Deutsches Gebrauchsmuster

P# 11. 1976

Bekanntmachungstag:

MO1L 25-46 GH 75 00 696
AT 13.01.75 ET 04.11.76
Pr 05.12.74 CH Schweiz 16217-74
Verrichtung zur Wihlung von auf verschledenen elektrischen Potentialen liegenden elektrischen Einrichtungen mittels eines strömenden Mediums.
Anm: BBC AG Brown, Boveri & Cie, Baden (Schweiz);
Vtr: Lück, G., Dipl.-Ing. Dr.rer.
nat., Pat.-Anw., 7891 Küssaberg;
MKL:
HC5K 7-20

12

BNSDOCID: <DE 7500696U 1 >

7500696 04.11分

147/74 P/ho

BBC Aktiengesellschaft Brown, Boveri & Cie., Baden (Schweiz)

Vorrichtung zur Kühlung von auf verschiedenen elektrischen Potentialen liegenden elektrischen Einrichtungen mittels eines strömenden Mediums

Aus der US-PS 2,917,685 sind wassergekühlte Anordnungen sowohl mit in serie- als auch mit parallelgeschalte/ten Halbleiterdioden bekannt. Die Kühlkörper, auf denen die Dioden befestigt sind, werden dabei entweder nacheinander (Serienkühlung) und/oder parallel zueinander (Parallelkühlung) von dem Kühlwasser durchflossen.

Um elektrische Einrichtungen vor der elektrolytischen Korrosion zu schützen, ist es ebenfalls, beispielsweise aus der DT-PS 938 197, bekannt, durch vorgeschaltete Schutz- oder Opferelektroden dafür zu sorgen, dass die Potentialdifferenz,

147/74

- 2 -

die zwischen den mit dem Kühlmittel in Berührung stehenden zlektrisch leitenden Teilen auftritt, nicht an diesen selbst, sondern an den Schutzelektroden, die das gleiche Potential aufweisen wie die leitenden Teile, abfällt.

Der Erfindung liegt nun die Aufgabe zugrunde, eine Kühlvorrichtung anzugeben, bei der die elektrolytische Korrosion
kleingehalten werden kann, ohne dass an allen elektrischen
Einrichtungen Schutzelektroden installiert werden müssen und
ohne dass die Zuleitungsschläuche zu den einzelnen elektrischen
Einrichtungen besonders lang und/oder einen besonders geringen
Ouerschnitt zu haben brauchen.

Die vorgenannte Aufgabe wird dadurch gelöst, dass erfindungsgemäss die Potentialdifferenz, die zwischen den mit dem Kühlmittel in Berührung stehenden elektrisch leitenden Einrichtungen
mit dem grössten Potentialunterschied besteht an Steuerelektroden abfällt, dass die Steuerelektroden im wesentlichen das
gleiche Potential wie die leitenden Einrichtungen aufweisen
und dass parallel zu diesen Einrichtungen die weiteren elektrischen Einrichtungen an gegenüber ihrem eigenen Potential
äquipotentialen Punkten zwischen den Steuerelektroden angeordnet sind.

Besonders hat es sich bewährt, die elektrischen Einrichtungen zwischen zwei das Kühlmittel zu- und abführenden aus elektrischem Isoliermaterial bestehenden Staurohren anzuordnen, in denen sich ebenfalls die Hilfselektroden befinden.

Die Rohrleitungen oder Schläuche, durch die das Kühlmittel zu den elektrischen Einrichtungen gelangt, können bei dieser Anordnung sehr kurz gehalten werden ohne, dass es zu einer rennenswerten Korrosion der elektrischen Einrichtungen kommt.

Die neue Vorrichtung ist u.a. für die Kühlung von Hochleistung-Halbleiterbauelementen geeignet, wobei die elektrischen Einrichtungen Kühlplatten sind, zwischen denen sich die zu kühlenden Bauelemente befinden.

Anhand der nachstehenden Figuren wird die Erfindung beispielsweise erläutert.

Es zeigt:

- Fig. 1 schematisch eine Kühlvorrichtung mit mehreren auf unterschiedlichem Potential liegenden Kühlkörpern und
- Fig. 2 schematisch einen Ausschnitt aus einer solchen Kühlvorrichtung, wobei zwischen den Kühlkörpern Halbleiterbauelemente angeordnet sind.

In Fig. 1 sin4 mit K_0 , K_1 , ..., K_N Kühlkörper (z.B. Kühlplatten für Hochleistungsbauelemente) bezeichnet, die auf verschiedenen eicktrisenen Potentialen liegen, wobei der Kühlkörper mit dem nidrigsten Potential P_0 mit o und der Kühlkörper mit dem höchsten Potential P_N mit N gekennzeichnet ist. Die Kühlkörper K_0 , K_1 , ..., K_N sind mittels Isolier-Rohrleitungen 1 an zwei Staurohre 2 und 3 gleicher Länge und mit gleichem Durchmesser K_0 angeschlossen, durch die das Kühlmittel (vorzugsweise entionisiertes Wasser) ein- und austritt. Hierbei deuten die Pfeile die Richtung des Kühlmittelstromes an. In den Staurohren 2,3 befinden sich jeweils 2 Steuerelektroden 4,5 und 4',t'. Die Steuerelektroden 4 und 4' besitzen das Potential des Kühlkörpers K_0 , die Steuerelektroden 5,5' das Potential des Kühlkörpers K_0 .

Durch die Steuerelektroden 4,4' und 5,5' wird erreicht, dass eine durch die Potentialdifferenz $U_g = |P_N - P_0|$ bedingte Elektrolyse des Kühlmittels nicht an den leitenden Teilen der Kühlkörper K_0 und K_N , sondern an den Steuerelektroden 4,4' bzw. 5,5' stattfindet.

Die weiteren, auf verschiedenen elektrischen Potentialen liegenden Künlkörper K_1 , ..., K_{N-1} sind ebenfalls mittels Isolier-Rohrleitungen 1 an die Staurohre 2,3 angeschlossen. Um zu verhindern, dass infolge der bestehenden Potentialdifferenzen

 $U_1 = |P_1 - P_0|$, $U_2 = |P_2 - P_1|$, ..., $U_N = |P_N - P_{N-1}|$ and diesen Kühlkörpern K_1 , ..., K_{N-1} eine elektrolytische Korrosion eintritt, sind sie an gegenüber ihrem eigenen Potential äquipotentialen Punkten a_1 , ..., a_{n-1} der Staurohre 2 und 3 angeschlossen (a_0 und a_n sind die äquipotentialen Punkte in der Nähe der Steuerelektroden 4, 4' und 5, 5', die dem Potential der Kühlkörper K_0 und K_N entsprechen).

Der jeweils von den Steuerelektroden 4,5 zu den Steuerelektroden 4',5' fliessende Elektrolysestrom J_g ist in diesem Fall gleich den Teilströmen J_1,J_2,\ldots,J_N die in den Staurohren zwischen den äquipotentialen Punkten a_0,a_1,\ldots,a_n fliessen.

Ist L der Abstand zwischen den Steuerelektroden 4 und 5 bzw. 4' und 5', bedeuten l_1, l_2, \ldots, l_n die Abstände zwischen den äquipotentialen Punkten (a_0, a_1, \ldots, a_n) und wird mit 2 die Leitfähigkeit des Kühlmittels bezeichnet, so ergibt sich aus den Beziehungen: $J_g = U_g/R_g, J_1 = U_1/R_1, \ldots, J_n = U_N/R_N;$ wobei $R_g = ^{-1} L/(D^2 \pi^2/4), R_1 = ^{2} l_1/(D^2 \pi^2/4), \ldots,$ $R_N = ^{2} l_1/(D^2 \pi^2/4)$ ist,:

$$1_{\gamma}/U_{\rho} = L/U_{g}$$
 mit $\nu = 1, \ldots, n; \rho = 1, \ldots, N$

Für gegebenes L, $\mathbf{U_g}$, $\mathbf{U_1}$, ..., $\mathbf{U_N}$ erhält man demnach sofort die zur Vermeidung der elektrolytischen Korrosion erforderlichen

7 (

Anschlusspunkte der Kühlkörper K_1, \ldots, K_{N-1} an den Staurohren 2,3, ohne dass weitere Steuerelektroden nötig würden.

Der dichteste Abstand, gemessen in cm, zwischen den elektrischen Einrichtungen (K_0, K_1, \ldots, K_N) entlang der Kühlmittelwege soll jeweils einen Wert $\geq U_{\nu}/1000$ mit $\nu=1,\ldots,n$, aufweisen. Entsprechend ist auch der Abstand L, gemessen in cm, zwischen den Steuerelektroden 4,5 und 4',5' derart zu wählen, dass $L \geq Ug/1000$ gilt.

Fig. 2 zeigt einen Ausschnitt aus einer olchen Parallelkühleinrichtung, wobei zwischen den Kühlkörpern beispielsweise

Halbleiterdioden angeordnet sind. Dabei sind mit 2 und 3 wieder

die Staurohre und mit K,K',K'' und K''' die Kühlkörper bezeichnet. Die zu kühlenden Halbleiterbauelemente 6,6' und 6'' be
stehen aus zwei metallenen Anschlusskappen 7 und einem in einem

Isoliergehäuse 8 befindlichen Aktivteil (angedeutet durch das

Symbol). Die mit den Anschlusskappen 7 in Berührung stehenden Kühlkörper K,K',K'' und K''' sind ebenfalls aus Metall und
haben sowohl die Aufgabe die Halbleiterdioden 6,6',6'' zu kühlen,
als auch zwischen ihnen die elektrische Verbin-dung herzustellen.

Eine solche gekühlte Serienschaltung von Halbleiterdioden eignet sich besonders gut für Spannungsgleichrichter in Hochleistungsanlagen.

BNSDOCID: <DE 7500696U I >

Neue Schutzansprüche

Vorrichtung zur Kühlung von abwechselnd durch Kühlkörper verbundene, in einer Reihe hintereinander angeordnete, auf verschiedenen elektrischen Potentialen liegende elektrische Einrichtungen, wobei die Kühlkörper unter teilweiser Verwendung von Steuerelektroden von einem Kühlmittel, vorzugsweise Wasser, quer zur geometrischen Achse der Reihe durchströmt werden, dadurch gekennzeichnet, dass je ein das Kühlmittel führendes Staurohr (2,3) vorgesehen ist, dass die jeweils an einem der äusseren Endpunkte der Reihe liegenlen Kühlkörper (K_0, K_N) mit Steuerelektroden (4, 4') bzw. (5, 5') versehen sind, welche sich unmittelbar vor den Mündungen (a, an) der zugehörigen Kühlmittelzuleitungen und -Ableitungen (1) in die Staurohre (2,5) befinden, dass ferner die entsprechenden Kühlmittelzuleitungen und -Ableitungen (1) der übrigen, zwischen den Endpunkten der Reihe liegenden Kühlkörper ($K_1, K_2, \ldots K_{N-2}$, K_{N-1}) derart angeordnet sind, dass das Verhältnis der Abstände ($l_1, l_2, \dots l_{n-1}, l_n$) ihrer Mündungen ($a_0 \dots a_n$) in die Staurohre (2,3) gleich dem Verhältnis der Potentialunterschiede $(U_1, U_2, \dots U_{N-1}, U_N)$ zwischen den Kühlkörpern $(K_0 \ldots K_N)$ ist.

- 2. Vorrichtung nach Anspruch 1, dadurch gekennseichnet, dass die das Kühlmittel führenden Staurchre (2,3) aus elektrisch isolierendem Stoff bestehen.
- 3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die Staurohre (2, 3) gleichen Durchmesser (E) und gleiche Länge (Abstand L) aufweisen.
- 4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Abstand (L), gemessen in cm, der Steuerelektroden (4,5; 4',5') einen Wert aufweist, der mindestens Ug/1000 beträgt, wobei Ug der gesamte Potentialunterschied zwischen den Steuerelektroden (4) und (5) bzw. zwischen (4') und (5') der Reihe bedeutet.
- 5. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Kühlkörper (K_O, K₁, ... K_{N-1}, K_N) Kühlplatten aus Metall sind und die zwischen diesen angeordneten zu kühlenden elektrischen Einrichtungen Halbleiterbauelemente (6, 6', 6") sind.

Bl.C Aktiengesellschaft Brown, Boveri & Cie.

BNSDOCID: <DE___7500696U__I_>

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☑ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.