Soham Chatterjee

Assignment - 2.2 : Quantum Foundations

Email: sohamc@cmi.ac.in

Course: Quantum Information Theory

For all the questions $[k] := \{1, 2, ..., k\}$ where $k \in \mathbb{N}$

Roll: BMC202175 Date: February 29, 2024

Problem 1

$$\sum_{i=1}^{d} \langle e_i | Te_i \rangle = \sum_{i=1}^{d} \langle f_i | Tf_i \rangle$$

For $T:\mathcal{H}\to\mathcal{H}$, prove that $\sum_{i=1}^d \langle e_i \, | Te_i \rangle = \sum_{i=1}^d \langle f_i \, | Tf_i \rangle$ if $\{|e_i\rangle\in\mathcal{H} \mid 1\leq i\leq d\}$ and $\{|f_i\rangle\in\mathcal{H} \mid 1\leq i\leq d\}$ are ONB.

Solution: Let $S:\mathcal{H}\to\mathcal{H}$ where it maps the basis vectors from $|e_i\rangle\to|f_i\rangle$. Then $S|e_i\rangle=|f_i\rangle$. Hence S is an orthonormal matrix since

$$\langle e_j | S^{\dagger} S | e_i \rangle = \langle f_j | f_i \rangle = \delta_{ji}$$
 and $\langle f_j | SS^{\dagger} | f_i \rangle = \langle e_j | e_i \rangle = \delta_{ji}$

Hence

$$\sum_{i=1}^{d} \langle f_i | T f_i \rangle = \sum_{i=1}^{d} \langle e_i | S^{\dagger} T S | e_i \rangle = tr(S^{\dagger} T S) = tr(S S^{\dagger} T) = tr(T) = \sum_{i=1}^{d} \langle e_i | T e_i \rangle$$

Therefore we have

$$\sum_{i=1}^{d} \langle e_i | Te_i \rangle = \sum_{i=1}^{d} \langle f_i | Tf_i \rangle$$

If $\{|e_i\rangle \in \mathcal{H}_1 \mid 1 \leq i \leq d\}$ and $\{|f_i\rangle \in \mathcal{H}_2 \mid 1 \leq i \leq d\}$ are ONB, then $\{|e_i\rangle \otimes |f_j\rangle \mid 1 \leq i, j \leq d\} \subseteq \mathcal{H}_1 \otimes \mathcal{H}_2$ is ONB

Solution: Let $|\psi\rangle \otimes |\phi\rangle \in \mathcal{H}_1 \otimes \mathcal{H}_2$. Then $|\psi\rangle = \sum_{i=1}^d \alpha_i |e_i\rangle$ where $\alpha_i \in \mathbb{C}$ for all $i \in [d]$ since $\{|e_i\rangle \in \mathcal{H}_1 \mid 1 \leq e_i\}$ $i \leq d$ } is ONB for \mathcal{H}_1 . Hence

$$|\psi
angle\otimes|\phi
angle=\sum_{i=1}^dlpha_i\,|e_i
angle\otimes|\phi
angle$$

Now $|\phi\rangle = \sum_{i=1}^{d} \beta_i |f_i\rangle$ where $\beta_i \in \mathbb{C}$ for all $i \in [d]$ since $\{|f_i\rangle \in \mathcal{H}_2 | 1 \le i \le d\}$ is ONB for \mathcal{H}_2 . Hence

$$\forall i \in [d] |e_i\rangle \otimes |phi\rangle = \sum_{j=1}^d \beta_j |e_i\rangle \otimes |f_j\rangle$$

Thereofore we get

$$|\psi\rangle\otimes|\phi\rangle = \sum_{i=1}^{d} \alpha_{i} |e_{i}\rangle\otimes|\phi\rangle = \sum_{i=1}^{d} \alpha_{i} \sum_{j=1}^{d} \beta_{j} |e_{i}\rangle\otimes|f_{j}\rangle = \sum_{1\leq i,j\leq d} \alpha_{i}\beta_{j} |e_{i}\rangle\otimes|f_{j}\rangle$$

Therefore $\{|e_i\rangle\otimes|f_j\rangle\mid 1\leq i,j\leq d\}$ is a basis of $\mathcal{H}_1\otimes\mathcal{H}_2$. Now for any $i1,i2,j1,j2\in[d]$

$$(\langle e_{i1}| \otimes \langle f_{j1}|)(|e_{i2}\rangle \otimes |f_{j2}\rangle) = \langle e_{i1}|e_{i2}\rangle \langle f_{j1}|f_{j2}\rangle = \delta_{i1,i2}\delta_{j1,j2}$$

Therefore $\{|e_i\rangle\otimes |f_j\rangle \mid 1\leq i,j\leq d\}$ is orthonormal. Therefore $\{|e_i\rangle\otimes |f_j\rangle \mid 1\leq i,j\leq d\}$ is a ONB for $\mathcal{H}_1\otimes\mathcal{H}_2$.

Problem 3

If $\{|e_i\rangle \in \mathcal{H}_1 \mid 1 \leq i \leq d\}$ and $\{|f_i\rangle \in \mathcal{H}_2 \mid 1 \leq i \leq d\}$ are ONB, then $\{|e_i\rangle \otimes |f_j\rangle \mid 1 \leq i, j \leq d\} \subseteq \mathcal{H}_1 \otimes \mathcal{H}_2$ is ONB