HW - Week 11

Name: Sahand Sabour Student ID: 2020280401

Page 93:

4.4-7)

Hence, given $T(n) = \Theta(n^2)$, we have that the upper bound is $O(n^2)$ and the lower bound is $\Omega(n^2)$. Accordingly, we use substitution to provide the tightness of these asymptotic bounds (prove that this guess, which states $T(n) = O(n^2)$ as the upper bound, is correct). Therefore, using given constants d and e>0, we get that

$$T(n) \le 4t[n/2] + cn$$

 $\le 4d[n/2]^2 + cn$
 $\le 4d(n/2)^2 - 4(d'n/2) + cn$
 $= dn^2 - 2d'n + cn$
 $\le dn^2 - d'n$

Where d'>c. Therefore, the upper bound is $T(n) = O(n^2)$. Accordingly, for the lower

bound, we want to prove that $T(n) = \Omega(n^2)$. Hence, for a given constant d>0, we have

$$T(n) \ge 4t[n/2] + cn$$

 $\ge 4d((n/2) - 1)^2 + cn$
 $= dn^2 - 4dn + cn + 4d$

Where -4d+c \geq 4. This proves that the lower bound is T(n) = Ω (n²).

Page 107 - 4-1:

B) For this recurrence a = 1, b = 10/7, and f(n) = n. Therefore, we have that

$$n^{\log_b^a} = n^{\log_{10/7}^1} = n^0 = 1$$

Since $f(n) = \Theta(n^{\log_{10/7}^{1+\epsilon}})$, where $\epsilon = \frac{3}{7}$ and $af(n/b) = f(7n/10) \le cf(n)$ where c = 7/10 < 1, by the case 3 of master theorem the solution is $T(n) = \Theta(f(n)) = \Theta(n)$.

C) For this recurrence a = 16, b = 4, and $f(n) = n^2$. Therefore, we have that

$$n^{\log_4^{16}} = n^2$$

Since $f(n)=\Theta(n^{log_4^{16}})$, then by the case 2 of master theorem the solution is $T(n)=\Theta(n^{log_4^{16}}lgn)=\Theta(n^2lgn)$.

D) For this recurrence a = 7, b = 3, and $f(n) = n^2$. Therefore, we have that

$$n^{\log_b^a} = n^{\log_3^7}$$

Since $f(n) = \Theta(n^{\log_3^{7+\epsilon}})$, where $\epsilon = 1$ and af(n/b) = 7 $f(n/3) \le cf(n)$ where c = 7/9 < 1, by the case 3 of master theorem the solution is $T(n) = \Theta(f(n)) = \Theta(n^2)$.

Page 107 - 4-2:

- B) The worst-case running times for each strategy is provided respectively below:
- 1. $T(n) = 2T(n/2) + \Theta(n)$ so a=2, b=2, and $f(n) = \Theta(n)$. Therefore, we have that

$$n^{\log_b^a} = n^{\log_2^2} = n$$

Since $f(n) = \Theta(n^{log_2^2})$, by case 2 of the master theorem the solution is $T(n) = \Theta(n^{log_2^2} lgn) = \Theta(n lgn)$.

- 2. $T(n) = 2T(n/2) + \Theta(N) = 4T(n/4) + 2\Theta(N) + \Theta(N) = \sum_{i=0}^{lgn} 2^i \Theta(N) = \Theta(n^2).$
- 3. $T(n) = 2T(n/2) + \Theta(n)$ so similar to part 1, by case 2 of the master theorem we have that $T(n) = \Theta(n^{\log_2^2} lgn) = \Theta(nlgn)$.