LEC15 Recursive Algorithms

4.4 https://github.com/GUMI-21/MIT6.006_note

How to Solve An Algorithms Problem(Review)

Reduce to a problem you already know(Use data structure or algorithm)

Search Data Structures

Array, Linked List, Dynamic Array, Sorted Array, Direct-Access Array, Hash Table, AVL Tree,
 Binary Heap

Sort Algorithms

• Insertion Sort, Selection Sort, Merge Sort, Counting Sort, Radix Sort, AVL Sort, Heap Sort

Graph Algorithms

• Breadth First Search, DAG Relaxation (DFS + Topo), Dijkstra, Bellman-Ford, Johnson

Design your own recursive algorithm

Constant-sized program to solve arbitrary input

Need looping or recursion, analyze by induction

Recursive function call: vertex in a graph, directed edge from A → B if B calls A

– Dependency graph of recursive calls must be acyclic (if can terminate)

Classify based on shape of graph

Today: Dynamic Programming 1 (of 4)

- SRTBOT recursive alg
- DP ~ recursion + memoization

```
def f(subprob):
    if subprob in memo0:
        return memo[subprob]
    basecase
    recurse via relation
    memo[s]↑
```

How to solve a problem recursively (SRT BOT)

- 1. Subproblem definition
- 2. Relate subproblem solutions recursively
- 3. *Topological* order on subproblems (⇒ subproblem DAG)
- 4. Base cases of relation
- 5. Original problem solution via subproblem(s)
- 6. Time analysis

Expample: merge_sort(A) n=|A|

```
-Subproblem: S(i,j) = sorted array on A[i:j]
```

-Relate:
$$S(i,j) = merge(S(i,m),S(m,j))$$

-Topo order: increasing j-i

-Base case: S(i,j) = []

-Original Problem: S(0,n)

-Time: T(n) = 2T(n/2) + O(n) = O(nlogn) n = j-i

Fibonacci numbers: given n, compute $F_n=F_{n-1}+F_{n-2}, F_1=F_2=1$

```
-Subproblem: F(i) = F_i 1 \le i \le n
```

-Relate: F(i) = F(i-1) + F(i-2)

-Topo order: increasing i, for i = 1,2,....,n

-Base Case: F_1=F_2=1

-Origin: F(n)

-Time: T(n) = T(n-1) + T(n-2) + 1 additions $> F_n \sim$ exponential, is bad

Dynamic programming

Big Idea: Memoization

remember & re-use solutions to subproblems

every F(i) need compute only once.

-maintain dictionary(daa or hash table) mapping subproblems-solutions. memo

-recursive function returns stored solution, or if doesn't exist, compute & store it.

=>then Fib .time = n-2 additions(n-bit)

-then on a w-bit machine

w-bit addition O(1) time, $O(\lceil n/w \rceil * n) = O(n^2/w)$

-Time <= $\sum_{subproblems} (relate\ nonrecursive\ work)$

assume all recursive call is free

DAG shortest paths:

given DAG G & vertex s

-subproblems: delta(s,v) for each $v \mid V \mid$ subproblems

-Relate: $\delta(s,v) = min\{\delta(s,u) + w(u,v) | u \in Adj^-(v)\} \cup \{\infty\}$

-Topo order: topo order of G(DAG)

-Base: $\delta(s,s)=0$

-Original: all subproblems

-Time: $\sum_{v \in V} (O(1 + Adj^-(v))) = O(|V| + |E|)$

Bowling Game

given n pins Oi{0,....,n-1} in a line, you only can pull down 1/2/0 pins one time.

-pin i has value V_i

-hit 1 pin i get V_i points

-goal: max.source

The input is a sequence of numbers.

Sub-problems design:

a trick: If input is a sequence x, good subproblems are:

- -prefixes $x[:i] \theta(n)$
- -suffixed x[i:] $\theta(n)$
- -substrings x[i:j] $\theta(n^2)$

Bowling DP

-subproblems: B(i) = max-score possible tarting with pins i,i+1,....,n-1

-original problem: B(0)

-Relate: B(i) = max{B(i+1), B(i+1)+ v_i ,, B(i+2) + $v_i \cdot v_{i+1}$ $\theta(1)$

-Topo: decreasing i , for i=n,n-1.....,0

-Base: B(n) = 0

Time: $\theta(n) \cdot \theta(1) = \theta(n)$

• Buttom-up DP

B(n) = 0, for i=n,n-1,....,0: $B(i) = max\{B(i+1), B(i+1) + v_i, B(i+2) + v_i + 1\}$ if i < n-1return B(0)

DP~ local brute force