Giải Tích Toán Học II

Đặng Hữu Chung Viện Cơ học, Viện Hàn Lâm KH&CN Việt Nam

https://danghuuchung.com

Email: chung.danghuu@gmail.com

January 2022

1	Hàr	Hàm nhiều biến			
	1.1	Các kl	khái niệm cơ bản		2
		1.1.1	Không gian \mathbb{R}^n		2
		1.1.2	Hàm vector		4
		1.1.3	Hàm số nhiều biến		6
	1.2	Giới h	hạn và liên tục		9
		1.2.1	Giới hạn của hàm nhiều biến		9
		1.2.2	Tính liên tục của hàm nhiều biến		11

1.1 Các khái niệm cơ bản

1.1.1 Không gian \mathbb{R}^n

Không gian vector

V là tập hợp khác rỗng và trường K $(K=\mathbb{C}$ hay $K=\mathbb{R})$, ở đây xét trường số thực $K=\mathbb{R}$

Tập V được gọi là không gian vector hay còn gọi là không gian tuyến tính trên trường \mathbb{R} nếu thỏa mãn 10 tiên đề (axioms) liên quan đến hai phép toán cộng và nhân trên V (Tom M. Apostol, 1969).

Chẳng hạn $V = \mathbb{R}$ với các phép cộng và nhân thông thường là một không gian vector trên trường \mathbb{R} .

Cơ sở của không gian n chiều

Một không gian vector V n chiều có tối đa n vector độc lập tuyến tính.

Một họn vector độc lập tuyến tính của $V \implies$ một cơ sở của không gian vector V

 $\mathbf{v} \in V$ biểu diễn qua cơ sở $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ như sau:

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$$

 (c_1, c_2, \ldots, c_n) được gọi là tọa độ của vector \mathbf{v} đối với cơ sở S.

Không gian Euclide

Không gian vector V trong đó có định nghĩa một phép tích vô hướng $\langle \mathbf{x}, \mathbf{y} \rangle$ của hai vector $\mathbf{x}, \mathbf{y} \in V$ được gọi là không gian Euclide.

 $V = \mathbb{R}^n$ được gọi là *không gian Euclide* \mathbb{R}^n và cũng chính là không gian Euclide được sử dụng trong phạm vi của chương trình Giải tích này.

Trong hình học.

 \mathbb{R}^2 là mặt phẳng Euclide hai chiều

 \mathbb{R}^3 là không gian Euclide ba chiều

Trường hợp tổng quát là không gian n chiều.

Sau đây sẽ nêu ra một số định nghĩa đối với không gian Euclide \mathbb{R}^n .

Cơ sở trực chuẩn

Gọi $S = \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ là một cơ sở trực chuẩn trong không gian Euclide \mathbb{R}^n :

$$\langle \mathbf{e}_i, \mathbf{e}_j \rangle = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Hai vector $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ được biểu diễn trong hệ tọa độ trực chuẩn là:

$$\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_n \mathbf{e}_n$$
$$\mathbf{y} = y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 + \dots + y_n \mathbf{e}_n$$

Trong đó $x_i, i = 1 : n$ là tọa độ của vector \mathbf{x}

và $y_i, i = 1 : n$ là tọa độ của vector \mathbf{y} .

Hình 1.1: Hệ tọa độ Cartesian 2 và 3 chiều

• Tổng của hai vector

$$\mathbf{x} + \mathbf{y} = \sum_{i=1}^{n} (x_i + y_i) \mathbf{e}_i$$

• Tích vô hướng (dot product) của hai vector

$$\langle \mathbf{x}, \mathbf{y} \rangle \equiv \mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{n} x_i y_i$$

• Chuẩn (norm) vector hay chiều dài vector

$$\| \mathbf{x} \| = (\mathbf{x} \cdot \mathbf{x})^{1/2} = \sqrt{\sum_{i=1}^{n} x_i^2}$$

 \bullet Cosine chỉ phương của vector \mathbf{x}

$$\mathbf{u} = \frac{1}{\parallel \mathbf{x} \parallel} \sum_{i=1}^{n} x_i \mathbf{e}_i$$

Khoảng cách giữa hai điểm

$$d(\mathbf{x}, \mathbf{y}) = \parallel \mathbf{x} - \mathbf{y} \parallel = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Góc giữa hai vector

$$\alpha = \arccos\left(\frac{\mathbf{x} \cdot \mathbf{y}}{\parallel \mathbf{x} \parallel \parallel \mathbf{y} \parallel}\right)$$

• Tích vector (vector product) trong \mathbb{R}^3

$$\mathbf{x} \times \mathbf{y} = (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1)$$

 $\mathbf{x}//\mathbf{y} \Leftrightarrow \mathbf{x} \times \mathbf{y} = 0$

• Tích hỗn tạp (scalar triple product) trong \mathbb{R}^3

$$\mathbf{z} \cdot (\mathbf{x} \times \mathbf{y})$$

$$\Rightarrow V = |\mathbf{z} \cdot (\mathbf{x} \times \mathbf{y})|$$

Quả cầu mở

Gọi
$$M_0(\mathbf{x}_0) \in \mathbb{R}^n \text{ và } \delta > 0$$

Tập hợp các điểm $M(\mathbf{x}) \in \mathbb{R}^n$ thỏa mãn bất đẳng thức

$$\parallel \mathbf{x} - \mathbf{x}_0 \parallel < \delta$$

được gọi là quả cầu mở tâm M_0 bán kính δ và ký hiệu $B(M_0, \delta)$.

Nếu thỏa mãn bất đẳng thức $\parallel \mathbf{x} - \mathbf{x}_0 \parallel \leq \delta$

thì gọi là quả cầu đóng và ký hiệu $\overline{B}(M_0, \delta)$

1.1.2 Hàm vector

Chúng ta có thể khái quát hàm vector đó là một ánh xạ

$$\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$$

biểu diễn mối quan hệ giữa điểm nguồn và điểm ảnh:

$$(x_1, x_2, \dots, x_n) \in \mathbb{R}^n \xrightarrow{\mathbf{f}} (f_1, f_2, \dots, f_m) \in \mathbb{R}^m$$

Trong đó $n \ge 1$ và $m \ge 2$.

 $Vi \ du \ 1.1.2.1$ Các ánh xạ được cho sau đây là các hàm vector:

$$\mathbf{f}: \mathbb{R}^3 \to \mathbb{R}^2, f(x, y, z) = \begin{bmatrix} x^2 + y^2 + z^2 \\ 2x + 3y - z \end{bmatrix}$$

$$\mathbf{g}: \mathbb{R}^3 \to \mathbb{R}^2, g(x, y, z) = \begin{bmatrix} 2x + 5y \\ 3y - 4z \end{bmatrix} = \begin{bmatrix} 2 & 5 & 0 \\ 0 & 3 & -4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

trong đó f là hàm vector phi tuyến,

còn g là hàm vector tuyến tính vì có thể biểu diễn dưới dạng tích của ma trận không phụ thuộc \mathbf{x} với vector \mathbf{x} .

Vi~du~1.1.2.2 Phương trình chuyển động của một chất điểm M(x,y,z) và vận tốc của nó được biểu diễn bởi các hàm vector của biến thời gian t có dạng sau đây:

$$t \in \mathbb{R} \xrightarrow{\mathbf{r}} (f_1(t), f_2(t), f_3(t))$$

$$t \in \mathbb{R} \xrightarrow{\mathbf{v}} (f_1'(t), f_2'(t), f_3'(t))$$

Trong đó:

Hình 1.2: Vector bán kính của một chất điểm

 $\mathbf{r}(t) = (f_1(t), f_2(t), f_3(t))$ là phương trình vector xác định vị trí của chất điểm M.

 $\mathbf{v}(t) = \mathbf{r}'(t) = (f_1'(t), f_2'(t), f_3'(t))$ là phương trình vector vận tốc của chất điểm M.

Hay phương trình vector biểu diễn qua vector cơ sở:

$$\mathbf{r}(t) = f_1(t)\mathbf{e}_1 + f_2(t)\mathbf{e}_2 + f_3(t)\mathbf{e}_3$$

$$\mathbf{v}(t) = f_1'(t)\mathbf{e}_1 + f_2'(t)\mathbf{e}_2 + f_3'(t)\mathbf{e}_3$$

Phương trình chuyển động của chất điểm M được biểu diễn dưới dạng tham số:

$$x = f_1(t), y = f_2(t), z = f_3(t)$$

Đạo hàm tổng tích các hàm vector

Giả sử \mathbf{u} , \mathbf{v} là các hàm vector khả vi, f(t) là hàm vô hướng khả vi và c là hằng số vô hướng chúng ta dễ dàng chứng minh được các công thức sau:

a)
$$\frac{d}{dt}[\mathbf{u}(t) + \mathbf{v}(t)] = \mathbf{u}'(t) + \mathbf{v}'(t)$$

b)
$$\frac{d}{dt}[c\mathbf{u}(t)] = c\mathbf{u}'(t)$$

c)
$$\frac{d}{dt}[f(t)\mathbf{u}(t)] = f'(t)\mathbf{u} + f(t)\mathbf{u}'(t)$$

d)
$$\frac{d}{dt}[\mathbf{u}(t) \cdot \mathbf{v}(t)] = \mathbf{u}'(t) \cdot \mathbf{v}(t) + \mathbf{u}(t) \cdot \mathbf{v}'(t)$$

e)
$$\frac{d}{dt}[\mathbf{u}(t) \times \mathbf{v}(t)] = \mathbf{u}'(t) \times \mathbf{v}(t) + \mathbf{u}(t) \times \mathbf{v}'(t)$$

f)
$$\frac{d}{dt}[\mathbf{u}(f(t))] = f'(t)\mathbf{u}'_f(f(t))$$

Tích phân hàm vector

$$\int_a^b \mathbf{r}(t) dt = \left(\int_a^b f_1(t) dt \right) \mathbf{e}_1 + \left(\int_a^b f_2(t) dt \right) \mathbf{e}_2 + \left(\int_a^b f_3(t) dt \right) \mathbf{e}_3$$

Giới hạn của hàm vector

$$\lim_{t \to t_0} \mathbf{r}(t) = (\lim_{t \to t_0} f_1(t), \lim_{t \to t_0} f_2(t), \lim_{t \to t_0} f_3(t))$$

$$Vi\ d\mu\ 1.1.2.3$$
 Cho hàm vector $\mathbf{r}(t) = (\frac{\sin t}{t}, t \ln t, (t+1)e^{2t})$. Tìm $\lim_{t\to 0} \mathbf{r}(t)$.

$$\lim_{t \to 0} \mathbf{r}(t) = \left(\lim_{t \to 0} \frac{\sin t}{t}, \lim_{t \to 0} (t \ln t), \lim_{t \to 0} (t+1)e^{2t}\right) = (1, 0, 1)$$

1.1.3 Hàm số nhiều biến

Định nghĩa 1.1.2.1 Xét không gian Euclide n chiều \mathbb{R}^n .

Gọi $D \subset \mathbb{R}^n$ và ánh xạ $f: D \to \mathbb{R}$

$$\forall (x_1, x_2, \dots, x_n) \in D$$
:

$$f:(x_1,x_2,\ldots,x_n)\in D\mapsto f(x_1,x_2,\ldots,x_n)\in\mathbb{R}$$

f được gọi là hàm số của n biến x_1, x_2, \ldots, x_n được gọi là các biến độc lập

D được gọi là miền xác định (domain) của hàm f

tập hợp
$$\{f(x_1, x_2, \dots, x_n) \in \mathbb{R} : (x_1, x_2, \dots, x_n) \in D\}$$

là miền giá trị (range) của f.

Miền xác định D có thể là miền $don\ liên$ hoặc miền $da\ liên$

Hình 1.3: (a): miền đơn liên (b): đa liên

Tập mức (level set) của hàm $f(x_1, x_2, \dots, x_n)$ được định nghĩa như sau:

$$\{(x_1, x_2, \dots, x_n) \in D : f(x_1, x_2, \dots, x_n) = c\}, c = const$$

Khi n=2 thì f(x,y) là hàm hai biến và tập mức chính là đường mức (contour, isoline).

Khi n = 3 thì f(x, y, z) là hàm ba biến và tập mức gọi là mặt mức (level surface, isosurface).

Khi n > 3 tập mức được gọi là $si \hat{e}u$ mặt mức (level hypersurface).

Ví du 1.1.3.1 (vd1121.plt)

Tìm miền xác định và miền giá trị của hàm $f(x,y) = x^2 + y^2$ biểu diễn mặt elliptic paraboloid. Vẽ mặt cong và các đường đồng mức.

Miền xác định của f(x,y) là $D = \mathbb{R}^2$. Vì $x^2 + y^2 \ge 0$ nên miền giá trị của nó là \mathbb{R}_+ . Mặt cong được vẽ trên Hình 1.4.a.

Hình 1.4: (a): Mặt $f(x,y) = x^2 + y^2$ (b): Contours $x^2 + y^2 = c$

Các đường mức có phương trình $x^2 + y^2 = c$ với $c = \{2, 4, 6, 8, 10, 12, 14\}$ là các đường tròn đồng tâm bán kính \sqrt{c} .

Ví du 1.1.3.2

Cho mặt hyperbolic paraboloid (mặt yên ngựa) có phương trình $z = x^2 - y^2$. Tìm miền xác định và miền giá trị của nó. Vẽ mặt cong và các đường mức. Miền xác định của f(x,y) là $D = \mathbb{R}^2$.

Khi x=0 thì $z=-y^2\leq 0$ và khi y=0 thì $z=x^2\geq 0,$ do đó miền giá trị của f là $\mathbb{R}.$

Các đường mức được xác định bởi phương trình $x^2 - y^2 = c$ với các giá trị $c = \{-8, -6, -4, -2, 0, 2, 4, 6, 8\}$ được vẽ trên Hình 1.5.b.

Hình 1.5: (a): Mặt $f(x,y)=x^2-y^2$ (b): Contours $x^2-y^2=c$ Chương 1: Hàm nhiều biến - P. 1

Dang Huu Chung

Các đường mức cũng có thể trình bày dưới dạng tô màu (Filled contours) như Hình 1.6.

Ví dụ 1.1.3.3

Tìm miền xác định và miền giá trị của hàm $f(x,y) = \sqrt{16 - x^2 - y^2}$. Miền xác định

$$D = \{(x,y) \in \mathbb{R}^2 : 16 - x^2 - y^2 \ge 0\} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 16\}$$

Miền giá trị là
$$\{z\in\mathbb{R}:z=\sqrt{16-x^2-y^2},(x,y)\in D\}$$

Vì $0 \le \sqrt{16 - x^2 - y^2} \le \sqrt{16}$, do đó miền giá trị là [0, 4].

Hình 1.7: Mặt bán cầu $z = \sqrt{16 - x^2 - y^2}$ và miền xác định

Ví dụ 1.1.3.4

Tìm miền xác định và miền giá trị của hàm ba biến

$$f(x,y,z) = \frac{1}{x^2 + y^2 + z^2}.$$

Miền xác định là $D = \mathbb{R}^3 \setminus \{0, 0, 0\}$.

Vì
$$\frac{1}{x^2 + y^2 + z^2} > 0$$
 nên miền giá trị là \mathbb{R}_+^* .

1.2 Giới hạn và liên tục

1.2.1 Giới hạn hàm nhiều biến

Định nghĩa 1.2.1.1

Xét hàm $f: D \subset \mathbb{R}^2 \to \mathbb{R}$.

Gọi $M_0(x_0, y_0) \in \mathbb{R}^2$ có thể $M_0 \notin D$ và l là giới hạn nếu có của hàm f

khi $M(x,y) \to M_0(x_0,y_0)$ được lý hiệu là $\lim_{M \to M_0} f(M) = l$ nếu:

$$\forall \varepsilon > 0, \exists \delta > 0 : || M - M_0 || < \delta \Rightarrow |f(M) - l| < \varepsilon$$

Định nghĩa trên được minh họa bởi Hình 1.8.

Hình 1.8: Các lân cận $B(M_0,\delta)$ và $(L-\varepsilon,L+\varepsilon)$ tương ứng

Với mọi $\varepsilon > 0$ cho trước, chúng ta có thể xác định được một lân cận $B(M_0, \delta) \subset D$ sao cho bất kỳ $(x, y) \in B(M_0, \delta)$ và $(x, y) \neq (x_0, y_0)$ thì z = f(x, y) nằm trong miền bị giới hạn bởi mặt S và các mặt phẳng $z = L \pm \varepsilon$.

Đối với hàm một biến khi $x \to x_0$ chỉ xảy ra theo một hướng nhất định của trục x. Đối với hàm nhiều biến

giới hạn $M \to M_0$ xảy ra theo mọi hướng khác nhau trong lân cận $B(M_0, \delta)$. đó là $qu \mathring{a} \ c \mathring{a} u \ m \mathring{\sigma} \ t \mathring{a} m \ M_0$ có bán kính δ với không gian ba chiều và là miền tròn mở tâm M_0 bán kính δ với trường hợp hai chiều.

Hình 1.9: $M \to M_0$ trong lân cận $B(M_0, \delta)$

Ví dụ 1.2.1.1

Tìm giới hạn
$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2}$$
.

Đặt
$$f(x,y) = \frac{x^2y}{x^4 + y^2}$$
. Miền xác định $D = \mathbb{R}^2 \setminus \{(0,0)\}$

Xét trường hợp $(x,y) \to (0,0)$ theo hướng đường cong $y = kx^2$:

$$\lim_{x \to 0} f(x, kx^2) = \lim_{x \to 0} \frac{kx^4}{x^4(1+k^2)} = \frac{k}{1+k^2} \in k$$

Do đó hàm không có giới hạn.

Hay có thể sử dụng chứng minh khác bằng cách tìm giới hạn theo hai hướng khác nhau

$$y = \pm x^2$$
, lúc này $f(x, \pm x^2) = \pm \frac{x^4}{2x^4} \to \pm \frac{1}{2}$ khi $(x, y) \to (0, 0)$.

Do đó giới hạn không tồn tại.

Ví dụ 1.2.1.2 Tính giới hạn
$$\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{\sqrt{x^4+y^4}}$$
.

Xét trường hợp y = kx:

$$\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{\sqrt{x^4+y^4}} = \lim_{(x,y)\to(0,0)} \frac{k^2x^4}{x^2\sqrt{1+k^4}} = 0 \notin k$$

Tuy nhiên, chúng ta không thể kết luận đó là giới hạn vì ta chỉ xét $(x,y) \to (0,0)$ trên đường cong y = kx. Do nghi ngờ về sự tồn tại của giới hạn nên tiếp tục sử dụng nguyên lý kẹp (Định lý Squeeze):

$$\left| \frac{x^2 y^2}{\sqrt{x^4 + y^4}} \right| = \left| \frac{x^2}{\sqrt{x^4 + y^4}} \right| y^2 \le 1.y^2 \to 0, (x, y) \to (0, 0)$$

Vậy
$$\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{\sqrt{x^4+y^4}} = 0$$

• Cách 2:

Sử dụng tọa độ cực $x = r \cos \theta, y = r \sin \theta$:

$$\lim_{(x,y)\to(0,0)} \frac{x^2 y^2}{\sqrt{x^4 + y^4}} = \lim_{r\to 0^+} \frac{r^4 \cos^2 \theta \sin^2 \theta}{r^2 \sqrt{\cos^4 \theta + \sin^4 \theta}}$$

$$= \lim_{r \to 0^+} \frac{r^2 \cos^2 \theta \sin^2 \theta}{\sqrt{\cos^4 \theta + \sin^4 \theta}} = 0, \forall \theta \in \mathbb{R}$$

Ví dụ 1.2.1.3 Tìm giới hạn
$$\lim_{(x,y)\to(0,0)} \frac{e^{x+y}}{x^2+y^2}$$
.

$$\lim_{(x,y)\to(0,0)} \frac{e^{x+y}}{x^2+y^2} = \frac{1}{0} = \infty$$

Chúng ta hoàn toàn có thể áp dụng các định lý về giới hạn của hàm một biến vào hàm nhiều biến.

Dinh lý 1.1.2.1

Cho các hàm $f, g: D \subset \mathbb{R}^n \to \mathbb{R}$.

Nếu
$$\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x}) = l_1$$
 và $\lim_{\mathbf{x}\to\mathbf{a}} g(\mathbf{x}) = l_2$ thì

$$\lim_{\mathbf{x}\to\mathbf{a}}[f(\mathbf{x})+g(\mathbf{x})]=l_1+l_2$$

$$\lim_{\mathbf{x} \to \mathbf{a}} [kf(\mathbf{x})] = kl_1$$

$$\lim_{\mathbf{x}\to\mathbf{a}}[f(\mathbf{x}).g(\mathbf{x})] = l_1 \cdot l_2$$

1.2.2 Tính liên tục của hàm nhiều biến

Định nghĩa 1.2.2.1

Xét hàm $f: D \subset \mathbb{R}^2 \to \mathbb{R}$. Gọi $M_0(x_0, y_0) \in D$.

Hàm f được gọi là liên tục tại $M_0(x_0, y_0)$ nếu tồn tại giới hạn:

$$\lim_{M \to M_0} f(M) = f(M_0) \quad \text{hay } \lim_{(x,y) \to (x_0,y_0)} f(x,y) = f(x_0,y_0)$$

Nếu hàm f liên tục tại $\forall M(x,y) \in D$ thì ta nói rằng hàm f liên tục trên D.

Tính liên tục của hàm đối với mỗi biến

không phải là điều kiện đủ cho tính liên tục đối với hàm nhiều biến.

Ví dụ 1.2.1.4

Khảo sát tính liên tục của hàm $f(x,y) = \frac{2x^3y - 3y^2 - 2xy + 3}{x^2 + y^2 - 4}$.

Các hàm đa thức $P(x,y)=2x^3y-3y^2-2xy+3$ và $Q(x,y)=x^2+y^2-4$ liên tục với mọi $(x,y)\in\mathbb{R}^2.$

Hàm phân thức $\frac{P(x,y)}{Q(x,y)}$ liên tục trong miền xác định của nó,

do đó hàm f(x,y) liên tục trên miền xác định

$$D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 - 4 \neq 0\}$$

Ví du 1.2.1.5

Xét sự liên tục của hàm $f(x,y) = \sin(x+y)\cos(x-y)$ và tìm $\lim_{(x,y)\to(\pi/4,\pi/4)} f(x,y)$

Các hàm $\sin(x+y), \cos(x-y)$ liên tục trên miền xác định \mathbb{R}^2 .

Do đó hàm f(x,y) liên tục trên \mathbb{R}^2 . Vì vậy:

$$\lim_{(x,y)\to(\pi/4,\pi/4)} f(x,y) = \lim_{(x,y)\to(\pi/4,\pi/4)} \sin(x+y)\cos(x-y)$$
$$= f(\pi/4,\pi/4) = 1$$

 $Vi\ d\mu\ 1.2.1.6$ Tìm các điểm (x,y) để hàm sau liên tục:

$$f(x,y) = \sqrt{x^2 + y^2 - 4} + \frac{x^4 + 2x^2y - 3y^4}{\sqrt{16 - x^2 - y^2}}$$

Hàm $\sqrt{x^2+y^2-4}$ liên tục trên miền $D_1=\{(x,y):x^2+y^2\geq 4\}$

và hàm $\frac{x^4 + 2x^2y - 3y^4}{\sqrt{16 - x^2 - y^2}}$ liên tục trên miền $D_2 = \{(x, y) : x^2 + y^2 < 16\}.$

Vậy hàm f(x,y) liên tục trên $D = D_1 \cap D_2 = \{(x,y) : 4 \le x^2 + y^2 < 16\}.$

Hình 1.10: Miền liên tục của f(x,y)

Ví du 1.2.1.7

Khảo sát tính liên tục của hàm số

$$f(x,y) = \begin{cases} \frac{|xy|^{\alpha}}{(x^2 + y^2)}, & (x,y) \neq (0,0), \alpha > 0 \\ 0, & (x,y) = (0,0) \end{cases}$$

Trước hết ta nhận thấy rằng hàm f(x,y) xác định với $\forall (x,y) \neq (0,0)$ và là hàm phân thức nên nó liên tục với $\forall (x,y) \neq (0,0)$. Do đó, ta chỉ cần xét tính liên tục tại điểm (0,0).

Nếu cho x = 0 thì hàm f(0, y) = 0 với $\forall y \in \mathbb{R}$.

Tương tự cho y = 0 thì hàm $f(x, 0) = 0 \ \forall x \in \mathbb{R}$.

Tuy nhiên ta không thể kết luận hàm f(x, y) liên tục tại (0, 0).

Vì vậy ta phải khảo sát giới hạn $\lim_{(x,y)\to(0,0)} f(x,y) = f(0,0)$?

Sử dụng bất đẳng thức Cauchy ta có:

$$|xy| \le (x^2 + y^2) \Rightarrow |xy|^{\alpha} \le (x^2 + y^2)^{\alpha}$$

Suy ra

$$\frac{|xy|^{\alpha}}{(x^2+y^2)} \le \frac{(x^2+y^2)^{\alpha}}{(x^2+y^2)} = (x^2+y^2)^{\alpha-1}$$

+ Nếu $\alpha > 1$ thì $\lim_{(x,y)\to(0,0)} (x^2 + y^2)^{\alpha-1} = 0 \Rightarrow \lim_{(x,y)\to(0,0)} f(x,y) = f(0,0) = 0$ (theo nguyên lý kẹp) nên hàm f(x,y) liên tục tại (0,0).

+) Nếu $0 < \alpha \le 1$ xét tia y = x, $f(x, x) = \frac{x^{2\alpha}}{2x^2} = \frac{1}{2x^{2(1-\alpha)}} \to \infty \mid \frac{1}{2} \ne 0 = f(0, 0), x \to 0$, do đó hàm không liên tục tại (0, 0).

Hoặc xét tia $y=0, f(x,0)\to 0$ khi $x\to 0$, nghĩa là f(x,y) có các giá trị khác nhau khi $(x,y)\to (0,0)$ theo các tia khác nhau. Vì vậy f(x,y) không liên tục tại (0,0).

Kết luận: Hàm f(x,y) liên tục trên \mathbb{R}^2 khi $\alpha>1$ và miền liên tục là $\mathbb{R}^2\setminus\{(0,0)\}$ khi $0<\alpha\leq 1$.

Exercises

Functions of Several Variables

13-22 Find and sketch the domain of the function.

13.
$$f(x, y) = \sqrt{x-2} + \sqrt{y-1}$$

14.
$$f(x, y) = \sqrt[4]{x - 3y}$$

15.
$$f(x, y) = \ln(9 - x^2 - 9y^2)$$
 16. $f(x, y) = \sqrt{x^2 + y^2 - 4}$

16.
$$f(x, y) = \sqrt{x^2 + y^2 - 4}$$

17.
$$g(x, y) = \frac{x - y}{x + y}$$

18.
$$g(x, y) = \frac{\ln(2 - x)}{1 - x^2 - y^2}$$

19.
$$f(x, y) = \frac{\sqrt{y - x^2}}{1 - x^2}$$

20.
$$f(x, y) = \sin^{-1}(x + y)$$

21.
$$f(x, y, z) = \sqrt{4 - x^2} + \sqrt{9 - y^2} + \sqrt{1 - z^2}$$

22.
$$f(x, y, z) = \ln(16 - 4x^2 - 4y^2 - z^2)$$

23–31 Sketch the graph of the function.

23.
$$f(x, y) = y$$

24.
$$f(x, y) = x^2$$

25.
$$f(x, y) = 10 - 4x - 5y$$

26.
$$f(x, y) = \cos y$$

27.
$$f(x, y) = \sin x$$

28.
$$f(x, y) = 2 - x^2 - y^2$$

29.
$$f(x, y) = x^2 + 4y^2 + 1$$
 30. $f(x, y) = \sqrt{4x^2 + y^2}$

30.
$$f(x, y) = \sqrt{4x^2 + y^2}$$

31.
$$f(x, y) = \sqrt{4 - 4x^2 - y^2}$$

45–52 Draw a contour map of the function showing several level curves.

45.
$$f(x, y) = x^2 - y^2$$

46.
$$f(x, y) = xy$$

47.
$$f(x, y) = \sqrt{x} + y$$

48.
$$f(x, y) = \ln(x^2 + 4y^2)$$

49.
$$f(x, y) = ye^x$$

50.
$$f(x, y) = y - \arctan x$$

51.
$$f(x, y) = \sqrt[3]{x^2 + y^2}$$

52.
$$f(x, y) = y/(x^2 + y^2)$$

53-54 Sketch both a contour map and a graph of the function and compare them.

53.
$$f(x, y) = x^2 + 9y^2$$

53.
$$f(x, y) = x^2 + 9y^2$$
 54. $f(x, y) = \sqrt{36 - 9x^2 - 4y^2}$

57-60 Use a computer to graph the function using various domains and viewpoints. Get a printout of one that, in your opinion, gives a good view. If your software also produces level curves, then plot some contour lines of the same function and compare with the graph.

57.
$$f(x, y) = xy^2 - x^3$$
 (monkey saddle)

58.
$$f(x, y) = xy^3 - yx^3$$
 (dog saddle)

59.
$$f(x, y) = e^{-(x^2+y^2)/3}(\sin(x^2) + \cos(y^2))$$

60.
$$f(x, y) = \cos x \cos y$$

Limits and Continuity

5–22 Find the limit, if it exists, or show that the limit does not exist.

5.
$$\lim_{(x,y)\to(3,2)} (x^2y^3-4y^2)$$

6.
$$\lim_{(x,y)\to(2,-1)} \frac{x^2y + xy^2}{x^2 - y^2}$$

7.
$$\lim_{(x, y) \to (\pi, \pi/2)} y \sin(x - y)$$

8.
$$\lim_{(x, y) \to (3, 2)} e^{\sqrt{2x-y}}$$

9.
$$\lim_{(x,y)\to(0,0)} \frac{x^4-4y^2}{x^2+2y^2}$$

10.
$$\lim_{(x, y) \to (0, 0)} \frac{5y^4 \cos^2 x}{x^4 + y^4}$$

11.
$$\lim_{(x, y) \to (0, 0)} \frac{y^2 \sin^2 x}{x^4 + y^4}$$

12.
$$\lim_{(x,y)\to(1,0)} \frac{xy-y}{(x-1)^2+y^2}$$

13.
$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}}$$

14.
$$\lim_{(x,y)\to(0,0)} \frac{x^3-y^3}{x^2+xy+y^2}$$

15.
$$\lim_{(x,y)\to(0,0)} \frac{xy^2\cos y}{x^2+y^4}$$

16.
$$\lim_{(x, y) \to (0, 0)} \frac{xy^4}{x^4 + y^4}$$

17.
$$\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{\sqrt{x^2+y^2+1}-1}$$
 18. $\lim_{(x,y)\to(0,0)} \frac{xy^4}{x^2+y^8}$

18.
$$\lim_{(x,y)\to(0,0)} \frac{xy^4}{x^2+y^8}$$

21.
$$\lim_{(x, y, z) \to (0, 0, 0)} \frac{xy + yz^2 + xz^2}{x^2 + y^2 + z^4}$$

19.
$$\lim_{(x, y, z) \to (\pi, 0, 1/3)} e^{y^2} \tan(xz)$$

19.
$$\lim_{(x, y, z) \to (\pi, 0, 1/3)} e^{y^2} \tan(xz)$$
 20. $\lim_{(x, y, z) \to (0, 0, 0)} \frac{xy + yz}{x^2 + y^2 + z^2}$

22.
$$\lim_{(x, y, z) \to (0, 0, 0)} \frac{x^2 y^2 z^2}{x^2 + y^2 + z^2}$$

23-24 Use a computer graph of the function to explain why the limit does not exist.

23.
$$\lim_{(x,y)\to(0,0)} \frac{2x^2 + 3xy + 4y^2}{3x^2 + 5y^2}$$
 24. $\lim_{(x,y)\to(0,0)} \frac{xy^3}{x^2 + y^6}$

25–26 Find h(x, y) = g(f(x, y)) and the set of points at which h is continuous.

25.
$$g(t) = t^2 + \sqrt{t}$$
, $f(x, y) = 2x + 3y - 6$

26.
$$g(t) = t + \ln t$$
, $f(x, y) = \frac{1 - xy}{1 + x^2y^2}$

29–38 Determine the set of points at which the function is continuous.

29.
$$F(x, y) = \frac{xy}{1 + e^{x-y}}$$

29.
$$F(x, y) = \frac{xy}{1 + e^{x-y}}$$
 30. $F(x, y) = \cos\sqrt{1 + x - y}$

31.
$$F(x, y) = \frac{1 + x^2 + y^2}{1 - x^2 - y^2}$$
 32. $H(x, y) = \frac{e^x + e^y}{e^{xy} - 1}$

32.
$$H(x, y) = \frac{e^x + e^y}{e^{xy} - 1}$$

33.
$$G(x, y) = \sqrt{x} + \sqrt{1 - x^2 - y^2}$$

34.
$$G(x, y) = \ln(1 + x - y)$$

35.
$$f(x, y, z) = \arcsin(x^2 + y^2 + z^2)$$

36.
$$f(x, y, z) = \sqrt{y - x^2} \ln z$$

37.
$$f(x, y) = \begin{cases} \frac{x^2 y^3}{2x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \\ 1 & \text{if } (x, y) = (0, 0) \end{cases}$$

38.
$$f(x, y) = \begin{cases} \frac{xy}{x^2 + xy + y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases}$$

39–41 Use polar coordinates to find the limit. [If (r, θ) are polar coordinates of the point (x, y) with $r \ge 0$, note that $r \to 0^+$ as $(x, y) \to (0, 0)$.]

39.
$$\lim_{(x,y)\to(0,0)} \frac{x^3+y^3}{x^2+y^2}$$

40.
$$\lim_{(x,y)\to(0,0)} (x^2 + y^2) \ln(x^2 + y^2)$$

41.
$$\lim_{(x,y)\to(0,0)} \frac{e^{-x^2-y^2}-1}{x^2+y^2}$$

42. At the beginning of this section we considered the function

$$f(x, y) = \frac{\sin(x^2 + y^2)}{x^2 + y^2}$$

and guessed on the basis of numerical evidence that $f(x, y) \rightarrow 1$ as $(x, y) \rightarrow (0, 0)$. Use polar coordinates to confirm the value of the limit. Then graph the function.

43. Graph and discuss the continuity of the function

$$f(x, y) = \begin{cases} \frac{\sin xy}{xy} & \text{if } xy \neq 0\\ 1 & \text{if } xy = 0 \end{cases}$$

Bài tập giới hạn/liên tục bố sung

1. Tính giới hạn của hàm khi $(x,y) \rightarrow (0,0), (x,y,z) \rightarrow (0,0,0)$

a.
$$f(x,y) = \frac{x^2}{x^2 + y^2}$$

h.
$$f(x,y) = \frac{x^3y^2}{x^2 + y^2}$$

b.
$$f(x,y) = \frac{(x+y)^2}{x^2+y^2}$$

a.
$$f(x,y) = \frac{x^2}{x^2 + y^2}$$
 h. $f(x,y) = \frac{x^3y^2}{x^2 + y^2}$ b. $f(x,y) = \frac{(x+y)^2}{x^2 + y^2}$ i. $f(x,y) = \frac{x^2y^2}{\sqrt{x^2 + y^2 + 1} - 1}$

c.
$$f(x,y) = \frac{8x^2y^2}{x^4 + y^4}$$

c.
$$f(x,y) = \frac{8x^2y^2}{x^4 + y^4}$$
 j. $f(x,y) = \frac{xy - 2y}{x^2 + y^2 - 4x + 4}, (x,y) \to (2,0)$

d.
$$f(x,y) = \frac{x^3 + xy^2}{x^2 + y^2}$$

d.
$$f(x,y) = \frac{x^3 + xy^2}{x^2 + y^2}$$
 k. $f(x,y,z) = e^{-xy} \sin \frac{\pi z}{2}, (x,y,z) \to (3,0,1)$

e.
$$f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}$$

e.
$$f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}$$
 l. $f(x,y,z) = \frac{x^2 + 2y^2 + 3z^2}{x^2 + y^2 + z^2}$

f.
$$f(x,y) = \frac{xy+1}{x^2+y^2+1}$$

f.
$$f(x,y) = \frac{xy+1}{x^2+y^2+1}$$
 m. $f(x,y,z) = \frac{xy+yz^2+xz^2}{x^2+y^2+z^4}$
g. $f(x,y) = \frac{2x^2y}{x^4+y^2}$ n. $f(x,y,z) = \frac{xy+yz+zx}{x^2+y^2+z^2}$

g.
$$f(x,y) = \frac{2x^2y}{x^4 + y^2}$$

n.
$$f(x, y, z) = \frac{xy + yz + zx}{x^2 + y^2 + z^2}$$

2. Xác định tập các điểm (x,y) sao cho hàm số liên tục

a.
$$f(x,y) = x^4 + y^4 - 4x^2y^2$$
 f. $f(x,y) = \arcsin \frac{x}{x^2 + y^2}$

b.
$$f(x,y) = \ln(x^2 + y^2)$$
 g. $f(x,y) = \arctan \frac{x+y}{1-xy}$

c.
$$f(x,y) = \frac{1}{y}\cos^2 x$$
 h. $f(x,y) = \arctan\frac{x}{x}$
d. $f(x,y) = \tan\frac{x^2}{y}$ i. $f(x,y) = x^{y^2}$
e. $f(x,y) = \arctan\frac{y}{x}$ j. $f(x,y) = \arccos\sqrt{\frac{x}{y}}$

d.
$$f(x,y) = \tan \frac{x^2}{y}$$
 i. $f(x,y) = x^{y^2}$

e.
$$f(x,y) = \arctan \frac{y}{x}$$
 j. $f(x,y) = \arccos \sqrt{\frac{x}{y}}$

3. Khảo sát tính liên tục của hàm

a.
$$f(x, y, z) = \frac{xyz}{x^2 + y^2 - z}$$

b.
$$f(x,y) = \begin{cases} \frac{x^2y^3}{2x^2 + y^2}, & (x,y) \neq (0,0) \\ 1, & (x,y) = (0,0) \end{cases}$$

c.
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + xy + y^2}, & (x,y) \neq (0,0) \\ 1, & (x,y) = (0,0) \end{cases}$$

Calc III

Evaluate each of the following limits.

1.
$$\lim_{(x,y,z)\to(-1,0,4)} \frac{x^3 - z\mathbf{e}^{2y}}{6x + 2y - 3z}$$

2.
$$\lim_{(x,y)\to(2,1)} \frac{x^2 - 2xy}{x^2 - 4y^2}$$

3.
$$\lim_{(x,y)\to(0,0)} \frac{x-4y}{6y+7x}$$

4.
$$\lim_{(x,y)\to(0,0)} \frac{x^2 - y^6}{xy^3}$$

Tài liệu tham khảo

- [1] Nguyễn Đình Trí, Tạ Văn Đĩnh, Nguyễn Hồ Quỳnh. *Toán học cao cấp*, Tập 3, Nhà XBGD Việt Nam, 2017
- [2] Jon Rogawski, Colin Adams, Robert Franzosa. Multivariable Calculus, W.H. Freeman, New York, 2019.
- [3] James Stewart. Calculus, Cengage Learning, Boston, 2016.
- [4] William Briggs, Lyle Cochran, Bernard Gillett. Calculus, Pearson Education, Inc., 2011.
- Murray H. Protter, Charles B. Morrey. Intermediate Calculus, Springer, 1985.
- [6] Tom M. Apostol. Calculus, Vol.II, John Wiley & Sons, 1969.
- [7] Richard E. Williamson, Richard H. Crowell, Hale F. Trotter. Calculus of vector functions, Prentice-Hall., Inc, 1968