```
In [225]: 1 import sqlalchemy
from sqlalchemy import create_engine
3 import numpy as np
4 import pandas as pd
5 import statsmodels.api as sm
6 import matplotlib.pyplot as plt
7 %config InlineBackend.figure_format = "svg"
8 from sklearn.model_selection import train_test_split
9 from sklearn.linear_model import LogisticRegression
10 from sklearn.metrics import accuracy_score, classification_report
11 import seaborn as sns
12 sns.set(style="white")
13 sns.set(style="whitegrid", color_codes=True)
```

Charlie Morris - Cosc 61 Final Project

Out[227]:

	Tables_in_baseball
0	award_types
1	awards
2	batting_stats
3	countries
4	errors
5	franchises
6	hall_of_fame
7	pitching_stats
8	players
9	positions
10	salaries
11	team_stats
12	teams
13	world_series

Logistic Regression: Probability of Making HOF Vesus Career Pitching SOs

```
In [228]:
              #Grab the data for pitchers and their career strikeouts
            2
              #Look only at pitchers with minimum 201 strikeouts
            3
              query = """
                  SELECT playerID, SUM(SO) AS Career_SO
            6
                  FROM pitching stats
            7
                  WHERE playerID IN
            8
                       (SELECT playerID
            9
                      FROM players
                      WHERE '1900-12-31' < finalGame AND finalGame < '2008-12-31')
           10
           11
                  GROUP BY playerID
           12
                  HAVING Career_SO > 200;
              0.00
           13
           14
           15
              df_CareerSOs = pd.read_sql(query, engine)
              df CareerSOs
```

Out[228]:

	playerID	Career_SO
0	aasedo01	641.0
1	abbotgl01	484.0
2	abbotji01	888.0
3	abbotpa01	496.0
4	abernte02	765.0
1935	zambrvi01	529.0
1936	zimmeje02	213.0
1937	zoldasa01	207.0
1938	zuberbi01	383.0
1939	zuverge01	223.0

Out[229]:

	playerID	year
0	aaronha01	1982
1	alexape01	1938
2	alomaro01	2011
3	alstowa01	1983
4	andersp01	2000
282	wynnea01	1972
283	yastrca01	1989
284	youngcy01	1937
285	youngro01	1972
286	yountro01	1999

```
In [230]: 1 #Merge the 2 data frames
2 #1 means made HOF, 0 means didn't make HOF
3 full_df = pd.merge(df_CareerSOs, df_HOF, on = "playerID", how = "left")
4 full_df['HOF_Status'] = full_df['year'].notnull().astype(int)
5 full_df
```

Out[230]:

	playerID	Career_SO	year	HOF_Status
0	aasedo01	641.0	NaN	0
1	abbotgl01	484.0	NaN	0
2	abbotji01	888.0	NaN	0
3	abbotpa01	496.0	NaN	0
4	abernte02	765.0	NaN	0
1935	zambrvi01	529.0	NaN	0
1936	zimmeje02	213.0	NaN	0
1937	zoldasa01	207.0	NaN	0
1938	zuberbi01	383.0	NaN	0
1939	zuverge01	223.0	NaN	0

1940 rows × 4 columns

```
Out[231]: 0 1878
1 62
```

Name: HOF_Status, dtype: int64


```
In [234]:
             #Mean values of each group
           2 full_df.groupby('HOF_Status').mean()['Career_SO']
Out[234]: HOF_Status
                630.900958
               2090.032258
          Name: Career_SO, dtype: float64
In [235]:
           1
             #Run the logistic regression
           2 X = full_df[['Career_SO']]
           3 y = full_df['HOF_Status']
              # Split the data into training and testing sets
           6 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2
           7
             # Initialize the logistic regression model
             model = LogisticRegression()
          10
          11
              # Train the model on the training data
          12
             model.fit(X_train, y_train)
          13
          14
             # Make predictions on the test data
          15
             y pred = model.predict(X_test)
          16
          17
              # Evaluate the model's accuracy
          18
              accuracy = accuracy_score(y_test, y_pred)
          19
              print(f"Accuracy: {accuracy:.2f}")
          20
          21
             # Print classification report
          22 print(classification_report(y_test, y_pred))
```

Accuracy: 0.98

	precision	recall	f1-score	support
0	0.98	1.00	0.99	375
1	0.83	0.38	0.53	13
accuracy			0.98	388
macro avg	0.91	0.69	0.76	388
weighted avg	0.97	0.98	0.97	388

```
In [236]:
              # Plot the data points and decision boundary
              plt.scatter(X_test, y_test, color='blue', label='True Class')
           2
              plt.scatter(X_test, y_pred, color='red', marker='x', label='Predicted C
           3
              plt.xlabel('Career_SO')
              plt.ylabel('HOF_Status')
              plt.legend()
           7
              # Create a range of values for the x-axis
           8
              x_range = np.linspace(X.min(), X.max(), num=100)
              # Calculate the corresponding y-values using the logistic regression mc
           10
              y range = model.predict_proba(x_range.reshape(-1, 1))[:, 1]
           11
           12
           13
              # Plot the decision boundary
           14
              plt.plot(x range, y range, color='green', label='Decision Boundary')
           15
              plt.legend()
           16
           17
             plt.show()
```

/Users/charliemorris/opt/anaconda3/lib/python3.9/site-packages/sklearn/base.py:450: UserWarning: X does not have valid feature names, but Logistic Regression was fitted with feature names

warnings.warn(

Logistic Regression: Probability of Making HOF Vesus Career Batting Average

```
#Grab the data for batters and their career batting averages
In [237]:
              #Look only at batters with minimum 1500 at bats
            3
             query = """
                  SELECT playerID, ROUND(SUM(H)/SUM(AB) * 1000) AS Career_BA
                  FROM batting stats
           7
                  WHERE playerID IN
           8
                      (SELECT playerID
           9
                      FROM players
                      WHERE '1930-12-31' < finalGame AND finalGame < '2008-12-31')
          10
           11
                  GROUP BY playerID
          12
                  HAVING SUM(AB) > 2000;
              0.00
          13
          14
          15 df CareerBA = pd.read sql(query, engine)
          16 df CareerBA
```

Out[237]:

	playerID	Career_BA
0	aaronha01	305.0
1	abbotku01	256.0
2	adairje01	254.0
3	adamsbo03	269.0
4	adamsbu01	266.0
1448	zarilal01	276.0
1449	zeileto01	265.0
1450	zernigu01	265.0
1451	zimmedo01	235.0
1452	ziskri01	287.0

Out[238]:

	playerID	year
0	aaronha01	1982
1	alexape01	1938
2	alomaro01	2011
3	alstowa01	1983
4	andersp01	2000
282	wynnea01	1972
283	yastrca01	1989
284	youngcy01	1937
285	youngro01	1972
286	yountro01	1999

```
In [239]: 1 #Merge the 2 data frames
2 #1 means made HOF, 0 means didn't make HOF
3 full_df = pd.merge(df_CareerBA, df_HOF, on = "playerID", how = "left")
4 full_df['HOF_Status'] = full_df['year'].notnull().astype(int)
5 full_df
```

Out[239]:

	playerID	Career_BA	year	HOF_Status
0	aaronha01	305.0	1982.0	1
1	abbotku01	256.0	NaN	0
2	adairje01	254.0	NaN	0
3	adamsbo03	269.0	NaN	0
4	adamsbu01	266.0	NaN	0
1448	zarilal01	276.0	NaN	0
1449	zeileto01	265.0	NaN	0
1450	zernigu01	265.0	NaN	0
1451	zimmedo01	235.0	NaN	0
1452	ziskri01	287.0	NaN	0

1453 rows × 4 columns

```
In [240]: 1 #Count how many batters in the HOF
2 full_df['HOF_Status'].value_counts()
```

```
Out[240]: 0 1340
1 113
```

Name: HOF_Status, dtype: int64


```
In [243]:
             #Mean values of each group
           2 full_df.groupby('HOF Status').mean()['Career_BA']
Out[243]: HOF_Status
               266.487313
               298.415929
          1
          Name: Career BA, dtype: float64
In [244]:
           1
             #Run the logistic regression
           2 X = full_df[['Career_BA']]
           3 y = full_df['HOF_Status']
              # Split the data into training and testing sets
           6 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2
           7
             # Initialize the logistic regression model
             model = LogisticRegression()
          10
          11
             # Train the model on the training data
          12
             model.fit(X_train, y_train)
          13
          14
             # Make predictions on the test data
          15
             y pred = model.predict(X_test)
          16
          17
              # Evaluate the model's accuracy
              accuracy = accuracy_score(y_test, y_pred)
          19
              print(f"Accuracy: {accuracy:.2f}")
          20
          21
             # Print classification report
          22 print(classification_report(y_test, y_pred))
```

Accuracy: 0.94

	precision	recall	f1-score	support
0	0.95	0.99	0.97	269
1	0.70	0.32	0.44	22
accuracy			0.94	291
macro avg	0.82	0.65	0.70	291
weighted avg	0.93	0.94	0.93	291

```
In [245]:
              # Plot the data points and decision boundary
              plt.scatter(X_test, y_test, color='blue', label='True Class')
           2
              plt.scatter(X_test, y_pred, color='red', marker='x', label='Predicted C
           3
              plt.xlabel('Career_BA')
              plt.ylabel('HOF_Status')
              plt.legend()
           7
              # Create a range of values for the x-axis
           8
              x_range = np.linspace(X.min(), X.max(), num=100)
              # Calculate the corresponding y-values using the logistic regression mc
           10
              y range = model.predict_proba(x_range.reshape(-1, 1))[:, 1]
           11
           12
           13
              # Plot the decision boundary
              plt.plot(x_range, y_range, color='green', label='Decision Boundary')
           14
           15
              plt.legend()
           16
           17
             plt.show()
```

/Users/charliemorris/opt/anaconda3/lib/python3.9/site-packages/sklearn/base.py:450: UserWarning: X does not have valid feature names, but Logistic Regression was fitted with feature names

warnings.warn(

Prime Age for Baseball

```
In [246]:
              #Look at the baseball players with career HR totals of at least 275
              #Each row is their age during a season and their HR totals
              query = """
                  SELECT year - birthYear AS Age, HR
            5
                  FROM players AS p
            6
                  INNER JOIN batting stats AS bs
            7
                  ON p.playerID = bs.playerID
            8
                  WHERE p.playerID IN
            9
                       (SELECT playerID
           10
                       FROM batting stats
                      GROUP BY playerID
           11
           12
                      HAVING SUM(HR) > 275);
              0.000
           13
           14
              df = pd.read_sql(query, engine)
           15
           16
              df
```

Out[246]:

	Age	HR	
0	20	13	
1	21	27	
2	22	26	
3	23	44	
4	24	30	
3078	32	18	
3079	33	17	
3080	34	6	
3081	34	15	
3082	35	0	

```
In [247]: 1    counts = df['Age'].value_counts().sort_index()
2    counts_df = counts.reset_index()
3    counts_df.columns = ['Age', 'Count']
4    counts_df
```

Out[247]:

	Age	Count
0	17	1
1	18	3
2	19	12
3	20	28
4	21	72
5	22	108
6	23	143
7	24	174
8	25	167
9	26	166
10	27	172
11	28	174
12	29	172
13	30	174
14	31	173
15	32	174
16	33	165
17	34	178
18	35	175
19	36	160
20	37	133
21	38	117
22	39	82
23	40	69
24	41	43
25	42	29
26	43	10
27	44	6
28	45	2
29	46	1
23	.0	

```
In [248]: 1 medianHRs = df.groupby('Age').median()["HR"]
2 medianHRs_df = medianHRs.reset_index()
3 medianHRs_df.columns = ['Age', 'MedianHRs']
4 medianHRs_df
```

Out[248]:

	Age	MedianHRs
0	17	0.0
1	18	0.0
2	19	0.5
3	20	4.5
4	21	3.0
5	22	10.0
6	23	16.0
7	24	18.0
8	25	23.0
9	26	26.0
10	27	27.5
11	28	28.5
12	29	29.0
13	30	26.0
14	31	28.0
15	32	26.0
16	33	23.0
17	34	21.0
18	35	19.0
19	36	18.0
20	37	16.0
21	38	11.0
22	39	14.5
23	40	12.0
24	41	9.0
25	42	4.0
26	43	9.0
27	44	3.5
28	45	2.5
29	46	1.0

In [249]: 1 primeHRs = pd.merge(counts_df, medianHRs_df, on = "Age", how = "inner") 2 primeHRs

Out[249]:

	Age	Count	MedianHRs
0	17	1	0.0
1	18	3	0.0
2	19	12	0.5
3	20	28	4.5
4	21	72	3.0
5	22	108	10.0
6	23	143	16.0
7	24	174	18.0
8	25	167	23.0
9	26	166	26.0
10	27	172	27.5
11	28	174	28.5
12	29	172	29.0
13	30	174	26.0
14	31	173	28.0
15	32	174	26.0
16	33	165	23.0
17	34	178	21.0
18	35	175	19.0
19	36	160	18.0
20	37	133	16.0
21	38	117	11.0
22	39	82	14.5
23	40	69	12.0
24	41	43	9.0
25	42	29	4.0
26	43	10	9.0
27	44	6	3.5
28	45	2	2.5
29	46	1	1.0

```
# Set up the figure and axes for plotting
In [250]:
             plt.figure(figsize=(10, 6))
           3
           4
              # Create a scatter plot for median HRs with varying colors based on cou
              scatter = plt.scatter(
                  x=primeHRs['Age'],
           7
                  y=primeHRs['MedianHRs'],
           8
                  c=primeHRs['Count'], # Use count for coloring
           9
                  cmap='viridis', # Choose a colormap
                  s=100, # Marker size
          10
          11
                  alpha=0.7, # Transparency
                  label='Count of Players in the Calculation'
          12
          13
              )
          14
          15
              # Add colorbar
              cbar = plt.colorbar(scatter)
          17
              cbar.set label('Count')
          18
          19 # Add labels and title
          20 plt.xlabel('Age')
          21 plt.ylabel('Median HRs')
          22 plt.title('Median HRs Colored by Count')
             plt.legend()
          24
          25 # Show the plot
          26 plt.tight_layout()
          27 plt.show()
```

/var/folders/cj/jcn0rhn52g397xd7gy7ndwnc0000gn/T/ipykernel_51952/14756100 78.py:16: MatplotlibDeprecationWarning: Auto-removal of grids by pcolor() and pcolormesh() is deprecated since 3.5 and will be removed two minor re leases later; please call grid(False) first.

```
cbar = plt.colorbar(scatter)
```


Linear Regression on Team Winning

Out[251]:

	Wins	HRs	BBs	Es	ВА	SBs	ERA
0	84.0000	161.0000	617.0000	126.0000	272.0327	126.0000	4.52
1	85.0000	147.0000	510.0000	106.0000	271.7584	93.0000	4.49
2	70.0000	158.0000	511.0000	106.0000	255.5515	71.0000	4.79
3	82.0000	236.0000	608.0000	134.0000	279.6731	93.0000	5.00
4	75.0000	158.0000	494.0000	103.0000	260.6738	116.0000	4.20
1733	86.0000	148.0000	630.0000	140.0000	250.5967	52.0000	3.49
1734	70.0000	138.0000	635.0000	116.0000	238.4615	72.0000	3.80
1735	61.8333	84.4074	564.3519	138.3889	230.4348	66.7407	3.70
1736	48.7963	34.4444	354.0123	422.9012	270.6867	188.4877	4.52
1737	51.6667	44.9691	334.8765	385.5864	271.8798	168.3951	4.93

OLS Regression Results

	======		====		=====		=======	=====
Dep. Variable	e:			У	R-sq	uared:		
0.741								
Model:				OLS	Adj.	R-squared:		
0.740		.			-			
Method: 1237.		Leas	t Sq	uares	F-Sta	atistic:		
Date:		Wed. 23	Aua	2023	Prob	(F-statistic)	•	
0.00		a, 20	1149	2020	1100	(1 500015010)	•	
Time:			20:	05:10	Log-l	Likelihood:		-5
645.3								
No. Observat	ions:			1738	AIC:			1.13
0e+04				1722	DIG			1 10
Df Residuals 3e+04	:			1733	BIC:			1.13
Df Model:				4				
Covariance T	vpe:		nonr	=				
•					=====		=======	=====
=====								
	coef	std	err		t	P> t	[0.025	
0.975]								
const	10.839	5 2	.928	3	.702	0.000	5.097	1
6.582	10.000	_	• , = 0	J	., 02	0.000	3.037	-
x1	0.0501	. 0	.002	24	.629	0.000	0.046	
0.054								
x2	-0.1097	0	.004	-30	.430	0.000	-0.117	_
0.103	0 441	•	011	20	540	0.000	0 410	
x3 0.464	0.4414	0	.011	38	.548	0.000	0.419	
x4	_14 5910) 0	258	-56	631	0.000	_15 097	-1
4.086	-14.5712	·	• 250	-30	•051	0.000	-13.037	
=========	=======	======	====	======	=====		=======	=====
=====								
Omnibus:			4	7.057	Durb	in-Watson:		
1.343					_			
Prob(Omnibus):			0.000	Jarqı	ue-Bera (JB):		8
8.628 Skew:				0.183	Prob	(.TR) •		5.6
8e-20				0.103	1100	(00)•		5.0
Kurtosis:				4.044	Cond	. No.		1.1
7e+04								
========	=======	======	====	======	=====		=======	=====
=====								

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is co rrectly specified.
- [2] The condition number is large, 1.17e+04. This might indicate that the re are

strong multicollinearity or other numerical problems.

```
In [253]:  #Linear regression with 6 features
2 data = df[['HRs','SBs','ERA']]
3 x = data.to_numpy() # convert to numpy array
4 X = sm.add_constant(x) # add a column of all 1s
5 y = df[["Wins"]].to_numpy()
6 model = sm.OLS(y,X) #run OLS
7 results = model.fit()
8 print(results.summary())
```

OLS Regression Results

========	=======	=====	======	-=====	-=====	========	=======	=====
=====						_		
Dep. Variabl	e:			У	R-sqı	uared:		
0.576				OT G	2.1.	D		
Model:				OLS	Aaj.	R-squared:		
0.575		Т о с	C					
Method: 785.6		ье	ast squ	lares	r-sta	atistic:		
		Wod '	02 7114	2022	Drob	(F-statistic	١.	1.63
Date: e-322		wed, 2	23 Aug	2023	PLOD	(r-statistic) =	1.03
Time:			20.0	15 • 10	I.oa-I	Likelihood:		-6
072.2			20.0	73.10	109-1	dikerinood.		-0
No. Observat	ions:			1738	AIC:			1.21
5e+04	10115			1750	7110.			1.21
Df Residuals	:			1734	BTC:			1.21
7e+04				_,				
Df Model:				3				
Covariance T	ype:		nonro	bust				
					-====			=====
=====								
	coef	: st	td err		t	P> t	[0.025	
0.975]								
	100 0404		1 255			0.000	105 006	
const	108.0434	:	1.355	/9	9./51	0.000	105.386	11
0.701	0 1606		0 004	2.0		0.000	0 160	
x1	0.1686)	0.004	35	9.649	0.000	0.160	
0.177	0 0271		0 004		010	0 000	0 020	
x2 0.045	0.03/1		0.004	8	3.912	0.000	0.029	
x3	12 7026	:	U 330	4.0	0/0	0.000	1/ /56	1
3.131	-13.7930	1	0.336	-40	0.040	0.000	-14.430	-1
	=======	:=====	======	======	======	========	=======	=====
=====								
Omnibus:			(746	Durbi	in-Watson:		
1.216								
Prob(Omnibus):		(.689	Jarqı	ue-Bera (JB):		
0.704	,				-	, ,		
Skew:			-(0.048	Prob	(JB):		
0.703								
Kurtosis:			3	3.021	Cond	. No.		1.2
2e+03								
========	=======	=====				=========	=======	=====

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.22e+03. This might indicate that the re are

strong multicollinearity or other numerical problems.

Autoregression on Wins

```
In [254]:
              #Scale wins for prev year and curr year to 162
            1
              query = """
            2
                  SELECT t1.W * (t1.G / 162) AS "PrevWins", t2.W * (t2.G / 162) AS "C
            3
                  FROM team_stats AS t1
            5
                  INNER JOIN team_stats AS t2
            6
                  ON t1.teamID = t2.teamID AND t1.year = t2.year - 1
            7
                  WHERE t1.G >= 155 AND t2.G >= 155;
            8
              df = pd.read_sql(query, engine)
           10
           11
```

Out[254]:

	PrevWins	CurrWins
0	84.0000	85.0000
1	85.0000	70.0000
2	70.0000	82.0000
3	82.0000	75.0000
4	75.0000	99.0000
1434	75.5309	64.5988
1435	64.5988	86.0000
1436	86.0000	70.0000
1437	70.0000	61.8333
1438	48.7963	51.6667

```
In [255]:
           1 #Run linear regression
           2 x = df["PrevWins"].to_numpy()
           3 y = df["CurrWins"].to_numpy()
           4 X = sm.add constant(x) # add a column of all 1s
             model = sm.OLS(y,X) #run OLS
              results = model.fit()
           7
              print(results.summary())
             bhat, ahat = results.params #Grab values
              sigma_eps_hat = np.sqrt(results.mse_resid)
          10
          11
             # Graph it
          12
              fig,ax = plt.subplots(figsize=(6,3))
             ax.plot(x,ahat*x + bhat, '-', label="Model Trendline") # graph line of
          13
             ax.plot(x,y,"ko", label="Actual Wins")
          14
          15
              ax.set_xlabel("Wins Year 1")
              ax.set_ylabel("Wins Year 2")
          17
              ax.legend(loc="upper left", bbox_to_anchor=(1, 1))
          18
          19
             #Graph residuals
          20 r = results.resid
          21 y mean pred = y - r
          22 fig,ax = plt.subplots(figsize=(5,2))
          23 ax.plot(y mean pred,r,"o", alpha = 0.25) # Plot the residuals
              ax.plot(y_mean_pred,np.zeros(len(y)),"-") # Plot the reference line of
             ax.set xlabel("Wins")
          26 ax.set_ylabel("Residual")
```

OLS Regression Results

Dep. Variable: y R-squared: 0.293 Model: OLS Adj. R-squared: 0.292 Method: Least Squares F-statistic: 594.5 Date: Wed, 23 Aug 2023 Prob (F-statistic): 3.60 e-110 Time: 20:05:10 Log-Likelihood: -5 346.5 No. Observations: 1439 AIC: 1.07 0e+04 Df Residuals: 1437 BIC: 1.07 1e+04 Df Model: 1 Covariance Type: nonrobust
<pre>0.293 Model:</pre>
Model: OLS Adj. R-squared: 0.292 Method: Least Squares F-statistic: 594.5 Date: Wed, 23 Aug 2023 Prob (F-statistic): 3.60 e-110 Time: 20:05:10 Log-Likelihood: -5 346.5 No. Observations: 1439 AIC: 1.07 0e+04 Df Residuals: 1437 BIC: 1.07 1e+04 Df Model: 1 Covariance Type: nonrobust
Method: Least Squares F-statistic: 594.5 Date: Wed, 23 Aug 2023 Prob (F-statistic): 3.60 e-110 Time: 20:05:10 Log-Likelihood: -5 346.5 No. Observations: 1439 AIC: 1.07 0e+04 Df Residuals: 1437 BIC: 1.07 1e+04 Df Model: 1 Covariance Type: nonrobust ======
Method: Least Squares F-statistic: 594.5 Date: Wed, 23 Aug 2023 Prob (F-statistic): 3.60 e-110 Time: 20:05:10 Log-Likelihood: -5 346.5 No. Observations: 1439 AIC: 1.07 0e+04 Df Residuals: 1437 BIC: 1.07 1e+04 Df Model: 1 Covariance Type: nonrobust =====
594.5 Date: Wed, 23 Aug 2023 Prob (F-statistic): 3.60 e-110 Time: 20:05:10 Log-Likelihood: -5 346.5 No. Observations: 1439 AIC: 1.07 0e+04 Df Residuals: 1437 BIC: 1.07 1e+04 Df Model: 1 Covariance Type: nonrobust ======
Date: Wed, 23 Aug 2023 Prob (F-statistic): 3.60 e-110 Time: 20:05:10 Log-Likelihood: -5 346.5 No. Observations: 1439 AIC: 1.07 0e+04 Df Residuals: 1437 BIC: 1.07 1e+04 Df Model: 1 Covariance Type: nonrobust const 37.3423 1.788 20.882 0.000 33.834 4 0.850 x1 0.5377 0.022 24.382 0.000 0.494 0.581 Comnibus: 6.742 Durbin-Watson: 2.130
e-110 Time: 20:05:10 Log-Likelihood: -5 346.5 No. Observations: 1439 AIC: 1.07 0e+04 Df Residuals: 1437 BIC: 1.07 1e+04 Df Model: 1 Covariance Type: nonrobust const 37.3423 1.788 20.882 0.000 33.834 4 0.850 x1 0.5377 0.022 24.382 0.000 0.494 0.581 Comnibus: 6.742 Durbin-Watson: 2.130
Time: 20:05:10 Log-Likelihood: -5 346.5 No. Observations: 1439 AIC: 1.07 0e+04 Df Residuals: 1437 BIC: 1.07 1e+04 Df Model: 1 Covariance Type: nonrobust coef std err t P> t [0.025 0.975] const 37.3423 1.788 20.882 0.000 33.834 4 0.850 x1 0.5377 0.022 24.382 0.000 0.494 0.581 Comnibus: 6.742 Durbin-Watson: 2.130
346.5 No. Observations: 1439 AIC: 1.07 0e+04 Df Residuals: 1437 BIC: 1.07 1e+04 Df Model: 1 Covariance Type: nonrobust coef std err t P> t [0.025 0.975] const 37.3423 1.788 20.882 0.000 33.834 4 0.850 x1 0.5377 0.022 24.382 0.000 0.494 0.581 comnibus: 6.742 Durbin-Watson: 2.130
No. Observations: 1439 AIC: 1.07 0e+04 Df Residuals: 1437 BIC: 1.07 1e+04 Df Model: 1 Covariance Type: nonrobust coef std err t P> t [0.025 0.975] const 37.3423 1.788 20.882 0.000 33.834 4 0.850 x1 0.5377 0.022 24.382 0.000 0.494 0.581 Comnibus: 6.742 Durbin-Watson: 2.130
<pre>0e+04 Df Residuals:</pre>
Df Residuals: 1437 BIC: 1.07 1e+04 Df Model: 1 Covariance Type: nonrobust coef std err t P> t [0.025 0.975] const 37.3423 1.788 20.882 0.000 33.834 4 0.850 x1 0.5377 0.022 24.382 0.000 0.494 0.581 Comnibus: 6.742 Durbin-Watson: 2.130
<pre>1e+04 Df Model:</pre>
Df Model: 1 Covariance Type: nonrobust ====== coef std err t P> t [0.025 0.975] const 37.3423 1.788 20.882 0.000 33.834 4 0.850 x1 0.5377 0.022 24.382 0.000 0.494 0.581 ===== Omnibus: 6.742 Durbin-Watson: 2.130
Covariance Type: nonrobust
===== coef std err t P> t [0.025 0.975] const 37.3423 1.788 20.882 0.000 33.834 4 0.850 x1 0.5377 0.022 24.382 0.000 0.494 0.581 ===== Omnibus: 6.742 Durbin-Watson: 2.130
coef std err t P> t [0.025 0.975]
coef std err t P> t [0.025 0.975] const 37.3423 1.788 20.882 0.000 33.834 4 0.850 x1 0.5377 0.022 24.382 0.000 0.494 0.581 Consibus: 6.742 Durbin-Watson: 2.130
0.975] const 37.3423 1.788 20.882 0.000 33.834 4 0.850 x1 0.5377 0.022 24.382 0.000 0.494 0.581 consibus: 6.742 Durbin-Watson: 2.130
const 37.3423 1.788 20.882 0.000 33.834 4 0.850 x1 0.5377 0.022 24.382 0.000 0.494 0.581 const 37.3423 1.788 20.882 0.000 33.834 4 0.850 x1 0.5377 0.022 24.382 0.000 0.494 0.581
const 37.3423 1.788 20.882 0.000 33.834 4 0.850 x1 0.5377 0.022 24.382 0.000 0.494 0.581 ====== Omnibus: 6.742 Durbin-Watson: 2.130
const 37.3423 1.788 20.882 0.000 33.834 4 0.850 x1 0.5377 0.022 24.382 0.000 0.494 0.581 ====== Omnibus: 6.742 Durbin-Watson: 2.130
0.850 x1 0.5377 0.022 24.382 0.000 0.494 0.581 ======= Omnibus: 6.742 Durbin-Watson: 2.130
x1 0.5377 0.022 24.382 0.000 0.494 0.581 ====================================
0.581 ====================================
====== Omnibus: 6.742 Durbin-Watson: 2.130
===== Omnibus: 6.742 Durbin-Watson: 2.130
Omnibus: 6.742 Durbin-Watson: 2.130
2.130
Prob(Omnibus): 0.034 Jarque-Bera (JB):
5.738
Skew: -0.082 Prob(JB):
0.0567
Kurtosis: 2.737 Cond. No.
553.
=====

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is co rrectly specified.

Out[255]: Text(0, 0.5, 'Residual')

