Markov Decision Process and Dynamic Programming

≔ Tags

Learnig Objectives

- 1. Dapat mendeskripsikan Markov Decision Proses (MDP)
- 2. Dapat menyusun MDP dalam merumuskan RL secara formal
- 3. Mampu menentukan value sebuah policy.
- 4. Mampu membuat dynamic programming tipe value iteration.

Definisi Machine Learning (Supervised Learning, Un-Supervised Learning dan Reinforcement Learning), dan contoh aplikasinya dalam berbagai bidang

Apa itu Markov Decision Process?

MDP merupakan formulasi matematis dari permasalahan RL.

MDP adalah proses pengambilan keputusan yang mengacu pada teori Markov yang melahirkan Markov Properti

Markov Property

Markov Decision Process merupakan sebuah tuple (\$S, A, P, R, y\$).

Dimana:

- S merupakan state
- A merupakan action
- P merupakan state transition probability function (transition probability)
- R merupakan reward function

y merupakan discount factor (\$y ∈ [0, 1]\$)

The future is independent of the past given the present

Sebuah keadaan S_t bisa disebut *Markov* jika dan hanya jika:

$$P(S_{t+1}|S_t) = P(S_{t+1}|S_1, S_2, ..., S_t)$$

- Sebuah state memiliki informasi dari sejarah
- Ketika state diketahui, sejarah dapat diabaikan

Markov Decision Process

- Saat step t = 0, keadaan awal (initial state) environment adalah s0 ~ p(s0)
- Kemudian, untuk t = 0 sampai selesai, agent harus memilih beberapa action:
 - Agent memilih action at
 - ∘ Environment memberi reward rt R(. | st, at)
 - Environment memberi next state st+1 P(. | st, at)
 - Agent menerima reward rt dan next state st+1
- Policy adalah sebuah fungsi dari S to A yang menentukan aksi apa yang harus diambil di setiap state.
- Objektif: menemukan policy yang memaksimalkan diskon reward komulatif

Nah, apabila sudah mengenal MDP, kita sudah dapat membahas RL

- Markov Decision Processes mendeskripsikan secara formal lingkungan untuk RL
- Secara spesifik biasanya dibuat saat environment fully observable
- Hampir semua RL problems dapat diformalisasi menggunakan MDP
- Optimal Control
- Partially Observable problems
- Bandits problem

Bayangkan anda pergi kuliah

- Moda transportasi apa yang akan anda gunakan?
 - Jalan kaki?
 - Sepeda?
 - Angkutan Umum?
 - Taksi online?
 - Taksi

Aplikasi RL dalam Dunia Nyata

• Robotik: Memutuskan bergerak kemana.

• Alokasi Sumber Daya: Memutuskan apa yang diproduksi

• Pertanian: Menentukan apa yang ditanam, tapi tidak tahu cuaca dan hasil tanam

Contoh MDP: Robotik

$$V(s) = max_a(R(s,a) + yV(s^\prime)$$

Solusi untuk MDP?

- Policy adalah fungsi π yang memtakan untuk setiap state $s \in States$ ke action $a \in Actions(s)$
- Contoh robot pencarian harta karun:

(1.1)	Bawah
(2,1)	Bawah
(3,1)	Kanan

• Contoh MDP: Grid World

Random Policy

Optimal Policy

Policy Optimal

- Masalahnya..., bagaimana menghandle randomness terkait initial state (keadaan awal) dan transition probability.
- Caranya dengan menghitung jumlah expected reward (reward yang diharapkan) di masa depan.

$$\pi^* = argmax_{\pi} Eigg[\sum_{t \geq 0} y^t r_t | \piigg] ext{ with } s_0 \sim p(s_0), a_t \sim \pi(.|s_t), s_t + 1 \sim p(.|s_t, a_t)$$

Contoh MDP: Permainan Dadu

- Untuk setiap ronde: r = 1,2,...
 - Bisa memilih untuk main atau keluar
 - o Jika keluar, mendapatkan 10 koin dan permainan berakhir
 - Jika main, mendapatkan koin 4 dan dadu dilempar
 - Jika dadu keluar angka 1 atau 2, permainan berakhir
 - Selain itu, lanjutkan ronde berikut

- Rewards
- Jika mengikuti policy "main"

• Expected return:

$$\frac{1}{3}(4) + \frac{2}{3} \cdot \frac{1}{3}(8) + \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3}(12) + \dots = 12$$

· Jika mengikuti policy "keluar"

Expected return:

$$1(10) = 10$$

MDP untuk permainan Dadu

- State (s) node
- Action (a)
- State: Action q(s, a) node
- Probability P(s, a, s')
- Reward r(s, a, s')

- States: himpunan dari state
- ullet $S_{start} \in States$: state awa
- Action(s) : actions yang tersedia dari state s
- ullet $P(s,a,s^\prime)$: probabilitas ke s' jika mengambil actin a dari satate s
- Reward (s, a, s') : idem dengan diatas
- isEnd(s) : apakah state berakhir
- $0 \leq y \leq 1$ faktor diskon

Probabilitas (atau Transition)

- ullet Transitin Probabilitas P(s,a,s') menentukan kemungkinan dari state yang didatangi dalam s' jika melakukan action a dari state s
- Contoh:

S	a	s'	P(s, a, s')	
Masuk	Keluar	Akhir	1	
Masuk	Main	Masuk	2/3	
Masuk	Main	Akhir	1/3	

• Untuk setiap state s dan action a:

$$\sum_{s' \in States} P(s, a, s') = 1$$

S	a	s'	P(s, a, s')
Masuk	Keluar	Akhir	1
Masuk	Main	Masuk	2/3
Masuk	Main	Akhir	1/3

• Matrik probabilitas transisi

S	а	s'	P(s, a, s')
Masuk	Keluar	Akhir	1
Masuk	Main	Masuk	2/3
Masuk	Main	Akhir	1/3

action = Main	Masuk	Akhir	action = Keluar	Masuk	Akhir
Masuk	2/3	1/3	Masuk	0	0
Akhir	0	1	Akhir	0	1

Contoh Transportasi

- Sebuah kota yang mempunyai nomor blok 1 sampai n
- Berjalan dari s ke s+1 membutuhkan waktu 1 menit
- Naik tram ajaib dari s ke 2s membutuhkan waktu 2 menit
- Bagaimana berpindah dari 1 ke n dalam waktu paling sedikit?
- Tram punya kemungkinan gagal 0.5
- Jika gagal, waktu habis 2 menit tapi tidak pindah blok

Evaluasi sebuah policy

- Mengikuti policy akan bisa menghasilkan jalur yang acak (mengapa?)
- Return (utility) dari sebuah policy adalah Jumlah dari reward selama mengikuti jalur (nilai yang acak)
- Contoh policy = "main" pada permainan dadu:

Jalur	Return
[masuk;main,4,akhir]	4
[masuk;main,4, masuk;main,4, masuk;main,4,akhir]	12
[masuk;main,4, masuk;main,4, akhir]	8
[masuk;main,4, masuk;main,4, masuk;main,4, masuk;main,4, akhir]	16

Return (Utility)

Return adalah G_t total reward yang di-diskon dari setiap waktu t

Diskon y

- · Definisi: return
- Jalur: $S_0, a_a, \gamma_1, s_1, a_2, \gamma_2, s_2, ...(action, reward, statebaru)$
- Return dengan diskon adalah:

$$u_1 = \gamma_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + ...$$

- Diskon $\gamma=1$ (sangat memperhatikan masa depan) [masuk, masuk, masuk, masuk]: 4+4+4+4 = 16
- Diskon $\gamma=0$ (hidup cuma sekali) $[{\rm masuk,\,masuk,\,masuk,\,masuk}]: 4+0.(4+0.(4+...))=4$
- Diskon $\gamma=0.5$ (hidup yang seimbang) $[{\rm masuk,\, masuk,\, masuk,\, masuk}]: 4+0.5(4+0.5(4+...))=7.5$

Apa guna diskon? γ

Biasanya Markov reward dan MDP mengandung diskon, mengapa?

- Secara matematik memberikan konstanta untuk diskon itu mudah
- Menghindari return tak terhingga dalam proses Markov yang berbentuk siklus
- Masa depan yang tidak pasti mungkin tidak diwakili model
- Dalam hal finansial, reward languang lebih menarik dibanding reward nanti
- Perilaku binatang / manusia biasanya lebih memilih reward langsung
- tetap memungkinkan untuk menggunakan markov reward yang tidak didiskon ($\gamma=1$) (jika semua alur tidak berulang)

Recap and Question?

- Policy $\pi(s)$
- Transition Probability M
- Jalur (path)
- Return (Utility) G_t
- Value
- Excepted

- State (s) node
- Action (a)
- State: Action q(s,a) node
- Probability P(s, a, s')
- Reward r(s, a, s')

Evaluasi sebuah Policy

• Definisi: Value dari policy

Menghitung value Permainan Dadu

ullet Misalnya kita pakai policy π "main" maka $\pi(masuk)=main$

$$V_{\pi}(masuk) = rac{1}{3}(4 + V_{\pi}(akhir)) + rac{2}{3}(4 + V_{\pi}(masuk)) \ V_{\pi}(akhir) = 0$$

• Bisa kita selesaikan dengan policy π "main" Value adalah: (hitung dengan analitik)

$$V_{\pi}(masuk)=12$$

Value

Value adalah harapan dari return (Expected return)

$$Q_\pi(s,a) = \sum_{s'} P(s,a,s') [R(s,a,s') + \gamma V_\pi(s')]$$

 Value dari policy adalah harapan dari return (Expected return) ketika mengikuti suatu policy

$$V\pi(S) = E[G_t|S_t = s]$$

Value Function

Policy akan menghasilkan sample trajectories (paths) i.e:

$$S_0, a_0, r_0, s_1, a_1, r_1$$

Seberapa bagus suatu state itu?

- Value function akan mengukur seberapa bagus situasi dari lingkungan (state)
- Value function pada state s, adalah komulatif reward yang diharapkan dari policy saat state s;

$$V^{\pi}(s) = Eigg[\sum_{t \geq 0} \gamma^{\pi} r_t | s_0 = s, \piigg]$$

Q-Value Function

Seberapa bagus pasangan state-action?

- Q-Value function untuk mengukur seberapa bagus pasangan state-action (state-action pair).
- Q-Value function pada state s dan action a, adalah komulatif reward yang diharapkan (expected cumulative reward) dari mengambil action a pada state s dan mengikuti policy:

$$Q^\pi(s,a) = Eigg[\sum_{t\geq 0} \gamma^\pi r_t | s_0 = s, a_0 = a, \piigg]$$

Formula ini merupakan Bellman Equation

Bellman Equation untuk Optimal Policy

 Q-Value function yang paling optimal (Q*) adalah nilai maksimum komulatif expected reward yang dapat dicapai dari suatu pasangan state-action yang diberikan.

$$Q^{\pi}(s,a) = E \Bigg[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi$$

Q* memenuhi persamaan Bellman berikut:

$$Q*(s,a) = E_{s'} \sim \xiigg[r + \gamma max_{a'}Q*(s',a')|s,aigg]$$

Optimal Policy

- Agent dapat diarahkan dengan Q-value yang telah bisa diselesaikan secara iteratif.
- Value iteration algorithm menggunakan Bellman equation as an iterative update.

$$Q_i + 1(s,a) = Eigg[r + \gamma max_{a'}Q_i(s',a')|s,aigg]$$

- Setiap state-action pair akan dihitung semuanya, pada state-action yang terbatas ini memungkinkan. Permasalahn timbul bila state-action tidak terbatas (spt pada game Go), kemungkinannya banyak. Tidak scalable.
- Solusinya: dengan fungsi aproximator untuk mengestimasi Q(s,a) i.e. neural network.

Menghitung value secara iterasi

- Algoritme menggunakan iterasi:
 - \circ Inisialisasi $V_{\pi}^{(0)}(s)$ \leftarrow 0 untuk semua state
 - $\circ~$ Untuk iterasi $t=1,...,t_{end}$:
 - Untuk setiap state s:

$$V_\pi^{(t)}(s) \longleftarrow \sum_{s'} P(s,\pi(s),s') igg[R(s,\pi(s),s') + \gamma V_\pi^{(t-1)}(s') igg]$$

Evaluasi Policy (contoh main dadu)

•
$$V^{(t)}_\pi(s) \longleftarrow \sum_{s'} P(s,\pi(s),s') igg[R(s,\pi(s),s') + \gamma V^{(t-1)}_\pi(s')$$

- $V_\pi(masuk)=rac{1}{3}(4+V_\pi(akhir))+rac{2}{3}(4+V\pi(masuk))$
- ullet Untuk $\pi(masuk)=main$

0	0	0	0	0	0	0
0	4	6.67	8.44	9.6296	10.419	10.947

Kapan iterasi selesai?

 Saat value iterasi t dikurangi value iterasi t-1 untuk semua state kurang dari konstanta ∈. Secara matematik dapat dituliskan demikian:

$$max_{s \in States} |V_{\pi}^{(t)}(s) - V\pi^{(t-1)}(s)| \leq \in$$

ullet Tidak perlu menyimpan semua nilai $V_p i^{(t)}$ cukup simpan nilai t dan t-1:

$$V_{\pi}^{(t)} \; \mathrm{dan} \; V_{t}^{(t-1)}$$

Value dan policy yang Optimal

• $V_{opt}(s) = max_{a \in A(s)}Q_{opt}(s,a)$

Dynamic Programming

- Dynamic programming jenis Value Iteration
- Algoritme menggunakan iterasi:
- ullet Inisialisasi $V_{opt}^{(0)}(s) \longleftarrow 0$ untuk semua state
- Untuk iterasi $t=1,...,t_{end}$:
 - \circ Untuk setiap state s:

$$V_{opt}^{(t)}(s) \longleftarrow max_{a \in A(s)} \sum_{s'} P(s,\pi(s),s') igg[R(s,\pi(s),s') + \gamma V_{\pi}^{(t-1)}(s') igg]$$

 \circ Kompleksitas adalah $O(t_{end}SAS')$

Konvergensi

- Bagaimana agar value iteration mencapai konvergensi?
 - \circ Diskon $\gamma < 1$ atau
 - Grafik MDP yang tidak berbentuk siklus
- Maka value iteration akan mencapai konvergensi

Kesimpulan algoritma

- Evaluasi Policy itu adalah $(MDP,\pi) \longrightarrow V_{\pi}$
- ullet Value Iteration itu adalah $MDP \longrightarrow V_{opt}, \pi_{opt}$

Markov Transition Graph

- Belajar meng-koding Markov dengan Python
- Studi kasus "Travelling to Capital Cities" atau Gambler Ruin

Seorang bisnisman akan melakukan perjalanan ke ibukota beberapa negara

