Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа 3220	К работе допущен
Студент Гафурова Фарангиз Фуркатовна	Работа выполнена
Преподаватель <u>Терещенко Георгий</u> <u>Викторович</u>	Отчет принят

Рабочий протокол и отчет по лабораторной работе **3.07**

Изучение свойств ферромагнетика

1. Цель работы:

- 1. Измерение зависимости магнитной индукции в ферромагнетике от напряженности магнитного поля B = B(H);
- 2. Определение по предельной петле гистерезиса индукции насыщения, остаточной индукции и коэрцитивной силы;
- 3. Получение зависимости магнитной проницаемости от напряженности магнитного поля $\mu = \mu(H)$ и оценка максимального значения величины магнитной проницаемости;
- 4. Расчет мощности потерь энергии в ферромагнетике в процессе его перемагничивания.

2. Задачи, решаемые при выполнении работы:

- Настройка прибора;
- Подсчет вспомогательных коэффициентах α , β , γ ;
- Оценка погрешностей величин.

3. Объект исследования:

Сердечник (магнитопровод) трансформатора как образец для изучения магнитных свойств ферромагнитного материала.

4. Метод экспериментального исследования:

Лабораторный (многократные измерения величин).

5. Рабочие формулы и исходные данные:

Исходные данные:

Наименование	Величина	Значение		
Число витков намагниченной обмотки	N_1	1665 вит		
Число витков измерительной	N_2	970 вит		
обмотки				
Средняя длина	l	7,8 ± 0,1 см		
ферромагнетика				
Резистор 1	R_1	68 Ом ± 10%		
Резистор 2	R ₂	470 кОм ± 10%		

Конденсатор	C_1	$0,\!47$ мк $\Phi \pm 10\%$			
Площадь поперечного ферромагнетика	S	$0,64 \pm 0,05$ см 2			
Магнитная проницаемость вакуума	μ_0	$4\pi * 10^{-7} \frac{H}{m}$			
Соответственно статичные коэффициенты:					
Коэффициент	α	$313,914 \pm 31,648 \frac{1}{\text{M} * \text{OM}}$			
Коэффициент	β	$3,558 \pm 0,575 \frac{\text{Ом} * \Phi}{\text{M}^2}$			

$$\alpha = \frac{N_1}{l*R_1}$$

$$\beta = \frac{R_2*C_1}{N_2*S}$$

$$\chi = K_x K_y * \frac{N_1*R_2*C_1}{N_2*R_1} * f$$

$$B = \beta * K_y * Y - \text{магнитная индукция}$$

$$P = \chi * S_{\Pi\Gamma} - \text{средняя мощьность}$$

$$H = \alpha * K_x * X - \text{напряженность магнитного поля}$$

$$\mu = \frac{B}{\mu_0*H} - \text{магнитная проницаемость}$$

6. Измерительные приборы:

№	Наименование	Тип прибора	Используемый	Погрешность
			диапазон	прибора
1	Запоминающий	Цифровой	$K_x = \{0,05;0,1\}B$	±3%
	осциллограф		$K_y = \{0.01; 0.02; 0.05\}B$	

7. Схема установки:

Рисунок 1. Общий вид лабораторной установки

Рисунок 2. Лицевая панель генератора сигналов АКИП-3409/2

Рисунок 3. Панель управления осциллографа GDS-71102 В

8. Результат прямых измерений и их обработки (таблицы, примеры расчетов):

Таблица 1					
X_c , дел Y_r , дел H_c , $A/$ м B_r , Тл					
3,8	6,5	119,287 ± 12,934	$1,156 \pm 0,191$		

Таблица 2					
X_m , дел	Y_m , дел	H_m , $A/$ м	B_m , Тл	μ_m	
17,5	15,1	549,35 ± 57,869	$2,686 \pm 0,442$	$3890,873 \pm 760,222$	

Таблица 3							
U,B	Х, дел	K_{χ} , В/дел	<i>H,A/</i> м	<i>Y</i> , дел	K_y , В/дел	В, Тл	μ
20 B	4,0 дел	$0,1\frac{B}{\text{дел}}$	$125,566\frac{A}{M}$	6,3 дел	0,05 —	1,121	7104,34
19 B	4,0 дел	${}$ дел $\frac{B}{}$ 0,1 $\frac{B}{}$ дел	125,566 $\frac{A}{M}$	6,0 дел	$\frac{\text{дел}}{0,05}$	1,067	6762,114
18 B	3,9 дел	0,1 B	$122,426\frac{A}{M}$	5,5 дел	$0.05 \frac{B}{\text{дел}}$	0,978	6357,046
17 B	3,5 дел	$\frac{\text{дел}}{\text{0,1}}$	$109,87\frac{A}{M}$	5,0 дел		0,89	6446,159
16 B	3,5 дел	$\frac{\text{дел}}{\text{B}}$ 0,1 $\frac{\text{B}}{\text{дел}}$	$109,87\frac{A}{M}$	4,5 дел		0,801	5801,543
15 B	3,2 дел	$0,1\frac{B}{\text{дел}}$	$100,452\frac{A}{M}$	4,5 дел	$0.05 \frac{B}{\text{дел}}$	0,801	6345,474
14 B	3,1 дел	0.1 B	$97,313\frac{A}{M}$	4,2 дел	0,05 B	0,747	6108,575
13 B	6,0 дел		$94,174\frac{A}{M}$	4,0 дел	${0,05} \frac{B}{A}$	0,712	6016,433
12 B	5,5 дел	$\frac{\text{дел}}{\text{0,05}}$	$86,326\frac{A}{M}$	4,0 дел		0,712	6563,395
11 B	5,2 дел	$\frac{\text{дел}}{\text{B}}$ 0,05 $\frac{\text{B}}{\text{дел}}$	$81,618\frac{A}{M}$	3,5 дел	_	0,623	6074,244
10 B	5,0 дел	<u>дел</u> 0,05 <u>В</u> дел	$78,48\frac{A}{M}$	3,2 дел)	0,57	5779,709
9 B	5,0 дел	0,05 <mark>В</mark> дел	$78,48\frac{A}{M}$	7,5 дел	$0,02\frac{\mathrm{B}}{\mathrm{дел}}$	0,534	5414,675
8 B	4,5 дел	$0,05\frac{B}{\text{дел}}$	$70,631\frac{A}{M}$	6,8 дел	0.02 B	0,484	5453,058
7 B	4,3 дел	$0,05\frac{B}{\text{дел}}$	$67,492\frac{A}{M}$	5,3 дел	$\frac{\text{дел}}{0,02}$	0,377	4445,076
6 B	3,5 дел	$0,05\frac{B}{\text{дел}}$	$54,935\frac{A}{M}$	5,0 дел	$0.02\frac{\mathrm{B}}{\mathrm{дел}}$	0,356	5156,927
5 B	3,0 дел	$0,05\frac{B}{\text{дел}}$	$47,087\frac{A}{M}$	8,5 дел	$0.01\frac{\mathrm{B}}{\mathrm{дел}}$	0,302	5103,828

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов):

Представим, что мы выполняем работу в настоящий момент, тогда в соответствии с методическими указаниями:

- 1. Занесем в бланк протокола значения параметров, указанных на стенде: см. пункт 5, исходные данные. Они будут необходимы нам для нахождения коэффициентов α , β , χ .
- 2. Соберем лабораторную установку.
- 3. Зафиксируем входную частоту генератора f = 31 Гц, начальную амплитуду выходного сигнала генератора V = 20 B для режима Vpp:

- 4. Продолжаем настраивать прибор.
- 5. Подберем значения K_x , K_y так, что картина петли будет занимать существенную часть экрана:

- 6. После регулировки получаем п.7.
- 7. Приняв X_c и Y_r за координаты пересечения графика петли с осями координат, получим: см. Таблица 1.
- 8. Отметим координаты вершины петли гистерезиса: X_m и Y_m . Найдем соответствующие им H_m и B_m , а также определим значение магнитной проницаемости μ , соответствующее состоянию насыщения. см. Таблица 2.
- 9. Приняв деление за 1см, разметим график петли (красные оси координат):

Значит, площадь полученной петли: $S_{\Pi\Gamma}=138,5~{\rm cm}^2=1385*10^{-5}{\rm m}^2.$ Определим коэффициент χ и среднюю мощность P, расходуем на перемагничивание образца:

$$\chi = 8,643 * 10^{-4} \pm 0,157 * 10^{-3};$$

 $P = 1,197 * 10^{-5} \pm 2,176 * 10^{-6} \text{ BT}$

- 10. С шагом 1В будем устанавливать меньшие амплитуды напряжения генератора (получим 16 значений). Вместе с тем будем выбирать необходимые коэффициенты K_x и K_y , при которых петля будет занимать максимальную площадь экрана. Запишем полученные значения с соответствующими ими значениями H, B и μ . (см. Таблица 3).
- 11.По полученным данным построим кривую начального намагничивания $B_m = B_m(H_m)$ и график зависимости магнитной проницаемости $\mu = \mu(H_m)$ от напряженности магнитного поля (см. График 1, График 2). Аппроксимируем их.
- 12. Графически найдем напряженность поля H_{max} , соответствующую максимуму магнитной проницаемости μ_{max} материала:

$$H_{max} = 125,566 \pm 13,048 \, \mathrm{A/m}$$
 $\mathrm{B}_{max} = 1,121 \pm 0,185 \, \mathrm{T} \mathrm{J}$

Тогда найдем магнитную проницаемость для данной мощности по формуле:

$$\mu_{max} = 7104,34 \pm 1417,595$$

10. Расчет погрешностей измерений (для прямых и косвенных измерений):

Для коэффициента α:

$$\alpha = \frac{N_1}{l * R_1}$$

$$\Delta \alpha = \sqrt{\left(\frac{\partial \alpha}{\partial N_1} * \Delta N_1\right)^2 + \left(\frac{\partial \alpha}{\partial l} * \Delta l\right)^2 + \left(\frac{\partial \alpha}{\partial R_1} * \Delta R_1\right)^2}$$

$$\Delta \alpha = \sqrt{\left(\frac{\Delta N_1}{l * R_1}\right)^2 + \left(\frac{N_1 * \Delta l}{l^2 * R_1}\right)^2 + \left(\frac{N * \Delta R_1}{l * R_1^2}\right)^2}$$

$$\Delta \alpha = 31,648 \frac{1}{M * 0M}$$

Для коэффициента β :

$$\beta = \frac{R_2 * C_1}{N_2 * S}$$

$$\Delta\beta = \sqrt{\left(\frac{C_1 * \Delta R_2}{N_2 * S}\right)^2 + \left(\frac{R_2 * \Delta C_1}{N_2 * S}\right)^2 + \left(\frac{R_2 * C_1}{S * N_2^2} * \Delta N_2\right)^2 + \left(\frac{R_2 * C_1}{N_2 * S^2} * \Delta S\right)^2}$$

$$\Delta\beta = 0.575 \frac{O_M * \Phi}{M^2}$$

Для коэффициента χ (по аналогии), полагая $\Delta f = 1$ B:

$$\Delta \chi = \pm 0.157 * 10^{-3}$$
;

Для величины средней мощности, расходуемой на перемагничивание образца, полагая $\Delta S_{\Pi\Gamma}=\pm 1~{
m cm}^2=\pm 10^{-4}~{
m m}^2$:

$$P=\chi*S_{\Pi\Gamma}$$
 $\Delta P=\sqrt{(\chi*\Delta S_{\Pi\Gamma})^2+(\Delta\chi*S_{\Pi\Gamma})^2}$ $\Delta P=2.176*10^{-6}~\mathrm{BT}$

Для величины $H=H_{max}(K_x=0.1rac{\mathrm{B}}{\mathrm{дел}};X=4.0$ дел , полагая $\Delta\mathrm{X}=\pm0.1$ дел:

$$H = \alpha K_x * X$$

$$\Delta H = \sqrt{(K_x * X * \Delta \alpha)^2 + (\alpha * X * \Delta K_x)^2 + (\alpha * K_x * \Delta X)^2}$$

$$\Delta H = \pm 13,048 \frac{A}{M}$$

Для величины $B=B_{max}\left(K_y=0.05\frac{B}{\text{дел}};Y=6.3\text{ дел}\right)$, полагая $\Delta Y=\pm0.1$ дел:

$$B = \beta * K_y * Y$$

$$\Delta B = \sqrt{(K_y * Y * \Delta \beta)^2 + (\beta * Y * \Delta K_y)^2 + (\beta * K_y * \Delta Y)^2}$$

$$\Delta B = \pm 0,185 \,\mathrm{T}\pi$$

Для величины магнитной проницаемости $\mu = \mu_{max}(B = B_{max}, H = H_{max}, \mu_0 = const \to \Delta \mu = 0)$:

$$\mu = \frac{B}{\mu_0 * H}$$

$$\Delta \mu = \sqrt{\left(\frac{\Delta B}{\mu_0 * H}\right)^2 + \left(\frac{B * \Delta H}{\mu_0 * H^2}\right)^2}$$

$$\Delta \mu = \pm 1417,595$$

Для коэрцитивной силы $H_c(X_c=3.8$ дел; $K_x=0.1$ В/дел) — по аналогии с H_{max} : $\Delta H_c=\pm 12.934$ A/м.

Для остаточной индукции $B_r\left(Y_r=6.5~{\rm дел};K_y=0.05\frac{{\rm B}}{{\rm дел}}\right)$ – по аналогии с ${\rm B}_{max}$: $\Delta B_r=0.191~{\rm Tл}.$

Также по аналогии с нахождением погрешностей для H_{max} , B_{max} , μ_{max} , найдем погрешности для соответствующих величин, соответствующих состоянию насыщения: $\Delta H_m = \pm 57,869 \text{ A/m}$; : $\Delta B_m = \pm 0,442 \text{ Tл}$; : $\Delta \mu_m = \pm 760,222$;

11. Графики (перечень графиков, которые составляют Приложение 2).

График 1

График 2

12. Выводы и анализ результатов работы:

Окончательный результат:

- Получены значения исследуемого образца:
 - коэрцитивной силы: $H_c = 119,287 \pm 12,934$ А/м;
 - остаточной индукции: $B_r = 1,156 \pm 0,191$ Тл;
- Получены значения в состоянии насыщения:
 - Индукции $B_m = 2,686 \pm 0,442$ Тл;
 - Напряженности $H_m = 549,35 \pm 57,869 \ \Phi/\mathrm{M};$
 - Магнитной проницаемости $\mu_m = 3890,873 \pm 760,222;$
- Получена мощность потерь на перемагничивание ферромагнетика (с оценкой величины её погрешности):
 - $-P = 1,197 * 10^{-5} \pm 2,176 * 10^{-6} \text{ Bt};$
- Графически получено максимальное значение проницаемости и напряженности поля, на которой она наблюдается:
 - $-\mu_{max} = 7104,34 \pm 1417,595;$
 - $H_{max} = 125,566 \pm 13,048 \, A/м.$

Графики:

- График зависимости магнитной индукции от напряженности:
 - B = B(H) см. График 1.
- График зависимости магнитной проницаемости от напряженности:
 - $\mu = \mu(H)$ см. График 2.

13. Вывод:

В ходе лабораторной работы посредством работы с устройством ЦЗО, способом отображать зависимость магнитной индукции от напряженности магнитного поля в ферромагнетике (петля гистерезиса), были определены значения индукции насыщения, остаточной индукции, коэрцитивной силы. Таким образом, можно определить максимальную индукцию для данного магнитного материала, магнитную индукцию, остающуюся в намагниченном материале после того, как намагничивающее поле убирает, а также можно определить характеристику способности ферромагнетика сохранять намагниченное состояние. Аппроксимация графиков показала стабильность зависимостей.