Matrix Completion

Yunjuan Wang: Background, theory, algorithm

Alex Bai: algorithm

Nilay Thakor: Experiments

Background

Convex Relaxation

The problem we are considering is to recover matrix M. The goal is to find the lowest rank matrix X which matches the observed entries Ω from M.

Define $P_{\Omega}(X) = \begin{cases} X_{i,j}(i,j) \in \Omega \\ 0(i,j) \notin \Omega \end{cases}$, which is the projection operator on the observed index set Ω .

$$\min_{X} \operatorname{rank}(X) \qquad \min_{X} \|X\|_{*} \qquad \min_{X} \max_{Y} \langle X, Y \rangle$$

$$s.t.X_{i,j} = M_{i,j} \forall (i,j) \in \Omega \qquad s.t.P_{\Omega}(X) = P_{\Omega}(M) \qquad s.t. \begin{bmatrix} I & Y \\ Y^{\top} & I \end{bmatrix} \succeq 0$$

$$\operatorname{Define} \ X = U \Sigma V^{\top}. \qquad \min_{W_{1},W_{2}} \frac{1}{2} (Tr(W_{1}) + Tr(W_{2})) \qquad P_{\Omega}(X) = P_{\Omega}(M)$$

$$W_{1} = U \Sigma U^{\top} \qquad s.t. \begin{bmatrix} W_{1} & X \\ X^{\top} & W_{2} \end{bmatrix} \succeq 0$$

$$P_{\Omega}(X) = P_{\Omega}(M)$$

Basic Theory

Theorem 2.1. Vershynin [2018] Consider fixed $n \times n$ matrix X with rank(X) = r, where $r \ll n$. Each entry X_{ij} is revealed to us independently with probability $p \in (0,1)$. We only observe matrix Y, $Y_{ij} = \delta_{ij}X_{ij}$, $\delta_{i,j} \sim Ber(p)$. Choose $p = \frac{m}{n^2}$. Let \hat{X} be a best rank r approximation to $p^{-1}Y$. Then

$$\mathbb{E}\frac{1}{n}\|\hat{X} - X\|_F \le C\sqrt{\frac{rn\log n}{m}}\|X\|_{\infty}$$

Theorem 2.3 (Candès and Recht [2009]). Let M be a $n_1 \times n_2$ matrix of rank r satisfying assumption 2 and 3, choose $n = \max(n_1, n_2)$. Suppose we observe m entries of M with locations sampled uniformly at random. Then there exist constants C, c, such that if

$$m \ge C \max(\mu_1^2, \mu_0^{0.5} \mu_1, \mu_0 n^{0.25}) nr(\beta \log n)$$

for some $\beta > 2$, then the optimal solution to the norm minimization problem is unique and equal to M with probability at least $1 - cn^{-\beta}$. Furtheremore, for low rank case $r \leq \mu_0^{-1} n^{0.2}$, with same probability provided that

$$m \ge C\mu_0 n^{1.2} r(\beta \log n).$$

Singular Value Thresholding

Given matrix M, only observe $M_{i,j}$, $(i, j) \in \Omega$ In order to recover matrix M, we need to solve

$$\min_{X \in \mathbb{R}^{m \times n}} F(X) = \frac{1}{2} \|P_{\Omega}(M) - P_{\Omega}(X)\|_F^2 + \lambda \|X\|_*$$

Introduce soft-thresholding operator,

$$S_{\lambda}(X) = U \Sigma_{\lambda} V^{\top}$$
, where $X = U \Sigma V^{\top}$ is an SVD $(\Sigma_{\lambda})_{ii} = \max\{\Sigma_{ii} - \lambda, 0\}$

Thm: Suppose the sequence of step sizes obeys $0 < \inf \delta_t \le \sup \delta_t \le 2$, then the $\{Xk\}$ converges to the unique solution of

the unique solution of
$$\min_X \lambda \|X\|_* + \frac{1}{2} \|X\|_F^2$$

$$s.t.P_\Omega(X) = P_\Omega(M)$$

Algorithm 1 SVT Algorithm

Input: observed entries $P_{\Omega}(M)$, a sequence of positive step sizes $\{\delta_k\}_{k\geq 0}$, a regularization parameter λ , termination criteria

Initialize: $Y_0 = 0_{n_1 \times n_2}$

while termination criteria is not reached do $[U_k, \Sigma_k, V_k] = \text{svd}(Y_{k-1})$

$$X_{k+1} = U_k \operatorname{diag}(\{\sigma_i(\Sigma_k) - \lambda)_+\}_i) V_k^{\top}$$

$$Y_{k+1} = Y_k + \delta_k (P_{\Omega}(M) - P_{\Omega}(X_{k+1}))$$

$$k = k+1$$

end

Output: X_k

Alternating Least Squares Minimization

Assumptions:

- 1. M is of rank $k \ll \min\{m,n\}$ $X = UV^{T} \text{ where } U \in \mathbb{R}^{mxk}, V \in \mathbb{R}^{nxk}$
- 2. M is μ -incoherent

Definition (μ -incoherence). A matrix $M \in \mathbb{R}^{m \times n}$ is incoherent with parameter μ if:

$$||u^{(i)}||_2 \le \frac{\mu\sqrt{k}}{\sqrt{m}} \ \forall i \in [m], \quad ||v^{(j)}||_2 \le \frac{\mu\sqrt{k}}{\sqrt{n}} \ \forall j \in [n]$$

where $M=U\Sigma V^{\dagger}$ is the SVD of M and $u^{(i)},v^{(j)}$ denote the i^{th} row of U and j^{th} row of V respectively.

$$\min_{U \in \mathbb{R}^{m \times k}, V \in \mathbb{R}^{n \times k}} ||P_{\Omega}(UV^{\dagger}) - P_{\Omega}(M)||_F^2$$

Alternating Least Squares Minimization

Algorithm 3 AltMinComplete

```
Input: observed set \Omega, values P_{\Omega}(M)
```

Partition Ω into 2T+1 subsets $\Omega_0, \ldots, \Omega_{2T}$ with each element of Ω belonging to one of the Ω_t with equal probability (sampling with replacement)

Initialize: $\hat{U}^0 = SVD(\frac{1}{p}P_{\Omega_0}(M), k)$ i.e., top-k left singular vectors of $\frac{1}{p}P_{\Omega_0}(M)$

Clipping step: Set all elements of \hat{U}^0 that have magnitude greater than $\frac{2\mu\sqrt{k}}{\sqrt{n}}$ to zero and orthonormalize the columns of \hat{U}^0

for
$$t = 0, \dots, T-1$$
 do

$$\hat{V}^{t+1} \leftarrow \operatorname{argmin}_{V \in \mathbb{R}^{n \times k}} ||P_{\Omega_{t+1}} (\hat{U}^t V^{\dagger} - M)||_F^2$$

$$\hat{U}^{t+1} \leftarrow \operatorname{argmin}_{U \in \mathbb{R}^{m \times k}} ||P_{\Omega_{T+t+1}} (U(\hat{V}^{t+1})^{\dagger} - M)||_F^2$$

end

Return
$$X = \hat{U}^T (\hat{V}^T)^{\dagger}$$

Alternating Least Squares Minimization

Theorem 3.3. Let $M = U^* \Sigma^* V^{*\dagger} \in \mathbb{R}^{m \times n}$ $(n \ge m)$ be a rank-k incoherent matrix, i.e., both U^* and V^* are μ -incoherent. Also, let each entry of M be observed uniformly and independently with probability,

$$p > C \frac{(\frac{\sigma_1^*}{\sigma_k^*})^2 \mu^2 k^{2.5} \log n \log \frac{k||M||_F}{\epsilon}}{m \delta_{2k}^2},$$

where $\delta_{2k} \leq \frac{\sigma_k^*}{12k\sigma_1^*}$ and C > 0 is a global constant. Then with high probability for $T = C' \log \frac{||M||_F}{\epsilon}$, the outputs \hat{U}^T and V^T of AltMinComplete, with input $(\Omega, P_{\Omega}(M))$ satisfy: $||M - \hat{U}^T(V^T)^{\dagger}||_F \leq \epsilon$

- Requires $O((\frac{\sigma_1^*}{\sigma_k^*})^4 \mu^2 k^{4.5} n \log n \log \frac{k||M||_F}{\epsilon})$ matrix entries to be revealed
- Can recover M in $O(\log \frac{1}{\epsilon})$ steps

Numerical Experiments

Simulation Process

- K rank matrix :
 - Sample U~R^(m,k), U_{ii}~ Normal(0,1)
 - \circ Sample V~R^{\wedge (k,n)}, V_{ii}~ Normal(0,1)
 - Return L*R
- $P_{\Omega}(p) = \Delta^{(m,n)}$, $\Delta_{ij} = 1$ with probability p
- Reconstruction Error = $||P_{\Omega}(X-X_k)||_F$

Bound on k-rank approximation

- $U,S,V = svd(p^{-1}Y)$
- Approximate X by $X_k = \sum s_i u_i v_i^T$ (sum upto k terms)

$$\mathbb{E}\,\frac{1}{n}\|\hat{X} - X\|_F \le C\sqrt{\frac{rn\log n}{m}}\,\|X\|_{\infty},$$

Reconstruction Error for r-rank approaximation

Reconstruction Error vs dim(X)

Reconstruction error vs sparsity

SVT Convergence

Alt Min Complete

Real World Application

Dataset

- MovieLens (100k)
 - 943 Users
 - 1682 Movies
 - 100000 total ratings
- Test dataset generated by removing ratings of 10 users from original dataset
- Train Error = reconstruction error of train matrix
- Test Error = MSE of predicted ratings

K-rank approximation

SVT

Thanks