

Author index to volume 40

Abarbri, M.	537	Bourdonneau, M.	123	da Conceição, G. J. A.	433
Abraham, R. J.	49, 279, 449	Bouteiller, JC.	273	Dagnino, D.	614
Afonin, A. V.	114	Boyle, T. J.	361	Dahl, R. S.	307
Aime, S.	41, 87, 107	Bright, J. D.	623	Damberg, P.	S89
Akiyama, T.	161	Brus, J.	353	Danielsson, J.	S89
Aksnes, D.	S139	Buddrus, J.	3	David-Quillot, F.	537
Alam, T. M.	361	Buist, P. H.	524	Davies, J. A.	S40
Alba, L.	303	Bujoli, B.	70	Dawson, B.	524
Alberti, A.	387	Bytchenkoff, D.	377	Day, A. J.	747
Alonso, B.	70	bytcherkon, D.	3//	de Dios, A. C.	781
Amoureux, JP.	24			Del Bene, J. E.	767
Anderberg, P. I.	313	Cabral de Menezes, S. M.	489,622	Deleanu, C.	237
Ando, S.	97	Cabrita, E. J.	S122	Derrick, T. S.	S98
Angel, J.	477	Callaghan, P. T.	S15	Deubner, R.	762
Anil Kumar, P. G.	653	Camacho-Camacho, C.	31		
		Cameron, K. S.	S106, 251	Díaz, J. J.	554
Annunziata, R.	461	Campos, J.	554	Di Bari, L.	396
Antalek, B.	S60	Canet, D.	S133	Dimicoli, JL.	S98
Ån Ung, V.	683	Cano, M.	261	Ding, J. K.	609
Aoyagi, S.	241	Canton, S.	41	Dintinger, T. C.	421
Avellaneda, A.	545	Capron, M.	70	Diter, B.	S133
Azizi, N.	635	Castellano, E. E.	366	Domínguez, J. N.	477
		Casu, M.	551	Dommisse, R.	147, 687
Ba, Y.	81	Cavallaro, S.	219	Doriguetto, A. C.	366
Bal, D.	533	Chao, P.		Doroshenko, A. O.	566
Balayiannis, G.	244		747	dos Santos, M. H.	793
Baltrusch, H. J.	467	Chapman, B. E.	S115	Dostál, J.	147, 687
Bányai, I.	716	Charris, J. E.	477	Dotta, P.	653
Bao, X.	789	Chattah, A. K.	772	Drushlyak, T. G.	566
Bardet, M.	225, 647	Chen, C. X.	609	Duarte, L. P.	366
Bargon, J.	157	Chen, J.	483	Duchêne, A.	537
Barlow, P. N.	729	Cheng, J. M.	666	Duddeck, H.	153, 247, 599, 659
Bartlett, R. J.	767	Cheng, L.	738	Dunand, F. A.	87
Baumann, K.	443	Cheung, A. Y. F.	S40	Durand, JO.	70
Bechmann M.	31	Cheynier, V.	693	Duus, J.	430
Bechmann W.	168	Chiarparin, E.	377	Duvold, T.	471
Becker, E. D.	489,622	Chiesa, M.	381	Dvinskikh, S. V.	S3
Bednarczyk, D.	231	Chioua, M.	293	,	
Behrouzian, B.	524	Chioua, R.	293	Eichhorn, A.	157
Belloc, J.	133	Choudhary, M. I.	153, 659	Eijkelenboom, A. P. A	A. M. S51
Benaglia, M.	387, 461	Chu, C.	458	Elbayed, K.	123
Berger, S.	S122	Ciunik, Z.	231	Elguero, J.	743, 767
Bernatowicz, P.	640	Claeys-Bruno, M.	647	Ellena, J.	366
Bianco, A.	123	Clement, B.	202	Elwinger, F.	391
Biesemans, M.	65	Cmoch, P.	507	Emelina, E. E.	480
Billen, M.	139	Colombo, D.	581	Entrena, A.	554
Billiot, F. H.	755	Contreras, R.	31	Esmans, E. L.	147
Blechta, V.	672	Contreras, R. H.	187	Espinosa, A.	554
Blonk, J. C. G.	S51	Côrtes, S. F.	793	Es-Safi, NE.	693
	377	Cory, D. G.	S29	L5-5a11, 14L.	0,0
Bodenhausen, G.	412	Cota, A. B.	366	Farley, R. D.	381, 683
Bodige, S.		Cottiglia, F.	551	Fariey, R. D. Faure, R.	545
Bodor, A.	716				70
Bologna, A.	461	Coutinho, E.	211	Fayon, F.	
Bonacorso, H. G.	182	Cristina Paganini, M.	381	Fenet, B.	165
Bonsignore, L.	551	Cucchietti, F. M.	772	Fernandéz, C.	24
Bouguet-Bonnet, S.	618	Cum, G.	219	Fernández-Bachiller,	M. I. 549

Ferraboschi, P.	581	Han, X. W.	789	Krane, J.	797
Fielding, L.	S106, 251	Hanna, A. G.	599	Krishnamurthy, K.	207
Fillion, H.	165	Hansen, A. L.	755	Krivdin, L. B.	187
Firsov, A. V.	480	Harding, M. M.	313	Kuchel, P. W.	S115
Fischbeck, U.	139	0	97, 431, 489, 622, 635	Kühnen, M.	24
	747	Haufe, G.	573	Kühn-Velten, J. H.	77
Fisher, T. H.			795		
Fletcher, D.	251	Hayashi, T.		Kulshreshtha, D. K.	474
Floris, C.	551	He, Y.	424, 483	Kutulya, L. A.	566
Freitas, M. P.	279	Heller, J. P.	666	Kuznetsova, S. Y.	114
Früh, D.	377	Henry, M.	618		
Fu, R.	93	Hering, P.	77	Laihia, K.	480
Fujiwara, F. Y.	433	Hernández, G.	169	Łakomska, I.	529
Fukushi, E.	541	Herrera, A.	293	Lambert, J.	3
Furihata, K.	559	Hervé du Penhoat,	C. S110	Larive, C. K.	S98
Furó, I.	S3	Hewitt, J. M.	S60	Laue, K. W.	573
Furrer, J.	123	Hickok, R. S.	755	Lauricella, R.	273
Furuya, H.	161	Hirota, H.	517	Laverde, A.	433
Fuss, W.	77	Hoatson, G.	70	Le, K.	S60
		Hocková, D.	353	Le Calvé, S.	70
Gallo, M. A.	554	Hodgson, D.	524	Lee, SG.	311
Gallo, R.	219	Hoefer, P.	683	Le Guernevé, C.	693
Galy, JP.	545	Hoffbauer, W.	589		
Gamboa, N.	477	Högenauer, K.	443	LeMaster, D. M.	169
Gan, Z.	70	Holeček, J.	65, 289	Lemos, V. S.	793
Garau, D.	551			Levstein, P. R.	772
Gáti, T.	153	Holmes, W. M.	S20	Li, H.	483
		Hologne, M.	772	Li, H. Z.	415
Geninatti Crich, S.	41, 87	Holzgrabe, U.	762	Li, M.	789
Gheorghiu, M. D.	237	Hu, J.	458	Liaaen-Jensen, S.	797
Giamello, E.	381	Hudson, A.	387	Liang, X.	458
Gillies, D. G.	57	Hui, Y. Z.	789	Limal, D.	123
Giovenzana, G. B.	87			Lindon, J. C.	S83
Girreser, U.	202	Ishida, H.	517	Liptaj, T.	729
Glaser, J.	716	Ishizuka, Y.	595	Liu, M.	S83
Glaser, R.	723	Ivanenko, M. M.	77	Liu, X.	415
Gobetto, R.	107			Liu, X. M.	789
Golotvin, S.	331	Jackowski, K.	563		
Goodby, J. W.	566	Jarvet, J.	S89	Lomas, J. S.	595
Goodfellow, R.	489, 622	Jin, J.	284, 346	Long, D. D.	307
Görlitzer, K.	467	Jolivet, C.	307	López, S. E.	477
Gössnitzer, E.	467	Joseph-Nathan, P.	677	Loy, G.	551
Goudappel, G. J. W.	S51	Jovanovic, J.	371	Lübke, M.	573
Granger, P.	489, 622	, , , .		Lucas, L. H.	S98
Gräslund, A.	S89	Kaca, W.	231	Luck, I. J.	313
Griffiths, L.	623	Kamieńska-Trela,		Lutnaes, B. F.	797
Griffiths, P. C.	S40	Kanamori, A.	517	Lüttke, W.	640
Grimme, S.	380	Kannagi, R.	517	Lyčka, A.	65, 175, 289
		Karban, J.	672		
Grover, R. K.	474	Kawabata, J.	541	Macciantelli, D.	387
Gryff-Keller, A.	533		70	Machinek, R.	640
Gudat, D.	139, 589	King, I.		Maechling, C.	S110
Guerra, M.	477	Kiso, M.	517		
Günther, H.	1, S1, 24, 249, 557	Kohlmann, O.	157	Maher, J. P.	683
Guo, D.	786	Kolehmainen, E.	480	Mair, R. W.	S29
Guo, H.	786	Komlosh, M. E.	S15	Makulski, W.	563
		König, M.	202	Malik, S.	153, 599, 659
Hadden, C. E.	207	Koskela, H.	705	Manalo, M. N.	781
Hägele, G.	77,573	Kovács, L.	353	Manatt, S. L.	317
Haghverdi, A.	589	Kowalewski, J.	716	Mao, S.	738
Hamada, T.	517	Kozerski, L.	529	Marchon, JC.	647
Hammond, S. J.	S147	Koźmiński, W.	563	Marek, J.	687
Han, J.	786	Krajewski, P.	225	Marek, R.	147, 353, 687

MRC

Marinescu, M.	237	Paul, A.	S40	Salort, F.	743
Marsaioli, A. J.	433	Pautet, F.	165	Salvadori, P.	396
Martin, G. E.	207	Pazderski, L.	529	Samadi-Maybodi, A.	635
Martín, N.	303	Pedrotty, D. M.	361	Samoilenko, A. A.	93
Martínez, R.	303	Pelta, M. D.	S147	Sánchez, Á.	293
Martínez-Alvarez, R.	293	Peralta, J. E.	187	Santos-Sánchez, N. F.	677
Martins, J. C.	65	Pereira, C. M. P.	182	Sauer, S. P. A.	187
Martins, M. A. P.	182	Périchaud, A.	545	Savile, C. K.	524
Mascarenhas, Y. P.	366	Petrov, A. A.	480	Schmidt, E. Y.	114
Massiot, D.	70	Petrova, O. V.	114	Schraml, J.	672
Masson, S.	387	Petterson, K. A.	666	Schripsema, J.	614
McCleverty, J. A.	683	Pfaff, C. G.	573	Schulz, G.	443
Merbach, A. E.	87	Pham, T. N.	729	Scott, C. A.	421
Michelena, E.	477	Piña, N.	477	Sebald, A.	31
Mikhaleva, A. I.	114	Pintacuda, G.	396	Sečkářová, P.	147
Milius, W.	31	Piotto, M.	123	Seebacher, W.	455
Mindl, J.	672	Pivnenko, N. S.	566	Seoane, C.	303
Minter, D. E.	412	Poleschner, H.	777	Seppelt, K.	777
Miyako, Y.	795	Potmischil, F.	237	Shalaby, N. M. M.	
Moeller, S.	659	Pregosin, P. S.	653		599
Molero, D.	293, 303	Preuss, F.	139	Shanklin, J.	524
Montaña, A. M.	261	Price, W. S.	S128, 391	Shimotakahara, S.	559
Monteiro, C.	S110	Prieto, Y.	165	Shindo, H.	559
Morales-Ríos, M. S.	677	Purnell, I. J.	381	Shiomi, N.	541
Morris, G.	S2	runen, i. j.	361	Silva, G. D. F.	366
Morris, G. A.	S147	Qin, XR.	595	Simon, A.	599
Morris, H.	421	Queiroz, S. C. N.	433	Simpson, A. J.	S72
Morris, K. F.	755	Que1102, 5. C. 11.	400	Sinhorin, A. P.	182
Morsy, N. A. M.	599	Rabelo, L. A.	793	Sitkowski, J.	529
Mourey, T.	S60	Raghavendra Rao, C.	337	Slavík, J.	687
Mouro, C.	S133	Ramakrishna, J.	337	Sørland, G. H.	S139
Moutounet, M.	693	Ramesh, K. P.	337	Spadaro, A.	219
Moyna, G.	195	Randall, E. W.	93	Spiteller, M.	371
Murphy, D. M.	381, 683	Rastrup-Andersen, N.	471	Spiteller, P.	371
Mutzenhardt, P.	S133, 618	Raya, J.	123, 772	Srinivas, J.	337
Myszka, H.	231	Regan, D. G.	S115	Srivastava, S.	211
Wiyszka, II.	231	Reinsberg, S. A.	97	Srivastva, S.	474
Nakajima, T.	161	Rhodes, C. J.	421	Stchedroff, M. J.	107, S147
Nakanishi, H.	595	Ribeiro, D. S.	49	Steck, A.	443
Ni, W.	609	Ripmeester, J. A.	81	Stephan, M.	157
Nicholson, J. K.	S83	Ripoli, S.	396	Stephanidou-Stephanatou, J.	733
Niessen, H. G.	157	Rittner, R.	279, 449	Stevens, M. F. G.	300
Nordlander, E.	107	Rizzi, C.	273	Stilbs, P.	391
Nöth, H.		Roberts, J. D.	666	Suárez, M.	303
	31 723	Robin, M.	545	Suárez-Castillo, O. R.	677
Novoselsky, A. Núñez, M. C.		Rochd, M.	618	Subramanian, R. K.	337
Nunez, M. C.	554	Rodríguez, B.	752	Suresh, K. S.	337
O'Brien, E. P.	195	Rodríguez-Franco, M. I.	549	Sutcliffe, L. H.	57
Ochoa, E.	303	Ronchetti, F.	581	Swalina, C. W.	195
Oguri, K.	795	Rosa, A.	182	Szłyk, E.	529
Okada, Y.	795	Rosen, M. S.	S29		
Onodera, S.	541	Roubaud, V.	273	Tabellion, F.	139
· ·				Táborská, E.	687
Otsubo, N.	517	Rowlands, C. C.	381, 683	Takeuchi, Y.	241
Packer, K. J.	520	Roy, R.	474	Tanaka, K.	241
Palmas, P.	S20 537	Rüdisser, S.	377	Tang, H.	S83
Papaioannou, D.		Russell, D. J.	207	Tapia, R. A.	165
Pardo, C.	244	Růžička, A.	65	Tashiro, M.	559
	743	Sakamata V	705		449
Parella, T.	133 537	Sakamoto, K.	795 107	Tasic, L. Tauro, S.	211
Parrain, JL.	55/	Salassa, L.	107	rauto, 3.	211

Tekely, P.	800	van Duynhoven, J. P. M.	S51	Winnington, A. L.	S40
Teng, R.	415, 424, 483	Vashchenko, V. V.	566	Winslow, C. D.	412
Teng, R. W.	603, 609	Vaughan, K.	300	Wrackmeyer, B.	31, 316, 406
Termin, A. P.	307	Verdecia, Y.	303	Wu, L.	284, 346
Terreno, E.	41	Vieira Filho, S. A.	366	Wu, Z.	424
Tezuka, T.	595	Vigouroux, C.	391		
Thibonnet, J.	537	Visalli, G.	219	Xiao, H.	458
Tipples, C. N.	S40	Vodopianov, E.	331	Xie, H.	415
Tok, O. L.	406	•		Xie, H. Y.	603
Toma, L.	581	Wälchli, M.	S128	Xing, G. W.	789
Tormena, C. F.	279	Walsworth, R. L.	S29	Xu, T.	458
Tóth, G.	153, 599	Wang, D.	415, 424, 483		
Toušek, J.	353	0.		Yacobucci, P. D.	S60
Trætteberg, M.	640	Wang, D. Z.	603, 609	Yamamori, A.	541
Troganis, A.	244	Wang, R.	S29	Yamamoto, H.	241
Tsoleridis, C. A.	733	Wang, T.	738	Yang, C.	415, 424, 483
Tuccio, B.	273	Ward, M. D.	683	Yang, C. R.	603
Tušek-Božić, L.	175	Warner, I. M.	755	Ye, M.	786
		Watson, W. H.	412	Yokoyama, S.	517
Uhlemann, C. E.	573	Wedge, S. A.	755	Yu, B.	789
Uhrín, D.	729	Weis, R.	455	Yuan, H.	738
Upton, C. G.	747	Wheelhouse, R. T.	300		
Ushakov, I. A.	114	Willem, R.	65	Zanatta, N.	182
		Williams, A.	331	Zayzev, V. I.	480
Väänänen, T.	705	Williams, A. J.	57	Zhang, T.	738
van Bruggen, P. C.	S51	Wilman, D. E. V.	300	Zhang, Z.	284, 346
van Dalen, G.	S51	Windig, W.	S60	Zimmermann, N. E. K.	182

Subject index to volume 40

	353, 767, 781	β-turn	211	CP, see cross polarization	
—, see also DFT calculations		bicelles	225	CP/MAS, see solid state NMR	
—, see also GIAO calculations			11, 391, S40, S72, S89	crataegolic acid	455
abietane diterpenoids	752	—, affinity	S89	cross polarization, ¹ H → ¹⁹ F	97
accordion procedure	207	, constant	433, S115	—, heating by	772
acridines	541	—, site	41, 396	CSA	716
acridinone derivatives	541	bioactive compounds	346	cyanobacteria	614
activation energy	S3, S115	biomembrane	S3	cyclization shift	517
adamantyl alkyl ketones	595	bipolar field gradients	S147	cycloaddition	412
adduct, muonium	421	bisquinolinium dibromi		cyclobutanes	412
adducts	647, 659	block copolymer	161	cyclodextrine 251, 433	
adenosine	225	blood plasma, human	S83		
adsorption	S40	bonding	589	—, inclusion	S106
		borate complexes		cyclohexanones	433
ageratochromene II	458		683	cyclopentanes, fused	733
aggregates	635	boron	406	cyclopropenes	640
aggregation	S72	bound water	559		
agriculture	S72	bufadienolide glycoside	786	2D spectra, see two-dimensional	
Al-27 NMR	81, 635			spectra	
albumin	391	cadmium	S72	Daphne gnidium L.	EE1
alignment	S3	calcium oxide	381		551
aliphatic hydrocarbons	705	calorimetry	S110	daunorubicin	396
alkaline earth metal oxides	381	calotropagenin	599	decomposition	284
alkaloids 147, 4	174, 677, 687	Calotropis procera	599	DECRA	S60
alkenylsilanes	406	carbohydrates	541, 789	desaturase	524
alkyl radicals	284	carbonyl clusters	107	deuterium NMR	20
alkylation	653	cardenolides	599	DFT calculations 187, 581, 64	0, 781
alkynes	157	carotenoids	797	D-glucoseamine	231
alloy	81	Caryophyllaceae		diagnosis	533
allylic alkylation	653	2 1 2	618	diamagnetic anisotropy	237
aluminosilicates	635	catalysis	157	diastereomeric mixture	261
Alzheimer peptide	S89	(+)-catechin	693, S110	diastereotopic hydrogens	279
		CB8	772	diastereotopicity	237
amide bond conformation	443	Celastraceae	366	diazaphopholene derivatives	589
amine oxides	237	chelate	87	dibutyltin(IV) diacetate	289
	573, 647, 755	chemical exchange	653, S89, S122	dicobalthexacarbonyl complex	261
amino-imino tautomers	541	chemical shift tensor	581, 589	Diels-Alder reaction	165
aminoxyl radical	273	—, see also CSA		dienoates	537
amyloid	211	Chinese medicinal herb	415		
anaesthetics	251	chiral cation	261	diffusion 81, 391, 433, 755, S1	
anisotropic diffusion	S3	, discrimination	433	1.	33, S15
—, motion	S15	—, recognition	659	, coefficient S3	-S147
anthracyclines	396	chloronitrobenzenes	337	—, experiments, artefacts	S139
antibacterial activity	551	chloropyridazines	507	-, experiments, pitfalls	S139
antibiotics	313	chromatography	S60	—, F-19 NMR	S89
antidepressant drug	723, 762		786	—, ordered spectroscopy, see DOSY	-
antimalarial drug	477	cinobufagin	396		S3
antitumor compounds	300, 313	circular dichroism		—, tensor	
aqueous solution	716	Co-59 NMR	57		29, S40
arillatanosides	424	cobalt complex	261	—, translational	589
	554	cobalt(III)tetramethylchi		dihydrofusidic acid	471
aromatic linker		coherence selection	133	Dioclea grandiflora (Fabaceae)	793
artefacts	S139	collidine complex	767	dioclein	793
arylamides	219	colloidal structure	S40	diosgenin 23	31, 789
aryldienoates	537	colour centres	381		21, 755
ascomycin	443	complex	175, 251, 396, 461	dipolar coupling	225
asparagus	541	—, inclusion	S106	—, residual	729
Asparagus officinalis L.	541	complexation	153, 433, 529	dipolar field	S128
association constant	755	configuration	244, 443, 537, 581	dipolar interactions	589
asymmetric bipolar field gradier	nts S147	—, absolute	533	Dipsacaceae	603
Au(III) complexes	529	conformational analysis			53, 659
Austroplenckia populnea	366	244, 261, 443, 517, 566,			S20
automated spectral analysis	331, 623	—, equilibrium	49	displacement	
1 2	,	connectivities, ¹³ C, ¹³ C	3	—, correlations	S15
				dissociation constant	573
B-10,11 NMR	406	coordination	241	distribution coefficient	273
B-11 EPR	683	, compound	57, 716	diterpenoids	752
bacterial carotenoids	797	—, equilibrium	87	donor substituent	87
base pair mobility	377	—, number	31	donor-acceptor	65
benzamidinium salts	202	—, shift	529	DOSY 433, S72, S122, S128	, S133
benzamido oximes	202	copolymer	161	—, new sequence	S147
benzhydroxymates	672	correlation spectra	70	double resonance	81
benzimidoyl chloride	672	—, see also shift correlati		doxorubicin	396
benzoimidic acid, N-alkoxy-	672	-, 1D	133	DPFGSE	559
benzylidene-p-menthan-3-ones	566	COS	563	—, see also PGSE	007
benzymache p menunan-5-ones	500		303	-, SEE MISU I CISE	
benzyllithium systems	24	coumarinolignoid	551	droplet size	S51

drugs	477, 723, 762	HOESY, ¹ H, ⁶ Li,	361	—, via H-bond	767
dynamics	123, 161, 211, 387, 421	host-guest chemistry HPLC	251 433	J-modulation	207, 729
E/Z isomerism	672, 762	HR-DOSY, see DOSY			
eddy currents	S147	human blood plasma	S83	ketone-hemiketal equilibriur	
elastase	S89	—, serum albumin	41	ketones	595
electric sensing	S51	humic acid	S72		
emulsion	S51	, substances	S72	lanthanide ions	396
enantiomeric discrim	nination 659	hydroacridines	237	LAOCOON	317
-, excess	653	hydrocarbons, aliphatic	705	laser diffraction	S51
-, resolution	653	hydrodynamic radius	S89 157	—, polarization	529
enantiomers	433	hydrogenation hydrogen bond 114	, 541, 767, 781	Lee-Goldberg	70
enantioselective alky		2-hydroxyglutaric acid,	533	Leguminosae	609
ENDOR	381, 683 S72	—, lactone	533	Li-6 NMR	3
environment enzymatic oxidation		hydroxypropane, 1,3-diamino-		Li-7 NMR	24, 81, 361
enzyme inhibitor	S89	hypercoordination	241	ligand binding	391 517
epicatechin	S110			—, structure	461
epikatonic acid	366	IGLO calculations	353	, system	S89
	3, 284, 346, 381, 387, 683	imaging	S3	—, protein binding lignins	S72
equilibrium	443, 635, 755	imidovanadium complexes	139	lineshape analysis	77
ESR, see EPR	1 1 440	INADEQUATE, ¹³ C, ¹³ C	3	linewidth	241
ethyl acetates, mono		-, ¹⁹ F, ¹⁹ F	3	, variation	387
exchange	653, S89, S122 S3	-, ¹⁹ F, ¹⁹ F -, ² H, ² H	3	lipid	S3
extracellular water	53	—, ⁶ Li, ⁶ Li	3	lipoprotein fraction	S83
E 10 NIMB 20 07	E24 E27 E72 E00 777	-, ¹⁵ N, ¹⁵ N	3	liquid crystal	772, S3, S15
F-19 NMR 20, 97, S98	524, 537, 573, 589, 777,	$-$, ${}^{31}P$, ${}^{31}P$	3	lithium carbonate	81
ferrocene derivatives	795	—, ²⁹ Si, ²⁹ Si	3	lithium-aluminum oxide	81
FH complex, see HF		-, ¹¹⁹ Sn, ¹¹⁹ Sn	3	Ln(III) chelate	87 S15
field gradients	93, 133	inclusion complex	433, S106	locally anisotropic motion low-field NMR	S51
film	S20	indene derivative	371	low-field NWIK	331
flavanone	793	indole alkaloids	677		
flavonoid glycosides		INEPT, 31P,51V	139	macromolcules	391
flavononol, prenylat		—, refocused	169	magic echo	S3
floranol	793	interactions	S72	magnesium oxide	381
fluoro(organoseleno)olefines, 777 777	—, intermolecular	563	magnetic alignment	225
—, alkanes Flustra foliacea	677	—, intramolecular	114	magnetic susceptibility	123
fluvoxamine	762	—, non-specific	S110	MAS, see solid state NMR	412
food browning	693	internal motion internucleotide scalar couplin	738 g 377	Mayo type reaction mecambridine	687
foods	S51	intracellular water	S3	mecambrine	687
fructosyltransferase	541	inverse HOESY	361	medicinal herb	415
fusidane derivatives		ion pairs	24	metabolite	533
fusidic acid	471	ion-specific parameters	573	metal adducts	396
		isodesmic	S115	—, binding	41, S72
ganglioside	517	isomerism, E/Z -	672, 762	methyl radical adduct	273
gas flow	S29	—, rotational	666	2-methylcyclohexanone oxin	
gas-phase diffusion	S29	isomerization	653	methylol derivatives methylpentenoic acid	747 573
—, study	563	isoquinoline alkaloids	687 687	micelles	273, 755
GIAO calculations	195, 353, 581, 589	isothebaine isothermal titration calorimetr		microcystin-LR	614
glediatside A Gledistsia dolavayi Fr	609 anch. 609	isotope effect, see isotope shift		Microcystis aeruginosa	614
glucopyranoside	231	isotope shift	31, 57, 77, 743	microscopy	S51
glucosamine, D-	231	$-$, $10/11$ B(29 Si)	406		47, 705, S40, S60
glycisides	415, 483, 786	isotopomers	77	Mn(II) binding	41
glyoxylic acid	693	IUPAC recommendations	489	MO calculations	182
GM4 ganglioside	517			model ligand	461
gold(III) complexes	529	J-coupling, across H-bond	377	modelling	70
		—, calculations	187, 640	molecular dynamics	211
H-2 NMR, solid stat	e 161	10 10	7, 507, 640, 672		79, 566, 581, 677
halopropionates	279	-, ⁵⁹ Co, ¹³ C	57	—, motion	421
Hankel diagonaliza		-, ¹⁹ F, ¹³ C	77	—, simulation	566 S72
H-bond, see hydroge		-, ¹⁹ F, ¹⁹ F	77	-, size	387
heating effect	772	-, ¹⁹ F, ¹ H	573, 767	—, tumbling	S72
helicate complexes	461 614	-, ¹⁹ F, ¹⁵ N	207, 767	—, weight monepalin A	415
hepatotoxin HETCOR, ⁷⁷ Se, ¹⁹ F	777	-, 1H,1H		monepalin B	415
-, see also shift co		—, ¹H,¹¹¹Sn	133, 767 65	monepalisides	603
heterocycles 114.	165, 182, 293, 300, 303,	—, ¹⁴ N, ⁵¹ V	139	monofructosyllactosucrose	541
	, 467, 477, 480, 507, 529,	, ¹⁵ N, ¹⁵ N		Morina nepalensis var. alba	
501, 510, 500, 401		-, ¹⁸⁷ Os, ³¹ P	377	Hand. Mazz	603, 415
541, 549, 554, 589,			107	MRI	S3
541, 549, 554, 589, hexafluoro-1,3-buta		31 p 13 c	EOF		
541, 549, 554, 589, hexafluoro-1,3-buta HF-collidine comple	ex 767	—, ³¹ P, ¹³ C	507	—, contrast agent	87
541, 549, 554, 589, hexafluoro-1,3-buta	ex 767	, ³¹ P, ¹³ C , ³¹ P, ¹ H , ³¹ P, ¹⁵ N	507 507 507		87 331 421

MRC

Pittle spectra 157	muscle	S3	phenylselenenylmenthanes	659	satellite analysis	107
Polymer Poly	myrtenol				2	
Section 19, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15	,					
N.14 NMR 18 182 202 300 305 487 489, 150 150 NMR 307 529 599 672 687 740 781 150 NMR 307 529 599 672 687 740 781 150 NMR 307 529 599 672 687 740 781 150 NMR 307 529 599 672 687 740 781 150 NMR 307 590 590 672 687 740 NMR 307 590 590 590 590 590 590 590 590 590 590						
System S	N-14 NMR	139 57				
507, 529, 529, 672, 687, 743, 781 photochemistry 254, 412 self-sesscation \$110, \$115 phototropic bacteria 777 self-diffusion \$3, \$55, \$145 photoropic bacteria 778 self-diffusion \$3, \$55, \$145 photoropic bacteria 779 self-diffusion \$3, \$55, \$145 photoropic bacteria \$3, \$145 photoro						
photo-eycloaddition 412 53, 53, 53, 53, 53, 53, 53, 53, 53, 53,						
Stall Stal						
Set						
Nicholas reaction 261		300, 413, 474,				
nifeting in molegue nitric oxide nitrones, phosphorylated nitrones, phosp		261				
mitrosokjen polspohpoplated 237 antirosokihols 348 248 489 polychymidden elluroide 373 antirosokihols 348 antirosok			α-pinene,		shielding scale	563
Introsections Posphorylated 24, 34 and Posphorylated 24, 34 and Posphorylated 24, 34 and Posphorylated 24, 34, 34 and Posphorylated 24, 34 and Posphorylated 24, 34, 34, 34, 37, 37, 37, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38			piperidines	549	shift calculation	449
nitrose, phosphorylated 274 polycinylidene fluoride) 975 mitrosethios 284, 36 polycinylidene fluoride 975 polycinylidene 384, 36 polycinylidene fluoride 975 polycinylidene 384, 36 polycinylidene 184, 37 polycinylidene 384, 36 polyci			polarization transfer	157	see also ab initio calcul	ations
nitrosothiols	nitrones, phosphorylated	273	poly(vinylidene fluoride)	97		
ntrosides 294, 346 Polymer composition 500 — 1,11/5 n 655 NMR romenclature 499 polymer composition 500 — 1,11/5 n 655 NMR romenclature, NMR 498 polymers and second second polymers of the second polymers of	nitrosothiols	346		S115		
Nome	nitroxides	284, 346	Polygala arillata Buch-Ham		19 = 77 c	
NMRD profile	N-methylacetamide					
NMRIT						65
NORE, interresidual 517 nomenclature, NMR 499 norchelerythrine 687 N-oxidation 237 N-oxidazinum salts 527 N-oxidaz					$-$, ${}^{31}P$, ${}^{51}V$	139
SOCE_Interresidual 517					SI-29 NMR	3, 406, 635
Some chelerythrine						
Sociation Soci						
Nooxidation						
Nevosides Normalistic State			porous media	S20, S29		
No.			porphyrin	647		
NOR	N-oxides	273	potassium hexacyanocobalt	57		
NOR	N-pyridazinium salts	507	pressure dependence	337		S89
Decide cacids 599		337			Sn-117 NMR	65
Decider of the problem 244 protopanasatriol glycosides 545 pulsed gradient spin-echo, see PGSE p	nucleic acids	559			Sn-119 NMR	20, 31
Doll-17 NMR					software	317
Solid Starction	Tractice to the control of the				soil	S72
219, 589,723,772,795					solid state NMR 24, 31, 70	
Destruction S3, S40 Oligo-birth S40	O 17 NIMP	11 97 290 505				,,,,
Solid-plase peptide synthesis 123			I.			252
Digosaccharide 169, 541, 603, 609, 618, 729, Pyridadrillium salts Pyridadrillium sa						
Solvent polarity 781 782 783 784 785						
Symmidal	0 12		pyridazinium salts	507		
Section Sect			pyrimidines, cycloalkyl[d]-	293	1 4	
organic matter organometallics 24, 31, 139, 157, 175, 361, 653, 683 organic matter organometallics 24, 31, 139, 157, 175, 361, 653, 683 organoseleno compounds organometallics 24, 31, 139, 157, 175, 361, 653, 683 organoseleno compounds organoceleno compounds organometallics 24, 31, 139, 157, 175, 361, 653, 683 organoseleno compounds organoceleno compounds organometallics 24, 31, 139, 157, 157, 361, 653, 683 organoseleno compounds organometallics 24, 31, 139, 157, 157, 361, 653, 683 organoseleno compounds organotin compounds organotin compounds organotin compounds organotin compounds organometallics 24, 31, 139, 157, 157, 361, 653, 683 organoseleno compounds organotin compounds organotin compounds organometallics 24, 31, 139, 157, 157, 361, 653, 683 organoseleno compounds organotin compounds organometallics 24, 31, 139, 157, 157, 361, 653, 683 organoseleno compounds organotin compounds organometallics 24, 31, 139, 157, 157, 361, 653, 683 organoseleno compounds organometallics 24, 31, 139, 157, 157, 361, 653, 683 organoseleno compounds organometallics 24, 31, 139, 157, 157, 361, 653, 683 organoseleno compounds organometallics 24, 31, 139, 157, 157, 361, 653, 683 organoseleno compounds organometallics 24, 31, 139, 157, 157, 361, 663, 683 organometallics 24, 31, 141, 614, 614, 614, 614, 614, 614, 61	oligosaccharide 169, 541, 603	3, 609, 618, 729,		477	—, suppression	391, S128
organoit matter organoithium compounds organometallics 24, 31, 139, 157, 175, 361, 653, 683 organoseleno compounds organoithium compounds organoithium compounds organoithium compounds organoith compounds or	789				spectral analysis	317, 331, 623
organolithium compounds organometalics 24, 31, 139, 157, 175, 361, 653, 683 Q-switching 24, 683 —, modelling 24, 381 70 organoseleno compounds organotin compounds organotin compounds orientation 31 QUASAR 24, 70 —, lock, F-19 97 2-oxabicylo[2,2,2]octane oxidation 599 quinolone derivatives 477 —, enzymatic oxidation 81 radicals 284, 346, 387 —, echo see also PCSE —, lattice relaxation see also PCSE —, lattice relaxation see also PCSE —, etho see also PCSE —, battice relaxation see also PCSE —, battice relaxation see also PCSE —, battice relaxation see also PCSE —, spin coupling, see f-coupling sea also PCSE —, spin coupling, see f-coupling	organic matter	S72	pyrionanies	017	- assignments, see referen	ice data
653, 683 organoseleno compounds of 31 overall compounds of 325 overall compounds overall compounds of 325 overall compounds overall compounds overall compounds ov	organolithium compounds	24, 361	Oit-bin-	0100		
653, 683 quantification 705, 762, 889 —, lock, F-19 97 organoseleno compounds 31 quantification 705, 762, 889 —, lock, F-19 97 organosteno compounds 31 quinolinedione 165 —, trapping 273, 260 orientation 53 quinolone derivatives 477 —, echo 391, 81 coxidation 81 radiation damping \$128 —, echo 391, 81 coxidation 81 radiation damping \$128 —, echo 391, 81 coxidation 81 radiation damping \$128 —, echo 391, 81 coxidation 81 radiation damping \$128 —, echo 391, 81 coxidation 83 radiation fequency field gradients \$128 —, shid (see prelaxation) —, spin coupling, see f-coupling see also PGSE —, spin coupling, see f-coupling see also PGSE —, spin coupling, see f-coupling sea also relaxation see also relaxation see also relaxation see also relaxation sea daso relaxation starnames stemmdential stariotic		157, 175, 361,				
organotin compounds of St. 284 organization of St. 285 organization of St. 285 organization of St. 286 organiz		, , ,			*	
orientation ompounds orientation of the properties of the properties of the product of the produ		777				
Nos-187 NMR					—, rotation mechanism	
Os-187 NMR 107 2-oxabicylof			quinolinedione	165	—, trapping	273, 284
Sec NMR 107 Sec Association 107			quinolone derivatives	477	—, echo	391.81
Post oxidation State Post of the parameteric size Post			•			
radicals 284, 346, 387 see also relaxation			radiation damping	S128		57
-, enzymatic oxides 324 radiofrequency field gradients \$133 radiofrequency heating \$725 radiolabelling -, spin coupling, see J-coupling squalane 705 radiolabelling \$725 radiolabelling \$725 radiolabelling \$725 radiolabelling \$725 radiolabelling \$725 radiom coil peptides \$88 squaric acid \$87 squaric acid \$8	oxidation	81				37
oxides oxime-esters oxime-esters oxirane derivatives oxirane derivatives oxomolybdenum(V) complexes 381 radiofrequency heating radiolabelling and properties seasing ment reference data 293, 300, 303, 307, 311, 313, 455, 458, 461, 467, 471, 474, 480, 483, 545, 458, 461, 467, 471, 474, 480, 483, 545, 458, 461, 467, 471, 474, 480, 483, 545, 458, 461, 467, 471, 474, 480, 483, 545, 458, 461, 467, 471, 474, 480, 483, 545, 458, 461, 467, 471, 474, 480, 483, 578, 589, 589, 589, 589, 589, 589, 589, 58	—, enzymatic	524				Post
oxime-esters 762 oxirane derivatives 443 oxomolybdenum(V) complexes 443 random coil peptides 589 oxomolybdenum(V) complexes 443 random coil peptides 589 oxomolybdenum(V) complexes 453 reassignment reference data 293, 300, 303, 307, 311, 313, 455, 458, 461, 467, 471, 474, 477, 480, 483, 537, 541, 545, 549, 551, 554, 614, 618, 747, 742, 7480, 483, 537, 541, 545, 549, 551, 554, 614, 618, 747, 742, 749, 749, 7480, 748, 748, 748, 748, 748, 748, 748, 748	oxides	381				
oxirane derivatives						
A commonly bedenum (V) complexes 683 Freasign ment reference data 293, 300, 303, 307, 311, 313, 314, 455, 458, 461, 467, 471, 474, 477, 480, 483, 537, 541, 545, 549, 551, 554, 614, 618, 747, 752, 786, 789, 793, 795, 797 412 518, 514, 514, 514, 514, 514, 514, 514, 514					squaric acid	
P-31 NMR 3, 93, 107, 139, 175, 507, 589 palladium allyl complex 653 r52, 786, 789, 793, 795, 797 palladium complex 175 panax notoginseng 483 parahydrogen 157 paramagnetic NMR 396 rs, shifts 93 relaxation 97, 123, 161, 337, 396, 716, 738, politics size peptides 123, 133, 211, 421, 614, 755, S72, 786 resion of structure revision s					stannanes	65
P-31 NMR	ozomory bacham (v) complex	003			stemmdenine alkaloids	474
P-31 NMR					stereochemistry	261, 581
Sample S	D 21 NIMD 2 02 107 12	0 175 507 500				
palladium complex 175 palladium complex 175 Panax nologinseng 483 parahydrogen 157 paramagnetic NMR 396 —, shifts 93 —, solids 93 particle size 583 perticle size 583 perticle size 583 peptides 123, 133, 211, 421, 614, 755, S72, S89 resions PFGSE, see PGSE 747 PCSE artefacts 5139 —, wATERGATE 391 —, WATERGATE 391 pharmaceutical analysis 762 phenanthricline 461 phenanthricline 461 phenollic compounds 693, 747 Sa) 747 phenollic compounds 693, 747 Sa) 747 phenollic compounds 693, 747 phenollic saccharides 603, 609 temperature effect 772 perticle size perticle size 983 perticle size 983 per				, 614, 618, 747,		
Panar notoginseng 483 regiochemistry 165 regioselectivity relaxation 97, 123, 161, 337, 396, 716, 738, strontium oxide 381 structure revision 424 streptonigrin 313 strontium oxide 381 structure revision 424 streptonigrin 313 strontium oxide 381 structure revision 424 streptonigrin 313 strontium oxide 381 structure revision 424 streptonigrin strontium oxide 381 structure revision 424 streptonigrin strontium oxide structure revision 424 substituent effects structure revision 424 substituent effects sulfides, fluorine-tagged sulfone sulfone sulfone sulfone sulfone sulfone sulfoxide sulf			752, 786, 789, 793, 795, 797			
Panax notoginseng 483 parahydrogen 157 paramagnetic NMR regioselectivity relaxation 412 regioselectivity relaxation 412 regioselectivity relaxation 412 regioselectivity relaxation 412 paramagnetic NMR 336 S20, S89 S20, S80			regiochemistry	165		
parahydrogen parahydrogen paramagnetic NMR 157			regioselectivity			
paramagnetic NMR	1 2 0		relaxation 97, 123, 161, 337,	396, 716, 738,		
—, shifts 93 —, ⁵⁹ Co 57 —, solids 93 —, paramagnetic 41 particle size 583 pentacyclic triterpene 455 peptides 123, 133, 211, 421, 614, 755, S72, 589 PFGSE, see PGSE PGSE artefacts 5139 —, NMR 53-S147 —, pitfalls 5139 —, WATERGATE 391 pH effect 666 pharmaceutical analysis 762 pharmaceutical analysis 762 pharmaceutical analysis 762 phenanthrioline 461 phenanthrioline 461 phenolic compounds 693, 747 phenyl alkyl selenide 153 -, solids 93 —, paramagnetic 41 stylopine 687 stylopine 3tylopine 4telaxometry 41 sulfides, fluorine-tagged 3ulfone 3tylopine 3tylopine 3tylopine 3tylopine 3tylopine 3tylopine 3tylopine 3tylopine 4telaxometry 41 sulfides, fluorine-tagged 3ulfone 3tylopine 3tylopine 3tylopine 4telaxometry 424 sulfone 3tylopine 3tylopine 4telaxometry 424 sulfone 5	paramagnetic NMR	396				
-, solids 93 -, paramagnetic 41 substituent effects 182, 202, 449, 524 relaxometry 41 sulfides, fluorine-tagged sulfone 524 resoil phenol-formaldehyde resins 747 sulfoxide 3182, 202, 449, 524 sulfoxide 3105 sulfoxide 3107 s	—, shifts	93	— ⁵⁹ Co	57		
particle size particle size pentacyclic triterpene 455 peptides 123, 133, 211, 421, 614, 755, S72, S89 PGSE persolution, enantiomeric esion feel sulfone 524 sulfo						
pentacyclic triterpene 455 peptides 123, 133, 211, 421, 614, 755, S72, S89 PFGSE, see PGSE PGSE artefacts S139 P, NMR S3-S147 P, pitfalls S139 P, WATERGATE 391 PH effect 666 PRNA oligomer 777 Pharmaceutical analysis 762 Pharmaceutical analysis 762 phenanthricline alkaloids 147 phenanthricline alkaloids 693, 747 phenyl alkyl selenide 153 PGSE, see PGSE PGSE artefacts S139 PSS sulfoxide Sulfoxide Sulfoxide Sulface, Surface wetting films S20 Surface-wetting films S20 Surface-wetting films S20 Surface-wetting films S20 Surface-wetting films S20 To surface-wetting films S20 T						
Peptides 123, 133, 211, 421, 614, 755, S72, S89						
FGSE, see PGSE PGSE artefacts P, NMR P, pitfalls P, water GATE PH effect PH effect PH effect Phenanthricline alkaloids Phenanthricline Phenanthroline Phenanthroline Phenolic compounds PGSE, see PGSE PGSE PGSE PGSE PGSE PGSE PGSE PGSE						
PFGSE, see PGSE PGSE artefacts S139 -, NMR S3-S147 -, pitfalls S139 -, WATERGATE PH effect Pharmaceutical analysis Phenothridine alkaloids Phenothridine Phenotlic compounds PGSE, see PGSE PGSE artefacts S139 resolution, enantiomeric Preview S3-S147 review S3-S147 revision of structure Ptield gradients S133 ribonuclease T Ptield gradients S133 ribonuclease T Ptield gradients S133 Surface Surface-wetting films S20 Surface-wetting films S3, S40, 755 Synthesis, laser-induced T7 Tabernaemontana heyneana Ptield tannin S110 Tabernaemontana heyneana Ptield Tabernaemontana hey		, 014, 700, 012,				
PGSE artefacts \$139 review 3, 317, 53 surface-wetting films \$381, \$20 -, NMR \$3-\$5147 review 3, 317, \$3 surface-wetting films \$20 -, pitfalls \$139 rf field gradients \$133 surfactant \$3, \$40, 755 -, WATERGATE 391 ribonuclease T1 559 synthesis, laser-induced 77 pH effect 666 RNA oligomer - 377 - 377 rocuronium bromide 251, \$106 Tabernaemontana heyneana 474 phenanthridine alkaloids 147 rotational isomerism 666 tannin \$110 phenolic compounds 693, 747 \$-33 NMR 563 temperatrure effect 772 phenyl alkyl selenide 153 saccharides 603, 609 tetradecane 705						
Post artefacts S139 review 3, 317, 53 surface-wetting films 520 surface, pitfalls S139 rifield gradients S133 synthesis, laser-induced 77 ribonuclease T1 559 pH effect 666 RNA oligomer - 377 pharmaceutical analysis 762 rocuronium bromide 251, S106 Tabernaemontana heyneana 474 phenanthridine alkaloids 147 rotational isomerism 666 tannin S110 phenanthroline 461 phenolic compounds 693, 747 S-33 NMR 563 temperatrure effect 772 phenyl alkyl selenide 153 saccharides 603, 609 tetradecane 705		0120			surface	381, S20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					surface-wetting films	S20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						S3, S40, 755
—, WATERGATE 391 ribonuclease T ₁ 559 pH effect 666 RNA oligomer - 377 pharmaceutical analysis 762 rocuronium bromide 251, S106 Tabernaemontana heyneana 474 phenanthridine alkaloids 147 rotational isomerism 666 tannin S110 phenanthroline 461 - 33 NMR 563 temperatrure effect 772 phenyl alkyl selenide 153 saccharides 603, 609 tetradecane 705	—, pitfalls	S139	rf field gradients	S133		
pH effect 666 RNA oligomer - 377 pharmaceutical analysis 762 rocuronium bromide 251, S106 Tabernaemontana heyneana 474 phenanthridine alkaloids 147 rotational isomerism 666 tannin S110 phenanthroline 461 tautomerism 507, 541 phenolic compounds 693, 747 S-33 NMR 563 temperatrure effect 772 phenyl alkyl selenide 153 saccharides 603, 609 tetradecane 705					- January moet mouted	.,
pharmaceutical analysis 762 rocuronium bromide 251, S106 Tabernaemontana heyneana 474 phenanthridine alkaloids 147 rotational isomerism 666 tannin 5110 phenanthroline 461 tautomerism 507, 541 phenolic compounds 693, 747 S-33 NMR 563 temperatrure effect 772 phenyl alkyl selenide 153 saccharides 603, 609 tetradecane 705						
phenanthridine alkaloids 147 rotational isomerism 666 tannin S110 phenanthroline 461 tautomerism 507, 541 phenolic compounds 693, 747 S-33 NMR 563 temperatrure effect 772 phenyl alkyl selenide 153 saccharides 603, 609 tetradecane 705					Tahernaemontana houneana	474
phenanthroline 461 tautomerism 507, 541 phenolic compounds 693, 747 S-33 NMR 563 temperatrure effect 772 phenyl alkyl selenide 153 saccharides 603, 609 tetradecane 705						
phenolic compounds 693, 747 S-33 NMR 563 temperatrure effect 772 phenyl alkyl selenide 153 saccharides 603, 609 tetradecane 705			rotational isomerism	000		
phenyl alkyl selenide 153 saccharides 603, 609 tetradecane 705			C 22 NIMB	m/n		
phenylgermanes 241 saponin 424, 603, 609, 618, 789 tetrafluoroethylene 77						
	phenylgermanes	241	saponin 424, 60	3, 609, 618, 789	tetrafluoroethylene	77

tetrahydrofusidic acid	471	titration	573	uridine analogue			244
tetrapeptide	123	torsional motion	337	Ursane-type saponin			603
tetrazoles	507	toxicity	S72	ursolic acid			455
Teucrium fruticans L.	752	triazolo[1,5-a]pyrimidines	529				
Teucrium polium L.	752	tributyltin(IV) acetate	289	V-51 NMR			139
TFA, see trifluoroacetate		trienoates	537	variable temperature	NIMP 57	153	
thallium cyanide complexes	716	trifluoroacetate	S89	225, 289, 377	INIVIA 37,	100,	101
thallium halide complexes	716	trifluoroethanol	317	vinylcyclopropane			195
thallium(III) compounds	716	trifluoromethlylated dienoates	537	vinyleyclopropane			17.
thia fatty acid analogue	524	tripeptide	133	WATERGATE			391
thiazole	165	triterpene	366, 618	white matter			S
thiols	346	, pentacyclic	455	witte matter			0,
three-membered rings	187, 640	triterpenoid	366, 609	Xe-129 NMR			S29
through space interaction	595	—, saponins	424	X-ray diffraction	31, 231, 353	3.366	
tibolone metabolites	581	Tröger's base	743	, and minutes	01, 201, 000	, 000	, 00.
time evolution	635	β-turn	211	zeolite			S
tissue	S3	two-dimensional spectra, solid state	e 70	Zoloft®			723

2002

volume 40

MRCHEG 40(1-12) 1-808 plus a special issue (2002)

ISSN 0749-1581

John Wiley & Sons Ltd

MRC magnetic resonance in chemistry

EDITOR-IN-CHIEF

Professor H. GÜNTHER

Universität Siegen, Fachbereich 8, OCII, D-57068 Siegen, Germany Fax: +49 271 740 2512 e-mail: guenmr@in400.chemie.uni-siegen.de or guenmr@chemie.uni-siegen.de

NORTH AMERICAN EDITOR

Professor M. BARFIELD Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA Fax: +1 520 621 8407 e-mail: barfield@u.arizona.edu

SUBJECT EDITOR - POLYMERS

Professor F. LAUPRÊTRE Laboratoire de Recherche sur les Polymères, CNRS GLVT. 2 à 8, Rue Henri Dunant. F-94320 Thiais, France Fax: +33 149781208 e-mail: laupretre@glvt-cnrs.fr

SUBJECT EDITOR - NMR AND ESR OF BIOMOLECULES

Professor A.-F. MILLER Department of Chemistry, Chemistry and Physics Building University of Kentucky Lexington, KT 40506-0055, USA Fax: +1 859 323 1069 e-mail: afm@pop.uky.edu

EDITORIAL BOARD

Professor R. K. HARRIS Department of Chemistry, University of Durham, South Road, Durham, DH1 3LE, UK Fax: +44 191 384 4737 e-mail: R.K.Harris@durham.ac.uk

Dr J. H. KEELER Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 IEW, UK Fax: +44 1223 336913 e-mail: James.Keeler@ch.cam.ac.uk

Professor W. VON PHILIPSBORN Organisch-Chemisches Institut, Universität Zurich-Irchel, Winterthurerstrasse 190. CH-8057 Zurich, Switzerland Fax: +41 1 635 6836 e-mail: egysi@oci.unizh.ch

Professor W. F. REYNOLDS University of Toronto, Chemistry Department, Toronto, Ontario, Canada, M5S 1A1 Fax: +1 416 978 3563 e-mail: wreynold@chem.utoronto.ca

ADVISORY BOARD

Prof. R. J. Abraham University of Liverpool

Prof. S. Aime Università degli Studi di Torino

Prof. C. Altona University of Leiden

Prof. Isao Ando Tokyo Institute of Technology

Prof. S. Berger Universität Leipzig

Prof. I. Bertini Università degli Studi di Firenze

Dr D. Collison University of Manchester

Prof. T. Cross Florida State University

Prof. H. Duddeck Universität Hannover

Dr M. J. Duer University of Cambridge

Prof. J. O. Duus Carlsberg Laboratory

Prof. J. Elguero Consejo Superior de Investigaciones Cientificas, Madrid

Prof. R. G. Enriquez Universidad Nacional Autonoma de Mexico

Dr S. Glaser Technische Universität, München-Garching

Prof. P. E. Hansen Roskilde University

Prof. G. S. Harbison University of Nebraska

Prof. Dr P. Joseph-Nathan Centro de Investigación y de Estudios Avanzados del I.P.N., Mexico City

Prof. H. Kessler Technische Universität, München-Garching

Prof. H.-H. Limbach Freie Universität Berlin Dr G. E. Martin Pharmacia & Upjohn, Kalamazoo

Dr D. Massiot Centre de Recherche, Orleans

Dr E. P. Mazzola Univ. of Maryland-Joint Inst. for Food Safety & Applied Nutrition

Prof. A. E. Merbach Swiss Federal Institute of Technology Lausanne (EPFL)

Prof. G. A. Morris University of Manchester

Prof. W. P. Power Guelph-Waterloo Centre

Prof. P. S. Pregosin Eidgenössische Technische Hochschule, Zürich

Prof. C. J. Rhodes Liverpool John Moores University

Prof. J. D. Roberts California Institute of Technology

Prof. A. J. Shaka University of California, Irvine

Prof. J. A. S. Smith King's College, London

Prof. W. B. Smith Texas Christian University

Prof. O. W. Sørensen Carlsberg Laboratory

Prof. H. Sterk Karl-Franzens-Universität, Graz

Dr G. Wider Eidgenössische Technische Hochschule,

Prof. X.-W. Wu East China Normal University

