		No	te
		Ι	
Name Vorname			
	2		
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)			
	3		
Unterschrift der Kandidatin/des Kandidaten	$\begin{vmatrix} 4 \end{vmatrix}$		
	5		
TECHNISCHE UNIVERSITÄT MÜNCHEN			
Fakultät für Mathematik	6		
Wiederholungsklausur			
Mathematik für Physiker 3	7		
(Analysis 2)	8		
· · · · · · · · · · · · · · · · · · ·			
Prof. Dr. M. Wolf			
28. September 2012, 08:00 – 09:30 Uhr	\sum		
20. September 2012, 00.00 05.50 cm			
Hörsaal: Platz:	I	Fratkorno	
11015aai		Erstkorre	Ktur
Hinweise:	$ _{\Pi}$		
Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben		Zweitkori	ektur
Bearbeitungszeit: 90 min			
Erlaubte Hilfsmittel: zwei selbsterstellte DIN A4 Blätter			
Erreichbare Gesamtpunktzahl: 80 Punkte			
Bei Aufgaben mit Kästchen werden nur die Resultate in diesen Kästchen berücksichtigt.			
ur von der Aufsicht auszufüllen:			
orsaal verlassen von bis			
nnaar verrasserr verrasserr verrasserr			
orzeitig abgegeben um			

 $Be sondere\ Bemerkungen:$

1. Topologie Sei X ein nichtleerer topologischer Raum. Zeigen Sie:	[8 Punkte]
(a) Ist $A \subseteq X$ offen und für $B \subseteq X$ gilt $B \cap A = \emptyset$, dann gilt auch $\overline{B} \cap A = \emptyset$.	
(b) Ist $M\subseteq X$ zusammenhängend, dann ist auch \overline{M} zusammenhängend.	

2	Differen	zierh	arkeit
<i>Z</i> .	Dineren	iziei n	ai ken

[10 Punkte]

Sei $f: \mathbb{R}^2 \to \mathbb{R}$ definiert durch

$$f(x,y) = \begin{cases} \frac{x(x^2 - y^2)}{x^2 + y^4} & \text{für } (x,y) \neq 0, \\ 0 & \text{für } (x,y) = 0. \end{cases}$$

(a) Wie lautet die Richtungsableitung in Richtung $v \in \mathbb{R}^2 \setminus \{0\}$ im Ursprung?

$$\partial_v f(0,0) =$$

(b) Wie lauten die partiellen Ableitungen im Ursprung?

$$\partial_x f(0,0) =$$

$$\partial_y f(0,0) =$$

(c) Zeigen Sie, dass f im Ursprung unstetig ist.

(d) Ist f differenzierbar im Ursprung? Begründen Sie Ihre Antwort kurz.

Begründen Sie, dass für die Funktion $f(A) = (E + A^2)^{-1}$ an der Stelle $A \in \mathbb{R}^{n \times n}$ mit $A = A^2$	$[12 \text{ Punkte}] = A^{\mathrm{T}} \text{ definiert}$
und differenzierbar ist. Berechnen Sie $f'(A)(B)$, HINWEIS: Für $g(A) = A^{-1}$ ist $g'(A)(B) = -A^{-1}BA^{-1}$, Produktregel, Kettenregel.	

4. Taylorentwicklung

(9 Punkte)

Gegeben ist das Vektorfeld $F: \mathbb{R}^2 \to \mathbb{R}^2$,

$$F(x,y) = \begin{pmatrix} (1+2x^2)e^{x^2-y} \\ -xe^{x^2-y} \end{pmatrix}$$

- (a) Zeigen Sie, dass F ein Gradientenfeld ist.
- (b) Sei $f: \mathbb{R}^2 \to \mathbb{R}$ ein Potential von F mit f(1,1) = -2. Geben Sie die Hessematrix von f an der Stelle $(x,y) \in \mathbb{R}^2$ an.

$$H_f(x,y) =$$

(c) Wie lautet die Taylorentwicklung $(s,t) \mapsto f(1+s,1+t)$ bis zur zweiten Ordnung an der Stelle (s,t)=(0,0) mit f aus Teilaufgabe (b)?

$$f(1+s,1+t) = +\mathcal{O}(\|\binom{s}{t}\|^3)$$

5. Implizit definierte Funktionen

(9 Punkte)

Gegeben sind die Gleichungen

$$x + y + \sin z = 0,$$
$$3\sin x - 2\tan y - z = 0.$$

- (a) Zeigen Sie, dass man dieses Gleichungssystem im Ursprung lokal gleichzeitig nach y und z auflösen kann und berechnen Sie die erste Ableitung der so implizit definierten Funktion $x \mapsto g(x)$ im Punkt x = 0.
- (b) Die Lösungsmenge dieses Gleichungssystems werde im Ursprung lokal als Kurve im \mathbb{R}^3 durch x parametrisiert. Geben Sie mit Hilfe von (a) den Einheitstangentialvektor an diese Kurve im Ursprung an.

6. Globale Minima und Maxima

(16 Punkte)

Gegeben ist die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit

$$f(x,y) = x^3 + y^3 - 3xy.$$

- (a) Bestimmen Sie alle stationären Punkte von f und entscheiden Sie, ob diese isolierte Maxima oder Minima sind.
- (b) Sei nun $B = [0, 2]^2 \subset \mathbb{R}^2$. Bestimmen Sie sup f(B) und inf f(B).

Kurven Ein Abschnitt der Kettenlinie ist gegeben durch die Funktion $f:[0,\infty[$	(8 Punkte) $[\to \mathbb{R}, f(x) = \cosh x.$
(a) Geben Sie eine Parametrisierung $\gamma:[0,\infty[\to\mathbb{R}^2$ des Graphen von	
(b) Parametrisieren Sie γ auf Bogenlänge.	

8. Separierbare Differentialgleichung

(8 Punkte)

Gegeben ist die Differentialgleichung $\dot{x} = \sqrt{|1 - x^2|}$ mit $x(t) \in \mathbb{R}$.

(a) Für welche Anfangswerte x(0) zur Zeit t=0 ist x(t)=x(0) für alle $t\in\mathbb{R}$ eine Lösung?

$$x(0) \in \left\{ \right.$$

(b) Bestimmen Sie für den Anfangswert x(0)=0 eine auf ganz $\mathbb R$ definierte Lösung. HINWEIS: $\arcsin'(x)=\frac{1}{\sqrt{1-x^2}}$ für $x\in[-1,1]$.

$$x(t) =$$

(c) Ist die Lösung der Differentialgleichung mit dem Anfangswert x(0) = -1 eindeutig bestimmt? Begründen Sie kurz Ihre Antwort.