$$f(x) = x^{i_1}(x^{i_2-i_1}+1) + x^{i_3}(x^{i_4-i_3}+1) + \dots + x^{i_{k-1}}(x^{i_k-i_{k-1}}+1) \tag{*}$$

注意到, $\forall m \in \mathbb{Z}^+$,有 $x^m+1=(x+1)(x^{m-1}+x^{m-2}+\cdots+x+1)$ 。所以 (*) 式中的每一项均可被 (x+1) 整除。从而 $(x+1)\mid f(x)$ 。由于 x+1 的次数为 1,而 f(x) 的次数大于 1,所以 f(x) 是可约的。

这就证明了 $F_2[x]$ 上任何次数大于 1 的不可约多项式都不可能有偶数个(从而必有奇数个)非零系数。

18.38 x, x+1, x^2+x+1 , x^3+x+1 , x^3+x^2+1 , x^4+x+1 , x^4+x^3+1 , $x^4+x^3+x^2+x+1$.

18.39 由于 $F_2[x]$ 上次数小于 n 的多项式共有 2^n 个,所以只需取一个 3 次不可约多项式 f(x),就可以使 $F_2[x]/f(x)$ 为 8 阶有限域。由上题结论知,可以令 $f(x) = x^3 + x + 1$ 或令 $f(x) = x^3 + x^2 + 1$ 。

当 $f(x) = x^3 + x + 1$ 时,运算表如下:

+	0	1	x	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
0	0	1	x	x + 1	x^2	$x^{2} + 1$	$x^2 + x$	$x^2 + x + 1$
1	1	0	x + 1	x	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$
x	x	x + 1	0	1	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$
x + 1	x + 1	x	1	0	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2
x^2	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	x	x + 1
$x^{2} + 1$	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$	1	0	x + 1	x
$x^2 + x$	$x^2 + x$	$x^2 + x + 1$	$x^2 + 1$	$x^2 + 1$	x	x + 1	0	1
$x^2 + x + 1$	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2	x + 1	x	1	0

	0	1	x	x + 1	x^2	$x^{2} + 1$	$x^2 + x$	$x^2 + x + 1$
						0	0	0
					x^2		$x^2 + x$	$x^2 + x + 1$
x			x^2	$x^2 + x$	x + 1	1	$x^2 + x + 1$	$x^{2} + 1$
		x + 1	$x^2 + x$	$x^{2} + 1$	$x^2 + x + 1$	x^2	1	x
x^2	0	x^2	x + 1	$x^2 + x + 1$	$x^2 + x$	x	$x^{2} + 1$	1
$x^{2} + 1$	0	$x^{2} + 1$	1	x^2	x	x + 1	x + 1	$x^2 + x$
$x^2 + x$	0	$x^2 + x$	$x^2 + x + 1$	1	$x^{2} + 1$	$x^2 + x + 1$	x	x^2
$x^2 + x + 1$	0	$x^2 + x + 1$	$x^{2} + 1$	x	1	$x^2 + x$	x^2	x + 1

当 $f(x) = x^3 + x^2 + 1$ 时,加法表不变,乘法表如下:

	0	1	x	x + 1	x^2	$x^{2} + 1$	$x^2 + x$	$x^2 + x + 1$
			0					
			x		x^2	$x^{2} + 1$	$x^2 + x$	$x^2 + x + 1$
x	0	x	x^2	$x^2 + x$	$x^{2} + 1$	$x^2 + x + 1$	1	x + 1
x + 1	0	x + 1	$x^2 + x$	$x^{2} + 1$	1	x	$x^2 + x + 1$	x^2
x^2	0	x^2	$x^{2} + 1$	1	$x^2 + x + 1$	x + 1	x	$x^2 + x$
$x^{2} + 1$	0	$x^2 + 1$	$x^2 + x + 1$	x	x + 1	$x^2 + x$	x^2	1
$x^2 + x$	0	$x^2 + x$	1	$x^2 + x + 1$	x	x^2	x + 1	$x^{2} + 1$
$x^2 + x + 1$	0	$x^2 + x + 1$	x + 1	x^2	$x^2 + x$	1	$x^{2} + 1$	x

18.40 $x^5 - 1 = (x - 1)(x^4 + x^3 + x^2 + x + 1) = (x + 1)(x^4 + x^3 + x^2 + x + 1)$,由习题 18.38 结论知,x + 1 和 $x^4 + x^3 + x^2 + x + 1$ 都是不可约多项式。