Our Results

- Theorem: For p>2, there is an algorithm using optimal $\tilde{O}(n^{1-2/p})$ bits of space
 - and an **update time of** O(1) to approximate $F_n(x)$ up to constant factors

• Improves on $poly(\log n)$ update time of earlier works such as [Andoni, Krauthgamer, Onak '10]

• Theorem: For $0 , can approximate <math>F_p(x)$ up to $1 \pm \varepsilon$ using optimal $O(\varepsilon^{-2}\log n)$ bits of space and $O(\log n)$ update time

• Valid only for $\varepsilon < 1/n^c$

• Improves on $O(\log^2 n \log \log n)$ update time of [KNPW '11]

 $F_p(x) = \sum |x[i]|^p$

Our Results

$$F_p(x) = \sum_{i} |x[i]|^p$$

- Theorem: For p>2, there is an algorithm using optimal $\tilde{O}(n^{1-2/p})$ bits of space and an update time of O(1) to approximate $F_p(x)$ up to constant factors
 - Improves on $poly(\log n)$ update time of earlier works such as [Andoni, Krauthgamer, Onak '10]
- Theorem: For $0 , can approximate <math>F_p(x)$ up to $1 \pm \varepsilon$ using optimal $O(\varepsilon^{-2}\log n)$ bits of space and $O(\log n)$ update time
 - Valid only for $\varepsilon < 1/n^c$
 - Improves on $O(\log^2 n \log \log n)$ update time of [KNPW '11]

Our Results