Project Presentation Creditworthiness

SS 24 IDA & ML I – Presented by Kristina Richert

Overview

- 1. Problem Setting
- 2. Data Exploration
- 3. Data Preprocessing
- 4. Modeling:
 - 4.1. Baseline Training & Evaluation
 - 4.2. Feature Importance
 - 4.3. Hyperparameter Tuning
- 5. Evaluation Result
- 6. Potential Next Steps

1. Problem Setting

- Binary Classification: Predict Creditworthiness of a Bank's customers
- The creditworthiness is known for 1000 customers
- It is five times more 'expensive' to wrongfully rate a customer as creditworthy than vice versa

- 1. Types of Features and Incompleteness
- 2. Feature Correlation

2.1 Type of Features and Incompleteness

Creditworthiness - Feature Observations and Preprocessing				
Qualitative / Categorical Data		Quantitative / Numerical Data		
Nominal	Ordinal	Discrete Continuous		
purpose_IN	status_existing_account	installment_rate_disposable_income	duration_month	
foreign_worker_IN	credit_history	present_residence_since	credit_amount	
personalstatus_sex	savings_account	numb_existing_credit	age_years	
other_debtors	current_employment_IN	number_people_being_liable		
property	job_IN			
other_installment_plans				

Observations		
Nominal, Incomplete		
Nominal, Complete		
Ordinal, Complete		
Ordinal, Incomplete		
Continuous, Not Binned, Complete		

Discrete, Binned, Complete

housing

telephone

- Total 1000 Rows with 21 Features
- Qualitative
 - Nominal Data 8 Features
 - Ordinal Data 5 Features
- Quantitative
 - Discrete Data 4 Features
 - Continuous Data 3 Features

2.1.1 Quantitative Features

Discrete Features

Continuous Features

2.2 Feature Correlation

 H1: Is there any strong correlation between incomplete features that could make imputation better?

 H2: Are there 'perfectly correlated' features can be removed?

2.2 Feature Correlation

 H1: No strong correlation between incomplete features.

H2: No perfectly correlated features.

3. Data Preprocessing

- Label Encoding
- 2. Imputing
- 3. Binning
- 4. One-Hot Encoding
- 5. Addressing Class Imbalance

3.1 Label Encoding

- Convert categorical variables into numerical variables
- out of 21 features → 13 are categorical
- applying Label Encoding on these 13 features
- Keeping all the NaN values in the respective elements

Observations	Label Encoding
Nominal, Incomplete	Yes ▼
Nominal, Complete	Yes ▼
Ordinal, Complete	Yes ▼
Ordinal, Incomplete	Yes ▼
Continuous, Not Binned, Complete	No ▼
Discrete, Binned, Complete	No ▼

3.2 Imputing with Linear Regression

- Linear Regression Imputation
 - missing data dependent variables
 - independent variables used to predict missing data
 - o fit model & impute
- Benefits
 - takes relationship between variables into account
 - capture underlying patterns

Observations	Imputing with Linear Regression
Nominal, Incomplete	Yes ▼
Nominal, Complete	No ▼
Ordinal, Complete	No ▼
Ordinal, Incomplete	Yes ▼
Continuous, Not Binned, Complete	No ▼
Discrete, Binned, Complete	No ▼

р	rpose_IN current_	_employment_IN job_IN foreigr	_worker_IN
0	4	3 2	0
1	7	2 2	0
2	0	3 2	0
3	4	2 2	0
4	0	3 2	0

3.2 Imputing with Linear Regression

duration month credit_amount 3.3 Binning into Buckets 400 300 200 100 duration month credit amount 100 300 400 age_years 300 200 200 200 100 100 After 100 -20 60 10000 15000 5000 age_years **Observations Binning into Buckets** 200 Nominal, Incomplete No Before Nominal, Complete No 100 Ordinal, Complete No Ordinal, Incomplete No Continuous, Not Binned, Complete Yes 20 40 60 Discrete, Binned, Complete No

3.4 One-Hot Encoding

 useful for categorical variables without ordinal relationship

• binary variable per unique label

 Apply one-hot encoding on categorical data except for ordinal features

→ from 20 to 63 columns

Before

Observations	One Hot Encoding		
Nominal, Incomplete	Yes ▼		
Nominal, Complete	Yes ▼		
Ordinal, Complete	No ▼		
Ordinal, Incomplete	No ▼		
Continuous, Not Binned, Complete	Yes ▼		
Discrete, Binned, Complete	Yes ▼		

property_0	property_1	property_2	property_3
0.0	0.0	1.0	0.0
0.0	0.0	0.0	1.0
0.0	0.0	0.0	1.0
1.0	0.0	0.0	0.0
0.0	0.0	1.0	0.0

Features: Data Preprocessing Summary

Observations	Label Encoding	Imputing with Linear Regression	Binning into Buckets	One Hot Encoding	
Nominal, Incomplete	Yes ▼	Yes ▼	No ▼	Yes ▼	
Nominal, Complete	Yes ▼	No ▼	No ▼	Yes ▼	
Ordinal, Complete	Yes ▼	No 🔻	No ▼	No ▼	
Ordinal, Incomplete	Yes ▼	Yes ▼	No ▼	No ▼	
Continuous, Not Binned, Complete	No 🔻	No 🔻	Yes ▼	Yes ▼	
Discrete, Binned, Complete	No 🔻	No 🔻	No ▼	Yes ▼	

Creditworthiness - Feature Observations and Preprocessing					
Qualitative / Categorical Data		Quantitative / Numerical Data			
Nominal	Ordinal	Discrete Continuo			
purpose_IN	status_existing_account	installment_rate_disposable_income	duration_month		
foreign_worker_IN	credit_history	present_residence_since	credit_amount		
personalstatus_sex	savings_account	numb_existing_credit	age_years		
other_debtors	current_employment_IN	number_people_being_liable			
property	job_IN				
other_installment_plans					
housing					
telephone					

3.5 Addressing Class Imbalance

Original Class Balance:

Creditworthy: 700 Not Creditworthy: 300

- Imbalanced datasets: biased models that perform poorly on minority classes
- Resampling Techniques:
- 1. Random Undersampling reduce from majority class
- 2. Random Oversampling increase size of minority class
- 3. Synthetic Minority Oversampling Technique (SMOTE)
 - a. data generation through interpolation not duplication (k-neighbor)

Final Class Balance:

Creditworthy: 700 Not Creditworthy: 700

4. Modeling

- 1. Baseline Training & Evaluation
 - a. Splitting and Scaling Training Data
 - b. Baseline Training Experiment: Multiple Models
- 2. Feature Importance
- 3. Hyperparameter Tuning

4.1.1 Splitting & Scaling Training Data

- Splitting Data into training and test set (75/25)
 - how well does the model generalize to unseen data

- Scaling the data
 - transform values to specific range
 - ensure all features contribute equally to the result

4.1.2 Baseline Training Experiment: Multiple Models

Model	Benefits	Disadvantages	
Logistic Regression	easy to implement, interpret and train	constructs linear boundaries, assumption of linearity between dependent & independent variable	
Support Vector Machine	effective in high dimensional space, linear & nonlinear, kernel trick	does not perform well with a lot of noise, not easy to find right parameters	
Random Forest	resistant to noise and outliers, manages high-dimensional datasets, high accuracy	computational complex, longer training period	
Multi-Layer Perceptron	deal with complex patterns, non-linear activation functions	prone to overfitting when dataset is small, gradient vanishing/exploding	

4.1.2 Baseline Training Experiment: Multiple Models

		F1-score	Precision	Recall	Accuracy
	Random Forest	85.946	81.538	90.857	85.143
Su	pport Vector Machine	80.447	78.689	82.286	80.000
٨	fulti-layer perceptron	79.765	81.928	77.714	80.286
	Logistic Regression	74.095	72.283	76.000	73.429

4.2 Feature Importance

- The feature of existing status account has the highest impact on creditworthiness with 11%.
- The feature of purpose also has high importance of 8.2% but unfortunately contains imputed values due to incompleteness.
- Will dimensionality reduction boost performance in this case?

4.2 Feature Importance

Reducing Features lower than **5%**

→ Dropped **10 Features**

	F1-score	Precision	Recall	Accuracy
Random Forest	87.399	82.323	93.143	86.571
Support Vector Machine	82.955	82.486	83.429	82.857
Multi-layer perceptron	81.657	84.663	78.857	82.286
Logistic Regression	78.161	78.613	77.714	78.286

Reducing Features lower than **7%**

→ Dropped **16 Features**

		F1-score	Precision	Recall	Accuracy
	Random Forest	73.504	73.295	73.714	73.429
Support Vector Machine		70.552	76.159	65.714	72.571
I	Logistic Regression	70.030	72.840	67.429	71.143
Multi-layer perceptron		68.308	74.000	63.429	70.571

Due to **lack of significant boost in prediction metrics**, continuing **without** dropping dimensions. Could make sense to drop it if model gets too heavy for deployment.

4.3 Hyperparameter Tuning


```
print('Best hyperparameters are: '+ str(rf_model_random_ini.best_params_))
print('Best score is: '+ str(rf_model_random_ini.best_score_))

Best hyperparameters are: {'n_estimators': 200, 'min_samples_split': 2, 'min_samples_leaf': 2, 'max_features': 'log 2', 'max_depth': 40, 'criterion': 'gini', 'bootstrap': False}
Best score is: 0.8558203028136223
```

4.3 Hyperparameter Tuning

```
random_grid = {
    'n estimators': [int(x) for x in np.linspace(start=100, stop=1000, num=10)],
    'max_features': ['auto', 'sqrt', 'log2'],
    'max_depth': [None] + [int(x) for x in np.linspace(10, 110, num=11)],
    'min_samples_split': [2, 5, 10, 20, 30],
    'min_samples_leaf': [1, 2, 4, 6, 8, 10],
    'bootstrap': [True, False],
    'criterion': ['gini', 'entropy']
rf_model_random_ini = RandomizedSearchCV(estimator = RandomForestClassifier(),
                                          param distributions = random grid,
                                         n_{iter} = 100.
                                         cv = 10,
                                         verbose=1,
                                          random state=42,
                                         n jobs = -1,
                                          scoring='f1')
rf_model_random_ini.fit(X_train, Y_train)
```

Fitting 10 folds for each of 100 candidates, totalling 1000 fits

- 1. ROC Curve
- 2. F-Score and Confusion Matrix

5.1 ROC Curve

- Visual Representation of model performance across all thresholds.
- Evaluate performance of a decision function in binary classification tasks
- Each Point: threshold value –
 trade-off between TP & FP
- Area under the ROC curve (AUC)
 Value: 94.047

5.1 F-Score and Confusion Matrix

It is five times more 'expensive' to wrongfully rate a customer as creditworthy than vice versa.

What does it mean?

- 5x more expensive to have FP than FN
- Precision is more important than Recall
- So F-0.5 is more important than F-1

Confusion Matrix

5.1 F-Score and Confusion Matrix

Confusion Matrix

6. Potential Next Steps

Potential Next Steps

- Focus on Data Collection Measures
 - Collect more data to avoid synthesizing class imbalance
 - Focus on features with high importance
- Preliminary Analysis: Train multiple models
 - Deep dive to further optimize and compare different models
- Short-Term vs. Long-Term Trade-Off
 - Continue focusing on reducing FP without significantly increasing FN

Toolkit Used

Github Repo containing Notebook

