AVL Trees

Introduction

Note: Numbers within nodes represent height difference, i.e. height of left sub-tree – height of right sub-tree.

- In a Binary Search Tree with n nodes
 - Average case height is O(log n)
 - Worst case height is O(n)
- Thus it would be nice to be able to maintain a balanced tree during insertion.
 - A binary tree is said to be balanced if, for every node in the tree, the height of its two subtrees differs at most of one.

Balanced BST???

- Invented by Georgy <u>A</u>delson-<u>V</u>elsky and Evgenii <u>L</u>andis in 1962.
- Height balanced binary search trees.
- Each node has a balance factor.
- Let HL and HR be the heights of left and right subtrees of any node, then

$$|HL-HR| <= 1$$

- Balance factor (bal) of a node K is HL HR.
 - Left High (LH) = +1 (left sub-tree higher than right sub-tree)
 - Even High (EH) = 0 (left and right sub-trees have same height)
 - Right High (RH) = -1 (right sub-tree higher than left sub-tree)

Height of AVL Trees

- Guaranteed to be in the order of lg₂n for a tree containing n nodes.
- If an AVL tree has minimum number of nodes, then one of its subtrees is higher than the other by 1.
- Let, the left subtree is bigger than the right subtree, and
 - -N(h) = minimum number of nodes in an AVL tree of height h rooted at r.
 - -N(h-1) = minimum number of nodes in the left subtree of r.
 - -N(h-2) = minimum number of nodes in the right subtree of r.

$$N(h) = 1 + N(h-1) + N(h-2)$$

As per assumption
$$N(h-1) > N(h-2)$$
, so $N(h) > 1 + N(h-2) + N(h-2) = 1 + 2 \cdot N(h-2) > 2 \cdot N(h-2)$

That is,

$$N(h) > 2 \cdot N(h-2)$$

Knowing N(0) = 1, this recurrence can be solved.

$$N(h) > 2 \cdot N(h-2) > 2 \cdot 2 \cdot N(h-4) > 2 \cdot 2 \cdot 2 \cdot N(h-6) > \cdots > 2^{h/2}$$

To ensure it's $2^{h/2}$, lets check for a particular h = 6

$$N(6) > 2 \cdot N(6-2) > 2 \cdot 2 \cdot N(4-2) > 2 \cdot 2 \cdot 2 \cdot N(2-2) > 2^3$$

Thus,

$$N(h) > 2^{h/2}$$

Taking log,

$$\log N(h) > \log 2^{h/2} \Leftrightarrow h < 2 \log N(h)$$

- Thus, in the worst-case AVL trees have height $h = O(\log n)$.
- This means that nicer/more balanced AVL trees will have the same bound on their height.

Operations on AVL Tree

Search

- Similar as in the case of binary search trees, since both are organized according to the same criteria.
- Complexity O(lg n).
- Insertion and Deletion
 - Similar as in the case of binary search trees. But after insertion or deletion of a node, the tree might have lost its AVL property (i.e. balance factor becomes greater than 1).
 - To maintain the AVL structure, further modifications (known as **ROTATIONS**) are required.

Rotation

- Left rotation
- B F F E
- Right rotation

Unbalanced Cases

- Single rotation
 - Left of Left: insertion turned the left subtree of a left high AVL tree into a left high tree.

Right of Right: insertion turned the right subtree
of a right high AVL tree into a right high tree.

Example 1: Insert 10, 9, 8, 7, 6, 5, 4, 3, 2, 1

• Insert 10, 9, 8

• Insert 7, 6

Example 2: Insert 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

• Insert 1, 2, 3

• Insert 4, 5

• Insert 6

(-2) • Insert 8, 9 (0) **(-2)** 6 **(0) (0) (0)** 6 (0) **(0)**

(-2) • Insert 10 (0) 6 (0)**(0) (-1)** (-1) **(0)** (0) 8 **(0)** 6

Unbalanced Cases

- Double rotation
 - Right of Left: insertion turned the left subtree of a left high AVL tree into a right high tree.

Left of Right: insertion turned the right subtree
of a right high AVL tree into a left high tree.

Example 3: Insert 14, 17, 11, 7, 53, 4, 13, 12, 8

Insert 14, 17, 11,7, 53, 4

• Insert 13, 12

Example 4: 50, 25, 37, 35, 60, 70, 30, 45, 34, 40, 55

Insert 50, 25, 37

Insert 35, 60, 70

BST Deletion

- Search for a node to remove.
- If the node is found, then there are three cases:
- 1. Node to be removed has no children.
 - Set corresponding link of the parent to NULL and dispose the node.
- 2. Node to be removed has one child.
 - Link single child (with it's subtree) directly to the parent of the removed node.
- 3. Node to be removed has two children.
 - Find inorder successor of the node.
 - Copy contents of the inorder successor to the node being removed.
 - Delete the inorder successor from the right subtree.

Example – BST Deletion

After deleting 62

After deleting 17

After deleting 78

AVL Deletion

REQUIRES NO ROTATION

	Before deletion	After deletion
• Case 1		OR OR
• Case 2	OR OR	

• Case 3

Contd...

Before deletion				
After deletion				
Rotations	Right	Left	Left then Right	Right then Left

Example – 1

• Delete 7, 6, 5

Contd... (-1)Right (0) After deleting 5 rotation (1)(0)**(2)** 3 (0)(0) **(0)** 3 (0)Left followed by (0) Right rotation

Example – 2

Delete 32

Example – 3

• Delete 9

Create AVL: 10, 20, 15, 25, 30, 16, 18, 19. Delete 30.

Insert 10, 20, 15

Contd...

• Insert 16

Contd...

• Insert 18, 19

Contd...

• Delete 30 **(2)** 20 Left Rotation at 15 Right Rotation at 20 (0) (-1)25 15 (0)(0)18 10 (0)18 (0) (0) 19 16 (0)(0)15 20 (0) (0) **(0)** (0)16 19 25 10

Summary

- AVL trees are always balanced thus worst-case complexity of all operations (search, insert, and delete) is O(log n).
- Rotations performed for height balancing are constant time operations, but takes a little time.
- Difficult to program & debug.
- Needs space to store either a height or a balance factor.
- Suitable for applications where search or look-up is the most frequent operations as compared to insertion or deletion.