

广工资源在线

更多试卷、资料尽在公众号

广东工业大学试卷用纸, 共 4 页 第一页

[公司地址]

窕

俳

广东工业大学考试试卷 (B)

课程名称: 概率论与数理统计 C 试卷满分_100分

考试时间: 2011 年 12 月 16 日 (第 16 周星期五)

166 只		二	三						总分
题 号			1	2	3	4	5		芯刀
评卷得分									
评卷签名									
复核得分									
复核签名									

- 一. 选择题(20分,每题4分)
 - 1. 已知 P(A) = 0.6, P(B) = 0.8, $P(\overline{B} \mid A) = 0.2$, 则下列结论正确的是(
 - (A). 事件 A 与事件 B 互不相容;
 - (B). 事件 A 与事件 B 互为对立;
 - (C). 事件 A 与事件 B 相互独立;
 - (D). $A \subset B$.
- 2. 设随机变量 X 的期望 EX 和方差 DX 都存在,则 E(EX) + D(DX) =()
 - (A). $(EX)^2$; (B). $(DX)^2$; (C). DX; (D). EX •

3. 已知离散型随机变量 X 的分布函数为

$$F(x) = \begin{cases} 0, & x < -2 \\ 0.1, & -2 \le x < 0 \\ 0.4, & 0 \le x < 1 \\ 0.8, & 1 \le x < 3 \\ 1, & x \ge 3 \end{cases}$$

则 X 的期望 EX = ()

- (A). 0.8; (B). 0.4; (C). 0.1; (D). 0 0

(A). 0 ; (B).	$\frac{4}{9}$;	(C). 1 ;	(D). $\frac{2}{3}$ °	
5. 有一大批已知次品型的件数,根据中心极限定理			几抽查的 100 件产品中	□次品
(A). $N(0,1)$;		(B). $N(20,16)$;	
(C). $N(20, 0.16)$;	,	(D). $N(0.2, 0.16)$) 。	
二. 填空题(20分,每题4	1分)			
1. 设事件 <i>A</i> 与事件 <i>B</i> 互不	「相容,并且」	P(A) = 0.4 , P(B)	=0.5,则事件 B 不发	生的
条件下事件 4 也不发生的概	率为	0		
2. 已知 $X \sim N(2, \sigma^2)$,且	P(0 < X < 4)	$=0.6$,则 $P(X \ge 0)$) =。	
3. 设随机变量 <i>X</i> 在区间[-数 <i>Y</i> 的概率密度函数为	_	匀分布,又设Y:	= 2X + 4 ,则随机变量	畫函
4. 设随机变量 <i>X</i> 的概率	密度为 f(x)	$= \begin{cases} ax^{-3}, & x > 0 \\ 0, & x \le 1 \end{cases}$	· 1 1 ,则 <i>a</i> =。	
5. 设 X 和 Y 是区间[-1,1] ^{[-}	中随机抽取的	两个数,则 <i>P</i> (-0.	0.5 < X - Y < 1) =	
o				
三. 计算题 (60 分) 1. (9 分)有三个大小形状白球,第二个箱子里装有 5 球。现随机抽取一个箱子, (1) 求取出的这个球是白球 (2) 已知取出的是黑球,对	个黑球3个白再从这个箱子 再从这个箱子 求的概率;(5 文此球是从第3	球,第三个箱子 中取出一个球。 分)	里装有 3 个黑球 5 个 E 勺概率。(4 分)	

4. 设随机变量 X 与 Y 独立同分布,且取-1,1 两个值的概率分别为 $\frac{1}{3}$, $\frac{2}{3}$

; $\iint P\{X+Y=0\}=$ ()

2. (9 分) 设随机变量
$$x$$
 的概率密度函数为 $f(x) = \begin{cases} 2x, & 0 \le x \le 1 \\ 0, & 其他 \end{cases}$, y 表示

对 X 的 4 次独立重复试验中事件 $\{X < \frac{1}{2}\}$ 出现的次数,问 Y 出现多少次的可能性最大,并求此时的概率?

3.
$$(12 分)$$
设 (X,Y) 是二维随机变量,其中 X 服从二项分布 $B(1,\frac{1}{4})$,随机变量 Y 服

从二项分布
$$B(1,\frac{3}{4})$$
,并且 X 与 Y 的相关系数 $r_{XY} = -\frac{1}{3}$,求 (X,Y) 的联合分布列。

- 4. (14 分) 已知随机变量 X 与 Y 分别服从正态分布 N(1,9) 与 N(0,4) ,并且 X 与 Y 的相关系数 $r_{XY}=\frac{1}{2}$,设随机变量 $Z=\frac{1}{3}X-\frac{1}{2}Y+\frac{2}{3}$;
 - (1) 求 Z 的期望 EZ 以及方差 DZ; (6分)
- (2) 求X与Z的相关系数; (5分)
- (3) 判断 X 与 Z 的独立性,并说明理由。(3分)
- 5. (16分)设二维随机变量(X,Y)的联合密度函数为:

$$f(x,y) = \begin{cases} \frac{1}{2} x e^{-y}, & 0 \le x \le 2, y \ge 0 \\ 0, & 其他 \end{cases}$$
 ; 试求:

- (1) 概率P(X < Y); (2分)
- (2) 判断 X 与 Y 是否独立,并说明理由; (6分)
- (3) (X,Y)的联合分布函数F(x,y)。(8分)