

The Space Shuttle Columbia Accident Investigation: Forensic Tools, Techniques, and Results

Steve McDanels

Chief, Failure Analysis and Materials Evaluation Branch
NASA, Kennedy Space Center
steve.mcdanels@nasa.gov

Principals: Dr. Brian M. Mayeaux (NASA-Johnson Space Center)
Thomas E. Collins (Boeing-Huntington Beach)
Dr. Gregory A. Jerman (NASA-Marshall Space Flight Center)
Steven J. McDanels (NASA-Kennedy Space Center)
Dr. Robert S. Piascik (NASA-Langley Research Center)
Richard W. Russell (Boeing-Kennedy Space Center)
Dr. Sandeep R. Shah (NASA-Marshall Space Flight Center)

Columbia STS-107

Shuttle Columbia: April 12, 1981

Shuttle Columbia: January 16, 2003

Shuttle Columbia: STS-107

•Launch – January 16, 2003

Shuttle Columbia: STS-107

- Launch – January 16, 2003
- Launch + 81.9 seconds, External Tank left bipod foam strikes Columbia's left wing

Shuttle Columbia: STS-107

- Launch – January 16, 2003
- Launch + 81.9 seconds, External Tank left bipod foam strikes Columbia's left wing
- Approximately 1 minute 24 seconds into peak heating region of re-entry interface, 8:52:17, an off-nominal temperature in the left main landing gear brake line sensor
- Over California first signs of debris shedding observed at 8:53:46 am
- First sign of trouble reported in mission control, at 8:54:24 when four hydraulic sensors were indicating “off-scale low”.
- Loss of signal from Columbia recorded at 8:59:32 am.

Shuttle Columbia: STS-107

- Launch – January 16, 2003
- Launch + 81.9 seconds, External Tank left bipod foam strikes Columbia's left wing
- Approximately 1 minute 24 seconds into peak heating region of re-entry interface, 8:52:17, an off-nominal temperature in the left main landing gear brake line sensor
- Over California first signs of debris shedding observed at 8:53:46 am
- First sign of trouble reported in mission control, at 8:54:24 when four hydraulic sensors were indicating "off-scale low".
- Loss of signal from Columbia recorded at 8:59:32 am.
- Videos made by observers on the ground at 9:00:18 am revealed that the Orbiter was disintegrating

Recovery

- Mach 18 at an altitude of 208,000 feet at time of break-up
- The size of the debris field was 645 miles long and 10 miles wide
- Each piece of debris was photographed, analyzed for potential hazards, given a unique identification
- Each piece's location was noted and a preliminary identification was attempted
- Debris sent to one of several staging locations, then to the Kennedy Space Center

O
Left Wing
RCC

O
Left Wing
Eroded RCC

O
Right Wing
RCC

Recovery

Recovery

Recovery

Recovery

Reconstruction

Reconstruction

Nemotodes (round worms) Experiment

Columbia Recovery and Reconstruction Statistics

- Over 16,000 people at recovery sites
- 1.5 million hours expended in search and recovery effort
- 150,000 hours expended in reconstruction phase
- Approximately 84,000 pieces retrieved
- Approximately 85,000 lbs of debris retrieved, representing approximately 38% of the Orbiter's dry weight
- Debris Reconstruction Team at KSC – 150 people

M&P Engineering Team

The M&P Team gratefully acknowledges the talents and contributions of the following individuals:

NASA-GRC

- Herb Garlick
- Leslie Greenbauer-Seng
- David Hull
- Nathan Jacobson
- Elizibeth Opila
- James Smialek

NASA-JSC

- Jay Bennett
- Glenn Ecord
- John Figert
- Julie Henkener
- Julie Kramer-White

NASA-KSC

- Larry Batterson
- Virginia Cummings
- Dionne Jackson
- Thad Johnson
- Hae Soo Kim
- Sandra Loucks
- Peter Marciniak
- Wayne Marshall
- Orlando Melendez
- Scott H. Murray
- Jaime Palou
- Donald Parker
- Victoria Salazar
- Eric Thaxton
- Stan Young

NASA-LaRC

- Robert BERRY
- Stephen Smith
- William Winfree

NASA-MSFC

- James Coston
- Greg Steele

Boeing

- Rodger Capps
- Tab Crooks
- Jeff Hausken
- Stephanie Hopper
- Mark Hudson
- Dave Lubas
- Robert Perez
- Keith Pope
- Janet Ruberto
- Keith Pope
- Jim Stewart

USA

- Cathy Clayton
- Stanley Schultz
- Bryan Tucker

CAIB

- Dr. Gregory T. A. Kovacs
- G. Mark tanner

Reconstruction Hangar: 2-04-03

Reconstruction Hangar: 2-07-03

Reconstruction Hangar: 2-14-03

Reconstruction Hangar: 2-20-03

Reconstruction Hangar: 03-04-03

Reconstruction Hangar: 03-12-03

Reconstruction Hangar: 03-20-03

Reconstruction Hangar: 03-26-03

Reconstruction Hangar: 04-17-03

Reconstruction Hangar: 05-22-03

Reconstruction

Reconstruction: From Left Wing

Reconstruction: Right Wing

Reconstruction: Tiles

Reconstruction: Tiles

Left Outboard Main Tire

LH Landing Gear Trunnion

Debris

Main Landing Gear Uptick Roller

Heaviest splatter on
inboard side

Main Landing Gear – Corner Tile

Debris

Midbody Panel- Erosion and tile
damage

Carrier Panel Tiles

Mating LH RCC #8 Fragments

RCC

LH RCC #8 fragment (2 views)

Leading Edge Representation

STS-107 Reconstruction Hangar

Initially, analysis was restricted to visual and macroscopic examination of debris in the hangar.

Analytical Techniques

Technique	Purpose	Benefit
Photography	Photo documentation	Documentation to maintain traceability
Scanning Electron Microscopy – SEM/EDS	Semi-quantitative elemental composition	Elements present, identify difference between top and bottom of sample
X-ray Diffraction – XRD	Identify compounds	Identify compounds of crystalline structure
Electron Microprobe	Identify elements	Determine exact composition
Fourier Transform Infra-Red – FTIR	Qualitative organic composition	If organic, aid in identification
ESCA/XPS	Identify inorganic & organic compounds	Aid in tracking of oxidation states, such as oxide; compound identification
Metallography – SEM	Layering of material	Composition through deposit layers
Inductively coupled plasma - ICAP	Quantitative elemental composition	Elements present, Quantify bulk composition of sample
NDE Inspections- Radiography, CT, Ultrasonics	Non-destructive Inspection and identification	See through the material, identify differences in materials, identify defects

Typical EDS, XPS, and XRD results:

EDS

XRD

ESCA/XPS

Pressure: 1×10^{-8} torr

Conditions: Magnesium X-rays at 15 KV and 12 mA

Element	Position, Binding Energy (eV)	Possible Compound(s)	Mass Concentration (weight %)
O 1s	532.050		58.29
Al 2p	75.050	Al ₂ O ₃ , minor Aluminum silicate	22.29
Fe 2p	710.050	FeO and Fe ₂ O ₃	2.47
Cr 2p	575.750	CrO ₂	7.61
Cu 2p	932.850	Cu metal	2.20
Si 2p	102.550	Al silicate	5.23
N 1s	399.150		1.91

Elements Detected (Approximate Weight %) via SEM/EDS

A1 inner	Na	Mg	Al	Si	Ca	Ti	Cr	Fe	Ni	Cu
Region 1	<1	-	33	38	-	-	8	5	15	-
Region 2	<1	-	32	37	-	-	8	5	18	-
Region 3	<1	-	32	37	-	-	7	5	19	-
Region 4	-	-	31	31	-	-	7	7	24	-
Region 5	-	-	29	29	-	-	8	7	26	-
Region 6	-	-	30	30	-	-	8	7	26	-
Region 7	-	-	31	34	-	-	7	6	22	-

SEM/EDS

NASA KSC LABS DIVISION
KSC-MSL-2003-0143-01
RDS 18477-1 Slag Sample E2 Dot Map

Mag = 16 X 200 μ m EHT = 25.00 KV Date :14 Apr 2003
WD = 19 mm Time :18:16:47

Deposit types via Micro-Probe

3D Reconstruction of Left WLE

3D Reconstruction: Panels 8, 9, 10

3D Reconstruction

3D Reconstruction

3D Reconstruction Left Wing

Failure Sequence

Plasma

- Melting and vaporization of the Inconel 601 foil-covered cerachrome insulation blankets
- Slumping of the wing carrier panel tile immediately aft of the breach
- Erosion of the RCC adjacent to, and downstream of, the breach
- Melting and/or weakening of the Inconel 718 and A286 leading edge attach hardware
- Destruction of adjacent instrumentation and wire bundles
- Penetration of the aluminum wing leading edge spar

Proposed Breach Path and Directionality of Flow

Found September, 2004

Vehicle Assembly Building Today

