Distribuciones Discretas

Distribución	Función masa de probabilidad	Parámetros $p+q=1$	$\begin{array}{c} \text{Media} \\ \mu \end{array}$	Varianza σ^2	Función generadora de momentos $M(t)$
Bernoulli	$f(x) = p^x q^{1-x} I_{\{0,1\}}(x)$	0	p	pq	$q + pe^t$
Binomial	$f(x) = \binom{n}{x} p^x q^{n-x} I_{\{0,1,\dots,n\}}(x)$	$ \begin{vmatrix} 0$	np	npq	$(q + pe^t)^n$
Geométrica	$f(x) = pq^x I_{\{0,1,\dots\}}(x)$	0	q/p	q/p^2	$p/(1-qe^t)$
Binomial Negativa	$f(x) = \binom{r+x-1}{x} p^r q^x I_{\{0,1,\dots\}}(x)$	$0 r = 1, 2, \dots$	rq/p	rq/p^2	$\left(\frac{p}{1-qe^t}\right)^r$
Poisson	$f(x) = \frac{\lambda^x}{x!} e^{-\lambda} I_{\{0,1,\dots\}}(x)$	$\lambda > 0$	λ	λ	$e^{\lambda(e^t-1)}$

Distribuciones Continuas

Distribución	Función de densidad de probabilidad	Parámetros	$\begin{array}{c} \operatorname{Media} \\ \mu \end{array}$	Varianza σ^2	Función generadora de momentos $M(t)$
Uniforme	$f(x) = \frac{1}{b-a} I_{[a,b]}(x)$	$a, b \in \mathbb{R}$ $a < b$	(a+b)/2	$(b-a)^2/12$	$\frac{e^{bt} - e^{at}}{(b-a)t}$
Normal o Gaussiana	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}} I_{\mathbb{R}}(x)$	$\mu \in \mathbb{R}$ $\sigma \in \mathbb{R}^+$	μ	σ^2	$e^{\mu t + \frac{1}{2}\sigma^2 t^2}$
Gamma	$f(x) = \frac{x^{\alpha - 1} e^{-x/\beta}}{\beta^{\alpha} \Gamma(\alpha)} I_{\mathbb{R}^+}(x)$	$\alpha \in \mathbb{R}^+$ $\beta \in \mathbb{R}^+$	lphaeta	$lphaeta^2$	$ (1 - \beta t)^{-\alpha} $ $ t < 1/\beta $
$Ji\text{-}Cuadrada \\ \chi_n^2$	$f(x) = \frac{x^{\frac{n}{2} - 1} e^{-x/2}}{2^{n/2} \Gamma(n/2)} I_{\mathbb{R}^+}(x)$	$n \in \mathbb{N}$	n	2n	$ (1-2t)^{-n/2} $ $ t < 1/2 $
t-Student	$f(x) = \frac{\Gamma[(n+1)/2]}{\sqrt{n\pi} \Gamma(n/2)} (1 + x^2/n)^{-\frac{n+1}{2}} I_{\mathbb{R}}(x)$	$n \in \mathbb{N}$	0	n/(n-2) $n > 2$	no existe
F	$f(x) = \frac{\Gamma[(m+n)/2]}{\Gamma(m/2)\Gamma(n/2)} \left(\frac{m}{n}\right)^{m/2} \frac{x^{(m-2)/2}}{[1+(m/n)x]^{(m+n)/2}} I_{\mathbb{R}^+}(x)$	$m,n\in\mathbb{N}$	n/(n-2) $n > 2$	$\frac{2n^2(m+n-2)}{m(n-2)^2(n-4)}$ $n > 4$	no existe
Weibull	$f(x) = \alpha \beta x^{\beta - 1} e^{-\alpha x^{\beta}} I_{\mathbb{R}^+}(x)$	$\begin{array}{c} \alpha > 0 \\ \beta > 0 \end{array}$	$\alpha^{-1/\beta}\Gamma(1+1/\beta)$	$\begin{array}{c} \alpha^{-2/\beta}\Gamma(1+2/\beta) \\ -\Gamma^2(1+1/\beta) \end{array}$	$\mathbb{E}[X^r] = \alpha^{-r/\beta} \cdot \Gamma(1 + r/\beta)$
Pareto	$f(x) = \frac{\theta \alpha^{\theta}}{x^{\theta+1}} I_{[\alpha,\infty)}(x)$	$\alpha > 0$ $\theta > 0$	$\frac{\frac{\alpha \cdot \theta}{\theta - 1}}{\theta > 1}$	$\frac{\alpha^2 \theta}{(\theta - 1)^2 (\theta - 2)}$ $\theta > 2$	no existe

E. Barrios

Agosto-Diciembre 2017