

DASAR SISTEM

PERTEMUAN 4
ALJABAR BOOLE DAN LOGIKA KOMBINASI

REFERENSI

- [Muchlas] Muchlas. 2005. Rangkaian Digital. Gava Media. Jogjakarta
- [Mano] Mano, Morris. 2013. Digital Design 5th Ed. Pearson.

AGENDA

Bagian I

- 1. Teorema Aljabar Boole
- 2. Universalitas Gerbang NOR dan NAND

Bagian II

- 1. Pengertian Logika Kombinasi
- 2. Bentuk Persamaan Logika
- 3. Penyederhanaan Secara Aljabar
- 4. Metode Peta Karnaugh
- 5. Bentuk NAND dan NOR Rangkaian Logika
- 6. Rangkaian Enable dan Inhibit

Teorema Aljabar Boole

• Teorema Variabel Tunggal

-	$\overline{\mathcal{L}}$

	AND Form	OR Form
IDENTITY LAW	A.1 = A	A+0 = A
ZERO AND ONE LAW	A.0 = 0	A+ 1 =1
INVERSE LAW	A.A'=0	A+A'=1
IDEMPOTENT LAW	A.A = A	A+A = A

- Teorema pada operasi OR dapat diperoleh melalui teorema pada operasi AND, atau sebaliknya. Caranya:
 - a. Ubah tanda tambah (+) menjadi dot (.), atau sebaliknya
 - b. Ubah angka 1 menjadi 0, atau sebaliknya

Teorema Aljabar Boole

• Teorema Variabel Jamak

COMMUTATIVE LAW	A.B = B.A	A+B = B+A
ASSOCIATIVE LAW	A.(B.C) = (A.B).C	A+(B+C) = (A+B) + C
DISTRIBUTIVE LAW	A+(B.C) = (A+B).(A+C)	A.(B+C) = (A.B) + (A.C)
ABSORPTION LAW	A(A+B) = A	A+A.B = AA+A'B= A+B
DEMORGAN'S LAW	(A B)' = A'+B'	(A +B)' = A'.B'
DOUBLE COMPLEMENT LAW	X" = x	

- Simulasi DSCH
 - File DEMORGAN.SCH

AGENDA

Bagian I

- 1. Teorema Aljabar Boole
- 2. Universalitas Gerbang NOR dan NAND

Bagian II

- 1. Pengertian Logika Kombinasi
- 2. Bentuk Persamaan Logika
- 3. Penyederhanaan Secara Aljabar
- 4. Metode Peta Karnaugh
- 5. Bentuk NAND dan NOR Rangkaian Logika
- 6. Rangkaian Enable dan Inhibit

Universalitas Gerbang NOR dan NAND

Universalitas Gerbang NOR dan NAND

Interpretasi dua simbol gerbang NAND

Output goes LOW only when all inputs are HIGH

Output is HIGH when any input is LOW

AGENDA

Bagian I

- 1. Teorema Aljabar Boole
- 2. Universalitas Gerbang NOR dan NAND

Bagian II

- 1. Pengertian Logika Kombinasi
- 2. Bentuk Persamaan Logika
- 3. Penyederhanaan Secara Aljabar
- 4. Penyederhanaan Metode Peta Karnaugh
- 5. Bentuk NAND dan NOR Rangkaian Logika
- 6. Rangkaian Enable dan Inhibit

Pengertian Logika Kombinasi

- Rangkaian logika yang outputnya hanya tergantung pada kombinasi inputinputnya
 - Tidak tergantung pada keadaan output sebelumnya

Bentuk Persamaan Logika

- Sum of Product (SOP)
 - Contoh:

$$Y = A'B'C + AB'C' + ABC' + ABC$$

- Product of Sum POS)
 - Contoh:

$$Z = (A'+B'+C)(A+B+C)(A+B'+C)(A'+B+C)$$

Bentuk SOP Standar

- SOP Standar adalah persamaan logika SOP yang setiap sukunya mengandung semua variabel input yang ada
- Pada SOP Standar, tiap sukunya dinamakan minterm (m)
- Contoh: X= A'B'C+AB'C'+ABC'+ABD
 - Untuk semua kombinasi input yang ada, hanya terdapat satu kombinasi saja yang menyebabkan suatu minterm bernilai 1
 - Untuk suatu input yang memberikan nilai 1 pada salah satu minterm yang ada, fungsi SOP standar selalu bernilai 1
- Cara penulisan 2:
 - A'B'C \rightarrow 1, AB'C' \rightarrow 4, ABC' \rightarrow 6, ABD \rightarrow 7
 - $X(A,B,C) = \sum m(1,4,6,7)$
- Bentuk POS Standar (pelajari [Muchlas, pp 114])

Penyederhanaan Secara Aljabar

- Aljabar boole
 - SederhanakanY = AB'D + AB'D'

$$Y = AB'D + AB'D'$$

$$= AB'(D+D')$$

$$= AB'$$

• DSCH → MINI1.SCH

Penyederhanaan Secara Aljabar (2)

- Aljabar boole
 - Sederhanakan X = (A'+B)(A+B)

$$X = (A'+B)(A+B)$$

= $A'A+A'B+BA+BB$
= $0 + A'B + BA + B$
= $A'B + AB + B$
= $B(A+A'+1)$
= B

• DSCH \rightarrow MINI2.SCH

Penyederhanaan Secara Aljabar (3)

- Aljabar boole
 - Sederhanakan Z = ACD + A'BCD

$$Z = ACD + A'BCD$$

$$= CD(A+A'B)$$

$$= CD(A+B)$$

$$= ACD+BCD$$

• DSCH \rightarrow MINI3.SCH

Penyederhanaan Secara Aljabar (4)

- Aljabar boole
 - SederhanakanY = ((A'+C)(B+D'))'

$$Y = ((A'+C)(B+D'))'$$

= $(A'+C)'+(B+D')'$
= $(A.C')+(B'.D)$
= $AC'+B'D$

• DSCH \rightarrow MINI4.SCH

Penyederhanaan Secara Aljabar (5)

- Aljabar boole
 - Sederhanakan Z = ABC + AB'(A'C')'

$$Z = ABC + AB'(A'C')'$$

$$= ABC + AB'(A+C)$$

$$= ABC + AB'A + AB'C$$

$$= ABC + AB' + AB'C$$

$$= AB' + (AB'C + ABC)$$

$$= AB' + AC(B'+B)$$

$$= AB' + AC$$

$$= A(B'+C)$$

• DSCH \rightarrow MINI5.SCH

Penyederhanaan Secara Aljabar (6)

- Aljabar boole
 - Sederhanakan Z = ABC + ABC' + AB'C

$$Z = ABC + ABC' + AB'C$$

$$= AB(C+C') + AB'C$$

$$= AB + AB'C$$

$$= A(B+B'C)$$

$$= A(B+C)$$

$$= AB + AC$$

• DSCH \rightarrow MINI6.SCH

PENYEDERHANAAN DENGAN METODE PETA KARNAUGH [Muchlas, pp 133]

1. Memperoleh bentuk minimum dari persamaan yang diketahui

- a. Memastikan persamaan berbentuk standar
- b. Menyusun petak sebanyak 2ⁿ
- Memasukkan minterm ke dalam petak, simbol 1
- d. Memberi tanda lup pada setiap minterm yang terisolasi. Minterm yang dapat digabung jika jumlahnya 2^k dengan k=1,2,3,... dan saling berdekatan.
- e. Memberi tanda lup pada minterm yang hanya dapat bergabung dengan 1 minterm lainnya
- f. Memberi tanda lup pada gabungan 4 minterm
- g. Memberi tanda lup pada gabungan 8 minterm
- h. Membuang variabel-variabel yang berbeda dan menggunakan variabel-variabel yang sama sebagai suku persamaan dari gabungan minterm yang diperoleh
- Membentuk persamaan minimum dengan cara melakukan operasi OR terhadap suku-suku persamaan yang diperoleh <u>dari</u> gabungan minterm

Beberapa minterm dapat digabung jika jumlahnya 2k

- Gabungan 2 minterm (Muchlas, pp 135)
- Gabungan 4 minterm (Muchlas, pp 136)
- Gabungan 8 minterm (Muchlas, pp 137)

Three-Variable Map-example 1 [Mano]

Sum of two adjacent minterms can be simplified to a single AND term consisting of two literals

Fig. 3-4 Map for Example 3-1; $F(x, y, z) = \Sigma(2, 3, 4, 5) = x'y + xy'$

Three-Variable Map-example 2 [Mano]

Fig. 3-5 Map for Example 3-2; $F(x, y, z) = \Sigma(3, 4, 6, 7) = yz + xz'$

Three-Variable Map-example 3 [Mano]

Fig. 3-6 Map for Example 3-3; $F(x, y, z) = \Sigma(0, 2, 4, 5, 6) = z' + xy'$

Three-Variable Map-example 4 [Mano]

Fig. 3-7 Map for Example 3-4; A'C + A'B + AB'C + BC = C + A'B

Four-Variable Map [Mano]

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6
m_{12}	m_{13}	m_{15}	m_{14}
m_8	<i>m</i> 9	m_{11}	m_{10}
(a)			

Fig. 3-8 Four-variable Map

Four-Variable Map-example 1 [Mano]

Fig. 3-9 Map for Example 3-5; F(w, x, y, z)= $\Sigma (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14) = y' + w'z' + xz'$

Four-Variable Map-example 2 [Mano]

Fig.3-10 Map for Example 3-6; A'B'C + B'CD' + A'BCD' + AB'C' = B'D' + B'C' + A'CD'

METODE PETA KARNAUGH

2. Memperoleh Bentuk Minimum dari Tabel Kebenaran

Memperoleh Bentuk Minimum dari Tabel Kebenaran

METODE PETA KARNAUGH

3. Kondisi diabaikan (Don't care condition)

Inputs	Output
ABCD	Y
0000	0
0 0 0 1	0
0 0 1 0	0
0 0 1 1	0
0100	0
0 1 0 1	0
0110	0
0 1 1 1	1
1000	1
1001	1
1010	X
1011	X
1100	X
1 1 0 1	X
1110	X
1111	X

Don't cares

(a) Truth table

Bentuk NAND dan NOR rangkaian logika

- Bentuk SOP ke dalam bentuk NAND:
 - 1. Pastikan bahwa persamaan dalam bentuk SOP
 - 2. Lakukan operasi komplemen ganda
 - 3. Berlakukan teorema de morgan
- Bentuk POS ke dalam bentuk NOR:
 - 1. Pastikan bahwa persamaan dalam bentuk POS
 - 2. Lakukan operasi komplemen ganda
 - 3. Berlakukan teorema de morgan

Rangkaian Enable dan Inhibit

Latihan 1

Sederhanakan ekspresi fungsi-fungsi Boole berikut ini dalam sum of product (SOP):

- a. $F(A,B,C) = \Sigma(0,2,4,5,6)$
- b. $F(w,x,y,z) = \Sigma(2,3,12,13,14,15)$

Hint:

- Susun tabel kebenaran
- Buat peta karnaugh

$F(A,B,C) = \Sigma(0,2,4,5,6)$

	Α	В	С	F
0	0	0	0	1
1	0	0	1	
2	0	1	0	1
3	0	1	1	
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	

	C'	С
A'B'	1	
A'B	1	
AB	1	
AB'	1	1

$$F = AB' + C'$$

a.
$$F(A,B,C) = \Sigma(0,2,4,5,6)$$

$F(w,x,y,z) = \Sigma(2,3,12,13,14,15)$

	W	X	Υ	Z	F
0	0	0	0	0	
1	0	0	0	1	
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	
5	0	1	0	1	
6	0	1	1	0	
7	0	1	1	1	
8	1	0	0	0	
9	1	0	0	1	
10	1	0	1	0	
11	1	0	1	1	
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	1

	Y'Z'	Y'Z	YZ	YZ'
W'X'			1	1
W'X				
WX	1	1	1	1
WX'				

$$F = WX + W'X'Y$$

B. $F(w,x,y,z) = \Sigma(2,3,12,13,14,15)$

Latihan 2

Sederhanakan fungsi <u>Boole</u> sehingga jumlah literalnya minimum:

a.
$$xyz + x'y + xyz'$$
 b. $zx + zx'y$

Gunakan teorema aljabar Boole, atau Coba manfaatkan peta karnaugh.

Solusi Latihan 2

	Z'	Z
X'Y'		
X'Y	1	1
XY	1	1
XY'		

	Z'	Z
X'Y'		
X'Y		
XY		1
XY'		1

$$XYZ + X'Y + XYZ' = Y$$
 $ZX + ZX'Y = YZ + XZ$

$$ZX + ZX'Y = YZ + XZ$$

Latihan 3

Diberikan fungsi Boole: F=xy + x'y'+y'z. Implementasikan fungsi tersebut:

- a. Dengan gerbang-gerbang AND, OR, dan NOT
- b. Hanya dengan gerbang **OR** dan **NOT**

NO. 3 A

$$F = XY + X'Y' + Y'Z$$

EKIVALENSI, ingat Teorema De Morgan AND ←→ OR+NOT

NO. 3 B

F = XY + X'Y' + Y'Z