PRODUCT OF SUM AND MAX-TERM REPRESENTATION

ANALOG & DIGITAL ELECTRONICS ESC-301

ARKAPRATIM GHOSH 13000121058

CONTENT

INTRODUCTION

- PRODUCT OF SUM
 - Definition
 - Example

STANDARD POS FORMS

- DEFINITION
- CONVERSION FROM ANY POS
 TO STANDARD POS
- TRUTH TABLE REPRESENTATION

MAX-TERMS

- DEFINITION
- TRUTH TABLE REPRESENTATION

PRODUCT OF SUM

When two or more sum terms are multiplied together

0

$$f(A,B,C) = (A'+B) \cdot (B+C')$$

$$\uparrow \qquad \qquad \uparrow$$
Sum terms

CANONICAL OR STANDARD POS FORM

In POS form all the terms do not involve all the literals

For example:

The expression A.(B+C)

-the first term does not contain B and C whereas the second term does not contain A

● If each term of POS contain all the literals then it is known as **STANDARD POS FORM**

Lets take an example and convert it to Standard POS form

STEP-WISE CONVERSION TO STANDARD POS FORM

Find the missing literals in each sum term.

Expand t
repeated f(A,B,C)=(A+B+C).(A+B+C').(A+B+C).(A'+B+C).(A+B+C).(A+B'+C)
f(A,B,C)=(A+B+C).(A+B+C').(A'+B+C).(A+B'+C)

MAX-TERMS

- Maxterms are OR terms with every variable in true or complemented form.
- Given that each binary variable may appear normal (e.g., x) or complemented (e.g. x'), there are 2ⁿ maxterms for n variables.
- Example: Two variables (X and Y) produce 2x2=4 combinations:

X+Y(both normal)

X+Y'(x normal, y complemented)

X'+Y(x complemented, y normal)

X'+Y'(both complemented)

TRUTH TABLE REPRESENTATION OF MAX TERMS

Α	В	С	Maxterms
0	0	0	$A+B+C = M_0$
0	0	1	$A+B+C'=M_1$
0	1	0	$A+B'+C=M_2$
0	1	1	$A+B'+C'=M_3$
1	0	0	$A'+B+C=M_4$
1	0	1	$A'+B+C'=M_5$
1	1	0	$A'+B'+C = M_6$
1	1	1	$A'+B'+C'=M_7$

MAX-TERMS EXAMPLES

1.
$$f(A,B,C) = (A+B+C).(A+B'+C).(A+B'+C')+(A'+B'+C')$$

= $M_0 + M_2 + M_3 + M_7$
= $\Pi M(0,2,3,7)$

2.
$$f(A,B,C) = (A+B+C').(A+B'+C').(A+B'+C').(A'+B'+C')$$

= $M_1 + M_3 + M_5 + M_7$
= $\Pi M (1,3,5,7)$

3.
$$f(A,B,C) = (A+B+C).(A+B'+C).(A+B'+C').(A'+B'+C)$$

= $M_0 + M_2 + M_3 + M_6$
= $\Pi M (0,2,3,6)$

#