Санкт-Петербургский государственный университет Прикладная математика и информатика Статистическое моделирование

Федоров Никита, Понизова Вероника СТАТИСТИЧЕСКИЙ АНАЛИЗ ВРЕМЕННЫХ РЯДОВ

Конспект

Оглавление

Гла	ва 1	. Общая часть	5
-	1.1.	Периодограмма временного ряда	7
-	1.2.	Тренд: аналитический и стохастический, периодограмма тренда	8
-	1.3.	Периодическая компонента и ее периодограмма	9
-	1.4.	Шум и его периодограмма	10
-	1.5.	Периодограмма как оценка спектральной плотности, распределение зна-	
		чений, сглаживание периодограммы	11
-	1.6.	Различия между сглаживанием и выделением тренда	12
-	1.7.	Линейный фильтр, импульсная характеристика, причинный фильтр, FIR	13
-	1.8.	Характеристики фильтра через его воздействие на $\cos(2\pi\omega n)$ (или на	
		комплексную экспоненту) – АЧХ, ФЧХ	14
-	1.9.	АЧХ фильтра скользящего среднего, зависимость от длины окна	15
-	1.10.	АЧХ фильтра перехода к разностям (дифференцирования)	16
-	1.11.	Что такое запаздывание и отчего оно может возникать (на примере сколь-	
		зящего среднего)?	17
-	1.12.	Смещение при сглаживании фильтром скользящего среднего	18
-	1.13.	Фильтр для подавления шума	19
-	1.14.	Связь между периодограммами ряда до и после применения фильтра .	20
-	1.15.	Модели данных – аддитивная и мультипликативная	21
-	1.16.	Методы стабилизации дисперсии в разных моделях	22
-	1.17.	Выделение тренда у ряда с сезонностью (выбор длины окна в скользящем	
		среднем)	23
-	1.18.	Переход к разностям – плюсы и минусы (устранение тренда, превращение	
		ряда в стационарный, усиление вклада высоких частот)	24
-	1.19.	Скользящее среднее и скользящая медиана	25
-	1.20.	Растекание частоты в периодограмме и методы его устранения	26
-	1.21.	Выделение тренда с помощью параметрической регрессии	27
-	1.22.	Выделение тренда с помощью метода LOESS	28
-	1.23.	Нахождение огибающей периодического ряда с помощью выделения тренда	29
-	1.24.	Оценивание поведения дисперсии шума с помощью выделения тренда .	30

1.25.	Метод разложения Classical seasonal decomposition	31
1.26.	Метод разложения STL	32
Глава 2	. Метод SSA	33
2.1.	Последовательный SSA	35
2.2.	Слабая и сильная разделимость	36
2.3.	Определение сильной и слабой разделимости при смешивании компонент	37
2.4.	Идентификация тренда	38
2.5.	Идентификация периодичности (сезонности)	39
2.6.	Использование матрицы взвешенных корреляций	40
2.7.	Элементарные восстановленные компоненты	41
2.8.	Корни характеристического полинома: сигнальные и лишние	42
2.9.	Оценка параметров в SSA	43
2.10.	Прогноз	44
2.11.	Доверительные интервалы	45
2.12.	Автоматическая идентификация	46
2.13.	Заполнение пропусков	47
2.14.	Теплицев SSA для стационарных рядов	48
2.15.	Projection SSA, выделение линейного тренда	49
2.16.	Iterative O-SSA и DerivSSA	50
2.17.	Аппроксимация Cadzow SSA	51
2.18.	MSSA для анализа многомерных временных рядов	52
2.19.	2D-SSA для разложения изображения	53
Глава 3	. ARIMA	54
3.1.	AR(p) – модель, запись в виде с оператором сдвига	55
3.2.	AR(p) и модель сигнала в SSA	56
3.3.	Вид автоковариационной функции acf для $AR(p)$	57
3.4.	Вид расf для AR(p)	58
3.5.	Модель MA(q), вид acf и pacf	59
3.6.	ARMA(p,q)	60
3.7.	Дифференцирование, ARIMA	61
3.8.	Seasonal ARIMA(p,d,q)(P,D,Q)	62

3.9.	Exponential smoothing,	модели трег	нда, ЕЅ и	ARIMA	 	 	 63

Глава 1

Общая часть

- Что такое периодограмма?
- Что такое тренд (разные варианты определения)? Как выглядит периодограмма тренда?
- Что такое периодическая компонента? Как выглядит ее периодограмма?
- Что такое шум? Как выглядит его периодограмма?
- Периодограмма как оценка спектральной плотности. Распределение значений. Сглаживание периодограммы.
- Чем отличается сглаживание от выделения тренда?
- Что такое линейный фильтр, импульсная характеристика? Причинный фильтр, FIR.
- Характеристики фильтра через его воздействие на $\cos(2\pi\omega n)$ (или на комплексную экспоненту) АЧХ, ФЧХ.
- АЧХ фильтра скользящего среднего, зависимость от длины окна.
- АЧХ фильтра перехода к разностям (дифференцирования).
- Что такое запаздывание и отчего оно может возникать (на примере скользящего среднего)?
- Смещение при сглаживании фильтром скользящего среднего. Роль второй производной.
- Фильтр для подавления шума. Роль нормы коэффициентов фильтра.
- Как связаны периодограммы ряда до применения фильтра и после применения фильтра?
- Модели данных аддитивная и мультипликативная.

- Методы стабилизации дисперсии в разных моделях (логарифмирование, извлечение квадратного корня, ...).
- Выделение тренда у ряда с сезонностью (выбор длины окна в скользящем среднем).
- Переход к разностям плюсы и минусы (устранение тренда, превращение ряда в стационарный, усиление вклада высоких частот).
- Скользящее среднее и скользящая медиана.
- Растекание частоты в периодограмме. Подправка длины ряда для ее устранения.
- Выделение тренда с помощью параметрической регрессии.
- Выделение тренда с помощью метода LOESS
- Нахождение огибающей периодического ряда с помощью выделения тренда.
- Оценивание поведения дисперсии шума с помощью выделения тренда.
- Метод разложения Classical seasonal decomposition.
- Метод разложения STL.

1.1. Периодограмма временного ряда

1.2. Тренд: аналитический и стохастический, периодограмма тренда

1.3. Периодическая компонента и ее периодограмма

1.4. Шум и его периодограмма

1.5. Периодограмма как оценка спектральной плотности, распределение значений, сглаживание периодограммы

1.6. Различия между сглаживанием и выделением тренда

1.7. Линейный фильтр, импульсная характеристика, причинный фильтр, FIR

1.8. Характеристики фильтра через его воздействие на $\cos(2\pi\omega n)$ (или на комплексную экспоненту) — АЧХ, ФЧХ

1.9. AЧX фильтра скользящего среднего, зависимость от длины окна

1.10. АЧХ фильтра перехода к разностям (дифференцирования)

1.11. Что такое запаздывание и отчего оно может возникать (на примере скользящего среднего)?

1.12. Смещение при сглаживании фильтром скользящего среднего

1.13. Фильтр для подавления шума

1.14. Связь между периодограммами ряда до и после применения фильтра 1.15. Модели данных – аддитивная и мультипликативная

1.16. Методы стабилизации дисперсии в разных моделях

1.17. Выделение тренда у ряда с сезонностью (выбор длины окна в скользящем среднем)

1.18. Переход к разностям – плюсы и минусы (устранение тренда, превращение ряда в стационарный, усиление вклада высоких частот)

1.19. Скользящее среднее и скользящая медиана

1.20. Растекание частоты в периодограмме и методы его устранения

1.21. Выделение тренда с помощью параметрической регрессии

1.22. Выделение тренда с помощью метода LOESS

1.23. Нахождение огибающей периодического ряда с помощью выделения тренда

1.24. Оценивание поведения дисперсии шума с помощью выделения тренда

1.25. Метод разложения Classical seasonal decomposition

1.26. Метод разложения STL

Глава 2

Метод SSA

- Как выбирать L.
- Последовательный SSA.
- Слабая и сильная разделимость.
- Компоненты смешались. Как понять, это слабая или сильная разделимость?
- Как идентифицировать тренд?
- Как идентифицировать периодичность?
- Использование матрицы взвешенных корреляций.
- Элементарные восстановленные компоненты.
- Корни хар.полинома, сигнальные и лишние.
- Оценка параметров в SSA.
- Прогноз.
- Доверительные интервалы.
- Автоматическая идентификация.
- Заполнение пропусков.
- Теплицев SSA для стац. рядов.
- Projection SSA, выделение лин.тренда.
- Улучшение разделимости с помощью вращения в выбранном подпространстве: Iterative O-SSA (слабая и сильная разделимость) и DerivSSA (сильная разделимость).
- Аппроксимация Cadzow SSA.

- MSSA для анализа многомерных временных рядов. Когда лучше анализировать ряды вместе, а когда отдельно?
- 2D-SSA для разложения изображения.

2.1. Последовательный SSA

2.2. Слабая и сильная разделимость

2.3. Определение сильной и слабой разделимости при смешивании компонент

2.4. Идентификация тренда

2.5. Идентификация периодичности (сезонности)

2.6. Использование матрицы взвешенных корреляций

2.7. Элементарные восстановленные компоненты

2.8. Корни характеристического полинома: сигнальные и лишние

2.9. Оценка параметров в SSA

$2.10.\ \Pi$ рогноз

2.11. Доверительные интервалы

2.12. Автоматическая идентификация

2.13. Заполнение пропусков

2.14. Теплицев SSA для стационарных рядов

2.15. Projection SSA, выделение линейного тренда

2.16. Iterative O-SSA и DerivSSA

2.17. Аппроксимация Cadzow SSA

2.18. MSSA для анализа многомерных временных рядов

2.19. 2D-SSA для разложения изображения

Глава 3

ARIMA

- AR(p) модель, запись в виде с оператором сдвига
- AR(p) и модель сигнала в SSA
- Вид автоковариационной функции асf для AR(p)
- Вид расf для AR(p)
- Модель MA(q), вид acf и pacf
- ARMA(p,q)
- Дифференцирование, ARIMA
- Seasonal ARIMA(p,d,q)(P,D,Q)
- Exponential smoothing, модели тренда, ES и ARIMA

3.1. AR(p) – модель, запись в виде с оператором сдвига

3.2. AR(p) и модель сигнала в SSA

3.3. Вид автоковариационной функции acf для AR(p)

3.4. Вид расf для AR(p)

3.5. Модель MA(q), вид acf и pacf

3.6. ARMA(p,q)

3.7. Дифференцирование, ARIMA

3.8. Seasonal ARIMA(p,d,q)(P,D,Q)

3.9. Exponential smoothing, модели тренда, ES и ARIMA