Prof. Aurélio Hoppe

DISCIPLINA: Teoria dos grafos

LISTA DE EXERCÍCIOS – CAMINHAMENTO EM GRAFOS

1. Execute o algoritmo de Dijkstra para o grafo abaixo, tendo como vértice inicial o vértice s

2. Refere-se ao grafo abaixo.

- a. Aplique o algoritmo de Dijkstra no grafo acima para encontrar caminhos mínimos do vértice *a* a todos os demais vértices
- b. Desenhe a árvore de caminhos mais curtos obtida implicitamente no item anterior
- 3. Dado o grafo abaixo, encontre, através do algoritmo de Dijkstra, os caminhos de custo mínimo entre o vértice **X** e todos os demais vértices, preenchendo a tabela com os valores correspondentes.

4. Dado o cenário abaixo, encontre o caminho mínimo entre a origem e o destino do robô. Utilize o algoritmo de Dijkstra.

5. Dado o grafo abaixo, execute o algoritmo de Floyd.

	v1	v2	v3	v4	v5
v1	0	5	8	3	8
v2	8	0	3	8	8
v3	8	8	0	8	5
v4	1	1	8	0	1
v5	8	1	8	1	0

	v1	v2	v3	v4	v5
v1	0	1	8	5	8
v2	8	0	1	8	1
v3	8	8	0	8	5
v4	1	3	8	0	1
v5	8	8	8	1	0

6. Execute o algoritmo de Floyd-Warshall sobre o digrafo cuja matriz inicial *W* é dada a seguir. Exiba todas as matrizes intermediárias para cada K.

0	3	8	
	0		1
	4	0	
2		5	0

- 7. Ainda com relação ao exercício anterior, explique como construir os caminhos mais curtos através das matrizes predecessoras. Exiba as matrizes predecessoras em cada iteração, e no final liste os caminhos mais curtos entre cada par de vértices.
- 8. Para reduzir seus custos operacionais, uma empresa de transporte de cargas deseja oferecer aos motoristas de sua frota um mecanismo que os auxilie a selecionar o caminho de menor custo entre quaisquer duas cidades por ela servidas. Como realizar esta tarefa?

 No desenho abaixo, uma criança diz ter posto a ponta do lápis numa das bolinhas e com movimentos contínuos (sem levantar e sem retroceder o lápis) traçou as linhas que formam o desenho da casa, traçando cada linha uma única vez.

A mãe da criança acha que ela trapaceou pois não foi capaz de achar nenhuma seqüência que pudesse produzir tal resultado. Você concorda com esta mãe?

10. O cenário abaixo é a residência do bilionário Nicolau Tampacopulus, que acaba de ser assassinado. Sherlock Gomes (um conhecido detetive que nas horas vagas é um estudioso da teoria dos grafos) foi chamado para investigar o caso. O mordomo alega ter visto o jardineiro entrar na sala da piscina (lugar onde ocorreu o assassinato) e logo em seguida deixar aquela sala pela mesma porta que havia entrado. O jardineiro, contudo, afirma que ele não poderia ser a pessoa vista pelo mordomo, pois ele havia entrado na casa, passado por todas as portas uma única vez e, em seguida, deixado a casa. Sherlock Gomes avaliou a planta da residência (conforme figura abaixo) e em poucos minutos declarou solucionado o caso. Quem poderia ser o suspeito indicado por Sherlock Gomes? Qual o raciocínio utilizado pelo detetive para apontar o suspeito?

11. Eraldonclóbes Gonçalves havia prometido casamento a Irisdelfane das Graças. O evento deveria ser realizado, segundo ele, assim que acabasse o contrato de trabalho recém assinado com uma empresa encarregada de pavimentar toda a rede de estradas que ligava Passa e Fica (cidade onde morava Irisdelfane) às cidades da região. O trabalho iria começar em Passa e Fica e prosseguir em continuidade, estrada após estrada, terminando, segundo explicou Eraldonclóbes, na própria Passa e Fica. A rede de estradas poderia ser representada pela matriz de adjacência que se segue, na qual a cidade de Passa e Fica é representada pelo número 1.

	1	2	3	4	5	6	7	8	9	10
1		Х	Х		Х					
2	Χ		Х	Х	Х					
3	Χ	Х			Х	Х				
4		Х			Х		Х			Х
5	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Χ	
6			Χ		Χ			Χ		Χ
7				Χ	Χ			Χ		Χ
8					Χ	Χ	Χ		Χ	Χ
9					Χ			Χ		Χ
10				Х		Х	Χ	Χ	Χ	

- Eraldonclóbes foi sincero com Irisdelfane? Por quê?
- E se o itinerário 1-5-9-10 estivesse a cargo de outra empresa, ele estaria sendo sincero?
- 12. Encontre um ciclo euleriano no grafo abaixo.

13. Para os grafos abaixo, resolva o Problema do Carteiro Chinês, mostrando as principais etapas para chegar à solução

14. Determine os caminhos hamiltonianos dos grafos abaixo:

15. Considere o seguinte grafo valorado:

- Utilize o Algoritmo da Força Bruta para encontrar um circuito de Hamilton ótimo.
- Utilize o Algoritmo do Vizinho mais Próximo iniciando no vértice A para encontrar um circuito de Hamilton
- Utilize o Algoritmo do Vizinho mais Próximo com início no vértice C para encontrar um circuito de Hamilton Qual o peso do circuito de Hamilton obtido?

16. Observe o seguinte grafo valorado:

- Utilize o Algoritmo do Vizinho mais Próximo para encontrar um circuito de Hamilton do grafo tendo como vértice inicial o A. Qual o peso do circuito de Hamilton obtido?
- Utilize o Algoritmo Repetitivo do Vizinho mais Próximo para encontrar um circuito de Hamilton e indique qual o peso do circuito obtido.
- Utilize o Algoritmo da Ligação mais Econômica para encontrar um circuito de Hamilton do grafo e indique o peso do circuito obtido.