

(12) United States Patent

Tso et al.

US 10,537,633 B2 (10) Patent No.:

(45) **Date of Patent:** Jan. 21, 2020

(54) ANTIBODIES TO TIGIT

- (71) Applicants: JN Biosciences LLC, Mountain View, CA (US); Abmuno Therapeutics LLC, Berkeley, CA (US)
- (72) Inventors: J. Yun Tso, Menlo Park, CA (US); Naoya Tsurushita, Palo Alto, CA (US); Omar Duramad, Berkeley, CA (US)
- (73) Assignees: JN Biosciences LLC, Mountain View, CA (US); Abmuno Therapeutics LLC,

Berkeley, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

- (21) Appl. No.: 15/449,665
- (22) Filed: Mar. 3, 2017

(65)**Prior Publication Data**

US 2017/0281764 A1 Oct. 5, 2017

Related U.S. Application Data

- (60) Provisional application No. 62/413,025, filed on Oct. 26, 2016, provisional application No. 62/304,045, filed on Mar. 4, 2016.
- (51) Int. Cl. C07K 16/28 (2006.01)C07K 16/46 (2006.01)A61K 39/395 (2006.01)C07K 16/30 (2006.01)(2006.01)A61K 39/00
- (52) U.S. Cl.

CPC A61K 39/39541 (2013.01); A61K 39/3955 (2013.01); C07K 16/2803 (2013.01); C07K 16/2809 (2013.01); CO7K 16/2878 (2013.01); C07K 16/2896 (2013.01); C07K 16/3061 (2013.01); A61K 2039/507 (2013.01); A61K 2121/00 (2013.01); C07K 2317/30 (2013.01); C07K 2317/33 (2013.01); C07K 2317/70 (2013.01); C07K 2317/76 (2013.01); C07K 2317/90 (2013.01); C07K 2317/92 (2013.01); C07K 2317/94 (2013.01)

(58) Field of Classification Search

See application file for complete search history.

(56)**References Cited**

U.S. PATENT DOCUMENTS

7,354,584	B2 *	4/2008	Reed	C07K 16/244 424/133.1
7,473,423	B2	1/2009	Rodriguez et al.	424/133.1
7,736,647			Boumsell et al.	
8,163,279	B2	4/2012	Bergstein	
8,183,346	B2	5/2012	Leung et al.	
8,409,573	B2	4/2013	Boumsell et al.	
8,410,251	B2	4/2013	Matsuura et al.	
8,580,714	B2	11/2013	Almagro et al.	
8,715,941	B2	5/2014	Abo et al.	

8,858,949	B2	10/2014	Yokoseki et al.
8,859,501	B2	10/2014	Nodström et al.
8,962,804		2/2015	Williams et al.
9,127,061		9/2015	Zhang et al.
9,243,070		1/2016	
9,499,596		11/2016	Clark et al.
2004/0005560		1/2004	Isogai et al.
2004/0213791		10/2004	Bander A61K 51/1072
			424/155.1
2008/0032304	A1	2/2008	Isogai et al.
2009/0258013		10/2009	Clark C07K 16/18
2009/0250015		10/2009	424/133.1
2011/0150903	Δ1	6/2011	
2012/0082667		4/2012	Yokoseki et al.
2013/0216476		8/2013	Boumsell
2015/0210470		6/2015	
2015/0100001		7/2015	Papadopoulos et al.
2015/0203579		7/2015	Papadopoulos et al.
2015/0203380		7/2015	Freeman et al.
2015/0210709		8/2015	
2015/0218970		8/2015	Grogan et al.
			Sabatos-Peyton et al.
2015/0259420		9/2015	Triebel et al.
2015/0307617		10/2015	
2015/0322119		11/2015	
2016/0115234		4/2016	
2016/0115467		4/2016	
2016/0176963	ΑI	6/2016	Maurer et al.

FOREIGN PATENT DOCUMENTS

FR	2 959 416 A1	11/2011	
FR	2 959 416 B1	11/2011	
JP	2006-311857 A	11/2006	
WO	WO-94/29457 A2	12/1994	
WO	WO-94/29457 A3	12/1994	
WO	WO-97/43416 A1	11/1997	
WO	WO-03/072035 A2	9/2003	
WO	WO-03/072035 A8	9/2003	
WO	WO-2004/024068 A2	3/2004	
WO	WO-2004/024068 A3	3/2004	
WO	WO-2006/124667 A2	11/2006	
WO	WO-2006/124667 A3	11/2006	
WO	WO-2007/124283 A2	11/2007	
WO	WO-2007/124283 A3	11/2007	
	(Continued)		

OTHER PUBLICATIONS

Rudikoff et al. (Proceedings of the National Academy of Sciences USA, vol. 79, p. 1979-1983, 1982) (Year: 1982).*

(Continued)

Primary Examiner — Michael Allen (74) Attorney, Agent, or Firm — Mintz Levin Cohn Ferris Glovsky and Popeo P.C.

(57)ABSTRACT

The invention provides monoclonal antibodies that specifically bind to TIGIT. The monoclonal antibodies have the capacity for substantial activation of T cells and natural killer cells by inhibiting binding of TIGIT to CD155. The monoclonal antibodies can be used for treatment of cancer and infectious disease, among other applications.

9 Claims, 34 Drawing Sheets

Specification includes a Sequence Listing.

(56)References Cited OTHER PUBLICATIONS Paul (Fundamental Immunology, 3rd Edition, 1993, pp. 292-295) FOREIGN PATENT DOCUMENTS (Year: 1993).* Bendig M. M. (Methods: a Companion to Methods in Enzymology, WO WO-2008/092992 A1 WO-2008/092993 A1 1995; 8:83-93) (Year: 1995).* WO 8/2008 WO WO-2009/064944 A2 5/2009 Harris (Biotechnology, vol. 11, Pg. 1293-1297, 1993) (Year: 1993).* WO-2009/064944 A3 WO 5/2009 Anderson, A.C. et al. (May 17, 2016). "Lag-3, Tim-3, and TIGIT: WO 6/2009 WO-2009/073163 A1 Co-inhibitory Receptors with Specialized Functions in Immune WO WO-2009/126688 A2 10/2009 Regulation," Immunity 44(5):989-1004. WO WO-2009/126688 A3 10/2009 Bruck, C. et al. (Sep. 1986). "Nucleic acid sequence of an internal WO WO-2009/126688 A8 10/2009 image-bearing monoclonal anti-idiotype and its comparison to the WO WO 2010/119704 A1 10/2010 sequence of the external antigen," PNAS USA 83(17):6578-6582. WO WO-2011/156356 A1 12/2011 GenBank Accession No. NP 0776160.2, Nov. 15, 2015, 3 pages. WO WO-2012/008494 A1 1/2012 Hampe, C.S. et al. (Jul. 2005). "Quantitative evaluation of a WO 2/2012 WO-2012/021834 A1 monoclonal antibody and its fragment as potential markers for WO WO-2012/058588 A2 5/2012 pancreatic beta cell mass," Exp Clin Endocrinol Diabetes 113(7):381-WO WO-2012/058588 A3 5/2012 WO WO-2012/078793 A2 6/2012 WO WO-2012/078793 A3 6/2012 International Search Report dated Jul. 7, 2017, for PCT Application WO WO-2012/078813 A2 6/2012 No. PCT/US2017/20719, filed Mar. 3, 2017, 5 pages. WO-2012/078813 A3 WO 6/2012 Kofler, R. et al. (Jan. 1987). "Molecular analysis of the murine WO WO-2012/122396 A1 9/2012 lupus-associated anti-self response: involvement of a large number WO WO-2012/129227 A1 9/2012 of heavy and light chain variable region genes," Eur J Immunol WO WO-2012/135132 A1 10/2012 WO WO-2013/125636 A1 8/2013Leahy, D.J. et al. (Jun. 1988). "Sequences of 12 monoclonal WO WO-2013/125654 A1 8/2013 anti-dinitrophenyl spin-label antibodies for NMR studies," PNAS WO WO-2013/126810 A1 8/2013 USA 85(11):3661-3665. WO WO-2013/147169 A1 10/2013 Li, S. et al. (Mar. 17, 2009, e-published Mar. 3, 2009). "Efalizumab WO WO 2013/147176 A1 10/2013 WO WO-2013/150623 A1 10/2013 binding to the LFA-1 alphaL I domain blocks ICAM-1 binding via WO WO-2013/172961 A1 11/2013 steric hindrance," PNAS USA 106(11):4349-4354. WO-2013/184912 A2 WO 12/2013 GenBank Accession No. AAB49890.1, Jan. 30, 1997, 2 pages. WO WO-2013/184912 A3 12/2013 Pennell, C.A. et al. (Sep. 1, 1990). "High frequency expression of WO WO-2013/184912 A4 12/2013 S107 VH genes by peritoneal B cells of B10.H-2aH-4bP/WTS WO WO-2014/089169 A2 6/2014 mice." J Immunol 145(5):1592-1597. WO WO-2014/089169 A3 6/2014 Stark, S.E. et al. (Sep. 1, 1991). "Antibodies that are specific for a WO WO-2014/089169 A4 6/2014 single amino acid interchange in a protein epitope use structurally WO WO-2014/189973 A2 11/2014 distinct variable regions," J Exp Med 174(3):613-624. WO WO-2014/189973 A3 11/2014 Stengel, K.F. et al. (Apr. 3, 2012, e-published Mar. 15, 2012). WO WO-2015/045447 A1 4/2015 WO "Structure of TIGIT immunoreceptor bound to poliovirus receptor WO-2015/099838 A2 7/2015 WO WO-2015/099838 A3 7/2015 reveals a cell-cell adhesion and signaling mechanism that requires WO-2015/133882 A1 cis-trans receptor clustering," *PNAS USA* 109(14):5399-5404. Written Opinion dated Jul. 7, 2017, for PCT Application No. WO 9/2015 WO WO-2016/011264 A1 1/2016 WO WO-2016/022883 A1 2/2016 PCT/US2017/20719, filed Mar. 3, 2017, 12 pages. WO WO-2016/028656 A1 2/2016 Extended European Search Report dated Sep. 25, 2019, for EP WO WO-2016/073282 A1 5/2016 Patent Application No. 17760920.3, 8 pages. WO WO-2016/081640 A1 5/2016 Stanietsky, N. et al. (Oct. 20, 2009, e-published Oct. 7, 2009). "The WO WO-2016/081643 A1 5/2016 interaction of TIGIT with PVR and PVRL2 inhibits human NK cell WO WO2016/191643 12/2016 cytotoxicity," PNAS USA 106(42):17858-17863. WO WO-2016/191643 A2 12/2016

WO

WO

WO-2016/191643 A3

WO-2016/191643 A4

12/2016

12/2016

^{*} cited by examiner

FIG. 1

FIG. 2

Binding of hCD155-Fc to NS0/hTIGIT cells in the presence of an anti-TIGIT antibody

TIG1 VH

123456789 0123456789 0123456789 0123456789 DVQLVESGG GLVQPGGSRK LSCAASGFTF SNFGMHWVRQ CDR1 0123456789 01223456789 0123456789 0123456789 APEKGLEWVA FISSGSSSIYY ADTVKGRFTI SRDNPKNTLF CDR2 1. 1 0122223456789 0123456789 000123456789 0123 abc ab LQMTSLRSEDTAM YYCARMRLDY YAMDYWGQGTSV TVSS (SEQ ID NO: 10) CDR3

TIG1 VL

123456789 0123456789 0123456789 0123456789 DVQITQSPS YLAASPGETI TINCRASKSI SKYLAWYQEK CDR1 5 6 0123456789 0123456789 0123456789 0123456789 PGKTNKLLIY SGSTLQSGIP SRFSGSGSGT DFTLTISSLE CDR2 1 9 0123456789 0123456789 01234567 PEDFAMYYCQ QHNEYPWTFG GGTKLEIK (SEQ ID NO: 14) CDR3

TIG2 VH

123456789 0123456789 0123456789 0123456789 EVQLQQSGP ELVKPGASVK ISCKTSGYTF TEYTMHWVKQ CDR1 5 0123456789 01223456789 0123456789 0123456789 SHGKNLEWIG GINPNNGGTSY NQKFKGRATL TVDKSSSTAY CDR2 1 1 0122223456789 0123456789 000123456789 0123 abc ab MELRSLTSDDSAV YYCARPGWYN YAMDYWGQGTSV TVSS (SEQ ID NO: 18) CDR3

TIG2 VL

123456789 0123456789 0123456789 0123456789 DIVMTQSHK FMSTSVGDRV NITCKASQGV STAVAWYQQK CDR1 4 5 6 0123456789 0123456789 0123456789 0123456789 PGQSPKLLIY SASYRYTGVP DRFTGSGSGT DFTFTISSVQ CDR2 1 9 0 0123456789 0123456789 01234567 AEDLAVYHCQ OHYITPWTFG GGTKLEIK (SEQ ID NO: 22) CDR3

TIG3 VH

123456789 0123456789 0123456789 0123456789 EVQLVESGG GLVKPGGSLK LSCAASGFAF SDYDMSWVRQ CDR1 6 0123456789 01223456789 0123456789 0123456789 TPEKRLEWVA YISDGGYNTYY PDTVKGRFTI SRDNAKNTLY CDR2 1 1 0122223456789 0123456789 000123456789 0123 ab LQMSSLKSEDTAI YYCARQILLR YYFDYWGQGTTL TVSS (SEQ ID NO: 26) CDR3

TIG3 VL

123456789 0123456789 0123456777777789 0123456789 abcdef DIVMSQSPS SLAVSVGEKV TMTCKSSQSLLYSSNQ KNYLAWYQQK CDR1 4 5 6 0123456789 0123456789 0123456789 0123456789 PGQSPKLLIY WASTRESGVP DRFTGSGSGT DFTLTISSVK CDR2 1 9 0 0123456789 0123456789 01234567 AEDLAVYYCO QYHSYPWTFG GGTKLEIK (SEQ ID NO: 30) CDR3