Problem setting

For t = 1, ..., T:

Make prediction $\hat{c}_t \in \mathbb{B}^n$ of c^* .

Take action $x_t \in \underset{x \in X_t}{\operatorname{argmax}} \langle c^*, x \rangle$.

Observe (X_t, x_t) and update from \hat{c}_t to \hat{c}_{t+1} .

Regret

Opt. val. Val. of learner's action

$$R_T^{c^*} \coloneqq \sum_{t=1}^T \langle c^*, x_t - \hat{x}_t \rangle = \sum_{t=1}^T \langle c^*, x_t \rangle - \sum_{t=1}^T \langle c^*, \hat{x}_t \rangle \text{ for } \hat{x}_t \in \arg\max\{\langle \hat{c}_t, x \rangle \mid x \in X_t\}.$$

Our results

- ONS-based method with $R_T^{c^*} = O(n \log T)$; the per-bound complexity is independent of T.
 - The first method to have these two desirable properties!
- MetaGrad-based method to handle suboptimality of x_t .
- Lower bound of $R_T^{c^*} = \Omega(n)$.