MA 126 — Fall 2016 — Prof. Clontz — Quiz

Name:

Choose D for "None of these"

48. Which of these Maclaurin Series is most appropriate for approximating $e^{-1/2} = \frac{1}{\sqrt{e}}$?

A.
$$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$

B.
$$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}$$

C.
$$\sum_{k=0}^{\infty} \frac{x^k}{k!}$$

49. Find the error term $R_n(x)$ from the Taylor Formula for e^x , where x_n is between 0 and x.

A.
$$R_n(x) = \frac{x^{n+1}}{n!}$$

B.
$$R_n(x) = \frac{e^{x_n}}{(n+1)!} x^{n+1}$$

C.
$$R_n(x) = \frac{1}{e^{x_n/2}(n+1)!}x^n$$

50. Use Taylor's Formula to approximate $e^{-1/2} = \frac{1}{\sqrt{e}}$ with an error no greater than $\frac{1}{1000} = 0.001$. (Hint: $-1/2 \le x_n \le 0$.)

A.
$$\frac{1}{\sqrt{e}} \approx 0.604$$

B.
$$\frac{1}{\sqrt{e}} \approx 0.607$$

C.
$$\frac{1}{\sqrt{e}} \approx 0.609$$