153_project

2022-04-05

```
library(tidyverse)
## -- Attaching packages ----- tidyverse 1.3.1 --
## v ggplot2 3.3.5
                   v purrr
                             0.3.4
## v tibble 3.1.6
                  v dplyr
                             1.0.8
## v tidyr 1.2.0 v stringr 1.4.0
## v readr
          2.1.2
                 v forcats 0.5.1
## -- Conflicts ------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(TSA)
##
## Attaching package: 'TSA'
## The following object is masked from 'package:readr':
##
##
      spec
## The following objects are masked from 'package:stats':
##
      acf, arima
## The following object is masked from 'package:utils':
##
      tar
library(forecast)
## Registered S3 method overwritten by 'quantmod':
##
    method
    as.zoo.data.frame zoo
## Registered S3 methods overwritten by 'forecast':
##
    method
                from
##
    fitted.Arima TSA
##
    plot.Arima
```

```
library(astsa)
##
## Attaching package: 'astsa'
## The following object is masked from 'package:forecast':
##
##
      gas
source('cleaning.R')
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
##
      date, intersect, setdiff, union
## New names:
## * '' -> ...1
## Rows: 1746661 Columns: 29
## -- Column specification ------
## Delimiter: ","
         (8): Address, State, County, City, NO2 Units, O3 Units, SO2 Units, CO ...
## chr
       (20): ...1, State Code, County Code, Site Num, NO2 Mean, NO2 1st Max Va...
## dbl
## date (1): Date Local
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
## 'summarise()' has grouped output by 'year'. You can override using the '.groups' argument.
```

Original data

- 1. The original data have clear sign of seasonality, but there seems to be linear upward trend.
- 2. The ACF PACF plot shows the strong sign of seasonality

```
ozone <- phoenix$o3
ozone = ozone - mean(ozone) # mean centered
plot(ozone, type ="1")</pre>
```


acf(ozone, lag.max = 30)

Series ozone

pacf(ozone)

Series ozone

Sinusoidal fitting

$$\begin{aligned} & \text{Vt} = \text{ozone } (1 + \text{B}) \\ & \text{Vt} = \text{Xt } (\text{Vt - f(t)}) = \text{Xt} \\ & f(t) = -0.003 + 0.000042 * t - 0.0012 * sin(t) - 0.0123 * cos(t) + 0.000002 * t * sin(t) - 0.000011 * t * cos(t) \end{aligned}$$

1. There is one significant peak in the periodogram 2. The residual plot shows some seasonality but the plot seems to be AR process and possible seasonal ARMA

```
t = 1:length(ozone)
# Check the periodogram
periodo = periodogram(ozone,plot=TRUE,ylab="Periodogram", xlab="Frequency") # There is one significant
```



```
# Get the high magnitudes in descending order
order_spec = sort(periodo$spec,decreasing = TRUE)
# Get the frequency that gives max magnitude
first_max = order_spec[1]
first_maximizing_freq = periodo$freq[periodo$spec==first_max]
first_sin_max = sin(2*pi*first_maximizing_freq*t)
first_cos_max = cos(2*pi*first_maximizing_freq*t)
# Max Sinusoidal fitting
ozone_sinusoid_model = lm(ozone ~ first_sin_max*(1+t)+first_cos_max*(1+t))
print(ozone_sinusoid_model$coefficients)
##
       (Intercept)
                     first_sin_max
                                                     first_cos_max first_sin_max:t
##
     -3.009489e-03
                     -1.160248e-03
                                      4.163369e-05
                                                     -1.233604e-02
                                                                       1.963185e-06
## t:first_cos_max
     -1.058031e-05
##
# Overlay the sinusoidal fitting over the original plot
plot(ozone,type = "1")
lines(t,ozone_sinusoid_model$fitted.values,col = "red")
```



```
# Get the residual, hoping for removing seasonality
ozone_sinusoid_residual = ozone_sinusoid_model$residuals
plot(ozone_sinusoid_residual,type = "l") # residual seems to be stationary
```


stats::acf(ozone_sinusoid_residual)

Series ozone_sinusoid_residual

stats::pacf(ozone_sinusoid_residual)

Series ozone_sinusoid_residual

Model1 : SARIMA(2,0,0)(1,0,1)12

```
model1 \leftarrow sarima(ozone\_sinusoid\_residual, p=2, d=0, q=0, P=1, D=0, Q=1, S=12) \# fit the model = 1 model =
## initial value -5.921137
## iter
                                            2 value -6.020457
## iter
                                             3 value -6.079641
## iter
                                          4 value -6.085871
## iter
                                            5 value -6.091190
## iter
                                             6 value -6.095582
## iter
                                             7 value -6.095958
                                             8 value -6.095969
## iter
                                             9 value -6.095970
## iter
## iter
                                             9 value -6.095970
                                             9 value -6.095970
## iter
## final value -6.095970
## converged
## initial value -6.075290
## iter
                                             2 value -6.078754
## iter
                                             3 value -6.081474
## iter
                                             4 value -6.085882
## iter
                                             5 value -6.088012
                                            6 value -6.092257
## iter
```

```
## iter
          7 value -6.095296
## iter
          8 value -6.097651
          9 value -6.099009
         10 value -6.100678
## iter
  iter
         11 value -6.101042
         12 value -6.101155
## iter
         13 value -6.101161
## iter
         14 value -6.101163
## iter
## iter
         15 value -6.101163
## iter
         16 value -6.101166
## iter
         17 value -6.101167
         18 value -6.101167
  iter
         19 value -6.101168
   iter
         20 value -6.101168
   iter
         21 value -6.101169
## iter
## iter
         22 value -6.101169
        22 value -6.101169
## iter
## iter 22 value -6.101169
## final value -6.101169
## converged
```


Estimate SE t.value p.value ci_lower ci_upper

coeff_table # show estimated coefficient and its ci

coeff_table <-coeff_table %>% mutate(ci_lower = Estimate-1.96*SE,ci_upper = Estimate+1.96*SE)

Model2: SARIMA(1,0,0)(1,0,1)12

```
model2 <- sarima(ozone sinusoid residual, p=1, d=0, q=0, P=1, D=0, Q=1, S=12) # fit the model
## initial value -5.924525
## iter
        2 value -6.014280
## iter
       3 value -6.072474
        4 value -6.080884
## iter
## iter
        5 value -6.087853
## iter
        6 value -6.094164
## iter
        7 value -6.094618
## iter
         8 value -6.094677
## iter
         9 value -6.094683
## iter
       10 value -6.094683
       11 value -6.094684
## iter
        12 value -6.094684
## iter 12 value -6.094684
## iter 12 value -6.094684
## final value -6.094684
## converged
## initial value -6.075303
## iter
        2 value -6.078312
## iter
        3 value -6.083138
## iter
        4 value -6.089196
## iter
        5 value -6.092910
## iter
        6 value -6.095028
## iter
        7 value -6.096554
## iter
         8 value -6.098751
## iter
        9 value -6.100853
       10 value -6.101030
## iter
## iter
        11 value -6.101038
        12 value -6.101038
## iter
## iter
        13 value -6.101041
        14 value -6.101048
## iter
        15 value -6.101050
## iter
## iter 16 value -6.101052
## iter 17 value -6.101053
## iter 18 value -6.101054
## iter 19 value -6.101055
## iter 20 value -6.101055
## iter 20 value -6.101055
## iter 20 value -6.101055
## final value -6.101055
## converged
```


Model3: SARIMA(2,1,1)(1,0,1)12

```
model3 <- sarima(ozone_sinusoid_residual, p=2, d=1, q=1, P=1, D=0, Q=1, S=12) # fit the model
## initial value -5.626415
          2 value -5.817904
## iter
## iter
          3 value -5.967005
          4 value -6.000235
## iter
## iter
          5 value -6.022716
          6 value -6.038025
## iter
## iter
          7 value -6.061036
          8 value -6.062258
## iter
```

```
## iter
        9 value -6.063975
## iter 10 value -6.065519
## iter 11 value -6.066125
## iter 12 value -6.066443
## iter 13 value -6.067328
## iter 14 value -6.067686
## iter 15 value -6.067780
        16 value -6.067831
## iter
## iter 17 value -6.067832
## iter
        18 value -6.067883
## iter
        19 value -6.067920
        20 value -6.067946
## iter
        21 value -6.067967
## iter
## iter
        22 value -6.068029
## iter
        23 value -6.068059
## iter
        24 value -6.068062
## iter
        25 value -6.068063
## iter 25 value -6.068063
## iter 25 value -6.068063
## final value -6.068063
## converged
## initial value -6.049027
        2 value -6.063938
## iter
## iter
         3 value -6.069719
## iter
        4 value -6.077660
## iter
        5 value -6.081289
## iter
        6 value -6.083983
         7 value -6.086264
## iter
## iter
         8 value -6.089727
         9 value -6.093924
## iter
## iter 10 value -6.097960
## iter
        11 value -6.098795
        12 value -6.099032
## iter
## iter
        13 value -6.099192
## iter
        14 value -6.099209
## iter
       15 value -6.099215
## iter 16 value -6.099216
## iter 17 value -6.099217
## iter 18 value -6.099217
## iter 19 value -6.099217
## iter
        20 value -6.099218
## iter 21 value -6.099219
## iter 22 value -6.099220
## iter 23 value -6.099220
## iter 23 value -6.099220
## iter 23 value -6.099220
## final value -6.099220
## converged
```


Model4: SARIMA(2,0,1)(1,0,1)12

```
model4 <- sarima(ozone_sinusoid_residual, p=2, d=0, q=1, P=1, D=0, Q=1, S=12) # fit the model

## initial value -5.921137
## iter 2 value -6.021739
## iter 3 value -6.079075
## iter 4 value -6.085438
## iter 5 value -6.091319
## iter 6 value -6.095255</pre>
```

```
## iter
         7 value -6.095886
## iter
         8 value -6.095982
## iter
         9 value -6.095984
       10 value -6.095987
## iter
## iter
        11 value -6.095993
## iter
        12 value -6.096006
        13 value -6.096024
        14 value -6.096036
## iter
## iter
        15 value -6.096039
## iter
        16 value -6.096040
## iter
        17 value -6.096040
        18 value -6.096040
## iter
## iter
        19 value -6.096040
## iter
        19 value -6.096040
## iter 19 value -6.096040
## final value -6.096040
## converged
## initial
           value -6.075372
## iter
         2 value -6.077112
        3 value -6.080624
## iter
## iter
        4 value -6.083981
## iter
        5 value -6.086061
        6 value -6.091109
## iter
## iter
         7 value -6.094569
## iter
         8 value -6.096817
## iter
        9 value -6.097887
## iter
        10 value -6.099778
        11 value -6.100684
## iter
## iter
        12 value -6.101115
## iter
        13 value -6.101118
## iter
        14 value -6.101118
## iter
        15 value -6.101118
## iter
        16 value -6.101124
        17 value -6.101136
## iter
## iter
        18 value -6.101149
## iter
        19 value -6.101171
## iter 20 value -6.101187
## iter 21 value -6.101190
## iter
        22 value -6.101192
## iter 23 value -6.101197
        24 value -6.101201
## iter
## iter 25 value -6.101209
        26 value -6.101219
## iter
        27 value -6.101230
## iter
        28 value -6.101233
## iter
## iter
        29 value -6.101237
## iter
        29 value -6.101237
## iter 29 value -6.101237
## final value -6.101237
## converged
## Warning in sqrt(diag(fitit$var.coef)): NaNs produced
## Warning in sqrt(diag(fitit$var.coef)): NaNs produced
```



```
## ar2
           0.0214
                     NaN
                             NaN
                                      NaN
                                                NaN
                                                          NaN
## ma1
           0.4374
                     NaN
                             NaN
                                      NaN
                                                NaN
                                                          NaN
           0.9498 0.0488 19.4654
                                  0.0000 0.854152
                                                     1.045448
## sar1
          -0.7278 0.1344 -5.4138
                                  0.0000 -0.991224 -0.464376
## sma1
         -0.0002 0.0006 -0.3604 0.7191 -0.001376 0.000976
## xmean
```

Evaluation Matrix

1. The first two models, SARIMA(2,0,0)(1,0,1)12, SARIMA(1,0,0)(1,0,1)12 gives the lowest AIC,AICc,BIC, hence theses models are the potential best two parametric models

```
# AIC, AICc, BIC
eval<- function(model){
  return (c(model$AIC, model$AICc,model$BIC))
}
m1_evaludation = eval(model1)</pre>
```

```
## AIC AICc BIC

## SARIMA(2,0,0)(1,0,1)12 -9.281128 -9.278109 -9.157386

## SARIMA(1,0,0)(1,0,1)12 -9.294789 -9.292790 -9.191670

## SARIMA(2,1,1)(1,0,1)12 -9.262661 -9.258342 -9.117626

## SARIMA(2,0,1)(1,0,1)12 -9.267376 -9.263118 -9.123010
```

Cross Validation

- 1. To determine best two models, use crovalidations and find two models that gives the lowest SSEs. Train: $2004 \sim 2011$ Test: 2012 2015
- 2. The first two models SARIMA(2,0,0)(1,0,1)12, SARIMA(1,0,0)(1,0,1)12 gives the lowest SSEs.
- 3. Overall, the first two models gives the lowest values on both (AIC,AICc,BIC) and the SSE. Hence, the best two parametric models are SARIMA(2,0,0)(1,0,1)12, SARIMA(1,0,0)(1,0,1)12

```
sse1 = c()
sse2 = c()
sse3 = c()
sse4 = c()
test_years = seq(10,15,1)
for (year in test_years) {
train index = 1:(12*(year-4))
test_index = (12*(year-4)+1):(12*(year-4+1))
train <- ozone sinusoid residual[train index]</pre>
test <- ozone sinusoid residual[test index]</pre>
m1_forecast <- sarima.for(train, p=2, d=0, q=0, P=1, D=0, Q=1, S=12, n.ahead=12)$pred
m2_forecast \leftarrow sarima.for(train, p=1, d=0, q=0, P=1, D=0, Q=1, S=12, n.ahead=12)pred
m3_forecast <- sarima.for(train, p=2, d=1, q=1, P=1, D=0, Q=1, S=12, n.ahead=12)$pred
m4_forecast \leftarrow sarima.for(train, p=2, d=0, q=1, P=1, D=0, Q=1, S=12, n.ahead=12)$pred
sse1 = c(sse1,sum((m1_forecast - test)^2))
sse2 = c(sse2,sum((m2_forecast - test)^2))
sse3 = c(sse3,sum((m3_forecast - test)^2))
sse4 = c(sse4,sum((m4_forecast - test)^2))
}
```



```
sse = rbind(mean(sse1),mean(sse2),mean(sse3),mean(sse4))
rownames(sse) = c("SARIMA(2,0,0)(1,0,1)12","SARIMA(1,0,0)(1,0,1)12","SARIMA(2,1,1)(1,0,1)12","SARIMA(2,colnames(sse) = c("SSE")
print(sse)
```

```
## SSE
## SARIMA(2,0,0)(1,0,1)12 5.776333e-05
## SARIMA(1,0,0)(1,0,1)12 5.837593e-05
## SARIMA(2,1,1)(1,0,1)12 6.140208e-05
## SARIMA(2,0,1)(1,0,1)12 5.971999e-05
```

The SSE for both model are low, but SARIMA(2,0,0)(1,0,1)12 is slighly better

Future 10 values prediction

```
m1_forecast <- sarima.for(ozone_sinusoid_residual, p=2, d=0, q=0, P=1, D=0, Q=1, S=12, n.ahead=10)$pred
```



```
ts = as.data.frame(145:154)
predict_t = 145:154
prediction = c()
coef = ozone_sinusoid_model$coefficients
for (t in predict_t){
        pred = coef[1] + coef[2] * sin(t) + coef[3] * t + coef[4] * cos(t) + coef[5] * sin(t) * t + coef[6] * cos(t) * coef[6] * cos(t) * t + coef[6] * 
       prediction = c(prediction,pred)
prediction
##
             (Intercept)
                                                                (Intercept)
                                                                                                                (Intercept)
                                                                                                                                                                 (Intercept)
                                                                                                                                                                                                                 (Intercept) (Intercept)
## -0.009641503
                                                              0.001033070
                                                                                                                0.013597515
                                                                                                                                                                0.016528621
                                                                                                                                                                                                                0.007152463 -0.005881246
           (Intercept)
                                                               (Intercept)
                                                                                                                (Intercept)
                                                                                                                                                                 (Intercept)
## -0.010543420 -0.002492147
                                                                                                                0.010919518
                                                                                                                                                               0.017393830
m1_forecast = as.vector(m1_forecast)
prediction = as.vector(prediction)
predictions = m1_forecast+prediction
ts2 = 1:154
preds = rep(NA, 144)
```

preds = c(preds,predictions)

```
plot(ozone2,type ="1")
lines(ts2,preds,col = "red")
```

