Numerične metode 1 - definicije, trditve in izreki

Oskar Vavtar po predavanjih profesorja Bora Plestenjaka 2020/21

Kazalo

1	NU	MERIČNO RAČUNANJE	3
	1.1	Uvod	3
	1.2	Premična pika	3
	1.3	Občutljivost problema	4
	1.4	Vrste napak pri numeričnem računanju	4
	1.5	Stabilnost metode	5
	1.6	Analiza zaokrožitvenih napak	5
		1.6.1 Produkt $n+1$ predstavljivih števil	5
		1.6.2 Skalarni produkt vektorjev dolžine n	6
2	NE	LINEARNE ENAČBE	7
	2.1	Uvod	7
	2.2	Bisekcija	7
	2.3	Navadna iteracija	8
	2.4	Tangentna metoda	9
	2.5	Metode brez f'	10
3	SISTEMI LINEARNIH ENAČB		
	3.1	Oznake in definicije	11
	3.2	Vektorske in matrične norme	12
	3.3	Občutljivost sistemov linearnih enačb	14
	3.4	LU razcep	14
	3.5	Stabilnost reševanja sistemov in LU razcepov	16
4	SIS	TEMI NELINEARNIH ENAČB	18
	4.1	Uvod	18
	4.2	Navadna iteracija	18
	4.3	Newtonova metoda	19
5	LINEARNI PROBLEM NAJMANJŠIH		
	KV	ADRATOV	20
	5.1	Uvod	20
	5.2	Razcep Cholskega	20
	5.3	QR razcep	22
	5.4	Givensove rotacije	22
	5.5	Householderjeva zrcaljenja	23
	5.6	Singularni razcep (SVD)	24

1 NUMERIČNO RAČUNANJE

1.1 Uvod

Definicija 1.1 (Napaka). Pri numeričnem računanju izračunamo numerični približek za točno rešitev. Razlika med približkom in točno vrednostjo je napaka približka. Ločimo absolutno in relativno napako.

- absolutna napaka = približek točna vrednost
- relativna napaka = $\frac{\text{absolutna napaka}}{\text{točna vrednost}}$

Naj bo x točna vrednost, \hat{x} pa približek za x.

- Če je $\hat{x} = x + d_a$, potem je $d_a = \hat{x} x$ absolutna napaka.
- Če je $\hat{x} = x(1+d_r)$, potem je $d_r = \frac{\hat{x}-x}{x}$ relativna napaka.

1.2 Premična pika

Definicija 1.2. Velja $fl(x) = x(1+\delta)$ za $|\delta| \le u$, kjer je

$$u = \frac{1}{2}b^{1-t}$$

osnovna zaokrožitvena napaka:

- single: $u = 2^{-24} = 6 \times 10^{-8}$
- double: $u = 2^{-53} = 1 \times 10^{-16}$

Izrek 1. Če za število x velja, da |x| leži na intervalu med najmanjšim in največjim pozitivnim predstavljivim normaliziranim številom, potem velja

$$\frac{|\mathrm{fl}(x) - x|}{|x|} \le u.$$

1.3 Občutljivost problema

Definicija 1.3 (Občutljivost). Če se rezultat pri majhni spremembi argumentov 1 ne spremeni veliko, je problem neobčutljiv, sicer pa je občutljiv.

1.4 Vrste napak pri numeričnem računanju

Definicija 1.4. Pri numeričnem računanje se pojavijo 3 vrste napak:

1. Neodstranljive napake: Npr. ko podatek ni predstavljivo število. Namesto y=f(x) lahko v najboljšem primeru izračunamo $\overline{y}=f(\overline{x})$, kjer je \overline{x} najbližje predstavljivo število.

$$D_n = y - \overline{y} = f(x) - f(\overline{x})$$

2. Napaka metode: Npr. ko na voljo nimamo željene operacije. Namesto $f(\overline{x})$ potem izračunamo $\widetilde{y} = g(\overline{x})$, kjer je g(x) približek za f(x), kjer znamo vrednost g izračunati s končnim številom operacij.

$$D_m = \overline{y} - \widetilde{y} = f(\overline{x}) - g(\overline{x})$$

3. Zaokrožitvene napake: Pri izračunu $\widetilde{y}=g(\overline{x})$ lahko pri vsaki osnovni operaciji pride do zaokrožitvene napake, zato na koncu kot numeričen rezultat dobimo \widehat{y} .

$$D_z = \widetilde{y} - \widehat{y}$$

Skupna napaka:

$$D = D_n + D_m + D_z$$

V splošnem lahko ocenimo:

$$|D| \leq |D_n| + |D_m| + |D_z|$$

¹ Motnji oz. perturbaciji.

1.5 Stabilnost metode

Definicija 1.5. Če metoda za $\forall x$ vrne \hat{y} , ki je *absolutno (relativno)* blizu točnemu y, je metoda $direktno \ stabilna$.

Če metoda za $\forall x$ vrne tak \widehat{y} , da $\exists \widehat{x}$ absolutno (relativno) blizu x, da je $\widehat{y} = f(\widehat{x})$ (točno), je metoda obratno stabilna.

V splošnem:

 $|direktna napaka| \leq |občutljivost| \cdot |obratna napaka|$

1.6 Analiza zaokrožitvenih napak

1.6.1 Produkt n+1 predstavljivih števil

Algoritem. Dana so predstavljiva števila x_0, x_1, \ldots, x_n ; računamo $p = x_0 \cdot x_1 \cdot \ldots \cdot x_n$.

Točno:

$$p_0 = x_0$$
 $i = 1, ..., n$
 $p_i = p_{i-1} \cdot x_i$
 $p = p_n$

Numerično:

$$\begin{array}{lll} \widehat{p}_0 &=& x_0 \\ i &=& 1 \text{,...,n} \\ && \widehat{p}_i &=& \widehat{p}_{i-1} \cdot x_i \cdot (1 \text{ + } \delta_i) && \left| \delta_i \right| \leq \text{ u} \\ \widehat{p} &=& \widehat{p}_n \end{array}$$

1.6.2 Skalarni produkt vektorjev dolžine n

Algoritem. Imamo vektorje *predstavljivih* števil $a = [a_1, \ldots, a_n]^T$, $b = [b_1, \ldots, b_n]^T$. Računamo $s = \langle b^T, a \rangle = \sum_{i=1}^n a_i b_i$.

Točno:

$$s_0 = 0$$

 $i = 1, ..., n$
 $p_i = a_i \cdot b_i$
 $s_i = s_{i-1} + p_i$
 $s = s_n$

Numerično:

$$\begin{array}{lll} \widehat{\mathbf{s}}_0 &=& 0 \\ \mathbf{i} &=& 1 \text{ , . . . , n} \\ & & \widehat{\mathbf{p}}_{\mathbf{i}} &=& \mathbf{a}_{\mathbf{i}} \cdot \mathbf{b}_{\mathbf{i}} \cdot (\mathbf{1} \ + \ \alpha_i) & |\alpha_i| \leq u \\ & & \widehat{\mathbf{s}}_{\mathbf{i}} &=& (\widehat{\mathbf{s}}_{\mathbf{i}-1} \ + \ \widehat{\mathbf{p}}_{\mathbf{i}}) \cdot (\mathbf{1} \ + \ \beta_i) & |\beta_i| \leq u \\ \widehat{\mathbf{s}} &=& \widehat{\mathbf{s}}_{\mathbf{n}} \end{array}$$

Trditev 1. Računanje skalarnega produkta je *obratno* stabilno, ni pa *direktno* stabilno.

2 NELINEARNE ENAČBE

2.1 Uvod

Definicija 2.1. Naj bo α ničla funkcije f,ki je zvezno odvedljiva v okolici α

- $f'(\alpha) \neq 0$: α je enostavna ničla
- $f'(\alpha) = 0$: α je $ve\check{c}kratna$ ničla

Če je f m-krat zvezno odveljiva in

$$f'(\alpha) = f''(\alpha) = \dots = f^{(m-1)}(\alpha) = 0, f^{(m)} \neq 0,$$

je α m-kratna ničla.

Trditev 2 (Občutljivost ničel). Naj bo α enostavna ničla. Če v okolici $x=\alpha$ obstaja inverzna funkcija $\alpha=f^{-1}(0)$ v bistvu "računamo" vrednost inverzne funkcije. Občutljivost je enaka absolutni vrednosti odvoda inverzna funkcije:

$$|(f^{-1})'(0)| = \frac{1}{|f'(f^{-1}(0))|} = \frac{1}{|f'(\alpha)|}.$$

Večkratno ničlo lahko izračunamo le z natančnostjo $u^{\frac{1}{m}}$, kjer je m večkratnost ničle (za dvojno ničlo dobimo le polovico točnih decimalk, za trojno le tretjino...).

2.2 Bisekcija

Izrek 2. Če je f realna zvezna funkcija na [a,b] in je $f(a)\cdot f(b)<0$, potem $\exists \xi\in(a,b),$ da je $f(\xi)=0.$

Algoritem (Bisekcija). Naj velja $f(a) \cdot f(b) < 0$ in a < b:

2.3 Navadna iteracija

Algoritem (Navadna iteracija).

izberi
$$x_0$$

 $r = 0, 1, 2, ...$
 $x_{r+1} = g(x_r)$

Ustavitveni kriterij:

- a) $r > r_{max}$ (prekoračeno število korakov)
- b) $|r_{x+1} r_x| < \varepsilon$

Izrek 3. Naj bo $\alpha=g(\alpha)$ in naj iteracijska funkcija g na intervalu $I=[\alpha-\delta,\alpha+\delta]$ za nek $\delta>0$ zadošča Lipschitzovem pogoju

$$|g(x) - g(y)| \le m|x - y| \text{ za } x, y \in I, \ 0 \le m < 1.$$

Potem za $\forall x_0 \in I$ zaporedje $x_{r+1} = g(x_r), r = 0, 1, \dots$ konvergira k α in velja

•
$$|x_r - \alpha| \leq m^r \cdot |x_0 - \alpha|$$

$$\bullet ||x_{r+1} - \alpha|| \le \frac{m}{1 - m} \cdot |x_{r+1} - x_r|$$

Posledica. Naj bo $\alpha = g(\alpha)$, g zvezno odvedljiva in $|g'(\alpha)| < 1$. Potem $\exists \delta > 0$, da za $\forall x_0 \in [\alpha - \delta, \alpha + \delta]$ zaporedje $x_{r+1} = g(x_r)$ konvergira k α .

Definicija 2.2. Naj zaporedje $\{x_r\}$ konvergira proti α^2 . Pravimo, da zaporedje konvergira z redom konvergence p, če obstaja limita

$$\lim_{r \to \infty} \frac{|x_{r+1} - \alpha|}{|x_r - \alpha|^p} = C > 0.$$

Izrek 4. Naj bo iteracijska funkcija g p-krat zvezno odvedljiva v okolici negibne točke α . Če velja $g'(\alpha) = \ldots = g^{(p-1)}(\alpha) = 0$ in $g^{(p)}(\alpha) \neq 0$, potem zaporedje $x_{r+1} = g(x_r), r = 0, 1, \ldots,$ v okolici α konvergira z redom p. V primeru p = 1 mora za konvergenco veljati še $|g'(\alpha)| < 1$.

2.4 Tangentna metoda

Metoda.

$$x_{r+1} = x_r - \frac{f(x_r)}{f'(x_r)}$$

Konvergenca:

$$|e_{r+1}| \approx C \cdot |e_r|^2$$

Posledica. Če je f dvakrat zvezno odvedljiva v okolici ničle α , potem tangentna metoda za dovolj dober začetni približek x_0 vedno konvergira k α .

Izrek 5. Naj bo funkcija f na $I = [a, \infty)$ dvakrat zvezno odvedljiva, naraščajoča in ima ničlo na $\alpha \in I$. Potem je α edina ničla na I in za $\forall x_0 \in I$ tangentna metoda konvergira le k α .

 $[\]lim_{r \to \infty} x_r = \alpha$

2.5 Metode brez f'

Metoda (Sekantna metoda).

$$x_{r+1} = x_r - \frac{f(x_r)(x_r - x_{r-1})}{f(x_r) - f(x_{r-1})}$$

Konvergenca:

$$|e_{r+1}| \approx C \cdot |e_r| \cdot |e_{r-1}|$$

Metoda (Mullerjeva metoda). Skozi točke $(x_r, f(x_r)), (x_{r-1}, f(x_{r-1})), (x_{r-2}, f(x_{r-2}))$ potegnemo kvadratni polinom y = p(x) in za x_{r+1} vzamemo tisto ničlo polinoma p, ki je bližje x_r .

Konvergenca:

$$|e_{r+1}| \approx C \cdot |e_r| \cdot |e_{r-1}| \cdot |e_{r-2}|$$

Metoda (Inverzna interpolacija). Zamenjamo vlogi x in y in vzamemo kvadratni polinom $x = \mathcal{L}(y)$, ki gre skozi točke $(f(x_r), x_r)$, $(f(x_{r-1}), x_{r-1})$, $(f(x_{r-2}), x_{r-2})$. Za x_{r+1} vzamemo

$$x_{r+1} = \mathcal{L}(0).$$

Red konvergence je enak kot pri Mullerjevi metodi.

3 SISTEMI LINEARNIH ENAČB

3.1 Oznake in definicije

Definicija 3.1. Sistem n linearnih enačb z n neznankami pišemo v obliki

$$Ax = b, A \in \mathbb{R}^{n \times n} (\mathbb{C}^{n \times n}), x, b \in \mathbb{R}^{n} (\mathbb{C}^{n}).$$

Definicija 3.2. Skalarni produkt vektorjev x in y je enaka

a) $x, y \in \mathbb{R}^n$:

$$y^T x = \sum_{i=1}^n x_i y_i = \langle x, y \rangle = \langle y, x \rangle$$

b) $x, y \in \mathbb{C}^n$:

$$y^H x = \sum_{i=1}^n x_i \overline{y_i} = \langle x, y, \rangle = \overline{\langle y, x \rangle}$$

Definicija 3.3. Množenje vektorja x z matriko A:

a)

$$y_i = \sum_{k=1}^n a_{ik} x_k = \alpha_i^T x$$

b)

$$y = \sum_{i=1}^{n} x_i a_i$$

Definicija 3.4. $A \in \mathbb{R}^{n \times n}$ je nesingularna, če (ekvivalentno):

- a) $\det(A) \neq 0$
- b) obstaja inverz A^{-1} , da je $A^{-1}A = AA^{-1} = I$
- c) rang(A) = n
- d) za $\forall x \neq 0$ je $Ax \neq 0$
- e) $\ker(A) = \{x \mid Ax = 0\} = \{0\}$

Definicija 3.5. Matrika je simetrično pozitivno definitna, če $A = A^T$ in $x^T A x > 0$ za $x \neq 0$.

Definicija 3.6. Če za $x \neq 0$ velja $Ax = \lambda x$, je λ lastna vrednost in x lastni vektor. Vsaka matrika ima n lastnih vrednosti, ki so ničle karakterističnega polinoma

$$p(\lambda) := \det(A - \lambda I).$$

3.2 Vektorske in matrične norme

Definicija 3.7. Vektorska norma je preslikava $\|.\|: \mathbb{C}^n \to \mathbb{R}$, da velja:

1) Nenegativnost:

$$||x|| \ge 0, \quad ||x|| = 0 \iff x = 0$$

2) Homogenost:

$$\|\alpha x\| = |\alpha| \cdot \|x\|$$

3) Trikotniška neenakost:

$$||x + y|| \le ||x|| + ||y||$$

Definicija 3.8. Matrična norma je preslikava $\|.\|: \mathbb{C}^{n \times n} \to \mathbb{R}$, da velja:

1) Nenegativnost:

$$||A|| \ge 0, \quad ||A|| = 0 \iff A = 0$$

2) Homogenost:

$$\|\alpha A\| = |\alpha| \cdot \|A\|$$

3) Trikotniška neenakost

$$||A + B|| \le ||A|| + ||B||$$

4) Submultiplikativnost:

$$||A \cdot B|| \le ||A|| \cdot ||B||$$

za $\forall A, B \in \mathbb{C}^{n \times n}$ in $\forall \alpha \in \mathbb{C}$.

Lema 1 (Operatorska norma). Če je za poljubno vektorsko normo $\|.\|_v$ definiramo

$$||A|| := \max_{x \neq 0} \frac{||Ax||_v}{||x||_v},$$

je to matrična norma.

Lema 2.

$$||A||_1 = \max_{j=1,\dots,n} ||a_j||_1 = \max_{j=1,\dots,n} \sum_{i=1}^n |a_{ij}|$$

Lema 3 (Spektralna norma).

$$||A||_2 = \sigma_1(A) = \max_{i=1,...,n} \sqrt{\lambda_i(A^H A)}$$

Lema 4. Za vsako matrično normo $\|.\|_m$ obstaja taka vektorska norma $\|.\|_v$, ki je z njo usklajena, kar pomeni, da za vse pare A, x velja

$$||Ax||_v \le ||A||_m \cdot ||x||_v.$$

Lema 5. Za vsako lastno vrednost λ in poljubno matrično normo ||A|| velja:

$$|\lambda| \leq ||A||$$
.

3.3 Občutljivost sistemov linearnih enačb

Lema 6. Če je ||X|| < 1, potem velja:

a) I - X je nesingularna

b)
$$(I-X)^{-1} = \sum_{i=0}^{\infty} X^i = I + X + X^2 + \dots$$

c) Če je
$$||I|| = 1$$
, je $||(I - X)^{-1}|| \le \frac{1}{1 - ||X||}$

Izrek 6. Naj bo A nesingularna in ΔA taka motnja, da je $\|\Delta A\| < \frac{1}{\|A^{-1}\|}$. Če je Ax = b in $(A + \Delta A)(x + \Delta x) = b + \Delta b$, potem velja:

$$\frac{\|\Delta x\|}{\|x\|} \le \frac{K(A)}{1 - K(A) \frac{\|\Delta A\|}{\|A\|}} \left(\frac{\|\Delta A\|}{\|A\|} + \frac{\|\Delta b\|}{\|b\|} \right),$$

kjer je $K(A) = ||A|| \cdot ||A^{-1}||$.

3.4 LU razcep

Izrek 7. Za matriko A je ekvivalentno:

- 1) Obstaja enoličen razcep A = LU
- 2) Vse vodilne podmatrike $A_k = A(1:k,1:k)$ so nesingularne

Algoritem (LU razcep).

$$j = 1, ..., n-1$$

$$i = j+1, ..., n$$

$$l_{ij} = \frac{a_{ij}}{a_{jj}}$$

$$k = j+1, ..., n$$

$$a_{ik} = a_{ik} - l_{ij}a_{jk}$$

Zahtevnost algoritma je odvisna od števila operacij. Preštejmo osnovne računske operacije:

$$\sum_{j=1}^{n-1} \left(\sum_{i=j+1}^{n} \left(1 + \sum_{k=j+1}^{n} 2 \right) \right) \; = \; \frac{(n-1)n}{2} + 2 \frac{(n-1)n(2n-1)}{6} \; = \; \frac{2}{3} n^3 + \sigma(n^2)$$

Algoritem (Prema substitucija).

Sistem Ly=b rešujemo s premo substitucijo:

$$i = 1, ..., n$$

$$y_i = b_i - \sum_{j=1}^{i-1} l_{ij} y_j$$

Število operacij:

$$\sum_{i=1}^{n} (1 + 2(i-1)) = n + 2\frac{(n-1)n}{2} = n^2$$

Algoritem.

$$i = n, n-1, ..., 1$$

$$x_i = \frac{1}{u_{ii}}(y_i - \sum_{j=i+1}^{n} u_{ij}x_j)$$

Število opracij:

$$n^2 + n$$

Algoritem (LU razcep z delnim pivotiranjem).

Pri pivotiranju vedno velja $|l_{ij}| \leq 1,$ saj saj je $|a_{ij}| \leq |a_{jj}|$

Izrek 8. Če je $\det(A) \neq 0$, potem obstaja taka permutacijska matrika P, da obstaja LU razcep

$$PA = LU$$

kjer je L spodnjetrikotniška matrika, U pa zgornjetrikotniška matrika.

3.5 Stabilnost reševanja sistemov in LU razcepov

Lema 7. Naj bo L nesingularna spodnje trikotna matrika velikosti $n \times n$. Če sistem Ly = b rešimo s premo substitucijo, potem izračunani \hat{y} zadošča

$$(L + \Delta L)\hat{y} = b,$$

kjer je $|\Delta L| \leq nu|L|$. Reševanje spodenje trikotnega sistema s premo substitucijo je torej obratno stabilno.

Lema 8. Naj bo U zgornje trikotna matrika velikosti $n \times n$, det $U \neq 0$. Če sistem Ux = y rešimo z obratno substitucijo, potem numerično izračunani \hat{x} zadošča

$$(U + \Delta U)\hat{x} = y,$$

kjer je

$$|\Delta U| \leq nu|U|$$
.

Reševanje z obratno substitucijo je tudi obratno stabilno.

Lema 9. Naj bo A nesingularna matrika velikosti $n \times n$, kjer se izvede LU razcep brez pivotiranja. Za izračunani matriki \hat{L} in \hat{U} velja

$$A + E = \hat{L}\hat{U},$$

kjer je

$$|E| \le nu|\hat{L}||\hat{U}|.$$

Izrek 9. Za izračunano rešitev \hat{x} sistema linearnih enačbAx=bz uporabo LU razcepa velja

$$(A + \Delta A)\hat{x} = b,$$

kjer je

$$|\Delta A| \leq 3nu|L||U| + \sigma(u^2).$$

4 SISTEMI NELINEARNIH ENAČB

4.1 Uvod

Definicija 4.1. Sistem nelinearnih enačb je sistem oblike

$$f_1(x_1, \dots, x_n) = 0$$

$$\vdots$$

$$f_n(x_1, \dots, x_n) = 0$$

za $f_i: \mathbb{R}^n \to \mathbb{R}$. Krajše zapišemo kot

$$F(x) = 0, \quad F = \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix},$$

kjer je $F: \mathbb{R}^n \to \mathbb{R}^n$ in $x \in \mathbb{R}^n$.

4.2 Navadna iteracija

Metoda. To je posplošitev navadne iteracije za eno spremenljivko. Poiščemo funkcijo $G:\mathbb{R}^n\to\mathbb{R}^n,$ da velja

$$F(\alpha) = 0 \iff \alpha = G(\alpha), \quad \alpha \in \mathbb{R}^n.$$

Izberemo $x^{(0)} \in \mathbb{R}^n$ in tvorimo zaporedje

$$x^{(r+1)} = G(x^{(r)}), \quad r = 0, 1, \dots$$

Izrek 10. Naj bo bo $G:\mathbb{R}^n \to \mathbb{R}^n$ zvezno odvedljiva na $\Omega \subset \mathbb{R}^n$. Če velja:

a)
$$x \in \Omega \implies G(x) \in \Omega$$

b)
$$x \in \Omega \implies \rho(JG(x)) \le m < 1$$

potem ima G v Ω natanko eno negibno točko α in zaporedje $x^{(r+1)} = G(x^{(r)})$,

$$r = 0, 1, \dots, \operatorname{za} \forall x^{(0)} \in \Omega \text{ konvergira k } \alpha. \text{ Tu je } JG(x) = \begin{bmatrix} \frac{\partial g_1}{\partial x_1}(x) & \dots & \frac{\partial g_1}{\partial x_n}(x) \\ \vdots & \ddots & \vdots \\ \frac{\partial g_n}{\partial x_1}(x) & \dots & \frac{\partial g_n}{\partial x_n}(x) \end{bmatrix}$$

Jacobijeva matrika parcialnih odvodov in ρ spektralni radij³.

4.3 Newtonova metoda

Metoda. Naj bo x približek za ničlo funkcije f. Iščemo popravek Δx , da bo $F(x + \Delta x) = 0$. Z uporabo razvoja v Taylorjevo vrsto dobimo

$$F(x + \Delta x) = F(x) + JF(x) \cdot \Delta x + \underbrace{\mathcal{O}(\|\Delta x\|^2)}_{\text{zanemarimo}}.$$

Iz tega sledi $\Delta x = -JF(x)^{-1} \cdot F(x)$, za nov približek vzamemo torej

$$x + \Delta x = x - JF(x)^{-1} \cdot F(x),$$

za iteracijsko funkcijo pa

$$G(x) = x - JF(x)^{-1} \cdot F(x).$$

Algoritem.

$$x^{(0)}$$

 $r = 0, 1, ...$
 $JF(x^{(r)}) \cdot \Delta x^{(r)} = -F(x^{(r)})$
 $x^{(r+1)} = x^{(r)} + \Delta x^{(r)}$

³Največja absolutna vrednost lastnih vrednosti.

LINEARNI PROBLEM NAJMANJŠIH 5 **KVADRATOV**

5.1Uvod

Metoda. To je primer predoločenega sistema, kjer imamo več enačb kot neznank. V splošnem 4 nima rešitve. Namesto tega iščemo x, ki minimizira normo ostanka Ax - b. Če iščemo minimum $||Ax - b||_2$, potem je to linearni problem najmanjših kvadratov. Ustrezen x je rešitev po metodi najmanjših kvadratov.

Izrek 11. Naj bo $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $m \geq n$, rang(A) = n. Rešitev normalnega sistema

 $A^T A x = A^T b$

je rešitev predoločenega sistema Ax = b po metodi najmanjših kvadratov.

Opomba. Pravilna izpeljava:

$$A^T(Ax - b) = 0 \Rightarrow A^TAx = A^Tb$$

5.2 Razcep Cholskega

Izrek 12. Dan je sistem Bx = c, B je simetrična pozitivno definitna⁵ matrika velikosti $n \times n$. Velja:

- 1. Če je B simetrična pozitivno definitna \Rightarrow vse njene vodilne podmatrike so simetrične pozitivno definitne.
- 2. Če je B simetrična pozitivno definitna \Rightarrow obstaja LU razcep B = LU, kjer je $u_{ii} > 0$ za i = 1, ..., n.

 $^{{}^{4}}$ Razen v primeru kot je $b \in \operatorname{Im}(A)$
 ${}^{5}B = B^{T}, \quad z^{T}Bz > 0 \ \text{ za } \ z \neq 0$

3. B je simetrično pozitivno definitna \iff obstaja nesingularna spodnje trikotna matrika U, da je $B = UU^T$, $u_{ii} > 0$ za $i = 1, \ldots, n$.

Algoritem.

$$k = 1, ..., n$$

$$v_{kk} = (b_{kk} - \sum_{i=1}^{k-1} v_{ki}^{2})^{\frac{1}{2}}$$

$$j = k + 1, ..., n$$

$$v_{jk} = \frac{1}{v_{kk}} (b_{jk} - \sum_{i=1}^{k-1} v_{ji} v_{ki})$$

Število operacij:

$$\sum_{k=1}^{n} (2k + 2(n-k)k) = \frac{1}{3}n^3 + \mathcal{O}(n^2)$$

Metoda. Reševanje sistema $Bx=c,\ B$ je simetrična pozitivno definitna matrika:

- 1. $B = VV^T$
- 2. reši Vy = b
- 3. reši $V^T x = y$

Metoda. Dana je $A \in \mathbb{R}^{m \times n}$, m > n, rang(A) = n. Po metodi najmanjših kvadratov iščemo x. $A^T A$ je simetrična, uporabimo razcep Choleskegta:

- 1. $B = A^T A$, $c = A^T b$
- 2. $B = VV^T$, V je spodnje trikotna matrika
- 3. reši Vy = c
- 4. reši $V^T x = y$

5.3 QR razcep

Izrek 13. Naj bo $A \in \mathbb{R}^{m \times n}$, $m \geq n$, rang(A) = n. Potem obstaja enoličen razcep A = QR, kjer je Q matrika velikosti $m \times n$ z ortonormiranimi stolpci in R zgornje trikotna matrika velikosti $n \times n$ s pozitivnimi diagonalnimi elementi.

Algoritem.

$$\begin{array}{lll} k &=& 1\;, \; \ldots \;, & n \\ & q_k &=& a_k \\ & i &=& 1\;, \; \ldots \;, & k-1 \\ & & r_{ik} &=& q_i{}^T \cdot a_k \\ & & q_k &=& q_k \; - \; r_{ik} \cdot q_i \\ & r_{kk} &=& \|q_u\|_2 \\ & q_k &=& \frac{1}{r_{ku}} q_k \end{array}$$

Število operacij:

$$\sum_{k=1}^{n} \left(\sum_{i=1}^{k-1} (2m+2m) + 2m + 1 + m \right) = 2mn^2 + \mathcal{O}(mn)$$

5.4 Givensove rotacije

Algoritem.

$$\begin{split} \tilde{\mathbb{Q}} &= \, \mathrm{I}_m \ (\text{Ce potrebujemo } \tilde{\mathbb{Q}}) \\ \mathrm{i} &= \, 1, \dots, \ n \\ \mathrm{k} &= \, \mathrm{i} + 1, \dots, \ m \\ \mathrm{r} &= \, \left(a_{\mathrm{i} \mathrm{i}}^2 \, + \, a_{\mathrm{k} \mathrm{i}}^2 \right)^{\frac{1}{2}}, \ c \, = \, \frac{a_{\mathrm{i} \mathrm{i}}}{r}, \ s \, = \, \frac{a_{\mathrm{k} \mathrm{i}}}{r} \\ \mathrm{A}([\mathrm{i} \ \mathrm{k}], \ \mathrm{i} : \mathrm{n}) &= \, \begin{bmatrix} c & s \\ -s & c \end{bmatrix} \, \mathrm{A}([\mathrm{i} \ \mathrm{k}], \ \mathrm{i} : \mathrm{n}) \\ \mathrm{b}([\mathrm{i} \ \mathrm{k}]) &= \, \begin{bmatrix} c & s \\ -s & c \end{bmatrix} \, \mathrm{b}([\mathrm{i} \ \mathrm{k}]) \ (\text{Ce resujemo Ax} \, = \, \mathrm{b} \, \, \mathrm{po} \, \, \mathrm{m.n.k.}) \\ \tilde{\mathbb{Q}}([\mathrm{i} \ \mathrm{k}], :) &= \, \begin{bmatrix} c & s \\ -s & c \end{bmatrix} \, \tilde{\mathbb{Q}}([\mathrm{i} \ \mathrm{k}], :) \end{split}$$

Število operacij:

$$\sum_{i=1}^{n} \sum_{k=i+1}^{m} (6+6(n-i+1)+6) \approx \sum_{i=1}^{n} 6(n-i)(m-i) = 3mn^2 - n^3$$

Če potrebujemo \tilde{Q} , je to še dodatnih $6m^2n-3mn^2$ operacij.

5.5 Householderjeva zrcaljenja

Algoritem.

```
\begin{split} \tilde{\mathbb{Q}} &= \ I_m \ (\text{Ce potrebujemo } \tilde{\mathbb{Q}}) \\ i &= 1, \dots, \ n \ (\text{v primeru m=n le do n-1}) \\ & \text{doloci } w_i \in \mathbb{R}^{m-n+1}, \ \text{ki prezrcali A(i:m, i) v } \pm * \cdot e_1 \\ & \text{A(i:m, i:n)} &= P_i \cdot \text{A(i:m, i:n)} \\ & \text{b(i:m)} &= P_i \cdot \text{b(i:m)} \\ & \tilde{\mathbb{Q}}(\text{i:m,:}) &= P_i \cdot \tilde{\mathbb{Q}}(\text{i:m,:}) \\ \tilde{\mathbb{Q}} &= \tilde{\mathbb{Q}}^T \end{split}
```

Število operacij:

$$\sum_{i=1}^{n} (2(m-i+1) + (n-i+1)4(m-i+1) + 4(m-i+1)) \approx$$

$$\approx \sum_{i=1}^{n} 4(n-i)(m-i) \approx 2mn^{2} - \frac{2}{3}n^{3}$$

Če potrebujemo še \tilde{Q} porabimo še dodatnih $4m^2n - 2mn^2$ operacij.

5.6 Singularni razcep (SVD)

Izrek 14. Za $A \in \mathbb{R}^{m \times n}$, $m \geq n$, obstaja razcep $A = U \Sigma V^T$, kjer je U ortogonalna matrika velikosti $m \times m$, V ortogonalna matrika velikosti $n \times n$ in Σ matrika velikosti $m \times n$ oblike

$$\Sigma = \begin{bmatrix} \sigma_1 & & & \\ & \ddots & & \\ & & \sigma_n \end{bmatrix},$$

kjer so $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_n \geq 0$ singularne vrednosti matrike A.

Lema 10. Naj bo $A \in \mathbb{R}^{m \times n}$, $m \ge n$, rang(A) = n. Potem je za $b \in \mathbb{R}^m$ minimum $\|Ax - b\|_2$ dosežen pri

$$x = \sum_{i=1}^{n} \frac{u_i^T b}{\sigma_i} v_i.$$

Trditev 3. Naj bo $A \in \mathbb{R}^{m \times n}$, $m \geq n$, rang(A) = r < n. Če je $A = U \Sigma U^T$ singularni razcep A, potem ima izmed vseh vektorjev $x \in \mathbb{R}^n$, ki minimizirajo $||Ax - b||_2$, najmanjšo normo $||x||_2$ vektor

$$x = \sum_{i=1}^{r} \frac{u_i^T b}{\sigma_i} v_i.$$

Definicija 5.1. Matrike $X \in \mathbb{R}^{n \times m}$ je psevdoinverz matrike A, če zadošča naslednjim pogojem:

- 1. AXA = A
- 2. XAX = X
- 3. $(AX)^T = AX$
- 4. $(XA)^T = XA$

Če je A matrika velikosti $n \times n$, $\det(A) \neq 0$, potem je

$$A^{+} = A^{-1}$$
.

Če je Amatrika velikosti $m\times n, \ \operatorname{rang}(A)=r, \ m\geq n,$ potem je

$$A^+ = (A^T A)^{-1} A^T.$$

Izrek 15. Za $A \in \mathbb{R}^{m \times n}, \ A = U \Sigma V^T$, je

$$A^+ = V\Sigma^+ U^T,$$

kjer je

$$\Sigma^{+} = \begin{bmatrix} \sigma_{1}^{-1} & & & & & \\ & \ddots & & & & \\ & & \sigma_{r}^{-1} & & & \\ & & & 0 & & \\ & & & \ddots & \\ & & & & 0 \end{bmatrix},$$

če je rang(A) = r.

Če je $A = U\Sigma V^T$, je

$$A = \sum_{i=1}^{r} \sigma_1 u_i v_i^T$$

$$A^+ = \sum_{i=1}^{r} \frac{1}{\sigma_i} v_i u_i^T$$

$$A^+b = \sum_{i=1}^{r} \frac{u_i^T b}{\sigma_i} v_i$$