

CSE 4392 SPECIAL TOPICS NATURAL LANGUAGE PROCESSING

Text Classification

2025 Spring

WHY CLASSIFY?

Sentiment analysis

- Authorship attribution
- Language detection
- News categorization

THE CLASSIFICATION: THE TASK

- o Inputs:
 - A document d
 - A set of classes $C = \{c_1, c_2, c_3, \dots, c_m\}$
- Output:
 - Predicted class c for document d

"I love this movie.
I've seen it many times
and it's still awesome."

"This movie is bad. I don't like it it all. It's terrible."

RULE-BASED CLASSIFICATION

- Combination of features on words in the document, and meta-data:
 - IF there exists word w in document d, and w is in {good, great, awesome, extraordinary, ...}

 THEN output POSITIVE as class label
 - IF the email subject contains any words in {"casino", "weeds", "viagra", ...}

 THEN output SPAM as class label
- Can be very accurate
- But hard and tedius to define (there can be many of them, some even unknown to us!)
- Not easily generalizable (may not apply in other domains or scenarios)

SUPERVISED LEARNING: USE STATISTICS

- Data-driven approach
- Let the machine figure out the best patterns to use
- o Inputs:
 - Set of m classes $C = \{c_1, c_2, ..., c_m\}$
 - Set of n 'labeled' documents: $\{(d_1, c_1), (d_2, c_2), ..., (d_n, c_n)\}$

Key questions:

- 1) The form of F?
- 2) How to learn F?

- Output:
 - Trained classifier, $\mathbf{F}: \mathbf{d} \rightarrow \mathbf{c}$

Types of Supervised Classifiers

Naive Bayes

Support vector machines

Logistic regression

k-nearest neighbors

QUIZ

- Which of the four types of the classifiers has an inference cost proportional to the size of the training data?
- a) Naïve Bayes
- b) Logistic Regression
- c) Support Vector Machine
- d) K-Nearest Neighbors

MULTINOMIAL NAIVE BAYES

- Simple classification model making use of Bayes rule
- Bayes Rule:

$$P(c|d) = \frac{P(c)P(d|c)}{P(d)}$$
docment

class

• Makes strong (naive) independence assumptions

PREDICTING A CLASS

• Best class:

$$C_{MAP} = \underset{c \in C}{\operatorname{arg max}} P(c|d)$$

$$= \underset{c}{\operatorname{arg max}} \frac{P(c)P(d|c)}{P(d)}$$

$$= \underset{c}{\operatorname{arg max}} P(c)P(d|c)$$

d is a document c is a class

- MAP = Maximum *a Posteriori*
- \circ P(d) \rightarrow constant for d, so omitted

How to compute P(D | C)?

- Option 1: represent the entire sequence of words
 - P(w₁, w₂, w₃, ..., w_k | c) (too many sequences!)
- Option 2: Bag of words
 - Assume position of each word is irrelevant (both absolute and relative)
 - $P(w_1, w_2, w_3, ..., w_k \mid c) = P(w_1 \mid c) P(w_2 \mid c) ...$ $P(w_k \mid c)$
 - Probability of each word is conditionally independent of each other given class c

QUIZ

- $P(w_1, w_2, w_3, ..., w_k \mid c) = P(w_1 \mid c) P(w_2 \mid c) ... P(w_k \mid c)$
- The bag-of-words approach to compute P(d|c) takes advantage of which of the following:
- a) k-gram language model
- b) tri-gram language model
- c) bigram language model
- d) unigram language model

BAG OF WORDS

I love this movie! It's sweet, but with satirical humor. The dialogue is great and the adventure scenes are fun... It manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet!

6 the to and seen vet would whimsical times sweet satirical adventure genre fairy humor have great

PREDICTING WITH NAIVE BAYES

• Mathematically, we now have:

$$C_{MAP} = \arg \max_{c} P(d|c)P(c)$$

$$= \arg \max_{c} P(w_1, w_2, ..., w_k|c)P(c)$$

$$= \arg \max_{c} P(c) \prod_{i=1}^{k} P(w_i|c)$$

(Using the BOW assumption!)

NAIVE BAYESAS AGENERATIVE MODEL

•

NAIVE BAYESASA GENERATIVE MODEL

•

NAIVE BAYESAS AGENERATIVE MODEL

•

NAIVE BAYESAS AGENERATIVE MODEL

Generate the entire data set one document at a time. First generate a class, then generate words given that class.

ESTIMATING PROBABILITIES

• Maximum likelihood estimates:

$$\widehat{P}(c_j) = rac{Count(class = c_j)}{\sum_c Count(class = c)}$$

Total # of documents

$$\widehat{P}(w_i|c_j) = \frac{Count(w_i, c_j)}{\sum_{w} Count(w, c_j)}$$

of documents

DATA SPARSITY

- What if count('amazing', positive) = 0?
- Implies P('amazing' | positive) = 0
- Given a review document, d = ".... most amazing movie ever ..."

$$C_{MAP} = \arg \max_{c} \widehat{P}(c) \prod_{i=1}^{K} P(w_i|c)$$

$$= \arg\max_{c} \widehat{P}(c) * 0$$

SOLUTION: SMOOTHING!

• Laplace smoothing:

$$\widehat{P}(w_i|c) = \frac{Count(w_i,c) + \alpha}{\sum_{w} Count(w,c) + \alpha |V|}$$

Vocabulary Size

- Simple, easy to use
- Effective in practive

OVERALL PROCESS

Input: Set of annotated documents $\{(d_i, c_i)\}_{i=1}^n$

- 1. Compute vocabulary set V of all words
- 2. Calculate [I] [SEP]

$$\widehat{P}(c_j) = \frac{Count(\#docs\ in\ c_j)}{Total\ \#docs}$$

3. Calculate [SEP] [SEP]

$$\widehat{P}(w_i|c) = \frac{Count(w_i, c) + \alpha}{\sum_{w \in V} [Count(w, c) + \alpha]}$$

4. (Prediction) Given document $d = (w_1, w_2, ..., w_k)$

$$C_{MAP} = \arg\max_{c} \widehat{P}(c) \prod_{i=1}^{n} \widehat{P}(w_{i}|c)$$

NAÏVE BAYES CLASSIFICATION EXAMPLE

$$\hat{P}(c) = \frac{N_c}{N}$$

$$\hat{P}(w \mid c) = \frac{count(w, c) + 1}{count(c) + |V|}$$

	Doc	Words	Class
	טטנ	vvoius	Class
Training	1	Chinese Beijing Chinese	С
	2	Chinese Chinese Shanghai	С
	3	Chinese Macao	С
	4	Tokyo Japan Chinese	j
Test	5	Chinese Chinese Tokyo Japan	?

Priors:

Priors:

$$P(c) = \frac{3}{4}$$

 $P(j) = \frac{1}{4}$

Conditional Probabilities:

P(Chinese | c) =
$$(5+1) / (8+6) = 6/14 = 3/7$$

P(Tokyo | c) = $(0+1) / (8+6) = 1/14$
P(Japan | c) = $(0+1) / (8+6) = 1/14$
P(Chinese | j) = $(1+1) / (3+6) = 2/9$
P(Tokyo | j) = $(1+1) / (3+6) = 2/9$
P(Japan | j) = $(1+1) / (3+6) = 2/9$

Choosing a class:

P(c|d5)
$$_{\infty}$$
 3/4 * (3/7)³ * 1/14 * 1/14 \approx 0.0003

$$P(j | d5) \propto 1/4 * (2/9)^3 * 2/9 * 2/9 \approx 0.0001$$

QUIZ

	Doc	Words	Class
Training	1	Chinese Beijing Chinese	С
	2	Chinese Chinese Shanghai	С
	3	Chinese Macao	С
	4	Tokyo Japan Chinese	j
Test	6	Macao Chinese Visit Tokyo Chinese	?

• Given the above training documents d1-d4, and their class labels, compute P(c | d₆), after applying add-1 smoothing.

FEATURES

Rank Category

• In general, Naive Bayes can use any set of features, not just words

Rank Category

- URLs, email addresses, Capitalization, ...
- Domain knowledge crucial to performance

Feature

	Kank	Category	reature	Kank	Category	reature
	1	Subject	Number of capitalized words	1	Subject	Min of the compression ratio for the bz2 compressor
	2	Subject	Sum of all the character lengths of words	2	Subject	Min of the compression ratio for the zlib compressor
	3	Subject	Number of words containing letters and numbers	3	Subject	Min of character diversity of each word
	4	Subject	Max of ratio of digit characters to all characters of each word	4	Subject	Min of the compression ratio for the lzw compressor
/T _{0.70}	5	Header	Hour of day when email was sent	5	Subject	Max of the character lengths of words
Top			(a)			(b)
features for	•		Spam URLs Fea	tures		
Spam	1	URL	The number of all URLs in an email	1	Header	Day of week when email was sent
detection	2	URL	The number of unique URLs in an email	2	Payload	Number of characters
	3	Payload	Number of words containing letters and numbers	3	Payload	Sum of all the character lengths of words
	4	Payload	Min of the compression ratio for the bz2 compressor	4	Header	Minute of hour when email was sent
	5	Payload	Number of words containing only letters	5	Header	Hour of day when email was sent

NAIVE BAYES AND LANGUAGE MODELS

 If features = bag of words, each class is a unigram language model!

• For class c, assigning each word: P(w|c) assigning sentence: $P(S|c) = \prod_{w \in S} P(w|c)$

Class positive

0.1	I					
0.1	love	ı	love	this	fun	film
0.01	this	•				
0.05	fun	0.1	0.1	0.01	0.05	0.1
0.1	film	P(s	s pos)	= 0.0000)005	

•••

Naïve Bayes as a Language Model

• Which class assigns the higher probability to s?

Model pos 0.1 I 0.1 love 0.01 this 0.05 fun

0.1

film

0.2	1
0.001	love
0.01	this
0.005	fun
0.1	film

Model neg

<u> </u>	love	the	fun	film
0.1 0.2	0.1 0.001	0.01 0.01	0.05 0.005	0.1 0.1
	P(s pos	s) > P(s neg)	

EVALUATION

Consider binary classification

	Positive	Negative
Positive	145	0
Negative	0	105

EVALUATION METRICS

Truth

Predicted

	Positive	Negative
Positive	100	5
Negative	45	100

- True positive: Predicted + and actual +
- True negative: Predicted and actual -
- False positive: Predicted + and actual -
- False negative: Predicted and actual +

$$Accuracy = \frac{TP + TN}{Total} = \frac{200}{250} = 80\%$$

EVALUATION METRICS

Truth

Predicted

	Positive	Negative
Positive	100	5
Negative	45	100

	Positive	Negative
Positive	10	45
Negative	5	190

- True positive: Predicted + and actual +
- True negative: Predicted and actual -
- False positive: Predicted + and actual -
- False negative: Predicted and actual +

$$Accuracy = \frac{TP + TN}{Total} = \frac{200}{250} = 80\%$$

Still the same result!

Accuracy is a coarse-grain measure.

Also not suitable for retrieval (finding true positives).

Precision and Recall

Precision: % of selected classes that are correct

Precision(+) =
$$\frac{TP}{TP + FP}$$
 Precision(-) = $\frac{TN}{TN + FN}$

Recall: % of correct items selected

Recall(+) =
$$\frac{TP}{TP + FN}$$
 Recall(-) = $\frac{TN}{TN + FP}$

F-SCORE

- Combined measure
- Harmonic mean of Precision and Recall

$$F_1 = \frac{2 \cdot \mathsf{Precision} \cdot \mathsf{Recall}}{\mathsf{Precision} + \mathsf{Recall}}$$

o Or more generally,

$$F_{\beta} = \frac{(1 + \beta^2) \cdot \text{Precision} \cdot \text{Recall}}{\beta^2 \cdot \text{Precision} + \text{Recall}}$$

CHOOSING BETA

Truth

Predicted

	Positive	Negative
Positive	200	100
Negative	50	100

$$F_{\beta} = \frac{(1 + \beta^2) \cdot \text{Precision} \cdot \text{Recall}}{\beta^2 \cdot \text{Precision} + \text{Recall}}$$

• Which value of Beta maximizes F_{eta} for recall?

A.
$$\beta = 0.5$$

B.
$$\beta = 1$$

C.
$$\beta = 2$$

AGGREGATING SCORES

• We have Precision, Recall, F1 for each class

• How to combine them for an overall score?

- Macro-average: Compute for each class, then average
- Micro-average: Collect predictions for all classes and jointly evaluate

MACRO VS MICRO AVERAGE

Class 1

	Truth:	Truth:
	yes	no
Classifier: yes	10	10
Classifier: no	10	970

Class 2

	Truth:	Truth:
	yes	no
Classifier: yes	90	10
Classifier: no	10	890

Micro Ave. Table

	Truth:	Truth:
	yes	no
Classifier: yes	100	20
Classifier: no	20	1860

- Macroaveraged precision: (0.5 + 0.9)/2 = 0.7
- Microaveraged precision: 100/120 = .83
- Microaveraged score is dominated by score on common classes

VALIDATION

Train Validation Test

- Choose a metric: Precision/Recall/F1
- Optimize params (α) for metric on Validation (aka Development) set
- Finally evaluate on 'unseen' Test set
- Cross-validation (no need test set):
 - Repeatedly sample several train-val splits (4:1 → 5-fold cross-validation)
 - Reduces bias due to sampling errors

ADVANTAGES OF NAÏVE BAYES

- Very Fast, low storage requirements
- Robust to Irrelevant Features
 - Irrelevant Features cancel each other without affecting results
- Very good in domains with many equally important features
 - Decision Trees suffer from *fragmentation* in such cases especially if little data
- Optimal if the independence assumptions hold: If assumed independence is correct, then it is the Bayes Optimal Classifier for the problem
- A good dependable baseline for text classification
 - But we will see other classifiers that give better accuracy

PRACTICAL NAÏVE BAYES

- Small data sizes:
 - Naive Bayes is great! (high bias)
 - Rule-based classifiers might work well, too

- Medium size datasets:
 - More advanced classifiers might perform better (e.g., SVM, logistic regression)

- Large datasets:
 - Naive Bayes becomes competitive again (although most classifiers work well)

FAILINGS OF NAIVE BAYES (1)

Independence assumptions are too strong

x1	x2	Class: X ₁ XOR X ₂
1	1	0
0	1	1
1	0	1
0	0	0

- XOR problem: Naive Bayes cannot learn a decision boundary
- Both variables are jointly required to predict class

FAILINGS OF NAIVE BAYES (2)

- Class imbalance:
 - One or more classes have more instances than others in the training data
 - Data skew causes NB to prefer one class over the other
 - Solution: Complement Naive Bayes (Rennie et al., 2003)

Count # times word
$$w_i$$
occurs in classes other
than c
$$\sum_{c \neq c_i} Count(w_i, c)$$

$$\widehat{P}(w_i|\widetilde{c}_j) = \frac{\sum_{c \neq c_j} Count(w_i, c)}{\sum_{c \neq c_j} \sum_{w} Count(w, c)}$$

FAILINGS OF NAIVE BAYES (3)

- Weight magnitude errors:
 - Classes with larger weights are preferred
 - 10 documents with class=MA and "Boston" occurring once each
 - 10 documents with class=CA and "San Francisco" occurring once each
 - New document: "Boston Boston Boston San Francisco" San Francisco"

$$P(class = CA | doc) > P(class = MA | doc)$$

(because model treats "San" and "Francisco" as independent words!)

PRACTICAL TEXT CLASSIFICATION

- Domain knowledge is crucial to selecting good features
- Handle class imbalance by re-weighting classes
- Use log scale operations instead of multiplying probabilities
 - Since $\log(xy) = \log(x) + \log(y)$
 - Better to sum logs of probabilities instead of multiplying probabilities.
 - Class with highest un-normalized log probability score is still most probable.

$$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} \log P(c_{j}) + \sum_{i \in positions} \log P(x_{i} \mid c_{j})$$

Model is now just max of sum of weights