

(43) International Publication Date 28 December 2000 (28.12.2000)

PCT

(10) International Publication Number WO 00/78973 A 1

- (51) International Patent Classification⁷: C12N 15/53, C12P 7/22, C12N 9/02, A01K 67/033, A01H 5/00, A62D 3/00
- (21) International Application Number: PCT/GB00/02379
- (22) International Filing Date: 19 June 2000 (19.06.2000)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

9914373.7

18 June 1999 (18.06.1999) GB

- (71) Applicant (for all designated States except US): ISIS IN-NOVATION LIMITED [GB/GB]; Ewert House, Ewert Place, Summertown, Oxford OX2 7BZ (GB).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): WONG, Luet, Lok [GB/GB]; University of Oxford, Dept. of Chemistry, South Parks Road, Oxford OX1 3QR (GB). JONES, Jonathan, Peter [GB/GB]; University of Oxford, Dept. of Chemistry, South Parks Road, Oxford OX1 3QR (GB).

- (74) Agent: ELLIS-JONES, Patrick, George, Armine; J.A. Kemp & Co., 14 South Square, Gray's Inn, London WC1R 5LX (GB).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- With international search report.
- Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

-1-

PROCESS FOR OXIDISING AROMATIC COMPOUNDS

The invention relates to a process for enzymatically oxidising halogenated aromatic compounds.

Chlorinated aromatic compounds such as the chlorobenzene and polychlorinated biphenyls (PCBs) are among the most wide-spread organic contaminants in the environment due to their common application as solvents, biocides, and in the heavy electrical industry. They are also some of the most problematic environmental pollutant, not only because of the health hazards (lipid solubility and hence accumulation in fatty tissues, toxicity and carcinogenicity) but also because of their slow degradation in the environment.

Whilst microorganisms have shown extraordinary abilities to adapt and evolve to degrade most of the organic chemicals released into the environment, the most chemically inert compounds such as PCBs do persist for two main reasons. First, these compounds have very low solubility in water and therefore their bioavailability is low. Research into this problem has focussed on the use of detergents and other surfactants to enhance their solubility and bioavailability. Second, these compounds require activation by enzymatic oxidation or reduction, and it can take a long time for the necessary genetic adaptations by microorganisms to occur, and even then the organisms may not be stable and viable.

We have now found, according to the present invention, that a monoxygenase, in particular P450_{cam} and its physiological electron transfer partners putidaretoxin and putidaretoxin reductase, can be used to oxidise halogenated aromatic compounds. Also mutants of the monoxygenase with substitutions in the active site have enhanced oxidation activity. Thus suitable monoxygenases can be expressed in microorganisms, animals and plants which are going to be used to oxidise the halogenated aromatic compounds.

Accordingly the present invention provides a process for oxidising a substrate which is a halo aromatic compound, which process comprises oxidising said substrate with a monooxygenase enzyme.

The process may be carried out in a cell that expresses:

(a) the enzyme

5

10

15

20

25

30

- (b) an electron transfer reductase; and
- (c) an electron transfer redoxin.

5

10

15

20

25

The halo aromatic compound is typically a benzene or biphenyl compound. The benzene ring is optionally fused and can be substituted. The halogen is typically chlorine. In many cases there is more than one halogen atom in the molecule, typically 2 to 5 or 6, for example 3. Generally 2 of the halogen atoms will be ortho or para to one another. The compound may or may not contain an oxygen atom such as a hydroxy group, an aryloxy group or a carboxy group. The compound may or may not be chlorophenol or a chlorophenoxyacetic compound.

Specific compounds which can be oxidised by the process of the present invention include 1, 2; 1,3- and 1,4-dichlorobenzene, 1, 2, 4; 1, 2, 3- and 1, 3, 5- trichlorobenzene, 1, 2, 4, 5- and 1, 2, 3, 5- tetrachlorobenzene, pentachlorobenzene, hexachlorobenzene, 3,3'-dichlorobiphenyl and 2, 3, 4, 5, 6- and 2, 2', 4, 5, 5'-pentachlorobiphenyl.

Other compounds which can be oxidised by the process include recalcitrant halo aromatic compounds, especially dioxins and halogenated dibenzofurans, and the corresponding compounds where one or both oxygen atoms is/are replaced by sulphur, in particular compounds of the formula:

which possess at least one halo substituent, such as dioxin itself, 2,3,7,8-tetrachlorodibenzodioxin.

The oxidation typically gives rise to 1, 2 or more oxidation products. These oxidation products will generally comprise 1 or more hydroxyl groups. Generally, therefore, the oxidation products are phenols which can readily be degraded. It is particularly noteworthy that pentachlorobenzene and hexachlorobenzene can be oxidised in this way since they are very difficult to degrade. In contrast the corresponding phenols can be readily degraded by a variety of Pseudomonas and other bacteria. The atom which is oxidized is generally a ring carbon.

The enzyme is typically a natural monooxygenase or a mutant thereof. The

-3-

natural monooxygenase is generally a prokaryotic or eukaryotic enzyme. Typically it is a haem-containing enzyme and/or a P450 enzyme. The monooxygenase may or may not be a TfdA (2,4-dichlorophenoxy) acetate/α-KG dioxygenase. The monooxygenase is generally of microorganism (e.g. bacterial), fungal, yeast, plant or animal origin, typically of a bacterium of the genus Pseudomonas. These organisms are typically soil, fresh water or salt water dwelling. In the case of a mutant monooxygenase the non-mutant form may or may not be able to oxidize the substrate.

5

10

15

The monooxygenase typically has a coupling efficiency of at least 1%, such as at least 2%, 4%, 6% or more. The monooxygenase typically has a product formation rate of at least 5 min⁻¹, such as at least 8, 10, 15, 20, 25, 50, 100, 150 min⁻¹ or more. The coupling efficiency or product formation rate is typically measured using any of the substrates or conditions mentioned herein. Thus they are typically measured in the in vitro conditions described in Example 2, in which case the relevant monooxygenase, reductase and redoxin would be present instead of, but at the same concentration as, P450_{cam}, putidaretoxin reductase and putidaretoxin.

The mutant typically has at least one mutation in the active site. A preferred mutant comprises a substitution of an amino acid in the active site by an amino acid with a less polar side chain. Thus the amino acid is typically substituted with an amino acid which is above it in Table 1.

Table 1. HYDROPATHY SCALE FOR AMINO ACID SIDE CHAINS

	Side Chain	Hydropathy	_
5			
			_
	Ile	4.5	
	Val	4.2	
10	Leu	3.8	
	Phe	2.8	
	Cys	2.5	
	Met	1.9	
	Ala	1.8	
15	Gly	-0.4	
	Thr	-0.7	
	Ser	-0.8	
	Trp	-0.9	
	Tyr	-1.3	
20	Pro	-1.6	
	His	-3.2	
	Glu	-3.5	
	Gln	-3.5	
	Asp	-3.5	
25	Asn	-3.5	
	Lys	-3.9	
	Arg	-4.5	

30

35

An amino acid 'in the active site' is one which lines or defines the site in which the substrate is bound during catalysis or one which lines or defines a site through which the substrate must pass before reaching the catalytic site. Therefore such an amino acid typically interacts with the substrate during entry to the catalytic site or during catalysis. Such an interaction typically occurs through an electrostatic interaction (between charged or polar groups), hydrophobic interaction, hydrogen bonding or van der Waals forces.

The amino acids in the active site can be identified by routine methods to those skilled in the art. These methods include labelling studies in which the enzyme is allowed to bind a substrate which modifies ('labels') amino acids which contact the substrate. Alternatively the crystal structure of the enzyme with bound substrate can be obtained in order to deduce the amino acids in the active site.

-5-

The monooxygenase typically has 1, 2, 3, 4 or more other mutations, such as substitutions, insertions or deletions. The other mutations may be in the active site or outside the active site. Typically the mutations are in the 'second sphere' residues which affect or contact the position or orientation of one or more of the amino acids in the active site. The insertion is typically at the N and/or C terminal and thus the enzyme may be part of a fusion protein. The deletion typically comprises the deletion of amino acids which are not involved in catalysis, such as those outside the active site. The monooxygenase may thus comprise only those amino acids which are required for oxidation activity.

The other mutations in the active site typically alter the position and/or conformation of the substrate when it is bound in the active site. The mutation may make the site on the substrate which is to be oxidized more accessible to the haem group. Thus the mutation may be a substitution to an amino acid which has a smaller or larger, or more or less polar, side chain.

The other mutations typically increase the stability of the protein, or make it easier to purify the protein. They typically prevent the dimerisation of the protein, typically by removing cysteine residues from the protein (e.g. by substitution of cysteine at position 334 of P450_{cam}, or at an equivalent position in a homologue, preferably to alanine). They typically allow the protein to be prepared in soluble form, for example by the introduction of deletions or a poly-histidine tag, or by mutation of the N-terminal membrane anchoring sequence. The mutations typically inhibit protein oligomerisation, such as oligomerisation arising from contacts between hydrophobic patches on protein surfaces.

Typically the mutant monoxygenase is at least 70% homologous to a natural monoxygenase on the basis of amino acid identity.

Any of the homologous proteins mentioned herein are typically at least 70% homologous to a protein or at least 80 or 90% and more preferably at least 95%, 97% or 99% homologous thereto over at least 20, preferably at least 30, for instance at least 40, 60 or 100 or more contiguous amino acids. The contiguous amino acids may include the active site. This homology may alternatively be measured not over contiguous amino acids or nucleotides but over only the amino acids in the active site.

The monoxygenase is preferably:

(i) P450_{cam},

5

10

15

20

25

30

(ii) a naturally occurring homologue of (i),

-6-

(iii) a mutant of (i) or (ii).

5

10

15

20

25

30

Typically (i) is any allelic variant of P450_{cam} of Pseudomonas putida (e.g. of the polypeptide sequence shown in SEQ ID No. 1). Typically (ii) is a species homologue of (i) which has sequence homology with (i), and is typically P450_{BM-3} of Bacillus megaterium (e.g. the polypeptide sequence shown in SEQ ID No. 2), P450_{terp} of Pseudomonas sp, P450_{eryF} of Saccharopollyspora erythraea, or P450 105 D1 (CYP105) of Streptomyces griseus strains.

The active site of (ii) or (iii) may be substantially the same as the active site of (i) or any of the mutants of (i) mentioned herein. Thus the site may comprise the same amino acids in substantially the same positions.

Typically in (iii) amino acid 96 of P450_{cam}, or the equivalent amino acid in a homologue, has been changed to an amino acid with a less polar side chain.

The 'equivalent' side chain in the homologue is one at the homologous position. This can be deduced by lining up the P450_{cam} sequence and the sequence of the homologue based on the homology between the two sequences. The PILEUP, BLAST and BESTFIT algorithms can be used to line up the sequences (for example as described in Altschul S. F. (1993) J Mol Evol 36:290-300; Altschul, S, F et al (1990) J Mol Biol 215:403-10 and (Devereux et al (1984) Nucleic Acids Research 12, p387-395)). These algorithms can also be used to calculate the levels of homology discussed herein (for example on their default settings). The equivalent amino acid will generally be in a similar place in the active site of the homologue as amino acid 96 in P450_{cam}.

The discussion below provides examples of the positions at which substitutions may be made in P450_{cam}. The same substitutions may be made at equivalent positions in the homologues. Standard nomenclature is used to denote the mutations. The letter of the amino acid present in the natural form is followed by the position, followed by the amino acid in the mutant. To denote multiple mutations in the same protein each mutation is listed separated by hyphens. The mutations discussed below using this nomenclature specify the natural amino acid in P450_{cam}, but it is to be understood that the mutation could be made to a homologue which has a different amino acid at the equivalent position. Note that the amino acid numbering shown in SEQ ID No. 1 for P450_{cam} does not correspond to the numbering used in the description to denote mutations. The numbering in SEQ ID No. 1 is one more than the numbering in the description for a particular position.

-7-

An additional mutation is typically an amino acid substitution at amino acid 87, 98, 101, 185, 244, 247, 248, 296, 395, 396 or a combination of these, for example as shown in table 2.

The following combinations of substitutions are preferred:

5

10

15

20

25

30

- (i) Substitution at position 87 to amino acids of different side-chain volume, such as substitutions (typically of F) to A, L, I and W, combined with substitutions at position 96 to amino acids of different side-chain volume such as (typically Y to) A, L, F, and W. These combinations alter the space available in the upper part of the substrate pocket compared to the wild-type enzyme, for example, from Y96W-F87W (little space) to Y96A-F87A (more space), as well as the location of the space, for example from one side in Y96F-F87A to the other in Y96A-F87W.
- (ii) Substitution at position 96 to F combined with substitutions at positions 185 and 395. Both T185 and I395 are at the upper part of the substrate pocket, and substitution with A creates more space while substitution with F will reduce the space available and push the substrate close to the haem.
- (iii) Substitutions at position 96 to A, L, F, and W combined with substitutions at residues closer to the haem including at 101, 244, 247, 295, 296 and 396 to A, L, F, or W. These combinations will create or reduce space in the region of the different sidechains to offer different binding orientations to substrates of different sizes. For example, the combinations Y96W-L244A and Y96L-V247W will offer very different pockets for the binding of the substrate.
- (iv) Triple substitutions at combinations of positions 87, 96, 244, 247, 295, 296, 395 and 396 with combinations of A, L, F, and W. The aim is to vary the size and shape of the hydrophobic substrate binding pocket. For example, the Y96A-F87A-L244A combination creates more space compared to the Y96F-F87W-V396L combination, thus allowing larger substrates to bind to the former while restricting the available binding orientations of smaller substrates in the latter. The combinations Y96F-F87W-V247L and Y96F-F87W-V295I have comparable substrate pocket volumes, but the locations of the space available for substrate binding are very different. The combination Y96F-F87L-V247A has a slightly larger side-chain volume at the 96 position than the combination Y96L-F87L-V247A, but the L side-chain at the 96 position is much more flexible and the substrate binding orientations will be different for the two triple mutants.

(v) The mutants with four or five substitutions were designed with similar principles of manipulating the substrate volume, the different flexibility of various sidechains, and the location of the space available in the substrate pocket for substrate binding so as to effect changes in selectivity of substrate oxidation.

5

Mutations are generally introduced into the enzyme by using methods known in the art, such as site directed mutagenesis of the enzyme, PCR and gene shuffling methods or by the use of multiple mutagenic oligonucleotides in cycles of site-directed mutagenesis. Thus the mutations may be introduced in a directed or random manner. Typically the mutagenesis method produces one or more polynucleotides encoding one or more different mutants. In one embodiment a library of mutant oligonucleotides is produced which can be used to produce a library of mutant enzymes.

10

The process is typically carried out in the presence of the natural cofactors of the monooxygenase. Thus typically in addition to the enzyme (a) and the substrate the process is carried out in the presence of an electron transfer reductase (b), an electron transfer redoxin (c), cofactor for the enzyme and an oxygen donor. In this system the flow of electrons is generally: $cofactor \rightarrow (b) \rightarrow (c) \rightarrow (a)$.

15

(b) is generally an electron transfer reductase which is able to mediate the transfer of electrons from the cofactor to (c), such as a naturally occurring reductase or a protein which has homology with a naturally occurring reductase, such as at least 70% homology; or a fragment of the reductase or homologue. (b) is typically a reductase of any of the organisms mentioned herein, and is typically a flavin dependent reductase, such as putidaredoxin reductase.

20

(c) is generally an electron transfer redoxin which is able to mediate the transfer of electrons from the cofactor to (a) via (b). (c) is typically a naturally occurring electron transfer redoxin or a protein which has homology with a naturally occurring electron transfer redoxin, such as at least 70% homology; or a fragment of the redoxin or homologue. (c) is typically a redoxin of any of the organisms mentioned herein. (c) is typically a two-iron/two sulphur redoxin, such as putidaredoxin.

25

30

The cofactor is any compound capable of donating an electron to (b), such as NADH. The oxygen donor is any compound capable of donating oxygen to (a), such as dioxygen.

Typically (a), (b) and (c) are present as separate proteins; however they may be

present in the same fusion protein. Typically only two of them, preferably (b) and (c), are present in the fusion protein. Typically these components are contiguous in the fusion protein and there is no linker peptide present.

Alternatively a linker may be present between the components. The linker generally comprises amino acids that do not have bulky side chains and therefore do not obstruct the folding of the protein subunits. Preferably the amino acids in the linker are uncharged. Preferred amino acids in the linker are glycine, serine, alanine or threonine. In one embodiment the linker comprises the sequence N-Thr-Asp-Gly-Gly-Ser-Ser-Ser-C. The linker is typically from at least 5 amino acids long, such as at least 10, 30 or 50 or more amino acids long.

5

10

15

20

25

30

In the process the concentration of (a), (b) or (c) is typically from 10⁻⁸ to 10⁻²M, preferably from 10⁻⁶ to 10⁻⁴M. Typically the ratio of concentrations of (a): (b) and/or (a): (c) is from 0.1:01 to 1:10, preferably from 1:0.5 to 1:2, or from 1:0.8 to 1:1.2. Generally the process is carried out at a temperature and/or pH at which the enzyme is functional, such as when the enzyme has at least 20%, 50%, 80% or more of peak activity. Typically the pH is from 3 to 11, such as 5 to 9 or 6 to 8, preferably 7 to 7.8 or 7.4. Typically the temperature is 10 to 90°C, such as 25 to 75°C or 30 to 60°C.

In the process different monooxygenases may be present. Typically each of these will be able to oxidise different substrates, and thus using a mixture of monooxygenases will enable a wider range of substrates to be oxidised.

In one embodiment the process is carried out in the presence of a substance able to remove hydrogen peroxide by-product (e.g. a catalase).

In one embodiment the process is carried out in the presence of the enzyme, substrate and an oxygen atom donor, such as hydrogen peroxide or t-butylhydroperoxide, for example using the peroxide shunt.

In one embodiment in the process the (a), (b) and (c) together are typically in a substantially isolated form and/or a substantially purified form, in which case together they will generally comprise at least 90%, e.g., at least 95%, 98% or 99% of the protein in the preparation.

The process may be carried out inside or outside a cell. The cell is typically in culture, at a locus, in vivo or in planta (these aspects are discussed below).

The process is typically carried out at a locus such as in land (e.g. in soil) or in

-10-

water (e.g. fresh water or sea water). When it carried out in culture the culture typically comprises different types of cells of the invention, for example expressing different monooxygenases of the invention. Generally such cells are cultured in the presence of assimible carbon and nitrogen sources.

5

10

15

20

25

30

Typically the cell in which the process is carried out is one in which the monooxygenase does not naturally occur. In another embodiment the monooxygenase is expressed in a cell in which it does naturally occur, but at higher levels than naturally occurring levels. The cell may produce 1, 2, 3, 4 or more different monooxygenases of the invention. These monoxygenases may be capable of oxidising different halo aromatic compounds. Typically the cell also expresses any of the reductases and/or redoxins discussed above.

The cell is typically produced by introducing into a cell (i.e. transforming the cell with) a vector comprising a polynucleotide that encodes the monooxygenase. The vector may integrate into the genome of the cell or remain extrachromosomal. The cell may develop into the animal or plant discussed below. Typically the coding sequence of the polynucleotide is operably linked to a control sequence which is capable of providing for the expression of the coding sequence by the host cell. The control sequence is generally a promoter, typically of the cell in which the monooxygenase expressed.

The term "operably linked" refers to a juxtaposition wherein the components described are in a relationship permitting them to function in their intended manner. A control sequence "operably linked" to a coding sequence is ligated in such a way that expression of the coding sequence is achieved under conditions compatible with the control sequences.

The vector is typically a transposon, plasmid, virus or phage vector. It typically comprises an origin of replication. It typically comprises one or more selectable marker genes, for example an ampicillin resistance gene in the case of a bacterial plasmid. The vector is typically introduced into host cells using conventional techniques including calcium phosphate precipitation, DEAE-dextran transfection, or electroporation.

Components (b) and (c) may be expressed in the cell in a similar manner.

Typically (a), (b) and (c) are expressed from the same vector, or may be expressed from different vectors. They may be expressed as three different polypeptides. Alternatively they may be expressed in the form of fusion proteins. The cell typically expresses more

-11-

than one type of monooxygenase.

5

10

15

20

25

30

In one embodiment the three genes encoding the three protiens of the P450_{cam} system, i.e. camA, camB, and camC are placed in the mobile regions of standard transposon vectors and incorporated into the genome of Pseudomonas and flavobacteria. Alternatively plasmid vectors for expressing these genes may used, in which case the P450_{cam} gene cluster will be extra-chromosomal.

The cell may be prokaryotic or eukaryotic and is generally any of the cells or of any of the organisms mentioned herein. Preferred cells are Pseudomanas, flavobacteria or fungi cells (e.g. Aspergillus). In one embodiment the cell is one which in its naturally occurring form is able to oxidise any of the substrates mentioned herein. Typically the cell is in a substantially isolated form and/or substantially purified form, in which case it will generally comprise at least 90%, e.g. at least 95%, 98% or 99% of the cells or dry mass of the preparation.

The invention provides a transgenic animal or plant whose cells are any of the cells of the invention. The animal or plant is transgenic for the monooxygenase gene and typically also an appropriate electron transfer reductase and/or redoxin gene. They may be homozygote or heterozygote for such genes, which are typically transiently introduced into the cells, or stably integrated.(e.g. in the genome). The animal is typically a worm (e.g earthworm) or nematode. The plant or animal may be obtained by transforming an appropriate cell (e.g. embryo stem cell, callus or germ cell), fertilising the cell if required, allowing the cell to develop into the animal or plant and breeding the animal or plant true if required. The animal or plant may be obtained by sexual or asexual (e.g. cloning) propagation of an animal or plant of the invention or of the F1 organism (or any generation removed from the F1, or the chimera that develops from the transformed cell).

As discussed above the process may be carried out at a locus. Thus the invention also provides a method of treating a locus contaminated with a halo aromatic compound comprising contacting the locus with a monooxygenase, cell, animal or plant of the invention. These organisms are then typically allowed to oxidise the halo aromatic compound. In one embodiment the organisms used to treat the locus are native to the locus. Thus they may be obtained from the locus (e.g. after contamination),

transformed/transfected (as discussed above) to express the monooxygenase (and optionally an appropriate electron transfer reductase and/or redoxin.

In one embodiment the locus is treated with more than one type of organism of the invention, e.g. with 2, 3, 4, or more types which express different monooxygenases which oxidise different halo aromatic compounds. In one embodiment such a collection of organisms between them is able to oxidise all halobenzenes, e.g. all chlorobenzenes.

-12-

The organisms (e.g. in the form of the collection) may carry out the process of the invention in a bioreactor (e.g. in which they are present in immobilised form). Thus the water or soil to be treated may be passed through such a bioreactor. Soil may be washed with water augmented with surfactants or ethanol and then introduced into the bioreactor.

5

10

15

20

25

30

The invention also provides a process for selecting a mutant of a monooxygenase for its ability to oxidise any of the substrates mentioned herein, which process comprises screening a library of said mutants for their oxidation effect on the substrate. Thus typically the substrate is provided to the library and mutants are selected based on their ability to oxidise the substrate, for example at a particular rate or under particular conditions. The mutant may be selected based on its ability to oxidise the substrate to a particular oxidation product.

Typically the library will be in the form of cells which comprise the mutant enzymes. Generally each cell will express only one particular mutant enzyme. The library typically comprises at least 500 mutants, such as at least 1,000 or 5,000 mutants, preferably at least 10,000 different mutants.

The library typically comprises a random population of mutants. The library may undergo one or more rounds of selection whilst being produced and therefore may not comprise a random population.

The library is typically produced by contacting any of the cells discussed herein which expresses the monooxygenase with a mutagen and/or when the cell is a mutator cell culturing the cell in conditions in which mutants are produced. The mutagen may be contacted with the cell prior to or during culturing of the cell. Thus the mutagen may be present during replication of the cell or replication of the genome of the cell.

The mutagen generally causes random mutations in the polynucleotide sequence which encodes (a). The mutagen is typically a chemical mutagen, such as nitrosomethyguanidine, methyl- or ethylmethane sulphonic acid, nitrite, hydroxylamine, DNA base analogues, and acridine dyes, such as proflavin. It is typically electromagnetic radiation, such as ultra-violet radiation at 260 nm (absorption maximum of DNA) and X-

rays. It is typically ionising radiation.

A mutator cell is generally deficient in one or more of the primary DNA repair pathways (such as *E.Coli* pathways mutS, mutD or mutT, or their equivalents in another organism), and thus has a high mutation rate. Simply culturing such cell leads to the DNA encoding (a) to become mutated. The cell may be of *E.Coli* XL1 Red mutator strain.

The mutant selected from the library may be used in any aspect of the invention, thus it may be used to oxidise a substrate in the process of the invention or may be expressed in the cell, animal or plant of the invention. It may be used in the method of treating a locus.

The invention is also illustrated by the Examples:

Example 1

5

10

15

20

25

Expression of mutants for in vitro work.

The P450_{cam} enzymes were expressed using the vector pRH1091 (Baldwin, J.E., Blackburn, J.M., Heath, R.J., and Sutherland, J.D. *Bioorg. Med. Chem. Letts.*, 1992, 2, 663-668.) which utilised the *trc* promoter (a fusion of the *trp* and *lac* promoters). This vector incorporates a strong ribosome binding site (RBS) and the gene to be expressed is cloned using an *Nde* I site on the 5' end of the gene. We used *Hind* III as the cloning site at the 3' end of the *camC* gene. The procedure for protein expression is as follows: Cells are grown at 30°C until the OD_{600nm} reaches 1.0 - 1.2, the temperature is increased to 37°C and camphor added as a 1 M stock in ethanol to a final concetration of 1 mM. The culture is allowed to incubate at 37°C for another 6 hours. The P450_{cam} protein is expressed to high levels in the cytoplasm and the cells take on a red to orange-red colour.

We have also prepared a variant of pRH1091 (by PCR) which has a extra Xba I site between the RBS and the Nde I site. This is important because Nde I is not unique in M13, and this restriction site is also present in the reductase gene as well as the backbone of the pGLW11 vector used for the in vivo system. Xba I is unique in the polylinker region of M13, but absent in the genes of all three proteins in the P450_{cam} system and in the expression vectors. It therefore allows the camC gene to be moved between the mutagenic and expression vectors.

-14-

H w the mutants were made.

5

10

15

20

25

30

Oligonucleotide-directed site-specific mutagenesis was carried out by the Kunkel method (Kunkel, T. A. Proc. Natl. Acad. Sci. USA 1985, 82, 488-492) using the Bio-Rad Mutagen kit. The recommended procedure is summarised as follows. An M13 mp19 subclone of the camC gene encoding P450_{cam} was propagated in the E. coli strain CJ236. This strain has the durung phenotype and thus will tolerate the inclusion of uracil in place of thymine in DNA molecules. After three cycles of infection, uracil-containing single stranded (USS) M13 DNA was readily isolated by phenol extraction of mature M13 phage particles excreted into the growth medium. The mutagenic oligonucloetide (or oligonucleotides) were phosphorylated with T4 polynucleotide kinase and then annealed to the USS template. The four nucleotides, DNA polymerase, DNA ligase, ATP and other chemical components were added and the second strand was synthesised in vitro. The double stranded form thus obtained was transformed into the dut+ ung+ E. coli strain MV1190, which should degrade the uracil-containing template strand and propagate the mutant strand synthesised in vitro. Plaques were picked and phages of possible mutants grown in E. coli strains MV1190 or TG1. The single-stranded DNA from these were sequenced to determine whether the mutagenesis reaction was successful. The mutagenic efficiency was 50 - 80%.

The mutant camC gene is excised from the M13 subclone by restriction digest with Nde I and Hind III, and the fragment of appropriate size is ligated to the backbone of the expression vector prepared by a similar Nde I/Hind III digest.

Multiple mutants were prepared either by further mutagenesis, also by the Kunkel method, or where the location of the sites in the sequence permits, simple cloning steps. There are two unique restriction sites within the *camC* gene which are absent from the expression vector. One is *Sph* I which spans residues 121 - 123, and the other is *Sal* I which spans residues 338 and 339. Therefore, all mutations at, for example, residues 87, 96, 98, and 101 are readily combined with mutations at higher number residues by ligating appropriate fragments from restriction digests of mutant *camC* genes with *Nde I/Sph* I and *Sph I/Hind* III and the backbone fragment from a *Nde I/Sph* I digest of the expression vector. Mutations at, for example, 395 and 396 can be similarly incorporated by digests in which *Sph* I is replaced with *Sal* I.

The rationale for introducing the unique Xba I site is now clear: many mutants with

multiple mutations were prepared by the cloning procedure above. Without the Xba I site it would be impossible to clone the gene for these multiple mutants from the expression vector back into M13 for further rounds of mutagenesis. Of course these problems could be overcome by doing mutagenesis by PCR, for example.

5 <u>Example 2</u>

Substrate oxidation protocol: in vitro reactions

Component Final concentration P450_{cam} enzyme $1 \mu M$ Putidaredoxin 10 μM 10 Putidaredoxin reductase $1 \mu M$ Bovine liver catalase $20 \mu g/ml$ KC1 200 mM Substrate Typically 1 mM NADH 250 - 400 μM

15

20

- * 50 mM Tris-HCl buffer pH 7.4 is added to make up the volume.
- * Temperature controlled at 30°C, optional.
- * The NADH turnover rate could be determined by monitoring the absorbance at 340 nm with time.
- * Catalase does not catalyse the substrate oxidation reactions but rather it is present to remove any hydrogen peroxide by-product which could otherwise denature the P450_{cam}.

The method can be increased in scale to, for example, 20 ml total incubation volume to allow purification of sufficient products by HPLC for spectroscopic characterisation. Fresh substrate (1 mM) and NADH (1 - 2 mM) are added periodically, such as every 20 minutes in a total reaction time of, typically, 3 hours.

25 Example 3

The in vivo system

The *in vivo* systems were expressed using the vector pGLW11, a derivative of the plasmid pKK223 (Brosius, J. and Holy, A. *Proc. Natl. Acad. Sci. USA*, 1984, 81,6929-6933). Expression is directed by the *tac* promoter and the vector incorporates a gene

-16-

conferring resistance to the antibiotic ampicillin.

5

10

15

20

Two systems were constructed. The first one expressed the electron transfer proteins putidaredoxin reductase (camA gene) and putidaredoxin (camB gene) as a fusion protein with a seven amino acid peptide linker, and the P450_{cam} enzyme (camC gene) was expressed by the same vector but it was not fused to the electron proteins. The second system expressed the three proteins as separate entities in the E.Coli host. Both systems were catalytically competent for substrate oxidation in vivo.

The general strategy was as follows. The genes for the three proteins were cloned using $Eco\ RI$ and $Hind\ III$ as flanking sites, with $Eco\ RI$ at the 5' end. For both $in\ vivo$ systems there are restriction sites between the genes, including between the reductase and redoxin genes in the fusion construct. These restriction sites were introduced by PCR, as detailed below. The first task, however, was to carry out a silent mutation to remove the $Hind\ III$ site within the camA gene for the reductase. The AAGCTT $Hind\ III$ recognition sequence in the camA gene was changed to AAGCCT, which is a silent mutation because GCT and GCC both encode alanine. The gene was completely sequenced to ensure that there were no spurious mutations.

1. The fusion protein system

1.a Manipulation of the camA gene by PCR

For the *camA* gene the primer below was used at the 5' end of the gene to introduce the *Eco* RI cloning site and to change the first codon from GTG to the strong start codon ATG.

5'- GAG ATT AAG AAT TCA TAA ACA CAT GGG AGT GCG TGC CAT ATG AAC GCA AAC

Eco RI RBS |-camA

At the 3' end of camA the primer was designed such that 15 bases are

complementary to nucleotide sequence of the last five amino acid residues of camA. The
stop codon immediately after the GCC codon for the last amino acid was removed, and
then part of a seven amino acid linker (Thr Asp Gly Gly Ser Ser Ser) which contained a

Bam HI cloning site (GGATCC = Gly Ser) was introduced. The coding sequence was
thus:

-17-

5'- GAA CTG AGT AGT GCC ACT GAC GGA GGA TCC TCA TCG-3' camA - Thr Asp Gly Gly Ser

Bam HI

The primer sequence shown below is the reverse complement used for PCR: 5'- CGA TGA GGA TCC TCC GTC AGT GGC ACT ACT CAG TTC-3'

1.b Manipulations of the camB gene by PCR

10

25

For the camB gene the primer at the 5' end incorporated the second half of the peptide linker between the reductase and redoxin proteins, and the restriction site *Bam* HI for joining the two amplified genes together.

5'- TCA TCG GGA TCC TCA TCG ATG TCT AAA GTA GTG TAT-3'

Gly Ser Ser Ser |- camB |Bam HI| Start

At the 3' end of camB the primer incorporates 12 nucleotides complementary to the
end of camB followed by the stop codon TAA, a 6 nucleotide spacer before the GGAG
ribosome binding site. Xba I and Hind III sites were then added to allow cloning of the
camC gene when required. The sequence of the coding strand was therefore:
5'-CCC GAT AGG CAA TGG TAA TCA TCG GGAG TCT AGA GCA TCG AAG CTT TCA TCG-3'

CamB - stop RBS Xba I Hind III

The primer shown below is the reverse complement used for PCR:

5'-CGA TGA AAG CTT CGA TGC TCT AGA CTCC CGA TGA TTA CCA TTG CCT ATC GGG -3'

1.c Preparation of the full fusion construct

The camA and camB genes were amplified by the PCR using the primers described above. The new camA was digested with Eco RI and Bam HI, while the new CamB was digested with Bam HI and Hind III. The pGLW11 expression vector was digested with Eco RI and Hind III. All three were purified by agarose gel electrophoresis and the three gel slices containing the separate fragments were excised from the gel and ligated together, and then transformed into E.Coli DH5a. Successful ligation of all the fragments were

-18-

confirmed by a series of restriction digestion experiments, especially the presence of the new and unique Xba I site. The entire sequence of the insert from the Eco RI site to the Hind III site was determined to ensure that all the sequences were correct.

The new plasmid, named pSGB^F was transformed into *E.Coli* and expression of the reductase and redoxin proteins was induced by IPTG. When a purified P450_{cam} enzyme was added to the cell-free extract, substrate oxidation was observed for a variety of substrates.

When the camC gene is cloned into the pSGB^F plasmid using the Xba I and Hind III restriction sites, the new recombinant plasmid thus generated expresses the reductase and redoxin as a fusion protein and the P450_{cam} enzyme as a operate entity both from the same mRNA molecule. This in vivo system is catalytically competent for terpene oxidation in whole cells.

2. The in vivo system with the protein expressed separately

2.a The basic strategy

5

10

15

20

25

The starting point of the preparation of this *in vivo* system was the recombinant plasmid used to express the *camA* gene for putidaredoxin reductase. The *camA* gene was cloned into the pGLW11 plasmid using the *Eco* RI and *Bam* HI restriction sites, with *Eco* RI being at the 5' end of the gene. Conveniently the polylinker region of the pGLW11 vector has a *Hind* III site downstream of the *Bam* HI site. The *camB* gene was therefore manipulated by PCR such that it can be cloned into pGLW11 using the *Bam* HI and *Hind* III sites. This new plasmid expresses the reductase and redoxin as separate proteins.

The camB gene was cloned into pUC118 by the Bam HI and Hind III cloning sites to express putidaredoxin for our general in vitro substrate oxidation work. Therefore, the PCR primer at the 3' end of the camB gene was designed to introduce a ribosome binding site and the Xba I restriction site upstream of the Hind III site so that the camC gene can be inserted downstream of camB using the Xba I and Hind III sites. Therefore the three genes were cloned without fusion in the pGLW11 expression vector and arranged in the order 5'-camA-camB-camC-3', and each gene has its own RBS to initiate protein synthesis.

-19-

2.b Manipulations of the camB gene

We used the internal and unique restriction site Mu I (recognition sequence ACGCGT) within the camB gene as the starting point so that the PCR product has a different size from the PCR template fragment. The primers were as follows:

5'- TCA TCG ACG CGT CGC GAA CTG CTG-3'

where the Mlu I site is in bold.

5

15

20

25

The desired coding sequence at the 3' end of the camB gene was:

5'- CCC GAT AGG CAA TGG TAA GTA GGT GAA TAT CTA ATC CCC ATC

camB -|stop

10 TAT GCG CGA GTG GAG TCT AGA GTT CGA-3' RBS Xba I

After the stop codon there is a 35 base spacer before the RBS which is used to initiate the synthesis of the P450_{cam} enzyme. The Xba I cloning site is located within the spacer between the RBS and the start codon (not in this primer)of the camC gene. The PCR primer used was the reverse complement of the sequence above. The PCR was carried out and the amplified fragment of the appropriate size was purified by agarose gel electrophoresis and the gel slice excised.

One extra step was necessary to complete the construction of the new plasmid. The plasmid for the fusion protein *in vivo* system was digested with *Mlu* I and *Hind* III restriction enzymes, purified by agarose gel electrophoresis, and the gel slice for the small *camB* fragment excised. The pUC118 plasmid for *camB* expression was similarly digested, and the gel slice for the backbone was excised. By ligating the two fragments together we prepared a new pUC118-based plasmid which had an *Xba* I site followed by an *Hind* III site downstream of the stop codon of *camB*. This new plasmid was digested with the *Mlu* I and *Xba* I enzymes and the backbone was ligated with the new *camB* fragment described above to generate a plasmid with the following arrangement of the key components:

5

10

15

25

..lac Promoter..Bam HI..camB gene..spacer..RBS..Xba I..Hind III..

2.c Preparation of the in vivo system plasmid

Once the modified *camB* with the *Xba* I and *Hind* III restriction sites and appropriate spacers were prepared, the *in vivo* system was constructed by cloning this into the pGLW11-based plasmid used to express the *camA* gene (reductase protein) using the *Bam* HI and *Hind* III sites. The new *in vivo* system vector has the following arrangement of the key components:

..tac Promoter..Eco IRI..RBS..camA gene..spacer..Bam HI..RBS..camB gene..spacer..RBS..Xba I.. Hind III..

This new plasmid, named pSGB⁺, was transformed into *E.Coli* and expression of the reductase and redoxin proteins was induced by IPTG. When a purified P450_{cam} enzyme was added to the cell-free extract, substrate oxidation was observed for a variety of substrates.

When the camC gene is cloned into this pSGC⁺ plasmid using the Xba I and Hind III restriction sites, the new recombinant plasmid thus generated will express the three proteins separately, each under the direction of its own RBS but from the same mRNA molecule. Thus constitutes the in vivo system used in the vast majority of our terpene oxidation work.

3. Introduction of an Xba I site into pRH1091

This is the final step to enable the camC gene to be cloned into the in vivo systems by the two cloning sites XbaI and Hind III. The Xba I site was added by PCR of the entire pRH1091 plasmid using two primers. The presence of these two sites will also enable cloning of the camC gene into M13 since both Xba I and Hind III are unique in camC and M13.

The primers shown below maintain the *Hind* III cloning site AAGCTT:

5'-TCA TCG AAG CTT GGC TGT TTT-3'

Hind III | → vector

-21-

At the other end the coding sequence desired was:

5

10

15

25

5'-ACA ATT TCA CAC AGGA TCT AGA C CAT ATG TCA TCG AAG CTT TCA TCG-3'

Vector - |RBS Xba I Nde I Hind III

This sequence maintained the *Nde* I and *Hind* III sites but the new *Xba* I site was introduced upstream of the *Nde* I site. The PCR primer used was the reverse complement of the desired sequence:

5'-CGA TGA AAG CTT CGA TGA CAT ATG GTC T AGA TCCT GTG TGA AAT TGT-3'

The PCR product was then purified by agarose gel electrophoresis, digested with *Hind* III and circularised with T4 DNA ligase. Success of the PCR method was indicated by the presence of a new and unique *Xba* I site in plasmid DNA isolated from transformants.

4. Cloning of camC into the in vivo systems

All existing camC mutants were cut out of pRH1091-based expression plastids with Nde I and Hind III. The new vector is similarly cut with the same restriction enzymes and the camC gene cloned into this plasmid with T4 DNA ligase. This DNA is transformed into E.Coli JM109 which then may be grown to express P450_{cam}.

The camC gene is excised from the new vector using Xba I and Hind III restriction enzymes and cloned into either the in vivo vector systems or M13mp19 for mutagenesis.

20 5. In vivo expression and substrate turnover

For protein expression, cells are grown in LBamp medium (tryptone 10 g/litre, yeast extract 5 g/litre, NaCl 10 g/litre, 50 μ g/ml ampicillin) at 30°C until the OD_{600nm} reaches 1.0 - 1.2. IPTG (isopropyl- β -D-thiogalactopyranoside) was added to a final concentration of 1 μ M (from a 1 M stock in H₂O) and the culture was incubated at 30°C overnight.

For simple screening the substrate can be added to culture and the incubation continued. However, due to impurities from the culture media the cells were generally washed twice with 0.5 vol. of buffer P, (KH₂PO₄ 6.4 g, K₂HPO₄.3H₂O 25.8 g, H₂O to 4

litres, pH 7.4) and resuspended in 0.25 vol. oxygen saturated buffer P containing 24 mM glucose. Substrate was added to 1 mM and the incubation continued at 30°C. The reaction was allowed to run for 24 hours with periodic additions of substrate and glucose.

Example 4
 The oxidation of halo aromatic compounds

Mutant	2,3,6- Trichlorophenol	3,4,6- Trichlorophenol	Coupling Efficiency	Product formation
			(%)	rate (min ⁻¹⁾
Y96F	75	25	18	22
Y96A	77	23	14	33
Y96H	54	46	3	1
F87L-Y96F	42	58	4	8
F87A-Y96F	52	48	2	3
F87A-Y96-F-V247A	43	57	4	7

Mutant 2,3-3,4-Coupling Product Dichlorophenol Dichlorophenol **Efficiency** formation rate (min -1) (%) Y96A 94 6 6 19 Y96F 91 9 4 8 Y96A-V247L 94 6 7 20 Y96L-V247A 90 10 2 0.7 F87L-96F 96 4 3 5 C334A 95 5 2 0.5

20

15

10

All mutants have C334A. Coupling efficiency is the percentage of NADH consumed which was utilised for product formation, i.e. a percentage of the theoretical maximum efficiency. The product formation rates are given in (nmol product) (nmol P450_{cam})⁻¹ (min)⁻¹. The relative amount of product formed in each case is shown.

-23-

1,3- and 1,4-dichlorobenzene, 1, 2, 3- and 1, 3, 5-trichlorobenzene, 1, 2, 4, 5- and 1, 2, 3, 5- tetrachlorobenzene, and 2, 3, 4, 5, 6- and 2, 2', 4, 5, 5'- pentachlorobiphenyl were also found to be oxidised.

Wild-type and mutant P450_{cam} enzymes were tested for their ability to oxidise 3,3'-dichlorobiphenyl and 2,2',4,5,5'-pentachlorobiphenyl. Results are shown in terms of NADH turnover. Rates are given as nanomol NADH consumed per nanomol P450_{cam} enzyme per minute.

5

10

15

20

25

P450 _{cam} enzyme	3,3'-	2,2',4,5,5'-
	dichlorobiphenyl	pentachlorobiphenyl
Wild-type	0.4	not detected
Y96F	15	1
F87A-Y96F	845	165
F87L-Y96F	174	13
F87W-Y96F	4	3
F87A-Y96F-V247A	112	12
Y96A-V247L	84	37
F87A-Y96F-L244A	669	321
F87A-Y97F-L244A-V247A	173	214

The first product, 4-hydroxy-3,3'-dichlorobiphenyl was identified by the characteristic coupling patterns expected in the 'H NMR spectrum and by mass spectroscopy. The further oxidation product, 4,4'-dihydroxy-3,3'-dichlorobiphenyl was identified by co-elution with an authentic sample, and by UV-vis and mass spectroscopy. This product did not constitute more than ca. 10% of the total products in any of the mutants tested.

For the second substrate product was established as 4'-hydroxy-2,2',4,5,5'-pentachlorobiphenyl by the observation of the parent ion in the mass spectrum, and by comparison with literature ¹H NMR data.

Y96L-L244F-V396A

196W-F87W-F98W

P450_{cam} mutants

All mutants optionally contain the base mutation C334A.

Single mutants: Y96A, Y96F, Y96L, Y96W.

Double mutants:			•	
Y96A-F87A	Y96F-F87A	Y96F-V295A	Y96L-F87A	Y96L-A296L
Y96A-F87L	Y96F-F87I	Y96F-V295L	Y96L-F87L	Y96L-A296F
Y96A-F87W	Y96F-F87L	Y96F-V2951	Y96L-F98W	Y96L-V396A
Y96A-F98W	Y96F-F87W	Y96F-A296L	Y96L-T101L	Y96L-V396L
Y96A-L244A	Y96F-F98W	Y96F-A296F	Y96L-T101F	Y96L-V396F
Y96A-V247A	Y96F-T101L	Y96F-1395F	Y96L-L244A	Y96L-V396W
Y96A-V247L	Y96F-T101F	Y96F-I395G	Y96L-L244F	
Y96A-1395F	Y96F-T185A	Y96F-V396A	Y96L-V247A	
Y96A-I395G	Y96F-T185F	Y96F-V396L	Y96L-V247L	196W-F87W
	Y96F-T185L	Y96F-V396F	Y96L-V247F	Y96W-F98W
	Y96F-L244A	Y96F-V396W	Y96L-V247W	Y96W-1244A
	Y96F-V247A		Y96L-G248L	Y96W-V247A
	Y96F-V247L		Y96L-V295L	496W-V396A
	Y96F-G248L		Y96L-V295F	
		•		
Triple Mutants:				
Triple Mutants:		Y96L-V247A-V396L	¥96F-F870	V-V247A
		Y96L-V247A-V396L Y96L-V247A-V396F	¥96F–F870 ¥96F–F870	
Y96A-F87A-L244A				7-V247L
Y96A-F87A-L244A Y96A-F87A-V247A		Y96L-V247A-V396F	¥96F-F87	Y-V247L N-V247F
Y96A-F87A-L244A Y96A-F87A-V247A Y96A-F87L-L244A		Y96L-V247A-V396F Y96L-V247A-V396W	¥96F-F870 ¥96F-F870	7-V247L N-V247F Y-V295L
Y96A-F87A-L244A Y96A-F87A-V247A Y96A-F87L-L244A Y96A-F87L-V247A		Y96L-V247A-V396F Y96L-V247A-V396W	¥96F-F877 ¥96F-F877 ¥96F-F877	N-V247L N-V247F N-V295L N-A296L
Y96A-F87A-L244A Y96A-F87A-V247A Y96A-F87L-L244A Y96A-F87L-V247A		Y96L-V247A-V396F Y96L-V247A-V396W Y96L-V247F-V396A	196F-F870 196F-F870 196F-F870 196F-F870	N-V247L N-V247F N-V295L N-A296L N-V396A
Y96A-F87A-L244A Y96A-F87A-V247A Y96A-F87L-L244A Y96A-F87L-V247A Y96A-L244A-V247A		Y96L-V247A-V396F Y96L-V247A-V396W Y96L-V247F-V396A Y96F-F87A-L244A	196F-F870 196F-F870 196F-F870 196F-F870 196F-F870	N-V247L N-V247F N-V295L N-A296L N-V396A N-V396L
Y96A-F87A-L244A Y96A-F87A-V247A Y96A-F87L-L244A Y96A-F87L-V247A Y96A-L244A-V247A Y96L-F87A-L244A		Y96L-V247A-V396F Y96L-V247A-V396W Y96L-V247F-V396A Y96F-F87A-L244A Y96F-F87A-V247A	196F-F870 196F-F870 196F-F870 196F-F870 196F-F870	N-V247L N-V247F N-V295L N-A296L N-V396A N-V396L N-V396A
Y96A-F87A-L244A Y96A-F87A-V247A Y96A-F87L-L244A Y96A-F87L-V247A Y96A-L244A-V247A Y96L-F87A-L244A Y96L-F87A-V247A		Y96L-V247A-V396F Y96L-V247A-V396W Y96L-V247F-V396A Y96F-F87A-L244A Y96F-F87A-V247A Z96F-F87A-V247L	196F-F870 196F-F870 196F-F870 196F-F870 196F-F870 196F-V247	N-V247L N-V247F N-V295L N-A296L N-V396A N-V396L NF-V396A
Y96A-F87A-L244A Y96A-F87A-V247A Y96A-F87L-L244A Y96A-F87L-V247A Y96A-L244A-V247A Y96L-F87A-L244A Y96L-F87A-V247A	•	Y96L-V247A-V396F Y96L-V247A-V396W Y96L-V247F-V396A Y96F-F87A-L244A Y96F-F87A-V247A Y96F-F87A-V247L Y96F-F87A-I395F	Y96F-F876 Y96F-F876 Y96F-F876 Y96F-F876 Y96F-F876 Y96F-F876 Y96F-V2476	N-V247L N-V247F N-V295L N-A296L N-V396A N-V396L NF-V396A NA-V396L
Y96A-F87A-L244A Y96A-F87A-V247A Y96A-F87L-L244A Y96A-F87L-V247A Y96A-L244A-V247A Y96L-F87A-L244A Y96L-F87A-V247A Y96L-F87L-L244A Y96L-F87L-L244A		Y96L-V247A-V396F Y96L-V247A-V396W Y96L-V247F-V396A Y96F-F87A-L244A Y96F-F87A-V247A Z96F-F87A-V247L Y96F-F87A-I395F Y96F-F87A-I395G	Y96F-F870 Y96F-F870 Y96F-F870 Y96F-F870 Y96F-F870 Y96F-V2470 Y96F-L2440	N-V247L N-V247F N-V295L N-A296L N-V396A N-V396L NF-V396A 4A-V396L 4A-V396F
Y96A-F87A-L244A Y96A-F87A-V247A Y96A-F87L-L244A Y96A-F87L-V247A Y96A-L244A-V247A Y96L-F87A-L244A Y96L-F87A-V247A Y96L-F87L-L244A Y96L-F87L-L244A Y96L-F87L-L244A		Y96L-V247A-V396F Y96L-V247A-V396W Y96L-V247F-V396A Y96F-F87A-L244A Y96F-F87A-V247A Y96F-F87A-V247L Y96F-F87A-I395F Y96F-F87A-I395G Y96F-F87L-V247A	Y96F-F876 Y96F-F876 Y96F-F876 Y96F-F876 Y96F-F876 Y96F-F876 Y96F-L244 Y96F-L244	N-V247L N-V247F N-V295L N-A296L N-V396A N-V396L N-V396L NA-V396F NA-V396F NA-V396W
Y96A-F87A-L244A Y96A-F87A-V247A Y96A-F87L-L244A Y96A-F87L-V247A Y96A-L244A-V247A Y96L-F87A-L244A Y96L-F87A-V247A Y96L-F87L-L244A Y96L-F87L-V247A Y96L-F87L-V247A Y96L-F87L-V247A		Y96L-V247A-V396F Y96L-V247A-V396W Y96L-V247F-V396A Y96F-F87A-L244A Y96F-F87A-V247A Y96F-F87A-V247L Y96F-F87A-I395G Y96F-F87L-V247A Y96F-F87L-V247L	Y96F-F870 Y96F-F870 Y96F-F870 Y96F-F870 Y96F-F870 Y96F-L244 Y96F-L244 Y96F-L244	N-V247L N-V247F N-V295L N-A296L N-V396A N-V396L N-V396L NA-V396L NA-V396F NA-V396W NA-V396A
Y96A-F87A-L244A Y96A-F87A-V247A Y96A-F87L-L244A Y96A-F87L-V247A Y96A-F87L-V247A Y96L-F87A-L244A Y96L-F87A-V247A Y96L-F87L-L244A Y96L-F87L-V247A Y96L-F87L-V247A Y96L-V247L-I395F Y96L-V247L-I395G		Y96L-V247A-V396F Y96L-V247A-V396W Y96L-V247F-V396A Y96F-F87A-L244A Y96F-F87A-V247A Y96F-F87A-V247L Y96F-F87A-I395F Y96F-F87A-I395G Y96F-F87L-V247A Y96F-F87L-V247L	Y96F-F876 Y96F-F876 Y96F-F876 Y96F-F876 Y96F-F876 Y96F-L246 Y96F-L246 Y96F-L246 Y96F-L246 Y96F-L246	N-V247L N-V247F N-V295L N-A296L N-V396A N-V396L N-V396L NA-V396F NA-V396W NA-V396A NA-V396L

Y96F-F87W-L244F

Five mutations:		
our mutations:		

Y96F-F87W-T185L-V247L-V295L Y96F-F87W-T185L-V247L-V396A Y96F-F87W-T185L-V247L-V396L Y96A-F87A-L244A-V247A Y96A-F87L-L244A-V247A Y96L-F87A-L244A-V247A Y96L-F87L-L244A-V247A

Y96F-F87W-L244A-V295L
Y96F-F87W-L244F-V396A
Y96F-F87W-V247A-V396L
Y96F-F87W-V247A-V396F
Y96F-F87W-V247L-V295A
Y96F-F87W-V247L-V396A

196F-F87W-V247A-1395F 196F-F87W-V247L-1395G

Table 2 (continued)

Y96F-F87W-V247F-V396A

5

15

25

CLAIMS

- 1. Process for oxidising a substrate which is a halo aromatic compound, which process comprises oxidising said substrate with a monooxygenase enzyme.
- 2. Process according to claim 1 in which the enzyme comprises a substitution of an amino acid in the active site by an amino acid with a less polar side-chain.
- 3. Process according to claim 2 in which the enzyme comprises one or more other amino acid substitutions in the active site
- 4. Process according to any one of the preceding claims in which the enzyme is

10 (i) P450_{cam}, or

- (ii) a naturally occurring homologue of (i), or
- (iii) a mutant of (i) or (ii).
- 5. Process according to claim 4 in which the enzyme is one in which amino acid 96 of P450_{cam}, or the equivalent amino acid in a homologue, has been changed to an amino acid with a less polar side-chain.
- 6. Process according to any one of the preceding claims in which the halogen is chlorine.
- 7. Process according to any one of the preceding claims in which the aromatic compound is a benzene or biphenyl.
- 8. Process according to any one of the preceding claims in which the substrate has more than one halogen atom.
 - 9. Process according to claim 8 in which the substrate is 1, 2-dichlorobenzene, 1, 2, 4- trichlorobenzene, 3,3'-dichlorobiphenyl or 2,2',4,5,5'-pentachlorobiphenyl.
 - 10. Process according to claim 8 in which the substrate is pentachlorobenzene or hexachlorobenzene.
 - 11. Process according to any one of the preceding claims which is carried out in a cell that expresses:
 - (a) an enzyme as defined in any one of claims 1 to 5;
 - (b) an electron transfer reductase; and
- 30 (c) an electron transfer redoxin.
 - 12. Process according to claim 11 in which:
 - (b) is putidaretoxin reductase or a homologue; or a fragment thereof; and/or

-27-

- (c) is putidaretoxin or a homologue; or a fragment thereof.
- 13. Process according to claim 11 or 12 wherein the cell is one in which the enzyme (a) does not naturally occur.
- 14. Process according to any one of claims 11 to 13 wherein the cell is one which in its naturally occurring form is able to oxidise a substrate as defined in any one of claims 6 to 10.
 - 15. A cell as defined in claim 14.

5

10

15

- 16. A transgenic animal or plant whose cells are as defined in any one of claims 11 to 14.
- 17. Method of treating a locus contaminated with a substrate as defined in any one of claims 1 or 6 to 10 comprising contacting the locus with an enzyme as defined in any one of claims 1 to 5 or a cell as defined in any of claims 11 to 13, or an animal or plant as defined in claim 16.
 - 18. Process for selecting a mutant of an enzyme as defined in claim 1, 4(i) or 4(ii) for its ability to oxidise a substrate as defined in claim 1, or any one of the claims 6 to 10, which process comprises screening a library of said mutants for their oxidation effect on the substrate.
 - 19. Process, cell, animal, plant or method according to any one of claims 1 to 17 wherein the enzyme is one that has been selected in a process according to claim 18.

-1-

SEQUENCE LISTING

	<110> Isis Innovation Limited																
	<120)> P	roce	ss f	or o	xidi	sing	aro	mati	c co	mpou	nds					
	<130)> N	7627	7A P	EJ												
5	<170)> P	aten	tIn '	Ver.	2.1											
	<210)> 1															
	<211	l> 1	242														
	<212	2> D	NA														
	<213	3> P	seud	omon	as pi	utid	a										
10	<220)>															
	<221	l> C	DS														
	<222	?> (1)	(1242	2)												
	<400	> 1															
	acg	act	gaa	acc	ata	caa	agc	aac	gcc	aat	ctt	gcc	cct	ctg	сса	ссс	48
15	Thr	Thr	Glu	Thr	Ile	G1 n	Ser	Asn	Αla	Asn	Leu	Αla	Pro	Leu	Pro	Pro	
	1				5					10					15		
	cat	g tg	cca	gag	cac	ctg	gta	ttc	gac	ttc	gac	atg	tac	aat	ccg	tcg	96
	His	Val	Pro	Glu	His	Leu	Val	Phe	Asp	Phe	Asp	Met	Tyr	Asn	Pro	Ser	
				20					25					30			
20	aat	ctg	tct	gcc	ggc	gtg	cag	gag	gcc	tgg	gca	gtt	ctg	caa	gaa	tca	144
	Asn	Leu		Ala	Gly	Val	Gln	Glu	Ala	Trp	A1 a	Val	Leu	Gln	Glu	Ser	
			35					40					45				
	aac																192
0.5	Asn		Pro	Asp	Leu	Val		Thr	Arg	Cys	Asn	G1 y	G1 y	His	Trp	Ile	
25		50					55					60					
	gcc																240
	Ala	ınr	Arg	ыу	Gin		He	Arg	Glu	Ala		Glu	Asp	Tyr	Arg		
	65					70					75					80	
	+++	+~~	200	030	+		++-	a+-	0.5±		a				 -	4	200
30	ttt Phe																288
50	Phe	3e1°	Jei	aru	85	71'U	rne	116	rro		GIU	AIA	ыу	GIU		ıyr	
					93					90					95		

WO 00/78973	PCT/GB00/02379

-2-

	gac	ttc	att	ccc	acc	tcg	atg	gat	ccg	ССС	gag	cag	cgc	cag	ttt	cgt	336
	Asp	Phe	Пe	Pro	Thr	Ser	Met	Asp	Pro	Pro	Glu	G1n	Arg	Gln	Phe	Arg	
				100					105					110			
								•									
	gcg	ctg	gcc	aac	caa	gtg	gtt	ggc	atg	ccg	gtg	gtg	gat	aag	ctg	gag	384
5	A1 a	Leu	A1 a	Asn	G1n	Val	Val	G1 y	Met	Pro	Val	Val	Asp	Lys	Leu	Glu	
			115					120					125				
	aac	cgg	atc	cag	gag	ctg	gcc	tgc	tcg	ctg	atc	gag	agc	cta	cac	ccq	432
								Cys						_	_	_	
		130					135	•				140			· 3		
10	caa	gga	cag	tac	aac	ttc	acc	gag	gac	tac	acc	gaa	ccc	ttr	cca	ata	480
								G1 u							_		400
	145		,	-3-		150	••••			131	155	4.4		1110	110	160	
						100					133					100	
	cac	atc	ttc	ata	cta	ctc	ac 3	ggt	at a								500
																	528
15	AIG	116	FIIC	MEL	165	Leu	WIG	G1 y	Leu		GIU	GIU	ASP	11e		HIS	
13					105					170					175		
	tta	222	tac	ct a	300	ast		-t-									
								atg									576
	Leu	Lys	(yr		1111	wsh	uin	Met		Arg	Pro	ASP	GIY		met	ınr	
				180					185					190			
	**-																
20								ctc						_			624
20	rne	Ala		Ala	Lys	Glu	Ala	Leu	lyr	Asp	Tyr	Leu		Pro	Пe	Ile	
			195					200					205				
								gga					-		-	-	672
	G1 u		Arg	Arg	G1n	Lys	Pro	G1 y	Thr	Asp	Ala	Пe	Ser	Ile	Val	Ala	
		210					215					220					
25								ccg							_		720
	Asn	G1 y	G1 n	Val	Asn	G1 y	Arg	Pro	Пe	Thr	Ser	Asp	G1 u	Ala	Lys	Arg	
	225					230					235					240	

	aci	y cy	. 990	. ccg	,	LLL	gec	. yyu	. ygc	. CLG	gat	. acc	grg	gtc	aat	ttc	/68
	Met	Cys	G1)	/ Leu	Leu	Leu	Va1	G1 y	/ G1 y	/ Leu	ı Asp	Thr	Val	Val	Asn	Phe	
					245	;				250)				255		
								•									
	cto	: ago	tto	agc	atg	gag	tto	ctg	gco	aaa	ago	ccq	gag	cat	cac	cad	816
5				Ser											_	_	010
				260					265					270		4111	
														_,,			
	gag	ctg	atc	gag	cgt	ccc	gag	cat	att	сса	acc	act	tac	gag	gaa	cta	864
				G1 u													004
			275		3			280			,,,,	,,,,	285	uiu	uiu	Leu	
													203				
10	ctc	caa	cac	ttc	tca	cta	att	acc	gat	aac	cac	atc	ctc	300	tcc	ast	912
				Phe													312
		290					295		М	4,5	n, 9	300	Leu	1142	261	Asp	
												500					
	tac	aaa	ttt	cat	aac	ata	caa	cta	aag	222	aat	asc.	cad	3 † c	cta	at a	060
				His													960
15	305				u.,	310	٠	LCu		Lys	315	vsh	um	116	Leu		
	000					510					212					320	
	cca	can	ato	ctg	tet	oac	cta	aat	030	000				.			1000
																	1008
	710	GIII	HEL	Leu		uly	Leu	wsb	uiu		GIU	ASN	Ala	Cys		Met	
					325					330					335		
	636	at a		++-					-4-4-	.							
20				ttc													1056
20	nıs	Vai	ASP	Phe	3er	Arg	GIN	Lys		Ser	His	Thr	Thr		Gly	His	
				340					345					350			
				ctg													1104
	Gly	Ser		Leu	Cys	Leu	G1 y	G1 n	His	Leu	A1 a	Arg	Arg	Glu	Пe	Ile	
			355					360					365				
25				aag												_	1152
	Val	Thr	Leu	Lys	G1 u	Trp	Leu	Thr	Arg	Пe	Pro	Asp	Phe	Ser	Пe	A1 a	
		370					375					380					

ccg ggt gcc cag att cag cac aag agc ggc atc gtc agc ggc gtg cag 1200 Pro Gly Ala Gln Ile Gln His Lys Ser Gly Ile Val Ser Gly Val Gln 385 390 395 400

gca ctc cct ctg gtc tgg gat ccg gcg act acc aaa gcg gta 1242 5 Ala Leu Pro Leu Val Trp Asp Pro Ala Thr Thr Lys Ala Val 405 410

<210> 2

<211> 3150

<212> DNA

10 <213> Bacillus megaterium

<220>

<221> CDS

<222> (1)..(3150)

<400> 2

20

25

15 atg aca att aaa gaa atg cct cag cca aaa acg ttt gga gag ctt aaa Met Thr Ile Lys Glu Met Pro Gln Pro Lys Thr Phe Gly Glu Leu Lys 1 5 10 15

aat tta ccg tta tta aac aca gat aaa ccg gtt caa gct ttg atg aaa 96 Asn Leu Pro Leu Leu Asn Thr Asp Lys Pro Val Gln Ala Leu Met Lys 20 25 30

att gcg gat gaa tta gga gaa atc ttt aaa ttc gag gcg cct ggt cgt Ile Ala Asp Glu Leu Gly Glu Ile Phe Lys Phe Glu Ala Pro Gly Arg 35

45

gta acg cgc tac tta tca agt cag cgt cta att aaa gaa gca tgc gat Val Thr Arg Tyr Leu Ser Ser Gln Arg Leu Ile Lys Glu Ala Cys Asp 50 55 60

40

gaa tca cgc ttt gat aaa aac tta agt caa gcg ctt aaa ttt gta cgt Glu Ser Arg Phe Asp Lys Asn Leu Ser Gln Ala Leu Lys Phe Val Arg 65 70 75 80

	ga	t tt	t g	ca g	ga	gac	999	g tt	a tt	t ac	a ag	gc t	gg	acg	ca	t ga	a	aaa	aat	288
	As	p Ph	ne A	1a (ìЈу	Asp	GTy	y Le	u Ph	e Th	ır Se	er T	rp	Thr	Hi	s G1	u	Lys	Asn	
						85	•				9	90						95		
•									-											
	tg	g aa	a a	aa g	cg	cat	aat	at	c tt	a ct	t co	a a	gç	ttc	agt	t ca	g	cag	gca	336
5	Tr) Ly	's L	ys A	1 a	His	Asn	11	e Le	u Le	u Pr	o S	er	Phe	Sei	~ G1	n (G1 n	Ala	
				1	00					10	5					11	0			
									g at											384
	Met	: Ly			yr I	His	Ala	Met	Met	t Va	i As	ρI	le.	Ala	Val	G1	n L	.eu	Val	
			11	.5					120)					125	•				
10																	•			
10									gca											432
	Gin			p G	iu /	Arg	Leu		Ala	Asp	G1	u Hi	S	Ιle	G1 u	Val	P	ro	G1 u	
		130	,					135						140						
									gat											480
15	145	met	. 111	r Ar	gL			Leu	Asp	Ihr	Πle			.eu	Cys	G1 y	P	he .	Asn	
13	143						150					15	5						160	
	tat	000	. ++			(.												
									cga											528
	, ,,	A, 9	FIR	- M2		er i 65	ne	ıyr	Arg	Asp			ОН	115	Pro	Phe			Thr	
					1	05					170						17	75		
	agt	ato	atr	· ca	t a	ca r	·ta	aat			200									
20									gaa G1u											576
	•••			18			.cu i	nsp	GIU	185	riet	ASI	ı L	ys i	Leu		Ar	·g A	\1 a	
										105						190				
	aat	cca	qac	ga.	: c	a a	ct 1	tat	gat	паа	220	220		ac 4		+++				604
	Asn																			624
			195						200		,,,,,,	Lys	ותי		205	rne	G,	יו ע	IIu	
									•					•	-03					
25	gat	atc	aag	gto	at	g a	ac c	jac	cta	gta	gat	aaa	at	tt a	att	aca	g a	t ~	ac	672
	Asp																		_	0/2
		210						15		•	·~F	_,,	22			u	73	7 A	1.9	

Lys Ala Ser Gly Glu Gln Ser Asp Asp Leu Leu Thr His Met Leu Asn 225 230 235 240 gga aaa gat cca gaa acg ggt gag ccg ctt gat gac gag aac att cgc 768 Gly Lys Asp Pro Glu Thr Gly Glu Pro Leu Asp Asp Glu Asn Ile Arg 245 250 255 tat caa att att aca ttc tta att gcg gga cac gaa aca aca agt ggt 816 Tyr Gln Ile Ile Thr Phe Leu Ile Ala Gly His Glu Thr Thr Ser Gly 260 265 270 10 ctt tta tca ttt gcg ctg tat ttc tta gtg aaa aat cca cat gta tta 864 Leu Leu Ser Phe Ala Leu Tyr Phe Leu Val Lys Asn Pro His Val Leu 275 280 285 caa aaa gca gca gaa gaa gca gca cga gtt cta gta gat cct gct cca 912 Gln Lys Ala Ala Glu Glu Ala Ala Arg Val Leu Val Asp Pro Ala Pro 15 290 295 300 agc tac aaa caa gtc aaa cag ctt aaa tat gtc ggc atg gtc tta aac 960 Ser Tyr Lys Gln Val Lys Gln Leu Lys Tyr Val Gly Met Val Leu Asn 305 310 315 320 gaa gcg ctg cgc tta tgg cca act gct cct gcg ttt cc cta tat gca 1008 Glu Ala Leu Arg Leu Trp Pro Thr Ala Pro Ala Phe Ser Leu Tyr Ala 325 330 335 aaa gaa gat acg gtg ctt gga gga gaa tat cct tta gaa aaa ggc gac 1056 Lys Glu Asp Thr Val Leu Gly Gly Glu Tyr Pro Leu Glu Lys Gly Asp 340 345 350 25 gaa cta atg gtt ctg att cct cag ctt cac cgt gat aaa aca att tgg 1104 Glu Leu Met Val Leu Ile Pro Gln Leu. His Arg Asp Lys Thr Ile Trp 355 360 365																				a aac	
gga aaa gat cca gaa acg ggt gag ccg ctt gat gac gag aac att cgc 768 Gly Lys Asp Pro Glu Thr Gly Glu Pro Leu Asp Asp Glu Asn Ile Arg 245 250 255 tat caa att att aca ttc tta att gcg gga cac gaa aca aca agt ggt Tyr Gln Ile Ile Thr Phe Leu Ile Ala Gly His Glu Thr Thr Ser Gly 260 265 270 10 ctt tta tca ttt gcg ctg tat ttc tta gtg aaa aat cca cat gta tta Leu Leu Ser Phe Ala Leu Tyr Phe Leu Val Lys Asn Pro His Val Leu 275 280 285 caa aaa gca gca gaa gaa gca gca cga gtt cta gta gat cct gct cca Gln Lys Ala Ala Glu Glu Ala Ala Arg Val Leu Val Asp Pro Ala Pro 290 295 300 agc tac aaa caa gtc aaa cag ctt aaa tat gtc ggc atg gtc tta aac Ser Tyr Lys Gln Val Lys Gln Leu Lys Tyr Val Gly Met Val Leu Asn 305 310 315 320 gaa gcg ctg cgc tta tgg cca act gct cct gcg ttt tcc cta tat gca Glu Ala Leu Arg Leu Trp Pro Thr Ala Pro Ala Phe Ser Leu Tyr Ala 325 330 335 aaa gaa gat acg gtg ctt gga gga gaa tat cct tta gaa aaa ggc gac Lys Glu Asp Thr Val Leu Gly Gly Glu Tyr Pro Leu Glu Lys Gly Asp 340 345 350 25 gaa cta atg gtt ctg att cct cag ctt cac cgt gat aaa aca att tgg Glu Leu Met Val Leu Ile Pro Gln Leu His Arg Asp Lys Thr Ile Trp		L	s.	Ala	Se	r G1	y G1	u G1	n S	er. A	۱sp	Ası	p Le	u Le	eu T	hr I	His	Me	t Le	u Asr	1
5 Gly Lys Asp Pro Glu Thr Gly Glu Pro Leu Asp Asp Glu Asn Ile Arg 245 250 255 tat caa att att aca ttc tta att gcg gga cac gaa aca aca agt ggt 816 Tyr Gln Ile Ile Thr Phe Leu Ile Ala Gly His Glu Thr Thr Ser Gly 260 265 270 10 ctt tta tca ttt gcg ctg tat ttc tta gtg aaa aat cca cat gta tta Leu Leu Ser Phe Ala Leu Tyr Phe Leu Val Lys Asn Pro His Val Leu 275 280 285 caa aaa gca gca gaa gaa gca gca cga gtt cta gta gat cct gct cca Gln Lys Ala Ala Glu Glu Ala Ala Arg Val Leu Val Asp Pro Ala Pro 290 295 300 agc tac aaa caa gtc aaa cag ctt aaa tat gtc ggc atg gtc tta aac Ser Tyr Lys Gln Val Lys Gln Leu Lys Tyr Val Gly Met Val Leu Asn 305 310 315 320 gaa gcg ctg cgc tta tgg cca act gct cct gcg ttt tcc cta tat gca Glu Ala Leu Arg Leu Trp Pro Thr Ala Pro Ala Phe Ser Leu Tyr Ala 325 330 335 aaa gaa gat acg gtg ctt gga gga gaa tat cct tta gaa aaa ggc gac Lys Glu Asp Thr Val Leu Gly Gly Glu Tyr Pro Leu Glu Lys Gly Asp 340 345 350 25 gaa cta atg gtt ctg att cct cag ctt cac cgt gat aaa aca att tgg Glu Leu Met Val Leu Ile Pro Gln Leu His Arg Asp Lys Thr Ile Trp		22	5					23	0					23	35					240)
5 Gly Lys Asp Pro Glu Thr Gly Glu Pro Leu Asp Asp Glu Asn Ile Arg 245 250 255 tat caa att att aca ttc tta att gcg gga cac gaa aca aca agt ggt 816 Tyr Gln Ile Ile Thr Phe Leu Ile Ala Gly His Glu Thr Thr Ser Gly 260 265 270 10 ctt tta tca ttt gcg ctg tat ttc tta gtg aaa aat cca cat gta tta Leu Leu Ser Phe Ala Leu Tyr Phe Leu Val Lys Asn Pro His Val Leu 275 280 285 caa aaa gca gca gaa gaa gca gca cga gtt cta gta gat cct gct cca Gln Lys Ala Ala Glu Glu Ala Ala Arg Val Leu Val Asp Pro Ala Pro 290 295 300 agc tac aaa caa gtc aaa cag ctt aaa tat gtc ggc atg gtc tta aac Ser Tyr Lys Gln Val Lys Gln Leu Lys Tyr Val Gly Met Val Leu Asn 305 310 315 320 gaa gcg ctg cgc tta tgg cca act gct cct gcg ttt tcc cta tat gca Glu Ala Leu Arg Leu Trp Pro Thr Ala Pro Ala Phe Ser Leu Tyr Ala 325 330 335 aaa gaa gat acg gtg ctt gga gga gaa tat cct tta gaa aaa ggc gac Lys Glu Asp Thr Val Leu Gly Gly Glu Tyr Pro Leu Glu Lys Gly Asp 340 345 350 25 gaa cta atg gtt ctg att cct cag ctt cac cgt gat aaa aca att tgg Glu Leu Met Val Leu Ile Pro Gln Leu His Arg Asp Lys Thr Ile Trp										•											
5 Gly Lys Asp Pro Glu Thr Gly Glu Pro Leu Asp Asp Glu Asn Ile Arg 245 250 255 tat caa att att aca ttc tta att gcg gga cac gaa aca aca agt ggt 816 Tyr Gln Ile Ile Thr Phe Leu Ile Ala Gly His Glu Thr Thr Ser Gly 260 265 270 10 ctt tta tca ttt gcg ctg tat ttc tta gtg aaa aat cca cat gta tta Leu Leu Ser Phe Ala Leu Tyr Phe Leu Val Lys Asn Pro His Val Leu 275 280 285 caa aaa gca gca gaa gaa gca gca cga gtt cta gta gat cct gct cca Gln Lys Ala Ala Glu Glu Ala Ala Arg Val Leu Val Asp Pro Ala Pro 290 295 300 agc tac aaa caa gtc aaa cag ctt aaa tat gtc ggc atg gtc tta aac Ser Tyr Lys Gln Val Lys Gln Leu Lys Tyr Val Gly Met Val Leu Asn 305 310 315 320 gaa gcg ctg cgc tta tgg cca act gct cct gcg ttt tcc cta tat gca Glu Ala Leu Arg Leu Trp Pro Thr Ala Pro Ala Phe Ser Leu Tyr Ala 325 330 335 aaa gaa gat acg gtg ctt gga gga gaa tat cct tta gaa aaa ggc gac Lys Glu Asp Thr Val Leu Gly Gly Glu Tyr Pro Leu Glu Lys Gly Asp 340 345 350 25 gaa cta atg gtt ctg att cct cag ctt cac cgt gat aaa aca att tgg Glu Leu Met Val Leu Ile Pro Gln Leu His Arg Asp Lys Thr Ile Trp		99	a	aaa	gat	cc	a ga	a ac	g gg	jt g	ag	ccg	; ct	t ga	it g	ac g	gag	aad	ati	t cac	768
tat caa att att aca ttc tta att gcg gga cac gaa aca aca agt ggt tat can att att aca ttc tta att gcg gga cac gaa aca aca agt ggt all tyr Gln Ile Ile Thr Phe Leu Ile Ala Gly His Glu Thr Thr Ser Gly 260 265 270 10 ctt tta tca ttt gcg ctg tat ttc tta gtg aaa aat cca cat gta tta Leu Leu Ser Phe Ala Leu Tyr Phe Leu Val Lys Asn Pro His Val Leu 275 280 285 caa aaa gca gca gaa gaa gca gca cga gtt cta gta gat cct gct cca Gln Lys Ala Ala Glu Glu Ala Ala Arg Val Leu Val Asp Pro Ala Pro 295 300 agc tac aaa caa gtc aaa cag ctt aaa tat gtc ggc atg gtc tta aac Ser Tyr Lys Gln Val Lys Gln Leu Lys Tyr Val Gly Met Val Leu Asn 305 310 315 320 gaa gcg ctg cgc tta tgg cca act gct cct gcg ttt tcc cta tat gca 1008 Glu Ala Leu Arg Leu Trp Pro Thr Ala Pro Ala Phe Ser Leu Tyr Ala 325 330 335 aaa gaa gat acg gtg ctt gga gga gaa tat cct tta gaa aaa ggc gac 1056 Lys Glu Asp Thr Val Leu Gly Gly Glu Tyr Pro Leu Glu Lys Gly Asp 340 345 350 25 gaa cta atg gtt ctg att cct cag ctt cac cgt gat aaa aca att tgg 1104 Glu Leu Met Val Leu Ile Pro Gln Leu His Arg Asp Lys Thr Ile Trp	5																				
tat caa att att aca ttc tta att gcg gga cac gaa aca aca agt ggt Tyr Gln Ile Ile Thr Phe Leu Ile Ala Gly His Glu Thr Thr Ser Gly 260 265 270 10 ctt tta tca ttt gcg ctg tat ttc tta gtg aaa aat cca cat gta tta Leu Leu Ser Phe Ala Leu Tyr Phe Leu Val Lys Asn Pro His Val Leu 275 280 285 caa aaa gca gca gaa gaa gca gca cga gtt cta gta gat cct gct cca Gln Lys Ala Ala Glu Glu Ala Ala Arg Val Leu Val Asp Pro Ala Pro 290 295 300 agc tac aaa caa gtc aaa cag ctt aaa tat gtc ggc atg gtc tta aac Ser Tyr Lys Gln Val Lys Gln Leu Lys Tyr Val Gly Met Val Leu Asn 305 310 315 320 gaa gcg ctg cgc tta tgg cca act gct cct gcg ttt tcc cta tat gca Glu Ala Leu Arg Leu Trp Pro Thr Ala Pro Ala Phe Ser Leu Tyr Ala 325 330 335 aaa gaa gat acg gtg ctt gga gga gaa tat cct tta gaa aaa ggc gac Lys Glu Asp Thr Val Leu Gly Gly Glu Tyr Pro Leu Glu Lys Gly Asp 340 345 350 266 277 286 287 287 288 8864 864 864 864 864 864 86															•	•					
Tyr Gin Ile Ile Thr Phe Leu Ile Ala Giy His Giu Thr Thr Ser Giy 260 265 270 10 ctt tta tca ttt gcg ctg tat ttc tta gtg aaa aat cca cat gta tta Leu Leu Ser Phe Ala Leu Tyr Phe Leu Val Lys Asn Pro His Val Leu 275 280 285 caa aaa gca gca gaa gaa gca gca cga gtt cta gta gat cct gct cca Gin Lys Ala Ala Giu Giu Ala Ala Arg Val Leu Val Asp Pro Ala Pro 290 295 300 agc tac aaa caa gtc aaa cag ctt aaa tat gtc ggc atg gtc tta aac Ser Tyr Lys Gin Val Lys Gin Leu Lys Tyr Val Giy Met Val Leu Asn 305 310 315 320 gaa gcg ctg cgc tta tgg cca act gct cct gcg ttt tcc cta tat gca Giu Ala Leu Arg Leu Trp Pro Thr Ala Pro Ala Phe Ser Leu Tyr Ala 325 330 335 aaa gaa gat acg gtg ctt gga gga gaa tat cct tta gaa aaa ggc gac Lys Giu Asp Thr Val Leu Giy Giy Giu Tyr Pro Leu Giu Lys Giy Asp 340 345 350 25 gaa cta atg gtt ctg att cct cag ctt cac cgt gat aaa aca att tgg Giu Leu Met Val Leu Ile Pro Gin Leu. His Arg Asp Lys Thr Ile Trp																					
Tyr Gin Ile Ile Thr Phe Leu Ile Ala Giy His Giu Thr Thr Ser Giy 260 265 270 10 ctt tta tca ttt gcg ctg tat ttc tta gtg aaa aat cca cat gta tta Leu Leu Ser Phe Ala Leu Tyr Phe Leu Val Lys Asn Pro His Val Leu 275 280 285 caa aaa gca gca gaa gaa gca gca cga gtt cta gta gat cct gct cca Gin Lys Ala Ala Giu Giu Ala Ala Arg Val Leu Val Asp Pro Ala Pro 290 295 300 agc tac aaa caa gtc aaa cag ctt aaa tat gtc ggc atg gtc tta aac Ser Tyr Lys Gin Val Lys Gin Leu Lys Tyr Val Giy Met Val Leu Asn 305 310 315 320 gaa gcg ctg cgc tta tgg cca act gct cct gcg ttt tcc cta tat gca Giu Ala Leu Arg Leu Trp Pro Thr Ala Pro Ala Phe Ser Leu Tyr Ala 325 330 335 aaa gaa gat acg gtg ctt gga gga gaa tat cct tta gaa aaa ggc gac Lys Giu Asp Thr Val Leu Giy Giy Giu Tyr Pro Leu Giu Lys Giy Asp 340 345 350 25 gaa cta atg gtt ctg att cct cag ctt cac cgt gat aaa aca att tgg Giu Leu Met Val Leu Ile Pro Gin Leu. His Arg Asp Lys Thr Ile Trp		ta	ta	caa	att	at1	t aca	tt	c tt	a a	tt	aca	aa	аса	c aa	12 2	· C a	202	ant	aat	016
260 265 270 10 ctt tta tca ttt gcg ctg tat ttc tta gtg aaa aat cca cat gta tta 864 Leu Leu Ser Phe Ala Leu Tyr Phe Leu Val Lys Asn Pro His Val Leu 275 280 285 caa aaa gca gca gaa gaa gca gca cga gtt cta gta gat cct gct cca 912 Gln Lys Ala Ala Glu Glu Ala Ala Arg Val Leu Val Asp Pro Ala Pro 295 300 agc tac aaa caa gtc aaa cag ctt aaa tat gtc ggc atg gtc tta aac 960 Ser Tyr Lys Gln Val Lys Gln Leu Lys Tyr Val Gly Met Val Leu Asn 305 310 315 320 gaa gcg ctg cgc tta tgg cca act gct cct gcg ttt tcc cta tat gca 1008 Glu Ala Leu Arg Leu Trp Pro Thr Ala Pro Ala Phe Ser Leu Tyr Ala 325 330 335 aaa gaa gat acg gtg ctt gga gga gaa tat cct tta gaa aaa ggc gac 1056 Lys Glu Asp Thr Val Leu Gly Gly Glu Tyr Pro Leu Glu Lys Gly Asp 340 345 350 25 gaa cta atg gtt ctg att cct cag ctt cac cgt gat aaa aca att tgg 1104 Glu Leu Met Val Leu Ile Pro Gln Leu His Arg Asp Lys Thr Ile Trp																					
caa aaa gca gca gaa gaa gca gca cga gtt cta gta gat cct gct cca g12 caa aaa gca gca gaa gaa gca gca cga gtt cta gta gat cct gct cca g12 caa aaa gca gca gaa gaa gca gca cga gtt cta gta gat cct gct cca g12 caa aaa gca gca gaa gaa gca gca cga gtt cta gta gat cct gct cca g12 caa aaa gca gca gaa gaa gca gca cga gtt cta gta gat cct gct cca g12 caa g14 caa aaa caa gtc aaa caa gtc aaa tat gtc ggc atg gtc tta aac g14 caa aaa g15 caa aaa g14 caa aaa g15 caa aaa g16 caa aaa aaa aaa aaa aaa aaa aaa aaa aa		. •												, ,,,	3 U	u i	m			GIY	
Leu Leu Ser Phe Ala Leu Tyr Phe Leu Val Lys Asn Pro His Val Leu 275 280 285 caa aaa gca gca gaa gaa gca gca cga gtt cta gta gat cct gct cca 912 Gln Lys Ala Ala Glu Glu Ala Ala Arg Val Leu Val Asp Pro Ala Pro 295 300 agc tac aaa caa gtc aaa cag ctt aaa tat gtc ggc atg gtc tta aac 960 Ser Tyr Lys Gln Val Lys Gln Leu Lys Tyr Val Gly Met Val Leu Asn 305 310 315 320 gaa gcg ctg cgc tta tgg cca act gct cct gcg ttt tcc cta tat gca 1008 Glu Ala Leu Arg Leu Trp Pro Thr Ala Pro Ala Phe Ser Leu Tyr Ala 325 330 335 aaa gaa gat acg gtg ctt gga gga gaa tat cct tta gaa aaa ggc gac 1056 Lys Glu Asp Thr Val Leu Gly Gly Glu Tyr Pro Leu Glu Lys Gly Asp 340 345 350 25 gaa cta atg gtt ctg att cct cag ctt cac cgt gat aaa aca att tgg 1104 Glu Leu Met Val Leu Ile Pro Gln Leu. His Arg Asp Lys Thr Ile Trp												203						2/0	,		
Leu Leu Ser Phe Ala Leu Tyr Phe Leu Val Lys Asn Pro His Val Leu 275 280 285 caa aaa gca gca gaa gaa gca gca cga gtt cta gta gat cct gct cca 912 Gln Lys Ala Ala Glu Glu Ala Ala Arg Val Leu Val Asp Pro Ala Pro 295 300 agc tac aaa caa gtc aaa cag ctt aaa tat gtc ggc atg gtc tta aac 960 Ser Tyr Lys Gln Val Lys Gln Leu Lys Tyr Val Gly Met Val Leu Asn 305 310 315 320 gaa gcg ctg cgc tta tgg cca act gct cct gcg ttt tcc cta tat gca 1008 Glu Ala Leu Arg Leu Trp Pro Thr Ala Pro Ala Phe Ser Leu Tyr Ala 325 330 335 aaa gaa gat acg gtg ctt gga gga gaa tat cct tta gaa aaa ggc gac 1056 Lys Glu Asp Thr Val Leu Gly Gly Glu Tyr Pro Leu Glu Lys Gly Asp 340 345 350 25 gaa cta atg gtt ctg att cct cag ctt cac cgt gat aaa aca att tgg 1104 Glu Leu Met Val Leu Ile Pro Gln Leu. His Arg Asp Lys Thr Ile Trp	10	cti	- +	ta	tca	+++		cto	. +-			**.			_						
caa aaa gca gca gaa gaa gca gca cga gtt cta gta gat cct gct cca 912 Gln Lys Ala Ala Glu Glu Ala Ala Arg Val Leu Val Asp Pro Ala Pro 290 295 300 agc tac aaa caa gtc aaa cag ctt aaa tat gtc ggc atg gtc tta aac 960 Ser Tyr Lys Gln Val Lys Gln Leu Lys Tyr Val Gly Met Val Leu Asn 305 310 315 320 gaa gcg ctg cgc tta tgg cca act gct cct gcg ttt tcc cta tat gca 1008 Glu Ala Leu Arg Leu Trp Pro Thr Ala Pro Ala Phe Ser Leu Tyr Ala 325 330 335 aaa gaa gat acg gtg ctt gga gga gaa tat cct tta gaa aaa ggc gac 1056 Lys Glu Asp Thr Val Leu Gly Gly Glu Tyr Pro Leu Glu Lys Gly Asp 340 345 350 25 gaa cta atg gtt ctg att cct cag ctt cac cgt gat aaa aca att tgg 1104 Glu Leu Met Val Leu Ile Pro Gln Leu His Arg Asp Lys Thr Ile Trp	•																				864
caa aaa gca gca gaa gaa gca gca cga gtt cta gta gat cct gct cca 912 Gln Lys Ala Ala Glu Glu Ala Ala Arg Val Leu Val Asp Pro Ala Pro 290 295 300 agc tac aaa caa gtc aaa cag ctt aaa tat gtc ggc atg gtc tta aac 960 Ser Tyr Lys Gln Val Lys Gln Leu Lys Tyr Val Gly Met Val Leu Asn 305 310 315 320 gaa gcg ctg cgc tta tgg cca act gct cct gcg ttt tcc cta tat gca 1008 Glu Ala Leu Arg Leu Trp Pro Thr Ala Pro Ala Phe Ser Leu Tyr Ala 325 330 335 aaa gaa gat acg gtg ctt gga gga gaa tat cct tta gaa aaa ggc gac 1056 Lys Glu Asp Thr Val Leu Gly Gly Glu Tyr Pro Leu Glu Lys Gly Asp 340 345 350 25 gaa cta atg gtt ctg att cct cag ctt cac cgt gat aaa aca att tgg 1104 Glu Leu Met Val Leu Ile Pro Gln Leu His Arg Asp Lys Thr Ile Trp		LCI	4 L	.cu		riie	. Ala	Let	ııy			Leu	vai	Ly.	s As			His	Val	Leu	
Gln Lys Ala Ala Glu Glu Ala Ala Arg Val Leu Val Asp Pro Ala Pro 290 295 300 agc tac aaa caa gtc aaa cag ctt aaa tat gtc ggc atg gtc tta aac Ser Tyr Lys Gln Val Lys Gln Leu Lys Tyr Val Gly Met Val Leu Asn 305 310 315 320 gaa gcg ctg cgc tta tgg cca act gct cct gcg ttt tcc cta tat gca Glu Ala Leu Arg Leu Trp Pro Thr Ala Pro Ala Phe Ser Leu Tyr Ala 325 330 335 aaa gaa gat acg gtg ctt gga gga gaa tat cct tta gaa aaa ggc gac Lys Glu Asp Thr Val Leu Gly Gly Glu Tyr Pro Leu Glu Lys Gly Asp 340 345 350 25 gaa cta atg gtt ctg att cct cag ctt cac cgt gat aaa aca att tgg Glu Leu Met Val Leu Ile Pro Gln Leu His Arg Asp Lys Thr Ile Trp					2/5					28	SU					2	85				
Gln Lys Ala Ala Glu Glu Ala Ala Arg Val Leu Val Asp Pro Ala Pro 290 295 300 agc tac aaa caa gtc aaa cag ctt aaa tat gtc ggc atg gtc tta aac Ser Tyr Lys Gln Val Lys Gln Leu Lys Tyr Val Gly Met Val Leu Asn 305 310 315 320 gaa gcg ctg cgc tta tgg cca act gct cct gcg ttt tcc cta tat gca Glu Ala Leu Arg Leu Trp Pro Thr Ala Pro Ala Phe Ser Leu Tyr Ala 325 330 335 aaa gaa gat acg gtg ctt gga gga gaa tat cct tta gaa aaa ggc gac Lys Glu Asp Thr Val Leu Gly Gly Glu Tyr Pro Leu Glu Lys Gly Asp 340 345 350 25 gaa cta atg gtt ctg att cct cag ctt cac cgt gat aaa aca att tgg Glu Leu Met Val Leu Ile Pro Gln Leu His Arg Asp Lys Thr Ile Trp																					
agc tac aaa caa gtc aaa cag ctt aaa tat gtc ggc atg gtc tta aac 960 Ser Tyr Lys Gln Val Lys Gln Leu Lys Tyr Val Gly Met Val Leu Asn 305 310 315 320 gaa gcg ctg cgc tta tgg cca act gct cct gcg ttt tcc cta tat gca 1008 Glu Ala Leu Arg Leu Trp Pro Thr Ala Pro Ala Phe Ser Leu Tyr Ala 325 325 330 335 aaa gaa gat acg gtg ctt gga gga gaa tat cct tta gaa aaa ggc gac 1056 Lys Glu Asp Thr Val Leu Gly Gly Glu Tyr Pro Leu Glu Lys Gly Asp 340 345 350 25 gaa cta atg gtt ctg att cct cag ctt cac cgt gat aaa aca att tgg 1104 Glu Leu Met Val Leu Ile Pro Gln Leu His Arg Asp Lys Thr Ile Trp																			-		912
agc tac aaa caa gtc aaa cag ctt aaa tat gtc ggc atg gtc tta aac 960 Ser Tyr Lys Gln Val Lys Gln Leu Lys Tyr Val Gly Met Val Leu Asn 305 gaa gcg ctg cgc tta tgg cca act gct cct gcg ttt tcc cta tat gca 1008 Glu Ala Leu Arg Leu Trp Pro Thr Ala Pro Ala Phe Ser Leu Tyr Ala 325 aaa gaa gat acg gtg ctt gga gga gaa tat cct tta gaa aaa ggc gac 1056 Lys Glu Asp Thr Val Leu Gly Gly Glu Tyr Pro Leu Glu Lys Gly Asp 340 345 350 25 gaa cta atg gtt ctg att cct cag ctt cac cgt gat aaa aca att tgg 1104 Glu Leu Met Val Leu Ile Pro Gln Leu His Arg Asp Lys Thr Ile Trp	16	Gir			Ala	Ala	Glu	G1 u	Ala	A ?	a /	Arg	Val	Leu	V a	1 A:	sp	Pro	Ala	Pro	
Ser Tyr Lys Gîn Val Lys Gîn Leu Lys Tyr Val Gîy Met Val Leu Asn 305 310 315 320 gaa gcg ctg cgc tta tgg cca act gct cct gcg ttt tcc cta tat gca Gîu Ala Leu Arg Leu Trp Pro Thr Ala Pro Ala Phe Ser Leu Tyr Ala 325 330 335 aaa gaa gat acg gtg ctt gga gga gaa tat cct tta gaa aaa ggc gac Lys Gîu Asp Thr Val Leu Gîy Gîy Gîu Tyr Pro Leu Gîu Lys Gîy Asp 340 345 350 25 gaa cta atg gtt ctg att cct cag ctt cac cgt gat aaa aca att tgg Gîu Leu Met Val Leu Ile Pro Gîn Leu His Arg Asp Lys Thr Ile Trp	15		2	90					295	i					30	0					
Ser Tyr Lys Gîn Val Lys Gîn Leu Lys Tyr Val Gîy Met Val Leu Asn 305 310 315 320 gaa gcg ctg cgc tta tgg cca act gct cct gcg ttt tcc cta tat gca Gîu Ala Leu Arg Leu Trp Pro Thr Ala Pro Ala Phe Ser Leu Tyr Ala 325 330 335 aaa gaa gat acg gtg ctt gga gga gaa tat cct tta gaa aaa ggc gac Lys Gîu Asp Thr Val Leu Gîy Gîy Gîu Tyr Pro Leu Gîu Lys Gîy Asp 340 345 350 25 gaa cta atg gtt ctg att cct cag ctt cac cgt gat aaa aca att tgg Gîu Leu Met Val Leu Ile Pro Gîn Leu His Arg Asp Lys Thr Ile Trp																					
gaa gcg ctg cgc tta tgg cca act gct cct gcg ttt tcc cta tat gca 1008 20 Glu Ala Leu Arg Leu Trp Pro Thr Ala Pro Ala Phe Ser Leu Tyr Ala 325 330 335 aaa gaa gat acg gtg ctt gga gga gaa tat cct tta gaa aaa ggc gac 1056 Lys Glu Asp Thr Val Leu Gly Gly Glu Tyr Pro Leu Glu Lys Gly Asp 340 345 350 25 gaa cta atg gtt ctg att cct cag ctt cac cgt gat aaa aca att tgg 1104 Glu Leu Met Val Leu Ile Pro Gln Leu His Arg Asp Lys Thr Ile Trp		ago	t	ac	aaa	caa	gtc	aaa	cag	ct	ta	aaa	tat	gto	990	at	:9	gtc	tta	aac	960
gaa gcg ctg cgc tta tgg cca act gct cct gcg ttt tcc cta tat gca 1008 Glu Ala Leu Arg Leu Trp Pro Thr Ala Pro Ala Phe Ser Leu Tyr Ala 325 330 335 aaa gaa gat acg gtg ctt gga gga gaa tat cct tta gaa aaa ggc gac 1056 Lys Glu Asp Thr Val Leu Gly Gly Glu Tyr Pro Leu Glu Lys Gly Asp 340 345 350 25 gaa cta atg gtt ctg att cct cag ctt cac cgt gat aaa aca att tgg 1104 Glu Leu Met Val Leu Ile Pro Gln Leu His Arg Asp Lys Thr Ile Trp		Ser	T	yr	Lys	Gln	Val	Lys	G1n	Le	u L	_ys	Tyr	Val	G1 y	/ Me	et.	Val	Leu	Asn	
Glu Ala Leu Arg Leu Trp Pro Thr Ala Pro Ala Phe Ser Leu Tyr Ala 325 330 335 aaa gaa gat acg gtg ctt gga gga gaa tat cct tta gaa aaa ggc gac Lys Glu Asp Thr Val Leu Gly Gly Glu Tyr Pro Leu Glu Lys Gly Asp 340 345 350 25 gaa cta atg gtt ctg att cct cag ctt cac cgt gat aaa aca att tgg Glu Leu Met Val Leu Ile Pro Gln Leu His Arg Asp Lys Thr Ile Trp		305						310						315						320	
Glu Ala Leu Arg Leu Trp Pro Thr Ala Pro Ala Phe Ser Leu Tyr Ala 325 330 335 aaa gaa gat acg gtg ctt gga gga gaa tat cct tta gaa aaa ggc gac Lys Glu Asp Thr Val Leu Gly Gly Glu Tyr Pro Leu Glu Lys Gly Asp 340 345 350 25 gaa cta atg gtt ctg att cct cag ctt cac cgt gat aaa aca att tgg Glu Leu Met Val Leu Ile Pro Gln Leu His Arg Asp Lys Thr Ile Trp																					
Glu Ala Leu Arg Leu Trp Pro Thr Ala Pro Ala Phe Ser Leu Tyr Ala 325 330 335 aaa gaa gat acg gtg ctt gga gga gaa tat cct tta gaa aaa ggc gac Lys Glu Asp Thr Val Leu Gly Gly Glu Tyr Pro Leu Glu Lys Gly Asp 340 345 350 25 gaa cta atg gtt ctg att cct cag ctt cac cgt gat aaa aca att tgg Glu Leu Met Val Leu Ile Pro Gln Leu His Arg Asp Lys Thr Ile Trp		gaa	g	cg ·	ctg	cgc	tta	tgg	cca	act	t g	jct	cct	gcg	ttt	to	:C (cta	tat	gca	1008
aaa gaa gat acg gtg ctt gga gga gaa tat cct tta gaa aaa ggc gac 1056 Lys Glu Asp Thr Val Leu Gly Gly Glu Tyr Pro Leu Glu Lys Gly Asp 340 345 350 25 gaa cta atg gtt ctg att cct cag ctt cac cgt gat aaa aca att tgg 1104 Glu Leu Met Val Leu Ile Pro Gln Leu His Arg Asp Lys Thr Ile Trp	20																				
aaa gaa gat acg gtg ctt gga gga gaa tat cct tta gaa aaa ggc gac 1056 Lys Glu Asp Thr Val Leu Gly Gly Glu Tyr Pro Leu Glu Lys Gly Asp 340 345 350 25 gaa cta atg gtt ctg att cct cag ctt cac cgt gat aaa aca att tgg 1104 Glu Leu Met Val Leu Ile Pro Gln Leu His Arg Asp Lys Thr Ile Trp																					
Lys Glu Asp Thr Val Leu Gly Gly Glu Tyr Pro Leu Glu Lys Gly Asp 340 345 350 25 gaa cta atg gtt ctg att cct cag ctt cac cgt gat aaa aca att tgg 1104 Glu Leu Met Val Leu Ile Pro Gln Leu His Arg Asp Lys Thr Ile Trp																					
Lys Glu Asp Thr Val Leu Gly Gly Glu Tyr Pro Leu Glu Lys Gly Asp 340 345 350 25 gaa cta atg gtt ctg att cct cag ctt cac cgt gat aaa aca att tgg 1104 Glu Leu Met Val Leu Ile Pro Gln Leu His Arg Asp Lys Thr Ile Trp		aaa	gā	ia g	gat	acg	gtg	ctt	gga	gga	9 Q	aa ·	tat	cct	tta	ga	a	122	aac	nac	1056
gaa cta atg gtt ctg att cct cag ctt cac cgt gat aaa aca att tgg 1104 Glu Leu Met Val Leu Ile Pro Gln Leu His Arg Asp Lys Thr Ile Trp																					1050
gaa cta atg gtt ctg att cct cag ctt cac cgt gat aaa aca att tgg 1104 Glu Leu Met Val Leu Ile Pro Gln Leu His Arg Asp Lys Thr Ile Trp									,						LCu	ui			шу	мѕр	
Glu Leu Met Val Leu Ile Pro Gln Leu His Arg Asp Lys Thr Ile Trp						-											3	,50			
Glu Leu Met Val Leu Ile Pro Gln Leu His Arg Asp Lys Thr Ile Trp	25	gaa	ct	:a 2	ata :	att	cto	att	cct	C20		++	-20	~~ +			_				
255																					1104
365						- 41	LCU .	116	-10			eu. I	115	Arg	ASP			nr :	lle '	Trp	
				3	,,,,					30U	1					36)				

		Asp				e Arg				e G 1 ι		a agt Ser	
5	Ile				Phe				/ Asn			gcg Ala 400	1200
				Phe				Ala				ggt Gly	1248
10									aca Thr		Glu		1296
15									ggc G1 y				1344
									cct Pro 460				1392
20									gaa Glu				1440
			Leu				Ser		gga G1 y				1488
25		Arg .				Ile.			aaa Lys	G1 y		_	1536

	ca	g gt	c gc	a ac	g cti	: gat	t te	a ca	c gc	gga	a aat	t cti	t ccg	g cg	c ga	a gga	1584
	G1 r	n Va	1 A1	a Thi	r Leu	ı Asp	Ser	~ Hi:	s Ala	a G1 y	y Ası	ı Lei	ı Pro	Arg	g G7:	ı Gly	
			51	5				520)				525	;			
								•									
	gct	gta	a tta	a ati	gta	acc	geg	tct	: tai	aac	: aat	: cat		ı cct	- nat	aac	1622
5																Asn	1632
		530					535			7131		_		Pit	ASP	ASN	
							JJ.	,				540	,				
	aca		ı caa	. +++	atc	430	+00	++-								gta	
																	1680
	545		. u i i	1 1110	· Val			Leu	, web	GIN			Ala	Asp	Glu		
	545	'				550					555					560	
10					.												
10					tac -												1728
	Lys	Gly	Val	Arg	Tyr	Ser	Val	Phe	Gly	Cys	Gly	Asp	Lys	Asn	Trp	Ala	
					565					570					575		
					aaa											_	1776
	Thr	Thr	Tyr	G1 n	Lys	Val	Pro	Ala	Phe	Ile	Asp	Glu	Thr	Leu	A1 a	Ala	
15				580					585					590			
	aaa	999	gca	gaa	aac	atc	gct	gac	cgc	ggt	gaa	gca	gat	gca	agc	gac	1824
	Lys	G1 y	Ala	Glu	Asn	Пe	Ala	Asp	Arg	Gly	Glu	Ala	Asp	Ala	Ser	Asp	
			595					600					605			•	
	gac	ttt	gaa	ggc	aca	tat	gaa	gaa	tgg	cgt	gaa	cat	ato	t.aa	agt	gac	1872
20					Thr												10/2
		610					615					620		p	JC1	vsh	
	gta	qca	gcc	tac	ttt	aac	ctc	gac	att	022	220	a.a.t	.				1000
	Val																1920
	625	•		.,.		630	Leu	naþ	116			ser	ulu ,	ASP			
					,	JJU				1	635					640	
25	tet	ac+	c++	+	a++			.									
	tct																1968
	Ser	HIL	LEU			ain i	rne '	val			Ala.	Ala .	Asp I	Met	Pro	Leu	
				(645				•	650					655		

	gc	g aa	a at	g ca	c gg	t gc	g tt	t tc	a ac	aa	c gt	c gt	a gc	a ag	c aa	a gaa	201
	Α٦a	Ly:	s Me	t Hi	s Gl	y A1a	a Ph	e Se	r Thi	• Ası	n Va	l Va	1 A1a	a Sei	r Ly:	s G1u	
				66	0				665	5				670	0		
								•									
	ctt	: caa	a ca	g cc	a ggo	agt	gc	a cg	a ago	ac	g cga	a cat	t ctt	: gaa	a ati	t gaa	206
5																e Glu	
			675					680					685				
	ctt	cca	aaa	a gaa	gct	tct	: tat	caa	a gaa	gga	a gat	cat	tta	ggt	: att	att	2112
																Ile	
		690					695				•	700					
10	cct	cgc	aac	: tat	gaa	gga	ata	gta	aac	cgt	gta	aca	аса	ago	tto	ggc	2160
																Gly	2100
	705					710				-	715			3		720	
																, 20	
	cta	gat	gca	tca	cag	caa	atc	cgt	cta	qaa	gca	gaa	gaa	gaa	222	tta	2208
									Leu								2200
15					725			•		730			۵, ۵	4,4	735		
		•													, 55		
	gct	cat	ttg	cca	ctc	gct	aaa	aca	gta	tcc	gta	gaa	gag	ctt	cta	C 3 3	2256
									Val								2250
				740			_,	••••	745		*41	uiu	uiu	750	Leu	Gill	
														/50			
	tac	ata	gag	ctt	caa	gat	cct	att	acg	cac	200	C20	c++				2204
20									Thr								2304
			755					760	••••	nı y	****	GIII		Arg	AIG	met	
								,00					765				
	qct	act	aaa	aca	atc	tac	cca	cca	cat	223	at a	a na					0050
									His							_	2352
		770	_,_		•		775	-10	1113	Lys	Val		Leu	Giu	Ala	Leu	
							775					780					
25	ctt	паа	220	C 2 2	acc	+											
									caa								2400
	785	JIU	Lys	4111		1 yr 790	Lys	aıu	Gln			Ala	Lys	Arg	Leu		
	,					, 70					795					800	

		,	· .		,	. 340		· cuc		y yes	Ly	- yac	acé	9 446	ו ננכ	agc	2448
	Met	: Lei	u Glu	ı Let	ı Leu	ı G1ı	i Lys	Tyr	Pro	Ala	Cys	61 c	ı Met	: Lys	Phe	Ser	
					805					810					815		
	•							•									
	gaa	tti	t ato	gco	ctt	cto	cca	ago	ata	ı cac	ccc	ı car	tat	tar	tro	a++	2496
5					Leu												2430
				820					825			, ,,	1 1 3/1	830		116	
									OL.	•				030	,		
	tct	tca	tca	cct	cgt	atc	gat	gaa	222	caa	oca.	300	ato	300	a to		25.4.4
					Arg												2544
	•		835		,	•••	ЛЭР	840		din	Ala	Sel.			vai	2er	
			-					040					845				
10	att	ato	tca	gga	gaa	aca	taa	300		+-+							
					Glu												2592
		850		u .,	uiu	Aid	855	261	uly	ıyı	ыу		ıyr	Lys	GIY	He	
		050	,				033					860					
	000	ten		+-+	a++												
					ctt												2640
15		Sei	W2II	ıуг	Leu		GIU	Leu	GIN	Giu		Asp	Thr	He	Thr	_	
13	865					870					875					880	

					ccg												2688
	rne	11e	ser	ınr	Pro	Gin	Ser	Glu	Phe		Leu	Pro	Lys	Asp	Pro	Glu	
					885					890					895		
					atg												2736
20	Thr	Pro	Leu	Ile	Met	Va1	G1 y	Pro	G1y	Thr	G7 y	Val	A1 a	Pro	Phe	Arg	
				900					905					910			
					gcg												2784
	G1 y	Phe	Val	Gln	A1 a	Arg	Lys	G1n	Leu	Lys	G1 u	Gln	Gly	G1n	Ser	Leu	
			915					920					925				
25	gga	gaa	gca	cat	tta	tac	ttc	ggc	tgc	cgt	tca	cct	cat	gaa	gac	tat	2832
	Gly	G1 u	Ala	His	Leu	Tyr	Phe	G1 y	Cys	Arg	Ser	Pro	His	G1 u	Asp	Tyr	
		930					935					940					

	ctg tat caa gaa gag ctt gaa aac gcc caa agc gaa ggc atc att acg	2880
	Leu Tyr Gln Glu Glu Leu Glu Asn Ala Gln Ser Glu Gly Ile Ile Thr	
	945 950 955 960	
	ctt cat acc gct ttt tct cgc atg cca aat cag ccg aaa aca tac gtt	
5	Leu His Thr Ala Phe Ser Arg Met Pro Asn Gln Pro Lys Thr Tyr Val	2928
	965	
	970 975	
	C20, C20, G12, 210, G22, G22, G22, G22, G22, G22, G22, G2	
		2976
	Gln His Val Met Glu Gln Asp Gly Lys Lys Leu Ile Glu Leu Leu Asp	
	980 985 990	
10	caa gga gcg cac ttc tat att tgc gga gac gga agc caa atg gca cct 3	024
	Gln Gly Ala His Phe Tyr Ile Cys Gly Asp Gly Ser Gln Met Ala Pro	
	995 1000 1005	
	gcc gtt gaa gca acg ctt atg aaa agc tat gct gac gtt cac caa gtg 3	072
	Ala Val Glu Ala Thr Leu Met Lys Ser Tyr Ala Asp Val His Gln Val	0/2
15	1010 1015 1020	
	1020	
	agt gaa gos got ogo tto boo ot-	
		120
	Ser Glu Ala Asp Ala Arg Leu Trp Leu Gln Gln Leu Glu Glu Lys Gly	
	1025 1030 1035 1040	
		.50
20	Arg Tyr Ala Lys Asp Val Trp Ala Gly	
	1045 1050	

Internation Application No PCT/GB 00/02379

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N15/53 C12P7/22
A62D3/00

2P7/22 C12N9/02

A01K67/033

A01H5/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C12P C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

BIOSIS, EPO-Internal, EMBASE

	ENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 96 14419 A (BRITISH GAS PLC ;FLITSCH SABINE LAHJA (GB); NICKERSON DARREN PAUL) 17 May 1996 (1996-05-17) page 4, line 10 -page 8, line 15	1-8, 11-15
	page 31 claims 	
X	SHIMOJI M ET AL: "DESIGN OF A NOVEL P450: A FUNCTIONAL BACTERIAL-HUMAN CYTOCHROME P450 CHIMERA" BIOCHEMISTRY,	1,4,6,7, 11-15,17
	vol. 37, no. 25, 1998, pages 8848-8852, XP002913528 ISSN: 0006-2960 the whole document	
	-/	

Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	 "T° later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
14 November 2000	28/11/2000
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Andres, S

		FC1/4B 00/023/9
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 97 16553 A (BRITISH GAS PLC ;WONG LUET LOK (GB); FLITSCH SABINE LAHJA (GB); NI) 9 May 1997 (1997-05-09) the whole document	1-5, 11-15
A	GOOCH, JAY W. ET AL: "Effects of ortho- and non-ortho-substituted polychlorinated biphenyl congeners on the hepatic monooxygenase system in scup (Stenotomus chrysops)" TOXICOL. APPL. PHARMACOL. (1989), 98(3), 422-33, XP000960619 the whole document	1,6-9
A	ENGLAND P A: "The oxidation of naphtalene and pyrene by cytochrome P450cam" FEBS LETTERS, vol. 424, no. 3, 13 March 1998 (1998-03-13), pages 271-274, XP002131695 ISSN: 0014-5793 the whole document	2-5
P,A	WO 00 31273 A (BELL STEPHEN GRAHAM; CARMICHAEL ANGUS BISHOP (GB); WONG LUET LOK () 2 June 2000 (2000-06-02) page 3, line 23 -page 7, line 21 page 9, line 6 -page 17 examples claims	1-19
P,X	JONES, J. ET AL: "The oxidation of polychlorinated benzenes by genetically engineered cytochrome P450cam: potential applications in bioremediation" CHEM. COMMUN. (CAMBRIDGE), no. 3, 7 February 2000 (2000-02-07), pages 247-248, XP002152716 the whole document	1-10, 17-19

Information on patent family members

Internau pplication No PCT/GB 00/02379

Patent document cited in search report		Publication date	Patent family m mber(s)	Publication date
WO 9614419	Α	17-05-1996	AU 705736 B	03-06-1999
			AU 3811795 A	31-05-1996
			CN 1171818 A	28-01-1998
			CZ 9701277 A	15-10-1997
			EP 0789770 A	20-08-1997
			GB 2294692 A,B	08-05-1996
			JP 10503658 T	07-04-1998
			KR 234348 B	15-12-1999
			NZ 294904 A	24-09-1998
			PL 319970 A	01-09-1997
			RU 2133774 C	27-07-1999
			SK 54597 A	04-02-1998
			US 6100074 A	08-08-2000
WO 9716553	Α	09-05-1997	AU 716583 B	02-03-2000
			AU 7323696 A	22-05-1997
			CA 2236381 A	09-05-1997
			CN 1212015 A	24-03-1999
			CZ 9801273 A	13-01-1999
			EP 0906431 A	07-04-1999
			GB 2306485 A,B	07-05-1997
			JP 2000508163 T	04-07-2000
			NZ 320497 A	29-09-1999
			PL 326445 A	28-09-1998
			SK 55598 A	13-04-1999
			US 6117661 A	12-09-2000
			AU 705736 B	03-06-1999
			AU 3811795 A	31-05-1996
			CZ 9701277 A	15-10-1997
			EP 0789770 A	20-08-1997
			JP 10503658 T	07-04-1998
			KR 234348 B	15-12-1999
•			NZ 294904 A	24-09-1998
			PL 319970 A	01-09-1997
			RU 2133774 C	27-07-1999
			SK 54597 A	04-02-1998
			US 6100074 A	08-08-2000
WO 0031273	Α	02-06-2000	AU 1281900 A	13-06-2000

PCT

Y REC'D 2 5 SEP 2001

WIPO PCT

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

14

(PCT Article 36 and Rule 70)

Applicant's or agent's file reference	T	See Notification of Transmittal of International
N.76277A PEJ	FOR FURTHER ACTION	Preliminary Examination Report (Form PCT/IPEA/416)
International application No.	International filing date (day/mont	th/year) Priority date (day/month/year)
PCT/GB00/02379	19/06/2000	18/06/1999
International Patent Classification (IPC) or I C12N15/53	national classification and IPC	
Applicant		
ISIS INNOVATION LIMITED		
This international preliminary example and is transmitted to the applicant		d by this International Preliminary Examining Authority
2. This REPORT consists of a total of	of 6 sheets, including this cover s	sheet.
been amended and are the b	asis for this report and/or sheets of 607 of the Administrative Instruct	ne description, claims and/or drawings which have containing rectifications made before this Authority ions under the PCT).
3. This report contains indications re I ☑ Basis of the report	lating to the following items:	
II □ Priority		
III Non-establishment of	opinion with regard to novelty, in	ventive step and industrial applicability .
IV Lack of unity of invent	ion	
	under Article 35(2) with regard to tions suporting such statement	novelty, inventive step or industrial applicability;
VI ☐ Certain documents c	•	
VII ☐ Certain defects in the	international application	
VIII 🛛 Certain observations	on the international application	
Date of submission of the demand	Date of	completion of this report
15/01/2001	21.09.2	001
Name and mailing address of the internation preliminary examining authority:	nal Authori:	zed officer
European Patent Office D-80298 Munich Tel. +49 89 2399 - 0 Tx: 5236 Fax: +49 89 2399 - 4465		nov, B one No. +49 89 2399 7726

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No. PCT/GB00/02379

I.	Bas	sis ftherprt				
1.	the and	receiving Office in	ments of the international applic response to an invitation under to this report since they do not c	Article 14 are	referred to in this repo	ort as "originally filed"
	1-2	5	as originally filed			
	Cla	ims, No.:				
	1-18	8	as received on	21/08/2001	with letter of	20/08/2001
	Cla	ims, pages:				
	26,2	27	as received on	21/08/2001	with letter of	20/08/2001
2.			guage, all the elements marked international application was file			
	The	se elements were	available or furnished to this Au	hority in the fo	ollowing language: ,	which is:
		the language of a	translation furnished for the pur	poses of the in	nternational search (ur	nder Rule 23.1(b)).
		the language of pu	ublication of the international ap	plication (unde	er Rule 48.3(b)).	·
	Ω.	the language of a 55.2 and/or 55.3).	translation furnished for the pur	poses of inter	national preliminary ex	camination (under Rul
3.			cleotide and/or amino acid sec ry examination was carried out o			l application, the
		contained in the in	nternational application in written	form.		
			the international application in o		able form.	
			uently to this Authority in written	•		
		furnished subsequ	ently to this Authority in comput	er readable fo	orm.	
			it the subsequently furnished wr		e listing does not go be	eyond the disclosure i

☐ The statement that the information recorded in computer readable form is identical to the written sequence

1-19

Form PCT/IPEA/409 (Boxes I-VIII, Sheet 1) (July 1998)

☐ the description,

"listing has been furnished.

4. The amendments have resulted in the cancellation of:

pages:

Nos.:

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No. PCT/GB00/02379

		the drawings,	sheets:							
5.		This report has been considered to go bey			•		s had not b	een made	, since they	y have bee
		(Any replacement shoreport.)	eet contai	ning such	amendments	must be r	referred to ι	ınder item	1 and anne	exed to this
6.	Ado	litional observations, if	f necessar	y:						
V.		asoned statement un tions and explanatio			-	novelty, i	nventive st	ep or indu	ustrial app	licability;
1.	Stat	tement				-				
	Nov	relty (N)	Yes: No:	Claims Claims	1-13, 15-18 14					
	Inve	entive step (IS)	Yes: No:	Claims Claims	none 1-18					
	Indu	ustrial applicability (IA)	Yes: No:	Claims Claims	1-18					

2. Citations and explanations see separate sheet

VIII. Certain observations on the international application

The following observations on the clarity of the claims, description, and drawings or on the question whether the claims are fully supported by the description, are made: see separate sheet

This IPER is bas d on th following prior art documents:

D1:

SHIMOJI M ET AL: 'DESIGN OF A NOVEL P450: A FUNCTIONAL BACTERIAL-HUMAN CYTOCHROME P450 CHIMERA' BIOCHEMISTRY, vol. 37, no. 25, 1998, pages 8848-8852, XP002913528 ISSN: 0006-2960

D2:

WO 96 14419 A (BRITISH GAS PLC ;FLITSCH SABINE LAHJA (GB); NICKERSON DARREN PAUL) 17 May 1996 (1996-05-17)

Section V

Claim 14 of present application cannot be considered novel since the features defined in said claim may be inherent property of naturally occurring Pseudomonas putida. Hence, claim 14 is in discordance to Article 33(2) PCT.

Closest prior art to the subject matter of claims 1 - 9 is regarded as being D2.

The problem to be solved can be seen in the provision of a method to oxidise specific halo aromatic compounds on a ring carbon atom.

This problem could be solved by using the properties of the wild type and of active site mutants of P450cam to oxidise such compounds.

The subject matter of claims 1 - 9 differs from D2 in that said P450cam and active site mutants thereof are used in a process for oxidation of 1,2-dichlorbenzene, 1,2,4trichlorbenzene, 3,3'- dichlorbiphenyl, 2,2',4,5,5'-pentachlorbiphenyl, pentachlorbenzene or hexachlorobenzene.

However, the definition of new substrates for a known enzyme cannot be considered to fulfill the requirements of Article 33 (3) PCT for the following reasons:

1.

D2 already discloses a method to oxidise condensed aromatic compounds, such as naphthalene, phenanthrene, fluoranthrene and pyrene where the oxidised carbon is a ring carbon of the substrate (see for instance Figures 4 c-f).

2.

D2 also suggests a method for oxidising halo aromatic compounds (e.g. diphenyl and biphenyl compounds and their halogenated variants, see for instance page 4, lines 10-27 and claim 5) using mutants in the active site of the P. putida's mono-oxygenase P450cam, where said mutants include among others a Y96A mutant (see e.g. page 6 first paragraph, page 8 last paragraph, claim 7 and Fig.1). D2 also teaches how to modify the active site of the wild type enzyme in order to decrease its specificity towards camphor, creating a desired "aromatic pocket" (see e.g. pages 3 and 4) and that the amino acid which replaces Y96 is conveniently a small hydrophobic amino acid (for instance a non-polar one) like Ala, Gly, Val, Leu or Ile.

Thus, in view of D2 the elucidation of further mono-oxygenase substrates chemically closely related to known ones is obvious to somebody skilled in the art.

In view of D2 the subject matter of claims 10, 11, 13 and 18 is obvious to the skilled artisan, contrary to the requirements of Article 33(3) PCT.

The subject matter of claim 12 of present international application cannot be considered to fulfill the requirements of Article 33 (3) PCT, since expression of known exogenous genes in prokaryotic/eucaryotic cells with the aim to conduct a biochemical process in said cells is obvious to the person skilled in the art.

Claim 15 does not fulfill the requirements of Article 33 (3) PCT, since the use of known genes (see e.g. D2, pages 3-6) to create transgenic animals or plants merely can be seen as routine methods.

Document D1 suggests that modified P450 enzymes can be used for bioremediation of areas polluted with halo aromatic compounds (see e.g. abstract and page 8852). Hence, subject matter of claim 16 is in discordance to Article 33 (3) PCT.

Claim 17 does not fulfill the requirements of Article 33(3) PCT since a process for the selection of mutants of a known enzyme with well documented and chemically related substrates is seen as being a routine method for somebody skilled in the art.

Section VIII

1)

The numbering of claim 19 of new set of claims filed with the letter of 20 August 2001 is considered a typing error and is referred to in this report as claim 18.

- 2) Applicants attention is drawn to the fact that in the absence of a reference point terms like "less polar" and "homologue" are meaningless. Thus, claims containing at least one of the above mentioned expressions are unclear and does not meet the requirements of Article 6 PCT.
- 3) It is highly questionable that any fragment of the putidaredoxin reductase and/or putidaredoxin are actually suitable for the process according to claim 11 since in its broadest meaning the term "fragment" cover individual amino acids (Article 5 and 6 PCT).

CLAIMS

- 1. Process for oxidising a halo aromatic substrate which has more than one halogen atom, which process comprises oxidising said substrate with a monooxygenase enzyme, wherein a ring carbon of the substrate is oxidised.
- 2. Process according to claim 1 in which the enzyme comprises a substitution of an amino acid in the active site by an amino acid with a less polar side-chain.
- 3. Process according to claim 2 in which the enzyme comprises one or more other amino acid substitutions in the active site.
- 4. Process according to any one of the preceding claims in which the enzyme is:
 - (i) P450_{cam}, or
 - (ii) a naturally occurring homologue of (i), or
 - (iii) a mutant of (i) or (ii).
- 5. Process according to claim 4 in which the enzyme is one in which amino acid 96 of P450_{cam}, or the equivalent amino acid in a homologue, has been changed to an amino acid with a less polar side-chain.
- 6. Process according to any one of the preceding claims in which the halogen is chlorine.
- 7. Process according to any one of the preceding claims in which the aromatic compound is a benzene or biphenyl.
- 8. Process for oxidising a halo aromatic substrate, which process comprises oxidising said substrate with an enzyme as defined in any one of claims 1 to 5, wherein the substrate is 1, 2-dichlorobenzene, 1, 2, 4- trichlorobenzene, 3,3'-dichlorobiphenyl or 2,2',4,5,5'-pentachlorobiphenyl.
- 9. Process for oxidising a halo aromatic substrate, which process comprises oxidising said substrate with an enzyme as defined in any one of claims 1 to 5, wherein the substrate is pentachlorobenzene or hexachlorobenzene.
- 10. Process according to any one of the preceding claims which is carried out in a cell that expresses:
 - (a) an enzyme as defined in any one of claims 1 to 5;
 - (b) an electron transfer reductase; and
 - (c) an electron transfer redoxin.

- 11. Process according to claim 10 in which:
- (b) is putidaretoxin reductase or a homologue; or a fragment thereof; and/or
- (c) is putidaretoxin or a homologue; or a fragment thereof.
- 12. Process according to claim 10 or 11 wherein the cell is one in which the enzyme (a) does not naturally occur.
- 13. Process according to any one of claims 10 to 12 wherein the cell is one which in its naturally occurring form is able to oxidise a substrate as defined in any one of claims 6 to 9.
 - 14. A cell as defined in claim 13.
- 15. A transgenic animal or plant whose cells are as defined in any one of claims 10 to 13.
- 16. Method of treating a locus contaminated with a substrate as defined in any one of claims 1 or 6 to 9 comprising contacting the locus with an enzyme as defined in any one of claims 1 to 5 or a cell as defined in any of claims 10 to 12, or an animal or plant as defined in claim 15.
- 17. Process for selecting a mutant of an enzyme as defined in claim 1, 4(i) or 4(ii) for its ability to oxidise a substrate as defined in claim 1, or any one of the claims 6 to 9, which process comprises screening a library of said mutants for their oxidation effect on the substrate.
- 18 19. Process, cell, animal, plant or method according to any one of claims 1 to 16 wherein the enzyme is one that has been selected in a process according to claim 17.

(PCT Article 18 and Rules 43 and 44)

Applicant's or agent's file reference	(Form PCT/ISA	n of Transmittal of International Search Report v220) as well as, where applicable, item 5 below.						
N.76277A PEJ	ACTION							
International application No.	International filing date (day/month/year)	(Earliest) Priority Date (day/month/year)						
PCT/GB 00/02379	19/06/2000	18/06/1999						
Applicant								
ISIS INNOVATION LIMITED								
This International Search Report has bee according to Article 18. A copy is being tra	n prepared by this International Searching Ar ansmitted to the International Bureau.	uthority and is transmitted to the applicant						
This International Search Report consists It is also accompanied by	of a total of3 sheets. a copy of each prior art document cited in the	nis report.						
Basis of the report								
	international search was carried out on the bless otherwise indicated under this item.	pasis of the international application in the						
the international search w Authority (Rule 23.1(b)).	as carried out on the basis of a translation o	f the international application furnished to this						
 b. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international search was carried out on the basis of the sequence listing: 								
	onal application in written form.							
	ernational application in computer readable fo	orm.						
h a n	o this Authority in written form.							
the statement that the sul	o this Authority in computer readble form. osequently furnished written sequence listing	does not go beyond the disclosure in the						
177	is filed has been furnished.	is identical to the written sequence listing has been						
furnished	omiation recorded in computer readable form	is ideflicated the written sequence usung has been						
Certain claims were fou	nd unsearchable (See Box I).							
3. Unity of invention is lac	king (see Box II).							
4. With regard to the title ,								
X the text is approved as su	ibmitted by the applicant.							
the text has been establis	shed by this Authority to read as follows:							
5. With regard to the abstract,								
the text is approved as su								
	shed, according to Rule 38.2(b), by this Author e date of mailing of this international search r	ority as it appears in Box III. The applicant may, eport, submit comments to this Authority.						
6. The figure of the drawings to be pub	ished with the abstract is Figure No.	_ 						
as suggested by the appl	cant.	X None of the figures.						
because the applicant fail								
because this figure better	characterizes the invention.							

Intern Application No PC1 00/02379

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C12N15/53 C12P7/22 A62D3/00

C12N9/02

A01K67/033

A01H5/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 C12P C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

BIOSIS, EPO-Internal, EMBASE

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 96 14419 A (BRITISH GAS PLC ;FLITSCH SABINE LAHJA (GB); NICKERSON DARREN PAUL) 17 May 1996 (1996-05-17) page 4, line 10 -page 8, line 15 page 31 claims	1-8, 11-15
X	SHIMOJI M ET AL: "DESIGN OF A NOVEL P450: A FUNCTIONAL BACTERIAL-HUMAN CYTOCHROME P450 CHIMERA" BIOCHEMISTRY, vol. 37, no. 25, 1998, pages 8848-8852, XP002913528 ISSN: 0006-2960 the whole document	1,4,6,7, 11-15,17
٠	-/	

Further documents are listed in the continuation of box C.	χ Patent family members are listed in annex.
Special categories of cited documents: A¹ document defining the general state of the art which is not considered to be of particular relevance E¹ earlier document but published on or after the international filing date L¹ document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O¹ document referring to an oral disclosure, use, exhibition or other means P¹ document published prior to the international filing date but later than the priority date claimed	 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
14 November 2000	28/11/2000
Name and mailing address of the ISA	Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Andres, S

PCT Application No 00/02379

		PCT 00/02379		
C.(Continua	ation) DOCUMENTS CONSIDERED TO BE RELEVANT			
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
X	WO 97 16553 A (BRITISH GAS PLC; WONG LUET LOK (GB); FLITSCH SABINE LAHJA (GB); NI) 9 May 1997 (1997-05-09) the whole document	1-5, 11-15		
A	GOOCH, JAY W. ET AL: "Effects of ortho- and non-ortho-substituted polychlorinated biphenyl congeners on the hepatic monooxygenase system in scup (Stenotomus chrysops)" TOXICOL. APPL. PHARMACOL. (1989), 98(3), 422-33, XP000960619 the whole document	1,6-9		
Α	ENGLAND P A: "The oxidation of naphtalene and pyrene by cytochrome P450cam" FEBS LETTERS, vol. 424, no. 3, 13 March 1998 (1998-03-13), pages 271-274, XP002131695 ISSN: 0014-5793 the whole document	2–5		
P,A	WO 00 31273 A (BELL STEPHEN GRAHAM; CARMICHAEL ANGUS BISHOP (GB); WONG LUET LOK () 2 June 2000 (2000-06-02) page 3, line 23 -page 7, line 21 page 9, line 6 -page 17 examples claims	1-19		
P,X	JONES, J. ET AL: "The oxidation of polychlorinated benzenes by genetically engineered cytochrome P450cam: potential applications in bioremediation" CHEM. COMMUN. (CAMBRIDGE), no. 3, 7 February 2000 (2000-02-07), pages 247-248, XP002152716 the whole document	1-10, 17-19		

Informa patent family members

PC 1 00/02379

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 9614419	A	17-05-1996	AU	705736	R	03-06-1999
NO 301 1 113		1, 00 1330	AU	3811795		31-05-1996
			CN	1171818		28-01-1998
			CZ	9701277		15-10-1997
			EP	0789770		20-08-1997
			GB	2294692		08-05-1996
			JP		T	07-04-1998
			KR	234348		15-12-1999
			NZ	294904		24-09-1998
			PL	319970		01-09-1997
			RU	2133774		27-07-1999
			SK	54597		04-02-1998
			US	6100074		08-08-2000
WO 9716553	Α	09-05-1997	AU	716583		02-03-2000
			AU	7323696		22-05-1997
			CA	2236381		09-05-1997
			CN	1212015		24-03-1999
			CZ	9801273		13-01-1999
			EP	0906431		07-04-1999
			GB	2306485	•	07-05-1997
					T	04-07-2000
			NZ PL	320497		29-09-1999
			SK	326445		28-09-1998
			US	55598 6117661		13-04-1999 12-09-2000
			AU		В	03-06-1999
			AU	705736 3811795		31-05-1999
			CZ	9701277		15-10-1997
			EP			20-08-1997
			JP		A T	07-04-1998
			KR		В	
			NZ	294904		15-12-1999 24-09-1998
			NZ PL			
			RU	319970 2133774		01-09-1997 27-07-1999
			SK	54597		04-02-1998
			US	6100074		08-08-2000
						00-00-2000
WO 0031273	Α	02-06-2000	AU	1281900	۸	13-06-2000