Amrutvahini College of Engineering, Sangamner Sangamner (S.K.) 422 608

INDEX 0.310

1	CLASS_BE	IN DEP	DEX	31c		_ Engineering
	SUBJECT_Mobile	con	putir	141		
Sr. No.	Title of the Experiment	Page No.	Perfor- mance	of Sub- Mission	Remarks	Signature
0	Basic function of code	1	9/2/23		(0)	ANIF JOS
	division multiple Access				6	3 761
3)	Study of GSM Archite.	8	16/2/13	2/3/23	0	during
	cture & signalling tech.					The same
3)	Study of GIPRS	21	2/3/23	9/3/23	(0)	04/3/23
_	Servicess					190
3						
4	simulate BER Per-	25	9/3/23	23/3/23	(0)	A 12/2
_	formance over					100
	rayleigh fading					
_	wireless channel					
_	with BRSK trunsmi-					
	thion					
9						0
3	Configure a Cisco	36	23/3/23	14/4/2	(0)	Olive
	vouter as a DHCP					Tupis
	Serever					
						0
6) To undorestand hand-	45	13/4/23	20/4/20		XXXX

Amrutvahini College of Engineering, Sangamner Sangamner (S.K.) 422608

INDEX

Sr. No.		Page	Date of			Signature
	Title of the Experiment		Perfor- mance	Sub - mission	Remarks	
	over mechaism		Ÿ. <u></u>			
7)	To study outage pro-	53	20/4/23	27/4/23	0	de
	bubility LERS ADF insis					700
	Ding that					
3)	file sharing using TOP	65	27/4/23	4/5/23	0	Was Ala
3	Cose study on different	20	415/23	11/5/23	0	diffe
	computing service.					1:47
				in the second		

Amrutvahini College of Engineering, Sangamner Department of Electronics and Telecommunication Engineering Experiment No.: 01

Date of Performance: 9/2/23

TITTLE: To implement a basic function of Code Division Multiple Access (CDMA) to test the orthogonally and autocorrelation of a code to be used for CDMA operation. Write an application based on the above concept

AIM: Basic function of Code Division Multiple Access (CDMA).

OBJECTIVES: To understand function of CDMA used to test orthogonally and autocorrelation of a code.

SOFTWARE & HARDWARE REQUIREMENTS:

OS.: Unix or windows 7/8/10,

Processor: i3/i5/i7

Software: Python (Jupyter Notebook) or java

THEORY-CONCEPT

CDMA stands for Code Division Multiple Access. It is a digital cellular standard that utilizes spread Spectrum Technology. It spreads the signal over a fully available spectrum or over multiple channels through division. It is a channelization protocol for Multiple Access, where information can be sent simultaneously through several transmitters over a single communication channel

It is achieved in below steps: A signal is generated which extends over a wide bandwidth. The code which performs this action is called spreading code. Later, a specific signal can be selected with a giver, code even in the presence of many other signals. It is mainly used in mobile networks like 2G and 3G. It is a more secure and private line. It has good voice and data communication capabilities.

Procedure or Working

1. The station encodes its data bit as follows.

If bit = 1 then +1

If bit = 0 then -1

no signal (interpreted as 0) if station is idle

- 2. Each station is allocated a different orthogonal sequence (code) which is N bit long for
- 3. Each station does a scalar multiplication of its encoded data bit and code sequence.
- 4. The resulting sequence is then stored on the channel
- 5. Since the channel is common, amplitudes add up and hence resultant channel sequence is the sum of sequences from all channels.
- 6. If station I wants to listen to station 2, it multiplies (inner product) the channel sequence with code of station \$2.
- 7. The inner product is then divided by N to get data bit transmitted from station 2.

How does CDMA work?

To see how CDMA works, we must understand orthogonal sequences (also known as chips).

Let N be the number of stations establishing multiple access over a common channel.

Then the properties of orthogonal sequences can be stated as follows:

An orthogonal sequence can be thought of as a 1xN matrix. Eg. [+1-1+1-1] for N = 4.

Scalar multiplication and matrix addition rules follow as usual.

Eg: 3.[+1-1+1-1] = [+3-3+3-3]

Eg: [+1-1+1-1]+[-1-1-1-1] = [0-20-2]

Inner Product. It is evaluated by multiplying two sequences element by element and then adding all elements of the resulting list.

Inner Product of a sequence with itself is equal to N [+1 -1 +1 -1][+1 -1 +1 -1] = L + 1 + 1 + 1 = 4

Inner Product of two distinct sequences is zero [+1 -1 +1 -1] +1 +1 +1 +1 +1] = 1-1+1-1 = 0

Code:

import numpy as np

e1=[1,1,1,1]

c2=[1,-1,1,-1]

c3-[1,1,-1,-1]

c4=[1,-1,-1,1]

re=[]

print("Enter the data bits:")

d1=int(input("Enter D1="))

d2=int(input("Enter D2="))

d3=int(input("Enter D3="))

d4=iot(input("Enter D4="))

rl=np.multiply(c1,d1)

r2=np.multiply(c2,d2)

r3=np.multiply(e3,d3)

r4=np.multiply(c4,d4)

resultant_channel=r1+r2+r3+r4

print("Resultant channel:",resultant_channel)

chemnel=int(input("enter the station to listen for c1=1,c2=2,c3=3,c4=4."))

if channel=1:

rc=c1

elif channel==2:

re-c2

elif channel 3:

rc=c3

elif channel 4:

		_	
Commence of the last	-	10000	
Dall	No	U.	
Roll	100	1	

Amrutvahini College of Engineering, Sangamner Department of Electronics and Telecommunication Engineering Experiment No.: 02

Date of Performance: 16/2/2023

Title: Study of GSM architecture and signaling techniques

AIM: Study of GSM architecture and signaling techniques

THEORY-CONCEPT

INTRODUCTION:

The development of Global System for Mobile Communication (GSM) started in 1982 when the Conference of European Posts and Telegraphs (CEPT) formed a study group called Group Special Mobile (the initial meaning of GSM) whose aim was to study and develop a pan-European public cellular system in the 900 MHz range [6]. Some of the basic criteria for their proposed system were

- · Good subjective speech quality
- · Low terminal and service cost
- · Support for international roaming
- · Ability to support handheld terminals
- Support for range of new services and facilities
- · Spectral efficiency
- · ISDN compatibility

Commercial operation of GSM networks started in mid-1991 in European countries. By the beginning of 1995, there were 60 countries with operational or planned GSM networks in

Europe, the Middle East, the Far East, Australia, Africa, and South America, with a total of over \$.4 million subscribers.

GSM uses a mixture of both Frequency Division Multiple Access (FDMA) and Time Division Multiple Access (TDMA) [2]. FDMA parts include the division by frequency of the 25 MHz bandwidth into 124 carrier frequencies spaced 200 KHz for GSM900. TDMA further divides each carrier frequencies into 8-time slots such thateach carrier frequency is shared by 8 users. In GSM, the basic radio resource is a time slot with duration of 577 µs. 8 Time slots of 577 µs. constitute a 4.615 ms TDMA Frame. GSM uses Gaussian Minimum Shift Keying (GMSK) modulation scheme to transmit information over Air Interface. GSM uses number of channels to carry data over air interface; these channels are broadly divided into following two categories:

i. Physical Channels

ii. Logical Channels

This paper is divided into five parts. Starting with an introduction (Section-I), next section covers the need of GSM (Section-II). Moving ahead, GSM architecture is discussed (Section-III). Next section is about the interfaces in between the GSM subsystems (Section-IV). After that GSM channels are discussed (Section-V). This section is about the call origination using GSM channels (Section-VI). Finally, conclusions summarize the last section (Section-VII).

NEED OF GSM:

Features of GSM that account for its popularity and wide acceptance are listed below.

- i. Improved spectrum efficiency
- ii. International roaming
- Low-cost mobile sets and base stations (BSs)

High-quality speech

- iv. Compatibility with Integrated Services Digital Network (ISDN) and other telephone company services
- v. Support for new services

Architecture:

GSM architecture is classified into three subsystems i.e., BSS, NSS, and OSS

Fig: Basic Architecture

Fig: Basic Architecture

The BSS provides and manages communication paths between the MSs and the NSS. It includes management of the radio interface between MSs and the whole GSM system. The NSS has the proxime of managing communications and linking MSs to the relevant networks or other MS's. Neither NSS is in direct contact with the MSs, nor is the BSS in direct contact with external networks in the GSM, interaction between the subsystems can be grouped into two main parts:

- Operational: External networks to orfrom NSS to orfrom BSS to orfrom MS to orfrom subscriber
- ii. Control: OSS to or from service provider

L. GSM Subsystem Entities

Fig: GSM Architecture

a) Mobile Station (MS):

A Mobile Station is used by a mobile subscriber to communicate with the cellular seed in . GSM MSs consist of

i. A mobile terminal

ii. A Subscriber Identity Module (SIM)

b) Base Station Subsystem (BSS);

BSS is the section which is responsible for handling and signaling traffic between a MS and the NSS. It consists of these two devices:

i. Base Transceiver System (BTS) - The BTS is the radio equipment. It handles the radio interface to the mobile station. A group of BTSs is controlled by a BSC.

ii. Base Station Controller (BSC) - The BSC is a high-capacity switch which provides all the control functions and physical links between the MSC and BTS such as handover, cell configuration data, and control of radio frequency (RF) power levels in base transcriver stations. Several BSCs are served by an MSC.

e) Network Switching Subsystem (NSS):

The NSS main role is to manage the communications between GSM and other network users.

Another task of it includes the main switching functions of GSM, databases required for the subscribers, and mobility management.

i. Mobile Station Controller (MSC): The MSC is the central unit of NSS. It performs the telephony switching functions of the system. It controls the traffic among all the BSCs.

ii. Home Location Receiver (HLR): The HLR is the functional unit used for management of mobile subscribers. The information stored in it are subscriber's identity, location, and authentication. It acts as a permanent store for a person's subscription information until that subscription is canceled.

iii. Visitor Location Receiver (VLR): The VLR is the functional unit which temporarily stores subscription information so that the MSC can service all the subscribers currently visiting that MSC service area. The VLR is regarded as distributed HLR because it holds a copy of the HLR information stored about the subscriber.

iv. Authentication Centre (AUC): The AUC is a database connected to the HLR which provides it with the authentication parameters and ciphering keys used to ensure network security.

d) Operation Support Subsystem (OSS):

The operations and maintenance center (OMC) is connected to all equipment in the switching system and to the BSC. The implementation of OMC is called the operation support system (OSS). The OMC provides a single point for the maintenance personnel to maintain the entire system. One OMC can serve multiple MSCs.

I. GSM INTERFACES

The interfaces between various elements of the GSM network facilitates the information interchange. It also enables the case that network elements from different manufacturers ean be used.

). Um interface: This interface is linking the Mobile Equipment (ME) and the Base Station

(BTS/BSC). It exchanges information in air.

- ii. Abis interface: This interface is linking the BSC and a BTS, and it has not been totally standardized. It is an internal interface as the BTS and the BSC are both part of the BSS. The Abis interface allows control of the radio equipment andradio frequency allocation in the BTS.
- iii. A interface: This interface is linking the BSS and the MSC. This interface earnies information to enable the channels, timeslots. The messaging required within the network to enable handover etc. to be undertaken is earnied over this interface.
- iv. B interface: This interface is linking the MSC and the VLR. It uses a protocol known as the MAP/B protocol, the letter B" indicating that the protocol is used for "B" interface. This is an internal interface as the VLR is a part of the MSC. The interface is used by the MSC when it needs to access data regarding a MS located in its area.
- v. C interface: This interface is linking the HLR and the MSC. The protocol used for communication is MAP/C, the letter "C" indicating that the protocol is used for the "C" interface. It judgs in communication between the MSC and the HLR regarding various aspects, for example, subscriber information.
- vi. Dinterface: This interface is linking the VLR and the HLR. It uses the MAP/D protocol, the letter "D" indicating that the protocol is used for the "D" interface. It is used to exchange the data related to the location of the Mobile Equipmentand to the management of the subscriber.

- vii. E interface: This interface is linking two MSCs. The E interface exchanges data related to handover between the two MSCs. It uses the MAP/E protocol, the letter "E" indicating that the protocol is used for the "E" interface.
- viii. F interface: This interface is linking the MSC and EIR. It uses the MAP/F protocol, the letter "F" indicating that the protocol is used for the "F" interface. The communications along this interface are used to confirm the status of the International Mobile Equipment Identity (IMEI) of the Mobile Equipment (ME) gaining access to the network [9].
- ix. H interface: This interface is linking the MSC and the AUC. It uses the MAP/H protocol, the letter "H" indicating thatthe protocol is used for the "H" interface. It transfers short messages. In a system, information flows forward, backward and sideways. This information flow is referred to as communication. Communication channels refer to the way this information flows within the system

Fig: GSM Interfaces

Fig: GSM Channels [1]

- 1. Traffic Channels (TCH): This channel earnies digitally encoded user's speech or data and has identical functions and formation both the forward and reverse link.
- a) Full Rate Traffic Channels (TCH)F): This channel carries information at a rate of $22.8\,$ Kbps.
- b) Half Rate Traffic Channels (TCH)H): This channel carries information at a rate of 11.4 Kbps.
- 2. Control Channels (CCH): This channel carries control information to enable the system to operate correctly. There are threemain categories of control channels in GSM which are further divided intoseveral categories.
- i. Broadcast Channels (BCH): The broadcast channel operates on the forward link of a specific Absolute Radio Frequency Channel Number (ARFCN) within each cell, and transmits data only in the first time slot (TS0) of certain GSM frames.

a) Broadcast Control Channels (BCCH) – DOWNLINK

This channel broadcasts network and cell specific information required to identify the network and gain access.

b) Frequency Control Channels (FCCH) - DOWNLINK

This channel contains frequency correction bursts which are used by the mobiles for frequency correction. It bears information for frequency synchronization. It allows each subscriber unit to synchronize its internal frequency standard to the exact frequency of the base station.

e) Synchronization Channel (SCH) - DOWNLINK

This channel is used by the MS to learn the Base Station Information Code (BSIC) as well as the TDMA frame number (FN). There are 6 bits of BSIC which have two parts, 3 bits NCC and 3 bits BCC. NCC stands for Network Colour Code and used to identify the BTS for which measurement is made. BCC stands for Base Station Colour Code and used for a better transmission in case of interference. BICS avoids ambiguity or interference.

ii. Common Control Channels (CCCII):

This channel is responsible for transferring control information between all mobiles and the BTS. It is necessary for call origination.

a) Paging Channel (PCH) - DOWNLINK

This channel is used for alerting to Mobile Subscribers for incoming calls, SMS, and other mobility services. Every MS in a cell periodically listens to this channel.

b) Random Access Channel (RACH) - UPLINK

This channel is used to send a request to the network for a dedicated resource to the MS. If the request is not granted within a specific time period by the network, the MS repeats the request on the RACH.

Access Grant Channel (AGCH) - DOWNLINK

This channel is used by a BTS to notify the MS of the assignment of a dedicated control channel.

iii. Dedicated Control Channels (DCCH):

Like traffic channels, they are bidirectional and have the same format and function on both the forward and reverse links.

a) Standalone Dedicated Control Channel (SDCCH) – UPLINK/DOWNLINK

In response of RACH, the network allocates SDCCH over AGCH for further communication between MS and BTS. This channel is used for the Location Update, Voice Call Setup and SMS.

b) Fast Associated Control Channel (FACCH) - UPLINK/DOWNLINK

This channel is used to convey Handover information. There is no time slot and frame allocation dedicated to this channel. This channel can be associated with SDCCH or TCH and works on the principle of stealing. The burst of TCH is replaced by FACCH signaling when required

c) Slow Associated Control Channel (SACCH) - UPLINK/DOWNLINK

This channel is always associated with TCH or SDDCH used for control and supervision of signals associated with the traffic channels.

IL CALL FLOW USING CHANNELS

The call origination made by the Mobile Station (MS) is a multi-step process on the network side. First of all, broadcast channels are already being transmitted by the BTS continuously. When a number is dialed by the MS, Random Access Channels (RACH) is sent to the BSC for allocation of the channel. In respond to that Access Grant Channel (AGCH) is send by BSC as a confirmation. Standalone Dedicated Control Channel (SDCCH) can be used for both downlinks as well as uplink. Hence, it is used for multiple purposes in this flow. It is sent by the MS to MSC with its location update information.

Through SDCCH MSC request for the International Mobile Subscriber Identity (IMSI) number and then this information is sent back to MSC by MS by SDCCH [2]. Along with IMSI to MSC, SDCCH gives location update to ULix and information about equipment to Equipment Identity Register (EIR) which is a part of Authentication Centre (AUC). Using the same channel security and ciphering of call is done. After all, this process connection is established and ringing begins [6]. Also, the Traffic Channel (TCH) is allocated for the call. Hence, the conversation starts between the two MS's.

Conclusion:

an this expt we studied about the GSM architecture. It's need and signaling technique.

Also learnt about GSM interface & court flow using channels.

QUESTIONS:

- 1. What is GSM and architecture?
- 2. What is GSM Signalling?
- 3. What is GSM technique

Department of Electronics and Telecommunication Engineering Experiment No.: 03

Date of Performance: 2/3/2023

Title: Study of GPRS services.

AIM: Study of GPRS services.

OBJECTIVES: To understand function of GPRS services.

INTRODUCTION:

GPRS is an expansion Global System for Mobile Communication. It is basically a packet-oriented mobile data standard on the 2G and 3G cellular communication network's global system for mobile communication. GPRS was built up by European Telecommunications Standards Institute (ETSI) because of the prior CDPD, and I-mode packet switched cell advances. GPRS overrides the wired associations, as this framework has streamlined access to the packet information's network like the web. The packet radio standard is utilized by GPRS to transport client information packets in a structured route between GSM versatile stations and external packet information networks. These packets can be straightforwardly directed to the packet changed systems from the GPRS portable stations

History Of GPRS

GPRS was one of the main advances that empowered a cell system to interface with Internet Protocol systems, accomplishing across the board reception in the mid-2000s. The capacity to peruse the web from a telephone whenever through "dependably on" data networking, while underestimated in a great part of the world today, was yet an oddity when it was introduced. Indeed, even now, GPRS keeps on being utilized in parts of the world where it has been too expensive even to consider upgrading cell organize framework to move up to newer alternatives. According to a study on the history of GPRS development Bernhard Walke and his student, Peter Decker, are the inventors of GPRS – the first system providing universal mobile Internet access.

Goals Of GPRS:

- 1. Consistent IP services
- 2. Leverage industry investment in IP
- 2. Open Architecture
- 4. Service innovation independent of infrastructure

Services Offered:

- 1. SMS messaging and broadcasting
- 2. Push-to-talk over cellular.
- 3. Instant messaging and presence
- 4. Multimedia messaging service
- 5. Point-to-Point and Point-to-Multipoint services

Protocols supported:

- 1. Internet Protocol (IP)
- 2. Point-To-Point Protocol (PPP)

spiceworks

HOW DOES GPRS WORK?

Benefits Of GPRS:

· Mobility:

The capacity to keep up consistent voice and information interchanges while moving.

· Cost Efficient:

Communication via GPRS is cheaper than through the regular GSM network

· Immediacy:

Allows customers to obtain connectivity when needed, regardless of location and without a lengthy login session.

• Localization:

Enables cuctomers to acquire data applicable to their present area.

· Easy Bifling:

GPRS packet transmission offers an easier to use billing than that offered by circuit switched administrations. GPRS is an innovation that numerous GPS beacons are using to get up to the minute data with tracking. When the GPS gadget records the information, it would then be able to be transmitted through GPRS to another central location, for example, a PC or through an email. It is the GPRS innovation that takes into consideration ongoing updates to GPS following frameworks. It is this direct GPRS association that gives the client of the GPS system the most reliable information available today.

spiceworks

BENEFITS OF GPRS

GPRS wireless packet data has three main characteristics:

- An always-online function that eliminates the need for dial-up, enabling proproaccessible with just one click.
- The upgraded usual systems mean that carriers do not have to update their equip instead, GPRS is put on top of the current equipment.
- An essential part of future 3G networks, meaning the packet data core network for 3c systems EDGE and WCDMA, GPRS is a necessary foundation for the future.

GPRS provides the services listed below:

- 1. Broadcasting and SMS messaging
- 2. Cellular-based push-to-talk
- 3. Presence and instant messaging
- 4. Service for multimedia messaging
- 5. Services such as point-to-point and point-to-multipoint

Conclusion:
In this expt. we studied about the GIPRS.
The state of the protocal's and services affred. Also the protocal's and services affred. Also the protocal's and

benifits.

QUESTION:

1. What is GPRS?

2. What are features of GPRS?

3. Difference between GSM and GPRS

1) What is GIPRS ? GAPRS - GAPRS is General pucket Rudia Seavices
For wireless & It is a best effort packet Switching protocol for wireless and cellular Network Communication services - GIPRS was one of the main advances that empowered a cell system to interface with - GIPRS the first System providing universal mobile internet access. Q.2 What are frequer of GPRS.? - Feature of GIPRS 1) mobility! The capacity of to leep up Consistent voice and information interchanges while moving.

2) Cost efficient - Communication via GISM H/W Cheaper than through the regular GISM 3) Immediacyte Allaws Customers to obtain in Connectivity when needed regardies of tocation & without a length log in sessions 40 localization: Fnable Customers to aquine dute application to their present area. 5) Easy & Billing - GIPRS transformission

Packet offers an easier to use billing. than offered by circuit switched admir nitations these are the features of GPRS.

Experiment No.: 04

Date of Performance: 9/3/2023

TITTLE: Simulate BER Performance over Rayleigh Fading wireless channel with BPSK Transmission

AIM: Simulate BER Performance over Rayleigh Fading wireless channel with BPSK Transmission for SNR 0 to 60 db..

OBJECTIVES:

- What is a Rayleigh Fading
- Study of BPSK transmission

SOFTWARE & HARDWARE REQUIREMENTS:

- Windows 7/10/11
- Matlab

THEORY-CONCEPT

In this experiment, we will derive the theoretical equation for bit error rate (BER) with Binary Phase Shift Keying (BPSK) modulation scheme in Additive White Gaussian Noise (AWGN) channel. The BER results obtained using Matlab/Octave simulation scripts show good agreement with the derived theoretical results. With Binary Phase Shift Keying (BPSK), the binary digits 1 and 0 maybe represented by the analog levels and respectively. The system model is as shown in the Figure below.

December 10 as Adam per corrupted by noise, typically referred to as Adam to the second and the

where the process of the cases follows the Gaussian probability distributions of the cases of the cases follows the Gaussian probability distributions of the cases of the cases follows the Gaussian probability distributions of the cases follows the case follows the case follows the case of the

Companies the probability of error

Lines the decreases provided

the married speak

 $y = s_1 + n$, when bit 1 is transmitted and

 $y = s_0 + n$, when bit 0 is transmitted.

$$\begin{split} p(y|s_0) &= \frac{1}{\sqrt{\pi N_0}} e^{-\frac{(y+\sqrt{E_b})^2}{N_0}} \\ p(y|s_1) &= \frac{1}{\sqrt{\pi N_0}} e^{-\frac{(y-\sqrt{E_b})^2}{N_0}} \end{split}$$

Figure: Conditional probability density function with BPSK modulation

The conditional probability distribution function (PDF) of for the two cases are

Assuming that S1 and S0 are equally probable i.e. $p(s_1)=p(s_2)=1/2$ the threshold 0 forms the optimal decision boundary

- If the received signal is is greater than 0, then the receiver assumes was transmitted
- If the received signal is is less than or equal to 0, then the receiver assumes was
 to received.

i.e. $y>0 \Rightarrow s_1$ and $y<0 \Rightarrow s_0$

Probability of error given was transmitted.

With this threshold, the probability of error given is transmitted is (the area in blue region).

 $p(e|s_0) = \frac{1}{\sqrt{\pi}} \sum_{N=0}^{\infty} \frac{-(y+\sqrt{S_k})^2}{N_0} \, \mathrm{d}y = \frac{1}{\sqrt{\pi}} \int\limits_{N_0}^{\infty} e^{-x^2} \mathrm{d}x = \frac{1}{2} e \tau \left[c \left(\sqrt{\frac{S_k}{N_0}} \right) \right]$

$P_b = p(s_1)p(e|s_1) + p(s_0)p(e|s_0)$

Given that we assumed that S1 and S0 are equally probable i.e. $p(s_1) = p(s_0) = 1/2$

$$P_b = \frac{1}{2} erfc \left(\sqrt{\frac{E_b}{N_0}} \right)$$

Simulation model

Matlab Octave source code for computing the bit error rate with BPSK modulation from theory and simulation. The code performs the following:

- (a) Generation of random BPSK modulated symbols +1's and -1's
- (b) Passing them through Additive White Gaussian Noise channel
- (c) Demodulation of the received symbol based on the location in the constellation
- (d) Counting the number of errors
- (e) Repeating the same for multiple Eb/No value

MATLAB CODE:

N = 10°6 % number of bits or symbols rand('state',100); % initializing the rand() function

randn('stete',200); % initializing the randn() function

* sransmitter

ip = rand(1,N)>0.5; % generating 0.1 with equal probability

s = 2*ip-1; % BPSK modulation 0 -> -1; 1 -> 1

n = 1/sqrt(2)*[pandn(1,N) + j*randn(1,N)]; % white gaussian noise, 0dB variance

Eb No dB [-3:10]; % multiple Eb/No values

for ii = Klength(Eb_N0_dB)

% Xoise addition

y=s+10*(-Eb N0 dB(ii)/20)*n; % additive white gaussian noise

% receiver - hard decision decoding

ipHat = real(y)>0;

% counting the errors

 $_{\mathbf{n} \to \mathbf{n}'}(ii) = \operatorname{size}(\operatorname{find}([ip\text{-}ip\operatorname{Hat}]), 2);$ end simBer = nErr/N; % simulated ber theoryBer = 0.5*erfc(sqrt(10.*(Eb_N0_dB/10))); % theoretical ber % plot close all semilogy(Eb_N0_dB,thcoryBer,b,-'); hold on semilogy(Eb_N0_dB,simBer,'mx-'); axis([-3 10 10^-5 0,5]) grid on legend('theory', 'simulation'); xlabel('Eb/No, dB'); ylabel('Bit Error Rate'); title('Bit error probability curve for BPSK modulation')

Result:

conclusion:

In this experiment we atimulated the GAR

performance over Rayligh fading wireless

Channel with BPSK Using MATLAB

QUESTIONS:

23, 19:48

1. What is BER Performance in fading channel in wireless communication?

2. What are the characteristics of fading channel?

Exp. No.4

Dy What is BER Performance in fading channel in wireless Communication?

BER Performance in Fading Channel.

The BER Fading Further returns the hit error rate

(SE P) Over a Rayleigh or Racian

Fading Channel for Uncoded data wing a specified modulation scheme.

To oil the proof of the proof

Department of Electronics and Telecommunication Engineering Experiment No.: 05

Date of Performance: 23/3/2023

TITTLE: Configure a Cisco Router as a DHCP Server

AIM: Configure a Cisco Router as a DIICP Server

Objectives:

What is a DORA PROCESS? Benefits of DHCP How it works?

Outcome:

Deploy Client-Server architectures and prototypes by the means of correct standards and technology to assign IP address.

Software Requirements:

Open-source Linux operating system, Cisco Packet Tracer.

THEORY:

Dynamic Host Configuration Protocol (DHCP) is a standardized client/server network protocol that dynamically assigns IP addresses and other related configuration information to network devices. Every device on a TCP/IP-based network must have a unique unicast IP address to access the network and its resources. Without DHCP, IP addresses for new computers or computers that are moved from one subnet to another must be configured manually.

Configuring the DHCP server

The DHCP server uses address pools when responding to DHCP client requests.

Address pools contains specific IP configuration details that the DHCP server can allocate to a client. You can configure multiple address pools on the device for different networks.

To configure an address pool, you must:

- 1. Create the pool and enter its configuration mode.
- 2. Define the network the pool applies to.
- 3. Define the range of IP addresses that the server can allocate to clients. You can specify multiple address ranges for each pool.

- 5. Set the options (standard and user-defined) that the clients of a pool require when configuring their IP details.
- 6. After configuring the address pools, enable the DHCP server by using the command

On Client Side:

Select @ allocation as a Dynamic allocation.

DORA Process

The following diagram shows the changing part numbers and the source and districts used during the DHCP transaction. UDP port 68 is reserved for DHCP screen, and

Step 1

DHCP Discover

Sent by the client looking for the IP address. The source IP is 0.0.0 because the client doesn't have an IP address. The destination is 255.255.255, which is the broadcast address, as the client doesn't know where the DHCP server is located, so it broadcasts to all devices on the network.

Step 2 DHCP Offer

Sent by the DHCP server offering an IP address to the client. The source address in the DHCP server address. The DHCP server doesn't know the client address yet, so it broadcasts the offer to all devices on the network.

Step 3 DHCP Request

Sent by the client to the DHCP server to say "I will take that IP address; thanks." The client IP address is still 0.0.0.0 and it is again broadcast to all so that any other servers on the network that may have offered an IP address will know to stop communicating with the client for now

Step 4 DHCP Acknowledgment

Sent by the DHCP server to the client. It confirms the IP address and other details such as subnet mask, default gateway, and lease time with the client. The source address is the DHCP server and the destination is still the broadcast address

The DHCP process

There are four basic steps the DHCP process follows when a client connects to the network:

- 1. The elient broadcasts a DHCP Discover message to say "I need an IP address, are there any
- DHCP servers out there?"
- 2. Multiple DHCP servers may respond (via broadcast) with an OFFER for a leased IP address
- 3. The client will choose a DHCP server offer and then broadcast a DHCP REQUEST back to the DHCP server(s) to say "Thanks, I have selected an offer from this DHCP server." All servers will see which offer the client selected.
- 4. Finally, the selected DHCP server will send (broadcast) an ACKNOWLEDGEMENT back to the client to confirm the IP address, lease time, and other details

Conclusion:

In this experiment we have studied & configured a cisco Router as a DHCP server using open-source linux os, and cisco factivel tracer.

QUESTIONS: -

A Explain DORA Process?

- 2. What are benefits of DHCP Process?
- 3. Why DORA works on UDP...

Amrutvahini College of Engineering, Sangamner Department of Electronics and Telecommunication Engineering Experiment No.: 06

Date of Performance: 13/4/2023

TITTLE: To understand the handover mechanism.

Aim: To understand the handover mechanism.

OBJECTIVES: To study the effect of handover threshold and margin on SINR and call drop probability and handover probability

SOFTWARE & HARDWARE REQUIREMENTS:

Operating System: Windows 7

Java Version: 6 only

Mozilla Firefox: version: 47.0.1

THEORY-CONCEPT

Theory: Handoff Consider the figure below Initially say the mobile M is quite close to the base station A and hence receives signal strength from A PArx>PBrx . As the mobile moves away from the base station. A and goes towards B then the signal strength from A keeps falling (pathloss increases). Let there be a minimum sensibility level P0rx0 for the mobile, i.e. if the signal from the B.S.to which the mobile is connected falls below P0rx0 then the call drops. In order to prevent call drop the mobile monitors receive signal strength from the neighboring 3-6 B.S. These neighboring 3-6 B.S. also monitor Rx signal strength from the M.S.

The mobile should get connected to B.S. which has the highest signal strength. However, if the M.S. continuously attaches itself to the B.S. with instantaneous height signal strength then the his rate may very high in server condition.

Thus, some hydren's condition is used for h. If PTrx (T= target B.S.) > Phys/h higher h(o) threshold and Prx (e-current B.S.) < Phrx/h minimum No threshold the execute h(o) to B.St. Thus, it is threshold impeditive to study in part of the handoff process.

Ay-Phrx-PlexA+#

A successful handoff is one where the call gets from and continuous without call or in other words the occurs before h/o Perx becomes <POrx 0. If Perx <POrx 0 then call drop event occurs. One would like to minimize the no of handoff events as well as minimize call drop probability. The experiment provides opportunity to study the inherent of these three parameters on h/o. Further the averaging window for calculating PTrx and Perx also plays a role in the process. In the experiment small scale fading is not considered and hence the averaging considered only shadowing:

Students conducting the experiment is expected to study the impact of these on h/0. He/She is encouraged to respect the experiment for several sets of values of these parameters these draw conclusion

Instruction

Follow the instructions given below to perform the experiments

1.1 Starting the Experiments: -

Step2. Enter your name then click OK button

Stepl: Click on START button to start experiment.

Step9: To redo experiment click on RESET button.

Observation Assert		Mobile Speed	Outage	Outage
Reuse No	No of Hand Off	Widdle Spece		Percentag
1				
3				

Keep reuse ratio 3 and set mobile speed to 50 mps and 100 mps and record the below data. What do we observe after increasing the speed of the mobile station.

district An artist		1 00 00 00	Outage	Outage	
Reuse No	Mobile Speed	No of Hand Off		Percentag //	
	Mark Street	2 9.0	1008.0	5.04%	
3	50	200		0 00 1	
-	100	_ 57.0	756.0	3.98-/-	
3	100				

mechanism. Also studied the handover mechanism. Also studied the effect of threshold handover and margin on SINR call charp frof, etc.

- 1. What is handoff?
- 2. What is the condition for handoff?
- 3. Explain Handoff and its types

Fading Channels & Mobile Communications

IIT Kharagpur pate: 15May/2023

9

Exp 8: Handoff Name: ROHINI

Input Par	ameters
Reuse: 3 Model: Urban Micro	
fc(GHz): 2.5	Pt(dBm) 41
	Beam Wildingsegn 70
Rotate(deg): 20	Cell Radius(m): 116
hT(m): 10	
WOOD TIEST	hMmi: 1.5
Sigma(dB): 4	Vernical Titl(deg): 12
SNR(dB): 5	Band Width(MHz), 5
Noise Figure(dB): 7	Noise Power(dRim) 100.01
Pr0(dBm): -95.01	Time Slot(s): 200

Exp. Results								
SNR	No.Calldr ops	No.Hand offs	Delta1	Delta2	Reading Time(ms)	Outage Time(ms)	% Outage	Alpha
5.0	0.0	15.0	3.0	3.0	200704.0	6272.0	3.12	0.1

Observation Observation not entered

ignature of ROHINI)

2023, 19:48

Department of Electronics and Telecommunication Engineering Experiment No.: 07

Date of Performance: 20/4/2023

TITTLE: To study the outage probability, LCR & ADF in SISO for Selection Combining and MRC.

AIM: To study the outage probability, LCR & ADF in SISO for Selection Combining and MRC.

OBJECTIVES: To understand function of CDMA used to test orthogonally and autocorrelation of a code.

SOFTWARE & HARDWARE REQUIREMENTS:

OS.: Unix or windows 7/8/10,

Processor: i3/i5/i7

Software: Python (Jupyter Notebook) or java

THEORY-CONCEPT

Small scale fading characterizes the fluctuation of signal (strength) over a spatial distance of fraction of wavelength. The fluctuation is also observed in both time and frequency domain at a gain location. The variation of signal (strength) at the receiver is due to random interference between the different copies of the transmitted signal. The interference is sometimes constructive and sometimes destructive. The multiple copies of the transmitted signal are generated due to scattering, reflection, and diffraction due to obstacle present in the path of radio signal between the Tx and Rx movement of the Tx and Rx or the obstacle cause time domain variation of the signal (strength) and the phenomenon is called Doppler effect. Since each path of the radio wave may exhibit difference doppler its cumulative effect results in spread of the carrier/ frequency content of the signal and hence is also known as Doppler spread.

If v is the maximum velocity (m/s) then the maximum Doppler shift is given by

fm=v(m/s)c=

Where,

- * c=velocitylight=3*108m/s=h=3*10*8
- · fc=carrieremency

Coherence time is defined as interval in time over which the signal remains correlated, It is defined as

Te= 9/167Ifm (s)

If symbol duration Ts << Te it experience slow fading while if Ts>Te it experience fast fading. The enveloped level crossing rate is defined as the rate at which the signal envelope crosses a specified level

R in the positive (or negative) going direction.

It requires the joint pdf (a,a) of the enveloped level α =[r] and enveloped slope $.\alpha$ -[r]

 $LR=\sqrt{2}\pi(k+1) fimpe-k-(k+1)\rho 210(2\rho\sqrt{k}(k+1))\rho=R\sqrt{2}\rho-RRrms\ Rrms=\sqrt{2}\rho\ is\ the\ enveloped\ tevel$ fevel

Rayleigh fading (k=0) and isotropic scattering LR= $\sqrt{2}\pi fmpe^{-}\rho 2$

Level Crossing Rate For Selection Combining

 $L = fm \sqrt{a} M \gamma \sqrt{a} \exp(-\gamma 22 \sigma) [1 - \exp(-\gamma 22 \sigma)] M - 1$

Where.

- fm is the Maximum doppler frequency.
- σ is the r m s value of the received signal voltage.
- y is the threshold voltage.
- M = No of channels

erage enveloped fade duration

2023 rate the enveloped remains below a specified level R.

 $_{t=t}NRPr[t\leq R]$

Average lade duration For Selection Combining

ADF=Vp*exp(y22n-1)V2nIdMy

For Rayleigh distribution fading

 $\Pr[r \leq R] = [R0Pr(dr) - 1 - \exp(-\rho 2)$

-1-op2-1ρfm√2π

 $_{\rm In}$ case of flat fading the plot of signal enveloped of transmitting γ is given as

 $p(r) = r\sigma 2 exp(-r22\rho 2)(0 \le r \le \infty$

=0(r<0)

Where,

. σ is the r.m.s value of the received voltage signal before detection

• a2is the time average power of the received signal before enveloped detection.

probability of outage is defined as

 $P(R) = Pr(r \leq R) = \int R0p(r)dr = 1 - \exp(-R22g2)$

The mean value rmean of rayleigh distribution is given by

rmean= $E[r] = \int \infty 0 r p(r) dr = \sigma \sqrt{\pi} 2 = 1.2533 \sigma = 1.2533$

 $\sigma 2r = E[r2] - E2[r] = \int_{\infty} 0r2p(r)dr - \sigma 2\pi 2$

=σ2(2-π2)=0.4292σ2

Instructions for Experiment: - Flat Fading

Channels & Mobile Communications / Kharagpur Exp9: Flat Fading Name: BE ETC Channel Prob vs Th (M=5) 1.00 -0.75 Prob<Th 0.50 0.25 0.50 0.75 0.25 1.00 0.00 0.00 time(sec) -5 5 10 15 20 S-MRC - ChO Ch1 Ch2 - Ch3 Threshold(dB) SC - MRC LCR vs Th ADF vs Th 1.00 0.75 ADF 0.50 201 0.25 0.00 5 15 10 20 -5 10 15 20 Threshold(dB) Threshold(dB) Ep — SC_Theor — MRC_Exp SC Exp SC_Theor - MRC_Exp IRC_Theor MRC Theor

Amrutvahini College of Engineering, Sangamner Department of Electronics and Telecommunication Engineering

Roll No

Date of Performance: 27/4/2023

MITTLE: File sharing by using TCP Protocol

AIM: File sharing by using TCP Protocol

OBJECTIVES:

What is a socket?

. The client-server model.

· Remote Communication

SOFTWARE & HARDWARE REQUIREMENTS:

. Python, Open-source Linux operating system.

THEORY-CONCEPT

The basics

What is mean by Socket

Sockets allow communication between two different processes on the same or different machines. To be more precise, it's a way to talk to other computers using standard Unix file descriptors. In Unix, every I/O action is done by writing or reading a file descriptor. A file descriptor is just an integer associated with an open file and it can be a network connection, a text file, a terminal, or something else.

To a programmer a socket looks and behaves much like a low-level file descriptor. This is because commands such as read() and write() work with sockets in the same way they do with files and pipes.

Types of Socket

A Unix Socket is used in a client-server application framework. A server is a process that performs some functions on request from a client. Most of the application-level protocols like FTP, SMTP, and POP3 make use of sockets to establish connection between client and server and then for exchanging data.

Socket Types

There are four types of sockets available to the users. The first two are most commonly used and the last two are rarely inted

Processes are presumed to communicate only between sockets of the same type but there is no restriction that prevents communication between sockets of different types

Stream Sockets -

Delivery in a networked environment is guaranteed. If you send through the stream socket three items "A, B, C", they will arrive in the same order - "A, B, C". These sockets use TCp (Transmission Control Protocol) for data transmission. If delivery is impossible, the sender receives an error indicator. Data records do not have any boundaries.

Datagram Sockets -

Delivery in a networked environment is not guaranteed. They're connectionless because you don't need to have an open connection as in Stream Sockets – you build a packet with the destination information and send it out. They use UDP (User Datagram Protocol).

Raw Sockets - These provide users access to the underlying communication protocols, which support socket abstractions. These sockets are normally datagram oriented, though their exact characteristics are dependent on the interface provided by the protocol. Raw sockets are not intended for the general user, they have been provided mainly for those interested in developing new communication protocols, or for gaining access to some of the more cryptic facilities of an

Sequenced Packet Sockets -

They are similar to a stream socket, with the exception that record boundaries are preserved. This interface is provided only as a part of the Network Systems (NS) socket abstraction, and is very important in most serious NS applications. Sequenced-packet sockets allow the user to manipulate the Sequence Packet Protocol (SPP) or Internet Datagram Protocol (IDP) headers on a packet or a group of packets, either by writing a prototype header along with whatever data is to be sent, or by specifying a default header to be used with all outgoing data, and allows the user to receive the headers on incoming packets.

The client-server model

The client-server model is one of the most commonly used communication paradigms in networked systems, Clients normally comprinicate with one server at a time. From a server's perspective, at any point in time, it is not unusual for a server to be communicating with multiple

know of the existence of and the address of the server, but the server does not need to know the address of (or even the existence of) the client prior to the connection being established. The

cient and the server on the same local network (unually called LAN, Local Area Newsork) gient and the server may be in different LANs, with both LANs, Local Area Newsork (WAN) by means of routers.

Control Protocol Cross

Transmission

TCP provides a connection oriented service, since it is based on connections between distributions of the provides reliability. When a TCP client sends date to the service administration of the service of the service

TOP Sequence of function calls for the client and a server participating in a TOP connection in

Figure: TCP client-serve


```
import socket
server_ip="localhost"
server_host=8002
server_code (3)
server_code (4)
server_code (5)
server_code (5)
server_code (5)
server_code (5)
server_code (5)
server_code (5)
server_code (6)
server_c
```