Correction DS 3

Exercice 1. On s'intéresse dans cet exercice aux sommes

$$C_n(x) = \sum_{k=0}^n \cos(kx)$$
 et $S_n(x) = \sum_{k=0}^n \sin(kx)$

- 1. Soit S l'ensemble des $x \in \mathbb{R}$ tel que $e^{ix} = 1$. Déterminer S.
- 2. Déterminer $C_n(x)$ en fonction de $n \in \mathbb{N}$ pour $x \in S$.
- 3. Rappeler la valeur de $\sum_{k=0}^{n} q^k$ en fonction de $n \in \mathbb{N}$ pour $q \neq 1$ et en déduire la valeur de $\sum_{k=0}^{n} e^{ikx}$ en fonction de n pour $x \notin S$.
- 4. On considère $Z_n(x) = C_n(x) + iS_n(x)$. Montrer pour $x \notin S$:

$$Z_n(x) = e^{i\frac{nx}{2}} \frac{\sin\left(\frac{(n+1)x}{2}\right)}{\sin\left(\frac{x}{2}\right)}$$

5. En déduire la valeur de $C_n(x)$ en fonction de x, pour $x \notin S$.

Correction 1.

1.
$$e^{ix} = 1 \iff \cos(x) + i\sin(x) = 1 \iff \begin{cases} \cos(x) &= 1 \\ \sin(x) &= 0 \end{cases} \iff x \in \{2k\pi \mid k \in \mathbb{Z}\}$$

$$S = \{2k\pi \mid k \in \mathbb{Z}\}$$

2. Si $x \in S$ alors $x = 2m\pi$ avec $m \in \mathbb{Z}$ donc pour tout $k \in \mathbb{N}$, $\cos(kx) = \cos(2\pi km) = 1$. Ainsi

$$C_n(x) = \sum_{k=0}^{n} 1 = (n+1)$$

$$\forall n \in \mathbb{N}, \, \forall x \in S, \, C_n(x) = n+1$$

3. Pour tout $q \neq 1$:

$$\sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q}$$

Or

$$\sum_{k=0}^{n} e^{ikx} = \sum_{k=0}^{n} (e^{ix})^k$$

Donc si $x \notin S$, $e^{ix} \neq 1$ et

$$\sum_{k=0}^{n} e^{ikx} = \frac{1 - e^{i(n+1)x}}{1 - e^{ix}}$$

4. En utilisant la linéarité de la somme et la question précédente on obtient pour $x \notin S$:

$$Z_n(x) = \sum_{k=0}^n \cos(kx) + i \sum_{k=0}^n \sin(kx)$$

$$= \sum_{k=0}^n \cos(kx) + i \sin(kx)$$

$$= \sum_{k=0}^n e^{ikx}$$

$$= \sum_{k=0}^n \frac{1 - e^{i(n+1)x}}{1 - e^{ix}}$$

On va transformer l'expression pour faire apparaître les sinus :

$$\frac{1 - e^{i(n+1)x}}{1 - e^{ix}} = \frac{e^{i\frac{n+1}{2}x} \left(e^{-i\frac{n+1}{2}x} - e^{i\frac{n+1}{2}x}\right)}{e^{i\frac{1}{2}x} \left(e^{-i\frac{1}{2}x} - e^{i\frac{1}{2}x}\right)}$$

et par ailleurs on a $e^{-i\frac{n+1}{2}x} - e^{i\frac{n+1}{2}x} = -2i\sin\left(\frac{n+1}{2}x\right)$ et $e^{-i\frac{1}{2}x} - e^{i\frac{1}{2}x} = -2i\sin\left(\frac{1}{2}x\right)$. On obtient finalement

$$\frac{1 - e^{i(n+1)x}}{1 - e^{ix}} = e^{i\frac{n+1}{2}x - i\frac{1}{2}x} \frac{-2i\sin\left(\frac{n+1}{2}x\right)}{-2i\sin\left(\frac{1}{2}x\right)}$$
$$= e^{i\frac{n}{2}x} \frac{\sin\left(\frac{n+1}{2}x\right)}{\sin\left(\frac{1}{2}x\right)}$$

On trouve bien:

$$\forall n \in \mathbb{N}, \forall x \notin S, Z_n(x) = e^{i\frac{n}{2}x} \frac{\sin(\frac{n+1}{2}x)}{\sin(\frac{1}{2}x)}$$

5. Par définition de Z_n , on a $C_n(x) = \mathfrak{Re}(Z_n(x))$ Donc

$$C_n(x) = \mathfrak{Re}\left(e^{i\frac{n}{2}x}\frac{\sin\left(\frac{n+1}{2}x\right)}{\sin\left(\frac{1}{2}x\right)}\right)$$

$$C_n(x) = \cos\left(\frac{nx}{2}\right) \frac{\sin\left(\frac{n+1}{2}x\right)}{\sin\left(\frac{1}{2}x\right)}$$

Exercice 2. On s'intéresse dans cet exercice à la suite $(u_n)_{n\in\mathbb{N}}$ qui vérifie les relations suivantes :

$$(R): u_{n+1} = 2u_n + n^2$$
 et $(CI)u_0 = 1$

On pose : $\forall n \in \mathbb{N}, v_n = an^2 + bn + c$ où (a, b, c) sont trois réels.

1. Déterminer les triplets $(a, b, c) \in \mathbb{R}^3$ tel que :

$$\forall n \in \mathbb{N}, v_{n+1} = 2v_n + n^2$$

2. Soit $(v_n)_{n\in\mathbb{N}}$ une des suites précédentes et $(x_n)_{n\in\mathbb{N}}$ la suite définie par $x_n=u_n-v_n$. Montrer que $(x_n)_{n\in\mathbb{N}}$ est géométrique.

3. En déduire l'expression de x_n en fonction de n puis de u_n .

Correction 2.

1. Si $(v_n)_{n\in\mathbb{N}}$ vérifie la relation (R) on a alors

$$a(n+1)^2 + b(n+1) + c = 2(an^2 + bn + c) + n^2$$

Et donc

$$a(n^2 + 2n + 1) + bn + b + c = 2an^2 + 2bn + 2c + n^2$$

En regroupant les différents termes on obtient

$$an^{2} + (2a + b)n + a + b + c = (2a + 1)n^{2} + 2bn + 2c$$

et en identifiant on a :

$$\begin{cases} a = 2a+1 \\ 2a+b = 2b \\ a+b+c = 2c \end{cases} \iff \begin{cases} a = -1 \\ b = -2 \\ c = -3 \end{cases}$$
$$\boxed{v_n = -n^2 - 2n - 3}$$

2. Soit $x_n = u_n - v_n$, comme $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ vérifient la relation (R) on obtient pour $(x_n)_{n \in \mathbb{N}}$:

$$x_{n+1} = u_{n+1} - v_{n+1}$$

$$= 2u_n + n^2 - 2v_n + n^2$$

$$= 2u_n - 2v_n$$

$$= 2x_n$$

Ainsi $(x_n)_{n\in\mathbb{N}}$ est géométrique de raison 2.

3. On a donc pour tout $n \in \mathbb{N}$: $x_n = x_0 2^n$ et $x_0 = u_0 - v_0 = 1 - (-3) = 4$ donc

$$x_n = 4 \times 2^n$$

or $u_n = x_n + v_n$ et donc

$$u_n = 4 \times 2^n - n^2 - 2n - 3$$

Exercice 3. 1. Donner en fonction du paramétre $\lambda \in \mathbb{R}$ le rang du système :

$$(S_{\lambda}) : \begin{cases} 8x + 5y = \lambda x \\ -10x - 7y = \lambda y \end{cases}$$

- 2. On appelle Σ l'ensemble des valeurs telles que le système (S_{λ}) n'est pas de Cramer. Déterminer Σ
- 3. Résoudre (S_{λ}) pour $\lambda \in \Sigma$.
- 4. Résoudre (S_{λ}) pour $\lambda \notin \Sigma$.

Correction 3.

1.

$$(S_{\lambda}) \iff \begin{cases} (8-\lambda)x + 5y = 0 \\ -10x + (-7-\lambda)y = 0 \end{cases} \iff \begin{cases} -10x + (-7-\lambda)y = 0 \\ (8-\lambda)x + 5y = 0 \end{cases}$$

$$L_{2} \leftarrow 10L_{2} + (8-\lambda)L_{1} \begin{cases} -10x + (-7-\lambda)y = 0 \\ (5 \times 10 + (8-\lambda)(-7-\lambda))y = 0 \end{cases}$$

$$\iff \begin{cases} -10x + (-7-\lambda)y = 0 \\ (50 + (\lambda^{2} - \lambda - 56))y = 0 \end{cases}$$

$$\iff \begin{cases} -10x + (-7-\lambda)y = 0 \\ (\lambda^{2} - \lambda - 6)y = 0 \end{cases}$$

Regardons maintenant les racines de $(\lambda^2 - \lambda - 6)$. Le discriminant vaut $\Delta = 1 + 24 = 25 > 0$. Il y a donc deux racines réelles :

$$\lambda_1 = -2$$
 et $\lambda_2 = 3$

Si $\lambda_1 \notin \{-2,3\}$ alors $(\lambda^2 - \lambda - 6) \neq 0$ et

Le système est de rang 2

Si
$$\lambda = -2$$
 ou $\lambda = 3$ alors $(\lambda^2 - \lambda - 6) = 0$ et

Le système est de rang 1

- 2. $\Sigma = \{-2, 3\}$ d'après la question précédente.
- 3. Si $\lambda = -2$ alors

$$(S_{\lambda}) \Longleftrightarrow \begin{cases} -10x + (-7+2)y = 0 \\ 0 = 0 \end{cases} \Longleftrightarrow \begin{cases} -10x + -5y = 0 \end{cases}$$
$$(S_{\lambda}) \Longleftrightarrow \begin{cases} x = \frac{-1}{2}y \end{cases}$$

Pour $\lambda = -2$ les solutions sont :

$$S = \{(\frac{-1}{2}y, y) \mid y \in \mathbb{R}\}$$

Si $\lambda = 3$ alors

$$(S_{\lambda}) \Longleftrightarrow \begin{cases} -10x + (-7-3)y = 0 \\ 0 = 0 \end{cases} \Longleftrightarrow \begin{cases} -10x + -10y = 0 \end{cases}$$

 $(S_{\lambda}) \Longleftrightarrow \begin{cases} x = -1y \end{cases}$

Pour $\lambda = 3$ les solutions sont :

$$S = \{(-y, y) \mid y \in \mathbb{R}\}$$

4. Si $\lambda \notin \Sigma$ alors Le système est de Cramer, comme il est homogéne (0,0) est solution.

$$S = \{(0,0)\}$$

Exercice 4. On s'intéresse dans cet exercice aux suites $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ qui vérifient les relations suivantes 1 :

$$(R): \begin{cases} u_{n+1} = 8u_n + 5v_n \\ v_{n+1} = -10u_n - 7v_n \end{cases} \text{ et } u_0 = 1, v_0 = 1.$$

On propose deux solutions distinctes.

^{1.} Bien que les coéfficients soient les mêmes que dans l'exercice précédent les deux exercices sont indépendants.

Méthode 1

- 1. On considère $X_n = 2u_n + v_n$ et $Y_n = u_n + v_n$. Montrer que $(X_n)_{n \in \mathbb{N}}$ et $(Y_n)_{n \in \mathbb{N}}$ sont géométriques.
- 2. En déduire la valeur de X_n et Y_n en fonction de n.
- 3. Résoudre le système d'inconnue $(U,V) \in \mathbb{R}^2$ et de paramètres $(X,Y) \in \mathbb{R}^2$

$$(P) : \left\{ \begin{array}{ll} 2U + V &= X \\ U + V &= Y \end{array} \right.$$

- 4. En déduire l'expression de u_n et v_n en fonction de X_n et Y_n .
- 5. Conclure en donnant l'expression de X_n en fonction de n.

Méthode 2

1. A l'aide ² de la relation (R), montrer que pour tout $n \in \mathbb{N}$

$$u_{n+2} = u_{n+1} + 6u_n$$

2. En déduire l'expression de $(u_n)_{n\in\mathbb{N}}$ en fonction de $n\in\mathbb{N}$.

Correction 4. Méthode 1

1.

$$X_{n+1} = 2u_{n+1} + v_{n+1}$$

$$= 2(8u_n + 5v_n) - 10u_n - 7v_n$$

$$= 6u_n + 3v_n$$

$$= 3(2u_n + v_n)$$

$$= 3X_n$$

Donc $(X_n)_{n\in\mathbb{N}}$ est géométrique de raison 3

$$Y_{n+1} = u_{n+1} + v_{n+1}$$

$$= 8u_n + 5v_n - 10u_n - 7v_n$$

$$= -2u_n - 2v_n$$

$$= -2(u_n + v_n)$$

$$= -2Y_n$$

Donc $(Y_n)_{n\in\mathbb{N}}$ est géométrique de raison -2

2. $X_0 = 2u_0 + v_0 = 3$ et $Y_0 = u_0 + v_0 = 2$ Comme $(X_n)_{n \in \mathbb{N}}$ et $(Y_n)_{n \in \mathbb{N}}$ sont géométriques on a

$$\forall n \in \mathbb{N}, X_n = 3 \times 3^n \quad \text{et} \quad Y_n = 2(-2)^n$$

3.

$$(P): \begin{cases} 2U+V = X & L_2 \leftarrow 2L_2 - L_1 \\ U+V = Y \end{cases} \begin{cases} 2U + V = X \\ V = 2Y - X \end{cases}$$

$$(P) \Longleftrightarrow \left\{ \begin{array}{ccc} 2U & + & 2Y-X & = X \\ & V & = 2Y-X \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{ccc} U & = -Y+X \\ V & = 2Y-X \end{array} \right.$$

Les solutions de (P) sont :

^{2.} Au cours des calculs il est judicieux de garder des formules factorisées $(5 \times 7 = 7 \times 5)...$

$$\mathcal{S} = \{(-Y + X, 2Y - X)\}$$

4. La question précédente montre que

$$u_n = -Y_n + X_n$$
 et $v_n = 2Y_n - X_n$

5. On obtient alors en remplacant les valeurs de $(X_n)_{n\in\mathbb{N}}$ et $(Y_n)_{n\in\mathbb{N}}$:

$$u_n = -2(-2)^n + 3 \times 3^n = (-2)^{n+1} + 3^{n+1}$$

Methode 2

1. D'aprés la premiere condition de la relation (R) on a

$$u_{n+2} = 8u_{n+1} + 5v_{n+1}$$

Or $v_{n+1} = (-10u_n - 7v_n)$ donc

$$u_{n+2} = 8u_{n+1} + 5(-10u_n - 7v_n)$$
$$= 8u_{n+1} - 50u_n - 7 \times 5v_n$$

Or $5v_n = u_{n+1} - 8u_n$ donc

$$u_{n+2} = 8u_{n+1} - 50u_n - 7 \times (u_{n+1} - 8u_n)$$

= $u_{n+1} + 6u_n$

2. La suite $(u_n)_{n\in\mathbb{N}}$ est donc une suite récurrente linéaire d'ordre 2 à coefficients constants. Son équation caractéristique est $X^2 = X+6$ On cherche donc les racines de X^2-X-6 . Le discriminant vaut $\Delta = 1 + 24 = 25 > 0$. Il y a donc deux racines réelles :

$$x_1 = -2$$
 et $x_2 = 3$

La suite $(u_n)_{n\in\mathbb{N}}$ s'écrit alors

$$u_n = A(-2)^n + B3^n$$

où A, B sont deux réels à déterminer.

Comme $u_0 = 1 = A + B$ et $u_1 = 8 + 5 = 13 = -2A + 3B$ on tombe sur

$$A = (-2)$$
 et $B = 3$

On obtient de nouveau :

$$u_n = (-2)^{n+1} + 3^{n+1}$$

Exercice 5. Pour chaque script, dire ce qu'affiche la console :

```
1. Script1.py
1 a=0
2 n=10
3 for i in range(n):
4    a=a+i^3
5 print(a/25)

2. Script2.py
1 a=0
2 x=3.1415926
3 while a<x:
4    a=a+1
5 print(a)</pre>
```

3. Script3.py On rappelle que floor calcule la partie entière d'un nombre

```
1 from math import floor
 _{2} x=12
 _{3} a=0
 _{4} b=100
 _{5} c=50
 6 for i in range(4):
     if c>x:
       b=c
       c=floor((a+b)/2)
9
     else:
       a = c
       c=floor((a+b)/2)
    print(a,b,c)
4. Script4.py
1 a=78
2 for i in range(1,79):
     if a\%i==0:
       print(i)
```

5. Ecrire un script Python qui permet d'afficher les termes de 0 à 100 de la suite $(u_n)_{n\in\mathbb{N}}$, définie par

$$u_0 = 1$$
 et $\forall n \in \mathbb{N}, u_{n+1} = u_n^2 - u_n + 1.$

6. Ecrire un script Python qui permet d'afficher le terme u_{100} de la suite $(u_n)_{n\in\mathbb{N}}$, définie par

$$u_0 = 1, u_1 = 1$$
 et $\forall n \in \mathbb{N}, u_{n+2} = u_{n+1} - u_n^2$.

On pourra ici considérer deux variables u, v qui correspondent respectivement à u_n et u_{n+1}