Branden Fitelson Philosophy 148 Lecture 1

Philosophy 148 — Day 1: Introduction & Administration

- Administrative Stuff (i.e., Syllabus)
 - Me & Raul (intros., personal data, office hours, etc.)
 - Prerequisites (Boolean logic, some simple algebra, no math phobia!)
 - Texts & Supplementary Readings (all online *via* website)
 - Requirements [Quiz (10), Assignments (30), Mid-Term (30), Final (30)]
 - Sections (determined this week, *via* index cards meet next week)
 - * Index Cards: Name, email, section time ranking. The 8 possible times are: Tu or Th: 9–10, 10–11, 1–2, or 2–3. Give a *ranking* of those among the 8 that you *can* do. Indicate those you *cannot* do.
 - Website (main source of course information stay tuned!)
 - Tentative Schedule (somewhat loose, time-wise, but all readings set)

INTRODUCTION & ADMINISTRATION

• Next: Brief Overview/Outline of the Course

Branden Fitelson Philosophy 148 Lecture 3

Philosophy 148 — Day 1: Course Overview/Outline

- The precise timing of the course is not fixed. But all readings are up.
- The *order* of topics in the course is also (more or less) set:
 - Review of Boolean Logic and Boolean Algebra [12A review + FBAs]
 - * Propositional Logic

UCB Philosophy

- * Monadic Predicate Logic
- * Finite Boolean Algebras [general logical framework for course]
- Introduction of the (formal) Probability Calculus
- * Axiomatic Treatments
- * Algebraic Treatments
- "Personalistic" Interpretations/Kinds of Probability
- * Pragmatic: betting odds / betting quotients / rational dob's
- * Epistemic: degrees of *credence / justified* degrees of belief

Branden Fitelson Philosophy 148 Lecture

Philosophy 148 — Day 1: Fundamental Underlying Questions

- I am writing a book on inductive logic (*a.k.a.*, confirmation theory).
- My main focus is on "quantitative generalizations" of deductive logic.
- The notion of *validity* is the deductive ideal for "logical goodness".
- But, some invalid arguments seem "better"/"stronger" than others:
 - P_1 . Someone is wise. P_2 . Someone is either wise or unwise.
 - \therefore C_1 . Plato is wise. \therefore C_2 . Socrates is wise.
- The argument from P_1 to C_1 seems "better" than the one from P_2 to C_2 .
- Is there a satisfying *explication* of this "better than" concept?
- And, if so, is this best understood a *logical* concept or an *epistemic* one or a *pragmatic* one, *etc.*? Moreover, if there is a *logical* "better than", how is it related to *epistemology*? For that matter, how is *validity* related to epistemology? These are the sorts of questions in the air.

UCB Philosophy

01/22/08

Introduction & Administration

01/22/08

Branden Fitelson

Philosophy 148 Lecture

- Confirmation Theory and Inductive Logic
 - * Deductive Approaches to Confirmation
 - · Hempelian
 - · Hypothetico-Deductive
- * Probabilistic Approaches to Confirmation
 - · Logical (Carnapian)
 - · Subjective/Personalistic ("Bayesian")
- The Paradoxes of Confirmation
 - * The Raven Paradox
- * The Grue Paradox
- Other Problems for Confirmation Theory (mainly, for "Bayesian" CT)
- st Old Evidence/Logical Omniscience/maybe others
- Three *Psychological* Puzzles Involving Probability & Confirmation
- * The Base Rate Fallacy
- * The Conjunction Fallacy
- * The Wason Selection Task

UCB Philosophy Introduction & Administration 01/22/08 UCB Philosophy Introduction & Administration 01/22/08

Branden Fitelson Philosophy 148 Lecture

Syntax of Sentential Logic (SL)

- The syntax of SL is simple. Its lexicon contains the following symbols:
 - Upper-case letters 'A', 'B', ... which stand for *basic sentences*.
 - Five sentential connectives (or sentential operators):

Operator	Name	Logical Function	Used to translate		
'~'	tilde	negation	not, it is not the case that		
'&' ampersan		conjunction	and, also, moreover, but		
· ∨ '	vee	disjunction	or, either or		
'→' ('⊃')	arrow	conditional	if \dots then \dots , only if		
'↔' ('≡')	double arrow	biconditional	if and only if		
D		(1) (1)	(0, 0) 6		

- Parentheses '(', ')', brackets '['. ']', and braces '{', '}' for grouping.
- If a string of symbols contains anything other than these, it is not an SL sentence. And, only certain strings of these symbols are SL sentences.
- I assume you all know which SL strings are *sentences* and which are not..

INTRODUCTION & ADMINISTRATION

Philosophy 148 Lecture

Semantics of Sentential Logic: Truth Tables II

• We begin with negations, which have the simplest truth functions. The truth table for negation is as follows (we use T and F for true and false):

- In words, this says that if p is true than $\sim p$ is false, and if p is false, then $\sim p$ is true. This is quite intuitive, and corresponds well to the English meaning of 'not'. So, SL negation is like English negation.
- Examples:

UCB Philosophy

Branden Fitelson

- It is not the case that Wagner wrote operas. ($\sim W$)
- It is not the case that Picasso wrote operas. $(\sim P)$
- ' \sim W' is false, since 'W' is true, and ' \sim P' is true, since 'P' is false (like English).

Semantics of Sentential Logic: Truth Tables I

- Sentential Logic is *truth-functional* because the truth value of a compound *S* is a function of the truth values of *S*'s *atomic parts*.
- All statement forms *p* are defined by *truth tables*, which tell us how to determine the truth value of *p*'s from the truth values of *p*'s parts.
- Truth-tables provide a precise way of thinking about *logical possibility*. Each row of a truth-table can be thought of as a *logical possibility*. And, the actual world falls into *exactly one* of these rows/logical possibilities.
- In this sense, truth-tables provide a way to "see" logical space.
- Once we have an understanding of all the logically possible truth-values that and SL sentence can have (which truth-tables provide for us), testing the validity of SL arguments is easy *inspection* of truth-tables!
- We just look for possible worlds (rows of the salient truth-table) in which all the premises are true and the conclusion is false.

UCB Philosophy

Branden Fitelson

INTRODUCTION & ADMINISTRATION

01/22/08

Branden Fitelson

UCB Philosophy

Philosophy 148 Lecture

Chapter 3 — Semantics of SL: Truth Tables III

р	q	p & q
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

- Notice how we have four (4) rows in our truth table this time (not 2). There are four possible ways of assigning truth values to p and q.
- The truth-functional definition of & is very close to the English 'and'. A SL conjunction is true if *both* conjuncts are true; it's false otherwise.
 - Monet and van Gogh were painters. (M & V)
 - Monet and Beethoven were painters. (M & B)
 - Beethoven and Einstein were painters. (B & E)
- '*M* & *V*' is true, since both '*M*' and '*V*' are true. '*M* & *B*' is false, since '*B*' is false. And, '*B* & *E*' is false, since '*B*' and '*E*' are both false (like English).

Philosophy 148 Lecture 6

01/22/08

Semantics of Sentential Logic: Truth Tables IV

p	q	$p \vee q$
Т	Т	Т
Т	F	T
F	Т	Т
F	F	F

- The truth-functional definition of ∨ is not as close to the English 'or'. A SL disjunction is true if *at least one* disjunct is true; it's false otherwise.
- In English, 'A or B' often implies that 'A' and 'B' are *not both true*. That is called *exclusive* or. In SL, ' $A \lor B$ ' is *not* exclusive; it is *inclusive* (it is true if both disjuncts are true). We *can* express exclusive or in SL. How?
 - Either Jane austen or René Descartes was novelist. $(J \vee R)$
 - Either Jane Austen or Charlotte Bronte was a novelist. ($J \vee C$)
 - Either René Descartes or David Hume was a novelist. $(R \lor D)$
- The first two disjunctions are true since at least one their disjuncts is true. The third disjunction is false, since both of its disjuncts are false.

UCB Philosophy

INTRODUCTION & ADMINISTRATION

01/22/08

Branden Fitelson

Philosophy 148 Lecture

11

Semantics of Sentential Logic: Truth Tables VI

р	q	$p \leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

- The SL biconditional ↔ inherits similar problems. An SL biconditional is true iff both of its components have the same truth value.
- Consider these two biconditionals. [M = the moon is made of green cheese, U = there are unicorns, E = life exists on Earth, and S = the sky is blue]
 - The moon is made of green cheese if and only if there are unicorns.
 - Life exists on earth if and only if the sky is blue.
- The SL translations of these sentences are both true.
 - M ↔ U is true because M and U are false.
 - E ↔ S is true because E and S are true.
- This does *not* capture the English 'iff'. $[p \leftrightarrow q \Rightarrow (p \& q) \lor (\sim p \& \sim q)]$

Semantics of Sentential Logic: Truth Tables V

p	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

- The SL conditional (→) is farther from the English 'only if'. An SL conditional is false iff its antecedent is true and its consequent is false.
- Consider the following English conditionals. [M = the moon is made of green cheese, O = life exists on other planets, and E = life exists on Earth]
 - If the moon is made of green cheese, then life exists on other planets.
 - If life exists on other planets, then life exists on earth.
- The SL translations of these sentences are both true.
 - ' $M \rightarrow O$ ' is true because its antecedent 'M' is false.
 - ' $O \rightarrow E$ ' is true because its consequent 'E' is true.
- This does *not* capture the English 'if'. Remember: $p \rightarrow q = p \lor q$.

UCB Philosophy

Branden Fitelson

INTRODUCTION & ADMINISTRATION

01/22/08

Branden Fitelson

Philosophy 148 Lecture

Semantics of Sentential Logic: Truth Tables VII

- With the truth-table definitions of the five connectives in hand, we can now construct truth tables for arbitrary compound SL statements.
- A non-trivial example:

p	q	r	(<i>p</i>	&	$(q \vee r))$	→	((p & q)	V	(p & r))
							Т		
Т	Т	F	Т	Т	T	Т	Т	Т	F
Т	F	Т	Т	Т	T	Т	F	Т	T
Т	F	F	Т	F	F	Т	F	F	F
F	Т	Т	F	F	T	Т	F	F	F
							F		
							F		
F	F	F	F	F	F	Т	F	F	F

• Thus, " $(p \& (q \lor r)) \to ((p \& q) \lor (p \& r))$ " is a *tautology*.

Interpretations and Logical Equivalence

• An *interpretation* of an SL formula p is an assignment of

Each row of the truth-table of *p* is an *interpretation* of *p*.
 Sometimes, I will also refer to rows of SL truth-tables as

• A tautology (contradiction) is an SL sentence whose truth value is T (F) on *all* of its interpretations (*i.e.*, an SL sentence which is

• Two SL sentences are said to be *logically equivalent* iff they

• I'll abbreviate "p and q are logically equivalent" as " $p \Rightarrow q$ " [i.e., p follows from q ($q \neq p$), and q follows from p ($p \neq q$)].

have the same truth-value on all (joint) interpretations.

truth-values to all of the sentence letters in p.

(logically) possible situations, or possible worlds.

true (false) in all (logically) possible worlds).

Logical Truth, Logical Falsity, and Contingency: Definitions

Philosophy 148 Lecture

• A statement is <u>logically true</u> (or <u>tautologous</u>) if it is true regardless of the truth-values of its components. Example: *p* ↔ *p* is a tautology.

$$\begin{array}{c|cccc} p & p & \leftrightarrow & p \\ \hline T & T & T & T \\ \hline F & F & T & F \\ \end{array}$$

• A statement is logically false (or self-contradictory) if it is false regardless of the truth-values of its components. Example: $p \& \sim p$.

p	p	&	~	p
Т	Т	F	F	Т
F	F	F	Т	F

• A statement is **contingent** if its truth-value varies depending on the truth-values of its components. Example: *A* (or *any* atom) is contingent.

UCB Philosophy

INTRODUCTION & ADMINISTRATION

01/22/08

UCB Philosophy

Branden Fitelson

INTRODUCTION & ADMINISTRATION

01/22/08

Branden Fitelson

Philosophy 148 Lecture

15

Philosophy 148 Lecture

16

Equivalence, Contradictoriness, Consistency, and Inconsistency

• Two statements are said to be equivalent (written p
ightharpoonup = q) if they have the same truth-value in all possible worlds (*i.e.*, in all rows of a simultaneous truth-table of both statements). For instance, $A
ightharpoonup B
ightharpoonup = A \lor B$:

A	В	A	\rightarrow	В	~	\boldsymbol{A}	V	В
T	Т	Т	Т	Т	F	Т	Т	Т
Т	F	Т	F	F	F	Т	F	F
F	Т	F	Т	Т	Т	F	Т	Т
F	F	F	Т	F	Т	F	Т	F

• Two statements are contradictory if they have opposite truth-values in all possible worlds (*i.e.*, in all rows of a simultaneous truth-table of both statements). For instance, *A* and ~*A*:

Two statements are inconsistent (mutually exclusive) if they cannot both be true (*i.e.*, no row of their simultaneous truth-table has them both being T). *E.g.*, A → B and A & ~B are inconsistent (but *not* contradictory!):

	A	В	A	\leftrightarrow	В	A	&	~	В
			Т						
Ī	Т	F	Т	F	F	Т	Т	Т	F
	F	Т				F			
	F	F	F	Т	F	F	F	Т	F

• Two statements are consistent if they are both true in at least one possible world (*i.e.*, in at least one row of a simultaneous truth-table of both statements). For instance, *A* & *B* and *A* ∨ *B* are consistent:

A	В	A	&	В	A	V	В
Т	Т	Т	Т	Т	Т	Т	Т
Т	F	Т	F	F	Т	Т	F
F	Т	F	F	Т	F	Т	Т
F	F	F	F	F	F	F	F

UCB Philosophy Introduction & Administration

01/22/08

UCB Philosophy

INTRODUCTION & ADMINISTRATION

Logical Equivalence: Example #1

- I said that $p \rightarrow q$ is logically equivalent to $\sim p \vee q$.
- The following truth-table establishes this equivalence:

p	q	~p	٧	q	$p \rightarrow q$
Т	Т	F	Т	Т	Т
Т	F	F	F	F	F
F	Т	Т	Т	Т	Т
F	F	Т	Т	F	Т

• The truth-tables of $\sim p \vee q$ and $p \rightarrow q$ are the same.

UCB Philosophy

INTRODUCTION & ADMINISTRATION

01/22/08

INTRODUCTION & ADMINISTRATION

Branden Fitelson

Philosophy 148 Lecture

19

Some More Logical Equivalences

• Here is a simultaneous truth-table which establishes that

$$A \leftrightarrow B \Rightarrow (A \& B) \lor (\sim A \& \sim B)$$

A	В	$\mid A$	\leftrightarrow	B	(<i>A</i>	&	B)	V	(~	A	&	~	<i>B</i>)
					Т								
					Т								
					F								
F	F	F	Т	F	F	F	F	Т	T	F	T	Т	F

- Can you prove the following equivalences with truth-tables?
 - $\sim (A \& B) = -A \lor \sim B$
 - $\sim (A \vee B) = -A \& \sim B$
 - $-A = (A \& B) \lor (A \& \sim B)$
 - $-A = A \otimes (B \rightarrow B)$
 - $-A = A \lor (B \& \sim B)$

- $p \leftrightarrow q$ is an abbreviation for $(p \rightarrow q) \& (q \rightarrow p)$.
- The following truth-table shows it is a *legitimate* abbreviation:

Logical Equivalence: Example #2

p	q	$(p \rightarrow q)$	&	$(q \rightarrow p)$	$p \leftrightarrow q$
Т	Т	Т	Т	Т	Т
Т	F	F	F	Т	F
F	Т	Т	F	F	F
F	F	Т	Т	Т	Т

• $p \leftrightarrow q$ and $(p \rightarrow q) \& (q \rightarrow p)$ have the same truth-table.

UCB Philosophy

Branden Fitelson

01/22/08

Branden Fitelson

Philosophy 148 Lecture

20

Logical Equivalence, Contradictoriness, etc.: Relationships

• What are the relationships between "p and q are equivalent", "p and q are consistent", "p and q are contradictory", "p and q are inconsistent"?

> Equivalent Contradictory

Consistent

Inconsistent

- Answers:
 - 1. Equivalent \Rightarrow Consistent $(p \& \sim p \text{ and } q \& \sim q)$
 - 2. Consistent \neq Equivalent $(p \rightarrow q \text{ and } p \& q)$
 - 3. Contradictory \Rightarrow Inconsistent (*why*?)
 - 4. Inconsistent *⇒* Contradictory (example?)

Truth-Tables and Deductive Validity I

• Remember, an argument is valid if it is *impossible* for its premises to be true while its conclusion is false. Let p_1, \ldots, p_n be the premises of a SL argument, and let *q* be the conclusion of the argument. Then, we have:

 p_1 is valid if and only if there is no row in the simultaneous truth-table (*interpretation*) of p_1, \ldots, p_n , and q which looks like:

> premises conclusion atoms

UCB Philosophy

Branden Fitelson

INTRODUCTION & ADMINISTRATION

01/22/08

Philosophy 148 Lecture

23

Finite Propositional Boolean Algebras I

- A finite propositional Boolean algebra is a finite set of propositions which is *closed* under the logical operations and satisfies the laws of SL.
- *Propositions* are the things expressed by sentences (abstract entities, distinct from sentences). If two sentences are logically equivalent, then they express the same proposition. *E.g.*, " $A \rightarrow B$ " and " $\sim A \vee B$ ".
- A set S is *closed* under logical operations if applying a logical operation to a member (or pair of members) of *S* always yields a member of *S*.
- Example: consider a sentential language with three atomic letters "X", "Y", and "Z". The set of propositions expressible using the logical connectives and these three atomic letters forms a finite Boolean algebra.
- This Boolean algebra has $2^3 = 8$ atomic propositions or states (i.e., rows of a 3-sentence truth-table!). Question: How many propositions does it contain in total? Answer: $2^8 = 256$ (255 plus the contradiction). Why?

Truth-Tables and Deductive Validity II

premises conclusion atoms В В AТ Τ т $A \rightarrow B$ is valid: Т F Т Т F

В $A \rightarrow B$ is invalid:

	atoms			pren	nises		conclusion
_	\boldsymbol{A}	В	B	A	→	В	A
	Т	Т	Т	Т	Т	Т	Т
	T	F	F	Т	F	F	Т
B	F	Т	Т	F	Т	Т	F
	F	F	F	F	Т	F	F

UCB Philosophy

Branden Fitelson

INTRODUCTION & ADMINISTRATION

01/22/08

Branden Fitelson

Philosophy 148 Lecture

24

Finite Propositional Boolean Algebras II

- A *literal* is either an atomic sentence or the negation of an atomic sentence (*e.g.*, "A" and " $\sim A$ " are literals involving the atom "A").
- A *state* of a Boolean algebra \mathcal{B} is a proposition expressed by a *maximal* conjunction of literals in a language $\mathcal{L}_{\mathcal{B}}$ describing \mathcal{B} ("maximal": "containing exactly one literal for each atomic sentence in \mathcal{B} ").
- Consider an algebra \mathcal{B} described by a 3-atom language $\mathcal{L}_{\mathcal{B}}$ ("X", "Y", "Z"). The states of \mathcal{B} are described by the $2^3 = 8$ state descriptions of $\mathcal{L}_{\mathcal{B}}$:
- $(s_1) X \& Y \& Z$
- $(s_2) X \& Y \& \sim Z$
- $(s_3) X \& \sim Y \& Z$
- $(s_4) X \& \sim Y \& \sim Z$
- $(s_5) \sim X \& Y \& Z$
- $(s_6) \sim X \& Y \& \sim Z$
- $(s_7) \sim X \& \sim Y \& Z$
- $(s_8) \sim X \& \sim Y \& \sim Z$

• We can "visualize" the states of \mathcal{B} using a truth table or a Venn Diagram.

X	Y	Z	States
Т	Т	Т	s_1
Т	Т	F	<i>S</i> ₂
Т	F	Т	<i>s</i> ₃
Т	F	F	<i>S</i> ₄
F	Т	Т	<i>S</i> ₅
F	Т	F	<i>s</i> ₆
F	F	Т	<i>S</i> ₇
F	F	F	<i>S</i> ₈

- Everything that can be expressed in the sentential language $\mathcal{L}_{\mathcal{B}}$ can be expressed as a *disjunction of state descriptions* (think about why).
- Thus, every proposition expressible in $\mathcal{L}_{\mathcal{B}}$ can be "visualized" simply by shading combinations of the 8 state-regions of the Venn Diagram of \mathcal{B} . It because of this that we can use Venn Diagrams to establish Boolean Laws.
- $p \models q$ (in \mathcal{B}) iff every shaded region in the Venn Diagram representation of p (in \mathcal{B}) is also shaded in the Venn Diagram representation of q (in \mathcal{B}).

UCB Philosophy Introduction & Administration

01/22/08