

ArduCAM USB2 Camera Shield

User Guide

Rev 2.0, July 2018

Table of Contents

1	Introduction	2			
2	Hardware Installation				
2.1	Primary Camera Interface	2			
2.2	Secondary Camera Interface	3			
3	Device Driver Installation	4			
4	Demo Code	7			
4.1	Scan Cameras	8			
4.2	Load the Camera Settings	8			
4.3	Open the Camera				
4.4	Play the Video	8			
4.5	Stop the Video	8			
4.6	Take a Snapshot	8			
4.7	Sensor Register Read/Write	8			
4.8	RAW Mode Selection	8			
4.9	Camera Control	9			
4.9. 1	1 Fit to Window	9			
4.9.2	Force Display	9			
4.9.3	3 IRcut	9			
4.9.4	4 Frame Rate Information	9			
4.10	Image Save Options	9			

1

1 Introduction

This user guide describes the detail operation of ArduCAM USB2 camera shield. The latest device driver, SDK library and examples can be downloaded from the https://github.com/ArduCAM/ArduCAM_USB_Camera_Shield.

2 Hardware Installation

Figure 1 USB2 Camera Shield Camera Connectors

There are two camera interface provided on the USB2 camera shield, but only one camera interface can be used at a time.

2.1 Primary Camera Interface

The primary camera interface is used for 18-22 pin camera breakout board, and should align the pin 1 of the camera breakout board to the USB camera shield camera connector pin 1.

Table 2 P1 Connector Pin Definition

Pin No.	PIN NAME	TYPE	DESCRIPTION
1	VCC	POWER	3.3v Power supply
2	GND	Ground	Power ground
3	SCL	Input	Two-Wire Serial Interface Clock
4	SDA(SDATA)	Bi-directional	Two-Wire Serial Interface Data I/O
5	VS(VSYNC)	Input	Active High: Frame Valid; indicates active frame
6	HS(HREF)	Input	Active High: Line/Data Valid; indicates active pixels
7	PCLK	Input	Pixel Clock output from sensor
8	XCLK	Output	Master Clock into Sensor
9	D7	Input	Pixel Data Output 7 (MSB)
10	D6	Input	Pixel Data Output 6
11	D5	Input	Pixel Data Output 5
12	D4	Input	Pixel Data Output 4
13	D3	Input	Pixel Data Output 3
14	D2	Input	Pixel Data Output 2
15	D1	Input	Pixel Data Output 1
16	D0	Input	Pixel Data Output 0(LSB)
17		NC	
18		NC	
19		NC	
20		NC	
21		NC	
22	Trigger(EXP)	Output	External trigger output

2.2 Secondary Camera Interface

The secondary camera interface is used for camera breakout board with 30pin ribbon cable.

Table 3 HDC1 Connector Pin Definition

(Connector Part Number: Hirose FH28D-30S-0.5SH(05))

Pin No.	PIN NAME	ТҮРЕ	DESCRIPTION
1	GND	Ground	Power ground
2	FLASH	Input	Flash output control
3	Trigger	Output	Exposure synchronization input
4	VSYNC	Input	Active High: Frame Valid; indicates active frame
5	HREF	Input	Active High: Line/Data Valid; indicates active pixels
6	DouT11	Input	Pixel Data Output 11 (MSB)
7	DouT10	Input	Pixel Data Output 10
8	D оит9	Input	Pixel Data Output 9
9	D оит8	Input	Pixel Data Output 8
10	D оит 7	Input	Pixel Data Output 7
11	D оит6	Input	Pixel Data Output 6
12	D оит5	Input	Pixel Data Output 5
13	GND	Ground	Power ground
14	Dout4	Input	Pixel Data Output 4
15	D оит3	Input	Pixel Data Output 3
16	Dout2	Input	Pixel Data Output 2
17	Dout1	Input	Pixel Data Output 1
18	D оит0	Input	Pixel Data Output 0(LSB)
19	XCLK	Output	Master Clock into Sensor
20	PCLK	Input	Pixel Clock output from sensor
21	SCL	Input	Two-Wire Serial Interface Clock
22	SDATA	Bi-directional	Two-Wire Serial Interface Data I/O
23	RST	Output	Sensor reset signal, active low
24	GND	Ground	Power ground
25	GND	Ground	Power ground
26	STANDBY	Output	Standby-mode enable pin (active HIGH)
27~30	VCC	POWER	3.3v Power supply

3 Device Driver Installation

Please download the device driver from github. The Windows device driver is located in Drivers folder like WinXP, Win7 or Win10. In each driver folder there are x64 and x86 folders for 64bit and 32bit system respectively.

When install the driver on Windows, you might need to disable the Windows driver signature by following the two video below:

https://youtu.be/71YAIw7_-kg

https://youtu.be/gOTkrFp8oM4

Plug in the USB cable to the camera and the host PC USB port, there is notification from the lower right of the task bar. The auto installation of the driver will fail, so we have to install the USB camera driver manually.

Go to Start->Settings->Control-Panel-><u>Device Manager</u>, right click the unknown device and select "Update Driver Software".

Select the "Browse my compute for driver software"

Select "Let me pick from a list of device drivers on my computer".

Select "Show All Devices".

Press the "Have Disk" button.

Enter the path to the ArduCAM USB2 driver, where you save the downloaded file from github.

Confirm the installation of the driver by pressing "Yes".

Confirm the installation again by pressing "Install".

You will successfully install the driver like this.

4 Demo Code

The demo code is provided in source code form to help user to understand the operation the ArduCAM USB camera and SDK library. It is created with Microsoft Visual Studio 2010 and

based on MFC frame work.

The Windows demo code is located in ../Winodws/USBTest folder and the release executable software is located in ../ Winodws/USBTest/x64/Release/USBTest.exe.

Figure 4 Demo Code GUI

4.1 Scan Cameras

Click the scan button, the drop down list will show all supported cameras with serial number, user can select one of them to open.

4.2 Load the Camera Settings

There are several preset of the camera settings in the *Config* folder, select one of the corresponding camera setting from the drop list and click load to load the setting. The camera type, width, height, bits, format, I2CAddr, I2CMode will be loaded with the correct values.

4.3 Open the Camera

Click *Open* to open the camera selected from the camera drop list.

4.4 Play the Video

Click the *Play* to capture and display the video in real-time.

4.5 Stop the Video

Click the *Stop* button to stop the video capture and display.

4.6 Take a Snapshot

Click the **Shot** to take BMP image to files.

4.7 Sensor Register Read/Write

This is very useful to access the sensor register in order to adjust the sensor settings on the fly. For example you want to manually change the exposure settings you can input the exposure register address and value then click write, you can video how the brightness changes from the video.

4.8 RAW Mode Selection

There are four combination of the RAW format **R-G**, **G-R**, **B-G**, **G-B**. It is predefined for tested camera, you can also changes the mode match your target sensor RAW display order.

4.9 Camera Control

4.9.1 Fit to Window

To fit the captured image to the GUI windows size. If this is unchecked, user can use mouse scroll wheel to zoom in and out the real-time video, or drag the mouse cursor to move the video position.

4.9.2 Force Display

Force display is useful to debug the problem by force displaying the wrong video data which is mismatch with the camera preset values.

4.9.3 IRcut

It can be used to manual control extra motorized IRCUT filter for both daylight and night vision.

4.9.4 Frame Rate Information

The frame rate information show the capture frame rate and GUI display frame rate. These two values might be mismatched, due to the performance of the demo GUI software and computer hardware.

4.10 Image Save Options

There are several options for saving image files and format. The *Display* option doesn't save any file just real-time display the video from the camera. The *Save Data* option is used to save the continuous images in the same format as the camera output like RAW, RGB, YUV or JPEG. The Save Image option is used to save the BMP images. The *Save Video* options is used to save the AVI format video. Except the *Display* option, when checking other options, the video is not updated on the display region. All the saved file are located in the Record folder.