تمرین سری دوم

مساله ١

یک نیمرسانای نامشخص دارای $E_g=1.1~{
m eV}$ و $E_g=1.1~{
m eV}$ است و با 10^5cm^{-3} اتم دانر آلایش E_C است. تراز انرژی دانر E_C کمتر از E_C است. اگر تراز E_G به میزان E_C زیر تراز E_C باشد، E_C و پگالی الکترون ها و حفرههای نیمرسانا را در 300 درجه کلوین محاسبه کنید.

مساله ۲

آ) یک نمونه Si با $10^{16}cm^{-3}$ اتم بور و تعداد مشخصی از دانرهای سطحی آلاییده شده است. تراز فرمی به میزان N_D بالاتر از E_i در 300 درجه کلوین است. چگالی N_D چقدر است؟

ب)یک نمونه Si حاوی cm^{-3} اتم ایندیم و تعداد معینی از دانرهای سطحی است. تراز انرژی انرژی است. E_V قرار دارد و E_V قرار دارد و E_V قرار دارد و E_V قرار دارد و E_V نیزه نشده اند? چه تعداد اتم ایندیم (E_V) یونیزه نشده اند؟

مساله ۳

رابطه ای را بدست آورید که تراز ذاتی E_i را به وسط گاف انرژی $(E_g/2)$ مرتبط می کند. سپس میزان جرم مؤثر جابه جایی E_i نسبت به E_i را برای Si در 300 درجه کلوین محاسبه کنید. فرض کنید جرم مؤثر الکترون و حفره به ترتیب E_i و $0.56m_0$ است.

مساله ۴

یک افزاره الکترونیکی به ماده نیمرسانای نوع n نیاز دارد و قرار است در 400 درجه کلوین کار کند. آیا Si آلایش شده با $10^{15}cm^{-3}$ اتم آرسنیک برای این افزاره مفید است؟ آیا میتوان از Ge آلایش شده با $10^{16}cm^{-3}$ اتم آنتیموان استفاده کرد؟

مساله ۵

در یک نیمرسانای جدید $E_g=2~{\rm eV}$ و $N_c=10^{19}cm^{-3}$, $N_c=10^{19}cm^{-3}$ است. اگر با $N_c=10^{19}cm^{-3}$ دانر (کاملاً یونیزه شده) آلایش شده باشد، چگالی الکترون، حفره و باربر ذاتی را در 627 درجه سانتی گراد محاسبه کنید. ساختار نوار انرژی ساده شده را ترسیم کنید و موقعیت E_f را نشان دهید.