

Rules

- 1) Attend the whole cecsion (2 hrs) + 2:15 min 20
- 2) Inteniero Probleme not to be missed

Linked List is ?

Arrays, List, (LL), 8tring

Node

User defined data type

get -> O(1) T.C.

What is a Tree data structure

- 1) Non-Linear D.C.
- 2) Heirarchical D.S

Representation

Terminology

- \./. Root
- ,2/Child Node
- 3. Parent Node
- **Sibling Nodes**

7311

Terminology

- Z. Leaf Node -> 4,6,8,9,10,11
- 8. Internal Node ! leaf bl ! noot
- 7. Ancestor Node
- Descendant Node
- 1 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
 - 2 -> 4, 5, 6, 9, 10
 - 3 7 7, 8, 11

Root

Terminology

% Level > 4 JØ. Number of edges → It M. Height = lewl-1 JZ. Size -> no. of nodel = 11

Edges = Size - 1

- 1) left sub tree
- 2) Right sub tree

Important Properties of trees

- Traversing in a tree is done by depth first search and breadth first search algorithm.
- It has no loop and no circuit.
- 3. It has no self-loop.

1. Generic Trees

Each mode can have any number of child nodes

2. Binary Trees

· Each mode can have atmost 2 child nodes. -> which are known as left dild node & eight dild.

3. Binary Search Trees

- · Each mode can have atmost 2 child nodes. -> which are known as left dild node & eight dild
 - every mode to tre left of a mode is smaller & every mode to the right has a greater value.

What are Binary Trees?

· Each mode can have atmost 2 child nodes. -> which are known as left died node & eight died.

Implementation

Creating a Node class

```
class Node &
int val;
Node libt;
Node Right;
```


elements present skills Find size of Binary Tree

Find size of Binary Tree

int size (Node noot) {

Si3e(1) = (+Si3e(2) + Si3e(3) + Si3e(3)) Si3e(2) = (+Si3e(4) + Si3e(5))Si3e(4) = (+Si3e(4) + Si3e(5))

Find sum of tree nodes

T. C. =
$$O(n)$$
 where n is no. of nodes

Find node with max value

Find height of Binary Tree

leaf node -> return 0;

🚯 skills

Size, Sum, Height, MaxValue

Root L left subtree L Right Subtree

Homework:

- min Value in the tree
- -> product of the tree.

Trees

class Node {
 int val;
 Node next;

(1) -> (2) -> (3) -> (4)

t. next = t.next.next

Ancestors & Decendants

Heirarchy

Upride down

class Node 2
int val;
Node left;
Node right;


```
public static void display(Node root){
    if(root==null) return;
    System.out.print(root.val+"-> ");
    if(root.left!=null) System.out.print(root.left.val+" ");
    if(root.right!=null) System.out.print(root.right.val+" ");
    System.out.println();
    display(root.left);
    display(root.right);
}
```


Sum = 45?

max (root val, sum/left), cm/right)

🦍 skills

(1)-1 (2)-1(3)-3 (4)-1 (8)-3 NULL Size blengter one same

£1,2,3,4,5,63

but in freel size = number of nodes height =

Levels/ Height:

level (1) = 1 + max (left levels, rightland)

H.W.

1) to calculate the nin'

value in free

2) Product of all nodes