

October 24th 2018

IP Addressing and Subnetting

Network Infrastructures course

Speaker: Ludovico Ferranti

Quick review

The term collision domain defines the set of devices for which their **frames** could collide

A broadcast domain is a set of NICs for which a broadcast frame sent by one NIC will be received by all other NICs in the broadcast domain

ISO/OSI Model

TCP/IP Model

- TCP/IP does not use all of the OSI layers, though the layers are equivalent in operation and function.
- The **network access layer** is equivalent to OSI layers 1 and 2.
- The Internet Protocol layer is comparable to layer 3 in the OSI model.
- The host-to-host layer is equivalent to OSI layer 4. These are the TCP and UDP (user datagram protocol) functions.
- The application layer is similar to OSI layers 5, 6, and 7 combined.

	OSI	TCP/IP		
7	Application	Applications		
6	Presentation	(FTP, SMTP, HTTP, etc.)		
5	Session	ritir, etc.,		
4	Transport	TCP (host-to-host)		
3	Network	IP		
2	Data link	Network access		
1	Physical	(usually Ethernet)		

TCP/IP Protocols

- > TCP and IP are two of the network standards that define the Internet.
- ➤ IP defines how computers can get data to each other over a routed, interconnected set of networks.
- TCP defines how applications can create reliable channels of communication across a network.
- ➤IP basically defines addressing and routing, while TCP defines how to have a conversation across the link without garbling or losing data.
- TCP/IP grew out of research by the U.S. Department of Defense (DoD) and is based on a loose, rather than strict, approach to network layering.

- ➤ In a TCP/IP network, each PC has an IP address that works at layer 3
- Two main types of IP addresses:

IPv4

IPv6

- ➤ IPv4 Addresses have the length of 32 bits, which makes a total of 232 addresses (around 4 Billion)
- ➤ IPv6 Addresses are 128 bits in length, which is way more addresses than the previous version

 $(2^128 = 340282366920938463463374607431768211456$ Addresses)

The World is running out of IPv4 Addresses and we are transitioning to IPv6, which will become dominant in the near future

- Two ways to write an IPv4 address:
- 1. Dotted Decimal Format: 192.168.0.1
- 2. Binary Format: **11000000.10101000.00000000.00000001**

Each interface on every host and router in must have an IP address that is globally unique

From one notation to the other?

Example: Convert this number to decimal format:

1 1 0 0 1 0 0 1

Step 1: Write exponents above each binary digit starting from right to left and starting from 0:

 $1^7 \ 1^6 \ 0^5 \ 0^4 \ 1^3 \ 0^2 \ 0^1 \ 1^0$

From one notation to the other?

Example: Convert this number to decimal format:

Step 2: Wherever we see a "1", we write $1 * 2^n$ where n is the exponent above that "1" and we sum all of these together (+). We can simply ignore the zeros and move on to the next "1".

$$1^{7} 1^{6} 0^{5} 0^{4} 1^{3} 0^{2} 0^{1} 1^{0} =$$

$$1 \times 2^{7} + 1 \times 2^{6} + 1 \times 2^{3} + 1 \times 1^{0} =$$

$$128 + 64 + 8 + 1 = 201$$

Binary numbers table (quite handy)

n	2 ⁿ	n	2 ⁿ	n	2 ⁿ
0	1	11	2,048	22	4,194,304
1	2	12	4,096	23	8,388,608
2	4	13	8,192	24	16,777,216
3	8	14	16,384	25	33,554,432
4	16	15	32,768	26	67,108,864
5	32	16	65,536	27	134,217,728
6	64	17	131,072	28	268,435,456
7	128	18	262,144	29	536,870,912
8	256	19	524,288	30	1,073,741,824
9	512	20	1,048,576	31	2,147,483,648
10	1,024	21	2,097,152	32	4,254,967,296

IP Address

Each IP address as two different part: **NETWORK_ID** and **HOST ID**

- Depending by the number of networks and hosts in each network, we can allocate a certain number of bits to NETWORK_ID, and the remaining bits to HOST_ID
- Generally, IP addresses are divided into different classes, depending by the number of hosts for each network

Class A	Network	Host				
Octet	1	2	3	4		

Class B	Network	k	Host	Host		
Octet	1	2	3	4		

Class C	Network	Host		
Octet	1	2	3	4

Class D	Host					
Octet	1	2	3	4		

Class D addresses are used for multicast groups. There is no need to allocate octets or bits to separate network and host addresses. Class E addresses are reserved for research use only.

Class	Leading bits	Size of network number bit field	Size of rest bit field	Number of networks	Addresses per network	Total addresses in class	Start address	End address
Class A	0	8	24	128 (2 ⁷)	16,777,216 (2 ²⁴)	2,147,483,648 (2 ³¹)	0.0.0.0	127.255.255.255
Class B	10	16	16	16,384 (2 ¹⁴)	65,536 (2 ¹⁶)	1,073,741,824 (2 ³⁰)	128.0.0.0	191.255.255.255
Class C	110	24	8	2,097,152 (2 ²¹)	256 (2 ⁸)	536,870,912 (2 ²⁹)	192.0.0.0	223.255.255.255
Class D (multicast)	1110	not defined	not defined	not defined	not defined	268,435,456 (2 ²⁸)	224.0.0.0	239.255.255.255
Class E (reserved)	1111	not defined	not defined	not defined	not defined	268,435,456 (2 ²⁸)	240.0.0.0	255.255.255.255

Subnetting

STERN UNITED THE STERN

- "To determine the subnets, detach each interface from its host or router, creating islands of isolated networks, with interfaces terminating the end points of the isolated networks.
- Each of these isolated networks is called a subnet."
 - Computer Networking -Kurose, Ross

Subnetting

- 1. Determine the class of the block of IP addresses.
- 2. Determine the number of subnetworks you need.
- 3. Determine the number of hosts for each subnetwork.

EXAMPLE: 192.168.0.1

- 1. Class C > /24
- 2. # of Subnet = 6 -> 3 bits
- 3. #MaxHosts=30 -> 5bits

We have 6 different subnet, each having 30 different IP address available

Subnetting

• Two problems:

- 1. There is a waste of IP addresses
- 2. Given an IP adddress with a certain **netmask**, we can't assign all IP addresses to all hosts with given bits of the **HOST_ID**

SOLUTIONS:

- 1. Variable Length Subnet Mask, VLSM
- 2. Supernetting

Variable Length Subnet Mask - VLSM

A network with VLSM is a network having its subnets with different values of the netmask.

EXAMPLE using fixed subnet mask: 192.168.0.1

We have 6 different subnet, each having 30 different IP address available

We use only 20+30+10+2+2+2=66 IP addresses having

 $30 \times 6 = 180$ IP available addresses

180-66=**114 wasted IP**

Variable Length Subnet Mask - VLSM

• **EXAMPLE** using **VLSM**: 192.168.0.0

- 20 hosts=5 bits subnetMask = 32-5 = /27IP address block: 192.168.0.0/27-192.168.0.31/27
- 30 hosts=5 bits subnetMask = 32-5 = /27IP address block: 192.168.0.32/27-192.168.0.63/27
- 3. 10 hosts=4 bits subnetMask = 32-4 = /28IP address block: 192.168.0.64/28-192.168.0.79/28
- 2 hosts=2 bits subnetMask = 32-2 = /30IP address block: Link1: 192.168.0.80/30-192.168.0.83/30 Link2: 192.168.0.84/30-192.168.0.87/30 Link3: 192.168.0.88/30-192.168.0.91/30

Supernetting

- > With **subnetting** the **HOST_ID** «borrows» its bits to subnetworks
- ➤ With **supernetting** the **NETWORK_ID** «borrows» its bits to supernetworks

EXAMPLE:

#Hosts=2000

#subnets= 8

We want 8 different subnets each having 250 hosts. We need for

- 1. 3 bits for the **NETWORK_ID**
- 2. 8 bits for the **HOST_ID**

IT'S IMPOSSIBLE TO USE A CLASS C IP ADDRESS

Supernetting

We can require 8 different Class C IP address, but there will be an overload of the routing tables in the routers.

In order to resolve the problem, we assign a BLOCK of consecutive IP address called <u>CIDR</u> (Classless Interdomain Routing) block.

EXAMPLE:

2000 hosts

We have 8 different blocks of class C addresses (total:8 x 254 = 2032 hosts) between 220.78.168.0 e 220.78.175.0.

Converting in binary we will have:

General rule of thumb

Pcx network has y hosts.

We compute $2^z - 2 = w$.

With w addresses we can cover y hosts (w > y) so 32-z = j bits. The subnet mask associated to Pcx network is 195.10.0.something/j).

Exercise - VLSM

Let's assign IPs starting from 195.10.0.0.

Let's assign IPs starting from 195.10.0.0.

5 BITS

Let's assign IPs starting from 195.10.0.0.

Let's assign IPs starting from 195.10.0.0.

195.10.x.y/27

5 BITS

Exercise

Let's assign IPs starting from 195.10.0.0.

First address: 195.10.0.1 Last address: 195.10.0.254

Broadcast address: 195.10.0.255

Let's assign IPs starting from 195.10.0.0.

5 BITS

195.10.1.0/27

First address: 195.10.0.1

Last address: 195.10.0.254

Broadcast address: 195.10.0.255

Let's assign IPs starting from 195.10.0.0.

195.10.1.0/27

5 BITS

First address: 195.10.1.1

Last address: 195.10.1.30

Broadcast address: 195.10.0.31

Netmask: 255.255.254

First address: 195.10.0.1

Last address: 195.10.0.254

Broadcast address: 195.10.0.255

Let's assign IPs starting from 195.10.0.0.

195.10.1.0/27

5 BITS

First address: 195.10.1.1

Last address: 195.10.1.30

Broadcast address: 195.10.0.31

Netmask: 255.255.254

8 BITS

First address: 195.10.0.1

Last address: 195.10.0.254

Broadcast address: 195.10.0.255

4 BITS

4 BITS 195.10.x.y/27 5 BITS 195.10.x.y/24

4 BITS

195.10.x.y/28

5 BITS 195.10.x.y/27

4 BITS

195.10.x.y/28

5 BITS 195.10.x.y/27

2 BITS 195.10.0.0/30

First address: 195.10.0.1 Last address: 195.10.0.2

Broadcast address: 195.10.0.3

Netmask: 255.255.255.252

4 BITS

195.10.x.y/28

5 BITS

195.10.x.y/27

2 BITS 195.10.0.0/30

16 hosts

2 hosts

First address: 195.10.0.1 Last address: 195.10.0.2

Broadcast address: 195.10.0.3

Netmask: 255.255.252

4 BITS

195.10.0.4/28

14 hosts

5 BITS

195.10.x.y/27

First address: 195.10.0.5 Last address: 195.10.0.18

Broadcast address: 195.10.0.19

2 BITS 195.10.0.0/30

2 hosts

First address: 195.10.0.1 Last address: 195.10.0.2

Broadcast address: 195.10.0.3

Netmask: 255.255.252

4 BITS

195.10.0.4/28

14 hosts

16 hosts

5 BITS

195.10.0.20/27

First address: 195.10.0.5 Last address: 195.10.0.18

Broadcast address: 195.10.0.19

2 BITS 195.10.0.0/30

16 hosts

2 hosts

First address: 195.10.0.1 Last address: 195.10.0.2

Broadcast address: 195.10.0.3

Netmask: 255.255.252

4 BITS

195.10.0.4/28

First address: 195.10.0.5

Last address: 195.10.0.18

Broadcast address: 195.10.0.19

14 hosts

Netmask: 255.255.255.240

5 BITS

195.10.0.20/27

First address: 195.10.0.21

Last address: 195.10.0.50

Broadcast address: 195.10.0.51

Netmask: 255.255.254