NAVAL ELECTRONIC SYSTEMS ENGINEERING CENTER VALLEJO CA F/G 5/2 FLEET RELIABILITY ASSESSMENT PROGRAM. VOLUME 3. AN/WSC-3 SATELL--ETC(U) SEP 77 D J HOFFMAN, J E EKWALL, J R KENT AD-A068 857 UNCLASSIFIED NL OF ADA 068857 My END DATE 6-79

AD A 0 68857

FINAL REPORT

HO68856

FLEET RELIABILITY
ASSESSMENT PROGRAM

DOC FILE COPY

AN/WSC-3 SATELLITE COMMUNICATION SET

NAVAL ELECTRONIC SYSTEMS ENGINEERING CENTER VALLEJO, CALIFORNIA

Each transmitted of this document outside of the Department mult have approval of the issued Service

This document has been approved for public release and sale; its distribution is unlimited.

Published by direction of Commander, Naval Electronics Systems Command.

sk 391959

79 04 24 040

REPORT DOCUMENTAT	TION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
T. REPORT NUMBER		BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER
4. TITLE (end Subtitio) Final Report - Fleet Reliabilit Program	ty Assessment	5. TYPE OF REPORT & PERIOD COVERED Final Report 1976
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(*) David J. Hoffman Jack E. Ekwall J. R. Kent		8. CONTRACT OR GRANT NUMBER(s)
D. PERFORMING ORGANIZATION NAME AND ADD NAVWPNSUPPCEN Crane, IN 47522	DRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS NAVELEXSYSCOM (Code 470		12. REPORT DATE 1 September 1977
Washington, DC 20360		13. NUMBER OF PAGES 446
TE. MONITORING AGENCY NAME & ADDRESS(IE &	iliterant from Controlling Office)	18. SECURITY CLASS. (of this report) N/A
		160. DECLASSIFICATION/DOWNGRADING
16. DISTRIBUTION STATEMENT (of this Report)		
17. DISTRIBUTION STATEMENT (of the ebetract of	mtorod in Block 20, Il different for	sus Report)
18. SUPPLEMENTARY NOTES		

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Reliability, Maintainability, Availability Data Collection, Maintenance Action Information, Mean Time Between Failure, Failure Analysis

26. ABSTRACT (Continue on reverse side if necessary and identify by black number)

The report discusses the development of a failure reporting, analysis and corrective action program designed for early identification of maintenance problems encountered with new electronic equipment installations aboard ships, and the results of the program at the conclusion of the pilot phase.

VOLUME 3

NAVAL ELECTRONIC SYSTEMS ENGINEERING CENTER VALLEJO, CALIFORNIA

David J. /Hoffman, Jack B. /Ekwall

J. R. /Kent

Each transmittal of this document outside of the Department must have approval of the issuing Service.

Published by direction of Commander, Naval Electronics Systems Command.

1 <u>SEPTEMBER 19</u>77

391959

79 04 - 24 040

Alk

Reproduction for non-military use of the information or illustration contained in this publication is not permitted. The policy for military use reproduction is established for the Army in AR 380-5, for the Navy and Marine Corps in OPNAVINST 5510.1B and for the Air Force in Air Force Regulation 205-1.

LIST OF EFFECTIVE PAGES

Insert latest changed pages; dispose of superseded pages in accordance with applicable regulations.

NOTE: On a changed page, the portion of the text affected by the latest change is indicated by a vertical line, or other change symbol, in the outer margin of the page. Changes to illustrations are indicated by miniature pointing hands. Changes to wiring diagrams are indicated by shaded areas.

Total number of pages in this manual is 89 consisting of the following.

PAGE NO.	# CHANGE NO.
PAGE NO. Title	
A	0
i to v	0
3-1 to 3-81	0

FLEET RELIABILITY ASSESSMENT PROGRAM

DEPARTMENT OF THE NAVY

NAVAL ELECTRONIC SYSTEMS COMMAND

PREPARED UNDER THE DIRECTION OF

W. WALLACE
RELIABILITY ENGINEERING BRANCH

REVIEWED BY

SYSTEMS EFFECTIVENESS DIVISION

APPROVED BY

G. FRIESE, CAPTAIN, USN DEP CDR LOGISTICS DIRECTORATE

RECORD OF CHANGES

CHANGE NO.	DATE	TITLE OR BRIEF DESCRIPTION	ENTERED BY
	X		*
	•		
	*		
	* *		

TABLE OF CONTENTS

CONTENTS	PREPARED BY	PAGE
VOLUME 1 GENERAL PROGRAM REPORT	NAVWPNSUPPCEN CRANE	1-1
VOLUME 2 AN/SSR-1 EQUIPMENT REPORT	NAVWPNSUPPCEN CRANE	2-1
VOLUME 3 AN/WSC-3 EQUIPMENT REPORT	NAVELEXSYSENGCEN VALLEJO	3-1
VOLUME 4 AN/URC-85 EQUIPMENT REPORT	NESTED PATUXENT RIVER	4-1
VOLUME 5 AN/URC-62 EQUIPMENT REPORT	NAVWPNSUPPCEN CRANE	5-1
VOLUME 6 AN/UYK-20 EQUIPMENT REPORT	NOSC SAN DIEGO	6-1
VOLUME 7 APPENDICES	NAVWPNSUPPCEN CRANE	7-1
A FRAP TEAM B SAMPLING I C DATA CODII D DATA ANAL' E LOGISTICS F GLOSSARY	MATRIX NG YSIS Model	

VOLUME 3 AN/WSC-3 EQUIPMENT REPORT

SECTION		PAGE
1	INTRODUCTION 1-1 EQUIPMENT 1-2 INSTALLATIONS	3-1
11	RESULTS 2-1 RELIABILITY, MAINTAINABILITY, AND AVAILABILITY 2-2 HARDWARE PROBLEMS	3-2
111	SYSTEM DESCRIPTION 3-1 MISSION DESCRIPTION 3-2 EQUIPMENT DESCRIPTION	3-3
IV	RELIABILITY MODEL 4-1 RELIABILITY BLOCK DIAGRAM 4-2 MATHEMATICAL MODEL 4-3 COMPUTER PROGRAM	3-5
v	PROBLEMS 5-1 AN/WSC-3 5-2 SATCOM SYSTEM PROBLEMS	3-11
VI	CORRECTIVE ACTION 6-1 AN/WSC-3 PROBLEM MODULES 6-2 SATCOM SYSTEM PROBLEMS 6-3 AN/WSC-3 GENERAL	3-13
V11	COST BENEFITS 7-1 AVAILABILITY	3-14
AIII	SPECIFICATION REQUIREMENTS 8-1 RELIABILITY 8-2 MAINTAINABILITY	3-18
IX	FLEET DATA ANALYSTS 9-1 DATA COLLECTION 9-2 COMPUTER ANALYSES 9-3 FLEET NARRATIVE DATA	3-19
X	ANALYSIS OF DEPOT DATA 10-1 BACKGROUND 10-2 FINDINGS 10-3 FAILURE ANALYSIS 10-4 SUMMARY	3-24

FIGURES

		PAGE
3-3.1 3-4.1 3-4.2 3-4.3 3-7.1 3-7.2 3-10.1 3-10.2	AN/WSC-3 Shipboard Installation AN/WSC-3 O-Level Modules Model Missions Computer Program Results Availability Vs. Spares Availability Vs. Improvement Factors X-Ray Photograph of Capacitors P/N 47-00184-001 from 1A1A1 Transmitter	3-4 3-6 3-7, 3-8 3-9, 3-10 3-15 3-16 3-28 3-28
3-10.3 3-10.4 3-10.5 3-10.6	Hybrid Circuit V1 Pin 5 of V1 Capacitor C9 from Synthesizer A1A8 Transistor Q2	3-29 3-29 3-30 3-31
	TABLES	
		PAGE
3-7.1 3-9.1	AN/WSC-3 Operational Availability Improvement Summary of Computer Analysis	3-17

SECTION 1 - INTRODUCTION

1-1 EQUIPMENT.

1-1.1 AN/WSC-3. The AN/WSC-3 is a Satellite Communications Set that operates in the Ultra High Frequency (UHF) (300MHz-3GHz) portion of the spectrum. The set provides voice, teletype, and digital data communications by satellite or line-of-sight (LOS) for the Fleet on a world wide basis. AN/WSC-3's are installed on surface ships in either single or multiple installations utilizing the OE-83B/WSC-1 trainable, directional antenna system for satellite data operation, and a conventional UHF omnidirectional antenna for LOS operation. On submarines the single AN/WSC-3 installations can be operated ship-to-ship LOS or with the satellite using the OE-158 antenna or equivalent.

1-2 INSTALLATIONS.

1-2.1 At the start of the data collection period, delivery of the AN/WSC-3 from the contractor had been under way for approximately six months. FRAP platforms designated by the type commanders were under an accelerated installation schedule. All platforms had relatively new installations at the beginning of Data Collection Period. Atlantic Fleet users had limited access to a communications satellite approaching end-of-life in the period before SATCOM satellites were launched.

SECTION II - RESULTS

2-1 RELIABILITY, MAINTAINABILITY, AND AVAILABILITY

- 2-1.1 RELIABILITY AND MAINTAINABILITY. In Fleet operations, the AN/WSC-3 is meeting the specified MTBF of 3000 hours. The Fleet is in substantial compliance with the specified time to repair of ten minutes (0.17 hours). The Atlantic Fleets' learning experience with the end-of-life communications satellite appears to be reflected in differences between the Fleets with the AN/WSC-3's in the Atlantic Fleet having a much larger MTBF and smaller repair times than the AN/WSC-3's in the Pacific Fleet.
- 2-1.2 AVAILABILITY. The operational availability (average of .9453 and .9355 for Atlantic and Pacific Fleet, respectively) is being degraded by large down-times. The Atlantic Fleet has the largest down times and magnitude is such as to nearly overcome the Atlantic Fleets MTBF advantage. Part of the large down time observed in the Atlantic Fleet is due to it and the Supply system originally having different replacement modules lists. It is recommended that the technique described in Appendix E of Volume 7 be used in establishing replacement modules quantity and type.

2-2 HARDWARE PROBLEMS

- 2.2.1 AN/WSC-3. No 0-Level module performed significantly worse than predicted when operating time was considered. However, analysis of depot repair results indicate possible problems may be developing. Therefore, it is recommended that modules being returned to the repair depot be monitored for significantly high return rates and for low verification ratios.
- 2-2.2 SATCOM SYSTEM PROBLEMS. The maintenance of the proper power output level for SATCOM operations has been quite troublesome. The scale of the meter should be redesigned if its present application is to continue. Also, the OE-82B/WSC-1(V) steerable antenna array used on surface ships for SATCOM operations is a major problem area. There appears to be a need for (1) stressing training of WSC-3 operators in the antenna operation, and (2) corrective actions on the Scott-Tee card.

SECTION III - SYSTEM DESCRIPTION

3-1 MISSION DESCRIPTION

- 3-1.1 The AN/WSC-3 Shipboard Satellite Communication Set provides two modes of operation; line of sight (LOS) and satellite communications (SATCOM). The set will transmit and receive AM, FM, FSK and PSK signals via a UHF satellite in the SATCOM mode. In the LOS mode the set will transmit and receive signals in the 225 400 MHz range. In the line of sight mode the transmit and receive frequencies are identical, (Simplex). In the SATCOM mode the receiver frequency is offset below the transmit frequency by a programmable amount. The offset takes place automatically when switching between transmit and receive.
- 3-1.2 As the AN/WSC-3 is typically used, it is a dedicated SATCOM system operating in PSK mode exclusively at bit rates up to 9600 bits/sec.
- 3-1.3 In addition to the operational functions, the equipment also contains built-in test capabilities. The built-in test equipment (BITE) provides for a limited continuous monitor of those functions which may be checked without interference with the operational signals and manual front panel intiated tests for interrupted service type testing. The BIT permits functional testing of the communications set as well as maintenance fault isolation to the replaceable module. The status of the monitored functions and/or testing displayed on the front panel.

3-2 EQUIPMENT DESCRIPTION

- 3-2.1 The AN/WSC-3 consists of a Receiver-Transmitter and a Control Indicator. The transceiver provides 100 watts for FM voice FSK, and PSK data communications and 30 watts AM for narrowband voice, or secure voice when used in conjunction with the TSEC/KY-8. The communications set includes an internal modem for transmission and a reception of 75 baud teletype and 300, 1200, 2400, 4800, and 9600 baud digital data and an external Radio Set Control unit for remote operation. The transceiver is entirely solid state and provides for operation on 7000 channels in the 225 to 399.975 MHz frequency band with 25 KHz channel spacing. Frequency selection is accomplished either through a manual thumbwheel 7000 channel selector or through a preset memory. Any 20 of the 7000 channels may be programmed into the preset memory. A 70 MHz provision has also been included to permit the use of an external modem in the place of the internal modem. The AN/WSC-3 requires 115/230 Vac 60 Hz at a maximum of 11 amperes.
- 3-2.2 The submarine installations use a double disk-cone omnidirectional antenna on an extendible boom. Surface ships use two OE-82B/WSC-1 trainable arrays, one fore and one aft, linked to the ship's gyro system to hold their orientation (see Figure 3-3.1). The AN/WSC-3 is typically located in a radio room below deck in an air-conditioned environment. The communications set is rack mounted and slides open forward for adjustment and module replacement. A small remote control box is used if manual remote control is desired. Maintenance is normally performed by radio room personnel using the built-in-test equipment (BITE) features of the set. Repair is by module replacement.
- 3-2.3 Control of the communications set may be attained either at the front panel or through the remote control unit. The remote control unit has provisions for a handset, selection of any of the 20 preset channels, and selection of the type of modulation. It also contains a handset volume control and has lamps to indicate operating conditions.

FIG 3-3.1 AN/WSC-3 SHIPBOARD INSTALLATION

SECTION IV - RELIABILITY MODEL

4-1 RELIABILITY BLOCK DIAGRAM

- 4-1.1 BY O-LEVEL REPLACEMENT MODULES. Figure 3-4.1 lists all the AN/WSC-3's O-Level replacement modules by reliability block number with the following information: nomenclature, reference designation, manufacturer's stock number, national stock number, predicted (MIL-HDB-217) failure rate provided by manufacturer, and number used. Considering only on time (no difference between receive and transmit effects), the reliability block diagram for the AN/WSC-3 is those modules connected in series.
- 4-1.2 BY MODES. If the reliability by modes is desired, then only the 0-Levels in that mode are included in the reliability block diagram. Further if it is desired to consider the difference between transmit and receive effects, the 0-Level involved in each must be specified. Figure 3-4.2 gives the modules involved in the receive and transmit functions for the AM, FM, FSK and PSK modes. The reliability block diagram for each mode is these 0-Levels connected in series.

4-2 MAINTAINABILITY MODEL

4-2.1 The mathematical model for each mission (mode) reliability is as follows:

$$R = R_R \cdot R_T$$

$$= \exp[-\lambda_R t_R] \cdot \exp[-\lambda_T t_T]$$
(2)

where is the sum of the failure rates of the O-Level modules involved in the receiving function and tris the time involved in receiving and triangle are the same but for the transmit function. Equation (2) assumes each O-Level module's failure rate follows an exponential distribution.

4-3 COMPUTER PROGRAM

4-3.1 The above model was programmed in "BASIC" computer language for the AM, FM, FSK and PSK modes. Using this computer program, the mission reliability and MTBF can be calculated for various mission times with various allocations of receive and transmit time. Figure 3-4.3 presents the results of running this program for missions times of 500 and 1000 hours with 10% transmit time and 90% receive time. The failure rates used are those given in Figure 3-4.1.

Weliability Slock Number	Nomenclature	Ref. Desig.	Manufacturers Stock No.	National Stock No.	Failure Rate/10 ⁶ HR	No. Used
100	35	A1A2	03-03236-001	46-6110-01-014-3840 46-5820-01-021-6135	45.0694	
93	Preset Switch Assy	A1A20	03-0238-001	46-5820-01-021-6133	11.4359	
905	Frequency STD Synthesizer	A1A23	69-00274-002 03-02910-002	46-5820-01-025-4076	1.0000	
900	Control Convtr	A1A9	03-03237-001	46-5820-01-021-6439	10.7709	-
202	T/R Switch	A1A21	03-02911-001	46-5820-01-021-6445	3.4350	
60	Transmitter	AIAI	03-02846-001	46-5820-01-021-6131	64.3791	
010		A1A18	03-03290-001	46-5820-01-008-2160	13.8527	-
=	Second Mixer	A1A17	03-03288-001	46-5820-01-008-6154	11.2579	_
112	Voltage Cont Osc.	A1A22	73-00045-001	4G-5820-LL-HHA-2038	13.9649	
13	AM Detector	AIAIA	100-21510-19	4G-5820-01-025-4086	15 4407	
115	FM/PSK/FSK Demod	ATATO	03-02907-001	4G-5820-LL-HHA-2017	27.0102	_
910	Main IF Amp	A1A16	61-01514-001	4G-5820-LL-HHA-2025	14.1097	-
711	Data IF Mixer	A1A13	61-01518-001	46-5820-01-021-6413	4.1391	-
	PSK Detector	A1A7	03-03227-001		33.2712	_
		A1A12	61-01785-001	46-5820-01-021-6137	13.9649	-
	FSK Detector	A1A4	03-02898-001	46-5820-01-021-6132	13.6830	_
	Data Buffer	A1A19	03-03223-001	46-5820-01-021-6138	3.7273	-
	PSK RCV Logic	A1A3	61-01784-001	46-5820-01-021-6134	10.3719	-
123	CMT LO	ATA5	61-02076-001	46-5820-01-013-6190	13.7531	-
124	Wiring		None	None	0.005	
52	Chassis		None	None	0.005	
92	BITE Module	AIAII	100-02510-19	46-5820-01-021-6136	373.487	-

AN/WSC-3 O-LEVEL MODULES FIGURE 3-4,1

AM MISSION

FM MISSION .

Receive	Transmit	Receive	Transmit
R026	R026	R026	R026
001	001	001	001
002	002	002	002
007	007	007	007
024	024	024	024
025	025	025	025
005	009	005	009
019	800	019	800
- 021	005	021	005
010	019	010	019
003	021	003	021
004	006	004	006
011	010	011	010
016		016	015
012		012	
017		017	
018		018	
014		014	

FSK MISSION

PSK MISSION

Receive	Transmit	Receive	<u>Transmit</u>
026	026	026	026
001	001	001	001
002	002	002	002
007	007	007	007
024	024	024	024
025	025	025	025
005	009	005	009
019	800	019	800
006	005	006	005
010	019	010	019
004	021	004	021
011	006	003	006
016	010	011	010
017	015	016	015
018		012	023
020		017	
022		018	
021		020	
		022	
		021	

77/03/28. 15.49.23. PROGRAM RMDD9

TYPE MISSION TIME IN HOURS ? 500 TYPE PERCENT OF MISSION TIME TRANSMIT ? 10 TYPE PERCENT OF MISSION TIME RECEIVE ? 90 FOR AM, FM, FSK, OR PSK TYPE 1, 2, 3, OR 4 ? 1 TOTAL RELIABILITY FOR AM MISSION MISSION MTBF= 2567.95 TYPE Y TO CONTINUE ? Y TYPE MISSION TIME IN HOURS ? 500 TYPE PERCENT OF MISSION TIME TRANSMIT ? 10 TYPE PERCENT OF MISSION TIME RECEIVE ? 90 FOR AM, FM, FSK, DR PSK TYPE 1, 2, 3, DR 4 3 5 TOTAL RELIABILITY FOR FM MISSION .916049 MISSION MTBF= 2377.75 TYPE Y TO CONTINUE TYPE MISSION TIME IN HOURS ? 500 TYPE PERCENT OF MISSION TIME TRANSMIT ? 10 TYPE PERCENT OF MISSION TIME RECEIVE ? 90 FOR AM, FM, FSK, OR PSK TYPE 1, 2, 3, OR 4 ? 3 TOTAL RELIABILITY FOR FSK MISSION .907506 MISSION MTBF= 2327.74 TYPE Y TO CONTINUE TYPE MISSION TIME IN HOURS ? 500 TYPE PERCENT OF MISSION TIME TRANSMIT ? 10 TYPE PERCENT OF MISSION TIME RECEIVE ? 90 FOR AM, FM, FSK, OR PSK TYPE 1, 2, 3, OR 4 TOTAL RELIABILITY FOR PSK MISSION .892357 MISSION MTBF= 2141.28

TYPE Y TO CONTINUE ? 4 TYPE MISSION TIME IN HOURS ? 1000 TYPE PERCENT OF MISSION TIME TRANSMIT ? 10 YPE PERCENT OF MISSION TIME RECEIVE ? 90 FOR AM, FM, FSK, OR PSK TYPE 1, 2, 3, OR 4 .844555 TOTAL RELIABILITY FOR AM MISSION MISSION MTBF= 2567.95 TYPE Y TO CONTINUE ? Y TYPE MISSION TIME IN HOURS ? 1000 TYPE PERCENT OF MISSION TIME TRANSMIT ? 10 TYPE PERCENT OF MISSION TIME RECEIVE ? 90 FOR AM, FM, FSK, OR PSK TYPE 1, 2, 3, OR 4 ? 2 TOTAL RELIABILITY FOR FM MISSION .839145 MISSION MTBF= 2377.75 TYPE Y TO CONTINUE ? Y TYPE MISSION TIME IN HOURS ? 1000 TYPE PERCENT OF MISSION TIME TRANSMIT ? 10 TYPE PERCENT OF MISSION TIME RECEIVE ? 90 FOR AM, FM, FSK, OR PSK TYPE 1, 2, 3, OR 4 TOTAL RELIABILITY FOR FSK MISSION .823568 MISSION MTBF= 2327.74 TYPE Y TO CONTINUE ? Y TYPE MISSION TIME IN HOURS ? 1000 TYPE PERCENT OF MISSION TIME TRANSMIT ? 10 TYPE PERCENT OF MISSION TIME RECEIVE ? 90 FOR AM, FM, FSK, DR PSK TYPE 1, 2, 3, DR 4 TOTAL RELIABILITY FOR PSK MISSION .796301 MISSION MTBF= 2141.28 TYPE Y TO CONTINUE ? N

SECTION V - PROBLEMS

5-1 AN/WSC-3

- 5-1.1 SPECIFIC MODULES. No module level problems were definitely identified. Two modules showed high failure rates in the Pacific FRAP Sample but not in the Atlantic and not in the population as a whole (based on depot data). Four modules were identified from depot data as high return rate items. None of these showed up as problems in the field study. It is concluded that the four depot identified problem areas are not severe enough to be considered significant problems when equipment operating time is considered. The two Pacific problem areas are probably related to start-up since the Atlantic Fleet, which has more SATCOM experience, had no problem with these modules.
- 5-1.2 GENERAL. The following problems were discovered during discussion with Fleet and depot repair personnel:
- (1) FORM 1483. It was discovered that incoming inspectors at the depot repair facility were pulling and discarding the DD Form 1483, which calls out the reason for return. This forced repair technicians to work blind and resulted in some problems not being found. This practice has been halted and the Fleet symptomatic information now accompanies the returned module to the test/repair station.
- (2) MODULE ADJUSTMENTS. Some modules have returned to depot maladjusted but otherwise fully functional. Adjustments made at depot are now being "Glyptol-ed", i.e., secured with a dot of waxy paint. This prevents movement during handling and discourages knob twiddling in the field.
- (3) INTERCHANGEABILITY. Comments from Fleet users which were confirmed by the check-out technician at Charleston indicate that some inter-reaction problems exist such that not all modules are truly interchangeable. Some will not work in one radio set but will function fine in another.
- (4) DEPOT TEST CORRELATION. Modules from the AN/WSC-3 are tested at depot repair on test stands using jigs to hold the module and various signal sources and loads to simulate operating conditions. This is standard practice and is valid, so long as correlation is established and maintained between simulation and field performance. Indications from depot data and Fleet inputs are that a correlation problem exists.
- (5) STANDARDIZATION OF LEVELS. Verbal comments picked up during FRAP field trips indicates that a problem exists in the area of signal level standardization. Apparently the tolerances utilized during manufacturing and repair are excessive. The Phase Shift Keyed (PSK) detector module, for example, shows a low verification ratio. Symptomatic remarks accompanying the returns clearly detail the observed problems: "Module not locking on at the prescirbed level of -3VDC" and "Too high a voltage shift, (when measured on the oscilloscope) between 1200, 2400, and 4800 BPS". These failures were not confirmed at the Repair Depot. Opinions were expressed that these PSK modules are being set too close to the spec limit at the factory. This situation apparently is happening elsewhere and Fleet users feel it is necessary to attempt to "touch up" the adjustments on the modules (see (2)). Merely tacking the factory settings with Glyptol will not succeed if those settings are wrong.

5-2 SATCOM SYSTEM PROBLEMS.

- 5-2.1 RF POWER OUTPUT LEVELS. The AN/WSC-3 was designed to output up to 100W (+20dbW or +20dB in a 50 ohm system) in PSK mode. The SATCOM satellite has been found to be quite susceptible to cross-talk from excessively high signal levels. The trainable array used by surface ships has roughly 10db (ten times) gain so that a ship might output as much as 1,000 Watts of RF power at the satellite. SATCOM control has directed shipboard users to transmit between 0.5 and 1.25 W total output power, which is between -9 and -13 dB at the set. The AN/WSC-3 required circuitry modifications to operate at these very low power levels (between 0.05 and 0.125W output). The power output meter, which has a standard logarithmic scale, is reading in the highly compressed part of its scale at -9 to -13 dB. As the user on the USS JOUETT, CG-29, put it, "It is felt a better system should be devised to give a more accurate output db reading. The present system is more like setting up a range than setting one level".
- 5-2.2 TRAINABLE ANTENNA. The OE-82B/WSC-l steerable array has become an unexpected major problem. It has been previously deployed with the AN/WSC-l and should have been thoroughly shaken down. However, comments from users indicate that the antenna steerable mount control system is a headache. FRAP has no estimates of the mount's performance parameters since FRAP was not authorized to collect data on it (although some users sent comments and several unloaded at FRAP interviewers). The Scott-Tee card was frequently mentioned as a problem. Replacement cards were said not to hold up and often failed shortly after installation. A thermal run-away condition was identified on one OE-82B System card by MOTU-l at Pearl Harbor. Other thermally related problems are suspected since one Pacific user complained that the control system "went wacky after 10 minutes of op time". NESEC Charleston put forth the opinion that part of the problem is related to training, saying that AN/WSC-3 users get virtually no training on the OE-82 mount while the AN/WSC-1 users did get training and had no problems.

SECTION VI - CORRECTIVE ACTIONS

- 6-1 AN/WSC-3 PROBLEM MODULES
- 6-1.1 No module was conclusively determined to be in need of corrective action.
- 6-2 SATCOM SYSTEM PROBLEMS.
- 6-2.1 TRANSMIT POWER LEVEL. An systems level operations problem exists in re-establishing after maintenance the proper output power level for SATCOM operation. Refer to 9-3.2 for a discussion of the problem.
- 6-2.2 STEERABLE ANTENNA. The OE-82B/WSC-1(V) steerable antenna array used on surface ships for SATCOM operations is a major problem area. Need for corrective action seems to be indicated for the Scott-Tee card based on Fleet narrative comments. Also, training of AN/WSC-3 operators on the OE-82 mount should be stressed.
- 6-3 AN/WSC-3 GENERAL.
- 6-3.1 Although the problems described in paragraph 5-1.2 are not of a magnitude to cause 0-Level modules to perform worse than their predicted (piece-parts) MTBF, it is recommended that the modules returned to the repair depot be monitored (1) for significantly high return rate by the structured analysis technique, and (2) for low verification ratios.

SECTION VII - COST - BENEFITS

7-1 AVAILABILITY

- 7-1.1 ESTIMATED PACIFIC AND ATLANTIC FLEET. Using the assumed exponential distribution for failure rates and the log-normal distribution for down times for the AN/WSC-3's in the Pacific Fleet, it is estimated that the mean and median availability in the Pacific Fleet is .9355 and .9840, respectively. Then using the assumed exponential distribution for failure rates and the log-normal distribution for down times in the Atlantic Fleet, it is estimated that the mean and median availability in the Atlantic Fleet is .9453 and .9858.
- 7-1.2 SPARING EFFECT. When an item is vital to the mission, it is often duplicated in dual or even triple installations. Figure 3-7.1 shows the increase in availability obtainable using dual or triple installations. This family of curves could be continued but a diminishing return on investment is already apparent with the third installation. These curves are generalized and apply to any equipment with exponential failure and down time rates. For a 60 day mission of the AN/WSC-3, the greatest potential improvement is shown to be for the Pacific Fleet's equipment due to its lower MTBF.
- 7-1.3 RMA PARAMETER IMPROVEMENTS EFFECTS. Figure 3-7.2 and Table 3-7.1 addresses the sensitivity of the AN/WSC-3 availability to independent changes in MTBF, MTTR, and MDT. It is readily apparent that availability is much more sensitive to improvements in MTBF and MDT than to improvements in MTTR. Additionally, the magnitude of improvement in availability is similar for the same magnitude of improvement in MTBF and MDT. Improvements in MDT can be made at less cost than improvements in MTBF. The former can be accomplished through optimum use of spares as discussed in Appendix E, FRAP TECHNOTE, ALLOWANCE PARTS LIST OPTIMIZATION: AN/WSC-3 SATELLITE COMMUNICATIONS SET.

3-15

TABLE 3-7.1 AN/WSC-3 OPERATIONAL AVAILABILITY IMPROVEMENT

 $A_0 = MTBF/(MTBF + MDT)$

Observed: MTBF = 3770 assuming exponential, MTTR = 4.0 assuming exponential MDT = 104.1, median DT = 15.2, assuming log-normal.

RELIABILITY IMPROVEMENT

F _I	MTBF	MDT	A _o	<u>U</u>
1	3770 7540	104.1 104.1	.973 .986	.027
4	15,080 37,700	104.1	.993	.007

MAINTAINABILITY IMPROVEMENT

FI	MTBF	MTTR	MDT	Ao	<u>U</u>
ī	3770	4.0	104.1	.973	.027
2	3770	2.0	102.1*	.974	.026
4	3770	1.0	. 101.1*	.974	.026
10	3770	.4	100.5*	.974	.026

*164.1 - MTTR

LOGISTIC IMPROVEMENT

FI	MTBF	MTTR	MDT	Ao	ū
1	3770	4.0	104.1	.973	.027
2	3770	4.0	54.0*	. 986	.014
4	3770	4.0	29.0*	.992	.008
10	3770	4.0	14.0*	.996	.0037

 $*((104.1-4.0)/F_{I}) + 4.0$

SECTION VIII - SPECIFICATION REQUIREMENTS

8-1 RELIABILITY

8-1.1 ELEX-C-168 COMMUNICATIONS SET, SATELLITE AN/WSC-3, dated 4 December 1973, states in paragrpah 3.2.1, "The set, including built-in-test equipment, shall have a minimum acceptable MTBF (θ_1 as defined by MIL-STD-781) of 1500 hours". In ADDENDUM 2, dated 24 April 1974, in paragraph 4.7.1, this requirement is amplified as follows: "Production reliability testing shall be performed in accordance with Test Plan VIII, Test Level C of MIL-STD-781..." Under Test Plan VIII, the descrimination ratio is 2.0 which makes the specified value, θ_0 = 3,000 hours. The 0-Level specified rates used in this report are predicted piece-parts (MIL-HDB-217) rates developed by the manufacturer. Using these rates the predicted MTBF of the system is 2678 hours.

8-2 MAINTAINABILITY

8-2.1 The above specification in paragraph 3.3.1 states, "The equipment shall have an equipment repair time of not more than 10 minutes when corrective maintenance by module replacement is performed". The implication is that fault location, isolation, and troubleshooting time is in addition to the specified module replacement time. "Equipment repair time" (ERT) as referred to in the specification will be taken to mean the median of reported repair times per MIL-E-16400.

SECTION IX - FLEET DATA ANALYSIS

9-1 DATA COLLECTION

9-1.1 During the nine months FRAP data collection period, AN/WSC-3 failure data were reported on OPNAV 4790/2K forms by participating FRAP platforms. Thirty-seven sample equipments were initialized by FRAP teams during the months of June and July 1976 and terminated during April and May 1977. These samples were distributed between the Fleets as follows: 16 samples in the Atlantic on 13 platforms inclusive of aircraft carriers, destroyers, frigates, submarines, and auxiliary craft; 21 samples on 14 platforms in the Pacific inclusive of destroyers, frigates, submarines, and auxiliary craft.

9-2 COMPUTER ANALYSIS.

- 9-2.1 RMA ANALYSES. These analysis and the computer output are described in Appendices C and D. Basically the outputs consist of:
 - (1) Graphs showing:
- a. The fit of best fitting probability distribution to FRAP observed times.
- b. The fit of other distributions tried. These are given for system time-to-failure, repair and down times.
 - (2) Tabulation of observed data for time-to-failure, repair, and down times.
- (3) Observed frequency distribution and associated goodness of fit tests and confidence limits for the above parameters.
 - (4) Confidence intervals on the O-level parts which failed.
- (5) Summaries of 2K froms where problems were detected in either failures or repair time.
 - (6) Values for inherent and observed (predicted operational) availability.
- 9-2.2 SUMMARY. These analyses were performed on (1) all the WSC-3's on Atlantic Fleet platforms, and (2) all the WSC-3's on Pacific Fleet platforms; and, all these sample WSC-3's combined. The results of these analyses are summarized in Table 3-9.1
- 9-2.3 PARAMETER ASSESSMENT. RMA Fleet parameters are discussed below:
- (1) RELIABILITY. Presently the Atlantic Fleet's operational MTBF (estimated to be 8620 hours) is significantly greater than the Pacific Fleet's operational MTBF (estimated to be 2092 hours) at the 80% confidence level as illustrated by the non-overlapping confidence intervals. One factor contributing to this difference is the extra learning experience of the Atlantic Fleet. The Atlantic Fleet had the opportunity to use the AN/WSC-3 on a limited use (near end-of-life) satellite before

TABLE 3-9.1 SUMMARY OF COMPUTER ANALYSIS

Total Equipment Operating Time	ATLANTIC 77,580	PACIFIC 54,385	COMBINED 131,965
Total Equipment Calendar Time	110,445	92,616	203,064
Duty Cycle	.702	.587	.650
No. of Operational Failures	9	26	35
Estimated Operational MTBF	8,620	2,092	3,770*
80% Confidence Interval	5,461-14,281	2,758	3,008- 4,770*
Estimated Median Specified MTBF	5,974 3,000	1,450 3,000	
Predicted (MIL-HDB-217) MTBF	2,678	2,678	
Estimated Operational MTTR 80% Confidence Interval	2.2 1.3-2.4	4.9 3.7-6.7	4.0 3.2-5.2
Estimated Median Specified Repair Time	1.8 .17	3.4 .17	2.8
Estimated Mean Down Time	168.6	75.2	
80% Confidence Interval Estimted Median	8.4-78.3 25.6	6.4-23.0 12.1	8.9-21.2 15.3
Estimated Mean Operational Availability	.9453	.9355	. 9052
Estimated Median Operational Availability	. 9858	. 9840	. 9839
Estimated Inherent Availability Specified Inherent Availability	. 9997 . 9999	.9977 .9999	.9992 .9999

^{*}For Exponential Distribution

SATCOM was launched. The Pacific Fleet acquired satellite access about the time FRAP was implemented. The duty cycle of .702 in the Atlantic and .587 in the Pacific could be reflective of this learning process. When the equipments from the Atlantic and Pacific Fleets are combined, a Weibull distribution with \$\beta=.654\$ and a mean of 5221 hours is obtained. However, it is believed that this resultant Weibull is due more to the difference between Fleets than a decreasing failure rate. Thus, the exponential estimate of 3770 hours appears to be more appropriate than the Weibull estimate. Even this estimate should be used with caution due to the significant difference of Fleets.

In order to determine whether the Fleet is meeting the specified and predicted MTBF exponential estimates given in Table 3-9.1 must be converted to equipment MTBFs. This is accomplished by using the verification ratio of .86 which is an estimate (based upon depot repair) of proportion of equipment failures contained in the operational failures (paragraph 10-1.3). Using this ratio, the estimated equipments MTBF's for the Atlantic, Pacific, and combined Fleets are 10,023, 2433, and 4384 hours, respectively. With these estimates, the Atlantic and combined Fleets equipment meet the specified MTBF of 3000 hours and the predicted (MIL-HDB-217) MTBF of 2678 hours. However, in order to determine if the Atlantic Fleet's equipment meets these values, the confidence interval given in Table 3-9.1 for the Atlantic Fleet needs to be converted to equipment reliability. Using the verification ratio, the Atlantic Fleet's equipment MTBF is estimated to be between 1870 and 3207 hours. As the specified and MIL-HDB-217 predicted MTBF's are within this interval, the Atlantic Fleets equipment is considered to be meeting these values.

- (2) MAINTAINABILITY (REPAIR TIME). The learning curve effect seen in the MTBF values also shows up in the MTTR observations. The Pacific users show an MTTR of 4.9 hours with a median of 3.7 hours. The Atlantic users show an MTTR of 2.4 hours with a median of 1.9 hours. The 90% lower limit on the Atlantic median is about 1.3 hours. In view of the fact that fractional hour repair times are not reported, i.e., the smallest reportable repair interval is one hour, the 1.3 hour median value is judged to be in substantial compliance with the specified 10 minute equipment repair time (ERT). It is expected that the Pacific users of AN/WSC-3 systems will ultimately show maintenance performance levels very similar to that of the Atlantic users.
- (3) MAINTAINABILITY (DOWN TIME). The learning curve effect is not readily apparent in the observed down times. The Atlantic Fleet had a mean down time of 168.6 hours with a median down time of 25.6 hours whereas the Pacific Fleet had a lower mean down time of 75.2 hours and a lower median down time of 12.1 hours. However, one reason for the Atlantic having the greater down times is that Atlantic Fleet users originally had a list of replacement modules which was different from the Supply system's list.
- (4) AVAILABILITY. The inherent operational availability (MTBF/(MTBF + MTTR)) for both the Atlantic and Pacific Fleets is very near that obtained when using the specified MTBF and repair time. The estimated mean operational availability (mean of TTF/(TTF + DT) ratios) for all WSC-3's in the Atlantic Fleet is .9453 and for the WSC-3's in the Pacific Fleet is .9355. The median for the Atlantic Fleets WSC-3's is .9858 and for the Pacific Fleets WSC-3's the median operational availability is .9840. Thus, the operational availability is similar for both Fleets.

30

- 9-2.4 PROBLEMS IDENTIFIED. The following modules were indicated as being significant problem areas:
- (1) FREQUENCY STANDARD MODULE A1A23. This module is a sealed unit containing a crystal oscillator circuit inside a temperature controlled oven. This oscillator generates the 5MHz reference signal that is used to generate all heterodyne signals used in the radio. This module was not a problem in the Atlantic Fleet (no replacements) but was replaced three times in the Pacific Fleet. Those modules have yet to appear at the depot repair facility.
- (2) PHASE SHIFT KEYING TRANSMIT LOGIC MODULE A1A5. The PSK transmit logic module is the formatting section of the transmitter. It has four straps (a kind of simple electrical switch in which a conductive link is used to bridge conductors to select the desired path. Straps are usually held in place by screws) which select the desired modulation options. It is known that some modules reached the Fleet incorrectly strapped. Since the user does not normally switch straps, several of these modules were turned in as faulty. The Atlantic Fleet had no PSK transmit logic failures; the Pacific Fleet had four.

9-3 FLEET NARRATIVE DATA.

- 9-3.1 GENERAL. The SATCOM system which used the AN/WSC-3 has been very, very favorably received by the operating level Fleet user. Interview comments were overwhelming positive even on platforms that had lengthy delays in getting power level adjustments (see 9-3.2). One FRAP submission from the USS MORTON, DD 948, contains the remark, "WORKS LIKE A CHAMP", which seems to sum up the Fleet's feelings about the AN/WSC-3. This is not to indicate that problems did not occur. For example, a SNAFU resulted in Atlantic users having one list of numbers for replacement modules while the supply system had another; neither had both. Until that was ironed out, Fleet support organizations ran an "underground railroad" in spare modules. The effect of that misunderstanding remains in the supply system computer which (incorrectly) shows virtual no demand for AN/WSC-3 modules for a sizeable part of calender year 1976. Since future sparing levels are determined by a computer algorithm based on past demand, this problem could return to haunt the Fleet at a later time.
- 9-3.2 POWER LEVELS. The AN/WSC-3 is designed to work on submarines and surface ships in Line-Of-Sight (LOS) mode on a 'Odb gain antenna. The shipboard trainable antenna has roughly 10db of gain. This extra gain on the transmit end coupled with a less than expected power level tolerance at the receiving end (the satellite) have combined to cause shipboard AN/WSC-3 users considerable problems. At first the radio set would not operate at power levels low enough for satellite use. Modification to the automatic shutdown circuitry allowed operations in the subzero DBW (1 watt into 50 ohms) range with -13 dBW being typical. Coordination problems with the shore-based SATCOM control stations resulted in lengthy delays in setting transmit power levels. Further, the meter on the AN/WSC-3 is inadequate in the range below -10 DBW of output power, since the scale there is highly compressed a small needle movement represents a sizable power shift. When a radio is tested, repaired, or otherwise disturbed, it is difficult to re-establish the proper output. Submittals indicate that the "proper" power setting varies from day to day and

operator to operator at SATCOM Control. Suggestions for improvements have ranged from replacing the power meter with a physically larger unit to providing an additional power range setting on the meter function switch. Some better means of power level indication (even a "Go-No-Go" light at the "proper" level) such that the lengthy adjustment sequences with SATCOM Control can be minimized is definitely required.

9-3.3 TRAINABLE ANTENNA. The trainable array antenna used by the AN/WSC-3 in satellite link operations aboard surface ships has been a major headache to SATCOM users. Although not part of the FRAP field study, Fleet users were as quick to complain about the antenna, a Collins Radio OE-82B assembly, as they were to praise the AN/WSC-3 radio set. The Scott-Tee card in particular was mentioned again and again as a weak link. The user on one platform told FRAP interviewers that they had one Scott-Tee card that worked that they were swapping it between antenna mounts each time the ship turned. Replacement cards for the second mount simply did not stand up. In other cases, it appears that training is a contributing factor to the situation. The technicians are given the impression during AN/WSC-3 schooling that the antenna mount system is simple with nothing to worry about. It is not simple. Accurate estimates of antenna system operational performance parameters are not available since FRAP was not tasked to collect data on it.

SECTION X - ANALYSIS OF DEPOT DATA

10-1 BACKGROUND

10-1.1 The AN/WSC-3 is manufactured by Electronic Communications, Inc., a subsidiary of National Cash Register (NCR) located in St. Petersburg, Florida. Depot repair for AN/WSC-3 modules is conducted at the contractor's facility. A record of those repair actions forms the basis of this analysis.

10-1.2 STRUCTURED ANALYSIS. FRAP has developed a failure ranking technique useful for locating field problems as evidenced by their module return rates. This method takes into account both the numbers of each module used in a system and the complexity of each module. A problem is evidenced by an observed return rate which is significantly larger than the expected return rate. To measure this significance, a Poisson Test of Means is used. The results of this test are expressed in percent and represent the probability that the observed return rates and the expected return rates are truely different, In FRAP, 95% significance (probability) was chosen as the trigger point for followup study.

10-1.3 VERIFICATION RATIO. For each of the 95% + significant module, a verification ratio was calculated using:

$$V = (N_1 + N_2/2)/N$$

where:

N, = Number of failures confirmed at depot repair

No = Number of failures not cofirmed at depot repair

 $N = N_1 + N_2 = Total$ number of resolved fleet failures

This equation states that it is an even chance that an unconfirmed failure did, in fact, malfunction in the Fleet. Verification ratios range between 0.50 and 1.00 with 0.85-0.90 being average. High verification ratios tend to indicate easily located problems such as catastrophic failures, while low verification ratios tend to indicate the presence of some unusual factor such as thermal problems, training or technical manual short comings, or problems in test procedures.

10-2 FINDINGS.

10-2.1 OVERALL. Five modules (four and the chassis) were found to be significant at the 95% + level. These are discussed in the following paragraphs.

10-2.2 CONTROL CONVERTER, MODULE AlA9. The control converter is an interface module that accepts digital information from the remote control box (or a computer) and the front panel. This information is digitally converted into the form and format need by the control circuits of the radio. The control converter is 97.23% significant on 9 returns showing a verification ratio of 0.78, which is low. Transistor designated "Q3" was replaced 5 times. One of the "not verified" repairs noted "updated to revision C". No other pattern is apparent.

- 10-2.3 AMPLITUDE MODULATION DETECTOR, MODULE AlAl5. The AM detector receives the output of the main Intermediate Frequency (IF) amplifier, AlAl6, and extracts the AM signal information for output to the audio stages. This module also generates the Automatic Gain Control (AGC) voltages that are used by the receiver front end module, AlAl7, and the IF amplifier, AlAl6. The AM detector is 97.95% significant on 12 returns showing a verification ratio of 0.96, which is high. Capacitor designated "C23" was replaced five times. Spacers were inserted four times. Two repairs reports contain the phrase "updated to revision G". The capacitor designated "C23" is an interstage coupling capacitor which is protected from excessive voltage spikes by several resistors. It is unlikely that the capacitor is failing from overstress. A materials problem is indicated.
- 10-2.4 MAIN INTERMEDIATE FREQUENCY AMPLIFIER MODULE A1A16. The main IF amp provides the bulk of the signal amplification and filtering in the radio set. This module is actually two IF amplifiers, a wide band and a narrow band unit. One or the other is disabled by control signals. The IF module also performs signal blanking under control of the blanking module, A1A17. The IF module is 98.91% significant on 12 returns showing a verification ratio of 0.83, which is average. There are four cases of the replacement of filter "FL-2", a narrow band bandpass crystal filter manufactured by ECI. Twice the comment was made, "open", which could indicate a catastrophic failure, such as a crystal fracture, or the shift of the pass band such that the IF signal no longer can pass through. No other pattern is apparent.
- 10-2.5 DATA BUFFER MODULE A1A19. The data buffer provides amplification, signal control, and level conversion for the output Frequency Shift Keyed (FSK) or Phase Shift Keyed (PSK) data and clock signals. The data buffer is 99.99% significant on 8 returns showing a verification ratio of 0.75, which is very low. Microcircuit "U4", a quad 2 input NAND gate was replaced 3 times for crosstalk. The schematic shows U4 as handling (through separate gates) the receive clock, the transmit clock, and received data. It is noted that the three U4 replacements also contained the note "Revision B", which is taken as an indication that the problem has been recognized and a fix formulated. No other pattern is apparent.
- 10-2.6. CHASSIS. The chassis includes the metal box, connectors, cables, etc. that are required to physically support and electrically interconnect the other modules. The chassis is 100% significant on one failure showing a verification ratio of 0.50. The failure was not confirmed.

10-3 FAILURE ANLAYSIS .

- 10-3.1 A1A5C23 AND A1A5C26. Capacitors C23 and C26 from PSK transmit logic module serial number B-49 taken from the USS MONTICELLO, LSD-35, are Sangamo type CMR4E-680J0. Visual examination shows the leads to be broken off adjacent to the molded case (see Figure 3-10.1). The capacitors passed electrical tests and were deemed to be good. The leads were broken as a result of mechanical over stress.
- 10-3.2 A1A15C22, A1A15C23, AND A1A15C24. Capacitors C22, C23, and C24 from the AM detector module in AN/WSC-3 serial number B-144 aboard the USS HAWKBILL, SSN 666, are Westcap .0015 UF 50V type 74J0J152-3 units. The complaint was, "can not set squelch". The depot repair technician commented, "can not verify customer's reject

but (am) changing C22, C23, and C24. This is a common intermittent problem. ECI has changed vendors to correct the problem." The capacitors looked good visually, checked good on X-ray, tested good at 50V and 200V with no intermittent opens or shorts, and were deemed to be good. (See Figure 3-10.1).

10-3.3 RELAY AIAIKI. AN/WSC-3 serial number B219 failed with the following complaint: "will not transmit data". An armature relay manufactured by ECI was found defective and was replaced. Electrical tests showed a failure at pins B1, B2 and B3. Removal of the case disclosed welded contacts between pins B2 and B3. The type of melting observed (see Figure 3-10.2) required an estimated 5 amperes of current, which is a gross overload for this relay.

10-3.4 MICROCIRCUIT AIABUI. AN/WSC-3 serial number B144 aboard the USS HAWKBILL, SSN 666, failed with the complaint, "Incorrect frequency output from synthesizer AIAB". Depot repair isolated the problem to the frequency scaler board and replaced the microcircuit designated "UI", manufactured by Collins Radio Company with part number 72-00141-001. This microcircuit is a hybrid film circuit on a ceramic substrate using monolithic integrated circuits ("chips") bonded to the substrate with epoxy and interconnected using hair-fine wires. The resulting hybrid circuit performs a divide-by-five frequency scaling function. The microcircuit failed electrical tests. After de-lidding (see Figure 3-10.3), visual examination disclosed a wire bond failure on pin 5 (see Figure 3-10.4). Electrical tests showed the microcircuit to be fully functional with pin 5 by- passed. Bond pull strength tests on other pins were good. The bond defect on pin 5 was judged to be the cause of the microcircuits failure. It was further judged that the failure was a chance occurrence as the bonding technique employed resulted in acceptable bonds on other pin posts.

10-3.5 CAPACITOR Alasco. During depot trouble shooting of the microcircuit problem detailed in section 10-3.4 above, depot repair also replaced capacitor C9 in the phase detector. This capacitor tested good at room temperature. The potting was removed, revealing a loose connection; the silver end cap had separated from the ceramic dielectric, see Figure 3-10.5. This kind of failure is common and is a result of improper process control and cleaning during manufacture. Although not observed at room temperature, electrical intermittents (opens) result from such bond failures. It was concluded that capacitor C9 was defective in manufacture and was probably intermittent in circuit performance.

10-3.6 TRANSISTOR A1A3Q2. AN/WSC-3 serial number B-125 aboard the USS HOEL, DDG-13, failed with the complaint, "No integrator balance". Depot repair of the receiver phase shift logic module from this set found Q2, a JAN 2N2907A transistor manufactured by National Semiconductor, to be shorting in the circuit. Analysis of Q2 showed very high leakage from collector to base during electrical tests. Examination by scanning electronic microscope after de-lidding revealed an overly long base bonding wire which was touching the edge of the chip common to the collector, see Figure 3-10.6. This type of failure is a workmanship defect which might have been screened out during visual inspection if the part had received JANTXV processing.

10-4 SUMMARY.

10-4.1 Neither of the problem modules found from the FRAP field study showed significance on depot data analysis and none of the four significant problem modules from depot analysis were identified as current problems in the Fleet. It was discovered that incoming inspection at depot repair was pulling and discarding the user submitted reason for return form. This was causing the repair technician to work blind and lowered the verification ratios on certain complex or marginal modules. As a result of gathering information for the FRAP study, this practice was found and halted. The repair technician now receives the Fleet user's comments accompanying the failed part.

Figure 3-10.1 Xray of Capacitors

Figure 3-10.2 Relay (P/N 47-00184) From Transmitter Module 1A1A1

Figure 3-10.3 Hybrid Microcircuit (U1) From Synthesizer A1A8

Figure 3-10.4 Enlargement of Pin 5 of Microcircuit U1 Above

Figure 3-10.5 Capacitor (C9) From Phase Detector Section of A1A8

Figure 3-10.6 Transistor (Q2) From Phase Shift Logic Module. Note Base Lead Touching Substrate (Collector Region)

CUMULATIVE DBSERVED DISTRIBUTION VERSUS THEORETICAL EXPONENTIAL PROBABILITY DISTRIBUTION FOR TIME TO FAILURE

ON.	89			89			89			99								~				•				+9			671	670		:	673	,		11			1	00				191			937		
HULL	>			20			>			2					2 200			FFG				FFG				25N 664				SSN			SSN			1.00			H	LST1180				22N 681			6 00		
I	٥			9			٥			u					٥			4				ı				S			S	S		•	· ·	4		-			٠	٠				S			٥		
	Z			NIMITZ			WIMIT2			NIMITZ					ADAMSACHARLES			PAGE, RICHARD L				FURER, JULIUS A				SEA DEVIL			NARWHAL	FINBACK			FLVING FISH			CORDNADO				MANITOWOC				BATFISH			DAVIS		
DIC	33661	33681	33661	33682	33662	33662	33683	33683	33683	33684	33684	33684	33694	33684	46680	08995	46580	46980	46980	46960	46980	46990	06694	46990	46990	51450	51450		51460	51520	21220		51540	20200	58500	71940	71940		73520	200190	200190	200190	200190	200440	200440	200440	521970	521970	521970
SYS	2	2	2	~	,	7	~	~	2	2	~	^	(W	7	2	2	~	N	~	7	7	~	7	~	~	~	2		2	~	~		~	,,	٠, د	. ~	~		~	2	2	2	~	2	~	2	2	~	2
	0.0	5518.9	6383.4	0.0	5518.0	6380.8	0.0	2520.0	6382.1	0.0	1667.5	2707.6	492.4	961.0	0.0	782.0	5351.3	0.0	1141.0	6031.9	6445.3	0.0	500.9	1352.8	5502,1	0.0	2265,6		0.0	0.0	3887.4		0.0	0 4	3873.0	0.0	4941.3		0.0	0.0	466.6	2102,0	2409.6	0.0	1180.9	771.8	0.0	593.1	1186.5
DUTY	000.0	026.	.971	0.000	.970	016.	00000	.970	.971	00000	066.	1.059	688.	.769	00000	.627	.881	00000	1.132	.967	.970	00000	.632	.702	,857	00000	,322		00000	00000	.52R		000.0	0000	. 503	0000	.708		00000	00000	,256	.413	.423	00000	.523	.283	00000	686.	696.
UPERATE	0.0	5518.9	6363.4	0.0	5514.0	6360.8	0.0	0.0266	6382.1	0.0	1657,5	4395.1	4887.5	5050.1	0.0	782.0	6133,3	0.0	1141.0	1172,9	7586,3	0.0	200.9	1853,7	0.6009	0.0	2265.6		0.0		3887.4		0.0	2.5	4028.8	0.0	4941.3		0.0	0.0	4000	2568,6	2876.2	0.0	1180.9	1952,7	0.0	593.1	1186,5
ETM2	0.0	6884.0	7746.5	0.0	7863.0	8725.8	0.0	0.6100	6881.1	0.0	2022.0	4759.6	5252,0	5420.6	0.0	6	3438.5	0.0	3544.1	9576.0	₹686€	0.0	1729.0	3081.8	7231.1	0.0	2797.1		4119.0	0.0	5117.4		1.60%	1258.0	5131.0	0.0	5981.4		9954.3	0.0	1068.0	3170.0	3477.6	0.0	2490.0	3261.8	0.0	1697.2	2293.0
ETM1	0.0	2.4889	7748.5	0.0	7863.0	0725.4	0	60109	6881,1	0.0	2052.0	4759.0	5252.0	5420.6	0.0	3084.9	8438.5	0.0	3544.1	0.9156	4.6866	0.0	1720.0	3081,8	7231,1	0.0	2797,1		4779.6	0	5117.4		3463.1	0.8561	5131.0	0	5981,4		9954.3	0.0	1068.0	3170.0	3477.6	0.0	2490.0	3261.8	0.0	1697.2	2290.0
ETM	1365.1	0.0	0.0	2345.0	0.0	0.0	0.664	0.0	0.0	364.5	0.0	0.0	0.0	0.0	2302.9	3087.2	0.0	2403.1	0.0	0.0	0.0	1219,1	1720.0	0.0	0.0	531.5	0.0	USED	4119.6	1230.0	0.0	0350	3463.1	7.7011		10401	0.0	USED	9954.3	601.4	1068.0	0.0	0.0	1309.1	0.0	0.0	1104.1	0.0	2290.0
013	0	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0	CORD	0	0	0	OKO.	0	0	•		0	CORD	0	٥	0	0	0	0	0	0	0	0	0
012	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0	•	0	0	•	•	0	0	0	•	T RE	0	0	0 4	-	00	00	0	0	0	T RE	0	0	0	0	•	0	0	•	0	0	0
061	0	0	0	•	0	0	0	•	0	0	22	12	0	0	0	~	0	0	•	•	0	0	2	0	0	0	0	FIRS	0	0	0	182	0	000		0	0	FIRS	0	0	•	0	0	0	18	0	•	0	666
ARA	0	0	0	0	0	0	0	0	0	0	-	-	0	•	0	-	0	0	-	0	0	•	-	0	0	0	0	ECORD-	•	0	0	רחיחי	0		• 0	0	0	-0403	•	0	-	0	•	•	-	0	0	•	-
TE	0	1053	1090	0	7053	1090	0	1053	20604	•	6252	9324	7053	1090	0	6211	7084	0	9619	1098	7115	0	6188	6265	7082	0	7087	AL RE	7116	0	7101	שר אב	1083	4334	7073		7081	AL RE	7081	0	6231	1049	1073	0	6253	1001	0	6184	9510
40	5181	1053	1090	6181	1053	7090	6181	1053	1090	6181	6252	6354	7053	1090	6119	6500	7084	6154	919	1098	7115	6155	6162	6565	7082	6120	7087	INITI	7116	6128	7191	-	7083	2010	7073	6155	1001	INITI	7081	6135	6229	1049	7073	6139	6233	1001	6120	6184	6029
"TY	0	60		0	•		0	•		•	•	•			0	3	•	•	•	•		•	•	•		0		ON		•	. 5	2	•					ON		0		3	-3	3	9	•	0		•

FLEET RELIABILITY ASSESSMENT DATA

HULL NO		986 00		00 941	
010	521970	521980	521960	522000	522000
SYS	2	~	2	7	,
11.5	4484.3	0.0	2272.0	0.0	5760.2
DUTY	. 921	00000	162.	00000	966
OPERATE	5671.3	0.0	2272.0	0.0	5760.2
ETH2	67776	0.0	7609.0	0.0	8366.3
ETHI	67776	0.0	7609.0	0.0	8366.3
FTM	0.0	5337.0	0.0	2606.1	0.0
263	0	0	0 0 0	0	0
210	0	0	0	0	0
96	0	0	0	0	•
DATE	7082 7082	6159 3	4 7119 7119	6155 0	7021 7431
TYP	*	. 0		0	7

RELIABILITY

			WSC-3 ATL	MSC-3 ATL SYSTEM LEVEL		
I'E TG FAIL	ND. FAILURES	CENSORED	SURVIVURS	CPOF	EXPONENTIAL	1AX DIFFERENCE
155.8			25.	960.	.018	,021
466.6	:		. 42	710.	.053	,05¢
500.9	-		23.	611.	950.	650.
001.0		٤.				
783.0	-	•	20.	.158	780.	170.
20.301	:-			200	124	.076
0.0811	: -		18.	245	128	.114
1186.5	: -		17.	.284	.129	.155
1687.5	::		16.	326	.178	.148
2265.6		:				
2272.0						
2409.6		:				
2707.6	:		12.	.37B	.270	901.
3873.0		-1				
3887.4		:				
4484.8		:				
4941.3		:				
5351.3		:				
5502.1		-:				
5760.2		:				
6380.8		: .				
4383.4		: :				
6445.3		: :				

RELIABILITY

#SC-3 ATL SYSTEM LEVEL

.702 DUTY CYCLE (0.4,/C.4.) = CALENDAR HOURSIC. H.) .. 110448.0 NUMBER OF FAILURES . 9. UBSERVED FAILURE MATE/U.M. . ,11601E-U3 EQUIPMENT OPERATING HOURS (U.H.) . 77580.5

DISTRIBUTION DETERMINATION.

K-S CRITICAL VALUE (.10, 9.) . .311

MAX DIFF CALC . . 155, IS LESS THAN CRITICAL VALUE THEREFORE THE EXPONENTIAL DISTRIBUTION IS ASSUMED

FOR THE ASSUMED DISTRIBUTION

5461.1. 90 PER CENT JCL FOR MEAN . 14280,941 3000.00 HOURS, THEREFORE THE EQUIPMENT MEETS THE SPECIFICATIONS EST. MEAN . 8620.056, EST. MEDIAL . 5974,967, 90 PER CENT LCL FOR MEAN . 90 PERCE'T UCL 14280,94 IS GREATER THAM

RELIABILITY MSC-3 ATL O-LEVEL SUMMARY

RELIAB	Q	2	2	Ş	NO.	YES
	782.00	1141.00	4395.10	1180.90	1667.50	1186.50
UBSCKVED FAILURE TIMES LOW HIGH	466.60	1141,00	4395,10	06.005	1687,50	155.80
SPEC *TBF	31025.00	15533,00	71608.00	30.56.00	00.41496	00.000000
UPPER 90 CONF LIM	145879.70	77580,50 736337,32	77580.50 736337.32	38790,25 145879.70	77580,50 736337,32	38790,25 145879,70 2900000,00
MEAN	38790,25	77580,50	77580,50	38790,25	77580,50	38790,25
NUMBER LEWER 90 ALLURES CONF LIM	2. 14576.50	1. 19945.31	1. 19945.01	2. 14576,50	1. 19945.01	2, 14576,50
NUPBER	2.	:	:	2.	:	.2
D-LEVEL NOMENCLATURE	SYNTHES12ER	EXCITER / PA	12 A1A22 VOLTAGE CONTROLLED OSCILLATOR	PSK DETFCTOR	PSK RECEIVE LOGIC	
EVEL K NG.	4148	1414	A1A22	18 4147	22 4143	
WRA D-LEVEL BLUCK NO.	•	•	12	1.8	22	666
N. N.	-	-	-	-	-	-

RELIABILITY

	s	CHG CABLE STRAP
	RESULT	3 9H3
	DIAGNOSTIC RESULTS	BITE 22 SW 16
	SYSTEM SYMPTON	FSK
REAS	SYSTEM	ND CPV
2K SUMMARY FOR WSC-3 ATL PROBLEM AREAS	16	00
C-3 ATL	WRA 0-L 0-L 0-L	60
FOR WS	1.0	666
SUMMARY	ER.	
3×	SYSTEM	~~
	CN	158500E01H132

4
DATA
9
_
-
-
-
ASSESSMEN
-
-
-
S
-
-
50
>
7
-
-
-
MAINTAINABIL
-
-
4
-
-
-
4
-
-
-
LEET
-
-
-

00000000000000000000000000000000000000
8000000000
REPAIR TIME (HRS) 100 100 100 100 100 100 100 100
DDWN TIME (HRS) 2.0 1.0 48.0 48.0 48.0 720.0 48.0 2.0 2.0
COMPLETION DATE 6252 6252 6354 6211 6196 6196 6226 6226 6231 623 625 625 6210 6210 6210 6210 6210
DISCOVERY DATE 6252 6254 6254 6209 6194 6162 6196 6229 6259 6259
m.o.o.o.o.o
200000000
122 222 223 243 243 243 243 243 243 243 2
1

MAINTAINABILITY (REPAIR TIME) MSC-3 ATL SYSTEM LEVEL

MAX DIFFERENCE 205 174 ,088 ,181						14.2	CHES COME 114 1.30 TO GREATER THAN MITE. THUS A MAINTAINABILITY PROBLEM EXISTS
O X W						90 PER CENT UCL ON MEDIAN .	ITY PROB
4	00+3			30		וב חכר סו	AINABIL
.195 .195 .374 .788	.4500E+00			ICAL VAL		PER CEN	A MAINT
	/HR .			E CRITI			L THUS
	DBSERVED REPAIR RATE/HR .			THAN TH		1.30	ATTH MAT
7 4 7 4 6	ED REP			S LESS		IAN .	ATER T
	DBSERV			.205		ON MEG	1S GRE
CUM FREQUENCY	•			. SALC .		90 PER CENT LCL ON MEDIAN .	1.30
5	. SHING		99.	MAX DIFF CALC 205 IS LESS THAN THE CRITICAL VALUE			CONF LT
NCA	NUMBER OF REPAIRS .		STD DEV OF LNIS .	.249 H	THEREFORE THE LUGNOPHAL DISTRIBUTION IS ASSUMED	. 1.77	TONE
FREQUENCY 3. 1.	NUMB		0EV 0F		BUTTON I		
	50.0	ION	STD	.6 .0	DISTRI	EST MEDIAN	SOLION TE
REPAIR 71ME 2.0 2.0 3.0 7.0	URS .	DISTRIBUTION DETERMINATION	.57	K-S CRITICAL VALUE (.10, 9,)	DENDERAL		
REPA	PAIR HO	TIGN 06	. S.NT	ICAL VA	E THE L		A 4778
	TOTAL REPAIR HOURS .	DISTRIBU	MEAN OF LN'S .	K-S CRIT	THEREFOR	EST MEAN . 2.22	. atte

MAINTAINABILITY (DOWN TIME)
MSC-3 ATL SYSTEM LEVEL

MAX DIFFERENCE 012 156 189 203 208	NR) - 168,56					ON MEDIAN . 78,32
LOGNORMAL . 144 . 489 . 908	OBSERVED DOWN TIME/REPAIR (TDT/NR) .			THE CRITICAL VALUE		90 PER CENT UCL DN MEDIAN .
T	9, OBSERVED DO			,208 IS LESS THAN THE CRITICAL VALUE		ON MEDIAN . 8.39
CUM FREQUENCY 3.0 4.0 7.0 7.0	NUMBER OF REPAIRS (NR) .		2.40	HAX DIFF CALC .	MED	90 PER CENT LCL ON MEDIAN .
FREQUENCY 2. 2. 1. 3.		Z	STO DEV OF LN'S . 2.40	9. 1249	ISTRIBUTION IS ASSU	EST MEDIAN . 25.63
20041 TIME 1.0 2.0 24.0 48.0 624.0 720.0	TOTAL DOWN TIME (TOT) - 1517.0	DISTRIBUTION DETERMINATION	MEAH OF LN'S . 3.24	K-S CRITICAL VALUE (.10, 9,) .	THEREFORE THE LOGNORMAL DISTRIBUTION IS ASSUMED	EST MEAN . 168.56 ES

MAINTAINABILITY (REPAIR TIME)
WSC-3 ATL D-LEVEL SUMMARY

PROBLEM	YES			YES		YES
TIMES	2.0	1.0	1.0	7.0	2.0	3.0
REPAIR	1.50	1.00	1.00	4.50	2.00	5.00
DBSERVED REPAIR TIMES LOW MEAN HIGH	1.0	1.0	1.0	2.0	2.0	1.0
SPEC	.2	•2	2.	,2	.2	.2
UPPER 90	4.11	LIMITS	LIMITS	25,73	.IMITS	66.6
CONF LIM	64.	NO CONF	NO CONF I	• 54	NO CONF LIMITS	.32
NUMBER	٠,	:	:	۶.	:	۶.
D-LEVEL NOMENCLATURE	SYNTHESIZER	EXCITER / PA	12 A1A22 VOLTAGE CONTROLLED OSCILLATOR	PSK DETECTOR	PSK RECEIVE LUGIC	
VEL NO.	5 A1A8	1414	A1422	18 A1A7	22 A1A3	
WRA G-LEVEL BLOCK NO.	2	•	12	1.8	22	666
4 4	-	-	-	-	-	-

2K SUMMARY FOR WSC=3 ATL PROBLEM AREAS

JCN	SYSTEM	# R A	1-0	7	1.0	SYSTEM SYMPTON	DIAGNOSTIC	RESULTS
033680E021386	7		22	•	•	FAULT LITE	9116	REPL LOGIC MODULE
033680E021552	2	-	12	0	0	NO XMT/RCV	B17E 5	REPLACED VCD
046680F01C081	2	-	2	0	0	DATA BK UP	NONE	REPLACED SYNTH
04698DE014782	2	-	6	•	0	NO XMT	NONE	RPL XMTR MOD
046990E21A321	2	-	18	•	0	NO DET PSK	NONE	RPL PSK DET
058500F01M132	2	1	666	0	0	NO CPY FSK	81TE 22	
2001906011232	2	-	•	0	0	XMT FREG BA	D NONE	RPL SYNTHESIZER
2004400010170	2	1	18	0	0	NO RCV PSK	NONE	RPL PSK DET
521970F01×164	2	1	666	0	•	NO RCV	SH 16	CHG CABLE STRAP

RMA SUMMARY WSC-3 ATL SYSTEM LEVEL

TTF DISTRIBUTION IS EXPONENTIAL WITH WEAN = 8620.10

2.40000 DT DISTRIBUTION IS LOGNORMAL WITH MEAN OF LNS = 3.24000 AND STANDARD DEVIATION OF LNS =

HT DISTRIBUTION IS LOGNORMAL WITH MEAN OF LNS = .57000 AND STANDARD DEVIATION OF LMS

INHERENT AVAILABILITY & MTBF (MTBF +MTTR)

MEAN TIME TO FAILURE = 8620-10

HEAN REPAIR TIME = 2.18
INHERENT AVAILABILITY = .9997

OBSERVED AVAILABILITY (SIMULATION OF RATIOS TTF/(TTF+DT))

90 PERCENT LCL ON INDIVIDUALS = .8485

90 PERCENT UCL ON INDIVIDUALS = .9972

MEAN = .9453 MEDIAN = .9858

3-

S. 4.	3 5		\$ 5	SSBN602 SSBN608	SSN 609
ו גם ני	00 00		900 X	558	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
SHIP NAME SO MUNTICELLO SO	MDEL HDEL		10 WADDELL 10 10 10 10 10 10 10 10 10 10 10	90 90 ABRAHAM LINCOL 00 ETHAN ALLEN 50	170 SAM HOUSTON 170
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		4 6 7 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	669410 669410 669410 669410 669410 669410 669410	50580 50580 51100 51100 51160 51160	51170 51170 51480 51480 51480 51480
8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	~~~~~~	~~~~~~	<i>~~ ~~~~</i>
117 918 918 918 918 918 918 918 918 918		20000000000000000000000000000000000000	1906 1808 1808 1908 1908 1908 1908 1908 1908	112.2 92.8 47.5 732.5 1658.0	185.5 0.0 81.8 7.3 7.3 900.6
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	000000000000000000000000000000000000000	0 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000 0000 0000 0000 0000 0000 0000 0000	0.000 1000 0.000 0.000 0.000 0.000
OPERATE 913-3 4493-7 1314-6 1389-1 5184-8	2128 2124 6714 6717 6717 746 746	10994,9 2346,9 23412,0 23512,0 35116,0 55116,0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	112.2 205.0 205.0 477.5 732.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2325.5 2325.5 5905.9 1946.6 5742.3	2961 5 4266 8 8903 6 1674 7	2512 24051 4724 4726 4736 57466 57466 5766 5766 5766 5766 5766 5	200 200 200 200 200 200 200 200 200 200	410.9 503.7 643.0 643.0 1828.5	1348.5 1534.0 199.8 282.7 291.5 1023.5
E TMI 89080 19080 19480	2951 4266 8903 6903 1674 7	44244 4424 4424 4424 4424 4646 4646 464	200 200 200 200 200 200 200 200 200 200	643.0 643.0 643.0 898.5	1346.5 1534.0 199.6 281.3 290.0 1023.5
1412.2 0.0 0.0 551.3 1870.9	295122 295122 29510 000 000 000		642.4 636.7 636.7 636.7 636.7 7	165.5	1348.5 1348.5 0.0 USED 290.0 290.0
2000000	0000000	0000000	00000000	000000	30080000
70000000	0000000		00000000	0000000	
70 70 70 60 60 60 60 60 60 60 60 60 60 60 60 60	0000040	250000000	0,000,0000		40816101
280000000	0000000	******	20400000		2
2 7072 5 7072 5 7072 6 6255 7 7072		5 6229 6 6264 6 6274 5 6315 5 6315 7 7 6 9 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	000001	202 402 505 505 505 505 505 505 505 505 505 5	634 613 618 628
615	200000	25.25.05.05.05.05.05.05.05.05.05.05.05.05.05	6153 6246 6305 6322 6335 7002 7011		6349 6171 6181 6181 6258 6258
TOW 4 0 W W W 4	, CW B 4 C 6 W	~~~~~~~~~~	O M & & M & & & & O	W404084	3-48

ON	-	- 6		m m	62	;	5 8 8	2901	
HULL	A 04	ADR 1		AOR AOR	9		3 5 5		
SHIP NAME	WICHITA	WICHITA		KANSAS CITY KANSAS CITY					
					JOUETT		2 JOUETT		
51480	584 584 584 584 584 590 590 590 590 590 590 590 590 590 590	58490	200280 200280 200280 200280 200280	201220	201220 201220 201220 527040 527040	527040 527040 527040 527040	527041 527042 527042	527044 527044 527044 540570 540570	540570
Sks		. ~ ~ ~		~~~	~~~~	~~~~	, , , , , , , , , , , , , , , , , , ,		~ ~
284.5 777.4	368 368 368 368 368 368 368 368 368 368	2878.3	740.8 133.0 998.9 3461.8	000	472.3 3272.5 4068.2 0.0	9832.0 9832.0 7353.4	121.5	121.6	1916.7
352 352	236	0000	2447 240 240 240 240 240 240 240 240 240 240	0.000	0.000	84.49 44.49 44.49	0.000	1.013	.549
DPERATE 1273.9 2051.3	194.00 268.30 298.30	2878.3	740.88 873.8 1739.7 4202.6 5866.0	000,	24 50 50 50 50 50 50 50 50 50 50 50 50 50	472.9 582.0 1135.4 1871.2 2578.5	121,5	121.6	3808,1
ETM2 1478.6	331.0 505.3 1134.0	2990.6	2174.0 2307.0 3172.9 5635.8	471.0	3956.0 4751.7 269.1	726.9 836.0 1389.4 2125.2 2832.5	9.000	1058.2 892.5 000 1380.0	2613.0
ETM1 1477.6	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2990.6	1938.8 2307.0 3172.9 5635.8 7299.2	471.0	3956.0 4751.7 269.1	726.9 836.0 1389.4 2125.2 2832.5	958.5	1058.2 892.5 1370.0	4529.7
1478.6	137.0	112.3	217	465.0 0.0 210.0	3956.0	1389000	834.0	0.0 1771.1 701.6 1370.0	0.0
200	00000	0000	00000	0000	0000	000000	0000	00000	00
_						000000			
A D	0000	000				000000	0000	,0000m	270
å c	0004-	-000			-0000	000	0000	0000-	-0
DATE 2 6322	6198	6256		6195				7036	7080
4922 7053	6153	7041	6202 6217 6365 7071	6195	7040 7040 7080 6153	6214 6223 6223 6245 6374	103 8607 8607 8607	7038	7080
Ema		040	****	0000	m m 4 0 m		04040	40400	m .

RELIABILITY

				WSC-3 PAC	SYSTEM LEVEL		
3~17	E TO FAIL	FAILURES	NO. CENSORFD	SURVIVORS	CPOF	EXPONENTIAL	MAX DIFFERENCE
	0	1.		45.	.022	.003	610.
	7.3	: ::		**	.043	,003	040.
	24.0			43.	590.	110.	*60*
	28.9						
	74.5	-		41.	180.	.035	.052
	81.5			*0*	.110	.038	.072
	95.8						
	112.2	:		38.	.133	.052	080.
	121.4		:				
	121.5		2.				
	121.6		:				
	185.5		:		•		•
	199.7	-		32.	.159	160.	800.
	284.5	:		31.	.185	.127	860.
	334.7	-		30.	.211	.148	*90.
	472.3	-		.62	.238	.202	980.
	477.5		:				
	553.4	-		27.	592.	.232	.032
	565.5	:		26.	262.	.237	660.
	582.0	:		25.	916.	.243	920.
	9.899	-		24.	746.	• 52.	670.
	140.8	:		.62	. 9/6.	967.	9.0.
	4.777		•				200
	793.0	;.		21.	704.	916.	
	829.4	: .		• • • •	164.	176	611
	0.08	:.			164.		611.
	9.006	:.		•	***	000	251
	913.3	:.		•	916.	+66.	201.
	1223.0	: .		•			101
	1314.6	:		12.	6)6.	.0**	907.
	1443.1		:-				
	0.0001		: -				
	1818.2	-	•	11.	609	.581	.028
		: -		10.	440	865.	900
		:	-				
			: -				
			::				
	3461.8	1.		•	569.	608.	165
3-5		•	:		756		
50		;	•	:	967.	1684	741.
			:.				
			:.				

RELIABILITY

WSC-3 PAC SYSTEM LEVEL

.587 92616.0 DUTY CYCLE (0.H./C.H.) . CALENDAR HOURSIC.H.) =, EQUIPMENT OPERATING HOURS (G.H.) . 54384.8

NUMBER OF FAILURES = 26. OBSERVED FAILURE RATE/O.H. = .47807E-U3

DISTORAGION DETERMINATION,

K-S CRITICAL VALUE (.10,26.) . .188

MAX DIFF CALC . . 165, IS LESS THAN CRITICAL VALUE THEREFORE THE EXPONENTIAL DISTRIBUTION IS ASSUMED

FOR THE ASSUMED DISTRIBUTION

EST. MEAN . 2091.723, EST. MEDIAN . 1449.872, 90 PER CENT LCL FOR MEAN . 1607.6, 90 PER CENT UCL FOR MEAN . 2757.664 90 PERCENT UCL 2757.66 IS LESS THAN 3000.00 HOURS, THUS A RELIABILITY PROBLEM EXISTS

R E L I A B I L I T V HSC-3 PAC O-LEVEL SUMMARY

MPA	ALGCK NO.	D-LEVEL NOMENCLATURE	NUMBER FAILURES	CONF LIM	MEAN	UPPER 90 CONF LIM	SPEC	UBSERVED FAILURE TIMES LOW HIGH	TIMES HIGH	RELIAB PROBLEM
-	1		3.	8140,46	18128.27	49348,09	22188.00	88.80	1314,60	2
-	٠		3.	8140,46	18128,27	49348.09	49348.09 1000000.00	00.0	817,00	VES
-	•		•	6803,59	13596,20	31170,18	31170,18 31025,00	00.9	4202.60	Q
-	•		:	13981,67	54384.80	516180,71	92843.00	829.40	859.40	2
-	•		•	5163,72	9064,13	17254,61	15533,00	112,20	3724.40	2
•	*		:	13981,67	54384.80	54384.80 516180.71	64726.00	04.686	09.686	2
-	15			13981,67	54384,80	54384.80 516180.71	37023.00	04.899	04.899	2
-	•		3.	8140,46	18128,27	18128.27 49348.09	30056.00	472,30	1906.20	2
-	22		2.	10218,29	27192,40	27192.40 102263.30	96414.00	1099,90	1891,40	2
-	23		•	6803,59	13596,20	13596.20 31170,18 72711.00	72711.00	008.40	1989,90	YES
-	666		2.	10218,29		27192.40 102263,30 2000000,00	20000000000	81.50	5184.80	ves

RELIABILITY

2K SUMMARY FOR WSC-3 PAC PROBLEM AREAS

RESULTS	RPL LOGIC MOD AS	K P CR22 ? MODULE	ESHURTED CAP IN A23	RPL XMT LOGIC MOD	REP BROKEN WIRE	CHANGED STRAPPING	RPL MSC-3"REP SMHZ	RPL SYNTH /FREG ST	RPL LUGIC, DATA MD
DIAGNUSTIC	VISUAL		ALL BIT	NONE	NONE	NONE		0	CV PSK
SYSTEM SYMPTON	PSK INDP	NO XMIT KEY	NO T/R	NO XMT PSK	NO RCV AM	BAD STRAP		DOWN REPLAC	NO PSK
1.0	c	0	0	0	0	0	0	0	•
ដ	•	0	0	0	0	0	0	4	15
Z	23	666	*	23	666	23	•	•	23
MA	-	1	-		-	-	-	-	-
SYSTEM	2	2	2	2	2	2	2	2	2
יכא	031350601	0466306020096	046790E02M061	04679DE02M085	0514800010287	058490601	05849	20122	\$40570E011546

MTTR 4.9 MEDIAN 3.4 WSC-3 PAC 12 HOURS TO REPAIR 1.0 0.0 0.5 0.1 PROBABILITY OF REPAIR COMPLETION

MEDIAN 3.1 WSC-3 PAC 2 HOURS TO REPAIR 0.0 1.0 9.0 0.2 PROBABILITY OF REPAIR COMPLETION

FLEET MAINTAINABILITY ASSESSMENT DATA

03135	69990	04003	19940	04679	04679	0461	04679	16940		16940		02020		05117	0514	05148	1150	02148	0210	0284	05849		2002	2002		20122		20122	92104	\$2704	-	54057	24037
SYS 2	~ ~	. ~	7	7	7	2	~	2		2	•	7		2	~	~	2	2	2	2	2		2	2		2		2	2	2	•	7	,
REPAIR TIME (HRS)	0.6		10.0	2.0	1.0	9.0	2.0	0.0		0.0		0.0		1.0	2.0	10.0	0.6	1.0	1.0	0.4	0.0		16.0	0.0		0.0		0.4	1.0	0.0		10.0	1.0
DOWN TIME (HRS)	0.6	24.0	24.0	5.0	144.0	576.0	192.0	0.0		0.0		0.0		1.0	0.84	10.0	0.6	1.0	1,0	216.0	0.0		216.0	0.0		0.0		0.4	1.0	0.0		24.0	1.0
COMPLETION DATE	6258	1001	6195	6169	6183	6559	959	9579	THE ABOVE RECORD	6322	THE ABOVE RECORD		THE ABOVE RECORD	6369	6173	6181	6181	6286	6322	6545		THE ABOVE RECORD	6211	6365	THE ABOVE RECORD	6195	THE ABOVE RECORD	6569	6223	6245	THE ABOVE RECORD	6261	6345
DISCOVERY DATE	6258	2000	6194	6169	6177	6205	6256		REPAIR TIME FOR	6322	REPAIR TIME FOR	6241	REPAIR TIME FOR		6171	6181	6181				6256	REPAIR TIME FOR		6365	REPAIR TIME FUR	6195	REPAIR TIME FOR	6569		6545	NO REPAIR TIME FOR THE	959	
913	2.		0	0	0	0	•	•	ON	0	ON.	0	ON	0	•	0	0	0	0	•	•	Z	0	0	ON	0	ON	0	0	0	ON	0	•
012		00		0	0		0	0		•		0		0	0	0	0	•	0	0	0		18	•		+		0	0	0		15	0
23	-	000			•	22	53	18		•		•		14	*1	666	-	14	•	23	4		•	*		5		18	0	•		23	22
A -	-			-	-			-	ñ	-		-		-	-	_	_	_	_	-	-		-	-		-		-	-	-		-	-

MAINTAINABILITY (REPAIR TIME)
WSC-3 PAC SYSTEM LEVEL

REPAIR TIME 2.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	FFEQUENCY 2. 2. 3. 1. 1.		CUM FREQUENCY 7.0 11.0 11.0 11.0 11.0 11.0 10.0		5000 5000 5000 5000 5000 5000 5000 500		LDGNDRMAL 126 .325 .594 .678 .854 .854	MAX DIFFERENCE 208 104 154 154 139 139 043
TOTAL REPAIR HOURS = 97	97.0 NUMBER	NUMBER OF REPAIRS	• 20•	DRSERVED REPAIR RATE/HR	REPAIR	RATE/HR .	.2062E+00	
DISTRIBUTION DETERMINATION								
MEAN OF LNIS . 1.15	STO DEV OF LNIS .	1.00						
K-S CRITICAL VALUE (.10, 20,) .	0. 1174		MAX DIFF CALC .	.208 15	GREATER	THAN THE C	.208 IS GREATER THAN THE CRITICAL VALUE	
THEREFORE THE LOGNORMAL DISTRIBUTION CANNOT BE ASSUMED	TRIBUTION CAN	NOT BE ASSUM	Ę.0					

MAX DIFFERENCE 147 193 1120 111 058					EAN . 6.68	TY PROBLEM EXISTS
EXPONENTIAL .338 .562 .663 .868 .873 .963	. 2062E+00		ITICAL VALUE		90 PER CENT UCL DN MEAN .	US A MAINTAINABILI
N 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	OBSERVED REPAIR RATE/HR .		.147 IS LESS THAN THE CRITICAL VALUE		3.74	3.74 IS GREATER THAN MTTR, THUS A MAINTAINABILITY PROBLEM EXISTS
CUM FREQUENCY 7. 11. 14. 15. 16. 20.	20.		MAX DIFF CALC1'	UMED	90 PER CENT LCL ON MEAN .	COWER CONF LIM 3.74 1
FREQUENCY 7. 2. 2. 2. 3. 1. 1. 1. 1. 1.	97.0 NUMBER OF REPAIRS .		,212	ISTRIBUTION IS ASS	EST MEDIAN . 3.36	.17 HOURS COWE
REPAIR TIME 1.0 2.0 2.0 5.0 5.0 10.0 16.0	TOTAL REPAIR HOURS . 97	DISTRIBUTION DETERMINATION	K-S CRITICAL VALUE (.10, 20.) .	THEREFORE THE EXPONENTIAL DISTRIBUTION IS ASSUMED	EST MEAN . 4.85 EST	SPECIFIED MITR 17 H

MAINTAINABILITY (DOWN TIME)
WSC-3 PAC SYSTEM LEVEL

MAX DIFFERENCE 161 0029 0039 0039 101 100 100 0099	75.15	N MEDIAN . 22,97
LDGNURHAL .125 .304 .342 .465 .465 .924 .909	F CR	6.36 90 PER CENT UCL ON MEDIAN .
7 V V V V V V V V V V V V V V V V V V V	20. OBSERVED	
FREQUENCY 1000000000000000000000000000000000000	REPAIRS (NR) = 2.16 X DIFF CALC =	90 PER CENT LCL ON MEDIAN .
FREQUENCY 2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	, voi	EST MEDIAN = 12.09
1.0 4.0 5.0 5.0 10.0 24.0 192.0 216.0	DISTRIBUTION DETERMINATION MEAN OF LN'S = 2.49 STD DEV OF LN'S = K-S CRITICAL VALUE (.10, 20,) = .174 MA THEREFORE THE LOGNORMAL DISTRIBUTION IS ASSUMED	EST MEAN . 75.15 EST

MAINTAINABILITY (REPAIR TIME)
WSC-3 PAC O-LEVEL SUMMARY

PROBLEM	YES				YES	YES		YES	YES	YES	YES
TIMES	9.0	9.0	1.0	10.0	16.0	2.0	10.0	16.0	9,0	10.0	10.0
OBSERVED REPAIR TIMES LOW MEAN HIGH	6.33	2.00	1.00	10.00	00.9	1,33	10.00	10.00	3.00	5,33	00.6
OBSERVE	5.0	5.0	1.0	10.0	1.0	1.0	10.0	0.4	1,0	2.0	0.0
SPEC	2.	• 5	.2	• 2	.2	.2	.2	,2	,2	.2	.2
UPPER 90	8.80	LIMITS	LIMITS	LIMITS	14.40	1,95	LIMITS	67,56	29.62	10.36	12.61
LOWER 90 CONF LIM	4.20	NO CONF	NO CONF	NO CONF	44.	.81	NO CONF	\$6.	.19	1.79	6,34
NUMBER	3.	:	2.	:	3.	3.	:	2.	2.	3.	2.
D-LEVEL NOMENCLATURE	POWER SUPPLY VOLTAG REGULATOR	A1A23 FREQUENCY STANDARD	SYNTHESIZER	CONTRGL CONVERTER	AIAI EXCITER / PA	14 AIA15 A M DETECTOR	15 AIAIO FM/PSK/FSK MODULATOR	PSK DETECTOR	PSK RECEIVE LOGIC	PSK TRANSMIT LOGIC	
VEL NO.	1 4142	A1A23	5 4148	4149	4141	AIAIS	AIAIO	18 4147	22 A1A3	ALAS	
D-LEVEL BLOCK NO.	-	•	*	•	•	1.4	15	18	22	23	666
4 A A	-	-		-	-	-	-	1	-	-	-

MAINTAINABILITY (REPAIR TIME)
2K SUMMARY FOR WSC-3 PAC PROBLEM AREAS

RESULTS	RPL LOGIC MOD AS REPLACED XHTR R CR22 3 MODULE RPL CONVERTER ESHORTED CONVERTER ESHORTED CONVERTER ESHORTED CONVERTER ESHORTED CONVERTER RPL SYNTHESIZER RPL WR, PS LOG MOD RPL AM DETECTOR REPLACED XHTR RPL AM DETECTOR RPL AM DETECTOR RPL AM DETECTOR RPL AM DETECTOR RPL WR-AM DETT REPLACED SYNTH RPLACED SYNTH RPL COGIC, DATA MD RPL LOGIC, DATA MD
DIAGNOSTIC	VISUAL VISUAL VISUAL ALL BITE BITE NONE BITE BITE NONE BITE BITE NONE NONE BITE NONE NONE BITE NONE BITE NONE BITE NONE BITE NONE BITE NONE BITE NONE BITE NONE BITE NONE BITE NONE BITE NONE BITE NONE BITE NONE BITE NONE BITE NONE BITE NONE BITE NONE BITE NONE NONE BITE NONE NONE NONE NONE NONE NONE NONE NO
SYSTEM SYMPTON	PSK INDP ND OUTPUT ND AUDIO ND XMIT KEY ND T KEY ND T KEY ND T KEY ND T KEY PSK ND T KEY AM ND T KEY SAT
i	000000000000000000000000000000000000000
7.	000000400000000000000000000000000000000
1-0	
A A	
SYSTEM	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
NOT	031350E01 046630E02M114 046630E02M114 046630E02M114 046770E02M061 046770E02M061 046770E02M061 046770E02M061 046770E02M061 046770E02M085 046770E02M085 046770E02M085 046770E02M085 046770E010477 051480E010477 051480E01087

RMA SUMMARY WSC-3 PAC SYSTEM LEVEL

TTF DISTRIBUTION IS EXPONENTIAL WITH MEAN = 2091.72

DT DISTRIBUTION IS LOGNORMAL WITH MEAN OF LNS = 2.44000 AND STRUCKED FRO TH

MT DISTRIBUTION IS EXPONENTIAL WITH MEAN = 4.45

INHERENT AVAILABILITY = MTBF/(4TBF+MTTR)

MEAN TIME TO FAILURE = 2091.72

MEAN REPAIR TIME = 4.

N REPAIR TIME = 4.85

INHERENT AVAILABILITY = .9977

OBSERVED AVAILABILITY (SIMULATION OF PATINS TTEZ (TTE-OT)

90 PERCENT LCL ON INDIVIDUALS = . 4143

90 PERCENT UCL ON INUIVIDUALS = .4908

MEAN = .9355

MEDIAN

.9840

3-62

3-63

MEDIAN 2613.5 TE MTBF 3770.4 CUMULATIVE OBSERVED DISTRIBUTION VERSUS THEORETICAL EXPONENTIAL PROBABILITY DISTRIBUTION FOR TIME TO FAILURE 8 MSC-3 909 200 OPERATING HOURS 2000 9 1.0 7 0.0 0.9 0.8 9.0 0.5 0.7 7.0 0.3 0.2 0.1 PROBABILITY OF FRILURE

38	•	•	:	:	*		~	2	*
TOS I	3	3	5	5	900		900	900	900
							S		
LLU							HARLE		
SHIP HAME	VIMITZ	211414	NIMITZ	11M172	SOMERS	HORTON	ADAMS, CHARLES	<u></u>	WADDELL
20									
31350	3366	3368	33683	33684 33684 33684 33684	46630 46630 46630 6630	04004	46680 46680 46680	44444444444444444444444444444444444444	40000000000000000000000000000000000000
\$ 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	. ~ ~ .		1000	~~~~	~~~~	~~~	~~~		~~~~~~
					00000				
913.3	5518.9	5518.0	5520.0	2707.6 492.4 661.0	1314.0	0.0 029.4 1305.3 5942.1	782.0	896.7 886.7 886.7 889.0 889.0 882.0 882.0 882.0 882.0 882.0 882.0 882.0 882.0 882.0 882.0 882.0 882.0 882.0 882.0	4220.1 1906.2 1405.4 1818.2 1078.9
040				00000	011110	0 * * 0	0	000000000000000000000000000000000000000	404N88WN4
0.000	0.000	970	970	0.000 1.059 769	532 512 797	0000	0.000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
913.3	518.9	0.0	5520.0	1687.5 4395.1 4807.5	1314.6 1389.1 5184.8	829.4 2134.7 6771.5	782.0	54 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6210.0 1906.2 2571.2 33111.6 4032.6 4803.3
OPERATE 913	20.2	2 5 6	20.00	444	2555	8179	61	WW 04 W W W W W W W W W W W W W W W W W	0 1 2 2 2 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4
20.0	000	7863.0	0001	2052.0 4759.6 5252.0	0.0 1870.9 1946.6 5742.3 5771.2	0.0 2961.5 4266.8 8903.6	0 7 8	94 94 94 94 94 94 94 94 94 94 94 94 94 9	624.1 19214.1 1934.1 1944.1 1947.3 1947.9
2325.5	0.00	7863.0	0.0 6019.0 6681.1	2052.0 4759.6 5252.0 5420.6	187	424	3087	1674.5 1874.5 1874.5 19913.6 1993.8 1993.8 1996.1 1996.1 1996.1	7624.1 2549.1 3924.1 3954.5 4368.1 45674.3 5447.0
2325.5 500 2325.5	6884.0		001	2052.0 4759.0 5252.0	1865.9 1945.4 5742.3	0400	00.4	1676.7 1874.7 1874.7 1876.7 1876.7 1876.8 1876.8 1876.8 1876.8 1876.8	7624 2024 2024 2024 2024 2024 2024 2024 2
E 23.	688	7863	5019	52.3	1865 1945 5742 5771	2951 4266 8903	3084	11 1 W W 4 4 W W 6 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
412.2	365.0	0000	000	* 0 0 0 0	1870.9 1745.4 0.0	0000	0.0	0000000000	040004000
7 71	E	23	•	•	200	2122 2951	3067	ř	, ,
C			000	00000	00000	0000	000	0000000000	00000000
7000		,000	000	00000	00000	0000	000	000-000000	00000000
70.5				02200	01110	0.00	040	0457500000	00000000
70-0					J			000000	
ATE				6354 6354 7053	6258 6268 7061	6195	6211	60264 60264 60264 60264 60274 60394 7040	1071 62246 63305 7002 7002
6153 6198	1053	6181	7053	6181 6252 6354 7053 7090	6155 6258 6268 7060 7084	6194 6194 6258 7087	6159 6209 7084	6153 6163 6205 6205 6205 6305 6305 7040	7071 6153 6246 6305 6322 6332 7002
Tom 4	0 0 4	2004	004	0 10 0 10 4	0 m m m +	0 m m 4	0 10 4	C 4 M M M M M M M M M M M	40000004
									3-65

אחרר אם					9			588 NSS			SSRNOOZ	SSANGOR				SSBN609	55N 664			SSN 671		999 2						SSN 670			E 0 0 13					1 1		R		11 0			-	1511180			
I	1				F + 6			5.5			S	55				S	5.5			S		222						53			NSS	1				AUR		AUR		1,00			HA	-			
SHIP "AME	C				FURERAJULIUS A			PLUNGER			ABRAHAM LINCUL	STHAN ALLEN				SAM HOUS TON	SEA DEVIL			MARWHAL		HAWKBILL						FINBACK			FLYING	41711				ATCHITA		MILMAUKEE		CORDINADO				MANITOWOC			
010	46980	45980	40980	46980	06695	06694	45990	50580	50580	20280	21100	51160	51160	51160		51170	51450	51450		21460		51480	08416	21480	21400	51420	51480	51520	21250		51540	28400	58490	58430	58490	29400	53490	20000	58500	71940	71940		73520	200190	061002	200190	
SYS	2	7	7	2	2	~ ~	, ~	. 7	~	7	~ ~	. ~	~	7		~ ~	7	2		~		~	٧,		, ,	. ~	~	7	2		2	, ,	. ~	2	7	7	~	,	~~	2	2		7	4 (7 0	2 72	
TTF	0.0	1141.0	6031.9	6445.3	0.0	500.9	5502.1	0.0	112.2	95.8	0.00	0.0	732.5	1658.0		0.0	0.0	2265,6		0.0		0.0	61.5	333	9000	284.5	777.4		3887.4		0.0	100	368.3	793.0	24.0	0.0	2878.3	0.0	1873.0	0.0	4941.3		0.0	0.0	466.6	2409.6	
DUTY	00000	1.132	196.	.970	00000	.032	857	00000	.053	660.	0000	000	.147	.243		00000	00000	,322		00000		00000	340	2016	35.8	352	346	00000	.528		00000	000	.236	.359	188.	0000	. 800	0000	160.	00000	.708		0000	00000	4230	. 423	
UPERATE	0.0	1141.0	7172,9	7585.3	0.0	90000	6003.0	0	112.2	0.502	0.0	0.0	~	1654.0	•	182.0	0.0	2265,6		0.0		0	0.10	0 0 0 0	4.080	1273.9	2351.3	0.0	3807.4			1961	368.3	793.0	317.0	0.0	2878.3	2 4	4028.8	0.0	6.1467		0.0	0.00	2564.6	2870.2	
ETM2	0.0	3544.1	9576.0	9989.4	0	3083.8	7231.1	0.0	410.9	203.1	0.00	0.0	838.5	1824.0		1348.0	0.0	2797.1		4119.6		199.4	10707	1022 8	1193.1	1478.6	2256.0	0.0	5117.4		1.60%	331.0	505.3	1134,0	1158.0	0.0	50062	0.0	5131.4	0.0	5981.4		9954.3	0.0	3170-0	3477.6	
ETN1	0.0	3544.1	576	9989.4	3	1720.0	7231.1	0	410.9	•	200	0.0	D	1824.0		1534.0	0.0	2797.1		4779.6		199.0	2000	2000	1192	1477.6	2256.0	0.0	5117.4		1.0000	331.0	505.3	0.066	1154.0	•	2400.0	2000	5131,0	0.0	5981,4	1	6.9666	0.000	10001	3477.6	
ETM	2493.1	0.0	0.0		1219.1	2		298.7			165.5			0.0	0	1348.5	531.5	0.0	USED	4779.6	USED	8.661	0.182	0.067			0	1230.0	0.0	USED	3463.1	0.0	0.0	1134.0	0.0	112.3	0		000		0.0	USED	3954.3	100	0.0	0.0	
610	0	0	0	0	0	0	0	00	0	7	00	00	0	0	CORD	00	0	0	CORD	0	000	00	0 0	0 0	00		0	0		0			0	0	0	0	0	5 6	00	0	0	CURD	0 0	0	00	00	
1 062	0	0	0	0	0	00	0	0	3	0	00	, 0	0	0	× .	00	0	0	T RE	0	RE	0	0	0	00	0	0	0	0	KE	9 0	•	0	0	0	0	00	•	30	0	0	F. R.	> 0	> <	> 0	0	
4 OL	0	•	0	C	0	-	00	0	•	0	00	00	0	0	4	•			-	-	4	*	-		-	•			0	4				2				0	10	1		14			n c	0	
4	0	-	•	0	0	- (00	0	-	0	00	00	0		ECORD	~0	0	•	ECORD		ECOPO			- (>-	•-	• •	0		ECUKO	00		00	-	-	0	0	> -	-0	0	0	ECORD	00	> •	• 0	••	
TE	0	6195	7093	7115	1	6189	7082		9541	1032	5112	3	6357	590	Y .	7057	0	7087	00	116	7	6119	2 :	1910	4286	6322	7053	0	101		1083	619		6245	9529	6256	1041	4224	7073	0	œ	*	7081	7.23	7043	7073	
CA	6154	9619	1098	7115	6135	7919	7082	6153	6241	7032	5119	200	6357	1069	-	1057	6129	7807	INITI	7116	L	1110	1610	1610	4286	6322	7053	61159	1014	LINI	7083	4198	6218	6236	9529	9529	1041	2610	1073	6155	1804	LINI	1807	2210	4779	7073	
MATE	0			,	0	~ «	•		•		0 4		•		2	m 4	0		2		2	m .	9 6		0 1			0		ON									0.0			2	* (۰,	n =	•	

HULL NO	55% 681 AOR 3	•	937	938	2	53	62 62	1062
ראלו	SSN AOR	A OR	20	2 8	3	3 3	3 3	t
SATE NATE SATE BERNAROTHO	BATFISH KANSAS CITY		DAVIS	INGRAM, JONAS DUPONT	JOUETT	JOUETT	JOUETT	AILIPPLE
01C 200250 200280 200280 200280 200280	200440 200440 201220	201220 201220 201220 201220 201220	521970 521970 521970 521970	521980 521980 522000 522000	527040 527040 5270640 5270640 5270640 5270640	527041 527041 527042	527043 527043 527044 527044	540570 540570 540570 540570
822222	2222	~~~~	~~~~	n n n n	~~~~~		, , , , ,	10000
11F 0.0 740.9 133.0 998.9 3461.8	1180.9	472.3 3272.5 4068.2	593.1 1186.5 4484.8	2272.0	582 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	121.5	121.6	0.0 668.4 1223.0 1916.7
V 10000 V 10000 V 10000 V 10000 V 10000 V 10000	0.00 	0000 0000 0000 143 743	0.000 .989 .969	2910000	000 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0,000	00000	0.000
UPERATE 740.8 874.8 1739.7 42.12.6 5866.0	1160.9 1952.7	# # # # # # # # # # # # # # # # # # #	594.1 1186.5 5671.3	2272.0	0.0 15.1 472.9 582.0 1135.4 2578.5	121.5	121.000	1891.4 3804.4
E1M2 0.0 2174.0 2307.0 3172.9 5635.8	3261.8	471.0 0.0 683.5 3956.0 4751.7	0.0 1697.2 2293.0 6777.8	7609.0	269.1 726.9 836.0 1389.4 2125.2	0.00	1058.2	0.0 1380.0 2613.0 4529.7
1938.00 23078.00 31778.00 5635.00	2490.0 3261.8	471.0 0.0 3956.3 4751.7	1697.2 2290.0 6777.8	7609 0	269.0 7269.1 726.9 1369.0 2125.2	3,0604	000	1370.0
2174.0	1309.	210.0 210.0 683.5 3956.0	2290.6 0.0 0.0	5337.0 0.0 2606.1 0.0	255 2000 1389 2000	3969.3 0.0 834.0	936.6	701.6 1370.0 2013.0
500000	0000	00000	0000	0000	0000000	0000	0000	0000
7080000	0000	*0000	0000	0000	000000	0000	0000	0700
7040040	0-00		0000		000000	0000		0110
DATE 2 6211 7 6219 5 6365	6253 1 7781	6 6195 10269 1080	6210 17082	7031	6223 6245 6274 6274	7036		-
6154 6202 6217 6217 6257	625	6195 6269 7040	6184	9112	6153 6214 6223 6274 6274 6306	7033	7033	6156

	MAX 14L DIFFERENCE		210.					640.		950.			090.					.062		140.					560								136						
	CPOF EXPONENTIAL		200. 410.		•00•			120. 170.		.085			. 101					911.			7137				.201								380		614				
K E L I A B I L I T Y 4SC-3 SYSTEM LEVEL	7UP S							65.		63.			58.					33.			.64				45.								36.		94.	33.	31.		
K E L	CENSORED SURV					1.			::		:			-										:		•	• •	•										•	
	NO. FAILURES		-		::		-	: :		1.				:			-	:	:		:		::			:				•	-	-1	-		-		:-		
	E TO FAIL	2	0	1	24.0	28.0	14.		92.8	112.2	121.4	121.5	121.6	123.0	199.7	284.5	334.7	400.0	472.3	477.5	2000.	2000	582.0	661.0	4.899	740.8	177.6	782.0	793.0	629.4	890.0	9.006	913,3	1141.0	1180.9	1186.5	1223.0	0.151	

ASC-3 SYSTEM LEVEL

HAX JIFFERENCE							550.																		
EXPUNENTIAL	.361	.39					716.	9		.61															
CPOF	485	.523					1.5.	643	716.	604															
SURVIVUES		25.					19.	•		3.	.61							`							
CE ISURED			.1	: .	::	::		•		:-			::	:	:			:	:			:	1.	:	
FAILURES	-	::							;		:														
TIME TO FAIL	1647.5	1319.2	1916.7	2265.6	2272.0	2413.8	2707.6	2878.3	3461.8	3580.4	3795.7	3873.0	3887.4	4068.2	4220.1	4+84.8	4941.3	5351,3	5502.1	5760.2	5942.1	6380.8	6382.1	6383.4	

KELIABILITY

SC-3 SYSTEM LEVEL

.650 CALENDAR HOURS(C.H.) . 203064.0 DUTY CYCLE (0.H./C.H.) = DESERVED FAILURE RATE/U.H. . . 26522E-U3 EQUIPMENT OPERATING HOURS (0.H.) #131965.3 DISTRIBUTION DETERMINATION, NUMBER OF FAILURES = 35.

MAX DIFF CALC . 172, IS GREATER THAM CRITICAL VALUE THEREFORE THE WEIBULL DISTRIBUTION IS ASSUMED .653754E+00 BETA . .453214F-02 K-S CRITICAL VALUE (.10,35.) * .162 THE WEIBULL PARAMETERS ARE ALPHA .

90 PER CENT UCL FOR MEAN . EST. MEAN . 5221.061, EST. MEDIAN . 2301.887, 90 PER CENT LCL FOR MEAN . 0,000, FOR THE ASSUMED DISTRIBUTION

7048.261

RELIABILITY MSC-3 O-LEVEL SUMMARY

D-LEVEL BLOCK NO	D-LEVEL BLOCK NO.	D-LEVEL NOMENCLATURE	PAILURES	CONF LIM	I E	UPPER 90	S P P P P P P P P P P P P P P P P P P P	OBSERVED FAILURE TIMES LOW HIGH	TIMES
-	1 4142	POWER SUPPLY VOLTAG REGULATOR	•	20551.78	45767.43	45767.43 124586.39	22188.00	88.80	1314,6
•	A1A23	4 AIA23 FREQUENCY STANDARD		20551.78	45767.43	45767.43 124586.39 1000000.00	100000001	00.9	617.0
•	4140	SYNTHESIZER	•	13036.55	22883.72	22883.72 43561.76 31025.00	31025.00	9.00	4202,6
•	4149	CONTROL CONVERTER	:	35298.76	137302.30	35298.76 137302.30 1303172.93	92843.00	829.40	.620
•	4141	EXCITER / PA	7.	11664.55	19014.61	19614.61 35253.04	15533.00	112.20	3724,4
12	A1A22	12 A1A22 VOLTAGE CONTROLLED OSCILLATOR	;	35298.76	137302.30	35298.76 137302.30 1303172.93	71608.00	4395.10	4395,1
	ALAIS	I ALA19 A M DETECTOR	:	35298.76	137302.30	35298.76 137302.30 1303172.93	64726.00	04.60	4.686
13	41410	AIAIO FM/PSK/FSK MODULATOR	:	35298.76	137302.30	35298.76 137302.30 1303172.93	37023,00	668.40	999
=	Is ALAT	PSK DETECTOR	•	14803.96	\$7460.46	27460.46 56442.84	30056.00	472.30	1906.2
22	EA A1A3	PSK RECEIVE LOGIC	•	20551.78	45767.43	45767.43 124586.39	96414.00	1009.90	1001.4
2	ALAS	PSK TRANSMIT LOGIC	;	17176.64	34325.57	34325.57 78693.64	72711.00	****	1989,9
:			:	17176.64	34325.57	4. 17176.64 34325.57 78693.64 2000000.00	2000000.00	11.50	5184,8

RELIAFILITY

	2×	2K SUMMARY FOR #SC-3	FOX MSC-	•	PACALEM AKEAS	INEAS		
207	SYSTEM	MRA	MRA D-L C-L	Z	Ξ.	SYSTEM SYMPTON DIAGNOSTIC RESULTS	DIAGNOSTIC	-ESULTS
046630E020096	2		666	c	c	NI XMIT KEY		P & CP22 ? MODULE
046790E02H061	2	-	4	0	0	NO T/R	ALL 817	ESHURTED CAP IL A23
0514830010287	2	-	666	0	0	NO RCV AM	100°E	REP BRUKES AIRE
05849	2	-	,	0	0			KPL ASC-3" KEP SMHZ
058500E014132	2	1	666	c	0	NO CPY FSK	AITE 22	
20122	2	-	•	3	0	DOWN REPLAC	0	RPL SYNTH / FREG ST
521970E014164	2		666	0	0	NO RCV	St 16	CHS CABLE STRAP

MEDIAN 2.8 MTTR 4.0 CUMULATIVE OBSERVED DISTRIBUTION VERSUS THEORETICAL EXPONENTIAL PROBABILITY DISTRIBUTION FOR TIME TO REPAIR MSC-3 12 HOURS TO REPAIR 1.0 + 0.9 9.0 0.5 0.2 0.0 REPAIR COMPLETION PROBABILITY 9F

FLEET MAINTAINABILITY ASSESSMENT DATA

08139	0336	# # # O	04663	9990	04679	04679	04679	0467	1000	10990		0469	0469	08030		05117	****	09160	160				4	08880	\$1002	2002	2002		5007	77102	20192	18197	52704	92104		54057
8 × 8	~~	~ ~	2	~	. ~	2	7	~	2	7		2	7	2		~ •	~	2	7	~ •	•	•	•	7	7	7	2	•	~ •	,	2	. ~	7	~	•	• ~
REPAIR TIME (HRS)	1000	0.0	0.8	10.0	000	1.0	5.0	2.0	0.0	0.0		1.0	7.0	0.0		1.0	0.5	10.0	0.0	0.1.			2.0	1.0	1.0	16.0	0.0		2.0	2.0	0.4	3.0	1.0	0.0		
DOWN TIME (HRS)	2.0	0.0	24.0	24.0		144.0	576.0	192.0	0.0	0.0		0.84	624.0	0.0	,	0.1	0.84	10.0	0.6	0	2.7.2	0.612	2.0	720.0	48.0	216.0	0.0	,	2.0	0.0	0.1	24.0	1.0	0.0		1.0
COMP	2004	6258 6258	1001	6198	1170	6183	6229	9979	ABOVE BEC		ABOVE REC		6188		ABOVE REC	6946	6119	1919	1910	6286	7769	1364	-		6231	6211		ABOVE REC	6253	2000	ABOVE REC	6210	6223		ABUVE RECURD	6369
SCOVERY DATE 6198	6292	6258	1060	619	4070	6177	6209	6256	6246 10 TIME 600 THE	6322	1	6194	6162	6241	IR TIME FOR THE	6349	6171	6181	6181	955	7769	9529	0520	6196	6229	6202	6369	F	6253	6	A249	6200	6223		IR TIME FUR THE	6345
OL3 DISC		00		00			0	0	O ON O	0	NO REPAI	•	•	•	NO REPA	0	•	0	•	0			TAGEG CM	0 0	•	0	•	NO REPAIR	0	A020 CM	A A REFA			0	NO KEPA	• •
962	00	00	0	00	00	0	-	0	0	0		0	0	0		0	0	0	0	0	•	0	•	0	0	1.8	0		0	•	•	0	0	0	:	10
23	22	~ •	666	••	•	•	22	23	=	•		•	18	•		*1	*	666	-	*	•	67	•	666	•	•	•		2	•	•			•		22
ER A L			-			• -	-	-	-	-		-	1	-		-	-	-	-				-	1	-	-	-		-	-				-		

MAINTAINABILITY (REPAIR TIME)

MSC-3 SYSTEM LEVEL

REPAIR TIME	FREQUENCY	CUM FREQUENCY	N O N	LOGNORMAL	MAX DIFFERENCE
1.0	11.	11.0	.367	.151	.216
0.2	•	0.01	. 533	.365	***
9.0		17.0	.367	.556	220.
0.4	2.	19.0	.633	.672	901.
9.0	3.	22.0	. 133	.753	.120
7.0	-1	23.0	.767	.852	.118
0.8		24.0	000.	. 882	.116
•	- 1	25.0	. 613	500	.105
		20.00	623	933	•
0.01	•	0.83	664.		
16.0	.,	29.0		. 973	0.0
TOTAL REPAIR HOURS -	117.0 NUMBER OF P	REPAIRS = 29.	OBSERVED REPAIR RATE/HR	2479E+00	
DISTRIBUTION DETERMINATION	NOI				
MEAN OF IN'S .	STO DEV OF LN'S	76.			
K-S CRITICAL VALUE (.10, 29.) .	0, 29. 1148	MAX DIFF CALC .	.216 IS GREATER THAN THE CRITICAL VALUE	CRITICAL VALUE	
THEREFORE THE LOGNORMAL DISTRIBUTION	CANNOT	BE ASSUMED			
REPAIR TIME	FREDUENCY	CUM FREQUENCY	u az	EXPONENTIAL	MAX DIFFERENCE
1.0	11.		.167	.280	
2.0	.5	16:	. 933	.391	.142
3.0	:	17.	.\$67	.525	.042
	2.	19.	.633	629.	.062
-77	3.	22.	. 733	.710	140.
	:	23.	.767	+28·	060.
0.		24.	000.	. 862	960.
0.0	• , ,	25.	. 6333	643	560
16.0	1.	29.	790.	.981	
TOTAL REPAIR HOURS .	117.0 NUMBER OF	REPAIRS . 29.	IR RATE/HR	2479E+00	
DISTRIBUTION DETERMINATION	10v				
K-S CRITICAL VALUE (.10, 29.) -	0, 29. 1 = .177	MAX DIFF CALC .	.147 IS LESS THAN THE CRITICAL VALUE	ITICAL VALUE	
THEREFORE THE EXPONENTIAL DISTRIBUTION IS ASSUMED	AL DISTRIBUTION IS AS:	SUMED			
EST H'WN . 4.03	EST MEDIAN . 2.80	90 PER CENT LCL DN MEAN	3.24	90 PER CENT UCL ON MEAN .	HEAN . 5.23
				11 0 m 1 m 1 m 1 m 1 m 1 m 1	******
SPECIFIED MTTR	.17 HOURS	ER CONF LIM 3.24	IS GREATER THAN MITES	US A MAINTAINABIL	THUS A MAINTAINABILITY PROBLEM EXISTS

MAINTAINABILITY (DOWN TIME)

WSC-3 SYSTEM LEVEL

W C		26,24
01 F F B B C C C C C C C C C C C C C C C C	104.14	
N X X		90 PER CENT UCL ON MEDIAN -
Ĩ	2	N NO
	W/10	730
	NI OF	ENT
110 110 110 110 110 110 110 110 110 110	EPA!	ER C
ğ	29. OBSERVED ODWN TIME/REPAIR (TDT/NR) e123 IS LESS THAN THE CRITICAL VALUE	4 06
	ž	
	90 F	8.88
	THE THE	•
	1 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2
ij	22	90 PER CENT LCL ON MEDIAN .
	23.	8
*		3
FREQUENCY 7.0 10.0 112.0 113.0 114.0 114.0 22.0 22.0 24.0 26.0 28.0 28.0	NUMBER OF REPAIRS (NR) - LN'S - 2.22 148 MAX DIFF CALC - IS ASSUMED	ENT
25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	IRS	PER
2	2.22 X DIF	06
	UNEO UNEO	
_	STO DEV OF LN'S = 9.) = .148 TRIBUTION IS ASSU	15,26
FREQUENCY 2. 2. 1. 1. 1. 1. 1.	NUM OF LN	
g n	DEV	AN.
	3020.0 STD DI 29.)	EST MEDIAN .
	3 00 2 00 S 10 S	EST
¥	2.73 (.1	
200WN 71ME 200 200 200 1000 1000 1000 1000 1000 10	TERN 2	*1.
100	TOTAL DOWN TIME (TOT) = 3020.0 NUMBER OF DISTRIBUTION DETERMINATION MEAN OF LN'S = 2.73 STO DEV OF LN'S = K-S CRITICAL VALUE (.10, 29,) = .148 MA THEREFORE THE LOGNORMAL DISTRIBUTION IS ASSUMED	EST MEAN . 104.14
	DISTRIBUTION DE MEAN OF LN'S K-S CRIȚICAL VA THEREFORE THE L	
	TRIB IN OF	MEA
	DIS NEA K-S	EST

MAINTAINABILITY (REPAIR TIME)
MSC-3 O-LEVEL SUMMARY

MAINT	YES		YES		485		YES		YES	YBS	YES	YES
1.5												
TIMES	0.0	•••	0.5	10.0	16.0	1.0	0.5	10.0	16.0	9.0	10.0	10.0
OBSERVED REPAIR	6.33	9.00	1.25	10.00	4.75	1.00	1.33	10.00	7.25	2.67	5.13	5.80
OBSERVED	9.0	9.0	1.0	10.0	1.0	1.0	1.0	10.0	2.0	1.0	5.0	0:1
SPEC	.2	~	7.	~:	":			7.	7.	2.	7.	7.
CONF LIM		9	1.56	S	6.22	s	1.95	s	1.25	5.19	10.38	9.32
000 000		LIMITS		LIMITS		LIMIT		LIMITS	-		-	
5 2	4.20	NO CONF	06.	NO CONF	*	CONF	.81	NO CONF L	•		1.79	
CONF LIM	•	2		2		NO CONF LIMITS		2	7			•
NUMBER	3.		;	1.	;	1.	3.	-1	:	3.	3.	:
D-LEVEL NOMENCLATURE	POWER SUPPLY VOLTAG REGULATOR	A1A29 FREQUENCY STANDARD	SYNTHES126R	CONTROL CONVERTER	EXCITER / PA	IZ A1A22 VOLTAGE CONTROLLED OSCILIATOR	I AIAIS A M DETECTOR	IS AIAIO FM/PSK/FSK MODULATOR	PSK DETECTOR	PSK RECEIVE LOGIC	PSK TRANSMIT LOGIC	
₩.	4142	41423	9714	4149	1111	A1 A22	41419	41410	10 A1A7	22 A1A3	23 4145	
D-LEVEL BLOCK NO.	-	•	•	•	•	12	=	1.5	=	12	2	*
1	-	-	-	-	-	-	-	-	-	-	-	-

MAINTAINABILITY (REPAIR TIME)

PROBLEM AREAS

2K SUMMARY FOR WSC-3

רכא	SYSTEM	MR A	1-1	1-1	ដ	SYSTEM SYMPTON	DIAGNOSTIC	RESULTS
031350E01	2	1	23	•	•	PSK INDP	VISUAL	RPL LOGIC MOD AS
03368DE021386	2	-	22	0	0	FAULT LITE	9176	REPL LOGIC MODULE
03368DE021552	2	1	12	•	•	NO XMT/RCV	8176 5	REPLACED VCO
04663DE02H114	7	-	-	•	•	NO GUTPUT	VISUAL	RPL V.REG DIDDES
046630E02H114	2	1	•	•	•	NO AUDIO	NON	REPLACED XMTR
046630E020096	7		666	•	•	NO XMIT KEY		R R CR22 ? MODULE
04664DE020449	7	-	•	0	•	NOT KEY	VISUAL	RPL CONT CONVERTER
04668DE01C081	7		•	•	•	DATA BK UP	NON	REPLACED SYNTH
046790E02H061	7		•	•	•	NO T/R	ALL BIT	ESHORTED CAP IN A23
046790E02M067	2		•	•	•	NO RCV AM	BITE	RPL SYNTHESIZER
046790E02M070	2	-	22	-	0	NO RCV PSK	8176	RPL VR.PS LOG MOD
046790E02H085	2	-	23	0	0	ND XMT PSK	NON	RPL XMT LOGIC MOD
0469106020500	2	1	•1	•	•	NOT RCV PSK	9116	RPL PSK DETECTOR
046910E020516	2	1	•	0	•	NO TRANSMIT	8178 10	REPLACED XMTR
04698DE01A782	2	-	•	•	•	NO XMT	NON	RPL XHTR MOD
046990E21A321	2	-	==	•	•	NO DET PSK	BNON	RPL PSK DET
0505800010388	2	1	•	0	•	NO PURDUT		REPLACED XMTR
0911700010477	7	1	*	•	•	NO RCV AM		RPL AM DETECTOR
051480E01	2	1	*	0	0	NO SQUELCH	8178	RPL RF-AM DET
0\$1480C010287	2	-	666	•	•	NO RCV AM	NON	REP BROKEN MIRE
0514800010286	7	-	-	•	•	NO 28 V	NON	RPL V. REG
0\$1480E010836	7	7	:	•	•	ND SQUELCH	8178	RPL RF-AM DETT
0\$1480E010857	2	-	•	•	•	NO FUNCT	BITE LI	TREPLACED SYNT
098490E01	7	-	23	•	•	BAD STRAP	NON	CHANGED STRAPPING
05849	7	-	•	•	0			RPL MSC-BFRED SMH2
050500E01H132	7	7	666	•	•	NO CPY FSK	8178 22	
200190E011232	7	-	•	•	0	XMT FREG BA	D NONE	RPL SYNTHESIZER
200280E010872	2	1	•	1.8	•	NO RCV SAT	BITE	RPL XTROO + PSK DT
20028	7	-	•	•	٥			RPL SYNTHESIZER
2004400010170	2	1	1.8	•	•	NO RCV PSK	NON	RPL PSK DET
20122	7	1	•	•	•	DOWN REPLAC	0	RPL SYNTH /FREG ST
20122DE01	7	1	1.9	•	•	NO RCV PSK	NON	RPL PSK DET
521970E01M164	7	1	666	•	0	NO RCV	SH 16	CHG CABLE STRAP
52704WP010800	~	-	۰	•	•	NO PWR		BUSTED ALAIAIOR2
52704WP01	2	1	•	0	0	XMTR BROKE	IVISUAL	RPL XMTR
940570E011546	7	1	23	1.5	0	NO PSK	CV PSK	RPL LDGIC, DATA MC
540570E011560	7	1	22	0	•	NONE	B17E 21	RPL PHASE SHFTLOG

RMA SUMMARY WSC-3 SYSTEM LEVEL

2.22000 DT DISTRIBUTION IS LOGNORMAL WITH MEAN OF LNS = 2.73000 AND STANDARD DEVIATION OF LMS = .65340 MENN = 5221.06 .00450 AND BETA = 4.03 RT DISTPLAUTION IS EXPONENTIAL WITH MEAN = TTF DISTRIBUTION IS WEIBULL WITH ALPHA =

INHERENT AVAILABILITY = MTBF/(MTBF+MTTR)

MEAN TIME TO FAILURE = 5221.06

MEAN REPAIR TIME = 4.03

INHERENT AVAILABILITY = .9992

OBSERVED AVAILABILITY (SIMULATION OF RATIOS TTF/(TTF+DT))

90 PERCENT LCL ON INDIVIDUALS = .6733
90 PERCENT UCL ON INDIVIDUALS = .9968
MEAN = .9052
MEDIAN = .9839