目录

CIFAR10 图像分类	
一、模型搭建	2
1.1、模型搭建	2
1. 2、网络结构优化	5
1. 2. 1、LeNet	5
1.2.2、AlexNet	6
1. 2. 3、ResNet	8
1.3、Baseline 选择	10
二、正则化	11
2. 1、随机丢弃	11
2. 2、归一化	12
2. 3、数据增强	13
2.4、权重衰退	14
三、交叉验证与超参数搜索	
3.1、交叉验证	16
3. 2、交叉验证调参	18
四、模型融合	20
五、模型应用	22
六、总结	

CIFAR10 图像分类

实验任务是使用卷积网络实现 CIFAR10 数据集图像分类。本次实验基于 torch 库实现,所选数据集为 CIFAR10 官方数据集,源码已在云平台提交,所有代码已同步上传至 gi thub。

一、模型搭建

1.1、模型搭建

(1) 模型搭建

本次实验采用的是卷积神经网络,而卷积操作是在整张图像上进行,所以我们的输入应是原始数据的大小,即 3*32*32,使用卷积后算子后,输入数据会映射到高维语义空间中,表现为通道数量(即特征图的数量)增多,而尺寸减小(即视野变大)。

所以我们定义了从输入通道到高维输出通道的卷积操作:

```
class SimpleCNN(nn.Module):
    def __init__(self):
        super(SimpleCNN, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
        self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
        self.pool = nn.MaxPool2d(2, 2)

def forward(self, x):
        x = self.pool(self.relu(self.conv1(x)))
        x = self.pool(self.relu(self.conv2(x)))
        x = self.pool(self.relu(self.conv3(x)))
```

接着我们需要将卷积后的特征图展平,作为全连接层的输入,全连接层经过降维后输出 10 通道作为分类输出:

```
class SimpleCNN(nn.Module):
    def __init__(self):
       super(SimpleCNN, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, kernel size=3, padding=1)
       self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
        self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
        self.pool = nn.MaxPool2d(2, 2)
        self.fc1 = nn.Linear(128 * 4 * 4, 256)
        self.fc2 = nn.Linear(256, 128)
       self.fc3 = nn.Linear(128, 10)
       self.relu = nn.ReLU()
    def forward(self, x):
        x = self.pool(self.relu(self.conv1(x)))
        x = self.pool(self.relu(self.conv2(x)))
        x = self.pool(self.relu(self.conv3(x)))
        x = x.view(-1, 128 * 4 * 4)
        x = self.relu(self.fc1(x))
        x = self.relu(self.fc2(x))
        x = self.fc3(x)
        return x
```

这样就定义了 CNN 模型的基本框架,之后的 dropout、batch normalization 等 正则化技术都是基于该网络架构进行修改。

(2) 数据处理

首先引入数据,使用 torch 的 CIFAR10 数据集:

其中 transform 参数是我们对数据预处理的操作,在这个操作中我们可以使用数据增强技术引入正则,从而增强模型的泛化能力。

然后进行数据集划分,将数据集按照4:1:1划分出训练集、验证集和测试集。

```
# 划分数据集
train_size = int(0.8 * len(train_dataset)) 整个训练集为50000张, 分出10000张作为验证集
valid_size = len(train_dataset) - train_size
train_subset, valid_subset = random_split(train_dataset, [train_size, valid_size])

train_loader = DataLoader(dataset=train_subset, batch_size=batch_size, shuffle=True)
valid_loader = DataLoader(dataset=valid_subset, batch_size=batch_size, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False) 10000张
```

最后直接通过 torch 的数据迭代器将数据做成可迭代的批次对象, batch_size 为超参数:

```
train_loader = DataLoader(dataset=train_subset, batch_size=batch_size, shuffle=True)
valid_loader = DataLoader(dataset=valid_subset, batch_size=batch_size, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
```

(3) 训练与验证

首先定义好模型、优化器和损失函数,以 Adam 优化器与交叉熵损失为例:

```
model = SimpleCNN().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=lr)
```

之后定义训练函数,统计 loss 值和 acc 值,如图所示:

```
def train(num epochs):
   for epoch in range(num_epochs):
       model.train() # 切换到训练模式
       train_loss = 0.0 # 每一轮都初始化损失
       train acc = 0.0
       for images, labels in train_loader:
           images, labels = images.to(device), labels.to(device)
           optimizer.zero_grad() # 每一次迭代都将模型参数的梯度清零
           outputs = model(images) # 穿入模型
           loss = criterion(outputs, labels) # 计算损失
           loss.backward() # 反向传播
           optimizer.step() # 更新
           train_loss += loss.item() * images.size(0) # 累计该批次损失
           _, predictions = torch.max(outputs.data, 1)
           correct_counts = predictions.eq(labels.data.view_as(predictions))
           acc = torch.mean(correct_counts.type(torch.FloatTensor)) # 统计正确率
           train_acc += acc.item() * images.size(0) # 累计该批次准确率
       valid loss = 0.0
       valid_acc = 0.0
       with torch.no_grad():
           model.eval() # 切换到验证模式
           for images, labels in valid_loader:
               images, labels = images.to(device), labels.to(device)
               outputs = model(images)
               loss = criterion(outputs, labels)
               valid_loss += loss.item() * images.size(0)
               _, predictions = torch.max(outputs.data, 1)
               correct_counts = predictions.eq(labels.data.view_as(predictions))
               acc = torch.mean(correct_counts.type(torch.FloatTensor))
               valid acc += acc.item() * images.size(0)
       avg_train_loss = train_loss / train_data_size # 得到所有批次的平均损失
       avg_train_acc = train_acc / train_data_size # 得到所有批次的平均准确率
       avg_valid_loss = valid_loss / valid_data_size
```

(4) 测试

针对测试,我们将测试集输入进训练好的 model,得到测试集的 outputs,同样计算每个批次的准确度,最后求取平均作为模型的评估指标。

```
def test():
    model.eval() # 切換到评估模式
    correct = 0
    total = 0
    with torch.no_grad():
        for images, labels in test_loader:
            images, labels = images.to(device), labels.to(device)
            outputs = model(images)
            __, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print(f"Test Accuracy: {100 * correct / total:.2f}%")
```

1.2、网络结构优化

上一节我们理解了 CNN 模型的模型结构以及训练、测试流程,下面我们可以采用不同的网络结构提升模型性能。

1. 2. 1. LeNet

首先我们采用最简单的 LeNet 卷积网络。LeNet 采用了卷积层、平均池化层与全连接层,并使用 sigmod 激活函数,是最早的卷积神经网络。为了适配我们的数据输入维度,我们将 LeNet 模型定义如下:

```
# 定义 LeNet 模型
class LeNet(nn.Module):
   def __init__(self):
       super(LeNet, self).__init__()
       self.conv1 = nn.Conv2d(3, 6, kernel_size=5, padding=2) # 第一层卷积
       self.pool = nn.AvgPool2d(2, 2) # 平均池化层
      self.conv2 = nn.Conv2d(6, 16, kernel_size=5) # 第二层卷积
       self.fc1 = nn.Linear(16 * 6 * 6, 120) # 第一个全连接层
       self.fc2 = nn.Linear(120, 84) # 第二个全连接层
       self.fc3 = nn.Linear(84, 10) # 输出层,对应10个类别
   def forward(self, x):
       x = self.pool(torch.relu(self.conv1(x)))
       x = self.pool(torch.relu(self.conv2(x)))
       x = x.view(-1, 16 * 6 * 6) # 展平处理
       x = torch.relu(self.fc1(x))
       x = torch.relu(self.fc2(x))
       x = self.fc3(x)
     return x
```

LeNet 模型的训练结果:

```
Epoch [22/70] Training: Loss: 1.2156, Accuracy: 56.44%, Validation: Loss: 1.3033, Accuracy: 53.99% Epoch [23/70] Training: Loss: 1.1973, Accuracy: 57.14%, Validation: Loss: 1.2838, Accuracy: 55.18% ...

Epoch [68/70] Training: Loss: 0.6858, Accuracy: 75.72%, Validation: Loss: 1.3222, Accuracy: 59.08% Epoch [69/70] Training: Loss: 0.6769, Accuracy: 75.93%, Validation: Loss: 1.2403, Accuracy: 60.37% Epoch [70/70] Training: Loss: 0.6658, Accuracy: 76.51%, Validation: Loss: 1.2893, Accuracy: 59.61% Test Accuracy: 59.55%
```


结论:

LeNet 作为最简单的卷积网络,训练效果不是特别理想。可见模型在后半程已经发生了严重过拟合,并且测试准确度也仅有 60%(但已经超越了 A1 中的所有 MLP 网络)。

LeNet 由于使用了卷积网络,引入了参数共享与空间不变性,使得网络参数大大减少。同时 LeNet 引入了池化层,进一步降低了计算量,并提供了一定程度的形变不变性,使模型对小的位移、旋转和缩放变得不敏感。

1.2.2 AlexNet

为了进一步加深网络层数,我们使用改进后的 AlexNet。AlexNet 是 2012 年 ImageNet 大赛的冠军,它首次提出了 ReLU 激活、Dropout 正则化、多 GPU 训练和数据增强等一系列创新方法,使得网络的训练效率和模型能力大幅增强。

原始的 AlexNet 采用了 5 层卷积层+3 层全连接层的结构,并使用了 11x11 的大卷积核。为了与我们的数据输入维度匹配,我们调整了通道数与卷积核大小。网络结构如图:

```
class AlexNet(nn.Module):
   def __init__(self):
       super(AlexNet, self).__init__()
       self.features = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
            nn.ReLU(inplace=True), # Alex采用的新型的relu激活函数
            nn.MaxPool2d(kernel_size=2, stride=2), # 最大池化
            nn.Conv2d(64, 192, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
            nn.Conv2d(192, 384, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(384, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2)
        self.classifier = nn.Sequential(
            nn.Dropout(0.5), # Alex采用了Dropout
            nn.Linear(256 * 4 * 4, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),
            nn.Linear(4096, 2048),
            nn.ReLU(inplace=True),
            nn.Linear(2048, 10)
   def forward(self, x):
       x = self.features(x)
       x = x.view(x.size(0), 256 * 4 * 4)
       x = self.classifier(x)
       return x
```

AlexNet 的训练结果:

```
Epoch [22/70] Training: Loss: 0.3914, Accuracy: 86.41%, Validation: Loss: 0.5044, Accuracy: 83.21% Epoch [23/70] Training: Loss: 0.3692, Accuracy: 87.33%, Validation: Loss: 0.5549, Accuracy: 81.97% ...

Epoch [68/70] Training: Loss: 0.0642, Accuracy: 97.85%, Validation: Loss: 0.6181, Accuracy: 86.56% Epoch [69/70] Training: Loss: 0.0631, Accuracy: 97.91%, Validation: Loss: 0.6215, Accuracy: 86.29% Epoch [70/70] Training: Loss: 0.0658, Accuracy: 97.73%, Validation: Loss: 0.6534, Accuracy: 85.82% Test Accuracy: 86.86%
```


结论:

由于网络层数加深以及采用了 dropout 正则,模型的性能得到非常大的提升,测试准确度达到 86.86%。可见增大模型层数的确有利于模型性能的提升。然而受制于 AlexNet 的层数过多,尤其是在全连接的分类层参数达到 4096*2048,很容易产生过拟合。所以后续我们需要降低全连接层的参数量,减轻过拟合的风险。

1. 2. 3 ResNet

Resnet 通过构造残差块,使得网络层间形成 shortcut connection,可以极大缓解由于层数增多导致的梯度消失或梯度爆炸问题。

典型的残差块构造是:

第一个卷积层 + 批归一化 + 激活函数: 用于提取特征。

第二个卷积层 + 批归一化: 进一步学习特征。

残差连接:将输入 x 和经过两个卷积层处理后的输出 F(x) 相加。

我们基于 AlexNet 构造了一个 15 层的残差网络,包括 5 个残差块和 3 个池化层,同时去除了 AlexNet 的 dropout,并将全连接分类层压缩为两层:

```
# 残差块
class ResidualBlock(nn.Module):
   def __init__(self, in_channels, out_channels):
       super(ResidualBlock, self).__init__()
       self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
       self.relu = nn.ReLU(inplace=True)
       self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
       # 用于调整输入和输出的维度
       self.shortcut = nn.Sequential()
       if in channels != out channels:
           self.shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1)
    def forward(self, x):
       out = self.conv1(x)
       out = self.relu(out)
       out = self.conv2(out)
       return self.relu(out + self.shortcut(x)) # 残差连接
```

```
# 带有残差连接的 AlexNet 模型
class AlexNetWithResiduals(nn.Module):
    def __init__(self):
       super(AlexNetWithResiduals, self).__init__()
        self.features = nn.Sequential(
           ResidualBlock(3, 64),
           nn.MaxPool2d(kernel_size=2, stride=2),
           ResidualBlock(64, 192),
           nn.MaxPool2d(kernel_size=2, stride=2),
           ResidualBlock(192, 384),
           ResidualBlock(384, 256),
           ResidualBlock(256, 256),
           nn.MaxPool2d(kernel_size=2, stride=2)
       self.classifier = nn.Sequential(
           nn.Linear(256 * 4 * 4, 1024), # 修改全连接层输入尺寸
           nn.ReLU(inplace=True),
           nn.Linear(1024, 10),
```

训练结果:

```
Epoch [22/70] Training: Loss: 0.1389, Accuracy: 95.16%, Validation: Loss: 0.4295, Accuracy: 87.55% Epoch [23/70] Training: Loss: 0.1331, Accuracy: 95.39%, Validation: Loss: 0.3915, Accuracy: 88.40% ...

Epoch [69/70] Training: Loss: 0.0243, Accuracy: 99.22%, Validation: Loss: 0.4580, Accuracy: 89.87% Epoch [70/70] Training: Loss: 0.0193, Accuracy: 99.36%, Validation: Loss: 0.5110, Accuracy: 89.95% Test Accuracy: 90.33% All Time: 30 分 29 秒
```


结论:

增加了残差层后,测试精度达到了 90.33%, 比 8 层的 AlexNet 还多 4 个点,说明残差结构确实有利于模型收敛和加深训练程度。不足是全连接层的参数量仍然很大,没有有效的正则恶化约束,导致后期模型出现了过拟合。

1.3、Baseline 选择

经过上一节网络结构的调优,我们选择 15 层不带任何正则化措施的残差网络作为 Baseline,其中包含了 5 个残差块、3 个池化层以及两层全连接分类网络,并选用如下超参数:

batch_size epochs lr	批次大小 轮次大小 学习率	128 70 0.001
optim	优化器	Adam
activation	激活函数	relu
dropout	随机丢弃比率	0.0
momentum	动量	0

基线测试结果:

```
Epoch [22/70] Training: Loss: 0.3449, Accuracy: 87.88%, Validation: Loss: 0.5605, Accuracy: 82.34% Epoch [23/70] Training: Loss: 0.3391, Accuracy: 88.06%, Validation: Loss: 0.5211, Accuracy: 83.41% ...

Epoch [69/70] Training: Loss: 0.1943, Accuracy: 93.41%, Validation: Loss: 0.6287, Accuracy: 84.22% Epoch [70/70] Training: Loss: 0.1939, Accuracy: 93.30%, Validation: Loss: 0.5874, Accuracy: 84.57% Test Accuracy: 84.86%
All Time: 30 分 13 秒
```

Output is truncated. View as a <u>scrollable element</u> or open in a <u>text editor</u>. Adjust cell output <u>settings</u>...

结论:

Baseline 的测试集上的准确度为 84.86%。与上一节的 ResNet 主要差别是缺少了 Dropout 措施,导致过拟合现象突出,同时动量设为 0 导致收敛程度和训练程度表现不佳,模型测试精度降低。

二、正则化

以下基于 Baseline 采取不同正则化策略

2.1、随机丢弃

Dropout 是一种常用的正则化策略,可以有效避免过拟合。在 CNN 中,由于卷积层的参数量比较小,dropout 的情形比较少,所以我们将 dropout 放到全连接层的激活函数之后。汲取第一节的教训,配合自适应池化降低全连接的参数量,实现细节如下:

```
# 带有残差连接的 AlexNet 模型
class AlexNetWithResiduals(nn.Module):
    def __init__(self):
       super(AlexNetWithResiduals, self).__init__()
       self.features = nn.Sequential(
           ResidualBlock(3, 64),
           nn.MaxPool2d(kernel_size=2, stride=2),
           ResidualBlock(64, 192),
           nn.MaxPool2d(kernel_size=2, stride=2),
           ResidualBlock(192, 384),
           ResidualBlock(384, 256),
           ResidualBlock(256, 256),
           nn.MaxPool2d(kernel size=2, stride=2),
           nn.AdaptiveAvgPool2d((1, 1)) # 使用自适应平均池化,用于通道降维
        self.classifier = nn.Sequential(
           nn.Linear(256, 64),
           nn.ReLU(inplace=True),
           nn.Dropout(0.5),
            nn.Linear(64, 10)
    def forward(self, x):
       x = self.features(x)
       x = x.view(x.size(0), 256)
       x = self.classifier(x)
       return x
```

训练结果:

```
Epoch [22/70] Training: Loss: 0.2932, Accuracy: 89.89%, Validation: Loss: 0.4551, Accuracy: 85.25% Epoch [23/70] Training: Loss: 0.2738, Accuracy: 90.46%, Validation: Loss: 0.4582, Accuracy: 85.73% ...

Epoch [69/70] Training: Loss: 0.0410, Accuracy: 98.67%, Validation: Loss: 0.5334, Accuracy: 88.75% Epoch [70/70] Training: Loss: 0.0386, Accuracy: 98.63%, Validation: Loss: 0.5483, Accuracy: 88.02% Test Accuracy: 88.57%
All Time: 30 分 0 秒
```

Output is truncated. View as a <u>scrollable element</u> or open in a <u>text editor</u>. Adjust cell output <u>settings</u>...

结论:

在 Dropout 的使用后,可以看到模型过拟合现象减弱,表现为测试精度与验证精度分叉时间变晚,间距减小。Loss 降低到更低值,说明损失函数曲面收敛到更谷底,模型训练的程度加深。测试集的表现也有所提升,上升约 3.5 个点。说明正则化策略能有效避免过拟合,从而使模型的训练程度加深。

2.2、归一化

归一化是另一种常用的正则策略,通过在每一批数据中对神经网络的输入或输出进行标准化,使数据具有稳定的分布。我们在 Baseline 加上 Dropout 的基础上,在每个残差块的每个激活函数前引入批归一化:

```
# 残差块
class ResidualBlock(nn.Module):
    def __init__(self, in_channels, out_channels):
       super(ResidualBlock, self).__init__()
       self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
       self.bn1 = nn.BatchNorm2d(out channels)
       self.relu = nn.ReLU(inplace=True)
       self.conv2 = nn.Conv2d(out channels, out channels, kernel size=3, padding=1)
       self.bn2 = nn.BatchNorm2d(out_channels) # 添加归一化层
       # 用于调整输入和输出的维度
       self.shortcut = nn.Sequential()
       if in_channels != out_channels:
           self.shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1)
    def forward(self, x):
       out = self.conv1(x)
       out = self.bn1(out) # 应用归一化
       out = self.relu(out)
       out = self.conv2(out)
       out = self.bn2(out) # 应用归一化
       return self.relu(out + self.shortcut(x)) # 残差
```

训练结果:

```
Epoch [22/70] Training: Loss: 0.2520, Accuracy: 91.49%, Validation: Loss: 0.4568, Accuracy: 86.84% Epoch [23/70] Training: Loss: 0.2337, Accuracy: 92.13%, Validation: Loss: 0.4005, Accuracy: 87.71% ...

Epoch [69/70] Training: Loss: 0.1087, Accuracy: 96.30%, Validation: Loss: 0.4796, Accuracy: 87.76% Epoch [70/70] Training: Loss: 0.1077, Accuracy: 96.44%, Validation: Loss: 0.4130, Accuracy: 89.05% Test Accuracy: 89.18%
All Time: 29 分 36 秒
```

Output is truncated. View as a scrollable element or open in a text editor. Adjust cell output settings...

结论:

通过模型曲线,可以看到模型收敛速度加快,有效缓解了梯度弥散问题。同时模型过拟合的现象进一步减弱,因为归一化改变了数据的方差大小和均值,使得新的分布更切合数据的真实分布,保证了模型的泛化能力。同时模型在测试集的准确度相较于只使用 Dropout 的情况也有所提升,提升约 0.51 个点。

2.3、数据增强

与批归一化等归一化策略通过调整数据分布的手段不同,数据增强直接在原始数据上施加变换,使模型能够学习到更丰富、更多样的特征,从而应对不同场景下的数据变化。数据增强尤其适用于数据量有限的场景,通过增加数据的多样性,降低过拟合风险。在前面正则化的基础上,我们利用 torch 的transform 技术,对数据采取随机翻转、随机裁切、随机染色、随机翻转裁切、Cutout 的操作:

```
# 数据增强
transform = transforms.Compose([
    transforms.RandomHorizontalFlip(),
    transforms.RandomCrop(32, padding=4),
    transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
    transforms.RandomRotation(15),
    transforms.RandomResizedCrop(32, scale=(0.8, 1.0)),
    transforms.ToTensor(),
    Cutout(num_holes=1, max_h_size=8, max_w_size=8), # Cutout 数据增强
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
```

训练结果:

```
Epoch [22/70] Training: Loss: 0.3719, Accuracy: 88.35%, Validation: Loss: 0.4354, Accuracy: 86.42% Epoch [23/70] Training: Loss: 0.3467, Accuracy: 89.05%, Validation: Loss: 0.4206, Accuracy: 86.49% ...

Epoch [69/70] Training: Loss: 0.1179, Accuracy: 96.15%, Validation: Loss: 0.4261, Accuracy: 88.87% Epoch [70/70] Training: Loss: 0.1173, Accuracy: 96.14%, Validation: Loss: 0.4322, Accuracy: 89.01% Test Accuracy: 88.88%
All Time: 29 分 57 秒
```


结论:

可以看到模型的过拟合现象大为减弱,前 20 轮验证精度都领先测试精度,说明模型的泛化能力很强。后半段的验证精度稍落后于训练精度,可能因为后期模型已经学到了训练样本足够多的细微特征(包括进行数据增强后新引入的噪声),从而领先了验证集的准确度。

测试集表现上,模型的测试准确度为 88.88%,稍低于只使用 Dropout 和 batch normalization 的模型,可能因为模型学习到一些与测试集无关的变形特征,偏离了测试数据分布,从而影响在测试集上的表现。

2.4、权重衰退

权重衰退是一种正则化技术,用于防止神经网络中的权重值过大,以提升模型

的泛化能力,减少过拟合风险。其主要通过在损失函数中加入一个惩罚项,将过大的权重值压缩到较小的范围内,使模型更简单且不易对噪声敏感。在以前优化的基础上,我们在优化器开启权重衰退选项,并将衰退值设置为较大的1e-4,从而增强模型的泛化性:

训练结果:

结论:

可以看到全程过拟合现象大为减弱,只有后 20 轮发生了轻微过拟合现象。因为 采用了 L2 惩罚项,使得模型复杂度降低,不容易学到细微噪声,所以模型的验证精度、验证损失一直随训练误差变化。

在损失上,训练损失没有降低到很小,推测是因为模型学到的更多是全局特征,对于特定训练集的学习程度减弱,而泛化能力增强。

测试准确度上,模型的准确度为88.45%,比验证集上的准确度多2个点,说明模型对于未知数据的预测能力同样很强,说明了经过各种正则后,模型泛化能力已经达到很高的水平。

三、交叉验证与超参数搜索

3.1、交叉验证

交叉验证是一种用于评估模型性能的技术,它将数据分成多个子集、反复训练和验证模型,从而得到更稳定的模型评估结果。前面我们在训练集上按照 4:1 划分出了验证集和测试集。但这种随机划分单一且固定,模型容易学到单次划分出的随机噪声。现在我们将训练集划分成 5 折,每一折都当做一次验证集,其余折当做训练集,共训练 5 次,数据集的划分示意图如下:

下面我们使用 KFold 库进行 5 折交叉验证,模型选用正则化的 15 层残差网络,实现细节如图:

```
# K折交叉验证设置
k_folds = 5
kf = KFold(n_splits=k_folds, shuffle=True)
fold_train_accuracies = [] # 初始化保存每折的结果
fold_valid_accuracies = []

# 模型训练
> def train(num_epochs): …

# 绘图函数
> def PLT(epochs, train_losses, valid_losses, train_accuracies, valid_accuracies): …
```

```
# 5折交叉验证
for fold, (train_idx, valid_idx) in enumerate(kf.split(train_dataset)):
    print(f"Fold {fold + 1}/{k_folds} :")
    train_losses, valid_losses = [], []
    train_accuracies, valid_accuracies = [], []
    # 构造每折的训练和验证数据
    train_subset = torch.utils.data.Subset(train_dataset, train_idx)
    valid_subset = torch.utils.data.Subset(train_dataset, valid_idx)
    train_data_size = len(train_subset)
    valid_data_size = len(valid_subset)
    test_data_size = len(test_dataset)
    train_loader = DataLoader(dataset=train_subset, batch_size=batch_size, shuffle=True)
    valid_loader = DataLoader(dataset=valid_subset, batch_size=batch_size, shuffle=False)
```

训练结果:

```
Fold 1/5:
Fold: Train Accuracy: 95.09%, Validation Accuracy: 88.20%

Fold 2/5:
Fold: Train Accuracy: 94.99%, Validation Accuracy: 88.52%

Fold 3/5:
Fold: Train Accuracy: 94.70%, Validation Accuracy: 87.96%

Fold 4/5:
Fold: Train Accuracy: 94.95%, Validation Accuracy: 87.80%

Fold 5/5:
Fold: Train Accuracy: 94.89%, Validation Accuracy: 88.37%

k-fold average Train Accuracy: 94.93%
k-fold average Validation Accuracy: 88.17%
Test Accuracy: 88.83%
```

结论:

模型在每一折上的准确率都大致相同,原因是数据集预处理为乱序,使得模型的随机性减弱。并且当数据集的样本量较大时,每一折的训练集和验证集都能较好地代表整个数据集的分布,减少了由于样本划分带来的波动。

交叉验证同样也是一种防止过拟合的方法,它采用不同折上的平均(或加权平均)准确率作为评估标准,相当于一种变换的"数据增强"。

交叉验证非常适合小样本的情况,因为它能够有效地利用有限的数据资源,最 大化模型的学习和评估效果。

3.2、交叉验证调参

交叉验证同样是一种有效的调参方法,因为它能够帮助模型在有限数据上评估性能的稳定性和泛化能力。通过交叉验证,可以找到模型在不同超参数设置下的最佳配置,同时减少过拟合和低估模型性能的风险。现代机器学习已经有很多 AutoML 的方案,如使用 Optuna 或 Hyperopt 自动化调参等,但这些方法对算力的消耗巨大,需要多卡并行,价格昂贵。为了演示效果,我们自己制作了超参数网格,为每组超参数使用 5 折交叉验证,最终得到最优的超参数配置。

我们使用了 0.25 采样率的训练集来缩小数据集的规模,并使用三层嵌套循环进行超参数搜索,总的计算复杂度为 0(N4)。

定义的超参数网格如图:

```
# 超参数网格
param_grid = {
    'batch_size': [64, 128, 256],
    'lr': [0.005, 0.001, 0.0005],
    'epochs': [70]
}
```

主要代码如图:

```
# 交叉验证
for batch_size in param_grid['batch_size']:
    for lr in param_grid['lr']:
       for epochs in param_grid['epochs']:
           print(f"Training with batch_size={batch_size}, lr={lr}, epochs={epochs}")
           # 使用 KFold 进行交叉验证
           kf = KFold(n_splits=5, shuffle=True)
           fold valid accuracies = []
           for fold, (train_idx, valid_idx) in enumerate(kf.split(sampled_dataset)):
               # print(f"Fold {fold + 1}/{k_folds} :")
               train_losses, valid_losses = [], []
               train_accuracies, valid_accuracies = [], []
               train_subset = torch.utils.data.Subset(sampled_dataset, train_idx)
               valid_subset = torch.utils.data.Subset(sampled_dataset, valid_idx)
               train_loader = DataLoader(dataset=train_subset, batch_size=batch_size, shuffle=True)
               valid_loader = DataLoader(dataset=valid_subset, batch_size=batch_size, shuffle=False)
               # 模型、损失函数、优化器
               model = RRRR().to(device)
               criterion = nn.CrossEntropyLoss()
               optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=1e-4)
               # 调用训练函数,返回该折结果
               avg_train_acc, avg_valid_acc = train(epochs)
```

训练结果:

```
Files already downloaded and verified
Files already downloaded and verified
Training with batch_size=64, 1r=0.005, epochs=70
Fold 1: Train Accuracy: 78.01%, Validation Accuracy: 71.76%
Fold 2: Train Accuracy: 74.57%, Validation Accuracy: 71.36%
Fold 3: Train Accuracy: 77.90%, Validation Accuracy: 72.12%
Fold 4: Train Accuracy: 76.31%, Validation Accuracy: 73.92%
Fold 5: Train Accuracy: 80.59%, Validation Accuracy: 75.28%
Mean Validation Accuracy for batch_size=64, lr=0.005, epochs=70: 72.89%
Training with batch_size=64, lr=0.001, epochs=70
Fold 1: Train Accuracy: 95.98%, Validation Accuracy: 81.04%
Fold 2: Train Accuracy: 95.60%, Validation Accuracy: 80.64%
Fold 3: Train Accuracy: 96.35%, Validation Accuracy: 80.64%
Fold 4: Train Accuracy: 95.93%, Validation Accuracy: 81.04%
Fold 5: Train Accuracy: 95.70%, Validation Accuracy: 82.92%
Mean Validation Accuracy for batch_size=64, lr=0.001, epochs=70: 81.26%
Training with batch_size=64, lr=0.0005, epochs=70
Fold 1: Train Accuracy: 97.35%, Validation Accuracy: 81.24%
Fold 2: Train Accuracy: 97.76%, Validation Accuracy: 81.68%
Fold 3: Train Accuracy: 96.34%, Validation Accuracy: 83.04%
Fold 4: Train Accuracy: 97.16%, Validation Accuracy: 78.08%
Fold 5: Train Accuracy: 97.43%, Validation Accuracy: 81.96%
Mean Validation Accuracy for batch_size=64, lr=0.0005, epochs=70: 81.20%
Best Params: Batch Size=64, Learning Rate=0.001, Epochs=70 with Validation Accuracy=81.26%
Best model performance: Train Accuracy: 97.34%, Validation Accuracy: 88.93%
```

Output is truncated. View as a <u>scrollable element</u> or open in a <u>text editor</u>. Adjust cell output <u>settings</u>...

Test Accuracy: 88.40% All Time: 284 分 2 秒

结论:

在超参数网络搜索下,找到的最优参数是: Batch Size=64, Learning Rate=0.001, Epochs=70 其验证准确度为 81.26%, 因为这是五折交叉验证出的结果,结果具有更高的置信度。

在最优超参数配置下,重新用整个训练集训练模型,得到的测试精度为88.4%,

总体超过了以往其它所有参数配置下的测试准确度,说明超参数在该配置下的 确得到了最优结果。

交叉验证搜索超参数计算量非常大,总的训练时长为 284min,所以需要较高的调参配比,使得模型在有限的算力下尽可能遍历更大的超参数空间。

四、模型融合

模型融合是一种集成学习方法,它结合了多个模型的预测结果,以提升整体预测性能。模型融合的核心思想是通过多个不同模型的优势互补,来减少单个模型预测中的偏差和方差,减少过拟合风险,从而得到更稳健的结果。

在以往测试中,模型都是由我们自己定义,存在一定局限性,为了使模型发挥出更好的性能,我们将自己设计的 CNN 模型同预训练的 ResNet18 模型融合,获得更优良的性能。

具体来讲,先并行训练多个模型,然后设计多模型输出结果的融合函数,在测试集上得到多模型的融合测试结果。

实现细节:

```
# 融合函数的定义

def ensemble(models_set, images, device):
    """进行模型融合"""
    outputs = [m(images) for m in models_set]
    avg_output = sum(outputs) / len(models_set) # 计算加权平均
    return avg_output
# 模型集合
models_set = []
```

训练结果:

Ensemble Test Accuracy: 90.61%

结论:

图表一是 ResNet18 的训练结果, 图表二是基于 AlexNet 设计的 15 层残差网络的结果, 两个模型的验证准确率分别是 84.39%、88.93%, 在模型融合后, 测试集上的预测准确度为 90.61%, 可见模型融合极大提升了模型的预测能力, 相交于单一模型具有更多的特征学习能力。尽管两个模型各自表现已经足够良好,

但在特征学习和泛化能力上有所差异,通过模型融合,将两个模型的特征学习能力可以进一步互补,从而更全面地捕捉数据的特征模式,提高了整体的预测准确性。

五、模型应用

最后简单评测一下模型在小样本上的预测能力,同样选用正则化后的 15 层 ResNet 模型,选取测试集中的小样本如下:

模型预测结果:

PS C:\E\PycharmProject\DL\CNN> & C:/Users/86151/anaconda3/envs/DGL_cpu/python.exe Files already downloaded and verified

Predicted: deer frog dog dog deer truck dog dog 真实标签为: deer frog dog frog plane truck cat truck

随机选取的 8 个小样本中,模型预测对了 4 个,说明我们训练的模型符合预期, 且具有一定的可解释性。

六、总结

本次实验基于 CNN 完成了图像分类任务,采用分类准确率作为主要的评价指标。在实验过程中,我尝试了多种 CNN 网络结构,并应用了 dropout、weight_decay、batch_normalization、data_augmentation 等正则化方法,掌握了一系列对抗过拟合的技巧。此外,训练策略上,我还采用交叉验证测试模型在数据集的不同划分层次上的综合表现,并使用五折交叉验证完成了超参数网格搜索,最终确定了表现最佳的超参数配置。最后,我用加权平均完成了ResNet18 预训练模型与自己设计的 CNN 模型的融合,并获得了最优的测试预测结果。

通过本次实验,我更加深入地理解了卷积神经网络训练、验证和测试的整体流程,尤其是深入了解了交叉验证等训练策略。本次实验的深入探索使我掌握了从模型设计、正则化应用、超参数调优到模型集成的完整流程,提升了我在应对复杂问题时的解决能力。

参考代码

- [1] <u>《</u>动手学深度学习》7.6. 残差网络(ResNet)
- [2] 5.11 残差网络
- [3] <u>Deep Learning -- Normalization</u>
- [4] <u>查看 CutOut 代码</u>
- [5] pytorch K 折交叉验证过程说明及实现
- [6] apachecn\apachecn-d1-zh