

Welcome to EECS 16A!

Designing Information Devices and Systems I

Ana Arias and Miki Lustig

2022

Lecture 12B Least Squares

GPS

- 24 satellites
 - Known position
 - Time synchronized
 - 8 usually visible
- Problem:
 - Classify which satellite is transmitting
 - Estimate distance to GPS
 - Estimate position from noisy data
- Tools:
 - Inner product
 - Cross correlation
 - Least Squares

Orthogonal Projections

Given vectors \overrightarrow{a} , \overrightarrow{b} , we say that the orthogonal projection of \overrightarrow{b} onto \overrightarrow{a} is:

$$\operatorname{Proj}_{\overrightarrow{b}}(\overrightarrow{a}) = \frac{\overrightarrow{b}^T \overrightarrow{a}}{\|\overrightarrow{a}\|^2} \overrightarrow{a}$$

Example 2D

3 equations 2 unknowns:

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 \\ \overrightarrow{a_1} & \overrightarrow{a_2} \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ \overrightarrow{b} \\ 1 \end{bmatrix}$$

$$\text{No solution means: } \overrightarrow{b} \notin \text{colspace}(A)$$

$$\text{Find } \widehat{x} \text{ that has the smallest error } \overrightarrow{a_1}$$

$$\|\overrightarrow{e}\| = \|A\widehat{x} - \overrightarrow{b}\| \le \|Ax - \overrightarrow{b}\|$$

$$\text{colspace}(A)$$

Orthogonal projection onto colspace(A)!

Theorem: Consider matrix A, and
$$\overrightarrow{y} \in \operatorname{colspace}(A)$$

Theorem: Consider matrix A, and
$$\overrightarrow{y} \in \operatorname{colspace}(A)$$

If $\exists \overrightarrow{z}$, such that $\langle \overrightarrow{z}, \overrightarrow{a}_i \rangle = 0$, then $\langle \overrightarrow{z}, \overrightarrow{y} \rangle = 0$. $A = \begin{bmatrix} | & | & | \\ | \overrightarrow{a}_1 & | & | & | \\ | & | & | & | \end{bmatrix}$

$$A = \begin{bmatrix} | & | & | \\ \overrightarrow{a}_1 & \overrightarrow{a}_2 & \cdots & \overrightarrow{a}_N \\ | & | & | \end{bmatrix}$$

Proof:

Know:
$$\overrightarrow{y} = c_1 \overrightarrow{a}_1 + c_2 \overrightarrow{a}_2 + \dots + c_N \overrightarrow{a}_N$$

Show:
$$\langle \vec{z}, \vec{y} \rangle = 0$$

$$\langle \vec{z}, c_1 \overrightarrow{a}_1 + \dots + c_N \overrightarrow{a}_N \rangle = c_1 \vec{z}^T \overrightarrow{a}_1 + \dots + c_N \vec{z}^T \overrightarrow{a}_N$$

$$= c_1 \cdot (0) + \dots + c_N \cdot (0)$$

$$\frac{1}{z}$$
 $\frac{1}{z}$

Least Squares

$$\operatorname{argmin}_{\overrightarrow{x}} \| \overrightarrow{e} \| = \| A \overrightarrow{x} - \overrightarrow{b} \|$$

$$\overrightarrow{e} = \overrightarrow{b} - \hat{b}$$

Since
$$\overrightarrow{e} \perp \operatorname{col}(A)$$
, $\langle \overrightarrow{a}_i, \overrightarrow{e} \rangle = 0$

$$\left\langle \overrightarrow{a}_{i}, \overrightarrow{b} - \hat{b} \right\rangle = 0$$

$$\overrightarrow{a}_i^T (\overrightarrow{b} - \hat{b}) = 0$$

$$A = \begin{bmatrix} | & | & | \\ \overrightarrow{a}_1 & \overrightarrow{a}_2 & \cdots & \overrightarrow{a}_N \\ | & | & | \end{bmatrix}$$

Least Squares

$$\operatorname{argmin}_{\overrightarrow{x}} \| \overrightarrow{e} \| = \| A \overrightarrow{x} - \overrightarrow{b} \|$$

$$\overrightarrow{e} = \overrightarrow{b} - \hat{b}$$

Since
$$\overrightarrow{e} \perp \operatorname{col}(A)$$
, $\langle \overrightarrow{a}_i, \overrightarrow{e} \rangle = 0$

$$\left\langle \overrightarrow{a}_{i}, \overrightarrow{b} - \hat{b} \right\rangle = 0$$

$$\overrightarrow{a}_i^T(\overrightarrow{b} - \hat{b}) = 0$$

$$\begin{bmatrix} - & \overrightarrow{a}_1^T & - \\ - & \overrightarrow{a}_2^T & - \\ \vdots & & \\ - & \overrightarrow{a}_N^T & - \end{bmatrix} \begin{bmatrix} - & \overrightarrow{b} \\ \overrightarrow{b} & - & \overrightarrow{b} \end{bmatrix} = 0$$

$$A = \begin{bmatrix} | & | & | \\ \overrightarrow{a}_1 & \overrightarrow{a}_2 & \cdots & \overrightarrow{a}_N \\ | & | & | \end{bmatrix}$$

$$\overrightarrow{x} \in \operatorname{colspace}(A)$$

$$\rightarrow \operatorname{Find} \hat{b} = A\hat{x}$$

Least Squares

$$\begin{bmatrix} - & \overrightarrow{a}_{1}^{T} & - \\ - & \overrightarrow{a}_{2}^{T} & - \\ \vdots & \vdots & \vdots \\ - & \overrightarrow{a}_{N}^{T} & - \end{bmatrix} \begin{bmatrix} - & \overrightarrow{b} \\ \overrightarrow{b} - \overrightarrow{b} \end{bmatrix} = 0$$

$$A^{T} (\overrightarrow{b} - A\hat{x}) = 0$$

$$A^T \overrightarrow{b} - A^T A \hat{x} = 0$$

$$A^T A \hat{x} = A^T \overrightarrow{b}$$

If A is full Rank, then A^TA is invertible

$$\hat{x} = (A^T A)^{-1} A^T \overrightarrow{b}$$

$$\hat{b} = A(A^T A)^{-1} A^T \overrightarrow{b}$$

$$A = \begin{bmatrix} | & | & | \\ \overrightarrow{a}_1 & \overrightarrow{a}_2 & \cdots & \overrightarrow{a}_N \\ | & | & | \end{bmatrix}$$

$$\overrightarrow{Ax} \in \operatorname{colspace}(A)$$

$$\rightarrow \operatorname{Find} \hat{b} = A\hat{x}$$

$$A\overrightarrow{x} = \overrightarrow{b}$$

$$\begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} x \\ = 1 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} \qquad 2x = 1$$

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad 4x = 1$$

$$A\overrightarrow{x} = \overrightarrow{b}$$

$$\begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} x \\ = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \lambda x = 1$$

$$\begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \lambda x = 1$$

$$\begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \lambda x = 1$$

Least Squares:

$$\hat{x} = (A^T A)^{-1} A^T \vec{b}$$

$$= (\frac{4}{5}) [4] [4]$$

$$= (\frac{4}{5}) \cdot 3 = \boxed{3}$$

$$A^{T}A = \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 5$$
 $(A^{T}A)^{-1} = \frac{1}{5}$

$$\overrightarrow{Ax} = \overrightarrow{b}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{array}{c} x_1 = 1 \\ x_2 = 3 \end{array}$$
Least Squares:
$$\hat{x} = (A^T A)^{-1} A^T \overrightarrow{b}$$

$$= \begin{bmatrix} 4 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\hat{x} = (A^T A)^{-1} A^T \vec{b}$$

$$= \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1/2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\$$

$$(A^{T}A)^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

Known: Waller: (x_1, y_1) Sahai: (x_2, y_2) Alon: (x_4, y_4) Stojanovic: (x_5, y_5) Ranade: (x_6, y_6) Courtade: (x_7, y_7) Liu: (x_8, y_8)

Model: y = ax + b

Known: Waller: (x_1, y_1)

Sahai: (x_2, y_2)

Alon: (x_4, y_4)

Stojanovic: (x_5, y_5)

Ranade: (x_6, y_6)

Courtade: (x_7, y_7)

Liu: (x_8, y_8)

y = ax + bModel:

Waller: (x_1, y_1) Known:

Sahai: (x_2, y_2)

Alon: (x_4, y_4)

Stojanovic: (x_5, y_5)

Ranade: (x_6, y_6)

Courtade: (x_7, y_7)

Liu: (x_8, y_8)

$$\overrightarrow{e} = A\hat{p} - \overrightarrow{y}$$

Q: What are the elements of : \overrightarrow{e} on this graph?

Model: y = ax + b

 y_1

*y*₃

*y*₈

Known: Waller: (x_1, y_1)

Sahai: (x_2, y_2)

Alon: (x_4, y_4)

Stojanovic: (x_5, y_5)

Ranade: (x_6, y_6)

Courtade: (x_7, y_7)

Liu: (x_8, y_8)

$$\hat{p} = (A^T A)^{-1} A^T \overrightarrow{y}$$

Online Courses

What they promise you will learn

What you actually learn

BUT, not everything fits to a line!?!

Example 4: Regression

Gauss found Ceres by using Kepler's laws:

Model:
$$ax^2+by^2+cxy+dx+ey=1$$

Q: Is this a linear fit?

A: Yes!

Knowns: (x_1, y_1) (x_2, y_2) \cdots (x_N, y_N)

Unknowns: $\overrightarrow{p} = [a \ b \ c \ d \ e]^T$

CURVE-FITTING METHODS AND THE MESSAGES THEY SEND QUADRATIC

EXPONENTIAL .

"I'M SOPHISTICATED, NOT

UITH MATH."

"I NEED TO CONNECT THESE TWO LINES, BUT MY FIRST IDEA DIDN'T HAVE ENOUGH MATH."

"LISTEN, SCIENCE IS HARD. BUT I'M A SERIOUS PERSON DOING MY BEST."

AND THIS IS THE ONLY DATA I COULD FIND

LINES' IN FXCFL."

MODEL SMOOTHLY FITS WHAT DO YOU THINK?" THE- WAIT NO NO DON'T Extend it aaaaaa!!"

Example 4: Regression

Gauss found Ceres by using Kepler's laws:

Model:
$$ax^2+by^2+cxy+dx+ey=1$$

Q: Is this a linear fit?

A: Yes!

Knowns: (x_1, y_1) (x_2, y_2) $\cdots (x_N, y_N)$

Unknowns: $\overrightarrow{p} = [a \ b \ c \ d \ e]^T$

Example 4: Regression

Gauss found Ceres by using Kepler's laws:

Model:
$$ax^2+by^2+cxy+dx+ey=1$$

Q: Is this a linear fit?

A: Yes!

Knowns:
$$(x_1, y_1)$$
 (x_2, y_2) $\cdots (x_N, y_N)$

Unknowns:
$$\overrightarrow{p} = [a \ b \ c \ d \ e]^T$$

$$\begin{bmatrix} x_1^2 & y_1^2 & x_1y_1 & x_1 & y_1 \\ x_2^2 & y_2^2 & x_2y_2 & x_2 & y_2 \\ \vdots & \vdots & \vdots & \vdots \\ x_2^2 & x_2^2 & x_2^2 & \vdots & \vdots \end{bmatrix}$$

$$\begin{bmatrix} \overrightarrow{p} & \overrightarrow{y} \\ a \\ b \\ c \\ d \\ e \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$

$$\hat{p} = (A^T A)^{-1} A^T \overrightarrow{y}$$

Example 5: Over Fitting

• Consider noisy measurements of y = 0.1x + 1:

Model: y = ax + b

$$\overrightarrow{p} = [0.1015 \ 0.9757]^T$$

Example 5: Over Fitting

• Consider noisy measurements of y = 0.1x + 1:

Model:
$$y = ax^3 + bx^2 + cx + d$$

Example 5: Over Fitting

• Consider noisy measurements of y = 0.1x + 1:

Model:
$$y = ax^7 + bx^6 + cx^5 + dx^4 + ex^3 + fx^2 + gx + h$$

$$||\overrightarrow{e}|| = 2.42$$

Example 5: Exponential Regression

Model: $y = ce^{ax}$

Q: Is this a linear fit?

A: No! But, can be made linear.....

New Model: $\log(y) = \log c + ax = b + ax$

Knowns: $(x_1, \log(y_1))$ $(x_2, \log(y_2))$ \cdots $(x_N, \log(y_N))$

Unknowns:
$$\overrightarrow{p} = [a \ b]_{\overrightarrow{y}}^T$$

Example 5: Exponential Regression

Model: $y = ce^{ax}$

Q: Is this a linear fit?

A: No! But, can be made linear.....

New Model: $\log(y) = \log c + ax = b + ax$

Knowns: $(x_1, \log(y_1))$ $(x_2, \log(y_2))$ \cdots $(x_N, \log(y_N))$

Unknowns: $\overrightarrow{p} = [a \ b]^T$

$$\begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_N & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \log y_1 \\ \log y_2 \\ \vdots \\ \log y_N \end{bmatrix}$$

$$\hat{c} = (A^T A)^{-1} A^T \overrightarrow{y}$$

$$\hat{c} = e^{\hat{b}}$$

Multi-Lateration

$$2(\overrightarrow{a}_{1} - \overrightarrow{a}_{2})^{T}\overrightarrow{x} - 2C^{2}\Delta\tau_{2}\tau_{1} = \|\overrightarrow{a}_{1}\|^{2} - \|\overrightarrow{a}_{2}\|^{2} + C^{2}(\Delta\tau_{2})^{2}$$

$$2(\overrightarrow{a}_{1} - \overrightarrow{a}_{3})^{T}\overrightarrow{x} - 2C^{2}\Delta\tau_{3}\tau_{1} = \|\overrightarrow{a}_{1}\|^{2} - \|\overrightarrow{a}_{3}\|^{2} + C^{2}(\Delta\tau_{3})^{2}$$

$$2(\overrightarrow{a}_{1} - \overrightarrow{a}_{4})^{T}\overrightarrow{x} - 2C^{2}\Delta\tau_{4}\tau_{1} = \|\overrightarrow{a}_{1}\|^{2} - \|\overrightarrow{a}_{4}\|^{2} + C^{2}(\Delta\tau_{4})^{2}$$

$$2(\overrightarrow{a}_{1} - \overrightarrow{a}_{5})^{T}\overrightarrow{x} - 2C^{2}\Delta\tau_{5}\tau_{1} = \|\overrightarrow{a}_{1}\|^{2} - \|\overrightarrow{a}_{5}\|^{2} + C^{2}(\Delta\tau_{5})^{2}$$

More equations than unknowns

Over-determined — Solve via Least-Squares

Q: How do we know if A^TA is invertible? A: if A is full rank!?!?

$$\hat{p} = (A^T A)^{-1} A^T \overrightarrow{y}$$

Matrix Transposes

Matrix Transposes

$$(AB)^T \left(\begin{array}{c} M & L \\ N \end{array} \right) \stackrel{L}{=} \left(\begin{array}{c} L \\ N \end{array} \right) \stackrel{N}{\in} \mathbb{R}^{L \times N} \stackrel{N}{\downarrow}$$

$$B^T A^T \stackrel{N}{=} \mathbb{R}^{L \times N} \stackrel{N}{\downarrow} \stackrel{N}{$$

$$(AB)^T = B^T A^T$$

Invertibility of $A^T A$

Invertible ⇒ Trivial null space ⇒ Linear independent cols/rows....

The matrix
$$A^T A$$
 is invertible iff Null $(A^T A) = \overrightarrow{0}$

Theorem: Null $(A^T A)$ = Null (A)

Proof: (1) show that if
$$\overrightarrow{w} \in \text{Null}(A)$$
, then $\overrightarrow{w} \in \text{Null}(A^T A)$

(2) show that if
$$\overrightarrow{v} \in \text{Null}(A^T A)$$
, then $\overrightarrow{v} \in \text{Null}(A)$

(1).
$$\overrightarrow{w} \in \text{Null}(A)$$

$$A\overrightarrow{w} = \overrightarrow{0}$$

$$A^{T}A\overrightarrow{w} = A^{T}\overrightarrow{0}$$

$$A^{T}A\overrightarrow{w} = \overrightarrow{0} \quad \checkmark$$

(2).
$$\overrightarrow{v} \in \text{Null}(A^T A)$$

$$A^T A \overrightarrow{v} = \overrightarrow{0} \quad \text{Need to show } A \overrightarrow{v} = \overrightarrow{0}$$

$$\text{Or...} \quad ||A \overrightarrow{v}|| = 0$$

$$||A \overrightarrow{v}||^2 = (A \overrightarrow{v})^T (A \overrightarrow{v})$$

$$= \overrightarrow{v}^T A^T (A \overrightarrow{v})$$

$$= \overrightarrow{v}^T (A^T A \overrightarrow{v}) = 0$$

Invertibility of A^TA

• What if A^TA is not invertible

$$A^T A \hat{x} = A^T \vec{b}$$

A: \hat{x} will have infinite solutions with the same $\overrightarrow{e} = A\hat{x} - \overrightarrow{b}$