Distribuciones discretas	¿Qué mide la variable aleatoria?	f(x)		F(x)	E(x)	Var(x)
Uniforme	Asume un número finito de valores, de modo que cada uno tiene las mismas probabilidades de ocurrir	$\frac{1}{n}$	$x=x_1,x_2,\dots,x_n$ n es un entero positivo	$F(x_k) = \sum_{i=1}^k \frac{1}{n} = \frac{k}{n}$	$\frac{1}{n}\sum_{i=1}^{n}x_{i}$	$\frac{1}{n} \sum_{i=1}^{n} x_i^2 - \left(\frac{1}{n} \sum_{i=1}^{n} x_i\right)^2$
Bernoulli	Éxito (toma el valor 1) o Fracaso (toma el valor 0)	$p^x(1-p)^{1-x}$	x = 0, 1 0		p	p(1-p)
Geométrica	Número de <i>ensayos</i> hasta el primer <i>éxito</i>	$(1-p)^{x-1}p$	x = 1, 2, 3, 0	$1-(1-p)^{[x]}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Binomial	Número de <i>éxitos</i> obtenidos en <i>n ensayos</i>	$\binom{n}{x}p^x(1-p)^{n-x}$	x = 0, 1, 2,, n $0 n es un entero positivo$	$\sum_{i=0}^{x} \binom{n}{i} p^{i} (1-p)^{n-i}$	np	np(1-p)
Binomial negativa		$ \binom{x-1}{k-1} p^k (1-p)^{x-k} $	x = k, k + 1, k + 2, 0	$\sum_{i=k}^{x} {i-1 \choose k-1} p^k (1-p)^{i-k}$	$\frac{k}{p}$	$\frac{k(1-p)}{p^2}$

Distribuciones discretas (continuación)	¿Qué mide la variable aleatoria?	f(x)		F(x)	E(x)	Var(x)
Hipergeométrica	Número de objetos de la muestra que posee el rasgo	$\frac{\binom{K}{x}\binom{N-K}{n-x}}{\binom{N}{n}}$	$\max[0, n - (N - K)]$ $\leq x \leq$ $\min(n, K)$	$\sum_{i=0}^{x} \frac{\binom{K}{i} \binom{N-K}{n-i}}{\binom{N}{n}}$	$n\frac{K}{N}$	$n\frac{K}{N} \left(\frac{N-K}{N}\right) \left(\frac{N-n}{N-1}\right)$
Poisson	Número de <i>ocurrencias</i> <i>del evento</i> en el intervalo de <i>tamaño</i> t	$\frac{e^{-(\lambda t)}(\lambda t)^x}{x!}$	$x = 0,1,2,$ $\lambda t > 0$	$\sum_{i=0}^{x} \frac{e^{-(\lambda t)}(\lambda t)^{i}}{i!}$	λt	λt
Distribuciones continuas	¿Qué mide la variable aleatoria?	f()	IDROBABI	F(x)	E(x)	Var(x)
Uniforme	Valores comprendidos entre dos extremos (a y b)	$\frac{1}{b-a}$	a < x < b	$\frac{x-a}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Exponencial	Tiempo en el que ocurre el primer evento - Tiempo entre dos eventos consecutivos	$\lambda e^{-\lambda x}$	$ \begin{array}{c} x > 0 \\ \lambda > 0 \end{array} $	$1 - e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Gamma (Erlang)	Tiempo hasta que ocurre el <i>k-ésimo evento</i>	$\frac{\lambda^k x^{k-1} e^{-\lambda x}}{(k-1)!}$	$ \begin{aligned} $	$1 - \sum_{i=0}^{k-1} \frac{e^{-\lambda x} (\lambda x)^i}{i!}$	$\frac{k}{\lambda}$	$\frac{k}{\lambda^2}$