ı

١

Ι

I

opcode

opcode

21 20

(1) **P** S Reference Data **CORE INSTRUCTION SET** OPCODE / FUNCT OPERATION (in Verilog) NAME, MNEMONIC MAT (Hex) Add add R R[rd] = R[rs] + R[rt](1) 0 / 20_{hex} Add Immediate R[rt] = R[rs] + SignExtImm(1,2)8_{hex} Add Imm. Unsigned addiu Ι R[rt] = R[rs] + SignExtImm(2) 9_{hex} $0/21_{hex}$ Add Unsigned R R[rd] = R[rs] + R[rt]0 / 24_{hex} and R R[rd] = R[rs] & R[rt]And Immediate andi R[rt] = R[rs] & ZeroExtImm(3) c_{hex} if(R[rs]==R[rt])Branch On Equal 4_{hex} bea PC=PC+4+BranchAddr if(R[rs]!=R[rt])Branch On Not Equal bne 5_{hex} PC=PC+4+BranchAddr (4) Jump PC=JumpAddr (5) 2_{hex} Jump And Link jal J R[31]=PC+8;PC=JumpAddr (5) 3_{hex} 0 / 08_{hex} Jump Register jr R PC=R[rs] $R[rt]={24'b0,M[R[rs]]}$ 24_{hex} Load Byte Unsigned 1bu +SignExtImm](7:0)} (2)Load Halfword $R[rt] = \{16'b0, M[R[rs]]$ 25_{hex} +SignExtImm](15:0)} (2) Unsigned Load Linked 11 R[rt] = M[R[rs] + SignExtImm](2,7) 30_{hex} Load Upper Imm. lui $R[rt] = \{imm, 16'b0\}$ fhex Load Word R[rt] = M[R[rs] + SignExtImm](2) 23_{hex} lw 0 / 27_{hex} $R \quad R[rd] = \sim (R[rs] \mid R[rt])$ Nor nor 0 / 25_{hex} $R[rd] = R[rs] \mid R[rt]$ or Or Immediate $R[rt] = R[rs] \mid ZeroExtImm$ (3) dhex ori I 0 / 2a_{hex} Set Less Than s1+ R[rd] = (R[rs] < R[rt]) ? 1 : 0Set Less Than Imm. slti Ι R[rt] = (R[rs] < SignExtImm)? 1:0 (2) a_{hex} R[rt] = (R[rs] < SignExtImm)Set Less Than Imm. b_{hex} (2.6)Unsigned ? 1:0 (6) 0/2b_{hex} R[rd] = (R[rs] < R[rt]) ? 1 : 0Set Less Than Unsig. sltu R Shift Left Logical R $R[rd] = R[rt] \ll shamt$ 0 / 00_{hex} sll 0 / 02_{hex} Shift Right Logical R R[rd] = R[rt] >> shamtM[R[rs]+SignExtImm](7:0) =Store Byte 28_{hex} (2) R[rt](7:0) M[R[rs]+SignExtImm] = R[rt]; 38_{hex} Store Conditional sc R[rt] = (atomic) ? 1 : 0M[R[rs]+SignExtImm](15:0) =29_{hex} Store Halfword sh (2) R[rt](15:0) (2) 2b_{hex} Store Word M[R[rs]+SignExtImm] = R[rt](1) 0/22_{hex} R Subtract sub R[rd] = R[rs] - R[rt]0 / 23_{hex} Subtract Unsigned subu R R[rd] = R[rs] - R[rt](1) May cause overflow exception (2) SignExtImm = { 16{immediate[15]}, immediate } (3) ZeroExtImm = { 16{1b'0}, immediate } (4) BranchAddr = { 14{immediate[15]}, immediate, 2'b0 } (5) JumpAddr = { PC+4[31:28], address, 2'b0 } (6) Operands considered unsigned numbers (vs. 2's comp.) (7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atomic BASIC INSTRUCTION FORMATS opcode shamt funct

			\mathbf{O}_{i}	FMT/FT
		FOR-		/ FUNCT
NAME, MNEMO		MAT	OPERATION	(Hex)
Branch On FP True	bc1t	FI	if(FPcond)PC=PC+4+BranchAddr (4)	11/8/1/
Branch On FP False	bc1f	FI	if(!FPcond)PC=PC+4+BranchAddr(4)	11/8/0/
Divide	div	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	0//-1a
Divide Unsigned	divu	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] (6)	0//-1b
FP Add Single	add.s	FR	F[fd] = F[fs] + F[ft]	11/10//0
FP Add	add.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} +$	11/11//0
Double	add.d	ГΚ	{F[ft],F[ft+1]}	11/11//0
FP Compare Single	C.X.S*	FR	FPcond = (F[fs] op F[ft]) ? 1 : 0	11/10//y
FP Compare	c.x.d*	FR	$FPcond = ({F[fs],F[fs+1]}) op$	11/11//v
Double			$\{F[ft],F[ft+1]\})?1:0$	11/11//y
			==, <, or <=) (y is 32, 3c, or 3e)	
FP Divide Single	div.s	FR	F[fd] = F[fs] / F[ft]	11/10//3
FP Divide	div.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} /$	11/11//3
Double			{F[ft],F[ft+1]}	
FP Multiply Single	mul.s	FR	F[fd] = F[fs] * F[ft]	11/10//2
FP Multiply	mul.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} *$	11/11//2
Double	mar.a	110	{F[ft],F[ft+1]}	
FP Subtract Single	sub.s	FR	F[fd]=F[fs] - F[ft]	11/10//1
FP Subtract	sub.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} -$	11/11//1
Double	Jub.u	110	{F[ft],F[ft+1]}	11/11/ /1
Load FP Single	lwc1	I	F[rt]=M[R[rs]+SignExtImm] (2)	31//
Load FP	ldc1	Ι	F[rt]=M[R[rs]+SignExtImm]; (2)	35//
Double	1401	1	F[rt+1]=M[R[rs]+SignExtImm+4]	33111
Move From Hi	mfhi	R	R[rd] = Hi	0 ///10
Move From Lo	mflo	R	R[rd] = Lo	0 ///12
Move From Control	mfc0	R	R[rd] = CR[rs]	10 /0//0
Multiply	mult	R	$\{Hi,Lo\} = R[rs] * R[rt]$	0//-18
Multiply Unsigned	multu	R	$\{Hi,Lo\} = R[rs] * R[rt] $ (6)	0///19
Shift Right Arith.	sra	R	R[rd] = R[rt] >>> shamt	0//-3
Store FP Single	swc1	I	M[R[rs]+SignExtImm] = F[rt] (2)	39//
Store FP	sdc1	ī	M[R[rs]+SignExtImm] = F[rt]; (2)	3d//
Double	SuCI	1	M[R[rs]+SignExtImm+4] = F[rt+1]	3u//

OPCODE

FLOATING-POINT INSTRUCTION FORMATS

ARITHMETIC CORE INSTRUCTION SET

FR	opcode	fmt	ft	fs	fd	funct
	31 26	25 21	20 16	15 11	10 6	5 0
FI	opcode	fmt	ft		immediate	
	31 26	25 21	20 16	15		0

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	if(R[rs] < R[rt]) PC = Label
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	l bge	$if(R[rs] \ge R[rt]) PC = Label$
Load Immediate	li	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

O	,	BEIN, GOE, GALL GONTE	
NAME	NUMBER	USE	PRESERVEDACROSS
INAIVIE	NUMBER	USE	A CALL?
\$zero	0	The Constant Value 0	N.A.
\$at	1	Assembler Temporary	No
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$k1	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
\$ra	31	Return Address	No

address

immediate

MIPS

OPCODES	RASE	CONVERSION.	ASCII	SVMBOLS

ODCOL	SEC BACI	CONVE	ICION A	ccii (CVMD	01.0		3	
	(1) MIPS	(2) MIPS	SION, A			ASCII		Hava	ASCII
opcode	funct	funct	Binary	Deci-	deci-	Char-	Deci-	deci-	Char-
(31:26)	(5:0)	(5:0)	Dillary	mal	mal	acter	mal	mal	acter
(1)	sll	add.f	00 0000	0	0	NUL	64	40	(a)
(1)	211	sub.f	00 0000	1	1	SOH	65	41	A
j	srl	mul.f	00 0010	2	2	STX	66	42	В
jal	sra	div.f	00 0011	3	3	ETX	67	43	Č
beq	sllv	sqrt.f	00 0100	4	4	EOT	68	44	D
bne		abs.f	00 0101	5	5	ENQ	69	45	E
blez	srlv	mov.f	00 0110	6	6	ACK	70	46	F
batz	srav	$\operatorname{neg} f$	00 0111	7	7	BEL	71	47	G
addi	jr		00 1000	8	8	BS	72	48	Н
addiu	jalr		00 1001	9	9	HT	73	49	I
slti	movz		00 1010	10	a	LF	74	4a	J
sltiu	movn		00 1011	11	b	VT	75	4b	K
andi	syscall	round.w.f	00 1100	12	С	FF	76	4c	L
ori	break	trunc.w.f	00 1101	13	d	CR	77	4d	M
xori		ceil.w f	00 1110	14	e	SO	78	4e	N
lui	sync	floor.w.f	00 1111	15	f	SI	79	4f	O
	mfhi		01 0000	16	10	DLE	80	50	P
(2)	mthi		01 0001	17	11	DC1	81	51	Q
	mflo	movz.f	01 0010	18	12	DC2	82	52	R
	mtlo	movn.f	01 0011	19	13	DC3	83	53	S
			01 0100	20	14	DC4	84	54	T
			01 0101	21	15	NAK	85	55	Ü
			01 0110	22	16	SYN	86	56	V
			01 0111	23	17	ETB	87	57	W
	mult		01 1000	24	18	CAN	88	58	X
	multu		01 1001	25	19	EM	89	59	Y
	div		01 1010 01 1011	26 27	la lb	SUB ESC	90	5a 5b	Z
	divu		01 1011	28	10 1c	FS	91	5c	_]
			01 1100	29	1d	GS	93	5d	ì
			01 1110	30	1e	RS	94	5e	Ÿ
			01 1111	31	1f	US	95	5f	
1b	add	cvt.s.f	10 0000	32	20	Space	96	60	-
lh	addu	cvt.d.f	10 0000	33	21	!	97	61	a
lwl	sub		10 0001	34	22	÷	98	62	b
lw l	subu		10 0010	35	23	#	99	63	c
lbu	and	cvt.w.f	10 0100	36	24	\$	100	64	d
lhu	or		10 0101	37	25	%	101	65	e
lwr	xor		10 0110	38	26	&	102	66	f
=	nor		10 0111	39	27	,	103	67	g
sb			10 1000	40	28	(104	68	h

sh			10 1001	41	29)	105	69	i
swl	slt		10 1010	42	2a	*	106	6a	j
sw	sltu		10 1011	43	2b	+	107	6b	k
			10 1100	44	2c	,	108	6c	- 1
			10 1101	45	2d	-	109	6d	m
swr			10 1110	46	2e		110	6e	n
cache			10 1111	47	2f	/	111	6f	o
11	tge	c.f.f	11 0000	48	30	0	112	70	р
lwc1	tgeu	c.un. f	11 0001	49	31	1	113	71	q
lwc2	tlt	c.eq f	11 0010	50	32	2	114	72	r
pref	tltu	c.ueq f	11 0011	51	33	3	115	73	S
	teq	c.olt.f	11 0100	52	34	4	116	74	t
ldc1		c.ult f	11 0101	53	35	5	117	75	u
ldc2	tne	c.ole.f	11 0110	54	36	6	118	76	v
		c.ule.f	11 0111	55	37	7	119	77	W

11 1000

11 1001

11 1010

11 1011

11 1100

11 1101

11 1110

11 1111

c.ngt. (1) opcode(31:26) == 0

swc1

swc2

sdc1

sdc2

c.sf.f

c.ngle.j

c.seq.f

c.ngl.j

c.nge./

c.le.f

c.lt./

(2) opcode(31:26) == $17_{\text{ten}} (11_{\text{hex}})$; if fmt(25:21)== $16_{\text{ten}} (10_{\text{hex}}) f = s$ (single); if $fmt(25:21) == 17_{ten} (11_{hex}) f = d (double)$

IEEE 754 FLOATING-POINT STANDARD

 $(-1)^S \times (1 + Fraction) \times 2^{(Exponent - Bias)}$ where Single Precision Bias = 127, Double Precision Bias = 1023.

IEEE Single Precision and Double Precision Formats:

IEEE 754 Symbols Object Exponent Fraction 0 ± 0 0 **≠**0 ± Denorm 1 to MAX - 1 anything ± Fl. Pt. Num. MAX 0 ±∞ NaN MAX **≠**0

4

S.P. MAX = 255, D.P. MAX = 2047 S Exponent Fraction 31 30 S Exponent Fraction 63 62 52 51

MEMORY ALLOCAT	ION	STACK	FRAME	
\$sp → 7fff fffc _{hex}	Stack	\$fp →	Argument 6 Argument 5	Higher Memory Addresses
\$gp → 1000 8000 _{hex}	Dynamic Data		Saved Registers	Stack Grows
1000 0000 _{hex}	Static Data		Local Variables	\downarrow
pc →0040 0000 _{hex}	Text	\$sp		Lower Memory
$0_{ m hex}$	Reserved			Addresses

DATA ALIGNMENT

Double Word								
Word				Word				
Halfv	fword Halfword		word	Halfword		Halfword		
Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte	
0 Valu	0 1 2 3 4 5 6 7 Value of three least significant bits of byte address (Big Endian)							

EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS

B D Interrupt Exception Mask Code Pending LE Interrupt Μ

BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable **EXCEPTION CODES**

Number	Name	Cause of Exception	Number	Name	
0	Int	Interrupt (hardware)	9	Bp	Breakpoint Exception
4	AdEL	Address Error Exception (load or instruction fetch)	10	RI	Reserved Instruction Exception
5	AdES	Address Error Exception (store)	11	CpU	Coprocessor Unimplemented
6	IBE	Bus Error on Instruction Fetch	12	Ov	Arithmetic Overflow Exception
7	DBE	Bus Error on Load or Store	13	Tr	Trap
8	Sys	Syscall Exception	15	FPE	Floating Point Exceptio

SIZE PREFIXES (10^x for Disk, Communication; 2^x for Memory)

2 : 112: 3120 (10 10: 2:01) 00: 1110: 110: 110: 110: 110: 110:									
SI Size	Prefix	Symbol	IEC Size	Prefix	Symbol				
10 ³	Kilo-	K	2 ¹⁰	Kibi-	Ki				
10^{6}	Mega-	M	2 ²⁰	Mebi-	Mi				
10 ⁹	Giga-	G	230	Gibi-	Gi				
10^{12}	Tera-	T	2 ⁴⁰	Tebi-	Ti				
10^{15}	Peta-	P	2 ⁵⁰	Pebi-	Pi				
10^{18}	Exa-	Е	2 ⁶⁰	Exbi-	Ei				
10^{21}	Zetta-	Z	2 ⁷⁰	Zebi-	Zi				
10 ²⁴	Yotta-	Y	280	Yobi-	Yi				

57 39 9

58

59 3h

60

61

62

63

3a

3c

3d

3e

3f

121

122

123

124

125

126

127

79

7a

7h

7c

7d

7e 7f

DEL