Job No.: 432 TUKAIRANGI Address: 432 TUKAIRANGI ROAD, Taupo, New Date: 09/12/2024

ROAD - 1 Zealand

Latitude: -38.654353 **Longitude:** 176.018862 **Elevation:** 543 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N0	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	2	Subsoil Category	D	Exposure Zone	В
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	4.328 m
Wind Region	NZ2	Terrain Category	2.0	Design Wind Speed	48.03 m/s
Wind Pressure	1.38 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	Very High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Gable Enclosed

For roof Cp, i = -0.3

For roof CP,e from 0 m To 4.33 m Cpe = -0.9 pe = -1.12 KPa pnet = -1.12 KPa

For roof CP,e from 4.33 m To 8.66 m Cpe = -0.5 pe = -0.62 KPa pnet = -0.62 KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward CP,e from 0 m To 8 m Cpe = 0.7 pe = 0.87 KPa pnet = 1.29 KPa

For side wall CP,e from 0 m To 4.33 m Cpe = pe = -0.81 KPa pnet = -0.81 KPa

Maximum Upward pressure used in roof member Design = 1.12 KPa

Maximum Downward pressure used in roof member Design = 0.67 KPa

Maximum Wall pressure used in Design = 1.29 KPa

Maximum Racking pressure used in Design = 1.37 KPa

Design Summary

Girt Design Front and Back

Girt's Spacing = 900 mm Girt's Span = 4009 mm Try Girt 190x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

Second page

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.98

K8 Upward =0.90 S1 Downward =12.23 S1 Upward =14.90

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 2.33 Kn-m Capacity 2.74 Kn-m Passing Percentage 117.60 % V_{0.9D-WnUp} 2.33 Kn Capacity 13.75 Kn Passing Percentage 590.13 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 22.66 mm Limit by Woolcock et al, 1999 Span/100 = 40.09 mm Sag during installation = 19.34 mm

Reactions

Maximum = 2.33 kn

Girt Design Sides

Girt's Spacing = 900 mm Girt's Span = 4000 mm Try Girt 190x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.98

K8 Upward =0.90 S1 Downward =12.23 S1 Upward =14.88

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

MWind+Snow	2.32 Kn-m	Capacity	2.74 Kn-m	Passing Percentage	118.10 %
$V_{0.9 D\text{-W} n U p}$	2.32 Kn	Capacity	13.75 Kn	Passing Percentage	592.67 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 22.46 mm Limit by Woolcock et al. 1999 Span/100 = 40.00 mm Sag during installation = 19.16 mm

Reactions

Maximum = 2.32 kn

Middle Pole Design

Geometry

250 UNI H5	Dry Use	Height	4756 mm
Area	49063 mm2	As	36796.875 mm2
Ix	191650391 mm4	Zx	1533203 mm3
Iy	191650391 mm4	Zx	1533203 mm3
Lateral Restraint	1300 mm c/c		

Loads

Total Area over Pole = 16.036 m^2

Dead	4.01 Kn	Live	4.01 Kn
Wind Down	10.74 Kn	Snow	0.00 Kn
Moment wind	19.24 Kn-m		
Phi	0.8	K8	1.00
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Shaving	Steaming	Normal	Dry Use
fb =	34.325 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	20.75 MPa	E =	8793 MPa

Capacities

PhiNex Wind	706.50 Kn	PhiMnx Wind	42.10 Kn-m	PhiVnx Wind	87.14 Kn
PhiNcx Dead	423.90 Kn	PhiMnx Dead	25.26 Kn-m	PhiVnx Dead	52.28 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.48 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.24 < 1 \text{ OK}$

Deflection at top under service lateral loads = 33.02 mm < 47.56 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30))}{(1+\sin(30))}$ $Kp = \frac{(1+\sin(30))}{(1-\sin(30))}$

Geometry For Middle Bay Pole

 $D_S = 0.6 \text{ mm}$ Pile Diameter

L= 1800 mm Pile embedment length

fl = 3246 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 19.24 Kn-m Shear Wind = 5.93 Kn

Pile Properties

Safety Factory 0.55

Hu = 10.30 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 20.13 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.96 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1800) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1800)

Skin Friction = 26.17 Kn

Weight of Pile + Pile Skin Friction = 30.03 Kn

Uplift on one Pile = 14.35 Kn

Uplift is ok