Homework 1

Ravi Kini

January 31, 2024

Exercise 1

Introduction to Elementary Particles (Griffiths, 2e) Exercise 1.1

For a particle to be undeflected, $F_e = F_m$.

$$F_e = F_m$$

$$qE = qv \times B = qvB$$

$$v = \frac{E}{B}$$
(1)

Turning off the electric field:

$$F_m = qvB = \frac{mv^2}{R}$$

$$\frac{q}{m} = \frac{v}{RB} = \frac{E}{RB^2}$$
(2)

Introduction to Elementary Particles (Griffiths, 2e) Exercise 1.3

By the position-momentum uncertainty relation:

$$\Delta x \Delta p \ge \frac{\hbar}{2}$$

$$p_{\min} = \frac{\hbar}{2\Delta x}$$

$$= \frac{\hbar c}{2\Delta x} \frac{1}{c}$$

$$= \frac{6.58212 \cdot 10^{-22} \text{ MeVs} \cdot 3 \cdot 10^8 \text{ m/s}}{2 \cdot 10^{-15} \text{ m}} \frac{1}{c}$$

$$= 98.7318 \text{ MeV/c}$$

$$E = \sqrt{m^2 c^4 + p^2 c^2}$$
(3)

The corresponding energy is then:

$$E_{\text{min}} = \sqrt{(0.510999 \text{ MeV/c}^2)^2 c^4 + (98.7318 \text{ MeV/c}) c^2}$$

= 98.7331 MeV (4)

Introduction to Elementary Particles (Griffiths, 2e) Exercise 1.7

Part (a)

The decays where charge and strangeness are conserved are:

$$\Delta^{++} \rightarrow p^{+} + \pi^{+}$$

$$\Delta^{-} \rightarrow n + \pi^{-}$$

$$\rightarrow \Sigma^{-} + K^{0}$$

$$\Sigma^{*+} \rightarrow \Sigma^{0} + \pi^{+}$$

$$\rightarrow \Lambda + \pi^{+}$$

$$\rightarrow \Phi + K^{0}$$

$$\rightarrow \Sigma^{+} + \pi^{0}$$

$$\rightarrow \Sigma^{+} + \eta$$

$$\Xi^{*-} \rightarrow \Sigma^{-} + \bar{K}^{0}$$

$$\rightarrow \Xi^{-} + \eta$$

$$\rightarrow \Xi^{-} + \eta$$

$$\rightarrow \Sigma^{0} + K^{-}$$

$$\rightarrow \Lambda + K^{-}$$

$$\rightarrow \Xi^{0} + \pi^{-}$$

$$(5)$$

Part (b)

The decays where the reactant mass exceeds the product mass are:

$$\Delta^{++} \to p^{+} + \pi^{+}$$

$$\Delta^{-} \to n + \pi^{-}$$

$$\Sigma^{*+} \to \Sigma^{0} + \pi^{+}$$

$$\to \Lambda + \pi^{+}$$

$$\to \Sigma^{+} + \pi^{0}$$

$$\Xi^{*-} \to \Xi^{-} + \pi^{0}$$

$$\to \Xi^{0} + \pi^{-}$$
(6)

Introduction to Elementary Particles (Griffiths, 2e) Exercise 1.8

The decays where charge and strangeness are conserved are:

$$\Omega^{-} \to \Xi^{-} + \bar{K}^{0}$$

$$\to \Xi^{0} + \bar{K}^{-}$$
(7)

However, both decays have the reactant mass exceeding the product mass and are therefore kinematically forbidden.

Part (a)

	Reactants $(\pi^+ + p^+)$	Products $(K^+ + \Sigma^0)$
A	0 + 1 = 1	0 + 1 = 1
S	0 + 0 = 0	1 + -1 = 0
L_{μ}	0 + 0 = 0	0 + 0 = 0
L_e	0 + 0 = 0	0 + 0 = 0
q	1 + 1 = 2	1 + 0 = 1
E	139.570 + 938.272 = 1077.842	493.68 + 1192.64 = 1686.32

Charge and energy are not conserved.

Part (b)

	Reactants $(\pi^- + p^+)$	Products $(\Lambda + \Sigma^0)$
A	0 + 1 = 1	1 + 1 = 2
S	0 + 0 = 0	-1 + -1 = -2
L_{μ}	0 + 0 = 0	0 + 0 = 0
L_e	0 + 0 = 0	0 + 0 = 0
q	-1 + 1 = 0	0 + 0 = 0
E	139.570 + 938.272 = 1077.842	1115.68 + 1192.64 = 2308.32

Baryon number, strangeness, and energy are not conserved.

Part (c)

	Reactants (π^-)	Products $(\mu^- + \nu_\mu)$
A	0	0 + 0 = 0
S	0	0 + 0 = 0
L_{μ}	0	1 + 1 = 2
L_e	0	0 + 0 = 0
q	-1	-1 + 0 = -1
E	139.570	105.659 + 0 = 105.659

Muon number is not conserved.

Part (d)

	Reactants (p^+)	Products $(\Delta^{++} + \pi^{-})$
A	1	1 + 0 = 1
S	0	0 + 0 = 0
L_{μ}	0	0 + 0 = 0
L_e	0	0 + 0 = 0
q	1	2 + -1 = 1
E	938.272	1232 + 139.570 = 1371.570

Energy is not conserved.

Part (e)

	Reactants (μ^-)	Products $(e^- + \nu_\mu)$
A	0	0 + 0 = 0
S	0	0 + 0 = 0
L_{μ}	1	0 + 1 = 1
L_e	0	1 + 0 = 1
q	-1	-1 + 0 = -1
E	139.570	105.659 + 0 = 105.659

Electron number is not conserved.

Part (f)

	Reactants (K^0)	Products $(\pi^+ + \pi^-)$
A	0	0 + 0 = 0
S	1	0 + 0 = 0
L_{μ}	0	0 + 0 = 0
L_e	0	0 + 0 = 0
q	0	1 + -1 = 0
\overline{E}	497.65	139.570 + 139.570 = 279.140

Strangeness is not conserved.

Part (a)

Weak interactions do not need to conserve strangeness, so $K^0 \to \pi^+ + \pi^-$ is allowed.

Part (b)

Applying crossing symmetry and detailed balance to transform $p^+ \to \Delta^{++} + \pi^-$:

$$p^{+} \rightarrow \Delta^{++} + \pi^{-}$$

$$p^{+} + \pi^{+} \rightarrow \Delta^{++}$$

$$\pi^{+} \rightarrow \bar{p}^{-} + \Delta^{++}$$

$$\pi^{+} + \bar{\Delta}^{--} \rightarrow \bar{p}^{-}$$

$$(8)$$

	Reactants $(\pi^+ + \bar{\Delta}^{})$	Products (\bar{p}^-)
A	0 + -1 = -1	-1
S	0 + 0 = 0	0
L_{μ}	0 + 0 = 0	0
L_e	0 + 0 = -	0
q	1 + -2 = -1	-1
E	1232 + 139.570 = 1371.570	938.272

All quantities are conserved, so this process is allowed.