EEE 203, TEST 2.

NAME:__SOLUTIONS_

30min, 2 Problems, Equal Credit, Closed-book, Closed-notes, calculator and Transform tables allowed

Problem 1. Compute the convolution h*x when $h(t) = u(-t+1), x(t) = \delta(t+1) - \delta(t-2)$

$$y(t) = u(-t+1) * [\delta(t+1) - \delta(t-2)]$$

= $u(-(t+1)+1) - u(-(t-2)+1)$
= $u(-t) - u(-t+3)$

Alternatively,

Problem 2.

Consider the filters:

$$\mathbf{A.} \ \ y(t) = \int_{t-1}^{t+1} x(\tau) d\tau$$

B.
$$y(t) = \int_{-\infty}^{\infty} e^{-(t-\tau)} u(t-\tau) x(\tau+1) d\tau$$

1. Find and graph their impulse responses.

A.
$$h(t) = \int_{t-1}^{t+1} \delta(\tau) d\tau = \int_{-\infty}^{t+1} \delta(\tau) d\tau - \int_{-\infty}^{t-1} \delta(\tau) d\tau = u(t+1) - u(t-1)$$

- 2. Which filters are causal? (Justify)
- A. Is not causal, h(t) is not 0 for t < 0.
- B. Is not causal, h(t) is not 0 for t < 0.
- 3. Which filters are stable? (Justify)
- A. Is stable, $|\mathbf{h}|$ is integrable, (integral = 2).
- B. Is stable, $|\mathbf{h}|$ is integrable (integral = 1).