1	What is claimed is:
2	1. A method for persisting and recovering security keys in order to authorize a
3	daemon or a command-line interface ("CLI"), comprising:
4	reading, with root as an effective user id, one or more security keys into a
5	cache, wherein the root enables the reading of files including the one or more
6	security keys;
7	attempting to retrieve a private key from the cache using a real user id,
8	wherein the cached certain security keys may include the private key and the private
9	key may be used to digitally sign a message; and
10	determining if the private key was retrieved from the cache, wherein a
11	failure to retrieve the private key from the cache indicates that authorization failed.
12	
13	2. The method of claim 1, further comprising:
14	setting, with the root as the effective user id, the certain security keys,
15	wherein the setting step triggers performance of the reading step.
16	
17	3. The method of claim 2, wherein the setting step comprises calling a setKeys
18	method, wherein the setKeys method includes the reading step.
19	
20	4. The method of claim 3, wherein a failure to retrieve the private key from the
21	cache is caused by an error in the setKeys method.
22	
23	5. The method of claim 1, further comprising:
24	entering the CLI, wherein the CLI is entered by a non-root user on a
25	managed node and the private key is a security key of the managed node.
26	
27	6. The method of claim 5, wherein the managed node has a public key, the
28	method further comprising:
29	if the private key was retrieved from the cache, sending a message and a
30	message copy, wherein the message copy is digitally signed with the private key
31	from the managed node;
32	digitally signing the message with the managed node's public key;
33	comparing the message signed with the public key to the message copy
34	signed with the private key; and

34

HP 10006617

1	determining if the message is authorized based on the comparison of the
2	message signed with the public key to the message copy signed with the private
3	key.
4	
5	7. The method of claim 6, wherein the message comprises an executable, th
6	method further comprising:
7	if the message is authorized, executing the executable.
8	
9	8. The method of claim 1, further comprising:
10	running a daemon process, wherein the daemon is run on a managed nod
11	and the private key is a security key of the managed node.
12	
13	9. The method of claim 8, wherein the managed node has a public key, the
14	method further comprising:
15	if the private key was retrieved from the cache, sending a message and a
16	message copy, wherein the message copy is digitally signed with the private key
17	from the managed node;
18	digitally signing the message with the managed node's public key;
19	comparing the message signed with the public key to the message copy
20	signed with the private key; and
21	determining if the message is authorized based on the comparison of the
22	message signed with the public key to the message copy signed with the private
23	key.
24	
25	10. The method of claim 1, wherein the reading step is performed by an
26	authentication class.
27	
28	11. The method of claim 10, wherein the cache is a private variable in the
29	authentication class.
30	
31	12. The method of claim 1, further comprising:
32	generating a security key pair, wherein the security key pair comprises the
33	private key and a corresponding public key;

serializing the security key pair as a key file; and

HP 10006617

1	storing the key file, wherein the reading step comprises de-serializing the
2	key file and reading the private key into the cache.
3	
4	13. A computer readable medium containing instructions for controlling a
5	computer system to persist and recover security keys in order to authorize a daemon
6	or a CLI, by:
7	reading, with root as an effective user id, one or more security keys into a
8	cache, wherein the root enables the reading of files including the security keys;
9	attempting to retrieve a private key from the cache using a real user id,
10	wherein the cached one or more security keys may include the private key and the
11	private key may be used to digitally sign a message; and
12	determining if the private key was retrieved from the cache, wherein a
13	failure to retrieve the private key from the cache indicates that authorization failed.
14	
15	14. The computer readable medium of claim 13, further containing instructions
16	for controlling the computer system by:
17	setting, with the root as an effective user id, the security keys, wherein the
18	setting step triggers the reading step.
19	
20	15. The computer readable medium of claim 14, wherein the setting the security
21	keys comprises calling a setKeys method, wherein the setKeys method that includes
22	the reading step.
23	
24	16. The computer readable medium of claim 13, wherein the computer system
25	comprises a managed node and the managed node has a public key, the computer
26	readable medium further containing instructions for controlling the computer
27	system by:
28	if the private key was retrieved from the cache, sending a message and a
29	message copy, wherein the message copy is digitally signed with the private key
30	from the managed node;
31	digitally signing the message with the managed node's public key;
32	comparing the message signed with the public key to the message copy
33	signed with the private key; and

1	determining if the message is authorized based on the comparison of the
2	message signed with the public key to the message copy signed with the private
3	key.
4	
5	17. A method for persisting and recovering security keys in order to authorize a
6	daemon or a CLI, comprising:
7	initializing an authentication class, wherein the authentication class
8	comprises a setKeys method that includes a reading step;
9	calling, with root as an effective user id, the setKeys method of the
10	authentication class, wherein the root enables the reading of files including security
11	keys;
12	reading necessary security keys into a cache with the root; and
13	retrieving the necessary security keys from the cache using a real user id.
14	
15	18. The method of claim 17, wherein the cache is a private variable of the
16	authentication class.
17	
18	19. The method of claim 17, wherein the necessary security keys are a private
19	key of a managed node on which the authentication class is running and a public
20	key of a central management server to which the managed node is operatively
21	connected.
22	
23	20. The method of claim 17, wherein the authentication class is a Java class
24	running in a Java Virtual Machine, the method further comprising:
25	initializing the Java Virtual Machine.
26	