Práctico 6 - Topología en \mathbb{R}^n

Nota: en \mathbb{R}^n , a menos que se aclare lo contrario, asumiremos que estamos trabajando con la distancia euclídia.

- 1. *a*) Una función $N : \mathbb{R}^n \to \mathbb{R}$ es una norma si satisface las siguientes propiedades:
 - (I) $N(u) \ge 0$, $\forall u \in \mathbb{R}^n$ y N(u) = 0 sí y sólo sí $u = \vec{0}$
 - (II) $N(\lambda u) = |\lambda| N(u), \forall \lambda \in \mathbb{R}, \forall u \in \mathbb{R}^n$
 - (III) $N(u+v) \le N(u) + N(v), \forall u, v \in \mathbb{R}^n$

Investigar si las siguientes funciones de \mathbb{R}^2 en \mathbb{R} son normas

- (i) N((x,y)) = |x| + |y|,
- (ii) $N((x,y)) = \sqrt{x^2 + y^2}$,
- (iii) $N((x,y)) = \max\{|x|,|y|\},\$
- (iv) N((x, y)) = |x + y|.
- b) Para aquellas que sean normas, dibujar la bola de centro en el origen y radio 1. Indicar cuáles de los siguientes puntos pertenecen a la bola de centro (3,4) y radio 2: (3,4),(4,5),(0,1).
- c) Decimos que dos normas N_1 , N_2 son equivalentes si existen constantes $\alpha, \beta > 0$ tal que $\alpha N_1(u) \le N_2(u) \le \beta N_1(u)$. Probar que aquellas funciones que son normas de este ejercicio son equivalentes dos a dos.
- 2. Se definen los siguientes conjuntos:

$$\begin{split} A_1 &= \{(x,y) \in \mathbb{R}^2 \colon 1 \leq x \leq 2, 1 < y < 3\}, \\ B &= A_1 \cap \mathbb{Q}^2 \\ A_2 &= \{(x,y) \in \mathbb{R}^2 \colon y = x^2\} \\ A_3 &= \{(x,y) \in \mathbb{R}^2 \colon x^2 + y^2 < 1, (x,y) \neq (0,0)\}, \\ C &= A_3 \cap \mathbb{Q}^2 \\ A_4 &= \{(x,y) \in \mathbb{R}^2 \colon 2x^2 + y^2 < 1\} \cup \{(x,y) \in \mathbb{R}^2 \colon x = y\} \\ A_5 &= \{(x,y) \in \mathbb{R}^2 \colon x = (-1)^n + \frac{1}{n}, y = 1, n \geq 1\}, \\ A_6 &= \{(x,y,z) \in \mathbb{R}^3 \colon x + y + z < 1, x > 0, y > 0, z > 0\} \\ A_7 &= \{(x,y,z) \in \mathbb{R}^3 \colon x^2 + y^2 + 1 \leq z\} \end{split}$$

- a) Representarlos gráficamente e investigar si están acotados.
- b) Hallar el interior, la frontera y la clausura de cada uno de ellos.
- c) Hallar el conjunto de sus puntos de acumulación.
- d) Indicar si son abiertos.
- e) Indicar si son cerrados.
- f) Indicar si son compactos.
- 3. *a*) Probar que toda bola abierta es un conjunto abierto.
 - b) Probar que si A es un conjunto abierto y $p \in A$ entonces A p es abierto.
- 4. Sean *A* un conjunto abierto de \mathbb{R}^2 y $C = A \cap (\mathbb{Q} \times \mathbb{Q})$. Hallar int(C), \overline{C} , y ∂C .
- 5. Sean A y B dos conjuntos \mathbb{R}^n . Se define el conjunto suma A + B de la siguiente forma:

$$A + B = \{a + b : a \in A, b \in B\}$$

a) Demostrar que si A es abierto A + B es abierto.

- b) ¿Qué se puede decir de A + B si A es cerrado?
- 6. Probar los siguientes resultados.
 - a) A es abierto sii $A \cap \partial A = \emptyset$.
 - b) $int(A) = \bar{A} \partial A$ es un conjunto abierto, más aún, es la unión de los subconjuntos abiertos contenidos en A (es el "mayor" conjunto abierto incluido en A).
 - *c*) A es cerrado sii $\partial A \subset A$ sii $A' \subset A$.
 - *d*) $\bar{A} = A \cup \partial A$ es un conjunto cerrado, más aún, es la intersección de todos los conjuntos cerrados que contienen a A (es el "menor" cerrado que contiene a A).
 - e) A' es un conjunto cerrado.
- 7. a) Probar que la unión de una familia arbitraria de conjuntos abiertos es un conjunto abierto.
 - b) Probar que la intersección de una cantidad finita de conjuntos abiertos es un conjunto abierto.
 - c) ¿Es cierto que la intersección de una cantidad arbitraria de conjuntos abiertos es un conjunto abierto?
 - d) Extraer conclusiones sobre la unión e intersección de conjuntos cerrados.
- 8. Estudiar la convergencia de las siguientes sucesiones definidas en \mathbb{R}^2 . En caso de no convergencia, determinar la existencia de subsucesiones convergentes y calcularlas

$$a_n = \left(e^{-n}, \frac{3}{n}\right), \quad b_n = \left(e^{-n} + 2, [1 + (-1)^n]n\right), \quad c_n = \left((-1)^n, (-1)^n + \frac{1}{n}\right).$$

$$d_n = \left(n((-1)^n + 1), e\right), \quad e_n = \left(\sin\left(\frac{n\pi}{8}\right), \cos\left(\frac{n\pi}{3}\right)\right)$$

- 9. *a*) Sea x_n una sucesión en \mathbb{R}^n . Probar que si una sucesión tiene límite, entonces toda subsucesión tiene el mismo límite.
 - b) Sea x_n una sucesion en \mathbb{R}^2 , tal que $x_n \to p$ y sea $A = \{x_n, n \in \mathbb{N}\}$. Hallar int(A), \overline{A} , A', ∂A .
 - c) Demostrar que un punto a es de acumulación de un conjunto X sii existe una sucesión $(x_k) \subset X \{a\}$ que converge a a.

Ejercicios opcionales

1. Distancia entre dos conjuntos

Sean $A, B \subset \mathbb{R}^n$ dos conjuntos no vacíos. Definimos la distancia entre los conjuntos A y B de la siguiente manera:

$$d(A, B) := \inf \{ d(x, y) : x \in A, y \in B \}$$

- a) Mostrar que d(A, B) = 0 si $A \cap B \neq \emptyset$, en particular d(A, A) = 0.
- b) Mostrar con un ejemplo que puede ocurrir que d(A, B) = 0 y sin embargo $A \cap B = \emptyset$
- c) Mostrar que si A y B son compactos entonces $A \cap B \neq \emptyset$ sí y sólo si d(A, B) = 0.

2. El Conjunto de Cantor

- a) Sea $(K_m)_{m\geq 0}$ una sucesión decreciente de conjuntos compactos no vacíos en \mathbb{R}^n , es decir que:
 - $K_m \subseteq \mathbb{R}^n$ es compacto y no vacío $\forall m \ge 0$.
 - $K_{m+1} \subseteq K_m$.

Probar que $K = \bigcap_{n=0}^{\infty} K_m$ es compacto y no vacío.

- b) Nos limitaremos ahora al caso n=1. Se define la sucesión $(K_m)_m \geq 0$ de subconjuntos de $\mathbb R$ mediante el siguiente procedimiento: $K_0 = [0;1]$, $K_1 = K_0 (\frac{1}{3};\frac{2}{3})$, $K_2 = K_1 [(\frac{1}{9};\frac{2}{9}) \cup (\frac{7}{9};\frac{8}{9})]$,... En general, K_{m+1} se obtiene de K_m quitándole los tercios centrales abiertos de cada uno de los intervalos que forman K_m . Sea $K = \bigcap_{m=0}^{\infty} K_m$ (denominado Çonjunto de Cantor"). Probar que:
 - *K* es compacto y no vacío.

- K = K'
- *K* tiene interior vacío.
- c) Observar que cada número real $x \in [0;1]$ admite una representación "ternaria" de la forma:

$$x = \sum_{k=1}^{\infty} \frac{\alpha_k}{3^k} \quad con \quad \alpha_k \in \{0, 1, 2, \}$$

¿Cómo es la representación ternaria de los puntos del Conjunto de Cantor? Deducir que K no es numerable.

- d) ¿Cuál es la "longitud" de [0;1] K?
- 3. Sea $(x_n)_{n \ge 0}$ una sucesión contractiva, es decir, tal que existe $k \in \mathbb{R}$, 0 < k < 1, que cumple $\forall n \ge 0$:

$$||x_{n+1} - x_n|| \le k||x_n - x_{n-1}||$$

Demostrar que:

- a) $||x_{n+1} x_n|| \le k^n ||x_1 x_0|| \ \forall n \in \mathbb{N}.$
- b) Si $p, q \in \mathbb{N}, p > q$, entonces $||x_p x_q|| \le \frac{k^q}{1-k} ||x_1 x_0||$ Sugerencia: usar la desigualdad triangular.
- c) $(x_n)_{n>0}$ es de Cauchy y por lo tanto convergente.
- 4. a) Sea x_k una sucesión en \mathbb{R}^n tal que $||x_k|| \to \infty$. Probar que x_k no tiene ninguna subsucesión convergente.
 - b) De un ejemplo de una sucesión no acotada, pero que sí contenga alguna subsucesión convergente. ¿Esto contradice lo pedido en el item anterior? ¿Por qué?
- 5. Decimos que $A \subset \mathbb{R}^n$ un conjunto no vacío, es convexo si para todo par de puntos $p, q \in A$ se tiene que el segmento que los une está incluido en él. Es decir $\forall p, q \in A$ se tiene que $[p, q] = \{tp + (1-t)q, t \in [0, 1]\} \subset A$,
 - *a*) Probar que si $V \subset \mathbb{R}^n$ es un subespacio, entonces es convexo
 - b) Probar que en \mathbb{R}^3 un semi-espacio, un semi-plano y una semi-recta son convexos
 - c) Probar que si A_i , $i \in I$ son conjuntos convexos y $A = \bigcap_{i \in I} A_i \neq \emptyset$ entonces A es convexo.
 - *d*) Sea N una norma en \mathbb{R}^n . Probar que $B(0,1) = \{x \in \mathbb{R}^n : N(x) < 1\}$, es un conjunto convexo.
 - e) Sea $f: \mathbb{R} \to \mathbb{R}$ una función C^{∞} . Definimos el conjunto $A_f \subset \mathbb{R}^2$ como $A_f = \{(x,y) \in \mathbb{R}^2 : y \ge f(x)\}$. Probar que A_f es convexo si solo si $f''(x) \ge 0$, $\forall x \in \mathbb{R}$.
 - f) Sea $f: \mathbb{R} \to \mathbb{R}$ una función tal que A_f es convexo. Probar que f es continua