EVALUATION ONLINE LEARNING LINKS WITH OPTIMIZATION AND GAMES

Université Paris-Saclay

DILATED REGULARIZERS ON TREEPLEXES

Let \mathscr{T} be a treeplex as defined in the course. Let $(\hat{h}_{\theta})_{\theta \in \Theta}$ be a collection of regularizers such that for each $\theta \in \Theta$, $\hat{h}_{\theta} : \mathbb{R}^{\mathscr{A}_{\theta}} \to \mathbb{R} \cup \{+\infty\}$ and dom $\hat{h}_{\theta} = \Delta(\mathscr{A}_{\theta})$. We define $h : \mathbb{R}^{\Sigma} \to \mathbb{R} \cup \{+\infty\}$ as

$$h(x) = egin{cases} \sum_{\mathbf{ heta} \in \Theta} x_{[p(\mathbf{ heta})]} \cdot \hat{h}_{\mathbf{ heta}} \left(rac{x_{[\mathbf{ heta}]}}{x_{[p(k)]}}
ight) & ext{if } x \in \mathscr{T}, \ +\infty & ext{otherwise,} \end{cases}$$

with convention $0 \times \hat{h}_{\theta}(0/0) = 0$ for each $\theta \in \Theta$.

- 1) Prove that b is strictly convex.
- 2) Prove that *b* is lower semicontinuous.
- 3) Let $\theta \in \Theta$ of maximum depth, $a \in \mathcal{A}_{\theta}$ and define $b_{\lfloor \theta a \downarrow \rfloor} = 0$. Now assume that the functions $b_{\lfloor \theta a \downarrow \rfloor}$ have been defined for all $\theta \in \Theta$ of depth $k \geqslant 1$. Let $\theta \in \Theta$ of depth k-1 and $a \in \mathcal{A}_{\theta}$. Define

$$b_{[\theta a \downarrow]}(x) = \begin{cases} \sum_{\theta' \xleftarrow{a} \theta} \left(\hat{b}_{\theta'}(x_{[\theta']}) + \sum_{a' \in \mathscr{B}_{\theta'}} x_{[\theta' a']} \times b_{[\theta' a' \downarrow]} \left(\frac{x_{[\theta' a' \downarrow]}}{x_{[\theta' a']}} \right) \right) & \text{if } x \in \mathscr{T}^{[\theta a \downarrow]}, \\ + \infty & \text{otherwise,} \end{cases}$$

and eventually,

with convention $0 \times \hat{h}_{[\theta a \downarrow]}(0/0) = 0$ for each $(\theta, a) \in \Sigma$, and $0 \times \hat{h}_{[\varnothing \downarrow]}(0/0) = 0$. Prove that for all $x \in \mathscr{T}$ and $\sigma \in \Sigma \cup \{\varnothing\}$,

$$b_{[\sigma\downarrow]}(x) = \sum_{ heta \in \Theta^{[heta a\downarrow]}} x_{[p(heta)]} \cdot \hat{b}_{ heta} \left(rac{x_{[heta]}}{x_{[p(heta)]}}
ight).$$

- 4) Establish an expression for b^* that only involves the functions \hat{b}_{θ} for $\theta \in \Theta$ such that $\emptyset \longrightarrow \theta$.
- 5) Deduce an expression for ∇h^* .

