AULAS 9 E 10: FIS271 - Física Computacional I

Exercício 1. Segundo o método de Newton-Raphson (págs. 3 a 5 de [1]), as raízes de uma função f(x) podem ser determinadas iterativamente segundo a expressão

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} .$$

Isto é, a partir da escolha de um valor x_0 ("chute inicial"), os valores de x_{n+1} são atualizados iterativamente até possivelmente "convergir" para um valor x^* que satisfaz a igualdade $f(x^*) = 0$. A "convergência" do processo iterativo pode ser determinada de acordo com um critério de parada baseado, por exemplo, no erro relativo do valor da raíz de f(x), isto é, quando $\varepsilon_n = |x_n - x_{n-1}|/|x_n| < \bar{\varepsilon}$.

- a) Assumindo $\bar{\varepsilon} = 0.0001$, utilize o método de Newton-Raphson para determinar numericamente as duas soluções $x^{*,1}$ e $x^{*,2}$ da função $f(x) = (3+x)^2 12$. Considere apenas valores iniciais x_0 nos intervalos $x_0 < -20$, $x_0 > 20$ e $-4 \le x_0 \le -2$, e faça o gráfico de x_n versus n (com n = 0, 1, ...) mostrando o que acontece para os valores que você escolheu.
- **b)** Faça o gráfico da função f(x) do item (a) e verifique se as raízes obtidas correspondem aos valores corretos de $x^{*,1}$ e $x^{*,2}$ para os quais $f(x^{*,1}) = 0$ e $f(x^{*,2}) = 0$.
- c) Assumindo $\bar{\varepsilon} = 0.00001$, determine o conjunto de soluções da função $g(x) = [1 + (1 + x^2) \operatorname{sen}(x/5)]/(1 + x^2)$ dentro do intervalo $x \in [-40, 40]$. Comente como você escolheu o(s) valor(es) inicial(is) x_0 e inclua uma tabela com os valores das raízes obtidas.
- d) Considerando a mesma função do item (c) e um erro relativo de $\bar{\varepsilon} = 0.00001$, compute o número de passos n^* necessários para que a solução convirja assumindo valores iniciais $x_0 = -2$, $x_0 = -3$ e $x_0 = -4$. Faça os gráficos de x_n versus n com $n = 0, 1, \ldots, n^*$ para cada um dos três casos.

Exercício 2. O método dos mínimos quadrados (veja págs. 27 e 28 de [1]) é bastante utilizado para obter o melhor ajuste de uma função à um conjunto de pontos experimentais definido por (x_k, y_k) com $k = 1, ..., N_{\text{dados}}$. Em sua versão mais simples, isto é, sem considerar os erros experimentais, o método consiste em minimizar a soma das diferenças quadráticas

$$S = \sum_{k=1}^{N_{\text{dados}}} [f(x_k; a, b) - y_k]^2 , \qquad (1)$$

onde os parâmetros a e b são calculados a partir de um sistema de equações considerando a minimização de S, isto é, fazendo $\partial S/\partial a = 0$ e $\partial S/\partial b = 0$. Por simplicidade, vamos considerar o ajuste de dados à uma função linear definida por $f(x_k; a, b) = ax_k + b$.

- a) Escreva as expressões analíticas para o sistema de equações acima obtida pelas derivadas em relação aos parâmetros a e b e forneça sua solução, isto é, forneça as fórmulas de como obter os coeficientes angular a e linear b da função dos y_k e x_k experimentais.
- b) Implemente uma subrotina para obter a e b a partir dos dados experimentais como obtido no item (a). Utilize os dados do arquivo millikan.dat, onde as colunas (n, q_n) representam, respectivamente, números inteiros (associados às massas) e as cargas das gotículas (em 10^{-19} C), que são dados experimentais relacionados ao famoso experimento das gotículas de óleo de Millikan [2]. Compare seus resultados para os coeficientes/parâmetros a e b com a regressão linear feita ou pelo gnuplot (utilizando o comando fit), ou pelo xmgrace (em Data, Transformations, Regression).
- c) Repita os cálculos feitos em (a) e a implementação de uma subrotina análoga à considerada em (b) mas agora impondo que o coeficiente linear b seja igual a zero.
- d) Faça um ÚNICO gráfico incluindo (i) os dados experimentais, (ii) a função de ajuste com os parâmetros obtidos em (b) pela sua subrotina, e (iii) a função de ajuste utilizando os parâmetros obtidos em (c). Não se esqueça de discriminar as curvas utilizando a legenda do gráfico.
- e) Comente sobre qual quantidade física pode ser obtida a partir do coeficiente a determinado pelo ajuste dos dados experimentais de obtidos por Millikan. Calcule o erro relativo em relação aos obtidos por você nos items (b) e (c) ao valor aceito atualmente para essa quantidade física, *i.e.* $1,6021766208 \times 10^{-19}$ C.

Referências:

- [1] C. Scherer. Métodos Computacionais da Física (2nd ed.,2010).
- [2] R. A. Millikan. The Isolation of an Ion, a Precision Measurement of its Charge, and the Correction of Stokes' Law. Phys. Rev. XXXII (1911) 349.