Dana jest pojedyncza maszyna/procesor oraz zbiór $J=\{1,...,j,...n\}$ n niepodzielnych zadań. Każde z zadań j charakteryzuje się czasem wykonywania p_i , terminem dostępności r_i oraz czasem stygnięcia q_i . Należy tak uszeregować zadania, aby czas zakończenia wykonywania wszystkich zadań był jak najkrótszy (minimalizujemy tzw. długość uszeregowania – makespan).

Rozwiązanie może być zapisane jednoznacznie za pomocą permutacji $\pi = \{\pi(1), \pi(2), ..., \pi(j), ..., \pi(n)\}$, gdzie $\pi(j)$ oznacza zadanie uszeregowane na pozycji j w permutacji π .

Czas wykonywania zadania π (j) to $p_{\pi(j)}$

Termin dostępności zadania π (j) to $r_{\pi(j)}$

Czas stygnięcia zadania π (j) to $q_{\pi(j)}$

Bez czasów stygnięcia:

Czas zakończenia wykonywania zadania π (1) to $C_{\pi(1)} = r_{\pi(1)} + p_{\pi(1)}$

Ale czas zakończenia wykonywania kolejnego zadania to:

 $C_{\pi(2)} = \max\{r_{\pi(2)}, C_{\pi(1)}\} + p_{\pi(2)}$

Dla zadania π (j) mamy $C_{\pi(j)} = \max\{r_{\pi(j)}, C_{\pi(j-1)}\} + p_{\pi(j)}$

Ale co z ogonkami (czasami stygnięcia)???

Możemy zrobić sobie dodatkową tablicę, albo zmienną, gdzie przechowujemy najdłuższy do tej pory pełen czas wykonywania zadania (ze stygnięciem), gdzie ten pełen czas wykonywania danego zadania to: Dla pierwszego: π (1) to $C_{\pi (1)q} = r_{\pi (1)} + p_{\pi (1)} + q_{\pi (1)}$

A w ogólności

 $C_{\pi (j)q} = \max\{r_{\{\pi (j), C_{\pi (j-1)}\}} + p_{\pi (j)} + q_{\pi (j)}\}$

I musimy przechowywać najdłuższy C_{ π (j)}q, jaki do tej pory znaleźliśmy – to nasze kryterium