Theoretische Physik II Elektrodynamik

Vorlesung von Prof. Dr. Michael Thoss im Wintersemester 2018

Markus Österle Andréz Gockel

15.10.2018

Inhaltsverzeichnis

0	\mathbf{Ein}	führung
	0.1	Zur Vorlesung
	0.2	Einführung und Überblick
		0.2.1 Rückblick
		0.2.2 Elektrodynamik
	0.3	Aufbau der Vorlesung
1	Elel	ktrostatik
	1.1	Elektrische und Coulombsches Gesetz
		1.1.1 Coulombsches Gesetz
	1.2	Elektrisches Feld
		1.2.1 Feld eines Systems von Punktladungen
		1.2.2 Feld einer kontinuierlichen Ladungsverteilung
		1.2.3 Ladungsdichte einer Punktladung
		1.2.4 Flächenladungsdichte
		1.2.5 Linenladungsdichte
	1.3	Feldgleichungen und elektrostatische Potential
		1.3.1 Elektrostatisches Potential
		1.3.2 Feldgleichugn (differentielle Form)
		1.3.3 Divergenz (Quellen)
		1.3.4 Zusammenfassung:
		1.3.5 Integralsätze der Vektoranalysis
		1.3.6 Integrale Form der Feldgleichung
		1.3.7 Gaußsches Gesetz
		1.3.8 Satz von Stokes
		1.3.9 Zusammenfassung: Feldgleichungen der Elektrostatik 1
	1.4	Elektrostatische Energie
		1.4.1 Elektrostatische Potentielle Energie
	1.5	Verhalten des el. Feldes an Grenzflächen mit Flächenladung
	1.6	Randwertprobleme (RWP) der Elektrostatik und
		Lösungsmethoden
		1.6.1 Formulierung des Randwertproblems
		1.6.2 Methode der Bildladung (Spiegelladung)
		1.6.3 Formale Lösungen des elektrostatischen Randwertproblems mit
		Cronschon Funktionen

Kapitel 0

Einführung

0.1 Zur Vorlesung

Dozent Michael Thoss

Übungen Donnerstag/Freitag (ILIAS) beginnt 18./19.10.18

Übungsleiter Jakob Bätge

Abgabe der Hausaufgaben bus Dienstag 12:00 - Briefkasten GuMi

Klausur 13.02.19, 10-12 Uhr, Hörsaal Anatomie (Nachklausur: 26.19, 10-12 Uhr)

Ankündigungen ILIAS Pass: theophy2.thoss18

Angaben Vorlesung: 4 SWS, Übung: 2 SWS, ECTS: 7

Vorkenntnisse Mathematik: Analysis für Physiker (Vektor Rechnung), Theoretische Physik I, Experimental Physik II.

Hinweis zu den Übungen

- Keine Anwesenheitspflicht.
- Keine Punktzahl nötig für Klausurzulassung.
- Kann auch wehrend Übungen abgegeben werden.

Lehrbücher:

- W. Nolting, Grundkurs Theoretische Physik 3: Elektrodynamik (Springer)
- D.J. Griffiths, Elektrodynamik: Eine Einführung (Pearson)
- T. Fließbach, Elektrodynamik (Spektrum Akademischer Verlag)
- J.D. Jackson, Klassische Elektrodynamik (Walter de Gruyter) geht dieser Vorlesung hinaus

0.2 Einführung und Überblick

Die vier fundamentalen Wechselwirkungen (WW):

- Starke WW
- Elektromagnetische WW Wird in dieser Vorlesung betrachtet
- Schwache WW
- Gravitation

0.2.1 Rückblick

Theoretische Physik 1:

- Mechanik
- Punktmechanik: Bahnkurven von Körpern
- \bullet Bewegungsgleichung: $m \pmb{\ddot{r}} = \pmb{F}$

0.2.2 Elektrodynamik

- Grundlegende Größen
- Felder

•

$$\boldsymbol{E}(\boldsymbol{r},t)$$
 $\boldsymbol{B}(\boldsymbol{r},t)$

elektrisches Feld Magnetfeld

→ Feldtheorie sehr wichtiges Konzept

Wie sind Elektrische Felder definiert?

Experimentelle Definition als Messgröße: Kraft auf Ladung

$$F = q(E(r,t) + v \times B(r,t))$$

Theoretische Definition ist Mathematisch: Feldgleichungen-Maxwellgleichungen

$$abla \cdot E = \frac{1}{\varepsilon_0} \rho$$
 $\nabla \cdot B = 0$ ∂E

$$\nabla \times \boldsymbol{E} + \frac{\partial \boldsymbol{B}}{\partial t} = 0$$
 $\nabla \times \boldsymbol{B} - \mu_0 \varepsilon_0 \frac{\partial \boldsymbol{E}}{\partial t} = \mu_0 \boldsymbol{j}$

Hierbei steht ρ für die Ladungsdichte und \boldsymbol{j} für die Stromdichte.

0.3 Aufbau der Vorlesung

1./2. Statische Phänomene: $\frac{\partial E}{\partial t} = 0 = \frac{\partial B}{\partial t}$

$$\Rightarrow \nabla \cdot \boldsymbol{E} = \frac{1}{\varepsilon_0} \rho \qquad \nabla \cdot \boldsymbol{B} = 0$$

$$\underbrace{\nabla \times \boldsymbol{E} = 0}_{\text{1. Elektrostatik}} \qquad \underbrace{\nabla \times \boldsymbol{B} = 0}_{\text{2. Magnetostatik}}$$

- 3. Zeitabhängige magnetische/elektrische Felder
- 4. Relativistische Formulierung der Elektrodynamik

Kapitel 1

Elektrostatik

Wir beschäftigen uns in diesem Kapitel mit **ruhenden Ladungen** und **zeitunabhängigen Feldern**. Das Grundproblem besteht darin, dass wir eine Ladungsverteilung haben und das Elektrische Feld und dessen Potential bestimmen wollen.

 \rightarrow Feld $\boldsymbol{E}(\boldsymbol{r}),$ el. Potential $\varPhi(\boldsymbol{r})$

• q₂ q₁ • q₃

1.1 Elektrische und Coulombsches Gesetz

Ladung: Beobachtungstatsachen:

- i) Zwei Arten "+", "-"
- ii) Abgeschlossenes System: Ladung erhalten: $q = \sum_i q_i = \text{const.}$
- iii) Ladung ist quantisiert in Einheiten der Elementarladung:

$$q = ne, \ n \in \mathbb{Z}, \ e = 1,602 \cdot 10^{-19} \,\mathrm{C}$$

n=-1: für ein Elektron wäre ein Beispiel einer Punktladung

Kontinuierliche Ladungsverteilung Ladungsdichte $\rho(\boldsymbol{r}) = \frac{\text{Ladung}}{\text{Volumen}} = \frac{\Delta q}{\Delta V} \text{ Gesamtladung in } V \text{:}$

$$Q = \int_{V} d^3 r \, \rho(\boldsymbol{r})$$

1.1.1 Coulombsches Gesetz

Die Kraft, welche eine am Ort r_2 lokalisierte Punktladung auf eine Punktladung am Ort r_1 ausübt, ist gegeben durch:

$$oldsymbol{F}_{12} = k rac{q_1 q_2}{|oldsymbol{r}_1 - oldsymbol{r}_2|^2} rac{oldsymbol{r}_1 - oldsymbol{r}_2}{|oldsymbol{r}_1 - oldsymbol{r}_2|}$$

- 1. $F_{12} \sim q_1 q_2$
- 2. $\mathbf{F}_{12} \sim \frac{1}{|\mathbf{r}_1 \mathbf{r}_2|^2}$

- 3. $\mathbf{F}_{12} \sim q_1 q_2 \, \mathbf{e}_{r_{12}}$
- 4. $F_{12} = -F_{21}$

Es gilt das Superpositionsprinzip: Das heißt, durch vektorielle Addition der Kräfte kann die Gesamtkraft ermittelt werden.

$$F_1 = k \sum_{j=2}^{N} \frac{q_1 q_j}{r_{1j}^2} e_{r_{1j}}$$

Zur Konstanten k:

Die Konstante ist abhängig von dem verwendeten Maßsystemen.

- i) Gauß-System (cgs): $k \equiv 1$, dyn = $\frac{\text{g-cm}}{\text{s}^2} = 10^{-5} \,\text{N}$ 1 dyn = $\frac{(1\text{ESE})^2}{\text{cm}^2}$ 1ESE = $\frac{\sqrt{\text{g-cm}^3}}{\text{s}}$
- ii) SI (MKSA-System): Definition von A = Ampère

$$\frac{\Delta F}{\Delta l} = 2 \cdot 10^{-7} \, \frac{\text{N}}{\text{m}}$$

$$\frac{1 \, \text{m}}{1 \, \text{m}} \xrightarrow{1 \, \text{m}} \frac{1 \, \text{m}}{1 \, \text{m}}$$
Strom = $\frac{\text{Ladung}}{\text{Zeit}} \Rightarrow 1 \, \text{A} = \frac{1 \, \text{C}}{1 \, \text{s}} \rightarrow e = 1,602 \cdot 10^{-19} \, \text{C} \qquad c \approx 3 \cdot 10^8 \, \frac{\text{m}}{\text{s}}$

$$\frac{\Delta F}{\Delta l} = k \frac{2 \, l^2}{c^2 \, l} \qquad \rightarrow k = 2 \cdot 10^{-7} \, \frac{\text{N}}{\text{m}} \frac{c^2 \, \text{lm}}{2 \, (1 \, \text{A})^2} = 10^{-7} c^2 \, \frac{\text{N}}{\text{A}^2}$$

$$k = \frac{1}{4 \pi \varepsilon_0}$$

Damit erhalten wir für die Dielektrizitätskonstante des Vakuums:

$$\varepsilon_0 = 8.85 \cdot 10^{-12} \frac{\text{C}^2}{\text{Nm}^2}$$

1.2 Elektrisches Feld

1.2.1 Feld eines Systems von Punktladungen

N-Ladungen q_1, \ldots, q_N ruhen an den Orten r_1, \ldots, r_N . Nun bringen wir eine Testladung q am Ort r mit ein.

Kraft von q_1 , q_2 auf q

$$\boldsymbol{F} = \frac{1}{4\pi\varepsilon_0} q \sum_{j=1}^{N} q_n \frac{\boldsymbol{r} - \boldsymbol{r}_j}{|\boldsymbol{r} - \boldsymbol{r}_j|^3} = q \boldsymbol{E}(\boldsymbol{r})$$

Somit ist das elektrisches Feld:

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \sum_{j=1}^{N} q_j \frac{\boldsymbol{r} - \boldsymbol{r}_j}{|\boldsymbol{r} - \boldsymbol{r}_j|^3}$$

Bemerkung

- i) Testladung klein (formal: $\lim_{q\to 0} \frac{F}{q}$)
- ii) math. $\boldsymbol{E}(\boldsymbol{r})$ Vektorpfeil

kartesisch:
$$\boldsymbol{E}(\boldsymbol{r}) = \begin{pmatrix} E_x(\boldsymbol{r}) \\ E_y(\boldsymbol{r}) \\ E_z(\boldsymbol{r}) \end{pmatrix}$$

iii) Wechselwirkungsprozess: 2 Teile

$$q_i \to \boldsymbol{E}(\boldsymbol{r}) \to \boldsymbol{F} = q\boldsymbol{E}(\boldsymbol{r})$$

iv) Superpositionsprinzip gilt

1.2.2 Feld einer kontinuierlichen Ladungsverteilung $\rho(r)$

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \underbrace{\int\limits_{V} d^3r'\,\rho(\boldsymbol{r}')\frac{\boldsymbol{r}-\boldsymbol{r}_j}{|\boldsymbol{r}-\boldsymbol{r}_j|^3}}_{\text{schließt alle Ladungen ein}}$$

$$E(\mathbf{r}) = k \sum_{j} \Delta q_{j} \frac{\mathbf{r} - \mathbf{r}_{j}}{|\mathbf{r} - \mathbf{r}_{j}|^{3}}$$

$$= k \sum_{j} \Delta V_{j} \rho(\mathbf{r}_{j}) \frac{\mathbf{r} - \mathbf{r}_{j}}{|\mathbf{r} - \mathbf{r}_{j}|^{3}}$$
mit $\Delta V_{j} \rightarrow 0 \rightarrow k \int_{V} d^{3}r' \rho(\mathbf{r}') \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^{3}}$

1.2.3 Ladungsdichte einer Punktladung

Deltafunktion

$$\rho(\mathbf{r}) = q\delta(\mathbf{r} - \mathbf{r}_0)$$

Punktladung in $\mathbf{r}_0 \Rightarrow \rho(\mathbf{r}) = 0 \quad \mathbf{r} \neq \mathbf{r}_0$ Ladungsdichte divergiert in \mathbf{r}_0

Modell für Punktladung: Ladung q in Kugel mit Radius ε um $\boldsymbol{r}_0,\ \varepsilon\to 0$

$$\rho_2(\mathbf{r}) = \left\{ \begin{array}{cc} \frac{q}{v_k} & |\mathbf{r}| \le \varepsilon \\ 0 & \mathrm{sonst} \end{array} \right\} = \frac{q}{\frac{4}{3}\pi\varepsilon^3} \underbrace{\Theta(\varepsilon - |\mathbf{r}|)}_{\text{Stufenfunktion}}$$

$$ho(m{r}) = \lim_{arepsilon o 0}
ho_{arepsilon}(m{r}) = \left\{egin{array}{cc} \infty & m{r} = 0 \ 0 & m{r}
eq 0 \end{array}
ight.$$

Divergenz muss so sein, dass

$$\int\limits_{\substack{V\\ \boldsymbol{r}_0 \in V}} d^3r \ \rho(\boldsymbol{r}) = q$$

Definition Delta-Funktion (Diracsche Deltafunktion)

1.

$$\delta(\boldsymbol{r} - \boldsymbol{r}_0) = \left\{ \begin{array}{ll} 0 & \boldsymbol{r} \neq \boldsymbol{r}_0 \\ \infty & \boldsymbol{r} = \boldsymbol{r}_0 \end{array} \right.$$

2.

$$\int_{V} d^{3}r \ f(\boldsymbol{r})\delta(\boldsymbol{r}-\boldsymbol{r}_{0}) = \left\{ \begin{array}{cc} f(\boldsymbol{r}_{0}) & \boldsymbol{r}_{0} \in V \\ 0 & \boldsymbol{r}_{0} \notin V \end{array} \right.$$

Mathematik

Distribution - Funktional

Funktional: Abb. Funktionen $\mapsto \mathbb{R}, \mathbb{C}$

$$\delta_{\boldsymbol{r}_0}: f \mapsto f(\boldsymbol{r}_0)$$

Physik

$$\int d^3r \ f(\boldsymbol{r})\delta(\boldsymbol{r}-\boldsymbol{r}_0) = f(\boldsymbol{r})$$

 δ -Fkt. als Grenzwert einer Folge von Funktionen im Integral

$$\int d^3r \ f(\boldsymbol{r})\delta(\boldsymbol{r}-\boldsymbol{r}_0) = \lim_{\varepsilon \to 0} \int d^3 \ f(\boldsymbol{r}g_{\varepsilon}(\boldsymbol{r}-\boldsymbol{r}_0))$$

mit

$$\lim_{\varepsilon \to 0} g_{\varepsilon}(\boldsymbol{r} - \boldsymbol{r}_0) = \begin{cases} 0 & \boldsymbol{r} \neq \boldsymbol{r}_0 \\ \infty & \boldsymbol{r} = \boldsymbol{r}_0 \end{cases}$$
$$\int_{V} d^3r \ g_{\varepsilon}(\boldsymbol{r} - \boldsymbol{r}_0) = 1$$

Beispiel: $g_{\varepsilon}(\boldsymbol{r}-\boldsymbol{r}_0)=\frac{\Theta(\varepsilon-|\boldsymbol{r}|)}{\frac{4}{3}\pi\varepsilon^3}$ Mehrere Punktladungen q_j in \boldsymbol{r}_j

$$ho(m{r}) = \sum_j q_j \delta(m{r} - m{r}_j)$$

$$\Rightarrow \boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \int_V d^3r' \ \rho(\boldsymbol{r}') \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$

$$= \frac{1}{4\pi\varepsilon_0} \int_V d^3r' \ \sum_j q_j \delta(\boldsymbol{r} - \boldsymbol{r}_j) \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$

$$= \frac{1}{4\pi\varepsilon_0} \sum_j q_j \int_V d^3r' \ \delta(\boldsymbol{r} - \boldsymbol{r}_j) \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$

$$= \frac{1}{4\pi\varepsilon_0} \sum_j q_j \frac{\boldsymbol{r} - \boldsymbol{r}_j}{|\boldsymbol{r} - \boldsymbol{r}_j|^3} \quad \checkmark$$

1.2.4 Flächenladungsdichte

$$\begin{split} \sigma(\boldsymbol{r}) &= \frac{\text{Ladung}}{\text{Fläche}} = \frac{\Delta q}{\Delta A} \\ &\text{erzeugtes elektrisches Feld:} \end{split}$$

$$E(r) = \frac{1}{4\pi\varepsilon_0} \int_A \underbrace{df'}_{\text{Flächenelement}} \sigma(r) \frac{r - r'}{|r - r'|^3}$$

Beispiel: Elektrisches Feld einer homogenen Flächenladung

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \int_{-\infty}^{+\infty} dx' \int_{-\infty}^{+\infty} dy' \ \sigma \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3} \qquad \boldsymbol{r}' = (x', y', 0)$$

Symmetrie: E unabhängig von x, y r = (0, 0, z)

$$m{r} - m{r}' = (-x', -y', z), \ |m{r} - m{r}'|^3 = (x'^2 + y'^2 + z^2)^{3/2}$$

$$E_x \sim \sigma \int_{-\infty}^{+\infty} dx' \int_{-\infty}^{+\infty} dy' \ \frac{(-x')}{(x'^2 + y'^2 + z^2)^{3/2}} = 0 = E_y$$

$$E = (0, 0, E_z)$$

$$E_{z} = \frac{1}{4\pi\varepsilon_{0}} \sigma_{z} \int_{-\infty}^{+\infty} dx' \underbrace{\int_{-\infty}^{+\infty} dy' \frac{(x')}{(x'^{2} + y'^{2} + z'^{2})^{3/2}}}_{\frac{1}{x'^{2} + z^{2}} \frac{y'}{(x'^{2} + y'^{2} + z^{2})^{3/2}} \Big|_{-\infty}^{+\infty} = \frac{1}{x'^{2} + z^{2}} \frac{\operatorname{sgn}(y')}{\sqrt{1 + \frac{x'^{2} + z^{2}}{y'^{2}}}} \Big|_{-\infty}^{+\infty} = \frac{2}{x'^{2} + z^{2}}$$

$$= \frac{1}{2\pi\varepsilon_{0}} \sigma_{z} \underbrace{\int_{-\infty}^{+\infty} dx' \frac{1}{x'^{2} + z^{2}}}_{\frac{1}{z} \arctan\left(\frac{x'}{2}\right) \Big|_{-\infty}^{+\infty} = \frac{1}{z} \operatorname{sgn}(z)\pi}_{=\infty}$$

$$= \frac{\sigma}{2\varepsilon_{0}} \operatorname{sgn}(z)$$

Grenzfläche: $z \to 0$

$$egin{aligned} m{E} & \longrightarrow z > 0 \ -rac{\sigma}{2arepsilon_0} m{e}_z & z > 0 \ -rac{\sigma}{2arepsilon_0} m{e}_z & z < 0 \end{aligned}$$
 $m{E}_{\perp_+} - m{E}_{\perp_-} = rac{\sigma}{arepsilon_0}, \qquad m{E}_{\parallel} = 0$

1.2.5 Linenladungsdichte

$$\lambda(m{r}) = rac{ ext{Ladung}}{ ext{Länge}} = rac{\Delta q}{\Delta s}$$

$$m{E}(m{r}) = rac{1}{4\piarepsilon_0} \int_{\gamma} ds' \; \lambda(m{r}') rac{m{r} - m{r}'}{|m{r} - m{r}'|^3}$$

Beispiel: Elektrisches Feld einer homogenen Linienladung

$$E(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int_{\gamma} ds' \, \lambda \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3} \qquad \gamma : z' \mapsto \mathbf{r}'(z') = \begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix}$$
$$= \frac{\lambda}{4\pi\varepsilon_0} \int_{-\infty}^{\infty} dz' \, \frac{\mathbf{r} - \begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix}}{(x^2 + y^2 + (z - z')^2)^{3/2}}$$

 $\tilde{z} = z' - z$:

$$E_{x} = \frac{\lambda x}{4\pi\varepsilon_{0}} \int_{-\infty}^{\infty} dz' \frac{1}{(x^{2} + y^{2} + (z - z')^{2})^{3/2}} = \frac{\lambda x}{4\pi\varepsilon_{0}} \underbrace{\int_{-\infty}^{\infty} d\tilde{z} \frac{1}{(x^{2} + y^{2} + \tilde{z}^{2})^{3/2}}}_{\frac{2}{x^{2} + y^{2}}} = \frac{\lambda}{2\pi\varepsilon_{0}} \frac{x}{x^{2} + y^{2}}$$

$$E_{y} = \frac{\lambda}{2\pi\varepsilon_{0}} \frac{x}{x^{2} + y^{2}}$$

$$E_{z} = \frac{\lambda}{4\pi\varepsilon_{0}} \int_{-\infty}^{\infty} dz' \frac{z - z'}{(x^{2} + y^{2} + (z - z')^{2})^{3/2}} = 0$$

$$\mathbf{E}(\mathbf{r}) = \frac{\lambda}{2\pi\varepsilon_{0}} \frac{1}{x^{2} + y^{2}} \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$$

$$\rho = \sqrt{x^{2} + y^{2}} = \frac{\lambda}{2\pi\varepsilon_{0}} \frac{1}{\rho} \mathbf{e}_{\rho}, \qquad \mathbf{e}_{\rho} = \begin{pmatrix} \cos\varphi \\ \sin\varphi \\ 0 \end{pmatrix}$$

1.3 Feldgleichungen und elektrostatische Potential

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \int d^3r' \; \rho(\boldsymbol{r}') \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$

1.3.1 Elektrostatisches Potential

elektrische Feld ist ein Potentialfeld ${m E}({m r}) = -
abla \phi({m r}) = - igg({m e}_x rac{\partial \phi}{\partial x} +$

$$\begin{aligned} e_y \frac{\partial \phi}{\partial y} + e_z \frac{\partial \phi}{\partial z} \\ \frac{r - r'}{|r - r'|^3} &= -\nabla \frac{1}{|r - r'|} \\ -\frac{\partial}{\partial x} \frac{1}{[(x - x')^2 + (y - y')^2 + (z - z')^2]^{1/2}} &= -\left(-\frac{1}{2}\right) \frac{2(x - x')}{[(x - x')^2 + (y - y')^2 + (z - z')^2]^{3/2}} &= \frac{(x - x')}{|r - r'|^3} \\ \Rightarrow \boldsymbol{E}(\boldsymbol{r}) &= \frac{1}{4\pi\varepsilon_0} \int d^3r' \; \rho(\boldsymbol{r}') \left(-\nabla_{\boldsymbol{r}} \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|}\right) &= \nabla_{\boldsymbol{F}} \frac{1}{4\pi\varepsilon_0} \int d^3r' \; \frac{\rho(\boldsymbol{r}')}{|\boldsymbol{r} - \boldsymbol{r}'|} \end{aligned}$$

 \rightarrow elektrostatisches Potential

$$\phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int d^3r' \; \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + c$$

übliche Konvention: c = 0 ($\phi(\mathbf{r}) | \mathbf{r} | \xrightarrow{\rightarrow} \infty 0$) Potential einer Punktladung in \mathbf{r}_0 :

$$\rho(\mathbf{r}) = q\delta(\mathbf{r} - \mathbf{r}_0)$$

$$\phi(\mathbf{r}) = \int_{\mathbb{R}^3} d^3 \mathbf{r}' \, \frac{q\delta(\mathbf{r}' - \mathbf{r}_0)}{|\mathbf{r} - \mathbf{r}'|} = \frac{1}{4\pi\varepsilon_0} \frac{q}{|\mathbf{r} - \mathbf{r}_0|}$$

$$\boldsymbol{E}(\boldsymbol{r}) = -\boldsymbol{\nabla}\phi = \frac{1}{4\pi\varepsilon_0}q\boldsymbol{\nabla}\frac{1}{|\boldsymbol{r}-\boldsymbol{r}_0|} = \frac{1}{4\pi\varepsilon_0}q\frac{\boldsymbol{r}-\boldsymbol{r}_0}{|\boldsymbol{r}-\boldsymbol{r}_0|^3}$$

(Funktional-Analysis Siegfried Großmann Springer) (Landau-Lipschitz Buch geht weit der Vorlesung hinaus)

1.3.2 Feldgleichugn (differentielle Form)

Rotation (Wirbel)

$$\operatorname{rot} \mathbf{E} \nabla \times \mathbf{E} = \mathbf{e}_{x} \left(\frac{\partial E_{z}}{\partial y} - \frac{\partial E_{x}}{\partial z} \right) + \mathbf{e}_{y} \left(\frac{\partial E_{x}}{\partial z} - \frac{\partial E_{z}}{\partial x} \right) + \mathbf{e}_{z} \left(\frac{\partial E_{y}}{\partial x} - \frac{\partial E_{x}}{\partial y} \right) \Rightarrow \nabla \times \mathbf{E}$$

$$\Rightarrow \nabla \times \mathbf{E} = -\nabla \times (\nabla \phi) = 0$$

Mathe: Es sind äquivalent

i
$$\boldsymbol{E} = -\nabla \phi$$

ii $\nabla \times \mathbf{E} = 0$ (auf einfach zusammenhängendem Gebiet)

iii Kurvenintegral $\int_{\gamma} d \boldsymbol{r} \cdot \boldsymbol{E}$ ist Wegunabhängig

$$\int_{\boldsymbol{r}_1}^{\boldsymbol{r}_2} d\boldsymbol{r} \cdot \boldsymbol{E} = -\int_{\boldsymbol{r}_1}^{\boldsymbol{r}_2} dt \underbrace{\frac{d\boldsymbol{r}}{dt} \times \nabla \phi(\boldsymbol{r}(t))}_{\underline{d\phi}} = \underbrace{(\phi(\boldsymbol{r}_2) - \phi(\boldsymbol{r}_1))}_{\text{Potential differenz}}$$

1.3.3 Divergenz (Quellen)

$$\div \mathbf{E} = \nabla \cdot \mathbf{E} = \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z}$$

$$\nabla \cdot \boldsymbol{E}(\boldsymbol{r}) = \nabla_{\boldsymbol{r}} \cdot \frac{1}{4\pi\varepsilon_0} \int d^3r' \ \rho(\boldsymbol{r}') \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$
$$= \frac{1}{4\pi\varepsilon_0} \int_V d^3r' \rho(\boldsymbol{r}') \nabla_{\boldsymbol{r}} \cdot \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$

x-Anteil:

$$\begin{split} \frac{\partial}{\partial x} \frac{x - x'}{[(x - x')^2 + (y - y')^2 + (z - z')^2]^{3/2}} &= \frac{1 \cdot [\dots]^{3/2} (x - x') (x - x')^{3/2} \cdot 2[\dots]^{1/2}}{[\dots]^3} \\ &= \frac{[\dots]^{1/2} ((x - x')^2 + (y - y')^2 + (z - z')^2 - 3(x - x')^2)}{[\dots]^{3/2}} \\ &= \frac{(y - y')^2 + (z - z')^2 - 2(x - x')^2}{[\dots]^{3/2}} \end{split}$$

$$\frac{\partial}{\partial y} \frac{y-y'}{[(x-x')^2+(y-y')^2+(z-z')^2]^{3/2}} = \frac{(x-x')^2+(z-z')^2-2(y-y')^2}{[\dots]^{3/2}}$$

$$\frac{\partial}{\partial z} \frac{z - z'}{[(x - x')^2 + (y - y')^2 + (z - z')^2]^{3/2}} = \frac{(x - x')^2 + (y - y')^2 - 2(z - z')^2}{[\dots]^{3/2}}$$

$$\nabla \cdot \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3} = 0$$
 falls $\boldsymbol{r} \neq \boldsymbol{r}'$

 \Rightarrow falls $r \notin V$, d.h. r in Gebiet ohne Ladungsdichte $\rho(r) = 0$

$$\Rightarrow \nabla \cdot \boldsymbol{E}(\boldsymbol{r}) = 0$$

 $\boldsymbol{r} \in V$: Grenzwertbetrachtung (Regularisierung des Integranden) statt

$$\frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3} = \frac{\mathbf{r} - \mathbf{r}'}{[(x - x')^2 + (y - y')^2 + (z - z')^2]^{3/2}}$$

betrachten wir:

$$\boldsymbol{f}_a(\boldsymbol{r}-\boldsymbol{r}') = \frac{\boldsymbol{r}-\boldsymbol{r}'}{[(x-x')^2+(y-y')^2+(z-z')^2]^{3/2}} = \frac{\boldsymbol{r}-\boldsymbol{r}'}{[(\boldsymbol{r}-\boldsymbol{r}')^2+a^2]^{3/2}} \quad a \in \mathbb{R}, \ a > 0$$

am Ende Grenzwert $\lim_{a\to 0}$

$$abla \cdot \boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \lim_{a \to 0} \int_V d^3r' \ \rho(\boldsymbol{r'})
abla r \cdot f_a(\boldsymbol{r} - \boldsymbol{r'})$$

$$\frac{\partial}{\partial x} \frac{x - x'}{[(\mathbf{r} - \mathbf{r}')^2 + a^2]^{3/2}} = \frac{[\dots + a^2]^{3/2} - (x - x')\frac{3}{2} \cdot 2(x - x')[\dots + a^2]^{3/2}}{[\dots + a^2]^3}$$
$$= \frac{(y - y')^2 + (z - z')^2 + a^2 - 2(x - x')^2}{[\dots + a^2]^{3/2}}$$

$$\nabla_{\boldsymbol{r}} \cdot f_a(\boldsymbol{r} - \boldsymbol{r}') = \frac{3a^2}{[(\boldsymbol{r} - \boldsymbol{r}')^2 + a^2]^{5/2}}$$
$$\lim_{a \to 0} f_a(\boldsymbol{r} - \boldsymbol{r}') = \begin{cases} 0 & \boldsymbol{r} \neq \boldsymbol{r}' \\ \infty & \boldsymbol{r} = \boldsymbol{r}' \end{cases}$$

 \Rightarrow zum Integral $\int_V d^3r' \dots$ trägt (in Limes $a \to 0$) nur der Bereich ${\bm r}' \approx {\bm r}$ bei

$$K_R(\boldsymbol{r}) = \{ \boldsymbol{r}' \in \mathbb{R}^3 : |\boldsymbol{r} - \boldsymbol{r}'| \le R \}$$

$$\lim_{a \to 0} \int_{V} d^{3}r' \ \rho(\mathbf{r}') \nabla_{\mathbf{r}} \cdot f_{a}(\mathbf{r} - \mathbf{r}')$$

$$= \lim_{a \to 0} \int_{K_{R}(\mathbf{r})} d^{3}r' \ \rho(\mathbf{r}') \frac{3a^{2}}{[(\mathbf{r} - \mathbf{r}')^{2} + a^{2}]^{5/2}}$$

$$+ \lim_{a \to 0} \int_{V/K_{R}(\mathbf{r})} d^{3}r' \rho(\mathbf{r}') \frac{3a^{2}}{[(\mathbf{r} - \mathbf{r}')^{2} + a^{2}]^{5/2}}$$

$$= 0$$

Wähle R klein genug, dass man innerhalb $K_R(\boldsymbol{r})$ $\rho(\boldsymbol{r}')$ in Taylorreihe um \boldsymbol{r} entwickeln kann.

$$\tilde{\boldsymbol{r}} = \boldsymbol{r}' - \boldsymbol{r}, \ d^3r' = d^3\tilde{r}$$

$$\int_{K_R(\boldsymbol{r})} d^3r' \, \rho(\boldsymbol{r}') \frac{3a^2}{[(\boldsymbol{r} - \boldsymbol{r}')^2 + a^2]^{5/2}} = \int_{K_R(0)} d^3\tilde{r} \, \rho(\boldsymbol{r} + \tilde{\boldsymbol{r}}) \frac{3a^2}{[\tilde{\boldsymbol{r}}^2 + a^2]^{5/2}}$$

Taylorentwicklung von $\rho(\mathbf{r} + \tilde{\mathbf{r}})$ zum $\tilde{\mathbf{r}} = 0$

$$egin{align}
ho(m{r}+ ilde{m{r}}) &=
ho(m{r})+ ilde{m{r}}\cdotm{
abla}
ho(m{r})+\dots \ &= \int_{K_R(0)} d^3 ilde{r} \; (
ho(m{r})+ ilde{m{r}}\cdotm{
abla}
ho(m{r})+ ilde{m{r}}\cdotm{
abla}
ho(m{r})+\dots)rac{3a^2}{[ilde{m{r}}^2+a^2]^{5/2}} \ &= \int_{K_R(0)} d^3 ilde{r} \; (
ho(m{r})+ ilde{m{r}}\cdotm{
abla}
ho(m{r})+ ilde{m{r}}\cdotm{
abla}
ho(m{r})+\dots \ &= \int_{K_R(0)} d^3 ilde{r} \; (
ho(m{r})+ ilde{m{r}}\cdotm{
abla}
ho(m{r})+ ilde{m{r}}\cdotm{
abla}
ho(m{r})+\dots \ &= \int_{K_R(0)} d^3 ilde{r} \; (
ho(m{r})+ ilde{m{r}}\cdotm{
abla}
ho(m{r})+ ilde{m{r}}\cdotm{
abla}
ho(m{r})+\dots \ &= \int_{K_R(0)} d^3 ilde{r} \; (
ho(m{r})+ ilde{m{r}}\cdotm{
abla}
ho(m{r})+ ilde{m{r}}\cdotm{
abla} \ &= \int_{K_R(0)} d^3 ilde{r} \; (
ho(m{r})+ ilde{m{r}}\cdotm{
abla}
ho(m{r})+ ilde{m{r}}\cdotm{
abla} \ &= \int_{K_R(0)} d^3 ilde{r} \; (
ho(m{r})+ ilde{m{r}}\cdotm{
abla}
ho(m{r})+ ilde{m{r}}\cdotm{
abla} \ &= \int_{K_R(0)} d^3 ilde{r} \; (
ho(m{r})+ ilde{m{r}}\cdotm{
abla} \ &= \int_{K_R(0)} d^3 ilde{r} \; (
ho(m{r})+ ilde{m{r}}\cdotm{
abla} \ &= \int_{K_R(0)} d^3 ilde{r} \; (
ho(m{r})+ ilde{m{r}}\cdotm{
abla} \ &= \int_{K_R(0)} d^3 ilde{r} \; (
ho(m{r})+ ilde{m{r}}\cdotm{
abla} \ &= \int_{K_R(0)} d^3 ilde{r} \; (
ho(m{r})+ ilde{r}\cdotm{
abla} \ &= \int_{K_R(0)} d^3 ilde{r} \; (
ho(m{r})+ ilde{r}\cdotm{
abla} \ &= \int_{K_R(0)} d^3 ilde{r} \; (
ho(m{r})+ ilde{r}\cdotm{
abla} \ &= \int_{K_R(0)} d^3 ilde{r} \; (
ho(m{r})+ ilde{r}\cdotm{
abla} \ &= \int_{K_R(0)} d^3 ilde{r} \; (
ho(m{r})+ ilde{r}\cdotm{
abla} \ &= \int_{K_R(0)} d^3 ilde{r} \; (
ho(m{r})+ ilde{r}\cdotm{
abla} \ &= \int_{K_R(0)} d^3 ilde{r} \; (
ho(m{r})+ ilde{r}\cdotm{
abla} \ &= \int_{K_R(0)} d^3 ilde{r} \; (
ho(m{r})+ ilde{r}\cdotm{
abla} \ &= \int_{K_R(0)} d^3 ilde{r} \; (
ho(m{r})+ ilde{r}\cdotm{
abla} \ &= \int_{K_R(0)} d^3 ilde{r} \; (
ho(m{r})+ ilde{r}\cdotm{
abla} \ &= \int_{K_R(0)} d^3 ilde{r} \; (
ho(m{r})+ ilde{r}\cdotm{
abla} \ &= \int_{K_R(0)} d^3 ilde{r} \; (
ho(m{r})+ ilde{r}\cdotm{
abla} \ &= \int_{K_R(0)} d^3 ilde{r} \; (
ho(m{r})+ ilde{r}\cdotm{
abla} \ &= \int_{K_R(0)} d^3 ilde{r} \; (
ho(m{r})+ ilde{r}\cdotm{
abla} \ &= \int_{K_R(0)} d^3 ilde{r} \; (
ho(m{r})+ ilde{r}\cdotm{
abla} \ &= \int_{K_$$

1. Integral:

$$\int_{K_{R}(0)} d^{3}\tilde{r} \ \rho(\mathbf{r}) \frac{3a^{2}}{(\tilde{r}^{2} + a^{2})^{5/2}} = \rho(\mathbf{r}) \underbrace{\int_{0}^{R} d\tilde{r} \frac{3a^{2}}{(\tilde{r}^{2} + a^{2})^{5/2}}}_{\left[\frac{\tilde{r}^{3}}{(\tilde{r}^{2} + a^{2})^{3/2}}\right]_{0}^{R}} \underbrace{\int_{0}^{R} d\tilde{r} \frac{3a^{2}}{(\tilde{r}^{2} + a^{2})^{3/2}}}_{=4\pi} \underbrace{\int_{0}^{R} d\tilde{r} \frac{3a^{2}}{$$

2. Integral:

$$\int_{K_R(0)} d^3\tilde{r} \underbrace{\tilde{r} \cdot \nabla_{\boldsymbol{r}} \rho(\boldsymbol{r}) \frac{3a^2}{(\tilde{r}^2 + a^2)^{5/2}}}_{\tilde{r}\boldsymbol{e_{\tilde{r}}}} = \underbrace{\int_0^R d\tilde{r} \, \frac{3a^2\tilde{r}^3}{(\tilde{r}^2 + a^2)^{3/2}}}_{\frac{2}{3}a - 3a^2 \left(\frac{R^2 + \frac{2}{3}a^2}{(R^2 + a^2)^{3/2}}\right)} \underbrace{\int d\Omega \, \boldsymbol{e_{\tilde{r}}} \cdot \nabla \rho(\boldsymbol{r})}_{\text{unabh. von } a} \xrightarrow[a \to 0]{} 0$$

gilt auch für alle höheren Terme

$$\lim_{a \to 0} \int_{V} d^{3}r' \rho(\mathbf{r}) \nabla_{\mathbf{r}} \cdot \frac{(\mathbf{r} - \mathbf{r}')}{[(\mathbf{r} - \mathbf{r}')^{2} + a^{2}]^{3/2}} = 4\pi \rho(\mathbf{r})$$

$$\Rightarrow \nabla \cdot \mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_{0}} \lim_{a \to 0}^{"} = \frac{1}{\varepsilon_{0}} \rho(\mathbf{r})$$

$$\nabla \boldsymbol{E}(\boldsymbol{r}) = \frac{1}{\varepsilon_0} \rho(\boldsymbol{r}) \quad \boldsymbol{r} \in \mathbb{R}^3$$

1.3.4 Zusammenfassung:

Feldgleichungen der Elektrostatik

Mathe: partielle DGL

$$abla m{E}(m{r}) = rac{1}{arepsilon_0}
ho(m{r})$$
 inhomogene DGL
$$abla imes m{E}(m{r}) = 0 \text{ homogene DGL}$$

DGL für Potential ϕ : $\boldsymbol{E} = -\nabla \phi$

$$\nabla \cdot \mathbf{E} = \nabla \cdot (-\nabla \phi) = -\nabla \cdot \begin{pmatrix} \partial_x \phi \\ \partial_y \phi \\ \partial_z \phi \end{pmatrix}$$
$$= -\underbrace{\left(\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2}\right)}_{=\cdot \Delta \phi}$$

Partielle DGL 2. Ordnung:

Poissongleichung

$$\Delta \Phi({m r}) = -rac{1}{arepsilon_0}
ho({m r})$$

für Gebiete mit $\rho(\mathbf{r}) = 0$:

$$\Delta \phi(\mathbf{r}) = 0$$
 Laplacegleichung

Darstellung der Deltafunktion:

$$\lim_{a \to 0} \int_{\mathbb{R}^3} d^3 r' \ \rho(\mathbf{r}') \underbrace{\nabla_{\mathbf{r}} \cdot \frac{(\mathbf{r} - \mathbf{r}')}{[(\mathbf{r} - \mathbf{r}')^2 + a^2]^{3/2}}}_{3a^2 = :g_a(\mathbf{r}' - \mathbf{r})} = 4\pi \rho(\mathbf{r})$$

 $\frac{1}{4\pi}g_a$ liefert Grenzwertdarstellung der δ -funktion.

$$\lim_{a \to 0} \int_{\mathbb{R}^3} d^3 r' \ \rho(\mathbf{r}') \frac{1}{4\pi} g_a(\mathbf{r}' - \mathbf{r}) = \rho(\mathbf{r})$$

$$\lim_{a \to 0} g_a(\mathbf{r}' - \mathbf{r}) = \begin{cases} 0 & \mathbf{r} \neq \mathbf{r}' \\ \infty & \mathbf{r} = \mathbf{r}' \end{cases}$$

$$\delta(\mathbf{r}) = \lim_{a \to 0} \frac{1}{4\pi} \nabla_{\mathbf{r}} \cdot \frac{r^2}{(r^2 + a^2)^{3/2}}$$

$$\stackrel{\text{formal}}{=} \frac{1}{4\pi} \nabla \cdot \underbrace{\frac{\boldsymbol{r}}{r^3}}_{=-\nabla \frac{1}{r}} = -\frac{1}{4\pi} \nabla \cdot \left(\nabla \frac{1}{r}\right) = \frac{-1}{4\pi} \Delta \frac{1}{r} \Rightarrow \Delta \frac{1}{r} = -4\pi \delta(\boldsymbol{r})$$

z.B. Potential einer Punktladung ρ q in r_0 :

$$\phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \frac{q}{|\mathbf{r} - \mathbf{r}_0|}$$

$$\Delta\phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} q \underbrace{\Delta_{\mathbf{r}} \frac{1}{|\mathbf{r} - \mathbf{r}_0|}}_{=-4\pi\delta(\mathbf{r} - \mathbf{r}_0)} = -\frac{1}{\varepsilon_0} \underbrace{q\delta(\mathbf{r} - \mathbf{r}_0)}_{=\rho(\mathbf{r})} = \frac{1}{\varepsilon_0} \rho(\mathbf{r})$$

Wiederholung

$$\begin{aligned} \boldsymbol{\nabla} \cdot \boldsymbol{E}(\boldsymbol{r}) &= \frac{1}{\varepsilon_0} \rho(\boldsymbol{r}) \\ \boldsymbol{\nabla} \times \boldsymbol{E}(\boldsymbol{r}) &= 0 \\ \Rightarrow \quad \boldsymbol{E} &= -\boldsymbol{\nabla} \Phi \\ \Rightarrow \quad \Delta \Phi(\boldsymbol{r}) &= -\frac{1}{\varepsilon_0} \rho(\boldsymbol{r}) \end{aligned}$$

1.3.5 Integralsätze der Vektoranalysis

1) Gaußscher Satz:

Sei $\mathbf{A}(\mathbf{r})$ ein Vektorfeld im Volumen $V \subset \mathbb{R}^3$, so gilt:

$$\int_{V} d^{3}r \ \nabla \cdot \boldsymbol{A}(\boldsymbol{r}) = \int_{\partial V} d\boldsymbol{f} \ \cdot \boldsymbol{A}(\boldsymbol{r})$$

 ∂V Rand von V

$$d\mathbf{f} = \mathbf{n} df$$

Bemerkung:

i) Analogie 1D: Fundamentalsatz der Integralrechnung:

$$\int_{a}^{b} dx \frac{df}{dx} = f(b) - f(a)$$

ii) Geometrische / physikalische Integration:

Fluss des Vektorfeldes \boldsymbol{A} durch ∂V

$$\int_{\partial V} d\boldsymbol{f} \cdot \boldsymbol{A}$$

Integral über die Quellen von \boldsymbol{A}

$$\int_{V} d^{3}r \nabla \cdot \mathbf{A}$$

$$\mathbf{A} = \text{const.} \rightarrow \nabla \cdot \mathbf{A} = 0$$

$$\mathbf{A} = \text{const.} \rightarrow \mathbf{\nabla} \cdot \mathbf{A} = 0$$

Beispiel: Geschwindigkeit einer Flüssigkeit: $\boldsymbol{A}(\boldsymbol{r}) = \boldsymbol{v}(\boldsymbol{r})$

$$\boldsymbol{v} = \text{const.} \quad \boldsymbol{\nabla} \cdot \boldsymbol{v} = 0 \quad \int_{\partial V} d\boldsymbol{f} \cdot \boldsymbol{v} = 0$$

 \Rightarrow Es gibt keine Quellen von \boldsymbol{v}

$$\nabla \cdot \boldsymbol{r} \neq 0 \quad \int_{\partial V} d\boldsymbol{f} \cdot \boldsymbol{v} \neq 0$$

iii)

$$\int_{V} d^{3}r \boldsymbol{\nabla} \cdot \boldsymbol{A}(\boldsymbol{r}) = \int_{0}^{\Delta x} dx \int_{0}^{\Delta y} dy \int_{0}^{\Delta z} \left(\frac{\partial A_{x}}{\partial x} + \frac{\partial A_{y}}{\partial y} + \frac{\partial A_{z}}{\partial z} \right)$$

$$\begin{split} &\int_{0}^{\Delta z} dz \int_{0}^{\Delta y} dy \underbrace{\int_{0}^{\Delta x} dx \frac{\partial A_{x}}{\partial x}}_{A_{x}(\Delta x, y, z) - A_{x}(0, y, z)} \\ &= \int_{0}^{\Delta z} dz \int_{0}^{\Delta y} A_{x}(\Delta x, y, z) - \int_{0}^{\Delta z} dz \int_{0}^{\Delta y} dy A_{x}(0, y, z) \\ &= \int_{F_{A}^{+}} d\boldsymbol{f} \cdot \boldsymbol{A} + \int_{F_{A}^{-}} d\boldsymbol{f} \cdot \boldsymbol{A} \end{split}$$

$$F_x^+: d\mathbf{f} = \mathbf{e}_x dy dz$$
 $F_x^-: d\mathbf{f} = -\mathbf{e}_x dy dz$

ebenso gilt dann für die anderen Koordinaten:

$$\int_{0}^{\Delta x} dx \int_{0}^{\Delta z} dz \int_{0}^{\Delta y} dy \frac{\partial A_{y}}{\partial y} = \int_{F_{y}^{+}} d\mathbf{f} \cdot \mathbf{A} + \int_{F_{y}^{-}} d\mathbf{f} \cdot \mathbf{A}$$
$$\int_{0}^{\Delta x} dx \int_{0}^{\Delta y} dy \int_{0}^{\Delta z} dz \frac{\partial A_{z}}{\partial z} = \int_{F_{z}^{+}} d\mathbf{f} \cdot \mathbf{A} + \int_{F_{z}^{-}} d\mathbf{f} \cdot \mathbf{A}$$

$$\Rightarrow \int_{V} d^{3}r \nabla \cdot \boldsymbol{A} = \int_{\partial V} d\boldsymbol{f} \cdot \boldsymbol{A}$$

2) Stokescher Satz

Sei $\boldsymbol{A}(\boldsymbol{r})$ ein Vektorfeld, F eine Fläche mit Randkurve ∂F , so gilt:

$$\int\limits_{F} d\boldsymbol{r} \boldsymbol{A}(\boldsymbol{r}) = \int\limits_{F} d\boldsymbol{f} \cdot (\nabla \times \boldsymbol{A}(\boldsymbol{r}))$$
 Linienintegral $\to \partial F$ F \leftarrow Oberflächenint.

Richtung von $d\mathbf{f}$ und Umlauf sinn von ∂F : rechte Hand Regel. Beispiel:

$$\mathbf{A}(\mathbf{r}) = \begin{pmatrix} -y \\ x \\ 0 \end{pmatrix}$$

$$\nabla \times \mathbf{A} = \begin{pmatrix} \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \\ \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \\ \frac{\partial A_y}{\partial x} - \frac{\partial A_z}{\partial y} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1+1 \end{pmatrix} = 2\mathbf{e}_z$$

$$\mathbf{r}(\varphi) = R \begin{pmatrix} \cos \varphi \\ \sin \varphi \\ 0 \end{pmatrix} \qquad \varphi \in [0, 2\pi]$$

$$\frac{\partial \mathbf{r}}{\partial \varphi} = R \begin{pmatrix} -\sin \varphi \\ \cos \varphi \\ 0 \end{pmatrix}$$

$$\int_{\partial F} d\mathbf{r} \cdot \mathbf{A}(\mathbf{r}) = \int_0^{2\pi} d\varphi \frac{\partial \mathbf{r}}{\partial \varphi} \cdot \mathbf{A}(\mathbf{r}(\varphi))$$

$$= \int_0^{2\pi} d\varphi R(+\sin^2 \varphi + \cos^2 \varphi) = 2\pi R^2$$

$$\int_{F} d\mathbf{f} \underbrace{(\nabla \times \mathbf{A})}_{\mathbf{r}} = 2\pi R^2$$

Vektorfeld ohne Wirbel z.B. $\mathbf{A} = \text{const.}$

 $\nabla \times \boldsymbol{A} = 0$

Bemerkung:

1.3.6 Integrale Form der Feldgleichung

1.3.7 Gaußsches Gesetz

$$\nabla \cdot \boldsymbol{E} = \frac{1}{\varepsilon_0}$$

$$\int_{V} d^{3}r \boldsymbol{\nabla} \cdot \boldsymbol{E}(\boldsymbol{r}) = \frac{1}{\varepsilon_{0}} \int_{V} d^{3}r \rho(\boldsymbol{r}) = \frac{1}{\varepsilon_{0}} Q_{V}$$
$$= \int_{V} d\boldsymbol{f} \cdot \boldsymbol{E}(\boldsymbol{r})$$

$$\int_{\partial V} dm{f} \cdot m{E}(m{r}) = rac{1}{arepsilon} Q_V$$

Berechnung elektrischer Felder für hochsymmetrische Ladungsverteilungen

Beispiel:

Homogen geladene Kugel mit Radius R und Gesamtladung Q. Damit ist die Ladungsdichte innerhalb der Kugel:

$$\rho = \frac{Q}{V} = \frac{Q}{\frac{4}{3}\pi R^3}$$

$$\boldsymbol{E}(\boldsymbol{r}) = E_r(r)\boldsymbol{e}_r$$

$$r = r \begin{pmatrix} \sin \theta \cos \varphi \\ \sin \theta \sin \varphi \\ \cos \theta \end{pmatrix}$$

$$e_r = \frac{r}{r}$$

Fluss von \boldsymbol{E} durch Oberfläche einer Kugel mit Radius r

$$d\mathbf{f} = \mathbf{e}_r r^2 \sin \theta d\theta d\varphi \Rightarrow d\mathbf{f} \cdot \mathbf{E} = E_r(r) r^2 \sin \theta d\theta d\varphi$$

$$\int_{\partial K_r(0)} d\mathbf{f} \ \mathbf{E} = \int_0^T d\theta \int_0^{2\pi} d\varphi E_r(r) r^2 \sin \theta$$

$$= E_r(r) r^2 4\pi$$

$$= \frac{1}{\varepsilon_0} Q_{K_r(0)} = \frac{1}{\varepsilon_0} \int_{K_r(0)} d^3 r \ \rho(\mathbf{r}) = \frac{1}{\varepsilon_0} \left\{ \begin{array}{l} Q & r > R \\ Q \frac{r^3}{R^3} & r \le R \end{array} \right.$$

$$\Rightarrow E_r(r) = \frac{Q}{4\pi\varepsilon_0} \left\{ \begin{array}{l} \frac{1}{r^2} & r > R \\ \frac{r}{R^3} & r \le R \end{array} \right.$$

1.3.8 Satz von Stokes

$$\nabla \times \boldsymbol{E} = 0$$

Definition: $\gamma = \partial F$

 \int_{γ} ist dann ein Linienintegral über eine geschlossene Kurve

$$\int_{\gamma} d\boldsymbol{r} \cdot \boldsymbol{E} = \int_{F} d\boldsymbol{f} \cdot (\boldsymbol{\nabla} \times \boldsymbol{E}) = 0$$

1.3.9 Zusammenfassung: Feldgleichungen der Elektrostatik

differentielle Darstellung:

$$\nabla \cdot \boldsymbol{E} = \frac{1}{\varepsilon_0} \rho \quad \nabla \times \boldsymbol{E} = 0 \quad \rightarrow \quad \boldsymbol{E} = -\nabla \Phi \quad \rightarrow \quad \Delta \Phi = -\frac{1}{\varepsilon_0} \rho$$

Integral Darstellung:

$$\int_{\partial V} d\mathbf{f} \cdot \mathbf{E} = \frac{1}{\varepsilon_0} Q_V \qquad , \qquad \oint_{\gamma} d\mathbf{r} \cdot \mathbf{E} = 0$$

1.4 Elektrostatische Energie

potentielle Energie einer Punktladung im äußeren elektrischen Feld

Kraft auf Ladung q:

$$F = qE$$

Die Arbeit bei Verschiebung der Ladung von \boldsymbol{a} nach \boldsymbol{b}

$$W = -\int_{a}^{b} d\mathbf{r} \cdot \mathbf{F} = -q \int_{a}^{b} d\mathbf{r} \cdot \mathbf{E}(\mathbf{r})$$
$$= q \int_{a}^{b} d\mathbf{r} \cdot \nabla \Phi = q \underbrace{(\Phi(\mathbf{b}) - \Phi(\mathbf{a}))}_{\text{Potential differenz}}$$

Die Arbeit um q aus dem unendlichen ∞ nach r zu bringen ist dann:

$$W = q(\Phi(\mathbf{r}) - \Phi(\infty))$$

Zur Referenz: $\Phi(\infty) = 0$

Damit ist die Energie der Ladung q im äußeren Feld:

$$\Rightarrow W = q(\Phi(\mathbf{r}))$$

$$E = -\nabla \Phi$$

Elektrostatische Potentielle Energie

Energie einer Verteilung von Punktladungen

N Ladungen q: an Orten \boldsymbol{r}_i

Zunächst: i-1 Ladungen q_j bei \boldsymbol{r}_j

erzeugen am Ort r_i Das Potential

$$\Phi(\mathbf{r}_i) = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^{i-1} \frac{q_i}{|\mathbf{r}_i - \mathbf{r}_i|}$$

Arbeit um i-te Ladung aus dem unendlichen nach r zu bringen:

$$W_i = q_i \Phi(\boldsymbol{r}_i) = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^{j-1} \frac{q_i q_j}{r_{ij}}$$

Somit ergibt sich die gesamte Arbeit für N Ladungen als:

$$W = \sum_{i=2}^{N} W_i = \frac{1}{4\pi\varepsilon_0} \sum_{i=2}^{N} \sum_{j=1}^{i-1} \frac{q_i q_j}{r_{ij}}$$
$$= \frac{1}{2} \sum_{i=1}^{N} \sum_{i=1}^{N} \frac{q_i q_j}{r_{ij}}$$

$$\Rightarrow W = \frac{1}{8\pi\varepsilon_0} \sum_{\substack{i,j\\i\neq j}} \frac{q_i q_j}{r_{ij}}$$

$$W = \frac{1}{2} \sum_{i=1}^{N} q_i \left(\sum_{\substack{j \neq i \\ j \neq i}} \frac{1}{4\pi\varepsilon_0} \frac{q_i}{r_{ij}} \right)$$
$$= \frac{1}{2} \sum_{i=1}^{N} q_i \Phi_{\vec{i}}(\mathbf{r}_i)$$

Energie einer kontinuierlichen lokalisierten Ladungsverteilung

$$W = \frac{1}{8\pi\varepsilon_0} \int d^3r \int d^3r' \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r}_j - \mathbf{r}_i|}$$
$$= \frac{1}{2} \int d^3r \rho(\mathbf{r}) \frac{1}{4\pi\varepsilon_0} \underbrace{\int_{\mathbb{R}^3} d^3r' \frac{\rho(\mathbf{r}')}{|\mathbf{r}_j - \mathbf{r}_i|}}_{\Phi(\mathbf{r})}$$

$$m{E}_{
m ext}$$
 $m{
ho}$ $W_{
m ext} = \int d^3 r \;
ho(m{r}) \Phi_{
m ext}(m{r})$

Energie W durch E ausdrücken:

$$\Delta \Phi = -\frac{1}{\varepsilon_0} \rho \quad \Rightarrow \quad W = -\frac{1}{2} \int d^3 r \varepsilon_0 \underbrace{\Delta \Phi(\mathbf{r}) \Phi(\mathbf{r})}_{\boldsymbol{\nabla} \cdot (\boldsymbol{\Phi} \boldsymbol{\nabla} \boldsymbol{\Phi})^2} \\
= -\frac{\varepsilon_0}{2} \underbrace{\int_{\mathbb{R}^3} d^3 r \boldsymbol{\nabla} \cdot (\boldsymbol{\Phi} \boldsymbol{\nabla} \boldsymbol{\Phi})}_{K_R(0)} + \frac{\varepsilon_0}{2} \int d^3 r \boldsymbol{E}(\mathbf{r}) \\
= \lim_{R \to \infty} \int_{K_R(0)} d^3 r \boldsymbol{\nabla} \cdot (\boldsymbol{\Phi} \boldsymbol{\nabla} \boldsymbol{\Phi}) = \lim_{R \to \infty} \int_{\partial K_R(0)} d\mathbf{f} \cdot \underbrace{(\boldsymbol{\Phi} \boldsymbol{\nabla} \boldsymbol{\Phi})}_{R \to \infty} = 0 \\
= \frac{\varepsilon_0}{2} \int d^3 r \boldsymbol{E}(\mathbf{r})$$

Zur Umformung oben wurde benutzt:

$$\Phi \overset{R o \infty}{\sim} rac{1}{R} \qquad oldsymbol{
abla} \Phi \sim rac{1}{R^2} \qquad doldsymbol{f} = oldsymbol{n} \underbrace{doldsymbol{f}}_{\sim R^2}$$

Damit ergibt sich für die Energie einer Verteilung von Punktladungen

$$\Rightarrow \qquad W = \frac{\varepsilon_0}{2} \int d^3r \; \boldsymbol{E}^2(\boldsymbol{r})$$

nicht für Punkladungen

Energiedichte des elektrostatischen Feldes

$$w(m{r}) = rac{arepsilon_0}{2} m{E}^2(m{r})$$

Beispiel: Plattenkondensator

Fläche F, Ladung $\rightarrow r = \frac{q}{F} \rightarrow \mathbf{E} = \frac{r}{\varepsilon_0} \mathbf{e}_x$

- \rightarrow Die Energiedichte ist: $w=\frac{\varepsilon_0}{2}\boldsymbol{E}^2=\frac{\sigma^2}{2\varepsilon_0}$ (nicht für Punktladungen)
- \rightarrow Die Energie beträgt: $W=\int d^3r w({\bm r})=l\cdot F\cdot \frac{\sigma^2}{2\varepsilon_0}$

Potentialdifferenz - Spannung

$$\Phi(\mathbf{r}) - \Phi(0) = -\int_0^{\mathbf{r}} d\mathbf{r}' \cdot \mathbf{E}(\mathbf{r}') = -\int_0^x dx' \frac{\sigma}{\varepsilon_0} = -\frac{\sigma}{\varepsilon} x$$

Die Spannung zwischen zwei Kondensatorplatten ist dann:

$$U = \Phi(0) - \Phi(l) = \frac{\sigma}{\varepsilon_0} l = \frac{q}{\varepsilon_0 F} l$$

Die Kapazität ist also:

$$C = \frac{q}{U} = \frac{\varepsilon_0 F}{I}$$

Was ist die Energie bei einer Verteilung von Punktladungen und bei einer kontinuierlichen Ladungsverteilung. Bei einer kontinuierlichen Ladungsverteilung haben wir herausgefunden:

$$W = \frac{1}{8\pi\varepsilon_0} \sum_{\substack{i,j\\i\neq j}} \frac{q_i q_j}{r_{ij}} \qquad \text{für Punktladungen}$$

Die Energie der Punktladung selbst steckt hier nicht drinnen. Man muss dabei aufpassen, welche Gleichung man für welches Modell benutzt.

$$\boldsymbol{E} = \frac{1}{4\pi\varepsilon_0}q\frac{\boldsymbol{r}}{r^3} \qquad \int d^3r \ \boldsymbol{E}^2 = \int d^3r \ \frac{1}{r^4} = \infty$$

1.5 Verhalten des el. Feldes an Grenzflächen mit Flächenladung

\rightarrow Diskontinuitäten von \boldsymbol{E}

Beispiel: Wir betrachten eine homogene Flächenladung.

$$\Rightarrow \mathbf{E} = \frac{\sigma}{2\varepsilon_0} \mathrm{sgn}(z) \mathbf{e}_z$$

$$oldsymbol{E}_{\perp}=\pmrac{\sigma}{2arepsilon_{0}}oldsymbol{e}_{z} \ oldsymbol{E}_{\parallel}=0$$

Das elektrische Feld $\boldsymbol{E}_{\parallel}$ ist gleich der Ableitung des elektrischen Potentials:

Das elektrische Potential ist also stetig.

Normalkomponente E_{\perp}

Gaußscher Satz für V:

$$\begin{split} \int_{V} d^{3}r' \; \boldsymbol{\nabla} \cdot \boldsymbol{E}(\boldsymbol{r}) &= \int_{\partial V} d\boldsymbol{f}' \; \boldsymbol{E}(\boldsymbol{r}) \\ &= \int_{\text{Mantel}} d\boldsymbol{f}' \; \boldsymbol{E} + \int_{\partial V_{+}} d\boldsymbol{f}' \; \boldsymbol{E}(\boldsymbol{r}) + \int_{\partial V_{-}} d\boldsymbol{f}' \; \boldsymbol{E} \\ &\downarrow^{\Delta z \to 0} \qquad \qquad \downarrow^{\Delta z \to 0} \qquad \downarrow^{\Delta z \to 0} \\ &\downarrow^{\Delta f'} \; \boldsymbol{n} \cdot \boldsymbol{E}_{+} \qquad - \int_{F} df' \; \boldsymbol{n} \cdot \boldsymbol{E}_{-} \end{split}$$

 E_{\pm} ist das Feld auf beiden Seiten der Grenzfläche

$$\int_{\partial V} d\mathbf{f}' \mathbf{E} \xrightarrow{\Delta z \to 0} \int_{F} d\mathbf{f} \mathbf{n} \cdot (\mathbf{E}_{+} - \mathbf{E}_{-}) \xrightarrow{F \to 0} F \mathbf{n} \cdot (\mathbf{E}_{+}(\mathbf{r}) - \mathbf{E}_{-}(\mathbf{r})) \\
= \int_{V} d^{2} \mathbf{r}' \nabla \cdot \mathbf{E}(\mathbf{r}') = \frac{1}{\varepsilon_{0}} \int_{V} d^{3} \mathbf{r}' \rho(\mathbf{r}) = \frac{1}{\varepsilon_{0}} \int_{F} d\mathbf{f}' \sigma(\mathbf{r}') \xrightarrow{F \to 0} \frac{1}{\varepsilon_{0}} F \sigma(\mathbf{r}) \\
= \frac{1}{\varepsilon_{0}} \rho(\mathbf{r}') \\
\Rightarrow \mathbf{n} \cdot (\mathbf{E}_{+}(\mathbf{r}) - \mathbf{E}_{-}(\mathbf{r})) = \frac{1}{\varepsilon_{0}} \sigma(\mathbf{r}) \\
E_{\perp_{\pm}} = \mathbf{n} \cdot \mathbf{E}_{\pm} \qquad E_{\perp_{+}}(\mathbf{r}) - E_{\perp_{-}}(\mathbf{r}) = \frac{1}{\varepsilon_{0}} \sigma(\mathbf{r})$$

$$0 = \oint_{\gamma} d\mathbf{r}' \cdot \mathbf{E} \xrightarrow{\Delta z \to 0} \int_{-\frac{L}{2}}^{-\frac{L}{2}} ds \mathbf{t} \cdot (\mathbf{E}_{+} - \mathbf{E}_{-}) \xrightarrow{L \to 0} L \mathbf{t} \cdot (\mathbf{E}_{+}(\mathbf{r}) - \mathbf{E}_{-}(\mathbf{r})) = 0$$

$$\rightarrow \boldsymbol{t} \cdot (\boldsymbol{E}_{+}(\boldsymbol{r}) - \boldsymbol{E}_{-}(\boldsymbol{r}) = 0$$

 \rightarrow Die Tangentialkomponente ist stetig

$$E_{\parallel_{+}} = E_{\parallel_{-}}$$

Insgesamt ergibt sich damit:

$$oldsymbol{E}_{+}(oldsymbol{r}) - oldsymbol{E}_{-}(oldsymbol{r}) = rac{\sigma}{arepsilon_0} oldsymbol{n}$$

Das elektrische Potential Φ ist damit stetig.

$$\underbrace{\Phi(\boldsymbol{r}_b) - \Phi(\boldsymbol{r}_a)}_{\Phi_+(\boldsymbol{r}) - \Phi_-(\boldsymbol{r})} = \int_{\boldsymbol{r}_a}^{\boldsymbol{r}_b} d\boldsymbol{r}' \cdot \boldsymbol{E} \quad \stackrel{\Delta z \to 0}{\longrightarrow} 0$$

Randbedingungen an el. Leitern

Leiter: Material mit freibeweglichen Ladungsträgern (Metall) Eigenschaften von \boldsymbol{E} im Leiter:

- i) E = 0
- ii) $0 = \boldsymbol{\nabla} \cdot \boldsymbol{E} = \frac{1}{\varepsilon_0} \rho, \qquad \rho(\boldsymbol{r}) = 0$
- iii) Nettoladung befinden sich an Oberfläche
- iv) Potential $\Phi(\mathbf{r}_b) \Phi(\mathbf{r}_a) = 0 \rightarrow \Phi(\mathbf{r}) = \text{const.}$

Randbedingungen

$$egin{align} m{E}_{+} - m{E}_{-} &= rac{\sigma^{-}}{arepsilon_{0}} m{n} \ m{E}_{-} &= 0 \ &
ightarrow m{E}_{+}(m{r}) = rac{\sigma(m{r})}{arepsilon_{0}} m{n}(m{r}) \ \end{split}$$

[Folie: Ladung an Oberfläche eines Leiters]

1.6 Randwertprobleme (RWP) der Elektrostatik und

Lösungsmethoden

1.6.1 Formulierung des Randwertproblems

Das elektrische Potential: $\Phi(r)$: $E(r) = -\nabla \Phi(r)$

$$\mathbf{\Delta}\Phi(\mathbf{r}) = -\frac{1}{\varepsilon_0}\rho(\mathbf{r})$$
 Poisson-Gleichung

Für eine gegebene lokale Ladungsverteilung ρ gilt:

$$\Phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int d^3r' \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

$$ightarrow \Phi({m r}) \stackrel{|{m r}|
ightarrow 0}{\longrightarrow} 0$$

Typische Problemstellung:

Ladungsverteilung ρ + Werte des Potentials auf Randfläche Beispiel:

Randwertproblem: Gegeben: $\rho(\mathbf{r}')$ im Raumbereich V

 $\Phi(\mathbf{r})$ oder $\mathbf{E}(\mathbf{r})$ auf Randfläche ∂V

Gesucht: $\Phi(\mathbf{r})$, $\mathbf{E}(\mathbf{r})$ überall in V

Zwei Fälle:

- i) $\Phi(r)$ ist auf der Randfläche gegeben
 - \rightarrow Dirichlet-Randbedingung
- ii) $\boldsymbol{E}(\boldsymbol{r})$ ist auf der Randfläche gegeben
 - → Neumannsche Randbedingung

Wir beschränken uns vorwiegend auf den ersten Fall. Zur Lösung dieser Probleme gibt es einige Methoden. Zum Einstieg und zur Wiederholung betrachten wir zunächst die Methode der Spiegelladung.

1.6.2 Methode der Bildladung (Spiegelladung)

Punktladung vor leitender, geerdeter Metallplatte

$$\Delta \Phi(\mathbf{r}) = -\frac{1}{\varepsilon_0} \rho(\mathbf{r}) = -\frac{q}{\varepsilon_0} \delta(\mathbf{r} - \mathbf{r}_0)$$

$$r \in V$$
 $r_0 = (d, 0, 0)$ $V = \{r \in \mathbb{R}^3, x > 0\}$

Randbedingungen:

$$\Phi(\mathbf{r}) = 0$$
 für $\mathbf{r} \in \partial V$, d.h. $\mathbf{r} = (0, y, z)$

Idee: Ersetze ursprüngliche Problem durch "Fiktives" Problem mit zusätzlichen Ladungen außerhalb von V, welche die Randbedingungen simulieren.

Potential der Punkladungen in r_0 :

$$\Phi_q(m{r}) = rac{1}{4\piarepsilon_0} rac{q}{|m{r}-m{r}_0|}$$

addiere Ladung -q in $\mathbf{r}'_0 = (-d, 0, 0) = -\mathbf{r}_0$

$$\varPhi(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \left(\frac{q}{|\boldsymbol{r} - \boldsymbol{r}_0|} - \frac{q}{|\boldsymbol{r} + \boldsymbol{r}_0|} \right)$$

Schauen wir nun nach ob dies die Poisson-GLeichung erfüllt:

$$\Delta \Phi = \frac{q}{4\pi\varepsilon_0} \left(\underbrace{\Delta \frac{1}{|\boldsymbol{r} - \boldsymbol{r}_0|}}_{=-4\pi\delta(\boldsymbol{r} - \boldsymbol{r}_0)} - \underbrace{-\Delta \frac{1}{|\boldsymbol{r} + \boldsymbol{r}_0|}}_{=-4\pi\delta(\boldsymbol{r} + \boldsymbol{r}_0)} \right)$$

$$= -\frac{q}{\varepsilon_0} \delta(\boldsymbol{r} - \boldsymbol{r}_0) + \frac{q}{\varepsilon_0} \underbrace{\delta(\boldsymbol{r} + \boldsymbol{r}_0)}_{=0 \text{ für } \boldsymbol{r} \neq -\boldsymbol{r}_0} \checkmark \forall \boldsymbol{r} \in V$$

Diskussion der Lösung

i) Struktur

$$\Phi(\mathbf{r}) = \underbrace{\frac{1}{4\pi\varepsilon_0} \frac{1}{|\mathbf{r} - \mathbf{r}_0|}}_{=: \Phi_{\rm s}(\mathbf{r})} + \underbrace{\frac{(-q)}{4\pi\varepsilon_0} \frac{1}{|\mathbf{r} - \mathbf{r}_0|}}_{=: \Phi_{\rm hom}(\mathbf{r})}$$

 $\boldsymbol{r}\in V$

$$\Delta \Phi_{
m s}(m{r}) = -rac{1}{arepsilon_0}
ho(m{r})$$
 Poisson-Gleichung

$$\Delta \Phi_{\text{hom}}(\mathbf{r}) = 0$$
 Laplace-Gleichung

Mathematisch: Lösung inhomogener DGL

$$\Phi(\mathbf{r}) = \Phi_{\mathrm{s}}(\mathbf{r}) + \Phi_{\mathrm{hom}}(\mathbf{r})$$

 \varPhi_{hom} wird so gewählt, dass die Randbedingungen erfüllt werden:

$$m{r} \in \partial V: \quad arPhi_{
m o}(m{r}) = arPhi_{
m s}(m{r}) + arPhi_{
m hom}(m{r})$$

ii) Elektrisches Feld

$$\boldsymbol{E} = -\boldsymbol{\nabla}\Phi = \frac{q}{4\pi\varepsilon_0} \left(\frac{(x-d,y,z)}{|\boldsymbol{r} - \boldsymbol{r}_0|^3} - \frac{(x+d,y,z)}{|\boldsymbol{r} + \boldsymbol{r}_0|^3} \right)$$

An der Oberfläche $x \to 0, x \ge 0$ $| \boldsymbol{r} \pm \boldsymbol{r}_0 |^3 \to (d^2 + y^2 + z^2)$

$$E(r)\bigg|_{r \in \partial V} = -\frac{qd}{2\pi\varepsilon_0} \frac{1}{(d^2 + y^2 + z^2)^{3/2}} e_x$$

Durch das externe elektrische Feld verschieben sich die Ladungsträger im Metall und es entsteht eine Influenzladung an der Oberfläche.

iii) Influenzladung auf Metalloberfläche

$$oldsymbol{E}_{+} - oldsymbol{E}_{-} = rac{\sigma}{arepsilon_{0}} oldsymbol{n} \qquad oldsymbol{n} = oldsymbol{e}_{x}$$

 $r \in \partial V$:

$$\sigma(\mathbf{r}) = \varepsilon_0 \mathbf{E}_+(\mathbf{r}) = -\frac{qd}{2\pi (d^2 + y^2 + z^2)^{3/2}}$$

gesamte influenzierte Ladung

$$q_i = \int_{\partial V} df \ \sigma(\mathbf{r}) = \dots = -q$$

iv) Kraft zwischen Punktladungen und Metallplatte

$$F = q\tilde{E}(r_0) = \frac{-q^2}{4\pi\varepsilon_0(2d)^2}e_x$$

Eindeutigkeit der Lösung des Randwertproblems

Dirichlet-Randwertproblem:

$$\Delta \Phi(\mathbf{r}) = -\frac{1}{\varepsilon_0} \rho(\mathbf{r})$$
 $\mathbf{r} \in V$
$$\Phi(\mathbf{r}) = \Phi_0(\mathbf{r})$$
 $\mathbf{r} \in \partial V$

Annahme: Φ_1 , Φ_2 lösen RWP

d.h.
$$\Delta \Phi_1(\mathbf{r}) = \frac{1}{\varepsilon_0} \rho(\mathbf{r}) = \Delta \Phi_2(\mathbf{r})$$
 $\mathbf{r} \in V$ $\Phi_1(\mathbf{r}) = \Phi_0(\mathbf{r}) = \Phi_2(\mathbf{r})$ $\mathbf{r} \in \partial V$

Setze:

$$\psi(\mathbf{r}) := \Phi_1(\mathbf{r}) - \Phi_2(\mathbf{r})$$

$$\Delta \Phi(\mathbf{r}) = 0 \quad \mathbf{r} \in V$$

$$\mathbf{r} \in \partial V \quad \psi(\mathbf{r}) = \Phi_1(\mathbf{r}) - \Phi_2(\mathbf{r}) = 0$$

Greensche Identität:

g, h Funktionen an V:

$$\int_{V} d^{3}r \left[(\nabla(\mathbf{r})) \cdot (\nabla h(\mathbf{r})) + g(\mathbf{r}) \Delta h(\mathbf{r}) \right]$$

$$= \int_{\partial V} d\mathbf{f} \cdot (g(\mathbf{r}) \nabla h(\mathbf{r}))$$

$$= \int_{\partial V} d\mathbf{f} g(\mathbf{r}) \underbrace{\mathbf{n} \cdot \nabla h(\mathbf{r})}_{=\frac{\partial h}{\partial n}(\mathbf{r})}$$

$$h = g = \psi$$

$$\Rightarrow \int_{V} d^{3}r \ ((\nabla \psi)^{2} + \psi(\mathbf{r}) \underbrace{\Delta \psi(\mathbf{r})}_{=0}) = \int_{\partial V} df \ \underbrace{\psi(\mathbf{r})}_{=0} \frac{\partial \psi(\mathbf{r})}{\partial n}$$

$$\Rightarrow \int_{V} d^{3}r \ (\nabla \psi(\mathbf{r}))^{2} = 0 \Rightarrow \nabla \psi(\mathbf{r}) = 0 \qquad \mathbf{r} \in V$$

$$\psi(\mathbf{r}) = \text{const.} \qquad \psi(\mathbf{r}) = 0 \text{ in } V \Rightarrow \Phi_{1}(\mathbf{r}) = \Phi_{2}(\mathbf{r})$$

1.6.3 Formale Lösungen des elektrostatischen Randwertproblems mit

Greenschen Funktionen

GF: generelle Methode um inhomogene DGL zu lösen

$$\Delta \Phi(m{r}) = -rac{1}{arepsilon_0}
ho(m{r})$$

Greensche Funktionen der Poisson-Gleichung: $\mathcal{G}(r,r')$ mit

Greensche Funktionen der Poisson-Gleichung

$$\Delta_{m{r}} \mathcal{G}(m{r},m{r}') = -rac{1}{arepsilon_0} \delta(m{r}-m{r}')$$

Diese Gleichung geht vor einer Punktladung mit q=1 aus, ist hier aber zunächst einmal eine Definition.

 \mathcal{G} bekannt

 ${\bf Dirichlet\text{-}Randwert problem}$

$$\Delta \Phi(\mathbf{r}) = -\frac{1}{\varepsilon_0} \rho(\mathbf{r}) \quad \mathbf{r} \in V$$
$$\Phi(\mathbf{r}) = \Phi_0(\mathbf{r}) \quad \mathbf{r} \in \partial V$$

GF:

$$\Delta_{\boldsymbol{r}} \mathcal{G}(\boldsymbol{r}, \boldsymbol{r}') = \frac{1}{\varepsilon_0} \delta(\boldsymbol{r} - \boldsymbol{r}') \quad \boldsymbol{r}, \boldsymbol{r}' \in V$$
$$\mathcal{G}(\boldsymbol{r}, \boldsymbol{r}') = 0 \text{ für } \underset{\boldsymbol{r}' \in V}{\boldsymbol{r} \in \partial V}$$

Hiermit haben wir das Grenzwertproblem auf eine Integration zurückgeführt. Dies werden wir nun Beweisen:

Die 2. Greensche Identität lautet:

$$\int_{V} d^{3}r' \left(g(\mathbf{r}') \Delta_{\mathbf{r}'} h(\mathbf{r}') - h(\mathbf{r}') \Delta_{\mathbf{r}'} g(\mathbf{r}') \right)$$

$$= \int_{\partial V} d\mathbf{f}' \cdot \left(g(\mathbf{r}') \nabla_{\mathbf{r}'} h(\mathbf{r}') - h(\mathbf{r}') \nabla_{\mathbf{r}'} g(\mathbf{r}') \right)$$

$$g(\mathbf{r}') := \Phi(\mathbf{r}') \qquad h(\mathbf{r}') := \mathcal{G}(\mathbf{r}', \mathbf{r})$$

$$\Rightarrow \int_{V} d^{3}r' \left[\Phi(\mathbf{r}') \underbrace{\Delta_{\mathbf{r}'} \mathcal{G}(\mathbf{r}', \mathbf{r})}_{=-\frac{1}{\varepsilon_{0}} \delta(\mathbf{r}' - \mathbf{r})} - \mathcal{G}(\mathbf{r}', \mathbf{r}) \underbrace{\Delta_{\mathbf{r}'} \Phi(\mathbf{r}')}_{=-\frac{1}{\varepsilon_{0}} \rho(\mathbf{r}')} \right]$$

$$= \int_{\partial V} d\mathbf{f}' \left[\underbrace{\Phi(\mathbf{r}')}_{=\Phi_{0}(\mathbf{r}')} \nabla_{\mathbf{r}'} \mathcal{G}(\mathbf{r}', \mathbf{r}) - \underbrace{\mathcal{G}(\mathbf{r}', \mathbf{r})}_{=0} \nabla_{\mathbf{r}'} \Phi(\mathbf{r}') \right]$$

$$\Rightarrow = -\frac{1}{\varepsilon_{0}} \Phi(\mathbf{r}) + \frac{1}{\varepsilon_{0}} \int_{V} d^{3}r' \ \mathcal{G}(\mathbf{r}, \mathbf{r}') \rho(\mathbf{r})$$

$$= \int_{\partial V} d\mathbf{f}' \ \Phi_{0}(\mathbf{r}') \nabla_{\mathbf{r}'} \mathcal{G}(\mathbf{r}, \mathbf{r}')$$

$$= \int_{\partial V} d\mathbf{f}' \ \Phi_{0}(\mathbf{r}') \frac{\partial \mathcal{G}}{\partial n'}(\mathbf{r}, \mathbf{r}')$$

$$\Rightarrow \Phi(\mathbf{r}) = \int_{V} d^{3}r' \ \mathcal{G}(\mathbf{r}, \mathbf{r}') \rho(\mathbf{r}') - \varepsilon_{0} \int_{\partial V} d\mathbf{f}' \ \Phi_{0}(\mathbf{r}') \frac{\partial \mathcal{G}}{\partial n'}(\mathbf{r}, \mathbf{r}')$$

Es gilt (HA):

$$\mathcal{G}(m{r},m{r}') = \mathcal{G}(m{r}',m{r})$$
 Reziprozität
$$\rightarrow m{\nabla}_{m{r}'}\mathcal{G}(m{r},m{r}') = m{\nabla}_{m{r}'}\mathcal{G}(m{r}',m{r})$$
 $\Delta_{m{r}}\mathcal{G}(m{r},m{r}') = \Delta_{m{r}'}\mathcal{G}(m{r},m{r}')$

$$\begin{split} \varPhi(\boldsymbol{r}) &= \int_{V} d^{3}r' \mathcal{G}(\boldsymbol{r}, \boldsymbol{r}') \rho(\boldsymbol{r}') \\ &- \varepsilon_{0} \int_{\partial V} df' \varPhi_{0}(\boldsymbol{r}') \frac{\partial \mathcal{G}}{\partial n'}(\boldsymbol{r}, \boldsymbol{r}') \end{split}$$