Part 3: Producer theory

ECON 6090

Cornell University

Adam Harris

So far, you've covered choice theory and consumer theory. Now we turn our attention to the theory of producers (i.e., firms).

1. Basics of producer theory à la MWG.

- 1. Basics of producer theory à la MWG.
 - → In consumer theory, we think of the consumer's objective as utility maximization. How will we think about the firm's objective in producer theory?

So far, you've covered choice theory and consumer theory. Now we turn our attention to the theory of producers (i.e., firms).

- 1. Basics of producer theory à la MWG.
 - \rightarrow In consumer theory, we think of the consumer's objective as utility maximization. How will we think about the firm's objective in producer theory?

2. A brief discussion of the theory of the firm

- 1. Basics of producer theory à la MWG.
 - → In consumer theory, we think of the consumer's objective as utility maximization. How will we think about the firm's objective in producer theory?
 - ightarrow Can you guess the key assumption we'll maintain here about firms' relation to the market?
- 2. A brief discussion of the theory of the firm

- 1. Basics of producer theory à la MWG.
 - → In consumer theory, we think of the consumer's objective as utility maximization. How will we think about the firm's objective in producer theory?
 - ightarrow Can you guess the key assumption we'll maintain here about firms' relation to the market?
- 2. A brief discussion of the theory of the firm
- 3. Intro to theory of non-price-taking firms

- 1. Basics of producer theory à la MWG.
 - → In consumer theory, we think of the consumer's objective as utility maximization. How will we think about the firm's objective in producer theory?
 - \rightarrow Can you guess the key assumption we'll maintain here about firms' relation to the market?
- 2. A brief discussion of the theory of the firm
- 3. Intro to theory of non-price-taking firms
 - \rightarrow In other words, intro to the theory of industrial organization.
 - → "Core IO" is the study of what happens when firms have some ability to affect prices.

Lecture 1: Producer theory

Technological feasibility

Assumptions 3.1:

- (i) L commodities
- (ii) Production plan $y \in \mathbb{R}^L$
 - Net input: good i such that $y_i < 0$
 - Net output: good j such that $y_i > 0$
- (iii) Production possibility set, $Y \subseteq \mathbb{R}^L$ of feasible production plans
- (iv) Prices, $p \ge 0$, are unaffected by the activity of the firm.

Assumptions 3.2:

- (i) Y is nonempty, closed and (strictly) convex.
- (ii) Free disposal: If $y \in Y$ and $y' \leq y$, then $y' \in Y$.

Efficiency

Definition: A production plan $y \in Y$ is *efficient* if there does not exist a $y' \in Y$ such that $y' \ge y$ and $y'_i > y_i$ for some i.

Efficiency

Definition: A production plan $y \in Y$ is *efficient* if there does not exist a $y' \in Y$ such that $y' \ge y$ and $y'_i > y_i$ for some i.

Consider the case where there's only one output, i.e., y=(q,-z) where $q\in\mathbb{R}_+$ and $z\in\mathbb{R}_+^{L-1}$.

Definition: The *production function* $f: \mathbb{R}^{L-1} \to \mathbb{R}_+$ is defined by

$$f(z) = \max_{q} q$$
 subject to $(q, -z) \in Y$

Related definitions

Definition: The input requirement set

$$V(q) \equiv \{ z \in \mathbb{R}^{L-1}_+ \mid (q, -z) \in Y \}$$

gives all the input vectors that can be used to produce output q.

Related definitions

Definition: The input requirement set

$$V(q) \equiv \{ z \in \mathbb{R}^{L-1}_+ \mid (q, -z) \in Y \}$$

gives all the input vectors that can be used to produce output q.

Definition: The isoquant

$$Q(q) \equiv \{z \in \mathbb{R}^{L-1}_+ \mid z \in V(q) \text{ and } z \notin V(q') \text{ for any } q' > q\}$$

gives all the input vectors that can be used to produce at most q units of output.

Cost minimization

Assumptions 3.7:

- (i) L-1 inputs in z
- (ii) One output q = f(z)
- (iii) $f \in C^2$
- (iv) Input price $w \in \mathbb{R}^{L-1}_+$

Cost minimization

Assumptions 3.7:

- (i) L-1 inputs in z
- (ii) One output q = f(z)
- (iii) $f \in C^2$
- (iv) Input price $w \in \mathbb{R}^{L-1}_+$

Definitions: The firm's cost minimization problem (CMP) is

$$C(w,q) = \min_{z \in \mathbb{R}^{L-1}} w \cdot z \text{ s.t. } f(z) = q$$

and the associated value function C(w, q) is the **cost function**.

Cost minimization

Definitions: The firm's cost minimization problem (CMP) is

$$C(w,q) = \min_{z \in \mathbb{R}^{L-1}} w \cdot z \text{ s.t. } f(z) = q$$

and the associated value function C(w, q) is the **cost function**.

Proposition 3.10 (Properties of the cost function)

- (i) C is homogeneous degree 1 in w.
- (ii) C is concave in w.
- (iii) If we assume free disposal, then C is nondecreasing in q.
- (iv) If f is homogeneous of degree k in z, the C is homogeneous of degree 1/k in q.

Properties of homogeneous functions

Proposition 3.12 If f is homogeneous degree k, then for i = 1, ..., n, $\frac{\partial f}{\partial x_i}$ is homogeneous of degree k - 1.

Properties of homogeneous functions

Proposition 3.12 If f is homogeneous degree k, then for i = 1, ..., n, $\frac{\partial f}{\partial x_i}$ is homogeneous of degree k - 1.

Proposition 3.13 (Euler's formula) If f is homogeneous degree k and differentiable, then at any x,

$$\sum_{i} \frac{\partial f(x)}{\partial x_{i}} x_{i} = k f(x)$$

Properties of homogeneous functions

Proposition 3.12 If f is homogeneous degree k, then for i = 1, ..., n, $\frac{\partial f}{\partial x_i}$ is homogeneous of degree k - 1.

Proposition 3.13 (Euler's formula) If f is homogeneous degree k and differentiable, then at any x,

$$\sum_{i} \frac{\partial f(x)}{\partial x_{i}} x_{i} = k f(x)$$

Proposition 3.14 If the production function f is homogeneous of degree k, then

$$MRTS_{ij}(z) \equiv \frac{\frac{\partial f(z)}{\partial z_i}}{\frac{\partial f(z)}{\partial z_j}} = \frac{\frac{\partial f(\alpha z)}{\partial z_i}}{\frac{\partial f(\alpha z)}{\partial z_j}} = MRTS_{ij}(\alpha z)$$

The firm's profit maximization problem (PMP) is

$$\pi(p) \equiv \max_{y} p \cdot y$$
 subject to $y \in Y$

and the associated value function $\pi(p)$ is the *profit function*.

Single-output case:

$$\pi(p, w) \equiv \max_{z \in \mathbb{R}^{L-1}} pf(z) - w \cdot z$$

Proposition 3.16 (Properties of the profit function)

- (i) Homogeneous of degree 1
- (ii) Nondecreasing in output price p
- (iii) Nonincreasing in input prices w
- (iv) Convex in (p, w)
- (v) Continuous

Definitions: The unconditional input demand function

$$x(p, w) \equiv \arg\max_{z \in \mathbb{R}^{L-1}} pf(z) - w \cdot z$$

is the solution to the PMP. The output supply function

$$q(p,w) \equiv f(x(p,w))$$

is the output level when profit is maximized.

Proposition 3.19 (Hotelling's lemma) If π is differentiable, then for $(p, w) \in \mathbb{R}_{++}^{L}$,

$$q(p, w) = \frac{\partial \pi(p, w)}{\partial p}$$
$$x_j(p, w) = -\frac{\partial \pi(p, w)}{\partial w_j}$$

Definition The conditional input demand function

$$z(w,q) \equiv \arg\min_{z \in \mathbb{R}^{L-1}_{+}} w \cdot z \text{ s.t. } f(z) = q$$

is the solution to the CMP.

Definition The conditional input demand function

$$z(w,q) \equiv \arg\min_{z \in \mathbb{R}^{L-1}_+} w \cdot z \text{ s.t. } f(z) = q$$

is the solution to the CMP.

Proposition 3.21 (Shephard's lemma). If C is differentiable, then for $w \in \mathbb{R}^{L-1}_{++}$

$$z_i(w,q) = \frac{\partial C(w,q)}{\partial w_i}$$

Proposition 3.22 Suppose that the profit function is twice continuously differentiable. Then,

(i)
$$\frac{\partial q(p,w)}{\partial p} \geqslant 0$$

(ii)
$$\frac{\partial x_j(p,w)}{\partial w_j} \leqslant 0$$

(iii)
$$\frac{\partial x_j(p,w)}{\partial w_i} = \frac{\partial x_i(p,w)}{\partial w_j}$$

Proposition 3.23 Suppose that the cost function is twice continuously differentiable. Then,

(i)
$$\frac{\partial z_i(w,q)}{\partial w_i} \geqslant 0$$

(ii)
$$\frac{\partial z_j(w,q)}{\partial w_i} = \frac{\partial z_i(w,q)}{\partial w_j}$$

(iii)
$$\frac{\partial}{\partial w_i} \frac{\partial C(w,q)}{\partial q} = \frac{\partial z_i(w,q)}{\partial q} \Rightarrow \begin{cases} > 0 \text{ Normal input} \\ < 0 \text{ Inferior input} \end{cases}$$

Assumptions 3.24

- (i) Two inputs (x_1, x_2)
- (ii) One output q = f(x)
- (iii) $f \in C^2$ and the Hessian H_f is negative definite.
- (iv) $f(0, x_2) = f(x_1, 0) = 0$, i.e., both inputs are necessary.
- (v) Inada conditions on x_1, x_2
- (vi) Output price p > 0
- (vii) Input prices w >> 0.

Consider the profit maximization problem

$$\max_{x \in \mathbb{R}^2_{++}} pf(x) - w \cdot x$$

Exercise 1: Prove that $\partial x_1(p, w)/\partial w_1 < 0$.

Consider the profit maximization problem

$$\max_{x \in \mathbb{R}^2_{++}} pf(x) - w \cdot x$$

Exercise 1: Prove that $\partial x_1(p, w)/\partial w_1 < 0$.

First order conditions

$$pf_1(x) - w_1 = 0$$

 $pf_2(x) - w_2 = 0$

Consider the profit maximization problem

$$\max_{\mathbf{x} \in \mathbb{R}^2_{++}} pf(\mathbf{x}) - \mathbf{w} \cdot \mathbf{x}$$

Exercise 1: Prove that $\partial x_1(p, w)/\partial w_1 < 0$.

First order conditions

$$pf_1(x) - w_1 = 0$$

 $pf_2(x) - w_2 = 0$

Hessian of profit is

$$H(x) = pH_f(x)$$

which is invertible, so by Implicit Function Theorem, FOCs implicitly define $x(p, w) = (x_1(p, w), x_2(p, w))$, which is C^1 near (x, p, w).

Then, we can rewrite FOCs as

$$pf_1(x(p, w)) - w_1 = 0$$

 $pf_2(x(p, w)) - w_2 = 0$

Then, we can rewrite FOCs as

$$pf_1(x(p, w)) - w_1 = 0$$

 $pf_2(x(p, w)) - w_2 = 0$

Taking derivatives with respect to w_1 :

$$pf_{11}\frac{\partial x_1}{\partial w_1} + pf_{12}\frac{\partial x_2}{\partial w_1} = 1$$
$$pf_{21}\frac{\partial x_1}{\partial w_1} + pf_{22}\frac{\partial x_2}{\partial w_1} = 0$$

In matrix form:

$$pH_f\begin{bmatrix}\frac{\partial x_1}{\partial w_1}\\\frac{\partial x_2}{\partial w_1}\end{bmatrix}=\begin{bmatrix}1\\0\end{bmatrix}$$

In matrix form:

$$pH_f\begin{bmatrix}\frac{\partial x_1}{\partial w_1}\\\frac{\partial x_2}{\partial w_1}\end{bmatrix}=\begin{bmatrix}1\\0\end{bmatrix}$$

Inverting gives

$$\begin{bmatrix} \frac{\partial x_1}{\partial w_1} \\ \frac{\partial x_2}{\partial w_1} \end{bmatrix} = \frac{1}{p} \frac{1}{f_{11} f_{22} - f_{12} f_{21}} \begin{bmatrix} f_{22} & -f_{12} \\ -f_{21} & f_{11} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$= \frac{1}{p} \frac{1}{f_{11} f_{22} - f_{12} f_{21}} \begin{bmatrix} f_{22} \\ -f_{21} \end{bmatrix}$$

In matrix form:

$$pH_f\begin{bmatrix}\frac{\partial x_1}{\partial w_1}\\\frac{\partial x_2}{\partial w_1}\end{bmatrix}=\begin{bmatrix}1\\0\end{bmatrix}$$

Inverting gives

$$\begin{bmatrix} \frac{\partial x_1}{\partial w_1} \\ \frac{\partial x_2}{\partial w_1} \end{bmatrix} = \frac{1}{p} \frac{1}{f_{11} f_{22} - f_{12} f_{21}} \begin{bmatrix} f_{22} & -f_{12} \\ -f_{21} & f_{11} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$= \frac{1}{p} \frac{1}{f_{11} f_{22} - f_{12} f_{21}} \begin{bmatrix} f_{22} \\ -f_{21} \end{bmatrix}$$

Note:

$$- f_{11}f_{22} - f_{12}f_{21} > 0$$
. Why?

In matrix form:

$$pH_f\begin{bmatrix}\frac{\partial x_1}{\partial w_1}\\\frac{\partial x_2}{\partial w_1}\end{bmatrix}=\begin{bmatrix}1\\0\end{bmatrix}$$

Inverting gives

$$\begin{bmatrix} \frac{\partial x_1}{\partial w_1} \\ \frac{\partial x_2}{\partial w_1} \end{bmatrix} = \frac{1}{p} \frac{1}{f_{11}f_{22} - f_{12}f_{21}} \begin{bmatrix} f_{22} & -f_{12} \\ -f_{21} & f_{11} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$= \frac{1}{p} \frac{1}{f_{11}f_{22} - f_{12}f_{21}} \begin{bmatrix} f_{22} \\ -f_{21} \end{bmatrix}$$

Note:

-
$$f_{11}f_{22} - f_{12}f_{21} > 0$$
. Why?

$$f_{22} < 0$$

- Therefore, $\frac{\partial x_1}{\partial w_1} < 0$

Exercise 2: Prove that $\partial q/\partial w_1 > 0$.

Write output as

$$q(p, w) = f(x(p, w))$$

Exercise 2: Prove that $\partial q/\partial w_1 > 0$.

Write output as

$$q(p, w) = f(x(p, w))$$

Taking derivative with respect to w_1 :

$$\frac{\partial q}{\partial w_1} = f_1 \frac{\partial x_1}{\partial w_1} + f_2 \frac{\partial x_2}{\partial w_1}$$
$$= \frac{1}{p} \frac{f_1 f_{22} - f_2 f_{21}}{f_{11} f_{22} - f_{12} f_{21}}$$

Exercise 2: Prove that $\partial q/\partial w_1 > 0$.

Write output as

$$q(p, w) = f(x(p, w))$$

Taking derivative with respect to w_1 :

$$\frac{\partial q}{\partial w_1} = f_1 \frac{\partial x_1}{\partial w_1} + f_2 \frac{\partial x_2}{\partial w_1}$$
$$= \frac{1}{p} \frac{f_1 f_{22} - f_2 f_{21}}{f_{11} f_{22} - f_{12} f_{21}}$$

So

$$\operatorname{sign}\left(\frac{\partial q}{\partial w_1}\right) = \operatorname{sign}\left(f_1 f_{22} - f_2 f_{21}\right)$$

To find sign $(f_1f_{22} - f_2f_{21})$, we return to the cost minimization problem

$$\min_{x \in \mathbb{R}^2_{++}} w \cdot x \quad \text{s.t. } f(x) = q$$

To find sign $(f_1f_{22} - f_2f_{21})$, we return to the cost minimization problem

$$\min_{x \in \mathbb{R}^2_{++}} w \cdot x \quad \text{s.t. } f(x) = q$$

Take FOCs of the Lagrangian

$$-w_1 + \lambda f_1(x) = 0$$

$$-w_2 + \lambda f_2(x) = 0$$

$$q - f(x) = 0$$

where $\lambda = \lambda(w, q)$ is the Lagrange multiplier.

Taking derivatives of these FOCs with respect to q

$$\frac{\partial \lambda}{\partial q} f_1 + \lambda \frac{\partial f_1}{\partial x_1} \frac{\partial x_1}{\partial q} + \lambda \frac{\partial f_1}{\partial x_2} \frac{\partial x_2}{\partial q} = 0$$

$$\frac{\partial \lambda}{\partial q} f_2 + \lambda \frac{\partial f_2}{\partial x_1} \frac{\partial x_1}{\partial q} + \lambda \frac{\partial f_2}{\partial x_2} \frac{\partial x_2}{\partial q} = 0$$

$$1 - \frac{\partial f}{\partial x_1} \frac{\partial x_1}{\partial q} - \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial q} = 0$$

Taking derivatives of these FOCs with respect to q

$$\frac{\partial \lambda}{\partial q} f_1 + \lambda \frac{\partial f_1}{\partial x_1} \frac{\partial x_1}{\partial q} + \lambda \frac{\partial f_1}{\partial x_2} \frac{\partial x_2}{\partial q} = 0$$

$$\frac{\partial \lambda}{\partial q} f_2 + \lambda \frac{\partial f_2}{\partial x_1} \frac{\partial x_1}{\partial q} + \lambda \frac{\partial f_2}{\partial x_2} \frac{\partial x_2}{\partial q} = 0$$

$$1 - \frac{\partial f}{\partial x_1} \frac{\partial x_1}{\partial q} - \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial q} = 0$$

In matrix form

$$\begin{bmatrix} \lambda f_{11} & \lambda f_{12} & f_1 \\ \lambda f_{21} & \lambda f_{22} & f_2 \\ f_1 & f_2 & 0 \end{bmatrix} \begin{bmatrix} \frac{\partial x_1}{\partial q} \\ \frac{\partial x_2}{\partial q} \\ \frac{\partial \lambda}{\partial q} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

And then by Cramer's rule,

$$\frac{\partial x_{1}}{\partial q} = \frac{\det \begin{pmatrix} \begin{bmatrix} 0 & \lambda f_{12} & f_{1} \\ 0 & \lambda f_{22} & f_{2} \\ 1 & f_{2} & 0 \end{bmatrix} \end{pmatrix}}{\det \begin{pmatrix} \begin{bmatrix} \lambda f_{11} & \lambda f_{12} & f_{1} \\ \lambda f_{21} & \lambda f_{22} & f_{2} \\ f_{1} & f_{2} & 0 \end{bmatrix} \end{pmatrix}} = \frac{\lambda (f_{12}f_{2} - f_{22}f_{1})}{\det \begin{pmatrix} \begin{bmatrix} \lambda f_{11} & \lambda f_{12} & f_{1} \\ \lambda f_{21} & \lambda f_{22} & f_{2} \\ f_{1} & f_{2} & 0 \end{bmatrix} \end{pmatrix}}$$

And then by Cramer's rule,

$$\frac{\partial x_{1}}{\partial q} = \frac{\det \begin{pmatrix} \begin{bmatrix} 0 & \lambda f_{12} & f_{1} \\ 0 & \lambda f_{22} & f_{2} \\ 1 & f_{2} & 0 \end{bmatrix} \end{pmatrix}}{\det \begin{pmatrix} \begin{bmatrix} \lambda f_{11} & \lambda f_{12} & f_{1} \\ \lambda f_{21} & \lambda f_{22} & f_{2} \\ f_{1} & f_{2} & 0 \end{bmatrix} \end{pmatrix}} = \frac{\lambda (f_{12}f_{2} - f_{22}f_{1})}{\det \begin{pmatrix} \begin{bmatrix} \lambda f_{11} & \lambda f_{12} & f_{1} \\ \lambda f_{21} & \lambda f_{22} & f_{2} \\ f_{1} & f_{2} & 0 \end{bmatrix} \end{pmatrix}}$$

Note:

- The denominator is positive because the matrix is the Hessian of a convex function.
- We know that $\partial x_1/\partial q$ is positive for "normal inputs". So in this case, $f_{12}f_2 f_{22}f_1 > 0$.

And then by Cramer's rule,

$$\frac{\partial x_{1}}{\partial q} = \frac{\det \begin{pmatrix} \begin{bmatrix} 0 & \lambda f_{12} & f_{1} \\ 0 & \lambda f_{22} & f_{2} \\ 1 & f_{2} & 0 \end{bmatrix} \end{pmatrix}}{\det \begin{pmatrix} \begin{bmatrix} \lambda f_{11} & \lambda f_{12} & f_{1} \\ \lambda f_{21} & \lambda f_{22} & f_{2} \\ f_{1} & f_{2} & 0 \end{bmatrix} \end{pmatrix}} = \frac{\lambda (f_{12}f_{2} - f_{22}f_{1})}{\det \begin{pmatrix} \begin{bmatrix} \lambda f_{11} & \lambda f_{12} & f_{1} \\ \lambda f_{21} & \lambda f_{22} & f_{2} \\ f_{1} & f_{2} & 0 \end{bmatrix} \end{pmatrix}}$$

Note:

- The denominator is positive because the matrix is the Hessian of a convex function.
- We know that $\partial x_1/\partial q$ is positive for "normal inputs". So in this case, $f_{12}f_2 f_{22}f_1 > 0$.
- $\ \ \text{Recall that sign}\left(\tfrac{\partial \, q}{\partial \, w_1}\right) = \text{sign}\left(f_1 f_{22} f_2 f_{21}\right), \text{so if input 1 is normal, } \tfrac{\partial \, q}{\partial \, w_1} > 0.$

Lecture 2: Producer theory review

Notation:

- Production plan y ∈ ℝ^L
 - Net input: good i such that $y_i < 0$
 - Net output: good j such that $y_j > 0$
- Production possibility set, Y \(\subseteq \mathbb{R}^L \) of feasible production plans

Notation:

- Production plan y ∈ \mathbb{R}^L
 - Net input: good i such that $y_i < 0$
 - Net output: good j such that $y_j > 0$
- Production possibility set, Y \(\subseteq \mathbb{R}^L \) of feasible production plans

Definitions: Suppose there's one output, i.e., y = (q, -z) where $q \in \mathbb{R}_+$ and $z \in \mathbb{R}_+^{L-1}$.

Notation:

- Production plan y ∈ \mathbb{R}^L
 - Net input: good i such that $y_i < 0$
 - Net output: good j such that $y_j > 0$

Definitions: Suppose there's one output, i.e., y = (q, -z) where $q \in \mathbb{R}_+$ and $z \in \mathbb{R}_+^{L-1}$.

− The production function $f : \mathbb{R}^{L-1} \to \mathbb{R}_+$ is defined by

$$f(z) = \max_{q} q$$
 subject to $(q, -z) \in Y$

Notation:

- Production plan y ∈ \mathbb{R}^L
 - Net input: good i such that $y_i < 0$
 - Net output: good j such that $y_j > 0$

Definitions: Suppose there's one output, i.e., y = (q, -z) where $q \in \mathbb{R}_+$ and $z \in \mathbb{R}_+^{L-1}$.

— The production function $f: \mathbb{R}^{L-1} \to \mathbb{R}_+$ is defined by

$$f(z) = \max_{q} q$$
 subject to $(q, -z) \in Y$

y ∈ Y is efficient if y = (f(z), -z) for some $z \in \mathbb{R}^{L-1}_+$. (This definition assumes that f is strictly increasing in every z_i .)

The firm's cost minimization problem (CMP) is

The firm's profit maximization problem (PMP) is

$$\min_{z \in \mathbb{R}^{L-1}} w \cdot z \text{ s.t. } f(z) = q$$

$$\max_{z \in \mathbb{R}^{L-1}} pf(z) - w \cdot z$$

The firm's cost minimization problem (CMP) is

$$\min_{z \in \mathbb{R}^{L-1}} w \cdot z \text{ s.t. } f(z) = q$$

- Optimum: z(w, q) is the conditional input demand function

The firm's profit maximization problem (PMP) is

$$\max_{z \in \mathbb{R}^{L-1}} pf(z) - w \cdot z$$

— Optimum: x(p, w) is the unconditional input demand function

The firm's cost minimization problem (CMP) is

$$\min_{z \in \mathbb{R}^{L-1}} w \cdot z \text{ s.t. } f(z) = q$$

- Optimum: z(w, q) is the conditional input demand function
- Value function: C(w, q) is the cost function.

The firm's **profit maximization problem** (PMP) is

$$\max_{z \in \mathbb{R}^{L-1}} pf(z) - w \cdot z$$

- Optimum: x(p, w) is the unconditional input demand function
- Value function: $\pi(p, w)$ is the profit function

The firm's cost minimization problem (CMP) is

$$\min_{z \in \mathbb{R}^{L-1}} w \cdot z \text{ s.t. } f(z) = q$$

- Optimum: z(w, q) is the conditional input demand function
- Value function: C(w, q) is the cost function.

The firm's **profit maximization problem** (PMP) is

$$\max_{z \in \mathbb{R}^{L-1}} pf(z) - w \cdot z$$

- Optimum: x(p, w) is the unconditional input demand function
- Value function: $\pi(p, w)$ is the profit function
- -q(p,w) = f(x(p,w)) is the output supply function

The firm's cost minimization problem (CMP) is

$$\min_{z \in \mathbb{R}^{L-1}} w \cdot z \text{ s.t. } f(z) = q$$

$$\max_{z \in \mathbb{R}^{L-1}} pf(z) - w \cdot z$$

- Optimum: z(w, q) is the conditional input demand function
- Value function: C(w, q) is the cost function.

- Optimum: x(p, w) is the unconditional input demand function
- Value function: $\pi(p, w)$ is the profit function
- -q(p,w) = f(x(p,w)) is the output supply function

Questions:

— What is the relationship between these two problems?

The firm's cost minimization problem (CMP) is

The firm's profit maximization problem (PMP) is

$$\min_{z \in \mathbb{R}^{L-1}} w \cdot z \text{ s.t. } f(z) = q$$

$$\max_{z \in \mathbb{R}^{L-1}} pf(z) - w \cdot z$$

- Optimum: z(w, q) is the conditional input demand function
- Value function: C(w, q) is the cost function.

- Optimum: x(p, w) is the unconditional input demand function
- Value function: $\pi(p, w)$ is the profit function
- -q(p,w)=f(x(p,w)) is the output supply function

Questions:

— What is the relationship between these two problems? Profit maximization implies cost minimization:

$$z(w, q(p, w)) = x(p, w)$$

The firm's **cost minimization problem** (CMP) is

$$\min_{z \in \mathbb{R}^{L-1}} w \cdot z \text{ s.t. } f(z) = q$$

$$\max_{z \in \mathbb{R}^{L-1}} pf(z) - w \cdot z$$

- Optimum: z(w, q) is the conditional input demand function

- Optimum: x(p, w) is the unconditional input demand function

- Value function: $\pi(p, w)$ is the profit function

— Value function: C(w, q) is the cost function.

- q(p, w) = f(x(p, w)) is the output supply function

24/55

Questions:

What is the relationship between these two problems? Profit maximization implies cost minimization:

$$z(w, q(p, w)) = x(p, w)$$

That is, assuming a firm minimizes cost is strictly weaker than assuming firm maximizes profit.

$$\pi(p, w) \equiv \max_{z \in \mathbb{R}^{L-1}} pf(z) - w \cdot z$$

$$\pi(p, w) \equiv \max_{z \in \mathbb{R}^{L-1}} pf(z) - w \cdot z$$
$$= \max_{q} \left[\max_{z \in \mathbb{R}^{L-1}} pq - w \cdot z \text{ s.t. } f(z) = q \right]$$

$$\pi(p, w) \equiv \max_{z \in \mathbb{R}^{L-1}} pf(z) - w \cdot z$$

$$= \max_{q} \left[\max_{z \in \mathbb{R}^{L-1}} pq - w \cdot z \text{ s.t. } f(z) = q \right]$$

$$= \max_{q} pq - \left[\min_{z \in \mathbb{R}^{L-1}} w \cdot z \text{ s.t. } f(z) = q \right]$$

$$\xrightarrow{\text{CMP}}$$

$$\pi(p, w) \equiv \max_{z \in \mathbb{R}^{L-1}} pf(z) - w \cdot z$$

$$= \max_{q} \left[\max_{z \in \mathbb{R}^{L-1}} pq - w \cdot z \text{ s.t. } f(z) = q \right]$$

$$= \max_{q} pq - \left[\min_{z \in \mathbb{R}^{L-1}} w \cdot z \text{ s.t. } f(z) = q \right]$$

$$= \max_{q} pq - C(w, q)$$

There are some settings where we might think profit maximization is an unreasonable assumption. For example,

There are some settings where we might think profit maximization is an unreasonable assumption. For example,

- Dynamics. For example, if there is learning by doing, this gives firm incentive to choose q > q(p, w) today in order to decrease tomorrow's costs (i.e., expand tomorrow's prod. possibilities set).

There are some settings where we might think profit maximization is an unreasonable assumption. For example,

- Dynamics. For example, if there is learning by doing, this gives firm incentive to choose q > q(p, w) today in order to decrease tomorrow's costs (i.e., expand tomorrow's prod. possibilities set).
- Managerial utility maximization. If larger firm gives more prestige/political influence, may have q > q(p, w).

There are some settings where we might think profit maximization is an unreasonable assumption. For example,

- Dynamics. For example, if there is learning by doing, this gives firm incentive to choose q > q(p, w) today in order to decrease tomorrow's costs (i.e., expand tomorrow's prod. possibilities set).
- Managerial utility maximization. If larger firm gives more prestige/political influence, may have q > q(p, w).

In these cases, we may assume that choices of inputs are z(w,q) for some q, but not necessarily x(p,w).

Properties of CMP and PMP: Homogeneity

The firm's cost minimization problem (CMP) is

$$\min_{z \in \mathbb{R}^{L-1}} w \cdot z \text{ s.t. } f(z) = q$$

- Optimum: z(w, q) is the unconditional input demand function
- Value function: C(w, q) is the cost function.

$$\max_{z \in \mathbb{R}^{L-1}} pf(z) - w \cdot z$$

- Optimum: x(p, w) is the unconditional input demand function
- Value function: $\pi(p, w)$ is the profit function
- -q(p,w) = f(x(p,w)) is the output supply function

Properties:

- C is homogeneous of degree 1 in w

$$\Leftrightarrow z(w,q) = z(\alpha w, q)$$

Properties of CMP and PMP: Homogeneity

The firm's **cost minimization problem** (CMP) is

$$\min_{z \in \mathbb{R}^{L-1}} w \cdot z \text{ s.t. } f(z) = q$$

- Optimum: z(w, q) is the unconditional input demand function
- Value function: C(w, q) is the cost function.

$$\max_{z \in \mathbb{R}^{L-1}} pf(z) - w \cdot z$$

- Optimum: x(p, w) is the unconditional input demand function
- Value function: $\pi(p, w)$ is the profit function
- -q(p,w) = f(x(p,w)) is the output supply function

Properties:

C is homogeneous of degree 1 in w

$$\Leftrightarrow z(w,q) = z(\alpha w, q)$$

 $-\pi$ is homogeneous of degree 1 in (p, w)

$$\Leftrightarrow x(p, w) = x(\alpha p, \alpha w)$$

Properties of CMP and PMP: Homogeneity

The firm's **cost minimization problem** (CMP) is

$$\max_{z \in \mathbb{R}^{L-1}} pf(z) - w \cdot z$$

$$\min_{z \in \mathbb{R}^{L-1}} w \cdot z \text{ s.t. } f(z) = q$$

- Optimum: z(w, q) is the unconditional input demand function
- Value function: C(w, q) is the cost function.

- Optimum:
$$x(p, w)$$
 is the unconditional input demand function

The firm's profit maximization problem (PMP) is

- Value function: $\pi(p, w)$ is the profit function
- -q(p,w) = f(x(p,w)) is the output supply function

Properties:

- C is homogeneous of degree 1 in w

$$\Leftrightarrow z(w,q) = z(\alpha w, q)$$

 If f is homogeneous of degree k, then C is homogeneous degree 1/k in q. $-\pi$ is homogeneous of degree 1 in (p, w)

$$\Leftrightarrow x(p, w) = x(\alpha p, \alpha w)$$

Properties of CMP and PMP: Convexity/concavity

The firm's **cost minimization problem** (CMP) is

$$\min_{z \in \mathbb{R}^{L-1}} w \cdot z \text{ s.t. } f(z) = q$$

- Optimum:
$$z(w, q)$$
 is the unconditional input demand function

- Value function:
$$C(w, q)$$
 is the cost function.

$$\max_{z \in \mathbb{R}^{L-1}} pf(z) - w \cdot z$$

- Optimum: x(p, w) is the unconditional input demand function
- Value function: $\pi(p, w)$ is the profit function
- q(p, w) = f(x(p, w)) is the output supply function

Properties:

- C is concave in w.

Properties of CMP and PMP: Convexity/concavity

The firm's **cost minimization problem** (CMP) is

$$\min_{z \in \mathbb{R}^{L-1}} w \cdot z \text{ s.t. } f(z) = q$$

$$\max_{z \in \mathbb{R}^{L-1}} pf(z) - w \cdot z$$

$$- \text{ Optimum: } x(p, w) \text{ is the } unconditional input}$$

- Optimum: z(w, q) is the unconditional input demand function
- demand function

 Value function: $\pi(p, w)$ is the profit function

- Value function: C(w, q) is the cost function.

- q(p, w) = f(x(p, w)) is the output supply function

Properties:

C is concave in w.

 $-\pi$ is convex in (p, w).

Properties of CMP and PMP: Convexity/concavity

The firm's **cost minimization problem** (CMP) is

The firm's profit maximization problem (PMP) is

$$\min_{z \in \mathbb{R}^{L-1}} w \cdot z \text{ s.t. } f(z) = q$$

$$\max_{z \in \mathbb{R}^{L-1}} pf(z) - w \cdot z$$

- Optimum: z(w, q) is the unconditional input demand function
- Value function: C(w, q) is the cost function.

- Optimum: x(p, w) is the unconditional input demand function
- Value function: $\pi(p, w)$ is the profit function
- -q(p,w)=f(x(p,w)) is the output supply function

Properties:

C is concave in w.

 $-\pi$ is convex in (p, w).

Proofs are symmetric. Only difference is that min versus max yields concavity versus convexity.

Envelope Theorem

Suppose

$$x^*(\alpha) = \arg\max_{x} h(x,\alpha)$$

and the value function is

$$V(\alpha) = h(x^*(\alpha), \alpha).$$

Envelope Theorem

Suppose

$$x^*(\alpha) = \arg\max_{x} h(x, \alpha)$$

and the value function is

$$V(\alpha) = h(x^*(\alpha), \alpha).$$

Differentiating with respect to α gives

$$V'(\alpha) = h_{x}(x^{*}(\alpha), \alpha)x^{*'}(\alpha) + h_{\alpha}(x^{*}(\alpha), \alpha)$$

Envelope Theorem

Suppose

$$x^*(\alpha) = \arg\max_{x} h(x, \alpha)$$

and the value function is

$$V(\alpha) = h(x^*(\alpha), \alpha).$$

Differentiating with respect to α gives

$$V'(\alpha) = h_X(x^*(\alpha), \alpha)x^{*'}(\alpha) + h_{\alpha}(x^*(\alpha), \alpha)$$

= $h_{\alpha}(x^*(\alpha), \alpha)$

Envelope Theorem with constraint

Suppose

$$x^*(\alpha) = \arg\max_{x} h(x, \alpha) \text{ s.t. } g(x) = 0$$

and the value function is

$$V(\alpha) = h(x^*(\alpha), \alpha).$$

Differentiating with respect to α gives

$$V'(\alpha) = h_{\alpha}(x^{*}(\alpha), \alpha) + \lambda g_{\alpha}(x^{*}(\alpha))$$
$$= h_{\alpha}(x^{*}(\alpha), \alpha)$$

Statement

Proposition 3.19 (Hotelling's lemma) If π is differentiable, then for $(p, w) \in \mathbb{R}_{++}^L$,

$$q(p, w) = \frac{\partial \pi(p, w)}{\partial p}$$
$$x_j(p, w) = -\frac{\partial \pi(p, w)}{\partial w_j}$$

Statement

Proposition 3.19 (Hotelling's lemma) If π is differentiable, then for $(p, w) \in \mathbb{R}_{++}^L$,

$$q(p, w) = \frac{\partial \pi(p, w)}{\partial p}$$
$$x_j(p, w) = -\frac{\partial \pi(p, w)}{\partial w_j}$$

Both are simply applications of the Envelope Theorem!

Proof

The firm's **profit maximization problem** (PMP) is

$$\max_{z \in \mathbb{R}^{L-1}} pf(z) - w \cdot z$$

- **Part 2**: Here, $V = \pi$ and $\alpha = w_j$.
- Optimum: x(p, w) is the unconditional input demand function
- Value function: $\pi(p, w)$ is the profit function
- q(p, w) = f(x(p, w)) is the output supply function

Envelope Theorem:

$$V'(\alpha) = h_{\alpha}(x^*(\alpha), \alpha)$$

Proof

The firm's **profit maximization problem** (PMP) is

$$\max_{z \in \mathbb{R}^{L-1}} pf(z) - w \cdot z$$

- Optimum: x(p, w) is the unconditional input demand function
- Value function: $\pi(p, w)$ is the profit function
- q(p, w) = f(x(p, w)) is the output supply function

Envelope Theorem:

$$V'(\alpha) = h_{\alpha}(x^*(\alpha), \alpha)$$

Part 2: Here, $V = \pi$ and $\alpha = w_i$.

$$\frac{\partial}{\partial w_j}\pi(p,w) = -x_j(p,w)$$

Proof

The firm's **profit maximization problem** (PMP) is

$$\max_{z \in \mathbb{R}^{L-1}} pf(z) - w \cdot z$$

- Optimum: x(p, w) is the unconditional input demand function
- Value function: $\pi(p, w)$ is the profit function
- q(p, w) = f(x(p, w)) is the output supply function

Part 2: Here, $V = \pi$ and $\alpha = w_i$.

$$\frac{\partial}{\partial w_j}\pi(p,w) = -x_j(p,w)$$

Part 1: Here, $V = \pi$ and $\alpha = p$.

Envelope Theorem:

$$V'(\alpha) = h_{\alpha}(x^*(\alpha), \alpha)$$

Proof

The firm's **profit maximization problem** (PMP) is

$$\max_{z \in \mathbb{R}^{L-1}} pf(z) - w \cdot z$$

- Optimum: x(p, w) is the unconditional input demand function
- Value function: $\pi(p, w)$ is the profit function
- -q(p,w)=f(x(p,w)) is the output supply function

Envelope Theorem:

$$V'(\alpha) = h_{\alpha}(x^*(\alpha), \alpha)$$

Part 2: Here, $V = \pi$ and $\alpha = w_i$.

$$\frac{\partial}{\partial w_i}\pi(p,w) = -x_j(p,w)$$

Part 1: Here, $V = \pi$ and $\alpha = p$.

$$\frac{\partial}{\partial p}\pi(p, w) = f(x(p, w))$$
$$\equiv q(p, w)$$

Theoretical implications

Proposition 3.19 (Hotelling's lemma) If π is differentiable, then for $(p, w) \in \mathbb{R}_{++}^{L}$,

$$q(p, w) = \frac{\partial \pi(p, w)}{\partial p}$$
$$x_j(p, w) = -\frac{\partial \pi(p, w)}{\partial w_j}$$

Theoretical implications:

Symmetry of derivatives of unconditional input demand function:

$$\frac{\partial}{\partial w_i} x_j(p, w) = -\frac{\partial^2 \pi(p, w)}{\partial w_i \partial w_j} = -\frac{\partial^2 \pi(p, w)}{\partial w_j \partial w_i} = \frac{\partial}{\partial w_j} x_i(p, w)$$

Theoretical implications

Proposition 3.19 (Hotelling's lemma) If π is differentiable, then for $(p, w) \in \mathbb{R}_{++}^{L}$,

$$q(p, w) = \frac{\partial \pi(p, w)}{\partial p}$$
$$x_j(p, w) = -\frac{\partial \pi(p, w)}{\partial w_j}$$

Theoretical implications:

Signs of derivatives of unconditional input demand function:

$$\frac{\partial}{\partial w_j} x_j(p, w) = -\frac{\partial^2 \pi(p, w)}{\partial w_j^2} \leqslant 0$$

because π is convex, so its Hessian is positive definite, and positive definite matrices have non-negative diagonal entries.

Theoretical implications

Proposition 3.19 (Hotelling's lemma) If π is differentiable, then for $(p, w) \in \mathbb{R}_{++}^{L}$,

$$q(p, w) = \frac{\partial \pi(p, w)}{\partial p}$$
$$x_j(p, w) = -\frac{\partial \pi(p, w)}{\partial w_j}$$

Theoretical implications:

Signs of derivatives of unconditional input demand function:

$$\frac{\partial}{\partial w_j} x_j(p, w) = -\frac{\partial^2 \pi(p, w)}{\partial w_j^2} \leqslant 0$$

because π is convex, so its Hessian is positive definite, and positive definite matrices have non-negative diagonal entries. Likewise,

$$\frac{\partial}{\partial p}q(p,w) = \frac{\partial^2 \pi(p,w)}{\partial p^2} \geqslant 0$$

Empirical implications

Proposition 3.19 (Hotelling's lemma) If π is differentiable, then for $(p, w) \in \mathbb{R}_{++}^{L}$,

$$q(p, w) = \frac{\partial \pi(p, w)}{\partial p}$$
$$x_j(p, w) = -\frac{\partial \pi(p, w)}{\partial w_j}$$

Empirical implications:

- Suppose you observe the response of profits to exogenous variation in input/output prices. Then, assuming profit maximization, you know the firm's input/quantity policy function.
- Or, vice versa.

Empirical implications

Proposition 3.19 (Hotelling's lemma) If π is differentiable, then for $(p, w) \in \mathbb{R}_{++}^{L}$,

$$q(p, w) = \frac{\partial \pi(p, w)}{\partial p}$$
$$x_j(p, w) = -\frac{\partial \pi(p, w)}{\partial w_j}$$

Empirical implications:

- Suppose you observe the response of profits to exogenous variation in input/output prices. Then, assuming profit maximization, you know the firm's input/quantity policy function.
- Or, vice versa.
- Suppose there are two inputs and you observe how input choices respond to exogenous variation in w_1 . You know how input choices respond to w_2 .

Statement

Proposition 3.21 (Shephard's lemma) If C is differentiable, then for $w \in \mathbb{R}^{L-1}_{++}$,

$$z_i(w,q) = \frac{\partial}{\partial w_i} C(w,q)$$

Statement

Proposition 3.21 (Shephard's lemma) If C is differentiable, then for $w \in \mathbb{R}^{L-1}_{++}$,

$$z_i(w,q) = \frac{\partial}{\partial w_i} C(w,q)$$

Again, simply an application of the Envelope Theorem!

Proof

The firm's cost minimization problem (CMP) is

$$\min_{z \in \mathbb{R}^{L-1}} w \cdot z \text{ s.t. } f(z) = q$$

- Optimum: z(w, q) is the conditional input demand function
- Value function: C(w, q) is the cost function

Here, V = C and $\alpha = w_i$.

Envelope Theorem:

$$V'(\alpha) = h_{\alpha}(x^*(\alpha), \alpha)$$

Proof

The firm's cost minimization problem (CMP) is

$$\min_{z \in \mathbb{R}^{L-1}} w \cdot z \text{ s.t. } f(z) = q$$

- Optimum: z(w, q) is the conditional input demand function
- Value function: C(w, q) is the cost function

Here, V = C and $\alpha = w_i$.

$$\frac{\partial}{\partial w_i}C(w,q)=z_i(w,q)$$

Envelope Theorem:

$$V'(\alpha) = h_{\alpha}(x^*(\alpha), \alpha)$$

Theoretical implications

Proposition 3.21 (Shephard's lemma) If C is differentiable, then for $w \in \mathbb{R}^{L-1}_{++}$,

$$z_i(w,q) = \frac{\partial}{\partial w_i} C(w,q)$$

Theoretical implications:

Symmetry of derivatives of conditional input demand function:

$$\frac{\partial}{\partial w_i} z_j(p, w) = \frac{\partial}{\partial w_j} z_i(p, w)$$

Theoretical implications

Proposition 3.21 (Shephard's lemma) If C is differentiable, then for $w \in \mathbb{R}^{L-1}_{++}$,

$$z_i(w,q) = \frac{\partial}{\partial w_i} C(w,q)$$

Theoretical implications:

Symmetry of derivatives of conditional input demand function:

$$\frac{\partial}{\partial w_i} z_j(p, w) = \frac{\partial^2 C(w, q)}{\partial w_i \partial w_j} = \frac{\partial^2 C(w, q)}{\partial w_j \partial w_i} = \frac{\partial}{\partial w_j} z_i(p, w)$$

Theoretical implications

Proposition 3.21 (Shephard's lemma) If C is differentiable, then for $w \in \mathbb{R}^{L-1}_{++}$,

$$z_i(w,q) = \frac{\partial}{\partial w_i} C(w,q)$$

Theoretical implications:

Symmetry of derivatives of conditional input demand function:

$$\frac{\partial}{\partial w_i} z_j(p, w) = \frac{\partial^2 C(w, q)}{\partial w_i \partial w_j} = \frac{\partial^2 C(w, q)}{\partial w_j \partial w_i} = \frac{\partial}{\partial w_j} z_i(p, w)$$

Sign of derivatives of conditional input demand function:

$$\frac{\partial}{\partial w_i} z_i(w,q) \leqslant 0$$

Theoretical implications

Proposition 3.21 (Shephard's lemma) If C is differentiable, then for $w \in \mathbb{R}^{L-1}_{++}$,

$$z_i(w,q) = \frac{\partial}{\partial w_i} C(w,q)$$

Theoretical implications:

Symmetry of derivatives of conditional input demand function:

$$\frac{\partial}{\partial w_i} z_j(p, w) = \frac{\partial^2 C(w, q)}{\partial w_i \partial w_j} = \frac{\partial^2 C(w, q)}{\partial w_j \partial w_i} = \frac{\partial}{\partial w_j} z_i(p, w)$$

Sign of derivatives of conditional input demand function:

$$\frac{\partial}{\partial w_i} z_i(w, q) = \frac{\partial^2}{\partial w_i^2} C(w, q) \leqslant 0$$

because *C* is concave so its Hessian is negative definite, and negative definite matrices have non-positive diagonal entries.

Theoretical implications

Proposition 3.21 (Shephard's lemma) If C is differentiable, then for $w \in \mathbb{R}^{L-1}_{++}$,

$$z_i(w,q) = \frac{\partial}{\partial w_i} C(w,q)$$

Theoretical implications:

Sign of derivative of marginal cost with respect to input prices:

$$\frac{\partial}{\partial w_i} \frac{\partial C(w, q)}{\partial q} = \frac{\partial z_i(w, q)}{\partial q}$$

Theoretical implications

Proposition 3.21 (Shephard's lemma) If C is differentiable, then for $w \in \mathbb{R}^{L-1}_{++}$,

$$z_i(w,q) = \frac{\partial}{\partial w_i} C(w,q)$$

Theoretical implications:

Sign of derivative of marginal cost with respect to input prices:

$$\frac{\partial}{\partial w_i} \frac{\partial C(w, q)}{\partial q} = \frac{\partial}{\partial q} \frac{\partial C(w, q)}{\partial w_i} = \frac{\partial z_i(w, q)}{\partial q}$$

If $\frac{\partial z_i(w,q)}{\partial q} > 0$, we call it a normal input; if $\frac{\partial z_i(w,q)}{\partial q} < 0$, we call it an inferior input.

Empirical implications

Proposition 3.21 (Shephard's lemma) If C is differentiable, then for $w \in \mathbb{R}^{L-1}_{++}$,

$$z_i(w,q) = \frac{\partial}{\partial w_i} C(w,q)$$

Empirical implications:

 If you observe how total costs respond to exogenous changes in input prices, then you know the input policy function (and under a weaker assumption than before!)

Utility maximization

$$\max_{x \in \mathbb{R}_{++}^L} u(x) \text{ s.t. } p \cdot x \leqslant w$$

$$\min_{z \in \mathbb{R}^{L-1}} w \cdot z \text{ s.t. } f(z) = q$$

Utility maximization

Cost minimization

$$\max_{x \in \mathbb{R}_{++}^L} u(x) \text{ s.t. } p \cdot x \leqslant w \qquad \qquad \min_{z \in \mathbb{R}^{L-1}} w \cdot z \text{ s.t. } f(z) = q$$

— They are both constrained optimization problems, so why don't the properties of utility maximization map directly onto cost minimization?

Utility maximization

Cost minimization

$$\max_{x \in \mathbb{R}_{++}^L} u(x) \text{ s.t. } p \cdot x \leqslant w \qquad \qquad \min_{z \in \mathbb{R}^{L-1}} w \cdot z \text{ s.t. } f(z) = q$$

- They are both constrained optimization problems, so why don't the properties of utility maximization map directly onto cost minimization?
- It matters whether it's the objective or the constraint that's linear and whether prices appear in the objective or in the constraint.
- But there are some direct analogs....

Expenditure minimization

$$e(p, \bar{u}) = \min_{x \in \mathbb{R}^{L}_{+}} p \cdot x \text{ s.t. } u(x) \geqslant \bar{u}$$

Cost minimization

$$C(w, q) = \min_{z \in \mathbb{R}^{L-1}} w \cdot z \text{ s.t. } f(z) = q$$

Expenditure minimization

$$e(p, \bar{u}) = \min_{x \in \mathbb{R}^{L}_{+}} p \cdot x \text{ s.t. } u(x) \geqslant \bar{u}$$

Proposition 2.55

- (i) e is homogeneous degree 1 in p.
- (ii) e is concave in p.
- (iii) e is increasing in \bar{u} .

Cost minimization

$$C(w, q) = \min_{z \in \mathbb{R}^{L-1}} w \cdot z \text{ s.t. } f(z) = q$$

Proposition 3.10

- (i) C is homogeneous degree 1 in w.
- (ii) C is concave in w.
- (iii) C is nondecreasing in q.
- (iv) If f is homogeneous of degree k in z, the C is homogeneous of degree 1/k in q.

Expenditure minimization

$$e(p, \bar{u}) = \min_{x \in \mathbb{R}^{L}_{+}} p \cdot x \text{ s.t. } u(x) \geqslant \bar{u}$$

Proposition 2.55

- (i) e is homogeneous degree 1 in p.
- (ii) e is concave in p.
- (iii) e is increasing in \bar{u} .

Cost minimization

$$C(w,q) = \min_{z \in \mathbb{R}^{L-1}} w \cdot z \text{ s.t. } f(z) = q$$

Proposition 3.10

- (i) C is homogeneous degree 1 in w.
- (ii) C is concave in w.
- (iii) *C* is nondecreasing in *q*.
- (iv) If f is homogeneous of degree k in z, the C is homogeneous of degree 1/k in q.
- There's something called Shephard's Lemma for EMP and something called Shephard's Lemma for CMP.
 The two are exactly the same.

Non-price-taking firms

Profit maximization without and with market power

– No market power:

$$\max_{z \in \mathbb{R}^{L-1}} pf(z) - w \cdot z$$

– No market power:

$$\max_{z \in \mathbb{R}^{L-1}} pf(z) - w \cdot z$$

Output market power:

$$\max_{z \in \mathbb{R}^{L-1}} \mathbf{p}(\mathbf{f}(\mathbf{z})) f(z) - w \cdot z$$

Assume that p'(q) < 0 for all q.

— No market power:

$$\max_{z \in \mathbb{R}^{L-1}} pf(z) - w \cdot z$$

Output market power:

$$\max_{\mathbf{z} \in \mathbb{R}^{L-1}} \mathbf{p}(\mathbf{f}(\mathbf{z})) f(z) - w \cdot z$$

Assume that p'(q) < 0 for all q.

Input market power:

$$\max_{z \in \mathbb{R}^{L-1}} pf(z) - \mathbf{w}(\mathbf{z}) \cdot z$$

No market power:

$$\max_{z \in \mathbb{R}^{L-1}} pf(z) - w \cdot z$$
 FOC: $p\nabla f(z) = w$

Output market power:

$$\max_{\mathbf{z} \in \mathbb{R}^{L-1}} \mathbf{p}(\mathbf{f}(\mathbf{z})) f(z) - w \cdot z$$

Assume that p'(q) < 0 for all q.

Input market power:

$$\max_{\mathbf{z} \in \mathbb{R}^{L-1}} pf(\mathbf{z}) - \mathbf{w}(\mathbf{z}) \cdot \mathbf{z}$$

— No market power:

$$\max_{z \in \mathbb{R}^{L-1}} pf(z) - w \cdot z$$
 FOC: $p\nabla f(z) = w$

Output market power:

$$\max_{\boldsymbol{z} \in \mathbb{R}^{L-1}} \mathbf{p}(\mathbf{f}(\mathbf{z})) f(\boldsymbol{z}) - \boldsymbol{w} \cdot \boldsymbol{z} \qquad \qquad \text{FOC: } [\mathbf{p}(\mathbf{f}(\mathbf{z})) + \mathbf{p}'(\mathbf{f}(\mathbf{z})\mathbf{f}(\mathbf{z}))] \nabla f(\boldsymbol{z}) = \boldsymbol{w}$$

Assume that p'(q) < 0 for all q.

Input market power:

$$\max_{\mathbf{z} \in \mathbb{R}^{L-1}} pf(\mathbf{z}) - \mathbf{w}(\mathbf{z}) \cdot \mathbf{z}$$

— No market power:

$$\max_{z \in \mathbb{R}^{L-1}} pf(z) - w \cdot z$$
 FOC: $p\nabla f(z) = w$

Output market power:

$$\max_{\boldsymbol{z} \in \mathbb{R}^{L-1}} \mathbf{p}(\mathbf{f}(\mathbf{z})) f(\boldsymbol{z}) - \boldsymbol{w} \cdot \boldsymbol{z} \qquad \qquad \text{FOC: } [\mathbf{p}(\mathbf{f}(\mathbf{z})) + \mathbf{p}'(\mathbf{f}(\mathbf{z})\mathbf{f}(\mathbf{z}))] \nabla f(\boldsymbol{z}) = \boldsymbol{w}$$

Assume that p'(q) < 0 for all q.

Input market power:

$$\max_{\mathbf{z} \in \mathbb{D}^{L-1}} pf(z) - \mathbf{w}(\mathbf{z}) \cdot z \qquad \qquad \text{FOC: } pf_i(z) = \mathbf{w}_i'(\mathbf{z}_i)\mathbf{z}_i + \mathbf{w}_i(\mathbf{z}_i)$$

MRTS with and without market power

No market power:

$$p\nabla f(z) = w \Rightarrow \underbrace{\frac{f_i(z)}{f_{i'}(z)}}_{\text{MRTS}} = \frac{w_i}{w_{i'}}$$

MRTS with and without market power

No market power:

$$p\nabla f(z) = w \Rightarrow \underbrace{\frac{f_i(z)}{f_{i'}(z)}}_{MRTS} = \frac{w_i}{w_{i'}}$$

Output market power:

$$[p(f(z)) + p'(f(z))f(z)] \nabla f(z) = w \Rightarrow \underbrace{\frac{f_i(z)}{f_{i'}(z)}}_{MRTS} = \frac{w_i}{w_{i'}}$$

MRTS with and without market power

— No market power:

$$p\nabla f(z) = w \Rightarrow \underbrace{\frac{f_i(z)}{f_{i'}(z)}}_{MRTS} = \frac{w_i}{w_{i'}}$$

Output market power:

$$[p(f(z)) + p'(f(z))f(z)] \nabla f(z) = w \Rightarrow \underbrace{\frac{f_i(z)}{f_{i'}(z)}}_{MDTS} = \frac{w_i}{w_{i'}}$$

Input market power:

$$pf_{i}(z) = w'_{i}(z_{i})z_{i} + w_{i}(z_{i}) \Rightarrow \underbrace{\frac{f_{i}(z)}{f_{i'}(z)}}_{MDTS} = \frac{w'_{i}(z_{i})z_{i} + w_{i}(z_{i})}{w'_{i'}(z_{i'})z_{i'} + w_{i'}(z_{i'})}$$

Profit maximization implies cost minimization

$$\begin{split} \pi(p,w) &\equiv \max_{z \in \mathbb{R}^{L-1}} pf(z) - w \cdot z \\ &= \max_{q} \left[\max_{z \in \mathbb{R}^{L-1}} pq - w \cdot z \text{ s.t. } f(z) = q \right] \\ &= \max_{q} pq - \left[\min_{\substack{z \in \mathbb{R}^{L-1}}} w \cdot z \text{ s.t. } f(z) = q \right] \\ &= \max_{q} pq - C(w,q) \end{split}$$

Profit maximization implies cost minimization (with output market power)

$$\pi(w) \equiv \max_{z \in \mathbb{R}^{L-1}} \mathbf{p}(\mathbf{f}(\mathbf{z})) f(z) - w \cdot z$$

$$= \max_{q} \left[\max_{z \in \mathbb{R}^{L-1}} \mathbf{p}(\mathbf{q}) q - w \cdot z \text{ s.t. } f(z) = q \right]$$

$$= \max_{q} \mathbf{p}(\mathbf{q}) q - \left[\min_{\substack{z \in \mathbb{R}^{L-1}}} w \cdot z \text{ s.t. } f(z) = q \right]$$

$$= \max_{q} \mathbf{p}(\mathbf{q}) q - C(w, q)$$

Profit maximization implies cost minimization* (with input market power)

$$\begin{split} \pi(p, w) &\equiv \max_{z \in \mathbb{R}^{L-1}} pf(z) - \mathbf{w}(\mathbf{z}) \cdot z \\ &= \max_{q} \left[\max_{z \in \mathbb{R}^{L-1}} pq - \mathbf{w}(\mathbf{z}) \cdot z \text{ s.t. } f(z) = q \right] \\ &= \max_{q} pq - \left[\min_{\substack{z \in \mathbb{R}^{L-1} \\ \text{CMP}^*}} \mathbf{w}(\mathbf{z}) \cdot z \text{ s.t. } f(z) = q \right] \\ &= \max_{q} pq - \mathbf{C}(\mathbf{q}) \end{split}$$

Quantity choice under perfect competition

$$\pi(p,w) \equiv \max_{q} pq - C(w,q)$$

FOC:

$$p = \frac{\partial}{\partial q} C(w, q)$$

Price equals marginal cost. Zero profit on the marginal unit.

Quantity choice:

$$\pi(w) \equiv \max_{q} p(q)q - C(w, q)$$

$$[p(q^m) + p'(q^m)q^m] = \frac{\partial}{\partial q}C(w, q^m)$$

Quantity choice:

$$\pi(w) \equiv \max_{q} p(q)q - C(w, q)$$

FOC:

$$[p(q^m) + p'(q^m)q^m] = \frac{\partial}{\partial q}C(w, q^m)$$

Marginal revenue equals marginal cost.

Quantity choice:

$$\pi(w) \equiv \max_{q} p(q)q - C(w, q)$$

FOC:

$$[p(q^m) + p'(q^m)q^m] = \frac{\partial}{\partial q}C(w, q^m)$$

Marginal revenue equals marginal cost.

$$\Rightarrow p(q^m) = \frac{\partial}{\partial q} C(w, q^m) - \underbrace{p'(q^m)}_{<0} q^m$$
$$> \frac{\partial}{\partial q} C(w, q^m)$$

Positive profit on the marginal unit.

Quantity choice:

$$\pi(w) \equiv \max_{q} p(q)q - C(w, q)$$

FOC:

$$[p(q^m) + p'(q^m)q^m] = \frac{\partial}{\partial q}C(w, q^m)$$

Marginal revenue equals marginal cost.

$$\Rightarrow p(q^{m}) = \frac{\partial}{\partial q} C(w, q^{m}) - \underbrace{p'(q^{m})}_{<0} q^{m}$$
$$> \frac{\partial}{\partial q} C(w, q^{m})$$

Positive profit on the marginal unit. How much profit?

Equivalently, price choice:

$$\max_{p} pD(p) - C(w, D(p))$$

Equivalently, price choice:

$$\max_{p} pD(p) - C(w, D(p))$$

$$[p^{m}D'(p^{m}) + D(p^{m})] = \frac{\partial}{\partial q}C(w, D(p^{m}))D'(p^{m})$$

Equivalently, price choice:

$$\max_{p} pD(p) - C(w, D(p))$$

$$\left[p^{m}D'(p^{m})+D(p^{m})\right]=\frac{\partial}{\partial g}C(w,D(p^{m}))D'(p^{m})$$

$$p^{m} - \frac{\partial}{\partial q}C(w, q^{m}) = -\frac{D(p^{m})}{D'(p^{m})}$$

$$\frac{p^{m} - \frac{\partial}{\partial q}C(w, D(p^{m}))}{p^{m}} = -\frac{D(p^{m})}{D'(p^{m})p^{m}}$$
"Lerner Index":
$$L = -\frac{1}{c}$$

Equivalently, price choice:

$$\max_{p} pD(p) - C(w, D(p))$$

$$[p^{m}D'(p^{m}) + D(p^{m})] = \frac{\partial}{\partial g}C(w, D(p^{m}))D'(p^{m})$$

$$p^{m} - \frac{\partial}{\partial q}C(w, q^{m}) = -\frac{D(p^{m})}{D'(p^{m})}$$

$$\frac{p^{m} - \frac{\partial}{\partial q}C(w, D(p^{m}))}{p^{m}} = -\frac{D(p^{m})}{D'(p^{m})p^{m}}$$
"Lerner Index": $L = -\frac{1}{c}$

Equivalently, price choice:

$$\max_{p} pD(p) - C(w, D(p))$$

FOC:

$$\left[p^{m}D'(p^{m})+D(p^{m})\right]=\frac{\partial}{\partial g}C(w,D(p^{m}))D'(p^{m})$$

$$p^{m} - \frac{\partial}{\partial q}C(w, q^{m}) = -\frac{D(p^{m})}{D'(p^{m})}$$

$$\frac{p^{m} - \frac{\partial}{\partial q}C(w, D(p^{m}))}{p^{m}} = -\frac{D(p^{m})}{D'(p^{m})p^{m}}$$
"Lerner Index":
$$L = -\frac{1}{\epsilon}$$

$$p^{m} = \left(\frac{\epsilon}{1+\epsilon}\right) \frac{\partial}{\partial q} C(w, D(p^{m}))$$

Question: What happens in the limiting cases (perfectly elastic and perfectly inelastic demand)?

50/55

Input choice with input market power

Let's make our lives easier by simplifying the problem: Suppose there's only one input (or at least, there's only one input market in which the firm has market power).

$$\max_{z} pf(z) - w(z)z$$

Since w(z) is increasing, we can define its inverse z(w) and rewrite the problem as

$$\max_{w} pf\left(z(w)\right) - w \cdot z(w)$$

Input choice with input market power

Let's make our lives easier by simplifying the problem: Suppose there's only one input (or at least, there's only one input market in which the firm has market power).

$$\max_{z} pf(z) - w(z)z$$

Since w(z) is increasing, we can define its inverse z(w) and rewrite the problem as

$$\max_{w} pf\left(z(w)\right) - w \cdot z(w)$$

FOC:

$$pf'(z(w))z'(w) = z'(w)w + z(w)$$

$$p\frac{f'(z(w))}{w} = \frac{z(w)}{z'(w)w} + 1$$

$$p\frac{f'(z(w))}{w} = \frac{1}{\epsilon_{z,w}} + 1 = \frac{1 + \epsilon_{z,w}}{\epsilon_{z,w}}$$

$$w = \left(\frac{\epsilon_{z,w}}{1 + \epsilon_{z,w}}\right) pf'(z(w)) < pf'(z(w))$$

where $\epsilon_{z,w} > 0$ is the elasticity of input supply.

Most markets don't actually have a monopolist or monopsonist.

- Most markets don't actually have a monopolist or monopsonist.
 - Only Ford can make the F-150, but many other firms sell trucks that are good substitutes for F-150.

- Most markets don't actually have a monopolist or monopsonist.
 - Only Ford can make the F-150, but many other firms sell trucks that are good substitutes for F-150.
- In that case, is knowing how monopolists sets price against demand curve D(p) actually any use?
 - It depends on the *interpretation* of D(p).

- Most markets don't actually have a monopolist or monopsonist.
 - Only Ford can make the F-150, but many other firms sell trucks that are good substitutes for F-150.
- $-\,$ In that case, is knowing how monopolists sets price against demand curve D(p) actually any use?
 - It depends on the interpretation of D(p).
 - If D(p) is the demand for pickup trucks, then no.

- Most markets don't actually have a monopolist or monopsonist.
 - Only Ford can make the F-150, but many other firms sell trucks that are good substitutes for F-150.
- In that case, is knowing how monopolists sets price against demand curve D(p) actually any use?
 - It depends on the interpretation of D(p).
 - If D(p) is the demand for pickup trucks, then no.
 - But it is useful for thinking about oligopoly if D(p) is the *residual demand* for pickup trucks taking other products' prices as fixed.
 - In this case, we can use monopoly pricing to derive Ford's best-response pricing of F-150 taking all other trucks' prices as given.

Suppose the only two pickup trucks available are Ford F-150 and Chevy Silverado. Demand curve is

$$D_k(p_k, p_{-k}) = 1 - p_k + 0.5p_{-k}$$

for each $k \in \{F, C\}$.

Suppose the only two pickup trucks available are Ford F-150 and Chevy Silverado. Demand curve is

$$D_k(p_k, p_{-k}) = 1 - p_k + 0.5p_{-k}$$

for each $k \in \{F, C\}$.

Assuming constant marginal costs, Ford's choice taking p_C as given is

$$\max_{p_F}(p_F-c_F)D_F(p_F;p_C)$$

Suppose the only two pickup trucks available are Ford F-150 and Chevy Silverado. Demand curve is

$$D_k(p_k, p_{-k}) = 1 - p_k + 0.5p_{-k}$$

for each $k \in \{F, C\}$.

Assuming constant marginal costs, Ford's choice taking p_C as given is

$$\max_{p_F}(p_F-c_F)D_F(p_F;p_C)$$

FOC is

$$1 - p_F + 0.5p_C - (p_F - c_F) = 0$$
$$p_F = \frac{1 + c_F}{2} + \frac{p_C}{4}$$

Suppose the only two pickup trucks available are Ford F-150 and Chevy Silverado. Demand curve is

$$D_k(p_k, p_{-k}) = 1 - p_k + 0.5p_{-k}$$

for each $k \in \{F, C\}$.

Assuming constant marginal costs, Ford's choice taking p_C as given is

$$\max_{p_F}(p_F-c_F)D_F(p_F;p_C)$$

FOC is

$$1 - p_F + 0.5p_C - (p_F - c_F) = 0$$
$$p_F = \frac{1 + c_F}{2} + \frac{p_C}{4}$$

This is Ford's best response to Chevy's choice of price.

— What point on the demand curve does monopolist choose?

— What point on the demand curve does monopolist choose?

$$p^{m} = \left(\frac{1+\epsilon}{\epsilon}\right)c'$$

$$p^{m} > 0 \Leftrightarrow \frac{1+\epsilon}{\epsilon} > 0$$

$$\Leftrightarrow \epsilon < -1$$

Elastic part of the demand curve.

 \rightarrow As long as demand is inelastic, $\frac{\partial \pi}{\partial \rho} > 0$, so increase price (i.e., decrease quantity) until you get to an elastic part of the demand curve.

— What point on the demand curve does monopolist choose?

$$p^{m} = \left(\frac{1+\epsilon}{\epsilon}\right)c'$$

$$p^{m} > 0 \Leftrightarrow \frac{1+\epsilon}{\epsilon} > 0$$

$$\Leftrightarrow \epsilon < -1$$

Elastic part of the demand curve.

 \rightarrow As long as demand is inelastic, $\frac{\partial \pi}{\partial \rho} > 0$, so increase price (i.e., decrease quantity) until you get to an elastic part of the demand curve.

– Inefficiency?

— What point on the demand curve does monopolist choose?

$$p^{m} = \left(\frac{1+\epsilon}{\epsilon}\right)c'$$

$$p^{m} > 0 \Leftrightarrow \frac{1+\epsilon}{\epsilon} > 0$$

$$\Leftrightarrow \epsilon < -1$$

Elastic part of the demand curve.

- \rightarrow As long as demand is inelastic, $\frac{\partial \pi}{\partial \rho} > 0$, so increase price (i.e., decrease quantity) until you get to an elastic part of the demand curve.
- Inefficiency? Yes, any deviation from $p = \frac{\partial}{\partial q} C(w, D(p^m))$ means quantity is inefficient.

— What point on the demand curve does monopolist choose?

$$p^{m} = \left(\frac{1+\epsilon}{\epsilon}\right)c'$$

$$p^{m} > 0 \Leftrightarrow \frac{1+\epsilon}{\epsilon} > 0$$

$$\Leftrightarrow \epsilon < -1$$

Elastic part of the demand curve.

 \rightarrow As long as demand is inelastic, $\frac{\partial \pi}{\partial \rho} > 0$, so increase price (i.e., decrease quantity) until you get to an elastic part of the demand curve.

- Inefficiency? Yes, any deviation from $p=\frac{\partial}{\partial q}C(w,D(p^m))$ means quantity is inefficient.
- $-p^m$ is weakly increasing in marginal cost.

- Suppose $c'_{2}(q) > c'_{1}(q)$ for all q > 0.
- Let (p_1, q_1) and (p_2, q_2) denote the corresponding monopoly prices and quantities.
 - **Key idea**: Both (p_1, q_1) and (p_2, q_2) are points on the demand curve, so both feasible for both monopolists.

- Suppose $c_2'(q) > c_1'(q)$ for all q > 0.
- Let (p_1, q_1) and (p_2, q_2) denote the corresponding monopoly prices and quantities.
 - **Key idea**: Both (p_1, q_1) and (p_2, q_2) are points on the demand curve, so both feasible for both monopolists.

$$p_1q_1 - c_1(q_1) \geqslant p_2q_2 - c_1(q_2)$$

 $p_2q_2 - c_2(q_2) \geqslant p_1q_1 - c_2(q_1)$

- Suppose $c_2'(q) > c_1'(q)$ for all q > 0.
- Let (p_1, q_1) and (p_2, q_2) denote the corresponding monopoly prices and quantities.
 - **Key idea**: Both (p_1, q_1) and (p_2, q_2) are points on the demand curve, so both feasible for both monopolists.

$$p_1q_1 - c_1(q_1) \geqslant p_2q_2 - c_1(q_2)$$

 $p_2q_2 - c_2(q_2) \geqslant p_1q_1 - c_2(q_1)$

Combining the two:

$$[c_2(q_1)-c_1(q_1)]-[c_2(q_2)-c_1(q_2)]\geqslant 0$$

- Suppose $c_2'(q) > c_1'(q)$ for all q > 0.
- Let (p_1, q_1) and (p_2, q_2) denote the corresponding monopoly prices and quantities.
 - **Key idea**: Both (p_1, q_1) and (p_2, q_2) are points on the demand curve, so both feasible for both monopolists.

$$p_1q_1 - c_1(q_1) \geqslant p_2q_2 - c_1(q_2)$$

 $p_2q_2 - c_2(q_2) \geqslant p_1q_1 - c_2(q_1)$

Combining the two:

$$[c_2(q_1) - c_1(q_1)] - [c_2(q_2) - c_1(q_2)] \geqslant 0$$

which implies

$$\int_{q_2}^{q_1} \underbrace{\left[c_2'(x) - c_1'(x)\right]}_{>0 \,\forall x} dx \geqslant 0$$

so $q_1 \geqslant q_2$, which means $p_1 \leqslant p_2$.