What is claimed is:

- 1. A loop interference canceller for canceling loop interference between transmission/reception antennas when multicarrier signals having reference carriers at regular intervals are relayed at the same frequency for transmission and reception, comprising:
- a cancellation section that cancels loop interference included in a received signal using a filter for which a factor is set;
 - a transmission path characteristic estimation section that estimates the transmission path characteristic of a signal after said loop interference is canceled;
- a residual characteristic calculation section that calculates a cancellation residual based on the estimation result of said transmission path estimation section;
- a 0 insertion section that inserts 0 data for the output of said residual characteristic calculation section;
 - an inverse fast Fourier transform section that transforms the output of said 0 insertion section into a time domain signal;
- a windowing section that , with respect to the output of said inverse fast Fourier transform section, extracts either a range without the repetitive component of the

transmission path characteristic or a range specified by the factor of said filter, whichever is smaller; and

an updating section that updates the factor of said filter based on the output of said windowing section.

5

15

20

25

The loop interference canceller according to claim
 wherein said transmission path characteristic
 estimation section comprising:

a fast Fourier transform section that transforms

10 the output of said cancellation section which is a time

domain signal to a frequency domain signal;

a reference carrier information extraction section that extracts information indicating arrangement of reference carriers and signal components from the output of said fast Fourier transform section;

a reference carrier extraction section that extracts only reference carriers from the output of said fast Fourier transform section according to the arrangement of the reference carriers obtained from the output of said reference carrier information extraction section; and

a transmission path characteristic calculation section that calculates the transmission path characteristic of reference carriers by comparing the output of said fast Fourier transform section with the arrangement and signal component of the reference carriers obtained from the output of said reference

carrier information extraction section.

3. The loop interference canceller according to claim 2, wherein said transmission path characteristic estimation section estimates the transmission path characteristic using only one set of outputs of said

transmission path characteristic calculation section.

4. The loop interference canceller according to claim 2, wherein said transmission path characteristic estimation section further comprises a reference carrier combination section that stores a plurality of sets of outputs of said transmission path characteristic calculation section and combines the sets of stored outputs with different arrangements of reference carriers according to the arrangement of reference carriers obtained from the output of said reference carrier extraction section,

said reference carrier combination section combines

20 only two sets of outputs in which reference carriers are
arranged at regular intervals, and

the transmission path characteristic is estimated using the output of said reference carrier combination section.

25

- 5. The loop interference canceller according to claim
- 2, wherein said transmission path characteristic

estimation section further comprises a reference carrier combination section that stores a plurality of sets of outputs of said transmission path characteristic calculation section and combines the sets of stored outputs with different arrangements of reference carriers according to the arrangement of reference carriers obtained from the output of said reference carrier extraction section,

said reference carriers combination section combines only four sets of outputs in which reference carriers are arranged at regular intervals, and

the transmission path characteristic is estimated using the output of said reference carrier combination section.

15

20

10

5

- 6. The loop interference canceller according to claim 1, wherein a specific set of reference carriers which do not require phase rotation compensation processing is used when the transmission path characteristic which is the output of said transmission path characteristic estimation section is estimated.
- 7. The loop interference canceller according to claim
 1, further comprising a phase rotation compensation
 25 section that carries out phase rotation compensation
 according to the arrangement of carriers used to estimate
 said transmission path characteristic for the output of

said windowing section,

wherein said updating section generates a factor of said filter from the output of said phase rotation compensation section.

5

1.0

- 8. The loop interference canceller according to claim 4, wherein said reference carrier combination section changes the number of sets of outputs of said transmission path characteristic calculation section to combine at the time of starting or restarting or according to the state of the factor of said filter.
- 9. The loop interference canceller according to claim 5, wherein said reference carrier combination section 15 changes the number of sets of outputs of said transmission path characteristic calculation section to combine at the time of starting or restarting or according to the state of the factor of said filter.
- 20 10. A relay system provided with the loop interference canceller according to claim 1.
 - 11. A loop interference canceling method for canceling loop interference between transmission/reception
- 25 antennas when multicarrier signals having reference carriers at regular intervals are relayed at the same frequency for transmission and reception, comprising:

a canceling step of canceling loop interference included in a received signal using a filter for which a factor is set;

a transmission path characteristic estimating step of estimating the transmission path characteristic of a signal after said loop interference is canceled;

5

10

15

20

a residual characteristic calculating step of calculating a cancellation residual based on the estimation result of said transmission path estimating step;

a 0 inserting step of inserting 0 data for the output result of said residual characteristic calculating step;

an inverse fast Fourier transforming step of transforming the output result of said 0 insertion step into a time domain signal;

a windowing step of, with respect to the output of said inverse fast Fourier transform step, extracting either a range without the repetitive component of the transmission path characteristic or a range specified by the factor of said filter, whichever is smaller; and an updating step of updating the factor of said

filter based on the output result of said windowing step.