

P3Depth: Monocular Depth Estimation with a Piecewise Planarity Prior (CVPR 2023)

2023.08.17

Contribution

1 Learning to Identify Seed Pixels

② Mean Plane Loss.

2

Depth Plane的CoEfficient借鉴于GeoLayOut. Offset Vector借鉴于Instance segmentation by jointly optimizing spatial embeddings and clustering bandwidth.

Prerequisites: Cartesian Representation of Plane

where $\hat{f n}$ $(=rac{{f b} imes{f c}}{|{f b} imes{f c}|})$ is the <code>unit</code> vector perpendicular to the plane.

5.1.1 Plane from vector to Cartesian form

$$(\mathbf{r} - \mathbf{a}).\hat{\mathbf{n}} = 0 \quad \text{gives } \mathbf{r}.\hat{\mathbf{n}} = \mathbf{a}.\hat{\mathbf{n}}$$

- Note that $d = a \cos \theta = \underline{a} \cdot \hat{\underline{n}}$ is the perpendicular distance of the plane to the origin.
- Also we write $\hat{\mathbf{n}} = l\mathbf{i} + m\mathbf{j} + n\mathbf{k}$. where (l, m, n) are defined as the *direction cosines* of the normal to the plane.

- Finally we write the general vector $\underline{\mathbf{r}}$ as (x, y, z)
- This gives the plane in Cartesian representation as

$$\underline{\mathbf{r}}.\hat{\underline{\mathbf{n}}} = lx + my + nz = d$$

这里的法向量是具有单位长度的法向量,原文中也没有说明(\bigcirc),然后这个P不应该是Point的意思,应该是Poisitional Vector的意思。

Cartesian representation ()

fxfy是焦距,uovo是光轴和成像平面的交点,d是平面距离原点的距离。

Method: Plane Coefficient Representation for Depth

$$Z = D(u, v), \ X = \frac{Z(u - u_0)}{f_x}, \ Y = \frac{Z(v - v_0)}{f_y}.$$
 (2)

$$\mathbf{n} \cdot \mathbf{P} + d = 0, \text{ where } \mathbf{n} = (a, b, c)^T \quad \frac{1}{Z} = \underbrace{\frac{-a}{f_x d}}_{\hat{\alpha}} u + \underbrace{\frac{-b}{f_y d}}_{\hat{\beta}} v + \underbrace{\frac{1}{d} (\frac{a}{f_x} u_0 + \frac{b}{f_y} v_0 - c)}_{\hat{\gamma}}.$$

$$\rho = \sqrt{\hat{\alpha}^2 + \hat{\beta}^2 + \hat{\gamma}^2} \text{ and normalizing } \alpha = \frac{\hat{\alpha}}{\rho}, \beta = \frac{\hat{\beta}}{\rho} \text{ and } \gamma = \frac{\hat{\gamma}}{\rho} \text{ into}$$

$$Z = [(\alpha u + \beta v + \gamma)\rho]^{-1}.$$

这里的法向量是具有单位长度的法向量,原文中也没有说明(②),然后这个P不应该是Point的意思,应该是Poisitional Vector的意思。

Cartesian representation

fxfy是焦距,uovo是光轴和成像平面的交点,d是平面距离原点的距离。

Network: Plane Coefficient Representation for Depth

与直接预测深度相比,预测平面系数作为中间输出并不具有直接优势。然而,描绘同一三维平面的两个像素具有相同的参数C,但深度通常不同。这一事实是网络下一部分的核心,它允许通过选择性地从种子像素引导平面系数来预测深度。

先验:对于具有关联 3D 平面的每个像素 p,在 p 的邻域中存在一个种子像素 q,该种子像素 q 也与与 p 相同的平面关联。总的,p 可能存在多个种子像素或没有种子像素

Network: Learning to Indentify seed Seed Pixels

先验:对于每个与三维平面相关联的像素p,在p的邻域中存在一个种子像素q,该像素也与p的平面相关联。总的来说,也可能没有或者有多个种子像素q。

$$\mathbf{C}_s(\mathbf{p}) = \mathbf{C}(\mathbf{p} + \mathbf{o}(\mathbf{p})) \ D_s(u, v) = h(\mathbf{C}_s(u, v), u, v)$$

$$\mathbf{p} + \mathbf{o}(\mathbf{p}) + \mathbf{o}(\mathbf{p} + \mathbf{o}(\mathbf{p}))$$

$$D_f(u, v) = F(u, v)D_s(u, v) + (1 - F(u, v))D_i(u, v).$$

$$\mathcal{L}_{\text{depth}} = \mathcal{L}(D_f, D^*) + \lambda \mathcal{L}(D_s, D^*) + \mu \mathcal{L}(D_i, D^*)$$

然而,先验并不总是有效,因此与基于种子的预测 Ds 相比,初始深度预测 Di 实际上可能更好。F (u, v) \in [0, 1],表示模型使用预测种子像素通过 Ds 估计深度的置信度。

级联:同一平面区域内的种子像素应向区域中心靠拢,这有助于在预测区域平面系数时积累更多像素的信息

事实上,它可以简单地预测各处的零偏移量,并仍然产生有效的预测Ds和Df,这将与Di相同。

在实际应用中,由于神经网络映射 f(Image to Depth)的规则性,初始预测 Di 在深度 边界附近被错误地平滑化,从而避免了这种不想要的行为。

因此,对于边界两侧的像素,预测一个远离边界的非零偏移值,会得到一个较低的Loss,因为这种偏移使用的Ds种子像素离边界更远,由于平滑化而产生的误差更小。

下面图 是展示了预测出的offset vector,大致意思是左下角不同的颜色代表offset不同的方向。蓝色表示应该向左上角偏移。

Network: Mean Plane Loss

 $\mathbf{An} = \mathbf{b}$, s.t. $\|\mathbf{n}\|_2 = 1$, where \mathbf{A} is a data matrix build by stacking the 3D points in the patch and \mathbf{b} is a vector of ones. Following [11, 53], the closed-form solution of this

$$\mathbf{n} = \frac{\left(\mathbf{A}^T \mathbf{A}\right)^{-1} \mathbf{A}^T \mathbf{b}}{\left\| \left(\mathbf{A}^T \mathbf{A}\right)^{-1} \mathbf{A}^T \mathbf{b} \right\|_2}. \qquad \mathcal{L}_{\text{MPL}} = \sum_{k=1}^K \left\| \mathbf{n}_k - \mathbf{n}_k^* \right\|_1.$$

$$\mathcal{L}_{total} = \mathcal{L}_{depth} + \mathcal{L}_{MPL}$$

法线是跨patch聚合,确保预测的表面和真实的表面的一阶一致性

Experiment

Method	A.Rel	Log10	RMSE	δ_1	δ_2	δ_3			
Lower is better Higher is better Plane detection based methods									
PlaneNet [42]	0.142	0.060	0.514	0.812	0.957	0.989			
PlaneRCNN [41]	0.124	0.077	0.644	77	700	-			
Yu et al. [81]	0.134	0.057	0.503	0.827	0.963	0.990			
P ² Net (5F)* [80]	0.147	0.062	0.553	0.801	0.951	0.987			
StruMonoNet [75]	0.107	0.046	0.392	0.887	0.980	0.995			
Other monocular depth estimation methods									
Saxena et al. [59]	0.349	- 4	1.214	0.447	0.745	0.897			
Karsch et al. [24]	0.349	0.131	1.21	-	-	-			
Liu et al. [45]	0.335	0.127	1.06	-	-	-			
Ladicky et al. [31]	-	=	-	0.542	0.829	0.941			
Li et al. [37]	0.232	0.094	0.821	0.621	0.886	0.968			
Wang et al. [68]	0.220	0.094	0.745	0.605	0.890	0.970			
Liu et al. [44]	0.213	0.087	0.759	0.650	0.906	0.974			
Roy et al. [57]	0.187	0.078	0.744	2	20	-			
AdaBins† [1]	0.178	0.078	0.595	0.698	0.937	0.988			
Eigen et al. [9]	0.158	9	0.641	0.769	0.950	0.988			
Chakrabarti [4]	0.149	70	0.620	0.806	0.958	0.987			
Li et al. [38]	0.143	0.063	0.635	0.788	0.958	0.991			
Laina et al. [32]	0.127	0.055	0.573	0.811	0.953	0.988			
Fu et al. [13]	0.115	0.051	0.509	0.828	0.965	0.992			
Yin et al. [77]	0.108	0.048	0.416	0.875	0.976	0.994			
Huynh et al. [23]	0.108	2	0.412	0.882	0.980	0.996			
Lee et al. [33]	0.110	0.047	0.392	0.885	0.978	0.994			
Long et al. [46]	0.101	0.044	0.377	0.890	0.982	0.996			
Ranftl et al. [55]	0.110	0.045	0.357	0.904	0.988	0.998			
Ours	0.104	0.043	0.356	0.898	0.981	0.996			

Method	A.Rel	S.Rel	RMSE	RMSElog	δ_1	δ_2	δ_3		
		Low	Higher is better						
Garg split [16] cap: 50m									
Garg et al. [16]	0.169	1.080	5.104	0.273	0.740	0.904	0.962		
Godard et al. [18]	0.108	0.657	3.729	0.194	0.873	0.954	0.979		
Kuznietsov [29]	0.108	0.595	3.518	0.179	0.875	0.964	0.988		
Gan et al. [15]	0.094	0.552	3.133	0.165	0.898	0.967	0.986		
Fu et al. [13]	0.071	0.268	2.271	0.116	0.936	0.985	0.995		
AdaBins [1]	0.058	0.19	2.36	0.088	0.964	0.995	0.999		
Lee et al. [33]	0.056	0.169	1.925	0.087	0.964	0.994	0.999		
Ours	0.055	0.130	1.651	0.081	0.974	0.997	0.999		
Eigen split [9] cap: 80m									
Saxena et al. [59]	0.280	3.012	8.734	0.361	0.601	0.820	0.926		
Eigen et al. [9]	0.203	1.548	6.307	0.282	0.702	0.898	0.967		
Liu et al. [43]	0.201	1.584	6.471	0.273	0.680	0.898	0.967		
Godard et al. [18]	0.114	0.898	4.935	0.206	0.861	0.949	0.976		
Kuznietsov [29]	0.113	0.741	4.621	0.189	0.862	0.960	0.986		
Gan et al. [15]	0.098	0.666	3.933	0.173	0.890	0.964	0.985		
Fu et al. [13]	0.072	0.307	2.727	0.120	0.932	0.984	0.994		
Yin et al. [77]	0.072	_	3.258	0.117	0.938	0.990	0.998		
Lee et al. [33]	0.059	0.245	2.756	0.096	0.956	0.993	0.998		
AdaBins [1]	0.067	0.278	2.96	0.103	0.949	0.992	0.998		
Ranftl et al. [55]	0.062	-	2.573	0.092	0.959	0.995	0.999		
Ours	0.071	0.270	2.842	0.103	0.953	0.993	0.998		

KITTI最远80米表现在不佳,远了找不到光滑的平面了。 0.055即使在2021也不是SOTA。不如MonoDELSNet,不过RMSE,和S.Rel确实很牛, 比现在的SOTA(1.966)都要好。(可能异常值要少一点,因为平面)

Ablation

Table 5. Ablation study of components of our method. D: directly predicting depth, C: predicting plane coefficients, "Guid.": guidance module for plane coefficient decoder, "OV": offset vectors, "Ref.": cascaded refinement of offsets, "MPL": mean plane loss, "+": offset length is restricted to τ =0.3 instead of τ =0.1.

Pred.	Guid.	OV	Ref.	MPL	A.Rel↓	RMSE ↓	$ \delta_1\uparrow$
\overline{D}					0.142	0.458	0.821
\mathbf{C}					0.144	0.487	0.811
C	√				0.142	0.458	0.824
\overline{D}		√			0.140	0.453	0.824
C		√			0.116	0.390	0.877
C				✓	0.118	0.395	0.872
$\overline{\mathbf{C}}$	√	√			0.115	0.384	0.879
\mathbf{C}	✓	√ +			0.116	0.390	0.879
\overline{D}		√	√		0.134	0.440	0.839
\mathbf{C}		✓	\checkmark		0.113	0.378	0.884
\mathbf{C}		\	\checkmark	\checkmark	0.109	0.370	0.890
C	√	√	✓		0.109	0.373	0.889
\mathbf{C}	\checkmark	✓	\checkmark	\checkmark	0.104	0.356	0.898

我们观察到,在独立设置中,直接预测深度比预测平面系数更好。然而,一旦我们插入预测偏移向量的第二个头,与直接预测深度相比,使用平面系数表示可以获得显着的好处。这表明,由于平面系数表示,网络学会了有效利用种子像素处的局部平面信息来提高深度。此外,添加我们的指导模块提供了轻微的改进

(这个多加个Mean Plane Loss 效果那么好?)

Guidance大致基于[34]。每个解码器块的输出经过平面系数引导模块,生成 4 通道平面系数。

引导模块的输出大小被上采样以匹配最后一个解码器层的输入大小。最后,这些来自每个尺度的平面系数被转换为深度。所有这些深度图都通过的前一个decoder传递到最后一个decoder的feature map连接起来。

类似的,数据集来源同样有问题,README中的链接指向另一个有问题的repo,补完后仍然缺少文件

Talk is cheap, show me your code!

After setting up the environment, I used NYU dataset for training, but the training results were very strange. The loss function converged slowly, rmse kept increasing, and delta kept decreasing.

BayMaxBHL commented on Feb 16

(Author) · ·

@haifengwu205 确实是用不了,我这不晒出来的结果就是不收敛嘛。rmse还卡卡往上涨,人都麻了。

@BayMaxBHL This is my code https://drive.google.com/file/d/1RRhOknM4tPnWzvi-T0B_BxLWE8famL3/view?usp=sharing.

I training with gta dataset. I add GTA_dataset.py to load color and depth image.

After 40 epochs, the result is bad. I gave up.

More details on evaluation and pretrained models will be released soon.

我们观察到,在独立设置中,直接预测深度比预测平面系数更好。然而,一旦我们插入预测偏移向量的第二个头,与直接预测深度相比,使用平面系数表示可以获得显着的好处。这表明,由于平面系数表示,网络学会了有效利用种子像素处的局部平面信息来提高深度。此外,添加我们的指导模块提供了轻微的改进

(这个多加个Mean Plane Loss 效果那么好?)

Guidance大致基于[34]。每个解码器块的输出经过平面系数引导模块,生成 4 通道平面系数。

引导模块的输出大小被上采样以匹配最后一个解码器层的输入大小。最后,这些来自每个尺度的平面系数被转换为深度。所有这些深度图都通过的前一个decoder 传递到最后一个decoder的feature map连接起来。

我们观察到,在独立设置中,直接预测深度比预测平面系数更好。然而,一旦我们插入预测偏移向量的第二个头,与直接预测深度相比,使用平面系数表示可以获得显着的好处。这表明,由于平面系数表示,网络学会了有效利用种子像素处的局部平面信息来提高深度。此外,添加我们的指导模块提供了轻微的改进

(这个多加个Mean Plane Loss 效果那么好?)

Guidance大致基于[34]。每个解码器块的输出经过平面系数引导模块,生成 4 通道平面系数。

引导模块的输出大小被上采样以匹配最后一个解码器层的输入大小。最后,这些来自每个尺度的平面系数被转换为深度。所有这些深度图都通过的前一个decoder传递到最后一个decoder的feature map连接起来。

