

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Publication number:

0 219 243
A2

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 86307308.6

(51) Int. Cl.4: H 01 L 21/225
H 01 L 29/72

(22) Date of filing: 23.09.86

(30) Priority: 11.10.85 US 786906

(71) Applicant: Monolithic Memories, Inc.
2175 Mission College Blvd.
Santa Clara, CA 95050(US)

(43) Date of publication of application:
22.04.87 Bulletin 87/17

(72) Inventor: Bhakta, Jayendra
5498 Don Rodolfo Court
San Jose California 95123(US)

(84) Designated Contracting States:
DE FR GB NL

(72) Inventor: Patel, Rajiv
1656 Peachwood Drive
San Jose California 95132(US)

(74) Representative: Jones, Ian et al,
POLLAK MERCER & TENCH High Holborn House 52-54
High Holborn
London WC1V 6RY(GB)

(54) Process of manufacturing a bipolar transistor.

(57) A process for forming a buried layer 22 comprises the steps of covering a wafer (10) with a silicon dioxide layer (18). Dopants are introduced into the silicon dioxide layer (18) via an ion implantation process. Thereafter, a second silicon dioxide layer (20) is grown on the first silicon dioxide layer (18) and the wafer (10) is then subjected to a heating process which serves to both anneal the silicon wafer and drive dopants implanted into the first silicon dioxide layer (18) into

the silicon wafer. In this way, crystal lattice damage which normally accompanies ion implantation is avoided. The second silicon dioxide layer (20) prevents out diffusion of the implanted ions from the first silicon dioxide layer (18) into the atmosphere. The first and second silicon dioxide layers (18,20) are then removed and an epitaxial layer (24) is formed on the wafer (10). A base region (48) and emitter region (46) are then formed in the epitaxial layer (24).

1

2

3

4

5

6

7

8

-1-

9 PROCESS OF MANUFACTURING A BIPOLAR TRANSISTOR
10 DESCRIPTION

11 This invention relates to the manufacture of a bipolar
12 transistor having a buried layer.

13 It is known in the art to dope regions in a silicon
14 wafer using ion implantation. While ion implantation is an
15 effective method for providing doped regions, ion
16 implantation processes cause crystal lattice defects in
17 silicon. Such defects can hinder operation of semiconductor
18 devices by causing leakage currents. In addition, crystal
19 lattice defects can degrade layers of silicon dioxide
20 subsequently grown on wafers. Obviously, the higher the
21 dopant concentration used during ion implantation, the
22 greater the defect density produced thereby. Accordingly,
23 there is a trade off that must take place between the amount
24 of resistivity desired and the crystal defect concentration
25 that can be tolerated.

26 Defects produced by ion implantation can be removed by
27 an annealing process during which silicon is typically
28 heated to a temperature of about 1,000°C for an amount of
29 time dependent on the process involved. Unfortunately,
30 during such processes, dopants can escape from the silicon
31 wafer into the atmosphere. This is known as out diffusion.

32 It is also known in the art to dope regions in a
33 silicon wafer by forming a mask layer on the wafer, and
34 forming a window region in the mask layer, thereby exposing
35 a portion of the underlying silicon. The mask layer
36 typically includes a silicon dioxide layer covered with a
37 silicon nitride layer. A Sb_2O_3 doped silicon dioxide layer
38 is then formed on the wafer using a chemical vapor

MMI-95-002

0219243

0219243

1 deposition (CVD) process. Antimony is then diffused from
2 the doped silicon dioxide layer into the silicon within the
3 window region.

4 Unfortunately, it is difficult to control the dopant
5 concentration of the doped regions formed in the silicon
6 with great precision using this technique. Further, when
7 using this technique, small regions are formed in the doped
8 silicon dioxide layer having large Sb_2O_3 concentrations.
9 These high dopant concentration regions are known to cause
10 defects in the mask layer, thus causing antimony doped
11 regions in the substrate underneath the mask layer where
12 antimony is not desired.

13
14

15 The invention provides a method for forming a bipolar
16 integrated circuit having a buried layer with a low defect
17 density and a low resistivity. This is accomplished by
18 covering a semiconductor wafer (typically silicon) with a
19 thin silicon dioxide layer. The wafer is then subjected to
20 ion implantation during which the thin silicon dioxide layer
21 absorbs most of the implanted ions and hence most of the
22 implant damage, leaving the semiconductor crystal lattice
23 relatively damage free. A thick silicon dioxide layer is
24 then deposited over the thin silicon dioxide layer in a low
25 temperature deposition process. After that, the wafer is
26 heated, which causes the semiconductor material to become
27 annealed and which also causes the ions previously implanted
28 into the thin silicon dioxide layer to diffuse into the
29 semiconductor material to a desired junction depth. The
30 thick silicon dioxide layer prevents dopants from diffusing
31 into the atmosphere. Because the dopants diffuse through
32 silicon dioxide relatively slowly, and preferentially
33 diffuse into the semiconductor wafer, the loss of dopants
34 into the thick silicon dioxide layer is minimal.

35
36
37
38

Thereafter, the thin and thick silicon dioxide layers
are removed and an epitaxial layer is deposited on the

wafer. Isolation regions are then formed in the epitaxial layer to electrically isolate an area in the epitaxial layer where a bipolar transistor is to be formed. Base and emitter regions are then formed, e.g. 5 by ion implantation. In this way, a transistor is provided having a buried layer with a low defect density and low resistivity.

The invention is further explained below, by way of example, with reference to the accompanying drawings, 10 in which Figures 1 to 13 are cross sectional illustrations of successive stages of a process of manufacturing a bipolar transistor in accordance with the present invention.

The illustrated process for manufacturing a bipolar 15 transistor in accordance with the present invention begins with the step of forming a silicon dioxide layer 12 on a semiconductor wafer 10 (Figure 1). In one embodiment of the invention, semiconductor wafer 10 has a silicon substrate 11 having a [100] crystal 20 orientation, a P type conductivity, and a resistivity of 25 to 45 ohm-centimeters. However, other semiconductor materials having either P or N type conductivity and having other resistivities can also be used. In one embodiment of the invention, silicon 25 dioxide layer 12 is about 1,000 Å thick and is formed by heating wafer 10 to a temperature of about 1100°C in an oxygen atmosphere for approximately 3.5 hours. A silicon nitride layer 14 is then formed on wafer 10. In one embodiment, silicon nitride layer 14 is about 30 1500Å thick and is formed by a chemical vapor deposition (CVD) process. As described below, silicon nitride layer 14 serves as a mask during the formation of buried layer 22 (Figure 5). Silicon dioxide layer 12 serves as an intermediate layer which prevents 35 mechanical stress caused by the difference in thermal expansion of silicon substrate 11 and silicon nitride

layer 14.

Referring to Figure 2, wafer 10 is covered with a photoresist layer 15, which is selectively exposed to light

0219243

1 and developed, theretby forming a window region 16 and
2 exposing a portion of silicon nitride layer 14. Window 16
3 defines the area where buried layer 22 will subsequently be
4 formed.

5 The portion of silicon nitride layer 14 and silicon
6 dioxide layer 12 under window 16 is then removed using
7 conventional etching techniques, and remaining photoresist
8 15 is removed, leaving the structure of Figure 3. In one
9 embodiment, the exposed portion of silicon nitride 14 is
10 removed in a plasma etching process and the portion of
11 silicon dioxide 12 lying thereunder is removed with hydro-
12 flouric acid.

13

14 Referring to Figure 4, a silicon dioxide layer 18 is
15 formed in window 16. In one embodiment, silicon dioxide
16 layer 18 is about 250A thick and is formed by heating wafer
17 10 to about 950°C in an oxygen atmosphere for approximately
18 40 minutes. In accordance with one novel feature of this
19 invention, wafer 10 is then subjected to an ion implantation
20 process. Typically antimony ions are implanted into silicon
21 dioxide layer 18 with an energy of about 50 KEV and a dosage
22 of about 3×10^{15} ions/cm². However, other ions, implant
23 energy, and dosages could also be used. During this
24 process, it has been estimated that 85% of the antimony ions
25 reaching window region 16 are implanted into silicon dioxide
26 layer 12 with the remaining 15% implanted into silicon
27 substrate 11. Because of this, damage to the crystal
28 lattice of substrate 11 is less than the damage which would
29 occur if the ions were all implanted into substrate 11.

30

31 Ions implanted into silicon dioxide layer 18 are
32 subsequently diffused into silicon substrate 11 to form a
33 buried layer as described below. Of importance, ions
34 striking wafer 10 outside of window region 16 lodge in
35 either silicon nitride layer 14 or silicon dioxide layer
36 12. Because of the thickness of layers 12 and 14, during
37 this subsequent diffusion step, ions do not diffuse from
38

1 layers 12 and 14 into substrate 11. In this way, layers 12
2 and 14 confine the formation of the buried layer to the area
3 defined by window 16.

4

5 Referring to Figure 5, a layer of material such as
6 silicon dioxide layer 20 is then formed on wafer 10. In one
7 embodiment, silicon dioxide layer 20 is about 3,000Å thick
8 and is deposited via a CVD process. Of importance, this is
9 done at a low temperature, e.g., 425°C, so that implanted
10 dopants do not diffuse out of silicon dioxide layer 18 into
11 the atmosphere. Thereafter, wafer 10 is subjected to a
12 combination annealing/drive-in diffusion process.

13 Specifically, wafer 10 is baked at about 1250°C for about 17
14 minutes in an inert gas, e.g. nitrogen or argon. During
15 this process, antimony ions diffuse out of silicon dioxide
16 layer 18 and into silicon substrate 11 thus forming N type
17 region 22 (the buried layer). Buried layer 22 is thus
18 formed to a thickness of about 3μ, but if a thicker buried
19 layer is desired, a longer baking time is used. It is noted
20 that by limiting the baking time, lateral diffusion of
21 buried layer 22 is minimized. Silicon dioxide layer 20
22 prevents out diffusion of antimony into the atmosphere
23 during this process. Because the implanted dopants diffuse
24 through silicon dioxide slowly, the loss of dopants diffused
25 into silicon dioxide layer 20 is minimal. Table I below
26 indicates the junction depth between the antimony doped
27 region 22 of substrate 11 and the P doped portion of
28 substrate 11 for baking times of 18 minutes and 74 minutes
29 for various conditions. (The data of Table I is from a
30 computer simulation.) As can be seen in Table I, the sheet
31 resistance of the buried layer is lower when using silicon
32 dioxide layer 20 than when not using layer 20.

33

34

35

36

37

38

TABLE I*

0219243

<u>Layer 18</u>	<u>Layer 20</u>	<u>Anneal Time**</u>	<u>Junction Depth</u>	<u>Buried Layer Sheet Resistance</u>
not present	not present	18 min.	3 μ	24 Ω/square
not present	3,000A	18 min.	3 μ	20 Ω/square
250A	not present	18 min.	3 μ	23 Ω/square
250A	3,000A	18 min.	3 μ	19 Ω/square
300A	3,000A	74 min.	5 μ	20 Ω/square
300A	not present	74 min.	5 μ	27 Ω/square

12

13 *Drive in temperature is 1,250°C

14 **Includes a ramp-up time of 50 minutes while temperature
15 increases from 750°C to 1,250°C at a rate of 10°C/minutes
16 and a ramp-down time of 120 minutes while the temperature
falls from 1,250°C to 830°C.17 Thereafter, silicon dioxide layers 12, 18 and 20 and
18 silicon nitride layer 14 are removed, leaving N type region
19 22 doped with antimony in P type substrate 11.20 An epitaxial layer is then formed on wafer 10, and a
21 bipolar transistor is formed in the epitaxial layer. In one
22 process for forming the bipolar transistor, an N type
23 epitaxial layer 24 (Figure 6) is then formed on wafer 10.
24 In one embodiment, epitaxial layer is approximately 2
25 microns thick and is deposited by a CVD process. Epitaxial
26 layer 24 typically has a conductivity of about 0.5 ohm-
27 centimeters. A silicon dioxide layer 26 and a silicon
28 nitride layer 28 are then formed on wafer 10. In one
29 embodiment of the invention, silicon dioxide layer 26 is
30 thermally grown to a thickness of about 1,000A by heating
31 wafer 10 to a temperature of about 950°C in an oxygen
32 atmosphere for approximately 1/3 hours. Silicon nitride
33 layer 28 is typically 1500A thick and is deposited by a CVD
34 process.

35

36 Wafer 10 then is coated with a photoresist layer 30
37 (Figure 7), and selectively exposed to light. The exposed
38

0219243

1 portions of photoresist layer 30 are then removed, leaving
2 windows 32 and 33. (Although drawn as two windows, window
3 32 is really a single window surrounding buried layer 22.)
4 Window 32 defines the area where an isolation region is to
5 be formed in wafer 10. Window 33 defines where a second
6 silicon dioxide region is to be formed which prevents a
7 highly doped collector contact region from forming a capaci-
8 tive PN junction with the to-be-formed transistor base
9 region. The portion of silicon dioxide layer 26 and silicon
10 nitride layer 28 underneath windows 32 and 33 is removed via
11 a conventional plasma etching process using, for example,
12 CF₄ as the process gas. In addition, an 8000 to 9000A thick
13 portion of epitaxial layer 24 under windows 32 and 33 is
14 also removed via a plasma etching process using, for
15 example, SF₆ as the process gas. The remaining portion of
16 photoresist layer 30 is then removed, and isolation regions
17 34 and 35 are formed in windows 32 and 33, respectively
18 (Figure 8). In one embodiment, isolation regions 34 and 35
19 are silicon dioxide between 1.8 and 2 microns thick and are
20 grown by heating wafer 10 to a temperature of 920°C for 2½
21 to 3 hours in steam at high pressure (about 15 atmos-
22 pheres). Of importance, approximately 55% of isolation
23 regions 34 and 35 grow into epitaxial layer 24 while the
24 remainder grows into window 32. Thus, the top of isolation
25 region 34 is roughly coplanar with the top of epitaxial
26 layer 24.

27

28 Referring to Figure 9, silicon nitride region 28 is
29 removed (typically with phosphoric acid) and silicon dioxide
30 layer 26 is removed (typically with hydrofluoric acid).
31 During removal of silicon dioxide layer 26, small amounts of
32 silicon dioxide from regions 34 and 35 are also removed.
33 However, these amounts represent a negligible portion of
34 regions 34 and 35.

35

36 Referring to Figure 9, a silicon dioxide layer 36
37 (typically about 2900A thick) is grown on wafer 10. In one
38

1 embodiment, this is done by heating the wafer to a
2 temperature of about 1050°C in steam for about 20 to 25
3 minutes.

4

5 Referring to Figure 10, wafer 10 is then coated with a
6 photoresist layer 37. Photoresist layer 37 is then
7 patterned leaving a window 38 which defines the base region
8 of the to-be-formed bipolar transistor. In one embodiment,
9 the exposed portion of wafer 10 is then subjected to an ion
10 implantation process which results in the formation of a P
11 type base region 40. In one embodiment, boron ions are
12 used, with an implant energy of about 150 KEV and a dosage
13 between about 4×10^{13} and 8×10^{13} ions/cm². Photoresist
14 layer 37 is then removed. Referring to Figure 11, wafer 10
15 is then coated with another photoresist layer 42 which is
16 selectively patterned leaving windows 44a and 44b. Window
17 44a defines an emitter region 46 which in one embodiment is
18 formed during an ion implantation process using, for
19 example, arsenic ions, an implant energy of approximately 50
20 KEV, and a dosage between 1×10^{16} and 3×10^{16} ions/cm².
21 The portion of epitaxial layer 24 within window 44b is also
22 implanted with ions during this process, thus facilitating
23 formation of a collector contact for the transistor. Photo-
24 resist layer 42 is then removed.

25

26 Openings 48 (Figure 12) are then etched in silicon
27 dioxide layer 36, e.g. by coating wafer 10 with a
28 photoresist layer 49, and selectively exposing photoresist
29 layer 49 and removing the exposed portions, thereby exposing
30 portions of silicon dioxide layer 36. The exposed portions
31 of silicon dioxide layer 36 are then removed using, for
32 example, a buffered HF solution, leaving openings 48.
33 Photoresist layer 49 is then removed.

34

35 Referring to Figure 13, a conductive layer 50 (such as
36 metal or polycrystalline silicon) is then formed on wafer 10
37 and patterned, e.g. by covering the wafer with photoresist
38

0219243

1 (not shown), patterning the photoresist, thereby exposing
2 portions of conductive layer 50, and removing the exposed
3 portions. The photoresist is then removed, leaving a
4 bipolar transistor 54 in which conductive layer 50 makes
5 electrical contact with base 40, emitter 46, and collector
6 47. Low resistance buried layer 22 isolates transistor 54
7 from substrate 11. In addition, collector 47 is connected
8 to the collector contact via buried layer 22.
9

10 While the invention has been described with reference
11 to a specific embodiment, those skilled in the art will
12 recognize that modifications can be made to form and detail
13 without departing from the scope of the
14 invention. For example, layers 12 and 14 can be formed from
15 substances other than silicon dioxide and silicon nitride,
16 and can have thicknesses other than those described. In
17 addition, ions other than antimony can be used and a wafer
18 having a crystal orientation other than a [100] orientation
19 can be used. In addition, the starting material can be
20 either P type or N type. Accordingly, all such changes come
21 within the present invention.
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

CLAIMS

1. A process of manufacturing a bipolar transistor having a buried layer (22) comprising the steps of forming a doped region in semiconductor material (11), forming an epitaxial layer (24) over the doped region, and forming a bipolar transistor in the epitaxial layer, the doped region serving as a buried layer (22), characterized by the steps of:
 - 10 forming a layer (18) of a first material over the semiconductor material prior to the step of forming the epitaxial layer;
 - implanting ions into the layer (18) of first material; and
 - 15 diffusing the ions out of the layer (18) of the first material and into the semiconductor material (11), thereby forming the doped region (22).
2. A process as claimed in claim 1 wherein the semiconductor material is silicon.
- 20 3. A process as claimed in claim 1 or 2 comprising the further step of forming a layer (20) of a second material over the layer of the first material, the layer (20) of the second material preventing out diffusion of ions into the atmosphere during the step of diffusing the ions.
4. A process as claimed in claim 3 wherein the first and second materials are silicon dioxide.
5. A process as claimed in claim 4 wherein the layer (20) of the second material is formed by a
30 chemical vapor deposition process.
6. A process as claimed in claim 5 wherein the layer (20) of the second material is deposited at a temperature less than 700°C.
7. A process as claimed in any preceding claim
35 comprising the further steps of:
 - forming a layer (12,14) of a third material on

the wafer before forming the layer of the first material; and

5 etching a window region (16) in the layer (12,14) of the third material, the layer (18) of the first material being formed in the window region, the layer (12,14) of the third material being thicker than the layer (18) of the first material, ions being implanted into the layer (12,14) of the third material during the step of implanting ions, but not diffusing from the layer (12,14) of third material into the semiconductor material (11) during the step of diffusing the ions.

10 8. A process as claimed in claim 7 wherein the third material comprises silicon dioxide.

15 9. A process as claimed in claim 7 or 8 wherein the third material comprises silicon nitride.

20 10. A process as claimed in claim 7, 8 or 9 wherein the layer (12,14) of the third material is removed prior to the formation of the epitaxial layer (24).

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 13