Morphological Processing

In graphics, morphing is changing forms

In general, *Morphology* is the study of <u>forms</u>

Morphological processing is about manipulating forms/shapes/structures in an image

Morphological operations

 Morphological operations are neighbourhood operations carried out in the spatial domain

- Based on mathematical morphology
 - > set theoretical framework
 - originally for binary images
 - > extended for grey scale images

Applications

- > extract information about *forms* and *structures*
- > shaping and filtering of forms and structures

Morphological processing

Consists essentially of two steps:

1. Probe a given object in x[m,n] with a structuring element (se)

2. Find how the se <u>fits</u> with the object

- 3. Based on the fit do one of the two:
 - a. change pixel values (hence, the shape) of objects
 - **b. extract information** about the **form** of object

Role of structuring element

- Varying the {size, shape} of se
 - > yields different kinds of information about the object
 - > alters the shape of the forms in different ways

Applications- Filtering

Removal of small blobs

Extraction and grouping of linear objects

Applications-Segmentation

Separation of connected blobs

Extraction of grid lines

Applications- Measurement

Analysis of connected blobs area

Analysis of line directions

Digital pathology

Segmented result

Quantitative analysis of results

Morphological processing on Binary images

Definitions

Given sets $A = \{a\}$, and $B = \{b\}$ and vector x

- Translation by $x : A_x = \{a+x \mid \forall a \in A\}$
- Reflection: $-B = \{-b \mid \forall b \in B\}$

- Complement: $A^c = \{d \mid d \not\in A\}$
- Difference: $A-B = \{d/d \in A, d \notin B\} = A \cap B^c$

Examples

$$A_{x} = \{a+x \mid \forall a \in A\}$$

Note: green pixels are object pixels

$$-B = \{-b \mid \forall \ b \in B\}$$

Difference: A-B = $\{d|d \in A, d \notin B\} = A \cap B^c$

Basic operations

• Erosion

Dilation

Erosion followed by dilation = Opening

• Dilation followed by erosion = Closing

Basic operations - definitions

Erosion – shrinks an object

$$X \bigcirc B = \{x \mid B_x \subseteq X\}$$

• Set of all locations x such that **se** is within X

Dilation – enlarges an object

$$X \oplus B = \{x \mid -B_x \cap X \neq \emptyset\}$$

Set of all locations x such that -se has at least 1 pixel within X

Examples

$$\{x \mid B_x \subseteq X\}$$

Eroded pixel

After erosion

Dilated pixel

$$\{x \mid -B_x \cap X \neq \emptyset\}$$

After dilation

Effect of changing se

Binary image example

Basic operations - definitions..contd.

• Opening – erosion followed by dilation

$$(X \bigcirc B) \oplus B = XoB$$

> Smoothes contours, fills in small islands

• Closing – dilation followed by erosion

$$(X + B) \bigcirc B = X \bullet B$$

➤ Blocks narrow channels and thin holes

Opening - Example

Eroded pixel

opening

Closing - example

Opening = Erosion + Dilation

Opening Effect:

- > Remove small objects and spurs
- > Reset size of the object

Closing = Dilation + Erosion

Closing Effect:

- Fills small holes and cracks
- Reset size of the object

Properties for Opening and Closing

$$A \circ B = (A \Theta B) \oplus B$$

 $A \circ B$ is a subset of A
 $(A \circ B) \circ B = A \circ B$ Repeated opening

Repeated opening has no effect!

$$A \bullet B = (A \oplus B) \Theta B$$

A is a subset of $A \bullet B$

$$(A \bullet B) \bullet B = A \bullet B$$

Repeated closing has no effect!

Hit or Miss transform

$$X \circledast B = (X \ominus B_1) \cap (X^c \ominus B_2)$$

 $B = (B_1, B_2)$

B₁: object part

B₂: local background

HMT Algorithm (uses two se):

- 1. Find where the object part (se1) 'fits' X
- 2. Find where the local background (se2) 'fits' X^C
- 3. Take their intersection

 $\mathbf{B_2}$

- B1= X
- Set $A = \{X, Y, Z\}$
- Objective: identify center of shape X

Define Window W enclosing shape X

$$B_1 = X$$
 object
 $B_2 = (W-X)$ background

- - **2.** Complement (A) and erode with B₂

Find the intersection of results of 1 and 2

$$A \circledast B = (A \ominus X) \cap [A^c \ominus (W - X)]$$

Find shape B in A

Find matches for B₁

Find matches for local Background B₂

Hit or miss transform - example

Some common Structuring Elements

> se can be viewed as a binary filter kernel

The origin is marked with a point.

MORPHOLOGICAL ALGORITHMS

Task of interest

Detect and recognise objects

- 1. Based on shape of an object
 - Extract object's contour or boundary
- 2. Based on a minimal representation for a shape
 - Extract its skeleton

Solution: Design algorithms using basic operations of erosion, dilation, opening, closing, HMT

Morphological algorithms

• **Boundary extraction**: difference between object and its eroded version

$$\beta(X) = X - (X \ominus B)$$

This extracts internal boundary

$$\beta(X) = (X \oplus B) - X$$

> This extracts internal boundary

Binary example of boundary extraction

Thinning and thickening

- Thinning: $X \otimes B = X X \otimes B$
- Thickening: $X \cup X \circledast B$
 - > Can be done by thinning the background

Skeletonisation

• A skeleton is a *minimal* representation for structures

- Provides topological and metric information
 - End points, nodes, holes; branch length, angles, etc
- Several approaches exist

Methods for skeletonisation

- **Basic approach** conditional erosion
 - remove pixels only if they don't split a region
 - > can use a "fate table" for implementation

Methods for skeletonisation

Method 1

Using iterative erosion

$$S_k(X) = \bigcup_p (X\Theta pB) - ((X\Theta pB)oB)$$

$$S(X) = \bigcup_{k} S_k(X)$$
 Skeleton

 S_k : Skeleton subset

Θ: Erosion operator

Drawbacks: very sensitive to change in shape; difficult to determine the right number of iterations

Skeletonisation - example

B

Light red: $X \bigcirc B$

Red: XoB

Blue: S₀

Skeletonisation – example contd.

Methods for skeletonisation

Method 2

- Fit a set of maxballs inside the object
 - ➤ Max ball is a ball of max radius that just fits within X
- Skeleton = {Centre points of the set of max balls}
- Drawback: Can result in disjoint skeleton

Distance Transform

- A map/image which gives the *distance from a pixel to the nearest background*
 - > different distance measures D can be used
 - ➤ also called a Euclidean Distance Map (even when D is not Euclidean dist.!)

Applns.

- feature measurement
- binary to grey or colour image conversion
- skeletonisation
- cluster analysis, etc.

EDM examples

Light red: d = 3 pixels; Dark red: d = 2 pixel; Green: d = 1

Skeletonisation using DM

Skeleton using (D₄)

Convex hull

- Region R : $\{x_i\}$
- Region R is convex if straight lines connecting x_i and x_{i+1} is in R.
- Convex hull of an object O is the smallest convex set containing O

Convex Hull of O is a pentagon

Algo for finding convex hull of O

- 1. For every pixel i find the number n_i of its neighbours which belong to the object
- 2. If $n_i > 3$ then mark the object pixel I

3. Repeat 1 and 2 until there are no pixels with more than 3 neighbours

Examples

Example 2

Original image

Pass # colour

- 1 Red
- 2 Green
- 3 Blue
- 4 Black

Convex hull

Sample task in pathology: Count the number of different bacteria in image

- Microscopy images are acquired at 400x to 1000x

Gray level morphological operations

Binary (flat) Structuring Element

 Greyscale erosion and *dilation* use rank operations (rank filtering)

Definition: replace current pixel in X with minimum or *maximum* value in the window represented by the se B

➤ shape of B determines the neighbourhood size over which ranking is done

Gray(non-flat) structuring Element

• B is a *grayscale* image defined over a domain D_B

Dilation: find max after adding value of B and X

 \triangleright centre pixel = max{X[m-i,n-j] + B[i,j]; i,j \in D_B}

$$(f \oplus b)(s,t) = \max\{ f(s-x, y-t) + b(x, y) |$$

$$(s-x), (t-y) \in D_f; (x, y) \in D_b \}$$

Erosion: find min after subtracting value of B from X

➤ centre pixel = min{X[m-i,n-j] - B[i,j]; i,j ∈ D_B}
$$(f \oplus b)(s,t) = \min\{f(s+x,y+t) - b(x,y) | \\ (s+x),(t+y) \in D_f;(x,y) \in D_b\}$$

Greyscale dilation and erosion—1D

Cameraman

Original

Dilated

(**se** = rolling ball)

Cameraman

Original

Eroded

(**se** = rolling ball)

Opening and Closing: non-flat SE

Opening and Closing: flat SE

Input - PCB

Output

Opened

Closed

Erode d

D-E = gradie

Morphological top hat transform

Input-rice grains binarised input

O2: opened result

Sonzalez and Woods 3rd ed

Case Study

Input

Median Filtering (13 X 13)

I-M

Can view as small sized noise regions

Opening?

Vessels are also getting removed!! Can we use some properties of vessels to distinguish them from MA?

SE: Disk of 5

Objective: first remove vessels!!

Input

Linear SE= 0 degree, 15

Linear SE= 45 degree, 15

Linear SE= 90 degree, 15

Linear SE= 135 degree, 15

MAX image (0, 45, 90, 135)

I – Processed Image

After Vessel Removal

After MA removal (median)

