ALL ISOMETRIES ARE AFFINE

N. P. STRICKLAND

Definition 1. An isometry of \mathbb{R}^n is a bijective map $f : \mathbb{R}^n \to \mathbb{R}^n$ that preserves distances, ie d(f(x), f(y)) = d(x, y) for all $x, y \in \mathbb{R}^n$. We write I_n for the group of all such isometries. We also write $FI_n := \{f \in I_n \mid f(0) = 0\}$.

It is clear that any orthogonal matrix $A \in O_n$ gives rise to an isometry $f_A \colon \mathbb{R}^n \to \mathbb{R}^n$ by $f_A(x) = Ax$. We will blur the distinction between A and f_A and thus write $O_n \subseteq I_n$. In fact $f_A(0) = 0$ so $O_n \subseteq FI_n$. Moreover, Proposition ?? tells us that $GL_n \cap I_n = O_n$.

For an example of an isometry not in O_n , let a be a point in \mathbb{R}^n and define $T_a x = x + a$. This is clearly a bijection (with $T_a^{-1} = T_{-a}$) and

$$d(T_a x, T_a y) = \|(x+a) - (y+a)\| = \|x - y\| = d(x, y),$$

so it is an isometry. Isometries of this form are called *translations*. As $T_aT_b=T_{a+b}$, we see that the translations form an Abelian subgroup of I_n , which we denote by T_n . The assignment $a\mapsto T_a$ gives an isomorphism $\mathbb{R}^n\simeq T_n$. If $a\neq 0$ then $T_a^n=T_{na}\neq 1$ for all $n\neq 0$, so T_a has infinite order. Moreover, we have $T_ax\neq x$ for all x, so T_a has no fixed points.

Theorem 2. Any distance preserving map $f: \mathbb{R}^n \to \mathbb{R}^n$ has the form f(x) = Ax + b for some $A \in O_n$ and $b \in \mathbb{R}^n$. It is thus automatically bijective.

The proof will be given after a number of preparatory lemmas.

Lemma 3. For any $x, y \in \mathbb{R}^n$, the point z = (x + y)/2 is the unique point such that d(x, z) = d(y, z) = d(x, y)/2.

Proof. It is trivial to check that d(x,z) = d(y,z) = d(x,y)/2, and it should be geometrically clear (at least in dimensions ≤ 3) that it is the unique point with this property. For a formal proof, suppose we also have d(x,w) = d(y,w) = d(x,y)/2. Put x' = x - z = (x-y)/2 and y' = y - z = (y-x)/2 = -x' and w' = w - z and r = d(x,y). Then ||x'|| = ||y'|| = r/2, and also ||x' - w'|| = ||y' - w'|| = r/2. Thus $\langle x' - w', x' - w' \rangle = r^2/4 = \langle x', x' \rangle$, and by expanding this out we see that $||w'||^2 = 2\langle y', w' \rangle$. Similarly, we have $||w'||^2 = 2\langle y', w' \rangle$. By adding these equations together and using the fact that y' = -x' we see that $||w'||^2 = 0$, so w' = 0, so w = z.

Lemma 4. If $f: \mathbb{R}^n \to \mathbb{R}^n$ preserves distances then f((x+y)/2) = (f(x) + f(y))/2.

Proof. Put z = (x+y)/2 and z' = (f(x)+f(y))/2 and r = d(x,y). We then have d(f(x), f(z)) = d(x,z) = r/2 and d(f(y), f(z)) = d(y,z) = r/2 and d(f(x), f(y)) = d(x,y) = r. However, z' is the unique point with d(f(x), z') = d(f(y), z') = d(f(x), f(y))/2, so we must have f(z) = z'. In other words, f((x+y)/2) = (f(x) + f(y))/2, as claimed.

Lemma 5. If $f: \mathbb{R}^n \to \mathbb{R}^n$ preserves distances and f(0) = 0 then $\langle f(x), f(y) \rangle = \langle x, y \rangle$.

Proof. First, we have f(0) = 0 and thus

$$||x|| = d(x,0) = d(f(x), f(0)) = d(f(x), 0) = ||f(x)||$$

for all $x \in \mathbb{R}^n$.

Next, we can take y=0 in the previous lemma to see that f(x/2)=f(x)/2 for all $x\in\mathbb{R}^n$. We can then feed this back into the previous lemma to see that f((x+y)/2)=f(x+y)/2 and thus that

Date: February 6, 2020.

1

f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}^n$. If we take the inner product of this equation with itself, we find that

$$||f(x+y)||^2 = ||f(x)||^2 + ||f(y)||^2 + 2\langle f(x), f(y) \rangle.$$

Thus, we have

$$\begin{aligned} 2\langle f(x), f(y) \rangle &= \|f(x+y)\|^2 - \|f(x)\|^2 - \|f(y)\|^2 \\ &= \|x+y\|^2 - \|x\|^2 - \|y\|^2 \\ &= \langle x+y, x+y \rangle - \langle x, x \rangle - \langle y, y \rangle \\ &= 2\langle x, y \rangle, \end{aligned}$$

as required.

Corollary 6. If $f: \mathbb{R}^n \to \mathbb{R}^n$ preserves distances and f(0) = 0 then $f \in O_n$.

Proof. Let e_1, \ldots, e_n be the usual basis of \mathbb{R}^n , and put $u_k = f(e_k)$. As f preserves inner products, we see that $\langle u_i, u_j \rangle = 0$ unless i = j, and $\langle u_i, u_i \rangle = 1$. Define a linear map $g : \mathbb{R}^n \to \mathbb{R}^n$ by

$$g(x_1,\ldots,x_n)=x_1u_1+\ldots+x_nu_n.$$

We then have

$$\langle g(x), g(y) \rangle = \sum_{i,j} x_i y_j \langle u_i, u_j \rangle = \sum_i x_i y_i = \langle x, y \rangle,$$

so $g \in O_n$. I claim that f = g. To see this, consider the map $h = g^{-1}f$, which again preserves distances and sends 0 to 0, and thus preserves inner products. By construction, we have $h(e_k) = e_k$ for all k. As h preserves inner products, we have

$$x_k = \langle x, e_k \rangle$$

$$= \langle h(x), h(e_k) \rangle$$

$$= \langle h(x), e_k \rangle$$

$$= h(x)_k,$$

so x = h(x) for all $x \in \mathbb{R}^n$. Thus h is the identity, and f = g as claimed.

Proof of Theorem 2. Suppose that $f: \mathbb{R}^n \to \mathbb{R}^n$ preserves distances. Define b = f(0) and g(x) = f(x) - b. Clearly g preserves distances and g(0) = 0. By the above Corollary, there is an orthogonal matrix A such that g(x) = Ax for all x, so f(x) = Ax + b for all x s claimed. It follows that f is a bijection, with $f^{-1}(y) = A^{-1}(y - b)$.

We conclude this section by giving a simple criterion for when an isometry is the identity.

Definition 7. A list u_0, \ldots, u_n of n+1 points in \mathbb{R}^n is in general position if the vectors $u_1 - u_0, \ldots, u_n - u_0$ form a basis of \mathbb{R}^n .

Proposition 8. If u_0, \ldots, u_n are in general position, $f \in I_n$ and $f(u_i) = u_i$ for all i, then f = 1.

Proof. We have f(x) = Ax + b for some A, b. It follows that

$$A(u_i - u_0) = (Au_i + b) - (Au_0 + b) = f(u_i) - f(u_0) = u_i - u_0$$

for all i. As the vectors $u_i - u_0$ form a basis, we deduce that A = I, so f(x) = x + b for all x. In particular, $u_0 = f(u_0) = u_0 + b$, so b = 0. Thus f(x) = x for all x as claimed.