Summary for Complex Variables I

SEUNGWOO HAN

Contents

CHAPIER I	PRELIMINARIES	PAGE Z
1.1	Complex Plane	2
1.2	Rectangular Representation	2
1.3	Polar Representation	3
CHAPTER 2	Elementary Complex Functions	PAGE 4
2.1	Exponential Functions	4
2.2	Mapping Properties	5
2.3	Logarithmic "Functions"	5
2.4	Complex Exponents	5
CHAPTER 3	Analytic Functions	PAGE 7
3.1	Cauchy–Riemann Equation	7
3.2	Analyticity	9
CHAPTER 4	Complex Integration	Page 10
CHAPTER 5	CONFORMAL MAPPING	Page 11

Chapter 1

Preliminaries

1.1 Complex Plane

Definition 1.1.1: Complex Number

 $i := \sqrt{-1}$ is called the *imaginary unit*. $\mathbb{C} := \{x + iy \mid x, y \in \mathbb{R}\}$ is the set of complex numbers where \mathbb{R} is the set of real numbers.

Definition 1.1.2: Algebras of \mathbb{C}

For $z_k := x_k + iy_k$ where $k \in \mathbb{Z}_+$ and $x_k, y_k \in \mathbb{R}$,

- $z_1 + z_2 := (x_1 + x_2) + i(y_1 + y_2)$
- $z_1 \cdot z_2 := (x_1x_2 y_1y_2) + i(x_1y_2 + x_2y_1).$

Theorem 1.1.3

 \mathbb{C} is a field.

Proof. Trivial.

→ Note 🖠

z = a + ib, $a, b \in \mathbb{R}$ with $z \neq 0$. Then, $z^{-1} = \frac{1}{a+ib} = \frac{a-ib}{a^2+b^2}$.

1.2 Rectangular Representation

Definition 1.2.1

Let z = x + iy where $x, y \in \mathbb{R}$.

- (i) $|z| := \sqrt{x^2 + y^2}$ is called *modulus* of z.
- (ii) $\overline{z} := x iy$ is called *conjugate* of z.
- (iii) $\Re z = x$ is called the *real part* of z and $\Im z = y$ is called the *imaginary part* of z.
- (iv) For $z_1, z_2 \in \mathbb{C}$, $|z_1 z_2|$ is the distance between z_1 and z_2 .

Note

- $z + \overline{z} = 2\Re z$
- $z \overline{z} = 2i\Im z$
- $|z_1 + z_2| \le |z_1| + |z_2|$
- $\bullet \ \, \Big| |z_1| |z_2| \Big| \le |z_1 z_2|$

1.3 Polar Representation

Given $z \in \mathbb{C}$, |z| is unique. $\arg z = \theta + 2k\pi \ (k \in \mathbb{Z})$ (Or $\arg z = \theta \ (\text{mod } 2\pi)$)

Definition 1.3.1

If $z = |z| \cdot (\cos \theta + i \sin \theta)$, θ is called an *argument* of z and is written $\arg z = \theta \pmod{2\pi}$ (as $\theta + 2k\pi$ for $k \in \mathbb{Z}$ is an argument of z as well). If $\arg z = \theta^* \pmod{2\pi}$, and if $-\pi < \theta^* \le \pi$, then we define $\operatorname{Arg} z = \theta^*$ and it is called the *principal argument* of z.

Theorem 1.3.2

For $z_1, z_2 \in \mathbb{C}$ with $z_1, z_2 \neq 0$, $\arg z_1 z_2 = \arg z_1 + \arg z_2 \pmod{2\pi}$.

Proof. Let $\arg z_1 = \theta_1 \pmod{2\pi}$ and $\arg z_2 = \theta_2 \pmod{2\pi}$ Then, $z_1 = |z_1|(\cos\theta_1 + i\sin\theta_1)$ and $z_2 = |z_2|(\cos\theta_2 + i\sin\theta_2)$. Now, we have $z_1 \cdot z_2 = |z_1||z_2|(\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2))$.

Chapter 2

Elementary Complex Functions

2.1 Exponential Functions

Definition 2.1.1: Exponential Function

For each z = x + iy where $x, y \in \mathbb{R}$, we define $e^z := e^x \cdot (\cos y + i \sin y)$.

Theorem 2.1.2

For each $z \in \mathbb{C}$, $e^z = \sum_{j=1}^{\infty} \frac{z^j}{j!}$.

Proof. Proved later using complex integral.

Theorem 2.1.3

For each $z, z' \in \mathbb{C}$,

(a)
$$e^{z+z'} = e^z \cdot e^{z'}$$
,

(b)
$$e^{-z} = \frac{1}{e^z}$$
, and

(c) $e^{z+2k\pi i} = e^z$ for all $k \in \mathbb{Z}$.

Definition 2.1.4

For each $z \in \mathbb{C}$,

$$(1) \cos z := \frac{e^{iz} + e^{-iz}}{2}$$

$$(2) \sin z := \frac{e^{iz} - e^{-iz}}{2i}$$

$$(3) \cosh z = \frac{e^z + e^{-z}}{2}$$

(4)
$$\sinh z = \frac{e^z - e^{-z}}{2}$$

Theorem 2.1.5

For each $z \in \mathbb{C}$, we have $\cosh z = \cos(iz)$ and $\sinh z = -i\sin(iz)$.

Example 2.1.6

Let us solve $\cos z = 2$. Let $t := e^{iz}$ to obtain $t^2 - 4t + 1 = 0$, which gives $t = 2 \pm \sqrt{3}$. Write z = x + iy where $x, y \in \mathbb{R}$ to have $e^{ix}e^{-y} = 2 \pm \sqrt{3}$. Taking modulus to both sides gives $e^{-y} = 2 \pm \sqrt{3}$, i.e., $y = -\ln(2 \pm \sqrt{3})$. Taking argument to both sides gives $x = 2k\pi$

for $k \in \mathbb{Z}$. Thus, $z = 2k\pi - i \ln(2 \pm \sqrt{3})$ for $k \in \mathbb{Z}$.

2.2 Mapping Properties

대충 그래프 그리는 이야기 ㅇㅇ

2.3 Logarithmic "Functions"

Definition 2.3.1: Logarithmic Function

For any $z \in \mathbb{C} \setminus \{0\}$, we define $w = \ln z$ if and only if $e^w = z$.

Note 🛉

How to compute $\ln z$? Note that $z = |z| \cdot e^{i(\operatorname{Arg} z + 2k\pi)}$ for $k \in \mathbb{Z}$. Let w = u + iv where $u, v \in \mathbb{R}$ so that $e^w = e^u \cdot e^{iv} = |z| \cdot e^{i(\operatorname{Arg} z + 2k\pi)}$. Hence, we have $u = \ln|z|$ and $v = \operatorname{Arg} z + 2k\pi$. In other words, $\ln z = \ln|z| + i \operatorname{arg} z$. (Note that this is not a "function"!)

Definition 2.3.2: Principal Logarithmic Function

For any $z \in \mathbb{C} \setminus \{0\}$, we define $\operatorname{Ln} z := \ln|z| + i \operatorname{Arg} z$ and it is called the *principal value of* $\ln z$.

Definition 2.3.3: Branch of Logarithm

A *branch* of $\ln z$ is a function given by ω : $\ln z$ with $\theta_0 < \arg z \le \theta_0 + 2\pi$. Here, θ_0 is called a *branch cut*.

Example 2.3.4

 $B := \{z \mid |z+2| < 1\}$ when mapped with Ln is not an open ball but it becomes an open ball when the branch cut is $-\pi/2$.

2.4 Complex Exponents

Definition 2.4.1: Complex Exponents

For $z \in \mathbb{C} \setminus \{0\}$ and $w \in \mathbb{C}$, define

$$z^w := e^{w \ln z}$$
.

Note

Complex exponentiation is not a function! If one considers the complex exponentiation as a set of possible values, then $z^{\eta_1} \cdot z^{\eta_2} = z^{\eta_1 + \eta_2}$ may easily fail!

Example 2.4.2

To solve $z^{1-i} = 4$, write $e^{(1-i)\ln z} = e^{\ln 4}$, i.e., $\ln z = (1+i)(\ln 2 + k\pi i)$ for $k \in \mathbb{Z}$. In other words, $\ln |z| + i \arg z = (\ln 2 - k\pi) + i(\ln 2 + k\pi)$. Hence, $|z| = e^{\ln 2 - k\pi}$ and $\arg z = \ln 2 + k\pi$ (mod 2π).

Chapter 3

Analytic Functions

3.1 Cauchy-Riemann Equation

Definition 3.1.1: Continuity

For a fixed point $z_0 \in \mathbb{C}$, a function f is said to be continuous at z_0 if

$$\lim_{|z-z_0|\to 0} |f(z)-f(z_0)| = 0.$$

Definition 3.1.2: Differentiability

For a fixed point $z_0 \in \mathbb{C}$, a function f is said to be *continuous at* z_0 if

$$\lim_{\substack{|\omega|\to 0\\\omega\in\mathbb{C}}}\frac{f(z_0+\omega)-f(z_0)}{\omega}$$

exists. If f is differentiable at z_0 , then define the *derivative* of f at z_0 by

$$f'(z_0) \coloneqq \lim_{\substack{|\omega| \to 0 \\ \omega \in \mathbb{C}}} \frac{f(z_0 + \omega) - f(z_0)}{\omega}.$$

Example 3.1.3

For each $n \in \mathbb{N}$, one can derive that $f'(z) = nz^{n-1}$ where $f(z) = z^n$.

Theorem 3.1.4

If f is differentiable at z_0 , then it is continuous at z_0 .

Example 3.1.5

Let us determine differentiability of $f(z) = |z|^2$. Write z = x + iy and $\omega = p + iq$ for $x, y, p, q \in \mathbb{R}$. Then,

$$\frac{f(z+\omega)-f(z)}{\omega} = \frac{2(xp+yq)+|\omega|^2}{\omega}$$

As we know $\lim_{\omega \to 0} \frac{|\omega|^2}{\omega} = 0$, we only need to care if $\lim_{\omega \to 0} \frac{2(xp+yq)}{p+iq}$. Evaluating the limit along the real axis and the imaginary axis gives 2x and -2yi; hence f is not

differentiable at $z \in \mathbb{C} \setminus \{0\}$. At the origin, we have $f'(0) = \lim_{\omega \to 0} \frac{f(0+\omega) - f(0)}{\omega} = 0$.

Theorem 3.1.6

Product, quotient, chain rule still holds in complex derivative.

Theorem 3.1.7 Cauchy-Riemann Equation

If f is differentiable at z, then $f_y(z) = i f_x(z)$ at z, or equivalently,

$$\begin{cases}
 u_x = v_y \\
 u_y = -v_x
\end{cases}$$

where $u(x, y) := \Re f(x + iy)$ and $v(x, y) := \Im f(x + iy)$ for $x, y \in \mathbb{R}$.

Proof.
$$f_x(z) = \lim_{\xi \to 0} \frac{f(z+\xi) - f(z)}{\xi} = f'(z) \text{ and } -if_y(z) = \lim_{\eta \to 0} \frac{f(z+i\eta) - f(z)}{i\eta} = f'(z).$$

Example 3.1.8

Is e^z differentiable in \mathbb{C} ?

$$\lim_{h \to 0} \frac{e^h - 1}{h} = \lim_{(\xi, \eta) \to 0} \frac{(e^{\xi} - 1)e^{i\eta} + (e^{i\eta} - 1)}{\xi + i\eta}$$

Note

We may write $f(z) = u\left(\frac{z+\overline{z}}{2}, \frac{z-\overline{z}}{2i}\right) + iv\left(\frac{z+\overline{z}}{2}, \frac{z-\overline{z}}{2i}\right)$. If f is differentiable, we define

$$\begin{split} \frac{\partial f}{\partial z} &:= \left(\frac{1}{2}\partial_x + \frac{1}{2i}\partial_y\right) u + i\left(\frac{1}{2}\partial_x + \frac{1}{2i}\partial_y\right) v = \left(\frac{1}{2}\partial_x + \frac{1}{2i}\partial_y\right) f \\ \frac{\partial f}{\partial \overline{z}} &:= \left(\frac{1}{2}\partial_x - \frac{1}{2i}\partial_y\right) u + i\left(\frac{1}{2}\partial_x - \frac{1}{2i}\partial_y\right) v = \left(\frac{1}{2}\partial_x - \frac{1}{2i}\partial_y\right) f \,. \end{split}$$

So that $\frac{\partial f}{\partial \overline{z}} = \frac{1}{2}(\partial_x + i\partial_y)f = 0$ if f is differentiable.

Definition 3.1.9: Domain

A domain is an open and connected subset of \mathbb{C} .

Theorem 3.1.10

Any two points in a domain can be connected by polygonal lines parallel to the coordinate axes that lies in the domain.

Proof. Let D be a domain and let $z_0 \in D$. Let $A \subseteq D$ be the set of all points in D that can be connected from z_0 by polygonal lines parallel to the coordinate axes. Let $B := D \setminus A$. If $z \in A$ and r > 0 satisfy $B_r(z) \subseteq D$, then $B_r(z) \subseteq A$; hence A is open. Similarly, B is open as well. As D is connected, A or B is empty but $z_0 \in A$; hence, $B = \emptyset$.

Theorem 3.1.11

If $f'(z) \equiv 0$ in a domain D, then f is constant on D.

Proof. $f_x \equiv f_y \equiv 0$; hence $u_x \equiv v_x \equiv u_y \equiv u_x \equiv 0$ on D. Thus, f is contant on every line segment in D parallel to coordinate axes. Hence, f is constant on D.

Corollary 3.1.12

Let f be differentiable on a domain D.

- (1) If $\Re f(z)$ is constant on D, then f is constant on D.
- (2) If $\Im f(z)$ is constant on D, then f is constant on D.
- (3) If Arg f(z) is constant on D, then f is constant on D.

Proof.

(1) There is $\omega_0 \in \mathbb{C}$ such that, when g is defined by $g(z) \triangleq f(z) - \omega_0$, we have $\Re g(z) \equiv 0$ and g is differentiable on D.

$$\lim_{\xi \to 0} \frac{f(z+\xi) - f(z)}{\xi} = f'(z) = \lim_{\eta \to 0} \frac{f(z+i\eta) - f(z)}{i\eta}$$

where the left hand side is real and the right hand side is purely imaginary. Therefore, f'(z) = 0 for all $z \in D$. The result follows from Theorem 3.1.11.

- (2) Let g(z) = if(z) so that g is differentiable on D and $\Re g(z)$ is constant. Therefore, by (1), g is constant and thus f is constant.
- (3) There is $\omega_0 \in \mathbb{R}$ such that, when g is defined by $g(z) \triangleq f(z)e^{-i\omega_0}$, we have $\Re g(z)$ is constant and g is differentiable on D. Tehrefore, by (1), g is constant and thus f is constant.

3.2 Analyticity

Definition 3.2.1: Analytic Function

- For a fixed point $z_0 \in \mathbb{C}$, a function f is *analytic* at z_0 if there is some r > 0 such that f is differentiable at every point in $B_r(z_0) \triangleq \{z \in \mathbb{C} : |z z_0| < r\}$.
- A function f is analytic in domain D if it is analytic at z for all $z \in D$.
- A function f is *entire* if it is analytic in \mathbb{C} .

Theorem 3.2.2

Given a function f(z) = u(x, y) + iv(x, y) in domain D, if

- (1) u(x, y) and v(x, y) are C^1 in D, and if
- (2) u(x, y) and v(x, y) satisfy the Cauchy–Riemann equations in D, then f is analytic in D.

Chapter 4 Complex Integration

Chapter 5 Conformal Mapping