

Privacypreserving inference on DNNs with MHE

 École polytechnique fédérale de Lausanne

Introduction

- Enable efficient privacy-preserving inference on Deep Neural Networks
- Different scenarios

Challenges

- 1. How to design an efficient and consistent data packing for network evaluation?
- 2. How to efficiently compute **convolutions on encrypted data** in a layer agnostic way?
- 3. How to approximate non linear operations in the network, and how does this impact the training phase and accuracy of models?
- 4. How to compute homomorphic **matrix multiplication** in an efficient way?
- 5. How to handle data size which does not fit into one ciphertext?

Background - CKKS scheme

- Based on RLWE hardness
- Leveled encryption schemes
- Suited for computation over floating point numbers

From: https://yongsoosong.github.io

LABORATORY FOR DATA SECURITY

Background – Convolutional Neural Network

Challenges

- 1. How to design an efficient and consistent data packing for network evaluation?
- 2. How to efficiently compute convolutions on encrypted data in a layer agnostic way?
- 3. How to approximate non linear operations in the network, and how does this impact the training phase and accuracy of models?
- 4. How to compute homomorphic matrix multiplication in an efficient way?
- 5. How to handle data size which does not fit into one ciphertext?

.

LABORATORY FOR DATA SECURITY

EPFL

Methods - Data packing

- Querier holds batch of *N* images:
 - Pre-processing tasks (normalization, padding, etc...)
 - Images are represented as vectors of size D (feature number)
 - The NxD matrix is transposed
 - The NxD matrix is row-flattened
- Benefits:
 - Very simple
 - Fully compatible with matrix multiplication approach

Challenges

- 1. How to design an efficient and consistent data packing for network evaluation?
- 2. How to efficiently compute convolutions on encrypted data in a layer agnostic way?
- 3. How to approximate non linear operations in the network, and how does this impact the training phase and accuracy of models?
- 4. How to compute homomorphic matrix multiplication in an efficient way?
- 5. How to handle data size which does not fit into one ciphertext?

EPFL Methods - Convolutional layer «linearization»

- Transform the convolutional layer into a sparse layer and use matrix multiplication (Toeplitz matrix representation)
- Example: transformation of a filter operating on a 3x3 matrix with stride 1

$$\begin{bmatrix} k_1 & k_2 \\ k_3 & k_4 \end{bmatrix} = \begin{bmatrix} k_1 & k_2 & 0 & k_3 & k_4 & 0 & 0 & 0 & 0 \\ 0 & k_1 & k_2 & 0 & k_3 & k_4 & 0 & 0 & 0 \\ 0 & 0 & 0 & k_1 & k_2 & 0 & k_3 & k_4 & 0 \\ 0 & 0 & 0 & 0 & k_1 & k_2 & 0 & k_3 & k_4 \end{bmatrix}$$

Methods - Convolutional layer «linearization» cont'd

Generalized for f kernels of KxK size, with M input channels

$$\begin{bmatrix} \left\langle m(k_{1,ch1}) \middle| \dots \middle| m(k_{1,chM}) \right\rangle \\ \left\langle m(k_{2,ch1}) \middle| \dots \middle| m(k_{2,chM}) \right\rangle \\ \left\langle m(k_{f,ch1}) \middle| \dots \middle| m(k_{f,chM}) \right\rangle \end{bmatrix}$$

- Benefits:
 - Can represent any convolution
 - Self-consistent for subsequent convolutional or linear layers

- 1

Challenges

- 1. How to design an efficient and consistent data packing for network evaluation?
- 2. How to efficiently compute convolutions on encrypted data in a layer agnostic way?
- 3. How to approximate non linear operations in the network, and how does this impact the training phase and accuracy of models?
- 4. How to compute homomorphic matrix multiplication in an efficient way?
- 5. How to handle data size which does not fit into one ciphertext?

Methods - Non linear operations in network

- Approximate non-linear activation functions with polynomials using Minimax approximation
 - Polynomial activations introduced new challenges in training phase:
 - Weight explosion
 - Slow convergence
 - Partially solved with fine-tuned weight initialization and learning rate
 - Polynomial activations might introduce errors during encrypted inference with respect to the original function:
 - For each layer, record the interval of intermediate results and approximate the function only on the interval
 - Lower degree of approximation needed
 - Higher accuracy
- Average Pooling and Sum Pooling in place of Max Pooling

Challenges

- 1. How to design an efficient and consistent data packing for network evaluation?
- 2. How to efficiently compute convolutions on encrypted data in a layer agnostic way?
- 3. How to approximate non linear operations in the network, and how does this impact the training phase and accuracy of models?
- 4. How to compute homomorphic matrix multiplication in an efficient way?
- 5. How to handle data size which does not fit into one ciphertext?

Transpose and

EPFL

Methods - Matrix Multiplication

- Input matrix is transposed and row-flattened (same as data packing)
- Weight matrix in diagonal form
- Element wise multiplications, rotations and additions
- Benefits:
 - · Linear complexity
 - Fully compatible with data packing
 - Easily Parallelizable

row-flatten $[a_{00}a_{01}a_{02}]$ $[w_{00}w_{00}w_{00}w_{11}w_{11}w_{11}w_{22}w_{22}w_{22}] \odot [a_{00}a_{10}a_{20}a_{01}a_{11}a_{21}a_{02}a_{12}a_{22}] \leftarrow$ $+[w_{10}w_{10}w_{10}w_{21}w_{21}w_{21}w_{02}w_{02}w_{02}] \odot [a_{01}a_{11}a_{21}a_{02}a_{12}a_{22}a_{00}a_{10}a_{20}]$ Same format $+[w_{20}w_{20}w_{20}w_{01}w_{01}w_{01}w_{12}w_{12}w_{12}] \odot [a_{02}a_{12}a_{22}a_{00}a_{10}a_{20}a_{01}a_{11}a_{21}]$ $= [b_{00}b_{10}b_{20}b_{01}b_{11}b_{21}b_{02}b_{12}b_{22}]$ $\operatorname{Diag}_{i}(W) \odot \operatorname{Rotate}_{di}(\operatorname{Flatten}(A^{T})) \rightarrow O(d) \text{ rotations}$

Matrix Multiplication – cont'd

- Optimized version for $O\left(\frac{d}{2}\right)$
- Half the (intermediate) size of the matrices by packing real values in complex form
- Later remove the imaginary part with 1 addition and 1 rotation

$$\begin{pmatrix} a_{1,1} & \dots & a_{1,m} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \dots & a_{n,m} \end{pmatrix} \times \begin{pmatrix} b_{1,1} & \dots & b_{1,h} \\ \vdots & \ddots & \vdots \\ b_{m,1} & \dots & b_{m,h} \end{pmatrix} \rightarrow \begin{pmatrix} a_{1,1} - ia_{1,2} & \dots & a_{1,m-1} - ia_{1,m} \\ \vdots & \ddots & \vdots \\ a_{n,1} - ia_{n,2} & \dots & a_{n,m-1} - ia_{n,m} \end{pmatrix} \times \begin{pmatrix} b_{1,1} + ib_{2,1} & \dots & b_{1,m} + ib_{2,m} \\ \vdots & \ddots & \vdots \\ b_{n-1,1} + ib_{n,1} & \dots & b_{n-1,m-1} + ib_{n,m} \end{pmatrix}$$

EPFL Challenges

- 1. How to design an efficient and consistent data packing for network evaluation?
- 2. How to efficiently compute convolutions on encrypted data in a layer agnostic way?
- 3. How to approximate non linear operations in the network, and how does this impact the training phase and accuracy of models?
- 4. How to compute homomorphic matrix multiplication in an efficient way?
- 5. How to handle data size which does not fit into one ciphertext?

Methods - Block Matrix Arithmetics

- Each block (sub-matrix) is encrypted/encoded indipendently
- Operations can be carried out on each block using block matrix arithmetics
- Benefits:
 - Smaller ciphertexts/plaintexts
 - Easily parallelizable
 - Flexible: block splits can be adjusted to maximize latency or throughput

Methods – Distributed protocols for MHE

Model Provider (Cohort)

- Assumption: model is trained encrypted by a cohort of nodes.
- Very efficient: 1 Round Protocols!
- Reference: Mouchet et al.²

EPFL Methods – Distributed protocols for MHE-Refresh

Player Node

 Distributed Bootstrapping generates a freshly encrypted ciphertext from a "low-level" ciphertext

2] Multiparty Homomorphic Encryption from Ring-Learning-With-Errors

Methods – Distributed protocols for MHE – Collective Key Switch

 Collective Key Switch Protocol is invoked to generate an encryption of the result under querier's public key

■ [2] Multiparty Homomorphic Encryption from Ring-Learning-With-Errors

Querier

Experimental setup

- Hardware specifications:
 - 2x Intel Xeon E5-2680 2.5 GHz (48 threads)
 - 16 GB RAM DDR4
- Parameters for CKKS scheme:

Set	LogN (bits)	LogQP (bits)	Levels	Scale (bits)
CryptoNets	14	329	7	30
NN20	15	874	18	35
NN50	15	629	11	35
NN50-light	14	436	10	31
NN-Central-Btp	15	768	13	25

Experiment 1 - CryptoNets

- We benchmarked our framework on the Microsoft CryptoNets³ model
 - Training and inference on MNIST dataset
 - Scenario is "model in clear data encrypted"

Model	Batching	Batch	Latency(s)	Throughput(im/s)
CryptoNets	Y	4096	250	16.54
Faster Cryptonets 5	N	1	39.1	0.02
LoLa 4	N	1	2.2	0.5
MiniONN 6	N	1	1.28	0.78
Ours	Y	83	10.5	7.9

^[3] CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput and Accuracy

^[4] Low Latency Privacy Preserving Inference

^[5] Faster CryptoNets: Leveraging Sparsity for Real-World Encrypted Inference

^[6] Oblivious Neural Network Predictions via MiniONN transformations

Experiment 2 – ZAMA NN

- We further tested our framework on deeper and more complex networks, using the models proposed by ZAMA⁸
 - Training and inference on MNIST dataset
 - Model is encrypted
 - Two models tested → 20 and 50 layers
 - Two bootstrapping approaches → centralized and distributed

Experiment 2 - ZAMA NN - 20 layers

Setting	Batch	Latency (s)	Throughput (im/s)	Communication (MB/cipher)
1PC	292	639.6	0.45	-
MPC-5	292	365	0.85	21
MPC-10	292	417	0.70	21
Baseline-PC	1	115.52	0.008	-
Baseline-AWS	1	17.96	0.055	-

Experiment 2 – ZAMA NN – 50 layers

Parameters with smaller ring size!

Communication (MB/cipher) Setting Throughput (im/s) Batch Latency (s) 1PC 292 1343 0.21MPC-3 292 811 0.36 21 MPC-5 759 21 146 0.1921 MPC-10 1007 0.14 146 Baseline-PC 233.55 0.004 Baseline-AWS 37.69 0.026

Final Remarks

- Results are promising...
 - CKKS allows for data packing and SIMD operations for high throughput
- ...but optimization is hard!
 - Finding optimal data packing approach is crucial for performance
 - Data packing and block matrices splitting greatly influence latency and throughput
 - Dealing with non-linearities is complex
 - Introducing polynomial activations during training might cause slow or no convergence
 - Polynomial approximations must be fine-tuned (tradeoff between accuracy efficiency)
 - CKKS parametrization is hard!
 - A bad choice for the parameters of the scheme might completely disrupt performance and accuracy!

Privacypreserving inference on DNNs with MHE

 École polytechnique fédérale de Lausanne

July 7, 2022

Background - CKKS scheme - Encoding & Decoding

 $m(\zeta_j) \approx \Delta \cdot z_j$ for some roots ζ_j of $X^n + 1 = 0$

$$R = \mathbb{Z}[X]/(X^n + 1)$$

$$\Delta \cdot z_1$$

$$\Delta \cdot z_2$$
 i-th slot of plaintext
$$\vdots$$

$$\Delta \cdot z_{n/2}$$

Plaintext (Encoded message)

 $\Delta \cdot z_{n/2}$

log Q bits

LSB

Background - CKKS scheme - Encryption & Decryption

Modulus Chain Ring structure $R_q = \mathbb{Z}_q[x]/(x^n + 1)$. Residue Number System (RNS) : $\mathbb{Z}_q \cong \mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \cdots \times \mathbb{Z}_{p_L}$ Encrypt (pk/sk) $ct = (c_0(X), c_1(X)) \in R_O^2, R_O = \mathbb{Z}_O[X]/(X^n + 1)$ $m(X) \in R$ Decrypt (sk = s) $\Delta \cdot z_1$ $\Delta \cdot z_1$ $\Delta \cdot z_2$ $\Delta \cdot z_2$ **Plaintext** Ciphertext

MSB

From: https://yongsoosong.github.io

 $\Delta \cdot z_{n/2}$

Background - CKKS scheme - Multiplication & Rescaling

$\Delta \cdot x_1$
$\Delta \cdot x_2$
:
$\Delta \cdot x_{n/2}$

	$\Delta \cdot y_1$
	$\Delta \cdot y_2$
	:
	$\Delta \cdot y_{n/2}$

Background - CKKS scheme - Bootstrapping

Level l_0

Level $l_0 < l \le L$