u)^2}$$

and

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = \frac{4(n - x - y)}{(n - 2x)^2 (n - 2y)^2} = \frac{4(n - 2)y}{(n - 2x)^2 (n - 2y)^2} \ge 0.$$

In accordance with Note 4, the equality holds for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = n$$
, $a_2 = a_3 = \dots = a_n = 0$

(or any cyclic permutation).

P 1.24. If $a_1, a_2, ..., a_n$ are nonnegative real numbers so that

$$a_1 + a_2 + \dots + a_n = n$$
, $a_1, a_2, \dots, a_n > -k$, $k \ge 1 + \frac{n}{\sqrt{n-1}}$,

then

$$\frac{a_1^2-1}{(a_1+k)^2}+\frac{a_2^2-1}{(a_2+k)^2}+\cdots+\frac{a_n^2-1}{(a_n+k)^2}\geq 0.$$

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = \frac{u^2 - 1}{(u+k)^2}, \quad u > -k.$$

For $u \in (-k, 1]$, we have

$$f''(u) = \frac{2(k^2 - 3 - 2ku)}{(u+k)^4} \ge \frac{2(k^2 - 2k - 3)}{(u+k)^4} = \frac{2(k+1)(k-3)}{(u+k)^4} \ge 0.$$

Thus, f is convex on (-k,s]. By the LHCF-Theorem and Note 1, it suffices to show that $h(x,y) \ge 0$ for x,y > -k so that x + (n-1)y = n. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{u + 1}{(u + k)^2}$$

and

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = \frac{(k-1)^2 - (1+x)(1+y)}{(x+k)^2(y+k)^2}.$$

Since

$$(k-1)^2 \ge \frac{n^2}{n-1}$$

we need to show that

$$n^2 \ge (n-1)(1+x)(1+y)$$
.

Indeed,

$$n^2 - (n-1)(1+x)(1+y) = n^2 - (1+x)(2n-1-x) = (x-n+1)^2 \ge 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$. If $k = 1 + \frac{n}{\sqrt{n-1}}$, then the equality holds also for

$$a_1 = n - 1$$
, $a_2 = a_3 = \dots = a_n = \frac{1}{n - 1}$

(or any cyclic permutation).

P 1.25. Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$. If $0 < k \le 1 + \sqrt{\frac{2n-1}{n-1}}$, then

$$\frac{a_1^2-1}{(a_1+k)^2}+\frac{a_2^2-1}{(a_2+k)^2}+\cdots+\frac{a_n^2-1}{(a_n+k)^2}\leq 0.$$

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = \frac{1 - u^2}{(u + k)^2}, \quad u \in [0, n].$$

For $u \ge 1$, we have

$$f''(u) = \frac{2(2ku - k^2 + 3)}{(u+k)^4} \ge \frac{2(2k - k^2 + 3)}{(u+k)^4} = \frac{2(1+k)(3-k)}{(u+k)^4} > 0.$$

Thus, f is convex on [s, n]. By the RHCF-Theorem and Note 1, it suffices to show that $h(x, y) \ge 0$ for $x, y \ge 0$ so that x + (n - 1)y = n. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{-u - 1}{(u + k)^2}$$

and

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = \frac{2k - k^2 + x + y + xy}{(x + k)^2 (y + k)^2} \ge \frac{2k - k^2 + x + y}{(x + k)^2 (y + k)^2}.$$

Since

$$x + y \ge \frac{x + (n-1)y}{n-1} = \frac{n}{n-1}$$

we get

$$2k-k^2+x+y \ge 2k-k^2+\frac{n}{n-1}=-(k-1)^2+\frac{2n-1}{n-1}\ge 0,$$

hence $h(x, y) \ge 0$.

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$. If $k = 1 + \sqrt{\frac{2n-1}{n-1}}$, then the equality holds also for

$$a_1 = 0$$
, $a_2 = a_3 = \dots = a_n = \frac{n}{n-1}$

(or any cyclic permutation).

P 1.26. If
$$a_1, a_2, \dots, a_n \ge n - 1 - \sqrt{n^2 - n + 1}$$
 so that $a_1 + a_2 + \dots + a_n = n$, then
$$\frac{a_1^2 - 1}{(a_1 + 2)^2} + \frac{a_2^2 - 1}{(a_2 + 2)^2} + \dots + \frac{a_n^2 - 1}{(a_n + 2)^2} \le 0.$$

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = \frac{1 - u^2}{(u+2)^2}, \quad u \ge n - 1 - \sqrt{n^2 - n + 1}.$$

For $u \ge 1$, we have

$$f''(u) = \frac{2(4u-1)}{(u+2)^4} > 0.$$

Thus, f(u) is convex for $u \ge s$. By the RHCF-Theorem and Note 1, it suffices to show that $h(x, y) \ge 0$ for

$$n-1-\sqrt{n^2-n+1} \le x \le 1 \le y, \quad x+(n-1)y=n.$$

Since

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{-u - 1}{(u + 2)^2},$$

$$h(x, y) = \frac{g(x) - g(y)}{x - y} = \frac{x + y + xy}{(x + 2)^2 (y + 2)^2} = \frac{-x^2 + 2(n - 1)x + n}{(n - 1)(x + 2)^2 (y + 2)^2},$$

we need to show that

$$n-1-\sqrt{n^2-n+1} \le x \le n-1+\sqrt{n^2-n+1}$$
.

This is true because

$$n-1-\sqrt{n^2-n+1} \le x \le 1 < n-1+\sqrt{n^2-n+1}.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = n - 1 - \sqrt{n^2 - n + 1}, \quad a_2 = a_3 = \dots = a_n = \frac{1 + \sqrt{n^2 - n + 1}}{n - 1}$$

(or any cyclic permutation).

P 1.27. Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$. If $k \ge \frac{(n-1)(2n-1)}{n^2}$, then

$$\frac{1}{1+ka_1^3} + \frac{1}{1+ka_2^3} + \dots + \frac{1}{1+ka_n^3} \ge \frac{n}{1+k}.$$

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = \frac{1}{1 + ku^3}, \quad u \in [0, n].$$

For $u \in [1, n]$, we have

$$f''(u) = \frac{6ku(2ku^3 - 1)}{(1 + ku^3)^3} \ge \frac{6ku(2k - 1)}{(1 + ku^3)^3} > 0.$$

Thus, f is convex on [s, n]. By the RHCF-Theorem and Note 1, it suffices to show that $h(x, y) \ge 0$ for $x, y \ge 0$ so that x + (n - 1)y = n, where

$$h(x,y) = \frac{g(x) - g(y)}{x - y}, \quad g(u) = \frac{f(u) - f(1)}{u - 1}.$$

We have

$$g(u) = \frac{-k(u^2 + u + 1)}{(1+k)(1+ku^3)}$$

and

$$\frac{h(x,y)}{k^2} = \frac{x^2y^2 + xy(x+y-1) + (x+y)^2 - (x+y+1)/k}{(1+k)(1+kx^3)(1+ky^3)}.$$

Since

$$x + y \ge \frac{x + (n-1)y}{n-1} = \frac{n}{n-1} > 1,$$

it suffices to show that

$$(x+y)^2 \ge \frac{x+y+1}{k}.$$

From $x + y \ge \frac{n}{n-1}$, we get

$$k(x+y) \ge \frac{2n-1}{n},$$

hence

$$k(x+y)^2 - x - y = (x+y)[k(x+y) - 1] \ge \frac{n}{n-1} \left(\frac{2n-1}{n} - 1\right) = 1.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$. If $k = \frac{(n-1)(2n-1)}{n^2}$, then the equality holds also for

$$a_1 = 0$$
, $a_2 = a_3 = \dots = a_n = \frac{n}{n-1}$

(or any cyclic permutation).

P 1.28. Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$. If $0 < k \le \frac{n-1}{n^2 - 2n + 2}$, then

$$\frac{1}{1+ka_1^3} + \frac{1}{1+ka_2^3} + \dots + \frac{1}{1+ka_n^3} \le \frac{n}{1+k}.$$

(Vasile C., 2008)

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = \frac{-1}{1 + ku^3}, \quad u \in [0, n].$$

For $u \in [0, 1]$, we have

$$f''(u) = \frac{6ku(1 - 2ku^3)}{(1 + ku^3)^3} \ge \frac{6ku(1 - 2k)}{(1 + ku^3)^3} \ge 0.$$

Thus, f is convex on [0,s]. By the LHCF-Theorem and Note 1, it suffices to show that $h(x,y) \ge 0$ for $x,y \ge 0$ so that x + (n-1)y = n, where

$$h(x,y) = \frac{g(x) - g(y)}{x - y}, \quad g(u) = \frac{f(u) - f(1)}{u - 1}.$$

We have

$$g(u) = \frac{k(u^2 + u + 1)}{(1+k)(1+ku^3)}$$

and

$$\frac{h(x,y)}{k^2} = \frac{(x+y+1)/k - x^2y^2 - xy(x+y-1) - (x+y)^2}{(1+k)(1+kx^3)(1+ky^3)}.$$

It suffices to show that

$$\frac{(n^2 - 2n + 2)(x + y + 1)}{n - 1} - x^2 y^2 - xy(x + y - 1) - (x + y)^2 \ge 0,$$

which is equivalent to

$$[2+ny-(n-1)y^2][1-(n-1)y]^2 \ge 0.$$

This is true because

$$2 + ny - (n-1)y^2 = 2 + y[n - (n-1)y] = 2 + xy > 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$. If $k = \frac{n-1}{n^2 - 2n + 2}$, then the equality holds also for

$$a_1 = n - 1$$
, $a_2 = a_3 = \dots = a_n = \frac{1}{n - 1}$

(or any cyclic permutation).

P 1.29. Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$. If $k \ge \frac{n^2}{n-1}$, then

$$\sqrt{\frac{a_1}{k-a_1}} + \sqrt{\frac{a_2}{k-a_2}} + \dots + \sqrt{\frac{a_n}{k-a_n}} \le \frac{n}{\sqrt{k-1}}.$$

(Vasile C., 2008)

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = -\sqrt{\frac{u}{k-u}}, \quad u \in [0, n].$$

For $u \in [0, 1]$, we have

$$f''(u) = \frac{k(k-4u)}{4u^{3/2}(k-u)^{5/2}} \ge \frac{k(k-4)}{4u^{3/2}(k-u)^{5/2}} \ge 0.$$

Thus, f is convex on [0,s]. By the LHCF-Theorem, it suffices to prove that

$$f(x) + (n-1)f(y) \ge nf(1)$$

for $x \ge 1 \ge y \ge 0$ so that x + (n-1)y = n. We write the inequality as

$$\sqrt{\frac{(k-1)x}{k-x} + (n-1)\sqrt{\frac{(k-1)y}{k-y}}} \le n,$$

$$\sqrt{1 + \frac{(n-1)k(1-y)}{(n-1)y + k - n}} \le 1 + (n-1)\left[1 - \sqrt{\frac{(k-1)y}{k-y}}\right].$$

Let

$$z = \sqrt{\frac{(k-1)y}{k-y}}, \quad z \le 1,$$

which yields

$$y = \frac{kz^2}{z^2 + k - 1},$$

$$1 - y = \frac{(k - 1)(1 - z^2)}{z^2 + k - 1}, \quad (n - 1)y + k - n = \frac{(k - 1)(nz^2 + k - n)}{z^2 + k - 1}.$$

Since

$$\frac{k(1-y)}{(n-1)y+k-n} = \frac{k(1-z^2)}{k-n(1-z^2)} = \frac{1-z^2}{1-n(1-z^2)/k}$$

$$\leq \frac{1-z^2}{1-(1-z^2)(n-1)/n} = \frac{n(1-z^2)}{(n-1)z^2+1},$$

it suffices to show that

$$\sqrt{1 + \frac{n(n-1)(1-z^2)}{(n-1)z^2 + 1}} \le 1 + (n-1)(1-z).$$

By squaring, we get the obvious inequality

$$(z-1)^2[(n-1)z-1]^2 \ge 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$. If $k = \frac{n^2}{n-1}$, then the equality holds also for

$$a_1 = \frac{n(n-1)^2}{n^2 - 2n + 2}, \quad a_2 = a_3 = \dots = a_n = \frac{n}{(n-1)(n^2 - 2n + 2)}$$

(or any cyclic permutation).

P 1.30. If a_1, a_2, \ldots, a_n are nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$n^{-a_1^2} + n^{-a_2^2} + \dots + n^{-a_n^2} \ge 1.$$

(Vasile C., 2006)

Solution. Let $k = \ln n$. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = n^{-u^2}, u \in [0, n].$$

For $u \ge 1$, we have

$$f''(u) = 2kn^{-u^2}(2ku^2 - 1) \ge 2kn^{-u^2}(2k - 1) \ge 2kn^{-u^2}(2\ln 2 - 1) > 0;$$

therefore, f is convex on [s, n]. By the RHCF-Theorem, it suffices to show that

$$f(x) + (n-1)f(y) \ge nf(1)$$

for $0 \le x \le 1 \le y$ and x + (n-1)y = n. The desired inequality is equivalent to $g(x) \ge 0$, where

$$g(x) = n^{-x^2} + (n-1)n^{-y^2} - 1, \quad y = \frac{n-x}{n-1}, \quad 0 \le x \le 1.$$

Since y' = -1/(n-1), we get

$$g'(x) = -2xkn^{-x^2} - 2(n-1)kyy'n^{-y^2} = 2k(yn^{-y^2} - xn^{-x^2}).$$

The derivative g'(x) has the same sign as $g_1(x)$, where

$$g_1(x) = \ln(yn^{-y^2}) - \ln(xn^{-x^2}) = \ln y - \ln x + k(x^2 - y^2),$$

$$g_1'(x) = \frac{y'}{y} - \frac{1}{x} + 2k(x - yy') = n \left[\frac{-1}{x(n-x)} + \frac{2k(1 + nx - 2x)}{(n-1)^2} \right].$$

For $0 < x \le 1$, $g'_1(x)$ has the same sign as

$$h(x) = \frac{-(n-1)^2}{2k} + x(n-x)(1+nx-2x).$$

Since

$$h'(x) = n + 2(n^2 - 2n - 1)x - 3(n - 2)x^2$$

$$\ge nx + 2(n^2 - 2n - 1)x - 3(n - 2)x$$

$$= 2(n - 1)(n - 2)x \ge 0,$$

h is strictly increasing on [0, 1]. From

$$h(0) = \frac{-(n-1)^2}{2k} < 0, \quad h(1) = (n-1)^2 \left(1 - \frac{1}{2k}\right) > 0,$$

it follows that there is $x_1 \in (0,1)$ so that $h(x_1) = 0$, h(x) < 0 for $x \in [0,x_1)$ and h(x) > 0 for $x \in (x_1,1]$. Therefore, g_1 is strictly decreasing on $(0,x_1]$ and strictly increasing on $[x_1,1]$. Since $g_1(0_+) = \infty$ and $g_1(1) = 0$, there is $x_2 \in (0,x_1)$ so that $g_1(x_2) = 0$, $g_1(x) > 0$ for $x \in (0,x_2)$ and $g_1(x) < 0$ for $x \in (x_2,1)$. Consequently, $g_1(x) = 0$ is strictly increasing on $[0,x_2]$ and strictly decreasing on $[x_2,1]$. Because $g_1(x) = 0$ and $g_1(x) = 0$, it follows that $g_1(x) \ge 0$ for $x \in [0,1]$. The proof is completed.

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

P 1.31. If a, b, c, d are nonnegative real numbers so that a + b + c + d = 4, then

$$(3a^2+1)(3b^2+1)(3c^2+1)(3d^2+1) \le 256.$$

(Vasile C., 2006)

Solution. Write the inequality as

$$f(a) + f(b) + f(c) + f(d) \ge 4f(s), \quad s = \frac{a+b+c+d}{4} = 1,$$

where

$$f(u) = -\ln(3u^2 + 1), \quad u \in [0, 4].$$

For $u \in [1, 4]$, we have

$$f''(u) = \frac{6(3u^2 - 1)}{(3u^2 + 1)^2} > 0.$$

Therefore, f is convex on [s, 4]. By the RHCF-Theorem, we only need to show that

$$f(x) + 3f(y) \ge 4f(1)$$

for $0 \le x \le 1 \le y$ so that x + 3y = 4; that is, to show that $g(x) \ge 0$ for $x \in [0, 1]$, where

$$g(x) = f(x) + 3f(y) - 4f(1), \quad y = \frac{4-x}{3}.$$

Since y'(x) = -1/3, we have

$$g'(x) = f'(x) + 3y'f'(y) = \frac{-6x}{3x^2 + 1} + \frac{6y}{3y^2 + 1}$$
$$= \frac{6(x - y)(3xy - 1)}{(3x^2 + 1)(3y^2 + 1)} = \frac{8(1 - x)(x^2 - 4x + 1)}{(3x^2 + 1)(3y^2 + 1)} \ge 0.$$

Since g is increasing on $[0, 2 - \sqrt{3}]$ and decreasing on $[2 - \sqrt{3}, 1]$, it suffices to show that $g(0) \ge 0$ and $g(1) \ge 0$. The inequality $g(0) \ge 0$ is true if the original inequality holds for a = 0 and b = c = d = 4/3. This reduces to $19^3 \le 27 \cdot 256$, which is true because $27 \cdot 256 - 19^3 = 53 > 0$. The inequality $g(1) \ge 0$ is also true because g(1) = 0.

The equality holds for a = b = c = d = 1.

P 1.32. If $a, b, c, d, e \ge -1$ so that a + b + c + d + e = 5, then

$$(a^2+1)(b^2+1)(c^2+1)(d^2+1)(e^2+1) \ge (a+1)(b+1)(c+1)(d+1)(e+1).$$

(Vasile C., 2007)

Solution. Consider the nontrivial case a, b, c, d, e > -1, and write the inequality as

$$f(a) + f(b) + f(c) + f(d) + f(e) \ge nf(s), \quad s = \frac{a+b+c+d+e}{5} = 1,$$

where

$$f(u) = \ln(u^2 + 1) - \ln(u + 1), \quad u > -1.$$

For $u \in (-1, 1]$, we have

$$f''(u) = \frac{2(1-u^2)}{(u^2+1)^2} + \frac{1}{(u+1)^2} > 0.$$

Therefore, f is convex on (-1,s]. By the LHCF-Theorem and Note 2, it suffices to show that $H(x,y) \ge 0$ for x,y > -1 so that x + 4y = 5, where

$$H(x,y) = \frac{f'(x) - f'(y)}{x - y} = \frac{2(1 - xy)}{(x^2 + 1)(y^2 + 1)} + \frac{1}{(x + 1)(y + 1)};$$

thus, we need to show that

$$2(1-xy) + \frac{(x^2+1)(y^2+1)}{(x+1)(y+1)} \ge 0.$$

Since

$$\frac{x^2+1}{x+1} \ge \frac{x+1}{2}, \quad \frac{y^2+1}{y+1} \ge \frac{y+1}{2},$$

it suffices to prove that

$$2(1-xy) + \frac{(x+1)(y+1)}{4} \ge 0,$$

which is equivalent to

$$x + y + 9 - 7xy \ge 0,$$

$$28x^{2} - 38x + 14 \ge 0,$$

$$(28x - 19)^{2} + 31 \ge 0.$$

The equality holds for a = b = c = d = e = 1.

P 1.33. Let a_1, a_2, \ldots, a_n be positive numbers so that $a_1 + a_2 + \cdots + a_n = n$. If

$$k \leq \frac{2\sqrt{n-1}}{n} + 2\sqrt{\frac{2\sqrt{n-1}}{n}}, \quad k \leq 3,$$

then

$$k(\sqrt{a_1} + \sqrt{a_2} + \dots + \sqrt{a_n}) + \frac{1}{\sqrt{a_1}} + \frac{1}{\sqrt{a_2}} + \dots + \frac{1}{\sqrt{a_n}} \ge (k+1)n.$$

(*Vasile C., 2006*)

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = \frac{k}{\sqrt{u}} + \sqrt{u}, \quad u \in (0, n).$$

From

$$f''(u) = \frac{3 - ku}{4u^{5/2}},$$

it follows that f is convex on (0,1]. Thus, according to the LHCF-Theorem and Note 1, it suffices to show that $h(x,y) \ge 0$ for $x \ge 1 \ge y > 0$ such that x + (n-1)y = n, where

$$h(x,y) = \frac{g(x) - g(y)}{x - y}, \quad g(u) = \frac{f(u) - f(1)}{u - 1}.$$

We have

$$g(u) = \frac{k}{\sqrt{u} + 1} - \frac{1}{u + \sqrt{u}}$$

and

$$(\sqrt{x} + \sqrt{y})(\sqrt{x} + 1)(\sqrt{y} + 1)h(x, y) = -k + \frac{\sqrt{x} + \sqrt{y} + 1}{\sqrt{xy}}.$$

So, we need to show that

$$\frac{\sqrt{x}+\sqrt{y}+1}{\sqrt{xy}}\geq k.$$

Since

$$\sqrt{x} + \sqrt{y} \ge 2\sqrt[4]{xy},$$

it suffices to show that

$$\frac{2\sqrt[4]{xy}+1}{\sqrt{xy}} \ge k,$$

which is equivalent to

$$\frac{1}{\sqrt{xy}} + \frac{2}{\sqrt[4]{xy}} \ge k.$$

From

$$n = x + (n-1)y \ge 2\sqrt{(n-1)xy},$$

we get

$$\frac{1}{\sqrt{xy}} \ge \frac{2\sqrt{n-1}}{n},$$

hence

$$\frac{1}{\sqrt{xy}} + \frac{2}{\sqrt[4]{xy}} \ge \frac{2\sqrt{n-1}}{n} + 2\sqrt{\frac{2\sqrt{n-1}}{n}} \ge k.$$

The proof is completed. The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

Remark. Since

$$1<\frac{2\sqrt{n-1}}{n}+2\sqrt{\frac{2\sqrt{n-1}}{n}}$$

for $n \le 134$, the following inequality holds for $a_1, a_2, \dots, a_{134} > 0$ such that $a_1 + a_2 + \dots + a_{134} = 134$:

$$\sqrt{a_1} + \sqrt{a_2} + \dots + \sqrt{a_{134}} + \frac{1}{\sqrt{a_1}} + \frac{1}{\sqrt{a_2}} + \dots + \frac{1}{\sqrt{a_{134}}} \ge 268.$$

Since

$$2 < \frac{2\sqrt{n-1}}{n} + 2\sqrt{\frac{2\sqrt{n-1}}{n}}$$

for $n \le 12$, the following inequality holds for $a_1, a_2, \dots, a_{12} > 0$ such that $a_1 + a_2 + \dots + a_{12} = 12$:

$$2(\sqrt{a_1} + \sqrt{a_2} + \dots + \sqrt{a_{12}}) + \frac{1}{\sqrt{a_1}} + \frac{1}{\sqrt{a_2}} + \dots + \frac{1}{\sqrt{a_{12}}} \ge 36.$$

P 1.34. If a_1, a_2, \ldots, a_n $(n \ge 3)$ are positive numbers so that $a_1 + a_2 + \cdots + a_n = 1$, then

$$\left(\frac{1}{\sqrt{a_1}} - \sqrt{a_1}\right) \left(\frac{1}{\sqrt{a_2}} - \sqrt{a_2}\right) \cdots \left(\frac{1}{\sqrt{a_n}} - \sqrt{a_n}\right) \ge \left(\sqrt{n} - \frac{1}{\sqrt{n}}\right)^n.$$

(Vasile C., 2006)

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = \frac{1}{n},$$

where

$$f(u) = \ln\left(\frac{1}{\sqrt{u}} - \sqrt{u}\right) = \ln(1 - u) - \frac{1}{2}\ln u, \quad u \in (0, 1).$$

From

$$f'(u) = \frac{-1}{1-u} - \frac{1}{2u}, \quad f''(u) = \frac{1-2u-u^2}{2u^2(1-u)^2},$$

it follows that $f''(u) \ge 0$ for $u \in (0, \sqrt{2} - 1]$. Since

$$s = \frac{1}{n} \le \frac{1}{3} < \sqrt{2} - 1,$$

f is convex on (0,s]. Thus, we can apply the LHCF-Theorem.

First Solution. By the LHCF-Theorem, it suffices to show that

$$f(x) + (n-1)f(y) \ge nf\left(\frac{1}{n}\right)$$

for all x, y > 0 so that x + (n-1)y = 1; that is, to show that

$$\left(\frac{1}{\sqrt{x}} - \sqrt{x}\right) \left(\frac{1}{\sqrt{y}} - \sqrt{y}\right)^{n-1} \ge \left(\sqrt{n} - \frac{1}{\sqrt{n}}\right)^{n}.$$

Write this inequality as

$$n^{n/2}(1-y)^{n-1} \ge (n-1)^{n-1}x^{1/2}y^{(n-3)/2}$$

By squaring, this inequality becomes as follows:

$$n^{n}(1-y)^{2n-2} \ge (n-1)^{2n-2}xy^{n-3},$$

$$(2-2y)^{2n-2} \ge \frac{(2n-2)^{2n-2}}{n^{n}}xy^{n-3},$$

$$\left[n \cdot \frac{1}{n} + x + (n-3)y\right]^{2n-2} \ge \left[n + 1 + (n-3)\right]^{n+1+(n-3)} \cdot \frac{1}{n^{n}} \cdot x \cdot y^{n-3}.$$

The last inequality follows from the AM-GM inequality. The proof is completed. The equality holds for $a_1 = a_2 = \cdots = a_n = 1/n$.

Second Solution. By the LHCF-Theorem and Note 2, it suffices to prove that $H(x, y) \ge 0$ for x, y > 0 so that x + (n - 1)y = 1, where

$$H(x,y) = \frac{f'(x) - f'(y)}{x - y}.$$

We have

$$H(x,y) = \frac{1 - x - y - xy}{2xy(1 - x)(1 - y)} = \frac{n(y+1) - y - 3}{2x(1 - x)(1 - y)}$$
$$\ge \frac{3(y+1) - y - 3}{2x(1-x)(1-y)} = \frac{y}{x(1-x)(1-y)} > 0.$$

Remark 1. We may write the inequality in P 1.34 in the form

$$\prod_{i=1}^{n} \left(\frac{1}{\sqrt{a_i}} - 1 \right) \cdot \prod_{i=1}^{n} (1 + \sqrt{a_i}) \ge \left(\sqrt{n} - \frac{1}{\sqrt{n}} \right)^n.$$

On the other hand, by the AM-GM inequality and the Cauchy-Schwarz inequality, we have

$$\prod_{i=1}^{n} (1 + \sqrt{a_i}) \le \left(1 + \frac{1}{n} \sum_{i=1}^{n} \sqrt{a_i}\right)^n \le \left(1 + \sqrt{\frac{1}{n} \sum_{i=1}^{n} a_i}\right)^n = \left(1 + \frac{1}{\sqrt{n}}\right)^n.$$

Thus, the following statement follows:

• If $a_1, a_2, ..., a_n$ ($n \ge 3$) are positive real numbers so that $a_1 + a_2 + \cdots + a_n = 1$, then

$$\left(\frac{1}{\sqrt{a_1}}-1\right)\left(\frac{1}{\sqrt{a_2}}-1\right)\cdots\left(\frac{1}{\sqrt{a_n}}-1\right)\geq (\sqrt{n}-1)^n,$$

with equality for $a_1 = a_2 = \cdots = a_n = 1/n$.

Remark 2. By squaring, the inequality in P 1.34 becomes

$$\prod_{i=1}^{n} \frac{(1-a_i)^2}{a_i} \ge \frac{(n-1)^{2n}}{n^n}.$$

On the other hand, since the function $f(x) = \ln \frac{1+x}{1-x}$ is convex on (0,1), by Jensen's inequality we have

$$\prod_{i=1}^{n} \left(\frac{1+a_i}{1-a_i} \right) \ge \left(\frac{1+\frac{a_1+a_2+\cdots+a_n}{n}}{1-\frac{a_1+a_2+\cdots+a_n}{n}} \right)^n = \left(\frac{n+1}{n-1} \right)^n.$$

Multiplying these inequalities yields the following result (Kee-Wai Lau, 2000):

• If $a_1, a_2, ..., a_n$ ($n \ge 3$) are positive real numbers so that $a_1 + a_2 + \cdots + a_n = 1$, then

$$\left(\frac{1}{a_1} - a_1\right) \left(\frac{1}{a_2} - a_2\right) \cdots \left(\frac{1}{a_n} - a_n\right) \ge \left(n - \frac{1}{n}\right)^n,$$

with equality for $a_1 = a_2 = \cdots = a_n = 1/n$.

P 1.35. Let a_1, a_2, \ldots, a_n be positive real numbers so that $a_1 + a_2 + \cdots + a_n = n$. If

$$0 < k \le \left(1 + \frac{2\sqrt{n-1}}{n}\right)^2,$$

then

$$\left(ka_1+\frac{1}{a_1}\right)\left(ka_2+\frac{1}{a_2}\right)\cdots\left(ka_n+\frac{1}{a_n}\right)\geq (k+1)^n.$$

(Vasile C., 2006)

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = \ln\left(ku + \frac{1}{u}\right), \quad u \in (0, n).$$

We have

$$f'(u) = \frac{ku^2 - 1}{u(ku^2 + 1)}, \quad f''(u) = \frac{1 + 4ku^2 - k^2u^4}{u^2(ku^2 + 1)^2}.$$

For $u \in (0, 1]$, we get f''(u) > 0 since

$$1 + 4ku^2 - k^2u^4 > ku^2(4 - ku^2) \ge ku^2(4 - k) \ge 0.$$

Therefore, f is convex on (0,s]. By the LHCF-Theorem and Note 2, it suffices to prove that $H(x,y) \ge 0$ for x,y > 0 so that x + (n-1)y = n, where

$$H(x,y) = \frac{f'(x) - f'(y)}{x - y}.$$

Since

$$H(x,y) = \frac{1 + k(x+y)^2 - k^2 x^2 y^2}{xy(kx^2 + 1)(ky^2 + 1)} > \frac{k[(x+y)^2 - kx^2 y^2]}{xy(kx^2 + 1)(ky^2 + 1)},$$

it suffices to show that

$$x + y \ge \sqrt{k} xy$$
.

Indeed, by the Cauchy-Schwarz inequality, we have

$$(x+y)[(n-1)y+x] \ge (\sqrt{n-1}+1)^2 xy$$

hence

$$x+y \geq \frac{1}{n}(\sqrt{n-1}+1)^2xy = \left(1 + \frac{2\sqrt{n-1}}{n}\right)xy \geq \sqrt{k}\ xy.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

P 1.36. If a, b, c, d are nonzero real numbers so that

$$a, b, c, d \ge \frac{-1}{2}, \quad a + b + c + d = 4,$$

then

$$3\left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{d^2}\right) + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} \ge 16.$$

Solution. Write the inequality as

$$f(a) + f(b) + f(c) + f(d) \ge 4f(s), \quad s = \frac{a+b+c+d}{4} = 1,$$

where

$$f(u) = \frac{3}{u^2} + \frac{1}{u}, \quad u \in \mathbb{I} = \left[\frac{-1}{2}, \frac{11}{2}\right] \setminus \{0\},$$

is convex on $\mathbb{I}_{\geq s}$ (because $3/u^2$ and 1/u are convex). By the RHCF-Theorem, Note 1 and Note 3, it suffices to prove that $h(x, y) \geq 0$ for $x, y \in \mathbb{I}$ so that

$$x + 3y = 4$$
,

where

$$h(x,y) = \frac{g(x) - g(y)}{x - y}, \quad g(u) = \frac{f(u) - f(1)}{u - 1}.$$

Indeed, we have

$$g(u) = -\frac{4}{u} - \frac{3}{u^2},$$

$$h(x,y) = \frac{4xy + 3x + 3y}{x^2y^2} = \frac{2(1+2x)(6-x)}{3x^2y^2} \ge 0.$$

In accordance with Note 4, the equality holds for a = b = c = d = 1, and also for

$$a = \frac{-1}{2}$$
, $b = c = d = \frac{3}{2}$

(or any cyclic permutation).

P 1.37. If a_1, a_2, \ldots, a_n are nonnegative real numbers so that $a_1^2 + a_2^2 + \cdots + a_n^2 = n$, then

$$a_1^3 + a_2^3 + \dots + a_n^3 - n + \sqrt{\frac{n}{n-1}} (a_1 + a_2 + \dots + a_n - n) \ge 0.$$

(Vasile C., 2007)

Solution. Replacing each a_i by $\sqrt{a_i}$, we have to prove that

$$f(a_1) + f(a_2) + \cdots + f(a_n) \ge nf(s),$$

where

$$s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1$$

and

$$f(u) = u\sqrt{u} + k\sqrt{u}, \quad k = \sqrt{\frac{n}{n-1}}, \quad u \in [0, n].$$

For $u \ge 1$, we have

$$f''(u) = \frac{3u - k}{4u\sqrt{u}} \ge \frac{3 - k}{4u\sqrt{u}} > 0.$$

Therefore, f is convex on [s, n]. According to the RHCF-Theorem and Note 1, it suffices to show that $h(x, y) \ge 0$ for $x, y \ge 0$ so that x + (n - 1)y = n. Since

$$g(u) = \frac{f(u) - f(1)}{u - 1} = 1 + \frac{u + k}{\sqrt{u} + 1}$$

and

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = \frac{\sqrt{x} + \sqrt{y} + \sqrt{xy} - k}{(\sqrt{x} + \sqrt{y})(\sqrt{x} + 1)(\sqrt{y} + 1)},$$

we need to show that

$$\sqrt{x} + \sqrt{y} + \sqrt{xy} \ge k.$$

Since

$$\sqrt{x} + \sqrt{y} + \sqrt{xy} \ge \sqrt{x} + \sqrt{y} \ge \sqrt{x+y}$$
,

it suffices to show that

$$x + y \ge k^2$$
.

Indeed, we have

$$x + y \ge \frac{x}{n-1} + y = \frac{n}{n-1} = k^2.$$

In accordance with Note 4, the equality holds for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = 0, \quad a_2 = \dots = a_n = \sqrt{\frac{n}{n-1}}$$

(or any cyclic permutation).

P 1.38. If a, b, c, d, e are nonnegative real numbers so that $a^2 + b^2 + c^2 + d^2 + e^2 = 5$, then

$$\frac{1}{7-2a} + \frac{1}{7-2b} + \frac{1}{7-2c} + \frac{1}{7-2d} + \frac{1}{7-2e} \le 1.$$

(Vasile C., 2010)

Solution. Replacing a, b, c, d, e by $\sqrt{a}, \sqrt{b}, \sqrt{c}, \sqrt{d}, \sqrt{e}$, we have to prove that

$$f(a) + f(b) + f(c) + f(d) + f(e) \ge 5f(s),$$

where

$$s = \frac{a+b+c+d+e}{5} = 1$$

and

$$f(u) = \frac{1}{2\sqrt{u} - 7}, \quad u \in [0, 5].$$

For $u \in [0, 1]$, we have

$$f''(u) = \frac{7 - 6\sqrt{u}}{2u\sqrt{u}(7 - 2\sqrt{u})^3} > 0.$$

Therefore, f is convex on [0,s]. According to the LHCF-Theorem and Note 1, it suffices to show that $h(x,y) \ge 0$ for $x,y \ge 0$ so that x+4y=5. Since

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{-2}{5(7 - 2\sqrt{u})(1 + \sqrt{u})}$$

and

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = \frac{2(5 - 2\sqrt{x} - 2\sqrt{y})}{(\sqrt{x} + \sqrt{y})(1 + \sqrt{x})(1 + \sqrt{y})(7 - 2\sqrt{x})(7 - 2\sqrt{y})},$$

we need to show that

$$\sqrt{x} + \sqrt{y} \le \frac{5}{2}.$$

Indeed, by the Cauchy-Schwarz inequality, we have

$$(\sqrt{x} + \sqrt{y})^2 \le \left(1 + \frac{1}{4}\right)(x + 4y) = \frac{25}{4}.$$

The proof is completed. The equality holds for a = b = c = d = e = 1, and also for

$$a = 2$$
, $b = c = d = e = \frac{1}{2}$

(or any cyclic permutation).

Remark In the same manner, we can prove the following generalization:

• Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1^2 + a_2^2 + \cdots + a_n^2 = n$. If $k \ge 1 + \frac{n}{\sqrt{n-1}}$, then

$$\frac{1}{k-a_1} + \frac{1}{k-a_2} + \dots + \frac{1}{k-a_n} \le \frac{n}{k-1},$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$. If $k = 1 + \frac{n}{\sqrt{n-1}}$, then the equality holds also for

$$a_1 = \sqrt{n-1}, \quad a_2 = \dots = a_n = \frac{1}{\sqrt{n-1}}$$

(or any cyclic permutation).

P 1.39. Let $0 \le a_1, a_2, ..., a_n < k$ so that $a_1^2 + a_2^2 + ... + a_n^2 = n$. If

$$1 < k \le 1 + \sqrt{\frac{n}{n-1}},$$

then

$$\frac{1}{k - a_1} + \frac{1}{k - a_2} + \dots + \frac{1}{k - a_n} \ge \frac{n}{k - 1}.$$

(Vasile C., 2010)

Solution. Replacing a_1, a_2, \ldots, a_n by $\sqrt{a_1}, \sqrt{a_2}, \ldots, \sqrt{a_n}$, we have to prove that

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s),$$

where

$$s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1$$

and

$$f(u) = \frac{1}{k - \sqrt{u}}, \quad u \in [0, k^2).$$

From

$$f''(u) = \frac{3\sqrt{u} - k}{4u\sqrt{u}(k - \sqrt{u})^3},$$

it follows that f is convex on $[s,k^2)$. According to the RHCF-Theorem and Note 1, it suffices to show that $h(x,y) \ge 0$ for all $x,y \in [0,k^2)$ so that x+(n-1)y=n. Since

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{1}{(k - 1)(k - \sqrt{u})(1 + \sqrt{u})}$$

and

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = \frac{\sqrt{x} + \sqrt{y} + 1 - k}{(k - 1)(\sqrt{x} + \sqrt{y})(1 + \sqrt{x})(1 + \sqrt{y})(k - \sqrt{x})(k - \sqrt{y})},$$

we need to show that

$$\sqrt{x} + \sqrt{y} \ge k - 1.$$

Indeed,

$$\sqrt{x} + \sqrt{y} \ge \sqrt{x+y} \ge \sqrt{\frac{x}{n-1} + y} = \sqrt{\frac{n}{n-1}} \ge k - 1.$$

The proof is completed. The equality holds for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = 0$$
, $a_2 = \dots = a_n = \sqrt{\frac{n}{n-1}}$

(or any cyclic permutation).

P 1.40. *If* a, b, c are nonnegative real numbers, no two of which are zero, then

$$\sqrt{1 + \frac{48a}{b+c}} + \sqrt{1 + \frac{48b}{c+a}} + \sqrt{1 + \frac{48c}{a+b}} \ge 15.$$

(Vasile C., 2005)

Solution. Due to homogeneity, we may assume that a + b + c = 1. Thus, we need to show that

$$f(a) + f(b) + f(c) \ge 3f(s),$$

where

$$s = \frac{a+b+c}{3} = \frac{1}{3}$$

and

$$f(u) = \sqrt{\frac{1+47u}{1-u}}, \quad u \in [0,1).$$

From

$$f''(u) = \frac{48(47u - 11)}{\sqrt{(1 - u)^5(1 + 47u)^3}},$$

it follows that f is convex on [s, 1). By the RHCF-Theorem, it suffices to show that

$$f(x) + 2f(y) \ge 3f\left(\frac{1}{3}\right)$$

for $x, y \ge 0$ so that x + 2y = 1; that is,

$$\sqrt{\frac{1+47x}{1-x}} + 2\sqrt{\frac{49-47x}{1+x}} \ge 15.$$

Setting

$$t = \sqrt{\frac{49 - 47x}{1 + x}}, \quad 1 < t \le 7,$$

the inequality turns into

$$\sqrt{\frac{1175 - 23t^2}{t^2 - 1}} \ge 15 - 2t.$$

By squaring, this inequality becomes

$$350 - 15t - 61t^2 + 15t^3 - t^4 \ge 0,$$

$$(5-t)^2(2+t)(7-t) \ge 0.$$

The original inequality is an equality for a = b = c, and also for a = 0 and b = c (or any cyclic permutation).

P 1.41. *If* a, b, c are nonnegative real numbers, then

$$\sqrt{\frac{3a^2}{7a^2 + 5(b+c)^2}} + \sqrt{\frac{3b^2}{7b^2 + 5(c+a)^2}} + \sqrt{\frac{3c^2}{7c^2 + 5(a+b)^2}} \le 1.$$

(Vasile C., 2008)

Solution. Due to homogeneity, we may assume that a + b + c = 3. Thus, we need to show that

$$f(a) + f(b) + f(c) \ge 3f(s),$$

where

$$s = \frac{a+b+c}{3} = 1$$

and

$$f(u) = -\sqrt{\frac{3u^2}{7u^2 + 5(3-u)^2}} = \frac{-u}{\sqrt{4u^2 - 10u + 15}}, \quad u \in [0,3].$$

From

$$f''(u) = \frac{5(-8u^2 + 41u - 30)}{(4u^2 - 10u + 15)^{5/2}} \ge \frac{5(-8u^2 + 38u - 30)}{(4u^2 - 10u + 15)^{5/2}} = \frac{10(u - 1)(15 - 4u)}{(4u^2 - 10u + 15)^{5/2}},$$

it follows that f is convex on [s,3]. By the RHCF-Theorem, it suffices to prove the original homogeneous inequality for b=c=0 and b=c=1. For the nontrivial case b=c=1, we need to show that

$$\sqrt{\frac{3a^2}{7a^2 + 20}} + 2\sqrt{\frac{3}{5a^2 + 10a + 12}} \le 1.$$

By squaring two times, the inequality becomes

$$a(5a^{3} + 10a^{2} + 16a + 50) \ge 3a\sqrt{(7a^{2} + 20)(5a^{2} + 10a + 12)},$$

$$a^{2}(5a^{6} + 20a^{5} - 11a^{4} + 38a^{3} - 80a^{2} - 40a + 68) \ge 0,$$

$$a^{2}(a - 1)^{2}(5a^{4} + 30a^{3} + 44a^{2} + 96a + 68) \ge 0.$$

The last inequality is clearly true.

The equality holds for a = b = c, and also for a = 0 and b = c (or any cyclic permutation).

P 1.42. *If* a, b, c are nonnegative real numbers, then

$$\sqrt{\frac{a^2}{a^2 + 2(b+c)^2}} + \sqrt{\frac{b^2}{b^2 + 2(c+a)^2}} + \sqrt{\frac{c^2}{c^2 + 2(a+b)^2}} \ge 1.$$

(Vasile C., 2008)

Solution. Due to homogeneity, we may assume that a + b + c = 3. Thus, we need to show that

$$f(a) + f(b) + f(c) \ge 3f(s),$$

where

$$s = \frac{a+b+c}{3} = 1$$

and

$$f(u) = \sqrt{\frac{3u^2}{u^2 + 2(3-u)^2}} = \frac{u}{\sqrt{u^2 - 4u + 6}}, \quad u \in [0, 3].$$

From

$$f''(u) = \frac{2(2u^2 - 11u + 12)}{(u^2 - 4u + 6)^{5/2}} \ge \frac{2(-11u + 12)}{(u^2 - 4u + 6)^{5/2}},$$

it follows that f is convex on [0,s]. By the LHCF-Theorem, it suffices to prove the original homogeneous inequality for b=c=0 and b=c=1. For the nontrivial case b=c=1, the inequality has the form

$$\frac{a}{\sqrt{a^2+8}} + \frac{2}{\sqrt{2a^2+4a+3}} \ge 1.$$

By squaring, the inequality becomes

$$a\sqrt{(a^2+8)(2a^2+4a+3)} \ge 3a^2+8a-2.$$

For the nontrivial case $3a^2 + 8a - 2 > 0$, by squaring both sides we get

$$a^6 + 2a^5 + 5a^4 - 8a^3 - 14a^2 + 16a - 2 \ge 0$$

$$(a-1)^{2}[a^{4}+4a^{3}+9a^{2}+4a+(3a^{2}+8a-2)] \ge 0.$$

The equality holds for a = b = c, and also for b = c = 0 (or any cyclic permutation).

P 1.43. Let a, b, c be nonnegative real numbers, no two of which are zero. If

$$k \ge k_0$$
, $k_0 = \frac{\ln 3}{\ln 2} - 1 \approx 0.585$,

then

$$\left(\frac{2a}{b+c}\right)^k + \left(\frac{2b}{c+a}\right)^k + \left(\frac{2c}{a+b}\right)^k \ge 3.$$

(Vasile C., 2005)

Solution. For k = 1, the inequality is just the well known Nesbitt's inequality

$$\frac{2a}{b+c} + \frac{2b}{c+a} + \frac{2c}{a+b} \ge 3.$$

For $k \ge 1$, the inequality follows from Nesbitt's inequality and Jensens's inequality applied to the convex function $f(u) = u^k$:

$$\left(\frac{2a}{b+c}\right)^k + \left(\frac{2b}{c+a}\right)^k + \left(\frac{2c}{a+b}\right)^k \ge 3\left(\frac{\frac{2a}{b+c} + \frac{2b}{c+a} + \frac{2c}{a+b}}{3}\right)^k \ge 3.$$

Consider now that

$$k_0 \le k < 1$$
.

Due to homogeneity, we may assume that a + b + c = 1. Thus, we need to show that

$$f(a) + f(b) + f(c) \ge 3f(s),$$

where

$$s = \frac{a+b+c}{3} = \frac{1}{3}$$

and

$$f(u) = \left(\frac{2u}{1-u}\right)^k, \quad u \in [0,1).$$

From

$$f''(u) = \frac{4k}{(1-u)^4} \left(\frac{2u}{1-u}\right)^{k-2} (2u+k-1),$$

it follows that f is convex on [s,1) (because $u \ge s = 1/3$ involves $2u + k - 1 \ge 2/3 + k - 1 = k - 1/3 > 0$). By the RHCF-Theorem, it suffices to prove the original homogeneous inequality for b = c = 1 and $a \in [0,1]$; that is, to show that $h(a) \ge 3$, where

$$h(a) = a^k + 2\left(\frac{2}{a+1}\right)^k, \quad a \in [0,1].$$

For $a \in (0,1]$, the derivative

$$h'(a) = ka^{k-1} - k\left(\frac{2}{a+1}\right)^{k+1}$$

has the same sign as

$$g(a) = (k-1)\ln a - (k+1)\ln \frac{2}{a+1}.$$

From

$$g'(a) = \frac{2ka+k-1}{a(a+1)},$$

it follows that $g'(a_0) = 0$ for $a_0 = (1 - k)/(2k) < 1$, g'(a) < 0 for $a \in (0, a_0)$ and g'(a) > 0 for $a \in (a_0, 1]$. Consequently, g is strictly decreasing on $(0, a_0]$ and strictly increasing on $(a_0, 1]$. Since $g(0_+) = \infty$ and g(1) = 0, there exists $a_1 \in (0, a_0)$ so

that $g(a_1) = 0$, g(a) > 0 for $a \in (0, a_1)$ and g(a) < 0 for $a \in (a_1, 1)$; therefore, h(a) is strictly increasing on $[0, a_1]$ and strictly decreasing on $[a_1, 1]$. As a result,

$$h(a) \ge \min\{h(0), h(1)\}.$$

Since $h(0) = 2^{k+1} \ge 3$ and h(1) = 3, we get $h(a) \ge 3$. The proof is completed. The equality holds for a = b = c. If $k = k_0$, then the equality holds also for a = 0 and b = c (or any cyclic permutation).

Remark. For k = 2/3, we can give the following solution (based on the AM-GM inequality):

$$\sum \left(\frac{2a}{b+c}\right)^{2/3} = \sum \frac{2a}{\sqrt[3]{2a \cdot (b+c) \cdot (b+c)}}$$

$$\geq \sum \frac{6a}{2a+(b+c)+(b+c)} = 3.$$

P 1.44. If $a, b, c \in [1, 7 + 4\sqrt{3}]$, then

$$\sqrt{\frac{2a}{b+c}} + \sqrt{\frac{2b}{c+a}} + \sqrt{\frac{2c}{a+b}} \ge 3.$$

(Vasile C., 2007)

Solution. Denoting

$$s = \frac{a+b+c}{3}$$
, $1 \le s \le 7 + 4\sqrt{3}$,

we need to show that

$$f(a) + f(b) + f(c) \ge 3f(s),$$

where

$$f(u) = \sqrt{\frac{2u}{3s - u}}, \quad 1 \le u < 3s.$$

For $u \ge s$, we have

$$f''(u) = 3s \left(\frac{3s - u}{2u}\right)^{3/2} \frac{4u - 3s}{(3s - u)^4} > 0.$$

Therefore, f(u) is convex for $u \ge s$. By the RHCF-Theorem, it suffices to prove the original inequality for b = c; that is,

$$\sqrt{\frac{a}{b}} + 2\sqrt{\frac{2b}{a+b}} \ge 3.$$

Putting $t = \sqrt{\frac{b}{a}}$, the condition $a, b \in [1, 7 + 4\sqrt{3}]$ involves

$$2 - \sqrt{3} \le t \le 2 + \sqrt{3}$$
.

We need to show that

$$2\sqrt{\frac{2t^2}{t^2+1}} \ge 3 - \frac{1}{t}.$$

This is true if

$$\frac{8t^2}{t^2+1} \ge \left(3-\frac{1}{t}\right)^2,$$

which is equivalent to the obvious inequality

$$(t-1)^2(t-2+\sqrt{3})(t-2-\sqrt{3}) \le 0.$$

The equality holds for a = b = c, and also for a = 1, and $b = c = 7 + 4\sqrt{3}$ (or any cyclic permutation).

P 1.45. Let a, b, c be nonnegative real numbers so that a + b + c = 3. If

$$0 < k \le k_0$$
, $k_0 = \frac{\ln 2}{\ln 3 - \ln 2} \approx 1.71$,

then

$$a^{k}(b+c) + b^{k}(c+a) + c^{k}(a+b) \le 6.$$

Solution. For $0 < k \le 1$, the inequality follows from Jensens's inequality applied to the convex function $f(u) = -u^k$:

$$(b+c)a^{k} + (c+a)b^{k} + (a+b)c^{k} \le 2(a+b+c) \left[\frac{(b+c)a + (c+a)b + (a+b)c}{2(a+b+c)} \right]^{k}$$
$$= 6\left(\frac{ab+bc+ca}{3} \right)^{k} \le 6\left(\frac{a+b+c}{3} \right)^{2k} = 6.$$

Consider now that

$$1 < k \le k_0,$$

and write the inequality as

$$f(a) + f(b) + f(c) \ge 3f(s),$$

where

$$s = \frac{a+b+c}{3} = 1$$

and

$$f(u) = u^k(u-3), u \in [0,3].$$

For $u \ge 1$, we have

$$f''(u) = ku^{k-2}[(k+1)u - 3k + 3] \ge ku^{k-2}[(k+1) - 3k + 3] = 2k(2-k)u^{k-2} > 0;$$

therefore, f is convex on [1,s]. By the RHCF-Theorem, it suffices to consider the case $a \le b = c$. So, we only need to prove the homogeneous inequality

$$a^{k}(b+c) + b^{k}(c+a) + c^{k}(a+b) \le 6\left(\frac{a+b+c}{3}\right)^{k+1}$$

for b = c = 1 and $a \in [0, 1]$; that is, to show that $g(a) \ge 0$ for $a \ge 0$, where

$$g(a) = 3\left(\frac{a+2}{3}\right)^{k+1} - a^k - a - 1.$$

We have

$$g'(a) = (k+1)\left(\frac{a+2}{3}\right)^k - ka^{k-1} - 1, \quad \frac{1}{k}g''(a) = \frac{k+1}{3}\left(\frac{a+2}{3}\right)^{k-1} - \frac{k-1}{a^{2-k}}.$$

Since g'' is strictly increasing, $g''(0_+) = -\infty$ and g''(1) = 2k(2-k)/3 > 0, there exists $a_1 \in (0,1)$ so that $g''(a_1) = 0$, g''(a) < 0 for $a \in (0,a_1)$, g''(a) > 0 for $a \in (a_1,1]$. Therefore, g' is strictly decreasing on $[0,a_1]$ and strictly increasing on $[a_1,1]$. Since

$$g'(0) = (k+1)(2/3)^k - 1 \ge (k+1)(2/3)^{k_0} - 1 = \frac{k+1}{2} - 1 = \frac{k-1}{2} > 0,$$

$$g'(1) = 0,$$

there exists $a_2 \in (0, a_1)$ so that $g'(a_2) = 0$, g'(a) > 0 for $a \in [0, a_2)$, g'(a) < 0 for $a \in (a_2, 1]$. Thus, g is strictly increasing on $[0, a_2]$ and strictly decreasing on $[a_2, 1]$; consequently,

$$g(a) \ge \min\{g(0), g(1)\}.$$

From

$$g(0) = 3(2/3)^{k+1} - 1 \ge 3(2/3)^{k_0+1} - 1 = 1 - 1 = 0, \quad g(1) = 0,$$

we get $g(a) \ge 0$. This completes the proof. The equality holds for a = b = c = 1. If $k = k_0$, then the equality holds also for a = 0 and b = c = 3/2 (or any cyclic permutation).

Remark 1. Using the Cauchy-Schwarz inequality and the inequality in P 1.45, we get

$$\sum \frac{a}{b^k + c^k} \ge \frac{(a+b+c)^2}{\sum a(b^k + c^k)} = \frac{9}{\sum a^k (b+c)} \ge \frac{3}{2}.$$

Thus, the following statement holds.

• Let a, b, c be nonnegative real numbers so that a + b + c = 3. If

$$0 < k \le k_0$$
, $k_0 = \frac{\ln 2}{\ln 3 - \ln 2} \approx 1.71$,

then

$$\frac{a}{b^k + c^k} + \frac{b}{c^k + a^k} + \frac{c}{a^k + b^k} \ge \frac{3}{2},$$

with equality for a = b = c = 1. If $k = k_0$, then the equality holds also for a = 0 and b = c = 3/2 (or any cyclic permutation).

Remark 2. Also, the following statement holds:

• Let a, b, c be nonnegative real numbers so that a + b + c = 3. If

$$k \ge k_1$$
, $k_1 = \frac{\ln 9 - \ln 8}{\ln 3 - \ln 2} \approx 0.2905$,

then

$$\frac{a^k}{b+c} + \frac{b^k}{c+a} + \frac{c^k}{a+b} \ge \frac{3}{2},$$

with equality for a = b = c = 1. If $k = k_1$, then the equality holds also for a = 0 and b = c = 3/2 (or any cyclic permutation).

For $k_1 \le k \le 2$, the inequality can be proved using the Cauchy-Schwarz inequality and the inequality in P 1.45, as follows:

$$\sum \frac{a^k}{b+c} \ge \frac{(a+b+c)^2}{\sum a^{2-k}(b+c)} = \frac{9}{\sum a^{2-k}(b+c)} \ge \frac{3}{2}.$$

For $k \ge 2$, the inequality can be deduced from the Cauchy-Schwarz inequality and Bernoulli's inequality, as follows:

$$\sum \frac{a^k}{b+c} \ge \frac{\left(\sum a^{k/2}\right)^2}{\sum (b+c)} = \frac{\left(\sum a^{k/2}\right)^2}{6},$$

$$\sum a^{k/2} \ge \sum \left[1 + \frac{k}{2} (a - 1) \right] = 3.$$

P 1.46. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

$$\sqrt{a} + \sqrt{b} + \sqrt{c} - 3 \ge 13 \left(\sqrt{\frac{a+b}{2}} + \sqrt{\frac{b+c}{2}} + \sqrt{\frac{c+a}{2}} - 3 \right).$$

(Vasile C., 2008)

Solution. Write the inequality as

$$f(a) + f(b) + f(c) \ge 3f(s), \quad s = \frac{a+b+c}{3} = 1,$$

where

$$f(u) = \sqrt{u} - 13\sqrt{\frac{3-u}{2}}, \quad u \in [0,3].$$

For $u \in [1,3)$, we have

$$4f''(u) = -u^{-3/2} + \frac{13}{4} \left(\frac{3-u}{2} \right)^{-3/2} \ge -1 + \frac{13}{4} > 0.$$

Therefore, f is convex on [s,3]. By the RHCF-Theorem, it suffices to consider only the case $a \le b = c$. Write the original inequality in the homogeneous form

$$\sqrt{a} + \sqrt{b} + \sqrt{c} - 3\sqrt{\frac{a+b+c}{3}} \ge 13\left(\sqrt{\frac{a+b}{2}} + \sqrt{\frac{b+c}{2}} + \sqrt{\frac{c+a}{2}} - 3\sqrt{\frac{a+b+c}{3}}\right).$$

Due to homogeneity, we may assume that b=c=1. Moreover, it is convenient to use the notation $\sqrt{a}=x$. Thus, we need to show that $g(x) \ge 0$ for $x \in [0,1]$, where

$$g(x) = x - 11 + 36\sqrt{\frac{x^2 + 2}{3}} - 26\sqrt{\frac{x^2 + 1}{2}}.$$

We have

$$g'(x) = 1 + 12x\sqrt{\frac{3}{x^2 + 2}} - 13x\sqrt{\frac{2}{x^2 + 1}},$$

$$g''(x) = \frac{13}{2} \left(\frac{2}{x^2 + 1} \right)^{3/2} \left[\left(m \cdot \frac{x^2 + 1}{x^2 + 2} \right)^{3/2} - 1 \right],$$

where

$$m = \frac{6\sqrt[3]{52}}{13} \approx 1.72.$$

Clearly, g''(x) has the same sign as h(x), where

$$h(x) = m \cdot \frac{x^2 + 1}{x^2 + 2} - 1.$$

Since *h* is strictly increasing,

$$h(0) = \frac{m}{2} - 1 < 0, \quad h(1) = \frac{2m}{3} - 1 > 0,$$

there is $x_1 \in (0,1)$ so that $h(x_1) = 0$, h(x) < 0 for $x \in [0,x_1)$ and h(x) > 0 for $x \in (x_1,1]$. Therefore, g' is strictly decreasing on $[0,x_1]$ and strictly increasing on $[x_1,1]$. Since g'(0) = 1 and g'(1) = 0, there is $x_2 \in (0,x_1)$ so that $g'(x_2) = 0$, g'(x) > 0 for $x \in (0,x_2)$ and g'(x) < 0 for $x \in (x_2,1)$. Thus, g(x) is strictly increasing on $[0,x_2]$ and strictly decreasing on $[x_2,1]$. From

$$g(0) = -11 + 12\sqrt{6} - 13\sqrt{2} > 0$$

and g(1) = 0, it follows that $g(x) \ge 0$ for $x \in [0, 1]$. This completes the proof. The equality holds for a = b = c = 1.

Remark. Similarly, we can prove the following generalizations:

• Let a, b, c be nonnegative real numbers so that a + b + c = 3. If $k \ge k_0$, where

$$k_0 = \frac{\sqrt{6} - 2}{\sqrt{6} - \sqrt{2} - 1} = (2 + \sqrt{2})(2 + \sqrt{3}) \approx 12.74$$

then

$$\sqrt{a} + \sqrt{b} + \sqrt{c} - 3 \ge k \left(\sqrt{\frac{a+b}{2}} + \sqrt{\frac{b+c}{2}} + \sqrt{\frac{c+a}{2}} - 3 \right),$$

with equality for a = b = c = 1. If $k = k_0$, then the equality holds also for a = 0 and b = c = 3/2 (or any cyclic permutation).

• Let $a_1, a_2, ..., a_n$ be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$. If $k \ge k_0$, where

$$k_0 = \frac{\sqrt{n} - \sqrt{n-1}}{\sqrt{n} - \sqrt{n-2} - \frac{1}{\sqrt{n-1}}} ,$$

then

$$\sqrt{a_1} + \sqrt{a_2} + \dots + \sqrt{a_n} - n \ge k \left(\sqrt{\frac{n - a_1}{n - 1}} + \sqrt{\frac{n - a_2}{n - 1}} + \dots + \sqrt{\frac{n - a_n}{n - 1}} - n \right),$$

with equality for $a_1=a_2=\cdots=a_n=1$. If $k=k_0$, then the equality holds also for $a_1=0$ and $a_2=a_3=\cdots=a_n=\frac{n}{n-1}$ (or any cyclic permutation).

P 1.47. Let a, b, c be nonnegative real numbers so that a + b + c = 3. If k > 2, then

$$a^{k} + b^{k} + c^{k} + 3 \ge 2\left(\frac{a+b}{2}\right)^{k} + 2\left(\frac{b+c}{2}\right)^{k} + 2\left(\frac{c+a}{2}\right)^{k}.$$

Solution. Write the inequality as

$$f(a) + f(b) + f(c) \ge 3f(s), \quad s = \frac{a+b+c}{3} = 1,$$

where

$$f(u) = u^k - 2\left(\frac{3-u}{2}\right)^k, \quad u \in [0,3].$$

For $u \ge 1$, we have

$$\frac{f''(u)}{k(k-1)} = u^{k-2} - \frac{1}{2} \left(\frac{3-u}{2} \right)^{k-2} \ge 1 - \frac{1}{2} > 0.$$

Therefore, f is convex on [s,3]. By the RHCF-Theorem, it suffices to consider only the case $a \le b = c$. Write the original inequality in the homogeneous form

$$a^{k} + b^{k} + c^{k} + 3\left(\frac{a+b+c}{3}\right)^{k} \ge 2\left(\frac{a+b}{2}\right)^{k} + 2\left(\frac{b+c}{2}\right)^{k} + 2\left(\frac{c+a}{2}\right)^{k}.$$

Due to homogeneity, we may assume that b = c = 1. Thus, we need to prove that

$$a^k + 3\left(\frac{a+2}{3}\right)^k \ge 4\left(\frac{a+1}{2}\right)^k$$

for $a \in [0, 1]$. Substituting

$$a^k = t, \quad t \in [0, 1],$$

we need to show that $g(t) \ge 0$, where

$$g(t) = t + 3\left(\frac{t^{1/k} + 2}{3}\right)^k - 4\left(\frac{t^{1/k} + 1}{2}\right)^k.$$

We have

$$g'(t) = 1 + t^{1/k-1} \left(\frac{t^{1/k} + 2}{3} \right)^{k-1} - 2t^{1/k-1} \left(\frac{t^{1/k} + 1}{2} \right)^{k-1},$$
$$\frac{kt^{2-1/k}}{k-1} g''(t) = \left(\frac{t^{1/k} + 1}{2} \right)^{k-2} - \frac{2}{3} \left(\frac{t^{1/k} + 2}{3} \right)^{k-2}.$$

Setting

$$m = \left(\frac{2}{3}\right)^{\frac{1}{k-2}}, \quad 0 < m < 1,$$

we see that g''(t) has the same sign as h(t), where

$$h(t) = 6\left(\frac{t^{1/k} + 1}{2} - m\frac{t^{1/k} + 2}{3}\right) = (3 - 2m)t^{1/k} + 3 - 4m$$

is strictly increasing. There are two cases to consider: $0 < m \le 3/4$ and 3/4 < m < 1.

Case 1: $0 < m \le 3/4$. Since $h(0) = 3 - 4m \ge 0$, we have h(t) > 0 for $t \in (0, 1]$, hence g' is strictly increasing on (0, 1]. From g'(1) = 0, it follows that g'(t) < 0 for $t \in (0, 1)$, hence g is strictly decreasing on [0, 1]. Since g(1) = 0, we get g(t) > 0 for $t \in [0, 1)$.

Case 2: 3/4 < m < 1. From m > 3/4, we get

$$2^{2k-3} > 3^{k-1}.$$

Since h(0) = 3 - 4m < 0 and h(1) = 3(1 - m) > 0, there is $t_1 \in (0, 1)$ so that $h(t_1) = 0$, h(t) < 0 for $t \in [0, t_1)$ and h(t) > 0 for $t \in (t_1, 1]$. Thus, g'(t) is strictly decreasing on (0, t1] and strictly increasing on $[t_1, 1]$. Since $g'(0_+) = +\infty$ and g'(1) = 0, there exists $t_2 \in (0, t_1)$ so that $g'(t_2) = 0$, g'(t) > 0 for $t \in (0, t_2)$ and g'(t) < 0 for $t \in (t_2, 1)$. Therefore, g(t) is strictly increasing on $[0, t_2]$ and strictly decreasing on $[t_2, t_3]$. Since

$$g(0) = \frac{2^{2k-2} - 3^{k-1}}{2^k 3^{k-1}} > 0$$

and g(1) = 0, we have $g(t) \ge 0$ for $t \in [0, 1]$.

The equality holds for a = b = c = 1.

Remark 1. The inequality in P 1.47 is Popoviciu's inequality

$$f(a) + f(b) + f(c) + 3f\left(\frac{a+b+c}{3}\right) \ge 2f\left(\frac{a+b}{2}\right) + 2f\left(\frac{b+c}{2}\right) + 2f\left(\frac{c+a}{2}\right)$$

applied to the convex function $f(x) = x^k$ defined on $[0, \infty)$.

Remark 2. In the same manner, we can prove the following refinements (*Vasile C.*, 2008):

• Let a, b, c be nonnegative real numbers so that a + b + c = 3. If k > 2 and $m \le m_0$, where

$$m_0 = \frac{2^k(3^{k-1} - 2^{k-1})}{6^{k-1} + 3^{k-1} - 2^{2k-1}} > 2,$$

then

$$a^{k}+b^{k}+c^{k}-3 \geq m \left[\left(\frac{a+b}{2} \right)^{k} + \left(\frac{b+c}{2} \right)^{k} + \left(\frac{c+a}{2} \right)^{k} - 3 \right],$$

with equality for a = b = c = 1. If $m = m_0$, then the equality holds also for a = 0 and b = c = 3/2 (or any cyclic permutation).

• Let $a_1, a_2, ..., a_n$ be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$. If k > 2 and $m \le m_1$, where

$$m_1 = \frac{\frac{1}{(n-1)^{k-1}} - \frac{1}{n^{k-1}}}{\frac{1}{(n-1)^k} + \frac{(n-2)^k}{(n-1)^{2k-1}} - \frac{1}{n^{k-1}}} > n-1,$$

then

$$a_1^k + a_2^k + \dots + a_n^k - n \ge m \left[\left(\frac{n - a_1}{n - 1} \right)^k + \left(\frac{n - a_2}{n - 1} \right)^k + \dots + \left(\frac{n - a_n}{n - 1} \right)^k - n \right],$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$. If $m = m_1$, then the equality holds also for $a_1 = 0$ and $a_2 = a_3 = \cdots = a_n = \frac{n}{n-1}$ (or any cyclic permutation).

P 1.48. If a_1, a_2, \ldots, a_n are nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$\sqrt{a_1} + \sqrt{a_2} + \dots + \sqrt{a_n} + n(k-1) \le k \left(\sqrt{\frac{n-a_1}{n-1}} + \sqrt{\frac{n-a_2}{n-1}} + \dots + \sqrt{\frac{n-a_n}{n-1}} \right),$$

where

$$k = (\sqrt{n} - 1)(\sqrt{n} + \sqrt{n - 1}).$$

(Vasile C., 2008)

Solution. For n = 2, the inequality is an identity. Consider further that $n \ge 3$. We will show first that

$$n-1 < k < 2(n-1)$$
.

The left inequality reduces to

$$(\sqrt{n}-1)(\sqrt{n-1}-1)>0$$
,

while the right inequality is equivalent to

$$(\sqrt{n}-1)(\sqrt{n}-\sqrt{n-1}+2) > 0.$$

Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = -\sqrt{u} + k\sqrt{\frac{n-u}{n-1}}, \quad u \in [0, n].$$

For $u \leq 1$, we have

$$4f''(u) = u^{-3/2} - \frac{k}{\sqrt{n-1}}(n-u)^{-3/2} \ge 1 - \frac{k}{\sqrt{n-1}}(n-1)^{-3/2}$$
$$= 1 - \frac{k}{(n-1)^2} \ge 1 - \frac{k}{2(n-1)} > 0.$$

Therefore, f is convex on [0,s]. By the LHCF-Theorem, it suffices to consider the case

$$a_1 \geq a_2 = \cdots = a_n$$
.

Write the original inequality in the homogeneous form

$$\sum \sqrt{a_1} + n(k-1)\sqrt{\frac{a_1 + a_2 + \dots + a_n}{n}} \le k \sum \sqrt{\frac{a_2 + \dots + a_n}{n-1}}.$$

Do to homogeneity, we need to prove this inequality for $a_2 = \cdots = a_n = 1$ and $\sqrt{a_1} = x \ge 1$; that is, to show that $g(x) \le 0$ for $x \ge 1$, where

$$g(x) = x + n - 1 - k + (k - 1)\sqrt{n(x^2 + n - 1)} - k\sqrt{(n - 1)(x^2 + n - 2)}$$

We have

$$g'(x) = 1 + (k-1)\sqrt{\frac{nx^2}{x^2 + n - 1}} - k\sqrt{\frac{(n-1)x^2}{x^2 + n - 2}},$$

$$g''(x) = \frac{k(n-2)\sqrt{n-1}}{(x^2+n-2)^{3/2}} \left[\left(m \cdot \frac{x^2+n-2}{x^2+n-1} \right)^{3/2} - 1 \right],$$

where

$$m = \sqrt[6]{\frac{(k-1)^2 n(n-1)}{k^2 (n-2)^2}}.$$

Clearly, g''(x) has the same sign as h(x), where

$$h(x) = \frac{m(x^2 + n - 2)}{x^2 + n - 1} - 1 = m\left(1 - \frac{1}{x^2 + n - 1}\right) - 1.$$

We have

$$h(1) = \frac{m(n-1)}{n} - 1$$
, $\lim_{x \to \infty} h(x) = m - 1$.

We will show that h(1) < 0 and $\lim_{x \to \infty} h(x) > 0$; that is, to show that

$$1 < m < \frac{n}{n-1}.$$

The inequality m > 1 is equivalent to

$$1 - \frac{1}{k} > \frac{n-2}{\sqrt{n(n-1)}},$$

which is true since

$$1 - \frac{1}{k} > 1 - \frac{1}{n-1} = \frac{n-2}{n-1} > \frac{n-2}{\sqrt{n(n-1)}}.$$

The inequality $m < \frac{n}{n-1}$ is equivalent to

$$1 - \frac{1}{k} < \frac{n(n-2)}{(n-1)^2},$$

which is also true because

$$1 - \frac{1}{k} < 1 - \frac{1}{2(n-1)} = \frac{2n-3}{2(n-1)} \le \frac{n(n-2)}{(n-1)^2}.$$

Since h is strictly increasing on $[1, \infty)$, h(1) < 0 and $\lim_{x \to \infty} h(x) > 0$, there is $x_1 \in (1, \infty)$ so that $h(x_1) = 0$, h(x) < 0 for $x \in [1, x_1]$ and h(x) > 0 for $x \in (x_1, \infty)$. Therefore, g' is strictly decreasing on $[1, x_1]$ and strictly increasing on $[x_1, \infty)$. Since g'(1) = 0 and $\lim_{x \to \infty} g'(x) = 0$, it follows that g'(x) < 0 for $x \in (1, \infty)$. Thus, g(x) is strictly decreasing on $[1, \infty)$, hence $g(x) \le g(1) = 0$.

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = n$$
, $a_2 = a_3 = \cdots = a_n = 0$

(or any cyclic permutation).

Remark. Since k > n-1 for $n \ge 3$, the inequality in P 1.48 is sharper than Popoviciu's inequality applied to the convex function $f(x) = -\sqrt{x}$, $x \ge 0$:

$$\sqrt{a_1} + \sqrt{a_2} + \dots + \sqrt{a_n} + n(n-2) \le (n-1) \left(\sqrt{\frac{n-a_1}{n-1}} + \sqrt{\frac{n-a_2}{n-1}} + \dots + \sqrt{\frac{n-a_n}{n-1}} \right).$$

P 1.49. If a, b, c are the lengths of the sides of a triangle so that a + b + c = 3, then

$$\frac{1}{a+b-c} + \frac{1}{b+c-a} + \frac{1}{c+a-b} - 3 \ge 4(2+\sqrt{3}) \left(\frac{2}{a+b} + \frac{2}{b+c} + \frac{2}{c+a} - 3\right).$$
(Vasile C., 2008)

Solution. Write the inequality as

$$f(a) + f(b) + f(c) \ge 3f(s), \quad s = \frac{a+b+c}{3} = 1,$$

where

$$f(u) = \frac{1}{3 - 2u} - \frac{4k}{3 - u}, \quad k = 2(2 + \sqrt{3}) \approx 7.464, \quad u \in [0, 3/2).$$

For $u \ge 1$, we have

$$f''(u) = \frac{8}{(3-2u)^3} - \frac{8k}{(3-u)^3} > 8\left[\left(\frac{1}{3-2u}\right)^3 - \left(\frac{2}{3-u}\right)^3\right].$$

Since

$$\frac{1}{3-2u} \ge \frac{2}{3-u}, \quad u \in [1,3/2),$$

it follows that f is convex on [s,3/2). By the RHCF-Theorem and Note 1, it suffices to show that $h(x,y) \ge 0$ for $x,y \in [0,3/2)$ so that x + 2y = 3. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{2}{3 - 2u} - \frac{2k}{3 - u}$$

and

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = \frac{2}{(3 - 2x)(3 - 2y)} - \frac{k}{(3 - x)(3 - y)}$$
$$= \frac{2}{(2y - x)x} - \frac{k}{2y(x + y)}$$
$$= \frac{kx^2 - 2(k - 2)xy + 4y^2}{2xy(x + y)(2y - x)}$$
$$= \frac{[(\sqrt{3} + 1)x - 2y]^2}{2xy(x + y)(2y - x)} \ge 0.$$

According to Note 4, the equality holds for a = b = c = 1, and also for

$$a = 3(2 - \sqrt{3}), \quad b = c = \frac{3(\sqrt{3} - 1)}{2}$$

(or anu cyclic permutation).

P 1.50. Let $a_1, a_2, ..., a_5$ be nonnegative numbers so that $a_1 + a_2 + a_3 + a_4 + a_5 \le 5$. If

$$k \ge k_0, \quad k_0 = \frac{29 + \sqrt{761}}{10} \approx 5.66,$$

then

$$\sum \frac{1}{ka_1^2 + a_2 + a_3 + a_4 + a_5} \ge \frac{5}{k+4}.$$

(Vasile C., 2006)

Solution. Since each term of the left hand side of the inequality decreases by increasing any number a_i , it suffices to consider the case

$$a_1 + a_2 + a_3 + a_4 + a_5 = 5$$
,

when the desired inequality can be written as

$$f(a_1) + f(a_2) + f(a_3) + f(a_4) + f(a_4) \ge 5f(s),$$

where

$$s = \frac{a_1 + a_2 + a_3 + a_4 + a_5}{5} = 1$$

and

$$f(u) = \frac{1}{ku^2 - u + 5}, \quad u \in [0, 5].$$

For $u \ge 1$, we have

$$f''(u) = \frac{2[3ku(ku-1)-5k+1]}{(ku^2-u+5)^3}$$

$$\geq \frac{2[3k(k-1)-5k+1]}{(ku^2-u+5)^3}$$

$$= \frac{2[k(3k-8)+1]}{(ku^2-u+5)^3} > 0;$$

therefore, f is convex on [s, 5]. By the RHCF-Theorem, it suffices to show that

$$\frac{1}{kx^2 - x + 5} + \frac{4}{ky^2 - y + 5} \ge \frac{5}{k + 4}$$

for

$$0 \le x \le 1 \le y, \quad x + 4y = 5.$$

Write this inequality as follows:

$$\frac{1}{kx^2 - x + 5} - \frac{1}{k + 4} + 4 \left[\frac{1}{ky^2 - y + 5} - \frac{1}{k + 4} \right] \ge 0,$$
$$\frac{(x - 1)(1 - k - kx)}{kx^2 - x + 5} + \frac{4(y - 1)(1 - k - ky)}{ky^2 - y + 5} \ge 0.$$

Since

$$4(y-1)=1-x$$

the inequality is equivalent to

$$(x-1)\left(\frac{1-k-kx}{kx^2-x+5} - \frac{1-k-ky}{ky^2-y+5}\right) \ge 0,$$

$$\frac{5(x-1)^2g(x,y,k)}{4(kx^2-x+5)(ky^2-y+5)} \ge 0,$$

where

$$g(x, y, k) = k^2 x y + k(k-1)(x+y) - 6k + 1.$$

For fixed x and y, let h(k) = g(x, y, k). Since

$$h'(k) = 2kxy + (2k-1)(x+y) - 6 \ge (2k-1)(x+y) - 6$$

$$\ge (2k-1)\left(x + \frac{y}{4}\right) - 6 = \frac{10k-29}{4} > 0,$$

it suffices to show that $g(x, y, k_0) \ge 0$. We have

$$g(x, y, k_0) = k_0^2 x y + k_0 (k_0 - 1)(x + y) - 6k_0 + 1$$

= $-4k_0^2 y^2 + k_0 (2k_0 + 3)y + 5k_0^2 - 11k_0 + 1$.

Since

$$5k_0^2 - 29k_0 + 4 = 0,$$

we get

$$g(x, y, k_0) = (5 - 4y) \left(k_0^2 y + k_0^2 - \frac{11k_0 - 1}{5} \right) = x \left(k_0^2 y + k_0^2 - \frac{11k_0 - 1}{5} \right).$$

It suffices to show that

$$k_0^2 - \frac{11k_0 - 1}{5} \ge 0.$$

Indeed,

$$k_0^2 - \frac{11k_0 - 1}{5} = \frac{k_0(5k_0 - 11) + 1}{5} > 0.$$

The equality holds for $a_1 = a_2 = a_3 = a_4 = a_5 = 1$. If $k = k_0$, then the equality holds also for

$$a_1 = 0$$
, $a_2 = a_3 = a_4 = a_5 = \frac{5}{4}$

(or any cyclic permutation).

Remark. In the same manner, we can prove the following statement:

• Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n \le n$. If

$$k \ge k_0, \qquad k_0 = \frac{n^2 + n - 1 + \sqrt{n^4 + 2n^3 - 5n^2 + 2n + 1}}{2n},$$

then

$$\sum \frac{1}{ka_1^2 + a_2 + \dots + a_n} \ge \frac{n}{k+n-1},$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$. If $k = k_0$, then the equality holds also for

$$a_1 = 0, \quad a_2 = \dots = a_n = \frac{n}{n-1}$$

(or any cyclic permutation).

P 1.51. Let $a_1, a_2, ..., a_5$ be nonnegative numbers so that $a_1 + a_2 + a_3 + a_4 + a_5 \le 5$. If

$$0 < k \le k_0, \qquad k_0 = \frac{11 - \sqrt{101}}{10} \approx 0.095,$$

then

$$\sum \frac{1}{ka_1^2 + a_2 + a_3 + a_4 + a_5} \ge \frac{5}{k+4}.$$

(Vasile C., 2006)

Solution. As shown at the preceding P 1.50, it suffices to consider the case

$$a_1 + a_2 + a_3 + a_4 + a_5 = 5$$
,

when the desired inequality can be written as

$$f(a_1) + f(a_2) + f(a_3) + f(a_4) + f(a_4) \ge 5f(s),$$

where

$$s = \frac{a_1 + a_2 + a_3 + a_4 + a_5}{5} = 1,$$

and

$$f(u) = \frac{1}{ku^2 - u + 5}, \quad u \in [0, 5].$$

For $u \in [0, 1]$, we have

$$u(ku-1)-(k-1)=(1-u)(1-ku) \ge 0$$
,

hence

$$f''(u) = \frac{2[3ku(ku-1)-5k+1]}{(ku^2-u+5)^3}$$

$$\geq \frac{2[3k(k-1)-5k+1]}{(ku^2-u+5)^3}$$

$$= \frac{2[(1-8k)+3k^2]}{(ku^2-u+5)^3} > 0;$$

therefore, f is convex on [0,s]. By the LHCF-Theorem, it suffices to show that

$$\frac{1}{kx^2 - x + 5} + \frac{4}{ky^2 - y + 5} \ge \frac{5}{k + 4}$$

for

$$x \ge 1 \ge y \ge 0, \quad x + 4y = 5.$$

Write this inequality as follows:

$$\frac{1}{kx^2 - x + 5} - \frac{1}{k + 4} + 4 \left[\frac{1}{ky^2 - y + 5} - \frac{1}{k + 4} \right] \ge 0,$$
$$\frac{(x - 1)(1 - k - kx)}{kx^2 - x + 5} + \frac{4(y - 1)(1 - k - ky)}{ky^2 - y + 5} \ge 0.$$

Since

$$4(y-1) = 1 - x,$$

the inequality is equivalent to

$$(x-1)\left(\frac{1-k-kx}{kx^2-x+5} - \frac{1-k-ky}{ky^2-y+5}\right) \ge 0,$$

$$\frac{5(x-1)^2g(x,y,k)}{4(kx^2-x+5)(ky^2-y+5)} \ge 0,$$

where

$$g(x, y, k) = k^2 x y - k(1 - k)(x + y) - 6k + 1.$$

For fixed x and y, let h(k) = g(x, y, k). Since

$$h'(k) = 2kxy - (1 - 2k)(x + y) - 6 \le 2kxy - 6$$

$$\le \frac{k(x + 4y)^2}{8} - 6 = \frac{25k}{8} - 6 < 0,$$

it suffices to show that $g(x, y, k_0) \ge 0$. We have

$$g(x, y, k_0) = k_0^2 x y + k_0 (k_0 - 1)(x + y) - 6k + 1$$

= $-4k_0^2 y^2 + k_0 (2k_0 + 3)y + 5k_0^2 - 11k_0 + 1$.

Since

$$5k_0^2 - 11k_0 + 1 = 0,$$

we get

$$g(x, y, k_0) = k_0 y(-4k_0 y + 2k_0 + 3) \ge k_0 y(-4k_0 + 2k_0 + 3) = k_0 (3 - 2k_0) y \ge 0.$$

The equality holds for $a_1 = a_2 = a_3 = a_4 = a_5 = 1$. If $k = k_0$, then the equality holds also for

$$a_1 = 5$$
, $a_2 = a_3 = a_4 = a_5 = 0$

(or any cyclic permutation).

Remark. Similarly, we can prove the following statement:

• Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n \le n$. If

$$0 \le k \le k_0, \qquad k_0 = \frac{2n + 1 - \sqrt{4n^2 + 1}}{2n},$$

then

$$\sum \frac{1}{ka_1^2 + a_2 + \dots + a_n} \ge \frac{n}{k+n-1},$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$. If $k = k_0$, then the equality holds also for

$$a_1 = n, \quad a_2 = \cdots = a_n = 0$$

(or any cyclic permutation).

P 1.52. Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n \le n$. If

$$0 < k \le \frac{1}{n+1},$$

then

$$\frac{a_1}{ka_1^2 + a_2 + \dots + a_n} + \frac{a_2}{a_1 + ka_2^2 + \dots + a_n} + \dots + \frac{a_n}{a_1 + a_2 + \dots + ka_n^2} \ge \frac{n}{k + n - 1}.$$

(Vasile C., 2006)

Solution. Using the notation

$$x_1 = \frac{a_1}{s}, \ x_2 = \frac{a_2}{s}, \ \dots, \ x_n = \frac{a_n}{s},$$

where

$$s = \frac{a_1 + a_2 + \dots + a_n}{n} \le 1,$$

we need to show that $x_1 + x_2 + \cdots + x_n = n$ involves

$$\frac{x_1}{ksx_1^2 + x_2 + \dots + x_n} + \dots + \frac{x_n}{x_1 + x_2 + \dots + ksx_n^2} \ge \frac{n}{k + n - 1}.$$

Since $s \le 1$, it suffices to prove the inequality for s = 1; that is, to show that

$$\frac{a_1}{ka_1^2 - a_1 + n} + \frac{a_2}{ka_2^2 - a_2 + n} + \dots + \frac{a_n}{ka_n^2 - a_n + n} \ge \frac{n}{k + n - 1}$$

for

$$a_1 + a_2 + \cdots + a_n = n$$
.

Write the desired inequality as

$$f(a_1) + f(a_2) + \cdots + f(a_n) \ge nf(s),$$

where

$$s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1$$

and

$$f(u) = \frac{u}{u^2 - u + n}, \quad u \in [0, n].$$

We have

$$f'(u) = \frac{n - ku^2}{(ku^2 - u + n)^2}, \qquad f''(u) = \frac{f_1(u)}{(u^2 - u + n)^3},$$

where

$$f_1(u) = k^2 u^3 - 3knu + n.$$

For $u \in [0, 1]$, we have

$$f_1(u) \ge -3knu + n \ge -3kn + n$$

 $\ge -\frac{3n}{n+1} + n = \frac{n(n-2)}{n+1} \ge 0.$

Since f''(u) > 0, it follows that f is convex on [0,s]. By the LHCF-Theorem, we only need to show that

$$\frac{x}{kx^2 - x + n} + \frac{(n-1)y}{ky^2 - y + n} \ge \frac{n}{k+n-1}$$

for all nonnegative x, y which satisfy x + (n-1)y = n. Write this inequality as follows:

$$\frac{x}{kx^2 - x + n} - \frac{1}{k + n - 1} + (n - 1) \left[\frac{y}{ky^2 - y + n} - \frac{1}{k + n - 1} \right] \ge 0,$$

$$(x - 1) \left(\frac{n - kx}{kx^2 - x + n} - \frac{n - ky}{ky^2 - y + n} \right) \ge 0,$$

$$\frac{(x - 1)^2 h(x, y)}{(kx^2 - x + n)(ky^2 - y + n)} \ge 0,$$

where

$$h(x,y) = k^2 x y - kn(x+y) + n - nk.$$

We need to show that $h(x, y) \ge 0$. Indeed,

$$h(x,y) = ky[n(k+n-2) - k(n-1)y] + n[1 - k(n+1)]$$

= $ky[n(n-2) + kx] + n[1 - k(n+1)] \ge 0.$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$. If $k = \frac{1}{n+1}$, then the equality holds also for

$$a_1 = n$$
, $a_2 = a_3 = \dots = a_n = 0$

(or any cyclic permutation).

P 1.53. If
$$a_1, a_2, a_3, a_4, a_5 \le \frac{7}{2}$$
 so that $a_1 + a_2 + a_3 + a_4 + a_5 = 5$, then

$$\frac{a_1}{a_1^2-a_1+5}+\frac{a_2}{a_2^2-a_2+5}+\frac{a_3}{a_3^2-a_3+5}+\frac{a_4}{a_4^2-a_4+5}+\frac{a_5}{a_5^2-a_5+5}\leq 1.$$

(Vasile C., 2006)

Solution. Write the desired inequality as

$$f(a_1) + f(a_2) + f(a_3) + f(a_4) + f(a_5) \ge 5f(s),$$

where

$$s = \frac{a_1 + a_2 + a_3 + a_4 + a_5}{5} = 1$$

and

$$f(u) = \frac{-u}{u^2 - u + 5}, \quad u \le \frac{7}{2}.$$

For $u \in \left[1, \frac{7}{2}\right]$, we have

$$f''(u) = \frac{-u^3 + 15u - 5}{(u^2 - u + 5)^3}$$
$$= \frac{(2u + 9)(u - 1)(7 - 2u) + 43 - 7u}{4(u^2 - u + 5)^3} > 0.$$

Thus, f is convex on $\left[s, \frac{7}{2}\right]$. By the RHCF-Theorem, it suffices to show that

$$\frac{x}{x^2 - x + 5} + \frac{4y}{y^2 - y + 5} \le 1$$

for all nonnegative $x, y \le \frac{7}{2}$ which satisfy x + 4y = 5. Write this inequality as follows:

$$\frac{x}{x^2 - x + 5} - \frac{1}{5} + 4\left(\frac{y}{y^2 - y + 5} - \frac{1}{5}\right)] \le 0,$$

$$(x - 1)\left(\frac{5 - x}{x^2 - x + 5} - \frac{5 - y}{y^2 - y + 5}\right) \le 0,$$

$$\frac{(x - 1)^2[5(x + y) - xy]}{(x^2 - x + 5)(y^2 - y + 5)} \ge 0,$$

$$\frac{(x - 1)^2[(x + 4y)(x + y) - xy]}{(x^2 - x + 5)(y^2 - y + 5)} \ge 0,$$

$$\frac{(x - 1)^2(x + 2y)^2}{(x^2 - x + 5)(y^2 - y + 5)} \ge 0.$$

The equality holds for $a_1 = a_2 = a_3 = a_4 = a_5 = 1$, and also for

$$a_1 = -5$$
, $a_2 = a_3 = a_4 = a_5 = \frac{5}{2}$

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

• Let $a_1, a_2, ..., a_n \le \sqrt{3}$ so that $a_1 + a_2 + ... + a_n \le n$. If

$$k = \frac{n^2 + 2n - 2 - 2\sqrt{(n-1)(2n^2 - 1)}}{n},$$

then

$$\frac{a_1}{ka_1^2 - a_1 + n} + \frac{a_2}{ka_2^2 - a_2 + n} + \dots + \frac{a_n}{ka_n^2 - a_n + n} \le \frac{n}{k - 1 + n},$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = \frac{n(k-n+2)}{2k}, \quad a_2 = \dots = a_n = \frac{n(k+n-2)}{2k(n-1)}$$

(or any cyclic permutation).

P 1.54. Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n \ge n$. If

$$0 < k \le \frac{1}{1 + \frac{1}{4(n-1)^2}},$$

then

$$\frac{a_1^2}{ka_1^2 + a_2 + \dots + a_n} + \frac{a_2^2}{a_1 + ka_2^2 + \dots + a_n} + \dots + \frac{a_n^2}{a_1 + a_2 + \dots + ka_n^2} \ge \frac{n}{k + n - 1}.$$

(Vasile C., 2006)

Solution. Using the substitution

$$x_1 = \frac{a_1}{s}, \ x_2 = \frac{a_2}{s}, \dots, \ x_n = \frac{a_n}{s},$$

where

$$s = \frac{a_1 + a_2 + \dots + a_n}{n} \ge 1,$$

we need to show that $x_1 + x_2 + \cdots + x_n = n$ involves

$$\frac{x_1^2}{kx_1^2 + (x_2 + \dots + x_n)/s} + \dots + \frac{x_n^2}{(x_1 + \dots + x_{n-1})/s + kx_n^2} \ge \frac{n}{k+n-1}.$$

Since $s \ge 1$, it suffices to prove the inequality for s = 1; that is, to show that

$$\frac{a_1^2}{ka_1^2 - a_1 + n} + \frac{a_2^2}{ka_2^2 - a_2 + n} + \dots + \frac{a_n^2}{ka_n^2 - a_n + n} \ge \frac{n}{k + n - 1}$$

for

$$a_1 + a_2 + \dots + a_n = n.$$

Write the desired inequality as

$$f(a_1) + f(a_2) + \cdots + f(a_n) \ge nf(s),$$

where

$$s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1$$

and

$$f(u) = \frac{u^2}{u^2 - u + n}, \quad u \in [0, n].$$

We have

$$f'(u) = \frac{u(2n-u)}{(ku^2-u+n)^2}, \qquad f''(u) = \frac{2f_1(u)}{(u^2-u+n)^3},$$

where

$$f_1(u) = ku^3 - 3knu^2 + n^2.$$

For $u \in [0, 1]$ and $n \ge 3$, we have

$$f_1(u) \ge -3knu^2 + n^2 \ge -3kn + n^2 > -3n + n^2 \ge 0.$$

Also, for $u \in [0, 1]$ and n = 2, we have

$$f_1(u) = 4 - ku^2(6 - u) \ge 4 - \frac{4}{5}u^2(6 - u)$$
$$\ge 4 - \frac{4}{5}u(6 - u) = \frac{4(1 - u)(5 - u)}{5} \ge 0.$$

Since $f''(u) \ge 0$ for $u \in [0,1]$, it follows that f is convex on [0,s]. By the LHCF-Theorem, we need to show that

$$\frac{x^2}{kx^2 - x + n} + \frac{(n-1)y^2}{ky^2 - y + n} \ge \frac{n}{k+n-1}$$

for all nonnegative x, y which satisfy x + (n-1)y = n. Write this inequality as follows:

$$\frac{x^2}{kx^2 - x + n} - \frac{1}{k + n - 1} + (n - 1) \left[\frac{y^2}{ky^2 - y + n} - \frac{1}{k + n - 1} \right] \ge 0,$$

$$\frac{(x - 1)(nx - x + n)}{kx^2 - x + 5} + \frac{4(y - 1)(ny - y + n)}{ky^2 - y + 5} \ge 0,$$

$$(x - 1) \left(\frac{nx - x + n}{kx^2 - x + n} - \frac{ny - y + n}{ky^2 - y + n} \right) \ge 0,$$

$$\frac{(x - 1)^2 h(x, y)}{(kx^2 - x + n)(ky^2 - y + n)} \ge 0,$$

where

$$h(x, y) = n^2 - kn(x + y) - k(n - 1)xy$$
.

Since

$$0 < k \le k_0, \quad k_0 = \frac{1}{1 + \frac{1}{4(n-1)^2}},$$

we have

$$h(x,y) \ge n^2 - k_0 n(x+y) - k_0 (n-1)xy$$

$$= (n-1)^2 k_0 y^2 - nk_0 y + n^2 (1-k_0)$$

$$= k_0 \left[(n-1)y - \frac{n}{2(n-1)} \right]^2 \ge 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$. If $k = k_0$, then the equality holds also for

$$a_1 = \frac{n(2n-3)}{2(n-1)}, \quad a_2 = a_3 = \dots = a_n = \frac{n}{2(n-1)^2}$$

(or any cyclic permutation).

P 1.55. Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n \le n$. If $k \ge n - 1$, then

$$\frac{a_1^2}{ka_1^2 + a_2 + \dots + a_n} + \frac{a_2^2}{a_1 + ka_2^2 + \dots + a_n} + \dots + \frac{a_n^2}{a_1 + a_2 + \dots + ka_n^2} \le \frac{n}{k + n - 1}.$$
(Vasile C., 2006)

Solution. Using the notation

$$x_1 = \frac{a_1}{s}, \ x_2 = \frac{a_2}{s}, \ \dots, \ x_n = \frac{a_n}{s},$$

where

$$s = \frac{a_1 + a_2 + \dots + a_n}{n} \le 1,$$

we need to show that $x_1 + x_2 + \cdots + x_n = n$ involves

$$\frac{x_1^2}{kx_1^2 + (x_2 + \dots + x_n)/s} + \dots + \frac{x_n^2}{(x_1 + \dots + x_{n-1})/s + kx_n^2} \le \frac{n}{k+n-1}.$$

Since $s \le 1$, it suffices to prove the inequality for s = 1; that is, to show that

$$\frac{a_1^2}{ka_1^2 - a_1 + n} + \frac{a_2^2}{ka_2^2 - a_2 + n} + \dots + \frac{a_n^2}{ka_n^2 - a_n + n} \le \frac{n}{k + n - 1}$$

for

$$a_1 + a_2 + \dots + a_n = n.$$

Write the desired inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = \frac{-u^2}{u^2 - u + n}, \quad u \in [0, n].$$

We have

$$f'(u) = \frac{u(u-2n)}{(ku^2-u+n)^2}, \qquad f''(u) = \frac{2f_1(u)}{(u^2-u+n)^3},$$

where

$$f_1(u) = -ku^3 + 3knu^2 - n^2.$$

For $u \in [1, n]$, we have

$$f_1(u) \ge -knu^2 + 3knu^2 - n^2 = 2knu^2 - n^2$$

 $\ge 2kn - n^2 \ge 2(n-1)n - n^2 = n(n-2) \ge 0.$

Since $f''(u) \ge 0$ for $u \in [1, n]$, it follows that f is convex on [s, n]. By the RHCF-Theorem, it suffices to show that

$$\frac{x^2}{kx^2 - x + n} + \frac{(n-1)y^2}{ky^2 - y + n} \le \frac{n}{k+n-1}$$

for all nonnegative x, y which satisfy x + (n-1)y = n. As shown in the proof of the preceding P 1.54, we only need to show that $h(x, y) \ge 0$, where

$$h(x, y) = kn(x + y) + k(n-1)xy - n^2$$
.

Since $k \ge n - 1$, we have

$$h(x,y) \ge n(n-1)(x+y) + (n-1)^2 xy - n^2$$

$$= -(n-1)^3 y^2 + n(n-1)y + n^2(n-2)$$

$$= [n-(n-1)y][n(n-2) + (n-1)^2 y]$$

$$= x[n(n-2) + (n-1)^2 y] \ge 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$. If k = n - 1, then the equality holds also for

$$a_1 = 0$$
, $a_2 = a_3 = \dots = a_n = \frac{n}{n-1}$

(or any cyclic permutation).

P 1.56. Let $a_1, a_2, ..., a_n \in [0, n]$ so that $a_1 + a_2 + ... + a_n \ge n$. If $0 < k \le \frac{1}{n}$, then

$$\frac{a_1-1}{ka_1^2+a_2+\cdots+a_n}+\frac{a_2-1}{a_1+ka_2^2+\cdots+a_n}+\cdots+\frac{a_n-1}{a_1+a_2+\cdots+ka_n^2}\geq 0.$$

(Vasile C., 2006)

Solution. Let

$$s = \frac{a_1 + a_2 + \dots + a_n}{n}, \quad s \ge 1.$$

Case 1: s > 1 Without loss of generality, assume that

$$a_1 \ge \dots \ge a_j > 1 \ge a_{j+1} \dots \ge a_n, \quad j \in \{1, 2, \dots, n\}.$$

Clearly, there are b_1, b_2, \dots, b_n so that $b_1 + b_2 + \dots + b_n = n$ and

$$a_1 \ge b_1 \ge 1$$
, ..., $a_j \ge b_j \ge 1$, $b_{j+1} = a_{j+1}$, ..., $b_n = a_n$.

Write the desired inequality as

$$f(a_1) + f(a_2) + \cdots + f(a_n) \ge 0$$
,

where

$$f(u) = \frac{u-1}{ku^2 - u + ns}, \quad u \in [0, n],$$

$$f'(u) \frac{f_1(u)}{(ku^2 - u + ns)^2}, \quad f_1(u) = k(-u^2 + 2u) + ns - 1.$$

For $u \in [1, n)$, we have

$$f_1(u) \ge k(-nu+2u) + ns - 1 = -k(n-2)u + ns - 1$$

 $\ge -k(n-2)n + ns - 1 \ge -(n-2) + ns - 1 = n(s-1) + 1 > 0.$

Consequently, f is strictly increasing on [1, n] and

$$f(b_1) \le f(a_1), \ldots, f(b_j) \le f(a_j), f(b_{j+1}) = f(a_{j+1}), \ldots, f(b_n) = f(a_n).$$

Since

$$f(b_1) + f(b_2) + \dots + f(b_n) \le f(a_1) + f(a_2) + \dots + f(a_n),$$

it suffices to show that $f(b_1) + f(b_2) + \cdots + f(b_n) \ge 0$ for $b_1 + b_2 + \cdots + b_n = n$. This inequality is proved at Case 2.

Case 2: s = 1. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = \frac{u-1}{ku^2 - u + n}, \quad u \in [0, n],$$

$$f''(u) = \frac{2g(u)}{(ku^2 - u + n)^3}, \quad g(u) = k^2u^3 - 3k^2u^2 - 3k(n-1)u + kn + n - 1.$$

We will show that $f''(u) \ge 0$ for $u \in [0, 1]$. From

$$g'(u) = 3k^2u(u-2) - 3k(n-1),$$

it follows that g'(u) < 0, g is decreasing, hence

$$g(u) \ge g(1) = -2k^2 - (2n - 3)k + n - 1$$

$$\ge \frac{-2}{n^2} - \frac{2n - 3}{n} + n - 1$$

$$= \frac{(n - 1)^3 - 1}{n^2} \ge 0.$$

Thus, f is convex on [0,s]. By the LHCF-Theorem, it suffices to show that

$$\frac{x-1}{kx^2 - x + n} + \frac{(n-1)(y-1)}{ky^2 - y + n} \ge 0$$

for all nonnegative real x, y so that x + (n-1)y = n. Since (n-1)(y-1) = 1 - x, we have

$$\frac{x-1}{kx^2 - x + n} + \frac{(n-1)(y-1)}{ky^2 - y + n} = (x-1) \left(\frac{1}{kx^2 - x + n} - \frac{1}{ky^2 - y + n} \right)$$

$$= \frac{(x-1)(x-y)(1 - kx - ky)}{(kx^2 - x + n)(ky^2 - y + n)}$$

$$= \frac{n(x-1)^2(1 - kx - ky)}{(n-1)(kx^2 - x + n)(ky^2 - y + n)}$$

$$\geq \frac{n(x-1)^2(1 - \frac{x+y}{n})}{(n-1)(kx^2 - x + n)(ky^2 - y + n)}$$

$$= \frac{(n-2)y(x-1)^2}{(n-1)(kx^2 - x + n)(ky^2 - y + n)} \geq 0.$$

The proof is completed. The equality holds for $a_1 = a_2 = \cdots = a_n = 1$. If $k = \frac{1}{n}$, then the equality holds also for

$$a_1 = n$$
, $a_2 = a_3 = \cdots = a_n = 0$.

P 1.57. If a, b, c are positive real numbers so that abc = 1, then

$$\sqrt{a^2 - a + 1} + \sqrt{b^2 - b + 1} + \sqrt{c^2 - c + 1} \ge a + b + c.$$

Solution. Using the substitution

$$a = e^x$$
, $b = e^y$, $c = e^z$,

we need to show that

$$f(x) + f(y) + f(z) \ge 3f(s), \quad s = \frac{x + y + z}{3} = 0,$$

where

$$f(u) = \sqrt{e^{2u} - e^u + 1} - e^u, \quad u \in \mathbb{I} = \mathbb{R}.$$

We claim that f is convex on $\mathbb{I}_{>s}$. Since

$$e^{-u}f''(u) = \frac{4e^{3u} - 6e^{2u} + 9e^{u} - 2}{4(e^{2u} - e^{u} + 1)^{3/2}} - 1,$$

we need to show that $4x^3 - 6x^2 + 9x - 2 > 0$ and

$$(4x^3 - 6x^2 + 9x - 2)^2 \ge 16(x^2 - x + 1)^3$$

where $x = e^u \ge 1$. Indeed,

$$4x^3 - 6x^2 + 9x - 2 = x(x-3)^2 + (3x^3 - 2) > 0$$

and

$$(4x^3 - 6x^2 + 9x - 2)^2 - 16(x^2 - x + 1)^3 = 12x^3(x - 1) + 9x^2 + 12(x - 1) > 0.$$

By the RHCF-Theorem, it suffices to prove the original inequality for

$$b = c := t$$
, $a = 1/t^2$, $t > 0$;

that is,

$$\frac{\sqrt{t^4 - t^2 + 1}}{t^2} + 2\sqrt{t^2 - t + 1} \ge \frac{1}{t^2} + 2t,$$
$$\frac{t^2 - 1}{\sqrt{t^4 - t^2 + 1} + 1} + \frac{2(1 - t)}{\sqrt{t^2 - t + 1} + t} \ge 0.$$

Since

$$\frac{t^2 - 1}{\sqrt{t^4 - t^2 + 1}} \ge \frac{t^2 - 1}{t^2 + 1},$$

it suffices to show that

$$\frac{t^2 - 1}{t^2 + 1} + \frac{2(1 - t)}{\sqrt{t^2 - t + 1} + t} \ge 0,$$

which is equivalent to

$$(t-1)\left[\frac{t+1}{t^2+1} - \frac{2}{\sqrt{t^2-t+1}+t}\right] \ge 0,$$

$$(t-1)\left[(t+1)\sqrt{t^2-t+1} - t^2 + t - 2\right] \ge 0,$$

$$\frac{(t-1)^2(3t^2-2t+3)}{(t+1)\sqrt{t^2-t+1} + t^2 - t + 2} \ge 0.$$

The equality holds for a = b = c = 1.

P 1.58. If
$$a, b, c, d \ge \frac{1}{1 + \sqrt{6}}$$
 so that $abcd = 1$, then

$$\frac{1}{a+2} + \frac{1}{b+2} + \frac{1}{c+2} + \frac{1}{d+2} \le \frac{4}{3}.$$

(Vasile C., 2005)

Solution. Using the notation

$$a = e^x$$
, $b = e^y$, $c = e^z$, $d = e^w$

we need to show that

$$f(x)+f(y)+f(z)+f(w) \ge 4f(s), \quad s=\frac{x+y+z+w}{4}=0,$$

where

$$f(u) = \frac{-1}{e^u + 2}, \quad u \in \mathbb{I} = \mathbb{R}.$$

For $u \leq 0$, we have

$$f''(u) = \frac{e^u(2 - e^u)}{(e^u + 2)^3} > 0,$$

hence f is convex on $\mathbb{I}_{\leq s}$. By the LHCF-Theorem, it suffices to prove the original inequality for

$$b = c = d := t$$
, $a = 1/t^3$, $t \ge \frac{1}{1 + \sqrt{6}}$;

that is,

$$\frac{t^3}{2t^3+1} + \frac{3}{t+2} \le \frac{4}{3},$$

which is equivalent to the obvious inequality

$$(t-1)^2(5t^2+2t-1) \ge 0.$$

According to Note 4, the equality holds for a = b = c = d = 1, and also for

$$a = 19 + 9\sqrt{6}$$
, $b = c = d = \frac{1}{1 + \sqrt{6}}$

(or any cyclic permutation).

P 1.59. If a, b, c are positive real numbers so that abc = 1, then

$$a^2 + b^2 + c^2 - 3 \ge 2(ab + bc + ca - a - b - c).$$

Solution. Using the substitution

$$a = e^x$$
, $b = e^y$, $c = e^z$,

we need to show that

$$f(x) + f(y) + f(z) \ge 3f(s), \quad s = \frac{x + y + z}{3} = 0,$$

where

$$f(u) = e^{2u} - 1 + 2(e^u - e^{-u}), \quad u \in \mathbb{R} = \mathbb{R}.$$

For $u \ge 0$, we have

$$f''(u) = 4e^{2u} + 2(e^u - e^{-u}) > 0,$$

hence f is convex on $\mathbb{I}_{\geq s}$. By the RHCF-Theorem, it suffices to prove the original inequality for b=c:=t and $a=1/t^2$, where t>0; that is, to show that

$$4t^5 - 3t^4 - 4t^3 + 2t^2 + 1 \ge 0,$$

which is equivalent to

$$(t-1)^2(4t^3+5t^2+2t+1) \ge 0.$$

The equality holds for a = b = c = 1.

P 1.60. If a, b, c are positive real numbers so that abc = 1, then

$$a^{2} + b^{2} + c^{2} - 3 \ge 18(a + b + c - ab - bc - ca).$$

Solution. Using the substitution

$$a = e^x$$
, $b = e^y$, $c = e^z$,

we need to show that

$$f(x) + f(y) + f(z) \ge 3f(s), \quad s = \frac{x + y + z}{3} = 0,$$

where

$$f(u) = e^{2u} - 1 - 18(e^u - e^{-u}), u \in \mathbb{R}.$$

For $u \leq 0$, we have

$$f''(u) = 4e^{2u} + 18(e^{-u} - e^{u}) > 0,$$

hence f is convex on $\mathbb{I}_{\leq s}$. By the LHCF-Theorem, it suffices to prove the original inequality for b=c:=t and $a=1/t^2$, where t>0. Since

$$a^{2} + b^{2} + c^{2} - 3 = \frac{1}{t^{4}} + 2t^{2} - 3 = \frac{(t^{2} - 1)^{2}(2t^{2} + 1)}{t^{4}}$$

and

$$a+b+c-ab-bc-ca = \frac{-(t^4-2t^3+2t-1)}{t^2} = \frac{-(t-1)^3(t+1)}{t^2},$$

we get

$$a^{2}+b^{2}+c^{2}-3-18(a+b+c-ab-bc-ca)=\frac{(t-1)^{2}(2t-1)^{2}(t+1)(5t+1)}{t^{4}}\geq 0.$$

The equality holds for a = b = c = 1, and also for a = 4 and b = c = 1/2 (or any cyclic permutation).

P 1.61. If $a_1, a_2, ..., a_n$ are positive real numbers so that $a_1 a_2 \cdots a_n = 1$, then

$$a_1^2 + a_2^2 + \dots + a_n^2 - n \ge 6\sqrt{3} \left(a_1 + a_2 + \dots + a_n - \frac{1}{a_1} - \frac{1}{a_2} - \dots - \frac{1}{a_n} \right).$$

Solution. Using the notation $a_i = e^{x_i}$ for i = 1, 2, ..., n, we need to show that

$$f(x_1) + f(x_2) + \dots + f(x_n) \ge nf(s), \quad s = \frac{x_1 + x_2 + \dots + x_n}{n} = 0,$$

where

$$f(u) = e^{2u} - 1 - 6\sqrt{3} (e^u - e^{-u}), \quad u \in \mathbb{I} = \mathbb{R}.$$

For $u \leq 0$, we have

$$f''(u) = 4e^{2u} + 6\sqrt{3}(e^{-u} - e^{u}) > 0,$$

hence f is convex on $\mathbb{I}_{\leq s}$. By the LHCF-Theorem and Note 2, it suffices to show that $H(x,y) \geq 0$ for $x,y \in \mathbb{R}$ so that x + (n-1)y = 0, where

$$H(x,y) = \frac{f'(x) - f'(y)}{x - y}.$$

From

$$f'(u) = 2e^{2u} - 6\sqrt{3} (e^u + e^{-u}),$$

we get

$$H(x,y) = \frac{2(e^x - e^y)}{x - y} \left(e^x + e^y - 3\sqrt{3} + 3\sqrt{3} e^{-x - y} \right).$$

Since $(e^x - e^y)/(x - y) > 0$, we need to prove that

$$e^x + e^y + 3\sqrt{3} e^{-x-y} \ge 3\sqrt{3}$$
.

Indeed, by the AM-GM inequality, we have

$$e^{x} + e^{y} + 3\sqrt{3} e^{-x-y} \ge 3\sqrt[3]{e^{x} \cdot e^{y} \cdot 3\sqrt{3} e^{-x-y}} = 3\sqrt{3}.$$

The proof is completed. The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

P 1.62. If $a_1, a_2, ..., a_n$ $(n \ge 4)$ are positive real numbers so that $a_1 a_2 \cdots a_n = 1$, then $(n-1)(a_1^2 + a_2^2 + \cdots + a_n^2) + n(n+3) \ge (2n+2)(a_1 + a_2 + \cdots + a_n)$.

Solution. Using the substitutions $a_i = e^{x_i}$ for i = 1, 2, ..., n, we need to show that

$$f(x_1) + f(x_2) + \dots + f(x_n) \ge nf(s), \quad s = \frac{x_1 + x_2 + \dots + x_n}{n} = 0,$$

where

$$f(u) = (n-1)e^{2u} - (2n+2)e^{u}, u \in \mathbb{I} = \mathbb{R}.$$

For $u \ge 0$, we have

$$f''(u) = 4(n-1)e^{2u} - (2n+2)e^{u}$$

$$= 2e^{u}[2(n-1)e^{u} - n - 1]$$

$$\ge 2e^{u}[2(n-1) - n - 1] = 2(n-3)e^{u} > 0.$$

Therefore, f is convex on $\mathbb{I}_{\geq s}$. By the RHCF-Theorem and Note 2, it suffices to show that $H(x, y) \geq 0$ for $x, y \in \mathbb{R}$ so that x + (n-1)y = 0, where

$$H(x,y) = \frac{f'(x) - f'(y)}{x - y}.$$

From

$$f'(u) = 2(n-1)e^{2u} - (2n+2)e^{u}$$

we get

$$H(x,y) = \frac{2(e^x - e^y)}{x - y} [(n-1)(e^x + e^y) - (n+1)].$$

Since $(e^x - e^y)/(x - y) > 0$, we need to prove that $(n - 1)(e^x + e^y) \ge n + 1$. Using the AM-GM inequality, we have

$$(n-1)(e^{x} + e^{y}) = (n-1)e^{x} + e^{y} + e^{y} + \dots + e^{y}$$

$$\geq n\sqrt[n]{(n-1)e^{x} \cdot e^{y} \cdot e^{y} \cdots e^{y}}$$

$$= n\sqrt[n]{(n-1)e^{x+(n-1)y}} = n\sqrt[n]{n-1}$$

Thus, it suffices to show that

$$n\sqrt[n]{n-1} \ge n+1,$$

which is equivalent to

$$n-1 \ge \left(1+\frac{1}{n}\right)^n$$
.

This is true for $n \ge 4$, since

$$n-1 \ge 3 > \left(1 + \frac{1}{n}\right)^n.$$

The proof is completed. The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

Remark. From the proof above, the following sharper inequality follows (*Gabriel Dospinescu* and *Calin Popa*):

• If $a_1, a_2, ..., a_n$ are positive real numbers so that $a_1 a_2 \cdots a_n = 1$, then

$$a_1^2 + a_2^2 + \dots + a_n^2 - n \ge \frac{2n\sqrt[n]{n-1}}{n-1}(a_1 + a_2 + \dots + a_n - n).$$

P 1.63. Let $a_1, a_2, ..., a_n$ $(n \ge 3)$ be positive real numbers so that $a_1 a_2 \cdots a_n = 1$. If $p, q \ge 0$ so that $p + q \ge n - 1$, then

$$\frac{1}{1+pa_1+qa_1^2} + \frac{1}{1+pa_2+qa_2^2} + \dots + \frac{1}{1+pa_n+qa_n^2} \ge \frac{n}{1+p+q}.$$
(Vasile C., 2007)

Solution. Using the substitutions $a_i = e^{x_i}$ for i = 1, 2, ..., n, we need to show that

$$f(x_1) + f(x_2) + \dots + f(x_n) \ge nf(s), \quad s = \frac{x_1 + x_2 + \dots + x_n}{n} = 0,$$

where

$$f(u) = \frac{1}{1 + pe^u + qe^{2u}}, \quad u \in \mathbb{I} = \mathbb{R}.$$

For $u \ge 0$, we have

$$f''(u) = \frac{e^{u}[4q^{2}e^{3u} + 3pqe^{2u} + (p^{2} - 4q)e^{u} - p]}{(1 + pe^{u} + qe^{2u})^{3}}$$

$$\geq \frac{e^{2u}[4q^{2} + 3pq + (p^{2} - 4q) - p]}{(1 + pe^{u} + qe^{2u})^{3}}$$

$$= \frac{e^{2u}[(p + 2q)(p + q - 2) + 2q^{2} + p]}{(1 + pe^{u} + qe^{2u})^{3}} > 0,$$

therefore f is convex on $\mathbb{I}_{\geq s}$. By the RHCF-Theorem, it suffices to prove the original inequality for

$$a_1 = 1/t^{n-1}$$
, $a_2 = \cdots = a_n = t$, $t > 0$.

Write this inequality as

$$\frac{t^{2n-2}}{t^{2n-2} + pt^{n-1} + a} + \frac{n-1}{1 + pt + at^2} \ge \frac{n}{1 + p + a}.$$

Applying the Cauchy-Schwarz inequality, it suffices to prove that

$$\frac{(t^{n-1}+n-1)^2}{(t^{2n-2}+pt^{n-1}+q)+(n-1)(1+pt+qt^2)} \ge \frac{n}{1+p+q},$$

which is equivalent to

$$pB + qC \ge A$$
,

where

$$A = (n-1)(t^{n-1}-1)^2 \ge 0,$$

$$B = (t^{n-1}-1)^2 + nE = \frac{A}{n-1} + nE, \quad E = t^{n-1} + n - 2 - (n-1)t,$$

$$C = (t^{n-1}-1)^2 + nF = \frac{A}{n-1} + nF, \quad F = 2t^{n-1} + n - 3 - (n-1)t^2.$$

By the AM-GM inequality applied to n-1 positive numbers, we have $E \ge 0$ and $F \ge 0$ for $n \ge 3$. Since $A \ge 0$ and $p+q \ge n-1$, we have

$$pB + qC - A \ge pB + qC - \frac{(p+q)A}{n-1} = n(pE + qF) \ge 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

Remark 1. For p = 2k and $q = k^2$, we get the following result:

• Let a_1, a_2, \ldots, a_n $(n \ge 3)$ be positive real numbers so that $a_1 a_2 \cdots a_n = 1$. If $k \ge \sqrt{n} - 1$, then

$$\frac{1}{(1+ka_1)^2} + \frac{1}{(1+ka_2)^2} + \dots + \frac{1}{(1+ka_n)^2} \ge \frac{n}{(1+k)^2},$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$.

In addition, for n = 4 and k = 1, we get the known inequality (*Vasile C.*, 1999):

$$\frac{1}{(1+a)^2} + \frac{1}{(1+b)^2} + \frac{1}{(1+c)^2} + \frac{1}{(1+d)^2} \ge 1,$$

where a, b, c, d > 0 so that abcd = 1.

Remark 2. For p + q = n - 1 ($n \ge 3$), we get the beautiful inequality

$$\frac{1}{1+pa_1+qa_1^2}+\frac{1}{1+pa_2+qa_2^2}+\cdots+\frac{1}{1+pa_n+qa_n^2}\geq 1,$$

which is a generalization of the following inequalities:

$$\frac{1}{1+(n-1)a_1} + \frac{1}{1+(n-1)a_2} + \dots + \frac{1}{1+(n-1)a_n} \ge 1,$$

$$\frac{1}{[1+(\sqrt{n}-1)a_1]^2} + \frac{1}{[1+(\sqrt{n}-1)a_1]^2} + \dots + \frac{1}{[1+(\sqrt{n}-1)a_1]^2} \ge 1,$$

$$\frac{1}{2+(n-1)(a_1+a_1^2)} + \frac{1}{2+(n-1)(a_2+a_2^2)} + \dots + \frac{1}{2+(n-1)(a_n+a_n^2)} \ge \frac{1}{2}.$$

P 1.64. Let a, b, c, d be positive real numbers so that abcd = 1. If p and q are nonnegative real numbers so that p + q = 3, then

$$\frac{1}{1+pa+qa^3} + \frac{1}{1+pb+qb^3} + \frac{1}{1+pc+qc^3} + \frac{1}{1+pd+qd^3} \geq 1.$$

(Vasile C., 2007)

Solution. Using the notation

$$a = e^x$$
, $b = e^y$, $c = e^z$, $d = e^w$

we need to show that

$$f(x)+f(y)+f(z)+f(w) \ge 4f(s), \quad s=\frac{x+y+z+w}{4}=0,$$

where

$$f(u) = \frac{1}{1 + pe^u + qe^{3u}}, \quad u \in \mathbb{I} = \mathbb{R}.$$

We will show that f''(u) > 0 for $u \ge 0$, hence f is convex on $\mathbb{I}_{\ge s}$. Since

$$f''(u) = \frac{th(t)}{(1+pt+qt^3)^3},$$

where

$$h(t) = 9q^2t^5 + 2pqt^3 - 9qt^2 + p^2t - p, \quad t = e^u$$

we need to show that $h(t) \ge 0$ for $t \ge 1$. Indeed, we have

$$h(t) \ge 9q^2t^3 + 2pqt^3 - 9qt^2 + p^2t - pt = tg(t),$$

where

$$g(t) = (9q^{2} + 2pq)t^{2} - 9qt + p^{2} - p$$

$$\geq (9q^{2} + 2pq)(2t - 1) - 9qt + p^{2} - p$$

$$= q(18q + 4p - 9)t - 9q^{2} - 2pq + p^{2} - p$$

$$\geq q(18q + 4p - 9) - 9q^{2} - 2pq + p^{2} - p$$

$$= p^{2} + 2pq + 9q^{2} - p - 9q$$

$$= p^{2} + 2pq + 9q^{2} - \frac{(p + 9q)(p + q)}{3}$$

$$= \frac{2(p - q)^{2} + 16q^{2}}{3} \geq 0.$$

By the RHCF-Theorem, it suffices to prove the original inequality for

$$b = c = d = t$$
, $a = 1/t^3$, $t > 0$;

that is,

$$\frac{t^{9}}{t^{9} + pt^{6} + q} + \frac{3}{1 + pt + qt^{3}} \ge 1,$$

$$\frac{3}{1 + pt + qt^{3}} \ge \frac{pt^{6} + q}{t^{9} + pt^{6} + q},$$

$$(3 - pq)t^{9} - p^{2}t^{7} + 2pt^{6} - q^{2}t^{3} - pqt + 2q \ge 0,$$

$$[(p+q)^2 - 3pq]t^9 - 3p^2t^7 + 2p(p+q)t^6 - 3q^2t^3 - 3pqt + 2q(p+q) \ge 0,$$

$$Ap^2 + Bq^2 \ge Cpq,$$

where

$$A = t^{9} - 3t^{7} + 2t^{6} = t^{6}(t - 1)^{2}(t + 2) \ge 0,$$

$$B = t^{9} - 3t^{3} + 2 = (t^{3} - 1)^{2}(t^{3} + 2) \ge 0,$$

$$C = t^{9} - 2t^{6} + 3t - 2.$$

Since $A \ge 0$ and $B \ge 0$, it suffices to consider the case $C \ge 0$. Since

$$Ap^2 + Bq^2 \ge 2\sqrt{AB}pq$$

we only need to show that $4AB \ge C^2$. From

$$t^3 - 3t + 2 = (t - 1)^2(t + 2) \ge 0$$
,

we get $3t - 2 \le t^3$. Therefore

$$C \le t^9 - 2t^6 + t^3 = t^3(t^3 - 1)^2$$

hence

$$4AB - C^{2} \ge 4AB - t^{6}(t^{3} - 1)^{4}$$

$$= t^{6}(t - 1)^{2}(t^{3} - 1)^{2}[4(t + 2)(t^{3} + 2) - (t^{2} + t + 1)^{2}]$$

$$= t^{6}(t - 1)^{2}(t^{3} - 1)^{2}(3t^{4} + 6t^{3} - 3t^{2} + 6t + 15) > 0.$$

The proof is completed. The inequality holds for a = b = c = d = 1.

Remark 1. For p = 1 and p = 2, we get the following nice inequalities:

$$\frac{1}{1+a+2a^3} + \frac{1}{1+b+2b^3} + \frac{1}{1+c+2c^3} + \frac{1}{1+d+2d^3} \ge 1,$$
$$\frac{1}{1+2a+a^3} + \frac{1}{1+2b+b^3} + \frac{1}{1+2c+c^3} + \frac{1}{1+2d+d^3} \ge 1.$$

Remark 2. Similarly, we can prove the following generalizations:

• Let a, b, c, d be positive real numbers so that abcd = 1. If p and q are nonnegative real numbers so that $p + q \ge 3$, then

$$\frac{1}{1+pa+qa^3} + \frac{1}{1+pb+qb^3} + \frac{1}{1+pc+qc^3} + \frac{1}{1+pd+qd^3} \ge \frac{4}{1+p+q}.$$

• Let $a_1, a_2, ..., a_n$ $(n \ge 4)$ be positive real numbers so that $a_1 a_2 \cdots a_n = 1$. If $p, q, r \ge 0$ so that $p + q + r \ge n - 1$, then

$$\sum_{i=1}^{n} \frac{1}{1 + pa_i + qa_i^2 + ra_i^3} \ge \frac{n}{1 + p + q + r}.$$

For n = 4 and p + q + r = 3, we get the beautiful inequality

$$\sum_{i=1}^{4} \frac{1}{1 + pa_i + qa_i^2 + ra_i^3} \ge 1.$$

Since

$$a_i^2 \le \frac{a_i + a_i^3}{2},$$

the best inequality with respect to q if for q = 0:

$$\sum_{i=1}^{4} \frac{1}{1 + pa_i + ra_i^3} \ge 1, \quad p + r = 3.$$

P 1.65. If a_1, a_2, \ldots, a_n are positive real numbers so that $a_1 a_2 \cdots a_n = 1$, then

$$\frac{1}{1+a_1+\cdots+a_1^{n-1}}+\frac{1}{1+a_2+\cdots+a_2^{n-1}}+\cdots+\frac{1}{1+a_n+\cdots+a_n^{n-1}}\geq 1.$$

(Vasile C., 2007)

Solution. Using the substitutions $a_i = e^{x_i}$ for i = 1, 2, ..., n, we need to show that

$$f(x_1) + f(x_2) + \dots + f(x_n) \ge nf(s), \quad s = \frac{x_1 + x_2 + \dots + x_n}{n} = 0,$$

where

$$f(u) = \frac{1}{1 + e^u + \dots + e^{(n-1)u}}, \quad u \in \mathbb{I} = \mathbb{R}.$$

We will show by induction on n that f is convex on $\mathbb{I}_{\geq s}$. Setting $t = e^u$, the condition $f''(u) \geq 0$ for $u \geq 0$ ($t \geq 1$) is equivalent to

$$2A^2 \ge B(1+C),$$

where

$$A = t + 2t^{2} + \dots + (n-1)t^{n-1},$$

$$B = t + 4t^{2} + \dots + (n-1)^{2}t^{n-1},$$

$$C = t + t^{2} + \dots + t^{n-1}.$$

For n = 2, the inequality becomes $t(t - 1) \ge 0$. Assume now that the inequality is true for n and prove it for n + 1, $n \ge 2$. So, we need to show that $2A^2 \ge B(1 + C)$ involves

$$2(A + nt^n)^2 \ge (B + n^2t^n)(1 + C + t^n),$$

which is equivalent to

$$2A^{2} - B(1+C) + t^{n}[n^{2}(t^{n}-1) + D] \ge 0,$$

where

$$D = 4nA - B - n^2C = \sum_{i=1}^{n-1} b_i t^i, \quad b_i = 3n^2 - (2n - i)^2.$$

Since $2A^2 - B(1 + C) \ge 0$ (by the induction hypothesis), it suffices to show that $D \ge 0$. Since

$$b_1 < b_2 < \dots < b_{n-1}, \quad t \le t^2 \le \dots \le t^{n-1},$$

we may apply Chebyshev's inequality to get

$$D \ge \frac{1}{n}(b_1 + b_2 + \dots + b_{n-1})(t + t^2 + \dots + t^{n-1}).$$

Thus, it suffices to show that $b_1 + b_2 + \cdots + b_{n-1} \ge 0$. Indeed,

$$b_1 + b_2 + \dots + b_{n-1} = \sum_{i=1}^{n-1} [3n^2 - (2n-i)^2] = \frac{n(n-1)(4n+1)}{6} > 0.$$

By the RHCF-Theorem, it suffices to prove the original inequality for

$$a_1 = 1/t^{n-1}, \quad a_2 = \dots = a_n = t, \quad t \ge 1,$$

Setting k = n - 1 ($k \ge 1$), we need to show that

$$\frac{t^{k^2}}{1 + t^k + \dots + t^{k^2}} + \frac{k}{1 + t + \dots + t^k} \ge 1.$$

For the nontrivial case t > 1, this inequality is equivalent to each of the following inequalities:

$$\frac{k}{1+t+\cdots+t^{k}} \ge \frac{1+t^{k}+\cdots+t^{(k-1)k}}{1+t^{k}+\cdots+t^{k^{2}}},$$

$$\frac{k(t-1)}{t^{k+1}-1} \ge \frac{t^{k^{2}}-1}{t^{k}-1} \cdot \frac{t^{k}-1}{t^{(k+1)k}-1},$$

$$\frac{k(t-1)}{t^{k+1}-1} \ge \frac{t^{k^{2}}-1}{t^{(k+1)k}-1},$$

$$k\frac{t^{(k+1)k}-1}{t^{k+1}-1} \ge \frac{t^{k^{2}}-1}{t-1},$$

$$\begin{split} k \left[1 + t^{k+1} + t^{2(k+1)} + \dots + t^{(k-1)(k+1)} \right] &\geq 1 + t + t^2 + \dots + t^{(k-1)(k+1)}, \\ k \left[1 \cdot 1 + t \cdot t^k + \dots + t^{k-1} \cdot t^{(k-1)k} \right] &\geq \left(1 + t + \dots + t^{k-1} \right) \left[1 + t^k + \dots + t^{(k-1)k} \right]. \end{split}$$

Since $1 < t < \dots < t^{k-1}$ and $1 < t^k < \dots < t^{(k-1)k}$, the last inequality follows from Chebyshev's inequality.

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

Remark. Actually, the following generalization holds:

• Let a_1, a_2, \ldots, a_n be positive numbers so that $a_1 a_2 \cdots a_n = 1$, and let $k_1, k_2, \ldots, k_m \ge 0$ so that $k_1 + k_2 + \cdots + k_m \ge n - 1$. If $m \le n - 1$, then

$$\sum_{i=1}^{n} \frac{1}{1 + k_1 a_i + k_2 a_i^2 + \dots + k_m a_i^m} \ge \frac{n}{1 + k_1 + k_2 + \dots + k_m}.$$

In addition, since

$$a_i^k \le \frac{(m-k)a_i + (k-1)a_i^m}{m-1}, \quad k = 2, 3, \dots, m-1$$

(by the AM-GM inequality applied to m-1 positive numbers), the best inequality with respect to k_2, \ldots, k_{m-1} is for $k_2 = 0, \ldots, k_{m-1} = 0$; that is,

$$\sum_{i=1}^{n} \frac{1}{1 + k_1 a_i + k_m a_i^m} \ge \frac{n}{1 + k_1 + k_m}, \quad k_1 + k_m \ge n - 1, \ 1 \le m \le n - 1.$$

If $k_1 + k_m = n - 1$, then

$$\sum_{i=1}^{n} \frac{1}{1 + k_1 a_i + k_m a_i^m} \ge 1, \quad 1 \le m \le n - 1,$$

therefore

$$\sum_{i=1}^{n} \frac{1}{1 + k_1 a_i + k_{n-1} a_i^{n-1}} \ge 1, \quad k_1 + k_{n-1} = n - 1.$$

For $k_1 = 1$ and $k_1 = n - 2$, we get the following strong inequalities:

$$\sum_{i=1}^{n} \frac{1}{1+a_i+(n-2)a_i^{n-1}} \ge 1,$$

$$\sum_{i=1}^{n} \frac{1}{1 + (n-2)a_i + a_i^{n-1}} \ge 1.$$

P 1.66. Let a_1, a_2, \ldots, a_n be positive real numbers so that $a_1 a_2 \cdots a_n = 1$. If

$$k \ge n^2 - 1$$
,

then

$$\frac{1}{\sqrt{1+ka_1}} + \frac{1}{\sqrt{1+ka_2}} + \dots + \frac{1}{\sqrt{1+ka_n}} \ge \frac{n}{\sqrt{1+k}}.$$

Solution. Using the substitutions $a_i = e^{x_i}$ for i = 1, 2, ..., n, we need to show that

$$f(x_1) + f(x_2) + \dots + f(x_n) \ge nf(s), \quad s = \frac{x_1 + x_2 + \dots + x_n}{n} = 0,$$

where

$$f(u) = \frac{1}{\sqrt{1 + ke^u}}, \quad u \in \mathbb{I} = \mathbb{R}.$$

For $u \ge 0$, we have

$$f''(u) = \frac{ke^{u}(ke^{u} - 2)}{4(1 + ke^{u})^{5/2}} \ge \frac{ke^{u}(k - 2)}{4(1 + ke^{u})^{5/2}} > 0.$$

Therefore, f is convex on $\mathbb{I}_{\geq s}$. By the RHCF-Theorem, it suffices to prove the original inequality for

$$a_1 = 1/t^{n-1}$$
, $a_2 = \dots = a_n = t$, $t \ge 1$.

Write this inequality as $h(t) \ge 0$, where

$$h(t) = \sqrt{\frac{t^{n-1}}{t^{n-1} + k}} + \frac{n-1}{\sqrt{1+kt}} - \frac{n}{\sqrt{1+k}}.$$

The derivative

$$h'(t) = \frac{(n-1)kt^{(n-3)/2}}{2(t^{n-1}+k)^{3/2}} - \frac{(n-1)k}{2(kt+1)^{3/2}}$$

has the same sign as

$$h_1(t) = t^{n/3-1}(kt+1) - t^{n-1} - k.$$

Denoting m = n/3 ($m \ge 2/3$), we see that

$$h_1(t) = kt^m + t^{m-1} - t^{3m-1} - k = k(t^m - 1) - t^{m-1}(t^{2m} - 1) = (t^m - 1)h_2(t),$$

where

$$h_2(t) = k - t^{m-1} - t^{2m-1}$$
.

For t > 1, we have

$$\begin{aligned} h_2'(t) &= t^{m-2}[-m+1-(2m-1)t^m] < t^{m-2}[-m+1-(2m-1)] \\ &= -(3m-2)t^{m-2} \le 0, \end{aligned}$$

hence $h_2(t)$ is strictly decreasing for $t \ge 1$. Since

$$h_2(1) = k - 2 > 0$$
, $\lim_{t \to \infty} h_2(t) = -\infty$,

there exists $t_1 > 1$ so that $h_2(t_1) = 0$, $h_2(t) > 0$ for $t \in [1, t_1)$, $h_2(t) < 0$ for $t \in (t_1, \infty)$. Since $h_2(t)$, $h_1(t)$ and h'(t) has the same sign for t > 1, h(t) is strictly increasing for $t \in [1, t_1]$ and strictly decreasing for $t \in [t_1, \infty)$; this yields

$$h(t) \ge \min\{h(1), h(\infty)\}.$$

From h(1) = 0 and $h(\infty) = 1 - \frac{n}{\sqrt{1+k}} \ge 0$, it follows that $h(t) \ge 0$ for all $t \ge 1$. The proof is completed. The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

Remark. The following generalization holds (*Vasile C.*, 2005):

• Let $a_1, a_2, ..., a_n$ be positive real numbers so that $a_1 a_2 \cdots a_n = 1$. If k and m are positive numbers so that

$$m \le n - 1, \qquad k \ge n^{1/m} - 1,$$

then

$$\frac{1}{(1+ka_1)^m} + \frac{1}{(1+ka_2)^m} + \dots + \frac{1}{(1+ka_n)^m} \ge \frac{n}{(1+k)^m},$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$.

For $0 < m \le n-1$ and $k = n^{1/m} - 1$, we get the beautiful inequality

$$\frac{1}{(1+ka_1)^m} + \frac{1}{(1+ka_2)^m} + \dots + \frac{1}{(1+ka_n)^m} \ge 1.$$

P 1.67. Let a_1, a_2, \ldots, a_n be positive real numbers so that $a_1 a_2 \cdots a_n = 1$. If $p, q \ge 0$ so that 0 , then

$$\frac{1}{1+pa_1+qa_1^2}+\frac{1}{1+pa_2+qa_2^2}+\cdots+\frac{1}{1+pa_n+qa_n^2}\leq \frac{n}{1+p+q}.$$

(Vasile C., 2007)

Solution. Using the notation $a_i = e^{x_i}$ for i = 1, 2, ..., n, we need to show that

$$f(x_1) + f(x_2) + \dots + f(x_n) \ge nf(s), \quad s = \frac{x_1 + x_2 + \dots + x_n}{n} = 0,$$

where

$$f(u) = \frac{-1}{1 + pe^u + qe^{2u}}, \quad u \in \mathbb{I} = \mathbb{R}.$$

For $u \leq 0$, we have

$$f''(u) = \frac{e^{u}[-4q^{2}e^{3u} - 3pqe^{2u} + (4q - p^{2})e^{u} + p]}{(1 + pe^{u} + qe^{2u})^{3}}$$

$$= \frac{e^{2u}[-4q^{2}e^{2u} - 3pqe^{u} + (4q - p^{2}) + pe^{-u}]}{(1 + pe^{u} + qe^{2u})^{3}}$$

$$\geq \frac{e^{2u}[-4q^{2} - 3pq + (4q - p^{2}) + p]}{(1 + pe^{u} + qe^{2u})^{3}}$$

$$= \frac{e^{2u}[(p + 4q)(1 - p - q) + 2pq]}{(1 + pe^{u} + qe^{2u})^{3}} \geq 0,$$

therefore f is convex on $\mathbb{I}_{\leq s}$. By the LHCF-Theorem, it suffices to prove the original inequality for

$$a_1 = 1/t^{n-1}$$
, $a_2 = \dots = a_n = t$, $t > 0$.

Write this inequality as

$$\frac{t^{2n-2}}{t^{2n-2} + pt^{n-1} + q} + \frac{n-1}{1 + pt + qt^2} \le \frac{n}{1 + p + q},$$
$$p^2 A + q^2 B + pqC \le pD + qE,$$

where

$$A = t^{n-1}(t^n - nt + n - 1), \quad B = t^{2n} - nt^2 + n - 1,$$

$$C = t^{2n-1} + t^{2n} - nt^{n+1} + (n-1)t^{n-1} - nt + n - 1,$$

$$D = t^{n-1}[(n-1)t^n + 1 - nt^{n-1}], \quad E = (n-1)t^{2n} + 1 - nt^{2n-2}.$$

Applying the AM-GM inequality to n positive numbers yields $D \ge 0$ and $E \ge 0$. Since $(n-1)(p+q) \le 1$ involves $pD + qE \ge (n-1)(p+q)(pD+qE)$, it suffices to show that

$$p^{2}A + q^{2}B + pqC \le (n-1)(p+q)(pD+qE).$$

Write this inequality as

$$p^2A_1 + q^2B_1 + pqC_1 \ge 0$$
,

where

$$A_1 = (n-1)D - A = nt^n[(n-2)t^{n-1} + 1 - (n-1)t^{n-2}],$$

$$B_1 = (n-1)E - B = nt^2[(n-2)t^{2n-2} + 1 - (n-1)t^{2n-4}],$$

$$C_1 = (n-1)(D+E) - C = nt[(n-2)(t^{2n-1} + t^{2n-2}) - 2(n-1)t^{2n-3} + t^n + 1].$$

Applying the AM-GM inequality to n-1 nonnegative numbers yields $A_1 \ge 0$ and $B_1 \ge 0$. So, it suffices to show that $C_1 \ge 0$. Indeed, we have

$$(n-2)(t^{2n-1}+t^{2n-2})-2(n-1)t^{2n-3}+t^n+1=A_2+B_2+C_2,$$

where

$$A_2 = (n-2)t^{2n-1} + t - (n-1)t^{2n-3} \ge 0,$$

$$B_2 = (n-2)t^{2n-2} + t^{n-1} - (n-1)t^{2n-3} \ge 0,$$

$$C_2 = t^n - t^{n-1} - t + 1 = (t-1)(t^{n-1} - 1) \ge 0.$$

The inequalities $A_2 \ge 0$ and $B_2 \ge 0$ follow by applying the AM-GM inequality to n-1 nonnegative numbers.

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

Remark 1. For $p + q = \frac{1}{n-1}$, we get the inequality

$$\frac{1}{1+pa_1+qa_1^2}+\frac{1}{1+pa_2+qa_2^2}+\cdots+\frac{1}{1+pa_n+qa_n^2}\leq n-1,$$

which is a generalization of the following inequalities:

$$\frac{1}{n-1+a_1} + \frac{1}{n-1+a_2} + \dots + \frac{1}{n-1+a_n} \le 1,$$

$$\frac{1}{2n-2+a_1+a_1^2} + \frac{1}{2n-2+a_2+a_2^2} + \dots + \frac{1}{2n-2+a_n+a_n^2} \le \frac{1}{2}.$$

Remark 2. For

$$p = \frac{4n-3}{2(n-1)(2n-1)}, \qquad q = \frac{1}{2(n-1)(2n-1)},$$

we get the inequality

$$\frac{1}{(a_1+2n-2)(a_1+2n-1)}+\cdots+\frac{1}{(a_n+2n-2)(a_n+2n-1)}\leq \frac{1}{4n-2},$$

which is equivalent to

$$\frac{1}{a_1+2n-2}+\cdots+\frac{1}{a_n+2n-2}\leq \frac{1}{4n-2}+\frac{1}{a_1+2n-1}+\cdots+\frac{1}{a_n+2n-1}.$$

Remark 3. For p = 2k and $q = k^2$, we get the following statement:

• Let a_1, a_2, \ldots, a_n be positive real numbers so that $a_1 a_2 \cdots a_n = 1$. If

$$0 < k \le \sqrt{\frac{n}{n-1}} - 1,$$

then

$$\frac{1}{(1+ka_1)^2} + \frac{1}{(1+ka_2)^2} + \dots + \frac{1}{(1+ka_n)^2} \le \frac{n}{(1+k)^2},$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$.

P 1.68. Let a_1, a_2, \ldots, a_n $(n \ge 3)$ be positive real numbers so that $a_1 a_2 \cdots a_n = 1$. If

$$0 < k \le \frac{2n-1}{(n-1)^2},$$

then

$$\frac{1}{\sqrt{1+ka_1}} + \frac{1}{\sqrt{1+ka_2}} + \dots + \frac{1}{\sqrt{1+ka_n}} \le \frac{n}{\sqrt{1+k}}.$$

Solution. Using the substitutions $a_i = e^{x_i}$ for i = 1, 2, ..., n, we need to show that

$$f(x_1) + f(x_2) + \dots + f(x_n) \ge nf(s), \quad s = \frac{x_1 + x_2 + \dots + x_n}{n} = 0,$$

where

$$f(u) = \frac{-1}{\sqrt{1+ke^u}}, \quad u \in \mathbb{I} = \mathbb{R}.$$

For $u \leq 0$, we have

$$f''(u) = \frac{ke^{u}(2 - ke^{u})}{4(1 + ke^{u})^{5/2}} \ge \frac{ke^{u}(2 - k)}{4(1 + ke^{u})^{5/2}} > 0.$$

Therefore, f is convex on $\mathbb{I}_{\leq s}$. By the LHCF-Theorem, it suffices to prove the original inequality for

$$a_1 = 1/t^{n-1}$$
, $a_2 = \dots = a_n = t$. $0 < t \le 1$.

Write this inequality as $h(t) \leq 0$, where

$$h(t) = \sqrt{\frac{t^{n-1}}{t^{n-1} + k}} + \frac{n-1}{\sqrt{1+kt}} - \frac{n}{\sqrt{1+k}}.$$

The derivative

$$h'(t) = \frac{(n-1)kt^{(n-3)/2}}{2(t^{n-1}+k)^{3/2}} - \frac{(n-1)k}{2(kt+1)^{3/2}}$$

has the same sign as

$$h_1(t) = t^{n/3-1}(kt+1) - t^{n-1} - k.$$

Denoting m = n/3, $m \ge 1$, we see that

$$h_1(t) = kt^m + t^{m-1} - t^{3m-1} - k = -k(1-t^m) + t^{m-1}(1-t^{2m}) = (1-t^m)h_2(t),$$

where

$$h_2(t) = t^{m-1} + t^{2m-1} - k$$

is strictly increasing for $t \in [0,1]$. There are two possible cases: $h_2(0) \ge 0$ and $h_2(0) < 0$.

Case 1: $h_2(0) \ge 0$. This case is possible only for m = 1 and $k \le 1$, when $h_2(t) = t + 1 - k > 0$ for $t \in (0,1]$. Also, we have $h_1(t) > 0$ and h'(t) > 0 for $t \in (0,1)$. Therefore, h is strictly increasing on [0,1], hence $h(t) \le h(1) = 0$.

Case 2: $h_2(0) < 0$. This case is possible for either m = 1 (n = 3) and $1 < k \le 5/4$, or m > 1 ($n \ge 4$). Since $h_2(1) = 2 - k > 0$, there exists $t_1 \in (0,1)$ so that $h_2(t_1) = 0$, $h_2(t) < 0$ for $t \in (0,t_1)$, and $h_2(t) > 0$ for $t \in (t_1,1)$. Since h' has the same sign as h_2 on (0,1), it follows that h is strictly decreasing on $[0,t_1]$ and strictly increasing on $[t_1,1]$. Therefore, $h(t) \le \max\{h(0),h(1)\}$. Since $h(0) = n - 1 - \frac{n}{\sqrt{1+k}} \le 0$ and h(1) = 0, we have $h(t) \le 0$ for all $t \in (0,1]$.

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

Remark. The following generalization holds (*Vasile C.*, 2005):

• Let $a_1, a_2, ..., a_n$ $(n \ge 3)$ be positive real numbers so that $a_1 a_2 \cdots a_n = 1$. If k and m are positive numbers so that

$$m \ge \frac{1}{n-1}, \qquad k \le \left(\frac{n}{n-1}\right)^{1/m} - 1,$$

then

$$\frac{1}{(1+ka_1)^m} + \frac{1}{(1+ka_2)^m} + \dots + \frac{1}{(1+ka_n)^m} \le \frac{n}{(1+k)^m},$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$.

For $n \ge 3$, $m \ge \frac{1}{n-1}$ and $k = \left(\frac{n}{n-1}\right)^{1/m} - 1$, we get the beautiful inequality

$$\frac{1}{(1+ka_1)^m} + \frac{1}{(1+ka_2)^m} + \dots + \frac{1}{(1+ka_n)^m} \le n-1.$$

P 1.69. If a_1, a_2, \ldots, a_n are positive real numbers so that $a_1 a_2 \cdots a_n = 1$, then

$$\sqrt{a_1^4 + \frac{2n-1}{(n-1)^2}} + \sqrt{a_2^4 + \frac{2n-1}{(n-1)^2}} + \dots + \sqrt{a_n^4 + \frac{2n-1}{(n-1)^2}} \ge \frac{1}{n-1}(a_1 + a_2 + \dots + a_n)^2.$$

(Vasile C., 2006)

Solution. According to the preceding P 1.68, the following inequality holds

$$\sum \frac{1}{\sqrt{1 + \frac{2n-1}{(n-1)^2} a_1^{-4}}} \le n - 1.$$

On the other hand, by the Cauchy-Schwarz inequality

$$\left(\sum \frac{1}{\sqrt{1+\frac{2n-1}{(n-1)^2}a_1^{-4}}}\right) \left(\sum a_1^2 \sqrt{1+\frac{2n-1}{(n-1)^2}a_1^{-4}}\right) \ge \left(\sum a_1\right)^2.$$

From these inequalities, we get

$$(n-1)\left(\sum a_1^2\sqrt{1+\frac{2n-1}{(n-1)^2}a_1^{-4}}\right) \ge \left(\sum a_1\right)^2$$

which is the desired inequality.

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

P 1.70. If a_1, a_2, \ldots, a_n are positive real numbers so that $a_1 a_2 \cdots a_n = 1$, then

$$a_1^{n-1} + a_2^{n-1} + \dots + a_n^{n-1} + n(n-2) \ge (n-1) \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} \right).$$

Solution. Using the notation $a_i = e^{x_i}$ for i = 1, 2, ..., n, we need to show that

$$f(x_1) + f(x_2) + \dots + f(x_n) \ge nf(s), \quad s = \frac{x_1 + x_2 + \dots + x_n}{n} = 0,$$

where

$$f(u) = e^{(n-1)u} - (n-1)e^{-u}, \quad u \in \mathbb{I} = \mathbb{R}.$$

For $u \ge 0$, we have

$$f''(u) = (n-1)^2 e^{(n-1)u} - (n-1)e^{-u} = (n-1)e^{-u}[(n-1)e^{nu} - 1] \ge 0;$$

therefore, f is convex on $\mathbb{I}_{\geq s}$. By the RHCF-Theorem and Note 2, it suffices to show that $H(x, y) \geq 0$ for $x, y \in \mathbb{R}$ so that x + (n-1)y = 0, where

$$H(x,y) = \frac{f'(x) - f'(y)}{x - y}.$$

From

$$f'(u) = (n-1)[e^{(n-1)u} + e^{-u}]$$

we get

$$H(x,y) = \frac{(n-1)(e^{x} - e^{y})}{x - y} \Big[e^{(n-2)x} + e^{(n-3)x+y} + \dots + e^{x+(n-3)y} + e^{(n-2)y} - e^{-x-y} \Big]$$
$$= \frac{(n-1)(e^{x} - e^{y})}{x - y} \Big[e^{(n-2)x} + e^{(n-3)x+y} + \dots + e^{x+(n-3)y} \Big) \Big].$$

Since $(e^x - e^y)/(x - y) > 0$, we have H(x, y) > 0.

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

P 1.71. Let a_1, a_2, \ldots, a_n be positive real numbers so that $a_1 a_2 \cdots a_n = 1$. If $k \ge n$, then

$$a_1^k + a_2^k + \dots + a_n^k + kn \ge (k+1) \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} \right).$$

(Vasile C., 2006)

Solution. Using the notations $a_i = e^{x_i}$ for i = 1, 2, ..., n, we need to show that

$$f(x_1) + f(x_2) + \dots + f(x_n) \ge nf(s), \quad s = \frac{x_1 + x_2 + \dots + x_n}{n} = 0,$$

where

$$f(u) = e^{ku} - (k+1)e^{-u}, \quad u \in \mathbb{I} = \mathbb{R}.$$

For $u \ge 0$, we have

$$f''(u) = k^2 e^{ku} - (k+1)e^{-u} = e^{-u} \left[k^2 e^{(k+1)u} - k - 1 \right] \ge e^{-u} (k^2 - k - 1) > 0;$$

therefore, f is convex on $\mathbb{I}_{\geq s}$. By the RHCF-Theorem, it suffices to to prove the original inequality for $a_1 \leq 1 \leq a_2 = \cdots = a_n$; that is, to show that

$$a^{k} + (n-1)b^{k} - \frac{k+1}{a} - \frac{(k+1)(n-1)}{b} + kn \ge 0$$

for

$$ab^{n-1} = 1$$
, $0 < a \le 1 \le b$.

By the weighted AM-GM inequality, we have

$$a^{k} + (kn - k - 1) \ge [1 + (kn - k - 1)]a^{\frac{k}{1 + (kn - k - 1)}} = \frac{k(n - 1)}{h}.$$

Thus, we still have to show that

$$(n-1)\left(b^{k}-\frac{1}{b}\right)-(k+1)\left(\frac{1}{a}-1\right)\geq 0,$$

which is equivalent to $h(b) \ge 0$ for $b \ge 1$, where

$$h(b) = (n-1)(b^{k+1}-1)-(k+1)(b^n-b).$$

Since

$$\frac{h'(b)}{k+1} = (n-1)b^k - nb^{n-1} + 1 \ge (n-1)b^n - nb^{n-1} + 1$$

$$= nb^{n-1}(b-1) - (b^n - 1)$$

$$= (b-1) \lceil (b^{n-1} - b^{n-2}) + (b^{n-1} - b^{n-3}) + \dots + (b^{n-1} - 1) \rceil \ge 0,$$

h is increasing on $[1, \infty)$, hence $h(b) \ge h(1) = 0$. The proof is completed. The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

P 1.72. If a_1, a_2, \ldots, a_n are positive real numbers so that $a_1 a_2 \cdots a_n = 1$, then

$$\left(1 - \frac{1}{n}\right)^{a_1} + \left(1 - \frac{1}{n}\right)^{a_2} + \dots + \left(1 - \frac{1}{n}\right)^{a_n} \le n - 1.$$

(Vasile C., 2006)

Solution. Let

$$k = \frac{n}{n-1}, \quad k > 1,$$

and

$$m = \ln k$$
, $0 < m \le \ln 2 < 1$.

Using the substitutions $a_i = e^{x_i}$ for i = 1, 2, ..., n, we need to show that

$$f(x_1) + f(x_2) + \dots + f(x_n) \ge nf(s), \quad s = \frac{x_1 + x_2 + \dots + x_n}{n} = 0,$$

where

$$f(u) = -k^{-e^u}, \quad u \in \mathbb{I} = \mathbb{R}.$$

From

$$f''(u) = me^{u}k^{-e^{u}}(1 - me^{u}),$$

it follows that f''(u) > 0 for $u \le 0$, since

$$1 - me^u > 1 - m > 1 - \ln 2 > 0$$
.

Therefore, f is convex on $\mathbb{I}_{\leq s}$. By the LHCF-Theorem and Note 5, it suffices to prove the original inequality for

$$a_2 = \dots = a_n := t$$
, $a_1 = t^{-n+1}$, $0 < t \le 1$.

Write this inequality as

$$h(t) \leq n-1$$
,

where

$$h(t) = k^{-t^{-n+1}} + (n-1)k^{-t}, t \in (0,1].$$

We have

$$h'(t) = (n-1)mt^{-n}k^{-t^{-n+1}}h_1(t), \quad h_1(t) = 1 - t^nk^{t^{-n+1}-t},$$

$$h'_1(t) = k^{t^{-n+1}-t}h_2(t), \quad h_2(t) = m(n-1+t^n)-nt^{n-1}.$$

Since

$$h_2'(t) = nt^{n-2}(mt - n + 1) \le nt^{n-2}(m - n + 1) \le nt^{n-2}(m - 1) < 0,$$

 h_2 is strictly decreasing on [0, 1]. From

$$h_2(0) = (n-1)m > 0, \quad h_2(1) = n(m-1) < 0,$$

it follows that there is $t_1 \in (0,1)$ so that $h_2(t_1) = 0$, $h_2(t) > 0$ for $t \in [0,t_1)$ and $h_2(t) < 0$ for $t \in (t_1,1]$. Therefore, h_1 is strictly increasing on $(0,t_1]$ and strictly decreasing on $[t_1,1]$. Since $h_1(0_+) = -\infty$ and $h_1(1) = 0$, there is $t_2 \in (0,t_1)$ so that $h_1(t_2) = 0$, $h_1(t) < 0$ for $t \in (0,t_2)$, $h_1(t) > 0$ for $t \in (t_2,1)$. Thus, h is strictly decreasing on $(0,t_2]$ and strictly increasing on $[t_2,1]$. Since $h(0_+) = n-1$ and h(1) = n-1, we have $h(t) \le n-1$ for all $t \in (0,1]$. This completes the proof. The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

P 1.73. If a, b, c are positive real numbers so that abc = 1, then

$$\frac{1}{1+\sqrt{1+3a}} + \frac{1}{1+\sqrt{1+3b}} + \frac{1}{1+\sqrt{1+3c}} \le 1.$$

(Vasile C., 2008)

Solution. Write the inequality as

$$\frac{\sqrt{1+3a}-1}{3a} + \frac{\sqrt{1+3b}-1}{3b} + \frac{\sqrt{1+3c}-1}{3c} \le 1,$$

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + 3 \ge \sqrt{\frac{1}{a^2} + \frac{3}{a}} + \sqrt{\frac{1}{b^2} + \frac{3}{b}} + \sqrt{\frac{1}{c^2} + \frac{3}{c}}.$$

Replacing a, b, c by 1/a, 1/b, 1/c, respectively, we need to prove that abc = 1 involves

$$a+b+c+3 \ge \sqrt{a^2+3a} + \sqrt{b^2+3b} + \sqrt{c^2+3c}$$
. (*)

Using the notation

$$a = e^x$$
, $b = e^y$, $c = e^z$,

we need to show that

$$f(x) + f(y) + f(z) \ge 3f(s), \quad s = \frac{x + y + z}{3} = 0,$$

where

$$f(u) = e^u - \sqrt{e^{2u} + 3e^u}, \quad u \in \mathbb{I} = \mathbb{R}.$$

We have

$$f''(u) = t \left[1 - \frac{4t^2 + 18t + 9}{4(t+3)\sqrt{t(t+3)}} \right], \quad t = e^u \ge 1.$$

For $u \ge 0$, which involves $t \ge 1$, from

$$16t(t+3)^3 - (4t^2 + 18t + 9)^2 = 9(4t^2 + 12t - 9) > 0,$$

it follows that f'' > 0, hence f is convex on $\mathbb{I}_{\geq s}$. By the RHCF-Theorem, it suffices to prove the inequality (*) for b = c. Thus, we need to show that

$$a - \sqrt{a^2 + 3a} + 2(b - \sqrt{b^2 + 3b}) + 3 \ge 0$$

for $ab^2 = 1$. Write this inequality as

$$2b^3 + 3b^2 + 1 \ge \sqrt{3b^2 + 1} + 2b^2\sqrt{b^2 + 3b}$$
.

Squaring and dividing by b^2 , the inequality becomes

$$9b^2 + 4b + 3 \ge 4\sqrt{(b^2 + 3b)(3b^2 + 1)}$$
.

Since

$$2\sqrt{(b^2+3b)(3b^2+1)} \le (b^2+3b) + (3b^2+1) = 4b^2+3b+1,$$

it suffices to show that

$$9b^2 + 4b + 3 \ge 2(4b^2 + 3b + 1),$$

which is equivalent to $(b-1)^2 \ge 0$. The equality holds for a=b=c=1.

Remark. In the same manner, we can prove the following generalization:

• Let a_1, a_2, \ldots, a_n be positive real numbers so that $a_1 a_2 \cdots a_n = 1$. If

$$0 < k \le \frac{4n}{(n-1)^2},$$

then

$$\frac{1}{1+\sqrt{1+ka_1}} + \frac{1}{1+\sqrt{1+ka_2}} + \dots + \frac{1}{1+\sqrt{1+ka_n}} \le \frac{n}{1+\sqrt{1+k}}.$$

P 1.74. If $a_1, a_2, ..., a_n$ are positive real numbers so that $a_1 a_2 \cdots a_n = 1$, then

$$\frac{1}{1+\sqrt{1+4n(n-1)a_1}}+\frac{1}{1+\sqrt{1+4n(n-1)a_2}}+\cdots+\frac{1}{1+\sqrt{1+4n(n-1)a_n}}\geq \frac{1}{2}.$$

(Vasile C., 2008)

Solution. Denote

$$k = 4n(n-1), \quad k \ge 8,$$

and write the inequality as follows:

$$\frac{\sqrt{1+ka_1}-1}{ka_1} + \frac{\sqrt{1+ka_2}-1}{ka_2} + \dots + \frac{\sqrt{1+ka_n}-1}{ka_n} \ge \frac{1}{2},$$

$$\sqrt{\frac{1}{a_1^2} + \frac{k}{a_1}} + \sqrt{\frac{1}{a_2^2} + \frac{k}{a_2}} + \dots + \sqrt{\frac{1}{a_1^2} + \frac{k}{a_1}} \ge \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} + \frac{k}{2}.$$

Replacing a_1, a_2, \ldots, a_n by $1/a_1, 1/a_2, \ldots, 1/a_n$, we need to prove that $a_1 a_2 \cdots a_n = 1$ implies

$$\sqrt{a_1^2 + ka_1} + \sqrt{a_2^2 + ka_2} + \dots + \sqrt{a_n^2 + ka_n} \ge a_1 + a_2 + \dots + a_n + \frac{k}{2}.$$
 (*)

Using the substitutions $a_i = e^{x_i}$ for i = 1, 2, ..., n, we need to show that

$$f(x_1) + f(x_2) + \dots + f(x_n) \ge nf(s), \quad s = \frac{x_1 + x_2 + \dots + x_n}{n} = 0,$$

where

$$f(u) = \sqrt{e^{2u} + ke^u} - e^u$$
, $u \in \mathbb{I} = \mathbb{R}$.

We will show that f''(u) > 0 for $u \le 0$. Indeed, denoting $t = e^u$, $t \in (0, 1]$, we have

$$f''(u) = t \left[\frac{4t^2 + 6kt + k^2}{4(t+k)\sqrt{t(t+k)}} - 1 \right] > 0$$

because

$$(4t^2 + 6kt + k^2)^2 - 16t(t+k)^3 = k^2(k^2 - 4kt - 4t^2) \ge k^2(k^2 - 4k - 4) > 0.$$

Thus, f is convex on $\mathbb{I}_{\leq s}$. By the LHCF-Theorem, it suffices to prove the inequality (*) for $a_2 = a_3 = \cdots = a_n$; that is, to show that

$$\sqrt{a^2 + ka} - a + (n-1)\left(\sqrt{b^2 + kb} - b\right) \ge n\left(\sqrt{1 + k} - 1\right),$$

for all positive a, b satisfying $ab^{n-1} = 1$. Write this inequality as

$$\sqrt{kb^{n-1}+1}+(n-1)\sqrt{kb^{2n-1}+b^{2n}} \ge (n-1)b^n+2n(n-1)b^{n-1}+1.$$

By Minkowski's inequality, we have

$$\sqrt{kb^{n-1}+1} + (n-1)\sqrt{kb^{2n-1}+b^{2n}} \ge$$

$$\ge \sqrt{kb^{n-1}[1+(n-1)b^{n/2}]^2 + [1+(n-1)b^n]^2}.$$

Thus, it suffices to show that

$$kb^{n-1}[1+(n-1)b^{n/2}]^2+[1+(n-1)b^n]^2 \ge [(n-1)b^n+2n(n-1)b^{n-1}+1]^2$$

which is equivalent to

$$4n(n-1)^{2}b^{\frac{3n-2}{2}}\left[2+(n-2)b^{\frac{n}{2}}-nb^{\frac{n-2}{2}}\right]\geq 0.$$

This inequality follows immediately by the AM-GM inequality applied to n positive numbers.

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

P 1.75. If a, b, c are positive real numbers so that abc = 1, then

$$\frac{a^6}{1+2a^5} + \frac{b^6}{1+2b^5} + \frac{c^6}{1+2c^5} \ge 1.$$

(Vasile C., 2008)

Solution. Using the substitution

$$a = e^x$$
, $b = e^y$, $c = e^z$,

we need to show that

$$f(x) + f(y) + f(z) \ge 3f(s), \quad s = \frac{x + y + z}{3} = 0,$$

where

$$f(u) = \frac{e^{6u}}{1 + 2e^{5u}}, \quad u \in \mathbb{I} = \mathbb{R}.$$

For $u \le 0$, which involves $w = e^u \in (0, 1]$, we have

$$f''(u) = \frac{2w^6(2 - w^5)(9 - 2w^5)}{(1 + 2w^5)^3} > 0.$$

Therefore, f is convex on $\mathbb{I}_{\leq s}$. By the LHCF-Theorem, it suffices to prove the original inequality for b=c and $ab^2=1$; that is,

$$\frac{1}{b^2(b^{10}+2)} + \frac{2b^6}{1+2b^5} \ge 1.$$

Since

$$1 + 2b^5 \le 1 + b^4 + b^6,$$

it suffices to show that

$$\frac{1}{x(x^5+2)} + \frac{2x^3}{1+x^2+x^3} \ge 1, \quad x = \sqrt{b}.$$

This inequality can be written as follows:

$$x^{3}(x^{6} - x^{5} - x^{3} + 2x - 1) + (x - 1)^{2} \ge 0,$$

$$x^{3}(x - 1)^{2}(x^{4} + x^{3} + x^{2} - 1) + (x - 1)^{2} \ge 0,$$

$$(x - 1)^{2}[x^{7} + x^{5} + (x^{6} - x^{3} + 1)] \ge 0.$$

The equality holds for a = b = c = 1.

P 1.76. If a, b, c are positive real numbers so that abc = 1, then

$$\sqrt{25a^2 + 144} + \sqrt{25b^2 + 144} + \sqrt{25c^2 + 144} \le 5(a+b+c) + 24.$$

(Vasile C., 2008)

Solution. Using the notation

$$a = e^x$$
, $b = e^y$, $c = e^z$,

we need to show that

$$f(x) + f(y) + f(z) \ge 3f(s), \quad s = \frac{x + y + z}{3} = 0,$$

where

$$f(u) = 5e^u - \sqrt{25e^{2u} + 144}, \quad u \in \mathbb{R}.$$

We will show that f(u) is convex for $u \leq 0$. From

$$f''(u) = 5w \left[1 - \frac{5w(25w^2 + 288)}{(25w^2 + 144)^{3/2}} \right], \quad w = e^u \in (0, 1],$$

we need to show that

$$(25w^2 + 144)^3 \ge 25w^2(25w^2 + 288)^2$$
.

Setting $25w^2 = 144z$, we have $z \in \left(0, \frac{25}{144}\right]$ and

$$(25w^2 + 144)^3 - 25w^2(25w^2 + 288)^2 = 144^3(z+1)^3 - 144^3z(z+2)^2$$
$$= 144^3(1-z-z^2) > 0.$$

By the LHCF-Theorem, it suffices to prove the original inequality for

$$a = t^2$$
, $b = c = 1/t$, $t > 0$;

that is,

$$5t^3 + 24t + 10 \ge \sqrt{25t^6 + 144t^2} + 2\sqrt{25 + 144t^2}.$$

Squaring and dividing by 4t give

$$60t^3 + 25t^2 - 36t + 120 \ge \sqrt{(25t^4 + 144)(144t^2 + 25)}.$$

Squaring again and dividing by 120, the inequality becomes

$$25t^5 - 36t^4 + 105t^3 - 112t^2 - 72t + 90 \ge 0$$
,

$$(t-1)^2(25t^3+14t^2+108t+90) \ge 0.$$

The equality holds for a = b = c = 1.

P 1.77. If a, b, c are positive real numbers so that abc = 1, then

$$\sqrt{16a^2 + 9} + \sqrt{16b^2 + 9} + \sqrt{16c^2 + 9} \ge 4(a + b + c) + 3.$$

(Vasile C., 2008)

Solution. Using the substitution

$$a = e^x$$
, $b = e^y$, $c = e^z$,

we need to show that

$$f(x) + f(y) + f(z) \ge 3f(s), \quad s = \frac{x + y + z}{3} = 0,$$

where

$$f(u) = \sqrt{16e^{2u} + 9} - 4e^{u}, \quad u \in \mathbb{R}.$$

We will show that f(u) is convex for $u \ge 0$. From

$$f''(u) = 4w \left[\frac{4w(16w^2 + 18)}{(16w^2 + 9)^{3/2}} - 1 \right], \quad w = e^u \ge 1,$$

we need to show that

$$16w^2(16w^2 + 18)^2 \ge (16w^2 + 9)^3.$$

Setting $16w^2 = 9z$, we have $z \ge \frac{16}{9}$ and

$$16w^{2}(16w^{2} + 18)^{2} - (16w^{2} + 9)^{3} = 729z(z + 2)^{2} - 729(z + 1)^{3}$$
$$= 729(z^{2} + z - 1) > 0.$$

By the RHCF-Theorem, it suffices to prove the original inequality for

$$a = t^2$$
, $b = c = 1/t$, $t > 0$;

that is,

$$\sqrt{16t^6 + 9t^2} + 2\sqrt{16 + 9t^2} \ge 4t^3 + 3t + 8.$$

Squaring and dividing by 4t give

$$\sqrt{(16t^4+9)(9t^2+16)} \ge 6t^3+16t^2-9t+12.$$

Squaring again and dividing by 12t, the inequality becomes

$$9t^5 - 16t^4 + 9t^3 + 12t^2 - 32t + 18 \ge 0,$$

$$(t-1)^2(9t^3+2t^2+4t+18) \ge 0.$$

The equality holds for a = b = c = 1.

P 1.78. If ABC is a triangle, then

$$\sin A \bigg(2 \sin \frac{A}{2} - 1 \bigg) + \sin B \bigg(2 \sin \frac{B}{2} - 1 \bigg) + \sin C \bigg(2 \sin \frac{C}{2} - 1 \bigg) \geq 0.$$

(Lorian Saceanu, 2015)

Solution. Write the inequality as

$$f(A) + f(B) + f(C) \ge 3f(s), \quad s = \frac{A+B+C}{3} = \frac{\pi}{3},$$

where

$$f(u) = \sin u \left(2\sin \frac{u}{2} - 1 \right) = \cos \frac{u}{2} - \cos \frac{3u}{2} - \sin u, \quad u \in \mathbb{I} = [0, \pi].$$

We will show that f is convex on $\mathbb{I}_{\leq s}$. Indeed, for $u \in [0, \pi/3]$, we have

$$f''(u) = \cos\frac{u}{2}\left(2 + 2\sin\frac{u}{2} - 9\sin^2\frac{u}{2}\right) \ge \cos\frac{u}{2}\left(2 + 2\sin\frac{u}{2} - 12\sin^2\frac{u}{2}\right)$$
$$= 2\cos\frac{u}{2}\left(1 + 3\sin\frac{u}{2}\right)\left(1 - 2\sin\frac{u}{2}\right) \ge 0.$$

By the LHCF-Theorem, it suffices to prove the original inequality for B = C, when it transforms into

$$\sin 2B(2\cos B - 1) + 2\sin B\left(2\sin\frac{B}{2} - 1\right) \ge 0,$$

$$\sin B \sin \frac{B}{2} \left(\sin \frac{B}{2} + 1 \right) \left(2 \sin \frac{B}{2} - 1 \right)^2 \ge 0.$$

The equality occurs for an equilateral triangle, and for a degenerate triangle with $A = \pi$ and B = C = 0 (or any cyclic permutation).

Remark. Based on this inequality, we can prove the following statement:

• If ABC is a triangle, then

$$\sin 2A(2\cos A - 1) + \sin 2B(2\cos B - 1) + \sin 2C(2\cos C - 1) \ge 0$$

with equality for an equilateral triangle, for a degenerate triangle with A=0 and $B=C=\pi/2$ (or any cyclic permutation), and for a degenerate triangle with $A=\pi$ and B=C=0 (or any cyclic permutation).

If ABC is an acute or right triangle, then this inequality follows by replacing A, B and C with $\pi-2A$, $\pi-2B$ and $\pi-2C$ in the inequality from P 1.78. Consider now that

$$A > \frac{\pi}{2} > B \ge C \ge 0.$$

The inequality is true for $B \le \pi/3$, because

$$\sin 2A(2\cos A - 1) \ge 0$$
, $\sin 2B(2\cos B - 1) \ge 0$, $\sin 2C(2\cos C - 1) \ge 0$.

Consider further that

$$\frac{2\pi}{3} > A > \frac{\pi}{2} > B > \frac{\pi}{3} > C \ge 0.$$

From

$$1 - 2\cos A > 1 - 2\cos B$$
,

it follows that

$$(-\sin 2A)(1-2\cos A) > (-\sin 2A)(1-2\cos B).$$

Therefore it suffices to

$$(-\sin 2A)(1-2\cos B)+\sin 2B(2\cos B-1)+\sin 2C(2\cos C-1)\geq 0$$
,

which is equivalent to

$$(\sin 2A + \sin 2B)(2\cos B - 1) + \sin 2C(2\cos C - 1) \ge 0$$

$$2 \sin C \cos(A-B)(2 \cos B-1) + 2 \sin C \cos C(2 \cos C-1) \ge 0.$$

This inequality is true if

$$\cos(A-B)(2\cos B-1) + \cos C(2\cos C-1) \ge 0$$
,

which can be written as

$$\cos C(2\cos C - 1) \ge \cos(A - B)(1 - 2\cos B).$$

Since

$$C < A - B < \frac{2\pi}{3} - \frac{\pi}{3} = \frac{\pi}{3}$$

we have $\cos C > \cos(A - B)$. Therefore, it suffices to show that

$$2\cos C - 1 \ge 1 - 2\cos B$$
,

which is equivalent to

$$\cos B + \cos C \ge 1$$
.

From $B + C < \pi/2$, we get $\cos B > \cos(\pi/2 - C) = \sin C$, hence

$$\cos B + \cos C > \sin C + \cos C = \sqrt{1 + \sin 2C} \ge 1.$$

P 1.79. If ABC is an acute or right triangle, then

$$\sin 2A\left(1-2\sin\frac{A}{2}\right)+\sin 2B\left(1-2\sin\frac{B}{2}\right)+\sin 2C\left(1-2\sin\frac{C}{2}\right)\geq 0.$$

(Vasile C., 2015)

Solution. Write the inequality as

$$f(A) + f(B) + f(C) \ge 3f(s), \quad s = \frac{A+B+C}{3} = \frac{\pi}{3},$$

where

$$f(u) = \sin 2u \left(1 - 2\sin \frac{u}{2}\right) = \sin 2u - \cos \frac{3u}{2} + \cos \frac{5u}{2}, \quad u \in \mathbb{I} = [0, \pi/2].$$

We will show that f is convex on $[s, \pi/2]$. From

$$f''(u) = -4\sin 2u + \frac{9}{4}\cos \frac{3u}{2} - \frac{25}{4}\cos \frac{5u}{2}$$

and

$$\cos\frac{3u}{2} - \cos\frac{5u}{2} = 2\sin\frac{u}{2}\sin 2u \ge 0,$$

we get

$$f''(u) \ge -4\sin 2u + \frac{9}{4}\cos \frac{5u}{2} - \frac{25}{4}\cos \frac{5u}{2}$$
$$= -4\left[\sin 2u + \sin \frac{\pi - 5u}{2}\right] = 8\sin \frac{\pi - u}{4}\cos \frac{5\pi - 9u}{4}.$$

For $\pi/3 \le u \le \pi/2$, we have

$$\frac{\pi}{8} \le \frac{5\pi - 9u}{4} \le \frac{\pi}{2},$$

hence $f''(u) \ge 0$. By the RHCF-Theorem, it suffices to prove the original inequality for B = C, $0 \le B \le \pi/2$, when it becomes

$$-\sin 4B(1-2\cos B) + 2\sin 2B\left(1-2\sin\frac{B}{2}\right) \ge 0,$$

$$2\sin 2B \left[\cos 2B(2\cos B - 1) + 1 - \sin\frac{B}{2}\right] \ge 0.$$

We need to show that

$$\cos 2B(2\cos B - 1) + 1 - \sin \frac{B}{2} \ge 0,$$

which is equivalent to $g(t) \ge 0$, where

$$g(t) = (1 - 8t^2 + 8t^4)(1 - 4t^2) + 1 - 2t, \quad t = \sin\frac{B}{2}, \quad 0 \le t \le \frac{1}{\sqrt{2}}.$$

Indeed, we have

$$g(t) = 2(1-t)^2(1+3t+2t^2-4t^3-4t^4) \ge 0$$

because

$$1 + 3t + 2t^2 - 4t^3 - 4t^4 \ge 1 + 3t + 2t^2 - 2t - 2t^2 = 1 + t > 0.$$

The equality occurs for an equilateral triangle, for a degenerate triangle with A=0 and and $B=C=\pi/2$ (or any cyclic permutation), and for a degenerate triangle with $A=\pi$ and B=C=0 (or any cyclic permutation).

Remark 1. Actually, the inequality holds also for an obtuse triangle ABC. To prove this, consider that

$$A > \frac{\pi}{2} > B \ge C \ge 0.$$

The inequality is true for $B \le \pi/3$, because

$$\sin 2A\left(1-2\sin\frac{A}{2}\right) \ge 0, \quad \sin 2B\left(1-2\sin\frac{B}{2}\right) \ge 0, \quad \sin 2C\left(1-2\sin\frac{C}{2}\right) \ge 0.$$

Consider further that

$$\frac{2\pi}{3} > A > \frac{\pi}{2} > B > \frac{\pi}{3} > C \ge 0.$$

From

$$2\sin\frac{A}{2} - 1 > 2\sin\frac{B}{2} - 1,$$

it follows that

$$(-\sin 2A)\left(2\sin\frac{A}{2}-1\right) > (-\sin 2A)\left(2\sin\frac{B}{2}-1\right).$$

Therefore it suffices to

$$(-\sin 2A)\left(2\sin\frac{B}{2}-1\right)+\sin 2B\left(1-2\sin\frac{B}{2}\right)+\sin 2C\left(1-2\sin\frac{C}{2}\right)\geq 0,$$

which is equivalent to

$$(\sin 2A + \sin 2B)\left(1 - 2\sin\frac{B}{2}\right) + \sin 2C\left(1 - 2\sin\frac{C}{2}\right) \ge 0,$$

$$2\sin C\cos(A-B)\left(1-2\sin\frac{B}{2}\right)+2\sin C\cos C\left(1-2\sin\frac{C}{2}\right)\geq 0.$$

This inequality is true if

$$\cos(A-B)\left(1-2\sin\frac{B}{2}\right)+\cos C\left(1-2\sin\frac{C}{2}\right)\geq 0,$$

which can be written as

$$\cos C\left(1-2\sin\frac{C}{2}\right) \ge \cos(A-B)\left(2\sin\frac{B}{2}-1\right).$$

Since

$$C < A - B < \frac{2\pi}{3} - \frac{\pi}{3} = \frac{\pi}{3}$$

we have $\cos C > \cos(A - B)$. Therefore, it suffices to show that

$$1 - 2\sin\frac{C}{2} \ge 2\sin\frac{B}{2} - 1,$$

which is equivalent to

$$\sin \frac{B}{2} + \sin \frac{C}{2} \le 1,$$

$$2\sin \frac{B+C}{4} \cos \frac{B-C}{4} \le 1.$$

This is true since

$$2\sin\frac{B+C}{4} < 2\sin\frac{\pi}{8} < 1$$
, $\cos\frac{B-C}{4} < 1$.

Remark 2. Replacing *A*, *B* and *C* in P 1.79 by π –2*A*, π –2*B* and π –2*C*, respectively, we get the following inequality for an acute or right triangle ABC:

$$\sin 4A(2\cos A - 1) + \sin 4B(2\cos B - 1) + \sin 4C(2\cos C - 1) \ge 0$$

with equality for an equilateral triangle, for a triangle with $A = \pi/2$ and $B = C = \pi/4$ (or any cyclic permutation), and for a degenerate triangle with A = 0 and and $B = C = \pi/2$ (or any cyclic permutation).

P 1.80. If a, b, c, d are real numbers so that a + b + c + d = 4, then

$$\frac{a}{a^2-a+4} + \frac{b}{b^2-b+4} + \frac{c}{c^2-c+4} + \frac{d}{d^2-d+4} \le 1.$$
 (Sqing, 2015)

Solution. Write the inequality as

$$f(a) + f(b) + f(c) + f(d) \ge 4f(s), \quad s = \frac{a+b+c+d}{4} = 1,$$

where

$$f(u) = \frac{-u}{u^2 - u + 4}, \quad u \in \mathbb{R}.$$

We see that

$$f(u)-f(2) = \frac{(u-2)^2}{3(u^2-u+4)} \ge 0.$$

From

$$f''(u) = \frac{2(-u^3 + 12u - 4)}{(u^2 - u + 4)^3},$$

it follows that f is convex on [1,2]. Define the function

$$f_0(u) = \begin{cases} f(u), & u \le 2 \\ f(2), & u > 2 \end{cases}.$$

Since $f_0(u) \le f(u)$ for $u \in \mathbb{R}$ and $f_0(1) = f(1)$, it suffices to show that

$$f_0(a) + f_0(b) + f_0(c) + f_0(d) \ge 4f_0(s).$$

The function f_0 is convex on $[1, \infty)$ because it is differentiable on $[1, \infty)$ and its derivative

$$f_0'(u) = \begin{cases} f'(u), & u \le 2 \\ 0, & u > 2 \end{cases}$$

is continuous and increasing on $[1, \infty)$. Therefore, by the RHCF-Theorem, we only need to show that $f_0(x) + 3f_0(y) \ge 4f_0(1)$ for all $x, y \in \mathbb{R}$ so that $x \le 1 \le y$ and x + 3y = 4. There are two cases to consider: $y \le 2$ and y > 2.

Case 1: $y \le 2$. The inequality $f_0(x) + 3f_0(y) \ge 4f_0(1)$ is equivalent to $f(x) + 3f(y) \ge 4f(1)$. According to Note 1, this is true if $h(x, y) \ge 0$ for x + 3y = 4. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{u - 4}{4(u^2 - u + 4)},$$

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = \frac{4(x + y) - xy}{4(x^2 - x + 4)(y^2 - y + 4)}$$
$$= \frac{3(y - 2)^2 + 4}{4(x^2 - x + 4)(y^2 - y + 4)} > 0.$$

Case 2: y > 2. From y > 2 and x + 3y = 4, we get x < -2 and

$$f_0(x) + 3f_0(y) - 4f_0(1) = f(x) + 3f(2) - 4f(1) = \frac{-x}{x^2 - x + 4} > 0.$$

The equality holds for a = b = c = d = 1.

P 1.81. Let a, b, c be nonnegative real numbers so that a + b + c = 2. If

$$k_0 \le k \le 3$$
, $k_0 = \frac{\ln 2}{\ln 3 - \ln 2} \approx 1.71$,

then

$$a^{k}(b+c) + b^{k}(c+a) + c^{k}(a+b) \le 2.$$

Solution. Write the inequality as

$$f(a) + f(b) + f(c) \le 2,$$

where

$$f(u) = u^k(2-u), u \in [0, \infty).$$

From

$$f''(u) = ku^{k-2}[2k-2-(k+1)u],$$

it follows that f is convex on $\left[0, \frac{2k-2}{k+1}\right]$ and concave on $\left[\frac{2k-2}{k+1}, 2\right]$. According to LCRCF-Theorem, the sum f(a) + f(b) + f(c) is maximum when either a = 0 or $0 < a \le b = c$.

Case 1: a = 0. We need to show that

$$bc(b^{k-1}+c^{k-1}) \le 2$$

for b + c = 2. Since $0 < (k-1)/2 \le 1$, Bernoulli's inequality gives

$$\begin{aligned} b^{k-1} + c^{k-1} &= (b^2)^{(k-1)/2} + (c^2)^{(k-1)/2} \le 1 + \frac{k-1}{2} (b^2 - 1) + 1 + \frac{k-1}{2} (c^2 - 1) \\ &= 3 - k + \frac{k-1}{2} (b^2 + c^2). \end{aligned}$$

Thus, it suffices to show that

$$(3-k)bc + \frac{k-1}{2}bc(b^2 + c^2) \le 2.$$

Since

$$bc \le \left(\frac{b+c}{2}\right)^2 = 1,$$

we only need to show that

$$3 - k + \frac{k - 1}{2}bc(b^2 + c^2) \le 2,$$

which is equivalent to

$$bc(b^2+c^2)\leq 2.$$

Indeed, we have

$$8[2-bc(b^2+c^2)] = (b+c)^4 - 8bc(b^2+c^2) = (b-c)^4 \ge 0.$$

Case 2: $0 < a \le b = c$. We only need to prove the homogeneous inequality

$$a^{k}(b+c) + b^{k}(c+a) + c^{k}(a+b) \le 2\left(\frac{a+b+c}{2}\right)^{k+1}$$

for b = c = 1 and $0 < a \le 1$; that is,

$$\left(1 + \frac{a}{2}\right)^{k+1} - a^k - a - 1 \ge 0.$$

Since $\left(1 + \frac{a}{2}\right)^{k+1}$ is increasing and a^k is decreasing with respect to k, it suffices consider the case $k = k_0$; that is, to prove that $g(a) \ge 0$, where

$$g(a) = \left(1 + \frac{a}{2}\right)^{k_0 + 1} - a^{k_0} - a - 1, \quad 0 < a \le 1.$$

We have

$$g'(a) = \frac{k_0 + 1}{2} \left(1 + \frac{a}{2} \right)^{k_0} - k_0 a^{k_0 - 1} - 1,$$

$$\frac{1}{k_0}g''(a) = \frac{k_0 + 1}{4} \left(1 + \frac{a}{2} \right)^{k_0 - 1} - \frac{k_0 - 1}{a^{2 - k_0}}.$$

Since g'' is increasing on (0,1], $g''(0_+) = -\infty$ and

$$\frac{1}{k_0}g''(1) = \frac{k_0 + 1}{4} \left(\frac{3}{2}\right)^{k_0 - 1} - k_0 + 1 = \frac{k_0 + 1}{3} - k_0 + 1 = \frac{2(2 - k_0)}{3} > 0,$$

there exists $a_1 \in (0,1)$ so that $g''(a_1) = 0$, g''(a) < 0 for $a \in (0,a_1)$, g''(a) > 0 for $a \in (a_1,1]$. Therefore, g' is strictly decreasing on $[0,a_1]$ and strictly increasing on $[a_1,1]$. Since

$$g'(0) = \frac{k_0 - 1}{2} > 0$$
, $g'(1) = \frac{k_0 + 1}{2} [(3/2)^{k_0} - 2] = 0$,

there exists $a_2 \in (0, a_1)$ so that $g'(a_2) = 0$, g'(a) > 0 for $a \in [0, a_2)$, g'(a) < 0 for $a \in (a_2, 1)$. Thus, g is strictly increasing on $[0, a_2]$ and strictly decreasing on $[a_2, 1]$. Consequently,

$$g(a) \ge \min\{g(0), g(1)\},\$$

and from

$$g(0) = 0$$
, $g(1) = (3/2)^{k_0+1} - 3 = 0$,

we get $g(a) \ge 0$.

The equality holds for a=0 and b=c (or any cyclic permutation). If $k=k_0$, then the equality holds also for a=b=c.

P 1.82. If a_1, a_2, \ldots, a_n are positive real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$(n+1)^2\left(\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}\right)\geq 4(n+2)(a_1^2+a_2^2+\cdots+a_n^2)+n(n^2-3n-6).$$

(Vasile C., 2006)

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge n(n^2 - 3n - 6),$$

where

$$f(u) = \frac{(n+1)^2}{u} - 4(n+2)u^2, \quad u \in (0, \infty).$$

From

$$f''(u) = \frac{2(n+1)^2}{u^3} - 8(n+2),$$

it follows that f is strictly convex on (0, c] and strictly concave on $[c, \infty)$, where

$$c = \sqrt[6]{\frac{(n+1)^2}{4(n+2)}}.$$

According to LCRCF-Theorem and Note 5, it suffices to consider the case

$$a_1 = a_2 = \dots = a_{n-1} = x$$
, $a_n = n - (n-1)x$, $0 < x \le 1$,

when the inequality becomes as follows:

$$(n+1)^2 \left(\frac{n-1}{x} + \frac{1}{a_n}\right) \ge 4(n+2)[(n-1)x^2 + a_n^2) + n(n^2 - 3n - 6),$$

$$n(n-1)(2x-1)^{2}[(n+2)(n-1)x^{2}-(n+2)(2n-1)x+(n+1)^{2}] \ge 0.$$

The last inequality is true since

$$(n-1)x^{2} - (2n-1)x + \frac{(n+1)^{2}}{n+2} = (n-1)\left(x - \frac{2n-1}{2n-2}\right)^{2} + \frac{3(n-2)}{4(n-1)(n+2)} \ge 0.$$

The equality holds for

$$a_1 = a_2 = \dots = a_{n-1} = \frac{1}{2}, \quad a_n = \frac{n+1}{2}$$

(or any cyclic permutation).

P 1.83. If a, b, c, d, e are positive real numbers such that a + b + c + d + e = 5, then

$$27(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} + \frac{1}{e}) \ge 4(a^3 + b^3 + c^3 + d^3 + e^3) + 115.$$

(Vasile Cîrtoaje)

Proof. Write the inequality as

$$f(a) + f(b) + f(c) + f(d) + f(e) \ge 5f(s), \quad s = \frac{a+b+c+d+e}{5} = 1,$$

where

$$f(u) = \frac{27}{u} - 4u^3, \quad 0 < u < 5.$$

From

$$f''(u) = \frac{6(9 - 4u^4)}{u^3},$$

it follows that f is convex on (0,1]. According to LHCF-Theorem, it suffices to prove that

$$f(x) + 4f(y) \ge 5f(1)$$

for $x \ge 1 \ge y > 0$ and x + 4y = 5. This occurs if $h(x, y) \ge 0$, where

$$h(x,y) = \frac{g(x) - g(y)}{x - y}, \quad g(u) = \frac{f(u) - f(1)}{u - 1}.$$

Since

$$g(u) = -\frac{27}{u} - 4(u^2 + u + 1),$$

$$h(x, y) = \frac{A(x, y)}{xy}, \quad A(x, y) = 27 - 4xy(x + y + 1),$$

we need show that $A(x, y) \ge 0$. Indeed,

$$\frac{1}{3}A(x,y) = 9 - 4y(4y - 5)(y - 2) = 9 - 40y + 52y^2 - 16y^3$$
$$= (1 - 2y)^2(9 - 4y) \ge 0.$$

The equality holds for a = b = c = d = e = 1, and for a = 3 and b = c = d = e = 1/2 (or any cyclic permutation).

Generalization. If $a_1, a_2, ..., a_n$ are positive real numbers such that

$$a_1 + a_2 + \dots + a_n = n,$$

then

$$(n+1)^2(2n-1)(\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}-n)\geq 27(n-1)^2(a_1^3+a_2^3+\cdots+a_n^3-n),$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$, and for

$$a_1 = \frac{2n-1}{3}$$
, $a_2 = \dots = a_n = \frac{n+1}{3(n-1)}$

(or any cyclic permutation).

P 1.84. If a, b, c are nonnegative real numbers so that a + b + c = 12, then

$$(a^2 + 10)(b^2 + 10)(c^2 + 10) \ge 13310.$$

(Vasile C., 2006)

Solution. Write the inequality as

$$f(a) + f(b) + f(c) \ge 2 \ln 11 + \ln 110$$
,

where

$$f(u) = \ln(u^2 + 10), \quad u \in [0, 12].$$

From

$$f''(u) = \frac{2(10 - u^2)}{(u^2 + 10)^2},$$

it follows that f is convex on $[0, \sqrt{10}]$ and concave on $[\sqrt{10}, 12]$. According to LCRCF-Theorem, the sum f(a) + f(b) + f(c) is minimum when $a = b \le c$. Therefore, it suffices to prove that $g(a) \ge 0$, where

$$g(a) = 2f(a) + f(c) - 2\ln 11 - \ln 110$$
, $c = 12 - 2a$, $a \in [0, 4]$.

Since c'(a) = -2, we have

$$g'(a) = 2f'(a) - 2f'(c) = 4\left(\frac{a}{a^2 + 10} - \frac{c}{c^2 + 10}\right)$$
$$= \frac{4(a - c)(10 - ac)}{(a^2 + 10)(c^2 + 10)} = \frac{24(4 - a)(5 - a)(a - 1)}{(a^2 + 10)(c^2 + 10)}.$$

Therefore, g'(a) < 0 for $a \in [0,1)$ and g'(a) > 0 for $a \in (1,4)$, hence g is strictly decreasing on [0,1] and strictly increasing on [1,4]. Thus, we have

$$g(a) \ge g(1) = 0.$$

The equality holds for a = b = 1 and c = 10 (or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = 2n(n-1)$. If k = (n-1)(2n-1), then

$$(a_1^2 + k)(a_2^2 + k) \cdots (a_n^2 + k) \ge k(k+1)^n$$

with equality for $a_1 = k$ and $a_2 = \cdots = a_n = 1$ (or any cyclic permutation).

P 1.85. If a_1, a_2, \ldots, a_n are nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$(a_1^2+1)(a_2^2+1)\cdots(a_n^2+1) \ge \frac{(n^2-2n+2)^n}{(n-1)^{2n-2}}.$$

(Vasile C., 2006)

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge \ln k, \quad k = \frac{(n^2 - 2n + 2)^n}{(n-1)^{2n-2}},$$

where

$$f(u) = \ln(u^2 + 1), \quad u \in [0, n].$$

From

$$f''(u) = \frac{2(1-u^2)}{(u^2+1)^2},$$

it follows that f is strictly convex on [0,1] and strictly concave on [1,n]. According to LCRCF-Theorem, it suffices to consider the case $a_1 = a_2 = \cdots = a_{n-1} \le a_n$; that is, to show that $g(x) \ge 0$, where

$$g(x) = (n-1)f(x) + f(y) - \ln k$$
, $y = n - (n-1)x$, $x \in [0, 1]$.

Since y'(x) = -(n-1), we get

$$g'(x) = (n-1)f'(x) - (n-1)f'(y) = (n-1)[f'(x) - f'(y)]$$

$$= 2(n-1)\left(\frac{x}{x^2 + 1} - \frac{y}{y^2 + 1}\right) = \frac{2(n-1)(x-y)(1-xy)}{(x^2 + 1)(y^2 + 1)}$$

$$= \frac{2n(n-1)(x-1)^2[(n-1)x - 1]}{(x^2 + 1)(y^2 + 1)}.$$

Therefore, $g'(x) \le 0$ for $x \in \left[0, \frac{1}{n-1}\right]$ and $g'(x) \ge 0$ for $x \in \left[\frac{1}{n-1}, n\right]$, hence g is decreasing on $\left[0, \frac{1}{n-1}\right]$ and increasing on $\left[\frac{1}{n-1}, 1\right]$. Since $g\left(\frac{1}{n-1}\right) = 0$, the conclusion follows.

The equality holds for $a_1 = a_2 = \cdots = a_{n-1} = \frac{1}{n-1}$ and $a_n = n-1$ (or any cyclic permutation).

P 1.86. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

$$(a^2+2)(b^2+2)(c^2+2) \le 44.$$

(Vasile C., 2006)

Solution. Write the inequality as

$$f(a) + f(b) + f(c) \le \ln 44,$$

where

$$f(u) = \ln(u^2 + 2), \quad u \in [0, 3].$$

From

$$f''(u) = \frac{2(2-u^2)}{(u^2+2)^2},$$

it follows that f is strictly convex on $[0, \sqrt{2}]$ and strictly concave on $[\sqrt{2}, 3]$. According to LCRCF-Theorem, the sum f(a)+f(b)+f(c) is maximum for either a=0 or $0 < a \le b = c$.

Case 1: a = 0. We need to show that b + c = 3 involves

$$(b^2+2)(c^2+2) \le 22,$$

which is equivalent to

$$bc(bc-4) \leq 0$$
.

This is true because

$$bc \le \left(\frac{b+c}{2}\right)^2 = \frac{9}{4} < 4.$$

Case 2: $0 < a \le b = c$. We need to show that a + 2b = 3 ($0 < a \le 1$) involves

$$(a^2+2)(b^2+2)^2 \le 44$$

which is equivalent to $g(a) \leq 0$, where

$$g(a) = \ln(a^2 + 2) + 2\ln(b^2 + 2) - \ln 44, \quad b = \frac{3-a}{2}, \quad a \in (0,1].$$

Since b'(a) = -1/2, we have

$$g'(a) = \frac{2a}{a^2 + 2} - \frac{2b}{b^2 + 2} = \frac{2(a - b)(2 - ab)}{(a^2 + 2)(b^2 + 2)}$$
$$= \frac{3(a - 1)(a^2 - 3a + 4)}{2(a^2 + 2)(b^2 + 2)}.$$

Because

$$a^2 - 3a + 4 = (a-2)^2 + a > 0$$
,

we have g'(a) < 0 for $a \in (0, 1)$, g is strictly decreasing on [0, 1], hence it suffices to show that $g(0) \le 0$. This reduces to $16 \cdot 22 \ge 17^2$, which is true because

$$16 \cdot 22 - 17^2 = 63 > 0.$$

The equality holds for a = b = 0 and c = 3 (or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

• Let a, b, c be nonnegative real numbers so that a + b + c = 3. If $k \ge \frac{9}{8}$, then

$$(a^2 + k)(b^2 + k)(c^2 + k) \le k^2(k+9),$$

with equality for a = b = 0 and c = 3 (or any cyclic permutation). If k = 9/8, then the equality holds also for a = 0 and b = c = 3/2 (or any cyclic permutation).

P 1.87. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

$$(a^2+1)(b^2+1)(c^2+1) \le \frac{169}{16}.$$

(Vasile C., 2006)

Solution. Write the inequality as

$$f(a) + f(b) + f(c) \le \ln 169 - \ln 16$$
,

where

$$f(u) = \ln(u^2 + 1), \quad u \in [0, 3].$$

From

$$f''(u) = \frac{2(1-u^2)}{(u^2+1)^2},$$

it follows that f is strictly convex on [0,1] and strictly concave on [1,3]. According to LCRCF-Theorem, it suffices to consider the cases a=0 and $0 < a \le b=c$.

Case 1: a = 0. We need to show that b + c = 3 involves

$$(b^2+1)(c^2+1) \le \frac{169}{16},$$

which is equivalent to

$$(4bc+1)(4bc-9) \le 0.$$

This is true because

$$4bc \le (b+c)^2 = 9.$$

Case 2: $0 < a \le b = c$. We need to show that a + 2b = 3 ($0 < a \le 1$) involves

$$(a^2+1)(b^2+1)^2 \le \frac{169}{16},$$

which is equivalent to $g(a) \leq 0$, where

$$g(a) = \ln(a^2 + 1) + 2\ln(b^2 + 1) - \ln 169 + \ln 16, \quad b = \frac{3 - a}{2}, \quad a \in (0, 1].$$

Since b'(a) = -1/2, we have

$$g'(a) = \frac{2a}{a^2 + 1} - \frac{2b}{b^2 + 1} = \frac{2(a - b)(1 - ab)}{(a^2 + 1)(b^2 + 1)}$$
$$= \frac{3(a - 1)^2(a - 2)}{2(a^2 + 1)(b^2 + 1)} \le 0,$$

hence g is strictly decreasing. Consequently, we have

$$g(a) < g(0) = 0.$$

The equality holds for a = 0 and b = c = 3/2 (or any cyclic permutation).

P 1.88. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

$$(2a^2+1)(2b^2+1)(2c^2+1) \le \frac{121}{4}.$$

(Vasile C., 2006)

Solution. Write the inequality as

$$f(a) + f(b) + f(c) \le \ln 121 - \ln 4$$

where

$$f(u) = \ln(2u^2 + 1), \quad u \in [0, 3].$$

From

$$f''(u) = \frac{4(1-2u^2)}{(2u^2+1)^2},$$

it follows that f is strictly convex on $[0, 1/\sqrt{2}]$ and strictly concave on $[1/\sqrt{2}, 3]$. By LCRCF-Theorem, it suffices to consider the cases a = 0 and $0 < a \le b = c$.

Case 1: a = 0. We need to show that b + c = 3 involves

$$(2b^2+1)(2c^2+1) \le \frac{121}{4},$$

which is equivalent to

$$(4bc + 5)(4bc - 9) \le 0.$$

This is true because

$$4bc \le (b+c)^2 = 9.$$

Case 2: $0 < a \le b = c$. We need to show that a + 2b = 3 ($0 < a \le 1$) involves

$$(2a^2+1)(2b^2+1)^2 \le \frac{121}{4},$$

which is equivalent to $g(a) \le 0$, where

$$g(a) = \ln(2a^2 + 1) + 2\ln(2b^2 + 1) - \ln 121 + \ln 4, \quad b = \frac{3-a}{2}, \quad a \in (0,1].$$

Since b'(a) = -1/2, we have

$$g'(a) = \frac{4a}{2a^2 + 1} - \frac{4b}{2b^2 + 1} = \frac{4(a - b)(1 - 2ab)}{(2a^2 + 1)(2b^2 + 1)}$$
$$= \frac{6(a - 1)(a^2 - 3a + 1)}{(2a^2 + 1)(2b^2 + 1)}$$
$$= \frac{3(1 - a)(3 + \sqrt{5} - 2a)(2a - 3 + \sqrt{5})}{2(2a^2 + 1)(2b^2 + 1)},$$

hence
$$g'\left(\frac{3-\sqrt{5}}{2}\right)=0$$
, $g'(a)<0$ for $a\in\left[0,\frac{3-\sqrt{5}}{2}\right)$, $g'(a)>0$ for $a\in\left(\frac{3-\sqrt{5}}{2},1\right)$. Therefore, g is strictly decreasing on $\left[0,\frac{3-\sqrt{5}}{2}\right]$ and strictly increasing on $\left[\frac{3-\sqrt{5}}{2},1\right]$. Since $g(0)=0$, it suffices to show that $g(1)\leq 0$, which reduces to $27\cdot 4\leq 121$. The equality holds for $a=0$ and $b=c=3/2$ (or any cyclic permutation).

P 1.89. If a, b, c are nonnegative real numbers so that $a + b + c \ge k_0$, where

$$k_0 = \frac{3}{8}\sqrt{66 + 10\sqrt{105}} \approx 4.867,$$

then

$$\sqrt[3]{(a^2+1)(b^2+1)(c^2+1)} \le \left(\frac{a+b+c}{3}\right)^2 + 1.$$

(Vasile C., 2018)

Solution. Consider first the case $a + b + c = k_0$, and write the inequality as

$$f(a) + f(b) + f(c) \ge 3f(s), \quad s = \frac{a+b+c}{3} = \frac{k_0}{3},$$

where

$$f(u) = -\ln(u^2 + 1), \quad u \in [0, k_0].$$

For $u \in [s, k_0]$, f(u) is convex because

$$f''(u) = \frac{6(3u^2 - 1)}{(3u^2 + 1)^2} > 0.$$

By the RHCF-Theorem, we only need to show that

$$f(x) + 2f(y) \ge 3f(s)$$

for $0 \le x \le s \le y$ so that x + 2y = 3s; that is, to show that $g(x) \ge 0$ for $x \in [0, s]$, where

$$g(x) = f(x) + 2f(y) - 3f(s), \quad y = \frac{k_0 - x}{2}.$$

Since y'(x) = -1/3, we have

$$g'(x) = f'(x) + 2y'f'(y) = \frac{-2x}{x^2 + 1} + \frac{2y}{y^2 + 1}$$
$$= \frac{2(x - y)(xy - 1)}{(x^2 + 1)(y^2 + 1)} = \frac{3(s - x)(x^2 - k_0x + 2)}{2(x^2 + 1)(y^2 + 1)}.$$

Since g is increasing on $[0, s_1]$ and decreasing on $[s_1, s]$, where $s_1 = \frac{k_0 - \sqrt{k_0^2 - 8}}{2}$, it suffices to show that $g(0) \ge 0$ and $g(s) \ge 0$. These inequalities are true because g(0) = 0 and g(s) = 0. The equality g(0) = 0 is equivalent to

$$\sqrt[3]{(y^2+1)^2} = \left(\frac{2y}{3}\right)^2 + 1,$$

where $y = \frac{k_0}{2}$.

According to RHCF-Theorem, if the inequality

$$f(a) + f(b) + f(c) \ge 3f\left(\frac{a+b+c}{3}\right)$$

holds for $a + b + c = k_0$, then it holds for $a + b + c > k_0$, too.

The equality holds for a = b = c. In addition, for $a + b + c = k_0$, the equality occurs again for a = 0 and $b = c = k_0/2$ (or any cyclic permutation).

P 1.90. If a, b, c, d are nonnegative real numbers so that a + b + c + d = 4, then

$$(a^2+3)(b^2+3)(c^2+3)(d^2+3) \le 513.$$

(Vasile C., 2006)

Solution. Write the inequality as

$$f(a) + f(b) + f(c) + f(d) \le \ln 513$$
,

where

$$f(u) = \ln(u^2 + 3), \quad u \in [0, 4].$$

From

$$f''(u) = \frac{2(3-u^2)}{(u^2+3)^2},$$

it follows that f is strictly convex on $[0, \sqrt{3}]$ and strictly concave on $[\sqrt{3}, 4]$. By LCRCF-Theorem, it suffices to consider the cases a = 0 and $0 < a \le b = c$.

Case 1: a = 0. We need to show that b + c + d = 4 involves

$$(b^2+3)(c^2+3)(d^2+3) \le 171.$$

Substituting b, c, d by 4b/3, 4c/3, 4d/3, respectively, we need to show that b+c+d=3 involves

$$(b^2 + k)(c^2 + k)(d^2 + k) \le k^2(k+9),$$

where k = 27/16. According to Remark from the proof of P 1.86, this inequality holds for all $k \ge 9/8$.

Case 2: $0 < a \le b = c = d$. We need to show that a + 3b = 4 ($0 < a \le 1$) involves

$$(a^2+3)(b^2+3)^3 \le 513$$
,

which is equivalent to $g(a) \leq 0$, where

$$g(a) = \ln(a^2 + 3) + 3\ln(b^2 + 3) - \ln 513, \quad b = \frac{4-a}{3}, \quad a \in (0,1].$$

Since b'(a) = -1/3, we have

$$g'(a) = \frac{2a}{a^2 + 3} - \frac{2b}{b^2 + 3} = \frac{2(a - b)(3 - ab)}{(a^2 + 3)(b^2 + 3)}$$
$$= \frac{8(a - 1)(a^2 - 4a + 9)}{9(a^2 + 3)(b^2 + 3)}.$$

Because

$$a^2 - 4a + 9 = (a-2)^2 + 5 > 0$$
,

we have g'(a) > 0 for $a \in [0, 1)$, g is strictly decreasing on [0, 1], hence it suffices to show that $g(0) \le 0$. This reduces to show that the original inequality holds for a = 0 and b = c = d = 4/3, which follows immediately from the case 1.

The equality holds for a = b = c = 0 and d = 4 (or any cyclic permutation).

P 1.91. If a, b, c, d are nonnegative real numbers so that a + b + c + d = 4, then

$$(a^2+2)(b^2+2)(c^2+2)(d^2+2) \le 144.$$

(Vasile C., 2006)

Solution. Write the inequality as

$$f(a) + f(b) + f(c) + f(d) \le \ln 144$$
,

where

$$f(u) = \ln(u^2 + 2), \quad u \in [0, 4].$$

From

$$f''(u) = \frac{2(2-u^2)}{(u^2+2)^2},$$

it follows that f is strictly convex on $[0, \sqrt{2}]$ and strictly concave on $[\sqrt{2}, 4]$. By LCRCF-Theorem, it suffices to consider the cases a = 0 and $0 < a \le b = c$.

Case 1: a = 0. We need to show that b + c + d = 4 involves

$$(b^2+2)(c^2+2)(d^2+2) \le 72.$$

Substituting b, c, d by 4b/3, 4c/3, 4d/3, respectively, we need to show that b+c+d=3 involves

$$(8b^2 + 9)(8c^2 + 9)(8d^2 + 9) \le 9^4$$

This is true according to Remark from the proof of P 1.86.

Case 2: $0 < a \le b = c = d$. We need to show that a + 3b = 4 ($0 < a \le 1$) involves

$$(a^2+2)(b^2+2)^3 \le 144$$
,

which is equivalent to $g(a) \le 0$, where

$$g(a) = \ln(a^2 + 2) + 3\ln(b^2 + 2) - \ln 144, \quad b = \frac{4-a}{3}, \quad a \in (0,1].$$

Since b'(a) = -1/3, we have

$$g'(a) = \frac{2a}{a^2 + 2} - \frac{2b}{b^2 + 2} = \frac{2(a - b)(2 - ab)}{(a^2 + 2)(b^2 + 2)}$$
$$= \frac{8(a - 1)(a^2 - 4a + 6)}{9(a^2 + 2)(b^2 + 2)}.$$

Because

$$a^2 - 4a + 6 = (a-2)^2 + 2 > 0$$
,

we have g'(a) > 0 for $a \in [0, 1)$, g is strictly decreasing on [0, 1], hence it suffices to show that $g(0) \le 0$. This reduces to show that the original inequality holds for a = 0 and b = c = d = 4/3, which follows immediately from the case 1.

The equality holds for a = b = c = 0 and d = 4 (or any cyclic permutation), and also for a = b = 0 and c = d = 2 (or any permutation).

P 1.92. If a, b, c, d are nonnegative real numbers such that

$$a + b + c + d = 4$$
,

then

$$\frac{a}{3a^3+2} + \frac{b}{3b^3+2} + \frac{c}{3c^3+2} + \frac{d}{3d^3+2} \le \frac{4}{5}.$$

(Vasile Cîrtoaje, 2019)

Solution. Consider the function

$$f(u) = \frac{-u}{3u^3 + 2} : \mathbb{I} = [0, 4].$$

Since

$$f''(u) = \frac{18u^2(4-3u^3)}{(3u^3+2)^3}$$

is positive for $u \in [0,1]$, f is left convex on $\mathbb{I}_{\leq 1}$. According to LHCF-Theorem and Note 1, it is enough to show that $h(x,y) \geq 0$ for $x,y \in [0,4]$ such that x+3y=4. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{3u^2 + 3u - 2}{3u^3 + 2},$$

$$h(x, y) = \frac{g(x) - g(y)}{x - y} = \frac{2F(x, y)}{(3x^3 + 2)(3y^3 + 2)},$$

where

$$F(x,y) = 2(x^2 + xy + y^2) + 2(x+y) + 2 - 3x^2y^2 - 3xy(x+y).$$

From

$$4 = x + 3y \ge 2\sqrt{3xy}$$

we get $3xy \le 4$. Thus, we have

$$F(x, y) \ge 2(x^2 + xy + y^2) + 2(x + y) + 2 - 4xy - 4(x + y) = 26(y - 1)^2 \ge 0.$$

The proof is completed. The equality occurs for a = b = c = d = 1.

P 1.93. If $a_1, a_2, ..., a_n$ are nonnegative real numbers such that $a_1 + a_2 + \cdots + a_n = 1$, then

$$a_1^3 + a_2^3 + \dots + a_n^3 \le \frac{1}{8} + a_1^4 + a_2^4 + \dots + a_n^4$$

(Vasile C., 2018)

Solution. We use the induction method. For n = 2, denoting

$$a_1 a_2 = p, \quad p \le 1/4,$$

we have

$$a_1^3 + a_2^3 = (a_1 + a_2)^3 - 3a_1a_2(a_1 + a_2) = 1 - 3p,$$

 $a_1^4 + a_2^4 = (a_1^2 + a_2^2)^2 - 2a_1^2a_2^2 = 2p^2 - 4p + 1,$

and the inequality is equivalent to

$$(4p-1)^2 \ge 0.$$

Consider further that $n \ge 3$, $a_1 \le a_2 \le \cdots \le a_n$, and write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \le \frac{1}{8},$$

where

$$f(u) = u^3 - u^4, \quad u \in [0, 1].$$

From

$$f''(u) = 6u(1-2u),$$

it follows that f is strictly convex on [0,1/2] and strictly concave on [1/2,1]. By LCRCF-Theorem, it suffices to consider the cases $a_1 = 0$ and $0 < a_1 \le a_2 = \cdots = a_n$. Case 1: $a_1 = 0$. The inequality follows by the induction hypothesis.

Case 2: $0 < a_1 \le a_2 = \cdots = a_n$. We only need to prove the homogeneous inequality

$$8(a_1^4 + a_2^4 + \dots + a_n^4) + (a_1 + a_2 + \dots + a_n)^4 \ge 8(a_1 + a_2 + \dots + a_n)(a_1^3 + a_2^3 + \dots + a_n^3)$$

for $a_1 = x$ and $a_2 = \cdots = a_{n-1} = 1$, that is

$$8(x^4 + n - 1) + (x + n - 1)^4 \ge 8(x + n - 1)(x^3 + n - 1),$$

$$x^{4} - 4(n-1)x^{3} + 6(n-1)^{2}x^{2} + 4(n-1)(n^{2} - 2n - 1)x + (n-3)(n-1)(n^{2} - 5) \ge 0,$$

$$x^{2}(x - 2n + 2)^{2} + 2(n-1)^{2}x^{2} + 4(n-1)(n^{2} - 2n - 1)x + (n-3)(n-1)(n^{2} - 5) \ge 0.$$

The equality holds for $a_1 = \cdots = a_{n-2} = 0$ and $a_{n-1} = a_n = 1/2$ (or any permutation).

Remark. The inequality can be also proved by using EV-method (see Corollary 5 from section 5, case k = 3 and m = 4): If

$$a_1 + a_2 + \dots + a_n = 1$$
, $a_1^3 + a_2^3 + \dots + a_n^3 = constant$,

then the sum

$$S_n = a_1^4 + a_2^4 + \dots + a_n^4$$

is minimum for either $a_1 = 0$ or $0 < a_1 \le a_2 = \cdots = a_n$.

Chapter 2

Half Convex Function Method for Ordered Variables

2.1 Theoretical Basis

The following statement is known as the Right Half Convex Function Theorem for Ordered Variables (RHCF-OV Theorem).

RHCF-OV Theorem (Vasile Cîrtoaje, 2008). Let f be a real function defined on an interval \mathbb{I} and convex on $\mathbb{I}_{\geq s}$, where $s \in int(\mathbb{I})$. The inequality

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf\left(\frac{a_1 + a_2 + \dots + a_n}{n}\right)$$

holds for all $a_1, a_2, \ldots, a_n \in \mathbb{I}$ satisfying

$$a_1 + a_2 + \cdots + a_n = ns$$

and

$$a_1 \le a_2 \le \dots \le a_m \le s, \quad m \in \{1, 2, \dots, n-1\},$$

if and only if

$$f(x) + (n-m)f(y) \ge (1+n-m)f(s)$$

for all $x, y \in \mathbb{I}$ so that

$$x \le s \le y, \quad x + (n-m)y = (1+n-m)s.$$

Proof. For

$$a_1 = x$$
, $a_2 = \cdots = a_m = s$, $a_{m+1} = \cdots = a_n = y$,

the inequality

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s)$$

becomes

$$f(x) + (n-m)f(y) \ge (1+n-m)f(s);$$

thus, the necessity is proved. To prove the sufficiency, we assume that

$$a_1 \leq a_2 \leq \cdots \leq a_n$$
.

From $a_1 \le a_2 \le \cdots \le a_m \le s$, it follows that there is an integer

$$k \in \{m, m+1, \dots, n-1\}$$

so that

$$a_1 \le \cdots \le a_k \le s \le a_{k+1} \le \cdots \le a_n$$
.

Since f is convex on $\mathbb{I}_{\geq s}$, we may apply Jensen's inequality to get

$$f(a_{k+1}) + \cdots + f(a_n) \ge (n-k)f(z),$$

where

$$z = \frac{a_{k+1} + \dots + a_n}{n - k}, \quad z \in \mathbb{I}.$$

Therefore, to prove the desired inequality

$$f(a_1) + f(a_2) + \cdots + f(a_n) \ge f(s),$$

it suffices to show that

$$f(a_1) + \dots + f(a_k) + (n-k)f(z) \ge nf(s). \tag{*}$$

Let b_1, \ldots, b_k be defined by

$$a_i + (n-m)b_i = (1+n-m)s, i = 1,...,k.$$

We claim that

$$z \ge b_1 \ge \dots \ge b_k \ge s$$
, $b_1, \dots, b_k \in \mathbb{I}$.

Indeed, we have

$$b_1 \ge \dots \ge b_k,$$

$$b_k - s = \frac{s - a_k}{n - m} \ge 0,$$

and

$$z \geq b_1$$

because

$$(n-m)b_1 = (1+n-m)s - a_1$$

$$= -(m-1)s + (a_2 + \dots + a_k) + (a_{k+1} + \dots + a_n)$$

$$\leq -(m-1)s + (k-1)s + (a_{k+1} + \dots + a_n) =$$

$$= (k-m)s + (n-k)z \leq (n-m)z.$$

Since $b_1, \ldots, b_k \in \mathbb{I}_{>s}$, by hypothesis we have

$$f(a_1) + (n-m)f(b_1) \ge (1+n-m)f(s),$$

. . .

$$f(a_k) + (n-m)f(b_k) \ge (1+n-m)f(s),$$

hence

$$f(a_1) + \cdots + f(a_k) + (n-m)[f(b_1) + \cdots + f(b_k)] \ge k(1+n-m)f(s),$$

$$f(a_1) + \dots + f(a_k) \ge k(1 + n - m)f(s) - (n - m)[f(b_1) + \dots + f(b_k)].$$

According to this result, the inequality (*) is true if

$$k(1+n-m)f(s)-(n-m)[f(b_1)+\cdots+f(b_k)]+(n-k)f(z) \ge nf(s),$$

which is equivalent to

$$pf(z) + (k-p)f(s) \ge f(b_1) + \dots + f(b_k), \quad p = \frac{n-k}{n-m} \le 1.$$

By Jensen's inequality, we have

$$pf(z) + (1-p)f(s) \ge f(w), \quad w = pz + (1-p)s \ge s.$$

Thus, we only need to show that

$$f(w) + (k-1)f(s) \ge f(b_1) + \dots + f(b_k).$$

Since the decreasingly ordered vector $\vec{A_k} = (w, s, ..., s)$ majorizes the decreasingly ordered vector $\vec{B_k} = (b_1, b_2, ..., b_k)$, this inequality follows from Karamata's inequality for convex functions.

Similarly, we can prove the Left Half Convex Function Theorem for Ordered Variables (LHCF-OV Theorem).

LHCF-OV Theorem. Let f be a real function defined on an interval \mathbb{I} and convex on $\mathbb{I}_{\leq s}$, where $s \in int(\mathbb{I})$. The inequality

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf\left(\frac{a_1 + a_2 + \dots + a_n}{n}\right)$$

holds for all $a_1, a_2, \ldots, a_n \in \mathbb{I}$ satisfying

$$a_1 + a_2 + \dots + a_n = ns$$

and

$$a_1 \ge a_2 \ge \dots \ge a_m \ge s$$
, $m \in \{1, 2, \dots, n-1\}$,

if and only if

$$f(x) + (n-m)f(y) \ge (1+n-m)f(s)$$

for all $x, y \in \mathbb{I}$ so tht

$$x \ge s \ge y$$
, $x + (n-m)y = (1+n-m)s$.

From the RHCF-OV Theorem and the LHCF-OV Theorem, we find the HCF-OV Theorem (Half Convex Function Theorem for Ordered Variables).

HCF-OV Theorem. Let f be a real function defined on an interval \mathbb{I} and convex on \mathbb{I}_{s} (or \mathbb{I}_{s}), where $s \in int(\mathbb{I})$. The inequality

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf\left(\frac{a_1 + a_2 + \dots + a_n}{n}\right)$$

holds for all $a_1, a_2, \ldots, a_n \in \mathbb{I}$ so that

$$a_1 + a_2 + \dots + a_n = ns$$

and at least m of a_1, a_2, \ldots, a_n are smaller (greater) than s, where $m \in \{1, 2, \ldots, n-1\}$, if and only if

$$f(x) + (n-m)f(y) \ge (1+n-m)f(s)$$

for all $x, y \in \mathbb{I}$ satisfying x + (n - m)y = (1 + n - m)s.

The RHCF-OV Theorem, the LHCF-OV Theorem and the HCF-OV Theorem are respectively generalizations of the RHCF-Theorem, the LHCF Theorem and the HCF-Theorem, because the last theorems can be obtained from the first theorems for m=1.

Note 1. Let us denote

$$g(u) = \frac{f(u) - f(s)}{u - s}, \quad h(x, y) = \frac{g(x) - g(y)}{x - y}.$$

In many applications, it is useful to replace the hypothesis

$$f(x) + (n-m)f(y) \ge (1+n-m)f(s)$$

in the RHCF-OV Theorem and the LHCF-OV Theorem by the equivalent condition

$$h(x,y) \ge 0$$
 for all $x,y \in \mathbb{I}$ so that $x + (n-m)y = (1+n-m)s$.

This equivalence is true since

$$f(x) + (n-m)f(y) - (1+n-m)f(s) = [f(x)-f(s)] + (n-m)[f(y)-f(s)]$$

$$= (x-s)g(x) + (n-m)(y-s)g(y)$$

$$= \frac{n-m}{1+n-m}(x-y)[g(x)-g(y)]$$

$$= \frac{n-m}{1+n-m}(x-y)^2h(x,y).$$

Note 2. Assume that f is differentiable on \mathbb{I} , and let

$$H(x,y) = \frac{f'(x) - f'(y)}{x - y}.$$

The desired inequality of Jensen's type in the RHCF-OV Theorem and the LHCF-OV Theorem holds true by replacing the hypothesis

$$f(x) + (n-m)f(y) \ge (1+n-m)f(s)$$

with the more restrictive condition

$$H(x,y) \ge 0$$
 for all $x,y \in \mathbb{I}$ so that $x + (n-m)y = (1+n-m)s$.

To prove this, we will show that the new condition implies

$$f(x) + (n-m)f(y) \ge (1+n-m)f(s)$$

for all $x, y \in \mathbb{I}$ so that x + (n - m)y = (1 + n - m)s. Write this inequality as

$$f_1(x) \ge (1 + n - m)f(s),$$

where

$$f_1(x) = f(x) + (n-m)f\left(\frac{(1+n-m)s - x}{n-m}\right).$$

From

$$f_1'(x) = f'(x) - f'\left(\frac{(1+n-m)s - x}{n-m}\right)$$

$$= f'(x) - f'(y)$$

$$= \frac{1+n-m}{n-m}(x-s)H(x,y),$$

it follows that f_1 is decreasing on $\mathbb{I}_{\leq s}$ and increasing on $\mathbb{I}_{\geq s}$; therefore,

$$f_1(x) \ge f_1(s) = (1 + n - m)f(s).$$

Note 3. The RHCF-OV Theorem and the LHCF-OV Theorem are also valid in the case when f is defined on $\mathbb{I} \setminus \{u_0\}$, where $u_0 \in \mathbb{I}_{< s}$ for the RHCF-OV Theorem, and $u_0 \in \mathbb{I}_{> s}$ for the LHCF-OV Theorem.

Note 4. The desired inequalities in the RHCF-OV Theorem and the LHCF-OV Theorem become equalities for

$$a_1 = a_2 = \cdots = a_n = s.$$

In addition, if there exist $x, y \in \mathbb{I}$ so that

$$x + (n-m)y = (1+n-m)s$$
, $f(x) + (n-m)f(y) = (1+n-m)f(s)$, $x \neq y$,

then the equality holds also for

$$a_1 = x$$
, $a_2 = \cdots = a_m = s$, $a_{m+1} = \cdots = a_n = y$

Notice that these equality conditions are equivalent to

$$x + (n-m)y = (1+n-m)s$$
, $h(x, y) = 0$

(x < y for the RHCF-OV Theorem, and x > y for the LHCF-OV Theorem).

Note 5. The WRHCF-OV Theorem and the WLHCF-OV Theorem are extensions of the *weighted* Jensen's inequality to right and left half convex functions with ordered variables (*Vasile Cirtoaje*, 2008).

WRHCF-OV Theorem. Let p_1, p_2, \ldots, p_n be positive real numbers so that

$$p_1 + p_2 + \cdots + p_n = 1,$$

and let f be a real function defined on an interval \mathbb{I} and convex on $\mathbb{I}_{\geq s}$, where $s \in int(\mathbb{I})$. The inequality

$$p_1 f(x_1) + p_2 f(x_2) + \dots + p_n f(x_n) \ge f(p_1 x_1 + p_2 x_2 + \dots + p_n x_n)$$

holds for all $x_1, x_2, \dots, x_n \in \mathbb{I}$ so that $p_1x_1 + p_2x_2 + \dots + p_nx_n = s$ and

$$x_1 \leq x_2 \leq \cdots \leq x_n, \quad x_m \leq s, \quad m \in \{1, 2, \dots, n-1\},$$

if and only if

$$f(x) + kf(y) \ge (1+k)f(s)$$

for all $x, y \in \mathbb{I}$ satisfying

$$x \le s \le y$$
, $x + ky = (1+k)s$,

where

$$k = \frac{p_{m+1} + p_{m+2} + \dots + p_n}{p_1}.$$

WLHCF-OV Theorem. Let p_1, p_2, \ldots, p_n be positive real numbers so that

$$p_1 + p_2 + \cdots + p_n = 1,$$

and let f be a real function defined on an interval \mathbb{I} and convex on $\mathbb{I}_{\leq s}$, where $s \in int(\mathbb{I})$. The inequality

$$p_1 f(x_1) + p_2 f(x_2) + \dots + p_n f(x_n) \ge f(p_1 x_1 + p_2 x_2 + \dots + p_n x_n)$$

holds for all $x_1, x_2, \dots, x_n \in \mathbb{I}$ so that $p_1x_1 + p_2x_2 + \dots + p_nx_n = s$ and

$$x_1 \ge x_2 \ge \dots \ge x_n$$
, $x_m \ge s$, $m \in \{1, 2, \dots, n-1\}$,

if and only if

$$f(x) + kf(y) \ge (1+k)f(s)$$

for all $x, y \in \mathbb{I}$ satisfying

$$x \ge s \ge y$$
, $x + ky = (1 + k)s$,

where

$$k = \frac{p_{m+1} + p_{m+2} + \dots + p_n}{p_1}.$$

2.2 Applications

2.1. If a, b, c, d are real numbers so that

$$a \le b \le 1 \le c \le d$$
, $a+b+c+d=4$,

then

$$(3a^2-2)(a-1)^2+(3b^2-2)(b-1)^2+(3c^2-2)(c-1)^2+(3d^2-2)(d-1)^2 \ge 0.$$

2.2. If a, b, c, d are nonnegative real numbers so that

$$a \ge b \ge 1 \ge c \ge d$$
, $a+b+c+d=4$,

then

$$\frac{1}{2a^3 + 5} + \frac{1}{2b^3 + 5} + \frac{1}{2c^3 + 5} + \frac{1}{2d^3 + 5} \le \frac{4}{7}.$$

2.3. If

$$\frac{-2n-1}{n-1} \le a_1 \le \dots \le a_n \le 1 \le a_{n+1} \le \dots \le a_{2n}, \qquad a_1 + a_2 + \dots + a_{2n} = 2n,$$

then

$$a_1^3 + a_2^3 + \dots + a_{2n}^3 \ge 2n$$
.

2.4. Let $a_1, a_2, \ldots, a_n \ (n \ge 3)$ be real numbers so that $a_1 + a_2 + \cdots + a_n = n$. Prove that

(a) if
$$-3 \le a_1 \le \dots \le a_{n-2} \le 1 \le a_{n-1} \le a_n$$
, then
$$a_1^3 + a_2^3 + \dots + a_n^3 \ge a_1^2 + a_2^2 + \dots + a_n^2$$
;

(b) if
$$-\frac{n-1}{n-3} \le a_1 \le a_2 \le 1 \le \dots \le a_n$$
, then
$$a_1^3 + a_2^3 + \dots + a_n^3 + n \ge 2(a_1^2 + a_2^2 + \dots + a_n^2).$$

2.5. Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$ and let $m \in \{1, 2, \ldots, n-1\}$. Prove that

(a) if
$$a_1 \le a_2 \le \cdots \le a_m \le 1$$
, then

$$(n-m)(a_1^3+a_2^3+\cdots+a_n^3-n) \ge (2n-2m+1)(a_1^2+a_2^2+\cdots+a_n^2-n);$$

(b) if
$$a_1 \ge a_2 \ge \cdots \ge a_m \ge 1$$
, then

$$a_1^3 + a_2^3 + \dots + a_n^3 - n \le (n - m + 2)(a_1^2 + a_2^2 + \dots + a_n^2 - n).$$

2.6. Let a_1, a_2, \ldots, a_n $(n \ge 3)$ be real numbers so that $a_1 + a_2 + \cdots + a_n = n$. Prove that

(a) if
$$a_1 \le \dots \le a_{n-1} \le 1 \le a_n$$
, then
$$a_1^4 + a_2^4 + \dots + a_n^4 - n \ge 6(a_1^2 + a_2^2 + \dots + a_n^2 - n);$$

(b) if
$$a_1 \le \dots \le a_{n-2} \le 1 \le a_{n-1} \le a_n$$
, then
$$a_1^4 + a_2^4 + \dots + a_n^4 - n \ge \frac{14}{3}(a_1^2 + a_2^2 + \dots + a_n^2 - n);$$

(c) if
$$a_1 \le a_2 \le 1 \le a_3 \le \dots \le a_n$$
, then
$$a_1^4 + a_2^4 + \dots + a_n^4 - n \ge \frac{2(n^2 - 3n + 3)}{n^2 - 5n + 7} (a_1^2 + a_2^2 + \dots + a_n^2 - n).$$

- **2.7.** Let a, b, c, d, e be nonnegative real numbers so that a + b + c + d + e = 5. Prove that
 - (a) if $a \ge b \ge 1 \ge c \ge d \ge e$, then $21(a^2 + b^2 + c^2 + d^2 + e^2) \ge a^4 + b^4 + c^4 + d^4 + e^4 + 100;$
 - (b) if $a \ge b \ge c \ge 1 \ge d \ge e$, then $13(a^2 + b^2 + c^2 + d^2 + e^2) \ge a^4 + b^4 + c^4 + d^4 + e^4 + 60.$
- **2.8.** Let a_1, a_2, \ldots, a_n $(n \ge 3)$ be nonnegative numbers so that $a_1 + a_2 + \cdots + a_n = n$. Prove that
 - (a) if $a_1 \ge \dots \ge a_{n-1} \ge 1 \ge a_n$, then $7(a_1^3 + a_2^3 + \dots + a_n^3) \ge 3(a_1^4 + a_2^4 + \dots + a_n^4) + 4n;$
 - (b) if $a_1 \ge \dots \ge a_{n-2} \ge 1 \ge a_{n-1} \ge a_n$, then $13(a_1^3 + a_2^3 + \dots + a_n^3) \ge 4(a_1^4 + a_2^4 + \dots + a_n^4) + 9n.$
- **2.9.** If a_1, a_2, \ldots, a_n are positive real numbers so that $a_1 + a_2 + \cdots + a_n = n$ and $a_1 \ge \cdots \ge a_m \ge 1 \ge a_{m+1} \ge \cdots \ge a_n, \quad m \in \{1, 2, \ldots, n-1\},$

$$(n-m+1)^2\left(\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}-n\right)\geq 4(n-m)(a_1^2+a_2^2+\cdots+a_n^2-n).$$

2.10. If a_1, a_2, \ldots, a_n are positive real numbers so that $\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} = n$ and

$$a_1 \le \dots \le a_m \le 1 \le a_{m+1} \le \dots \le a_n, \quad m \in \{1, 2, \dots, n-1\},$$

then

$$a_1^2 + a_2^2 + \dots + a_n^2 - n \ge 2 \left(1 + \frac{\sqrt{n-m}}{n-m+1} \right) (a_1 + a_2 + \dots + a_n - n).$$

2.11. Let a_1, a_2, \ldots, a_n ($n \ge 3$) be nonnegative numbers so that $a_1 + a_2 + \cdots + a_n = n$. Prove that

(a) if $a_1 \le \cdots \le a_{n-1} \le 1 \le a_n$, then

$$\frac{1}{a_1^2+2}+\frac{1}{a_2^2+2}+\cdots+\frac{1}{a_n^2+2}\geq \frac{n}{3};$$

(b) if $a_1 \le \dots \le a_{n-2} \le 1 \le a_{n-1} \le a_n$, then

$$\frac{1}{2a_1^2+3}+\frac{1}{2a_2^2+3}+\cdots+\frac{1}{2a_n^2+3}\geq \frac{n}{5}.$$

2.12. If a_1, a_2, \ldots, a_{2n} are nonnegative real numbers so that

$$a_1 \ge \dots \ge a_n \ge 1 \ge a_{n+1} \ge \dots \ge a_{2n}, \quad a_1 + a_2 + \dots + a_{2n} = 2n,$$

then

$$\frac{1}{na_1^2 + n^2 + n + 1} + \frac{1}{na_2^2 + n^2 + n + 1} + \dots + \frac{1}{na_{2n}^2 + n^2 + n + 1} \le \frac{2n}{(n+1)^2}.$$

2.13. If a, b, c, d, e, f are nonnegative real numbers so that

$$a \ge b \ge c \ge 1 \ge d \ge e \ge f$$
, $a+b+c+d+e+f=6$,

$$\frac{3a+4}{3a^2+4} + \frac{3b+4}{3b^2+4} + \frac{3c+4}{3c^2+4} + \frac{3d+4}{3d^2+4} + \frac{3e+4}{3e^2+4} + \frac{3f+4}{3f^2+4} \le 6.$$

2.14. If a, b, c, d, e, f are nonnegative real numbers so that

$$a \ge b \ge 1 \ge c \ge d \ge e \ge f$$
, $a+b+c+d+e+f=6$,

then

$$\frac{a^2-1}{(2a+7)^2} + \frac{b^2-1}{(2b+7)^2} + \frac{c^2-1}{(2c+7)^2} + \frac{d^2-1}{(2d+7)^2} + \frac{e^2-1}{(2e+7)^2} + \frac{f^2-1}{(2f+7)^2} \ge 0.$$

2.15. If a, b, c, d, e, f are nonnegative real numbers so that

$$a \le b \le 1 \le c \le d \le e \le f$$
, $a + b + c + d + e + f = 6$,

then

$$\frac{a^2-1}{(2a+5)^2} + \frac{b^2-1}{(2b+5)^2} + \frac{c^2-1}{(2c+5)^2} + \frac{d^2-1}{(2d+5)^2} + \frac{e^2-1}{(2e+5)^2} + \frac{f^2-1}{(2f+5)^2} \le 0.$$

2.16. If a, b, c are nonnegative real numbers so that

$$a \le b \le 1 \le c$$
, $a+b+c=3$,

then

$$\sqrt{\frac{2a}{b+c}} + \sqrt{\frac{2b}{c+a}} + \sqrt{\frac{2c}{a+b}} \ge 3.$$

2.17. If $a_1, a_2, ..., a_8$ are nonnegative real numbers so that

$$a_1 \ge a_2 \ge a_3 \ge a_4 \ge 1 \ge a_5 \ge a_6 \ge a_7 \ge a_8$$
, $a_1 + a_2 + \dots + a_8 = 8$,

then

$$(a_1^2+1)(a_2^2+1)\cdots(a_8^2+1) \ge (a_1+1)(a_2+1)\cdots(a_8+1).$$

2.18. If a, b, c, d are real numbers so that

$$\frac{-1}{2} \le a \le b \le 1 \le c \le d$$
, $a+b+c+d=4$,

$$7\left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{d^2}\right) + 3\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}\right) \ge 40.$$

2.19. Let a, b, c, d be real numbers. Prove that

(a) if
$$-1 \le a \le b \le c \le 1 \le d$$
, then

$$3\left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{d^2}\right) \ge 8 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d};$$

(b) if
$$-1 \le a \le b \le 1 \le c \le d$$
, then

$$2\left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{d^2}\right) \ge 4 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}.$$

2.20. If a, b, c, d are positive real numbers so that

$$a \ge b \ge 1 \ge c \ge d$$
, $abcd = 1$,

then

$$a^{2} + b^{2} + c^{2} + d^{2} - 4 \ge 18\left(a + b + c + d - \frac{1}{a} - \frac{1}{b} - \frac{1}{c} - \frac{1}{d}\right).$$

2.21. If a, b, c, d are positive real numbers so that

$$a \le b \le 1 \le c \le d$$
, $abcd = 1$,

then

$$\sqrt{a^2 - a + 1} + \sqrt{b^2 - b + 1} + \sqrt{c^2 - c + 1} + \sqrt{d^2 - d + 1} \ge a + b + c + d.$$

2.22. If a, b, c, d are positive real numbers so that

$$a \le b \le c \le 1 \le d$$
, $abcd = 1$,

then

$$\frac{1}{a^3+3a+2}+\frac{1}{b^3+3b+2}+\frac{1}{c^3+3c+2}+\frac{1}{d^3+3d+2}\geq \frac{2}{3}.$$

2.23. If a_1, a_2, \ldots, a_n are positive real numbers so that

$$a_1 \ge \cdots \ge a_{n-1} \ge 1 \ge a_n$$
, $a_1 a_2 \cdots a_n = 1$,

$$\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} \ge a_1 + a_2 + \dots + a_n.$$

2.24. Let a_1, a_2, \ldots, a_n be positive real numbers so that

$$a_1 \leq \cdots \leq a_{n-1} \leq 1 \leq a_n$$
, $a_1 a_2 \cdots a_n = 1$.

If $k \ge 1$, then

$$\frac{1}{1+ka_1} + \frac{1}{1+ka_2} + \dots + \frac{1}{1+ka_n} \ge \frac{n}{1+k}.$$

2.25. If a_1, a_2, \ldots, a_9 are positive real numbers so that

$$a_1 \leq \cdots \leq a_8 \leq 1 \leq a_9, \quad a_1 a_2 \cdots a_9 = 1,$$

then

$$\frac{1}{(a_1+2)^2} + \frac{1}{(a_2+2)^2} + \dots + \frac{1}{(a_9+2)^2} \ge 1.$$

2.26. Let a_1, a_2, \ldots, a_n be positive real numbers so that

$$a_1 \le \cdots \le a_{n-1} \le 1 \le a_n$$
, $a_1 a_2 \cdots a_n = 1$.

If $p, q \ge 0$ so that

$$p+q \ge 1 + \frac{2pq}{p+4q},$$

then

$$\frac{1}{1+pa_1+qa_1^2} + \frac{1}{1+pa_2+qa_2^2} + \dots + \frac{1}{1+pa_n+qa_n^2} \ge \frac{n}{1+p+q}.$$

2.27. Let a_1, a_2, \ldots, a_n be positive real numbers so that

$$a_1 \le \cdots \le a_{n-1} \le 1 \le a_n$$
, $a_1 a_2 \cdots a_n = 1$.

If $m \ge 1$ and $0 < k \le m$, then

$$\frac{1}{(a_1+k)^m} + \frac{1}{(a_2+k)^m} + \dots + \frac{1}{(a_n+k)^m} \ge \frac{n}{(1+k)^m}.$$

2.28. If a_1, a_2, \ldots, a_n are positive real numbers so that

$$a_1 \le \dots \le a_{n-1} \le 1 \le a_n$$
, $a_1 a_2 \dots a_n = 1$,

$$\frac{1}{\sqrt{1+3a_1}} + \frac{1}{\sqrt{1+3a_2}} + \dots + \frac{1}{\sqrt{1+3a_n}} \ge \frac{n}{2}.$$

2.29. Let a_1, a_2, \ldots, a_n be positive real numbers so that

$$a_1 \le \cdots \le a_{n-1} \le 1 \le a_n$$
, $a_1 a_2 \cdots a_n = 1$.

If 0 < m < 1 and $0 < k \le \frac{1}{2^{1/m} - 1}$, then

$$\frac{1}{(a_1+k)^m} + \frac{1}{(a_2+k)^m} + \dots + \frac{1}{(a_n+k)^m} \ge \frac{n}{(1+k)^m}.$$

2.30. If $a_1, a_2, ..., a_n$ $(n \ge 4)$ are positive real numbers so that

$$a_1 \ge a_2 \ge a_3 \ge 1 \ge a_4 \ge \cdots \ge a_n$$
, $a_1 a_2 \cdots a_n = 1$,

then

$$\frac{1}{3a_1+1} + \frac{1}{3a_2+1} + \dots + \frac{1}{3a_n+1} \ge \frac{n}{4}.$$

2.31. If a_1, a_2, \dots, a_n $(n \ge 4)$ are positive real numbers so that

$$a_1 \ge a_2 \ge a_3 \ge 1 \ge a_4 \ge \cdots \ge a_n$$
, $a_1 a_2 \cdots a_n = 1$,

then

$$\frac{1}{(a_1+1)^2} + \frac{1}{(a_2+1)^2} + \dots + \frac{1}{(a_n+1)^2} \ge \frac{n}{4}.$$

2.32. If a_1, a_2, \ldots, a_n are positive real numbers so that

$$a_1 \ge \cdots \ge a_{n-1} \ge 1 \ge a_n$$
, $a_1 a_2 \cdots a_n = 1$,

then

$$\frac{1}{(a_1+3)^2} + \frac{1}{(a_2+3)^2} + \dots + \frac{1}{(a_n+3)^2} \le \frac{n}{16}.$$

2.33. Let a_1, a_2, \ldots, a_n be positive real numbers so that

$$a_1 \ge \cdots \ge a_{n-1} \ge 1 \ge a_n$$
, $a_1 a_2 \cdots a_n = 1$.

If $p, q \ge 0$ so that $p + q \le 1$, then

$$\frac{1}{1+pa_1+qa_1^2}+\frac{1}{1+pa_2+qa_2^2}+\cdots+\frac{1}{1+pa_n+qa_n^2}\leq \frac{n}{1+p+q}.$$

2.34. Let a_1, a_2, \ldots, a_n be positive real numbers so that

$$a_1 \ge \cdots \ge a_{n-1} \ge 1 \ge a_n$$
, $a_1 a_2 \cdots a_n = 1$.

If m > 1 and $k \ge \frac{1}{2^{1/m} - 1}$, then

$$\frac{1}{(a_1+k)^m} + \frac{1}{(a_2+k)^m} + \dots + \frac{1}{(a_n+k)^m} \le \frac{n}{(1+k)^m}.$$

2.35. If a_1, a_2, \ldots, a_n are positive real numbers so that

$$a_1 \ge \cdots \ge a_{n-1} \ge 1 \ge a_n$$
, $a_1 a_2 \cdots a_n = 1$,

then

$$\frac{1}{\sqrt{1+2a_1}} + \frac{1}{\sqrt{1+2a_2}} + \dots + \frac{1}{\sqrt{1+2a_n}} \le \frac{n}{\sqrt{3}}.$$

2.36. Let a_1, a_2, \ldots, a_n be positive real numbers so that

$$a_1 \ge \cdots \ge a_{n-1} \ge 1 \ge a_n$$
, $a_1 a_2 \cdots a_n = 1$.

If 0 < m < 1 and $k \ge m$, then

$$\frac{1}{(a_1+k)^m} + \frac{1}{(a_2+k)^m} + \dots + \frac{1}{(a_n+k)^m} \le \frac{n}{(1+k)^m}.$$

2.37. If $a_1, a_2, ..., a_n$ $(n \ge 3)$ are positive real numbers so that

$$a_1 \ge \cdots \ge a_{n-2} \ge 1 \ge a_{n-1} \ge a_n$$
, $a_1 a_2 \cdots a_n = 1$,

then

$$\frac{1}{(a_1+5)^2} + \frac{1}{(a_2+5)^2} + \dots + \frac{1}{(a_n+5)^2} \le \frac{n}{36}.$$

2.38. If a_1, a_2, \ldots, a_n are nonnegative real numbers so that

$$a_1 \ge \dots \ge a_{n-1} \ge 1 \ge a_n$$
, $a_1^2 + a_2^2 + \dots + a_n^2 = n$,

then

$$\frac{1}{3-a_1} + \frac{1}{3-a_2} + \dots + \frac{1}{3-a_n} \le \frac{n}{2}.$$

2.39. Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that

$$a_1 \le \dots \le a_{n-1} \le 1 \le a_n$$
, $a_1 + a_2 + \dots + a_n = n$.

Prove that

$$a_1^3 + a_2^3 + \dots + a_n^3 - n \ge (n-1)^2 \left[\left(\frac{n-a_1}{n-1} \right)^3 + \left(\frac{n-a_2}{n-1} \right)^3 + \dots + \left(\frac{n-a_n}{n-1} \right)^3 - n \right].$$

2.3 Solutions

P 2.1. If a, b, c, d are real numbers so that

$$a \le b \le 1 \le c \le d$$
, $a+b+c+d=4$,

then

$$(3a^2-2)(a-1)^2+(3b^2-2)(b-1)^2+(3c^2-2)(c-1)^2+(3d^2-2)(d-1)^2\geq 0.$$

(Vasile C., 2007)

Solution. Write the inequality as

$$f(a) + f(b) + f(c) + f(d) \ge 4f(s), \quad s = \frac{a+b+c+d}{4} = 1,$$

where

$$f(u) = (3u^2 - 2)(u - 1)^2, u \in \mathbb{I} = \mathbb{R}.$$

From

$$f''(u) = 2(18u^2 - 18u + 1),$$

it follows that f''(u) > 0 for $u \ge 1$, hence f is convex on $\mathbb{I}_{\ge s}$. Therefore, we may apply the RHCF-OV Theorem for n = 4 and m = 2. Thus, it suffices to show that $f(x) + 2f(y) \ge 3f(1)$ for all real x, y so that x + 2y = 3. Using Note 1, we only need to show that $h(x, y) \ge 0$, where

$$h(x,y) = \frac{g(x) - g(y)}{x - y}, \quad g(u) = \frac{f(u) - f(1)}{u - 1}.$$

We have

$$g(u) = 3(u^3 + u^2 + u + 1) - 6(u^2 + u + 1) + u + 1 = 3u^3 - 3u^2 - 2u - 2,$$

$$h(x, y) = 3(x^2 + xy + y^2) - 3(x + y) - 2 = (3y - 4)^2 > 0.$$

From x + 2y = 3 and h(x, y) = 0, we get x = 1/3, y = 4/3. Therefore, in accordance with Note 4, the equality holds for a = b = c = d = 1, and also for

$$a = \frac{1}{3}$$
, $b = 1$, $c = d = \frac{4}{3}$.

Remark. Similarly, we can prove the following generalization:

• Let a_1, a_2, \ldots, a_{2n} be real numbers so that

$$a_1 \le \dots \le a_n \le 1 \le a_{n+1} \le \dots \le a_{2n}, \quad a_1 + a_2 + \dots + a_{2n} = 2n.$$

If
$$k = \frac{n}{n^2 - n + 1}$$
, then

$$(a_1^2-k)(a_1-1)^2+(a_2^2-k)(a_2-1)^2+\cdots+(a_{2n}^2-k)(a_{2n}-1)^2\geq 0,$$

with equality for $a_1 = a_2 = \cdots = a_{2n} = 1$, and also for

$$a_1 = \frac{1}{n^2 - n + 1}$$
, $a_2 = \dots = a_n = 1$, $a_{n+1} = \dots = a_n = \frac{n^2}{n^2 - n + 1}$.

P 2.2. If a, b, c, d are nonnegative real numbers so that

$$a \ge b \ge 1 \ge c \ge d$$
, $a+b+c+d=4$,

then

$$\frac{1}{2a^3+5}+\frac{1}{2b^3+5}+\frac{1}{2c^3+5}+\frac{1}{2d^3+5}\leq \frac{4}{7}.$$

(Vasile C., 2009)

Solution. Write the inequality as

$$f(a) + f(b) + f(c) + f(d) \ge 4f(s), \quad s = \frac{a+b+c+d}{4} = 1,$$

where

$$f(u) = \frac{-1}{2u^3 + 5}, \quad u \ge 0.$$

From

$$f''(u) = \frac{12u(5 - 4u^3)}{(2u^3 + 5)^3},$$

it follows that $f''(u) \ge 0$ for $u \in [0,1]$, hence f is convex on [0,s]. Therefore, we may apply the LHCF-OV Theorem for n=4 and m=2. Using Note 1, we only need to show that $h(x,y) \ge 0$ for $x,y \ge 0$ so that x+2y=3. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{2(u^2 + u + 1)}{7(2u^3 + 5)},$$

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = \frac{2E}{7(2x^3 + 5)(2y^3 + 5)},$$

where

$$E = -2x^{2}y^{2} - 2xy(x+y) - 2(x^{2} + xy + y^{2}) + 5(x+y) + 5.$$

Since

$$E = (1 - 2y)^{2}(2 + 3y - 2y^{2}) = (1 - 2y)^{2}(2 + xy) \ge 0,$$

the proof is completed. From x + 2y = 3 and h(x, y) = 0, we get x = 2, y = 1/2. Therefore, in accordance with Note 4, the equality holds for a = b = c = d = 1, and also for

$$a = 2$$
, $b = 1$, $c = d = \frac{1}{2}$.

Remark. Similarly, we can prove the following generalization.

• If a_1, a_2, \ldots, a_{2n} are nonnegative real numbers so that

$$a_1 \ge \dots \ge a_n \ge 1 \ge a_{n+1} \ge \dots \ge a_{2n}, \quad a_1 + a_2 + \dots + a_{2n} = 2n.$$

then

$$\frac{1}{a_1^3 + n + \frac{1}{n}} + \frac{1}{a_2^3 + n + \frac{1}{n}} + \dots + \frac{1}{a_{2n}^3 + n + \frac{1}{n}} \ge \frac{2n^2}{n^2 + n + 1},$$

with equality for $a_1 = a_2 = \cdots = a_{2n} = 1$, and also for

$$a_1 = n$$
, $a_2 = \dots = a_n = 1$, $a_{n+1} = \dots = a_{2n} = \frac{1}{n}$.

P 2.3. If

$$\frac{-2n-1}{n-1} \le a_1 \le \dots \le a_n \le 1 \le a_{n+1} \le \dots \le a_{2n}, \qquad a_1 + a_2 + \dots + a_{2n} = 2n,$$

then

$$a_1^3 + a_2^3 + \dots + a_{2n}^3 \ge 2n$$
.

(Vasile C., 2007)

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_{2n}) \ge 2nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_{2n}}{2n} = 1,$$

where

$$f(u) = u^3, \quad u \ge \frac{-2n-1}{n-1}.$$

From f''(u) = 6u, it follows that f(u) is convex for $u \ge s$. Therefore, we may apply the RHCF-OV Theorem for 2n numbers and m = n. By Note 1, it suffices to show that $h(x,y) \ge 0$ for all $x,y \ge \frac{-2n-1}{n-1}$ so that x + ny = 1 + n. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = u^2 + u + 1,$$

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = x + y + 1 = \frac{(n-1)x + 2n + 1}{n - 1} \ge 0.$$

From x + ny = 1 + n and h(x, y) = 0, we get

$$x = \frac{-2n-1}{n-1}$$
, $y = \frac{n+2}{n-1}$.

In accordance with Note 4, the equality holds for $a_1 = a_2 = \cdots = a_{2n} = 1$, and also for

$$a_1 = \frac{-2n-1}{n-1}$$
, $a_2 = \dots = a_n = 1$, $a_{n+1} = \dots = a_{2n} = \frac{n+2}{n-1}$.

P 2.4. Let a_1, a_2, \ldots, a_n $(n \ge 3)$ be real numbers so that $a_1 + a_2 + \cdots + a_n = n$. Prove that

(a) if
$$-3 \le a_1 \le \dots \le a_{n-2} \le 1 \le a_{n-1} \le a_n$$
, then
$$a_1^3 + a_2^3 + \dots + a_n^3 \ge a_1^2 + a_2^2 + \dots + a_n^2;$$

(b) if
$$-\frac{n-1}{n-3} \le a_1 \le a_2 \le 1 \le \dots \le a_n$$
, then
$$a_1^3 + a_2^3 + \dots + a_n^3 + n \ge 2(a_1^2 + a_2^2 + \dots + a_n^2).$$

(Vasile C., 2007)

Solution. (a) Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = u^3 - u^2, \quad u \ge -3.$$

For $u \ge 1$, we have

$$f''(u) = 6u - 2 > 0$$

hence f(u) is convex for $u \ge s$. Thus, we may apply the RHCF-OV Theorem for m = n - 2. According to this theorem, it suffices to show that

$$f(x) + 2f(y) \ge 3f(1)$$

for $-3 \le x \le y$ satisfying x + 2y = 3. Using Note 1, we only need to show that $h(x, y) \ge 0$, where

$$h(x,y) = \frac{g(x) - g(y)}{x - y}, \quad g(u) = \frac{f(u) - f(1)}{u - 1}.$$

We have

$$g(u) = u^2,$$

 $h(x, y) = x + y = \frac{x+3}{2} \ge 0.$

From x + 2y = 3 and h(x, y) = 0, we get x = -3 and y = 3. Therefore, in accordance with Note 4, the equality holds for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = -3$$
, $a_2 = \cdots = a_{n-2} = 1$, $a_{n-1} = a_n = 3$.

(b) Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = u^3 - 2u^2$$
, $u \ge -\frac{n-1}{n-3}$.

For $u \ge 1$, we have

$$f''(u) = 6u - 4 > 0$$

hence f(u) is convex for $u \ge s$. Thus, we may apply the RHCF-OV Theorem for m = 2. According to this theorem, it suffices to show that

$$f(x) + (n-2)f(y) \ge (n-1)f(1)$$

for $-\frac{n-1}{n-3} \le x \le y$ satisfying x + (n-2)y = n-1. Using Note 1, we only need to show that $h(x, y) \ge 0$, where

$$h(x,y) = \frac{g(x) - g(y)}{x - y}, \quad g(u) = \frac{f(u) - f(1)}{u - 1}.$$

We have

$$g(u) = u^{2} - u - 1,$$

$$h(x, y) = x + y - 1 = \frac{(n-3)x + n - 1}{n-1} \ge 0.$$

From x + (n-2)y = n-1 and h(x,y) = 0, we get $x = -\frac{n-1}{n-3}$ and $y = \frac{n-1}{n-3}$. Therefore, in accordance with Note 4, the equality holds for $a_1 = a_2 = \cdots = a_n = 1$. If $n \ge 4$, then the equality holds also for

$$a_1 = -\frac{n-1}{n-3}$$
, $a_2 = 1$, $a_3 = \dots = a_n = \frac{n-1}{n-3}$.

P 2.5. Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$ and let $m \in \{1, 2, \ldots, n-1\}$. Prove that

(a) if
$$a_1 \le a_2 \le \cdots \le a_m \le 1$$
, then

$$(n-m)(a_1^3+a_2^3+\cdots+a_n^3-n) \ge (2n-2m+1)(a_1^2+a_2^2+\cdots+a_n^2-n);$$

(b) if
$$a_1 \ge a_2 \ge \cdots \ge a_m \ge 1$$
, then

$$a_1^3 + a_2^3 + \dots + a_n^3 - n \le (n - m + 2)(a_1^2 + a_2^2 + \dots + a_n^2 - n).$$

(Vasile C., 2007)

Solution. (a) Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = (n-m)u^3 - (2n-2m+1)u^2, u \in \mathbb{I} = [0, n].$$

For $u \ge 1$, we have

$$f''(u) = 6(n-m)u - 2(2n-2m+1)$$

$$\geq 6(n-m) - 2(2n-2m+1) = 2(n-m-1) \geq 0,$$

hence f is convex on $\mathbb{I}_{\geq s}$. Thus, by the RHCF-OV Theorem and Note 1, we only need to show that $h(x,y) \geq 0$ for all nonnegative numbers x,y so that x+(n-m)y=n-m+1. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = (n - m)(u^2 + u + 1) - (2n - 2m + 1)(u + 1)$$
$$= (n - m)u^2 - (n - m + 1)u - n + m - 1,$$

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = (n - m)(x + y) - n + m - 1 = (n - m - 1)x \ge 0.$$

From x+(n-m)y=1+n-m and h(x,y)=0, we get x=0, y=(n-m+1)/(n-m). Therefore, in accordance with Note 4, the equality holds for $a_1=a_2=\cdots=a_n=1$, and also for

$$a_1 = 0$$
, $a_2 = \cdots = a_m = 1$, $a_{m+1} = \cdots = a_n = 1 + \frac{1}{n-m}$.

(b) Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = (n-m+2)u^2 - u^3, \quad u \in \mathbb{I} = [0, n].$$

For $u \leq 1$, we have

$$f''(u) = 2(n-m+2-3u) \ge 2(n-m+2-3) = 2(n-m-1) \ge 0$$

hence f is convex on $\mathbb{I}_{\leq s}$. By the LHCF-OV Theorem and Note 1, it suffices to show that $h(x,y) \geq 0$ for all $x,y \geq 0$ so that x + (n-m)y = 1 + n - m. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = (n - m + 2)(u + 1) - (u^2 + u + 1)$$
$$= -u^2 + (n - m + 1)u + n - m + 1,$$

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = -(x + y) + n - m + 1 = (n - m - 1)y \ge 0.$$

From x + (n - m)y = 1 + n - m and h(x, y) = 0, we get x = n - m + 1, y = 0. Therefore, the equality holds for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = n - m + 1$$
, $a_2 = \cdots = a_m = 1$, $a_{m+1} = \cdots = a_n = 0$.

Remark 1. For m = 1, we get the following results:

• If a_1, a_2, \ldots, a_n are nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$(n-1)(a_1^3+a_2^3+\cdots+a_n^3-n) \ge (2n-1)(a_1^2+a_2^2+\cdots+a_n^2-n),$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = 0$$
, $a_2 = a_3 = \dots = a_n = \frac{n}{n-1}$

(or any cyclic permutation).

• If a_1, a_2, \ldots, a_n are nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$a_1^3 + a_2^3 + \dots + a_n^3 - n \le (n+1)(a_1^2 + a_2^2 + \dots + a_n^2 - n),$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = n$$
, $a_2 = a_3 = \dots = a_n = 0$

(or any cyclic permutation).

Remark 2. For m = n - 1, we get the following statements:

• If $a_1, a_2, ..., a_n$ are nonnegative real numbers so that

$$a_1 \le \dots \le a_{n-1} \le 1 \le a_n$$
, $a_1 + a_2 + \dots + a_n = n$,

$$a_1^3 + a_2^3 + \dots + a_n^3 + 2n \ge 3(a_1^2 + a_2^2 + \dots + a_n^2),$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = 0$$
, $a_2 = \cdots = a_{n-1} = 1$, $a_n = 2$.

• If a_1, a_2, \dots, a_n are nonnegative real numbers so that

$$a_1 \ge \dots \ge a_{n-1} \ge 1 \ge a_n$$
, $a_1 + a_2 + \dots + a_n = n$,

then

$$a_1^3 + a_2^3 + \dots + a_n^3 + 2n \le 3(a_1^2 + a_2^2 + \dots + a_n^2),$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = 2$$
, $a_2 = \cdots = a_{n-1} = 1$, $a_n = 0$.

Remark 3. Replacing n with 2n and choosing then m = n, we get the following results:

• If a_1, a_2, \ldots, a_{2n} are nonnegative real numbers so that

$$a_1 \le \dots \le a_n \le 1 \le a_{n+1} \le \dots \le a_{2n}, \quad a_1 + a_2 + \dots + a_{2n} = 2n,$$

then

$$n(a_1^3 + a_2^3 + \dots + a_{2n}^3 - 2n) \ge (2n+1)(a_1^2 + a_2^2 + \dots + a_{2n}^2 - 2n),$$

with equality for $a_1 = a_2 = \cdots = a_{2n} = 1$, and also for

$$a_1 = 0$$
, $a_2 = \dots = a_n = 1$, $a_{n+1} = \dots = a_{2n} = 1 + \frac{1}{n}$.

• If a_1, a_2, \ldots, a_{2n} are nonnegative real numbers so that

$$a_1 \ge \dots \ge a_n \ge 1 \ge a_{n+1} \ge \dots \ge a_{2n}, \quad a_1 + a_2 + \dots + a_{2n} = 2n,$$

then

$$a_1^3 + a_2^3 + \dots + a_{2n}^3 - 2n \le (n+2)(a_1^2 + a_2^2 + \dots + a_{2n}^2 - 2n),$$

with equality for $a_1 = a_2 = \cdots = a_{2n} = 1$, and also for

$$a_1 = n + 1$$
, $a_2 = \cdots = a_n = 1$, $a_{n+1} = \cdots = a_{2n} = 0$.

P 2.6. Let a_1, a_2, \ldots, a_n $(n \ge 3)$ be real numbers so that $a_1 + a_2 + \cdots + a_n = n$. Prove that

(a) if
$$a_1 \le \dots \le a_{n-1} \le 1 \le a_n$$
, then
$$a_1^4 + a_2^4 + \dots + a_n^4 - n \ge 6(a_1^2 + a_2^2 + \dots + a_n^2 - n);$$

(b) if
$$a_1 \le \cdots \le a_{n-2} \le 1 \le a_{n-1} \le a_n$$
, then

$$a_1^4 + a_2^4 + \dots + a_n^4 - n \ge \frac{14}{3}(a_1^2 + a_2^2 + \dots + a_n^2 - n);$$

(c) if
$$a_1 \le a_2 \le 1 \le a_3 \le \cdots \le a_n$$
, then

$$a_1^4 + a_2^4 + \dots + a_n^4 - n \ge \frac{2(n^2 - 3n + 3)}{n^2 - 5n + 7} (a_1^2 + a_2^2 + \dots + a_n^2 - n).$$

(Vasile C., 2009)

Solution. Consider the inequality

$$a_1^4 + a_2^4 + \dots + a_n^4 - n \ge k(a_1^2 + a_2^2 + \dots + a_n^2 - n), \quad k \le 6,$$

and write it as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = u^4 - ku^2, \quad u \in \mathbb{R}.$$

From $f''(u) = 2(6u^2 - k)$, it follows that f is convex for $u \ge 1$. Therefore, we may apply the RHCF-OV Theorem for m = n - 1, m = n - 2 and m = 2, respectively. By Note 1, it suffices to show that $h(x, y) \ge 0$ for all real x, y so that x + (n - m)y = 1 + n - m. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = u^3 + u^2 + u + 1 - k(u + 1),$$

$$g(x) - g(y)$$

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = x^2 + xy + y^2 + x + y + 1 - k.$$

(a) We need to show that $h(x, y) \ge 0$ for k = 6, m = n - 1, x + y = 2. Indeed, we have

$$h(x, y) = 1 - xy = \frac{1}{4}(x - y)^2 \ge 0.$$

From x + y = 2 and h(x, y) = 0, we get x = y = 1. Therefore, in accordance with Note 4, the equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

(b) For k = 14/3, m = n - 2 and x + 2y = 3, we have

$$h(x,y) = \frac{1}{3}(3y - 5)^2 \ge 0.$$

From x + 2y = 3 and h(x, y) = 0, we get x = -1/3 and y = 5/3. Therefore, the equality holds for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = \frac{-1}{3}$$
, $a_2 = \dots = a_{n-2} = 1$, $a_{n-1} = a_n = \frac{5}{3}$.

(c) We have
$$k = \frac{2(n^2 - 3n + 3)}{n^2 - 5n + 7}$$
, $m = 2$ and $x + (n - 2)y = n - 1$, which involve
$$h(x, y) = \frac{[(n^2 - 5n + 7)y - n^2 + 3n - 1]^2}{n^2 - 5n + 7} \ge 0.$$

From x + (n-2)y = n-1 and h(x, y) = 0, we get

$$x = \frac{-n^2 + 5n - 5}{n^2 - 5n + 7}, \quad y = \frac{n^2 - 3n + 1}{n^2 - 5n + 7}.$$

Therefore, the equality holds for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = \frac{-n^2 + 5n - 5}{n^2 - 5n + 7}, \quad a_2 = 1, \quad a_3 = \dots = a_n = \frac{n^2 - 3n + 1}{n^2 - 5n + 7}.$$

P 2.7. Let a, b, c, d, e be nonnegative real numbers so that a + b + c + d + e = 5. Prove that

(a) if $a \ge b \ge 1 \ge c \ge d \ge e$, then $21(a^2 + b^2 + c^2 + d^2 + e^2) \ge a^4 + b^4 + c^4 + d^4 + e^4 + 100;$

(b) if
$$a \ge b \ge c \ge 1 \ge d \ge e$$
, then
$$13(a^2 + b^2 + c^2 + d^2 + e^2) \ge a^4 + b^4 + c^4 + d^4 + e^4 + 60.$$

(Vasile C., 2009)

Solution. Consider the inequality

$$k(a^2 + b^2 + c^2 + d^2 + e^2 - 5) \ge a^4 + b^4 + c^4 + d^4 + e^4 - 5, \quad k \ge 6,$$

and write it as

$$f(a) + f(b) + f(c) + f(d) + f(e) \ge 5f(s), \quad s = \frac{a+b+c+d+e}{5} = 1,$$

where

$$f(u) = ku^2 - u^4, \quad u \ge 0.$$

From $f''(u) = 2(k - 6u^2)$, it follows that f is convex on [0, 1]. Therefore, we may apply the LHCF-OV Theorem for m = 2 and m = 3, respectively. By Note 1, it suffices to show that $h(x, y) \ge 0$ for all $x, y \ge 0$ so that x + (5 - m)y = 6 - m. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = k(u + 1) - (u^3 + u^2 + u + 1),$$

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = k - (x^2 + xy + y^2 + x + y + 1).$$

(a) We need to show that $h(x, y) \ge 0$ for k = 21, n = 5, m = 2 and x + 3y = 4; indeed, we have

$$h(x,y) = 21 - (x^2 + xy + y^2 + x + y + 1) = y(22 - 7y) = y(10 + 3x + 2y) \ge 0.$$

From x+3y=4 and h(x,y)=0, we get x=4 and y=0. Therefore, in accordance with Note 4, the equality holds for a=b=c=d=e=1, and also for

$$a = 4$$
, $b = 1$, $c = d = e = 0$.

(b) We have k = 13, n = 5, m = 3 and x + 2y = 3, which involve

$$h(x,y) = 13 - (x^2 + xy + y^2 + x + y + 1) = y(10 - 3y) = y(4 + 2x + y) \ge 0.$$

From x + 2y = 3 and h(x, y) = 0, we get x = 3 and y = 0. Therefore, the equality holds for a = b = c = d = e = 1, and also for

$$a = 3$$
, $b = c = 1$, $d = e = 0$.

P 2.8. Let $a_1, a_2, ..., a_n$ ($n \ge 3$) be nonnegative numbers so that $a_1 + a_2 + \cdots + a_n = n$. Prove that

(a) if
$$a_1 \ge \cdots \ge a_{n-1} \ge 1 \ge a_n$$
, then

$$7(a_1^3 + a_2^3 + \dots + a_n^3) \ge 3(a_1^4 + a_2^4 + \dots + a_n^4) + 4n;$$

(b) if
$$a_1 \ge \cdots \ge a_{n-2} \ge 1 \ge a_{n-1} \ge a_n$$
, then

$$13(a_1^3 + a_2^3 + \dots + a_n^3) \ge 4(a_1^4 + a_2^4 + \dots + a_n^4) + 9n.$$

(Vasile C., 2009)

Solution. Consider the inequality

$$k(a_1^3 + a_2^3 + \dots + a_n^3 - n) \ge a_1^4 + a_2^4 + \dots + a_n^4 - n, \quad k \ge 2,$$

and write it as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = ku^3 - u^4, \quad u \ge 0.$$

From $f''(u) = 6u(k-2u^2)$, it follows that f is convex on [0,1]. Therefore, we may apply the LHCF-OV Theorem for m=n-1 and m=n-2, respectively. By Note 1, it suffices to show that $h(x,y) \ge 0$ for $x \ge y \ge 0$ so that x + my = 1 + m. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = k(u^2 + u + 1) - (u^3 + u^2 + u + 1),$$

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = -(x^2 + xy + y^2) + (k - 1)(x + y + 1).$$

(a) We need to show that $h(x, y) \ge 0$ for k = 7/3, m = n - 1, x + y = 2. Indeed,

$$h(x,y) = xy \ge 0.$$

From x > y, x + y = 2 and h(x, y) = 0, we get x = 2 and y = 0. Therefore, in accordance with Note 4, the equality holds for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = 2$$
, $a_2 = \cdots = a_{n-1} = 1$, $a_n = 0$.

(b) We have k = 13/4, m = n - 2, x + 2y = 3, which involve

$$h(x, y) = 3y(9-4y) = 3y(3+2x) \ge 0.$$

From x + 2y = 3 and h(x, y) = 0, we get x = 3 and y = 0. Therefore, the equality holds for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = 3$$
, $a_2 = \cdots = a_{n-2} = 1$, $a_{n-1} = a_n = 0$.

P 2.9. If $a_1, a_2, ..., a_n$ are positive real numbers so that $a_1 + a_2 + \cdots + a_n = n$ and

$$a_1 \ge \dots \ge a_m \ge 1 \ge a_{m+1} \ge \dots \ge a_n, \quad m \in \{1, 2, \dots, n-1\},$$

then

$$(n-m+1)^2\left(\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}-n\right)\geq 4(n-m)(a_1^2+a_2^2+\cdots+a_n^2-n).$$

(Vasile C., 2007)

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = \frac{(n-m+1)^2}{u} - 4(n-m)u^2, \quad u > 0.$$

For $u \in (0, 1]$, we have

$$f''(u) = \frac{2(n-m+1)^2}{u^3} - 8(n-m)$$

$$\geq 2(n-m+1)^2 - 8(n-m) = 2(n-m-1)^2 \geq 0.$$

Since f is convex on (0,s], we may apply the LHCF-OV Theorem. By Note 1, it suffices to show that $h(x,y) \ge 0$ for all x,y > 0 so that x + (n-m)y = 1 + n - m. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{-(n - m + 1)^2}{u} - 4(n - m)(u + 1),$$

$$h(x, y) = \frac{(n - m + 1)^2}{xy} - 4(n - m) = \frac{[n - m + 1 - 2(n - m)y]^2}{xy} \ge 0.$$

From x + (n-m)y = 1 + n - m and h(x, y) = 0, we get

$$x = \frac{n-m+1}{2}, \quad y = \frac{n-m+1}{2(n-m)}.$$

Therefore, in accordance with Note 4, the equality holds for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = \frac{n-m+1}{2}$$
, $a_2 = a_3 = \dots = a_m = 1$, $a_{m+1} = \dots = a_n = \frac{n-m+1}{2(n-m)}$.

Remark 1. For m = n - 1, we get the following elegant statement:

• If a_1, a_2, \ldots, a_n are positive real numbers so that

$$a_1 \ge \cdots \ge a_{n-1} \ge 1 \ge a_n$$
, $a_1 + a_2 + \cdots + a_n = n$,

then

$$\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} \ge a_1^2 + a_2^2 + \dots + a_n^2,$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$

Remark 2. Replacing n with 2n and choosing then m = n, we get the following statement:

• If a_1, a_2, \ldots, a_{2n} are positive real numbers so that

$$a_1 \ge \dots \ge a_n \ge 1 \ge a_{n+1} \ge \dots \ge a_{2n}, \quad a_1 + a_2 + \dots + a_{2n} = 2n,$$

then

$$(n+1)^2 \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_{2n}} - 2n\right) \ge 4n(a_1^2 + a_2^2 + \dots + a_{2n}^2 - 2n),$$

with equality for $a_1 = a_2 = \cdots = a_{2n} = 1$, and also for

$$a_1 = \frac{n+1}{2}$$
, $a_2 = a_3 = \dots = a_n = 1$, $a_{n+1} = \dots = a_{2n} = \frac{n+1}{2n}$.

P 2.10. If a_1, a_2, \ldots, a_n are positive real numbers so that $\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} = n$ and

$$a_1 \le \dots \le a_m \le 1 \le a_{m+1} \le \dots \le a_n, \quad m \in \{1, 2, \dots, n-1\},$$

then

$$a_1^2 + a_2^2 + \dots + a_n^2 - n \ge 2\left(1 + \frac{\sqrt{n-m}}{n-m+1}\right)(a_1 + a_2 + \dots + a_n - n).$$

(Vasile C., 2007)

Solution. Replacing each a_i by $1/a_i$, we need to prove that

$$a_1 \ge \dots \ge a_m \ge 1 \ge a_{m+1} \ge \dots \ge a_n$$
, $a_1 + a_2 + \dots + a_n = n$

involves

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = \frac{1}{u^2} - \frac{2k}{u}, \quad k = 1 + \frac{\sqrt{m-n}}{n-m+1}, \quad u > 0.$$

For $u \in (0, 1]$, we have

$$f''(u) = \frac{6 - 4ku}{u^4} \ge \frac{6 - 4k}{u^4} = \frac{2(\sqrt{n - m} - 1)^2}{(n - m + 1)u^4} \ge 0.$$

Thus, f is convex on (0,1]. By the LHCF-OV Theorem and Note 1, it suffices to show that $h(x,y) \ge 0$ for x,y > 0 so that x + (n-m)y = 1 + n - m, where

$$h(x,y) = \frac{g(x) - g(y)}{x - y}, \quad g(u) = \frac{f(u) - f(1)}{u - 1}.$$

We have

$$g(u) = \frac{-1}{u^2} + \frac{2k-1}{u}$$

and

$$h(x,y) = \frac{1}{xy} \left(\frac{1}{x} + \frac{1}{y} + 1 - 2k \right).$$

We only need to show that

$$\frac{1}{x} + \frac{1}{y} \ge 1 + \frac{2\sqrt{n-m}}{n-m+1}.$$

Indeed, using the Cauchy-Schwarz inequality, we get

$$\frac{1}{x} + \frac{1}{y} \ge \frac{(1 + \sqrt{n-m})^2}{x + (n-m)y} = \frac{(1 + \sqrt{n-m})^2}{n-m+1} = 1 + \frac{2\sqrt{n-m}}{n-m+1}.$$

From x + (n-m)y = 1 + n - m and h(x, y) = 0, we get

$$x = \frac{n-m+1}{1+\sqrt{n-m}}, \quad y = \frac{n-m+1}{n-m+\sqrt{n-m}}.$$

By Note 4, we have

$$f(a_1) + f(a_2) + \cdots + f(a_n) = nf(1)$$

for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = \frac{n-m+1}{1+\sqrt{n-m}}, \quad a_2 = a_3 = \dots = a_m = 1, \quad a_{m+1} = \dots = a_n = \frac{n-m+1}{n-m+\sqrt{n-m}}.$$

Therefore, the original inequality becomes an equality for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = \frac{1 + \sqrt{n - m}}{n - m + 1}$$
, $a_2 = a_3 = \dots = a_m = 1$, $a_{m+1} = \dots = a_n = \frac{n - m + \sqrt{n - m}}{n - m + 1}$.

Remark. Replacing n with 2n and choosing then m = n, we get the statement below.

• If a_1, a_2, \ldots, a_{2n} are positive real numbers so that

$$a_1 \le \dots \le a_n \le 1 \le a_{n+1} \le \dots \le a_{2n}, \quad \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_{2n}} = 2n,$$

then

$$a_1^2 + a_2^2 + \dots + a_{2n}^2 - 2n \ge 2\left(1 + \frac{\sqrt{n}}{n+1}\right)(a_1 + a_2 + \dots + a_{2n} - 2n).$$

with equality for $a_1 = a_2 = \cdots = a_{2n} = 1$, and also for

$$a_1 = \frac{1+\sqrt{n}}{n+1}$$
, $a_2 = a_3 = \dots = a_n = 1$, $a_{n+1} = \dots = a_{2n} = \frac{n+\sqrt{n}}{n+1}$.

P 2.11. Let $a_1, a_2, ..., a_n$ ($n \ge 3$) be nonnegative numbers so that $a_1 + a_2 + \cdots + a_n = n$. Prove that

(a) if $a_1 \le \cdots \le a_{n-1} \le 1 \le a_n$, then

$$\frac{1}{a_1^2+2}+\frac{1}{a_2^2+2}+\cdots+\frac{1}{a_n^2+2}\geq \frac{n}{3};$$

(b) if $a_1 \le \cdots \le a_{n-2} \le 1 \le a_{n-1} \le a_n$, then

$$\frac{1}{2a_1^2+3}+\frac{1}{2a_2^2+3}+\cdots+\frac{1}{2a_n^2+3}\geq \frac{n}{5}.$$

(Vasile C., 2007)

Solution. Consider the inequality

$$\frac{1}{a_1^2 + k} + \frac{1}{a_2^2 + k} + \dots + \frac{1}{a_n^2 + k} \ge \frac{n}{1 + k}, \quad k \in [0, 3];$$

and write it as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

and

$$f(u) = \frac{1}{u^2 + k}, \quad u \ge 0.$$

For $u \ge 1$, we have

$$f''(u) = \frac{2(3u^2 - k)}{(u^2 + k)^3} \ge \frac{2(3 - k)}{(u^2 + k)^3} \ge 0,$$

hence f(u) is convex for $u \ge s$. Therefore, we may apply the RHCF-OV Theorem for m = n - 1 and m = n - 2, respectively. By Note 1, it suffices to show that $h(x, y) \ge 0$ for all $x, y \ge 0$ so that x + (n - m)y = 1 + n - m. Since

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{-u - 1}{(1 + k)(u^2 + k)},$$

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = \frac{xy + x + y - k}{(1 + k)(x^2 + k)(y^2 + k)},$$

we only need to show that

$$xy + x + y - k \ge 0$$
.

(a) We need to show that $xy + x + y - k \ge 0$ for k = 2, m = n - 1, x + y = 2; indeed, we have

$$xy + x + y - k = xy \ge 0.$$

From x < y, x + y = 2 and xy + x + y - k = 0, we get x = 0 and y = 2. Therefore, by Note 4, the equality holds for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = 0$$
, $a_2 = \cdots = a_{n-1} = 1$, $a_n = 2$.

(b) We have k = 3/2, m = n - 2, x + 2y = 3, hence

$$xy + x + y - k = \frac{x(4-x)}{2} = \frac{x(1+2y)}{2} \ge 0.$$

From x + 2y = 3 and xy + x + y - k = 0, we get x = 0 and y = 3/2. Therefore, the equality holds for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = 0$$
, $a_2 = \dots = a_{n-2} = 1$, $a_{n-1} = a_n = \frac{3}{2}$.

P 2.12. If $a_1, a_2, ..., a_{2n}$ are nonnegative real numbers so that

$$a_1 \ge \dots \ge a_n \ge 1 \ge a_{n+1} \ge \dots \ge a_{2n}, \quad a_1 + a_2 + \dots + a_{2n} = 2n,$$

then

$$\frac{1}{na_1^2 + n^2 + n + 1} + \frac{1}{na_2^2 + n^2 + n + 1} + \dots + \frac{1}{na_{2n}^2 + n^2 + n + 1} \le \frac{2n}{(n+1)^2}.$$
(Vasile C., 2007)

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_{2n}) \ge 2nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_{2n}}{2n} = 1,$$

where

$$f(u) = \frac{-1}{nu^2 + n^2 + n + 1}, \quad u \ge 0.$$

For $u \in [0, 1]$, we have

$$f''(u) = \frac{2nu(n^2 + n + 1 - 3nu^2)}{(nu^2 + n^2 + n + 1)^3} \ge \frac{2nu(n^2 + n + 1 - 3n)}{(nu^2 + n^2 + n + 1)^3} \ge 0,$$

hence f is convex on [0,s]. Therefore, we may apply the LHCF-OV Theorem for 2n numbers and m=n. By Note 1, it suffices to show that $h(x,y) \ge 0$ for all $x,y \ge 0$ so that x+ny=1+n. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{n(u + 1)}{(n + 1)^2(nu^2 + n^2 + n + 1)},$$

$$h(x,y) = \frac{g(x) - g(y)}{x - y}$$

$$= \frac{n(n^2 + n + 1 - nx - ny - nxy)}{(n+1)^2(nx^2 + n^2 + n + 1)(ny^2 + n^2 + n + 1)}$$

$$= \frac{n(ny-1)^2}{(n+1)^2(nx^2 + n^2 + n + 1)(ny^2 + n^2 + n + 1)} \ge 0.$$

From x + ny = 1 + n and h(x, y) = 0, we get x = n and y = 1/n. Therefore, the equality holds for $a_1 = a_2 = \cdots = a_{2n} = 1$, and also for

$$a_1 = n$$
, $a_2 = \cdots = a_n = 1$, $a_{n+1} = \cdots = a_n = f rac 1n$.

P 2.13. If a, b, c, d, e, f are nonnegative real numbers so that

$$a \ge b \ge c \ge 1 \ge d \ge e \ge f$$
, $a+b+c+d+e+f=6$,

then

$$\frac{3a+4}{3a^2+4} + \frac{3b+4}{3b^2+4} + \frac{3c+4}{3c^2+4} + \frac{3d+4}{3d^2+4} + \frac{3e+4}{3e^2+4} + \frac{3f+4}{3f^2+4} \le 6.$$

(Vasile C., 2009)

Solution. Write the inequality as

$$f(a) + f(b) + f(c) + f(d) + f(e) + f(f) \ge 6f(s), \quad s = \frac{a+b+c+d+e+f}{6} = 1,$$

where

$$f(u) = \frac{-3u - 4}{3u^2 + 4}, \quad u \ge 0.$$

For $u \in [0, 1]$, we have

$$f''(u) = \frac{6(16 - 9u^3) + 216u(1 - u)}{(3u^2 + 4)^3} > 0,$$

hence f is convex on [0,s]. Therefore, we may apply the LHCF-OV Theorem for n=6 and m=3. By Note 1, it suffices to show that $h(x,y) \ge 0$ for all $x,y \ge 0$ so that x+3y=4. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{3u}{3u^2 + 4},$$

$$h(x, y) = \frac{g(x) - g(y)}{x - y} = \frac{3(4 - 3xy)}{(3x^2 + 4)(3y^2 + 4)}$$

$$= \frac{3(x - 2)^2}{(3x^2 + 4)(3y^2 + 4)} \ge 0.$$

From x + 3y = 4 and h(x, y) = 0, we get x = 2 and y = 2/3. Therefore, in accordance with Note 4, the equality holds for a = b = c = d = e = f = 1, and also for

$$a = 2$$
, $b = c = 1$, $d = e = f = \frac{2}{3}$.

P 2.14. If a, b, c, d, e, f are nonnegative real numbers so that

$$a \ge b \ge 1 \ge c \ge d \ge e \ge f$$
, $a+b+c+d+e+f=6$,

then

$$\frac{a^2-1}{(2a+7)^2} + \frac{b^2-1}{(2b+7)^2} + \frac{c^2-1}{(2c+7)^2} + \frac{d^2-1}{(2d+7)^2} + \frac{e^2-1}{(2e+7)^2} + \frac{f^2-1}{(2f+7)^2} \ge 0.$$
(Vasile C., 2009)

Solution. Write the inequality as

$$f(a) + f(b) + f(c) + f(d) + f(e) + f(f) \ge 6f(s), \quad s = \frac{a+b+c+d+e+f}{6} = 1,$$

where

$$f(u) = \frac{u^2 - 1}{(2u + 7)^2}, \quad u \ge 0.$$

For $u \in [0, 1]$, we have

$$f''(u) = \frac{2(37 - 28u)}{(2u + 7)^4} > 0,$$

hence f is convex on [0,s]. Therefore, we may apply the LHCF-OV Theorem for n=6 and m=2. By Note 1, it suffices to show that $h(x,y) \ge 0$ for all $x,y \ge 0$ so that x+4y=5. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{u + 1}{(2u + 7)^2},$$

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = \frac{21 - 4x - 4y - 4xy}{(2x + 7)^2(2y + 7)^2}$$
$$= \frac{(x - 4)^2}{(2x + 7)^2(2y + 7)^2} \ge 0.$$

From x + 4y = 5 and h(x, y) = 0, we get x = 4 and y = 1/4. Therefore, the equality holds only for a = b = c = d = e = f = 1, and also for

$$a = 4$$
, $b = 1$, $c = d = e = f = \frac{1}{4}$.

P 2.15. If a, b, c, d, e, f are nonnegative real numbers so that

$$a \le b \le 1 \le c \le d \le e \le f$$
, $a + b + c + d + e + f = 6$,

then

$$\frac{a^2-1}{(2a+5)^2} + \frac{b^2-1}{(2b+5)^2} + \frac{c^2-1}{(2c+5)^2} + \frac{d^2-1}{(2d+5)^2} + \frac{e^2-1}{(2e+5)^2} + \frac{f^2-1}{(2f+5)^2} \le 0.$$

(Vasile C., 2009)

Solution. Write the inequality as

$$f(a) + f(b) + f(c) + f(d) + f(e) + f(f) \ge 6f(s), \quad s = \frac{a+b+c+d+e+f}{6} = 1,$$

where

$$f(u) = \frac{1 - u^2}{(2u + 5)^2}, \quad u \ge 0.$$

For $u \ge 1$, we have

$$f''(u) = \frac{2(20u - 13)}{(2u + 5)^4} > 0,$$

hence f(u) is convex for $u \ge s$. Therefore, we may apply the RHCF-OV Theorem for n = 6 and m = 2. By Note 1, it suffices to show that $h(x, y) \ge 0$ for all $x, y \ge 0$ so that x + 4y = 5. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{-u - 1}{(2u + 5)^2},$$

$$h(x,y) = \frac{g(x) - g(y)}{x - y}$$

$$= \frac{4xy + 4x + 4y - 5}{(2x + 5)^2(2y + 5)^2}$$

$$= \frac{4xy + 3x}{(2x + 5)^2(2y + 5)^2} \ge 0.$$

From x + 4y = 5 and h(x, y) = 0, we get x = 0 and y = 5/4. Therefore, in accordance with Note 4, the equality holds only for a = b = c = d = e = f = 1, and also for

$$a = 0$$
, $b = 1$, $c = d = e = f = \frac{5}{4}$.

P 2.16. If a, b, c are nonnegative real numbers so that

$$a \le b \le 1 \le c$$
, $a+b+c=3$,

then

$$\sqrt{\frac{2a}{b+c}} + \sqrt{\frac{2b}{c+a}} + \sqrt{\frac{2c}{a+b}} \ge 3.$$

(Vasile C., 2008)

Solution. Write the inequality as

$$f(a) + f(b) + f(c) \ge 3f(s), \quad s = \frac{a+b+c}{3} = 1,$$

where

$$f(u) = \sqrt{\frac{u}{3-u}}, \quad u \in [0,3).$$

From

$$f''(u) = \frac{3(4u-3)}{4u^{3/2}(3-u)^{5/2}},$$

it follows that f(u) is convex for $u \ge s$. Therefore, we may apply the RHCF-OV Theorem for n = 3 and m = 2. So, it suffices to show that

$$f(x) + f(y) \ge 2f(1)$$

for x + y = 2, $0 \le x \le 1 \le y$. This inequality is true if $g(x) \ge 0$, where

$$g(x) = f(x) + f(y) - 2f(1), \quad y = 2 - x, \quad x \in [0, 1].$$

Since y' = -1, we have

$$g'(x) = f'(x) - f'(y) = \frac{3}{2} \left[\frac{1}{\sqrt{x(3-x)^3}} - \frac{1}{\sqrt{y(3-y)^3}} \right].$$

The derivative f'(x) has the same sign as h(x), where

$$h(x) = y(3-y)^3 - x(3-x)^3 = (2-x)(1+x)^3 - x(3-x)^3$$

= 2(1-11x+15x²-5x³) = 2(1-x)(1-10x+5x²).

Let

$$x_1 = 1 - \frac{2}{\sqrt{5}}.$$

Since $h(x_1) = 0$, h(x) > 0 for $x \in [0, x_1)$ and h(x) < 0 for $x \in (x_1, 1)$, it follows that g is increasing on $[0, x_1]$ and decreasing on $[x_1, 1]$. From

$$g(0) = f(0) + f(2) - 2f(1) = 0$$

$$g(1) = f(1) + f(1) - 2f(1) = 0,$$

it follows that $g(x) \ge 0$ for $x \in [0, 1]$.

The equality holds for a = b = c = 1, and also for a = 0, b = 1 and c = 2.

P 2.17. If a_1, a_2, \ldots, a_8 are nonnegative real numbers so that

$$a_1 \ge a_2 \ge a_3 \ge a_4 \ge 1 \ge a_5 \ge a_6 \ge a_7 \ge a_8$$
, $a_1 + a_2 + \dots + a_8 = 8$,

then

$$(a_1^2+1)(a_2^2+1)\cdots(a_8^2+1) \ge (a_1+1)(a_2+1)\cdots(a_8+1).$$

(Vasile C., 2008)

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_8) \ge 8f(s), \quad s = \frac{a_1 + a_2 + \dots + a_8}{8} = 1,$$

where

$$f(u) = \ln(u^2 + 1) - \ln(u + 1), \quad u \ge 0.$$

For $u \in [0, 1]$, we have

$$f''(u) = \frac{2(1-u^2)}{(u^2+1)^2} + \frac{1}{(u+1)^2} = \frac{(u^2-u^4) + 4u(1-u^2) + u^2 + 3}{(u^2+1)^2(u+1)^2} > 0.$$

Therefore, f is convex on [0,s]. According to the LHCF-OV Theorem applied for n=8 and m=4, it suffices to show that $f(x)+4f(y) \ge 5f(1)$ for $x,y \ge 0$ so that x+4y=5. Using Note 2, we only need to show that $H(x,y) \ge 0$ for $x,y \ge 0$ so that x+4y=5, where

$$H(x,y) = \frac{f'(x) - f'(y)}{x - y} = \frac{2(1 - xy)}{(x^2 + 1)(y^2 + 1)} + \frac{1}{(x + 1)(y + 1)}.$$

The inequality $H(x, y) \ge 0$ is equivalent to

$$2(1-xy)(x+1)(y+1)+(x^2+1)(y^2+1) \ge 0.$$

Since $2(x^2+1) \ge (x+1)^2$ and $2(y^2+1) \ge (y+1)^2$, it suffices to prove that

$$8(1-xy) + (x+1)(y+1) \ge 0.$$

Indeed,

$$8(1-xy) + (x+1)(y+1) = 28x^2 - 38x + 14 = 28(x-19/28)^2 + 31/28 > 0.$$

The proof is completed. The equality holds for $a_1 = a_2 = \cdots = a_8$.

P 2.18. If a, b, c, d are real numbers so that

$$\frac{-1}{2} \le a \le b \le 1 \le c \le d$$
, $a+b+c+d=4$,

then

$$7\left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{d^2}\right) + 3\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}\right) \ge 40.$$

(Vasile C., 2011)

Solution. We have

$$d = 4 - a - b - c \le 4 + \frac{1}{2} + \frac{1}{2} - 1 = 4.$$

Write the inequality as

$$f(a) + f(b) + f(c) + f(d) \ge 4f(s), \quad s = \frac{a+b+c+d}{4} = 1,$$

where

$$f(u) = \frac{7}{u^2} + \frac{3}{u}, \quad u \in \mathbb{I} = \left[\frac{-1}{2}, 4\right] \setminus \{0\}.$$

Clearly, f(u) is convex for $u \ge 1$ (because $\frac{7}{u^2}$ and $\frac{3}{u}$ are convex). According to Note 3, we may apply the RHCF-OV Theorem for n=4 and m=2. By Note 1, we only need to show that $h(x,y) \ge 0$ for $x,y \in \mathbb{I}$ so that x+2y=3, where

$$h(x,y) = \frac{g(x) - g(y)}{x - y}, \quad g(u) = \frac{f(u) - f(1)}{u - 1}.$$

We have

$$g(u) = -\frac{7}{u^2} - \frac{10}{u},$$

$$h(x,y) = \frac{7(x+y) + 10xy}{x^2y^2} = \frac{(2x+1)(-5x+21)}{2x^2y^2} \ge 0.$$

From x + 2y = 3 and h(x, y) = 0, we get x = -1/2, y = 7/3. Therefore, in accordance with Note 4, the equality holds for a = b = c = d = 1, and also for

$$a = \frac{-1}{2}$$
, $b = 1$, $c = d = \frac{7}{4}$.

P 2.19. Let a, b, c, d be real numbers. Prove that

(a) if
$$-1 \le a \le b \le c \le 1 \le d$$
, then

$$3\left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{d^2}\right) \ge 8 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d};$$

(b) if
$$-1 \le a \le b \le 1 \le c \le d$$
, then

$$2\left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{d^2}\right) \ge 4 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}.$$

(Vasile C., 2011)

Solution. (a) We have

$$d = 4 - a - b - c \le 4 + 1 + 1 + 1 = 7.$$

Write the desired inequality as

$$f(a) + f(b) + f(c) + f(d) \ge 4f(s), \quad s = \frac{a+b+c+d}{4} = 1,$$

where

$$f(u) = \frac{3}{u^2} - \frac{1}{u}, \quad u \in \mathbb{I} = [-1, 7] \setminus \{0\}.$$

From

$$f''(u) = \frac{2(9-u)}{u^4} > 0,$$

it follows that f is convex on $\mathbb{I}_{\geq s}$. According to Note 3, we may apply the RHCF-OV Theorem for n=4 and m=3. By Note 1, it suffices to show that $h(x,y)\geq 0$ for all $x,y\in\mathbb{I}$ so that x+y=2. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = -\frac{2}{u} - \frac{3}{u^2}$$

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = \frac{3(x + y) + 2xy}{x^2 y^2}$$
$$= \frac{2(x + 1)(3 - x)}{x^2 y^2} = \frac{2(x + 1)(y + 1)}{x^2 y^2} \ge 0.$$

From x < y, x + y = 2 and h(x, y) = 0, we get x = -1 and y = 3. Therefore, in accordance with Note 4, the equality holds for a = b = c = d = 1, and also for

$$a = -1$$
, $b = c = 1$, $d = 3$.

(b) We have

$$d = 4 - a - b - c < 4 + 1 + 1 - 1 = 5$$
.

Write the desired inequality as

$$f(a) + f(b) + f(c) + f(d) \ge 4f(s), \quad s = \frac{a+b+c+d}{4} = 1,$$

where

$$f(u) = \frac{2}{u^2} - \frac{1}{u}, \quad u \in \mathbb{I} = [-1, 5] \setminus \{0\}.$$

From

$$f''(u) = \frac{2(6-u)}{u^4} > 0,$$

it follows that f is convex on $\mathbb{I}_{\geq s}$. According to Note 3, we may apply the RHCF-OV Theorem for n=4 and m=2. By Note 1, it suffices to show that $h(x,y)\geq 0$ for all $x,y\in\mathbb{I}$ so that x+2y=3. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = -\frac{1}{u} - \frac{2}{u^2},$$

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = \frac{2(x+y) + xy}{x^2 y^2}$$
$$= \frac{(x+1)(6-x)}{2x^2 y^2} \ge 0.$$

From x+2y=3 and h(x,y)=0, we get x=-1 and y=2. Therefore, the equality holds for a=b=c=d=1, and also for

$$a = -1$$
, $b = 1$, $c = d = 2$.

P 2.20. If a, b, c, d are positive real numbers so that

$$a \ge b \ge 1 \ge c \ge d$$
, $abcd = 1$,

then

$$a^{2} + b^{2} + c^{2} + d^{2} - 4 \ge 18 \left(a + b + c + d - \frac{1}{a} - \frac{1}{b} - \frac{1}{c} - \frac{1}{d} \right).$$
(Vasile C., 2008)

Solution. Using the substitution

$$a = e^x$$
, $b = e^y$, $c = e^z$, $d = e^w$,

we need to show that

$$f(x) + f(y) + f(z) + f(w) \ge 4f(s)$$
,

where

$$x \ge y \ge 0 \ge z \ge w$$
, $s = \frac{x + y + z + w}{4} = 0$,
 $f(u) = e^{2u} - 1 - 18(e^u - e^{-u})$, $u \in \mathbb{R}$.

For $u \leq 0$, we have

$$f''(u) = 4e^{2u} + 18(e^{-u} - e^{u}) > 0,$$

hence f is convex on $(-\infty, s]$. By the LHCF-OV Theorem applied for n = 4 and m = 2, it suffices to show that $f(x) + 2f(y) \ge 3f(0)$ for all real x, y so that x + 2y = 0; that is, to show that

$$a^{2} + 2b^{2} - 3 - 18\left(a + 2b - \frac{1}{a} - \frac{2}{b}\right) \ge 0$$

for all a, b > 0 so that $ab^2 = 1$. This inequality is equivalent to

$$\frac{(b^2-1)^2(2b^2+1)}{b^4} + \frac{18(b-1)^3(b+1)}{b^2} \ge 0,$$

$$(b-1)^2(2b-1)^2(b+1)(5b+1)$$

 $\frac{(b-1)^2(2b-1)^2(b+1)(5b+1)}{b^4} \ge 0.$

The proof is completed. The equality holds for a = b = c = d = 1, and also for

$$a = 4$$
, $b = 1$, $c = d = 1/2$.

P 2.21. If a, b, c, d are positive real numbers so that

$$a \le b \le 1 \le c \le d$$
, $abcd = 1$,

then

$$\sqrt{a^2 - a + 1} + \sqrt{b^2 - b + 1} + \sqrt{c^2 - c + 1} + \sqrt{d^2 - d + 1} \ge a + b + c + d.$$

(Vasile C., 2008)

Solution. Using the substitution

$$a = e^x$$
, $b = e^y$, $c = e^z$, $d = e^w$,

we need to show that

$$f(x) + f(y) + f(z) + f(w) \ge 4f(s),$$

where

$$x \le y \le 0 \le z \le w$$
, $s = \frac{x + y + z + w}{4} = 0$,

$$f(u) = \sqrt{e^{2u} - e^u + 1} - e^u, \quad u \in \mathbb{R}.$$

We claim that f is convex for $u \ge 0$. Since

$$e^{-u}f''(u) = \frac{4e^{3u} - 6e^{2u} + 9e^{u} - 2}{4(e^{2u} - e^{u} + 1)^{3/2}} - 1,$$

we need to show that

$$4t^3 - 6t^2 + 9t - 2 > 0$$

and

$$(4t^3 - 6t^2 + 9t - 2)^2 \ge 16(t^2 - t + 1)^3$$

where $t = e^u \ge 1$. Indeed, we have

$$4t^3 - 6t^2 + 9t - 2 \ge 4t^3 - 6t^2 + 7t > 4t^3 - 6t^2 + 2t = 2t(t-1)(2t-1) \ge 0$$

and

$$(4t^3 - 6t^2 + 9t - 2)^2 - 16(t^2 - t + 1)^3 = 12t^3(t - 1) + 9t^2 + 12(t - 1) > 0.$$

By the RHCF-OV Theorem applied for n = 4 and m = 2, it suffices to show that $f(x) + 2f(y) \ge 3f(0)$ for all real x, y so that x + 2y = 0; that is, to show that

$$\sqrt{a^2-a+1}+2\sqrt{b^2-b+1} \ge a+2b$$

for all a, b > 0 so that $ab^2 = 1$. This inequality is equivalent to

$$\frac{\sqrt{b^4 - b^2 + 1}}{b^2} + 2\sqrt{b^2 - b + 1} \ge \frac{1}{b^2} + 2b,$$

$$\frac{\sqrt{b^4 - b^2 + 1} - 1}{b^2} + 2(\sqrt{b^2 - b + 1} - 1) \ge 0,$$

$$\frac{b^2 - 1}{\sqrt{b^4 - b^2 + 1} + 1} + \frac{2(1 - b)}{\sqrt{b^2 - b + 1} + b} \ge 0.$$

Since

$$\frac{b^2 - 1}{\sqrt{b^4 - b^2 + 1} + 1} \ge \frac{b^2 - 1}{b^2 + 1},$$

it suffices to show that

$$\frac{b^2 - 1}{b^2 + 1} + \frac{2(1 - b)}{\sqrt{b^2 - b + 1} + b} \ge 0,$$

which is equivalent to

$$(b-1)\left[\frac{b+1}{b^2+1} - \frac{2}{\sqrt{b^2-b+1}+b}\right] \ge 0,$$

$$(b-1)\Big[(b+1)\sqrt{b^2-b+1}-b^2+b-2\Big] \ge 0,$$

$$\frac{(b-1)^2(3b^2-2b+3)}{(b+1)\sqrt{b^2-b+1}+b^2-b+2} \ge 0.$$

The last inequality is clearly true. The equality holds for a = b = c = d = 1.

P 2.22. If a, b, c, d are positive real numbers so that

$$a \le b \le c \le 1 \le d$$
, $abcd = 1$,

then

$$\frac{1}{a^3+3a+2}+\frac{1}{b^3+3b+2}+\frac{1}{c^3+3c+2}+\frac{1}{d^3+3d+2}\geq \frac{2}{3}.$$
 (Vasile C., 2007)

Solution. Using the substitution

$$a = e^x$$
, $b = e^y$, $c = e^z$, $d = e^w$,

we need to show that

$$f(x) + f(y) + f(z) + f(w) \ge 4f(s),$$

where

$$x \le y \le z \le 0 \le w$$
, $s = \frac{x + y + z + w}{4} = 0$,
 $f(u) = \frac{1}{e^{3u} + 3e^{u} + 2}$, $u \in \mathbb{R}$.

We claim that f is convex for $u \ge 0$. Indeed, denoting $t = e^u$, $t \ge 1$, we have

$$f''(u) = \frac{3t(3t^5 + 2t^3 - 6t^2 + 3t - 2)}{(t^3 + 3t + 2)^3}$$
$$= \frac{3t(t - 1)(3t^4 + 3t^3 + 5t^2 - t + 2)}{(t^3 + 3t + 2)^3} \ge 0.$$

By the RHCF-OV Theorem applied for n = 4 and m = 3, it suffices to show that $f(x) + f(y) \ge 2f(0)$ for all real x, y so that x + y = 0; that is, to show that

$$\frac{1}{a^3 + 3a + 2} + \frac{1}{b^3 + 3b + 2} \ge \frac{1}{3}$$

for all a, b > 0 so that ab = 1. This inequality is equivalent to

$$(a-1)^4(a^2+a+1) \ge 0.$$

The equality holds for a = b = c = d = 1.

P 2.23. If a_1, a_2, \ldots, a_n are positive real numbers so that

$$a_1 \ge \cdots \ge a_{n-1} \ge 1 \ge a_n$$
, $a_1 a_2 \cdots a_n = 1$,

then

$$\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} \ge a_1 + a_2 + \dots + a_n.$$

(Vasile C., 2007)

Solution. Using the substitution

$$a_i = e^{x_i}, \quad i = 1, 2, \dots, n,$$

we need to show that

$$f(x_1) + f(x_2) + \dots + f(x_n) \ge nf(s),$$

where

$$x_1 \ge \dots \ge x_{n-1} \ge 0 \ge x_n, \quad s = \frac{x_1 + x_2 + \dots + x_n}{n} = 0,$$

 $f(u) = e^{-u} - e^u, \quad u \in \mathbb{R}.$

For $u \leq 0$, we have

$$f''(u) = e^{-u} - e^{u} \ge 0,$$

therefore f(u) is convex for $u \le s$. By the LHCF-OV Theorem applied for m = n - 1, it suffices to show that $f(x) + f(y) \ge 2f(0)$ for all real x, y so that x + y = 0; that is, to show that

$$\frac{1}{a} - a + \frac{1}{b} - b \ge 0$$

for all a, b > 0 so that ab = 1. This is true since

$$\frac{1}{a} - a + \frac{1}{b} - b = \frac{1}{a} - a + a - \frac{1}{a} = 0.$$

The equality holds for

$$a_1 \ge 1$$
, $a_2 = \cdots = a_{n-1} = 1$, $a_n = 1/a_1$.

P 2.24. Let a_1, a_2, \ldots, a_n be positive real numbers so that

$$a_1 \leq \cdots \leq a_{n-1} \leq 1 \leq a_n, \quad a_1 a_2 \cdots a_n = 1.$$

If $k \ge 1$, then

$$\frac{1}{1+ka_1} + \frac{1}{1+ka_2} + \dots + \frac{1}{1+ka_n} \ge \frac{n}{1+k}.$$

(Vasile C., 2007)

Solution. Using the substitution

$$a_i = e^{x_i}, \quad i = 1, 2, ..., n,$$

we need to show that

$$f(x_1) + f(x_2) + \dots + f(x_n) \ge nf(s),$$

where

$$x_1 \le \dots \le x_{n-1} \le 0 \le x_n, \quad s = \frac{x_1 + x_2 + \dots + x_n}{n} = 0,$$

$$f(u) = \frac{1}{1 + ke^u}, \quad u \in \mathbb{R}.$$

For $u \ge 0$, we have

$$f''(u) = \frac{ke^{u}(ke^{u} - 1)}{(1 + ke^{u})^{3}} \ge 0,$$

therefore f(u) is convex for $u \ge s$. By the RHCF-OV Theorem applied for m = n - 1, it suffices to show that $f(x) + f(y) \ge 2f(0)$ for all real x, y so that x + y = 0; that is, to show that

$$\frac{1}{1+ka} + \frac{1}{1+kb} \ge \frac{2}{1+k}$$

for all a, b > 0 so that ab = 1. This is true since

$$\frac{1}{1+ka} + \frac{1}{1+kb} - \frac{2}{1+k} = \frac{k(k-1)(a-1)^2}{(1+ka)(a+k)} \ge 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$. If k = 1, then the equality holds for

$$a_1 \le 1$$
, $a_2 = \cdots = a_{n-1} = 1$, $a_n = 1/a_1$.

P 2.25. If $a_1, a_2, ..., a_9$ are positive real numbers so that

$$a_1 \leq \cdots \leq a_8 \leq 1 \leq a_9, \quad a_1 a_2 \cdots a_9 = 1,$$

then

$$\frac{1}{(a_1+2)^2} + \frac{1}{(a_2+2)^2} + \dots + \frac{1}{(a_9+2)^2} \ge 1.$$

(Vasile C., 2007)

Solution. Using the substitution

$$a_i = e^{x_i}, \quad i = 1, 2, \dots, 9,$$

we can write the inequality as

$$f(x_1) + f(x_2) + \dots + f(x_9) \ge 9f(s),$$

where

$$x_1 \le \dots \le x_8 \le 0 \le x_9, \quad s = \frac{x_1 + x_2 + \dots + x_9}{9} = 0,$$

$$f(u) = \frac{1}{(e^u + 2)^2}, \quad u \in \mathbb{R}.$$

For $u \in [0, \infty)$, we have

$$f''(u) = \frac{4e^u(e^u - 1)}{(e^u + 2)^4} \ge 0,$$

hence f is convex on $[s, \infty)$. According to the RHCF-OV Theorem (case n = 9 and m = 8), it suffices to show that $f(x) + f(y) \ge 2f(0)$ for all real x, y so that x + y = 0; that is, to show that

$$\frac{1}{(a+2)^2} + \frac{1}{(b+2)^2} \ge \frac{2}{9}$$

for all a, b > 0 so that ab = 1. Write this inequality as

$$\frac{b^2}{(2b+1)^2} + \frac{1}{(b+2)^2} \ge \frac{2}{9},$$

which is equivalent to the obvious inequality

$$(b-1)^4 \ge 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_9 = 1$.

P 2.26. Let a_1, a_2, \ldots, a_n be positive real numbers so that

$$a_1 \leq \cdots \leq a_{n-1} \leq 1 \leq a_n$$
, $a_1 a_2 \cdots a_n = 1$.

If $p, q \ge 0$ so that

$$p+q \ge 1 + \frac{2pq}{p+4q},$$

then

$$\frac{1}{1+pa_1+qa_1^2} + \frac{1}{1+pa_2+qa_2^2} + \dots + \frac{1}{1+pa_n+qa_n^2} \ge \frac{n}{1+p+q}.$$
(Vasile C., 2007)

Solution. Using the substitution

$$a_i = e^{x_i}, \quad i = 1, 2, ..., n,$$

we can write the inequality as

$$f(x_1) + f(x_2) + \dots + f(x_n) \ge nf(s),$$

where

$$x_1 \le \dots \le x_{n-1} \le 0 \le x_n, \quad s = \frac{x_1 + x_2 + \dots + x_n}{n} = 0,$$

$$f(u) = \frac{1}{1 + pe^u + qe^{2u}}, \quad u \in \mathbb{R}.$$

We have

$$f''(u) = \frac{e^{u} f_1(u)}{(1 + pe^{u} + qe^{2u})^3},$$

where

$$f_1(u) = 4q^2e^{3u} + 3pqe^{2u} + (p^2 - 4q)e^u - p.$$

The hypothesis $p + q \ge 1 + \frac{2pq}{p + 4q}$ is equivalent to

$$p^2 + 3pq + 4q^2 \ge p + 4q.$$

For $u \in [0, \infty)$, we have

$$f_1(u) \ge 4q^2e^u + 3pqe^u + (p^2 - 4q)e^u - p \ge p(e^u - 1) \ge 0,$$

hence f is convex on $[s, \infty)$. According to the RHCF-OV Theorem (case m = n - 1), it suffices to show that $f(x) + f(y) \ge 2f(0)$ for all real x, y so that x + y = 0; that is, to show that

$$\frac{1}{1+pa+qa^2} + \frac{1}{1+pb+qb^2} \ge \frac{2}{1+p+q}$$

for all a, b > 0 so that ab = 1. Write this inequality as

$$\frac{1}{1+pa+qa^2} + \frac{a^2}{a^2+pa+q} \ge \frac{2}{1+p+q}$$

which is equivalent to

$$(a-1)^2h(a)\geq 0,$$

where

$$h(a) = q(p+q-1)(a^2+1) + (p^2+pq+2q^2-p-2q)a$$

$$\geq 2q(p+q-1)a + (p^2+pq+2q^2-p-2q)a$$

$$= (p^2+3pq+4q^2-p-4q)a \geq 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

Remark. For p = 1, q = 1/4 and n = 9, we get the preceding P 2.25.

P 2.27. Let a_1, a_2, \ldots, a_n be positive real numbers so that

$$a_1 \leq \cdots \leq a_{n-1} \leq 1 \leq a_n$$
, $a_1 a_2 \cdots a_n = 1$.

If $m \ge 1$ and $0 < k \le m$, then

$$\frac{1}{(a_1+k)^m} + \frac{1}{(a_2+k)^m} + \dots + \frac{1}{(a_n+k)^m} \ge \frac{n}{(1+k)^m}.$$

(Vasile C., 2007)

Solution. Using the substitution

$$a_i = e^{x_i}, \quad i = 1, 2, \dots, n,$$

we can write the inequality as

$$f(x_1) + f(x_2) + \dots + f(x_n) \ge nf(s),$$

where

$$x_1 \le \dots \le x_{n-1} \le 0 \le x_n, \quad s = \frac{x_1 + x_2 + \dots + x_n}{n} = 0,$$

$$f(u) = \frac{1}{(e^u + k)^m}, \quad u \in \mathbb{R}.$$

For $u \in [0, \infty)$, we have

$$f''(u) = \frac{me^{u}(me^{u} - k)}{(e^{u} + k)^{m+2}} \ge 0,$$

hence f is convex on $[s, \infty)$. According to the RHCF-OV Theorem (case m = n-1), it suffices to show that $f(x) + f(y) \ge 2f(0)$ for all real x, y so that $x \le y$ and x + y = 0; that is, to show that

$$\frac{1}{(a+k)^m} + \frac{1}{(b+k)^m} \ge \frac{2}{(1+k)^m}$$

for all a, b > 0 so that $a \in (0, 1]$ and ab = 1. Write this inequality as $g(a) \ge 0$, where

$$g(a) = \frac{1}{(a+k)^m} + \frac{a^m}{(ka+1)^m} - \frac{2}{(1+k)^m},$$

with

$$\frac{g'(a)}{m} = \frac{a^{m-1}(a+k)^{m+1} - (ka+1)^{m+1}}{(a+k)^{m+1}(ka+1)^{m+1}}.$$

If $g'(a) \le 0$ for $a \in (0,1]$, then g is decreasing, hence $g(a) \ge g(1) = 0$. Thus, it suffices to show that

$$a^{m-1} \le \left(\frac{ka+1}{a+k}\right)^{m+1}.$$

Since

$$\frac{ka+1}{a+k} - \frac{ma+1}{a+m} = \frac{(m-k)(1-a^2)}{(a+k)(a+m)} \ge 0,$$

we only need to show that

$$a^{m-1} \le \left(\frac{ma+1}{a+m}\right)^{m+1},$$

which is equivalent to $h(a) \le 0$ for $a \in (0,1]$, where

$$h(a) = (m-1)\ln a + (m+1)\ln(a+m) - (m+1)\ln(ma+1),$$

with

$$h'(a) = \frac{m-1}{a} + \frac{m+1}{a+m} - \frac{m(m+1)}{ma+1} = \frac{m(m-1)(a-1)^2}{a(a+m)(ma+1)}.$$

Since $h'(a) \ge 0$, h(a) is increasing for $a \in (0,1]$, therefore $h(a) \le h(1) = 0$. The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

Remark. For k = m = 2 and n = 9, we get the inequality in P 2.25.

P 2.28. If a_1, a_2, \ldots, a_n are positive real numbers so that

$$a_1 \leq \cdots \leq a_{n-1} \leq 1 \leq a_n$$
, $a_1 a_2 \cdots a_n = 1$,

then

$$\frac{1}{\sqrt{1+3a_1}} + \frac{1}{\sqrt{1+3a_2}} + \dots + \frac{1}{\sqrt{1+3a_n}} \ge \frac{n}{2}.$$

(Vasile C., 2007)

Solution. Using the substitution

$$a_i = e^{x_i}, \quad i = 1, 2, \dots, n,$$

we can write the inequality as

$$f(x_1) + f(x_2) + \dots + f(x_n) \ge nf(s),$$

where

$$x_1 \le \dots \le x_{n-1} \le 0 \le x_n, \quad s = \frac{x_1 + x_2 + \dots + x_n}{n} = 0,$$

$$f(u) = \frac{1}{\sqrt{1 + 3e^u}}, \quad u \in \mathbb{R}.$$

For $u \ge 0$, we have

$$f''(u) = \frac{3e^{u}(3e^{u} - 2)}{4(1 + 3e^{u})^{5/2}} > 0,$$

hence f is convex on $[s, \infty)$. According to the RHCF-OV Theorem (case m = n-1), it suffices to show that $f(x) + f(y) \ge 2f(0)$ for all real x, y so that x + y = 0; that is, to show that

$$\frac{1}{\sqrt{1+3a}} + \frac{1}{\sqrt{1+3b}} \ge 1$$

for all a, b > 0 so that ab = 1. Write this inequality as

$$\frac{1}{\sqrt{1+3a}} + \sqrt{\frac{a}{a+3}} \ge 1.$$

Substituting $\frac{1}{\sqrt{1+3a}} = t$, 0 < t < 1, the inequality becomes

$$\sqrt{\frac{1-t^2}{8t^2+1}} \ge 1-t.$$

By squaring, we get

$$t(1-t)(2t-1)^2 \ge 0,$$

which is true. The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

P 2.29. Let a_1, a_2, \ldots, a_n be positive real numbers so that

$$a_1 \leq \cdots \leq a_{n-1} \leq 1 \leq a_n, \quad a_1 a_2 \cdots a_n = 1.$$

If 0 < m < 1 and $0 < k \le \frac{1}{2^{1/m} - 1}$, then

$$\frac{1}{(a_1+k)^m} + \frac{1}{(a_2+k)^m} + \dots + \frac{1}{(a_n+k)^m} \ge \frac{n}{(1+k)^m}.$$

(Vasile C., 2007)

Solution. By Bernoulli's inequality, we have

$$2^{1/m} > 1 + \frac{1}{m},$$

hence

$$k \le \frac{1}{2^{1/m} - 1} < m < 1.$$

Using the substitution

$$a_i = e^{x_i}, \quad i = 1, 2, \dots, n,$$

we can write the inequality as

$$f(x_1) + f(x_2) + \dots + f(x_n) \ge nf(s),$$

where

$$x_1 \le \dots \le x_{n-1} \le 0 \le x_n, \quad s = \frac{x_1 + x_2 + \dots + x_n}{n} = 0,$$

$$f(u) = \frac{1}{(e^u + k)^m}, \quad u \in \mathbb{R}.$$

For $u \in [0, \infty)$, we have

$$f''(u) = \frac{me^{u}(me^{u} - k)}{(e^{u} + k)^{m+2}} \ge 0,$$

hence f is convex on $[s, \infty)$. According to the RHCF-OV Theorem (case m = n - 1), it suffices to show that $f(x) + f(y) \ge 2f(0)$ for all real x, y so that x + y = 0; that is, to show that

$$\frac{1}{(a+k)^m} + \frac{1}{(b+k)^m} \ge \frac{2}{(1+k)^m}$$

for all a, b > 0 so that ab = 1. Write this inequality as $g(a) \ge 0$ for $a \ge 1$, where

$$g(a) = \frac{1}{(a+k)^m} + \frac{a^m}{(ka+1)^m} - \frac{2}{(1+k)^m}.$$

The derivative

$$\frac{g'(a)}{m} = \frac{a^{m-1}(a+k)^{m+1} - (ka+1)^{m+1}}{(a+k)^{m+1}(ka+1)^{m+1}}$$

has the same sign as the function

$$h(a) = (m-1)\ln a + (m+1)\ln(a+k) - (m+1)\ln(ka+1).$$

We have

$$h'(a) = \frac{m-1}{a} + (m+1)\left(\frac{1}{a+k} - \frac{k}{ka+1}\right) = \frac{kh_1(a)}{a(a+k)(ka+1)},$$

where

$$h_1(a) = (m-1)(a^2+1) - 2\left(k - \frac{m}{k}\right)a.$$

The discriminant D of the quadratic function $h_1(a)$ is

$$\frac{D}{4} = \left(k - \frac{m}{k}\right)^2 - (m - 1)^2 = (1 - k^2)\left(\frac{m^2}{k^2} - 1\right).$$

Since D > 0, the roots a_1 and a_2 of $h_1(a)$ are real and unequal. If $a_1 < a_2$, then $h_1(a) \ge 0$ for $a \in [a_1, a_2]$ and $h_1(a) \le 0$ for $a \in (-\infty, a_1] \cup [a_2, \infty)$. Since

$$h_1(1) = \frac{2(k+1)(m-k)}{k} > 0,$$

it follows that $a_1 < 1 < a_2$, therefore $h_1(a)$ and h'(a) are positive for $a \in [1, a_2)$ and negative for $a \in (a_2, \infty)$, h is increasing on $[1, a_2]$ and decreasing on $[a_2, \infty)$. From h(1) = 0 and

$$\lim_{a\to\infty}h(a)=-\infty,$$

it follows that there is $a_3 > a_2$ so that h(a) and g'(a) are positive for $a \in (1, a_3)$ and negative for $a \in (a_3, \infty)$. As a result, g is increasing on $[1, a_3]$ and decreasing on $[a_3, \infty)$. Since g(1) = 0 and

$$\lim_{a \to \infty} g(a) = \frac{1}{k^m} - \frac{2}{(1+k)^m} \ge 0,$$

it follows that $g(a) \ge 0$ for $a \ge 1$. This completes the proof. The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

Remark. For $k = \frac{1}{3}$ and $m = \frac{1}{2}$, we get the preceding P 2.28.

P 2.30. If $a_1, a_2, ..., a_n$ $(n \ge 4)$ are positive real numbers so that

$$a_1 \ge a_2 \ge a_3 \ge 1 \ge a_4 \ge \dots \ge a_n$$
, $a_1 a_2 \dots a_n = 1$,

then

$$\frac{1}{3a_1+1} + \frac{1}{3a_2+1} + \dots + \frac{1}{3a_n+1} \ge \frac{n}{4}.$$

(Vasile C., 2007)

Solution. Using the substitution

$$a_i = e^{x_i}, \quad i = 1, 2, \ldots, n,$$

we can write the inequality as

$$f(x_1) + f(x_2) + \dots + f(x_n) \ge nf(s),$$

where

$$x_1 \ge x_2 \ge x_3 \ge 0 \ge x_4 \ge \dots \ge x_n$$
, $s = \frac{x_1 + x_2 + \dots + x_n}{n} = 0$,

$$f(u) = \frac{1}{3e^u + 1}, \quad u \in \mathbb{R}.$$

For $u \in [0, \infty)$, we have

$$f''(u) = \frac{3e^u(3e^u - 1)}{(3e^u + 1)^3} > 0,$$

hence f is convex on $[s, \infty)$. According to the RHCF-OV Theorem (case m = n - 3), it suffices to show that $f(x) + 3f(y) \ge 4f(0)$ for all real x, y so that x + 3y = 0; that is, to show that

$$\frac{1}{3a+1} + \frac{3}{3b+1} \ge 1$$

for all a, b > 0 so that $ab^3 = 1$. The inequality is equivalent to

$$\frac{b^3}{b^3+3} + \frac{3}{3b+1} \ge 1,$$
$$(b-1)^2(b+2) \ge 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

P 2.31. If $a_1, a_2, ..., a_n$ $(n \ge 4)$ are positive real numbers so that

$$a_1 \ge a_2 \ge a_3 \ge 1 \ge a_4 \ge \cdots \ge a_n$$
, $a_1 a_2 \cdots a_n = 1$,

then

$$\frac{1}{(a_1+1)^2} + \frac{1}{(a_2+1)^2} + \dots + \frac{1}{(a_n+1)^2} \ge \frac{n}{4}.$$

(Vasile C., 2007)

Solution. Using the substitution

$$a_i = e^{x_i}, \quad i = 1, 2, \ldots, n,$$

we can write the inequality as

$$f(x_1) + f(x_2) + \dots + f(x_n) \ge nf(s),$$

where

$$x_1 \ge x_2 \ge x_3 \ge 0 \ge x_4 \ge \dots \ge x_n, \quad s = \frac{x_1 + x_2 + \dots + x_n}{n} = 0,$$

$$f(u) = \frac{1}{(e^u + 1)^2}, \quad u \in \mathbb{R}.$$

For $u \in [0, \infty)$, we have

$$f''(u) = \frac{2e^{u}(2e^{u} - 1)}{(e^{u} + 1)^{4}} > 0,$$

hence f is convex on $[s, \infty)$. According to the RHCF-OV Theorem (case m = 3), it suffices to show that $f(x) + 3f(y) \ge 4f(0)$ for all real x, y so that x + 3y = 0; that is, to show that

$$\frac{1}{(a+1)^2} + \frac{3}{(b+1)^2} \ge 1$$

for all a, b > 0 so that $ab^3 = 1$. The inequality is equivalent to

$$\frac{b^6}{(b^3+1)^2} + \frac{3}{(b+1)^2} \ge 1.$$

Using the Cauchy-Schwarz inequality, it suffices to show that

$$\frac{(b^3+3)^2}{(b^3+1)^2+3(b+1)^2} \ge 1,$$

which is equivalent to the obvious inequality

$$(b-1)^2(4b+5) \ge 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

P 2.32. If $a_1, a_2, ..., a_n$ are positive real numbers so that

$$a_1 \ge \cdots \ge a_{n-1} \ge 1 \ge a_n$$
, $a_1 a_2 \cdots a_n = 1$,

then

$$\frac{1}{(a_1+3)^2} + \frac{1}{(a_2+3)^2} + \dots + \frac{1}{(a_n+3)^2} \le \frac{n}{16}.$$

(Vasile C., 2007)

Solution. Using the substitution

$$a_i = e^{x_i}, \quad i = 1, 2, \ldots, n,$$

we can write the inequality as

$$f(x_1) + f(x_2) + \dots + f(x_n) \ge nf(s),$$

where

$$x_1 \ge \dots \ge x_{n-1} \ge 0 \ge x_n, \quad s = \frac{x_1 + x_2 + \dots + x_n}{n} = 0,$$

$$f(u) = \frac{-1}{(e^u + 3)^2}, \quad u \in \mathbb{R}.$$

For $u \in (-\infty, 0]$, we have

$$f''(u) = \frac{2e^{u}(3 - 2e^{u})}{(e^{u} + 3)^{4}} > 0,$$

hence f is convex on $(-\infty, s]$. According to the LHCF-OV Theorem (case m = n-1), it suffices to show that $f(x)+f(y) \ge 2f(0)$ for all real x, y so that x+y=0; that is, to show that

$$\frac{1}{(a+3)^2} + \frac{1}{(b+3)^2} \le \frac{1}{8}$$

for all a, b > 0 so that ab = 1. Write this inequality as

$$\frac{b^2}{(3b+1)^2} + \frac{1}{(b+3)^2} \le \frac{1}{8},$$

which is equivalent to the obvious inequality

$$(b^2-1)^2+12b(b-1)^2 \ge 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

Remark. Similarly, we can prove the following generalization:

• Let a_1, a_2, \ldots, a_n be positive real numbers so that

$$a_1 \ge \cdots \ge a_{n-1} \ge 1 \ge a_n$$
, $a_1 a_2 \cdots a_n = 1$,

If $k \ge 1 + \sqrt{2}$, then

$$\frac{1}{(a_1+k)^2} + \frac{1}{(a_2+k)^2} + \dots + \frac{1}{(a_n+k)^2} \le \frac{n}{(1+k)^2},$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$.

P 2.33. Let a_1, a_2, \ldots, a_n be positive real numbers so that

$$a_1 \ge \cdots \ge a_{n-1} \ge 1 \ge a_n$$
, $a_1 a_2 \cdots a_n = 1$.

If $p, q \ge 0$ so that $p + q \le 1$, then

$$\frac{1}{1+pa_1+qa_1^2} + \frac{1}{1+pa_2+qa_2^2} + \dots + \frac{1}{1+pa_n+qa_n^2} \le \frac{n}{1+p+q}.$$

(Vasile C., 2007)

Solution. Using the substitution

$$a_i = e^{x_i}, \quad i = 1, 2, \dots, n,$$

we can write the inequality as

$$f(x_1) + f(x_2) + \dots + f(x_n) \ge nf(s),$$

where

$$x_1 \ge \dots \ge x_{n-1} \ge 0 \ge x_n$$
, $s = \frac{x_1 + x_2 + \dots + x_n}{n} = 0$,

$$f(u) = \frac{-1}{1 + pe^u + qe^{2u}}, \quad u \in \mathbb{R}.$$

For $u \leq 0$, we have

$$f''(u) = \frac{e^{u}[-4q^{2}e^{3u} - 3pqe^{2u} + (4q - p^{2})e^{u} + p]}{(1 + pe^{u} + qe^{2u})^{3}}$$

$$\geq \frac{e^{2u}[-4q^{2} - 3pq + (4q - p^{2}) + p]}{(1 + pe^{u} + qe^{2u})^{3}}$$

$$= \frac{e^{2u}[(p + 4q)(1 - p - q) + 2pq]}{(1 + pe^{u} + qe^{2u})^{3}} \geq 0,$$

therefore f(u) is convex for $u \le s$. According to the LHCF-OV Theorem (case m = n-1), it suffices to show that $f(x)+f(y) \ge 2f(0)$ for all real x,y so that x+y=0; that is, to show that

$$\frac{1}{1+pa+qa^2} + \frac{1}{1+pb+qb^2} \le \frac{2}{1+p+q}$$

for all a, b > 0 so that ab = 1. Write this inequality as

$$(a-1)^{2}[q(1-p-q)a^{2}+(p+2q-p^{2}-pq-2q^{2})a+q(1-p-q)] \ge 0,$$

which is true because

$$p + 2q - p^2 - pq - 2q^2 \ge (p + 2q)(p + q) - p^2 - pq - 2q^2 = 2pq \ge 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

P 2.34. Let a_1, a_2, \ldots, a_n be positive real numbers so that

$$a_1 \ge \cdots \ge a_{n-1} \ge 1 \ge a_n$$
, $a_1 a_2 \cdots a_n = 1$.

If m > 1 *and* $k \ge \frac{1}{2^{1/m} - 1}$, then

$$\frac{1}{(a_1+k)^m} + \frac{1}{(a_2+k)^m} + \dots + \frac{1}{(a_n+k)^m} \le \frac{n}{(1+k)^m}.$$

(Vasile C., 2007)

Solution. By Bernoulli's inequality, we have

$$2^{1/m} < 1 + \frac{1}{m},$$

hence

$$k \ge \frac{1}{2^{1/m} - 1} > m > 1.$$

Using the substitution

$$a_i = e^{x_i}, \quad i = 1, 2, \dots, n,$$

we can write the inequality as

$$f(x_1) + f(x_2) + \cdots + f(x_n) \ge nf(s)$$

where

$$x_1 \ge \dots \ge x_{n-1} \ge 0 \ge x_n, \quad s = \frac{x_1 + x_2 + \dots + x_n}{n} = 0,$$

$$f(u) = \frac{-1}{(e^u + k)^m}, \quad u \in \mathbb{R}.$$

For $u \leq 0$, we have

$$f''(u) = \frac{me^{u}(k - me^{u})}{(e^{u} + k)^{m+2}} \ge 0,$$

hence f is convex $u \le s$. By the LHCF-OV Theorem (case m = n - 1), it suffices to show that $f(x) + f(y) \ge 2f(0)$ for all real x, y so that x + y = 0; that is, to show that

$$\frac{1}{(a+k)^m} + \frac{1}{(b+k)^m} \le \frac{2}{(1+k)^m}$$

for all a, b > 0 so that ab = 1. Write this inequality as $g(a) \le 0$ for $a \ge 1$, where

$$g(a) = \frac{1}{(a+k)^m} + \frac{a^m}{(ka+1)^m} - \frac{2}{(1+k)^m}.$$

The derivative

$$\frac{g'(a)}{m} = \frac{a^{m-1}(a+k)^{m+1} - (ka+1)^{m+1}}{(a+k)^{m+1}(ka+1)^{m+1}}$$

has the same sign as the function

$$h(a) = (m-1)\ln a + (m+1)\ln(a+k) - (m+1)\ln(ka+1).$$

We have

$$h'(a) = \frac{m-1}{a} + (m+1)\left(\frac{1}{a+k} - \frac{k}{ka+1}\right) = \frac{kh_1(a)}{a(a+k)(ka+1)},$$

where

$$h_1(a) = (m-1)(a^2+1) - 2(k-\frac{m}{k})a.$$

The discriminant *D* of the quadratic function $h_1(a)$ is

$$\frac{D}{4} = \left(k - \frac{m}{k}\right)^2 - (m - 1)^2 = (k^2 - 1)\left(1 - \frac{m^2}{k^2}\right).$$

Since D > 0, the roots a_1 and a_2 of $h_1(a)$ are real and unequal. If $a_1 < a_2$, then $h_1(a) \le 0$ for $a \in [a_1, a_2]$ and $h_1(a) \ge 0$ for $a \in (-\infty, a_1] \cup [a_2, \infty)$. Since

$$h_1(1) = \frac{2(k+1)(m-k)}{k} < 0,$$

it follows that $a_1 < 1 < a_2$, therefore $h_1(a)$ and h'(a) are negative for $a \in [1, a_2)$ and positive for $a \in (a_2, \infty)$, h(a) is decreasing for $a \in [1, a_2]$ and increasing for $a \in [a_2, \infty)$. From h(1) = 0 and

$$\lim_{a\to\infty}h(a)=\infty,$$

it follows that there is $a_3 > a_2$ so that h(a) and g'(a) are negative for $a \in (1, a_3)$ and positive for $a \in (a_3, \infty)$. As a result, g is decreasing on $[1, a_3]$ and increasing on $[a_3, \infty)$. Since g(1) = 0 and

$$\lim_{a \to \infty} g(a) = \frac{1}{k^m} - \frac{2}{(1+k)^m} \le 0,$$

it follows that $g(a) \le 0$ for $a \ge 1$. This completes the proof. The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

P 2.35. If $a_1, a_2, ..., a_n$ are positive real numbers so that

$$a_1 \ge \cdots \ge a_{n-1} \ge 1 \ge a_n$$
, $a_1 a_2 \cdots a_n = 1$,

then

$$\frac{1}{\sqrt{1+2a_1}} + \frac{1}{\sqrt{1+2a_2}} + \dots + \frac{1}{\sqrt{1+2a_n}} \le \frac{n}{\sqrt{3}}.$$

(Vasile C., 2007)

Solution. Using the substitution

$$a_i = e^{x_i}, \quad i = 1, 2, \dots, n,$$

we can write the inequality as

$$f(x_1) + f(x_2) + \dots + f(x_n) \ge nf(s),$$

where

$$x_1 \ge \dots \ge x_{n-1} \ge 0 \ge x_n, \quad s = \frac{x_1 + x_2 + \dots + x_n}{n} = 0,$$

$$f(u) = \frac{-1}{\sqrt{1 + 2e^u}}, \quad u \in \mathbb{R}.$$

For $u \leq 0$, we have

$$f''(u) = \frac{e^u(1 - e^u)}{(1 + 2e^u)^{5/2}} > 0,$$

hence f is convex on $(-\infty, s]$. According to the LHCF-OV Theorem (case m = n-1), it suffices to show that $f(x)+f(y) \ge 2f(0)$ for all real x, y so that x+y=0; that is, to show that

$$\sqrt{\frac{3}{1+2a}} + \sqrt{\frac{3}{1+2b}} \le 2$$

for all a, b > 0 so that ab = 1. By the Cauchy-Schwarz inequality, we get

$$\sqrt{\frac{3}{1+2a}} + \sqrt{\frac{3}{1+2b}} \le \sqrt{\left(\frac{3}{1+2a} + 1\right)\left(1 + \frac{3}{1+2b}\right)} = 2.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

P 2.36. Let $a_1, a_2, ..., a_n$ be positive real numbers so that

$$a_1 \ge \cdots \ge a_{n-1} \ge 1 \ge a_n$$
, $a_1 a_2 \cdots a_n = 1$.

If 0 < m < 1 and $k \ge m$, then

$$\frac{1}{(a_1+k)^m} + \frac{1}{(a_2+k)^m} + \dots + \frac{1}{(a_n+k)^m} \le \frac{n}{(1+k)^m}.$$

(Vasile C., 2007)

Solution. Using the substitution

$$a_i = e^{x_i}, \quad i = 1, 2, \dots, n,$$

we can write the inequality as

$$f(x_1) + f(x_2) + \dots + f(x_n) \ge nf(s),$$

where

$$x_1 \ge \dots \ge x_{n-1} \ge 0 \ge x_n, \quad s = \frac{x_1 + x_2 + \dots + x_n}{n} = 0,$$

$$f(u) = \frac{-1}{(e^u + k)^m}, \quad u \in \mathbb{R}.$$

For $u \leq 0$, we have

$$f''(u) = \frac{me^{u}(k - me^{u})}{(e^{u} + k)^{m+2}} \ge 0,$$

hence f is convex on $(-\infty, s]$. According to the LHCF-OV Theorem (case m = n-1), it suffices to show that $f(x)+f(y) \ge 2f(0)$ for all real x, y so that x+y=0; that is, to show that

$$\frac{1}{(a+k)^m} + \frac{1}{(b+k)^m} \le \frac{2}{(1+k)^m}$$

for all a, b > 0 so that ab = 1. Write this inequality as $g(a) \le 0$ for $a \ge 1$, where

$$g(a) = \frac{1}{(a+k)^m} + \frac{a^m}{(ka+1)^m} - \frac{2}{(1+k)^m},$$

with

$$\frac{g'(a)}{m} = \frac{a^{m-1}(a+k)^{m+1} - (ka+1)^{m+1}}{(a+k)^{m+1}(ka+1)^{m+1}}.$$

If $g'(a) \le 0$ for $a \ge 1$, then g is decreasing, hence $g(a) \le g(1) = 0$. Thus, it suffices to show that

$$a^{m-1} \le \left(\frac{ka+1}{a+k}\right)^{m+1}.$$

Since

$$\frac{ka+1}{a+k} - \frac{ma+1}{a+m} = \frac{(k-m)(a^2-1)}{(a+k)(a+m)} \ge 0,$$

we only need to show that

$$a^{m-1} \le \left(\frac{ma+1}{a+m}\right)^{m+1},$$

which is equivalent to $h(a) \le 0$ for $a \ge 1$, where

$$h(a) = (m-1)\ln a + (m+1)\ln(a+m) - (m+1)\ln(ma+1),$$

$$h'(a) = \frac{m-1}{a} + \frac{m+1}{a+m} - \frac{m(m+1)}{ma+1} = \frac{m(m-1)(a-1)^2}{a(a+m)(ma+1)}.$$

Since $h'(a) \le 0$, h(a) is decreasing for $a \ge 1$, hence

$$h(a) \le h(1) = 0.$$

This completes the proof. The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

Remark. For $k = \frac{1}{2}$ and $m = \frac{1}{2}$, we get the preceding P 2.35.

P 2.37. If $a_1, a_2, ..., a_n$ ($n \ge 3$) are positive real numbers so that

$$a_1 \ge \cdots \ge a_{n-2} \ge 1 \ge a_{n-1} \ge a_n$$
, $a_1 a_2 \cdots a_n = 1$,

then

$$\frac{1}{(a_1+5)^2} + \frac{1}{(a_2+5)^2} + \dots + \frac{1}{(a_n+5)^2} \le \frac{n}{36}.$$

(Vasile C., 2007)

Solution. Using the substitution

$$a_i = e^{x_i}, \quad i = 1, 2, \dots, n,$$

we can write the inequality as

$$f(x_1) + f(x_2) + \cdots + f(x_n) \ge nf(s)$$

where

$$x_1 \ge \dots \ge x_{n-2} \ge 0 \ge x_{n-1} \ge x_n, \quad s = \frac{x_1 + x_2 + \dots + x_n}{n} = 0,$$

$$f(u) = \frac{-1}{(e^u + 5)^2}, \quad u \in \mathbb{R}.$$

For $u \in (-\infty, 0]$, we have

$$f''(u) = \frac{2e^u(5 - 2e^u)}{(e^u + 5)^4} > 0,$$

hence f is convex on $(-\infty, s]$. According to the LHCF-OV Theorem (case m = n - 2), it suffices to show that $f(x) + 2f(y) \ge 3f(0)$ for all real x, y so that x + 2y = 0; that is, to show that

$$\frac{1}{(a+5)^2} + \frac{2}{(b+5)^2} \le \frac{1}{12}$$

for all a, b > 0 so that $ab^2 = 1$. Since

$$\frac{1}{(a+5)^2} = \frac{b^4}{(5b^2+1)^2} \le \frac{b^4}{(4b^2+2b)^2} = \frac{b^2}{4(2b+1)^2},$$

it suffices to show that

$$\frac{b^2}{4(2b+1)^2} + \frac{2}{(b+5)^2} \le \frac{1}{12},$$

which is equivalent to the obvious inequality

$$(b-1)^2(b^2+16b+1) \ge 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

Remark. Similarly, we can prove the following refinement:

• Let a_1, a_2, \ldots, a_n be positive real numbers so that

$$a_1 \ge \cdots \ge a_{n-2} \ge 1 \ge a_{n-1} \ge a_n$$
, $a_1 a_2 \cdots a_n = 1$.

If $k \ge 2 + \sqrt{6}$, then

$$\frac{1}{(a_1+k)^2} + \frac{1}{(a_2+k)^2} + \dots + \frac{1}{(a_n+k)^2} \le \frac{n}{(1+k)^2},$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$.

P 2.38. If a_1, a_2, \ldots, a_n are nonnegative real numbers so that

$$a_1 \ge \dots \ge a_{n-1} \ge 1 \ge a_n$$
, $a_1^2 + a_2^2 + \dots + a_n^2 = n$,

then

$$\frac{1}{3-a_1} + \frac{1}{3-a_2} + \dots + \frac{1}{3-a_n} \le \frac{n}{2}.$$

(Vasile C., 2007)

Solution. From

$$n = a_1^2 + (a_2^2 + \dots + a_{n-1}^2) + a_n^2 \ge a_1^2 + (n-2) + 0,$$

we get

$$a_1 \leq \sqrt{2}$$
.

Replacing $a_1, a_2, ..., a_n$ by $\sqrt{a_1}, \sqrt{a_2}, ..., \sqrt{a_n}$, we have to prove that

$$f(a_1) + f(a_2) + \cdots + f(a_n) \ge nf(s),$$

where

$$2 \ge a_1 \ge \dots \ge a_{n-1} \ge 1 \ge a_n$$
, $s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1$,
 $f(u) = \frac{1}{\sqrt{u} - 3}$, $u \in [0, 2]$.

For $u \in [0, 1]$, we have

$$f''(u) = \frac{3(1 - \sqrt{u})}{4u\sqrt{u}(3 - \sqrt{u})^3} \ge 0.$$

Therefore, f is convex on [0,s]. According to the LHCF-OV Theorem and Note 1 (case m=n-1), it suffices to show that $h(x,y) \ge 0$ for $x,y \ge 0$ so that x+y=2. Since

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{-1}{2(3 - \sqrt{u})(1 + \sqrt{u})}$$

and

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = \frac{2 - \sqrt{x} - \sqrt{y}}{2(\sqrt{x} + \sqrt{y})(1 + \sqrt{x})(1 + \sqrt{y})(3 - \sqrt{x})(3 - \sqrt{y})},$$

we need to show that

$$\sqrt{x} + \sqrt{y} \le 2.$$

Indeed, we have

$$\sqrt{x} + \sqrt{y} \le \sqrt{2(x+y)} = 2.$$

This completes the proof. The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

P 2.39. Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that

$$a_1 \le \dots \le a_{n-1} \le 1 \le a_n$$
, $a_1 + a_2 + \dots + a_n = n$.

Prove that

$$a_1^3 + a_2^3 + \dots + a_n^3 - n \ge (n-1)^2 \left[\left(\frac{n-a_1}{n-1} \right)^3 + \left(\frac{n-a_2}{n-1} \right)^3 + \dots + \left(\frac{n-a_n}{n-1} \right)^3 - n \right].$$
(Vasile C., 2010)

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = u^3 - (n-1)^2 \left(\frac{n-u}{n-1}\right)^3, \quad u \ge 0.$$

For $u \ge 1$, we have

$$f''(u) = \frac{6n(u-1)}{n-1} \ge 0.$$

Therefore, f(u) is convex for $u \ge s$. Thus, by the RHCF-OV Theorem (case m = n - 1), it suffices to show that $f(x) + f(y) \ge 2f(1)$ for $x, y \ge 0$ so that x + y = 2. We have

$$f(x) + f(y) - 2f(1) = x^3 + y^3 - 2 - (n-1)^2 \left[\left(\frac{n-x}{n-1} \right)^3 + \left(\frac{n-y}{n-1} \right)^3 - 2 \right]$$
$$= 6(1-xy) - 6(n-1)^2 \left[1 - \frac{(n-x)(n-y)}{(n-1)^2} \right] = 0.$$

This completes the proof. The equality holds for

$$a_1 \le 1$$
, $a_2 = \cdots = a_{n-1} = 1$, $a_n = 2 - a_1$.

Chapter 3

Partially Convex Function Method

3.1 Theoretical Basis

The following statement is known as the Right Partially Convex Function Theorem (RPCF-Theorem).

Right Partially Convex Function Theorem (Vasile Cîrtoaje, 2012). Let f be a real function defined on an interval \mathbb{I} and convex on $[s,s_0]$, where $s,s_0 \in \mathbb{I}$, $s < s_0$. In addition, f is decreasing on $\mathbb{I}_{\leq s_0}$ and $f(u) \geq f(s_0)$ for $u \in \mathbb{I}$. The inequality

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf\left(\frac{a_1 + a_2 + \dots + a_n}{n}\right)$$

holds for all $a_1, a_2, \ldots, a_n \in \mathbb{I}$ satisfying

$$a_1 + a_2 + \cdots + a_n = ns$$

if and only if

$$f(x) + (n-1)f(y) \ge nf(s)$$

for all $x, y \in \mathbb{I}$ so that $x \le s \le y$ and x + (n-1)y = ns.

Proof. For

$$a_1 = x$$
, $a_2 = a_3 = \cdots = a_n = y$,

the inequality

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge f(s)$$

becomes

$$f(x) + (n-1)f(y) \ge nf(s);$$

therefore, the necessity is obvious.

The proof of sufficiency is based on Lemma below. According to this lemma, it suffices to consider that $a_1, a_2, \ldots, a_n \in \mathbb{J}$, where

$$\mathbb{J} = \mathbb{I}_{\leq s_0}$$
.

Because f(u) is convex on $\mathbb{J}_{\geq s}$, the desired inequality follows from the RHCF Theorem (see Chapter 1) applied to the interval \mathbb{J} .

Lemma. Let f be a real function defined on an interval \mathbb{I} . In addition, f is decreasing on $\mathbb{I}_{\leq s_0}$, and $f(u) \geq f(s_0)$ for $u \in \mathbb{I}$, where $s, s_0 \in \mathbb{I}$, $s < s_0$. If the inequality

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s)$$

holds for all $a_1, a_2, \ldots, a_n \in \mathbb{I}_{\leq s_0}$ so that $a_1 + a_2 + \cdots + a_n = ns$, then it holds for all $a_1, a_2, \ldots, a_n \in \mathbb{I}$ so that $a_1 + a_2 + \cdots + a_n = ns$.

Proof. For i = 1, 2, ..., n, define the numbers

$$b_i = \begin{cases} a_i, & a_i \le s_0 \\ s_0, & a_i > s_0. \end{cases}$$

Clearly, $b_i \in \mathbb{I}_{\leq s_0}$ and $b_i \leq a_i$. Since $f(u) \geq f(s_0)$ for $u \in \mathbb{I}_{\geq s_0}$, it follows that $f(b_i) \leq f(a_i)$ for i = 1, 2, ..., n. Therefore,

$$b_1 + b_2 + \cdots + b_n \le a_1 + a_2 + \cdots + a_n = ns$$

and

$$f(b_1) + f(b_2) + \dots + f(b_n) \le f(a_1) + f(a_2) + \dots + f(a_n).$$

Thus, it suffices to show that

$$f(b_1) + f(b_2) + \cdots + f(b_n) \ge nf(s)$$

for all $b_1, b_2, \ldots, b_n \in \mathbb{I}_{\leq s_0}$ so that $b_1 + b_2 + \cdots + b_n \leq ns$. By hypothesis, this inequality is true for $b_1, b_2, \ldots, b_n \in \mathbb{I}_{\leq s_0}$ and $b_1 + b_2 + \cdots + b_n = ns$. Since f(u) is decreasing on $\mathbb{I}_{\leq s_0}$, the more we have $f(b_1) + f(b_2) + \cdots + f(b_n) \geq nf(s)$ for $b_1, b_2, \ldots, b_n \in \mathbb{I}_{\leq s_0}$ and $b_1 + b_2 + \cdots + b_n \leq ns$.

Similarly, we can prove the Left Partially Convex Function Theorem (LPCF-Theorem).

Left Partially Convex Function Theorem (Vasile Cîrtoaje, 2012). Let f be a real function defined on an interval \mathbb{I} and convex on $[s_0, s]$, where $s_0, s \in \mathbb{I}$, $s_0 < s$. In addition, f is increasing on $\mathbb{I}_{>s_0}$ and $f(u) \geq f(s_0)$ for $u \in \mathbb{I}$. The inequality

$$f(a_1)+f(a_2)+\cdots+f(a_n) \ge nf\left(\frac{a_1+a_2+\cdots+a_n}{n}\right)$$

holds for all $a_1, a_2, \ldots, a_n \in \mathbb{I}$ satisfying

$$a_1 + a_2 + \dots + a_n = ns$$

if and only if

$$f(x) + (n-1)f(y) \ge nf(s)$$

for all $x, y \in \mathbb{I}$ so that $x \ge s \ge y$ and x + (n-1)y = ns.

From the RPCF-Theorem and the LPCF-Theorem, we find the PCF-Theorem (Partially Convex Function Theorem).

Partially Convex Function Theorem (Vasile Cîrtoaje, 2012). Let f be a real function defined on an interval \mathbb{I} and convex on $[s_0,s]$ or $[s,s_0]$, where $s_0,s\in\mathbb{I}$. In addition, f is decreasing on $\mathbb{I}_{\leq s_0}$ and increasing on $\mathbb{I}_{\geq s_0}$. The inequality

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf\left(\frac{a_1 + a_2 + \dots + a_n}{n}\right)$$

holds for all $a_1, a_2, \ldots, a_n \in \mathbb{I}$ satisfying

$$a_1 + a_2 + \cdots + a_n = ns$$

if and only if

$$f(x) + (n-1)f(y) \ge nf(s)$$

for all $x, y \in \mathbb{I}$ so that x + (n-1)y = ns.

Note 1. Let us denote

$$g(u) = \frac{f(u) - f(s)}{u - s}, \quad h(x, y) = \frac{g(x) - g(y)}{x - y}.$$

As shown in Note 1 from Chapter 1, we may replace the hypothesis condition in the RPCF-Theorem and the LPCF-Theorem), namely

$$f(x) + (n-1)f(y) \ge nf(s),$$

by the condition

$$h(x,y) \ge 0$$
 for all $x,y \in \mathbb{I}$ so that $x + (n-1)y = ns$.

Note 2. Assume that f is differentiable on \mathbb{I} , and let

$$H(x,y) = \frac{f'(x) - f'(y)}{x - y}.$$

As shown in Note 2 from Chapter 1, the inequalities in the RPCF-Theorem and the LPCF-Theorem hold true by replacing the hypothesis

$$f(x) + (n-1)f(y) \ge nf(s)$$

with the more restrictive condition

$$H(x,y) \ge 0$$
 for all $x,y \in \mathbb{I}$ so that $x + (n-1)y = ns$.

Note 3. The desired inequalities in the RPCF-Theorem and the LPCF-Theorem become equalities for

$$a_1 = a_2 = \cdots = a_n = s$$
.

In addition, if there exist $x, y \in \mathbb{I}$ so that

$$x + (n-1)y = ns$$
, $f(x) + (n-1)f(y) = nf(s)$, $x \neq y$,

then the equality holds also for

$$a_1 = x$$
, $a_2 = \cdots = a_n = y$

(or any cyclic permutation). Notice that these equality conditions are equivalent to

$$x + (n-1)y = ns$$
, $h(x, y) = 0$

(x < y for the RPCF-Theorem, and x > y for the LPCF-Theorem).

Note 4. From the proof of the RPCF-Theorem, it follows that this theorem is also valid in the case when f is defined on $\mathbb{I} \setminus \{u_0\}$, where $u_0 \in \mathbb{I}_{>s_0}$. Similarly, the LPCF-Theorem is also valid in the case when f is defined on $\mathbb{I} \setminus \{u_0\}$, where $u_0 \in \mathbb{I}_{<s_0}$.

Note 5. The RPCF-Theorem holds true by replacing the condition

$$f$$
 is decreasing on $\mathbb{I}_{\leq s_0}$

with

$$ns - (n-1)s_0 \le \inf \mathbb{I}$$
.

More precisely, the following theorem holds:

Theorem 1. Let f be a function defined on a real interval \mathbb{I} , convex on $[s, s_0]$ and satisfying

$$\min_{u\in\mathbb{I}_{>s}} f(u) = f(s_0),$$

where

$$s, s_0 \in \mathbb{I}$$
, $s < s_0$, $ns - (n-1)s_0 \le \inf \mathbb{I}$.

If

$$f(x) + (n-1)f(y) \ge nf(s)$$

for all $x, y \in \mathbb{I}$ so that $x \le s \le y$ and x + (n-1)y = ns, then

$$f(x_1) + f(x_2) + \dots + f(x_n) \ge nf\left(\frac{x_1 + x_2 + \dots + x_n}{n}\right)$$

for all $x_1, x_2, \dots, x_n \in \mathbb{I}$ satisfying $x_1 + x_2 + \dots + x_n = ns$.

In order to prove Theorem 1, we define the function

$$f_0(u) = \begin{cases} f(u), & u \le s_0, u \in \mathbb{I} \\ f(s_0), & u \ge s_0, u \in \mathbb{I}, \end{cases}$$

which is convex on $\mathbb{I}_{\geq s}$. Taking into account that $f_0(s) = f(s)$ and $f_0(u) \leq f(u)$ for all $u \in \mathbb{I}$, it suffices to prove that

$$f_0(x_1) + f_0(x_2) + \dots + f_0(x_n) \ge nf_0(s)$$

for all $x_1, x_2, ..., x_n \in \mathbb{I}$ satisfying $x_1 + x_2 + ... + x_n = ns$. According to the HCF-Theorem and Note 5 from Chapter 1, we only need to show that

$$f_0(x) + (n-1)f_0(y) \ge nf_0(s)$$

for all $x, y \in \mathbb{I}$ so that $x \le s \le y$ and x + (n-1)y = ns. Since

$$y - s_0 = \frac{ns - x}{n - 1} - s_0 = \frac{ns - (n - 1)s_0 - x}{n - 1} \le \frac{ns - (n - 1)s_0 - \inf \mathbb{I}}{n - 1} \le 0,$$

the inequality $f_0(x) + (n-1)f_0(y) \ge nf_0(s)$ turns into $f(x) + (n-1)f(y) \ge nf(s)$, which holds (by hypothesis) for all $x, y \in \mathbb{I}$ so that $x \le s \le y$ and x + (n-1)y = ns.

Similarly, the LPCF-Theorem holds true by replacing the condition

$$f$$
 is increasing on $\mathbb{I}_{\geq s_0}$

with

$$ns - (n-1)s_0 \ge \sup \mathbb{I}$$
.

More precisely, the following theorem holds:

Theorem 2. Let f be a function defined on a real interval \mathbb{I} , convex on $[s_0, s]$ and satisfying

$$\min_{u\in\mathbb{I}_{$$

where

$$s, s_0 \in \mathbb{I}, \quad s > s_0, \quad ns - (n-1)s_0 \ge \sup \mathbb{I}.$$

If

$$f(x) + (n-1)f(y) \ge nf(s)$$

for all $x, y \in \mathbb{I}$ so that $x \ge s \ge y$ and x + (n-1)y = ns, then

$$f(x_1) + f(x_2) + \dots + f(x_n) \ge nf\left(\frac{x_1 + x_2 + \dots + x_n}{n}\right)$$

for all $x_1, x_2, \dots, x_n \in \mathbb{I}$ satisfying $x_1 + x_2 + \dots + x_n = ns$.

The proof of Theorem 2 is similar to the proof of Theorem 1.

- **Note 6.** From the proof of Theorem 1, it follows that Theorem 1 is also valid in the case in which f is defined on $\mathbb{I} \setminus \{u_0\}$, where u_0 is an interior point of \mathbb{I} so that $u_0 \notin [s,s_0]$. Similarly, Theorem 2 is also valid in the case in which f is defined on $\mathbb{I} \setminus \{u_0\}$, where u_0 is an interior point of \mathbb{I} so that $u_0 \notin [s_0,s]$.
- **Note 7.** In the same manner, we can extend *weighted* Jensen's inequality to right and left partially convex functions establishing the WRPCF-Theorem, the WLPCF-Theorem and the WPCF-Theorem (*Vasile Cîrtoaje*, 2014).

WRPCF-Theorem. Let p_1, p_2, \ldots, p_n be positive real numbers so that

$$p_1 + p_2 + \dots + p_n = 1, \quad p = \min\{p_1, p_2, \dots, p_n\},\$$

and let f be a real function defined on an interval \mathbb{I} and convex on $[s,s_0]$, where $s,s_0 \in \mathbb{I}$, $s < s_0$. In addition, f is decreasing on $\mathbb{I}_{\leq s_0}$ and $f(u) \geq f(s_0)$ for $u \in \mathbb{I}$. The inequality

$$p_1 f(a_1) + p_2 f(a_2) + \dots + p_n f(a_n) \ge f(p_1 a_1 + p_2 a_2 + \dots + p_n a_n)$$

holds for all $a_1, a_2, \ldots, a_n \in \mathbb{I}$ satisfying

$$p_1 a_1 + p_2 a_2 + \dots + p_n a_n = s$$
,

if and only if

$$pf(x) + (1-p)f(y) \ge f(s)$$

for all $x, y \in \mathbb{I}$ so that $x \le s \le y$ and px + (1-p)y = s.

WLPCF-Theorem. Let $p_1, p_2, ..., p_n$ be positive real numbers so that

$$p_1 + p_2 + \dots + p_n = 1, \quad p = \min\{p_1, p_2, \dots, p_n\},\$$

and let f be a real function defined on an interval \mathbb{I} and convex on $[s_0,s]$, where $s_0,s\in\mathbb{I}$, $s_0< s$. In addition, f is increasing on $\mathbb{I}_{\geq s_0}$ and $f(u)\geq f(s_0)$ for $u\in\mathbb{I}$. The inequality

$$p_1 f(a_1) + p_2 f(a_2) + \dots + p_n f(a_n) \ge f(p_1 a_1 + p_2 a_2 + \dots + p_n a_n)$$

holds for all $a_1, a_2, \ldots, a_n \in \mathbb{I}$ satisfying

$$p_1a_1 + p_2a_2 + \cdots + p_na_n = s$$
,

if and only if

$$pf(x) + (1-p)f(y) \ge f(s)$$

for all $x, y \in \mathbb{I}$ so that $x \ge s \ge y$ and px + (1-p)y = s.

3.2 Applications

3.1. If a, b, c are real numbers so that a + b + c = 3, then

$$\frac{16a-5}{32a^2+1} + \frac{16b-5}{32b^2+1} + \frac{16c-5}{32c^2+1} \le 1.$$

3.2. If a, b, c, d are real numbers so that a + b + c + d = 4, then

$$\frac{18a-5}{12a^2+1} + \frac{18b-5}{12b^2+1} + \frac{18c-5}{12c^2+1} + \frac{18d-5}{12d^2+1} \leq 4.$$

3.3. If a, b, c, d, e, f are real numbers so that a + b + c + d + e + f = 6, then

$$\frac{5a-1}{5a^2+1} + \frac{5b-1}{5b^2+1} + \frac{5c-1}{5c^2+1} + \frac{5d-1}{5d^2+1} + \frac{5e-1}{5e^2+1} + \frac{5f-1}{5f^2+1} \leq 4.$$

3.4. If a_1, a_2, \ldots, a_n $(n \ge 3)$ are real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$\frac{n(n+1)-2a_1}{n^2+(n-2)a_1^2}+\frac{n(n+1)-2a_2}{n^2+(n-2)a_2^2}+\cdots+\frac{n(n+1)-2a_n}{n^2+(n-2)a_n^2}\leq n.$$

3.5. If a, b, c, d are real numbers so that a + b + c + d = 4, then

$$\frac{a(a-1)}{3a^2+4} + \frac{b(b-1)}{3b^2+4} + \frac{c(c-1)}{3c^2+4} + \frac{d(d-1)}{3d^2+4} \ge 0.$$

3.6. If a, b, c are real numbers so that a + b + c = 3, then

$$\frac{1}{9a^2 - 10a + 9} + \frac{1}{9b^2 - 10b + 9} + \frac{1}{9c^2 - 10c + 9} \le \frac{3}{8}.$$

3.7. If a, b, c, d are real numbers so that a + b + c + d = 4, then

$$\frac{1}{4a^2 - 5a + 4} + \frac{1}{4b^2 - 5b + 4} + \frac{1}{4c^2 - 5c + 4} + \frac{1}{4d^2 - 5d + 4} \le \frac{4}{3}.$$

3.8. Let $a_1, a_2, \ldots, a_n \neq -k$ be real numbers so that $a_1 + a_2 + \cdots + a_n = n$, where

$$k \ge \frac{n}{2\sqrt{n-1}}$$
.

Then,

$$\frac{a_1(a_1-1)}{(a_1+k)^2} + \frac{a_2(a_2-1)}{(a_2+k)^2} + \dots + \frac{a_n(a_n-1)}{(a_n+k)^2} \ge 0.$$

3.9. Let $a_1, a_2, \ldots, a_n \neq -k$ be real numbers so that $a_1 + a_2 + \cdots + a_n = n$. If

$$k \ge 1 + \frac{n}{\sqrt{n-1}},$$

then

$$\frac{a_1^2-1}{(a_1+k)^2}+\frac{a_2^2-1}{(a_2+k)^2}+\cdots+\frac{a_n^2-1}{(a_n+k)^2}\geq 0.$$

3.10. Let a_1, a_2, a_3, a_4, a_5 be real numbers so that $a_1 + a_2 + a_3 + a_4 + a_5 \ge 5$. If

$$k \in \left[\frac{1}{6}, \frac{25}{14}\right],$$

then

$$\sum \frac{1}{ka_1^2 + a_2 + a_3 + a_4 + a_5} \le \frac{5}{k+4}.$$

3.11. Let $a_1, a_2, ..., a_5$ be nonnegative numbers so that $a_1 + a_2 + a_3 + a_4 + a_5 \ge 5$. If $k \in [k_1, k_2]$, where

$$k_1 = \frac{29 - \sqrt{761}}{10} \approx 0.1414, \quad k_2 = \frac{25}{14} \approx 1.7857,$$

then

$$\sum \frac{1}{ka_1^2 + a_2 + a_3 + a_4 + a_5} \le \frac{5}{k+4}.$$

3.12. Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n \ge n$. If k > 1, then

$$\frac{1}{a_1^k + a_2 + \dots + a_n} + \frac{1}{a_1 + a_2^k + \dots + a_n} + \dots + \frac{1}{a_1 + a_2 + \dots + a_n^k} \le 1.$$

3.13. Let a_1, a_2, \ldots, a_5 be nonnegative numbers so that $a_1 + a_2 + a_3 + a_4 + a_5 \ge 5$. If

$$k \in \left[\frac{4}{9}, \frac{61}{5}\right],$$

then

$$\sum \frac{a_1}{ka_1^2 + a_2 + a_3 + a_4 + a_5} \le \frac{5}{k+4}.$$

3.14. Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n \ge n$. If k > 1, then

$$\frac{a_1}{a_1^k + a_2 + \dots + a_n} + \frac{a_2}{a_1 + a_2^k + \dots + a_n} + \dots + \frac{a_n}{a_1 + a_2 + \dots + a_n^k} \le 1.$$

3.15. Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n \le n$. If $k \ge 1 - \frac{1}{n}$, then

$$\frac{1-a_1}{ka_1^2+a_2+\cdots+a_n}+\frac{1-a_2}{a_1+ka_2^2+\cdots+a_n}+\cdots+\frac{1-a_n}{a_1+a_2+\cdots+ka_n^2}\geq 0.$$

3.16. Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n \le n$. If $k \ge 1 - \frac{1}{n}$, then

$$\frac{1-a_1}{1-a_1+ka_1^2} + \frac{1-a_2}{1-a_2+ka_2^2} + \dots + \frac{1-a_n}{1-a_n+ka_n^2} \ge 0.$$

3.17. Let a_1, a_2, \ldots, a_n be positive real numbers so that $a_1 + a_2 + \cdots + a_n = n$. If $0 < k \le \frac{n}{n-1}$, then

$$a_1^{k/a_1} + a_2^{k/a_2} + \dots + a_n^{k/a_n} \le n.$$

3.18. If a, b, c, d, e are nonzero real numbers so that a + b + c + d + e = 5, then

$$\left(7 - \frac{5}{a}\right)^2 + \left(7 - \frac{5}{b}\right)^2 + \left(7 - \frac{5}{c}\right)^2 + \left(7 - \frac{5}{d}\right)^2 + \left(7 - \frac{5}{e}\right)^2 \ge 20.$$

3.19. If If a_1, a_2, \dots, a_7 are real numbers so that $a_1 + a_2 + \dots + a_7 = 7$, then $(a_1^2 + 2)(a_2^2 + 2) \cdots (a_7^2 + 2) \ge 3^7.$

3.20. Let a_1, a_2, \ldots, a_n be real numbers so that $a_1 + a_2 + \cdots + a_n = n$. If $k \ge \frac{n^2}{4(n-1)}$, then $(a_1^2 + k)(a_2^2 + k) \cdots (a_n^2 + k) \ge (1+k)^n.$

3.21. Let a_1, a_2, \ldots, a_n be real numbers such that $a_1 + a_2 + \cdots + a_n = n$. If $n \le 10$, then $(a_1^2 - a_1 + 1)(a_2^2 - a_2 + 1) \cdots (a_n^2 - a_n + 1) \ge 1.$

3.22. Let a_1, a_2, \ldots, a_n be real numbers such that $a_1 + a_2 + \cdots + a_n = n$. If $n \le 26$, then

$$(a_1^2 - a_1 + 2)(a_2^2 - a_2 + 2) \cdots (a_n^2 - a_n + 2) \ge 2^n.$$

3.23. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

$$(1-a+a^4)(1-b+b^4)(1-c+c^4) \ge 1.$$

3.24. If a, b, c, d are nonnegative real numbers so that a + b + c + d = 4, then

$$(1-a+a^3)(1-b+b^3)(1-c+c^3)(1-d+d^3) \ge 1.$$

3.25. If a, b, c, d, e are nonzero real numbers so that a + b + c + d + e = 5, then

$$5\left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{d^2} + \frac{1}{e^2}\right) + 45 \ge 14\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} + \frac{1}{e}\right).$$

3.26. If a, b, c are positive real numbers so that abc = 1, then

$$\frac{7-6a}{2+a^2} + \frac{7-6b}{2+b^2} + \frac{7-6c}{2+c^2} \ge 1.$$

3.27. If a, b, c are positive real numbers so that abc = 1, then

$$\frac{1}{a+5bc} + \frac{1}{b+5ca} + \frac{1}{c+5ab} \le \frac{1}{2}.$$

3.28. If a, b, c are positive real numbers so that abc = 1, then

$$\frac{1}{4 - 3a + 4a^2} + \frac{1}{4 - 3b + 4b^2} + \frac{1}{4 - 3c + 4c^2} \le \frac{3}{5}.$$

3.29. If a, b, c are positive real numbers so that abc = 1, then

$$\frac{1}{(3a+1)(3a^2-5a+3)} + \frac{1}{(3b+1)(3b^2-5b+3)} + \frac{1}{(3c+1)(3c^2-5c+3)} \le \frac{3}{4}.$$

3.30. Let a_1, a_2, \ldots, a_n $(n \ge 3)$ be positive real numbers so that $a_1 a_2 \cdots a_n = 1$. If $p, q \ge 0$ so that $p + 4q \ge n - 1$, then

$$\frac{1-a_1}{1+pa_1+qa_1^2} + \frac{1-a_2}{1+pa_2+qa_2^2} + \dots + \frac{1-a_n}{1+pa_n+qa_n^2} \ge 0.$$

3.31. If a, b, c are positive real numbers so that abc = 1, then

$$\frac{1-a}{17+4a+6a^2} + \frac{1-b}{17+4b+6b^2} + \frac{1-c}{17+4c+6c^2} \ge 0.$$

3.32. If a_1, a_2, \ldots, a_8 are positive real numbers so that $a_1 a_2 \cdots a_8 = 1$, then

$$\frac{1-a_1}{(1+a_1)^2} + \frac{1-a_2}{(1+a_2)^2} + \dots + \frac{1-a_8}{(1+a_8)^2} \ge 0.$$

3.33. Let a, b, c be positive real numbers so that abc = 1. If $k \in \left[\frac{-13}{3\sqrt{3}}, \frac{13}{3\sqrt{3}}\right]$, then

$$\frac{a+k}{a^2+1} + \frac{b+k}{b^2+1} + \frac{c+k}{c^2+1} \le \frac{3(1+k)}{2}.$$

3.34. If a, b, c are positive real numbers and $0 < k \le 2 + 2\sqrt{2}$, then

$$\frac{a^3}{ka^2 + bc} + \frac{b^3}{kb^2 + ca} + \frac{c^3}{kc^2 + ab} \ge \frac{a + b + c}{k + 1}.$$

3.35. If a, b, c, d, e are positive real numbers so that abcde = 1, then

$$2\left(\frac{1}{a+1} + \frac{1}{b+1} + \dots + \frac{1}{e+1}\right) \ge 3\left(\frac{1}{a+2} + \frac{1}{b+2} + \dots + \frac{1}{e+2}\right).$$

3.36. If a_1, a_2, \dots, a_{14} are positive real numbers so that $a_1 a_2 \cdots a_{14} = 1$, then

$$3\left(\frac{1}{2a_1+1}+\frac{1}{2a_2+1}+\cdots+\frac{1}{2a_{14}+1}\right) \ge 2\left(\frac{1}{a_1+1}+\frac{1}{a_2+1}+\cdots+\frac{1}{a_{14}+1}\right).$$

3.37. Let a_1, a_2, \ldots, a_8 be positive real numbers so that $a_1 a_2 \cdots a_8 = 1$. If k > 1, then

$$(k+1)\left(\frac{1}{ka_1+1}+\frac{1}{ka_2+1}+\cdots+\frac{1}{ka_8+1}\right) \ge 2\left(\frac{1}{a_1+1}+\frac{1}{a_2+1}+\cdots+\frac{1}{a_8+1}\right).$$

3.38. If a_1, a_2, \ldots, a_9 are positive real numbers so that $a_1 a_2 \cdots a_9 = 1$, then

$$\frac{1}{2a_1+1} + \frac{1}{2a_2+1} + \dots + \frac{1}{2a_9+1} \ge \frac{1}{a_1+2} + \frac{1}{a_2+2} + \dots + \frac{1}{a_9+2}.$$

3.39. If a_1, a_2, \ldots, a_n are real numbers so that

$$a_1, a_2, \dots, a_n \le \pi, \quad a_1 + a_2 + \dots + a_n = \pi,$$

then

$$\cos a_1 + \cos a_2 + \dots + \cos a_n \le n \cos \frac{\pi}{n}.$$

3.40. If a_1, a_2, \dots, a_n $(n \ge 3)$ are real numbers so that

$$a_1, a_2, \dots, a_n \ge \frac{-1}{n-2}, \quad a_1 + a_2 + \dots + a_n = n,$$

then

$$\frac{a_1^2}{a_1^2 - a_1 + 1} + \frac{a_2^2}{a_2^2 - a_2 + 1} + \dots + \frac{a_n^2}{a_n^2 - a_n + 1} \le n.$$

3.41. If $a_1, a_2, ..., a_n$ $(n \ge 3)$ are nonzero real numbers so that

$$a_1, a_2, \dots, a_n \ge \frac{-n}{n-2}, \quad a_1 + a_2 + \dots + a_n = n,$$

then

$$\frac{1}{a_1^2} + \frac{1}{a_2^2} + \dots + \frac{1}{a_n^2} \ge \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}.$$

3.42. If $a_1, a_2, \dots, a_n \ge -1$ so that $a_1 + a_2 + \dots + a_n = n$, then

$$(n+1)\left(\frac{1}{a_1^2} + \frac{1}{a_2^2} + \dots + \frac{1}{a_n^2}\right) \ge 2n + (n-1)\left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}\right).$$

3.43. If a_1, a_2, \ldots, a_n $(n \ge 3)$ are real numbers so that

$$a_1, a_2, \dots, a_n \ge \frac{-(3n-2)}{n-2}, \quad a_1 + a_2 + \dots + a_n = n,$$

then

$$\frac{1-a_1}{(1+a_1)^2} + \frac{1-a_2}{(1+a_2)^2} + \dots + \frac{1-a_n}{(1+a_n)^2} \ge 0.$$

3.44. Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$. If $n \ge 3$ and $k \ge 2 - \frac{2}{n}$, then

$$\frac{1-a_1}{(1-ka_1)^2} + \frac{1-a_2}{(1-ka_2)^2} + \dots + \frac{1-a_n}{(1-ka_n)^2} \ge 0.$$

3.3 Solutions

P 3.1. If a, b, c are real numbers so that a + b + c = 3, then

$$\frac{16a-5}{32a^2+1} + \frac{16b-5}{32b^2+1} + \frac{16c-5}{32c^2+1} \leq 1.$$

(Vasile C., 2012)

Solution. Write the inequality as

$$f(a) + f(b) + f(c) \ge 3f(s), \quad s = \frac{a+b+c}{3} = 1,$$

where

$$f(u) = \frac{5 - 16u}{32u^2 + 1}, \quad u \in \mathbb{R}.$$

From

$$f'(u) = \frac{16(32u^2 - 20u - 1)}{(32u^2 + 1)^2},$$

it follows that f is increasing on

$$\left(-\infty, \frac{5-\sqrt{33}}{16}\right] \cup \left[s_0, \infty\right)$$

and decreasing on

$$\left[\frac{5-\sqrt{33}}{16}, s_0\right],$$

where

$$s_0 = \frac{5 + \sqrt{33}}{16} \approx 0.6715.$$

Also, from

$$\lim_{u \to -\infty} f(u) = 0$$

and

$$f(s_0) < 0$$
,

it follows that $f(u) \ge f(s_0)$ for $u \in \mathbb{R}$. In addition, for $u \in [s_0, 1]$, we have

$$\frac{1}{64}f''(u) = \frac{-512u^3 + 480u^2 + 48u - 5}{(32u^2 + 1)^3}$$
$$= \frac{512u^2(1 - u) + 32u(1 - u) + (16u - 5)}{(32u^2 + 1)^3} > 0,$$

hence f is convex on $[s_0, s]$. According to the LPCF-Theorem, we only need to show that $f(x) + 2f(y) \ge 3f(1)$ for all real x, y so that x + 2y = 3. Using Note 1, it suffices to prove that $h(x, y) \ge 0$, where

$$h(x,y) = \frac{g(x) - g(y)}{x - y}, \quad g(u) = \frac{f(u) - f(1)}{u - 1}.$$

Indeed, we have

$$g(u) = \frac{32(2u-1)}{3(32u^2+1)},$$

$$h(x,y) = \frac{64(1+16x+16y-32xy)}{3(32x^2+1)(32y^2+1)} = \frac{64(4x-5)^2}{3(32x^2+1)(32y^2+1)} \ge 0.$$

Thus, the proof is completed. From x + 2y = 3 and h(x, y) = 0, we get

$$x = \frac{5}{4}, \quad y = \frac{7}{8}.$$

Therefore, in accordance with Note 3, the equality holds for a = b = c = 1, and also for

$$a = \frac{5}{4}$$
, $b = c = \frac{7}{8}$

(or any cyclic permutation).

P 3.2. If a, b, c, d are real numbers so that a + b + c + d = 4, then

$$\frac{18a-5}{12a^2+1} + \frac{18b-5}{12b^2+1} + \frac{18c-5}{12c^2+1} + \frac{18d-5}{12d^2+1} \le 4.$$

(Vasile C., 2012)

Solution. Write the inequality as

$$f(a) + f(b) + f(c) + f(d) \ge 4f(s), \quad s = \frac{a+b+c+d}{4} = 1,$$

where

$$f(u) = \frac{5 - 18u}{12u^2 + 1}, \quad u \in \mathbb{R}.$$

From

$$f'(u) = \frac{6(36u^2 - 20u - 3)}{(12u^2 + 1)^2},$$

it follows that f is increasing on

$$\left(-\infty, \frac{5-\sqrt{52}}{18}\right] \cup [s_0, \infty)$$

and decreasing on

$$\left[\frac{5-\sqrt{52}}{18}, s_0\right], \quad s_0 = \frac{5+\sqrt{52}}{18} \approx 0.678.$$

Also, from

$$\lim_{u \to -\infty} f(u) = 0$$

and

$$f(s_0) < 0,$$

it follows that $f(u) \ge f(s_0)$ for $u \in \mathbb{R}$. In addition, for $u \in [s_0, 1]$, we have

$$\frac{1}{24}f''(u) = \frac{-216u^3 + 180u^2 + 54u - 5}{(12u^2 + 1)^3}$$
$$= \frac{216u^2(1 - u) + 36u(1 - u) + (18u - 5)}{(32u^2 + 1)^3} > 0,$$

hence f is convex on $[s_0, s]$. According to the LPCF-Theorem and Note 1, we only need to show that $h(x, y) \ge 0$ for $x, y \in \mathbb{R}$ so that x + 3y = 4. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{6(2u - 1)}{12u^2 + 1},$$

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = \frac{12(1 + 6x + 6y - 12xy)}{(12x^2 + 1)(12y^2 + 1)} = \frac{12(2x - 3)^2}{(12x^2 + 1)(12y^2 + 1)} \ge 0.$$

Thus, the proof is completed. From x + 3y = 4 and h(x, y) = 0, we get x = 3/2 and y = 5/6. Therefore, in accordance with Note 3, the equality holds for a = b = c = d = 1, and also for

$$a = \frac{3}{2}$$
, $b = c = d = \frac{5}{6}$

(or any cyclic permutation).

P 3.3. If a, b, c, d, e, f are real numbers so that a + b + c + d + e + f = 6, then

$$\frac{5a-1}{5a^2+1} + \frac{5b-1}{5b^2+1} + \frac{5c-1}{5c^2+1} + \frac{5d-1}{5d^2+1} + \frac{5e-1}{5e^2+1} + \frac{5f-1}{5f^2+1} \leq 4.$$

(Vasile C., 2012)

Solution. Write the inequality as

$$f(a) + f(b) + f(c) + f(d) + f(e) + f(f) \ge 4f(s), \quad s = \frac{a+b+c+d+e+f}{6} = 1,$$

where

$$f(u) = \frac{1 - 5u}{5u^2 + 1}, \quad u \in \mathbb{R}.$$

From

$$f'(u) = \frac{5(5u^2 - 2u - 1)}{(5u^2 + 1)^2},$$

it follows that f is increasing on

$$\left(-\infty, \frac{1-\sqrt{6}}{5}\right] \cup [s_0, \infty)$$

and decreasing on

$$\left[\frac{1-\sqrt{6}}{5}, s_0\right], \quad s_0 = \frac{1+\sqrt{6}}{5} \approx 0.69.$$

Also, from

$$\lim_{u\to-\infty}f(u)=0$$

and

$$f(s_0) < 0$$
,

it follows that $f(u) \ge f(s_0)$ for $u \in \mathbb{R}$. In addition, for $u \in [s_0, 1]$, we have

$$\frac{1}{24}f''(u) = \frac{-216u^3 + 180u^2 + 54u - 5}{(12u^2 + 1)^3}$$
$$= \frac{216u^2(1 - u) + 36u(1 - u) + (18u - 5)}{(32u^2 + 1)^3} > 0,$$

hence f is convex on $[s_0, s]$. According to the LPCF-Theorem and Note 1, we only need to show that $h(x, y) \ge 0$ for $x, y \in \mathbb{R}$ so that x + 5y = 6. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{5(2u - 1)}{3(5u^2 + 1)},$$

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = \frac{5(2 + 5x + 5y - 10xy)}{3(5x^2 + 1)(5y^2 + 1)} = \frac{10(x - 2)^2}{3(5x^2 + 1)(5y^2 + 1)} \ge 0.$$

In accordance with Note 3, the equality holds for a=b=c=d=e=f=1, and also for

$$a = 2$$
, $b = c = d = e = f = \frac{4}{5}$

(or any cyclic permutation).

P 3.4. If a_1, a_2, \ldots, a_n $(n \ge 3)$ are real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$\frac{n(n+1)-2a_1}{n^2+(n-2)a_1^2} + \frac{n(n+1)-2a_2}{n^2+(n-2)a_2^2} + \dots + \frac{n(n+1)-2a_n}{n^2+(n-2)a_n^2} \le n.$$

(Vasile C., 2008)

Solution. The desired inequality is true for $a_1 > \frac{n(n+1)}{2}$ since

$$\frac{n(n+1)-2a_1}{n^2+(n-2)a_1^2}<0$$

and

$$\frac{n(n+1)-2a_i}{n^2+(n-2)a_i^2}<\frac{n}{n-1}, \quad i=2,3,\ldots,n.$$

The last inequalities are equivalent to

$$n(n-2)a_i^2 + 2(n-1)a_i + n > 0$$
,

which are true because

$$n(n-2)a_i^2 + 2(n-1)a_i + n \ge (n-1)a_i^2 + 2(n-1)a_i + n > (n-1)(a_i+1)^2 \ge 0.$$

Consider further that

$$a_1, a_2, \ldots, a_n \leq \frac{n(n+1)}{2},$$

and rewrite the desired inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = \frac{2u - n(n+1)}{(n-2)u^2 + n^2}, \quad u \in \mathbb{I} = \left(-\infty, \frac{n(n+1)}{2}\right].$$

We have

$$\frac{f'(u)}{2(n-2)} = \frac{n^2 + n(n+1)u - u^2}{[(n-2)u^2 + n^2]^2}$$

and

$$\frac{f''(u)}{2(n-2)} = \frac{f_1(u)}{[(n-2)u^2 + n^2]^3},$$

where

$$f_1(u) = 2(n-2)u^3 - 3n(n+1)(n-2)u^2 - 2n^2(2n-3)u + n^3(n+1).$$

From the expression of f', it follows that f is decreasing on $(-\infty, s_0]$ and increasing on $\left[s_0, \frac{n(n+1)}{2}\right]$, where

$$s_0 = \frac{n}{2} \left(n + 1 - \sqrt{n^2 + 2n + 5} \right) \in (-1, 0);$$

therefore,

$$\min_{u\in\mathbb{I}}f(u)=f(s_0).$$

On the other hand, for $-1 \le u \le 1$, we have

$$f_1(u) > -2(n-2) - 3n(n+1)(n-2) - 2n^2(2n-3) + n^3(n+1)$$

= $n^2(n-3)^2 + 4(n+1) > 0$,

hence f''(u) > 0. Since $[s_0, s] \subset [-1, 1]$, f is convex on $[s_0, s]$. By the LPCF-Theorem and Note 1, we only need to show that $h(x, y) \ge 0$ for $x, y \in \mathbb{R}$ and x + (n-1)y = n, where

$$h(x,y) = \frac{g(x) - g(y)}{x - y}, \quad g(u) = \frac{f(u) - f(1)}{u - 1}.$$

Indeed, we have

$$g(u) = \frac{(n-2)u + n}{(n-2)u^2 + n^2}$$

and

$$\frac{h(x,y)}{n-2} = \frac{n^2 - n(x+y) - (n-2)xy}{[(n-2)x^2 + n^2][(n-2)y^2 + n^2]}$$
$$= \frac{(n-1)(n-2)y^2}{[(n-2)x^2 + n^2][(n-2)y^2 + n^2]} \ge 0.$$

The proof is completed. By Note 3, the equality holds for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = n$$
, $a_2 = \cdots = a_n = 0$

(or any cyclic permutation).

P 3.5. If a, b, c, d are real numbers so that a + b + c + d = 4, then

$$\frac{a(a-1)}{3a^2+4} + \frac{b(b-1)}{3b^2+4} + \frac{c(c-1)}{3c^2+4} + \frac{d(d-1)}{3d^2+4} \ge 0.$$

(Vasile C., 2012)

Solution. Write the inequality as

$$f(a) + f(b) + f(c) + f(d) \ge 4f(s), \quad s = \frac{a+b+c+d}{4} = 1,$$

where

$$f(u) = \frac{u^2 - u}{3u^2 + 4}, \quad u \in \mathbb{R}.$$

From

$$f'(u) = \frac{3u^2 + 8u - 4}{(3u^2 + 4)^2},$$

it follows that f is increasing on $\left(-\infty, \frac{-4-2\sqrt{7}}{3}\right] \cup [s_0, \infty)$ and decreasing on

$$\left[\frac{-4-2\sqrt{7}}{3}, s_0\right]$$
, where

$$s_0 = \frac{-4 + 2\sqrt{7}}{3} \approx 0.43.$$

Since

$$\lim_{u \to -\infty} f(u) = \frac{1}{3}$$

and $f(s_0) < 0$, it follows that

$$\min_{u\in\mathbb{R}}f(u)=f(s_0).$$

For $u \in [0, 1]$, we have

$$\frac{1}{2}f''(u) = \frac{-9u^3 - 36u^2 + 36u + 14}{(3u^2 + 4)^3}$$
$$= \frac{9u^2(1 - u) + 45u(1 - u) + (16 - 9u)}{(3u^2 + 4)^3} > 0.$$

Therefore, f is convex on [0,1], hence on $[s_0,s]$. According to the LPCF-Theorem and Note 1, we only need to show that $h(x,y) \ge 0$ for $x,y \in \mathbb{R}$ so that x+3y=4. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{u}{3u^2 + 4},$$

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = \frac{4 - 3xy}{(3x^2 + 4)(3y^2 + 4)}$$
$$= \frac{(x - 2)^2}{(3x^2 + 4)(3y^2 + 4)} \ge 0.$$

The proof is completed. From x + 3y = 4 and h(x, y) = 0, we get x = 2 and y = 2/3. By Note 3, the equality holds for a = b = c = d = 1, and also for

$$a = 2$$
, $b = c = d = \frac{2}{3}$

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

• If $a_1, a_2, ..., a_n$ are real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$\frac{a_1(a_1-1)}{4(n-1)a_1^2+n^2}+\frac{a_2(a_2-1)}{4(n-1)a_2^2+n^2}+\cdots+\frac{a_n(a_n-1)}{4(n-1)a_n^2+n^2}\geq 0,$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = \frac{n}{2}$$
, $a_2 = a_3 = \dots = a_n = \frac{n}{2(n-1)}$

(or any cyclic permutation).

P 3.6. If a, b, c are real numbers so that a + b + c = 3, then

$$\frac{1}{9a^2 - 10a + 9} + \frac{1}{9b^2 - 10b + 9} + \frac{1}{9c^2 - 10c + 9} \le \frac{3}{8}.$$

(Vasile C., 2015)

Solution. Write the inequality as

$$f(a) + f(b) + f(c) \ge 3f(s), \quad s = \frac{a+b+c}{3} = 1,$$

where

$$f(u) = \frac{-1}{9u^2 - 10u + 9}, \quad u \in \mathbb{R}.$$

From

$$f'(u) = \frac{2(9u-5)}{(9u^2-10u+9)^2},$$

it follows that f is decreasing on $[-\infty,s_0]$ and increasing on $[s_0,\infty)$ and , where

$$s_0 = \frac{5}{9} < 1 = s.$$

For $u \in [s_0, s] = [5/9, 1]$, we have

$$f''(u) = \frac{2(-243u^2 + 270u - 19)}{(9u^2 - 10u + 9)^3} > \frac{2(-243u^2 + 270u - 27)}{(9u^2 - 10u + 9)^3}$$
$$= \frac{54(-9u^2 + 10u - 1)}{(9u^2 - 10u + 9)^3} = \frac{54(1 - u)(9u - 1)}{(9u^2 - 10u + 9)^3} \ge 0.$$

Therefore, f is convex on $[s_0, s]$. According to the LPCF-Theorem and Note 1, we only need to show that $h(x, y) \ge 0$ for $x, y \in \mathbb{R}$ so that x + 2y = 3. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{9u - 1}{8(9u^2 - 10u + 9)},$$

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = \frac{9(x + y) - 81xy + 71}{8(9x^2 - 10x + 9)(9y^2 - 10y + 9)}$$
$$= \frac{2(9y - 7)^2}{8(9x^2 - 10x + 9)(9y^2 - 10y + 9)} \ge 0.$$

The proof is completed. From x + 2y = 3 and h(x, y) = 0, we get

$$x = \frac{13}{9}, \quad y = \frac{7}{9}.$$

Thus, the equality holds for a = b = c = d = 1, and also for

$$a = \frac{13}{9}, \quad b = c = \frac{7}{9}$$

(or any cyclic permutation).

P 3.7. If a, b, c, d are real numbers so that a + b + c + d = 4, then

$$\frac{1}{4a^2 - 5a + 4} + \frac{1}{4b^2 - 5b + 4} + \frac{1}{4c^2 - 5c + 4} + \frac{1}{4d^2 - 5d + 4} \le \frac{4}{3}.$$

(Vasile C., 2015)

Solution. Write the inequality as

$$f(a) + f(b) + f(c) + f(d) \ge 4f(s), \quad s = \frac{a+b+c+d}{4} = 1,$$

where

$$f(u) = \frac{-1}{4u^2 - 5u + 4}, \quad u \in \mathbb{R}.$$

From

$$f'(u) = \frac{2(8u-5)}{(4u^2 - 5u + 4)^2},$$

it follows that f is decreasing on $(-\infty, s_0]$ and increasing on $[s_0, \infty)$, where

$$s_0 = \frac{5}{8} < 1 = s.$$

For $u \in [s_0, s] = [5/8, 1]$, we have

$$f''(u) = \frac{4(-48u^2 + 60u - 9)}{(4u^2 - 5u + 4)^3} > \frac{4(-48u^2 + 60u - 12)}{(4u^2 - 5u + 4)^3}$$
$$= \frac{48(-4u^2 + 5u - 1)}{(4u^2 - 5u + 4)^3} = \frac{48(1 - u)(4u - 1)}{(4u^2 - 5u + 4)^3} \ge 0.$$

Therefore, f is convex on $[s_0, s]$. According to the LPCF-Theorem and Note 1, we only need to show that $h(x, y) \ge 0$ for $x, y \in \mathbb{R}$ so that x + 3y = 4. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{4u - 1}{3(4u^2 - 5u + 4)},$$

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = \frac{4(x + y) - 16xy + 11}{3(4x^2 - 5x + 4)(4y^2 - 5y + 4)}$$
$$= \frac{(4y - 3)^2}{(4x^2 - 5x + 4)(4y^2 - 5y + 4)} \ge 0.$$

From x + 3y = 4 and h(x, y) = 0, we get

$$x = \frac{7}{4}, \quad y = \frac{3}{4}.$$

In accord with Note 3, the equality holds for a = b = c = 1, and also for

$$a = \frac{7}{4}$$
, $b = c = d = \frac{3}{4}$

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• Let a_1, a_2, \ldots, a_n be real numbers so that $a_1 + a_2 + \cdots + a_n = n$. If

$$k = 1 - \frac{2(n-1)}{n^2},$$

then

$$\frac{1}{a_1^2 - 2ka_1 + 1} + \frac{1}{a_2^2 - 2ka_2 + 1} + \dots + \frac{1}{a_n^2 - 2ka_n + 1} \ge \frac{n}{2(1 - k)},$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = \frac{3n^2 - 6n + 4}{n^2}$$
, $a_2 = a_3 = \dots = a_n = \frac{n^2 - 2n + 4}{n^2}$

(or any cyclic permutation).

P 3.8. Let $a_1, a_2, \ldots, a_n \neq -k$ be real numbers so that $a_1 + a_2 + \cdots + a_n = n$, where

$$k \ge \frac{n}{2\sqrt{n-1}}.$$

Then,

$$\frac{a_1(a_1-1)}{(a_1+k)^2} + \frac{a_2(a_2-1)}{(a_2+k)^2} + \dots + \frac{a_n(a_n-1)}{(a_n+k)^2} \ge 0.$$

(Vasile C., 2008)

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = \frac{u(u-1)}{(u+k)^2}, \quad u \in \mathbb{I} = \mathbb{R} \setminus \{-k\}.$$

From

$$f'(u) = \frac{(2k+1)u - k}{(u+k)^3},$$

it follows that f is increasing on $(-\infty, -k) \cup [s_0, \infty)$ and decreasing on $(-k, s_0]$, where

$$s_0 = \frac{k}{2k+1} < 1 = s.$$

Since

$$\lim_{u \to -\infty} f(u) = 1$$

and $f(s_0) < 0$, we have

$$\min_{u\in\mathbb{I}}f(u)=f(s_0).$$

From

$$\frac{1}{2}f''(u) = \frac{k(k+2) - (2k+1)u}{(u+k)^4},$$

it follows that f is convex on $\left[0,\frac{k(k+2)}{2k+1}\right]$, hence on $[s_0,1]$. According to the LPCF-Theorem, Note 4 and Note 1, it suffices to show that $h(x,y)\geq 0$ for all $x,y\in\mathbb{I}$ which satisfy x+(n-1)y=n, where

$$h(x,y) = \frac{g(x) - g(y)}{x - y}, \quad g(u) = \frac{f(u) - f(1)}{u - 1}.$$

Indeed, we have

$$g(u) = \frac{u}{(u+k)^2}$$

and

$$h(x,y) = \frac{k^2 - xy}{(x+k)^2(y+k)^2} \ge \frac{\frac{n^2}{4(n-1)} - xy}{(x+k)^2(y+k)^2}$$
$$= \frac{[2(n-1)y - n]^2}{4(n-1)(x+k)^2(y+k)^2} \ge 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$. If $k = \frac{n}{2\sqrt{n-1}}$, then the equality holds also for

$$a_1 = \frac{n}{2}$$
, $a_2 = \dots = a_n = \frac{n}{2(n-1)}$

(or any cyclic permutation).

P 3.9. Let $a_1, a_2, \ldots, a_n \neq -k$ be real numbers so that $a_1 + a_2 + \cdots + a_n = n$. If

$$k \ge 1 + \frac{n}{\sqrt{n-1}},$$

then

$$\frac{a_1^2-1}{(a_1+k)^2}+\frac{a_2^2-1}{(a_2+k)^2}+\cdots+\frac{a_n^2-1}{(a_n+k)^2}\geq 0.$$

(Vasile C., 2008)

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = \frac{u^2 - 1}{(u + k)^2}, \quad u \in \mathbb{I} = \mathbb{R} \setminus \{-k\}.$$

From

$$f'(u) = \frac{2(ku+1)}{(u+k)^3},$$

it follows that f is increasing on $(-\infty, -k) \cup [s_0, \infty)$ and decreasing on $(-k, s_0]$, where

$$s_0 = \frac{-1}{k} < 0 = s, \quad s_0 > -1.$$

Since

$$\lim_{u \to -\infty} f(u) = 1$$

and $f(s_0) < 0$, we have

$$\min_{u\in\mathbb{I}}f(u)=f(s_0).$$

For $u \in [-1, 1]$, we have

$$f''(u) = \frac{2(k^2 - 3 - 2ku)}{(u+k)^4} \ge \frac{2(k^2 - 3 - 2k)}{(u+k)^4} = \frac{2(k+1)(k-3)}{(u+k^4)} \ge 0,$$

hence f is convex on $[s_0, 1]$. According to the LPCF-Theorem, Note 4 and Note 1, it suffices to show that $h(x, y) \ge 0$ for $x, y \in \mathbb{I}$ which satisfy x + (n-1)y = n. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{u + 1}{(u + k)^2},$$

$$h(x, y) = \frac{g(x) - g(y)}{x - y} = \frac{(k - 1)^2 - 1 - x - y - xy}{(x + k)^2 (y + k)^2} \ge 0,$$

since

$$(k-1)^2 - 1 - x - y - xy \ge \frac{n^2}{n-1} - 1 - x - y - xy = \frac{[(n-1)y - 1]^2}{n-1} \ge 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$. If $k = 1 + \frac{n}{\sqrt{n-1}}$, then the equality holds also for

$$a_1 = n - 1,$$
 $a_2 = \dots = a_n = \frac{1}{n - 1}$

(or any cyclic permutation).

P 3.10. Let a_1, a_2, a_3, a_4, a_5 be real numbers so that $a_1 + a_2 + a_3 + a_4 + a_5 \ge 5$. If

$$k \in \left[\frac{1}{6}, \frac{25}{14}\right],$$

then

$$\sum \frac{1}{ka_1^2 + a_2 + a_3 + a_4 + a_5} \le \frac{5}{k+4}.$$

(Vasile C., 2006)

Solution. We see that

$$ka_i^2 - a_i + (a_1 + a_2 + a_3 + a_4 + a_5) > \frac{1}{6}a_i^2 - a_i + \frac{3}{2} = \frac{(a_1 - 3)^2}{6} \ge 0$$

for all $i \in \{1, 2, ..., n\}$. Since each term of the left hand side of the inequality decreases by increasing any number a_i , it suffices to consider the case

$$a_1 + a_2 + a_3 + a_4 + a_5 = 5$$
,

when the desired inequality can be written as

$$f(a_1) + f(a_2) + f(a_3) + f(a_4) + f(a_5) \ge 5f(s), \quad s = \frac{a_1 + a_2 + a_3 + a_4 + a_5}{5} = 1,$$

where

$$f(u) = \frac{-1}{ku^2 - u + 5}, \quad u \in \mathbb{R}.$$

From

$$f'(u) = \frac{2ku - 1}{(ku^2 - u + 5)^2},$$

it follows that f is decreasing on $(-\infty, s_0]$ and increasing on $[s_0, \infty)$, where

$$s_0 = \frac{1}{2k}.$$

We have

$$f''(u) = \frac{2g(u)}{(ku^2 - u + 5)^3}, \quad g(u) = -3k^2u^2 + 3ku + 5k - 1.$$

For

$$\frac{1}{2} \le k \le \frac{25}{14},$$

we have

$$s_0 = \frac{1}{2k} \le 1 = s,$$

and for $u \in [s_0, s]$, that is

$$\frac{1}{2k} \le u \le 1,$$

we have

$$(1-u)(2ku-1) \ge 0,$$

 $-2ku^2 \ge (2k+1)u+1,$
 $-2k^2u^2 \ge k(2k+1)u+k,$

therefore

$$g(u) \ge \frac{3}{2} [k(2k+1)u + k] + 3ku + 5k - 1 = \frac{-3k(2k-1)u + 13k - 2}{2}$$
$$\ge \frac{-3k(2k-1) + 13k - 2}{2} = -3k^2 + 8k - 1 = 3k(2-k) + (2k-1) > 0.$$

Consequently, f is convex on $[s_0, s]$.

For

$$\frac{1}{6} \le k \le \frac{1}{2},$$

we have

$$s_0 = \frac{1}{2k} \ge 1 = s,$$

and for $u \in [s, s_0]$, that is

$$1 \le u \le \frac{1}{2k},$$

we have

$$g(u) = -3k^{2}u^{2} + 3ku + 5k - 1 \ge 3ku(1 - k) + 5k - 1$$

$$\ge 3k(1 - k) + 5k - 1 = -3k^{2} + 8k - 1$$

$$> -6k^{2} + 7k - 1 = (1 - k)(6k - 1) \ge 0.$$

Consequently, f is convex on $[s, s_0]$.

In both cases, by the PCF-Theorem, it suffices to show that

$$\frac{1}{kx^2 - x + 5} + \frac{4}{ky^2 - y + 5} \le \frac{5}{k + 4}$$

for

$$x + 4y = 5$$
, $x, y \in \mathbb{R}$.

Write this inequality as follows:

$$\frac{1}{k+4} - \frac{1}{kx^2 - x + 5} + 4 \left[\frac{1}{k+4} - \frac{1}{ky^2 - y + 5} \right] \ge 0,$$
$$\frac{(x-1)(kx+k-1)}{kx^2 - x + 5} + \frac{4(y-1)(ky+k-1)}{ky^2 - y + 5} \ge 0.$$

Since

$$4(y-1)=1-x$$

the inequality is equivalent to

$$(x-1)\left(\frac{kx+k-1}{kx^2-x+5} - \frac{ky+k-1}{ky^2-y+5}\right) \ge 0,$$

$$\frac{5(x-1)^2h(x,y)}{4(kx^2-x+5)(ky^2-y+5)} \ge 0,$$

where

$$h(x,y) = -k^2 x y - k(k-1)(x+y) + 6k - 1$$

$$= 4k^2 y^2 - k(2k+3)y - 5k^2 + 11k - 1$$

$$= \left(2ky - \frac{2k+3}{4}\right)^2 + \frac{(25-14k)(6k-1)}{16} \ge 0.$$

The equality holds for $a_1 = a_2 = a_3 = a_4 = a_5 = 1$. If $k = \frac{1}{6}$, then the equality holds also for

$$a_1 = -5$$
, $a_2 = a_3 = a_4 = a_5 = \frac{5}{2}$

(or any cyclic permutation). If $k = \frac{25}{14}$, then the equality holds also for

$$a_1 = \frac{79}{25}$$
, $a_2 = a_3 = a_4 = a_5 = \frac{23}{50}$

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

• Let a_1, a_2, \ldots, a_n be real numbers so that $a_1 + a_2 + \cdots + a_n \le n$. If $k \in [k_1, k_2]$, where

$$\begin{aligned} k_1 &= \frac{(n-1)(\sqrt{53n^2-54n+101}-5n+11)}{2(7n^2+14n-5)}, \\ k_2 &= \frac{2n^2-2n+1+\sqrt{(n-1)(3n^3-4n^2+3n-1)}}{2(n^2-n+1)}, \end{aligned}$$

then

$$\sum \frac{1}{ka_1^2 + a_2 + \dots + a_n} \le \frac{n}{k+n-1},$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$. If $k = k_1$, then the equality holds also for

$$a_1 = -n$$
, $a_2 = \cdots = a_n = \frac{2n}{n-1}$

(or any cyclic permutation). If $k = k_2$, then the equality holds also for

$$a_1 = \frac{(2k-1)(n-1)+1}{2k}, \quad a_2 = \dots = a_n = \frac{2k+n-2}{2k(n-1)}$$

(or any cyclic permutation).

P 3.11. Let $a_1, a_2, ..., a_5$ be nonnegative numbers so that $a_1 + a_2 + a_3 + a_4 + a_5 \ge 5$. If $k \in [k_1, k_2]$, where

$$k_1 = \frac{29 - \sqrt{761}}{10} \approx 0.1414, \quad k_2 = \frac{25}{14} \approx 1.7857,$$

then

$$\sum \frac{1}{ka_1^2 + a_2 + a_3 + a_4 + a_5} \le \frac{5}{k+4}.$$

(Vasile C., 2006)

Solution. Since all terms of the left hand side of the inequality decrease by increasing any number a_i , it suffices to consider the case

$$a_1 + a_2 + a_3 + a_4 + a_5 = 5$$
.

The proof is similar to the one of the preceding P 3.10. Having in view P 3.10, it suffices to consider the case

$$k \in \left[k_1, \frac{1}{6}\right],$$

when

$$s_0 = \frac{1}{2k} > 1 = s.$$

For $u \in [s, s_0]$, that is

$$1 \le u \le \frac{1}{2k},$$

f is convex because

$$g(u) = -3k^{2}u^{2} + 3ku + 5k - 1 \ge 3ku(1 - k) + 5k - 1$$

$$\ge 3k(1 - k) + 5k - 1 = -3k^{2} + 8k - 1$$

$$> -\frac{15}{4}k^{2} + 87k - 1 = \frac{(2 - k)(15k - 2)}{4} > 0.$$

Thus, by the RPCF-Theorem, it suffices to show that

$$\frac{1}{kx^2 - x + 5} + \frac{4}{ky^2 - y + 5} \le \frac{5}{k + 4}$$

for

$$x + 4y = 5$$
, $0 \le x \le 1 \le y \le \frac{5}{4}$.

As shown at P 3.10, this inequality is true if $h(x, y) \ge 0$, where

$$h(x,y) = -k^2xy - k(k-1)(x+y) + 6k - 1.$$

We have

$$h(x,y) = 4k^2y^2 - k(2k+3)y - 5k^2 + 11k - 1$$

= $(5-4y)(A-k^2y) + B = x(A-k^2y) + B$,

where

$$A = \frac{3k(1-k)}{4}$$
, $B = \frac{-5k^2 + 29k - 4}{4}$.

Since $B \ge 0$, it suffices to show that $A - k^2 y \ge 0$. Indeed, we have

$$A - k^2 y \ge \frac{3k(1-k)}{4} - \frac{5k^2}{4} = \frac{k(3-8k)}{4} > 0.$$

The equality holds for $a_1 = a_2 = a_3 = a_4 = a_5 = 1$. If $k = k_1$, then the equality holds also for

$$a_1 = 0$$
, $a_2 = a_3 = a_4 = a_5 = \frac{5}{4}$

(or any cyclic permutation). If $k = k_2$, then the equality holds also for

$$a_1 = \frac{79}{25}$$
, $a_2 = a_3 = a_4 = a_5 = \frac{23}{50}$

(or any cyclic permutatio

Remark. Similarly, we can prove the following generalization:

• Let $a_1, a_2, ..., a_n$ be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n \le n$. If $k \in [k_1, k_2]$, where

$$k_1 = \frac{n^2 + n - 1 - \sqrt{n^4 + 2n^3 - 5n^2 + 2n + 1}}{2n},$$

$$k_2 = \frac{2n^2 - 2n + 1 + \sqrt{(n-1)(3n^3 - 4n^2 + 3n - 1)}}{2(n^2 - n + 1)},$$

then

$$\sum \frac{1}{ka_1^2 + a_2 + \dots + a_n} \le \frac{n}{k+n-1},$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$. If $k = k_1$, then the equality holds also for

$$a_1 = 0, \quad a_2 = \dots = a_n = \frac{n}{n-1}$$

(or any cyclic permutation). If $k = k_2$, then the equality holds also for

$$a_1 = \frac{(2k-1)(n-1)+1}{2k}, \quad a_2 = \dots = a_n = \frac{2k+n-2}{2k(n-1)}$$

(or any cyclic permutation).

P 3.12. Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n \ge n$. If k > 1, then

$$\frac{1}{a_1^k + a_2 + \dots + a_n} + \frac{1}{a_1 + a_2^k + \dots + a_n} + \dots + \frac{1}{a_1 + a_2 + \dots + a_n^k} \le 1.$$

(Vasile C., 2006)

Solution. It suffices to consider the case $a_1 + a_2 + \cdots + a_n = n$, when the desired inequality can be written as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = \frac{-1}{u^k - u + n}, \quad u \in [0, n].$$

From

$$f'(u) = \frac{ku^{k-1} - 1}{(u^k - u + n)^2},$$

it follows that f is decreasing on $[0,s_0]$ and increasing on $[s_0,n]$, where

$$s_0 = k^{\frac{1}{1-k}} < 1 = s.$$

We will show that f is convex on $[s_0, 1]$. For $u \in [s_0, 1]$, we have

$$f''(u) = \frac{-k(k+1)u^{2k-2} + k(k+3)u^{k-1} + nk(k-1)u^{k-2} - 2}{(u^k - u + n)^3} > \frac{g(u)}{(u^k - u + n)^3},$$

where

$$g(u) = -k(k+1)u^{2k-2} + k(k+3)u^{k-1} - 2.$$

Denoting

$$t = ku^{k-1}, \quad 1 \le t \le k,$$

we get

$$kg(u) = -(k+1)t^{2} + k(k+3)t - 2k$$

= $(k+1)(t-1)(k-t) + (k-1)(t+k) > 0$.

By the LPCF-Theorem, it suffices to show that

$$\frac{1}{x^k - x + n} + \frac{n - 1}{y^k - y + n} \le 1$$

for $x \ge 1 \ge y \ge 0$ and x + (n-1)y = n. Since this inequality is trivial for x = y = 1, assume next that $x > 1 > y \ge 0$, and write the desired inequality as follows:

$$x^{k} - x + n \ge \frac{y^{k} - y + n}{y^{k} - y + 1},$$

$$x^{k} - x \ge \frac{(n - 1)(y - y^{k})}{y^{k} - y + 1},$$

$$\frac{x^{k} - x}{x - 1} \ge \frac{y - y^{k}}{(1 - y)(y^{k} - y + 1)}.$$

Let $h(x) = \frac{x^k - x}{x - 1}$, x > 1. By the weighted AM-GM inequality, we have

$$h'(x) = \frac{(k-1)x^k + 1 - kx^{k-1}}{(x-1)^2} > 0.$$

Therefore, h is increasing. Since

$$x-1=(n-1)(1-y) \ge 1-y$$
, $x \ge 2-y > 1$,

we get

$$h(x) \ge h(2-y) = \frac{(2-y)^k + y - 2}{1-y}.$$

Thus, it suffices to show that

$$(2-y)^k + y - 2 \ge \frac{y - y^k}{y^k - y + 1},$$

which is equivalent to

$$(2-y)^k + y - 1 \ge \frac{1}{y^k - y + 1}.$$

Using the substitution

$$t = 1 - y$$
, $0 < t \le 1$,

the inequality becomes

$$(1+t)^k - t \ge \frac{1}{(1-t)^k + t},$$

$$(1-t^2)^k + t(1+t)^k \ge 1 + t^2 + t(1-t)^k.$$

By Bernoulli's inequality,

$$(1-t^2)^k + t(1+t)^k \ge 1 - kt^2 + t(1+kt) = 1+t.$$

So, we only need to show that

$$1+t \ge 1+t^2+t(1-t)^k$$

which is equivalent to the obvious inequality

$$t(1-t)[1-(1-t)^{k-1}] \ge 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

Remark. Using this result, we can formulate the following statement:

• Let $x_1, x_2, ..., x_n$ be nonnegative real numbers so that $x_1 + x_2 + \cdots + x_n \ge n$. If k > 1, then

$$\frac{x_1^k - x_1}{x_1^k + x_2 + \dots + x_n} + \frac{x_2^k - x_2}{x_1 + x_2^k + \dots + x_n} + \dots + \frac{x_n^k - x_n}{x_1 + x_2 + \dots + x_n^k} \ge 0.$$

This inequality is equivalent to

$$\frac{1}{x_1^k + x_2 + \dots + x_n} + \frac{1}{x_1 + x_2^k + \dots + x_n} + \dots + \frac{1}{x_1 + x_2 + \dots + x_n^k} \le \frac{n}{x_1 + x_2 + \dots + x_n}.$$

Using the substitutions

$$s = \frac{x_1 + x_2 + \dots + x_n}{n}, \quad s \ge 1,$$

and

$$a_i = \frac{x_i}{s}, \quad i = 1, 2, \dots, n,$$

which yields $a_1 + a_2 + \cdots + a_n = n$, the desired inequality becomes

$$\sum \frac{1}{s^{k-1}a_1^k + a_2 + \dots + a_n} \le 1.$$

Since $s^{k-1} \ge 1$, it suffices to show that

$$\sum \frac{1}{a_1^k + a_2 + \dots + a_n} \le 1,$$

which follows immediately from the inequality in P 3.12.

Since $x_1x_2\cdots x_n\geq 1$ involves $x_1+x_2+\cdots +x_n\geq n$, the inequality is also true under the more restrictive condition $x_1x_2\cdots x_n\geq 1$. For n=3 and k=5/2, we get the inequality from IMO-2005:

• If x, y, z are nonnegative real numbers so that $xyz \ge 1$, then

$$\frac{x^5 - x^2}{x^5 + y^2 + z^2} + \frac{y^5 - y^2}{x^2 + y^5 + z^2} + \frac{z^5 - z^2}{x^2 + y^2 + z^5} \ge 0.$$

P 3.13. Let $a_1, a_2, ..., a_5$ be nonnegative numbers so that $a_1 + a_2 + a_3 + a_4 + a_5 \ge 5$. If

$$k \in \left[\frac{4}{9}, \frac{61}{5}\right],$$

then

$$\sum \frac{a_1}{ka_1^2+a_2+a_3+a_4+a_5} \leq \frac{5}{k+4}.$$

(Vasile C., 2006)

Solution. Using the substitution

$$x_1 = \frac{a_1}{s}$$
, $x_2 = \frac{a_2}{s}$, $x_3 = \frac{a_3}{s}$, $x_4 = \frac{a_4}{s}$, $x_5 = \frac{a_5}{s}$,

where

$$s = \frac{a_1 + a_2 + a_3 + a_4 + a_5}{5} \ge 1,$$

we need to show that $x_1 + x_2 + x_3 + x_4 + x_5 = 5$ involves

$$\frac{x_1}{ksx_1^2 + x_2 + x_3 + x_4 + x_5} + \dots + \frac{x_5}{x_1 + x_2 + x_3 + x_4 + ksx_5^2} \le \frac{5}{k+4}.$$

Since $s \ge 1$, it suffices to prove the inequality for s = 1; that is, to show that

$$\frac{a_1}{ka_1^2 - a_1 + 5} + \frac{a_2}{ka_2^2 - a_1 + 5} + \dots + \frac{a_5}{ka_5^2 - a_n + 5} \le \frac{5}{k + 4}$$

for

$$a_1 + a_2 + a_3 + a_4 + a_5 = 5$$
.

Write the desired inequality as

$$f(a_1) + f(a_2) + f(a_3) + f(a_4) + f(a_5) \ge 5f(s),$$

where

$$s = \frac{a_1 + a_2 + a_3 + a_4 + a_5}{5} = 1$$

and

$$f(u) = \frac{-u}{ku^2 - u + 5}, \quad u \in [0, 5].$$

From

$$f'(u) = \frac{ku^2 - 5}{(ku^2 - u + 5)^2},$$

it follows that f is decreasing on $[0, s_0]$ and increasing on $[s_0, 5]$, where

$$s_0 = \sqrt{\frac{5}{k}}.$$

We have

$$f''(u) = \frac{2g(u)}{(u^2 - u + 5)^3}, \quad g(u) = -k^2 u^3 + 15ku - 5, \quad g'(u) = 3k(5 - ku^2).$$

Case 1: $\frac{4}{9} \le k \le 5$. We have

$$s_0 = \sqrt{\frac{5}{k}} \ge 1 = s.$$

For $u \in [1, s_0]$, the derivative g' is nonnegative, g is increasing, hence

$$g(u) \ge g(1) = -k^2 + 15k - 5 = \left(k - \frac{4}{9}\right)(5 - k) + \frac{86k - 25}{9} > 0.$$

Consequently, f''(u) > 0 for $u \in [1, s_0]$, hence f is convex on $[s, s_0]$.

Case 2: $5 \le k \le \frac{61}{5}$. We have

$$s_0 = \sqrt{\frac{5}{k}} < 1 = s.$$

For $u \in [s_0, 1]$, we have $g'(u) \le 0$, g(u) is decreasing, hence

$$g(u) \ge g(1) = -k^2 + 15k - 5 = (k-1)(13-k) + k + 8 > 0.$$

Consequently, f''(u) > 0 for $u \in [s_0, 1]$, hence f is convex on $[s_0, s]$.

In both cases, by the PCF-Theorem, it suffices to show that

$$\frac{x}{kx^2 - x + 5} + \frac{4y}{ky^2 - y + 5} \le \frac{5}{k + 4}$$

for

$$x + 4y = 5, \quad x, y \ge 0.$$

Write this inequality as follows:

$$\frac{1}{k+4} - \frac{x}{kx^2 - x + 5} + 4 \left[\frac{1}{k+4} - \frac{y}{ky^2 - y + 5} \right] \ge 0,$$
$$\frac{(x-1)(kx-5)}{kx^2 - x + 5} + \frac{4(y-1)(ky-5)}{ky^2 - y + 5} \ge 0.$$

Since

$$4(y-1)=1-x$$

the inequality is equivalent to

$$(x-1)\left(\frac{kx-5}{kx^2-x+5} - \frac{ky-5}{ky^2-y+5}\right) \ge 0,$$
$$\frac{(x-1)^2h(x,y)}{(kx^2-x+5)(ky^2-y+5)} \ge 0,$$

where

$$h(x,y) = -k^2xy + 5k(x+y) + 5k - 5$$

= $4k^2y^2 - 5k(k+3)y + 5(6k-1)$.

We need to show that $h(x, y) \ge 0$ for $k \in \left[\frac{4}{9}, \frac{61}{5}\right]$. For $k \in \left[\frac{4}{9}, 1\right]$, we have

$$h(x,y) = (5-4y)\left(-k^2y + \frac{15k}{4}\right) + \frac{5(9k-4)}{4}$$
$$= \frac{kx(15-4ky)}{4} + \frac{5(9k-4)}{4}$$
$$= \frac{kx(kx+15-5k)}{4} + \frac{5(9k-4)}{4} \ge 0,$$

while for $k \in \left[1, \frac{61}{5}\right]$, we have

$$h(x,y) = \left(2ky - \frac{5k+15}{4}\right)^2 + \frac{(61-5k)(k-1)}{16} \ge 0.$$

The equality holds for $a_1 = a_2 = a_3 = a_4 = a_5 = 1$. If $k = \frac{4}{9}$, then the equality holds also for

$$a_1 = 0$$
, $a_2 = a_3 = a_4 = a_5 = \frac{5}{4}$

(or any cyclic permutation). If $k = \frac{61}{5}$, then the equality holds also for

$$a_1 = \frac{115}{61}$$
, $a_2 = a_3 = a_4 = a_5 = \frac{95}{122}$

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

• Let a_1, a_2, \ldots, a_n be real numbers so that $a_1 + a_2 + \cdots + a_n \le n$. If $k \in [k_1, k_2]$, where

$$k_1 = \frac{n-1}{2n-1},$$

$$k_2 = \frac{n^2 + 2n - 2 + 2\sqrt{(n-1)(2n^2 - 1)}}{n},$$

then

$$\sum \frac{a_1}{ka_1^2 + a_2 + \dots + a_n} \le \frac{n}{k+n-1},$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$. If $k = k_1$, then the equality holds also for

$$a_1 = 0$$
, $a_2 = a_3 = a_4 = a_5 = \frac{n}{n-1}$

(or any cyclic permutation). If $k = k_2$, then the equality holds also for

$$a_1 = \frac{n(k-n+2)}{2k}, \quad a_2 = \dots = a_n = \frac{n(k+n-2)}{2k(n-1)}$$

(or any cyclic permutation).

P 3.14. Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n \ge n$. If k > 1, then

$$\frac{a_1}{a_1^k + a_2 + \dots + a_n} + \frac{a_2}{a_1 + a_2^k + \dots + a_n} + \dots + \frac{a_n}{a_1 + a_2 + \dots + a_n^k} \le 1.$$

(*Vasile C., 2006*)

Solution. Using the substitution

$$x_1 = \frac{a_1}{s}, \ x_2 = \frac{a_2}{s}, \dots, \ x_n = \frac{a_n}{s},$$

where

$$s = \frac{a_1 + a_2 + \dots + a_n}{n} \ge 1,$$

we need to show that $x_1 + x_2 + \cdots + x_n = n$ involves

$$\frac{x_1}{s^{k-1}x_1^k + x_2 + \dots + x_n} + \dots + \frac{x_n}{x_1 + x_2 + \dots + s^{k-1}x_n^k} \le 1.$$

Since $s^{k-1} \ge 1$, it suffices to prove the inequality for s = 1; that is, to show that

$$\frac{a_1}{a_1^k - a_1 + n} + \frac{a_2}{a_2^k - a_2 + n} + \dots + \frac{a_n}{a_n^k - a_n + n} \le 1$$

for

$$a_1 + a_2 + \cdots + a_n = n$$
.

Case 1: $1 < k \le n + 1$. By Bernoulli's inequality, we have

$$a_1^k \ge 1 + k(a_1 - 1), \quad a_1^k - a_1 + n \ge (k - 1)a_1 + n - k + 1.$$

Thus, it suffices to show that

$$\sum \frac{a_1}{(k-1)a_1 + n - k + 1} \le 1.$$

This is an equality for k = n - 1. If 1 < k < n + 1, then the inequality is equivalent to

$$\sum \frac{1}{(k-1)a_1 + n - k + 1} \ge 1,$$

which follows from the the AM-HM inequality

$$\sum \frac{1}{(k-1)a_1 + n - k + 1} \ge \frac{n^2}{\sum [(k-1)a_1 + n - k + 1]}.$$

Case 2: k > n + 1. Write the desired inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = \frac{-u}{u^k - u + n}, \quad u \in [0, n].$$

We have

$$f'(u) = \frac{(k-1)u^k - n}{(u^k - u + n)^2}$$

and

$$f''(u) = \frac{f_1(u)}{(u^k - u + n)^3},$$

where

$$f_1(u) = k(k-1)u^{k-1}(u^k - u + n) - 2(ku^{k-1} - 1)[(k-1)u^k - n].$$

From the expression of f', it follows that f is decreasing on $[0, s_0]$ and increasing on $[s_0, n]$, where

$$s_0 = \left(\frac{n}{k-1}\right)^{1/k} < 1 = s.$$

For $u \in [s_0, 1]$, we have

$$(k-1)u^k - n \ge (k-1)s_0^k - n = 0,$$

hence

$$f_1(u) \ge k(k-1)u^{k-1}(u^k - u + n) - 2ku^{k-1}[(k-1)u^k - n]$$

$$= ku^{k-1}[-(k-1)(u^k + u) + n(k+1)]$$

$$\ge ku^{k-1}[-2(k-1) + 2(k+1)] = 4ku^{k-1} > 0.$$

Since f''(u) > 0, it follows that f is convex on $[s_0, s]$. By the LPCF-Theorem, we need to show that

$$f(x) + (n-1)f(y) \ge nf(1)$$

for

$$x \ge 1 \ge y \ge 0, \quad x + (n-1)y = n.$$

Consider the nontrivial case where $x > 1 > y \ge 0$ and write the required inequality as follows:

$$\frac{x}{x^{k} - x + n} + \frac{(n-1)y}{y^{k} - y + n} \le 1,$$

$$x^{k} - x + n \ge \frac{x(y^{k} - y + n)}{y^{k} - ny + n},$$

$$x^{k} - x \ge \frac{(n-1)y(y - y^{k})}{y^{k} - ny + n}.$$

Since y < 1 and $y^k - ny + n > y^k - y + 1$, it suffices to show that

$$x^{k}-x \geq \frac{(n-1)(y-y^{k})}{y^{k}-y+1},$$

which has been proved at P 3.12.

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

P 3.15. Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n \le n$. If $k \ge 1 - \frac{1}{n}$, then

$$\frac{1-a_1}{ka_1^2+a_2+\cdots+a_n}+\frac{1-a_2}{a_1+ka_2^2+\cdots+a_n}+\cdots+\frac{1-a_n}{a_1+a_2+\cdots+ka_n^2}\geq 0.$$

(Vasile C., 2006)

Solution. Let

$$s = \frac{a_1 + a_2 + \dots + a_n}{n}, \quad s \le 1.$$

We have three cases to consider.

Case 1: $s \leq \frac{1}{n}$. The inequality is trivial because

$$a_i \le a_1 + a_2 + \dots + a_n = ns \le 1$$

for i = 1, 2, ..., n.

Case 2: $\frac{1}{n} < s < 1$. Without loss of generality, assume that

$$a_1 \le \dots \le a_j < 1 \le a_{j+1} \dots \le a_n, \quad j \in \{1, 2, \dots, n\}.$$

Clearly, there are b_1, b_2, \dots, b_n so that $b_1 + b_2 + \dots + b_n = n$ and

$$a_1 \le b_1 \le 1, \ldots, a_j \le b_j \le 1, b_{j+1} = a_{j+1}, \ldots, b_n = a_n.$$

Write the desired inequality as

$$f(a_1) + f(a_2) + \cdots + f(a_n) \ge 0$$
,

where

$$f(u) = \frac{1-u}{ku^2 - u + ns}, \quad u \in [0, ns].$$

For $u \in [0, 1]$, we have

$$f'(u) = \frac{k[(1-u)^2 - 1] + (1-ns)}{(ku^2 - u + ns)^2} < 0,$$

hence f is strictly decreasing on [0,1] and

$$f(b_1) \le f(a_1), \ldots, f(b_j) \le f(a_j), f(b_{j+1}) = f(a_{j+1}), \ldots, f(b_n) = f(a_n).$$

Since

$$f(b_1) + f(b_2) + \dots + f(b_n) \le f(a_1) + f(a_2) + \dots + f(a_n),$$

it suffices to show that $f(b_1) + f(b_2) + \cdots + f(b_n) \ge 0$ for $b_1 + b_2 + \cdots + b_n = n$. This inequality is proved at Case 3.

Case 3: s = 1. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = \frac{1-u}{ku^2 - u + n}, \quad u \in [0, n].$$

From

$$f'(u) = \frac{k[(u-1)^2 - 1] - (n-1)}{(ku^2 - u + n)^2},$$

it follows that f is decreasing on $[0, s_0]$ and increasing on $[s_0, n]$, where

$$s_0 = 1 + \sqrt{1 + \frac{n-1}{k}} > 1 = s, \quad s_0 < n.$$

We will show that f is convex on $[1, s_0]$. We have

$$f''(u) = \frac{2g(u)}{(ku^2 - u + n)^3},$$

where

$$g(u) = -k^2u^3 + 3k^2u^2 + 3k(n-1)u - kn - n + 1, \quad g'(u) = 3k(-ku^2 + 2ku + n - 1).$$

For $u \in [1, s_0]$, we have $g'(u) \ge 0$, g is increasing, therefore

$$g(u) \ge g(1) = 2k^2 + (2n-3)k - n + 1$$

$$\ge \frac{2(n-1)^2}{n^2} + \frac{(2n-3)(n-1)}{n} - n + 1$$

$$= \frac{(n^2 - 1)(n-2)}{n^2} \ge 0,$$

 $f''(u) \ge 0$, f(u) is convex for $u \in [s, s_0]$. By the RPCF-Theorem, it suffices to show that

$$\frac{1-x}{kx^2 - x + n} + \frac{(n-1)(1-y)}{ky^2 - y + n} \ge 0$$

for $0 \le x \le 1 \le y$ and x + (n-1)y = n. Since (n-1)(1-y) = x-1, we have

$$\frac{1-x}{kx^2-x+n} + \frac{(n-1)(1-y)}{ky^2-y+n} = (x-1)\left(-\frac{1}{kx^2-x+n} + \frac{1}{ky^2-y+n}\right)$$

$$= \frac{(x-1)(x-y)(kx+ky-1)}{(kx^2-x+n)(ky^2-y+n)}$$

$$= \frac{n(x-1)^2(kx+ky-1)}{(n-1)(kx^2-x+n)(ky^2-y+n)} \ge 0,$$

because

$$k(x+y)-1 \ge \frac{n-1}{n}(x+y)-1 = \frac{(n-2)x}{n} \ge 0.$$

The proof is completed. The equality holds for $a_1 = a_2 = \cdots = a_n = 1$. If $k = 1 - \frac{1}{n}$, then the equality holds also for

$$a_1 = 0$$
, $a_2 = a_3 = \dots = a_n = \frac{n}{n-1}$

(or any cyclic permutation).

Remark. For k = 1, we get the following statement:

• If a_1, a_2, \ldots, a_n are nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n \le n$, then

$$\frac{1-a_1}{a_1^2+a_2+\cdots+a_n}+\frac{1-a_2}{a_1+a_2^2+\cdots+a_n}+\cdots+\frac{1-a_n}{a_1+a_2+\cdots+a_n^2}\geq 0.$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$.

P 3.16. Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n \le n$. If $k \ge 1 - \frac{1}{n}$, then

$$\frac{1-a_1}{1-a_1+ka_1^2}+\frac{1-a_2}{1-a_2+ka_2^2}+\cdots+\frac{1-a_n}{1-a_n+ka_n^2}\geq 0.$$

(Vasile C., 2006)

Solution. The proof is similar to the one of the preceding P 3.15. For the case 3, we need to show that

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = \frac{1-u}{1-u+ku^2}, \quad u \in [0,n].$$

From

$$f'(u) = \frac{ku(u-2)}{(1-u+ku^2)^2},$$

it follows that f is decreasing on $[0, s_0]$ and increasing on $[s_0, n]$, where

$$s_0 = 2 > s$$
.

We will show that f is convex on $[1, s_0]$. For $u \in [1, s_0]$, we have

$$f''(u) = \frac{2kg(u)}{(1-u+ku^2)^3}, \quad g(u) = -ku^3 + 3ku^2 - 1.$$

Since

$$g'(u) = 3ku(2-u) \ge 0,$$

g is increasing, $g(u) \ge g(1) = 2k - 1 \ge 0$, hence $f''(u) \ge 0$ for $u \in [1, s_0]$. By the RPCF-Theorem, it suffices to show that

$$\frac{1-x}{1-x+kx^2} + \frac{(n-1)(1-y)}{1-y+ky^2} \ge 0$$

for $0 \le x \le 1 \le y$ and x + (n-1)y = n. Since (n-1)(1-y) = x-1, we have

$$\frac{1-x}{1-x+kx^2} + \frac{(n-1)(1-y)}{1-y+ky^2} = (1-x)\left(\frac{1}{1-x+kx^2} - \frac{1}{1-y+ky^2}\right)$$
$$= \frac{(1-x)(y-x)(kx+ky-1)}{(1-x+kx^2)(1-y+ky^2)}$$
$$= \frac{n(x-1)^2(kx+ky-1)}{(n-1)(1-x+kx^2)(1-y+ky^2)}.$$

Since

$$k(x+y)-1 \ge \frac{n-1}{n}(x+y)-1 = \frac{(n-2)x}{n} \ge 0,$$

the conclusion follows. The equality holds for $a_1 = a_2 = \cdots = a_n = 1$. If $k = 1 - \frac{1}{n}$, then the equality holds also for

$$a_1 = 0$$
, $a_2 = a_3 = \dots = a_n = \frac{n}{n-1}$

(or any cyclic permutation).

P 3.17. Let a_1, a_2, \ldots, a_n be positive real numbers so that $a_1 + a_2 + \cdots + a_n = n$. If $0 < k \le \frac{n}{n-1}$, then

$$a_1^{k/a_1} + a_2^{k/a_2} + \dots + a_n^{k/a_n} \le n.$$

(Vasile C., 2006)

Solution. According to the power mean inequality, we have

$$\left(\frac{a_1^{p/a_1} + a_2^{p/a_2} + \dots + a_n^{p/a_n}}{n}\right)^{1/p} \ge \left(\frac{a_1^{q/a_1} + a_2^{q/a_2} + \dots + a_n^{q/a_n}}{n}\right)^{1/p}$$

for all $p \ge q > 0$. Thus, it suffices to prove the desired inequality for

$$k = \frac{n}{n-1}, \quad 1 < k \le 2.$$

Rewrite the desired inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = -u^{k/u}, \quad u \in \mathbb{I} = (0, n).$$

We have

$$f'(u) = ku^{\frac{k}{u}-2}(\ln u - 1),$$

$$f''(u) = ku^{\frac{k}{u}-4}[u + (1 - \ln u)(2u - k + k \ln u)].$$

For n = 2, when k = 2 and $\mathbb{I} = (0, 2)$, f is convex on [1, 2) because

$$1 - \ln u > 0$$
, $2u - k + k \ln u = 2u - 2 + 2 \ln u \ge 2u - 2 \ge 0$.

Therefore, we may apply the RHCF-Theorem. Consider now that $n \ge 3$. From the expression of f', it follows that f is decreasing on $(0, s_0]$ and increasing on $[s_0, n)$, where

$$s_0 = e > 1 = s$$
.

In addition, we claim that f is convex on $[1, s_0]$. Indeed, since

$$1 - \ln u \ge 0$$
, $2u - k + k \ln u \ge 2 - k > 0$,

we have f'' > 0 for $u \in [1, s_0]$. Therefore, by the RHCF-Theorem (for n = 2) and the RPCF-Theorem (for $n \ge 3$), we only need to show that

$$x^{k/x} + (n-1)y^{k/y} \le n$$

for

$$0 < x \le 1 \le y$$
, $x + (n-1)y = n$.

We have

$$\frac{k}{x} \ge k > 1.$$

Also, from

$$\frac{k}{y} = \frac{n}{(n-1)y} > \frac{n}{x + (n-1)y} = 1, \qquad \frac{k}{y} = \frac{n}{(n-1)y} \le \frac{2}{y} \le 2,$$

we get

$$0 < \frac{k}{y} - 1 \le 1.$$

Therefore, by Bernoulli's inequality, we have

$$x^{k/x} + (n-1)y^{k/y} - n = \frac{1}{\left(\frac{1}{x}\right)^{k/x}} + (n-1)y \cdot y^{k/y-1} - n$$

$$\leq \frac{1}{1 + \frac{k}{x}\left(\frac{1}{x} - 1\right)} + (n-1)y \left[1 + \left(\frac{k}{y} - 1\right)(y - 1)\right] - n$$

$$= \frac{x^2}{x^2 - kx + k} - (k-1)x^2 - (2 - k)x$$

$$= \frac{-x(x-1)^2[(k-1)x + k(2-k)]}{x^2 - kx + k} \leq 0.$$

The proof is completed. The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

P 3.18. If a, b, c, d, e are nonzero real numbers so that a + b + c + d + e = 5, then

$$\left(7 - \frac{5}{a}\right)^2 + \left(7 - \frac{5}{b}\right)^2 + \left(7 - \frac{5}{c}\right)^2 + \left(7 - \frac{5}{d}\right)^2 + \left(7 - \frac{5}{e}\right)^2 \ge 20.$$

(Vasile C., 2012)

Solution. Write the inequality as

$$f(a) + f(b) + f(c) + f(d) + f(e) \ge 5f(s), \quad s = \frac{a+b+c+d+e}{5} = 1,$$

where

$$f(u) = \left(7 - \frac{5}{u}\right)^2, \quad u \in \mathbb{I} = \mathbb{R} \setminus \{0\}.$$

From

$$f'(u) = \frac{10(7u - 5)}{u^3},$$

it follows that f is increasing on $(-\infty,0)\cup[s_0,\infty)$ and decreasing on $(0,s_0]$, where

$$s_0 = \frac{5}{7} < 1 = s.$$

Since

$$\lim_{u \to -\infty} f(u) = 49$$

and $f(s_0) = 0$, we have

$$\min_{u\in\mathbb{I}}f(u)=f(s_0).$$

Also, f is convex on $[s_0, s] = [5/7, 1]$ because

$$f''(u) = \frac{10(15 - 14u)}{u^4} > 0.$$

According to the LPCF-Theorem and Note 4, we only need to show that

$$f(x) + 4f(y) \ge 5f(1)$$

for all nonzero real x, y so that x + 4y = 5. Using Note 1, it suffices to prove that $h(x, y) \ge 0$, where

$$h(x,y) = \frac{g(x) - g(y)}{x - y}, \quad g(u) = \frac{f(u) - f(1)}{u - 1}.$$

We have

$$g(u) = 5\left(\frac{9}{u} - \frac{5}{u^2}\right),$$

$$h(x, y) = \frac{5(5x + 5y - 9xy)}{x^2y^2} = \frac{5(6y - 5)^2}{x^2y^2} \ge 0.$$

In accordance with Note 3, the equality holds for a = b = c = d = e = 1, and also for

$$a = \frac{5}{3}$$
, $b = c = d = e = \frac{5}{6}$

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• Let a_1, a_2, \ldots, a_n be nonzero real numbers so that $a_1 + a_2 + \cdots + a_n = n$. If $k = \frac{n}{n + \sqrt{n-1}}$, then

$$\left(1 - \frac{k}{a_1}\right)^2 + \left(1 - \frac{k}{a_2}\right)^2 + \dots + \left(1 - \frac{k}{a_n}\right)^2 \ge n(1 - k)^2,$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = \frac{n}{1 + \sqrt{n-1}}, \quad a_2 = a_3 = \dots = a_n = \frac{n}{n-1 + \sqrt{n-1}}$$

(or any cyclic permutation).

P 3.19. If $a_1, a_2, ..., a_7$ are real numbers so that $a_1 + a_2 + ... + a_7 = 7$, then

$$(a_1^2+2)(a_2^2+2)\cdots(a_7^2+2) \ge 3^7.$$

(Vasile C., 2007)

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_7) \ge 7f(s), \quad s = \frac{a_1 + a_2 + \dots + a_7}{7} = 1,$$

where

$$f(u) = \ln(u^2 + 2), \quad u \in \mathbb{R}.$$

From

$$f'(u) = \frac{2u}{u^2 + 2},$$

it follows that f is decreasing on $(-\infty, s_0]$ and increasing on $[s_0, \infty]$, where

$$s_0 = 0$$
.

From

$$f''(u) = \frac{2(2-u^2)}{(u^2+2)^2},$$

it follows that f''(u) > 0 for $u \in [0,1]$, therefore f is convex on $[s_0,s]$. By the LPCF-Theorem, it suffices to prove that

$$f(x) + 6f(y) \ge 7f(1)$$

for $x, y \in \mathbb{R}$ so that x + 6y = 7. The inequality can be written as $g(y) \ge 0$, where

$$g(y) = \ln[(7-6y)^2 + 2] + 6\ln(y^2 + 2) - 7\ln 3, \quad y \in \mathbb{R}.$$

From

$$g'(y) = \frac{4(6y-7)}{12y^2 - 28y + 17} + \frac{12y}{y^2 + 2}$$
$$= \frac{28(6y^3 - 13y^2 + 9y - 2)}{(12y^2 - 28y + 17)(y^2 + 2)}$$
$$= \frac{28(2y-1)(3y-2)(y-1)}{(12y^2 - 28y + 17)(y^2 + 2)},$$

it follows that g is decreasing on $\left(-\infty,\frac{1}{2}\right]\cup\left[\frac{2}{3},1\right]$ and increasing on $\left[\frac{1}{2},\frac{2}{3}\right]\cup\left[1,\infty\right)$; therefore,

$$g \ge \min\{g(1/2), g(1)\}.$$

Since g(1) = 0, we only need to show that $g(1/2) \ge 0$; that is, to show that x = 4 and y = 1/2 involve

$$(x^2+2)(y^2+2)^6 \ge 3^7$$
.

Indeed, we have

$$(x^2+2)(y^2+2)^6-3^7=3^7\left(\frac{3^7}{2^{11}}-1\right)=\frac{139\cdot 3^7}{2^{11}}>0.$$

The equality holds for $a_1 = a_2 = \cdots = a_7 = 1$.

P 3.20. Let $a_1, a_2, ..., a_n$ be real numbers so that $a_1 + a_2 + \cdots + a_n = n$. If $k \ge \frac{n^2}{4(n-1)}$, then

$$(a_1^2+k)(a_2^2+k)\cdots(a_n^2+k) \ge (1+k)^n$$
.

(Vasile C., 2007)

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = \ln(u^2 + k), \quad u \in \mathbb{R}.$$

From

$$f'(u) = \frac{2u}{u^2 + k},$$

it follows that f is decreasing on $(-\infty, s_0]$ and increasing on $[s_0, \infty]$, where

$$s_0 = 0$$
.

From

$$f''(u) = \frac{2(k - u^2)}{(u^2 + k)^2},$$

it follows that $f''(u) \ge 0$ for $u \in [0,1]$, therefore f is convex on $[s_0,s]$. By the LPCF-Theorem and Note 2, it suffices to prove that $H(x,y) \ge 0$ for $x,y \in \mathbb{R}$ so that x + (n-1)y = n, where

$$H(x,y) = \frac{f'(x) - f'(y)}{x - y}.$$

We have

$$\frac{1}{2}H(x,y) = \frac{k - xy}{(x^2 + k)(y^2 + k)}$$

$$\geq \frac{n^2 - 4(n-1)xy}{4(n-1)(x^2 + k)(y^2 + k)},$$

$$= \frac{[x + (n-1)y]^2 - 4(n-1)xy}{4(n-1)(x^2 + k)(y^2 + k)}$$

$$= \frac{[x - (n-1)y]^2}{4(n-1)(x^2 + k)(y^2 + k)} \geq 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

P 3.21. Let a_1, a_2, \ldots, a_n be real numbers such that $a_1 + a_2 + \cdots + a_n = n$. If $n \le 10$, then

$$(a_1^2 - a_1 + 1)(a_2^2 - a_2 + 1) \cdots (a_n^2 - a_n + 1) \ge 1.$$

(Vasile C., 2007)

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1$$

where

$$f(u) = \ln(u^2 - u + 1), \quad u \in \mathbb{R}.$$

From

$$f'(u) = \frac{2u - 1}{u^2 - u + 1},$$

it follows that f is decreasing on $(-\infty, s_0]$ and increasing on $[s_0, \infty)$, where

$$s_0 = \frac{1}{2} < 1 = s.$$

In addition, from

$$f''(u) = \frac{1 + 2u(1 - u)}{(u^2 - u + 1)^2},$$

it follows that f''(u) > 0 for $u \in [s_0, 1]$, hence f is convex on $[s_0, s]$. According to LPCF-Theorem, we only need to show that

$$f(x) + (n-1)f(y) \ge nf(1)$$

for all real x, y so that x + (n-1)y = n. Write this inequality as $g(x) \ge 0$, where

$$g(x) = \ln(x^2 - x + 1) + (n - 1)\ln(y^2 - y + 1), \quad y = \frac{n - x}{n - 1}.$$

Since $y'(x) = \frac{-1}{n-1}$, we have

$$g'(x) = \frac{2x-1}{x^2 - x + 1} + (n-1)y' \frac{2y-1}{y^2 - y + 1} = \frac{2x-1}{x^2 - x + 1} - \frac{2y-1}{y^2 - y + 1}$$
$$(x-y)(1+x+y-2xy) \quad (x-1)[2x^2 - (n+2)x + 2n - 1]$$

$$=\frac{(x-y)(1+x+y-2xy)}{(x^2-x+1)(y^2-y+1)}=\frac{(x-1)[2x^2-(n+2)x+2n-1]}{(n-1)^2(x^2-x+1)(y^2-y+1)}.$$

Because $2x^2 - (n+2)x + 2n - 1 > 0$ for $n \le 10$, we have $g'(x) \le 0$ for $x \in (-\infty, 1]$ and $g'(x) \ge 0$ for $x \in [1, \infty)$. Therefore, since g(x) is decreasing on $(-\infty, 1]$ and increasing on $[1, \infty)$, we have

$$g(x) \ge g(1) = 0.$$

The equality occurs for $a_1 = a_2 = \cdots = a_n = 1$.

Remark 1. The inequality holds also for n = 11, n = 12 and n = 13, when the equation

$$2x^2 - (n+2)x + 2n - 1 = 0$$

has two positive roots, namely

$$x_1 = \frac{n+2-\sqrt{n^2-12(n-1)}}{4}, \quad x_2 = \frac{n+2+\sqrt{n^2-12(n-1)}}{4},$$

satisfying $1 < x_1 < x_2$. Thus, g(x) is decreasing on $(-\infty, 1] \cup [x_1, x_2]$ and increasing on $[1, x_1] \cup [x_2, \infty)$. Therefore, it suffices to show that

$$\min\{g(1),g(x_2)\} \ge 0.$$

We have g(1) = 0. For n = 13, we have

$$x_2 = 5$$
, $y_2 = \frac{13 - x_2}{12} = \frac{2}{3}$,

hence

$$g(x_2) = \ln(x_2^2 - x_2 + 1) + (n - 1)\ln(y_2^2 - y_2 + 1) = \ln 21 + 12 \cdot \ln \frac{7}{9} = \ln \frac{7^{13}}{3^{23}} > 0.$$

For n = 14, the inequality does not hold.

Remark 2. By replacing $a_1, a_2, ..., a_n$ respectively with $1-a_1, 1-a_2, ..., 1-a_n$, we get the following statement:

• Let a_1, a_2, \ldots, a_n be real numbers such that $a_1 + a_2 + \cdots + a_n = 0$. If $n \le 13$, then

$$(1-a_1+a_1^2)(1-a_2+a_2^2)\cdots(1-a_n+a_n^2)\geq 1,$$

with equality for $a_1 = a_2 = \cdots = a_n = 0$.

P 3.22. Let a_1, a_2, \ldots, a_n be real numbers such that $a_1 + a_2 + \cdots + a_n = n$. If $n \le 26$, then

$$(a_1^2 - a_1 + 2)(a_2^2 - a_2 + 2) \cdots (a_n^2 - a_n + 2) \ge 2^n.$$

(Vasile C., 2007)

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = \ln(u^2 - u + 2), \quad u \in \mathbb{R}.$$

From

$$f'(u) = \frac{2u - 1}{u^2 - u + 2},$$

it follows that f is decreasing on $(-\infty, s_0]$ and increasing on $[s_0, \infty)$, where

$$s_0 = \frac{1}{2} < 1 = s.$$

In addition, from

$$f''(u) = \frac{3 + 2u(1 - u)}{(u^2 - u + 2)^2},$$

it follows that f''(u) > 0 for $u \in [s_0, 1]$, hence f is convex on $[s_0, s]$. According to LPCF-Theorem, we only need to show that

$$f(x) + (n-1)f(y) \ge nf(1)$$

for all real x, y so that x + (n-1)y = n. Write this inequality as $g(x) \ge 0$, where

$$g(x) = \ln(x^2 - x + 2) + (n - 1)\ln(y^2 - y + 2), \quad y = \frac{n - x}{n - 1}.$$

Since $y'(x) = \frac{-1}{n-1}$, we have

$$g'(x) = \frac{2x-1}{x^2-x+2} + (n-1)y'\frac{2y-1}{y^2-y+2} = \frac{2x-1}{x^2-x+2} - \frac{2y-1}{y^2-y+2}$$

$$=\frac{(x-y)(3+x+y-2xy)}{(x^2-x+2)(y^2-y+2)}=\frac{(x-1)[2x^2-(n+2)x+4n-3]}{(n-1)^2(x^2-x+1)(y^2-y+1)}.$$

Because $2x^2 - (n+2)x + 4n - 3 > 0$ for $n \le 26$, we have $g'(x) \le 0$ for $x \in (-\infty, 1]$ and $g'(x) \ge 0$ for $x \in [1, \infty)$. Therefore, since g(x) is decreasing on $(-\infty, 1]$ and increasing on $[1, \infty)$, we have

$$g(x) \ge g(1) = 0.$$

The equality occurs for $a_1 = a_2 = \cdots = a_n = 1$.

Remark 1. The inequality holds also for $27 \le n \le 38$, when the equation

$$2x^2 - (n+2)x + 4n - 3 = 0$$

has two positive roots, namely

$$x_1 = \frac{n+2-\sqrt{n^2-28(n-1)}}{4}, \quad x_2 = \frac{n+2+\sqrt{n^2-28(n-1)}}{4},$$

satisfying $1 < x_1 < x_2$. Thus, g(x) is decreasing on $(-\infty, 1] \cup [x_1, x_2]$ and increasing on $[1, x_1] \cup [x_2, \infty)$. Therefore, it suffices to show that

$$\min\{g(1),g(x_2)\} \ge 0.$$

We have g(1) = 0 and $g(x_2) > 0$ for $27 \le n \le 38$. For n = 39, the inequality does not hold.

Remark 2. By replacing $a_1, a_2, ..., a_n$ respectively with $1-a_1, 1-a_2, ..., 1-a_n$, we get the following statement:

• Let a_1, a_2, \ldots, a_n be real numbers such that $a_1 + a_2 + \cdots + a_n = 0$. If $n \leq 38$, then

$$(2-a_1+a_1^2)(2-a_2+a_2^2)\cdots(2-a_n+a_n^2)\geq 2^n$$

with equality for $a_1 = a_2 = \cdots = a_n = 0$.

P 3.23. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

$$(1-a+a^4)(1-b+b^4)(1-c+c^4) \ge 1.$$

Solution. Write the inequality as

$$f(a) + f(b) + f(c) \ge 3f(s), \quad s = \frac{a+b+c}{3} = 1,$$

where

$$f(u) = \ln(1 - u + u^4), \quad u \in [0, 3].$$

From

$$f'(u) = \frac{4u^3 - 1}{1 - u + u^4},$$

it follows that f is decreasing on $[0, s_0]$ and increasing on $[s_0, 3]$, where

$$s_0 = \frac{1}{\sqrt[3]{4}} < 1 = s.$$

Also, f is convex on $[s_0, 1]$ because

$$f''(u) = \frac{-4u^6 - 4u^3 + 12u^2 - 1}{(1 - u + u^4)^2} \ge \frac{-4u^2 - 4u^2 + 12u^2 - 1}{(1 - u + u^4)^2} = \frac{4u^2 - 1}{(1 - u + u^4)^2} > 0.$$

According to the LPCF-Theorem, we only need to show that

$$f(x) + 2f(y) \ge 3f(1)$$

for all $x, y \ge 0$ so that x + 2y = 3. Using Note 2, it suffices to prove that $H(x, y) \ge 0$, where

$$H(x,y) = \frac{f'(x) - f'(y)}{x - y}.$$

We have

$$H(x,y) = \frac{(x+y)(x-y)^2 - 1 + 4(x^2 + y^2 + xy) - 2xy(x+y) - 4x^3y^3}{(1-x+x^4)(1-y+y^4)}$$

$$\geq \frac{-1 + 4(x^2 + y^2 + xy) - 2xy(x+y) - 4x^3y^3}{(1-x+x^4)(1-y+y^4)}$$

$$= \frac{h(x,y)}{(1-x+x^4)(1-y+y^4)},$$

where

$$h(x,y) = -1 + 2(x+y)[2(x+y) - xy] - 4xy - 4x^3y^3.$$

From $3 = x + 2y \ge 2\sqrt{2xy}$ and $(1 - x)(1 - y) \le 0$, we get

$$xy \le \frac{9}{8}, \quad x + y \ge 1 + xy.$$

Therefore,

$$h(x,y) \ge -1 + 2(1+xy)[2(1+xy)-xy] - 4xy - 4x^3y^3$$

= 3 + 2xy + 2x²y² - 4x³y³ \ge 3 + 2xy + 2x²y² - 5x²y²
= 3 + 2xy - 3x²y² \ge 3 + 2xy - 4xy = 3 - 2xy > 0.

The proof is completed. The equality holds for a = b = c = 1.

P 3.24. If a, b, c, d are nonnegative real numbers so that a + b + c + d = 4, then

$$(1-a+a^3)(1-b+b^3)(1-c+c^3)(1-d+d^3) \ge 1.$$

(Vasile C., 2012)

Solution. Write the inequality as

$$f(a) + f(b) + f(c) + f(d) \ge 4f(s), \quad s = \frac{a+b+c+d}{4} = 1,$$

where

$$f(u) = \ln(1 - u + u^3), \quad u \in [0, 4].$$

From

$$f'(u) = \frac{3u^2 - 1}{1 - u + u^3},$$

it follows that f is decreasing on $[0, s_0]$ and increasing on $[s_0, 4]$, where

$$s_0 = \frac{1}{\sqrt{3}} < 1 = s.$$

In addition, f is convex on $[s_0, 1]$ because

$$f''(u) = \frac{-3u^4 + 6u - 1}{(1 - u + u^3)^2} \ge \frac{-3u + 6u - 1}{(1 - u + u^3)^2} = \frac{3u - 1}{(1 - u + u^3)^2} > 0.$$

According to the LPCF-Theorem, we only need to show that

$$f(x) + 3f(y) \ge 4f(1)$$

for all $x, y \ge 0$ so that x+3y = 4. Using Note 2, it suffices to prove that $H(x, y) \ge 0$, where

$$H(x,y) = \frac{f'(x) - f'(y)}{x - y}.$$

We have

$$H(x,y) = \frac{(x-y)^2 + 3(x+y) - 1 - 3x^2y^2}{(1-x+x^3)(1-y+y^3)} \ge \frac{3(x+y) - 1 - 3x^2y^2}{(1-x+x^3)(1-y+y^3)}.$$

From $4 = x + 3y \ge 2\sqrt{3xy}$ and $(1 - x)(1 - y) \le 0$, we get

$$xy \le \frac{4}{3}, \quad x + y \ge 1 + xy.$$

Therefore,

$$3(x+y)-1-3x^2y^2 \ge 3(1+xy)-1-3x^2y^2$$

$$\ge 3(1+xy)-1-4xy = 2-xy > 0,$$

hence H(x, y) > 0. The equality holds for a = b = c = d = 1.

P 3.25. If a, b, c, d, e are nonzero real numbers so that a + b + c + d + e = 5, then

$$5\left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{d^2} + \frac{1}{e^2}\right) + 45 \ge 14\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} + \frac{1}{e}\right).$$

(Vasile C., 2013)

Solution. Write the desired inequality as

$$f(a) + f(b) + f(c) + f(d) + f(e) \ge 5f(s), \quad s = \frac{a+b+c+d+e}{5} = 1,$$

where

$$f(u) = \frac{5}{u^2} - \frac{14}{u} + 9, \quad u \in \mathbb{I} = \mathbb{R} \setminus \{0\}.$$

From

$$f'(u) = \frac{2(7u - 5)}{u^3},$$

it follows that f is increasing on $(-\infty,0)\cup[s_0,\infty)$ and decreasing on $(0,s_0]$, where

$$s_0 = \frac{5}{7} < 1 = s.$$

Since

$$\lim_{u\to-\infty}f(u)=9$$

and $f(s_0) < f(1) = 0$, we have

$$\min_{u\in\mathbb{I}} f(u) = f(s_0).$$

From

$$f''(u) = \frac{2(15 - 14u)}{u^4},$$

it follows that f is convex on $[s_0, 1]$. By the LPCF-Theorem, Note 4 and Note 1, it suffices to show that $h(x, y) \ge 0$ for all $x, y \in \mathbb{I}$ which satisfy x + 4y = 5, where

$$h(x,y) = \frac{g(x) - g(y)}{x - y}, \quad g(u) = \frac{f(u) - f(1)}{u - 1}.$$

Indeed, we have

$$g(u) = \frac{9}{u} - \frac{5}{u^2},$$

$$h(x, y) = \frac{5x + 5y - 9xy}{x^2 y^2} = \frac{(6y - 5)^2}{x^2 y^2} \ge 0.$$

In accordance with Note 3, the equality holds for a = b = c = d = e = 1, and also for

$$a = \frac{5}{3}$$
, $b = c = d = e = \frac{5}{6}$

(or any cyclic permutation).

P 3.26. If a, b, c are positive real numbers so that abc = 1, then

$$\frac{7-6a}{2+a^2} + \frac{7-6b}{2+b^2} + \frac{7-6c}{2+c^2} \ge 1.$$

(Vasile C., 2008)

Solution. Using the substitution

$$a = e^x$$
, $b = e^y$, $c = e^z$,

we need to show that

$$f(x) + f(y) + f(z) \ge 3f(s),$$

where

$$s = \frac{x + y + z}{3} = 0$$

and

$$f(u) = \frac{7 - 6e^u}{2 + e^{2u}}, \quad u \in \mathbb{R}.$$

From

$$f'(u) = \frac{2(3e^u + 2)(e^u - 3)}{(2 + e^{2u})^2},$$

it follows that f is decreasing on $(-\infty, s_0]$ and increasing on $[s_0, \infty)$, where

$$s_0 = \ln 3 > s$$
.

We have

$$f''(u) = \frac{2t \cdot h(t)}{(2+t^2)^3}, \quad h(t) = -3t^4 + 14t^3 + 36t^2 - 28t - 12, \quad t = e^u.$$

We will show that h(t) > 0 for $t \in [1,3]$, hence f is convex on $[0,s_0]$. We have

$$h(t) = 3(t^{2} - 1)(9 - t^{2}) + 14t^{3} + 6t^{2} - 28t + 15$$

$$\geq 14t^{3} + 6t^{2} - 28t + 15$$

$$= 14t^{2}(t - 1) + 14(t - 1)^{2} + 6t^{2} + 1 > 0.$$

By the RPCF-Theorem, we only need to prove that

$$f(x) + 2f(y) \ge 3f(0)$$

for all real x, y so that x + 2y = 0. That is, to show that the original inequality holds for b = c and $a = 1/c^2$. Write this inequality as

$$\frac{c^2(7c^2-6)}{2c^4+1} + \frac{2(7-6c)}{2+c^2} \ge 1,$$

$$(c-1)^2(c-2)^2(5c^2+6c+3) \ge 0.$$

By Note 3, the equality holds for a = b = c = 1, and also for

$$a = \frac{1}{4}, \quad b = c = 2$$

(or any cyclic permutation).

P 3.27. If a, b, c are positive real numbers so that abc = 1, then

$$\frac{1}{a+5bc} + \frac{1}{b+5ca} + \frac{1}{c+5ab} \le \frac{1}{2}$$
.

(Vasile C., 2008)

Solution. Write the inequality as

$$\frac{a}{a^2+5} + \frac{b}{b^2+5} + \frac{c}{c^2+5} \le \frac{1}{2}.$$

Using the substitution

$$a = e^x$$
, $b = e^y$, $c = e^z$,

we need to show that

$$f(x) + f(y) + f(z) \ge 3f(s),$$

where

$$s = \frac{x + y + z}{3} = 0$$

and

$$f(u) = \frac{-e^u}{e^{2u} + 5}, \quad u \in \mathbb{R}.$$

From

$$f'(u) = \frac{e^u(e^{2u} - 5)}{(e^{2u} + 5)^2},$$

it follows that f is decreasing on $(-\infty, s_0]$ and increasing on $[s_0, \infty)$, where

$$s_0 = \frac{\ln 5}{2} > 0 = s.$$

Also, from

$$f''(u) = \frac{e^{u}(-e^{4u} + 30e^{2u} - 25)}{(e^{2u} + 5)^{3}},$$

it follows that f is convex on $[s,s_0]$, because $u \in [0,s_0]$ involves $e^u \in [1,\sqrt{5}]$ and $e^{2u} \in [1,5]$, hence

$$-e^{4u} + 30e^{2u} - 25 = e^{2u}(5 - e^{2u}) + 25(e^{2u} - 1) > 0.$$

By the RPCF-Theorem, we only need to prove the original inequality for b=c and $a=1/c^2$. Write this inequality as

$$\frac{c^2}{5c^4 + 1} + \frac{2c}{c^2 + 5} \le \frac{1}{2},$$

$$(c - 1)^2 (5c^4 - 10c^3 - 2c^2 + 6c + 5) \ge 0,$$

$$(c - 1)^2 \lceil 5(c - 1)^4 + 2c(5c^2 - 16c + 13) \rceil \ge 0.$$

The equality holds for a = b = c = 1.

P 3.28. If a, b, c are positive real numbers so that abc = 1, then

$$\frac{1}{4 - 3a + 4a^2} + \frac{1}{4 - 3b + 4b^2} + \frac{1}{4 - 3c + 4c^2} \le \frac{3}{5}.$$

(Vasile Cirtoaje, 2008)

Solution. Let

$$a = e^x$$
, $b = e^y$, $c = e^z$.

We need to show that

$$f(x) + f(y) + f(z) \ge 3f(s),$$

where

$$s = \frac{x + y + z}{3} = 0$$

and

$$f(u) = \frac{-1}{4 - 3e^u + 4e^{2u}}, \quad u \in \mathbb{R}.$$

From

$$f'(u) = \frac{e^{u}(8e^{u} - 3)}{(4 - 3e^{u} + 4e^{2u})^{2}},$$

it follows that f is decreasing on $(-\infty, s_0]$ and increasing on $[s_0, \infty)$, where

$$s_0 = \ln \frac{3}{8} < 0 = s.$$

We claim that f is convex on $[s_0, 0]$. Since

$$f''(u) = \frac{e^u(-64e^{3u} + 36e^{2u} + 55e^u - 12)}{(4 - 3e^u + 4e^{2u})^3},$$

we need to show that

$$-64t^3 + 36t^2 + 55t - 12 \ge 0,$$

where

$$t = e^u \in \left[\frac{3}{8}, 1\right].$$

Indeed, we have

$$-64t^3 + 36t^2 + 55t - 12 > -72t^3 + 36t^2 + 48t - 12$$
$$= 12(1-t)(6t^2 + 3t - 1) \ge 0.$$

By the LPCF-Theorem, we only need to prove the original inequality for b = c and $a = 1/c^2$. Write this inequality as follows:

$$\frac{c^4}{4c^4 - 3c^2 + 4} + \frac{2}{4 - 3c + 4c^2} \le \frac{3}{5},$$

$$28c^6 - 21c^5 - 48c^4 + 27c^3 + 42c^2 - 36c + 8 \ge 0,$$

$$(c - 1)^2 (28c^4 + 35c^3 - 6c^2 - 20c + 8) \ge 0.$$

It suffices to show that

$$7(4c^4 + 5c^3 - c^2 - 3c + 1) \ge 0.$$

Indeed,

$$4c^4 + 5c^3 - c^2 - 3c + 1 = c^2(2c - 1)^2 + 9c^3 - 2c^2 - 3c + 1$$

and

$$9c^3 - 2c^2 - 3c + 1 = c(3c - 1)^2 + (2c - 1)^2 > 0.$$

The equality holds for a = b = c = 1.

Remark. Since

$$\frac{1}{4-3a+4a^2} \ge \frac{1}{4-3a+4a^2+(1-a)^2} = \frac{1}{5(1-a+a^2)},$$

we get the following known inequality

$$\frac{1}{1-a+a^2} + \frac{1}{1-b+b^2} + \frac{1}{1-c+c^2} \le 3.$$

P 3.29. If a, b, c are positive real numbers so that abc = 1, then

$$\frac{1}{(3a+1)(3a^2-5a+3)} + \frac{1}{(3b+1)(3b^2-5b+3)} + \frac{1}{(3c+1)(3c^2-5c+3)} \le \frac{3}{4}.$$

Solution. Let

$$a = e^x$$
, $b = e^y$, $c = e^z$.

We need to show that

$$f(x) + f(y) + f(z) \ge 3f(s),$$

where

$$s = \frac{x + y + z}{3} = 0$$

and

$$f(u) = \frac{-1}{(3e^u + 1)(3e^{2u} - 5e^u + 3)}, \quad u \in \mathbb{R}.$$

From

$$f'(u) = \frac{(3e^u - 2)(9e^u - 2)}{(3e^u + 1)^2(3e^{2u} - 5e^u + 3)^2},$$

it follows that f is increasing on $(-\infty, s_1] \cup [s_0, \infty)$ and decreasing on $[s_1, s_0]$, where

$$s_1 = \ln 2 - \ln 9$$
, $s_0 = \ln 2 - \ln 3$, $s_1 < s_0 < 0 = s$.

Since

$$\lim_{u\to-\infty} f(u) = f(s_0) = \frac{-1}{3},$$

we get

$$\min_{u\in\mathbb{R}}f(u)=f(s_0).$$

We claim that f is convex on $[s_0, 0]$. We have

$$f''(u) = \frac{t \cdot h(t)}{(3t+1)^3(3t^2 - 5t + 3)^3},$$

where

$$t = e^{u} \in \left[\frac{2}{3}, 1\right], \quad h(t) = -729t^{5} + 1188t^{4} - 648t^{3} + 387t^{2} - 160t + 12.$$

Since the polynomial h(t) has the real roots

$$t_1 \approx 0.0933$$
, $t_2 \approx 0.5072$, $t_3 \approx 1.11008$,

it follows that h(t) > 0 for $t \in [2/3, 1] \subset [t_2, t_3]$, hence f is convex on $[s_0, 0]$. By the LPCF-Theorem, we only need to prove the original inequality for $b = c \le 1$ and $a = 1/c^2$. Write this inequality as follows:

$$\frac{c^6}{(c^2+3)(3c^4-5c^2+3)} + \frac{2}{(3c+1)(3c^2-5c+3)} \le \frac{3}{4}.$$

Since

$$c^2 + 3 \ge 2(c+1)$$

and

$$3c^4 - 5c^2 + 3 \ge c(3c^2 - 5c + 3),$$

it suffices to prove that

$$\frac{c^5}{2(c+1)(3c^2-5c+3)} + \frac{2}{(3c+1)(3c^2-5c+3)} \le \frac{3}{4}.$$

This is equivalent to the obvious inequality

$$(1-c)^2(1+15c+5c^2-14c^3-6c^4) \ge 0.$$

The equality holds for a = b = c = 1.

P 3.30. Let a_1, a_2, \ldots, a_n $(n \ge 3)$ be positive real numbers so that $a_1 a_2 \cdots a_n = 1$. If $p, q \ge 0$ so that $p + 4q \ge n - 1$, then

$$\frac{1-a_1}{1+pa_1+qa_1^2} + \frac{1-a_2}{1+pa_2+qa_2^2} + \dots + \frac{1-a_n}{1+pa_n+qa_n^2} \ge 0.$$

(Vasile C., 2008)

Solution. For q=0, we get a known inequality (see Remark 2 from the proof of P 1.63). Consider further that q>0. Using the substitutions $a_i=e^{x_i}$ for $i=1,2,\ldots,n$, we need to show that

$$f(x_1) + f(x_2) + \dots + f(x_n) \ge nf(s),$$

where

$$s = \frac{x_1 + x_2 + \dots + x_n}{n} = 0$$

and

$$f(u) = \frac{1 - e^u}{1 + pe^u + qe^{2u}}, \quad u \in \mathbb{R}.$$

From

$$f'(t) = \frac{e^{u}(qe^{2u} - 2qe^{u} - p - 1)}{(1 + pe^{u} + qe^{2u})^{2}},$$

it follows that f is decreasing on $(-\infty, s_0]$ and increasing on $[s_0, \infty)$, where

$$s_0 = \ln r_0 > 0 = s$$
, $r_0 = 1 + \sqrt{1 + \frac{p+1}{q}}$.

Also, we have

$$f''(u) = \frac{t \cdot h(t)}{(1 + pt + qt^2)^3},$$

where

$$h(t) = -q^2t^4 + q(p+4q)t^3 + 3q(p+2)t^2 + (p-4q+p^2)t - p - 1, \quad t = e^u.$$

We will show that $h(t) \ge 0$ for $t \in [1, r_0]$, hence f is convex on $[0, s_0]$. We have

$$h'(t) = -4q^2t^3 + 3q(p+4q)t^2 + 6q(p+2)t + p - 4q + p^2,$$

$$h''(t) = 6q[-2qt^2 + (p+4q)t + p + 2].$$

Since

$$h''(t) = 6q[2(-qt^2 + 2qt + p + 1) + p(t - 1)] \ge 12q(-qt^2 + 2qt + p + 1) \ge 0,$$

h'(t) is increasing,

$$h'(t) \ge h'(1) = p^2 + 9pq + 8q^2 + p + 8q > 0,$$

h is increasing, hence

$$h(t) \ge h(1) = p^2 + 4pq + 3q^2 + 2q - 1 = (p + 2q)^2 - (q - 1)^2$$

= $(p + q + 1)(p + 3q - 1)$.

Since

$$p + 3q - 1 \ge p + 3q - \frac{p + 4q}{n - 1} = \frac{p + 2q}{2} > 0,$$

f''(u) > 0 for $u \in [0, s_0]$, therefore f is convex on $[s, s_0]$. By the RPCF-Theorem, we only need to prove the original inequality for

$$a_2 = \dots = a_n := t, \quad a_1 = 1/t^{n-1}, \quad t \ge 1.$$

Write this inequality as

$$\frac{t^{n-1}(t^{n-1}-1)}{t^{2n-2}+pt^{n-1}+q}+\frac{(n-1)(1-t)}{1+pt+qt^2}\geq 0,$$

or

$$pA + qB \ge C$$
,

where

$$A = t^{n-1}(t^{n} - nt + n - 1),$$

$$B = t^{2n} - t^{n+1} - (n-1)(t-1),$$

$$C = t^{n-1}[(n-1)t^{n} + 1 - nt^{n-1}].$$

Since $p+4q \ge n-1$ and $C \ge 0$ (by the AM-GM inequality applied to n positive numbers), it suffices to show that

$$pA + qB \ge \frac{(p+4q)C}{n-1}$$
,

which is equivalent to

$$p[(n-1)A - C] + q[(n-1)B - 4C] \ge 0.$$

This is true if

$$(n-1)A-C \geq 0$$

and

$$(n-1)B-4C \geq 0$$

for $t \ge 1$. By the AM-GM inequality, we have

$$(n-1)A-C = nt^{n-1}[t^{n-1}+n-2-(n-1)t] \ge 0.$$

For n = 3, we have

$$B = (t-1)^{2}(t^{4} + 2t^{3} + 2t^{2} + 2t + 2),$$

$$C = t^{2}(t-1)^{2}(2t+1),$$

$$B-2C = (t-1)^2(t^4 - 2t^3 + 2t + 2)$$

= $(t-1)^2[(t-1)^2(t^2 - 1) + 3] \ge 0$.

Consider further that

$$n \ge 4$$
.

Since

$$t-1\leq t^{n-1}(t-1),$$

we have

$$B \ge t^{2n} - t^{n+1} - (n-1)t^{n-1}(t-1)$$

= $t^{n-1}[t^{n+1} - t^2 - (n-1)t + n - 1].$

Thus, the inequality $(n-1)B - 4C \ge 0$ is true if

$$(n-1)[t^{n+1}-t^2-(n-1)t+n-1]-4(n-1)t^n-4-4nt^{n-1}\geq 0,$$

which is equivalent to $g(t) \ge 0$, where

$$g(t) = (n-1)t^{n+1} - 4(n-1)t^n + 4nt^{n-1} - (n-1)t^2 - (n-1)^2t + n^2 - 2n - 3.$$

We have

$$g'(t) = (n-1)g_1(t), \quad g_1(t) = (n+1)t^n - 4nt^{n-1} + 4nt^{n-2} - 2t - n + 1,$$

$$g'_1(t) = n(n+1)t^{n-1} - 4n(n-1)t^{n-2} + 4n(n-2)t^{n-3} - 2.$$

Since

$$n(n+1)t^{n-1} + 4n(n-2)t^{n-3} \ge 4n\sqrt{(n+1)(n-2)}t^{n-2},$$

we get

$$\begin{split} g_1'(t) &\geq 4n \Big[\sqrt{(n+1)(n-2)} - n + 1 \Big] t^{n-2} - 2 \\ &\geq 4n \Big[\sqrt{(n+1)(n-2)} - n + 1 \Big] - 2 \\ &= \frac{4n(n-3)}{\sqrt{(n+1)(n-2)} + n - 1} - 2 \\ &> \frac{4n(n-3)}{(n+1) + n - 1} - 2 = 2(n-4) \geq 0. \end{split}$$

Therefore, $g_1(t)$ is increasing for $t \ge 1$, $g_1(t) \ge g_1(1) = 0$, g(t) is increasing for $t \ge 1$, hence

$$g(t) \ge g(1) = 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

Remark. For p = 0 and q = 1, we get the inequality (*Vasile C.*, 2006)

$$\frac{1-a}{1+a^2} + \frac{1-b}{1+b^2} + \frac{1-c}{1+c^2} + \frac{1-d}{1+d^2} + \frac{1-e}{1+e^2} \ge 0,$$

where a, b, c, d, e are positive real numbers so that abcde = 1. Replacing a, b, c, d, e by 1/a, 1/b, 1/c, 1/d, 1/e, we get

$$\frac{1+a}{1+a^2} + \frac{1+b}{1+b^2} + \frac{1+c}{1+c^2} + \frac{1+d}{1+d^2} + \frac{1+e}{1+e^2} \le 5,$$

where a, b, c, d, e are positive real numbers so that abcde = 1. Notice that the inequality

$$\frac{1-a_1}{1+a_1^2} + \frac{1-a_2}{1+a_2^2} + \frac{1-a_3}{1+a_3^2} + \frac{1-a_4}{1+a_4^2} + \frac{1-a_5}{1+a_5^2} + \frac{1-a_6}{1+a_6^2} \ge 0$$

is not true for all positive numbers $a_1, a_2, a_3, a_4, a_5, a_6$ satisfying $a_1a_2a_3a_4a_5a_6 = 1$. Indeed, for $a_2 = a_3 = a_4 = a_5 = a_6 = 2$, the inequality becomes

$$\frac{1-a_1}{1+a_1^2} - 1 \ge 0,$$

which is false for $a_1 > 0$.

P 3.31. If a, b, c are positive real numbers so that abc = 1, then

$$\frac{1-a}{17+4a+6a^2} + \frac{1-b}{17+4b+6b^2} + \frac{1-c}{17+4c+6c^2} \ge 0.$$

(Vasile C., 2008)

Solution. Using the substitution

$$a = e^x$$
, $b = e^y$, $c = e^z$,

we need to show that

$$f(x) + g(y) + g(z) \ge 3f(s),$$

where

$$s = \frac{x + y + z}{3} = 0$$

and

$$f(u) = \frac{1 - e^u}{1 + pe^u + qe^{2u}}, \quad u \in \mathbb{R},$$

with

$$p = \frac{4}{17}, \quad q = \frac{6}{17}.$$

As we have shown in the proof of the preceding P 3.30, f is decreasing on $(-\infty, s_0]$ and increasing on $[s_0, \infty)$, where

$$s_0 = \ln r_0 > 0 = s$$
, $r_0 = 1 + \sqrt{1 + \frac{p+1}{q}} = 1 + \sqrt{\frac{9}{2}}$.

In addition, since $p + 3q - 1 = \frac{5}{17} > 0$ (see the proof of P 3.30), f is convex on $[0,s_0]$. By the RPCF-Theorem, we only need to prove the original inequality for $b = c \ge 1$ and $a = 1/c^2$. Write this inequality as follows:

$$\frac{c^{2}(c^{2}-1)}{c^{4}+pc^{2}+q} + \frac{2(1-c)}{1+pc+qc^{2}} \ge 0,$$

$$pA+qB \ge C,$$

where

$$A = c^{2}(c-1)^{2}(c+2),$$

$$B = (c-1)^{2}(c^{4} + 2c^{3} + 2c^{2} + 2c + 2),$$

$$C = c^{2}(c-1)^{2}(2c+1).$$

Indeed, we have

$$pA + qB - C = \frac{3(c-1)^2(c-2)^2(2c^2 + 2c + 1)}{17} \ge 0.$$

In accordance with Note 3, the equality holds for a = b = c = 1, and also for

$$a = \frac{1}{4}, \quad b = c = 2$$

(or any cyclic permutation).

P 3.32. If $a_1, a_2, ..., a_8$ are positive real numbers so that $a_1 a_2 \cdots a_8 = 1$, then

$$\frac{1-a_1}{(1+a_1)^2} + \frac{1-a_2}{(1+a_2)^2} + \dots + \frac{1-a_8}{(1+a_8)^2} \ge 0.$$

(Vasile C., 2006)

Solution. Using the substitutions $a_i = e^{x_i}$ for i = 1, 2, ..., 8, we need to show that

$$f(x_1) + f(x_2) + \dots + f(x_8) \ge 8f(s),$$

where

$$s = \frac{x_1 + x_2 + \dots + x_8}{8} = 0$$

and

$$f(u) = \frac{1 - e^u}{(1 + e^u)^2}, \quad u \in \mathbb{R}.$$

From

$$f'(t) = \frac{e^{u}(e^{u} - 3)}{(1 + e^{u})^{3}},$$

it follows that f is decreasing on $(-\infty, s_0]$ and increasing on $[s_0, \infty)$, where

$$s_0 = \ln 3 > 1 = s$$
.

We have

$$f''(u) = \frac{e^u(8e^u - e^{2u} - 3)}{(1 + e^u)^4}.$$

For $u \in [0, \ln 3]$, that is $e^u \in [1, 3]$, we have

$$8e^{u} - e^{2u} - 3 > 8e^{u} - 3e^{u} - 7 = (e^{u} - 1)(7 - e^{u}) \ge 0;$$

therefore, f is convex on $[s, s_0]$. By the RPCF-Theorem, we only need to prove the original inequality for $a_2 = \cdots = a_8 := t$ and $a_1 = 1/t^7$, where $t \ge 1$. For the nontrivial case t > 1, write this inequality as follows:

$$\frac{t^{7}(t^{7}-1)}{(t^{7}+1)^{2}} \ge \frac{7(t-1)}{(t+1)^{2}}.$$

$$\frac{t^{7}(t^{7}-1)(t+1)^{2}}{(t-1)(t^{7}+1)^{2}} \ge 7,$$

$$\frac{t^{7}(t^{6}+t^{5}+t^{4}+t^{3}+t^{2}+t+1)}{(t^{6}-t^{5}+t^{4}-t^{3}+t^{2}-t+1)^{2}} \ge 7.$$

Since

$$t^6 - t^5 + t^4 - t^3 + t^2 - t + 1 = t^4(t^2 - t + 1) - (t - 1)(t^2 + 1) < t^4(t^2 - t + 1),$$

it suffices to show that

$$\frac{t^6 + t^5 + t^4 + t^3 + t^2 + t + 1}{t(t^2 - t + 1)^2} \ge 7,$$

which is equivalent to the obvious inequality

$$(t-1)^6 \ge 0.$$

Thus, the proof is completed. The equality holds for $a_1 = a_2 = \cdots = a_8 = 1$.

Remark. The inequality

$$\frac{1-a_1}{(1+a_1)^2} + \frac{1-a_2}{(1+a_2)^2} + \dots + \frac{1-a_9}{(1+a_9)^2} \ge 0$$

is not true for all positive numbers a_1, a_2, \dots, a_9 satisfying $a_1 a_2 \cdots a_9 = 1$. Indeed, for $a_2 = a_3 = \dots = a_9 = 3$, the inequality becomes

$$\frac{1-a_1}{(1+a_1)^2}-1\geq 0,$$

which is false for $a_1 > 0$.

P 3.33. Let a, b, c be positive real numbers so that abc = 1. If $k \in \left[\frac{-13}{3\sqrt{3}}, \frac{13}{3\sqrt{3}}\right]$, then

$$\frac{a+k}{a^2+1} + \frac{b+k}{b^2+1} + \frac{c+k}{c^2+1} \le \frac{3(1+k)}{2}.$$

(Vasile C., 2012)

Solution. The inequality is equivalent to

$$k\left(\sum \frac{1}{a^2+1} - \frac{3}{2}\right) \le \sum \left(\frac{1}{2} - \frac{a}{a^2+1}\right),$$

$$\sum \frac{(a-1)^2}{a^2+1} \ge k\left(\sum \frac{2}{a^2+1} - 3\right). \tag{*}$$

Thus, it suffices to prove it for $|k| = \frac{13}{3\sqrt{3}}$. On the other hand, replacing a, b, c by 1/a, 1/b, 1/c, the inequality becomes

$$\sum \frac{(a-1)^2}{a^2+1} \ge k \left(3 - \sum \frac{2}{a^2+1}\right). \tag{**}$$

Based on (*) and (**), we only need to prove the desired inequality for

$$k = \frac{13}{3\sqrt{3}}.$$

Using the substitution

$$a=e^x$$
, $b=e^y$, $c=e^z$,

we need to show that

$$f(x) + g(y) + g(z) \ge 3f(s)$$

where

$$s = \frac{x+y+z}{3} = 0$$

and

$$f(u) = \frac{-e^u - k}{e^{2u} + 1}, \quad u \in \mathbb{R}.$$

From

$$f'(t) = \frac{e^{2u} + 2ke^u - 1}{(e^{2u} + 1)^2},$$

it follows that f is decreasing on $(-\infty, s_0]$ and increasing on $[s_0, \infty)$, where

$$s_0 = \ln r_0 < 0 = s$$
, $r_0 = -k + \sqrt{k^2 + 1} = \frac{1}{3\sqrt{3}}$.

Also, we have

$$f''(u) = \frac{t \cdot h(t)}{(1+t^2)^3},$$

where

$$h(t) = -t^4 - 4kt^3 + 6t^2 + 4kt - 1, \quad t = e^u.$$

We will show that h(t) > 0 for $t \in [r_0, 1]$, hence f is convex on $[s_0, s]$. Indeed, since

$$4kt = \frac{52t}{3\sqrt{3}} \ge \frac{52}{27} > 1,$$

we have

$$h(t) = -t^4 + 6t^2 - 1 + 4kt(1 - t^2) \ge -t^4 + 6t^2 - 1 + (1 - t^2) = t^2(5 - t^2) > 0.$$

By the LPCF-Theorem, we only need to prove the original inequality for b = c := t and $a = 1/t^2$, where t > 0. Write this inequality as

$$\frac{t^2(kt^2+1)}{t^4+1} + \frac{2(t+k)}{t^2+1} \le \frac{3(1+k)}{2},$$

$$3t^6 - 4t^5 + t^4 + t^2 - 4t + 3 - k(1-t^2)^3 \ge 0,$$

$$(t-1)^2[(3+k)t^4 + 2(1+k)t^3 + 2t^2 + 2(1-k)t + 3 - k] \ge 0,$$

$$(t-1)^2(t-2+\sqrt{3})^2[(27+13\sqrt{3})t^2 + 24(2+\sqrt{3})t + 33 + 17\sqrt{3}] \ge 0.$$

The equality holds for a = b = c = 1. If $k = \frac{13}{3\sqrt{3}}$, then the equality holds also for

$$a = 7 + 4\sqrt{3}$$
, $b = c = 2 - \sqrt{3}$

(or any cyclic permutation). If $k = \frac{-13}{3\sqrt{3}}$, then the equality holds also for

$$a = 7 - 4\sqrt{3}$$
, $b = c = 2 + \sqrt{3}$

(or any cyclic permutation).

P 3.34. If a, b, c are positive real numbers and $0 < k \le 2 + 2\sqrt{2}$, then

$$\frac{a^3}{ka^2 + bc} + \frac{b^3}{kb^2 + ca} + \frac{c^3}{kc^2 + ab} \ge \frac{a + b + c}{k + 1}.$$

(Vasile C., 2011)

Solution. Due to homogeneity, we may assume that abc = 1. On this hypothesis, we write the inequality as follows:

$$\frac{a^4}{ka^3+1} + \frac{b^4}{kb^3+1} + \frac{b^4}{kb^3+1} \ge \frac{a}{k+1} + \frac{b}{k+1} + \frac{c}{k+1},$$

$$\frac{a^4 - a}{ka^3 + 1} + \frac{b^4 - b}{kb^3 + 1} + \frac{c^4 - c}{kc^3 + 1} \ge 0.$$

Using the substitution

$$a = e^x$$
, $b = e^y$, $c = e^z$,

we need to show that

$$f(x) + g(y) + g(z) \ge 3f(s),$$

where

$$s = \frac{x + y + z}{3} = 0$$

and

$$f(u) = \frac{e^{4u} - e^u}{ke^{3u} + 1}, \quad u \in \mathbb{R}.$$

From

$$f'(t) = \frac{ke^{6u} + 2(k+2)e^{3u} - 1}{(ke^{3u} + 1)^2},$$

it follows that f is decreasing on $(-\infty, s_0]$ and increasing on $[s_0, \infty)$, where

$$s_0 = \ln r_0 < 0, \quad r_0 = \sqrt[3]{\frac{-k - 2 + \sqrt{(k+1)(k+4)}}{k}} \in (0,1).$$

Also, we have

$$f''(u) = \frac{t \cdot h(t)}{(kt^3 + 1)^3},$$

where

$$h(t) = k^2 t^9 - k(4k+1)t^6 + (13k+16)t^3 - 1, \quad t = e^u.$$

If h(t) > 0 for $t \in [r_0, 1]$, then f is convex on $[s_0, 0]$. We will prove this only for $k = 2 + 2\sqrt{2}$, when $r_0 \approx 0.415$ and $h(t) \geq 0$ for $t \in [t_1, t_2]$, where $t_1 \approx 0.2345$ and $t_2 \approx 1.02$. Since $[r_0, 1] \subset [t_1, t_2]$, the conclusion follows. By the LPCF-Theorem, we only need to prove the original inequality for b = c. Due to homogeneity, we may consider that b = c = 1. Thus, we need to show that

$$\frac{a^3}{ka^2+1} + \frac{2}{a+k} \ge \frac{a+2}{k+1},$$

which is equivalent to the obvious inequality

$$(a-1)^{2}[a^{2}-(k-2)a+2] \ge 0.$$

For $k = 2 + 2\sqrt{2}$, this inequality has the form

$$(a-1)^2(a-\sqrt{2})^2 \ge 0.$$

The equality holds for a=b=c. If $k=2+2\sqrt{2}$, then the equality holds also for

$$\frac{a}{\sqrt{2}} = b = c$$

(or any cyclic permutation).

P 3.35. If a, b, c, d, e are positive real numbers so that abcde = 1, then

$$2\left(\frac{1}{a+1} + \frac{1}{b+1} + \dots + \frac{1}{e+1}\right) \ge 3\left(\frac{1}{a+2} + \frac{1}{b+2} + \dots + \frac{1}{e+2}\right).$$

(Vasile C., 2012)

Solution. Write the inequality as

$$\frac{1-a}{(a+1)(a+2)} + \frac{1-b}{(b+1)(b+2)} + \frac{1-c}{(c+1)(c+2)} + \frac{1-d}{(d+1)(d+2)} + \frac{1-e}{(e+1)(e+2)} \ge 0.$$

Using the substitution

$$a = e^x$$
, $b = e^y$, $c = e^z$, $d = e^t$, $e = e^w$,

we need to show that

$$f(x) + f(y) + f(z) + f(t) + f(w) \ge 5f(s),$$

where

$$s = \frac{x+y+z+t+w}{5} = 0$$

and

$$f(u) = \frac{1 - e^u}{(e^u + 1)(e^u + 2)}, \quad u \in \mathbb{R}.$$

From

$$f'(u) = \frac{e^{u}(e^{2u} - 2e^{u} - 5)}{(e^{u} + 1)^{2}(e^{u} + 2)^{2}},$$

it follows that f is decreasing on $(-\infty, s_0]$ and increasing on $[s_0, \infty)$, where

$$s_0 = \ln(1 + \sqrt{6}) < 2, \quad s < s_0.$$

Also, we have

$$f''(u) = \frac{t \cdot h(t)}{(t+1)^3 (t+2)^3}, \quad t = e^u,$$

where

$$h(t) = -t^4 + 7t^3 + 21t^2 + 7t - 10.$$

We will show that h(t) > 0 for $t \in [1,2]$, hence f is convex on $[0,s_0]$. We have

$$h(t) \ge -2t^3 + 7t^3 + 21t^2 + 7t - 10 = 5t^3 + 21t^2 + 7t - 10 > 0.$$

By the RPCF-Theorem, we only need to prove the original inequality for

$$b = c = d = e := t$$
, $a = 1/t^4$, $t \ge 1$.

Write this inequality as

$$\frac{t^4(t^4-1)}{(t^4+1)(2t^4+1)} \ge \frac{4(t-1)}{(t+1)(t+2)},$$

which is true if

$$t^{4}(t+1)(t+2)(t^{3}+t^{2}+t+1) \ge 4(t^{4}+1)(2t^{4}+1).$$

Since

$$(t^4+1)(2t^4+1) = 2t^8+3t^4+1 \le 2t^4(t^4+2),$$

it suffices to show that

$$(t+1)(t+2)(t^3+t^2+t+1) \ge 8(t^4+2).$$

This inequality is equivalent to

$$t^5 - 4t^4 + 6t^3 + 6t^2 + 5t - 14 \ge 0$$

$$t(t-1)^4 + 10(t^2-1) + 4(t-1) \ge 0.$$

The equality holds for a = b = c = d = e = 1.

P 3.36. If a_1, a_2, \ldots, a_{14} are positive real numbers so that $a_1 a_2 \cdots a_{14} = 1$, then

$$3\left(\frac{1}{2a_1+1}+\frac{1}{2a_2+1}+\cdots+\frac{1}{2a_{14}+1}\right) \ge 2\left(\frac{1}{a_1+1}+\frac{1}{a_2+1}+\cdots+\frac{1}{a_{14}+1}\right).$$

(Vasile C., 2012)

Solution. Write the inequality as

$$\frac{1-a_1}{(a_1+1)(2a_1+1)} + \frac{1-a_2}{(a_2+1)(2a_2+1)} + \dots + \frac{1-a_{14}}{(a_{14}+1)(2a_{14}+1)} \ge 0.$$

Using the substitutions $a_i = e^{x_i}$ for i = 1, 2, ..., 14, we need to show that

$$f(x_1) + f(x_2) + \dots + f(x_{14}) \ge 14f(s),$$

where

$$s = \frac{x_1 + x_2 + \dots + x_{14}}{14} = 0$$

and

$$f(u) = \frac{1 - e^u}{(e^u + 1)(2e^u + 1)}, \quad u \in \mathbb{R}.$$

From

$$f'(u) = \frac{2e^{u}(e^{2u} - 2e^{u} - 2)}{(e^{u} + 1)^{2}(2e^{u} + 1)^{2}},$$

it follows that f is decreasing on $(-\infty, s_0]$ and increasing on $[s_0, \infty)$, where

$$s_0 = \ln(1 + \sqrt{3}) < 2, \quad s < s_0.$$

Also, we have

$$f''(u) = \frac{2t \cdot h(t)}{(t+1)^3 (2t+1)^3}, \quad t = e^u,$$

where

$$h(t) = -2t^4 + 11t^3 + 15t^2 + 2t - 2.$$

We will show that h(t) > 0 for $t \in [1, 2]$, hence f is convex on $[0, s_0]$. We have

$$h(t) \ge -4t^3 + 11t^3 + 15t^2 + 2t - 2 = 7t^3 + 15t^2 + 2t - 2 > 0.$$

By the RPCF-Theorem, we only need to prove the original inequality for

$$a_2 = a_3 = \dots = a_{14} := t, \quad a_1 = 1/t^{13}, \quad t \ge 1.$$

Write this inequality as

$$\frac{t^{13}(t^{13}-1)}{(t^{13}+1)(t^{13}+2)} \ge \frac{13(t-1)}{(t+1)(2t+1)}.$$

Since

$$(t^{13}+1)(t^{13}+2) = t^{26}+3t^{13}+2 \le t^{13}(t^{13}+5),$$

it suffices to show that

$$\frac{t^{13} - 1}{t^{13} + 5} \ge \frac{13(t - 1)}{(t + 1)(2t + 1)},$$

which is equivalent to

$$t^{13}(t^2 - 5t + 7) - t^2 - 34t + 32 \ge 0.$$

Substituting

$$t = 1 + x$$
, $x \ge 0$,

the inequality becomes

$$(1+x)^{13}(x^2-3x+3)-x^2-36x-3 \ge 0.$$

Since

$$(1+x)^{13} \ge 1 + 13x + 78x^2,$$

it suffices to show that

$$(78x^2 + 13x + 1)(x^2 - 3x + 3) - x^2 - 36x - 3 \ge 0.$$

This inequality, equivalent to

$$x^2(78x^2 - 221x + 196) \ge 0$$

is true since

$$78x^2 - 221x + 196 \ge 64x^2 - 224x + 196 = 4(4x - 7)^2 \ge 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_{14} = 1$.

P 3.37. Let a_1, a_2, \ldots, a_8 be positive real numbers so that $a_1 a_2 \cdots a_8 = 1$. If k > 1, then

$$(k+1)\left(\frac{1}{ka_1+1}+\frac{1}{ka_2+1}+\cdots+\frac{1}{ka_8+1}\right) \ge 2\left(\frac{1}{a_1+1}+\frac{1}{a_2+1}+\cdots+\frac{1}{a_8+1}\right).$$

(Vasile C., 2012)

Solution. Write the inequality as

$$\frac{1-a_1}{(a_1+1)(ka_1+1)} + \frac{1-a_2}{(a_2+1)(ka_2+1)} + \dots + \frac{1-a_8}{(a_8+1)(ka_8+1)} \ge 0.$$

Using the substitutions $a_i = e^{x_i}$ for i = 1, 2, ..., 8, we need to show that

$$f(x_1) + f(x_2) + \dots + f(x_8) \ge 8f(s),$$

where

$$s = \frac{x_1 + x_2 + \dots + x_8}{8} = 0$$

and

$$f(u) = \frac{1 - e^u}{(e^u + 1)(ke^u + 1)}, \quad u \in \mathbb{R}.$$

From

$$f'(u) = \frac{e^{u}(ke^{2u} - 2ke^{u} - k - 2)}{(e^{u} + 1)^{2}(ke^{u} + 1)^{2}},$$

it follows that f is decreasing on $(-\infty, s_0]$ and increasing on $[s_0, \infty)$, where

$$s_0 = \ln\left(1 + \sqrt{2 + \frac{2}{k}}\right) < 2, \quad s < s_0.$$

Also, we have

$$f''(u) = \frac{t \cdot h(t)}{(t+1)^3(kt+1)^3}, \quad t = e^u,$$

where

$$h(t) = -k^2t^4 + k(5k+1)t^3 + 3k(k+3)t^2 + (k^2-k+2)t - k - 2.$$

We will show that h(t) > 0 for $t \in [1, 2]$, hence f is convex on $[0, s_0]$. We have

$$h(t) > -2k^{2}t^{3} + k(5k+1)t^{3} + 3k(k+3)t^{2} + (k^{2} - k + 2)t - k - 2$$

= $k(3k+1)t^{3} + 3k(k+3)t^{2} + (k^{2} - k + 2)t - k - 2$
> $3k(k+3) + (k^{2} - k + 2) - k - 2 > 0$.

By the RPCF-Theorem, we only need to prove the original inequality for

$$a_2 = a_3 = \dots = a_8 := t, \quad a_1 = 1/t^7, \quad t \ge 1.$$

Write this inequality as

$$\frac{t^7(t^7-1)}{(t^7+1)(t^7+k)} \ge \frac{7(t-1)}{(t+1)(kt+1)}.$$

Since

$$(t^7+1)(t^7+k) = t^{14} + (k+1)t^7 + k \le t^7(t^7+2k+1),$$

it suffices to show that

$$\frac{t^7 - 1}{t^7 + 2k + 1} \ge \frac{7(t - 1)}{(t + 1)(kt + 1)},$$

which is equivalent to

$$k(t-1)P(t)+Q(t)\geq 0,$$

where

$$P(t) = t(t+1)(t^6 + t^5 + t^4 + t^3 + t^2 + t + 1) - 14,$$

$$Q(t) = (t+1)(t^7 - 1) - 7(t-1)(t^7 + 1).$$

Since $(t-1)P(t) \ge 0$ for $t \ge 1$, it suffices to consider the case k = 1. So, we need to show that

$$\frac{t^7 - 1}{t^7 + 3} \ge \frac{7(t - 1)}{(t + 1)^2},$$

which is equivalent to

$$t^7(t^2 - 5t + 8) - t^2 - 23t + 20 \ge 0.$$

Substituting

$$t = 1 + x, \quad x \ge 0,$$

the inequality becomes

$$(1+x)^7(x^2-3x+4)-x^2-25x-4 \ge 0.$$

Since

$$(1+x)^7 \ge 1 + 7x + 21x^2,$$

it suffices to show that

$$(21x^2 + 7x + 1)(x^2 - 3x + 4) - x^2 - 25x - 4 \ge 0$$

This inequality, equivalent to

$$x^2(21x^2 - 56x + 63) \ge 0.$$

is true since

$$21x^2 - 56x + 63 > 16x^2 - 56x + 49 = (4x - 7)^2 \ge 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_8 = 1$.

P 3.38. If $a_1, a_2, ..., a_9$ are positive real numbers so that $a_1 a_2 \cdots a_9 = 1$, then

$$\frac{1}{2a_1+1} + \frac{1}{2a_2+1} + \dots + \frac{1}{2a_9+1} \ge \frac{1}{a_1+2} + \frac{1}{a_2+2} + \dots + \frac{1}{a_9+2}.$$

(Vasile C., 2012)

Solution. Write the inequality as

$$\frac{1-a_1}{(2a_1+1)(a_1+2)} + \frac{1-a_2}{(2a_2+1)(a_2+2)} + \dots + \frac{1-a_9}{(2a_9+1)(a_9+2)} \ge 0.$$

Using the substitutions $a_i = e^{x_i}$ for i = 1, 2, ..., 9, we need to show that

$$f(x_1) + f(x_2) + \dots + f(x_9) \ge 9f(s),$$

where

$$s = \frac{x_1 + x_2 + \dots + x_9}{9} = 0$$

and

$$f(u) = \frac{1 - e^u}{(2e^u + 1)(e^u + 2)}, \quad u \in \mathbb{R}.$$

From

$$f'(u) = \frac{e^{u}(2e^{2u} - 4e^{u} - 7)}{(2e^{u} + 1)^{2}(e^{u} + 2)^{2}},$$

it follows that f is decreasing on $(-\infty, s_0]$ and increasing on $[s_0, \infty)$, where

$$s_0 = \ln\left(1 + \frac{3\sqrt{2}}{2}\right) < 2, \quad s < s_0.$$

Also, we have

$$f''(u) = \frac{t \cdot h(t)}{(2t+1)^3(t+2)^3}, \quad t = e^u,$$

where

$$h(t) = -4t^4 + 26t^3 + 54t^2 + 19t - 14.$$

We will show that h(t) > 0 for $t \in [1, 2]$, hence f is convex on $[0, s_0]$. We have

$$h(t) \ge -8t^3 + 26t^3 + 54t^2 + 19t - 14 = 18t^3 + 54t^2 + 19t - 14 > 0.$$

By the RPCF-Theorem, we only need to prove the original inequality for

$$a_2 = a_3 = \dots = a_9 := t, \quad a_1 = 1/t^8, \quad t \ge 1.$$

Write this inequality as

$$\frac{t^8(t^8-1)}{(t^8+2)(2t^8+1)} \ge \frac{8(t-1)}{(2t+1)(t+2)}.$$

Since

$$(t^8+2)(2t^8+1) = 2t^{16}+5t^8+2 \le t^8(2t^8+7),$$

it suffices to show that

$$\frac{t^8 - 1}{2t^8 + 7} \ge \frac{8(t - 1)}{(2t + 1)(t + 2)},$$

which is equivalent to

$$t^{8}(2t^{2}-11t+18)-2t^{2}-61t+54 \ge 0.$$

Substituting

$$t = 1 + x$$
, $x \ge 0$,

the inequality becomes

$$(1+x)^8(2x^2-7x+9)-2x^2-65x-9 \ge 0.$$

Since

$$(1+x)^8 \ge 1 + 8x + 28x^2,$$

it suffices to show that

$$(28x^2 + 8x + 1)(2x^2 - 7x + 9) - 2x^2 - 65x - 9 \ge 0.$$

This inequality, equivalent to

$$x^2(56x^2 - 180x + 196) \ge 0.$$

is true since

$$56x^2 - 180x + 196 \ge 49x^2 - 196x + 196 = 49(x - 2)^2 \ge 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_9 = 1$.

P 3.39. If $a_1, a_2, ..., a_n$ are real numbers so that

$$a_1, a_2, \dots, a_n \le \pi, \quad a_1 + a_2 + \dots + a_n = \pi,$$

then

$$\cos a_1 + \cos a_2 + \dots + \cos a_n \le n \cos \frac{\pi}{n}.$$

(Vasile C., 2000

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = \frac{\pi}{n},$$

where

$$f(u) = -\cos u, \quad u \in \mathbb{I} = [-(n-2)\pi, \pi].$$

Let

$$s_0 = 0 < s$$
.

We see that f is increasing on $[s_0, \pi] = \mathbb{I}_{\geq s_0}$ and $f(u) \geq f(s_0) = -1$ for $u \in \mathbb{I}$. In addition, f is convex on $[s_0, s]$. Thus, by the LPCF-Theorem, we only need to prove that $g(x) \leq 0$, where

$$g(x) = \cos x + (n-1)\cos y - n\cos s, \quad x + (n-1)y = \pi, \quad \pi \ge x \ge s \ge y \ge 0.$$

Since $y' = \frac{-1}{n-1}$, we get

$$g'(x) = -\sin x + \sin y = -2\sin\frac{x-y}{2}\cos\frac{x+y}{2}.$$

We have $g'(x) \le 0$ because

$$0 < \frac{x+y}{2} \le \frac{x+(n-1)y}{2} = \frac{\pi}{2}$$

and

$$0 \le \frac{x - y}{2} < \frac{\pi}{2}.$$

From $g' \le 0$, it follows that g is decreasing, hence $g(x) \le g(s) = 0$.

The equality holds for $a_1 = a_2 = \cdots = a_n = \frac{\pi}{n}$. If n = 2, then the inequality is an identity.

Remark. In the same manner, we can prove the following generalization:

• If a_1, a_2, \ldots, a_n are real numbers so that

$$a_1, a_2, \dots, a_n \le \pi, \quad \frac{a_1 + a_2 + \dots + a_n}{n} = s, \quad 0 < s \le \frac{\pi}{4},$$

then

$$\cos a_1 + \cos a_2 + \dots + \cos a_n \le n \cos s$$
,

with equality for $a_1 = a_2 = \cdots = a_n = s$.

P 3.40. If $a_1, a_2, ..., a_n$ $(n \ge 3)$ are real numbers so that

$$a_1, a_2, \dots, a_n \ge \frac{-1}{n-2}, \quad a_1 + a_2 + \dots + a_n = n,$$

then

$$\frac{a_1^2}{a_1^2 - a_1 + 1} + \frac{a_2^2}{a_2^2 - a_2 + 1} + \dots + \frac{a_n^2}{a_n^2 - a_n + 1} \le n.$$

(Vasile Cirtoaje, 2012)

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = \frac{1-u}{u^2-u+1}, \quad u \in \mathbb{I} = \left[\frac{-1}{n-2}, \frac{n^2-n-1}{n-2}\right].$$

Let $s_0 = 2$. We have $s < s_0$ and

$$\min_{u\in\mathbb{I}}f(u)=f(s_0)$$

because

$$f(u)-f(2) = \frac{1-u}{u^2-u+1} + \frac{1}{3} = \frac{(u-2)^2}{3(u^2-u+1)} \ge 0.$$

From

$$f'(u) = \frac{u(u-2)}{(u^2 - u + 1)^2},$$
$$f''(u) = \frac{2(3u^2 - u^3 - 1)}{(u^2 - u + 1)^3} = \frac{2u^2(2-u) + 2(u^2 - 1)}{(u^2 - u + 1)^3},$$

it follows that f is convex on $[1,s_0]$. However, we can't apply the RPCF-Theorem in its original form because f is not decreasing on $\mathbb{I}_{\leq s_0}$. According to Theorem 1, we may replace this condition with $ns - (n-1)s_0 \leq \inf \mathbb{I}$. Indeed, we have

$$ns - (n-1)s_0 = n - 2(n-1) = -n + 2 \le \frac{-1}{n-2} = \inf \mathbb{I}.$$

So, it suffices to show that $f(x) + (n-1)f(y) \ge nf(1)$ for all $x, y \in \mathbb{I}$ so that

$$x + (n-1)y = n.$$

According to Note 1, we only need to show that $h(x, y) \ge 0$, where

$$g(u) = \frac{f(u) - f(1)}{u - 1}, \quad h(x, y) = \frac{g(x) - g(y)}{x - y}.$$

We have

$$g(u) = \frac{-1}{u^2 - u + 1},$$

$$v - 1 \qquad (n - 2)v + 1$$

$$h(x,y) = \frac{x+y-1}{(x^2-x+1)(y^2-y+1)} = \frac{(n-2)x+1}{(n-1)(x^2-x+1)(y^2-y+1)} \ge 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = \frac{-1}{n-2}$$
, $a_2 = a_3 = \dots = a_n = \frac{n-1}{n-2}$

(or any cyclic permutation).

P 3.41. If $a_1, a_2, ..., a_n$ $(n \ge 3)$ are nonzero real numbers so that

$$a_1, a_2, \dots, a_n \ge \frac{-n}{n-2}, \quad a_1 + a_2 + \dots + a_n = n,$$

then

$$\frac{1}{a_1^2} + \frac{1}{a_2^2} + \dots + \frac{1}{a_n^2} \ge \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}.$$

(Vasile Cirtoaje, 2012)

Solution. According to P 2.25-(a) in Volume 1, the inequality is true for n = 3. Assume further that $n \ge 4$ and write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = \frac{1}{u^2} - \frac{1}{u}, \quad u \in \mathbb{I} = \left[\frac{-n}{n-2}, \frac{n(2n-3)}{n-2}\right] \setminus \{0\}.$$

Let

$$s_0 = 2, \quad s < s_0.$$

From

$$f(u)-f(2) = \frac{1}{u^2} - \frac{1}{u} + \frac{1}{4} = \frac{(u-2)^2}{4u^2} \ge 0,$$

it follows that

$$\min_{u\in\mathbb{I}} f(u) = f(s_0),$$

while from

$$f'(u) = \frac{u-2}{u^3}, \quad f''(u) = \frac{2(3-u)}{u^4},$$

it follows that f is convex on $[s, s_0]$. However, we can't apply the RPCF-Theorem because f is not decreasing on $\mathbb{I}_{\leq s_0}$. According to Theorem 1 and Note 6, we may replace this condition with $ns - (n-1)s_0 \leq \inf \mathbb{I}$. For $n \geq 4$, we have

$$ns - (n-1)s_0 = n - 2(n-1) = -n + 2 \le \frac{-n}{n-2} = \inf \mathbb{I}.$$

So, according to Note 1, it suffices to show that $h(x, y) \ge 0$ for all $x, y \in \mathbb{I}$ so that x + (n-1)y = n. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{-1}{u^2},$$

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = \frac{x + y}{x^2 y^2} = \frac{(n-2)x + n}{(n-1)x^2 y^2} \ge 0.$$

The proof is completed. By Note 3, the equality holds for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = \frac{-n}{n-2}$$
, $a_2 = a_3 = \dots = a_n = \frac{n}{n-2}$

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• Let $a_1, a_2, ..., a_n \ge \frac{-n}{n-2}$ so that $a_1 + a_2 + \cdots + a_n = n$. If $n \ge 3$ and $k \ge 0$, then

$$\frac{1-a_1}{k+a_1^2} + \frac{1-a_2}{k+a_2^2} + \dots + \frac{1-a_n}{k+a_n^2} \ge 0,$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = \frac{-n}{n-2}$$
, $a_2 = a_3 = \dots = a_n = \frac{n}{n-2}$

(or any cyclic permutation).

P 3.42. If $a_1, a_2, ..., a_n \ge -1$ so that $a_1 + a_2 + \cdots + a_n = n$, then

$$(n+1)\left(\frac{1}{a_1^2} + \frac{1}{a_2^2} + \dots + \frac{1}{a_n^2}\right) \ge 2n + (n-1)\left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}\right).$$

(Vasile C., 2013)

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = \frac{n+1}{u^2} - \frac{n-1}{u}, \quad u \in \mathbb{I} = [-1, 2n-1] \setminus \{0\}.$$

Let

$$s_0 = \frac{2(n+1)}{n-1} \in \mathbb{I}, \quad s < s_0.$$

Since

$$f(u)-f(s_0) = \frac{[(n-1)u-2(n+1)]^2}{4(n+1)u^2} \ge 0,$$

we have

$$\min_{u\in\mathbb{I}}f(u)=f(s_0).$$

From

$$f'(u) = \frac{(n-1)u - 2(n+1)}{u^3}, \quad f''(u) = \frac{6(n+1) - 2(n-1)u}{u^4},$$

it follows that f is convex on $[1,s_0]$. Since f is not decreasing on $\mathbb{I}_{\leq s_0}$, according to Theorem 1 and Note 6, we may replace this condition in RPCF-Theorem with $ns - (n-1)s_0 \leq \inf \mathbb{I}$. We have

$$ns - (n-1)s_0 = n - 2(n+1) = -n - 2 < -1 = \inf \mathbb{I}.$$

According to Note 1, we only need to show that $h(x, y) \ge 0$ for $-1 \le x \le 1 \le y$ and x + (n-1)y = n. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = -\frac{2}{u} - \frac{n + 1}{u^2}$$

and

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = \frac{2xy + (n+1)(x+y)}{x^2y^2} = \frac{(x+1)(n^2 + n - 2x)}{(n-1)x^2y^2} \ge 0.$$

According to Note 4, the equality holds for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = -1$$
, $a_2 = \dots = a_n = \frac{n+1}{n-1}$

(or any cyclic permutation).

P 3.43. If a_1, a_2, \ldots, a_n $(n \ge 3)$ are real numbers so that

$$a_1, a_2, \dots, a_n \ge \frac{-(3n-2)}{n-2}, \quad a_1 + a_2 + \dots + a_n = n,$$

then

$$\frac{1-a_1}{(1+a_1)^2} + \frac{1-a_2}{(1+a_2)^2} + \dots + \frac{1-a_n}{(1+a_n)^2} \ge 0.$$

(Vasile C., 2014)

Solution. According to P 2.25-(b) in Volume 1, the inequality is true for n = 3. Assume further that $n \ge 4$ and write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = \frac{1-u}{(1+u)^2}, \quad u \in \mathbb{I} = \left[\frac{-(3n-2)}{n-2}, \frac{4n^2 - 7n + 2}{n-2}\right] \setminus \{-1\}.$$

Let

$$s_0 = 3$$
, $s < s_0$.

From

$$f(u)-f(3) = \frac{1-u}{(1+u)^2} + \frac{1}{8} = \frac{(u-3)^2}{8(u+1)^2} \ge 0,$$

it follows that

$$\min_{u\in\mathbb{T}}f(u)=f(s_0).$$

From

$$f'(u) = \frac{u-3}{(u+1)^3}, \quad f''(u) = \frac{2(5-u)}{(u+1)^4},$$

it follows that f is convex on $[1, s_0]$. We can't apply the RPCF-Theorem in its original form because f is not decreasing on $\mathbb{I}_{\leq s_0}$. However, according to Theorem 1 and Note 6, we may replace this condition with $ns - (n-1)s_0 \leq \inf \mathbb{I}$. Indeed, for $n \geq 4$, we have

$$ns - (n-1)s_0 = n - 3(n-1) = -2n + 3 \le \frac{-(3n-2)}{n-2} = \inf \mathbb{I}.$$

According to Note 1, it suffices to show that $h(x, y) \ge 0$ for all $x, y \in \mathbb{I}$ so that $x \le 1 \le y$ and x + (n-1)y = n. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{-1}{(u + 1)^2},$$

$$h(x, y) = \frac{g(x) - g(y)}{x - y} = \frac{x + y + 2}{(x + 1)^2(y + 1)^2} = \frac{(n - 2)x + 3n - 2}{(n - 1)(x + 1)^2(y + 1)^2} \ge 0.$$

In accordance with Note 3, the equality holds for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = \frac{-(3n-2)}{n-2}$$
, $a_2 = a_3 = \dots = a_n = \frac{n+2}{n-2}$

(or any cyclic permutation).

P 3.44. Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$. If $n \ge 3$ and $k \ge 2 - \frac{2}{n}$, then

$$\frac{1-a_1}{(1-ka_1)^2} + \frac{1-a_2}{(1-ka_2)^2} + \dots + \frac{1-a_n}{(1-ka_n)^2} \ge 0.$$

(Vasile C., 2012)

Solution. According to P 3.99 in Volume 1, the inequality is true for n = 3. Assume further that $n \ge 4$ and write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = \frac{1-u}{(1-ku)^2}, \quad u \in \mathbb{I} = [0,n] \setminus \{1/k\}.$$

Let

$$s_0 = 2 - 1/k$$
, $1 = s < s_0$.

Since

$$f(u) - f(s_0) = \frac{1 - u}{(1 - ku)^2} + \frac{1}{4k(k - 1)} = \frac{(ku - 2k + 1)^2}{4k(k - 1)(1 - ku)^2} \ge 0,$$

we have

$$\min_{u\in\mathbb{I}}f(u)=f(s_0).$$

From

$$f'(u) = \frac{ku - 2k + 1}{(ku - 1)^3}, \quad f''(u) = \frac{2k(-ku + 3k - 2)}{(1 - ku)^4},$$

it follows that f is convex on $[1,s_0]$. We can't apply the RPCF-Theorem because f is not decreasing on $\mathbb{I}_{\leq s_0}$. According to Theorem 1 and Note 6, we may replace this condition with $ns - (n-1)s_0 \leq \inf \mathbb{I}$. Indeed, we have

$$ns - (n-1)s_0 \le n - (n-1) \cdot \frac{3n-4}{2(n-1)} = \frac{4-n}{2} \le 0 = \inf \mathbb{I}.$$

So, it suffices to show that $f(x) + (n-1)f(y) \ge nf(1)$ for all $x, y \in \mathbb{I}$ so that $x \le 1 \le y$ and x + (n-1)y = n. According to Note 1, we only need to show that $h(x, y) \ge 0$, where

$$g(u) = \frac{f(u) - f(1)}{u - 1}, \quad h(x, y) = \frac{g(x) - g(y)}{x - y}.$$

Since

$$g(u) = \frac{-1}{(1-ku)^2}, \quad h(x,y) = \frac{k[k(x+y)-2]}{(1-kx)^2(1-ky)^2},$$

we need to show that $k(x + y) - 2 \ge 0$. Indeed, we have

$$\frac{k(x+y)-2}{2} \ge \frac{(n-1)(x+y)}{n} - 1 = \frac{(n-1)(x+y)}{n} - \frac{x+(n-1)y}{n} = \frac{(n-2)x}{n} \ge 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$. If $k = 2 - \frac{2}{n}$, then the equality also holds for

$$a_1 = 0$$
, $a_2 = a_3 = \dots = a_n = \frac{n}{n-1}$

(or any cyclic permutation).

Chapter 4

Partially Convex Function Method for Ordered Variables

4.1 Theoretical Basis

The following statement is known as Right Partially Convex Function Theorem for Ordered Variables (RPCF-OV Theorem).

RPCF-OV Theorem (Vasile Cirtoaje, 2014). Let f be a real function defined on an interval \mathbb{I} and convex on $[s,s_0]$, where $s,s_0 \in \mathbb{I}$, $s < s_0$. In addition, f is decreasing on $\mathbb{I}_{\leq s_0}$ and $f(u) \geq f(s_0)$ for $u \in \mathbb{I}$. The inequality

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf\left(\frac{a_1 + a_2 + \dots + a_n}{n}\right)$$

holds for all $a_1, a_2, \ldots, a_n \in \mathbb{I}$ satisfying

$$a_1 + a_2 + \cdots + a_n = ns$$

and

$$a_1 \le a_2 \le \dots \le a_m \le s, \quad m \in \{1, 2, \dots, n-1\},$$

if and only if

$$f(x) + (n-m)f(y) \ge (1+n-m)f(s)$$

for all $x, y \in \mathbb{I}$ so that $x \le s \le y$ and x + (n - m)y = (1 + n - m)s.

Proof. For

$$a_1 = x$$
, $a_2 = \cdots = a_m = s$, $a_{m+1} = \cdots = a_n = y$,

the inequality

$$f(a_1) + f(a_2) + \cdots + f(a_n) \ge nf(s)$$

becomes

$$f(x) + (n-m)f(y) \ge (1+n-m)f(s);$$

therefore, the necessity is obvious. By Lemma from Chapter 3, to prove the sufficiency, it suffices to consider that $a_1, a_2, \ldots, a_n \in \mathbb{J}$, where

$$\mathbb{J} = \mathbb{I}_{< s_0}$$
.

Because f is convex on $\mathbb{J}_{\geq s}$, the desired inequality follows from HCF-OV Theorem applied to the interval \mathbb{J} .

Similarly, we can prove Left Partially Convex Function Theorem for Ordered Variables (LPCF-OV Theorem).

LPCF-OV Theorem. Let f be a real function defined on an interval \mathbb{I} and convex on $[s_0, s]$, where $s_0, s \in \mathbb{I}$, $s_0 < s$. In addition, f is increasing on $\mathbb{I}_{\geq s_0}$ and $f(u) \geq f(s_0)$ for $u \in \mathbb{I}$. The inequality

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf\left(\frac{a_1 + a_2 + \dots + a_n}{n}\right)$$

holds for all $a_1, a_2, \ldots, a_n \in \mathbb{I}$ satisfying

$$a_1 + a_2 + \cdots + a_n = ns$$

and

$$a_1 \ge a_2 \ge \dots \ge a_m \ge s$$
, $m \in \{1, 2, \dots, n-1\}$,

if and only if

$$f(x) + (n-m)f(y) \ge (1+n-m)f(s)$$

for all $x, y \in \mathbb{I}$ so that $x \ge s \ge y$ and x + (n - m)y = (1 + n - m)s.

The RPCF-OV Theorem and the LPCF-OV Theorems are respectively generalizations of the RPCF Theorem and LPCF Theorem, because the last theorems can be obtained from the first theorems for m = 1.

Note 1. Let us denote

$$g(u) = \frac{f(u) - f(s)}{u - s}, \quad h(x, y) = \frac{g(x) - g(y)}{x - y}.$$

We may replace the hypothesis condition in the RPCF-OV Theorem and the LPCF-OV Theorem, namely

$$f(x) + mf(y) \ge (1+m)f(s),$$

by the condition

$$h(x,y) \ge 0$$
 for all $x,y \in \mathbb{I}$ so that $x + my = (1+m)s$.

Note 2. Assume that f is differentiable on \mathbb{I} , and let

$$H(x,y) = \frac{f'(x) - f'(y)}{x - y}.$$

The desired inequality of Jensen's type in the RPCF-OV Theorem and the LPCF-OV Theorem holds true by replacing the hypothesis

$$f(x) + mf(y) \ge (1+m)f(s)$$

with the more restrictive condition

$$H(x,y) \ge 0$$
 for all $x,y \in \mathbb{I}$ so that $x + my = (1+m)s$.

Note 3. The desired inequalities in the RPCF-OV Theorem and the LPCF-OV Theorem become equalities for

$$a_1 = a_2 = \dots = a_n = s.$$

In addition, if there exist $x, y \in \mathbb{I}$ so that

$$x + (n-m)y = (1+n-m)s$$
, $f(x) + (n-m)f(y) = (1+n-m)f(s)$, $x \neq y$,

then the equality holds also for

$$a_1 = x$$
, $a_2 = \cdots = a_m = s$, $a_{m+1} = \cdots = a_n = y$

(or any cyclic permutation). Notice that these equality conditions are equivalent to

$$x + (n-m)y = (1+n-m)s$$
, $h(x,y) = 0$

(x < y for RHCF-OV Theorem, and x > y for LHCF-OV Theorem).

Note 4. The RPCF-OV Theorem is also valid in the case where f is defined on $\mathbb{I} \setminus \{u_0\}$, where u_0 is an interior point of \mathbb{I} so that $u_0 > s0$. Similarly, LPCF Theorem is also valid in the case in which f is defined on $\mathbb{I} \setminus \{u_0\}$, where u_0 is an interior point of \mathbb{I} so that $u_0 < s0$.

Note 5. The RPCF-Theorem holds true by replacing the condition

$$f$$
 is decreasing on $\mathbb{I}_{\leq s_0}$

with

$$ns - (n-1)s_0 \le \inf \mathbb{I}$$
.

More precisely, the following theorem holds:

Theorem 1. Let f be a function defined on a real interval \mathbb{I} , convex on $[s,s_0]$ and satisfying

$$\min_{u\in\mathbb{I}_{>s}}f(u)=f(s_0),$$

where

$$s, s_0 \in \mathbb{I}, \ s < s_0, \ (1 + n - m)s - (n - m)s_0 \le \inf \mathbb{I}.$$

The inequality

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf\left(\frac{a_1 + a_2 + \dots + a_n}{n}\right)$$

holds for all $a_1, a_2, \ldots, a_n \in \mathbb{I}$ satisfying

$$a_1 + a_2 + \cdots + a_n = ns$$

and

$$a_1 \le a_2 \le \dots \le a_m \le s$$
, $m \in \{1, 2, \dots, n-1\}$,

if and only if

$$f(x) + (n-m)f(y) \ge (1+n-m)f(s)$$

for all $x, y \in \mathbb{I}$ so that $x \le s \le y$ and x + (n - m)y = (1 + n - m)s.

The proof of this theorem is similar to the one of Theorem 1 from chapter 3.

Similarly, the LPCF-Theorem holds true by replacing the condition f is increasing on $\mathbb{I}_{>s_0}$

with

$$ns - (n-1)s_0 \ge \sup \mathbb{I}$$
.

More precisely, the following theorem holds:

Theorem 2. Let f be a function defined on a real interval \mathbb{I} , convex on $[s_0, s]$ and satisfying

$$\min_{u\in\mathbb{I}_{\leq s}}f(u)=f(s_0),$$

where

$$s, s_0 \in \mathbb{I}, \ s > s_0, \ (1 + n - m)s - (n - m)s_0 \ge \sup \mathbb{I}.$$

The inequality

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf\left(\frac{a_1 + a_2 + \dots + a_n}{n}\right)$$

holds for all $a_1, a_2, \ldots, a_n \in \mathbb{I}$ satisfying

$$a_1 + a_2 + \cdots + a_n = ns$$

and

$$a_1 \ge a_2 \ge \dots \ge a_m \ge s$$
, $m \in \{1, 2, \dots, n-1\}$,

if and only if

$$f(x) + (n-m)f(y) \ge (1+n-m)f(s)$$

for all $x, y \in \mathbb{I}$ so that $x \ge s \ge y$ and x + (n - m)y = (1 + n - m)s.

Note 6. Theorem 1 is also valid in the case in which f is defined on $\mathbb{I}\setminus\{u_0\}$, where u_0 is an interior point of \mathbb{I} so that $u_0 \notin [s,s_0]$. Similarly, Theorem 2 is also valid in the case in which f is defined on $\mathbb{I}\setminus\{u_0\}$, where u_0 is an interior point of \mathbb{I} so that $u_0 \notin [s_0,s]$.

Note 7. We can extend *weighted* Jensen's inequality to right and left partially convex functions with ordered variables establishing the WRPCF-OV Theorem and the WLPCF-OV Theorem (*Vasile Cirtoaje*, 2014).

WRPCF-OV Theorem. Let $p_1, p_2, ..., p_n$ be positive real numbers so that

$$p_1 + p_2 + \cdots + p_n = 1,$$

and let f be a real function defined on an interval \mathbb{I} and convex on $[s,s_0]$, where $s,s_0 \in int(\mathbb{I}), \ s < s_0$. In addition, f is decreasing on $\mathbb{I}_{\leq s_0}$ and $f(u) \geq f(s_0)$ for $u \in \mathbb{I}$. The inequality

$$p_1 f(x_1) + p_2 f(x_2) + \dots + p_n f(x_n) \ge f(p_1 x_1 + p_2 x_2 + \dots + p_n x_n)$$

holds for all $x_1, x_2, \dots, x_n \in \mathbb{I}$ so that $p_1x_1 + p_2x_2 + \dots + p_nx_n = s$ and

$$x_1 \le x_2 \le \dots \le x_n$$
, $x_m \le s$, $m \in \{1, 2, \dots, n-1\}$,

if and only if

$$f(x) + kf(y) \ge (1+k)f(s)$$

for all $x, y \in \mathbb{I}$ satisfying

$$x \le s \le y$$
, $x + ky = (1 + k)s$,

where

$$k = \frac{p_{m+1} + p_{m+2} + \dots + p_n}{p_1}.$$

WLPCF-OV Theorem. Let p_1, p_2, \ldots, p_n be positive real numbers so that

$$p_1 + p_2 + \cdots + p_n = 1$$
,

and let f be a real function defined on an interval \mathbb{I} and convex on $[s_0, s]$, where $s_0, s \in \mathbb{I}$, $s_0 < s$. In addition, f is increasing on $\mathbb{I}_{\geq s_0}$ and $f(u) \geq f(s_0)$ for $u \in \mathbb{I}$. The inequality

$$p_1 f(x_1) + p_2 f(x_2) + \dots + p_n f(x_n) \ge f(p_1 x_1 + p_2 x_2 + \dots + p_n x_n)$$

holds for all $x_1, x_2, \dots, x_n \in \mathbb{I}$ so that $p_1x_1 + p_2x_2 + \dots + p_nx_n = s$ and

$$x_1 \geq x_2 \geq \cdots \geq x_n, \quad x_m \geq s, \quad m \in \{1, 2, \dots, n-1\},$$

if and only if

$$f(x) + kf(y) \ge (1+k)f(s)$$

for all $x, y \in \mathbb{I}$ satisfying

$$x \ge s \ge y$$
, $x + ky = (1 + k)s$,

where

$$k = \frac{p_{m+1} + p_{m+2} + \dots + p_n}{p_1}.$$

For the most commonly used case

$$p_1=p_2=\cdots=p_n=\frac{1}{n},$$

the WRPCF-OV Theorem and the WLPCF-OV Theorem yield the RPCF-OV Theorem and the LPCF-OV Theorem, respectively.

4.2 Applications

4.1. If a, b, c, d are real numbers so that

$$a \le 1 \le b \le c \le d$$
, $a+b+c+d=4$,

then

$$\frac{a}{3a^2+1} + \frac{b}{3b^2+1} + \frac{c}{3c^2+1} + \frac{d}{3d^2+1} \le 1.$$

4.2. If a, b, c, d are real numbers so that

$$a \ge b \ge 1 \ge c \ge d$$
, $a+b+c+d=4$,

then

$$\frac{16a-5}{32a^2+1} + \frac{16b-5}{32b^2+1} + \frac{16c-5}{32c^2+1} + \frac{16d-5}{32d^2+1} \le \frac{4}{3}.$$

4.3. If a, b, c, d, e are real numbers so that

$$a \ge b \ge 1 \ge c \ge d \ge e$$
, $a+b+c+d+e=5$,

then

$$\frac{18a-5}{12a^2+1} + \frac{18b-5}{12b^2+1} + \frac{18c-5}{12c^2+1} + \frac{18d-5}{12d^2+1} + \frac{18e-5}{12e^2+1} \leq 5.$$

4.4. If a, b, c, d, e are real numbers so that

$$a \ge b \ge 1 \ge c \ge d \ge e$$
, $a+b+c+d+e=5$,

then

$$\frac{a(a-1)}{3a^2+4} + \frac{b(b-1)}{3b^2+4} + \frac{c(c-1)}{3c^2+4} + \frac{d(d-1)}{3d^2+4} + \frac{e(e-1)}{3e^2+4} \ge 0.$$

4.5. Let $a_1, a_2, \ldots, a_{2n} \neq -k$ be real numbers so that

$$a_1 \ge \dots \ge a_n \ge 1 \ge a_{n+1} \ge \dots \ge a_{2n}, \quad a_1 + a_2 + \dots + a_{2n} = 2n.$$

If
$$k \ge \frac{n+1}{2\sqrt{n}}$$
, then

$$\frac{a_1(a_1-1)}{(a_1+k)^2} + \frac{a_2(a_2-1)}{(a_2+k)^2} + \dots + \frac{a_{2n}(a_{2n}-1)}{(a_{2n}+k)^2} \ge 0.$$

4.6. Let $a_1, a_2, \ldots, a_{2n} \neq -k$ be real numbers so that

$$a_1 \ge \dots \ge a_n \ge 1 \ge a_{n+1} \ge \dots \ge a_{2n}, \quad a_1 + a_2 + \dots + a_{2n} = 2n.$$

If $k \ge 1 + \frac{n+1}{\sqrt{n}}$, then

$$\frac{a_1^2-1}{(a_1+k)^2}+\frac{a_2^2-1}{(a_2+k)^2}+\cdots+\frac{a_{2n}^2-1}{(a_{2n}+k)^2}\geq 0.$$

4.7. If a_1, a_2, \ldots, a_n are positive real numbers so that

$$a_1 \ge 1 \ge a_2 \ge \cdots \ge a_n$$
, $a_1 + a_2 + \cdots + a_n = n$,

then

$$a_1^{3/a_1} + a_2^{3/a_2} + \dots + a_n^{3/a_n} \le n.$$

4.8. If a_1, a_2, \ldots, a_{11} are real numbers so that

$$a_1 \ge a_2 \ge 1 \ge a_3 \ge \cdots \ge a_{11}$$
, $a_1 + a_2 + \cdots + a_{11} = 11$,

then

$$(1-a_1+a_1^2)(1-a_2+a_2^2)\cdots(1-a_{11}+a_{11}^2)\geq 1.$$

4.9. If a_1, a_2, \ldots, a_8 are nonzero real numbers so that

$$a_1 \ge a_2 \ge a_3 \ge a_4 \ge 1 \ge a_5 \ge a_6 \ge a_7 \ge a_8$$
, $a_1 + a_2 + \dots + a_8 = 8$,

then

$$5\left(\frac{1}{a_1^2} + \frac{1}{a_2^2} + \dots + \frac{1}{a_8^2}\right) + 72 \ge 14\left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_8}\right).$$

4.10. If a, b, c, d are positive real numbers so that

$$a \le b \le 1 \le c \le d$$
, $abcd = 1$,

then

$$\frac{7-6a}{2+a^2} + \frac{7-6b}{2+b^2} + \frac{7-6c}{2+c^2} + \frac{7-6d}{2+d^2} \ge \frac{4}{3}.$$

4.11. If *a*, *b*, *c* are positive real numbers so that

$$a \le b \le 1 \le c$$
, $abc = 1$,

then

$$\frac{7-4a}{2+a^2} + \frac{7-4b}{2+b^2} + \frac{7-4c}{2+c^2} \ge 3.$$

4.12. If a, b, c are positive real numbers so that

$$a \ge 1 \ge b \ge c$$
, $abc = 1$,

then

$$\frac{23-8a}{3+2a^2}+\frac{23-8b}{3+2b^2}+\frac{23-8c}{3+2c^2}\geq 9.$$

4.13. Let a_1, a_2, \ldots, a_n be positive real numbers so that

$$a_1 \le \cdots \le a_{n-1} \le 1 \le a_n$$
, $a_1 a_2 \cdots a_n = 1$.

If $p, q \ge 0$ so that $p + 3q \ge 1$, then

$$\frac{1-a_1}{1+pa_1+qa_1^2} + \frac{1-a_2}{1+pa_2+qa_2^2} + \dots + \frac{1-a_n}{1+pa_n+qa_n^2} \ge 0.$$

4.14. If a, b, c, d, e are real numbers so that

$$-2 \le a \le b \le 1 \le c \le d \le e$$
, $a+b+c+d+e=5$,

then

$$\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{d^2} + \frac{1}{e^2} \ge \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} + \frac{1}{e}.$$

4.3 Solutions

P 4.1. If a, b, c, d are real numbers so that

$$a \le 1 \le b \le c \le d$$
, $a+b+c+d=4$,

then

$$\frac{a}{3a^2+1} + \frac{b}{3b^2+1} + \frac{c}{3c^2+1} + \frac{d}{3d^2+1} \le 1.$$

Solution. Write the inequality as

$$f(a) + f(b) + f(c) + f(d) \ge 4f(s), \quad s = \frac{a+b+c+d}{4} = 1,$$

where

$$f(u) = \frac{-u}{3u^2 + 1}, \quad u \in \mathbb{R}.$$

From

$$f'(u) = \frac{3u^2 - 1}{(3u^2 + 1)^2},$$

it follows that f is increasing on $(-\infty, -s_0] \cup [s_0, \infty)$ and decreasing on $[-s_0, s_0]$, where $s_0 = 1/\sqrt{3}$. Since

$$\lim_{u\to-\infty}f(u)=0$$

and $f(s_0) < 0$, it follows that

$$\min_{u\in\mathbb{R}} f(u) = f(s_0).$$

From

$$f''(u) = \frac{18u(1-u^2)}{(3u^2+1)^3},$$

it follows that f is convex on [0,1], hence on $[s_0,1]$. Therefore, we may apply the LPCF-OV Theorem for n=4 and m=1. We only need to show that $f(x)+f(y) \ge 2f(1)$ for all real x,y so that x+y=2. Using Note 1, it suffices to prove that $h(x,y) \ge 0$, where

$$h(x,y) = \frac{g(x) - g(y)}{x - y}, \quad g(u) = \frac{f(u) - f(1)}{u - 1}.$$

Indeed, we have

$$g(u) = \frac{3u - 1}{4(3u^2 + 1)},$$

$$h(x, y) = \frac{3(1 + x + y - 3xy)}{4(3x^2 + 1)(3y^2 + 1)} = \frac{9(1 - xy)}{4(3x^2 + 1)(3y^2 + 1)} \ge 0,$$

since

$$4(1-xy) = (x+y)^2 - 4xy = (x-y)^2 \ge 0.$$

Thus, the proof is completed. The equality holds for a = b = c = d = 1.

Remark. Similarly, we can prove the following generalization:

• If a_1, a_2, \ldots, a_n are real numbers so that

$$a_1 \le 1 \le a_2 \le \cdots \le a_n$$
, $a_1 + a_2 + \cdots + a_n = n$,

then

$$\frac{a_1}{3a_1^2+1} + \frac{a_2}{3a_2^2+1} + \dots + \frac{a_n}{3a_n^2+1} \le \frac{n}{4},$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$.

P 4.2. If a, b, c, d are real numbers so that

$$a \ge b \ge 1 \ge c \ge d$$
, $a+b+c+d=4$,

then

$$\frac{16a-5}{32a^2+1} + \frac{16b-5}{32b^2+1} + \frac{16c-5}{32c^2+1} + \frac{16d-5}{32d^2+1} \le \frac{4}{3}.$$

(Vasile C., 2012)

Solution. Write the inequality as

$$f(a) + f(b) + f(c) + f(d) \ge 4f(s), \quad s = \frac{a+b+c+d}{4} = 1,$$

where

$$f(u) = \frac{5 - 16u}{32u^2 + 1}, \quad u \in \mathbb{R}.$$

As shown in the proof of P 3.1, f is convex on $[s_0, 1]$, increasing for $u \ge s_0$ and

$$\min_{u\in\mathbb{R}}f(u)=f(s_0),$$

where

$$s_0 = \frac{5 + \sqrt{33}}{16} \approx 0.6715.$$

Therefore, we may apply the LPCF-OV Theorem for n = 4 and m = 2. We only need to show that $f(x) + 2f(y) \ge 3f(1)$ for all real x, y so that x + 2y = 3. Using Note 1, it suffices to prove that $h(x, y) \ge 0$, where

$$h(x,y) = \frac{g(x) - g(y)}{x - y}, \quad g(u) = \frac{f(u) - f(1)}{u - 1}.$$

Indeed, we have

$$g(u) = \frac{32(2u-1)}{3(32u^2+1)},$$

$$h(x,y) = \frac{64(1+16x+16y-32xy)}{3(32x^2+1)(32y^2+1)} = \frac{64(4x-5)^2}{3(32x^2+1)(32y^2+1)} \ge 0.$$

From x + 2y = 3 and h(x, y) = 0, we get x = 5/4 and y = 7/8. Therefore, in accordance with Note 3, the equality holds for a = b = c = d = 1, and also for

$$a = \frac{5}{4}$$
, $b = 1$, $c = d = \frac{7}{8}$.

Remark. Similarly, we can prove the following generalization:

• If a_1, a_2, \ldots, a_n $(n \ge 3)$ are real numbers so that

$$a_1 \ge \cdots \ge a_{n-2} \ge 1 \ge a_{n-1} \ge a_n$$
, $a_1 + a_2 + \cdots + a_n = n$,

then

$$\frac{16a_1 - 5}{32a_1^2 + 1} + \frac{16a_2 - 5}{32a_2^2 + 1} + \dots + \frac{16a_n - 5}{32a_n^2 + 1} \le \frac{n}{3},$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = \frac{5}{4}$$
, $a_2 = \dots = a_{n-2} = 1$, $a_{n-1} = a_n = \frac{7}{8}$.

P 4.3. If a, b, c, d, e are real numbers so that

$$a \ge b \ge 1 \ge c \ge d \ge e$$
, $a+b+c+d+e=5$,

then

$$\frac{18a-5}{12a^2+1} + \frac{18b-5}{12b^2+1} + \frac{18c-5}{12c^2+1} + \frac{18d-5}{12d^2+1} + \frac{18e-5}{12e^2+1} \le 5.$$

(Vasile C., 2012)

Solution. Write the inequality as

$$f(a) + f(b) + f(c) + f(d) + f(e) \ge 5f(s), \quad s = \frac{a+b+c+d+e}{5} = 1,$$

where

$$f(u) = \frac{5 - 18u}{12u^2 + 1}, \quad u \in \mathbb{R}.$$

As shown in the proof of P 3.2, f is convex on $[s_0, 1]$, increasing for $u \ge s_0$ and

$$\min_{u\in\mathbb{R}}f(u)=f(s_0),$$

where

$$s_0 = \frac{5 + \sqrt{52}}{18} \approx 0.678.$$

Therefore, applying the LPCF-OV Theorem for n = 5 and m = 3, we only need to show that $f(x) + 3f(y) \ge 4f(1)$ for all real x, y so that x + 3y = 4. Using Note 1, it suffices to prove that $h(x, y) \ge 0$, where

$$h(x,y) = \frac{g(x) - g(y)}{x - y}, \quad g(u) = \frac{f(u) - f(1)}{u - 1}.$$

Indeed, we have

$$g(u) = \frac{6(2u-1)}{12u^2+1},$$

$$h(x,y) = \frac{12(1+6x+6y-12xy)}{(12x^2+1)(12y^2+1)} = \frac{12(2x-3)^2}{(12x^2+1)(12y^2+1)} \ge 0.$$

From x + 3y = 4 and h(x, y) = 0, we get x = 3/2 and y = 5/6. Therefore, in accordance with Note 3, the equality holds for a = b = c = d = e = 1, and also for

$$a = \frac{3}{2}$$
, $b = 1$, $c = d = e = \frac{5}{6}$.

Remark. Similarly, we can prove the following generalization:

• If $a_1, a_2, ..., a_n$ $(n \ge 4)$ are real numbers so that

$$a_1 \ge \dots \ge a_{n-3} \ge 1 \ge a_{n-2} \ge a_{n-1} \ge a_n$$
, $a_1 + a_2 + \dots + a_n = n$,

then

$$\frac{18a_1 - 5}{12a_1^2 + 1} + \frac{18a_2 - 5}{12a_2^2 + 1} + \dots + \frac{18a_n - 5}{12a_n^2 + 1} \le n,$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = \frac{3}{2}$$
, $a_2 = \dots = a_{n-3} = 1$, $a_{n-2} = a_{n-1} = a_n = \frac{5}{6}$.

P 4.4. If a, b, c, d, e are real numbers so that

$$a \ge b \ge 1 \ge c \ge d \ge e$$
, $a+b+c+d+e=5$,

then

$$\frac{a(a-1)}{3a^2+4} + \frac{b(b-1)}{3b^2+4} + \frac{c(c-1)}{3c^2+4} + \frac{d(d-1)}{3d^2+4} + \frac{e(e-1)}{3e^2+4} \ge 0.$$

(Vasile C., 2012)

Solution. Write the inequality as

$$f(a) + f(b) + f(c) + f(d) + f(e) \ge 5f(s), \quad s = \frac{a+b+c+d+e}{5} = 1,$$

where

$$f(u) = \frac{u^2 - u}{3u^2 + 4}, \quad u \in \mathbb{R}.$$

As shown in the proof of P 3.5, f is convex on $[s_0, 1]$, increasing for $u \ge s_0$ and

$$\min_{u\in\mathbb{R}}f(u)=f(s_0),$$

where

$$s_0 = \frac{-4 + 2\sqrt{7}}{3} \approx 0.43.$$

Therefore, we may apply the LPCF-OV Theorem for n = 5 and m = 2. We only need to show that $f(x) + 3f(y) \ge 4f(1)$ for all real x, y so that x + 3y = 4. Using Note 1, it suffices to prove that $h(x, y) \ge 0$. Indeed, we have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{u}{3u^2 + 4},$$

$$h(x, y) = \frac{g(x) - g(y)}{x - y} = \frac{4 - 3xy}{(3x^2 + 4)(3y^2 + 4)} = \frac{(x - 2)^2}{(12x^2 + 1)(12y^2 + 1)} \ge 0.$$

From x + 3y = 4 and h(x, y) = 0, we get x = 2 and y = 2/3. Therefore, in accordance with Note 3, the equality holds for

$$a = b = c = d = e = 1$$
,

and also for

$$a = 2$$
, $b = 1$, $c = d = e = \frac{2}{3}$.

Remark. Similarly, we can prove the following generalizations:

• If $a_1, a_2, ..., a_n$ ($n \ge 4$) are real numbers so that

$$a_1 \ge \dots \ge a_{n-3} \ge 1 \ge a_{n-2} \ge a_{n-1} \ge a_n, \quad a_1 + a_2 + \dots + a_n = n,$$

then

$$\frac{a_1(a_1-1)}{3a_1^2+4}+\frac{a_2(a_2-1)}{3a_2^2+4}+\cdots+\frac{a_n(a_n-1)}{3a_n^2+4}\geq 0,$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = 2$$
, $a_2 = \dots = a_{n-3} = 1$, $a_{n-2} = a_{n-1} = a_n = \frac{2}{3}$.

• If a_1, a_2, \ldots, a_n $(n \ge 3)$ are real numbers so that

$$a_1 \ge a_2 \ge 1 \ge a_3 \ge \cdots \ge a_n$$
, $a_1 + a_2 + \cdots + a_n = n$,

then

$$\frac{a_1(a_1-1)}{4(n-2)a_1^2+(n-1)^2}+\frac{a_2(a_2-1)}{4(n-2)a_2^2+(n-1)^2}+\cdots+\frac{a_n(a_n-1)}{4(n-2)a_n^2+(n-1)^2}\geq 0,$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = \frac{n-1}{2}$$
, $a_2 = 1$, $a_3 = \dots = a_n = \frac{n-1}{2(n-2)}$.

P 4.5. Let $a_1, a_2, \ldots, a_{2n} \neq -k$ be real numbers so that

$$a_1 \ge \dots \ge a_n \ge 1 \ge a_{n+1} \ge \dots \ge a_{2n}, \quad a_1 + a_2 + \dots + a_{2n} = 2n.$$

If $k \ge \frac{n+1}{2\sqrt{n}}$, then

$$\frac{a_1(a_1-1)}{(a_1+k)^2} + \frac{a_2(a_2-1)}{(a_2+k)^2} + \dots + \frac{a_{2n}(a_{2n}-1)}{(a_{2n}+k)^2} \ge 0.$$

(Vasile C., 2012)

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_{2n}) \ge 2nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_{2n}}{2n} = 1,$$

where

$$f(u) = \frac{u(u-1)}{(u+k)^2}, \quad u \in \mathbb{I} = \mathbb{R} \setminus \{-k\}.$$

As shown in the proof of P 3.8, f is convex on $[s_0, 1]$, increasing for $u \ge s_0$ and

$$\min_{u\in\mathbb{T}}f(u)=f(s_0),$$

where

$$s_0 = \frac{k}{2k+1} < 1.$$

Having in view Note 4, we may apply the LPCF-OV Theorem for 2n real numbers and m = n. We only need to show that $f(x) + nf(y) \ge (n+1)f(1)$ for $x, y \in \mathbb{I}$ so that x + ny = n + 1. Using Note 1, it suffices to prove that $h(x, y) \ge 0$. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{u}{(u + k)^2},$$

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = \frac{k^2 - xy}{(x+k)^2(y+k)^2} \ge 0,$$

because

$$k^{2} - xy \ge \frac{(n+1)^{2}}{4n} - xy = \frac{(x+ny)^{2}}{4n} - xy = \frac{(x-ny)^{2}}{4n} \ge 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$. If $k = \frac{n+1}{2\sqrt{n}}$, then the equality holds also for

$$a_1 = \frac{n+1}{2}$$
, $a_2 = \dots = a_n = 1$, $a_{n+1} = \dots = a_{2n} = \frac{n+1}{2n}$.

P 4.6. Let $a_1, a_2, \ldots, a_{2n} \neq -k$ be real numbers so that

$$a_1 \ge \dots \ge a_n \ge 1 \ge a_{n+1} \ge \dots \ge a_{2n}, \quad a_1 + a_2 + \dots + a_{2n} = 2n.$$

If $k \ge 1 + \frac{n+1}{\sqrt{n}}$, then

$$\frac{a_1^2-1}{(a_1+k)^2}+\frac{a_2^2-1}{(a_2+k)^2}+\cdots+\frac{a_{2n}^2-1}{(a_{2n}+k)^2}\geq 0.$$

(Vasile C., 2012)

Solution. Write the inequality as

$$f(a_1) + f(a_2) + \dots + f(a_{2n}) \ge 2nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_{2n}}{2n} = 1,$$

where

$$f(u) = \frac{u^2 - 1}{(u + k)^2}, \quad u \in \mathbb{I} = \mathbb{R} \setminus \{-k\}.$$

As shown in the proof of P 3.9, f is convex on $[s_0, 1]$, increasing for $u \ge s_0$ and

$$\min_{u \in \mathbb{T}} f(u) = f(s_0),$$

where

$$s_0 = \frac{-1}{k} \in (-1, 0).$$

According to Note 4, we may apply the LPCF-OV Theorem for 2n real numbers and m = n. Thus, we only need to show that $f(x) + nf(y) \ge (n+1)f(1)$ for $x, y \in \mathbb{I}$ so that x + ny = n + 1. Using Note 1, it suffices to prove that $h(x, y) \ge 0$. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{u + 1}{(u + k)^2},$$

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = \frac{(k-1)^2 - 1 - x - y - xy}{(x+k)^2 (y+k)^2} \ge 0,$$

because

$$(k-1)^2 - 1 - x - y - xy \ge \frac{(n+1)^2}{n} - 1 - x - y - xy = \frac{(ny-1)^2}{n} \ge 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$. If $k = 1 + \frac{n+1}{\sqrt{n}}$, then the equality holds also for

$$a_1 = n$$
, $a_2 = \dots = a_n = 1$, $a_{n+1} = \dots = a_{2n} = \frac{1}{n}$.

P 4.7. If a_1, a_2, \ldots, a_n are positive real numbers so that

$$a_1 \ge 1 \ge a_2 \ge \dots \ge a_n$$
, $a_1 + a_2 + \dots + a_n = n$,

then

$$a_1^{3/a_1} + a_2^{3/a_2} + \dots + a_n^{3/a_n} \le n.$$

(Vasile C., 2012)

Solution. Rewrite the desired inequality as

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf(s), \quad s = \frac{a_1 + a_2 + \dots + a_n}{n} = 1,$$

where

$$f(u) = -u^{3/u}, \quad u \in \mathbb{I} = (0, n).$$

We have

$$f'(u) = 3u^{\frac{3}{u}-2}(\ln u - 1),$$

$$f''(u) = 3u^{\frac{3}{u}-4}g(t), \quad g(t) = u + (1 - \ln u)(2u - 3 + 3\ln u).$$

From the expression of f', it follows that f is decreasing on $(0, s_0]$ and increasing on $[s_0, n)$, where

$$s_0 = e$$
.

In addition, we claim that $f''(u) \ge \text{ for } u \in [1, e]$. If $u \in [3/2, e]$, then

$$g(t) > (1 - \ln u)(2u - 3) \ge 0.$$

Also, for $u \in [1, 3/2]$, we have

$$g(t) = 3(u-1) + (6-2u-3\ln u)\ln u \ge (6-2u-3\ln u)\ln u \ge 3\left(1-\ln\frac{3}{2}\right)\ln u > 0.$$

Since f is convex on $[1,s_0]$, we may apply the RPCF-OV Theorem for m=n-1. We only need to show that $f(x)+f(y) \ge 2f(1)$ for all x,y>0 so that x+y=2. The inequality $f(x)+f(y) \ge 2f(1)$ is equivalent to

$$x^{3/x} + y^{3/y} \le 2,$$

which is just the inequality in P 3.32 from Volume 2. The equality holds for

$$a_1 = a_2 = \cdots = a_n = 1.$$

P 4.8. If a_1, a_2, \ldots, a_{11} are real numbers so that

$$a_1 \ge a_2 \ge 1 \ge a_3 \ge \dots \ge a_{11}$$
, $a_1 + a_2 + \dots + a_{11} = 11$,

then

$$(1-a_1+a_1^2)(1-a_2+a_2^2)\cdots(1-a_{11}+a_{11}^2)\geq 1.$$

(Vasile C., 2012)

Solution. Rewrite the desired inequality as

$$f(a_1) + f(a_2) + \dots + f(a_{11}) \ge 11f(s), \quad s = \frac{a_1 + a_2 + \dots + a_{11}}{11} = 1,$$

where

$$f(u) = \ln(1 - u + u^2), \quad u \in \mathbb{R}.$$

From

$$f'(u) = \frac{2u - 1}{1 - u + u^2},$$

it follows that f is decreasing on $(-\infty, s_0]$ and increasing on $[s_0, \infty)$, where

$$s_0 = 1/2$$
.

Also, from

$$f''(u) = \frac{1 + 2u(1 - u)}{(1 - u + u^2)^2},$$

it follows that f''(u) > 0 for $u \in [s_0, 1]$, hence f is convex on $[s_0, 1]$. Therefore, applying the LPCF-OV Theorem for n = 11 and m = 2, we only need to show that $f(x) + 9f(y) \ge 9f(1)$ for all real x, y so that x + 9y = 10. Using Note 2, it suffices to prove that $H(x, y) \ge 0$, where

$$H(x,y) = \frac{f'(x) - f'(y)}{x - y} = \frac{1 + x + y - 2xy}{(1 - x + x^2)(1 - y + y^2)}.$$

Since

$$1 + x + y - 2xy = 18y^2 - 8y + 1 = 2y^2 + (4y - 1)^2 > 0$$
,

the conclusion follows. The equality holds for $a_1 = a_2 = \cdots = a_{11} = 1$.

Remark. By replacing a_1, a_2, \ldots, a_{11} respectively with $1-a_1, 1-a_2, \ldots, 1-a_{11}$, we get the following statement.

• If a_1, a_2, \ldots, a_{11} are real numbers so that

$$a_1 \le a_2 \le 0 \le a_3 \le \dots \le a_{11}, \quad a_1 + a_2 + \dots + a_{11} = 0,$$

then

$$(1-a_1+a_1^2)(1-a_2+a_2^2)\cdots(1-a_{11}+a_{11}^2)\geq 1,$$

with equality for $a_1 = a_2 = \cdots = a_n = 0$.

P 4.9. If $a_1, a_2, ..., a_8$ are nonzero real numbers so that

$$a_1 \ge a_2 \ge a_3 \ge a_4 \ge 1 \ge a_5 \ge a_6 \ge a_7 \ge a_8, \quad a_1 + a_2 + \dots + a_8 = 8,$$

then

$$5\left(\frac{1}{a_1^2} + \frac{1}{a_2^2} + \dots + \frac{1}{a_8^2}\right) + 72 \ge 14\left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_8}\right).$$

(Vasile C., 2012)

Solution. Write the desired inequality as

$$f(a_1) + f(a_2) + \dots + f(a_8) \ge 8f(s), \quad s = \frac{a_1 + a_2 + \dots + a_8}{8} = 1,$$

where

$$f(u) = \frac{5}{u^2} - \frac{14}{u} + 9, \quad u \in \mathbb{I} = \mathbb{R} \setminus \{0\}.$$

As shown in the proof of P 3.25, f is convex on $[s_0, 1]$, increasing for $u \ge s_0$ and

$$\min_{u\in\mathbb{I}}f(u)=f(s_0),$$

where

$$s_0 = \frac{5}{7}$$
.

Taking into account Note 4, we may apply the LPCF-OV Theorem for n=8 and m=4. We only need to show that $f(x)+4f(y) \ge 5f(1)$ for $x,y \in \mathbb{I}$ so that x+4y=5. Using Note 1, it suffices to prove that $h(x,y) \ge 0$. Indeed, we have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{9}{u} - \frac{5}{u^2},$$

$$h(x,y) = \frac{g(x) - g(y)}{x - y} = \frac{5(x + y) - 9xy}{x^2 y^2}$$
$$= \frac{(x + 4y)(x + y) - 9xy}{x^2 y^2} = \frac{(x - 2y)^2}{x^2 y^2} \ge 0.$$

In accordance with Note 3, the equality holds for $a_1 = a_2 = \cdots = a_8 = 1$, and also for

$$a_1 = \frac{5}{3}$$
, $a_2 = a_3 = a_4 = 1$, $a_5 = a_6 = a_7 = a_8 = \frac{5}{6}$.

P 4.10. If a, b, c, d are positive real numbers so that

$$a \le b \le 1 \le c \le d$$
, $abcd = 1$,

then

$$\frac{7-6a}{2+a^2} + \frac{7-6b}{2+b^2} + \frac{7-6c}{2+c^2} + \frac{7-6d}{2+d^2} \ge \frac{4}{3}.$$

(Vasile C., 2012)

Solution. Using the substitution

$$a = e^x$$
, $b = e^y$, $c = e^z$, $d = e^w$,

we need to show that

$$f(x) + f(y) + f(z) + f(w) \ge 4f(s),$$

where

$$x \le y \le 0 \le z \le w$$
, $s = \frac{x + y + z + w}{4} = 0$,
 $f(u) = \frac{7 - 6e^u}{2 + e^{2u}}$, $u \in \mathbb{R}$.

As shown in the proof of P 3.26, f is convex on $[0,s_0]$, is decreasing on $(-\infty,s_0]$ and increasing on $[s_0,\infty)$, where

$$s_0 = \ln 3.$$

Therefore, we may apply the RPCF-OV Theorem for n = 4 and m = 2. We only need to show that $f(x) + 2f(y) \ge 3f(0)$ for all real x, y so that x + 2y = 0; that is, to prove that

$$\frac{7-6a}{2+a^2} + \frac{2(7-6d)}{2+d^2} \ge 1$$

for a, d > 0 so that $ad^2 = 1$. This is equivalent to

$$(d-1)^2(d-2)^2(5d^2+6d+3) \ge 0,$$

which is clearly true. In accordance with Note 3, the equality holds for a = b = c = d = 1, and also for

$$a = \frac{1}{4}$$
, $b = 1$, $c = d = 2$.

P 4.11. *If* a, b, c are positive real numbers so that

$$a \le b \le 1 \le c$$
, $abc = 1$,

then

$$\frac{7-4a}{2+a^2} + \frac{7-4b}{2+b^2} + \frac{7-4c}{2+c^2} \ge 3.$$

(Vasile C., 2012)

Solution. Using the substitution

$$a = e^{x}, b = e^{y}, c = e^{z},$$

we need to show that

$$f(x) + f(y) + f(z) \ge 3f(s),$$

where

$$x \le y \le 0 \le z, \quad s = \frac{x+y+z}{3} = 0,$$

$$f(u) = \frac{7-4e^u}{2+e^{2u}}, \quad u \in \mathbb{R}.$$

From

$$f'(u) = \frac{2e^{u}(2e^{u}+1)(e^{u}-4)}{(2+e^{2u})^{2}},$$

it follows that f is decreasing on $(-\infty, s_0]$ and increasing on $[s_0, \infty)$, where

$$s_0 = \ln 4$$
.

Also, we have

$$f''(u) = \frac{4t \cdot h(t)}{(2+t^2)^3}, \quad t = e^u,$$

where

$$h(t) = -t^4 + 7t^3 + 12t^2 - 14t - 4.$$

We will show that $h(t) \ge 0$ for $t \in [1, 4]$, hence f is convex on $[0, s_0]$. Indeed,

$$h(t) = (t-1)[t^2(-t+6) + 18t + 4] \ge 0.$$

Therefore, we may apply the RPCF-OV Theorem for n=3 and m=2. We only need to show that $f(x)+f(y) \ge 2f(0)$ for all real x,y so that x+y=0. That is, to prove that

$$\frac{7-4a}{2+a^2} + \frac{7-4b}{2+b^2} \ge 2$$

for all a, b > 0 so that ab = 1. This is equivalent to

$$(a-1)^4 \ge 0.$$

The equality holds for a = b = c = 1.

P 4.12. If a, b, c are positive real numbers so that

$$a \ge 1 \ge b \ge c$$
, $abc = 1$,

then

$$\frac{23 - 8a}{3 + 2a^2} + \frac{23 - 8b}{3 + 2b^2} + \frac{23 - 8c}{3 + 2c^2} \ge 9.$$

(Vasile C., 2012)

Solution. Using the substitution

$$a = e^{x}, b = e^{y}, c = e^{z},$$

we need to show that

$$f(x) + f(y) + f(z) \ge 3f(s),$$

where

$$x \ge 1 \ge y \ge z$$
, $s = \frac{x + y + z}{3} = 0$,
 $f(u) = \frac{23 - 8e^u}{3 + 2e^{2u}}$, $u \in \mathbb{R}$.

From

$$f'(u) = \frac{4e^u(4e^u + 1)(e^u - 6)}{(3 + 2e^{2u})^2},$$

it follows that f is decreasing on $(-\infty, s_0]$ and increasing on $[s_0, \infty)$, where $s_0 = \ln 6$. Also, we have

$$f''(u) = \frac{8t \cdot h(t)}{(3 + 2t^2)^3}, \quad t = e^u,$$

where

$$h(t) = -4t^4 + 46t^3 + 36t^2 - 69t - 9.$$

We will show that $h(t) \ge 0$ for $t \in [1, 6]$, hence f is convex on $[0, s_0]$. Indeed,

$$h(t) = (t-1)(2t+3)[2t(-t+12)+3] \ge 0.$$

Therefore, we may apply the RPCF-OV Theorem for n=3 and m=2. We only need to show that $f(x)+f(y) \ge 2f(0)$ for all real x,y so that x+y=0. That is, to prove that

$$\frac{23 - 8a}{3 + 2a^2} + \frac{23 - 8b}{3 + 2b^2} \ge 6.$$

for all a, b > 0 so that ab = 1. This is equivalent to

$$(a-1)^4 \ge 0.$$

The equality holds for a = b = c = 1.

P 4.13. Let a_1, a_2, \ldots, a_n be positive real numbers so that

$$a_1 \leq \cdots \leq a_{n-1} \leq 1 \leq a_n$$
, $a_1 a_2 \cdots a_n = 1$.

If $p, q \ge 0$ so that $p + 3q \ge 1$, then

$$\frac{1-a_1}{1+pa_1+qa_1^2} + \frac{1-a_2}{1+pa_2+qa_2^2} + \dots + \frac{1-a_n}{1+pa_n+qa_n^2} \ge 0.$$

(Vasile C., 2012)

Solution. For q = 0, we need to show that $p \ge 1$ involves

$$\frac{1-a_1}{1+pa_1} + \frac{1-a_2}{1+pa_2} + \dots + \frac{1-a_n}{1+pa_n} \ge 0.$$

This is just the inequality from P 2.24. Consider next that q > 0. Using the substitutions $a_i = e^{x_i}$ for i = 1, 2, ..., n, we need to show that

$$f(x_1) + f(x_2) + \dots + f(x_n) \ge nf(s),$$

where

$$x_1 \le \dots \le x_{n-1} \le 0 \le x_n, \quad s = \frac{x_1 + x_2 + \dots + x_n}{n} = 0,$$

$$f(u) = \frac{1 - e^u}{1 + pe^u + qe^{2u}}, \quad u \in \mathbb{R}.$$

As shown in the proof of P 3.30, if $p + 3q - 1 \ge 0$, then f is convex on $[0, s_0]$, where

$$s_0 = \ln r_0 > 0$$
, $r_0 = 1 + \sqrt{1 + \frac{p+1}{q}}$.

In addition, f is decreasing on $(-\infty, s_0]$ and increasing on $[s_0, \infty)$. Therefore, we may apply the RPCF-OV Theorem for m = n - 1. We only need to show that $f(x) + f(y) \ge 2f(0)$ for all real x, y so that x + y = 0; that is, to prove that

$$\frac{1-a}{1+pa+qa^2} + \frac{1-b}{1+pb+qb^2} \ge 0$$

for a, b > 0 so that ab = 1. This is equivalent to

$$(a-1)^2[(p-1)a+q(a^2+a+1)] \ge 0$$
,

which is true because

$$(p-1)a + q(a^2 + a + 1) \ge (p-1)a + q(3a) = (p+3q-1)a \ge 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

P 4.14. If a, b, c, d, e are real numbers so that

$$-2 \le a \le b \le 1 \le c \le d \le e$$
, $a+b+c+d+e=5$,

then

$$\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{d^2} + \frac{1}{e^2} \ge \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} + \frac{1}{e}.$$

Solution. Write the inequality as

$$f(a) + f(b) + f(c) + f(d) + f(e) \ge 5f(s), \quad s = \frac{a+b+c+d+e}{5} = 1,$$

where

$$f(u) = \frac{1}{u^2} - \frac{1}{u}, \quad u \in \mathbb{I} = [-2, 7] \setminus \{0\}.$$

Let

$$s_0 = 2, \quad s < s_0.$$

From

$$f(u)-f(2) = \frac{1}{u^2} - \frac{1}{u} + \frac{1}{4} = \frac{(u-2)^2}{4u^2} \ge 0,$$

it follows that

$$\min_{u\in\mathbb{I}}f(u)=f(s_0),$$

while from

$$f'(u) = \frac{u-2}{u^3}, \quad f''(u) = \frac{2(3-u)}{u^4},$$

it follows that f is convex on $[s,s_0]$. We can't apply the RPCF-OV Theorem because f is not decreasing on $\mathbb{I}_{\leq s_0}$. According to Theorem 1 (applied for n=5 and m=2) and Note 6, we may replace this condition with $(1+n-m)s-(n-m)s_0 \leq \inf \mathbb{I}$. Indeed, we have

$$(1+n-m)s - (n-m)s_0 = 4-6 = -2 = \inf \mathbb{I}.$$

So, according to Note 1, it suffices to show that $h(x, y) \ge 0$ for all $x, y \in \mathbb{I}$ so that x + 3y = 4. We have

$$g(u) = \frac{f(u) - f(1)}{u - 1} = \frac{-1}{u^2},$$

$$h(x, y) = \frac{g(x) - g(y)}{x - y} = \frac{x + y}{x^2 y^2} = \frac{2(x + 2)}{3x^2 y^2} \ge 0.$$

The proof is completed. By Note 3, the equality holds for a=b=c=d=e=1, and also for

$$a = -2$$
, $b = 1$, $c = d = e = 2$.

Chapter 5

EV Method for Nonnegative Variables

5.1 Theoretical Basis

The Equal Variables Method is an effective tool for solving some difficult symmetric inequalities.

EV-Theorem (Vasile Cirtoaje, 2005). Let $a_1, a_2, ..., a_n$ ($n \ge 3$) be fixed nonnegative real numbers, and let

$$0 \le x_1 \le x_2 \le \cdots \le x_n$$

so that

$$x_1 + x_2 + \dots + x_n = a_1 + a_2 + \dots + a_n, \quad x_1^k + x_2^k + \dots + x_n^k = a_1^k + a_2^k + \dots + a_n^k,$$

where k is a nonnegative real number $(k \neq 1)$; k = 0 means $x_1x_2 \cdots x_n = a_1a_2 \cdots a_n$. Let f be a real-valued function, continuous on $[0, \infty)$ and differentiable on $(0, \infty)$, so that the joined function

$$g(x) = f'\left(x^{\frac{1}{k-1}}\right)$$

is strictly convex on $(0, \infty)$. Then, the sum

$$S_n = f(x_1) + f(x_2) + \dots + f(x_n)$$

is maximal only for

$$x_1 = x_2 = \cdots = x_{n-1} \le x_n ,$$

and minimal only for $x_1 = 0$ or $0 < x_1 \le x_2 = x_3 = \cdots = x_n$.

To prove the EV-Theorem, we need the EV-Lemma and the EV-Proposition below.

EV-Lemma. Let a, b, c be fixed nonnegative real numbers, not all equal and, for $k \ge 0$, at most one of them equal to zero, and let $x \le y \le z$ be nonnegative real numbers so that

$$x + y + z = a + b + c$$
, $x^{k} + y^{k} + z^{k} = a^{k} + b^{k} + c^{k}$,

where k is a real number $(k \neq 1)$; for k = 0, the second equation is xyz = abc. Then, the range of y is an interval [m, M] with m < M; in addition,

- (1) y = m if and only if x = y < z;
- (2) y = M if and only if $0 = x < y \le z$ or $0 < x \le y = z$.

Proof. We show first, by the contradiction method, that x < z. Indeed, if x = z, then

$$x = z \implies x = y = z \implies x^k + y^k + z^k = 3\left(\frac{x + y + z}{3}\right)^k$$

$$\Rightarrow a^k + b^k + c^k = 3\left(\frac{a + b + c}{3}\right)^k \implies a = b = c,$$

which is false. Notice that the last implication follows from Jensen's inequalities

$$a^{k} + b^{k} + c^{k} \ge 3\left(\frac{a+b+c}{3}\right)^{k}, \quad k \in (-\infty, 0) \cup (1, \infty),$$

$$a^{k} + b^{k} + c^{k} \le 3\left(\frac{a+b+c}{3}\right)^{k}, \quad k \in (0, 1),$$

$$abc \le \left(\frac{a+b+c}{3}\right)^{3}, \quad k = 0,$$

where the equality holds if and only if a = b = c.

According to the relations

$$x + z = a + b + c - y$$
, $x^{k} + z^{k} = a^{k} + b^{k} + c^{k} - y^{k}$,

we may consider x and z as functions of y. From

$$x' + z' = -1$$
, $x^{k-1}x' + z^{k-1}z' = -y^{k-1}$

we get

$$x' = \frac{y^{k-1} - z^{k-1}}{z^{k-1} - x^{k-1}} \le 0, \quad z' = \frac{y^{k-1} - x^{k-1}}{x^{k-1} - z^{k-1}} \le 0.$$
 (*)

Let us define the nonnegative functions

$$f_1(y) = y - x(y),$$
 $f_2(y) = z(y) - y.$ $f_3(y) = x(y).$

Since

$$f_1'(y) = 1 - x'(y) > 0$$
, $f_2'(y) = z'(y) - 1 < 0$, $f_3'(y) = x'(y) \le 0$,

these functions are strictly increasing, decreasing and decreasing, respectively. Thus, the inequality $f_1(y) \ge 0$ (with f_1 increasing) involves $y \ge m$, where m is a root of the equation x(y) = y, and the inequality $f_2(y) \ge 0$ (with f_2 decreasing) involves involves $y \le y_2$, where y_2 is a root of the equation z(y) = y. If $x(y_2) \ge 0$, then

 y_2 is the maximal value of y. Otherwise, the maximal value of y is given by the inequality $f_3(y) \ge 0$ (with f_3 decreasing), which involves $y \le y_3$, where y_3 is a root of the equation x(y) = 0. Therefore, $y \in [m, M]$, with y = m for x = y, and y = M for either y = z or x = 0.

EV-Proposition. Let a, b, c be fixed nonnegative real numbers, and let $0 \le x \le y \le z$ so that

$$x + y + z = a + b + c,$$
 $x^{k} + y^{k} + z^{k} = a^{k} + b^{k} + c^{k},$

where k is a real number $(k \neq 1)$; k = 0 means xyz = abc. Let f be a real-valued function, continuous on $[0, \infty)$ and differentiable on $(0, \infty)$, so that the joined function

$$g(x) = f'\left(x^{\frac{1}{k-1}}\right)$$

is strictly convex on $(0, \infty)$. Then, the sum

$$S_3 = f(x) + f(y) + f(z)$$

is maximal only when $0 \le x = y \le z$, and minimal only when x = 0 or $0 < x \le y = z$.

Proof. If a = b = c, then

$$a^k + b^k + c^k = 3\left(\frac{a+b+c}{3}\right)^k,$$

hence

$$x^{k} + y^{k} + z^{k} = 3\left(\frac{x + y + z}{3}\right)^{k}$$
,

which involves x = y = z. If k > 0 and two of a, b, c are equal to zero, then

$$a^k + b^k + c^k = (a+b+c)^k,$$

hence

$$x^{k} + y^{k} + z^{k} = (x + y + z)^{k}$$

which involves x = y = 0. In both cases, the extremum conditions in the statement (x = y and either x = 0 or y = z) are satisfied. Consider further that a, b, c are not all equal and at most one of them is equal to zero. As shown in the proof of the EV-Lemma, we have x < z. According to the relations

$$x + z = a + b + c - y$$
, $x^{k} + z^{k} = a^{k} + b^{k} + c^{k} - y^{k}$,

we may consider x and z as functions of y. Thus, we have

$$S_3 = f(x(y)) + f(y) + f(z(y)) := F(y).$$

According to the EV-Lemma, it suffices to show that F is maximal for y = m and is minimal for y = M. Using (*), we have

$$F'(y) = x'f'(x) + f'(y) + z'f'(z)$$

$$= \frac{y^{k-1} - z^{k-1}}{z^{k-1} - x^{k-1}} g(x^{k-1}) + g(y^{k-1}) + \frac{y^{k-1} - x^{k-1}}{x^{k-1} - z^{k-1}} g(z^{k-1}),$$

which, for x < y < z, is equivalent to

$$\frac{F'(y)}{(y^{k-1}-x^{k-1})(y^{k-1}-z^{k-1})} = \frac{g(x^{k-1})}{(x^{k-1}-y^{k-1})(x^{k-1}-z^{k-1})} + \frac{g(y^{k-1})}{(y^{k-1}-z^{k-1})(y^{k-1}-x^{k-1})} + \frac{g(z^{k-1})}{(z^{k-1}-x^{k-1})(z^{k-1}-y^{k-1})}.$$

Since g is strictly convex, the right hand side is positive. Moreover, since

$$(y^{k-1}-x^{k-1})(y^{k-1}-z^{k-1})<0,$$

we have F'(y) < 0 for $y \in (m, M)$ (see the EV-Lemma), hence F is strictly decreasing on [m, M]. Therefore, F is maximal for y = m (when $0 \le x = y \le z$) and is minimal for y = M (when x = 0 or $0 < x \le y = z$.

Proof of the EV-Theorem. Since $X = \{x_1, x_2, \dots, x_n\}$ is defined as a compact set in \mathbb{R}^+_{\ltimes} , S_n attains its minimum and maximum. For n = 3, the EV-Theorem follows immediately from the EV-Proposition. To prove the theorem for $n \geq 4$, we use the contradiction method.

(a) For the sake of contradiction, assume that S_n is maximal at (b_1, b_2, \ldots, b_n) , where $b_1 \le b_2 \le \cdots \le b_n$ and $b_1 < b_{n-1}$. Let x_1, x_{n-1} and x_n be real numbers so that $x_1 \le x_{n-1} \le x_n$ and

$$x_1 + x_{n-1} + x_n = b_1 + b_{n-1} + b_n, \quad x_1^k + x_{n-1}^k + x_n^k = b_1^k + b_{n-1}^k + b_n^k.$$

According to the EV-Proposition, the sum $f(x_1) + f(x_{n-1}) + f(x_n)$ is maximal for $x_1 = x_{n-1}$, when

$$f(x_1) + f(x_{n-1}) + f(x_n) > f(b_1) + f(b_{n-1}) + f(b_n).$$

This result contradicts the assumption that S_n attains its maximum at $(b_1, b_2, ..., b_n)$ with $b_1 < b_{n-1}$.

(b) Similarly, we can prove that S_n is minimal for $n \ge 4$ when either $x_1 = 0$ or

$$0 < x_1 \le x_2 = \dots = x_n.$$

Corollary 1. Let a_1, a_2, \ldots, a_n $(n \ge 3)$ be fixed nonnegative real numbers, and let

$$0 \le x_1 \le x_2 \le \cdots \le x_n$$

so that

$$x_1 + x_2 + \dots + x_n = a_1 + a_2 + \dots + a_n,$$

 $x_1^2 + x_2^2 + \dots + x_n^2 = a_1^2 + a_2^2 + \dots + a_n^2.$

Let f be a real-valued function, continuous on $[0, \infty)$ and differentiable on $(0, \infty)$, so that the joined function

$$g(x) = f'(x)$$

is strictly convex on $(0, \infty)$. The sum

$$S_n = f(x_1) + f(x_2) + \dots + f(x_n)$$

is maximal only when

$$x_1 = x_2 = \cdots = x_{n-1} \le x_n$$
,

and is minimal only when either $x_1 = 0$ or $0 < x_1 \le x_2 = x_3 = \cdots = x_n$.

Corollary 2. Let a_1, a_2, \ldots, a_n $(n \ge 3)$ be fixed positive real numbers, and let

$$0 < x_1 \le x_2 \le \dots \le x_n$$

so that

$$x_1 + x_2 + \dots + x_n = a_1 + a_2 + \dots + a_n,$$

$$\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n} = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}.$$

Let f be a real-valued function, continuous and differentiable on $(0, \infty)$, so that the joined function

$$g(x) = f'\left(\frac{1}{\sqrt{x}}\right)$$

is strictly convex on $(0, \infty)$. The sum

$$S_n = f(x_1) + f(x_2) + \dots + f(x_n)$$

is maximal only when

$$x_1 = x_2 = \cdots = x_{n-1} \le x_n ,$$

and is minimal only when

$$x_1 \leq x_2 = x_3 = \cdots = x_n$$
.

Corollary 3. Let a_1, a_2, \ldots, a_n $(n \ge 3)$ be fixed nonnegative real numbers, and let

$$0 \le x_1 \le x_2 \le \cdots \le x_n$$

so that

$$x_1 + x_2 + \dots + x_n = a_1 + a_2 + \dots + a_n$$
, $x_1 x_2 \cdots x_n = a_1 a_2 \cdots a_n$.

Let f be a real-valued function, continuous on $[0, \infty)$ and differentiable on $(0, \infty)$, so that the joined function

$$g(x) = f'(1/x)$$

is strictly convex on $(0, \infty)$. The sum

$$S_n = f(x_1) + f(x_2) + \dots + f(x_n)$$

is maximal only when

$$x_1 = x_2 = \cdots = x_{n-1} \le x_n ,$$

and is minimal only when either $x_1 = 0$ or $0 < x_1 \le x_2 = x_3 = \cdots = x_n$.

Corollary 4. Let a_1, a_2, \ldots, a_n $(n \ge 3)$ be fixed nonnegative real numbers, and let

$$0 \le x_1 \le x_2 \le \dots \le x_n$$

so that

$$x_1 + x_2 + \dots + x_n = a_1 + a_2 + \dots + a_n, \quad x_1^k + x_2^k + \dots + x_n^k = a_1^k + a_2^k + \dots + a_n^k,$$

where k is a real number $(k \neq 0, k \neq 1)$.

(1) For k < 0, the product $P_n = x_1 x_2 \cdots x_n$ is maximal when

$$0 < x_1 \le x_2 = x_3 = \dots = x_n$$

and is minimal only when

$$0 < x_1 = x_2 = \cdots = x_{n-1} \le x_n;$$

(2) For k > 0, the product $P_n = x_1 x_2 \cdots x_n$ is maximal when

$$x_1 = x_2 = \cdots = x_{n-1} \le x_n$$

and is minimal only when either $x_1 = 0$ or $0 < x_1 \le x_2 = x_3 = \cdots = x_n$.

Note 1. The EV-Theorem, Corollary 1 and Corollary 3 are also valid for the cases when $x_1, x_2, ..., x_n > 0$, f is continuous and differentiable on $(0, \infty)$, $f(0+) = \pm \infty$ and the sum S_n has a global maximum (minimum).

From the EV-Theorem and Note 1, we can obtain some interesting particular results, which are useful in many applications.

Corollary 5. Let a_1, a_2, \ldots, a_n $(n \ge 3)$ be fixed nonnegative real numbers, and let

$$0 \le x_1 \le x_2 \le \cdots \le x_n$$

so that

$$x_1 + x_2 + \dots + x_n = a_1 + a_2 + \dots + a_n, \quad x_1^k + x_2^k + \dots + x_n^k = a_1^k + a_2^k + \dots + a_n^k.$$

Let us denote

$$S_n = x_1^m + x_2^m + \dots + x_n^m.$$

Case 1 : k < 0.

(a) If $m \in (k,0) \cup (1,\infty)$, then S_n is maximal only for

$$0 < x_1 = x_2 = \cdots = x_{n-1} \le x_n$$

and is minimal only for

$$0 < x_1 \le x_2 = x_3 = \cdots = x_n$$
.

(b) If $m \in (-\infty, k) \cup (0, 1)$, then S_n is minimal only for

$$0 < x_1 = x_2 = \dots = x_{n-1} \le x_n,$$

and is maximal only for

$$0 < x_1 \le x_2 = x_3 = \dots = x_n$$
.

Case 2: $0 \le k < 1$ $(k = 0 \text{ means } x_1 x_2 \cdots x_n = a_1 a_2 \cdots a_n)$.

(a) If $m \in (0, k) \cup (1, \infty)$, then S_n is maximal only for

$$0 \le x_1 = x_2 = \cdots = x_{n-1} \le x_n$$

and is minimal only for either $x_1 = 0$ or $0 < x_1 \le x_2 = x_3 = \cdots = x_n$.

(b) If $m \in (-\infty, 0)$, then S_n is minimal only for

$$0 < x_1 = x_2 = \cdots = x_{n-1} \le x_n,$$

and is maximal (if it has a global maximum) only for

$$0 < x_1 \le x_2 = x_3 = \dots = x_n.$$

(c) If $m \in (k, 1)$, then S_n is minimal only for

$$0 \leq x_1 = x_2 = \dots = x_{n-1} \leq x_n,$$

and is maximal only for either $x_1 = 0$ or $0 < x_1 \le x_2 = x_3 = \cdots = x_n$.

Case 3 : k > 1.

(a) If $m \in (0,1) \cup (k,\infty)$, then S_n is maximal only for

$$0 \le x_1 = x_2 = \dots = x_{n-1} \le x_n$$

and is minimal only for either $x_1 = 0$ or $0 < x_1 \le x_2 = x_3 = \cdots = x_n$.

(b) If $m \in (-\infty, 0)$, then S_n is minimal only for

$$0 < x_1 = x_2 = \cdots = x_{n-1} \le x_n$$

and is maximal (if it has a global maximum) only for

$$0 < x_1 \le x_2 = x_3 = \dots = x_n$$
.

(c) If $m \in (1, k)$, then S_n is minimal only for

$$0 \le x_1 = x_2 = \dots = x_{n-1} \le x_n$$

and is maximal only for either $x_1 = 0$ or $0 < x_1 \le x_2 = x_3 = \cdots = x_n$.

Proof. We apply the EV-Theorem and Note 1 to the function

$$f(u) = m(m-1)(m-k)u^m.$$

We have

$$f'(u) = m^2(m-2)(m-k)u^{m-1}$$

and

$$g(x) = m^2(m-1)(m-k)x^{\frac{m-1}{k-1}}, \qquad g''(x) = \frac{m^2(m-1)^2(m-k)^2}{(k-1)^2}x^{\frac{1+m-2k}{k-1}}.$$

Since g''(x) > 0 for x > 0, g is strictly convex on $(0, \infty)$.

Corollary 6. Let a_1, a_2, \ldots, a_n $(n \ge 3)$ be fixed nonnegative real numbers, and let

$$0 \le x_1 \le x_2 \le \dots \le x_n$$

so that

$$x_1^p + x_2^p + \dots + x_n^p = a_1^p + a_2^p + \dots + a_n^p, \quad x_1^q + x_2^q + \dots + x_n^q = a_1^q + a_2^q + \dots + a_n^q,$$

where

$$p, q \in \{1, 2, 3\}, p \neq q.$$

The symmetric sum

$$S_n = \sum_{1 \le i_1 < i_2 < i_3 \le n} x_{i_1} x_{i_2} x_{i_3}$$

is maximal only for

$$0 \le x_1 = x_2 = \dots = x_{n-1} \le x_n$$

and is minimal only for either $x_1 = 0$ or $0 < x_1 \le x_2 = x_3 = \cdots = x_n$.

Proof. Taking into account that

$$6\sum_{1\leq i_1< i_2< i_3\leq n} x_{i_1}x_{i_2}x_{i_3} = \left(\sum x_1\right)^3 - 3\left(\sum x_1\right)\left(\sum x_1^2\right) + 2\sum x_1^3,$$

Corollary 6 is a consequence of Corollary 5. For p=2 and q=3, according to this identity, the sum $\sum_{1\leq i_1< i_2< i_3\leq n} x_{i_1}x_{i_2}x_{i_3}$ is maximal/minimal when $\sum x_1$ is maximal/minimal. Therefore, we need to show that if

$$x_1^2 + x_2^2 + \dots + x_n^2 = constant, \quad x_1^3 + x_2^3 + \dots + x_n^3 = constant,$$

then the sum $\sum x_1$ is maximal for

$$0 \le x_1 = x_2 = \dots = x_{n-1} \le x_n$$

and is minimal for either $x_1 = 0$ or $0 < x_1 \le x_2 = x_3 = \cdots = x_n$. This follows by replacing x_1, x_2, \ldots, x_n with $x_1^2, x_2^2, \ldots, x_n^2$ in Corollary 5, case k = 3/2 and m = 1/2.

Note 2. The EV-Theorem and Corollaries 1-3 can be extended to the cases where:

(a) $x_1, x_2, ..., x_n \ge m \ge 0$, f is continuous on $[m, \infty)$ and differentiable on (m, ∞) , and g(x) is strictly convex for $x^{\frac{1}{k-1}} > m$; so, the sum

$$S_n = f(x_1) + f(x_2) + \dots + f(x_n)$$

is maximal for $x_1 = x_2 = \cdots = x_{n-1} \le x_n$, and is minimal for either $x_1 = m$ or $m < x_1 \le x_2 = x_3 = \cdots = x_n$;

(b) $0 \le x_1, x_2, \dots, x_n \le M$, f is continuous on [0, M] and differentiable on (0, M), and g(x) is strictly convex for $x^{\frac{1}{k-1}} < M$; so, the sum

$$S_n = f(x_1) + f(x_2) + \dots + f(x_n)$$

is maximal for either $x_n=M$ or $x_1=x_2=\cdots=x_{n-1}\leq x_n$, and is minimal $x_1\leq x_2=x_3=\cdots=x_n$;

Note 3. The EV-Theorem and Corollaries 1-3 can be extended to the cases where:

- (a) $x_1, x_2, ..., x_n > m \ge 0$, f is continuous and differentiable on (m, ∞) , $f(m+) = \pm \infty$, g(x) is strictly convex for $x^{\frac{1}{k-1}} > m$ and the sum S_n has a global maximum (minimum);
- (b) $0 \le x_1, x_2, ..., x_n < M$, f is continuous and differentiable on [0, M), $f(M-) = \pm \infty$, g(x) is strictly convex for $x^{\frac{1}{k-1}} < M$ and the sum S_n has a global maximum (minimum).

5.2 Applications

5.1. If a, b, c, d are nonnegative real numbers so that

$$a + b + c + d = a^3 + b^3 + c^3 + d^3 = 2$$
,

then

$$\frac{7}{4} \le a^2 + b^2 + c^2 + d^2 \le 2.$$

5.2. If a_1, a_2, \ldots, a_9 are nonnegative real numbers so that

$$a_1 + a_2 + \dots + a_9 = a_1^2 + a_2^2 + \dots + a_9^2 = 3,$$

then

$$3 \le a_1^3 + a_2^3 + \dots + a_9^3 \le \frac{14}{3}.$$

5.3. If a, b, c, d are nonnegative real numbers so that

$$a + b + c + d = a^{2} + b^{2} + c^{2} + d^{2} = \frac{27}{7}$$

then

$$\frac{5427}{1372} \le a^3 + b^3 + c^3 + d^3 \le \frac{1377}{343}.$$

5.4. If a, b, c are positive real numbers so that abc = 1, then

$$a^5 + b^5 + c^5 \ge \sqrt{3(a^7 + b^7 + c^7)}$$

5.5. If a, b, c, d are positive real numbers so that abcd = 1, then

$$a^3 + b^3 + c^3 + d^3 \ge \sqrt{4(a^4 + b^4 + c^4 + d^4)}$$
.

5.6. If a, b, c, d are nonnegative real numbers so that a + b + c + d = 4, then

$$\frac{bcd}{11a+16} + \frac{cda}{11b+16} + \frac{dab}{11c+16} + \frac{abc}{11d+16} \le \frac{4}{27}.$$

5.7. If a, b, c are real numbers, then

$$\frac{bc}{3a^2 + b^2 + c^2} + \frac{ca}{3b^2 + c^2 + a^2} + \frac{ab}{3c^2 + a^2 + b^2} \le \frac{3}{5}.$$

5.8. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

(a)
$$\frac{bc}{a^2+2} + \frac{ca}{b^2+2} + \frac{ab}{c^2+2} \le \frac{9}{8};$$

(b)
$$\frac{bc}{a^2+3} + \frac{ca}{b^2+3} + \frac{ab}{c^2+3} \le \frac{11\sqrt{33}-45}{24};$$

(c)
$$\frac{bc}{a^2+4} + \frac{ca}{b^2+4} + \frac{ab}{c^2+4} \le \frac{3}{5}.$$

5.9. If a, b, c, d are nonnegative real numbers so that

$$(3a+1)(3b+1)(3c+1)(3d+1) = 64,$$

then

$$abc + bcd + cda + dab \le 1$$
.

5.10. If a_1, a_2, \ldots, a_n and p, q are nonnegative real numbers so that

$$a_1 + a_2 + \dots + a_n = p + q$$
, $a_1^3 + a_2^3 + \dots + a_n^3 = p^3 + q^3$,

then

$$a_1^2 + a_2^2 + \dots + a_n^2 \le p^2 + q^2$$
.

5.11. If *a*, *b*, *c* are nonnegative real numbers, then

$$a\sqrt{a^2+4b^2+4c^2}+b\sqrt{b^2+4c^2+4a^2}+c\sqrt{c^2+4a^2+4b^2}\geq (a+b+c)^2.$$

5.12. If a, b, c are nonnegative real numbers so that ab + bc + ca = 3, then

$$\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} \le \frac{3}{2(a+b+c)} + \frac{a+b+c}{3}.$$

5.13. If a, b, c are nonnegative real numbers so that ab + bc + ca = 3, then

$$\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} \ge \frac{3}{a+b+c} + \frac{a+b+c}{6}.$$

5.14. Let a, b, c be nonnegative real numbers, no two of which are zero. If

$$a^2 + b^2 + c^2 = 3$$

then

$$\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} + \frac{a+b+c}{9} \ge \frac{11}{2(a+b+c)}.$$

5.15. Let a, b, c be nonnegative real numbers, no two of which are zero. If

$$a + b + c = 4$$
,

then

$$\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} \ge \frac{15}{8+ab+bc+ca}.$$

5.16. If *a*, *b*, *c* are nonnegative real numbers, no two of which are zero, then

$$\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} \ge \frac{1}{a+b+c} + \frac{2}{\sqrt{ab+bc+ca}}.$$

5.17. If *a*, *b*, *c* are nonnegative real numbers, no two of which are zero, then

$$\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} \ge \frac{3-\sqrt{3}}{a+b+c} + \frac{2+\sqrt{3}}{2\sqrt{ab+bc+ca}}.$$

5.18. Let a, b, c be nonnegative real numbers, no two of which are zero, so that

$$ab + bc + ca = 3$$
.

If

$$0 \le k \le \frac{9 + 5\sqrt{3}}{6} \approx 2.943,$$

$$\frac{2}{a+b} + \frac{2}{b+c} + \frac{2}{c+a} \ge \frac{9(1+k)}{a+b+c+3k}.$$

5.19. If *a*, *b*, *c* are nonnegative real numbers, no two of which are zero, then

$$\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} \ge \frac{20}{a+b+c+6\sqrt{ab+bc+ca}}.$$

5.20. If a, b, c are positive real numbers so that

$$7(a^2 + b^2 + c^2) = 11(ab + bc + ca),$$

then

$$\frac{51}{28} \le \frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \le 2.$$

5.21. If a_1, a_2, \ldots, a_n are nonnegative real numbers so that

$$\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n+3} = \left(\frac{a_1 + a_2 + \dots + a_n}{n+1}\right)^2,$$

then

$$\frac{(n+1)(2n-1)}{2} \le (a_1 + a_2 + \dots + a_n) \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}\right) \le \frac{3n^2(n+1)}{2(n+2)}.$$

5.22. If a, b, c, d are nonnegative real numbers so that a + b + c + d = 3, then

$$abc + bcd + cda + dab \le 1 + \frac{176}{81} abcd.$$

5.23. If a, b, c, d are nonnegative real numbers so that a + b + c + d = 3, then

$$a^{2}b^{2}c^{2} + b^{2}c^{2}d^{2} + c^{2}d^{2}a^{2} + d^{2}a^{2}b^{2} + \frac{3}{4}abcd \le 1.$$

5.24. If a, b, c, d are nonnegative real numbers so that a + b + c + d = 3, then

$$a^{2}b^{2}c^{2} + b^{2}c^{2}d^{2} + c^{2}d^{2}a^{2} + d^{2}a^{2}b^{2} + \frac{4}{3}(abcd)^{3/2} \le 1.$$

5.25. If a, b, c, d are nonnegative real numbers so that a + b + c + d = 4, then

$$a^2b^2c^2 + b^2c^2d^2 + c^2d^2a^2 + d^2a^2b^2 + 2(abcd)^{3/2} \le 6.$$

5.26. If a, b, c are nonnegative real numbers so that a + b + c = 3, then $11(ab + bc + ca) + 4(a^2b^2 + b^2c^2 + c^2a^2) < 45.$

- **5.27.** If a, b, c are nonnegative real numbers so that a + b + c = 3, then $a^2b^2 + b^2c^2 + c^2a^2 + a^3b^3 + b^3c^3 + c^3a^3 > 6abc$.
- **5.28.** If a, b, c are nonnegative real numbers so that a + b + c = 3, then $2(a^2 + b^2 + c^2) + 5\left(\sqrt{a} + \sqrt{b} + \sqrt{c}\right) \ge 21.$
- **5.29.** If a, b, c are nonnegative real numbers so that ab + bc + ca = 3, then

$$\sqrt{\frac{1+2a}{3}} + \sqrt{\frac{1+2b}{3}} + \sqrt{\frac{1+2c}{3}} \ge 3.$$

5.30. Let a, b, c be nonnegative real numbers, no two of which are zero. If 0 < k < 15.

then

$$\frac{1}{(a+b)^2} + \frac{1}{(b+c)^2} + \frac{1}{(c+a)^2} + \frac{k}{(a+b+c)^2} \ge \frac{9+k}{4(ab+bc+ca)}.$$

5.31. If *a*, *b*, *c* are nonnegative real numbers, no two of which are zero, then

$$\frac{1}{(a+b)^2} + \frac{1}{(b+c)^2} + \frac{1}{(c+a)^2} + \frac{24}{(a+b+c)^2} \ge \frac{8}{ab+bc+ca}.$$

5.32. If *a*, *b*, *c* are nonnegative real numbers, no two of which are zero, so that

$$k(a^2 + b^2 + c^2) + (2k+3)(ab+bc+ca) = 9(k+1), \quad 0 \le k \le 6,$$

$$\frac{1}{(a+b)^2} + \frac{1}{(b+c)^2} + \frac{1}{(c+a)^2} + \frac{9k}{(a+b+c)^2} \ge \frac{3}{4} + k.$$

5.33. If *a*, *b*, *c* are nonnegative real numbers, no two of which are zero, then

(a)
$$\frac{2}{a^2+b^2} + \frac{2}{b^2+c^2} + \frac{2}{c^2+a^2} \ge \frac{8}{a^2+b^2+c^2} + \frac{1}{ab+bc+ca};$$

(b)
$$\frac{2}{a^2+b^2} + \frac{2}{b^2+c^2} + \frac{2}{c^2+a^2} \ge \frac{7}{a^2+b^2+c^2} + \frac{6}{(a+b+c)^2};$$

(c)
$$\frac{2}{a^2 + b^2} + \frac{2}{b^2 + c^2} + \frac{2}{c^2 + a^2} \ge \frac{45}{4(a^2 + b^2 + c^2) + ab + bc + ca}.$$

5.34. If *a*, *b*, *c* are nonnegative real numbers, no two of which are zero, then

$$\frac{1}{a^2 + b^2} + \frac{1}{b^2 + c^2} + \frac{1}{c^2 + a^2} + \frac{3}{a^2 + b^2 + c^2} \ge \frac{4}{ab + bc + ca}.$$

5.35. If *a*, *b*, *c* are nonnegative real numbers, no two of which are zero, then

(a)
$$\frac{3}{a^2+ab+b^2} + \frac{3}{b^2+bc+c^2} + \frac{3}{c^2+ca+a^2} \ge \frac{5}{ab+bc+ca} + \frac{4}{a^2+b^2+c^2};$$

(b)
$$\frac{3}{a^2+ab+b^2} + \frac{3}{b^2+bc+c^2} + \frac{3}{c^2+ca+a^2} \ge \frac{1}{ab+bc+ca} + \frac{24}{(a+b+c)^2};$$

(c)
$$\frac{1}{a^2+ab+b^2} + \frac{1}{b^2+bc+c^2} + \frac{1}{c^2+ca+a^2} \ge \frac{21}{2(a^2+b^2+c^2)+5(ab+bc+ca)}.$$

5.36. Let f be a real-valued function, continuous on $[0, \infty)$ and differentiable on $(0, \infty)$, so that $f'''(u) \ge 0$ for $u \in (0, \infty)$. If $a, b, c \ge 0$, then

$$f(a^2 + 2bc) + f(b^2 + 2ca) + f(c^2 + 2ab) \le f(a^2 + b^2 + c^2) + 2f(ab + bc + ca).$$

5.37. If *a*, *b*, *c* are the lengths of the side of a triangle, then

$$\frac{1}{(a+b)^2} + \frac{1}{(b+c)^2} + \frac{1}{(c+a)^2} \le \frac{85}{36(ab+bc+ca)}.$$

5.38. If a, b, c are the lengths of the side of a triangle so that a + b + c = 3, then

$$\frac{1}{(a+b)^2} + \frac{1}{(b+c)^2} + \frac{1}{(c+a)^2} \le \frac{3(a^2+b^2+c^2)}{4(ab+bc+ca)}.$$

5.39. Let $a, b, c \ge \frac{2}{5}$ so that a + b + c = 3. Then,

$$\frac{1}{3+2(a^2+b^2)} + \frac{1}{3+2b^2+c^2)} + \frac{1}{3+2(c^2+a^2)} \le \frac{3}{7}.$$

5.40. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

$$\frac{2}{2+a^2+b^2} + \frac{2}{2+b^2+c^2} + \frac{2}{2+c^2+a^2} \le \frac{99}{63+a^2+b^2+c^2}.$$

5.41. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

$$\frac{1}{3+a^2+b^2} + \frac{1}{3+b^2+c^2} + \frac{1}{3+c^2+a^2} \le \frac{18}{27+a^2+b^2+c^2}.$$

5.42. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

$$\frac{5}{3+a^2+b^2} + \frac{5}{3+b^2+c^2} + \frac{5}{3+c^2+a^2} \ge \frac{27}{6+a^2+b^2+c^2}.$$

5.43. If a, b, c, d are nonnegative real numbers so that a + b + c + d = 4, then

$$\sum \frac{3}{3+2(a^2+b^2+c^2)} \le \frac{296}{218+a^2+b^2+c^2+d^2}.$$

5.44. If a, b, c are nonnegative real numbers so that ab + bc + ca = 3, then

$$\frac{4}{2+a^2+b^2} + \frac{4}{2+b^2+c^2} + \frac{4}{2+c^2+a^2} \ge \frac{21}{4+a^2+b^2+c^2}.$$

5.45. If a, b, c are nonnegative real numbers so that $a^2 + b^2 + c^2 = 3$, then

$$\frac{1}{10-(a+b)^2}+\frac{1}{10-(b+c)^2}+\frac{1}{10-(c+a)^2}\leq \frac{1}{2}.$$

5.46. If a, b, c are nonnegative real numbers, no two of which are zero, so that $a^4 + b^4 + c^4 = 3$, then

$$\frac{1}{a^5 + b^5} + \frac{1}{b^5 + c^5} + \frac{1}{c^5 + a^5} \ge \frac{3}{2}.$$

5.47. If a_1, a_2, \ldots, a_n are nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$\sqrt{a_1^2+1}+\sqrt{a_2^2+1}+\cdots+\sqrt{a_n^2+1} \ge \sqrt{2\left(1-\frac{1}{n}\right)(a_1^2+a_2^2+\cdots+a_n^2)+2(n^2-n+1)}.$$

5.48. If a_1, a_2, \ldots, a_n are nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$\sum \sqrt{(3n-4)a_1^2+n} \ge \sqrt{(3n-4)(a_1^2+a_2^2+\cdots+a_n^2)+n(4n^2-7n+4)}.$$

5.49. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

$$\sqrt{a^2+4}+\sqrt{b^2+4}+\sqrt{c^2+4} \le \sqrt{\frac{8}{3}(a^2+b^2+c^2)+37}.$$

5.50. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

$$\sqrt{32a^2 + 3} + \sqrt{32b^2 + 3} + \sqrt{32c^2 + 3} \le \sqrt{32(a^2 + b^2 + c^2) + 219}.$$

5.51. If a_1, a_2, \ldots, a_n are positive real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} + \frac{2n\sqrt{n-1}}{a_1^2 + a_2^2 + \dots + a_n^2} \ge n + 2\sqrt{n-1}.$$

5.52. If $a, b, c \in [0, 1]$, then

$$(1+3a^2)(1+3b^2)(1+3c^2) \ge (1+ab+bc+ca)^3$$
.

5.53. If a, b, c are nonnegative real numbers so that a + b + c = ab + bc + ca, then

$$\frac{1}{4+5a^2} + \frac{1}{4+5b^2} + \frac{1}{4+5c^2} \ge \frac{1}{3}.$$

5.54. If a, b, c, d are positive real numbers so that a + b + c + d = 4abcd, then

$$\frac{1}{1+3a} + \frac{1}{1+3b} + \frac{1}{1+3c} + \frac{1}{1+3d} \ge 1.$$

5.55. If a_1, a_2, \dots, a_n are positive real numbers so that

$$a_1 + a_2 + \dots + a_n = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n},$$

then

$$\frac{1}{1+(n-1)a_1}+\frac{1}{1+(n-1)a_2}+\cdots+\frac{1}{1+(n-1)a_n}\geq 1.$$

5.56. If a, b, c, d, e are nonnegative real numbers so that $a^4 + b^4 + c^4 + d^4 + e^4 = 5$, then

$$7(a^2 + b^2 + c^2 + d^2 + e^2) \ge (a + b + c + d + e)^2 + 10.$$

5.57. If a_1, a_2, \ldots, a_n are nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$(a_1^2 + a_2^2 + \dots + a_n^2)^2 - n^2 \ge \frac{n(n-1)}{n^2 - n + 1} (a_1^4 + a_2^4 + \dots + a_n^4 - n).$$

5.58. If a_1, a_2, \ldots, a_n are nonnegative real numbers so that $a_1^2 + a_2^2 + \cdots + a_n^2 = n$, then

$$a_1^3 + a_2^3 + \dots + a_n^3 \ge \sqrt{n^2 - n + 1 + \left(1 - \frac{1}{n}\right)(a_1^6 + a_2^6 + \dots + a_n^6)}.$$

5.59. If a, b, c are positive real numbers so that abc = 1, then

$$4\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) + \frac{50}{a+b+c} \ge 27.$$

5.60. If a, b, c are positive real numbers so that abc = 1, then

$$a^{3} + b^{3} + c^{3} + 15 \ge 6\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right).$$

5.61. Let a_1, a_2, \ldots, a_n be positive numbers so that $a_1 a_2 \cdots a_n = 1$. If $k \ge n - 1$, then

$$a_1^k + a_2^k + \dots + a_n^k + (2k - n)n \ge (2k - n + 1) \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}\right).$$

5.62. Let a_1, a_2, \ldots, a_n $(n \ge 3)$ be nonnegative numbers so that $a_1 + a_2 + \cdots + a_n = n$, and let k be an integer satisfying $2 \le k \le n + 2$. If

$$r = \left(\frac{n}{n-1}\right)^{k-1} - 1,$$

then

$$a_1^k + a_2^k + \dots + a_n^k - n \ge nr(1 - a_1 a_2 \dots a_n).$$

5.63. If a, b, c are positive real numbers so that $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 3$, then

$$4(a^2 + b^2 + c^2) + 9 \ge 21abc.$$

5.64. If a_1, a_2, \ldots, a_n are positive real numbers so that $\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} = n$, then,

$$a_1 + a_2 + \cdots + a_n - n \le e_{n-1}(a_1 a_2 \cdots a_n - 1),$$

where

$$e_{n-1} = \left(1 + \frac{1}{n-1}\right)^{n-1}.$$

5.65. If a_1, a_2, \ldots, a_n are positive real numbers, then

$$\frac{a_1^n + a_2^n + \dots + a_n^n}{a_1 a_2 \dots a_n} + n(n-1) \ge (a_1 + a_2 + \dots + a_n) \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} \right).$$

5.66. If a_1, a_2, \ldots, a_n are nonnegative real numbers, then

$$(n-1)(a_1^n+a_2^n+\cdots+a_n^n)+na_1a_2\cdots a_n \ge (a_1+a_2+\cdots+a_n)(a_1^{n-1}+a_2^{n-1}+\cdots+a_n^{n-1}).$$

5.67. If a_1, a_2, \ldots, a_n are nonnegative real numbers, then

$$(n-1)(a_1^{n+1}+a_2^{n+1}+\cdots+a_n^{n+1}) \ge (a_1+a_2+\cdots+a_n)(a_1^n+a_2^n+\cdots+a_n^n-a_1a_2\cdots a_n).$$

5.68. If a_1, a_2, \ldots, a_n are positive real numbers, then

$$(a_1 + a_2 + \dots + a_n - n) \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} - n \right) + a_1 a_2 \dots a_n + \frac{1}{a_1 a_2 \dots a_n} \ge 2.$$

5.69. If a_1, a_2, \ldots, a_n are positive real numbers so that $a_1 a_2 \cdots a_n = 1$, then

$$\left| \frac{1}{\sqrt{a_1 + a_2 + \dots + a_n - n}} - \frac{1}{\sqrt{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} - n}} \right| < 1.$$

5.70. If a_1, a_2, \dots, a_n are positive real numbers so that $a_1 a_2 \cdots a_n = 1$, then

$$a_1^{n-1} + a_2^{n-1} + \dots + a_n^{n-1} + \frac{n^2(n-2)}{a_1 + a_2 + \dots + a_n} \ge (n-1) \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}\right).$$

5.71. If *a*, *b*, *c* are nonnegative real numbers, then

$$(a+b+c-3)^2 \ge \frac{abc-1}{abc+1}(a^2+b^2+c^2-3).$$

5.72. If $a_1, a_2, ..., a_n$ are positive real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then $(a_1 a_2 \cdots a_n)^{\frac{1}{\sqrt{n-1}}} (a_1^2 + a_2^2 + \cdots + a_n^2) \le n.$

5.73. If a_1, a_2, \ldots, a_n are positive real numbers such that $a_1 + a_2 + \cdots + a_n = n - 1$, then

$$\sqrt[n]{\frac{n-1}{a_1 a_2 \cdots a_n}} \ge 4 \sqrt{\frac{a_1^2 + a_2^2 + \cdots + a_n^2}{n(n-1)}}.$$

5.74. If a_1, a_2, \ldots, a_n are positive real numbers so that $a_1^3 + a_2^3 + \cdots + a_n^3 = n$, then $a_1 + a_2 + \cdots + a_n \ge n^{\frac{n+1}{2}} \sqrt{a_1 a_2 \cdots a_n}.$

5.75. Let a, b, c be nonnegative real numbers so that ab + bc + ca = 3. If

$$k \ge 2 - \frac{\ln 4}{\ln 3} \approx 0.738,$$

$$a^k + b^k + c^k \ge 3.$$

5.76. Let a, b, c be nonnegative real numbers so that a + b + c = 3. If

$$k \ge \frac{\ln 9 - \ln 8}{\ln 3 - \ln 2} \approx 0.29,$$

then

$$a^k + b^k + c^k \ge ab + bc + ca$$
.

5.77. If a_1, a_2, \dots, a_n $(n \ge 4)$ are nonnegative numbers so that $a_1 + a_2 + \dots + a_n = n$, then

$$\frac{1}{n+1-a_2a_3\cdots a_n} + \frac{1}{n+1-a_3a_4\cdots a_1} + \cdots + \frac{1}{n+1-a_1a_2\cdots a_{n-1}} \le 1.$$

5.78. If *a*, *b*, *c* are nonnegative real numbers so that

$$a+b+c \ge 2$$
, $ab+bc+ca \ge 1$,

then

$$\sqrt[3]{a} + \sqrt[3]{b} + \sqrt[3]{c} \ge 2.$$

5.79. If a, b, c, d are positive real numbers so that abcd = 1, then

$$(a+b+c+d)^4 \ge 36\sqrt{3} (a^2+b^2+c^2+d^2).$$

5.80. If a, b, c are nonnegative real numbers so that ab + bc + ca = 1, then

$$\sqrt{33a^2+16}+\sqrt{33b^2+16}+\sqrt{33c^2+16} \le 9(a+b+c).$$

5.81. If a, b, c are positive real numbers so that a + b + c = 3, then

$$a^2b^2 + b^2c^2 + c^2a^2 \le \frac{3}{\sqrt[3]{abc}}.$$

5.82. If a_1, a_2, \dots, a_n $(n \le 81)$ are nonnegative real numbers so that

$$a_1^2 + a_2^2 + \dots + a_n^2 = a_1^5 + a_2^5 + \dots + a_n^5$$

$$a_1^6 + a_2^6 + \dots + a_n^6 \le n.$$

5.83. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

$$1 + \sqrt{1 + a^3 + b^3 + c^3} \ge \sqrt{3(a^2 + b^2 + c^2)}.$$

5.84. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

$$\sqrt{a+b} + \sqrt{b+c} + \sqrt{c+a} \le \sqrt{16 + \frac{2}{3}(ab+bc+ca)}.$$

5.85. If $a, b, c \in [0, 4]$ and ab + bc + ca = 4, then

$$\sqrt{a+b} + \sqrt{b+c} + \sqrt{c+a} \le 3 + \sqrt{5}.$$

5.86. If a, b, c are positive real numbers so that abc = 1, then

(a)
$$\frac{a+b+c}{3} \ge \sqrt[3]{\frac{2+a^2+b^2+c^2}{5}};$$

(b)
$$a^3 + b^3 + c^3 \ge \sqrt{3(a^4 + b^4 + c^4)}$$

5.87. If a, b, c, d are nonnegative real numbers so that a + b + c + d = 4, then

$$(a^2 + b^2 + c^2 + d^2 - 4)(a^2 + b^2 + c^2 + d^2 + 18) \le 10(a^3 + b^3 + c^3 + d^3 - 4).$$

5.88. If a, b, c, d are nonnegative real numbers such that

$$a + b + c + d = 4$$
,

then

$$(a^4 + b^4 + c^4 + d^4)^2 \ge (a^2 + b^2 + c^2 + d^2)(a^5 + b^5 + c^5 + d^5).$$

5.89. If a, b, c, d are nonnegative real numbers such that

$$a + b + c + d = 4$$
.

$$13(a^2 + b^2 + c^2 + d^2)^2 \ge 12(a^4 + b^4 + c^4 + d^4) + 160.$$

5.90. If a_1, a_2, \ldots, a_8 are nonnegative real numbers, then

$$19(a_1^2 + a_2^2 + \dots + a_8^2)^2 \ge 12(a_1 + a_2 + \dots + a_8)(a_1^3 + a_2^3 + \dots + a_8^3).$$

5.91. If a, b, c are nonnegative real numbers so that

$$5(a^2 + b^2 + c^2) = 17(ab + bc + ca),$$

then

$$3\sqrt{\frac{3}{5}} \le \sqrt{\frac{a}{b+c}} + \sqrt{\frac{b}{c+a}} + \sqrt{\frac{c}{a+b}} \le \frac{1+\sqrt{7}}{\sqrt{2}}.$$

5.92. If a, b, c are nonnegative real numbers so that

$$8(a^2 + b^2 + c^2) = 9(ab + bc + ca),$$

then

$$\frac{19}{12} \le \frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \le \frac{141}{88}.$$

5.93. If $a, b, c \in (0, 2]$ such that a + b + c = 3, then

$$\sqrt{\frac{2(b+c)}{a} - 1} + \sqrt{\frac{2(c+a)}{b} - 1} + \sqrt{\frac{2(a+b)}{c} - 1} \ge \frac{9}{\sqrt{ab + bc + ca}}.$$

5.94. Let a, b, c and x, y, z be nonnegative real numbers such that

$$x^3 + y^3 + z^3 = a^3 + b^3 + c^3$$
.

Then,

$$\frac{(a+b+c)(x+y+z)}{ab+bc+ca+xy+yz+zx} \ge \sqrt[3]{3}.$$

5.95. If a, b, c, d are positive numbers such that

$$a+b+c+d = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d},$$

$$ab + ac + ad + bc + bd + cd + 3abcd \ge 9$$
.

5.96. If a_1, a_2, a_3, a_4, a_5 are nonnegative real numbers, then

$$\frac{(a_1^3 + a_2^3 + a_3^3 + a_4^3 + a_5^3)^2}{a_1^4 + a_2^4 + a_3^4 + a_4^4 + a_5^4} \ge \frac{1}{2} \sum_{i < j} a_i a_j.$$

5.97. If $a_1, a_2, ..., a_n \ge 0$ such that

$$a_1 + a_2 + \dots + a_n = n,$$

then

$$\sqrt{a_1} + \sqrt{a_2} + \dots + \sqrt{a_n} \le \sqrt{2n - 1 + 2\left(1 - \frac{1}{n}\right) \sum_{i < j} a_i a_j}.$$

5.98. If $a_1, a_2, ..., a_n \ge 0$ such that

$$a_1 + a_2 + \dots + a_n = \sum_{i < j} a_i a_j > 0,$$

then

$$\frac{(n-1)(n-2)}{2}(a_1 + a_2 + \dots + a_n) + \sum_{i < j} \sqrt{a_i a_j} \ge n(n-1).$$

5.99. Let

$$F(a_1, a_2, ..., a_n) = n(a_1^2 + a_2^2 + ... + a_n^2) - (a_1 + a_2 + ... + a_n)^2$$

where a_1, a_2, \dots, a_n are positive real numbers such that $a_1 \le a_2 \le \dots \le a_n$ and

$$a_1^2(a_2^2 + a_3^2 + \dots + a_n^2) \ge n - 1.$$

Then,

$$F(a_1, a_2, ..., a_n) \ge F\left(\frac{1}{a_1}, \frac{1}{a_2}, ..., \frac{1}{a_n}\right).$$

5.100. Let

$$F(a_1, a_2, ..., a_n) = a_1 + a_2 + \cdots + a_n - n \sqrt[n]{a_1 a_2 \cdots a_n},$$

where a_1, a_2, \ldots, a_n are positive real numbers such that $a_1 \le a_2 \le \cdots \le a_n$ and

$$a_1(a_2 + a_3 + \dots + a_n) \ge n - 1.$$

Then,

$$F(a_1, a_2, ..., a_n) \ge F\left(\frac{1}{a_1}, \frac{1}{a_2}, ..., \frac{1}{a_n}\right).$$

5.101. Let

$$F(a_1, a_2, \dots, a_n) = \sqrt{\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n}} - \frac{a_1 + a_2 + \dots + a_n}{n},$$

where a_1, a_2, \ldots, a_n are positive real numbers such that $a_1 \le a_2 \le \cdots \le a_n$ and

$$a_1^{n-1}(a_2+a_3+\cdots+a_n) \ge n-1.$$

Then,

$$F(a_1, a_2, ..., a_n) \ge F\left(\frac{1}{a_1}, \frac{1}{a_2}, ..., \frac{1}{a_n}\right).$$

5.102. If a_1, a_2, \ldots, a_n ($n \ge 4$) are positive real numbers such that

$$a_1 + a_2 + \dots + a_n = n$$
, $a_n = \max\{a_1, a_2, \dots, a_n\}$,

then

$$n\left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_{n-1}}\right) \ge 4(a_1^2 + a_2^2 + \dots + a_n^2) + n(n-5).$$

5.103. If a, b, c are nonnegative real numbers so that ab + bc + ca = 3, then

$$\frac{1}{a+b+1} + \frac{1}{b+c+1} + \frac{1}{c+a+1} \le 1.$$

5.3 Solutions

P 5.1. If a, b, c, d are nonnegative real numbers so that

$$a + b + c + d = a^3 + b^3 + c^3 + d^3 = 2$$
,

then

$$\frac{7}{4} \le a^2 + b^2 + c^2 + d^2 \le 2.$$

(Vasile C., 2010)

Solution. The right inequality follows from the Cauchy-Schwarz inequality

$$(a^2 + b^2 + c^2 + d^2)^2 \le (a + b + c + d)(a^3 + b^3 + c^3 + d^3).$$

The equality holds for a = b = 0 and c = d = 1 (or any permutation).

To prove the left inequality, assume that $a \le b \le c \le d$, then apply Corollary 5 for k = 3 and m = 2:

• If a, b, c, d are nonnegative real numbers so that

$$a + b + c + d = 2$$
, $a^3 + b^3 + c^3 + d^3 = 2$, $a \le b \le c \le d$,

then

$$S_4 = a^2 + b^2 + c^2 + d^2$$

is minimal for a = b = c.

So, we only need to prove that the equations

$$3a + d = 3a^3 + d^3 = 2$$
, $a, d \ge 0$,

imply

$$\frac{7}{4} \le 3a^2 + d^2.$$

Indeed, from $3a + d = 3a^3 + d^3 = 2$, we get a = 1/4 and d = 5/4, when

$$3a^2 + d^2 = \frac{7}{4}.$$

The left inequality is an equality for

$$a = b = c = \frac{1}{4}, \quad d = \frac{5}{4}$$

(or any cyclic permutation).

P 5.2. If $a_1, a_2, ..., a_9$ are nonnegative real numbers so that

$$a_1 + a_2 + \dots + a_9 = a_1^2 + a_2^2 + \dots + a_9^2 = 3$$
,

then

$$3 \le a_1^3 + a_2^3 + \dots + a_9^3 \le \frac{14}{3}.$$

(Vasile C., 2010)

Solution. The left inequality follows from the Cauchy-Schwarz inequality

$$(a_1 + a_2 + \dots + a_9)(a_1^3 + a_2^3 + \dots + a_9^3) \ge (a_1^2 + a_2^2 + \dots + a_9^2)^2.$$

The equality holds for $a_1=a_2=\cdots=a_6=0$ and $a_7=a_8=a_9=1$ (or any permutation).

To prove the right inequality, assume that

$$a_1 \leq a_2 \leq \cdots \leq a_9$$

then apply Corollary 5 for k = 2 and m = 3:

• If a_1, a_2, \ldots, a_9 are nonnegative real numbers so that

$$a_1 + a_2 + \dots + a_9 = 3$$
, $a_1^2 + a_2^2 + \dots + a_9^2 = 3$, $a_1 \le a_2 \le \dots \le a_9$,

then

$$S_9 = a_1^3 + a_2^3 + \dots + a_9^3$$

is maximal for $a_1 = a_2 = \cdots = a_8 \le a_9$.

Thus, we only need to prove that the equations

$$8a + b = 3$$
, $8a^2 + b^2 = 3$, $a, b \ge 0$,

involve

$$8a^3 + b^3 \le \frac{14}{3}.$$

Indeed, from the equations above, we get a = 1/6 and b = 5/3, when

$$8a^3 + b^3 = \frac{1}{27} + \frac{125}{27} = \frac{14}{3}$$
.

The equality holds for

$$a_1 = a_2 = \dots = a_8 = \frac{1}{6}, \quad a_9 = \frac{5}{3}$$

(or any cyclic permutation).

P 5.3. If a, b, c, d are nonnegative real numbers so that

$$a + b + c + d = a^{2} + b^{2} + c^{2} + d^{2} = \frac{27}{7}$$

then

$$\frac{5427}{1372} \le a^3 + b^3 + c^3 + d^3 \le \frac{1377}{343}.$$

(Vasile C., 2014)

Solution. Assume that $a \le b \le c \le d$.

- (a) To prove the right inequality, we apply Corollary 5 for k = 2 and m = 3:
- If a, b, c, d are nonnegative real numbers so that

$$a+b+c+d=\frac{27}{7}$$
, $a^2+b^2+c^2+d^2=\frac{27}{7}$, $a \le b \le c \le d$,

then

$$S_4 = a^3 + b^3 + c^3 + d^3$$

is maximal for $a = b = c \le d$

Thus, we only need to prove that the equations

$$3a + d = \frac{27}{7}$$
, $3a^2 + d^2 = \frac{27}{7}$, $a, d \ge 0$,

involve

$$3a^3 + d^3 \le \frac{1377}{343}.$$

Indeed, from the equations above, we get a = 6/7 and d = 9/7, when

$$3a^3 + d^3 = 3\left(\frac{6}{7}\right)^3 + \left(\frac{9}{7}\right)^3 = \frac{1377}{343}.$$

The equality holds for

$$a = b = c = \frac{6}{7}, \qquad d = \frac{9}{7}$$

(or any cyclic permutation).

- (b) To prove the left inequality, we apply Corollary 5 for k = 2 and m = 3:
- If a, b, c, d are nonnegative real numbers so that

$$a+b+c+d=\frac{27}{7}$$
, $a^2+b^2+c^2+d^2=\frac{27}{7}$, $a \le b \le c \le d$,

$$S_4 = a^3 + b^3 + c^3 + d^3$$

is minimal for either a = 0 or $a \le b = c = d$.

The case a = 0 is not possible because from

$$b+c+d=\frac{27}{7}$$
, $b^2+c^2+d^2=\frac{27}{7}$,

we get

$$3(b^2+c^2+d^2)-(b+c+d)^2=\frac{27}{7}\left(3-\frac{27}{7}\right)<0,$$

which contradicts the known inequality

$$3(b^2 + c^2 + d^2) \ge b + c + d)^2$$
.

For $a \le b = c = d$, we need to prove that the equations

$$a+3d=\frac{27}{7}$$
, $a^2+3d^2=\frac{27}{7}$, $a,d\geq 0$,

involve

$$a^3 + 3d^3 \ge \frac{5427}{1372}.$$

Indeed, from the equations above, we get a = 9/14 and d = 15/14, when

$$a^3 + 3d^3 = \left(\frac{9}{14}\right)^3 + 3\left(\frac{15}{14}\right)^3 = \frac{5427}{1372}.$$

The equality holds for

$$a = \frac{9}{14}$$
, $b = c = d = \frac{15}{14}$

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

• Let k be a positive real number (k > 2), and let a_1, a_2, \ldots, a_n be nonnegative real numbers so that

$$a_1 + a_2 + \dots + a_n = a_1^2 + a_2^2 + \dots + a_n^2 = \frac{(n-1)^3}{n^2 - 3n + 3}.$$

The sum

$$S_n = a_1^k + a_2^k + \dots + a_n^k$$

is maximal for

$$a_1 = \dots = a_{n-1} = \frac{(n-1)(n-2)}{n^2 - 3n + 3}, \quad a_n = \frac{(n-1)^2}{n^2 - 3n + 3},$$

and is minimal for

$$a_1 = \frac{(n-1)^2(n-2)}{n(n^2-3n+3)}, \qquad a_2 = \dots = a_n = \frac{(n-1)(n^2-2n+2)}{n(n^2-3n+3)}.$$

P 5.4. If a, b, c are positive real numbers so that abc = 1, then

$$a^5 + b^5 + c^5 \ge \sqrt{3(a^7 + b^7 + c^7)}$$
.

(Vasile C., 2014)

Solution. Substituting

$$a = x^{1/5}$$
, $b = y^{1/5}$, $c = z^{1/5}$

we need to show that xyz = 1 involves

$$x + y + z \ge \sqrt{3(x^{7/5} + y^{7/5} + z^{7/5})}.$$

Assume that $x \le y \le z$, then apply Corollary 5 for k = 0 and m = 7/5:

• If x, y, z are positive real numbers so that

$$x + y + z = constant$$
, $xyz = 1$, $x \le y \le z$,

then

$$S_3 = x^{7/5} + y^{7/5} + z^{7/5}$$

is maximal for x = y.

So, it suffices to prove the original inequality for a = b. Write this inequality in the homogeneous form

$$(a^5 + b^5 + c^5)^2 \ge 3abc(a^7 + b^7 + c^7).$$

We only need to prove this inequality for a = b = 1; that is, to show that $f(c) \ge 0$, where

$$f(c) = (c^5 + 2)^2 - 3c(c^7 + 2), \quad c > 0.$$

We have

$$f'(c) = 10c^{4}(c^{5} + 2) - 24c^{7} - 6,$$

$$f''(c) = 2c^{3}g(t), \quad g(t) = 45c^{5} - 84c^{3} + 40.$$

By the AM-GM inequality, we get

$$g(t) = 15c^{5} + 15c^{5} + 15c^{5} + 20 + 20 - 84c^{3} \ge 5\sqrt[5]{(15c^{5})^{3} \cdot 20^{2}} - 84c^{3}$$
$$= \sqrt[5]{27 \cdot 16} \left(25 - 14\sqrt[5]{18}\right)c^{3} > 0,$$

hence f''(c) > 0, f'(c) is increasing. Since f'(0) = 1, it follows that $f'(c) \le 0$ for $c \le 1$, $f'(c) \ge 0$ for $c \ge 1$, therefore f is decreasing on (0,1] and increasing on $[1,\infty)$; consequently, $f(c) \ge f(1) = 0$. The equality occurs for a = b = c = 1.

P 5.5. If a, b, c, d are positive real numbers so that abcd = 1, then

$$a^{3} + b^{3} + c^{3} + d^{3} \ge \sqrt{4(a^{4} + b^{4} + c^{4} + d^{4})}$$

(Vasile C., 2014)

Solution. Substituting

$$a = x^{1/3}$$
, $b = y^{1/3}$, $c = z^{1/3}$, $d = t^{1/3}$

we need to show that xyzt = 1 involves

$$x + y + z + t \ge \sqrt{4(x^{4/3} + y^{4/3} + z^{4/3} + t^{4/3})}.$$

Apply Corollary 5, case k = 0 and m = 4/3:

• If x, y, z, t are positive real numbers so that

$$x + y + z + t = constant$$
, $xyzt = 1$, $x \le y \le z \le t$,

then

$$S_4 = x^{4/3} + y^{4/3} + z^{4/3} + t^{4/3}$$

is maximal for x = y = z.

Therefore, it suffices to prove the original inequality for a = b = c. Write the original inequality in the homogeneous form

$$(a^3 + b^3 + c^3 + d^3)^2 \ge 4\sqrt{abcd} (a^4 + b^4 + c^4 + d^4).$$

We only need to prove this inequality for a = b = c = 1; that is, to show that

$$(d^3+3)^2 \ge 4\sqrt{d} (d^4+3).$$

Putting $u = \sqrt{d}$, we have

$$(d^3+3)^2 - 4\sqrt{d} (d^4+3) = (u^6+3)^2 - 4u(u^8+3)$$
$$= (u^3-1)^4 + 4(u+2)(u-1)^2 \ge 0.$$

The equality holds for a = b = c = d = 1.

P 5.6. If a, b, c, d are nonnegative real numbers so that a + b + c + d = 4, then

$$\frac{bcd}{11a+16} + \frac{cda}{11b+16} + \frac{dab}{11c+16} + \frac{abc}{11d+16} \le \frac{4}{27}.$$

(Vasile C., 2008)

Solution. For a = 0, the inequality becomes

$$bcd \leq \frac{64}{27}$$
,

where $b, c, d \ge 0$, b + c + d = 4. By the AM-GM inequality, we have

$$bcd \le \left(\frac{b+c+d}{3}\right)^3 = \left(\frac{4}{3}\right)^3 = \frac{64}{27}.$$

For $abcd \neq 0$, we write the inequality in the form

$$f(a) + f(b) + f(c) + f(d) + \frac{4}{(1+k)abcd} \ge 0,$$

where

$$f(u) = \frac{-1}{u(u+k)}, \quad k = \frac{16}{11}, \quad u > 0.$$

We have $f(0+) = -\infty$ and

$$f'(u) = \frac{2u + k}{(u^2 + ku)^2},$$

$$g(x) = f'(1/x) = \frac{kx^4 + 2x^3}{(kx+1)^2},$$

$$g''(x) = \frac{2x(k^3x^3 + 4k^2x^2 + 6kx + 6)}{(kx+1)^4}.$$

Since g''(x) > 0 for x > 0, g is strictly convex on $(0, \infty)$. By Corollary 3 and Note 1, if

$$a+b+c+d=4$$
, $abcd=constant$, $0 < a \le b \le c \le d$,

then the sum

$$S_4 = f(a) + f(b) + f(c) + f(d)$$

is minimal for b = c = d. Thus, we only need to prove that

$$\frac{b^3}{11a+16} + \frac{3ab^2}{11b+16} \le \frac{4}{27}$$

for a + 3b = 4. The inequality is equivalent to

$$\frac{b^3}{3(20-11b)} + \frac{3b^2(4-3b)}{11b+16} \le \frac{4}{21},$$
$$(b-1)^2(4-3b)(231b+80) \ge 0,$$
$$(b-1)^2a(231b+80) \ge 0.$$

The equality holds for a = b = c = d = 1, and also for

$$a = 0$$
, $b = c = d = \frac{4}{3}$

(or any cyclic permutation).

P 5.7. *If* a, b, c are real numbers, then

$$\frac{bc}{3a^2 + b^2 + c^2} + \frac{ca}{3b^2 + c^2 + a^2} + \frac{ab}{3c^2 + a^2 + b^2} \le \frac{3}{5}.$$

(Vasile Cirtoaje and Pham Kim Hung, 2005)

Solution. For a = 0, the inequality is true because

$$\frac{bc}{b^2 + c^2} \le \frac{1}{2} < \frac{3}{5}.$$

Consider further that a, b, c are different from zero. The inequality remains unchanged by replacing a, b, c with -a, -b, -c, respectively. Thus, we only need to consider the case a < 0, b, c > 0, and the case a, b, c > 0. In the first case, it suffices to show that

$$\frac{bc}{3a^2 + b^2 + c^2} \le \frac{3}{5}.$$

Indeed, we have

$$\frac{bc}{3a^2+b^2+c^2} < \frac{bc}{b^2+c^2} \le \frac{1}{2} < \frac{3}{5}.$$

Consider now the case a, b, c > 0. Replacing a, b, c with $\sqrt{a}, \sqrt{b}, \sqrt{c}$, the inequality becomes

$$\frac{1}{\sqrt{a}(3a+b+c)} + \frac{1}{\sqrt{b}(3b+c+a)} + \frac{1}{\sqrt{c}(3c+a+b)} \le \frac{3}{5\sqrt{abc}}.$$

Due to homogeneity, we may consider that a + b + c = 2. So, we need to show that

$$f(a) + f(b + f(c) + \frac{6}{5\sqrt{abc}} \ge 0,$$

where

$$f(u) = \frac{-1}{\sqrt{u(u+1)}}, \quad u > 0.$$

We have $f(0+) = -\infty$ and

$$f'(u) = \frac{3u+1}{2u\sqrt{u}(u+1)^2},$$

$$g(x) = f'(1/x) = \frac{x^2\sqrt{x}(x+3)}{2(x+1)^2},$$

$$g''(x) = \frac{\sqrt{x}(3x^3+11x^2+5x+45)}{8(x+1)^4}.$$

Since g''(x) > 0 for x > 0, g is strictly convex on $(0, \infty)$. By Corollary 3 and Note 1, if

$$a+b+c=2$$
, $abc=constant$, $0 < a \le b \le c$,

then the sum

$$S_3 = f(a) + f(b) + f(c)$$

is minimal for b = c. Thus, we only need to prove the original homogeneous inequality for b = c = 1; that is,

$$\frac{1}{3a^2 + 2} + \frac{2a}{a^2 + 4} \le \frac{3}{5},$$

$$9a^4 - 30a^3 + 37a^2 - 20a + 4 \ge 0,$$

$$(a - 1)^2 (3a - 2)^2 \ge 0.$$

The equality holds for a = b = c, and also for

$$3a = 2b = 2c$$

(or any cyclic permutation).

P 5.8. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

(a)
$$\frac{bc}{a^2+2} + \frac{ca}{b^2+2} + \frac{ab}{c^2+2} \le \frac{9}{8};$$

(b)
$$\frac{bc}{a^2+3} + \frac{ca}{b^2+3} + \frac{ab}{c^2+3} \le \frac{11\sqrt{33}-45}{24};$$

(c)
$$\frac{bc}{a^2+4} + \frac{ca}{b^2+4} + \frac{ab}{c^2+4} \le \frac{3}{5}.$$

(Vasile C., 2008)

Solution. For the nontrivial case $abc \neq 0$, we can write the desired inequalities in the form

$$f(a) + f(b) + f(c) + \frac{m}{abc} \ge 0,$$

where

$$f(u) = \frac{-1}{u(u^2 + k)}, \quad k \in \{2, 3, 4\}, \quad u > 0.$$

We have $f(0+) = -\infty$ and

$$f'(u) = \frac{3u^2 + k}{u^2(u^2 + k)^2},$$

$$g(x) = f'(1/x) = \frac{kx^6 + 3x^4}{(kx^2 + 1)^2},$$

$$g''(x) = \frac{2x^2(k^3x^6 + 4k^2x^4 - 3kx^2 + 18)}{(kx^2 + 1)^4}.$$

Since

$$k^3x^6 + 4k^2x^4 - 3kx^2 + 18 > 4k^2x^4 - 3kx^2 + 18 > 0$$
,

we have g''(x) > 0, hence g is strictly convex on $(0, \infty)$. According to Corollary 3 and Note 1, if

$$a+b+c=3$$
, $abc=constant$, $0 < a \le b \le c$,

then the sum

$$S_3 = f(a) + f(b) + f(c)$$

is minimal for b = c. Thus, we only need to prove the original inequalities for b = c.

(a) We only need to prove the homogeneous inequality

$$\frac{bc}{9a^2 + 2(a+b+c)^2} + \frac{ca}{9b^2 + 2(a+b+c)^2} + \frac{ab}{9c^2 + 2(a+b+c)^2} \le \frac{1}{8}$$

for b = c = 1, that is

$$\frac{1}{11a^2 + 8a + 8} + \frac{2a}{2a^2 + 8a + 17} \le \frac{1}{8},$$
$$\frac{2a}{2a^2 + 8a + 17} \le \frac{a(11a + 8)}{8(11a^2 + 8a + 8)},$$
$$a(22a^3 - 72a^2 + 123a + 8) > 0.$$

Since

$$22a^3 - 72a^2 + 123a + 8 > 20a^3 - 80a^2 + 80a = 20a(a-2)^2 \ge 0$$

the conclusion follows. The equality holds for a = 0 and b = c = 3/2 (or any cyclic permutation).

(b) Let

$$m = \frac{11\sqrt{33} - 45}{72} \approx 0.253, \quad r = \frac{\sqrt{33} - 5}{4} \approx 0.186.$$

We only need to prove the homogeneous inequality

$$\frac{bc}{3a^2 + (a+b+c)^2} + \frac{ca}{3b^2 + (a+b+c)^2} + \frac{ab}{3c^2 + (a+b+c)^2} \le m$$

for b = c = 1; that is, to show that $f(a) \le m$, where

$$f(a) = \frac{1}{4(a^2 + a + 1)} + \frac{2a}{a^2 + 4a + 7}.$$

We have

$$f'(a) = \frac{-8a^6 - 18a^5 + 15a^4 + 28a^3 + 18a^2 - 42a + 7}{4(a^2 + a + 1)^2(a^2 + 4a + 7)^2}$$
$$= \frac{(1 - a)^2(7 + 7a + 4a^2)(1 - 5a - 2a^2)}{4(a^2 + a + 1)^2(a^2 + 4a + 7)^2}.$$

Since $f'(a) \ge 0$ for $a \in [0, r]$, and $f'(a) \le 0$ for $a \in [r, \infty)$, f is increasing on [0, r] and decreasing on $[r, \infty)$; therefore,

$$f(a) \ge f(r) = m$$
.

The equality holds for

$$a/r = b = c$$

(or any cyclic permutation).

(c) We only need to prove the homogeneous inequality

$$\frac{bc}{9a^2 + 4(a+b+c)^2} + \frac{ca}{9b^2 + 4(a+b+c)^2} + \frac{ab}{9c^2 + 4(a+b+c)^2} \le \frac{1}{15}$$

for b = c = 1, that is

$$\frac{1}{13a^2 + 16a + 16} + \frac{2a}{4a^2 + 16a + 25} \le \frac{1}{15},$$

$$52a^4 - 118a^3 + 105a^2 - 64a + 25 \ge 0,$$

$$(a-1)^2(52a^2 - 14a + 25) \ge 0.$$

Since

$$52a^2 - 14a + 25 > 7a^2 - 14a + 7 = 7(a-1)^2 \ge 0$$

the conclusion follows. The equality holds for a = b = c = 1.

P 5.9. If a, b, c, d are nonnegative real numbers so that

$$(3a+1)(3b+1)(3c+1)(3d+1) = 64$$
,

then

$$abc + bcd + cda + dab \le 1$$
.

(Vasile C., 2014)

Solution. For d = 0, we need to show that

$$(3a+1)(3b+1)(3c+1) = 64$$

involves $abc \le 1$. Indeed, by the AM-GM inequality, we have

$$64 = (3a+1)(3b+1)(3c+1) \ge \left(4\sqrt[4]{a^3}\right)\left(4\sqrt[4]{b^3}\right)\left(4\sqrt[4]{c^3}\right) = 64\sqrt[4]{(abc)^3},$$

hence $abc \le 1$. Consider further that a, b, c, d > 0 and use the contradiction method. Assume that

$$abc + bcd + cda + dab > 1$$
,

and prove that

$$(3a+1)(3b+1)(3c+1) > 64.$$

It suffices to show that

$$abc + bcd + cda + dab \ge 1$$

involves

$$(3a+1)(3b+1)(3c+1) \ge 64.$$

Replacing a, b, c, d by 1/a, 1/b, 1/c, 1/d, we need to show that

$$a + b + c + d = abcd$$

involves

$$\left(\frac{3}{a}+1\right)\left(\frac{3}{b}+1\right)\left(\frac{3}{c}+1\right)\left(\frac{3}{d}+1\right) \ge 64,$$

which is equivalent to

$$f(a) + f(b) + f(c) + f(d) \le -6 \ln 2$$
,

where

$$f(u) = -\ln\left(\frac{3}{u} + 1\right), \quad u > 0.$$

We have $f(0+) = -\infty$ and

$$g(x) = f'(1/x) = \frac{3x^2}{3x+1}, \quad g''(x) = \frac{6}{(3x+1)^3} > 0,$$

hence g is strictly convex on $(0, \infty)$. By Corollary 3 and Note 1, if a, b, c, d are positive real numbers so that

$$a+b+c+d = constant$$
, $abcd = constant$, $a \le b \le c \le d$,

then

$$S_4 = f(a) + f(b) + f(c) + f(d)$$

is maximal for a = b = c.

Thus, we only need to prove that

$$\left(\frac{3}{a} + 1\right)^3 \left(\frac{3}{d} + 1\right) \ge 64$$

for $3a + d = a^3d$, that is

$$\frac{3}{d} = \frac{a^3 - 1}{a}, \quad 1 < a \le d.$$

Write this inequality as

$$(3+a)^{3}(3+d) \ge 64a^{3}d,$$

$$(3+a)^{4}(3+d) \ge 64a^{3}d(3+a),$$

$$4\left(1+\frac{a-1}{4}\right)^{4}(3+d) \ge a^{3}d(3+a).$$

By Bernoulli's inequality, we have

$$\left(1 + \frac{a-1}{4}\right)^4 \ge 1 + 4 \cdot \frac{a-1}{4} = a.$$

Thus, it suffices to show that

$$4(3+d) \ge a^2 d(3+a),$$

which is equivalent to

$$\frac{12}{d} \ge a^3 + 3a^2 - 4,$$

$$\frac{4(a^3 - 1)}{a} \ge a^3 + 3a^2 - 4,$$

$$a^4 - a^3 - 4a + 4 \le 0,$$

$$(a - 1)(a^3 - 4) \le 0.$$

This is true if $a^3 \le 4$. Indeed, we have

$$0 \le \frac{3}{a} - \frac{3}{d} = \frac{3}{a} - \frac{a^3 - 1}{a} = \frac{4 - a^3}{a}.$$

The proof is completed. The original inequality is an equality for

$$a = b = c = 1, \quad d = 0$$

(or any cyclic permutation).

P 5.10. If a_1, a_2, \ldots, a_n and p, q are nonnegative real numbers so that

$$a_1 + a_2 + \dots + a_n = p + q$$
, $a_1^3 + a_2^3 + \dots + a_n^3 = p^3 + q^3$,

then

$$a_1^2 + a_2^2 + \dots + a_n^2 \le p^2 + q^2$$
.

(Vasile C., 2013)

Solution. For n=2, the inequality is an equality. Consider now that $n\geq 3$ and $a_1\leq a_2\leq \cdots \leq a_n$. We will apply Corollary 5 for k=3 and m=2:

• If $a_1, a_2, ..., a_n$ are nonnegative real numbers so that $a_1 \le a_2 \le ... \le a_n$ and

$$a_1 + a_2 + \dots + a_n = p + q$$
, $a_1^3 + a_2^3 + \dots + a_n^3 = p^3 + q^3$,

then

$$S_n = a_1^2 + a_2^2 + \dots + a_n^2$$

is maximal for either $a_1 = 0$ or $a_2 = a_3 = \cdots = a_n$.

In the first case $a_1 = 0$, the conclusion follows by induction method. In the second case, for

$$a_1 = a$$
, $a_2 = a_3 = \dots = a_n = b$,

we need to show that

$$a^2 + (n-1)b^2 \le p^2 + q^2$$

for

$$a + (n-1)b = p + q$$
, $a^3 + (n-1)b^3 = p^3 + q^3$.

Since

$$3(p^2+q^2) = (p+q)^2 + \frac{2(p^3+q^3)}{p+q},$$

the inequality can be written as

$$3a^2 + 3(n-1)b^2 \le [a + (n-1)b]^2 + \frac{2[a^3 + (n-1)b^3]}{a + (n-1)b},$$

which is equivalent to

$$(n-1)(n-2)b^{2}[3a+(n-3)b] \ge 0.$$

The equality holds when n-2 of a_1, a_2, \ldots, a_n are equal to zero.

P 5.11. *If* a, b, c are nonnegative real numbers, then

$$a\sqrt{a^2+4b^2+4c^2}+b\sqrt{b^2+4c^2+4a^2}+c\sqrt{c^2+4a^2+4b^2} \ge (a+b+c)^2$$
.

(Vasile C., 2010)

Solution. Due to homogeneity and symmetry, we may assume that

$$a^2 + b^2 + c^2 = 3$$
, $0 \le a \le b \le c \le \sqrt{3}$.

Under this assumption, we write the desired inequality as

$$f(a) + f(b) + f(c) + \frac{1}{\sqrt{3}}(a+b+c)^2 \le 0,$$

where

$$f(u) = -u\sqrt{4 - u^2}, \quad 0 \le u \le \sqrt{3}.$$

We have

$$g(x) = f'(x) = \frac{2(x^2 - 2)}{\sqrt{4 - x^2}},$$
$$g''(x) = \frac{48}{(4 - x^2)^{5/2}}.$$

Since g''(x) > 0 for $x \in (0, 2)$, g is strictly convex on $[0, \sqrt{3}]$. According to Corollary 1, if

$$a+b+c=constant$$
, $a^2+b^2+c^2=3$, $0 \le a \le b \le c$,

then the sum

$$S_3 = f(a) + f(b) + f(c)$$

is maximal for $a = b \le c$. Thus, we only need to prove the original inequality for a = b. Since the inequality is an identity for a = b = 0, we may consider a = b = 1 and $c \ge 1$. We need to prove that

$$2\sqrt{4c^2+5}+c\sqrt{c^2+8} \ge (c+2)^2$$
.

By squaring, the inequality becomes

$$c\sqrt{(4c^2+5)(c^2+8)} \ge 2c^3+8c-1.$$

This is true if

$$c^{2}(4c^{2}+5)(c^{2}+8) \ge (2c^{3}+8c-1)^{2}$$
,

which is equivalent to

$$5c^4 + 4c^3 - 24c^2 + 16c - 1 \ge 0,$$

$$(c-1)^2(5c^2+14c-1) \ge 0.$$

The equality holds for a = b = c, and also for a = b = 0 (or any cyclic permutation).

P 5.12. If a, b, c are nonnegative real numbers so that ab + bc + ca = 3, then

$$\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} \le \frac{3}{2(a+b+c)} + \frac{a+b+c}{3}.$$

(Vasile C., 2010)

Solution. Write the inequality in the homogeneous form

$$\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} \le \frac{3}{2(a+b+c)} + \frac{a+b+c}{ab+bc+ca}.$$

Due to homogeneity and symmetry, we may assume that

$$a+b+c=1$$
, $0 \le a \le b \le c$, $ab+bc+ca>0$.

Under this assumption, we write the desired inequality as

$$f(a) + f(b) + f(c) \le \frac{3}{2} + \frac{1}{ab + bc + ca}$$

where

$$f(u) = \frac{1}{1-u}, \quad 0 \le u < 1.$$

We will apply Corollary 1 to the function f, which satisfies $f(1-) = \infty$ and

$$g(x) = f'(x) = \frac{1}{(1-x)^2},$$

$$g''(x) = \frac{6}{(1-x)^4}.$$

Since g''(x) > 0, g is strictly convex on [0,1). According to Corollary 1 and Note 3, if

$$a+b+c=1$$
, $ab+bc+ca=constant$, $0 \le a \le b \le c$,

then the sum

$$S_3 = f(a) + f(b) + f(c)$$

is maximal for $a = b \le c$. Thus, we only need to prove the homogeneous inequality for a = b = 1 and $c \ge 1$; that is,

$$1 + \frac{4}{c+1} \le \frac{3}{c+2} + \frac{2(c+2)}{2c+1}$$

which reduces to

$$(c-1)^2 \ge 0.$$

The original inequality is an equality for a = b = c = 1.

P 5.13. If a, b, c are nonnegative real numbers so that ab + bc + ca = 3, then

$$\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} \ge \frac{3}{a+b+c} + \frac{a+b+c}{6}.$$

(Vasile C., 2010)

Solution. Proceeding in the same manner as in the proof of the preceding P 5.12, we only need to prove the homogeneous inequality

$$\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} \ge \frac{3}{a+b+c} + \frac{a+b+c}{2(ab+bc+ca)}$$

for a = 0 and for $a \le b = c = 1$.

Case 1: a = 0. The homogeneous inequality reduces to

$$\frac{1}{b} + \frac{1}{c} \ge \frac{2}{b+c} + \frac{b+c}{2bc},$$

which is equivalent to

$$(b-c)^2 \ge 0.$$

Case 2: $a \le b = c = 1$. The homogeneous inequality becomes

$$\frac{1}{2} + \frac{2}{a+1} \ge \frac{3}{a+2} + \frac{a+2}{2(2a+1)},$$

$$\frac{1}{2} - \frac{a+2}{2(2a+1)} \ge \frac{3}{a+2} - \frac{2}{a+1},$$

$$\frac{a-1}{2(2a+1)} \ge \frac{a-1}{(a+1)(a+2)},$$

$$a(a-1)^2 \ge 0.$$

The equality holds for a = b = c = 1, and also for

$$a = 0$$
, $b = c = \sqrt{3}$

(or any cyclic permutation).

P 5.14. Let a, b, c be nonnegative real numbers, no two of which are zero. If

$$a^2 + b^2 + c^2 = 3$$
.

then

$$\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} + \frac{a+b+c}{9} \ge \frac{11}{2(a+b+c)}.$$

(Vasile C., 2010)

Solution. Using the same method as in the proof of P 5.12, we only need to prove the homogeneous inequality

$$\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} + \frac{a+b+c}{3(a^2+b^2+c^2)} \ge \frac{11}{2(a+b+c)}$$

for a = 0 and for $a \le b = c = 1$.

Case 1: a = 0. The homogeneous inequality reduces to

$$\frac{1}{b} + \frac{1}{c} + \frac{1}{b+c} + \frac{b+c}{3(b^2+c^2)} \ge \frac{11}{2(b+c)},$$

$$\frac{b+c}{bc} + \frac{b+c}{3(b^2+c^2)} \ge \frac{9}{2(b+c)},$$

$$(b+c)^2 \left[\frac{1}{bc} + \frac{1}{3(b^2+c^2)} \right] \ge \frac{9}{2}.$$

Using the substitution

$$x = \frac{b^2 + c^2}{bc}, \qquad x \ge 2,$$

the inequality becomes

$$(x+2)\left(1+\frac{1}{3x}\right) \ge \frac{9}{2},$$

which is equivalent to

$$6x^2 - 13x + 4 \ge 0,$$

$$x + 2(x-2)(3x-1) \ge 0.$$

Case 2: $a \le 1 = b = c$. The homogeneous inequality becomes

$$\frac{1}{2} + \frac{2}{a+1} + \frac{a+2}{3(a^2+2)} \ge \frac{11}{2(a+2)},$$

$$\frac{a+2}{3(a^2+2)} + \frac{a^2 - 4a - 1}{2(a+1)(a+2)} \ge 0,$$

$$3a^4 - 10a^3 + 13a^2 - 8a + 2 \ge 0,$$

$$(a-1)^2 (3a^2 - 4a + 2) \ge 0,$$

$$(a-1)^2 \lceil a^2 + 2(a-1)^2 \rceil \ge 0.$$

The equality holds for a = b = c = 1.

P 5.15. Let a, b, c be nonnegative real numbers, no two of which are zero. If

$$a + b + c = 4$$
,

then

$$\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} \ge \frac{15}{8+ab+bc+ca}.$$

(Vasile C., 2010)

Solution. Using the same method as in P 5.12, we only need to prove the homogeneous inequality

$$\frac{2}{a+b} + \frac{2}{b+c} + \frac{2}{c+a} \ge \frac{15(a+b+c)}{(a+b+c)^2 + 2(ab+bc+ca)}$$

for a = 0 and for $a \le b = c = 1$.

Case 1: a = 0. The homogeneous inequality reduces to

$$\frac{2(b+c)}{bc} + \frac{2}{b+c} \ge \frac{15(b+c)}{(b+c)^2 + 2bc},$$

$$\frac{2(b+c)^2}{bc} + 2 \ge \frac{15(b+c)^2}{(b+c)^2 + 2bc}.$$

Using the substitution

$$x = \frac{(b+c)^2}{bc}, \qquad x \ge 4,$$

the inequality becomes

$$2x + 2 \ge \frac{15x}{x+2},$$

which is equivalent to

$$2x^2 - 9x + 4 \ge 0,$$

$$(x-4)(2x-1) \ge 0.$$

Case 2: $a \le 1$, b = c = 1. The homogeneous inequality becomes

$$1 + \frac{4}{a+1} \ge \frac{15(a+2)}{(a+2)^2 + 2(2a+1)},$$
$$\frac{a+5}{a+1} \ge \frac{15(a+2)}{a^2 + 8a + 6},$$
$$a(a-1)^2 \ge 0.$$

The equality holds for a = b = c = 4/3, and also for

$$a = 0, \quad b = c = 2$$

(or any cyclic permutation).

P 5.16. If a, b, c are nonnegative real numbers, no two of which are zero, then

$$\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} \ge \frac{1}{a+b+c} + \frac{2}{\sqrt{ab+bc+ca}}.$$

(Vasile C., 2010)

Solution. Using the same method as in P 5.12, we only need to prove the desired homogeneous inequality for a = 0 and for $0 < a \le b = c = 1$.

Case 1: a = 0. The inequality reduces to the obvious form

$$\frac{1}{b} + \frac{1}{c} \ge \frac{2}{\sqrt{bc}}.$$

Case 2: $0 < a \le 1 = b = c$. The inequality becomes

$$\frac{1}{2} + \frac{2}{a+1} \ge \frac{1}{a+2} + \frac{2}{\sqrt{2a+1}},$$

$$\frac{1}{2} - \frac{1}{a+2} \ge \frac{2}{\sqrt{2a+1}} - \frac{2}{a+1},$$

$$\frac{a}{2(a+2)} \ge \frac{2(a+1-\sqrt{2a+1})}{(a+1)\sqrt{2a+1}},$$

$$\frac{a}{2(a+2)} \ge \frac{2a^2}{(a+1)\sqrt{2a+1}(a+1+\sqrt{2a+1})}.$$

Since

$$\sqrt{2a+1} (a+1+\sqrt{2a+1}) \ge \sqrt{2a+1} (\sqrt{2a+1}+\sqrt{2a+1}) = 2(2a+1),$$

it suffices to show that

$$\frac{a}{2(a+2)} \ge \frac{a^2}{(a+1)(2a+1)},$$

which is equivalent to

$$a(1-a) \geq 0$$
.

The equality holds for

$$a = 0$$
, $b = c$

(or any cyclic permutation).

P 5.17. If a, b, c are nonnegative real numbers, no two of which are zero, then

$$\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} \ge \frac{3-\sqrt{3}}{a+b+c} + \frac{2+\sqrt{3}}{2\sqrt{ab+bc+ca}}.$$

(Vasile C., 2010)

Solution. As shown in the proof of P 5.12, it suffices to consider the cases a = 0 and $a \le b = c = 1$.

Case 1: a = 0. The inequality reduces to

$$\frac{1}{b} + \frac{1}{c} \ge \frac{2 - \sqrt{3}}{b + c} + \frac{2 + \sqrt{3}}{2\sqrt{bc}}.$$

It suffices to show that

$$\frac{1}{b} + \frac{1}{c} \ge \frac{2 - \sqrt{3}}{2\sqrt{bc}} + \frac{2 + \sqrt{3}}{2\sqrt{bc}},$$

which is equivalent to the obvious inequality

$$\frac{1}{b} + \frac{1}{c} \ge \frac{2}{\sqrt{bc}}.$$

Case 2: $a \le 1 = b = c$. The inequality reduces to

$$\frac{1}{2} + \frac{2}{a+1} \ge \frac{3-\sqrt{3}}{a+2} + \frac{2+\sqrt{3}}{2\sqrt{2a+1}}.$$

Using the substitution

$$2a+1=3x^2, \qquad x \ge \frac{\sqrt{3}}{3},$$

the inequality becomes

$$\frac{1}{2} + \frac{4}{3x^2 + 1} \ge \frac{6 - 2\sqrt{3}}{3(x^2 + 1)} + \frac{2 + \sqrt{3}}{2\sqrt{3}x},$$

$$\frac{1}{2} + \frac{4}{3x^2 + 1} - \frac{2}{x^2 + 1} - \frac{1}{2x} \ge \frac{1}{\sqrt{3}x} - \frac{2}{\sqrt{3}(x^2 + 1)},$$

$$\frac{3x^5 - 3x^4 - 4x^2 + 5x - 1}{2x(x^2 + 1)(3x^2 + 1)} \ge \frac{1}{\sqrt{3}} \left(\frac{1}{x} - \frac{2}{x^2 + 1}\right),$$

$$\frac{(x - 1)^2(3x^3 + 3x^2 + 3x - 1)}{2x(x^2 + 1)(3x^2 + 1)} \ge \frac{(x - 1)^2}{\sqrt{3}x(x^2 + 1)}.$$

This is true if

$$\frac{3x^3 + 3x^2 + 3x - 1}{2(3x^2 + 1)} \ge \frac{\sqrt{3}}{3},$$

which is equivalent to

$$9x^{3} + 3(3 - 2\sqrt{3})x^{2} + 9x - 3 - 2\sqrt{3} \ge 0,$$

$$(3x - \sqrt{3})[3x^{2} + (3 - \sqrt{3})x + 2 + \sqrt{3}] \ge 0.$$

The equality holds for a = b = c, and also for

$$a=0, b=c$$

(or any cyclic permutation).

P 5.18. Let a, b, c be nonnegative real numbers, no two of which are zero, so that

$$ab + bc + ca = 3$$
.

If

$$0 \le k \le \frac{9 + 5\sqrt{3}}{6} \approx 2.943,$$

then

$$\frac{2}{a+b} + \frac{2}{b+c} + \frac{2}{c+a} \ge \frac{9(1+k)}{a+b+c+3k}.$$

(Vasile Cirtoaje and Lorian Saceanu, 2014)

Solution. From

$$(a+b+c)^2 \ge 3(ab+bc+ca),$$

we get

$$a+b+c \ge 3$$
.

Let

$$m = \frac{9 + 5\sqrt{3}}{6}, \qquad m \ge k.$$

We claim that

$$\frac{1+m}{a+b+c+3m} \ge \frac{1+k}{a+b+c+3k}.$$

Indeed, this inequality is equivalent to the obvious inequality

$$(m-k)(a+b+c-3) \ge 0.$$

Thus, we only need to show that

$$\frac{2}{a+b} + \frac{2}{b+c} + \frac{2}{c+a} \ge \frac{9(1+m)}{a+b+c+3m},$$

which can be rewritten in the homogeneous form

$$\frac{2}{a+b} + \frac{2}{b+c} + \frac{2}{c+a} \ge \frac{9(1+m)}{a+b+c+m\sqrt{3(ab+bc+ca)}}.$$

As shown in the proof of P 5.12, it suffices to prove this homogeneous inequality for a = 0 and for $a \le b = c = 1$.

Case 1: a = 0. The inequality reduces to

$$\frac{2}{b} + \frac{2}{c} + \frac{2}{b+c} \ge \frac{9(1+m)}{b+c+m\sqrt{3bc}}.$$

Substituting

$$x = \frac{b+c}{\sqrt{hc}}, \quad x \ge 2,$$

the inequality becomes

$$2x + \frac{2}{x} \ge \frac{9(1+m)}{x+m\sqrt{3}},$$

$$2x^3 + 2\sqrt{3} mx^2 - (7+9m)x + 2\sqrt{3} m \ge 0,$$

$$(x-2)[2x^2 + 2(\sqrt{3} m + 2)x - \sqrt{3} m] \ge 0.$$

Case 2: $a \le 1 = b = c$. The inequality has the form

$$1 + \frac{4}{a+1} \ge \frac{9(1+m)}{a+2+m\sqrt{3(2a+1)}}.$$

Using the substitution

$$2a+1=3x^2, \qquad x \ge \frac{\sqrt{3}}{3},$$

the inequality becomes

$$\frac{3x^2+9}{3x^2+1} \ge \frac{6(1+m)}{x^2+2mx+1},$$

$$x^4+2mx^3-2(3m+1)x^2+6mx+1-2m \ge 0,$$

$$(x-1)^2[x^2+2(m+1)x+1-2m] \ge 0,$$

which is true since

$$x^{2} + 2(m+1)x + 1 - 2m \ge \frac{1}{3} + \frac{2(m+1)\sqrt{3}}{3} + 1 - 2m$$
$$= \frac{2[2 + \sqrt{3} - (3 - \sqrt{3})m]}{3} = 0.$$

The equality holds for a = b = c = 1. If $k = \frac{9 + 5\sqrt{3}}{6}$, then the equality holds also for

$$a = 0$$
, $b = c = \sqrt{3}$

(or any cyclic permutation).

_

P 5.19. If a, b, c are nonnegative real numbers, no two of which are zero, then

$$\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} \ge \frac{20}{a+b+c+6\sqrt{ab+bc+ca}}.$$

(Vasile C., 2010)

Solution. The proof is similar to the one of P 5.12. Finally, we only need to prove the inequality for a = 0 and for $a \le b = c = 1$.

Case 1: a = 0. The inequality reduces to

$$\frac{1}{b} + \frac{1}{c} + \frac{1}{b+c} \ge \frac{20}{b+c+6\sqrt{bc}}.$$

Substituting

$$x = \frac{b+c}{\sqrt{hc}}, \quad x \ge 2,$$

the inequality becomes

$$x + \frac{1}{x} \ge \frac{20}{x+6},$$

$$x^3 + 6x^2 - 19x + 6 \ge 0,$$

$$(x-2)(x^2 + 8x - 3) \ge 0.$$

Case 2: $a \le 1 = b = c$. We need to show that

$$\frac{1}{2} + \frac{2}{a+1} \ge \frac{20}{a+2+6\sqrt{2a+1}}$$
.

Using the substitution

$$2a + 1 = x^2, \quad x \ge 1,$$

the inequality becomes

$$\frac{x^2+9}{2(x^2+1)} \ge \frac{40}{x^2+12x+3},$$

$$x^4+12x^3-68x^2+108x-53 \ge 0,$$

$$(x-1)(x^3+13x^2-55x+53) \ge 0.$$

It is true since

$$x^{3} + 13x^{2} - 55x + 53 = (x - 1)^{3} + 16x^{2} - 58x + 54$$
$$= (x - 1)^{3} + 16\left(x - \frac{29}{16}\right)^{2} + \frac{23}{16} > 0.$$

The equality holds for

$$a = 0$$
, $b = c$

(or any cyclic permutation).

P 5.20. *If* a, b, c are positive real numbers so that

$$7(a^2 + b^2 + c^2) = 11(ab + bc + ca),$$

then

$$\frac{51}{28} \le \frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \le 2.$$

(Vasile C., 2008)

Solution. Due to homogeneity and symmetry, we may consider that

$$a + b + c = 1$$
, $0 < a \le b \le c < 1$.

Thus, we need to show that

$$a+b+c=1$$
, $a^2+b^2+c^2=\frac{11}{25}$, $0 < a \le b \le c < 1$

involves

$$\frac{51}{28} \le \frac{a}{1-a} + \frac{b}{1-b} + \frac{c}{1-c} \le 2.$$

We apply Corollary 1 to the function

$$f(u) = \frac{u}{1-u}, \quad 0 \le u < 1.$$

We have $f(1-) = \infty$ and

$$g(x) = f'(x) = \frac{1}{(1-x)^2}, \quad g''(x) = \frac{6}{(1-x)^4}.$$

Since g''(x) > 0, g is strictly convex on [0,1). According to Corollary 1 and Note 3, if

$$a+b+c=1$$
, $a^2+b^2+c^2=\frac{11}{25}$, $0 \le a \le b \le c < 1$,

then the sum

$$S_3 = f(a) + f(b) + f(c)$$

is maximal for $a = b \le c$, and is minimal for either a = 0 or $0 < a \le b = c$. Note that the case a = 0 is not possible because it involves $7(b^2 + c^2) = 11bc$, which is false.

(1) To prove the right original inequality for $a = b \le c$, let us denote

$$t = \frac{c}{a}, \quad t \ge 1.$$

The hypothesis $7(a^2 + b^2 + c^2) = 11(ab + bc + ca)$ involves t = 3, hence

$$\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} = \frac{2a}{a+c} + \frac{c}{2a} = \frac{2}{1+t} + \frac{t}{2} = 2.$$

The right inequality is an equality for $a = b = \frac{c}{3}$ (or any cyclic permutation).

(2) To prove the left original inequality for $0 < a \le b = c$, let us denote

$$t = \frac{a}{b}, \quad 0 < t \le 1.$$

The hypothesis $7(a^2 + b^2 + c^2) = 11(ab + bc + ca)$ involves $t = \frac{1}{7}$, hence

$$\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} = \frac{a}{2b} + \frac{2b}{a+b} = \frac{t}{2} + \frac{2}{t+1} = \frac{51}{28}.$$

The left inequality is an equality for 7a = b = c (or any cyclic permutation).

P 5.21. If a_1, a_2, \ldots, a_n are nonnegative real numbers so that

$$\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n+3} = \left(\frac{a_1 + a_2 + \dots + a_n}{n+1}\right)^2,$$

then

$$\frac{(n+1)(2n-1)}{2} \le (a_1 + a_2 + \dots + a_n) \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}\right) \le \frac{3n^2(n+1)}{2(n+2)}.$$

(Vasile C., 2008)

Solution. For n = 2, both inequalities are identities. For $n \ge 3$, assume that

$$a_1 \le a_2 \le \cdots \le a_n$$
.

The case $a_1 = 0$ is not possible because the hypothesis involves

$$\frac{a_2^2 + \dots + a_n^2}{(a_2 + \dots + a_n)^2} = \frac{n+3}{(n+1)^2} < \frac{1}{n-1},$$

which contradicts the Cauchy-Schwarz inequality

$$\frac{a_2^2 + \dots + a_n^2}{(a_2 + \dots + a_n)^2} \ge \frac{1}{n-1}.$$

Due to homogeneity and symmetry, we may consider that

$$a_1 + a_2 + \dots + a_n = n + 1,$$

which implies

$$a_1^2 + a_2^2 + \dots + a_n^2 = n + 3.$$

Thus, we need to show that

$$a_1 + a_2 + \dots + a_n = n + 1$$
, $a_1^2 + a_2^2 + \dots + a_n^2 = n + 3$, $0 < a_1 \le a_2 \le \dots \le a_n$

involves

$$\frac{2n-1}{2} \le \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} \le \frac{3n^2}{2(n+2)}.$$

We apply Corollary 5 for k = 2 and m = -1:

• If $a_1, a_2, ..., a_n$ are positive real numbers so that $0 < a_1 \le a_2 \le \cdots \le a_n$ and

$$a_1 + a_2 + \dots + a_n = n + 1$$
, $a_1^2 + a_2^2 + \dots + a_n^2 = n + 3$,

then

$$S_n = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$$

is minimal for

$$0 < a_1 = a_2 = \dots = a_{n-1} \le a_n$$

and is maximal for

$$a_1 \le a_2 = a_3 = \dots = a_n.$$

(1) To prove the left original inequality, we only need to consider the case

$$a_1 = a_2 = \cdots = a_{n-1} \le a_n.$$

The hypothesis

$$\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n+3} = \left(\frac{a_1 + a_2 + \dots + a_n}{n+1}\right)^2$$

implies

$$\frac{(n-1)a_1^2 + a_n^2}{n+3} = \left[\frac{(n-1)a_1 + a_n}{n+1}\right]^2,$$

$$(2a_1 - a_n)[2a_1 - (n+2)a_n] = 0,$$

$$a_1 = \frac{a_n}{2},$$

hence

$$(a_1 + a_2 + \dots + a_n) \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} \right) = [(n-1)a_1 + a_n] \left(\frac{n-1}{a_1} + \frac{1}{a_n} \right)$$
$$= (n-1)^2 + 1 + (n-1) \left(\frac{a_1}{a_n} + \frac{a_n}{a_1} \right)$$
$$= \frac{(n+1)(2n-1)}{2}.$$

The equality holds for

$$a_1 = a_2 = \dots = a_{n-1} = \frac{a_n}{2}$$

(or any cyclic permutation).

(2) To prove the right original inequality, we only need to consider the case

$$a_1 \leq a_2 = a_3 = \cdots = a_n$$
.

The hypothesis involves

$$(a_1 - 2a_n)[(n+2)a_1 - 2a_n] = 0,$$

$$a_1 = \frac{2a_n}{n+2},$$

hence

$$(a_1 + a_2 + \dots + a_n) \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} \right) = \left[(n-1)a_1 + a_n \right] \left(\frac{n-1}{a_1} + \frac{1}{a_n} \right)$$
$$= (n-1)^2 + 1 + (n-1) \left(\frac{a_1}{a_n} + \frac{a_n}{a_1} \right)$$
$$= \frac{3n^2(n+1)}{2(n+2)}.$$

The equality holds for

$$a_1 = a_2 = \dots = a_{n-1} = \frac{2a_n}{n+2}$$

(or any cyclic permutation).

P 5.22. If a, b, c, d are nonnegative real numbers so that a + b + c + d = 3, then

$$abc + bcd + cda + dab \le 1 + \frac{176}{81} abcd.$$

(Vasile C., 2005)

Solution. Assume that

$$a \le b \le c \le d$$
.

For a = 0, we need to show that b + c + d = 3 implies

$$bcd \leq 1$$
,

which follows immediately from the AM-GM inequality:

$$bcd \le \left(\frac{b+c+d}{3}\right)^3 = 1.$$

For a > 0, rewrite the inequality in the form

$$abcd\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}\right) \le 1 + \frac{176}{81} \ abcd$$

and apply Corollary 5 for k = 0 and m = -1:

If

$$a+b+c+d=3$$
, $abcd=constant$, $0 < a \le b \le c \le d$,

then

$$S_4 = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$$

is maximal for

$$a \le b = c = d$$
.

Thus, we only need to prove the homogeneous inequality

$$27(a+b+c+d)(abc+bcd+cda+dab) \le (a+b+c+d)^4 + 176abcd$$

for $a \le b = c = d = 1$. The inequality becomes

$$27(a+3)(3a+1) \le (a+3)^4 + 176a,$$

$$a^4 + 12a^3 - 27a^2 + 14a \ge 0,$$

$$a(a-1)^2(a+14) \ge 0.$$

The equality holds for a = b = c = d = 3/4, and also for

$$a = 0, \quad b = c = d = 1$$

(or any cyclic permutation).

P 5.23. If a, b, c, d are nonnegative real numbers so that a + b + c + d = 3, then

$$a^2b^2c^2 + b^2c^2d^2 + c^2d^2a^2 + d^2a^2b^2 + \frac{3}{4}abcd \le 1.$$

(Gabriel Dospinescu and Vasile Cirtoaje, 2005)

Solution. Assume that

$$a \le b \le c \le d$$
.

For a = 0, we need to show that

$$b^2c^2d^2 \le 1,$$

which follows immediately from the AM-GM inequality:

$$bcd \le \left(\frac{b+c+d}{3}\right)^3 = 1.$$

For a > 0, rewrite the inequality in the form

$$a^{2}b^{2}c^{2}d^{2}\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{d^{2}}\right)+\frac{3}{4}abcd\leq 1,$$

and apply Corollary 5 for k = 0 and m = -2:

If

$$a+b+c+d=3$$
, $abcd=constant$, $0 < a \le b \le c \le d$,

then

$$S_4 = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{d^2}$$

is maximal for $a \le b = c = d$.

Thus, we only need to prove the homogeneous inequality

$$\left(\frac{a+b+c+d}{3}\right)^6 \ge a^2b^2c^2 + b^2c^2d^2 + c^2d^2a^2 + d^2a^2b^2 + \frac{1}{12}abcd(a+b+c+d)^2$$

for $a \le b = c = d = 1$; that is, to show that $0 < a \le 1$ implies

$$\left(1 + \frac{a}{3}\right)^6 \ge 1 + 3a^2 + \frac{1}{12}a(a+3)^2.$$

Since

$$\left(1+\frac{a}{3}\right)^3 = 1+a+\frac{a^2}{3}+\frac{a^3}{27} > 1+a+\frac{a^2}{3},$$

it suffices to show that

$$\left(1+a+\frac{a^2}{3}\right)^2 \ge 1+3a^2+\frac{1}{12}a(a+3)^2,$$

which is equivalent to the obvious inequality

$$4a^4 + 3a(1-a)(15-7a) \ge 0.$$

The equality holds for

$$a = 0, \quad b = c = d = 1$$

(or any cyclic permutation).

P 5.24. If a, b, c, d are nonnegative real numbers so that a + b + c + d = 3, then

$$a^2b^2c^2+b^2c^2d^2+c^2d^2a^2+d^2a^2b^2+\frac{4}{3}(abcd)^{3/2}\leq 1.$$

(Vasile C., 2005)

Solution. The proof is similar to the one of the preceding P 5.23. We need to prove that

$$\left(1 + \frac{a}{3}\right)^6 \ge 1 + 3a^2 + \frac{4}{3}a^{3/2}$$

for $0 \le a \le 1$. Since

$$2a^{3/2} \le a^2 + a$$

it suffices to show that

$$\left(1+\frac{a}{3}\right)^6 \ge 1+\frac{2}{3}a+\frac{11}{3}a^2.$$

Since

$$\left(1 + \frac{a}{3}\right)^3 = 1 + a + \frac{a^2}{3} + \frac{a^3}{27} \ge 1 + a + \frac{a^2}{3}$$

and

$$\left(1+a+\frac{a^2}{3}\right)^2 = 1+2a+\frac{5}{3}a^2+\frac{2}{3}a^3+\frac{1}{9}a^4$$
$$\geq 1+2a+\frac{5}{3}a^2+\frac{2}{3}a^3,$$

it suffices to show that

$$1 + 2a + \frac{5}{3}a^2 + \frac{2}{3}a^3 \ge 1 + \frac{2}{3}a + \frac{11}{3}a^2,$$

which is equivalent to the obvious inequality

$$a(1-a)(2-a) \ge 0.$$

The equality holds for

$$a = 0, \quad b = c = d = 1$$

(or any cyclic permutation).

P 5.25. If a, b, c, d are nonnegative real numbers so that a + b + c + d = 4, then

$$a^2b^2c^2 + b^2c^2d^2 + c^2d^2a^2 + d^2a^2b^2 + 2(abcd)^{3/2} \le 6.$$

(Vasile C., 2005)

Solution. The proof is similar to the one of P 5.23. We need to prove that

$$6\left(\frac{a+3}{4}\right)^6 \ge 1 + 3a^2 + 2a^{3/2}$$

for $0 \le a \le 1$. Since

$$2a^{3/2} \le a^2 + a$$

it suffices to show that

$$6\left(\frac{a+3}{4}\right)^6 \ge 1 + a + 4a^2.$$

Using the substitution

$$x = \frac{1-a}{4}, \quad 0 \le x \le \frac{1}{4},$$

the inequality becomes

$$3(1-x)^6 \ge 3-18x+32x^2$$

$$x^2(13 - 60x + 45x^2 - 18x^3 + 3x^4) \ge 0.$$

It is true since

$$2(13-60x+45x^2-18x^3+3x^4) > 25-120x+90x^2-40x^3$$
$$= 5(1-4x)(5-4x+2x^2) \ge 0.$$

The equality holds for a = b = c = d = 1.

P 5.26. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

$$11(ab + bc + ca) + 4(a^2b^2 + b^2c^2 + c^2a^2) \le 45.$$

(Vasile C., 2005)

Solution. Assume that $a \le b \le c$. For a = 0, we need to show that b + c = 3 involves

$$11bc + 4b^2c^2 \le 45.$$

We have

$$bc \le \left(\frac{b+c}{2}\right)^2 = \frac{9}{4},$$

hence

$$11bc + 4b^2c^2 \le \frac{99}{4} + \frac{81}{4} = 45.$$

For a > 0, rewrite the desired inequality in the form

$$11abc\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) + 4a^2b^2c^2\left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}\right) \le 45.$$

According to Corollary 5 (case k = 2 and m < 0), if

$$a+b+c=3$$
, $abc=constant$, $0 < a \le b \le c$,

then the sums $\frac{1}{a} + \frac{1}{b} + \frac{1}{c}$ and $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}$ are maximal for $0 < a \le b = c$.

Therefore, we only need to prove that a + 2b = 3 involves

$$11(2ab + b^2) + 4(2a^2b^2 + b^4) \le 45$$
,

which is equivalent to

$$15 - 22b - 13b^{2} + 32b^{3} - 12b^{4} \ge 0,$$
$$(3 - 2b)(1 - b)^{2}(5 + 6b) \ge 0,$$
$$a(1 - b)^{2}(5 + 6b) \ge 0.$$

The equality holds for a = b = c = 1, and also for

$$a = 0, \qquad b = c = \frac{3}{2}$$

(or any cyclic permutation).

Remark. In the same manner, we can prove the following statement:

• If a, b, c, d are nonnegative real numbers so that a + b + c + d = 4, then $abc + bcd + cda + dab + a^2b^2c^2 + b^2c^2d^2 + c^2d^2a^2 + d^2a^2b^2 < 8$.

with equality for a = b = c = d = 1.

P 5.27. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

$$a^2b^2 + b^2c^2 + c^2a^2 + a^3b^3 + b^3c^3 + c^3a^3 \ge 6abc.$$

(Vasile C., 2005)

Solution. Assume that $a \le b \le c$. For a = 0, the inequality is trivial. For a > 0, rewrite the desired inequality in the form

$$abc\left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}\right) + a^2b^2c^2\left(\frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3}\right) \ge 6.$$

According to Corollary 5 (case k = 0 and m < 0), if

$$a+b+c=3$$
, $abc=constant$, $0 < a \le b \le c$,

then the sums $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}$ and $\frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3}$ are maximal for $0 < a \le b = c$.

Thus, we only need to prove that

$$2a^2b^2 + b^4 + 2a^3b^3 + b^6 > 6ab^2$$

for

$$a + 2b = 3$$
, $1 \le b < 3/2$.

The inequality is equivalent to

$$b^3(14-33b+24b^2-5b^3) \ge 0$$

$$b^3(1-b)^2(14-5b) \ge 0.$$

The equality holds for a = b = c = 1, and also for

$$a = b = 0, c = 3$$

(or any cyclic permutation).

P 5.28. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

$$2(a^2 + b^2 + c^2) + 5(\sqrt{a} + \sqrt{b} + \sqrt{c}) \ge 21.$$

(Vasile C., 2008)

Solution. Apply Corollary 5 for k = 2 and m = 1/2:

$$a + b + c = 3$$
, $a^2 + b^2 + c^2 = constant$, $0 \le a \le b \le c$,

then

$$S_3 = \sqrt{a} + \sqrt{b} + \sqrt{c}$$

is minimal for either a = 0 or $0 < a \le b = c$.

Case 1: a = 0. We need to show that b + c = 3 involves

$$2(b^2+c^2)+5(\sqrt{b}+\sqrt{c}) \ge 21,$$

which is equivalent to

$$5\sqrt{3+2\sqrt{bc}} \ge 3+4bc.$$

Substituting

$$x = \sqrt{bc}, \quad 0 \le x \le \frac{b+c}{2} = \frac{3}{2},$$

the inequality becomes

$$5\sqrt{3+2x} \ge 3+4x^2,$$
$$25(3+2x) \ge (3+4x^2)^2.$$

This inequality is equivalent to $f(x) \ge 0$, where

$$f(x) = \frac{66}{x} + 50 - 24x - 16x^3, \quad 0 < x \le 3/2.$$

Since f is decreasing, we have

$$f(x) \ge f(3/2) = 4 > 0.$$

Case 2: $0 < a \le b = c$. We need to show that

$$2(a^2 + 2b^2) + 5(\sqrt{a} + 2\sqrt{b}) \ge 21$$

for

$$a + 2b = 3$$
, $1 \le b < \frac{3}{2}$.

Write the inequality as

$$5\sqrt{3-2b} + 10\sqrt{b} \ge 3 + 24b - 12b^2.$$

Substituting

$$x = \sqrt{b}, \quad 1 \le x < \sqrt{\frac{3}{2}},$$

the inequality becomes

$$5\sqrt{3-2x^2} \ge 3 - 10x + 24x^2 - 12x^4,$$

$$12(x^2 - 1)^2 \ge 5\left(3 - 2x - \sqrt{3-2x^2}\right),$$

$$12(x^2 - 1)^2 \ge \frac{30(x-1)^2}{3 - 2x + \sqrt{3-2x^2}},$$

which is true if

$$2(x+1)^2 \ge \frac{5}{3-2x+\sqrt{3-2x^2}}.$$

It suffices to show that

$$2(x+1)^2 \ge \frac{5}{3-2x},$$

which is equivalent to

$$1 + 8x - 2x^{2} - 4x^{3} \ge 0,$$

$$x(5 - 4x)\left(\frac{7}{4} + x\right) + \frac{4 - 3x}{4} \ge 0.$$

Since

$$x < \sqrt{\frac{3}{2}} < \frac{5}{4} < \frac{4}{3},$$

the conclusion follows.

The equality holds for a = b = c = 1.

P 5.29. If a, b, c are nonnegative real numbers so that ab + bc + ca = 3, then

$$\sqrt{\frac{1+2a}{3}} + \sqrt{\frac{1+2b}{3}} + \sqrt{\frac{1+2c}{3}} \ge 3.$$

(Vasile C., 2008)

Solution. Write the hypothesis ab + bc + ca = 3 as

$$(a+b+c)^2 = 6 + a^2 + b^2 + c^2$$
,

and apply Corollary 1 to

$$f(u) = \sqrt{\frac{1+2u}{3}}, \quad u \ge 0.$$

We have

$$g(x) = f'(x) = \frac{1}{\sqrt{3(1+2x)}},$$
$$g''(x) = \frac{\sqrt{3}}{(1+2x)^{5/2}}.$$

Since g''(x) > 0 for $x \ge 0$, g is strictly convex on $[0, \infty)$. According to Corollary 1, if

$$a+b+c=constant$$
, $a^2+b^2+c^2=constant$, $0 \le a \le b \le c$,

then the sum

$$S_3 = f(a) + f(b) + f(c)$$

is minimal for either a = 0 or $0 < a \le b = c$.

Case 1: a = 0. We need to show that bc = 3 involves

$$\sqrt{1+2b} + \sqrt{1+2c} \ge 3\sqrt{3} - 1.$$

By squaring, the inequality becomes

$$b+c+\sqrt{13+2(b+c)} \ge 13-3\sqrt{3}$$
.

We have $b + c \ge 2\sqrt{bc} = 2\sqrt{3}$, hence

$$b+c+\sqrt{13+2(b+c)} \ge 2\sqrt{3}+\sqrt{13+4\sqrt{3}} = 4\sqrt{3}+1 > 13-3\sqrt{3}.$$

Case 2: $0 < a \le b = c$. From ab + bc + ca = 3, it follows that

$$a = \frac{3 - b^2}{2b}. \quad 0 < b < \sqrt{3}.$$

Thus, the inequality can be written as

$$\sqrt{1 + \frac{3 - b^2}{b}} + 2\sqrt{1 + 2b} \ge 3\sqrt{3}.$$

Substituting

$$t = \sqrt{\frac{1+2b}{3}}, \quad \frac{1}{\sqrt{3}} < t < \sqrt{\frac{1+2\sqrt{3}}{3}} < \frac{5}{4},$$

the inequality turns into

$$\sqrt{\frac{3+4t^2-3t^4}{2(3t^2-1)}} \ge 3-2t.$$

By squaring, we need to show that

$$7 - 8t - 14t^2 + 24t^3 - 9t^4 \ge 0,$$

which is equivalent to

$$(1-t)^2(7+6t-9t^2) \ge 0.$$

This is true since

$$7 + 6t - 9t^2 = 8 - (3t - 1)^2 > 8 - \left(\frac{15}{4} - 1\right)^2 = \frac{7}{16} > 0.$$

The equality holds for a = b = c = 1.

P 5.30. Let a, b, c be nonnegative real numbers, no two of which are zero. If

$$0 \le k \le 15$$
,

then

$$\frac{1}{(a+b)^2} + \frac{1}{(b+c)^2} + \frac{1}{(c+a)^2} + \frac{k}{(a+b+c)^2} \ge \frac{9+k}{4(ab+bc+ca)}.$$
(Vasile C., 2007)

Solution. Due to homogeneity and symmetry, we may consider that

$$a + b + c = 1$$
, $0 \le a \le b \le c$.

On this assumption, the inequality becomes

$$\frac{1}{(1-a)^2} + \frac{1}{(1-b)^2} + \frac{1}{(1-c)^2} + k \ge \frac{9+k}{2(1-a^2-b^2-c^2)}.$$

To prove it, we apply Corollary 1 to the function

$$f(u) = \frac{1}{(1-u)^2}, \quad 0 \le u < 1.$$

We have $f(1-) = \infty$ and

$$g(x) = f'(x) = \frac{2}{(1-x)^3}, \quad g''(x) = \frac{24}{(1-x)^5}.$$

Since g''(x) > 0, g is strictly convex on [0,1). According to Corollary 1 and Note 3, if

$$a + b + c = 1$$
, $a^2 + b^2 + c^2 = constant$, $0 \le a \le b \le c$,

then the sum

$$S_3 = f(a) + f(b) + f(c)$$

is minimal for either a = 0 or $0 < a \le b = c$.

Case 1: a = 0. For

$$x = \frac{b}{c} + \frac{c}{b}, \quad x \ge 2,$$

the original inequality becomes

$$\frac{1}{b^2} + \frac{1}{c^2} + \frac{1+k}{(b+c)^2} \ge \frac{9+k}{4bc},$$
$$x + \frac{1+k}{x+2} \ge \frac{9+k}{4},$$
$$(x-2)(4x+7-k) \ge 0.$$

This is true since

$$4x + 7 - k \ge 15 - k \ge 0$$
.

Case 2: $0 < a \le b = c$. The original inequality becomes

$$\frac{2}{(a+b)^2} + \frac{1}{4b^2} + \frac{k}{(a+2b)^2} \ge \frac{9+k}{4b(2a+b)},$$

$$\frac{a(a-b)^2}{2b^2(a+b)^2(2a+b)} + \frac{ka(4b-a)}{4b(a+2b)^2(2a+b)} \ge 0.$$

The equality holds for

$$a = 0$$
, $b = c$

(or any cyclic permutation). If k = 0 (Iran 1996 inequality), then the equality holds also for a = b = c.

P 5.31. If a, b, c are nonnegative real numbers, no two of which are zero, then

$$\frac{1}{(a+b)^2} + \frac{1}{(b+c)^2} + \frac{1}{(c+a)^2} + \frac{24}{(a+b+c)^2} \ge \frac{8}{ab+bc+ca}.$$

(Vasile C., 2007)

Solution. As shown in the proof of the preceding P 5.30, it suffices to prove the inequality for a = 0, and for $0 < a \le b = c$.

Case 1: a = 0. For

$$x = \frac{b}{c} + \frac{c}{b}, \quad x \ge 2,$$

the original inequality becomes

$$\frac{1}{b^2} + \frac{1}{c^2} + \frac{25}{(b+c)^2} \ge \frac{8}{bc},$$
$$x + \frac{25}{x+2} \ge 8,$$
$$(x-3)^2 \ge 0.$$

Case 2: $0 < a \le b = c$. Due to homogeneity, we only need to prove the homogeneous inequality for $0 < a \le b = c = 1$; that is,

$$\frac{2}{(a+1)^2} + \frac{1}{4} + \frac{24}{(a+2)^2} \ge \frac{8}{2a+1}.$$

It suffices to show that

$$\frac{2}{(a+1)^2} \ge \frac{8}{2a+1} - \frac{24}{(a+2)^2},$$

which is equivalent to

$$\frac{1}{(1+a)^2} \ge \frac{4(1-a)^2}{(2a+1)(a+2)^2},$$
$$a(2a^2+9a+12) \ge 4a^2(a^2-2).$$

This is true since

$$a(2a^2 + 9a + 12) \ge 0 \ge 4a^2(a^2 - 2).$$

The equality holds for

$$a = 0, \qquad \frac{b}{c} + \frac{c}{b} = 3$$

(or any cyclic permutation).

Remark. Actually, the following generalization holds:

• Let a, b, c be nonnegative real numbers, no two of which are zero. If $k \ge 15$, then

$$\frac{1}{(a+b)^2} + \frac{1}{(b+c)^2} + \frac{1}{(c+a)^2} + \frac{k}{(a+b+c)^2} \ge \frac{2(\sqrt{k+1}-1)}{ab+bc+ca},$$

with equality for

$$a = 0, \qquad \frac{b}{c} + \frac{c}{b} = \sqrt{k+1} - 2$$

(or any cyclic permutation).

P 5.32. If a, b, c are nonnegative real numbers, no two of which are zero, so that

$$k(a^2 + b^2 + c^2) + (2k + 3)(ab + bc + ca) = 9(k + 1), \quad 0 \le k \le 6,$$

then

$$\frac{1}{(a+b)^2} + \frac{1}{(b+c)^2} + \frac{1}{(c+a)^2} + \frac{9k}{(a+b+c)^2} \ge \frac{3}{4} + k.$$

(Vasile C., 2007)

Solution. Write the inequality in the homogeneous form

$$\frac{4}{(a+b)^2} + \frac{4}{(b+c)^2} + \frac{4}{(c+a)^2} + \frac{36k}{(a+b+c)^2} \ge \frac{9(k+1)(4k+3)}{k(a^2+b^2+c^2) + (2k+3)(ab+bc+ca)}.$$

As shown in the proof of P 5.30, it suffices to prove this inequality for a = 0, and for $0 < a \le b = c$.

Case 1: a = 0. Let

$$x = \frac{b}{c} + \frac{c}{b}, \quad x \ge 2.$$

The homogeneous inequality becomes

$$4\left(\frac{1}{b^2} + \frac{1}{c^2}\right) + \frac{36k+4}{(b+c)^2} \ge \frac{9(k+1)(4k+3)}{k(b^2+c^2) + (2k+3)bc},$$

$$4x + \frac{36k+4}{x+2} \ge \frac{9(k+1)(4k+3)}{kx+2k+3},$$

$$4kx^3 + 4(4k+3)x^2 - (43k+3)x - 2(5k+21) \ge 0,$$

$$(x-2)[4kx^2 + 4(6k+3)x + 5k + 21] \ge 0.$$

Case 2: $0 < a \le b = c$. We only need to prove the homogeneous inequality for b = c = 1. The inequality becomes

$$\frac{8}{(a+1)^2} + 1 + \frac{36k}{(a+2)^2} \ge \frac{9(k+1)(4k+3)}{ka^2 + (4k+6)a + 4k + 3},$$

$$ka^{6} + (10k+6)a^{5} - (14k-12)a^{4} - (10k+18)a^{3} + (17k-24)a^{2} + (24-4k)a \ge 0,$$

$$a(a-1)^{2} \lceil ka^{3} + 6(2k+1)a^{2} + 3(3k+8)a + 4(6-k) \rceil \ge 0.$$

Clearly, the last inequality is true for $0 \le k \le 6$.

The equality holds for a = b = c, and also for

$$a=0, b=c$$

(or any cyclic permutation).

P 5.33. If a, b, c are nonnegative real numbers, no two of which are zero, then

(a)
$$\frac{2}{a^2+b^2} + \frac{2}{b^2+c^2} + \frac{2}{c^2+a^2} \ge \frac{8}{a^2+b^2+c^2} + \frac{1}{ab+bc+ca};$$

(b)
$$\frac{2}{a^2+b^2} + \frac{2}{b^2+c^2} + \frac{2}{c^2+a^2} \ge \frac{7}{a^2+b^2+c^2} + \frac{6}{(a+b+c)^2};$$

(c)
$$\frac{2}{a^2+b^2} + \frac{2}{b^2+c^2} + \frac{2}{c^2+a^2} \ge \frac{45}{4(a^2+b^2+c^2)+ab+bc+ca}.$$

(Vasile C., 2007)

Solution. (a) Due to homogeneity and symmetry, we may consider that

$$a^2 + b^2 + c^2 = 1$$
, $0 \le a \le b \le c$.

On this assumption, the inequality can be written as

$$\frac{2}{1-a^2} + \frac{2}{1-b^2} + \frac{2}{1-c^2} \ge 8 + \frac{2}{(a+b+c)^2 - 1}.$$

To prove it, we apply Corollary 1 to the function

$$f(u) = \frac{1}{1 - u^2}, \quad 0 \le u < 1.$$

We have $f(1-) = \infty$ and

$$g(x) = f'(x) = \frac{2x}{(1-x^2)^2}, \quad g''(x) = \frac{24x(1+x^2)}{(1-x^2)^4}.$$

Since g''(x) > 0 for $x \in (0,1)$, g is strictly convex on [0,1). According to Corollary 1 and Note 3, if

$$a + b + c = constant$$
, $a^2 + b^2 + c^2 = 1$, $0 \le a \le b \le c$,

then the sum

$$S_3 = f(a) + f(b) + f(c)$$

is minimal for either a = 0 or $0 < a \le b = c$.

Case 1: a = 0. For

$$x = \frac{b}{c} + \frac{c}{b}, \quad x \ge 2,$$

the original inequality becomes

$$\frac{2}{b^2} + \frac{2}{c^2} \ge \frac{6}{b^2 + c^2} + \frac{1}{bc},$$
$$2x \ge \frac{6}{x} + 1,$$
$$(x - 2)(2x + 3) \ge 0.$$

Case 2: $0 < a \le b = c$. Due to homogeneity, it suffices to prove the original inequality for b = c = 1. Thus, we need to show that

$$1 + \frac{4}{a^2 + 1} \ge \frac{8}{a^2 + 2} + \frac{1}{2a + 1},$$

which is equivalent to

$$\frac{2a}{2a+1} \ge \frac{4a^2}{(a^2+1)(a^2+2)},$$

$$a(a^4-a^2-2a+2) \ge 0,$$

$$a(a-1)^2(a^2+2a+2) \ge 0.$$

The equality holds for a = b = c, and also for a = 0, b = c (or any cyclic permutation).

(b) The proof is similar to the one of the inequality in (a). For a = 0 and

$$x = \frac{b}{c} + \frac{c}{b}, \quad x \ge 2,$$

the original inequality becomes

$$\frac{2}{b^2} + \frac{2}{c^2} \ge \frac{5}{b^2 + c^2} + \frac{6}{(b+c)^2},$$
$$2x \ge \frac{5}{x} + \frac{6}{x+2},$$

$$(x-2)(2x^2+8x+5) \ge 0.$$

For b = c = 1, the original inequality is

$$1 + \frac{4}{a^2 + 1} \ge \frac{7}{a^2 + 2} + \frac{6}{(a+2)^2},$$
$$a(a^5 + 4a^4 - 2a^3 - 15a + 12) \ge 0,$$
$$a(a-1)^2(a^3 + 6a^2 + 9a + 12) \ge 0.$$

The equality holds for a = b = c, and also for a = 0, b = c (or any cyclic permutation).

(c) The proof is also similar to the one of the inequality in (a). For a = 0 and

$$x = \frac{b}{c} + \frac{c}{b}, \quad x \ge 2,$$

the original inequality becomes

$$2\left(\frac{1}{b^2} + \frac{1}{c^2}\right) + \frac{2}{b^2 + c^2} \ge \frac{45}{4(b^2 + c^2) + bc},$$
$$2x + \frac{2}{x} \ge \frac{45}{4x + 1},$$
$$(x - 2)(8x^2 + 18x - 1) \ge 0.$$

For b = c = 1, the original inequality can be written as

$$1 + \frac{4}{a^2 + 1} \ge \frac{45}{4a^2 + 2a + 9},$$
$$a(2a^3 + a^2 - 8a + 5) \ge 0,$$
$$a(a - 1)^2(2a + 5) \ge 0.$$

The equality holds for a = b = c, and also for a = 0, b = c (or any cyclic permutation).

.

P 5.34. If a, b, c are nonnegative real numbers, no two of which are zero, then

$$\frac{1}{a^2 + b^2} + \frac{1}{b^2 + c^2} + \frac{1}{c^2 + a^2} + \frac{3}{a^2 + b^2 + c^2} \ge \frac{4}{ab + bc + ca}.$$

(Vasile C., 2007)

Solution. As shown in the proof of the preceding P 5.33, it suffices to prove the inequality for a = 0, and for $0 < a \le b = c$.

Case 1: a = 0. For

$$x = \frac{b}{c} + \frac{c}{b}, \quad x \ge 2,$$

the original inequality becomes

$$\frac{1}{b^2} + \frac{1}{c^2} + \frac{4}{b^2 + c^2} \ge \frac{4}{bc},$$
$$x + \frac{4}{x} \ge 4,$$
$$(x - 2)^2 \ge 0.$$

Case 2: $0 < a \le b = c$. Due to homogeneity, it suffices to prove the original inequality for $0 < a \le b = c = 1$. Thus, we need to show that

$$\frac{1}{2} + \frac{2}{a^2 + 1} + \frac{3}{a^2 + 2} \ge \frac{4}{2a + 1}.$$

It suffices to show that

$$\frac{2}{a+1} + \frac{3}{a+2} \ge \frac{4}{2a+1} - \frac{1}{2},$$

which is equivalent to

$$\frac{5a+7}{a^2+3a+2} \ge \frac{7-2a}{4a+2},$$

$$a(2a^2+19a+21) \ge 0,$$

The equality holds for

$$a = 0$$
, $b = c$

(or any cyclic permutation).

Remark. Actually, the following generalization holds:

• Let a, b, c be nonnegative real numbers, no two of which are zero. (a) If $-4 \le k \le 3$, then

$$\frac{2}{a^2+b^2} + \frac{2}{b^2+c^2} + \frac{2}{c^2+a^2} + \frac{2k}{a^2+b^2+c^2} \ge \frac{k+5}{ab+bc+ca},$$

with equality for

$$a=0, b=c$$

(or any cyclic permutation).

(b) If $k \geq 3$, then

$$\frac{1}{a^2 + b^2} + \frac{1}{b^2 + c^2} + \frac{1}{c^2 + a^2} + \frac{k}{a^2 + b^2 + c^2} \ge \frac{2\sqrt{k+1}}{ab + bc + ca},$$

with equality for

$$a = 0, \qquad \frac{b}{c} + \frac{c}{b} = \sqrt{k+1}$$

(or any cyclic permutation).

P 5.35. If a, b, c are nonnegative real numbers, no two of which are zero, then

(a)
$$\frac{3}{a^2+ab+b^2} + \frac{3}{b^2+bc+c^2} + \frac{3}{c^2+ca+a^2} \ge \frac{5}{ab+bc+ca} + \frac{4}{a^2+b^2+c^2};$$

$$(b) \qquad \frac{3}{a^2+ab+b^2}+\frac{3}{b^2+bc+c^2}+\frac{3}{c^2+ca+a^2}\geq \frac{1}{ab+bc+ca}+\frac{24}{(a+b+c)^2};$$

(c)
$$\frac{1}{a^2 + ab + b^2} + \frac{1}{b^2 + bc + c^2} + \frac{1}{c^2 + ca + a^2} \ge \frac{21}{2(a^2 + b^2 + c^2) + 5(ab + bc + ca)}.$$
(Vasile C., 2007)

Solution. (a) Due to homogeneity and symmetry, we may consider that

$$a+b+c=1$$
, $0 \le a \le b \le c$.

Let

$$p = \frac{1 + a^2 + b^2 + c^2}{2}.$$

Since

$$\frac{1}{2(b^2+bc+c^2)} = \frac{1}{(a+b+c)^2+a^2+b^2+c^2-2a(a+b+c)} = \frac{1}{2(p-a)},$$

the inequality can be written as

$$\frac{3}{p-a} + \frac{3}{p-b} + \frac{3}{p-c} \ge \frac{5}{1-p} + \frac{4}{2p-1}.$$

To prove it, we apply Corollary 1 to the function

$$f(u) = \frac{3}{p-u}, \quad 0 \le u < p.$$

We have $f(p-) = \infty$ and

$$g(x) = f'(x) = \frac{3}{(p-x)^2}, \quad g''(x) = \frac{18}{(p-x)^4}.$$

Since g''(x) > 0, g is strictly convex on [0, p). According to Corollary 1 and Note 3, if

$$a + b + c = 1$$
, $a^2 + b^2 + c^2 = 2p - 1 = constant$, $0 \le a \le b \le c$,

then the sum

$$S_3 = f(a) + f(b) + f(c)$$

is minimal for either a = 0 or $0 < a \le b = c$.

Case 1: a = 0. For

$$x = \frac{b}{c} + \frac{c}{b}, \quad x \ge 2,$$

the original inequality becomes

$$3\left(\frac{1}{b^2} + \frac{1}{c^2}\right) + \frac{3}{b^2 + bc + c^2} \ge \frac{5}{bc} + \frac{4}{b^2 + c^2},$$

which is equivalent to

$$3x + \frac{3}{x+1} \ge 5 + \frac{4}{x},$$
$$(x-2)(3x^2 + 4x + 2) \ge 0.$$

Case 2: $0 < a \le b = c$. Due to homogeneity, it suffices to prove the original inequality for b = c = 1. Thus, we need to show that

$$\frac{6}{a^2+a+1}+1 \ge \frac{5}{2a+1}+\frac{4}{a^2+2},$$

which is equivalent to

$$a(a^4 - a^3 + 3a^2 - 7a + 4) \ge 0,$$

 $a(a-1)^2(a^2 + a + 4) \ge 0.$

The equality holds for a = b = c, and also for a = 0, b = c (or any cyclic permutation).

(b) The proof is similar to the one of the inequality in (a). For a=0, the original inequality becomes

$$3\left(\frac{1}{b^2} + \frac{1}{c^2}\right) + \frac{3}{b^2 + bc + c^2} \ge \frac{1}{bc} + \frac{24}{(b+c)^2},$$

which is equivalent to

$$3x + \frac{3}{x+1} \ge 1 + \frac{24}{x+2}, \quad x = \frac{b}{c} + \frac{c}{b},$$
$$(x-2)(3x^2 + 14x + 10) \ge 0.$$

For b = c = 1, the original inequality becomes

$$\frac{6}{a^2+a+1}+1 \ge \frac{1}{2a+1}+\frac{24}{a^2+2},$$

which is equivalent to

$$a(a^4 + 5a^3 - 9a^2 - a + 4) \ge 0,$$

$$a(a-1)^2(a^2+7a+4) \ge 0.$$

The equality holds for a = b = c, and also for a = 0, b = c (or any cyclic permutation).

(c) The proof is similar to the one of the inequality in (a). For a=0, the original inequality becomes

$$\frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{b^2 + bc + c^2} \ge \frac{21}{2(b^2 + c^2) + 5bc},$$

which is equivalent to

$$x + \frac{1}{x+1} \ge \frac{21}{2x+5}, \quad x = \frac{b}{c} + \frac{c}{b},$$

 $(x-2)(2x^2 + 11x + 8) \ge 0.$

For b = c = 1, the original inequality becomes

$$\frac{2}{a^2+a+1}+\frac{1}{3}\geq \frac{21}{2a^2+10a+9},$$

which is equivalent to

$$a(a^3 + 6a^2 - 15a + 8) \ge 0,$$

 $a(a-1)^2(a+8) \ge 0.$

The equality holds for a = b = c, and also for a = 0, b = c (or any cyclic permutation).

P 5.36. Let f be a real-valued function, continuous on $[0, \infty)$ and differentiable on $(0, \infty)$, so that $f'''(u) \ge 0$ for $u \in (0, \infty)$. If $a, b, c \ge 0$, then

$$f(a^2+2bc)+f(b^2+2ca)+f(c^2+2ab) \leq f(a^2+b^2+c^2)+2f(ab+bc+ca).$$

Solution. Denoting

$$x = a^2 + 2bc$$
, $y = b^2 + 2ca$, $z = c^2 + 2ab$,

the inequality becomes

$$f(x)+f(y)+f(z) \le f(a^2+b^2+c^2)+2f(ab+bc+ca).$$

Assume that

$$a+b+c = constant$$
, $a^2+b^2+c^2 = constant$,

which involve

$$2(ab+bc+ca) = (a+b+c)^2 - (a^2+b^2+c^2) = constant.$$

We have

$$x + y + z = (a + b + c)^2 = constant,$$

 $x^2 + y^2 + z^2 = (a^2 + b^2 + c^2)^2 + 2(ab + bc + ca)^2 = constant.$

According to the EV-Theorem (Corollary 1), since $f'''(u) \ge 0$ for $u \in (0, \infty)$, the sum f(x) + f(y) + f(z) is maximal for $x = y \le z$, that is

$$a^2 + 2bc = b^2 + 2ca \le c^2 + 2ab$$
.

From $a^2 + 2bc = b^2 + 2ca$, we get a = b or a + b = 2c. If a + b = 2c, the inequality $b^2 + 2ca \le c^2 + 2ab$ is equivalent to $(b - c)^2 \le 0$, which involves b = c. Thus it suffices to prove the required inequality for two equal variables, when the inequality is an identity.

The equality holds for a = b or b = c or c = a.

Remark 1. The inequality is also true for a real-valued function f, continuous on $(0, \infty)$ and differentiable on $(0, \infty)$, so that $f'''(u) \ge 0$ for $u \in (0, \infty)$ and $\lim_{u \to 0} f(u) = \pm \infty$.

Remark 2. The following inequalities hold:

$$\frac{1}{a^2 + 2bc} + \frac{1}{b^2 + 2ca} + \frac{1}{c^2 + 2ab} \ge \frac{1}{a^2 + b^2 + c^2} + \frac{2}{ab + bc + ca},$$

$$\sqrt{a^2 + 2bc} + \sqrt{b^2 + 2ca} + \sqrt{c^2 + 2ab} \le \sqrt{a^2 + b^2 + c^2} + 2\sqrt{ab + bc + ca},$$

$$\frac{1}{\sqrt{a^2 + 2bc}} + \frac{1}{\sqrt{b^2 + 2ca}} + \frac{1}{\sqrt{c^2 + 2ab}} \ge \frac{1}{\sqrt{a^2 + b^2 + c^2}} + \frac{2}{\sqrt{ab + bc + ca}},$$

$$(a^2 + 2bc)(b^2 + 2ca)(c^2 + 2ab) \le (a^2 + b^2 + c^2)(ab + bc + ca)^2.$$

P 5.37. *If* a, b, c are the lengths of the side of a triangle, then

$$\frac{1}{(a+b)^2} + \frac{1}{(b+c)^2} + \frac{1}{(c+a)^2} \le \frac{85}{36(ab+bc+ca)}.$$

(Vasile C., 2007)

Solution. Use the substitution

$$a = y + z$$
, $b = z + x$, $c = x + y$,

where x, y, z are nonnegative real numbers. Due to homogeneity and symmetry, we may consider that

$$x + y + z = 2$$
, $0 \le x \le y \le z$.

We need to show that

$$\frac{1}{(x+2)^2} + \frac{1}{(y+2)^2} + \frac{1}{(z+2)^2} \le \frac{85}{18(12 - x^2 - y^2 - z^2)},$$

which can be written as

$$f(x) + f(y) + f(z) + \frac{85}{18(12 - x^2 - y^2 - z^2)} \ge 0,$$

where

$$f(u) = \frac{-1}{(u+2)^2}, \quad u \ge 0.$$

We have

$$g(x) = f'(x) = \frac{2}{(x+2)^3}, \quad g''(x) = \frac{24}{(x+2)^5}.$$

Since g''(x) > 0 for $x \ge 0$, g is strictly convex on $[0, \infty)$. According to Corollary 1, *if*

$$x + y + z = 2$$
, $x^2 + y^2 + z^2 = constant$, $0 \le x \le y \le z$,

then the sum

$$S_3 = f(x) + f(y) + f(z)$$

is minimal for either x = 0 or $0 < x \le y = z$.

Case 1: x = 0. This implies a = b + c. Since

$$\frac{1}{(a+b)^2} + \frac{1}{(c+a)^2} = \frac{5(b^2+c^2) + 8bc}{(2b^2+2c^2+5bc)^2}$$

and

$$ab + bc + ca = a(b+c) + bc = (b+c)^2 + bc = b^2 + c^2 + 3bc$$

we need to show that

$$\frac{5(b^2+c^2)+8bc}{(2b^2+2c^2+5bc)^2} + \frac{1}{(b+c)^2} \le \frac{85}{36(b^2+c^2+3bc)}.$$

For bc = 0, the inequality is true. For $bc \neq 0$, substituting

$$t = \frac{b}{c} + \frac{c}{b}, \quad t \ge 2,$$

the inequality becomes

$$\frac{5t+8}{(2t+5)^2} + \frac{1}{t+2} \le \frac{85}{36(t+3)},$$

$$\frac{5t+8}{(2t+5)^2} \le \frac{49t+62}{36(t+2)(t+3)}.$$

It suffices to show that

$$\frac{5t+8}{(2t+5)^2} \le \frac{48t+64}{36(t+2)(t+3)},$$

which is equivalent to

$$\frac{5t+8}{(2t+5)^2} \le \frac{12t+16}{9(t+2)(t+3)},$$
$$3t^3+7t^2-10t-32 \ge 0,$$
$$(t-2)(3t^2+13t+16) \ge 0.$$

Case 2: $0 < x \le y = z$. This involves b = c. Since the original inequality is homogeneous, we may consider b = c = 1 and $0 \le a \le b + c = 2$. Thus, we only need to show that

$$\frac{1}{4} + \frac{2}{(a+1)^2} \le \frac{85}{36(2a+1)},$$

which is equivalent to

$$(a-2)(9a^2-2a+1) \le 0.$$

The equality holds for a degenerated isosceles triangle with a = b + c, b = c (or any cyclic permutation).

P 5.38. If a, b, c are the lengths of the side of a triangle so that a + b + c = 3, then

$$\frac{1}{(a+b)^2} + \frac{1}{(b+c)^2} + \frac{1}{(c+a)^2} \le \frac{3(a^2+b^2+c^2)}{4(ab+bc+ca)}.$$

(Vasile C., 2007)

Solution. Write the inequality in the homogeneous form

$$\frac{1}{(a+b)^2} + \frac{1}{(b+c)^2} + \frac{1}{(c+a)^2} \le \frac{27(a^2+b^2+c^2)}{4(a+b+c)^2(ab+bc+ca)}.$$

As shown in the proof of the preceding P 5.37, it suffices to prove this inequality for a = b + c and for b = c = 1.

Case 1: a = b + c. Since

$$\frac{1}{(a+b)^2} + \frac{1}{(c+a)^2} = \frac{5(b^2+c^2) + 8bc}{(2b^2+2c^2+5bc)^2}$$

and

$$\frac{27(a^2+b^2+c^2)}{4(a+b+c)^2(ab+bc+ca)} = \frac{27(b^2+c^2+bc)}{8(b+c)^2(b^2+c^2+3bc)},$$

we need to show that

$$\frac{5(b^2+c^2)+8bc}{(2b^2+2c^2+5bc)^2}+\frac{1}{(b+c)^2}\leq \frac{27(b^2+c^2+bc)}{8(b+c)^2(b^2+c^2+3bc)}.$$

For bc = 0, the inequality is true. For $bc \neq 0$, substituting

$$t = \frac{b}{c} + \frac{c}{b}, \quad t \ge 2,$$

the inequality becomes

$$\frac{5t+8}{(2t+5)^2} + \frac{1}{t+2} \le \frac{27(t+1)}{8(t+2)(t+3)},$$
$$\frac{9t^2 + 38t + 41}{(2t+5)^2} \le \frac{27(t+1)}{8(t+3)}.$$

It suffices to show that

$$\frac{9t^2 + 45t + 27}{(2t+5)^2} \le \frac{27(t+1)}{8(t+3)},$$

which is equivalent to

$$\frac{t^2 + 5t + 3}{(2t+5)^2} \le \frac{3(t+1)}{8(t+3)},$$
$$4t^3 + t(8t-9) + 3 \ge 0.$$

Case 2: b = c = 1, $a \le b + c = 2$. The homogeneous inequality becomes

$$\frac{2}{(a+1)^2} + \frac{1}{4} \le \frac{27(a^2+2)}{4(2a+1)(a+2)^2}.$$

Since

$$4(2a+1)(a+2) \le 9(a+1)^2,$$

it suffices to show that

$$\frac{2}{(a+1)^2} + \frac{1}{4} \le \frac{3(a^2+2)}{(a+1)^2(a+2)},$$

which is equivalent to

$$(a-6)(a-1)^2 \le 0.$$

The equality holds for a an equilateral triangle.

P 5.39. Let $a, b, c \ge \frac{2}{5}$ so that a + b + c = 3. Then,

$$\frac{1}{3+2(a^2+b^2)} + \frac{1}{3+2(b^2+c^2)} + \frac{1}{3+2(c^2+a^2)} \le \frac{3}{7}.$$

(*Vasile C., 2006*)

Solution. For $a \le b \le c$, we have

$$\frac{2}{5} \le a \le b \le c \le \frac{11}{5}.$$

Indeed,

$$c = 3 - a - b \le 3 - \frac{2}{5} - \frac{2}{5} = \frac{11}{5}$$
.

Using the substitution

$$m = \frac{3}{2} + a^2 + b^2 + c^2$$
, $m \ge \frac{3}{2} + \frac{1}{3}(a+b+c)^2 = \frac{9}{2}$,

we have to show that

$$f(a) + f(b) + f(c) \le \frac{6}{7}$$

for

$$a+b+c=3$$
, $a^2+b^2+c^2=m-\frac{3}{2}$, $\frac{2}{5} \le a \le b \le c \le \frac{11}{5}$, $f(u)=\frac{1}{m-u^2}$, $\frac{2}{5} \le u \le \frac{11}{5}$.

From

$$g(x) = f'(x) = \frac{2x}{(m-x^2)^2}, \quad g''(x) = \frac{24x(m+x^2)}{(m-x^2)^4},$$

it follows that g''(x) > 0, hence g is strictly convex. By Corollary 1 and Note 2, if

$$a + b + c = 3$$
, $a^2 + b^2 + c^2 = constant$, $\frac{2}{5} \le a \le b \le c \le \frac{11}{5}$,

then the sum

$$S_3 = f(a) + f(b) + f(c)$$

is maximal for either c = 11/5 or $a = b \le c$. The case c = 11/5 leads to a = b = 2/5, when the inequality is an equality. In the second case, we need to prove that

$$\frac{1}{3+4a^2} + \frac{2}{3+2(a^2+c^2)} \le \frac{3}{7}$$

for 2a + c = 3, $\frac{2}{5} \le a \le c$. Write the inequality as follows

$$\frac{1}{3+4a^2} + \frac{2}{21-24a+10a^2} \le \frac{3}{7},$$

$$\frac{1}{3+4a^2} \le \frac{49-72a+30a^2}{7(21-24a+10a^2)},$$
$$a(a-1)^2(5a-2) \ge 0.$$

The equality holds for a = b = c = 1, and also for

$$a = b = \frac{2}{5}, \quad c = \frac{11}{5}$$

(or any cyclic permutation).

Remark In the same manner, we can prove the following statement:

• Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$. If $k \ge \frac{n^2 - 1}{n^2 - n - 1}$, then

$$\sum \frac{1}{k+a_2^2+\cdots+a_n^2} \le \frac{n}{k+n-1},$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$. If $k = \frac{n^2 - 1}{n^2 - n - 1}$, then the equality holds also for

$$a_1 = \dots = a_{n-1} = \frac{1}{n^2 - n - 1}, \quad a_n = n - \frac{n-1}{n^2 - n - 1}$$

(or any cyclic permutation).

P 5.40. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

$$\frac{2}{2+a^2+b^2} + \frac{2}{2+b^2+c^2} + \frac{2}{2+c^2+a^2} \leq \frac{99}{63+a^2+b^2+c^2}.$$

(Vasile C., 2009)

Solution. The proof is similar to the one of P 5.39. Thus, we only need to prove the inequality for $0 \le a = b \le c$; that is, to show that 2a + c = 3 involves

$$\frac{1}{1+a^2} + \frac{4}{2+a^2+c^2} \le \frac{99}{63+2a^2+c^2}.$$

Write this inequality as follows

$$\frac{1}{a^2+1} + \frac{4}{5a^2 - 12a + 11} \le \frac{33}{2(a^2 - 2a + 12)},$$
$$49a^4 - 112a^3 + 78a^2 - 16a + 1 \ge 0,$$

$$(a-1)^2(7a-1)^2 \ge 0.$$

The equality holds for a = b = c = 1, and also for

$$a = b = \frac{1}{7}, \quad c = \frac{19}{7}$$

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

• Let a, b, c be nonnegative real numbers so that a + b + c = 3. If $\frac{8}{5} \le k \le 3$, then

$$\frac{k+2}{k+a^2+b^2} + \frac{k+2}{k+b^2+c^2} + \frac{k+2}{k+c^2+a^2} \le \frac{9(3k^2+11k+10)}{9(k^2+2k+6)+(5k-8)(a^2+b^2+c^2)},$$

with equality for a = b = c = 1, and also for

$$a = b = \frac{3-k}{7}, \quad c = \frac{2k+15}{7}$$

(or any cyclic permutation).

P 5.41. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

$$\frac{1}{3+a^2+b^2} + \frac{1}{3+b^2+c^2} + \frac{1}{3+c^2+a^2} \le \frac{18}{27+a^2+b^2+c^2}.$$

(Vasile C., 2009)

Solution. The proof is similar to the one of P 5.39. Thus, we only need to prove the inequality for $0 \le a = b \le c$. Therefore, we only need to show that 2a + c = 3 involves

$$\frac{1}{3+2a^2} + \frac{2}{3+a^2+c^2} \le \frac{18}{27+2a^2+c^2}.$$

Write this inequality as follows

$$\frac{1}{2a^2+3} + \frac{2}{5a^2-12a+12} \le \frac{3}{a^2-2a+6},$$
$$a^2(a-1)^2 \ge 0.$$

The equality holds for a = b = c = 1, and also for

$$a = b = 0$$
, $c = 3$

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

• Let a_1, a_2, \ldots, a_n be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$. If $k \ge \frac{n}{n-2}$, then

$$\sum \frac{1}{k+a_2^2+\cdots+a_n^2} \le \frac{n^2(n+k)}{n(n^2+kn+k^2)+(kn-n-k)(a_1^2+a_2^2+\cdots+a_n^2)},$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = \cdots = a_{n-1} = 0, \quad a_n = n$$

(or any cyclic permutation).

P 5.42. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

$$\frac{5}{3+a^2+b^2} + \frac{5}{3+b^2+c^2} + \frac{5}{3+c^2+a^2} \ge \frac{27}{6+a^2+b^2+c^2}.$$

(Vasile C., 2014)

Solution. Using the substitution

$$m = 3 + a^2 + b^2 + c^2,$$

we have to show that

$$f(a) + f(b) + f(c) \ge \frac{27}{24 + m}$$

for

$$a+b+c=3,$$
 $a^2+b^2+c^2=m-3,$ $0 \le a \le b \le c,$
$$f(u) = \frac{5}{m-u^2}, \quad 0 \le u \le \sqrt{m-3}.$$

From

$$g(x) = f'(x) = \frac{10x}{(m-x^2)^2}, \quad g''(x) = \frac{120x(m+x^2)}{(m-x^2)^4},$$

it follows that $g''(x) \ge 0$ for $0 \le x \le \sqrt{m-3}$, hence g is strictly convex. By Corollary 1, if

$$a+b+c=3$$
, $a^2+b^2+c^2=constant$, $0 \le a \le b \le c$,

then the sum

$$S_3 = f(a) + f(b) + f(c)$$

is minimal for either a = 0 or $0 < a \le b = c$. Write the inequality in the homogeneous form

$$\sum \frac{5}{(a+b+c)^2 + 3(a^2+b^2)} \ge \frac{27}{2(a+b+c)^2 + 3(a^2+b^2+c^2)}.$$

Case 1: a = 0. The homogeneous inequality becomes

$$\frac{5}{(b+c)^2+3b^2} + \frac{5}{(b+c)^2+3c^2} + \frac{5}{(b+c)^2+3(b^2+c^2)} \ge \frac{27}{2(b+c)^2+3(b^2+c^2)},$$

$$\frac{5[5(b^2+c^2)+4bc]}{4(b^2+c^2)^2+10bc(b^2+c^2)+13b^2c^2} + \frac{5}{4(b^2+c^2)+2bc} \ge \frac{27}{5(b^2+c^2)+4bc}.$$

For the nontrivial case $bc \neq 0$, substituting

$$\frac{b}{c} + \frac{c}{b} = t, \quad t \ge 2,$$

we may write the inequality as

$$\frac{5(5t+4)}{4t^2+10t+13} + \frac{5}{4t+2} \ge \frac{27}{5t+4},$$
$$\frac{5(5t+4)}{4t^2+10t+13} \ge \frac{83t+34}{2(2t+1)(5t+4)}.$$

Since

$$83t + 34 \le 90t + 20$$
,

it suffices to show that

$$\frac{5t+4}{4t^2+10t+13} \ge \frac{9t+2}{(2t+1)(5t+4)},$$

which is equivalent to

$$14t^3 + 7t^2 - 65t - 10 \ge 0,$$

$$(t - 2)(14t^2 + 35t + 5) > 0.$$

Case 2: $0 < a \le b = c$. We only need to prove the homogeneous inequality for b = c = 1; that is,

$$\frac{10}{(a+2)^2 + 3(a^2 + 1)} + \frac{5}{(a+2)^2 + 6} \ge \frac{27}{2(a+2)^2 + 3(a^2 + 2)},$$

$$\frac{10}{4a^2 + 4a + 7} + \frac{5}{a^2 + 4a + 10} \ge \frac{27}{5a^2 + 8a + 14},$$

$$a(a^3 - 3a + 2) \ge 0,$$

$$a(a-1)^2(a+2) \ge 0.$$

The equality holds for a = b = c = 1, and also for

$$a = 0, \quad b = c = \frac{3}{2}$$

(or any cyclic permutation).

Remark 1. Similarly, we can prove the following generalization:

• Let a, b, c be nonnegative real numbers so that a + b + c = 3. If $k \ge 0$, then

$$\frac{1}{k+a^2+b^2} + \frac{1}{k+b^2+c^2} + \frac{1}{k+c^2+a^2} \ge \frac{9(4k+15)}{3(4k^2+15k+9) + (8k+21)(a^2+b^2+c^2)}.$$

with equality for a = b = c = 1, and also for

$$a = 0, \quad b = c = \frac{3}{2}$$

(or any cyclic permutation).

For k = 0, we get the inequality in P 1.171 from Volume 2:

$$\frac{1}{a^2 + b^2} + \frac{1}{b^2 + c^2} + \frac{1}{c^2 + a^2} \ge \frac{45}{(a+b+c)^2 + 7(a^2 + b^2 + c^2)}.$$

Remark 2. More general, the following statement holds:

• Let $a_1, a_2, ..., a_n$ be nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$. If $k \ge 0$, then

$$\sum \frac{1}{k + a_2^2 + \dots + a_n^2} \ge \frac{p}{q + a_1^2 + a_2^2 + \dots + a_n^2},$$

where

$$p = \frac{n^2(n-1)^2k + n^3(n^2 - n - 1)}{(n-1)^3k + n(n^3 - 2n^2 - n + 1)}, \quad q = \frac{n(n-1)^2k^2 + n^2(n^2 - n - 1)k + n^3}{(n-1)^3k + n(n^3 - 2n^2 - n + 1)},$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = 0$$
, $a_2 = \cdots = a_n = \frac{n}{n-1}$

(or any cyclic permutation).

For k = 0 and k = n, we get the inequalities

$$\sum \frac{1}{a_2^2 + \dots + a_n^2} \ge \frac{n^2(n^2 - n - 1)}{n^2 + (n^3 - 2n^2 - n + 1)(a_1^2 + a_2^2 + \dots + a_n^2)},$$

$$\sum \frac{2n-1}{n+a_2^2+\cdots+a_n^2} \ge \frac{n^2(2n-3)}{n(n-1)+(n-2)(a_1^2+a_2^2+\cdots+a_n^2)}.$$

P 5.43. If a, b, c, d are nonnegative real numbers so that a + b + c + d = 4, then

$$\sum \frac{3}{3+2(a^2+b^2+c^2)} \le \frac{296}{218+a^2+b^2+c^2+d^2}.$$

(Vasile C., 2009)

Solution. The proof is similar to the one of P 5.39. Thus, we only need to prove the inequality for $0 \le a = b = c \le d$, that is to show that 3a + d = 4 involves

$$\frac{1}{1+2a^2} + \frac{9}{3+4a^2+2d^2} \le \frac{296}{218+3a^2+d^2}.$$

Write this inequality as follows

$$\frac{1}{1+2a^2} + \frac{9}{35-48a+22a^2} \le \frac{148}{3(39-4a+2a^2)},$$
$$(a-1)^2(14a-1)^2 \ge 0.$$

The equality holds for a = b = c = d = 1, and also for

$$a = b = c = \frac{1}{14}, \quad d = \frac{53}{14}$$

(or any cyclic permutation).

P 5.44. If a, b, c are nonnegative real numbers so that ab + bc + ca = 3, then

$$\frac{4}{2+a^2+b^2} + \frac{4}{2+b^2+c^2} + \frac{4}{2+c^2+a^2} \ge \frac{21}{4+a^2+b^2+c^2}.$$

(Vasile C., 2014)

Solution. The proof is similar to the one of P 5.42. Thus, we only need to prove the inequality for a = 0 and for $0 < a \le b = c$.

Case 1: a = 0. We need to show that bc = 3 involves

$$\frac{1}{2+b^2} + \frac{1}{2+c^2} + \frac{1}{2+b^2+c^2} \ge \frac{21}{4(4+b^2+c^2)}.$$

Denote

$$x = b^2 + c^2, \qquad x \ge 2bc = 6.$$

Since

$$\frac{1}{2+b^2} + \frac{1}{2+c^2} = \frac{4+b^2+c^2}{b^2c^2+2(b^2+c^2)+4} = \frac{x+4}{2x+13},$$

we only need to show that

$$\frac{x+4}{2x+13} + \frac{1}{x+2} \ge \frac{21}{4(x+4)}.$$

Since

$$\frac{x+4}{2x+13} + \frac{1}{x+2} = \frac{x^2 + 8x + 21}{(2x+13)(x+2)} \ge \frac{7(2x+3)}{(2x+13)(x+2)},$$

it suffices to show that

$$\frac{2x+3}{(2x+13)(x+2)} \ge \frac{3}{4(x+4)}.$$

This inequality reduces to

$$(x-6)(2x+5) \ge 0.$$

Case 2: $0 < a \le b = c$. Let

$$q = ab + bc + ca$$
.

We only need to prove the homogeneous inequality

$$\frac{4}{2q+3(a^2+b^2)} + \frac{4}{2q+3(b^2+c^2)} + \frac{4}{2q+3(c^2+a^2)} \ge \frac{21}{4q+3(a^2+b^2+c^2)}$$

for b = c = 1. Thus, we need to show that

$$\frac{8}{2(2a+1)+3(a^2+1)} + \frac{4}{2(2a+1)+6} \ge \frac{21}{4(2a+1)+3(a^2+2)},$$

which is equivalent to

$$\frac{8}{3a^2 + 4a + 5} + \frac{1}{a+2} \ge \frac{21}{3a^2 + 8a + 10},$$
$$\frac{a^2 + 4a + 7}{(3a^2 + 4a + 5)(a+2)} \ge \frac{7}{3a^2 + 8a + 10},$$
$$a(3a^3 - a^2 - 7a + 5) \ge 0,$$
$$a(a-1)^2(3a+5) \ge 0.$$

The equality holds for a = b = c = 1, and also for

$$a = 0, \quad b = c = \sqrt{3}$$

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

• Let a, b, c be nonnegative real numbers so that ab + bc + ca = 3. If $k \ge 0$, then

$$\frac{1}{k+a^2+b^2} + \frac{1}{k+b^2+c^2} + \frac{1}{k+c^2+a^2} \ge \frac{9(k+5)}{3(k^2+5k+2)+2(k+4)(a^2+b^2+c^2)}.$$

with equality for a = b = c = 1, and also for

$$a = 0, \quad b = c = \sqrt{3}$$

(or any cyclic permutation).

For k = 0, we get the inequality in P 1.171 from Volume 2:

$$\frac{1}{a^2+b^2}+\frac{1}{b^2+c^2}+\frac{1}{c^2+a^2}\geq \frac{45}{2(ab+bc+ca)+8(a^2+b^2+c^2)}.$$

P 5.45. If a, b, c are nonnegative real numbers so that $a^2 + b^2 + c^2 = 3$, then

$$\frac{1}{10 - (a+b)^2} + \frac{1}{10 - (b+c)^2} + \frac{1}{10 - (c+a)^2} \le \frac{1}{2}.$$

(Vasile C., 2006)

Solution. Let

$$s = a + b + c$$
, $s \le 3$.

We need to show that

$$\frac{1}{10 - (s - a)^2} + \frac{1}{10 - (s - b)^2} + \frac{1}{10 - (s - c)^2} \le \frac{1}{2}$$

for a + b + c = s and $a^2 + b^2 + c^2 = 3$. Apply Corollary 1 to the function

$$f(u) = \frac{-1}{10 - (s - u)^2}, \quad 0 \le u \le s \le 3.$$

We have

$$g(x) = f'(x) = \frac{2(s-x)}{[10 - (s-x)^2]^2},$$

$$g''(x) = \frac{24(s-x)[10+(s-x)^2]}{[10-(s-x)^2]^4}.$$

Since g''(x) > 0 for $x \in [0,s)$, g is strictly convex on [0,s]. According to the Corollary 1, if

$$a + b + c = s$$
, $a^2 + b^2 + c^2 = 3$, $0 \le a \le b \le c$,

then

$$S_3 = f(a) + f(b) + f(c)$$

is minimal for either a = 0 or $0 < a \le b = c$. Therefore, we only need to prove the homogeneous inequality

$$\sum \frac{1}{10(a^2+b^2+c^2)-3(b+c)^2} \le \frac{1}{2(a^2+b^2+c^2)}$$

for a = 0 and for b = c = 1.

Case 1: a = 0. The homogeneous inequality becomes

$$\frac{1}{7(b^2+c^2)-6bc}+\frac{1}{10b^2+7c^2}+\frac{1}{7b^2+10c^2}\leq \frac{1}{2(b^2+c^2)}.$$

This is true since

$$\frac{1}{7(b^2+c^2)-6bc} \le \frac{1}{4(b^2+c^2)}$$

and

$$\frac{1}{10b^2 + 7c^2} + \frac{1}{7b^2 + 10c^2} = \frac{17(b^2 + c^2)}{70(b^2 + c^2) + 149b^2c^2}$$

$$\leq \frac{17(b^2 + c^2)}{70(b^2 + c^2) + 140b^2c^2}$$

$$= \frac{17}{70(b^2 + c^2)} < \frac{1}{4(b^2 + c^2)}.$$

Case 2: b = c = 1. The homogeneous inequality turns into

$$\frac{1}{2(5a^2+4)} + \frac{2}{7a^2 - 6a + 17} \le \frac{1}{2(a^2+2)},$$

$$\frac{2}{7a^2 - 6a + 17} \le \frac{2a^2 + 1}{(5a^2 + 4)(a^2 + 2)},$$

$$4a^4 - 12a^3 + 13a^2 - 6a + 1 \ge 0,$$

$$(a-1)^2(2a-1)^2 \ge 0.$$

The equality holds for a = b = c = 1, and also for

$$2a = b = c = \frac{2}{\sqrt{3}}$$

(or any cyclic permutation).

P 5.46. If a, b, c are nonnegative real numbers, no two of which are zero, so that $a^4 + b^4 + c^4 = 3$, then

$$\frac{1}{a^5 + b^5} + \frac{1}{b^5 + c^5} + \frac{1}{c^5 + a^5} \ge \frac{3}{2}.$$

(Vasile C., 2010)

Solution. Using the substitution

$$x = a^4$$
, $y = b^4$, $z = c^4$, $p = x^{5/4} + y^{5/4} + z^{5/4}$

we need to show that x + y + z = 3 and $x^{5/4} + y^{5/4} + z^{5/4} = p$ involve

$$f(x) + f(y) + f(z) \ge \frac{3}{2},$$

where

$$f(u) = \frac{1}{p - u^{5/4}}, \quad 0 \le u < p^{4/5}.$$

We will apply the EV-Theorem for k = 5/4. We have

$$f'(u) = \frac{5u^{1/4}}{4(p - u^{5/4})^2},$$

$$g(x) = f'\left(x^{\frac{1}{k-1}}\right) = f'(x^4) = \frac{5x}{4(p - x^5)^2},$$

$$g''(x) = \frac{75x^4(2p + 3x^5)}{2(p - x^5)^4}.$$

Since $g''(x) \ge 0$, g is strictly convex. According to the EV-Theorem and Note 3, if

$$x + y + z = 3$$
, $x^{5/4} + y^{5/4} + z^{5/4} = p = constant$, $0 \le x \le y \le z$,

then

$$S_3 = f(x) + f(y) + f(z)$$

is minimal for either x = 0 or $0 < x \le y = z$. Thus, we only need to prove the homogeneous inequality

$$\frac{1}{a^5 + b^5} + \frac{1}{b^5 + c^5} + \frac{1}{c^5 + a^5} \ge \frac{3}{2} \left(\frac{3}{a^4 + b^4 + c^4} \right)^{5/4}$$

for a = 0 and $0 < a \le b = c = 1$.

Case 1: a = 0. The homogeneous inequality becomes

$$\frac{1}{b^5} + \frac{1}{c^5} + \frac{1}{b^5 + c^5} \ge \frac{3}{2} \left(\frac{3}{b^4 + c^4} \right)^{5/4},$$

$$\left(\frac{b}{c} \right)^{5/2} + \left(\frac{c}{b} \right)^{5/2} + \frac{1}{\left(\frac{b}{c} \right)^{5/2} + \left(\frac{c}{b} \right)^{5/2}} \ge \left(\frac{3}{2} \right)^{9/4} \left[\frac{2}{\left(\frac{b}{c} \right)^2 + \left(\frac{c}{b} \right)^2} \right]^{5/4},$$

$$t^{5/2} + t^{-5/2} + \frac{1}{t^{5/2} + t^{-5/2}} \ge \left(\frac{3}{2} \right)^{9/4} \left(\frac{2}{t^2 + t^{-2}} \right)^{5/4},$$

$$2A^{5/2} + \frac{1}{2A^{5/2}} \ge \left(\frac{3}{2}\right)^{9/4} \cdot \frac{1}{B^{5/2}},$$

where

$$A = \left(\frac{t^{5/2} + t^{-5/2}}{2}\right)^{2/5}, \quad B = \left(\frac{t^2 + t^{-2}}{2}\right)^{1/2}, \quad t = \frac{b}{c}.$$

By power mean inequality, we have $A \ge B \ge 1$. Since

$$2A^{5/2} + \frac{1}{2A^{5/2}} - \left(2B^{5/2} + \frac{1}{2B^{5/2}}\right) = \left(A^{5/2} - B^{5/2}\right) \left(2 - \frac{1}{2A^{5/2}B^{5/2}}\right) \ge 0,$$

it suffices to show that

$$2B^{5/2} + \frac{1}{2B^{5/2}} \ge \left(\frac{3}{2}\right)^{9/4} \cdot \frac{1}{B^{5/2}},$$
$$4B^5 + 1 \ge \left(\frac{3^9}{2^5}\right)^{1/4},$$

which is true if

$$5 \ge \left(\frac{3^9}{2^5}\right)^{1/4},$$
$$32 \cdot 5^4 \ge 3^9.$$

This inequality follows by multiplying the inequalities

$$5^4 > 23 \cdot 3^3$$

and

$$32 \cdot 23 > 3^6$$
.

Case 2: $0 < a \le 1 = b = c$. The homogeneous inequality becomes

$$\frac{a^5+5}{a^5+1} \ge 3\left(\frac{3}{a^4+2}\right)^{5/4},$$

which is true if $g(a) \ge 0$, where

$$g(a) = \ln(a^5 + 5) - \ln(a^5 + 1) + \frac{5}{4}\ln(a^4 + 2) - \frac{9\ln 3}{4}$$

with

$$\frac{g'(a)}{5a^3} = \frac{a}{a^5 + 5} - \frac{a}{a^5 + 1} + \frac{1}{a^4 + 2} = \frac{a^{10} + 2a^5 - 8a + 5}{(a^4 + 5)(a^5 + 1)(a^4 + 2)}$$
$$= \frac{(a - 1)(a^9 + a^8 + a^7 + a^6 + a^5 + 3a^4 + 3a^3 + 3a^2 + 3a - 5)}{(a^4 + 5)(a^5 + 1)(a^4 + 2)}.$$

There exists $d \in (0,1)$ so that g'(d) = 0, g'(a) > 0 for $a \in [0,d)$ and g'(a) < 0 for $a \in (d,1)$. Therefore, g is increasing on [0,d] and is decreasing on [d,1]. Since g(1) = 0, we only need to show that $g(0) \ge 0$. Indeed,

$$g(0) = \frac{1}{4} \ln \frac{5^4 \cdot 2^5}{3^9} > 0.$$

The equality holds for a = b = c = 1.

P 5.47. If a_1, a_2, \ldots, a_n are nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$\sqrt{a_1^2+1}+\sqrt{a_2^2+1}+\cdots+\sqrt{a_n^2+1}\geq \sqrt{2\left(1-\frac{1}{n}\right)(a_1^2+a_2^2+\cdots+a_n^2)+2(n^2-n+1)}.$$

(Vasile C., 2014)

Solution. For n = 2, we need to show that $a_1 + a_2 = 2$ involves

$$\sqrt{a_1^2 + 1} + \sqrt{a_2^2 + 1} \ge \sqrt{a_1^2 + a_2^2 + 6}$$
.

By squaring, the inequality becomes

$$\sqrt{(a_1^2+1)(a_2^2+1)} \ge 2,$$

which follows immediately from the Cauchy-Schwarz inequality:

$$(a_1^2+1)(a_2^2+1)=(a_1^2+1)(1+a_2^2) \ge (a_1+a_2)^2=4.$$

Assume further that $n \ge 3$ and $a_1 \le a_2 \le \cdots \le a_n$. We will apply Corollary 1 to the function

$$f(u) = -\sqrt{u^2 + 4}, \quad u \ge 0.$$

We have

$$g(x) = f'(x) = \frac{-x}{\sqrt{x^2 + 4}},$$
$$g''(x) = \frac{12x}{\sqrt{x^2 + 4}},$$

$$g''(x) = \frac{12x}{(x^2 + 4)^{5/2}}.$$

Since g''(x) > 0 for x > 0, g(x) is strictly convex for $x \ge 0$. By Corollary 1, if $a_1 \le a_2 \le \cdots \le a_n$ and

$$a_1 + a_2 + \dots + a_n = n$$
, $a_1^2 + a_2^2 + \dots + a_n^2 = constant$,

then the sum

$$S_n = f(a_1) + f(a_2) + \dots + f(a_n)$$

is maximal for $a_1 = a_2 = \cdots = a_{n-1}$. Thus, we only need to show that

$$\sqrt{a^2+1}+(n-1)\sqrt{b^2+1} \ge \sqrt{2\left(1-\frac{1}{n}\right)\left[a^2+(n-1)b^2\right]+2(n^2-n+1)}.$$

for

$$a + (n-1)b = n.$$

By squaring, the inequality becomes

$$2n(n-1)\sqrt{(a^2+1)(b^2+1)} \ge (n-2)a^2 - (n-2)(n-1)^2b^2 + n^3,$$

which is equivalent to

$$\sqrt{(b^2+1)[(n-1)^2b^2-2n(n-1)b+n^2+1]} \ge n-(n-2)b.$$

This is true if

$$(b^2+1)[(n-1)^2b^2-2n(n-1)b+n^2+1] \ge [n-(n-2)b]^2,$$

which is equivalent o

$$(n-1)^2b^4 - 2n(n-1)b^3 + (n^2 + 2n - 2)b^2 - 2nb + 1 \ge 0,$$
$$(b-1)^2\lceil (n-1)b - 1\rceil^2 \ge 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = a_2 = \dots = a_{n-1} = \frac{1}{n-1}, \quad a_n = n-1$$

(or any cyclic permutation).

P 5.48. If $a_1, a_2, ..., a_n$ are nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$\sum \sqrt{(3n-4)a_1^2+n} \ge \sqrt{(3n-4)(a_1^2+a_2^2+\cdots+a_n^2)+n(4n^2-7n+4)}.$$

(Vasile C., 2009)

Solution. The proof is similar to the one of the preceding P 5.47. Thus, it suffices to prove the inequality for $a_1 = a_2 = \cdots = a_{n-1}$. Write the inequality in the homogeneous form

$$\sum_{n=1}^{\infty} \sqrt{n(3n-4)a_1^2 + S^2} \ge \sqrt{n(3n-4)(a_1^2 + a_2^2 + \dots + a_n^2) + (4n^2 - 7n + 4)S^2},$$

where $S = a_1 + a_2 + \cdots + a_n$. We only need to prove this inequality for $a_1 = a_2 = \cdots = a_{n-1} = 1$, that is

$$(n-1)\sqrt{n(3n-4)+(n-1+a_n)^2} + \sqrt{n(3n-4)a_n^2 + (n-1+a_n)^2} \ge$$

$$\ge \sqrt{n(3n-4)(n-1+a_n^2) + (4n^2-7n+4)(n-1+a_n)^2},$$

which is equivalent to

$$\begin{split} \sqrt{(n-1)[a_n^2+2(n-1)a_n+4n^2-6n+1]} + \sqrt{(3n-1)a_n^2+2a_n+n-1} \geq \\ \geq \sqrt{(7n-4)a_n^2+2(4n^2-7n+4)a_n+4n^3-8n^2+7n-4}. \end{split}$$

By squaring, the inequality turns into

$$2\sqrt{(n-1)[(3n-1)a_n^2 + 2a_n + n - 1][a_n^2 + 2(n-1)a_n + 4n^2 - 6n + 1]} \ge$$

$$(3n-2)a_n^2 + 2(n-1)(3n-2)a_n + 2n^2 - n - 2.$$

Squaring again, we get

$$(a_n-1)^2(a_n-2n+3)^2 \ge 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = a_2 = \dots = a_{n-1} = \frac{a_n}{2n-3} = \frac{n}{3n-4}$$

(or any cyclic permutation).

Remark. For n = 3, we get the inequality

$$\sqrt{5a^2+3} + \sqrt{5b^2+3} + \sqrt{5c^2+3} \ge \sqrt{5(a^2+b^2+c^2)+57}$$

where a, b, c are nonnegative real numbers so that a + b + c = 3. By squaring, the inequality turns into

$$\sqrt{(5a^2+3)(5b^2+3)} + \sqrt{(5b^2+3)(5c^2+3)} + \sqrt{(5c^2+3)(5a^2+3)} \ge 24$$

with equality for a = b = c = 1, and also for

$$a = b = \frac{c}{3} = \frac{3}{5}$$

(or any cyclic permutation).

P 5.49. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

$$\sqrt{a^2+4}+\sqrt{b^2+4}+\sqrt{c^2+4} \le \sqrt{\frac{8}{3}(a^2+b^2+c^2)+37}.$$

(Vasile C., 2009)

Solution. Assume that $a \le b \le c$, and apply Corollary 1 to the function a

$$f(u) = -\sqrt{u^2 + 4}, \quad u \ge 0.$$

We have

$$g(x) = f'(x) = \frac{-x}{\sqrt{x^2 + 4}},$$
$$g''(x) = \frac{12x}{(x^2 + 4)^{5/2}}.$$

Since g''(x) > 0 for x > 0, g(x) is strictly convex for $x \ge 0$. By Corollary 1, if

$$a+b+c=3$$
, $a^2+b^2+c^2=constant$, $a \le b \le c$,

then the sum

$$S_3 = f(a) + f(b) + f(c)$$

is minimal for either a = 0 or $0 < a \le b = c$. Thus, we only need to prove the desired inequality for these cases.

Case 1: a = 0. We need to prove that b + c = 3 involves

$$\sqrt{b^2+4}+\sqrt{c^2+4} \le \sqrt{\frac{8}{3}(b^2+c^2)+37}-2.$$

Substituting

$$b = \frac{3x}{2}, \quad c = \frac{3y}{2},$$

we need to prove that x + y = 2 involves

$$\sqrt{9x^2 + 16} + \sqrt{9y^2 + 16} \le 2\sqrt{6(x^2 + y^2) + 37} - 4.$$

By squaring, the inequality becomes

$$2\sqrt{(9x^2+16)(9y^2+16)} \le 15(x^2+y^2) + 132 - 16\sqrt{6(x^2+y^2) + 37}.$$

Denoting

$$p = xy$$
, $0 \le p \le 1$,

we have

$$x^2 + y^2 = 4 - 2p$$
, $(9x^2 + 16)(9y^2 + 16) = 81p^2 - 288p + 832$,

and the inequality becomes

$$\sqrt{81p^2 - 288p + 832} \le -15p + 96 - 8\sqrt{61 - 12p},$$

$$\sqrt{\frac{81}{4}p^2 - 72p + 208} \le -\frac{15}{2}p + (48 - 4\sqrt{61 - 12p}),$$

By squaring again (the right hand side is positive), the inequality becomes

$$\frac{81}{4}p^2 - 72p + 208 \le \frac{225}{4}p^2 - 15p(48 - 4\sqrt{61 - 12p}) + (48 - 4\sqrt{61 - 12p})^2,$$
$$3p^2 - 70p + 256 \ge (32 - 5p)\sqrt{61 - 12p}.$$

Since

$$2\sqrt{61-12p} \le 7 + \frac{61-12p}{7} = \frac{2(55-6p)}{7},$$

it suffices to show that

$$7(3p^2 - 70p + 256) \ge (32 - 5p)(55 - 6p),$$

which is equivalent to

$$(1-p)(32+9p) \ge 0.$$

Case 2: b = c. We need to prove that

$$a + 2b = 3$$

implies

$$\sqrt{a^2+4}+2\sqrt{b^2+4} \le \sqrt{\frac{8}{3}(a^2+2b^2)+37}.$$

By squaring, the inequality becomes

$$12\sqrt{(a^2+4)(b^2+4)} \le 5a^2+4b^2+51$$

which is equivalent to

$$\sqrt{(4b^2 - 12b + 13)(b^2 + 4)} \le 2b^2 - 5b + 8.$$

By squaring again, the inequality becomes

$$2b^{3} - 7b^{2} + 8b - 3 \le 0,$$

$$(b-1)^{2}(2b-3) \le 0,$$

$$(b-1)^{2}a \ge 0.$$

The equality holds for a = b = c = 1, and also for

$$a = 0$$
, $b = c = \frac{3}{2}$

(or any cyclic permutation).

P 5.50. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

$$\sqrt{32a^2 + 3} + \sqrt{32b^2 + 3} + \sqrt{32c^2 + 3} \le \sqrt{32(a^2 + b^2 + c^2) + 219}.$$

(Vasile C., 2009)

Solution. The proof is similar to the one of P 5.49. Thus, it suffices to prove the homogeneous inequality

$$\sum \sqrt{96a^2 + (a+b+c)^2} \le \sqrt{96(a^2 + b^2 + c^2) + 73(a+b+c)^2}$$

for a = 0 and for b = c = 1.

Case 1: a = 0. We have to show that

$$b + c + \sqrt{97b^2 + 2bc + c^2} + \sqrt{b^2 + 2bc + 97c^2} \le \sqrt{169(b^2 + c^2) + 146bc}$$
.

Since $2bc \le b^2 + c^2$, it suffices to prove that

$$b + c + \sqrt{98b^2 + 2c^2} + \sqrt{2b^2 + 98c^2} \le \sqrt{169(b^2 + c^2) + 146bc}$$
.

By squaring, we get

$$(b+c)\left(\sqrt{98b^2+2c^2}+\sqrt{2b^2+98c^2}\right)+2\sqrt{(49b^2+c^2)(b^2+49c^2)} \le$$

$$\le 34(b^2+c^2)+72bc.$$

Since

$$\sqrt{98b^2 + 2c^2} + \sqrt{2b^2 + 98c^2} \le \sqrt{2(98b^2 + 2c^2 + 2b^2 + 98c^2)} = 10\sqrt{2(b^2 + c^2)}$$

and

$$10(b+c)\sqrt{2(b^2+c^2)} \le 20(b+c)^2,$$

it suffices to show that

$$\sqrt{(49b^2+c^2)(b^2+49c^2)} \le 7(b^2+c^2) + 36bc.$$

Squaring again, the inequality becomes

$$bc(b-c)^2 \ge 0.$$

Case 2: b = c = 1. The homogeneous inequality turns into

$$\sqrt{97a^2 + 4a + 4} + 2\sqrt{a^2 + 4a + 100} \le \sqrt{169a^2 + 292a + 484}.$$

By squaring, we get

$$\sqrt{(97a^2 + 4a + 4)(a^2 + 4a + 100)} \le 17a^2 + 68a + 20.$$

Squaring again, the inequality reduces to

$$a(a-1)^2(a+12) \ge 0.$$

The equality holds for a = b = c = 1, and also for a = 0 and b = c = 3/2 (or any cyclic permutation).

Remark. By squaring, we deduce the inequality

$$\sqrt{(32a^2+3)(32b^2+3)}+\sqrt{(32b^2+3)(32c^2+3)}+\sqrt{(32c^2+3)(32a^2+3)}\leq 105,$$

with equality for a = b = c = 1, and also for

$$a = 0, \quad b = c = \frac{3}{2}$$

(or any cyclic permutation).

P 5.51. If a_1, a_2, \ldots, a_n are positive real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} + \frac{2n\sqrt{n-1}}{a_1^2 + a_2^2 + \dots + a_n^2} \ge n + 2\sqrt{n-1}.$$

(Vasile C., 2009)

Solution. For n = 2, the inequality reduces to

$$(a_1 a_2 - 1)^2 \ge 0.$$

Consider further that $n \ge 3$ and $a_1 \le a_2 \le \cdots \le a_n$. By Corollary 5 (case k = 2 and m = -1), if $a_1 \le a_2 \le \cdots \le a_n$ and

$$a_1 + a_2 + \dots + a_n = n$$
, $a_1^2 + a_2^2 + \dots + a_n^2 = constant$,

then the sum

$$S_n = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$$

is minimal for $a_1 = \cdots = a_{n-1} \le a_n$. Therefore, we only need to prove that

$$\frac{n-1}{a_1} + \frac{1}{a_n} + \frac{2n\sqrt{n-1}}{(n-1)a_1^2 + a_n^2} \ge n + 2\sqrt{n-1},$$

for $(n-1)a_1 + a_n = n$. The inequality is equivalent to

$$(a_1-1)^2 \left(a_1 - \frac{n}{n-1+\sqrt{n-1}}\right)^2 \ge 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = a_2 = \dots = a_{n-1} = \frac{a_n}{\sqrt{n-1}}$$

(or any cyclic permutation).

P 5.52. *If* $a, b, c \in [0, 1]$ *, then*

$$(1+3a^2)(1+3b^2)(1+3c^2) \ge (1+ab+bc+ca)^3$$
.

Solution. Since

$$2(ab + bc + ca) = (a + b + c)^{2} - (a^{2} + b^{2} + c^{2}),$$

we may apply Corollary 1 to the function

$$f(u) = -\ln(1+3u^2), \quad u \in [0,1],$$

to prove the inequality

$$f(a) + f(b) + f(c) + 3\ln(1 + ab + bc + ca) \le 0.$$

We have

$$g(x) = f'(x) = \frac{-6x}{1 + 3x^2},$$

$$g''(x) = \frac{108x(1-x^2)}{(1+3x^2)^3}.$$

Since g''(x) > 0 for $x \in (0, 1)$, g is strictly convex on [0, 1]. According to Corollary 1 and Note 2, if

$$a+b+c=constant$$
, $a^2+b^2+c^2=constant$, $0 \le a \le b \le c \le 1$,

then

$$S_3 = f(a) + f(b) + f(c)$$

is maximal for $a = b \le c$. or for c = 1. Thus, we only need to prove the original inequality for these cases.

Case 1: $a = b \le c$. We need to show that

$$(1+3a^2)^2(1+3c^2) \ge (1+a^2+2ac)^3$$
.

For c = 0, the inequality is an equality. For fixed c, $0 < c \le 1$, we need to show that $h(a) \ge 0$, where

$$h(a) = 2\ln(1+3a^2) + \ln(1+3c^2) - 3\ln(1+a^2+2ac), \quad a \in [0,c].$$

From

$$h'(a) = \frac{12a}{1+3a^2} - \frac{6(a+c)}{1+a^2+2ac} = \frac{6(1-a^2)(a-c)}{(1+3a^2)(1+a^2+2ac)} \le 0,$$

it follows that *h* is decreasing on [0, c], hence $h(a) \ge h(c) = 0$.

Case 2: c = 1. We need to show that

$$4(1+3a^2)(1+3b^2) \ge (1+a)^3(1+b)^3$$
.

This is true because

$$2(1+3a^2) \ge (1+a)^3$$
, $2(1+3b^2) \ge (1+b)^3$.

The first inequality is equivalent to

$$(1-a)^3 \ge 0.$$

The proof is completed. The equality holds for a = b = c.

P 5.53. If a, b, c are nonnegative real numbers so that a + b + c = ab + bc + ca, then

$$\frac{1}{4+5a^2} + \frac{1}{4+5a^2} + \frac{1}{4+5a^2} \ge \frac{1}{3}.$$

(Vasile C., 2007)

Solution. By expanding, the inequality becomes

$$4(a^2 + b^2 + c^2) + 15 \ge 25a^2b^2c^2 + 5(a^2b^2 + b^2c^2 + c^2a^2).$$

Let p = a + b + c. Since

$$a^{2} + b^{2} + c^{2} = p^{2} - 2p$$
, $a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2} = p^{2} - 2pabc$,

the inequality becomes

$$(2p-4)^2 \ge (p-5abc)^2,$$

$$(3p-4-5abc)(p+5abc-4) \ge 0.$$

We will show that $3p \ge 4 + 5abc$ and $p + 5abc \ge 4$. According to Corollary 4 (case n = 3, k = 2) or P 3.57 in Volume 1, *if*

$$a+b+c=constant$$
, $ab+bc+ca=constant$, $0 \le a \le b \le c \le d$,

then the product abc is maximal for a = b, and is minimal for a = 0 or b = c. Thus, we only need to prove that $3p \ge 4 + 5abc$ for a = b, and $p + 5abc \ge 4$ for a = 0 and for b = c.

For a = b, from a + b + c = ab + bc + ca we get

$$c = \frac{a(2-a)}{2a-1}, \quad \frac{1}{2} < a \le 2,$$

hence

$$3p-4-5abc=(3-5a^2)c+6a-4=\frac{(a-1)^2(5a^2+4)}{2a-1}\geq 0.$$

For a = 0, from a + b + c = ab + bc + ca we get

$$c = \frac{b}{b-1}, \quad b > 1,$$

hence

$$p + 5abc - 4 = b + c - 4 = \frac{(b-2)^2}{b-1} \ge 0.$$

For b = c, from a + b + c = ab + bc + ca we get

$$a = \frac{b(2-b)}{2b-1}, \quad \frac{1}{2} < b \le 2,$$

hence

$$p + 5abc - 4 = a(5b^{2} + 1) + 2b - 4 = \frac{(2-b)(5b^{3} - 3b + 2)}{2b - 1}$$
$$= \frac{(2-b)[4b^{3} + (b-1)^{2}(b+2)]}{2b - 1} \ge 0.$$

The equality holds for a = b = c = 1, and also for a = 0 and b = c = 2 (or any cyclic permutation).

P 5.54. If a, b, c, d are positive real numbers so that a + b + c + d = 4abcd, then

$$\frac{1}{1+3a} + \frac{1}{1+3b} + \frac{1}{1+3c} + \frac{1}{1+3d} \ge 1.$$

(Vasile C., 2007)

Solution. By expanding, the inequality becomes

$$1 + 3(ab + ac + ad + bc + bd + cd) \ge 19abcd,$$

$$2 + 3(a+b+c+d)^2 \ge 3(a^2+b^2+c^2+d^2) + 38abcd.$$

According to Corollary 5 (case n = 4, k = 0, m = 2), if

$$a+b+c+d = constant$$
, $abcd = constant$, $0 < a \le b \le c \le d$,

then the sum

$$S_4 = a^2 + b^2 + c^2 + d^2$$

is maximal for $a = b = c \le d$. Thus, we only need to prove that

$$3a + d = 4a^3d$$
, $d = \frac{3a}{4a^3 - 1}$, $a > \frac{1}{\sqrt[3]{4}}$,

involves

$$\frac{3}{3a+1} + \frac{1}{3d+1} \ge 1,$$

$$\frac{3}{3a+1} + \frac{4a^3 - 1}{4a^3 + 9a - 1} \ge 1,$$

$$4a^3 - 9a^2 + 6a - 1 \ge 0,$$

$$(a-1)^2 (4a-1) \ge 0.$$

The equality holds for a = b = c = d = 1.

Open problem. If $a_1, a_2, ..., a_n$ $(n \ge 3)$ are positive real numbers so that

$$a_1 + a_2 + \cdots + a_n = na_1a_2 \cdots a_n$$

then

$$\frac{1}{1+(n-1)a_1}+\frac{1}{1+(n-1)a_2}+\cdots+\frac{1}{1+(n-1)a_n}\geq 1.$$

P 5.55. If $a_1, a_2, ..., a_n$ are positive real numbers so that

$$a_1 + a_2 + \dots + a_n = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$$

then

$$\frac{1}{1+(n-1)a_1}+\frac{1}{1+(n-1)a_2}+\cdots+\frac{1}{1+(n-1)a_n}\geq 1.$$

(Vasile C., 1996)

Solution. For n = 2, the inequality is an identity. For $n \ge 3$, we consider

$$a_1 \leq a_2 \leq \cdots \leq a_n$$

and apply Corollary 2 to the function

$$f(u) = \frac{1}{1 + (n-1)u}, \quad u > 0.$$

We have

$$f'(u) = \frac{-(n-1)}{[1+(n-1)u]^2},$$

$$g(x) = f'\left(\frac{1}{\sqrt{x}}\right) = \frac{-(n-1)x}{[\sqrt{x}+n-1]^2},$$

$$g''(x) = \frac{3(n-1)^2}{2\sqrt{x}(\sqrt{x}+n-1)^4}.$$

Since g''(x) > 0 for x > 0, g is strictly convex on $[0, \infty)$. By Corollary 2, if $0 < a_1 \le a_2 \le \cdots \le a_n$ and

$$a_1 + a_2 + \dots + a_n = constant$$
, $\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} = constant$,

then the sum

$$S_n = f(a_1) + f(a_2) + \cdots + f(a_n)$$

is minimal for $a_2 = \cdots = a_n$. Therefore, we only need to show that

$$\frac{1}{1 + (n-1)a} + \frac{n-1}{1 + (n-1)b} \ge 1$$

for

$$a + (n-1)b = \frac{1}{a} + \frac{n-1}{b}, \quad 0 < a \le b.$$

Write the hypothesis as

$$\frac{1}{a} - a = (n-1)\left(b - \frac{1}{b}\right),$$

which involves $a \le 1 \le b$ and

$$\frac{1}{a} - a \ge b - \frac{1}{b}, \quad ab \le 1.$$

Write the desired inequality as

$$\frac{n-1}{1+(n-1)b} \ge 1 - \frac{1}{1+(n-1)a},$$

which is equivalent to

$$\frac{n-1}{1+(n-1)b} \ge \frac{(n-1)a}{1+(n-1)a},$$
$$1-a \ge (n-1)a(b-1).$$

For the nontrivial case $b \neq 1$, we have

$$1 - a - (n-1)a(b-1) = 1 - a - \frac{b(1-a^2)}{a(b^2-1)}a(b-1) = \frac{(1-a)(1-ab)}{b+1} \ge 0.$$

If $n \ge 3$, then the equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

P 5.56. If a, b, c, d, e are nonnegative real numbers so that $a^4 + b^4 + c^4 + d^4 + e^4 = 5$, then

$$7(a^2 + b^2 + c^2 + d^2 + e^2) \ge (a + b + c + d + e)^2 + 10.$$

(Vasile C., 2008)

Solution. According to Corollary 5 (case n = 5, k = 4, m = 2), if

$$a+b+c+d+e = constant$$
, $a^4+b^4+c^4+d^4+e^4=5$, $0 \le a \le b \le c \le d \le e$,

then the sum

$$S_4 = a^2 + b^2 + c^2 + d^2 + e^2$$

is minimal for $a=b=c=d\leq e$. Thus, we only need to prove the homogeneous inequality

$$[7(a^2+b^2+c^2+d^2+e^2)-(a+b+c+d+e)^2]^2 \ge 20(a^4+b^4+c^4+d^4+e^4)$$

for a = b = c = d = 0 and a = b = c = d = 1. The first case is trivial. In the second case, the inequality becomes

$$[7(4+e^2) - (4+e)^2]^2 \ge 20(4+e^4),$$

$$(3e^2 - 4e + 6)^2 \ge 5e^4 + 20,$$

$$e^4 - 6e^3 + 13e^2 - 12e + 4 \ge 0,$$

$$(e-1)^2(e-2)^2 \ge 0.$$

The equality holds for a = b = c = d = e = 1, and also for

$$a = b = c = d = \frac{e}{2} = \frac{1}{\sqrt{2}}$$

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• If a_1, a_2, \ldots, a_n are nonnegative real numbers so that

$$a_1^4 + a_2^4 + \dots + a_n^4 = n,$$

then

$$(n+\sqrt{n-1})(a_1^2+a_2^2+\cdots+a_n^2-n) \ge (a_1+a_2+\cdots+a_n)^2-n^2$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = \dots = a_{n-1} = \frac{a_n}{\sqrt{n-1}} = \frac{1}{\sqrt[4]{n-1}}$$

(or any cyclic permutation).

P 5.57. If a_1, a_2, \ldots, a_n are nonnegative real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$(a_1^2 + a_2^2 + \dots + a_n^2)^2 - n^2 \ge \frac{n(n-1)}{n^2 - n + 1} (a_1^4 + a_2^4 + \dots + a_n^4 - n).$$

(Vasile C., 2008)

Solution. For n=2, the inequality reduces to $(a_1a_2-1)^2 \ge 0$. For $n \ge 3$, we apply Corollary 5 for k=2 and m=4: if $0 \le a_1 \le a_2 \le \cdots \le a_n$ and

$$a_1 + a_2 + \dots + a_n = n$$
, $a_1^2 + a_2^2 + \dots + a_n^2 = constant$,

then

$$S_n = a_1^4 + a_2^4 + \dots + a_n^4$$

is maximal for $a_1 = \cdots = a_{n-1} \le a_n$. Thus, we only need to prove the homogeneous inequality

$$n^2(n^2-n+1)(a_1^2+a_2^2+\cdots+a_n^2)^2 \ge (n^2-2n+2)(a_1+a_2+\cdots+a_n)^4+n^3(n-1)S_n$$

for $a_1 = \cdots = a_{n-1} = 0$ and for $a_1 = \cdots = a_{n-1} = 1$. For the nontrivial case $a_1 = \cdots = a_{n-1} = 1$, the inequality becomes

$$n^{2}(n^{2}-n+1)(n-1+a_{n}^{2})^{2} \ge (n^{2}-2n+2)(n-1+a_{n})^{4}+n^{3}(n-1)(n-1+a_{n}^{4}),$$

$$(a_{n}-1)^{2}[a_{n}-(n-1)^{2}]^{2} \ge 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = \dots = a_{n-1} = \frac{1}{n-1}, \quad a_n = n-1$$

(or any cyclic permutation).

P 5.58. If a_1, a_2, \ldots, a_n are nonnegative real numbers so that $a_1^2 + a_2^2 + \cdots + a_n^2 = n$, then

$$a_1^3 + a_2^3 + \dots + a_n^3 \ge \sqrt{n^2 - n + 1 + \left(1 - \frac{1}{n}\right)(a_1^6 + a_2^6 + \dots + a_n^6)}.$$

(Vasile C., 2008)

Solution. For n = 2, the inequality is equivalent to

$$a_1^6 + a_2^6 + 4a_1^3 a_2^3 \ge 6,$$

$$(a_1^2 + a_2^2)^3 - 3a_1^2 a_2^2 (a_1^2 + a_2^2) + 4a_1^3 a_2^3 \ge 6,$$

$$2a_1^3 a_2^3 - 3a_1^2 a_2^2 + 1 \ge 0,$$

$$(a_1a_2-1)^2(2a_1a_2+1) \ge 0.$$

For $n \ge 3$, we apply Corollary 5 for k = 3/2 and m = 3: if $0 \le x_1 \le x_2 \le \cdots \le x_n$ and

$$x_1 + x_2 + \dots + x_n = n$$
, $x_1^{3/2} + x_2^{3/2} + \dots + x_n^{3/2} = constant$,

then

$$S_n = x_1^3 + x_2^3 + \dots + x_n^3$$

is maximal for $x_1 = \cdots = x_{n-1} \le x_n$. Thus, we only need to prove the homogeneous inequality

$$(a_1^3 + a_2^3 + \dots + a_n^3)^2 \ge \frac{n^2 - n + 1}{n^3} (a_1^2 + a_2^2 + \dots + a_n^2)^3 + \left(1 - \frac{1}{n}\right) (a_1^6 + a_2^6 + \dots + a_n^6)$$

for $a_1=\cdots=a_{n-1}=0$ and for $a_1=\cdots=a_{n-1}=1$. For the nontrivial case $a_1=\cdots=a_{n-1}=1$, the inequality becomes

$$n^{3}(n-1+a_{n}^{3})^{2} \ge (n^{2}-n+1)(n-1+a_{n}^{2})^{3}+n^{2}(n-1)(n-1+a_{n}^{6}),$$

$$(a_{n}-1)^{2}(a_{n}-n+1)^{2}(a_{n}^{2}+2na_{n}+n-1) \ge 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = \dots = a_{n-1} = \frac{a_n}{n-1} = \frac{1}{\sqrt{n-1}}$$

(or any cyclic permutation).

P 5.59. If a, b, c are positive real numbers so that abc = 1, then

$$4\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) + \frac{50}{a+b+c} \ge 27.$$

(Vasile C., 2012)

Solution. According to Corollary 5 (case k=0 and m=-1, if

$$a+b+c = constant$$
, $abc = 1$, $0 < a \le b \le c$,

then

$$S_3 = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$$

is minimal for $0 < a = b \le c$. Thus, we only need to prove that

$$4\left(\frac{2}{a} + \frac{1}{c}\right) + \frac{50}{2a+c} \ge 27$$

for

$$a^2c = 1, \quad a \le 1.$$

The inequality is equivalent to

$$8a^6 - 54a^4 - 26a^3 - 27a + 8 > 0$$
.

$$(2a-1)^2(2a^4+2a^3-12a^2+5a+8) \ge 0.$$

It is true for $a \in (0, 1]$ because

$$2a^4 + 2a^3 - 12a^2 + 5a + 8 > -12a^2 + 4a + 8 = 4(1-a)(2+3a) \ge 0.$$

The equality holds for

$$a = b = \frac{1}{2}, \quad c = 4$$

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

• If $a_1, a_2, ..., a_n$ are positive real numbers so that $a_1 a_2 \cdots a_n = 1$, then

$$2^{n}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}\right)+\frac{(2^{n}+n-1)^{2}}{a_{1}+a_{2}+\cdots+a_{n}}\geq 2n(2^{n}+1),$$

with equality for

$$a_1 = \dots = a_{n-1} = \frac{1}{2}, \quad a_n = 2^{n-1}$$

(or any cyclic permutation).

For

$$a_1 = \dots = a_{n-1} = a \le 1, \quad a^{n-1}a_n = 1,$$

the inequality is equivalent to $f(a) \ge 0$, where

$$f(a) = 2^{n} \left(\frac{n-1}{a} + a^{n-1} \right) + \frac{(2^{n} + n - 1)^{2} a^{n-1}}{(n-1)a^{n} + 1} - 2n(2^{n} + 1).$$

We have

$$\frac{f'(a)}{n-1} = \frac{2^n(a^n-1)}{a^2} - \frac{(2^n+n-1)^2a^{n-2}(a^n-1)}{[(n-1)a^n+1]^2}$$
$$= \frac{(a^n-1)(2^na^n-1)[(n-1)^2a^n-2^n]}{a^2[(n-1)a^n+1]^2}.$$

Since

$$(n-1)^2 a^n - 2^n \le (n-1)^2 - 2^n < 0$$

it follows that f'(a) < 0 for $a \in \left(0, \frac{1}{2}\right)$, and f'(a) > 0 for $a \in \left(\frac{1}{2}, 1\right)$. Therefore, f is decreasing on $\left(0, \frac{1}{2}\right]$ and increasing on $\left[\frac{1}{2}, 1\right]$, hence

$$f(a) \ge f\left(\frac{1}{2}\right) = 0.$$

P 5.60. If a, b, c are positive real numbers so that abc = 1, then

$$a^{3} + b^{3} + c^{3} + 15 \ge 6\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right).$$

(Michael Rozenberg, 2006)

Solution. Replacing a, b, c by their reverses 1/a, 1/b, 1/c, we need to show that abc = 1 involves

$$\frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} + 15 \ge 6(a+b+c).$$

According to Corollary 5 (case k=0 and m=-3, if

$$a+b+c = constant$$
, $abc = 1$, $0 < a \le b \le c$,

then

$$S_3 = \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3}$$

is minimal for $0 < a = b \le c$. Thus, we only need to prove that

$$\frac{2}{a^3} + \frac{1}{c^3} + 15 \ge 6(2a + c)$$

for

$$a^2c=1, \quad a\leq 1.$$

The inequality is equivalent to

$$\frac{2}{a^3} + a^6 + 15 \ge 6\left(2a + \frac{1}{a^2}\right),$$

$$a^9 - 12a^4 + 15a^3 - 6a + 2 \ge 0,$$

$$(1-a)^2(2 - 2a - 6a^2 + 5a^3 + 4a^4 + 3a^5 + 2a^6 + a^7) \ge 0.$$

It suffices to show that

$$2 - 2a - 6a^2 + 5a^3 + 3a^4 \ge 0.$$

Indeed, we have

$$2(2-2a-6a^2+5a^3+3a^4) = (2-3a)^2\left(1+2a+\frac{3}{4}a^2\right)+a^3\left(1-\frac{3}{4}a\right) \ge 0.$$

The equality holds for a = b = c = 1.

P 5.61. Let a_1, a_2, \ldots, a_n be positive numbers so that $a_1 a_2 \cdots a_n = 1$. If $k \ge n - 1$, then

$$a_1^k + a_2^k + \dots + a_n^k + (2k - n)n \ge (2k - n + 1)\left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}\right).$$

(Vasile C., 2008)

Solution. For n = 2 and k = 1, the inequality is an identity. For n = 2 and k > 1, we need to show that $f(a) \ge 0$ for a > 0, where

$$f(a) = a^{k} + a^{-k} + 4(k-1) - (2k-1)(a+a^{-1}).$$

We have

$$f'(a) = k(a^{k-1} - a^{-k-1}) - (2k-1)(1 - a^{-2}),$$

$$f''(a) = k\lceil (k-1)a^{k-2} + (k+1)a^{-k-2} \rceil - 2(2k-1)a^{-3}.$$

By the weighted AM-GM inequality, we get

$$(k-1)a^{k-2} + (k+1)a^{-k-2} \ge 2ka^{\frac{(k-1)(k-2)+(k+1)(-k-2)}{2k}} = 2ka^{-3},$$

hence

$$f''(a) \ge 2k^2a^{-3} - 2(2k-1)a^{-3} = 2(k-1)^2a^{-3} > 0,$$

f' is strictly increasing. Since f'(1) = 0, it follows that f'(a) < 0 for a < 1 and f'(a) > 0 for a > 1, f is decreasing on (0,1] and increasing on $[1, \infty)$, hence $f(a) \ge f(1) = 0$.

Consider further that $n \ge 3$. Replacing a_1, a_2, \ldots, a_n by $1/a_1, 1/a_2, \ldots, 1/a_n$, we need to show that $a_1 a_2 \cdots a_n = 1$ involves

$$\frac{1}{a_1^k} + \frac{1}{a_2^k} + \dots + \frac{1}{a_n^k} + (2k - n)n \ge (2k - n + 1)(a_1 + a_2 + \dots + a_n).$$

According to Corollary 5, if $0 < a_1 \le a_2 \le \cdots \le a_n$ and

$$a_1 + a_2 + \cdots + a_n = constant$$
, $a_1 a_2 \cdots a_n = 1$,

then

$$S_n = \frac{1}{a_1^k} + \frac{1}{a_2^k} + \dots + \frac{1}{a_n^k}$$

is minimal for $0 < a_1 = \cdots = a_{n-1} \le a_n$. Thus, we only need to prove the original inequality for $a_1 = \cdots = a_{n-1} \ge 1$; that is, to show that $t \ge 1$ involves $f(t) \ge 0$, where

$$f(t) = (n-1)t^{k} + \frac{1}{t^{k(n-1)}} + (2k-n)n - (2k-n+1)\left(\frac{n-1}{t} + t^{n-1}\right).$$

We have

$$f'(t) = \frac{(n-1)g(t)}{t^{kn-k+1}}, \quad g(t) = k(t^{kn}-1) - (2k-n+1)t^{kn-k-1}(t^n-1),$$

$$g'(t) = t^{kn-k-2}h(t), \quad h(t) = k^2nt^{k+1} - (2k-n+1)[(k+1)(n-1)t^n - kn + k + 1],$$
$$h'(t) = (k+1)nt^{n-1}[k^2t^{k-n+1} - (2k-n+1)(n-1)].$$

If k = n - 1, then h(t) = n(n - 1)(n - 2) > 0. If k > n - 1, then

$$k^{2}t^{k-n+1} - (2k-n+1)(n-1) \ge k^{2} - (2k-n+1)(n-1) = (k-n+1)^{2} > 0,$$

h'(t) > 0 for $t \ge 1$, h is strictly increasing on $[1, \infty)$, hence

$$h(t) \ge h(1) = n[(k-1)^2 + n - 2] > 0.$$

From h > 0, we get g' > 0, g is strictly increasing, $g(t) \ge g(1) = 0$ for $t \ge 1$, f'(t) > 0 for t > 1, f is strictly increasing, $f(t) \ge f(1) = 0$ for $t \ge 1$.

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$. If n = 2 and k = 1, then the equality holds for $a_1 a_2 = 1$.

P 5.62. Let a_1, a_2, \ldots, a_n $(n \ge 3)$ be nonnegative numbers so that $a_1 + a_2 + \cdots + a_n = n$, and let k be an integer satisfying $2 \le k \le n + 2$. If

$$r = \left(\frac{n}{n-1}\right)^{k-1} - 1,$$

then

$$a_1^k + a_2^k + \dots + a_n^k - n \ge nr(1 - a_1 a_2 \dots a_n).$$

(Vasile C., 2005)

Solution. According to Corollary 4, if $0 \le a_1 \le a_2 \le \cdots \le a_n$ and

$$a_1 + a_2 + \cdots + a_n = n$$
, $a_1^k + a_2^k + \cdots + a_n^k = constant$,

then the product

$$P = a_1 a_2 \cdots a_n$$

is minimal for either $a_1 = 0$ or $0 < a_1 \le a_2 = \cdots = a_n$.

Case 1: $a_1 = 0$. We need to show that

$$a_2^k + \dots + a_n^k \ge \frac{n^k}{(n-1)^{k-1}}$$

for $a_2 + \cdots + a_n = n$. This follows by Jensen's inequality

$$a_2^k + \dots + a_n^k \ge (n-1) \left(\frac{a_2 + \dots + a_n}{n-1} \right)^k$$
.

Case 2: $0 < a_1 \le a_2 = \cdots = a_n$. Denoting $a_1 = x$ and $a_2 = y$ ($x \le y$), we only need to show that

$$f(x) \geq 0$$

where

$$f(x) = x^k + (n-1)y^k + nrxy^{n-1} - n(r+1), \quad y = \frac{n-x}{n-1}, \quad 0 < x \le 1 \le y.$$

It is easy to check that

$$f(0) = f(1) = 0.$$

Since

$$y' = \frac{-1}{n-1},$$

we have

$$f'(x) = k(x^{k-1} - y^{k-1}) + nry^{n-2}(y - x)$$

$$= (y - x)[nry^{n-2} - k(y^{k-2} + y^{k-3}x + \dots + x^{k-2})]$$

$$= (y - x)y^{n-2}[nr - kg(x)],$$

where

$$g(x) = \frac{1}{y^{n-k}} + \frac{x}{y^{n-k+1}} + \dots + \frac{x^{k-2}}{y^{n-2}}.$$

We see that f'(x) has the same sign as

$$h(x) = nr - kg(x).$$

Since the function

$$y(x) = \frac{n-x}{n-1}$$

is strictly decreasing, g is strictly increasing for $2 \le k \le n$. Also, g is strictly increasing for k = n + 1, when

$$g(x) = y + x + \frac{x^2}{y} + \dots + \frac{x^{n-1}}{y^{n-2}}$$
$$= \frac{(n-2)x + n}{n-1} + \frac{x^2}{y} + \dots + \frac{x^{n-1}}{y^{n-2}},$$

and for k = n + 2, when

$$g(x) = y^{2} + yx + x^{2} + \frac{x^{3}}{y} + \dots + \frac{x^{n}}{y^{n-2}}$$

$$= \frac{(n^{2} - 3n + 3)x^{2} + n(n-3)x + n^{2}}{(n-1)^{2}} + \frac{x^{3}}{y} + \dots + \frac{x^{n}}{y^{n-2}}.$$

Therefore, the function h(x) is strictly decreasing for $x \in [0,1]$. Since f(0) = f(1) = 0, there exists $x_1 \in (0,1)$ so that f(x) is increasing on $[0,x_1]$ and decreasing on $[x_1,1]$. As a consequence, $f(x) \ge 0$ for $x \in [0,1]$.

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = 0, \quad a_2 = \dots = a_n = \frac{n}{n-1}$$

(or any cyclic permutation).

Remark. For the particular case k = n, the inequality has been posted in 2004 on Art of Problem Solving website by *Gabriel Dospinescu* and *Calin Popa*.

P 5.63. If a, b, c are positive real numbers so that $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 3$, then

$$4(a^2 + b^2 + c^2) + 9 \ge 21abc.$$

(Vasile C., 2006)

Solution. Replacing a, b, c by their reverses 1/a, 1/b, 1/c, we need to show that a + b + c = 3 involves

$$4\left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}\right) + 9 \ge \frac{21}{abc}.$$

According to Corollary 5 (case k=0 and m=-2), if

$$a+b+c=3$$
, $abc=constant$, $0 < a \le b \le c$,

then

$$S_3 = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}$$

is minimal for $0 < a = b \le c$. Thus, we only need to prove that

$$4\left(\frac{2}{a^2} + \frac{1}{c^2}\right) + 9 \ge \frac{21}{a^2c}$$

for 2a + b = 3. The inequality is equivalent to

$$(9a^{2} + 8)c^{2} - 21c + 4a^{2} \ge 0,$$

$$4a^{4} - 12a^{3} + 13a^{2} - 6a + 1 \ge 0,$$

$$(a - 1)^{2}(2a - 1)^{2} > 0.$$

The equality holds for a = b = c = 1, and also for

$$a = b = 2, \quad c = \frac{1}{2}$$

(or any cyclic permutation).

P 5.64. If a_1, a_2, \ldots, a_n are positive real numbers so that $\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} = n$, then

$$a_1 + a_2 + \dots + a_n - n \le e_{n-1}(a_1 a_2 \dots a_n - 1),$$

where

$$e_{n-1} = \left(1 + \frac{1}{n-1}\right)^{n-1}$$
.

(Gabriel Dospinescu and Calin Popa, 2004)

Solution. For n = 2, the inequality is an identity. For $n \ge 3$, replacing a_1, a_2, \dots, a_n by $1/a_1, 1/a_2, \dots, 1/a_n$, we need to show that $a_1 + a_2 + \dots + a_n = n$ involves

$$a_1 a_2 \cdots a_n \left(\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} - n + e_{n-1} \right) \le e_{n-1}.$$

According to Corollary 5 (case k = 0 and m = -1), if $0 < a_1 \le a_2 \le \cdots \le a_n$ and

$$a_1 + a_2 + \cdots + a_n = n$$
, $a_1 a_2 \cdots a_n = constant$,

then

$$S_n = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$$

is maximal for $0 < a_1 \le a_2 = \cdots = a_n$. Using the notation $a_1 = x$ and $a_2 = y$, we only need to show that $f(x) \le 0$ for

$$x + (n-1)y = n$$
, $0 < x \le 1$,

where

$$f(x) = xy^{n-1} \left(\frac{1}{x} + \frac{n-1}{y} - n + e_{n-1} \right) - e_{n-1}$$

= $y^{n-1} + (n-1)xy^{n-2} - (n - e_{n-1})xy^{n-1} - e_{n-1}$.

Since

$$y' = \frac{-1}{n-1},$$

we get

$$\frac{f'(x)}{y^{n-3}} = (y-x)h(x),$$

where

$$h(x) = n - 2 - (n - e_{n-1})y = n - 2 - (n - e_{n-1})\frac{n - x}{n - 1}$$

is a linear increasing function. Since

$$h(0) = \frac{n}{n-1} \left(e_{n-1} - 3 + \frac{2}{n} \right) < 0$$

and

$$h(1) = e_{n-1} - 2 > 0,$$

there exists $x_1 \in (0,1)$ so that $h(x_1) = 0$, h(x) < 0 for $x \in [0,x_1)$, and h(x) > 0 for $x \in (x_1,1]$. Consequently, f is strictly decreasing on $[0,x_1]$ and strictly increasing on $[x_1,1]$. From

$$f(0) = f(1) = 0$$

it follows that $f(x) \le 0$ for $x \in [0, 1]$.

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$. If n = 2, then the equality holds for $a_1 + a_2 = 2a_1a_2$.

P 5.65. If $a_1, a_2, ..., a_n$ are positive real numbers, then

$$\frac{a_1^n + a_2^n + \dots + a_n^n}{a_1 a_2 \cdots a_n} + n(n-1) \ge (a_1 + a_2 + \dots + a_n) \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} \right).$$

(Vasile C., 2004)

Solution. For n = 2, the inequality is an identity. For $n \ge 3$, according to Corollary 5 (case k = 0 and $m \in \{-1, n\}$), if $0 < a_1 \le a_2 \le \cdots \le a_n$ and

$$a_1 + a_2 + \cdots + a_n = constant$$
, $a_1 a_2 \cdots a_n = constant$,

then the sum $\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$ is maximal and the sum $a_1^n + a_2^n + \dots + a_n^n$ is minimal for

$$0 < a_1 \le a_2 = \dots = a_n.$$

Consequently, we only need to prove the desired homogeneous inequality for $a_2 = \cdots = a_n = 1$, when it becomes

$$a_1^n + (n-2)a_1 \ge (n-1)a_1^2$$
.

Indeed, by the AM-GM inequality, we have

$$a_1^n + (n-2)a_1 \ge (n-1)^{\frac{n-1}{2}}\sqrt{a_1^n \cdot a_1^{n-2}} = (n-1)a_1^2.$$

For $n \ge 3$, the equality holds when $a_1 = a_2 = \cdots = a_n$.

P 5.66. If a_1, a_2, \ldots, a_n are nonnegative real numbers, then

$$(n-1)(a_1^n+a_2^n+\cdots+a_n^n)+na_1a_2\cdots a_n \geq (a_1+a_2+\cdots+a_n)(a_1^{n-1}+a_2^{n-1}+\cdots+a_n^{n-1}).$$

(Janos Suranyi, MSC-Hungary)

Solution. For n=2, the inequality is an identity. For $n\geq 3$, according to Corollary 5 (case k=n and m=n-1), if $0\leq a_1\leq a_2\leq \cdots \leq a_n$ and

$$a_1 + a_2 + \cdots + a_n = constant$$
, $a_1^n + a_2^n + \cdots + a_n^n = constant$,

then the sum $a_1^{n-1} + a_2^{n-1} + \cdots + a_n^{n-1}$ is maximal and the product $a_1 a_2 \cdots a_n$ is minimal for either $a_1 = 0$ or $0 < a_1 \le a_2 = \cdots = a_n$. Consequently, we only need to consider these cases.

Case 1: $a_1 = 0$. The inequality reduces to

$$(n-1)(a_2^n+\cdots+a_n^n) \ge (a_2+\cdots+a_n)(a_2^{n-1}+\cdots+a_n^{n-1}),$$

which follows immediately from Chebyshev's inequality.

Case 2: $0 < a_1 \le a_2 = \cdots = a_n$. Due to homogeneity, we may set $a_2 = \cdots = a_n = 1$, when the inequality becomes

$$(n-2)a_1^n + a_1 \ge (n-1)a_1^{n-1}$$
.

Indeed, by the AM-GM inequality, we have

$$(n-2)a_1^n + a_1 \ge (n-1)^{n-1}\sqrt{a_1^{n(n-2)} \cdot a_1} = (n-1)a_1^{n-1}.$$

For $n \ge 3$, the equality holds when $a_1 = a_2 = \cdots = a_n$, and also when

$$a_1 = 0$$
, $a_2 = \cdots = a_n$

(or any cyclic permutation).

P 5.67. If a_1, a_2, \ldots, a_n are nonnegative real numbers, then

$$(n-1)(a_1^{n+1} + a_2^{n+1} + \dots + a_n^{n+1}) \ge (a_1 + a_2 + \dots + a_n)(a_1^n + a_2^n + \dots + a_n^n - a_1 a_2 \dots a_n).$$
(Vasile C.. 2006)

Solution. For n=2, the inequality is an identity. For $n\geq 3$, according to Corollary 5 (case k=n+1 and m=n), if $0\leq a_1\leq a_2\leq \cdots \leq a_n$ and

$$a_1 + a_2 + \dots + a_n = constant$$
, $a_1^{n+1} + a_2^{n+1} + \dots + a_n^{n+1} = constant$,

then the sum $a_1^n + a_2^n + \cdots + a_n^n$ is maximal and the product $a_1 a_2 \cdots a_n$ is minimal for either $a_1 = 0$ or $0 < a_1 \le a_2 = \cdots = a_n$. Consequently, we only need to consider these cases.

Case 1: $a_1 = 0$. The inequality reduces to

$$(n-1)(a_2^{n+1}+\cdots+a_n^{n+1}) \ge (a_2+\cdots+a_n)(a_2^n+\cdots+a_n^n),$$

which follows immediately from Chebyshev's inequality.

Case 2: $0 < a_1 \le a_2 = \cdots = a_n$. Due to homogeneity, we may set $a_2 = \cdots = a_n = 1$, when the inequality becomes

$$(n-2)a_1^{n+1} + a_1^2 \ge (n-1)a_1^n$$
.

Indeed, by the AM-GM inequality, we have

$$(n-2)a_1^{n+1} + a_1^2 \ge (n-1) \sqrt[n-1]{a_1^{(n+1)(n-2)} \cdot a_1^2} = (n-1)a_1^n.$$

For $n \ge 3$, the equality holds when $a_1 = a_2 = \cdots = a_n$, and also when

$$a_1 = 0, \quad a_2 = \cdots = a_n$$

(or any cyclic permutation).

P 5.68. If $a_1, a_2, ..., a_n$ are positive real numbers, then

$$(a_1 + a_2 + \dots + a_n - n) \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} - n \right) + a_1 a_2 \dots a_n + \frac{1}{a_1 a_2 \dots a_n} \ge 2.$$

(Vasile C., 2006)

Solution. For n = 2, the inequality reduces to

$$(1-a_1)^2(1-a_2)^2 \ge 0.$$

Consider further that $n \ge 3$. Since the inequality remains unchanged by replacing each a_i with $1/a_i$, we may consider $a_1a_2\cdots a_n \ge 1$. By the AM-GM inequality, we get

$$a_1 + a_2 + \cdots + a_n \ge n \sqrt[n]{a_1 a_2 \cdots a_n} \ge n.$$

According to Corollary 5 (case k = 0 and m = -1), if $0 < a_1 \le a_2 \le \cdots \le a_n$ and

$$a_1 + a_2 + \cdots + a_n = constant$$
, $a_1 a_2 \cdots a_n = constant$,

then the sum

$$S_n = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$$

is minimal for $0 < a_1 = a_2 = \cdots = a_{n-1} \le a_n$. Consequently, we only need to consider

$$a_1 = a_2 = \cdots = a_{n-1} = x, \quad a_n = y, \quad x \le y.$$

The inequality becomes

$$[(n-1)x + y - n]\left(\frac{n-1}{x} + \frac{1}{y} - n\right) + x^{n-1}y + \frac{1}{x^{n-1}y} \ge 2,$$

$$\left(x^{n-1} + \frac{n-1}{x} - n\right)y + \left[\frac{1}{x^{n-1}} + (n-1)x - n\right]\frac{1}{y} \ge \frac{n(n-1)(x-1)^2}{x}.$$

Since

$$x^{n-1} + \frac{n-1}{x} - n = \frac{x-1}{x} \left[(x^{n-1} - 1) + (x^{n-2} - 1) + \dots + (x-1) \right]$$
$$= \frac{(x-1)^2}{x} \left[x^{n-2} + 2x^{n-3} + \dots + (n-1) \right],$$

and

$$\frac{1}{x^{n-1}} + (n-1)x - n = \frac{(x-1)^2}{x} \left[\frac{1}{x^{n-2}} + \frac{2}{x^{n-3}} + \dots + (n-1) \right],$$

it is enough to prove the inequality

$$\left[x^{n-2} + 2x^{n-3} + \dots + (n-1)\right]y + \left[\frac{1}{x^{n-2}} + \frac{2}{x^{n-3}} + \dots + (n-1)\right]\frac{1}{y} \ge n(n-1),$$

which is equivalent to

$$\left(x^{n-2}y + \frac{1}{x^{n-2}y} - 2\right) + 2\left(x^{n-3}y + \frac{1}{x^{n-3}y} - 2\right) + \dots + (n-1)\left(y + \frac{1}{y} - 2\right) \ge 0,$$

$$\frac{(x^{n-2}y - 1)^2}{x^{n-2}y} + \frac{2(x^{n-3}y - 1)^2}{x^{n-3}y} + \dots + \frac{(n-1)(y-1)^2}{y} \ge 0.$$

The equality holds if n-1 of the numbers a_i are equal to 1.

P 5.69. If $a_1, a_2, ..., a_n$ are positive real numbers so that $a_1 a_2 \cdots a_n = 1$, then

$$\left| \frac{1}{\sqrt{a_1 + a_2 + \dots + a_n - n}} - \frac{1}{\sqrt{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} - n}} \right| < 1.$$

(Vasile C., 2006)

Solution. Let

$$A = a_1 + a_2 + \dots + a_n - n$$
, $B = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} - n$.

By the AM-GM inequality, it follows that A > 0 and B > 0. According to the preceding P 5.68, the following inequality holds

$$(a_1 + \dots + a_{n+1} - n - 1) \left(\frac{1}{a_1} + \dots + \frac{1}{a_{n+1}} - n - 1 \right) + a_1 \dots a_{n+1} + \frac{1}{a_1 \dots a_{n+1}} \ge 2,$$

which is equivalent to

$$(A-1+a_{n+1})\left(B-1+\frac{1}{a_{n+1}}\right)+a_{n+1}+\frac{1}{a_{n+1}} \ge 2,$$

$$\frac{A}{a_{n+1}}+Ba_{n+1}+AB-A-B \ge 0.$$

Choosing

$$a_{n+1} = \sqrt{\frac{A}{B}},$$

we get

$$2\sqrt{AB} + AB - A - B \ge 0,$$

$$AB \ge \left(\sqrt{A} - \sqrt{B}\right)^{2},$$

$$1 \ge \left|\frac{1}{\sqrt{A}} - \frac{1}{\sqrt{B}}\right|.$$

P 5.70. If a_1, a_2, \ldots, a_n are positive real numbers so that $a_1 a_2 \cdots a_n = 1$, then

$$a_1^{n-1} + a_2^{n-1} + \dots + a_n^{n-1} + \frac{n^2(n-2)}{a_1 + a_2 + \dots + a_n} \ge (n-1) \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} \right).$$

Solution. For n=2, the inequality is an identity. Consider further that $n \ge 3$. According to Corollary 5 (case k=0), if $0 < a_1 \le a_2 \le \cdots \le a_n$ and

$$a_1 + a_2 + \cdots + a_n = constant, \quad a_1 a_2 \cdots a_n = 1,$$

then the sum $a_1^{n-1} + a_2^{n-1} + \cdots + a_n^{n-1}$ is minimal and the sum $\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n}$ is maximal for $0 < a_1 \le a_2 = \cdots = a_n$. Thus, we only need to prove the homogeneous inequality

$$a_1^{n-1} + a_2^{n-1} + \dots + a_n^{n-1} + \frac{n^2(n-2)a_1a_2 \cdots a_n}{a_1 + a_2 + \dots + a_n} \ge (n-1)a_1a_2 \cdots a_n \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}\right)$$

for $a_2 = \cdots = a_n = 1$; that is, to show that $f(x) \ge 0$ for $x \in [0, 1]$, where

$$f(x) = x^{n-2} + \frac{n^2(n-2)}{x+n-1} - (n-1)^2,$$
$$\frac{f'(x)}{n-2} = x^{n-3} - \frac{n^2}{(x+n-1)^2}.$$

Since f' is increasing, we have $f'(x) \le f'(1) = 0$ for $x \in [0, 1]$, f is decreasing on [0, 1], hence $f(x) \ge f(1) = 0$.

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$. If n = 2, then the equality holds for $a_1 a_2 = 1$.

P 5.71. *If* a, b, c are nonnegative real numbers, then

$$(a+b+c-3)^2 \ge \frac{abc-1}{abc+1}(a^2+b^2+c^2-3).$$

(*Vasile C., 2006*)

Solution. For a = 0, the inequality reduces to

$$b^2 + c^2 + bc + 3 \ge 3(b+c)$$
,

which is equivalent to

$$(b-c)^2 + 3(b+c-2)^2 \ge 0.$$

For abc > 0, according to Corollary 5 (case k = 0 and m = 2), if

$$a + b + c = constant$$
, $abc = constant$,

then

$$S_3 = a^2 + b^2 + c^2$$

is minimal and maximal when two of a, b, c are equal. Thus, we only need to prove the desired inequality for a = b; that is,

$$(2a+c-3)^2 \ge \frac{a^2c-1}{a^2c+1}(2a^2+c^2-3),$$

which is equivalent to

$$(a-1)^{2}[ca^{2}+2c(c-2)a+c^{2}-3c+3] \ge 0.$$

For $c \ge 2$, the inequality is clearly true. It is also true for $c \le 2$, because

$$ca^{2} + 2c(c-2)a + c^{2} - 3c + 3 = c(a+c-2)^{2} + (1-c)^{2}(3-c) \ge 0.$$

The equality holds if two of a, b, c are equal to 1.

P 5.72. If a_1, a_2, \ldots, a_n are positive real numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$(a_1 a_2 \cdots a_n)^{\frac{1}{\sqrt{n-1}}} (a_1^2 + a_2^2 + \cdots + a_n^2) \le n.$$

(Vasile C., 2006)

Solution. For n = 2, the inequality is equivalent to

$$(a_1 a_2 - 1)^2 \ge 0.$$

For $n \ge 3$, according to Corollary 5 (case k = 0, m = 2), if $0 < a_1 \le a_2 \le \cdots \le a_n$ and

$$a_1 + a_2 + \cdots + a_n = n$$
, $a_1 a_2 \cdots a_n = constant$,

then the sum

$$S_n = a_1^2 + a_2^2 + \dots + a_n^2$$

is maximal for $a_1 = a_2 = \cdots = a_{n-1}$. Therefore, we only need to prove the homogeneous inequality

$$(a_1 a_2 \cdots a_n)^{\frac{1}{\sqrt{n-1}}} \cdot \frac{a_1^2 + a_2^2 + \cdots + a_n^2}{n} \le \left(\frac{a_1 + a_2 + \cdots + a_n}{n}\right)^{2 + \frac{n}{\sqrt{n-1}}}$$

for $a_1 = a_2 = \cdots = a_{n-1} = 1$. The inequality is equivalent to $f(x) \ge 0$ for $x \ge 1$, where

$$f(x) = \left(2 + \frac{n}{\sqrt{n-1}}\right) \ln \frac{x+n-1}{n} - \frac{\ln x}{\sqrt{n-1}} - \ln \frac{x^2+n-1}{n}.$$

Let

$$p = \frac{1}{\sqrt{n-1}}.$$

Since

$$f'(x) = \frac{2+np}{x+n-1} - \frac{p}{x} - \frac{2x}{x^2+n-1}$$

$$= \frac{(n-1)(x-1)}{x+n-1} \left(\frac{p}{x} - \frac{2}{x^2+n-1}\right)$$

$$= \frac{p(n-1)(x-1)(x-\sqrt{n-1})^2}{x(x+n-1)(x^2+n-1)} \ge 0,$$

f(x) is increasing for $x \ge 1$, hence

$$f(x) \ge f(1) = 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

Remark. For n = 5, from the homogeneous inequality above, we get the following nice results:

• If a, b, c, d, e are positive real numbers so that

$$a^2 + b^2 + c^2 + d^2 + e^2 = 5$$

then

(a)
$$abcde(a^4 + b^4 + c^4 + d^4 + e^4) \le 5;$$

(b)
$$a+b+c+d+e \ge 5\sqrt[9]{abcde}.$$

P 5.73. If a_1, a_2, \ldots, a_n are positive real numbers such that $a_1 + a_2 + \cdots + a_n = n - 1$, then

$$\sqrt[n]{\frac{n-1}{a_1 a_2 \cdots a_n}} \ge 4 \sqrt{\frac{a_1^2 + a_2^2 + \cdots + a_n^2}{n(n-1)}}.$$

(Vasile Cîrtoaje and KaiRain, 2020)

Solution. For n = 2, we need to show that $a_1 + a_2 = 1$ involves

$$\frac{1}{a_1 a_2} \ge 8(a_1^2 + a_2)^2,$$

which is equivalent to

$$(4a_1a_2 - 1)^2 \ge 0.$$

For $n \ge 3$, write the inequality in the homogeneous form

$$\left(\frac{a_1 + a_2 + \dots + a_n}{n - 1}\right)^2 \sqrt[n]{\frac{n - 1}{a_1 a_2 \cdots a_n}} \ge 4 \sqrt[n]{\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n(n - 1)}}.$$

According to Corollary 4, for $a_1+a_2+\cdots+a_n=constant$ and $a_1^2+a_2^2+\cdots+a_n^2=constant$, the product $a_1a_2\cdots a_n$ is maximal for $a_1=a_2=\cdots=a_{n-1}\leq a_n$. Due to homogeneity, we may set $a_1=a_2=\cdots=a_{n-1}=1$, when the inequality becomes

$$\frac{A(x+n-1)^2}{\sqrt[n]{x}} \ge \sqrt{x^2+n-1},$$

where

$$A = \frac{\sqrt{n}}{4(n-1)^{(3n-2)/(2n)}}$$
, $x \ge 1$.

The inequality is true if $f(x) \ge 0$, where

$$f(x) = \ln A + 2\ln(x+n-1) - \frac{1}{n}\ln x - \frac{1}{2}\ln(x^2+n-1).$$

From

$$f'(x) = \frac{2}{x+n-1} - \frac{1}{nx} - \frac{x}{x^2+n-1}$$

$$= \frac{(n-1)[x^3 - (n+1)x^2 + (2n-1)x - n + 1]}{nx(x+n-1)(x^2+n-1)}$$

$$= \frac{(n-1)(x-1)^2(x-n+1)}{nx(x+n-1)(x^2+n-1)},$$

it follows that f is decreasing on [1, n-1] and increasing on $[n-1, \infty)$, therefore

$$f(x) \ge f(n-1) = 0.$$

The equality occurs for $a_1 = a_2 = \cdots = a_{n-1} = \frac{1}{2}$ and $a_n = \frac{n-1}{2}$ (or any cyclic permutation).

P 5.74. If $a_1, a_2, ..., a_n$ are positive real numbers so that $a_1^3 + a_2^3 + ... + a_n^3 = n$, then $a_1 + a_2 + ... + a_n \ge n^{n+1} \sqrt{a_1 a_2 ... a_n}$.

(Vasile C., 2007)

Solution. For n = 2, we need to show that $a_1^3 + a_2^3 = 2$ involves $(a_1 + a_2)^3 \ge 8a_1a_2$. Let

$$x = a_1 + a_2$$
.

From

$$2 = a_1^3 + a_2^3 = x^3 - 3a_1a_2x,$$

we get

$$a_1 a_2 = \frac{x^3 - 2}{3x}$$
.

Thus,

$$(a_1 + a_2)^3 - 8a_1a_2 = x^3 - \frac{8(x^3 - 2)}{3x} = \frac{(x - 2)^2(3x^2 + 4x + 4)}{3x} \ge 0.$$

For $n \ge 3$, according to Corollary 4, if $0 < a_1 \le a_2 \le \cdots \le a_n$ and

$$a_1 + a_2 + \dots + a_n = constant,$$
 $a_1^3 + a_2^3 + \dots + a_n^3 = n,$

then the product

$$P = a_1 a_2 \cdots a_n$$

is maximal for $a_1 = a_2 = \cdots = a_{n-1}$. Therefore, we only need to prove the homogeneous inequality

$$\left(\frac{a_1 + a_2 + \dots + a_n}{n}\right)^{n+1} \ge a_1 a_2 \cdots a_n \sqrt[3]{\frac{a_1^3 + a_2^3 + \dots + a_n^3}{n}}$$

for $a_1 = a_2 = \cdots = a_{n-1} = 1$. The inequality is equivalent to $f(x) \ge 0$ for $x \ge 1$, where

$$f(x) = (n+1)\ln\frac{x+n-1}{n} - \ln x - \frac{1}{3}\ln\frac{x^3+n-1}{n}.$$

Since

$$f'(x) = \frac{n+1}{x+n-1} - \frac{1}{x} - \frac{x^2}{x^3+n-1}$$

$$= \frac{(n-1)(x-1)(x^3-x^2-x+n-1)}{x(x+n-1)(x^3+n-1)}$$

$$\geq \frac{(n-1)(x-1)(x^3-x^2-x+1)}{x(x+n-1)(x^3+n-1)}$$

$$= \frac{(n-1)(x-1)^3(x+1)}{x(x+n-1)(x^3+n-1)},$$

f(x) is increasing for $x \ge 1$, hence

$$f(x) \ge f(1) = 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

P 5.75. Let a, b, c be nonnegative real numbers so that ab + bc + ca = 3. If

$$k \ge 2 - \frac{\ln 4}{\ln 3} \approx 0.738,$$

then

$$a^k + b^k + c^k \ge 3.$$

(Vasile C., 2004)

Solution. Let

$$r = 2 - \frac{\ln 4}{\ln 3}.$$

By the power mean inequality, we have

$$\frac{a^k + b^k + c^k}{3} \ge \left(\frac{a^r + b^r + c^r}{3}\right)^{k/r}.$$

Thus, it suffices to show that

$$a^{r} + b^{r} + c^{r} > 3$$
.

Since

$$2(ab + bc + ca) = (a + b + c)^{2} - (a^{2} + b^{2} + c^{2}),$$

according to Corollary 5 (case k = 2, m = r), if $a \le b \le c$ and

$$a+b+c=constant$$
, $a^2+b^2+c^2=constant$,

then

$$S_3 = a^r + b^r + c^r$$

is minimal for either a = 0 or $0 < a \le b = c$.

Case 1: a = 0. We need to show that bc = 3 implies $b^r + c^r \ge 3$. Indeed, by the AM-GM inequality, we have

$$b^r + c^r \ge 2\sqrt{(bc)^r} = 2 \cdot 3^{r/2} = 3.$$

Case 2: $0 < a \le b = c$. We only need to show that the homogeneous inequality

$$a^r + b^r + c^r \ge 3\left(\frac{ab + bc + ca}{3}\right)^{r/2}$$

holds for b = c = 1; that is, to show that $a \in (0, 1]$ involves

$$a^r + 2 \ge 3\left(\frac{2a+1}{3}\right)^{r/2}$$
,

which is equivalent to $f(a) \ge 0$, where

$$f(a) = \ln \frac{a^r + 2}{3} - \frac{r}{2} \ln \frac{2a + 1}{3}.$$

The derivative

$$f'(a) = \frac{ra^{r-1}}{a^r + 2} - \frac{r}{2a+1} = \frac{rg(a)}{a^{1-r}(a^r + 2)(2a+1)},$$

where

$$g(a) = a - 2a^{1-r} + 1.$$

From

$$g'(a) = 1 - \frac{2(1-r)}{a^r},$$

it follows that g'(a) < 0 for $a \in (0, a_1)$, and g'(a) > 0 for $a \in (a_1, 1]$, where

$$a_1 = (2 - 2r)^{1/r} \approx 0.416.$$

Then, g is strictly decreasing on $[0,a_1]$ and strictly increasing on $[a_1,1]$. Since g(0)=1 and g(1)=0, there exists $a_2\in(0,1)$ so that $g(a_2)=0$, g(a)>0 for $a\in[0,a_2)$, and g(a)<0 for $a\in(a_2,1]$. Consequently, f is increasing on $[0,a_2]$ and decreasing on $[a_2,1]$. Since f(0)=f(1)=0, we have $f(a)\geq 0$ for $0< a\leq 1$.

The equality holds for a = b = c = 1. If $k = 2 - \frac{\ln 4}{\ln 3}$, then the equality holds also for

$$a = 0$$
, $b = c = \sqrt{3}$

(or any cyclic permutation).

Remark. For k = 3/4, we get the following nice results (see P 3.33 in Volume 1):

- Let a, b, c be positive real numbers.
 - (a) If $a^4b^4 + b^4c^4 + c^4a^4 = 3$, then

$$a^3 + b^3 + c^3 > 3$$

(b) If $a^3 + b^3 + c^3 = 3$, then

$$a^4b^4 + b^4c^4 + c^4a^4 \le 3.$$

P 5.76. Let a, b, c be nonnegative real numbers so that a + b + c = 3. If

$$k \ge \frac{\ln 9 - \ln 8}{\ln 3 - \ln 2} \approx 0.29,$$

then

$$a^k + b^k + c^k \ge ab + bc + ca$$
.

(Vasile C., 2005)

Solution. For $k \ge 1$, by Jensen's inequality, we get

$$a^{k} + b^{k} + c^{k} \ge 3\left(\frac{a+b+c}{3}\right)^{k} = 3 = \frac{1}{3}(a+b+c)^{2} \ge ab+bc+ca.$$

Let

$$r = \frac{\ln 9 - \ln 8}{\ln 3 - \ln 2}.$$

Assume further that

$$r \leq k < 1$$
,

and write the inequality as

$$2(a^k + b^k + c^k) + a^2 + b^2 + c^2 \ge 9.$$

By Corollary 5, if $a \le b \le c$ and

$$a + b + c = 3$$
, $a^2 + b^2 + c^2 = constant$,

then the sum

$$S_3 = a^k + b^k + c^k$$

is minimal for either a = 0 or $0 < a \le b = c$. Thus, we only need to prove the desired inequality for these cases.

Case 1: a = 0. We need to show that b + c = 3 involves $b^k + c^k \ge bc$. Indeed, by the AM-GM inequality, we have

$$b^{k} + c^{k} - bc \ge 2(bc)^{k/2} - bc = (bc)^{k/2} \left[2 - (bc)^{1-k/2} \right]$$

$$\ge (bc)^{k/2} \left[2 - \left(\frac{b+c}{2} \right)^{2-k} \right] = (bc)^{k/2} \left[2 - \left(\frac{3}{2} \right)^{2-k} \right]$$

$$\ge (bc)^{k/2} \left[2 - \left(\frac{3}{2} \right)^{2-r} \right] = 0.$$

Case 2: $0 < a \le b = c$. We only need to show that the homogeneous inequality

$$(a^k + b^k + c^k) \left(\frac{a+b+c}{3}\right)^{2-k} \ge ab + bc + ca$$

holds for b = c = 1; that is, to show that $a \in (0, 1]$ involves

$$(a^k + 2) \left(\frac{a+2}{3}\right)^{2-k} \ge 2a+1,$$

which is equivalent to $f(a) \ge 0$, where

$$f(a) = \ln(a^k + 2) + (2 - k) \ln \frac{a + 2}{3} - \ln(2a + 1).$$

We have

$$f'(a) = \frac{ka^{k-1}}{a^k + 2} + \frac{2-k}{a+2} - \frac{2}{2a+1} = \frac{2g(a)}{a^{1-k}(a^k + 2)(2a+1)},$$

where

$$g(a) = a^{2} + (2k - 1)a + k + 2(1 - k)a^{2-k} - (k + 2)a^{1-k},$$

with

$$g'(a) = 2a + 2k - 1 + 2(1 - k)(2 - k)a^{1-k} - (k + 2)(1 - k)a^{-k},$$

$$g''(a) = 2 + 2(1 - k)^{2}(2 - k)a^{-k} + k(k + 2)(1 - k)a^{-k-1}.$$

Since g'' > 0, g' is strictly increasing. From $g'(0_+) = -\infty$ and $g'(1) = 3(1 - k) + 3k^2 > 0$, it follows that there exists $a_1 \in (0,1)$ so that $g'(a_1) = 0$, g'(a) < 0 for $a \in (0,a_1)$ and g'(a) > 0 for $a \in (a_1,1]$. Therefore, g is strictly decreasing on $[0,a_1]$ and strictly increasing on $[a_1,1]$. Since g(0) = k > 0 and g(1) = 0, there exists $a_2 \in (0,a_1)$ so that $g(a_2) = 0$, g(a) > 0 for $a \in [0,a_2)$ and g(a) < 0 for $a \in (a_2,1]$. Consequently, f is increasing on $[0,a_2]$ and decreasing on $[a_2,1]$. Since

$$f(0) = \ln 2 + (3-k)\ln \frac{2}{3} \ge \ln 2 + (3-r)\ln \frac{2}{3} = 0$$

and f(1) = 0, we get $f(a) \ge 0$ for $0 \le a \le 1$.

The equality holds for a=b=c=1. If $k=\frac{\ln 9 - \ln 8}{\ln 3 - \ln 2}$, then the equality holds also for

$$a=0, \qquad b=c=\frac{3}{2}$$

(or any cyclic permutation).

P 5.77. If a_1, a_2, \ldots, a_n $(n \ge 4)$ are nonnegative numbers so that $a_1 + a_2 + \cdots + a_n = n$, then

$$\frac{1}{n+1-a_2a_3\cdots a_n} + \frac{1}{n+1-a_3a_4\cdots a_1} + \cdots + \frac{1}{n+1-a_1a_2\cdots a_{n-1}} \le 1.$$

(Vasile C., 2004)

Solution. Let $a_1 \le a_2 \le \cdots \le a_n$ and

$$e_{n-1} = \left(1 + \frac{1}{n-1}\right)^{n-1}.$$

By the AM-GM inequality, we have

$$a_2 a_3 \cdots a_n \le \left(\frac{a_2 + a_3 + \cdots + a_n}{n-1}\right)^{n-1} \le \left(\frac{a_1 + a_2 + \cdots + a_n}{n-1}\right)^{n-1} = e_{n-1},$$

hence

$$n+1-a_2a_3\cdots a_n \ge n+1-e_{n-1} = (n-2)+(3-e_{n-1}) > 0.$$

Consider the cases $a_1 = 0$ and $a_1 > 0$.

Case 1: $a_1 = 0$. We need to show that $a_2 + a_3 + \cdots + a_n = n$ involves

$$\frac{1}{n+1-a_2a_3\cdots a_n} + \frac{n-1}{n+1} \le 1,$$

which is equivalent to

$$a_2 a_3 \cdots a_n \le \frac{n+1}{2}.$$

Since

$$a_2 a_3 \cdots a_n \le \left(\frac{a_2 + a_3 + \cdots + a_n}{n-1}\right)^{n-1} = e_{n-1},$$

it suffices to show that

$$e_{n-1} \le \frac{n+1}{2}.$$

For n = 4, we have

$$\frac{n+1}{2} - e_{n-1} = \frac{7}{54} > 0.$$

For $n \ge 5$, we get

$$\frac{n+1}{2} \ge 3 > e_{n-1}.$$

Case 2: $0 < a_1 \le a_2 \le \cdots \le a_n$. Denote

$$a_1a_2\cdots a_n=(n+1)r, \quad r>0.$$

From $a_2 a_3 \cdots a_n \le e_{n-1}$, we get

$$a_1 \ge a$$
, $a = \frac{(n+1)r}{e_{n-1}} > r$.

Write the inequality as follows

$$\frac{a_1}{a_1 - r} + \frac{a_2}{a_2 - r} + \dots + \frac{a_n}{a_n - r} \le n + 1,$$

$$\frac{1}{a_1 - r} + \frac{1}{a_2 - r} + \dots + \frac{1}{a_n - r} \le \frac{1}{r},$$

$$f(a_1) + f(a_2) + \dots + f(a_n) + \frac{1}{r} \ge 0,$$

where

$$f(u) = \frac{-1}{u-r}, \quad u \ge a.$$

We will apply Corollary 3 to the function f. We have

$$f'(u) = \frac{1}{(u-r)^2},$$

$$g(x) = f'\left(\frac{1}{x}\right) = \frac{x^2}{(1-rx)^2}, \quad g''(x) = \frac{4rx+2}{(1-rx)^4} > 0.$$

According to Corollary 3, if $a \le a_1 \le a_2 \le \cdots \le a_n$ and

$$a_1 + a_2 + \cdots + a_n = n$$
, $a_1 a_2 \cdots a_n = (n+1)r = constant$,

then the sum $S_3 = f(a_1) + f(a_2) + \cdots + f(a_n)$ is minimal for $a \le a_1 \le a_2 = \cdots = a_n$. Thus, we only need to prove the homogeneous inequality

$$\frac{1}{n+1-\frac{a_2a_3\cdots a_n}{s^{n-1}}} + \frac{1}{n+1-\frac{a_3a_4\cdots a_1}{s^{n-1}}} + \cdots + \frac{1}{n+1-\frac{a_1a_2\cdots a_{n-1}}{s^{n-1}}} \le 1$$

for $0 < a_1 \le a_2 = a_3 = \dots = a_n = 1$, where

$$s = \frac{a_1 + a_2 + \dots + a_n}{n};$$

that is,

$$\frac{s^{n-1}}{(n+1)s^{n-1}-1}+\frac{(n-1)s^{n-1}}{(n+1)s^{n-1}-a_1}\leq 1, \quad s=\frac{a_1+n-1}{n},$$

which is equivalent to

$$f(s) \ge 0, \qquad s_1 < s \le 1,$$

where

$$s_1 = \frac{n-1}{n}$$

and

$$f(s) = (n+1)s^{2n-2} - n^2s^n + (n+1)(n-2)s^{n-1} + ns - n + 1.$$

We have

$$f'(s) = 2(n^2 - 1)s^{2n-3} - n^3s^{n-1} + (n^2 - 1)(n-2)s^{n-2} + n,$$

$$f''(s) = (n-1)s^{n-3}g(s),$$

where

$$g(s) = 2(2n-3)(n+1)s^{n-1} - n^3s + (n-2)^2(n+1),$$

$$g'(s) = 2(2n-3)(n^2-1)s^{n-2}-n^3.$$

Since

$$g'(s) \ge g'(s_1) = \frac{2n(2n-3)(n+1)}{e_{n-1}} - n^3$$

$$> \frac{2n(2n-3)(n+1)}{3} - n^3 = \frac{n(n^2 - 2n - 6)}{3} > 0,$$

g is increasing. There are two cases to consider: $g(s_1) \ge 0$ and $g(s_1) < 0$.

Subcase A: $g(s_1) \ge 0$. Then, $g(s) \ge 0$, $f''(s) \ge 0$, f' is increasing. Since f'(1) = 0, it follows that $f'(s) \le 0$ for $s \in [s_1, 1]$, f is decreasing, hence $f(s) \ge f(1) = 0$.

Subcase B: $g(s_1) < 0$. Then, since $g(1) = n^2 - 2n + 4 > 0$, there exists $s_2 \in (s_1, 1)$ so that $g(s_2) = 0$, g(s) < 0 for $s \in [s_1, s_2)$ and g(s) > 0 for $s \in (s_2, 1]$, f' is decreasing on $[s_1, s_2]$ and increasing on $[s_2, 1]$. We see that f'(1) = 0. If $f'(s_1) \le 0$, then $f'(s) \le 0$ for $s \in [s_1, 1]$, f is decreasing, hence $f(s) \ge f(1) = 0$. If $f'(s_1) > 0$, then there exists $s_3 \in (s_1, s_2)$ so that $f'(s_3) = 0$, f'(s) > 0 for $s \in [s_1, s_3)$ and g(s) < 0 for $s \in (s_3, 1]$, hence f is increasing on $[s_1, s_3]$ and decreasing on $[s_3, 1]$. Since f(1) = 0, it suffices to show that $f(s_1) \ge 0$. This is true since $s = s_1$ involves $a_1 = 0$, and we have shown that the desired inequality holds for $a_1 = 0$.

The equality occurs for $a_1 = a_2 = \cdots = a_n = 1$.

P 5.78. *If* a, b, c are nonnegative real numbers so that

$$a+b+c \ge 2$$
, $ab+bc+ca \ge 1$,

then

$$\sqrt[3]{a} + \sqrt[3]{b} + \sqrt[3]{c} \ge 2.$$

(Vasile C., 2005)

Solution. According to Corollary 5 (case k = 2 and m = 1/3), if $0 \le a \le b \le c$ and

$$a + b + c = constant$$
, $ab + bc + ca = constant$,

then the sum $S_3 = \sqrt[3]{a} + \sqrt[3]{b} + \sqrt[3]{c}$ is minimal for either a = 0 or $0 < a \le b = c$.

Case 1: a = 0. The hypothesis $ab + bc + ca \ge 1$ implies $bc \ge 1$; consequently,

$$\sqrt[3]{a} + \sqrt[3]{b} + \sqrt[3]{c} = \sqrt[3]{b} + \sqrt[3]{c} \ge 2\sqrt[6]{bc} \ge 2.$$

Case 2: $0 < a \le b = c$. If $c \ge 1$, then

$$\sqrt[3]{a} + \sqrt[3]{b} + \sqrt[3]{c} \ge 2\sqrt[3]{c} \ge 2.$$

If c < 1, then

$$\sqrt[3]{a} + \sqrt[3]{b} + \sqrt[3]{c} \ge a + b + c \ge 2.$$

The equality holds for

$$a = 0, \quad b = c = 1$$

(or any cyclic permutation).

P 5.79. If a, b, c, d are positive real numbers so that abcd = 1, then

$$(a+b+c+d)^4 \ge 36\sqrt{3} (a^2+b^2+c^2+d^2).$$

(Vasile C., 2008)

Solution. According to Corollary 5 (case k = 0 and m = 2), if $a \le b \le c \le d$ and

$$a + b + c + d = constant$$
, $abcd = 1$,

then the sum

$$S_4 = a^2 + b^2 + c^2 + d^2$$

is maximal for $a = b = c \le d$. Thus, we only need to show that

$$(3a+d)^4 > 36\sqrt{3}(3a^2+d^2)$$

for $a^3d = 1$. Write this inequality as $f(a) \ge 0$, where

$$f(a) = 4\ln\left(3a + \frac{1}{a^3}\right) - \ln\left(3a^2 + \frac{1}{a^6}\right) - \ln 36\sqrt{3}, \quad 0 < a \le 1.$$

Since

$$f'(a) = \frac{12(a^4 - 1)}{a(3a^4 + 1)} - \frac{6(a^8 - 1)}{a(3a^8 + 1)} = \frac{6(a^4 - 1)^2(3a^4 - 1)}{a(3a^4 + 1)(3a^8 + 1)},$$

f is decreasing on $[0, 1/\sqrt[4]{3}]$ and increasing on $[1/\sqrt[4]{3}, 1]$; therefore,

$$f(a) \ge f\left(\frac{1}{\sqrt[4]{3}}\right) = 0.$$

The equality holds for

$$a = b = c = \frac{1}{\sqrt[4]{3}}, \quad d = \sqrt[4]{27}$$

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

• If a_1, a_2, \ldots, a_n are positive real numbers so that $a_1 a_2 \cdots a_n = 1$, then

$$(a_1 + a_2 + \dots + a_n)^4 \ge \frac{16}{n} \sqrt[n]{(n-1)^{3n-2}} (a_1^2 + a_2^2 + \dots + a_n^2),$$

with equality for

$$a_1 = a_2 = \dots = a_{n-1} = \frac{1}{\sqrt[n]{n-1}}, \quad a_n = \sqrt[n]{(n-1)^{n-1}}$$

(or any cyclic permutation).

P 5.80. If a, b, c are nonnegative real numbers so that ab + bc + ca = 1, then

$$\sqrt{33a^2 + 16} + \sqrt{33b^2 + 16} + \sqrt{33c^2 + 16} \le 9(a + b + c).$$

(Vasile C., 2006)

Solution. Write the inequality as

$$f(a) + f(b) + f(c) + 297(a + b + c) \ge 0$$
,

where

$$f(u) = -\frac{1}{33}\sqrt{33u^2 + 16}, \quad u \ge 0.$$

We have

$$g(x) = f'(x) = \frac{-x}{\sqrt{33x^2 + 16}},$$
$$g''(x) = \frac{33 \cdot 48x}{(33x^2 + 16)^{5/2}}.$$

Since g''(x) > 0 for x > 0, g is strictly convex on $[0, \infty)$. According to Corollary 1, if $0 \le a \le b \le c$ and

$$a + b + c = constant$$
, $a^2 + b^2 + c^2 = constant$,

then the sum

$$S_n = f(a) + f(b) + f(c)$$

is minimal for either a = 0 or $0 < a \le b = c$.

Case 1: a = 0. We need to show that bc = 1 involves

$$\sqrt{33b^2+16}+\sqrt{33c^2+16} \le 9(b+c)-4.$$

We see that

$$9(b+c)-4 \ge 18\sqrt{bc}-4 = 14 > 0.$$

By squaring, the inequality becomes

$$\sqrt{528t^2 + 289} \le 24t^2 - 36t + 25$$

where

$$t = b + c > 2$$
.

Since

$$24t^2 - 36t + 25 \ge 6t^2 + 25$$

it suffices to show that

$$528t^2 + 289 \le (6t^2 + 25)^2,$$

which is equivalent to

$$(t^2-4)(3t^2-7) \ge 0.$$

Case 2: $0 < a \le b = c$. Write the inequality in the homogeneous form

$$\sum \sqrt{33a^2 + 16(ab + bc + ca)} \le 9(a + b + c).$$

Without loss of generality, assume that b = c = 1, when the inequality becomes

$$\sqrt{33a^2 + 32a + 16} + 2\sqrt{32a + 49} \le 9a + 18.$$

By squaring twice, the inequality turns as follows:

$$\sqrt{(33a^2 + 32a + 16)(32a + 49)} \le 12a^2 + 41a + 28,$$

$$72a(2a^3 - a^2 - 4a + 3) \ge 0,$$

$$72a(a-1)^2(2a+3) \ge 0.$$

The equality holds for $a = b = c = \frac{1}{\sqrt{3}}$, and also for

$$a = 0, \quad b = c = 1$$

(or any cyclic permutation).

P 5.81. If a, b, c are positive real numbers so that a + b + c = 3, then

$$a^2b^2 + b^2c^2 + c^2a^2 \le \frac{3}{\sqrt[3]{abc}}.$$

(Vasile C., 2006)

Solution. Write the inequality in the homogeneous form

$$\left(\frac{a+b+c}{3}\right)^{15} \ge abc \left(\frac{a^2b^2 + b^2c^2 + c^2a^2}{3}\right)^3.$$

Since

$$a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2} = (ab + bc + ca)^{2} - 2abc(a + b + c)$$
$$= \frac{1}{4}(9 - a^{2} - b^{2} - c^{2}) - 6abc,$$

we will apply Corollary 5 (case k = 0 and m = 2):

• If $0 \le a \le b \le c$ and

$$a+b+c=3$$
, $abc=constant$,

them the sum

$$S_3 = a^2 + b^2 + c^2$$

is minimal for $0 < a \le b = c$.

Therefore, we only need to prove the homogeneous inequality for $0 < a \le 1$ and b = c = 1. Taking logarithms, we have to show that $f(a) \ge 0$, where

$$f(a) = 15 \ln \frac{a+2}{3} - \ln a - 3 \ln \frac{2a^2 + 1}{3}.$$

Since the derivative

$$f'(a) = \frac{15}{a+2} - \frac{1}{a} - \frac{12a}{2a^2+1} = \frac{2(a-1)(2a-1)(4a-1)}{a(a+2)(2a^2+1)}$$

is negative for $a \in \left(0, \frac{1}{4}\right) \cup \left(\frac{1}{2}, 1\right)$ and positive for $a \in \left(\frac{1}{4}, \frac{1}{2}\right)$, f is decreasing on $\left(0, \frac{1}{4}\right] \cup \left[\frac{1}{2}, 1\right]$ and increasing on $\left[\frac{1}{4}, \frac{1}{2}\right]$. Therefore, it suffices to show that $f\left(\frac{1}{4}\right) \geq 0$ and $f(1) \geq 0$. Indeed, we have f(1) = 0 and

$$f\left(\frac{1}{4}\right) = \ln \frac{3^{12}}{2^{19}} > 0.$$

The equality holds for a = b = c = 1.

P 5.82. If $a_1, a_2, ..., a_n$ $(n \le 81)$ are nonnegative real numbers so that

$$a_1^2 + a_2^2 + \dots + a_n^2 = a_1^5 + a_2^5 + \dots + a_n^5$$

then

$$a_1^6 + a_2^6 + \dots + a_n^6 \le n$$
.

(Vasile C., 2006)

Solution. Setting $a_n = 1$, we obtain the statement for n - 1 numbers a_i . Consequently, it suffices to prove the inequality for n = 81. We need to show that the following homogeneous inequality holds:

$$81(a_1^5 + a_2^5 + \dots + a_{81}^5)^2 \ge (a_1^6 + a_2^6 + \dots + a_{81}^6)(a_1^2 + a_2^2 + \dots + a_{81}^2)^2.$$

According to Corollary 5 (case k=3 and m=5/2), if $0 \le a_1 \le a_2 \le \cdots \le a_{81}$ and

$$a_1^2 + a_2^2 + \dots + a_{81}^2 = constant, \qquad a_1^6 + a_2^6 + \dots + a_{81}^6 = constant,$$

then the sum $a_1^5 + a_2^5 + \cdots + a_{81}^5$ is minimal for $a_1 = a_2 = \cdots = a_{80} \le a_{81}$. Therefore, we only need to prove the homogeneous inequality for $a_1 = a_2 = \cdots = a_{80} = 0$ and for $a_1 = a_2 = \cdots = a_{80} = 1$. The first case is trivial. In the second case, denoting a_{81} by x, the homogeneous inequality becomes as follows:

$$81(80+x^5)^2 \ge (80+x^6)(80+x^2)^2,$$

$$x^{10} - 2x^8 - 80x^6 + 162x^5 - x^4 - 160x^2 + 80 \ge 0,$$

$$(x-1)^2(x-2)^2(x^6 + 6x^5 + 21x^4 + 60x^3 + 75x^2 + 60x + 20) \ge 0.$$

Thus, the proof is completed. The equality holds for $a_1 = a_2 = \cdots = a_n = 1$. If n = 81, then the equality holds also for

$$a_1 = a_2 = \dots = a_{80} = \frac{a_{81}}{2} = \sqrt[6]{\frac{3}{4}}$$

(or any cyclic permutation).

P 5.83. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

$$1 + \sqrt{1 + a^3 + b^3 + c^3} \ge \sqrt{3(a^2 + b^2 + c^2)}$$
.

(Vasile C., 2006)

Solution. Write the inequality as

$$\sqrt{1+a^3+b^3+c^3} \ge \sqrt{3(a^2+b^2+c^2)}-1.$$

By squaring, we may rewrite the inequality in the homogeneous form

$$a^{3} + b^{3} + c^{3} + 2\left(\frac{a+b+c}{3}\right)^{2}\sqrt{3(a^{2}+b^{2}+c^{2})} \ge (a+b+c)(a^{2}+b^{2}+c^{2}).$$

According to Corollary 5 (case k = 2 and m = 3), if $0 \le a \le b \le c$ and

$$a + b + c = constant$$
, $a^2 + b^2 + c^2 = constant$,

then the sum

$$S_3 = a^3 + b^3 + c^3$$

is minimal for either a = 0 or $0 < a \le b = c$. Thus, we only need to prove the homogeneous inequality for a = 0 and for b = c = 1.

Case 1: a = 0. We need to show that

$$b^3 + c^3 + 2\left(\frac{b+c}{3}\right)^2 \sqrt{3(b^2+c^2)} \ge (b+c)(b^2+c^2).$$

Simplifying by b + c, it remains to show that

$$(b+c)\sqrt{b^2+c^2} \ge \frac{3\sqrt{3}}{2}bc.$$

Indeed,

$$(b+c)\sqrt{b^2+c^2} \ge \left(2\sqrt{bc}\right)\sqrt{2bc} \ge \frac{3\sqrt{3}}{2}bc.$$

Case 2: b = c = 1. We need to prove that

$$(a+2)^2\sqrt{3(a^2+2)} \ge 9(a^2+a+1).$$

By squaring, the inequality becomes

$$a^6 + 8a^5 - a^4 - 6a^3 - 17a^2 + 10a + 5 \ge 0$$
,

$$(a-1)^2(a^4+10a^3+18a^2+20a+5) \ge 0.$$

The equality holds for a = b = c = 1.

P 5.84. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

$$\sqrt{a+b} + \sqrt{b+c} + \sqrt{c+a} \le \sqrt{16 + \frac{2}{3}(ab+bc+ca)}.$$

(Lorian Saceanu, 2017)

Solution. Write the inequality in the form

$$f(a) + f(b) + f(c) + \sqrt{16 + \frac{2}{3}(ab + bc + ca)} \ge 0,$$

where

$$f(u) = -\sqrt{3-u}, \quad 0 \le u \le 3.$$

We have

$$g(x) = f'(x) = \frac{1}{2\sqrt{3-x}},$$

$$g''(x) = \frac{3}{8}(3-x)^{-5/2}.$$

Since g''(x) > 0 for $x \in [0,3)$, g is strictly convex on [0,3]. According to Corollary 1, if $0 \le a \le b \le c$ and

$$a+b+c=3$$
, $ab+bc+ca=constant$,

then the sum $S_3 = f(a) + f(b) + f(c)$ is minimal for either a = 0 or $0 < a \le b = c$. Therefore, we only need to prove the homogeneous inequality

$$\sqrt{a+b} + \sqrt{b+c} + \sqrt{c+a} \le \sqrt{\frac{16}{3}(a+b+c) + \frac{2(ab+bc+ca)}{a+b+c}}$$

for a = 0 and b = c = 1.

Case 1: a = 0. We need to show that

$$\sqrt{b} + \sqrt{c} + \sqrt{b+c} \le \sqrt{\frac{16}{3}(b+c) + \frac{2bc}{b+c}}.$$

Consider the nontrivial case b, c > 0, use the substitution

$$x = \sqrt{\frac{b}{c}} + \sqrt{\frac{c}{b}}, \quad x \ge 2,$$

and write the inequality as

$$\sqrt{b+c+2\sqrt{bc}}+\sqrt{b+c}\leq \sqrt{\frac{16}{3}(b+c)+\frac{2bc}{b+c}},$$

$$\sqrt{x+2} + \sqrt{x} \le \sqrt{\frac{16}{3}x + \frac{2}{x}}.$$

By squaring twice, the inequality becomes as follows:

$$\sqrt{x(x+2)} \le \frac{5}{3}x - 1 + \frac{1}{x},$$

$$16x^4 - 48x^3 + 39x^2 - 18x + 9 \ge 0,$$

$$(x-2)[16x^2(x-1) + 7x - 4] + 1 \ge 0.$$

Case 2: b = c = 1. We need to prove that

$$2\sqrt{a+1} + \sqrt{2} \le \sqrt{\frac{16}{3}(a+2) + \frac{2(2a+1)}{a+2}}$$

By squaring twice, the inequality becomes as follows:

$$6(a+2)\sqrt{2(a+1)} \le 2a^2 + 17a + 17,$$

$$4a^4 - 4a^3 - 3a^2 + 2a + 1 \ge 0,$$

$$(a-1)^2(2a+1)^2 \ge 0.$$

The equality holds for a = b = c = 1.

P 5.85. If $a, b, c \in [0, 4]$ and ab + bc + ca = 4, then

$$\sqrt{a+b} + \sqrt{b+c} + \sqrt{c+a} < 3 + \sqrt{5}$$

(Vasile Cîrtoaje, 2019)

First Solution. Denote s = a + b + c, consider s fixed and write the inequality as

$$f(a) + f(b) + f(c) \ge -3 - \sqrt{5}$$
,

where

$$f(x) = -\sqrt{s - x}. \quad 0 \le x < s.$$

From

$$g(x) = f'(x) = \frac{1}{2}(s-x)^{-1/2}, \quad g''(x) = \frac{3}{8}(s-x)^{-5/2} > 0,$$

it follows that g is strictly convex. Thus, by Corollary 1 and Note 2, the sum f(a) + f(b) + f(c) is minimal for either $a \le b = c$ or a = 0.

Case 1: $a \le b = c$. We need to show that $2ac + c^2 = 4$ yields

$$2\sqrt{a+c} + \sqrt{2c} \le 3 + \sqrt{5},$$

that is

$$\sqrt{\frac{2(c^2+1)}{c}} + \sqrt{2c} \le 3 + \sqrt{5}.$$

From $2ac + c^2 = 4$, it follows that

$$\frac{2}{\sqrt{3}} \le c \le 2.$$

Since $\sqrt{2c} \le 2$, it is enough to show that

$$\sqrt{\frac{2(c^2+1)}{c}} \le 1 + \sqrt{5},$$

that is

$$c^2 - (3 + \sqrt{5})c + 4 \le 0.$$

Indeed,

$$c^{2} - (3 + \sqrt{5})c + 4 \le c^{2} - 5c + 4 = (c - 1)(c - 4) < 0.$$

Case 2: a = 0. We need to show that bc = 4 yields

$$\sqrt{b} + \sqrt{c} + \sqrt{b+c} \le 3 + \sqrt{5}.$$

From $(4-b)(4-c) \ge 0$, we get $b + c \le 5$. Thus,

$$\sqrt{b} + \sqrt{c} + \sqrt{b+c} \le \sqrt{b+c+2\sqrt{bc}} + \sqrt{b+c}$$
$$\le \sqrt{5+2\sqrt{4}} + \sqrt{5} = 3 + \sqrt{5}.$$

The equality occurs for a = 0, b = 1 and c = 4 (or any permutation).

Second Solution(by *Kiyoras-2001*) Assume that $a \ge b \ge c$, denote

$$S = ab + bc + ca$$

and show that

$$f(a,b,c) \le f\left(a,\frac{S}{a},0\right) \le 3 + \sqrt{5},$$

where

$$f(a,b,c) = \sqrt{a+b} + \sqrt{b+c} + \sqrt{c+a}.$$

The left homogeneous inequality is true because

$$f\left(a, \frac{S}{a}, 0\right) - f(a, b, c) =$$

$$= \sqrt{a + \frac{S}{a}} - \sqrt{a + b} + \sqrt{\frac{S}{a}} - \sqrt{b + c} + \sqrt{a} - \sqrt{c + a}$$

$$= \frac{\frac{c}{a}(a+b)}{\sqrt{\frac{(a+b)(a+c)}{a}} + \sqrt{a+b}} + \frac{\frac{bc}{a}}{\sqrt{\frac{s}{a}} + \sqrt{b+c}} - \frac{c}{\sqrt{a} + \sqrt{c+a}}$$
$$\geq \frac{c}{a} \left(\frac{\sqrt{a(a+b)}}{\sqrt{a+c} + \sqrt{a}} - \frac{a}{\sqrt{a} + \sqrt{c+a}} \right) \geq 0.$$

Also, the right inequality is true for S = 4 and $a, b, c \in [0, 4]$ since a > 1 and

$$f\left(a, \frac{4}{a}, 0\right) - 3 - \sqrt{5} =$$

$$= \sqrt{a + \frac{4}{a}} - \sqrt{5} + \frac{2}{\sqrt{a}} + \sqrt{a} - 3$$

$$= \frac{(a-1)\left(1 - \frac{4}{a}\right)}{\sqrt{a + \frac{4}{a}} + \sqrt{5}} + (\sqrt{a} - 1)\left(1 - \frac{2}{\sqrt{a}}\right) \le 0.$$

P 5.86. If a, b, c are positive real numbers so that abc = 1, then

(a)
$$\frac{a+b+c}{3} \ge \sqrt[6]{\frac{2+a^2+b^2+c^2}{5}};$$

(b)
$$a^3 + b^3 + c^3 \ge \sqrt{3(a^4 + b^4 + c^4)}.$$

(Vasile C., 2006)

Solution. (a) According to Corollary 5 (case k = 0 and m = 2), if $a \le b \le c$ and

$$a + b + c = constant$$
, $abc = 1$,

the sum $S_3 = a^2 + b^2 + c^2$ is maximal for $0 < a = b \le c$. Thus, we only need to show that $a^2c = 1$ involves

$$\frac{2a+c}{3} \ge \sqrt[3]{\frac{2+2a^2+c^2}{5}},$$

which is equivalent to

$$5\left(2a + \frac{1}{a^2}\right)^3 \ge 27\left(2 + 2a^2 + \frac{1}{a^4}\right),$$

$$40a^9 - 54a^8 + 6a^6 + 30a^3 - 27a^2 + 5 \ge 0,$$

$$(a-1)^2(40a^7 + 26a^6 + 12a^5 + 4a^4 - 4a^3 - 12a^2 + 10a + 5) \ge 0.$$

The inequality is true since

$$12a^5 + 4a^4 - 4a^3 - 12a^2 + 10a + 5 > 2a^5 + 4a^4 - 4a^3 - 12a^2 + 10a$$
$$= 2a(a-1)^2(a^2 + 4a + 5) \ge 0.$$

The equality holds for a = b = c = 1.

(b) According to Corollary 5 (case k = 0 and m = 4/3), if $a \le b \le c$ and

$$a^3 + b^3 + c^3 = constant,$$
 $a^3b^3c^3 = 1,$

the sum $S_3 = a^4 + b^4 + c^4$ is maximal for $0 < a = b \le c$. Thus, we only need to show that

$$2a^3 + c^3 \ge \sqrt{3(2a^4 + c^4)}$$

for $a^2c = 1$, $a \le 1$. The inequality is equivalent to

$$\left(2a^3 + \frac{1}{a^6}\right)^2 \ge 3\left(2a^4 + \frac{1}{a^8}\right).$$

Substituting a = 1/t, $t \ge 1$, the inequality becomes

$$\left(\frac{2}{t^3} + t^6\right)^2 \ge 3\left(\frac{2}{t^4} + t^8\right),\,$$

which is equivalent to $f(t) \ge 0$, where

$$f(t) = t^{18} - 3t^{14} + 4t^9 - 6t^2 + 4.$$

We have

$$f'(t) = 6tg(t), g(t) = 3t^{16} - 7t^{12} + 6t^7 - 2,$$

$$g'(t) = 6t^6h(t), h(t) = 8t^9 - 14t^5 + 7,$$

$$h'(t) = 2t^4(36t^2 - 35).$$

Since h'(t) > 0 for $t \ge 1$, h is increasing, $h(t) \ge h(1) = 1$ for $t \ge 1$, g is increasing, $g(t) \ge g(1) = 0$ for $t \ge 1$, f is increasing, hence $f(t) \ge f(1) = 0$ for $t \ge 1$.

The equality holds for a = b = c = 1.

P 5.87. If a, b, c, d are nonnegative real numbers so that a + b + c + d = 4, then

$$(a^2 + b^2 + c^2 + d^2 - 4)(a^2 + b^2 + c^2 + d^2 + 18) \le 10(a^3 + b^3 + c^3 + d^3 - 4).$$

(Vasile Cîrtoaje, 2010)

Solution. Apply Corollary 2 for n = 4, k = 2, m = 3:

• If a, b, c, d are real numbers so that $0 \le a \le b \le c \le d$ and

$$a + b + c + d = 4$$
, $a^2 + b^2 + c^2 + d^2 = constant$,

then

$$S_{\Delta} = a^3 + b^3 + c^3 + d^3$$

is minimal for either $0 < a \le b = c = d$ or a = 0.

Case 1: $0 < a \le b = c = d$. We need to show that a + 3d = 4 involves

$$(a^2 + 3d^2 - 4)(a^2 + 3d^2 + 18) \le 10(a^3 + 3d^3 - 4).$$

This inequality is equivalent to

$$(1-d)^2(1+d)(4-3d) \ge 0,$$

$$(1-d)^2(1+d)a \ge 0.$$

Case 2: a = 0. Let

$$s = b^2 + c^2 + d^2$$

We need to show that b + c + d = 4 involves

$$(s-4)(s+18) \le 10(b^3+c^3+d^3-4).$$

By the Cauchy-Schwarz inequality, we have

$$s \ge \frac{1}{3}(b+c+d)^2 = \frac{16}{3}$$

and

$$(b+c+d)(b^3+c^3+d^3) \ge (b^2+c^2+d^2)^2, \quad b^3+c^3+d^3 \ge \frac{s^2}{4}.$$

Thus, it suffices to show that

$$(s-4)(s+18) \le 10\left(\frac{s^2}{4}-4\right),$$

which is equivalent to the obvious inequality

$$(s-4)(3s-16) \ge 0.$$

The equality holds for a = b = c = d = 1, and also for

$$a = 0,$$
 $b = c = d = \frac{4}{3}$

(or any cyclic permutation).

P 5.88. *If* a, b, c, d are nonnegative real numbers such that

$$a + b + c + d = 4$$
,

then

$$(a^4 + b^4 + c^4 + d^4)^2 \ge (a^2 + b^2 + c^2 + d^2)(a^5 + b^5 + c^5 + d^5).$$
(Vasile C., 2020)

Proof. Consider the inequality

$$(a_1^4 + a_2^4 + \dots + a_n^4)^2 \ge (a_1^2 + a_2^2 + \dots + a_n^2)(a_1^5 + a_2^5 + \dots + a_n^5),$$

where a_1, a_2, \ldots, a_n are nonnegative real numbers such that $a_1 + a_2 + \cdots + a_n = n$. Write this inequality in the homogeneous form

$$n(a_1^4 + a_2^4 + \dots + a_n^4)^2 \ge (a_1 + a_2 + \dots + a_n)(a_1^2 + a_2^2 + \dots + a_n^2)(a_1^5 + a_2^5 + \dots + a_n^5).$$

Replacing a_1, a_2, \ldots, a_n with $x_1^{1/4}, x_2^{1/4}, \ldots, x_n^{1/4}$, the inequality becomes

$$n(x_1 + x_2 + \dots + x_n)^2 \ge$$

$$\geq \left(x_1^{1/4} + x_2^{1/4} + \dots + x_n^{1/4}\right) \left(x_1^{1/2} + x_2^{1/2} + \dots + x_n^{1/2}\right) \left(x_1^{5/4} + x_2^{5/4} + \dots + x_n^{5/4}\right).$$

By Corollary 5 (case k = 5/4), if

$$x_1 + x_2 + \dots + x_n = constant,$$
 $x_1^{5/4} + x_2^{5/4} + \dots + x_n^{5/4} = constant,$

then the sums $x_1^{1/4} + x_2^{1/4} + \dots + x_n^{1/4}$ and $x_1^{1/2} + x_2^{1/2} + \dots + x_n^{1/2}$ are maximal for

$$0 \le x_1 = x_2 = \dots = x_{n-1} \le x_n$$
.

Since the case $a_1 = a_2 = \cdots = a_{n-1} = 0$ is trivial, it suffices to consider the case $a_1 = a_2 = \cdots = a_{n-1} = 1$, when the required inequality becomes $f(a) \ge 0$, where

$$f(a) = (a^4 + n - 1)^2 - (a + n - 1)(a^2 + n - 1)(a^5 + n - 1), \quad a \ge 1.$$

We have

$$\frac{f(a)}{n-1} = a^8 - a^7 - a^6 - (n-1)a^5 + 2na^4 - a^3 - (n-1)a^2 - (n-1)a + n - 1$$
$$= a^3 A - (n-1)B,$$

where

$$A = a^5 - a^4 - a^3 + 2a - 1$$
, $B = a^5 - 2a^4 + a^2 + a - 1$.

Since

$$A = (a-1)^2(a^3 + a^2 - 1), \qquad B = (a-1)^2(a^3 - a - 1),$$

we have

$$f(a) = (n-1)(a-1)^2 g(a),$$

where

$$g(a) = a^6 + a^5 - na^3 + (n-1)a + n - 1.$$

The inequality is true if $g(a) \ge 0$. For n = 4, we have

$$g(a) = a^6 + a^5 - 4a^3 + 3a + 3 > 2a^5 - 4a^3 + 2a = 2a(a^2 - 1)^2 \ge 0.$$

The equality occurs for a = b = c = d = 1.

Remark 1. Since $g(a) \ge 0$ for $n \le 16$, the homogeneous inequality is true for all $n \le 16$.

Remark 2. Since

$$(a_1 + a_2 + \dots + a_n)(a_1^5 + a_2^5 + \dots + a_n^5) \le |(a_1 + a_2 + \dots + a_n)(a_1^5 + a_2^5 + \dots + a_n^5)|$$

$$\le (|a_1| + |a_2| + \dots + |a_n|)(|a_1|^5 + |a_2|^5 + \dots + |a_n|^5),$$

the homogeneous inequality is true for $n \le 16$ and real a_1, a_2, \ldots, a_n .

P 5.89. If a, b, c, d are nonnegative real numbers such that

$$a+b+c+d=4,$$

then

$$13(a^2 + b^2 + c^2 + d^2)^2 \ge 12(a^4 + b^4 + c^4 + d^4) + 160.$$

(Vasile Cîrtoaje, 2020)

Solution. Write the inequality in the homogeneous form

$$104(a^2 + b^2 + c^2 + d^2)^2 \ge 96(a^4 + b^4 + c^4 + d^4) + 5(a + b + c + d)^4.$$

According to Corollary 5, for a+b+c+d=constant and $a^2+b^2+c^2+d^2=constant$, the sum

$$S = a^4 + b^4 + c^4 + d^4$$

is maximal when $a \ge b = c = d$. Therefore, it suffices to consider this case. Due to homogeneity, for the nontrivial case $b = c = d \ne 0$, we may consider that b = c = d = 1. Thus we only need to prove that

$$104(a^2+3)^2 \ge 96(a^4+3) + 5(a+3)^4,$$

which is equivalent to

$$(a-1)^2(a-9)^2 \ge 0.$$

The equality occurs for a = b = c = d = 1, and also for a = 3 and $b = c = d = \frac{1}{3}$ (or any cyclic permutation).

P 5.90. If $a_1, a_2, ..., a_8$ are nonnegative real numbers, then

$$19(a_1^2 + a_2^2 + \dots + a_8^2)^2 \ge 12(a_1 + a_2 + \dots + a_8)(a_1^3 + a_2^3 + \dots + a_8^3).$$

(Vasile C., 2007)

Solution. By Corollary 5 (case n = 8, k = 2, m = 3), if $0 \le a_1 \le a_2 \le \cdots \le a_8$ and

$$a_1 + a_2 + \dots + a_8 = constant$$
, $a_1^2 + a_2^2 + \dots + a_8^2 = constant$,

then the sum

$$S_8 = a_1^3 + a_2^3 + \dots + a_8^3$$

is maximal for $a_1=a_2=\cdots=a_7\leq a_8$. Due to homogeneity, we only need to consider the cases $a_1=a_2=\cdots=a_7=0$ and $a_1=a_2=\cdots=a_7=1$. For the second case (nontrivial), we need to show that

$$19(7 + a_8^2)^2 \ge 12(7 + a_8)(7 + a_8^3),$$

which is equivalent to

$$a_8^4 - 12a_8^3 + 38a_8^2 - 12a_8 + 49 \ge 0,$$

$$(a_8^2 - 6a_8 + 1)^2 + 48 \ge 0.$$

The equality holds for $a_1 = a_2 = \cdots = a_8 = 0$.

P 5.91. *If* a, b, c are nonnegative real numbers so that

$$5(a^2 + b^2 + c^2) = 17(ab + bc + ca),$$

then

$$3\sqrt{\frac{3}{5}} \le \sqrt{\frac{a}{b+c}} + \sqrt{\frac{b}{c+a}} + \sqrt{\frac{c}{a+b}} \le \frac{1+\sqrt{7}}{\sqrt{2}}.$$

(Vasile C., 2006)

Solution. Due to homogeneity, we may assume that a + b + c = 9. From the hypothesis $5(a^2 + b^2 + c^2) = 17(ab + bc + ca)$, which is equivalent to

$$27(a^2 + b^2 + c^2) = 17(a + b + c)^2,$$

we get

$$a^2 + b^2 + c^2 = 51.$$

Also, from $2(b^2 + c^2) \ge (b + c)^2$ and

$$b+c=9-a$$
, $b^2+c^2=51-a^2$

we get $a \le 7$. Write the desired inequality in the form

$$3\sqrt{\frac{3}{5}} \le f(a) + f(b) + f(c) \le \frac{1 + \sqrt{7}}{\sqrt{2}}.$$

where

$$f(u) = \sqrt{\frac{u}{9-u}}, \qquad 0 \le u \le 7.$$

We have

$$g(x) = f'(x) = \frac{9}{2x^{1/2}(9-x)^{3/2}},$$
$$g''(x) = \frac{27(8x^2 - 36x + 81)}{8x^{5/2}(9-x)^{7/2}}.$$

Since g''(x) > 0 for $x \in (0,7]$, g is strictly convex on (0,7]. According to Corollary 1, if $0 \le a \le b \le c$ and

$$a+b+c=9$$
, $a^2+b^2+c^2=51$,

then the sum $S_3 = f(a) + f(b) + f(c)$ is maximal for $a = b \le c$, and is minimal for either a = 0 or $0 < a \le b = c$.

(a) To prove the right inequality, it suffices to consider the case $a=b\leq c$. From

$$a + b + c = 9$$
, $a^2 + b^2 + c^2 = 51$,

we get a = b = 1 and c = 7, therefore

$$\sqrt{\frac{a}{b+c}} + \sqrt{\frac{b}{c+a}} + \sqrt{\frac{c}{a+b}} = \frac{1+\sqrt{7}}{\sqrt{2}}.$$

The original right inequality is an equality for a = b = c/7 (or any cyclic permutation).

(b) To prove the left inequality, it suffices to consider the cases a=0 and $0 < a \le b = c$. For a=0, from

$$a+b+c=9$$
, $a^2+b^2+c^2=51$,

we get

$$\frac{b}{c} + \frac{c}{b} = \frac{17}{5},$$

therefore

$$\sqrt{\frac{a}{b+c}} + \sqrt{\frac{b}{c+a}} + \sqrt{\frac{c}{a+b}} = \sqrt{\frac{b}{c}} + \sqrt{\frac{c}{b}} = \sqrt{\frac{b}{c} + \frac{c}{b} + 2} = 3\sqrt{\frac{3}{5}}.$$

The case $0 < a \le b = c$ is not possible, because from

$$a + b + c = 9$$
, $a^2 + b^2 + c^2 = 51$,

we get a = 7 and b = c = 1, which don't satisfy the condition $a \le b$. The original left inequality is an equality for

$$a = 0, \qquad \frac{b}{c} + \frac{c}{b} = \frac{17}{5}$$

(or any cyclic permutation).

P 5.92. If a, b, c are nonnegative real numbers so that

$$8(a^2 + b^2 + c^2) = 9(ab + bc + ca),$$

then

$$\frac{19}{12} \le \frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \le \frac{141}{88}.$$

(Vasile C., 2006)

Solution. The proof is similar to the one of the preceding P 5.91. Assume that a+b+c=15, which involves $a^2+b^2+c^2=81$ and $a\in[3,7]$, then write the inequality in the form

$$\frac{19}{12} \le f(a) + f(b) + f(c) \le \frac{141}{88}$$

where

$$f(u) = \frac{u}{15 - u}, \quad 3 \le u \le 7.$$

We have

$$g(x) = f'(x) = \frac{1}{5}(15 - x)^2$$
, $g''(x) = \frac{90}{(15 - x)^4}$.

Since *g* is strictly convex on [3, 7], according to Corollary 1, if $0 \le a \le b \le c$ and

$$a + b + c = 15$$
, $a^2 + b^2 + c^2 = 81$,

then the sum $S_3 = f(a) + f(b) + f(c)$ is maximal for $a = b \le c$, and is minimal for either a = 0 or $0 < a \le b = c$.

(a) To prove the right inequality, it suffices to consider the case $a = b \le c$, which involves

$$a = b = 4$$
, $c = 7$,

and

$$\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} = \frac{141}{88}.$$

The original right inequality is an equality for a = b = 4c/7 (or any cyclic permutation).

(b) To prove the left inequality, it suffices to consider the cases a = 0 and $0 < a \le b = c$. The first case is not possible, while the second case involves

$$a = 3$$
, $b = c = 6$,

and

$$\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} = \frac{19}{12}.$$

The original left inequality is an equality for 2a = b = c (or any cyclic permutation).

P 5.93. If $a, b, c \in (0, 2]$ such that a + b + c = 3, then

$$\sqrt{\frac{2(b+c)}{a} - 1} + \sqrt{\frac{2(c+a)}{b} - 1} + \sqrt{\frac{2(a+b)}{c} - 1} \ge \frac{9}{\sqrt{ab + bc + ca}}.$$

(Vasile C., 2020)

Solution. Write the inequality in the form

$$f(a) + f(b) + f(c) \le \frac{-3\sqrt{3}}{\sqrt{ab + bc + ca}},$$

where

$$f(u) = -\sqrt{\frac{2}{u} - 1}, \quad 0 < u \le 2.$$

We have $f(0+) = -\infty$ and

$$g(x) = f'(x) = x^{-3/2} (2-x)^{-1/2},$$
 $g'(x) = (2x-3)x^{-5/2} (2-x)^{-3/2},$ $g''(x) = (7x^2 - 20x + 15)x^{-7/2} (2-x)^{-5/2} > 0.$

Since *g* is strictly convex on (0, 2), according to Corollary 1, Note 1 and Note 2, *if* $a \ge b \ge c > 0$ *and*

$$a+b+c=3$$
, $ab+bc+ca=constant$,

then the sum $S_3 = f(a) + f(b) + f(c)$ is maximal for a = 2 or $a \ge b = c$. Thus, it suffices to prove the desired inequality for these cases.

Case 1: a = 2. We need to prove the homogeneous inequality

$$\sqrt{\frac{2(b+c)}{a} - 1} + \sqrt{\frac{2(c+a)}{b} - 1} + \sqrt{\frac{2(a+b)}{c} - 1} \ge \frac{3(a+b+c)}{\sqrt{ab+bc+ca}}$$

for

$$a = 2(b + c)$$
.

The inequality is equivalent to

$$\sqrt{\frac{2b}{c} + 1} + \sqrt{\frac{2c}{b} + 1} \ge \frac{3\sqrt{3}(b+c)}{\sqrt{2(b+c)^2 + bc}}.$$

Let

$$x = \frac{(b+c)^2}{4bc}, \quad x \ge 1.$$

Since

$$\sqrt{\frac{2c}{b} + 1} + \sqrt{\frac{2b}{c} + 1} \ge 2\sqrt[4]{\left(\frac{2b}{c} + 1\right)\left(\frac{2c}{b} + 1\right)} = 2\sqrt[4]{8x + 1},$$

the inequality becomes

$$\sqrt[4]{8x+1} \ge \frac{3\sqrt{3x}}{\sqrt{8x+1}},$$
$$(8x+1)^3 \ge 729x^2.$$

Since

$$8x + 1 \ge 3(2x + 1)$$
,

it suffices to show that

$$(2x+1)^3 \ge 27x^2.$$

This is true because

$$2x + 1 = x + x + 1 \ge 3\sqrt[3]{x^2}.$$

Case 2: $a \ge b = c$. We need to show that a + 2c = 3 implies

$$\sqrt{\frac{4c}{a} - 1} + 2\sqrt{\frac{2(a+c)}{c} - 1} \ge \frac{9}{\sqrt{2ac + c^2}}$$

that is

$$\sqrt{\frac{2-a}{a}} + 2\sqrt{\frac{1+a}{3-a}} \ge \frac{6}{\sqrt{(1+a)(3-a)}},$$

$$\sqrt{\frac{2-a}{a}} \ge \frac{2(2-a)}{\sqrt{(1+a)(3-a)}}.$$

It is true if

$$\frac{1}{\sqrt{a}} \ge \frac{2\sqrt{2-a}}{\sqrt{(1+a)(3-a)}},$$

which, by squaring, reduces to

$$(a-1)^2 \ge 0.$$

The equality occurs for a = b = c = 1, and also for $a = b = \frac{1}{2}$ and c = 2 (or any cyclic permutation).

P 5.94. Let a, b, c and x, y, z be nonnegative real numbers such that

$$x^3 + y^3 + z^3 = a^3 + b^3 + c^3$$
.

Then,

$$\frac{(a+b+c)(x+y+z)}{ab+bc+ca+xy+yz+zx} \ge \sqrt[3]{3}.$$

(Vasile Cîrtoaje, 2019)

Solution. Assume that

$$x + y + z \ge a + b + c$$

and denote

$$t = \frac{x + y + z}{3}, \quad t \ge \frac{a + b + c}{3}.$$

Since

$$\frac{a+b+c}{3} \le \frac{x+y+z}{3} \le \sqrt[6]{\frac{x^3+y^3+z^3}{3}} = \sqrt[6]{\frac{a^3+b^3+c^3}{3}},$$

we have

$$t_1 \le t \le t_2,$$

where

$$t_1 = \frac{a+b+c}{3}, \quad t_2 = \sqrt[3]{\frac{a^3+b^3+c^3}{3}}.$$

It is enough to prove the inequality

$$\frac{1}{\sqrt[3]{3}}(a+b+c)(x+y+z) \ge ab+bc+ca+\frac{1}{3}(x+y+z)^2.$$

For fixed a, b, c, we may write the required inequality as $f(t) \le 0$, where

$$f(t) = 3t^2 - \sqrt[3]{9}(a+b+c)t + ab + bc + ca$$

is a quadratic convex function. Thus, it is enough to show that $f(t_1) \le 0$ and $f(t_2) \le 0$. We have

$$3f(t_1) = 3(ab + bc + ca) - (\sqrt[3]{9} - 1)(a + b + c)^2$$

$$\leq 3(2 - \sqrt[3]{9})(ab + bc + ca) \leq 0.$$

To prove the inequality $f(t_2) \le 0$, we write it as

$$3t_2^2 - \sqrt[3]{9}(a+b+c)t_2 + ab + bc + ca \le 0.$$

According to Corollary 5, for a + b + c = constant and $a^n + b^n + c^n = constant$, the sum $a^2 + b^2 + c^2$ is minimal (hence the sum ab + bc + ca is maximal) for $a \ge a$

b = c. Thus, due to homogeneity, it is enough to prove the inequality for a = 1 and $b = c \le 1$. So, we need to prove that $g(u) \le 0$, where

$$g(u) = u^2 - (2c+1)u + \frac{c^2 + 2c}{\sqrt[3]{3}},$$

with

$$u = \sqrt[3]{2c^3 + 1}, \quad c \in [0, 1].$$

Consider two cases: $c \in [0, 4/5]$ and $c \in [4/5, 1]$.

Case 1: $c \in [0, 4/5]$. Since $\sqrt[3]{3} > 4/3$, we have

$$g(u) \le u^2 - (2c+1)u + \frac{3(c^2+2c)}{4} = \frac{(2u-3c)(2u-c-2)}{4}.$$

Thus, we need to show that

$$\frac{3c}{2} \le u \le \frac{c+2}{2}.$$

The left inequality is equivalent to

$$c \le \sqrt{\frac{8}{11}}.$$

This is true since

$$c \le \frac{4}{5} < \sqrt{\frac{8}{11}}.$$

The right inequality is equivalent to

$$c(2c + 6 - 5c^2) \ge 0.$$

Case 2: $c \in [4/5, 1]$. Since $\sqrt[3]{3} > 7/5$, we have g(u) < h(u), where

$$h(u) = u^2 - (2c + 1)u + \frac{5(c^2 + 2c)}{7}.$$

It suffices to prove that $h(u) \leq 0$. From

$$h'(u) = 2u - 2c - 1$$

and

$$(2u)^3 - (2c+1)^3 = 7 + 8c^3 - 12c^2 - 6c \le 7 - 4c^2 - 6c \le 7 - \frac{64}{25} - \frac{24}{5} = \frac{-9}{25} < 0,$$

it follows that h'(u) < 0, hence h(u) is a decreasing function. Since

$$u > 1 + \frac{c^3}{3},$$

it follows that

$$h(u) < h\left(1 + \frac{c^3}{3}\right) = c\left(\frac{5c}{7} + \frac{c^2}{3} + \frac{c^5}{9} - \frac{4}{7} - \frac{2c^3}{3}\right).$$

Since

$$\frac{5c}{7} + \frac{c^2}{3} + \frac{c^5}{9} \le \frac{5c}{7} + \frac{c}{3} + \frac{c^3}{9} = \frac{22c}{21} + \frac{c^3}{9},$$

it suffices to show that

$$\frac{22c}{21} + \frac{c^3}{9} - \frac{4}{7} - \frac{2c^3}{3} \le 0,$$

that is

$$\frac{22c}{21} - \frac{4}{7} - \frac{5c^3}{9} \le 0.$$

Indeed, we have

$$\frac{4}{7} + \frac{5c^3}{9} = \frac{2}{7} + \frac{2}{7} + \frac{5c^3}{9} \ge 3\sqrt[6]{\frac{20c^3}{49 \cdot 9}} > \frac{22c}{21}.$$

Thus, the proof is completed. If $a \ge b \ge c$ and $x \ge y \ge z$, then the equality occurs for $a = b = c = \frac{x}{\sqrt[n]{3}}$ and y = z = 0, and for $x = y = z = \frac{a}{\sqrt[n]{3}}$ and b = c = 0.

P 5.95. If a, b, c, d are positive numbers such that

$$a+b+c+d = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$$

then

$$ab + ac + ad + bc + bd + cd + 3abcd \ge 9$$
.

(Vasile Cîrtoaje, 2019)

Solution. Write the inequality as

$$(a+b+c+d)^2 + 6abcd \ge 18 + a^2 + b^2 + c^2 + d^2$$

and apply Corollary 4 for k = -1, and Corollary 5 for k = -1 and m = 2:

• If a, b, c, d are positive numbers such that

$$a+b+c+d=constant$$
, $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}=constant$, $a \le b \le c \le d$,

then the product abcd is minimal and the sum $a^2 + b^2 + c^2 + d^2$ is maximal for $a = b = c \le d$.

Thus, it suffices to consider this case. We need to show that

$$3a + d = \frac{3}{a} + \frac{1}{d}$$

involve

$$a^2 + ad + a^3d > 3$$
.

From the hypothesis, we get

$$d = \frac{3(1-a^2) + \sqrt{9a^4 - 14a^2 + 9}}{2a}.$$

So, the required inequality becomes as follows:

$$a^{2} + (a^{2} + 1)ad \ge 3,$$

$$(a^{2} + 1)\sqrt{9a^{4} - 14a^{2} + 9} \ge 3a^{4} - 2a^{2} + 3,$$

$$(a^{2} + 1)^{2}(9a^{4} - 14a^{2} + 9) \ge (3a^{4} - 2a^{2} + 3)^{2},$$

$$16a^{2}(a^{2} - 1)^{2} \ge 0.$$

The equality occurs for a = b = c = d = 1.

P 5.96. If a_1, a_2, a_3, a_4, a_5 are nonnegative real numbers, then

$$\frac{(a_1^3 + a_2^3 + a_3^3 + a_4^3 + a_5^3)^2}{a_1^4 + a_2^4 + a_3^4 + a_4^4 + a_5^4} \ge \frac{1}{2} \sum_{i < j} a_i a_j.$$

(Vasile Cîrtoaje, 2019)

Solution. Write the inequality in the form

$$\frac{4(a_1^3 + a_2^3 + a_3^3 + a_4^3 + a_5^3)^2}{a_1^4 + a_2^4 + a_3^4 + a_4^4 + a_5^4} + a_1^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2 \ge (a_1 + a_2 + a_3 + a_4 + a_5)^2.$$

According to Corollary 5, for $a_1 + a_2 + a_3 + a_4 + a_5 = constant$ and $a_1^3 + a_2^3 + a_3^3 + a_4^3 + a_5^3 = constant$, the sum $a_1^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2$ is minimal and the sum $a_1^4 + a_2^4 + a_3^4 + a_4^4 + a_5^4$ is maximal for $a_1 = a_2 = a_3 = a_4 \le a_5$. Thus, it is enough to show that

$$\frac{4(4x^3+y^3)^2}{4x^4+y^4}+4x^2+y^2 \ge (4x+y)^2,$$

which can be written as

$$4x^{6} - 8x^{5}y + 8x^{3}y^{3} - 3x^{2}y^{4} - 2xy^{5} + y^{6} \ge 0,$$
$$(x - y)^{2}(2x^{2} - y^{2})^{2} \ge 0.$$

The proof is completed. The equality occurs for $a_1 = a_2 = a_3 = a_4 = a_5$, and also for $a_1 = a_2 = a_3 = a_4 = \frac{a_5}{\sqrt{2}}$ (or any cyclic permutation).

P 5.97. *If* $a_1, a_2, ..., a_n \ge 0$ *such that*

$$a_1 + a_2 + \dots + a_n = n,$$

then

$$\sqrt{a_1} + \sqrt{a_2} + \dots + \sqrt{a_n} \le \sqrt{2n - 1 + 2\left(1 - \frac{1}{n}\right) \sum_{i < j} a_i a_j}.$$
(Vasile C., 2018)

Proof. Since

$$2\sum_{i\leq j}a_ia_j=(a_1+a_2+\cdots+a_n)^2-a_1^2-a_2^2-\cdots-a_n^2=n^2-a_1^2-a_2^2-\cdots-a_n^2,$$

we can write the inequality as

$$\left(\sqrt{a_1} + \sqrt{a_2} + \dots + \sqrt{a_n}\right)^2 \le n^2 + n - 1 - \left(1 - \frac{1}{n}\right)(a_1^2 + a_2^2 + \dots + a_n^2).$$

Now, we can apply Corollary 5 for k = 2 and m = 1/2:

• If a_1, a_2, \ldots, a_n are nonnegative real numbers so that

$$a_1 + a_2 + \dots + a_n = n$$
, $a_1^2 + a_2^2 + \dots + a_n^2 = constant$, $a_1 \le a_2 \le \dots \le a_n$,

then the sum

$$\sqrt{a_1} + \sqrt{a_2} + \dots + \sqrt{a_n}$$

is maximal for $0 \le a_1 = \cdots = a_{n-1} \le a_n$.

Thus, it suffices to show that

$$[(n-1)x + y]^{2} \le n^{2} + n - 1 - \left(1 - \frac{1}{n}\right)[(n-1)x^{4} + y^{4}].$$

for

$$(n-1)x^2 + y^2 = n, \quad 0 \le x \le y$$

Write this inequality in the homogeneous form

$$[(n-1)x+y]^2 \le \frac{(n^2+n-1)\frac{[(n-1)x^2+y^2]^2}{n} - (n-1)[(n-1)x^4+y^4]}{(n-1)x^2+y^2},$$

which is equivalent to

$$(n-1)^2 x^4 - 2n(n-1)x^3 y + (n^2 + 2n - 2)x^2 y^2 - 2nxy^3 + y^4 \ge 0,$$
$$(x-y)^2 [(n-1)x - y]^2 \ge 0.$$

The inequality is an equality for $a_1 = a_2 = \cdots = a_n = 1$, and also for $a_1 = \cdots = a_{n-1} = \frac{1}{n-1}$ and $a_n = n-1$ (or any cyclic permutation).

P 5.98. *If* $a_1, a_2, ..., a_n \ge 0$ *such that*

$$a_1 + a_2 + \dots + a_n = \sum_{i < j} a_i a_j > 0,$$

then

$$\frac{(n-1)(n-2)}{2}(a_1 + a_2 + \dots + a_n) + \sum_{i < j} \sqrt{a_i a_j} \ge n(n-1).$$

(Vasile C., 2020)

Proof. For n = 2, we need to show that $a_1 + a_2 = a_1 a_2$ involves $a_1 a_2 \ge 4$. Indeed, this follows from

$$a_1 a_2 = a_1 + a_2 \ge 2\sqrt{a_1 a_2}$$

Since

$$2\sum_{i< j} a_i a_j = (a_1 + a_2 + \dots + a_n)^2 - a_1^2 - a_2^2 - \dots - a_n^2$$

and

$$2\sum_{i< j} \sqrt{a_i a_j} = (\sqrt{a_1} + \sqrt{a_2} + \dots + \sqrt{a_n})^2 - a_1 - a_2 - \dots - a_n,$$

we can apply Corollary 5 for k = 2 and m = 1/2:

• If a_1, a_2, \ldots, a_n are nonnegative real numbers so that

$$a_1+a_2+\cdots+a_n=constant\;,\quad a_1^2+a_2^2+\cdots+a_n^2=constant\;,\quad a_1\leq a_2\leq \cdots \leq a_n,$$

then the sum

$$\sqrt{a_1} + \sqrt{a_2} + \dots + \sqrt{a_n}$$

is minimal for either $0 < a_1 \le a_2 = \cdots = a_n$ or $a_1 = 0$.

Thus, it suffices to consider the case $a_1 = x^2$, $a_2 = \cdots = a_n = y^2$, $0 < x \le y$, and the case $a_1 = 0$. In addition, we will use the induction method.

Case 1: $a_1 = x^2$, $a_2 = \cdots = a_n = y^2$. We need to show that

$$x^{2} + (n-1)y^{2} = (n-1)x^{2}y^{2} + \frac{(n-1)(n-2)}{2}y^{4}$$

implies

$$\frac{(n-2)}{2}[x^2 + (n-1)y^2] + xy + \frac{(n-2)}{2}y^2 \ge n,$$

which can be written in the homogeneous form

$$(n-2)x^{2} + 2xy + n(n-2)y^{2} \ge n\frac{2(n-1)x^{2}y^{2} + (n-1)(n-2)y^{4}}{x^{2} + (n-1)y^{2}}.$$

For y = 1, the inequality becomes

$$(x^2 + n - 1)[(n - 2)x^2 + 2x + n(n - 2)] \ge 2n(n - 1)x^2 + n(n - 1)(n - 2),$$

$$(n-2)x^4 + 2x^3 - (3n-2)x^2 + 2(n-1)x \ge 0,$$

$$x(x-1)^2[(n-2)x + 2(n-1)] \ge 0.$$

Case 2: $a_1 = 0$. We need to show that

$$a_2 + a_3 + \dots + a_n = \sum_{2 \le i < j} a_i a_j > 0$$
 (1)

involves

$$\frac{(n-1)(n-2)}{2}(a_2+a_3+\cdots+a_n)+\sum_{2\leq i< j}\sqrt{a_ia_j}\geq n(n-1).$$
 (2)

From

$$(a_2 + a_3 + \dots + a_n)^2 \le (n-1)(a_2^2 + a_2^3 + \dots + a_n^2)$$

= $(n-1)(a_2 + a_3 + \dots + a_n)^2 - 2(n-1) \sum_{2 \le i < j} a_i a_j$,

we get

$$(n-2)(a_2+a_3+\cdots+a_n)^2 \ge 2(n-1)\sum_{2\le i< j} a_i a_j = 2(n-1)(a_2+a_3+\cdots+a_n),$$

hence

$$a_2 + a_3 + \dots + a_n \ge \frac{2(n-1)}{n-2}.$$
 (3)

On the other hand, by the induction hypothesis, (1) involves

$$\frac{(n-2)(n-3)}{2}(a_2+a_3+\cdots+a_n)+\sum_{2\leq i< j}\sqrt{a_ia_j}\geq (n-1)(n-2).$$

According to this inequality, (2) is true if

$$\frac{(n-1)(n-2)}{2}(a_2+a_3+\cdots+a_n)+(n-1)(n-2)-\frac{(n-2)(n-3)}{2}(a_2+a_3+\cdots+a_n)$$

$$\geq n(n-1).$$

which is equivalent to (3).

The inequality is an equality for $a_1 = a_2 = \dots = a_n = \frac{2}{n-1}$, and also for $a_1 = 0$ and $a_2 = a_3 = \dots = a_n = \frac{2}{n-2}$ (or any cyclic permutation).

P 5.99. Let

$$F(a_1, a_2, \dots, a_n) = n(a_1^2 + a_2^2 + \dots + a_n^2) - (a_1 + a_2 + \dots + a_n)^2$$
,

where a_1, a_2, \ldots, a_n are positive real numbers such that $a_1 \leq a_2 \leq \cdots \leq a_n$ and

$$a_1^2(a_2^2 + a_3^2 + \dots + a_n^2) \ge n - 1.$$

Then,

$$F(a_1, a_2, ..., a_n) \ge F\left(\frac{1}{a_1}, \frac{1}{a_2}, ..., \frac{1}{a_n}\right).$$

(Vasile C., 2020)

Proof. For n = 2, we need to show that $a_1 a_2 \ge 1$ involves

$$(a_1^2 a_2^2 - 1)(a_1 - a_2)^2 \ge 0,$$

which is clearly true. For $n \ge 3$, write the inequality as

$$n(a_1^2+a_2^2+\cdots+a_n^2)-(a_1+a_2+\cdots+a_n)^2 \ge n\left(\frac{1}{a_1^2}+\frac{1}{a_2^2}+\cdots+\frac{1}{a_n^2}\right)-\left(\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}\right)^2.$$

According to Corollary 5 (case k = -1), we have:

• If a_2, a_3, \ldots, a_n are positive real numbers so that

$$a_2+a_3+\cdots+a_n=constant$$
, $\frac{1}{a_2}+\frac{1}{a_3}+\cdots+\frac{1}{a_n}=constant$, $a_2\leq a_3\leq\cdots\leq a_n$,

then the sum $a_2^2 + a_3^2 + \dots + a_n^2$ is minimal and the sum $\frac{1}{a_2^2} + \frac{1}{a_3^2} + \dots + \frac{1}{a_n^2}$ is maximal for $a_2 \le a_3 = \dots = a_n$.

Thus, it suffices to consider the case $a_2 \le a_3 = \cdots = a_n$. We need to show that if x, y, z are positive real numbers such that $x \le y \le z$ and

$$x^{2}[y^{2} + (n-2)z^{2}] \ge n-1,$$

then

$$n[x^2+y^2+(n-2)z^2]-[x+y+(n-2)z]^2 \ge n\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{n-2}{z^2}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{n-2}{z}\right)^2,$$

which is equivalent to

$$(x-y)^{2}+(n-2)(y-z)^{2}+(n-2)(z-x)^{2} \geq \frac{(x-y)^{2}}{x^{2}y^{2}}+\frac{(n-2)(y-z)^{2}}{y^{2}z^{2}}+\frac{(n-2)(z-x)^{2}}{z^{2}x^{2}},$$

$$(x-y)^2 \left(1 - \frac{1}{x^2 y^2}\right) + (n-2)(y-z)^2 \left(1 - \frac{1}{y^2 z^2}\right) + (n-2)(z-x)^2 \left(1 - \frac{1}{z^2 x^2}\right) \ge 0.$$

From

$$n-1 \le x^2[y^2 + (n-2)z^2] \le (n-1)x^2z^2$$
,

it follows that

$$xz \ge 1$$
, $yz \ge 1$.

Thus, suffices to show that

$$(x-y)^2\left(1-\frac{1}{x^2y^2}\right)+(n-2)(z-x)^2\left(1-\frac{1}{z^2x^2}\right)\geq 0,$$

that is

$$(n-2)\left(1-\frac{x}{z}\right)^2\left(z^2-\frac{1}{x^2}\right) \ge \left(1-\frac{x}{y}\right)^2\left(\frac{1}{x^2}-y^2\right).$$

Since

$$1 - \frac{x}{z} \ge 1 - \frac{x}{y} \ge 0,$$

it suffices to show that

$$(n-2)\left(z^2-\frac{1}{x^2}\right) \ge \frac{1}{x^2}-y^2$$

that is equivalent to the hypothesis

$$y^2 + (n-2)z^2 \ge \frac{n-1}{r^2}$$
.

The equality occurs for $a_1 = a_2 = \cdots = a_n \ge 1$ and for $\frac{1}{a_1} = a_2 = \cdots = a_n \ge 1$.

Remark. Since $a_1(a_2 + a_3 + \dots + a_n) \ge n - 1$ yields $a_1^2(a_2^2 + a_3^2 + \dots + a_n^2) \ge n - 1$, the inequality is also true for

$$a_1(a_2 + a_3 + \dots + a_n) \ge n - 1.$$

In addition, it is true in the particular case

$$a_1, a_2, \ldots, a_n \geq 1.$$

P 5.100. *Let*

$$F(a_1, a_2, \dots, a_n) = a_1 + a_2 + \dots + a_n - n \sqrt[n]{a_1 a_2 \cdots a_n},$$

where a_1, a_2, \ldots, a_n are positive real numbers such that $a_1 \leq a_2 \leq \cdots \leq a_n$ and

$$a_1(a_2+a_3+\cdots+a_n)\geq n-1.$$

Then,

$$F(a_1, a_2, ..., a_n) \ge F\left(\frac{1}{a_1}, \frac{1}{a_2}, ..., \frac{1}{a_n}\right).$$

(Vasile C., 2020)

Solution. For n = 2, we need to show that $a_1 a_2 \ge 1$ involves

$$(a_1 a_2 - 1) (\sqrt{a_1} - \sqrt{a_2})^2 \ge 0,$$

which is true. For $n \ge 3$, the inequality has the form

$$a_1 + a_2 + \dots + a_n - n \sqrt[n]{a_1 a_2 \cdots a_n} \ge \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} - \frac{n}{\sqrt[n]{a_1 a_2 \cdots a_n}}$$

According to Corollary 5 (case k = 0 and m = -1), we have:

• If a_2, a_3, \ldots, a_n are positive real numbers so that

$$a_2 + a_3 + \cdots + a_n = constant$$
, $a_2 a_3 \cdots a_n = constant$, $a_2 \le a_3 \le \cdots \le a_n$,

then the sum $\frac{1}{a_2} + \frac{1}{a_3} + \cdots + \frac{1}{a_n}$ is maximal for $a_2 \le a_3 = \cdots = a_n$.

Thus, we only need to show that

$$x + y + (n-2)z - n\sqrt[n]{xyz^{n-2}} \ge \frac{1}{x} + \frac{1}{y} + \frac{n-2}{z} - \frac{n}{\sqrt[n]{xyz^{n-2}}}$$

for $0 < x \le y \le z$ and $x[y + (n-2)z] \ge n-1$. Since both sides of the inequality are nonnegative, it suffices to prove the homogeneous inequality

$$\left[x+y+(n-2)z-n\sqrt[n]{xyz^{n-2}}\right] \ge \frac{x[y+(n-2)z]}{n-1} \left[\frac{1}{x}+\frac{1}{y}+\frac{n-2}{z}-\frac{n}{\sqrt[n]{xyz^{n-2}}}\right],$$

that is

$$(n-1)\left\lceil x+y+(n-2)z-n\sqrt[n]{xyz^{n-2}}\right\rceil \geq$$

$$\geq y + (n-2)z + \frac{[y + (n-2)z][(n-2)y + z]}{yz}x - n[y + (n-2)z] \sqrt[n]{\frac{x^{n-1}}{yz^{n-2}}}.$$

For fixed y and z, write this inequality as $f(x) \ge 0$, $x \in (0, y]$. We will show that

$$f(x) \ge f(y) \ge 0.$$

To prove that $f(x) \ge f(y)$, we show that $f'(x) \le 0$, which is equivalent to

$$n-1-(n-1)\sqrt[n]{\frac{yz^{n-2}}{x^{n-1}}}-\frac{[y+(n-2)z][(n-2)y+z]}{yz}+(n-1)\frac{y+(n-2)z}{\sqrt[n]{xyz^{n-2}}}\leq 0,$$

$$(n-2)\left(\frac{y}{z} + \frac{z}{y} + n - 3\right) + (n-1)\sqrt[n]{\frac{yz^{n-2}}{x^{n-1}}} \ge (n-1)\frac{y + (n-2)z}{\sqrt[n]{x}yz^{n-2}}.$$

By the AM-GM inequality, we have

$$(n-2)\cdot\left(\frac{y}{z}+\frac{z}{y}+n-3\right)+(n-1)\sqrt[n]{\frac{yz^{n-2}}{x^{n-1}}}\geq$$

$$\geq (n-1)^{n-1} \sqrt{\left(\frac{y}{z} + \frac{z}{y} + n - 3\right)^{n-2} \cdot (n-1) \sqrt[n]{\frac{yz^{n-2}}{x^{n-1}}}}.$$

Thus, it suffices to show that

$$\sqrt[n-1]{\left(\frac{y}{z} + \frac{z}{y} + n - 3\right)^{n-2} \cdot (n-1)} \sqrt[n]{\frac{yz^{n-2}}{x^{n-1}}} \ge \frac{y + (n-2)z}{\sqrt[n]{xyz^{n-2}}},$$

which is equivalent to

$$(n-1)\left(\frac{y}{z} + \frac{z}{y} + n - 3\right)^{n-2} yz^{n-2} \ge [y + (n-2)z]^{n-1}.$$

Due to homogeneity, we may set z = 1, when the inequality becomes

$$(n-1)Ay \ge y + n - 2,$$

where

$$A = \left(\frac{y+1/y+n-3}{y+n-2}\right)^{n-2}, \ \ 0 < y \le 1.$$

By Bernoulli's inequality, we have

$$A = \left(1 + \frac{1/y - 1}{y + n - 2}\right)^{n - 2} \ge 1 + \frac{(n - 2)(1/y - 1)}{y + n - 2} = \frac{y^2 + n - 2}{y(y + n - 2)},$$

hence

$$(n-1)Ay - (y+n-2) \ge \frac{(n-1)(y^2+n-2)}{y+n-2} - (y+n-2)$$
$$= \frac{(n-2)(y-1)^2}{y+n-2} \ge 0.$$

The inequality $f(y) \ge 0$ has the form

$$2y + (n-2)z - n\sqrt[n]{y^2z^{n-2}} \ge \frac{y[y + (n-2)z]}{n-1} \left[\frac{2}{y} + \frac{n-2}{z} - \frac{n}{\sqrt[n]{y^2z^{n-2}}} \right].$$

Due to homogeneity, we may set z = 1 (hence $0 < y \le 1$), when the inequality becomes

$$2y + n - 2 - n\sqrt[n]{y^2} \ge \frac{y(y + n - 2)}{n - 1} \left(\frac{2}{y} + n - 2 - \frac{n}{\sqrt[n]{y^2}}\right)$$

Denoting

$$t = \sqrt[n]{y}, \quad 0 < t \le 1,$$

we need to show that $g(t) \ge 0$, where

$$g(t) = (n-1)(2t^n - nt^2 + n - 2) - (t^n + n - 2)[(n-2)t^n - nt^{n-2} + 2]$$

$$= -(n-2)t^{2n} + nt^{2n-2} - (n-2)(n-4)t^n + n(n-2)t^{n-2} - n(n-1)t^2 + (n-2)(n-3).$$

For n = 3, we have

$$g(t) = t(1-t)^3(3+3t+t^2) \ge 0,$$

and for n = 4, we have

$$g(t) = 2(1-t^2)^3(1+t^2) \ge 0.$$

For $n \ge 5$, we have

$$g'(t) = nt g_1(t),$$

$$\begin{split} g_1(t) &= -2(n-2)t^{2n-2} + 2(n-1)t^{2n-4} - (n-2)(n-4)t^{n-2} + (n-2)^2t^{n-4} - 2(n-1), \\ g_1'(t) &= (n-2)t^{n-5}(1-t^2)[4(n-1)t^n + n-2] \ge 0 \ , \end{split}$$

hence $g_1(t)$ is increasing, $g_1(t) \le g_1(1) = 0$, $g'(t) \le 0$, g(t) is decreasing, $g(t) \ge g(1) = 0$. Thus, the proof is completed. The equality holds for $a_1 = a_2 = \cdots = a_n \ge 1$.

Remark 1. Since $a_1^{n-1}a_2a_3\cdots a_n \ge 1$ yields $a_1(a_2+a_3+\cdots+a_n) \ge n-1$, the inequality

$$F(a_1, a_2, ..., a_n) \ge F\left(\frac{1}{a_1}, \frac{1}{a_2}, ..., \frac{1}{a_n}\right)$$

is also valid if a_1, a_2, \dots, a_n are positive real numbers such that

$$a_1 \le a_2 \le \dots \le a_n, \quad a_1^{n-1} a_2 a_3 \dots a_n \ge 1.$$

Also, it is valid in the particular case

$$a_1, a_2, \ldots, a_n \ge 1.$$

Remark 2. Since $a_1 a_2 \cdots a_n \ge 1$, from P 5.100 it follows that

$$a_1 + a_2 + \dots + a_n \ge \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$$

for

$$a_1(a_2 + a_3 + \dots + a_n) \ge n - 1.$$

P 5.101. *Let*

$$F(a_1, a_2, ..., a_n) = \sqrt{\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n}} - \frac{a_1 + a_2 + \dots + a_n}{n}$$

where a_1, a_2, \ldots, a_n are positive real numbers such that $a_1 \leq a_2 \leq \cdots \leq a_n$ and

$$a_1^{n-1}(a_2+a_3+\cdots+a_n) \ge n-1.$$

Then,

$$F(a_1, a_2, ..., a_n) \ge F\left(\frac{1}{a_1}, \frac{1}{a_2}, ..., \frac{1}{a_n}\right).$$
(Vasile C., 2020)

Solution. For n = 2, we need to show that $a_1 a_2 \ge 1$ involves

$$(a_1a_2-1)(\sqrt{2(a_1^2+a_2^2)}-a_1-a_2) \ge 0,$$

which is true. For $n \ge 3$, write the inequality in the form

$$\sqrt{n(a_1^2+a_2^2+\cdots+a_n^2)}-(a_1+a_2+\cdots+a_n)$$

$$\geq \sqrt{n\left(\frac{1}{a_1^2} + \frac{1}{a_2^2} + \dots + \frac{1}{a_n^2}\right)} - \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} \geq 0$$
.

According to Corollary 5 (case k = -1), we have:

• If a_2, a_3, \ldots, a_n are positive real numbers so that

$$a_2 + a_3 + \dots + a_n = constant$$
, $\frac{1}{a_2} + \frac{1}{a_3} + \dots + \frac{1}{a_n} = constant$, $a_2 \le a_3 \le \dots \le a_n$,

then the sum $a_2^2 + a_3^2 + \dots + a_n^2$ is minimal and the sum $\frac{1}{a_2^2} + \frac{1}{a_3^2} + \dots + \frac{1}{a_n^2}$ is maximal for $a_2 \le a_3 = \dots = a_n$.

Thus, it suffices to consider the case $a_2 \le a_3 = \cdots = a_n$. We need to show that if x, y, z are positive real numbers such that $x \le y \le z$ and

$$x^{n-1}[y + (n-2)z] \ge n-1,$$

then $E(x, y, z) \ge 0$, where

$$E(x, y, z) = \sqrt{x^2 + y^2 + (n-2)z^2} - \frac{x + y + (n-2)z}{\sqrt{n}}$$

$$-\sqrt{\frac{1}{x^2} + \frac{1}{y^2} + \frac{n-2}{z^2} + \frac{1}{\sqrt{n}} \left(\frac{1}{x} + \frac{1}{y} + \frac{n-2}{z} \right)}.$$

We will show that

$$E(x, y, z) \ge E(x, w, w) \ge 0,$$

where

$$w = \frac{y + (n-2)z}{n-1}, \quad x \le y \le w \le z.$$

Write the inequality $E(x, y, z) \ge E(x, w, w)$ as follows:

$$\frac{y^2 + (n-2)z^2 - (n-1)w^2}{\sqrt{x^2 + y^2 + (n-2)z^2} + \sqrt{x^2 + (n-1)w^2}} + \frac{1}{\sqrt{n}} \left(\frac{1}{y} + \frac{n-2}{z} - \frac{n-1}{w} \right)$$

$$\geq \frac{\frac{1}{y^2} + \frac{n-2}{z^2} + \frac{n-1}{w^2}}{\sqrt{\frac{1}{x^2} + \frac{1}{y^2} + \frac{n-2}{z^2}} + \sqrt{\frac{1}{x^2} + \frac{n-1}{w^2}}},$$

$$\frac{(n-2)(y-z)^2}{n-1} \cdot \frac{1}{\sqrt{x^2 + y^2 + (n-2)z^2} + \sqrt{x^2 + (n-1)w^2}} + \frac{(n-2)(y-z)^2}{\sqrt{n}yz[y + (n-2)z]}$$

$$\geq \frac{(n-2)(y-z)^2[y^2 + 2(n-1)yz + (n-2)z^2]}{y^2z^2[y + (n-2)z]^2} \cdot \frac{1}{\sqrt{\frac{1}{x^2} + \frac{1}{y^2} + \frac{n-2}{z^2}} + \sqrt{\frac{1}{x^2} + \frac{n-1}{w^2}}},$$

which is true if

$$\frac{1}{n-1} \cdot \frac{1}{\sqrt{x^2 + y^2 + (n-2)z^2} + \sqrt{x^2 + (n-1)w^2}} + \frac{1}{\sqrt{n}yz[y + (n-2)z]}$$

$$\geq \frac{y^2 + 2(n-1)yz + (n-2)z^2}{y^2z^2[y + (n-2)z]^2} \cdot \frac{1}{\sqrt{\frac{1}{x^2} + \frac{1}{y^2} + \frac{n-2}{z^2}} + \sqrt{\frac{1}{x^2} + \frac{n-1}{w^2}}}.$$

Since $x \le y$, it is enough to show that

$$\frac{1}{n-1} \cdot \frac{1}{\sqrt{2y^2 + (n-2)z^2} + \sqrt{y^2 + (n-1)w^2}} + \frac{1}{\sqrt{n}yz[y + (n-2)z]}$$

$$\geq \frac{y^2 + 2(n-1)yz + (n-2)z^2}{y^2z^2[y + (n-2)z]^2} \cdot \frac{1}{\sqrt{\frac{2}{y^2} + \frac{n-2}{z^2}} + \sqrt{\frac{1}{y^2} + \frac{n-1}{w^2}}}.$$

In addition, since $w \le z$, it suffices to show that

$$\frac{1}{n-1} \cdot \frac{1}{\sqrt{2y^2 + (n-2)z^2} + \sqrt{y^2 + (n-1)z^2}} + \frac{1}{\sqrt{n}yz[y + (n-2)z]}$$

$$\geq \frac{y^2 + 2(n-1)yz + (n-2)z^2}{y^2z^2[y + (n-2)z]^2} \cdot \frac{1}{\sqrt{\frac{2}{y^2} + \frac{n-2}{z^2}} + \sqrt{\frac{1}{y^2} + \frac{n-1}{z^2}}}.$$

Since

$$y^2 + 2(n-1)yz + (n-2)z^2 = [y^2 + (n-2)z^2] + 2(n-1)yz,$$

we rewrite the inequality as

$$A+B \geq C+D$$
,

where

$$A = \frac{1}{n-1} \cdot \frac{1}{\sqrt{2y^2 + (n-2)z^2} + \sqrt{y^2 + (n-1)z^2}},$$

$$B = \frac{1}{\sqrt{n}yz[y + (n-2)z]},$$

$$C = \frac{y^2 + (n-2)z^2}{y^2z^2[y + (n-2)z]^2} \cdot \frac{1}{\sqrt{\frac{2}{y^2} + \frac{n-2}{z^2}} + \sqrt{\frac{1}{y^2} + \frac{n-1}{z^2}}},$$

$$D = \frac{2(n-1)yz}{y^2z^2[y+(n-2)z]^2} \cdot \frac{1}{\sqrt{\frac{2}{y^2} + \frac{n-2}{z^2}} + \sqrt{\frac{1}{y^2} + \frac{n-1}{z^2}}}.$$

We will show that

$$A \ge C$$
, $B \ge D$.

Since the inequality $B \ge D$ is homogeneous, we may consider y = 1 and $z \ge 1$, when it becomes

$$[(n-2)z+1] \left\lceil \sqrt{2z^2+n-2} + \sqrt{z^2+n-1} \right\rceil \ge 2\sqrt{n}(n-1)z.$$

Since

$$\sqrt{2z^2+n-2} + \sqrt{z^2+n-1} \geq \frac{2z+n-2}{\sqrt{n}} + \frac{z+n-1}{\sqrt{n}} = \frac{3z+2n-3}{\sqrt{n}} \; ,$$

it is sufficient to show that

$$[(n-2)z+1](3z+2n-3) \ge 2n(n-1),$$

which is equivalent to

$$(z-1)[3(n-2)z+2n^2-4n+3] \ge 0.$$

To show that $A \ge C$, we see that $x^{n-1}[y + (n-2)z] \ge n-1$ yields

$$y^{n-1}[y+(n-2)z] \ge n-1.$$

Thus, it suffices to prove the homogeneous inequality

$$A \ge C_0 C$$
, $C_0 = \left[\frac{y^{n-1} [y + (n-2)z]}{n-1} \right]^{2/n}$,

that is

$$\begin{split} &\frac{1}{\sqrt{2y^2 + (n-2)z^2} + \sqrt{y^2 + (n-1)z^2}} \geq \\ \geq &\frac{(n-1)[y^2 + (n-2)z^2]}{y^2z^2[y + (n-2)z]} \cdot \frac{C_0}{\sqrt{\frac{2}{y^2} + \frac{n-2}{z^2}} + \sqrt{\frac{1}{y^2} + \frac{n-1}{z^2}}} \;, \end{split}$$

Due to homogeneity, we may set y = 1, hence $z \ge 1$. The inequality becomes

$$\begin{split} &\sqrt{2z^2+n-2}+\sqrt{z^2+n-1} \geq \\ &\geq \frac{(n-1)[1+(n-2)z^2]C_1}{z[1+(n-2)z]^2} \Big[\sqrt{2+(n-2)z^2}+\sqrt{1+(n-1)z^2}\Big]\;, \end{split}$$

where

$$C_1 = \left[\frac{1 + (n-2)z}{n-1}\right]^{2/n}.$$

By Bernoulli's inequality, we have

$$C_1 = \left[1 + \frac{(n-2)(z-1)}{n-1}\right]^{2/n} \le 1 + \frac{2(n-2)(z-1)}{n(n-1)} = \frac{2(n-2)z + n^2 - 3n + 4}{n(n-1)} \ .$$

Thus, it suffices to show that

$$\begin{split} &\sqrt{2z^2+n-2}+\sqrt{z^2+n-1} \geq \\ &\geq \frac{\left[1+(n-2)z^2\right]\left[2(n-2)z+n^2-3n+4\right]}{nz\left[1+(n-2)z\right]^2} \left[\sqrt{2+(n-2)z^2}+\sqrt{1+(n-1)z^2}\right]\,. \end{split}$$

We will show that

$$\sqrt{2z^2 + n - 2} \ge \frac{\left[1 + (n - 2)z^2\right]\left[2(n - 2)z + n^2 - 3n + 4\right]}{nz\left[1 + (n - 2)z\right]^2}\sqrt{(n - 1)z^2 + 1}$$

and

$$\sqrt{z^2 + n - 1} \ge \frac{\left[1 + (n - 2)z^2\right]\left[2(n - 2)z + n^2 - 3n + 4\right]}{nz\left[1 + (n - 2)z\right]^2}\sqrt{(n - 2)z^2 + 2}.$$

Since

$$\frac{2z^2+n-2}{(n-1)z^2+1}-\frac{z^2+n-1}{(n-2)z^2+2}=\frac{(n-3)(z^2-1)^2}{\lceil n-1 \rceil z^2+1 \rceil \lceil (n-2)z^2+2 \rceil} \geq 0 ,$$

it suffices to prove the second inequality. After squaring and making many calculations, this inequality can be written as $(z-1)P(z) \ge 0$, where $P(z) \ge 0$ for $z \ge 1$.

To complete the proof, we need to show that $E(x, w, w) \ge 0$ for $x^{n-1}w \ge 1$. Write the required inequality as follows:

$$\sqrt{n[x^2 + (n-1)w^2]} - [x + (n-1)w] \ge \sqrt{n\left[\frac{1}{x^2} + \frac{n-1}{w^2}\right]} - \left(\frac{1}{x} + \frac{n-1}{w}\right),$$

$$\frac{(n-1)(x-w)^2}{\sqrt{x^2 + (n-1)w^2} + \frac{x + (n-1)w}{\sqrt{n}}} \ge \frac{1}{xw} \cdot \frac{(n-1)(x-w)^2}{\sqrt{(n-1)x^2 + w^2} + \frac{(n-1)x + w}{\sqrt{n}}}.$$

This is true if

$$\sqrt{(n-1)x^2 + w^2} + \frac{(n-1)x + w}{\sqrt{n}} \ge \frac{1}{xw} \cdot \left[\sqrt{x^2 + (n-1)w^2} + \frac{x + (n-1)w}{\sqrt{n}} \right].$$

Since $x^{n-1}w \ge 1$, it suffices to prove the homogeneous inequality

$$\sqrt{(n-1)x^2 + w^2} + \frac{(n-1)x + w}{\sqrt{n}} \ge \frac{(x^{n-1}w)^{2/n}}{xw} \cdot \left[\sqrt{x^2 + (n-1)w^2} + \frac{x + (n-1)w}{\sqrt{n}} \right].$$

Due to homogeneity, we may set w = 1, which yields $x \le 1$. The inequality becomes

$$\sqrt{(n-1)x^2+1} + \frac{(n-1)x+1}{\sqrt{n}} \ge x^{\frac{n-2}{n}} \left[\sqrt{x^2+n-1} + \frac{x+n-1}{\sqrt{n}} \right].$$

We can get this by summing the inequalities

$$\sqrt{(n-1)x^2+1} \ge x^{\frac{n-2}{n}} \cdot \sqrt{x^2+n-1}$$

and

$$\frac{(n-1)x+1}{\sqrt{n}} \ge x^{\frac{n-2}{n}} \cdot \frac{x+n-1}{\sqrt{n}}.$$

Replacing x with x^2 in the second inequality gives the first inequality. Thus, it suffices to prove the second inequality, which can be rewritten as $f(x) \ge 0$, where

$$f(x) = \ln[(n-1)x+1] - \ln(x+n-1) - \frac{n-2}{n}\ln x.$$

From

$$f'(x) = \frac{n-1}{(n-1)x+1} - \frac{1}{x+n-1} - \frac{n-2}{nx} = \frac{-(n-1)(n-2)(x-1)^2}{nx\lceil (n-1)x+1 \rceil_x + n - 1} \le 0,$$

it follows that f is decreasing, hence $f(x) \ge f(1) = 0$.

The proof is completed. The equality holds for $a_1 = a_2 = \cdots = a_n \ge 1$.

Remark. The inequality

$$F(a_1, a_2, ..., a_n) \ge F\left(\frac{1}{a_1}, \frac{1}{a_2}, ..., \frac{1}{a_n}\right)$$

is also valid in the particular case

$$a_1, a_2, \ldots, a_n \ge 1$$
.

P 5.102. If $a_1, a_2, ..., a_n$ $(n \ge 4)$ are positive real numbers such that

$$a_1 + a_2 + \dots + a_n = n$$
, $a_n = \max\{a_1, a_2, \dots, a_n\}$,

then

$$n\left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_{n-1}}\right) \ge 4(a_1^2 + a_2^2 + \dots + a_n^2) + n(n-5).$$
(Vasile C., 2021)

Solution. Assume that a_n is fixed and $a_1 \le a_2 \le \cdots \le a_n$. According to Corollary 5 (case k = 2 and m = -1), we have:

• If $a_1, a_2, \ldots, a_{n-1}$ are positive real numbers so that

$$a_1 + a_2 + \dots + a_{n-1} = constant$$
, $a_1^2 + a_2^2 + \dots + a_{n-1}^2 = constant$, $a_1 \le a_2 \le \dots \le a_{n-1}$,

then the sum
$$\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_{n-1}}$$
 is minimal for $a_1 = a_2 = \cdots = a_{n-2} \le a_{n-1}$.

Therefore, it suffices to consider the case $a_1 = a_2 = \cdots = a_{n-2}$, that is to show that $F(a, b) \ge 0$, where

$$F(a,b) = n\left(\frac{n-2}{a} + \frac{1}{b}\right) - 4(n-2)a^2 - 4b^2 - 4c^2 - n(n-5), \quad c = n - (n-2)a - b,$$

with a, b positive real numbers such that $a \le b \le c$. From $c \ge b$, we get

$$(n-2)a+2b \le n.$$

We will show that

$$F(a,b) \ge F(t,t) \ge 0$$
,

where

$$t = \frac{(n-2)a+b}{n-1}, \quad t \le 1.$$

Since

$$F(a,b) - F(t,t) = n \left(\frac{n-2}{a} + \frac{1}{b} - \frac{n-1}{t} \right) - 4 \left[(n-2)a^2 + b^2 - (n-1)t^2 \right]$$

$$= \frac{n(n-2)(a-b)^2}{(n-1)abt} - \frac{4(n-2)(a-b)^2}{n-1}$$

$$\geq \frac{n(n-2)(a-b)^2}{(n-1)ab} - \frac{4(n-2)(a-b)^2}{n-1}$$

$$= \frac{(n-2)(a-b)^2(n-4ab)}{(n-1)ab},$$

it suffices to show that $4ab \le n$. From

$$n \ge (n-2)a + 2b \ge 2\sqrt{2(n-2)ab}$$

we get

$$4ab-n \le \frac{n^2}{2(n-2)}-n = \frac{n(4-n)}{n-2} \le 0.$$

In addition,

$$F(t,t) = \frac{n(n-1)}{t} - 4(n-1)t^2 - 4[n-(n-1)t]^2 - n(n-5)$$

$$= \frac{n(n-1)(1-t)(1-2t)^2}{t} \ge 0.$$

The equality occurs for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = a_2 = \dots = a_{n-1} = \frac{1}{2}, \quad a_n = \frac{n+1}{2}.$$

P 5.103. If a, b, c are nonnegative real numbers so that ab + bc + ca = 3, then

$$\frac{1}{a+b+1} + \frac{1}{b+c+1} + \frac{1}{c+a+1} \le 1.$$

(Vasile C., 2021)

Solution. Using the substitution

$$m = a + b + c + 1,$$

we have to show that

$$f(a) + f(b) + f(c) \le 1$$

for

$$a+b+c=m-1,$$
 $a^2+b^2+c^2=(m-1)^2-6,$ $f(u)=\frac{1}{m-u},$ $0 \le u < m-1.$

From

$$g(x) = f'(x) = \frac{1}{(m-u)^2}$$
, $g''(x) = \frac{6}{(m-u)^4}$,

it follows that g''(x) > 0, hence g is strictly convex. For fixed m, by Corollary 1, if

$$a+b+c=fixed$$
, $a^2+b^2+c^2=fixed$,

then the sum

$$S_3 = f(a) + f(b) + f(c)$$

is maximal for $a = b \le c$. Thus, we only need to prove the inequality for $a = b \le c$; that is, to show that $a^2 + 2ac = 3$ involves

$$\frac{2}{a+c+1} + \frac{1}{2a+1} \le 1.$$

Write this inequality as follows

$$\frac{4a}{a^2 + 2a + 3} + \frac{1}{2a + 1} \le 1,$$
$$a(a - 1)^2 \ge 0.$$

The equality holds for a = b = c = 1.

Chapter 6

EV Method for Real Variables

6.1 Theoretical Basis

The Equal Variables Method may be extended to solve some difficult symmetric inequalities in real variables.

EV-Theorem (Vasile Cirtoaje, 2010). Let $a_1, a_2, ..., a_n$ ($n \ge 3$) be fixed real numbers, and let

$$x_1 \le x_2 \le \dots \le x_n$$

so that

$$x_1 + x_2 + \dots + x_n = a_1 + a_2 + \dots + a_n, \quad x_1^k + x_2^k + \dots + x_n^k = a_1^k + a_2^k + \dots + a_n^k,$$

where k is an even positive integer. If f is a differentiable function on \mathbb{R} so that the joined function $g: \mathbb{R} \to \mathbb{R}$ defined by

$$g(x) = f'(\sqrt[k-1]{x})$$

is strictly convex on \mathbb{R} , then the sum

$$S_n = f(x_1) + f(x_2) + \dots + f(x_n)$$

is minimum for $x_2 = x_3 = \cdots = x_n$, and is maximum for $x_1 = x_2 = \cdots = x_{n-1}$.

To prove this theorem, we will use EV-Lemma and EV-Proposition below.

EV-Lemma. Let a, b, c be fixed real numbers, not all equal, and let x, y, z be real numbers satisfying

$$x \le y \le z$$
, $x + y + z = a + b + c$, $x^k + y^k + z^k = a^k + b^k + c^k$,

where k is an even positive integer. Then, there exist two real numbers m and M so that m < M and

(1)
$$y \in [m, M]$$
;

- (2) y = m if and only if x = y;
- (3) y = M if and only if y = z.

Proof. We show first, by contradiction method, that x < z. Indeed, if x = z, then

$$x = z \implies x = y = z \implies x^k + y^k + z^k = 3\left(\frac{x + y + z}{3}\right)^k$$

$$\Rightarrow a^k + b^k + c^k = 3\left(\frac{a + b + c}{3}\right)^k \implies a = b = c,$$

which is false. Notice that the last implication follows from Jensen's inequality

$$a^k + b^k + c^k \ge 3\left(\frac{a+b+c}{3}\right)^k,$$

with equality if and only if a = b = c.

According to the relations

$$x + z = a + b + c - y$$
, $x^{k} + z^{k} = a^{k} + b^{k} + c^{k} - y^{k}$,

we may consider x and z as functions of y. From

$$x' + z' = -1$$
, $x^{k-1}x' + z^{k-1}z' = -y^{k-1}$,

we get

$$x' = \frac{y^{k-1} - z^{k-1}}{z^{k-1} - x^{k-1}}, \quad z' = \frac{y^{k-1} - x^{k-1}}{x^{k-1} - z^{k-1}}.$$
 (*)

The two-sided inequality

$$x(y) \le y \le z(y)$$

is equivalent to the inequalities $f_1(y) \le 0$ and $f_2(y) \ge 0$, where

$$f_1(y) = x(y) - y$$
, $f_2(y) = z(y) - y$.

Using (*), we get

$$f_1'(y) = \frac{y^{k-1} - z^{k-1}}{z^{k-1} - x^{k-1}} - 1$$

and

$$f_2'(y) = \frac{y^{k-1} - x^{k-1}}{x^{k-1} - z^{k-1}} - 1.$$

Since $f_1'(y) \le -1$ and $f_2'(y) \le -1$, f_1 and f_2 are strictly decreasing. Thus, the inequality $f_1(y) \le 0$ involves $y \ge m$, where m is the root of the equation x(y) = y, while the inequality $f_2(y) \ge 0$ involves $y \le M$, where M is the root of the equation z(y) = y. Moreover, y = m if and only if x = y, and y = M if and only if y = z.

EV-Proposition. Let a, b, c be fixed real numbers, and let x, y, z be real numbers satisfying

$$x \le y \le z$$
, $x + y + z = a + b + c$, $x^k + y^k + z^k = a^k + b^k + c^k$,

where k is an even positive integer. If f is a differentiable function on \mathbb{R} so that the joined function $g: \mathbb{R} \to \mathbb{R}$ defined by

$$g(x) = f'(\sqrt[k-1]{x})$$

is strictly convex on \mathbb{R} , then the sum

$$S = f(x) + f(y) + f(z)$$

is minimum if and only if y = z, and is maximum if and only if x = y.

Proof. If a = b = c, then

$$a = b = c \implies a^k + b^k + c^k = 3\left(\frac{a+b+c}{3}\right)^k$$

$$\Rightarrow x^k + y^k + z^k = 3\left(\frac{x+y+z}{3}\right)^k \implies x = y = z.$$

Consider further that a, b, c are not all equal. As it is shown in the proof of EV-Lemma, we have x < z. According to the relations

$$x + z = a + b + c - y$$
, $x^{k} + z^{k} = a^{k} + b^{k} + c^{k} - y^{k}$,

we may consider x and z as functions of y. Thus, we have

$$S = f(x(y)) + f(y) + f(z(y)) := F(y).$$

According to EV-Lemma, it suffices to show that F is maximum for y = m and is minimum for y = M. Using (*), we have

$$F'(y) = x'f'(x) + f'(y) + z'f'(z)$$

$$= \frac{y^{k-1} - z^{k-1}}{z^{k-1} - x^{k-1}} g(x^{k-1}) + g(y^{k-1}) + \frac{y^{k-1} - x^{k-1}}{x^{k-1} - z^{k-1}} g(z^{k-1}),$$

which, for x < y < z, is equivalent to

$$\begin{split} \frac{F'(y)}{(y^{k-1}-x^{k-1})(y^{k-1}-z^{k-1})} &= \frac{g(x^{k-1})}{(x^{k-1}-y^{k-1})(x^{k-1}-z^{k-1})} \\ &+ \frac{g(y^{k-1})}{(y^{k-1}-z^{k-1})(y^{k-1}-x^{k-1})} + \frac{g(z^{k-1})}{(z^{k-1}-x^{k-1})(z^{k-1}-y^{k-1})}. \end{split}$$

Since g is strictly convex, the right hand side is positive. Moreover, since

$$(y^{k-1}-x^{k-1})(y^{k-1}-z^{k-1})<0,$$

we have F'(y) < 0 for $y \in (m, M)$, hence F is strictly decreasing on [m, M]. Therefore, F is maximum for y = m and is minimum for y = M.

Proof of EV-Theorem. For n=3, EV-Theorem follows immediately from EV-Proposition. Consider next that $n\geq 4$. Since $X=(x_1,x_2,\ldots,x_n)$ is defined in EV-Theorem as a compact set in \mathbb{R}^n , S_n attains its minimum and maximum values. Using this property and EV-Proposition, we can prove EV-Theorem via contradiction. Thus, for the sake of contradiction, assume that S_n attains its maximum at (b_1,b_2,\ldots,b_n) , where $b_1\leq b_2\leq \cdots \leq b_n$ and $b_1< b_{n-1}$. Let x_1,x_{n-1} and x_n be real numbers so that

$$x_1 \le x_{n-1} \le x_n$$
, $x_1 + x_{n-1} + x_n = b_1 + b_{n-1} + b_n$, $x_1^k + x_{n-1}^k + x_n^k = b_1^k + b_{n-1}^k + b_n^k$.

According to EV-Proposition, the sum $f(x_1)+f(x_{n-1})+f(x_n)$ is maximum for $x_1=x_{n-1}$, when

$$f(x_1) + f(x_{n-1}) + f(x_n) > f(b_1) + f(b_{n-1}) + f(b_n).$$

This result contradicts the assumption that S_n attains its maximum value at $(b_1, b_2, ..., b_n)$ with $b_1 < b_{n-1}$. Similarly, we can prove that S_n is minimum for $x_2 = x_3 = \cdots = x_n$.

Taking k = 2 in EV-Theorem, we obtain the following corollary.

Corollary 1. Let $a_1, a_2, ..., a_n$ $(n \ge 3)$ be fixed real numbers, and let $x_1, x_2, ..., x_n$ be real variables so that

$$x_1 \le x_2 \le \dots \le x_n,$$

 $x_1 + x_2 + \dots + x_n = a_1 + a_2 + \dots + a_n,$
 $x_1^2 + x_2^2 + \dots + x_n^2 = a_1^2 + a_2^2 + \dots + a_n^2.$

If f is a differentiable function on \mathbb{R} so that the derivative f' is strictly convex on \mathbb{R} , then the sum

$$S_n = f(x_1) + f(x_2) + \dots + f(x_n)$$

is minimum for $x_2 = x_3 = \cdots = x_n$, and is maximum for $x_1 = x_2 = \cdots = x_{n-1}$.

Corollary 2. Let $a_1, a_2, ..., a_n$ $(n \ge 3)$ be fixed real numbers, and let $x_1, x_2, ..., x_n$ be real variables so that

$$x_1 \le x_2 \le \dots \le x_n,$$

 $x_1 + x_2 + \dots + x_n = a_1 + a_2 + \dots + a_n,$
 $x_1^k + x_2^k + \dots + x_n^k = a_1^k + a_2^k + \dots + a_n^k,$

where k is an even positive integer. For any positive odd number m, m > k, the power sum

$$S_n = x_1^m + x_2^m + \dots + x_n^m$$

is minimum for $x_2 = x_3 = \cdots = x_n$, and is maximum for $x_1 = x_2 = \cdots = x_{n-1}$.

Proof. We apply the EV-Theorem the function $f(u) = u^m$. The joined function

$$g(x) = f'(\sqrt[k-1]{x}) = m\sqrt[k-1]{x^{m-1}}$$

is strictly convex on \mathbb{R} because its derivative

$$g'(x) = \frac{m(m-1)}{k-1} \sqrt[k-1]{x^{m-k}}$$

is strictly increasing on \mathbb{R} .

Theorem 1. Let $a_1, a_2, ..., a_n$ ($n \ge 3$) be fixed real numbers, and let $x_1, x_2, ..., x_n$ be real variables so that

$$x_1 + x_2 + \dots + x_n = a_1 + a_2 + \dots + a_n$$

$$x_1^2 + x_2^2 + \dots + x_n^2 = a_1^2 + a_2^2 + \dots + a_n^2$$

The power sum

$$S_n = x_1^4 + x_2^4 + \dots + x_n^4$$

is minimum and maximum when the set $(x_1, x_2, ..., x_n)$ has at most two distinct values.

To prove this theorem, we will use Proposition 1 below.

Proposition 1. Let a, b, c be fixed real numbers, and let x, y, z be real numbers so that

$$x + y + z = a + b + c$$
, $x^2 + y^2 + z^2 = a^2 + b^2 + c^2$.

The power sum

$$S = x^4 + y^4 + z^4$$

is minimum and maximum when two of x, y, z are equal

Proof. The proof is based on EV-Lemma. Without loss of generality, assume that $x \le y \le z$. For the nontrivial case when a, b, c are not all equal (which involves x < z), consider the function of y

$$F(y) = x^{4}(y) + y^{4} + z^{4}(y).$$

According to (*), we have

$$F'(y) = 4x^3x' + 4y^3 + 4z^3z' = 4x^3\frac{y-z}{z-x} + 4y^3 + 4z^3\frac{y-x}{x-z}$$
$$= 4(x+y+z)(y-x)(y-z) = 4(a+b+c)(y-x)(y-z).$$

There are three cases to consider.

Case 1: a + b + c < 0. Since F'(y) > 0 for x < y < z, F is strictly increasing on $\lceil m, M \rceil$.

Case 2: a + b + c > 0. Since F'(y) < 0 for x < y < z, F is strictly decreasing on [m, M].

Case 3: a + b + c = 0. Since F'(y) = 0, F is constant on [m, M].

In all cases, F is monotonic on m, M]. Therefore, F is minimum and maximum for y = m or y = M; that is, when x = y or y = z (see EV-Lemma). Notice that for $a + b + c \neq 0$, F is strictly monotonic on [m, M], hence F is minimum and maximum if and only if y = m or y = M; that is, if and only if x = y or y = z.

Proof of Theorem 1. For n=3, Theorem 1 follows from Proposition 1. In order to prove Theorem 1 for any $n \geq 4$, we will use the contradiction method. For the sake of contradiction, assume that (b_1, b_2, \ldots, b_n) is an extreme point having at least three distinct components; let us say $b_1 < b_2 < b_3$. Let x_1, x_2 and x_3 be real numbers so that

$$x_1 \le x_2 \le x_3$$
, $x_1 + x_2 + x_3 = b_1 + b_2 + b_3$ $x_1^2 + x_2^2 + x_3^2 = b_1^2 + b_2^2 + b_3^2$.

We need to consider two cases.

Case 1: $b_1 + b_2 + b_3 \neq 0$. According to Proposition 1, the sum $x_1^4 + x_2^4 + x_3^4$ is extreme only when two of x_1, x_2, x_3 are equal, which contradicts the assumption that the sum $x_1^4 + x_2^4 + \cdots + x_n^4$ attains its extreme value at (b_1, b_2, \ldots, b_n) with $b_1 < b_2 < b_3$.

Case 2: $b_1 + b_2 + b_3 = 0$. There exist three real numbers x_1, x_2, x_3 so that $x_1 = x_2$ and

$$x_1 + x_2 + x_3 = b_1 + b_2 + b_3 = 0$$
, $x_1^2 + x_2^2 + x_3^2 = b_1^2 + b_2^2 + b_3^2$.

Letting $x_1 = x_2 := x$ and $x_3 := y$, we have 2x + y = 0, $x \neq y$. According to Proposition 1, the sum $x_1^4 + x_2^4 + x_3^4$ is constant (equal to $b_1^4 + b_2^4 + b_3^4$). Thus, $(x, x, y, b_4, \ldots, b_n)$ is also an extreme point. According to our hypothesis, this extreme point has at least three distinct components. Therefore, among the numbers b_4, \ldots, b_n there is one, let us say b_4 , so that x, y and b_4 are distinct. Since

$$x + y + b_4 = -x + b_4 \neq 0$$
,

we have a case similar to Case 1, which leads to a contradiction.

Theorem 2. Let $a_1, a_2, ..., a_n$ $(n \ge 3)$ be fixed real numbers, and let $x_1, x_2, ..., x_n$ be real variables so that

$$x_1 + x_2 + \cdots + x_n = a_1 + a_2 + \cdots + a_n$$

$$x_1^2 + x_2^2 + \dots + x_n^2 = a_1^2 + a_2^2 + \dots + a_n^2$$

For $m \in \{6, 8\}$, the power sum

$$S_n = x_1^m + x_2^m + \dots + x_n^m$$

is maximum when the set $(x_1, x_2, ..., x_n)$ has at most two distinct values.

Theorem 2 can be proved using Proposition 2 below, in a similar way as the EV-Theorem.

Proposition 2. Let a, b, c be fixed real numbers, let x, y, z be real numbers so that

$$x + y + z = a + b + c$$
, $x^2 + y^2 + z^2 = a^2 + b^2 + c^2$.

For $m \in \{6, 8\}$, the power sum

$$S_m = x^m + y^m + z^m$$

is maximum if and only if two of x, y, z are equal.

Proof. Consider the nontrivial case where a, b, c are not all equal. Let

$$p = a + b + c$$
, $q = ab + bc + ca$, $r = xyz$.

Since x + y + z = p and xy + yz + zx = q, from

$$(x-y)^2(y-z)^2(z-x)^2 \ge 0$$
,

which is equivalent to

$$27r^2 + 2(2p^3 - 9pq)r - p^2q^2 + 4q^3 \le 0$$

we get $r \in [r_1, r_2]$, where

$$r_1 = \frac{9pq - 2p^3 - 2(p^2 - 3q)\sqrt{p^2 - 3q}}{27}, \quad r_2 = \frac{9pq - 2p^3 + 2(p^2 - 3q)\sqrt{p^2 - 3q}}{27}.$$

From

$$-27(r-r_1)(r-r_2) = (x-y)^2(y-z)^2(z-x)^2 \ge 0,$$

it follows that the product r = xyz attains its minimum value r_1 and its maximum value r_2 only when two of x, y, z are equal. For fixed p and q, we have

$$S_6 = 3r^2 + f_6(p,q)r + h_6(p,q) := g_6(r),$$

$$S_8 = 4(3p^2 - 2q)r^2 + f_8(p,q)r + h_8(p,q) := g_8(r).$$

Since

$$3p^2 - 2q = \frac{7}{3}p^2 + \frac{2}{3}(p^2 - 3q) > 0,$$

the functions g_6 and g_8 are strictly convex, hence are maximum only for $r = r_1$ or $r = r_2$; that is, only when two of x, y, z are equal.

Open problem. Theorem 2 is valid for any integer number $m \ge 3$.

Note. The EV-Theorem for real variables and Corollary 1 are also valid under the conditions in Note 2 and Note 3 from the preceding chapter 5, where $m, M \in \mathbb{R}$.

6.2 Applications

6.1. If a, b, c, d are real numbers so that a + b + c + d = 4, then

$$\left(a^2 + b^2 + c^2 + d^2 + \frac{8}{3}\right)^2 \ge 4\left(a^3 + b^3 + c^3 + d^3 + \frac{64}{9}\right).$$

6.2. If a, b, c, d are real numbers so that a + b + c + d = 4, then

$$(a^2+b^2+c^2+d^2-4)\left(a^2+b^2+c^2+d^2+\frac{76}{3}\right) \ge 8(a^3+b^3+c^3+d^3-4).$$

6.3. If a, b, c are real numbers so that a + b + c = 3, then

$$(a^2 + b^2 + c^2 - 3)(a^2 + b^2 + c^2 + 93) \ge 24(a^3 + b^3 + c^3 - 3).$$

6.4. If a, b, c, d are real numbers so that a + b + c + d = 4, then

$$(a^2 + b^2 + c^2 + d^2 - 4)(a^2 + b^2 + c^2 + d^2 + 116) \ge 24(a^3 + b^3 + c^3 + d^3 - 4).$$

6.5. Let a, b, c, d be real numbers so that a + b + c + d = 4, and let

$$E = a^{2} + b^{2} + c^{2} + d^{2} - 4$$
, $F = a^{3} + b^{3} + c^{3} + d^{3} - 4$.

Prove that

$$E\left(\sqrt{\frac{E}{3}}+3\right) \ge F.$$

6.6. Let a_1, a_2, \ldots, a_n be real numbers so that

$$a_1 + a_2 + \dots + a_n = 0,$$
 $a_1^2 + a_2^2 + \dots + a_n^2 = n(n-1).$

If m is an odd number $(m \ge 3)$, then

$$n-1-(n-1)^m \le a_1^m + a_2^m + \dots + a_n^m \le (n-1)^m - n + 1.$$

6.7. Let a_1, a_2, \ldots, a_n be real numbers so that

$$a_1 + a_2 + \dots + a_n = 1$$
, $a_1^2 + a_2^2 + \dots + a_n^2 = n^2 + n - 1$.

If *m* is an odd number $(m \ge 3)$, then

$$(n-1)\left(1+\frac{2}{n}\right)^m-\left(n-\frac{2}{n}\right)^m \leq a_1^m+a_2^m+\cdots+a_n^m \leq n^m-n+1.$$

6.8. Let a_1, a_2, \ldots, a_n be real numbers so that

$$a_1 + a_2 + \dots + a_n = 1$$
, $a_1^2 + a_2^2 + \dots + a_n^2 = n^2 - 3n + 3$.

If *m* is an odd number $(m \ge 3)$, then

$$n-1-(n-2)^m \le a_1^m + a_2^m + \dots + a_n^m \le \left(n-2+\frac{2}{n}\right)^m - (n-1)\left(1-\frac{2}{n}\right)^m.$$

6.9. Let a_1, a_2, \ldots, a_n be real numbers so that

$$a_1 + a_2 + \dots + a_n = a_1^2 + a_2^2 + \dots + a_n^2 = n - 1.$$

If *m* is an odd number $(m \ge 3)$, then

$$n-1 \le a_1^m + a_2^m + \dots + a_n^m \le (n-1) \left(1 - \frac{2}{n}\right)^m + \left(2 - \frac{2}{n}\right)^m.$$

6.10. Let a_1, a_2, \ldots, a_n be real numbers so that

$$a_1 + a_2 + \dots + a_n = n + 1,$$
 $a_1^2 + a_2^2 + \dots + a_n^2 = n + 3.$

If *m* is an odd number $(m \ge 3)$, then

$$\left(\frac{2}{n}\right)^m + (n-1)\left(1 + \frac{2}{n}\right)^m \le a_1^m + a_2^m + \dots + a_n^m \le 2^m + n - 1.$$

6.11. If a_1, a_2, \ldots, a_n are real numbers so that

$$a_1 + a_2 + \dots + a_n = a_1^4 + a_2^4 + \dots + a_n^4 = n - 1,$$

then

$$a_1^5 + a_2^5 + \dots + a_n^5 \ge n - 1.$$

6.12. If a, b, c are real numbers so that $a^2 + b^2 + c^2 = 3$, then

$$a^3 + b^3 + c^3 + 3 \ge 2(a + b + c).$$

6.13. If a_1, a_2, \ldots, a_n are real numbers so that

$$a_1 + a_2 + \dots + a_n = 0,$$
 $a_1^2 + a_2^2 + \dots + a_n^2 = n(n-1),$

then

$$a_1^4 + a_2^4 + \dots + a_n^4 \le n(n-1)(n^2 - 3n + 3).$$

6.14. If a_1, a_2, \ldots, a_n are real numbers so that

$$a_1 + a_2 + \dots + a_n = n + 1$$
, $a_1^2 + a_2^2 + \dots + a_n^2 = 4n^2 + n - 1$,

then

$$a_1^4 + a_2^4 + \dots + a_n^4 \le 16n^4 + n - 1.$$

6.15. If *n* is an odd number and a_1, a_2, \ldots, a_n are real numbers so that

$$a_1 + a_2 + \dots + a_n = 0$$
, $a_1^2 + a_2^2 + \dots + a_n^2 = n(n^2 - 1)$,

then

$$a_1^4 + a_2^4 + \dots + a_n^4 \ge n(n^2 - 1)(n^2 + 3).$$

6.16. If a_1, a_2, \ldots, a_n are real numbers so that

$$a_1 + a_2 + \dots + a_n = n^2 - n - 1, \qquad a_1^2 + a_2^2 + \dots + a_n^2 = n^3 + 2n^2 - n - 1,$$

then

$$a_1^4 + a_2^4 + \dots + a_n^4 \ge n^4 + (n-1)(n+1)^4$$
.

6.17. If a_1, a_2, \ldots, a_n are real numbers so that

$$a_1 + a_2 + \dots + a_n = n^2 - 2n - 1$$
, $a_1^2 + a_2^2 + \dots + a_n^2 = n^3 + 2n + 1$,

then

$$a_1^4 + a_2^4 + \dots + a_n^4 \ge (n+1)^4 + (n-1)n^4$$
.

6.18. If a_1, a_2, \ldots, a_n are real numbers so that

$$a_1 + a_2 + \dots + a_n = n^2 - 3n - 2$$
, $a_1^2 + a_2^2 + \dots + a_n^2 = n^3 + 2n^2 - 3n - 2$,

then

$$a_1^4 + a_2^4 + \dots + a_n^4 \ge 2n^4 + (n-2)(n+1)^4$$
.

6.19. If a, b, c, d are real numbers so that a + b + c + d = 4, then

$$(a^2 + b^2 + c^2 + d^2 - 4)(a^2 + b^2 + c^2 + d^2 + 36) \le 12(a^4 + b^4 + c^4 + d^4 - 4).$$

6.20. If a_1, a_2, \ldots, a_n are real numbers so that

$$a_1 + a_2 + \dots + a_n = 0,$$
 $a_1^2 + a_2^2 + \dots + a_n^2 = n(n-1),$

then

$$a_1^6 + a_2^6 + \dots + a_n^6 \le (n-1)^6 + n - 1.$$

6.21. If a_1, a_2, \ldots, a_n are real numbers so that

$$a_1 + a_2 + \dots + a_n = 1$$
, $a_1^2 + a_2^2 + \dots + a_n^2 = n^2 + n - 1$,

then

$$a_1^6 + a_2^6 + \dots + a_n^6 \le n^6 + n - 1.$$

6.22. If a_1, a_2, \ldots, a_n are real numbers so that

$$a_1 + a_2 + \dots + a_n = 0,$$
 $a_1^2 + a_2^2 + \dots + a_n^2 = n(n-1),$

then

$$a_1^8 + a_2^8 + \dots + a_n^8 \le (n-1)^8 + n - 1.$$

6.23. If a_1, a_2, \ldots, a_n are real numbers so that

$$a_1 + a_2 + \dots + a_n = 1$$
, $a_1^2 + a_2^2 + \dots + a_n^2 = n^2 + n - 1$,

then

$$a_1^8 + a_2^8 + \dots + a_n^8 \le n^8 + n - 1.$$

6.24. Let a_1, a_2, \ldots, a_n $(n \ge 2)$ be real numbers (not all equal), and let

$$A = \frac{a_1 + a_2 + \dots + a_n}{n}, \quad B = \frac{a_1^2 + a_2^2 + \dots + a_n^2}{n}, \quad C = \frac{a_1^3 + a_2^3 + \dots + a_n^3}{n}.$$

Then,

$$\frac{1}{4} \left(1 - \sqrt{1 + \frac{2n^2}{n-1}} \right) \le \frac{B^2 - AC}{B^2 - A^4} \le \frac{1}{4} \left(1 + \sqrt{1 + \frac{2n^2}{n-1}} \right).$$

6.25. If a, b, c, d are real numbers so that

$$a + b + c + d = 2$$
,

then

$$a^4 + b^4 + c^4 + d^4 \le 40 + \frac{3}{4}(a^2 + b^2 + c^2 + d^2)^2.$$

6.26. If a, b, c, d, e are real numbers, then

$$a^{4} + b^{4} + c^{4} + d^{4} + e^{4} \le \frac{31 + 18\sqrt{3}}{8}(a + b + c + d + e)^{4} + \frac{3}{4}(a^{2} + b^{2} + c^{2} + d^{2} + e^{2})^{2}.$$

6.27. Let $a, b, c, d, e \neq \frac{-5}{4}$ be real numbers so that a + b + c + d + e = 5. Then,

$$\frac{a(a-1)}{(4a+5)^2} + \frac{b(b-1)}{(4b+5)^2} + \frac{c(c-1)}{(4c+5)^2} + \frac{d(d-1)}{(4d+5)^2} + \frac{e(e-1)}{(4e+5)^2} \ge 0.$$

6.28. If a, b, c are real numbers so that

$$a + b + c = 9$$
, $ab + bc + ca = 15$,

then

$$\frac{19}{175} \le \frac{1}{b^2 + bc + c^2} + \frac{1}{c^2 + ca + a^2} + \frac{1}{a^2 + ab + b^2} \le \frac{7}{19}.$$

6.29. If a, b, c are real numbers so that

$$8(a^2 + b^2 + c^2) = 9(ab + bc + ca),$$

then

$$\frac{419}{175} \le \frac{a^2}{b^2 + bc + c^2} + \frac{b^2}{c^2 + ca + a^2} + \frac{c^2}{a^2 + ab + b^2} \le \frac{311}{19}.$$

6.30. Let a_1, a_2, \ldots, a_n be real numbers such that $a_1 + a_2 + \cdots + a_n = n$. If $n \le 10$, then

$$2(a_1^2 + a_2^2 + \dots + a_n^2)^2 - n(a_1^3 + a_2^3 + \dots + a_n^3) \ge n^2$$
.

6.3 Solutions

P 6.1. If a, b, c, d are real numbers so that a + b + c + d = 4, then

$$\left(a^2 + b^2 + c^2 + d^2 + \frac{8}{3}\right)^2 \ge 4\left(a^3 + b^3 + c^3 + d^3 + \frac{64}{9}\right).$$

(Vasile Cîrtoaje, 2010)

Solution. Apply Corollary 2 for n = 4, k = 2, m = 3:

• If a, b, c, d are real numbers so that $a \le b \le c \le d$ and

$$a + b + c + d = 4$$
, $a^2 + b^2 + c^2 + d^2 = constant$,

then

$$S_4 = a^3 + b^3 + c^3 + d^3$$

is maximum for $a = b = c \le d$.

Thus, we only need to show that 3a + d = 4 involves

$$\left(3a^2 + d^2 + \frac{8}{3}\right)^2 \ge 4\left(3a^3 + d^3 + \frac{64}{9}\right).$$

This inequality is equivalent to

$$(a-1)^2(3a-2)^2 \ge 0.$$

The equality holds for a = b = c = d = 1, and also for

$$a = b = c = \frac{2}{3}, \quad d = 2$$

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• If a_1, a_2, \ldots, a_n are real numbers so that

$$a_1 + a_2 + \dots + a_n = n,$$

then

$$\left(a_1^2 + a_2^2 + \dots + a_n^2 + \frac{n^3}{8n - 8}\right)^2 \ge n\left(a_1^3 + a_2^3 + \dots + a_n^3\right) + \frac{n^4(n^2 + 16n - 16)}{64(n - 1)^2},$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = a_2 = \dots = a_{n-1} = \frac{n}{2n-2}, \quad a_n = \frac{n}{2}$$

(or any cyclic permutation).

P 6.2. If a, b, c, d are real numbers so that a + b + c + d = 4, then

$$(a^2+b^2+c^2+d^2-4)\left(a^2+b^2+c^2+d^2+\frac{76}{3}\right) \ge 8(a^3+b^3+c^3+d^3-4).$$

(Vasile Cîrtoaje, 2010)

Solution. As shown in the preceding P 6.1, we only need to show that

$$3a + d = 4$$

involves

$$(3a^2+d^2-4)\left(3a^2+d^2+\frac{76}{3}\right) \ge 8(3a^3+d^3-4).$$

This inequality is equivalent to

$$(a-1)^2(3a-1)^2 \ge 0.$$

The equality holds for a = b = c = d = 1, and also for

$$a = b = c = \frac{1}{3}, \quad d = 3$$

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• If a_1, a_2, \ldots, a_n are real numbers so that

$$a_1 + a_2 + \dots + a_n = n,$$

then

$$(a_1^2 + \dots + a_n^2 - n) \left[a_1^2 + \dots + a_n^2 + \frac{n(n^2 + n - 1)}{n - 1} \right] \ge 2n (a_1^3 + \dots + a_n^3 - n),$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = a_2 = \dots = a_{n-1} = \frac{1}{n-1}, \quad a_n = n-1$$

(or any cyclic permutation).

P 6.3. If a, b, c are real numbers so that a + b + c = 3, then

$$(a^2 + b^2 + c^2 - 3)(a^2 + b^2 + c^2 + 93) \ge 24(a^3 + b^3 + c^3 - 3).$$

(Vasile Cîrtoaje, 2010)

Solution. As shown in the proof of P 6.1, we only need to show that

$$2a + c = 3$$

involves

$$(2a^2 + c^2 - 3)(2a^2 + c^2 + 93) \ge 24(2a^3 + c^3 - 3).$$

This inequality is equivalent to

$$(a^2-1)^2 \ge 0.$$

The equality holds for a = b = c = 1, and also for

$$a = b = -1, c = 5$$

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• Let a, b, c be real numbers so that a + b + c = 3. For any real k, the following inequality holds

$$(a^2 + b^2 + c^2 - 3)(a^2 + b^2 + c^2 + 6k^2 + 36k - 3) \ge 12k(a^3 + b^3 + c^3 - 3),$$

with equality for a = b = c = 1, and also for

$$a = b = 1 - k$$
, $c = 1 + 2k$

(or any cyclic permutation).

P 6.4. If a, b, c, d are real numbers so that a + b + c + d = 4, then

$$(a^2 + b^2 + c^2 + d^2 - 4)(a^2 + b^2 + c^2 + d^2 + 116) \ge 24(a^3 + b^3 + c^3 + d^3 - 4).$$

(Vasile Cîrtoaje, 2010)

Solution. As shown in the proof of P 6.1, we only need to show that

$$3a + d = 4$$

involves

$$(3a^2 + d^2 - 4)(3a^2 + d^2 + 116) \ge 24(3a^3 + d^3 - 4).$$

This inequality is equivalent to

$$(a^2 - 1)^2 \ge 0.$$

The equality holds for a = b = c = d = 1, and also for

$$a = b = c = -1, \quad d = 7$$

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• Let a_1, a_2, \ldots, a_n be real numbers so that

$$a_1 + a_2 + \dots + a_n = n.$$

If k is a real number, then

$$\frac{k(a_1^3+\cdots+a_n^3-n)}{a_1^2+\cdots+a_n^2-n} \leq \frac{a_1^2+\cdots+a_n^2+n(n-1)(n-2)^2k^2+6n(n-1)k-n}{2n(n-1)},$$

with equality for

$$a_1 = \cdots = a_{n-1} = 1 - (n-2)k$$
, $a_n = 1 + (n-1)(n-2)k$

(or any cyclic permutation).

For $k = \frac{-6}{n-2}$, we get the following nice inequality

$$\left(a_1^2 + a_2^2 + \dots + a_n^2 - n\right)^2 + \frac{12n(n-1)}{n-2}\left(a_1^3 + a_2^3 + \dots + a_n^3 - n\right) \ge 0,$$

with equality for $a_1 = a_2 = \cdots = a_n = 1$, and also for

$$a_1 = \dots = a_{n-1} = 7, \quad a_n = 7 - 6n$$

(or any cyclic permutation).

P 6.5. Let a, b, c, d be real numbers so that a + b + c + d = 4, and let

$$E = a^{2} + b^{2} + c^{2} + d^{2} - 4$$
, $F = a^{3} + b^{3} + c^{3} + d^{3} - 4$.

Prove that

$$E\left(\sqrt{\frac{E}{3}} + 3\right) \ge F.$$

(Vasile Cîrtoaje, 2016)

Solution. As shown in the proof of P 6.1, we only need to prove the desired inequality for 3a + d = 4 and

$$E = 3a^2 + d^2 - 4$$
, $F = 3a^3 + d^3 - 4$.

Since

$$E = 12(1-a)^2$$
, $F = 12(5-2a)(1-a)^2$,

we get

$$E\left(\sqrt{\frac{E}{3}}+3\right)-F = 12(1-a)^2(2|1-a|+3)-12(5-2a)(1-a)^2$$
$$= 24(1-a)^2[|1-a|-(1-a)] \ge 0.$$

The equality holds for

$$a = b = c = \frac{4 - d}{3} \le 1$$

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• Let a_1, a_2, \ldots, a_n be real numbers so that $a_1 + a_2 + \cdots + a_n = n$, and let

$$E = a_1^2 + a_2^2 + \dots + a_n^2 - n$$
, $F = a_1^3 + a_2^3 + \dots + a_n^3 - n$.

Then,

$$E\left[(n-2)\sqrt{\frac{E}{n(n-1)}}+3\right] \ge F,$$

with equality for

$$a_1 = \dots = a_{n-1} = \frac{n - a_n}{n - 1} \le 1$$

(or any cyclic permutation).

P 6.6. Let a_1, a_2, \ldots, a_n be real numbers so that

$$a_1 + a_2 + \dots + a_n = 0,$$
 $a_1^2 + a_2^2 + \dots + a_n^2 = n(n-1).$

If m is an odd number $(m \ge 3)$, then

$$n-1-(n-1)^m \le a_1^m + a_2^m + \dots + a_n^m \le (n-1)^m - n + 1.$$

(Vasile Cîrtoaje, 2010)

Solution. Without loss of generality, assume that

$$a_1 \le a_2 \le \cdots \le a_n$$
.

(a) Consider the right inequality. For n = 2, we need to show that

$$a_1 + a_2 = 0, \qquad a_1^2 + a_2^2 = 2$$

implies

$$a_1^m + a_2^m \le 0.$$

We have

$$a_1 = -1, \quad a_2 = 1,$$

therefore $a_1^m + a_2^m = 0$. Assume now that $n \ge 3$. According to Corollary 2, the sum

$$S_n = a_1^m + a_2^m + \dots + a_n^m$$

is maximum for $a_1 = a_2 = \cdots = a_{n-1}$. Thus, we only need to show that

$$(n-1)a + b = 0$$
, $(n-1)a^2 + b^2 = n(n-1)$, $a \le b$

involve

$$(n-1)a^m + b^m \le (n-1)^m - n + 1.$$

From the equations above, we get

$$a = -1, \quad b = n - 1;$$

therefore,

$$(n-1)a^m + b^m = (n-1)(-1)^m + (n-1)^m = (n-1)^m - n + 1.$$

The equality holds for

$$a_1 = \dots = a_{n-1} = -1, \quad a_n = n-1$$

(or any cyclic permutation).

(b) The left inequality follows from the right inequality by replacing a_1, a_2, \ldots, a_n with $-a_1, -a_2, \ldots, -a_n$, respectively. The equality holds for

$$a_1 = -n + 1$$
, $a_2 = a_3 = \dots = a_n = 1$

(or any cyclic permutation).

P 6.7. Let a_1, a_2, \ldots, a_n be real numbers so that

$$a_1 + a_2 + \dots + a_n = 1$$
, $a_1^2 + a_2^2 + \dots + a_n^2 = n^2 + n - 1$.

If m is an odd number $(m \ge 3)$, then

$$(n-1)\left(1+\frac{2}{n}\right)^m-\left(n-\frac{2}{n}\right)^m \leq a_1^m+a_2^m+\cdots+a_n^m \leq n^m-n+1.$$

(Vasile Cîrtoaje, 2010)

Solution. Without loss of generality, assume that

$$a_1 \leq a_2 \leq \cdots \leq a_n$$
.

For n = 2, we need to show that

$$a_1 + a_2 = 1$$
, $a_1^2 + a_2^2 = 5$,

implies

$$2^m - 1 \le a_1^m + a_2^m \le 2^m - 1.$$

We have

$$a_1 = -1, \quad a_2 = 2,$$

for which $a_1^m + a_2^m = 2^m - 1$. Assume now that $n \ge 3$.

(a) Consider the right inequality. According to Corollary 2, the sum

$$S_n = a_1^m + a_2^m + \dots + a_n^m$$

is maximum for $a_1 = a_2 = \cdots = a_{n-1}$. Thus, we only need to show that

$$(n-1)a + b = 1$$
, $(n-1)a^2 + b^2 = n^2 + n - 1$, $a \le b$

involve

$$(n-1)a^m + b^m \le n^m - n + 1.$$

From the equations above, we get

$$a = -1, b = n;$$

therefore,

$$(n-1)a^m + b^m = (n-1)(-1)^m + n^m = n^m - n + 1.$$

The equality holds for

$$a_1 = a_2 = \cdots = a_{n-1} = -1, \quad a_n = n$$

(or any cyclic permutation).

(b) Consider the left inequality. According to Corollary 2, the sum

$$S_n = a_1^m + a_2^m + \dots + a_n^m$$

is minimum for $a_2 = a_3 = \cdots = a_n$. Thus, we only need to show that

$$a + (n-1)b = 1$$
, $a^2 + (n-1)b^2 = n^2 + n - 1$, $a \le b$

involve

$$a^{m} + (n-1)b^{m} \ge (n-1)\left(1 + \frac{2}{n}\right)^{m} - \left(n - \frac{2}{n}\right)^{m}$$

From the equations above, we get

$$a = -n + \frac{2}{n}, \quad b = 1 + \frac{2}{n};$$

therefore,

$$a^{m} + (n-1)b^{m} = \left(-n + \frac{2}{n}\right)^{m} + (n-1)\left(1 + \frac{2}{n}\right)^{m}$$
$$= (n-1)\left(1 + \frac{2}{n}\right)^{m} - \left(n - \frac{2}{n}\right)^{m}.$$

The equality holds for

$$a_1 = -n + \frac{2}{n}$$
, $a_2 = a_3 = \dots = a_n = 1 + \frac{2}{n}$

(or any cyclic permutation).

P 6.8. Let a_1, a_2, \ldots, a_n be real numbers so that

$$a_1 + a_2 + \dots + a_n = 1$$
, $a_1^2 + a_2^2 + \dots + a_n^2 = n^2 - 3n + 3$.

If m is an odd number $(m \ge 3)$, then

$$n-1-(n-2)^m \le a_1^m + a_2^m + \dots + a_n^m \le \left(n-2+\frac{2}{n}\right)^m - (n-1)\left(1-\frac{2}{n}\right)^m.$$

(Vasile Cîrtoaje, 2010)

Solution. Without loss of generality, assume that

$$a_1 \le a_2 \le \cdots \le a_n$$
.

For n = 2, we need to show that

$$a_1 + a_2 = 1$$
, $a_1^2 + a_2^2 = 1$,

implies

$$1 \le a_1^m + a_2^m \le 1.$$

We have

$$a_1 = 0, \quad a_2 = 1,$$

when $a_1^m + a_2^m = 1$. Assume now that $n \ge 3$.

(a) Consider the left inequality. According to Corollary 2, the sum

$$S_n = a_1^m + a_2^m + \dots + a_n^m$$

is minimum for $a_2 = a_3 = \cdots = a_n$. Thus, we only need to show that

$$a + (n-1)b = 1$$
, $a^2 + (n-1)b^2 = n^2 - 3n + 3$, $a \le b$

involve

$$a^{m} + (n-1)b^{m} \le n-1-(n-2)^{m}$$
.

From the equations above, we get

$$a = 2 - n, \quad b = 1;$$

therefore,

$$a^{m} + (n-1)b^{m} = (2-n)^{m} + n - 1 = n - 1 - (n-2)^{m}$$
.

The equality holds for

$$a_1 = 2 - n$$
, $a_2 = a_3 = \cdots = a_n = 1$

(or any cyclic permutation).

(b) Consider the right inequality. According to Corollary 2, the sum

$$S_n = a_1^m + a_2^m + \dots + a_n^m$$

is maximum for $a_1 = a_2 = \cdots = a_{n-1}$. Thus, we only need to show that

$$(n-1)a + b = 1$$
, $(n-1)a^2 + b^2 = n^2 - 3n + 3$, $a \le b$

involve

$$(n-1)a^m + b^m \le \left(n-2 + \frac{2}{n}\right)^m - (n-1)\left(1 - \frac{2}{n}\right)^m.$$

From the equations above, we get

$$a = -1 + \frac{2}{n}$$
, $b = n - 2 + \frac{2}{n}$;

therefore,

$$(n-1)a^{m} + b^{m} = (n-1)\left(-1 + \frac{2}{n}\right)^{m} + \left(n-2 + \frac{2}{n}\right)^{m}$$
$$= \left(n-2 + \frac{2}{n}\right)^{m} - (n-1)\left(1 - \frac{2}{n}\right)^{m}.$$

The equality holds for

$$a_1 = \dots = a_{n-1} = -1 + \frac{2}{n}, \quad a_n = n - 2 + \frac{2}{n}$$

(or any cyclic permutation).

P 6.9. Let $a_1, a_2, ..., a_n$ be real numbers so that

$$a_1 + a_2 + \dots + a_n = a_1^2 + a_2^2 + \dots + a_n^2 = n - 1.$$

If m is an odd number $(m \ge 3)$, then

$$n-1 \le a_1^m + a_2^m + \dots + a_n^m \le (n-1) \left(1 - \frac{2}{n}\right)^m + \left(2 - \frac{2}{n}\right)^m.$$

(Vasile Cîrtoaje, 2010)

Solution. Without loss of generality, assume that

$$a_1 \leq a_2 \leq \cdots \leq a_n$$
.

For n = 2, we need to show that

$$a_1 + a_2 = 1$$
, $a_1^2 + a_2^2 = 1$,

implies

$$1 \le a_1^m + a_2^m \le 1.$$

The above equations involve

$$a_1 = 0, \quad a_2 = 1,$$

hence $a_1^m + a_2^m = 1$. Assume now that $n \ge 3$.

(a) Consider the left inequality. According to Corollary 2, the sum

$$S_n = a_1^m + a_2^m + \dots + a_n^m$$

is minimum for $a_2 = a_3 = \cdots = a_n$. Thus, we only need to show that

$$a + (n-1)b = n-1$$
, $a^2 + (n-1)b^2 = n-1$, $a \le b$

involve

$$a^m + (n-1)b^m \ge n-1.$$

From the equations above, we get

$$a = 0, b = 1;$$

therefore,

$$a^{m} + (n-1)b^{m} = n-1.$$

The equality holds for

$$a_1 = 0, \quad a_2 = \dots = a_n = 1$$

(or any cyclic permutation).

(b) Consider the right inequality. According to Corollary 2, the sum

$$S_n = a_1^m + a_2^m + \dots + a_n^m$$

is maximum for $a_1 = a_2 = \cdots = a_{n-1}$. Thus, we only need to show that

$$(n-1)a + b = n-1$$
, $(n-1)a^2 + b^2 = n-1$, $a \le b$

involve

$$(n-1)a^m + b^m \le (n-1)\left(1 - \frac{2}{n}\right)^m + \left(2 - \frac{2}{n}\right)^m.$$

From the equations above, we get

$$a = 1 - \frac{2}{n}, \qquad b = 2 - \frac{2}{n},$$

when

$$(n-1)a^m + b^m = (n-1)\left(1 - \frac{2}{n}\right)^m + \left(2 - \frac{2}{n}\right)^m.$$

The equality holds for

$$a_1 = a_2 = \dots = a_{n-1} = 1 - \frac{2}{n}, \quad a_n = 2 - \frac{2}{n}$$

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• Let a_1, a_2, \ldots, a_n be real numbers so that

$$a_1 + a_2 + \dots + a_n = k$$
, $a_1^2 + a_2^2 + \dots + a_n^2 = n^2 + (2k-1)n + k(k-2)$,

where k is a real number, $k \ge -n$. If m is an odd number $(m \ge 3)$, then

$$\left(\frac{2k}{n}+1-n-k\right)^{m}+(n-1)\left(\frac{2k}{n}+1\right)^{m}\leq a_{1}^{m}+a_{2}^{m}+\cdots+a_{n}^{m}\leq (n+k-1)^{m}-n+1.$$

The left inequality is an equality for

$$a_1 = \frac{2k}{n} + 1 - n - k$$
, $a_2 = \dots = a_n = \frac{2k}{n} + 1$

(or any cyclic permutation). The right inequality is an equality for

$$a_1 = \cdots = a_{n-1} = -1, \quad a_n = n + k - 1$$

(or any cyclic permutation).

For k = 0 and k = 1, we get the inequalities in P 6.6 and P 6.7, respectively. For k = -1 and k = -n+1, by replacing k with -k and a_1, a_2, \ldots, a_n with $-a_1, -a_2, \ldots, -a_n$, we get the inequalities in P 6.8 and P 6.9, respectively.

P 6.10. Let a_1, a_2, \ldots, a_n be real numbers so that

$$a_1 + a_2 + \dots + a_n = n + 1,$$
 $a_1^2 + a_2^2 + \dots + a_n^2 = n + 3.$

If m is an odd number $(m \ge 3)$, then

$$\left(\frac{2}{n}\right)^m + (n-1)\left(1 + \frac{2}{n}\right)^m \le a_1^m + a_2^m + \dots + a_n^m \le 2^m + n - 1.$$

(Vasile Cîrtoaje, 2010)

Solution. Without loss of generality, assume that

$$a_1 \leq a_2 \leq \cdots \leq a_n$$
.

For n = 2, we need to show that

$$a_1 + a_2 = 3$$
, $a_1^2 + a_2^2 = 5$,

implies

$$2^m + 1 \le a_1^m + a_2^m \le 2^m + 1.$$

We get

$$a_1 = 1, \quad a_2 = 2,$$

when $a_1^m + a_2^m = 2^m + 1$. Assume now that $n \ge 3$.

(a) Consider the left inequality. According to Corollary 2, the sum

$$S_n = a_1^m + a_2^m + \dots + a_n^m$$

is minimum for $a_2 = a_3 = \cdots = a_n$. Thus, we only need to show that

$$a + (n-1)b = n+1$$
, $a^2 + (n-1)b^2 = n+3$, $a \le b$

involve

$$a^{m} + (n-1)b^{m} \ge \left(\frac{2}{n}\right)^{m} + (n-1)\left(1 + \frac{2}{n}\right)^{m}.$$

From the equations

$$a + (n-1)b = n+1,$$
 $a^2 + (n-1)b^2 = n+3,$

we get

$$a = \frac{2}{n}, \qquad b = 1 + \frac{2}{n};$$

therefore,

$$a^{m} + (n-1)b^{m} = \left(\frac{2}{n}\right)^{m} + (n-1)\left(1 + \frac{2}{n}\right)^{m}.$$

The equality holds for

$$a_1 = \frac{2}{n}$$
, $a_2 = \dots = a_n = 1 + \frac{2}{n}$

(or any cyclic permutation).

(b) Consider the right inequality. According to Corollary 2, the sum

$$S_n = a_1^m + a_2^m + \dots + a_n^m$$

is maximum for $a_1 = a_2 = \cdots = a_{n-1}$. Thus, we only need to show that

$$(n-1)a + b = n+1,$$
 $(n-1)a^2 + b^2 = n+3,$ $a \le b$

involve

$$(n-1)a^m + b^m \le 2^m + n - 1.$$

From the equations

$$(n-1)a + b = n+1,$$
 $(n-1)a^2 + b^2 = n+3,$

we get

$$a = 1, b = 2;$$

therefore,

$$(n-1)a^m + b^m = n-1+2^m$$
.

The equality holds for

$$a_1 = \dots = a_{n-1} = 1, \quad a_n = 2$$

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• Let a_1, a_2, \ldots, a_n be real numbers so that

$$a_1 + a_2 + \dots + a_n = k$$
, $a_1^2 + a_2^2 + \dots + a_n^2 = n^2 - (2k+1)n + k(k+2)$,

where k is a positive number, k > n. If m is an odd number $(m \ge 3)$, then

$$\left(\frac{2k}{n}-1+n-k\right)^{m}+(n-1)\left(\frac{2k}{n}-1\right)^{m} \leq a_{1}^{m}+a_{2}^{m}+\cdots+a_{n}^{m} \leq (k-n+1)^{m}+n-1.$$

The left inequality is an equality for

$$a_1 = \frac{2k}{n} - 1 + n - k$$
, $a_2 = \dots = a_n = \frac{2k}{n} - 1$

(or any cyclic permutation). The right inequality is an equality for

$$a_1 = \cdots = a_{n-1} = 1, \quad a_n = k - n + 1$$

(or any cyclic permutation).

For k = n + 1, we get the inequalities in P 6.10.

P 6.11. If a_1, a_2, \ldots, a_n are real numbers so that

$$a_1 + a_2 + \dots + a_n = a_1^4 + a_2^4 + \dots + a_n^4 = n - 1,$$

then

$$a_1^5 + a_2^5 + \dots + a_n^5 \ge n - 1.$$

(Vasile Cîrtoaje, 2010)

Solution. For n = 2, we need to show that

$$a_1 + a_2 = 1,$$
 $a_1^4 + a_2^4 = 1,$

implies

$$a_1^5 + a_2^5 \ge 1$$
.

We have

$$a_1 = 0, \quad a_2 = 1,$$

or

$$a_1 = 1, \quad a_2 = 0.$$

For each of these cases, the inequality is an equality. Assume now that $n \ge 3$ and

$$a_1 \leq a_2 \leq \cdots \leq a_n$$
.

According to Corollary 2, the sum

$$S_n = a_1^5 + a_2^5 + \dots + a_n^5$$

is minimum for $a_2 = a_3 = \cdots = a_n$. Thus, we only need to show that

$$a + (n-1)b = a^4 + (n-1)b^4 = n-1, \quad a \le b$$

involve

$$a^5 + (n-1)b^5 \ge n-1$$
.

The equations

$$a + (n-1)b = n-1,$$
 $a^4 + (n-1)b^4 = n-1,$

are equivalent to

$$(1-b)[(n-1)^3(1-b)^3-1-b-b^2-b^3]=0, a=(n-1)(1-b);$$

that is,

$$b = 1, a = 0,$$

and

$$a^3 = 1 + b + b^2 + b^3$$
, $a = (n-1)(1-b)$.

For the second case, the condition $a \le b$ involves

$$b^3 \ge 1 + b + b^2 + b^3,$$

which is not possible. Therefore, it suffices to show that

$$a^5 + (n-1)b^5 \ge n-1$$

for a=0 and b=1, that is clearly true. Thus, the proof is completed. The equality holds for

$$a_1=0, \quad a_2=\cdots=a_n=1$$

(or any cyclic permutation).

P 6.12. If a, b, c are real numbers so that

$$a^2 + b^2 + c^2 = 3$$

then

$$a^3 + b^3 + c^3 + 3 \ge 2(a + b + c).$$

(Vasile Cîrtoaje, 2010)

Solution. Assume that

$$a \le b \le c$$
.

According to Corollary 2, for $a \le b \le c$ and

$$a + b + c = constant$$
, $a^2 + b^2 + c^2 = 3$,

the sum

$$S_3 = a^3 + b^3 + c^3$$

is minimum for $a \le b = c$. Thus, we only need to show that

$$a^2 + 2b^2 = 3, \qquad a \le b,$$

involves

$$a^3 + 2b^3 + 3 \ge 2(a+2b)$$
.

We will show this by two methods. From $a^2 + 2b^2 = 3$ and $a \le b$, it follows that

$$-\sqrt{3} \le a \le 1, \quad -\sqrt{\frac{3}{2}} < b \le \sqrt{\frac{3}{2}}.$$

Method 1. Write the desired inequality as

$$a^{3} + b(3 - a^{2}) + 3 \ge 2(a + 2b),$$

 $a^{3} - 2a + 3 \ge b(a^{2} + 1).$

For $a \ge 0$, we have

$$a^3 - 2a + 3 \ge -2a + 3 > 0$$
,

and for $a \leq 0$, we have

$$a^3 - 2a + 3 = a(a^2 - 3) + a + 3 = -2ab^2 + a + 3 \ge a + 3 > 0.$$

Thus, it suffices to show that

$$(a^3 - 2a + 3)^2 \ge b^2(a^2 + 1)^2,$$

which is equivalent to

$$2(a^3 - 2a + 3)^2 \ge (3 - a^2)(a^2 + 1)^2,$$
$$(a - 1)^2 f(a) \ge 0,$$

where

$$f(a) = a^4 + 2a^3 + 2a + 5.$$

We need to prove that $f(a) \ge 0$. For $a \ge -1$, we have

$$f(a) = (a+2)(a^3+2)+1 > 0.$$

For $a \leq -1$, we have

$$f(a) = (a+1)^2(a+2)^2 + g(a),$$
 $g(a) = -4a^3 - 13a^2 - 10a + 1.$

It suffices to show that $g(a) \ge 0$. Since

$$g(a) = -(a+1)\left(2a + \frac{7}{2}\right)^2 + 5h(a), \quad h(a) = a^2 + \frac{13}{4}a + \frac{53}{20}$$

and

$$h(a) = \left(a + \frac{13}{8}\right)^2 + \frac{3}{320} > 0,$$

the conclusion follows. The equality holds for a = b = c = 1.

Method 2. Write the desired inequality as follows:

$$2(a^{3}-2a+1)+4(b^{3}-2b+1) \ge 0,$$

$$2(a^{3}-2a+1)+4(b^{3}-2b+1) \ge a^{2}+2b^{2}-3,$$

$$(2a^{3}-a^{2}-4a+3)+2(b^{3}-b^{2}-4b+3) \ge 0,$$

$$(a-1)^{2}(2a+3)+2(b-1)^{2}(2b+3) \ge 0.$$

Since 2b + 3 > 0, the inequality is true for $a \ge -3/2$. Consider further that

$$-\sqrt{3} \le a \le \frac{-3}{2},$$

and rewrite the desired inequality as follows:

$$2(a^{3}-2a+1)+4(b^{3}-2b+1)+4(a^{2}+2b^{2}-3) \ge 0,$$

$$(2a^{3}+4a^{2}-4a-2)+2(2b^{3}+4b^{2}-4b-2) \ge 0,$$

$$\left(2a^{3}+4a^{2}-4a-\frac{33}{4}\right)+\left(4b^{3}+8b^{2}-8b+\frac{9}{4}\right) \ge 0,$$

$$(2a+3)\left(a^{2}+\frac{1}{2}a-\frac{11}{4}\right)+f(b) \ge 0,$$

where

$$f(b) = 4b^3 + 8b^2 - 8b + \frac{9}{4}.$$

Since $2a + 3 \le 0$ and

$$a^{2} + \frac{1}{2}a - \frac{11}{4} \le 3 + \frac{1}{2}a - \frac{11}{4} = \frac{1}{4}(2a+1) < 0,$$

it suffices to show that $f(b) \ge 0$. For $b \ge 0$, we have

$$f(b) > 8b^2 - 8b + 2 = 2(2b - 1)^2 \ge 0$$
,

and for $b \leq 0$, we have

$$f(b) > 4b^3 + 8b^2 = 4b^2(b+2) \ge 0.$$

P 6.13. If $a_1, a_2, ..., a_n$ are real numbers so that

$$a_1 + a_2 + \dots + a_n = 0,$$
 $a_1^2 + a_2^2 + \dots + a_n^2 = n(n-1),$

then

$$a_1^4 + a_2^4 + \dots + a_n^4 \le n(n-1)(n^2 - 3n + 3).$$

(Vasile Cîrtoaje, 2010)

Solution. For n = 2, we need to show that

$$a_1 + a_2 = 0,$$
 $a_1^2 + a_2^2 = 2,$

implies

$$a_1^4 + a_2^4 \le 2$$
.

We have

$$a_1 = -1, \qquad a_2 = 1,$$

or

$$a_1 = 1, \qquad a_2 = -1.$$

For each of these cases, the desired inequality is an equality. Assume now that $n \ge 3$. According to Theorem 1, the sum

$$S_n = a_1^4 + a_2^4 + \dots + a_n^4$$

is maximum for

$$a_1 = \cdots = a_i, \quad a_{i+1} = \cdots = a_n,$$

where $j \in \{1, 2, ..., n-1\}$. Thus, we only need to show that

$$ja_1 + (n-j)a_n = 0$$
, $ja_1^2 + (n-j)a_n^2 = n(n-1)$

involve

$$ja_1^4 + (n-j)a_n^4 \le n(n-1)(n^2 - 3n + 3).$$

From the equations above, we get

$$a_1^2 = \frac{(n-j)(n-1)}{j}, \quad a_n^2 = \frac{j(n-1)}{n-j};$$

therefore,

$$ja_1^4 + (n-j)a_n^4 = \frac{(n-j)^3 + j^3}{j(n-j)}(n-1)^2 = \left[\frac{n^2}{j(n-j)} - 3\right]n(n-1)^2.$$

Since

$$j(n-j)-(n-1)=(j-1)(n-j-1)\geq 0$$
,

we get

$$ja_1^4 + (n-j)a_n^4 \le \left[\frac{n^2}{n-1} - 3\right]n(n-1)^2 = n(n-1)(n^2 - 3n + 3).$$

The equality holds for

$$a_1 = -n + 1$$
, $a_2 = \dots = a_n = 1$

and for

$$a_1 = n - 1, \quad a_2 = \dots = a_n = -1$$

(or any cyclic permutation).

P 6.14. If a_1, a_2, \ldots, a_n are real numbers so that

$$a_1 + a_2 + \dots + a_n = n + 1$$
, $a_1^2 + a_2^2 + \dots + a_n^2 = 4n^2 + n - 1$,

then

$$a_1^4 + a_2^4 + \dots + a_n^4 \le 16n^4 + n - 1.$$

(Vasile Cîrtoaje, 2010)

Solution. Replacing n by 2n + 1 in the preceding P 6.13, we get the following statement:

• If $a_1, a_2, \ldots, a_{2n+1}$ are real numbers so that

$$a_1 + a_2 + \dots + a_{2n+1} = 0$$
, $a_1^2 + a_2^2 + \dots + a_{2n+1}^2 = 2n(2n+1)$,

then

$$a_1^4 + a_2^4 + \dots + a_{2n+1}^4 \le 2n(2n+1)(4n^2 - 2n + 1),$$

with equality for

$$a_1 = -2n$$
, $a_2 = \cdots = a_{2n+1} = 1$

and for

$$a_1 = 2n$$
, $a_2 = \cdots = a_{2n+1} = -1$

(or any cyclic permutation).

Putting

$$a_{n+1} = \cdots = a_{2n+1} = -1$$
,

it follows that

$$a_1 + a_2 + \dots + a_n - n - 1 = 0$$
, $a_1^2 + a_2^2 + \dots + a_n^2 + n + 1 = 2n(2n + 1)$

involve

$$a_1^4 + a_2^4 + \dots + a_n^4 + n + 1 \le 2n(2n+1)(4n^2 - 2n + 1).$$

This is equivalent to the desired statement. The equality holds for

$$a_1 = 2n$$
, $a_2 = \cdots = a_n = -1$

(or any cyclic permutation).

P 6.15. If n is an odd number and a_1, a_2, \ldots, a_n are real numbers so that

$$a_1 + a_2 + \dots + a_n = 0$$
, $a_1^2 + a_2^2 + \dots + a_n^2 = n(n^2 - 1)$,

then

$$a_1^4 + a_2^4 + \dots + a_n^4 \ge n(n^2 - 1)(n^2 + 3).$$

(Vasile Cîrtoaje, 2010)

Solution. According to Theorem 1, the sum

$$S_n = a_1^4 + a_2^4 + \dots + a_n^4$$

is minimum for

$$a_1 = \cdots = a_j, \quad a_{j+1} = \cdots = a_n,$$

where $j \in \{1, 2, ..., n-1\}$. Thus, we only need to show that

$$ja_1 + (n-j)a_n = 0$$
, $ja_1^2 + (n-j)a_n^2 = n(n^2 - 1)$

involve

$$ja_1^4 + (n-j)a_n^4 \le n(n^2-1)(n^2+3).$$

From the equations above, we get

$$a_1^2 = \frac{(n-j)(n^2-1)}{i}, \quad a_n^2 = \frac{j(n^2-1)}{n-i};$$

therefore,

$$ja_1^4 + (n-j)a_n^4 = \frac{(n-j)^3 + j^3}{j(n-j)}(n^2 - 1)^2 = \left[\frac{n^2}{j(n-j)} - 3\right]n(n^2 - 1)^2.$$

Since

$$\frac{n^2 - 1}{4} - j(n - j) = \frac{(n - 2j)^2 - 1}{4} \ge 0,$$

we get

$$ja_1^4 + (n-j)a_n^4 \ge \left(\frac{4n^2}{n^2 - 1} - 3\right)n(n^2 - 1)^2 = n(n^2 - 1)(n^2 + 3).$$

The equality holds when $\frac{n-1}{2}$ of a_1, a_2, \ldots, a_n are equal to -n-1 and the other $\frac{n+1}{2}$ are equal to n-1, and also when $\frac{n-1}{2}$ of a_1, a_2, \ldots, a_n are equal to n+1 and the other $\frac{n+1}{2}$ are equal to -n+1.

P 6.16. If $a_1, a_2, ..., a_n$ are real numbers so that

$$a_1 + a_2 + \dots + a_n = n^2 - n - 1$$
, $a_1^2 + a_2^2 + \dots + a_n^2 = n^3 + 2n^2 - n - 1$,

then

$$a_1^4 + a_2^4 + \dots + a_n^4 \ge n^4 + (n-1)(n+1)^4$$
.

(Vasile Cîrtoaje, 2010)

Solution. Replacing $a_1, a_2, ..., a_n$ by $2a_1, 2a_2, ..., 2a_n$ and then n by 2n + 1, the preceding P 6.15 becomes as follows:

• If $a_1, a_2, \ldots, a_{2n+1}$ are real numbers so that

$$a_1 + a_2 + \dots + a_{2n+1} = 0$$
, $a_1^2 + a_2^2 + \dots + a_{2n+1}^2 = n(n+1)(2n+1)$,

then

$$a_1^4 + a_2^4 + \dots + a_{2n+1}^4 \ge n(n+1)(2n+1)(n^2+n+1),$$

with equality when n of $a_1, a_2, \ldots, a_{2n+1}$ are equal to -n-1 and the other n+1 are equal to n, and also when n of $a_1, a_2, \ldots, a_{2n+1}$ are equal to n+1 and the other n+1 are equal to -n.

Putting

$$a_{n+1} = \cdots = a_{2n} = -n, \quad a_{2n+1} = n+1,$$

it follows that

$$a_1 + a_2 + \dots + a_n + n(-n) + (n+1) = 0$$

and

$$a_1^2 + a_2^2 + \dots + a_n^2 + n(-n)^2 + (n+1)^2 = n(n+1)(2n+1)$$

involve

$$a_1^4 + a_2^4 + \dots + a_n^4 + n(-n)^4 + (n+1)^4 \le n(n+1)(2n+1)(n^2+n+1).$$

This is equivalent to the desired statement. The equality holds for

$$a_1 = \cdots = a_{n-1} = n+1, \quad a_n = -n$$

(or any cyclic permutation).

P 6.17. If $a_1, a_2, ..., a_n$ are real numbers so that

$$a_1 + a_2 + \dots + a_n = n^2 - 2n - 1,$$
 $a_1^2 + a_2^2 + \dots + a_n^2 = n^3 + 2n + 1,$

then

$$a_1^4 + a_2^4 + \dots + a_n^4 \ge (n+1)^4 + (n-1)n^4$$
.

(Vasile Cîrtoaje, 2010)

Solution. As shown in the proof of the preceding P 6.16, the following statement holds:

• If $a_1, a_2, \ldots, a_{2n+1}$ are real numbers so that

$$a_1 + a_2 + \dots + a_{2n+1} = 0$$
, $a_1^2 + a_2^2 + \dots + a_{2n+1}^2 = n(n+1)(2n+1)$,

then

$$a_1^4 + a_2^4 + \dots + a_{2n+1}^4 \ge n(n+1)(2n+1)(n^2+n+1),$$

with equality when n of $a_1, a_2, \ldots, a_{2n+1}$ are equal to -n-1 and the other n+1 are equal to n, and also when n of $a_1, a_2, \ldots, a_{2n+1}$ are equal to n+1 and the other n+1 are equal to -n.

Putting

$$a_{n+1} = \cdots = a_{2n-1} = -n - 1$$
, $a_{2n} = a_{2n+1} = n$,

it follows that

$$a_1 + a_2 + \dots + a_n + (n-1)(-n-1) + 2n = 0$$

and

$$a_1^2 + a_2^2 + \dots + a_n^2 + (n-1)(-n-1)^2 + 2n^2 = n(n+1)(2n+1)$$

involve

$$a_1^4 + a_2^4 + \dots + a_n^4 + (n-1)(-n-1)^4 + 2n^4 \le n(n+1)(2n+1)(n^2+n+1),$$

which is equivalent to the desired statement. The equality holds for

$$a_1 = -n - 1, \quad a_2 = \dots = a_n = n$$

(or any cyclic permutation).

P 6.18. If a_1, a_2, \ldots, a_n are real numbers so that

$$a_1 + a_2 + \dots + a_n = n^2 - 3n - 2$$
, $a_1^2 + a_2^2 + \dots + a_n^2 = n^3 + 2n^2 - 3n - 2$,

then

$$a_1^4 + a_2^4 + \dots + a_n^4 \ge 2n^4 + (n-2)(n+1)^4$$
.

(Vasile Cîrtoaje, 2010)

Solution. As shown in the proof of P 6.16, the following statement holds:

• If $a_1, a_2, \ldots, a_{2n+1}$ are real numbers so that

$$a_1 + a_2 + \dots + a_{2n+1} = 0$$
, $a_1^2 + a_2^2 + \dots + a_{2n+1}^2 = n(n+1)(2n+1)$,

then

$$a_1^4 + a_2^4 + \dots + a_{2n+1}^4 \ge n(n+1)(2n+1)(n^2+n+1),$$

with equality when n of $a_1, a_2, \ldots, a_{2n+1}$ are equal to -n-1 and the other n+1 are equal to n, and also when n of $a_1, a_2, \ldots, a_{2n+1}$ are equal to n+1 and the other n+1 are equal to -n.

Putting

$$a_{n+1} = \cdots = a_{2n-1} = -n$$
, $a_{2n} = a_{2n+1} = n+1$,

it follows that

$$a_1 + a_2 + \cdots + a_n + (n-1)(-n) + 2(n+1) = 0$$

and

$$a_1^2 + a_2^2 + \dots + a_n^2 + (n-1)(-n)^2 + 2(n+1)^2 = n(n+1)(2n+1)$$

involve

$$a_1^4 + a_2^4 + \dots + a_n^4 + (n-1)(-n)^4 + 2(n+1)^4 \le n(n+1)(2n+1)(n^2+n+1),$$

which is equivalent to the desired statement. The equality holds for

$$a_1 = a_2 = -n$$
, $a_3 = \cdots = a_n = n + 1$

(or any permutation).

P 6.19. If a, b, c, d are real numbers so that a + b + c + d = 4, then

$$(a^2 + b^2 + c^2 + d^2 - 4)(a^2 + b^2 + c^2 + d^2 + 36) \le 12(a^4 + b^4 + c^4 + d^4 - 4).$$

(Vasile Cîrtoaje, 2010)

Solution. By Theorem 1, for a+b+c+d=4 and $a^2+b^2+c^2+d^2=constant$, the sum $a^4+b^4+c^4+d^4$ is maximum when the set (a,b,c,d) has at most two distinct values. Therefore, it suffices to consider the following two cases.

Case 1: a = b and c = d. We need to show that a + c = 2 involves

$$(a^2 + c^2 - 2)(a^2 + c^2 + 18) \le 6(a^4 + c^4 - 2).$$

Since

$$a^{2} + c^{2} - 2 = (a + c)^{2} - 2ac - 2 = 2(1 - ac),$$
 $a^{2} + c^{2} + 18 = 2(11 - ac),$ $a^{4} + c^{4} - 2 = (a^{2} + c^{2})^{2} - 2a^{2}c^{2} - 2 = 2(1 - ac)(7 - ac),$

the inequality becomes

$$(1-ac)(11-ac) \le 3(1-ac)(7-ac),$$

 $(1-ac)(5-ac) \ge 0.$

It is true because

$$ac \le \frac{1}{4}(a+c)^2 = 1.$$

Case 2: b = c = d. We need to show that a + 3b = 4 involves

$$(a^2 + 3b^2 - 4)(a^2 + 3b^2 + 36) \le 12(a^4 + 3b^4 - 4).$$

Since

$$a^{2} + 3b^{2} - 4 = 12(b-1)^{2},$$
 $a^{2} + 3b^{2} + 36 = 4(3b^{2} - 6b + 13),$ $a^{4} + 3b^{4} - 4 = (4-3b)^{4} + 3b^{4} - 4 = 12(b-1)^{2}(7b^{2} - 22b + 21).$

the inequality becomes

$$(b-1)^{2}[(3b^{2}-6b+13) \le 3(b-1)^{2}(7b^{2}-22b+21),$$
$$(b-1)^{2}(3b-5)^{2} \ge 0.$$

The equality holds for a = b = c = d = 1, and also for

$$a = -1$$
, $b = c = d = \frac{5}{3}$

(or any cyclic permutation).

P 6.20. If a_1, a_2, \ldots, a_n are real numbers so that

$$a_1 + a_2 + \dots + a_n = 0,$$
 $a_1^2 + a_2^2 + \dots + a_n^2 = n(n-1),$

then

$$a_1^6 + a_2^6 + \dots + a_n^6 \le (n-1)^6 + n - 1.$$

(Vasile Cîrtoaje, 2010)

Solution. For n = 2, we need to show that

$$a_1 + a_2 = 0,$$
 $a_1^2 + a_2^2 = 2,$

implies

$$a_1^6 + a_2^6 \le 2$$
.

We have

$$a_1 = -1, \quad a_2 = 1,$$

or

$$a_1 = 1, \qquad a_2 = -1.$$

For each of these cases, the desired inequality is an equality. According to Theorem 2, the sum

$$S_n = a_1^6 + a_2^6 + \dots + a_n^6$$

is maximum for

$$a_1 = \cdots = a_j, \quad a_{j+1} = \cdots = a_n,$$

where $j \in \{1, 2, ..., n-1\}$. Thus, we only need to show that

$$ja_1 + (n-j)a_n = 0$$
, $ja_1^2 + (n-j)a_n^2 = n(n-1)$

involve

$$ja_1^6 + (n-j)a_n^6 \le (n-1)^6 + n - 1.$$

From the equations above, we get

$$a_1^2 = \frac{(n-j)(n-1)}{j}, \quad a_n^2 = \frac{j(n-1)}{n-j}.$$

Thus, the desired inequality becomes

$$\frac{(n-j)^5 + j^5}{j^2(n-j)^2} \le \frac{(n-1)^5 + 1}{(n-1)^2},$$

$$\frac{(n-j)^4 - (n-j)^3 j + (n-j)^2 j^2 - (n-j)j^3 + j^4}{j^2(n-j)^2} \le$$

$$\le \frac{(n-1)^4 - (n-1)^3 + (n-1)^2 - (n-1) + 1}{(n-1)^2},$$

$$\frac{(n-j)^2}{j^2} - \frac{n-j}{j} - \frac{j}{n-j} + \frac{j^2}{(n-j)^2} \le (n-1)^2 - (n-1) - \frac{1}{n-1} + \frac{1}{(n-1)^2},$$

which can be written as

$$f(a) \ge f(b)$$
,

where

$$f(x) = x^2 - x - \frac{1}{x} + \frac{1}{x^2},$$

$$a = n - 1, \quad b = \frac{n}{j} - 1.$$

Since $a \ge b$ and

$$ab-1 = (n-1)\left(\frac{n}{j}-1\right)-1 = n\left(\frac{n-1}{j}-1\right) \ge 0,$$

we have

$$f(a) - f(b) = (a - b) \left(a + b - 1 + \frac{1}{ab} - \frac{a + b}{a^2 b^2} \right)$$
$$= (a - b) \left(1 - \frac{1}{ab} \right) \left[(a + b) \left(1 + \frac{1}{ab} \right) - 1 \right] \ge 0.$$

The equality holds for

$$a_1 = -n + 1, \qquad a_2 = \dots = a_n = 1,$$

and for

$$a_1 = n - 1,$$
 $a_2 = \cdots = a_n = -1$

(or any cyclic permutation).

P 6.21. If a_1, a_2, \ldots, a_n are real numbers so that

$$a_1 + a_2 + \dots + a_n = 1$$
, $a_1^2 + a_2^2 + \dots + a_n^2 = n^2 + n - 1$,

then

$$a_1^6 + a_2^6 + \dots + a_n^6 \le n^6 + n - 1.$$

(Vasile Cîrtoaje, 2010)

Solution. The inequality follows from the preceding P 6.20 by replacing n with n+1, and then making $a_{n+1}=-1$. The equality holds for

$$a_1 = n, \quad a_2 = \dots = a_n = -1$$

(or any cyclic permutation).

P 6.22. If a_1, a_2, \ldots, a_n are real numbers so that

$$a_1 + a_2 + \dots + a_n = 0,$$
 $a_1^2 + a_2^2 + \dots + a_n^2 = n(n-1),$

then

$$a_1^8 + a_2^8 + \dots + a_n^8 \le (n-1)^8 + n - 1.$$

(Vasile Cîrtoaje, 2010)

Solution. For n = 2, we need to show that

$$a_1 + a_2 = 0$$
, $a_1^2 + a_2^2 = 2$,

implies

$$a_1^8 + a_2^8 \le 2$$
.

We have

$$a_1 = -1, \qquad a_2 = 1,$$

or

$$a_1 = 1, \qquad a_2 = -1.$$

For each of these cases, the desired inequality is an equality. According to Theorem 2, the sum

$$S_n = a_1^8 + a_2^8 + \dots + a_n^8$$

is maximum for

$$a_1 = \cdots = a_j, \quad a_{j+1} = \cdots = a_n,$$

where $j \in \{1, 2, ..., n-1\}$. Thus, we only need to show that

$$ja_1 + (n-j)a_n = 0, ja_1^2 + (n-j)a_n^2 = n(n-1)$$

involve

$$ja_1^8 + (n-j)a_n^8 \le (n-1)^8 + n - 1.$$

From the equations above, we get

$$a_1^2 = \frac{(n-j)(n-1)}{j}, \quad a_n^2 = \frac{j(n-1)}{n-j}.$$

Thus, the desired inequality becomes

$$\frac{(n-j)^7 + j^7}{j^3(n-j)^3} \le \frac{(n-1)^7 + 1}{(n-1)^4},$$

$$\frac{(n-j)^3}{j^3} - \frac{(n-j)^2}{j^2} + \frac{n-j}{j} + \frac{j}{n-j} - \frac{j^2}{(n-j)^2} + \frac{j^3}{(n-j)^3} \le$$

$$\le (n-1)^3 - (n-1)^2 + (n-1) + \frac{1}{n-1} - \frac{1}{(n-1)^2} + \frac{1}{(n-1)^3},$$

$$f(a) \ge f(b)$$
,

where

$$a = n - 1$$
, $b = \frac{n}{j} - 1$,
 $f(x) = x^3 - x^2 + x + \frac{1}{x} - \frac{1}{x^2} + \frac{1}{x^3}$, $x > 0$.

Since

$$f(x) = (t-1)(t^2-2), t = x + \frac{1}{x} \ge 2,$$

it suffices to show that

$$a + \frac{1}{a} \ge b + \frac{1}{b}.$$

We have $a \ge b$,

$$ab-1 = (n-1)\left(\frac{n}{j}-1\right)-1 = n\left(\frac{n-1}{j}-1\right) \ge 0,$$

therefore

$$a + \frac{1}{a} - b - \frac{1}{b} = (a - b) \left(1 - \frac{1}{ab} \right) \ge 0.$$

The equality holds for

$$a_1 = -n + 1, \qquad a_2 = \dots = a_n = 1$$

and for

$$a_1 = n - 1, \qquad a_2 = \dots = a_n = -1$$

(or any cyclic permutation).

P 6.23. If a_1, a_2, \ldots, a_n are real numbers so that

$$a_1 + a_2 + \dots + a_n = 1$$
, $a_1^2 + a_2^2 + \dots + a_n^2 = n^2 + n - 1$,

then

$$a_1^8 + a_2^8 + \dots + a_n^8 \le n^8 + n - 1.$$

(Vasile Cîrtoaje, 2010)

Solution. The inequality follows from the preceding P 6.22 by replacing n with n+1, and making $a_{n+1}=-1$. The equality holds for

$$a_1 = n$$
, $a_2 = \dots = a_n = -1$

(or any cyclic permutation).

P 6.24. Let a_1, a_2, \ldots, a_n $(n \ge 2)$ be real numbers (not all equal), and let

$$A = \frac{a_1 + a_2 + \dots + a_n}{n}, \quad B = \frac{a_1^2 + a_2^2 + \dots + a_n^2}{n}, \quad C = \frac{a_1^3 + a_2^3 + \dots + a_n^3}{n}.$$

Then,

$$\frac{1}{4} \left(1 - \sqrt{1 + \frac{2n^2}{n-1}} \right) \le \frac{B^2 - AC}{B^2 - A^4} \le \frac{1}{4} \left(1 + \sqrt{1 + \frac{2n^2}{n-1}} \right).$$

(Vasile Cîrtoaje, 2010)

Solution. It is well-known that $B > A^2$, hence $B^2 > A^4$.

(a) For n=2, the right inequality reduces to $(a_1^2-a_2^2)^2 \ge 0$. Consider further that $n \ge 3$. Since the right inequality remains unchanged by replacing a_1, a_2, \ldots, a_n with $-a_1, -a_2, \ldots, -a_n$, we may suppose that $A \ge 0$. Assuming that

$$A = constant, \quad B = constant,$$

we only need to consider the case when C is minimum. Thus, according to Corollary 2, it suffices to prove the required inequality for $a_1 < a_2 = a_3 = \cdots = a_n$. Setting

$$a_1 := a$$
, $a_2 = a_3 = \cdots = a_n := b$, $a < b$,

the inequality becomes

$$\frac{\left[\frac{a^2 + (n-1)b^2}{n}\right]^2 - \frac{a + (n-1)b}{n} \cdot \frac{a^3 + (n-1)b^3}{n}}{\left[\frac{a^2 + (n-1)b^2}{n}\right]^2 - \left[\frac{a + (n-1)b}{n}\right]^4} \le \frac{1}{4} \left(1 + \sqrt{1 + \frac{2n^2}{n-1}}\right),$$

After dividing the numerator and denominator of the left fraction by $(a - b)^2$, the inequality reduces to

$$\frac{-4n^2ab}{(n+1)a^2+2(n-1)ab+(2n^2-3n+1)b} \le 1+\sqrt{1+\frac{2n^2}{n-1}},$$

$$\frac{-2ab}{(n+1)a^2+2(n-1)ab+(2n^2-3n+1)b} \le \frac{1}{\sqrt{(n^2-1)(2n-1)}-n+1},$$

$$\left(a+\sqrt{\frac{2n^2-3n+1}{n+1}}\ b\right)^2 \ge 0.$$

The equality holds for

$$-\sqrt{\frac{n+1}{(n-1)(2n-1)}} \ a_1 = a_2 = \dots = a_n$$

(or any cyclic permutation).

(b) For n = 2, the left inequality reduces to $(a_1 - a_2)^4 \ge 0$. For $n \ge 3$, the proof is similar to the one of the right inequality. The equality holds for

$$\sqrt{\frac{n+1}{(n-1)(2n-1)}} a_1 = a_2 = \dots = a_n$$

(or any cyclic permutation).

P 6.25. If a, b, c, d are real numbers so that

$$a+b+c+d=2,$$

then

$$a^4 + b^4 + c^4 + d^4 \le 40 + \frac{3}{4}(a^2 + b^2 + c^2 + d^2)^2.$$

(Vasile Cîrtoaje, 2010)

Solution. Write the inequality in the homogeneous form

$$10(a+b+c+d)^4 + 3(a^2+b^2+c^2+d^2)^2 \ge 4(a^4+b^4+c^4+d^4).$$

By Theorem 1, for a + b + c + d = constant and $a^2 + b^2 + c^2 + d^2 = constant$, the sum $a^4 + b^4 + c^4 + d^4$ is maximum when the set (a, b, c, d) has at most two distinct values. Therefore, it suffices to consider the following two cases.

Case 1: a = b and c = d. The inequality reduces to

$$41(a^2+c^2)^2+160ac(a^2+c^2)+164a^2c^2 \ge 0,$$

which can be written in the obvious form

$$(a^2 + c^2)^2 + 40(a^2 + c^2 + 2ac)^2 + 4a^2c^2 \ge 0.$$

Case 2: b = c = d. The inequality reduces to the obvious form

$$(a+5b)^2(3a^2+10ab+11b^2) \ge 0.$$

Since the homogeneous inequality becomes an equality for

$$\frac{-a}{5} = b = c = d$$

(or any cyclic permutation), the original inequality is an equality for

$$a = 5$$
, $b = c = d = -1$

(or any cyclic permutation).

P 6.26. If a, b, c, d, e are real numbers, then

$$a^{4} + b^{4} + c^{4} + d^{4} + e^{4} \le \frac{31 + 18\sqrt{3}}{8}(a + b + c + d + e)^{4} + \frac{3}{4}(a^{2} + b^{2} + c^{2} + d^{2} + e^{2})^{2}.$$

(Vasile Cîrtoaje, 2010)

Solution. We proceed as in the proof of the preceding P 6.25. Taking into account Theorem 1, it suffices to consider the cases b = c = d = e, and a = b and c = d = e.

Case 1: b = c = d = e. Due to homogeneity, we may consider b = c = d = e = 0 and b = c = d = e = 1. The first case is trivial. In the second case, the inequality becomes

$$a^{4} + 4 \le \frac{31 + 18\sqrt{3}}{8}(a+4)^{4} + \frac{3}{4}(a^{2} + 4)^{2},$$
$$(a+2+2\sqrt{3})^{2} \left[f(a) + 2\sqrt{3} g(a) \right] \ge 0,$$

where

$$f(a) = 29a^2 + 164a + 272,$$
 $g(a) = 9a^2 + 50a + 76.$

It suffices to show that $f(a) \ge 0$ and $g(a) \ge 0$. Indeed, we have

$$f(a) > 25a^2 + 164a + 269 = \left(5a + \frac{82}{5}\right)^2 + \frac{1}{25} > 0,$$

$$g(a) > 9a^2 + 50a + 70 = \left(3a + \frac{25}{3}\right)^2 + \frac{5}{9} > 0.$$

Case 2: a = b and c = d = e. It suffices to show that

$$a^4 + b^4 + c^4 + d^4 + e^4 \le \frac{3}{4}(a^2 + b^2 + c^2 + d^2 + e^2)^2,$$

which reduces to

$$2a^{4} + 3c^{4} \le \frac{3}{4}(2a^{2} + 3c^{2})^{2},$$
$$3(2a^{2} + 3c^{2})^{2} \ge 4(2a^{4} + 3c^{4}),$$
$$4a^{4} + 36a^{2}c^{2} + 15c^{4} \ge 0.$$

The equality holds for

$$\frac{-a}{2(1+\sqrt{3})} = b = c = d = e$$

(or any cyclic permutation).

P 6.27. Let $a, b, c, d, e \neq \frac{-5}{4}$ be real numbers so that a + b + c + d + e = 5. Then,

$$\frac{a(a-1)}{(4a+5)^2} + \frac{b(b-1)}{(4b+5)^2} + \frac{c(c-1)}{(4c+5)^2} + \frac{d(d-1)}{(4d+5)^2} + \frac{e(e-1)}{(4e+5)^2} \ge 0.$$

(Vasile Cîrtoaje, 2010)

Solution. Write the inequality as

$$\sum \left[\frac{180a(a-1)}{(4a+5)^2} + 1 \right] \ge 5,$$
$$\sum \frac{(14a-5)^2}{(4a+5)^2} \ge 5.$$

By the Cauchy-Schwarz inequality, we have

$$\sum \frac{(14a-5)^2}{(4a+5)^2} \ge \frac{\left[\sum (4a+5)(14a-5)\right]^2}{\sum (4a+5)^4}.$$

Therefore, it suffices to show that

$$\left(56\sum a^2 + 125\right)^2 \ge 5\sum (4a + 5)^4.$$

Using the substitution

$$a_1 = \frac{4a+5}{9}, a_2 = \frac{4b+5}{9}, \dots, a_5 = \frac{4e+5}{9},$$

we need to prove that $a_1 + a_2 + a_3 + a_4 + a_5 = 5$ involves

$$\left(7\sum_{i=1}^{5}a_i^2 - 25\right)^2 \ge 20\sum_{i=1}^{5}a_i^4.$$

Rewrite this inequality in the homogeneous form

$$\left[7\sum_{i=1}^{5}a_{i}^{2}-\left(\sum_{i=1}^{5}a_{i}\right)^{2}\right]^{2} \geq 20\sum_{i=1}^{5}a_{i}^{4}.$$

By Theorem 1, for $a_1+a_2+a_3+a_4+a_5=5$ and $a_1^2+a_2^2+a_3^2+a_4^2+a_5^2=constant$, the sum $a_1^4+a_2^4+a_3^4+a_4^4+a_5^4$ is maximum when the set (a_1,a_2,a_3,a_4,a_5) has at most two distinct values. Therefore, we need to consider the following two cases.

Case 1: $a_1 = x$ and $a_2 = a_3 = a_4 = a_5 = y$. The homogeneous inequality reduces to

$$(3x^2 + 6y^2 - 4xy)^2 \ge 5(x^4 + 4y^4)$$

which is equivalent to the obvious inequality

$$(x-y)^2(x-2y)^2 \ge 0.$$

Case 2: $a_1 = a_2 = x$ and $a_3 = a_4 = a_5 = y$. The homogeneous inequality becomes

$$(5x^2 + 6y^2 - 6xy)^2 \ge 5(2x^4 + 3y^4),$$

which is equivalent to the obvious inequality

$$(x-y)^2[5(x-y)^2+2y^2] \ge 0.$$

The equality holds for a = b = c = d = e = 1, and also for

$$a = \frac{5}{2}$$
, $b = c = d = e = \frac{5}{8}$

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization.

• Let $x_1, x_2, \dots, x_n \neq -k$ be real numbers so that $x_1 + x_2 + \dots + x_n = n$, where

$$k \ge \frac{n}{2\sqrt{n-1}}.$$

Then,

$$\frac{x_1(x_1-1)}{(x_1+k)^2} + \frac{x_2(x_2-1)}{(x_2+k)^2} + \dots + \frac{x_n(x_n-1)}{(x_n+k)^2} \ge 0,$$

with equality for $x_1 = x_2 = \cdots = x_n = 1$. If $k = \frac{n}{2\sqrt{n-1}}$, then the equality holds also for

$$x_1 = \frac{n}{2}$$
, $x_2 = \dots = x_n = \frac{n}{2(n-1)}$

(or any cyclic permutation).

P 6.28. If a, b, c are real numbers so that

$$a + b + c = 9$$
, $ab + bc + ca = 15$,

then

$$\frac{19}{175} \le \frac{1}{b^2 + bc + c^2} + \frac{1}{c^2 + ca + a^2} + \frac{1}{a^2 + ab + b^2} \le \frac{7}{19}.$$

(Vasile C., 2011)

Solution. From

$$(b+c)^2 \ge 4bc$$

and

$$b+c=9-a$$
, $bc=15-a(b+c)=15-a(9-a)=a^2-9a+15$,

we get $a \le 7$. Since

$$b^2 + bc + c^2 = (a + b + c)(b + c) - (ab + bc + ca) = 9(9 - a) - 15 = 3(22 - 3a)$$

we may write the inequality in the form

$$\frac{57}{175} \le f(a) + f(b) + f(c) \le \frac{21}{19}.$$

where

$$f(u) = \frac{1}{22 - 3u}, \quad u \le 7.$$

We have

$$g(x) = f'(x) = \frac{3}{(22 - 3x)^2},$$
$$g''(x) = \frac{162}{(22 - 3x)^4}.$$

Since g''(x) > 0 for $x \le 7$, g is strictly convex on $(-\infty, 7]$. According to Corollary 1, if $a \le b \le c$ and

$$a+b+c=9$$
, $a^2+b^2+c^2=51$,

then the sum $S_3 = f(a) + f(b) + f(c)$ is maximum for $a = b \le c$, and is minimum for $a \le b = c$.

(a) To prove the right inequality, it suffices to consider the case $a=b\leq c$. From

$$a + b + c = 9$$
, $ab + bc + ca = 15$.

we get a = b = 1 and c = 7, therefore

$$\frac{1}{b^2 + bc + c^2} + \frac{1}{c^2 + ca + a^2} + \frac{1}{a^2 + ab + b^2} = \frac{7}{19}.$$

The original right inequality is an equality for a = b = 1 and c = 7 (or any cyclic permutation).

(b) To prove the left inequality, it suffices to consider the case $a \le b = c$, which involves a = -1 and b = c = 5, hence

$$\frac{1}{b^2 + bc + c^2} + \frac{1}{c^2 + ca + a^2} + \frac{1}{a^2 + ab + b^2} = \frac{19}{175}.$$

The original left inequality is an equality for a = -1 and b = c = 5 (or any cyclic permutation).

P 6.29. If a, b, c are real numbers so that

$$8(a^2 + b^2 + c^2) = 9(ab + bc + ca),$$

then

$$\frac{419}{175} \le \frac{a^2}{b^2 + bc + c^2} + \frac{b^2}{c^2 + ca + a^2} + \frac{c^2}{a^2 + ab + b^2} \le \frac{311}{19}.$$
 (Vasile C., 2011)

Solution. Due to homogeneity, we may assume that

$$a + b + c = 9$$
, $a^2 + b^2 + c^2 = 51$.

Next, the proof is similar to the one of the preceding P 6.28. Write the inequality in the form

$$\frac{1257}{175} \le f(a) + f(b) + f(c) \le \frac{933}{19}.$$

where

$$f(u) = \frac{u^2}{22 - 3u}, \quad u \le 7.$$

We have

$$g(x) = f'(x) = \frac{-3x^2 + 44x}{(22 - 3x)^2}, \qquad g''(x) = \frac{8712}{(22 - 3x)^4}.$$

Since g is strictly convex on $(-\infty, 7]$, according to Corollary 1, the sum $S_3 = f(a) + f(b) + f(c)$ is maximum for $a = b \le c$, and is minimum for $a \le b = c$.

(a) To prove the right inequality, it suffices to consider the case $a=b\leq c$, which involves

$$a = b = 1$$
, $c = 7$,

and

$$\frac{a^2}{b^2 + bc + c^2} + \frac{b^2}{c^2 + ca + a^2} + \frac{c^2}{a^2 + ab + b^2} = \frac{311}{19}.$$

The original right inequality is an equality for a = b = c/7 (or any cyclic permutation).

(b) To prove the left inequality, it suffices to consider the case $a \le b = c$, which involves a = -1 and b = c = 5, hence

$$\frac{a^2}{b^2 + bc + c^2} + \frac{b^2}{c^2 + ca + a^2} + \frac{c^2}{a^2 + ab + b^2} = \frac{419}{175}.$$

The original left inequality is an equality for -5a = b = c (or any cyclic permutation).

P 6.30. Let a_1, a_2, \ldots, a_n be real numbers such that $a_1 + a_2 + \cdots + a_n = n$. If $n \le 10$, then

$$2(a_1^2 + a_2^2 + \dots + a_n^2)^2 - n(a_1^3 + a_2^3 + \dots + a_n^3) \ge n^2.$$

(Vasile Cîrtoaje, 2020)

Solution. Write the inequality in the homogeneous form

$$2n^{2}(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2})^{2}-n^{2}(a_{1}+a_{2}+\cdots+a_{n})(a_{1}^{3}+a_{2}^{3}+\cdots+a_{n}^{3}) \geq (a_{1}+a_{2}+\cdots+a_{n})^{4}.$$

According to Corollary 2, for $a_1+a_2+\cdots+a_n=constant>0$ and $a_1^2+a_2^2+\cdots+a_n^2=constant$, the sum

$$S = a_1^3 + a_2^3 + \dots + a_n^3$$

is maximal when n-1 of a_1, a_2, \ldots, a_n are equal. Therefore, it suffices to consider the case $a_2=a_3=\cdots=a_n$. Due to homogeneity, for the nontrivial case $a_2=a_3=\cdots=a_n\neq 0$, we may consider that $a_2=a_3=\cdots=a_n=1$. Thus we only need to prove that

$$2n^{2}(a_{1}^{2}+n-1)^{2}-n^{2}(a_{1}+n-1)(a_{1}^{3}+n-1) \geq (a_{1}+n-1)^{4},$$

which is equivalent to

$$(a_1-1)^2(Aa_1^2-Ba_1+C) \ge 0$$
,

where

$$A = n(n+1), \quad B = n(n^2 - 2n + 2), \quad C = n(n-1)(2n-1).$$

The inequality is true because

$$4AC - B^2 = n^4(-n^2 + 12n - 12) \ge 0.$$

The equality occurs for $a_1 = a_2 = \cdots = a_n = 1$.

Appendix A

Glosar

1. AM-GM (ARITHMETIC MEAN-GEOMETRIC MEAN) INEQUALITY

If a_1, a_2, \dots, a_n are nonnegative real numbers, then

$$a_1 + a_2 + \dots + a_n \ge n \sqrt[n]{a_1 a_2 \cdots a_n},$$

with equality if and only if $a_1 = a_2 = \cdots = a_n$.

2. WEIGHTED AM-GM INEQUALITY

Let p_1, p_2, \dots, p_n be positive real numbers satisfying

$$p_1 + p_2 + \dots + p_n = 1.$$

If a_1, a_2, \ldots, a_n are nonnegative real numbers, then

$$p_1a_1 + p_2a_2 + \dots + p_na_n \ge a_1^{p_1}a_2^{p_2} \cdots a_n^{p_n},$$

with equality if and only if $a_1 = a_2 = \cdots = a_n$.

3. AM-HM (ARITHMETIC MEAN-HARMONIC MEAN) INEQUALITY

If a_1, a_2, \dots, a_n are positive real numbers, then

$$(a_1 + a_2 + \dots + a_n) \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} \right) \ge n^2,$$

with equality if and only if $a_1 = a_2 = \cdots = a_n$.

4. POWER MEAN INEQUALITY

The power mean of order k of positive real numbers a_1, a_2, \ldots, a_n ,

$$M_k = \begin{cases} \left(\frac{a_1^k + a_2^k + \dots + a_n^k}{n}\right)^{\frac{1}{k}}, & k \neq 0\\ \sqrt[n]{a_1 a_2 \cdots a_n}, & k = 0 \end{cases},$$

is an increasing function with respect to $k \in \mathbb{R}$. For instant, $M_2 \ge M_1 \ge M_0 \ge M_{-1}$ is equivalent to

$$\sqrt{\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n}} \ge \frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 a_2 \cdots a_n} \ge \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}}.$$

5. BERNOULLI'S INEQUALITY

For any real number $x \ge -1$, we have

- a) $(1+x)^r \ge 1 + rx$ for $r \ge 1$ and $r \le 0$;
- b) $(1+x)^r \le 1 + rx$ for $0 \le r \le 1$.

If $a_1, a_2, ..., a_n$ are real numbers such that either $a_1, a_2, ..., a_n \ge 0$ or

$$-1 \le a_1, a_2, \dots, a_n \le 0,$$

then

$$(1+a_1)(1+a_2)\cdots(1+a_n) \ge 1+a_1+a_2+\cdots+a_n$$
.

6. SCHUR'S INEQUALITY

For any nonnegative real numbers a, b, c and any positive number k, the inequality holds

$$a^{k}(a-b)(a-c) + b^{k}(b-c)(b-a) + c^{k}(c-a)(c-b) \ge 0$$

with equality for a = b = c, and for a = 0 and b = c (or any cyclic permutation). For k = 1, we get the third degree Schur's inequality, which can be rewritten as follows

$$a^{3} + b^{3} + c^{3} + 3abc \ge ab(a+b) + bc(b+c) + ca(c+a),$$

$$(a+b+c)^{3} + 9abc \ge 4(a+b+c)(ab+bc+ca),$$

$$a^{2} + b^{2} + c^{2} + \frac{9abc}{a+b+c} \ge 2(ab+bc+ca),$$

$$(b-c)^2(b+c-a)+(c-a)^2(c+a-b)+(a-b)^2(a+b-c) \ge 0.$$

For k = 2, we get the fourth degree Schur's inequality, which holds for any real numbers a, b, c, and can be rewritten as follows

$$a^{4} + b^{4} + c^{4} + abc(a + b + c) \ge ab(a^{2} + b^{2}) + bc(b^{2} + c^{2}) + ca(c^{2} + a^{2}),$$

$$a^{4} + b^{4} + c^{4} - a^{2}b^{2} - b^{2}c^{2} - c^{2}a^{2} \ge (ab + bc + ca)(a^{2} + b^{2} + c^{2} - ab - bc - ca),$$

$$(b - c)^{2}(b + c - a)^{2} + (c - a)^{2}(c + a - b)^{2} + (a - b)^{2}(a + b - c)^{2} \ge 0,$$

$$6abcp \ge (p^{2} - q)(4q - p^{2}), \quad p = a + b + c, \quad q = ab + bc + ca.$$

A generalization of the fourth degree Schur's inequality, which holds for any real numbers *a*, *b*, *c* and any real number *m*, is the following (*Vasile Cirtoaje*, 2004)

$$\sum (a-mb)(a-mc)(a-b)(a-c) \ge 0,$$

with equality for a = b = c, and also for a/m = b = c (or any cyclic permutation). This inequality is equivalent to

$$\sum a^4 + m(m+2) \sum a^2 b^2 + (1-m^2)abc \sum a \ge (m+1) \sum ab(a^2 + b^2),$$
$$\sum (b-c)^2 (b+c-a-ma)^2 \ge 0.$$

7. CAUCHY-SCHWARZ INEQUALITY

If a_1, a_2, \dots, a_n and b_1, b_2, \dots, b_n are real numbers, then

$$(a_1^2 + a_2^2 + \dots + a_n^2)(b_1^2 + b_2^2 + \dots + b_n^2) \ge (a_1b_1 + a_2b_2 + \dots + a_nb_n)^2,$$

with equality for

$$\frac{a_1}{b_1} = \frac{a_2}{b_2} = \dots = \frac{a_n}{b_n}.$$

Notice that the equality conditions are also valid for $a_i = b_i = 0$, where $1 \le i \le n$.

8. HÖLDER'S INEQUALITY

If x_{ij} ($i=1,2,\cdots,m; j=1,2,\cdots n$) are nonnegative real numbers, then

$$\prod_{i=1}^m \left(\sum_{j=1}^n x_{ij} \right) \ge \left(\sum_{j=1}^n \sqrt[m]{\prod_{i=1}^m x_{ij}} \right)^m.$$

9. CHEBYSHEV'S INEQUALITY

Let $a_1 \ge a_2 \ge \cdots \ge a_n$ be real numbers.

a) If $b_1 \ge b_2 \ge \cdots b_n$, then

$$n\sum_{i=1}^{n} a_i b_i \ge \left(\sum_{i=1}^{n} a_i\right) \left(\sum_{i=1}^{n} b_i\right);$$

b) If $b_1 \le b_2 \le \cdots \le b_n$, then

$$n\sum_{i=1}^n a_i b_i \le \left(\sum_{i=1}^n a_i\right) \left(\sum_{i=1}^n b_i\right).$$

10. REARRANGEMENT INEQUALITY

(1) If $(a_1, a_2, ..., a_n)$ and $(b_1, b_2, ..., b_n)$ are two increasing (or decreasing) real sequences, and $(i_1, i_2, ..., i_n)$ is an arbitrary permutation of (1, 2, ..., n), then

$$a_1b_1 + a_2b_2 + \dots + a_nb_n \ge a_1b_{i_1} + a_2b_{i_2} + \dots + a_nb_{i_n}$$

and

$$n(a_1b_1 + a_2b_2 + \dots + a_nb_n) \ge (a_1 + a_2 + \dots + a_n)(b_1 + b_2 + \dots + b_n).$$

(2) If (a_1, a_2, \dots, a_n) is decreasing and (b_1, b_2, \dots, b_n) is increasing, then $a_1b_1 + a_2b_2 + \dots + a_nb_n \le a_1b_{i_1} + a_2b_{i_2} + \dots + a_nb_i$

and

$$n(a_1b_1 + a_2b_2 + \cdots + a_nb_n) \le (a_1 + a_2 + \cdots + a_n)(b_1 + b_2 + \cdots + b_n).$$

(3) Let b_1, b_2, \dots, b_n) and (c_1, c_2, \dots, c_n) be two real sequences such that $b_1 + \dots + b_i \ge c_1 + \dots + c_i, \quad i = 1, 2, \dots, n.$

If $a_1 \ge a_2 \ge \cdots \ge a_n \ge 0$, then

$$a_1b_1 + a_2b_2 + \dots + a_nb_n \ge a_1c_1 + a_2c_2 + \dots + a_nc_n.$$

Notice that all these inequalities follow immediately from the identity

$$\sum_{i=1}^{n} a_i (b_i - c_i) = \sum_{i=1}^{n} (a_i - a_{i+1}) \left(\sum_{j=1}^{i} b_j - \sum_{j=1}^{i} c_j \right), \quad a_{n+1} = 0$$

11. SQUARE PRODUCT INEQUALITY

Let a, b, c be real numbers, and let

$$p = a + b + c$$
, $q = ab + bc + ca$, $r = abc$,
 $s = \sqrt{p^2 - 3q} = \sqrt{a^2 + b^2 + c^2 - ab - bc - ca}$.

From the identity

$$(a-b)^{2}(b-c)^{2}(c-a)^{2} = -27r^{2} + 2(9pq - 2p^{3})r + p^{2}q^{2} - 4q^{3},$$

it follows that

$$\frac{-2p^3+9pq-2(p^2-3q)\sqrt{p^2-3q}}{27} \leq r \leq \frac{-2p^3+9pq+2(p^2-3q)\sqrt{p^2-3q}}{27},$$

which is equivalent to

$$\frac{p^3 - 3ps^2 - 2s^3}{27} \le r \le \frac{p^3 - 3ps^2 + 2s^3}{27}.$$

Therefore, for constant p and q, the product r is minimum and maximum when two of a, b, c are equal.

12. KARAMATA'S MAJORIZATION INEQUALITY

Let f be a convex function on a real interval \mathbb{I} . If a decreasingly ordered sequence

$$A = (a_1, a_2, \dots, a_n), \quad a_i \in \mathbb{I},$$

majorizes a decreasingly ordered sequence

$$B = (b_1, b_2, \dots, b_n), \quad b_i \in \mathbb{I},$$

then

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge f(b_1) + f(b_2) + \dots + f(b_n).$$

We say that a sequence $A = (a_1, a_2, ..., a_n)$ with $a_1 \ge a_2 \ge ... \ge a_n$ majorizes a sequence $B = (b_1, b_2, ..., b_n)$ with $b_1 \ge b_2 \ge ... \ge b_n$, and write it as

$$A \succ B$$
,

if

13. CONVEX FUNCTIONS

A function f defined on a real interval \mathbb{I} is said to be *convex* if

$$f(\alpha x + \beta y) \le \alpha f(x) + \beta f(y)$$

for all $x, y \in \mathbb{I}$ and any $\alpha, \beta \ge 0$ with $\alpha + \beta = 1$. If the inequality is reversed, then f is said to be concave.

If f is differentiable on \mathbb{I} , then f is (strictly) convex if and only if the derivative f' is (strictly) increasing. If $f'' \ge 0$ on \mathbb{I} , then f is convex on \mathbb{I} . Also, if $f'' \ge 0$ on (a, b) and f is continuous on [a, b], then f is convex on [a, b].

Jensen's inequality. Let $p_1, p_2, ..., p_n$ be positive real numbers. If f is a convex function on a real interval \mathbb{I} , then for any $a_1, a_2, ..., a_n \in \mathbb{I}$, the inequality holds

$$\frac{p_1 f(a_1) + p_2 f(a_2) + \dots + p_n f(a_n)}{p_1 + p_2 + \dots + p_n} \ge f\left(\frac{p_1 a_1 + p_2 a_2 + \dots + p_n a_n}{p_1 + p_2 + \dots + p_n}\right).$$

For $p_1 = p_2 = \cdots = p_n$, Jensen's inequality becomes

$$f(a_1)+f(a_2)+\cdots+f(a_n) \ge nf\left(\frac{a_1+a_2+\cdots+a_n}{n}\right).$$

Right Half Convex Function Theorem (Vasile Cîrtoaje, 2004). Let f be a real function defined on an interval \mathbb{I} and convex on $\mathbb{I}_{>s}$, where $s \in int(\mathbb{I})$. The inequality

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf\left(\frac{a_1 + a_2 + \dots + a_n}{n}\right)$$

holds for all $a_1, a_2, \ldots, a_n \in \mathbb{I}$ satisfying

$$a_1 + a_2 + \dots + a_n = ns$$

if and only if

$$f(x) + (n-1)f(y) \ge nf(s)$$

for all $x, y \in \mathbb{I}$ such that $x \le s \le y$ and x + (n-1)y = ns.

Left Half Convex Function Theorem (Vasile Cîrtoaje, 2004). Let f be a real function defined on an interval \mathbb{I} and convex on $\mathbb{I}_{\leq s}$, where $s \in int(\mathbb{I})$. The inequality

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf\left(\frac{a_1 + a_2 + \dots + a_n}{n}\right)$$

holds for all $a_1, a_2, \ldots, a_n \in \mathbb{I}$ satisfying

$$a_1 + a_2 + \dots + a_n = ns$$

if and only if

$$f(x) + (n-1)f(y) \ge nf(s)$$

for all $x, y \in \mathbb{I}$ such that $x \ge s \ge y$ and x + (n-1)y = ns.

Left Convex-Right Concave Function Theorem (Vasile Cîrtoaje, 2004). Let $a \le c$ be real numbers, let f be a continuous function defined on $\mathbb{I} = [a, \infty)$, strictly convex on [a, c] and strictly concave on $[c, \infty)$, and let

$$E(a_1, a_2, ..., a_n) = f(a_1) + f(a_2) + ... + f(a_n).$$

If $a_1, a_2, \ldots, a_n \in \mathbb{I}$ such that

$$a_1 + a_2 + \cdots + a_n = S = constant$$
,

then

- (a) E is minimum for $a_1 = a_2 = \cdots = a_{n-1} \le a_n$;
- (b) *E* is maximum for either $a_1 = a$ or $a < a_1 \le a_2 = \cdots = a_n$.

Right Half Convex Function Theorem for Ordered Variables (Vasile Cîrtoaje, 2008). Let f be a real function defined on an interval \mathbb{I} and convex on $\mathbb{I}_{\geq s}$, where $s \in int(\mathbb{I})$. The inequality

$$f(a_1)+f(a_2)+\cdots+f(a_n) \ge nf\left(\frac{a_1+a_2+\cdots+a_n}{n}\right)$$

holds for all $a_1, a_2, \ldots, a_n \in \mathbb{I}$ satisfying

$$a_1 + a_2 + \cdots + a_n = ns$$

and

$$a_1 \le a_2 \le \dots \le a_m \le s, \quad m \in \{1, 2, \dots, n-1\},$$

if and only if

$$f(x) + (n-m)f(y) \ge (1+n-m)f(s)$$

for all $x, y \in \mathbb{I}$ such that

$$x \le s \le y$$
, $x + (n - m)y = (1 + n - m)s$.

Left Half Convex Function Theorem for Ordered Variables (*Vasile Cîrtoaje*, 2008). Let f be a real function defined on an interval \mathbb{I} and convex on $\mathbb{I}_{\leq s}$, where $s \in int(\mathbb{I})$. The inequality

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf\left(\frac{a_1 + a_2 + \dots + a_n}{n}\right)$$

holds for all $a_1, a_2, \ldots, a_n \in \mathbb{I}$ satisfying

$$a_1 + a_2 + \dots + a_n = ns$$

and

$$a_1 \ge a_2 \ge \dots \ge a_m \ge s$$
, $m \in \{1, 2, \dots, n-1\}$,

if and only if

$$f(x) + (n-m)f(y) \ge (1+n-m)f(s)$$

for all $x, y \in \mathbb{I}$ such tht

$$x \ge s \ge y$$
, $x + (n - m)y = (1 + n - m)s$.

Right Partially Convex Function Theorem (Vasile Cîrtoaje, 2012). Let f be a real function defined on an interval \mathbb{I} and convex on $[s,s_0]$, where $s,s_0 \in \mathbb{I}$, $s < s_0$. In addition, f is decreasing on $\mathbb{I}_{\leq s_0}$ and $f(u) \geq f(s_0)$ for $u \in \mathbb{I}$. The inequality

$$f(a_1)+f(a_2)+\cdots+f(a_n) \ge nf\left(\frac{a_1+a_2+\cdots+a_n}{n}\right)$$

holds for all $a_1, a_2, \ldots, a_n \in \mathbb{I}$ satisfying

$$a_1 + a_2 + \dots + a_n = ns$$

if and only if

$$f(x) + (n-1)f(y) \ge nf(s)$$

for all $x, y \in \mathbb{I}$ such that $x \le s \le y$ and x + (n-1)y = ns.

Left Partially Convex Function Theorem (Vasile Cîrtoaje, 2012). Let f be a real function defined on an interval \mathbb{I} and convex on $[s_0, s]$, where $s_0, s \in \mathbb{I}$, $s_0 < s$. In addition, f is increasing on $\mathbb{I}_{\geq s_0}$ and $f(u) \geq f(s_0)$ for $u \in \mathbb{I}$. The inequality

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf\left(\frac{a_1 + a_2 + \dots + a_n}{n}\right)$$

holds for all $a_1, a_2, \ldots, a_n \in \mathbb{I}$ satisfying

$$a_1 + a_2 + \dots + a_n = ns$$

if and only if

$$f(x) + (n-1)f(y) \ge nf(s)$$

for all $x, y \in \mathbb{I}$ such that $x \ge s \ge y$ and x + (n-1)y = ns.

Right Partially Convex Function Theorem for Ordered Variables (Vasile Cirtoaje, 2014). Let f be a real function defined on an interval \mathbb{I} and convex on $[s,s_0]$, where $s,s_0 \in \mathbb{I}$, $s < s_0$. In addition, f is decreasing on $\mathbb{I}_{\leq s_0}$ and $f(u) \geq f(s_0)$ for $u \in \mathbb{I}$. The inequality

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf\left(\frac{a_1 + a_2 + \dots + a_n}{n}\right)$$

holds for all $a_1, a_2, \ldots, a_n \in \mathbb{I}$ satisfying

$$a_1 + a_2 + \cdots + a_n = ns$$

and

$$a_1 \le a_2 \le \dots \le a_m \le s, \quad m \in \{1, 2, \dots, n-1\},$$

if and only if

$$f(x) + (n-m)f(y) \ge (1+n-m)f(s)$$

for all $x, y \in \mathbb{I}$ such that $x \le s \le y$ and x + (n - m)y = (1 + n - m)s.

Left Partially Convex Function Theorem for Ordered Variables (Vasile Cirtoaje, 2014). Let f be a real function defined on an interval \mathbb{I} and convex on $[s_0, s]$, where $s_0, s \in \mathbb{I}$, $s_0 < s$. In addition, f is increasing on $\mathbb{I}_{\geq s_0}$ and $f(u) \geq f(s_0)$ for $u \in \mathbb{I}$. The inequality

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge nf\left(\frac{a_1 + a_2 + \dots + a_n}{n}\right)$$

holds for all $a_1, a_2, \ldots, a_n \in \mathbb{I}$ satisfying

$$a_1 + a_2 + \cdots + a_n = ns$$

and

$$a_1 \ge a_2 \ge \dots \ge a_m \ge s$$
, $m \in \{1, 2, \dots, n-1\}$,

if and only if

$$f(x) + (n-m)f(y) \ge (1+n-m)f(s)$$

for all $x, y \in \mathbb{I}$ such that $x \ge s \ge y$ and x + (n - m)y = (1 + n - m)s.

Equal Variables Theorem for Nonnegative Variables (Vasile Cirtoaje, 2005). Let $a_1, a_2, ..., a_n$ ($n \ge 3$) be fixed nonnegative real numbers, and let

$$0 \le x_1 \le x_2 \le \cdots \le x_n$$

such that

$$x_1 + x_2 + \dots + x_n = a_1 + a_2 + \dots + a_n, \quad x_1^k + x_2^k + \dots + x_n^k = a_1^k + a_2^k + \dots + a_n^k,$$

where k is a real number $(k \neq 1)$; for k = 0, assume that

$$x_1x_2\cdots x_n=a_1a_2\cdots a_n$$
.

Let f be a real-valued function, continuous on $[0, \infty)$ and differentiable on $(0, \infty)$, such that the associated function

$$g(x) = f'\left(x^{\frac{1}{k-1}}\right)$$

is strictly convex on $(0, \infty)$. Then, the sum

$$S_n = f(x_1) + f(x_2) + \dots + f(x_n)$$

is maximum for

$$x_1 = x_2 = \dots = x_{n-1} \le x_n,$$

and is minimum for

$$0 < x_1 \le x_2 = x_3 = \cdots = x_n$$

or

$$0 = x_1 = \dots = x_j \le x_{j+1} \le x_{j+2} = \dots = x_n, \quad j \in \{1, 2, \dots, n-1\}.$$

Equal Variables Theorem for Real Variables (*Vasile Cirtoaje*, 2010). *Let* $a_1, a_2, ..., a_n$ ($n \ge 3$) *be fixed real numbers, and let*

$$0 \le x_1 \le x_2 \le \cdots \le x_n$$

such that

$$x_1 + x_2 + \dots + x_n = a_1 + a_2 + \dots + a_n, \quad x_1^k + x_2^k + \dots + x_n^k = a_1^k + a_2^k + \dots + a_n^k,$$

where k is an even positive integer. If f is a differentiable function on \mathbb{R} such that the associated function $g: \mathbb{R} \to \mathbb{R}$ defined by

$$g(x) = f'\left(\sqrt[k-1]{x}\right)$$

is strictly convex on \mathbb{R} , then the sum

$$S_n = f(x_1) + f(x_2) + \dots + f(x_n)$$

is minimum for $x_2 = x_3 = \cdots = x_n$, and is maximum for $x_1 = x_2 = \cdots = x_{n-1}$.

Best Upper Bound of Jensen's Difference Theorem (*Vasile Cirtoaje*, 1990). Let p_1, p_2, \ldots, p_n ($n \ge 3$) be fixed positive real numbers, and let f be a convex function on $\mathbb{I} = [a, b]$. If $a_1, a_2, \ldots, a_n \in \mathbb{I}$, then Jensen's difference

$$\frac{p_1 f(a_1) + p_2 f(a_2) + \dots + p_n f(a_n)}{p_1 + p_2 + \dots + p_n} - f\left(\frac{p_1 a_1 + p_2 a_2 + \dots + p_n a_n}{p_1 + p_2 + \dots + p_n}\right)$$

is maximum when all $a_i \in \{a, b\}$.

Appendix B

Bibliography

- [1] Andreescu T., Cîrtoaje V., Dospinescu G., Lascu M., *Old and New Inequalities*, GIL Publishing House, 2004.
- [2] Bin X., Boreico I., Can V.Q.B., Bulj A., Lascu M., *Opympiad Inequalities*, GIL Publishing House, 2015.
- [3] Bin X., Boreico I., Can V.Q.B., Cîrtoaje V., Lascu M., *An Introduction to Inequalities*, GIL Publishing House, 2015.
- [4] Can V.Q.B., Pohoață C., Old and New Inequalities, GIL Publishing House, 2008.
- [5] Can V.Q.B., Anh T.Q., Su Dung Phuong Phap Cauchy-Schwarz De Chung Minh Bat Dang Thuc, Nha Xuat Ban Dai Hoc Su Pham, 2010.
- [6] Cîrtoaje V., *Asupra unor inegalitati cu restrictii*, Revista matematica din Timisoara, Nr. 1, 1990.
- [7] Cîrtoaje V., *Two Generalizations of Popoviciu's Inequality*, Crux Mathematicorum, Issue 5, 2005.
- [8] Cîrtoaje V., A Generalization of Jensen's Inequality, Gazeta Matematica-A, Nr. 2, 2005.
- [9] Cîrtoaje V., *Algebraic Inequalities-Old and New Methods*, GIL Publishing House, 2006.
- [10] Cîrtoaje V., *The Equal Variable Method*, Journal of Inequalities In Pure and Applied Mathematics, Volume 8, Issue 1, 2007.
- [11] Cîrtoaje V., On Jensen Type Inequalities with Ordered Variables, Journal of Inequalities In Pure and Applied Mathematics, Volume 9, Issue 1, 2008.
- [12] Cîrtoaje V., *The Proof of Three Open Inequalities*, Crux Mathematicorum, Volume 34, Issue 4, 2008.
- [13] Cîrtoaje V., Can V.Q.B., Anh T.Q., *Inequalities with Beautiful Solutions*, GIL Publishing House, 2009.
- [14] Cîrtoaje V., *The Best Lower Bound Depended on Two Fixed Variables for Jensen's Inequality with Ordered Variables*, Journal of Inequalities and Applications, Volume 2010.

[15] Cîrtoaje V., *The Best Upper Bound for Jensen's Inequality*, Australian Journal of Mathematical Analysis and Aplications, Volume 7, Issue 2, Art. 22, 2011.

- [16] Cîrtoaje V., Baiesu A., *An Extension of Jensen's discrete inequality to half convex functions*, Journal of Inequalities and Applications, Volume 2011.
- [17] Cîrtoaje V., *The Best Lower Bound for Jensen's Inequality with three fixed ordered variables Journal*, Banach Journal of Mathematical Analysis, Volume 7, Issue 1, 2013.
- [18] Cîrtoaje V., An Extension of Jensen's discrete inequality to partially convex functions, Journal of Inequalities and Applications, Volume 2013:54.
- [19] Cîrtoaje V., *On the Equal Variables Method Applied to Real Variables*, Creative Mathematics and Informatics, no. 2, 2015.
- [20] Cîrtoaje V., *Three extensions of HCF and PCF theorems*, Advances in Inequalities and Applications, no. 2, 2016.
- [21] Cîrtoaje V., Extensions of Jensen's discrete inequality with ordered variables to half and partially convex functions, Journal of Inequalities and Special Functions, Volume 8, Issue 3, 2017.
- [22] Cîrtoaje V., Mathematical Inequalities Volume 1, Symmetric Polynomial Inequalities, Lambert Academic Publishing, 2018.
- [23] Cîrtoaje V., *Mathematical Inequalities Volume 2, Symmetric Rational and Non-rational Inequalities*, Lambert Academic Publishing, 2018.
- [24] Cîrtoaje V., *Mathematical Inequalities Volume 3, Cyclic and Noncyclic Inequalities*, Lambert Academic Publishing, 2018.
- [25] Cvetkovski, *Inequalities: Theorems, Techniques and Selected Problems*, Springer-Verlag Berlin Heidelberg, 2012.
- [26] Hung P.K., *Secrets in Inequalities*, Volume 1: Basic Inequalities, GIL Publishing House, 2007.
- [27] Hung P.K., Secrets in Inequalities, Volume 2: Advanced Inequalities, GIL Publishing House, 2008.
- [28] Littlewood G.H., Polya J.E., Inequalities, Cambridge University Press, 1967.
- [29] Mitrinovič D.S., Pecarič J.E., Fink A.M., Classical and New Inequalities in Analysis, Kluwer, 1993.