Simulador de Redes de Computadoras

Descripción General:

Este simulador permite crear, visualizar y modificar topologías de redes de computadoras, simular el envío de paquetes usando diferentes algoritmos de enrutamiento y comparar su desempeño. Cuenta con una interfaz gráfica amigable y arquitectura modular para fácil mantenimiento y extensión.

Estructura del Sistema:

1. Modelo

Device: Clase base abstracta para cualquier dispositivo de red

DeviceType: Enumeración de tipos de dispositivos

PC / Router / Switch: Subclases concretas para cada tipo de dispositivo

Link: Representa un enlace dirigido entre dos dispositivos, incluyendo latencia.

NetworkGraph: Grafo dirigido que contiene todos los dispositivos y enlaces. Permite agregar, eliminar, conectar y observar cambios.

Packet: Representa un paquete de datos viajando a través de una ruta en la red.

2. Algoritmos y Simulación:

RoutingStrategy: Interfaz para algoritmos de ruteo. Permite cambiar el algoritmo de ruteo dinámicamente.

DijkstraStrategy: Busca la ruta de menor latencia total.

BfsStrategy: Busca la ruta con menor cantidad de saltos.

SimulationController: Coordina el proceso de simulación del envío de un paquete, usando la estrategia seleccionada.

SimulationListener: Permite recibir una notificación cuando termina la simulación visual.

3. Persistencia:

TopologySerializer: Interfaz para guardar y cargar topologías.

JsonTopologySerializer: Implementación para archivos en formato JSON usando la librería Jackson.

4. Utilidades:

DeviceFactory: Aplica el patrón Factory Method para crear instancias de dispositivos según el tipo requerido.

5. Vista y Controladores de Interfaz:

GraphView: Panel principal para mostrar la topología y las animaciones de paquetes.

DeviceNodeView: Componente visual para cada dispositivo (círculo con nombre, soporta arrastre).

LinkView: Componente visual para cada enlace, muestra la latencia y puede cambiar de color según parámetros.

MainWindow: Ventana principal; organiza menús, herramientas, áreas de edición y propiedades.

Flujos Principales del Sistema:

Edición Visual de Topologías: Agrega o elimina dispositivos, cambia el nombre y tipo de dispositivo, conecta o desconecta enlaces, edita latencias.

Simulación: Permite simular visualmente el envío de un paquete entre dos nodos y ver el recorrido que realiza según el algoritmo de ruteo elegido.

Benchmarks: Compara el rendimiento de Dijkstra y BFS, reportando tiempos y cantidad de saltos, tanto en redes generadas como cargadas desde JSON.

Persistencia y Exportación: Permite guardar/cargar topologías en archivos JSON y exportar el grafo a PDF.

Principios y Arquitectura:

Separación clara de responsabilidades (modelo, vista, controlador).

Principios SOLID: cada clase tiene una función específica, fácil de extender sin modificar el núcleo.

Uso de propiedades reactivas JavaFX para sincronización automática de la vista.

Serialización flexible usando Jackson (tolerante a cambios y evoluciones en el modelo).

Requisitos Técnicos:

Java 17 o superior

JavaFX

Librería Jackson para JSON