ISMIR2004

Panel 2: Discussion on the Audio Description Contest

OUTLINE

- □ Panelists
- □ Contests (1 hour)
 - ☐ Overview: goal, data, and evaluation
 - □ Results
 - ☐ How to improve them: discussion
- □ Discussion (1 hour)
 - □ Role of evaluations
 - □ Lessons we have learned
 - ☐ Future contests

ISMIR 2004 AUDIO DESCRIPTION CONTEST

1st World-wide competition on algorithms for audio description for Music IR

12 Laboratories

20 Participants

□ Melody estimation

□ Tempo induction

□ Genre classification

□ Artist identification

□ Rhythm classification

ISMIR2004

Intl. Conf. Music Inform. Retrieval

Barcelona 10-14 October

http://ismir2004.ismir.net/IsmirContest.html

- □ Juan Bello
- □ Stephen Downie
- □ Dan Ellis
- □ Marc Leman
- □ Elias Pampalk
- ☐ George Tzanetakis

□ Juan Bello □ Ste Juan Bello □ Dai ☐ Queen Mary University □ Ma □ Elia □ Contest Participant □ Ge(□ ISMIR 2005 Organizing team

J. Stephen Downie
☐ School of Library and Information Science, U. Illinois at Urbana-Champaign
□ IMERSEL project for MIR/MDL evaluation
□ ISMIR Steering Committee

Dan Ellis
□ LabRosa at Columbia University
☐ Ground truth and evaluation frameworks as well as cross-site evaluation experience (with HP and MIT)
□ Contest participant

Marc Leman
☐ Ghent University, IPEM: Dept. of Musicology
- Official Offiversity, if Livi. Dept. of Musicology
□ MAMI project
□ ISMIR 2004 Program committee

.	Elias Pampalk
	□ PhD student at the Vienna University of
	Technology
	☐ Machine Learning and Data Mining Group at
	☐ Machine Learning and Data Mining Group at the Austrian Research Institute for Artificial
	Intelligence
	□ Contest participant

П	Luan Rella
	George Tzanetakis
_	☐ Assistant professor at Computer Science
	Department at University of Victoria
	□ MARSYAS
	□ Contest participant

CONTESTS: INITIAL PROPOSAL

- □ Audio fingerprinting
- ☐ Music genre classification
- □ Music instrument classification
- □ Artist Id / Similarity
- □ Melody estimation
- □ Rhythm classification
- □ Tempo induction
- □ Key / Chord extraction
- ☐ Music structure analysis / Chorus detection

CONTESTS: ACTUAL

- ☐ Melody estimation: 5 participants
- ☐ Artist Id: 2 participants
- □ Rhythm classification: 1 participants
- ☐ Music genre classification: 5 participants
- ☐ Tempo induction: 6 participants

CONTEST OVERVIEW: WHY?

- □ ~50 researchers at MTG-UPF
- □ Annotated audio databases
- □Computational resources
 - □Massive storage
 - □ Cluster
- □ Enthusiasm

CONTEST PRESENTATION: WHY?

□ ~50 researchers at MTG-UPF

GOAL
☐ Compare state-of-the-art audio description algorithms and systems relevant to MIR
Disclaimer:
☐ It does not represent the vast and multidisciplinary field of MIR/MDL
☐ It didn't mean to define as methodological basis for future initiatives

CONTESTS: GENERAL ISSUES

- □ Evaluation metrics agreed among participants.
 □ Databases could have be expanded with contributions of the participants.
 □ Training or testing data available.
- □ Audio content provided as far as **copyright** allow, otherwise metadata is provided or low-level descriptors.
- □ **Evaluation** at environment located at UPF labs.
- □ **Anonymity** allowed.
- □ Use of external frameworks permitted.

MELODY EXTRACTION

Compare algorithms for melody extraction within polyphonic audio: singing voice and solo instrument.

- □ Emilia Gómez
- □ Beesuan Ong
- □ Sebastian Streich
- Maarten Gratchen

MELODY EXTRACTION: AUDIO DATA

Tuning: 10 audio excerpts + melodic transcription of the predominant voice. Chosen to represent the problem:

- 4 2 MIDI synthesized
- - 2 opera singing + background music.
 - 2 items of pop music with singing voice.

Test: tuning set x 2 (20 excerpts)

MELODY EXTRACTION: SUBMISSION FORMAT

- □ <u>Input</u>: file, mono and 44.1 kHz sampling rate.
- □ <u>Output</u>:
 - □ Option 1,2: predominant F0 envelope in Hz (hop size 256).
 - □ Option 3: *onset offset MIDIPitch*

MELODY EXTRACTION: EVALUATION METRICS

Option 1: frame-based comparison of estimated f0 and reference f0 on logarithmic scale. The concordance was measured as the average absolute difference with a threshold of 1 semitone (= 100 cents) for the maximal error. Each frame contributed to the final result with the same weight.

Option 2: before computing the absolute difference, the values for f0 are mapped into one octave.

Option 3: Edit distance between melodies (Gratchen et al.)

MELODY EXTRACTION: PARTICIPANTS

ID	Name	Institution
1	Anonymous	_
2	Sven Tappert	University of Berlin
3	Graham Poliner	Columbia University
4	Juan P. Bello	Centre for Digital Music, Queen Mary University of London

MELODY EXTRACTION: PARTICIPANTS

ID	Name	Institution
1	Rui Pedro Paiva	University of Coimbra
2	Sven Tappert	University of Berlin
3	Graham Poliner	Columbia University
4	Juan P. Bello	Centre for Digital Music, Queen Mary University of London

MELODY EXTRACTION: RESULTS

- □ *Algorithm with best performance: ID=1.* ~65%
- □ Baseline: monophonic pitch tracker (SMSTools) ~38%

	ID 1			2			3			4				Baseline				
					Avera			Avera			Avera				Avera			Avera
	Option	1	2	3	ge12	1	2	ge12	1	2	ge12	1	2	3	ge12	1	2	ge12
	daisy2	75,23	75,23	4,94	75,23	38,65	69,06	53,86	78,22	78,74	78,48	78,13	78,66	6,92	78,40	68,52	71,38	69,95
	daisy3	91,10	91,10	0,49	91,10	80,15	80,48	80,31	86,87	87,18	87,03	79,61	79,61	0,56	79,61	1,21	29,39	15,30
	jazz2	67,82	68,56	6,80	68,19	21,05	55,74	38,40	74,99	74,99	74,99	59,70	67,86	9,66	63,78	46,16	57,90	52,03
set	jazz3	56,10	56,10	6,74	56,10	63,31	65,80	64,56	80,84	80,84	80,84	73,87	73,87	6,09	73,87	34,43	43,06	38,74
	midi1	74,77	77,58	6,58	76,17	37,80	41,79	39,80	66,60	66,79	66,69	15,79	33,63	26,78	24,71	2,58	16,40	9,49
Fraining	midi2	74,03	74,03	7,66	74,03	75,46	76,43	75,94	78,53	78,53	78,53	77,68	77,68	7,26	77,68	17,28	34,38	25,83
ain	opera_fe																	
Ļ	m2	35,46	35,49	13,16	35,48	45,00	46,51	45,75	35,68	35,68	35,68	44,73	44,76	13,72	44,74	38,17	44,36	41,26
	opera_mal e3	26.07	27.09	19.41	26,58	13,28	35,59	24,44	33,84	33,94	33,89	14,64	28,77	26,70	21.70	44.93	52.91	48.92
		- , -	, -	11,69	, i					55,43				26,70	30,35	14,40	18.29	
	pop1	60,92	61,10	, -	61,01	17,16	39,26	28,21	55,43		55,43	25,95	34,74	- '	,	.,	- '	16,35
	pop4	70,81	70,84	8,25	70,83	31,81	43,86	37,83	70,82	70,89	70,86	73,08	73,08	9,98	73,08	27,44	34,06	30,75
	daisy1	66,55	66,55	8,37	66,55	50,71	62,52	56,61	60,38	62,72	61,55	77,23	77,23	10,24	77,23	58,18	64,57	61,37
	daisy4	89,58	89,58	6,01	89,58	69,22	79,94	74,58	65,04	67,67	66,36	61,94	66,15	8,42	64,04	42,63	53,31	47,97
	jazz1	61,46	61,82	9,80	61,64	39,37	57,87	48,62	49,67	50,11	49,89	65,66	66,51	6,64	66,08	49,74	58,49	54,12
١	jazz4	78,26	78,26	1,96	78,26	32,83	56,77	44,80	46,41	47,61	47,01	61,11	67,06	4,56	64,08	25,12	34,24	29,68
set	midi3	64,20	64,22	5,30	64,21	61,47	64,37	62,92	50,93	51,42	51,17	42,22	58,30	19,43	50,26	32,59	38,63	35,61
Test	midi4	71,97	74,54	5,12	73,25	47,21	52,91	50,06	35,83	41,58	38,71	20,78	37,87	24,82	29,33	2,85	13,91	8,38
1	opera_fe m4	46,96	46,96	9,22	46,96	55,84	56,36	56,10	20,04	23,51	21,77	44,40	44,40	8.64	44.40	23,44	38.94	31,19
	opera mal	40,70	40,70	7,22	40,70	33,04	30,30	30,10	20,04	20,01	21,77	44,40	44,40	0,04	44,40	25,44	30,74	31,17
	e5	46,51	47,19	22,79	46,85	18,42	49,74	34,08	29,43	30,43	29,93	8,58	34,32	31,39	21,45	70,25	74,18	72,21
	pop2	63,94	64,08	10,30	64,01	18,89	38,98	28,93	57,67	58,04	57,86	28,96	36,25	21,72	32,61	31,70	34,95	33,33
	pop3	73,02	73,73	8,10	73,37	26,11	43,56	34,83	45,64	46,69	46,17	62,85	73,17	12,63	68,01	23,31	31,24	27,27
	Average	64,74	65,20	8,63	64,97	42,19	55,88	49,03	56,14	57,14	56,64	50,85	57,70	14,12	54,27	32,75	42,23	37,49

MELODY EXTRACTION: RESULTS SPEED

ParticipantID	1	2	3	4		
Operating system	Windows	Linux (MATLAB)	Linux	Linux (MATLAB)		
Average Time Per	Willdows	(WITTERIE)	Linux	(WITTERED)		
Audio Excerpt						
(in seconds)	3346,67	60,00	470,00	82,50		
Average Time Per						
Audio Excerpt						
(in minutes)	55,78	1,00	7,83	1,38		

MELODY EXTRACTION: DISCUSSION

Discussion on the evaluation methods and the corpora

- □ Does the contest reflect realistic needs?
- ☐ Is there enough data in the evaluation database?
- ☐ How to improve the evaluation framework?
- □ Possible related follow-on evaluations.

RHYTHM CLASSIFICATION

Compare algorithms for automatic classification of 8 rhythm classes (Samba, Slow Waltz, Viennese Waltz, Tango, Cha Cha, Rumba, Jive, Quickstep) from audio data.

☐ Fabien Gouyon

RHYTHM CLASSIFICATION: AUDIO DATA

8 rhythm classes: Samba, Slow Waltz, Viennese Waltz, Tango, Cha Cha, Rumba, Jive, Quickstep.

Participants were given a list of 488 training instances to download from:

http://www.ballroomdancers.com/Music/style.asp

Test data (210 instances) come from the same source.

Format: 30-s instances, real audio decompressed to .wav format, 44100 Hz, 16 bits, mono

RHYTHM CLASSIFICATION: SUBMISSION FORMAT

- □ <u>Input</u>: file, mono and 44.1 kHz sampling rate.
- □ <u>Output</u>:
 - □ A class among 8 possibilities

RHYTHM CLASSIFICATION: EVALUATION METRICS

Percentage of correctly classified instances

RHYTHM CLASSIFICATION: PARTICIPANT

1 algorithm submitted

Name	Institutions
Thomas Lidy, Andreas Pesenhofer and Andreas Rauber	Vienna University of Technology and ec3 - eCommerce Competence Center Vienna

RHYTHM CLASSIFICATION: RESULTS

- □ Algorithm performance: ~82% correct classification (210 test instances)
- □ Comparison with published results on comparable data (10-fold cross-validations on 698 instances):
 - ☐ Gouyon, Dixon, Pampalk, Widmer, Proc. AES25, 2004, ~79%
 - □ Dixon, Gouyon, Widmer, Proc. ISMIR 2004, ~96%

RHYTHM CLASSIFICATION: DISCUSSION

Discussion on the evaluation methods and the corpora

- □ Does the contest reflect realistic needs?
- ☐ Is there enough data in the evaluation database?
- ☐ How to improve the evaluation framework?
- □ Possible related follow-on evaluations.

MUSIC GENRE CLASSIFICATION

☐ The task is to classify songs into genres like Magnatune has organized its site.

classical 🀠

electronic 🀠

jazz_blues 🍕

metal_punk 🀠

Pedro Cano

Markus Koppenberger

Nicolas Wack

Jose Pedro Mahedero

MUSIC GENRE CLASSIFICATION: AUDIO DATA

Training and development set

A training and a development avalable participants. The training and development set consist each of:

classical: 320 pieces.

electronic: 115 pieces

jazz_blues: 26 pieces

metal_punk: 45 pieces

rock_pop: 101 pieces

world: 122 pieces

Evaluation

740 pieces

MUSIC GENRE CLASSIFICATION : SUBMISSION FORMAT

- □ A **framework** composed of python scripts was distributed
- □ Participants submitted
 - □ Descriptor extractor: wav → features
 - \Box Train model: features + classes \rightarrow
 - \square Evaluate model: features \rightarrow classes

MUSIC GENRE CLASSIFICATION : EVALUATION METRICS

Percentage of correctly classified instances normalized by the genre frequency

$$\sum_{c \in \mathit{genres}} p_c \cdot \mathit{guessed}_c$$

MUSIC GENRE CLASSIFICATION: PARTICIPANTS

Name	Institutions
Thomas Lidy and Andreas Rauber	Vienna University of Technology
Dan Ellis	Columbia University
Brian Whitman	MIT
Kris West	Univ. of East Anglia
Elias Pampalk	ÖFAI
George Tzanetakis	Univ. of Victoria

MUSIC GENRE CLASSIFICATION: RESULTS

Name	Results (% Acc / Acc normalized)
Thomas Lidy and Andreas Rauber	70.4 / 55.7
Dan Ellis and Brian Whitman	64 / 51
Kris West	78.3 / 67.2
Elias Pampalk	82.3 / 78.8
George Tzanetakis	71.3 / 58.6

MUSIC GENRE CLASSIFICATION: RESULTS

□ Robustness to cropping 25 sec middle

 \square Lidy 70.4 / 55.7 \rightarrow 63.4 / 52.1

□Tzanetakis 71.3 / 58.6 \rightarrow 57.5 / 24

MUSIC GENRE CLASSIFICATION: DISCUSSION

Discussion on the evaluation methods and the corpora

- □ Does the contest reflect realistic needs?
- ☐ Is there enough data in the evaluation database?
- ☐ How to improve it?
- □ Possible related follow-on evaluations.

ARTIST IDENTIFICATION

Compare algorithms for artist identification given 3 songs after training with 7 songs

Pedro Cano

Markus Koppenberger

Nicolas Wack

Jose Pedro Mahedero

ARTIST IDENTIFICATION: AUDIO DATA

Training and Development set

Low-level features (HTK MFCC) corresponding to songs of 105 artists from uspop2002.

The training set includes 7 songs from each artist and the development 3 songs.

Evaluation

205 Artists

7 songs/artist development and 3 for evaluation

ARTIST IDENTIFICATION: AUDIO DATA

Training and Development set

Low-level features (HTK MFCC) corresponding to songs of 105 artists from uspop2002.

The training set includes 7 songs from each artist and the development 3 songs.

Evaluation

30 Artists

7 songs/artist development and 3 for evaluation

ARTIST IDENTIFICATION: SUBMISSION FORMAT

- □ A **framework** composed of python scripts was distributed
- □ Participants submitted
 - □ Descriptor extractor: wav → features
 - \Box Train model: features + classes \rightarrow
 - \square Evaluate model: features \rightarrow classes

ARTIST IDENTIFICATION: EVALUATION METRICS

Percentage of correctly identified artists

ARTIST IDENTIFICATION: PARTICIPANTS

Name	Institutions
Thomas Lidy and Andreas Rauber	Vienna University of Technology
Dan Ellis	Columbia University
Brian Whitman	MIT

ARTIST IDENTIFICATION: RESULTS

Name	Results (% Acc out of 90 queries)
Thomas Lidy and Andreas Rauber	28 %
Dan Ellis and Brian Whitman	34 %

ARTIST IDENTIFICATION: RESULTS

Comparison with genre results

- \Box Lidy 55.7 % (6 class) \rightarrow 28 % (30 class)
- \square Ellis/Whitman 51 % (6 class) \rightarrow 34 % (30 class)

ARTIST IDENTIFICATION: DISCUSSION

Discussion on the evaluation methods and the corpora

- □ Does the contest reflect realistic needs?
- ☐ Is there enough data in the evaluation database?
- ☐ How to improve it?
- □ Possible related follow-on evaluations.

TEMPO INDUCTION

Compare algorithms that given an input audio file output its basic tempo (i.e. a scalar in BPM)

☐ Fabien Gouyon

TEMPO INDUCTION: AUDIO DATA

Preparatory data:

7 instances have been given to the participants together with their tempo values in order to compare whether algorithms yield the same outputs when ran in participants' labs and on our machines, and to check proper formatting of algorithm outputs.

Test set:

3199 tempo-annotated instances 2 to 30 seconds, 50 to 250 BPM, approximately constant tempi mono, .wav, Fs = 44100Hz, 16 bit resolution. total duration: ~45140 seconds (i.e. ~12 h 36 mn)

TEMPO INDUCTION: AUDIO DATA (2)

Test data details:

- 1. Loops: from a commercial provider, N=2036, a few bars of drum, bass or electronic loops (Rock, House, Ambient, Electronic, Techno), tempi given
- 2. Ballroom dance music excerpts: from a commercial provider (free version in real audio format), N=698, 8 dance styles, tempi given
- 3. Personal collection, N=465, musician placed beats manually (ground-truth tempo computed as the mean of the inter-beat interval)

TEMPO INDUCTION: SUBMISSION FORMAT

□ <u>Input</u>: file, mono and 44.1 kHz sampling rate.

□ Output: a scalar in BPM

TEMPO INDUCTION: EVALUATION METRICS

- 1. Accuracy 1: percentage of correct tempi, in BPM, within 4% accuracy
- 2. Accuracy 2: percentage of correct tempo, in BPM, within 4% accuracy, considering half, double, three times, 1/3 and 2/3 of ground-truth tempo as correct
- 3. In addition, the 2 previous accuracy measures have been computed on part of the test data (personal collection) distorted by several processes, i.e. downsampling/resampling, gsm encoding/decoding, filtering, addition of reverberation and white noise (with a signal-to-noise ratio of 20 dB).

TEMPO INDUCTION: PARTICIPANTS

12 algorithms:

Name	Institution	# entries
Miguel Alonso	ENST Paris	2
Simon Dixon	OEFAI, Vienna	3
Anssi Klapuri	Univ. Tampere	1
Martin McKinney	Philips	1
George Tzanetakis	Univ. Victoria	3
Christian Uhle	Fraunhofer	1
+ Eric Scheirer *	_	1

TEMPO INDUCTION: RESULTS

- ☐ Best algorithm: Klapuri's
 - □ Accuracy 1 ~66.9%
 - □ Accuracy 2 ~84.3%
 - □ Almost no percentage point loss with noisy data (similarly to McKinney and Dixon ISMIR03)
- ☐ Fastest algorithm: Dixon BeatRoot induction stage
- □ Scores range from 66.9% to 22.4% for accuracy 1 and 84.3% to 49.8% for accuracy 2
- ☐ Percentage point loss with noisy data range from around 0 to 28.
- □ Computation time (processing time / excerpt length) range from 0.02 to 15

TEMPO INDUCTION: DISCUSSION

Discussion on the evaluation methods and the corpora

- □ Does the contest reflect realistic needs?
- ☐ Is there enough data in the evaluation database?
- ☐ How to improve it?
- □ Possible related follow-on evaluations.

GENERAL ISSUES

- □ Need of evaluations
- □ Encouraging participation
 - □ J. Bello statement
- ☐ Audio and metadata quality issues.
- □ Copyright issues
- ☐ Future contests
- **□** Summary

ENCOURAGING PARTICIPATION

A great deal of work is independent of the number of participants.

Audio Description Contest allowed

- □ Anonymous submission
- □ Different platforms and frameworks

Sources of not participation

- ☐ Short time for preparation and submission
- □ Disagreement on the methodology
- □ Participants do not always pursue the contest goals.
- □ O.S. or other technical problems?
- □ Licensing issues?

ENCOURAGING PARTICIPATION:

A contestant/future host view:

- Lack of participation
- Well documented and widely referenced systems
- Somehow results should serve as a guideline for people interested on using these systems as frontend
- Intimidating to put your name on the line
- What do we need to do to have YOU guys participating next year
- Are we reflecting the interests of the community? (e.g. audio2score alignment, beat tracking)

AUDIO QUALITY ISSUES

- □ Audio quality issues (J. Reiss, ISMIR2004)
- ☐ Is it always important?

ANNOTATION METADATA

- □ Annotation issues (M. Lesaffre, M. Leman et al. 2004)
- □ MTGDB as a repository?

COPYRIGHT ISSUES

All rights reserved

□ AMG

□ Musicologist sites

□ Real data

but cannot be distributed.

Possible solutions:

☐ Distribute features only

 \Box Citation (< 30 sec)

□ Easier to distribute audio

☐ Could greatly benefit from MIR tools

but

□ Unknown artists

□ Less metadata

COPYRIGHT ISSUES: CREATIVECOMMONS.ORG

http://creativecommons.org

COPYRIGHT ISSUES: CREATIVECOMMONS.ORG

FUTURE INITIATIVES

- □ ISMIR 2005, QueenMary?
- □ UPF?
- □ Different labs involved in the preparation of different contests.
- □ IMERSEL

SUMMARY

