10.3 PLOTS WITH SPECIAL GRAPHICS

MATLAB has additional functions for creating various types of special threedimensional plots. A complete list can be found in the Help Window under Plotting and Data Visualization. Several of these 3-D plots are presented in Table 10-2. The examples in the table do not show all the options available

Table 10-2: Specialized 3-D plots

Plot type	Example of plot	Program
Plot a Sphere Function format: sphere Returns the x, y, and z coordinates of a unit sphere with 20 faces. sphere (n) Same as above with n faces.		<pre>sphere or: [X,Y,Z]=sphere(20); surf(X,Y,Z)</pre>
Plot a Cylinder Function format: [X, Y, Z] = cylinder (r) Returns the x, y, and z coordinates of cylinder with profile r.	0.8 0.6 0.4 0.2 0 2 0 2	<pre>t=linspace(0,pi,20); r=1+sin(t); [X,Y,Z]=cylinder(r); surf(X,Y,Z) axis square</pre>
3-D Bar Plot Function format: bar3 (Y) Each element in Y is one bar. Columns are grouped together.	8 6 4 2 0 1 2 3 4 5 6 7 1 2 3	Y=[1 6.5 7; 2 6 7; 3 5.5 7; 4 5 7; 3 4 7; 2 3 7; 1 2 7]; bar3(Y)

Plot type	Example of plot	Program
3-D Stem Plot (draws sequential points with markers and vertical lines from the <i>x y</i> plane) Function format: stem3 (X, Y, Z)	40 30 N 20 10 0 10 10 10 10 10 10 10 10 10 10 10	<pre>t=0:0.2:10; x=t; y=sin(t); z=t.^1.5; stem3(x,y,z,'fill') grid on xlabel('x'); ylabel('y') zlabel('z')</pre>
3-D Scatter Plot Function format: scatter3(X, Y,Z)	40 30 N 20 10 10 10 10 10 10 10 10	<pre>t=0:0.4:10; x=t; y=sin(t); z=t.^1.5; scatter3(x,y,z,'filled') grid on colormap([0.1 0.1 0.1]) xlabel('x'); ylabel('y') zlabel('z')</pre>
3-D Pie Plot Function format: pie3 (X, explode)	19%	X=[5 9 14 20]; explode=[0 0 1 0]; pie3(X,explode) explode is a vector (same length as X) of 0's and 1's. 1 offsets the slice from the center.

Table 10-2: Specialized 3-D plots (Continued)

with each plot type. More details on each type of plot can be obtained in the Help Window, or by typing help <code>command_name</code> in the Command Window.

Polar coordinates grid in the x y plane:

A 3-D plot of a function in which the value of z is given in polar coordinates (for example $z = r\theta$) can be done by following these steps:

- Create a grid of values of θ and r with the meshgrid function.
- Calculate the value of z at each point of the grid.