ПРИМЕНЕНИЕ КОНЕЧНО-ЭЛЕМЕНТНЫХ МОДЕЛЕЙ ДЛЯ ОПРЕДЕЛЕНИЯ НДС ВРАЩАЮЩИХСЯ ДЕТАЛЕЙ АГРЕГАТОВ ПИТАНИЯ ЖРД

В.В. Ткач

Представлены результаты расчётов напряженнодеформированного состояния (НДС) деталей сложной формы агрегатов питания ЖРД с использованием их конечно-элементных моделей (КЭМ).

С целью обеспечения высокой степени точности расчётов НДС таких деталей при минимальных затратах вычислительных ресурсов предлагается построение их КЭМ производить с применением адаптивного метода разбиения на конечные элементы (КЭ).

Проведено сравнение результатов расчёта с экспериментальными данными разгонных испытаний и данными, полученными с использованием метода фотоупругости.

Введение

Существующие традиционные методы оценки работоспособности вращающихся деталей ТНА ЖРД, основанные на теории оболочек, были разработаны в 80-х годах прошлого века [1, 2]. Они применимы и используются для определения работоспособности деталей простой формы, таких как осесимметричные, тонкие диски рабочих колёс турбин и крыльчатки насосов горючего и окислителя, в которых лопатки являются частью цилиндрической поверхности, а покрывной диск слабо изогнут.

При определении НДС рабочих колёс турбины и центробежных крыльчаток сложной формы с лопатками двойной кривизны, традиционные методы не позволяют достаточно точно определять НДС, вызванное как воздействием рабочих нагрузок, так и нагрузок, возникающих при разрушающих числах

оборотов. Поэтому эти методы используют для расчётов в первом приближении.

Несовершенство применяемых численных методов, большие материальные и временные затраты, связанные с экспериментальными исследованиями, делают проектирование крыльчаток и турбин длительным и экономически дорогостоящим мероприятием. В связи с этим, в настоящее время приобрели широкое применение адаптивные КЭМ [5, 6], которые позволяют с высокой точностью определять НДС деталей сложной конфигурации.

Ниже приведены примеры построения трёхмерных КЭМ с применением адаптивного метода разбиения на КЭ крыльчаток насоса горючего и рабочего колеса турбины ТНА двигателя РД170(171).

Для всех приведенных ниже расчётов, с учётом результатов экспериментальных исследований [3, 4] предполагалось, что:

 материалы, из которых изготовлены рабочий диск турбины и крыльчатки второй ступени насоса горючего, работают в области упругих деформаций, поэтому зависимость напряжения от деформаций принята линейной;

— материал крыльчатки насоса первой ступени работает в области упругопластических деформаций, поэтому его поведение описывается кривой деформирования в координатах $\sigma \sim \epsilon$ (напряжение — деформация).

Свойства используемых материалов представлены в табл. 1, в которой используются обозначения: предел прочности — $\sigma_{\rm B}$; предел пропорциональности — $\sigma_{\rm T}$; модуль упругости — E; относительное удлинение — δ и плотность — ρ .

Таблица 1

	Марка ма-	σ_{B} ,	σ _T ,	E,	8,	ρ,
The second	териала	Krc/mm ²	Krc/MM ²	Krc/mm ²	%	r/cm3
Крыль- чатка	ВНЛ6	125	95	18500	10	7,98
Диск	ЭП741НП	130	06	20800	13	8,35

Построение адаптивных КЭМ

КЭМ, построенные с применением адаптивного метода разбиения, будем называть адаптивными КЭМ.

Предлагаемый метод построения адаптивных КЭМ деталей сложной формы включает в себя выполнение следующих операций.

- 1. Задают 4 5 вариантов чисел $K\mathfrak{I} N_{K\mathfrak{I},i}$, где i номер варианта, и используя традиционный метод построения $K\mathfrak{I} M$ (равномерная $K\mathfrak{I} M$ сетка строится автоматически) для каждой анализируемой детали, выполняют расчёт $H\mathfrak{I} M C$ соответствующих каждому варианту.
- 2. На основании анализа полученных результатов по максимальным расчётным значениям приведенных напряжений $\sigma_{i \, {\rm max}}$, соответствующих каждому i-му варианту, строят график зависимости ($\sigma_{i \, {\rm max}}$) от $N_{{\rm KS},\,i}$.
- 3. По результатам анализа расчётных значений σ_i для анализируемой детали определяют области с концентраторами напряжений, а по графику $\sigma_{i,\max} = f(N_{K\odot}, i)$ определяют область стабилизации значений расчётных $\sigma_{i,\max}$

На рис. 1 представлены графики зависимости расчётной величины $\sigma_{i \max}$ от $N_{\rm KS}$ для крыльчаток насосов горючего первой и второй ступени, а также для рабочего диска турбины. Из графиков видно, что область стабилизации результатов расчёта начинается при значениях $N_{\rm KS} \ge 300-400$ тыс.

4. Путём изменения густоты сетки в выявленных по п. 3 областях с концентраторами напряжений строят адаптивную КЭМ.

В этой КЭМ в областях с концентраторами напряжений (например, входная кромка лопаток, места сопряжения лопаток с дисками) использовались КЭ с характерным размером, равным 1 мм, а в местах больших утолщений – 3 мм. Лопатки по толщине моделировались 3 – 4 слоями КЭ.

На рис. 1 закрашенными метками показаны точки, определяющие значения $\sigma_{\text{1 max}}$, рассчитанные с применением адаптивных КЭМ. Результаты, полученные с применением этих моделей, сравнивались с экспериментально полученными данными.

Сравнение результатов расчёта с экспериментальными данными

Далее приводится сравнение НДС, рассчитанных с использованием адаптивных КЭМ, с экспериментальными данными.

1. Крыльчатка первой ступени насоса горючего

Натурная крыльчатка насоса горючего первой ступени была статически тензометрирована для определения уровня статических деформаций в барокамере с разрежённой атмосферой, в нормальных температурных условиях, при скорости вращения 15500 об/мин. Результаты экспериментов опубликованы в работе [3].

Расчётные данные для сравнения были получены с применением адаптивных КЭМ. Расчёт проводился с учётом действия нагрузок, возникающих при вращении крыльчатки со скоростью 15500 об/мин. Действие нагрузок от затяжки крыльчатки на валу не учитывалось.

На рис. 2 представлены результаты расчёта НДС крыльчатки в виде тонового поля распределения приведенного напряжения в кгс/мм², определённого с использованием адаптивной КЭМ по IV-ой энергетической теории прочности (по критерию Мизеса).

Рис. 2. Поле приведенных напряжений: вид на крыльчатку сзади (слева) и вид спереди (справа)

2. Крыльчатка второй ступени насоса горючего

Экспериментальные данные для этой крыльчатки определяют распределения меридиональных (σ_R) и окружных (σ_θ) напряжений в точках на линии пересечения поверхности крыльчатки с одним из меридиональных сечений. Эти данные получены по результатам исследований напряжений с применением фоточувствительной модели крыльчатки, нагруженной полем центробежных сил, и метода фотоупругости [4].

Результаты численного расчета НДС, полученные с применением адаптивной КЭМ, и экспериментальные данные представлены на рис. 3.

		5	1		10—1			18			13-1 19 20	<u></u>	14	1	15 16				22 23				Dac 3	LMC. 3
					2						4		-	-	,				21					
c/mm ²	Расч.	5	10	12	12	-3	14	3	5	10	5	15	40	00	35	41	∞	25	25	23	0	-10	-15	-10
σ_R , KTC/MM ²	Эксп.	5,8	10	12,6	12	-5	14,2	3,2	10	7.6	5	15,8	42	10	38	41,1	10	25,7	25,2	23,3	0	-16,2	-21	-15,8
/MM ²	Расч.	9	13	16	16	18	21	19	25	29	. 26	38	44	35	45	30	40	33	34	48	45	25	27	20
σ_{θ} , Krc/mm ²	Эксп.	6,5	13	16	16,2	17	20	19,4	25	29	26	38	46	35	47	30	46	33,3	35	48	46	29,5	27,5	26
11/11	11/11	1	2	n	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23

Сравнение результатов расчётов с экспериментальными данными свидетельствует об их достаточно хорошем согласовании.

Несовпадение расчётных эпюр напряжений, во втулочной части и на спинке крыльчатки с экспериментом можно объяснить тем, что в КЭМ не учитывалась затяжка крыльчатки на валу.

3. Рабочее колесо турбины

Натурное рабочее колесо турбины было статически тензометрировано в барокамере при воздействии центробежных сил и переменного поля температур в диапазоне от -190° до +350°C соответственно у оси и периферии [3].

Адаптивная КЭМ была построена с учётом круговой симметрии для 1/33 части рабочего колеса диска (соответственно числу лопаток). Затяжка диска на валу не моделировалась.

Определение НДС с использованием адаптивной КЭМ проводилось с учётом поля распределения температуры и свойств материала КЭМ (модуль упругости и коэффициент линейного расширения как функций от температуры).

Результаты расчёта НДС от действия центробежных сил и температур в виде тонового поля представлены на рис. 4 (диск турбины не показан).

σ_i , KPC/MM ²	1	2	3	4	5	9	7	8	6
Эксперимент	62	29,6	22	71	57,1	16,2	55,3	20,6	26
Расчёт	64	28	20	70	55	16	52	23	27

Рис. 4. Лопатка турбины: со стороны спинки (слева), со стороны корытца (справа)

Выводы

- 1. Создана методика построения адаптивных конечноэлементных моделей, использование которой для расчёта напряжённо-деформированного состояния вращающихся деталей сложной формы обеспечивает существенную экономию вычислительных ресурсов и высокую точность по сравнению с традиционными, неадаптивными моделями.
- 2. Результаты расчётов НДС хорошо согласуются с имеющимися экспериментальными данными, что позволяет рекомендовать адаптивные КЭМ для прогнозирования НДС деталей проектируемых агрегатов питания ЖРД, с которым связана возможность сокращения объёма экспериментальных исследований.

Литература

- 1. ОСТ 92-9608-82. Колёса и диски агрегатов подачи. Методика расчета напряженно-деформированного состояния.
- 2. Биргер И.А., Иосилевич Г.Б., Шорр Б.Ф. Расчет на прочность деталей машин. Справ. М.: Машиностроение, 1993. 639 с.
- 3. Буянов В.А., Суржин В.С. Результаты циклических испытаний рабочих колёс турбины и центробежных нагнетателей энергетической установки "Барьер". Техотчёт № 10829, ЩИАМ. 1987. 18 с.
 - 4. *Анохин А.А.*, *Клепиков И.А.* и *др.* Разработка методики и проведение методом фотоупругости исследования напряжений в крыльчатке, нагруженной полем центробежных сил. Техотчёт № 14-89/95, НПО Энергомаш. 1989. 74 с.
 - 5. Постнов В.А., Хархурим И.Я. Метод конечных элементов в расчётах судовых конструкций. Л.: Судостроение, 1974. 342 с.
- 6. MSC\Patran User's Guide, V. 1 3, The MacNeal-Schwendler Corporation, Los Angels CA, 1998.

Поступила 15.03.2003 г.