

Grafos e Algoritmos Computacionais

NP-Completude

Prof. André Britto

Problemas NP-Completos

- Estudamos técnicas que resolvem algoritmos de forma "eficiente".
- Realidade: estas técnicas (nem outras) conseguem resolver alguns problemas "eficientemente".
- "eficiente" ⇒ Complexidade do algoritmo é polinomial em relação ao tamanho da entrada.

Problemas NP-Completos

- Problema **tratável** \Rightarrow Existe um algoritmo *A* polinomial dentre uma coleção *C* de algoritmos, que resolve um dado problema $P \Rightarrow$ tempo finito de solução de *P* por *A*.
- Problema intratável ⇒ Não se conhece um algoritmo que resolve P em tempo Polinomial ⇒ resolução de P por A pode durar séculos, mesmo se o tamanho da entrada for reduzido.

Problemas NP-Completos

• tratável ⇒ exibição do algoritmo de complexidade polinomial.

• intratável ⇒ prova que todo possível algoritmo que resolve P não possui complexidade polinomial.

Problemas de Decisão — Problema Algorítmico

- Caracteriza-se por:
 - Conjunto de dados (instância: objeto com dados específicos).
 - Objetivo do problema.

- Resolver o problema:
 - Desenvolver algoritmo ⇒ solução.

Problemas de Decisão — Problema Algorítmico

Ex.: Problema:

- Instância : um par (G,k) específico.
- Solução: um subgrafo completo de G com k ou mais vértices, se existir.

- Problemas de Decisão (sim / não)
- Problemas de Localização (Localizar estrutura S)
- Problemas de Otimização (Localizar estrutura S sobre critérios C)

Podem ser associados:

Ex.:

Problema de Decisão

existe estrutura *S* que satisfaça a propriedade *P?*

Problemas de Localização

Encontrar estrutura *S* que satisfaça propriedade *P*.

Problema de Otimização

Encontrar estrutura *S* que satisfaça *C* critérios de otimização

Ex.: Problema do Caixeiro Viajante

Percurso do Caixeiro Viajante \Rightarrow Ciclo Hamiltoniano de G cuja soma dos pesos das arestas seja mínimo.

um percurso : a b c d a \Rightarrow peso 16

um percurso ótimo : a b d c d \Rightarrow peso 11

1. Problema de Decisão

Dados: um grafo G e um inteiro k > 0.

Objetivo: Verificar se G possui um percurso de caixeiro viajante de peso $\leq k$.

2. Problemas de Localização

Dados: um grafo G e um inteiro k > 0.

Objetivo: Localizar em G um percurso de caixeiro viajante de peso $\leq k$.

3. Problema de Otimização

Dados: um grafo *G.*

Objetivo: Localizar em G um percurso de caixeiro viajante ótimo.

Os problema estão relacionados:

Resolução 3 ⇒ Resolução 2 ⇒ Resolução 1

dificuldade major

- Por que estudar os de decisão ?
 - Mais simples que os outros dois.
 - Alguma prova de sua possível intratabilidade pode ser estendida facilmente aos demais problemas.
- Notação

$$\pi(D,Q)$$
 $\stackrel{\pi}{\longleftrightarrow}$ D : dados Q : questão (decisão)

 $\pi(I) \rightarrow \pi(D,Q)$ aplicada à instância *I*.

Algoritmos eficientes: O(1), O(n), O(n² log n), O(n¹0),...

Algoritmos ineficiente: O(2ⁿ), O(n!), ...

 São mais comuns algoritmos de ordem de polinômios baixos: 0,1,2,3.

- Classe $P \Rightarrow$ compreende problemas de decisão P que admitem algoritmo polinomial.
- Exemplo de um problema de classe P :
 - Determinar se um grafo G é ou não acíclico.
 - Observação:
 - Se os algoritmos conhecidos para resolver um certo problema π forem todos exponenciais, **não** necessariamente $\pi \notin P$.

- Para afirmar $\pi \notin P$ precisamos de uma prova que todo possível algoritmo para resolver π é não polinomial.
- Por exemplo os algoritmos conhecidos até agora para resolver o problema do Caixeiro Viajante são todos exponenciais. Contudo, não é conhecida nenhuma prova de que seja impossível a formulação de algoritmo polinomial para o problema.

Desconhece-se se Caixeiro Viajante pertence ou não a P.

Essa incerteza está em Grande parte dos problemas.

- Só se conhecem algoritmos exponenciais para resolvê-los.
- Desconhece-se uma prova que n\u00e3o existe algoritmos polinomiais que resolvam os problemas.

1. Problema da Satisfabilidade

Dados: Uma expressão Booleana E na forma **FNC**(Forma

Normal Conjuntiva)

Decisão: *E* é satisfatível ?

Problema da Satisfabilidade

A seguinte fórmula é uma gramática formal para FNC:

- 1. $\langle ou \rangle \rightarrow \vee$
- 2. $\langle e \rangle \rightarrow \wedge$
- 3. <não/negação> → ¬
- 4. <conjunção> → <disjunção>
- 5. <conjunção> → <conjunção> <e> <disjunção>
- 6. <disjunção> → <literal>
- 7. <disjunção> → (<disjunção> <ou> teral>)
- 8. < literal \rightarrow < termo >
- 9. < literal \rightarrow < não \rightarrow < termo \rightarrow

Expressão booleana satisfatível: atribuição de V ou F às variáveis e resultado V

2. Problema do Conjunto Independente de Vértices

Dados: Um grafo G e um inteiro k > 0.

Decisão: G possui um conjunto independente de vértices de

tamanho $\geq k$?

Dado um grafo G, um conjunto independente de vértices é um subconjunto $V' \leq VG$, tal que todo par de vértices de V' não é adjacente.

É um conjunto independente de vértices de tamanho 5

3. Problema da Clique

Dados: Um grafo G e um inteiro k > 0.

Decisão: G possui uma clique de tamanho $\geq k$?

Exemplo:

{d, b, e} clique de tamanho 3

4. Problema da Cobertura de Vértices

Dados: Um grafo G e um inteiro k > 0.

Decisão: G possui uma cobertura de vértices de tamanho $\leq k$?

Para um grafo G, um subconjunto $V' \subseteq VG$ é chamado cobertura de vértices quando toda aresta de G possui (pelo menos) um de seus extremos em V'.

{d,f,e} é uma cobertura de vértices de tamanho 3

5. Problema do Ciclo Hamiltoniano Direcionado

Dados: Dígrafo D.

Decisão: D possui um ciclo hamiltoniano?

{a, b, d, f, g, c, e, a}

Não tem

6. Problema do Ciclo Hamiltoniano não direcionado

Dados: grafo *G*.

Decisão: G possui um ciclo Hamiltoniano?

7. Problema de Coloração

Dados: Um grafo G e um inteiro k > 0.

Decisão: G possui uma coloração com um número $\leq k$

cores?

Justificativa: Conjunto de argumentos que interpretados podem atestar a veracidade da resposta sim ou não dada ao problema.

Problema de Decisão π . Se π for solúvel através da aplicação de algum processo, então existe uma justificativa para a solução de π .

Exemplo:

1. Problema do Ciclo Hamiltoniano

- justificativa do sim: exibição do ciclo \mathcal{C} do grafo e reconhecimento que \mathcal{C} é um ciclo Hamiltoniano.
- justificativa do não: listagem de todos os ciclos do grafo e reconhecimento de que nenhum deles é Hamiltoniano.

2. Problema do Ciclo Hamiltoniano

Ex.:

A

Justificativa SIM: a, b, c, d, e, f, a (passo da exibição)

Justificativa NÃO:

3. Problema da Clique

justificativa SIM:

exibição de uma clique P de tamanho $\geq k$. verificando para reconhecer

- (a) Se P é de fato uma clique.
- (b) $|P| \ge k$.
- justificativa NÃO:

lista de todas as cliques do grafo.

(a) Verificar se a lista é completa e de fato o tamanho de cada clique é < k.

- Justificar respostas a problemas de decisão compreende duas fases distintas:
 - Exibição: consiste em exibir a justificativa.
 - **Reconhecimento**: consiste em verificar que a justificativa apresentada na fase de exibição é, de fato satisfatória.

Exemplo: Voltando ao problema do ciclo Hamiltoniano:

Justificativa SIM do grafo A:

Exibição: sequência C de vértices a, b, c, d, e, f, a.

Reconhecimento: Verificar:

(i) *C* é ciclo.

(ii) C contém cada vértice de G exatamente uma

vez.

 Observe que dado uma sequência de vértices, reconhecer se é um ciclo e se este ciclo é Hamiltoniano é possível ser realizado com um algoritmo polinomial.

- Exemplo: Voltando ao problema do ciclo Hamiltoniano:
 - Justificativa NÃO do grafo B:

Exibição: Conjunto de 4 sequências de vértices:

Reconhecimento: Comprovar que:

- (i) cada sequência de vértices é um ciclo não Hamiltoniano.
 - (ii) todo ciclo do grafo está no conjunto.
- Observe que o algoritmo não é mais tão simples. É de natureza experimental.
- Não se conhece um algoritmo polinomial para se fazer o reconhecimento da justificativa não do problema

• Classe NP: Compreende todos os problemas de decisão π , tais que existe uma justificativa à resposta SIM para π , cujo passo de reconhecimento pode ser realizado por um algoritmo polinomial do tamanho da entrada de π .

(Isto não implica numa solução polinomial para o problema)

 Para existir um algoritmo de reconhecimento polinomial é necessário (mas não suficiente) que o tamanho da justificativa dada pelo passo de exibição seja polinomial no tamanho da entrada do problema.

- Exemplo: Justificativa NÃO para o problema do ciclo Hamiltoniano.
 - Exibição da lista de todos os ciclos do grafo
 Exponencial no tamanho do grafo
 - Qualquer algoritmo para checar uma entrada exponencial leva tempo exponencial de processamento (muito embora para cada item da entrada ele possa ser polinomial)

 Observação: Nada se exige sobre a justificativa NÃO para enquadrar um problema na classe NP.

 Existem problemas NP que admitem algoritmos polinomiais para justificativa NÃO e outros que não se sabe se isso é possível.

Exemplo: Ciclo Hamiltoniano é NP.

- Para verificar se um problema π pertence ou não a *NP* procede-se da seguinte maneira:
 - (i) Define-se uma justificativa *J* conveniente para a resposta SIM ao problema.
 - (ii) Elabora-se um algoritmo para reconhecer se *J* está correta.

Se algoritmo é polinomial $\pi \in NP$

Problemas anteriormente vistos são NP?

1. Problema da Satisfabilidade

Dados: Uma expressão Booleana *E* na forma **FNC**(Forma Normal

Conjuntiva)

Decisão: *E* é satisfatível ?

Justificativa SIM:

- (i) Exibição : A expressão Booleana *E* e um atribuição para cada variável de *E*.
- (ii) Reconhecimento:

Algoritmo : Substitui-se em E cada variável pelo seu valor atribuído (V ou F). É imediato concluir que a justificativa está correta se e só se cada cláusula de E possui pelo menos uma variável com atribuição V.

Conclusão ∈ *NP*

2. Problema do Conjunto Independente de Vértices

Dados: Um grafo G e um inteiro k > 0.

Decisão: G possui um conjunto independente de vértices de

tamanho $\geq k$?

Justificativa SIM:

- (i) Exibição : O grafo G e um subconjunto de vértices $V' \subseteq VG$.
- (ii) Reconhecimento:

Algoritmo : Examina-se cada lista de adjacências Adj(v'), $v' \in V'$, para verificar se todo $w \in Adj(v')$ é tal que $w \notin V'$. Seja agora k' = |V'|. A justificativa está correta se e só se essas verificações forem satisfeitas e além disso $k' \ge k$.

Conclusão: Algoritmo Polinomial ⇒ **problema** ∈ *NP*

3. Problema da Cobertura de Vértices

Dados: Um grafo G e um inteiro k > 0.

Decisão: G possui uma cobertura de vértices de tamanho $\leq k$?

Justificativa SIM:

- (i) Exibição : O grafo G e um subconjunto de vértices $V' \subseteq VG$.
- (ii) Reconhecimento:

Algoritmo : Examina-se cada aresta $(v,w) \in EG$ com o intuito de verificar se v ou $w \in V'$. Seja agora k' = |V'| . A justificativa está correta se e só se as verificações forem todas satisfeitas e além disso $k' \leq k$?.

Conclusão: Algoritmo Polinomial ⇒ **problema** ∈ *NP*

A Classe NP

 Problema para o qual se desconhece a pertinência ou não a NP.

Problema da Clique Máxima

Dados: Um grafo G e um inteiro k > 0.

Decisão: A clique de tamanho máximo de G tem

tamanho *k*?

A Classe NP

Problema da Clique Máxima

Justificativa SIM:

- (i) Exibição : Apresentação de um conjunto *S* contendo todas as cliques maximais de *G*.
- (ii) Reconhecimento:

Algoritmo : Comprova-se que S tem de fato todas as cliques maximais de G. Seja k' o tamanho da maior clique de S. A justificativa está correta se k' = k'.

S pode ser exponencial \Rightarrow algoritmo exponencial.

⇒ Nada se pode afirmar sobre a pertinência ou não do problema à classe NP.

Relação entre classes P e NP.

Lema

$$P \subseteq NP$$

Prova

Seja $\pi \in P$ um problema de decisão. Então existe um algoritmo α que apresenta a solução de π , em tempo polinomial no tamanho de sua entrada. Em particular, α pode ser utilizado como algoritmo no reconhecimento para uma justificativa à resposta SIM de P. Logo $\pi \in NP$.

- $P \neq NP$?
 - ⇒ Existe algum problema da classe NP que é intratável ?
 - ⇒ Todo problema de NP admite necessariamente algoritmo polinomial?

■ Evidência $\rightarrow P \neq NP$

Outra questão:

Admitindo-se que $P \neq NP$ seria possível ao menos resolver em tempo exponencial todo problema da classe NP?

Lema 7.2 do Szwarcfiter \Rightarrow prova SIM

com complexidade $O(|A|^k C_d)$,

onde k é o tamanho de π

- Inversão de papéis ⇒ nova classe de problemas
- A classe Co-NP \Rightarrow Compreende todos os problemas de decisão π , tais que existe uma justificativa à resposta NÃO, cujo passo de reconhecimento corresponde a um algoritmo polinomial na entrada de π .

- Complemento $\overline{\pi}$ de um problema de decisão π .
- A resposta ao problema π é SIM se e somente se a resposta para $\overline{\pi}$ for NÃO.
- Classe Co-NP ⇒ Compreende exatamente os complementos dos problemas da classe NP
 - *P* ⊆ *Co-NP*
 - Se $\pi \in P \Rightarrow \pi \in NP \cap Co-NP$

• Existem problemas $\pi \in NP$ para os quais não se sabe se $\bar{\pi} \in NP$. Analogamente para *Co-NP*.

Exemplo : O problema da Clique (Já vimos que Clique ∈ NP)

Dados: Um grafo G e um inteiro k > 0.

Decisão: G não possui uma clique de tamanho $\geq k$?

Algoritmo que reconhece em tempo polinomial a justificativa SIM de Clique ?

Equivale a algoritmo polinomial para reconhecer a justificativa NÃO de clique → **Desconhecido**

■ Conclusão: Não se sabe se Clique ∈ NP.

• Clique Máxima: Desconhece-se se $\pi \in NP$ e também se $\overline{\pi} \in Co-NP$ e $\overline{\pi} \in NP$.

• Existem problemas tais que π e $\pi \in a$ NP.

Problema dos Numeros Compostos

Dados: Um inteiro k > 0.

Decisão: Existem inteiros p,q > 1 tais que k = pq?

Problema dos Numeros Compostos (Números primos)

Dados: Um inteiro k > 0.

Decisão: k é primo ?

Algoritmo polinomial para reconhecer o SIM existe mas não é trivial.

Conclusão: Números Compostos e Números primos pertecem ambos a NP. Mas não se sabe se ϵ ou não a P.

Questões ainda não resolvidas

- \blacksquare NP = Co-NP ?
- $P = NP \cap Co-NP$?
- Conjectura-se:

 $P \neq NP$ $NP \neq Co-NP$ $P \neq NP \cap Co-NP$

• $\pi_1(D_1,Q_1)$ e $\pi_2(D_2,Q_2)$ problemas de decisão $\widehat{\parallel}$ resolve

Algoritmo A₂

Se for possível transformar o problema π_1 em π_2 e sendo conhecido um processo de transformar a solução de π_2 numa solução de π_1 , então o algoritmo A_2 pode ser usado para resolver o problema π_1 .

Instância $I_1 \in D_1 \xrightarrow{T'}$ Instância $I_2 \in D_2 \xrightarrow{A_2}$ Solução de $\pi_2 \xrightarrow{T''}$ Solução de π_1

Se ambos T' e T'' forem polinomiais, então diz-se que existe uma transformação polinomial de π_1 em π_2 , e que π_1 é polinomialmente transformável em π_2 .

- Formalmente, uma transformação polinomial de um problema de decisão $\pi_1(D_1,Q_1)$ no problema de decisão $\pi_2(D_2,Q_2)$ é uma função f: $\Delta_1 \to \Delta_2$ tal que valham:
 - (i) T pode ser computada em tempo polinomial
 - (ii) para toda instância $I \in D_1$ do problema π_1 temse: π_1 (I) possui resposta SIM se e somente se $\pi_2(f(I))$ também possuir.

- Transformações polinomiais são operações importantes. Por que ?
 - Preservam a natureza (polinomial ou não) do algoritmo A₂ para π_2 , quando utilizado para resolver π_1 .

A2 for polinomial transformação polinomial de π 1 em π 2

π1 pode ser resolvido em tempo polinomial

• Notação : $\pi_1 \alpha \pi_2$ (π_1 pode ser transformado polinomialmente em π_2)

• Observação: α é transitiva, ou seja:

$$\pi_1 \alpha \pi_2 e \pi_2 \alpha \pi_3 \Rightarrow \pi_1 \alpha \pi_3$$

Exemplo:
$$\pi_1 \to \text{Clique}$$
 $\pi_2 \to \text{Conj. Indepedente de Vértices}$
 $I_1 \to \text{grafo } G$ $I_2 f(I_1) \to \text{Complemento } G$ de G inteiro $K > 0$ mesmo inteiro K

f é polinomial porque:

- (i) G pode ser obtido a partir de G em tempo polinomial. -
- (ii) G possui uma clique de tamanho $\geq k$ se e somente se G possui um conjunto independente de vértices de tamanho $\geq k$.

Conclusão:

Se existir A2 que resolva o problema do conjunto independente de vértices em tempo polinomial, este algoritmo pode ser utilizado para resolver também o problema da clique em tempo polinomial.

Clique α Conjunto Independete de Vértices

Se $\pi_1 \alpha \pi_2 e \pi_2 \alpha \pi_1 \Rightarrow \pi_1 e \pi_2 \tilde{a}$ são equivalentes \Rightarrow idêntica dificuldade.

- Podemos utilizar a relação α para dividir *NP* em classes de problemas equivalentes entre si.
- Problemas pertencentes a P foram uma dessas classes: a classe de mínima dificuldade.

- Temos outra classe de problemas equivalentes entre si na classe NP que são os de "maior dificuldade" entre todos em NP. São denominados NP-completos.
- Um problema de decisão π é denominado **NP-completo** quando as seguintes condições forem satisfeitas:
 - (i) $\pi \in NP$.
 - (ii) todo problema de decisão $\pi' \in NP$ satisfaz $\pi' \alpha \pi$.
 - => todo problema da classe NP pode ser transformável polinomialmente no $\pi' NP$ -completo.

Se um problem π , *NP-completo*, puder ser resolvido em tempo polinomial **TODO** problema de *NP* admite algoritmos polinomial $\Rightarrow P = NP$

- Caso somente a condição (ii) de NP-Completo seja satisfeita, não importante a satisfação da condição (i), o problema é denomidado NP-Difícil
- Problemas tão difíceis quantos os problemas mais difíceis da classe NP.

- Passo de classificação de problema NP.
- Definição de NP-completo (disponível).
- Identificação ⇒ aplicação da definição

• Problemas: Todo problema NP precisaria ser transformado polinomialmente a π (problema de decisão a ser classificado)

Lema

Sejam π_1 e π_2 problemas de decisão \in NP, se π_1 é NP-completo e π_1 α π_2 então π_2 é NP-completo.

Prova

Como $\pi_2 \in NP$, para mostrar que π_2 é NP-completo basta provar que (ii) vale, ou seja, que $\pi' \alpha \pi_2 \ \forall \pi' \in NP$. Como π_1 é NP-completo , então necessariamente $\pi' \alpha \pi_1 \ \forall \pi' \in NP$. Como $\pi_1 \alpha \pi_2$, por transitividade temos que $\pi' \alpha \pi_2 \ \forall \pi' \in NP$

- Lema simples mas poderoso.
- Agora para provar que um problema π é *NP-completo* basta provar que:
 - (i) $\pi \in NP$ e
 - (ii) um problema π' , NP-completo, é tal $\pi' \alpha \pi$.
- Para aplicar o lema acima é preciso conhecer um problema π' *NP-completo*. Mas e para o primeiro ?
 - Neste caso aplica-se a definição.

 Em 1971, Cook provou o problema da satisfabilidade a definição.

Teorema de Cook

O problema da satisfabilidade é NP-completo

- A partir dai vários problemas foram provados.
- Karp em 1972 efetivou 24 poblemas na classe NPcompleto.
- Hoje temos centenas deles.
- Clique, conjunto independente de vértices

Referências

- Capítulo 7 do Szwarcfiter, J. L., Grafos e Algoritmos Computacionais, Ed. Campus, 1983.
- Capítulo 34 do Cormen, Introduction to Algorithms, MIT Press, 2001.