МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра БЖД

ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ по дисциплине «Безопасность жизнедеятельности» Вариант: 7

Студент гр. 0391	 Кононенко Е.
Преподаватель	 Смирнова Н.В.

Санкт-Петербург 2023

Кононенко Е.	Номер студенческого билета
7	039109

Задание 1.

Оцените условия труда работника по факторам среды. Вариант задания 1-1-10-1 выберите из табл. 1 справочной информации. Примите, что условия труда по другим факторам среды соответствуют классу 2. Наметьте конкретные мероприятия (организационные, технические, финансово-экономические) с определением необходимых затрат в денежном выражении, экономической эффективности по созданию допустимых условий труда работника и по времени устранения неблагоприятных факторов среды и процесса труда.

Залание 2.

На химически опасном объекте, расположенном на некотором расстоянии от университета, произошла авария ёмкости с химически опасным веществом. Определите степень и разряд химической опасности объекта; радиус первичного очага поражения; глубину распространения облака с пороговой концентрацией; площади очага поражения и заражения по следу; ширину и высоту подъёма ядовитого облака; время, за которое опасные вещества достигнут объекта и совершат поражающее действие. Оцените возможное число жертв студентов и сотрудников университета. Исходя из характера отравляющего вещества, выберите средства индивидуальной защиты и наиболее целесообразные действия по защите людей. Исходные данные для заданий формируются в виде набора букв и чисел, соответствующих позиции и её значениям, приведённым в табл. 2 справочной информации. Вариант 1-5-1-1-2-5-2-1-1-5-1-3

Задание 3.

Для травмированного работника заполните акт о несчастном случае на производстве по форме H-1. Вариант придумайте сами.

ЗАДАНИЕ 1.

Оцените условия труда работника по факторам среды. Вариант задания 1-1-1-10-1 выберите из табл. 1 справочной информации. Примите, что условия труда по другим факторам среды соответствуют классу 2. Наметьте конкретные мероприятия (организационные, технические, финансово-экономические) с определением необходимых затрат в денежном выражении, экономической эффективности по созданию допустимых условий труда работника и по времени устранения неблагоприятных факторов среды и процесса труда.

Данные из таблицы 1:

Характер работы: Экономист;

Освещение: KEO = 0.05; E = 320 лк; KП = 18 %;

Шум: L = 43 дБА;

Электромагнитные поля: E_1 / E_2 = 80 / 60.2 B/м; B_1 / B_2 = 80 / 60 нТл;

 $P = 0.06 \text{ BT/m}^2$

Микроклимат: t = 20 °C; Влажность = 33 %; v = 0.01 м/с

Решение

Оценим условия труда работника по факторам среды соответствии с документом Р 2.2.2006-05 «Руководство по гигиенической оценке факторов рабочей среды и трудового процесса. Критерии и классификация условий труда».

Освещение

KEO = 0.05 < 1 => класс условий труда вредный.

E = 320 лк > 300 => класс условий труда допустимый.

 $K\Pi = 18 \% > 15 =>$ класс условий труда вредный.

Вывод: освещение не соответствует допустимому классу труда, необходимо увеличить естественное освещение, сделать это можно путем увеличения числа окон или увеличением площади окон. Также необходимо снизить коэффициент пульсации, это можно сделать с помощью подключения обычных светильников на разные фазы и применением в светильниках с газоразрядными лампами электронных высокочастотных пульсирующий аппаратов.

Шум

L = 43 дБА <= 50 => класс условий труда - допустимый.

Вывод: уровень шума соответствует допустимому классу условий труда.

Электромагнитные поля

 $E_1 = 80 \text{ B/M} > 25 =>$ класс условий труда — вредный 3

 $E_2 = 60.2 \text{ B/m} > 2.5 =>$ класс условий труда – вредный 3

 $B_1 = 80 \text{ нTл} < 250 =>$ класс условий труда - допустимый 2

 $B_2 = 60 \text{ нTл} > 25 =>$ класс условий труда — вредный 3

 $P = 0.06 \text{ BT/M}^2 < 0.25 =>$ класс условий труда - допустимый 2

Вывод: напряженности электрического поля E_1 , E_2 и плотность магнитного потока B_2 завышены — необходимо их уменьшить

Микроклимат

t = 20 °C – ниже оптимальной => класс условий труда – допустимый 2

Влажность = 33 % => класс условий труда – допустимый 2

v = 0.01 м/c < 0.1 => класс условий труда — допустимый 2

Итог: микроклимат соответствует допустимому классу условий труда и не нуждается в изменениях.

ЗАДАНИЕ 2.

На химически опасном объекте, расположенном на некотором расстоянии от университета, произошла авария ёмкости с химически опасным веществом. Определите степень и разряд химической опасности объекта; радиус первичного очага поражения; глубину распространения облака с пороговой концентрацией; площади очага поражения и заражения по следу; ширину и высоту подъёма ядовитого облака; время, за которое опасные вещества достигнут объекта и совершат поражающее действие. Оцените возможное число жертв студентов и сотрудников университета. Исходя из характера отравляющего вещества, выберите средства индивидуальной защиты и наиболее целесообразные действия по защите людей. Исходные данные для

заданий формируются в виде набора букв и чисел, соответствующих позиции и её значениям, приведённым в табл. 2 справочной информации.

Вариант 1-5-1-1-2-5-2-1-1-5-1-3.

Данные из таблицы 2:

Опасное вещество: аммиак (под давлением)

Масса: 50 тонн:

Условия хранения: наземное (необвалованная ёмкость)

Время суток: утро;

Атмосферные условия: полуясно;

Скорость ветра: 4 м/с;

Температура воздуха: 0 °C;

Местность: открытая;

Условия защиты: открытая местность;

Обеспеченность противогазами: 100%;

Расстояние от места аварии до объекта: 1 км;

Расстояние от места аварии до реки: 4 км.

Определяем степень вертикальной устойчивости атмосферы.

V _B ,		Ночь		День					
_M /c	ясно	полуясно	пасмурно	ясно	полуясно	пасмурно			
0,5 0,6 - 2		Инверсия (+)		Конвекция (–)					
2,1 - 4									
4		Изото	ермия(+)		Изот	ермия (+)			

По таблице из методических материалов и по условиям задачи определяем, что степень вертикальной устойчивости — **изотермия**.

Определяем степень химической опасности (СХО) объекта по массе хлора.

Степень химической опасности объекта по аммиаку

- M3 = 0.8 50 T 3 степень (10-500 T);
- M2 = 50 250 T 2 степень (500-2500 T);
- M1 > 250 T 1 степень (> 2500 T).

При наличии других АХОВ на объекте производится расчет с использованием коэффициента эквивалентности (Кэкв) 1 тонне аммиака в соответствии с формулой: $K_{\text{экв}} = \Gamma_{\text{аммиака}} / \Gamma_{\text{АХОВ}}$ $K_{\text{экв}} = \frac{\Gamma_{\text{хлора}}}{\Gamma_{\text{АХОВ}}}$. Для аммиака этот коэффициент: 11.2.

Значит степень химической опасности объекта – 2.

Определяем разряд химической опасности объекта (РХО), исходя из объема возможных химических потерь людей, %:

$$K = \frac{M_1 A_1 Y_1}{100 \Pi \text{ДK}_1 Z_1}$$
, где:

- M macca AXOB = 50 T.;
- ПДК предельно допустимая концентрация в рабочей зоне = 20 мг/м3;
- Z коэффициент, учитывающий условия хранения AXOB (Z = 1 наземный склад; Z = 5 подземный склад);(1)
- A процент AXOB в продукте = 100 %;
- У коэффициент, учитывающий расположение склада относительно водоема (У = 10 при L < 1,0 км; У = 3 при L = от 1 до 3 км; У = 1 при L > 3 км);

$$K = (50 *100 * 1) / (100 * 20 * 1) = 2.5$$

K > 100 — особо опасное химическое предприятие 1-го разряда (потери людей более 50%);

K = 11-100 — высокоопасное химическое предприятие 2-го разряда (потери людей 20–50%);

K < 10 — опасное химическое предприятие 3-го разряда (потери людей 10–20%).

Определяем размеры очага первичного химического поражения местности.

$$R_0 = 6(M)^0.5 = 42.43 \text{ M}$$

где М – масса АХОВ, т;

Очагом первичного поражения считается площадь круга (So) с плотностью заражения 0.01 т/m2.

Определяем значение глубины распространения, км, зараженного облака с пороговой концентрацией $\Gamma_{\text{об отк}}$.

$$\Gamma_{\text{об отк}} = \Gamma_{\text{т отк}} * K_{\text{B}} * K_{t},$$
 где:

- Γ_T табличное значение глубины распространения облака
- К_В поправочный коэффициент измерения скорости ветра

Т а б л и ц а 20. Глубина распространения АХОВ с пороговыми концентрациями на открытой местности ($\Gamma_{T \text{ отк}}$), км (скорость ветра 4 м/с), t = 0° C, емкости не обвалованы.

OXB			N	Ласса С	ХВ в е	мкости	I, T					
UAB	1	5	10	25	50	75	100	500	1000			
	Инверсия											
Хлор, фосген	4.9	13	20	33	55	80	80	80	80			
Синильная кислота	8.9	24	37	50	80	80	80	80	80			
Аммиак	0.8	1.9	2.9	4.5	7.5	9.3	11	30	50			
Сернистый ангидрид	2.6	6.4	10	16	26	34	42	80	80			
Сероводород	0.7	1.8	2.8	4.5	7	8.5	10	28	40			
Сероуглерод	0.3	0.8	1.3	2.2	3.3	4	4.7	13	25			
Двуокись азота	2.5	7	10	18	27	37	44	80	80			
Хлорпикрин	8	21	32	50	80	80	80	80	80			
		И	зотерм	ия								
Хлор, фосген	2.1	5.3	8	14	22	2	34	80	80			
Синильная кислота	3.6	9.6	15	29	42	53	63	80	80			
Аммиак	0.4	0.9	1.3	2.1	3.2	3.8	4.6	12	26.5			
Сернистый ангидрид	1.1	2.8	4.2	7	11	3	16	47	60			
Сероводород	0.3	0.8	1.2	1.7	3	3.5	4.4	12	22			
Сероуглерод	0.2	0.8	0.6	1	1.4	1.7	2.1	5	7			
Двуокись азота	1.1	2.8	4.2	6	11	14	17	47	60			
Хлорпикрин	3.1	8.3	13	20	35	42	56	80	80			

Т а б л и ц а 21. Поправочный коэффициент Кв.

Состоянно отностью		Скорость ветра, м/с								
Состояние атмосферы	1	2	3	4	6	7				
Инверсия Изотермия Конвекция	1 1 1	0,60 0,71 0,70	0,45 0,55 0,62	0,38 0,50 0,55	0,45 -	- 0,38 -				

Т а б л и ц а 22. Значение коэффициента Кt, учитывающего изменение температуры воздуха (первичное облако).

AVOD		Температура воздуха, °С							
AXOB		-20	-10	0	10	20	30		
Хлор, аммиак ^х	0,3	0,5	0,7	0,8	0,9	1,0	1,1		
Хлор, аммиак ^{хх}	0,1	0,2	0,4	0,6	0,8	1,0	1,2		
Фосген	0	0	0	0	0,3	1,0	1,4		
Окислы азота	0	0	0	0	0	0	1,0		
Синильная кислота	0	0	0	0	0	0	1,0		
Окись углерода	1,0	1,0	1,0	1,0	1,0	1,0	1,0		
Сернистый ангидрид	0	0	0	0,6	0,8	1,0	1,2		

Исходя из таблиц Γ_T = 3.2; K_B = 0.5; K_t = 0.8 Подставляя в формулу, получим: $\Gamma_{\text{об отк}}$ = 3.2 * 0.5 * 0.8 = 1.28 км

Определяем площадь очага поражения (S_o) , ширину облака (Ш), площадь заражения по следу (S_a) , высоту подъема облака (H_{of}) .

$$\begin{split} S_{0\,=}\,pi\,*\,R_{0}{}^{2} &= 3.14\,*\,42.43 = 113.04\;\text{m}^{2} \\ III &= 0.15\,*\,\Gamma_{o6} = 0.15\,*\,1.28 = 0.192\;\text{km} = 192\;\text{m} \\ S_{3} &= 0.5\,*\,\Gamma_{o6}\,*\,III = 0.5\,*\,1.28\,*0.192 = 0.12288\;\text{km}^{2} \\ H_{o6} &= 0.03\,*\,\Gamma_{o6} = 0.03\,*\,1.28 = 0.0384\;\text{m} \end{split}$$

Определяем время, за которое опасные вещества достигнут объекта и совершат поражающее действие.

Определяем по формуле время подхода: $t_{\text{под}} = \frac{L}{60V_{\text{п}}}$, где L - удаление объекта от источника AXOB, м; $V_{\text{п}}$ - средняя скорость переноса AXOB, м/с. L = 1 км.

Таблица 23. Средняя скорость переноса АХОВ, м/с.

1 - 1 /1	1								
		Удаление объекта от очага АХОВ, км							
V _в , м/с	До 10 км	> 10 км	До 10 км	> 10 км	До 10 км	> 10 км			
	Инве	Инверсия		етрия	Ко	нвекция			
1	2,0	2,2	1,5	2,0	1,5	1,8			
2	4,0	4,5	3,0	4,0	3,0	3,5			
3	6,0	7,0	4,5	6,0	4,5	5,0			
4	_	_	6,0	8,0	_	_			
5	_	_	7,5	10	_	_			
8	_	_	12	16	_	_			

Исходя из таблицы $V_{\pi} = 6 \text{м/c}$.

$$t_{\text{под}} = L \: / \: 60 \: V_{\pi} = 2.8 \:$$
мин

Рассчитаем время поражения $t_{\text{пор}}$, мин. по формуле: $t_{\text{пор}} = t_{\text{исп}} * K_{\text{исп}}$, где $t_{\text{исп}}$ – время испарения, $K_{\text{исп}}$ – поправочный коэффициент, учитывающий время испарения АХОВ при различной скорости ветра.

Таблица 24. Время испарения АХОВ при скорости ветра 1 м/с.

	1 1 1						
	Время испарения t _{исп}						
Вид АХОВ	Необвалованная емкость	Обвалованная					
	Пеоовалованная емкость	емкость					
Хлор, фосген	1,3	22					
Сероуглерод	3,0	45					
Сернистый ангидрид,	1,2	20					
аммиак, сероводород							
Синильная кислота	1,3	20					
Хлорпикрин	41	25 суток					
Окислы азота	1,9	30					

Т а б л и ц а 25. Поправочный коэффициент (Ки).

V _B , M/c	1	2	3	4	5	6	7	8
K_{u}	1	0,7	0,55	0,43	0,37	0,32	0,28	0,25

Исходя из таблиц $t_{исп} = 1.2$; $K_{u} = 0.43$.

$$t_{\text{пор}} = 1.2 * 0.43 = 0.516$$
 ч $= 31$ мин

Определяем возможные химические потери (XП %) людей в очаге поражения.

Для определения химических потерь необходимо знать обеспеченность людей средствами индивидуальной защиты (противогазами) и условия их защиты (открытая местность, укрытия).

Таблица 26. Возможные потери людей в очаге поражения.

Varanus	O	беспеч	енно	сть пр	отив	огазамі	и (n), %
Условия защиты	0	20	40	50	70	90	100
Открытая местность	90–100	75	50	50	35	18	5–10
Укрытия, здания	50	40	30	27	18	9	4

Примечание. 1. Структура потерь: легкая степень — 25%, средняя тяжесть — 40%, смертельные поражения — 35%. 2. При фактической оценке потерь людей необходимо учесть вид АХОВ при условии отсутствия средств защиты (табл. 27). Таблица27. Процент поражения при отсутствии средств защиты во время распространения первичного облака.

Вид АХОВ	Количество пораженных, %
Окись углерода	10–20
Хлор, аммиак, сернистый газ	20–30
Синильная кислота, фосген	30–40

Окись этилена 50–60

$$X\Pi_{\text{MUH}} = 5 * 0.2 = 1 \%$$

 $X\Pi_{\text{MAKC}} = 10 * 0.3 = 3 \%$

Итого: химические потери (ХП, %) будут в пределах 1% - 3%.

1) Определяем возможное число жертв.

 $N_{\Pi O T} = N_{c M}^{y A} M$, где $N_{c M}^{y A}$ — средняя удельная смертность при воздействии делимого AXOB, чел/т (см. ниже), М — масса выброса AXOB, т.

Т а б л и ц а 28. Средняя удельная смертность для некоторых AXOB $N_{cm}^{y_A}$.

OXB	Хлор, фосген, хлорпикрин	Серово-	Сернистый ангидрид	Ам- миак	Серо- углерод	Метили- зоциана
$N_{ m y_{ m J.CM}}$, чел/т	0.5	0.2	0.12	0.05	0.02	12.5

$$N_{\Pi OT} = N_{\text{см}}^{\text{уд}} M = 0.05 * 50 = 2.5 => 3 чел$$

Средства индивидуальной защиты и наиболее целесообразные действия по защите людей:

- При получении информации об аварии следует надеть средства защиты органов дыхания (марлевая повязка, смоченная водой или 5% раствором лимонной или уксусной кислоты (2 чайных ложки на стакан воды), противогазы с дополнительным патроном), средства защиты кожи (плащ, накидка), покинуть район аварии в направлении, указанном в СМИ;
- Выходить из зоны химического заражения следует в сторону, перпендикулярную направлению ветра;
- Если из опасной зоны выйти невозможно, попытаться найти помещение (следует укрываться на нижних этажах зданий) и произвести его экстренную герметизацию: плотно закрыть окна, двери, вентиляционные отверстия, дымоходы, уплотнить щели в окнах и на стыках рам;

• Выйдя из опасной зоны, следует снять верхнюю одежду, оставить ее на улице, принять душ, промыть глаза и носоглотку.