計量経済 I: 宿題 4

村澤 康友

提出期限: 2024年5月28日

注意:すべての質問に解答しなければ提出とは認めない. 授業の HP の解答例を正確に再現すること(乱数は除く). グループで取り組んでよいが,個別に提出すること. 解答例をコピペしたり,他人の名前で提出した場合は,提出点を0点とし,再提出も認めない. すべての結果をワードに貼り付けて印刷し(A4縦・両面印刷可・手書き不可),2 枚以上の場合は向きを揃えて問題番号順に重ね,左上隅をホッチキスで留めること.

- 1. (教科書 p. 158, 実証分析問題 6-A) データセット「6_1_income.dta」を gretl に読み込み,「教育の 収益率」を以下の 2 つの方法で推定しなさい.
 - (a) 対数賃金(年収)を修学年数に単回帰.
 - (b) ミンサー方程式を重回帰(教科書 p. 135).
- 2. (教科書 p. 158, 実証分析問題 6-B) データセット「 6_2 -yeduc.dta」を gretl に読み込み,母親の大学進学が子どもの修学年数に与える効果を以下の 3 つの方法で推定しなさい.※係数の推定値は等しいが,標準誤差・t 値は異なるはず(重回帰が正しい).
 - (a) 子どもの修学年数を, 父親と母親の大学進学ダミーに重回帰 (教科書 p. 142).
 - (b) 母親の大学進学ダミーを父親の大学進学ダミーに単回帰し、その OLS 残差に子どもの修学年数を単回帰(定数項あり).※ OLS の実行結果の画面でメニューから「保存」→「残差」とすれば OLS 残差を保存できる.
 - (c) 前問の2段階目で定数項なしの単回帰(これが本来の偏回帰).

解答例

1. (a) 単回帰

モデル 1: 最小二乗法 (OLS), 観測: 1–4299 従属変数: lincome

標準誤差

t-ratio p 値

係数

const	4.30955	0.1007	55	42.77	0.0000)
yeduc	0.0707721	0.0072	0383	9.824	0.0000)
Mean dependent	t var 5.2	90452	S.D. 6	lependent	var	0.895883
Sum squared res	sid 337	73.823	回帰の	標準誤差		0.886091
\mathbb{R}^2	0.0	21968	Adjus	ted R^2		0.021740
F(1,4297)	96.	51557	P-valu	$\operatorname{ie}(F)$		1.53e-22
Log-likelihood	-557	79.116	Akaik	e criterion	1	11162.23
Schwarz criterio	n 111	174.96	Hanna	an-Quinn		11166.73

(b) 重回帰(ミンサー方程式)

モデル 2: 最小二乗法 (OLS), 観測: 1–4299 従属変数: lincome

	係数	標準誤差	t-ratio	p 値
const	2.48550	0.110782	22.44	0.0000
yeduc	0.117547	0.00706026	16.65	0.0000
exper	0.196174	0.00749354	26.18	0.0000
exper2	-0.00638115	0.000316188	-20.18	0.0000
Mean depende	ent var 5.29	90452 S.D. d	ependent v	ar 0.895883
Sum squared i	resid 2730	6.905 回帰の	標準誤差	0.798267
R^2	0.20	06603 Adjust	$\det R^2$	0.206049
F(3, 4295)	372.	.8097 P-valu	e(F)	3.4e-215
Log-likelihood	-5129	9.400 Akaike	criterion	10266.80
Schwarz criter	ion 1029	92.26 Hanna	n–Quinn	10275.79

2. (a) 重回帰

モデル 1: 最小二乗法 (OLS), 観測: 1–3954 従属変数: yeduc

		係数		Std. Error		t-ratio	p	値	
(const	13.5946		0.02	35193	578.0	0.0	000	
]	mocograd	0.49	7015	0.07	62982	6.514	0.0	000	
]	pacograd	1.10	886	0.04	75107	23.34	0.0	000	
Mean	dependent v	ar	13.96	3131	S.D. de	ependent v	ar	1.36969) 5
Sum so	quared resid	[6109.	.357	S.E. of	regression	1	1.24349	96
\mathbb{R}^2			0.176	3201	Adjust	ed \mathbb{R}^2		0.17578	34
F(2, 39)	951)		422.5	373	P-valu	e(F)		5.1e-16	37
Log-lik	kelihood	-	-6470	.663	Akaike	criterion		12947.3	33
Schwar	rz criterion		1296	6.17	Hanna	n–Quinn		12954.0)1

(b) 偏回帰

モデル 2: 最小二乗法 (OLS), 観測: 1–3954 従属変数: yeduc

Std. Error

t-ratio

р値

係数

const	13.9613	0.0216	886 64	43.7	0.000	0
uhat1	0.497015	0.0836	795	5.940	0.000	O
Mean dependen	t var 13.	96131	S.D. de	pendent	var	1.369695
Sum squared re	sid 735	50.465	S.E. of	regression	on	1.363795
R^2	0.0	08848	Adjuste	$ed R^2$		0.008597
F(1,3952)	35.	27776	P-value	e(F)		3.11e-09
Log-likelihood	-685	36.294	Akaike	criterion	1	13676.59
Schwarz criterio	on 136	689.15	Hannar	n–Quinn		13681.04

(c) 偏回帰

モデル 3: 最小二乗法 (OLS), 観測: 1–3954 従属変数: yeduc

係数 Std. Error *t*-ratio p値 uhat1 0.497015 0.860819 0.5774 0.5637

Mean dependent var	13.96131	S.D. dependent var	1.369695
Sum squared resid	778056.4	S.E. of regression	14.02950
Uncentered \mathbb{R}^2	0.000084	Centered \mathbb{R}^2	-103.914783
F(1,3953)	0.333361	P-value (F)	0.563720
Log-likelihood	-16053.14	Akaike criterion	32108.28
Schwarz criterion	32114.56	Hannan-Quinn	32110.50