

Statistics (or something)

Amanda Charbonneau

Probability Mass function (For discrete distributions, like read counts)

P(integer) ≥ 0 P(non-integers) = 0.

DISCRETE CONTINUOUS

Figure 4.17 Relationships among probability distributions.

Bolker 2007 CH4 page 137

Negative binomial

Negative Binomial Distribution =
$$\frac{\Gamma(k+x)}{\Gamma(k)x!} \left(\frac{k}{k+\mu}\right)^k \left(\frac{\mu}{k+\mu}\right)^x$$

Expected number of counts = μ Over-dispersion parameter = k

For our purposes all we care about is that

$$var(x) = \mu + k\mu^2$$

"To consult the statistician after an experiment is finished is often merely to ask him(her) to conduct a post mortem examination. He(she) can perhaps say what the experiment died of."

-Ronald Fisher

• 150 individuals

- 150 individuals
- 50 of each treatment

- 150 individuals
- 50 of each treatment
- Treatment lasts 1 week

- 150 individuals
- 50 of each treatment
- Treatment lasts 1 week
- We have 3 incubators/ greenhouses/tanks/cages which each hold 50 individuals

- 150 individuals
- 50 of each treatment
- Treatment lasts 1 week
- We have 3 incubators/ greenhouses/tanks/cages which each hold 50 individuals
- Let's do the blue treatment in week 1, green treatment in week 2 and red treatment in week 3

Experimental Design Week 1 Week 2 Week 3

Experimental Design Week 1 Week 2 Week 3 How's this?

Experimental Design

You have 3 undergrads. How should they split the data collection work?

Experimental Design

Sample	Treatment	Week	Student	Measurement
1		1	Riley	92
2		1	Sarah	56
3		1	John	21
4		2	John	77
5		2	Riley	35
6		2	Sarah	26
7		3	Sarah	68
8		3	John	41
9		3	Riley	42

If this is going to be an RNAseq experiment, what variables should we try to account for?

- Time collected RNA
- Extraction method
- Different lanes
- Time in storage
- PCR
- When/where samples collected

lane, barcode, prep kit, prep date, person prepping, run date,

Experimental Design

Sample	Treatment	Week	Student	ReadCount	Lane	Library Prep Date
1		1	Riley	92	1	5/23/18
2		1	Sarah	56	2	6/30/18
3		1	John	21	1	5/23/18
4		2	John	77	2	6/30/18
5		2	Riley	35	1	5/23/18
6		2	Sarah	26	2	6/30/18
7		3	Sarah	68	1	5/23/18
8		3	John	41	2	6/30/18
9		3	Riley	42	1	5/23/18

ReadCount ~ Treatment

Sample	Treatment	Week	Student	ReadCount	Lane	Library Prep Date
1		1	Riley	92	1	5/23/18
2		1	Sarah	56	2	6/30/18
3		1	John	21	1	5/23/18
4		2	John	77	2	6/30/18
5		2	Riley	35	1	5/23/18
6		2	Sarah	26	2	6/30/18
7		3	Sarah	68	1	5/23/18
8		3	John	41	2	6/30/18
9		3	Riley	42	1	5/23/18

Sample	Treatment	Week	Student	ReadCount	Lane	Library Prep Date
1		1	Riley	92	1	5/23/18
2		1	Sarah	56	2	6/30/18
3		1	John	21	1	5/23/18
4		2	John	77	2	6/30/18
5		2	Riley	35	1	5/23/18
6		2	Sarah	26	2	6/30/18
7		3	Sarah	68	1	5/23/18
8		3	John	41	2	6/30/18
9		3	Riley	42	1	5/23/18

ReadCount ~ Treatment + Student

Sample	Treatment	Week	Student	ReadCount	Lane	Library Prep Date
1		1	Riley	92	1	5/23/18
2		1	Sarah	56	2	6/30/18
3		1	John	21	1	5/23/18
4		2	John	77	2	6/30/18
5		2	Riley	35	1	5/23/18
6		2	Sarah	26	2	6/30/18
7		3	Sarah	68	1	5/23/18
8		3	John	41	2	6/30/18
9		3	Riley	42	1	5/23/18

Sample	Treatment	Week	Student	ReadCount	Lane	Library Prep Date
1		1	Riley	92	1	5/23/18
2		1	Sarah	56	2	6/30/18
3		1	John	21	1	5/23/18
4		2	John	77	2	6/30/18
5		2	Riley	35	1	5/23/18
6		2	Sarah	26	2	6/30/18
7		3	Sarah	68	1	5/23/18
8		3	John	41	2	6/30/18
9		3	Riley	42	1	5/23/18

ReadCount ~ Treatment + Week + Student

Sample	Treatment	Week	Student	ReadCount	Lane	Library Prep Date
1		1	Riley	92	1	5/23/18
2		1	Sarah	56	2	6/30/18
3		1	John	21	1	5/23/18
4		2	John	77	2	6/30/18
5		2	Riley	35	1	5/23/18
6		2	Sarah	26	2	6/30/18
7		3	Sarah	68	1	5/23/18
8		3	John	41	2	6/30/18
9		3	Riley	42	1	5/23/18

Sample	Treatment	Week	Student	ReadCount	Lane	Library Prep Date
1		1	Riley	92	1	5/23/18
2		1	Sarah	56	2	6/30/18
3		1	John	21	1	5/23/18
4		2	John	77	2	6/30/18
5		2	Riley	35	1	5/23/18
6		2	Sarah	26	2	6/30/18
7		3	Sarah	68	1	5/23/18
8		3	John	41	2	6/30/18
9		3	Riley	42	1	5/23/18

Lane and LP_Date are perfectly confounded!

Sample	Treatment	Week	Student	ReadCount	Lane	Library Prep Date
1		1	Riley	92	1	5/23/18
2		1	Sarah	56	2	6/30/18
3		1	John	21	1	5/23/18
4		2	John	77	2	6/30/18
5		2	Riley	35	1	5/23/18
6		2	Sarah	26	2	6/30/18
7		3	Sarah	68	1	5/23/18
8		3	John	41	2	6/30/18
9		3	Riley	42	1	5/23/18

All that stuff at the beginning is actually important

RNAseq Math

How do the methods compare for real data?

Kvam et al. 2012

Dispersion

	Gene 1 Count	Gene 2 Count
blue	5	10
yellow	5	1

		Gene 1 Count	Gene 2 Count	Gene 3 Count
	blue	5	10	-
	blue	5	10	-
	blue	5	10	4
	blue	5	10	-
	blue	5	10	-
	blue	5	10	-
	blue	5	10	9
	blue	5	10	-
	blue	5	10	-
	blue	5	10	-
	blue	5	10	30
7	yellow	5	1	45
7	yellow	5	1	50
7	yellow	5	1	50
7	yellow	5	1	43
7	yellow	5	1	45
7	yellow	5	1	44
7	yellow	5	1	41
3	yellow	5	1	43

	Gene 1 Count	Gene 2 Count	Gene 3 Count	Gene 4 Count	Gene 5 Count
blue	5	10	-	4	5
blue	5	10	-	90	6
blue	5	10	4	51	9
blue	5	10	-	76	6
blue	5	10	-	97	10
blue	5	10	-	33	1
blue	5	10	9	88	7
blue	5	10	-	96	10
blue	5	10	-	26	2
blue	5	10	-	68	4
blue	5	10	30	48	2
yellow	5	1	45	60	65
yellow	5	1	50	65	60
yellow	5	1	50	75	63
yellow	5	1	43	35	53
yellow	5	1	45	20	65
yellow	5	1	44	84	63
yellow	5	1	41	89	52
yellow	5	1	43	48	60

Model Inception

Dispersion

mean of normalized counts

Love, Huber & Anders 2014 BioRXiV doi: 10.1101/002832

