Fundamentals of Machine Learning

Chapter 8: Evaluation Sections 8.1, 8.2, 8.3

- Big Idea
- 2 Fundamentals
- Standard Approach: Measuring Misclassification Rate on a Hold-out Test Set

4 Summary

- The purpose of evaluation is threefold:
 - to determine which model is the most suitable for a task
 - 2 to estimate how the model will perform
 - 3 to convince users that the model will meet their needs

ter 8A 4 / 15

Standard Approach: Measuring Misclassification Rate on a Hold-out Test Set

Figure: The process of building and evaluating a model using a **hold-out test set**.

6/15

Table: A sample test set with model predictions.

ID	Target	Pred.	Outcome	ID	Target	Pred.	Outcome
1	spam	ham	FN	11	ham	ham	TN
2	spam	ham	FN	12	spam	ham	FN
3	ham	ham	TN	13	ham	ham	TN
4	spam	spam	TP	14	ham	ham	TN
5	ham	ham	TN	15	ham	ham	TN
6	spam	spam	TP	16	ham	ham	TN
7	ham	ham	TN	17	ham	spam	FP
8	spam	spam	TP	18	spam	spam	TP
9	spam	spam	TP	19	ham	ham	TN
10	spam	spam	TP	20	ham	spam	FP

Chapter 8A 7 / 15

 $misclassification rate = \frac{number incorrect predictions}{total predictions}$ (1)

Chapter 8A 8 / 15

$$misclassification \ rate = \frac{number \ incorrect \ predictions}{total \ predictions} \tag{1}$$

misclassification rate
$$=\frac{(2+3)}{(6+9+2+3)}=0.25$$

er 8A 8 / 15

- For binary prediction problems there are 4 possible outcomes:
 - True Positive (TP)
 - True Negative (TN)
 - False Positive (FP)
 - False Negative (FN)

oter 8A 9 / 15

Table: The structure of a confusion matrix.

		Prediction positive negative		
Toract	positive	TP	FN	
Target	negative	FP	TN	

Table: A confusion matrix for the set of predictions shown in Table 1 [7].

		Prediction		
		'spam'	'ham'	
Torget	'spam'	6	3	
Target	'ham'	2	9	

misclassification accuracy =
$$\frac{(FP + FN)}{(TP + TN + FP + FN)}$$
 (2)

False Positive and negative

total

misclassification accuracy =
$$\frac{(FP + FN)}{(TP + TN + FP + FN)}$$
 (2)

misclassification accuracy
$$=$$
 $\frac{(2+3)}{(6+9+2+3)} = 0.25$

ter 8A 12 / 15

classification accuracy =
$$\frac{(TP + TN)}{(TP + TN + FP + FN)}$$
 (3)

True Positive and Negatives

total

classification accuracy =
$$\frac{(TP + TN)}{(TP + TN + FP + FN)}$$
 (3)

classification accuracy =
$$\frac{(6+9)}{(6+9+2+3)} = 0.75$$

Summary

- Big Idea
- 2 Fundamentals
- Standard Approach: Measuring Misclassification Rate on a Hold-out Test Set

4 Summary