Regressions- och tidsserieanalys Föreläsning 10 - ARMA modeller och Enkel logistisk regression.

Mattias Villani 😇

Statistiska institutionen Stockholms universitet

Institutionen för datavetenskap Linköpings universitet

Översikt

- ARMA modeller
- Regression för tidsserier
- Odds och logodds
- Enkel logistisk regression

Autokorrelationsfunktion - AR(1)

 \blacksquare AR(1) som populationsmodell:

$$y_t = \alpha + \beta y_{t-1} + \varepsilon_t, \qquad \varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$$

Autokorrelationsfunktion (ACF)

$$\rho_k = \text{corr}(y_t, y_{t-k}), \text{ för } k = 1, 2, ...$$

 \blacksquare ACF för AR(1)

$$\rho_k = \beta^k$$
, för $k = 1, 2, ...$

Mattias Villani

Partiell autokorrelationsfunktion - AR(1)

AR(1)

$$y_t = \alpha + \beta y_{t-1} + \varepsilon_t, \qquad \varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$$

Partiell ACF (PACF) multipel regressions-variant av ACF

$$\rho_k^{\star} = \operatorname{corr}(y_t, y_{t-k} | y_{t-1}, \dots, y_{t-k-1}), \text{ för } k = 1, 2, \dots$$

 \blacksquare för AR(1) i populationen:

$$ho_1^\star = eta \
ho_k^\star = 0$$
, för $k = 2, 3, \dots$

Partiell autokorrelationsfunktion - AR(2)

AR(2)

$$y_t = \alpha + \beta_1 y_{t-1} + \beta_2 y_{t-2} + \varepsilon_t, \qquad \varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$$

Partiell ACF för AR(2) i populationen:

$$\rho_1^{\star} = \frac{\beta_1}{1 - \beta_2}$$

$$\rho_2^{\star} = \beta_2$$

$$\rho_k^{\star} = 0, \text{ för } k = 3, 4, \dots$$

ARMA modeller

AR(1) modell beror på laggad tidsserie y_{t-1}

$$y_t = \alpha + \phi_1 y_{t-1} + \varepsilon_t$$

lacksquare MA(1) modell beror på laggad felterm $arepsilon_{t-1}$

$$y_t = \alpha + \varepsilon_t + \theta_1 \varepsilon_{t-1}$$

ACF för MA(1)

$$\rho_1 = \theta_1$$
 $\rho_k = 0, \text{ för } k = 2, 3, \dots$

- Box-Jenkins identifiering av AR och MA ordning:
 - ▶ ACF noll efter q laggar \iff MA(q) modell.
 - ▶ PACF noll efter p laggar \iff AR(p) modell.

Kombinera AR och MA: ARMA modeller

 \blacksquare ARMA(1, 1) modell

$$y_t = \alpha + \phi_1 y_{t-1} + \varepsilon_t + \theta_1 \varepsilon_{t-1}$$

 \blacksquare ARMA(p, q) modell

$$y_t = \alpha + \phi_1 y_{t-1} + \ldots + \phi_p y_{t-p} + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \ldots + \theta_p \varepsilon_{t-p}$$

- ARMA(p, q) modeller är svårare att välja från ACF och PACF. ARMA(p, q) har inte tydliga nollor i ACF och PACF.
- Ibland måste man analysera skillnaden mellan två tidsperioder för att få tidsserien stationär:

$$\Delta y_t = y_t - y_{t-1}$$

- Vi har differentierat tidsserien. Kan "diffa" flera gånger.
- En ARIMA(p, d, q) modell är en ARMA(p, q) modell för en tidsserie y_t som vi diffat d gånger.

Estimation av en ARMA(2,2) modell

```
> library(SUdatasets)
> arimafit = arima(swedinfl$KPIF, order = c(2,0,2))
> arimasumm = arima_coef_summary(arimafit)
Parameter estimates
```

```
Estimate Std. Error z-ratio Pr(>|z|) 2.5 % 97.5 % ar1 0.023018 0.043356 0.53091 0.59548 -0.06196 0.10800 ar2 0.836117 0.037591 22.24263 0.00000 0.76244 0.90979 ma1 0.898033 0.065537 13.70271 0.00000 0.76958 1.02648 ma2 -0.071553 0.060119 -1.19019 0.23397 -0.18939 0.04628 mean 1.437798 0.172772 8.32195 0.00000 1.09916 1.77643
```

Regression för tidsserier

Regression

$$y = \alpha + \beta_1 x_1 + \ldots + \beta_k x_k + \varepsilon$$

där feltermerna ε antas bara oberoende från $N(0, \sigma_{\varepsilon}^2)$.

- Oberoende = okorrelerade f\u00f6r normalf\u00f6rdelade variabler.
- Regressionen skattas med

$$y = a + b_1 x_1 + \ldots + b_k x_k$$

och vi får residualer

$$e_t = y_t - \hat{y}_t.$$

- Vi kan undersöka om residualerna är okorrelerade.
- Två metoder:
 - \blacktriangleright Visuellt genom att plotta autokorrelationsfunktionen för e_t
 - Durbin-Watson test

ACF residualer - temp

Mattias Villani

ACF residualer - alla variabler

Regression med alla förklarande variabler: temp, hum, windspeed, holiday, workingday, säsong, yr.

Regression för tidsserier

Regressionsmodeller för tidsserier

$$y_t = \alpha + \beta_1 x_t + \varepsilon_t$$

får ofta korrelerade residualer. 🧐

Kombinera enkel regression och AR(1)

$$y_t = \alpha + \beta_1 x_t + \beta_2 y_{t-1} + \varepsilon_t$$

Kombinera multipel regression och AR(p)

$$y_t = \alpha + \beta_1 x_t + \ldots + \beta_k x_{kt} + \beta_{k+1} y_{t-1} + \ldots + \beta_{k+p} y_{t-p} + \varepsilon_t$$

Cykeluthyrning:

$$\texttt{AntalUthyr}_{\texttt{idag}} = \textit{a} + \textit{b}_1 \cdot \texttt{temp}_{\texttt{idag}} + \textit{b}_2 \cdot \texttt{AntalUthyr}_{\texttt{igar}}$$

Standardfel och hypotestest måste korrigeras om laggar av y_t används som förklarande variabel.

ACF residualer - enbart lag 1

Mattias Villani

ACF residualer - alla variabler + lag 1-4

Mattias Villani

Durbin-Watson test

- Test för autokorrelation (i feltermer).
- Teststatistika

$$d = \frac{\sum_{t=2}^{T} (e_t - e_{t-1})^2}{\sum_{t=1}^{T} e_t^2}$$

Durbin-Watson testar första autokorrelationen (AJÅ)

$$d \approx 2(1-r_1)$$

Teststatistikan uppfyller

$$0 \le d \le 4$$

Grova kritiska gränser:

$$d$$
 nära 2 \implies ej signifikant $d < 1 \implies$ signifikant positiv autokorrelation $d > 1 \implies$ signifikant negativ autokorrelation

Durbin-Watson test kan inte användas när man har laggar av målvariabeln (y_{t-1} etc) som förklarande variabler.

Mattias Villani ST123

Durbin-Watson test - cykeluthyrning

Förklarande variabler	R ²	$r_1^{(\mathrm{res})}$	d	<i>p</i> -värde
temp	0.385	0.764	0.471***	< 1 e-93
temp,hum,windspeed,holiday,workingday,säsong,yr	0.795	0.447	1.104***	< 1 e-33

Mattias Villani

Cykeluthyrningar - utvärdera prognosförmåga

- Träningsdata: Jan 1, 2011 Aug 31, 2012.
- **Testdata**: Sept 1, 2012 Dec 31, 2012.
- Prediktionsmått RMSE

$$RMSE_{test} = \sqrt{\frac{1}{n_{test}} \sum_{t \in Testdata} (y_t - \hat{y}_t)^2}$$

Cykeluthyrningar

Träningsdata: Jan 1, 2011 - Aug 31, 2012.

Testdata: Sept 1, 2012 - Dec 31, 2012.

Förklarande variabler	R ²	RMSE _{test}
temp	0.385	2346.60
$\verb temp,hum,windspeed,holiday,workingday,säsong,yr \\$	0.795	1292.07
lagi	0.714	1274.32
lag1,lag2	0.730	1279.30
lag1-lag4	0.746	1267.84
lag1-lag6	0.764	1262.10
temp,hum,windspeed,holiday,workingday,säsong,yr,lag1	0.825	1127.63
temp,hum,windspeed,holiday,workingday,säsong,yr,lag1-lag4	0.827	1118.83
temp,hum,windspeed,holiday,workingday,säsong,yr,lag1-lag6	0.830	1117.63
$\verb temp,hum,windspeed,holiday,workingday,säsong,yr,lag1-lag6, \\ Lasso \\$	NA	1118.34

Mattias Villani

Odds och logodds

Låt P(A) vara sannolikheten för en händelse A.

$$P(A) = \frac{\text{antal fall där } A \text{ inträffar}}{\text{antal möjliga fall}}$$

Odds

$$\label{eq:odds} \begin{aligned} \mathrm{Odds}(A) &= \frac{\text{antal fall där } A \text{ inträffar}}{\text{antal fall där A inte inträffar}} \\ \mathrm{Odds}(A) &= \frac{\mathrm{P}(A)}{1 - \mathrm{P}(A)} \end{aligned}$$

- Exempel: Sannolikheten att slå en 6:a med en vanlig tärning:
 - ▶ Sannolikhet P(A) = 1/6
 - Odds

Odds(A) =
$$\frac{1/6}{5/6} = \frac{1}{5}$$

Oddset är 1:5 ("1mot 5").

Exponentialfunktionen

Exponentialfunktionen

$$\exp(x) = e^x$$

där $e \approx 2.71828$ är Eulers tal som bas, istället för basen 10.

Naturliga logaritmen ln(x) är inversa funktionen till exp(x).

$$ln(e^x) = x$$

Mattias Villani

Logistisk regression - sannolikhet för y = 1

- Binär responsvariabel: y = 0 och y = 1.
- Logistisk regression

$$P(y = 1|x) = \frac{\exp(\beta_0 + \beta_1 x)}{1 + \exp(\beta_0 + \beta_1 x)}$$

$$P(y = 0|x) = 1 - P(y = 1|x) = \frac{1}{1 + \exp(\beta_0 + \beta_1 x)}$$

Mattias Villani

Logistisk regression - oddskvot

Logistisk regression

$$P(y = 1|x) = \frac{\exp(\beta_0 + \beta_1 x)}{1 + \exp(\beta_0 + \beta_1 x)}$$

$$P(y = 0|x) = \frac{1}{1 + \exp(\beta_0 + \beta_1 x)}$$

Odds

Odds
$$(y = 1|x) = \frac{P(y = 1|x)}{P(y = 0|x)} = \exp(\beta_0 + \beta_1 x)$$

Odds i logistisk regression är multiplikativa effekter $[\exp(a+b) = \exp(a) \exp(b)]$

$$Odds(y = 1|x) = \exp(\beta_0) \cdot \exp(\beta_1 x)$$

■ Tolkning intercept β_0 [exp(0) = 1]

$$Odds(y = 1 | x = 0) = \exp(\beta_0)$$

Logistisk regression - oddskvot

Odds

$$Odds(y = 1|x) = \exp(\beta_0 + \beta_1 x)$$

För x = 1 $Odds(y = 1 | x = 1) = exp(\beta_0 + \beta_1) = exp(\beta_0) exp(\beta_1)$

- För $x = 2 [\exp(ab) = \exp(a)^b]$ Odds $(y = 1|x = 2) = \exp(\beta_0) \exp(2\beta_1) = \exp(\beta_0) \exp(\beta_1)^2$
- Tolkning eta_1 : x ökar med en enhet, oddset multipliceras med $\exp(eta_1)$
- **Oddskvot** för att tolka β_1

$$OR(x) = \frac{Odds(y = 1|x + 1)}{Odds(y = 1|x)} = exp(\beta_1)$$

Bevis:

$$\mathrm{OR}(x) = \frac{\mathrm{Odds}(y = \mathbf{1}|x + \mathbf{1})}{\mathrm{Odds}(y = \mathbf{1}|x)} = \frac{\exp(\beta_{\mathbf{0}} + \beta_{\mathbf{1}}x + \beta_{\mathbf{1}})}{\exp(\beta_{\mathbf{0}} + \beta_{\mathbf{1}}x)} = \frac{\exp(\beta_{\mathbf{0}} + \beta_{\mathbf{1}}x)\exp(\beta_{\mathbf{1}})}{\exp(\beta_{\mathbf{0}} + \beta_{\mathbf{1}}x)} = \exp(\beta_{\mathbf{1}})$$

Mattias Villani ST123G

Oddskvot - exempel

Sannolikhet för cancer (y = 1) bestäms av personens ålder x

$$P(y = 1|x) = \frac{\exp(-4.6 + 0.04 \cdot x)}{1 + \exp(-4.6 + 0.04 \cdot x)}$$

- Dvs $\beta_0 = -4.6$ och $\beta_1 = 0.04$.
- Oddskvoten: ökning av odds med ca 4% per levnadsår:

$$\exp(\beta_1) = \exp(0.04) = 1.040811$$

Oddset för en nyfödd är ca 1 : 100

Odds
$$(y = 1|x = 0) = \exp(-4.6) = 0.01005184$$

Oddset för en 1-åring

$$\exp(\beta_0) \exp(\beta_1) = 0.01005184 \cdot 1.040811 = 0.01046207$$

Oddset för en 2-åring

Odds
$$(y = 1|x = 1) \exp(\beta_1) = 0.01046207 \cdot 1.040811$$

Oddset för en 100-åring: $\exp(\beta_0 + 100\beta_1) = 0.548811$

Mattias Villani ST123G

Logistisk regression - log-odds

Repetition: Logaritm med bas 10:

$$\log(10^a) = a$$

Naturlig logaritm (bas $e \approx 2.7183$)

$$\ln(\exp(a)) = \ln e^a = a$$

Logistisk regression

$$P(y = 1|x) = \frac{\exp(\beta_0 + \beta_1 x)}{1 + \exp(\beta_0 + \beta_1 x)}$$

Odds

$$Odds(y = 1|x) = \exp(\beta_0 + \beta_1 x)$$

Log-odds

$$LogOdds(y = 1|x) = \beta_0 + \beta_1 x$$

Logistisk regression är en linjär modell för log-oddset.

Vilka överlevde Titanic? Enkel logistisk regression

- n = 891 personer på Titanic, varav 342 överlevande.
- Responsvariabel: y = 1 om överlevde, annars y = 0.
- Förklarande variabel: age

```
> library(regkurs)
> fit <- glm(survived ~ age, data = titanic, family = binomial)</pre>
> logisticregsummary(fit)
Parameter estimates
              Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.2091888  0.1594937 -1.3116  0.189662
            -0.0087744 0.0049474 -1.7735 0.076139
age
Odds ratio estimates
            Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.81124 1.1729 -1.3116 0.189662
            0.99126 1.0050 -1.7735 0.076139
age
```

Vilka överlevde Titanic? Enkel logistisk regression

- Oddset för att överleva för en nyfödd (age=0) är $\exp(-0.2091888) = 0.81124$.
- Sannolikheten för att överleva för en nyfödd (age=0) är 0.81124/(1+0.81124) = 0.4478927.
- Oddset för att överleva för en 1-åring: 0.81124 · 0.99126 = 0.8041498
- \blacksquare ... vilket är en minskning med $(1 0.99126) \cdot 100 = 0.874\%$.
- Varje extra levnadsår minskar oddset med 0.874%.