EQUATION MATRICIELLE

Les parties I et II sont, dans une large mesure, indépendantes. Soit n un entier naturel non nul.

Partie I

On travaille dans un \mathbb{C} -espace vectoriel E supposé non réduit au vecteur nul. $\mathcal{L}(E)$ désigne l'ensemble des endomorphismes de E, I_E est l'application identité de E et θ désigne l'application nulle. Par convention : $\forall f \in \mathcal{L}(E)$, $f^0 = I_E$. On étudie sur quelques cas particuliers, l'équation : $(f + I_E)^{2n} - I_E = \theta$ où $f \in \mathcal{L}(E)$ est l'inconnue.

- 1. Déterminer les homothéties vectorielles qui sont solutions de l'équation proposée.
- 2. En développant $(1+1)^{2n}$ et $(1-1)^{2n}$ déterminer les sommes $S = \sum_{k=0}^{n} C_{2n}^{2k}$ et $S' = \sum_{k=0}^{n-1} C_{2n}^{2k+1}$ (la notation C_n^k désigne le coefficient binomial : $\frac{n!}{k!(n-k)!}$.)
- 3. Si s est une symétrie de E, exprimer $(s + I_E)^{2n} I_E$ en fonction de s et I_E . En déduire les symétries de E solutions de l'équation proposée.

Partie II

On travaille dans $\mathfrak{M}_3(\mathbb{C})$ ensemble des matrices carrées d'ordre 3 à coefficients dans \mathbb{C} . I désigne la matrice identité et O la matrice nulle.

On pose $G = \{M_{a,b} \in \mathfrak{M}_3(\mathbb{C}) \mid (a,b) \in \mathbb{C}^2\}$ où $M_{a,b}$ désigne la matrice $\begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$.

1. Montrer que G est un sous-espace vectoriel de $\mathfrak{M}_3(\mathbb{C})$ dont on précisera la dimension et une base; vérifier que G est stable pour le produit matriciel.

On cherche à résoudre l'équation matricielle (*) $(M+I)^{2n} - I = O$, avec M, matrice inconnue, dans G.

On note E le \mathbb{C} -espace vectoriel \mathbb{C}^3 et $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de E.

Soient $M=M_{a,b}$ un élément de G tel que $b\neq 0, u$ l'endomorphisme de E canoniquement associé à M et I_E , l'application identité de E.

- 2. Déterminer une base (e'_1) de $E_1 = \text{Ker}(u (a+2b).I_E)$.
- 3. Déterminer une base (e'_2, e'_3) de $E_2 = \text{Ker}(u (a b).I_E)$.
- 4. Montrer que (e'_1, e'_2, e'_3) est une base de E; on la note \mathcal{B}' .
- 5. Déterminer la matrice D de u dans la base \mathcal{B}' .
- 6. On note P la matrice de passage de \mathcal{B} à \mathcal{B}' . Ecrire P et déterminer P^{-1} en précisant la méthode utilisée et en détaillant les calculs.
- 7. Exprimer M en fonction de P, D et P^{-1} .
- 8. Montrer que : M est solution de l'équation (*) si et seulement si D est solution de l'équation (*).
- 9. Déterminer toutes les matrices D solutions de l'équation (*).
- 10. En déduire toutes les solutions de l'équation (*) dans G.

EQUATION MATRICIELLE

Partie I

- 1. Soit $f = \alpha I_E$ avec $\alpha \in \mathbb{C}$, on a $\left((\alpha+1)^{2n}-1\right)I_E = \Theta$, or aI_E inversible pour $a \neq 0$ donc on a $(\alpha+1)^{2n}-1=0$, i.e. f solution $\iff \exists k \in \llbracket 0,2n-1 \rrbracket$, $\alpha=z_k$.
- 2. $4^n = (1+1)^{2n} = \sum_{k=0}^{k=2n} C_{2n}^k$ et $0 = (-1+1)^{2n} = \sum_{k=0}^{k=2n} (-1)^k C_{2n}^k = \sum_{k \text{ pair}} C_{2n}^k \sum_{k \text{ impair}} C_{2n}^k$. On a donc $S + S' = 4^n$ et S - S' = 0, d'où $S = S' = 2 \times 4^{n-1}$.
- 3. On a $s^2 = s \circ s = I_E$ et s et I_E commutent donc, d'après la formule du binôme,

$$(s+I_E)^{2n} - I_E = \sum_{k=0}^{2n} C_{2n}^k s^k I_E^{2n-k} - I_E = \sum_{k \text{ pair}} C_{2n}^k I_E^{\frac{k}{2}} + \sum_{k \text{ impair}} C_{2n}^k s - I_E = S's + (S-1)I_E.$$

On a donc s solution si, et seulement si, $s = \frac{1-S}{S}I_E$ et s symétrie, ce qui impose $\left(\frac{1-S}{S}\right)^2 = 1$ $(s^2 = I_E)$.

On doit donc avoir $S = \frac{1}{2}$, or $S \in \mathbb{N}$! Il n'y a donc aucune symétrie solution.

Partie II

1. On a $G=\left\{aI+bJ\mid (a,b)\in\mathbb{C}^2\right\}$ avec $J=\begin{pmatrix}0&1&1\\1&0&1\\1&1&0\end{pmatrix},$ donc

 $G = \mathbf{Vect}(I, J)$ et $\mathcal{M}_3(\mathbb{C})$ e.v. donc G s.e.v. de $\mathcal{M}_3(\mathbb{C})$ donc e.v.

(I,J) libre car, si $(a,b) \in \mathbb{C}^2$, $aI + bJ = O \Longrightarrow M_{a,b} = O$ d'où a = b = 0 par identification des coefficients (I,J) étant libre et génératrice dans G, (I,J) base de G et $\dim(G) = 2$.

 $M_{a,b} \times M_{c,d} = M_{ac+2bd,ad+bc+bd} \in G$ donc G stable par produit matriciel.

2. On a $u: \mathbb{C}^3 \to \mathbb{C}^3$ tel que u(X) = MX (i.e. $\operatorname{Mat}_{\mathcal{B}}(u) = M$ avec \mathcal{B} base canonique de \mathbb{C}^3). Soit $X = (x, y, z) \in \mathbb{C}^3$.

$$X \in E_1 \iff (M - (a+2b)I)X = 0$$

$$\iff \begin{cases} b(-2x + y + z) = 0 \\ b(x - 2y + z) = 0 \\ b(x + y - 2z) = 0 \end{cases}$$

$$\iff \begin{cases} -2x + y + z = 0 \\ 3y - 3z = 0 \\ 0 = 0 \end{cases}$$

D'où $E_1 = \{(z, z, z) \mid z \in \mathbb{C}\} = \mathbf{Vect}(e'_1)$ avec $e'_1 = (1, 1, 1) \neq (0, 0, 0)$ donc e'_1 base de E_1 .

- 3. Soit $X=(x,y,z)\in\mathbb{C}^3,\ X\in E_2\Longleftrightarrow (M-(a-b)I)X=0\Longleftrightarrow b(x+y+z)=0.$ Or $b\neq 0$ donc $E_2=\{(-y-z,y,z)\mid (y,z)\in\mathbb{C}^2\}=\mathbf{Vect}(e_2',e_3')$ où $e_2'=(-1,1,0)$ et $e_3'=(-1,0,1).$ e_2' et e_3' n'étant pas colinéaires, ils forment une famille libre et génératrice de E_2 , i.e. une base.
- 4. Soit \mathcal{B} la base canonique de \mathbb{C}^3 , det $(\operatorname{Mat}\mathcal{B}\mathcal{B}') = \begin{vmatrix} 1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix} = 3 \neq 0$ donc \mathcal{B}' libre.

Or $\operatorname{card}(\mathcal{B}') = \dim(\mathbb{C}^3) = 3$ donc \mathcal{B}' base de \mathbb{C}^3 .

5. on a
$$u(e'_1) = (a+2b)e'_1$$
, $u(e'_2) = (a-b)e'_2$, $u(e'_3) = (a-b)e'_3$ donc $D = \text{Mat}\mathcal{B}'u = \begin{pmatrix} a+2b & 0 & 0 \\ 0 & a-b & 0 \\ 0 & 0 & a-b \end{pmatrix}$.

EQUATION MATRICIELLE

6. On a
$$P = \text{Mat}\mathcal{B}\mathcal{B}' = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
.

En accolant I_3 à P et en effectuant des transformations élémentaires sur les lignes jusqu'à ce que P soit trans-

formée en
$$I_3$$
, on obtient : $P^{-1} = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$.

- 7. On a $D = P^{-1}MP$ (changement de bases) donc $M = PDP^{-1}$.
- 8. $M+I=\operatorname{Mat}\mathcal{B}u+\operatorname{Mat}\mathcal{B}I_E=\operatorname{Mat}\mathcal{B}u+I_E$ donc $(M+I)^{2n}-I=\operatorname{Mat}\mathcal{B}(u+I_E)^{2n}-I_E$. De même, $(D+I)^{2n}-I=\operatorname{Mat}\mathcal{B}'(u+I_E)^{2n}-I_E$ d'où (changement de base) $(D+I)^{2n}-I=P^{-1}\left((M+I)^{2n}-I\right)P$. Donc : $(M+I)^{2n}-I=O\Longleftrightarrow (D+I)^{2n}-I=O$.
- 9. On a: $(D+I)^{2n} I = \begin{pmatrix} (a+2b+1)^{2n} 1 & 0 & 0 \\ 0 & (a-b+1)^{2n} 1 & 0 \\ 0 & 0 & (a-b+1)^{2n} 1 \end{pmatrix}$, donc D solution ssi A(a+2b) = A(a-b) = 0, i.e. $\exists (k,j) \in \llbracket 0, 2n-1 \rrbracket^2$, $a+2b=z_j$ et $a-b=z_k$
- 10. On en déduit : M solution de $(\star) \iff \exists (k,j) \in \llbracket 0,2n-1 \rrbracket^2$, $M = \frac{1}{3} \begin{pmatrix} 2z_k + z_j & z_j z_k & z_j z_k \\ z_j z_k & 2z_k + z_j & z_j z_k \\ z_j z_k & z_j z_k & 2z_k + z_j \end{pmatrix}$ (et sous l'hypothèse générale : $M \in G$).