5. Let ℓ be the line given parametrically by $\mathbf{x} = (1,3) + t(-2,1), t \in \mathbb{R}$. Which of the following points lie on ℓ ? Give your reasoning.

No magic, just algebra, if we can work out a true equation it's on the line. If we work out a false equation, it's not.

- (a) $\mathbf{x} = (-1, 4)$ leads to (-1, 4) = (1, 3) + t(-2, 1) and (-1, 4, 4, 3) = (-2, 1) = t(-2, 1). If we let t = 1 then the equation holds, thus the point lies on the line
- (b) $\mathbf{x} = (7,0)$ leads to (7-1,0-3) = (6,-3) = t(-2,1). So we let t = -3 to make the equation hold and find that this point also lies on the line.
- (c) $\mathbf{x} = (6, 2)$ leads to $(6 1, 2 3) = (5, -1) \neq t(-2, 1)$ and so the point is not on the line.
- 6. Find a parametric equation of each of the following lines:
 - (a) $3x_1 + 4x_2 = 6$

$$x_2 = -\frac{3}{4}x_1 + \frac{6}{4}$$
$$(x_1, x_2) = (0, \frac{6}{4}) + t(-3, 4)$$
$$\mathbf{x} = (2, 0) + t(-3, 4)$$

(c) the line with the slope 2/5 that passes through A = (3,1)

$$\mathbf{x} = (3,1) + t(5,2)$$

(d) the line through A = (-2, 1) parallel to $\mathbf{x} = (1, 4) + t(3, 5)$

$$\mathbf{x} = (-2, 1) + t(3, 5)$$

(h) the line through (1, 1, 0, -1) parallel to $\mathbf{x} = (2 + t, 1 - 2t, 3t, 4 - t)$

$$\mathbf{x} = (2+t, 1-2t, 3t, 4-t)$$

$$= (2, 1, 0, 4) + t(1, -2, 3, -1)$$

$$\mathbf{x}' = (1, 1, 0, -1) + t(1, -2, 3, -1)$$

- 7. Suppose $\mathbf{x} = \mathbf{x}_0 + t\mathbf{v}$ and $\mathbf{y} = \mathbf{y}_0 + s\mathbf{w}$ are two parametric representations of the same line ℓ in \mathbb{R} .
 - (a) Show that there is a scalar t_0 so that $\mathbf{y}_0 = \mathbf{x}_0 + t_0 \mathbf{v}$ By definition 2.2 the line goes through \mathbf{y}_0 and \mathbf{x}_0 . Because $\mathbf{y}_0 \in \ell = {\mathbf{x} \in \mathbb{R}^n : \mathbf{x} = \mathbf{x}_0 + t\mathbf{v}}$ for some $t \in \mathbb{R}$ } then there is some $t_0 \in \mathbb{R}$ such that $\mathbf{y}_0 = \mathbf{x} = \mathbf{x}_0 + t_0 \mathbf{v}$
 - (b) Show that \mathbf{v} and \mathbf{w} are parallel.

We choose the point $\mathbf{y}_0 + \mathbf{w} \in \ell$. Note that because this point is on our line, then there exists some $t_1 \in \mathbb{R}$ such that $\mathbf{y}_0 + \mathbf{w} = \mathbf{x}_0 + t_1 \mathbf{v}$. And we have already established that we have some $t_0 \in \mathbb{R}$ such that $\mathbf{y}_0 = \mathbf{x}_0 + t_0 \mathbf{v}$. Making the substitution we have $(\mathbf{x}_0 + t_0 \mathbf{v}) + \mathbf{w} = \mathbf{x}_0 + t_1 \mathbf{v}$. Now using the algebraic properties of vectors and scalars from theorem 1.9:

$$(\mathbf{x}_0 + t_0 \mathbf{v}) + \mathbf{w} = \mathbf{x}_0 + t_1 \mathbf{v}$$
$$\mathbf{w} = \mathbf{x}_0 - \mathbf{x}_0 + t_1 \mathbf{v} - t_0 \mathbf{v}$$
$$\mathbf{w} = (t_1 - t_0) \mathbf{v}$$

We know from the definition of a line that \mathbf{v} and \mathbf{w} are not $\mathbf{0}$. So the above equation means that \mathbf{v} and \mathbf{w} fit the definition of parallel.

10. Find a parametric equation of each of the following planes:

(a) the plane containing the point (-1,0,1) and the line $\mathbf{x} = (1,1,1) + t(1,7,-1)$ We know that the plane contains the points (-1,0,1) and (1,1,1). Importantly (-1,0,1) is not on our line. So we just pick (1,1,1) to be \mathbf{x}_0 and then choose the direction vector from our line to be one of the spanning vectors for the plane. Plugging it all into the definition of

a plane we get $(-1,0,1) = (1,1,1) + s\mathbf{u} + t(1,7,-1)$. Because (-1,0,1) is not on our line, so if we use t=0 and s=1 then applying theorem 1.9 and 11 should give us a second spanning vector.

$$\mathbf{x} = \mathbf{x}_0 + s\mathbf{u} + t\mathbf{v}$$

$$(-1,0,1) = (1,1,1) + \mathbf{u} + 0(1,7,-1)$$

$$(-1,0,1) - (1,1,1) = \mathbf{u}$$

$$(-2,-1,-2) = \mathbf{u}$$

$$\mathcal{P}(\mathbf{x}_0, \mathbf{u}, \mathbf{v}) = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{x} = (1,1,1) + s(-2,1,-2) + t(1,7,-1) \quad \forall s,t \in \mathbb{R}\}$$

Note that we cannot multiply (1,7,-1) by any real number and get (-2,1,-2). Thus (-2,1,-2) and (1,7,-1) are not parallel and the above equation fits all the criteria for our plane.

(d) the plane in \mathbb{R}^4 containing the points (1, 1, -1, 4), (2, 3, 0, 1) and (1, 2, 2, 3)So we should be able to just pick a point from the three for an \mathbf{x}_0 or \mathbf{y}_0 and then find the equation for lines through this point and the other two points. That will give us our spanning vectors. So lets pick $(1, 1, -1, 4) = \mathbf{x}_0 = \mathbf{y}_0$ and do the algebra.

$$\mathbf{x} = \mathbf{x}_0 + t\mathbf{v} \qquad \qquad \mathbf{y} = \mathbf{y}_0 + s\mathbf{u}$$

$$(2, 3, 0, 1) = (1, 1, -1, 4) + t\mathbf{v} \qquad (1, 2, 2, 3) = (1, 1, -1, 4) + s\mathbf{u}$$

$$t\mathbf{v} = (2, 3, 0, 1) - (1, 1, -1, 4) \qquad s\mathbf{u} = (1, 2, 2, 3) - (1, 1, -1, 4)$$

$$\text{choose } t = 1 \qquad \text{choose } s = 1$$

$$\mathbf{v} = (1, 2, 1, -3) \qquad \mathbf{u} = (0, 1, 3, -1)$$

I claim that the zero in **u** means that it is obviously not parallel to **v** which has no zeroes. Thus we have our plane in $\mathcal{P}((1,1,-1,4),(1,2,1,-3),(0,1,3,-1))$

20. Assume that \mathbf{u} and \mathbf{v} are parallel vectors in \mathbb{R}^n . Prove that $\mathrm{Span}(\mathbf{u},\mathbf{v})$ is a line.

First we note that $\operatorname{Span}(\mathbf{u}, \mathbf{v}) = \{\mathbf{x} \in \mathbb{R}^n : a\mathbf{u} + b\mathbf{v} \quad \forall a, b \in \mathbb{R}\}$. Of course we know that because \mathbf{u} and \mathbf{v} are parallel, then $\exists c \in \mathbb{R}$ such that $\mathbf{u} = c\mathbf{v}$. And so we have $a\mathbf{u} + b\mathbf{v} = a(c\mathbf{v}) + b\mathbf{v} = (ac + b)\mathbf{v}$. Let ac + b = t and $\mathbf{x}_0 = (0, 0, 0)$. Then $(ac + b)\mathbf{v} = \mathbf{x}_0 + t\mathbf{v}$. Thus $\operatorname{Span}(\mathbf{u}, \mathbf{v}) = \{x \in \mathbb{R}^n : \mathbf{x}_0 + t\mathbf{v}\}$. From the definition of parallel we know that $\mathbf{v} \neq \mathbf{0}$ and so $\operatorname{Span}(\mathbf{u}, \mathbf{v})$ fits the definition of a line. \Box

21. Suppose $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ and c is a scalar. Prove that $\mathrm{Span}(\mathbf{v} + c\mathbf{w}, \mathbf{w}) = \mathrm{Span}(\mathbf{v}, \mathbf{w})$. (See the blue box on p. 12.)

Sometimes it's easier to let the math speak for itself, and so from the definition of span and from our established algebraic properties:

$$\operatorname{Span}(\mathbf{v} + c\mathbf{w}) = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{x} = a(\mathbf{v} + c\mathbf{w}) + b(\mathbf{w}) \quad \forall a, b \in \mathbb{R}\}$$
$$= \{\mathbf{x} \in \mathbb{R}^n : \mathbf{x} = a\mathbf{v} + (ac + b)\mathbf{w} \quad \forall a, b \in \mathbb{R}\}$$

Now of course if we fix any $a, c \in \mathbb{R}$ then we know that $\mathbb{R} = \{ac + b : \forall b \in \mathbb{R}\}$. Lets just say d = ac + b. And so:

$$\{\mathbf{x} \in \mathbb{R}^n : \mathbf{x} = a\mathbf{v} + (ac + b)\mathbf{w} \quad \forall a, b \in \mathbb{R}\} = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{x} = a\mathbf{v} + d\mathbf{w} \quad \forall a, d \in \mathbb{R}\}$$
$$= \operatorname{Span}(\mathbf{v}, \mathbf{w})$$

- 22. Suppose the vectors \mathbf{v} and \mathbf{w} are both linear combinations of $\mathbf{v}_1, \dots, \mathbf{v}_k$.
 - (a) Prove that for any scalar $c, c\mathbf{v}$ is a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_k$. Say $\mathbf{v} = a_1\mathbf{v}_1 + \dots + a_k\mathbf{v}_k$ for some $a_1, \dots, a_k \in \mathbb{R}$. Then $c\mathbf{v}$ must be $c(a_1\mathbf{v}_1 + \dots + a_k\mathbf{v}_k) = ca_1\mathbf{v}_1 + \dots + ca_k\mathbf{v}_k$ and so $c\mathbf{v}$ is a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_k$.
 - (b) Prove that $\mathbf{v} + \mathbf{w}$ is a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_k$ Say $\mathbf{w} = b_1 \mathbf{v}_1 + \dots + b_k \mathbf{v}_k$. Then $\mathbf{v} + \mathbf{w} = a_1 \mathbf{v}_1 + \dots + a_k \mathbf{v}_k + b_1 \mathbf{v}_1 + \dots + b_k \mathbf{v}_k = (a_1 + b_1)\mathbf{v}_1 + \dots + (a_k + b_k)\mathbf{v}_k$. Naturally this is a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_k$.
- 23. Consider the line $\ell : \mathbf{x} = \mathbf{x}_0 + r\mathbf{v}(r \in \mathbb{R})$ and the plane $\mathcal{P} : \mathbf{x} = s\mathbf{u} + t\mathbf{v}(s, t \in \mathbb{R})$. Show that if ℓ and \mathcal{P} intersect, then $\mathbf{x}_0 \in \mathcal{P}$

If $\ell \cap \mathcal{P} \neq \emptyset$ then there exists some $r_0, s_0, t_0 \in \mathbb{R}$ such that $\mathbf{x}_0 + r_0 \mathbf{v} = s_0 \mathbf{u} + t_0 \mathbf{v}$. Of course then $\mathbf{x}_0 = s_0 \mathbf{u} + (t_0 - r_0) \mathbf{v}$. And because $t_0 - r_0 \in \mathbb{R}$ then $s_0 \mathbf{u} + (t_0 - r_0) \mathbf{v} \in \mathcal{P}$. So \mathbf{x}_0 is clearly on our plane.

24. Consider the lines $\ell : \mathbf{x} = \mathbf{x}_0 + t\mathbf{v}$ and $m : \mathbf{x} = \mathbf{x}_1 + s\mathbf{u}$. Show that ℓ and m intersect if and only if $\mathbf{x}_0 - \mathbf{x}_1$ lies in $\mathrm{Span}(\mathbf{u}, \mathbf{v})$.

First let us assume that $\ell \cap m \neq \emptyset$. Then $\exists t_0, s_0 \in \mathbb{R}$ such that $\mathbf{x}_0 + t_0 \mathbf{v} = \mathbf{x}_1 + s_0 \mathbf{u}$. Simple manipulation leads to $\mathbf{x}_0 - \mathbf{x}_1 = s_0 \mathbf{u} + (-t_0) \mathbf{v}$. And since $\mathbf{x}_0 - \mathbf{x}_1$ is a linear combination of \mathbf{u} and \mathbf{v} then $\mathbf{x}_0 - \mathbf{x}_1 \in \operatorname{Span}(\mathbf{u}, \mathbf{v})$

And if we assume that $\mathbf{x}_0 - \mathbf{x}_1 \in \operatorname{Span}(\mathbf{u}, \mathbf{v})$? Well then $\mathbf{x}_0 - \mathbf{x}_1 = c_1\mathbf{u} + c_2\mathbf{v}$. For some $c_1, c_2 \in \mathbb{R}$. Again, simple manipulation leads to $\mathbf{x}_0 + (-c_2)\mathbf{v} = \mathbf{x}_1 + c_1\mathbf{u}$. Thus we have found two ways to represent the point where the two lines intersect. \square

- 25. Suppose $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are nonparallel vectors. (Recall definition on p.3.)
 - (a) Prove that if $s\mathbf{x} + t\mathbf{y} = \mathbf{0}$ then s = t = 0. (*Hint*: Show that neither $s \neq 0$ nor $t \neq 0$ is possible.)

We first note that we have no definition of nonparallel, only parallel. Parallel vectors can not be zero, which kind of implies that nonparallel vectors might be. One can easily find a counterexample to the assertion if either vector is zero. I do not think that is the point of the exercise though, so we will assume that neither vector is the zero vector.

Now let us assume that $s \neq 0$. Then with some simple algebra we go from $s\mathbf{x} + t\mathbf{y} = 0$ to $\mathbf{x} = -\frac{t}{s}\mathbf{y}$. Thus \mathbf{x} and \mathbf{y} fit the definition of parallel. But they are not parallel, and so we know that s = 0. Similarly, assuming $t \neq 0$ leads to $\mathbf{y} = -\frac{s}{t}\mathbf{x}$ and so we know that t = 0. \square

- (b) Prove that if $a\mathbf{x} + b\mathbf{y} = c\mathbf{x} + d\mathbf{y}$, then a = c and b = dIf we rearrange our equation a little, we arrive at $(a - c)\mathbf{x} = (d - b)\mathbf{y}$. Similarly to above we must now add to our premise that \mathbf{x} and \mathbf{y} are not zero. Now if we assume that $a \neq c$ then we find that $a - c \neq 0$. This allows us to arrange our equation as $\mathbf{x} = \frac{d - b}{a - c}\mathbf{y}$. Similarly, assuming $b \neq d$ leads us to $\mathbf{y} = \frac{a - c}{d - b}\mathbf{x}$. Either way we must conclude that \mathbf{x} and \mathbf{y} are parallel. But this is not true, and so we know that a = c and b = d.
- 28. Verify algebraically that the following properties of vector arithmetic hold. (Do so for n = 2 if the general case is too intimidating.) Give the geometric interpretation of each property.
 - (d) For each $\mathbf{x} \in \mathbb{R}^n$, there is a vector $-\mathbf{x}$ so that $\mathbf{x} + (-\mathbf{x}) = \mathbf{0}$ Let $\mathbf{x} = (x_1, \dots, x_n)$. We know that for each $x_i \in \mathbb{R}$ there exists some $-x_i \in \mathbb{R}$ such that $x_i + (-x_i) = 0$. Let us define $-\mathbf{x} = (-x_1, \dots, -x_n)$. Then

$$\mathbf{x} + (-\mathbf{x}) = (x_1, \dots, x_n) + (-x_1, \dots, -x_n)$$

= $(x_1 + (-x_1), \dots, x_n + (-x_n))$
= $(0, \dots, 0) = \mathbf{0}$

Geometrically, for every vector, there exists another parallel vector with equal magnitude, and opposite direction.