Overview of the Carry-Lookahead (CLA) Adder

Christopher D. Carothers
Department of Computer Science
Rensselaer Polytechnic Institute
110 8th Street
Troy, New York U.S.A. 12180-3590

January 18, 2018

1 Equation Dependencies for 64 Bit CLA

Recall that we can express the sum of two numbers as:

$$sum_i = a_i \oplus b_i \oplus c_{i-1} \tag{1}$$

where a_i and b_i are the two inputs numbers we wish to add and c_{i-1} is the carry-in to that bit stage. Also, \oplus is the exclusive-or (XOR) operation which is true only if either a_i or b_i is true but not both. Think of the exclusive-or operation as a parity counter. See https://en.wikipedia.org/wiki/XOR_gate for more details.

Now, the above equation is completely dependent on the c_i carry-in array. The driving principle of the CLA adder is to compute the carry-in array first and to leverage as much parallelism (and hardware) as possible.

To accomplish this, we can define the c_i carry-in function as follows:

$$c_i = g_i + p_i c_{i-1} \tag{2}$$

where g_i is the "generate function", which says did we generate a carry in the i^{th} stage and the p_i is the propagate function which says did we propagate a carry in the i^{th} stage assuming the carry-in, c_{i-1} , was positive. This yields the following:

$$g_i = a_i \times b_i \tag{3}$$

$$p_i = a_i + b_i \tag{4}$$

$$c_i = g_i + p_i c_{i-1} \tag{5}$$

Now, using the above recurrence we can find what c_i is for any 4 bit block or "group".

$$c_i = g_i + p_i c_{i-1} \tag{6}$$

$$c_{i+1} = g_{i+1} + p_{i+1}c_i (7)$$

$$c_{i+2} = g_{i+2} + p_{i+2}c_{i+1} (8)$$

$$c_{i+3} = g_{i+3} + p_{i+3}c_{i+2} (9)$$

Notice, how each of the c_i equations can all be written in terms of the the g, p and c_{i-1} . But, c_{i-1} is really the carry-in for this "group" of 4 bits. So, this means that the carry-in to those group depends on the gc equations, which are:

$$gc_j = gg_j + gp_jgc_{j-1} (10)$$

$$gc_{j+1} = gg_{j+1} + gp_{j+1}gc_j (11)$$

$$gc_{j+2} = gg_{j+2} + gp_{j+2}gc_{j+1} (12)$$

$$gc_{j+3} = gg_{j+3} + gp_{j+3}gc_{j+2}$$
(13)

where...

$$gg_{j} = g_{i+3} + p_{i+3}g_{i+2} + p_{i+3}p_{i+2}g_{i+1} + p_{i+3}p_{i+2}p_{i+1}g_{i}$$

$$gp_{j} = p_{i+3}p_{i+2}p_{i+1}p_{i}$$
(15)

Again, notice, how each of the gc_j equations can all be written in terms of the the gg, gp and gc_{j-1} . But, gc_{j-1} is really the carry-in for this "section" of 4 bits. So, this means that the carry-in to those group depends on the sc equations, which are:

$$sc_k = sg_k + sp_k sc_{k-1} \tag{16}$$

$$sc_{k+1} = sg_{k+1} + sp_{k+1}sc_k (17)$$

$$sc_{k+2} = sg_{k+2} + sp_{k+2}sc_{k+1} (18)$$

$$sc_{k+3} = sg_{k+3} + sp_{k+3}sc_{k+2} (19)$$

(20)

where...

$$sg_k = gg_{j+3} + gp_{j+3}gg_{j+2} + gp_{j+3}gp_{j+2}gg_{j+1} + gp_{j+3}gp_{j+2}gp_{j+1}gg_j$$

$$sp_k = gp_{j+3}gp_{j+2}gp_{j+1}gp_j$$
(21)

2 Steps for Calculation for 64 Bit CLA with 4 Bit Blocks

- 1. Calculate g_i and p_i for all i.
- 2. Calculate gg_j and gp_j for all j using g_i and p_i .
- 3. Calculate sg_k and sp_k for all k using gg_j and gp_j . Note, it is at this point, we can shift to computing the top-level sectional carries. This is because the number of sections is less than or equal the block size which is 4 bits.
- 4. Calculate sc_k using sg_k and sp_k for all k and 0 for sc_{-1} .
- 5. Calculate gc_j using gg_j , gp_j and correct sc_k , k = jdiv4 as sectional carry-in for all j.
- 6. Calculate c_i using g_i , p_i and correct gc_j , j = idiv4 as group carry-in for all i.
- 7. Calculate sum_i using $a_i \oplus b_i \oplus c_i$ for all i.