2/27/2019

Arrhenius plot

ln (A) - of...

A = e (y-intercept)

slope = -Ea \Rightarrow $Ea = -R \times slope$

>1/T

Data: 03-02+0 (from boot).

slope of luk us 1/T was -1.12x104K

Ea = - Rxslope = -8.3145 molik x -1.12x104 x

= 93,100 Tmol

= 93.1 × 103 J/mol = 93.1 KJ/mol

A? $lm A = y - intercept = 26.8 \implies A = e^{26.8} = 4.36 \times 10^{11}$ (has units: M-1s-1 ... read book)

Temperature (K)	Rate Constant $(M^{-1} \cdot s^{-1})$	Temperature (K)	Rate Constant $(M^{-1} \cdot s^{-1})$
600	3.37×10^{3}	1300	7.83×10^{7}
700	4.85×10^{4}	1400	1.45×10^{8}
800	3.58×10^{5}	1500	2.46 × 10 ⁸
900	1.70×10^{6}	1600	3.93 × 10 ⁸
1000	5.90×10^{6}	1700	5.93 × 10 ⁸
1100	1.63×10^{7}	1800	8.55 × 10 ⁸
1200	3.81×10^{7}	1900	1.19 × 10 ⁹

^{© 2017} Pearson Education, Inc.

 $\ensuremath{\mathbb{G}}$ 2017 Pearson Education, Inc.

```
Common to use a 2-point method to solve for Ea and A
                           K=Ae-EaIRT ln > ln K = ln A + ln (e-EaIRT)
                                   \Rightarrow \ln K_2 = \ln A - \left(\frac{E_a}{R}\right) = \frac{1}{12} \quad K_1 @ T_1
K_2 @ T_2
                                  ln K = ln A - (Eq) T
                            ln K2 - ln K, = ln A - (Ea) T2 - lu A - (Ea) T,
ln A - ln B
lu AB
                               \ln\left(\frac{K_2}{K_1}\right) = -\frac{E_0}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)
                                ex: if rate constant for a rxn doubles as temp increases
from 25°C to 29°C ~ What's Eq?

to the transfer of the constant for a rxn doubles as temp increases
                                    T1 = 25 +273.15 T2 = 29 +273.15
                                     = 298.15K = 302.15K
                                    R \times ln\left(\frac{K_2}{K_1}\right) = E_a = \left(8.3145 \frac{3}{\text{mol-K}}\right) \times ln(2)
                                    \left(\frac{1}{T_1} - \frac{1}{T_2}\right) \left(\frac{1}{298.15K} - \frac{1}{201.15K}\right)
                                                      = 130. ×1035/mol = 130. KJ/mol
                                         ( most Ea's are: 10's - 100's KT/mol
```