Proof of the Riemann Hypothesis via Zeropole Balance

Attila Csordas, AgeCurve, Cambridge, UK, 26/12/2024 - 16/01/2025 This one-pager is a compressed, extracted version of the full proof available at GitHub (https://github.com/attila-ac/Proof_RH_via_Zeropole_Balance).

1. Functional Equation: The Riemann zeta function satisfies:

$$\zeta(s) = 2^{s} \pi^{s-1} \sin\left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s).$$

Trivial zeros at s = -2k $(k \in \mathbb{N}^+)$ arise solely from the sine term, $\sin\left(\frac{\pi s}{2}\right)$, which dominates all other terms at these points.

2. Hadamard Product: The global zeropole structure of $\zeta(s)$ is given by:

$$\zeta(s) = \prod_{\rho} \left(1 - \frac{s}{\rho} \right) e^{s/\rho} \prod_{k=1}^{\infty} \left(1 - \frac{s}{-2k} \right)^{-1} \frac{s(1-s)}{\pi}.$$

Here, ρ are non-trivial zeros on the critical line, s=-2k are trivial poles introduced to balance the trivial zeros, and $\frac{s(1-s)}{\pi}$ encodes the Dirichlet pole's dual role.

- **3. Hardy's Theorem:** Infinitely many non-trivial zeros lie on the critical line, $\Re(s) = \frac{1}{2}$.
- 4. Zeropole Mapping and Orthogonal Balance of $\zeta(s)$: The Hadamard product formula, in conjunction with Hardy's theorem, establishes a bijection between trivial poles and non-trivial zeros of $\zeta(s)$. This bijection preserves cardinality \aleph_0 and encodes both algebraic independence and geometric perpendicularity between the two orthogonal zeropole sets. This mapping underpins algebraic cancellation in the divisor framework.
- 5. Compactification via Shadow Function: Define $\zeta^*(s)$ to resolve compactification issues at the point of infinity:

$$\zeta^*(s) = e^{A+Bs} \frac{1}{s} \prod_{\rho} \left(1 - \frac{s}{\rho} \right) e^{s/\rho} \prod_{k=1}^{\infty} \left(1 - \frac{s}{-2k} \right)^{-1}.$$

 $\zeta^*(s)$ replaces the Dirichlet pole with a simple pole at s=0, ensuring meromorphic compactification and preserving zeropole balance. By mirroring the crucial structural properties of $\zeta(s)$ Zeropole Mapping and Orthogonal Balance of $\zeta^*(s)$ follows.

6. Degree Computation: The degree of the divisor D associated with $\zeta^*(s)$ is:

$$deg(D) = +\aleph_0 \text{ (non-trivial zeros)} - \aleph_0 \text{ (trivial poles)} - 1 \text{ (simple pole at } s = 0) = -1.$$

Trivial poles ensure algebraic cancellation with non-trivial zeros, maintaining a finite divisor degree.

7. Minimality and Riemann Inequality: The Riemann inequality for genus-zero curves:

$$\ell(D) \ge \deg(D) + 1,$$

yields $\ell(D) \ge -1 + 1 = 0$. Minimality ensures no additional zeros, precluding off-critical zeros. The shadow function $\zeta^*(s)$ is unique for this divisor structure.

8. Conclusion: All non-trivial zeros lie on the critical line, completing the proof.

License: This document and the full manuscript are licensed under Creative Commons Attribution-NonCommercial 4.0 International (CC-BY-NC 4.0).