Tugas Mandiri 4

Pengantar Sistem Digital Semester Ganjil 2022/2023

Revisi 1.1

Petunjuk pengerjaan:

- Kerjakan dengan tulisan tangan atau diketik.
- Tuliskan Nama, Kelas, dan NPM pada setiap lembar jawaban.
- Tuliskan penjelasan dari cara mendapatkan jawaban tersebut.
- Apabila ditulis tangan, hasil pekerjaan di scan / foto dan dimasukan ke dalam satu file berformat .pdf.
- Format nama file (tanpa tanda kurung) : [KodeAsdos]_TM4_[Nama]_[NPM].pdf.
- Tugas mandiri dikumpulkan Jumat, 14 Oktober 2022 pukul 10.00 (PERHATIKAN berbeda dari biasanya) pada slot yang sudah disediakan di SCELE.
- Jika mengumpulkan telat sebelum pukul 23:59 pada hari yang sama, akan dikenakan penalti sebesar 50 poin. Terlebih dari waktu tersebut, tugas mandiri tidak akan dinilai
- 1. (25 poin) Pak Esde mau membuat sirkuit yang memiliki tombol A, B, C, D tetapi saat dia melihat stok gatenya, dia baru sadar bahwa dia hanya memiliki NAND gate, bantulah Pak Esde membuat sirkuit yang hanya mengeluarkan output pada saat kombinasi-kombinasi ini ditekan menggunakan five-step design procedure (tanpa tahapan verifikasi):
 - C
 - B dan C
 - A dan D
 - A dan B
 - A, B dan D
 - A, B dan C
 - A. B. C dan D

1. Specification

Input: A, B, C, D

Implementasi: NAND Gate Most Significant Bit: A Least Significant Bit: D

2. Formulation

F(A, B, C, D) = (A'B'CD') + (A'BCD') + (ABC'D') + (ABCD') + (ABCD)

A	В	С	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

3. Optimization

Optimalisasi menggunakan K-Maps:

F(A, B, C, D) = AB + AC'D + A'CD'

- = ((AB + AC'D + A'CD')')'
- = ((AB)' (AC'D)' (A'CD')')'
- = ((AB)' (A (C . C)' D)' ((A . A)' C (D . D)')'

4. Technological Mapping

2. (20 poin) Buatlah 8 to 1 multiplexer menggunakan 8 AND gate tanpa enabler.

- 3. (30 poin) Lakukanlah formulation, optimization, dan technological mapping untuk tiap permasalahan ini :
 - a. $F(A, B, C, D) = \sum m(0, 3, 10, 11, 13), d(A, B, C, D) = \sum m(2, 5, 7, 8, 15)$

Formulation:

Α	В	С	D	F
0	0	0	0	1
0	0	0	1	0
0	0	1	0	х
0	0	1	1	1
0	1	0	0	0
0	1	0	1	x
0	1	1	0	0
0	1	1	1	х
1	0	0	0	x
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	х

Optimization:

F(B, C, D) = BD + CD + B'D'

Technological Mapping:

b. $F(A, B, C, D) = \prod M(2, 3, 4, 7, 8, 11, 13), d(A, B, C, D) = \sum m(5, 6, 9, 14)$

Formulation:

Α	В	С	D	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	х
0	1	1	0	х
0	1	1	1	0
1	0	0	0	0
1	0	0	1	х
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	х
1	1	1	1	1

Optimization:

F(A, B, C, D) = ACD' + ABC + ABD' + A'B'C'

Technological Mapping:

c. $F(A, B, C, D) = \sum m(2, 6, 12, 15), d(A, B, C, D) = \sum m(0, 7, 8, 10, 14)$

Formulation:

A	В	С	D	F
0	0	0	0	х
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	х
1	0	0	0	х
1	0	0	1	0
1	0	1	0	х
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	х
1	1	1	1	1

Optimization:

F(A, B, C, D) = AD' + BC + B'D'

Technological Mapping:

4. (25 poin) Pak Esde mau membuat *to do list* yang membantu dia mengatur tugasnya. Beberapa tugas lebih penting dari yang lain. Tiap hari Pak Esde hanya bisa

melakukan satu tugas. Dia meminta kamu membuat sirkuit yang mengatur 6 tugas berbeda (t0,t1,t2,t3,t4,t5) (t5 MSB dan t0 LSB secara prioritas). Jadi sirkuit akan menerima input 6 tugas (t5 sampai t0), lalu sirkuit akan memberikan output tugas mana yang harus dikerjakan Pak Esde dalam bentuk bilangan biner.

Contoh: Jika sirkuit menerima input bahwa tugas t5 tidak ada, t4 tidak ada, t3 ada, t2 ada, dan t1 tidak ada, maka sirkuit akan memberikan output **011** karena tugas yang harus dikerjakan oleh Pak Esde adalah tugas t3.

Buatlah sirkuit tersebut menggunakan five-step design procedure. (Optimisasi menggunakan K-map tidak harus)

1. Specification

Input: t5, t4, t3, t2, t1, t0

Output: A2, A1, A0

Most Significant Bit Input: t5 Least Significant Bit Input: t0 Most Significant Bit Output: A2 Least Significant Bit Output: A0

2. Formulation

Input				0	utpu	ut		
t5	t4	t3	t2	t1	tO	A2	A1	AO
0	0	0	0	0	1	0	0	0
0	0	0	0	1	Х	0	0	1
0	0	0	1	Х	Χ	0	1	0
0	0	1	X	X	Χ	0	1	1
0	1	Х	Х	Х	Х	1	0	0
1	Х	Х	Х	Х	Х	1	0	1

 $A0 = \Sigma m(1, 3, 5) = (t5' t4' t3' t2' t1) + (t5' t4' t3) + t5$

A1 = Σ m(2, 3) = (t5' t4' t3' t2) + (t5' t4' t3)

 $A2 = \Sigma m(4, 5) = (t5' t4) + t5$

3. Optimization

Optimalisasi menggunakan Aljabar Boolean:

AKMAL RAMADHAN - PSD B - 2206081534

A0 = t5' t4' ((t3' t2' t1) + t3) + t5 A0 = t4' ((t3' t2' t1) + t3) + t5 A0 = t4' (t2' t1 + t3) + t5	Distributive Law Absorption Law
A1 = t5' t4' ((t3' + t2) + t3) A1 = t5' t4' (t3 + t2)	Distributive Law Absorption Law
A2 = t4 + t5	Absorption Law

4. Technological Mapping

