Niveau : Master 1 - Maths Année : 2020-2021, Semestre 1 Matière : Intro. au traitement d'images

Série d'exercices 4

Restauration

Février 2021

Exercice 1 Convolution with a Gaussian kernel

On considère deux fonctions $f, g : \mathbb{R}^2 \to \mathbb{R}$ où $g(x, y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}}$, et $f_{\sigma} = f * g$.

1. Montrer que:

$$\frac{\partial g_{\sigma}}{\partial \sigma} = \sigma \Delta g_{\sigma}, \quad g_{\sigma_1} * g_{\sigma_2} = g_{\sqrt{\sigma_1^2 + \sigma_2^2}}$$

$$\frac{\partial}{\partial x} (f * g_{\sigma})(x, y) = \left(\frac{\partial f}{\partial x} * g_{\sigma}\right)(x, y) = \left(f * \frac{\partial g_{\sigma}}{\partial x}\right)(x, y)$$

2. Montrer la dernière propriété pour n'importe quelle fonction g.

Exercice 2 Filtres de dérivation

Montrer que le filtre suivant réalise un lissage suivi d'une dérivation.

1	0	-1
2	0	-2
1	0	-1

Exercice 3 Détection des contours

Soit une image 7×7 :

3	3	1	3	3	3	4
0	3	3	3	3	3	3
3	3	3	2	3	3	12
12	3	3	3	3	12	12
10	12	2	3	3	12	12
12	14	12	12	12	12	11
11	12	12	12	10	12	12

- 1. Utiliser le filtre de Prewitt pour calculer le gradient de cette image.
- 2. Déterminer les contours de cette images comme pixels dont le gradient est supérieur à un seuil T = 22 (Ne traiter pas les pixels du bdord).

Exercice 4 Filtres de Sobel et LoG

Déterminer l'image filtrée et les contours de l'image obtenu par application d'un filtre LoG 5×5 , avec $\sigma = 1$. Le seuil est 0.75 fois la moyenne de l'image filtrée. Les bords sont dupliqués.

	147	163	179	186	191	194	197	157
	160	175	182	184	184	186	162	50
	141	163	170	175	174	133	38	3
I =	91	127	135	124	85	16	0	7
1 —	113	126	121	117	18	0	1	10
	136	135	125	151	99	54	8	9
	148	150	159	161	149	106	89	20
	142	164	178	181	168	113	120	91

Répondre aux mêmes questions pour un filtre de Sobel 3×3 et un seuil de 1.2.

Exercice 5 Méthode de moyenne

En utilisant la méthode de moyennage, déterminer le seuil de l'image 8-bit I. La valeur initiale est la moyenne de I. On s'arrête lorsque la différence entre deux seuils successifs est inférieure à 0.5.

$$I = \begin{array}{|c|c|c|c|c|c|c|}\hline 184 & 188 & 72 & 2\\\hline 188 & 163 & 22 & 5\\\hline 191 & 102 & 1 & 7\\\hline 182 & 45 & 2 & 6\\\hline \end{array}$$

Exercice 6 Division-Fusion

En utilisant la 8-connectivité avec l'algorithme de division-fusion, segmenter l'image I tel que la variance au sein de chaque région est inférieure à 20.

$$I = \begin{array}{|c|c|c|c|c|c|c|c|}\hline 184 & 188 & 72 & 2\\\hline 188 & 163 & 22 & 5\\\hline 191 & 102 & 1 & 7\\\hline 182 & 45 & 2 & 6\\\hline \end{array}$$

Exercice 7 Méthode d'Otsu

Appliquer la méthode d'Otsu à l'image suivante :

2	7	6	6
5	6	5	5
6	5	5	6
7	6	4	5