MATRICES In Geometry

G. V. V. Sharma

 $https://creative commons.org/licenses/by-sa/3.0/\\ and$

https://www.gnu.org/licenses/fdl-1.3.en.html

Contents

1	Vectors		3			
	1.1	Sides	3			
	1.2	Median	5			
	1.3	Altitude	7			
	1.4	Perpendicular Bisector	8			
	1.5	Angle Bisector	10			
	1.6	Eigenvalues and Eigenvectors	11			
	1.7	Addition and Subtraction	11			
	1.8	Section Formula	12			
	1.9	Length	16			
	1.10	Direction	17			
	1.11	Scalar Product	19			
	1.12	Orthogonality	23			
	1.13	Vector Product	27			
	1.14	Miscellaneous	31			
2	Matrice	Matrices				
	2.1	Vectors	33			
	2.2	Median	33			
	2.3	Altitude	33			
	2.4	Perpendicular Bisector	33			
	2.5	Angle Bisector	33			
3	Linear	Forms	34			
	3.1	Equation of a Line	34			
App	endix A:	Points on a Line	35			
Appendix B: Tangents to a Circle						
App	endix C:	Matrices	35			
App	Appendix D: 2×1 vectors					

1 Vectors

Consider a triangle with vertices

$$\mathbf{A} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} -4 \\ 6 \end{pmatrix}, \ \mathbf{C} = \begin{pmatrix} -3 \\ -5 \end{pmatrix}$$
 (1)

 $b = ||\mathbf{A} - \mathbf{C}|| = \sqrt{4 + 4 \cdot 4 \cdot 4}$ (1.1.2.10)

$$= \sqrt{(4)^2 + (4)^2} = \sqrt{32}$$
 (1.1.2.11)

1.1.3. Points A, B, C are defined to be collinear if

$$rank \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} = 2 \tag{1.1.3.1}$$

Are the given points in (1) collinear?

Solution: From (1),

c)

$$\begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -4 & -3 \\ -1 & 6 & -5 \end{pmatrix} \xrightarrow{R_3 \leftarrow R_3 + R_2} \begin{pmatrix} 1 & 1 & 1 \\ 1 & -4 & -3 \\ 0 & 2 & -8 \end{pmatrix}$$
(1.1.3.2)

$$\stackrel{R_2 \leftarrow R_1 - R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 5 & 4 \\ 0 & 2 & -8 \end{pmatrix} \stackrel{R_3 \leftarrow R_3 - \frac{2}{5}R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 5 & 4 \\ 0 & 0 & \frac{-48}{5} \end{pmatrix}$$

$$(1.1.3.3)$$

There are no zero rows. So,

$$\operatorname{rank}\begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} = 3 \tag{1.1.3.4}$$

Hence, the points **A**, **B**, **C** are not collinear. This is visible in Fig. 1.1.3.

1.1 Sides

1.1.1. The direction vector of AB is defined as

$$\mathbf{B} - \mathbf{A} \tag{1.1.1.1}$$

Find the direction vectors of *AB*, *BC* and *CA*. **Solution:**

a) The Direction vector of AB is

$$\mathbf{B} - \mathbf{A} = \begin{pmatrix} -4 \\ 6 \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -4 - 1 \\ 6 - (-1) \end{pmatrix} = \begin{pmatrix} -5 \\ 7 \end{pmatrix} \quad (1.1.1.2)$$

b) The Direction vector of BC is

$$\mathbf{C} - \mathbf{B} = \begin{pmatrix} -3 \\ -5 \end{pmatrix} - \begin{pmatrix} -4 \\ 6 \end{pmatrix} = \begin{pmatrix} -3 - (-4) \\ -5 - 6 \end{pmatrix} = \begin{pmatrix} 1 \\ -11 \end{pmatrix}$$
(1.1.1.3)

c) The Direction vector of CA is

$$\mathbf{A} - \mathbf{C} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} - \begin{pmatrix} -3 \\ -5 \end{pmatrix} = \begin{pmatrix} 1 - (-3) \\ -1 - (-5) \end{pmatrix} = \begin{pmatrix} 4 \\ 4 \end{pmatrix} \quad (1.1.1.4)$$

1.1.2. The length of side BC is

$$c = \|\mathbf{B} - \mathbf{A}\| \triangleq \sqrt{(\mathbf{B} - \mathbf{A})^{\top} (\mathbf{B} - \mathbf{A})}$$
 (1.1.2.1)

where

$$\mathbf{A}^{\top} \triangleq \begin{pmatrix} 1 & -1 \end{pmatrix} \tag{1.1.2.2}$$

Similarly,

$$b = \|\mathbf{C} - \mathbf{B}\|, \ a = \|\mathbf{A} - \mathbf{C}\|$$
 (1.1.2.3)

Find a, b, c.

a) From (1.1.1.2),

$$\mathbf{A} - \mathbf{B} = \begin{pmatrix} 5 \\ -7 \end{pmatrix},\tag{1.1.2.4}$$

$$\implies c = \|\mathbf{B} - \mathbf{A}\| = \|\mathbf{A} - \mathbf{B}\| \tag{1.1.2.5}$$

$$= \sqrt{\left(5 - 7\right)\left(\frac{5}{-7}\right)} = \sqrt{\left(5\right)^2 + \left(7\right)^2} \quad (1.1.2.6)$$

Fig. 1.1.3: △*ABC*

 $=\sqrt{74}$ (1.1.2.7) 1.1.4. The parameteric form of the equation of AB is

 $\mathbf{x} = \mathbf{A} + k\mathbf{m} \quad k \neq 0,$

where

2

-2

$$\mathbf{m} = \mathbf{B} - \mathbf{A} \tag{1.1.4.2}$$

(1.1.4.1)

is the direction vector of AB. Find the parameteric equations of AB, BC and CA.

Solution: From (1.1.4.1) and (1.1.1.2), the parametric

b) Similarly, from (1.1.1.3),

$$a = ||\mathbf{B} - \mathbf{C}|| = \sqrt{(-1 \quad 11)\binom{-1}{11}}$$
 (1.1.2.8)

$$= \sqrt{(1)^2 + (11)^2} = \sqrt{122}$$
 (1.1.2.9)

and from (1.1.1.4),

equation for AB is given by

$$AB: \mathbf{x} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} + k \begin{pmatrix} -5 \\ 7 \end{pmatrix} \tag{1.1.4.3}$$

Similarly, from (1.1.1.3) and (1.1.1.4),

$$BC: \mathbf{x} = \begin{pmatrix} -4\\6 \end{pmatrix} + k \begin{pmatrix} 1\\-11 \end{pmatrix} \tag{1.1.4.4}$$

$$CA: \mathbf{x} = \begin{pmatrix} -3 \\ -5 \end{pmatrix} + k \begin{pmatrix} 4 \\ 4 \end{pmatrix}$$
 (1.1.4.5)

1.1.5. The normal form of the equation of AB is

$$\mathbf{n}^{\mathsf{T}} \left(\mathbf{x} - \mathbf{A} \right) = 0 \tag{1.1.5.1}$$

where

$$\mathbf{n}^{\mathsf{T}}\mathbf{m} = \mathbf{n}^{\mathsf{T}} (\mathbf{B} - \mathbf{A}) = 0 \tag{1.1.5.2}$$

or,
$$\mathbf{n} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \mathbf{m}$$
 (1.1.5.3)

Find the normal form of the equations of *AB*, *BC* and *CA*. **Solution:**

a) From (1.1.1.3), the direction vector of side **BC** is

$$\mathbf{m} = \begin{pmatrix} 1 \\ -11 \end{pmatrix} \tag{1.1.5.4}$$

$$\implies \mathbf{n} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -11 \end{pmatrix} = \begin{pmatrix} -11 \\ -1 \end{pmatrix} \tag{1.1.5.5}$$

from (1.1.5.3). Hence, from (1.1.5.1), the normal equation of side BC is

$$\mathbf{n}^{\mathsf{T}} \left(\mathbf{x} - \mathbf{B} \right) = 0 \tag{1.1.5.6}$$

$$\implies \begin{pmatrix} -11 & -1 \end{pmatrix} \mathbf{x} = \begin{pmatrix} -11 & -1 \end{pmatrix} \begin{pmatrix} -4 \\ 6 \end{pmatrix} \quad (1.1.5.7)$$

$$\implies BC: (11 \quad 1)\mathbf{x} = -38$$
 (1.1.5.8)

b) Similarly, for AB, from (1.1.1.2),

$$\mathbf{m} = \begin{pmatrix} -5\\7 \end{pmatrix} \tag{1.1.5.9}$$

$$\implies \mathbf{n} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} -5 \\ 7 \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \end{pmatrix} \tag{1.1.5.10}$$

and

$$\mathbf{n}^{\mathsf{T}} \left(\mathbf{x} - \mathbf{A} \right) = 0 \tag{1.1.5.11}$$

$$\implies AB: \quad \mathbf{n}^{\mathsf{T}}\mathbf{x} = \begin{pmatrix} 7 & 5 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 (1.1.5.12)

$$\implies (7 \quad 5)\mathbf{x} = 2 \tag{1.1.5.13}$$

c) For CA, from (1.1.1.4),

$$\mathbf{m} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{1.1.5.14}$$

$$\implies \mathbf{n} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \quad (1.1.5.15)$$

$$\implies \mathbf{n}^{\mathsf{T}} (\mathbf{x} - \mathbf{C}) = 0 \tag{1.1.5.16}$$

$$\implies \begin{pmatrix} 1 & -1 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} -3 \\ -5 \end{pmatrix} = 2 \qquad (1.1.5.18)$$

1.1.6. The area of $\triangle ABC$ is defined as

$$\frac{1}{2} \| (\mathbf{A} - \mathbf{B}) \times (\mathbf{A} - \mathbf{C}) \| \tag{1.1.6.1}$$

where

$$\mathbf{A} \times \mathbf{B} \triangleq \begin{vmatrix} 1 & -4 \\ -1 & 6 \end{vmatrix} \tag{1.1.6.2}$$

Find the area of $\triangle ABC$.

Solution: From (1.1.1.2) and (1.1.1.4),

$$\mathbf{A} - \mathbf{B} = \begin{pmatrix} 5 \\ -7 \end{pmatrix}, \mathbf{A} - \mathbf{C} = \begin{pmatrix} 4 \\ 4 \end{pmatrix} \tag{1.1.6.3}$$

$$\implies (\mathbf{A} - \mathbf{B}) \times (\mathbf{A} - \mathbf{C}) = \begin{vmatrix} 5 & 4 \\ -7 & 4 \end{vmatrix} \qquad (1.1.6.4)$$

$$= 5 \times 4 - 4 \times (-7)$$
 (1.1.6.5)

$$\implies \frac{1}{2} \| (\mathbf{A} - \mathbf{B}) \times (\mathbf{A} - \mathbf{C}) \| = \frac{48}{2} = 24$$
 (1.1.6.7)

which is the desired area.

1.1.7. Find the angles A, B, C if

$$\cos A \triangleq \frac{(\mathbf{B} - \mathbf{A})^{\top} \mathbf{C} - \mathbf{A}}{\|\mathbf{B} - \mathbf{A}\| \|\mathbf{C} - \mathbf{A}\|}$$
(1.1.7.1)

Solution:

a) From (1.1.1.2), (1.1.1.4), (1.1.2.7) and (1.1.2.11)

$$(\mathbf{B} - \mathbf{A})^{\mathsf{T}}(\mathbf{C} - \mathbf{A}) = \begin{pmatrix} -5 & 7 \end{pmatrix} \begin{pmatrix} -4 \\ -4 \end{pmatrix}$$
 (1.1.7.2)

$$= -8$$
 (1.1.7.3)

$$\implies$$
 cos $A = \frac{-8}{\sqrt{74}\sqrt{32}} = \frac{-1}{\sqrt{37}}$ (1.1.7.4)

$$\implies A = \cos^{-1} \frac{-1}{\sqrt{37}} \tag{1.1.7.5}$$

b) From (1.1.1.2), (1.1.1.3), (1.1.2.7) and (1.1.2.9)

$$(\mathbf{C} - \mathbf{B})^{\mathsf{T}} (\mathbf{A} - \mathbf{B}) = \begin{pmatrix} 1 & -11 \end{pmatrix} \begin{pmatrix} 5 \\ -7 \end{pmatrix}$$
 (1.1.7.6)

$$= 82$$
 (1.1.7.7)

$$\implies \cos B = \frac{82}{\sqrt{74}\sqrt{122}} = \frac{41}{\sqrt{2257}} \quad (1.1.7.8)$$

$$\implies B = \cos^{-1} \frac{41}{\sqrt{2257}} \tag{1.1.7.9}$$

c) From (1.1.1.3), (1.1.1.4), (1.1.2.9) and (1.1.2.11)

$$(\mathbf{A} - \mathbf{C})^{\mathsf{T}} (\mathbf{B} - \mathbf{C}) = \begin{pmatrix} 4 & 4 \end{pmatrix} \begin{pmatrix} -1 \\ 11 \end{pmatrix}$$
 (1.1.7.10)

$$=40$$
 (1.1.7.11)

$$\implies \cos C = \frac{40}{\sqrt{32}\sqrt{122}} = \frac{5}{\sqrt{61}} \quad (1.1.7.12)$$

$$\implies C = \cos^{-1} \frac{5}{\sqrt{61}} \tag{1.1.7.13}$$

All codes for this section are available at

codes/triangle/sides.py

1.2 Median

(1.1.7.10) 1.2.1. If **D** divides BC in the ratio k:1,

$$\mathbf{D} = \frac{k\mathbf{C} + \mathbf{B}}{k+1} \tag{1.2.1.1}$$

Find the mid points \mathbf{D} , \mathbf{E} , \mathbf{F} of the sides BC, CA and AB respectively.

Solution: Since **D** is the midpoint of BC,

$$k = 1,$$
 (1.2.1.2)

$$\implies \mathbf{D} = \frac{\mathbf{C} + \mathbf{B}}{2} = \frac{1}{2} \begin{pmatrix} -7\\1 \end{pmatrix} \tag{1.2.1.3}$$

Similarly,

$$\mathbf{E} = \frac{\mathbf{A} + \mathbf{C}}{2} = \begin{pmatrix} -1 \\ -3 \end{pmatrix} \tag{1.2.1.4}$$

$$\mathbf{F} = \frac{\mathbf{A} + \mathbf{B}}{2} = \frac{1}{2} \begin{pmatrix} -3\\ 5 \end{pmatrix} \tag{1.2.1.5}$$

1.2.2. Find the equations of AD, BE and CF.

Solution::

a) The direction vector of AD is

$$\mathbf{m} = \mathbf{D} - \mathbf{A} = \begin{pmatrix} \frac{-7}{2} \\ \frac{1}{2} \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -9 \\ 3 \end{pmatrix} \equiv \begin{pmatrix} -3 \\ 1 \end{pmatrix}$$
 (1.2.2.1)

$$\implies \mathbf{n} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \tag{1.2.2.2}$$

Hence the normal equation of median AD is

$$\mathbf{n}^{\mathsf{T}} \left(\mathbf{x} - \mathbf{A} \right) = 0 \tag{1.2.2.3}$$

$$\implies \begin{pmatrix} 1 & 3 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = -2 \qquad (1.2.2.4)$$

b) For BE,

$$\mathbf{m} = \mathbf{E} - \mathbf{B} = \begin{pmatrix} -1 \\ -3 \end{pmatrix} - \begin{pmatrix} -4 \\ 6 \end{pmatrix} = \begin{pmatrix} 3 \\ -9 \end{pmatrix} \equiv \begin{pmatrix} 1 \\ -3 \end{pmatrix}$$
 (1.2.2.5)

$$\implies \mathbf{n} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \tag{1.2.2.6}$$

Hence the normal equation of median BE is

$$\mathbf{n}^{\mathsf{T}} \left(\mathbf{x} - \mathbf{B} \right) = 0 \tag{1.2.2.7}$$

$$\implies \begin{pmatrix} 3 & 1 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 3 & 1 \end{pmatrix} \begin{pmatrix} -4 \\ 6 \end{pmatrix} = -6 \qquad (1.2.2.8)$$

c) For median CF,

$$\mathbf{m} = \mathbf{F} - \mathbf{C} = \begin{pmatrix} \frac{-3}{2} \\ \frac{5}{2} \end{pmatrix} - \begin{pmatrix} -3 \\ -5 \end{pmatrix} = \begin{pmatrix} \frac{3}{2} \\ \frac{15}{2} \end{pmatrix} \equiv \begin{pmatrix} 1 \\ 5 \end{pmatrix}$$
 (1.2.2.9)

$$\implies \mathbf{n} = \begin{pmatrix} 5 \\ -1 \end{pmatrix} \tag{1.2.2.10}$$

Hence the normal equation of median CF is

$$\mathbf{n}^{\mathsf{T}} \left(\mathbf{x} - \mathbf{C} \right) = 0 \tag{1.2.2.11}$$

$$\implies$$
 $(5 -1)\mathbf{x} = (5 -1)\begin{pmatrix} -3 \\ -5 \end{pmatrix} = -10 \quad (1.2.2.12)$

1.2.3. Find the intersection \mathbf{G} of BE and CF.

Solution: From (1.2.2.8) and (1.2.2.12), the equations of

BE and CF are, respectively,

$$\begin{pmatrix} 3 & 1 \end{pmatrix} \mathbf{x} = \begin{pmatrix} -6 \end{pmatrix} \tag{1.2.3.1}$$

$$(5 -1)\mathbf{x} = (-10)$$
 (1.2.3.2)

From (1.2.3.1) and (1.2.3.2) the augmented matrix is

$$\begin{pmatrix} 3 & 1 & -6 \\ 5 & -1 & -10 \end{pmatrix} \xrightarrow{R_1 \leftarrow R_1 + R_2} \begin{pmatrix} 8 & 0 & -16 \\ 5 & -1 & -10 \end{pmatrix}$$

$$(1.2.3.3)$$

$$\xrightarrow{R_1 \leftarrow R_1/8} \begin{pmatrix} 1 & 0 & -2 \\ 5 & -1 & -10 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 - 5R_1} \begin{pmatrix} 1 & 0 & -2 \\ 0 & -1 & 0 \end{pmatrix}$$

$$\stackrel{R_1 \leftarrow R_1 \rightarrow 0}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & 2 \\ 5 & -1 & -10 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2} \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 0 \end{pmatrix} (1.2.3.4)$$

$$\stackrel{R_2 \leftarrow -R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \end{pmatrix}$$

using Gauss elimination. Therefore,

$$\mathbf{G} = \begin{pmatrix} -2\\0 \end{pmatrix} \tag{1.2.3.6}$$

1.2.4. Verify that

$$\frac{BG}{GE} = \frac{CG}{GF} = \frac{AG}{GD} = 2 \tag{1.2.4.1}$$

Solution:

a) From (1.2.1.4) and (1.2.3.6),

$$\mathbf{G} - \mathbf{B} = \begin{pmatrix} 2 \\ -6 \end{pmatrix}, \mathbf{E} - \mathbf{G} = \begin{pmatrix} 1 \\ -3 \end{pmatrix} \qquad (1.2.4.2)$$

$$\implies \mathbf{G} - \mathbf{B} = 2(\mathbf{E} - \mathbf{G}) \tag{1.2.4.3}$$

$$\implies \|\mathbf{G} - \mathbf{B}\| = 2\|\mathbf{E} - \mathbf{G}\| \tag{1.2.4.4}$$

or,
$$\frac{BG}{GE} = 2$$
 (1.2.4.5)

b) From (1.2.1.5) and (1.2.3.6),

$$\mathbf{F} - \mathbf{G} = \frac{1}{2} \begin{pmatrix} 1 \\ 5 \end{pmatrix}, \ \mathbf{G} - \mathbf{C} = \begin{pmatrix} 1 \\ 5 \end{pmatrix} \quad (1.2.4.6)$$

$$\implies \mathbf{G} - \mathbf{C} = 2(\mathbf{F} - \mathbf{G}) \tag{1.2.4.7}$$

$$\implies \|\mathbf{G} - \mathbf{C}\| = 2\|\mathbf{F} - \mathbf{G}\| \tag{1.2.4.8}$$

or,
$$\frac{CG}{GF} = 2$$
 (1.2.4.9)

c) From (1.2.1.3) and (1.2.3.6),

$$\mathbf{G} - \mathbf{A} = \begin{pmatrix} -3 \\ 1 \end{pmatrix}, \ \mathbf{D} - \mathbf{G} = \frac{1}{2} \begin{pmatrix} -3 \\ 1 \end{pmatrix} \quad (1.2.4.10)$$

$$\mathbf{G} - \mathbf{A} = 2(\mathbf{D} - \mathbf{G}) \tag{1.2.4.11}$$

$$\implies \|\mathbf{G} - \mathbf{A}\| = 2\|\mathbf{D} - \mathbf{G}\| \tag{1.2.4.12}$$

or,
$$\frac{AG}{GD} = 2$$
 (1.2.4.13)

From (1.2.4.5), (1.2.4.9), (1.2.4.13)

$$\frac{BG}{GE} = \frac{CG}{GF} = \frac{AG}{GD} = 2 \tag{1.2.4.14}$$

1.2.5. Show that **A**, **G** and **D** are collinear.

Fig. 1.2.5: Medians of $\triangle ABC$ meet at **G**.

Solution: Points **A**, **D**, **G** are defined to be collinear if

$$\operatorname{rank}\begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{D} & \mathbf{G} \end{pmatrix} = 2$$

$$(1.2.5.1)$$

$$\implies \begin{pmatrix} 1 & 1 & 1 \\ 1 & -\frac{7}{2} & -2 \\ -1 & \frac{1}{2} & 0 \end{pmatrix} \stackrel{R_3 \leftarrow R_3 + R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 1 & 1 \\ 1 & -\frac{7}{2} & -2 \\ 0 & -3 & -2 \end{pmatrix}$$

$$(1.2.5.2)$$

$$\stackrel{R_2 \leftarrow R_2 - R_1}{\longleftrightarrow} \begin{pmatrix} 1 & 1 & 1 \\ 0 & -\frac{9}{2} & -3 \\ 0 & -3 & -2 \end{pmatrix} \stackrel{R_3 \leftarrow R_3 - \frac{2}{3}R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 1 & 1 \\ 0 & -\frac{9}{2} & -3 \\ 0 & 0 & 0 \end{pmatrix}$$

Thus, the matrix (1.2.5.1) has rank 2 and the points are collinear. Thus, the medians of a triangle meet at the point **G**. See Fig. 1.2.5.

1.2.6. Verify that

$$G = \frac{A + B + C}{3}$$
 (1.2.6.1)

G is known as the *centroid* of $\triangle ABC$.

Solution:

$$\mathbf{G} = \frac{\begin{pmatrix} 1 \\ -1 \end{pmatrix} + \begin{pmatrix} -4 \\ 6 \end{pmatrix} + \begin{pmatrix} -3 \\ -5 \end{pmatrix}}{3}$$

$$= \begin{pmatrix} -2 \\ 0 \end{pmatrix}$$
(1.2.6.2)

1.2.7. Verify that

$$\mathbf{A} - \mathbf{F} = \mathbf{E} - \mathbf{D} \tag{1.2.7.1}$$

The quadrilateral *AFDE* is defined to be a parallelogram.

Fig. 1.2.7: AFDE forms a parallelogram in triangle ABC

Solution:

$$\mathbf{A} - \mathbf{F} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} - \begin{pmatrix} \frac{-3}{2} \\ \frac{5}{2} \end{pmatrix} = \begin{pmatrix} \frac{5}{2} \\ \frac{-7}{2} \end{pmatrix}$$
 (1.2.7.2)

$$\mathbf{E} - \mathbf{D} = \begin{pmatrix} -1 \\ -3 \end{pmatrix} - \begin{pmatrix} \frac{-7}{2} \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{5}{2} \\ \frac{-7}{2} \end{pmatrix}$$
 (1.2.7.3)

$$\implies \mathbf{A} - \mathbf{F} = \mathbf{E} - \mathbf{D} \tag{1.2.7.4}$$

See Fig. 1.2.7,

All codes for this section are available in

codes/triangle/medians.py codes/triangle/pgm.py

1.3 Altitude

1.3.1. \mathbf{D}_1 is a point on BC such that

$$AD_1 \perp BC \tag{1.3.1.1}$$

and AD_1 is defined to be the altitude. Find the normal vector of AD_1 .

Solution: The normal vector of AD_1 is the direction vector BC and is obtained from (1.1.1.3) as

$$\mathbf{n} = \begin{pmatrix} 1 \\ -11 \end{pmatrix} \tag{1.3.1.2}$$

1.3.2. Find the equation of AD_1 .

Solution: The equation of AD_1 is

$$\mathbf{n}^{\mathsf{T}}(\mathbf{x} - \mathbf{A}) = 0 \tag{1.3.2.1}$$

$$\implies \begin{pmatrix} -1 & 11 \end{pmatrix} \mathbf{x} = \begin{pmatrix} -1 & 11 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = -12 \qquad (1.3.2.2)$$

1.3.3. Find the equations of the altitudes BE_1 and CF_1 to the sides AC and AB respectively.

Solution:

a) From (1.1.1.4), the normal vector of CF_1 is

$$\mathbf{n} = \begin{pmatrix} -5\\7 \end{pmatrix} \tag{1.3.3.1}$$

and the equation of CF_1 is

$$\mathbf{n}^{\mathsf{T}} \left(\mathbf{x} - \mathbf{C} \right) = 0 \tag{1.3.3.2}$$

$$\implies \left(-5 \quad 7\right) \left(\mathbf{x} - \begin{pmatrix} -3\\ -5 \end{pmatrix}\right) = 0 \tag{1.3.3.3}$$

$$\implies (5 \quad -7)\mathbf{x} = 20, \tag{1.3.3.4}$$

b) Similarly, from (1.1.1.2), the normal vector of BE_1 is

$$\mathbf{n} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{1.3.3.5}$$

and the equation of BE_1 is

$$\mathbf{n}^{\mathsf{T}} \left(\mathbf{x} - \mathbf{B} \right) = 0 \tag{1.3.3.6}$$

$$\implies (1 \quad 1)\left(\mathbf{x} - \begin{pmatrix} -4\\6 \end{pmatrix}\right) = 0 \tag{1.3.3.7}$$

$$\implies \begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{x} = 2, \tag{1.3.3.8}$$

1.3.4. Find the intersection **H** of BE_1 and CF_1 .

Solution: The intersection of (1.3.3.8) and (1.3.3.4), is obtained from the matrix equation

$$\begin{pmatrix} 1 & 1 \\ 5 & -7 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 2 \\ 20 \end{pmatrix}$$
 (1.3.4.1)

which can be solved as

$$\begin{pmatrix} 1 & 1 & 2 \\ 5 & -7 & 20 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 - 5R_1} \begin{pmatrix} 1 & 1 & 2 \\ 0 & -12 & 10 \end{pmatrix} \quad (1.3.4.2)$$

$$\stackrel{R_2 \leftarrow \frac{R_2}{-12}}{\longleftrightarrow} \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & \frac{-5}{6} \end{pmatrix} \stackrel{R_1 \leftarrow R_1 - R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & \frac{17}{6} \\ 0 & 1 & \frac{-5}{6} \end{pmatrix} \quad (1.3.4.3)$$

yielding

$$\mathbf{H} = \frac{1}{6} \begin{pmatrix} 17 \\ -5 \end{pmatrix}, \tag{1.3.4.4}$$

See Fig. 1.3.4.1

Fig. 1.3.4.1: Altitudes BE_1 and CF_1 intersect at **H**

1.3.5. Verify that

$$(\mathbf{A} - \mathbf{H})^{\mathsf{T}} (\mathbf{B} - \mathbf{C}) = 0 \tag{1.3.5.1}$$

Solution: From (1.3.4.4),

$$A - H = -\frac{1}{6} {11 \choose 1}, B - C = {-1 \choose 11} (1.3.5.2)$$

$$\implies (\mathbf{A} - \mathbf{H})^{\mathsf{T}} (\mathbf{B} - \mathbf{C}) = \frac{1}{6} \begin{pmatrix} 11 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 11 \end{pmatrix} = 0 \quad (1.3.5.3)$$

All codes for this section are available at

codes/triangle/altitude.py

1.4 Perpendicular Bisector

1.4.1. The equation of the perpendicular bisector of BC is

$$\left(\mathbf{x} - \frac{\mathbf{B} + \mathbf{C}}{2}\right)(\mathbf{B} - \mathbf{C}) = 0 \tag{1.4.1.1}$$

Substitute numerical values and find the equations of the perpendicular bisectors of *AB*, *BC* and *CA*.

Solution: From (1.1.1.2), (1.1.1.3), (1.1.1.4), (1.2.1.3), (1.2.1.4) and (1.2.1.5),

$$\frac{\mathbf{B} + \mathbf{C}}{2} = \frac{1}{2} \begin{pmatrix} -7\\1 \end{pmatrix}, \mathbf{B} - \mathbf{C} = \begin{pmatrix} -1\\11 \end{pmatrix}$$
 (1.4.1.2)

$$\frac{\mathbf{A} + \mathbf{B}}{2} = \frac{1}{2} \begin{pmatrix} -3 \\ 5 \end{pmatrix}, \ \mathbf{A} - \mathbf{B} = \begin{pmatrix} 5 \\ -7 \end{pmatrix} \tag{1.4.1.3}$$

$$\frac{\mathbf{C} + \mathbf{A}}{2} = \begin{pmatrix} -1 \\ -3 \end{pmatrix}, \ \mathbf{C} - \mathbf{A} = \begin{pmatrix} -4 \\ -4 \end{pmatrix}$$
 (1.4.1.4)

(1.4.1.5)

yielding

$$(\mathbf{B} - \mathbf{C})^{\mathsf{T}} \left(\frac{\mathbf{B} + \mathbf{C}}{2} \right) = \begin{pmatrix} -1 & 11 \end{pmatrix} \begin{pmatrix} -\frac{7}{2} \\ \frac{1}{2} \end{pmatrix} = 9 \qquad (1.4.1.6)$$

$$(\mathbf{A} - \mathbf{B})^{\mathsf{T}} \begin{pmatrix} \mathbf{A} + \mathbf{B} \\ 2 \end{pmatrix} = \begin{pmatrix} 5 & -7 \end{pmatrix} \begin{pmatrix} -\frac{3}{2} \\ \frac{5}{2} \end{pmatrix} = -25 \quad (1.4.1.7)$$

$$(\mathbf{C} - \mathbf{A})^{\mathsf{T}} \left(\frac{\mathbf{C} + \mathbf{A}}{2} \right) = \begin{pmatrix} -4 & -4 \end{pmatrix} \begin{pmatrix} -1 \\ -3 \end{pmatrix} = 16 \qquad (1.4.1.8)$$

Thus, the perpendicular bisectors are obtained from (1.4.1.1) as

$$BC: (-1 \quad 11)\mathbf{x} = 9$$
 (1.4.1.9)

$$CA: (5 -7)\mathbf{x} = -25$$
 (1.4.1.10)

$$AB: (1 \ 1)\mathbf{x} = -4$$
 (1.4.1.11)

1.4.2. Find the intersection **O** of the perpendicular bisectors of *AB* and *AC*.

Solution:

The intersection of (1.4.1.10) and (1.4.1.11), can be obtained as

$$\begin{pmatrix} 5 & -7 & -25 \\ 1 & 1 & -4 \end{pmatrix} \stackrel{R_2 \leftarrow 5R_2 - R_1}{\longleftrightarrow} \begin{pmatrix} 5 & -7 & -25 \\ 0 & 12 & 5 \end{pmatrix}$$
(1.4.2.1)

$$\stackrel{R_1 \leftarrow \frac{12}{7}R_1 + R_2}{\longleftrightarrow} \begin{pmatrix} \frac{60}{7} & 0 & \frac{-265}{7} \\ 0 & 12 & 5 \end{pmatrix} \stackrel{R_2 \leftarrow \frac{1}{12}R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & \frac{-53}{12} \\ 0 & 1 & \frac{5}{12} \end{pmatrix} (1.4.2.2)$$

$$\implies \mathbf{O} = \begin{pmatrix} \frac{-53}{12} \\ \frac{5}{12} \end{pmatrix}$$

$$(1.4.2.3)$$

1.4.3. Verify that **O** satisfies (1.4.1.1). **O** is known as the circumcentre.

Solution: Substituing from (1.4.2.3) in (1.4.1.1), when

Fig. 1.4.5.1: Circumcircle of $\triangle ABC$ with centre **O**.

substituted in the above equation,

$$\left(\mathbf{O} - \frac{\mathbf{B} + \mathbf{C}}{2}\right)^{\mathsf{T}} (\mathbf{B} - \mathbf{C})$$

$$= \left(\frac{1}{12} \begin{pmatrix} -53 \\ 5 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} -7 \\ 1 \end{pmatrix}\right)^{\mathsf{T}} \begin{pmatrix} -1 \\ 11 \end{pmatrix}$$

$$= \frac{1}{12} \begin{pmatrix} -11 \\ -1 \end{pmatrix} \begin{pmatrix} -1 \\ 11 \end{pmatrix} = 0 \quad (1.4.3.1)$$

1.4.4. Verify that

$$OA = OB = OC (1.4.4.1)$$

1.4.5. Draw the circle with centre at **O** and radius

$$R = OA \tag{1.4.5.1}$$

This is known as the circumradius.

Solution: See Fig. 1.4.5.1.

1.4.6. Verify that

$$\angle BOC = 2\angle BAC.$$
 (1.4.6.1)

Solution:

a) To find the value of $\angle BOC$:

$$\mathbf{B} - \mathbf{O} = \begin{pmatrix} \frac{5}{12} \\ \frac{67}{12} \end{pmatrix}, \mathbf{C} - \mathbf{O} = \begin{pmatrix} \frac{17}{12} \\ \frac{-65}{12} \end{pmatrix}$$

$$(1.4.6.2)$$

$$\implies (\mathbf{B} - \mathbf{O})^{\mathsf{T}} (\mathbf{C} - \mathbf{O}) = \frac{-4270}{144}$$

$$\implies ||\mathbf{B} - \mathbf{O}|| = \frac{\sqrt{4514}}{12}, ||\mathbf{C} - \mathbf{O}|| = \frac{\sqrt{4514}}{12}$$

$$(1.4.6.3)$$

Thus,

$$\cos BOC = \frac{(\mathbf{B} - \mathbf{O})^{\top} (\mathbf{C} - \mathbf{O})}{\|\mathbf{B} - \mathbf{O}\| \|\mathbf{C} - \mathbf{O}\|} = \frac{-4270}{4514} \quad (1.4.6.5)$$

$$\implies \angle BOC = \cos^{-1}\left(\frac{-4270}{4514}\right) \tag{1.4.6.6}$$

$$= 161.07536^{\circ} \text{ or } 198.92464^{\circ}$$
 (1.4.6.7)

b) To find the value of $\angle BAC$:

$$\mathbf{B} - \mathbf{A} = \begin{pmatrix} -5 \\ 7 \end{pmatrix}, \mathbf{C} - \mathbf{A} = \begin{pmatrix} -4 \\ -4 \end{pmatrix}$$

$$(1.4.6.8)$$

$$\implies (\mathbf{B} - \mathbf{A})^{\top} (\mathbf{C} - \mathbf{A}) = -8 \qquad (1.4.6.9)$$

$$\|\mathbf{B} - \mathbf{A}\| = \sqrt{74} \|\mathbf{C} - \mathbf{A}\| = 4\sqrt{2}$$

$$(1.4.6.10)$$

Thus,

$$\cos BAC = \frac{(\mathbf{B} - \mathbf{A})^{\top} (\mathbf{C} - \mathbf{A})}{\|\mathbf{B} - \mathbf{A}\| \|\mathbf{C} - \mathbf{A}\|} = \frac{-8}{4\sqrt{148}}$$
(1.4.6.11)

$$\implies \angle BAC = \cos^{-1}\left(\frac{-8}{4\sqrt{148}}\right) \tag{1.4.6.12}$$

$$= 99.46232^{\circ} \tag{1.4.6.13}$$

From (1.4.6.13) and (1.4.6.7),

$$2 \times \angle BAC = \angle BOC \tag{1.4.6.14}$$

1.4.7. Let

$$\mathbf{P} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \tag{1.4.7.1}$$

where

$$\theta = \angle BOC \tag{1.4.7.2}$$

Verify that

$$\mathbf{B} - \mathbf{O} = \mathbf{P}(\mathbf{C} - \mathbf{O}) \tag{1.4.7.3}$$

All codes for this section are available at

codes/triangle/perp-bisect.py

1.5 Angle Bisector

1.5.1. Let \mathbf{D}_3 , \mathbf{E}_3 , \mathbf{F}_3 , be points on AB, BC and CA respectively such that

$$BD_3 = BF_3 = m, CD_3 = CE_3 = n, AE_3 = AF_3 = p.$$
(1.5.1.1)

Obtain m, n, p in terms of a, b, c obtained in Problem 1.1.2.

Solution: From the given information,

$$a = m + n, (1.5.1.2)$$

$$b = n + p, (1.5.1.3)$$

$$c = m + p (1.5.1.4)$$

which can be expressed as

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} m \\ n \\ p \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 (1.5.1.5)

$$\implies \binom{m}{n} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}^{-1} \binom{a}{b} \tag{1.5.1.6}$$

Using row reduction,

$$\begin{array}{c|ccccc}
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}$$
(1.5.1.7)

(1.5.1.8)

$$\begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{R_3 \leftarrow R_3 - R_1} \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & -1 & 1 & -1 & 0 & 1 \end{pmatrix}$$

$$\begin{array}{c}
\stackrel{R_3 \leftarrow R_3 + R_2}{\longleftrightarrow} \\
\stackrel{R_1 \leftarrow R_1 - R_2}{\longleftrightarrow} \\
\stackrel{R_1 \leftarrow R_1 - R_2}{\longleftrightarrow} \\
0 & 0 & 2 & -1 & 1 & 1
\end{array}$$
(1.5.1.9)

$$\stackrel{R_2 \leftarrow 2R_2 - R_3}{\longleftrightarrow} \stackrel{2}{\longleftrightarrow} \begin{pmatrix} 2 & 0 & 0 & 1 & -1 & 1 \\ 0 & 2 & 0 & 1 & 1 & -1 \\ 0 & 0 & 2 & -1 & 1 & 1 \end{pmatrix}$$
(1.5.1.10)

yielding

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{pmatrix}$$
(1.5.1.11)

Therefore,

$$p = \frac{c+b-a}{2} = \frac{\sqrt{74} + \sqrt{32} - \sqrt{122}}{2}$$

$$m = \frac{a+c-b}{2} = \frac{\sqrt{74} + \sqrt{122} - \sqrt{32}}{2}$$

$$n = \frac{a+b-c}{2} = \frac{\sqrt{122} + \sqrt{32} - \sqrt{74}}{2}$$
(1.5.1.12)

upon substituting from (1.1.2.7), (1.1.2.9) and (1.1.2.11).

1.5.2. Using section formula, find

$$\mathbf{D}_3 = \frac{m\mathbf{C} + n\mathbf{B}}{m+n}, \ \mathbf{E}_3 = \frac{n\mathbf{A} + p\mathbf{C}}{n+p}, \ \mathbf{F}_3 = \frac{p\mathbf{B} + m\mathbf{A}}{p+m}$$
(1.5.2.1)

1.5.3. Find the circumcentre and circumradius of $\triangle D_3 E_3 F_3$.

These are the *incentre* and *inradius* of $\triangle ABC$.

1.5.4. Draw the circumcircle of $\triangle D_3 E_3 F_3$. This is known as the incircle of $\triangle ABC$.

Solution: See Fig. 1.5.4.1

Fig. 1.5.4.1: Incircle of $\triangle ABC$

1.5.5. Using (1.1.7.1) verify that

$$\angle BAI = \angle CAI. \tag{1.5.5.1}$$

AI is the bisector of $\angle A$.

1.5.6. Verify that BI, CI are also the angle bisectors of $\triangle ABC$. All codes for this section are available at

codes/triangle/ang-bisect.py

1.6 Eigenvalues and Eigenvectors

The equation of the incircle is given by

$$g(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{V} \mathbf{x} + 2 \mathbf{u}^{\mathsf{T}} \mathbf{x} + f = 0 \tag{1.6.1}$$

where

$$V = I, u = -O, f = ||O|| - r^2,$$
 (1.6.2)

O being the incentre and r the inradius. Here **I** is the identity matrix.

1.6.1. Compute

$$\Sigma = (\mathbf{V}\mathbf{h} + \mathbf{u})(\mathbf{V}\mathbf{h} + \mathbf{u})^{\mathsf{T}} - g(\mathbf{h})\mathbf{V}$$
 (1.6.1.1)

for $\mathbf{h} = \mathbf{A}$.

1.6.2. Find the roots of the equation

$$\left| \lambda \mathbf{I} - \mathbf{\Sigma} \right| = 0 \tag{1.6.2.1}$$

These are known as the eigenvalues of Σ .

1.6.3. Find **p** such that

$$\mathbf{\Sigma}\mathbf{p} = \lambda\mathbf{p} \tag{1.6.3.1}$$

using row reduction. These are known as the eigenvectors of Σ .

1.6.4. Define

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}, \tag{1.6.4.1}$$

$$\mathbf{P} = \begin{pmatrix} \frac{\mathbf{p}_1}{\|\mathbf{p}_1\|} & \frac{\mathbf{p}_2}{\|\mathbf{p}_2\|} \end{pmatrix} \tag{1.6.4.2}$$

1.6.5. Verify that

$$\mathbf{P}^{\mathsf{T}} = \mathbf{P}^{-1}.\tag{1.6.5.1}$$

P is defined to be an orthogonal matrix.

1.6.6. Verify that

$$\mathbf{P}^{\mathsf{T}} \mathbf{\Sigma} \mathbf{P} = \mathbf{D},\tag{1.6.6.1}$$

This is known as the spectral (eigenvalue) decomposition of a symmetric matrix

1.6.7. The direction vectors of the tangents from a point \mathbf{h} to the circle in (1.6.1) are given by

$$\mathbf{m} = \mathbf{P} \begin{pmatrix} \sqrt{|\lambda_2|} \\ \pm \sqrt{|\lambda_1|} \end{pmatrix}$$
 (1.6.7.1)

1.6.8. The points of contact of the pair of tangents to the circle in (1.6.1) from a point **h** are given by

$$\mathbf{x} = \mathbf{h} + \mu \mathbf{m} \tag{1.6.8.1}$$

where

$$\mu = -\frac{\mathbf{m}^{\top} (\mathbf{V} \mathbf{h} + \mathbf{u})}{\mathbf{m}^{\top} \mathbf{V} \mathbf{m}}$$
(1.6.8.2)

for \mathbf{m} in (1.6.7.1). Compute the points of contact. You should get the same points that you obtained in the previous section.

All codes for this section are available at

1.7 Addition and Subtraction

- 1.7.1 Find the sum of the vectors $\mathbf{a} = \hat{i} 2\hat{j} + \hat{k}$, $\mathbf{b} = -2\hat{i} + 4\hat{j} + 5\hat{k}$ and $\mathbf{c} = \hat{i} 6\hat{j} 7\hat{k}$.
- 1.7.2 In triangle ABC (Fig. 1.7.2.1), which of the following is not true:

a)
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \mathbf{0}$$

b)
$$\overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{CA} = \mathbf{0}$$

c)
$$\overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{CA} = \mathbf{0}$$

d)
$$\overrightarrow{AB} - \overrightarrow{BC} + \overrightarrow{CA} = \mathbf{0}$$

Fig. 1.7.2.1

Solution:

$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \mathbf{B} - \mathbf{A} + \mathbf{C} - \mathbf{B} + \mathbf{A} - \mathbf{C} = 0 \quad (1.7.2.1)$$

$$\overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{AC} = \mathbf{B} - \mathbf{A} + \mathbf{C} - \mathbf{B} - (\mathbf{C} - \mathbf{A}) = 0 \quad (1.7.2.2)$$

$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{AC} = \mathbf{B} - \mathbf{A} + \mathbf{C} - \mathbf{B} + \mathbf{C} - \mathbf{A} = 2(\mathbf{C} - \mathbf{A})$$

$$AB + BC + AC = B - A + C - B + C - A = 2(C - A)$$
(1.7.2.3)

$$\overrightarrow{AB} - \overrightarrow{CB} + \overrightarrow{CA} = \mathbf{B} - \mathbf{A} - (\mathbf{B} - \mathbf{C}) + \mathbf{A} - \mathbf{C} = 0$$
(1.7.2.4)

1.7.3 A girl walks 4 km towards west, then she walks 3 km in a direction 30° east of north and stops. Determine the girl's displacement from her initial point of departure.

Solution: Let

$$\mathbf{A} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} -4 \\ 0 \end{pmatrix}, \ \mathbf{C} - \mathbf{B} = 3 \begin{pmatrix} \cos 60^{\circ} \\ \sin 60^{\circ} \end{pmatrix}$$
 (1.7.3.1)

$$\implies \mathbf{C} = \begin{pmatrix} \frac{-5}{2} \\ \frac{3\sqrt{3}}{2} \end{pmatrix} \qquad (1.7.3.2)$$

which is the displacement. See Fig. 1.7.3.1.

1.7.4 Without using distance formula, show that points A(-2, -1), B(4, 0), C(3, 3) and D(-3, 2) are the vertices of a parallelogram.

Solution:

$$\mathbf{A} - \mathbf{B} = \mathbf{D} - \mathbf{C} = \begin{pmatrix} -6 \\ -1 \end{pmatrix} \tag{1.7.4.1}$$

Hence, ABCD is a parallelogram. See Fig. 1.7.4.1.

Fig. 1.7.3.1

Fig. 1.7.4.1

- 1.7.5 The fourth vertex **D** of a parallelogram **ABCD** whose three vertices are A(-2, 3), B(6, 7) and C(8, 3) is
 - a) (0, 1)
 - b) (0,-1)
 - c) (-1,0)
 - d) (1,0)
- 1.7.6 Points A(4,3), B(6,4), C(5,-6) and D(-3,5) are the vertices of a parallelogram.

- 1.8 Section Formula
- 1.8.1 Find the coordinates of the point which divides the join of (-1,7) and (4,-3) in the ratio 2:3.

Solution: Using section formula (1.2.1.1), the desired point is

$$\frac{1}{1+\frac{3}{2}} \left(\begin{pmatrix} 4 \\ -3 \end{pmatrix} + \frac{3}{2} \begin{pmatrix} -1 \\ 7 \end{pmatrix} \right) = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$
 (1.8.1.1)

See Fig. 1.8.1.1

Fig. 1.8.1.1

1.8.2 Find the coordinates of the points of trisection of the line segment joining (4,-1) and (-2,3).

Solution: Using section formula,

$$\mathbf{R} = \frac{1}{1 + \frac{1}{2}} \left(\begin{pmatrix} 4 \\ -1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} -2 \\ -3 \end{pmatrix} \right) = \begin{pmatrix} 2 \\ \frac{-5}{3} \end{pmatrix}$$
 (1.8.2.1)

$$\mathbf{S} = \frac{1}{1 + \frac{2}{1}} \left(\begin{pmatrix} 4 \\ -1 \end{pmatrix} + \frac{2}{1} \begin{pmatrix} -2 \\ -3 \end{pmatrix} \right) = \begin{pmatrix} 0 \\ \frac{-7}{3} \end{pmatrix}$$
 (1.8.2.2)

which are the desired points of trisection. See Fig. 1.8.2.1

Fig. 1.8.2.1

1.8.3 Find the ratio in which the line segment joining the points (-3, 10) and (6, -8) is divided by (-1, 6).

Solution: Using section formula,

$$\binom{-1}{6} = \frac{\binom{-3}{10} + k \binom{6}{-8}}{1+n}$$
 (1.8.3.1)

$$\implies 7k \begin{pmatrix} 1 \\ -2 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ -2 \end{pmatrix} \tag{1.8.3.2}$$

or,
$$k = \frac{2}{7}$$
 (1.8.3.3)

See Fig. 1.8.3.1.

Fig. 1.8.3.1

1.8.4 If (1,2), (4,y), (x,6), (3,5) are the vertices of a parallelogram taken in order, find x and y.

Solution: Since *ABCD* is a parallellogram,

$$\binom{4}{y} - \binom{1}{2} = \binom{x}{6} - \binom{3}{5}$$
 (1.8.4.1)

$$\implies \binom{3}{y-2} = \binom{x-3}{1} \tag{1.8.4.2}$$

or,
$$x = 6, y = 3$$
. (1.8.4.3)

See Fig. 1.8.4.1.

1.8.5 Find the coordinates of a point A, where AB is the diameter of a circle whose centre is C(2, -3) and B is (1, 4).

Solution:

$$\mathbf{C} = \frac{\mathbf{A} + \mathbf{B}}{2} \implies \mathbf{A} = 2\mathbf{C} - \mathbf{B} = \begin{pmatrix} 3 \\ -10 \end{pmatrix} \qquad (1.8.5.1)$$

See Fig. 1.8.5.1.

1.8.6 If A and B are (-2, -2) and (2, -4), respectively, find the coordinates of P such that $AP = \frac{3}{7}AB$ and P lies on the line segment AB.

Solution: Using section formula,

$$\mathbf{P} = \frac{1}{1 + \frac{3}{4}} \begin{pmatrix} -2 \\ -2 \end{pmatrix} + \frac{3}{4} \begin{pmatrix} 2 \\ -4 \end{pmatrix} = \begin{pmatrix} \frac{-2}{7} \\ \frac{-20}{7} \end{pmatrix}$$
(1.8.6.1)

See Fig. 1.8.6.1.

Fig. 1.8.4.1

Fig. 1.8.5.1

(1.8.4.2) 1.8.7 Find the coordinates of the points which divide the line segment joining A(-2,2) and B(2,8) into four equal parts.

Solution: Using section formula,

$$\mathbf{R}_k = \frac{\mathbf{B} + k\mathbf{A}}{1 + k} \tag{1.8.7.1}$$

See Table 1.8.7 and Fig. 1.8.7.1

TABLE 1.8.7

k	\mathbf{R}_k
3	$\begin{pmatrix} -1 \\ \frac{7}{2} \end{pmatrix}$
1	$\begin{pmatrix} 0 \\ 5 \end{pmatrix}$
<u>1</u> 3	$\begin{pmatrix} 1 \\ \frac{13}{2} \end{pmatrix}$

1.8.8 Find the position vector of a point \mathbf{R} which divides the

Fig. 1.8.6.1

Fig. 1.8.7.1

line joining two points **P** and **Q** whose position vectors are $\hat{i} + 2\hat{j} - \hat{k}$ and $-\hat{i} + \hat{j} + \hat{k}$ respectively, in the ratio 2:1

- a) internally
- b) externally

Solution: See Table 1.8.8.

TABLE 1.8.8

k	R_k
2	$\frac{1}{3} \begin{pmatrix} -1\\4\\1 \end{pmatrix}$
-2	$\begin{pmatrix} -3\\0\\3 \end{pmatrix}$

1.8.9 Find the position vector of the mid point of the vector joining the points P(2, 3, 4) and Q(4, 1, -2).

Solution: The desired vector is

$$\frac{1}{2} \begin{pmatrix} 2\\3\\4 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 4\\1\\-2 \end{pmatrix} = \begin{pmatrix} 3\\2\\1 \end{pmatrix}$$
 (1.8.9.1)

1.8.10 Determine the ratio in which the line 2x+y-4=0 divides the line segment joining the points A(2, -2) and B(3, 7). **Solution:** The given equation can be expressed as

$$(2 1)\mathbf{x} = 4 (1.8.10.1)$$

Using section formula in (1.8.10.1),

$$\mathbf{n}^{\mathsf{T}} \left(\frac{k\mathbf{B} + \mathbf{A}}{k+1} \right) = c \tag{1.8.10.2}$$

$$\implies k = \frac{c - \mathbf{n}^{\mathsf{T}} \mathbf{A}}{\mathbf{n}^{\mathsf{T}} \mathbf{B} - c} \tag{1.8.10.3}$$

upon simplification. Substituting numerical values,

$$k = \frac{2}{9} \tag{1.8.10.4}$$

See Fig. 1.8.10.1.

Fig. 1.8.10.1

- 1.8.11 Let $\mathbf{A}(4,2)$, $\mathbf{B}(6,5)$ and $\mathbf{C}(1,4)$ be the vertices of $\triangle ABC$.
 - a) The median from **A** meets *BC* at **D**. Find the coordinates of the point **D**.
 - b) Find the coordinates of the point **P** on AD such that AP: PD = 2:1.
 - c) Find the coordinates of points \mathbf{Q} and \mathbf{R} on medians BE and CF respectively such that BQ: QE = 2:1 and CR: RF = 2:1.
 - d) What do you observe?
 - e) If A, B and C are the vertices of $\triangle ABC$, find the coordinates of the centroid of the triangle.

Solution:

$$\mathbf{D} = \frac{\mathbf{B} + \mathbf{C}}{2} = \begin{pmatrix} \frac{7}{2} \\ \frac{9}{2} \end{pmatrix}$$
 (1.8.11.1)

$$\mathbf{E} = \frac{\mathbf{A} + \mathbf{C}}{2} = \begin{pmatrix} \frac{5}{2} \\ 3 \end{pmatrix} \tag{1.8.11.2}$$

$$\mathbf{F} = \frac{\mathbf{A} + \mathbf{B}}{2} = \begin{pmatrix} 5 \\ \frac{7}{2} \end{pmatrix} \tag{1.8.11.3}$$

$$\mathbf{P} = \mathbf{Q} = \mathbf{R} = \frac{1}{3} \begin{pmatrix} 11 \\ 11 \end{pmatrix}$$
 (1.8.11.4)

$$\mathbf{G} = \frac{\mathbf{A} + \mathbf{B} + \mathbf{C}}{3} = \frac{1}{3} \begin{pmatrix} 11\\11 \end{pmatrix}$$
 (1.8.11.5)

is the centroid. See Fig. 1.8.11.1.

Fig. 1.8.11.1

1.8.12 Find the position vector of a point R which divides the line joining two points P and Q whose position vectors 1.8.17 Point P(5, -3) is one of the two points of trisection of are $(2\mathbf{a} + \mathbf{b})$ and $(\mathbf{a} - 3\mathbf{b})$ externally in the ratio 1 : 2. Also, show that P is the mid point of the line segment 1.8.18 Points $\mathbf{A}(-6, 10), \mathbf{B}(-4, 6)$ and $\mathbf{C}(3, -8)$ are collinear RQ. **Solution:**

$$\mathbf{R} = \frac{\mathbf{Q} - 2\mathbf{P}}{-1} = \begin{pmatrix} 3 \\ 5 \end{pmatrix},\tag{1.8.12.1}$$

$$\frac{(\mathbf{R} + \mathbf{Q})}{2} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \mathbf{P}.\tag{1.8.12.2}$$

See Fig. 1.8.12.1.

- 1.8.13 The point which divides the line segment joining the points P(7,-6) and Q(3,4) in the ratio 1:2 internally 1.8.22 The line segment joining the points A(3,2) and B(5,1)
 - a) I quadrant
 - b) II quadrant
 - c) III quadrant
 - d) IV quadrant
- 1.8.14 If the point P(2,1) lies on the line segment joining 1.8.24 Find the ratio in which the line 2x+3y-5=0 divides the pointsA(4, 2) and B(8, 4), then
 - a) $AP = \frac{1}{3}AB$
 - b) AP = PE
 - c) $PB = \frac{1}{3}AB$

Fig. 1.8.12.1

- d) $AP = \frac{1}{2}AB$
- 1.8.15 If $P^{\underline{a}}_{\underline{a}}$ is the mid-point of the line segment joining the points $\mathbf{Q}(-6,5)$ and $\mathbf{R}(-2,3)$, then the value of a is
 - a) 4
 - b) -12
 - c) 12
 - d) 6
- 1.8.16 A line intersects the y-axis and x-axis of the points **P** and \mathbf{Q} , respectively. If (2,5) is the mid-point of \mathbf{PQ} , then the coordinates of P and Q are, respectively
 - a) (0, -5) and (2, 0)
 - b) (0, -10) and (-4, 0)
 - c) (0,4) and (-10,0)
 - d) (0, -10) and (4, 0)
 - line segment joining the points A(7, -2) and B(1, -5)
 - such that $AB = \frac{2}{9}AC$
- 1.8.19 In what ratio does the x-axis divide the line segment joining the points (-4, -6) and (-1, 7)? Find the coordinates of the point of division.
- 1.8.20 Find the ratio in which the point $P(\frac{3}{4}, \frac{5}{12})$ divides the line segment joining the points $\mathbf{A}\left(\frac{1}{2},\frac{3}{2}\right)$ and $\mathbf{B}(2,-5)$.
- 1.8.21 If P(9a 2, -b) divides line segment joining A(3a + b)1, -3) and $\mathbf{B}(8a, 5)$ in the ratio 3:1, find the values of a and b.
 - is divided at the point P in the ratio 1:2 which lies on 3x - 18y + k = 0. Find the value of k.
- 1.8.23 Find the coordinates of the point **R** on the line segment joining the points P(-1,3) and Q(2,5) such that PR =³**PQ**.
 - line segment joining the points (8, -9) and (2, 1). Also find the coordinates of the point of division,
- 1.8.25 If **a** and **b** are the postion vectors of A and B, respectively, find the position vector of a point C in BA produced such

that BC=1.5BA.

- 1.8.26 The position vector of the point which divides the join of points $2\mathbf{a}$ - $3\mathbf{b}$ and \mathbf{a} + \mathbf{b} in the ratio 3:1 is
 - a) $\frac{3\mathbf{a}-2\mathbf{b}}{2\mathbf{a}-2\mathbf{b}}$
 - b) $\frac{7\mathbf{a}^2 + 8\mathbf{b}}{2}$

 - c) $\frac{3a}{4}$ d) $\frac{5a}{4}$
- 1.8.27 Find the ratio in which the line segment joining A(1,-5) and B(-4,5) is divided by the x-axis. Also find the coordinates of the point of division.
- 1.8.28 Find the position vector of a point **R** which divides the line joining two points **P** and **Q** whose position vectors are $2\mathbf{a} + \mathbf{b}$ and $\mathbf{a} - 3\mathbf{b}$ externally in the ratio 1 : 2.
 - 1.9 Length
- 1.9.1 Compute the magnitude of the following vectors:

$$\mathbf{a} = \hat{i} + \hat{j} + \hat{k} \tag{1.9.1.1}$$

$$\mathbf{b} = 2\hat{i} - 7\hat{j} - 3\hat{k} \tag{1.9.1.2}$$

$$\mathbf{c} = \frac{1}{\sqrt{3}}\hat{i} + \frac{1}{\sqrt{3}}\hat{j} - \frac{1}{3}\hat{k}$$
 (1.9.1.3)

Solution: Let

$$\mathbf{a} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 2 \\ -7 \\ 3 \end{pmatrix}, \mathbf{c} = \begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} \end{pmatrix}$$
 (1.9.1.4)

Then

$$\|\mathbf{a}\| = \sqrt{\mathbf{a}^{\top}\mathbf{a}} = \sqrt{3},$$
 (1.9.1.5)
 $\|\mathbf{b}\| = \sqrt{\mathbf{b}^{\top}\mathbf{b}} = \sqrt{62},$ (1.9.1.6)

$$\|\mathbf{c}\| = \sqrt{\mathbf{c}^{\mathsf{T}}\mathbf{c}} = 1 \tag{1.9.1.7}$$

Solution:

or,
$$x = \frac{1}{\sqrt{3}}$$
 (1.9.2.2)

1.9.3 If $\mathbf{a} = \mathbf{b} + \mathbf{c}$, then is it true that $|\mathbf{a}| = |\mathbf{b}| + |\mathbf{c}|$? Justify your answer.

Solution: Let

$$\mathbf{b} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \mathbf{c} = \begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix}$$
 (1.9.3.1)

Then

$$\mathbf{a} = \mathbf{b} + \mathbf{c} = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} \tag{1.9.3.2}$$

$$\implies$$
 $\|\mathbf{a}\| = \sqrt{11}$, $\|\mathbf{b}\| = \sqrt{14}$, $\|\mathbf{c}\| = 3$. (1.9.3.3)

Thus

$$\|\mathbf{a}\| \neq \|\mathbf{b}\| + \|\mathbf{c}\|$$
 (1.9.3.4)

- 1.9.4 If \overrightarrow{a} is a nonzero vector of magnitude 'a' and λ a nonzero scalar, then $\lambda \vec{a}$ is a unit vector if
 - a) $\lambda = 1$
 - b) $\lambda = -1$
 - c) $a = |\lambda|$
 - d) $a = 1/|\lambda|$
- 1.9.5 A vector \mathbf{r} is inclined at equal angles to the three axis. If the magnitude of **r** is $2\sqrt{3}$ units, find **r**.
- 1.9.6 Find the unit vector in the direction of sum of vectors \mathbf{a} = $2\hat{i} - \hat{j} + \hat{k} \quad \text{and} \quad \mathbf{b} = 2\hat{j} + \hat{k}.$
- 1.9.7 If $\mathbf{a} = \hat{i} + \hat{j} + 2\hat{k}$ and $\mathbf{b} = 2\hat{i} + \hat{j} 2\hat{k}$, find the unit vector in the direction of
 - a) 6a
 - b) 2**a-b**
- 1.9.8 Find a unit vector in the direction of \overline{PQ} , where P and Q have co-ordinates(5,0,8) and (3,3,2), respectively.
- (1.9.1.2) 1.9.9 The vector in the direction of the vector $\hat{i} 2\hat{j} + 2\hat{k}$ that has magnitude 9 is
 - a) $\hat{i} 2\hat{j} + 2\hat{k}$

 - b) $\hat{i} 2\hat{j}$ c) $3(\hat{i} 2\hat{j} + 2\hat{k})$ d) $9(\hat{i} 2\hat{j} + 2\hat{k})$
 - 1.9.10 If $|\mathbf{a}| = 4$ and $-3 \le \lambda \le 2$, then the range of $|\lambda \mathbf{a}|$ is
 - a) [0,8]
 - b) [-12, 8]
 - c) [0, 12]
 - d) [8, 12]
 - 1.9.11 The values of k for which $|\mathbf{ka}| < |\mathbf{a}|$ and $k\mathbf{a} + \frac{1}{2}\mathbf{a}$ is parallel to a holds true are ___
- (1.9.1.6) 1.9.12 If $|\mathbf{a}| = |\mathbf{b}|$, then necessarily it implies $\mathbf{a} = \pm \mathbf{b}$. 1.9.13 The direction cosines of the vector $(2\hat{i} + 2\hat{j} \hat{k})$ are
- 1.9.2 Find the value of x for which $x(\hat{i} + \hat{j} + \hat{k})$ is a unit vector. 1.9.14 Position vector of point P is a vector whose intial point

1.10 Direction

1.10.1 Find the slope of a line, which passes through the origin and the mid point of the line segment joining the points P(0,-4) and B(8,0).

Solution: The mid point of *PB* is

$$\mathbf{M} = \frac{1}{2}(\mathbf{P} + \mathbf{B}) = \begin{pmatrix} 4 \\ -2 \end{pmatrix} \tag{1.10.1.1}$$

which is equal to the direction vector of OM.

$$\therefore \mathbf{M} \equiv \begin{pmatrix} 1 \\ -\frac{1}{2} \end{pmatrix}, m = -\frac{1}{2} \tag{1.10.1.2}$$

which is the desired slope. See Fig. 1.10.1.1.

Fig. 1.10.1.1

1.10.2 A line passes through $A(x_1, y_1)$ and B(h, k). If slope of the line is m, show that $(k - y_1) = m(h - x_1)$.

Solution: The direction vector

$$\mathbf{B} - \mathbf{A} = \begin{pmatrix} h - x_1 \\ k - y_1 \end{pmatrix} \equiv \begin{pmatrix} 1 \\ \frac{k - y_1}{h - x_1} \end{pmatrix}$$
 (1.10.2.1)

1.10.3 For given vectors, $\mathbf{a} = 2\hat{i} - \hat{j} + 2\hat{k}$ and $\mathbf{b} = -\hat{i} + \hat{j} - \hat{k}$, find the unit vector in the direction of the vector $\mathbf{a} + \mathbf{b}$.

Solution:

$$\mathbf{a} + \mathbf{b} = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix} + \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}, = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix},$$

$$\|\mathbf{a} + \mathbf{b}\| = \sqrt{2}$$
 (1.10.3.2)

$$\implies \frac{\mathbf{a} + \mathbf{b}}{\|\mathbf{a} + \mathbf{b}\|} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\1 \end{pmatrix}$$
 (1.10.3.3)

which is the desired the unit vector.

1.10.4 Find a vector of magnitude 5 units, and parallel to the resultant of the vectors $\mathbf{a} = 2\hat{i} + 3\hat{j} - \hat{k}$ and $\mathbf{b} = \hat{i} - 2\hat{j} + \hat{k}$.

1.10.5 If $\mathbf{a} = \hat{i} + \hat{j} + \hat{k}$, $\mathbf{b} = 2\hat{i} - \hat{j} + 3\hat{k}$ and $\mathbf{c} = \hat{i} - 2\hat{j} + \hat{k}$, find a unit vector parallel to the vector $2\mathbf{a} - \mathbf{b} + 3\mathbf{c}$.

Solution:

$$2\mathbf{a} - \mathbf{b} + 3\mathbf{c} = \begin{pmatrix} 3 \\ -3 \\ 2 \end{pmatrix} \implies \frac{2\mathbf{a} - \mathbf{b} + 3\mathbf{c}}{\|2\mathbf{a} - \mathbf{b} + 3\mathbf{c}\|} = \frac{1}{\sqrt{22}} \begin{pmatrix} 3 \\ -3 \\ 2 \end{pmatrix}$$
(1.10.5.1)

1.10.6 Find a vector in the direction of vector $5\hat{i} - \hat{j} + 2\hat{k}$ which has magnitude 8 units.

Solution: Let the required vector be

$$c \begin{pmatrix} 5 \\ -1 \\ 2 \end{pmatrix}. \tag{1.10.6.1}$$

From the given information,

$$\left\| c \begin{pmatrix} 5 \\ -1 \\ 2 \end{pmatrix} \right\| = 8$$
 (1.10.6.2)

$$\implies |c| = \frac{4\sqrt{30}}{15} \tag{1.10.6.3}$$

- 1.10.7 Find the unit vector in the direction of the vector $\mathbf{a} = \hat{i} + \hat{j} + 2\hat{k}$.
- 1.10.8 Find the unit vector in the direction of vector \overrightarrow{PQ} , where **P** and **Q** are the points (1, 2, 3) and (4, 5, 6), respectively.
- 1.10.9 Find a vector of magnitude 5 units, and parallel to the resultant of the vectors $\mathbf{a} = 2\hat{i} + 3\hat{j} \hat{k}$ and $\mathbf{b} = \hat{i} 2\hat{j} + \hat{k}$. **Solution:**

$$\mathbf{a} = \begin{pmatrix} 2\\3\\-1 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 1\\-2\\1 \end{pmatrix}$$
 (1.10.9.1)

$$\mathbf{a} + \mathbf{b} = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} \implies \|\mathbf{a} + \mathbf{b}\| = \sqrt{10}$$
 (1.10.9.2)

From problem 1.10.3, the unit vector in the direction of $\mathbf{a} + \mathbf{b}$ is

$$\frac{\mathbf{a} + \mathbf{b}}{\|\mathbf{a} + \mathbf{b}\|} = \frac{1}{\sqrt{10}} \begin{pmatrix} 3\\1\\0 \end{pmatrix}$$
 (1.10.9.3)

The desired vector can then be expressed as

$$\pm \frac{5}{\sqrt{10}} \begin{pmatrix} 3\\1\\0 \end{pmatrix} \tag{1.10.9.4}$$

(1.10.3.1)^{1.10.10} If a line makes angles 90°, 135°, 45° with x,y and z-axis respectivly. Find its direction cosines.

Solution: The direction vector is

$$\mathbf{A} = \begin{pmatrix} \cos 90^{\circ} \\ \cos 135^{\circ} \\ \cos 45^{\circ} \end{pmatrix} = \begin{pmatrix} 0 \\ -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$
 (1.10.10.1)

1.10.11 Find the direction cosines of the vector joining the points \mathbf{A} (1, 2, -3) and \mathbf{B} (-1, -2, 1), directed from \mathbf{A} to \mathbf{B} .

Solution: The unit vector in the direction of AB is

$$\frac{\mathbf{B} - \mathbf{A}}{\|\mathbf{B} - \mathbf{A}\|} = \frac{1}{3} \begin{pmatrix} -1 \\ -2 \\ 2 \end{pmatrix}$$
 (1.10.11.1)

and the direction cosines are the elements of the above vector.

1.10.12 Show that the vector $\hat{i} + \hat{j} + \hat{k}$ is equally inclined to the axes OX, OY and OZ.

Solution: Since all entries of the given vector

$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 (1.10.12.1)

are equal, it is equally inclined to the axes.

1.10.13 If a line has the direction ratios –18, 12, –4, then what are its direction cosines?

Solution: Let

$$\mathbf{A} = \begin{pmatrix} -18 \\ 12 \\ -4 \end{pmatrix} \tag{1.10.13.1}$$

Then the unit direction vector of the line is

$$\frac{\mathbf{A}}{\|\mathbf{A}\|} = \begin{pmatrix} \frac{-9}{11} \\ \frac{6}{11} \\ \frac{-2}{11} \end{pmatrix}$$
 (1.10.13.2)

1.10.14 Find the direction cosines of the sides of a triangle whose

vertices are
$$\begin{pmatrix} 3 \\ 5 \\ -4 \end{pmatrix}$$
, $\begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$ and $\begin{pmatrix} -5 \\ -5 \\ -2 \end{pmatrix}$.

Solution: Let the vertices be

$$\mathbf{A} = \begin{pmatrix} 3 \\ 5 \\ -4 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} -5 \\ -5 \\ -2 \end{pmatrix}$$
 (1.10.14.1)

The direction vectors of the sides are.

$$\mathbf{A} - \mathbf{B} = \begin{pmatrix} 4 \\ 4 \\ -6 \end{pmatrix} = \mathbf{m_1}, \mathbf{B} - \mathbf{C} = \begin{pmatrix} 4 \\ 6 \\ 4 \end{pmatrix} = \mathbf{m_2}, \quad (1.10.14.2)$$

$$\mathbf{C} - \mathbf{A} = \begin{pmatrix} -8 \\ -10 \\ 2 \end{pmatrix} = \mathbf{m_3}, \quad (1.10.14.3)$$

The corresponding unit vectors are then obtained as

$$\begin{pmatrix} \frac{2}{\sqrt{17}} \\ \frac{2}{\sqrt{17}} \\ \frac{-3}{\sqrt{17}} \\ \frac{-3}{\sqrt{17}} \end{pmatrix}, \begin{pmatrix} \frac{2}{\sqrt{17}} \\ \frac{3}{\sqrt{17}} \\ \frac{2}{\sqrt{17}} \\ \frac{2}{\sqrt{17}} \end{pmatrix}, \begin{pmatrix} \frac{-4}{\sqrt{42}} \\ \frac{-5}{\sqrt{42}} \\ \frac{1}{\sqrt{42}} \end{pmatrix}$$
(1.10.14.4)

1.10.15 Find the direction cosines of the vector $\hat{i} + 2\hat{j} + 3\hat{k}$. **Solution:** The unit vector in the direction of the given vector is

$$\mathbf{A} = \frac{1}{\sqrt{14}} \begin{pmatrix} 1\\2\\3 \end{pmatrix} \tag{1.10.15.1}$$

1.10.16 Find the direction cosines of a line which makes equal angles with the coordinate axes.

Solution: Let α be the angle made by the line with the axes. The unit direction vector can be expressed as

$$\mathbf{x} = \begin{pmatrix} \cos \alpha \\ \cos \alpha \\ \cos \alpha \end{pmatrix} \implies \|\mathbf{x}\| = 1 \qquad (1.10.16.1)$$

or,
$$\cos \alpha = \frac{1}{\sqrt{3}}$$
 (1.10.16.2)

Thus the unit direction vector of the given line is

$$\mathbf{x} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 (1.10.16.3)

1.10.17 Write down a unit vector in XY-plane, making an angle of 30° with the positive direction of x-axis.

1.11 Scalar Product

1.11.1 Find the angle between two vectors \overrightarrow{a} and \overrightarrow{b} with magnitudes $\sqrt{3}$ and 2 respectively having $\overrightarrow{a} \cdot \overrightarrow{b} = \sqrt{6}$. **Solution:** From the given information,

$$\|\mathbf{a}\| = \sqrt{3}, \|\mathbf{b}\| = 2, \mathbf{a}^{\mathsf{T}}\mathbf{b} = \sqrt{6}$$
 (1.11.1.1)

$$\implies \cos \theta = \frac{\mathbf{a}^{\mathsf{T}} \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|} = \frac{1}{\sqrt{2}}$$
 (1.11.1.2)

or,
$$\theta = 45^{\circ}$$
 (1.11.1.3)

1.11.2 Find the angle between the the vectors $\hat{i} - 2\hat{j} + 3\hat{k}$ and $3\hat{i} - 2\hat{j} + \hat{k}$.

Solution: Let

$$\mathbf{a} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}, \tag{1.11.2.1}$$

From problem 1.11.1,

$$\cos \theta = \frac{\mathbf{a}^{\mathsf{T}} \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|} = \frac{10}{\sqrt{14} \times \sqrt{14}} = \frac{5}{7}$$
 (1.11.2.2)

1.11.3 Find $|\overrightarrow{a}|$ and $|\overrightarrow{b}|$, if $(\overrightarrow{a} + \overrightarrow{b}) \cdot (\overrightarrow{a} - \overrightarrow{b}) = 8$ and $|\overrightarrow{a}| = 8 |\overrightarrow{b}|$. Solution:

$$(\mathbf{a} + \mathbf{b})^{\mathsf{T}} (\mathbf{a} - \mathbf{b}) = 8, ||\mathbf{a}|| = 8 ||\mathbf{b}||,$$
 (1.11.3.1)

$$\|\mathbf{a}\|^2 - \|\mathbf{b}\|^2 = 8$$
 (1.11.3.2)

$$\implies \|8\mathbf{b}\|^2 - \|\mathbf{b}\|^2 = 8 \tag{1.11.3.3}$$

$$\implies \|\mathbf{b}\| = \frac{2\sqrt{2}}{3\sqrt{7}} \tag{1.11.3.4}$$

Thus,

$$\|\mathbf{a}\| = 8 \|\mathbf{b}\| = \frac{16\sqrt{2}}{3\sqrt{7}}$$
 (1.11.3.5)

1.11.4 Evaluate the product $(3\overrightarrow{a} - 5\overrightarrow{b}) \cdot (2\overrightarrow{a} + 7\overrightarrow{b})$.

Solution:

$$(3\mathbf{a} - 5\mathbf{b})^{\mathsf{T}} (2\mathbf{a} + 7\mathbf{b}) = 3\mathbf{a}^{\mathsf{T}} (2\mathbf{a} + 7\mathbf{b}) - 5\mathbf{b}^{\mathsf{T}} (2\mathbf{a} + 7\mathbf{b})$$

= $6 \|\mathbf{a}\|^2 - 35 \|\mathbf{b}\|^2 + 11\mathbf{a}^{\mathsf{T}}\mathbf{b}$ (1.11.4.1)

1.11.5 Find the magnitude of two vectors \overrightarrow{a} and \overrightarrow{b} , having the same magnitude and such that the angle between them is 60° and their scalar product is $\frac{1}{2}$.

Solution: Given

$$\|\mathbf{a}\| = \|\mathbf{b}\|, \cos \theta = \frac{1}{2}, \mathbf{a}^{\mathsf{T}} \mathbf{b} = \frac{1}{2},$$
 (1.11.5.1)

$$\implies \frac{1}{2} = \frac{\frac{1}{2}}{\|\mathbf{a}\|^2} \implies \|\mathbf{a}\| = \|\mathbf{b}\| = 1 \qquad (1.11.5.2)$$

by using the definition of the scalar product.

1.11.6 Find $|\vec{x}|$, if for a unit vector \vec{a} , $(\vec{x} - \vec{d}) \cdot (\vec{x} + \vec{d}) = 12$. **Solution:** From the given information,

$$(\mathbf{x} - \mathbf{a})^{\mathsf{T}} (\mathbf{x} + \mathbf{a}) = 12$$
 (1.11.6.1)

$$\implies ||\mathbf{x}||^2 - ||\mathbf{a}||^2 = 12 \tag{1.11.6.2}$$

$$\implies \|\mathbf{x}\| = \sqrt{13} \tag{1.11.6.3}$$

1.11.7 If the vertices A, B, C of a triangle ABC are (1,2,3), (-1,0,0), (0,1,2), respectively, then find $\angle ABC$.

Solution: From the given information,

$$\mathbf{A} - \mathbf{B} = \begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix}, \mathbf{C} - \mathbf{B} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$
 (1.11.7.1)

$$\implies \angle ABC = \cos^{-1} \frac{(\mathbf{A} - \mathbf{B})^{\top} (\mathbf{C} - \mathbf{B})}{\|\mathbf{A} - \mathbf{B}\| \|\mathbf{C} - \mathbf{B}\|}$$
 (1.11.7.2)

$$= \cos^{-1} \frac{10}{\sqrt{102}} \tag{1.11.7.3}$$

(1.11.7.4)

1.11.8 Find a unit vector perpendicular to each of the vector $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} - \overrightarrow{b}$, where $\overrightarrow{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ and $\overrightarrow{b} = \hat{i} + 2\hat{j} - 2\hat{k}$.

Solution: Let the desired vector be x. Then,

$$(\mathbf{a} + \mathbf{b} \quad \mathbf{a} - \mathbf{b})^{\mathsf{T}} \mathbf{x} = 0$$
 (1.11.8.1)

(1.11.8.2)

$$\mathbf{a} + \mathbf{b} = \begin{pmatrix} \mathbf{a} & \mathbf{b} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{1.11.8.3}$$

$$\mathbf{a} - \mathbf{b} = \begin{pmatrix} \mathbf{a} & \mathbf{b} \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \tag{1.11.8.4}$$

(1.11.8.2) can be expressed as

$$\left\{ \begin{pmatrix} \mathbf{a} & \mathbf{b} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \right\}^{\mathsf{T}} \mathbf{x} = 0 \qquad (1.11.8.5)$$

$$\implies \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} \mathbf{a} & \mathbf{b} \end{pmatrix}^{\mathsf{T}} \mathbf{x} = 0 \qquad (1.11.8.6)$$

$$\implies \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} \mathbf{a} & \mathbf{b} \end{pmatrix}^{\mathsf{T}} \mathbf{x} = 0 \qquad (1.11.8.7)$$

or,
$$(\mathbf{a} \ \mathbf{b})^{\mathsf{T}} \mathbf{x} = 0$$
 (1.11.8.8)

which can be expressed as

$$\begin{pmatrix} 3 & 2 & 2 \\ 1 & 2 & -2 \end{pmatrix} \xrightarrow{R_2 = 3R_2 - R_1} \begin{pmatrix} 3 & 2 & 2 \\ 0 & 1 & -2 \end{pmatrix}$$
 (1.11.8.9)

$$\underset{R_1 = \frac{R_1}{3}}{\overset{R_1 = R_1 - 2R_2}{\longleftrightarrow}} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -2 \end{pmatrix}$$
 (1.11.8.10)

yielding

$$x_1 + 2x_3 = 0$$

 $x_2 - 2x_3 = 0$ \Longrightarrow $\mathbf{x} = x_3 \begin{pmatrix} -2\\2\\1 \end{pmatrix}$ (1.11.8.11)

Thus, the desired unit vector is

$$\mathbf{x} = \frac{1}{3} \begin{pmatrix} -2\\2\\1 \end{pmatrix} \tag{1.11.8.12}$$

1.11.9 If a unit vector \overrightarrow{a} makes angles $\frac{\pi}{3}$ with \hat{i} , $\frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k} , then find θ and hence, the components of \overrightarrow{a} .

Solution: From the given information,

$$\mathbf{a} = \begin{pmatrix} \cos\frac{\pi}{3} \\ \cos\frac{\pi}{4} \\ \cos\theta \end{pmatrix} = \mathbf{a} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{\sqrt{2}} \\ \cos\theta \end{pmatrix}$$
 (1.11.9.1)

$$\frac{3}{\sqrt{10}} = \frac{\mathbf{m}_1^{\mathsf{T}} \mathbf{m}_2}{\|\mathbf{m}_1\| \|\mathbf{m}_2\|}$$
 (1.11.12.3)

$$= \frac{2m^2 + 1}{\sqrt{m^2 + 1}\sqrt{4m^2 + 1}}$$

$$\implies \frac{9}{10} = \frac{4m^4 + 4m^2 + 1}{4m^4 + 5m^2 + 1}$$
(1.11.12.4)
(1.11.12.5)

$$\therefore \|\mathbf{a}\| = 1, \tag{1.11.9.2}$$

$$\implies \frac{9}{10} = \frac{4m^4 + 4m^2 + 1}{4m^4 + 5m^2 + 1} \tag{1.11.12.5}$$

$$\frac{1}{4} + \frac{1}{2} + \cos^2 \theta = 1$$

or,
$$4m^4 - 5m^2 + 1 = 0$$
 (1.11.12.6)

$$\implies \cos \theta = \frac{1}{2}$$

yielding (1.11.9.4)

Thus,

 $\because \theta$ is an acute angle. Hence

$$m = \pm \frac{1}{2}, \pm 1$$
 (1.11.12.7)

3. Find angle between the lines $\sqrt{3}x + y = 1$ and $x + \sqrt{3}y = 1$

$$\mathbf{a} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{2} \end{pmatrix}$$
 (1.11.9.5)

1.11.13 Find angle between the lines, $\sqrt{3}x+y=1$ and $x+\sqrt{3}y=1$. Solution: From the given equations, the normal vectors can be expressed as

- 1.11.10 If θ is the angle between two vectors **a** and **b**, then $\mathbf{a} \cdot \mathbf{b} \ge 0$ only when
- $\mathbf{n}_1 = \begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix}, \ \mathbf{n}_2 = \begin{pmatrix} 1 \\ \sqrt{3} \end{pmatrix}$ (1.11.13.1)

a) $0 < \theta < \frac{\pi}{2}$ b) $0 \le \theta \le \frac{\pi}{2}$ The angle between the lines can then be expressed as

c) $0 < \theta < \pi$

 $\cos \theta = \frac{\mathbf{n}_1^T \mathbf{n}_2}{\|\mathbf{n}_1\| \|\mathbf{n}_2\|} = \frac{\sqrt{3}}{2}$ (1.11.13.2)

d) $0 \le \theta \le \pi$

(1.11.13.3)

Solution:

$$\mathbf{a}^{\mathsf{T}}\mathbf{b} = \cos\theta \|\mathbf{a}\| \|\mathbf{b}\|, \qquad (1.11.10.1)^{1.11.14}$$

(1.11.10.1).11.14 The scalar product of the vector
$$\hat{i} + \hat{j} + \hat{k}$$
 with a unit vector along the sum of vectors $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is

$$\mathbf{a}^{\mathsf{T}}\mathbf{b} \ge 0 \implies \cos \theta \ge 0$$

(1.11.10.2) equal to one. Find the value of
$$\lambda$$
.

$$\therefore 0 \le \theta \le \frac{\pi}{2}, \frac{3\pi}{2} \le \theta \le 2\pi.$$

(1.11.10.3)1.11.15 Let **a** and **b** be two unit vectors and θ is the angle between them. Then $\mathbf{a} + \mathbf{b}$ is a unit vector if

- 1.11.11 Find the angle between x-axis and the line joining points (3,-1) and (4,-2).
- a) $\theta = \frac{\pi}{4}$ b) $\theta = \frac{\pi}{3}$ c) $\theta = \frac{\pi}{2}$
- Solution: The direction vector of the given line is

- $\mathbf{C} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ (1.11.11.1) (1.11.16) If θ is the angle between any two vectors \mathbf{a} and \mathbf{b} , then $|\mathbf{a} \cdot \mathbf{b}| = |\mathbf{a} \times \mathbf{b}|$ when θ is equal to

Hence, the desired angle is given by

(1.11.11.2)

(1.11.11.3)

$$\cos \theta = \frac{\mathbf{C}^{\mathsf{T}} \mathbf{e}_1}{\|\mathbf{C}\| \|\mathbf{e}_1\|} = -\frac{1}{\sqrt{2}}$$

b)
$$\frac{\pi}{4}$$
 c) $\frac{\pi}{2}$

- d) π
- 1.11.12 The slope of a line is double of the slope of another 1.11.17 A vector **r** has a magnitude 14 and direction ratios 2, 3, line. If tangent of the angle between them is 1/3, find the slopes of the lines.
 - -6. Find the direction cosines and components of \mathbf{r} , given that **r** makes an acute angle with x-axis.

Solution: The direction vectors of the lines can be 1.11.18 Find the angle between the vectors $2\hat{i} - \hat{j} + \hat{k}$ and $3\hat{i} + 4\hat{j} - \hat{k}$.

 $|\mathbf{a}| = 2$, $|\mathbf{b}| = 3$, $|\mathbf{c}| = 5$, the value of $\mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{c} + \mathbf{c} \cdot \mathbf{a}$ is

$$\mathbf{m}_1 = \begin{pmatrix} 1 \\ m \end{pmatrix}, \mathbf{m}_2 = \begin{pmatrix} 1 \\ 2m \end{pmatrix}$$

- a) 0 (1.11.12.1)
 - b) 1

If the angle between the lines be θ .

c) -19 d) 38

$$an \theta = \frac{1}{3} \implies \cos \theta = \frac{3}{\sqrt{10}}$$

- (1.11.12.2)1.11.20 If **a**, **b**, **c** are unit vectors such that $\mathbf{a}+\mathbf{b}+\mathbf{c}=0$, then the value of $\mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{c} + \mathbf{c} \cdot \mathbf{a}$ is
 - a) 1
 - b) 3
 - c) $\frac{-3}{2}$
 - d) None of these

		21
1.11.21	The angles between two vectors a , b with magnitude	de d) $\theta = \frac{2\pi}{3}$
	$\sqrt{3}$, 4 respectively, and $\mathbf{a} \cdot \mathbf{b} = 2\sqrt{3}$ is	1.11.34 The value of $\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j})$ is
	a) $\frac{\pi}{6}$ b) $\frac{\pi}{3}$ c) $\frac{\pi}{2}$ d) $\frac{5\pi}{2}$	a) 0
	b) $\frac{\pi}{3}$	b) -1
	d) $\frac{5\pi}{2}$	c) 1
1 11 22	The vector $\mathbf{a} + \mathbf{b}$ bisects the angle between the nor	d) 3 n 1.11.35 If θ is the angle between any two vectors a and b , then
	collinear vectors a and b if	$ \mathbf{a} \cdot \mathbf{b} = \mathbf{a} \times \mathbf{b} $ when θ is equal to
1.11.23	The vectors $\mathbf{a} = 3\hat{i} - 2\hat{j} + 2\hat{k}$ and $\mathbf{b} = \hat{i} - 2\hat{k}$ a	re a) 0
	the adjancent sides of a parallelogram. The acute ang	
1 11 24	between its diagonals is	b) $\frac{\pi}{4}$ c) $\frac{\pi}{2}$
	If a is any non-zero vector, then $(\mathbf{a} \cdot \hat{i})\hat{i} + (\mathbf{a} \cdot \hat{j})\hat{j} + (\mathbf{a} \cdot \hat{k})$ equals	α / λ
1.11.25	If a and b are adjacent sides of a rhombus, then $\mathbf{a} \cdot \mathbf{b} =$	$0.1.11.36$ Let a and b be two unit vectors and θ the angle between them. Then $\mathbf{a} + \mathbf{b}$ is a unit vector if
1.11.26	Find the angle between the lines	2000000 200000 20 1 12 20 20 200000 20
	$\vec{r} = 3\hat{i} - 2\hat{j} + 6\hat{k} + \lambda(2\hat{i} + \hat{j} + 2\hat{k})$ and (1.11.26.)	a) $\theta = \frac{\pi}{4}$
	$\vec{r} = (2\hat{j} - 5\hat{k}) + \mu(6\hat{i} + 3\hat{j} + 2\hat{k}) $ (1.11.26	$0) \ 0 = \frac{1}{3}$
		$\frac{1}{2}$
1.11.27	Find the angle between the lines whose direction cosine are given by the equations $l + m + n = 0$, $l^2 + m^2 - n^2 = 0$	5
1.11.28	If a variable line in two adjacent positions has direction	18
	cosines l, m, n and $l + \delta l, m + \delta m, n + \delta n$, show that the	$ \mathbf{a} = \mathbf{b} = 3 \mathbf{a} + \mathbf{b} = 1, \qquad (1.11.30.1)$
	small angle $\delta\theta$ between the two positions is given by	$\ \mathbf{a} + \mathbf{b}\ ^2 = 1^2$ (1.11.36.2)
	$\delta\theta^2 = \delta l^2 + \delta m^2 + \delta n^2 \tag{1.11.28}$	1) $\implies \ \mathbf{a}\ ^2 + \ \mathbf{b}\ ^2 + 2\mathbf{a}^{T}\mathbf{b} = 1 $ (1.11.36.3)
1 11 20	The sine of the angle between the straight line $\frac{x-2}{3}$	$\Rightarrow (\ \mathbf{a}\ \ \mathbf{b}\ \cos \theta) = \frac{-1}{2} $ (1.11.36.4)
1.11.2)		$\implies \cos \theta = \frac{-1}{2}, \text{ or, } \theta = \frac{2\pi}{3} $ (1.11.36.5)
	$\frac{y-3}{4} = \frac{z-4}{5}$ and the plane $2x - 2y + z = 5$ is	2 3
	a) $\frac{10}{10}$	1.11.37 Let a and b be two unit vectors and θ is the angle between
	$6\sqrt{5}$	them. Then $\mathbf{a} + \mathbf{b}$ is a unit vector if
	a) $\frac{10}{6\sqrt{5}}$ b) $\frac{4}{5\sqrt{2}}$ c) $\frac{2\sqrt{3}}{5}$	a) $\theta = \frac{\pi}{4}$ b) $\theta = \frac{\pi}{3}$
	$\frac{3\sqrt{2}}{2\sqrt{3}}$	c) $\theta = \frac{3}{\pi}$
	c) $\frac{}{5}$	d) $\theta = \frac{2\pi}{3}$
	d) $\frac{5}{\sqrt{2}}$	1.11.38 The value of $\hat{i}.(\hat{j} \times \hat{k}) + \hat{j}.(\hat{i} \times \hat{k}) + \hat{k}.(\hat{i} \times \hat{j})$ is
		a) 0
1.11.30	The plane $2x - 3y + 6z - 11 = 0$ makes an angle $\sin^{-1}(\alpha)$ with x-axis. The value of α is equal to	-/ -
		c) 1 d) 3
	a) $\frac{\sqrt{3}}{2}$	1.11.39 If θ is the angle between any two vectors a and b ,then
	b) $\frac{\sqrt{2}}{3}$	$ \mathbf{a}.\mathbf{b} = \mathbf{a} \times \mathbf{b} $ when θ is equal to
	2^3	a) 0
	c) $\frac{1}{7}$	b) $\frac{\pi}{4}$
	d) $\frac{3}{7}$	c) $\frac{\pi}{2}$

1.11.31 The angle between the line $\vec{r} = (5\hat{i} - \hat{j} - 4\hat{k}) + \lambda(2\hat{i} - \hat{j} + \hat{k})$.11.40 A vector \mathbf{r} has a magnitude 14 and direction ratios 2,3,and the plane $\vec{r} \cdot (3\hat{i} - 4\hat{j} - \hat{k}) + 5 = 0$ is $\sin^{-1}\left(\frac{5}{2\sqrt{91}}\right)$.

6. Find the direction cosines and components of \mathbf{r} , given that \mathbf{r} makes an acute angle with x-axis.

1.11.32 The angle between the planes $\vec{r} \cdot (2\hat{i} - 3\hat{j} + \hat{k}) = 1$ and .11.41 Find the angle between the vectors $2\hat{i} - \hat{j} + \hat{k}$ and $3\hat{i} + 4\hat{j} - \hat{k}$.

1.11.42 If \mathbf{a} , \mathbf{b} , \mathbf{c} are the three vectors such that $\mathbf{a} + \mathbf{b} + \mathbf{c} = 0$ and $|\mathbf{a}| = 2$, $|\mathbf{b}| = 3$, $|\mathbf{c}| = 5$, the value of \mathbf{a} . \mathbf{b} b is a unit vector if

them. Then $\mathbf{a} + \mathbf{b}$ is a unit vector if

- a) $\theta = \frac{\pi}{4}$ b) $\theta = \frac{\pi}{3}$ c) $\theta = \frac{\pi}{2}$

- a) 0
- b) 1
- c) -19
- d) 38

	22
1.11.43 If \mathbf{a} , \mathbf{b} , \mathbf{c} are unit vectors such that $\mathbf{a}+\mathbf{b}+\mathbf{c}=0$, then the .11.56 value of $\mathbf{a}.\mathbf{b}+\mathbf{b}.\mathbf{c}+\mathbf{c}.\mathbf{a}$ is	Let a and b be two unit vectors and θ is the angle between them. Then a + b is a unit vector if
a) 1 b) 3 c) $\frac{-3}{2}$	a) $\theta = \frac{\pi}{4}$ b) $\theta = \frac{\pi}{3}$ c) $\theta = \frac{\pi}{2}$ d) $\theta = \frac{2\pi}{3}$
1.11.44 The angles between two vectors a and b with magnitude .11.57 $\sqrt{3}$ and 4, respectively, and a , b = $2\sqrt{3}$ is	
a) $\frac{\pi}{6}$ b) $\frac{\pi}{3}$ c) $\frac{\pi}{2}$ d) $\frac{5\pi}{2}$ 1.11.58	c) 1 d) 3 If θ is the angle between any two vectors a and b ,then
 1.11.45 The vector a + b bisects the angle between the non-collinear vectors a and b if 1.11.46 The vectors a = 3î - 2ĵ + 2k and b = î - 2k are the adjancent sides of a parallelogram. The acute angle between its diagonals is 1.11.47 If a is any non-zero vector, then (a.î)î+(a.ĵ)ĵ+(a.k) k equals 	$ \mathbf{a}.\mathbf{b} = \mathbf{a} \times \mathbf{b} $ when θ is equal to a) 0 b) $\frac{\pi}{4}$ c) $\frac{\pi}{2}$ d) π
1.11.48 If a and b are adjacent sides of a rhombus, then a.b. =0. 1.11.49 Find the angle between the lines	
$\vec{r} = 3\hat{i} - 2\hat{j} + 6\hat{k} + \lambda(2\hat{i} + \hat{j} + 2\hat{k})$ and $\vec{r} = (2\hat{j} - 5\hat{k}) + \mu(6\hat{i} + 3\hat{j} + 2\hat{k})$	
 1.11.50 Find the angle between the lines whose direction cosines are given by the equations l+m+n=0, l²+m²-n²=0. 1.11.51 If a variable line in two adjacent positions has directions cosines l,m,n and l+δl,m+δm,n+δn, show that the small angle δθ between the two positions is given by 	
$\delta\theta^2 = \delta l^2 + \delta m^2 + \delta n^2$	
1.11.52 The sine of the angle between the straight line $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$ and the plane $2x-2y+z=5$ is a) $\frac{10}{6\sqrt{5}}$	
b) $\frac{4}{5\sqrt{2}}$ c) $\frac{2\sqrt{3}}{5}$ d) $\frac{\sqrt{2}}{10}$	
1.11.53 The plane $2x - 3y + 6z - 11 = 0$ makes an angle $\sin^{-1}(\alpha)$ with x-axis. The value of α is equal to a) $\frac{\sqrt{3}}{2}$ b) $\frac{\sqrt{2}}{2}$	

b) $\frac{3}{7}$ c) $\frac{2}{7}$ d) $\frac{3}{7}$ 1.11.54 The angle between the line $\vec{r} = (5\hat{i} - \hat{j} - 4\hat{k}) + \lambda(2\hat{i} - \hat{j} + \hat{k})$ and the plane $\vec{r} \cdot (3\hat{i} - 4\hat{j} - \hat{k}) + 5 = 0$ is $\sin^{-1}\left(\frac{5}{2\sqrt{91}}\right)$.

1.11.55 The angle between the planes $\vec{r} \cdot (2\hat{i} - 3\hat{j} + \hat{k}) = 1$ and $\vec{r} \cdot (\hat{i} - \hat{j}) = 4$ is $\cos^{-1}\left(\frac{-5}{\sqrt{58}}\right)$.

1.12 Orthogonality

- 1.12.1 Name the type of quadrilateral formed, if any, by the following points, and give reasons for your answer
 - a) A(-1,-2), B(1,0), (C-1,2), D(-3,0)
 - b) A(-3,5), B(-3,1), C(0,3), D(-1,-4)
 - c) A(4,5), B(7,6), C(4,3), D(1,2)

Solution: See Table 1.12.1, Fig. 1.12.1.1, Fig. 1.12.1.2. and Fig. 1.12.1.3. In b), forming the collinearity matrix

$$\begin{pmatrix} \mathbf{B} - \mathbf{A} & \mathbf{C} - \mathbf{B} \end{pmatrix} = \begin{pmatrix} 6 & -3 \\ -4 & 2 \end{pmatrix} \xrightarrow{R_2 \to R_2 + \frac{2}{3}R_1} = \begin{pmatrix} 6 & -3 \\ 0 & 0 \end{pmatrix}$$

$$(1.12.1.1)$$

which is a rank 1 matrix. Hence, A, B, C are collinear.

Fig. 1.12.1.1

Fig. 1.12.1.2

1.12.2 Find the projection of the vector $\hat{i} + 3\hat{j} + 7\hat{k}$ on the vector $7\hat{i} - \hat{j} + 8\hat{k}$.

Fig. 1.12.1.3

	$\mathbf{B} - \mathbf{A} = \mathbf{C} - \mathbf{D}?$	$(\mathbf{B}-\mathbf{A})^{\top}(\mathbf{C}-\mathbf{B}) = 0$?	$(\mathbf{C} - \mathbf{A})^{\top} (\mathbf{D} - \mathbf{B}) = 0$	Geometry
a)	Yes	Yes	Yes	Square
b)	No	-	-	Triangle
c)	Yes	No	No	Parallelogram

TABLE 1.12.1

Solution: Let

$$\mathbf{A} = \begin{pmatrix} 1 \\ 3 \\ 7 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 7 \\ -1 \\ 8 \end{pmatrix} \tag{1.12.2.1}$$

The projection of **A** on **B** is defined as the foot of the perpendicular from **A** to **B** and obtained in (D.1.3). Substituting numerical values,

$$\mathbf{C} = \frac{10}{19} \begin{pmatrix} 7 \\ -1 \\ 8 \end{pmatrix} \tag{1.12.2.2}$$

1.12.3 Find the projection of the vector $\hat{i} - \hat{j}$ on the vector $\hat{i} + \hat{j}$. **Solution:** The given points are

$$\mathbf{A} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{1.12.3.1}$$

Since

$$\mathbf{A}^{\mathsf{T}}\mathbf{B} = 0, \tag{1.12.3.2}$$

from (D.1.3), the projection vector is the origin. See Fig. 1.12.3.1.

1.12.4 Show that each of the given three vectors is a unit vector: $\frac{1}{7}(2\hat{i}+3\hat{j}+6\hat{k}), \frac{1}{7}(3\hat{i}-6\hat{j}+2\hat{k}), \frac{1}{7}(6\hat{i}+2\hat{j}-3\hat{k})$. Also, show that they are mutually perpendicular to each other. **Solution:**

$$\mathbf{A} = \begin{pmatrix} \frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\ \frac{3}{7} & -\frac{6}{7} & \frac{2}{7} \\ \frac{6}{7} & \frac{2}{7} & -\frac{3}{7} \end{pmatrix}$$
(1.12.4.1)

is an orthogonal matrix satisfying (D.5.1), which verifies

Fig. 1.12.3.1

the given conditions.

1.12.5 If $\overrightarrow{a} = 2\hat{i} + 2\hat{j}3\hat{k}$, $\overrightarrow{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\overrightarrow{c} = 3\hat{i} + \hat{j}$ are such that $\overrightarrow{a} + \lambda \overrightarrow{b}$ is perpendicular to \overrightarrow{c} , then find the value of

Solution:

$$(\mathbf{a} + \lambda \mathbf{b})^{\mathsf{T}} \mathbf{c} = 0,$$
 (1.12.5.1).12.11

$$\lambda = -\frac{\mathbf{a}^{\mathsf{T}} \mathbf{c}}{\mathbf{b}^{\mathsf{T}} \mathbf{c}} = 8, \tag{1.12.5.2}$$

upon substituting numerical values.

1.12.6 Show that $|\overrightarrow{a}| \overrightarrow{b} + |\overrightarrow{b}| \overrightarrow{a}$ is perpendicular to $|\overrightarrow{a}| \overrightarrow{b} - |\overrightarrow{b}| \overrightarrow{a}$,

for any two nonzero vectors \overrightarrow{a} and \overrightarrow{b} .

Solution:

$$\|\mathbf{a}\| \mathbf{b} + \|\mathbf{b}\| \mathbf{a} = \|\mathbf{a}\| \|\mathbf{b}\| \left(\frac{\mathbf{b}}{\|\mathbf{b}\|} + \frac{\mathbf{a}}{\|\mathbf{a}\|}\right)$$
 (1.12.6.1)

$$\|\mathbf{a}\| \mathbf{b} - \|\mathbf{b}\| \mathbf{a} = \|\mathbf{a}\| \|\mathbf{b}\| \left(\frac{\mathbf{b}}{\|\mathbf{b}\|} - \frac{\mathbf{a}}{\|\mathbf{a}\|}\right)$$
 (1.12.6.2)

$$\implies (\|\mathbf{a}\|\,\mathbf{b} + \|\mathbf{b}\|\,\mathbf{a})^{\mathsf{T}} (\|\mathbf{a}\|\,\mathbf{b} - \|\mathbf{b}\|\,\mathbf{a}) = 0 \quad (1.12.6.3)$$

from (D.2.1).

1.12.7 If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are unit vectors such that \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = $\overrightarrow{0}$, find the value of $\overrightarrow{a}.\overrightarrow{b} + \overrightarrow{b}.\overrightarrow{c} + \overrightarrow{c}.\overrightarrow{a}$.

Solution:

$$\|\mathbf{a} + \mathbf{b} + \mathbf{c}\|^{2} = 0$$

$$\implies \|\mathbf{a}\|^{2} + \|\mathbf{b}\|^{2} + \|\mathbf{c}\|^{2} + 2(\mathbf{a}^{\mathsf{T}}\mathbf{b} + \mathbf{b}^{\mathsf{T}}\mathbf{c} + \mathbf{c}^{\mathsf{T}}\mathbf{a}) = 0$$

$$\implies 3 + 2(\mathbf{a}^{\mathsf{T}}\mathbf{b} + \mathbf{b}^{\mathsf{T}}\mathbf{c} + \mathbf{c}^{\mathsf{T}}\mathbf{a}) = 0$$

$$\implies \mathbf{a}^{\mathsf{T}}\mathbf{b} + \mathbf{b}^{\mathsf{T}}\mathbf{c} + \mathbf{c}^{\mathsf{T}}\mathbf{a} = -\frac{3}{2}$$
(1.12.7.1)

1.12.8 If either vector $\vec{a} = 0$ or $\vec{b} = 0$, then $\vec{a} \cdot \vec{b} = 0$. But the converse need not be true. Justify your answer with an example.

Solution:

$$\mathbf{a} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 (1.12.8.1)

$$\implies \mathbf{a}^{\mathsf{T}} \mathbf{b} = 0$$
 (1.12.8.2)

1.12.9 Show that the vectors $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} - 3\hat{j} - 5\hat{k}$ and $3\hat{i} - 4\hat{j} - 4\hat{k}$ from the vertices of a right angled triangle.

Solution:

$$\mathbf{A} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 1 \\ -3 \\ -5 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 3 \\ -4 \\ -4 \end{pmatrix}, \tag{1.12.9.1}$$

$$\implies \mathbf{B} - \mathbf{C} = \begin{pmatrix} -2\\1\\-1 \end{pmatrix}, \ \mathbf{C} - \mathbf{A} = \begin{pmatrix} 1\\-3\\-5 \end{pmatrix}, \qquad (1.12.9.2)$$

or,
$$(\mathbf{B} - \mathbf{C})^{\mathsf{T}} (\mathbf{C} - \mathbf{A}) = 0$$
 (1.12.9.3)

1.12.10 Show that the points A, B and C with position vectors, $3\hat{i} - 4\hat{j} - 4\hat{k}$, $2\hat{i} - \hat{j} + \hat{k}$ and $\hat{i} - 3\hat{j} - 5\hat{k}$, respectively, form the vertices of a right angled triangle.

Solution:

$$\mathbf{B} - \mathbf{A} = \begin{pmatrix} -1\\3\\5 \end{pmatrix}, \mathbf{C} - \mathbf{B} = \begin{pmatrix} -1\\-2\\-6 \end{pmatrix}, \mathbf{C} - \mathbf{A} = \begin{pmatrix} -2\\1\\-1 \end{pmatrix},$$

$$(1.12.10.1)$$

$$\implies (\mathbf{B} - \mathbf{A})^{\mathsf{T}} (\mathbf{C} - \mathbf{A}) = 0$$

$$(1.12.10.2)$$

Hence, $\triangle ABC$ is right angled at **A**.

Let $\mathbf{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\mathbf{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$ and $\mathbf{c} = 2\hat{i} - \hat{j} + 4\hat{k}$. Find a vector **d** which is perpendicular to both **a** and **b**, and $\mathbf{c} \cdot \mathbf{d} = 15$.

Solution: From the given information,

$$\mathbf{a}^{\mathsf{T}}\mathbf{d} = 0 \tag{1.12.11.1}$$

$$\mathbf{b}^{\mathsf{T}}\mathbf{d} = 0 \tag{1.12.11.2}$$

$$\mathbf{c}^{\mathsf{T}}\mathbf{d} = 15 \tag{1.12.11.3}$$

yielding

$$\begin{pmatrix} \mathbf{a}^{\mathsf{T}} \\ \mathbf{b}^{\mathsf{T}} \\ \mathbf{c}^{\mathsf{T}} \end{pmatrix} \mathbf{d} = \begin{pmatrix} 0 \\ 0 \\ 15 \end{pmatrix}$$
 (1.12.11.4)

$$\implies \begin{pmatrix} 1 & 4 & 2 \\ 3 & -2 & 7 \\ 2 & -1 & 4 \end{pmatrix} \mathbf{d} = \begin{pmatrix} 0 \\ 0 \\ 15 \end{pmatrix} \tag{1.12.11.5}$$

Forming the augmented matrix,

$$\begin{pmatrix}
1 & 4 & 2 & | & 0 \\
3 & -2 & 7 & | & 0 \\
2 & -1 & 4 & | & 15
\end{pmatrix}
\xrightarrow{R_{2} \leftarrow R_{2} - 3R_{1}}
\xrightarrow{R_{3} \leftarrow R_{3} - 2R_{1}}
\begin{pmatrix}
1 & 4 & 2 & | & 0 \\
0 & -14 & 1 & | & 0 \\
0 & -9 & 0 & | & 15
\end{pmatrix}$$

$$\xrightarrow{R_{3} \leftarrow R_{3} - \frac{9}{14}R_{2}}
\xrightarrow{R_{2}}
\begin{pmatrix}
1 & 4 & 2 & | & 0 \\
0 & -14 & 1 & | & 0 \\
0 & 0 & -\frac{9}{14} & | & 15
\end{pmatrix}$$
(1.12.11.6)

yielding

$$\mathbf{d} = \begin{pmatrix} \frac{160}{3} \\ -\frac{5}{3} \\ -\frac{70}{3} \end{pmatrix} \tag{1.12.11.7}$$

upon back substitution.

 $(1.12.8.2)^{1.12.12}$ Prove that $(\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b}) = |\mathbf{a}|^2 + |\mathbf{b}|^2$, if and only if \mathbf{a}, \mathbf{b} are perpendicular, given $a \neq 0, b \neq 0$.

Solution:

$$(\mathbf{a} + \mathbf{b})^{\mathsf{T}} (\mathbf{a} + \mathbf{b}) = ||\mathbf{a}||^2 + ||\mathbf{b}||^2,$$
 (1.12.12.1)

$$\|\mathbf{a}\|^2 + \|\mathbf{b}\|^2 + 2\mathbf{a}^{\mathsf{T}}\mathbf{b} = \|\mathbf{a}\|^2 + \|\mathbf{b}\|^2$$
 (1.12.12.2)

$$\implies \mathbf{a}^{\mathsf{T}}\mathbf{b} = 0 \qquad (1.12.12.3)$$

1.12.13 ABCD is a rectangle formed by the points A(-1,-1), B(-1,4), C(5,4) and D(5,-1). P,Q,R and Sare the mid-points of AB, BC, CD and DA respectively. Is the quadrilateral PQRS a square? a rectangle? or a rhombus? Justify your answer.

> **Solution:** See Fig. 1.12.13.1. From (D.4.3), *PQRS* is a parallelogram.

$$\mathbf{P} = \frac{3}{2}, \ \mathbf{Q} = \begin{pmatrix} 2\\4 \end{pmatrix}, \ \mathbf{R} = \begin{pmatrix} 5\\\frac{3}{2} \end{pmatrix}, \ \mathbf{S} = \begin{pmatrix} 2\\-1 \end{pmatrix}$$
 (1.12.13.1)

$$\implies (\mathbf{Q} - \mathbf{P})^{\mathsf{T}} (\mathbf{R} - \mathbf{Q}) \neq 0 \qquad (1.12.13.2)$$

$$(\mathbf{R} - \mathbf{P})^{\mathsf{T}} (\mathbf{S} - \mathbf{Q}) = 0 \qquad (1.12.13.3)$$

Therefore PQRS is a rhombus.

Fig. 1.12.13.1

$$\mathbf{C} - \mathbf{A} = \begin{pmatrix} -5 \\ -5 \end{pmatrix}, \ \mathbf{A} - \mathbf{B} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 (1.12.14.1)

$$\implies (\mathbf{C} - \mathbf{A})^{\mathsf{T}} (\mathbf{A} - \mathbf{B}) = 0 \tag{1.12.14.2}$$

Thus, $AB \perp AC$.

1.12.15 The line through the points (h, 3) and (4, 1) intersects the line 7x - 9y - 19 = 0 at a right angle. Find the value of 1.12.17

Solution: The direction vectors of the given lines are

$$\begin{pmatrix} 4-h \\ -2 \end{pmatrix}, \begin{pmatrix} 9 \\ 7 \end{pmatrix} \tag{1.12.15.1}$$

$$\implies \left(9 \quad 7\right) \begin{pmatrix} 4-h \\ -2 \end{pmatrix} = 0 \tag{1.12.15.2}$$

$$\Rightarrow h = \frac{22}{9} \tag{1.12.15.3}$$

Fig. 1.12.14.1

See Fig. 1.12.15.1.

points (2.4,3) and (4,1) intersects the line 7x-9y19=0 at right angle

Fig. 1.12.15.1

planes are parallel or perpendicular, and in case they are neither, find the angles between them.

- a) 7x + 5y + 6z + 30 = 0 and 3x y 10z + 4 = 0
- b) 2x + y + 3z 2 = 0 and x 2y + 5 = 0
- c) 2x-2y+4z+5=0 and 3x-3y+6z-1=0
- d) 2x-y+3z-1=0 and 2x-y+3z+3=0
- e) 4x + 8y + z 8 = 0 and y + z 4 = 0

Solution: See Table 1.12.16.

Show that the line joining the origin to the point P(2, 1, 1)is perpendicular to the line determined by the points A(3,5,-1), B(4,3,-1).

Solution:

$$(\mathbf{A} - \mathbf{B})^{\mathsf{T}} \mathbf{P} = \begin{pmatrix} -1 & 2 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} = 0 \quad \Box \qquad (1.12.17.1)$$

 $(1.12.15.3)^{1.12.18}$ If l_1, m_1, n_1 and l_2, m_2, n_2 are the direction cosines of two mutually perpendicular lines, show that the direc-

TABLE 1.12.16

\mathbf{n}_1	\mathbf{n}_1	$\mathbf{n}_1^{T}\mathbf{n}_2$	$ {\bf n}_1 $	$ {\bf n}_2 $	Angle
$\begin{pmatrix} 7 \\ 5 \\ 6 \end{pmatrix}$	$\begin{pmatrix} 3 \\ -1 \\ -10 \end{pmatrix}$	-44	√110	√110	$\cos^{-1} - \frac{2}{5}$
$\begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$	0			perpendicular
	$\begin{pmatrix} 3 \\ -3 \\ 6 \end{pmatrix}$	36	$\sqrt{24}$	√54	parallel
	$\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$	14	$\sqrt{14}$	$\sqrt{14}$	parallel
$\begin{pmatrix} 4 \\ 8 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$	9	9	$\sqrt{2}$	45°

Fig. 1.12.19.1: lines represented for the given points and direction vector with $k = \frac{-10}{7}$

tion cosines of the line perpendicular to both these are $m_1n_2 - m_2n_1, n_1l_2 - n_2l_1, l_1m_2 - l_2m_1.$

Solution:

$$\mathbf{P} = \begin{pmatrix} l_1 & l_2 & m_1 n_2 - m_2 n_1 \\ m_1 & m_2 & n_1 l_2 - n_2 l_1 \\ n_1 & n_2 & l_1 m_2 - l_2 m_1 \end{pmatrix}$$
(1.12.18.1) 1.2.25 The points (-4, 0), (4, 0), (0, 3) are the vertices of a) right triangle

b) (0,2)

(2,0)

satisfies (D.5.1). Hence, the three vectors are mutually perpendicular.

1.12.19 If the lines $\frac{x-1}{-3} = \frac{y-2}{2k} = \frac{z-3}{2}$ and $\frac{x-1}{3k} = \frac{y-1}{1} = \frac{z-6}{-5}$ are d) scalene triangle perpendicular, find the value of k.

1.12.26 The point A(2,7) lies on the perpendicular bisector of

Solution: From the given information,

$$\mathbf{m}_1 = \begin{pmatrix} -3\\2k\\2 \end{pmatrix}, \ \mathbf{m}_2 = \begin{pmatrix} 3k\\1\\-5 \end{pmatrix} \tag{1.12.19.1}$$

 $\mathbf{m}_{1} = \begin{pmatrix} -3 \\ 2k \\ 2 \end{pmatrix}, \mathbf{m}_{2} = \begin{pmatrix} 3k \\ 1 \\ -5 \end{pmatrix}$ (1.12.19.1) 1.12.28 (1.12.19.1) 1.12.28 (1.12.19.1) 1.12.28 (1.12.19.1) 1.12.28 (1.12.19.1) 1.12.28 (1.12.19.1) 1.12.29 (1.12.19.2) (1.12.19.

See Fig. 1.12.19.1

- 1.12.20 If a, b, c are mutually perpendicular vectors of equal magnitudes, show that the vector $\mathbf{c} \cdot \mathbf{d} = 15$ is equally 12.31 inclined to a, b and c.
- 1.12.21 If A, B, C are mutually perpendicular vectors of equal magnitudes, show that the A + B + C is equally inclined .12.32 Find a vector of magnitude 6, which is perpendicular to to **A**, **B** and **C**.
- 1.12.22 Check whether (5, -2), (6, 4) and (7, -2) are the verticed 1.2.33 If A,B,C,D are the points with position vectors $\hat{i} + \hat{j} \hat{k}$, of an isosceles triangle.
- 1.12.23 The perpendicular bisector of the line segment joining the points A(1,5) and B(4,6) cuts the y-axis at
 - a) (0, 13)
 - b) (0,-13)
 - (0, 12)
 - d) (13,0)

- a) (0,0)

- a) right triangle
- b) isosceles triangle
- c) equilateral triangle

line segment joining the points P(6,5) and Q(0,-4).

1.12.27 The points A(-1, -2), B(4, 3), C(2, 5) and D(-3, 0) in

that order, form?

 $\implies k = -\frac{10}{7}$ (1.12.19.3) 1.12.30 Find the coordinates of the point **Q** on the x-axis which lies on the perpendicular bisector of the line segment joining the points A(-5, -2) and B(4, -2). Name the type of triangle formed by points **Q**, **A** and **B**.

> The points A(2,9), B(a,5) and C(5,5) are the vertices of a triangle ABC right angled at B. Find the values of a and hence the area of $\triangle ABC$.

> both the vectors $2\hat{i} - \hat{j} + 2\hat{k}$ and $4\hat{i} - \hat{j} + 3\hat{k}$.

 $2\hat{i}-\hat{j}+3\hat{k}$, $2\hat{i}-3\hat{k}$, $3\hat{i}-2\hat{j}+\hat{k}$, respectively, find the projection of \overline{AB} along \overline{CD} .

1.12.34 Find the value of λ such that the vectors $\mathbf{a} = 2\hat{i} + \lambda \hat{j} + \hat{k}$ and $\mathbf{b} = \hat{i} + 2\hat{j} + 3\hat{k}$ are orthogonal.

- a) 0
- b) 1
- c) $\frac{3}{2}$
- 1.12.24 The point which lies on the perpendicular bisector of the
- d) $-\frac{5}{2}$

line segment joining the points A(-2, -5) and B(2, 5) is 1.12.35 Projection vector of **a** on **b** is

- a) $\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|^2}\right)$ b) $\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|}$ c) $\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$ d) $\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2}\right)$

- 1.12.36 The vectors $\lambda \hat{i} + \lambda \hat{j} + 2\hat{k}$, $\hat{i} + \lambda \hat{j} \hat{k}$ and $2\hat{i} \hat{j} + \lambda \hat{k}$ are coplanar if
 - a) $\lambda = -2$
 - b) $\lambda = 0$
 - c) $\lambda = 1$
 - d) $\lambda = -1$
- 1.12.37 The number of vectors of unit length perpendicular to the vectors $\mathbf{a} = 2\hat{i} + \hat{j} + 2\hat{k}$ and $\mathbf{b} = \hat{j} + \hat{k}$ is
 - a) one
 - b) two
 - c) three
 - d) infinite
- 1.12.38 If $\mathbf{r} \cdot \mathbf{a} = 0$, $\mathbf{r} \cdot \mathbf{b} = 0$ and $\mathbf{r} \cdot \mathbf{c} = 0$ for some non-zero vector **r**, then the value of $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$ is _
- 1.12.39 If $|\mathbf{a} + \mathbf{b}| = |\mathbf{a} \mathbf{b}|$, then the vectors **a** and **b** are orthogonal.
- 1.12.40 Prove that the lines x = py + q, z = ry + s and x = p'y + qq', z = r'y + s' are perpendicular if pp' + rr' + 1 = 0.
- 1.12.41 Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) 1.13.3 Find at right angles.
- 1.12.42 $\overrightarrow{AB} = 3\hat{i} \hat{j} + \hat{k}$ and $\overrightarrow{CD} = -3\hat{i} + 2\hat{j} + 4\hat{k}$ are two vectors. The position vectors of the points A and C are $6\hat{i}+7\hat{j}+4\hat{k}$ and $-9\hat{i} + 2\hat{k}$, respectively. Find the position vector of a point P on the line AB and a point Q on the line CD such that \overrightarrow{PQ} is perpendicular to \overrightarrow{AB} and \overrightarrow{CD} both.
- 1.12.43 Show that the straight lines whose direction cosines are given by 2l + 2m - n = 0 and mn + nl + lm = 0 are at right angles.
- 1.12.44 If $l_1, m_1, n_1; l_2, m_2, n_2; l_3, m_3, n_3$ are the direction cosines of the three mutually perpendcular lines, prove that the 1.13.4 Find the area of the parallelogram whose adjacent sides line whose direction cosines are proportional to $l_1 + l_2 +$ $l_3, m_1 + m_2, m_3, n_1 + n_2 + n_3$ make angles with them.
- 1.12.45 The intercepts made by the plane 2x 3y + 5z + 4 = 0 on the co-ordinate axis are $\left(-2, \frac{4}{3}, -\frac{4}{5}\right)$.
- 1.12.46 The line $\vec{r} = 2\hat{i} 3\hat{j} \hat{k} + \lambda(\hat{i} \hat{j} + 2\hat{k})$ lies in the plane $\vec{r} \cdot (3\hat{i} + \hat{j} \hat{k}) + 2 = 0$.

1.13 Vector Product

1.13.1 Find $|\overrightarrow{a} \times \overrightarrow{b}|$, if $\overrightarrow{a} = \hat{i} - 7\hat{j} + 7\hat{k}$ and $\overrightarrow{b} = 3\hat{i} - 2\hat{j} + 2\hat{k}$. **Solution:** From (D.6.3),

$$\begin{vmatrix} \mathbf{A}_{23} & \mathbf{B}_{23} \end{vmatrix} = \begin{vmatrix} -7 & -2 \\ 7 & 2 \end{vmatrix} = 0$$
 (1.13.1.1)

$$\begin{vmatrix} \mathbf{A}_{31} & \mathbf{B}_{31} \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ 7 & 2 \end{vmatrix} = -19$$
 (1.13.1.2)

$$\begin{vmatrix} \mathbf{A}_{12} & \mathbf{B}_{12} \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ -7 & -2 \end{vmatrix} = 19,$$
 (1.13.1.3)

$$\|\mathbf{a} \times \mathbf{b}\| = \begin{pmatrix} |\mathbf{A}_{23} & \mathbf{B}_{23}| \\ |\mathbf{A}_{31} & \mathbf{B}_{31}| \\ |\mathbf{A}_{12} & \mathbf{B}_{12}| \end{pmatrix} = 19\sqrt{2}$$
 (1.13.1.4)

from (D.7.1).

1.13.2 Find λ and μ if $(2\hat{i} + 6\hat{j} + 27\hat{k}) \times (\hat{i} + \lambda\hat{j} + \mu\hat{k}) = \overrightarrow{0}$.

Solution: From Appendix D.9, performing row reduction,

$$\begin{pmatrix} 2 & 6 & 27 \\ 1 & \lambda & \mu \end{pmatrix} \xrightarrow{R_2 \leftarrow 2R_2 - R_1} \begin{pmatrix} 2 & 6 & 27 \\ 0 & 2\lambda - 6 & 2\mu - 27 \end{pmatrix}$$

$$(1.13.2.1)$$

$$R_2 = 0 \implies \mu = \frac{27}{2}, \lambda = 3.$$

$$(1.13.2.2)$$

area of the triangle with vertices the A(1,1,2), B(2,3,5) and C(1,5,5).

Solution:

$$\therefore \mathbf{B} - \mathbf{A} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \mathbf{C} - \mathbf{A} = \begin{pmatrix} 0 \\ 4 \\ 3 \end{pmatrix}, \qquad (1.13.3.1)$$

$$\frac{1}{2} \left\| \begin{pmatrix} 1\\2\\3 \end{pmatrix} \times \begin{pmatrix} 0\\4\\3 \end{pmatrix} \right\| = \frac{1}{2} \left\| \begin{pmatrix} -6\\3\\4 \end{pmatrix} \right\| = \frac{\sqrt{61}}{2}$$
 (1.13.3.2)

using (1.1.6.1), which is the desired area.

are determined by the vectors $\vec{a} = \hat{i} - \hat{j} + 3\hat{k}$ and $\vec{b} = \hat{k} + \hat{k}$ $2\hat{i}-7\hat{j}+\hat{k}$.

Solution: From (1.1.6.1), the desired area is obtained as

$$\left\| \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} \times \begin{pmatrix} 2 \\ -7 \\ 1 \end{pmatrix} \right\| = \left\| \begin{pmatrix} 20 \\ 5 \\ -5 \end{pmatrix} \right\| = 15\sqrt{2}$$
 (1.13.4.1)

1.13.5 Find the area of a rhombus if its vertices are A(3,0), B(4,5), C(-1,4) and D(-2,-1) taken in order.

Solution: The area of the rhombus is

$$\left\| \left(\mathbf{A} - \mathbf{D} \right) \times \left(\mathbf{B} - \mathbf{A} \right) \right\| = \begin{vmatrix} 5 & 1 \\ 1 & 5 \end{vmatrix} = 24 \tag{1.13.5.1}$$

See Fig. 1.13.5.1.

- 1.13.6 Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}| = 3$ and $|\vec{b}| =$ $\frac{\sqrt{2}}{3}$, then $\vec{a} \times \vec{b}$ is a unit vector, if the angle between \vec{a} and \overrightarrow{b} is
 - a) $\frac{\pi}{6}$ b) $\frac{\pi}{4}$

Fig. 1.13.5.1

Fig. 1.13.7.1

c) $\frac{\pi}{3}$ d) $\frac{\pi}{2}$

Solution: From the given information and (D.10.1)

$$\|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin \theta = 1$$
 (1.13.6.1)

$$\implies \sin \theta = \frac{1}{\|\mathbf{a}\| \|\mathbf{b}\|} = \frac{1}{\sqrt{2}} \tag{1.13.6.2}$$

$$\implies \theta = \frac{\pi}{4} \tag{1.13.6.3}$$

- 1.13.7 Area of a rectangle having vertices A, B, C and D with position vectors $-\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}$, $\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}$, $\hat{i} \frac{1}{2}\hat{j} + 4\hat{k}$ and $-\hat{i} \frac{1}{2}\hat{j} + 4\hat{k}$, respectively is
 - a) $\frac{1}{2}$
 - b) 1
 - c) 2
 - d) 4

Solution: Since

$$\mathbf{A} - \mathbf{B} = \begin{pmatrix} -2\\0\\0 \end{pmatrix} \tag{1.13.7.1}$$

$$\mathbf{C} - \mathbf{B} = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix} \tag{1.13.7.2}$$

area of the rectangle is

$$\|(\mathbf{A} - \mathbf{B}) \times (\mathbf{C} - \mathbf{D})\| = 2$$
 (1.13.7.3)

See Fig. 1.13.7.1

1.13.8 Find the area of the triangle whose vertices are

a)
$$(2,3), (-1,0), (2,-4)$$

b)
$$(-5,-1), (3,-5), (5,2)$$

Solution: See Table 1.13.8.

1.13.9 Find the area of the triangle formed by joining the midpoints of the sides of the triangle whose vertices are A(0,-1), B(2,1) and C(0,3). Find the ratio of this areal.13.10 to the area of the given triangle.

Solution: Using (1.2.1.1), the mid point coordinates are

	A – B	A – C	$\frac{1}{2} \ (\mathbf{A} - \mathbf{B}) \times (\mathbf{A} - \mathbf{C}) \ $
a)	$\begin{pmatrix} 3 \\ 3 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 7 \end{pmatrix}$	$\frac{21}{2}$
b)	$\begin{pmatrix} -8\\4 \end{pmatrix}$	$\begin{pmatrix} -10 \\ -3 \end{pmatrix}$	32

given by

$$\mathbf{P} = \frac{1}{2}(\mathbf{A} + \mathbf{B}) = \begin{pmatrix} 1\\0 \end{pmatrix} \tag{1.13.9.1}$$

$$\mathbf{Q} = \frac{1}{2}(\mathbf{B} + \mathbf{C}) = \begin{pmatrix} 1\\2 \end{pmatrix}$$
 (1.13.9.2)

$$\mathbf{R} = \frac{1}{2}(\mathbf{A} + \mathbf{C}) = \begin{pmatrix} 0\\1 \end{pmatrix} \tag{1.13.9.3}$$

$$\therefore \mathbf{P} - \mathbf{Q} = \begin{pmatrix} 0 \\ -2 \end{pmatrix}, \ \mathbf{Q} - \mathbf{R} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad (1.13.9.4)$$

$$ar(PQR) = \frac{1}{2} ||(\mathbf{P} - \mathbf{Q}) \times (\mathbf{Q} - \mathbf{R})|| = 1$$
 (1.13.9.5)

Similarly,

$$\mathbf{A} - \mathbf{B} = \begin{pmatrix} -2 \\ -2 \end{pmatrix}, \ \mathbf{A} - \mathbf{C} = \begin{pmatrix} 0 \\ -4 \end{pmatrix} \quad (1.13.9.6)$$

$$\implies ar(ABC) = \frac{1}{2} ||(\mathbf{A} - \mathbf{B}) \times (\mathbf{A} - \mathbf{C})|| = 4 \quad (1.13.9.7)$$

$$\implies \frac{ar(PQR)}{ar(ABC)} = \frac{1}{4}$$
 (1.13.9.8)

See Fig. 1.13.9.1

Find the area of the quadrilateral whose vertices, taken in order, are A(-4,-2), B(-3,-5), C(3,-2) and D(2,3).

Solution: See Fig. 1.13.10.1

Fig. 1.13.9.1

Fig. 1.13.10.1

$$\therefore \mathbf{A} - \mathbf{B} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}, \ \mathbf{A} - \mathbf{D} = \begin{pmatrix} -6 \\ -5 \end{pmatrix},$$

$$(1.13.10.1)$$

$$\mathbf{B} - \mathbf{C} = \begin{pmatrix} -6 \\ -5 \end{pmatrix}, \ \mathbf{B} - \mathbf{D} = \begin{pmatrix} -3 \\ -8 \end{pmatrix},$$

$$(1.13.10.2)$$

$$ar(ABD) = \frac{1}{2} \|(\mathbf{A} - \mathbf{B}) \times (\mathbf{A} - \mathbf{D})\| = \frac{23}{2}$$

$$(1.13.10.3)$$

$$ar(BCD) = \frac{1}{2} \|(\mathbf{B} - \mathbf{C}) \times (\mathbf{B} - \mathbf{D})\| = \frac{33}{2}$$

$$(1.13.10.4)$$

$$\implies ar(ABCD) = ar(ABD) + ar(BCD) = 28$$

$$(1.13.10.5)$$

1.13.11 Verify that a median of a triangle divides it into two triangles of equal areas for $\triangle ABC$ whose vertices are A(4, -6), B(3, 2), and C(5, 2).

Solution:

$$\mathbf{D} = \frac{\mathbf{B} + \mathbf{C}}{2} = \begin{pmatrix} 4 \\ 0 \end{pmatrix},$$

$$(1.13.11.1)$$

$$\mathbf{A} - \mathbf{B} = \begin{pmatrix} 1 \\ -4 \end{pmatrix}, \mathbf{A} - \mathbf{D} = \begin{pmatrix} 0 \\ -6 \end{pmatrix}$$

$$(1.13.11.2)$$

$$\implies ar(ABD) = \frac{1}{2} \|(\mathbf{A} - \mathbf{B}) \times (\mathbf{A} - \mathbf{D})\| = 3$$

$$(1.13.11.3)$$

$$\mathbf{A} - \mathbf{C} = \begin{pmatrix} -1 \\ -8 \end{pmatrix}, \mathbf{A} - \mathbf{D} = \begin{pmatrix} 0 \\ -6 \end{pmatrix}$$

$$(1.13.11.4)$$

$$\implies ar(ACD) = \frac{1}{2} \|(\mathbf{A} - \mathbf{C}) \times (\mathbf{A} - \mathbf{D})\|$$

$$(1.13.11.5)$$

$$= 3 = ar(ABD)$$

$$(1.13.11.6)$$

See Fig. 1.13.11.1.

Fig. 1.13.11.1

1.13.12 The two adjacent sides of a parallelogram are $\mathbf{a} = 2\hat{i} - 4\hat{j} + 5\hat{k}$ and $\mathbf{b} = \hat{i} - 2\hat{j} - 3\hat{k}$. Find the unit vector parallel to its diagonal. Also, find its area.

Solution: The diagonals of the parallelogram are given by

$$\mathbf{a} + \mathbf{b} = \begin{pmatrix} 3 \\ -6 \\ 2 \end{pmatrix}, \ \mathbf{a} - \mathbf{b} = \begin{pmatrix} 1 \\ -2 \\ 8 \end{pmatrix}$$
 (1.13.12.1)

and the corresponding unit vectors are

$$\frac{\mathbf{a} + \mathbf{b}}{\|\mathbf{a} + \mathbf{b}\|} = \begin{pmatrix} \frac{3}{\sqrt{45}} \\ -\frac{6}{\sqrt{45}} \\ \frac{2}{\sqrt{45}} \end{pmatrix}, \frac{\mathbf{a} - \mathbf{b}}{\|\mathbf{a} - \mathbf{b}\|} = \begin{pmatrix} \frac{1}{\sqrt{69}} \\ -\frac{2}{\sqrt{69}} \\ \frac{8}{\sqrt{69}} \end{pmatrix}$$
(1.13.12.2)

The area of the parallelogram is given by

$$\|\mathbf{a} \times \mathbf{b}\| = \begin{pmatrix} 22 \\ -11 \\ 0 \end{pmatrix} = \sqrt{605}$$
 (1.13.12.3)

1.13.13 The vertices of a $\triangle ABC$ are A(4,6), B(1,5) and C(7,2). A line is drawn to intersect sides AB and AC at **D** and **E** respectively, such that $\frac{AD}{AB} = \frac{AE}{AC} = \frac{1}{4}$. Calculate the area of $\triangle ADE$ and compare it with the area of the $\triangle ABC$.

Solution: See Fig. 1.13.13.1. Using section formula

Fig. 1.13.13.1

(1.2.1.1),

$$\mathbf{D} = \frac{3\mathbf{A} + \mathbf{B}}{4} = \frac{1}{4} \begin{pmatrix} 13\\23 \end{pmatrix}$$
(1.13.13)

$$\mathbf{E} = \frac{3\mathbf{A} + \mathbf{C}}{4} = \frac{1}{4} \begin{pmatrix} 19\\20 \end{pmatrix}$$
(1.13.13.2)

$$\mathbf{A} - \mathbf{D} = \frac{1}{4} \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \ \mathbf{A} - \mathbf{E} = \frac{1}{4} \begin{pmatrix} -3 \\ 1 \end{pmatrix}$$
(1.13.13.3)

$$\mathbf{A} - \mathbf{B} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \mathbf{B} - \mathbf{C} = \begin{pmatrix} -6 \\ 3 \end{pmatrix}$$
 1.13.19 (1.13.13.4)

$$\implies ar(ABD) = \frac{1}{2} \| (\mathbf{A} - \mathbf{D}) \times (\mathbf{A} - \mathbf{E}) \| = \frac{15}{32}$$
(1.13.13.5)

$$ar(ABC) = \frac{1}{2} \|(\mathbf{A} - \mathbf{B}) \times (\mathbf{B} - \mathbf{C})\| = \frac{15}{2}$$
(1.13.13.6)

$$\implies \frac{ar(ADE)}{ar(ABC)} = \frac{1}{16}$$

1.13.14 Draw a quadrilateral in the Cartesian plane, whose ver-

$$\mathbf{A} = \begin{pmatrix} -4\\5 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 0\\7 \end{pmatrix}, \ \mathbf{C} = \begin{pmatrix} 5\\-5 \end{pmatrix}, \ \mathbf{D} = \begin{pmatrix} -4\\-2 \end{pmatrix}. \quad (1.13.14.1)$$

Also, find its area.

Solution: See Fig. 1.13.14.1. From (D.11.2),

$$ar(ABCD) = \frac{121}{2} \tag{1.13.14.2}$$

Fig. 1.13.14.1: Plot of quadrilateral ABCD

- 1.13.15 Find the area of region bounded by the triangle whose vertices are (1,0),(2,2) and (3,1).
- 1.13.16 Find the area of region bounded by the triangle whose vertices are (-1,0), (1,3) and (3,2).
- 1.13.17 Find the area of the $\triangle ABC$, coordinates of whose vertices are A(2,0), B(4,5), and C(6,3).
- 1.13.18 Show that

$$(\overrightarrow{a} - \overrightarrow{b}) \times (\overrightarrow{a} + \overrightarrow{b}) = 2(\overrightarrow{a} \times \overrightarrow{b})$$

Solution:

$$(\mathbf{a} - \mathbf{b}) \times (\mathbf{a} + \mathbf{b}) = \mathbf{a} \times \mathbf{a} - \mathbf{b} \times \mathbf{b} + \mathbf{a} \times \mathbf{b} - \mathbf{b} \times \mathbf{a}$$
$$= 2(\mathbf{a} \times \mathbf{b}) \qquad (1.13.18.1)$$

 $\mathbf{A} - \mathbf{B} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \mathbf{B} - \mathbf{C} = \begin{pmatrix} -6 \\ 3 \end{pmatrix}$ 1.13.19 If either $\overrightarrow{a} = \overrightarrow{0}$ or $\overrightarrow{b} = \overrightarrow{0}$, then $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0}$. Is the

Solution: For

$$\mathbf{a} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} \tag{1.13.19.1}$$

$$\mathbf{a} \times \mathbf{b} = \mathbf{0}.\tag{1.13.19.2}$$

1.13.20 Given that $\overrightarrow{a} \cdot \overrightarrow{b} = 0$ and $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0}$. What can you conclude about the vectors \overrightarrow{d} and \overrightarrow{b} ?

1.13.13.71.13.21 The area of a triangle with vertices A(3,0), B(7,0) and C(8,4) is

- a) 14
- b) 28
- c) 8
- d) 6

- 1.13.22 The area of a triangle with vertices (a, b + c), (b, c + 1.14 Miscellaneous)
 - a) and (c, a + b) is
 - a) $(a + b + c)^2$
 - b) 0
 - c) a+b+c
 - d) abc
- 1.13.23 Find the area of the triangle whose vertices are (-8,4), (-6,6)and (-3,9).
- 1.13.24 If $\mathbf{D}\left(\frac{-1}{2}, \frac{5}{2}\right)$, $\mathbf{E}(7, 3)$ and $\mathbf{F}\left(\frac{7}{2}, \frac{7}{2}\right)$ are the midpoints of sides of $\triangle ABC$, find the area of the $\triangle ABC$.
- 1.13.25 If $\mathbf{a} + \mathbf{b} + \mathbf{c} = 0$, show that $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} = \mathbf{c} \times \mathbf{a}$. Interpret the result geometrically.
- 1.13.26 Find the sine of the angle between the vectors $\mathbf{a} = 3\hat{i} + \hat{j} + 2\hat{k}$ and $\mathbf{b} = 2\hat{i} 2\hat{j} + 4\hat{k}$.
- 1.13.27 Using vectors, find the area of $\triangle ABC$ with vertices A(1,2,3), B(2,-1,4) and C(4,5,-1).
- 1.13.28 Using vectors, prove that the parallelograms on the same base and between the same parallels are equal in area.
- 1.13.29 If \mathbf{a} , \mathbf{b} , \mathbf{c} , determine the vertices of a triangle, show that $\frac{1}{2}$ [$\mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a} + \mathbf{a} \times \mathbf{b}$] gives the vector area of the triangle. Hence deduce the condition that the three points \mathbf{a} , \mathbf{b} , \mathbf{c} , are collinear. Also find the unit vector normal to the plane of the triangle.
- 1.13.30 Find the area of the parallelogram whose diagonals are $2\hat{i} \hat{j} + \hat{k}$ and $\hat{i} + 3\hat{j} \hat{k}$.
- 1.13.31 The vector from origin to the points A and B are $\mathbf{a} = 2\hat{i} 3\hat{j} + 2\hat{k}$ and $\mathbf{b} = 2\hat{i} + 3\hat{j} + \hat{k}$, respectively, then the area of $\triangle OAB$ is
 - a) 340
 - b) $\sqrt{25}$
 - c) $\sqrt{229}$
 - d) $\frac{1}{2}\sqrt{229}$
- 1.13.32 For any vector **a**, the value of $(\mathbf{a} \times \hat{i})^2 + (\mathbf{a} \times \hat{j})^2 + (\mathbf{a} \times \hat{k})^2$ is equal to
 - a) a
 - b) 3a
 - c) 4a
 - d) 2a
- 1.13.33 If $|\mathbf{a}| = 10$, $|\mathbf{b}| = 2$ and \mathbf{a} , $\mathbf{b} = 12$, then value of $|\mathbf{a} \times \mathbf{b}|$ is
 - a) 5
 - b) 10
 - c) 14
 - d) 16
- 1.13.34 If $\mathbf{a} = \hat{i} + \hat{j} + \hat{k}$ and $\mathbf{b} = \hat{j} \hat{k}$, find a vector \mathbf{c} such that $\mathbf{a} \times \mathbf{c} = \mathbf{b}$ and $\mathbf{a} \cdot \mathbf{c} = 3$.
- 1.13.35 The area of the quadrilateral ABCD, where A(0,4,1), B(2,3,-1), C(4,5,0) and D(2,6,2), is equal to
 - a) 9 sq. units
 - b) 18 sq. units
 - c) 27 sq. units
 - d) 81 sq. units
- 1.13.36 Find the area of region bounded by the triangle whose vertices are (-1, 1), (0, 5) and (3, 2).

1.14.1 The two opposite vertices of a square are (-1,2) and (3,2). Find the coordinates of the other two vertices.

Solution: Let

$$\mathbf{A} = \begin{pmatrix} -1\\2 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 3\\2 \end{pmatrix} \tag{1.14.1.1}$$

The given square is available in Fig. 1.14.1.1. Shifting A

Fig. 1.14.1.1

to origin with reference to Fig. 1.14.1.2,

$$\mathbf{A}_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{C}_1 = \mathbf{C} - \mathbf{A} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} \tag{1.14.1.2}$$

Since

Fig. 1.14.1.2

$$\mathbf{C} - \mathbf{A} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} \equiv \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ \theta = 0^{\circ} \tag{1.14.1.3}$$

where θ is the angle made by AC with the x-axis. Considering the rotation matrix

$$\mathbf{P} = \begin{pmatrix} \cos\left(\frac{\pi}{4} - \theta\right) & -\sin\left(\frac{\pi}{4} - \theta\right) \\ \sin\left(\frac{\pi}{4} - \theta\right) & \cos\left(\frac{\pi}{4} - \theta\right) \end{pmatrix}$$
(1.14.1.4)

From Fig. 1.14.1.3,

Fig. 1.14.1.3

$$\mathbf{C}_2 = \mathbf{P}(\mathbf{C} - \mathbf{A}) \tag{1.14.1.5}$$

$$\mathbf{B}_2 = \begin{pmatrix} \mathbf{e}_1 & \mathbf{0} \end{pmatrix} \mathbf{C}_2 \tag{1.14.1.6}$$

$$\mathbf{D}_2 = \begin{pmatrix} \mathbf{0} & \mathbf{e}_2 \end{pmatrix} \mathbf{C}_2 \tag{1.14.1.7}$$

Now,

$$\mathbf{B} = \mathbf{P}^{\mathsf{T}} \mathbf{B}_2 + \mathbf{A} \tag{1.14.1.8}$$

$$\mathbf{D} = \mathbf{P}^{\mathsf{T}} \mathbf{D}_2 + \mathbf{A} \tag{1.14.1.9}$$

by reversing the process of translation and rotation. Thus, from (1.14.1.8) (1.14.1.6), (1.14.1.9) and (1.14.1.7)

$$\mathbf{B} = \mathbf{P}^{\mathsf{T}} \begin{pmatrix} \mathbf{e}_1 & \mathbf{0} \end{pmatrix} \mathbf{P}(\mathbf{C} - \mathbf{A}) + \mathbf{A}$$
 (1.14.1.10)
$$\mathbf{D} = \mathbf{P}^{\mathsf{T}} \begin{pmatrix} \mathbf{0} & \mathbf{e}_2 \end{pmatrix} \mathbf{P}(\mathbf{C} - \mathbf{A}) + \mathbf{A}$$
 (1.14.1.11)

$$\mathbf{D} = \mathbf{P}^{\top} \begin{pmatrix} \mathbf{0} & \mathbf{e}_2 \end{pmatrix} \mathbf{P} (\mathbf{C} - \mathbf{A}) + \mathbf{A}$$
 (1.14.1.11)

yielding

$$\mathbf{B} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \mathbf{D} \begin{pmatrix} 1 \\ 4 \end{pmatrix}. \tag{1.14.1.12}$$

1.14.2 The base of an equilateral triangle with side 2a lies along the y-axis such that the mid-point of the base is at the origin. Find vertices of the triangle.

> Solution: Let the base be BC. From the given information,

$$\mathbf{B} = a\mathbf{e}_2, \mathbf{C} = -a\mathbf{e}_2 \tag{1.14.2.1}$$

Since A lies on the x-axis,

$$\mathbf{A} = k\mathbf{e}_1 \tag{1.14.2.2}$$

Fig. 1.14.2.1

and

$$\|\mathbf{A} - \mathbf{C}\|^2 = (2a)^2$$
 (1.14.2.3)

$$\implies ||\mathbf{A}||^2 + ||\mathbf{C}||^2 - 2\mathbf{A}^{\mathsf{T}}\mathbf{C} = 4a^2$$
 (1.14.2.4)

$$\implies k^2 + a^2 = 4a^2 \tag{1.14.2.5}$$

or,
$$k = \pm a \sqrt{3}$$
 (1.14.2.6)

Thus,

$$\mathbf{A} = \pm \sqrt{3}a\mathbf{e}_1 \tag{1.14.2.7}$$

Fig. 1.14.2.1 is plotted for a = 2.

2 Matrices

The matrix of the veritices of the triangle is defined as

$$\mathbf{P} = \begin{pmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} \tag{2.1}$$

- 2.1 Vectors
- 2.1. Obtain the direction matrix of the sides of $\triangle ABC$ defined

$$\mathbf{M} = \begin{pmatrix} \mathbf{A} - \mathbf{B} & \mathbf{B} - \mathbf{C} & \mathbf{C} - \mathbf{A} \end{pmatrix} \tag{2.1.1.1}$$

Solution:

$$\mathbf{M} = \begin{pmatrix} \mathbf{A} - \mathbf{B} & \mathbf{B} - \mathbf{C} & \mathbf{C} - \mathbf{A} \end{pmatrix} \tag{2.1.1.2}$$

$$= \begin{pmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$$
 (2.1.1.3)

matrix. Note that the 2nd and 3rd row of the above matrix are circular shifts of the 1st row.

2.2. Obtain the normal matrix of the sides of $\triangle ABC$

Solution: Considering the roation matrix

$$\mathbf{R} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \tag{2.1.2.1}$$

the normal matrix is obtained as

$$\mathbf{N} = \mathbf{R}\mathbf{M} \tag{2.1.2.2}$$

2.3. Obtain *a*, *b*, *c*.

Solution: The sides vector is obtained as

$$\mathbf{d} = \sqrt{\operatorname{diag}(\mathbf{M}^{\mathsf{T}}\mathbf{M})} \tag{2.1.3.1}$$

2.4. Obtain the constant terms in the equations of the sides of the triangle.

Solution: The constants for the lines can be expressed in vector form as

$$\mathbf{c} = \operatorname{diag}\left\{ \left(\mathbf{N}^{\mathsf{T}} \mathbf{P} \right) \right\} \tag{2.1.4.1}$$

- 2.2 Median
- 2.2.1. Obtain the mid point matrix for the sides of the triangle

$$\begin{pmatrix} \mathbf{D} & \mathbf{E} & \mathbf{F} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
(2.2.1.1)

2.2.2. Obtain the median direction matrix.

Solution: The median direction matrix is given by

$$\mathbf{M}_1 = \begin{pmatrix} \mathbf{A} - \mathbf{D} & \mathbf{B} - \mathbf{E} & \mathbf{C} - \mathbf{F} \end{pmatrix}$$
 (2.2.2.1)

$$= \left(\mathbf{A} - \frac{\mathbf{B} + \mathbf{C}}{2} \quad \mathbf{B} - \frac{\mathbf{C} + \mathbf{A}}{2} \quad \mathbf{C} - \frac{\mathbf{A} + \mathbf{B}}{2}\right) \tag{2.2.2.2}$$

$$= \begin{pmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} \begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & 1 \end{pmatrix}$$
(2.2.2.3)

2.2.3. Obtain the median normal matrix.

- 2.2.4. Obtian the median equation constants.
- 2.2.5. Obtain the centroid by finding the intersection of the medians.
 - 2.3 Altitude
- 2.3.1. Find the normal matrix for the altitudes

Solution: The desired matrix is

$$\mathbf{M}_2 = \begin{pmatrix} \mathbf{B} - \mathbf{C} & \mathbf{C} - \mathbf{A} & \mathbf{A} - \mathbf{B} \end{pmatrix} \tag{2.3.1.1}$$

$$= (\mathbf{A} \quad \mathbf{B} \quad \mathbf{C}) \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}$$
 (2.3.1.2)

2.3.2. Find the constants vector for the altitudes.

Solution: The desired vector is

$$\mathbf{c}_2 = \operatorname{diag}\left\{ \left(\mathbf{M}^{\mathsf{T}} \mathbf{P} \right) \right\} \tag{2.3.2.1}$$

- 2.4 Perpendicular Bisector
- where the second matrix above is known as a *circulant* 2.4.1. Find the normal matrix for the perpendicular bisectors **Solution:** The normal matrix is M_2
 - 2.4.2. Find the constants vector for the perpendicular bisectors. **Solution:** The desired vector is

$$\mathbf{c}_3 = \operatorname{diag} \left\{ \mathbf{M}_2^{\mathsf{T}} \begin{pmatrix} \mathbf{D} & \mathbf{E} & \mathbf{F} \end{pmatrix} \right\} \tag{2.4.2.1}$$

- 2.5 Angle Bisector
- 2.5.1. Find the points of contact.

Solution: The points of contact are given by

$$\begin{pmatrix} \frac{m\mathbf{C} + n\mathbf{B}}{m+n} & \frac{n\mathbf{A} + p\mathbf{C}}{n+p} & \frac{p\mathbf{B} + m\mathbf{A}}{p+m} \end{pmatrix} = \begin{pmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} \begin{pmatrix} 0 & \frac{n}{b} & \frac{m}{c} \\ \frac{n}{a} & 0 & \frac{p}{c} \\ \frac{m}{a} & \frac{p}{b} & 0 \end{pmatrix}$$
(2.5.1.1)

All codes for this section are available at

codes/triangle/mat-alg.py

3 Linear Forms

3.1 Equation of a Line

Find the equation of line

- 3.1
- 3.2 passing through the point (-4, 3) with slope $\frac{1}{2}$.
- 3.3 passing through $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ with slope m.

Solution:

3.4 passing through $\mathbf{A} = \begin{pmatrix} 2 \\ 2\sqrt{3} \end{pmatrix}$ and inclined with the x-axis at an angle of 75°.

Solution:

3.5 intersecting the x-axis at a distance of 3 units to the left of origin with slope of -2.

Solution:

3.6 Find the equation of the line which satisfy the given conditions: Intersecting the y-axis at a distance of 2 units above the origin and making an angle of 30° with positive direction of the x-axis.

Solution:

3.7 Find the equation of line passing through the points $\begin{pmatrix} -1\\1 \end{pmatrix}$

and $\begin{pmatrix} 2 \\ -4 \end{pmatrix}$.

Solution:

3.8 Find the equation of line whose perpendicular distance from the origin is 5 units and the angle made by the perpendicular with the positive x-axis is 30° .

Solution:

- 3.9 3.10
- 3.11
- 3.12
- 3.13
- 3.14
- 3.15
- 3.16 P(a, b) is the mid-point of the line segment between axes. Show that the equation of the line is $\frac{x}{a} + \frac{y}{b} = 2$

Solution:

- 3.17 Point $\mathbf{R}(h,k)$ divides a line segment between the axes in the ratio 1: 2. Find the equation of the line.
- 3.18
- 3.19 Find the equation of the line parallel to the line 3x-4y+2=0 and passing through the point (-2,3).
- 3.20 Find the equation of line perpendicular to the line x 7y + 5 = 0 and having x intercept 3

Solution:

3.21 Prove that the line through the point(x_1, y_1) and parallel to the line Ax+By+C=0 is $A(x-x_1)+B(y-y_1)=0$.

Solution:

3.22 Find the equation of the line passing through the point (1, 2, -4) and perpendicular to the two lines

$$\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7} \text{ and}$$
 (3.22.1)

$$\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$$
 (3.22.2)

Solution:

3.23 Find the vector equation of the line passing through $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

and parallel to the planes $\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}^{\mathsf{T}} \mathbf{x} = 5$ and $\begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}^{\mathsf{T}} \mathbf{x} = 6$.

Solution:

3.24 3.25

3.26
3.27 The perpendicular from the origin to the line y = mx + c meets it at the point (-1, 2). Find the values of m and c. **Solution:**

Fig. 3.27.1: Graph

3.28 Find the equation of the lines through the point (3, 2) which make an angle of 45° with the line x-2y=3.

Solution:

3.29 Consider the following population and year graph, Find the slope of the line AB and using it, find what will be the population in the year 2010?

Solution: The direction vector of the line in Fig. 3.29.1

Fig. 3.29.1

is

$$\mathbf{m} = \mathbf{B} - \mathbf{A} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \tag{3.29.1}$$

$$\implies \mathbf{n} = \begin{pmatrix} 1 \\ -2 \end{pmatrix} \tag{3.29.2}$$

The equation of the line is then given by

$$\mathbf{n}^{\mathsf{T}}(\mathbf{x} - \mathbf{A}) = 0 \tag{3.29.3}$$

$$\implies \begin{pmatrix} 1 & -2 \end{pmatrix} \mathbf{x} = 1801 \tag{3.29.4}$$

$$\implies (1 -2)\binom{2010}{y} = 1801 \tag{3.29.5}$$

$$\implies y = \frac{209}{2} \tag{3.29.6}$$

APPENDIX A POINTS ON A LINE

A.1. The equation of a line is given by

$$y = mx + c \tag{A.1.1}$$

$$\implies \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ mx + c \end{pmatrix} = \begin{pmatrix} 0 \\ c \end{pmatrix} + x \begin{pmatrix} 1 \\ m \end{pmatrix}$$
 (A.1.2)

yielding (1.1.4.1).

A.2. (A.1.1) can also be expressed as

$$y - mx = c \tag{A.2.1}$$

$$\implies \left(-m \quad 1\right) \begin{pmatrix} x \\ y \end{pmatrix} = c \tag{A.2.2}$$

yielding (1.1.5.1).

A.3. From (1.1.4.1), if **A**, **D** and **C** are on the same line,

$$\mathbf{D} = \mathbf{A} + q\mathbf{m} \qquad (A.3.1)$$

$$\mathbf{C} = \mathbf{D} + p\mathbf{m} \qquad (A.3.2)$$

$$\implies p(\mathbf{D} - \mathbf{A}) + q(\mathbf{D} - \mathbf{C}) = 0, \quad p, q \neq 0 \quad (A.3.3)$$

$$\implies$$
 D = $\frac{p\mathbf{A} + q\mathbf{C}}{p+q}$ (A.3.4)

yielding (1.2.1.1) upon substituting

$$k = \frac{p}{q}. (A.3.5)$$

 $(\mathbf{D} - \mathbf{A}), (\mathbf{D} - \mathbf{C})$ are then said to be linearly dependent. A.4. If A, B, C are collinear, from (1.1.5.1),

$$\mathbf{n}^{\mathsf{T}}\mathbf{A} = c \tag{A.4.1}$$

$$\mathbf{n}^{\mathsf{T}}\mathbf{B} = c \tag{A.4.2}$$

$$\mathbf{n}^{\mathsf{T}}\mathbf{C} = c \tag{A.4.3}$$

which can be expressed as

$$(\mathbf{A} \quad \mathbf{B} \quad \mathbf{C})^{\mathsf{T}} \mathbf{n} = c \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 (A.4.4) D.2. If \mathbf{A}, \mathbf{B} are unit vectors,

$$\implies \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} \mathbf{n} \\ -c \end{pmatrix} = \mathbf{0} \tag{A.4.5}$$

yielding (1.1.3.1). Rank is defined to be the number of D.3. If ABCD be a parallelogram, linearly indpendent rows or columns of a matrix.

APPENDIX B

TANGENTS TO A CIRCLE

The equation of the incircle is given by

$$\|\mathbf{x} - \mathbf{O}\|^2 = r^2 \tag{B.1}$$

which can be expressed as (1.6.1) using (1.6.2). In Fig. 1.5.4.1, Let (1.6.8.1) be the equation of AB. Then, the intersection of (1.6.8.1) and (1.6.1) can be expressed as

$$(\mathbf{h} + \mu \mathbf{m})^{\mathsf{T}} \mathbf{V} (\mathbf{h} + \mu \mathbf{m}) + 2\mathbf{u}^{\mathsf{T}} (\mathbf{h} + \mu \mathbf{m}) + f = 0$$
 (B.2)

$$\implies \mu^2 \mathbf{m}^\top \mathbf{V} \mathbf{m} + 2\mu \mathbf{m}^\top (\mathbf{V} \mathbf{h} + \mathbf{u}) + g(\mathbf{h}) = 0$$
 (B.3)

For (B.3) to have exactly one root, the discriminant

$$\left\{ \mathbf{m}^{\top} \left(\mathbf{V} \mathbf{h} + \mathbf{u} \right) \right\}^{2} - g \left(\mathbf{h} \right) \mathbf{m}^{\top} \mathbf{V} \mathbf{m} = 0$$
 (B.4)

and (1.6.8.2) is obtained. (B.4) can be expressed as

$$\mathbf{m}^{\mathsf{T}} \left(\mathbf{V} \mathbf{h} + \mathbf{u} \right)^{\mathsf{T}} \left(\mathbf{V} \mathbf{h} + \mathbf{u} \right) \mathbf{m} - g \left(\mathbf{h} \right) \mathbf{m}^{\mathsf{T}} \mathbf{V} \mathbf{m} = 0 \tag{B.5}$$

$$\implies \mathbf{m}^{\mathsf{T}} \mathbf{\Sigma} \mathbf{m} = 0$$
 (B.6)

for Σ defined in (B.6). Substituting (1.6.6.1) in (B.6),

$$\mathbf{m}^{\mathsf{T}} \mathbf{P} \mathbf{D} \mathbf{P}^{\mathsf{T}} \mathbf{m} = 0 \tag{B.7}$$

$$\implies \mathbf{v}^{\mathsf{T}}\mathbf{D}\mathbf{v} = 0 \tag{B.8}$$

where

$$\mathbf{v} = \mathbf{P}^{\mathsf{T}}\mathbf{m} \tag{B.9}$$

(B.8) can be expressed as

$$\lambda_1 v_1^2 - \lambda_2 v_2^2 = 0 \tag{B.10}$$

$$\implies \mathbf{v} = \begin{pmatrix} \sqrt{|\lambda_2|} \\ \pm \sqrt{|\lambda_1|} \end{pmatrix} \tag{B.11}$$

after some algebra. From (B.11) and (B.9) we obtain (1.6.7.1).

APPENDIX C MATRICES

APPENDIX D 2×1 vectors

D.1. Mathematically, the projection of **A** on **B** is defined as

$$\mathbf{C} = k\mathbf{B}$$
, such that $(\mathbf{A} - \mathbf{C})^{\mathsf{T}} \mathbf{C} = 0$ (D.1.1)

yielding

$$(\mathbf{A} - k\mathbf{B})^{\mathsf{T}} \mathbf{B} = 0 \tag{D.1.2}$$

or,
$$k = \frac{\mathbf{A}^{\mathsf{T}} \mathbf{B}}{\|\mathbf{B}\|^2} \implies \mathbf{C} = \frac{\mathbf{A}^{\mathsf{T}} \mathbf{B}}{\|\mathbf{B}\|^2} \mathbf{B}$$
 (D.1.3)

$$(\mathbf{A} - \mathbf{B})^{\mathsf{T}} (\mathbf{A} + \mathbf{B})$$
$$\|\mathbf{A}\|^{2} - \|\mathbf{B}\|^{2} = 0 \quad (D.2.1)$$

$$\mathbf{B} - \mathbf{A} = \mathbf{C} - \mathbf{D} \tag{D.3.1}$$

D.4. If *PQRS* is formed by joining the mid points of *ABCD*,

$$\mathbf{P} = \frac{1}{2} (\mathbf{A} + \mathbf{B}), \ \mathbf{Q} = \frac{1}{2} (\mathbf{B} + \mathbf{C})$$
 (D.4.1)

$$\mathbf{R} = \frac{1}{2} (\mathbf{C} + \mathbf{D}), \mathbf{S} = \frac{1}{2} (\mathbf{D} + \mathbf{A})$$
 (D.4.2)

$$\implies \mathbf{P} - \mathbf{Q} = \mathbf{S} - \mathbf{R}.$$
 (D.4.3)

Hence, *PQRS* is a parallelogram from (D.3.1).

D.5. If

$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = \mathbf{I},\tag{D.5.1}$$

then A is an orthogonal matrix.

D.6. Let

$$\mathbf{A} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \equiv a_1 \overrightarrow{i} + a_2 \overrightarrow{j} + a_3 \overrightarrow{j}, \qquad (D.6.1)$$

$$\mathbf{B} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}, \tag{D.6.2}$$

and

$$\mathbf{A}_{ij} = \begin{pmatrix} a_i \\ a_j \end{pmatrix},$$

$$\mathbf{B}_{ij} = \begin{pmatrix} b_i \\ b_j \end{pmatrix}.$$
(D.6.3)

D.7. The cross product or vector product of A, B is defined as

$$\mathbf{A} \times \mathbf{B} = \begin{pmatrix} |\mathbf{A}_{23} & \mathbf{B}_{23}| \\ |\mathbf{A}_{31} & \mathbf{B}_{31}| \\ |\mathbf{A}_{12} & \mathbf{B}_{12}| \end{pmatrix}$$
(D.7.1)

D.8. Verify that

$$\mathbf{A} \times \mathbf{B} = -\mathbf{B} \times \mathbf{A} \tag{D.8.1}$$

$$\mathbf{A} \times \mathbf{A} = \mathbf{0} \tag{D.8.2}$$

D.9. If

$$\mathbf{A} \times \mathbf{B} = \mathbf{0},\tag{D.9.1}$$

A and **B** are linearly independent.

D.10.

$$\|\mathbf{A} \times \mathbf{B}\| = \|\mathbf{A}\| \times \|\mathbf{B}\| \sin \theta \qquad (D.10.1)$$

where θ is the angle between the vectors.

D.11.

$$ar(ABCD) = \frac{1}{2} ((\mathbf{C} - \mathbf{A}) \times (\mathbf{D} - \mathbf{B}))$$
 (D.11.1)

(D.11.2)