APP1 Propagation des ondes

PAULUS Léa, JOACHIM Corentin, GOYENS Virgile, BOIGELOT Simon, XAVIER Lambein, SLITI Abbas, NICOL Edward

23 septembre 2014

Relation champ électrique et champ magnétique

La variation de champ magnétique crée un champ électrique

$$\left(\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}\right)$$

et inversément,

$$\left(\vec{\nabla} \times \vec{B} = \mu \vec{J} + \mu \epsilon \frac{\partial \vec{E}}{\partial t}\right)$$

Propagation soleil-terre

$$\epsilon = \frac{\epsilon_0}{K}$$

$$c^2 = \frac{1}{\epsilon \cdot \mu}$$

Forme générale

$$f(x,t) = f(x - vt)$$

 $Asin(x \pm vt)$

Orientation vectorielles des champs électrique et magnétiques

Propagation du signal en fonction du temps

caractéristiques des ondes

$$\lambda = \frac{c}{f}$$

$$\alpha = \frac{2\pi}{\lambda}$$