Search Engine Relevance Optimization

Qi Feng

Overview

Identify Goals

- Provide a solution (a classification model) for optimizing search engine relevance
- We want our model to be able to identify relevant responses
 - o And minimize irrelevant responses that are predicted relevant

— Data

- 80046 observations (responses)
- 12 features, 1 target
- No missing value

	query_id	url_id	query_length	is_homepage	sig1	sig2	sig3	sig4	sig5	sig6	sig7	sig8	relevance
0	4631	28624	2	1	0.09	0.15	1288	352	376	13	0.46	0.35	0
1	4631	28625	2	1	0.20	0.35	4662	337	666	28	0.43	0.27	1
2	4631	28626	2	1	0.36	0.49	1121	385	270	15	0.34	0.20	1
3	4631	28627	2	1	0.21	0.45	2925	478	640	14	0.44	0.33	1
4	4631	28628	2	1	0.25	0.42	1328	429	412	27	0.40	0.57	1

Target

- Target: relevance. Whether the search result is relevant or not.
 - 0 = Irrelevant
 - 1 = Relevant

Features

- 3 Categorical
 - o query id, url id:dropped
 - o is homepage
- 4 Continuous: sig1, sig2, sig7, sig8
 - o Range in (0, 1)
- 5 Discrete:
 - o query length: most queries are short (of length 1-5)
 - o sig3, sig4, sig5, sig6
 - Varying scales
 - Outliers

Weak correlations of relevance vs. query_length/quer y id

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- Strongest positive correlation of
 Relevance vs. sig2
- Multicollinearity

Modeling

Preprocessing in Model Pipeline

- Scaling numerical features
 - RobustScaler
- Dealing with class imbalance
 - Class weight
- Preprocessing boosts
 validation ROC-AUC by
 24.5%

Scaling: RobustScaler

Class Imbalance

- Problem: unsatisfactory classifiers
- Solution
 - Data: Class weight
 - Evaluation metric
 - ROC AUC
 - Model
 - Bagging/Boosting-based models, e.g., Random
 Forest/Gradient Boosting.

predicted→ real↓	Class_pos	Class_neg
Class_pos	TP	FN
Class_neg	FP	TN

TPR (sensitivity) =
$$\frac{TP}{TP + FN}$$

$$FPR (1-specificity) = \frac{FP}{TN+FP}$$

ROC-AUC

- Performance measurement for classification problem
- ROC is a probability curve and AUC is the area under the ROC curve
- How much the model is capable of distinguishing between classes

Baselines

For benchmarking performances

- Linear
 - Logistic Regression
 - Linear SVM
- Non-linear
 - o KNN
 - Decision Tree

Best Baseline: Logistic Regression

- Models linear relationship between the logit of the outcome probability and the independent variable
- Pros
 - Probabilistic interpretation
 - Allows regularization
 - Simple
- Cons
 - Does not fit well on large # of feature space or categorical features
 - Need transformations of non-linear features

Logit:
$$ln\left(\frac{P}{1-P}\right) = \beta_0 + \beta_1 x$$

=> $P = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$

Ensembles

- Two families
 - Averaging
 - Random Forest
 - Boosting
 - XGBoost

Random Forest

- Pros
 - Prevents overfitting (reduces variance in a single decision tree)
 - No need of preprocessing
 - Flexible, usually high accuracy
- Cons
 - Extrapolation effect
 - Complexity
 - Slow training

- Gradient Boosting: minimize loss by adding weak learners iteratively
- XGBoost: gradient boosting with more accurate approximations to find the best tree model
- Pros
 - Fast training and prediction
 - Highly flexible, typically more accurate than Random Forest
- Cons
 - Needs hyperparameter tuning
 - Less interpretable

Validation Scores:

	met	ric	val	_s	cor	e
3	roc_a	auc	0.7	16	682	?
2	reca	all	0.6	16	064	
1	precisi	Lon	0.6	11	434	
0		f1	0.6	13	682	
Ex	ecution	Time:	12	5.	19	S

Hyperparameter Tuning

- Grid Search vs. Random Search
 - Same space of parameters, similar result in parameter setting
 - Choice: Random Search
 - Drastically lower runtime

Comparison Among Models

- Performance: validation scores
- Time complexity

Comparison Among Models: Validation Scores metric roc_auc fl precision 0.70 recall 0.65 val_score 0.60 0.55 0.50 LogisticRegression LinearSVC KNeighborsClassifier DecisionTreeClassifier RandomForestClassifier XGBClassifier

dassifier

16 vCPU, 60GB Memory

XGBoost.

But keep Logistic Regression in mind for its overall performance and simplicity.

Modeling: Model Validation

XGBoost: Test Performance

Recall =
$$\frac{True\ Positives}{True\ Positives + False\ Negatives}$$

$$F_1 = \left(rac{ ext{recall}^{-1} + ext{precision}^{-1}}{2}
ight)^{-1} = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

	precision	recall	f1-score	support
0	0.69	0.69	0.69	9012
1	0.61	0.60	0.60	6998
accuracy			0.65	16010
macro avg	0.65	0.65	0.65	16010
weighted avg	0.65	0.65	0.65	16010

Test ROC-AUC: 0.648766

Confusion matrix:

[[6255 2757] [2775 4223]]

Confusion Matrix for Test Data

Feature Importance

Business Insights & Recommendation

Explainable Model: Logistic Regression

Using important features identified by XGBoost:

```
'sig2', 'sig6', 'query_length',
'sig1', 'is_homepage', 'sig8'

Best parameters: {'logisticregression_C': 0.01}
Validation Scores:
        metric val_score
3    roc_auc    0.692643
2    recall    0.604523
1    precision    0.587739
0        f1    0.595995
Execution Time: 2.51 s
```


Explainable Model: Logistic Regression

Recall =
$$\frac{True\ Positives}{True\ Positives + False\ Negatives}$$

$$F_1 = \left(rac{ ext{recall}^{-1} + ext{precision}^{-1}}{2}
ight)^{-1} = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

		precision	recall	f1-score	support
	0	0.68	0.67	0.67	9012
	1	0.58	0.59	0.59	6998
accuracy				0.64	16010
macro	avg	0.63	0.63	0.63	16010
weighted	avg	0.64	0.64	0.64	16010

Test ROC-AUC: 0.631148

Confusion matrix: [[6016 2996] [2836 4162]]

Confusion Matrix for Test Data

Coefficients: Direction of Correlation

Actionable Insights

Beyond This Point

- Several improvements can be made
 - Analysis of the optimal threshold
 - Stratified cross-validation for more representative data
 - Fixing overfitting issues in XGBoost: e.g., early stopping
 - Advanced models such as Light GBM

Appendix: EADS & Data Preprocessing

Data Types

Data	columns (total	13 cc	olumns):	
#	Column		ill Count	Dtype
0	query_id	80046	non-null	int64
1	url_id	80046	non-null	int64 Categorical
2	query_length	80046	non-null	int64
3	is_homepage	80046	non-null	int64
4	sig1	80046	non-null	float64
5	sig2	80046	non-null	float64
6	sig3	80046	non-null	int64
7	sig4	80046	non-null	int64
8	sig5	80046	non-null	int64
9	sig6	80046	non-null	int64
10	sig7	80046	non-null	float64
11	sig8	80046	non-null	float64
12	relevance	80046	non-null	int64
dtypes: float64(4), int64(9)				
memory usage: 7.9 MB				

Exploratory Data Analysis: Univariate

Features

- 3 Categorical
 - o query_id, url_id:dropped
 - o is homepage
- 4 Continuous
- 5 Discrete

Features

- 3 Categorical
- 4 Continuous: sig1, sig2, sig7, sig8
 - o Range in (0, 1)
- 5 Discrete

	sig1	sig2	sig7	sig8
count	80046.000000	80046.000000	80046.000000	80046.000000
mean	0.183240	0.346947	0.319464	0.471846
std	0.147354	0.172545	0.138651	0.231306
min	0.000000	0.000000	0.000000	0.000000
25%	0.080000	0.210000	0.220000	0.290000
50%	0.150000	0.340000	0.310000	0.460000
75%	0.240000	0.480000	0.420000	0.640000
max	1.000000	0.860000	0.880000	0.940000
mode	0.000000	0.320000	0.260000	0.470000

Features

- 3 Categorical
- 4 Continuous
- 5 Discrete:
 - o query_length
 - Most queries are short (of length 1-5)
 - o sig3, sig4, sig5, sig6
 - Varying scales
 - Outliers

Distribution of query_length

Most queries are short, with 2 being the most frequent length. Long queries are rare.

Scales vary a lot \rightarrow need for scaling

	query_length	sig3	sig4	sig5	sig6
count	80046.000000	80046.000000	80046.000000	80046.000000	80046.000000
mean	2.585826	4857.078555	742.316256	550.527597	14.099155
std	1.522094	23531.973200	4818.359126	1887.933968	90.068426
min	1.000000	0.000000	0.000000	0.000000	0.000000
25%	2.000000	78.000000	24.000000	10.000000	0.000000
50%	2.000000	417.000000	220.000000	64.000000	0.000000
75%	3.000000	2537.750000	591.000000	336.000000	2.000000
max	18.000000	673637.000000	660939.000000	46994.000000	3645.000000
mode	2.000000	0.000000	0.000000	0.000000	0.000000

Exploratory Data Analysis: Multivariate

Distributions of Continuous Features Given Relevance

Distributions of sig2 are different for different class of relevance (recall: high linear correlation of relevance vs. sig2

Larger Portion of Homepage for Relevant Responses

Distributions of Discrete Features Given Relevance

Distributions of relevance for each feature at 0 vary

Pairplot of Correlated Features

_	feature_a	feature_b	corr_strength	corr
0	query_id	url_id	strong	0.91
3	sig3	sig5	strong	0.81
6	sig5	sig6	moderate	0.48
7	sig5	sig7	moderate	0.41
4	sig3	sig6	moderate	0.39
2	sig2	sig7	moderate	0.37
8	sig7	sig8	moderate	0.32
5	sig3	sig7	moderate	0.30
1	is_homepage	sig8	moderate	-0.34

- Caveat of multicollinearity:
 Unstable coefficient estimates
 → difficult to interpret
- Decide whether to remove one of the pair to avoid redundant information.

Outliers

- Percentage of outliers based on Z-score (Z > 3): 5.18 %
- Many of the outliers are from the unlabelled features which we do not have knowledge of
 - Such outliers are not removed.

Clarification: Correlation Heatmap

- Method: Pearson
- With two levels of the target, Point Biserial Correlation is equivalent to the Pearson Correlation

	Categorical	Continuous	
Cotogorical	Lambda, Corrected	Point Biserial, Logistic	
Categorical	Cramer's V	Regression	
Continuous	Point Biserial, Logistic	Spearman, Kendall,	
Continuous	Regression	Pearson	

Feature Engineering:
Removed query_id, url_id

$F = \frac{\text{between-groups variance}}{\text{within-group variance}}$

Univariate F-test

- Univariate feature selection works by selecting the best features based on univariate statistical tests
- F-test: determines whether the variability between group means is larger than the variability of the observations within the groups
- Ideal: large F-statistic
- At significance level of 0.1, query_id and query length are not significant.
- url_id also has a low importance in terms of F-score.

	feature	F_score	p_value
5	sig2	8258.282169	0.000000e+00
10	sig7	2244.136829	0.000000e+00
4	sig1	2108.304535	0.000000e+00
9	sig6	1260.511738	5.900848e-274
8	sig5	862.084350	1.728422e-188
6	sig3	425.818839	2.328943e-94
3	is_homepage	291.993649	2.389578e-65
7	sig4	94.034436	3.189444e-22
11	sig8	66.126484	4.288830e-16
1	url_id	37.391156	9.710474e-10
0	query_id	0.007469	9.311294e-01
2	query_length	0.000236	9.877413e-01

L1-based model approach

- Idea: sparse solution removes estimated 0 coefficients
- LinearSVC(C=0.01, penalty='11')
- Insignificant features: query id, url id, sig3, sig4 and sig5

Data Segregation: Train-test-split

Stratified Train-test-split

Preserves the proportion of target as in original dataset, in the train and test datasets

→ Reproducibility, better prediction

SMOTE

• Idea

- Select data points that are close in the feature space
- Draw a line between the points in the feature space
- Draw a new sample at a point along that line

Pros

- Synthetic samples mitigate the problem of overfitting
- No loss of useful information

Cons

- Not for high dimensional data
- Adds noise

Synthetic Minority Oversampling Technique

Appendix: Modeling

K-fold Cross-validation

- Partition the data into k subsets
- Iteratively train the algorithm on the k-1 folds while using the remaining fold as the test set
- Prevents overfitting

Linear SVM

Validation Scores: metric val_score roc_auc 0.695940 recall 0.596557 precision 0.595081 recall 0.595634

Execution Time: 79.36 s

- Find a hyperplane that leaves the maximum margin from both classes
- Pros
 - Good for linearly separable data
 - Good for large feature space
 - Less likely to overfit
- Cons
 - Slow for large datasets
 - Needs careful tuning
 - Needs scaling

A note on non-linear kernels:

• I did not experiment with non-linear kernels for **time complexity**. The runtime for a non-linear kernel is roughly $O(n_samples^2 * n_features)$. Since we have 64000 data points along with 10 features, a non-linear kernel can explode runtime, let alone the time complexity introduced by cross-validation or grid search.

K Nearest Neighbors (KNN)

- Find K nearest points and classify by majority vote
- Pros
 - Simple
 - No assumption about data: e.g., linear relationship.
 - Adapts to new data
- Cons
 - Slow for large datasets/feature space
 - Needs preprocessing (scaling, outliers, NAs)

Finding Neighbors & Voting for Labels

X-Axis

Validation Scores:

metric val_score
core val_score
core

Execution Time: 72.98 s

Decision Tree

- Pros
 - Interpretable
 - Business insights
 - Resistant to outliers, hence require little data preprocessing
- Cons
 - Prone to overfitting
 - Instability

GINI Impurity:
$$I_G(n) = 1 - \sum_{i=1}^{J} (p_i)^2$$

Validation Scores:

	metric	val_score
3	roc_auc	0.570472
2	recall	0.516953
1	precision	0.516348
0	f1	0.516613

Execution Time: 6.31 s

Evolution from Decision Trees

Bootstrap aggregating or Bagging is a ensemble meta-algorithm combining predictions from multipledecision trees through a majority voting mechanism

Models are built sequentially by minimizing the errors from previous models while increasing (or boosting) influence of high-performing models

Optimized Gradient Boosting algorithm through parallel processing, tree-pruning, handling missing values and regularization to avoid overfitting/bias

representation of possible solutions to a decision based on certain conditions

or collection of decision trees

sequential models