Cryptography – Questionnaire 3

Name:	
Matr.:	

"One-liners"

Exercise 3.1 Feistel-Networks

1P+1P+1P = 3P

Consider the two-round Feistel-Network drawn below, with $f_1, f_2 : \{0, 1\}^n \to \{0, 1\}^n$.

- (a) Compute the outputs y_1, y_2 of the network for $x_1 = 0^n$ and $x_2 = 0^n$ Answer:
- (b) Compute the outputs y_1, y_2 of the network for $x_1 = 0^n$ and $x_2 = f_1(0^n)$ Answer:
- (c) Does the two-round Feistel-Network realize a PRP if used with two PRFs f_{k_1}, f_{k_2} ? Why/why not? Answer:

Exercise 3.2 PRG from PRF

2P

Let F be a PRF with $l_{in}(n) = l_{out}(n) = n$. Construct from F a PRG G of stretch 2n.

Answer: G(k) :=

Questions– 1P each = 5P

	true	false
Let F be a PRP, F -rCBC is computationally secret.		
Let G be a PRG of stretch $s \cdot n$, then $F_k : \{0,1\}^{sn} \to \{0,1\}^{sn}$ defined by $F_k(x) = G(k) \oplus x$ is a PRF.		
Let F be a PRF of block length $l(n) = n$. We define \widetilde{F} for every $n \in \mathbb{N}$, $k \in \{0,1\}^n$ and $x_1 \dots x_{2n} \in \{0,1\}^{2n}$ by using F in a one-round Feistel-network: $\widetilde{F}_k(x_1 \dots x_{2n}) = FN_{F_k}(x_1 \dots x_n, x_{n+1} \dots x_{2n}).$ \widetilde{F} is a PRP of block length $2n$.		
Let RO be a random function oracle of input and output length n . Then $G(k) := RO(k) RO(k)$ is a PRG of stretch $2n$.		
Let F be a PRF. Then F -rCTR is CCA-secure.		