Praktikum Neuronale Netze

Cornelius Weber, Stefan Wermter
University of Hamburg
Dept. of Informatics, Knowledge Technology

http://www.informatik.uni-hamburg.de/WTM/

http://www.mincommsy.uni-hamburg.de/

Who is Who

- Group: Knowledge Technology
 - Research into foundations, representations and applications of intelligent systems
 - Interested in nature-inspired hybrid neural & symbolic representations and learning methods
- Lecturers
 - Cornelius Weber
 - weber@informatik.uni-hamburg.de
 - Office: F-233
 - Prof. Stefan Wermter
 - wermter@informatik.uni-hamburg.de
 - Office: F-230

What is a Praktikum?

- Praktikum in general
 - Not a lecture
 - Practial lessons
 - Work in a team
 - Self-guided exploration under supervision
- Praktikum in detail
 - Preparation toward practical research and programming
 - Topics with a reduced difficulty
 - Main focus: learn how to apply theoretical knowledge

Neural Information Processing

- Information encoding and transmission in neurons
- Neuronal layers and networks
- Transformation and interpretation of raw sensory data
- Reactive behavior
- Learning and memory
- Reasoning, planning and decision taking
- •
- Central requirement
 - Biological, physical, mathematical and computational sciences combined
 - Mathematical equations transformed into computer programs
 - Abstraction to the level of hypotheses, models and algorithms
 - Simulations with real data

Goal of this Praktikum

- First experiences in neural information processing
 - Get an overview
 - It's not a lecture!
- Some skills in the scientific method
 - Learn some models of neural networks
 - Implement and test these models on data
 - Combine some of the models
 - Present your results in a talk

Support to Reach the Goal

- Guidance and advice
 - Some introductory lectures
 - Literature to get started from the tutor
 - Tutor available for questions
- Feedback from the group
 - Discussions
 - Update on progress
 - Feedback on the presentations

Tasks

- Implement neural network models
 - Keep each architecture simple
- Elaborate and combine some models
 - Document the program
 - Give a 20 min talk (final presentation); 5-10 min discussion; slide templates recommended
- Participate actively
 - Attend the complete praktikum block
 - Discuss the problems, implementation details, learning progress
 - Maintain the deadlines stay on track

Possible Models

	Feedforward networks	Recurrent networks
Unsupervised learning	Self-organizing map (SOM), generative models	Hopfield network, Boltzmann machine
Supervised learning	Multi-layer perceptron (MLP)	Elman network
Reinforcement learning	Actor-critic, SARSA, CACLA	

Possible Models

	Feedforward networks	Recurrent networks
Unsupervised learning	Self-organizing maps (SOM), generative models	Hopfield network, Boltzmann machine
Supervised learning	Multi-layer perceptron (MLP)	Elman network
Reinforcement learning	Actor-critic, SARSA, CACLA	

Your next steps

- Choose (a) preferred model(s)
- May form groups of preferably 2 students each
- Join the MIN-CommSy room
- Test your RZ account and software on the WTM machines
- In the next 5 weeks:
 - Implement two network models (each will be introduced in a mini-tutorial)
 - Read the initial material and possibly search for more
 - Specialise on one model:
 - Implement different variants of networks & find new data

And the further steps

- Before the Christmas break :
 - Discuss initial results and further plans with the group
 - Can form larger groups to combine models
- In the next year:
 - Based on the capabilities of your implemented network, work out an interesting novel problem
 - Read some literature to improve your own model (ask tutor)
 - May use software libraries, V-rep robot simulator, ...
- At the end of the lecture period:
 - Deliver your documented programs
 - Give a final presentation

Milestones and deadlines

Reinforcement learning

- 1 Mon, 13. Oct Introduction; Choice of topics; Python Intro
- 2 Mon, 20. Oct e.g. Multi-layer perceptron

e.g.

- 3 Mon, 27. Oct
- 4 Mon, 3. Nov
- 5 Mon, 10. Nov
- 6 Mon, 17. Nov
- 7 Mon, 24. Nov
- 8 Mon, 1. Dec Discussion of plan with the group
- 9 Mon, 8. Dec
- 10 Mon, 15. Dec
- 11 Mon, 5. Jan
- 12 Mon, 12. Jan
- 13 Mon, 19. Jan Prepare documentation and slides
- 14 Mon, 26. Jan Presentation & Questions by audience & tutor

Marks

- 33% Program
- technical quality: performance/capabilities; extendable/modular programming style
- user friendliness: installation and usage; clarity of documentation (maximum two pages!)
- 67% Presentation
- technical quality: thorough, accurate, insightful; answer questions: understanding of the implemented networks
- presentation clarity and style: slide quality, content, delivery, enthusiasm; adherence to schedule

The End

Thank you for your attention. Any question?

Please take any printouts with you.

Websites:

- WTM: http://www.informatik.uni-hamburg.de/WTM/
- MIN-CommSy: http://www.mincommsy.uni-hamburg.de/

membership code: "NNpraktikum"