Universität Duisburg-Essen Fachbereich VWL Lehrstuhl Ökonometrie

Dr. Yannick Hoga Thilo Reinschlüssel

Multivariate Time Series Analysis Exercise Sheet 12

Exercise 1: Cointegration Basics

Consider the variable $z_t = (z_{1,t}, z_{2,t})^{\top}$, where

$$z_{1,t} = \sum_{i=1}^{t} a_{3,i} + a_{1,t}$$

$$z_{2,t} = \frac{1}{2} \sum_{i=1}^{t} a_{3,i} + a_{2,t}$$

Assume the innovation sequences $a_{1,t}$, $a_{2,t}$ and $a_{3,t}$ to be white noise and mutually independent. Show that z_t is cointegrated and determine the cointegration rank.

Exercise 2: Cointegrating VAR?

Consider again the following VAR(1) process with the innovation sequence $a_t \stackrel{iid}{\sim} (\mathbf{0}, \mathbf{\Sigma}_a)$.

$$z_t = \begin{pmatrix} 1.1 & -0.2 \\ -0.2 & 1.4 \end{pmatrix} z_{t-1} + a_t, \quad t = 1, \dots, T.$$

Can you write the process in VECM form?

Hint: Use the results from Exercise 3 on Exercise Sheet 11.

Exercise 3: Cointegration Ranks

What is the maximum possible cointegrating rank of a three-dimensional process $z_t = (z_{1,t}, z_{2,t}, z_{3,t})^{\top}$,

- a) if $z_{1,t}$, $z_{2,t}$ and $z_{3,t}$ are univariate stationary processes?
- b) if $z_{1,t}$, $z_{2,t}$ are I(0) and $z_{3,t}$ is I(1)?
- c) if $z_{1,t}$, $z_{2,t}$ and $z_{3,t}$ are I(1) but $z_{1,t}$ and $z_{2,t}$ are not cointegrated in a bivariate system?
- d) if $z_{1,t}$, $z_{2,t}$ and $z_{3,t}$ are I(1) but $(z_{1,t}, z_{2,t})^{\top}$ and $(z_{2,t}, z_{3,t})^{\top}$ are not cointegrated as bivariate systems?

Exercise 4: Cointegration Vectors

Consider a system of K=3 integrated variables z_{1t} , z_{2t} and z_{3t} . Suppose

$$z_{1t} - z_{2t} = v_{1t} \sim I(0),$$

$$z_{2t} - z_{3t} = v_{2t} \sim I(0)$$
.

That is, $z_{1,t}$ and $z_{2,t}$ as well as $z_{2,t}$ and $z_{3,t}$ are cointegrated. The cointegration vectors are $\beta_1 \equiv (1, -1, 0)^{\top}$ and $\beta_2 \equiv (0, 1, -1)^{\top}$, respectively.

- a) Show that the two cointegration vectors are linearly independent.
- b) Show that the cointegration vectors are only defined up to scalar multiples, i.e. that $a\beta_i$ is also a cointegration vector with scalar a and $i \in \{1, 2\}$.
- c) Show that any linear combination $a\beta_1 + (1-a)\beta_2$ is also a cointegration vector. That is, the cointegration vectors span a cointegration space and hence are not unique.

This exercise sheet will be discussed in the tutorial on Wednesday, 22 January 2020