Self-Supervised Monocular Scene Decomposition and Depth Estimation

Sadra Safadoust, Fatma Güney

KUIS AI Center, Koç University

Self-Supervised Monocular Depth

Current monocular depth estimation methods

- either assume a static scene and fail in foreground regions with independently moving objects
- or require a separate segmentation step to identify the dynamic objects in the foreground.

MonoDepthSeg

We introduce **MonoDepthSeg** to jointly estimate depth and segment moving objects from monocular video without using any ground-truth labels.

We decompose the scene into a fixed number of components where each component corresponds to a region on the image with its own transformation matrix representing its motion. This improves the results in regions with moving objects (bottom-right) compared to the current approaches [1] (bottom-left), while simultaneously recovering a decomposition of the scene, mostly corresponding to moving regions (top-right).

Our framework consists of

- depth network to estimate per-pixel depth values
- pose and mask network to divide the image into components and estimate a separate pose for each component.

The two networks are trained jointly and end-to-end.

- ullet Given a single target image ${f I}_t$, the depth network outputs the depth estimate $\hat{{f D}}_t$.
- ullet The shared encoder maps the two consecutive input frames ${f I}_s$ and ${f I}_t$ and the depth estimate $\hat{f D}_t$ to a common representation.
- ullet The mask decoder produces the same resolution K masks $\{\mathbf{M}_1,\ldots,\mathbf{M}_K\}$.
- The pose decoder maps the same encoded representation into rigid transformations $\{T_1,\ldots,T_K\}$ corresponding to the masks.

Methodology

- We represent the motion of each component using a 3D rigid transformation $\mathbf{T} = [\mathbf{R}, \mathbf{t}] \in \mathbf{SE}(3)$
- We encourage masks to be layered according to a pre-defined depth order d_i . This helps to account for occlusions:

$$\mathbf{M}_{i}(\mathbf{p}) = \frac{e^{d_{i}\mathbf{M}_{i}'(\mathbf{p})}}{\sum_{j=1}^{K} e^{d_{j}\mathbf{M}_{j}'(\mathbf{p})}}$$

• For every pixel \mathbf{p} on the target image \mathbf{I}_t , we compute the corresponding 3D point \mathbf{x} using its depth value $\hat{\mathbf{D}}_t$ and the intrinsic camera matrix \mathbf{K} :

$$\mathbf{x} = \hat{\mathbf{D}}_t(\mathbf{p}) \; \mathbf{K}^{-1} \; \mathbf{p}$$

• We transform the 3D point ${\bf x}$ using the masks and rigid transformations to obtain ${\bf x}'$:

$$\mathbf{x}' = \sum_{i=1}^K \mathbf{M}_i(\mathbf{p}) \; \mathbf{T}_i \; \mathbf{x} = \sum_{i=1}^K \mathbf{M}_i(\mathbf{p}) \; (\mathbf{R}_i \; \mathbf{x} + \mathbf{t}_i)$$

• We project the transformed point \mathbf{x}' to find the corresponding point \mathbf{p}' on the source image \mathbf{I}_s :

$$\mathbf{p}' = \mathbf{K} \; \mathbf{x}'$$

- We reconstruct the target image I_t by sampling pixels from the source image I_s and obtain the warped image \hat{I}_s , such that $\hat{I}_s(\mathbf{p}) = I_s(\mathbf{p}')$.
- We use an edge-aware smoothness loss \mathcal{L}_{smooth} over the mean-normalized inverse depth values and define the photometric loss as follows:

$$\mathcal{L}_{\text{photo}}(\mathbf{p}) = \min_{s} \left[(1 - \alpha) | \mathbf{I}_{t}(\mathbf{p}) - \hat{\mathbf{I}}_{s}(\mathbf{p}) | + \frac{\alpha}{2} \left(1 - \text{SSIM}(\mathbf{I}_{t}, \hat{\mathbf{I}}_{s})(\mathbf{p}) \right) \right]$$

Our final loss is defined as:

$$\mathcal{L} = \frac{1}{N} \sum_{\mathbf{p}} \mathcal{L}_{photo}(\mathbf{p}) + \lambda \ \mathcal{L}_{smooth}(\mathbf{p})$$

Quantitative Results

								_
DDAD	Method	Abs I	Rel	RMS	SE	Car	Person	_
	PackNet [2]	0.23		17.9	92	0.38	0.20	_
	Monodepth2 [1]	0.22		17.6	53	0.25	0.21	
	Ours	0.19		16.6	61	0.24	0.17	
Method		Abs Rel				RMSE		
		Movin	ıσ	ΑII	Λ	loving	y All	

| Method | Moving | All | Moving | A

Qualitative Results

Input image

Our scene decomposition

Monodepth2's depth estimate

Our depth estimate

References

- [1] C. Godard, O. Mac Aodha, M. Firman, and G. J. Brostow, "Digging into self-supervised monocular depth estimation," 2019.
- [2] V. Guizilini, R. Ambrus, S. Pillai, A. Raventos, and A. Gaidon, "3D packing for self-supervised monocular depth estimation," 2020.

Contact Information

Web: https://kuis-ai.github.io/monodepthseg Email: {ssafadoust20, fguney}@ku.edu.tr