Programming Languages and Software Verification

02 Regular languages and finite-state automata

2021

DFA: informal view

A **Deterministic Finite-State Automaton** (DFA) is a machine that takes in input a sequence of symbols, and it answers with yes (or no) if the sequence is accepted (or rejected)

- State: represents the basic memory support for the automaton, such that reading a symbol makes the automaton move from state to state
- Finite: means that while analyzing the sequence of symbols the automaton can only remember a finite set of facts about the sequence
- Deterministic: means that given a state and an input symbol, the automaton has exactly one way to proceed

DFA: formal definition

A Deterministic Finite-State Automaton (DFA) is a tuple

$$A = (Q, \Sigma, \delta, q_0, F)$$

where

- Q is a finite set of states
- Σ is an alphabet of input symbols
- $\delta: Q \times \Sigma \to Q$ is the transition function
- $q_0 \in Q$ is the initial state
- $F \subseteq Q$ is the set of final (or accepting) states

DFA: how does it work?

Reading the input string $a_1 a_2 \dots a_n$ induces the visit of a path in the automaton:

$$q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \xrightarrow{a_3} \cdots \xrightarrow{a_n} q_n$$

such that:

- q_0 is the initial state
- $\bullet \ q_{i+1} = \delta(q_i, a_{i+1})$
- if $q_n \in F$ the string $a_1 a_2 \cdots a_n$ is accepted, otherwise it is rejected

DFA: example

Create a DFA that recognizes the language

$$L = \{x \in \{0, 1\}^* \mid 01 \text{ is a substring of } x\}$$

We use 3 states:

- q_0 "I have seen no symbols, or all the symbols I have seen so far were 1"
- q_1 "the last symbol I saw was 0"
- q_2 "I have seen a 01 substring"

The alphabet is $\Sigma = \{0, 1\}$

The initial state is q_0

The set of final states is $F = \{q_2\}$

alessandro aldini 2021 5 / 12

DFA: example

Create a DFA that recognizes the language

$$L = \{x \in \{0, 1\}^* \mid 01 \text{ is a substring of } x\}$$

We specify the transitions:

- from q_0 , read 0, go to q_1
- from q_0 , read 1, stay in q_0
- from q_1 , read 0, stay in q_1
- from q_1 , read 1, go to q_2
- from q_2 , read 0 or 1, stay in q_2

DFA: example

Create a DFA that recognizes the language

$$L = \{x \in \{0, 1\}^* \mid 01 \text{ is a substring of } x\}$$

Formally, the automaton we have defined is the following:

$$A = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\})$$

where:

$$\begin{array}{rcl}
\delta(q_0,0) & = & q_1 \\
\delta(q_0,1) & = & q_0 \\
\delta(q_1,0) & = & q_1 \\
\delta(q_1,1) & = & q_2 \\
\delta(q_2,0) & = & q_2 \\
\delta(q_2,1) & = & q_2
\end{array}$$

Transition diagrams

A more convenient way of representing (small) DFAs $(Q, \Sigma, \delta, q_0, F)$:

- for each state $q \in Q$ there is a node labeled q
- for each state $q \in Q$ and each symbol $a \in \Sigma$ there is an arc labeled a from the node labeled q to the node labeled $\delta(q,a)$
- the initial node q_0 has an incoming arrow
- final states $q \in F$ are emphasized

Transition tables

Tabular representation of the transition diagram

$$\begin{array}{c|ccccc} & 0 & 1 \\ \hline \rightarrow q_0 & q_1 & q_0 \\ q_1 & q_1 & q_2 \\ *q_2 & q_2 & q_2 \end{array}$$

alessandro aldini

Language accepted by a DFA

Extend the transition function to strings

$$\begin{split} \hat{\delta} : Q \times \Sigma^* & \to & Q \\ \\ \hat{\delta}(q, \varepsilon) & = & q \\ \hat{\delta}(q, xa) & = & \delta(\hat{\delta}(q, x), a) \end{split}$$

Language accepted by DFA $A = (Q, \Sigma, \delta, q_0, F)$

$$L(A) \stackrel{\text{def}}{=} \{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \in F \}$$

$$L = \{w \in \{0,1\}^* \mid w \text{ has an even number of 0s and 1s}\}$$

The automaton that accepts L

$$L = \{w \in \{0,1\}^* \mid w \text{ has an even number of 0s and 1s}\}$$

The automaton that accepts \overline{L}

$$L = \{0^n 1^m \mid n \ge 0, m \ge 0\}$$

alessandro aldini 2021 11 / 12

$$L=\{(01)^n\mid n\geq 0\}$$

2021 12 / 12

alessandro aldini