Problem-1: (a) Define $f: [0, \infty) \longrightarrow \mathbb{R}$ by $f(t) = \frac{t}{1+t}$

Show that f is an increasing function.

(b) Let (X, d) be a metric space. Define

T: X x X - DIR by

 $\tilde{d}(x, y) = \frac{d(x, y)}{1 + d(x, y)}$

Prove that d'is a metric on X

Hint: Think about using part (e) to triangle in equality for d.

Problema: Let X = IR. For $\overline{x}^p = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$, $\overline{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$

define $d_{1}(\overline{x}, \overline{y}) = \sum_{i=1}^{n} |x_{i} - f_{i}|$ and $d_{0}(\overline{x}, \overline{y}) = \max\{|x_{i} - f_{i}| | |1 \le i \le n\}$

Show that d, and do are metrics on

Problem 3: Let X=IR and d, and do be as defined en problem 2. (e) (i) Show that do (2, y) = d, (2, y) for all x, y ER. (ii) (et \vec{z} $\in \mathbb{R}^n$ and x>0. (et \vec{z} $\in \mathbb{R}^n$ / d, $(\vec{z}, \vec{z}) < x$? $B_2 = \frac{1}{2} = \frac{1}{2} \left| \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \right| = \frac{1}{2} \left| \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \right| = \frac{1}{2} \left| \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \right| = \frac{1}{2} \left| \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \right| = \frac{1}{2} \left| \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \right| = \frac{1}{2} \left| \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \right| = \frac{1}{2} \left| \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \right| = \frac{1}{2} \left| \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \right| = \frac{1}{2} \left| \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \right| = \frac{1}{2} \left| \frac{1}{2} \left(\frac{1}{2} \right) \left$ Which one of the following holds and why? $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$ (b) Show that d, (2, 3) = n. d, (2, 3). (c) Fix 70 e/R and 700. Prove that SxPERM / dos(x, xo) < mg = { x = R / d, (x, x)) L } (d) Prove that $M \subseteq \mathbb{R}^n$ is open with respect to the metric d, if and only if M is open with reject to the metric do.

Remark: Let X be a non-empty set and
d and of be two metrics on X such that
J 8, 20, 8270 such that
$d(x, y) \leq r$, $d(x, y)$ and $d(x, y) \leq r_2 d(x, p)$ for all $x, y \in X$. Then a set M is open
open with respect to d.
open with respect to d.
(Try to verify this, do not need to submit)

Problemy. Motation: let I be an indexing set and {Xi? in I be a collection of subsets of X. We define

O Xi = Szex/zeXi for

ieI

some ieI?

() X,= = \{ x \in X / x \in X, - for \all 1/ i \in I \}

Let (X, d) de a metric space.

(i) Let $\{N_i, \mathcal{E}_{i \in I} \text{ be a collection of open sets in } X$. Show that OM_i is also open.

(ii) Let M, and M2 be two open sets in X. Prove that M, M2 is open.

- (iii) let zo EX and zzo. Show that B(zo; z) is open.
- (iv) Let $SK_i^*S_i^* \in I$ be a collection of closed sets in X_i^* . Prove that OK_i^* is closed.

 i \in I
- (v) Let Kr and Ka be closed in X. Prove that Kr UKa is closed.
- (vi) Let roe X and rzo. Prove that B(20,00) is
- (vi) let MC X. Prove that M is closed in X.
- (vii) let 20 = X and 270. Prove that

B(20; 8) \(\begin{aligned}
\b

Is it always true that $\frac{\overline{B(x_0, r)}}{\overline{B(x_0, r)}} = \overline{B}(x_0, r)$?

Justity four answer.

(Thanks to Lance for this problem)

Problems: In this problem, we will establish some key in equalities that will be used later in the class. (1) Young's Inequality: Let 4,6 EIR, 470,620 P > I. Let $g = \frac{P}{P-I}$. Then $ab \leq \frac{a}{9} + \frac{b^p}{p}$ Prove Young's inequality as follows: Step 1: Show that t $\alpha + (-t)\beta \le te^{\alpha} + (-t)e^{\beta}$ for all $0 \le t \le 1$, where α and β are fixed real numbers. Chink about a geometrical way to verify this) Step 2: (Note that the inequality is obvious if a=0 or b=0). Assume that are and bro and then apply step!

to d= lna and B= lnb. You will have
find appropriate to be able to apply step! (ii) Höders Inequality: Let p71. For ze ER,

$$\overline{x}^{0} = \begin{bmatrix} x_{i} \\ \vdots \\ x_{n} \end{bmatrix}, \text{ define } 1|\overline{x}^{0}|p = \begin{bmatrix} x_{i} \\ \vdots \\ x_{i} \end{bmatrix} \text{ Cot } q = \frac{p}{p-1}$$
For \overline{x}^{0} , $\overline{y}^{0} \in \mathbb{R}^{n}$, prove that
$$\sum_{i=1}^{n} |x_{i}^{0}|^{2} \leq ||x_{i}^{0}||^{2} ||y_{i}^{0}||^{2}$$
where $\overline{x}^{0} = \begin{bmatrix} x_{i} \\ \vdots \\ x_{n} \end{bmatrix}$, $\overline{y}^{0} = \begin{bmatrix} y_{i} \\ \vdots \\ y_{n} \end{bmatrix}$.

(iii) Ninkowski's Inequality:

(et p, \overline{z}^{n} and \overline{y}^{n} be as en (ii).

Prove that $||\overline{x}^{n} + \overline{y}^{n}||_{p} \leq ||\overline{z}^{n}||_{p} + ||\overline{y}^{n}||_{p}$ (iv) Let $X = |R^{n}|, p \geq 1$. For $\overline{z}^{n}_{n}, \overline{y}^{n} \in |R^{n}|,$ Let $||R^{n}|| = ||\overline{z}^{n} - \overline{y}^{n}||_{p}$.

Prove that $||A^{n}|| = ||\overline{z}^{n} - \overline{y}^{n}||_{p}$.