

# SA8155/SA8195 Linux Android Automotive Camera Architecture Overview

80-PG469-95 Rev. B

Confidential and Proprietary - Qualcomm Technologies, Inc.

NO PUBLIC DISCLOSURE PERMITTED: Please report postings of this document on public servers or websites to: DocCtrlAgent@qualcomm.com.

**Restricted Distribution**: Not to be distributed to anyone who is not an employee of either Qualcomm Technologies, Inc. or its affiliated companies without the express approval of Qualcomm Configuration Management.



### Confidential and Proprietary – Qualcomm Technologies, Inc.



#### Confidential and Proprietary - Qualcomm Technologies, Inc.

NO PUBLIC DISCLOSURE PERMITTED: Please report postings of this document on public servers or websites to: DocCtrlAgent@qualcomm.com.

Restricted Distribution: Not to be distributed to anyone who is not an employee of either Qualcomm Technologies, Inc. or its affiliated companies without the express approval of Qualcomm Configuration Management.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of Qualcomm Technologies, Inc.

All Qualcomm products mentioned herein are products of Qualcomm Technologies, Inc. and/or its subsidiaries.

80-PG469-95 Rev. B December 2019

Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

Qualcomm Technologies, Inc. 5775 Morehouse Drive San Diego, CA 92121 U.S.A.

© 2019 Qualcomm Technologies, Inc. and/or its subsidiaries. All rights reserved.

## **Revision History**

| Revision | Date          | Description                                                                    |
|----------|---------------|--------------------------------------------------------------------------------|
| А        | April 2019    | Initial release                                                                |
| В        | December 2019 | There are many changes to this document, and it should be read in its entirety |

**Note:** There is no Rev. I, O, Q, S, X, or Z per Mil. standards.

#### **Contents**

- Hardware Overview
- Hardware Architecture
- Internal ISP
- Software Architecture
- QCarCam API
- Debugging
- References
- Questions?



### **Document Scope**

The purpose of this document is to provide an overview of the hardware capabilities of the camera system on SA8155/SA8195 SoC and software architecture. You can use this document to bring up the camera on the Qualcomm automotive development platform (ADP) with the AR0231 camera sensor

For bring-up procedures specific to a customized board with potentially different camera hardware, see SA6155/SA8155 Automotive Camera AIS Customization Guide (80-PG469-93)

#### **Contents**

- Hardware Overview
- Hardware Architecture
- Internal ISP
- Software Architecture
- QCarCam API
- Debugging
- References







#### Camera Hardware Blocks\*

- Applications processor
  - **Hosts Linux OS**
  - Loads and executes camera driver software that controls all camera-related hardware blocks, sets up and controls clocks, as well as configures GPIO for camera sensor
- Camera Control Interface (CCI)
  - Used for dedicated I2C for camera subsystem
  - Commands are given CCI -> Deser via I2C, then Deser -> sensor via GMSL-2 or FPD-Link
- CSI PHY + CSID
  - Frame data entrance to SOC
  - Four 4-lane MIPI CSI configurable in 4 + 4 + 4 + 4 configuration
- Image Front End (IFE)
  - Hardware for dumping camera frame data to memory
  - Has four IFEs
  - Two IFEs are "Full IFE"s (3 RDI + 1 pipe for processing each)
  - Two are "Lite IFE"s (4 RDI each)
  - All paths through camera hardware will output to memory via an RDI (raw dump interface), regardless of processing needs
  - Processing happens after IFE dumps to memory
- Bayer Processing Engine (BPE)
  - Input is Bayer RAW frames from memory
  - Outputs YUV frames to memory
- Image Processing Engine (IPE)
  - Input is YUV frames from memory
  - Output is YUV frames to memory
  - Used for noise reduction

Hardware capability does not guarantee software support.

#### **Hardware Features in Camera\***

80-PG469-95 Rev. B December 2019

| Camera interfaces (CSID)                   | <ul> <li>4 CSID ports</li> <li>MIPI Combo C/D-PHY 4/4/4/4 or 4/4/4/2/1</li> <li>D-PHY – 2.5 Gbps/lane</li> <li>C-PHY – 5.71 Gbps/trio with three trios</li> </ul> |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sensor driver support**                    | • LI-AR0231                                                                                                                                                       |
| Deserializer driver support**              | • MAXIM 9296                                                                                                                                                      |
| IFEs                                       | <ul><li>2x Lite IFE (760 MP/s each)</li><li>2x Full IFE (760 MP/s each)</li></ul>                                                                                 |
| Raw Dump Interfaces (RDI)                  | <ul> <li>Each Lite IFE can support up to 4 RDI streams simultaneously</li> <li>Each Full IFE can support up to 3 RDI streams simultaneously</li> </ul>            |
| ISP                                        | <ul> <li>HDR via DSP/GPU</li> <li>Bayer processing via BPE</li> <li>Add'l post processing via BPE/IPE</li> </ul>                                                  |
| Bayer sensors with HDR processing required | • 4 concurrent                                                                                                                                                    |

<sup>\*</sup> Hardware capability does not guarantee software support. Please check with local CE for clarification on software support.

<sup>\*\*</sup> Other sensors and deserializers are supported, but drivers are not provided.





#### **SA8155 Camera Subsystem**

80-PG469-95 Rev. B December 2019

Shown with 4 sensors outputting Bayer and 4 sensors outputting YUV



#### **SA8195 Camera Subsystem**

80-PG469-95 Rev. B December 2019

Shown with 4 sensors outputting Bayer and 4 sensors outputting YUV



### Camera Components on SA8155/SA8195 ADP



- LI-AR0231 Sensor, 10-bit YUV422 output
- MAXIM9295 Serializer, 12-bit output
- LI-AR0231 and MAXIM9295 are part of the camera module
- GMSL2 Fakra serial cable
- MAXIM9296 Deserializer, 12-bit MIPI RAW output
- There are 4 MAXIM9296 deserializers on SA8155 ADP
- Up to 8 AR0231 sensors can be connected



80-PG469-95 Rev. B December 2019



#### **ISP Overview**

- All paths through camera hardware output to memory via a raw dump interface (RDI)
  - Regardless of processing needs, processing happens after the dump to memory
- HDR processing is done first by the GPU or DSP
- BPS is the processing segment that pulls frame data from memory, process, and then output back to memory
  - Responsible for conversion from Bayer color format to YUV

#### **BPS Modules**

- Each use-case has a defined path through the BPS called a pipeline
- Stats are used to tune ISP modules
- Pipelines defined in software via AIS engine -> CHI (camera hardware interface)



**Note:** Diagram shows hardware support. Contact local CE for confirmation on modules with software support.

PAGE 16 80-PG469-95 Rev. B December 2019 Confidential and Proprietary – Qua





## **Automotive Imaging System**

- Automotive Imaging System (AIS) client/server architecture supports QCarCam, the QTI automotive proprietary API
- AIS is designed specifically for automotive use cases. This design includes OS portability, multi-user access, input permissions, and bridge chip abstraction for entity access

### **Automotive Imaging System (cont.)**







#### **QCarCam API**

QCarCam is the QTI automotive proprietary API. This section details QCarCam utility, benefits, and basic API calls



QCarCam call flow

### **QCarCam API – Test App**

80-PG469-95 Rev. B December 2019

 The qcarcam\_test native demo applications is executable over the terminal to quickly test the QCarCam API

Parameter

confia

dumpFrame

startStop

To run on Android:

```
pauseResume
                                                                Pause/Resume every X frames
adb root
                                                     noDisplay
                                                                Run without displaying frames on the display
adb remount
                                                     singlethread
                                                                Run gcarcam test on a single thread
                                                     printfps
                                                                Print average frames per second every X seconds
adb shell
ais server &
//one camera test for camera at channel 0
qcarcam test -config=/system/bin/1cam.xml
//multi camera test can also be used for one camera
qcarcam test -config=/system/bin/8cam.xml
```

See release notes for latest qcarcam\_test and config file details

Example

config=/bin/camera/qcarcam\_test/

qcarcam\_config.xml

dumpFame=50

pauseResume=50

startStop=50

noDisplay

singlethread

printfps=10

Description

Specify gcarcam config.xml file location

Enable frame dump every X frames

Start/Stop every X frames

#### **Camera Bringup**

- QCarCam API works out-of-the-box on Qualcomm ADPs with reference sensor. For use with customer platforms or alternative camera sensors, AIS customization is required
- See SA6155/SA8155 Automotive Camera AIS Customization Guide (80-PG469-93) for bringup procedures





#### **Debugging – Increasing Log Level**

In vendor/qcom/proprietary/ais/Common/src/ais log.c:

```
/**
* ais default configuration
*/
#if defined(__INTEGRITY)
- #define AIS_LOG_DEFAULT_CONF AIS_LOG_CONF_MAKE(AIS_LOG_MODE_CONSOLE, AIS_LOG_LVL_HIGH)
+ #define AIS_LOG_DEFAULT_CONF AIS_LOG_CONF_MAKE(AIS_LOG_MODE_CONSOLE, AIS_LOG_LVL_DBG2)
#elif defined(CAMERA_UNITTEST)
- #define AIS_LOG_DEFAULT_CONF AIS_LOG_CONF_MAKE(AIS_LOG_MODE_CONSOLE, AIS_LOG_LVL_HIGH)
+ #define AIS_LOG_DEFAULT_CONF_AIS_LOG_CONF_MAKE(AIS_LOG_MODE_CONSOLE, AIS_LOG_LVL_DBG2)
#else
- #define AIS_LOG_DEFAULT_CONF_AIS_LOG_CONF_MAKE(AIS_LOG_MODE_OS, AIS_LOG_LVL_HIGH)
+ #define AIS_LOG_DEFAULT_CONF_AIS_LOG_CONF_MAKE(AIS_LOG_MODE_OS, AIS_LOG_LVL_DBG2)
#endif
```

#### **Debugging – Validate i2c**

Use ccidbgr to check i2c connection to deserializer and read/write

Location: /vendor/qcom/proprietary/ais/test/ccidbgr
Usage:

```
ais_server & ccidbgr -dev=[slotId] //slotId is the sensor slot id to be used. Default is 0.
```

Then follow the menu options. First set slave address [8bit format], address type [# of bytes], and data type [# of bytes]

```
cci_update
[slave addr] [addr_type] [data type]
```

#### Use read/write commands

```
cci_read
[addr]

cci_write
[addr] [data]
```

#### References

| Documents                                                                     |              |  |
|-------------------------------------------------------------------------------|--------------|--|
| Title                                                                         | Number       |  |
| Qualcomm Technologies, Inc.                                                   |              |  |
| SA6155/SA8155 Automotive Camera AIS Customization Guide                       | 80-PG469-93  |  |
| QCarCam Automotive Camera API Reference for SA6155/SA6155P and SA8155/SA8155P | 80-PK753-118 |  |

| Acronyms        |                                 |  |
|-----------------|---------------------------------|--|
| Acronym or term | Definition                      |  |
| ABF             | Adaptive Bayer Filter           |  |
| ACE             | Advanced Chroma Enhancement     |  |
| ADP             | Automotive Development Platform |  |
| AF              | Auto Focus                      |  |
| ASF             | Adaptive Spatial Filter         |  |
| AWB             | Auto White Balance              |  |
| BLC             | Black Level Correction          |  |
| CAC             | Chromatic Aberration Correction |  |
| CCI             | Camera Control Interface        |  |
| CCM             | Color Correction Matrix         |  |
| CCT             | Color Correction Table          |  |
| CPP             | Camera Post Processing          |  |

# References (cont.)

| Acronyms        |                                     |  |
|-----------------|-------------------------------------|--|
| Acronym or term | Definition                          |  |
| CS              | Chroma Suppression                  |  |
| DMA             | Direct Memory Access                |  |
| DPC             | Defective Pixel Correction          |  |
| FD              | Face Detection                      |  |
| FIR             | Finite Impulse Response             |  |
| GIC             | Green Imbalance Correction          |  |
| IIR             | Infinite Impulse Response           |  |
| LSC             | Lens Shading Correction             |  |
| LTM             | Local Tone Mapping                  |  |
| MCTL            | Media Control                       |  |
| DMA             | Direct Memory Access                |  |
| DPC             | Defective Pixel Correction          |  |
| FD              | Face Detection                      |  |
| MCE             | Memory Color Enhancement            |  |
| MIPI            | Mobile Industry Processor Interface |  |
| PDAF            | Phase Detection Auto Focus          |  |
| PVL             | Preferred Vendor List               |  |
| RNR             | Radial Noise Reduction              |  |
| RDI             | Raw Dump Interface                  |  |
| SCE             | Skin Color Enhancement              |  |
| SNR             | Skin Noise Reduction                |  |

80-PG469-95 Rev. B December 2019

# References (cont.)

| Acronyms        |                                    |  |
|-----------------|------------------------------------|--|
| Acronym or term | Definition                         |  |
| TNR             | Temporal Denoise                   |  |
| VFE             | Video Front-End of Camera Firmware |  |
| WNR             | Wavelet Noise Reduction            |  |

80-PG469-95 Rev. B December 2019



