Question	Answer	Marks	Guidance
8(a)	$\left(x - \left(-\frac{1}{2}p\right)\right)^2 + \left(y - \left(-1\right)\right)^2 \text{ OE}$	B1*	Allow $a = -\frac{1}{2}p$ and $b = -1$, or centre is $\left(-\frac{1}{2}p, -1\right)$.
	$\left(x - \left(-\frac{1}{2}p\right)\right)^{2} + \left(y - (-1)\right)^{2} = -q + 1 + \left(-\frac{1}{2}P\right)^{2} \text{ OE}$	DB1	
		2	
8(b)(i)	[Gradient of tangent =] $-\frac{1}{2}$	В1	OE SOI
	[Gradient of normal =] 2	М1	Use of $m_1m_2=-1$ with <i>their</i> numeric tangent gradient.
	$\frac{y-3}{x-4} = 2 \left[y = 2x - 5 \right]$	A1	OE ISW Allow $y = 2x + c$, $3 = 2 \times 4 + c \implies c = -5$.
		3	

Question	Answer	Marks	Guidance
8(b)(ii)	Method 1 for the first two marks:		
	$-1-3=2\left(-\frac{1}{2}p-4\right)$ or $-1=-p-5$	M1*	Using <i>their</i> stated centre or $\left(\frac{\pm p}{2}, \pm 1\right)$ in <i>their</i> equation of the
			normal.
	p = -4	A1	
	Method 2 for the first two marks:		
	$-1 = 2x - 5 \Rightarrow x = 2 \Rightarrow -\frac{1}{2}p = 2$	M1*	Using their normal equation and <i>their</i> stated centre or $\left(\frac{\pm p}{2}, \pm 1\right)$.
	p = -4	A1	
	Method 3 for the first two marks:		
	$2x + 2y\frac{dy}{dx} + p + 2\frac{dy}{dx} = 0 \left[\Rightarrow p = -8 - 8\frac{dy}{dx} \right]$	M1*	
	$\left[\frac{dy}{dx} = -\frac{1}{2} \Rightarrow\right] p = -4$	A1	

* C TATALORIA

Question	Answer	Marks	Guidance	
8(b)(ii)	Method 1 for the last 3 marks:			
	$r^2 = (4-2)^2 + (3-(-1))^2 = 20$	M1*	Using (4, 3) and <i>their</i> centre or $\left(\frac{\pm their p}{2}, \pm 1\right)$ to find r^2 or r .	
	$-q+1+\frac{1}{4}p^2=20$	DM1	OE Using their expression for r^2 (from (a)) equated to their 20.	
	<i>q</i> = –15	A1		
	Method 2 for the last 3 marks:			
	$r = \frac{ 2 - 2 - 10 }{\sqrt{5}} \left[= \frac{10}{\sqrt{5}} \right]$	M1*	Using $(2,-1)$ and $x+2y-10=0$ (distance from a point to a line).	
	$-q + 1 + \frac{1}{4}p^2 = \left(\frac{10}{\sqrt{5}}\right)^2$	DM1	OE Using their expression for r^2 equated to their $\left(\frac{10}{\sqrt{5}}\right)^2$.	
	<i>q</i> = –15	A1		
	Method 3 for the last 3 marks:			
	$4^2 + 3^2 + 4p + 6 + q = 0 \ [\Rightarrow 4p + q + 31 = 0]$	M1*	Substituting (4,3) into their circle equation.	
	OR $ \left(4 - \left(-\frac{1}{2}p\right)\right)^2 + \left(3 - \left(-1\right)\right)^2 = -q + 1 + \left(-\frac{1}{2}p\right)^2 $			
	4(-4)+q+31=0	DM1	Substituting <i>their</i> $p = -4$.	
	q = -15	A1		

Question	Answer	Marks	Guidance
8(b)(ii)	Alternative Method for Question 8(b)(ii)		
	$4^{2} + 3^{2} + 4p + 6 + q = 0$ $x^{2} + (2x - 5)^{2} + px + 2(2x - 5) + q = 0 \text{ with } x = 4$ $x^{2} + \left(\frac{10 - x}{2}\right)^{2} + px + 2\left(\frac{10 - x}{2}\right) + q = 0 \text{ with } x = 4$ $\left(\frac{y + 5}{2}\right)^{2} + y^{2} + p\left(\frac{y + 5}{2}\right) + 2y + q = 0 \text{ with } y = 3$ $(10 - 2y)^{2} + y^{2} + p(10 - 2y) + 2y + q = 0 \text{ with } y = 3$ {Each of these $\Rightarrow 4p + q + 31 = 0$ }	M1*	Substituting $(4,3)$ into <i>their</i> circle equation, or replacing y with $2x-5$ from the normal equation, or replacing y with $\frac{10-x}{2}$ from the tangent equation, or replacing x with $\frac{y+5}{2}$ from the normal equation, or replacing x with $10-2y$ from the tangent equation, and using either $x=4$ or $y=3$ to form an equation in p and q .
	$\frac{5}{4}x^2 + (p-6)x + 35 + q = 0 \implies (p-6)^2 - 4 \times \frac{5}{4} \times (35 + q) = 0$ OR $5y^2 - y(38 + 2p) + 100 + 10p + q = 0 \implies (38 + 2p)^2 - 4 \times 5 \times (100 + 10p + q) = 0$ {Each of these $\Rightarrow p^2 - 12p - 139 - 5q = 0$ }	M1*	Solving the tangent and circle equations simultaneously to form a quadratic equation in either x or y . Then using $b^2 - 4ac = 0$ on their quadratic to form an equation in p and q .
	Solving the equations simultaneously to find p or q	DM1	
	p = -4	A1	
	q = -15	A1	
		5	