# Task2 - ELLIPSE FITTING

# Sauarbh Jain-143050048 Vivek- 143059005 September 18,2015

#### 1 Question 5

Our Program is using cholesky Decomposition Method of Scatter Matrix to find Matrix A .

Following are condition where err =-1

- If Scatter(S) is not positive Definite error return is -1
- No negative eigenvalue corresponds to C\*
- if alpha( $\alpha$ ) value is not real (ie  $\alpha = \sqrt{-1/\mu^T C \mu}$ )

Observation for different Tests DATA Running FindEllipse\_Basic on:

#### **EDATA1:**

### Output:

axis1 = 8.0000 axis2 = 3.0000  $center_x = -6.4146e-017$   $center_y = 3.7007e-018$   $theta_radian = -3.5886e-017$   $theta_degree = -2.0561e-015$  err = 0 $Cofficient_matrix = -1.8750e-001 -8.2239e-017 -1.3333e+000 -2.4055e-017 9.8686e-018 3.0000e+000$ 



#### Observation: Found a exact fit for EDATA1

#### EDATA2:

## **Output:**

axis1 = 8.0000

axis2 = 3.0000

center x = 2.0000

center\_y = 3.0000

theta\_radian = -1.4159

theta\_degree = -81.127

err = 0

Cofficient\_matrix =

-1.30607 -0.34926 -0.21476 6.27207 1.98710 -6.25272



#### **Observation: Found a exact fit for EDATA2**

#### HDATA3:

Scatter matrix is not positive definite

err = -1

Can not fit ellipse

#### **HDATA4**:

axis1 = 9.4605

axis2 = 3.5477

center\_x = 2.0000

center\_y = 3.0000

theta radian = -1.4159

theta\_degree = -81.127

err = 0

Cofficient\_matrix =

-1.30607 -0.34926 -0.21476 6.27207 1.98710 -5.05738



# Observation: Algorithm Try to fit a approximate ellipse to Hyperbola

## EDATA1\_noisy

axis1 = 3.0741

axis2 = 7.7372

center x = 0.61712

center\_y = -0.060161

theta\_radian = -1.5602

theta degree = -89.394

err = 0

Cofficient matrix =

0.198776 -0.022416 1.258329 -0.246685 0.165239 -2.892066



## Observation: A good fit is found for a noisy ellipse(1)

## EDATA2\_Noisy

axis1 = 7.9862

axis2 = 3.6323

center\_x = 2.0501

center\_y = 2.6319

theta\_radian = -1.2193

theta\_degree = -69.860

err = 0

Cofficient\_matrix =

-0.99597 -0.56371 -0.33077 5.56728 2.89679 -5.89276



# Observation: A good fit is found for a noisy ellipse(2)

## HDATA3\_Noisy

axis1 = 11.220

axis2 = 3.5185

center\_x = 0.27647

center\_y = 0.66338

theta radian = -0.0037116

theta\_degree = -0.21266

err = 0

Cofficient\_matrix =

-0.156809 -0.010672 -1.594473 0.093787 2.118437 4.219192



# Observation: Algorithm Try to fit a approximate ellipse to Hyperbola(1)

# HDATA4\_Noisy

axis1 = 3.3476

axis2 = 9.6935

center\_x = 2.2516

center\_y = 2.6516

theta\_radian = 0.14649

theta\_degree = 8.3932

err = 0

Cofficient matrix =

1.42065 0.36827 0.19984 -7.37407 -1.88901 6.74997



Observation : Algorithm Try to fit a approximate ellipse to Hyperbola(2)

# 1 Question 6

| (Die: 1 1 / 2 2                | Alternate Method                                                 | Onto:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| We Have                        | D= (D11 D2)                                                      | OT THE REAL PROPERTY OF THE PERTY OF THE PER |
| & Matrices S=                  | $= \begin{pmatrix} S_1 & S_2 \\ S_2^T & S_3 \end{pmatrix}$ where |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                | $(S_2^T   S_3)$                                                  | S2 = D1 T D2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| R                              |                                                                  | S3 = D2TD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| C= (G                          | 10 where C = [ "                                                 | 0 -27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                | 0 where c,= [0                                                   | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| & Tofficient Vector a          | into                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a = [a1                        | Q1 = (0)                                                         | 92 = (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (0,                            | L) (c)                                                           | (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| We have equation, gen          | exalized Eigen Val                                               | ul System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                | - S292 = 1'C104                                                  | (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| S <sub>2</sub> Ta <sub>1</sub> | + S3Q2 = 0                                                       | (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| a,TC,                          | a1 = -1                                                          | (ד)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Our Solution                   | 4                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| from (6) we have               | a2=-83 52 a1                                                     | <b>3</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                |                                                                  | Fet Z= - S3 - S2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| putting a 2 un equal           | tion (3) we have.                                                | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| H_ | $a_1^T C_1 a_1 = -1 \tag{7}$                                                    |
|----|---------------------------------------------------------------------------------|
| 1  | Dun Solution                                                                    |
|    | From (6) we have $a_2 = S_3^{-1} S_2^{-1} a_1$ (6) Let $z = -S_3^{-1} S_2^{-1}$ |
| -  | putting a, ûn equation (3) we have.                                             |
| -  | $S_1 \alpha_1 - S_2 S_3^{-1} S_2^{\top} \alpha_1 = \lambda' C_1 \alpha_1$       |
| 1- | => (S1-S2S31S2T) Q1 = XC1Q1 [ W M = S1-S2S31ST]                                 |
|    | Since $C_1$ is invertible                                                       |
|    | $\Rightarrow (C_1^{-1}M)\alpha_1 = \lambda'\alpha_1 - 9$                        |
|    | solution to this equation are eigen vector of c-1 M which satisfies             |
|    | the condition $4ac-b^2 > 0$                                                     |
|    | Now                                                                             |
|    | as will be from ®                                                               |
|    | $a_2 = Z a_1 = -S_3^{-1} S_2^{-1} a_1$                                          |
|    | final solution is $a = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$                |

#### 1 Question 7

Our Program is uses above Algorithm to fit Ellipse gives error condition if

• if there exist no eigen vector of  $C^{-1}M$  such that  $4*a*c-b.^2 > 0$  condition is satisfied.

Observation for different Tests DATA Running FindEllipse Alternate on:

#### **EDATA1:**

# Output:

```
axis1 = 3

axis2 = 8.0000

center_x = -1.9737e-017

center_y = 3.7007e-018

theta_radian = -1.5708

theta_degree = -90

err = 0

Cofficient_matrix = 1.3925e-001 -1.0994e-016 9.9026e-001 5.4970e-018 -7.3294e-018 -2.2281e+000
```



# Observation :Found a exact fit for EDATA1 (ellipse(1))

#### **EDATA2**:

#### **Output:**

```
axis1 = 8.0000
```

axis2 = 3.0000

center\_x = 2.0000

center\_y = 3.0000

theta\_radian = -1.4159

theta\_degree = -81.127

err = 0

Cofficient\_matrix =

-0.95409 -0.25514 -0.15689 4.58178 1.45159 -4.56765



Observation :Found a exact fit for EDATA2(ellipse(2))

#### **HDATA3**:

#### **Output:**

```
axis1 = 9.4605

axis2 = 3.5477

center_x = -1.6458e-017

center_y = 0

theta_radian = 0

theta_degree = 0

err = 0

Cofficient_matrix =
```

-0.13925 0.00000 -0.99026 -0.00000 0.00000 3.11585



Observation: Try to fit a approximate fit to hyperbola(1)

#### HDATA4:

### **Output:**

```
axis1 = 9.4605
```

axis2 = 3.5477

center\_x = 2.0000

center\_y = 3.0000

theta\_radian = -1.4159

theta\_degree = -81.127

err = 0

Cofficient\_matrix =

-0.95409 -0.25514 -0.15689 4.58178 1.45159 -3.69445



Observation: Try to fit a approximate fit to hyperbola(2)

## EDATA1\_noisy:

#### **Output:**

```
axis1 = 2.6398
```

axis2 = 9.4734

center\_x = 0.86229

center\_y = 0.25066

theta\_radian = -1.4932

theta\_degree = -85.551

err = 0

Cofficient\_matrix =

0.082529 -0.141517 0.986490 -0.106855 -0.372520 -1.635389



Observation: a good fit for noisy ellipse (1)

# EDATA2\_noisy:

### **Output:**

```
axis1 = 8.1111
```

axis2 = 3.8553

center\_x = 2.1719

center\_y = 3.0197

theta\_radian = 1.5540

theta\_degree = 89.040

err = 0

Cofficient\_matrix =

-0.975049 0.025286 -0.220546 4.158990 1.277038 -2.820528



Observation: a good fit for noisy ellipse (2)

# HDATA3\_noisy:

### **Output:**

axis1 = 9.3036

axis2 = 4.0535

center\_x = 0.14555

center\_y = 0.30692

theta\_radian = -0.012892

theta\_degree = -0.73866

err = 0

Cofficient\_matrix =

#### -0.186611 -0.020519 -0.982220 0.060618 0.605906 3.937843



Observation: try to fit a noisy hyperbola(1) to a ellipse

# **HDATA4\_noisy**:

### **Output:**

axis1 = 9.7009

axis2 = 3.2059

center\_x = 2.0251

center\_y = 3.3616

theta\_radian = 1.5209

theta\_degree = 87.142

err = 0

Cofficient\_matrix =



Observation: try to fit a noisy hyperbola(1) to a ellipse

### **Comparison of two Methods**

- 1. In Alternative method it is easy to get solution a1 as the Matrix  $C^{-1}M$  is invertible thus easy to calculate eigenvalues which satisfy  $4ac b^2 > 0$  property, while in the Basic Method. We needed to Decompose the Scatter(**S**) Matrix by cholesky Decomposition for which the basic need to positive definite( which can be false even for some Datas for a ellipse).
- 2. Alternative method try to fit more DataSet as compare to Basic Method (Basic method can not fit HDATA3 while Alternative Method does).