

Betriebswirtschaftslehre II Vorlesung 9: Business Intelligence – Data Mining

Wintersemester 2018/19
Prof. Dr. Martin Schultz
martin.schultz@haw-hamburg.de

Agenda

- 1 Überblick Data Mining
- **2** Klassifikation
- 3 Segmentierung
- 4 Abhängigkeitsanalyse
- 5 Abweichungsanalyse
- 6 Text Mining

Inhalte der Vorlesung und Übung

	Termin	Vorlesung	Übung
1	28.09.2018	Einführung und Grundlagen	-
2	05.10.2018	Geschäftsprozessmodellierung	Übung 1 – Gruppe 3/4
3	12.10.2018	Anwendungssysteme in Unternehmen	Übung 1 – Gruppe 1/2
4	19.10.2018	ERP-Systeme	Übung 2 – Gruppe 3/4
5	26.10.2018	ERP-Systeme: ReWe und Einführungsprojekte	Übung 2 – Gruppe 1/2
6	02.11.2018	Business Intelligence - OLAP	Übung 3 – Gruppe 3/4
7	09.11.2018	Business Intelligence - ETL	Übung 3 – Gruppe 1/2
8	16.11.2018	Business Intelligence – Dashboards	Übung 4 – Gruppe 3/4
9	23.11.2018	Data Mining	Übung 4 – Gruppe 1/2
10	30.11.2018	Informationsmanagement	Übung 5 – Gruppe 3/4
11	07.12.2018	IT-Service-/ Enterprise Architecture-Management	Übung 5 – Gruppe 1/2
12	14.12.2018	Klausurvorbereitung	Übung 6 – Gruppe 3/4
	21.12.2018		Übung 6 – Gruppe 1/2
	11.01.2019		Übung 7 – Gruppe 1/2/3/4

Lernziele

Was sollen Sie mitnehmen...

 Wesentliche Aufgabentypen und Verfahren des Data Mining beschreiben und anwenden können

Informationsbereitstellung und Nutzertypen

Spektrum der Nutzer von BI-Lösungen ist sehr heterogen (Kenntnisse, Vorlieben), viele unterschiedliche **Darstellungsformen** anwendbar mit unterschiedlichem **Interaktionsgrad** (starr, Verlinkung)

Nutzertyp Informationskonsument \rightarrow Berichtswesen, Management Support Systeme/ Dashboards

Nutzertyp der überwiegend Tools verwendet, die das Datenmaterial nach festen Mustern aufbereiteten und ausgeben

Nutzertyp **Analytiker** → **OLAP**

- Nutzertyp der überwiegend die Funktionalitäten der **navigationsorientierten Analyse** einsetzen und sich frei im Datenbestand bewegen will
- Einfache Methoden und Werkzeuge für Anzeige/ Ausgabe kommen zur Anwendung

Variante C:

Analyse-

dominiertes

Architekturkonzept

Nutzertyp **Spezialist** → **Decision Support**, **Data Mining**

- Nutzertyp der vorwiegend direkt auf die methodenorientierten Funktionsbausteine zurückgreift, um anspruchsvolle Datenanalysen vorzunehmen
- Nimmt dabei funktionale Komplexität und wenig benutzungsfreundliche Oberflächen in Kauf, ggf. Misstrauen gegenüber einfachen Zugriffs- und Ausgabewerkzeugen

Variante A: Präsentations-

dominiertes

Architekturkonzept

(Gluchowski 2008)

Variante B:

Gleichberechtigtes

Architekturkonzept

mit separaten

Komponenten

Data Mining als Bestandteil der Analyseschicht

- In Bezug auf die Schichtenarchitektur von BI-Systemen lässt sich Data Mining auf der Analyseschicht einordnen
- Ziel ist es, auf Basis der im Data Warehouse vorhandenen Daten mittels komplexer
 Methoden Modelle/ relevante Informationen für Entscheidungen zu generieren

Data Mining: Begriff

- "Data Mining is a problem-solving methodology that finds a logical or mathematical description, eventually of a complex nature, of patterns (Decker 1995) and regularities in a set of data."
- Knowledge Discovery in Databases (KDD): "... non-trivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns in data ..."
 (Fayyad 1996)

Data Mining: Abgrenzung

Wachsende Datenmenge führen dazu, dass "klassische" **hypothesengestützte** Auswertungen von Daten (OLAP, Statistik) an Ihre Grenzen stoßen

- zu zeitaufwendig alle möglichen Zusammenhänge in den Daten zu überprüfen
- Auswahl der zu untersuchenden Hypothesen hochgradig subjektiv

Lösung: computergestützte, "hypothesenfreie" Suche nach Mustern in Daten

Vorgehensmodell für Data Mining - CRISP

Cross Industry Standard Process for Data Mining ist ein robustes, allgemeines Modell zur Systematisierung von Data Mining-Projekten

ist branchen-, tool- und anwendungsneutral

basiert auf praktischen Erfahrungen

- gewährleistet hohe Qualität
- reduziert Kosten und Zeitaufwand
- unterstützt die Dokumentation und Argumentation

Vorgehensmodell für Data Mining - CRISP

- Determine Business Objectives
- Determine Analysis Goals

Assess Situation

- Plan Deployment
- Plan Maintenance
- Produce Final Report

- Collect Initial Data
- Describe Data
- Explore Data
- Verify Data Quality
 - Select Data
 - Clean Data
 - Construct Data
 - Integrate Data
 - Format Data
 - Select Modelling Technique
 - Build Model
 - Assess Model

Evaluate Results

Data

Evaluation

■ Determine Next Steps

Data Understanding

> Data Preparation

> > Modeling

(Wirth and Hipp 2000)

Deployment

Business Understanding

Data Mining und Management-/ Entscheidungsaufgaben

Bei der Anwendung von Data Mining für die Unterstützung von Entscheidungen sind Herausforderungen auf fachlicher und technischer Ebene zu lösen

Prozessmodelle und Zeitaufwand

Data Mining: Software Überblick

Gartner defines Advanced Analytics as, "the analysis of all kinds of data using sophisticated quantitative methods (e.g. statistics, descriptive and predictive data mining, simulation and optimization) to produce insights that traditional approaches to business intelligence (BI) - such as query and reporting — are unlikely to discover."

Data Mining: Aufgabentypen und Verfahren

- Im Data Mining haben sich im Wesentlichen vier übergeordnete Aufgabentypen herauskristallisiert, auf die sich viele betriebswirtschaftliche Fragestellungen abbilden lassen
- Diese Aufgabentypen lassen sich jeweils wiederum durch mehrere Verfahren/ Algorithmen bearbeiten

Klassifikation: Beschreibung des Aufgabentyps

- Ein Klassifikationsmodell ist eine Abbildung, die die Zuordnung von Elementen zu vorgegebenen Klassen beschreibt.
- Die Grundlage für ein Klassifikationsmodell bildet ein Datenbestand, dessen Datenobjekte jeweils bereits einer vorgegebenen Klasse zugeordnet sind.
- Zum erstellen des Modells ist es erforderlich, dass ein geeigneter Datensatz mit verlässlichen
 Erfahrungswerten zum Entscheidungsproblem (*Trainingsdatensatz*) vorliegt
- Ein Klassifikationsmodell wird zur Prognose der Klassenzugehörigkeit von Datenobjekten eingesetzt, deren Klassenzugehörigkeit bislang noch nicht bekannt ist.

 http://www.enzyklopaedieder-wirtschaftsinformatik.de

Beispiel: Einteilung von Datensätzen, die Angaben über Kunden enthalten, so dass damit die Kundengruppe erkannt werden kann, in die der Kunde voraussichtlich gehört

Klassifikation/ Regression

Klassifikation: Verfahren und Vorgehen

- Entscheidungsbäume
- lineare/quadratische Klassifikatoren
- Neuronale Netze/Perzeptron
- Support vector machines
- Statistisches Lernen/ **Bayes Klassifikator**
- k-Nearest Neighbor (k-NN)

Neuronale Netze

Support vector machines

Data

Klassifikation/ Regression

Klassifikation: Entscheidungsbaum - Beispiel

Übersicht von Versicherungsnehmern und deren Einteilung die
 Klassen "Hoch" und "Gering" auf Basis des bisher verursachten Schadens

Alter	Geschlecht	t Autotyp	Schaden
45	W	Van	Gering
35	W	Coupe	Gering
22	W	Van	Gering
19	M	Coupe	Hoch
38	W	Coupe	Gering
43	W	Coupe	Gering
37	W	Van	Gering
24	M	Van	Hoch
27	M	Coupe	Hoch
19	M	Van	Hoch
40	M	Van	Gering
40	М	Coupe	Hoch
23	W	Coupe	Gering

Aufgabenstellung:

Wie sieht ein Klassifikationsbaum aus, der die Variable "Schaden" am besten vorhersagt?

Zeit: 2 min

Klassifikation/

Regression

Klassifikation: Entscheidungsbaum - Beispiel

Übersicht von Versicherungsnehmern und deren Einteilung die
 Klassen "Hoch" und "Gering" auf Basis des bisher verursachten Schadens

Alter	Geschlecht	: Autotyp	Schaden
45	W	Van	Gering
35	W	Coupe	Gering
22	W	Van	Gering
19	M	Coupe	Hoch
38	W	Coupe	Gering
43	W	Coupe	Gering
37	W	Van	Gering
24	М	Van	Hoch
27	M	Coupe	Hoch
19	M	Van	Hoch
40	M	Van	Gering
40	М	Coupe	Hoch
23	W	Coupe	Gering

Klassifikation: Entscheidungsbaum – Beispielergebnis

Algorithmus: Chi-square Automatic Interaction Detectors (CHAID)

Klassifikation/ Regression

Klassifikation: Entscheidungsbaum – Verfahren

- Vorgehen: Aufbau eines Baums
 - Knoten entspricht Entscheidungskriterium
 - Blatt entspricht Entscheidung

Vorteile:

- Ergebnis leicht interpretierbar
- Übersetzbar in Regelsystem

Diverse Implementierungen:

- ID3/ C4.5/ C.50/ J48
- C&R Tree
- Quest
- CHAID

modern

kaufen

Eine Regel (von mehreren):
Wenn
Zulassung vorhanden und

Verbrauch niedrig,

nicht kaufen

dann kaufen.

Klassifikation: Entscheidungsbaum - Verfahren

Klassifikation/
Regression

Existierende Algorithmen unterscheiden sich in

- dem Vorgehen zur Wahl des Splitattributs (z.B. Chi-Quadrat-Test → CHAID, Informationsgewinn → C5.0, Gini-Index → C&R Tree)
- der Wahl des Stoppkriteriums (z.B. Minimale Tupelzahl je Knoten, Minimaler Anteil falsch klassifizierter Tupel, Maximale Baumtiefe, Maximale Knotenanzahl)

Size of tree (number of nodes)

- Diskrete vs. kontinuierliche Attribute
 - Diskret
 - Ein Knoten pro Attributwert

 Ein Knoten pro Attributintervall

Augenfarbe

- Binäre vs. n-äre Bäume
 - Zwei oder mehrer Ausgangskanten

Klassifikation: Entscheidungsbaum – Wahl des Splitattributs

Gini-Index: Statistisches Maß zur Darstellung von Ungleichverteilungen

- Prinzip: Minimierung der Heterogenität
- Vorgehen: Wahrscheinlichkeitsmaß, bei Stichprobe, Datentupel aus 2 unterschiedlichen Klassen (0;1) zu erhalten: Gini Index = $1 p(0)^2 p(1)^2$
- Minimum = 0,0 → alle Objekte aus einer Klasse = Maximale Homogenität
- Maximum = 0,5 → Objekte zweier Klassen gleich häufig = Maximale Heterogenität

Beispiel Versicherung Auto

•	Split Geschlecht: $1 - p(G)^2 - p(H)^2$

W | M: GGGGGGG | HHHHGH
W:
$$1 - (7/7)^2 - (0/7)^2 = 0.0$$

M:
$$1 - (1/6)^2 - (5/6)^2 = 0.2778$$

• *Split AutoTyp:* $1 - p(G)^2 - p(H)^2$

Van | Coupe: GGGHHG | GHGGHHG

Van: $1 - (4/6)^2 - (2/6)^2 = 0,444$

Coupe: $1 - (4/7)^2 - (3/7)^2 = 0,489$

Mittel: 6/13 * 0,444 + 7/13 * 0,489 = **0,468**

Ergebnis: Geschlecht besseres Split-Attribut

Alter	Geschlech	t Autotyp	Schaden
45	W	Van	Gering
35	W	Coupe	Gering
22	W	Van	Gering
19	M	Coupe	Hoch
38	W	Coupe	Gering
43	W	Coupe	Gering
37	W	Van	Gering
24	М	Van	Hoch
27	M	Coupe	Hoch
19	M	Van	Hoch
40	M	Van	Gering
40	М	Coupe	Hoch
23	W	Coupe	Gering

Klassifikation: Validierung eines Klassifikators

- Das Modell wird gelernt anhand eines Trainingsdatensatzes
- Das Modell wird dann auf einen Testdatensatz angewendet, bei dem auch die Klassenzugehörigkeit jedes Datensatzes bekannt ist
- Die Güte des Modells wird ermittelt anhand des Vergleichs der vom Modell vorhergesagten Klassenzugehörigkeit mit der tatsächlichen Klassenzugehörigkeit
 → Confusion Matrix

Confusion Matrix

	Actual True/False		
Predicted	True Positive	False Positive (Type I)	
Positive/Negative	False Negative (Type II)	True Negative	

Klassifikation: Validierung eines Klassifikators - Kennzahlen

 Precision: Anteil der korrekt als positiv klassifizierten Objekte an der Gesamtheit der als positiv klassifizierten Objekte

$$\text{Precision} = \frac{TP}{TP + FP}$$

Recall (Sensitivität): Anteil der korrekt als positiv klassifizierten
 Objekte an der Gesamtheit der tatsächlich positiven Objekte

$$\text{Recall} = \frac{TP}{TP + FN}$$

 Accuracy: Anteil aller Objekte, die korrekt klassifiziert wurden

$$\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}$$

	Actual True/False		
Predicted	True Positive	False Positive (Type I)	
Positive/Negative	False Negative (Type II)	True Negative	

Segmentierung

Segmentierung: Clusterverfahren

- Ziel der Anwendung von Clusterverfahren ist das Erkennen und Bewerten von Clustern. Cluster sind Mengen von Datensätzen. Dabei sollen Datensätze innerhalb eines Clusters möglichst ähnlich (homogen) und Datensätze aus unterschiedlichen Clustern dagegen möglichst unähnlich sein.
- Voraussetzung: Es müssen Ähnlichkeitsmaße zwischen Datensätzen sowie zwischen Clustern definiert werden

 Um die Ähnlichkeit zweier Datensätze zu bestimmen, werden oftmals geometrische Distanzmaße herangezogen.

Segmentierung: Clusterverfahren - Beispiel

- Anwender: Produzent von Getränken (Wasser, Limonaden, Fruchtschorlen)
- **Ziel/ Frage:** Optimale Erweiterung der Produktpalette (Trendlimos oder neue Fruchtschorlen?)
- **Datenerhebung:** Befragung vor Supermärkten
- 1. Schritt: Kundensegmentierung durch Analyse von Kundenattributen:
 - → Welche Kundenprofile existieren?

ID_NUM	Customer	Product	Age	Income	Currency
1	K1	Water	59	4430.0	EUR
2	K2	Water	55	4128.0	EUR
3	K4	Water	51	4210.0	EUR
4	K12	Water	53	2720.0	EUR
5	K13	FruitJuices	58	4093.0	EUR
6	K14	Water	58	1762.0	EUR
7	K19	Water	51	3147.0	EUR
9	K23	Water	49	3621.0	EUR
	•••	•••	•••	•••	•••
24	K20	Lemonade	43	1926.0	EUR
	•••	•••		•••	

Beispieldaten aus Kießwetter 2007

Segmentierung: Clusterverfahren - Beispiel

- Wasser (Cluster 0): Alter: mittel bis hoch, Einkommen: hoch
- Fruchtschorle (Cluster 2): Alter: mittel, Einkommen: mittel
- Limonade (Cluster 1): Alter: niedrig, Einkommen: niedrig

Segmentierung: Clusterverfahren - Proximitätsmaß

Proximitätsmaß: Maß welches den Ähnlichkeitsgrad zwischen zwei Datenobjekten quantifiziert

- Ähnlichkeitsmaße, welche die Ähnlichkeit bzw. Homogenität zweier Datenobjekte ausdrücken. Anderseits lassen sich
- Distanzmaße, welche die Unähnlichkeit bzw. Heterogenität zweier Datenobjekte ermitteln.
- Auswahl hängt von den Eigenschaften und dem Skalenniveau der Merkmale der betrachteten Datenobjekte ab
 - Weisen die Variablen ein metrisches Skalenniveau auf, können Distanzmaße auf der Basis geometrischer Abstandskonstrukte, wie die euklidische Distanz oder die Blockmetrik, zum Einsatz kommen.
 - Liegen die Variablen nominalskaliert vor, können Maße verwendet werden, die auf die Identifizierung von Übereinstimmungen der einzelnen Merkmalsausprägungen ausgelegt sind (= Anzahl übereinstimmender Attribute / Anzahl aller Attribute)

Segmentierung

Segmentierung: Clusterverfahren - Vorgehen

partitionierenden Verfahren: versuchen, ausgehend von einer vorgegebenen Gruppeneinteilung, durch den iterativen Austausch der Datenobjekte zwischen den einzelnen Klassen die Gesamtlösung zu optimieren

agglomerativ-hierarchischen Verfahren: verfolgen einen Bottom-Up-Ansatz und gehen bei der Gruppierung von der kleinsten Partition aus. Jedes Datenobjekt repräsentiert zunächst einen Cluster und wird sukzessiv neuen, größeren Gruppen zugeteilt

divisiv-hierarchischen Verfahren: starten mit der gröbsten Partition. Diesem Top-down-Ansatz zufolge befinden sich alle Datenobjekte zunächst in einem einzigen Cluster. Anschließend erfolgt die Aufspaltung der Datenobjekte in homogenere Teilgruppen.

4. Abhängigkeitsanalyse

Abhängigkeitsanalyse: Assoziationsregeln

Abhängigkeitsanalyse

- Wenn Objekt A dann auch Objekt B
- C + D → E

Ziel der Assoziationsanalyse ist das Erkennen und Bewerten von gemeinsam auftretenden Datenelementen (Items).

- Items können Elemente von Mengen oder einzelne Attributwerte von Datensätzen sein.
 - Eine Menge von Items wird als **ItemSet** oder auch Itemmenge bezeichnet.
- Beispiel: Items: Artikel, ItemSet: Warenkorb: Warenkorb {Artikel a, Artikel b}

Voraussetzung: Vorhandensein einer Datenbasis bestehend aus einzelnen Transaktionen (z. B. Menge von Kassenbons)

Ergebnis: Regeln der Form WENN Item x DANN Item y ($x \rightarrow y$), wobei x und y Elemente (Items) von ItemSets sind

Beispiel-Ergebnis: WENN Artikel a und Artikel b gekauft werden DANN wird auch Artikel c gekauft

■ {Milch, Windeln} → {Bier}

Abhängigkeitsanalyse: Assoziationsregeln - Metriken

Abhängigkeitsanalyse

- Wenn Objekt A dann auch Objekt B
- \bullet C + D \rightarrow E

- Metriken zur Bewertung der Regeln: $r = (X \rightarrow Y)$
- **Support (s):** Anteil der Datensätze (ItemSets), die sowohl Item X als auch Item Y enthalten im Verhältnis zu allen Datensätzen (ItemSet)
- Confidence (c): Verhältnis der Datensätze für die Regel r = (X → Y) gilt im Verhältnis zu den Datensätzen die den linken Regelteil (X) enthalten

Bewertung:

- Niedriger Support: Spezialregel, geringe Aussagekraft
- Niedrige Confidence: "Falsche" Regel

Beispiel: r: $\{Milk, Diaper\} \Rightarrow Beer$

•
$$s = \frac{\sigma(Milk,Diaper,Beer)}{|T|} = \frac{2}{5} = 0,4$$

•
$$c = \frac{\sigma(Milk,Diaper,Beer)}{\sigma(Milk,Diaper)} = \frac{2}{3} = 0,67$$

Item Set ID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

5. Abweichungsanalyse

Abweichungsanalyse (Outlier Detection)

Abweichungs-/ Änderungsanalyse

 Analysen zur Erkennung von Wertabweichungen eines Merkmals von zuvor gemessenen oder normativen Werten und Erklärung der Abweichungen durch andere Attribute/ Zusammenhänge

Network Security Tool

5. Abweichungsanalyse

Abweichungsanalyse: Beispiel DBSCAN

Abweichungs-/ Änderungsanalyse

DBSCAN (Density-Based Spatial Clustering of Applications with Noise

Dichteverbundene Clusterverfahren, erkennt Gebiete mit hoher Datenpunktdichte als

Cluster, kann sehr gut mit Rauschen umgehen

Dichte: für den Punkt p wird durch die Anzahl der Punkte in einer ε -Umgebung für ein zu bestimmendes ε geschätzt.

Die ϵ -Umgebung von p besteht aus allen Punkten, die höchstens den Abstand ϵ zu p besitzen.

MinPts: legt fest, wie viele Punkte in der ϵ -Umgebung von einem Punkt p liegen müssen, damit p zu einem Cluster gehört.

Kernpunkt: Die Anzahl der Datenpunkte in der ε-Umgebung des Kernpunkts beträgt mindestens MinPts

Randpunkt: Ein Randpunkt ist kein Kernpunkt, liegt aber in der ϵ -Umgebung eines Kernpunktes (ist als dichte-erreichbar)

Rauschpunkt: Ein Rauschpunkt ist weder Kern- noch Randpunkt

5. Abweichungsanalyse

Abweichungsanalyse: Beispiel DBSCAN

Abweichungs-/ Änderungsanalyse

Algorithmus

- Benenne Datenpunkte als Kern-, Rand- oder Rauschpunkte.
- Lösche alle Rauschpunkte.
- Verbinde Kernpunkte, die innerhalb einer ε-Kugel liegen, durch eine Kante.
- Eine Menge verbundener Kernpunkte bilden ein separates Cluster.
- Weise jeden Randpunkt dem Cluster eines benachbarten Kernpunkts zu.

Kernpunkte: rot

Randpunkte: gelb (dichte-erreichbar)

Rauschpunkt: blau (N)

Für Outlier Detection: Liste der Rauschpunkte

Text Mining: Definition

Text mining can be defined — similar to data mining — as the application of algorithms and methods from the fields machine learning and statistics to texts with the goal of finding useful patterns.

For this purpose it is necessary to pre-process the texts accordingly. Many authors use **information extraction** methods, **natural language processing** or some simple pre-processing steps in order to extract data from texts. To the extracted data then data mining algorithms can be applied

- Natural Language Processing (NLP): The goal of NLP is to achieve a better understanding of natural language by use of computers. The range of the assigned techniques reaches from the simple manipulation of strings to the automatic processing of natural language inquiries. Linguistic analysis techniques are used among other things for the processing of text.
- Information Extraction (IE): The goal of information extraction methods is the extraction of specific information from text documents. These are stored in data base-like patterns and are then available for further use.

Text Mining Process

1. Extract Documents: Document sources can be e.g. a public web site, an internal file system, mail server, social networks (e.g. via Twitter API)

Text Mining Process: Text Preprocessing

Tokenization: is the process of breaking a stream of text up into words, phrases, symbols, or other meaningful elements called tokens

Stop word Removal: stop words usually refer to the most common words in a language. The filtered out before processing of natural language data. This step involves also removing of HTML, XML tags from web pages

A swimmer likes swimming, thus he swims. \downarrow swimmer | likes | swimming | , | swims | .

Stemming and Lemmatization: Stemming describes the process of transforming a word into its **root form**. In contrast to stemming, lemmatization aims to obtain **the canonical (grammatically correct) forms** of the words, the so-called lemmas

Stemming

N-grams: In the n-gram model, a token can be defined as a sequence of n items

- unigram (1-gram):

 a | swimmer | likes | swimming | thus | he | swims
- bigram (2-gram):

 a swimmer | swimmer likes | likes swimming | swimming thus | ...
- trigram (3-gram):

 [a swimmer likes | swimmer likes swimming | likes swimming thus | ...

Text Mining Process: Text Preprocessing - Part of Speech Tagging

Part of Speech Tagging is the process of marking up a word in a text (corpus) as corresponding to a particular part of speech, based on both its definition and its context

- Rule-based taggers: large numbers of hand-crafted rules
- Probabilistic tagger: used a tagged corpus to train some sort of Model

Text Mining Process: Feature Selection

Following types of **potential features** are used to represent a document:

Characters, Words, Terms, Concepts

Bag of Words: The idea is to treat documents as unordered collections of words/ tokens

A **bag of words** can represent a document as vectors where:

Dimension: each unique token

Magnitudes: token weights

Token weight \rightarrow **term frequency:** is defined as the number of times a given term t (i.e., word or token) appears in a document d. In practice, the term frequency is often normalized: normalized term frequency = tf(t, d)nd (36) where

- tf(t,d): Raw term frequency (the count of term t in document d).
- nd: The total number of terms in document d.

Text Mining Process: Techniques

Document/ Text Categorization/ Classification

Document/ Text Clustering

Representative Sentences

- Information Extraction
- Sentiment Analysis

Document/ Text Categorization: Categorization by Taxonomy

Text categorization (a.k.a. **text classification**) is the task of assigning **predefined categories** to free-text documents. It can provide conceptual views of document collections and has important applications in the real world. For example, news stories are typically organized by subject categories (*topics*) or geographical codes

Statistical text categorization uses machine learning methods to learn automatic classification rules based on human-labeled training documents

Sample Taxonomies:

- IPTC News Codes International standard for categorizing news content
- IAB QAG The Interactive Advertising Bureau's quality guidelines for classifying ads

6. Text Mining

Sentiment Analysis

Sentiment = feelings, subjective impressions, not facts

Attitudes, Emotions, Opinions, ...

Generally, a binary opposition in opinions is assumed (For/against, like/dislike,

good/bad, etc.) \rightarrow Polarity

Sentiment Analysis: Using Natural Language Processing (NLP), statistics, or machine learning methods to extract, identify, or otherwise characterize the sentiment content of a text unit.

Sentiment Analysis: Potential Questions and Challenges

Questions

- Is this product review positive or negative?
- Is this customer email satisfied or dissatisfied?
- Based on a sample of tweets, how are people responding to this ad campaign/product release/news item?
- How have bloggers' attitudes about the president changed since the election?

Challenges

- People express opinions in complex ways
- In opinion texts, lexical content alone can be misleading
- Intra-textual and sub-sentential reversals, negation, topic change common
- Rhetorical devices/modes such as sarcasm, irony, implication, etc
- Short phrases may be just as important as words: "lowest prices", "high quality"

"Dear <hardware store>

Yesterday I had occasion to visit <your competitor>. The had an excellent selection, friendly and helpful salespeople, and the lowest prices in town.

You guys suck.

Sincerely,"

Sentiment Analysis: Polarity Keywords

Heuristic/hand made references (lexicon-based)

Wordnet: A lexical database for English with emphasis on synonymy

- Nouns, verbs, adjectives and adjectives are grouped into synonym sets (synset)
- Words are linked according to lexical and conceptual relations (creating a "net")

SentiWordNet: A lexical resource for opinion mining

- Based on Wordnet synsets
- each synset is assigned three sentiment scores: positivity, negativity, and objectivity
 - · PosScore [0,1] : positivity measure
 - NegScore [0,1]: negativity measure
 - ObjScore [0,1]: objective measure

ObjScore = 1 - (PosScore + NegScore)

Text Mining - Example Sentiment Analysis

Sentiment Analysis for Comments in an App Store

