MATE6201-0U1 Prof. Luis A. Medina 10.00 - 11.20 CNL-A-207

Algebra Moderna

Alec Zabel-Mena

Universidad de Puerto Rico, Recinto de Rio Piedras

17.08.2022

Lectura 1: Grupos y Subgrupos

Definición. Sea G un conjunto no vacío junto a una operación binaria ·. Decimos que el par (G, \cdot) es un **grupo** si:

- (1) $a \cdot b \in G$ para $a, b \in G$.
- (2) $a \cdot (b \cdot c) = (a \cdot b) \cdot c$, para $a, b, c \in G$
- (3) Existe un $e \in G$ tal que $a \cdot e = e \cdot a = a$ para toda $a \in G$.
- (4) Para toda $a \in G$, existe una $a^{-1} \in G$ tal que $a \cdot a^{-1} = a^{-1} \cdot a = e$.

Si $a \cdot b = b \cdot a$ para toda $a, b \in G$, entoces decimos que G es un grupo **Abeliano**.

- **Ejemplo 1.** (1) Los naturales N junto a la multiplicación se satisface los primeros tres axiomas, pero no es un grupo. De hecho, N forma un estructura llamado un "monoide".
 - (2) El grupo mas pequeño es el conjunto $\{e\}$, que denotamos como $\langle e \rangle$. $\langle e \rangle$ es, trivialmente, un grupo Abeliano.
 - (3) Los enteros \mathbb{Z} junto con adición + forma un grupo Abeliano por la commutatividad de adición de los enteros.
 - (4) El conjunto $GL(n,\mathbb{R})$ de matrices $n \times n$ con entradas reales, nosingular forman un grupo con respecto a multiplicación de matrices. $GL(n,\mathbb{R})$ no es un grupo Abeliano.
 - (5) Sea S cualquier conjunto y A(S) el conjunto de todas las funciónes 1–1 y sobre llevando elementos de S a elementos de S. Entonces A(S) es un grupo no Abeliano con respecto a composición de funciónes, \circ . Si S tiene n elementos, entonces exscribimos $A(S) = S_n$. A(S) también no se Abeliano ya que para funciónes cualquieras $f, g, f \circ g \neq g \circ f$.

Definición. Sea G un grupo. El **orden** de un grupo es su cardinalidad, y escribimos ord G = |G|. Decimos que G es **finito** si ord G es finito; de lo contrario, G es **infinito**.

Definición. Sea G un grupo, y $a \in G$. El **orden** de a, denotado ord a, es el menor entero positivo n tal que $a^n = e$ y escribimos ord a - n. Si tal n no existe, entonces decimos que a es de orden **infinita**, y decimos que a es un elemento **torsión**.

- **Ejemplo 2.** (1) Considera $\mathbb{C}^* = \mathbb{C} \setminus 0$, entonces \mathbb{C}^* tiene orden infinita, note que si $\alpha = \exp(\frac{2i\pi}{5}) \in \mathbb{C}^*$, entonces $\alpha \neq 1$, para $j \neq 1, 2, 3, 4$, pero $\alpha^5 = 1$. Entonces ord $\alpha = 5$.
 - (2) Considere $A \in GL(6,\mathbb{R})$ con la forma

$$A = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

Entonces

$$A^{3} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

entonces, $A^3 = I$.

(3) En $\mathbb{R}^* = \mathbb{R} \setminus 0$, \mathbb{R}^* es infinito, y ord 2 es infinito.

Definición. Sea G un grupo y $H \subseteq G$ no vacío. Entonces decimos que H es un **subgrupo** de G si H es un grupo bajo la misma opearación de G. Escribimos $H \subseteq G$.

- **Ejemplo 3.** (1) Considere $GL(n,\mathbb{R})$ y sea $SL(n,\mathbb{R})$ los elementos $A \in GL(n,\mathbb{R})$ tales que det A = 1. Entonces $SL(n,\mathbb{R}) \leq GL(n,\mathbb{R})$.
 - (2) Sea $C(\mathbb{R})$ el conjunto de todas las funciones continuas sobre \mathbb{R} . Entonces $C(\mathbb{R})$ es un grupo bajo la suma de funciónes +. Sea $C^1(\mathbb{R})$ el conjunto de funciónes primer diferenciables continuas sobre \mathbb{R} Es decir, que f' existe y es continua. Observe lo siguiente:

- (a) (f+g)' = f' + g'
- (b) f' + (g+h)' = (f+g)' + h'.
- (c) c' = 0, entonces $0 \in C^1(\mathbb{R})$
- (d) f' f' = -f' + f' = 0.

Suponiendo que $f', g', h' \in C^1(\mathbb{R})$, son continuas, entonces vemos que los funciones de arriba tambien son continuas. Entonces $C'(\mathbb{R}) < C(\mathbb{R})$.

Lema 1. Sea G un grupo y $H \subseteq G$ no vacío. Si tenemos que $ab \in H$, implicat que $ab^{-1} \in H$, entonces $H \leq G$.

Proof. Como $H \neq \emptyset$, sea $a \in H$. Entonces $aa^{-1} = e \in H$. Luego, tambien tenemos que $ea^{-1} = a^{-1} \in H$. Finalmente, tenemos que si $b \in H$, entonces $ab^{-1} \in H$, por lo tanto $b^{-1} \in H$, entonces $a(b^{-1})^{-1} = ab \in H$.

Ejemplo 4. (1) Considere a los enteros pares $2\mathbb{Z}$. Sean $2n, 2m \in 2\mathbb{Z}$. Noten que $2n-2m=2(n-m)\in 2\mathbb{Z}$. Entonces $2\mathbb{Z}\leq \mathbb{Z}$.

- (2) Si G es un grupo, entonces $\langle e \rangle$ y G son subgrupos de G. Llamamos a $\langle e \rangle$ el grupo **trivial**.
- (3) Si G es un grupo, y $a \in G$, entonces el conjunto $\langle a \rangle = \{a^j : j \in \mathbb{Z}\}$ es un subgrupo de G, llamado el **subgrupo generado por** a.
- (4) Si G es un grupo, y $a \in G$, entonces $C(a) = \{g \in G : ag = ga\}$ y $Z(G) = \{g \in G : ag = ga \text{ para toda } a \in G\}$ son subgrupos. Nota que $Z(G) = \bigcap C(a)$. Llamamos a C(a) el **cnetralizador** de a y Z(G) el **centro** de G.
- (5) Sea G un grupo y $H \leq G$, y sea $a \in G$, entonces $a^{-1}Ha \leq G$. Llamamos a $a^{-1}Ha$ el **conjugado** de H **con respecto** a a.

Definición. Suponga que G y H son grupos. Un mapa $\phi: G \to H$ se llama un **homomorphismo** si para toda $a, b \in G$, $\phi(ab) = \phi(a)\phi(b)$. Si ϕ es 1-1 y sobre, entonces lo llamamos un **isomorphismo**. Si ϕ es un isomorphismo, y G = H, entonces llamamos a ϕ un **automorphismo**.