Uptake Data Fellows Natural Language Processing Workshop

What is natural language processing (NLP)?

3

Computational processing of human language.

Examples: machine translation, dialogue systems, question answering, speech recognition, search engines

Computational processing of human language.

Often involves applying machine learning techniques to text or speech data

Use case: free-text survey data

Use case: free-text survey data

Many questions are categorical (yes/no/maybe) or on a numerical scale.

Use case: free-text survey data

Many questions are categorical (yes/no/maybe) or on a numerical scale. But others may be open text response ("please explain...")

Topic modeling

Topic modeling

Statistical models for finding "topics" that occur in a collection of documents.

Topic modeling

Statistical models for finding "topics" that occur in a collection of documents. Common approach is Latent Dirichlet Allocation (LDA) [Blei et al, 2003]

• Unsupervised: no "true" topics

topic 0
topic 1
topic 2
topic 3
topic 4

- Unsupervised: no "true" topics
- Each document mixture of topics

topic 0
topic 1
topic 2
topic 3
topic 4

- Unsupervised: no "true" topics
- Each document mixture of topics
- Each topic mixture of words

topic 0
topic 1
topic 2
topic 3
topic 4

- Unsupervised: no "true" topics
- Each document mixture of topics
- Each topic mixture of words
- Based on word co-occurrence

Exercise: topic modeling

tokenization

What is a word?

What words count?

Exercise: topic modeling

tokenization

What is a word?

What words count?

feature extraction

Words to numbers

(bag-of-words).

Exercise: topic modeling

tokenization

What is a word? What words count?

feature extraction

Words to numbers (bag-of-words).

LDA interpretation

Do some unsupervised ML! Play around, interpret results.

Autonomous vehicle survey from cyclists and pedestrians

Context

Pittsburgh is a testing ground for AVs from Uber, ArgoAl and other companies.

Bike Pittsburgh

Bike Pittsburgh, bike and pedestrian advocacy organization, made an online survey in 2017 and 2019.

Choose your environment

Python

Jupyter Notebook:

https://github.com/michaelmilleryoder/av-survey-topic-modeling_python.ipynb

R

Jupyter Notebook:

https://github.com/michaelmilleryoder/av-survey-topic-modeling/av-survey-topic-modeling_r.ipynb

Choose a text field

- interaction_details
- positive_av_interaction
- negative_av_interaction
- other_av_regulations
- elaborate_bikepgh_position
- other_comments

Workflow

- Tokenize: split into words
- Extract features: words to word IDs (bag-of-words model)
- Run LDA with varying numbers of topics
- Interpret topics
 - Look at high-ranking words for each topic
 - Look at high-ranking documents for each topic

...If you get to it

- Correlate topics with categorical and numerical fields
- Predict non-text fields with a machine learning algorithm such as logistic regression from topic distributions or text features
- Look into the <u>Structural Topic Model</u> (R package)

-Thanks!

Any questions?

Email me at

yoder@cs.cmu.edu