

BIG DATA

EMANUELE DELLA VALLE
18 MAGGIO 2018

Horizontal vs Vertical Scalability

Emanuele Della Valle

@manudellavalle

Prof. @polimi & Founder @fluxedo_

Introduction

- "Traditional" SQL system scale vertically:
 - Adding data to a "traditional" SQL system may degrade its performances
 - When the machine, where the SQL system runs, no longer performs as required, the solution is to buy a better machine (with more RAM, more cores and more disk)
- Big Data solutions scale horizontally
 - Adding data to a Big Data solution may degrade its performances
 - When the machines, where the big data solution runs, no longer performs as required, the solution is to add another machine

Commodity hardware

• CPU: 8-32 cores

• RAM: 16-64 GB

• Disk: 1-3 TB

• Network: 10 GE

Appliance

• e.g. ORACLE EXADATA DATABASE MACHINE X6-8

• CPU: 576 cores

• RAM: 24TB

Disk: 360TB of Flash Storage per rack

Network: 40 Gb/second InfiniBand

Vertical scalability

Horizontal scalability

Vertical vs. Horizontal scalability

Vertical vs. Horizontal scalability The "grey area" data size

The "grey area" is time dependent

The "grey area" in the spark 2.x era (2017)

- there is not comprehensive study or answers in the literature and in the technical world at the moment
- we can determine it continuing the benchmarking work that we started