BDA

Real-time anomaly detection in IoT networks

Leveraging Hadoop-Spark for Scalable Detection

Sakshi Agrawal MSE2023004 Prachee Singh MSE2023006

PROBLEM STATEMENT

The exponential growth of IoT devices necessitates efficient and scalable real-time anomaly detection systems to ensure network security. This project aims to develop such a system using the Hadoop-Kafka framework, capable of flagging anomalous and non-anomalous events in real-time.

OBJECTIVES

Goal #1

Develop a Scalable Anomaly Detection Model.

Goal # 2

Compare Machine Learning Models

Goal #3

Monitor Real-time Detection

Methodolgy and Workflow

DATASET

	bk2edID	stime	TIGS	proto	saddr	sport	aaaar	aport	pĸts	bytes	•••	spkts	арктѕ	sbytes	abytes	rate	srate	arate	аттаск	category
0	1	1.526344e+09	е	arp	192.168.100.1	NaN	192.168.100.3	NaN	4	240		2	2	120	120	0.002508	0.000836	0.000836	0	Normal
1	2	1.526344e+09	е	tcp	192.168.100.7	139	192.168.100.4	36390	10	680		5	5	350	330	0.006190	0.002751	0.002751	0	Normal
2	3	1.526344e+09	е	udp	192.168.100.149	51838	27.124.125.250	123	2	180		1	1	90	90	20.590960	0.000000	0.000000	0	Normal
3	4	1.526344e+09	е	arp	192.168.100.4	NaN	192.168.100.7	NaN	10	510		5	5	210	300	0.006189	0.002751	0.002751	0	Normal
4	5	1.526344e+09	е	udp	192.168.100.27	58999	192.168.100.1	53	4	630		2	2	174	456	0.005264	0.001755	0.001755	0	Normal

Data Exploration and Preprocessing

Description:

Dataset sourced from Kaggle.

Contains simulated network traffic for normal and malicious activities.

Key Features:

Covers multiple attack types like DoS and Reconnaissance Over 70 million records in CSV format.

Challenges:

Large dataset size, requiring efficient handling.

Correlation Matrix of the features

Algorithm Selection

Logistic Regression:

• A simple and effective binary classifier.

Random Forest:

- Ensemble learning method using decision trees.
- Good for handling large datasets.

XGBoost:

- Gradient boosting algorithm.
- Optimized for performance and accuracy, especially on imbalanced data.

Model Training and Evaluation

Training Setup:

- Split dataset into training and testing sets.
- Cross-validation for model tuning.

Evaluation Metrics:

- Accuracy, Precision, Recall, F1-Score.
- Confusion Matrix to visualize classification results.

Random Forest Confusion Matrix

Models Comparison

Metric	Random Forest	Logistic Regression	XGBoost
Accuracy	0.9963	0.9020	0.9970
Precision	0.9963	0.9214	0.9970
Recall	0.9963	0.9020	0.9970
F1-Score	0.9963	0.9037	0.9970

Comparison of Model Performance

Integration with Hadoop-Kafka

Architecture:

- Kafka for data pipelining and batch processing.
- HDFS for data storage.

Workflow:

- Ingest data using Kafka Producer.
- Process it using kafka Consumer and apply the trained Random Forest model.
- Real-time anomaly detection and alert generation.

Hadoop Data Storage

Flask app API

Real-time Dashboard

Real-time IoT Anomaly Detection Dashboard

Sensor ID	Flgs	Proto	Pkts	Bytes	Dur	Mean	Stddev	Sum	Min	Max	Rate	Prediction
2566	0	2	15	1094	0.489337	0.489337	0	0.489337	0.489337	0.489337	28.61014	Attack
2567	0	2	11	1753	0.383392	0.383392	0	0.383392	0.383392	0.383392	26.082964	Attack
2568	0	2	11	1263	0.386529	0.386529	0	0.386529	0.386529	0.386529	25.871281	Attack
2569	0	2	11	929	0.374457	0.374457	0	0.374457	0.374457	0.374457	26.705336	Attack
2570	0	2	6	466	0.052456	0.052456	0	0.052456	0.052456	0.052456	95.317986	Normal
2571	0	2	17	3521	0.1876	0.1876	0	0.1876	0.1876	0.1876	85.287849	Attack
2572	0	2	11	1398	0.366254	0.366254	0	0.366254	0.366254	0.366254	27.303455	Attack
2573	0	2	2	134	0.00016	0.00016	0	0.00016	0.00016	0.00016	6250	Attack
2574	0	2	6	432	0.173422	0.173422	0	0.173422	0.173422	0.173422	28.831406	Attack
2575	0	2	14	3425	5.778091	0.176651	0.176501	0.353303	0.00015	0.353153	2.249878	Attack
2576	0	2	12	864	0.313353	0.313353	0	0.313353	0.313353	0.313353	35.104179	Attack
2577	0	2	11	1571	0.365289	0.365289	0	0.365289	0.365289	0.365289	27.375586	Attack
2578	0	2	13	1229	0.313946	0.313946	0	0.313946	0.313946	0.313946	38.223133	Attack
2579	0	2	11	4457	2.942468	2.942468	0	2.942468	2.942468	2.942468	3.398508	Attack
2580	0	2	13	1113	0.242732	0.242732	0	0.242732	0.242732	0.242732	49.437241	Attack

Dashboard..

Dashboard..

Real-time IoT Anomaly Detection Dashboard

Sensor ID ↓	Flgs	Proto	Pkts	Bytes	Dur	Mean	Stddev	Sum	Min	Max	Rate	Prediction
2410	0	2	2	120	0.000064	0.000064	0	0.000064	0.000064	0.000064	15625	Attack
2409	0	2	2	120	0.000022	0.000022	0	0.000022	0.000022	0.000022	45454.546875	Attack
2408	0	2	2	120	0.000095	0.000095	0	0.000095	0.000095	0.000095	10526.31543	Attack
2407	0	2	2	120	0.000074	0.000074	0	0.000074	0.000074	0.000074	13513.512695	Attack
2406	0	2	2	120	0.000021	0.000021	0	0.000021	0.000021	0.000021	47619.046875	Attack
2405	0	2	2	120	0.000094	0.000094	0	0.000094	0.000094	0.000094	10638.297852	Attack
2404	0	2	2	120	0.000081	0.000081	0	0.000081	0.000081	0.000081	12345.679688	Attack
2403	0	2	2	120	0.000025	0.000025	0	0.000025	0.000025	0.000025	40000	Attack
2402	0	2	2	120	0.000071	0.000071	0	0.000071	0.000071	0.000071	14084.506836	Attack
2401	0	2	2	120	0.000079	0.000079	0	0.000079	0.000079	0.000079	12658.228516	Attack
2400	0	2	2	120	0.000025	0.000025	0	0.000025	0.000025	0.000025	40000	Attack
2399	0	2	2	120	0.000055	0.000055	0	0.000055	0.000055	0.000055	18181.818359	Attack
2398	0	1	1	70	0	0	0	0	0	0	0	Normal
2397	0	2	2	120	0.000042	0.000042	0	0.000042	0.000042	0.000042	23809.523438	Attack
2396	0	2	2	120	0.000077	0.000077	0	0.000077	0.000077	0.000077	12987.013672	Attack

Future Scope

Optimize the model for other IoT datasets.
Implement deeper anomaly detection using neural networks.
Deploy the system on cloud or edge environments for scalability.

THANKYOU