Exercise 1: Data fit statistics & ML/MAP estimators

Background reading

The background material for this exercise is Section 7.4 of Ljung's book (System Identification: Theory for the User, 2nd Ed., Prentice-Hall, 1998).

Problem 1

1. Let the two random vectors X and Y be jointly Gaussian with

$$\mathcal{E}\{X\} = m_X, \ \mathcal{E}\{Y\} = m_Y,$$

$$\mathcal{E}\{(X - m_X)(X - m_Y)^{\mathsf{T}}\} = P_X, \ \mathcal{E}\{(Y - m_Y)(Y - m_Y)^{\mathsf{T}}\} = P_Y,$$

$$\mathcal{E}\{(X - m_X)(Y - m_Y)^{\mathsf{T}}\} = P_{XY},$$

Show that the conditional distribution of X given Y is

$$X \mid Y \sim \mathcal{N}\left(m_X + P_{XY}P_Y^{-1}(Y - m_Y), P_X - P_{XY}P_Y^{-1}P_{XY}^{\mathsf{T}}\right).$$
 (1.1)

Hint: If D and $A - BD^{-1}C$ are invertible, the following equalities hold:

$$\det\begin{pmatrix}\begin{bmatrix} A & B \\ C & D \end{bmatrix}\end{pmatrix} = \det(D)\det(A - BD^{-1}C), \tag{1.2}$$

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} = \begin{bmatrix} (A - BD^{-1}C)^{-1} & -(A - BD^{-1}C)^{-1}BD^{-1} \\ -D^{-1}C(A - BD^{-1}C)^{-1} & D^{-1} + D^{-1}C(A - BD^{-1}C)^{-1}BD^{-1} \end{bmatrix}.$$
 (1.3)

2. Consider a static linear model:

$$y = \theta x + v.$$

We have obtained the prior distribution of θ : $\theta \sim \mathcal{N}(\mu, \sigma_{\theta}^2)$, the noise distribution $v \sim \mathcal{N}(0, \sigma_v^2)$, and a pair of measurements (x_0, y_0) . Please use the result in part 1 to calculate the maximum a posteriori (MAP) estimate of θ .

Problem 2

Consider the model structure

$$\mathbf{x} = F(\theta)\mathbf{w},$$

 $\mathbf{y} = H(\theta)\mathbf{x} + \mathbf{e},$

where \mathbf{w} and \mathbf{e} are two independent Gaussian random vectors with zero mean values and unit covariance matrices.

- 1. Find the maximum likelihood estimate of the parameter θ given the measurement y.
- 2. Assume that the prior distribution of θ is flat, i.e., $p(\theta)$ is independent of θ . Find the joint MAP estimate of the parameter θ and the intermediate variable \mathbf{x} given the measurement \mathbf{y} .

You only need to derive the optimization problems for obtaining the estimates.

Matlab exercises:

Consider the problem of estimating $\theta = [\theta_1 \ \theta_2]^{\top}$ in the following function

$$y = \theta_1 x + \theta_2 (2x^2 - 1) + v \,,$$

where noise v comes from the normal distribution $v \sim \mathcal{N}(\mu, \sigma^2)$ with $\mu = 0.2$ and $\sigma^2 = 0.1$.

In order to estimate θ , a set of x and y measurements are collected. The test data are provided as variables x and y in SysID_Exercise_1.mat.

- 1. Use the maximum likelihood (ML) method to estimate the value of θ .
- 2. The prior knowledge of θ is characterized by the following distribution,

$$\theta \sim \mathcal{N}(\mu_{\theta}, \sigma_{\theta}^2 \cdot I)$$
, with $\mu_{\theta} = [1 \ 0.4]^{\top}$ and $\sigma_{\theta}^2 = 0.01$.

Calculate the maximum a posteriori (MAP) estimate of θ .

3. To assess the accuracy of the ML and MAP estimates, additional measurements are collected for validation, which are provided as variables x_v and y_v in SysID_Exercise_1.mat. Which one is more accurate judging from the validation data?