

REC'D 2 5 MOV 1999

## Kongeriget Danmark

Patent application No.:

PA 1998 01323

Date of filing:

15 Oct 1998

Applicant:

Biolmage A/S

Mørkhøj Bygade 28 DK-2860 Søborg

This is to certify the correctness of the following information:

The attached photocopy is a true copy of the following document:

The specification, claims, abstract and drawings as filed with the application on the filing date indicated above.

By assignment dated 08 Sept 1999 and filed 09 Sept 1999, the application has been assigned to Biolmage A/S





Patent- og Varemærkestyrelsen

Erhvervsministeriet TAASTRUP 16 Nov 1999

fram Vesker

Lizzi Vester Head of Section PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

20

25

30

A method for preventing or treating adverse conditions which may be reduced or abolished by modulating the effectiveness of one or more I-kappaB kinases.

1

## SUMMARY OF THE INVENTION

This application describes a method by which to identify novel chemical entities 5 found to inhibit the activation of NF-kappaB and/or degradation of I-kappaB in living cells. Such compounds will specifically modulate activation of NF-kappaB and/or degradation of I-kappaB in a way that can be identified by detection and quantification of the I-kappaB kinase (IKK) targeting or localisation in the cells of interest using quantitative fluorescence redistribution assays. The preferred mode of 10 action being sought is dislocation or interference with the targeting of specific isoforms of the IKK from or to their anchoring sites within cells, which will comprise the I-kappaB kinase anchoring protein (IKAP) and its associated enzymes, thereby reducing their specific effectiveness, not their enzymatic capacity.

In its broadest aspect, the present application relates to a novel method for preventing or treating, in an animal in need thereof, an adverse condition which may be reduced or abolished by modulating the activity of one or more lKKs. The method comprises modulation of the specific effectiveness of IKKs by modulating their spatial distribution within cells of the animal.

The IKK is chosen from the group consisting of IKK $\alpha$ , IKK $\beta$ , IKK $\gamma$  and NIK. In one embodiment IKK\$\beta\$ is the preferred isoform. The animal with the adverse condition may be a mammal and preferably a human.

In one embodiment of the invention modulation of the specific effectiveness of the IKK is a dislocation of the IKK from a native location within the cell.

In another embodiment of the invention modulation of the specific effectiveness of the IKK involves a disruption of its targeting to a native location within the cell.

In another embodiment of the invention modulation of the specific effectiveness of the IKK involves interference with the redistribution of the IKK, the redistribution being associated with an increase or a decrease of the specific effectiveness of the IKK.

The modulation of the specific effectiveness of the IKK may involve both an upregulation or a down-regulation of the effectiveness of the IKK to perform its function within the cell.

The compounds found by this methodology are supposedly useful in the treatment of the following diseases/conditions: asthma, allergy, chronic inflammation and autoimmune diseases.

This patent application is associated with the patent application "An improved method..." enclosed hereto as appendix A. Appendix A is considered part of this application.

10

15

20

25

30

5

## **BACKGROUND**

Chronic inflammation is the result of unbalanced and continued production of inflammatory cytokines. Cytokines are produced in cascades, the pro-inflammatory TNFα and IL-1β often responsible for initiating a process, which leads to a more general production of further cytokines. This cascade of gene expression is largely under the control of NF-kappaB, a ubiquitous transcription factor that, by regulating the expression of multiple inflammatory and immune genes, plays a critical role in host defence and in chronic inflammatory diseases (Sen and Baltimore, 1986; Mukaida et al., 1990; Beg et al., 1993; Cogswell et al., 1993). NF-kappaB is activated not only by cytokines, but also by reactive oxygen species (ROS), viruses, and a range of other generally noxious and pathogenic stimuli (Blackwell et al., 1997; Schulzwe-Osthoff et al., 1997). Activation of NF-kappaB via ROS has been implicated in neurodegenerative disorders such as Parkinson's and Alzheimer's (Lesoualc'h et al., 1998; O'Neill et al., 1997) and also in inflammatory bowel disease (Jourd'heuil et al., 1997). Tissue inflammatory reponse to x-rays is mediated directly by NF-kappaB (Hallahan et al., 1995). Activation of NF-kappaB has been implicated in the production of atherosclerotic lesions of smooth muscle cells (Bourcier et al., 1997) and in cardiac inflammatory disorders (Hattori et al., 1997). NF-kappaB/Rel transcription factors are also known to play a role in the pathogenesis of certain tumours, especially those of haematopoetic origin (Neumann et al., 1997), and constitutive (autocrine) activation of NF-kappaB is known to promote a resistance to apoptotic stimuli (Giri et al., 1998). Inhibitors of NF-kappaB should increase the cytotoxic efficacy of anticancer chemotherapies (Bours et al., 1998).

10

15

20

The inflammatory pathways are notoriously complex, yet the feasibility of reducing or eliminating inflammatory responses through modulation of NF-kappaB activity has already been demonstrated in a number of different cells (Makarov *et al.*, 1997).

The NF-kappaB/Rel group of transcription activators and their co-evolved regulatory proteins, the inhibitors of kappa B (I-kappaBs), play important roles in many cellular signalling processes in vertebrates, which include controlling communication between cells, embryo development, maintenance of cell type specific expression of genes as well as co-ordinating the inflammatory response to stressors and viral infection (Wulczyn et al., 1996). The key proteins involved in this control system divide into distinct groups: a) Those that bind DNA. These belong to the Rel family of transcription factors (Ghosh et al., 1990) and include p50, p65, p52/49, p75/Rel and RelB. Only dimers bind DNA, but these can be homodimers or heterodimers. p65/p50 heterodimer is the most abundant, and plays a more elaborate role than other factors in regulating gene expression (Baldwin, 1996). b) Those that interact with the DNAbinding subunits in cytoplasm, which include the inhibitory I-kappaB $\alpha$  and I-kappaB $\beta$ molecules (Bauerle and Baltimore, 1988), and the precursor molecule p105 (Naumann et al., 1993). c) Those transcriptional coactivators which interact with the DNAbinding subunits in the nucleus, such as Bcl3 (Nolan et al., 1993; Watanabe et al., 1997) and Cbp/p300 (Zhong et al.,, 1998). d) Kinases which activate proteasomal destruction of I-kappaB $\alpha$  and  $\beta$  subunits - the I-kappaB kinases (Beg et al., 1993). e) Kinases which directly phosphorylate the DNA-binding subunits in cytoplasm and nucleus to modulate their activity, such as PKA (Zhong et al., 1998), casein kinase II (Bird et al., 1997) and others (Hayashi et al., 1993; Schulze-Osthoff et al., 1997).

25

30

Inactive p65/p50 NF-kappaB dimers are held in the cytoplasm coupled to inhibitory I-kappaB molecules ( $\alpha$  and  $\beta$  isoforms) via the p65 subunits. Activated I-kappaB kinases (IKK) phosphorylate the inhibitors, targeting them for ubiquitination and subsequent proteasomal digestion (Beg *et al.*, 1993). The released subunits translocate to the nucleus and there activate transcription.

The I-kappa kinases (IKK- $\alpha$ , IKK- $\beta$  and IKK- $\gamma$ ) have been shown to be part of a large multi-component complex (Chen et al. 1996; Rothwarf et al., 1998). It is likely to assume that the assembly and disassembly of the IKK complex is controlled by a

10

15

20

25

scaffold protein termed IKK-complex-associated protein, IKAP (Cohen et al. 1998). It is expected that a tight assembly of the complex is necessary for the IKKs to be activated by the NF-kappa-B-inducing kinase (NIK) and thereby induce phosphorylation of the I-kappaB subunits. Interestingly the affinity of IKK-β for IKAP diminishes upon phosphorylation of IKK-β by NIK.

Glucocorticoids (GC) are powerfully efficient modulators of inflammation, but suffer from the potential hazards of suppressing necessary protective responses to infection and decreasing some essential healing processes. They modulate cytokine expression by a combination of genomic mechanisms. The activated GC-receptor complex can (i) bind to and inactivate AP-1 or NF-kappaB, (ii) upregulate I-kappaB production via GC response elements (iii) reduce the half-life of cytokine mRNAs (Brattsand & Linden 1996). But steroid treatment broadly attenuates all cytokine production from all lymphocytes, so not only do levels of the inflammatory cytokines fall, but also that of the anti-inflammatory IL-10. Specific modulation of Th1-type pathways would be an initial goal of this project.

It is also known that some fibroblast cell NF-kappaB-mediated responses are likely governors of inflammatory progression, so inhibition of such responses could have detrimental effects (Smith et *al.*, 1997). Therapies, which maintain appropriate feedback systems, but modulate inappropriate cytokine production represent an unmet medical need.

An attractive therapeutic intervention to be used in the treatment of chronic inflammatory conditions is inhibition of the I-kappaB degradation. Blocking the ubiquitin proteasome pathway (PharmaProjects, Accession no. 023654 and 027675), can directly inhibit this degradation. Another mechanism that is being pursued is inhibition of the enzymatic activity of either of the IKKs or NIK (public statement from Signal Pharmaceuticals).

30

In the present invention I-kappaB degradation is inhibited by a novel mechanism namely inhibition of the redistribution of specific IKKs (IKK- $\beta$  and IKK- $\alpha$ ). In contrast to previous interventions involving IKK the presented invention does not

22131DK1 5

involve direct inhibition of the IKK enzymatic activity. This completely novel mechanism for inhibition of the overall effect of the IKK complex provides clear advantages as it opens for a higher IKK isoform selectivity and a higher cell specificity of the therapy.

5

10

15

20

25

30

## DETAILED DISCLOSURE

In the present specification and claims, the term "influence" covers any influence to which the cellular response comprises a redistribution. Thus, e.g., heating, cooling, high pressure, low pressure, humidifying, or drying are influences on the cellular response on which the resulting redistribution can be quantified, but perhaps the most important influence is the influence of contacting or incubating the cell or cells with a substance which is known or suspected to cause a redistribution. In another embodiment of the invention the influence could be substances from a compound drug library.

In the present context, the term "green fluorescent protein" (GFP) is intended to indicate a protein which, when expressed by a cell, emits fluorescence upon exposure to light of the correct excitation wavelength (cf. Chalfie, M. et al. (1994) Science 263, 802-805). "GFP" as used herein includes wild-type GFP derived from the jelly fish Aequorea victoria and modifications of GFP, such as the blue fluorescent variant of GFP disclosed by Heim et al. (Heim, R. et al. (1994). Proc.Natl.Acad.Sci. 91:26, pp 12501-12504), and other modifications that change the spectral properties of the GFP fluorescence, or modifications that exhibit increased fluorescence when expressed in cells at a temperature above about 30°C described in PCT/DK96/00051, published as WO 97/11094 on 27 March 1997 and hereby incorporated by reference, and which comprises a fluorescent protein derived from Aequorea Green Fluorescent Protein or any functional analogue thereof, wherein the amino acid in position 1 upstream from the chromophore has been mutated to provide an increase of fluorescence intensity when the fluorescent protein of the invention is expressed in cells. Preferred GFP variants are F64L-GFP, F64L-Y66H-GFP and F64L-S65T-GFP. An especially preferred variant of GFP for use in all the aspects of this invention is EGFP (DNA encoding EGFP which is a F64L-S65T variant with codons optimized for expression in mammalian cells is

22131DK1

15

20

25

30

available from Clontech, Palo Alto, plasmids containing the EGFP DNA sequence, cf. GenBank Acc. Nos. U55762, U55763).

The terms "intracellular signalling pathway" and "signal transduction pathway" are intended to indicate the coordinated intracellular processes whereby a living cell transduces an external or internal signal into cellular responses. Said signal transduction will involve an enzymatic reaction said enzymes include but are not limited to protein kinases, GTPases, ATPases, protein phosphatases, phospholipases and cyclic nucleotide phosphodiesterases. The cellular responses include but are not limited to gene transcription, secretion, proliferation, mechanical activity, metabolic activity, cell death.

The term "second messenger" is used to indicate a low molecular weight component involved in the early events of intracellular signal transduction pathways.

The term "luminophore" is used to indicate a chemical substance which has the property of emitting light either inherently or upon stimulation with chemical or physical means. This includes but is not limited to fluorescence, bioluminescence, phosphorescence, chemiluminescence.

The term "mechanically intact living cell" is used to indicate a cell which is considered living according to standard criteria for that particular type of cell such as maintenance of normal membrane potential, energy metabolism, proliferative capability, and has not experienced any physically invasive treatment designed to introduce external substances into the cell such as microinjection.

In the present context, the term "permeabilised living cell" is used to indicate cells where a pore forming agent such as Streptolysin O or *Staphylococcus Aureus* α-toxin has been applied and thereby incorporated into the plasma membrane in the cells. This creates proteinaceous pores with a defined pore size in the plasma membranes of the exposed cells. Pores could also be made by electroporation, i.e. exposing the cells to high voltage discharges, a procedure that creates small holes in the plasma membrane by coagulating integral membrane proteins. Treatment with a mild detergent such as saponin may accomplish the same thing. Common to all these treatments is that pores are formed only in the plasma membrane without affecting the integrity of cytoplasmic structural elements and organelles. The term living in this context means

5

10

15

20

that the permeabilised cell or cells bathed in a solution mimicking the intracellular milieu still have functional organelles, such as actively respiring mitochondria and endoplasmatic reticulum that can take up and release calcium ions, and functional structural elements. In one embodiment this method is applied so that substances that normally can not traverse the plasma membrane, but most likely exert their influence intracellularly, can be introduced and their influence studied. In another embodiment this method is used to record the response to an influence from many cells simultaneously.

In the present context, the term "permeabilisation" is intended to indicate the selective disruption of the plasma membrane barrier so that soluble substances freely mobile in the cytosol may be lost from the interior of the cells. The permeabilisation can be achieved as described above under "permeabilised living cells" or by using other chemical detergents such as Triton X-100 or digitonin in carefully titrated amounts.

The term "physiologically relevant", when applied to an experimentally determined redistribution of an intracellular component, as measured by a change in the luminescence properties or distribution, is used to indicate that said redistribution can be explained in terms of the underlying biological phenomenon which gives rise to the redistribution.

The terms "image processing" and "image analysis" are used to describe a large family of digital data analysis techniques or combination of such techniques which reduce ordered arrays of numbers (images) to quantitative information describing those ordered arrays of numbers. When said ordered arrays of numbers represent measured values from a physical process, the quantitative information derived is therefore a measure of the physical process.

The term "mammalian cell" is intended to indicate any living cell of mammalian origin. The cell may be an established cell line, many of which are available from The American Type Culture Collection (ATCC, Virginia, USA) or a primary cell with a limited life span derived from a mammalian tissue, including tissues derived from a transgenic animal, or a newly established immortal cell line derived from a mammalian tissue including transgenic tissues, or a hybrid cell or cell line derived by fusing different celltypes of mammalian origin e.g. hybridoma cell lines. The cells may optionally express one or more non-native gene products, e.g. receptors,

enzymes, enzyme substrates, prior to or in addition to the fluorescent probe. Preferred cell lines include but are not limited to those of fibroblast origin, e.g. BHK, CHO, BALB, or of endothelial origin, e.g. HUVEC, BAE (bovine artery endothelial), CPAE (cow pulmonary artery endothelial), HLMVEC (human lung microvascular endothelial cells) or of pancreatic origin, e.g. RIN, INS-1, MIN6, bTC3, aTC6, bTC6, HIT, or of hematopoietic origin, e.g. primary isolated human monocytes, macrophages, neutrophils, basophils, eosinophils and lyphocyte populations, AML-193, HL-60, RBL-1, adipocyte origin, e.g. 3T3-L1, neuronal/neuroendocrine origin, e.g. AtT20, PC12, GH3, muscle origin, e.g. SKMC, A10, C2C12, renal origin, e.g. HEK 293,

10 LLC-PK1.

5

15

20

25

30

The term "hybrid polypeptide" is intended to indicate a polypeptide which is a fusion of at least a portion of each of two proteins, in this case at least a portion of the green fluorescent protein, and at least a portion of a catalytic and/or regulatory domain of a protein kinase. Furthermore a hybrid polypeptide is intended to indicate a fusion polypeptide comprising a GFP or at least a portion of the green fluorescent protein that contains a functional fluorophore, and at least a portion of a biologically active polypeptide as defined herein provided that said fusion is not the Glucocorticoid Receptor-GFP disclosed by Carey, KL et al. and Guiliano, KA et al., respectively. Thus, GFP may be N- or C-terminally tagged to a biologically active polypeptide, optionally via a linker portion or linker peptide consisting of a sequence of one or more amino acids. The hybrid polypeptide or fusion polypeptide may act as a fluorescent probe in mechanically intact or permeabilised living cells carrying a DNA sequence encoding the hybrid polypeptide under conditions permitting expression of said hybrid polypeptide. The term hybrid polypeptide or fusion polypeptide is intended also to include the term "fluorescent probe", where the latter is used to indicate a fluorescent fusion polypeptide comprising a GFP or any functional part thereof which is N- or C-terminally fused to a biologically active polypeptide as defined herein, optionally via a peptide linker consisting of one or more amino acid residues, where the size of the linker peptide in itself is not critical as long as the desired functionality of the fluorescent probe is maintained. A fluorescent probe according to the invention is expressed in a cell and basically mimics the physiological behaviour of the biologically active polypeptide moiety of the fusion polypeptide.

15

20

25

30

The term "kinase" is intended to indicate an enzyme that is capable of phosphorylating a cellular component.

The term "protein kinase" is intended to indicate an enzyme that is capable of phosphorylating serine and/or threonine and/or tyrosine in peptides and/or proteins.

The term "phosphatase" is intended to indicate an enzyme that is capable of dephosphorylating phosphoserine and/or phosphothreonine and/or phosphotyrosine in peptides and/or proteins.

The term "cyclic nucleotide phosphodiesterase" is intended to indicate an enzyme that is capable of inactivating the second messengers cAMP and cGMP by hydrolysis of their 3'-ester bond.

In the present context, the term "biologically active polypeptide" is intended to indicate a polypeptide affecting intracellular processes upon activation, such as an enzyme which is active in intracellular processes or a portion thereof comprising a desired amino acid sequence which has a biological function or exerts a biological effect in a cellular system. In the polypeptide one or several amino acids may have been deleted, inserted and/or replaced to alter its biological function, e.g. by rendering a catalytic site inactive or by disrupting the targeting sequence. In another embodiment, one or several amino acids may have been deleted, inserted and/or replaced without altering the biological function of the polypeptide, that is, it remains biologically equivalent. Preferably, the biologically active polypeptide is selected from the group consisting of proteins taking part in an intracellular signalling pathway, such as enzymes involved in the intracellular phosphorylation and dephosphorylation processes including kinases, protein kinases and phosphorylases as defined herein, but also proteins making up the cytoskeleton play important roles in intracellular signal transduction and are therefore included in the meaning of "biologically active polypeptide" herein. More preferably, the biologically active polypeptide is a protein which according to its state as activated or non-activated changes localisation within the cell, preferably as an intermediary component in a signal transduction pathway. Included in this preferred group of biologically active polypeptides are cAMP dependent protein kinase A and cyclic nucleotide phosphodiesterases.

10

20

25

The term "a substance" is intended to indicate any sample which has a biological function or exerts a biological effect in a cellular system. The sample may be a sample of a biological material such as a sample of a body fluid including blood, plasma, saliva, milk, urine, or a microbial or plant extract, an environmental sample containing pollutants including heavy metals or toxins, or it may be a sample containing a compound or mixture of compounds prepared by organic synthesis or genetic techniques.

The phrase "any change in fluorescence" means any change in absorption properties, such as wavelength and intensity, or any change in spectral properties of the emitted light, such as a change of wavelength, fluorescence lifetime, intensity or polarisation, or any change in the intracellular localisation of the fluorophore. It may thus be localised to a specific cellular component (e.g. organelle, membrane, cytoskeleton, molecular structure) or it may be evenly distributed throughout the cell or parts of the cell.

The term "organism" as used herein indicates any unicellular or multicellular organism preferably originating from the animal kingdom including protozoans, but also organisms that are members of the plant kingdoms, such as algae, fungi, bryophytes, and vascular plants are included in this definition.

The term "nucleic acid" is intended to indicate any type of poly- or oligonucleic acid sequence, such as a DNA sequence, a cDNA sequence, or an RNA sequence.

The term "biologically equivalent" as it relates to proteins is intended to mean that a first protein is equivalent to a second protein if the cellular functions of the two proteins may substitute for each other, e.g. if the two proteins are closely related isoforms encoded by different genes, if they are splicing variants, or allelic variants derived from the same gene, if they perform identical cellular functions in different cell types, or in different species. The term "biologically equivalent" as it relates to DNA is intended to mean that a first DNA sequence encoding a polypeptide is equivalent to a second DNA sequence encoding a polypeptide if the functional proteins encoded by the two genes are biologically equivalent.

The term "fixed cells" is used to mean cells treated with a cytological fixative such as glutaraldehyde or formaldehyde, treatments which serve to chemically cross-link and

11 22131DK1

5

10

15

20

25

stabilize soluble and insoluble proteins within the structure of the cell. Once in this state, such proteins cannot be lost from the structure of the now-dead cell. In the present context a "quantitative fluorescence redistribution assay" is intended to indicate an assay whereby it is possible to observe and quantify the subcelluar

localisation and possible redistribution of an biologically active polypeptide, or part thereof, genetically or chemically tagged with a luminophore inside an intact living cell or cells or permeabilised living cells. The subcelluar location and redistribution may be monitored using fluorescence microscopy or fluorescence imaging microscopy but is preferably monitored using a fluorescence imaging plate reader or a fluorescence plate reader for improved throughput. A more thorough description is given in Appendix A.

In the present context a "mortal cell line" is used to indicate animal cells that may grow in vitro, given the right conditions, but that have a definite life span of a number of cell divisions or days, week or months beyond which it is not at present possible to keep them alive.

In the present context an "immortalised cell line" is used to indicate cells of animal origin where the normal limitations for cell life and number of cell divisions do not apply. Essentially, such cells can live, grow and divide for an unlimited or very long (years to decades) time.

The term "targeting sequence" is used to indicate the amino-acid sequence of a biologically active polypeptide that contains the actual structure or structures necessary for association of the biologically active polypeptide with its native intracellular binding sites. The term "targeting sequence" is also used to indicate the amino-acid sequence of a protein that contains the actual structure or structures necessary for association of a biologically active polypeptide with the protein. The term "targeting" is used to indicate the process whereby a spatially distributed protein is directed to the intracellular sites and maintained at the intracellular sites to which it is normally anchored or associated. These anchoring sites are normally assumed to be the intracellular sites where the protein has its optimal function for the 30 cell.

The term "dislocate" and derivatives thereof is used to indicate the process whereby an intracellularly spatially distributed protein is forced to detach from its normal anchoring or association structures in the cells due to intercalation of another,

10

15

20

25

30

preferably smaller, compound at the site of anchoring or association. This usually means that the optimal function of the protein within the cell is lost or reduced and that a larger portion of the protein molecules are freely mobile within the cytoplasm. In the present context a "screening assay" is intended to mean any measurement protocol, including materials, cells, instruments, chemicals, reagents, detection units, calibration and quantification procedures used to measure a response from mechanically intact or permeabilised living cells relevant to influences on an intracellular pathway.

In the present context a "primary screening assay" is used to indicate the first screening assay in a discovery project that is used to select and sort all compounds available to the project according to the quantified effect of the compounds in the assay.

In the present context a "counterscreen" is intended to mean a screening assay that is relevant to a phenomenon that is undesirable seen from the point of view of the discovery project.

In the present context a "discovery project" is intended to mean the process whereby general or specific ideas about ways of how to modulate an intracellular signalling pathway are exploited in order to find new chemical compounds that can be used to modulate the intracellular signalling pathway and thereby treat, reduce or abolish symptoms associated with a condition or a disease that is lethal, degenerative, performance-reducing or just uncomfortable to an animal, preferably a human being. The aim of the discovery project is to produce drug candidates that can be tested as potential drugs in an animal, preferably in human beings. The term "discovery project" also encompasses the actual group of individuals, screening assays, tests, machinery, cells, animals and compounds involved in different aspects of the project. The term "tagging" is used to indicate the process whereby a luminophore is genetically or chemically attached to the protein, or part of the protein, of interest to

the discovery project.

The term "primary hit" is used to indicate compounds identified in the primary screening assay as having at least the minimum level of desired effect that has been specified in the discovery project.

The term "primary lead compound" is used to indicate a primary hit that has at least the minimal level of desired potency and specificity predetermined by the discovery project.

5

10

15

20

25

30

The term "dose-response relationship" is in the present context intended to mean a clear correlation between the quantified response of cells in a screening assay to application of an influence, such as a compound, and the concentration of the applied influence. The response to the influence may be both an up-regulation and a down-regulation of the quantitated parameter used in the screening assay.

In the present context, the term "potency" is intended to mean the ability of an influence to affect the process under study. The process under study may be, for

example a screening assay or a specific physiological or pathophysiological response in an animal.

In the present context, the term "selectivity" is intended to mean the difference in potency on the desired process, such as a screening assay, and an undesired process, such as a counterscreen, with the view of the discovery project. An influence or a compound is said to display selectivity if the potency for the desired process is higher than for the undesired process.

In the present context, the term "structure-activity relationship" or "SAR" is intended to mean the situation where a direct relationship exists between a compound and modifications made to the compound and the activity of the compound and the modifications made to the compound in one or more screening assays. The process of building a SAR may be used to direct the chemical construction of new compounds with higher potency and selecivity than the original compound.

The term "drug candidate lead" is used to indicate compounds that may be pursued by

a discovery project as potential candidates for the final outcome of the project. In the present context, the term "efficacy" is intended to mean the ability of a compound to affect the process or condition under study. It is closely related to the term "potency" but is in the present context used when relating to effects of a compound on more complex screening assays than the primary screening assay or counterscreens and when relating to effects of a compound in animals.

In the present context, the term "toxicity" is intended to mean that a compound in some way is toxic to cells, tissues or animals. The toxicity means that the cells, tissues or animals will in some way be harmed if the compound is applied at a sufficient concentration. The effects may ultimately lead to cell, tissue or animal death or a limited life compared to the normal condition.

10

15

20

25

30

In the present context, the term "physiology" is intended to mean the normal function of biological and biochemical processes inside cells, between cells and in the whole organism or animal.

In the present context, the term "pathophysiology" is intended to mean deviations from the normal function of biological and biochemical processes inside cells, between cells and in the whole organism or animal that may be part of a condition or disease.

In the present context, the term "pathogenesis" is intended to mean the process, be it genetical, biological, biochemical, chemical or environmental, that ultimately may explain, at least in part, the apparent patophysiology associated with a condition or disease in an animal.

In the present context, the term "fractionated cells" is intended to mean the outcome of a simple division of initially mechanically intact living cells into two fractions, particulate (the components that can be sedimented by centrifugation at more than 10 000xg and not more than 100 000xg for 10 minutes) and soluble fraction (the soluble components and small membrane fragments that do not sediment), after subjecting the cells to plasma membrane disruption either mechanically with some form of homogeniser or sonicator or osmotically (hypoosmotic shock) or through some kind of permeabilisation of the plasma membrane with detergents, toxins or electroporation.

The term "parenteral route of administration" is used to indicate the administration of a drug or compound in solution to an animal, such as a mammal or a human, by injection or infusion of the drug or compound into the bloodstream of the animal via an injection needle iserted into one of the animals blood vessels, preferably a vein.

The term "oral route of administration" is used to indicate the administration of a drug or compound in solution or as a solid to an animal, such as a mammal or a human, by placing the drug or compound in the mouth of the animal so that the animal itself can swallow the drug or compound or have it delivered to the stomach or intestine by intubation. When the drug or compound enters the stomach and intestine it will be taken up over the mucosa into the bloodstream and administered via the blood stream to the tissues and organs where it is to exert its effect, or it will be acting locally in the stomach and intestine.

The term "pulmonary route of administration" is used to indicate the administration of

5

10

15

20

a drug or compound as an aerosol with either solid or liquid particles to an animal, such as a mammal or a human, by placing the drug or compound container close to or in contact with the mouth and/or nose of the animal so that the animal itself can inhale the drug or compound aerosol. When the drug or compound enters the peripheral bronchioloi and alveoli it will be taken up over the alveolar membrane, either into the bloodstream and administered via the blood stream to the tissues and organs where it is to exert its effect or it will act locally in the lungs on lung, vessel and muscle cells as well as any other cell type present there.

The term "cutaneous route of administration" is used to indicate the administration of a drug or compound in solution or as a solid to an animal, such as a mammal or a human, by placing the drug or compound on the skin of the animal. The drug can then enter the blood vessels under the skin as it is permeaing the skin and thereby be taken up into the bloodstream and administered via the blood stream to the tissues and organs where it is to exert its effect. It may also exert an effect locally on the site of application on the skin.

The term "rectal route of administration" is used to indicate the administration of a drug or compound in solution or as a solid to an animal, such as a mammal or a human, by placing the drug or compound in the rectal cavity of the animal. When the drug or compound enters the rectum and parts of the large intestine it will be taken up over the mucosa into the bloodstream and administered via the blood stream to the tissues and organs where it is to exert its effect, or it will act locally in the rectum and parts of the large intestine.

Several IKKs are known. When setting up a program to identify pharmacological agents that affect the intracellular distribution of a target IKK, it is first necessary to choose the target from the IKKs known. This may be done according to various criteria. A first criterion is that it is imperative that the target IKK be present in the tissue or cell type(s) where the pharmacological agent is to exert its effect. A second criterion is that it is desirable that the target not be present in tissues or cell types where no pharmacological effects are desired. A third criterion is that the target IKK displays a non-random pattern of intracellular distribution.

10

15

20

25

30

Establishing the expression patterns of IKKs in relation to tissues and cell types is best done using the methods of detection of mRNA, e.g. Northern analysis, which is a well established procedure. Briefly, mRNA isolated from a given source is probed with a labelled nucleotide, whose sequence is complementary to the mRNA or a region in a mRNA of interest. The assay allows the investigator to determine the stringency of the probing, i.e. to correlate the resulting signal(s) with sequence similarities.

As a first step, the nucleotide sequences of IKKs are compiled and inspected to identify regions that are unique to specific IKKs as well as regions that are shared among several, many, or all IKKs. Nucleotide sequences may be found in a depository of genetic information, e.g. GenBank, which is a wellknown resource. The inspection of the sequences may be aided by using computer programs that were developed to align several or many sequences, and in so doing highlighting regions of similarity or lack of the same. Many of these are presented and explained in great detail in e.g. Sequence Data Analysis Guidebook /edited by S.R.Swindell, Methods in Molecular Biology vol. 70 (1997), from Humana Press Inc. Totowa, New Jersey.

When sequences have been identified that are unique to an IKK, or respectively shared by several or many IKKs, oligonucleotide probes based on these sequences may be designed and synthesized. The use of such probes to detect mRNA is well established in the research community, see e.g. Basic DNA and RNA Protocols/edited by A.J.Harwood, Methods in Molecular Biology vol. 58 (1996), from Humana Press Inc. Totowa, New Jersey.

for a detailed description, and many commercial suppliers of biological research materials offer to synthesize specified oligonucleotides, e.g. Life Technologies.

In addition to oligonucleotide probes, mRNA extracted from the tissues and cell types of interest is required, preferably in a form ready to use in Northern analysis. Several companies offer such material, e.g. Invitrogen and Clontech. Briefly, they provide RNA extracted from a great many human and non-human tissues or cell types immobilized on membranes, as an array or size-fractionated.

In a next step, a detectable label needs to be attached to the oligonucleotide probe(s). The label is traditionally in the form of a radioactive isotope, but may to advantage be a chemiluminescent reagent or a fluorescent agent. See e.g. DNA Probes by Keller and Manak (1993), from Macmillan Publishers. Several companies offer reagents to

5

10

15

20

label nucleotide probes, e.g. Ambion (Austin, Texas) and Molecular Probes (Eugene, Oregon).

The actual probing procedure involves contacting the immobilized mRNA (s) with the probe(s), washing away unbound probe(s) and detecting the signal(s) from the probe(s) that bound under the conditions tested, a positive signal indicating that the target(s) of the probe(s) was present in the sample(s) subjected to the test. In its simplest form, the test is "one-to-one", i.e. each sample of mRNA is exposed to each probe. However, it may be advantageous to exploit the sequence hierarchy of the IKKs, by first probing arrays of mRNA from multiple sources with family-specific probes, then examining first positives with isotype-specific probes, and then examining the secondary positives in detail with very specific probes. One could also multiplex the probing by adding different distungishable fluorescent labels to the probes, thus obtaining information from several probes in one experiment.

The outcome of the analysis is information regarding the expression pattern(s) of IKKs.

Based on their expression pattern(s) specific IKKs are then selected for further study, and genetic probes are constructed.

In general, a genetic probe, i.e. a "GeneX"-GFP fusion or a GFP-"GeneX" fusion, is constructed using PCR with "GeneX"-specific primers followed by a cloning step to fuse "GeneX" in frame with GFP. The fusion may contain a short vector derived sequence between "GeneX" and GFP (e.g. part of a multiple cloning site region in the plasmid) resulting in a peptide linker between "GeneX" and GFP in the resulting fusion protein.

The fusion may be made using ploymerase chain reaction techniques, which are common laboratory procedures, see e.g. PCR Protocols/edited by B.A.White, Methods in Molecular Biology vol. 15 (1993), from Humana Press Inc. Totowa, New Jersey.

30 In more detail, the steps involved include:

- Design of gene-specific primers. Inspection of the sequence of the gene allows design of gene-specific primers to be used in a PCR reaction. Typically, the top-strand primer encompasses the ATG start codon of the gene and the following ca. 20

5

10

15

20

25

30

nucleotides, while the bottom-strand primer encompasses the stop codon and the ca. 20 preceding nucleotides, if the gene is to be fused behind GFP, i.e. a GFP-"GeneX" fusion. If the gene is to be fused in front of GFP, i.e. a "GeneX"-GFP fusion, a stop codon must be avoided. Optionally, the full length sequence of GeneX may not be used in the fusion, but merely the part which localizes and redistributes like GeneX in response to a signal.

In addition to gene-specific sequences, the primers contain at least one recognition sequence for a restriction enzyme, to allow subsequent cloning of the PCR product. The sites are chosen so that they are unique in the PCR product and compatible with sites in the cloning vector. Furthermore, it may be necessary to include an exact number of nucleotides between the restriction enzyme site and the gene-specific sequence in order to establish the correct reading frame of the fusion gene and/or a translation initiation concensus sequence. Lastly, the primers always contain a few nucleotides in front of the restriction enzyme site to allow efficient digestion with the enzyme.

-Identifying a source of the gene to be amplified. In order for a PCR reaction to produce a product with gene-specific primers, the gene-sequence must initially be present in the reaction, e.g. in the form of cDNA. The results of the extensive expression analysis performed previously will provide clear information regarding what tissue(s) are useful as source material. cDNA libraries from a great variety of tissues or cell types from various species are commercially available, e.g. from Clontech (Palo Alto), Stratagene (La Jolla) and Invitrogen (San Diego). Many genes are also available in cloned form from The American Type Tissue Collection (Virginia).

- Optimizing the PCR reaction. Several factors are known to influence the efficiency and specificity of a PCR reaction, including the annealing temperature of the primers, the concentration of ions, notably Mg<sup>2+</sup> and K<sup>+</sup>, present in the reaction, as well as pH of the reaction. If the result of a PCR reaction is deemed unsatisfactory, it might be because the parameters mentioned above are not optimal. Various annealing temperatures should be tested, e.g. in a PCR machine with a built-in temperature gradient, available from e.g. Stratagene (La Jolla), and/or various buffer compositions should be tried, e.g. the OptiPrime buffer system from Stratagene (La Jolla).

10

15

20

30

- Cloning the PCR product. The vector into which the amplified gene product will be cloned and fused with GFP will already have been taken into consideration when the primers were designed. When choosing a vector, one should at least consider in which cell types the probe subsequently will be expressed, so that the promoter controlling expression of the probe is compatible with the cells. Most expression vectors also contain one or more selective markers, e.g. conferring resistance to a drug, which is a useful feature when one wants to make stable transfectants. The selective marker should also be compatible with the cells to be used.

The actual cloning of the PCR product should present no difficulty as it typically will be a one-step cloning of a fragment digested with two different restriction enzymes into a vector digested with the same two enzymes. If the cloning proves to be problematic, it may be because the restriction enzymes did not work well with the PCR fragment. In this case one could add longer extensions to the end of the primers to overcome a possible difficulty of digestion close to a fragment end, or one could introduce an intermediate cloning step not based on restriction enzyme digestion. Several companies offer systems for this approach, e.g. Invitrogen (San Diego) and Clontech (Palo Alto).

Once the gene has been cloned and, in the process, fused with the GFP gene, the resulting product, usually a plasmid, should be carefully checked to make sure it is as expected. The most exact test would be to obtain the nucleotide sequence of the fusion-gene.

Once a DNA construct for a probe has been generated, its functionality and usefulness may be tested by subjecting it to the following tests:

- Transfecting it into cells capable of expressing the probe. The fluorescence of the cell is inspected soon after, typically the next day. At this point, two features of cellular fluorescence are noted:

The intensity and the sub-cellular localization.

The intensity should usually be at least as strong as that of unfused GFP in the cells. If it is not, the sequence or quality of the probe-DNA might be faulty, and should be carefully checked.

The sub-cellular localization is an indication of whether the probe is likely to perform well.

5

10

15

20

25

30

If it localizes as expected for the gene in question, e.g. is excluded from the nucleus, it can immediately go on to a functional test. If the probe is not localized soon after the transfection procedure, it may be because of overexpression at this point in time, as the cell typically will have taken of very many copies of the plasmid, and localization will occur in time, e.g. within a few weeks, as plasmid copy number and expression level decreases. If localization does not occur after prolonged time, it may be because the fusion to GFP has destroyed a localization function, e.g. masked a protein sequence essential for interaction with its normal cellular anchor-protein. In this case the opposite fusion might work, e.g. if GeneX-GFP does not work, GFP-GeneX might, as two different parts of GeneX will be affected by the proximity to GFP. If this does not work, the proximity of GFP at either end might be a problem, and it could be attempted to increase the distance by incorporating a longer linker between GeneX and GFP in the DNA construct.

If there is no prior knowledge of localization, and no localization is observed, it may be because the probe should not be localized at this point, because such is the nature of the protein fused to GFP. It should then be subjected to a functional test.

In a functional test, the cells expressing the probe are treated with at least one compound known to perturb, usually by activating, the signalling pathway on which the probe is expected to report by redistributing itself within the cell.

If the redistribution is as expected, e.g. if prior knowledge tell that it should translocate from location X to location Y, it has passed the first critical test. In this case it can go on to further characterization and quantification of the response.

If it does not perform as expected, it may be because the cell lacks at least one component of the signalling pathway, e.g. a cell surface receptor, or there is species incompatibility, e.g. if the probe is modelled on sequence information of a human geneproduct, and the cell is of hamster origin. In both instances one should identify other cell types for the testing process where these potential problems would not apply.

If there is no prior knowledge about the pattern of redistribution, the analysis of the redistribution will have to be done in greater depth to identify what the essential and indicative features are, and when this is clear, it can go on to further characterization and quantification of the response.

15

20

25

30

If no feature of redistribution can be identified, the problem might be as mentioned above, and the probe should be retested under more optimal cellular conditions.

Libraries for cloning of cDNA libraries in the present discovery plan are naturally related to the target tissues of the projects. For ultimately finding lead compounds useful in the treatment of astma the cloning libraries should preferably be obtained from one ore more of the following tissue or cells types: Bronchial smooth muscle, Lung microvascular endothelial cells, Eosinophil granulocytes, Th1 or 2 lymphocytes and alveolar macrophages. For ultimately finding lead compounds useful in the treatment of chronic inflammatory diseases the cloning libraries should preferably be obtained from one ore more of the following tissue or cell types: Th1 or 2 lymphocytes, T-lymphocytes, B-lymphocytes, Monocytes, Eosinophil granulocytes, Neutrophil granulocytes, Basophil granulocytes, Tissue specific macrophages (such as the liver Kupffer cells and skin Langhans cells), microvascular endothelial cells, vascular endothelial cells, antigen presenting cells, joint connective and synovial cells. For ultimately finding lead compounds useful in the treatment of depression the cloning libraries should preferably be obtained from one or more of the following tissue and cell types: Noradrenergic neurons from the brain, neurons form the brain. For ultimately finding lead compounds useful in the treatment of hyper- and hypotension the cloning libraries should preferably be obtained from one or more of the following tissue or cell types: vascular smooth muscle, vascular smooth muscle from resistance vessels on the arterial side of the vascular system, vascular smooth muscle from capacitance vessels on the venous side of the vascular system, vascular smooth muscle cells from small arteries, arterioles, venules or veins, smooth vascular cells lines such as T/G HA-VSMCA10 and A7r5.

The cells should always be of animal origin, most likely of mammalian origin and preferably of human origin. The cells could be derived from normal tissue or from tissue of an individual animal having a disease or condition of interest for the project. The cells may also be a mortal or immortalised cell line where the initial cell clone has been derived from a tissue or cell type as described above. Depending on the discovery project the cells of interest for screening assays will vary but may be chosen from the above mentioned categories.

10

15

20

25

30

Once a genetic construct containing the protein of interest and the luminophore, from here on referred to as "the original fluorescent probe", has been transfected into a relevant cell type, as described above under 'preferred cell types for cloning libraries' the cells are monitored for the appearance of spatially distributed or randomly distributed intracellular fluorescence. Based on prior knowledge regarding the distribution of the actual protein different patterns can be expected. If for example previous studies have found the protein associated only with the particulate fraction of fractionated cells, it can be expected to find a spatial distribution of the original fluorescent probe to the plasma membrane, internal membrane/organelle structures or structural cytoplasmic elements such as microtubules and microfilaments. If on the other hand previous studies report that the protein has been found mostly in the soluble fraction of fractionated cells one can expect to find a homogenous or nonhomogenous distribution of the original fluorescent probe throughout the cytoplasm and perhaps also in the nucleus. For proteins where previous studies have found a mixed localisation to both the particulate and soluble fraction of fractionated cells any mixture in the two distribution patterns mentioned above for the original fluorescent probe can be expected. For proteins where no prior knowledge is at hand a simple cell fractionation and Western Blotting can be made, one can use immunohistochemistry of fixed cells of relevance or one can decide to rely on the distribution observed for the original fluorescent probe. At this stage of the project, a normal distribution pattern of the original fluorescent probe may be established after such studies as outlined above. The effects of physiologically important and relevant cellular activation on the distributed pattern of the original fluorescent probe is also established. It will also become evident if the pattern of distribution changes, i.e. if a redistribution of the original fluorescent probe occurs as a consequence of applying a physiologically important and relevant influence.

When a specific subcellular distribution of a GFP-based IKK probe has been identified, it may be advantageous to narrow down which part of the IKK is responsible for this effect. The advantage is twofold: It may suggest the design of peptide leads, and it may eventually aid in defining the binding partner. Knowledge of both partners involved in specific binding may aid in the selection of compound libraries to screen for inhibition of the specific binding.

22131DK1 23

To identify the region of the IKK involved in specific binding, one may make GFP-based fusions with progressively shorter parts of the IKK, and examine the cellular distribution of these constructs. If there is prior knowledge of functional domains, one may start with the domain believed to confer specific binding to a subcellular structure. The generation of constructs to test may consist of selecting a particular part of the IKK to fuse to GFP, or it may involve the generation of in-frame deletions in the IKK part of the fusion. Both approaches have been widely used in molecular genetic studies.

When a region has been identified that appears responsible for conferring a specific subcellular distribution upon an IKK, the amino acid residues most important for this trait may be identified by a more detailed analysis, e.g. substituting them one by one with e.g. an alanin residue, a socalled Ala-scan, which also has been used extensively in molecular genetic studies.

To identify the identity of the cellular protein partaking in the specific distribution of the IKK, one may exploit the knowledge about the region of the IKK responsible for the subcellular distribution. E.g. one may use the region of the IKK as bait in a genetic two hybrid screen to pull out its binding partner. Several companies offer two hybrid systems, e.g. Life Technologies.

20

25

30

15

5

10

The knowledge about the normal distribution of the original fluorescent probe is used to establish which part or which parts of the terminal (or entire) amino-acid sequence that is important for the attachment of this fluorescent probe to subcellular structures, giving it its specific spatially distributed pattern in the cell or cells, when such a pattern has been established as the normal distribution of this fluorescent probe. This is accomplished by creating new fluorescent probes where a systematic deletion of short N- or C-terminal or internal sequences (number of DNA bases) of the original fluorescent probe are made. These new shorter variants of the of the original fluorescent probe construct are transfected into the cells of interest and then the cells are examined for spatial distribution of the new fluorescent probes as described above for the original fluorescent probe. In those cells where the new fluorescent probe distribution pattern is different from the original fluorescent probe distribution pattern it is evident that part of the, or the entire, targeting sequence has been deleted. The

22131DK1

5

10

15

20

25

30

intracellular binding sites.

DNA- or amino-acid sequence of the missing part therefore contains the structural information necessary for association of the original fluorescent probe with its

Peptides for inhibition of the established normal distribution of the original fluorescent probe are designed according to the hypothesis, that the deduced targeting sequence, or sequences, in the original fluorescent probe amino-acid sequence are the important sequences for the actual spatial distribution of the original fluorescent probe in intact living cells, is tested. This is done by producing peptides of identical amino-acid sequence as the deduced targeting sequence or parts thereof and introducing them into the cytoplasm, either by microinjection or transient or permanent permeabilisation, of cells containing the original fluorescent probe and thereafter monitoring the spatial distribution of the original fluorescent probe in the cells. If the deduced targeting sequence or sequences are of importance for the actual spatial distribution of the original fluorescent probe in intact living cells, the introduced peptides will self-associate with the anchoring sites for the original fluorescent probe and thereby disrupt the normal distribution of the original fluorescent probe. In order to have this effect, the introduction of the peptides should change the original distribution pattern so that a decrease in fluorescence of 10% or more, compared to the pattern before their introduction, can be detected. This is done by observing the same cells before and after administration of the peptides. When peptides that fulfil this criterion have been found they are called 'peptide leads' and will hereafter be referred to using this expression. These peptide leads can now be used as a basis for the design of organic molecules that can be used eventually to disrupt the spatial distribution of the original fluorescent probe but also as control compounds in screening assays.

In parallel to the above mentioned step wherein peptide leads are defined, the distribution pattern found for the original fluorescent probe is compared to the naturally occurring spatial distribution of the protein on which the original fluorescent probe is based. This may be accomplished by fixation of primary cells separated or within the tissue of interest and fixation of cells that contain the original fluorescent probe. Thereafter the protein is stained using ordinary immunocytochemical or

22131DK1 25

immunohistochemical methods and the spatial distribution revealed by this staining procedure is compared to the spatial distribution of the original fluorescent probe. It is desirable, but not required, that a high degree of correlation between the two patterns obtained in this step can be observed.

5

10

15

20

25

30

Establishment of a primary screening assay is normally done by making use of the cells of interest containing the original fluorescent probe as the basis for a screening assay. Depending on the knowledge acquired about the behaviour of the original fluorescent probe when subjecting the cells to physiologically relevant influences the assay procedure can be chosen: 1. If the fluorescent probe normally is targeted to specific sites and stay associated with these sites during stimulation of the intracellular pathway the assay should preferably be designed to detect dislocation of the original fluorescent probe from the targeting sites in mechanically intact or permeabilised living cells. This is an assay where the dislocation can be detected within minutes after application of an influence and the time frame for the detection and time for exposing the cells to an influence should be chosen to match this. 2. If the desire is to disrupt the actual targeting event rather than dislocate already targeted fluorescent probe the influence may need hours to produce a detectable response. The actual measurement, still of a change in the fluorescence or luminescence distribution pattern compared to the normal distribution pattern for the original fluorescent probe, may be made at two time points; before and after the influence has exerted any effect it may have. This is an assay where the effect of an influence may require several hours to produce a detectable response and the time frame for the detection and time for exposing the cells to an influence should be chosen to match this. 3. If the fluorescent probe normally redistributes between two intracellular sites upon activation of the intracellular pathway one may either want to disrupt the initial targeting or dislocate the original fluorescent probe from its initial or resting anchoring site. In this case procedure no. 1 above may be used. If the desire instead is to inhibit the association of the original fluorescent probe with the site it redistributes to during activation of the intracellular pathway the targeting sequence of this site should be in focus for the lead peptide generation. This is an assay where the redistribution may be detected within minutes after application of an influence and the time frame for the detection and time for exposing the cells to an influence should be chosen to match this. Furthermore,

15

any influence applied to inhibit the targeting of the original fluorescent probe upon its redistribution may need to be added to the cells before activation of the intracellular pathway.

5 While the original fluorescent probe and peptide leads will be used in the actual primary screening assay, it is also desirable to have a counterscreen or counterscreens directed at protein isoforms that one does not wish to affect. In order to accomplish this, constructs are made for new fluorescent probes encoding the protein isoforms tagged with GFP. These constructs are subsequently transfected into the cells of interest. When the new fluorescent probes are expressed in the cells, some of the cells are chosen as the basis for new cell lines that can be used in the counterscreen or counterscreens.

Suitable probes for this purpose comprise DNA constructs encoding fusion polypeptides comprising forms of IKK $\alpha$ , IKK $\beta$ , IKK $\gamma$  or NIK and GFP.

In a preferred embodiment the DNA constructs will encode fusion polypeptides comprising isoforms of IKK $\beta$  and GFP.

The cell lines established for the primary screen and the counterscreen or 20 counterscreens are used to establish peptide leads that more specifically dislocate the desired isoform of the protein of interest compared to other isoforms of the same protein. The peptide leads are introduced into the cells as described above and the changes in spatial distribution of the original and counterscreen fluorescent probes are quantified and dose-response relationships are established for each lead peptide. 25 Thereafter the dose-response relationships are compared. A peptide lead is considered specific for the original fluorescent probe if the dose of the peptide required to dislocate at least 10% of the fluorescent probes in the counterscreen or conterscreens are at least two times higher than the dose required to dislocate 10% of the original fluorescent probe. The lead peptides with the biggest dose difference when comparing 30 the primary and the counterscreen dose-response relationships are chosen as the basis for the next step in the discovery project.

22131DK1 27

5

10

15

30

In one embodiment the primary screening assay and counterscreen or counterscreens are used to define specificity of the peptide leads by using a procedure that compares their ability to cause a dislocation, disruption of targeting or inhibition of redistribution of the original fluorescent probe in the primary screening assay to their ability to cause a dislocation, disruption of targeting or inhibition of redistribution of the new fluorescent probes in the counterscreen or counterscreens.

In a preferred embodiment the dose of a peptide lead required to cause a quantified dislocation, disruption of targeting or inhibition of redistribution of the original fluorescent probe of at least 10% in the primary screening assay is 50% or less of the dose required to cause a quantified dislocation, disruption of targeting or inhibition of redistribution of the new fluorescent probes of at least 10% in the counterscreen or counterscreens.

The invention provides for a specificity index which may be constructed describing a numerical relationship, with the primary screening asay result first, of the dose required to produce half-maximal effect in the primary assay compared to the dose required to produce half-maximal effect in the counterscreen or counterscreens.

In one embodiment the peptide leads chosen for further use in the discovery project have a specificity index of 1 to 2.

In another embodiment the peptide leads chosen for further use in the discovery project have a specificity index between 1 to 2 and 1 to 10.

In a further embodiment the peptide leads chosen for further use in the discovery project have a specificity index between 1 to 11 and 1 to 100.

In yet a further preferred embodiment the peptide leads chosen for further use in the discovery project have a specificity index better than 1 to 100.

Lead peptides are used to create and select libraries of small organic molecules that can be useful in screening assays to find bioactive substances useful as drugs to treat the condition or disease of interest for the project. In this step the amino-acid sequence information and other structural information about the lead peptide or peptides is used to extract information useful for finding and/or defining and synthesising bioactive organic molecules that can mimic the effect of the lead peptides on the normal spatial distribution pattern of the original fluorescent probe. Peptide leads selected by the

5

10

15

20

25

30

discovery project are used to design and assemble compound libraries based on the structural and chemical information inherent in the lead peptides using prior chemical knowledge and computational chemistry approaches so that the compounds have a structure that give them the ability to interact with or bind to the targeting sequence of IKKB, thereafter testing the compound libraries at a concentration of 10 or 100 micromolar of each compound in the primary screening assay.

When the libraries of compounds have been defined and are at hand it is time to initiate primary screening. In this procedure, cells containing the original fluorescent probe are contacted with the compounds. The compounds are all tested at just one or a few concentrations, typically 10 and 100 micromolar, in a highly parallel fashion using a quantitative fluorescence redistribution assay. Compounds that cause a change in the quantitated response (the response scale defined by the range 0 (no change in redistribution) - 100%) of the assay by more than a predetermined value, typically between 10 and 100%, are considered to be "primary hits". The primary hits are then further characterised: 1. for potency by establishing a dose-response relationship compared to the lead peptide(s) using the primary screening assay 2. for selectivity by establishing a dose-response relationship in the counterscreen or counterscreens. Primary hits that have low potency, typically when the half-maximal effect of the compound in the primary assay is achieved at a concentration of the compound between 10 and 100 micromolar, may not need testing in the counterscreen or counterscreens since the likelihood that they will be used beyond this step in the discovery project is small. Primary hits that have equal or lower potency in the primary screening assay compared to the counterscreen or counterscreens are regarded as non-selective and the likelihood that they will be used beyond this step in the discovery project is small. Primary hits that display some degree of selectivity, typically half maximal effect in the primary screening assay at a concentration 50% or less of the concentration that gives half maximal effect in the counterscreen or counterscreens are considered interesting as the basis for further chemical synthesis or construction of new libraries of compounds and will hereafter be referred to as "primary lead compounds".

Compounds that cause a change in the quantitated response, with a response scale from 0 to 100% based on the absence of a response and the maximal response

22131DK1 29

10

15

20

25

30

observed with the peptide leads in the primary screening assay, of the assay by more than a predetermined value are selected and called "primary hits".

In one embodiment the predetermined value is 10%.

In another embodiment the predetermined value is 50%.

5 In yet another embodiment the predetermined value is 70%.

In one embodiment the primary hits are further characterised for potency (as defined herein) and maximal effect by establishing a dose-response relationship (as defined herein) and comparing that to the effects of the lead peptides using the primary screening assay and for selectivity (as defined herein) by establishing a dose-response relationship in the counterscreen or counterscreens.

Primary hits may be deselected by the discovery project when they display a half-maximal potency at a dose corresponding to a concentration of more than 10 micromolar or because they display a selectivity index less than 1 to 2.

Primary hits may be selected by the discovery project when they display a half-maximal potency at a dose corresponding to a concentration of 10 micromolar or less or because they display a selectivity index higher than 1 to 2, the compounds hereafter also referred to as "primary lead compounds".

A Structure-Activity Relationship is built by iterations of compound library composition and screening to define drug candidate leads. This step is included to further improve the possibilities of finding bioactive compounds with desirable properties for treatment of the diseases or conditions of interest to the project. The primary lead compounds are here used to provide chemical structural information that can be used as the basis for composition or chemical synthesis of new, directed, compound libraries. By systematic chemical modification of part of the structure of one or more primary lead compounds new libraries are assembled. These new libraries of compounds are also investigated using the primary screening assay and counterscreen or counterscreens. Preferably, dose-response relationships are recorded for each chemical modification of the primary lead compound and compared to the primary lead compound itself. Thereby, a structure-activity relationship, hereafter referred to as "SAR", is established. Among the new compounds, the ones that in this step has the best combination of potency and specificity are chosen either as the basis for a new round of compound library synthesis or composition or, as the final step of

10

15

25

30

the SAR building process, as compounds that will be further for actual pharmacoloical effects in assay systems and animals that are relevant to the underlying physiological and pathophysiological processes of interest to the project. The latter compounds will hereafter be referred to as "drug candidate leads".

In one embodiment drug candidate leads have a half-maximal potency at a dose corresponding to a concentration of less than 1 micromolar and a selectivity index higher than 1 to 2.

In one embodiment the drug candidate leads have a half-maximal potency at a dose corresponding to a concentration of less than 1 micromolar and a selectivity index higher than 1 to 10.

In one embodiment the drug candidate leads have a half-maximal potency at a dose corresponding to a concentration of less than 1 micromolar and a selectivity index higher than 1 to 100.

In one embodiment the drug candidate leads have a half-maximal potency at a dose corresponding to a concentration of less than 0,1 micromolar and a selectivity index higher than 1 to 2.

In a preferred embodiment the drug candidate leads have a half-maximal potency at a dose corresponding to a concentration of less than 0,1 micromolar and a selectivity index higher than 1 to 10.

In another preferred embodiment the drug candidate leads have a half-maximal potency at a dose corresponding to a concentration of less than 0,1 micromolar and a selectivity index higher than 1 to 100.

Drug candidate leads may be further characterised *in vitro* in tissue based, cell based and biochemical assays for efficacy and toxicity. There are many ways to test efficacy of a drug candidate lead. Preferably, the drug candidate lead is tested in assay systems with high relevance to the underlying physiological and pathophysiological processes involved in the pathogenesis and pathophysiology of the disease or condition of interest to the project. Likewise, the drug candidate leads are tested for toxic effects, preferably testing for genetic effects (influence on the integrity and arrangement of DNA), metabolic effects (influence on cellular metabolic processes) and cytotoxic effects (influence on cell integrity and organelle integrity). There is a high likelihood that drug candidate leads, that do not show appropriate efficacy or that display toxicity

5

10

15

20

25

30

will not be used beyond this step in the discovery project because it is expected that such compounds are less suitable as actual drugs to be used in an animal.

In one embodiment drug candidate leads chosen by the discovery project are tested *in vitro* for efficacy (as defined herein), in assay systems with high degree of relevance to the underlying physiological and pathophysiological processes involved in inflammatory diseases, and for toxicity (as defined herein), preferably testing for genetic, metabolic and cytotoxic effects, whereafter the drug candidate leads that display the best efficacy and the least, or no, indications of toxicity are chosen to be the candidates that will enter testing in animals.

In another embodiment drug candidate leads chosen by the discovery project are tested *in vitro* for efficacy (as defined herein), in assay systems with high degree of relevance to the underlying physiological and pathophysiological processes involved in inflammatory airway diseases, and for toxicity (as defined herein), preferably testing for genetic, metabolic and cytotoxic effects, whereafter the drug candidate leads that display the best efficacy and the least, or no, indications of toxicity are chosen to be the candidates that will enter testing in animals.

In another embodiment drug candidate leads chosen by the discovery project are tested *in vitro* for efficacy (as defined herein), in assay systems with high degree of relevance to the underlying physiological and pathophysiological processes involved in inflammatory joint diseases, and for toxicity (as defined herein), preferably testing for genetic, metabolic and cytotoxic effects, whereafter the drug candidate leads that display the best efficacy and the least, or no, indications of toxicity are chosen to be the candidates that will enter testing in animals.

In another embodiment drug candidate leads chosen by the discovery project are tested *in vitro* for efficacy (as defined herein), in assay systems with high degree of relevance to the underlying physiological and pathophysiological processes involved in inflammatory bowel diseases, and for toxicity (as defined herein), preferably testing for genetic, metabolic and cytotoxic effects, whereafter the drug candidate leads that display the best efficacy and the least, or no, indications of toxicity are chosen to be the candidates that will enter testing in animals.

In another embodiment drug candidate leads chosen by the discovery project are tested *in vitro* for efficacy (as defined herein), in assay systems with high degree of relevance to the underlying physiological and pathophysiological processes involved

22131DK1

5

10

15

20

25

30

in autoimmune diseases, and for toxicity (as defined herein), preferably testing for genetic, metabolic and cytotoxic effects, whereafter the drug candidate leads that display the best efficacy and the least, or no, indications of toxicity are chosen to be the candidates that will enter testing in animals.

32

In another embodiment drug candidate leads chosen by the discovery project are tested *in vitro* for efficacy (as defined herein), in assay systems with high degree of relevance to the underlying physiological and pathophysiological processes involved in depression, and for toxicity (as defined herein), preferably testing for genetic, metabolic and cytotoxic effects, whereafter the drug candidate leads that display the best efficacy and the least, or no, indications of toxicity are chosen to be the candidates that will enter testing in animals.

Drug candidate leads are tested for toxic and unwanted effects *in vivo* in animals such as mice and rats. The drug candidate leads are also tested for efficacy in animals that have a disease or condition with high degree of relevance to the disease or condition of interest to the project. The drug candidate leads may also be tested for efficacy in animals which have been treated in a way that make them experience a disease or condition with high degree of relevance to the disease or condition of interest to the project. Drug candidate leads that display efficacy in one or more of such animal tests and that does not display any apparent toxicity at a dosage level, preferably 2 –10 times higher than the level that gives satisfactory efficacy are chosen to be the final drug candidates that should be considered for further animal testing and initial testing in humans. These compounds are hereafter referred to as "discovery project leads".

In one embodiment drug candidate leads chosen by the discovery project are tested for efficacy (as defined herein), in healthy animals and animals with a condition with high degree of relevance to the underlying physiological and pathophysiological processes involved in inflammatory diseases, and for toxicity (as defined herein) and unwanted side effects, whereafter the drug candidate leads that display the best efficacy and the least, or no, indications of toxicity or unwanted side effects are chosen to be the candidates, called discovery project leads, that will enter further testing in animals and testing in humans.

22131DK1 33

5

10

15

20

25

30

In one embodiment drug candidate leads chosen by the discovery project are tested for efficacy (as defined herein), in healthy animals and animals with a condition with high degree of relevance to the underlying physiological and pathophysiological processes involved in inflammatory airway diseases, and for toxicity (as defined herein) and unwanted side effects, whereafter the drug candidate leads that display the best efficacy and the least, or no, indications of toxicity or unwanted side effects are chosen to be the candidates, called discovery project leads, that will enter further testing in animals and testing in humans.

In one embodiment drug candidate leads chosen by the discovery project are tested for efficacy (as defined herein), in healthy animals and animals with a condition with high degree of relevance to the underlying physiological and pathophysiological processes involved in inflammatory joint diseases, and for toxicity (as defined herein) and unwanted side effects, whereafter the drug candidate leads that display the best efficacy and the least, or no, indications of toxicity or unwanted side effects are chosen to be the candidates, called discovery project leads, that will enter further testing in animals and testing in humans.

In one embodiment drug candidate leads chosen by the discovery project are tested for efficacy (as defined herein), in healthy animals and animals with a condition with high degree of relevance to the underlying physiological and pathophysiological processes involved in inflammatory bowel diseases, and for toxicity (as defined herein) and unwanted side effects, whereafter the drug candidate leads that display the best efficacy and the least, or no, indications of toxicity or unwanted side effects are chosen to be the candidates, called discovery project leads, that will enter further testing in animals and testing in humans.

In one embodiment drug candidate leads chosen by the discovery project are tested for efficacy (as defined herein), in healthy animals and animals with a condition with high degree of relevance to the underlying physiological and pathophysiological processes involved in autoimmune diseases, and for toxicity (as defined herein) and unwanted side effects, whereafter the drug candidate leads that display the best efficacy and the least, or no, indications of toxicity or unwanted side effects are chosen to be the candidates, called discovery project leads, that will enter further testing in animals and testing in humans.

10

15

20

25

30

In one embodiment drug candidate leads chosen by the discovery project are tested for efficacy (as defined herein), in healthy animals and animals with a condition with high degree of relevance to the underlying physiological and pathophysiological processes involved in depression, and for toxicity (as defined herein) and unwanted side effects, whereafter the drug candidate leads that display the best efficacy and the least, or no, indications of toxicity or unwanted side effects are chosen to be the candidates, called discovery project leads, that will enter further testing in animals and testing in humans.

The administration route of any of the compounds of the invention may be of any suitable route which leads to a concentration in the blood corresponding to a therapeutic concentration by the oral route, the parenteral route, the cutaneous route, the nasal route, the rectal route, the vaginal route and the ocular route. It should be clear to a person skilled in the art that the administration route is dependant on the compound in question, particularly, the choice of administration route depends on the physico-chemical properties of the compound together with the age and weight of the patient and on the particular disease and the severity of the same.

The compounds of the invention may be contained in any appropriate amount in a pharmaceutical composition, and are generally contained in an amount of about 1-95% by weight of the total weight of the composition. The composition may be in form of, e.g., tablets, capsules, pills, powders, granulates, suspensions, emulsions, solutions, gels including hydrogels, pastes, ointments, creams, plasters, drenches, delivery devices, suppositories, enemas, injectables, implants, sprays, aerosols and in other suitable form. The pharmaceutical compositions may be formulated according to conventional pharmaceutical practice, see, e.g., "Remington's Pharmaceutical Sciences" and "Encyclopedia of Pharmaceutical Technology".

Pharmaceutical compositions according to the present invention may be formulated to release the active compound substantially immediately upon administration or at any substantially predetermined time or time period after administration. The latter type of compositions are generally known as controlled release formulations. Controlled release formulations may also be denoted "sustained release", "prolonged release", "programmed release", "time release", "rate-controlled" and/or "targeted release" formulations.

22131DK1 35

15

In the present context every pharmaceutical composition is an actual drug delivery system, since upon administration it presents the active drug substance to the body of the organism.

The compounds of the invention are preferably administered in an amount of about 0.1-30 mg per kg body weight per day, such as about 0.5-15 mg per kg body weight per day. The compound in question may be administered orally in the form of tablets, cap-sules, elixirs or syrups, or rectally in the form of suppositories. Parenteral administration of the compounds of the invention, is suitably performed in the form of saline solutions of the compounds or with the compound incorporated into liposomes. In cases where the compound in itself is not sufficiently soluble to be dissolved, an acid addition salt of a basic compound can be used, or a solubilizer such as ethanol can be applied.

Oral administration. For compositions adapted for oral administration for systemic use, the dosage is normally 1 mg to 1 g per dose administered 1-4 times daily for 1 week, 12 months or even lifelong depending on the disease to be treated.

Rectal administration. For compositions adapted for rectal a somewhat higher amount of compound is usually preferred, i.e. from approximately 1 mg to 100 mg per kg body weight per day.

Parenteral administration. For parenteral administration a dose of about 0.1 mg to about 50 mg per kg body weight per day is convenient. For intravenous administration a dose of about 0.1 mg to about 20 mg per kg body weight per day. For intraarticular administration a dose of about 0.1 mg to about 20 mg per kg body weight per day is usually preferable. For parenteral administration in general, a solution in an aqueous medium of 0.5-2% or more of the active ingredients may be employed.

<u>Cutaneous administration</u>. For topical administration on the skin a dose of about 1 mg to about 5 g administered 1-10 times daily is usually preferable.

22131DK1

### **EXAMPLES**

5

10

25

30

Probes for detection of IKK redistribution. These are specific IKK subunit variants fused to a GFP. As examples, the following three subunits have been chosen: IKK $\alpha$  (GenBank Acc.no. AF009225) , IKK $\beta$  (GenBank Acc. No. AF031416) and IKK $\gamma$  (GenBank Acc. No. AF074382).

36

Inspection of the scientific literature indicates that IKK $\beta$  dissociates transiently from the IKAP complex during activation, and so becomes the first choice for a probe to detect redistribution.

To construct the IKKβ-GFP fusion. IKKβ sequences are amplified using PCR according to standard protocols with the specific primers listed below. The PCR product is digested with restriction enzymes Hind3 and Acc651, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank Accession number U55762) digested with Hind3 and Acc651. This produces an IKKβ-EGFP fusion under the control of a CMV promoter (SEQ.ID.NOs.1 and 2).

The top primer includes specific sequences following the ATG and a cloning site (EcoR1). The bottom primer includes specific C-terminal sequences minus the stop codon, an Acc65I cloning site, and two extra nucleotides to preserve the reading frame in EGFP-N1.

20 IKKβ-top (SEQ. ID NO. 3): 5'-GTAAGCTTACATGAGCTGGTCACCTTCCCTG-3'

IKKβ-bottom (SEQ. ID NO. 4): 5'-GTGGTACCCATGAGGCCTGCTCCAG-3'

The resulting plasmids are transfected into a suitable cell line. The subcellular distribution of the probes is examined carefully by fluorescence microscopy, both under resting conditions, and upon activation, e.g. with TNFalpha.

30

### REFERENCES

- Baeuerle, P.A., Baltimore, D. (1988) I-kappaB: a specific inhibitor of the NF-kappaB transcription factor. Science 242:540-546.
- Baeuerle, P.A., Baltimore, D. (1989) A 65-kappaD subunit of NF-kappaB is required for inhibition of NF-kappaB by I-kappaB. Genes and Dev. 3:1689-1698.
  - Baldwin, A.S. Jr (1996) The NF-kappaB and I-kappaB proteins: new discoveries and insights. Annu. Rev. Immunol. 14:649-683.
  - Beg, A.A., Finco, T.S., Nantermet, P.V., Baldwin, A.S. (1993) Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of Ikappa-Bα - a mechanism of NF-kappaB activation. Mol. Cell. Biol. 13:3301-3310.
- Bird, T.A., Schooley, K., Dower, S.K., Hagen, H., Virca, G.D., (1997) Activation of nucear transcription factor NF-kappaB by interleukin-1 is accompanied by casein kinase II-mediated phosphorylation of the p65 subunit. J. Biol. Chem. 272:32606-32612.
- Blackwell, T.S., Christman, J.W. (1997) The role of nuclear factor-kappa B in cytokine gene regulation. Am. J. Resp. Cell and Mol. Biol. 17:3-9.
- Bourcier, T., Sukhove, G., Libby P. (1997) The nuclear factor kappa-B signalling pathway participates in dysregulation of vascular smooth muscle cells in vitro and in human atherosclerosis. J.Biol. Chem. 272:15817-15824
  - Bours, V., Dejardin, E., Bonizzi, G., Merville, M.P., Piette, J. (1998). The NF-kappaB transcription factor role in oncogenesis and in response to anticancer therapeutics. Medecine Sciences 14:566-571
  - Brattsand, R., Linden, M. (1996) Cytokine modulation by glucocorticoids: mechanisms and actions in cellular studies. Alimentary Pharmacol. Therapeutics 10:81-90

Chen, ZJ; Parent, L; Maniatis, T. (1996) Site-specific phosphorylation of i-kappa-b-alpha by a novel ubiquitination-dependent protein-kinase activity. Cell 84: 853-862.

5

- Cogswell, P.C., Schienman, R.I., Baldwin, A.S. (1993) Promoter of the human NF-kappaB p50/p105 gene regulation by NF-kappaB subunits and by c-rel. J. Immunol. 150:2794-2804.
- Cohen, L.; Henzel, W.J.; Baeuerle, P.A. (1998) IKAP is a scaffold protein of the IkB kinase complex. Nature 395: 292-296.
  - Ferrari, D., Wesselborg, S., Bauer, M.K.A., Schulze-Osthoff, K., (1997) Extracellular ATP activates transcription factor NF-kappaB through the P2Z purinoreceptor by selectively targeting NF-kappaB p65 (RelA). J. Cell Biol. 139:1635-1643
  - Ghosh, S., et al., (1990) Cloning of the p50 DNA-binding subunit of NF-kappaB: homology to rel and dorsal. Cell:62:1007-1018.
- 20 Giri, D.K., Aggarwal, B.B. (1998) Constitutive activation of NF-kappaB causes resistance to apoptosis in human cutaneous t-cell lymphoma HuT-78 cells autocrine role of tumor-necrosis factor and reactive oxygen species. J. Biol. Chem. 273:14008-14014
- 25 Grumont, R.J., Gerondakis, S. (1994) The subunit composition of NF-kappaB complexes changes during B-cell development. Cell Growth and Diffn. 5:1321-1331.
- Hallahan, D., Clark, E.T., Kuchibholta, J., Gewertz, B.L., Collins, T. (1995) E-selectin gene induction by ionizing-radiation is independent of cytokine induction. Biochem. Biophys. Res. Comm. 217:784-795.

- Hattori, Y., Akimoto, K., Murakami, Y., Kasai, K. (1997) Pyrrolidine dithiocarbamate inhibits cytokine-induced VCAM-1 gene expression in rat cardiac myocytes. Mol. Cell. Biochem. 177177-181.
- Hayashi, T., Sekine, T., Okamoto, T. (1993) Identification of a new serine knase that activates NF-kappaB by direct phosphorylation. J. Biol. Chem. 268:26790-26795.
- Hiramoto, M., et al., (1998) Nuclear targeted suppression of NF-kappaB activity by the quinone derivative E3330. J. Immunol. 160:810.819.
  - Jourd'heuil, D., Morise, Z., Conner, E.M., Grisham, M.B. (1997) Oxidants, transcription factors and intestinal inflammation. J. Clin. Gastroenterol. 25:S61-S72.
  - Lezoual'ch, F., Behl, C. (1998) Transcription factor NF-kappaB: Friend or foe of neurons? Mol. Psychiatry 3:15-20
- Makarov, S.S., Johnston, W.N., Olsen, J.C., Watson, J.M., Mondal, K., Rinehart, C.,
  Haskill, J.S. (1997) NF-kappaB as a target for anti-inflammmatory gene therapy
  suppression of inflammatory responses in monocytic and stromal cells by
  stable gene-transfer of I-kappaBα cDNA. Gene Therapy 4:846-852
- Mukaida, N. Mahe, Y., Matsushima, K., (1990) Co-operative interaction of NF-kappaB and cis-regulatory enhancer binding protein-like factor binding elements in activation the interleukin-8 gene by pro-inflammatory cytokines. J. Biol. Chem. 265:21128-21133.
- Naumann, M., Wulczyn, F.G., Scheidereit, C., (1993) The NF-kappaB precursor p105 and the proto-oncogene product bcl-3 are I-kappaB molecules and control nuclear translocation of NF-kappaB. EMBO J. 12:213-222

25

- Neumann, M., Marienfeld, R., Serfling, E. (1997) Rel/NF-kappaB transcription factors and cancer oncogenesis by dysregulated transcription. Int. J. Oncology 11:1335-1347
- Nolan, G.P., Fujita, T., Bhatia, K., Huppi, C., Liou, H.C., Scott, M.L., Baltimore, D., (1993) The bcl-3 proto-oncogene encodes a nuclear I-kappaB-like molecule that preferentially interacts with NF-kappaB p50 and p52 ina phosphorylation-dpendent manner. Mol. Cell. Biol., 13:3557-3566
- O'Neill, L.A., Kaltschmidt, C. (1997) NF-kappaB: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci. 20:252-258.
  - Rothwarf, D.M., Zandi, E., Natoli, G., Karin, M. (1998) IKK-g is an essential regulatory subunit of the IkB kinase complex. Nature 395: 297-300.
  - Schulze-Osthoff, K., Ferrari, D., Riehemann, K., Wesselborg, S. (1997) Regulation of NF-kappaB activation by MAP kinase cascades. Immunobiol. 198:35-49.
- Sen, R., Baltimore, D., 1986. Inducibility of kappa immunoglobulin enhancer-binding protein NF-kappaB by a post-translational mechanism. Cell 47:921-928.
  - Smith, R.S., Smith, T.J., Blieden, T.M., Phipps, R.P. (1997) Fibroblasts as sentinel cells. Synthesis of chemokines and regulation of inflammation. Am. J. Path. 151:317-322.
  - Watanabe, N., Iwamura, T., Shinoda, T., Fujita, T. (1997) Regulation of NF-kappaB 1 proteins by the candidate oncoprotein bcl3 generation of NF-kappaB homodimers from the cytoplasmic pool of p50-p105 and nuclear translocation. EMBO J. 16:3609-3620.
  - Wulczyn, F.G., Krappmann, D., Scheidereit, C., (1996) the NF-kappaB B/Rel and I-kappaB gene families: mediators of immune response and inflammation. J. Mol. Medicine 74:749-769.

22131DK1 41

Zhong, H.H., Voll, R.E., Ghosh, S., (1998) Phosphorylation of NF-kappaB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Molecular Cell 5:661-671.

### **CLAIMS**

5

- 1. A method for preventing or treating, in an animal in need thereof, an adverse condition which may be reduced or abolished by modulating the activity of one or more I-kappaB kinases, the method comprising modulating the specific effectiveness of the I-kappaB kinase by modulating their spatial distribution within cells of the animal.
- 2. A method according to claim 1, wherein the I-kappaB kinase is selected from the group consisting of I-kappaB kinase  $\alpha$ , I-kappaB kinase  $\beta$ , I-kappaB kinase  $\gamma$  and NIK.
- 3. A method according to claim 1 or 2, wherein the I-kappaB kinase is I-kappaB
  15 kinase β.
  - 4. A method according to any of claims 1-3, wherein the animal is a mammal.
  - 5. A method according to claim 4, wherein the mammal is a human being.
  - 6. A method according to any of claims 1-5, wherein the modulation of the specific effectiveness of the I-kappaB kinase is a dislocation from a native location within the cell.
- 7. A method according to any of claims 1-5, wherein the modulation of the specific effectiveness of the I-kappaB kinase involves a disruption of the targeting of the I-kappaB kinase to a native location within the cell.
- 8. A method according to any of claims 1-5, wherein the modulation of the specific effectiveness of the I-kappaB kinase involves interference with the redistribution of the I-kappaB kinase, the redistribution being associated with an increase or a decrease in the specific effectiveness of the I-kappaB kinase.

- 9. A method according to any of claims 1-8, wherein the adverse condition is an inflammatory diseases such as chronic inflammation.
- 10. A method according to claim 9, wherein the adverse condition is chronic
  5 inflammatory airway diseases such as asthma and chronic bronchial hyperreactivity of non-asthma etiology.
  - 11. A method according to claim 9, wherein the adverse condition is chronic inflammatory joint diseases such as rheumatoid arthritis and pelvospondylitis.
  - 12. A method according to claim 9, wherein the adverse condition is chronic inflammatory bowel diseases such as ulcerative colitis and Crohn's disease.
- 13. A method according to any of claims 1-9, wherein the adverse condition is
  autoimmune diseases with chronic inflammation such as rheumatoid arthritis, diabetes
  mellitus type I, systemic lupus erythematosus, myasthenia gravis, Hashimoto's
  thyreoiditis, Graves' disease and immune thrombocytopenic purpura.
- 14. A method according to any of claims 1-8, wherein the adverse condition involves a disregulation of the immune system such as acute respiratory distress syndrome (ARDS) and septic shock.
  - 15. A method according to any of claims 1-8, wherein the adverse condition is allergy.
- 16. A method according to any of the preceding claims, wherein the modulation of the specific effectiveness of the I-kappaB kinase is performed by exposing cells, in the animal in which dislocation, disruption of targeting, or interference with redistribution of a I-kappaB kinase may take place, to the influence of a substance which modulates the spatial distribution of the I-kappaB kinase in the cells.
  - 17. A method according to claim 16, wherein the substance is one which, in a quantitative fluorescence redistribution assay designed to monitor dislocation of I-

10

15

20

kappaB kinase, causes dislocation of at least 10% of otherwise natively located I-kappaB kinase within the cell at a concentration of the substance of 100 micromolar.

- 18. A method according to claim 17, wherein at least 50% of otherwise natively
  located I-kappaB kinase is dislocated within the cell at a concentration of the substance of 100 micromolar.
  - 19. A method according to claim 17, wherein at least 70% of otherwise natively located I-kappaB kinase is dislocated within the cell at a concentration of the substance of 100 micromolar.
  - 20. A method according to claim 17, wherein at least 90% of otherwise natively located I-kappaB kinase is dislocated within the cell at a concentration of the substance of 100 micromolar.
  - 21. A method according to claim 16, wherein the substance is one which, in a quantitative fluorescence redistribution assay, designed to monitor targeting of I-kappaB kinase, reduces targeting of the I-kappaB kinase to its native location within the cell by at least 10% at a concentration of the substance of 100 micromolar.
  - 22. A method according to claim 21, wherein the substance reduces targeting of the I-kappaB kinase to its native location within the cell by at least 50% at a concentration of the substance of 100 micromolar.
- 23. A method according to claim 21, wherein the substance reduces targeting of the I-kappaB kinase to its native location within the cell by at least 70% at a concentration of the substance of 100 micromolar.
- 24. A method according to claim 21, wherein the substance reduces targeting of the I-30 kappaB kinase to its native location within the cell by at least 90% at a concentration of the substance of 100 micromolar.

10

30

25. A method according to claim 16, wherein the substance is one which, in a quantitative fluorescence redistribution assay, designed to monitor changes in redistribution caused by an influence, causes a reduction in the induced redistribution by at least 10% of the normal maximum redistribution at a concentration of the substance of 100 micromolar.

- 26. A method according to claim 25, wherein the substance causes a reduction in the induced redistribution of the I-kappaB kinase by at least 50% of the normal maximum redistribution at a concentration of the substance of 100 micromolar.
- 27. A method according to claim 25, wherein the substance causes a reduction in the induced redistribution of the I-kappaB kinase by at least 70% of the normal maximum redistribution at a concentration of the substance of 100 micromolar.
- 15 28. A method according to claim 25, wherein the substance causes a reduction in the induced redistribution of the I-kappaB kinase by at least 90% of the normal maximum redistribution at a concentration of the substance of 100 micromolar.
- 29. A method according to any of claims 16-28, wherein the substance is an organic compound having a molecular weight of at the most 1200 Da.
  - 30. A method according to any of claims 16-28, wherein the substance is an organic compound having a molecular weight of at the most 900 Da.
- 31. A method according to any of claims 16-28, wherein the substance is an organic compound having a molecular weight of at the most 600 Da.
  - 32. A method according to any of claims 16-28, wherein the substance is an organic compound having a molecular weight of at the most 300 Da.
  - 33. A method according to any of claims 16-32, wherein the substance is a peptide.

22131DK1 46

5

30

34. A method according to any of claim 16-32, wherein the substance is a carbon-containing non-peptide.

- 35. A method according to any of claims 16-32, wherein the organic compound is a compound having one or more chemical domains capable of interacting with one or more functional groups of the targeting sequence of the native anchoring site of the I-kappaB kinase.
- 36. A method according to claim 35, wherein the organic compound is a compound having at least two chemical domains capable of interacting with at least two functional groups of the targeting sequence of the native anchoring site for the I-kappaB kinase.
- 37. A method according to claim 35, wherein the organic compound is a compound having at least three chemical domains capable of interacting with at least three functional groups of the targeting sequence of the native anchoring site for the I-kappaB kinase.
- 38. A method according to any of claims 16-34, wherein the organic compound is a compound having one or more chemical domains capable of interacting with one or more functional groups of the targeting sequence of the I-kappaB kinase.
- 39. A method according to claim 38, wherein the organic compound is a compound having at least two chemical domains capable of interacting with at least two
  25 functional groups of the targeting sequence of the I-kappaB kinase.
  - 40. A method according to claim 38, wherein the organic compound is a compound having at least three chemical domains capable of interacting with at least three functional groups of the targeting sequence of the I-kappaB kinase.
  - 41. A method according to any of claims 16-40, wherein the organic compound is a weak acid in that it is a neutral molecule that can reversible dissociate into an anion (a negatively charged molecule) and a proton (a hydrogen ion).

42. A method according to claims 16-40, wherein the organic compound is a weak base in that it is a neutral molecule that can form a cation (a positively charged molecule) by combining with a proton (a hydrogen ion).

5

43. A method according to any of claims 35-42, wherein the functional groups of the targeting sequences include functional groups selected from the group consisting of: methyl-, isopropyl-, isobutyl-, hydroxyl-, thiol-, benzyl-, benzyloyl-, methylindolyl-, methylimidazolyl-, amine-, imine-, carboxyl- and acetamide-groups as parts of amino acids in the targeting sequences.

10

44. A method according to any of claims 16-43, wherein the exposure of the animal to the influence of a substance is performed by administering an effective amount of the substance to the animal.

15

45. A method according to claim 44, wherein the exposure of the animal to the influence of the substance is performed by administering an effective amount of the substance via the intravenous route of administration to the animal.

20

46. A method according to claim 44, wherein the exposure of the animal to the influence of the substance is performed by administering an effective amount of the substance via the oral route of administration to the animal.

47. A method according to claim 44, wherein the exposure of the animal to the influence of the substance is performed by administering an effective amount of the substance via the pulmonary route of administration to the animal.

30

25

48. A method according to claim 44, wherein the exposure of the animal to the influence of the substance is performed by administering an effective amount of the substance via the rectal route of administration to the animal.

30

49. A method according to claim 44, wherein the exposure of the animal to the influence of the substance is performed by administering an effective amount of the substance via the transdermal route of administration to the animal.

- 50. A method according to any of claims 17-49, wherein the quantitative fluorescence 5 redistribution assay consists of cells selected from the group of bronchial smooth muscle cells and immortal cell lines derived from such cells, smooth muscle cells and immortal cell lines derived from such cells, neutrophil or eosinophil granulocytes and immortal cell lines derived from such cells, T-lymphocytes and immortal cell lines derived from such cells, monocytes and immortal cell lines derived from such cells, 10 mast cells and immortal cell lines derived from such cells, lung microvascular endothelial cells and immortal cell lines derived from such cells, alveolar epithelial cells and immortal cell lines derived from such cells, and alveolar macrophages and immortal cell lines derived from such cells, transfected with a nucleotide construct encoding a fluorescent probe comprising as the biologically active polypeptide either 15 I-kappaB kinase  $\alpha$ , I-kappaB kinase  $\beta$ , I-kappaB kinase  $\gamma$  or NIK, or an I-kappaB kinase splice variant cloned from bronchial smooth muscle cells, lung microvascular endothelial cells, alveolar epithelial cells, neutrophil or eosinophil granulocytes, Th1 lymphocytes, Th2 lymphocytes, B-lymphocytes, monocytes, mast cells, or alveolar macrophages, transfected in such a way, that the construct is expressed by the cells. 20
  - 51. A method according to claim 50, wherein the quantitative fluorescence redistribution assay is a primary screening assay used in a discovery project
- 52. A method according to any of claim 50 or 51, wherein the cells are derived from an animal.
  - 53. A method according to claim 52, wherein the cells are derived from a mammal such as a human.
  - 54. A method according to any of claims 50-53, wherein the fluorescent probe redistributes after the cells have been subjected to a physiologically important and relevant influence that is relevant to the intercellular signalling pathway wherein the I-

5

10

15

kappaB kinase is an integral part, so that both the normal pattern of spatial distribution and possible redistribution of the fluorescent probe can be established.

- 55. A method according to claim 54 wherein the intracellular signalling pathway comprises a cellular response that modulates the generation of free transcription factors of the NF-kappaB family which are able to redistribute to the nucleus.
  - 56. A method according to any of claims 54 or 55, wherein the fluorescent probe is modified in a systematic way, still keeping the GFP coding sequence intact, so that the new fluorescent probes are fusion polypeptides where parts of the suspected targeting sequences of the I-kappaB kinase are altered.
  - 57. A method according to claim 56, wherein the modification of the suspected targeting sequence of the I-kappaB kinase is a deletion.
  - 58. A method according to any of claims 56 or 57, wherein the spatial distribution of the fluorescent probe is compared to the spatial distribution of the unmodified fluorescent probe deducing the targeting sequence.
- 59. A method according to any of claims 16-58, wherein the substance interacts with the targeting sequence or part thereof in a manner that dislocates, disrupts targeting, or interferes with redistribution of the fluorescent probe as measured in quantitative fluorescence redistribution assay.

### **ABSTRACT**

5

10

This application describes a method by which to identify novel chemical entities that may modulate the specific effectiveness of the I-kappaB kinases (IKKs). The preferred mode of action is dislocation, disruption of targeting or interference with redistribution of specific isoforms of IKKs from their anchoring sites within cells, thereby modulating their specific effectiveness, not their enzymatic capacity. The chemical entities may be useful in preventing or treating, in an animal, preferably a human, in need thereof, an adverse condition which may be reduced or abolished by modulating the specific effectiveness of one or more IKKs. Examples of such adverse conditions are inflammatory and autoimmune diseases.

#### SEQUENCE LISTING

- (1) GENERAL INFORMATION
- (i) APPLICANT: NovoNordisk, BioImage
- (ii) TITLE OF THE INVENTION: A method for preventing or treating adverse conditions which may be reduced or abolished by modulating the effectiveness of one or more IkappaB kinases.
- (iii) NUMBER OF SEQUENCES: 4
- (iv) CORRESPONDENCE ADDRESS:
  - (A) ADDRESSEE: NovoNordisk, BioImage
  - (B) STREET: Morkhøjbygade 28
  - (C) CITY: Søborg
  - (D) STATE: DK
  - (E) COUNTRY: DENMARK
  - (F) ZIP: 2860
- (v) COMPUTER READABLE FORM:
  - (A) MEDIUM TYPE: Diskette
  - (B) COMPUTER: IBM Compatible
  - (C) OPERATING SYSTEM: DOS
  - (D) SOFTWARE: FastSEQ for Windows Version 2.0
- (viii) ATTORNEY/AGENT INFORMATION:
  - (A) NAME: , PV&P R
  - (B) REGISTRATION NUMBER:
  - (C) REFERENCE/DOCKET NUMBER:
  - (2) INFORMATION FOR SEQ ID NO:1:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 3024 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
  - (A) NAME/KEY: Coding Sequence
  - (B) LOCATION: 1...3021
  - (D) OTHER INFORMATION:
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

ATG AGC TGG TCA CCT TCC CTG ACA ACG CAG ACA TGT GGG GCC TGG GAA

Met Ser Trp Ser Pro Ser Leu Thr Thr Gln Thr Cys Gly Ala Trp Glu

1 5 10 15

,

|                    |                       |                   |                   |                  | GGG .<br>Gly      |                     |                   |                       |                  |                     |                    | Val               |                       |                   |                  | 96  |
|--------------------|-----------------------|-------------------|-------------------|------------------|-------------------|---------------------|-------------------|-----------------------|------------------|---------------------|--------------------|-------------------|-----------------------|-------------------|------------------|-----|
|                    |                       |                   |                   |                  | GGT<br>Gly        |                     |                   |                       |                  |                     |                    |                   |                       |                   |                  | 144 |
|                    |                       |                   |                   |                  | AAC<br>Asn        |                     |                   |                       |                  |                     |                    |                   |                       |                   |                  | 192 |
| ATG<br>Met<br>65   | AGA<br>Arg            | AGG<br>Arg        | CTG<br>Leu        | ACC<br>Thr       | CAC<br>His<br>70  | CCC<br>Pro          | AAT<br>Asn        | GTG<br>Val            | GTG<br>Val       | GCT<br>Ala<br>75    | GCC<br>Ala         | CGA<br>Arg        | GAT<br>Asp            | GTC<br>Val        | CCT<br>Pro<br>80 | 240 |
| GAG<br>Glu         | GGG<br>Gly            | ATG<br>Met        | CAG<br>Gln        | AAC<br>Asn<br>85 | TTG<br>Leu        | GCG<br>Ala          | CCC               | AAT<br>Asn            | GAC<br>Asp<br>90 | CTG<br>Leu          | CCC<br>Pro         | CTG<br>Leu        | CTG<br>Leu            | GCC<br>Ala<br>95  | ATG<br>Met       | 288 |
| GAG<br>Glu         | TAC<br>Tyr            | TGC<br>Cys        | CAA<br>Gln<br>100 | GGA<br>Gly       | GGA<br>Gly        | GAT<br>Asp          | CTC<br>Leu        | CGG<br>Arg<br>105     | AAG<br>Lys       | TAC<br>Tyr          | CTG<br>Leu         | AAC<br>Asn        | CAG<br>Gln<br>110     | TTT<br>Phe        | GAG<br>Glu       | 336 |
| AAC<br>Asn         | TGC<br>Cys            | TGT<br>Cys<br>115 | GGT<br>Gly        | CTG<br>Leu       | CGG<br>Arg        | GAA<br>Glu          | GGT<br>Gly<br>120 | Ala                   | ATC              | CTC<br>Leu          | ACC<br>Thr         | TTG<br>Leu<br>125 | CTG<br>Leu            | AGT<br>Ser        | GAC<br>Asp       | 384 |
| ATT<br>Ile         | GCC<br>Ala<br>130     | Ser               | GCG<br>Ala        | CTT              | AGA<br>Arg        | TAC<br>Tyr<br>135   | Leu               | CAT<br>His            | GAA<br>Glu       | AAC<br>Asn          | AGA<br>Arg<br>140  | Ile               | ATC                   | CAT               | CGG<br>Arg       | 432 |
| GAT<br>Asp<br>145  | Leu                   | AAG<br>Lys        | CCA<br>Pro        | GAA<br>Glu       | AAC<br>Asn<br>150 | ATC                 | GTC               | CTG<br>Leu            | CAC<br>Glr       | G CAP<br>Glr<br>155 | Gly                | GAA<br>Glu        | CAG<br>Gln            | AGG<br>Arg        | Leu<br>160       | 480 |
| ATA<br>Ile         | CAC<br>His            | AAA<br>Lys        | Ile               | ATT              | asp               | CTA<br>Leu          | GG/               | ТАТ<br>УТУГ           | Ala              | AAC                 | GAC<br>Glu         | CTC               | GAT<br>Asp            | CAC<br>Glr<br>175 | GGC<br>Gly       | 528 |
| AGT<br>Ser         | CTI<br>Lev            | TGC<br>Cys        | ACA<br>Thr        | Ser              | TTC               | GTC<br>Val          | GG(               | G ACC<br>y Thi<br>185 | Le               | G CAC               | э тас<br>э Туз     | CTC               | G GCC<br>1 Ala<br>190 | a Pro             | A GAG<br>o Glu   | 576 |
| CT <i>A</i><br>Let | A CTO                 | GAC<br>Glu<br>195 | ı Glr             | G CAC            | AAG<br>n Lys      | TAC                 | AC<br>Th          | r Val                 | G ACC            | C GTG               | C GAG<br>l Ası     | TAC<br>TYT<br>205 | r Tr                  | G AGO             | TTC<br>r Phe     | 624 |
| GG(<br>Gly         | C ACC<br>y Thi<br>210 | Le                | G GCC             | TT<br>a Phe      | r GAC<br>e Glu    | TG0<br>1 Cys<br>21! | s Il              | C ACC<br>e Th:        | G GG<br>r Gl     | C TT<br>y Ph        | C CG<br>e Ar<br>22 | g Pr              | C TTY                 | c CT              | C CCC<br>u Pro   | 672 |
| AA                 | TG(                   | G CAS             | G CC              | GTY              | G CAC             | G TG                | G CA              | T TC.                 | A AA             | A GT                | G CG               | G CA              | G AA                  | g ag              | T GAG            | 720 |

| Asn<br>225                   | Trp               | Gln                | Pro                  |                      | Gln<br>230        | Trp               | His                | Ser                   |                   | Val<br>235        | Arg               | Gln                   | Lys                | Ser                | Glu<br>240            |      |
|------------------------------|-------------------|--------------------|----------------------|----------------------|-------------------|-------------------|--------------------|-----------------------|-------------------|-------------------|-------------------|-----------------------|--------------------|--------------------|-----------------------|------|
| GTG<br>Val                   | GAC<br>Asp        | ATT<br>Ile         | GTT<br>Val           | GTT<br>Val<br>245    | AGC<br>Ser        | GAA<br>Glu        | GAC<br>Asp         | TTG<br>Leu            | AAT<br>Asn<br>250 | GGA<br>Gly        | ACG<br>Thr        | GTG<br>Val            | AAG<br>Lys         | TTT<br>Phe<br>255  | TCA<br>Ser            | 768  |
|                              |                   |                    |                      |                      |                   |                   |                    | CTT<br>Leu<br>265     |                   |                   |                   |                       |                    |                    |                       | 816  |
|                              |                   |                    |                      |                      |                   |                   |                    | CTG<br>Leu            |                   |                   |                   |                       |                    |                    |                       | 864  |
| GGC                          | ACG<br>Thr<br>290 | GAT<br>Asp         | CCC<br>Pro           | ACG<br>Thr           | TAT<br>Tyr        | GGG<br>Gly<br>295 | CCC<br>Pro         | AAT<br>Asn            | GGC<br>Gly        | TGC<br>Cys        | TTC<br>Phe<br>300 | AAG<br>Lys            | GCC<br>Ala         | CTG<br>Leu         | GAT<br>Asp            | 912  |
| GAC<br>Asp<br>305            | Ile               | TTA<br>Leu         | AAC<br>Asn           | TTA<br>Leu           | AAG<br>Lys<br>310 | CTG<br>Leu        | GTT<br>Val         | CAT<br>His            | ATC<br>Ile        | TTG<br>Leu<br>315 | AAC<br>Asn        | ATG<br>Met            | GTC<br>Val         | ACG<br>Thr         | GGC<br>Gly<br>320     | 960  |
| ACC<br>Thr                   | : ATC             | CAC                | ACC<br>Thr           | TAC<br>Tyr<br>325    | Pro               | GTG<br>Val        | ACA<br>Thr         | GAG<br>Glu            | GAT<br>Asp<br>330 | GAG<br>Glu        | AGT<br>Ser        | CTG                   | CAG<br>Gln         | AGC<br>Ser         | TTG<br>Leu            | 1008 |
|                              |                   |                    |                      | Gln                  |                   |                   |                    |                       | Ile               |                   |                   |                       |                    | Glr                | G GAG<br>n Glu        | 1056 |
| CTC                          | G CTC             | CAC<br>Glr<br>355  | Glu                  | GCG<br>Ala           | GGC<br>Gly        | CTC<br>Lev        | GC0<br>Ala<br>360  | a Leu                 | ATC               | CCC<br>Pro        | GAT<br>ASI        | 7 AAC<br>5 Lys<br>365 | Pro                | GCC<br>Ala         | C ACT                 | 1104 |
| CA(                          | TG1<br>n Cys      | i Ile              | TCA<br>e Ser         | A GAC                | : GGC             | AAC<br>Lys        | Le                 | AAA<br>Asn            | GAG               | GG(<br>Gly        | CAC<br>His        | s Thi                 | A TTO              | G GA               | C ATG<br>p Met        | 1152 |
| GA'<br>As <sub>1</sub><br>38 | p Lei             | r GT<br>ı Val      | T TTT                | r CTO                | TTT<br>Phe        | e Ası             | AAC<br>Asi         | C AGT                 | r AAA             | ATC<br>110<br>399 | e Th              | C TA'<br>r Ty:        | T GAG              | G AC               | T CAG<br>r Gln<br>400 | 1200 |
| AT<br>Il                     | C TC(<br>e Se:    | C CC.              | A CG(<br>c Arg       | G CCC<br>g Pro<br>40 | Glr               | CC'               | r GA               | A AG?<br>u Sei        | r GTC<br>r Val    | l Se              | C TG<br>r Cy      | T AT                  | C CT               | T CA<br>u Gl<br>41 | A GAG<br>n Glu<br>5   | 1248 |
| CC<br>Pr                     | C AA              | G AG<br>s Ar       | G AA'<br>g Asi<br>42 | n Le                 | GCC<br>Ala        | TTV               | C TT<br>e Ph       | C CAG<br>e Gli<br>42! | n Lei             | G AG<br>u Ar      | G AA<br>g Ly      | G GT                  | G TG<br>1 Tr<br>43 | p Gl               | C CAG                 | 1296 |
| GT<br>Va                     | C TG<br>1 Tr      | G CA<br>p Hi<br>43 | s Se                 | C AT                 | C CAG             | G AC              | C CT<br>r Le<br>44 | u Ly                  | G GA<br>s Gl      | A GA<br>u As      | T TG<br>p Cy      | C AA<br>'s As<br>44   | n Ar               | G CI               | CAG<br>eu Gln         | 1344 |

•

|     |            |            |            |              |            |            |            |            |       |            |       |            |            | AGC<br>Ser  |            | 1392 |
|-----|------------|------------|------------|--------------|------------|------------|------------|------------|-------|------------|-------|------------|------------|-------------|------------|------|
|     | 450        |            | J          |              |            | 455        |            |            |       |            | 460   |            |            |             |            |      |
|     |            |            |            |              |            |            |            |            |       |            |       |            |            | CTC         |            | 1440 |
| Leu | Ser        | Lys        | Met        | Lys          |            | Ser        | Met        | Ala        | Ser   |            | Ser   | Gln        | Gln        | Leu         |            |      |
| 465 |            |            |            |              | 470        |            |            |            |       | 475        |       |            |            |             | 480        |      |
|     |            |            |            |              |            |            |            |            |       |            |       |            |            | GAG         |            | 1488 |
| Ala | Lys        | Leu        | ASP        | 485          | Pne        | Lys        | THE        | ser        | 490   | GIII       | 116   | ASP        | Dea        | Glu<br>495  | Dys        |      |
|     |            |            |            |              |            |            |            |            |       |            |       |            |            | CTG         |            | 1536 |
| Tyr | Ser        | Glu        | Gln<br>500 | Thr          | Glu        | Phe        | Gly        | Ile<br>505 | Thr   | Ser        | Asp   | Lys        | Leu<br>510 | Leu         | Leu        |      |
|     |            |            |            |              |            |            |            |            |       |            |       |            |            | GAG         |            | 1584 |
| Ala | Trp        | Arg<br>515 | Glu        | Met          | Glu        | Gln        | Ala<br>520 | Val        | Glu   | Leu        | Cys   | Gly<br>525 | Arg        | Glu         | Asn        |      |
| GAA | GTG        | AAA        | CTC        | CTG          | GTA        | GAA        | CGG        | ATG        | ATG   | GCT        | CTG   | CAG        | ACC        | GAC         | TTA        | 1632 |
| Glu | Val        | Lys        | Leu        | Leu          | Val        |            | Arg        | Met        | Met   | Ala        |       | Gln        | Thr        | Asp         | Ile        |      |
|     | 530        |            |            |              |            | 535        |            |            |       |            | 540   |            |            |             |            |      |
|     |            |            |            |              |            |            |            |            |       |            |       |            |            |             | CTG        | 1680 |
|     |            | Leu        | Gln        | Arg          | Ser<br>550 | Pro        | Met        | Gly        | Arg   | Lys<br>555 | Gln   | Gly        | GIY        | Thr         | Leu<br>560 |      |
| 545 |            |            |            |              |            |            |            |            |       |            |       |            |            |             |            |      |
|     |            |            |            |              |            |            |            |            |       |            |       |            |            |             | GAA        | 1728 |
| Asp | Asp        | Leu        | Glu        | 565          |            | Ala        | Arg        | GIU        | 570   |            | ALG   | Arg        | Dec        | 575         | Glu        |      |
|     |            |            |            |              |            |            |            |            |       |            |       |            |            |             | CGG        | 1776 |
| Lys | Pro        | Arg        | Asp<br>580 |              | Arg        | Thr        | Glu        | Gly<br>585 |       | Ser        | Gln   | Glu        | 590        |             | . Arg      |      |
| CTG | CTC        | CTI        | , CYC      | GCA          | TTA        | CAG        | AGC        | TTC        | GAG   | AAG        | AAA   | GTG        | G CG       | A GTC       | ATC        | 1824 |
| Leu | Lev        | Lev<br>595 |            | n Ala        |            | Gln        |            |            |       |            |       | Val<br>605 |            | y Val       | lle        |      |
| TAT | . ACC      | G CAC      | CTC        | AGT          | : AAA      | ACI        | GTC        | GT         | TGC   | : AAC      | CAC   | AAC        | GC(        | G CTC       | G GAA      | 1872 |
| Туг | Thi<br>610 |            | ı Lei      | ı Ser        | Lys        | Thr<br>615 |            | . Val      | Cys   | Lys        | 620   |            | s Ala      | a Lei       | ı Glu      |      |
| CTY | יייי ב     |            | - 110      | GTY          | GAA        | GAC        | GTC        | GT         | ago   | TTA        | YTA A | raa e      | r gag      | G GA'       | r gag      | 1920 |
|     |            |            |            |              |            |            |            |            |       |            |       |            |            |             | o Glu      |      |
| 625 | 5          |            |            |              | 630        | )          |            |            |       | 635        | ò     |            |            |             | 640        |      |
|     |            |            |            |              |            |            |            |            |       |            |       |            |            |             | G AAT      | 1968 |
| Lys | s Th       | r Vai      | l Vai      | 1 Arg<br>645 |            | ı Glı      | ı Glu      | ı Ly:      | 650   |            | ı Ly: | s Glı      | ı Le       | u Trj<br>65 | p Asn<br>5 |      |
| CT  | CTY        | G AA       | g at       | T GC         | r TGI      | DA 7       | C AAC      | G GTV      | c cgʻ | r GG'      | r cc  | T GT       | C AG       | T GG        | A AGC      | 2016 |
|     |            |            |            |              |            |            |            |            |       |            |       |            |            |             |            |      |

| Leu               | Leu                | Lys                | Ile<br>660          | Ala                  | Cys                  | Ser                   | Lys                | Val<br>665           | Arg               | Gly                | Pro                | o Val                 | 67(               | G1                | у S                 | er                    |      |
|-------------------|--------------------|--------------------|---------------------|----------------------|----------------------|-----------------------|--------------------|----------------------|-------------------|--------------------|--------------------|-----------------------|-------------------|-------------------|---------------------|-----------------------|------|
| CCG<br>Pro        | GAT<br>Asp         | AGC<br>Ser<br>675  | ATG<br>Met          | AAT<br>Asn           | GCC<br>Ala           | TCT<br>Ser            | CGA<br>Arg<br>680  | CTT<br>Leu           | AGC<br>Ser        | CAC<br>Glr         | G CC'              | r GG(<br>5 Gl)<br>689 | y Gli             | n Le              | rg A<br>eu M        | .TG<br>let            | 2064 |
| TCT<br>Ser        | CAG<br>Gln<br>690  | Pro                | TCC<br>Ser          | ACG<br>Thr           | GCC<br>Ala           | TCC<br>Ser<br>695     | AAC<br>Asn         | AGC<br>Ser           | TTA<br>Leu        | CC'                | r GA<br>o Gl<br>70 | u Pr                  | A GCO             | C A               | AG <i>P</i><br>ys I | AG<br>Lys             | 2112 |
| AGT<br>Ser<br>705 | Glu                | GAA                | . CTG<br>Leu        | GTG<br>Val           | GCT<br>Ala<br>710    | GAA<br>Glu            | GCA<br>Ala         | CAT                  | AAC               | CT<br>Le<br>71     | u Cy               | C AC                  | C CT              | G C<br>u L        | eu (                | GAA<br>Glu<br>720     | 2160 |
| AAT<br>Asn        | GCC                | TA C               | A CAC               | GAC<br>Asp<br>725    | ACT<br>Thr           | GTG<br>Val            | AGG<br>Arg         | GAA<br>Glu           | CA/<br>Glr<br>730 | ı As               | .C C.A<br>p Gl     | AG AG<br>in S∈        | or TT<br>er Ph    | ne T              | CG (<br>hr .        | GCC<br>Ala            | 2208 |
| CTA<br>Lev        | A GAG              | TG(                | S AG0<br>Sei<br>740 | Tr                   | TTA                  | CAG<br>Gln            | ACC<br>Thr         | GAA<br>Glu<br>749    | ı Gl              | A GA<br>u Gl       | A GA<br>Lu G       | AG CA                 | is Se             | GC T<br>er C      | rgc<br>Ys           | CTG<br>Leu            | 2256 |
| GAC<br>Glu        | G CA<br>1 Gl       | G GC<br>n Al<br>75 | a Se                | A TGC<br>r Tri       | GTA<br>Val           | CCC<br>Pro            | CGC<br>Arg         | g Ala                | C CG<br>a Ar      | G GA               | AT CO              | ro P                  | CG G'<br>ro V     | TC (              | GCC<br>Ala          | ACC<br>Thr            | 2304 |
| ATY<br>Me         | G GT<br>t Va<br>77 | l Se               | C AA<br>r Ly        | G GGG<br>S Gl        | C GAC<br>y Glu       | G GAG<br>L Glu<br>77! | ı Le               | G TT<br>u Ph         | C AC              | C G(<br>ir G)      | ly V               | TG G<br>al V<br>80    | TG C              | cc .<br>ro        | ATC<br>Ile          | CTG<br>Leu            | 2352 |
| GT<br>Va<br>78    | 1 G]               | G CT<br>u Le       | 'G GA<br>eu As      | c GG<br>p Gl         | C GAG<br>y Ası<br>79 | p Va                  | A AA<br>l As       | C GG<br>n Gl         | C CA<br>y Hi      | s L                | AG T<br>ys F<br>95 | TC A<br>he S          | GC G              | TG<br>al          | TCC<br>Ser          | GGC<br>Gly<br>800     | 2400 |
| GA<br>G1          | .G G(<br>u G)      | GC GA              | .u G1               | GA<br>Y As<br>80     |                      | C AC<br>a Th          | C TA<br>r Ty       | c GG<br>r Gl         | уL                | AG C<br>Ys L<br>10 | TG A               | ACC C                 | CTG A<br>Leu I    | AAG<br>Lys        | TTC<br>Phe<br>815   | ITE                   | 2448 |
| C.Z.              | C A                | CC AC              | nr G                | €C AA<br>Ly Ly<br>00 | G CT<br>'s Le        | G CC                  | C G1<br>O Vē       | al Pi                | CC TY<br>CO T:    | 3G C<br>rp F       | ecc i              | ACC (                 | Leu '             | GTG<br>Val<br>830 | ACC<br>Thr          | ACC<br>Thr            | 2496 |
| C7<br>Le          | rG A<br>eu T       | hr T               | AC G<br>yr G<br>35  | GC G1<br>ly Va       | rg CA<br>al Gl       | G TC                  | s Pl               | rc AG<br>ne Se<br>40 | GC C<br>er A      | GC :               | rac (<br>Tyr       | Pro .                 | GAC<br>Asp<br>845 | CAC<br>His        | ATC                 | AAG<br>Lys            | 2544 |
| C:<br>G           | ln H               | AC G<br>lis A      | AC T<br>sp P        | TC T'<br>he Pl       | IC AA                | ys Se                 | cc G<br>er A<br>55 | CC A                 | TG C<br>et F      | cc (               | GAA<br>Glu         | GGC<br>Gly<br>860     | TAC<br>Tyr        | GTC<br>Val        | CA(                 | G GAG<br>n Glu        | 2592 |
| A                 | GC A<br>rg 1<br>65 | CC A               | TC T                | TC T                 | he L                 | AG G<br>ys A<br>70    | AC G<br>sp A       | AC G<br>sp G         | GC A              | Asn                | TAC<br>Tyr<br>875  | AAG<br>Lys            | ACC<br>Thr        | CGC               | GC Al               | C GAG<br>a Glu<br>880 | 2640 |

| GTG<br>Val        | AAG<br>Lys        | TTC<br>Phe        | GAG<br>Glu        | GGC<br>Gly<br>885 | GAC<br>Asp        | ACC<br>Thr        | CTG<br>Leu        | GTG<br>Val        | AAC<br>Asn<br>890 | CGC<br>Arg        | ATC<br>Ile        | GAG<br>Glu            | CTG<br>Leu        | AAG<br>Lys<br>895 | GGC<br>Gly        | 2688 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------------|-------------------|-------------------|-------------------|------|
| ATC<br>Ile        | GAC<br>Asp        | TTC<br>Phe        | AAG<br>Lys<br>900 | GAG<br>Glu        | GAC<br>Asp        | GGC<br>Gly        | AAC<br>Asn        | ATC<br>Ile<br>905 | CTG<br>Leu        | GGG<br>Gly        | CAC<br>His        | AAG<br>Lys            | CTG<br>Leu<br>910 | GAG<br>Glu        | TAC<br>Tyr        | 2736 |
| AAC<br>Asn        | TAC<br>Tyr        | AAC<br>Asn<br>915 | AGC<br>Ser        | CAC<br>His        | AAC<br>Asn        | GTC<br>Val        | ТАТ<br>Туг<br>920 | ATC<br>Ile        | ATG<br>Met        | GCC<br>Ala        | GAC<br>Asp        | AAG<br>Lys<br>925     | CAG<br>Gln        | AAG<br>Lys        | AAC<br>Asn        | 2784 |
| GGC<br>Gly        | ATC<br>Ile<br>930 | AAG<br>Lys        | GTG<br>Val        | AAC<br>Asn        | TTC<br>Phe        | AAG<br>Lys<br>935 | ATC<br>Ile        | CGC<br>Arg        | CAC<br>His        | AAC<br>Asn        | ATC<br>Ile<br>940 | Glu                   | GAC<br>Asp        | GGC<br>Gly        | AGC<br>Ser        | 2832 |
| GTG<br>Val<br>945 | Gln               | CTC               | GCC<br>Ala        | GAC<br>Asp        | CAC<br>His<br>950 | TAC<br>Tyr        | CAG<br>Gln        | CAG<br>Gln        | AAC<br>Asn        | ACC<br>Thr<br>955 | Pro               | ATC                   | GGC<br>Gly        | GAC<br>Asp        | GGC<br>Gly<br>960 | 2880 |
| CCC<br>Pro        | GTG<br>Val        | CTC<br>Leu        | CTG               | CCC<br>Pro<br>965 | Asp               | AAC<br>Asn        | CAC<br>His        | TAC<br>Tyr        | CTG<br>Lev<br>970 | . Ser             | Thr               | CAC<br>Glr            | TCC<br>Ser        | GCC<br>Ala<br>975 | CTG<br>Leu        | 2928 |
| AGC<br>Sei        | AAA<br>Lys        | GAC               | 980               | Asr               | GAG               | AAC<br>Lys        | G CGC             | GAT<br>Asp<br>989 | o His             | ATC<br>Met        | GTY<br>Val        | CTC                   | CTO<br>Let<br>990 | ı Glu             | TTC Phe           | 2976 |
| GT(<br>Va         | G ACC             | GCC<br>Ala<br>991 | a Ala             | GGC<br>Gly        | ATC               | C ACT             | r CTO             | u Gl              | C ATO             | G GAC             | GAG               | G CTO<br>u Leo<br>100 | u Ty              | C AAG             | G TAA             | 3024 |

## (2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1007 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

 Met
 Ser
 Trp
 Ser
 Leu
 Thr
 Thr
 Gln
 Thr
 Cys
 Gly
 Ala
 Trp
 Glu

 Met
 Lys
 Glu
 Arg
 Leu
 Gly
 Thr
 Gly
 Phe
 Gly
 Asn
 Val
 Ile
 Arg
 Trp

 Mis
 Asn
 Glu
 Thr
 Gly
 Glu
 Ile
 Lys
 Gln
 Cys
 Arg
 Gln

 Glu
 Leu
 Glu
 Arg
 Arg
 Arg
 Arg
 Arg
 Glu
 Arg
 Fre
 Glu
 Arg
 Ile
 Arg
 Glu
 Ile
 Arg
 Ile
 Arg
 Ile
 Arg
 Glu
 Ile
 Arg
 Arg
 Ile
 Arg
 Ile

|      | 50    |            |            |            |           | 55  |            |            |           |     | 60  |            |            |           |               |
|------|-------|------------|------------|------------|-----------|-----|------------|------------|-----------|-----|-----|------------|------------|-----------|---------------|
| 65   | Arg   |            |            |            | His<br>70 | Pro |            |            |           | 75  |     |            |            |           | 80            |
| Glu  | Gly   | Met        | Gln        | Asn<br>85  | Leu .     | Ala | Pro        | Asn        | Asp<br>90 | Leu | Pro | Leu        | Leu        | Ala<br>95 | Met           |
| Glu  | Tyr   | Cys        | Gln<br>100 | Gly        | Gly       | Asp | Leu        | Arg<br>105 | Lys       | Tyr | Leu | Asn        | Gln<br>110 | Phe       | Glu           |
| Asn  | Cys   | Cys<br>115 |            | Leu        | Arg       | Glu | Gly<br>120 | Ala        | Ile       | Leu | Thr | Leu<br>125 | Leu        | Ser       | Asp           |
|      | 130   |            |            | Leu        |           | 135 |            |            |           |     | 140 |            |            |           |               |
| 145  |       |            |            | Glu        | 150       |     |            |            |           | 155 |     |            |            |           | 160           |
|      |       |            |            | Ile<br>165 |           |     |            |            | 170       |     |     |            |            | 175       |               |
|      |       |            | 180        | Ser        |           |     |            | 185        |           |     |     |            | 190        |           |               |
|      |       | 195        |            |            |           |     | 200        |            |           |     |     | 205        |            |           | Phe           |
|      | 210   |            |            |            |           | 215 |            |            |           |     | 220 | )          |            |           | Pro           |
| 225  |       |            |            |            | 230       |     |            |            |           | 235 | 5   |            |            |           | 240           |
|      |       |            |            | 245        |           |     |            |            | 250       | )   |     |            |            | 255       |               |
|      |       |            | 260        | )          |           |     |            | 265        | )         |     |     |            | 270        | )         | Arg           |
|      |       | 275        | 5          |            |           |     | 280        |            |           |     |     | 285        | 5          |           | n Arg         |
|      | 290   | )          |            |            |           | 295 | •          |            |           |     | 300 | 0          |            |           | r Gly         |
| 305  | 5     |            |            |            | 310       | 1   |            |            |           | 31  | 5   |            |            |           | 320<br>r Leu  |
|      |       |            |            | 325        | 5         |     |            |            | 3.3       | 0   |     |            |            | 33        | 5<br>n Glu    |
|      |       |            | 340        | C          |           |     |            | 34         | 5         |     |     |            | 35         | O         | a Thr         |
|      |       | 35         | 5          |            |           |     | 360        | )          |           |     |     | 36         | 5          |           | p Met         |
|      | 37    | 0          |            |            |           | 379 | 5          |            |           |     | 38  | 0          |            |           | ır Gln        |
| 38   | 5     |            |            |            | 390       | )   |            |            |           | 39  | 5   |            |            |           | 400<br>n Glu  |
|      |       |            |            | 40         | 5         |     |            |            | 41        | .0  |     |            |            | 41        | .5<br>.y Gln  |
|      |       |            | 42         | 0          |           |     |            | 42         | 5         |     |     |            | 43         | 30        | eu Gln        |
|      |       | 43         | 5          |            |           |     | 44         | 0          |           |     |     | 4.4        | 15         |           | er Cys        |
|      | 45    | 0          |            |            |           | 45  | 5          |            |           |     | 46  | 50         |            |           | eu Lys        |
| 46   | 55    |            |            |            | 47        | 0   |            |            |           | 4   | 75  |            |            |           | 480<br>lu Lys |
| 25.1 | .a ∟} | /o ⊥€      | u As       | וום ש      |           | و ت |            |            |           |     |     |            | -          |           |               |

490 485 Tyr Ser Glu Gln Thr Glu Phe Gly Ile Thr Ser Asp Lys Leu Leu 505 Ala Trp Arg Glu Met Glu Gln Ala Val Glu Leu Cys Gly Arg Glu Asn 520 Glu Val Lys Leu Leu Val Glu Arg Met Met Ala Leu Gln Thr Asp Ile 535 540 Val Asp Leu Gln Arg Ser Pro Met Gly Arg Lys Gln Gly Gly Thr Leu 555 550 Asp Asp Leu Glu Glu Gln Ala Arg Glu Leu Tyr Arg Arg Leu Arg Glu 570 Lys Pro Arg Asp Gln Arg Thr Glu Gly Asp Ser Gln Glu Met Val Arg 585 580 Leu Leu Cln Ala Ile Gln Ser Phe Glu Lys Lys Val Arg Val Ile 600 Tyr Thr Gln Leu Ser Lys Thr Val Val Cys Lys Gln Lys Ala Leu Glu 620 615 Leu Leu Pro Lys Val Glu Glu Val Val Ser Leu Met Asn Glu Asp Glu 635 630 Lys Thr Val Val Arg Leu Gln Glu Lys Arg Gln Lys Glu Leu Trp Asn 645 650 Leu Leu Lys Ile Ala Cys Ser Lys Val Arg Gly Pro Val Ser Gly Ser 665 Pro Asp Ser Met Asn Ala Ser Arg Leu Ser Gln Pro Gly Gln Leu Met 685 680 Ser Gln Pro Ser Thr Ala Ser Asn Ser Leu Pro Glu Pro Ala Lys Lys 695 Ser Glu Glu Leu Val Ala Glu Ala His Asn Leu Cys Thr Leu Leu Glu 715 710 Asn Ala Ile Gln Asp Thr Val Arg Glu Gln Asp Gln Ser Phe Thr Ala 725 730 Leu Asp Trp Ser Trp Leu Gln Thr Glu Glu Glu Glu His Ser Cys Leu 745 Glu Gln Ala Ser Trp Val Pro Arg Ala Arg Asp Pro Pro Val Ala Thr 760 Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu 775 Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly 795 790 Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile 810 805 Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr 825 Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys 845 840 Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu 855 Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu 875 870 Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly 890 885 Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr 900 905 Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn 

 915
 920
 925

 Gly
 11e
 Lys
 Val
 Asn
 Phe
 Lys
 11e
 Arg
 His
 Asn
 His
 Asn
 His
 Asn
 His
 Cly
 Asn
 His
 Thr
 Pro
 Pro
 Inch
 Asn
 As

## (2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 31 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GTAAGCTTAC ATGAGCTGGT CACCTTCCCT G

- (2) INFORMATION FOR SEQ ID NO:4:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 25 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

GTGGTACCCA TGAGGCCTGC TCCAG

AN IMPROVED METHOD for extracting quantitative information relating to an influence on a cellular response.

## SUMMARY OF THE INVENTION

5

10

30

The present invention relates to an improved method and tools for extracting quantitative information relating to an influence on a cellular response, in particular an influence caused by contacting or incubating the cell with a substance influencing a cellular response, wherein the cellular response is manifested in redistribution of at least one component in the cell. In particular, the invention relates to an improved method for extracting the quantitative information relating to an influence on an intracellular pathway involving redistribution of at least one component associated with the pathway. The method of the invention may be used as a very efficient procedure for testing or discovering the influence of a substance on a physiological process, for example in connection with screening for new drugs, testing of substances for toxicity, identifying drug targets for known or novel drugs. In particular, the present invention relates to an 15 improved method for parallelisation of the testing procedure so that a large number of substances can be tested simultaneously using commercially available instrumentation. The invention also describes several ways of contacting the cells with a substance influencing a cellular response and modifications made to the actual cells before, during or after contacting the cells with these substances as to improve the applicability and use of 20 the method for extracting quantitative information relating to influence on an intracellular pathway in a highly parallel fashion. Other valuable uses of the method and technology of the invention will be apparent to the skilled person on the basis of the following disclosure. In a particular embodiment of the invention, the present invention relates to a method of detecting intracellular translocation or redistribution of biologically active polypeptides, 25 preferably an enzyme, affecting intracellular processes, and a DNA construct and a cell for use in the method.

Two appendices are included herein, and are considered part of the application. Appendix I, "METHOD AND APPARATUS FOR HIGH DENSITY FORMAT SCREENING FOR BIOACTIVE MOLECULES", is a pending patent application. Appendix II, "CHANGES

IN INTRACELLULAR cAMP VISUALIZED USING A cAMP-DEPENDENT PROTEIN KINASE-GREEN FLUORESCENT PROTEIN HYBRID", is a manuscript intended for publication.

### 5 BACKGROUND OF THE INVENTION

10

15

Intracellular pathways are tightly regulated by a cascade of components that undergo modulation in a temporally and spatially characteristic manner. Several disease states can be attributed to altered activity of individual signalling components (i.e. protein kinases, protein phosphatases, transcription factors). These components therefore render themselves as attractive targets for therapeutic intervention.

Protein kinases and phosphatases are well described components of several intracellular signalling pathways. The catalytic activity of protein kinases and phosphatases are assumed to play a role in virtually all regulatable cellular processes. Although the involvement of protein kinases in cellular signalling and regulation have been subjected to extensive studies, detailed knowledge on e.g. the exact timing and spatial characteristics of signalling events is often difficult to obtain due to lack of a convenient technology.

Novel ways of monitoring specific modulation of intracellular pathways in intact, living cells is assumed to provide new opportunities in drug discovery, functional genomics, toxicology, patient monitoring etc.

The spatial orchestration of protein kinase activity is likely to be essential for the high degree of specificity of individual protein kinases. The phosphorylation mediated by protein kinases is balanced by phosphatase activity. Also within the family of phosphatases translocation has been observed, e.g. translocation of PTP2C to membrane ruffles [(Cossette et al. 1996)], and likewise is likely to be indicative of phosphatase activity.

25 Protein kinases often show a specific intracellular distribution before, during and after activation. Monitoring the translocation processes and/or redistribution of individual protein kinases or subunits thereof is thus likely to be indicative of their functional activity. A connection between translocation and catalytic activation has been shown for

protein kinases like the diacyl glycerol (DAG)-dependent protein kinase C (PKC), the cAMP-dependent protein kinase (PKA) [(DeBernardi *et al.* 1996)] and the mitogenactivated-protein kinase Erk-1 [(Sano *et al.* 1995)].

Commonly used methods of detection of intracellular localisation/activity of protein kinases and phosphatases are immunoprecipitation, Western blotting and immunocytochemical detection.

Taking the family of diacyl glycerol (DAG)-dependent protein kinase Cs (PKCs) as an example, it has been shown that individual PKC isoforms that are distributed among different tissues and cells have different activator requirements and undergo differential translocation in response to activation. Catalytically inactive DAG-dependent PKCs are generally distributed throughout the cytoplasm, whereas they upon activation translocate to become associated with different cellular components, e.g. plasma membrane [(Farese, 1992),(Fulop Jr. et al.1995)] nucleus [(Khalil et al.1992)], cytoskeleton [(Blobe et al. 1996)]. The translocation phenomenon being indicative of PKC activation has been monitored using different approaches: a) immunocytochemistry where the localisation of individual isoforms can be detected after permeabilisation and fixation of the cells [(Khalil et al. 1992)]; and b) tagging all DAG-dependent PKC isoforms with a fluorescently labelled phorbol myristate acetate (PMA) [(Godson et al. 1996)]; and c) chemical tagging of PKC \$1 with the fluorophore Cy3 [(Bastiaens & Jovin 1996)] and d) genetic tagging of PKC  $\alpha$ ([Schmidt et al. 1997]) and of PKC  $\gamma$  and PKC  $\delta$  [(Sakai et al. 1996)]. The first method does not provide dynamic information whereas the latter methods will. Tagging PKC with fluorescently labelled phorbol myristate acetate cannot distinguish between different DAG-dependent isoforms of PKC but will label and show movement of all isoforms. Chemical and genetic labelling of specific DAG-dependent PKCs confirmed that they in an isoform specific manner upon activation move to cell periphery or nucleus.

In an alternative method, protein kinase A activity has been measured in living cells by chemical labelling one of the kinase's subunit [(Adams *et al.*1991)]. The basis of the methodology is that the regulatory and catalytic subunit of purified protein kinase A is labelled with fluorescein and rhodamine, respectively. At low cAMP levels protein kinase A is assembled in a heterotetrameric form which enables fluorescence resonance energy

10

15

20

25

transfer between the two fluorescent dyes. Activation of protein kinase A leads to dissociation of the complex, thereby eliminating the energy transfer. A disadvantage of this technology is that the labelled protein kinase A has to be microinjected into the cells of interest. This highly invasive technique is cumbersome and not applicable to large scale screening of biologically active substances. A further disadvantage of this technique as compared to the presented invention is that the labelled protein kinase A cannot be inserted into organisms/animals as a transgene.

Recently it was discovered that Green Fluorescent Protein (GFP) expressed in many different cell types, including mammalian cells, became highly fluorescent [(Chalfie et al.1994)]. WO95/07463 describes a cell capable of expressing GFP and a method for detecting a protein of interest in a cell based on introducing into a cell a DNA molecule having DNA sequence encoding the protein of interest linked to DNA sequence encoding a GFP such that the protein produced by the DNA molecule will have the protein of interest fused to the GFP, then culturing the cells in conditions permitting expression of the fused protein and detecting the location of the fluorescence in the cell, thereby localizing the protein of interest in the cell. However, examples of such fused proteins are not provided, and the use of fusion proteins with GFP for detection or quantitation of translocation or redistribution of biologically active polypeptides affecting intracellular processes upon activation, such as proteins involved in signalling pathways, e.g. protein kinases or phosphatases, has not been suggested. WO 95/07463 further describes cells useful for the detection of molecules, such as hormones or heavy metals, in a biological sample, by operatively linking a regulatory element of the gene which is affected by the molecule of interest to a GFP, the presence of the molecules will affect the regulatory element which in turn will affect the expression of the GFP. In this way the gene encoding GFP is used as a reporter gene in a cell which is constructed for monitoring the presence of a specific molecular identity.

Green Fluorescent Protein has been used in an assay for the detection of translocation of the glucocorticoid receptor (GR) [(Carey, KL et al.1996)]. A GR-S65TGFP fusion has been used to study the mechanisms involved in translocation of the glucocorticoid receptor (GR) in response to the agonist dexamethasone from the cytosol, where it is present in the absence of a ligand, through the nuclear pore to the nucleus where it remains after ligand

30

10

15

20

binding. The use of a GR-GFP fusion enables real-time imaging and quantitation of nuclear/cytoplasmic ratios of the fluorescence signal. A similar genetic construct has been used to follow and quantify dexamethasone induced translocation of GR to the nucleus in HeLa cells [(Guiliano, K.A et al. 1997)] in a system called Array Scan<sup>TM</sup> (WO 97/45730) designed for automated drug screening. Recently, several other investigators have demonstrated that tagging a specific protein (or part of a protein) involved in an intracellular signalling pathway with GFP provides a new means to measure and quantify the influence of substances on this pathway. The concept has been shown to work both for cytoplasmic to nuclear translocation of the androgen receptor [(Georget V et al. 1997)] and transcription factors such as NF-ATc [(Beals CR et al. 1997)] in analogy with what has already been described for GR above. Another relevant example is a  $\beta$ -arrestin – GFP construct that was shown to report on activation of G-protein coupled receptors by translocating from the cytosol to the plasma membrane [(Barak LS et al. 1997)]. Finally, it has also been demonstrated that attaching GFP to a smaller part of a protein like the pleckstrin homology domain of phospholipase C & 1 [(Stauffer TP et al. 1998)] and a cysteine-rich domain of PKC y [(Oancea E et al. 1998)] can be used to report on an influence from a substance by quantifying their redistribution within the cells during activation of the specific signalling pathway to which they belong.

Many currently used screening programmes designed to find compounds that affect protein kinase activity are based on measurements of kinase phosphorylation of artificial or natural substrates, receptor binding and/or reporter gene expression. The interest in fluorescence measurements as the basis for future high-throughput drug screening has however increased dramatically over the last few years [(Silverman L *et al.* 1998)]. Of particular interest to the present invention is a scanning laser imager for rapid screening of fluorescence changes in living cells [(Schroeder K & Neagle B 1996)] currently offered commercially by Molecular Devices, Inc. as the FLIPR<sup>TM</sup>.

# DETAILED DESCRIPTION OF THE INVENTION

The present invention provides an important new dimension in the investigation of cellular systems involving redistribution in that the invention provides quantification of the

10

15

20

25

redistribution responses or events caused by an influence, typically contact with a chemical substance or mixture of chemical substances, but also changes in the physical environment. The quantification makes it possible to set up meaningful relationships, expressed numerically, or as curves or graphs, between the influences (or the degree of influences) on cellular systems and the redistribution response. This is highly advantageous because, as has been found, the quantification can be achieved in both a fast and reproducible manner, and - what is perhaps even more important - the systems which become quantifiable utilising the method of the invention are systems from which enormous amounts of new information and insight can be derived.

The present screening assays have the distinct advantage over other screening assays, e.g., receptor binding assays, enzymatic assays, and reporter gene assays, in providing a system in which biologically active substances with completely novel modes of action, e.g. inhibition or promotion of redistribution/translocation of a biologically active polypeptide as a way of regulating its action rather than inhibition/activation of enzymatic activity, can be identified in a way that insures very high selectivity to the particular isoform of the biologically active polypeptide and further development of compound selectivity versus other isoforms of the same biologically active polypeptide or other components of the same signalling pathway.

In its broadest aspect, the invention relates to an improved method, with higher throughput compared to previous methods, for extracting quantitative information relating to an influence on a cellular response, the method comprising recording variation, caused by the influence on mechanically intact living cells, in spatially distributed light emitted from a luminophore, the luminophore being present in the cells and being capable of being redistributed in a manner which is related with the degree of the influence, and/or of being modulated by a component which is capable of being redistributed in a manner which is related to the degree of the influence, the association resulting in a modulation of the luminescence characteristics of the luminophore, detecting and recording the spatially distributed light from the luminophore, and processing the recorded variation in the spatially distributed light to provide quantitative information correlating the spatial distribution or change in the spatial distribution to the degree of the influence. In one aspect of the present invention the mechanically intact living cell is permeabilised at some

5

10

15

20

25

time after the influence has begun but during or before the actual experimental recording. In another aspect, the present invention relates to an improved method for extracting quantitative information relating to an influence on a cellular response, the method comprising recording variation, caused by the influence on permeabilised living cells, in spatially distributed light emitted from a luminophore, the luminophore being present in the cells and being capable of being redistributed in a manner which is related with the degree of the influence, and/or of being modulated by a component which is capable of being redistributed in a manner which is related to the degree of the influence, the association resulting in a modulation of the luminescence characteristics of the luminophore, detecting and recording the spatially distributed light from the luminophore, and processing the recorded variation in the spatially distributed light to provide quantitative information correlating the spatial distribution or change in the spatial distribution to the degree of the influence. In a preferred embodiment of the invention the luminophore, which is present in the cells, is capable of being redistributed by modulation of an intracellular pathway, in a manner which is related to the redistribution of at least one component of the intracellular pathway. In another preferred embodiment of the invention, the luminophore is a fluorophore.

In the invention the cell and/or cells are mechanically intact and alive throughout the experiment. In another embodiment of the invention, the cells are fixed at a point in time after the application of the influence at which the response has been predetermined to be significant, and the recording is made at an arbitrary later time. In another embodiment the cell and/or cells are mechanically intact and alive throughout the experiment but are mechanically or chemically disrupted or permeabilised as the initial step of experimental analysis. In another aspect of the invention the cells have their plasma membrane permanently and stably permeabilised before the initiation of the experiment in such a way that the plasma membrane stays permeable during the experiment. This allows the components of intracellular pathways to be contacted by substances that are not normally permeating the cell plasma membrane such as peptides, proteins and hydrophilic organic compounds.

The mechanically intact or permeabilised living cells could be selected from the group consisting of fungal cells, such as yeast cells; invertebrate cells including insect cells; and

10

15

20

25

vertebrate cells, such as mammalian cells. These cells are incubated at a temperature of 30°C or above, preferably at a temperature of from 32°C to 39°C, more preferably at a temperature of from 35°C to 38°C, and most preferably at a temperature of about 37°C during the time period over which the influence is observed. In one aspect of the invention the mechanically intact or permeabilised living cell is part of a matrix of identical or non-identical cells. In one embodiment of the invention the cells comprise a group or groups of cells contained within a spatial limitation or spatial limitations. In one embodiment, the cells comprise multiple groups of cells that are qualitatively the same but subjected to different influences. In another embodiment, the cells comprise multiple groups of cells that are qualitatively different but subjected to the same influence.

In one embodiment of the invention the spatial limitations are domains defined on a substrate on which the cells are present. The spatial limitations may be arranged in one or more arrays on a common carrier. The spatial limitations may be wells in a plate of microtiter type, such that 96, 384, 864 and 1536 wells are situated on the common carrier. In another embodiment the spatial limitations are wells in a plate of a format different from the microtiter type. In one embodiment of the invention the domains are established by the presence of the cells on the substrate in a pattern that defines the domains. In another aspect of the invention, the domains are instead established by the spatial pattern or array of the influence or influences as it/they are applied to or contacted by the cells. This aspect is thoroughly described in Appendix I. Briefly, in this aspect of the invention the mechanically intact or permeabilised living cells are part of a continuous or discontinuous sheet of cells cultured on an optically clear flat surface optimised or not for cell culture. The optically clear and flat surface may be a porous membrane that may allow cellular processes to grow through the membrane pores and may allow directed capillary flow of fluid through the pores.

A cell used in the present invention should contain a nucleic acid construct encoding a fusion polypeptide as defined herein and be capable of expressing the sequence encoded by the construct. The cell is a eukaryotic cell selected from the group consisting of fungal cells, such as yeast cells; invertebrate cells including insect cells; vertebrate cells such as mammalian cells. The preferred cells are mammalian cells.

5

10

15

20

25

In another aspect of the invention the cells could be from an organism carrying in at least one of its component cells a nucleic acid sequence encoding a fusion polypeptide as defined herein and be capable of expressing said nucleic acid sequence. The organism is selected from the group consisting of unicellular and multicellular organisms, such as a mammal.

The luminophore is the component that allows the redistribution to be visualised and/or recorded by emitting light in a spatial distribution related to the degree of influence. The term redistribution is intended to cover all aspects of a change in spatial location, such as a translocation of the luminophore or other components. In one embodiment of the invention, the luminophore is capable of being redistributed in a manner that is physiologically relevant to the degree of the influence. It should be understood that redistribution. In another embodiment, the luminophore is capable of associating with a component that is capable of being redistributed in a manner that is physiologically relevant to the degree of the influence. In another embodiment, a correlation between the redistribution of the luminophore and the degree of the influence could be determined experimentally. In a preferred aspect of the invention, the luminophore is capable of being redistributed in substantially the same manner as the at least one component of an intracellular pathway. In another embodiment of the invention, the luminophore is capable of being quenched upon spatial association with a component that is redistributed by modulation of the pathway, the quenching being measured as a change in the intensity of the luminescence. In another embodiment of the invention, the luminophore is stationary but may have a certain spatial distribution, and interacts with at least one component that is capable of being redistributed in a manner which is physiologically relevant to the degree of the influence, in such a way that one or more luminescence characteristics of the luminophore is/are modulated as the component moves closer to, or farther from, the luminophore.

The luminophore could be a fluorophore. In a preferred embodiment of the invention, the luminophore is a polypeptide encoded by and expressed from a nucleotide sequence harboured in the cells. The luminophore could be a hybrid polypeptide comprising a fusion of at least a portion of each of two polypeptides one of which comprises a luminescent polypeptide and the other one of which comprises a biologically active polypeptide, as

22131DK1 Appendix A

5

10

15

20

25

defined herein.

5

10

15

20

25

The luminescent polypeptide could be a GFP as defined herein or could be selected from the group consisting of green fluorescent proteins having the F64L mutation as defined herein such as F64L-GFP, F64L-Y66H-GFP, F64L-S65T-GFP, and EGFP. The GFP could be N- or C-terminally tagged, optionally via a peptide linker, to the biologically active polypeptide or a part or a subunit thereof. The fluorescent probe could be a component of an intracellular signalling pathway. The probe is coded for by a nucleic acid construct.

The pathway of investigation in the present invention could be an intracellular signalling pathway.

In a preferred embodiment of the invention, the influence could be contact between the group or groups of mechanically intact or permeabilised living cells and a chemical substance, and/or incubation of the group or groups of mechanically intact or permeabilised living cells with a chemical substance in solution. In one aspect of the invention that is thoroughly described in Appendix I, the chemical substances are attached to an underlying matrix. In this aspect, the chemical substances may also be produced and secreted from, or attached to the plasma membrane surfaces of, a sheet of genetically engineered cells. In this aspect of the invention the chemical substances may also have been separated two-dimensionally in a non-denaturing gel using electrophoresis and the gel is directly put in close proximity or direct contact with the mechanically intact or permeabilised living cells so that the chemical substances can contact the cells through diffusion or convection.

The influence will modulate the intracellular processes. In one aspect the modulation could be an activation of the intracellular processes. In another aspect the modulation could be a deactivation of the intracellular processes. In yet another aspect, the influence could inhibit or promote the redistribution without directly affecting the metabolic activity of the component of the intracellular processes.

In one embodiment the invention is used to establish a dose-response relationship for one or many chemical substances. In one embodiment the invention is used as a basis for a screening program, where the effect of unknown influences such as a compound library,

can be compared to influence of known reference compounds under standardised conditions.

In addition to the intensity, there are several parameters of fluorescence or luminescence that can be modulated by the effect of the influence on the underlying cellular phenomena, and can therefore be used in the invention. Some examples are resonance energy transfer, fluorescence lifetime, polarisation, and wavelength shift. Each of these methods requires a particular kind of filter in the emission light path to select the component of the light desired and reject other components. The recording of property of light could be in the form of an ordered array of values such as a CCD array or a vacuum tube device such as a vidicon. In addition, the translational mobility, or freedom of movement, of the luminophore attached to the protein of interest can be an important property affected by the influence on the underlying cellular phenomena, and can therefore be used in he invention.

In one embodiment of the invention, the spatially distributed light emitted by a luminophore is detected by a change in the resonance energy transfer between the luminophore and another luminescent entity capable of delivering energy to the luminophore, each of which has been selected or engineered to become part of, bound to or associated with particular components of the intracellular pathway. In this embodiment, either the luminophore or the luminescent entity capable of delivering energy to the luminophore undergoes redistribution in response to an influence. The resonance energy transfer would be measured as a change in the intensity of emission from the luminophore, preferably sensed by a single channel photodetector that responds only to the average intensity of the luminophore in a non-spatially resolved fashion.

In one embodiment of the invention, the spatially distributed light emitted by a luminophore includes the case of uniform spatial distribution of the light.

In one aspect of the invention, the luminophore is a fluorophore which redistributes through a non-homogenous excitation light field, resulting in a change in the intensity of the light emitted from the luminophore as a result of the change in the amount of excitation light intensity at different points in the field.

5

10

15

20

In one embodiment of the invention, the recording of the spatially distributed light could be made at a single point in time after the application of the influence. In another embodiment, the recording could be made at two points in time, one point being before, and the other point being after the application of the influence. The result or variation is determined from the change in fluorescence compared to the fluorescence measured prior to the influence or modulation. In another embodiment of the invention, the recording could be performed at a series of points in time, in which the application of the influence occurs at some time after the first time point in the series of recordings, the recording being performed, e.g., with a predetermined time spacing of from 0.1 seconds to 1 hour, preferably from 1 to 60 seconds, more preferably from 1 to 30 seconds, in particular from 1 to 10 seconds, over a time span of from 1 second to 12 hours, such as from 10 seconds to 12 hours, e.g., from 10 seconds to one hour, such as from 60 seconds to 30 minutes or 20 minutes. The result or variation is determined from the change in fluorescence over time. The result or variation could also be determined as a change in the spatial distribution of the fluorescence over time.

In one embodiment the recording comprises a time series of total luminescence of the cells of one or several of the spatial limitations. In one embodiment the signal from all of the spatial limitations, one at a time, is measured by a recording being made in the individual spatial limitations by means of an apparatus to sequentially position each one of the limitations in the field of view of the detector and repeating the positioning and measurement process until all of the spatial limitations have been measured. The detector may be a photomultiplier tube. In a preferred embodiment of the present invention more than one spatial limitation is measured simultaneously. This may be done by means of a one- or two-dimensional array detector, whereby the multiple spatial limitations are imaged onto the array detector such that discrete subsets of the detecting units (pixels) in the array detector measure the signal from one and only one of the multiple spatial limitations, the signal from any one spatial limitation being the combined signal from those pixels that receive the image from one of the spatial limitations. This array detector may be a linear diode array, a video camera (according to any present or future standards and definitions of image acquisition and transmission) or a charge transfer device such as a charge-coupled device (CCD). In one embodiment the recording of signal requires

5

10

15

20

25

illumination of the multiple spatial limitations to excite the luminophores so that they emit light. In one embodiment all of the spatial limitations are simultaneously illuminated during the measurement. In another embodiment the spatial limitations are singly illuminated only during the time in which they are being measured. In a preferred embodiment the illumination is provided by a laser that is scanned in a raster fashion over some or all of the spatial limitations being measured. The scanning may take place at a rate that is substantially faster than the measurement process such that the illumination appears to the measurement process to be continuous in time and spatially uniform over the region being measured.

The recording of spatially distributed luminescence emitted from the luminophore is performed by an apparatus for measuring the distribution of fluorescence in the cells, and thereby any change in the distribution of fluorescence in the cells, which includes at a minimum the following component parts: (a) a light source, (b) a method for selecting the wavelength(s) of light from the source which will excite the luminescence of the luminophore, (c) a device which can rapidly block or pass the excitation light into the rest of the system, (d) a series of optical elements for conveying the excitation light to the specimen, collecting the emitted fluorescence in a spatially resolved fashion, and forming an image from this fluorescence emission (or another type of intensity map relevant to the method of detection and measurement), (e) a bench or stand which holds the container of the cells being measured in a predetermined geometry with respect to the series of optical elements, (f) a detector to record the spatially resolved fluorescence in the form of an image, (g) a computer or electronic system and associated software to acquire and store the recorded images, and to compute the degree of redistribution from the recorded images.

In a preferred embodiment of the invention the apparatus system is automated. In one embodiment the components in d and e mentioned above comprise a fluorescence microscope. In one embodiment the component in f mentioned above is a CCD camera. In one embodiment the component in f mentioned above is an array of photomultiplier tubes/devices.

In one embodiment the image is formed and recorded by an optical scanning system.

In one embodiment the optical scanning system is used to illuminate the bottom of a plate

5

10

15

20

25

of microtiter type so that a time-resolved recording of changes in luminescence or fluorescence can be made from all spatial limitations simultaneously.

In a preferred embodiment the actual luminescence or fluorescence measurements are made in a FLIPR<sup>TM</sup> instrument, commercially available from Molecular Devices, Inc.

In one embodiment of the invention the actual fluorescence measurements are made in a standard type of fluorometer for plates of microtiter type (fluorescence plate reader).

In one embodiment a liquid addition system is used to add a known or unknown compound to any or all of the cells in the cell holder at a time determined in advance. Preferably, the liquid addition system is under the control of the computer or electronic system. Such an automated system can be used for a screening program due to its ability to generate results from a larger number of test compounds than a human operator could generate using the apparatus in a manual fashion.

The methods whereby the detector layer of cells are physically contacted by the compounds can also be of another conceptual type where the compounds are delivered to the cells through a porous membrane by convection/diffusion or by directly contacting compounds attached to an inorganic or organic support (such as glass, plastic or the plasma membrane of intact living cells) with the cells. These methods are thoroughly described in Appendix I, but are also outlined in the following paragraphs.

In one aspect of the present invention where the detector layer of cells is a continuous or discontinuous sheet of cells without any separation into test units or wells. The compounds are printed onto a nonabsorbent sheet of porous material as a solution in solvent and allowed to dry. This printed sheet of compounds then defines the test pattern for the experiment as it is brought down in close proximity to or in direct contact with the underlying detector layer of cells. The compounds, now dissolved by the fluid layer on the cells, is brought in contact with the cells through the pores of the membrane by convection. The porous membrane onto which the compounds are printed is optically clear and preferably composed as stated in Appendix I. In another embodiment of this aspect of the present invention the detector layer of cells is a continuous or discontinuous sheet of cells, without any separation into test units or wells, growing on a porous and optically clear

10

15

20

membrane preferably of the types mentioned above. The porous membrane may allow the cells to send cellular processes through the pores of the membrane. The compounds are printed onto an optically clear substratum such as glass, plastic or quartz as solutions in solvent and allowed to dry. At the time of the experiment the cell sheet on the membrane, surrounded by a thin film of fluid, is layered ontop of the printed compound pattern. The compounds then dissolve and contact the cells via diffusion and convection. The compounds may be made using combinatorial chemistry techniques, and may be peptides. The compounds may be covalently attached to the optically clear substratum or porous membrane. The compounds may also be proteins, polypeptides or peptides secreted by or attached to the plasma membrane of genetically modified cells growing as a continuous or discontinuous sheet on a flat optically clear surface or an optically clear porous membrane.

The recording of the variation or result with respect to light emitted from the luminophore is performed by recording the spatially distributed light as one or more digital images, and the processing of the recorded variation to reduce it to one or more numbers representative of the degree of redistribution comprises a digital image processing procedure or combination of digital image processing procedures. The quantitative information which is indicative of the degree of the cellular response to the influence or the result of the influence on the intracellular pathway is extracted from the recording or recordings according to a predetermined calibration based on responses or results, recorded in the same manner, to known degrees of a relevant specific influence. This calibration procedure is developed according to principles described below (Developing an Image-based Assay Technique). Specific descriptions of the procedures for particular assays are given in the examples.

While the stepwise procedure necessary to reduce the image or images to the value representative of the response caused by the influence is particular to each assay, the individual steps are generally well-known methods of image processing. Some examples of the individual steps are point operations such as subtraction, ratioing, and thresholding, digital filtering methods such as smoothing, sharpening, and edge detection, spatial frequency methods such as Fourier filtering, image cross-correlation and image autocorrelation, object finding and classification (blob analysis), and colour space manipulations for visualisation. In addition to the algorithmic procedures, heuristic

5

10

15

20

25

methods such as neural networks may also be used. In a preferred embodiment of the invention, a dose-response relationship is established based on quantification of the responses caused by a particular influence, representative of the underlying intracellular signalling process, using the methods described above and in examples 1-22 and 25. The dose-response relationship for the particular influence is then compared to the dose-response relationship obtained by performing the same assay in an instrument which allows parallel monitoring of all wells in a microtiter plate such as a FLIPR<sup>TM</sup> or an ordinary fluorescence plate reader for microtiter plates. If a good correlation between the dose-response relationships obtained from the two different measurement systems is obtained, it can be said that the parallel measurement mode has been validated (see examples 23 and 24). This implies that it can be used as the primary basis for a screening assay with the potential benefit of screening a significantly higher number of substances per unit of time for their influence on the response.

Imaging plate readers integrate the signal from each well into a single value per time point. Thus the data resulting from a single "run" of the instrument is a set of time series of single values, one for each well, with the injection of the test compound taking place at a known point in the time series. The primary advantage of this type of instrumentation is that it greatly increases the number of samples that can be processed in a given amount of time (the throughput). This is of great advantage when using the assay in a screening program for new pharmaceutical lead compounds.

The first step in the data analysis is to normalise the results from each well so that they can be compared with each other or with previously analysed known compounds. This always begins with correcting the signal by subtracting the instrument bias from all data points on a well-by-well basis. From this point, either of two techniques can be followed depending on the design of the assay:

Procedure 1: The average of the signal prior to the addition of the test compound is subtracted from all data points on a well-by-well basis.

Procedure 2: The data are corrected for any known background by subtracting the background value from all data points on a well-by-well basis. The resulting background-corrected data are normalised by dividing each data set by the average of the data values

10

15

20

25

prior to the injection of the test compound on a well-by-well basis.

5

15

20

25

The corrected or normalised time series data sets are then further reduced by a technique that converts the time series to a single value. There are at least three such approaches:

- 1. For transient responses, the maximum deviation from the baseline is determined. This is also known as the "peak height" technique.
  - 2. Alternatively, the signal is integrated over time between pre-defined limits. If the data were treated according to Procedure 2 above, then the offset is subtracted such that the integral of a non-response is zero within the limit of measurement error. This is also known as the "peak area" technique.
- 3. If the response is a cumulative one, e.g., an exponential change to a new level, the result is taken as the either the difference or the ratio between the signal after a predetermined time and the signal prior to the addition of the test compound.

All of the above procedures reduce the data for a given well to one or more single values. For screening purposes, these values will be searched for those that are greater than a certain statistically determined cut-off value. For characterisation, the values represent a quantitative response, and are further treated in sets by techniques such as dose-response curve fitting.

In another embodiment of the invention, the measurement of redistribution is accomplished indirectly by taking advantage of the fact that in order for redistribution to occur, the probe will experience some change in its freedom, or restriction, of movement within the intracellular milieu. The degree of translocation will correlate with the amount of freely mobile luminophore in the cytoplasm. At a point in time after the test compound has begun to have any influence it may have, the amount or fraction of restricted luminophore can be measured by disrupting or permeabilising the plasma membrane of the cells and allowing the freely mobile luminophore to diffuse away. If the detection volume of the detector is limited to the region immediately surrounding the cells, and the overall volume into which the freely mobile luminophore can diffuse is much larger, then the freely mobile luminophore essentially disappears from the detector's view and its signal is

not recorded.

5

10

15

20

In one aspect of the invention, the above mentioned measurement of redistribution is made on cells with permanently permeabilised plasma membranes immersed in a solution mimicking the cytoplasmic environment. In this way the influence of compounds that can normally not enter the cytoplasm of cells can be tested.

The nucleic acid constructs used in the present invention encode in their nucleic acid sequences fusion polypeptides comprising a biologically active polypeptide that is a component of an intracellular signalling pathway, or a part thereof, and a GFP, preferably an F64L mutant of GFP, N- or C-terminally fused, optionally via a peptide linker, to the biologically active polypeptide or part thereof.

In one embodiment the biologically active polypeptide encoded by the nucleic acid construct is a protein kinase or a phosphatase.

In one embodiment the biologically active polypeptide encoded by the nucleic acid construct is a transcription factor or a part thereof which changes cellular localisation upon activation.

In one embodiment the biologically active polypeptide encoded by the nucleic acid construct is a protein, or a part thereof, which is associated with the cytoskeletal network and which changes cellular localisation upon activation.

In one embodiment the biologically active polypeptide encoded by the nucleic acid construct is a protein kinase or a part thereof which changes cellular localisation upon activation.

In one embodiment the biologically active polypeptide encoded by the nucleic acid construct is a serine/threonine protein kinase or a part thereof capable of changing intracellular localisation upon activation.

In one embodiment the biologically active polypeptide encoded by the nucleic acid construct is a tyrosine protein kinase or a part thereof capable of changing intracellular localisation upon activation.

In one embodiment the biologically active polypeptide encoded by the nucleic acid construct is a phospholipid-dependent serine/threonine protein kinase or a part thereof capable of changing intracellular localisation upon activation.

In one embodiment the biologically active polypeptide encoded by the nucleic acid construct is a cAMP-dependent protein kinase or a part thereof capable of changing cellular localisation upon activation. In a preferred embodiment the biologically active polypeptide encoded by the nucleic acid construct is a PKAc-F64L-S65T-GFP fusion.

In one embodiment the biologically active polypeptide encoded by the nucleic acid construct is a cGMP-dependent protein kinase or a part thereof capable of changing cellular localisation upon activation.

In one embodiment the biologically active polypeptide encoded by the nucleic acid construct is a calmodulin-dependent serine/threonine protein kinase or a part thereof capable of changing cellular localisation upon activation.

In one embodiment the biologically active polypeptide encoded by the nucleic acid construct is a mitogen-activated serine/threonine protein kinase or a part thereof capable of changing cellular localisation upon activation. In preferred embodiments the biologically active polypeptide encoded by the nucleic acid constructs are an ERK1-F64L-S65T-GFP fusion or an EGFP-ERK1 fusion.

In one embodiment the biologically active polypeptide encoded by the nucleic acid construct is a cyclin-dependent serine/threonine protein kinase or a part thereof capable of changing cellular localisation upon activation.

In one embodiment the biologically active polypeptide encoded by the nucleic acid construct is a protein phosphatase or a part thereof capable of changing cellular localisation upon activation.

In one preferred embodiment of the invention the nucleic acid constructs may be DNA constructs.

In one embodiment the biologically active polypeptide encoded by the nucleic acid

5

10

15

construct. In one embodiment the gene encoding GFP in the nucleic acid construct is derived from Aequorea victoria. In a preferred embodiment the gene encoding GFP in the nucleic acid construct is EGFP or a GFP variant selected from F64L-GFP, F64L-Y66H-GFP and F64L-S65T-GFP.

In preferred embodiments of the invention the DNA constructs which can be identified by any of the DNA sequences shown in SEQ ID NO: 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, and 152 or are variants of these sequences capable of encoding the same fusion polypeptide or a fusion polypeptide which is biologically equivalent thereto, e.g. an isoform, or a splice variant or a homologue from another species.

The present invention describes a method that may be used to establish a screening program for the identification of biologically active substances that directly or indirectly affects intracellular signalling pathways and because of this property are potentially useful as medicaments. Based on measurements in living cells of the redistribution of spatially resolved luminescence from luminophores which undergo a change in distribution upon activation or deactivation of an intracellular signalling pathway the result of the individual measurement of each substance being screened indicates its potential biological activity.

In one embodiment of the invention the screening program is used for the identification of a biologically toxic substance as defined herein that exerts its toxic effect by interfering with an intracellular signalling pathway. Based on measurements in living cells of the redistribution of spatially resolved luminescence from luminophores which undergo a change in distribution upon activation or deactivation of an intracellular signalling pathway the result of the individual measurement of each substance being screened indicates its potential biologically toxic activity. In one embodiment of a screening program a compound that modulates a component of an intracellular pathway as defined herein, can be found and the therapeutic amount of the compound estimated by a method according to the method of the invention. In a preferred embodiment the present invention leads to the discovery of a new way of treating a condition or disease related to the intracellular function of a biologically active polypeptide comprising administration to a

15

20

25

patient suffering from said condition or disease of an effective amount of a compound which has been discovered by any method according to the invention. In another preferred embodiment of the invention a method is established for identification of a new drug target or several new drug targets among the group of biologically active polypeptides which are components of intracellular signalling pathways.

In another embodiment of the invention an individual treatment regimen is established for the selective treatment of a selected patient suffering from an ailment where the available medicaments used for treatment of the ailment are tested on a relevant primary cell or cells obtained from said patient from one or several tissues, using a method comprising transfecting the cell or cells with at least one DNA sequence encoding a fluorescent probe according to the invention, transferring the transfected cell or cells back the said patient, or culturing the cell or cells under conditions permitting the expression of said probes and exposing it to an array of the available medicaments, then comparing changes in fluorescence patterns or redistribution patterns of the fluorescent probes in the intact living cells to detect the cellular response to the specific medicaments (obtaining a cellular action profile), then selecting one or more medicament or medicaments based on the desired activity and acceptable level of side effects and administering an effective amount of these medicaments to the selected patient.

The present invention describes a method that may be used to establish a screening program for back-tracking signal transduction pathways as defined herein. In one embodiment the screening program is used to establish more precisely at which level one or several compounds affect a specific signal transduction pathway by successively or in parallel testing the influence of the compound or compounds on the redistribution of spatially resolved luminescence from several of the luminophores which undergo a change in distribution upon activation or deactivation of the intracellular signalling pathway under study.

In general, a probe, i.e. a "GeneX"-GFP fusion or a GFP-"GeneX" fusion, is constructed using PCR with "GeneX"-specific primers followed by a cloning step to fuse "GeneX" in frame with GFP. The fusion may contain a short vector derived sequence between "GeneX" and GFP (e.g. part of a multiple cloning site region in the plasmid) resulting in a

5

10

15

20

25

peptide linker between "GeneX" and GFP in the resulting fusion protein.

Some of the steps involved in the development of a probe include the following:

- Identify the sequence of the gene. This is most readily done by searching a depository of genetic information, e.g. the GenBank Sequence Database, which is widely available and routinely used by molecular biologists. In the specific examples below the GenBank Accession number of the gene in question is provided.
  - Design the gene-specific primers. Inspection of the sequence of the gene allows design of gene-specific primers to be used in a PCR reaction. Typically, the top-strand primer encompasses the ATG start codon of the gene and the following ca. 20 nucleotides, while the bottom-strand primer encompasses the stop codon and the ca. 20 preceding nucleotides, if the gene is to be fused behind GFP, i.e. a GFP-"GeneX" fusion. If the gene is to be fused in front of GFP, i.e. a "GeneX"-GFP fusion, a stop codon must be avoided. Optionally, the full-length sequence of GeneX may not be used in the fusion, but merely the part that localizes and redistributes like GeneX in response to a signal. In addition to gene-specific sequences, the primers contain at least one recognition sequence for a restriction enzyme, to allow subsequent cloning of the PCR product. The sites are chosen so that they are unique in the PCR product and compatible with sites in the cloning vector. Furthermore, it may be necessary to include an exact number of nucleotides between the restriction enzyme site and the gene-specific sequence in order to establish the correct reading frame of the fusion gene and/or a translation initiation consensus sequence. Lastly, the primers always contain a few nucleotides in front of the restriction enzyme site to allow efficient digestion with the enzyme.
- Identify a source of the gene to be amplified. In order for a PCR reaction to produce a product with gene-specific primers, the gene-sequence must initially be present in the reaction, e.g. in the form of cDNA. Information in GenBank or the scientific literature will usually indicate in which tissue(s) the gene is expressed, and cDNA libraries from a great variety of tissues or cell types from various species are commercially available, e.g. from Clontech (Palo Alto), Stratagene (La Jolla) and Invitrogen (San Diego).
   Many genes are also available in cloned form from The American Type Tissue

5

10

15

Collection (Virginia).

5

20

25

Optimise the PCR reaction. Several factors are known to influence the efficiency and specificity of a PCR reaction, including the annealing temperature of the primers, the concentration of ions, notably Mg<sup>2+</sup> and K<sup>+</sup>, present in the reaction, as well as pH of the reaction. If the result of a PCR reaction is deemed unsatisfactory, it might be because the parameters mentioned above are not optimal. Various annealing temperatures should be tested, e.g. in a PCR machine with a built-in temperature gradient, available from e.g. Stratagene (La Jolla), and/or various buffer compositions should be tried, e.g. the OptiPrime buffer system from Stratagene (La Jolla).

Clone the PCR product. The vector into which the amplified gene product will be cloned and fused with GFP will already have been taken into consideration when the primers were designed. When choosing a vector, one should at least consider in which cell types the probe subsequently will be expressed, so that the promoter controlling expression of the probe is compatible with the cells. Most expression vectors also contain one or more selective markers, e.g. conferring resistance to a drug, which is a useful feature when one wants to make stable transfectants. The selective marker should also be compatible with the cells to be used.

The actual cloning of the PCR product should present no difficulty as it typically will be a one-step cloning of a fragment digested with two different restriction enzymes into a vector digested with the same two enzymes. If the cloning proves to be problematic, it may be because the restriction enzymes did not work well with the PCR fragment. In this case one could add longer extensions to the end of the primers to overcome a possible difficulty of digestion close to a fragment end, or one could introduce an intermediate cloning step not based on restriction enzyme digestion. Several companies offer systems for this approach, e.g. Invitrogen (San Diego) and Clontech (Palo Alto).

Once the gene has been cloned and, in the process, fused with the GFP gene, the resulting product, usually a plasmid, should be carefully checked to make sure it is as expected. The most exact test would be to obtain the nucleotide sequence of the fusion-gene.

Once a DNA construct for a probe has been generated, its functionality and usefulness may

be evaluated by transfecting it into cells capable of expressing the probe. The fluorescence of the cell is inspected soon after, typically the next day. At this point, two features of cellular fluorescence are noted: the intensity and the sub-cellular localisation.

The intensity should usually be at least as strong as that of unfused GFP in the cells. If it is not, the sequence or quality of the probe-DNA might be faulty, and should be carefully checked.

The sub-cellular localisation is an indication of whether the probe is likely to perform well. If it localises as expected for the gene in question, e.g. is excluded from the nucleus, it can immediately go on to a functional test. If the probe is not localised soon after the transfection procedure, it may be because of overexpression at this point in time, as the cell typically will have taken up very many copies of the plasmid, and localisation will occur in time, e.g. within a few weeks, as plasmid copy number and expression level decreases. If localisation does not occur after prolonged time, it may be because the fusion to GFP has destroyed a localisation function, e.g. masked a protein sequence essential for interaction with its normal cellular anchor-protein. In this case the opposite fusion might work, e.g. if GeneX-GFP does not work, GFP-GeneX might, as two different parts of GeneX will be affected by the proximity to GFP. If this does not work, the proximity of GFP at either end might be a problem, and it could be attempted to increase the distance by incorporating a longer linker between GeneX and GFP in the DNA construct.

If there is no prior knowledge of localisation, and no localisation is observed, it may be because the probe should not be localised at this point, because such is the nature of the protein fused to GFP. It should then be subjected to a functional test.

In a functional test, the cells expressing the probe are treated with at least one compound known to perturb, usually by activating, the signalling pathway on which the probe is expected to report by redistributing itself within the cell. If the redistribution is as expected, e.g. if prior knowledge tell that it should translocate from location X to location Y, it has passed the first critical test. In this case it can go on to further characterisation and quantification of the response.

If it does not perform as expected, it may be because the cell lacks at least one component

10

15

20

of the signalling pathway, e.g. a cell surface receptor, or there is species incompatibility, e.g. if the probe is modelled on sequence information of a human gene product, and the cell is of hamster origin. In both instances one should identify other cell types for the testing process where these potential problems would not apply.

If there is no prior knowledge about the pattern of redistribution, the analysis of the redistribution will have to be done in greater depth to identify what the essential and indicative features are, and when this is clear, it can go on to further characterisation and quantification of the response. If no feature of redistribution can be identified, the problem might be as mentioned above, and the probe should be retested under more optimal cellular conditions.

If the probe does not perform under optimal cellular conditions, then it's back to the drawing board.

The process of developing an image-based redistribution assay begins with either the unplanned experimental observation that a redistribution phenomenon can be visualised, or the design of a probe specifically to follow a redistribution phenomenon already known to occur. In either event, the first and best exploratory technique is for a trained scientist or technician to observe the phenomenon. Even with the rapid advances in computing technology, the human eye-brain combination is still the most powerful pattern recognition system known, and requires no advance knowledge of the system in order to detect potentially interesting and useful patterns in raw data. This is especially if those data are presented in the form of images, which are the natural "data type" for human visual processing. Because human visual processing operates most effectively in a relatively narrow frequency range, i.e., we cannot see either very fast or very slow changes in our visual field, it may be necessary to record the data and play it back with either time dilation or time compression.

Some luminescence phenomena cannot be seen directly by the human eye. Examples include polarisation and fluorescence lifetime. However, with suitable filters or detectors, these signals can be recorded as images or sequences of images and displayed to the human in the fashion just described. In this way, patterns can be detected and the same methods can be applied.

15

20

25

Once the redistribution has been determined to be a reproducible phenomenon, one or more data sets are generated for the purpose of developing a procedure for extracting the quantitative information from the data. In parallel, the biological and optical conditions are determined which will give the best quality raw data for the assay. This can become an iterative process; it may be necessary to develop a quantitative procedure in order to assess the effect on the assay of manipulating the assay conditions.

The data sets are examined by a person or persons with knowledge of the biological phenomenon and skill in the application of image processing techniques. The goal of this exercise is to determine or at least propose a method that will reduce the image or sequence of images constituting the record of a "response" to a value corresponding to the degree of the response. Using either interactive image processing software or an image processing toolbox and a programming language, the method is encoded as a procedure or algorithm that takes the image or images as input and generates the degree of response (in any units) as its output. Some of the criteria for evaluating the validity of a particular procedure are:

- Does the degree of the response vary in a biologically significant fashion, i.e., does
  it show the known or putative dependence on the concentration of the stimulating
  agent or condition?
- Is the degree of response reproducible, i.e., does the same concentration or level of stimulating agent or condition give the same response with an acceptable variance?
- Is the dynamic range of the response sufficient for the purpose of the assay? If not, can a change in the procedure or one of its parameters improve the dynamic range?
- Does the procedure exhibit any clear "pathologies", i.e., does it give ridiculous values for the response if there are commonly occurring imperfections in the imaging process? Can these pathologies be eliminated, controlled, or accounted for?
- Can the procedure deal with the normal variation in the number and/or size of cells in an image?

20

25

5

10

In some cases the method may be obvious; in others, a number of possible procedures may suggest themselves. Even if one method appears clearly superior to others, optimisation of parameters may be required. The various procedures are applied to the data set and the criteria suggested above are determined, or the single procedure is applied repeatedly with adjustment of the parameter or parameters until the most satisfactory combination of signal, noise, range, etc. are arrived at. This is equivalent to the calibration of any type of single-channel sensor.

The number of ways of extracting a single value from an image are extremely large, and thus an intelligent approach must be taken to the initial step of reducing this number to a small, finite number of possible procedures. This is not to say that the procedure arrived at is necessarily the best procedure - but a global search for the best procedure is simply out of the question due to the sheer number of possibilities involved.

Image-based assays are no different than other assay techniques in that their usefulness is characterised by parameters such as the specificity for the desired component of the sample, the dynamic range, the variance, the sensitivity, the concentration range over which the assay will work, and other such parameters. While it is not necessary to characterise each and every one of these before using the assay, they represent the only way to compare one assay with another.

The final step is then to see whether there exists a possibility to increase the throughput of the assay to improve its utility as the basis of a screening program. In order to do this, a dose-response relationship is established based on quantification of the responses caused by a particular influence, representative of the underlying intracellular signalling process, using the methods described above and in examples 1-22 and 25. The dose-response relationship for the particular influence is then compared to the dose-response relationship obtained by performing the same assay in an instrument which allows parallel monitoring of all wells in a microtiter plate such as a FLIPR<sup>TM</sup> or an ordinary imaging or fluorescence plate reader for microtiter plates. If a good correlation between the dose-response relationships obtained from the two different measurement systems is obtained, it can be said that the parallel measurement mode has been validated (see examples 23 and 24). This implies that it can be used as the primary basis for a screening program with the potential

5

10

15

20

25

benefit of screening a significantly higher number of substances for their influence on the response per unit of time.

The process of developing an image-based assay is best illustrated by example. The development of such an assay for GLUT4 translocation is hereby described. GLUT4 is a member of the class of glucose transporter molecules that are important in cellular glucose uptake. It is known to translocate to the plasma membrane under some conditions of stimulation of glucose uptake. The ability to visualise the glucose uptake response non-invasively, without actually measuring glucose uptake, would be a very useful assay for anyone looking for, for example, treatments for type II diabetes.

A CHO cell line which stably expressed the human insulin receptor was used as the basis for a new cell line which stably expressed a fusion between GLUT4 and GFP. This cell line was expected to show translocation of GLUT4 to the plasma membrane as visualised by the movement of the GFP. The translocation could definitely be seen in the form of the appearance of local increases in the fluorescence in regions of the plasma membrane which had a characteristic shape or pattern. This is shown in Figure 12.

These objects became known as "snircles", and the phenomenon of their appearance as "snircling". In order to quantify their appearance, a method had to be found to isolate them as objects in the image field, and then enumerate them, measure their area, or determine some parameter about them which correlated in a dose-dependent fashion with the concentration of insulin to which the cells had been exposed. In order to separate the snircles, a binarization procedure was applied in which one copy of the image smoothed with a relatively severe gaussian kernel (sigma = 2.5) was subtracted from another copy to which only a relatively light gaussian smooth had been applied (sigma=0.5). The resultant image was rescaled to its min/max range, and an automatic threshold was applied to divide the image into two levels. The thresholded image contains a background of one value all found object with another value. The found objects were first filtered through a filter to remove objects far too large and far too small to be snircles. The remaining objects, which represent snircles and other artifacts from the image with approximately the same size and intensity characteristics as snircles, are passed into a classification procedure which has been previously trained with many images of snircles to recognize snircles and exclude the

5

10

15

20

25

other artifacts. The result of this procedure is a binary image that shows only the found snircles to the degree to which the classification procedure can accurately identify them. The total area of the snircles is then summed and this value is the quantitative measure of the degree of snircling for that image.

Another approach to the problem of quantifying GLUT 4 translocation has been performed and validated using the same type of experimental protocol but a different image processing approach. In this case the objects of interest in the cells are not the appearance of snircles at the plasma membrane but the disappearance of GLUT4-GFP fluorescence from its intracellular site. With this method the bright area, consisting of GLUT4-GFP, centrally located in each cell is identified by a thresholding procedure. This demarcates a certain area for the centrally located GLUT4-GFP. In the next step the total fluorescence intensity in this area is quantified on each image in the image series, i.e. over time. The response for each cell is defined as the difference in fluorescence intensity in the centrally located GLUT4-GFP area before and a fixed point in time after application of the influence. The dose-response relationship for insulin using the above described quantitation procedure is shown in Figure 13. It can be seen that the ED50 value for insulin to reduce central GLUT4-GFP fluorescence is 0.3 nM.

In the present specification and claims, the term "an influence" covers any influence to which the cellular response comprises a redistribution. Thus, e.g., heating, cooling, high pressure, low pressure, humidifying, or drying are influences on the cellular response on which the resulting redistribution can be quantified, but as mentioned above, perhaps the most important influences are the influences of contacting or incubating the cells with substances which are known or suspected to exert an influence on the cellular response involving a redistribution contribution. In another embodiment of the invention the influence could be substances from a compound drug library.

In the present context, the term "green fluorescent protein" is intended to indicate a protein which, when expressed by a cell, emits fluorescence upon exposure to light of the correct excitation wavelength (cf. [(Chalfie, M. et al. (1994) Science 263, 802-805)]). In the following, GFP in which one or more amino acids have been substituted, inserted or deleted is most often termed "modified GFP". "GFP" as used herein includes wild-type

20

25

GFP derived from the jelly fish *Aequorea victoria* and modifications of GFP, such as the blue fluorescent variant of GFP disclosed by Heim *et al.* (1994). Proc.Natl.Acad.Sci. 91:26, pp 12501-12504, and other modifications that change the spectral properties of the GFP fluorescence, or modifications that exhibit increased fluorescence when expressed in cells at a temperature above about 30°C described in PCT/DK96/00051, published as WO 97/11094 on 27 March 1997 and hereby incorporated by reference, and which comprises a fluorescent protein derived from *Aequorea* Green Fluorescent Protein (GFP) or any functional analogue thereof, wherein the amino acid in position 1 upstream from the chromophore has been mutated to provide an increase of fluorescence intensity when the fluorescent protein of the invention is expressed in cells. Preferred GFP variants are F64L-GFP, F64L-Y66H-GFP and F64L-S65T-GFP. An especially preferred variant of GFP for use in all the aspects of this invention is EGFP (DNA encoding EGFP which is a F64L-S65T variant with codons optimized for expression in mammalian cells is available from Clontech, Palo Alto, plasmids containing the EGFP DNA sequence, cf. GenBank Acc. Nos. U55762, U55763).

The term "intracellular signalling pathway" and "signal transduction pathway" are intended to indicate the co-ordinated intracellular processes whereby a living cell transduce an external or internal signal into cellular responses. Said signal transduction will involve an enzymatic reaction said enzymes include but are not limited to protein kinases, GTPases, ATPases, protein phosphatases, phospholipases and cyclic nucleotide phosphodiesterases. The cellular responses include but are not limited to gene transcription, secretion, proliferation, mechanical activity, metabolic activity, cell death.

The term "second messenger" is used to indicate a low molecular weight component involved in the early events of intracellular signal transduction pathways.

The term "luminophore" is used to indicate a chemical substance that has the property of emitting light either inherently or upon stimulation with chemical or physical means. This includes but is not limited to fluorescence, bioluminescence, phosphorescence, and chemiluminescence.

The term "mechanically intact living cell" is used to indicate a cell which is considered living according to standard criteria for that particular type of cell such as maintenance of normal membrane potential, energy metabolism, proliferative capability, and has not

10

15

20

25

experienced any physically invasive treatment designed to introduce external substances into the cell such as microinjection.

In the present context, the term "permeabilised living cell" is used to indicate cells where a pore forming agent such as Streptolysin O or Staphylococcus Aureus α-toxin has been applied and thereby incorporated into the plasma membrane in the cells. This creates proteinaceous pores with a defined pore size in the plasma membranes of the exposed cells. Pores could also be made by electroporation, i.e. exposing the cells to high voltage discharges, a procedure that creates small holes in the plasma membrane by coagulating integral membrane proteins. Treatment with a mild detergent such as saponin may accomplish the same thing. Common to all these treatments are that pores are formed only in the plasma membrane without affecting the integrity of cytoplasmic structural elements and organelles. The term living in this context means that the permeabilised cells bathed in a solution mimicking the intracellular milieu still have functional organelles, such as actively respiring mitochondria and endoplasmic reticulum that can take up and release calcium ions, and functional structural elements. The benefit of this method is that substances that normally can not traverse the plasma membrane, but most likely exert their influence intracellularly, can be introduced and their influence studied without cumbersome microinjection of the substances into single cells. Using this method the response to an influence can be recorded from many cells simultaneously.

In the present context, the term "permeabilisation" is intended to indicate the selective disruption of the plasma membrane barrier so that soluble substances freely mobile in the cytosol are lost from the cells. The permeabilisation can be achieved as described above under "permeabilised living cells" or by using other chemical detergents such as Triton X-100 or digitonin in carefully titrated amounts.

The term "physiologically relevant", when applied to an experimentally determined redistribution of an intracellular component, as measured by a change in the luminescence properties or distribution, is used to indicate that said redistribution can be explained in terms of the underlying biological phenomenon which gives rise to the redistribution.

The terms "image processing" and "image analysis" are used to describe a large family of digital data analysis techniques or combination of such techniques which reduce ordered

5

10

15

arrays of numbers (images) to quantitative information describing those ordered arrays of numbers. When said ordered arrays of numbers represent measured values from a physical process, the quantitative information derived is therefore a measure of the physical process.

The term "fluorescent probe" is used to indicate a fluorescent fusion polypeptide comprising a GFP or any functional part thereof which is N- or C-terminally fused to a biologically active polypeptide as defined herein, optionally via a peptide linker consisting of one or more amino acid residues, where the size of the linker peptide in itself is not critical as long as the desired functionality of the fluorescent probe is maintained. A fluorescent probe according to the invention is expressed in a cell and basically mimics the physiological behaviour of the biologically active polypeptide moiety of the fusion polypeptide.

The term "mammalian cell" is intended to indicate any living cell of mammalian origin. The cell may be an established cell line, many of which are available from The American Type Culture Collection (ATCC, Virginia, USA) or a primary cell with a limited life span derived from a mammalian tissue, including tissues derived from a transgenic animal, or a newly established immortal cell line derived from a mammalian tissue including transgenic tissues, or a hybrid cell or cell line derived by fusing different cell types of mammalian origin e.g. hybridoma cell lines. The cells may optionally express one or more non-native gene products, e.g. receptors, enzymes, enzyme substrates, prior to or in addition to the fluorescent probe. Preferred cell lines include but are not limited to those of fibroblast origin, e.g. BHK, CHO, BALB, or of endothelial origin, e.g. HUVEC, BAE (bovine artery endothelial), CPAE (cow pulmonary artery endothelial), HLMVEC (human lung microvascular endothelial cells) or of pancreatic origin, e.g. RIN, INS-1, MIN6, bTC3, aTC6, bTC6, HIT, or of hematopoietic origin, e.g.primary isolated human monocytes, macrophages, neutrophils, basophils, eosinophils and lyphocyte populations, AML-193, HL-60, RBL-1, adipocyte origin, e.g. 3T3-L1, neuronal/neuroendocrine origin, e.g. AtT20, PC12, GH3, muscle origin, e.g. SKMC, A10, C2C12, renal origin, e.g. HEK 293, LLC-PK1.

The term "hybrid polypeptide" is intended to indicate a polypeptide which is a fusion of at

15

20

25

least a portion of each of two proteins, in this case at least a portion of the green fluorescent protein, and at least a portion of a catalytic and/or regulatory domain of a protein kinase. Furthermore a hybrid polypeptide is intended to indicate a fusion polypeptide comprising a GFP or at least a portion of the green fluorescent protein that contains a functional fluorophore, and at least a portion of a biologically active polypeptide as defined herein provided that said fusion is not the PKCα-GFP, PKCγ-GFP, and PKCε-GFP disclosed by Schmidt *et al.* and Sakai *et al.*, respectively. Thus, GFP may be N- or C-terminally tagged to a biologically active polypeptide, optionally via a linker portion or linker peptide consisting of a sequence of one or more amino acids. The hybrid polypeptide or fusion polypeptide may act as a fluorescent probe in intact living cells carrying a DNA sequence encoding the hybrid polypeptide under conditions permitting expression of said hybrid polypeptide.

The term "kinase" is intended to indicate an enzyme that is capable of phosphorylating a cellular component.

The term "protein kinase" is intended to indicate an enzyme that is capable of phosphorylating serine and/or threonine and/or tyrosine in peptides and/or proteins.

The term "phosphatase" is intended to indicate an enzyme that is capable of dephosphorylating phosphoserine and/or phosphothreonine and/or phosphotyrosine in peptides and/or proteins.

The term "cyclic nucleotide phosphodiesterase" is intended to indicate an enzyme that is capable of inactivating the second messengers cAMP and cGMP by hydrolysis of their 3'-ester bond.

In the present context, the term "biologically active polypeptide" is intended to indicate a polypeptide affecting intracellular processes upon activation, such as an enzyme which is active in intracellular processes or a portion thereof comprising a desired amino acid sequence which has a biological function or exerts a biological effect in a cellular system. In the polypeptide one or several amino acids may have been deleted, inserted or replaced to alter its biological function, e.g. by rendering a catalytic site inactive. Preferably, the biologically active polypeptide is selected from the group consisting of proteins taking part

5

10

in an intracellular signalling pathway, such as enzymes involved in the intracellular phosphorylation and dephosphorylation processes including kinases, protein kinases and phosphorylases as defined herein, but also proteins making up the cytoskeleton play important roles in intracellular signal transduction and are therefore included in the meaning of "biologically active polypeptide" herein. More preferably, the biologically active polypeptide is a protein which according to its state as activated or non-activated changes localisation within the cell, preferably as an intermediary component in a signal transduction pathway. Included in this preferred group of biologically active polypeptides are cAMP dependent protein kinase A.

The term "a substance having biological activity" is intended to indicate any sample that has a biological function or exerts a biological effect in a cellular system. The sample may be a sample of a biological material such as a sample of a body fluid including blood, plasma, saliva, milk, urine, or a microbial or plant extract, an environmental sample containing pollutants including heavy metals or toxins, or it may be a sample containing a compound or mixture of compounds prepared by organic synthesis or genetic techniques.

The phrase "any change in fluorescence" means any change in absorption properties, such as wavelength and intensity, or any change in spectral properties of the emitted light, such as a change of wavelength, fluorescence lifetime, intensity or polarisation, or any change in the intracellular localisation of the fluorophore. It may thus be localised to a specific cellular component (e.g. organelle, membrane, cytoskeleton, molecular structure) or it may be evenly distributed throughout the cell or parts of the cell.

The term "organism" as used herein indicates any unicellular or multicellular organism preferably originating from the animal kingdom including protozoans, but also organisms that are members of the plant kingdoms, such as algae, fungi, bryophytes, and vascular plants are included in this definition.

The term "nucleic acid" is intended to indicate any type of poly- or oligonucleic acid sequence, such as a DNA sequence, a cDNA sequence, or an RNA sequence.

The term "biologically equivalent" as it relates to proteins is intended to mean that a first protein is equivalent to a second protein if the cellular functions of the two proteins may

5

10

15

20

substitute for each other, e.g. if the two proteins are closely related isoforms encoded by different genes, if they are splicing variants, or allelic variants derived from the same gene, if they perform identical cellular functions in different cell types, or in different species. The term "biologically equivalent" as it relates to DNA is intended to mean that a first DNA sequence encoding a polypeptide is equivalent to a second DNA sequence encoding a polypeptide if the functional proteins encoded by the two genes are biologically equivalent.

The phrase "back-tracking of a signal transduction pathway" is intended to indicate a process for defining more precisely at what level a signal transduction pathway is affected, either by the influence of chemical compounds or a disease state in an organism. Consider a specific signal transduction pathway represented by the bioactive polypeptides A - B - C - D, with signal transduction from A towards D. When investigating all components of this signal transduction pathway compounds or disease states that influence the activity or redistribution of only D can be considered to act on C or downstream of C whereas compounds or disease states that influence the activity or redistribution of C and D, but not of A and B can be considered to act downstream of B.

The term "fixed cells" is used to mean cells treated with a cytological fixative such as glutaraldehyde or formaldehyde, treatments that serve to chemically cross-link and stabilise soluble and insoluble proteins within the structure of the cell. Once in this state, such proteins cannot be lost from the structure of the now-dead cell.

In the present context a "screening assay" is intended to mean any measurement protocol, including materials, cells, instruments, chemicals, reagents, detection units, calibration and quantification procedures used to measure a response from mechanically intact or permeabilised living cells relevant to influences on an intracellular pathway.

The term "dose-response relationship" and "screening programme" is in the present context intended to mean a clear correlation between the quantified response of cells in a screening assay to application of an influence, such as a compound, and the concentration of the applied influence. The response to the influence may be both an up-regulation and a down-regulation of the quantified parameter used in the screening assay.

10

15

In the present context, the term "physiology" is intended to mean the normal function of biological and biochemical processes inside cells, between cells and in the whole organism or animal.

# 5 BRIEF DESCRIPTION OF THE DRAWINGS

10

15

Figure 1. CHO cells expressing the PKAc-F64L-S65T-GFP hybrid protein have been treated in HAM's F12 medium with 50  $\mu$ M forskolin at 37°C. The images of the GFP fluorescence in these cells have been taken at different time intervals after treatment, which were: a) 40 seconds b) 60 seconds c) 70 seconds d) 80 seconds. The fluorescence changes from a punctate to a more even distribution within the (non-nuclear) cytoplasm.

Figure 2. Time-lapse analysis of forskolin induced PKAc-F64L-S65T-GFP redistribution. CHO cells, expressing the PKAc-F64L-S65T-GFP fusion protein were analysed by time-lapse fluorescence microscopy. Fluorescence micrographs were acquired at regular intervals from 2 min before to 8 min after the addition of agonist. The cells were challenged with 1  $\mu$ M forskolin immediately after the upper left image was acquired (t=0). Frames were collected at the following times: i) 0, ii) 1, iii) 2, iv) 3, v) 4 and vi) 5 minutes. Scale bar 10  $\mu$ m.

Figure 3. Time-lapse analyses of PKAc-F64L-S65T-GFP redistribution in response to various agonists. The effects of 1 μM forskolin (A), 50 μM forskolin (B), 1mM dbcAMP (C) and 100 μM IBMX (D) (additions indicated by open arrows) on the localisation of the PKAc-F64L-S65T-GFP fusion protein were analysed by time-lapse fluorescence microscopy of CHO/PKAc-F64L-S65T-GFP cells. The effect of addition of 10 μM forskolin (open arrow), followed shortly by repeated washing with buffer (solid arrow), on the localisation of the PKAc-F64L-S65T-GFP fusion protein was analysed in the same cells (E). In a parallel experiment, the effect of adding 10 μM forskolin and 100 μM IBMX (open arrow) followed by repeated washing with buffer containing 100 μM IBMX

(solid arrow) was analysed (F). Removing forskolin caused PKAc-F64L-S65T-GFP fusion protein to return to the cytoplasmic aggregates while this is prevented by the continued presence of IBMX (F). The effect of 100 nM glucagon (Fig 3G, open arrow) on the localisation of the PKAc-F64L-S65T-GFP fusion protein is also shown for BHK/GR, PKAc-F64L-S65T-GFP cells. The effect of 10  $\mu$ M norepinephrine (H), solid arrow, on the localisation of the PKAc-F64L-S65T-GFP fusion protein was analysed similarly, in transiently transfected CHO, PKAc-F64L-S65T-GFP cells, pretreated with 10  $\mu$ M forskolin, open arrow, to increase [cAMP]. N.B. in Fig 3H the x-axis counts the image numbers, with 12 seconds between images. The raw data of each experiment consisted of 60 fluorescence micrographs acquired at regular intervals including several images acquired before the addition of buffer or agonist. The charts (A-G) each show a quantification of the response seen through all the 60 images, performed as described in analysis method 2. The change in total area of the highly fluorescent aggregates, relative to the initial area of fluorescent aggregates is plotted as the ordinate in all graphs in Figure 3, versus time for each experiment. Scale bar 10  $\mu$ m.

Figure 4. Dose-response curve (two experiments) for forskolin-induced redistribution of the PKAc-F64L-S65T-GFP fusion.

Figure 5. Time from initiation of a response to half maximal (t<sub>1/2max</sub>) and maximal (t<sub>max</sub>) PKAc-F64L-S65T-GFP redistribution. The data was extracted from curves such as that shown in "Figure 2." All t<sub>1/2max</sub> and t<sub>max</sub> values are given as mean±SD and are based on a total of 26-30 cells from 2-3 independent experiments for each forskolin concentration. Since the observed redistribution is sustained over time, the t<sub>max</sub> values were taken as the earliest time point at which complete redistribution is reached. Note that the values do not relate to the degree of redistribution.

Figure 6. Parallel dose-response analyses of forskolin induced cAMP elevation and PKAc-

5

10

15

20

F64L-S65T-GFP redistribution. The effects of buffer or 5 increasing concentrations of forskolin on the localisation of the PKAc-F64L-S65T-GFP fusion protein in CHO/PKAc-F64L-S65T-GFP cells, grown in a 96 well plate, were analysed as described above. Computing the ratio of the SD's of fluorescence micrographs taken of the same field of cells, prior to and 30 min after the addition of forskolin, gave a reproducible measure of PKAc-F64L-S65T-GFP redistribution. The graph shows the individual 48 measurements and a trace of their mean±s.e.m at each forskolin concentration. For comparison, the effects of buffer or 8 increasing concentrations of forskolin on [cAMP], was analysed by a scintillation proximity assay of cells grown under the same conditions. The graph shows a trace of the mean ± s.e.m of 4 experiments expressed in arbitrary units.

Figure 7. BHK cells stably transfected with the human muscarinic (hM1) receptor and the PKC $\alpha$ -F64L-S65T-GFP fusion. Carbachol (100  $\mu$ M added at 1.0 second) induced a transient redistribution of PKC $\alpha$ -F64L-S65T-GFP from the cytoplasm to the plasma membrane. Images were taken at the following times: a) 1 second before carbachol addition, b) 8.8 seconds after addition and c) 52.8 seconds after addition.

Figure 8. BHK cells stably transfected with the hM1 receptor and PKC $\alpha$ -F64L-S65T-GFP fusion were treated with carbachol (1  $\mu$ M, 10  $\mu$ M, 100  $\mu$ M). In single cells intracellular [Ca²+] was monitored simultaneously with the redistribution of PKC $\alpha$ -F64L-S65T-GFP. Dashed line indicates the addition times of carbachol. The top panel shows changes in the intracellular Ca²+ concentration of individual cells with time for each treatment. The middle panel shows changes in the average cytoplasmic GFP fluorescence for individual cells against time for each treatment. The bottom panel shows changes in the fluorescence of the periphery of single cells, within regions that specifically include the circumferential edge of a cell as seen in normal projection, the best regions for monitoring changes in the fluorescence intensity of the plasma membrane.

10

15

20

## Figure 9.

- a) The hERK1-F64L-S65T-GFP fusion expressed in HEK293 cells treated with 100 μM of the MEK1 inhibitor PD98059 in HAM F-12 (without serum) for 30 minutes at 37 °C. The nuclei empty of fluorescence during this treatment.
- 5 b) The same cells as in (a) following treatment with 10 % foetal calf serum for 15 minutes at 37 °C.
  - c) Time profiles for the redistribution of GFP fluorescence in HEK293 cells following treatment with various concentrations of EGF in Hepes buffer (HAM F-12 replaced with Hepes buffer directly before the experiment). Redistribution of fluorescence is expressed as the change in the ratio value between areas in nucleus and cytoplasm of single cells. Each time profile is the mean for the changes seen in six single cells.
  - d) Bar chart for the end-point measurements, 600 seconds after start of EGF treatments, of fluorescence change (nucleus:cytoplasm) following various concentrations of EGF.

## 15 Figure 10.

- a) The SMAD2-EGFP fusion expressed in HEK293 cells starved of serum overnight in HAM F-12. HAM F-12 was then replaced with Hepes buffer pH 7.2 immediately before the experiment. Scale bar is  $10~\mu m$ .
- b) HEK 293 cells expressing the SMAD2-EGFP fusion were treated with various concentration of TGF-beta as indicated, and the redistribution of fluorescence monitored against time. The time profile plots represent increases in fluorescence within the nucleus, normalised to starting values in each cell measured. Each trace is the time profile for a single cell nucleus.
- c) A bar chart representing the end-point change in fluorescence within nuclei (after 850 seconds of treatment) for different concentrations of TGF-beta. Each bar is the value for a single nucleus in each treatment.

Figure 11. The VASP-F64L-S65T-GFP fusion in CHO cells stably transfected with the human insulin receptor. The cells were starved for two hours in HAM F-12 without serum, then treated with 10% foetal calf serum. The image shows the resulting redistribution of fluorescence after 15 minutes of treatment. GFP fluorescence becomes localised in structures identified as focal adhesions along the length of actin stress fibres.

Figure 12. Time lapse recording GLUT4-GFP redistribution in CHO-HIR cells. Time indicates minutes after the addition of 100 nM insulin.

10

25

Figure 13. Dose-response relationships for the influence of insulin on the disappearance of total fluorescence from the centrally located area of GLUT4-GFP. Data points indicate mean±SE.

Figure 14. Dose-response relationship for the translocation of PKCα-GFP in BHKhM1 cells stimulated with the muscarinine agonist carbamylcholine using a FLIPR™ to do the actual experiments.

Figure 15. Dose-response relationship for the translocation of PKAc-GFP in CHO/PKAc-20 F64L-S65T-GFP cells stimulated with forskolin using a FLIPR™ to do the actual experiments.

Figure 16. Dose-response relationship for the disappearance of fluorescence from permeabilised CHO/PKAc-F64L-S65T-GFP when previously exposed to different doses of forskolin.

#### **EXAMPLES**

### EXAMPLE 1

Construction, testing and implementation of an assay for cAMP based on PKA activation in real time within living cells.

Useful for monitoring the activity of signalling pathways that lead to altered concentrations of cAMP, e.g. activation of G-protein coupled receptors which couple to G-proteins of the  $G_s$  or  $G_t$  class.

The catalytic subunit of the murine cAMP dependent protein kinase (PKAc) was fused Cterminally to a F64L-S65T derivative of GFP. The resulting fusion (PKAc-F64L-S65T-GFP) was used for monitoring *in vivo* the translocation and thereby the activation of PKA.

To construct the PKAc-F64L-S65T-GFP fusion, convenient restriction endonuclease sites were introduced into the cDNAs encoding murine PKAc (Gen Bank Accession number: M12303) and F64L-S65T-GFP (sequence disclosed in WO 97/11094) by polymerase chain reaction (PCR). The PCR reactions were performed according to standard protocols with the following primers:

### 5'PKAc:

15

 $\label{top:top:condition} TTggACACAAgCTTTggACACCCTCAggATATgggCAACgCCgCCgCCgCCAAg~(SEQ~ID~NO:3),$ 

### 20 3'PKAc:

gTCATCTTCTCgAgTCTTTCAggCgCgCCCAAACTCAgTAAACTCCTTgCCACAC (SEO ID NO:4) ,

5'GFP: TTggACACAAgCTTTggACACggCgCCCATgAgTAAAggAgAAGAACTTTTC (SEQ ID NO:1),

25 3'GFP: gTCATCTTCTCgAgTCTTACTCCTgAggTTTgTATAgTTCATCCATgCCATgT (SEQ ID NO:2).

The PKAc amplification product was then digested with HindIII+AscI and the F64L-S65T-GFP product with AscI+XhoI. The two digested PCR products were subsequently ligated with a HindIII+XhoI digested plasmid (pZeoSV® mammalian expression vector, Invitrogen, San Diego, CA, USA). The resulting fusion construct (SEQ ID NO:68 & 69) was under control of the SV40 promoter.

### Transfection and cell culture conditions:

5

10

15

20

25

Chinese hamster ovary cells (CHO), were transfected with the plasmid containing the PKAc-F64L-S65T-GFP fusion using the calcium phosphate precipitate method in HEPES-buffered saline (Sambrook *et al.*, 1989). Stable transfectants were selected using 1000 μg Zeocin/ml (Invitrogen) in the growth medium (DMEM with 1000 mg glucose/l, 10 % fetal bovine serum (FBS), 100 μg penicillin-streptomycin mixture ml<sup>-1</sup>, 2 mM L-glutamine purchased from Life Technologies Inc., Gaithersburg, MD, USA). Untransfected CHO cells were used as the control. To assess the effect of glucagon on fusion protein translocation, the PKAc-F64L-S65T-GFP fusion was stably expressed in baby hamster kidney cells overexpressing the human glucagon receptor (BHK/GR cells). Untransfected BHK/GR cells were used as the control. Expression of GR was maintained with 500 μg G418/ml (*Neo* marker) and PKAc-F64L-S65T-GFP was maintained with 500 μg Zeocin/ml (*Sh ble* marker). CHO cells were also simultaneously co-transfected with vectors containing the PKAc-F64L-S65T-GFP fusion and the human α2a adrenoceptor (hARa2a).

For fluorescence microscopy, cells were allowed to adhere to Lab-Tek chambered coverglasses (Nalge Nunc Int., Naperville, IL, USA) for at least 24 hours and cultured to about 80% confluence. Prior to experiments, the cells were cultured over night without selection pressure in HAM F-12 medium with glutamax (Life Technologies), 100 µg penicillin-streptomycin mixture ml<sup>-1</sup> and 0.3 % FBS. This medium has low autofluorescence enabling fluorescence microscopy of cells straight from the incubator.

Monitoring activity of PKA activity in real time:

Image aquisition of live cells were gathered using a Zeiss Axiovert 135M fluorescence microscope fitted with a Fluar 40X, NA: 1.3 oil immersion objective and coupled to a Photometrics CH250 charged coupled device (CCD) camera. The cells were illuminated with a 100 W HBO arc lamp. In the light path was a 470±20 nm excitation filter, a 510 nm dichroic mirror and a 515±15 nm emission filter for minimal image background. The cells were maintained at 37°C with a custom built stage heater.

Images were processed and analysed in the following manner:

Method 1: Stepwise procedure for quantitation of translocation of PKA:

- 1. The image was corrected for dark current by performing a pixel-by-pixel subtraction of a dark image (an image taken under the same conditions as the actual image, except the camera shutter is not allowed to open).
- 2. The image was corrected for non-uniformity of the illumination by performing a pixel-by-pixel ratio with a flat field correction image (an image taken under the same conditions as the actual image of a uniformly fluorescent specimen).
- 3. The image histogram, i.e., the frequency of occurrence of each intensity value in the image, was calculated.
  - 4. A smoothed, second derivative of the histogram was calculated and the second zero is determined. This zero corresponds to the inflection point of the histogram on the high side of the main peak representing the bulk of the image pixel values.
- 5. The value determined in step 4 was subtracted from the image. All negative values were discarded.
  - 6. The variance (square of the standard deviation) of the remaining pixel values was determined. This value represents the "response" for that image.
  - 7. Scintillation proximity assay (SPA) for independent quantitation of cAMP.

25

5

10

Method 2: Alternative method for quantitation of PKA redistribution:

- 1. The fluorescent aggregates are segmented from each image using an automatically found threshold based on the maximisation of the information measure between the object and background. The *a priori* entropy of the image histogram is used as the information measure.
- 5 2. The area of each image occupied by the aggregates is calculated by counting pixels in the segmented areas.
  - 3. The value obtained in step 2 for each image in a series, or treatment pair, is normalised to the value found for the first (unstimulated) image collected. A value of zero (0) indicates no redistribution of fluorescence from the starting condition. A value of one (1) by this method equals full redistribution.

Cells were cultured in HAM F-12 medium as described above, but in 96-well plates. The medium was exchanged with Ca<sup>2+</sup>-HEPES buffer including 100 µM IBMX and the cells were stimulated with different concentrations of forskolin for 10 min. Reactions were stopped with addition of NaOH to 0.14 M and the amount of cAMP produced was measured with the cAMP-SPA kit, RPA538 (Amersham) as described by the manufacturer.

Manipulating intracellular levels of cAMP to test the PKAc-F64L-S65T-GFP fusion.

The following compounds were used to vary cAMP levels: Forskolin, an activator of adenylate cyclase; dbcAMP, a membrane permeable cAMP analog which is not degraded by phosphodiesterase; IBMX, an inhibitor of phosphodiesterase.

CHO cells stably expressing the PKAc-F64L-S65T-GFP, showed a dramatic translocation of the fusion protein from a punctate distribution to an even distribution throughout the cytoplasm following stimulation with 1  $\mu$ M forskolin (n=3), 10  $\mu$ M forskolin (n=4) and 50  $\mu$ M forskolin (n=4) (Fig 1), or dbcAMP at 1mM (n=6).

Fig. 2 shows the progression of response in time following treatment with 1  $\mu M$  forskolin.

10

15

20

Fig. 3 gives a comparison of the average temporal profiles of fusion protein redistribution and a measure of the extent of each response to the three forskolin concentrations (Fig. 3A, E, B), and to 1 mM dbcAMP (fig 3C) which caused a similar but slower response, and to addition of  $100 \, \mu M$  IBMX (n=4, Fig. 3D) which also caused a slow response, even in the absence of adenylate cyclase stimulation. Addition of buffer (n=2) had no effect (data not shown).

As a control for the behaviour of the fusion protein, F64L-S65T-GFP alone was expressed in CHO cells and these were also given 50  $\mu$ M forskolin (n=5); the uniform diffuse distribution characteristic of GFP in these cells was unaffected by such treatment (data not shown).

The forskolin-induced translocation of PKAc-F64L-S65T-GFP showed a dose-response relationship (Fig 4 and 6), see quantitative procedures above.

Reversibility of PKAc-F64L-S65T-GFP translocation.

The release of the PKAc probe from its cytoplasmic anchoring hotspots was reversible. Washing the cells repeatedly (5-8 times) with buffer after 10μM forskolin treatment completely restored the punctate pattern within 2-5 min (n=2, Fig. 3E). In fact the fusion protein returned to a pattern of fluorescent cytoplasmic aggregates virtually indistinguishable from that observed before forskolin stimulation.

To test whether the return of fusion protein to the cytoplasmic aggregates reflected a decreased [cAMP], cells were treated with a combination of 10 µM forskolin and 100 µM IBMX (n=2) then washed repeatedly (5-8 times) with buffer containing 100 µM IBMX (Fig. 3F). In these experiments, the fusion protein did not return to its prestimulatory localisation after removal of forskolin.

25

20

5

10

Testing the PKA-F64L-S65T-GFP probe with physiologically relevant agents.

To test the probe's response to receptor activation of adenylate cyclase, BHK cells stably transfected with the glucagon receptor and the PKA-F64L-S65T-GFP probe were exposed to glucagon stimulation. The glucagon receptor is coupled to a G<sub>s</sub> protein which activates adenylate cyclase, thereby increasing the cAMP level. In these cells, addition of 100 nM glucagon (n=2) caused the release of the PKA-F64L-S65T-GFP probe from the cytoplasmic aggregates and a resulting translocation of the fusion protein to a more even cytoplasmic distribution within 2-3 min (Fig. 3G). Similar but less pronounced effects were seen at lower glucagon concentrations (n=2, data not shown). Addition of buffer (n=2) had no effect over time (data not shown).

Transiently transfected CHO cells expressing hARα2a and the PKA-F64L-S65T-GFP probe were treated with 10 μM forskolin for 7.5 minutes, then, in the continued presence of forskolin, exposed to 10 μM norepinephrine to stimulate the exogenous adrenoreceptors, which couple to a G<sub>1</sub> protein, which inhibit adenylate cyclase. This treatment led to reappearance of fluorescence in the cytoplasmic aggregates indicative of a decrease in [cAMP], (Fig. 3H).

Fusion protein translocation correlated with [cAMP],

As described above, the time it took for a response to come to completion was dependent on the forskolin dose (Fig. 5) In addition the degree of responses was also dose-dependent. To test the PKA-F64L-S65T-GFP fusion protein translocation in a semi high through-put system, CHO cells stably transfected with the PKA-F64L-S65T-GFP fusion was stimulated with buffer and 5 increasing doses of forskolin (n=8). Using the image analysis algorithm described above (Method 1), a dose-response relationship was observed in the range from 0.01-50  $\mu$ M forskolin (Fig. 6). A half-maximal stimulation was observed at about 2  $\mu$ M forskolin. In parallel, cells were stimulated with buffer and 8 increasing concentrations of forskolin (n=4) in the range 0.01-50  $\mu$ M. The amount of cAMP produced was measured in an SPA assay. A steep increase was observed between 1 and 5  $\mu$ M forskolin coincident with the steepest part of the curve for fusion protein translocation (also Fig. 6).

20

#### **EXAMPLE 2**

Quantitation of redistribution in real-time within living cells.

Probe for detection of PKC activity in real time within living cells:

5 Construction of PKC-GFP fusion:

The probe was constructed by ligating two restriction enzyme treated polymerase chain reaction (PCR) amplification products of the cDNA for murine PKCα (GenBank Accession number: M25811) and F64L-S65T-GFP (sequence disclosed in WO 97/11094) respectively. Taq® polymerase and the following oligonucleotide primers were used for PCR;

5'mPKCa:

10

TTggACACAAgCTTTggACACCCTCAggATATggCTgACgTTTACCCggCCAACg (SEQ ID NO:5),

3'mPKCa:

gTCATCTTCTCgAgTCTTTCAggCgCgCCCTACTgCACTTTgCAAgATTgggTgC (SEQ ID NO:6),

5'F64L-S65T-GFP:

TTggACACAAgCTTTggACACggCgCCCATgAgTAAAggAgAAACTTTTC (SEQ ID NO:1).

20 3'F64L-S65T-GFP:

gTCATCTTCTCgAgTCTTACTCCTgAggTTTgTATAgTTCATCCATgCCATgT (SEQ ID NO:2).

The hybrid DNA strand was inserted into the pZeoSV® mammalian expression vector as a HindlII-XhoI casette as described in example 1.

BHK cells expressing the human M1 receptor under the control of the inducible metallothionine promoter and maintained with the dihydrofolate reductase marker were

transfected with the PKCα-F64L-S65T-GFP probe using the calcium phosphate precipitate method in HEPES buffered saline (HBS [pH 7.10]). Stable transfectants were selected using 1000 µg Zeocin®/ml in the growth medium (DMEM with 1000 mg glucose/l, 10 % foetal bovine serum (FBS), 100 µg penicillin-streptomycin mixture ml-1, 2 mM l-glutamine). The hM1 receptor and PKCα-F64L-S65T-GFP fusion protein were maintained with 500 nM methotrexate and 500 µg Zeocin®/ml respectively. 24 hours prior to any experiment, the cells were transferred to HAM F-12 medium with glutamax, 100 µg penicillin-streptomycin mixture ml-1 and 0.3 % FBS. This medium relieves selection pressure, gives a low induction of signal transduction pathways and has a low autofluorescence at the relevant wavelength enabling fluorescence microscopy of cells straight from the incubator.

# Method 1: Monitoring the PKC $\alpha$ activity in real time:

Digital images of live cells were gathered using a Zeiss Axiovert 135M fluorescence microscope fitted with a 40X, NA: 1.3 oil immersion objective and coupled to a Photometrics CH250 charged coupled device (CCD) camera. The cells were illuminated with a 100 W arc lamp. In the light path was a 470±20 nm excitation filter, a 510 nm dichroic mirror and a 515±15 nm emission filter for minimal image background. The cells were kept and monitored to be at 37°C with a custom built stage heater.

Images were analyzed using the IPLab software package for Macintosh.

Upon stimulation of the M1-BHK cells, stably expressing the PKC $\alpha$ -F64L-S65T-GFP fusion, with carbachol we observed a dose-dependent transient translocation from the cytoplasm to the plasma membrane (Fig. 7a,b,c). Simultaneous measurement of the cytosolic free calcium concentration shows that the carbachol-induced calcium mobilisation precedes the translocation (Fig. 8).

Stepwise procedure for quantitation of translocation of PKC $\alpha$ :

15

- 1. The image was corrected for dark current by performing a pixel-by-pixel subtraction of a dark image (an image taken under the same conditions as the actual image, except the camera shutter is not allowed to open).
- The image was corrected for non-uniformity of the illumination by performing a
   pixel-by-pixel ratio with a flat field correction image (an image taken under the same conditions as the actual image of a uniformly fluorescent specimen).
  - 3. A copy of the image was made in which the edges are identified. The edges in the image are found by a standard edge-detection procedure convolving the image with a kernel which removes any large-scale unchanging components (i.e., background) and accentuates any small-scale changes (i.e., sharp edges). This image was then converted to a binary image by threshholding. Objects in the binary image which are too small to represent the edges of cells were discarded. A dilation of the binary image was performed to close any gaps in the image edges. Any edge objects in the image which were in contact with the borders of the image are discarded. This binary image represents the edge mask.
    - 4. Another copy of image was made via the procedure in step 3. This copy was further processed to detect objects which enclose "holes" and setting all pixels inside the holes to the binary value of the edge, i.e., one. This image represents the whole cell mask.
- 5. The original image was masked with the edge mask from step 3 and the sum total of all pixel values is determined.
  - 6. The original image was masked with the whole cell mask from step 4 and the sum total of all pixel values was determined.
- 7. The value from step 5 was divided by the value from step 6 to give the final result, the fraction of fluorescence intensity in the cells which was localized in the edges.

## **EXAMPLE 3**

10

Probes for detection of mitogen activated protein kinase Erk1 redistribution.

Useful for monitoring signalling pathways involving MAPK, e.g. to identify compounds which modulate the activity of the pathway in living cells.

Erk1, a serine/threonine protein kinase, is a component of a signalling pathway that is activated by e.g. many growth factors.

Probes for detection of ERK-1 activity in real time within living cells:

The extracellular signal regulated kinase (ERK-1, a mitogen activated protein kinase, MAPK) is fused N- or C-terminally to a derivative of GFP. The resulting fusions expressed in different mammalian cells are used for monitoring *in vivo* the nuclear translocation, and thereby the activation, of ERK1 in response to stimuli that activate the MAPK pathway.

a) Construction of murine ERK1 - F64L-S65T-GFP fusion:

Convenient restriction endonuclease sites are introduced into the cDNAs encoding murine ERK1 (GenBank Accession number: Z14249) and F64L-S65T-GFP (sequence disclosed in WO 97/11094) by polymerase chain reaction (PCR). The PCR reactions are performed according to standard protocols with the following primers:

#### 5'ERK1:

20 3'ERK1:

10

15

25

5'F64L-S65T-GFP:

TTggACACAAgCTTTggACACggCgCgCCATgAgTAAAggAgAAGAACTTTTC (SEQ ID NO:1)

3'F64L-S65T-GFP:

5

10

15

20

25

gTCATCTTCTCgAgTCTTACTCCTgAggTTTgTATAgTTCATCCATgCCATgT (SEQ ID NO:2)

To generate the mERK1-F64L-S65T-GFP (SEQ ID NO:56 & 57) fusion the ERK1 amplification product is digested with HindIII+AscI and the F64L-S65T-GFP product with AscI+XhoI. To generate the F64L-S65T-GFP-mERK1 fusion the ERK1 amplification product is then digested with HindIII+Bsu36I and the F64L-S65T-GFP product with Bsu36I+XhoI. The two pairs of digested PCR products are subsequently ligated with a HindIII+XhoI digested plasmid (pZeoSV® mammalian expression vector, Invitrogen, San Diego, CA, USA). The resulting fusion constructs are under control of the SV40 promoter.

b) The human Erk1 gene (GenBank Accession number: X60188) was amplified using PCR according to standard protocols with primers Erk1-top (SEQ ID NO:9) and Erk1-bottom/+stop (SEQ ID NO:10). The PCR product was digested with restriction enzymes EcoR1 and BamH1, and ligated into pEGFP-C1 (Clontech, Palo Alto; GenBank Accession number U55763) digested with EcoR1 and BamH1. This produces an EGFP-Erk1 fusion (SEQ ID NO:38 &39) under the control of a CMV promoter.

The plamid containing the EGFP-Erk1 fusion was transfected into HEK293 cells employing the FUGENE transfection reagent (Boehringer Mannheim). Prior to experiments the cells were grown to 80%-90% confluency 8 well chambers in DMEM with 10% FCS. The cells were washed in plain HAM F-12 medium (without FCS), and then incubated for 30-60 minutes in plain HAM F-12 (without FCS) with 100 micromolar PD98059, an inhibitor of MEK1, a kinase which activates Erk1; this step effectively empties the nucleus of EGFP-Erk1. Just before starting the experiment, the HAM F-12 was replaced with Hepes buffer following a wash with Hepes buffer. This removes the PD98059 inhibitor; if blocking of MEK1 is still wanted (e.g. in control experiments), the inhibitor is included in the Hepes buffer.

The experimental setup of the microscope was as described in example 1.

60 images were collected with 10 seconds between each, and with the test compound added after image number 10.

Addition of EGF (1-100 nM) caused within minutes a redistribution of EGFP-Erk1 from the cytoplasm into the nucleus (Fig. 9a,b).

The response was quantitated as described below and a dose-dependent relationship between EGF concentration and nuclear translocation of EGFP-Erk1 was found (Fig. 9c,d). Redistribution of GFP fluorescence is expressed in this example as the change in the ratio value between areas in nuclear versus cytoplasmic compartments of the cell. Each time profile is the average of nuclear to cytoplasmic ratios from six cells in each treatment.

10

20

25

### **EXAMPLE 4**

# Probes for detection of Erk2 redistribution.

Useful for monitoring signalling pathways involving MAPK, e.g. to identify compounds which modulate the activity of the pathway in living cells.

- 15 Erk2, a serine/threonine protein kinase, is closely related to Erk1 but not identical; it is a component of a signalling pathway that is activated by e.g. many growth factors.
  - a) The rat Erk2 gene (GenBank Accession number: M64300) was amplified using PCR according to standard protocols with primers Erk2-top (SEQ ID NO:11) and Erk2-bottom/+stop (SEQ ID NO:13) The PCR product was digested with restriction enzymes Xho1 and BamH1, and ligated into pEGFP-C1 (Clontech, Palo Alto; GenBank Accession number U55763) digested with Xho1 and BamH1. This produces an EGFP-Erk2 fusion (SEQ ID NO:40 &41) under the control of a CMV promoter.
  - b) The rat Erk2 gene (GenBank Accession number: M64300) was amplified using PCR according to standard protocols with primers (SEQ ID NO:11) Erk2-top and Erk2-bottom/-stop (SEQ ID NO:12). The PCR product was digested with restriction enzymes Xho1 and BamH1, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank

Accession number U55762) digested with Xho1 and BamH1. This produces an Erk2-EGFP fusion (SEQ ID NO:58 &59) under the control of a CMV promoter.

The resulting plasmids were transfected into CHO cells and BHK cells. The cells were grown under standard conditions. Prior to experiments, the cells were starved in medium without serum for 48-72 hours. This led to a predominantly cytoplasmic localisation of both probes, especially in BHK cells. 10% fetal calf serum was added to the cells and the fluorescence of the cells was recorded as explained in example 3. Addition of serum caused the probes to redistribute into the nucleus within minutes of addition of serum.

### 10 EXAMPLE 5

5

20

25

# Probes for detection of Smad2 redistribution.

Useful for monitoring signalling pathways activated by some members of the transforming growth factor-beta family, e.g. to identify compounds which modulate the activity of the pathway in living cells.

- Smad 2, a signal transducer, is a component of a signalling pathway that is induced by some members of the TGFbeta family of cytokines.
  - a) The human Smad2 gene (GenBank Accession number: AF027964) was amplified using PCR according to standard protocols with primers Smad2-top (SEQ ID NO:24) and Smad2-bottom/+stop (SEQ ID NO:26). The PCR product was digested with restriction enzymes EcoR1 and Acc651, and ligated into pEGFP-C1 (Clontech; Palo Alto; GenBank Accession number U55763) digested with EcoR1 and Acc651. This produces an EGFP-Smad2 fusion (SEQ ID NO:50&51) under the control of a CMV promoter.
  - b) The human Smad2 gene (GenBank Accession number: AF027964) was amplified using PCR according to standard protocols with primers Smad2-top (SEQ ID NO:24) and Smad2-bottom/-stop (SEQ ID NO:25). The PCR product was digested with restriction enzymes EcoR1 and Acc651, and ligated into pEGFP-N1 (Clontech, Palo Alto;

GenBank Accession number U55762) digested with EcoR1 and Acc65I. This produces a Smad2-EGFP fusion (SEQ ID NO:74 &75) under the control of a CMV promoter.

The plasmid containing the EGFP-Smad2 fusion was transfected into HEK293 cells, where it showed a cytoplasmic distribution. Prior to experiments the cells were grown in 8 well Nunc chambers in DMEM with 10% FCS to 80% confluence and starved overnight in HAM F-12 medium without FCS.

For experiments, the HAM F-12 medium was replaced with Hepes buffer pH 7.2.

The experimental setup of the microscope was as described in example 1.

90 images were collected with 10 seconds between each, and with the test compound added after image number 5.

After serum starvation of cells, each nucleus contains less GFP fluorescence than the surrounding cytoplasm (Fig. 10a). Addition of TGFbeta caused within minutes a redistribution of EGFP-Smad2 from the cytoplasma into the nucleus (Fig. 10b).

The redistribution of fluorescence within the treated cells was quantified simply as the fractional increase in nuclear fluorescence normalised to the starting value of GFP fluorescence in the nucleus of each unstimulated cell.

### EXAMPLE 6

5

10

# Probe for detection of VASP redistribution.

Useful for monitoring signalling pathways involving rearrangement of cytoskeletal elements, e.g. to identify compounds which modulate the activity of the pathway in living cells.

VASP, a phosphoprotein, is a component of cytoskeletal structures, which redistributes in response to signals that affect focal adhesions.

The human VASP gene (GenBank Accession number: Z46389) was amplified using PCR according to standard protocols with primers VASP-top (SEQ ID NO:94) and VASP-bottom/+stop (SEQ ID NO:95). The PCR product was digested with restriction enzymes Hind3 and BamH1, and ligated into pEGFP-C1 (Clontech, Palo Alto; GenBank Accession number U55763) digested with Hind3and BamH1. This produces an EGFP-VASP fusion (SEQ ID NO:124 &125) under the control of a CMV promoter.

The resulting plasmid was transfected into CHO cells expressing the human insulin receptor using the calcium-phosphate transfection method. Prior to experiments, cells were grown in 8 well Nunc chambers and starved overnight in medium without FCS.

Experiments are performed in a microscope setup as described in example 1.

10% FCS was added to the cells and images were collected. The EGFP-VASP fusion was redistributed from a somewhat even distribution near the periphery into more localised structures, identified as focal adhesion points (Fig. 11).

A large number of further GFP fusions have been made or are in the process of being made, as apparent from the following Examples 7-22 which also suggest suitable host cells and substances for activation of the cellular signalling pathways to be monitored and analyzed.

### EXAMPLE 7

5

10

15

25

# 20 Probe for detection of actin redistribution.

Useful for monitoring signalling pathways involving rearrangement or formation of actin filaments, e.g. to identify compounds which modulate the activity of pathways leading to cytoskeletal rearrangements in living cells.

Actin is a component of cytoskeletal structures, which redistributes in response to very many cellular signals.

The actin binding domain of the human alpha-actinin gene (GenBank Accession number:

X15804) was amplified using PCR according to standard protocols with primers ABD-top (SEQ ID NO:90) and ABD-bottom/-stop (SEQ ID NO:91). The PCR product was digested with restriction enzymes Hind3 and BamH1, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank Accession number U55762) digested with Hind3 and BamH1. This produced an actin-binding-domain-EGFP fusion (SEQ ID NO:128 &129) under the control of a CMV promoter.

The resulting plasmid was transfected into CHO cells expressing the human insulin receptor. Cells were stimulated with insulin that caused the actin binding domain-EGFP probe to become redistributed into morphologically distinct membrane-associated structures.

# **EXAMPLE 8**

5

10

# Probes for detection of p38 redistribution.

Useful for monitoring signalling pathways responding to various cellular stress situations,
e.g. to identify compounds which modulate the activity of the pathway in living cells, or as a counterscreen.

p38, a serine/threonine protein kinase, is a component of a stress-induced signalling pathway which is activated by many types of cellular stress, e.g. TNFalpha, anisomycin, UV and mitomycin C.

- a) The human p38 gene (GenBank Accession number: L35253) was amplified using PCR according to standard protocols with primers p38-top (SEQ ID NO:14) and p38-bottom/+stop (SEQ ID NO: 16). The PCR product was digested with restriction enzymes Xho1 and BamH1, and ligated into pEGFP-C1 (Clontech, Palo Alto; GenBank Accession number U55763) digested with Xho1 and BamH1. This produced an EGFP-p38 fusion (SEQ ID NO:46 & 47) under the control of a CMV promoter.
  - b) The human p38 gene (GenBank Accession number: L35253) was amplified using PCR according to standard protocols with primers p38-top (SEQ ID NO:13) and p38-

bottom/-stop (SEQ ID NO:15). The PCR product was digested with restriction enzymes Xho1 and BamH1, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank Accession number U55762) digested with Xho1 and BamH1. This produced a p38-EGFP fusion (SEQ ID NO:64 & 65) under the control of a CMV promoter.

The resulting plasmids are transfected into a suitable cell line, e.g. HEK293, in which the EGFP-p38 probe and/or the p38-EGFP probe should change its cellular distribution from predominantly cytoplasmic to nuclear within minutes in response to activation of the signalling pathway with e.g. anisomycin.

## **EXAMPLE 9**

10

20

# Probes for detection of Jnk1 redistribution.

Useful for monitoring signalling pathways responding to various cellular stress situations, e.g. to identify compounds which modulate the activity of the pathway in living cells, or as a counterscreen.

- Jnk1, a serine/threonine protein kinase, is a component of a stress-induced signalling pathway different from the p38 described above, though it also is activated by many types of cellular stress, e.g. TNFalpha, anisomycin and UV.
  - a) The human Jnk1 gene (GenBank Accession number: L26318) was amplified using PCR according to standard protocols with primers Jnk-top (SEQ ID NO:17) and Jnk-bottom/+stop (SEQ ID NO:19). The PCR product was digested with restriction enzymes Xho1 and BamH1, and ligated into pEGFP-C1 (Clontech, Palo Alto; GenBank Accession number U55763) digested with Xho1 and BamH1. This produced an EGFP-Jnk1 fusion (SEQ ID NO:44 &45) under the control of a CMV promoter.
- b) The human Jnk1 gene (GenBank Accession number: L26318) was amplified using PCR according to standard protocols with primers Jnk-top (SEQ ID NO:17) and Jnk-bottom/-stop (SEQ ID NO:18). The PCR product was digested with restriction enzymes Xho1 and BamH1, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank

Accession number U55762) digested with Xho1 and BamH1. This produced a Jnk1-EGFP fusion (SEQ ID NO:62 &63) under the control of a CMV promoter.

The resulting plasmids are transfected into a suitable cell line, e.g. HEK293, in which the EGFP-Jnk1 probe and/or the Jnk1-EGFP probe should change its cellular distribution from predominantly cytoplasmic to nuclear in response to activation of the signalling pathway with e.g. anisomycin.

## EXAMPLE 10

5

# Probes for detection of PKG redistribution.

Useful for monitoring signalling pathways involving changes in cyclic GMP levels, e.g. to identify compounds which modulate the activity of the pathway in living cells.

PGK, a cGMP-dependent serine/threonine protein kinase, mediates the guanylyl-cyclase/cGMP signal.

- a) The human PKG gene (GenBank Accession number: Y07512) is amplified using PCR according to standard protocols with primers PKG-top (SEQ ID NO:81) and PKG-bottom/+stop (SEQ ID NO:83). The PCR product is digested with restriction enzymes Xho1 and BamH1, and ligated into pEGFP-C1 (Clontech, Palo Alto; GenBank Accession number U55763) digested with Xho1 and BamH1. This produces an EGFP-PKG fusion (SEQ ID NO:134 &135) under the control of a CMV promoter.
- b) The human PKG gene (GenBank Accession number: Y07512) is amplified using PCR according to standard protocols with primers PKG-top (SEQ ID NO:81) and PKG-bottom/-stop (SEQ ID NO: 82). The PCR product is digested with restriction enzymes Xho1 and BamH1, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank Accession number U55762) digested with Xho1 and BamH1. This produces a PKG-EGFP fusion (SEQ ID NO:136 &137) under the control of a CMV promoter.

The resulting plasmids are transfected into a suitable cell line, e.g. A10, in which the EGFP-PKG probe and/or the PKG-EGFP probe should change its cellular distribution

from cytoplasmic to one associated with cytoskeletal elements within minutes in response to treatment with agents which raise nitric oxide (NO) levels.

## EXAMPLE 11

10

15

5 Probes for detection of IkappaB kinase redistribution.

Useful for monitoring signalling pathways leading to NFkappaB activation, e.g. to identify compounds which modulate the activity of the pathway in living cells.

IkappaB kinase, a serine/threonine kinase, is a component of a signalling pathway which is activated by a variety of inducers including cytokines, lymphokines, growth factors and stress.

- a) The alpha subunit of the human IkappaB kinase gene (GenBank Accession number: AF009225) is amplified using PCR according to standard protocols with primers IKK-top (SEQ ID NO:96) and IKK-bottom/+stop (SEQ ID NO:98). The PCR product is digested with restriction enzymes EcoR1 and Acc651, and ligated into pEGFP-C1 (Clontech, Palo Alto; GenBank Accession number U55763) digested with EcoR1and Acc651. This produces an EGFP-IkappaB-kinase fusion (SEQ ID NO:120 &121) under the control of a CMV promoter.
- b) The alpha subunit of the human IkappaB kinase gene (GenBank Accession number:

  AF009225) is amplified using PCR according to standard protocols with primers IKK
  top (SEQ ID NO:96) and IKK-bottom/-stop (SEQ ID NO:97). The PCR product is

  digested with restriction enzymes EcoR1 and Acc65I, and ligated into pEGFP-N1

  (Clontech, Palo Alto; GenBank Accession number U55762) digested with EcoR1 and

  Acc65I. This produces an IkappaB-kinase-EGFP fusion (SEQ ID NO:122 &123) under

  the control of a CMV promoter.
- The resulting plasmids are transfected into a suitable cell line, e.g. Jurkat, in which the EGFP-lkappaB-kinase probe and/or the lkappaB-kinase-EGFP probe should achieve a more cytoplasmic distribution within seconds following stimulation with e.g. TNFalpha.

### EXAMPLE 12

5

# Probes for detection of CDK2 redistribution.

Useful for monitoring signalling pathways of the cell cycle, e.g. to identify compounds that modulate the activity of the pathway in living cells.

CDK2, a cyclin-dependent serine/threonine kinase, is a component of the signalling system that regulates the cell cycle.

- a) The human CDK2 gene (GenBank Accession number: X61622) is amplified using PCR according to standard protocols with primers CDK2-top (SEQ ID NO:102) and CDK2-top (SEQ ID NO: 104). The PCR product is digested with restriction enzymes Xho1 and BamH1, and ligated into pEGFP-C1 (Clontech, Palo Alto; GenBank Accession number U55763) digested with Xho1 and BamH1. This produces an EGFP-CDK2 fusion (SEQ ID NO:114 &115) under the control of a CMV promoter.
- b) The human CDK2 gene (GenBank Accession number: X61622) is amplified using PCR according to standard protocols with primers CDK2-top (SEQ ID NO:102) and CDK2-bottom/-stop (SEQ ID NO:103). The PCR product is digested with restriction enzymes Xho1 and BamH1, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank Accession number U55762) digested with Xho1 and BamH1. This produces a CDK2-EGFP fusion (SEQ ID NO:112 &113) under the control of a CMV promoter.
- The resulting plasmids are transfected into a suitable cell line, e.g. HEK293 in which the EGFP-CDK2 probe and/or the CDK2-EGFP probe should change its cellular distribution from cytoplasmic in contact-inhibited cells, to nuclear location in response to activation with a number of growth factors, e.g. IGF.

## 25 EXAMPLE 13

Probes for detection of Grk5 redistribution.

Useful for monitoring signalling pathways involving desensitisation of G-protein coupled receptors, e.g. to identify compounds which modulate the activity of the pathway in living cells.

Grk5, a G-protein coupled receptor kinase, is a component of signalling pathways involving membrane bound G-protein coupled receptors.

- a) The human Grk5 gene (GenBank Accession number: L15388) is amplified using PCR according to standard protocols with primers Grk5-top (SEQ ID NO:27) and Grk5-bottom/+stop (SEQ ID NO:29). The PCR product is digested with restriction enzymes EcoR1 and BamH1, and ligated into pEGFP-C1 (Clontech, Palo Alto; GenBank Accession number U55763) digested with EcoR1 and BamH1. This produces an EGFP-Grk5 fusion (SEQ ID NO:42 &43) under the control of a CMV promoter.
- b) The human Grk5 gene (GenBank Accession number: L15388) is amplified using PCR according to standard protocols with primers Grk5-top (SEQ ID NO:27) and Grk5-bottom/-stop (SEQ ID NO:28). The PCR product is digested with restriction enzymes EcoR1 and BamH1, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank Accession number U55762) digested with EcoR1 and BamH1. This produces a Grk5-EGFP fusion (SEQ ID NO:60 &61) under the control of a CMV promoter.

The resulting plasmids are transfected into a suitable cell line, e.g. HEK293 expressing a rat dopamine D1A receptor, in which the EGFP-Grk5 probe and/or the Grk5-EGFP probe should change its cellular distribution from predominantly cytoplasmic to peripheral in response to activation of the signalling pathway with e.g. dopamine.

### EXAMPLE 14

10

# 25 Probes for detection of Zap70 redistribution.

Useful for monitoring signalling pathways involving the T cell receptor, e.g. to identify compounds which modulate the activity of the pathway in living cells.

Zap70, a tyrosine kinase, is a component of a signalling pathway which is active in e.g. T-cell differentiation.

- a) The human Zap70 gene (GenBank Accession number: L05148) is amplified using PCR according to standard protocols with primers Zap70-top (SEQ ID NO:105) and Zap70-bottom/+stop (SEQ ID NO:107). The PCR product is digested with restriction enzymes EcoR1 and BamH1, and ligated into pEGFP-C1 (GenBank Accession number U55763) digested with EcoR1 and BamH1. This produces an EGFP-Zap70 fusion (SEQ ID NO:108 & 109) under the control of a CMV promoter.
- b) The human Zap70 gene (GenBank Accession number: L05148) is amplified using PCR according to standard protocols with primers Zap70-top (SEQ ID NO:105) and Zap70-bottom/-stop (SEQ ID NO:106). The PCR product is digested with restriction enzymes EcoR1 and BamH1, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank Accession number U55762) digested with EcoR1 and BamH1. This produces a Zap70-EGFP fusion (SEQ ID NO:110 &111) under the control of a CMV promoter.
- The resulting plasmids are transfected into a suitable cell line, e.g. Jurkat, in which the EGFP-Zap70 probe and/or the Zap70-EGFP probe should change its cellular distribution from cytoplasmic to membrane-associated within seconds in response to activation of the T cell receptor signalling pathway with e.g. antibodies to CD3epsilon.

## 20 EXAMPLE 15

25

5

10

# Probes for detection of p85 redistribution.

Useful for monitoring signalling pathways involving PI-3 kinase, e.g. to identify compounds which modulate the activity of the pathway in living cells.

p85alpha is the regulatory subunit of PI3-kinase which is a component of many pathways involving membrane-bound tyrosine kinase receptors and G-protein-coupled receptors.

a) The human p85alpha gene (GenBank Accession number: M61906) was amplified using PCR according to standard protocols with primers p85-top-C (SEQ ID NO:22) and p85-

22131DK1 Appendix A

bottom/+stop (SEQ ID NO:23). The PCR product was digested with restriction enzymes Bgl2 and BamH1, and ligated into pEGFP-C1 (Clontech, Palo Alto; GenBank Accession number U55763) digested with Bgl2 and BamH1. This produced an EGFP-p85alpha fusion (SEQ ID NO:48 &49) under the control of a CMV promoter.

b) The human p85alpha gene (GenBank Accession number: M61906) was amplified using PCR according to standard protocols with primers p85-top-N (SEQ ID NO:20) and p85-bottom/-stop (SEQ ID NO:21). The PCR product was digested with restriction enzymes EcoR1 and BamH1, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank Accession number U55762) digested with EcoR1 and BamH1. This produced a p85alpha-EGFP fusion (SEQ ID NO:66 &67) under the control of a CMV promoter.

The resulting plasmids are transfected into a suitable cell line, e.g. CHO expressing the human insulin receptor, in which the EGFP-p85 probe and/or the p85-EGFP probe may change its cellular distribution from cytoplasmic to membrane-associated within minutes in response to activation of the receptor with insulin.

### 15

25

### **EXAMPLE 16**

# Probes for detection of protein-tyrosine phosphatase redistribution.

Useful for monitoring signalling pathways involving tyrosine kinases, e.g. to identify compounds which modulate the activity of the pathway in living cells.

- 20 Protein-tyrosine phosphataselC, a tyrosine-specific phosphatase, is an inhibitory component in signalling pathways involving e.g. some growth factors.
  - a) The human protein-tyrosine phosphatase 1C gene (GenBank Accession number: X62055) is amplified using PCR according to standard protocols with primers PTP-top (SEQ ID NO:99) and PTP-bottom/+stop (SEQ ID NO:101). The PCR product is digested with restriction enzymes Xho1 and EcoR1, and ligated into pEGFP-C1 (Clontech, Palo Alto; GenBank Accession number U55763) digested with Xho1 and EcoR1. This produces an EGFP-PTP fusion (SEQ ID NO:116 & 117) under the control

of a CMV promoter.

5

10

20

25

b) The human protein-tyrosine phosphatase 1C gene (GenBank Accession number: X62055) is amplified using PCR according to standard protocols with primers PTP-top (SEQ ID NO:99) and PTP-bottom/-stop (SEQ ID NO:100). The PCR product is digested with restriction enzymes Xho1 and EcoR1, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank Accession number U55762) digested with Xho1 and EcoR1. This produces a PTP-EGFP fusion (SEQ ID NO:118 & 119) under the control of a CMV promoter.

The resulting plasmids are transfected into a suitable cell line, e.g. MCF-7 in which the EGFP-PTP probe and/or the PTP-EGFP probe should change its cellular distribution from cytoplasm to the plasma membrane within minutes in response to activation of the growth inhibitory signalling pathway with e.g. somatostatin.

### EXAMPLE 17

# 15 Probes for detection of Smad4 redistribution.

Useful for monitoring signalling pathways involving most members of the transforming growth factor-beta family, e.g. to identify compounds which modulate the activity of the pathway in living cells.

Smad4, a signal transducer, is a common component of signalling pathways induced by various members of the TGFbeta family of cytokines.

- a) The human Smad4 gene (GenBank Accession number: U44378) was amplified using PCR according to standard protocols with primers Smad4-top and Smad4-bottom/+stop (SEQ ID NO:35). The PCR product was digested with restriction enzymes EcoR1 and BamH1, and ligated into pEGFP-C1 (Clontech, Palo Alto; GenBank Accession number U55763) digested with EcoR1 and BamH1. This produce an EGFP-Smad4 fusion (SEQ ID NO:52 & 53) under the control of a CMV promoter.
- b) The human Smad4 gene (GenBank Accession number: U44378) was amplified using

PCR according to standard protocols with primers Smad4-top (SEQ ID NO:33) and Smad4-bottom/-stop (SEQ ID NO:34). The PCR product was digested with restriction enzymes EcoR1 and BamH1, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank Accession number U55762) digested with EcoR1 and BamH1. This produced a Smad4-EGFP fusion (SEQ ID NO:76 & 77) under the control of a CMV promoter.

The resulting plasmids are transfected into a cell line, e.g. HEK293 in which the EGFP-Smad4 probe and/or the Smad4-EGFP probe should change its cellular distribution within minutes from cytoplasmic to nuclear in response to activation of the signalling pathway with e.g. TGFbeta.

10

15

5

### **EXAMPLE 18**

## Probes for detection of Stat5 redistribution.

Useful for monitoring signalling pathways involving the activation of tyrosine kinases of the Jak family, e.g. to identify compounds that modulate the activity of the pathway in living cells.

Stat5, signal transducer and activator of transcription, is a component of signalling pathways that are induced by e.g. many cytokines and growth factors.

- a) The human Stat5 gene (GenBank Accession number: L41142) was amplified using PCR according to standard protocols with primers Stat5-top (SEQ ID NO:30) and Stat5-bottom/+stop (SEQ ID NO:32). The PCR product was digested with restriction enzymes Bgl2 and Acc65I, and ligated into pEGFP-C1 (Clontech; Palo Alto; GenBank Accession number U55763) digested with Bgl2 and Acc65I. This produced an EGFP-Stat5 fusion (SEQ ID NO:54 & 55) under the control of a CMV promoter.
- b) The human Stat5 gene (GenBank Accession number: L41142) was amplified using PCR according to standard protocols with primers Stat5-top (SEQ ID NO:30) and Stat5-bottom/-stop (SEQ ID NO:331). The PCR product was digested with restriction

enzymes Bgl2 and Acc651, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank Accession number U55762) digested with Bgl2 and Acc65I. This produced a Stat5-EGFP fusion (SEQ ID NO:78 & 79) under the control of a CMV promoter.

The resulting plasmids are transfected into a suitable cell line, e.g. MIN6 in which the EGFP-Stat5 probe and/or the Stat5-EGFP probe should change its cellular distribution from cytoplasmic to nuclear within minutes in response to activation signalling pathway with e.g. prolactin.

# EXAMPLE 19

10 Probes for detection of NFAT redistribution.

Useful for monitoring signalling pathways involving activation of NFAT, e.g. to identify compounds which modulate the activity of the pathway in living cells.

NFAT, an activator of transcription, is a component of signalling pathways involved in e.g. immune responses.

- a) The human NFAT1 gene (GenBank Accession number: U43342) is amplified using PCR according to standard protocols with primers NFAT-top (SEQ ID NO:84) and NFAT-bottom/+stop (SEQ ID NO:86). The PCR product is digested with restriction enzymes Xho1 and EcoR1, and ligated into pEGFP-C1 (Clontech, Palo Alto; GenBank Accession number U55763) digested with Xho1 and EcoR1. This produces an EGFP-NFAT fusion (SEQ ID NO:130 & 131) under the control of a CMV promoter.
  - b) The human NFAT gene (GenBank Accession number: U43342) is amplified using PCR according to standard protocols with primers NFAT-top (SEQ ID NO:84) and NFAT-bottom/-stop (SEQ ID NO:85). The PCR product is digested with restriction enzymes Xho1 and EcoR1, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank Accession number U55762) digested with Xho1 and EcoR1. This produces an NFAT-EGFP fusion (SEQ ID NO:132 & 133) under the control of a CMV promoter.

The resulting plasmids are transfected into a suitable cell line, e.g. Jurkat, in which the

EGFP-NFAT probe and/or the NFAT-EGFP probe should change its cellular distribution from cytoplasmic to nuclear within minutes in response to activation of the signalling pathway with e.g. antibodies to CD3epsilon.

## EXAMPLE 20

10

15

# Probes for detection of NFkappaB redistribution.

Useful for monitoring signalling pathways leading to activation of NFkappaB, e.g. to identify compounds which modulate the activity of the pathway in living cells.

NFkappaB, an activator of transcription, is a component of signalling pathways that are responsive to a varity of inducers including cytokines, lymphokines, and some immunosuppressive agents.

- a) The human NFkappaB p65 subunit gene (GenBank Accession number: M62399) is amplified using PCR according to standard protocols with primers NFkappaB-top (SEQ ID NO:87) and NFkappaB-bottom/+stop (SEQ ID NO:89). The PCR product is digested with restriction enzymes Xho1 and BamH1, and ligated into pEGFP-C1 (Clontech, Palo Alto; GenBank Accession number U55763) digested with Xho1 and BamH1. This produces an EGFP-NFkappaB fusion (SEQ ID NO:142 & 143) under the control of a CMV promoter.
- b) The human NFkappaB p65 subunit gene (GenBank Accession number: M62399) is
  amplified using PCR according to standard protocols with primers NFkappaB-top (SEQ ID NO:87) and NFkappaB-bottom/-stop (SEQ ID NO:88). The PCR product is digested with restriction enzymes Xho1 and BamH1, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank Accession number U55762) digested with Xho1 and BamH1. This produces an NFkappaB-EGFP fusion (SEQ ID NO:140 & 141) under the control of a CMV promoter.

The resulting plasmids are transfected into a suitable cell line, e.g. Jurkat, in which the EGFP-NFkappaB probe and/or the NFkappaB-EGFP probe should change its cellular

distribution from cytoplasmic to nuclear in response to activation of the signalling pathway with e.g. TNFalpha.

## EXAMPLE 21

# 5 Probe for detection of RhoA redistribution.

Useful for monitoring signalling pathways involving RhoA, e.g. to identify compounds which modulate the activity of the pathway in living cells.

RhoA, a small GTPase, is a component of many signalling pathways, e.g. LPA induced cytoskeletal rearrangements.

The human RhoA gene (GenBank Accession number: L25080) was amplified using PCR according to standard protocols with primers RhoA-top (SEQ ID NO:92) and RhoA-bottom/+stop (SEQ ID NO:93). The PCR product was digested with restriction enzymes Hind3 and BamH1, and ligated into pEGFP-C1 (Clontech, Palo Alto; GenBank Accession number U55763) digested with Hind3and BamH1. This produced an EGFP-RhoA fusion (SEQ ID NO:126 &127) under the control of a CMV promoter.

The resulting plasmid is transfected into a suitable cell line, e.g. Swiss3T3, in which the EGFP-RhoA probe should change its cellular distribution from a reasonably homogenous to a peripheral distribution within minutes of activation of the signalling pathway with e.g. LPA.

20

## EXAMPLE 22

# Probes for detection of PKB redistribution.

Useful for monitoring signalling pathways involving PKB e.g. to identify compounds which modulate the activity of the pathway in living cells.

25 PKB, a serine/threonine kinase, is a component in various signalling pathways, many of

which are activated by growth factors.

- a) The human PKB gene (GenBank Accession number: M63167) is amplified using PCR according to standard protocols with primers PKB-top (SEQ ID NO:36) and PKB-bottom/+stop (SEQ ID NO:80). The PCR product is digested with restriction enzymes Xho1 and BamH1, and ligated into pEGFP-C1 (Clontech, Palo Alto; GenBank Accession number U55763) digested with Xho1 and BamH1. This produces an EGFP-PKB fusion (SEQ ID NO:138 & 139) under the control of a CMV promoter.
- b) The human PKB gene (GenBank Accession number: M63167) was amplified using
  PCR according to standard protocols with primers PKB-top (SEQ ID NO:36) and PKBbottom/-stop (SEQ ID NO:37). The PCR product was digested with restriction
  enzymes Xho1 and BamH1, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank
  Accession number U55762) digested with Xho1 and BamH1. This produced a PKBEGFP fusion (SEQ ID NO:70 &71) under the control of a CMV promoter.
- The resulting plasmids are transfected into a suitable cell line, e.g. CHO expressing the human insulin receptor, in which the EGFP-PKB probe and/or the PKB-EGFP probe cycles between cytoplasmic and membrane locations during the activation-deactivation process following addition of insulin. The transition should be apparent within minutes.

### 20 EXAMPLE 23

25

5

Measurement of the real-time redistribution of protein kinase C  $\alpha$  isoform-GFP fusion (PKC $\alpha$ -GFP) in response to carbamylcholine stimulation of the muscarinic M1 receptor; 96 parallel redistribution measurements in microtiter plates.

BHK cells were stably expressing a recombinant human muscarinic typ 1 receptor, under the selection with 500 μg/ml Methotrexate, and also a PKCα-GFP construct (KaA 048), under the selection of 500 nM Zeocin. The cells were grown in 96-well plates (Packard ViewPlate, black with transparent bottom), washed and preincubated in a Hank's Buffered

Salt solution (HBSS) without phenol red, with 20 mM HEPES and 5.5 mM glucose.

The plate was measured in a FLIPR<sup>TM</sup> (Fluorescence Imaging Plate Reader) from Molecular Devices. The 488 nm emission line from an argon ion laser, run at between 0.4 and 0.8 W output, was used to excite fluorescence form the GFP. Emission wavelengths were collected through a 510 to 565 nm band pass filter.

The cells were challenged with three doses of carbamylcholine, an M1 receptor agonist known from previous studies to give a microscopically detectable redistribution of the PKCα-GFP construct [(Almholt *et al.* 1997)]. Measurements were made every 10 seconds for 5 minutes. After data handling including normalisation of baseline fluorescence for the different wells, background subtraction and averaging the 6 wells used for each concentration the data presented in figure 14 were obtained. It can clearly be seen (Fig 14) that carbamylcholine gave a time- and dose-dependent, and transient, decrease in fluorescence very similar to the time- and dose-dependent profile seen in microscopic fluorescence measurements [(see Almholt *et al.* 1997)]. This experiment was repeated twice on the same batch of cells with similar results.

### **EXAMPLE 24**

10

15

20

25

Measurement of the real-time redistribution of cyclic-AMP dependent protein kinase catalytic subuit-GFP fusion (C-GFP<sup>LT</sup>) in response to forskolin stimulation of the adenylate cyclase; 96 parallel redistribution measurements in microtiter plates.

CHO cells were stably transfected with hybrid DNA for the PKA catalytic subunit-F64L+S65T GFP (C-GFP<sup>LT</sup>) fusion protein, and were typically under continuous selection with 1000 µg/ml zeocin (Invitrogen). The cells were grown without selection for 2 days in 96-well plates (Packard ViewPlate, black with transparent bottom), washed and preincubated in a Hank's Buffered Salt solution (HBSS) without phenol red, with 20 mM HEPES and 5.5 mM glucose.

The plate was measured in a FLIPR<sup>TM</sup> (Fluorescence Imaging Plate Reader) from Molecular Devices. The 488 nm emission line from an argon ion laser, run at between 0.4

and 0.8 W output, was used to excite fluorescence from the GFP. Emission wavelengths were collected through a 510 to 565 nm band pass filter.

The cells were challenged with three doses of forskolin (Fig 15), an adenylate cyclase agonist known from previous studies to give a microscopically detectable redistribution of the C-GFP<sup>LT</sup> construct [(Almholt *et al.* 1998)]. Measurements were made every 10 seconds for over 6 minutes from the point of addition of forskolin. After data handling including normalisation of baseline fluorescence for the different wells, background subtraction and averaging the 6 wells used for each concentration the data presented below were obtained. It can clearly be seen in figure 15 that forskolin gave a time- and dose-dependent decrease in fluorescence very similar to the time- and dose-dependent profile seen in microscopic fluorescence measurements [(see Almholt *et al.* 1998)]. This experiment was repeated twice on the same batch of cells with similar results.

### **EXAMPLE 25**

5

10

20

25

Measurement of the redistribution response of cyclic-AMP dependent protein kinase catalytic subuit-GFP fusion (C-GFP<sup>LT</sup>) after forskolin stimulation of the adenylate cyclase; measurement of the change in total fluorescence upon permeabilisation of agonist-treated cells.

CHO cells were stably transfected with hybrid DNA for the PKA catalytic subunit- F64L+S65T GFP (C-GFP<sup>LT</sup>) fusion protein, and were typically under continuous selection with 1000  $\mu$ g/ml zeocin (Invitrogen). For the experiments reported here, cells were grown without selection to 90% confluence in 8-well tissue culture-treated Lab-Tek® chambered coverglass units (chambers, obtained from Nunc, Inc. Illinois, USA). Immediately prior to the experiment growth medium was washed from the cells and replaced with 200  $\mu$ l HEPES buffer per well.

For the results reported here, chambers were measured using a cooled CCD camera (KAF1400 chip, Photometrics Ltd., USA) attached to an inverted microscope (Diaphot 300, Nikon, Japan) equipped with a x40 oil-immersion Fluar lens, NA 1.4. Cells were

illuminated with 450-490 nm light from a 50 W HBO lamp, and emitted light collected between 510-560 nm.

The cells were challenged with four doses of forskolin, an adenylate cyclase agonist known from previous studies to give a microscopically detectable redistribution of the C-GFP<sup>LT</sup> construct [(Almholt *et al.* 1998)]. Images were collected at 10-second intervals for a period of 10 minutes for each treatment. Six minutes after the addition of forskolin or buffer control, Triton-X100 was added to a final concentration of 0.1%. The detergent releases freely mobile C-GFP<sup>LT</sup> from the cells. The change in fluorescence resulting from this loss was measured after 1 minute of equilibration. After data handling including background subtraction and normalisation to pre-detergent values, the data presented in figure 16 were obtained. Permeabilisation caused decreases in fluorescence, the magnitude of which were dependent on the forskolin treatments. The dose-dependent profile for forskolin activation of the cAMP system as revealed by this method was very similar to that registered by other methods (see Almholt *et al.* 1998). This experiment was repeated twice on the same batch of cells with similar results.

### **EXAMPLE 26**

10

15

20

25

# Probe for detection of PKCbeta2 redistribution.

Useful for monitoring signalling pathways involving protein kinase C, e.g. for identifying compounds which modulate the activity of the pathway in living cells.

PKCbeta2, a serine/threonine protein kinase, is closely related to PKCalpha but not identical; it is a component of a signalling pathway that is activated by elevation of intracellular calcium concomitant with an increase in diacylglycerol species.

a) The human PKCbeta2 gene (GenBank Accession number: X07109) was amplified using PCR according to standard protocols with primers PKCbeta2-top (SEQ ID NO:162) and PKCbeta2-bottom (SEQ ID NO:163). The PCR product was digested with restriction enzymes Xho1 and BamH1, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank Accession number U55762) digested with Xho1 and BamH1. This produces a PKCbeta2-

EGFP fusion (SEQ ID NO:146 & 147) under the control of a CMV promoter.

The resulting plasmids are transfected into BHK cells transfected with a human muscarinic acetylcholine receptor type M1. The cells are grown under standard conditions. The fluorescence of the cells is recorded as explained in example 3. Addition of  $1\mu M$  - $100\mu M$  carbachol causes a transient redistribution of fluorescence within the cells whereby it changes from a cytosolic location to the plasma membrane.

### **EXAMPLE 27**

5

## Probes for detection of PDE4D redistribution.

Useful for monitoring signalling pathways involving Protein Kinase A, e.g. to identify compounds which modulate the activity of the pathway in living cells.

PDE4D3, PDE4D4 and PDE4D5 are closely related splicing variants of PDE4D, a cAMP dependent phosphodiesterase. They are components of signalling pathways which involves cAMP.

The human PDE4D3, PDE4D4 and PDE4D5 genes (GenBank Accession numbers: L20970, L20969 and AF012073) are amplified using PCR according to standard protocols with the common bottom primer PDE4D-bottom (SEQ ID NO:159) and PDE4D3-top (SEQ ID NO:156), PDE4D4-top (SEQ ID NO:157) and PDE4D5-top respectively (SEQ ID NO:158) The PCR products are digested with restriction enzymes Hind3 and EcoR1, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank Accession number U55762) digested with Hind3 and EcoR1. This produces a PDE4D3-EGFP fusion (SEQ ID NO:154 & 155), a PDE4D4-EGFP fusion (SEQ ID NO:150 & 151) and a PDE4D5-EGFP fusion (SEQ ID NO:148 & 149), all three under the control of a CMV promoter.

The resulting plasmids are transfected into MVLEC cells. The cells are grown under standard conditions. The fluorescence of the cells is recorded as explained in example 3. Addition of test compounds may cause a redistribution of fluorescence within the cells from an organised cytosolic distribution to a more random one.

#### EXAMPLE 28

10

15

25

# Probes for detection of PDE5 redistribution.

Useful for monitoring signalling pathways involving Protein Kinase G, e.g. to identify compounds which modulate the activity of the pathway in living cells.

PDE5 is a cGMP specific phosphodiesterase. It is a component of a signalling pathway which is activated by e.g. nitric oxide.

a) The human PDE5 gene (GenBank Accession numbers: AJ004865) is amplified using PCR according to standard protocols with primers PDE5-top (SEQ ID NO:160) and PDE5-bottom (SEQ ID NO:161). The PCR product is digested with restriction enzymes EcoR1 and Acc651, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank Accession number U55762) digested with EcoR1 and Acc651. This produces a PDE5-EGFP fusion (SEQ ID NO 144 & 145) under the control of a CMV promoter.

The resulting plasmids are transfected into e.g. A10 cells. The cells are grown under standard conditions. The fluorescence of the cells is recorded as explained in example 3. Addition of test compounds may cause a redistribution of fluorescence within the cells from an organized cytosolic distribution to a more random one.

### EXAMPLE 29

# 20 Probe for detection of Ikappa-kinase redistribution.

The human IKKbeta (GenBank Acc. No. AF031416) is amplified using PCR according to standard protocols with primers IKKbeta-top (SEQ ID NO:164) and IKKbeta-bottom (SEQ ID NO:165). The PCR product is digested with restriction enzymes Hind3 and Acc651, and ligated into pEGFP-N1 (Clontech, Palo Alto; GenBank Accession number U55762) digested with Hind3 and Acc651. This produces a IKKbeta-EGFP fusion (SEQ ID NO 152 & 153) under the control of a CMV promoter.

### EXAMPLE 30

10

# Construction of catalytically inactive Erk1 probes.

A catalytically inactive probe has the advantage that it interferes less with the normal physiology of the cell while retaining its ability to report on activation of a cellular signalling pathway by redistribution.

The Erk1 probes described above in Example 3 were subjected to site specific mutagenesis which specifically replaced the lysine at amino acid residue number 71 in the native Erk1 sequence with arginine. This mutation is known to inactivate the catalytic activity of Erk1. The redistribution patterns of the inactive Erk1 probes were identical to the original Erk1 probes, i.e. they reported on activation of the pathway by redistributing from the cytoplasm into the nucleus. The establishment of stable cell lines expressing the probe was facilitated.

### REFERENCES:

- Adams, S.R., Harootunian, A.T., Buechler, Y.J., Taylor, S.S. & Tsien, R.Y. (1991) Nature 349, 694-697.
- Almholt, K., Arkhammar, P.O.G., Thastrup, O., & Tullin, S. (1997) Mol. Biology of the Cell 8: Suppl. S: 72.
  - Almholt, K., Terry, B.R., Skyggebjerg, O., Scudder, K., Tullin, S., Thastrup, O. (1998) [Manuscript], see Appendix II.
- Barak, L.S., Ferguson, S.S.G., Zhang, J. & Caron, M.G. (1997) J. Biol. Chem. **272**:44, 27497-27500.
  - Bastiaens, P.I.H. & Jovin, T.M. (1996) Proc. Natl. Acad. Sci. USA 93, 8407-8412.
  - Beals, C.R., Clipstone, N.A., Ho, S.N. & Crabtree, G.R. (1998) Genes and Development 11:7, 824-834.
  - Blobe, G.C., Stribling, D.S., Fabbro, D., Stabel, S & Hannun, Y.A. (1996) J. Biol. Chem. **271**, 15823-15830.
    - Carey, K.L., Richards, S.A., Lounsbury, K.M. & Macara, I.G. (1996) J. Cell Biol. **133**: 5, 985-996.
    - Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. & Prasher, D.C. (1994) Science 263, 802-805.
- 20 Cossette, L.J., Hoglinger, O., Mou, L.J. & Shen, S.H. (1997) Exp. Cell Res. 223, 459-466.
  - DeBernardi, M.A. & Brooker, G. (1996) Proc. Natl. Acad. Sci. USA 93, 4577-4582.
  - Farese, R.V. (1992) Biochem. J. 288, 319-323.
  - Fulop Jr., T., Leblanc, C., Lacombe, G. & Dupuis, G. (1995) FEBS Lett. 375, 69-74.

- Georget, V., Lobaccaro, J.M., Terouanne, B., Mangeat, P., Nicolas, J.C. & Sultan, C. (1997) Mol. Cell. Endocrinol. 129:1, 17-26.
- Godson, C., Masliah, E., Balboa, M.A., Ellisman, M.H. & Insel, P.A. (1996) Biochem. Biophys. Acta 1313, 63-71.
- Guiliano, K.A., DeBiasio, R, Dunlay, R.T., Gough, A., Volosky, J.M., Zock, J., Pavlakis, G.N. & Taylor, D.L. (1997) J. Biomol. Screening 2:4, 249-259.
  - Khalil, R.A., Lajoie, C., Resnick, M.S. & Morgan, K.G. (1992) Am. J. Physiol. **263** (Cell Physiol. 32) C714-C719.
  - Oancea, E., Teruel, M.N., Quest, A.F.G. & Meyer, T. (1998) J. Cell Biol. 140:3, 485-498.
- 10 Sano, M., Kohno, M. & Iwanaga, M. (1995) Brain Res. 688, 213-218.
  - Sakai, N., Sasaki, K., Hasegawa, C., Ohkura, M., Sumioka, K., Shirai, Y. & Saito, N. (1996) Soc. Neuroscience 22, 69P (Abstract).
  - Sakai, N., Sakai, K. Hasegawa, C., Ohkura, M., Sumioka, K., Shirai, Y., & Naoaki, S. (1997) Japanese Journal of Pharmacology 73, 69P (Abstract of a meeting held 22-23 March).
  - Schmidt, D.J., Ikebe, M., Kitamura, K. & Fay, F.S. (1997) FASEB J. 11, 2924 (Abstract).
  - Schroeder, K. & Neagle, B.J. (1996) Biomolecular Screening 1, 75-80.
  - Silverman, L., Campbell, R. & Broach, J.R. (1998) Current Opinion in Chemical Biology 2:3, 397-403.
- 20 Stauffer, T.P., Ahn, S. & Meyer, T. (1998) Current Biol. 8:6, 343-346.

### **CLAIMS**

5

10

15

20

25

- 1. A method for extracting quantitative information relating to an influence on a cellular response, the method comprising recording variation, caused by the influence on mechanically intact or permeabilised living cells, in spatially distributed light emitted from a luminophore, the luminophore being present in the cells and being capable of being redistributed in a manner which is related with the degree of the influence, and/or of being modulated by a component which is capable of being redistributed in a manner which is related to the degree of the influence, resulting in a modulation of the luminescence characteristics of the luminophore, and processing the recorded variation in the luminescence characteristics to provide quantitative information correlating the recorded variation to the degree of the influence on the cellular response.
- 2. A method according to claim 1 for extracting quantitative information relating to an influence on an intracellular pathway involving redistribution of at least one component associated with the pathway, or part thereof, the method comprising recording the result of the influence on mechanically intact or permeabilised living cells, as manifested in spatially distributed light emitted from a luminophore which is present in the cells and which is capable of being redistributed, by modulation of the pathway, in a manner which is related to the redistribution of the at least one component of the intracellular pathway, processing the recorded result to provide quantitative information correlating the change in the measured property of the light to the degree of the influence on the intracellular pathway.
  - 3. A method according to claim 1 or 2, wherein the quantitative information which is indicative of the degree of the cellular response to the influence or the result of the influence on the intracellular pathway is extracted from the recorded variation according to a predetermined calibration based on responses or results, recorded in the same manner, to known degrees of a relevant specific influence.
  - 4. A method according to any of claims 1-3, wherein the influence comprises contact between the mechanically intact or permeabilised living cells and a chemical substance and/or incubation of the mechanically intact or permeabilised living cells with a chemical substance.

- 5. A method according to any of claims 1-4, wherein the influence is a substance whose effect on an intracellular pathway is to be determined.
- 6. A method according to any of claims 1-5, wherein the cells comprise a group of cells contained within a spatial limitation.
- 7. A method according to any of claims 1-5, wherein the cells comprise multiple groups of cells contained within multiple spatial limitations.
  - 8. A method according to any of claims 1-7, wherein the cells comprise multiple groups of cells that are qualitatively the same but are subjected to different influences.
- 9. A method according to any of claims 1-7, wherein the cells comprise multiple groups of cells that are qualitatively different but are subjected to the same influence.
  - 10. A method according to any of claims 1-9, wherein the recording is performed by means of a detector capable of measuring total luminescence in a non-spatially resolved fashion, the recording comprising a time series of measurements of the total luminescence of the cells of one or several of the spatial limitations.
- 11. A method according to claim 10, wherein the signal is measured from individual spatial limitations one at a time, the recording being made in the individual spatial limitation by means of an apparatus to sequentially position each one of the limitations in the field of view of the detector, and repeating the positioning and measuring process until all of the spatial limitations have been measured.
- 12. A method according to claim 11, wherein the detector is a photomultiplier tube (PMT).
  - 13. A method according to any of claims 1-9, wherein more than one of the spatial limitations are measured simultaneously.
- 14. A method according to claim 13, wherein the multiple spatial limitations are measured simultaneously by means of a one- or two-dimensional array detector, whereby the multiple spatial limitations are imaged onto the array detector such that discrete subsets of the detecting units (pixels) in the array detector measure the signal from one and

only one of the multiple spatial limitations, the signal from any one spatial limitation being the combined signal from those pixels that receive the image from one of the spatial limitations.

- 15. A method according to claim 14, wherein the detector is a linear diode array.
- 5 16. A method according to claim 14, wherein the detector is a video camera.
  - 17. A method according to claim 14, wherein the detector is a charge transfer device.
  - 18. A method according to claim 17, wherein the charge transfer device is a charge-coupled device.
  - 19. A method according to any of claims 1-18, wherein the luminophore must be illuminated in order to emit light.
  - 20. A method according to any of claims 13-18, wherein all of the multiple spatial limitations are simultaneously illuminated during the measurement operation.
  - 21. A method according to any of claims 10-18, wherein the individual spatial limitations are singly illuminated only during the time period in which they are being measured.
- 15 22. A method according to any of claims 10-18, wherein the illumination is provided by a laser which is scanned in a raster fashion over some or all of the spatial limitations being measured, the scanning taking place at a rate substantially faster than the measurement process such that the illumination appears to the measurement process to be continuous in time and spatially uniform over the region being measured.
- 23. A method according to any of claims 1-22, wherein the spatial limitations are spatial limitations arranged in one or more arrays on a common carrier.
  - 24. A method according to claim 23, wherein the spatial limitations are wells in a plate of microtiter type.
- 25. A method according to any of claims 1-22 wherein the spatial limitations are domains
   defined on a substrate on which the cells are present.

22131DK1 Appendix A

- 26. A method according to claim 25 wherein the domains are domains established by the presence of the cells on the substrate in a pattern defining the domains.
- 27. A method according to claim 25 wherein the domains are domains established by the spatial pattern of the influence as it is applied to or contacted with the cells.
- 28. A method according to any of claims 1-27, wherein the recording is performed at a series of points in time, in which the application of the influence occurs at some time after the first time point in the series of recordings, the recording being performed, e.g., with a predetermined time spacing of from 0.1 seconds to 1 hour, preferably from 1 to 60 seconds, more preferably from 1 to 30 seconds, in particular from 1 to 10 seconds, over a time span of from 1 second to 12 hours, such as from 10 seconds to 12 hours, e.g., from 10 seconds to one hour, such as from 60 seconds to 30 minutes or 20 minutes.
  - 29. A method according to claim 28, wherein the recording is made at two points in time, one point being before, and the other point being after the application of the influence.
- 30. A method according to any of claims 1-29, wherein the cells are fixed at a point in time after the application of the influence at which the response has been predetermined to be significant, and the recording is made at an arbitrary later time.
  - 31. A method according to any of claims 1-30, wherein the luminophore is a luminophore that is capable of being redistributed in a manner that is physiologically relevant to the degree of the influence.
    - 32. A method according to any of claims 1-30, wherein the luminophore is a luminophore which is capable of associating with a component which is capable of being redistributed in manner which is physiologically relevant to the degree of the influence.
- 33. A method according to any of claims 1-30, wherein the luminophore is a luminophore which is capable of being redistributed in a manner which is experimentally determined to be correlated to the degree of the influence.
  - 34. A method according to any of claims 1-30, wherein the luminophore is a luminophore

which is capable of being redistributed, by modulation of the intracellular pathway, in substantially the same manner as the at least one component of the intracellular pathway.

- 35. A method according to any of claims 1-30, wherein the luminophore is a luminophore which is capable of being quenched upon spatial association with a component which is redistributed by modulation of the pathway, the quenching being measured as a decrease in the intensity of the luminescence.
- 36. A method according to any of claims 1-30, wherein the variation in spatially distributed light emitted by the luminophore is detected by a change in the resonance energy transfer between the luminophore and another luminescent entity capable of delivering energy to the luminophore, each of which has been selected or engineered to become part of, bound to or associated with particular components of the intracellular pathway, and one of which undergoes redistribution in response to the influence, thereby changing the amount of resonance energy transfer, the change in the resonance energy transfer being measured as a change in the intensity of emission from the luminophore.
- 37. A method according to any of claims 1-35, wherein the intensity of the light being recorded is a function of the fluorescence lifetime, polarisation, wavelength shift, or other property which is modulated as a result of the underlying cellular response.
- 38. A method according to any of claims 1-37, wherein the light to be measured passes through a filter which selects the desired component of the light to be measured and rejects other components.
  - 39. A method according to any of claims 2-38, wherein the intracellular pathway is an intracellular signalling pathway.
- 40. A method according to any of claims 1-39, wherein the luminophore is a fluorophore.
  - 41. A method according to any of claims 1-40, wherein the luminophore is a polypeptide encoded by and expressed from a nucleotide sequence harboured in the cells.

5

10

- 42. A method according to any of claims 1-41 for detecting intracellular redistribution of a biologically active polypeptide affecting intracellular processes upon activation, the method comprising
- a) culturing one or more cells containing a nucleotide sequence coding for a hybrid polypeptide comprising a GFP which is N- or C-terminally tagged, optionally through a linker, to a biologically active polypeptide under conditions permitting expression of the nucleotide sequence,
  - b) modulating the activity of the biologically active polypeptide by incubating the cells with a substance having biological activity, and
- 10 c) measuring the fluorescence produced by the incubated cells and determining the result or variation with respect to the fluorescence, such result or variation being indicative of the redistribution of a biologically active polypeptide in said cells.
  - 43. A method according to claim 42, wherein the luminophore is a hybrid polypeptide comprising a fusion of at least a portion of each of two polypeptides one of which comprises a luminescent polypeptide and the other one of which comprises a biologically active polypeptide, as defined herein.
  - 44. A method according to claim 43, wherein the luminescent polypeptide is a GFP as defined herein.
- 45. A method according to claim 44, wherein the GFP is selected from the group consisting of green fluorescent proteins having the F64L mutation as defined herein.
  - 46. A method according to claim 45, wherein the GFP is a GFP variant selected from the group consisting of F64L-GFP, F64L-Y66H-GFP, F64L-S65T-GFP, and EGFP.
  - 47. A method according to claim 42, wherein the nucleotide sequence is a DNA sequence.
  - 48. A method according to claims 42-47, wherein the modulation is activation.
- 49. A method according to claims 42-47, wherein the modulation is deactivation.
  - 50. A method according to any of claims 1-49, wherein the cells are selected from the

5

group consisting of fungal cells, such as yeast cells; invertebrate cells including insect cells; and vertebrate cells, such as mammalian cells.

- 51. A method according to claim 50, wherein the mechanically intact or permeabilised living cells are mammalian cells which, during the time period over which the influence is observed, are incubated at a temperature of 30°C or above, preferably at a temperature of from 32°C to 39°C, more preferably at a temperature of from 35°C to 38°C, and most preferably at a temperature of about 37°C.
- 52. A method according to any of claims 1-51, wherein the mechanically intact or permeabilised living cells are part of a matrix of identical or non-identical cells.
- 53. A method according to any of claims 41-52, wherein the nucleotide sequence has been introduced into the cells in the form of a nucleic acid construct coding for a fusion polypeptide comprising a biologically active polypeptide that is a component of an intracellular signalling pathway, or a part thereof, and a GFP.
  - 54. A method according to claim 53, wherein the nucleic acid construct is a nucleic acid construct coding for a fusion polypeptide comprising a biologically active polypeptide that is a component of an intracellular signalling pathway, or a part thereof, and an F64L mutant of GFP.
  - 55. A method according to claim 53 or 54, wherein the nucleic acid construct is a nucleic acid construct according to claim 53 or 54, wherein the biologically active polypeptide is a protein kinase or a phosphatase.
  - 56. A method according to claim 53 or 54, wherein the nucleic acid construct is a nucleic acid construct according to claim 53 55, wherein the GFP is N- or C-terminally tagged, optionally via a peptide linker, to the biologically active polypeptide or part thereof.
- 57. A method according to claim 53 or 54, wherein the nucleic acid construct is a nucleic acid construct according to claim 53, 54 or 56, wherein the biologically active polypeptide is a transcription factor or a part thereof which changes cellular localisation upon activation.

5

15

- 58. A method according to claim 53 or 54, wherein the nucleic acid construct is a nucleic acid construct according to claim 53, 54 or 56, wherein the biologically active polypeptide is a protein, or a part thereof, which is associated with the cytoskeletal network and which changes cellular localisation upon activation.
- 59. A method according to claim 53 or 54, wherein the nucleic acid construct is a nucleic acid construct according to any of claims 53-56, wherein the biologically active polypeptide is a protein kinase or a part thereof which changes cellular localisation upon activation.
  - 60. A method according to claim 53 or 54, wherein the nucleic acid construct is a nucleic acid construct according to claim 59, wherein the protein kinase is a serine/threonine protein kinase or a part thereof capable of changing intracellular localisation upon activation.
    - 61. A method according to claim 53 or 54, wherein the nucleic acid construct is a nucleic acid construct according to claim 59, wherein the protein kinase is a tyrosine protein kinase or a part thereof capable of changing intracellular localisation upon activation.
    - 62. A method according to claim 53 or 54, wherein the nucleic acid construct is a nucleic acid construct according to claim 59, wherein the protein kinase is a phospholipid-dependent serine/threonine protein kinase or a part thereof capable of changing intracellular localisation upon activation.
- 20 63. A method according to claim 53 or 54, wherein the nucleic acid construct is a nucleic acid construct according to claim 59, wherein the protein kinase is a cAMP-dependent protein kinase or a part thereof capable of changing cellular localisation upon activation.
- 64. A method according to claim 53 or 54, wherein the nucleic acid construct is a nucleic acid construct according to claim 63 which codes for a PKAc-F64L-S65T-GFP fusion.
  - 65. A method according to claim 53 or 54, wherein the nucleic acid construct is a nucleic acid construct according to claim 59, wherein the protein kinase is a cGMP-dependent protein kinase or a part thereof capable of changing cellular localisation upon

activation.

- 66. A method according to claim 53 or 54, wherein the nucleic acid construct is a nucleic acid construct according to claim 59, wherein the protein kinase is a calmodulin-dependent serine/threonine protein kinase or a part thereof capable of changing cellular localisation upon activation.
- 67. A method according to claim 53 or 54, wherein the nucleic acid construct is a nucleic acid construct according to claim 59, wherein the protein kinase is a mitogen-activated serine/threonine protein kinase or a part thereof capable of changing cellular localisation upon activation.
- 10 68. A method according to claim 53 or 54, wherein the nucleic acid construct is a nucleic acid construct according to claim 67, which codes for an ERK1-F64L-S65T-GFP fusion.
  - 69. A method according to claim 53 or 54, wherein the nucleic acid construct is a nucleic acid construct according to claim 67, which codes for an EGFP-ERK1 fusion.
- 70. A method according to claim 53 or 54, wherein the nucleic acid construct is a nucleic acid construct according to claim 59, wherein the protein kinase is a cyclin-dependent serine/threonine protein kinase or a part thereof capable of changing cellular localisation upon activation.
- 71. A method according to claim 53 or 54, wherein the nucleic acid construct is a nucleic acid construct according to claim 55 or 56, wherein the biologically active polypeptide is a protein phosphatase or a part thereof capable of changing cellular localisation upon activation.
  - 72. A method according to claim 53 -71, wherein the nucleic acid construct is a nucleic acid construct which is a DNA construct.
- 73. A method according to claim 53 -72, wherein the nucleic acid construct is a nucleic acid construct according to any of claims 53-72 wherein the gene encoding GFP is derived from Aequorea victoria.

- 74. A method according to claim 73, wherein the nucleic acid construct is a nucleic acid construct according to claim 73 in which the gene encoding GFP is the gene encoding EGFP as defined herein.
- 75. A method according to claim 73, wherein the nucleic acid construct is a nucleic acid construct according to claim 73 in which the gene encoding a GFP is a gene encoding a GFP variant selected from F64L-GFP, F64L-Y66H-GFP and F64L-S65T-GFP.
  - 76. A method according to claims 72 and 74, wherein the nucleic acid construct is a DNA construct according to claims 72 and 74 or, where applicable, 75, which is a construct as identified by any of the DNA sequences shown in SEQ ID NO: 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, and 152 or is a variant thereof capable of encoding the same fusion polypeptide or a fusion polypeptide which is biologically equivalent thereto, as defined herein.
  - 77. A method comprising a cell containing a nucleic acid construct according to any of claims 53-76 and capable of expressing the sequence encoded by the construct.
  - 78. A method comprising a cell according to claim 77, which is a eukaryotic cell.
  - 79. A method comprising a cell according to claim 77, which is selected from the group consisting of fungal cells, such as yeast cells; invertebrate cells, including insect cells, and vertebrate cells, such as mammalian cells.
- 80. A method according to any of claims 1-79, as used in a screening program as defined herein.
  - 81. A method according claim 80, wherein the method is a screening program for the identification of a biologically active substance as defined herein that directly or indirectly affects an intracellular signalling pathway and is potentially useful as a medicament, wherein the result of the individual measurement of each substance being screened which indicates its potential biological activity is based on measurement of the redistribution of spatially resolved luminescence in living cells and which undergoes a change in distribution upon activation of an intracellular signalling

10

15

pathway.

5

- 82. A method according to claim 80, wherein the method is a screening program for the identification of a biologically toxic substance as defined herein that exerts its toxic effect by interfering with an intracellular signalling pathway, wherein the result of the individual measurement of each substance being screened which indicates its potential biologically toxic activity is based on measurement of the redistribution of said fluorescent probe in living cells and which undergoes a change in distribution upon activation of an intracellular signalling pathway.
- 83. A method according to any of claims 1-82 wherein a fluorescent probe is used in backtracking of signal transduction pathways as defined herein.
- 84. A method according to any of claims 1-83, for treating a condition or disease related to the intracellular function of a protein kinase comprising administering to a patient suffering from said condition or disease an effective amount of a compound which has been discovered by any method.
- 15 85. A compound that modulates a component of an intracellular pathway as defined herein, as determined by any method according to any of claims 1-83.
  - 86. A medical composition comprising a therapeutic amount of a compound identified according to any method according to any of claims 1-83.
- 87. A method of selectively treating a patient suffering from an ailment which responds to medical treatment comprising obtaining a primary cells from said patient, transfecting the cells with at least one DNA sequence encoding a fluorescent probe according to any of the preceding claims, culturing the cells under conditions permitting the expression of said probes and exposing it to an array of medicaments suspected of being capable of alleviating said ailment, then comparing changes in fluorescence patterns or redistribution patterns of the fluorescent probes in the intact living cells to detect the cellular response to the specific medicaments (obtaining a cellular action profile), then selecting a medicament(s) based on desired activity and acceptable level of side effects and administering an effective amount of said medicament(s) to said

patient.

88. A method according to any of claims 1-83 of identifying a drug target among the group of biologically active polypeptides that are components of intracellular signalling pathways.

Figure 1



Figure 2



\$ 5 OKT. 1998

Figure 3

















Figure 4



.\$ 5 OKT. 1998

Figure 5

| [forskolin]µM | $t_{1/2max}/s$ | t <sub>max</sub> /s |
|---------------|----------------|---------------------|
| 1             | 115±21         | 310±31              |
| 10            | 69±14          | 224±47              |
| 50            | 47±10          | 125±28              |

Figure 6



Figure 7







c)

Figure 8



Figure 9





b)

a)



9

d)

Nucleus/Cyt.

1.2

Figure 10

a)



b)



c)



Figure 11



Fig. 12













Figure 13



Figure 14



Figure 15



Figure 16



## SEQUENCE LISTING

- (1) GENERAL INFORMATION
- (i) APPLICANT: NovoNordisk, BioImage
- (ii) TITLE OF THE INVENTION: An Improved Method of Detecting Cellular Translocation of Biologically Active Polypeptides Using Fluorescense Imaging
- (iii) NUMBER OF SEQUENCES: 165
- (iv) CORRESPONDENCE ADDRESS:
  - (A) ADDRESSEE: NovoNordisk, BioImage
  - (B) STREET: Mørkhøjbygade 28
  - (C) CITY: Søborg
  - (D) STATE: DK
  - (E) COUNTRY: DENMARK
  - (F) ZIP: 2860
- (v) COMPUTER READABLE FORM:
  - (A) MEDIUM TYPE: Diskette
  - (B) COMPUTER: IBM Compatible
  - (C) OPERATING SYSTEM: DOS
  - (D) SOFTWARE: FastSEQ for Windows Version 2.0
- (viii) ATTORNEY/AGENT INFORMATION:
  - (A) NAME: , PV&P R
  - (B) REGISTRATION NUMBER:
  - (C) REFERENCE/DOCKET NUMBER:
  - (2) INFORMATION FOR SEQ ID NO:1:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 53 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

TTGGACACAA GCTTTGGACA CGGCGCGCCA TGAGTAAAGG AGAAGAACTT TTC

- (2) INFORMATION FOR SEQ ID NO:2:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 53 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

| GTCATCTTCT CGAGTCTTAC TCCTGAGGTT TGTATAGTTC ATCCATGCCA TGT                                                                                                                     | 53 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| (2) INFORMATION FOR SEQ ID NO:3:                                                                                                                                               |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 54 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:                                                                                                                                        |    |
| TTGGACACAA GCTTTGGACA CCCTCAGGAT ATGGGCAACG CCGCCGCCGC CAAG                                                                                                                    | 54 |
| (2) INFORMATION FOR SEQ ID NO:4:                                                                                                                                               |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 55 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:                                                                                                                                        |    |
| GTCATCTTCT CGAGTCTTTC AGGCGCGCCC AAACTCAGTA AACTCCTTGC CACAC                                                                                                                   | 55 |
| (2) INFORMATION FOR SEQ ID NO:5:                                                                                                                                               |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 55 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:                                                                                                                                        |    |
| TTGGACACAA GCTTTGGACA CCCTCAGGAT ATGGCTGACG TTTACCCGGC CAACG                                                                                                                   | 55 |
| (2) INFORMATION FOR SEQ ID NO:6:                                                                                                                                               |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 55 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:                                                                                                                                        |    |
| GTCATCTTCT CGAGTCTTTC AGGCGCGCCC TACTGCACTT TGCAAGATTG GGTGC                                                                                                                   | 55 |
| (2) INFORMATION FOR SEQ ID NO:7:                                                                                                                                               |    |

(i) SEQUENCE CHARACTERISTICS:

| <ul><li>(A) LENGTH: 64 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul>                                       |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:                                                                                                                                        |          |
| TYGGACACAA GCTTYGGACA CCCTCAGGAT ATGGCGGCGG CGGCGGCGGC TCCGGGGGGC<br>GGGG                                                                                                      | 60<br>64 |
| (2) INFORMATION FOR SEQ ID NO:8:                                                                                                                                               |          |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 55 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |          |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:                                                                                                                                        |          |
| GTCATCTTCT CGAGTCTTTC AGGCGCGCCC GGGGCCCTCT GGCGCCCCTG GCTGG                                                                                                                   | 55       |
| (2) INFORMATION FOR SEQ ID NO:9:                                                                                                                                               |          |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 30 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |          |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:                                                                                                                                        |          |
| TAGAATTCAA CCATGGCGGC GGCGGCGCGC                                                                                                                                               | 30       |
| (2) INFORMATION FOR SEQ ID NO:10:                                                                                                                                              |          |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 29 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |          |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:                                                                                                                                       |          |
| TAGGATCCCT AGGGGGCCTC CAGCACTCC                                                                                                                                                | 29       |
| (2) INFORMATION FOR SEQ ID NO:11:                                                                                                                                              |          |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 31 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li></ul>                              |          |

(D) TOPOLOGY: linear

| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:                                                                                                                                       |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| TACTCGAGTA ACCATGGCGG CGGCGGCGGC G                                                                                                                                             | 31 |
| (2) INFORMATION FOR SEQ ID NO:12:                                                                                                                                              |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 25 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:                                                                                                                                       |    |
| TAGGATCCAT AGATCTGTAT CCTGG                                                                                                                                                    | 25 |
| (2) INFORMATION FOR SEQ ID NO:13:                                                                                                                                              |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 26 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:                                                                                                                                       |    |
| TAGGATCCTT AAGATCTGTA TCCTGG                                                                                                                                                   | 26 |
| (2) INFORMATION FOR SEQ ID NO:14:                                                                                                                                              |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 28 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:                                                                                                                                       |    |
| ATCTCGAGGG AAAATGTCTC AGGAGAGG                                                                                                                                                 | 28 |
| (2) INFORMATION FOR SEQ ID NO:15:                                                                                                                                              |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 28 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:                                                                                                                                       |    |
| ATGGATCCTC CGACTCCATC TCTTCTTG                                                                                                                                                 | 28 |
| (2) INFORMATION FOR SEQ ID NO:16:                                                                                                                                              |    |

| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 29 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:                                                                                                                                       |    |
| ATGGATCCTC AGGACTCCAT CTCTTCTTG                                                                                                                                                | 29 |
| (2) INFORMATION FOR SEQ ID NO:17:                                                                                                                                              |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 28 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:                                                                                                                                       |    |
| GTCTCGAGCC ATCATGAGCA GAAGCAAG                                                                                                                                                 | 28 |
| (2) INFORMATION FOR SEQ ID NO:18:                                                                                                                                              |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 27 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:                                                                                                                                       |    |
| GTGGATCCCA CTGCTGCACC TGTGCTA                                                                                                                                                  | 27 |
| (2) INFORMATION FOR SEQ ID NO:19:                                                                                                                                              |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 28 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:                                                                                                                                       |    |
| GTGGATCCTC ACTGCTGCAC CTGTGCTA                                                                                                                                                 | 28 |
| (2) INFORMATION FOR SEQ ID NO:20:                                                                                                                                              |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 40 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |

| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:                                                                                                                                       |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| CGCGAATTCC GCCACCATGA GTGCTGAGGG GTACCAGTAC                                                                                                                                    | 40 |
| (2) INFORMATION FOR SEQ ID NO:21:                                                                                                                                              |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 32 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:                                                                                                                                       |    |
| CGCGGATCCT GTCGCCTCTG CTGTGCATAT AC                                                                                                                                            | 32 |
| (2) INFORMATION FOR SEQ ID NO:22:                                                                                                                                              |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 30 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |
| (vi) ORIGINAL SOURCE:  (A) ORGANISM: p85-top-C                                                                                                                                 |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:                                                                                                                                       |    |
| GGGAGATCTA TGAGTGCTGA GGGGTACCAG                                                                                                                                               | 30 |
| (2) INFORMATION FOR SEQ ID NO:23:                                                                                                                                              |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 34 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:                                                                                                                                       |    |
| GGGCGGATCC TCATCGCCTC TGCTGCAT ATAC                                                                                                                                            | 34 |
| (2) INFORMATION FOR SEQ ID NO:24:                                                                                                                                              |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 33 base pairs</li><li>(E) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

| A TOP TO THE TOP TO TH | 33  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| GTGAATTCGA CCATGTCGTC CATCTTGCCA TTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33  |
| (O) ANTIONNAMION FOR CEO ID NO. 25.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| (2) INFORMATION FOR SEQ ID NO:25:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| (i) SEQUENCE CHARACTERISTICS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| (A) LENGTH: 31 base pairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| (B) TYPE: nucleic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| (C) STRANDEDNESS: single                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| (D) TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.1 |
| GTGGTACCCA TGACATGCTT GAGCAACGCA C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| (2) INFORMATION FOR SEQ ID NO:26:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| (i) SEQUENCE CHARACTERISTICS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| (A) LENGTH: 32 base pairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| (B) TYPE: nucleic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| (C) STRANDEDNESS: single                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| (D) TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| GTGGTACCTT ATGACATGCT TGAGCAACGC AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| (2) INFORMATION FOR SEQ ID NO:27:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| (i) SEQUENCE CHARACTERISTICS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| (A) LENGTH: 31 base pairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| (B) TYPE: nucleic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| (C) STRANDEDNESS: single                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| (D) TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| (5) 101020011 1111011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| GTGAATTCGT CAATGGAGCT GGAAAACATC G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| (2) INFORMATION FOR SEQ ID NO:28:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| (i) SEQUENCE CHARACTERISTICS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| (A) LENGTH: 30 base pairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| (B) TYPE: nucleic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| (C) STRANDEDNESS: single                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| (D) TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| (D) Totoboot. Timedi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| (All ) DESCRIBE PERSONS TO THE STATE OF THE  |     |
| GTGGATCCCT GCTGCTTCCG GTGGAGTTCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30  |
| 0100,110001 001001.000 01001.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| (2) INFORMATION FOR SEO ID NO:29:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |

(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 31 base pairs

| (E) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear                                                                                                           |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:                                                                                                                                       |     |
| GTGGATCCCT AGCTGCTTCC GGTGGAGTTC G                                                                                                                                             | 31  |
| (2) INFORMATION FOR SEQ ID NO:30:                                                                                                                                              |     |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 32 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |     |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:                                                                                                                                       |     |
| GTAGATCTAC CATGGCGGGC TGGATCCAGG CC                                                                                                                                            | 32  |
| (2) INFORMATION FOR SEQ ID NO:31:                                                                                                                                              |     |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 31 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |     |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:                                                                                                                                       | 2.1 |
| GTGGTACCCA TGAGAGGGAG CCTCTGGCAG A                                                                                                                                             | 31  |
| (2) INFORMATION FOR SEQ ID NO:32:                                                                                                                                              |     |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 31 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |     |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:                                                                                                                                       |     |
| GTGGTACCTC ATGAGAGGGA GCCTCTGGCA G                                                                                                                                             | 31  |
| (2) INFORMATION FOR SEQ ID NO:33:                                                                                                                                              |     |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 33 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |     |

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

| GTGAATTCAA CCATGGACAA TATGTCTATT ACG                                                                                                                                           | 33 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| (2) INFORMATION FOR SEQ ID NO:34:                                                                                                                                              |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 31 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:                                                                                                                                       |    |
| GTGGATCCCA GTCTAAAGGT TGTGGGTCTG C                                                                                                                                             | 31 |
| (2) INFORMATION FOR SEQ ID NO:35:                                                                                                                                              |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 32 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:                                                                                                                                       |    |
| GTGGATCCTC AGTCTAAAGG TTGTGGGTCT GC                                                                                                                                            | 32 |
| (2) INFORMATION FOR SEQ ID NO:36:                                                                                                                                              |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 27 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:                                                                                                                                       |    |
| GTCTCGAGGC ACCATGAGCG ACGTGGC                                                                                                                                                  | 27 |
| (2) INFORMATION FOR SEQ ID NO:37:                                                                                                                                              |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 27 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:                                                                                                                                       |    |
| TGGGATCCGA GGCCGTGCTG CTGGCCG                                                                                                                                                  | 27 |
| (2) INFORMATION FOR SEQ ID NO:38:                                                                                                                                              |    |

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1896 base pairs(B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
  - (A) NAME/KEY: Coding Sequence
  - (B) LOCATION: 1...1891
  - (D) OTHER INFORMATION:
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

| ATG<br>Met<br>1   | GTG<br>Val        | AGC<br>Ser        | AAG<br>Lys        | GGC<br>Gly<br>5   | GAG<br>Glu            | GAG<br>Glu        | CTG<br>Leu        | TTC<br>Phe        | ACC<br>Thr<br>10  | GGG<br>Gly        | GTG<br>Val            | GTG<br>Val        | CCC<br>Pro       | ATC<br>Ile<br>15                 | CTG<br>Leu        | 48  |
|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------------|-------------------|------------------|----------------------------------|-------------------|-----|
| GTC<br>Val        | GAG<br>Glu        | CTG<br>Leu        | GAC<br>Asp<br>20  | GGC<br>Gly        | GAC<br>Asp            | GTA<br>Val        | AAC<br>Asn        | GGC<br>Gly<br>25  | CAC<br>His        | AAG<br>Lys        | TTC<br>Phe            | AGC<br>Ser        | GTG<br>Val<br>30 | TCC<br>Ser                       | GGC<br>Gly        | 96  |
| GAG<br>Glu        | GGC<br>Gly        | GAG<br>Glu<br>35  | GGC<br>Gly        | GAT<br>Asp        | GCC<br>Ala            | ACC<br>Thr        | TAC<br>Tyr<br>40  | GGC<br>Gly        | AAG<br>Lys        | CTG<br>Leu        | ACC<br>Thr            | CTG<br>Leu<br>45  | AAG<br>Lys       | TTC<br>Phe                       | ATC<br>Ile        | 144 |
| TGC<br>Cys        | ACC<br>Thr<br>50  | ACC<br>Thr        | GGC<br>Gly        | AAG<br>Lys        | CTG<br>Leu            | CCC<br>Pro<br>55  | GTG<br>Val        | CCC<br>Pro        | TGG<br>Trp        | CCC<br>Pro        | ACC<br>Thr<br>60      | CTC<br>Leu        | GTG<br>Val       | ACC<br>Thr                       | ACC<br>Thr        | 192 |
| CTG<br>Leu<br>65  | ACC<br>Thr        | TAC<br>Tyr        | GGC<br>Gly        | GTG<br>Val        | CAG<br>Gln<br>70      | TGC<br>Cys        | TTC<br>Phe        | AGC<br>Ser        | CGC<br>Arg        | TAC<br>Tyr<br>75  | CCC<br>Pro            | GAC<br>Asp        | CAC<br>His       | ATG<br>Met                       | AAG<br>Lys<br>80  | 240 |
| CAG<br>Gln        | CAC               | GAC<br>Asp        | TTC<br>Phe        | TTC<br>Phe<br>85  | AAG<br>Lys            | TCC<br>Ser        | GCC<br>Ala        | ATG<br>Met        | CCC<br>Pro<br>90  | GAA<br>Glu        | GGC<br>Gly            | TAC<br>Tyr        | GTC<br>Val       | CAG<br>Gln<br>95                 | GAG<br>Glu        | 288 |
| CGC<br>Arg        | ACC<br>Thr        | ATC<br>Ile        | TTC<br>Phe<br>100 | Phe               | AAG<br>Lys            | GAC<br>Asp        | GAC<br>Asp        | GGC<br>Gly<br>105 | Asn               | TAC               | : AAG                 | ACC<br>Thr        | CGC<br>Arg       | Ala                              | GAG<br>Glu        | 336 |
| GTG<br>Val        | AAG<br>Lys        | TTC<br>Phe<br>115 | Glu               | GGC<br>Gly        | GAC<br>Asp            | ACC<br>Thr        | CTG<br>Leu<br>120 | Val               | AAC<br>Asn        | CGC<br>Arg        | ATC                   | GAG<br>Glu<br>125 | Leu              | AAG<br>Lys                       | GGC               | 384 |
| ATC<br>Ile        | GAC<br>Asp<br>130 | Phe               | : AAG<br>: Lys    | GAG<br>Glu        | GAC<br>Asp            | GGC<br>Gly<br>135 | Asn               | : ATC             | : CTG             | GGC<br>Gly        | G CAC<br>/ His<br>140 | . Lys             | CTC              | G GAC                            | TAC<br>Tyr        | 432 |
| AAC<br>Asr<br>145 | тух               | AAC<br>Asr        | AGC<br>Ser        | CAC<br>His        | : AAC<br>: Asr<br>150 | . Val             | TAT<br>Tyr        | ATC               | ATC<br>Met        | GCC<br>Ala<br>155 | a Asp                 | D AAC             | G CAG            | G AAC<br>n Lys                   | AAC<br>Asn<br>160 | 480 |
| GG(<br>Gly        | ATC               | AAC<br>Lys        | G GTC             | AAC<br>Asr<br>165 | n Phe                 | AAC<br>Lys        | ATC               | e Arg             | CAC<br>His<br>170 | AS:               | n Ile                 | GAC<br>Glu        | G GAG            | C GGG<br>p Gl <sub>2</sub><br>17 | C AGC<br>/ Ser    | 528 |

| GTG<br>Val             | CAG<br>Gln         | CTC<br>Leu         | GC<br>Al<br>18     | a A                | AC (<br>sp H      | CAC '              | TAC<br>Tyr         | CAG<br>Gln         | CAG<br>Gln<br>185 | As         | C A<br>n T         | CC (              | CCC<br>Pro         | ATC<br>Ile        | GGC<br>Gly<br>190 | GA<br>As       | AC (              | 3G(<br>31 <sub>)</sub> | C<br>7            | 576  |
|------------------------|--------------------|--------------------|--------------------|--------------------|-------------------|--------------------|--------------------|--------------------|-------------------|------------|--------------------|-------------------|--------------------|-------------------|-------------------|----------------|-------------------|------------------------|-------------------|------|
| CCC<br>Pro             | GTG<br>Val         | CTG<br>Leu<br>195  | Le                 | G C<br>u P         | cc (              | GAC<br>Asp         | AAC<br>Asn         | CAC<br>His<br>200  | TAC<br>Tyr        | CT<br>Le   | G A                | .GC .<br>Ser      | ACC<br>Thr         | CAG<br>Gln<br>205 | TCC               | G(             | CC (              | CT(<br>Le              | G<br>U            | 624  |
| AGC<br>Ser             | AAA<br>Lys<br>210  | Asp                | CC<br>Pr           | C A                | AC<br>Asn         | GAG<br>Glu         | AAG<br>Lys<br>215  | CGC<br>Arg         | GAT<br>Asp        | CA<br>Hi   | CA                 | ATG<br>1et        | GTC<br>Val<br>220  | CTG<br>Leu        | CTC               | G.<br>G        | AG<br>1u          | TT<br>Ph               | C<br>e            | 672  |
| GTG<br>Val<br>225      | Thr                | GCC<br>Ala         | C GC               | cc c               | GG<br>Gly         | ATC<br>Ile<br>230  | ACT<br>Thr         | CTC<br>Leu         | GG(               | AT<br>Me   | et A               | GAC<br>Asp<br>235 | GAG<br>Glu         | CTG<br>Leu        | TAC<br>Tyi        | C A            | AG<br>Ys          | TC<br>Se<br>24         | er                | 720  |
| GGA<br>Gly             | . CTC              | AG<br>Arg          | A TY               | er A               | CGA<br>Arg<br>245 | GCT<br>Ala         | CAA<br>Gln         | GCT                | TC(               | r A        | AT 1<br>sn 1<br>50 | ICA<br>Ser        | ACC<br>Thr         | ATG<br>Met        | GC(               | a A            | CG<br>la<br>255   | GC<br>A1               | CG<br>La          | 768  |
| GCG<br>Ala             | GC'<br>Ala         | r CA               | n G                | GG (<br>ly (<br>60 | GGC<br>Gly        | GGG<br>Gly         | GGC<br>Gly         | Gly                | GA<br>Gl<br>26    | u P        | cc (               | CGT<br>Arg        | AGA<br>Arg         | ACC<br>Thr        | GA<br>G1<br>27    | u              | GG<br>Gly         | GT<br>Vá               | rc<br>al          | 816  |
| GG(<br>Gly             | C CC<br>7 Pr       | G GG<br>o Gl<br>27 | y V                | TC<br>al           | CCG<br>Pro        | GGG<br>Gly         | GAG<br>Glu         | GT(<br>Va.<br>280  | l Gl              | G A<br>u M | TG<br>let          | GTG<br>Val        | AAG<br>Lys         | GGG<br>Gly<br>289 | y G1              | G (            | CCG<br>Pro        | T'                     | IC<br>he          | 864  |
| GA(<br>As <sub>l</sub> | C GT<br>O Va<br>29 | l Gl               | у Р                | CG<br>ro           | CGC<br>Arg        | TAC<br>Tyr         | ACC<br>Thr<br>295  | Gli                | g TI<br>n Le      | rG C       | AG<br>31n          | TAC<br>Tyr        | 11e                | GG(<br>G1;        | C GA<br>y Gl      | u (            | GGC<br>Gly        | G<br>A                 | CG<br>la          | 912  |
| ТА:<br>Ту:<br>30       | r Gl               | C AT               | G G                | TC<br>/al          | AGC<br>Ser        | TCG<br>Ser<br>310  | Ala                | та<br>а ту         | T GA              | C C        | CAC                | GTG<br>Val<br>315 | Arg                | C AA<br>g Ly      | G AC              | eT<br>ar       | CGC<br>Arg        | V                      | TG<br>Tal<br>20   | 960  |
| GC<br>Al               | C AT               | C A!               | AG A<br>/s I       | AAG<br>Jys         | ATC<br>Ile<br>325 | Ser                | CCC<br>Pro         | TT<br>DPh          | C G/<br>e G       | lu F       | CAT<br>His<br>330  | CAC<br>Glr        | ACO<br>Th          | C TA<br>r Ty      | C TY<br>T C       | GC<br>ys       | CAG<br>Glr<br>335 | 1 4                    | r.ec<br>r.ec      | 1008 |
| AC<br>Th               | G C                | rc co<br>eu A:     | rg (               | GAG<br>Glu<br>340  | Il€               | CAC<br>Gli         | ı Il               | C CT<br>e Le       | u L               | eu i       | Arg                | Phe               | e Ar               | C CA<br>g Hi      | .s G              | AG<br>1u<br>50 | AAT<br>Asr        | r C                    | GTC<br>/al        | 1056 |
| AT<br>Il               | C G<br>.e G        | ly I               | TC (<br>le 2<br>55 | CGA<br>Arg         | GAC<br>Asp        | AT'                | r CT<br>e Le       | G CC<br>u Ar<br>36 | rg A              | CG '       | TCC<br>Ser         | ACC<br>Th:        | C CT<br>r Le       | G GA<br>eu Gl     | lu A              | CC<br>la       | ATC               | G A                    | AGA<br>Arg        | 1104 |
| G.F<br>A.s             | sp V               | TC T<br>al T<br>70 | AC .<br>yr         | ATT<br>Ile         | GT(<br>Va         | G CA<br>l Gl       | G GA<br>n As<br>37 | p Le               | rg A<br>eu M      | TG<br>let  | GAG<br>Glu         | AC<br>Th          | T GA<br>r As<br>38 | AC CT             | rg T<br>eu T      | λt.            | AA<br>Ly          | G '                    | TTG<br>Leu        | 1152 |
| L                      | rg A<br>eu L<br>85 | AA A<br>ys S       | .GC<br>Ser         | CAG<br>Gln         | CAG<br>Gl:        | G CT<br>n Le<br>39 | u Se               | SC A               | AT C              | SAC<br>Asp | CAT<br>His         | AT<br>11<br>39    | e C                | GC T.<br>ys T     | AC I              | rTC<br>Phe     | CT<br>Le          | c<br>u                 | TAC<br>Tyr<br>400 | 1200 |
| C.<br>G                | AG A<br>ln I       | TC C               | TG<br>.eu          | CGG<br>Arg         | GG<br>GG          | C CI<br>y Le       | C AA               | AG T<br>/s T       | AC A              | ATC<br>Ile | CAC                | TC<br>S Se        | c G<br>er A        | CC A<br>la A      | AC (              | GTG<br>Val     | CI<br>Le          | C<br>eu                | CAC<br>His        | 1248 |

415 410 405 CGA GAT CTA AAG CCC TCC AAC CTG CTC AGC AAC ACC ACC TGC GAC CTT Arg Asp Leu Lys Pro Ser Asn Leu Leu Ser Asn Thr Thr Cys Asp Leu 425 AAG ATT TGT GAT TTC GGC CTG GCC CGG ATT GCC GAT CCT GAG CAT GAC 1344 Lys Ile Cys Asp Phe Gly Leu Ala Arg Ile Ala Asp Pro Glu His Asp 440 CAC ACC GGC TTC CTG ACG GAG TAT GTG GCT ACG CGC TGG TAC CGG GCC 1392 His Thr Gly Phe Leu Thr Glu Tyr Val Ala Thr Arg Trp Tyr Arg Ala 455 CCA GAG ATC ATG CTG AAC TCC AAG GGC TAT ACC AAG TCC ATC GAC ATC 1440 Pro Glu Ile Met Leu Asn Ser Lys Gly Tyr Thr Lys Ser Ile Asp Ile 470 TGG TCT GTG GGC TGC ATT CTG GCT GAG ATG CTC TCT AAC CGG CCC ATC 1488 Trp Ser Val Gly Cys Ile Leu Ala Glu Met Leu Ser Asn Arg Pro Ile 485 TTC CCT GGC AAG CAC TAC CTG GAT CAG CTC AAC CAC ATT CTG GGC ATC 1536 Phe Pro Gly Lys His Tyr Leu Asp Gln Leu Asn His Ile Leu Gly Ile 505 500 CTG GGC TCC CCA TCC CAG GAG GAC CTG AAT TGT ATC ATC AAC ATG AAG 1584 Leu Gly Ser Pro Ser Gln Glu Asp Leu Asn Cys Ile Ile Asn Met Lys 520 515 GCC CGA AAC TAC CTA CAG TCT CTG CCC TCC AAG ACC AAG GTG GCT TGG 1632 Ala Arg Asn Tyr Leu Gln Ser Leu Pro Ser Lys Thr Lys Val Ala Trp 535 GCC AAG CTT TTC CCC AAG TCA GAC TCC AAA GCC CTT GAC CTG CTG GAC 1680 Ala Lys Leu Phe Pro Lys Ser Asp Ser Lys Ala Leu Asp Leu Leu Asp 555 550 CGG ATG TTA ACC TTT AAC CCC AAT AAA CGG ATC ACA GTG GAG GAA GCG 1728 Arg Met Leu Thr Phe Asn Pro Asn Lys Arg Ile Thr Val Glu Glu Ala 570 565 CTG GCT CAC CCC TAC CTG GAG CAG TAC TAT GAC CCG ACG GAT GAG CCA 1776 Leu Ala His Pro Tyr Leu Glu Gln Tyr Tyr Asp Pro Thr Asp Glu Pro 585 GTG GCC GAG GAG CCC TTC ACC TTC GCC ATG GAG CTG GAT GAC CTA CCT 1824 Val Ala Glu Glu Pro Phe Thr Phe Ala Met Glu Leu Asp Asp Leu Pro 600 AAG GAG CGG CTG AAG GAG CTC ATC TTC CAG GAG ACA GCA CGC TTC CAG 1872 Lys Glu Arg Leu Lys Glu Leu Ile Phe Gln Glu Thr Ala Arg Phe Gln 615 1896 CCC GGA GTG CTG GAG GCC C CCTAG

Pro Gly Val Leu Glu Ala Pro

## (2) INFORMATION FOR SEQ ID NO:39:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 631 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu 1.0 Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly 25 20 Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile 40 35 Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr 55 Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys 75 70 Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu 90 85 Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu 110 105 100 Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly 125 120 115 Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr 140 135 Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn 155 150 Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser 165 170 175 Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Qly 190 185 Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu 205 200 Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe 220 215 Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys Ser 235 230 Gly Leu Arg Ser Arg Ala Gln Ala Ser Asn Ser Thr Met Ala Ala Ala 245 250 Ala Ala Gln Gly Gly Gly Gly Glu Pro Arg Arg Thr Glu Gly Val 265 270 260 Gly Pro Gly Val Pro Gly Glu Val Glu Met Val Lys Gly Gln Pro Phe 280 285 275 Asp Val Gly Pro Arg Tyr Thr Gln Leu Gln Tyr Ile Gly Glu Gly Ala 295 Tyr Gly Met Val Ser Ser Ala Tyr Asp His Val Arg Lys Thr Arg Val 315 310 Ala Ile Lys Lys Ile Ser Pro Phe Glu His Gln Thr Tyr Cys Gln Arg 330 325 Thr Leu Arg Glu Ile Gln Ile Leu Leu Arg Phe Arg His Glu Asn Val 345 340

Ile Gly Ile Arg Asp Ile Leu Arg Ala Ser Thr Leu Glu Ala Met Arg 355 360 365 Asp Val Tyr Ile Val Gln Asp Leu Met Glu Thr Asp Leu Tyr Lys Leu 370 375 380 Leu Lys Ser Gln Gln Leu Ser Asn Asp His Ile Cys Tyr Phe Leu Tyr 385 390 395 400 Gln Ile Leu Arg Gly Leu Lys Tyr Ile His Ser Ala Asn Val Leu His 410 415 405 Arg Asp Leu Lys Pro Ser Asn Leu Leu Ser Asn Thr Thr Cys Asp Leu 420 425 430 Lys Ile Cys Asp Phe Gly Leu Ala Arg Ile Ala Asp Pro Glu His Asp 435 440 His Thr Gly Phe Leu Thr Glu Tyr Val Ala Thr Arg Trp Tyr Arg Ala 460 450 455 Pro Glu Ile Met Leu Asn Ser Lys Gly Tyr Thr Lys Ser Ile Asp Ile 470 475 480 Trp Ser Val Gly Cys Ile Leu Ala Glu Met Leu Ser Asn Arg Pro Ile 485 490 495 Phe Pro Gly Lys His Tyr Leu Asp Gln Leu Asn His Ile Leu Gly Ile 500 505 510 Leu Gly Ser Pro Ser Gln Glu Asp Leu Asn Cys Ile Ile Asn Met Lys 515 520 525 Ala Arg Asn Tyr Leu Gln Ser Leu Pro Ser Lys Thr Lys Val Ala Trp 530 535 540 Ala Lys Leu Phe Pro Lys Ser Asp Ser Lys Ala Leu Asp Leu Leu Asp 545 550 555 560 Arg Met Leu Thr Phe Asn Pro Asn Lys Arg Ile Thr Val Glu Glu Ala 565 570 575 Leu Ala His Pro Tyr Leu Glu Gln Tyr Tyr Asp Pro Thr Asp Glu Pro 580 585 Val Ala Glu Glu Pro Phe Thr Phe Ala Met Glu Leu Asp Asp Leu Pro 595 600 605 Lys Glu Arg Leu Lys Glu Leu Ile Phe Gln Glu Thr Ala Arg Phe Gln 620 Pro Gly Val Leu Glu Ala Pro

## (2) INFORMATION FOR SEQ ID NO:40:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1818 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
  - (A) NAME/KEY: Coding Sequence
  - (B) LOCATION: 1...1815
  - (D) OTHER INFORMATION:
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

ATG GTG AGC AAG GGC GAG GAG CTG TTC ACC GGG GTG GTG CCC ATC CTG
Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu

1 5 10 15

| GTC<br>Val       | GAG<br>Glu          | CTG<br>Leu         | GAC<br>Asp<br>20  | GGC<br>Gly        | GAC<br>Asp         | GTA .<br>Val .      | AAC<br>Asn          | GGC<br>Gly<br>25      | CAC<br>His       | AAG<br>Lys          | TTC<br>Phe            | AGC<br>Ser          | GTG<br>Val<br>30       | TCC<br>Ser         | GGC<br>Gly            | 96           |
|------------------|---------------------|--------------------|-------------------|-------------------|--------------------|---------------------|---------------------|-----------------------|------------------|---------------------|-----------------------|---------------------|------------------------|--------------------|-----------------------|--------------|
| GAG<br>Glu       | GGC<br>Gly          | GAG<br>Glu<br>35   | GGC<br>Gly        | GAT<br>Asp        | GCC<br>Ala         | ACC<br>Thr          | TAC<br>Tyr<br>40    | GGC<br>Gly            | AAG<br>Lys       | CTG<br>Leu          | ACC<br>Thr            | CTG<br>Leu<br>45    | AAG<br>Lys             | TTC<br>Phe         | ATC<br>Ile            | 144          |
| TGC<br>Cys       | ACC<br>Thr<br>50    | ACC<br>Thr         | GGC<br>Gly        | AAG<br>Lys        | CTG<br>Leu         | CCC<br>Pro<br>55    | GTG<br>Val          | CCC<br>Pro            | TGG<br>Trp       | CCC<br>Pro          | ACC<br>Thr<br>60      | CTC<br>Leu          | GTG<br>Val             | ACC<br>Thr         | ACC<br>Thr            | 192          |
| CTG<br>Leu<br>65 | ACC<br>Thr          | TAC<br>Tyr         | GGC<br>Gly        | GTG<br>Val        | CAG<br>Gln<br>70   | TGC<br>Cys          | TTC<br>Phe          | AGC<br>Ser            | CGC<br>Arg       | TAC<br>Tyr<br>75    | CCC<br>Pro            | GAC<br>Asp          | CAC                    | ATG<br>Met         | AAG<br>Lys<br>80      | 240          |
| CAG<br>Gln       | CAC<br>His          | GAC<br>Asp         | TTC<br>Phe        | TTC<br>Phe<br>85  | AAG<br>Lys         | TCC<br>Ser          | GCC<br>Ala          | ATG<br>Met            | CCC<br>Pro<br>90 | GAA<br>Glu          | GGC<br>Gly            | TAC<br>Tyr          | GTC<br>Val             | CAG<br>Gln<br>95   | GAG<br>Glu            | 288          |
| CGC<br>Arg       | ACC<br>Thr          | ATC                | TTC<br>Phe<br>100 | Phe               | AAG<br>Lys         | GAC<br>Asp          | GAC<br>Asp          | GGC<br>Gly<br>105     | Asn              | TAC<br>Tyr          | AAC<br>Lys            | ACC<br>Thr          | CGC<br>Arg             | Ala                | GAG<br>Glu            | 336          |
| GTC<br>Val       | AAG<br>Lys          | TTC<br>Phe<br>115  | e Glu             | GGC<br>Gly        | GAC<br>Asp         | ACC<br>Thr          | CTG<br>Leu<br>120   | Val                   | AAC<br>Asn       | CGC<br>Arg          | ATC                   | GAC<br>Glu<br>125   | ı Let                  | AAC<br>Lys         | G GGC<br>G Gly        | 384          |
| )TA              | GAC<br>Asr<br>130   | Phe                | AAC<br>Lys        | GAG<br>Glu        | GAC<br>Asp         | GGC<br>Gly<br>135   | Asn                 | TATC                  | CTC              | GG(                 | G CAC<br>/ His<br>140 | . Lys               | G CTC                  | G GAG              | З ТАС<br>1 ТУ1        | 432          |
| AA(<br>Asi<br>14 | n Tyr               | AAC<br>Asr         | C AGO             | CAC<br>His        | AAC<br>Asn<br>150  | Val                 | ТАТ<br>Туг          | T ATC                 | ATC<br>Met       | GCC<br>Ala<br>15    | a As                  | C AAG<br>p Ly:      | G CAG<br>s Gli         | G AAG              | G AAG<br>s Asi<br>160 | <b>1</b>     |
| GG<br>G1         | C AT(               | C AAG<br>e Ly:     | G GTY             | AAG<br>Asr<br>165 | n Phe              | AAC<br>Lys          | ATC                 | C CGC<br>E Arg        | CAC<br>His       | s Ası               | n Il                  | C GA                | G GAG<br>u Asj         | C GG<br>p G1<br>17 | C AGG<br>y Se:<br>5   | 528<br>r     |
| GT<br>Va         | G CAG               | G CTO              | u Al              | C GAG<br>a Ası    | o His              | з Туз               | Gli                 | G CAG<br>n Gli<br>18! | n As             | C AC                | c cc<br>r Pr          | C AT<br>o Il        | C GG<br>e Gl<br>19     | y As               | c GG<br>p G1          | C 576<br>Y   |
| CC<br>Pr         | C GT                | G CT<br>l Le<br>19 | u Le              | G CC              | C GAG<br>o Ası     | AA C<br>ASI         | C CAG<br>n Hi<br>20 | s Ty                  | C CT<br>r Le     | G AG<br>u Se        | C AC                  | C CA<br>ir Gl<br>20 | n Se                   | c GC<br>r Al       | C CT<br>a Le          | G 624<br>u   |
| AC<br>Se         | C AA<br>er Ly<br>21 | s As               | c cc<br>p Pr      | C AA<br>o As      | C GAG              | G AAG<br>u Ly<br>21 | s Ar                | C GA<br>g As          | T CA<br>p Hi     | C AT<br>s Me        | G G1<br>et Va<br>22   | il Le               | G CI<br>eu Le          | 'G G?<br>eu GI     | AG TI<br>lu Ph        | rc 672<br>ie |
| Vá               | NG AC<br>al Th      | c GC<br>ar Al      | CC GC<br>.a Al    | c GG<br>a G1      | G AT<br>y Il<br>23 | e Th                | T CT<br>r Le        | c GG<br>u G1          | С АТ<br>У Ме     | G GA<br>et As<br>23 | sp G.                 | AG CT               | rg T <i>i</i><br>eu Ty | AC AZ              | AG TO<br>ys Se<br>24  | er           |
| G(<br>G:         | GA CI<br>ly Le      | C AC               | GA TO             | T CG              | A GT<br>g Va       | A AC<br>1 Th        | C AT<br>r Me        | G GC                  | G GC<br>.a Al    | CG GC<br>La Al      | CG G(<br>la A         | CG GG<br>la A       | CG GG<br>la A          | CG G<br>la G       | GC CC<br>ly Pi        | CG 768       |

|                   |                     |                   |                      | 245               |                      |                      |                       |                     | 250               |                    |                    |                    |                    | 255                  |                       |      |
|-------------------|---------------------|-------------------|----------------------|-------------------|----------------------|----------------------|-----------------------|---------------------|-------------------|--------------------|--------------------|--------------------|--------------------|----------------------|-----------------------|------|
| GAG .             | ATG<br>Met          | GTC<br>Val        | CGC<br>Arg<br>260    | GGG<br>Gly        | CAG<br>Gln           | GTG<br>Val           | TTC<br>Phe            | GAC<br>Asp<br>265   | GTG<br>Val        | GGG<br>Gly         | CCG<br>Pro         | CGC<br>Arg         | TAC<br>Tyr<br>270  | ACT<br>Thr           | AAT<br>Asn            | 816  |
| CTC<br>Leu        | TCG<br>Ser          | TAC<br>Tyr<br>275 | ATC<br>Ile           | GGA<br>Gly        | GAA<br>Glu           | GGC<br>Gly           | GCC<br>Ala<br>280     | TAC<br>Tyr          | GGC<br>Gly        | ATG<br>Met         | GTT<br>Val         | TGT<br>Cys<br>285  | TCT<br>Ser         | GCT<br>Ala           | TAT<br>Tyr            | 864  |
| GAT<br>Asp        | AAT<br>Asn<br>290   | CTC<br>Leu        | AAC<br>Asn           | AAA<br>Lys        | GTT<br>Val           | CGA<br>Arg<br>295    | GTT<br>Val            | GCT<br>Ala          | ATC<br>Ile        | AAG<br>Lys         | AAA<br>Lys<br>300  | ATC<br>Ile         | AGT<br>Ser         | CCT<br>Pro           | TTT<br>Phe            | 912  |
| GAG<br>Glu<br>305 | CAC<br>His          | CAG<br>Gln        | ACC<br>Thr           | TAC<br>Tyr        | TGT<br>Cys<br>310    | CAG<br>Gln           | AGA<br>Arg            | ACC<br>Thr          | CTG<br>Leu        | AGA<br>Arg<br>315  | GAG<br>Glu         | ATA<br>Ile         | AAA<br>Lys         | ATC<br>Ile           | CTA<br>Leu<br>320     | 960  |
| CTG<br>Leu        | CGC<br>Arg          | TTC<br>Phe        | AGA<br>Arg           | CAT<br>His<br>325 | GAG<br>Glu           | AAC<br>Asn           | ATC<br>Ile            | ATC<br>Ile          | GGC<br>Gly<br>330 | ATC<br>Ile         | AAT<br>Asn         | GAC<br>Asp         | ATC<br>Ile         | ATC<br>Ile<br>335    | CGG<br>Arg            | 1008 |
| GCA<br>Ala        | CCA<br>Pro          | ACC<br>Thr        | ATT<br>Ile<br>340    | Glu               | CAG<br>Gln           | ATG<br>Met           | AAA<br>Lys            | GAT<br>Asp<br>345   | GTA<br>Val        | TAT<br>Tyr         | ATA<br>Ile         | GTA<br>Val         | Glm<br>350         | Asp                  | CTC<br>Leu            | 1056 |
| ATG<br>Met        | GAG<br>Glu          | ACA<br>Thr        | Asp                  | CTT<br>Leu        | TAC<br>Tyr           | AAG<br>Lys           | CTC<br>Leu<br>360     | Leu                 | AAG<br>Lys        | ACA<br>Thr         | CAG<br>Gln         | CAC<br>His         | Leu                | AGC<br>Ser           | AAT<br>Asn            | 1104 |
| GAT<br>Asp        | CAT<br>His          | Il∈               | TGC<br>Cys           | TAT<br>Tyr        | TTT<br>Phe           | CTT<br>Leu<br>375    | Туг                   | CAG                 | ATC               | CTC<br>Lev         | AGA<br>Arg<br>380  | G13                | TT?                | A AAG<br>1 Lys       | TAT<br>Tyr            | 1152 |
| ATA<br>Ile<br>385 | His                 | TCA<br>Ser        | A GCT                | raa r             | GTT<br>Val           | Leu                  | CAC<br>His            | CGT<br>Arg          | Asp<br>Asp        | CTC<br>Lev<br>395  | ı Lys              | CC:                | r TCC              | C AAC<br>r Asr       | CTC<br>Leu<br>400     | 1200 |
| CTG<br>Leu        | CTC<br>Lev          | AAG<br>1 Ast      | ACC<br>Thi           | C ACT             | Cys                  | GAT<br>Asp           | CTC                   | AAG<br>1 Lys        | ATC<br>116<br>410 | S CA               | GAC<br>S Asi       | TT'                | r GG¢<br>≥ Gl;     | C CT<br>y Lev<br>415 | GCC<br>Ala            | 1248 |
| CGI<br>Arg        | GT<br>Val           | r GC/<br>1 Ala    | A GA<br>A Ası<br>420 | p Fro             | A GAC                | CAT<br>His           | GAS<br>Asp            | r CAT<br>His<br>425 | Thi               | A GG(<br>r Gly     | G TTO<br>y Phe     | TTY<br>E Le        | G AC<br>u Th<br>43 | r Gl                 | TAT<br>Tyr            | 1296 |
| GTA<br>Val        | A GCC               | C ACC<br>a Th:    | r Ar                 | r TG(<br>g Tr]    | Э ТАС<br>Э Туі       | AGA<br>Arg           | A GC'<br>g Ala<br>440 | a Pro               | A GAZ             | A AT               | T ATG              | G TT<br>t Le<br>44 | u As               | T TC                 | C AAG<br>r Lys        | 1344 |
| GG1<br>Gly        | г та<br>у ту:<br>45 | r Th              | C AAG<br>r Ly        | G TCC<br>s Se:    | C ATT                | r GA<br>e Ası<br>459 | o Il                  | T TG<br>e Trj       | G TC'<br>p Se:    | T GT<br>r Va       | G GG<br>1 G1<br>46 | у Су               | C AT               | C CT<br>e Le         | G GCA<br>u Ala        | 1392 |
| GAG<br>Glu<br>465 | u Me                | G CT<br>t Le      | A TC<br>u Se         | C AA<br>r As      | C AGO<br>n Arg<br>47 | g Pro                | r AT<br>o Il          | C TT<br>e Ph        | C CC.<br>e Pr     | A GG<br>o G1<br>47 | A ГА               | G CA<br>s Hi       | T TA<br>S T        | C CT                 | T GAC<br>u Asp<br>480 | 1440 |

|      |   |   | CTG<br>Leu        |  |  |  |     |            | 1488 |
|------|---|---|-------------------|--|--|--|-----|------------|------|
|      |   |   | AAT<br>Asn        |  |  |  |     |            | 1536 |
| <br> |   |   | GTG<br>Val        |  |  |  |     |            | 1584 |
|      |   |   | TTA<br>Leu        |  |  |  |     |            | 1632 |
|      |   |   | GAA<br>Glu<br>550 |  |  |  |     |            | 1680 |
|      |   |   | GAT<br>Asp        |  |  |  |     |            | 1728 |
| <br> | _ | - | GAC<br>Asp        |  |  |  |     | ATT<br>Ile | 1776 |
|      |   |   | CGA<br>Arg        |  |  |  | TAA |            | 1818 |

#### (2) INFORMATION FOR SEQ ID NO:41:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 605 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein
(v) FRAGMENT TYPE: internal

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu 15 1 5 10 Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly 25 Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile **4**5 35 40 Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr 55 60 Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys 70 75 Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu 90 85

| Arg 7      | Thr | Ile  | Phe<br>100 | Phe        | Lys         | Asp        |                                               | Gly<br>105 | Asn        | Tyr        | Lys '      |            | Arg<br>110 | Ala        | Glu          |
|------------|-----|------|------------|------------|-------------|------------|-----------------------------------------------|------------|------------|------------|------------|------------|------------|------------|--------------|
| Val I      |     | Phe  |            | Gly        | Asp         | Thr        |                                               |            | Asn        | Arg        |            | Glu<br>125 | Leu        | Lys        | Gly          |
| Ile A      |     |      | Lys        | Glu        | Asp         | Gly<br>135 |                                               | Ile        | Leu        | Gly        | His<br>140 | Lys        | Leu        | Glu        | Tyr          |
| Asn '      |     | Asn  | Ser        | His        | Asn<br>150  | Val        | Tyr                                           | Ile        | Met        | Ala<br>155 | Asp        | Lys        | Gln        | Lys        | Asn<br>160   |
| 145<br>Gly | Ile | Lys  | Val        | Asn<br>165 |             | Lys        | Ile                                           | Arg        | His<br>170 |            | Ile        | Glu        | Asp        | Gly<br>175 | Ser          |
| Val        | Gln | Leu  | Ala<br>180 |            | His         | Tyr        | Gln                                           | Gln<br>185 | Asn        | Thr        | Pro        | Ile        | Gly<br>190 | Asp        | Gly          |
|            |     | 195  | Leu        |            |             |            | His<br>200                                    |            |            |            |            | 205        |            |            |              |
|            | 210 |      |            |            |             | 215        | Arg                                           |            |            |            | 220        |            |            |            |              |
| Val<br>225 | Thr | Ala  | Ala        | Gly        | Ile<br>230  | Thr        | Leu                                           | Gly        | Met        | Asp<br>235 | Glu        | Leu        | Tyr        | Lys        | Ser<br>240   |
| Gly        | Leu | Arg  | Ser        | Arg<br>245 | Val         | Thr        | Met                                           | Ala        | Ala<br>250 | Ala        | Ala        | Ala        | Ala        | Gly<br>255 | Pro          |
| Glu        | Met | Val  | Arg<br>260 | Gly        | Gln         | Val        | Phe                                           | Asp<br>265 | Val        | Gly        | Pro        | Arg        | Tyr<br>270 | Thr        | Asn          |
|            |     | 275  |            |            |             |            | Ala<br>280                                    |            |            |            |            | 285        |            |            |              |
|            | 290 |      |            |            |             | 295        |                                               |            |            |            | 300        |            |            |            |              |
| 305        |     |      |            |            | 310         |            | Arg                                           |            |            | 315        |            |            |            |            | 320          |
|            |     |      |            | 325        | ,           |            | Ile                                           |            | 330        |            |            |            |            | 335        |              |
|            |     |      | 340        |            |             |            |                                               | 345        |            |            |            |            | 350        |            | Leu          |
|            |     | 355  | ,          |            |             |            | 360                                           |            |            |            |            | 365        |            |            | Asn          |
|            | 370 |      |            |            |             | 375        | <u>,                                     </u> |            |            |            | 380        |            |            |            | Tyr          |
| 385        |     |      |            |            | 390         | )          |                                               |            |            | 395        |            |            |            |            | 1 Leu<br>400 |
|            |     |      |            | 405        | 5           |            |                                               |            | 410        | )          |            |            |            | 415        |              |
|            |     |      | 420        | )          |             |            |                                               | 425        | 5          |            |            |            | 430        | )          | ı Tyr        |
|            |     | 435  | 5          |            |             |            | 440                                           | )          |            |            |            | 445        | 5          |            | Lys          |
| _          | 450 |      |            |            |             | 459        | 5                                             |            |            |            | 460        | )          |            |            | ı Ala        |
| 465        |     |      |            |            | 470         | )          |                                               |            |            | 475        | 5          |            |            |            | 1 Asp<br>480 |
|            |     |      |            | 48         | 5           |            |                                               |            | 490        | 0          |            |            |            | 49         |              |
|            |     |      | 500        | )          |             |            |                                               | 50         | 5          |            |            |            | 51         | 0          | r Leu        |
|            |     | 51   | 5          |            |             |            | 520                                           | C          |            |            |            | 525        | 5          |            | a Asp        |
|            | 530 | )    |            |            |             | 53         | 5                                             |            |            |            | 54         | 0          |            |            | o His        |
| Lys<br>545 |     | g Il | e Gli      | u Va       | 1 Gli<br>55 |            | n Al                                          | a Le       | u Al       | a Hi<br>55 |            | о Ту       | r Le       | u Gl       | u Gln<br>560 |

## (2) INFORMATION FOR SEQ ID NO:42:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2529 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
  - (A) NAME/KEY: Coding Sequence
  - (B) LOCATION: 1...2526
  - (D) OTHER INFORMATION:

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

| ATG<br>Met<br>1  | GTG<br>Val       | AGC<br>Ser        | AAG<br>Lys        | GGC<br>Gly<br>5  | GAG<br>Glu       | GAG<br>Glu       | CTG<br>Leu        | TTC<br>Phe        | ACC<br>Thr<br>10 | GGG<br>Gly       | GTG<br>Val       | GTG<br>Val        | CCC<br>Pro        | ATC<br>Ile<br>15 | CTG<br>Leu       | 48  |
|------------------|------------------|-------------------|-------------------|------------------|------------------|------------------|-------------------|-------------------|------------------|------------------|------------------|-------------------|-------------------|------------------|------------------|-----|
| GTC<br>Val       | GAG<br>Glu       | CTG<br>Leu        | GAC<br>Asp<br>20  | GGC<br>Gly       | GAC<br>Asp       | GTA<br>Val       | AAC<br>Asn        | GGC<br>Gly<br>25  | CAC<br>His       | AAG<br>Lys       | TTC<br>Phe       | AGC<br>Ser        | GTG<br>Val<br>30  | TCC<br>Ser       | GGC<br>Gly       | 96  |
| GAG<br>Glu       | GGC<br>Gly       | GAG<br>Glu<br>35  | GGC<br>Gly        | GAT<br>Asp       | GCC<br>Ala       | ACC<br>Thr       | TAC<br>Tyr<br>40  | GGC<br>Gly        | AAG<br>Lys       | CTG<br>Leu       | ACC<br>Thr       | CTG<br>Leu<br>45  | AAG<br>Lys        | TTC<br>Phe       | ATC<br>Ile       | 144 |
| TGC<br>Cys       | ACC<br>Thr<br>50 | ACC<br>Thr        | GGC<br>Gly        | AAG<br>Lys       | CTG<br>Leu       | CCC<br>Pro<br>55 | GTG<br>Val        | CCC<br>Pro        | TGG<br>Trp       | CCC<br>Pro       | ACC<br>Thr<br>60 | CTC<br>Leu        | GTG<br>Val        | ACC<br>Thr       | ACC<br>Thr       | 192 |
| CTG<br>Leu<br>65 | ACC<br>Thr       | TAC<br>Tyr        | GGC<br>Gly        | GTG<br>Val       | CAG<br>Gln<br>70 | TGC<br>Cys       | TTC<br>Phe        | AGC<br>Ser        | CGC<br>Arg       | TAC<br>Tyr<br>75 | CCC<br>Pro       | GAC<br>Asp        | CAC<br>His        | ATG<br>Met       | AAG<br>Lys<br>80 | 240 |
| CAG<br>Gln       | CAC<br>His       | GAC<br>Asp        | TTC<br>Phe        | TTC<br>Phe<br>85 | AAG<br>Lys       | TCC<br>Ser       | GCC<br>Ala        | ATG<br>Met        | CCC<br>Pro<br>90 | GAA<br>Glu       | GGC<br>Gly       | TAC<br>Tyr        | GTC<br>Val        | CAG<br>Gln<br>95 | GAG<br>Glu       | 288 |
| CGC              | ACC<br>Thr       | ATC<br>Ile        | TTC<br>Phe<br>100 | Phe              | AAG<br>Lys       | GAC<br>Asp       | GAC<br>Asp        | GGC<br>Gly<br>105 | Asn              | TAC<br>Tyr       | AAG<br>Lys       | ACC<br>Thr        | CGC<br>Arg<br>110 | Ala              | GAG<br>Glu       | 336 |
| GTG<br>Val       | AAG<br>Lys       | TTC<br>Phe<br>115 | Glu               | GGC<br>Gly       | GAC<br>Asp       | ACC<br>Thr       | CTG<br>Leu<br>120 | Val               | AAC<br>Asn       | CGC<br>Arg       | ATC              | GAG<br>Glu<br>125 | Leu               | AAG<br>Lys       | GGC<br>Gly       | 384 |
| ATC<br>Ile       | GAC<br>Asp       | TTC<br>Phe        | AAG<br>Lys        | GAC<br>Glu       | GAC<br>Asp       | GGC<br>Gly       | : AAC<br>/ Asr    | ATC               | CTG              | GGC<br>Gly       | CAC<br>His       | AAG<br>Lys        | CTC               | GAC<br>1 Glu     | TAC<br>Tyr       | 432 |

130 135 140

|                   |                   |                      |                       |                       |                                                                           |                   |                      |                       |                       |                               |                   |                       |                       | AAG<br>Lys           |                   | 480  |
|-------------------|-------------------|----------------------|-----------------------|-----------------------|---------------------------------------------------------------------------|-------------------|----------------------|-----------------------|-----------------------|-------------------------------|-------------------|-----------------------|-----------------------|----------------------|-------------------|------|
| GGC<br>Gly        | ATC<br>Ile        | AAG<br>Lys           | GTG<br>Val            | AAC<br>Asn<br>165     | TTC<br>Phe                                                                | AAG<br>Lys        | ATC<br>Ile           | CGC<br>Arg            | CAC<br>His<br>170     | AAC<br>Asn                    | ATC<br>Ile        | GAG<br>Glu            | GAC<br>Asp            | GGC<br>Gly<br>175    | AGC<br>Ser        | 528  |
| GTG<br>Val        | CAG<br>Gln        | CTC<br>Leu           | GCC<br>Ala<br>180     | GAC<br>Asp            | CAC<br>His                                                                | TAC<br>Tyr        | CAG<br>Gln           | CAG<br>Gln<br>185     | AAC<br>Asn            | ACC<br>Thr                    | CCC<br>Pro        | ATC<br>Ile            | GGC<br>Gly<br>190     | GAC<br>Asp           | GGC<br>Gly        | 576  |
| CCC<br>Pro        | GTG<br>Val        | CTG<br>Leu<br>195    | CTG<br>Leu            | CCC<br>Pro            | GAC<br>Asp                                                                | AAC<br>Asn        | CAC<br>His<br>200    | TAC<br>Tyr            | CTG<br>Leu            | AGC<br>Ser                    | ACC<br>Thr        | CAG<br>Gln<br>205     | TCC<br>Ser            | GCC<br>Ala           | CTG<br>Leu        | 624  |
| AGC<br>Ser        | AAA<br>Lys<br>210 | GAC<br>Asp           | CCC<br>Pro            | AAC<br>Asn            | GAG<br>Glu                                                                | AAG<br>Lys<br>215 | CGC<br>Arg           | GAT<br>Asp            | CAC<br>His            | ATG<br>Met                    | GTC<br>Val<br>220 | Leu                   | CTG<br>Leu            | GAG<br>Glu           | TTC<br>Phe        | 672  |
| GTG<br>Val<br>225 | Thr               | GCC<br>Ala           | GCC<br>Ala            | GGG<br>Gly            | ATC<br>Ile<br>230                                                         | ACT<br>Thr        | CTC<br>Leu           | GGC<br>Gly            | ATG<br>Met            | GAC<br>Asp<br>235             | Glu               | CTG<br>Leu            | TAC<br>Tyr            | AAG<br>Lys           | TCC<br>Ser<br>240 | 720  |
| GGA<br>Gly        | CTC<br>Leu        | AGA<br>Arg           | TCT<br>Ser            | CGA<br>Arg<br>245     | Ala                                                                       | CAA<br>Gln        | GCT<br>Ala           | TCG<br>Ser            | AAT<br>Asn<br>250     | Ser                           | TCA<br>Ser        | ATC<br>Met            | GAG<br>Glu            | CTG<br>Leu<br>255    | GAA<br>Glu        | 768  |
| AAC<br>Asn        | ATC               | GTG<br>Val           | GCC<br>Ala<br>260     | Asn                   | ACG<br>Thr                                                                | GTC<br>Val        | TTG<br>Leu           | Leu<br>265            | Lys                   | GCC<br>Ala                    | AGC<br>Arg        | GA#<br>g Glu          | 4 GGG<br>1 Gly<br>270 | gly,                 | GGA<br>Gly        | 816  |
| GG?<br>Gly        | AAG<br>/ Lys      | CGC<br>Arg<br>275    | Lys                   | GGG<br>Gly            | . Yya                                                                     | AGC<br>Ser        | AAC<br>Lys<br>280    | Lys                   | TGG<br>Trp            | AAA<br>Lys                    | A GAA<br>s Glu    | A ATO<br>1 Ile<br>289 | e Lei                 | AAC<br>1 Lys         | TTC<br>; Phe      | 864  |
| CCI               | CAC<br>His        | Ιle                  | AGC<br>Ser            | CAG<br>Glr            | TGT<br>Cys                                                                | GAA<br>Glu<br>295 | Asp                  | CTC<br>Lev            | CGA<br>Arg            | ACC                           | G ACC<br>Thi      | r Ile                 | A GAG<br>e Asi        | E AGA                | A GAT<br>J Asp    | 912  |
| TAC<br>Ty:<br>305 | c Cys             | AG1<br>Ser           | TTF<br>Lev            | TGT<br>Cys            | GAC<br>GAS<br>GAS<br>GAS<br>GAS<br>GAS<br>GAS<br>GAS<br>GAS<br>GAS<br>GAS | Lys               | G CAC                | G CCA                 | A ATC                 | GG(<br>Gl <sub>2</sub><br>31: | y Arg             | G CTY                 | G CT<br>u Lei         | r TT(<br>u Phe       | CGG<br>Arg<br>320 | 960  |
| CA(<br>Gl:        | TTI               | r TGT<br>≥ Cys       | r GAA                 | A ACC<br>1 Th:<br>325 | : Arg                                                                     | G CCI<br>G Pro    | r GG(                | G CTO                 | G GAC<br>u Glu<br>330 | ı Су:                         | T TAC             | C AT                  | T CAG                 | G TTO<br>n Pho<br>33 | CTG<br>e Leu<br>5 | 1008 |
| GA(<br>As)        | TCC<br>pSe:       | C GT(                | G GCA<br>1 Ala<br>340 | a Glu                 | A TAT                                                                     | r GAJ<br>r Glu    | A GT'<br>u Val       | T AC'<br>1 Th:<br>34! | r Pro                 | A GA<br>O As                  | T GA              | a AA<br>u Ly          | A CT<br>s Le<br>35    | u Gl                 | A GAG<br>y Glu    | 1056 |
| AA<br>Ly          | A GG<br>s Gl      | G AAG<br>y Ly:<br>35 | s Gl                  | A AT'                 | T ATY                                                                     | G ACC             | C AA0<br>r Ly:<br>36 | s Ту                  | C CTO                 | C AC<br>u Th                  | C CC<br>r Pr      | A AA<br>o Ly<br>36    | s Se                  | c cc<br>r Pr         | T GTT<br>o Val    | 1104 |

| Phe               |                   |                   |                   |                       |                   |                   |                   |                       | GTC<br>Val          |              |                     |                   |                    |                       |                   | 1152 |
|-------------------|-------------------|-------------------|-------------------|-----------------------|-------------------|-------------------|-------------------|-----------------------|---------------------|--------------|---------------------|-------------------|--------------------|-----------------------|-------------------|------|
|                   |                   |                   |                   |                       |                   |                   |                   |                       | TTT<br>Phe          |              |                     |                   |                    |                       |                   | 1200 |
|                   |                   |                   |                   |                       |                   |                   |                   |                       | TTC<br>Phe<br>410   |              |                     |                   |                    |                       |                   | 1248 |
|                   |                   |                   |                   |                       |                   |                   |                   |                       | AAG<br>Lys          |              |                     |                   |                    |                       |                   | 1296 |
|                   |                   |                   |                   |                       |                   |                   |                   |                       | CGA<br>Arg          |              |                     |                   |                    |                       |                   | 1344 |
| TTC<br>Phe        | GGG<br>Gly<br>450 | GAG<br>Glu        | GTC<br>Val        | TGT<br>Cys            | GCC<br>Ala        | TGC<br>Cys<br>455 | CAG<br>Gln        | GTT<br>Val            | CGG<br>Arg          | GCC<br>Ala   | ACG<br>Thr<br>460   | GGT<br>Gly        | AAA<br>Lys         | ATG<br>Met            | TAT<br>Tyr        | 1392 |
|                   |                   |                   |                   |                       |                   |                   |                   |                       | ATC<br>Ile          |              | Lys                 |                   |                    |                       |                   | 1440 |
| TCC<br>Ser        | ATG<br>Met        | GCC<br>Ala        | CTC<br>Leu        | AAT<br>Asn<br>485     | GAG<br>Glu        | AAG<br>Lys        | CAG<br>Gln        | ATC                   | CTC<br>Leu<br>490   | GAG<br>Glu   | AAG<br>Lys          | GTC<br>Val        | AAC<br>Asn         | AGT<br>Ser<br>495     | Gln               | 1488 |
| TTT<br>Phe        | GTG<br>Val        | GTC<br>Val        | AAC<br>Asn<br>500 | Leu                   | GCC<br>Ala        | TAT<br>Tyr        | GCC               | TAC<br>Tyr<br>505     | GAG<br>Glu          | ACC<br>Thr   | AAG<br>Lys          | GAT<br>Asp        | GCA<br>Ala<br>510  | Leu                   | TGC<br>Cys        | 1536 |
| TTG<br>Leu        | GTC<br>Val        | CTG<br>Leu<br>515 | Thr               | ATC                   | ATG<br>Met        | AAT<br>Asn        | GGG<br>Gly<br>520 | , Gla                 | GAC<br>Asp          | CTC<br>Lev   | AAC<br>Lys          | TTC<br>Phe<br>525 | His                | ATC                   | TAC<br>Tyr        | 1584 |
| AAC<br>Asn        | Met               | GGC<br>Gly        | / Asn             | CCT<br>Pro            | Gly               | Phe               | GAC<br>Glu        | GAG<br>Glu            | GAG<br>Glu          | CGC<br>Arg   | GCC<br>g Ala<br>540 | a Lev             | TTT<br>1 Phe       | г тал<br>Э Туг        | GCG<br>Ala        | 1632 |
| GCA<br>Ala<br>545 | Glu               | ATC<br>Ile        | CTC<br>Lev        | TGC<br>Cys            | GGC<br>Gly<br>550 | Let               | GAA<br>Glu        | A GAC<br>1 Asp        | CTC<br>Lev          | CAC<br>His   | s Arg               | r GAG<br>g Glu    | G AAC<br>L Asi     | C ACC                 | GTC<br>Val<br>560 | 1680 |
| ТАС<br>Туг        | CGA<br>Arg        | GAT<br>JAS        | r CTC<br>D Leu    | 5 AAA<br>1 Lys<br>565 | Pro               | GAA               | AAA<br>Laa L      | TATY                  | CTC<br>E Leu<br>570 | ı Lev        | A GA'<br>ı Ası      | r GA'<br>p As     | Т ТА'<br>р Ту:     | r GGG<br>r Gly<br>57! | C CAC<br>y His    | 1728 |
| ATI<br>Ile        | AGC<br>Arc        | F ATO             | TCA<br>Ser<br>580 | Asp                   | CTC               | GGC<br>Gly        | TTY<br>Le         | G GC'<br>u Ala<br>585 | a Val               | AAG<br>L Ly: | G AT                | c cc<br>e Pr      | C GA<br>o G1<br>59 | u Gl                  | A GAC<br>y Asp    | 1776 |
| CTC<br>Lev        | ATC               | CGG<br>Arg        | g Gly             | C CGC                 | GTY<br>Va:        | G GGG             | AC'<br>Y Th       | T GT<br>r Va          | r GG(<br>l Gly      | TA<br>Ty     | C AT<br>r Me        | G GC<br>t Al      | C CC<br>a Pr       | C GA<br>o Gl          | A GTC<br>u Val    | 1824 |

|                       |                   | 595               |                   |                   |                   |                   | 600               |                   |                       |                   |                   | 605               |                      |                       |                   |      |
|-----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------------|-------------------|-------------------|-------------------|----------------------|-----------------------|-------------------|------|
| CTG A                 | AAC<br>Asn<br>610 | AAC<br>Asn        | CAG<br>Gln        | AGG<br>Arg        | Tyr               | GGC<br>Gly<br>615 | CTG<br>Leu        | AGC<br>Ser        | CCC<br>Pro            | Asp               | TAC<br>Tyr<br>620 | TGG<br>Trp        | GGC<br>Gly           | CTT<br>Leu            | GGC<br>Gly        | 1872 |
| TGC (<br>Cys :<br>625 | CTC<br>Leu        | ATC<br>Ile        | ТАТ<br>Тут        | GAG<br>Glu        | ATG<br>Met<br>630 | ATC<br>Ile        | GAG<br>Glu        | GGC<br>Gly        | CAG<br>Gln            | TCG<br>Ser<br>635 | CCG<br>Pro        | TTC<br>Phe        | CGC<br>Arg           | GGC<br>Gly            | CGT<br>Arg<br>640 | 1920 |
| AAG (<br>Lys (        | GAG<br>Glu        | AAG<br>Lys        | GTG<br>Val        | AAG<br>Lys<br>645 | CGG<br>Arg        | GAG<br>Glu        | GAG<br>Glu        | GTG<br>Val        | GAC<br>Asp<br>650     | CGC<br>Arg        | CGG<br>Arg        | GTC<br>Val        | CTG<br>Leu           | GAG<br>Glu<br>655     | ACG<br>Thr        | 1968 |
| GAG<br>Glu            | GAG<br>Glu        | GTG<br>Val        | TAC<br>Tyr<br>660 | TCC<br>Ser        | CAC<br>His        | AAG<br>Lys        | TTC<br>Phe        | TCC<br>Ser<br>665 | GAG<br>Glu            | GAG<br>Glu        | GCC<br>Ala        | AAG<br>Lys        | TCC<br>Ser<br>670    | ATC<br>Ile            | TGC<br>Cys        | 2016 |
| AAG<br>Lys            |                   |                   |                   |                   |                   |                   |                   |                   |                       |                   |                   |                   |                      |                       |                   | 2064 |
| GAG<br>Glu            | GGG<br>Gly<br>690 | GCT<br>Ala        | GCA<br>Ala        | GAG<br>Glu        | GTC<br>Val        | AAG<br>Lys<br>695 | AGA<br>Arg        | CAC<br>His        | CCC<br>Pro            | TTC<br>Phe        | TTC<br>Phe<br>700 | AGG<br>Arg        | AAC<br>Asn           | ATG<br>Met            | AAC<br>Asn        | 2112 |
| TTC<br>Phe<br>705     | AAG<br>Lys        | CGC               | TTA<br>Leu        | GAA<br>Glu        | GCC<br>Ala<br>710 | GGG<br>Gly        | ATG<br>Met        | TTG<br>Leu        | GAC<br>Asp            | CCT<br>Pro<br>715 | CCC<br>Pro        | TTC<br>Phe        | GTT<br>Val           | CCA<br>Pro            | GAC<br>Asp<br>720 | 2160 |
| CCC<br>Fro            | CGC<br>Arg        | GCT<br>Ala        | GTG<br>Val        | TAC<br>Tyr<br>725 | TGT<br>Cys        | AAG<br>Lys        | GAC<br>Asp        | GTG<br>Val        | CTG<br>Leu<br>730     | GAC<br>Asp        | ATC<br>Ile        | GAG<br>Glu        | CAG<br>Gln           | TTC<br>Phe<br>735     | TCC<br>Ser        | 2208 |
| ACT<br>Thr            | GTG<br>Val        | AAG<br>Lys        | GGC<br>Gly<br>740 | Val               | AAT<br>Asn        | CTG<br>Leu        | GAC<br>Asp        | CAC<br>His<br>745 | ACA<br>Thr            | GAC<br>Asp        | GAC<br>Asp        | GAC<br>Asp        | TTC<br>Phe<br>750    | Tyr                   | TCC<br>Ser        | 2256 |
| AAG<br>Lys            | TTC<br>Phe        | TCC<br>Ser<br>755 | ACG<br>Thr        | GGC               | TCT<br>Ser        | GTG<br>Val        | TCC<br>Ser<br>760 | Ile               | CCA<br>Pro            | TGG<br>Trp        | CAA<br>Gln        | AAC<br>Asn<br>765 | Glu                  | ATG<br>Met            | ATA<br>Ile        | 2304 |
| GAA<br>Glu            | ACA<br>Thr        | Glu               | TGC<br>Cys        | TTT<br>Phe        | AAG<br>Lys        | GAG<br>Glu<br>775 | Leu               | AAC<br>Asn        | GTG<br>Val            | TTT<br>Phe        | 780               | Pro               | AAT<br>Asr           | GGT<br>Gly            | ACC<br>Thr        | 2352 |
| CTC<br>Leu<br>785     | CCG               | CCA<br>Pro        | . GAT<br>Asp      | CTG<br>Leu        | AAC<br>Asn<br>790 | Arc               | AAC<br>Asr        | CAC<br>His        | CCT<br>Pro            | 795               | Gli               | A CCG             | CCC<br>Pro           | C AAC<br>D Lys        | AAA<br>Lys<br>800 | 2400 |
| GGG<br>Gly            | CTC               | CTC               | CAC<br>Glr        | AGA<br>Arg<br>805 | Let               | TTC<br>Phe        | C AAC             | G CGC             | G CAC<br>g Glr<br>810 | ı His             | Г CAC<br>s Glr    | G AAC<br>n Asr    | a AA'<br>n As:       | r TCC<br>n Sei<br>819 | AAG<br>Lys        | 2448 |
| AGT<br>Ser            | TC(               | G CCC             | Sei<br>820        | c Ser             | AAC<br>Lys        | G ACC             | C AG              | T TT:             | e Ası                 | C CAC             | C CAC             | C ATA             | A AA:<br>e As:<br>83 | n Se:                 | A AAC<br>r Asn    | 2496 |

2529

CAT GTC AGC TCG AAC TCC ACC GGA AGC AGC TAG
His Val Ser Ser Asn Ser Thr Gly Ser Ser
835

### (2) INFORMATION FOR SEQ ID NO:43:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 842 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu 10 Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly 25 20 Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile 40 Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr 55 60 Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys 75 70 Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu 85 Arg Thr Ile Fhe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu 110 100 105 Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly 125 120 115 Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr 130 135 140 Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn 145 150 155 Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser 165 170 Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly 190 185 180 Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu 205 195 200 Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe 220 210 215 Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys Ser 235 225 230 Gly Leu Arg Ser Arg Ala Gln Ala Ser Asn Ser Ser Met Glu Leu Glu 250 245 Asn Ile Val Ala Asn Thr Val Leu Leu Lys Ala Arg Glu Gly Gly 260 265 Gly Lys Arg Lys Gly Lys Ser Lys Lys Trp Lys Glu Ile Leu Lys Phe 280 285 275 Pro His Ile Ser Gln Cys Glu Asp Leu Arg Arg Thr Ile Asp Arg Asp 300 295 Tyr Cys Ser Leu Cys Asp Lys Gln Pro Ile Gly Arg Leu Leu Phe Arg 315 310

| Gln | Phe  | Cys | Glu        | Thr  | Arg        | Pro   | Gly : |            | Glu<br>330 | Cys      | Tyr        | Ile       | Gln        | Phe<br>335 | Leu          |
|-----|------|-----|------------|------|------------|-------|-------|------------|------------|----------|------------|-----------|------------|------------|--------------|
| Asp | Ser  | Val | Ala<br>340 | Glu  | Tyr        | Glu   |       | Thr<br>345 | Pro        | Asp      | Glu        | Lys       | Leu<br>350 | Gly        | Glu          |
|     |      | 355 |            |      | Met        |       | 360   |            |            |          |            | 365       |            |            |              |
|     | 370  |     |            |      | Gly        | 375   |       |            |            |          | 380        |           |            |            |              |
| 385 |      |     |            |      | Cys<br>390 |       |       |            |            | 395      |            |           |            |            | 400          |
|     |      |     |            | 405  | Arg        |       |       |            | 410        |          |            |           |            | 415        |              |
|     |      |     | 420        |      | Phe        |       |       | 425        |            |          |            |           | 430        |            |              |
|     |      | 435 |            |      | Phe        |       | 440   |            |            |          |            | 445       |            |            |              |
|     | 450  |     |            |      | Ala        | 455   |       |            |            |          | 460        |           |            |            |              |
| 465 |      |     |            |      | Glu<br>470 |       |       |            |            | 475      |            |           |            |            | 480          |
|     |      |     |            | 485  | Glu        |       |       |            | 490        |          |            |           |            | 495        |              |
|     |      |     | 500        |      | Ala        |       |       | 505        |            |          |            |           | 510        |            |              |
|     |      | 515 | )          |      |            |       | 520   |            |            |          |            | 525       |            |            | Tyr          |
|     | 530  | )   |            |      |            | 535   |       |            |            |          | 540        |           |            |            | Ala          |
| 545 |      |     |            |      | 550        |       |       |            |            | 555      | •          |           |            |            | Val<br>560   |
|     |      |     |            | 565  | ,          |       |       |            | 570        | )        |            |           |            | 575        |              |
|     |      |     | 580        | )    |            |       |       | 585        |            |          |            |           | 590        | )          | Asp          |
|     |      | 595 | 5          |      |            |       | 600   |            |            |          |            | 605       | ,          |            | val          |
|     | 610  | )   |            |      |            | 615   | ,     |            |            |          | 620        | )         |            |            | ı Gly        |
| 625 | 5    |     |            |      | 630        | )     |       |            |            | 63       | 5          |           |            |            | Arg<br>640   |
|     |      |     |            | 649  | 5          |       |       |            | 650        | <b>O</b> |            |           |            | 65         |              |
|     |      |     | 66         | 0    |            |       |       | 665        |            |          |            |           | 670        | )          | e Cys        |
|     |      | 67  | 5          |      |            |       | 680   | )          |            |          |            | 68        | 5          |            | n Glu        |
|     | 69   | 0   |            |      |            | 695   | 5     |            |            |          | 70         | 0         |            |            | t Asn        |
| 70  | 5    |     |            |      | 710        | )     |       |            |            | 71       | 5          |           |            |            | o Asp<br>720 |
| Pr  | o Ar |     |            | 72   | 5          |       |       |            | 73         | C        |            |           |            | 73         | -            |
|     |      |     | 74         | 0    |            |       |       | 74         | 5          |          |            |           | 75         | 0          | r Ser        |
|     |      | 75  | 5          |      |            |       | 760   | )          |            |          |            | 76        | 5          |            | t Ile        |
| Gl  | u Th |     | u Cy       | s Ph | e Ly       | s Gl: |       | ı As       | n Va       | l Ph     | e G1<br>78 | y Pr<br>O | o As       | n Gl       | y Thr        |

### (2) INFORMATION FOR SEQ ID NO:44:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1902 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
  - (A) NAME/KEY: Coding Sequence
  - (B) LOCATION: 1...1899
  - (D) OTHER INFORMATION:

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

|  |  |  |  |  | GGG<br>Gly       |  |  | 48  |
|--|--|--|--|--|------------------|--|--|-----|
|  |  |  |  |  | AAG<br>Lys       |  |  | 96  |
|  |  |  |  |  | CTG<br>Leu       |  |  | 144 |
|  |  |  |  |  | CCC<br>Pro       |  |  | 192 |
|  |  |  |  |  | TAC<br>Tyr<br>75 |  |  | 240 |
|  |  |  |  |  | GAA<br>Glu       |  |  | 288 |
|  |  |  |  |  | TAC<br>Tyr       |  |  | 336 |
|  |  |  |  |  | CGC<br>Arg       |  |  | 384 |

| ATC<br>Ile        | GAC<br>Asp<br>130 | TTC<br>Phe        | AAG<br>Lys        | GAG<br>Glu          | GAC<br>Asp        | GGC .<br>Gly .<br>135 | AAC<br>Asn        | ATC<br>Ile        | CTG<br>Leu          | GGG<br>Gly           | CAC<br>His<br>140    | AAG<br>Lys          | CTG<br>Leu         | GAG<br>Glu          | TAC<br>Tyr          | 432  |
|-------------------|-------------------|-------------------|-------------------|---------------------|-------------------|-----------------------|-------------------|-------------------|---------------------|----------------------|----------------------|---------------------|--------------------|---------------------|---------------------|------|
|                   |                   |                   |                   |                     |                   |                       |                   |                   |                     |                      |                      |                     |                    | AAG<br>Lys          |                     | 480  |
|                   |                   |                   |                   |                     |                   |                       |                   |                   |                     |                      |                      |                     |                    | GGC<br>Gly<br>175   |                     | 528  |
| GTG<br>Val        | CAG<br>Gln        | CTC<br>Leu        | GCC<br>Ala<br>180 | GAC<br>Asp          | CAC<br>His        | TAC<br>Tyr            | CAG<br>Gln        | CAG<br>Gln<br>185 | AAC<br>Asn          | ACC<br>Thr           | CCC<br>Pro           | ATC<br>Ile          | GGC<br>Gly<br>190  | GAC<br>Asp          | GGC<br>Gly          | 576  |
|                   |                   |                   | Leu               |                     |                   |                       |                   |                   |                     |                      |                      |                     |                    | GCC<br>Ala          |                     | 624  |
| AGC<br>Ser        | AAA<br>Lys<br>210 | GAC<br>Asp        | CCC<br>Pro        | AAC<br>Asn          | GAG<br>Glu        | AAG<br>Lys<br>215     | CGC<br>Arg        | GAT<br>Asp        | CAC<br>His          | ATG<br>Met           | GTC<br>Val<br>220    | CTG<br>Leu          | CTG                | GAG<br>Glu          | TTC<br>Phe          | 672  |
| GTG<br>Val<br>225 | Thr               | GCC<br>Ala        | GCC<br>Ala        | GGG<br>Gly          | ATC<br>Ile<br>230 | ACT<br>Thr            | CTC<br>Leu        | GGC<br>Gly        | ATG<br>Met          | GAC<br>Asp<br>235    | Glu                  | CTG<br>Leu          | ТАС                | AAG<br>Lys          | TCC<br>Ser<br>240   | 720  |
| GGA<br>Gly        | CTC<br>Leu        | AGA<br>Arg        | TCT<br>Ser        | CGA<br>Arg<br>245   | Ala               | CGA<br>Arg            | GCC<br>Ala        | ATC               | ATG<br>Met<br>250   | Ser                  | AGA<br>Arg           | AGC<br>Ser          | Lys                | G CGT<br>Arg<br>255 | GAC<br>Asp          | 768  |
| AAC<br>Asn        | AAT<br>Asn        | TTI<br>Phe        | TAT<br>Tyr<br>260 | Ser                 | GTA<br>Val        | GAG<br>Glu            | ATT               | GGA<br>Gly<br>265 | Asp                 | TCI<br>Ser           | ACA<br>Thr           | TTC<br>Phe          | ACA<br>Thi         | val                 | CTG<br>Leu          | 816  |
| AAA<br>Lys        | CGA<br>Arg        | TAT<br>Ty:<br>275 | Glr               | AAT<br>Asn          | TTA<br>Leu        | AAA<br>Lys            | CCT<br>Pro<br>280 | Ile               | Gly<br>GGC          | TCA<br>Sei           | GI                   | A GCT<br>Ala<br>285 | a Gl               | A GGA<br>n Gly      | A ATA               | 864  |
| GTA<br>Va]        | TG0<br>Cys<br>290 | Ala               | a Ala             | TAT<br>Tyr          | Asp               | Ala                   | Ile               | CTI<br>Lev        | GAA<br>Glu          | A AGA                | AA A<br>Isa g<br>300 | ı Va                | r GC.<br>l Al      | A ATO               | AAG<br>Lys          | 912  |
| AAC<br>Lys<br>305 | s Leu             | A AGO             | C CGA             | A CCA               | TTT<br>Phe        | e Gln                 | AAT<br>Asr        | CAC<br>n Glr      | ACT<br>Thi          | r CA'<br>r Hi:<br>31 | s Ala                | a Ly:               | G CG<br>s Ar       | g GC0<br>g Ala      | TAC<br>Tyr<br>320   | 960  |
| AG.<br>Arg        | GA(<br>Glu        | G CT              | A GTT<br>u Val    | r CTM<br>Let<br>325 | ı Met             | AAA<br>Lys            | TGI<br>Cys        | r GTT<br>s Val    | AA?<br>L Asi<br>330 | n Hi                 | C AAI<br>s Ly:       | A AA'<br>s As:      | T AT<br>n Il       | A AT<br>e Il<br>33  | r GGC<br>e Gly<br>5 | 1008 |
| CT'               | T TT<br>u Lev     | AA E              | T GT'<br>n Vai    | l Phe               | C ACA             | A CCA                 | A CAG             | 34!               | s Se                | C CT<br>r Le         | A GA<br>u Gl         | A GA<br>u Gl        | A TT<br>u Ph<br>35 | e Gl                | A GAT<br>n Asp      | 1056 |
| GT<br>Va          | Т ТА(<br>1 Ту:    | C AT              | A GTO             | C ATK               | G GAG             | G CTO                 | ATO               | G GA'<br>t As     | T GC.<br>p Al       | A AA<br>a As         | T CT<br>n Le         | т тс<br>u Су        | C CA               | A GT<br>n Va        | G ATT<br>l Ile      | 1104 |

360 365 355 CAG ATG GAG CTA GAT CAT GAA AGA ATG TCC TAC CTT CTC TAT CAG ATG 1152 Gln Met Glu Leu Asp His Glu Arg Met Ser Tyr Leu Leu Tyr Gln Met 370 CTG TGT GGA ATC AAG CAC CTT CAT TCT GCT GGA ATT ATT CAT CGG GAC 1200 Leu Cys Gly Ile Lys His Leu His Ser Ala Gly Ile Ile His Arg Asp 390 385 TTA AAG CCC AGT AAT ATA GTA GTA AAA TCT GAT TGC ACT TTG AAG ATT 1248 Leu Lys Pro Ser Asn Ile Val Val Lys Ser Asp Cys Thr Leu Lys Ile 410 CTT GAC TTC GGT CTG GCC AGG ACT GCA GGA ACG AGT TTT ATG ATG ACG 1296 Leu Asp Phe Gly Leu Ala Arg Thr Ala Gly Thr Ser Phe Met Met Thr 425 CCT TAT GTA GTG ACT CGC TAC TAC AGA GCA CCC GAG GTC ATC CTT GGC 1344 Pro Tyr Val Val Thr Arg Tyr Tyr Arg Ala Pro Glu Val Ile Leu Gly 440 1392 ATG GGC TAC AAG GAA AAC GTG GAT TTA TGG TCT GTG GGG TGC ATT ATG Met Gly Tyr Lys Glu Asn Val Asp Leu Trp Ser Val Gly Cys Ile Met 455 450 GGA GAA ATG GTT TGC CAC AAA ATC CTC TTT CCA GGA AGG GAC TAT ATT Gly Glu Met Val Cys His Lys Ile Leu Phe Pro Gly Arg Asp Tyr Ile 470 465 GAT CAG TGG AAT AAA GTT ATT GAA CAG CTT GGA ACA CCA TGT CCT GAA 1488 Asp Gln Trp Asn Lys Val Ile Glu Gln Leu Gly Thr Pro Cys Pro Glu 490 TTC ATG AAG AAA CTG CAA CCA ACA GTA AGG ACT TAC GTT GAA AAC AGA 1536 Phe Met Lys Lys Leu Gln Pro Thr Val Arg Thr Tyr Val Glu Asn Arg 500 505 CCT AAA TAT GCT GGA TAT AGC TTT GAG AAA CTC TTC CCT GAT GTC CTT 1584 Pro Lys Tyr Ala Gly Tyr Ser Phe Glu Lys Leu Phe Pro Asp Val Leu 520 515 TTC CCA GCT GAC TCA GAA CAC AAA CTT AAA GCC AGT CAG GCA AGG 1632 Phe Pro Ala Asp Ser Glu His Asn Lys Leu Lys Ala Ser Gln Ala Arg 535 530 GAT TTG TTA TCC AAA ATG CTG GTA ATA GAT GCA TCT AAA AGG ATC TCT 1680 Asp Leu Leu Ser Lys Met Leu Val Ile Asp Ala Ser Lys Arg Ile Ser 555 545 550 1728 GTA GAT GAA GCT CTC CAA CAC CCG TAC ATC AAT GTC TGG TAT GAT CCT Val Asp Glu Ala Leu Gln His Pro Tyr Ile Asn Val Trp Tyr Asp Pro 570

TCT GAA GCA GAA GCT CCA CCA CCA AAG ATC CCT GAC AAG CAG TTA GAT Ser Glu Ala Glu Ala Pro Pro Pro Lys Ile Pro Asp Lys Gln Leu Asp

585

580

GAA AGG GAA CAC ACA ATA GAA GAG TGG AAA GAA TTG ATA TAT AAG GAA
Glu Arg Glu His Thr Ile Glu Glu Trp Lys Glu Leu Ile Tyr Lys Glu
595 600 605

GTT ATG GAC TTG GAG GAG AGA ACC AAG AAT GGA GTT ATA CGG GGG CAG
Val Met Asp Leu Glu Glu Arg Thr Lys Asn Gly Val Ile Arg Gly Gln
610 615 620

CCC TCT CCT TTA GCA CAG GTG CAG CAG TGA
18902

#### (2) INFORMATION FOR SEQ ID NO:45:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 633 amino acids

630

- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu 10 1 5 Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly 25 Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile 45 40 Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr 60 55 Leu Thr Tyr Gly Val Gln Cys Fne Ser Arg Tyr Pro Asp His Met Lys 75 70 Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu 85 90 Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu 100 105 110 Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly 120 125 Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr 130 135 140 Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn 155 150 Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser 170 165 Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly 185 180 Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu 195 200 Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe 210 215 Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys Ser 225 230 235 240 Gly Leu Arg Ser Arg Ala Arg Ala Ile Met Ser Arg Ser Lys Arg Asp 245 250

Asn Asn Phe Tyr Ser Val Glu Ile Gly Asp Ser Thr Phe Thr Val Leu 265 260 Lys Arg Tyr Gln Asn Leu Lys Pro Ile Gly Ser Gly Ala Gln Gly Ile 275 280 Val Cys Ala Ala Tyr Asp Ala Ile Leu Glu Arg Asn Val Ala Ile Lys 290 295 300 Lys Leu Ser Arg Pro Phe Gln Asn Gln Thr His Ala Lys Arg Ala Tyr 305 310 315 320 Arg Glu Leu Val Leu Met Lys Cys Val Asn His Lys Asn Ile Ile Gly 325 330 Leu Leu Asn Val Phe Thr Pro Gln Lys Ser Leu Glu Glu Phe Gln Asp 345 340 Val Tyr Ile Val Met Glu Leu Met Asp Ala Asn Leu Cys Gln Val Ile 355 360 Gln Met Glu Leu Asp His Glu Arg Met Ser Tyr Leu Leu Tyr Gln Met 375 Leu Cys Gly Ile Lys His Leu His Ser Ala Gly Ile Ile His Arg Asp 390 395 . 400 Leu Lys Pro Ser Asn Ile Val Val Lys Ser Asp Cys Thr Leu Lys Ile 405 410 415 Leu Asp Phe Gly Leu Ala Arg Thr Ala Gly Thr Ser Phe Met Met Thr 430 425 420 Pro Tyr Val Val Thr Arg Tyr Tyr Arg Ala Pro Glu Val Ile Leu Gly 445 435 440 Met Gly Tyr Lys Glu Asn Val Asp Leu Trp Ser Val Gly Cys Ile Met 455 460 Gly Glu Met Val Cys His Lys Ile Leu Phe Pro Gly Arg Asp Tyr Ile 465 470 475 Asp Gln Trp Asn Lys Val Ile Glu Gln Leu Gly Thr Pro Cys Pro Glu 485 490 Phe Met Lys Lys Leu Gln Pro Thr Val Arg Thr Tyr Val Glu Asn Arg 505 510 500 Pro Lys Tyr Ala Gly Tyr Ser Phe Glu Lys Leu Phe Pro Asp Val Leu 515 520 Phe Pro Ala Asp Ser Glu His Asn Lys Leu Lys Ala Ser Gln Ala Arg 530 535 540 Asp Leu Leu Ser Lys Met Leu Val Ile Asp Ala Ser Lys Arg Ile Ser 545 550 555 Val Asp Glu Ala Leu Gln His Pro Tyr Ile Asn Val Trp Tyr Asp Pro 570 575 565 Ser Glu Ala Glu Ala Pro Pro Pro Lys Ile Pro Asp Lys Gln Leu Asp 585 580 Glu Arg Glu His Thr Ile Glu Glu Trp Lys Glu Leu Ile Tyr Lys Glu 595 600 605 Val Met Asp Leu Glu Glu Arg Thr Lys Asn Gly Val Ile Arg Gly Gln 620 610 615 Pro Ser Pro Leu Ala Gln Val Gln Gln 630

#### (2) INFORMATION FOR SEQ ID NO:46:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1824 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

## (ix) FEATURE:

(A) NAME/KEY: Coding Sequence (B) LOCATION: 1...1821

(D) OTHER INFORMATION:

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

| ATG<br>Met<br>1   | GTG<br>Val        | AGC<br>Ser       | AAG<br>Lys           | GGC<br>Gly<br>5    | GAG<br>Glu        | GAG<br>Glu        | CTG<br>Leu        | TTC<br>Phe            | ACC<br>Thr<br>10 | GGG<br>Gly        | GTG<br>Val       | GTG<br>Val        | CCC<br>Pro        | ATC<br>Ile<br>15             | CTG<br>Leu          | 48  |
|-------------------|-------------------|------------------|----------------------|--------------------|-------------------|-------------------|-------------------|-----------------------|------------------|-------------------|------------------|-------------------|-------------------|------------------------------|---------------------|-----|
| GTC<br>Val        | GAG<br>Glu        | CTG<br>Leu       | GAC<br>Asp<br>20     | GGC<br>Gly         | GAC<br>Asp        | GTA<br>Val        | AAC<br>Asn        | GGC<br>Gly<br>25      | CAC<br>His       | AAG<br>Lys        | TTC<br>Phe       | AGC<br>Ser        | GTG<br>Val<br>30  | TCC<br>Ser                   | GGC<br>Gly          | 96  |
| GAG<br>Glu        | GGC<br>Gly        | GAG<br>Glu<br>35 | GGC<br>Gly           | GAT<br>Asp         | GCC<br>Ala        | ACC<br>Thr        | ТАС<br>Туг<br>40  | GGC<br>Gly            | AAG<br>Lys       | CTG<br>Leu        | ACC<br>Thr       | CTG<br>Leu<br>45  | AAG<br>Lys        | TTC<br>Phe                   | ATC<br>Ile          | 144 |
| TGC<br>Cys        | ACC<br>Thr<br>50  | ACC<br>Thr       | GGC<br>Gly           | AAG<br>Lys         | CTG<br>Leu        | CCC<br>Pro<br>55  | GTG<br>Val        | CCC<br>Pro            | TGG<br>Trp       | CCC<br>Pro        | ACC<br>Thr<br>60 | CTC<br>Leu        | GTG<br>Val        | ACC<br>Thr                   | ACC<br>Thr          | 192 |
| CTG<br>Leu<br>65  | ACC<br>Thr        | TAC<br>Tyr       | GGC<br>Gly           | GTG<br>Val         | CAG<br>Gln<br>70  | TGC<br>Cys        | TTC<br>Phe        | AGC<br>Ser            | CGC<br>Arg       | TAC<br>Tyr<br>75  | CCC<br>Pro       | GAC<br>Asp        | CAC               | ATG<br>Met                   | AAG<br>Lys<br>80    | 240 |
| CAG<br>Gln        | CAC<br>His        | GAC<br>Asp       | TTC<br>Phe           | TTC<br>Phe<br>85   | AAG<br>Lys        | TCC<br>Ser        | GCC<br>Ala        | ATG<br>Met            | CCC<br>Pro<br>90 | GAA<br>Glu        | GGC<br>Gly       | TAC<br>Tyr        | GTC<br>Val        | CAG<br>Gln<br>95             | GAG<br>Glu          | 288 |
| CGC<br>Arg        | ACC<br>Thr        | ATC              | TTC<br>Phe<br>100    | Phe                | AAG<br>Lys        | GAC<br>Asp        | GAC<br>Asp        | GGC<br>Gly<br>105     | Asn              | TAC<br>Tyr        | AAG<br>Lys       | ACC<br>Thr        | CGC<br>Arg<br>110 | Ala                          | GAG<br>Glu          | 336 |
| GTG<br>Val        | AAG<br>Lys        | TTC<br>Phe       | Glu                  | GGC<br>Gly         | GAC<br>Asp        | ACC<br>Thr        | CTG<br>Leu<br>120 | Val                   | AAC<br>Asn       | CGC<br>Arg        | ATC<br>Ile       | GAG<br>Glu<br>125 | Leu               | AAG<br>Lys                   | GGC<br>Gly          | 384 |
| ATC<br>Ile        | GAC<br>Asp<br>130 | Phe              | AAC<br>Lys           | G GAC              | GAC<br>Asp        | GGC<br>Gly<br>135 | Asr               | : ATC                 | CTG<br>Leu       | GGG<br>Gly        | CAC<br>His       | Lys               | CTC<br>Lev        | GAC<br>Glu                   | TAC<br>Tyr          | 432 |
| AAC<br>Asn<br>145 | Туг               | AAC<br>Asr       | AGC<br>N Sei         | CAC<br>His         | AAC<br>Asr<br>150 | ı Val             | TAT<br>Tyi        | T ATC                 | ATC<br>Met       | GCC<br>Ala<br>155 | a Asp            | C AAC             | G CAC             | AAC<br>Lys                   | AAC<br>ASN<br>160   | 480 |
| GGC<br>Gly        | ATC               | AAC<br>e Ly:     | G GTG<br>S Va        | AAG<br>l Asi<br>16 | n Phe             | AAC<br>Lys        | TA F              | e Arg                 | CAC<br>His       | s Ası             | n Ile            | C GAG<br>e Glu    | G GAG             | GGG<br>Gl <sub>1</sub><br>17 | C AGC<br>y Ser<br>S | 528 |
| GTC<br>Va]        | G CAG             | G CTO            | C GC0<br>u Ala<br>18 | a Ası              | C CAG             | С ТАС<br>5 Туі    | CAC               | G CAC<br>n Gli<br>185 | n Ası            | n Th              | c cc             | C ATY             | GG(<br>e Gl;      | y As                         | c GGC<br>p Gly      | 576 |
| CC(               | GT<br>Va          | G CT             | G CT<br>u Le         | G CC               | C GAG             | C AAG<br>p Asi    | C CA              | C TAC<br>s Ty:        | CTO<br>r Le      | G AG<br>u Se      | C AC<br>r Th     | C CA<br>r Gl      | G TC<br>n Se      | C GC<br>r Al                 | C CTG<br>a Leu      | 624 |

195 200 205

| AGC<br>Ser        | AAA<br>Lys<br>210 | GAC<br>Asp        | CCC<br>Pro          | AAC<br>Asn        | GAG<br>Glu        | AAG<br>Lys<br>215 | CGC<br>Arg        | GAT<br>Asp        | CAC<br>His        | ATG<br>Met        | GTC<br>Val<br>220 | CTG<br>Leu        | CTG<br>Leu          | GAG<br>Glu            | TTC<br>Phe        | 672  |
|-------------------|-------------------|-------------------|---------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------|-----------------------|-------------------|------|
| GTG<br>Val<br>225 | ACC<br>Thr        | GCC<br>Ala        | GCC<br>Ala          | GGG<br>Gly        | ATC<br>Ile<br>230 | ACT<br>Thr        | CTC<br>Leu        | GGC<br>Gly        | ATG<br>Met        | GAC<br>Asp<br>235 | GAG<br>Glu        | CTG<br>Leu        | TAC<br>Tyr          | AAG<br>Lys            | TCC<br>Ser<br>240 | 720  |
|                   |                   |                   |                     |                   |                   |                   |                   |                   |                   |                   |                   |                   |                     | TTC<br>Phe<br>255     |                   | 768  |
| CGG<br>Arg        | CAG<br>Gln        | GAG<br>Glu        | CTG<br>Leu<br>260   | AAC<br>Asn        | AAG<br>Lys        | ACA<br>Thr        | ATC<br>Ile        | TG3<br>Trp<br>265 | GAG<br>Glu        | GTG<br>Val        | CCC<br>Pro        | GAG<br>Glu        | CGT<br>Arg<br>270   | TAC<br>Tyr            | CAG<br>Gln        | 816  |
|                   |                   |                   |                     |                   |                   |                   |                   |                   |                   |                   |                   |                   |                     | GCT<br>Ala            |                   | 864  |
| TTT<br>Phe        | GAC<br>Asp<br>290 | ACA<br>Thr        | AAA<br>Lys          | ACG<br>Thr        | GGG<br>Gly        | TTA<br>Leu<br>295 | CGT<br>Arg        | GTG<br>Val        | GCA<br>Ala        | GTG<br>Val        | AAG<br>Lys<br>300 | AAG<br>Lys        | CTC                 | TCC<br>Ser            | AGA<br>Arg        | 912  |
|                   |                   |                   |                     |                   |                   |                   |                   |                   |                   |                   |                   |                   |                     | CTG<br>Leu            |                   | 960  |
|                   |                   |                   |                     |                   | Lys               |                   |                   |                   |                   |                   |                   |                   |                     | GAC<br>Asp<br>335     |                   | 1008 |
|                   |                   |                   |                     | Arg               |                   |                   |                   |                   | Phe               |                   |                   |                   |                     | CTG<br>Leu            |                   | 1056 |
| ACC<br>Thr        | CAT<br>His        | CTC<br>Leu<br>355 | Met                 | GGG<br>Gly        | GCA<br>Ala        | GAT<br>Asp        | CTG<br>Leu<br>360 | Asn               | AAC<br>Asn        | ATT               | GTG<br>Val        | AAA<br>Lys<br>365 | Cys                 | CAG<br>Gln            | AAG<br>Lys        | 1104 |
| CTT<br>Leu        | ACA<br>Thr<br>370 | Asp               | 'GAC                | CAT<br>His        | GTT<br>Val        | CAG<br>Gln<br>375 | Phe               | CTI<br>Leu        | ATC               | TAC<br>Tyr        | CAA<br>Glr<br>380 | ıle               | CTC                 | CGA<br>Arg            | GGT<br>Gly        | 1152 |
| CTA<br>Leu<br>385 | ιLys              | TAT<br>Tyr        | T ATA               | CAT<br>His        | TCA<br>Ser<br>390 | Ala               | GAC               | TATA              | ATT               | CAC<br>His        | Arg               | GAC<br>J Asp      | CT?                 | A AAA<br>1 Lys        | CCT<br>Pro<br>400 | 1200 |
| AGT<br>Ser        | TAA T             | CTA               | A GCT<br>1 Ala      | GTC<br>Val<br>405 | . Asr             | r GAA<br>1 Glu    | GAC<br>Asp        | TGI<br>Cys        | GAC<br>Glu<br>410 | Lei               | 3 AAC<br>1 Lys    | ATT               | r CTG               | G GAT<br>u Asr<br>415 | TTT<br>Phe        | 1248 |
| GG <i>I</i>       | A CIC             | GC:<br>1 Ala      | r CGC<br>Arg<br>420 | g His             | C ACA             | A GAT             | GAT<br>Asp        | GAA<br>Glu<br>425 | ı Met             | ACA<br>Thi        | A GGC             | С ТАС<br>У Тул    | C GTV<br>r Va<br>43 | l Ala                 | ACT<br>Thr        | 1296 |

| AGG<br>Arg        | TGG<br>Trp | TAC<br>Tyr<br>435 | AGG<br>Arg        | GCT<br>Ala        | CCT<br>Pro        | GAG<br>Glu | ATC<br>Ile<br>440 | ATG<br>Met        | CTG<br>Leu        | AAC<br>Asn        | TGG<br>Trp | ATG<br>Met<br>445 | CAT<br>His        | TAC<br>Tyr        | AAC<br>Asn        | 1344 |
|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------|
|                   |            |                   | GAT<br>Asp        |                   |                   |            |                   |                   |                   |                   |            |                   |                   |                   |                   | 1392 |
| ACT<br>Thr<br>465 | GGA<br>Gly | AGA<br>Arg        | ACA<br>Thr        | TTG<br>Leu        | TTT<br>Phe<br>470 | CCT<br>Pro | GGT<br>Gly        | ACA<br>Thr        | GAC<br>Asp        | CAT<br>His<br>475 | ATT<br>Ile | GAT<br>Asp        | CAG<br>Gln        | TTG<br>Leu        | AAG<br>Lys<br>480 | 1440 |
| CTC<br>Leu        | ATT<br>Ile | TTA<br>Leu        | AGA<br>Arg        | CTC<br>Leu<br>485 | GTT<br>Val        | GGA<br>Gly | ACC<br>Thr        | CCA<br>Pro        | GGG<br>Gly<br>490 | GCT<br>Ala        | GAG<br>Glu | CTT<br>Leu        | TTG<br>Leu        | AAG<br>Lys<br>495 | AAA<br>Lys        | 1488 |
| ATC<br>Ile        | TCC<br>Ser | TCA<br>Ser        | GAG<br>Glu<br>500 | TCT<br>Ser        | GCA<br>Ala        | AGA<br>Arg | AAC<br>Asn        | ТАТ<br>Туг<br>505 | ATT               | CAG<br>Gln        | TCT<br>Ser | TTG<br>Leu        | ACT<br>Thr<br>510 | CAG<br>Gln        | ATG<br>Met        | 1536 |
|                   |            |                   | Asn               |                   |                   |            |                   | Phe               |                   |                   |            |                   | Pro               |                   | GCT               | 1584 |
|                   |            | Leu               |                   |                   |                   |            | Leu               |                   |                   |                   |            | Asp               |                   |                   | ATT               | 1632 |
| ACA<br>Thr<br>545 | Ala        | GCC               | CAA<br>Gln        | GCC<br>Ala        | CTT<br>Leu<br>550 | Ala        | CAT               | GCC<br>Ala        | TAC<br>Tyr        | TT1<br>Phe<br>555 | Ala        | CAC<br>Glr        | TAC<br>Tyr        | CAC<br>His        | GAT<br>Asp<br>560 | 1680 |
|                   |            |                   |                   |                   | Val               |            |                   |                   |                   | Asp               |            |                   |                   |                   | AGC<br>Ser        | 1728 |
|                   |            |                   |                   | Ile               |                   |            |                   |                   | s Ser             |                   |            |                   |                   | Glu               | A GTC<br>ı Val    | 1776 |
| ATC<br>Ile        | AGC<br>Ser | TT7               | e Val             | Pro               | CCF<br>Pro        | A CCC      | CT:<br>Lev<br>600 | ı Ası             | CAA<br>o Glr      | A GAZ<br>n Glu    | A GAO      | ATY<br>Met<br>60! | t Glu             | TCC<br>Ser        | C TGA             | 1824 |

### (2) INFORMATION FOR SEQ ID NO:47:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 607 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

| Met<br>1  | Val        | Ser       | Lys       | Gly<br>5 | Glu        | Glu         | Leu       |           | Thr<br>10 | Gly       | Val         | Val       | Pro       | Ile<br>15 | Leu          |
|-----------|------------|-----------|-----------|----------|------------|-------------|-----------|-----------|-----------|-----------|-------------|-----------|-----------|-----------|--------------|
| Val       | Glu        | Leu       | Asp<br>20 | Gly      | Asp        | Val         |           | Gly<br>25 | His       | Lys       | Phe         | Ser       | Val<br>30 | Ser       | Gly          |
| Glu       | Gly        | Glu<br>35 | Gly       | Asp      | Ala        | Thr         | Tyr<br>40 | Gly       | Lys       | Leu       | Thr         | Leu<br>45 | Lys       | Phe       | Ile          |
| Cys       | Thr<br>50  | Thr       | Gly       | Lys      | Leu        | Pro<br>55   | Val       | Pro       | Trp       | Pro       | Thr<br>60   | Leu       | Val       | Thr       | Thr          |
| Leu<br>65 | Thr        | Tyr       | Gly       | Val      | Gln<br>70  | Cys         | Phe       | Ser       | Arg       | Tyr<br>75 | Pro         | Asp       | His       | Met       | Lys<br>80    |
| Gln       |            |           |           | 85       | Lys        |             |           |           | 90        |           |             |           |           | 95        |              |
| _         |            |           | 100       |          | Lys        |             |           | 105       |           |           |             |           | 110       |           |              |
|           |            | 115       |           |          | Asp        |             | 120       |           |           |           |             | 125       |           |           |              |
|           | 130        |           |           |          | Asp        | 135         |           |           |           |           | 140         |           |           |           |              |
| 145       |            |           |           |          | Asn<br>150 |             |           |           |           | 155       |             |           |           |           | 160          |
| _         |            |           |           | 165      | Phe        |             |           |           | 170       |           |             |           |           | 175       |              |
|           |            |           | 180       |          | His        |             |           | 185       |           |           |             |           | 190       |           |              |
|           |            | 195       |           |          | Asp        |             | 200       |           |           |           |             | 205       |           |           |              |
|           | 210        | )         |           |          |            | 215         |           |           |           |           | 220         |           |           |           | Phe          |
| 225       |            |           |           |          | 230        |             |           |           |           | 235       | ,           |           |           |           | 240          |
|           |            |           |           | 245      |            |             |           |           | 250       | )         |             |           |           | 255       |              |
|           |            |           | 260       | )        |            |             |           | 265       |           |           |             |           | 270       | )         | Gln          |
|           |            | 275       | 5         |          |            |             | 280       |           |           |           |             | 285       | 5         |           | Ala          |
|           | 290        | )         |           |          |            | 295         |           |           |           |           | 300         | )         |           |           | Arg          |
| 305       | 5          |           |           |          | 310        |             |           |           |           | 31        | 5           |           |           |           | 320          |
|           |            |           |           | 325      | 5          |             |           |           | 330       | C         |             |           |           | 33        |              |
|           |            |           | 340       | )        |            |             |           | 345       | 5         |           |             |           | 350       | J         | u Val        |
|           |            | 35        | 5         |          |            |             | 360       | )         |           |           |             | 36        | 5         |           | n Lys        |
|           | 37         | 0         |           |          |            | 375         | 5         |           |           |           | 386         | 3         |           |           | g Gly        |
| 3.81      | 5          |           |           |          | 390        | )           |           |           |           | 39        | 5           |           |           |           | s Pro<br>400 |
|           |            |           |           | 40       | 5          |             |           |           | 41        | 0         |             |           |           | 41        |              |
|           |            |           | 42        | 0        |            |             |           | 42        | 5         |           |             |           | 43        | 0         | a Thr        |
|           |            | 43        | 5         |          |            |             | 440       | )         |           |           |             | 44        | 5         |           | r Asn        |
| Gl        | n Th<br>45 |           | l As      | p Il     | e Trj      | 9 Se:<br>45 |           | ı Gl      | у Су      | s 11      | .е ме<br>46 | 0<br>C A1 | a Gl      | u ⊾€      | u Leu        |

| Thr        | Gly        | Arg        | Thr        | Leu        | Phe<br>470 | Pro        | Gly        | Thr        | Asp                | His<br>475 | Ile        | Asp        | Gln        | Leu        | Lys<br>480 |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------------|------------|------------|------------|------------|------------|------------|
| Leu        | Ile        | Leu        | Arg        | Leu<br>485 | Val        | Gly        | Thr        | Pro        | Gly<br><b>4</b> 90 | Ala        | Glu        | Leu        | Leu        | Lys<br>495 | Lys        |
|            |            |            | 500        |            |            |            |            | 505        |                    | Gln        |            |            | 510        |            |            |
| Pro        | Lys        | Met<br>515 | Asn        | Phe        | Ala        | Asn        | Val<br>520 | Phe        | Ile                | Gly        | Ala        | Asn<br>525 | Pro        | Leu        | Ala        |
| Val        | Asp<br>530 | Leu        | Leu        | Glu        | Lys        | Met<br>535 | Leu        | Val        | Leu                | Asp        | Ser<br>540 | Asp        | Lys        | Arg        | Ile        |
| Thr<br>545 | Ala        | Ala        | Gln        | Ala        | Leu<br>550 | Ala        | His        | Ala        | Tyr                | Phe<br>555 | Ala        | Gln        | Tyr        | His        | Asp<br>560 |
| Pro        | Asp        | Asp        | Glu        | Pro<br>565 | Val        | Ala        | Asp        | Pro        | Tyr<br>570         | Asp        | Gln        | Ser        | Phe        | Glu<br>575 | Ser        |
| Arg        | Asp        | Leu        | Leu<br>580 | Ile        | Asp        | Glu        | Trp        | Lys<br>585 | Ser                | Leu        | Thr        | Tyr        | Asp<br>590 | Glu        | Val        |
| Ile        | Ser        | Phe<br>595 | Val        | Pro        | Pro        | Pro        | Leu<br>600 | Asp        | Gln                | Glu        | Glu        | Met<br>605 |            | Ser        |            |
|            |            | (2         | ) IN       | FORM       | OITA       | n fo       | R SE       | Q ID       | NO:                | 48:        |            |            |            |            |            |
|            | (          | i) S       | EQUE       | NCE        | CHAR       | ACTE       | RIST       | ICS:       |                    |            |            |            |            |            |            |
|            | ·          |            |            | GTH:       |            |            |            |            |                    |            |            |            |            |            |            |
|            |            | (B)        | TYP        | E: n       | ucle       | ic a       | cid        |            |                    |            |            |            |            |            |            |
|            |            | (C)        | STR        | ANDE       | DNES       | S:s        | ingl       | e          |                    |            |            |            |            |            |            |
|            |            | (D)        | TOF        | OLOG       | Y: 1       | inea       | r          |            |                    |            |            |            |            |            |            |

- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
  - (A) NAME/KEY: Coding Sequence
  - (B) LOCATION: 1...2904
  - (D) OTHER INFORMATION:

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

| ATG<br>Met<br>1  | GTG<br>Val       | AGC<br>Ser       | AAG<br>Lys       | GGC<br>Gly<br>5 | GAG<br>Glu       | GAG<br>Glu       | CTG<br>Leu       | TTC<br>Phe       | ACC<br>Thr<br>10 | GGG<br>Gly       | GTG<br>Val       | GTG<br>Val       | CCC<br>Pro       | ATC<br>Ile<br>15 | CTG<br>Leu       |   | 48  |
|------------------|------------------|------------------|------------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|---|-----|
| GTC<br>Val       | GAG<br>Glu       | CTG<br>Leu       | GAC<br>Asp<br>20 | GGC<br>Gly      | GAC<br>Asp       | GTA<br>Val       | AAC<br>Asn       | GGC<br>Gly<br>25 | CAC<br>His       | AAG<br>Lys       | TTC<br>Phe       | AGC<br>Ser       | GTG<br>Val<br>30 | TCC<br>Ser       | GGC<br>Gly       |   | 96  |
| GAG<br>Glu       | GGC<br>Gly       | GAG<br>Glu<br>35 | GGC<br>Gly       | GAT<br>Asp      | GCC<br>Ala       | ACC<br>Thr       | TAC<br>Tyr<br>40 | GGC<br>Gly       | AAG<br>Lys       | CTG<br>Leu       | ACC<br>Thr       | CTG<br>Leu<br>45 | AAG<br>Lys       | TTC<br>Phe       | ATC<br>Ile       | 1 | 44  |
| TGC<br>Cys       | ACC<br>Thr<br>50 | ACC<br>Thr       | GGC<br>Gly       | AAG<br>Lys      | CTG<br>Leu       | CCC<br>Pro<br>55 | GTG<br>Val       | CCC<br>Pro       | TGG<br>Trp       | CCC<br>Pro       | ACC<br>Thr<br>60 | CTC<br>Leu       | GTG<br>Val       | ACC<br>Thr       | ACC<br>Thr       | 1 | 192 |
| CTG<br>Leu<br>65 | ACC<br>Thr       | TAC<br>Tyr       | GGC<br>Gly       | GTG<br>Val      | CAG<br>Gln<br>70 | TGC<br>Cys       | TTC<br>Phe       | AGC<br>Ser       | CGC<br>Arg       | TAC<br>Tyr<br>75 | CCC<br>Pro       | GAC<br>Asp       | CAC<br>His       | ATG<br>Met       | AAG<br>Lys<br>80 | Ź | 240 |
| CAG<br>Gln       | CAC<br>His       | GAC<br>Asp       | TTC<br>Phe       | TTC<br>Phe      | AAG<br>Lys       | TCC<br>Ser       | GCC<br>Ala       | ATG<br>Met       | CCC<br>Pro       | GAA<br>Glu       | GGC<br>Gly       | TAC<br>Tyr       | GTC<br>Val       | CAG<br>Gln       | GAG<br>Glu       | : | 288 |

85 90 95

| CGC Arg !         | acc<br>Thr        | ATC<br>Ile           | TTC<br>Phe<br>100     | TTC<br>Phe        | AAG<br>Lys            | GAC<br>Asp                       | GAC<br>Asp         | GGC<br>Gly<br>105     | AAC<br>Asn        | TAC<br>Tyr         | AAG<br>Lys         | ACC<br>Thr           | CGC<br>Arg<br>110   | GCC<br>Ala        | GAG<br>Glu            | 336 |
|-------------------|-------------------|----------------------|-----------------------|-------------------|-----------------------|----------------------------------|--------------------|-----------------------|-------------------|--------------------|--------------------|----------------------|---------------------|-------------------|-----------------------|-----|
| GTG .<br>Val :    | AAG<br>Lys        | TTC<br>Phe<br>115    | GAG<br>Glu            | GGC<br>Gly        | GAC<br>Asp            | ACC<br>Thr                       | CTG<br>Leu<br>120  | GTG<br>Val            | AAC<br>Asn        | CGC<br>Arg         | ATC<br>Ile         | GAG<br>Glu<br>125    | CTG<br>Leu          | AAG<br>Lys        | GGC<br>Gly            | 384 |
| Ile               | GAC<br>Asp<br>130 | TTC<br>Phe           | AAG<br>Lys            | GAG<br>Glu        | GAC<br>Asp            | GGC<br>Gly<br>135                | AAC<br>Asn         | ATC<br>Ile            | CTG<br>Leu        | GGG<br>Gly         | CAC<br>His<br>140  | AAG<br>Lys           | CTG<br>Leu          | GAG<br>Glu        | TAC<br>Tyr            | 432 |
| AAC<br>Asn<br>145 | TAC<br>Tyr        | AAC<br>Asn           | AGC<br>Ser            | CAC<br>His        | AAC<br>Asn<br>150     | GTC<br>Val                       | TAT<br>Tyr         | ATC<br>Ile            | ATG<br>Met        | GCC<br>Ala<br>155  | GAC<br>Asp         | AAG<br>Lys           | CAG<br>Gln          | AAG<br>Lys        | AAC<br>Asn<br>160     | 480 |
| GGC<br>Gly        | ATC<br>Ile        | AAG<br>Lys           | GTG<br>Val            | AAC<br>Asn<br>165 | Phe                   | AAG<br>Lys                       | ATC<br>Ile         | CGC<br>Arg            | CAC<br>His<br>170 | Asn                | ATC<br>Ile         | GAG<br>Glu           | GAC<br>Asp          | GGC<br>Gly<br>175 | AGC<br>Ser            | 528 |
| GTG<br>Val        | CAG<br>Gln        | CTC<br>Leu           | GCC<br>Ala<br>180     | GAC<br>Asp        | CAC<br>His            | TAC<br>Tyr                       | CAG<br>Gln         | CAG<br>Gln<br>185     | AAC<br>Asn        | ACC<br>Thr         | CCC                | ATC<br>Ile           | GGC<br>Gly<br>190   | GAC<br>Asp        | GGC<br>Gly            | 576 |
| CCC<br>Pro        | GTG<br>Val        | CTG<br>Leu<br>195    | Leu                   | CCC<br>Pro        | GAC<br>Asp            | AAC<br>Asn                       | CAC<br>His         | Tyr                   | CTG<br>Leu        | AGC<br>Ser         | ACC<br>Thr         | CAG<br>Gln<br>205    | Ser                 | GCC<br>Ala        | CTG<br>Leu            | 624 |
| AGC<br>Ser        | AAA<br>Lys<br>210 | Asp                  | CCC<br>Pro            | AAC<br>Asn        | GAG<br>Glu            | AAG<br>Lys<br>215                | Arg                | GAT<br>Jak            | CAC<br>His        | : ATG<br>: Met     | GTC<br>Val<br>220  | Leu                  | CTG<br>Leu          | GAG<br>Glu        | TTC<br>Phe            | 672 |
| GTG<br>Val<br>225 | Thr               | GCC<br>Ala           | GCC<br>Ala            | GGG<br>Gly        | 3 ATC<br>7 Ile<br>230 | Thr                              | CTC                | GGC<br>GGL            | Met               | GAC<br>Asp<br>235  | Glu                | G CTC                | TAC                 | AAC<br>Lys        | S TCC<br>S Ser<br>240 | 720 |
| GGA<br>Gly        | CTC               | AGA                  | A TCI<br>g Ser        | Met<br>245        | Ser                   | GCT<br>Ala                       | GAC<br>Glu         | G GG(<br>u Gl)        | TAC<br>Ty:        | c Glr              | TAC                | C AGA                | A GCC<br>g Ala      | CTC<br>Lev<br>259 | TAT<br>1 Tyr          | 768 |
| GAT<br>Asp        | ТАТ<br>ТУТ        | r AAJ<br>Lys         | A AAC<br>5 Lys<br>260 | Gli               | A AGA<br>u Arg        | A GAA                            | ı Gl               | A GAS<br>u Asi<br>265 | o Ile             | e Ası              | TTO<br>Le          | G CA:                | TTX<br>s Let<br>270 | ı Gly             | r GAC<br>y Asp        | 816 |
| ATA<br>Ile        | TTC               | 3 AC'<br>1 Th:<br>27 | r Val                 | AA E              | r AAJ<br>n Lys        | A GGO                            | g TC<br>y Se<br>28 | r Le                  | A GTA             | A GC'<br>1 Ala     | r CT<br>a Le       | T GG:<br>u G1;<br>28 | y Phe               | C AG              | T GAT<br>r Asp        | 864 |
| GGA<br>Gly        | CAC<br>Gli<br>290 | n Gl                 | A GCC<br>u Ala        | AGG<br>Ar         | G CC'<br>g Pr         | r GA.<br>o G1 <sup>-</sup><br>29 | u Gl               | A AT<br>u Il          | r GG<br>e Gl      | C TG(<br>y Tr]     | G TT<br>p Le<br>30 | u As                 | T GG<br>n Gl        | С ТА<br>у Ту      | T AAT<br>r Asn        | 912 |
| GAA<br>Glu<br>305 | ı Th              | C AC<br>r Th         | A GGG<br>r Gl         | G GA<br>y Gl      | A AG<br>u Ar<br>31    | g Gl                             | G GA<br>y As       | C TT<br>p Ph          | T CC<br>e Pr      | G GG<br>o G1<br>31 | y Th               | T TA                 | C GT<br>r Va        | A GA<br>1 Gl      | A TAT<br>u Tyr<br>320 | 960 |

|            |                       |            |                   |            |            |                       |            | Pro                 | ACA<br>Thr<br>330 |              |                       |              |                   |                |                   | 1008 |
|------------|-----------------------|------------|-------------------|------------|------------|-----------------------|------------|---------------------|-------------------|--------------|-----------------------|--------------|-------------------|----------------|-------------------|------|
|            |                       |            |                   |            |            |                       |            |                     | TCG<br>Ser        |              |                       |              |                   |                |                   | 1056 |
|            |                       |            |                   |            |            |                       |            |                     | CTT<br>Leu        |              |                       |              |                   |                |                   | 1104 |
|            |                       |            |                   |            |            |                       |            |                     | AAG<br>Lys        |              |                       |              |                   |                |                   | 1152 |
|            |                       |            |                   |            |            |                       |            |                     | TAC<br>Tyr        |              |                       |              |                   |                |                   | 1200 |
|            |                       |            |                   |            |            |                       |            |                     | GAT<br>Asp<br>410 |              |                       |              |                   |                |                   | 1248 |
|            |                       |            |                   |            |            |                       |            |                     | TTG<br>Leu        |              |                       |              |                   | Lys            |                   | 1296 |
|            |                       |            | Asp               |            |            |                       |            | Val                 | ATT               |              |                       |              | Val               |                | AGT<br>Ser        | 1344 |
| GAA<br>Glu | ATG<br>Met<br>450     | Ile        | TCT<br>Ser        | TTA<br>Leu | GCT<br>Ala | CCA<br>Pro<br>455     | GAA<br>Glu | GTA<br>Val          | CAA<br>Gln        | AGC<br>Ser   | TCC<br>Ser<br>460     | Glu          | GAA<br>Glu        | . ТАТ<br>ГУТ   | ATT<br>lle        | 1392 |
|            | Leu                   |            |                   |            |            | Ile                   |            |                     |                   |              | Ile                   |              |                   |                | TAT<br>Tyr<br>480 | 1440 |
|            |                       |            |                   |            | Tyr        |                       |            |                     |                   | Phe          |                       |              |                   |                | CAA<br>Gln        | 1488 |
| AC(<br>Thi | TCC<br>Ser            | AGC<br>Sei | AAA<br>Lys<br>500 | Asr        | CTC<br>Lev | TTC<br>Lev            | AAT<br>Asr | GCA<br>n Ala<br>505 | Arg               | . GTA<br>Val | A CTC                 | TC:<br>Sei   | GA:<br>Gl:<br>510 | ı Ile          | r TTC<br>e Phe    | 1536 |
|            |                       |            | t Lei             |            |            |                       |            | c Ala               |                   |              |                       |              | ) Asi             |                | r GAA<br>r Glu    | 1584 |
| AA(<br>As) | c CTC<br>n Let<br>530 | ı Il       | a aal<br>e Ly:    | A GTT      | TATA       | A GAA<br>e Glu<br>535 | 111        | r TTX<br>e Lei      | A ATC             | TC.          | A ACT<br>r Thi<br>540 | r Gl         | A TG              | G AA'<br>p As: | T GAA<br>n Glu    | 1632 |
| CG.        | A CAG                 | G CC       | T GCA             | A CCA      | A GCA      | A CIX                 | CC'        | T CC:               | r AAA<br>o Lys    | A CC<br>s Pr | A CC                  | A AA<br>o Ly | A CC<br>s Pr      | T AC<br>o Th   | T ACT<br>r Thr    | 1680 |

| 545               |                     |                     |                   |                   | 550               |                   |                                |                   |                   | 555               |                      |                       |                    |                       | 560                 |      |
|-------------------|---------------------|---------------------|-------------------|-------------------|-------------------|-------------------|--------------------------------|-------------------|-------------------|-------------------|----------------------|-----------------------|--------------------|-----------------------|---------------------|------|
|                   |                     |                     |                   |                   |                   |                   |                                | AAT<br>Asn        |                   |                   |                      |                       |                    |                       |                     | 1728 |
|                   |                     |                     |                   |                   |                   |                   |                                | GAA<br>Glu<br>585 |                   |                   |                      |                       |                    |                       |                     | 1776 |
|                   |                     |                     |                   |                   |                   |                   |                                | GTA<br>Val        |                   |                   |                      |                       |                    |                       |                     | 1824 |
|                   |                     |                     |                   |                   |                   |                   |                                | AGG<br>Arg        |                   |                   |                      |                       |                    |                       |                     | 1872 |
|                   |                     |                     |                   |                   |                   |                   |                                | AAA<br>Lys        |                   |                   |                      |                       |                    |                       |                     | 1920 |
| ACC<br>Thr        | TTC<br>Phe          | AGT<br>Ser          | TCT<br>Ser        | GTG<br>Val<br>645 | GTT<br>Val        | GAA<br>Glu        | TTA<br>Leu                     | ATA<br>Ile        | AAC<br>Asn<br>650 | CAC<br>His        | TAC<br>Tyr           | CGG<br>Arg            | AAT<br>Asn         | GAA<br>Glu<br>655     | TCT<br>Ser          | 1968 |
|                   |                     |                     |                   | Asn               |                   |                   |                                | GAT<br>Asp<br>665 |                   |                   |                      |                       |                    | Pro                   | GTA<br>Val          | 2016 |
| TCC<br>Ser        | ДДА<br>Гус          | TAC<br>Tyr<br>675   | Gln               | CAG<br>Gln        | GAT<br>Asp        | CAA<br>Gln        | GTT<br>Val<br>680              | Va1               | AAA<br>Lys        | GAA<br>Glu        | GAT<br>Asp           | AAT<br>Asn<br>685     | $11\epsilon$       | GAA<br>Glu            | GCT<br>Ala          | 2064 |
| GTA<br>Val        | GGG<br>Gly<br>690   | Lys                 | . AAA<br>Lys      | . TTA<br>Leu      | CAT<br>His        | GAA<br>Glu<br>695 | Tyr                            | AAC<br>Asn        | ACT<br>Thr        | CAG<br>Gln        | TTT<br>Phe<br>700    | Gln                   | GAP<br>Glu         | A AAA<br>1 Lys        | AGT<br>Ser          | 2112 |
| CGA<br>Arg<br>705 | Glu                 | ТАТ<br>Туг          | GAT<br>Asp        | AGA<br>Arg        | TTA<br>Leu<br>710 | Tyr               | GAA<br>Glu                     | A GAA<br>1 Glu    | тат<br>Туг        | ACC<br>Thr<br>715 | Arg                  | ACA<br>Thr            | TC(                | CAC<br>r Glr          | G GAA<br>Glu<br>720 | 2160 |
| ATC<br>Ile        | CAA<br>Gln          | ATC                 | AAA<br>Lys        | AGG<br>Arg<br>725 | Thr               | GCT<br>Ala        | `ATT                           | r GAÆ<br>∋ Glu    | GCA<br>Ala<br>730 | Phe               | RAA ?<br>Asr         | GAJ<br>Glu            | A ACC              | C ATA<br>r Ile<br>735 | A AAA<br>e Lys      | 2208 |
| ATA<br>Ile        | A TTI<br>e Phe      | GAZ<br>Glu          | GAZ<br>Glu<br>740 | ı Glr             | TGC<br>Cys        | CAC<br>Glr        | ACC<br>Thi                     | CAF<br>Glr<br>745 | Glu               | CGC<br>Arg        | TAC<br>Tyr           | AG(<br>Se)            | 2 AA<br>2 Ly<br>75 | s Gl                  | A TAC<br>1 Tyr      | 2256 |
| ATA<br>Ile        | A GAA<br>e Glu      | AA0<br>1 Lys<br>75! | s Phe             | Γ AAA<br>≥ Lys    | CGT<br>Arg        | GAZ<br>Glu        | GG(<br>1 Gl <sub>2</sub><br>76 | y Asr             | r GAC<br>n Glu    | AA<br>1 Lys       | A GAZ<br>S Glu       | A ATZ<br>1 110<br>769 | e Gl               | A AG<br>n Ar          | G ATT<br>g Ile      | 2304 |
| ATX<br>Met        | G CAT<br>His<br>770 | : Ası               | r TAT             | r GA'             | r AAC<br>o Lys    | 779<br>779        | ı Ly                           | G TC'<br>s Se:    | r Arg             | ATO               | C AG'<br>e Se:<br>78 | r Gl                  | TA A               | T AT<br>e Il          | T GAC<br>e Asp      | 2352 |

| AGT .<br>Ser .<br>785 | AGA<br>Arg        | AGA<br>Arg        | AGA<br>Arg        | TTG<br>Leu        | GAA<br>Glu<br>790     | GAA<br>Glu        | GAC<br>Asp        | TTG<br>Leu   | AAG<br>Lys        | AAG<br>Lys<br>795    | CAG<br>Gln          | GCA<br>Ala        | GCT<br>Ala        | GAG<br>Glu        | ТАТ<br>Туг<br>800 | 2400 |
|-----------------------|-------------------|-------------------|-------------------|-------------------|-----------------------|-------------------|-------------------|--------------|-------------------|----------------------|---------------------|-------------------|-------------------|-------------------|-------------------|------|
| CGA<br>Arg            | GAA<br>Glu        | ATT<br>Ile        | GAC<br>Asp        | AAA<br>Lys<br>805 | CGT<br>Arg            | ATG<br>Met        | AAC<br>Asn        | AGC<br>Ser   | ATT<br>Ile<br>810 | AAA<br>Lys           | CCA<br>Pro          | GAC<br>Asp        | CTT<br>Leu        | ATC<br>Ile<br>815 | CAG<br>Gln        | 2448 |
|                       |                   |                   |                   |                   |                       |                   |                   |              |                   |                      |                     | ACT<br>Thr        |                   |                   |                   | 2496 |
| GTT<br>Val            | CGG<br>Arg        | CAA<br>Gln<br>835 | AAG<br>Lys        | AAG<br>Lys        | TTG<br>Leu            | AAC<br>Asn        | GAG<br>Glu<br>840 | TGG<br>Trp   | TTG<br>Leu        | GGC<br>Gly           | AAT<br>Asn          | GAA<br>Glu<br>845 | AAC<br>Asn        | ACT<br>Thr        | GAA<br>Glu        | 2544 |
| GAC<br>Asp            | CAA<br>Gln<br>850 | TAT<br>Tyr        | TCA<br>Ser        | CTG<br>Leu        | GTG<br>Val            | GAA<br>Glu<br>855 | GAT<br>Asp        | GAT<br>Asp   | GAA<br>Glu        | GAT<br>Asp           | TTG<br>Leu<br>860   | CCC<br>Pro        | CAT<br>His        | CAT<br>His        | GAT<br>Asp        | 2592 |
|                       |                   |                   |                   |                   |                       | Gly               |                   |              |                   |                      |                     | AAA<br>Lys        |                   |                   |                   | 2640 |
| CTG<br>Leu            | TTG<br>Leu        | CGA<br>Arg        | . GGG<br>Gly      | AAG<br>Lys<br>885 | Arg                   | GAT<br>Asp        | GGC<br>Gly        | ACT<br>Thr   | TTT<br>Phe<br>890 | Leu                  | GTC<br>Val          | CGG<br>Arg        | GAG<br>Glu        | AGC<br>Ser<br>895 | Ser               | 2688 |
| AAA<br>Lys            | CAG<br>Gln        | GGC<br>Gly        | TGC<br>Cys<br>900 | Tyr               | GCC<br>Ala            | TGC<br>Cys        | TCT<br>Ser        | GTA<br>Val   | . Val             | GTC<br>Val           | GAC<br>Asp          | GGC<br>Gly        | GAA<br>Glu<br>910 | Val               | AAG<br>Lys        | 2736 |
| CAT<br>His            | TGT<br>Cys        | GTC<br>Val        | Ile               | AAC<br>Asr        | AAA<br>Lys            | ACA<br>Thr        | GCA<br>Ala<br>920 | Thr          | Gly               | TAT:<br>TYT          | GGC<br>Gly          | TTT<br>Phe<br>925 | Ala               | GAC               | CCC<br>Pro        | 2784 |
| тат<br>туг            | AAC<br>Asn<br>930 | Let               | TAC<br>Tyr        | AGC<br>Sei        | TCT<br>Ser            | CTC<br>Lev<br>935 | ı Lys             | A GAJ<br>Glu | Lev               | G GTC                | G CTA<br>Lev<br>940 | ı His             | TAC<br>Tyr        | CA#               | A CAC<br>n His    | 2832 |
| ACC<br>Thr<br>945     | Ser               | CTT<br>Let        | r GTC<br>i Val    | G CAC             | G CAC<br>1 His<br>950 | . Asr             | GAC<br>n Asp      | TCC<br>Sei   | CTC               | 2 AA<br>1 Asi<br>959 | n Vai               | C ACA             | A CTA             | A GCC             | TAC<br>Tyr<br>960 | 2880 |
|                       |                   |                   |                   |                   | G CAC<br>n Glr        |                   |                   |              | A                 |                      |                     |                   |                   |                   |                   | 2907 |

## (2) INFORMATION FOR SEQ ID NO:49:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 968 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

## (v) FRAGMENT TYPE: internal

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Leu                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gly                 |
| Cys         Thr         Thr         Gly         Lys         Leu         Pro         Val         Pro         Thr         Pro         Thr         Leu         Val         Thr         Thr         Leu         Val         Thr         Ss         Thr         Leu         Val         Thr         Thr         Leu         Val         Thr         Leu         Thr         Leu         Pro         Chr         Fro         Gu         Asp         His         Met           65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ile                 |
| Leu         Thr         Tyr         Gly         Val         Gln         Cys         Phe         Ser         Arg         Tyr         Pro         Asp         His         Met           65         -         -         70         -         -         75         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - | Thr                 |
| Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Glr 90  Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Leu Lys Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Lys Ilio Lys Phe Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu 130  Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 80                  |
| Val       Lys       Phe       Glu       Gly       Asp       Thr       Leu       Val       Asn       Arg       Ile       Glu       Leu       Lys       Leu       Lys       L      |                     |
| 115 120 125  Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu 130 135 140  Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys 145 150 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 130 135 140 Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys 145 150 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |
| 145 150 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 160                 |
| Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                   |
| Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly As<br>180 185 190<br>Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
| 195 200 205  Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Gl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
| 210 215 220  Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Ly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
| 225 230 235  Gly Leu Arg Ser Met Ser Ala Glu Gly Tyr Gln Tyr Arg Ala Le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 240                 |
| 245 250 250  Asp Tyr Lys Lys Glu Arg Glu Glu Asp Ile Asp Leu His Leu Gl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                   |
| 260 265 270  Ile Leu Thr Val Asn Lys Gly Ser Leu Val Ala Leu Gly Phe Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
| 275 280 285 Gly Gln Glu Ala Arg Pro Glu Glu Ile Gly Trp Leu Asn Gly Ty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
| 290 295 300 Glu Thr Thr Gly Glu Arg Gly Asp Phe Pro Gly Thr Tyr Val Gl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
| 305 310 315 Ile Gly Arg Lys Lys Ile Ser Pro Pro Thr Pro Lys Pro Arg Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 320                 |
| 325 330 3.<br>Arg Pro Leu Pro Val Ala Pro Gly Ser Ser Lys Thr Glu Ala As                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35                  |
| 340 345 350<br>Glu Gln Gln Ala Leu Thr Leu Pro Asp Leu Ala Glu Gln Phe A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |
| 355 360 365  Pro Asp Ile Ala Pro Pro Leu Leu Ile Lys Leu Val Glu Ala I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | le Glu              |
| 370 375 380  Lys Lys Gly Leu Glu Cys Ser Thr Leu Tyr Arg Thr Gln Ser S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | er Ser              |
| 385 390 395 Asn Leu Ala Glu Leu Arg Gln Leu Leu Asp Cys Asp Thr Pro S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 400<br>er Val<br>15 |
| 405 410 4  Asp Leu Glu Met Ile Asp Val His Val Leu Ala Asp Ala Phe L  420 425 430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |

| Tyr        | Leu        | Leu<br>435 | Asp        | Leu          | Pro        | Asn        | Pro<br>440   | Val        | Ile          | Pro          |            | Ala<br>445   | Val        | Tyr          | Ser        |
|------------|------------|------------|------------|--------------|------------|------------|--------------|------------|--------------|--------------|------------|--------------|------------|--------------|------------|
| Glu        | Met<br>450 |            | Ser        | Leu          | Ala        | Pro<br>455 |              | Val        | Gln          | Ser          | Ser<br>460 | Glu          | Glu        | Tyr          | Ile        |
| Gln<br>465 | Leu        | Leu        | Lys        | Lys          | Leu<br>470 | Ile        | Arg          | Ser        | Pro          | Ser<br>475   | Ile        | Pro          | His        | Gln          | Tyr<br>480 |
|            | Leu        | Thr        | Leu        | Gln<br>485   |            | Leu        | Leu          | Lys        | His<br>490   | Phe          | Phe        | Lys          | Leu        | Ser<br>495   | Gln        |
| Thr        | Ser        | Ser        | Lys<br>500 |              | Leu        | Leu        | Asn          | Ala<br>505 | -            | Val          | Leu        | Ser          | Glu<br>510 | Ile          | Phe        |
| Ser        | Pro        | Met<br>515 | Leu        | Phe          | Arg        | Phe        | Ser<br>520   | Ala        | Ala          | Ser          | Ser        | Asp<br>525   | Asn        | Thr          | Glu        |
| Asn        | Leu<br>530 | Ile        | Lys        | Val          | Ile        | Glu<br>535 | Ile          | Leu        | Ile          | Ser          | Thr<br>540 | Glu          | Trp        | Asn          | Glu        |
| Arg<br>545 | Gln        | Pro        | Ala        | Pro          | Ala<br>550 | Leu        | Pro          | Pro        | Lys          | Pro<br>555   | Pro        | Lys          | Pro        | Thr          | Thr<br>560 |
| Val        | Ala        | Asn        | Asn        | Gly<br>565   | Met        | Asn        | Asn          | Asn        | Met<br>570   | Ser          | Leu        | Gln          | Asn        | Ala<br>575   | Glu        |
| -          | Tyr        |            | 580        |              |            |            |              | 585        |              |              |            |              | 590        |              |            |
| _          | Thr        | 595        |            |              |            |            | 600          |            |              |              |            | 605          |            |              |            |
|            | Gly<br>610 |            |            |              |            | 615        |              |            |              |              | 620        |              |            |              |            |
| 11e<br>625 | Lys        | Ile        | Phe        | His          | Arg<br>630 | Asp        | Gly          | Lys        | Tyr          | Gly<br>635   | Phe        | Ser          | Asp        | Pro          | Leu<br>640 |
| Thr        | Phe        | Ser        | Ser        | Val<br>645   |            | Glu        | Leu          | Ile        | Asn<br>650   |              | Tyr        | Arg          | Asn        | Glu<br>655   | Ser        |
| Leu        | Ala        | Gln        | Tyr<br>660 |              | Pro        | Lys        | Leu          | Asp<br>665 |              | Lys          | Leu        | Leu          | Tyr<br>670 |              | Val        |
| Ser        | Lys        | Tyr<br>675 | Gln        |              | Asp        | Gln        | Val<br>680   |            | Lys          | Glu          | Asp        | Asn<br>685   |            | Glu          | Ala        |
| Val        | Gly<br>690 | Lys        |            | Leu          | His        | Glu<br>695 |              | Asn        | Thr          | Gln          | Phe<br>700 | Gln          | Glu        | Lys          | Ser        |
| Arg<br>705 | Glu        |            | Asp        | Arg          | Leu<br>710 |            | Glu          | Glu        | Тут          | Thr<br>715   |            | Thr          | Ser        | Gln          | Glu<br>720 |
| Ile        | Gln        | Met        | . Lys      | 725          |            | Ala        | Ile          | Glu        | Ala<br>730   |              | Asn        | Glu          | Thr        | 735          | Lys        |
|            |            |            | 740        | )            |            |            |              | 745        |              |              |            |              | 750        | )            | Tyr        |
|            |            | 755        | 5          |              |            |            | 760          | )          |              |              |            | 765          | ,<br>,     |              | Ile        |
| Met        | His 770    |            | тут        | Asp          | Lys        | 775        |              | Ser        | Arg          | , Il∈        | Ser<br>780 | Glu          | ı Ile      | e Ile        | Asp        |
| 785        | 5          |            |            |              | 790        | )          |              |            |              | 795          |            |              |            |              | 800        |
| Arg        | g Glu      | Ile        | e Asp      | Lys<br>805   |            | , Met      | Asr          | ı Ser      | 11e          |              | Pro        | ) Asp        | ) Let      | 1 Ile<br>815 | Gln        |
| Leu        | ı Arg      | Lys        | 820        |              | g Asp      | Glr        | туг          | Leu<br>825 |              | Trp          | Leu        | Thi          | Glr<br>830 |              | Gly        |
| Va]        | Arg        | Glr<br>835 | ı Lys      |              | s Leu      | ı Asr      | n Glu<br>840 |            | ) Let        | ı Gly        | / Asr      | 1 Glu<br>849 |            | n Thi        | Glu        |
| Asp        | Glr<br>850 | туз        |            | r Lei        | ı Val      | G1v<br>855 |              | a Asp      | o Glu        | ı Asp        | Lev<br>860 |              | o Hi       | s His        | s Asp      |
| Glu<br>869 | ı Lys      |            | r Trj      | p As:        | n Val      | Gly        |              | r Sei      | c Asi        | n Arg<br>879 |            | ı Ly:        | s Al       | a Gl         | Asn<br>880 |
|            |            | ı Arç      | g Gl       | y Lys<br>88: | s Arg      |            | o Gly        | y Thi      | r Phe<br>890 |              | u Val      | l Ar         | g Gl       | u Se:<br>89  | r Ser<br>5 |

Lys Gln Gly Cys Tyr Ala Cys Ser Val Val Val Asp Gly Glu Val Lys 905 900 His Cys Val Ile Asn Lys Thr Ala Thr Gly Tyr Gly Phe Ala Glu Pro 925 920 Tyr Asn Leu Tyr Ser Ser Leu Lys Glu Leu Val Leu His Tyr Gln His 935 940 Thr Ser Leu Val Gln His Asn Asp Ser Leu Asn Val Thr Leu Ala Tyr 945 950 955 Pro Val Tyr Ala Gln Gln Arg Arg 965 (2) INFORMATION FOR SEQ ID NO:50: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2160 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (ix) FEATURE: (A) NAME/KEY: Coding Sequence (B) LOCATION: 1...2157 (D) OTHER INFOFMATION: (xi) SEQUENCE DESCRIPTION: SEQ ID NO:50: ATG GTG AGC AAG GGC GAG GAG CTG TTC ACC GGG GTG GTG CCC ATC CTG 48 Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu 1 5 10 GTC GAG CTG GAC GGC GAC GTA AAC GGC CAC AAG TTC AGC GTG TCC GGC Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly 25 20 GAG GGC GAG GGC GAT GCC ACC TAC GGC AAG CTG ACC CTG AAG TTC ATC 144 Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile 40 35 TGC ACC ACC GGC AAG CTG CCC GTG CCC TGG CCC ACC CTC GTG ACC ACC 192 Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr 55 50 240 CTG ACC TAC GGC GTG CAG TGC TTC AGC CGC TAC CCC GAC CAC ATG AAG Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys 65 CAG CAC GAC TTC TTC AAG TCC GCC ATG CCC GAA GGC TAC GTC CAG GAG Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu 90 CGC ACC ATC TTC TTC AAG GAC GGC AAC TAC AAG ACC CGC GCC GAG 336 Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu 100 GTG AAG TTC GAG GGC GAC ACC CTG GTG AAC CGC ATC GAG CTG AAG GGC 384

Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly

ATC GAC TTC AAG GAG GAC GGC AAC ATC CTG GGG CAC AAG CTG GAG TAC Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr AAC TAC AAC AGC CAC AAC GTC TAT ATC ATG GCC GAC AAG CAG AAG AAC Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn GGC ATC AAG GTG AAC TTC AAG ATC CGC CAC AAC ATC GAG GAC GGC AGC Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser GTG CAG CTC GCC GAC CAC TAC CAG CAG AAC ACC CCC ATC GGC GAC GGC Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly CCC GTG CTG CCC GAC AAC CAC TAC CTG AGC ACC CAG TCC GCC CTG Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu AGC AAA GAC CCC AAC GAG AAG CGC GAT CAC ATG GTC CTG CTG GAG TTC Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe GTG ACC GCC GGG ATC ACT CTC GGC ATG GAC GAG CTG TAC AAG TCC Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys Ser GGA CTC AGA TCT CGA GCT CAA GCT TCG AAT TCG ACC ATG TCG TCC ATC Gly Leu Arg Ser Arg Ala Gln Ala Ser Asn Ser Thr Met Ser Ser Ile TTG CCA TTC ACG CCG CCA GTT GTG AAG AGA CTG CTG GGA TGG AAG AAG Leu Pro Phe Thr Pro Pro Val Val Lys Arg Leu Leu Gly Trp Lys Lys TCA GCT GGT GGG TCT GGA GGA GCA GGC GGA GGA GAG CAG AAT GGG CAG Ser Ala Gly Gly Ser Gly Gly Ala Gly Gly Glu Gln Asn Gly Gln CAA GAA AAG TGG TGT GAG AAA GCA GTG AAA AGT CTG GTG AAG AAG CTA Glu Glu Lys Trp Cys Glu Lys Ala Val Lys Ser Leu Val Lys Lys Leu AAG AAA ACA GGA CGA TTA GAT GAG CTT GAG AAA GCC ATC ACC ACT CAA Lys Lys Thr Gly Arg Leu Asp Glu Leu Glu Lys Ala Ile Thr Thr Gln AAC TGT AAT ACT AAA TGT GTT ACC ATA CCA AGC ACT TGC TCT GAA ATT Asn Cys Asn Thr Lys Cys Val Thr Ile Pro Ser Thr Cys Ser Glu Ile TGG GGA CTG AGT ACA CCA AAT ACG ATA GAT CAG TGG GAT ACA ACA GGC Trp Gly Leu Ser Thr Pro Asn Thr Ile Asp Gln Trp Asp Thr Thr Gly

| CTT<br>Leu        | TAC<br>Tyr           | AGC<br>Ser<br>355 | TTC<br>Phe            | TCT<br>Ser         | GAA (<br>Glu (        | Gln '                 | ACC<br>Thr<br>360 | AGG<br>Arg          | TCT<br>Ser         | CTT<br>Leu         | GAT<br>Asp         | GGT<br>Gly<br>365  | CGT<br>Arg            | CTC<br>Leu         | CAG<br>Gln            | 1104 |
|-------------------|----------------------|-------------------|-----------------------|--------------------|-----------------------|-----------------------|-------------------|---------------------|--------------------|--------------------|--------------------|--------------------|-----------------------|--------------------|-----------------------|------|
| GTA<br>Val        | TCC<br>Ser<br>370    | CAT<br>His        | CGA<br>Arg            | AAA<br>Lys         | GGA<br>Gly            | TTG<br>Leu<br>375     | CCA<br>Pro        | CAT<br>His          | GTT<br>Val         | ATA<br>Ile         | TAT<br>Tyr<br>380  | TGC<br>Cys         | CGA<br>Arg            | TTA<br>Leu         | TGG<br>Trp            | 1152 |
| CGC<br>Arg<br>385 | TGG<br>Trp           | CCT<br>Pro        | GAT<br>Asp            | CTT<br>Leu         | CAC<br>His<br>390     | AGT<br>Ser            | CAT<br>His        | CAT<br>His          | GAA<br>Glu         | CTC<br>Leu<br>395  | AAG<br>Lys         | GCA<br>Ala         | ATT                   | GAA<br>Glu         | AAC<br>Asn<br>400     | 1200 |
| TGC<br>Cys        | GAA<br>Glu           | TAT<br>Tyr        | GCT<br>Ala            | TTT<br>Phe<br>405  | AAT<br>Asn            | CTT<br>Leu            | AAA<br>Lys        | AAG<br>Lys          | GAT<br>Asp<br>410  | GAA<br>Glu         | GTA<br>Val         | TGT<br>Cys         | GTA<br>Val            | AAC<br>Asn<br>415  | CCT<br>Pro            | 1248 |
| TAC<br>Tyr        | CAC<br>His           | TAT<br>Tyr        | CAG<br>Gln<br>420     | AGA<br>Arg         | GTT<br>Val            | GAG<br>Glu            | ACA<br>Thr        | CCA<br>Pro<br>425   | GTT<br>Val         | TTG<br>Leu         | CCT                | CCA<br>Pro         | GTA<br>Val<br>430     | TTA<br>Leu         | GTG<br>Val            | 1296 |
| CCC<br>Pro        | CGA                  | CAC<br>His<br>435 | Thr                   | GAG<br>Glu         | ATC<br>Ile            | CTA<br>Leu            | ACA<br>Thr<br>440 | Glu                 | CTT<br>Leu         | CCG<br>Pro         | CCI<br>Pro         | CTG<br>Leu<br>445  | Asp                   | GAC<br>Asp         | ТАТ<br>Туг            | 1344 |
| ACT<br>Thr        | CAC<br>His           | Ser               | ATT                   | CCA<br>Pro         | GAA<br>Glu            | AAC<br>Asn<br>455     | ACT<br>Thr        | ' AAC<br>' Asn      | TTC<br>Phe         | CCA<br>Pro         | GCA<br>Ala<br>460  | a Gly              | ATT                   | GAG                | CCA<br>Pro            | 1392 |
| CAG<br>Gln<br>465 | Ser                  | `AAT<br>Asr       | TAT<br>Tyr            | 'ATT               | CCA<br>Pro<br>470     | GAA<br>Glu            | ACG<br>Thr        | CCA<br>Pro          | CCT<br>Pro         | CCT<br>Pro<br>475  | Gl                 | ч ТАТ<br>у Тут     | T ATC                 | AGT<br>Ser         | GAA<br>Glu<br>480     | 1440 |
| GAT<br>Asr        | GGA<br>Gly           | . GA≱<br>⁄ Glι    | A ACA                 | AGT<br>Ser<br>485  | Asp                   | CAA<br>Gln            | CAG<br>Glr        | TTG                 | AAT<br>Asr<br>490  | ı Glr              | A AGʻ<br>n Se:     | T ATY              | GAC<br>t Asp          | ACA<br>Thi<br>495  | A GGC<br>Gly          | 1488 |
| TCT<br>Ser        | CCF<br>Fro           | A GCA             | A GAA<br>a Glu<br>500 | ı Let              | TCT<br>Ser            | CCT                   | ACT               | r ACT<br>Thr<br>505 | Lev                | r TCC              | C CC<br>r Pr       | T GT'<br>o Vai     | T AA'<br>l Ası<br>510 | n His              | r AGC<br>s Ser        | 1536 |
| TTC               | G GA'<br>J Asi       | r TT<br>Le<br>51  | u Glr                 | G CCA              | A GTI<br>o Val        | ACT<br>Thr            | туз               | r TCA<br>r Sei      | Gli                | u Pr               | o Al               | A TT<br>a Ph<br>52 | e Tr                  | G TG'<br>p Cy      | T TCA<br>s Ser        | 1584 |
| AT.               | A GC.<br>e Al.<br>53 | а Ту              | T TA'<br>r Ty:        | r GAI<br>r Gli     | A TTA<br>1 Leu        | A AAT<br>1 Asr<br>535 | Gli               | g AGG<br>n Arg      | G GT'<br>g Va      | T GG<br>1 G1       | A GA<br>у G1<br>54 | u Th               | C TT<br>r Ph          | C CA<br>e Hi       | T GCA<br>s Ala        | 1632 |
| TC.<br>Se<br>54   | r Gl                 | G CC<br>n Pr      | C TC.<br>o Se         | A CTO              | C ACT<br>u Thi<br>550 | val                   | A GA'<br>L As     | T GG(<br>p Gl)      | TT<br>y Ph         | T AC<br>e Th<br>55 | r As               | C CC<br>p Pr       | A TC                  | A AA<br>r As       | T TCA<br>n Ser<br>560 | 1680 |
| GA<br>Gl          | G AG<br>u Ar         | G TT<br>g Ph      | C TG<br>e Cy          | C TT<br>s Le<br>56 | u Gl                  | r TT<br>y Lei         | A CT<br>1 Le      | C TC                | C AA<br>r As<br>57 | n Va               | T AA               | AC CC              | SA AA<br>ng As        | T GC<br>n Al<br>57 | C ACG<br>a Thr        | 1728 |
| GT<br>Va          | A GA<br>1 G1         | A AT<br>u Me      | G AC                  | A AG               | A AG<br>g Ar          | G CA'                 | T AT<br>s Il      | A GG<br>e Gl        | A AG<br>y Ar       | A GO               | GA GT<br>Ly Va     | rg co<br>al Ar     | G TI                  | TA TA              | C TAC                 | 1776 |

580 585 590

ATA GGT GGG GAA GTT TTT GCT GAG TGC CTA AGT GAT AGT GCA ATC TTT Ile Gly Gly Glu Val Phe Ala Glu Cys Leu Ser Asp Ser Ala Ile Phe 600 GTG CAG AGC CCC AAT TGT AAT CAG AGA TAT GGC TGG CAC CCT GCA ACA Val Gln Ser Pro Asn Cys Asn Gln Arg Tyr Gly Trp His Pro Ala Thr 615 620 GTG TGT AAA ATT CCA CCA GGC TGT AAT CTG AAG ATC TTC AAC AAC CAG 1920 Val Cys Lys Ile Pro Pro Gly Cys Asn Leu Lys Ile Phe Asn Asn Gln 630 635 GAA TTT GCT GCT CTG GCT CAG TCT GTT AAT CAG GGT TTT GAA GCC 1968 Glu Phe Ala Ala Leu Leu Ala Gln Ser Val Asn Gln Gly Phe Glu Ala 650 645 GTC TAT CAG CTA ACT AGA ATG TGC ACC ATA AGA ATG AGT TTT GTG AAA 2016 Val Tyr Gln Leu Thr Arg Met Cys Thr Ile Arg Met Ser Phe Val Lys 660 665 GGG TGG GGA GCA GAA TAC CGA AGG CAG ACG GTA ACA AGT ACT CCT TGC 2064 Gly Trp Gly Ala Glu Tyr Arg Arg Gln Thr Val Thr Ser Thr Pro Cys 680 TGG ATT GAA CTT CAT CTG AAT GGA CCT CTA CAG TGG TTG GAC AAA GTA 2112 Trp Ile Glu Leu His Leu Asn Gly Pro Leu Gln Trp Leu Asp Lys Val 700 2160 TTA ACT CAG ATG GGA TCC CCT TCA GTG CGT TGC TCA AGC ATG TCA TAA Leu Thr Gln Met Gly Ser Pro Ser Val Arg Cys Ser Ser Met Ser 715 710 705

### (2) INFCPMATION FOR SEQ ID NO:51:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 719 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

 Met
 Val
 Ser
 Lys
 Gly
 Glu
 Glu
 Leu
 Phe
 Thr
 Gly
 Val
 Val
 Leu
 Leu
 Leu
 Asp
 Glu
 Asp
 Val
 Asp
 Val
 Asp
 Val
 Asp
 Val
 Asp
 Val
 Asp
 Gly
 His
 Lys
 Phe
 Ser
 Val
 Ser
 Gly

 Glu
 Gly
 Gly
 Asp
 Ala
 Thr
 Tyr
 Gly
 Lys
 Leu
 Thr
 Leu
 Thr
 Thr
 Thr
 Leu
 Thr
 Thr

Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys Ser Gly Leu Arg Ser Arg Ala Gln Ala Ser Asn Ser Thr Met Ser Ser Ile Leu Pro Phe Thr Pro Pro Val Val Lys Arg Leu Leu Gly Trp Lys Lys Ser Ala Gly Gly Ser Gly Gly Ala Gly Gly Gly Glu Gln Asn Gly Gln Glu Glu Lys Trp Cys Glu Lys Ala Val Lys Ser Leu Val Lys Lys Leu Lys Lys Thr Gly Arg Leu Asp Glu Leu Glu Lys Ala Ile Thr Thr Gln Asn Cys Asn Thr Lys Cys Val Thr Ile Pro Ser Thr Cys Ser Glu Ile Trp Gly Leu Ser Thr Pro Asn Thr Ile Asp Gln Trp Asp Thr Thr Gly Leu Tyr Ser Phe Ser Glu Gln Thr Arg Ser Leu Asp Gly Arg Leu Gln 355 360 Val Ser His Arg Lys Gly Leu Pro His Val Ile Tyr Cys Arg Leu Trp 370 375 Arg Trp Pro Asp Leu His Ser His His Glu Leu Lys Ala Ile Glu Asn Cys Glu Tyr Ala Phe Asn Leu Lys Lys Asp Glu Val Cys Val Asn Pro Tyr His Tyr Gln Arg Val Glu Thr Pro Val Leu Pro Pro Val Leu Val Pro Arg His Thr Glu Ile Leu Thr Glu Leu Pro Pro Leu Asp Asp Tyr Thr His Ser Ile Pro Glu Asn Thr Asn Phe Pro Ala Gly Ile Glu Pro Gln Ser Asn Tyr Ile Pro Glu Thr Pro Pro Pro Gly Tyr Ile Ser Glu Asp Gly Glu Thr Ser Asp Gln Gln Leu Asn Gln Ser Met Asp Thr Gly Ser Pro Ala Glu Leu Ser Pro Thr Thr Leu Ser Pro Val Asn His Ser Leu Asp Leu Gln Pro Val Thr Tyr Ser Glu Pro Ala Phe Trp Cys Ser Ile Ala Tyr Tyr Glu Leu Asn Gln Arg Val Gly Glu Thr Phe His Ala 

| 545        |            |            |            |            | 550        |            |            | Gly        |            | 555        |            |            |            |            | 560        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|            | _          |            |            | 565        |            |            |            | Ser        | 570        |            |            |            |            | 575        |            |
| Val        | Glu        | Met        | Thr<br>580 | Arg        | Arg        | His        | Ile        | Gly<br>585 | Arg        | Gly        | Val        | Arg        | Leu<br>590 | Tyr        | Tyr        |
| Ile        | Gly        | Gly<br>595 | Glu        | Val        | Phe        | Ala        | Glu<br>600 | Cys        | Leu        | Ser        | Asp        | Ser<br>605 | Ala        | Ile        | Phe        |
| Val        | Gln<br>610 | Ser        | Pro        | Asn        | Суѕ        | Asn<br>615 | Gln        | Arg        | Tyr        | Gly        | Trp<br>620 | His        | Pro        | Ala        | Thr        |
| Val<br>625 | Суѕ        | Lys        | Ile        | Pro        | Pro<br>630 | Gly        | Суѕ        | Asn        | Leu        | Lys<br>635 | Ile        | Phe        | Asn        | Asn        | Gln<br>640 |
| Glu        | Phe        | Ala        | Ala        | Leu<br>645 | Leu        | Ala        | Gln        | Ser        | Val<br>650 | Asn        | Gln        | Gly        | Phe        | Glu<br>655 | Ala        |
|            | -          |            | 660        |            |            |            |            | Thr<br>665 |            |            |            |            | 670        |            |            |
| Gly        | Trp        | Gly<br>675 | Ala        | Glu        | Tyr        | Arg        | Arg<br>680 | Gln        | Thr        | Val        | Thr        | Ser<br>685 | Thr        | Pro        | Cys        |
| Trp        | Ile<br>690 | Glu        | Leu        | His        | Leu        | Asn<br>695 | Gly        | Pro        | Leu        | Gln        | Trp<br>700 | Leu        | Asp        | Lys        | Val        |
| Leu<br>705 |            | Gln        | Met        | Gly        | Ser<br>710 | Pro        | Ser        | Val        | Arg        | Cys<br>715 |            | Ser        | Met        | Ser        |            |

## (2) INFORMATION FOR SEQ ID NO:52:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2421 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
  - (A) NAME/KEY: Coding Sequence
  - (B) LOCATION: 1...2418
  - (D) OTHER INFORMATION:

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

| ATG<br>Met<br>1 | GTG<br>Val | AGC<br>Ser | AAG<br>Lys       | GGC<br>Gly<br>5 | GAG<br>Glu | GAG<br>Glu | CTG<br>Leu       | TTC<br>Phe       | ACC<br>Thr<br>10 | GGG<br>Gly | GTG<br>Val | GTG<br>Val | CCC<br>Pro       | ATC<br>Ile<br>15 | CTG<br>Leu | 48  | } |
|-----------------|------------|------------|------------------|-----------------|------------|------------|------------------|------------------|------------------|------------|------------|------------|------------------|------------------|------------|-----|---|
| GTC<br>Val      | GAG<br>Glu | CTG<br>Leu | GAC<br>Asp<br>20 | GGC<br>Gly      | GAC<br>Asp | GTA<br>Val | AAC<br>Asn       | GGC<br>Gly<br>25 | CAC<br>His       | AAG<br>Lys | TTC<br>Phe | AGC<br>Ser | GTG<br>Val<br>30 | TCC<br>Ser       | GGC<br>Gly | 96  | 5 |
|                 |            |            |                  |                 |            |            | TAC<br>Tyr<br>40 |                  |                  |            |            |            |                  |                  |            | 144 | 1 |
|                 |            |            |                  |                 |            |            | GTG<br>Val       |                  |                  |            |            |            |                  |                  |            | 191 | 2 |
| CTG<br>Leu      | ACC<br>Thr | TAC<br>Tyr | GGC<br>Gly       | GTG<br>Val      | CAG<br>Gln | TGC<br>Cys | TTC<br>Phe       | AGC<br>Ser       | CGC<br>Arg       | TAC<br>Tyr | CCC<br>Pro | GAC<br>Asp | CAC<br>His       | ATG<br>Met       | AAG<br>Lys | 24  | C |

| 65                | 70               | 75                                                    | 80 |
|-------------------|------------------|-------------------------------------------------------|----|
| -*                | he Lys Ser Ala M | ATG CCC GAA GGC TAC (<br>let Pro Glu Gly Tyr \<br>90  |    |
|                   | he Lys Asp Asp G | GGC AAC TAC AAG ACC (<br>Gly Asn Tyr Lys Thr (        |    |
|                   |                  | GTG AAC CGC ATC GAG (<br>/al Asn Arg Ile Glu :<br>125 |    |
|                   |                  | ATC CTG GGG CAC AAG (<br>le Leu Gly His Lys 1<br>140  |    |
|                   |                  | ATC ATG GCC GAC AAG<br>Ile Met Ala Asp Lys<br>155     |    |
| Gly Ile Lys Val A |                  | CGC CAC AAC ATC GAG<br>Arg His Asn Ile Glu<br>170     |    |
|                   | sp His Tyr Gln ( | CAG AAC ACC CCC ATC<br>Gln Asn Thr Pro Ile<br>185     |    |
| -                 |                  | TAC CTG AGC ACC CAG Tyr Leu Ser Thr Gln 205           |    |
|                   |                  | GAT CAC ATG GTC CTG<br>Asp His Met Val Leu<br>220     |    |
|                   |                  | GGC ATG GAC GAG CTG<br>Gly Met Asp Glu Leu<br>235     |    |
| Gly Leu Arg Ser A |                  | TCG AAT TCG AAT TCA<br>Ser Asn Ser Asn Ser<br>250     |    |
|                   | hr Asn Thr Pro   | ACA AGT AAT GAT GCC<br>Thr Ser Asn Asp Ala<br>265     |    |
|                   |                  | AGA CAA GGT GGA GAG<br>Arg Gln Gly Gly Glu<br>285     |    |
|                   |                  | TTG GTA AAG AAG CTG<br>Leu Val Lys Lys Leu<br>300     |    |

| AAA<br>Lys<br>305 | GAT<br>Asp        | GAA<br>Glu          | TTG<br>Leu           | GAT<br>Asp            | TCT<br>Ser<br>310 | TTA .<br>Leu      | ATA<br>Ile         | ACA<br>Thr           | GCT<br>Ala           | ATA<br>Ile<br>315 | ACT<br>Thr          | ACA<br>Thr           | TAA<br>Asn         | GGA<br>Gly        | A              | СТ<br>1а<br>20    | 960  |
|-------------------|-------------------|---------------------|----------------------|-----------------------|-------------------|-------------------|--------------------|----------------------|----------------------|-------------------|---------------------|----------------------|--------------------|-------------------|----------------|-------------------|------|
| CAT<br>His        | CCT<br>Pro        | AGT<br>Ser          | AAA<br>Lys           | TGT<br>Cys<br>325     | GTT<br>Val        | ACC<br>Thr        | ATA<br>Ile         | CAG<br>Gln           | AGA<br>Arg<br>330    | ACA<br>Thr        | TTG<br>Leu          | GAT<br>Asp           | GGG<br>Gly         | AGG<br>Arg<br>335 | L              | TT<br>eu          | 1008 |
| CAG<br>Gln        | GTG<br>Val        | GCT<br>Ala          | GGT<br>Gly<br>340    | CGG<br>Arg            | AAA<br>Lys        | GGA<br>Gly        | TTT<br>Phe         | CCT<br>Pro<br>345    | CAT<br>His           | GTG<br>Val        | ATC                 | TAT<br>Tyr           | GCC<br>Ala<br>350  | CGT               | C C            | eu<br>.eu         | 1056 |
| TGG<br>Trp        | AGG<br>Arg        | TGG<br>Trp<br>355   | CCT<br>Pro           | GAT<br>Asp            | CTT<br>Leu        | CAC<br>His        | AAA<br>Lys<br>360  | AAT<br>Asn           | GAA<br>Glu           | CTA<br>Leu        | AAA<br>Lys          | CAT<br>His<br>365    | GTT<br>Val         | AA/<br>Lys        | r A            | TAT<br>Tyr        | 1104 |
| TGT<br>Cys        | CAG<br>Gln<br>370 | Tyr                 | GCG<br>Ala           | TTT<br>Phe            | GAC<br>Asp        | TTA<br>Leu<br>375 | AAA<br>Lys         | TGT<br>Cys           | GAT<br>Asp           | AGT<br>Ser        | GTC<br>Val<br>380   | Cys                  | GTG<br>Val         | AA'<br>Ası        | r (            | CCA<br>Pro        | 1152 |
| тат<br>Туг<br>385 | His               | TAC<br>Tyr          | GAA<br>Glu           | CGA<br>Arg            | GTT<br>Val<br>390 | GTA<br>Val        | TCA<br>Ser         | CCT<br>Pro           | GGA<br>Gly           | ATT<br>Ile<br>395 | Asp                 | CTC<br>Leu           | TCA<br>Ser         | GG;               | λ 1            | TTA<br>Leu<br>400 | 1200 |
| ACA<br>Thr        | CTG<br>Leu        | CAG<br>Gln          | AGT<br>Ser           | AAT<br>Asn<br>405     | GCT<br>Ala        | CCA<br>Pro        | TCA<br>Ser         | AGT<br>Ser           | ATG<br>Met<br>410    | Met               | GTC<br>Val          | AAC<br>Lys           | GAT<br>Asp         | GA<br>Gl<br>41    | u '            | TAT<br>Tyr        | 1248 |
| GTG<br>Val        | CAT<br>His        | GAC                 | TTT<br>Phe<br>420    | Glu                   | GGA<br>Gly        | CAG<br>Gln        | CCA<br>Pro         | TCG<br>Ser<br>425    | Leu                  | TCC<br>Ser        | Thi                 | r GAA                | 430                | y Hi              | T<br>S         | TCA<br>Ser        | 1296 |
| PTA<br>11         | CAA<br>Glr        | A ACC<br>Thi<br>435 | Ile                  | CAG<br>Gln            | CAT               | CCA<br>Pro        | CCA<br>Pro<br>440  | Ser                  | raa °                | CGT<br>Arg        | r GCZ               | A TCC<br>a Set<br>44 | r Thi              | A GA<br>r Gl      | .u             | ACA<br>Thr        | 1344 |
| ТАС<br>Туз        | AGC<br>Ser<br>450 | Thi                 | C CCA                | A GCT                 | CTC               | TTA<br>Leu<br>455 | Ala                | CCA<br>Pro           | TCT<br>Ser           | GAG               | G TC<br>L Se:<br>46 | r As                 | r GC<br>n Al       | T AC<br>a Th      | CC<br>nr       | AGC<br>Ser        | 1392 |
| ACT<br>Thi<br>465 | c Ala             | C AAG               | TTT                  | e Pro                 | AAC<br>Asr<br>470 | ATT<br>n Ile      | Pro                | r GTC<br>o Val       | l Ala                | a Se              | r Th                | A AG<br>r Se         | T CA<br>r Gl       | G CC<br>n Pi      | CT<br>ro       | GCC<br>Ala<br>480 | 1440 |
| AG'<br>Se:        | r ATA             | e Le                | G GGK<br>u Gly       | G GGG<br>Y Gly<br>485 | / Sei             | CAT<br>r His      | : AG               | r GAZ<br>r Glu       | A GGI<br>u G1:<br>49 | y Le              | G TT<br>u Le        | G CA<br>u Gl         | G AT<br>n Il       | e A               | CA<br>1a<br>95 | TCA<br>Ser        | 1488 |
| GG<br>Gl          | g CC'<br>y Pr     | T CA                | G CC.<br>n Pro<br>50 | o Gl                  | A CAG             | G CAC             | G CAG              | a AA'<br>n Asi<br>50 | n Gl                 | A TT<br>y Ph      | T AC<br>e Th        | T GG                 | т СА<br>y Gl<br>51 | n P               | CA<br>ro       | GCT<br>Ala        | 1536 |
| AC<br>T'n         | т та<br>r ту      | C CA<br>r Hi<br>51  | s Hi                 | T AA<br>s As:         | C AG<br>n Se      | C AC'             | r AC<br>r Th<br>52 | r Th                 | C TG<br>r Tr         | g AC<br>p Th      | T GO<br>LT Gl       | SA AC<br>Ly Se<br>52 | er Au              | G A               | CT<br>hr       | GCA<br>Ala        | 1584 |
| CC<br>Pr          | A TA<br>O Ty      | C AC                | A CC                 | T AA<br>o As          | T TT<br>n Le      | G CC'             | T CA<br>o Hi       | C CA<br>s Hi         | C CA<br>s Gl         | A AA<br>n As      | AC GC<br>sn Gl      | SC CA                | AT C'<br>is L      | rr c<br>eu G      | AG<br>In       | CAC               | 1632 |

535 530 540 CAC CCG CCT ATG CCG CCC CAT CCC GGA CAT TAC TGG CCT GTT CAC AAT His Pro Pro Met Pro Pro His Pro Gly His Tyr Trp Pro Val His Asn 555 550 545 GAG CTT GCA TTC CAG CCT CCC ATT TCC AAT CAT CCT GCT CCT GAG TAT Glu Leu Ala Phe Gln Pro Pro Ile Ser Asn His Pro Ala Pro Glu Tyr 565 TGG TGT TCC ATT GCT TAC TTT GAA ATG GAT GTT CAG GTA GGA GAG ACA 1776 Trp Cys Ser Ile Ala Tyr Phe Glu Met Asp Val Gln Val Gly Glu Thr 585 TTT AAG GTT CCT TCA AGC TGC CCT ATT GTT ACT GTT GAT GGA TAC GTG 1824 Phe Lys Val Pro Ser Ser Cys Pro Ile Val Thr Val Asp Gly Tyr Val 595 600 GAC CCT TCT GGA GGA GAT CGC TTT TGT TTG GGT CAA CTC TCC AAT GTC 1872 Asp Pro Ser Gly Gly Asp Arg Phe Cys Leu Gly Gln Leu Ser Asn Val 615 610 CAC AGG ACA GAA GCC ATT GAG AGA GCA AGG TTG CAC ATA GGC AAA GGT 1920 His Arg Thr Glu Ala Ile Glu Arg Ala Arg Leu His Ile Gly Lys Gly 625 GTG CAG TTG GAA TGT AAA GGT GAA GGT GAT GTT TGG GTC AGG TGC CTT 1968 Val Gln Leu Glu Cys Lys Gly Glu Gly Asp Val Trp Val Arg Cys Leu 645 650 AGT GAC CAC GCG GTC TTT GTA CAG AGT TAC TAC TTA GAC AGA GAA GCT 2016 Ser Asp His Ala Val Phe Val Gln Ser Tyr Tyr Leu Asp Arg Glu Ala 665 660 GGG CGT GCA CCT GGA GAT GCT GTT CAT AAG ATC TAC CCA AGT GCA TAT 2064 Gly Arg Ala Pro Gly Asp Ala Val His Lys Ile Tyr Pro Ser Ala Tyr 680 ATA AAG GTC TTT GAT TTG CGT CAG TGT CAT CGA CAG ATG CAG CAG 2112 Ile Lys Val Phe Asp Leu Arg Gln Cys His Arg Gln Met Gln Gln Gln 690 695 GCG GCT ACT GCA CAA GCT GCA GCA GCT GCC CAG GCA GCA GCC GTG GCA 2160 Ala Ala Thr Ala Gln Ala Ala Ala Ala Ala Gln Ala Ala Ala Val Ala 715 GGA AAC ATC CCT GGC CCA GGA TCA GTA GGT GGA ATA GCT CCA GCT ATC 2208 Gly Asn Ile Pro Gly Pro Gly Ser Val Gly Gly Ile Ala Pro Ala Ile 730 AGT CTG TCA GCT GCT GGA ATT GGT GTT GAT GAC CTT CGT CGC TTA 2256 Ser Leu Ser Ala Ala Ala Gly Ile Gly Val Asp Asp Leu Arg Arg Leu 740 TGC ATA CTC AGG ATG AGT TTT GTG AAA GGC TGG GGA CCG GAT TAC CCA 2304 Cys Ile Leu Arg Met Ser Phe Val Lys Gly Trp Gly Pro Asp Tyr Pro

760

765

AGA CAG AGC ATC AAA GAA ACA CCT TGC TGG ATT GAA ATT CAC TTA CAC

Arg Gln Ser Ile Lys Glu Thr Pro Cys Trp Ile Glu Ile His Leu His

770 775 780

CGG GCC CTC CAG CTC CTA GAC GAA GTA CTT CAT ACC ATG CCG ATT GCA

Arg Ala Leu Gln Leu Leu Asp Glu Val Leu His Thr Met Pro Ile Ala

785 790 795 800

GAC CCA CAA CCT TTA GAC TGA

Asp Pro Gln Pro Leu Asp

#### (2) INFORMATION FOR SEQ ID NO:53:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 806 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu 5 10 Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly 25 20 Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile 40 35 Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr 55 60 Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys 70 75 80 Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu 85 90 Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu 100 105 110 Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly 115 120 125 Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr 130 135 140 Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn 145 150 155 160 Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser 165 170 175 Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly 180 185 190 Fro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu 195 200 205 Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe 210 215 220 Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys Ser 225 230 235 240 Gly Leu Arg Ser Arg Ala Gln Ala Ser Asn Ser Asn Ser Thr Met Asp 250 255

| Asn        | Met | Ser        | Ile<br>260 | Thr        | Asn          | Thr | Pro        | Thr<br>265 | Ser        | Asn         | Asp | Ala        | Cys<br>270 | Leu        | Ser          |
|------------|-----|------------|------------|------------|--------------|-----|------------|------------|------------|-------------|-----|------------|------------|------------|--------------|
|            |     | 275        | Ser        |            |              |     | 280        |            |            |             |     | 285        |            | Glu        |              |
|            | 290 |            |            |            |              | 295 |            |            |            |             | 300 |            |            | Glu        |              |
| Lys<br>305 | Asp | Glu        | Leu        | Asp        | Ser<br>310   | Leu | Ile        | Thr        | Ala        | Ile<br>315  | Thr | Thr        | Asn        | Gly        | Ala<br>320   |
| His        | Pro | Ser        | Lys        | Cys<br>325 | Val          | Thr | Ile        | Gln        | Arg<br>330 | Thr         | Leu | Asp        | Gly        | Arg<br>335 | Leu          |
| Gln        | Va1 | Ala        | Gly<br>340 | Arg        | Lys          | Gly | Phe        | Pro<br>345 | His        | Val         | Ile | Tyr        | Ala<br>350 | Arg        | Leu          |
| Trp        | Arg | Trp<br>355 | Pro        | Asp        | Leu          | His | Lуs<br>360 | Asn        | Glu        | Leu         | Lys | His<br>365 | Val        | Lys        | Tyr          |
|            | 370 |            |            |            |              | 375 |            |            |            |             | 380 |            |            | Asn        |              |
| 385        |     |            |            |            | 390          |     |            |            |            | 395         |     |            |            | Gly        | 400          |
|            |     |            |            | 405        |              |     |            |            | 410        |             |     |            |            | Glu<br>415 |              |
|            |     |            | 420        |            |              |     |            | 425        |            |             |     |            | 430        |            |              |
|            |     | 435        |            |            |              |     | 440        |            |            |             |     | 445        |            | Glu        |              |
|            | 450 |            |            |            |              | 455 |            |            |            |             | 460 |            |            | Thr        |              |
| 465        |     |            |            |            | 470          |     |            |            |            | 475         |     |            |            | Pro        | 480          |
|            |     |            |            | 485        |              |     |            |            | 490        |             |     |            |            | Ala<br>495 |              |
|            |     |            | 500        |            |              |     |            | 505        |            |             |     |            | 510        |            |              |
|            | _   | 515        |            |            |              |     | 520        |            |            |             |     | 525        |            | Thr        |              |
|            | 530 |            |            |            |              | 535 |            |            |            |             | 540 |            |            | Gln        |              |
| 545        | ·   |            |            |            | 550          |     |            |            |            | 555         |     |            |            |            | Asn<br>560   |
|            |     |            |            | 565        | ·            |     |            |            | 570        | )           |     |            |            | 575        |              |
|            |     |            | 580        | )          |              |     |            | 585        | •          |             |     |            | 590        | )          | Thr          |
|            |     | 595        | 5          |            |              |     | 600        | )          |            |             |     | 605        | )          |            | · Val        |
|            | 610 | )          |            |            |              | 615 | 5          |            |            |             | 620 | )          |            |            | Val          |
| 62!        | 5   |            |            |            | 630          | )   |            |            |            | 635         | •   |            |            |            | 640          |
|            |     |            |            | 645        | 5            |     |            |            | 650        | )           |     |            |            | 655        |              |
|            |     |            | 660        | )          |              |     |            | 665        | 5          |             |     |            | 670        | 0          | ı Ala        |
|            |     | 675        | 5          |            |              |     | 680        | )          |            |             |     | 685        | 5          |            | a Tyr        |
|            | 69  | С          |            |            |              | 695 | 5          |            |            |             | 700 | )          |            |            | n Gln        |
| A1.<br>70  |     | a Th:      | r Ala      | a Gl       | n Ala<br>710 |     | a Ala      | a Ala      | a Ala      | a Glr<br>71 |     | a Al       | a Al       | a Vai      | 1 Ala<br>720 |

|                 |                  |                   |                      |                       |                                |                        |                       |                               |                  |                | _,           | - 1 -              | D                  | 73-                | <b>*</b> 3 -   |     |
|-----------------|------------------|-------------------|----------------------|-----------------------|--------------------------------|------------------------|-----------------------|-------------------------------|------------------|----------------|--------------|--------------------|--------------------|--------------------|----------------|-----|
| Gly A           |                  |                   |                      | 725                   |                                |                        |                       |                               | 730              |                |              |                    |                    | 735                |                |     |
| Ser I           |                  | •                 | 740                  |                       |                                |                        |                       | 745                           |                  |                |              |                    | 750                |                    |                |     |
| Cys 1           |                  | 755               |                      |                       |                                |                        | 760                   |                               |                  |                |              | 765                |                    |                    |                |     |
| Arg (           | 31n :            | Ser :             | Ile                  | Lys                   |                                | Thr<br>775             | Pro                   | Cys                           | Trp              | Ile            | Glu<br>780   | Ile                | His                | Leu                | His            |     |
| Arg 2           |                  | Leu (             | Gln                  | Leu                   | Leu<br>790                     | Asp                    | Glu                   | Val                           | Leu              | His<br>795     | Thr          | Met                | Pro                | Ile                | Ala<br>800     |     |
| Asp 1           | Pro (            | Gln               |                      | Leu<br>805            | Asp                            |                        |                       |                               |                  |                |              |                    |                    |                    |                |     |
|                 |                  | (2)               | INF                  | CRMA                  | MOIT                           | FOF                    | SEÇ                   | Q ID                          | NO:5             | 54:            |              |                    |                    |                    |                |     |
|                 | (i               | (A)<br>(B)<br>(C) | LENG<br>TYPE<br>STRA | TH:<br>E: nu<br>ANDEI | HARA<br>3120<br>iclei<br>ONESS | bas<br>.c ac<br>.s: s: | se pa<br>cid<br>ingle | airs                          |                  |                |              |                    |                    |                    |                |     |
|                 | •                | i) M<br>x) F      |                      |                       | TYPI                           | E: cl                  | ONA                   |                               |                  |                |              |                    |                    |                    |                |     |
|                 |                  | (B)               | LOO<br>OTI           | CATIO                 | ON: :                          | l :<br>RMAT            | 3117<br>ION:          | eque                          |                  |                | <b>5</b> A   |                    |                    |                    |                |     |
|                 |                  |                   |                      |                       |                                |                        |                       | : SE                          |                  |                |              |                    |                    |                    |                |     |
| ATG<br>Met<br>1 | GTG<br>Val       | AGC<br>Ser        | AAG<br>Lys           | GGC<br>Gly<br>5       | GAG<br>Glu                     | GAG<br>Glu             | CTG<br>Leu            | TTC<br>Phe                    | ACC<br>Thr<br>10 | GJA            | GTC<br>Val   | GTG<br>Val         | Pro                | ATC<br>D Ile<br>15 | CTG<br>Leu     | 48  |
| GTC             | GAG              | CTG               | GAC                  | GGC                   | GAC                            | GTA                    | AAC                   | GGC                           | CVC              | AAG            | TTO          | AGC                | GT                 | G TCC              | GGC Gly        | 96  |
| Val             | GIU              | Leu               | 20                   | GIÀ                   | ASP                            | Vai                    | ASII                  | 25<br>25                      | nis              | . Lys          | , ,,,,       |                    | 30                 |                    | . 017          |     |
| GAG<br>Glu      | GGC<br>Gly       | GAG<br>Glu<br>35  | GGC<br>Gly           | GAT<br>Asp            | GCC<br>Ala                     | ACC<br>Thr             | TAC<br>Tyr<br>40      | GGC<br>Gly                    | : AAC            | CTC<br>Lev     | ACC<br>Thi   | C CTC<br>Let<br>45 | AA(                | G TTO<br>S Pho     | C ATC          | 144 |
| TGC<br>Cys      | ACC<br>Thr<br>50 | ACC<br>Thr        | GGC<br>Gly           | AAG<br>Lys            | CTG<br>Leu                     | CCC<br>Pro             | GTC<br>Val            | CCC<br>Pro                    | TG(              | CCC<br>Pro     | C ACC<br>Th: | CTY<br>r Lei       | C GTv<br>ı Va      | G AC               | C ACC<br>r Thr | 192 |
| CTG             | ACC              | TAC               | GGC                  | GTG                   | CAG                            | TGC                    | TTC                   | : AGC                         | CG(              | TAC            | CC           | C GA               | CA                 | C AT               | G AAG          | 240 |
| Leu<br>65       | Thr              | Tyr               | Gly                  | Val                   | Gln<br>70                      | Cys                    | : Phe                 | e Ser                         | : Arq            | тур<br>75      | r Pr         | o Ası              | o Hi               | s Me               | t Lys<br>80    |     |
| CAG<br>Gln      | CAC<br>His       | GAC<br>Asp        | TTC<br>Phe           | TTC<br>Phe<br>85      | AAC<br>Lys                     | TCC<br>Sei             | GCC<br>Ala            | ATC<br>a Met                  | 90               | G GAI<br>o Glu | e GG<br>u Gl | С ТА<br>У ТУ       | C GT<br>r Va       | C CA<br>1 G1<br>95 | G GAG<br>n Glu | 288 |
| CGC<br>Arg      | ACC<br>Thr       | ATC<br>Ile        | TTC<br>Phe           | Ph∈                   | AAC<br>Lys                     | GAC<br>Asi             | GA(                   | GGG<br>Gl <sub>2</sub><br>10! | y As             | o Tag<br>n Tyt | C AA<br>r Ly | G AC<br>s Th       | C CG<br>r Ar<br>11 | g Al               | C GAG<br>a Glu | 336 |

| GTG AAG TTC GAG GGC GAC ACC CTG GTG AAC CGC ATC GAG CTG AAG GGC Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly 115 120 125       | 384  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------|
| ATC GAC TTC AAG GAG GAC GGC AAC ATC CTG GGG CAC AAG CTG GAG TAC  Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr  130 135 140     | 432  |
| AAC TAC AAC AGC CAC AAC GTC TAT ATC ATG GCC GAC AAG CAG AAG AAC ASn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn 145               | 480  |
| GGC ATC AAG GTG AAC TTC AAG ATC CGC CAC AAC ATC GAG GAC GGC AGC Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser 165               | 528  |
| GTG CAG CTC GCC GAC CAC TAC CAG CAG AAC ACC CCC ATC GGC GAC GGC Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly 180               | 576  |
| CCC GTG CTG CTC GAC AAC CAC TAC CTG AGC ACC CAG TCC GCC CTG Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu 195 200 205           | 624  |
| AGC AAA GAC CCC AAC GAG AAG CGC GAT CAC ATG GTC CTG CTG GAG TTC Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe 210 215 220       | 672  |
| GTG ACC GCC GCC GGG ATC ACT CTC GGC ATG GAC GAG CTG TAC AAG TCC Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys Ser 235 230           | 720  |
| GGA CTC AGA TCT ACC ATG GCG GGC TGG ATC CAG GCC CAG CAG CTG CAG Gly Leu Arg Ser Thr Met Ala Gly Trp Ile Gln Ala Gln Gln Leu Gln 245 250 255       | 768  |
| GGA GAC GCG CTG CGC CAG ATG CAG GTG CTG TAC GGC CAG CAC TTC CCC Gly Asp Ala Leu Arg Gln Met Gln Val Leu Tyr Gly Gln His Phe Pro 260 265 270       | 816  |
| ATC GAG GTC CGG CAC TAC TTG GCC CAG TGG ATT GAG AGC CAG CCA TGG  Ile Glu Val Arg His Tyr Leu Ala Gln Trp Ile Glu Ser Gln Pro Trp  275 280 285     | 864  |
| GAT GCC ATT GAC TTG GAC AAT CCC CAG GAC AGA GCC CAA GCC ACC CAG<br>Asp Ala Ile Asp Leu Asp Asn Pro Gln Asp Arg Ala Gln Ala Thr Gln<br>290 295 300 | 912  |
| CTC CTG GAG GGC CTG GTG CAG GAG CTG CAG AAG AAG GCG GAG CAC CAG Leu Leu Glu Gly Leu Val Gln Glu Leu Gln Lys Lys Ala Glu His Gln 305 310 315       | 960  |
| GTG GGG GAA GAT GGG TTT TTA CTG AAG ATC AAG CTG GGG CAC TAC GCC Val Gly Glu Asp Gly Phe Leu Leu Lys Ile Lys Leu Gly His Tyr Ala 325               | 1008 |
| ACG CAG CTC CAG AAA ACA TAT GAC CGC TGC CCC CTG GAG CTG GTC CGC<br>Thr Gln Leu Gln Lys Thr Tyr Asp Arg Cys Pro Leu Glu Leu Val Arg                | 1056 |

TGC ATC CGG CAC ATT CTG TAC AAT GAA CAG AGG CTG GTC CGA GAA GCC Cys Ile Arg His Ile Leu Tyr Asn Glu Gln Arg Leu Val Arg Glu Ala AAC AAT TGC AGC TCT CCG GCT GGG ATC CTG GTT GAC GCC ATG TCC CAG Asn Asn Cys Ser Ser Pro Ala Gly Ile Leu Val Asp Ala Met Ser Gln AAG CAC CTT CAG ATC AAC CAG ACA TTT GAG GAG CTG CGA CTG GTC ACG Lys His Leu Gln Ile Asn Gln Thr Phe Glu Glu Leu Arg Leu Val Thr CAG GAC ACA GAG AAT GAG CTG AAG AAA CTG CAG CAG ACT CAG GAG TAC Gln Asp Thr Glu Asn Glu Leu Lys Lys Leu Gln Gln Thr Gln Glu Tyr TTC ATC ATC CAG TAC CAG GAG AGC CTG AGG ATC CAA GCT CAG TTT GCC Phe Ile Ile Gln Tyr Gln Glu Ser Leu Arg Ile Gln Ala Gln Phe Ala CAG CTG GCC CAG CTG AGC CCC CAG GAG CGT CTG AGC CGG GAG ACG GCC Gln Leu Ala Gln Leu Ser Pro Gln Glu Arg Leu Ser Arg Glu Thr Ala CTC CAG CAG AAG CAG GTG TCT CTG GAG GCC TGG TTG CAG CGT GAG GCA Leu Gln Gln Lys Gln Val Ser Leu Glu Ala Trp Leu Gln Arg Glu Ala CAG ACA CTG CAG CAG TAC CGC GTG GAG CTG GCC GAG AAG CAC CAG AAG Gln Thr Leu Gln Gln Tyr Arg Val Glu Leu Ala Glu Lys His Gln Lys ACC CTG CAG CTG CTG CGG AAG CAG CAG ACC ATC ATC CTG GAT GAC GAG Thr Leu Gln Leu Leu Arg Lys Gln Gln Thr Ile Ile Leu Asp Asp Glu CTG ATC CAG TGG AAG CGG CGG CAG CAG CTG GCC GGG AAC GGC GGG CCC Leu Ile Gln Trp Lys Arg Arg Gln Gln Leu Ala Gly Asn Gly Gly Pro CCC GAG GGC AGC CTG GAC GTG CTA CAG TCC TGG TGT GAG AAG TTG GCC Pro Glu Gly Ser Leu Asp Val Leu Gln Ser Trp Cys Glu Lys Leu Ala GAG ATC ATC TGG CAG AAC CGG CAG CAG ATC CGC AGG GCT GAG CAC CTC Glu Ile Ile Trp Gln Asn Arg Gln Gln Ile Arg Arg Ala Glu His Leu TGC CAG CAG CTG CCC ATC CCC GGC CCA GTG GAG GAG ATG CTG GCC GAG Cys Gln Gln Leu Pro Ile Pro Gly Pro Val Glu Glu Met Leu Ala Glu GTC AAC GCC ACC ATC ACG GAC ATT ATC TCA GCC CTG GTG ACC AGC ACA Val Asn Ala Thr Ile Thr Asp Ile Ile Ser Ala Leu Val Thr Ser Thr

| TTC<br>Phe        | ATC<br>Ile          | ATT<br>Ile         | GAG<br>Glu<br>580     | AAG<br>Lys        | CAG<br>Gln            | CCT<br>Pro        | CCT<br>Pro        | CAG<br>Gln<br>585 | GTC<br>Val        | CTG<br>Leu          | AAG<br>Lys            | ACC<br>Thr            | CAG<br>Gln<br>590 | ACC<br>Thr            | AAG<br>Lys            | 1776 |
|-------------------|---------------------|--------------------|-----------------------|-------------------|-----------------------|-------------------|-------------------|-------------------|-------------------|---------------------|-----------------------|-----------------------|-------------------|-----------------------|-----------------------|------|
| TTT<br>Phe        | GCA<br>Ala          | GCC<br>Ala<br>595  | ACC<br>Thr            | GTA<br>Val        | CGC<br>Arg            | CTG<br>Leu        | CTG<br>Leu<br>600 | GTG<br>Val        | GGC<br>Gly        | GGG<br>Gly          | AAG<br>Lys            | CTG<br>Leu<br>605     | AAC<br>Asn        | GTG<br>Val            | CAC<br>His            | 1824 |
| ATG<br>Met        | AAT<br>Asn<br>610   | CCC<br>Pro         | CCC<br>Pro            | CAG<br>Gln        | GTG<br>Val            | AAG<br>Lys<br>615 | GCC<br>Ala        | ACC<br>Thr        | ATC<br>Ile        | ATC<br>Ile          | AGT<br>Ser<br>620     | GAG<br>Glu            | CAG<br>Gln        | CAG<br>Gln            | GCC<br>Ala            | 1872 |
| AAG<br>Lys<br>625 | TCT<br>Ser          | CTG<br>Leu         | CTT<br>Leu            | AAA<br>Lys        | AAT<br>Asn<br>630     | GAG<br>Glu        | AAC<br>Asn        | ACC<br>Thr        | CGC<br>Arg        | AAC<br>Asn<br>635   | GAG<br>Glu            | TGC<br>Cys            | AGT<br>Ser        | GGT<br>Gly            | GAG<br>Glu<br>640     | 1920 |
| ATC<br>Ile        | CTG<br>Leu          | AAC<br>Asn         | AAC<br>Asn            | TGC<br>Cys<br>645 | TGC<br>Cys            | GTG<br>Val        | ATG<br>Met        | GAG<br>Glu        | TAC<br>Tyr<br>650 | CAC<br>His          | CAA<br>Gln            | GCC<br>Ala            | ACG<br>Thr        | GGC<br>Gly<br>655     | ACC<br>Thr            | 1968 |
| CTC<br>Leu        | AGT<br>Ser          | GCC<br>Ala         | CAC<br>His<br>660     | TTC<br>Phe        | AGG<br>Arg            | AAC<br>Asn        | ATG<br>Met        | TCA<br>Ser<br>665 | CTG<br>Leu        | AAG<br>Lys          | AGG<br>Arg            | ATC<br>Ile            | AAG<br>Lys<br>670 | Arg                   | GCT<br>Ala            | 2016 |
| GAC<br>Asp        | CGG<br>Arg          | CGG<br>Arg<br>675  | Gly                   | GCA<br>Ala        | GAG<br>Glu            | TCC<br>Ser        | GTG<br>Val<br>680 | Thr               | GAG<br>Glu        | GAG<br>Glu          | AAG<br>Lys            | TTC<br>Phe<br>685     | Thr               | GTC<br>Val            | CTG<br>Leu            | 2064 |
| TTT<br>Phe        | GAG<br>Glu<br>690   | Ser                | CAG<br>Gln            | TTC<br>Phe        | AGT<br>Ser            | GTT<br>Val<br>695 | GGC<br>Gly        | AGC<br>Ser        | AAT<br>Asn        | GAG<br>Glu          | CTT<br>Leu<br>700     | Val                   | TTC<br>Phe        | CAC<br>Glr            | GTG<br>Val            | 2112 |
| AAG<br>Lys<br>705 | Thr                 | CTC<br>Leu         | TCC<br>Ser            | CTA               | CCT<br>Pro<br>710     | Val               | GTT<br>Val        | GTC<br>Val        | Ile               | GTC<br>Val<br>715   | His                   | Gly                   | : AGC<br>/ Sei    | CAC<br>Glr            | GAC<br>Asp<br>720     | 2160 |
| CAC<br>His        | AAT<br>Asn          | GCC<br>Ala         | ACG<br>Thr            | GCT<br>Ala<br>725 | Thr                   | GTG<br>Val        | CTG<br>Leu        | TGG<br>Trp        | GAC<br>Asp<br>730 | Asr                 | GCC<br>Ala            | TTT<br>Phe            | r GCT<br>e Ala    | F GAG<br>a Glu<br>73! | CCG<br>Pro            | 2208 |
| GGC               | AGG<br>Arg          | GTC<br>Val         | G CCA<br>1 Pro<br>740 | Phe               | GCC<br>Ala            | GTG<br>Val        | Pro               | GAC<br>Asp<br>745 | Lys               | GTC<br>Val          | CTC<br>Lev            | TG(                   | 750<br>750        | 5 Gl                  | G CTG<br>n Leu        | 2256 |
| TGT<br>Cys        | GAC<br>Glu          | GC0<br>1 Ala<br>75 | a Leu                 | AAC<br>12A L      | ATC<br>Met            | AAA<br>Lys        | 770<br>Phe<br>760 | e Lys             | GCC<br>Ala        | GAI<br>Glu          | A GTC<br>1 Val        | G CA0<br>L Gli<br>76! | n Se              | C AA<br>r As          | n Arg                 | 2304 |
| G17               | CTC<br>/ Let<br>770 | ı Th               | C AAC                 | G GA(             | AAC<br>LAST           | 775               | ı Val             | TTY<br>Phe        | CTC<br>e Lei      | GCC<br>1 Ala        | G CAG<br>a Glr<br>780 | ı Ly                  | A CT<br>s Le      | G TT<br>u Ph          | c AAC<br>e Asn        | 2352 |
| AA0<br>Asi<br>78! | ı Sei               | c AG<br>r Se       | C AGG                 | C CAC             | C CTC<br>s Lev<br>790 | ı Glı             | GA(               | С ТА(<br>р Ту:    | C AG:             | r GG<br>r Gl;<br>79 | y Le                  | G TC<br>u Se          | C GT<br>r Va      | G TC<br>1 Se          | C TGG<br>r Trp<br>800 | 2400 |
| TC(<br>Se:        | C CAG               | 3 TT<br>n Ph       | C AA(<br>e As:        | c AG<br>n Ar      | G GA(<br>g Gl)        | G AA(<br>u Asi    | TT<br>Lei         | g CCG<br>u Pr     | G GG(<br>o Gl;    | TG<br>Y Tr          | G AA<br>p As:         | C TA<br>n Ty          | C AC<br>r Th      | C TT<br>ir Ph         | C TGG<br>le Trp       | 2448 |

|                            |                           | 805                           |                               | 810                         |                                | 815                                  |                            |
|----------------------------|---------------------------|-------------------------------|-------------------------------|-----------------------------|--------------------------------|--------------------------------------|----------------------------|
| CAG TGG                    | TTT GAC<br>Phe Asp<br>820 | GGG GTG<br>Gly Val            | ATG GAG<br>Met Glu            | GTG TTG<br>Val Leu<br>825   | AAG AAG<br>Lys Lys             | CAC CAC AAG<br>His His Lys<br>830    | CCC 2496<br>Pro            |
| His Trp .                  | AAT GAT<br>Asn Asp<br>835 | GGG GCC<br>Gly Ala            | ATC CTA<br>Ile Leu<br>840     | GGT TTT<br>Gly Phe          | Val Asn                        | AAG CAA CAG<br>Lys Gln Gln<br>845    | GCC 2544<br>Ala            |
| CAC GAC<br>His Asp<br>850  | CTG CTC<br>Leu Leu        | ATC AAC<br>Ile Asn            | AAG CCC<br>Lys Pro<br>855     | GAC GGG<br>Asp Gly          | ACC TTC<br>Thr Phe<br>860      | TTG TTG CGC<br>Leu Leu Arg           | TTT 2592<br>Phe            |
| AGT GAC<br>Ser Asp<br>865  | TCA GAA<br>Ser Glu        | ATC GGG<br>Ile Gly<br>870     | GGC ATC<br>Gly Ile            | ACC ATC                     | GCC TGG<br>Ala Trp<br>875      | AAG TTT GAC<br>Lys Phe Asp           | TCC 2640<br>Ser<br>880     |
| CCG GAA<br>Pro Glu         | CGC AAC<br>Arg Asn        | CTG TGG<br>Leu Trp<br>885     | AAC CTG<br>Asn Leu            | AAA CCA<br>Lys Pro<br>890   | Phe Thr                        | ACG CGG GAT<br>Thr Arg Asp<br>895    | Phe                        |
| TCC ATC<br>Ser Ile         | AGG TCC<br>Arg Ser<br>900 | Leu Ala                       | GAC CGG<br>Asp Arg            | CTG GGG<br>Leu Gly<br>905   | G GAC CTG<br>y Asp Leu         | AGC TAT CTC<br>Ser Tyr Let<br>910    | ATC 2736                   |
| TAT GTG<br>Tyr Val         | TTT CCT<br>Phe Pro<br>915 | GAC CGC<br>Asp Arg            | CCC AAG<br>Pro Lys<br>920     | Asp Gl                      | G GTC TTC<br>u Val Phe         | TCC AAG TAG<br>Ser Lys Tyn<br>925    | TAC 2784                   |
| ACT CCT<br>Thr Pro<br>930  | GTG CTC<br>Val Let        | GCT AAA<br>1 Ala Lys          | A GCT GTT<br>: Ala Val<br>935 | T GAT GG.<br>l Asp Gl       | A TAT GTG<br>y Tyr Val<br>940  | AAA CCA CA<br>Lys Pro Gl             | S ATC 2832<br>n Ile        |
| AAG CAA<br>Lys Gln<br>945  | GTG GTG<br>Val Va         | C CCT GAG<br>1 Pro Glu<br>950 | ı Phe Vai                     | G AAT GC<br>l Asn Al        | A TCT GCA<br>a Ser Ala<br>955  | A GAT GCT GG<br>A Asp Ala Gl         | G GGC 2880<br>y Gly<br>960 |
| AGC AGC<br>Ser Ser         | GCC AC                    | G TAC ATO<br>r Tyr Me         | G GAC CAC<br>t Asp Gli        | G GCC CC<br>n Ala Pr<br>97  | o Ser Pro                      | A GCT GTG TG<br>D Ala Val Cy<br>97   | s Pro                      |
| CAG GCT<br>Gln Ala         | CCC TA<br>Pro Ty<br>98    | r Asn Me                      | G TAC CC.<br>t Tyr Pr         | A CAG AA<br>o Gln As<br>985 | C CCT GAC                      | CAT GTA CT<br>His Val Le<br>990      | C GAT 2976<br>u Asp        |
| CAG GAT<br>Gln Asp         | GGA GA<br>Gly Gl<br>995   | A TTC GA<br>u Phe As          | C CTG GA<br>p Leu As<br>100   | p Glu Th                    | CC ATG GA'<br>nr Met As        | T GTG GCC AC<br>p Val Ala Ar<br>1005 | G CAC 3024<br>g His        |
| GTG GAG<br>Val Glu<br>1010 | ı Glu Le                  | C TTA CG<br>eu Leu Ar         | C CGA CC<br>g Arg Pr<br>1015  | A ATG GA<br>O Met As        | AC AGT CT<br>sp Ser Le<br>102  | T GAC TCC CC<br>u Asp Ser Ai<br>0    | GC CTC 3072<br>rg Leu      |
| TCG CCC<br>Ser Pro<br>1025 | CCT GC                    | CC GGT CT<br>la Gly Le<br>103 | eu Phe Th                     | CC TCT GO                   | CC AGA GG<br>la Arg Gl<br>1035 | C TCC CTC T<br>y Ser Leu S           | CA TGA 3120<br>er<br>1     |

## (2) INFORMATION FOR SEQ ID NO:55:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1039 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:

Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu 10 Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly 25 20 Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile 40 Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr 60 55 Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys 75 Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu 85 90 Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu 105 100 Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly 125 115 120 Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr 140 135 Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn 150 155 Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser 170 Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly 185 190 Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu 200 205 Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe 220 215 Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys Ser 235 230 Gly Leu Arg Ser Thr Met Ala Gly Trp Ile Gln Ala Gln Gln Leu Gln 245 250 Gly Asp Ala Leu Arg Gln Met Gln Val Leu Tyr Gly Gln His Phe Pro 265 Ile Glu Val Arg His Tyr Leu Ala Gln Trp Ile Glu Ser Gln Pro Trp 275 280 Asp Ala Ile Asp Leu Asp Asn Fro Gln Asp Arg Ala Gln Ala Thr Gln 295 Leu Leu Glu Gly Leu Val Gln Glu Leu Gln Lys Lys Ala Glu His Gln 315 310 Val Gly Glu Asp Gly Phe Leu Leu Lys Ile Lys Leu Gly His Tyr Ala 325 330 Thr Gln Leu Gln Lys Thr Tyr Asp Arg Cys Pro Leu Glu Leu Val Arg 345

| Cys        | Ile         | Arg<br>355 | His         | Ile          | Leu        |            | Asn<br>360 | Glu        | Gln        | Arg         |             | Val<br>365 | Arg          | Glu        | Ala          |
|------------|-------------|------------|-------------|--------------|------------|------------|------------|------------|------------|-------------|-------------|------------|--------------|------------|--------------|
|            | 370         | Cys        |             |              |            | Ala<br>375 | Gly        |            |            |             | 380         |            |              |            |              |
| Lys        | His         | Leu        | Gln         | Ile          | Asn        | Gln        | Thr        | Phe        | Glu        | Glu         | Leu         | Arg        | Leu          | Val        | Thr          |
| 385        |             |            |             |              | 390        |            |            |            | _          | 395         | <b>~</b> 1. | <b>m</b> 1 | G3-          |            | 400          |
|            |             |            |             | 405          | Glu        |            |            |            | 410        |             |             |            |              | 415        |              |
|            |             |            | 420         |              | Gln        |            |            | 425        |            |             |             |            | 430          |            |              |
|            |             | 435        |             |              | Ser        |            | 440        |            |            |             |             | 445        |              |            |              |
| Leu        | Glr<br>450  |            | Lys         | Gln          | Val        | Ser<br>455 | Leu        | Glu        | Ala        | Trp         | Leu<br>460  | Gln        | Arg          | Glu        | Ala          |
| Gln<br>465 | Thr         | Lev        | Gln         | Gln          | Tyr<br>470 | Arg        | Val        | Glu        | Leu        | Ala<br>475  |             | Lys        | His          | Gln        | Lys<br>480   |
| Thr        | Let         | ı Glr      | Leu         | Leu<br>485   | Arg        | Lys        | Gln        | Gln        | Thr<br>490 |             | Ile         | Leu        | Asp          | Asp<br>495 | Glu          |
| Lev        | ılle        | e Glr      | Trp<br>500  | Lys          | Arg        | Arg        | Gln        | Gln<br>505 | Leu        | Ala         | Gly         | Asn        | Gly<br>510   | Gly        | Pro          |
| Pro        | Gl:         | Gly<br>515 | / Ser       |              | Asp        | Val        | Leu<br>520 | Gln        | Ser        | Trp         | Cys         | Glu<br>525 | Lys          | Leu        | Ala          |
| Glu        | 1 Ile<br>53 | e Ile      | Trp         | Gln          | Asn        | Arg<br>535 |            | Gln        | Ile        | Arg         | Arg<br>540  |            | Glu          | His        | Leu          |
| CVS        | s Gli       | n Gli      | ı Leu       | Pro          | Ile        |            |            | Pro        | Val        | Glu         | Glu         | Met        | Leu          | Ala        | Glu          |
| 549        | 5           |            |             |              | 550        |            |            |            |            | 555         | •           |            |              |            | 560          |
| Va.        | l As        | n Ala      | a Thr       | : Ile        | Thr        | Asp        | Ile        | Ile        | Ser<br>570 |             | Leu         | . Val      | Thr          | Ser<br>575 | Thr          |
|            |             |            | 580         | Lys          | Gln        |            |            | 585        |            |             |             |            | 590          | )          | Lys          |
|            |             | 59         | 5           |              |            |            | 600        | )          |            |             |             | 605        | )            |            | His          |
|            | 61          | 0          |             |              |            | 615        | 5          |            |            |             | 620         | )          |              |            | Ala          |
| 62         | 5           |            |             |              | 630        | 1          |            |            |            | 635         | 5           |            |              |            | Glu<br>640   |
| 11         | e Le        | u As       | n Ası       | n Cys<br>649 |            | Va]        | l Met      | Glu        | ту:<br>650 |             | s Glr       | n Ala      | a Thi        | 655 Gly    | / Thr        |
| Le         | u Se        | r Al       | a His       |              | e Arg      | Ası        | n Met      | Ser<br>665 |            | ı Ly:       | s Arg       | g Ile      | e Lys<br>670 | s Arg<br>O | g Ala        |
|            |             | 67         | 5           |              |            |            | 680        | )          |            |             |             | 68         | 5            |            | l Leu        |
|            | 69          | 0          |             |              |            | 69         | 5          |            |            |             | 700         | C          |              |            | n Val        |
| 70         | 5           |            |             |              | 710        | )          |            |            |            | 71          | 5           |            |              |            | n Asp<br>720 |
| Hi         | s As        |            |             | 72           | 5          |            |            |            | 73         | 0           |             |            |              | 73         |              |
| G]         | y Au        | g Va       | al Pr<br>74 |              | e Ala      | a Va       | l Pr       | o As<br>74 |            | s Va        | l Le        | u Tr       | p Pr<br>75   | o Gl<br>0  | n Leu        |
|            |             | 75         | 55          |              |            |            | 76         | 0          |            |             |             | 76         | 5            |            | n Arg        |
|            | 7           | 70         |             |              |            | 77         | 5          |            |            |             | 78          | 0          |              |            | e Asn        |
| 78         | 35          |            |             |              | 79         | 0          |            |            |            | 79          | 95          |            |              |            | r Trp<br>800 |
| Se         | er G        | ln Pl      | ne As       | n Ar<br>80   |            | u As       | n Le       | eu Pr      |            | .у Ті<br>.0 | np As       | η Τζ       | r Th         | r Ph<br>81 | e Trp        |

| Gln        | Trp         | Phe        | Asp<br>820 | Gly        | Val         | Met                 | Glu         | Val<br>825 | Leu        | Lys         | Lys         | His         | His<br>830 | Lys        | Pro        |    |
|------------|-------------|------------|------------|------------|-------------|---------------------|-------------|------------|------------|-------------|-------------|-------------|------------|------------|------------|----|
| His        | Trp         | Asn<br>835 | Asp        | Gly        | Ala         | Ile                 | Leu<br>840  | Gly        | Phe        | Val         | Asn         | Lys<br>845  | Gln        | Gln        | Ala        |    |
| His        | Asp<br>850  | Leu        | Leu        | Ile        | Asn         | Lys<br>855          | Pro         | Asp        | Gly        | Thr         | Phe<br>860  | Leu         | Leu        | Arg        | Phe        |    |
| Ser<br>865 | Asp         | Ser        | Glu        | Ile        | Gly<br>870  | Gly                 | Ile         | Thr        | Ile        | Ala<br>875  | Trp         | Lys         | Phe        | Asp        | Ser<br>880 |    |
| Pro        | Glu         | Arg        | Asn        | Leu<br>885 | Trp         | Asn                 | Leu         | Lys        | Pro<br>890 | Phe         | Thr         | Thr         | Arg        | Asp<br>895 | Phe        |    |
| Ser        | Ile         | Arg        | Ser<br>900 | Leu        | Ala         | Asp                 | Arg         | Leu<br>905 | Gly        | Asp         | Leu         | Ser         | Tyr<br>910 | Leu        | Ile        |    |
| Tyr        | Val         | Phe<br>915 | Pro        | Asp        | Arg         | Pro                 | Lys<br>920  | Asp        | Glu        | Val         | Phe         | Ser<br>925  | Lys        | Tyr        | Tyr        |    |
| Thr        | Pro<br>930  | Val        | Leu        | Ala        | Lys         | Ala<br>935          | Val         | Asp        | Gly        | Tyr         | Val<br>940  |             | Pro        | Gln        | Ile        |    |
| Lys<br>945 | Gln         | Val        | Val        | Pro        | Glu<br>950  | Phe                 | Val         | Asn        | Ala        | Ser<br>955  | Ala         | Asp         | Ala        | Gly        | Gly<br>960 |    |
| Ser        | Ser         | Ala        | Thr        | Tyr<br>965 | Met         | Asp                 | Gln         | Ala        | Pro<br>970 | Ser         | Pro         | Ala         | Val        | Cys<br>975 | Pro        |    |
| Gln        | Ala         | Pro        | Tyr<br>980 | Asn        | Met         | Tyr                 | Pro         | Gln<br>985 | Asn        | Pro         | Asp         | His         | Val<br>990 | Leu        | Asp        |    |
| Gln        | Asp         | Gly<br>995 | Glu        | Phe        | Asp         |                     | Asp<br>1000 | Glu        | Thr        | Met         | _           | Val<br>1005 | Ala        | Arg        | His        |    |
|            | Glu<br>1010 | Glu        | Leu        | Leu        |             | Arg<br>1015         | Pro         | Met        | Asp        |             | Leu<br>1020 | Asp         | Ser        | Arg        | Leu        |    |
| Ser<br>025 | Pro         | Pro        | Ala        | _          | Leu<br>1030 | Phe                 | Thr         | Ser        |            | Arg<br>1035 | Gly         | Ser         | Leu        |            | 1          |    |
|            |             | (2)        | ) IN       | FORM       | ATIOI       | v FOI               | R SE(       | Q ID       | NO:        | 56:         |             |             |            |            |            |    |
|            | (:          | i) SI      | EQUEI      | VCE (      | CHAR        | ACTE                | RIST        | ICS:       |            |             |             |             |            |            |            |    |
|            |             |            |            |            |             | basic ac            | se pa       | airs       |            |             |             |             |            |            |            |    |
|            |             | (C)        | STRA       | ANDEI      | ONES!       |                     | ingle       | е          |            |             |             |             |            |            |            |    |
|            | ( -         |            |            |            |             | E: cI               |             |            |            |             |             |             |            |            |            |    |
|            |             |            | FEAT       |            |             |                     |             |            |            |             |             |             |            |            |            |    |
|            |             | (B)        | LO         | TATIO      | ON: 3       | Codi:<br>L:<br>MAT: |             | equei      | nce        |             |             |             |            |            |            |    |
|            | (:          | ki) s      | SEQUI      | ENCE       | DESC        | RIP                 | rion        | : SE       | Q ID       | NO:         | 56:         |             |            |            |            |    |
|            | GCG<br>Ala  |            |            |            |             |                     |             |            |            |             |             |             |            |            |            | 48 |
| 1          |             |            |            | 5          |             |                     |             |            | 10         |             |             |             |            | 15         |            |    |
|            | ACT<br>Thr  | Ala        |            |            |             |                     |             |            |            |             |             |             |            |            |            | 96 |

AAG GGG CAG CCA TTC GAT GTG GGC CCA CGC TAC ACG CAG CTG CAG TAC Lys Gly Gln Pro Phe Asp Val Gly Pro Arg Tyr Thr Gln Leu Gln Tyr 35 40 45

| ATC<br>Ile       | GGC<br>Gly<br>50  | GAG<br>Glu        | GGC<br>Gly            | GCG<br>Ala           | TAC<br>Tyr        | GGC<br>Gly<br>55      | ATG<br>Met        | GTC<br>Val          | AGC<br>Ser           | TCA<br>Ser        | GCT<br>Ala<br>60      | TAT<br>Tyr          | GAC<br>Asp          | CAC<br>His         | GTG<br>Val            | 192 |
|------------------|-------------------|-------------------|-----------------------|----------------------|-------------------|-----------------------|-------------------|---------------------|----------------------|-------------------|-----------------------|---------------------|---------------------|--------------------|-----------------------|-----|
| CGC<br>Arg<br>65 | AAG<br>Lys        | ACC<br>Thr        | AGA<br>Arg            | GTG<br>Val           | GCC<br>Ala<br>70  | ATC<br>Ile            | AAG<br>Lys        | AAG<br>Lys          | ATC<br>Ile           | AGC<br>Ser<br>75  | CCC<br>Pro            | TTT<br>Phe          | GAG<br>Glu          | CAT<br>His         | CAA<br>Gln<br>80      | 240 |
| ACC<br>Thr       | TAC<br>Tyr        | TGT<br>Cys        | CAG<br>Gln            | CGC<br>Arg<br>85     | ACG<br>Thr        | CTG<br>Leu            | AGG<br>Arg        | GAG<br>Glu          | ATC<br>Ile<br>90     | CAG<br>Gln        | ATC<br>Ile            | TTG<br>Leu          | CTG<br>Leu          | CGA<br>Arg<br>95   | TTC<br>Phe            | 288 |
| CGC<br>Arg       | CAT<br>His        | GAG<br>Glu        | AAT<br>Asn<br>100     | GTT<br>Val           | ATA<br>Ile        | GGC<br>Gly            | ATC<br>Ile        | CGA<br>Arg<br>105   | GAC<br>Asp           | ATC<br>Ile        | CTC<br>Leu            | AGA<br>Arg          | GCG<br>Ala<br>110   | CCC                | ACC<br>Thr            | 336 |
| CTG<br>Leu       | GAA<br>Glu        | GCC<br>Ala<br>115 | Met                   | AGA<br>Arg           | GAT<br>Asp        | GTT<br>Val            | ТАС<br>Туг<br>120 | ATT<br>Ile          | GTT<br>Val           | CAG<br>Gln        | GAC<br>Asp            | CTC<br>Leu<br>125   | ATG<br>Met          | GAG<br>Glu         | ACA<br>Thr            | 384 |
| GAC<br>Asp       | CTG<br>Leu<br>130 | Tyr               | AAG<br>Lys            | CTG<br>Leu           | CTT<br>Leu        | AAA<br>Lys<br>135     | AGC<br>Ser        | CAG<br>Gln          | CAG<br>Gln           | CTG<br>Leu        | AGC<br>Ser<br>140     | Asn                 | GAC<br>Asp          | CAC                | ATC                   | 432 |
| TGC<br>Cys       | Tyr               | TTC<br>Phe        | CTC                   | TAC<br>Tyr           | CAG<br>Gln<br>150 | Ile                   | CTC<br>Leu        | CGG<br>Arg          | GGC<br>Gly           | CTC<br>Leu<br>155 | Lys                   | TAT<br>Tyr          | ATA                 | CAC<br>His         | TCA<br>Ser<br>160     | 480 |
| GCC<br>Ala       | C AAT<br>AST      | GTC<br>Val        | G CTC                 | CAC<br>His<br>165    | Arg               | GAC<br>Asp            | CTG<br>Leu        | AAG<br>Lys          | Pro                  | Ser               | CAA:                  | CTC                 | CTI<br>Let          | 175                | AAC<br>Asn            | 528 |
| AC(              | C ACC             | TG(               | C GAG<br>S Asp<br>180 | Leu                  | 'AAC              | ATC<br>Ile            | TGI<br>Cys        | GAT<br>Asp<br>185   | Ph∈                  | GGC<br>Gly        | CTC<br>Lev            | G GCC               | CGC<br>Arg<br>190   | g Ile              | r GCT<br>e Ala        | 576 |
| GA(<br>Ası       | CC'<br>Pro        | GA(<br>Gl)        | u Hi:                 | C GAC<br>s Asp       | CAC<br>His        | ACT<br>Thr            | GG(<br>G1)        | / Phe               | CTC                  | ACC<br>1 Thi      | G GAG                 | TA'<br>1 Ty:<br>20! | r Vai               | G GCG              | C ACA<br>a Thr        | 624 |
| CG(              | TG<br>Tr<br>21    | o Ty              | C CG.                 | A GCC<br>g Ala       | CCA<br>Pro        | A GAC<br>O Glu<br>215 | ılle              | C ATC               | G CTI                | AA 1<br>ASI       | r TCC<br>n Se:<br>22: | r Ly                | G GGG<br>S Gl       | с та<br>у ту       | C ACC<br>r Thr        | 672 |
| AA<br>Ly<br>22   | s Se              | C AT              | C GA<br>e As          | C ATO                | TG(<br>Tr)<br>23  | o Sei                 | r GTY             | G GGK               | TG(<br>y Cy:         | E AT's Ile        | e Le                  | G GC<br>u Al        | T GA:<br>a Gl       | G AT<br>u Me       | G CTC<br>t Leu<br>240 | 720 |
| TC<br>Se         | C AA<br>r As      | c cg<br>n Ar      | G CC<br>g Pr          | C ATY<br>O Ile<br>24 | e Ph              | c cc<br>e Pr          | C GG<br>G G1      | C AAG<br>y Ly:      | G CAG<br>S Hi:<br>25 | s Ту              | C CT<br>r Le          | G GA<br>u As        | C CA<br>p Gl        | G CT<br>n Le<br>25 | C AAC<br>eu Asn<br>55 | 768 |
| CA<br>Hi         | C AT<br>s Il      | T CT<br>e Le      | 'A GG<br>eu G1<br>26  | y Il                 | C TT<br>e Le      | G GG<br>u Gl          | T TC<br>y Se      | C CC.<br>r Pr<br>26 | o Se                 | C CA<br>r Gl      | G GA<br>n Gl          | .G GA<br>.u As      | C CT<br>sp Le<br>27 | eu As              | AT TGC<br>sn Cys      | 816 |
| AT<br>Il         | C AI<br>e Il      | T AA<br>e As      | C AT<br>n Me          | G AA<br>t Ly         | G GC<br>s Al      | C CG<br>a Ar          | A AA<br>g As      | C TA<br>n Ty        | C CT                 | G CA<br>u Gl      | .G TC<br>.n Se        | T CT                | rg co<br>eu Pr      | CC TO              | CG AAA<br>er Lys      | 864 |

275 280 285

| Thr               | AAG<br>Lys<br>290             | GTG<br>Val        | GCT<br>Ala          | TGG<br>Trp         | GCC<br>Ala            | AAG<br>Lys<br>295 | CTC<br>Leu        | TTT<br>Phe         | CCT<br>Pro           | Lys               | TCT<br>Ser<br>300 | GAC<br>Asp            | TCC<br>Ser         | AAA<br>Lys         | GCT<br>Ala            | 912  |
|-------------------|-------------------------------|-------------------|---------------------|--------------------|-----------------------|-------------------|-------------------|--------------------|----------------------|-------------------|-------------------|-----------------------|--------------------|--------------------|-----------------------|------|
| CTT<br>Leu<br>305 | GAC<br>Asp                    | CTG<br>Leu        | CTG<br>Leu          | GAC<br>Asp         | CGG<br>Arg<br>310     | ATG<br>Met        | TTA<br>Leu        | ACC<br>Thr         | TTC<br>Fhe           | AAC<br>Asn<br>315 | CCA<br>Pro        | AAC<br>Asn            | AAG<br>Lys         | CGC<br>Arg         | ATC<br>Ile<br>320     | 960  |
| ACA<br>Thr        | GTA<br>Val                    | GAG<br>Glu        | GAA<br>Glu          | GCG<br>Ala<br>325  | CTG<br>Leu            | GCT<br>Ala        | CAC<br>His        | CCT<br>Pro         | TAC<br>Tyr<br>330    | CTG<br>Leu        | GAA<br>Glu        | CAG<br>Gln            | TAC<br>Tyr         | TAC<br>Tyr<br>335  | GAT<br>Asp            | 1008 |
| CCG<br>Pro        | ACA<br>Thr                    | TAD<br>qzA        | GAG<br>Glu<br>340   | CCA<br>Pro         | GTG<br>Val            | GCC<br>Ala        | GAG<br>Glu        | GAG<br>Glu<br>345  | CCA<br>Pro           | TTC<br>Phe        | ACC<br>Thr        | TTC<br>Phe            | GAC<br>Asp<br>350  | ATG<br>Met         | GAG<br>Glu            | 1056 |
| CTG<br>Leu        | GAT<br>Asp                    | GAC<br>Asp<br>355 | CTC<br>Leu          | CCC<br>Pro         | AAG<br>Lys            | GAG<br>Glu        | CGG<br>Arg<br>360 | CTG<br>Leu         | AAG<br>Lys           | GAG<br>Glu        | TTG<br>Leu        | ATC<br>Ile<br>365     | TTC<br>Phe         | CAG<br>Gln         | GAG<br>Glu            | 1104 |
| ACA<br>Thr        | GCC<br>Ala<br>370             | CGC<br>Arg        | TTC<br>Phe          | CAG<br>Gln         | CCA<br>Pro            | GGG<br>Gly<br>375 | GCG<br>Ala        | CCA<br>Pro         | GAG<br>Glu           | GGC<br>Gly        | CCC<br>Pro<br>380 | Gly                   | CGC<br>Arg         | GCC<br>Ala         | ATG<br>Met            | 1152 |
| AGT<br>Ser<br>385 | AAA<br>Lys                    | GGA<br>Gly        | GAA<br>Glu          | GA.A<br>Glu        | CTT<br>Leu<br>390     | TTC<br>Phe        | ACT<br>Thr        | GGA<br>Gly         | GTT<br>Val           | GTC<br>Val<br>395 | CCA<br>Pro        | ATT                   | CTT                | GTT<br>Val         | GAA<br>Glu<br>400     | 1200 |
| TTA<br>Leu        | GAT<br>Asp                    | GGC<br>Gly        | GAT<br>Asp          | GTI<br>Val         | . Asn                 | GGG<br>Gly        | CAA<br>Gln        | . AAA<br>. Lys     | TTC<br>Phe<br>410    | Ser               | GTT<br>Val        | AGT<br>Ser            | GGA<br>Gly         | GAC<br>Glu<br>415  | GGT<br>1 Gly          | 1248 |
| GAA<br>Glu        | GGT<br>Gly                    | GAT<br>Asp        | GCA<br>Ala<br>420   | Thi                | TAC                   | GGA<br>Gly        | AAA<br>Lys        | CTT<br>Lev<br>425  | 1 Thr                | CTT<br>Leu        | `AAA              | A TTI<br>S Phe        | 116<br>430         | Cy:                | ACT<br>Thr            | 1296 |
| ACT<br>Thr        | G17<br>GGG                    | AAC<br>Lys<br>435 | Leu                 | CC.                | r GTT<br>o Val        | CCA<br>Pro        | TGC<br>Trp<br>440 | Pro                | A ACC                | CTI               | GTC<br>Val        | C ACT<br>l Thr<br>445 | Thi                | r CTY              | C ACT<br>u Thr        | 1344 |
| ТАТ<br>Туг        | GGT<br>Gl <sub>3</sub><br>450 | / Val             | CAF<br>Glr          | A TGG              | TTI<br>S Phe          | TCT<br>Ser<br>459 | Arg               | TAC                | c cca<br>r Pro       | A GAT             | CA'<br>Hi:        | s Met                 | G AAI<br>E Ly:     | A CA               | G CAT<br>n His        | 1392 |
| GAC<br>Asi<br>465 | Fhe                           | r TT(<br>∋ Phe    | AAC<br>E Lys        | G AG'              | T GCC<br>r Ala<br>470 | a Me              | CCC<br>Pro        | G GA               | A GG'<br>u Gl        | TA:               | c Va              | A CAG                 | g GA<br>n Gl       | A AG<br>u Ar       | A ACT<br>g Thr<br>480 | 1440 |
| ATA<br>Ile        | A TT<br>e Pho                 | r TAC<br>e Tyr    | C AAA               | A GA<br>s As<br>48 | p Ası                 | GGG<br>Gl:        | AA E<br>Y As:     | C TA<br>n Ty       | C AAG<br>r Ly:<br>49 | s Thi             | A CG<br>r Ar      | T GC                  | T GA<br>a Gl       | A GT<br>u Va<br>49 | C AAG<br>1 Lys<br>5   | 1488 |
| TT"<br>Fh         | r GA<br>e Gl                  | A GG<br>u Gl      | T GA<br>Y As;<br>50 | p Th               | C CT                  | r GT<br>u Va      | T AA<br>1 As      | T AG<br>n Ar<br>50 | g Il                 | C GA              | G TT<br>u Le      | 'A AA<br>:u Ly        | A GG<br>s Gl<br>51 | λIJ                | T GAT<br>.e Asp       | 1536 |

| TTT<br>Phe        | AAA<br>Lys        | GAA<br>Glu<br>515 | GAT<br>Asp        | GGA<br>Gly        | AAC<br>Asn        | ATT<br>Ile        | CTT<br>Leu<br>520 | GGA<br>Gly        | CAC<br>His        | AAA<br>Lys        | ATG<br>Met        | GAA<br>Glu<br>525 | TAC<br>Tyr        | AAT<br>Asn        | TAT<br>Tyr        |   | 1584 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---|------|
| AAC<br>Asn        | TCA<br>Ser<br>530 | CAT<br>His        | AAT<br>Asn        | GTA<br>Val        | TAC<br>Tyr        | ATC<br>Ile<br>535 | ATG<br>Met        | GCA<br>Ala        | GAC<br>Asp        | AAA<br>Lys        | CCA<br>Pro<br>540 | AAG<br>Lys        | AAT<br>Asn        | GGC<br>Gly        | ATC<br>Ile        |   | 1632 |
| AAA<br>Lys<br>545 | GTT<br>Val        | AAC<br>Asn        | TTC<br>Phe        | AAA<br>Lys        | ATT<br>Ile<br>550 | AGA<br>Arg        | CAC<br>His        | AAC<br>Asn        | ATT<br>Ile        | AAA<br>Lys<br>555 | GAT<br>Asp        | GGA<br>Gly        | AGC<br>Ser        | GTT<br>Val        | CAA<br>Gln<br>560 |   | 1680 |
| TTA<br>Leu        | GCA<br>Ala        | GAC<br>Asp        | CAT<br>His        | TAT<br>Tyr<br>565 | CAA<br>Gln        | CAA<br>Gln        | AAT<br>Asn        | ACT<br>Thr        | CCA<br>Pro<br>570 | ATT<br>Ile        | GGC<br>Gly        | GAT<br>Asp        | GGC<br>Gly        | CCT<br>Pro<br>575 | GTC<br>Val        |   | 1728 |
| CTT<br>Leu        | TTA<br>Leu        | CCA<br>Pro        | GAC<br>Asp<br>580 | Asn               | CAT               | TAC<br>Tyr        | CTG<br>Leu        | TCC<br>Ser<br>585 | Thr               | CAA<br>Gln        | TCT<br>Ser        | GCC               | CTT<br>Leu<br>590 | TCC<br>Ser        | AAA<br>Lys        |   | 1776 |
| GAT<br>Asp        | CCC               | AAC<br>Asn<br>595 | Glu               | . AAG<br>. Lys    | AGA<br>Arg        | GAT<br>Asp        | CAC<br>His        | Met               | ATC<br>Ile        | CTT<br>Leu        | CTI<br>Leu        | GAG<br>Glu<br>605 | Phe               | GTA<br>Val        | ACA<br>Thr        |   | 1824 |
| GCT<br>Ala        | GCT<br>Ala        | Gly               | ATI<br>/ Ile      | ACA<br>Thr        | CAT<br>His        | GGC<br>Gly<br>615 | Met               | GAT<br>Asp        | GAA               | CTA<br>Leu        | TAC<br>TYI<br>620 | Lys               | CCT<br>Pro        | CAG<br>Glr        | GAG<br>Glu        | Т | 1873 |
| AA                |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |   | 1875 |

## (2) INTFORMATION FOR SEQ ID NO:57:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 624 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:

Met Ala Ala Ala Ala Ala Pro Gly Gly Gly Gly Glu Pro Arg 10 Gly Thr Ala Gly Val Val Pro Val Val Pro Gly Glu Val Glu Val Val 20 25 Lys Gly Gln Pro Phe Asp Val Gly Pro Arg Tyr Thr Gln Leu Gln Tyr 40 Ile Gly Glu Gly Ala Tyr Gly Met Val Ser Ser Ala Tyr Asp His Val 55 Arg Lys Thr Arg Val Ala Ile Lys Lys Ile Ser Pro Phe Glu His Gln 70 Thr Tyr Cys Gln Arg Thr Leu Arg Glu Ile Gln Ile Leu Leu Arg Phe 90 Arg His Glu Asn Val Ile Gly Ile Arg Asp Ile Leu Arg Ala Pro Thr 105 110 100 Leu Glu Ala Met Arg Asp Val Tyr Ile Val Gln Asp Leu Met Glu Thr

|           |     | 115 |          |            |       |      | 120        |       |            |      |      | 125  |      |            |              |
|-----------|-----|-----|----------|------------|-------|------|------------|-------|------------|------|------|------|------|------------|--------------|
|           | 130 |     |          |            |       | 135  |            |       |            |      | 140  |      |      |            |              |
| Cys 7     |     |     |          |            | 150   |      |            |       |            | 155  |      |      |      |            | 160          |
| Ala A     | Asn | Val | Leu      | His<br>165 | Arg   | Asp  | Leu        | Lys   | Pro<br>170 | Ser  | Asn  | Leu  | Leu  | 11e<br>175 | Asn          |
| Thr S     |     |     | 180      |            |       |      |            | 185   |            |      |      |      | 190  |            |              |
| Asp !     |     | 195 |          |            |       |      | 200        |       |            |      |      | 205  |      |            |              |
|           | 210 |     |          |            |       | 215  |            |       |            |      | 220  |      |      |            |              |
| Lys : 225 |     |     |          |            | 230   |      |            |       |            | 235  |      |      |      |            | 240          |
| Ser .     |     |     |          | 245        |       |      |            |       | 250        |      |      |      |      | 255        |              |
| His       |     |     | 260      |            |       |      |            | 265   |            |      |      |      | 270  |            |              |
|           |     | 275 |          |            |       |      | Asn<br>280 |       |            |      |      | 285  |      |            |              |
|           | 290 |     |          |            |       | 295  | Leu        |       |            |      | 300  |      |      |            |              |
| 305       |     |     |          |            | 310   |      | Leu        |       |            | 315  |      |      |      |            | 320          |
|           |     |     |          | 325        |       |      | His        |       | 330        |      |      |      |      | 335        |              |
|           |     |     | 340      |            |       |      | Glu        | 345   |            |      |      |      | 350  |            |              |
|           |     | 355 |          |            |       |      | Arg<br>360 |       |            |      |      | 365  |      |            |              |
|           | 370 |     |          |            |       | 375  |            |       |            |      | 380  |      |      |            |              |
| 385       |     |     |          |            | 390   |      |            |       |            | 395  | )    |      |      |            | Glu<br>400   |
|           |     |     |          | 405        | ,     |      |            |       | 410        | )    |      |      |      | 415        |              |
|           |     |     | 420      |            |       |      |            | 425   |            |      |      |      | 430  | )          | Thr          |
|           |     | 435 |          |            |       |      | 440        |       |            |      |      | 445  | •    |            | Thr          |
|           | 450 |     |          |            |       | 455  | 5          |       |            |      | 460  | )    |      |            | His          |
| 465       |     |     |          |            | 470   | ı    |            |       |            | 475  | ō    |      |      |            | Thr<br>480   |
|           |     |     |          | 485        | 5     |      |            |       | 490        | )    |      |      |      | 499        |              |
|           |     |     | 500      | )          |       |      |            | 505   | 5          |      |      |      | 510  | )          | Asp          |
|           |     | 515 | <u>,</u> |            |       |      | 520        | )     |            |      |      | 525  | 5    |            | ı Tyr        |
|           | 530 | )   |          |            |       | 53   | 5          |       |            |      | 540  | )    |      |            | y Ile        |
| 545       |     |     |          |            | 55(   | )    |            |       |            | 55   | 5    |      |      |            | 1 Gln<br>560 |
|           |     |     |          | 56         | 5     |      |            |       | 57         | 0    |      |      |      | 57         |              |
| Leu       | Lev | Pro | a Ası    | o Asi      | n His | s Ty | r Lei      | ı Se: | r Th       | r Gl | n Se | r Al | a Le | u Se       | r Lys        |

|                  |                   | 5                       | 80                     |                          |                                         |                     |                   | 85                |                  |                  |                   |                   | 90                |                  |                  |     |
|------------------|-------------------|-------------------------|------------------------|--------------------------|-----------------------------------------|---------------------|-------------------|-------------------|------------------|------------------|-------------------|-------------------|-------------------|------------------|------------------|-----|
| Asp P            | 5                 | 95                      |                        |                          |                                         | $\epsilon$          | 00                |                   |                  |                  | 6                 | 05                |                   |                  |                  |     |
| Ala A<br>6       | la (              | Sly 1                   | le 7                   | Thr F                    |                                         | Sly M<br>515        | iet A             | sp G              | Slu I            |                  | Tyr I<br>520      | ys F              | ro (              | 3ln (            | Glu              |     |
|                  |                   | (2)                     | INFO                   | ORMA'                    | NOIT                                    | FOR                 | SEQ               | ID 1              | 10:58            | 3:               |                   |                   |                   |                  |                  |     |
|                  |                   | (A) !<br>(B) '<br>(C) . | LENG'<br>TYPE<br>STRAI | FH:<br>: nu<br>:<br>NDED | HARAC<br>1815<br>cleic<br>NESS<br>: lin | base<br>ac:<br>sir  | e pai<br>id       |                   |                  |                  |                   |                   |                   |                  |                  |     |
|                  |                   | i) M<br>×) F            |                        |                          | TYPE                                    | : cDi               | AV                |                   |                  |                  |                   |                   |                   |                  |                  |     |
|                  |                   | (B)                     | LOC                    | OITA                     | Y: C<br>N: 1<br>NFOR                    | 1                   | 811               | quen              | ce               |                  |                   |                   |                   |                  |                  |     |
|                  | (×                | i) S                    | EQUE                   | NCE                      | DESC                                    | RIPT                | ION:              | SEQ               | ID               | NO:5             | 8:                |                   |                   |                  |                  |     |
| ATG Met .        | GCG<br>Ala        | GCG<br>Ala              | GCG<br>Ala             | GCG<br>Ala<br>5          | GCG<br>Ala                              | GCG<br>Ala          | GGC<br>Gly        | CCG<br>Pro        | GAG<br>Glu<br>10 | ATG<br>Met       | GTC<br>Val        | CGC<br>Arg        | GGG<br>Gly        | CAG<br>Gln<br>15 | GTG<br>Val       | 48  |
| TTC<br>Phe       | GAC<br>Asp        | GTG<br>Val              | GGG<br>Gly<br>20       | CCG<br>Pro               | CGC<br>Arg                              | TAC<br>Tyr          | ACT<br>Thr        | AAT<br>Asn<br>25  | CTC<br>Leu       | TCG<br>Ser       | TAC<br>Tyr        | ATC<br>Ile        | GGA<br>Gly<br>30  | GAA<br>Glu       | GGC<br>Gly       | 96  |
| GCC<br>Ala       | TAC<br>Tyr        | GGC<br>Gly<br>35        | ATG<br>Met             | GTT<br>Val               | TGT<br>Cys                              | TCT<br>Ser          | GCT<br>Ala<br>40  | тат<br>туг        | GAT<br>Asp       | AAT<br>Asn       | CTC<br>Leu        | AAC<br>Asn<br>45  | AAA<br>Lys        | GTT<br>Val       | CGA<br>Arg       | 144 |
| GTT<br>Val       | GCT<br>Ala<br>50  | ATC<br>Ile              | AAG<br>Lys             | AAA<br>Lys               | ATC<br>Ile                              | AGT<br>Ser<br>55    | CCT<br>Pro        | TTT<br>Phe        | GAG<br>Glu       | CAC<br>His       | CAG<br>Gln<br>60  | ACC<br>Thr        | TAC<br>Tyr        | TGT<br>Cys       | CAG<br>Gln       | 192 |
| AGA<br>Arg<br>65 | ACC<br>Thr        | CTG<br>Leu              | AGA<br>Arg             | GAG<br>Glu               | ATA<br>Ile<br>70                        | AAA<br>Lys          | ATC<br>Ile        | CTA<br>Leu        | CTG<br>Leu       | CGC<br>Arg<br>75 | TTC<br>Phe        | AGA<br>Arg        | CAT<br>His        | GAG<br>Glu       | AAC<br>Asn<br>80 | 240 |
| ATC<br>Ile       | ATC<br>Ile        | GGC<br>Gly              | ATC<br>Ile             | AAT<br>Asn<br>85         | GAC<br>Asp                              | ATC<br>Ile          | ATC<br>Ile        | CGG<br>Arg        | GCA<br>Ala<br>90 | CCA<br>Pro       | ACC<br>Thr        | ATT               | GAG<br>Glu        | CAG<br>Gln<br>95 | ATG<br>Met       | 288 |
| AAA<br>Lys       | GAT<br>Asp        | GTA<br>Val              | TAT<br>Tyr<br>100      | Ile                      | GTA<br>Val                              | CAG<br>Gln          | GAC<br>Asp        | CTC<br>Leu<br>105 | Met              | GAG<br>Glu       | ACA<br>Thr        | GAT<br>Asp        | CTI<br>Leu<br>110 | ı Tyr            | AAG<br>Lys       | 336 |
| CTC<br>Leu       | TTG               | AAG<br>Lys<br>115       | Thr                    | CAG<br>Gln               | CAC<br>His                              | CTC                 | AGC<br>Ser<br>120 | Asn               | 'GAT             | CAT<br>His       | TATC              | TGC<br>Cys<br>125 | Туг               | TTT              | r CTT<br>e Leu   | 384 |
| TAT<br>Tyr       | CAC<br>Glr<br>130 | ıle                     | CTG                    | AGA<br>Arg               | GGA<br>Gly                              | . TTA<br>Leu<br>135 | Lys               | TAT<br>Tyr        | T ATA            | A CAT            | TCA<br>Ser<br>140 | : Ala             | CAA C             | r GT<br>n Val    | r CTG<br>l Leu   | 432 |

|     |     |     |     |     |     | TCC<br>Ser        |     |     |     |     |     |     |     |     |     | 480  |
|-----|-----|-----|-----|-----|-----|-------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
|     |     |     |     |     |     | GGC<br>Gly        |     |     |     |     |     |     |     |     |     | 528  |
|     |     |     |     |     |     | ACA<br>Thr        |     |     |     |     |     |     |     |     |     | 576  |
|     |     |     |     |     |     | AAT<br>Asn        |     |     |     |     |     |     |     | _   |     | 624  |
|     |     |     |     |     |     | ATC<br>Ile<br>215 |     | _   | _   |     |     |     |     |     |     | 672  |
|     |     |     |     |     |     | TAC<br>Tyr        |     |     |     |     |     |     |     |     |     | 720  |
|     |     |     |     |     |     | CAG<br>Gln        |     |     |     |     |     |     |     |     |     | 768  |
|     |     |     |     |     |     | CTT<br>Leu        |     |     |     |     |     |     |     |     |     | 816  |
|     |     |     |     |     |     | AAC<br>Asn        |     |     |     |     |     |     |     |     |     | 864  |
|     |     |     |     |     |     | AAC<br>Asn<br>295 |     |     |     |     |     |     |     |     |     | 912  |
|     | Leu |     |     | Pro |     | CTG<br>Leu        |     | Gln |     | Tyr | Asp |     |     |     |     | 960  |
|     |     |     |     |     |     | TTC               |     |     |     |     |     |     |     |     |     | 1008 |
|     |     |     |     |     |     | GAA<br>Glu        |     |     |     |     |     |     |     |     |     | 1056 |
|     |     |     | Tyr |     |     | ATG<br>Met        |     |     |     |     |     |     | Met |     |     | 1104 |
| AAG | GGC | GAG | GAG | CTG | TTC | ACC               | GGG | GTG | GTG | CCC | ATC | CTG | GTC | GAG | CTG | 1152 |

| Lys               | Gly<br>370        | Glu               | Glu                 | Leu                 | Phe                    | Thr<br>375        | Gly               | Val                   | Val               | Pro               | Ile<br>380        | Leu                   | Val                | Glu                | Leu                   |      |
|-------------------|-------------------|-------------------|---------------------|---------------------|------------------------|-------------------|-------------------|-----------------------|-------------------|-------------------|-------------------|-----------------------|--------------------|--------------------|-----------------------|------|
| GAC<br>Asp<br>385 | GGC<br>Gly        | GAC<br>Asp        | GTA<br>Val          | AAC<br>Asn          | GGC<br>Gly<br>390      | CAC<br>His        | AAG<br>Lys        | TTC<br>Phe            | AGC<br>Ser        | GTG<br>Val<br>395 | TCC<br>Ser        | GGC<br>Gly            | GAG<br>Glu         | GGC<br>Gly         | GAG<br>Glu<br>400     | 1200 |
| GGC<br>Gly        | GAT<br>Asp        | GCC<br>Ala        | ACC<br>Thr          | TAC<br>Tyr<br>405   | GGC<br>Gly             | AAG<br>Lys        | CTG<br>Leu        | ACC<br>Thr            | CTG<br>Leu<br>410 | AAG<br>Lys        | TTC<br>Phe        | ATC<br>Ile            | TGC<br>Cys         | ACC<br>Thr<br>415  | ACC<br>Thr            | 1248 |
| GGC<br>Gly        | AAG<br>Lys        | CTG<br>Leu        | CCC<br>Pro<br>420   | GTG<br>Val          | CCC<br>Pro             | TGG<br>Trp        | CCC<br>Pro        | ACC<br>Thr<br>425     | CTC<br>Leu        | GTG<br>Val        | ACC<br>Thr        | ACC<br>Thr            | CTG<br>Leu<br>430  | ACC<br>Thr         | TAC<br>Tyr            | 1296 |
|                   |                   |                   |                     |                     | AGC<br>Ser             |                   |                   |                       |                   |                   |                   |                       |                    |                    |                       | 1344 |
| TTC<br>Phe        | TTC<br>Phe<br>450 | AAG<br>Lys        | TCC<br>Ser          | GCC<br>Ala          | ATG<br>Met             | CCC<br>Pro<br>455 | GAA<br>Glu        | GGC<br>Gly            | TAC<br>Tyr        | GTC<br>Val        | CAG<br>Gln<br>460 | Glu                   | CGC                | ACC<br>Thr         | ATC<br>Ile            | 1392 |
| TTC<br>Phe<br>465 | Phe               | AAG<br>Lys        | GAC<br>Asp          | GAC<br>Asp          | GGC<br>Gly<br>470      | AAC<br>Asn        | TAC<br>Tyr        | AAG<br>Lys            | ACC<br>Thr        | CGC<br>Arg<br>475 | GCC<br>Ala        | GAG<br>Glu            | GTG<br>Val         | AAG<br>Lys         | TTC<br>Phe<br>480     | 1440 |
| GAG<br>Glu        | GGC<br>Gly        | GAC<br>Asp        | ACC<br>Thr          | CTG<br>Leu<br>485   | Val                    | AAC<br>Asn        | CGC<br>Arg        | ATC<br>Ile            | GAG<br>Glu<br>490 | Leu               | AAC<br>Lys        | GGC<br>Gly            | ATC                | GAC<br>Asp<br>495  | TTC<br>Phe            | 1488 |
| AAG<br>Lys        | GAG<br>Glu        | GAC<br>Asp        | GGC<br>Gly<br>500   | Asn                 | : ATC                  | CTG<br>Leu        | GGG<br>Gly        | CAC<br>His<br>505     | Lys               | CTG<br>Leu        | GAC<br>Glu        | TAC<br>1 Tyr          | AAC<br>Asr<br>510  | Ty:                | AAC<br>Asn            | 1536 |
| AGC<br>Ser        | CAC<br>His        | AAC<br>Asn<br>515 | Val                 | TAT<br>Tyr          | ATC                    | ATG<br>Met        | GCC<br>Ala<br>520 | Asp                   | AAG<br>Lys        | CAG<br>Glr        | AAC<br>Lys        | 3 AA0<br>3 Asr<br>525 | ı Gly              | TATO               | C AAG<br>e Lys        | 1584 |
| GTC<br>Val        | AAC<br>Asn<br>530 | Phe               | AAG<br>Lys          | ATC                 | CGC<br>Arg             | CAC<br>His        | Asn               | : ATC                 | GAG<br>Glu        | GAC<br>Asp        | GG(<br>G1)<br>540 | y Se                  | C GTV              | G CAG              | G CTC<br>n Leu        | 1632 |
| GC0<br>Ala<br>545 | a Asp             | CAC<br>His        | TAC                 | CAC<br>Glr          | G CAG<br>n Glr<br>550  | Asn               | ACC<br>Thr        | CCC                   | ATC               | GGG<br>Gly<br>555 | y As              | C GG(<br>p Gl;        | C CC<br>y Pr       | C GT<br>o Va       | G CTG<br>1 Leu<br>560 |      |
| CT(<br>Le         | G CCC             | GAC<br>Asi        | AAC<br>Asr          | CAC<br>h His<br>565 | з Туг                  | CTC<br>Lev        | AGC<br>Sei        | C ACC                 | CAC<br>Glr<br>570 | n Se              | C GC<br>r Al      | C CT<br>a Le          | G AG<br>u Se       | C AA<br>r Ly<br>57 | A GAC<br>s Asp<br>5   | 1728 |
| CC(               | C AAC<br>o Asi    | GA(               | G AAC<br>Lys<br>580 | s Ar                | C GAT                  | r CAC             | TA C              | G GTX<br>t Val<br>585 | l Le              | J Le              | G GA<br>u Gl      | G TT<br>u Ph          | C GT<br>e Va<br>59 | 1 Th               | C GCC                 | 1776 |
|                   |                   |                   | e Thi               |                     | C GG(<br>u Gl <u>)</u> |                   |                   | p Gl                  |                   |                   |                   |                       | A                  |                    |                       | 1815 |

- (2) INFORMATION FOR SEQ ID NO:59:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 604 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:

Met Ala Ala Ala Ala Ala Gly Pro Glu Met Val Arg Gly Gln Val 10 5 1 Phe Asp Val Gly Pro Arg Tyr Thr Asn Leu Ser Tyr Ile Gly Glu Gly 25 20 Ala Tyr Gly Met Val Cys Ser Ala Tyr Asp Asn Leu Asn Lys Val Arg 40 Val Ala Ile Lys Lys Ile Ser Pro Phe Glu His Gln Thr Tyr Cys Gln Arg Thr Leu Arg Glu Ile Lys Ile Leu Leu Arg Phe Arg His Glu Asn 75 Ile Ile Gly Ile Asn Asp Ile Ile Arg Ala Pro Thr Ile Glu Gln Met 90 Lys Asp Val Tyr Ile Val Gln Asp Leu Met Glu Thr Asp Leu Tyr Lys 100 105 Leu Leu Lys Thr Gln His Leu Ser Asn Asp His Ile Cys Tyr Phe Leu 120 125 Tyr Gln Ile Leu Arg Gly Leu Lys Tyr Ile His Ser Ala Asn Val Leu 140 135 His Arg Asp Leu Lys Pro Ser Asn Leu Leu Leu Asn Thr Thr Cys Asp 155 150 Leu Lys Ile Cys Asp Phe Gly Leu Ala Arg Val Ala Asp Pro Asp His 170 165 Asp His Thr Gly Phe Leu Thr Glu Tyr Val Ala Thr Arg Trp Tyr Arg 185 180 Ala Pro Glu Ile Met Leu Asn Ser Lys Gly Tyr Thr Lys Ser Ile Asp 200 205 Ile Trp Ser Val Gly Cys Ile Leu Ala Glu Met Leu Ser Asn Arg Pro 215 220 Ile Phe Pro Gly Lys His Tyr Leu Asp Gln Leu Asn His Ile Leu Gly 230 235 lle Leu Gly Ser Pro Ser Gln Glu Asp Leu Asn Cys Ile Ile Asn Leu 245 250 Lys Ala Arg Asn Tyr Leu Leu Ser Leu Pro His Lys Asn Lys Val Pro 265 260 Trp Asn Arg Leu Phe Pro Asn Ala Asp Ser Lys Ala Leu Asp Leu Leu 280 285 Asp Lys Met Leu Thr Phe Asn Pro His Lys Arg Ile Glu Val Glu Gln 295 Ala Leu Ala His Pro Tyr Leu Glu Gln Tyr Tyr Asp Pro Ser Asp Glu 310 315 Pro Ile Ala Glu Ala Pro Phe Lys Phe Asp Met Glu Leu Asp Asp Leu 330

Pro Lys Glu Lys Leu Lys Glu Leu Ile Phe Glu Glu Thr Ala Arg Phe

340 345 Gln Pro Gly Tyr Arg Ser Met Asp Pro Pro Val Ala Thr Met Val Ser 355 360 Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu Leu 375 Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly Glu 390 395 Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr 405 410 Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Leu Thr Tyr 420 425 Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln His Asp 435 440 Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile 460 455 Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys Phe 465 470 475 Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe 490 495 485 Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr Asn 505 510 500 Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile Lys 520 515 Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu 535 540 Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Leu 555 545 550 Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys Asp 570 575 565 Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr Ala 580 585 Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys 600

#### (2) INFORMATION FOR SEQ ID NO:60:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2511 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
  - (A) NAME/KEY: Coding Sequence
  - (B) LOCATION: 1...2508
  - (D) OTHER INFORMATION:
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:

ATG GAG CTG GAA AAC ATC GTG GCC AAC ACG GTC TTG CTG AAA GCC AGG
Met Glu Leu Glu Asn Ile Val Ala Asn Thr Val Leu Leu Lys Ala Arg

1 5 10 15

|     |     |     |     |     |     |     |     | CAG<br>Gln        |     |     |     |     |     |     |     | 144 |
|-----|-----|-----|-----|-----|-----|-----|-----|-------------------|-----|-----|-----|-----|-----|-----|-----|-----|
|     |     |     |     |     |     |     |     | TGT<br>Cys        |     |     |     |     |     |     |     | 192 |
|     |     |     |     |     |     |     |     | ACC<br>Thr        |     |     |     |     |     |     |     | 240 |
|     |     |     |     |     |     |     |     | GAA<br>Glu        |     |     |     |     |     |     |     | 288 |
|     |     |     |     |     | _   |     |     | ATT<br>Ile<br>105 |     |     |     |     |     |     |     | 336 |
|     |     |     | _   |     | _   | _   |     | GTT<br>Val        |     |     |     |     |     |     |     | 384 |
|     |     |     |     |     |     |     |     | CCG<br>Pro        |     |     |     |     |     |     |     | 432 |
|     |     |     |     |     |     |     |     | CTG<br>Leu        |     |     |     |     |     |     |     | 480 |
|     |     |     |     |     |     |     |     | CGC<br>Arg        |     |     |     |     |     |     |     | 528 |
|     |     | _   |     | _   |     |     |     | ACT<br>Thr<br>185 |     |     | _   |     |     | _   |     | 576 |
|     |     |     |     |     |     |     | Val | TGT<br>Cys        |     |     |     |     |     |     |     | 624 |
|     |     |     |     |     |     |     |     | TTG<br>Leu        |     |     |     |     |     |     |     | 672 |
|     |     |     |     |     |     |     |     | AAT<br>Asn        |     |     |     |     |     |     |     | 720 |
|     |     |     |     |     |     |     |     | CTG<br>Leu        |     |     |     |     |     |     |     | 768 |
| GAT | GCA | CTG | TGC | TTG | GTC | CTG | ACC | ATC               | ATG | AAT | GGG | GGT | GAC | CTG | AAG | 816 |

| Asp        | Ala                   | Leu   | Суs<br>260        | Leu          | Val        | Leu                 | Thr        | Ile<br>265        | Met        | Asn        | Gly                   | Gly        | Asp<br>270          | Leu  | Lys                   |      |
|------------|-----------------------|-------|-------------------|--------------|------------|---------------------|------------|-------------------|------------|------------|-----------------------|------------|---------------------|------|-----------------------|------|
|            |                       |       |                   |              |            |                     |            | CCT<br>Pro        |            |            |                       |            |                     |      |                       | 864  |
|            |                       |       |                   |              |            |                     |            | TGC<br>Cys        |            |            |                       |            |                     |      |                       | 912  |
|            |                       |       |                   |              |            |                     |            | AAA<br>Lys        |            |            |                       |            |                     |      |                       | 960  |
|            |                       |       |                   |              |            |                     |            | GAC<br>Asp        |            |            |                       |            |                     |      |                       | 1008 |
|            |                       |       |                   |              |            |                     |            | CGG<br>Arg<br>345 |            |            |                       |            |                     |      |                       | 1056 |
|            |                       |       |                   |              |            |                     |            | AGG<br>Arg        |            |            |                       |            |                     |      |                       | 1104 |
|            |                       | Leu   |                   |              |            |                     |            | GAG<br>Glu        |            |            |                       |            |                     |      |                       | 1152 |
|            | Arg                   |       |                   |              |            | Lys                 |            | AAG<br>Lys        |            |            | Glu                   |            |                     |      |                       | 1200 |
|            |                       |       |                   |              | Glu        |                     |            | TCC<br>Ser        |            |            |                       |            |                     |      | Ala                   | 1248 |
| AAC<br>Lys | TCC<br>Ser            | ATC   | TGC<br>Cys<br>420 | Lys          | ATG<br>Met | CTG<br>Leu          | CTC<br>Leu | ACG<br>Thr<br>425 | Lys        | GAT<br>Asp | GCG<br>Ala            | AAC<br>Lys | G CAC<br>Glr<br>430 | Arg  | CTG<br>Leu            | 1296 |
|            |                       |       | Glu               |              |            |                     |            | a Glu             |            |            |                       |            | s Pro               |      | TTC<br>Phe            | 1344 |
| AGC<br>Arg | 3 AAC<br>3 Asr<br>450 | n Met | AAC<br>Asr        | TTC<br>h Fhe | AAC<br>Lys | G CGC<br>Arg<br>455 | Le         | A GAF<br>ı Glu    | GCC<br>Ala | GG(        | G ATC<br>/ Met<br>460 | Lev        | G GAG               | C CC | CCC<br>Pro            | 1392 |
|            | e Val                 |       |                   |              |            | g Ala               |            |                   |            |            | s Asp                 |            |                     |      | C ATC<br>p Ile<br>480 | 1440 |
|            |                       |       |                   |              | · Val      |                     |            |                   |            | ı Le       |                       |            |                     |      | C GAC<br>p Asp<br>5   | 1488 |

|     |     |     |     |     |     | TCC<br>Ser        |     |     |     |     |     |     |     |     |            | 1536 |
|-----|-----|-----|-----|-----|-----|-------------------|-----|-----|-----|-----|-----|-----|-----|-----|------------|------|
|     |     |     |     |     |     | GAA<br>Glu        |     |     |     |     |     |     |     |     |            | 1584 |
|     |     | _   |     |     |     | CCA<br>Pro<br>535 |     |     |     |     |     |     |     |     |            | 1632 |
|     |     |     |     |     |     | CTC<br>Leu        |     |     |     |     |     |     |     |     |            | 1680 |
|     |     |     |     |     |     | CCC<br>Pro        |     |     |     |     |     |     |     |     |            | 1728 |
|     |     |     |     |     |     | AGC<br>Ser        |     |     |     |     |     |     |     |     |            | 1776 |
|     |     |     |     |     |     | GTG<br>Val        |     |     |     |     |     |     |     |     |            | 1824 |
|     |     |     | _   |     |     | GAG<br>Glu<br>615 |     |     |     |     |     |     |     |     |            | 1872 |
|     |     |     |     |     |     | GGC<br>Gly        |     |     |     |     |     |     |     |     |            | 1920 |
|     |     |     |     |     |     | ACC<br>Thr        |     |     |     |     |     |     |     |     |            | 1968 |
|     |     |     |     |     |     | ACC<br>Thr        |     |     |     |     |     |     |     |     |            | 2016 |
|     |     |     |     |     |     | CAC<br>His        |     |     |     |     |     |     |     |     | GAA<br>Glu | 2064 |
|     |     |     |     |     |     | ACC<br>Thr<br>695 |     |     |     |     |     |     |     |     |            | 2112 |
|     |     |     |     |     |     | AAG<br>Lys        |     |     |     |     |     |     |     |     |            | 2160 |
| ATC | GAG | CTG | AAG | GGC | ATC | GAC               | TTC | AAG | GAG | GAC | GGC | AAC | ATC | CTG | GGG        | 2208 |

| Ile | Glu        | Leu | Lys | Gly<br>725 | Ile      | Asp | Phe | Lys | Glu<br>730        | Asp | Gly | Asn | Ile | Leu<br>735 | Gly        |      |
|-----|------------|-----|-----|------------|----------|-----|-----|-----|-------------------|-----|-----|-----|-----|------------|------------|------|
|     |            |     |     |            |          |     |     |     | CAC<br>His        |     |     |     |     |            |            | 2256 |
|     |            |     |     |            |          |     |     |     | AAC<br>Asn        |     |     |     |     |            |            | 2304 |
|     |            |     |     |            |          |     |     |     | GAC<br>Asp        |     |     |     |     |            |            | 2352 |
|     |            |     |     |            |          |     |     |     | CCC<br>Pro        |     | Asn |     |     |            |            | 2400 |
|     |            |     |     |            |          |     |     |     | AAC<br>Asn<br>810 |     |     |     |     |            | ATG<br>Met | 2448 |
|     |            |     |     | Phe        |          |     |     |     | Gly               |     |     |     |     | Met        | GAC<br>Asp | 2496 |
|     | CTG<br>Leu |     | Lys |            | <b>.</b> |     |     |     |                   |     |     |     |     |            |            | 2511 |

#### (2) INFORMATION FOR SEQ ID NO:61:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 836 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

 Met
 Glu
 Leu
 Glu
 Asn
 I le
 Val
 Ala
 Asn
 Thr
 Val
 Leu
 Leu
 Lys
 Ala
 Arg
 Lys
 Gly
 Lys
 Lys
 Bar
 Lys
 Gly
 Lys
 Ser
 Lys
 Lys
 Lys
 Glu
 Arg
 Lys
 Glu
 Asp
 Leu
 Arg
 Arg
 Thr
 Arg
 Glu
 Lys
 Glu
 Asp
 Leu
 Arg
 Arg
 Thr
 Arg</t

|            |            |            | 100        |            |            |            |            | 105        |            |            |            |            | 110        |            |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Lys        | Ser        | Pro<br>115 | Val        | Phe        | Ile        | Ala        | Gln<br>120 | Val        | Gly        | Gln        | Asp        | Leu<br>125 | Val        | Ser        | Gln        |
| Thr        | Glu<br>130 | Glu        | Lys        | Leu        | Leu        | Gln<br>135 | Lys        | Pro        | Cys        | Lys        | Glu<br>140 | Leu        | Phe        | Ser        | Ala        |
| Cys<br>145 | Ala        | Gln        | Ser        | Val        | His<br>150 | Glu        | Tyr        | Leu        | Arg        | Gly<br>155 | Glu        | Pro        | Phe        | His        | Glu<br>160 |
| _          |            |            | Ser        | 165        |            |            |            | _          | 170        |            |            |            |            | 175        |            |
|            |            |            | Pro<br>180 |            |            | _          |            | 185        |            |            |            | _          | 190        |            |            |
| _          | _          | 195        | Gly        |            |            |            | 200        | _          |            | _          |            | 205        |            |            |            |
| _          | 210        |            | Tyr        |            |            | 215        |            |            |            |            | 220        |            |            |            |            |
| Arg<br>225 | Lys        | Gly        | Glu        | Ser        | Met<br>230 | Ala        | Leu        | Asn        | Glu        | Lys<br>235 | Gln        | He         | Leu        | GIu        | Lys<br>240 |
|            | Asn        | Ser        | Gln        | Phe<br>245 |            | Val        | Asn        | Leu        | Ala<br>250 |            | Ala        | Tyr        | Glu        | Thr<br>255 |            |
| Asp        | Ala        | Leu        | Суs<br>260 | Leu        | Val        | Leu        | Thr        | 11e<br>265 | Met        | Asn        | Gly        | Gly        | Asp<br>270 | Leu        | Lys        |
|            |            | 275        | Tyr        |            |            |            | 280        |            |            |            |            | 285        |            |            |            |
|            | 290        |            | Ala        |            |            | 295        |            |            |            |            | 300        |            |            |            |            |
| 305        |            |            | Val        |            | 310        |            |            |            |            | 315        |            |            |            |            | 320        |
| -          | _          | _          | His        | 325        |            |            |            |            | 330        |            |            |            |            | 335        |            |
|            |            | _          | Asp<br>340 |            |            |            |            | 345        |            |            |            |            | 350        |            |            |
|            |            | 355        | Val        |            |            |            | 360        | _          | _          |            |            | 365        |            |            |            |
|            | 370        |            | Gly        |            |            | 375        |            |            |            |            | 380        |            |            |            |            |
| 385        | _          | _          | Arg<br>Thr | _          | 390        | _          |            | _          |            | 395        |            |            |            |            | 400        |
|            |            |            | Cys        | 405        |            |            |            |            | 410        |            |            |            |            | 415        |            |
|            |            |            | 420<br>Glu |            |            |            |            | 425        |            |            |            |            | 430        |            |            |
|            |            | 435        |            |            |            |            | 440        |            |            |            |            | 445        |            |            | Pro        |
| _          | 450        |            |            |            |            | 455        |            |            |            |            | 460        |            |            |            |            |
| 465        |            |            |            |            | 470        |            |            |            |            | 475        |            |            |            |            | 11e<br>480 |
|            |            |            |            | 485        |            |            |            |            | 490        |            |            |            |            | 495        | Asp        |
|            |            |            | 500        |            |            |            |            | 505        |            |            |            |            | 510        |            | Gln        |
|            |            | 515        |            |            |            |            | 520        |            |            |            |            | 525        |            |            | Gly        |
|            | 530        |            |            |            |            | 535        |            |            |            |            | 540        |            |            |            | Glu        |
| 545        |            |            |            |            | 550        |            |            |            |            | 555        |            |            |            |            | Gln<br>560 |
| Asn        | Asn        | ser        | rys        | ser        | ser        | PIO        | ser        | ser        | гÀг        | unr        | ser        | rne        | ASN        | пıS        | His        |

570 565 Ile Asn Ser Asn His Val Ser Ser Asn Ser Thr Gly Ser Ser Arg Asp 580 585 590 Pro Pro Val Ala Thr Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly **59**5 600 Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys 610 615 620 Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu 630 635 Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro 645 650 655 Thr Leu Val Thr Thr Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr 660 665 670 Pro Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu 675 680 Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr 690 695 700 Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg 705 710 715 720 Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly 725 730 735 His Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala 740 745 750 Asp Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn 755 760 765 Ile Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr 770 775 780 Pro Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser 790 795 800 Thr Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met 805 810 815 Val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp 825 820 Glu Leu Tyr Lys 835

## (2) INFORMATION FOR SEQ ID NO:62:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1893 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: CDNA
- (ix) FEATURE:
  - (A) NAME/KEY: Coding Sequence
  - (B) LOCATION: 1...1890
  - (D) OTHER INFORMATION:
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:

ATG AGC AGA AGC AAG CGT GAC AAC AAT TTT TAT AGT GTA GAG ATT GGA
Met Ser Arg Ser Lys Arg Asp Asn Asn Phe Tyr Ser Val Glu Ile Gly
1 5 10 15

GAT TOT ACA TTO ACA GTO CTG AAA CGA TAT CAG AAT TTA AAA COT ATA

| Asp              | Ser                 | Thr               | Phe<br>20         | Thr                  | Val                 | Leu                 | Lys               | Arg<br>25         | Tyr                   | Gln                | Asn                | Leu                | Lys<br>30         | Pro                   | Ile                   |     |
|------------------|---------------------|-------------------|-------------------|----------------------|---------------------|---------------------|-------------------|-------------------|-----------------------|--------------------|--------------------|--------------------|-------------------|-----------------------|-----------------------|-----|
| GGC<br>Gly       | TCA<br>Ser          | GGA<br>Gly<br>35  | GCT<br>Ala        | CAA<br>Gln           | GGA<br>Gly          | ATA<br>Ile          | GTA<br>Val<br>40  | TGC<br>Cys        | GCA<br>Ala            | GCT<br>Ala         | TAT<br>Tyr         | GAT<br>Asp<br>45   | GCC<br>Ala        | ATT<br>Ile            | CTT<br>Leu            | 144 |
| GAA<br>Glu       | AGA<br>Arg<br>50    | AAT<br>Asn        | GTT<br>Val        | GCA<br>Ala           | ATC<br>Ile          | AAG<br>Lys<br>55    | AAG<br>Lys        | CTA<br>Leu        | AGC<br>Ser            | CGA<br>Arg         | CCA<br>Pro<br>60   | TTT<br>Phe         | CAG<br>Gln        | AAT<br>Asn            | CAG<br>Gln            | 192 |
| ACT<br>Thr<br>65 | CAT<br>His          | GCC<br>Ala        | AAG<br>Lys        | CGG<br>Arg           | GCC<br>Ala<br>70    | TAC<br>Tyr          | AGA<br>Arg        | GAG<br>Glu        | CTA<br>Leu            | GTT<br>Val<br>75   | CTT<br>Leu         | ATG<br>Met         | AAA<br>Lys        | TGT<br>Cys            | GTT<br>Val<br>80      | 240 |
| AAT<br>Asn       | CAC<br>His          | AAA<br>Lys        | AAT<br>Asn        | ATA<br>Ile<br>85     | ATT<br>Ile          | GGC<br>Gly          | CTT<br>Leu        | TTG<br>Leu        | AAT<br>Asn<br>90      | GTT<br>Val         | TTC<br>Phe         | ACA<br>Thr         | CCA<br>Pro        | CAG<br>Gln<br>95      | AAA<br>Lys            | 288 |
| TCC<br>Ser       | CTA<br>Leu          | GAA<br>Glu        | GAA<br>Glu<br>100 | TTT<br>Phe           | CAA<br>Gln          | GAT<br>Asp          | GTT<br>Val        | TAC<br>Tyr<br>105 | ATA<br>Ile            | GTC<br>Val         | ATG<br>Met         | GAG<br>Glu         | CTC<br>Leu<br>110 | Met                   | GAT<br>Asp            | 336 |
| GCA<br>Ala       | AAT<br>Asn          | CTT<br>Leu<br>115 | Cys               | CAA<br>Gln           | GTG<br>Val          | ATT                 | CAG<br>Gln<br>120 | ATG<br>Met        | GAG<br>Glu            | CTA<br>Leu         | GAT<br>Asp         | CAT<br>His         | Glu               | AGA<br>Arg            | ATG<br>Met            | 384 |
| TCC<br>Ser       | ТАС<br>Тут<br>130   | Leu               | CTC               | тат<br>Туг           | CAG<br>Gln          | ATG<br>Met<br>135   | CTG<br>Leu        | TGT<br>Cys        | GGA<br>Gly            | ATC<br>Ile         | AAG<br>Lys<br>140  | His                | CTI<br>Lev        | CAT<br>His            | TCT<br>Ser            | 432 |
|                  | Gly                 |                   |                   |                      |                     | Asp                 |                   |                   |                       |                    | Asr                |                    |                   |                       | A AAA<br>Lys<br>160   | 480 |
| TCT<br>Ser       | GAT<br>Asp          | TGC<br>Cys        | ACT<br>Thr        | TTC<br>Lev<br>165    | Lys                 | ATT                 | CTI<br>Leu        | GAC<br>Asp        | TTC<br>Phe<br>170     | G17                | CTC                | G GCC              | a Arg             | G ACT<br>g Thi<br>175 | GCA<br>Ala            | 528 |
| GG#<br>Gly       | ACC<br>Thr          | AGT<br>Sei        | TTT<br>Phe        | Met                  | ATG<br>: Met        | ACG<br>Thr          | CCT               | TAT<br>Tyr<br>185 | · Val                 | GT(                | G ACT              | r Ar               | TAC<br>TY1<br>190 | r Ty                  | AGA<br>Arg            | 576 |
| GCA<br>Ala       | A CCC               | GAG<br>Glv<br>195 | ı Val             | ATC                  | CTI<br>Leu          | GGC<br>Gly          | ATC<br>Met        | Gly               | TAC<br>Tyr            | Ly:                | G GA               | A AA<br>u As<br>20 | n Va              | G GA'<br>l As         | T TTA<br>p Leu        | 624 |
| TG(<br>Tr)       | G TCT<br>Ser<br>210 | · Va              | G GGC             | FTG0                 | TATT                | T ATC<br>Met<br>215 | Gl                | A GAA<br>y Glu    | A ATO                 | GT<br>Va           | T TG<br>1 Cy<br>22 | s Hi               | C AA<br>s Ly      | TA A<br>S Il          | C CTC<br>e Leu        | 672 |
| TT<br>Pho<br>22  | e Pro               | A GG.             | A AGO<br>y Arg    | GA(<br>JAS           | тап<br>р Туз<br>230 | c Ile               | r GA′<br>∂ Asj    | T CAC             | G TG(                 | G AA<br>O As<br>23 | n Ly               | A GT<br>s Va       | T AT              | T GA<br>e Gl          | A CAG<br>u Gln<br>240 | 720 |
| CT<br>Le         | T GG<br>u Gl        | A AC<br>y Th      | A CCZ<br>r Pro    | A TG'<br>5 Cy:<br>24 | s Pro               | r GAX<br>o Gli      | A TT              | C ATY             | 3 AAG<br>t Ly:<br>250 | s Ly               | A CT<br>s Le       | G CA<br>u Gl       | A CC<br>n Pr      | A AC<br>o Th          | A GTA<br>r Val        | 768 |

| AGG<br>Arg        | ACT<br>Thr         | TAC<br>Tyr         | GTT<br>Val<br>260 | GAA<br>Glu            | AAC<br>Asn         | AGA<br>Arg           | Pro               | AAA<br>Lys<br>265     | TAT<br>Tyr        | GCT<br>Ala         | GGA<br>Gly         | TAT<br>Tyr         | AGC<br>Ser<br>270  | TTT<br>Phe         | GAG<br>Glu              | 816  |
|-------------------|--------------------|--------------------|-------------------|-----------------------|--------------------|----------------------|-------------------|-----------------------|-------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-------------------------|------|
| AAA<br>Lys        | CTC<br>Leu         | TTC<br>Phe<br>275  | CCT<br>Pro        | GAT<br>Asp            | GTC<br>Val         | CTT<br>Leu           | TTC<br>Phe<br>280 | CCA<br>Pro            | GCT<br>Ala        | GAC<br>Asp         | TCA<br>Ser         | GAA<br>Glu<br>285  | CAC<br>His         | AAC<br>Asn         | AAA<br>Lys              | 864  |
|                   |                    |                    |                   |                       |                    |                      |                   | TTG<br>Leu            |                   |                    |                    |                    |                    |                    |                         | 912  |
| GAT<br>Asp<br>305 | GCA<br>Ala         | TCT<br>Ser         | AAA<br>Lys        | AGG<br>Arg            | ATC<br>Ile<br>310  | TCT<br>Ser           | GTA<br>Val        | GAT<br>Asp            | GAA<br>Glu        | GCT<br>Ala<br>315  | CTC<br>Leu         | CAA<br>Gln         | CAC<br>His         | CCG<br>Pro         | TAC<br>Tyr<br>320       | 960  |
| ATC<br>Ile        | AAT<br>Asn         | GTC<br>Val         | TGG<br>Trp        | TAT<br>Tyr<br>325     | GAT<br>Asp         | CCT<br>Pro           | TCT<br>Ser        | GAA<br>Glu            | GCA<br>Ala<br>330 | GAA<br>Glu         | GCT<br>Ala         | CCA<br>Pro         | CCA<br>Pro         | CCA<br>Pro<br>335  | Lys                     | 1008 |
| ATC<br>Ile        | CCT<br>Pro         | GAC<br>Asp         | AAG<br>Lys<br>340 | Gln                   | TTA<br>Leu         | GAT<br>Asp           | GAA<br>Glu        | AGG<br>Arg<br>345     | GAA<br>Glu        | CAC<br>His         | ACA<br>Thr         | ATA<br>Ile         | GAA<br>Glu<br>350  | Glu                | TGG<br>Trp              | 1056 |
| AAA<br>Lys        | GAA<br>Glu         | TTC<br>Lev<br>355  | ıle               | TAT                   | AAG<br>Lys         | GAA<br>Glu           | GTT<br>Val<br>360 | ATG<br>Met            | GAC<br>Asp        | TTG                | GAG<br>Glu         | GAG<br>Glu<br>365  | Arc                | ACC<br>Thr         | AAG<br>Lys              | 1104 |
| AAT<br>Asn        | GGA<br>Gly<br>370  | Va]                | T ATA             | A CGG<br>Arg          | GGG<br>Gly         | CAG<br>Gln<br>375    | Pro               | TCT<br>Ser            | CCT               | TTA<br>Lev         | GCA<br>Ala<br>380  | Glr                | GTC<br>1 Val       | G CAG              | G CAG<br>n Gln          | 1152 |
| TGC<br>Trp<br>385 | ) Asp              | CCA<br>Pro         | A CCC             | G GTC                 | GCC<br>Ala<br>390  | Thr                  | ATG<br>Met        | GTG<br>Val            | AGC<br>Ser        | AAC<br>Lys<br>395  | Gly                | GAC                | G GAG              | G CTY              | G TTC<br>u Phe<br>400   | 1200 |
| AC(<br>Thi        | c Gly              | GTY<br>Va          | G GTV             | G CCC<br>1 Pro<br>405 | o Il€              | CTG<br>Lev           | GTC<br>Val        | GAG<br>Glu            | CTC<br>Lev<br>410 | . Ası              | 617<br>C GGC       | GA(                | C GT.              | A AA<br>1 As<br>41 | c GGC<br>n Gly<br>5     | 1248 |
| CA(               | C AAK<br>s Lys     | G TT<br>s Ph       | e Se              | r Va                  | l Sei              | c Gly                | / Glu             | G GGC<br>1 Gly<br>425 | / Glu             | GGGG               | C GAT              | r GC(              | C AC<br>a Th<br>43 | r Ty               | c GGC<br>r Gly          | 1296 |
| AA(<br>Ly         | G CTO              | G AC<br>u Th<br>43 | r Le              | G AA<br>u Ly          | G TTO              | TA C                 | TG(<br>E Cy:      | s Thi                 | C ACC             | c GG<br>r Gl       | C AA(<br>y Ly:     | G CT<br>s Le<br>44 | u Pr               | C GI               | G CCC<br>il Pro         | 1344 |
| TG<br>Tr          | G CC<br>p Pr<br>45 | o Th               | C CT              | C GT<br>u Va          | G AC               | C ACC<br>r Th:<br>45 | r Le              | G ACC                 | C TAC<br>r Ty:    | c GG<br>r Gl       | C GT<br>y Va<br>46 | 1 G1               | .G TO<br>n Cy      | C TI               | C AGC<br>ne Ser         | 1392 |
| CG<br>Ar<br>46    | g Ty               | C CC               | C GA              | C CA<br>sp Hi         | C AT<br>s Me<br>47 | t Ly                 | G CA<br>s Gl      | G CAO                 | C GA<br>s As      | C TT<br>p Ph<br>47 | e Ph               | C AA<br>e Ly       | G TO               | CC GC<br>er Al     | CC ATG<br>la Met<br>480 |      |
| CC                | C GA               | A GC               | SC TA             | C GI                  | C CA               | .g ga                | G CG              | C AC                  | C AT              | C TI               | C TI               | 'C A               | AG GA              | AC G               | AC GGC                  | 1488 |

| Pro               | Glu               | Gly               | Tyr               | Val<br>485        | Gln               | Glu               | Arg               | Thr               | Ile<br>490        | Phe               | Phe               | Lys                 | Asp               | Asp<br>495        | Gly               |      |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------|-------------------|-------------------|-------------------|------|
| AAC<br>Asn        | TAC<br>Tyr        | AAG<br>Lys        | ACC<br>Thr<br>500 | CGC<br>Arg        | GCC<br>Ala        | GAG<br>Glu        | GTG<br>Val        | AAG<br>Lys<br>505 | TTC<br>Phe        | GAG<br>Glu        | GGC<br>Gly        | GAC<br>Asp          | ACC<br>Thr<br>510 | CTG<br>Leu        | GTG<br>Val        | 1536 |
| AAC<br>Asn        | CGC<br>Arg        | ATC<br>Ile<br>515 | GAG<br>Glu        | CTG<br>Leu        | AAG<br>Lys        | GGC<br>Gly        | ATC<br>Ile<br>520 | GAC<br>Asp        | TTC<br>Phe        | AAG<br>Lys        | GAG<br>Glu        | GAC<br>Asp<br>525   | GGC<br>Gly        | AAC<br>Asn        | ATC<br>Ile        | 1584 |
| CTG<br>Leu        | GGG<br>Gly<br>530 | CAC<br>His        | AAG<br>Lys        | CTG<br>Leu        | GAG<br>Glu        | ТАС<br>Туг<br>535 | AAC<br>Asn        | TAC<br>Tyr        | AAC<br>Asn        | AGC<br>Ser        | CAC<br>His<br>540 | AAC<br>Asn          | GTC<br>Val        | ТАТ<br>Туг        | ATC<br>Ile        | 1632 |
| ATG<br>Met<br>545 | GCC<br>Ala        | GAC<br>Asp        | AAG<br>Lys        | CAG<br>Gln        | AAG<br>Lys<br>550 | AAC<br>Asn        | GGC<br>Gly        | ATC<br>Ile        | AAG<br>Lys        | GTG<br>Val<br>555 | AAC<br>Asn        | TTC<br>Phe          | AAG<br>Lys        | ATC<br>Ile        | CGC<br>Arg<br>560 | 1680 |
| CAC<br>His        | AAC<br>Asn        | ATC<br>Ile        | GAG<br>Glu        | GAC<br>Asp<br>565 | Gly               | AGC<br>Ser        | GTG<br>Val        | CAG<br>Gln        | CTC<br>Leu<br>570 | GCC<br>Ala        | GAC<br>Asp        | CAC<br>His          | TAC<br>Tyr        | CAG<br>Gln<br>575 | Gln               | 1728 |
| AAC<br>Asn        | ACC<br>Thr        | CCC               | ATC<br>1le<br>580 | Gly               | GAC<br>Asp        | GGC<br>Gly        | CCC               | GTG<br>Val<br>585 | Leu               | CTG<br>Leu        | CCC<br>Pro        | GAC<br>Asp          | AAC<br>Asn<br>590 | His               | TAC<br>Tyr        | 1776 |
| CTG<br>Leu        | AGC<br>Ser        | ACC<br>Thr<br>595 | Gln               | TCC<br>Ser        | GCC<br>Ala        | CTC<br>Leu        | AGC<br>Ser<br>600 | Lys               | . GAC             | CCC<br>Pro        | AAC<br>Asi        | GAG<br>n Glu<br>605 | Lys               | CGC<br>Arg        | GAT<br>J Asp      | 1824 |
| CAC<br>His        | ATC<br>Met        | Va.               | CTC<br>Lev        | CTC<br>Let        | G GAC             | TTC<br>Phe<br>619 | e Val             | ACC<br>Thr        | GCC<br>Ala        | GCC<br>Alá        | GG(<br>G1)<br>620 | y Ile               | ACT<br>Thi        | CTC               | GGC<br>Gly        | 1872 |
|                   | Asp               | o Glu             | G CTC             | і Туі             | 630               | S<br>)            |                   | 70 71             | > NO              | . 63 -            |                   |                     |                   |                   |                   | 1893 |

## (2) INFORMATION FOR SEQ ID NO:63:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 630 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:

Glu Arg Asn Val Ala Ile Lys Lys Leu Ser Arg Pro Phe Gln Asn Gln Thr His Ala Lys Arg Ala Tyr Arg Glu Leu Val Leu Met Lys Cys Val Asn His Lys Asn Ile Ile Gly Leu Leu Asn Val Phe Thr Pro Gln Lys Ser Leu Glu Glu Phe Gln Asp Val Tyr Ile Val Met Glu Leu Met Asp Ala Asn Leu Cys Gln Val Ile Gln Met Glu Leu Asp His Glu Arg Met Ser Tyr Leu Leu Tyr Gln Met Leu Cys Gly Ile Lys His Leu His Ser Ala Gly Ile Ile His Arg Asp Leu Lys Pro Ser Asn Ile Val Val Lys Ser Asp Cys Thr Leu Lys Ile Leu Asp Phe Gly Leu Ala Arg Thr Ala Gly Thr Ser Phe Met Met Thr Pro Tyr Val Val Thr Arg Tyr Tyr Arg Ala Pro Glu Val Ile Leu Gly Met Gly Tyr Lys Glu Asn Val Asp Leu Trp Ser Val Gly Cys Ile Met Gly Glu Met Val Cys His Lys Ile Leu Phe Pro Gly Arg Asp Tyr Ile Asp Gln Trp Asn Lys Val Ile Glu Gln Leu Gly Thr Pro Cys Pro Glu Phe Met Lys Lys Leu Gln Pro Thr Val Arg Thr Tyr Val Glu Asn Arg Pro Lys Tyr Ala Gly Tyr Ser Phe Glu Lys Leu Phe Pro Asp Val Leu Phe Pro Ala Asp Ser Glu His Asn Lys Leu Lys Ala Ser Gln Ala Arg Asp Leu Leu Ser Lys Met Leu Val Ile Asp Ala Ser Lys Arg Ile Ser Val Asp Glu Ala Leu Gln His Pro Tyr Ile Asn Val Trp Tyr Asp Pro Ser Glu Ala Glu Ala Pro Pro Pro Lys Ile Pro Asp Lys Gln Leu Asp Glu Arg Glu His Thr Ile Glu Glu Trp Lys Glu Leu Ile Tyr Lys Glu Val Met Asp Leu Glu Glu Arg Thr Lys Asn Gly Val Ile Arg Gly Gln Pro Ser Pro Leu Ala Gln Val Gln Gln Trp Asp Pro Pro Val Ala Thr Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys Fhe Glu Gly Asp Thr Leu Val

|                                          |                                            |                                                                                                    | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |                                                                                                    |                                                     |                                                      | 505                                           |                                    |                                                                          |                                                            |                                              | 510                                    |                                                                   |                                            |                  |
|------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|-----------------------------------------------|------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------|----------------------------------------|-------------------------------------------------------------------|--------------------------------------------|------------------|
| Asn                                      | Arg                                        | Ile<br>515                                                                                         | Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Leu                                             | Lys                                                                                                | Gly                                                 | Ile<br>520                                           |                                               | Phe                                | Lys                                                                      | Glu                                                        | Asp<br>525                                   |                                        | Asn                                                               | Ile                                        |                  |
| Leu                                      | Gly<br>530                                 | His                                                                                                | Lys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Leu                                             | Glu                                                                                                | Tyr<br>535                                          | Asn                                                  | Tyr                                           | Asn                                | Ser                                                                      | His<br>540                                                 | Asn                                          | Val                                    | Tyr                                                               | Ile                                        |                  |
| Met<br>545                               | Ala                                        | Asp                                                                                                | Lys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gln                                             | Lys<br>550                                                                                         | Asn                                                 | Gly                                                  | Ile                                           | Lys                                | Val<br>555                                                               | Asn                                                        | Phe                                          | Lys                                    | Ile                                                               | Arg<br>560                                 |                  |
| His                                      | Asn                                        | Ile                                                                                                | Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Asp<br>565                                      | Gly                                                                                                | Ser                                                 | Val                                                  | Gln                                           | Leu<br>570                         | Ala                                                                      | Asp                                                        | His                                          | Tyr                                    | Gln<br>575                                                        | Gln                                        |                  |
| Asn                                      | Thr                                        | Pro                                                                                                | Ile<br>580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gly                                             | Asp                                                                                                | Gly                                                 | Pro                                                  | Val<br>585                                    | Leu                                | Leu                                                                      | Pro                                                        | Asp                                          | Asn<br>590                             | His                                                               | Tyr                                        |                  |
| Leu                                      | Ser                                        | Thr<br>595                                                                                         | Gln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ser                                             | Ala                                                                                                | Leu                                                 | Ser<br>600                                           | Lys                                           | Asp                                | Pro                                                                      | Asn                                                        | Glu<br>605                                   | Lys                                    | Arg                                                               | qzA                                        |                  |
| His                                      | Met<br>610                                 | Val                                                                                                | Leu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Leu                                             | Glu                                                                                                | Phe<br>615                                          | Val                                                  | Thr                                           | Ala                                | Ala                                                                      | Gly<br>620                                                 | Ile                                          | Thr                                    | Leu                                                               | Gly                                        |                  |
| Met<br>625                               | Asp                                        | Glu                                                                                                | Leu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tyr                                             | Lys<br>630                                                                                         |                                                     |                                                      |                                               |                                    |                                                                          |                                                            |                                              |                                        |                                                                   |                                            |                  |
|                                          |                                            | (2                                                                                                 | ) IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FORM                                            | IOITA                                                                                              | N FOR                                               | R SE(                                                | Q ID                                          | NO : 6                             | 54:                                                                      |                                                            |                                              |                                        |                                                                   |                                            |                  |
|                                          | (.                                         | i) SI<br>(A)                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                                    |                                                     | RIST:                                                |                                               |                                    |                                                                          |                                                            |                                              |                                        |                                                                   |                                            |                  |
|                                          |                                            | (B)                                                                                                | TYPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E: nı                                           | ıcle:                                                                                              | ic ac                                               | _                                                    |                                               |                                    |                                                                          |                                                            |                                              |                                        |                                                                   |                                            |                  |
|                                          |                                            |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                                    | inear                                               | _                                                    | -                                             |                                    |                                                                          |                                                            |                                              |                                        |                                                                   |                                            |                  |
|                                          |                                            | ii) N<br>ix) B                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | TYPI                                                                                               | E: cI                                               | ANC                                                  |                                               |                                    |                                                                          |                                                            |                                              |                                        |                                                                   |                                            |                  |
|                                          |                                            |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                                    |                                                     |                                                      |                                               |                                    |                                                                          |                                                            |                                              |                                        |                                                                   |                                            |                  |
|                                          |                                            | (A)                                                                                                | NAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Œ/KI                                            | EY: C                                                                                              | Codir                                               | ng Se                                                | eguer                                         | ice                                |                                                                          |                                                            |                                              |                                        |                                                                   |                                            |                  |
|                                          |                                            | (B)                                                                                                | LO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CATIO                                           | ON: 1                                                                                              | Codir<br>LI                                         | 818                                                  | eguer                                         | ice                                |                                                                          |                                                            |                                              |                                        |                                                                   |                                            |                  |
|                                          | ()                                         | (B)                                                                                                | LOC<br>OTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CATIO<br>HER I                                  | ON: I                                                                                              | 11<br>MATI                                          | 1818<br>ION:                                         |                                               |                                    | NO:6                                                                     | 54:                                                        |                                              |                                        |                                                                   |                                            |                  |
|                                          | TCT                                        | (B)<br>(D)<br>xi) S<br>CAG                                                                         | LOX<br>OTF<br>SEQUE<br>GAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CATIONER I                                      | ON: 1<br>INFOR<br>DESC<br>CCC                                                                      | l1<br>RMATI<br>CRIPI<br>ACG                         | 1818<br>ION:<br>TION:<br>TTC                         | : SEQ<br>TAC                                  | ) ID                               | CAG                                                                      | GAG                                                        |                                              |                                        |                                                                   |                                            | 48               |
|                                          | TCT                                        | (B)<br>(D)<br>xi) S                                                                                | LOX<br>OTF<br>SEQUE<br>GAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CATIONER I                                      | ON: 1<br>INFOR<br>DESC<br>CCC                                                                      | l1<br>RMATI<br>CRIPI<br>ACG                         | 1818<br>ION:<br>TION:<br>TTC                         | : SEQ<br>TAC                                  | ) ID                               | CAG                                                                      | GAG                                                        |                                              |                                        |                                                                   |                                            | 48               |
| Met<br>1<br>ATC                          | TCT<br>Ser                                 | (B)<br>(D)<br>xi) S<br>CAG<br>Gln                                                                  | LOX<br>OTH<br>SEQUE<br>GAG<br>Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CATION HER INCE AGG Arg 5                       | DN: INFOR                                                                                          | ACG Thr                                             | L818 LON: TION: TTC Phe TAC                          | : SEQ<br>TAC<br>Tyr<br>CAG                    | CGG<br>Arg<br>10                   | CAG<br>Gln<br>CTG                                                        | GAG<br>Glu<br>TCT                                          | Leu                                          | Asn<br>GTG                             | Lys<br>15<br>GGC                                                  | Thr                                        | 48               |
| Met<br>1<br>ATC                          | TCT<br>Ser                                 | (B)<br>(D)<br>xi) S<br>CAG<br>Gln                                                                  | LOX<br>OTH<br>SEQUE<br>GAG<br>Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CATION HER INCE AGG Arg 5                       | DN: INFOR                                                                                          | ACG Thr                                             | L818 LON: TION: TTC Phe TAC                          | : SEQ<br>TAC<br>Tyr<br>CAG                    | CGG<br>Arg<br>10                   | CAG<br>Gln<br>CTG                                                        | GAG<br>Glu<br>TCT                                          | Leu                                          | Asn<br>GTG                             | Lys<br>15<br>GGC                                                  | Thr                                        |                  |
| Met<br>1<br>ATC<br>Ile                   | TCT<br>Ser<br>TGG<br>Trp                   | (B) (D) (Xi) S CAG Gln GAG Glu TAT                                                                 | GAG GTG Val 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CATIC HER I ENCE AGG Arg 5 CCC Pro              | ON: INFOR                                                                                          | CRIPT ACG Thr CGT Arg                               | 1818<br>ION:<br>TION:<br>TTC<br>Phe<br>TAC<br>TYr    | TAC<br>Tyr<br>CAG<br>Gln<br>25                | CGG<br>Arg<br>10<br>AAC<br>Asn     | CAG<br>Gln<br>CTG<br>Leu                                                 | GAG<br>Glu<br>TCT<br>Ser                                   | Leu<br>CCA<br>Pro                            | Asn<br>GTG<br>Val<br>30<br>ACG         | Lys<br>15<br>GGC<br>Gly                                           | Thr<br>TCT<br>Ser                          |                  |
| Met<br>1<br>ATC<br>Ile                   | TCT<br>Ser<br>TGG<br>Trp                   | (B)<br>(D)<br>xi) S<br>CAG<br>Gln<br>GAG<br>Glu                                                    | GAG GTG Val 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CATIC HER I ENCE AGG Arg 5 CCC Pro              | ON: INFOR                                                                                          | CRIPT ACG Thr CGT Arg                               | 1818<br>ION:<br>TION:<br>TTC<br>Phe<br>TAC<br>TYr    | TAC<br>Tyr<br>CAG<br>Gln<br>25                | CGG<br>Arg<br>10<br>AAC<br>Asn     | CAG<br>Gln<br>CTG<br>Leu                                                 | GAG<br>Glu<br>TCT<br>Ser                                   | Leu<br>CCA<br>Pro                            | Asn<br>GTG<br>Val<br>30<br>ACG         | Lys<br>15<br>GGC<br>Gly                                           | Thr<br>TCT<br>Ser                          | 96               |
| Met<br>1<br>ATC<br>Ile<br>GGC<br>Gly     | TCT<br>Ser<br>TGG<br>Trp<br>GCC<br>Ala     | (B) (D) (A) (CAG GIN GAG GIU TAT Tyr 35 GCA                                                        | LOC OTHER SECULIAR SECU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CCC Pro                                         | DESC<br>CCC<br>Pro<br>GAG<br>Glu<br>GTG<br>Val                                                     | 11 CRIPI ACG Thr CGT Arg TGT Cys                    | 1818 CON: TTC Phe TAC TYr GCT Ala 40 TCC             | TAC Tyr  CAG Gln 25 GCT Ala                   | CCA                                | CAG<br>Gln<br>CTG<br>Leu<br>GAC<br>Asp                                   | GAG<br>Glu<br>TCT<br>Ser<br>ACA<br>Thr                     | CCA<br>Pro<br>AAA<br>Lys<br>45               | Asn GTG Val 30 ACG Thr                 | Lys<br>15<br>GGC<br>Gly<br>GGG<br>Gly                             | Thr TCT Ser TTA Leu CAT                    | 96               |
| Met<br>1<br>ATC<br>Ile<br>GGC<br>Gly     | TCT<br>Ser<br>TGG<br>Trp<br>GCC<br>Ala     | (B) (D) (Xi) S  CAG Gln  GAG Glu  TAT Tyr 35                                                       | LOC OTHER SECULIAR SECU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CCC Pro                                         | DESC<br>CCC<br>Pro<br>GAG<br>Glu<br>GTG<br>Val                                                     | 11 CRIPI ACG Thr CGT Arg TGT Cys                    | 1818 CON: TTC Phe TAC TYr GCT Ala 40 TCC             | TAC Tyr  CAG Gln 25 GCT Ala                   | CCA                                | CAG<br>Gln<br>CTG<br>Leu<br>GAC<br>Asp                                   | GAG<br>Glu<br>TCT<br>Ser<br>ACA<br>Thr                     | CCA<br>Pro<br>AAA<br>Lys<br>45               | Asn GTG Val 30 ACG Thr                 | Lys<br>15<br>GGC<br>Gly<br>GGG<br>Gly                             | Thr TCT Ser TTA Leu CAT                    | 96<br>144        |
| Met 1 ATC Ile GGC Gly CGT Arg            | TCT Ser TGG Trp GCC Ala GTG Val 50         | (B) (D) (A) (A) (B) (D) (A) (A) (A) (B) (A) (B) (B) (B) (B) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A | LOC OTT CONTROL OF CON | EATICE AGG Arg 5 CCC Pro                        | DESC<br>CCC<br>Pro<br>GAG<br>Glu<br>GTG<br>Val                                                     | 11 CRIPI ACG Thr CGT Arg TGT Cys CTC Leu 55         | 1818 ION: TTON TTC Phe TAC Tyr GCT Ala 40 TCC Ser    | TAC Tyr  CAG Gln 25 GCT Ala  AGA Arg          | CGG Arg 10 AAC Asn TTT Phe CCA Pro | CAG<br>Gln<br>CTG<br>Leu<br>GAC<br>Asp                                   | GAG<br>Glu<br>TCT<br>Ser<br>ACA<br>Thr<br>CAG<br>Gln<br>60 | CCA<br>Pro<br>AAA<br>Lys<br>45<br>TCC<br>Ser | Asn GTG Val 30 ACG Thr ATC Ile         | Lys<br>15<br>GGC<br>Gly<br>GGG<br>Gly<br>ATT<br>Ile               | Thr TCT Ser TTA Leu CAT His                | 96<br>144        |
| Met 1 ATC Ile GGC Gly CGT Arg            | TCT Ser TGG Trp GCC Ala GTG Val 50         | (B)<br>(D)<br>xi) S<br>CAG<br>Gln<br>GAG<br>Glu<br>TAT<br>Tyr<br>35<br>GCA<br>Ala                  | LOC OTT CONTROL OF CON | EATICE AGG Arg 5 CCC Pro                        | DESC<br>CCC<br>Pro<br>GAG<br>Glu<br>GTG<br>Val                                                     | 11 CRIPI ACG Thr CGT Arg TGT Cys CTC Leu 55         | 1818 ION: TTON TTC Phe TAC Tyr GCT Ala 40 TCC Ser    | TAC Tyr  CAG Gln 25 GCT Ala  AGA Arg          | CGG Arg 10 AAC Asn TTT Phe CCA Pro | CAG<br>Gln<br>CTG<br>Leu<br>GAC<br>Asp                                   | GAG<br>Glu<br>TCT<br>Ser<br>ACA<br>Thr<br>CAG<br>Gln<br>60 | CCA<br>Pro<br>AAA<br>Lys<br>45<br>TCC<br>Ser | Asn GTG Val 30 ACG Thr ATC Ile         | Lys<br>15<br>GGC<br>Gly<br>GGG<br>Gly<br>ATT<br>Ile               | Thr TCT Ser TTA Leu CAT His                | 96<br>144<br>192 |
| Met 1 ATC Ile GGC Gly CGT Arg GCG Ala 65 | TCT Ser TGG Trp GCC Ala GTG Val 50 AAA Lys | (B) (D) (A) (A) (B) (D) (A) (A) (A) (B) (A) (B) (B) (B) (B) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A | LOC OTHER SEQUENTS OF THE SEQU | CATIC AGG Arg 5 CCC Pro TCT Ser AAG Lys TAC Tyr | DN: 1<br>INFOR<br>DESC<br>CCC<br>Pro<br>GAG<br>Glu<br>GTG<br>Val<br>AAG<br>Lys<br>AGA<br>Arg<br>70 | 11 CRIPI ACG Thr CGT Arg TGT Cys CTC Leu 55 GAA Glu | 1818 ION: TTC Phe TAC Tyr GCT Ala 40 TCC Ser CTG Leu | TAC Tyr  CAG Gln 25 GCT Ala  AGA Arg  CGG Arg | CCA Pro                            | CAG<br>Gln<br>CTG<br>Leu<br>GAC<br>Asp<br>TTT<br>Phe<br>CTT<br>Leu<br>75 | GAG Glu  TCT Ser  ACA Thr  CAG Gln 60  AAAA Lys            | CCA Pro  AAA Lys 45 TCC Ser  CAT His         | Asn GTG Val 30 ACG Thr ATC Ile ATG Met | Lys<br>15<br>GGC<br>Gly<br>GGG<br>Gly<br>ATT<br>Ile<br>AAA<br>Lys | Thr TCT Ser TTA Leu CAT His CAT His 80 CTG | 96<br>144<br>192 |

| GAG<br>Glu        | GAA<br>Glu            | TTC<br>Phe        | AAT<br>Asn<br>100 | GAT<br>Asp        | GTG '                 | TAT<br>Tyr            | CTG<br>Leu        | GTG<br>Val<br>105 | ACC<br>Thr            | CAT<br>His         | CTC<br>Leu         | ATG<br>Met         | GGG<br>Gly<br>110  | GCA<br>Ala        | GAT<br>Asp              | 336    |
|-------------------|-----------------------|-------------------|-------------------|-------------------|-----------------------|-----------------------|-------------------|-------------------|-----------------------|--------------------|--------------------|--------------------|--------------------|-------------------|-------------------------|--------|
| CTG<br>Leu        | AAC<br>Asn            | AAC<br>Asn<br>115 | ATT<br>Ile        | GTG<br>Val        | AAA<br>Lys            | TGT<br>Cys            | CAG<br>Gln<br>120 | AAG<br>Lys        | CTT<br>Leu            | ACA<br>Thr         | GAT<br>Asp         | GAC<br>Asp<br>125  | CAT<br>His         | GTT<br>Val        | CAG<br>Gln              | 384    |
| TTC<br>Phe        | CTT<br>Leu<br>130     | ATC<br>Ile        | TAC<br>Tyr        | CAA<br>Gln        | ATT<br>Ile            | CTC<br>Leu<br>135     | CGA<br>Arg        | GGT<br>Gly        | CTA<br>Leu            | AAG<br>Lys         | ТАТ<br>Туг<br>140  | ATA<br>Ile         | CAT<br>His         | TCA<br>Ser        | GCT<br>Ala              | 432    |
| GAC<br>Asp<br>145 | ATA<br>Ile            | ATT<br>Ile        | CAC<br>His        | AGG<br>Arg        | GAC<br>Asp<br>150     | CTA<br>Leu            | AAA<br>Lys        | CCT<br>Pro        | AGT<br>Ser            | AAT<br>Asn<br>155  | CTA<br>Leu         | GCT<br>Ala         | GTG<br>Val         | AAT<br>Asn        | GAA<br>Glu<br>160       | 480    |
| GAC<br>Asp        | TGT<br>Cys            | GAG<br>Glu        | CTG<br>Leu        | AAG<br>Lys<br>165 | ATT<br>Ile            | CTG<br>Leu            | GAT<br>Asp        | TTT<br>Phe        | GGA<br>Gly<br>170     | CTG<br>Leu         | GCT<br>Ala         | CGG<br>Arg         | CAC<br>His         | ACA<br>Thr<br>175 | GAT<br>Asp              | 528    |
| GAT<br>Asp        | GAA<br>Glu            | ATG<br>Met        | ACA<br>Thr<br>180 | GGC<br>Gly        | TAC<br>Tyr            | GTG<br>Val            | GCC<br>Ala        | ACT<br>Thr<br>185 | AGG<br>Arg            | TGG<br>Trp         | TAC<br>Tyr         | AGG<br>Arg         | GCT<br>Ala<br>190  | Pro               | GAG<br>Glu              | 576    |
| ATC<br>Ile        | ATG<br>Met            | CTG<br>Leu<br>195 | Asn               | TGG<br>Trp        | ATG<br>Met            | CAT<br>His            | TAC<br>Tyr<br>200 | Asn               | CAG<br>Gln            | ACA<br>Thr         | GTT<br>Val         | GAT<br>Asp<br>205  | Ile                | TGC<br>Trp        | TCA<br>Ser              | 624    |
| GTG<br>Val        | GGA<br>Gly<br>210     | Cys               | ATA               | ATG<br>Met        | GCC<br>Ala            | GAG<br>Glu<br>215     | Leu               | TTG<br>Leu        | ACT<br>Thr            | GGA<br>Gly         | AGA<br>Arg<br>220  | Thi                | TTC                | TT.               | CCT<br>Pro              | 672    |
| GGT<br>Gly<br>225 | Thr                   | GAC<br>Asp        | CAT<br>His        | ATI               | GAT<br>Asp<br>230     | Gln                   | TTC<br>Lev        | AAG<br>Lys        | CTC<br>Lev            | 11e<br>235         | Leu                | A AGA              | A CTY              | C GT'<br>u Vai    | r GGA<br>1 Gly<br>240   | 720    |
| ACC<br>Thr        | CCA<br>Pro            | Gly               | GCI<br>/ Ala      | GAC<br>Glu<br>245 | ı Leu                 | TTC                   | AAC<br>Lys        | AAA<br>Lys        | A ATC<br>5 Ile<br>250 | e Ser              | TC#                | A GAG              | G TC'<br>u Se:     | T GC.<br>r Al     | A AGA<br>a Arg<br>5     | 768    |
| AAC<br>raA        | TAT<br>Tyr            | ATT               | CAC<br>Glr<br>260 | ı Sei             | r TTC                 | ACT<br>Thr            | CAC               | ATC<br>Met<br>269 | Pro                   | AA(<br>Lys         | S ATC              | G AA<br>t As       | C TT<br>n Ph<br>27 | e Al              | G AAT<br>a Asn          | 816    |
| GTA<br>Val        | A TTT                 | T ATT             | e Gly             | r GC0<br>/ Ala    | C AAT<br>a Asr        | CCC<br>Pro            | 28                | a Ala             | r GTG<br>a Val        | C GAG<br>l Ası     | C TTO              | G CT<br>u Le<br>28 | u Gl               | G AA<br>u Ly      | G ATG                   | 864    |
| CT:<br>Lei        | r GTA<br>u Val<br>290 | l Le              | G GAG             | TC<br>p Se:       | A GAT                 | r AAG<br>5 Ly:<br>29: | s Ar              | A AT              | T AC.                 | A GCO              | G GC<br>a Al<br>30 | a Gl               | A GC<br>n Al       | C CI<br>a Le      | T GCA<br>eu Ala         | 912    |
| CA'<br>Hi:<br>30  | s Ala                 | С ТА<br>в Ту      | C TT              | T GC<br>e Al      | T CAG<br>a Gli<br>310 | а Ту                  | C CA<br>r Hi      | C GA<br>s As      | T CC<br>p Pr          | T GA<br>o As<br>31 | p As               | T GA<br>p Gl       | A CC<br>u Pr       | IA GT             | rG GC0<br>al Ala<br>320 | 3.     |
| G.A               | T CC'                 | АТ Т              | T GA              | т са              | G TC                  | C TT                  | T GA              | A AG              | C AG                  | G GA               | C CI               | rc cr              | T A                | ra G              | AT GAG                  | G 1008 |

| Asp                                                  | Pro                                    | Tyr                                           | Asp                                           | Gln<br>325                                    | Ser                                                  | Phe                                           | Glu                                           | Ser                                | Arg<br>330                                    | Asp                                                  | Leu                                    | Leu                                                  | Ile                                                  | Asp<br>335                      | Glu                                                  |              |
|------------------------------------------------------|----------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|------------------------------------|-----------------------------------------------|------------------------------------------------------|----------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------|------------------------------------------------------|--------------|
|                                                      |                                        |                                               |                                               |                                               |                                                      |                                               |                                               |                                    |                                               |                                                      |                                        |                                                      |                                                      | CCA<br>Pro                      |                                                      | 1056         |
|                                                      |                                        |                                               |                                               |                                               |                                                      |                                               |                                               |                                    |                                               |                                                      |                                        |                                                      |                                                      | ACC<br>Thr                      |                                                      | 1104         |
|                                                      |                                        |                                               |                                               |                                               |                                                      |                                               |                                               |                                    |                                               |                                                      |                                        |                                                      |                                                      | CTG<br>Leu                      |                                                      | 1152         |
|                                                      |                                        |                                               |                                               |                                               |                                                      |                                               |                                               |                                    |                                               |                                                      |                                        |                                                      |                                                      | GGC<br>Gly                      |                                                      | 1200         |
|                                                      |                                        |                                               |                                               |                                               |                                                      |                                               |                                               |                                    |                                               |                                                      |                                        |                                                      |                                                      | ATC<br>Ile<br>415               |                                                      | 1248         |
|                                                      |                                        | _                                             |                                               |                                               |                                                      |                                               |                                               |                                    |                                               |                                                      |                                        |                                                      |                                                      | ACC<br>Thr                      |                                                      | 1296         |
|                                                      |                                        |                                               |                                               |                                               |                                                      |                                               |                                               |                                    |                                               |                                                      |                                        |                                                      |                                                      | AAG<br>Lys                      |                                                      | 1344         |
|                                                      |                                        |                                               |                                               |                                               |                                                      |                                               |                                               |                                    |                                               |                                                      |                                        |                                                      |                                                      | GAG<br>Glu                      |                                                      | 1392         |
| ACC                                                  |                                        |                                               |                                               |                                               |                                                      |                                               |                                               |                                    |                                               |                                                      |                                        |                                                      |                                                      |                                 |                                                      |              |
|                                                      |                                        |                                               |                                               |                                               |                                                      |                                               |                                               |                                    |                                               |                                                      |                                        |                                                      |                                                      | GAG<br>Glu                      |                                                      | 1440         |
| Thr<br>465<br>AAG                                    | Ile                                    | Phe<br>GAG                                    | Phe<br>GGC                                    | Lys<br>GAC                                    | Asp<br>470<br>ACC                                    | Asp<br>CTG                                    | Gly<br>GTG                                    | Asn<br>AAC                         | Tyr<br>CGC                                    | Lys<br>475<br>ATC                                    | Thr<br>GAG                             | Arg<br>CTG                                           | Ala<br>AAG                                           |                                 | Val<br>480<br>ATC                                    | 1440         |
| Thr<br>465<br>AAG<br>Lys                             | TTC Phe                                | Phe<br>GAG<br>Glu<br>AAG                      | Phe<br>GGC<br>Gly<br>GAG                      | GAC<br>Asp<br>485<br>GAC                      | Asp<br>470<br>ACC<br>Thr                             | Asp<br>CTG<br>Leu<br>AAC                      | Gly<br>GTG<br>Val                             | Asn<br>AAC<br>Asn<br>CTG           | Tyr<br>CGC<br>Arg<br>490<br>GGG               | Lys<br>475<br>ATC<br>Ile<br>CAC                      | Thr<br>GAG<br>Glu<br>AAG               | Arg<br>CTG<br>Leu<br>CTG                             | Ala<br>AAG<br>Lys<br>GAG                             | Glu<br>GGC<br>Gly               | Val<br>480<br>ATC<br>Ile                             |              |
| Thr<br>465<br>AAG<br>Lys<br>GAC<br>Asp               | TTC<br>Phe<br>TTC<br>Phe               | Phe<br>GAG<br>Glu<br>AAG<br>Lys               | GGC<br>Gly<br>GAG<br>Glu<br>500<br>CAC        | GAC<br>Asp<br>485<br>GAC<br>Asp               | Asp<br>470<br>ACC<br>Thr<br>GGC<br>Gly               | Asp<br>CTG<br>Leu<br>AAC<br>Asn               | Gly GTG Val ATC Ile                           | ASn  AAC ASn  CTG Leu 505          | CGC<br>Arg<br>490<br>GGG<br>Gly               | Lys<br>475<br>ATC<br>Ile<br>CAC<br>His               | Thr<br>GAG<br>Glu<br>AAG<br>Lys        | Arg CTG Leu CTG Leu CAG                              | Ala<br>AAG<br>Lys<br>GAG<br>Glu<br>510               | Glu<br>GGC<br>Gly<br>495<br>TAC | Val<br>480<br>ATC<br>Ile<br>AAC<br>Asn               | 1488         |
| Thr<br>465<br>AAG<br>Lys<br>GAC<br>Asp<br>TAC<br>Tyr | TTC<br>Phe<br>TTC<br>Phe<br>AAC<br>ASD | GAG<br>Glu<br>AAG<br>Lys<br>AGC<br>Ser<br>515 | GGC<br>Gly<br>GAG<br>Glu<br>500<br>CAC<br>His | GAC<br>Asp<br>485<br>GAC<br>Asp<br>AAC<br>Asn | ASP<br>470<br>ACC<br>Thr<br>GGC<br>Gly<br>GTC<br>Val | Asp<br>CTG<br>Leu<br>AAC<br>Asn<br>TAT<br>Tyr | GTG<br>Val<br>ATC<br>Ile<br>ATC<br>Ile<br>520 | Asn  AAC Asn  CTG Leu 505  ATG Met | CGC<br>Arg<br>490<br>GGG<br>Gly<br>GCC<br>Ala | Lys<br>475<br>ATC<br>Ile<br>CAC<br>His<br>GAC<br>Asp | GAG<br>Glu<br>AAG<br>Lys<br>AAG<br>Lys | CTG<br>Leu<br>CTG<br>Leu<br>CAG<br>Gln<br>525<br>GAC | Ala<br>AAG<br>Lys<br>GAG<br>Glu<br>510<br>AAG<br>Lys | GGC<br>Gly<br>495<br>TAC<br>Tyr | Val<br>480<br>ATC<br>Ile<br>AAC<br>Asn<br>GGC<br>Gly | 1488<br>1536 |

GTG CTG CTG CCC GAC AAC CAC TAC CTG AGC ACC CAG TCC GCC CTG AGC
Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser
575

AAA GAC CCC AAC GAG AAG CGC GAT CAC ATG GTC CTG CTG GAG TTC GTG
Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val
580

ACC GCC GCC GGG ATC ACT CTC GGC ATG GAC GAG CTG TAC AAG TAA

1821
Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys
595

## (2) INFORMATION FOR SEQ ID NO:65:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 606 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:

Met Ser Gln Glu Arg Pro Thr Phe Tyr Arg Gln Glu Leu Asn Lys Thr 10 Ile Trp Glu Val Pro Glu Arg Tyr Gln Asn Leu Ser Pro Val Gly Ser 25 20 Gly Ala Tyr Gly Ser Val Cys Ala Ala Phe Asp Thr Lys Thr Gly Leu 40 Arg Val Ala Val Lys Lys Leu Ser Arg Pro Phe Gln Ser Ile Ile His 60 Ala Lys Arg Thr Tyr Arg Glu Leu Arg Leu Leu Lys His Met Lys His 70 **7**5 Glu Asn Val Ile Gly Leu Leu Asp Val Phe Thr Pro Ala Arg Ser Leu 85 90 Glu Glu Phe Asn Asp Val Tyr Leu Val Thr His Leu Met Gly Ala Asp 105 110 100 Leu Asn Asn Ile Val Lys Cys Gln Lys Leu Thr Asp Asp His Val Gln 120 125 115 Phe Leu Ile Tyr Gln Ile Leu Arg Gly Leu Lys Tyr Ile His Ser Ala 135 140 Asp Ile Ile His Arg Asp Leu Lys Pro Ser Asn Leu Ala Val Asn Glu 150 155 160 Asp Cys Glu Leu Lys Ile Leu Asp Phe Gly Leu Ala Arg His Thr Asp 165 170 175 Asp Glu Met Thr Gly Tyr Val Ala Thr Arg Trp Tyr Arg Ala Pro Glu 185 190 180 Ile Met Leu Asn Trp Met His Tyr Asn Gln Thr Val Asp Ile Trp Ser 195 200 205 Val Gly Cys Ile Met Ala Glu Leu Leu Thr Gly Arg Thr Leu Phe Pro 215 220 Gly Thr Asp His Ile Asp Gln Leu Lys Leu Ile Leu Arg Leu Val Gly 230 235 Thr Pro Gly Ala Glu Leu Leu Lys Lys Ile Ser Ser Glu Ser Ala Arg

250 245 Asn Tyr Ile Gln Ser Leu Thr Gln Met Pro Lys Met Asn Phe Ala Asn 260 265 Val Phe Ile Gly Ala Asn Pro Leu Ala Val Asp Leu Leu Glu Lys Met 280 285 275 Leu Val Leu Asp Ser Asp Lys Arg Ile Thr Ala Ala Gln Ala Leu Ala 290 295 300 His Ala Tyr Phe Ala Gln Tyr His Asp Pro Asp Asp Glu Pro Val Ala 315 310 Asp Pro Tyr Asp Gln Ser Phe Glu Ser Arg Asp Leu Leu Ile Asp Glu 330 335 325 Trp Lys Ser Leu Thr Tyr Asp Glu Val Ile Ser Phe Val Pro Pro 345 340 Leu Asp Gln Glu Glu Met Glu Ser Glu Asp Pro Pro Val Ala Thr Met 355 360 365 Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val 380 375 Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu 385 390 395 400 Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys 410 415 Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Leu 430 425 420 Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln 445 440 His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg 460 455 Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val 475 465 470 Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile 495 490 485 Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn 510 505 500 Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly 525 520 Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val 540 530 535 Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro 545 550 555 Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser 570 565 Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val 585 590 580 Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys 600 595

- (2) INFORMATION FOR SEQ ID NO:66:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2913 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
  - (A) NAME/KEY: Coding Sequence

(B) LOCATION: 1...2910

(D) OTHER INFORMATION:

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:

|                   |                |                   |                   |                   |                   |            |                   |                   |            |                   |            |                   |                   | AAA<br>Lys<br>15      |                   | 48  |
|-------------------|----------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|------------|-------------------|------------|-------------------|-------------------|-----------------------|-------------------|-----|
|                   |                |                   |                   |                   |                   |            |                   |                   |            |                   |            |                   |                   | ACT<br>Thr            |                   | 96  |
| AAT<br>Asn        | AAA<br>Lys     | GGG<br>Gly<br>35  | TCC<br>Ser        | TTA<br>Leu        | GTA<br>Val        | GCT<br>Ala | CTT<br>Leu<br>40  | GGA<br>Gly        | TTC<br>Phe | AGT<br>Ser        | GAT<br>Asp | GGA<br>Gly<br>45  | CAG<br>Gln        | GAA<br>Glu            | GCC<br>Ala        | 144 |
|                   |                |                   |                   |                   |                   |            |                   |                   |            |                   |            |                   |                   | ACA<br>Thr            |                   | 192 |
|                   |                |                   |                   |                   |                   |            |                   |                   |            |                   |            |                   |                   | AGG<br>Arg            |                   | 240 |
|                   |                |                   |                   |                   |                   |            |                   |                   |            |                   |            |                   |                   | CTT<br>Leu<br>95      |                   | 288 |
| GTT<br>Val        | GCA<br>Ala     | CCA<br>Pro        | GGT<br>Gly<br>100 | TCT<br>Ser        | TCG<br>Ser        | AAA<br>Lys | ACT<br>Thr        | GAA<br>Glu<br>105 | GCA<br>Ala | GAT<br>Asp        | GTT<br>Val | GAA<br>Glu        | CAA<br>Gln<br>110 | CAA<br>Gln            | GCT<br>Ala        | 336 |
| TTG<br>Leu        | ACT<br>Thr     | CTC<br>Leu<br>115 | Pro               | GAT<br>Asp        | CTT<br>Leu        | GCA<br>Ala | GAG<br>Glu<br>120 | Gln               | TTT<br>Phe | GCC               | CCT<br>Pro | CCT<br>Pro<br>125 | GAC               | : ATT                 | GCC               | 384 |
|                   |                | Lev               |                   |                   |                   |            | Val               |                   |            |                   |            | Lys               |                   |                       | CTG<br>Leu        | 432 |
| GAA<br>Glu<br>145 | C)'s           | TC.               | ACT<br>Thr        | CTA               | TAC<br>Tyr<br>150 | Arg        | ACA<br>Thr        | CAG<br>Gln        | AGC<br>Ser | TCC<br>Ser<br>155 | Ser        | AAC<br>Asn        | CTC               | GCA<br>1 Ala          | GAA<br>Glu<br>160 | 480 |
| TTA<br>Leu        | . CGA<br>ı Arg | CAC               | G CTI<br>n Leu    | CTI<br>Let<br>165 | ı Asp             | TGI<br>Cys | GAT<br>Asp        | Thr               | CCC<br>Pro | Sei               | GTC<br>Val | G GAC<br>L Asp    | TTC<br>Lev        | G GAZ<br>1 Glu<br>175 | A ATG<br>1 Met    | 528 |
|                   |                |                   |                   | Va]               |                   |            |                   |                   | a Phe      |                   |            |                   |                   | ı Lev                 | G GAC<br>J Asp    | 576 |
|                   |                |                   | n Pro             |                   |                   |            |                   | a Ala             |            |                   |            |                   | ı Me              |                       | r TCT<br>e Ser    | 624 |
| TT                | A GC1          | r cc.             | A GAJ             | A GT              | A CA              | A AGO      | 10                | C GA              | A GA       | AT A              | TAT        | T CA              | G CT              | TT A                  | g AAG             | 672 |

| Leu | Ala<br>210 | Pro | Glu | Val | Gln | Ser<br>215 | Ser | Glu               | Glu | Tyr | Ile<br>220 | Gln | Leu | Leu | Lys |      |
|-----|------------|-----|-----|-----|-----|------------|-----|-------------------|-----|-----|------------|-----|-----|-----|-----|------|
|     |            |     |     |     |     |            |     | CCT<br>Pro        |     |     |            |     |     |     |     | 720  |
|     |            |     |     |     |     |            |     | AAG<br>Lys        |     |     |            |     |     |     |     | 768  |
|     |            |     |     |     |     |            |     | TCT<br>Ser<br>265 |     |     |            |     |     |     |     | 816  |
|     |            |     |     |     |     |            |     | GAT<br>Asp        |     |     |            |     |     |     |     | 864  |
|     |            |     |     |     |     |            |     | GAA<br>Glu        |     |     |            |     |     |     |     | 912  |
|     |            |     |     |     |     |            |     | AAA<br>Lys        |     |     |            |     |     |     |     | 960  |
|     |            |     |     |     |     |            |     | CAA<br>Gln        |     |     |            |     |     |     |     | 1008 |
|     |            |     |     |     |     |            |     | GAA<br>Glu<br>345 |     |     |            |     |     |     |     | 1056 |
|     |            |     |     |     |     |            |     | TCT<br>Ser        |     |     |            |     |     |     |     | 1104 |
|     |            |     |     |     |     |            |     | AAT<br>Asn        |     |     |            |     |     |     |     | 1152 |
|     |            |     |     |     |     |            |     | TCT<br>Ser        |     |     |            |     |     |     |     | 1200 |
|     |            |     |     |     |     |            |     | CGG<br>Arg        |     |     |            |     |     |     |     | 1248 |
|     |            |     |     |     |     |            |     | CTT<br>Leu<br>425 |     |     |            |     |     |     |     | 1296 |
| _   |            | _   | _   |     |     |            |     | AAT<br>Asn        |     |     |            |     |     |     |     | 1344 |

| TTA<br>Leu        | CAT<br>His<br>450 | GAA<br>Glu        | TAT<br>Tyr        | AAC<br>Asn            | ACT<br>Thr        | CAG<br>Gln<br>455 | TTT<br>Phe        | CAA<br>Gln                        | GAA<br>Glu        | AAA<br>Lys        | AGT<br>Ser<br>460   | CGA<br>Arg        | GAA<br>Glu          | TAT<br>Tyr            | GAT<br>Asp            | 1392 |
|-------------------|-------------------|-------------------|-------------------|-----------------------|-------------------|-------------------|-------------------|-----------------------------------|-------------------|-------------------|---------------------|-------------------|---------------------|-----------------------|-----------------------|------|
|                   | TTA<br>Leu        |                   |                   |                       |                   |                   |                   |                                   |                   |                   |                     |                   |                     |                       |                       | 1440 |
| AGG<br>Arg        | ACA<br>Thr        | GCT<br>Ala        | ATT<br>Ile        | GAA<br>Glu<br>485     | GCA<br>Ala        | TTT<br>Phe        | AAT<br>Asn        | GAA<br>Glu                        | ACC<br>Thr<br>490 | ATA<br>Ile        | AAA<br>Lys          | ATA<br>Ile        | TTT<br>Phe          | GAA<br>Glu<br>495     | GAA<br>Glu            | 1488 |
| CAG<br>Gln        | TGC<br>Cys        | CAG<br>Gln        | ACC<br>Thr<br>500 | CAA<br>Gln            | GAG<br>Glu        | CGG<br>Arg        | TAC<br>Tyr        | AGC<br>Ser<br>505                 | AAA<br>Lys        | GAA<br>Glu        | TAC<br>Tyr          | ATA<br>Ile        | GAA<br>Glu<br>510   | AAG<br>Lys            | TTT<br>Phe            | 1536 |
|                   | CGT<br>Arg        |                   |                   |                       |                   |                   |                   |                                   |                   |                   |                     |                   |                     |                       |                       | 1584 |
| GAT<br>Asp        | AAG<br>Lys<br>530 | TTG<br>Leu        | AAG<br>Lys        | TCT<br>Ser            | CGA<br>Arg        | ATC<br>Ile<br>535 | AGT<br>Ser        | GAA<br>Glu                        | ATT<br>Ile        | ATT               | GAC<br>Asp<br>540   | AGT<br>Ser        | AGA<br>Arg          | AGA<br>Arg            | AGA<br>Arg            | 1632 |
|                   | GAA<br>Glu        |                   |                   |                       |                   | Lys               |                   |                                   |                   |                   | Tyr                 |                   |                     |                       |                       | 1680 |
| AAA<br>Lys        | . CGT<br>. Arg    | ATG<br>Met        | AAC<br>Asn        | AGC<br>Ser<br>565     | Ile               | AAA<br>Lys        | CCA<br>Pro        | GAC<br>Asp                        | CTT<br>Leu<br>570 | Ile               | CAG<br>Gln          | CTG<br>Leu        | AGA<br>Arg          | AAG<br>Lys<br>575     | Thr                   | 1728 |
| AGA<br>Arg        | GAC<br>Asp        | CAA<br>Glr        | TAC<br>Tyr<br>580 | Leu                   | ATG<br>Met        | TGG<br>Trp        | TTG               | ACT<br>Thr<br>585                 | Gln               | . AAA<br>. Lys    | GGT<br>Gly          | GTT<br>Val        | CGG<br>Arg<br>590   | Gln                   | AAG<br>Lys            | 1776 |
| AAC<br>Lys        | TTG<br>Leu        | AAC<br>Asr<br>595 | Glu               | TGG<br>Trp            | TTG               | GGC<br>Gly        | raa<br>naa<br>000 | ı Glu                             | AAC<br>Asn        | ACI<br>Thr        | GAA<br>Glu          | GAC<br>Asp<br>605 | Glr                 | TAT                   | TCA<br>Ser            | 1824 |
| CTC               | GTC<br>Val        | Glu               | A GAT<br>L Asp    | GAT<br>Asp            | GAA<br>Glu        | GAT<br>Asp<br>615 | Lei               | G CCC                             | CAT<br>His        | CAT<br>His        | GAT<br>S ASP<br>620 | r GAC<br>o Glu    | G AAC<br>1 Lys      | G ACA                 | TGG<br>Trp            | 1872 |
| AAS<br>ASI<br>625 | n Val             | r GGZ<br>L Gly    | A AGO<br>y Ser    | AGC<br>Ser            | AAC<br>Asr<br>630 | n Arg             | AA Z              | C AAA                             | A GCT             | GAA<br>Glu<br>635 | ı Ası               | CTC<br>n Lev      | TTX                 | G CGA                 | A GGG<br>g Gly<br>640 | 1920 |
| AA(<br>Ly:        | G CGA<br>s Arg    | A GA'<br>J Ası    | r GG(<br>p Gl)    | C ACT<br>Y Thi<br>645 | r Phe             | r CTT<br>e Leu    | GT(               | C CGC<br>1 Arg                    | GAG<br>GGL<br>GSG | se:               | C AG'<br>r Se:      | r AAJ<br>r Ly:    | A CAG               | G GG(<br>n Gly<br>65! | TGC<br>Y Cys          | 1968 |
| TA'<br>Ty:        | r GCC<br>r Ala    | TG<br>a Cy        | C TC'<br>s Se:    | r Val                 | A GTY<br>1 Val    | G GTC<br>l Val    | G GAG             | C GG(<br>p Gl <sub>2</sub><br>66! | y Gl              | A GT.<br>ı Va     | A AA(<br>l Ly:      | G CA'<br>s Hi     | T TG'<br>s Cy<br>67 | s Va                  | C ATA<br>l Ile        | 2016 |
| AA                | C AA              | A AC              | A GC.             | a ac                  | T GG              | C TAT             | r GG              | C TT                              | r GC              | C GA              | G CC                | C TA              | T AA                | C TT                  | G TAC                 | 2064 |

| Asn               | Lys               | Thr<br>675        | Ala               | Thr               | Gly                   | Tyr               | Gly<br>680        | Phe                 | Ala               | Glu                 | Pro               | Tyr<br>685        | Asn                | Leu                   | Tyr                 |      |
|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------------|-------------------|-------------------|---------------------|-------------------|---------------------|-------------------|-------------------|--------------------|-----------------------|---------------------|------|
| AGC<br>Ser        | TCT<br>Ser<br>690 | CTG<br>Leu        | AAA<br>Lys        | GAA<br>Glu        | CTG<br>Leu            | GTG<br>Val<br>695 | CTA<br>Leu        | CAT<br>His          | TAC<br>Tyr        | CAA<br>Gln          | CAC<br>His<br>700 | ACC<br>Thr        | TCC<br>Ser         | CTT<br>Leu            | GTG<br>Val          | 2112 |
| CAG<br>Gln<br>705 | CAC<br>His        | AAC<br>Asn        | GAC<br>Asp        | TCC<br>Ser        | CTC<br>Leu<br>710     | AAT<br>Asn        | GTC<br>Val        | ACA<br>Thr          | CTA<br>Leu        | GCC<br>Ala<br>715   | TAC<br>Tyr        | CCA<br>Pro        | GTA<br>Val         | TAT<br>Tyr            | GCA<br>Ala<br>720   | 2160 |
| CAG<br>Gln        | CAG<br>Gln        | AGG<br>Arg        | CGA<br>Arg        | CAG<br>Gln<br>725 | GAT<br>Asp            | CCA<br>Pro        | CCG<br>Pro        | GTC<br>Val          | GCC<br>Ala<br>730 | ACC<br>Thr          | ATG<br>Met        | GTG<br>Val        | AGC<br>Ser         | AAG<br>Lys<br>735     | GGC<br>Gly          | 2208 |
| GAG<br>Glu        | GAG<br>Glu        | CTG<br>Leu        | TTC<br>Phe<br>740 | ACC<br>Thr        | GGG<br>Gly            | GTG<br>Val        | GTG<br>Val        | CCC<br>Pro<br>745   | ATC<br>Ile        | CTG<br>Leu          | GTC<br>Val        | GAG<br>Glu        | CTG<br>Leu<br>750  | GAC<br>Asp            | GGC<br>Gly          | 2256 |
| GAC<br>Asp        | GTA<br>Val        | AAC<br>Asn<br>755 | GGC<br>Gly        | CAC<br>His        | AAG<br>Lys            | TTC<br>Phe        | AGC<br>Ser<br>760 | GTG<br>Val          | TCC<br>Ser        | GGC<br>Gly          | GAG<br>Glu        | GGC<br>Gly<br>765 | GAG<br>Glu         | GGC<br>Gly            | GAT<br>Asp          | 2304 |
| GCC<br>Ala        | ACC<br>Thr<br>770 | TAC<br>Tyr        | GGC<br>GJY        | AAG<br>Lys        | CTG<br>Leu            | ACC<br>Thr<br>775 | CTG<br>Leu        | AAG<br>Lys          | TTC<br>Phe        | ATC<br>Ile          | TGC<br>Cys<br>780 | Thr               | ACC<br>Thr         | GGC<br>Gly            | AAG<br>Lys          | 2352 |
| CTG<br>Leu<br>785 | Pro               | GTG<br>Val        | CCC<br>Pro        | TGG<br>Trp        | CCC<br>Pro<br>790     | ACC<br>Thr        | CTC<br>Leu        | GTG<br>Val          | ACC<br>Thr        | ACC<br>Thr<br>795   | Leu               | ACC<br>Thr        | TAC<br>Tyr         | GGC<br>Gly            | GTG<br>Val<br>800   | 2400 |
| CAG<br>Gln        | TGC<br>Cys        | TTC<br>Phe        | AGC<br>Ser        | CGC<br>Arg<br>805 | Tyr                   | CCC<br>Pro        | GAC<br>Asp        | CAC                 | ATG<br>Met<br>810 | Lys                 | CAG<br>Gln        | CAC<br>His        | GAC<br>Asp         | TTC<br>Phe<br>815     | TTC<br>Phe          | 2448 |
| AAG<br>Lys        | TCC<br>Ser        | GCC<br>Ala        | ATG<br>Met<br>820 | CCC               | GAA<br>Glu            | GGC<br>Gly        | TAC               | GTC<br>Val<br>825   | CAG<br>Gln        | GAC<br>Glu          | G CGC             | ACC<br>Thr        | ATC<br>11e         | Phe                   | TTC<br>Phe          | 2496 |
| AAG<br>Lys        | GAC<br>Asp        | GAC<br>Asp<br>835 | Gly               | AAC<br>Asn        | TAC<br>Tyr            | AAG<br>Lys        | ACC<br>Thr<br>840 | Arg                 | GCC<br>Ala        | GAC<br>Glu          | GTC<br>1 Val      | AAC<br>Lys<br>845 | Ph€                | GAC<br>Glu            | GGC<br>Gly          | 2544 |
| GAC<br>Asp        | ACC<br>Thr<br>850 | Lei               | GTG<br>Val        | AAC<br>Asr        | CGC<br>Arg            | ATC<br>Ile        | Glu               | CTG<br>Leu          | AAC<br>Lys        | GG(<br>Gly          | ATC<br>11e<br>860 | e Asp             | TTC<br>Phe         | AAC<br>E Lys          | G GAG<br>Glu        | 2592 |
| GAC<br>Asp<br>865 | Gly               | AA :<br>reA :     | ATC               | CTC               | G GGG<br>1 G1y<br>870 | His               | : AAC<br>: Lys    | CTG<br>Lev          | GAC<br>Glu        | TAC<br>1 Tyr<br>87! | c Ast             | TA(               | C AAC<br>C ASI     | a AGC<br>n Sei        | CAC<br>His<br>880   | 2640 |
| AA<br>IzA         | GTC<br>n Val      | TAT<br>Tyl        | r ATC             | ATC<br>Met        | Ala                   | GAC<br>Asp        | AAC<br>Lys        | G CAC               | AA0<br>Lys<br>890 | s Ası               | C GG(<br>n Gl     | C ATG             | C AAG<br>e Lyn     | G GT0<br>s Val<br>89! | G AAC<br>l Asn<br>5 | 2688 |
| TTO               | C AAG<br>e Lys    | S ATO             | C CGC<br>e Arg    | g Hi              | C AAC<br>s Asr        | TATO              | GAG<br>Glu        | G GAC<br>Asp<br>909 | Gl                | C AG<br>y Se        | C GTY<br>r Va     | G CA              | G CT<br>n Le<br>91 | u Al                  | c GAC<br>a Asp      | 2736 |

CAC TAC CAG CAG AAC ACC CCC ATC GGC GAC GGC CCC GTG CTG CCC 2784

His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Leu Leu Pro 925

GAC AAC CAC TAC CTG AGC ACC CAG TCC GCC CTG AGC AAA GAC CCC AAC Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys Asp Pro Asn 930

GAG AAG CGC GAT CAC ATG GTC CTG CTG GAG TTC GTG ACC GCC GCC GGC GCC GGC GLu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr Ala Ala Gly 955

ATC ACT CTC GGC ATG GAC GAG CTG TAC AAG TAA

11e Thr Leu Gly Met Asp Glu Leu Tyr Lys 965

#### (2) INFORMATION FOR SEQ ID NO:67:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 970 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:

Met Ser Ala Glu Gly Tyr Gln Tyr Arg Ala Leu Tyr Asp Tyr Lys Lys 1 5 Glu Arg Glu Glu Asp Ile Asp Leu His Leu Gly Asp Ile Leu Thr Val 3.0 25 20 Asn Lys Gly Ser Leu Val Ala Leu Gly Phe Ser Asp Gly Gln Glu Ala 40 Arg Pro Glu Glu Ile Gly Trp Leu Asn Gly Tyr Asn Glu Thr Thr Gly 60 55 Glu Arg Gly Asp Phe Pro Gly Thr Tyr Val Glu Tyr Ile Gly Arg Lys 75 70 Lys Ile Ser Pro Pro Thr Pro Lys Pro Arg Pro Pro Arg Pro Leu Pro 90 85 Val Ala Pro Gly Ser Ser Lys Thr Glu Ala Asp Val Glu Gln Gln Ala 105 100 Leu Thr Leu Pro Asp Leu Ala Glu Gln Phe Ala Pro Pro Asp Ile Ala 120 125 Pro Pro Leu Leu Ile Lys Leu Val Glu Ala Ile Glu Lys Lys Gly Leu 130 135 140 Glu Cys Ser Thr Leu Tyr Arg Thr Gln Ser Ser Ser Asn Leu Ala Glu 150 155 Leu Arg Gln Leu Leu Asp Cys Asp Thr Pro Ser Val Asp Leu Glu Met 170 165 Ile Asp Val His Val Leu Ala Asp Ala Fhe Lys Arg Tyr Leu Leu Asp 180 190 185 Leu Pro Asn Pro Val Ile Pro Ala Ala Val Tyr Ser Glu Met Ile Ser 2.05 200 195 Leu Ala Pro Glu Val Gln Ser Ser Glu Glu Tyr Ile Gln Leu Leu Lys

|            | 210 |            |            |            |            | 215 |            |            |            |            | 220 |            |            |            |            |
|------------|-----|------------|------------|------------|------------|-----|------------|------------|------------|------------|-----|------------|------------|------------|------------|
| Lys<br>225 | Leu | Ile        | Arg        | Ser        | Pro<br>230 | Ser | Ile        | Pro        | His        | Gln<br>235 | Tyr | Trp        | Leu        | Thr        | Leu<br>240 |
| Gln        | Tyr | Leu        | Leu        | Lys<br>245 | His        | Phe | Phe        | Lys        | Leu<br>250 | Ser        | Gln | Thr        | Ser        | Ser<br>255 | Lys        |
| Asn        | Leu | Leu        | Asn<br>260 | Ala        | Arg        | Val | Leu        | Ser<br>265 | Glu        | Ile        | Phe | Ser        | Pro<br>270 | Met        | Leu        |
| Phe        | Arg | Phe<br>275 | Ser        | Ala        | Ala        | Ser | Ser<br>280 | qzA        | Asn        | Thr        | Glu | Asn<br>285 | Leu        | Ile        | Lys        |
|            | 290 |            |            |            |            | 295 |            |            | Trp        |            | 300 |            |            |            |            |
| 305        |     |            |            |            | 310        |     |            |            | Pro        | 315        |     |            |            |            | 320        |
|            |     |            |            | 325        |            |     |            |            | Asn<br>330 |            |     |            |            | 335        |            |
|            |     |            | 340        |            |            |     |            | 345        | Lys        |            |     |            | 350        |            |            |
|            |     | 355        |            |            |            |     | 360        |            | Thr        |            |     | 365        |            |            |            |
|            | 370 |            |            |            |            | 375 |            |            | Asn        |            | 380 |            |            |            |            |
| His<br>385 | Arg | qzA        | Gly        | Lys        | Tyr<br>390 | Gly | Phe        | Ser        | Asp        | Pro<br>395 | Leu | Thr        | Phe        | Ser        | Ser<br>400 |
|            | Val | Glu        | Leu        | 11e<br>405 | Asn        | His | Tyr        | Arg        | Asn<br>410 | Glu        | Ser | Leu        | Ala        | Gln<br>415 | Tyr        |
|            |     |            | 420        |            |            |     |            | 425        | Tyr        |            |     |            | 430        |            |            |
|            |     | 435        |            |            |            |     | 440        |            | Ile        |            |     | 445        |            |            |            |
|            | 450 |            |            |            |            | 455 |            |            | Glu        |            | 460 |            |            |            |            |
| 465        |     |            |            |            | 470        |     |            |            | Ser        | 475        |     |            |            |            | 480        |
|            |     |            |            | 485        |            |     |            |            | Thr<br>490 |            |     |            |            | 495        |            |
|            | _   |            | 500        |            |            |     |            | 505        | Lys        |            |     |            | 510        |            |            |
|            |     | 515        |            |            |            |     | 520        |            | Gln        |            |     | 525        |            |            |            |
|            | 530 |            |            |            |            | 535 |            |            | Ile        |            | 540 |            |            |            |            |
| 545        |     |            |            |            | 550        |     |            |            | Ala        | 555        |     |            |            |            | 560        |
|            |     |            |            | 565        |            |     |            |            | Leu<br>570 |            |     |            |            | 575        |            |
|            |     |            | 580        |            |            |     |            | 585        | Gln        |            |     |            | 590        |            |            |
|            |     | 595        |            |            |            |     | 600        |            | Asn        |            |     | 605        |            |            |            |
|            | 610 |            |            |            |            | 615 |            |            | His        |            | 620 |            |            |            |            |
| 625        |     |            |            |            | 630        |     |            |            | Ala        | 635        |     |            |            |            | 640        |
|            |     |            |            | 645        |            |     |            |            | Glu<br>650 |            |     |            |            | 655        |            |
|            |     |            | 660        |            |            |     |            | 665        |            |            |     |            | 670        |            | Ile        |
| Asn        | Lys | Thr        | Ala        | Thr        | Gly        | Tyr | Gly        | Phe        | Ala        | Glu        | Pro | Tyr        | Asn        | Leu        | Tyr        |

680 Ser Ser Leu Lys Glu Leu Val Leu His Tyr Gln His Thr Ser Leu Val 700 690 695 Gln His Asn Asp Ser Leu Asn Val Thr Leu Ala Tyr Pro Val Tyr Ala 715 710 Gln Gln Arg Arg Gln Asp Pro Pro Val Ala Thr Met Val Ser Lys Gly 730 735 725 Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu Leu Asp Gly 745 740 Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly Glu Asp 755 760 Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys 775 780 Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Leu Thr Tyr Gly Val 790 795 Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln His Asp Phe Phe 805 810 Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe 820 825 830 Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu Gly 835 840 845 Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu 850 855 860 Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr Asn Ser His 865 870 875 Asn Val Tyr Ile Met Ala Asp Lys Glr Lys Asn Gly Ile Lys Val Asn 885 890 895 Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu Ala Asp 905 910 His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Leu Leu Pro 915 920 925 Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys Asp Pro Asn 930 935 940 Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr Ala Ala Gly 945 950 955 Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys 965

#### (2) INFORMATION FOR SEQ ID NO:68:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1788 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: CDNA
- (ix) FEATURE:
  - (A) NAME/KEY: Coding Sequence
  - (B) LOCATION: 1...1785
  - (D) OTHER INFORMATION:

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:

ATG GGC AAC GCC GCC GCC AAG AAG GGC AGC GAG CAG GAG AGC GTG
Met Gly Asn Ala Ala Ala Ala Lys Lys Gly Ser Glu Gln Glu Ser Val
1 5 10 15

|     |     |     |     |     |     | GCC<br>Ala        |     |     |     |     |     |     |     |     |                   | 96  |   |
|-----|-----|-----|-----|-----|-----|-------------------|-----|-----|-----|-----|-----|-----|-----|-----|-------------------|-----|---|
|     |     |     |     |     |     | GCC<br>Ala        |     |     |     |     |     |     |     |     |                   | 144 |   |
|     |     |     |     |     |     | TTT<br>Phe<br>55  |     |     |     |     |     | _   |     |     |                   | 192 |   |
|     |     |     |     |     |     | GCC<br>Ala        |     |     |     |     |     |     | _   |     |                   | 240 |   |
|     |     |     |     |     |     | GAG<br>Glu        |     |     |     |     |     |     |     |     |                   | 288 |   |
|     |     |     |     |     |     | TTC<br>Phe        |     |     |     |     |     |     |     |     |                   | 336 |   |
|     |     |     |     |     |     | ATG<br>Met        |     |     |     |     |     |     |     |     |                   | 384 |   |
|     |     |     |     |     |     | CGG<br>Arg<br>135 |     |     |     |     |     | _   |     |     |                   | 432 |   |
|     |     |     |     |     |     | ATC<br>Ile        |     |     |     |     |     |     |     |     |                   | 480 | ) |
|     |     | -   |     |     |     | GAC<br>Asp        |     |     |     |     |     |     |     |     |                   | 528 | t |
|     |     |     |     |     |     | GTG<br>Val        |     |     |     | _   | _   | _   |     |     | _                 | 57€ | j |
|     |     |     |     |     |     | TTG<br>Leu        |     |     |     |     |     |     |     |     | CCC<br>Pro        | 624 | Į |
|     |     |     |     |     |     | GGC<br>Gly<br>215 |     |     |     |     |     |     |     |     | GCT<br>Ala        | 672 | ? |
|     |     |     |     |     |     | GAG<br>Glu        |     |     |     |     |     |     |     |     | TTC<br>Phe<br>240 | 720 | ) |
| GCT | GAC | CAG | CCT | ATC | CAG | ATC               | TAT | GAG | AAA | ATC | GTC | TCT | GGG | AAG | GTG               | 768 | 3 |

| Ala               | Asp                  | Gln                   | Pro               | Ile<br>245          | Gln                  | Ile                   | Tyr                 |                     | Lys<br>250        | Ile                | Val                   | Ser                 | Gly                  | Lys<br>255     | Val                   |      |
|-------------------|----------------------|-----------------------|-------------------|---------------------|----------------------|-----------------------|---------------------|---------------------|-------------------|--------------------|-----------------------|---------------------|----------------------|----------------|-----------------------|------|
|                   |                      |                       |                   |                     |                      |                       |                     |                     | TTG<br>Leu        |                    |                       |                     |                      |                |                       | 816  |
|                   |                      |                       |                   |                     |                      |                       |                     |                     | TTT<br>Phe        |                    |                       |                     |                      |                |                       | 864  |
| GTC<br>Val        | AAT<br>Asn<br>290    | GAC<br>Asp            | ATC<br>Ile        | AAG<br>Lys          | AAC<br>Asn           | CAC<br>His<br>295     | AAG<br>Lys          | TGG<br>Trp          | TTT<br>Phe        | GCC<br>Ala         | ACG<br>Thr<br>300     | ACT<br>Thr          | GAC<br>Asp           | TGG<br>Trp     | ATT<br>Ile            | 912  |
| GCC<br>Ala<br>305 | ATC<br>Ile           | TAT<br>Tyr            | CAG<br>Gln        | AGA<br>Arg          | AAG<br>Lys<br>310    | GTG<br>Val            | GAA<br>Glu          | GCT<br>Ala          | CCC<br>Pro        | TTC<br>Phe<br>315  | ATA<br>Ile            | CCA<br>Pro          | AAG<br>Lys           | TTT<br>Phe     | AAA<br>Lys<br>320     | 960  |
|                   |                      |                       |                   |                     |                      |                       |                     |                     | GAC<br>Asp<br>330 |                    |                       |                     |                      |                |                       | 1008 |
| CGG<br>Arg        | GTC<br>Val           | TCC<br>Ser            | ATC<br>Ile<br>340 | Asn                 | GAG<br>Glu           | AAG<br>Lys            | TGT<br>Cys          | GGC<br>Gly<br>345   | AAG<br>Lys        | GAG<br>Glu         | TTT<br>Phe            | ACT<br>Thr          | GAG<br>Glu<br>350    | Phe            | GGG                   | 1056 |
| CGC<br>Arg        | GCC<br>Ala           | ATG<br>Met<br>355     | Ser               | AAA<br>Lys          | GGA<br>Gly           | GAA<br>Glu            | GAA<br>Glu<br>360   | Leu                 | TTC<br>Phe        | ACT<br>Thr         | GGA<br>Gly            | GTT<br>Val<br>365   | Val                  | CCA<br>Pro     | ATT<br>Ile            | 1104 |
| CTT<br>Leu        | GTT<br>Val           | Glu                   | TTA<br>Leu        | GAT<br>Asp          | GGC<br>Gly           | GAT<br>Asp<br>375     | Val                 | TAA '<br>naA .      | GGG<br>Gly        | CA.                | A AAA<br>1 Lys<br>380 | Phe                 | TCT<br>Ser           | GT1            | AGT<br>Ser            | 1152 |
| GG#<br>G1y<br>385 | / Glu                | GGT<br>Gly            | GAA<br>Glu        | GGT<br>Gly          | GAT<br>Asp<br>390    | Ala                   | ACA<br>Thr          | TAC                 | GGA<br>Gly        | AA.<br>Lys<br>395  | . Lei                 | ACC<br>1 Thi        | CT:                  | r AA/<br>Lys   | A TTT<br>s Phe<br>400 | 1200 |
| ATT<br>Ile        | r TGC<br>e Cys       | ACT                   | C ACT             | r GGC<br>Gly<br>405 | / Lys                | CTA                   | CCT<br>Pro          | r GT1<br>o Val      | CCA<br>Pro<br>410 | Tr                 | G CCA<br>Pro          | A ACC               | CT<br>Lei            | r GTG<br>u Val | ACT<br>Thr            | 1248 |
| AC:               | r CTC                | ACT<br>Thi            | TA:               | c Gly               | r GT7<br>/ Val       | CAA<br>  Glr          | TGC<br>Cys          | TTM<br>S Phe<br>425 | e Ser             | AG<br>Arg          | A TAG                 | c cci               | A GA'<br>o Asi<br>43 | p Hi           | r ATG<br>s Met        | 1296 |
| AA<br>Ly:         | A CAC                | G CAT<br>n His<br>435 | s As              | TT.                 | r TT(<br>∋ Phe       | C AAC<br>B Lys        | G AG<br>S Se<br>440 | r Ala               | ATC<br>a Met      | CC Pr              | C GAI<br>o Gli        | A GG<br>u G1;<br>44 | у Ту                 | T GT<br>r Va   | A CAG<br>l Gln        | 1344 |
| GA.               | A AGA<br>u Arg<br>45 | g Th                  | r AT.             | A TT<br>e Ph        | r TAC<br>e Ty:       | 2 AA/<br>c Lys<br>45! | s As                | T GA(<br>p Asj      | c GG(<br>p Gly    | G AA<br>Y As       | C TAG<br>n Ty.<br>46  | r Ly                | G AC<br>s Th         | A CG<br>r Ar   | T GCT<br>g Ala        | 1392 |
| GA<br>G1<br>46    | u Va                 | C AA                  | G TT<br>s Ph      | T GA<br>e Gl        | A GG'<br>u Gl;<br>47 | y As                  | T AC                | C CT<br>r Le        | T GT<br>u Va      | T AA<br>l As<br>47 | n Ar                  | A AT<br>g Il        | C GA<br>e Gl         | G TT<br>u Le   | A AAA<br>u Lys<br>480 | 1440 |

| GGT<br>Gly        | ATT<br>Ile        | GAT<br>Asp        | TTT<br>Phe        | AAA<br>Lys<br>485 | GAA<br>Glu        | GAT<br>Asp        | GGA<br>Gly        | AAC<br>Asn        | ATT<br>Ile<br>490 | CTT<br>Leu        | GGA<br>Gly        | CAC<br>His        | AAA<br>Lys        | ATG<br>Met<br>495 | GAA<br>Glu        | 1488 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
|                   |                   |                   |                   |                   | CAT<br>His        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1536 |
| AAT<br>Asn        | GGC<br>Gly        | ATC<br>Ile<br>515 | AAA<br>Lys        | GTT<br>Val        | AAC<br>Asn        | TTC<br>Phe        | AAA<br>Lys<br>520 | ATT<br>Ile        | AGA<br>Arg        | CAC<br>His        | AAC<br>Asn        | ATT<br>Ile<br>525 | AAA<br>Lys        | GAT<br>Asp        | GGA<br>Gly        | 1584 |
| AGC<br>Ser        | GTT<br>Val<br>530 | CAA<br>Gln        | TTA<br>Leu        | GCA<br>Ala        | GAC<br>Asp        | CAT<br>His<br>535 | TAT<br>Tyr        | CAA<br>Gln        | CAA<br>Gln        | AAT<br>Asn        | ACT<br>Thr<br>540 | Pro               | ATT               | GGC<br>Gly        | GAT<br>Asp        | 1632 |
| GGC<br>Gly<br>545 | CCT<br>Pro        | GTC<br>Val        | CTT<br>Leu        | TTA<br>Leu        | CCA<br>Pro<br>550 | GAC<br>Asp        | AAC<br>Asn        | CAT               | TAC<br>Tyr        | CTG<br>Leu<br>555 | TCC<br>Ser        | ACG<br>Thr        | CAA<br>Gln        | TCT               | GCC<br>Ala<br>560 | 1680 |
| CTT<br>Leu        | TCC<br>Ser        | AAA<br>Lys        | GAT<br>Asp        | CCC<br>Pro<br>565 | Asn               | GAA<br>Glu        | AAG<br>Lys        | AGA<br>Arg        | GAT<br>Asp<br>570 | His               | ATG<br>Met        | ATC               | CTT               | CTT<br>Leu<br>575 | GAG<br>Glu        | 1728 |
| TTT<br>Phe        | GTA<br>Val        | ACA<br>Thr        | GCT<br>Ala<br>580 | Ala               | GGG<br>Gly        | ATT               | ACA<br>Thr        | CAT<br>His<br>585 | Gly               | ATG<br>Met        | GAT<br>Asp        | GAA<br>Glu        | CTA<br>Leu<br>590 | Тух               | AAA<br>Lys        | 1776 |
|                   | -                 | GAG<br>Glu<br>595 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1788 |

# (2) INFORMATION FOR SEQ ID NO:69:

(i) SEQUENCE CHAFACTERISTICS:

(A) LENGTH: 595 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(v) FRAGMENT TYPE: internal

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:

Met Gly Asn Ala Ala Ala Lys Lys Gly Ser Glu Gln Glu Ser Val 10 1 5 Lys Glu Phe Leu Ala Lys Ala Lys Glu Asp Phe Leu Lys Lys Trp Glu 25 20 Asp Pro Ser Gln Asn Thr Ala Gln Leu Asp Gln Phe Asp Arg Ile Lys 40 35 Thr Leu Gly Thr Gly Ser Phe Gly Arg Val Met Leu Val Lys His Lys 55 60 Glu Ser Gly Asn His Tyr Ala Met Lys Ile Leu Asp Lys Gln Lys Val 75 70 Val Lys Leu Lys Gln Ile Glu His Thr Leu Asn Glu Lys Arg Ile Leu

|            |            |            |            | 85         |            |            |            |            | 90         |            |            |            |            | 95         |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|            |            |            | 100        |            | Pro        |            |            | 105        |            |            |            |            | 110        |            |            |
|            |            | 115        |            |            | Tyr        |            | 120        |            |            |            |            | 125        |            |            |            |
|            | 130        |            |            |            | Arg        | 135        |            |            |            |            | 140        |            |            |            |            |
| Arg<br>145 | Phe        | Tyr        | Ala        | Ala        | Gln<br>150 | Ile        | Val        | Leu        | Thr        | Phe<br>155 | Glu        | Tyr        | Leu        | His        | Ser<br>160 |
| Leu        | Asp        | Leu        | Ile        | Tyr<br>165 | Arg        | Asp        | Leu        | Lys        | Pro<br>170 | Glu        | Asn        | Leu        | Leu        | Ile<br>175 | Asp        |
| Gln        | Gln        | Gly        | Tyr<br>180 |            | Gln        | Val        | Thr        | Asp<br>185 |            | Gly        | Phe        | Ala        | Lys<br>190 | Arg        | Val        |
| Lys        | Gly        | Arg<br>195 |            | Trp        | Thr        | Leu        | Cys<br>200 | Gly        | Thr        | Pro        | Glu        | Tyr<br>205 | Leu        | Ala        | Pro        |
| Glu        | Ile<br>210 | Ile        | Leu        | Ser        | Lys        | Gly<br>215 | Tyr        | Asn        | Lys        | Ala        | Val<br>220 | Asp        | Trp        | Trp        | Ala        |
| 225        | Gly        | Val        |            |            | Tyr<br>230 |            |            |            |            | 235        |            |            |            |            | 240        |
|            |            |            |            | 245        | Gln        |            |            |            | 250        |            |            |            |            | 255        |            |
|            |            |            | 260        |            | Phe        |            |            | 265        |            |            |            |            | 270        |            |            |
|            |            | 275        | ,          |            | Leu        |            | 280        |            |            |            |            | 285        |            |            |            |
|            | 290        | )          |            |            | Asn        | 295        |            |            |            |            | 300        |            |            |            |            |
| 305        |            |            |            |            | Lys<br>310 |            |            |            |            | 315        |            |            |            |            | 320        |
|            |            |            |            | 325        | ,          |            |            |            | 330        |            |            |            |            | 335        |            |
|            |            |            | 340        |            |            |            |            | 345        |            |            |            |            | 350        | )          | e Gly      |
|            |            | 359        | 5          |            |            |            | 360        |            |            |            |            | 365        |            |            | lle        |
|            | 370        | )          |            |            |            | 375        |            |            |            |            | 380        | )          |            |            | Ser        |
| 385        | )          |            |            |            | 390        | •          |            |            |            | 395        |            |            |            |            | Phe<br>400 |
|            |            |            |            | 405        | 5          |            |            |            | 410        | )          |            |            |            | 415        |            |
|            |            |            | 420        | )          |            |            |            | 425        | ,          |            |            |            | 430        | )          | Met        |
|            |            | 43         | 5          |            |            |            | 440        | )          |            |            |            | 445        | 5          |            | l Gln      |
|            | 45         | 0          |            |            |            | 455        | 5          |            |            |            | 460        | )          |            |            | g Ala      |
| 465        | 5          |            |            |            | 470        | )          |            |            |            | 475        | 5          |            |            |            | 480        |
|            |            |            |            | 48         | 5          |            |            |            | 490        | C          |            |            |            | 49         |            |
| _          |            |            | 50         | 0          |            |            |            | 50         | 5          |            |            |            | 51         | 0          | o Lys      |
|            |            | 51         | 5          |            |            |            | 520        | )          |            |            |            | 52         | 5          |            | p Gly      |
|            | 53         | 0          |            |            |            | 53         | 5          |            |            |            | 54         | 0          |            |            | y Asp      |
| Gl         | y Pr       | o Va       | 1 Le       | u Le       | u Pro      | z Ası      | e Ası      | n Hi       | s Ty:      | r Le       | ı Se       | r Th       | r Gl       | n Se       | r Ala      |

| 545 550                                                                                                                      | 555 560                                                                             |
|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Leu Ser Lys Asp Pro Asn Glu Lys<br>565                                                                                       | Arg Asp His Met Ile Leu Leu Glu<br>570 575                                          |
| Phe Val Thr Ala Ala Gly Ile Thr<br>580                                                                                       | His Gly Met Asp Glu Leu Tyr Lys<br>585 590                                          |
| Pro Gln Glu<br>595                                                                                                           |                                                                                     |
| (2) INFORMATION FOR SEC                                                                                                      | Q ID NO:70:                                                                         |
| (i) SEQUENCE CHARACTERIST:  (A) LENGTH: 2181 base pa  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear | airs                                                                                |
| (ii) MOLECULE TYPE: cDNA (ix) FEATURE:                                                                                       |                                                                                     |
| (A) NAME/KEY: Coding So<br>(B) LOCATION: 12178                                                                               | equence                                                                             |
| (D) OTHER INFORMATION:                                                                                                       |                                                                                     |
| (xi) SEQUENCE DESCRIPTION                                                                                                    | : SEQ ID NO:70:                                                                     |
| ATG AGC GAC GTG GCT ATT GTG AAG<br>Met Ser Asp Val Ala Ile Val Lys<br>1 5                                                    | GAG GGT TGG CTG CAC AAA CGA GGG 48 Glu Gly Trp Leu His Lys Arg Gly 10 15            |
| GAG TAC ATC AAG ACC TGG CGG CCA<br>Glu Tyr Ile Lys Thr Trp Arg Pro<br>20                                                     | CGC TAC TTC CTC CTC AAG AAT GAT 96 Arg Tyr Phe Leu Leu Lys Asn Asp 25 30            |
| GGC ACC TTC ATT GGC TAC AAG GAG<br>Gly Thr Phe Ile Gly Tyr Lys Glu<br>35                                                     | G CGG CCG CAG GAT GTG GAC CAA CGT 144<br>1 Arg Pro Gln Asp Val Asp Gln Arg<br>45    |
| GAG GCT CCC CTC AAC AAC TTC TCT<br>Glu Ala Pro Leu Asn Asn Phe Ser<br>50                                                     | r GTG GCG CAG TGC CAG CTG ATG AAG 192<br>r Val Ala Gln Cys Gln Leu Met Lys<br>60    |
| ACG GAG CGG CCC CGG CCC AAC ACC<br>Thr Glu Arg Pro Arg Pro Asn Thr<br>65                                                     | TTC ATC ATC CGC TGC CTG CAG TGG 240  Phe Ile Ile Arg Cys Leu Gln Trp  75 80         |
| ACC ACT GTC ATC GAA CGC ACC TTC<br>Thr Thr Val Ile Glu Arg Thr Phe<br>85                                                     | C CAT GTG GAG ACT CCT GAG GAG CGG 288<br>E His Val Glu Thr Pro Glu Glu Arg<br>90 95 |
| GAG GAG TGG ACA ACC GCC ATC CAC<br>Glu Glu Trp Thr Thr Ala Ile Glr<br>100                                                    | G ACT GTG GCT GAC GGC CTC AAG AAG 336 n Thr Val Ala Asp Gly Leu Lys Lys 105 110     |
| CAG GAG GAG GAG ATG GAC TTG<br>Gln Glu Glu Glu Met Asp Pho<br>115                                                            | C CGG TCG GGC TCA CCC AGT GAC AAC 384 e Arg Ser Gly Ser Pro Ser Asp Asn 125         |
| TCA GGG GCT GAA GAG ATG GAG GTV                                                                                              | G TCC CTG GCC AAG CCC AAG CAC CGC 432                                               |

| Ser               | Gly<br>130            | Ala                | Glu               | Glu                   | Met                   | Glu<br>135        | Val               | Ser                        | Leu               | Ala                | Lys<br>140           | Pro                 | Lys                | His                | Arg                   |      |
|-------------------|-----------------------|--------------------|-------------------|-----------------------|-----------------------|-------------------|-------------------|----------------------------|-------------------|--------------------|----------------------|---------------------|--------------------|--------------------|-----------------------|------|
| GTG<br>Val<br>145 | ACC<br>Thr            | ATG<br>Met         | AAC<br>Asn        | GAG<br>Glu            | TTT<br>Phe<br>150     | GAG<br>Glu        | TAC<br>Tyr        | CTG<br>Leu                 | AAG<br>Lys        | CTG<br>Leu<br>155  | CTG<br>Leu           | GGC<br>Gly          | AAG<br>Lys         | GGC<br>Gly         | ACT<br>Thr<br>160     | 480  |
| TTC<br>Phe        | GGC<br>Gly            | AAG<br>Lys         | GTG<br>Val        | ATC<br>Ile<br>165     | CTG<br>Leu            | GTG<br>Val        | AAG<br>Lys        | GAG<br>Glu                 | AAG<br>Lys<br>170 | GCC<br>Ala         | ACA<br>Thr           | GGC<br>Gly          | CGC<br>Arg         | TAC<br>Tyr<br>175  | TAC<br>Tyr            | 528  |
| GCC<br>Ala        | ATG<br>Met            | AAG<br>Lys         | ATC<br>Ile<br>180 | CTC<br>Leu            | AAG<br>Lys            | AAG<br>Lys        | GAA<br>Glu        | GTC<br>Val<br>185          | ATC<br>Ile        | GTG<br>Val         | GCC<br>Ala           | AAG<br>Lys          | GAC<br>Asp<br>190  | GAG<br>Glu         | GTG<br>Val            | 576  |
|                   |                       |                    |                   |                       | GAG<br>Glu            |                   |                   |                            |                   |                    |                      |                     |                    |                    |                       | 624  |
| TTC<br>Phe        | CTC<br>Leu<br>210     | ACA<br>Thr         | GCC<br>Ala        | CTG<br>Leu            | AAG<br>Lys            | TAC<br>Tyr<br>215 | TCT<br>Ser        | TTC<br>Phe                 | CAG<br>Gln        | ACC<br>Thr         | CAC<br>His<br>220    | GAC<br>Asp          | CGC                | CTC<br>Leu         | TGC<br>Cys            | 672  |
| TTT<br>Phe<br>225 | Val                   | ATG<br>Met         | GAG<br>Glu        | TAC<br>Tyr            | GCC<br>Ala<br>230     | AAC<br>Asn        | GGG<br>Gly        | GGC<br>Gly                 | GAG<br>Glu        | CTG<br>Leu<br>235  | Phe                  | TTC<br>Phe          | CAC                | CTG<br>Leu         | TCC<br>Ser<br>240     | 720  |
| CGG<br>Arg        | GAA<br>Glu            | CGT<br>Arg         | GTG<br>Val        | TTC<br>Phe<br>245     | Ser                   | GAG<br>Glu        | GAC<br>Asp        | CGG                        | GCC<br>Ala<br>250 | Arg                | TTC<br>Phe           | ТАТ<br>Тух          | G17                | GCT<br>Ala<br>255  | GAG<br>Glu            | 768  |
| ATT               | GTG<br>Val            | TCA<br>Ser         | GCC<br>Ala<br>260 | Leu                   | GAC<br>Asp            | TAC<br>Tyr        | CTG<br>Leu        | CAC<br>His<br>265          | Ser               | GAC<br>Glu         | AAG<br>Lys           | AAC<br>Asn          | GTC<br>Val<br>270  | l Val              | TAC<br>Tyr            | 816  |
| CGG<br>Arg        | GAC<br>Asp            | CTC<br>Lev<br>275  | ı Lys             | CTC                   | G GAG                 | AAC<br>Asn        | CTC<br>Leu<br>280 | Met                        | CTG<br>Leu        | GAC<br>Asp         | C AAC<br>D Lys       | GAC<br>S Asp<br>285 | Gl                 | G CAC<br>Y His     | ATT Ile               | 864  |
| AAC<br>Lys        | 3 ATC<br>3 Ile<br>290 | Thi                | A GAC             | TTC<br>Phe            | GGG<br>Gly            | CTG<br>Leu<br>295 | Суз               | AAG<br>Lys                 | GAC<br>Glu        | GGG<br>Gly         | OTA E<br>11 y<br>300 | e Lys               | G GAG<br>S Asi     | c GG<br>p Gly      | r GCC<br>/ Ala        | 912  |
| ACC<br>Th:        | e Met                 | G AAC<br>Lys       | G ACC             | TT:                   | T TGC<br>e Cys<br>310 | s Gly             | ACA<br>Thi        | A CCT                      | GAC<br>Glu        | TAC<br>1 TY:<br>31 | r Le                 | g GC0<br>u Ala      | C CC<br>a Pr       | C GAG<br>o Gl      | G GTG<br>u Val<br>320 | 960  |
| CT(<br>Let        | G GAG                 | G GAG              | AA C              | r GAG<br>n Ası<br>32! | р Туз                 | c GGC             | CG<br>Arg         | r GCA<br>g Ala             | A GTO<br>a Val    | l As               | C TG                 | G TG<br>p Tr        | G GG<br>p Gl       | G CT<br>y Le<br>33 | g ggc<br>u Gly<br>5   | 1008 |
| GT(<br>Va)        | G GTY                 | C ATG              | G TAC<br>t Ty:    | r Gl                  | G ATG                 | G ATC             | TG(               | G GG'<br>S Gl <sub>1</sub> | y Arg             | C CT               | G CC<br>u Pr         | C TT<br>o Ph        | С ТА<br>е Ту<br>35 | r As               | C CAG<br>n Gln        | 1056 |
| GA<br>As          | C CA'<br>p Hi         | T GA<br>s Gl<br>35 | u Ly              | G CT<br>s Le          | T TT<br>u Ph          | T GAG<br>e Gli    | G CT<br>Le<br>36  | u Il                       | C CT              | C AT<br>u Me       | G GA<br>t Gl         | G GA<br>u G1<br>36  | u Il               | C CG<br>.e Ar      | C TTC<br>g Phe        | 1104 |

|     |     |     |     |     |     |     |     |     | TCC<br>Ser        |     |     |     |     |     |     | 1152 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------------------|-----|-----|-----|-----|-----|-----|------|
|     |     |     |     |     |     |     |     |     | GGG<br>Gly        |     |     |     |     |     |     | 1200 |
|     |     |     |     |     |     |     |     |     | GGT<br>Gly<br>410 |     |     |     |     |     |     | 1248 |
|     |     |     |     |     |     |     |     |     | AAG<br>Lys        |     |     |     |     |     |     | 1296 |
|     |     |     |     |     |     |     |     |     | TTC<br>Phe        |     |     |     |     |     |     | 1344 |
|     |     |     |     |     |     |     |     |     | ATG<br>Met        |     |     |     |     |     |     | 1392 |
|     |     |     |     |     |     |     |     |     | TAC<br>Tyr        |     |     |     |     |     |     | 1440 |
|     |     |     |     |     |     |     |     |     | AGC<br>Ser<br>490 |     |     |     |     |     |     | 1488 |
|     |     |     |     |     |     |     |     |     | CTG<br>Leu        |     |     |     |     |     |     | 1536 |
|     |     |     |     |     |     |     |     |     | GAG<br>Glu        |     |     |     |     |     |     | 1584 |
|     |     |     |     |     |     |     |     |     | ACC<br>Thr        |     |     |     |     |     |     | 1632 |
|     |     |     |     |     |     |     |     |     | TAC<br>Tyr        |     |     |     |     |     |     | 1680 |
|     |     |     |     |     |     |     |     |     | GAC<br>Asp<br>570 |     |     |     |     |     |     | 1728 |
|     |     |     |     |     |     |     |     |     | ATC<br>Ile        |     |     |     |     |     |     | 1776 |
| AAC | TAC | AAG | ACC | CGC | GCC | GAG | GTG | AAG | TTC               | GAG | GGC | GAC | ACC | CTG | GTG | 1824 |

| Asn               | Tyr        | Lys<br>595 | Thr        | Arg               | Ala               | Glu        | Val<br>600 | Lys        | Phe               | Glu               | Gly        | Asp<br>605        | Thr        | Leu               | Val               |      |
|-------------------|------------|------------|------------|-------------------|-------------------|------------|------------|------------|-------------------|-------------------|------------|-------------------|------------|-------------------|-------------------|------|
|                   |            |            |            |                   |                   |            |            |            |                   |                   |            | GAC<br>Asp        |            |                   |                   | 1872 |
| CTG<br>Leu<br>625 | GGG<br>Gly | CAC<br>His | AAG<br>Lys | CTG<br>Leu        | GAG<br>Glu<br>630 | TAC<br>Tyr | AAC<br>Asn | TAC<br>Tyr | AAC<br>Asn        | AGC<br>Ser<br>635 | CAC<br>His | AAC<br>Asn        | GTC<br>Val | TAT<br>Tyr        | ATC<br>Ile<br>640 | 1920 |
| ATG<br>Met        | GCC<br>Ala | GAC<br>Asp | AAG<br>Lys | CAG<br>Gln<br>645 | AAG<br>Lys        | AAC<br>Asn | GGC<br>Gly | ATC<br>Ile | AAG<br>Lys<br>650 | GTG<br>Val        | AAC<br>Asn | TTC<br>Phe        | AAG<br>Lys | ATC<br>Ile<br>655 | CGC<br>Arg        | 1968 |
|                   |            |            |            |                   |                   |            |            |            |                   |                   |            | CAC<br>His        |            |                   |                   | 2016 |
|                   |            |            |            |                   |                   |            |            |            |                   |                   |            | GAC<br>Asp<br>685 |            |                   |                   | 2064 |
|                   |            | Thr        |            |                   |                   |            |            |            |                   |                   |            | Glu               |            |                   | GAT<br>Asp        | 2112 |
| CAC<br>His<br>705 | ATG<br>Met | GTC<br>Val | CTG<br>Leu | CTG<br>Leu        | GAG<br>Glu<br>710 | Phe        | GTG<br>Val | ACC<br>Thr | GCC               | GCC<br>Ala<br>715 | Gly        | ATC               | ACT<br>Thr | CTC               | GGC<br>Gly<br>720 | 2160 |
|                   |            |            | CTG<br>Leu |                   | Lys               |            |            |            |                   |                   |            |                   |            |                   |                   | 2181 |

#### (2) INFORMATION FOR SEQ ID NO:71:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 726 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:

 Met
 Ser
 Asp
 Val
 Ala
 Ile
 Val
 Lys
 Glu
 Glu
 Gly
 Trp
 Leu
 His
 Lys
 Arg
 Gly

 Glu
 Tyr
 Ile
 Lys
 Thr
 Trp
 Arg
 Pro
 Arg
 Tyr
 Phe
 Leu
 Leu
 Lys
 Asn
 Asp

 Gly
 Thr
 Phe
 Ile
 Gly
 Tyr
 Lys
 Glu
 Arg
 Pro
 Gln
 Asp
 Val
 Asp
 Gln
 Arg

 Glu
 Ala
 Pro
 Leu
 Asn
 Asn
 Asn
 Phe
 Ser
 Val
 Ala
 Gln
 Leu
 Met
 Lys

 Glu
 Ala
 Pro
 Leu
 Asn
 Asn
 Asn
 Phe
 Ser
 Val
 Ala
 Gln
 Leu
 Met
 Lys

 Glu
 Arg
 Pro
 Arg
 Pro
 Asn
 Thr
 Fhe
 Ile
 Ile
 Ile
 Asn
 Cys

| 65         |     |     |     |            | 70         |       |       |            |                        | 75         |       |      |      |            | 80         |
|------------|-----|-----|-----|------------|------------|-------|-------|------------|------------------------|------------|-------|------|------|------------|------------|
| Thr '      |     |     |     | 85         |            |       |       |            | 90                     |            |       |      |      | 95         |            |
| Glu        |     |     | 100 |            |            |       |       | 105        |                        |            |       |      | 110  |            |            |
| Gln (      |     | 115 |     |            |            |       | 120   |            |                        |            |       | 125  |      |            |            |
|            | 130 |     |     |            |            | 135   |       | Ser        |                        |            | 140   |      |      |            |            |
| Val<br>145 | Thr | Met | Asn | Glu        | Phe<br>150 | Glu   | Tyr   | Leu        | Lys                    | Leu<br>155 | Leu   | Gly  | Lys  | Gly        | Thr<br>160 |
|            | Gly | Lys | Val | Ile<br>165 |            | Val   | Lys   | Glu        | Lys<br>170             | Ala        | Thr   | Gly  | Arg  | Тут<br>175 | Tyr        |
|            |     |     | 180 |            |            |       |       | Val<br>185 |                        |            |       |      | 190  |            |            |
|            |     | 195 |     |            |            |       | 200   | Val        |                        |            |       | 205  |      |            |            |
|            | 210 |     |     |            |            | 215   |       | Phe        |                        |            | 220   |      |      |            |            |
| Phe<br>225 | Val | Met | Glu | Tyr        | Ala<br>230 | Asn   | Gly   | Gly        | Glu                    | Leu<br>235 | Phe   | Phe  | Hıs  | Leu        | Ser<br>240 |
| Arg        | Glu | Arg | Val | Phe<br>245 | Ser        | Glu   | Asp   | Arg        | Ala<br>250             |            | Phe   | Tyr  | Gly  | Ala<br>255 | Glu        |
|            |     |     | 260 |            |            |       |       | His<br>265 |                        |            |       |      | 270  |            |            |
|            |     | 275 |     |            |            |       | 280   |            |                        |            |       | 285  |      |            |            |
|            | 290 |     |     |            |            | 295   |       | Lys        |                        |            | 300   |      |      |            |            |
| 305        |     |     |     |            | 310        |       |       | Pro        |                        | 315        |       |      |      |            | 320        |
|            |     |     |     | 325        |            |       |       |            | 330                    | +          |       |      |      | 335        |            |
|            |     |     | 340 |            |            |       |       | 345        |                        |            |       |      | 350  | 1          | Gln        |
| _          |     | 355 |     |            |            |       | 360   | 1          |                        |            |       | 365  |      |            | Phe        |
|            | 370 |     |     |            |            | 375   |       |            |                        |            | 380   |      |      |            | Leu        |
| 385        |     |     |     |            | 390        |       |       |            |                        | 395        |       |      |      |            | 400        |
| Glu        | Ile | Met | Gln | His<br>405 |            | Phe   | Phe   | e Ala      | Gl <sub>3</sub><br>410 |            | · Val | Trp  | Glr  | 415        | : Val      |
|            |     |     | 420 |            |            |       |       | 425        |                        |            |       |      | 430  | )          | Glu        |
|            |     | 435 | ı   |            |            |       | 440   | )          |                        |            |       | 445  | ò    |            | e Thr      |
|            | 450 |     |     |            |            | 455   | ,     |            |                        |            | 460   | )    |      |            | Glu        |
| 465        |     |     |     |            | 470        | )     |       |            |                        | 475        | 5     |      |      |            | 480        |
|            |     |     |     | 485        | 5          |       |       |            | 490                    | )          |       |      |      | 49         |            |
|            |     |     | 500 | )          |            |       |       | 505        | 5                      |            |       |      | 51   | 0          | n Gly      |
|            |     | 515 | 5   |            |            |       | 520   | С          |                        |            |       | 52   | 5    |            | r Gly      |
| Lys        | Leu | Thi | Lev | ı Lys      | s Phe      | e Ile | э Су: | s Thi      | Th:                    | r Gly      | y Lys | s Le | u Pr | o Va       | l Pro      |

|            | 530        |             |            |                |              | 535        |            |            |             |            | 540        |            |            |             |            |          |
|------------|------------|-------------|------------|----------------|--------------|------------|------------|------------|-------------|------------|------------|------------|------------|-------------|------------|----------|
| Trp<br>545 | Pro        | Thr         | Leu        | Val            | Thr<br>550   | Thr        | Leu        | Thr        | Tyr         | Gly<br>555 | Val        | Gln        | Cys        | Phe         | Ser<br>560 |          |
|            | Tyr        | Pro         | Asp        | His<br>565     | Met          | Lys        | Gln        | His        | Asp<br>570  | Phe        | Phe        | Lys        | Ser        | Ala<br>575  | Met        |          |
| Pro        | Glu        | Gly         | Тут<br>580 | Val            | Gln          | Glu        | Arg        | Thr<br>585 | Ile         | Phe        | Phe        | Lys        | Asp<br>590 | Asp         | Gly        |          |
| Asn        | Tyr        | Lys<br>595  | Thr        | Arg            | Ala          | Glu        | Val<br>600 | Lys        | Phe         | Glu        | Gly        | Asp<br>605 | Thr        | Leu         | Val        |          |
| Asn        | Arg<br>610 | Ile         | Glu        | Leu            | Lys          | Gly<br>615 | Ile        | Asp        | Phe         | Lys        | Glu<br>620 | Asp        | Gly        | Asn         | Ile        |          |
| 625        | Gly        |             |            |                | 630          |            |            |            |             | 635        |            |            |            |             | 640        |          |
|            | Ala        |             |            | 645            |              |            |            |            | 650         |            |            |            |            | 655         |            |          |
|            | Asn        |             | 660        |                |              |            |            | 665        |             |            |            |            | 670        |             |            |          |
| Asn        | Thr        | Pro<br>675  | Ile        | Gly            | Asp          | Gly        | Pro<br>680 |            | Leu         | Leu        | Pro        | Asp<br>685 | Asn        | His         | Tyr        |          |
| Leu        | Ser<br>690 |             | Gln        | Ser            | Ala          | Leu<br>695 | Ser        | Lys        | Asp         | Pro        | Asn<br>700 |            | Lys        | Arg         | Asp        |          |
| His<br>705 | Met        | Val         | Leu        | Leu            | Glu<br>710   |            | Val        | Thr        | Ala         | Ala<br>715 |            | Ile        | Thr        | Leu         | Gly<br>720 |          |
|            | Asp        | Glu         | Leu        | Tyr<br>725     |              |            |            |            |             |            |            |            |            |             |            |          |
|            |            | (2          | ) IV       | FORM.          | OITA         | N FC       | R SE       | Q ID       | NO:         | 72:        |            |            |            |             |            |          |
|            | (          | i) S        | EOUE       | NCE            | CHAF         | ACTE       | RIST       | ics:       |             |            |            |            |            |             |            |          |
|            | ,          | (A)         | LEN        | GTH:           | 275          | 1 ba       | se p       | airs       |             |            |            |            |            |             |            |          |
|            |            |             |            |                | ucle<br>DNES |            |            | .e         |             |            |            |            |            |             |            |          |
|            |            | (D)         | TOF        | OLOG           | SY: 1        | inea       | r          |            |             |            |            |            |            |             |            |          |
|            | -          |             |            | CULE<br>TURE : | E TYI        | E: c       | DNA        |            |             |            |            |            |            |             |            |          |
|            |            |             |            |                |              |            |            | Seque      | ence        |            |            |            |            |             |            |          |
|            |            |             |            |                | ION:<br>INFO |            |            |            |             |            |            |            |            |             |            |          |
|            |            | (xi)        | SEQ        | JENCI          | E DES        | CRI        | PTIO       | N: SI      | EQ II       | ON C       | :72:       |            |            |             |            |          |
| ΑT         | G GC1      | GAC         | GT"        | r ta           | C CC         | G GC       | C AAC      | C GAG      | TCC         | DAC        | G GC       | G TC       | r ca       | G GA        | C GTG      | 4.8      |
| Me<br>1    | t Ala      | a Asp       | o Val      | 1 Ty:<br>5     | r Pro        | o Ala      | a Asi      | n Ası      | o S∈:<br>10 | r Thi      | r Al       | a Se:      | r GI       | n As;<br>15 | p Val      |          |
| GC         | C AAG      | C CG(       | TTC        | C GC           | c cg         | C AA       | A GG       | G GC       | G CTY       | G AG       | G CA       | G AA       | G AA       | C GT        | G CAT      | 96       |
| Al         | a Asr      | n Arg       | g Ph<br>20 | e Al           | a Ar         | g Ly:      | s GI       | 25         | a Lei       | I AL       | Ĉ GI       | и гу       | 30         | II va       | l His      | ,        |
| GA         | G GTY      | G AAJ       | A GA       | C CA           | C AA         | TT A       | C AT       | c GC       | C CG        | C TT       | C TT       | C AA       | G CA       | A CC        | C ACC      | 144      |
| Gl         | u Vai      | 1 Ly:<br>35 | s As       | p Hi           | s Ly         | s Ph       | e II<br>40 |            | a Ar        | g Pn       | e Pn       | е гу<br>45 |            | n Pi        | o Thi      | -        |
| TT         | C TG       | C AG        | C CA       | C TG           | C AC         | C GA       | C TT       | C AT       | C TG        | G GG       | G TI       | T GG       | G A        | A CA        | A GGO      | 192      |
| Ph         | е Су<br>50 |             | r Hi       | s Cy           | s Th         | r As<br>55 |            | e Il       | e Tr        | p Gl       | y Ph<br>60 |            | у Гу       | 's Gl       | n Gly      | <i>?</i> |

|     |     |     |     |     | TGC<br>Cys<br>70  |     |     |     |     |     |     |     |     |     |                   | 240 |
|-----|-----|-----|-----|-----|-------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------------------|-----|
|     |     |     |     |     | TGT<br>Cys        |     |     | _   |     |     |     |     |     |     |                   | 288 |
|     |     |     |     |     | CAC<br>His        |     |     |     |     |     |     |     |     |     |                   | 336 |
|     |     |     |     |     | TGT<br>Cys        |     |     |     |     |     |     |     |     |     |                   | 384 |
|     |     |     |     |     | ACC<br>Thr        |     |     |     |     |     |     |     |     |     |                   | 432 |
|     |     |     |     |     | CTC<br>Leu<br>150 |     |     |     |     |     |     |     |     |     |                   | 480 |
|     |     |     |     |     | GCT<br>Ala        |     |     |     |     | _   |     |     |     | _   | _                 | 528 |
|     |     |     |     |     | AAT<br>Asn        |     |     |     |     |     |     |     |     |     |                   | 576 |
|     |     |     |     |     | CTG<br>Leu        |     |     |     |     |     |     |     |     |     |                   | 624 |
|     |     |     |     |     | ACC<br>Thr        |     |     |     |     |     |     |     | _   |     |                   | 672 |
|     |     |     |     | -   | AAA<br>Lys<br>230 |     |     |     |     |     |     |     | _   | _   | CTG<br>Leu<br>240 | 720 |
|     |     |     |     |     | GAC<br>Asp        |     |     |     |     |     |     |     |     |     |                   | 768 |
|     |     |     |     |     |                   |     |     |     |     |     |     |     |     | Ala | AGT<br>Ser        | 816 |
|     |     |     |     |     |                   |     |     |     |     |     |     |     | Tyr |     | GTG<br>Val        | 864 |
| CCC | ATT | CCA | GAA | GGA | GAT               | GAA | GAA | GGC | AAC | ATG | GAA | CTC | AGG | CAG | AAG               | 912 |

| Pro                    | Ile<br>290        | Pro                | Glu                  | Gly               | Asp               | Glu (<br>295      | Glu                | Gly                  | Asn                   | Met               | Glu<br>300        | Leu                   | Arg                | Gln                | Lys                 |      |
|------------------------|-------------------|--------------------|----------------------|-------------------|-------------------|-------------------|--------------------|----------------------|-----------------------|-------------------|-------------------|-----------------------|--------------------|--------------------|---------------------|------|
|                        |                   |                    |                      |                   | CTA<br>Leu<br>310 |                   |                    |                      |                       |                   |                   |                       |                    |                    |                     | 960  |
| TCA<br>Ser             | GAA<br>Glu        | GAC<br>Asp         | AGA<br>Arg           | AAG<br>Lys<br>325 | CAA<br>Gln        | CCA<br>Pro        | TCC<br>Ser         | AAC<br>Asn           | AAC<br>Asn<br>330     | CTG<br>Leu        | GAC<br>Asp        | AGA<br>Arg            | GTG<br>Val         | AAA<br>Lys<br>335  | CTC<br>Leu          | 1008 |
| ACA<br>Thr             | GAC<br>Asp        | TTC<br>Phe         | AAC<br>Asn<br>340    | TTC<br>Phe        | CTC<br>Leu        | ATG<br>Met        | GTG<br>Val         | CTG<br>Leu<br>345    | GGG<br>Gly            | AAG<br>Lys        | GGG<br>Gly        | AGT<br>Ser            | TTT<br>Phe<br>350  | GGG<br>Gly         | AAG<br>Lys          | 1056 |
| GTG<br>Val             | ATG<br>Met        | CTT<br>Leu<br>355  | GCT<br>Ala           | GAC<br>Asp        | AGG<br>Arg        | AAG<br>Lys        | GGA<br>Gly<br>360  | ACG<br>Thr           | GAG<br>Glu            | GAA<br>Glu        | CTG<br>Leu        | TAC<br>Tyr<br>365     | GCC<br>Ala         | ATC<br>Ile         | AAG<br>Lys          | 1104 |
| ATC<br>Ile             | CTG<br>Leu<br>370 | AAG<br>Lys         | AAG<br>Lys           | GAC<br>Asp        | GTG<br>Val        | GTG<br>Val<br>375 | ATC<br>Ile         | CAG<br>Gln           | GAC<br>Asp            | GAC<br>Asp        | GAC<br>Asp<br>380 | GTG<br>Val            | GAG<br>Glu         | TGC<br>Cys         | ACC<br>Thr          | 1152 |
| ATG<br>Met<br>385      | Val               | GAG<br>Glu         | AAG<br>Lys           | CGC               | GTG<br>Val<br>390 | CTG<br>Leu        | GCC<br>Ala         | CTG<br>Leu           | CTG<br>Leu            | GAC<br>Asp<br>395 | Lys               | CCG<br>Pro            | CCA<br>Pro         | TTT<br>Phe         | CTG<br>Leu<br>400   | 1200 |
| ACA<br>Thr             | CAG<br>Gln        | CTG<br>Leu         | CAC<br>His           | TCC<br>Ser<br>405 | Cys               | TTC<br>Phe        | CAG<br>Gln         | ACA<br>Thr           | GTG<br>Val<br>410     | Asp               | CGG<br>Arg        | CTG<br>Leu            | TAC<br>Tyr         | TTC<br>Phe<br>415  |                     | 1248 |
|                        |                   |                    |                      | Asn               |                   |                   |                    |                      | Met                   |                   |                   |                       |                    | Glr                | GTC<br>Val          | 1296 |
| Gly                    | AAA<br>Lys        | TTT<br>Phe<br>435  | Lys                  | GAC<br>Glu        | CCA<br>Pro        | CAA<br>Gln        | GCA<br>Ala<br>440  | val                  | TTC<br>Phe            | TAC<br>Tyr        | C GCA             | A GCC<br>A Ala<br>445 | Glu                | ATC                | TCC<br>Ser          | 1344 |
| ATC<br>Ile             | GGA<br>Gly<br>450 | / Lei              | TTC<br>1 Phe         | TTC<br>Phe        | CTT<br>Leu        | CAT<br>His        | Lys                | A AGA<br>S Arg       | Gly<br>GGC            | AT(               | e Ile<br>46       | e Tyr                 | AGC<br>Arg         | G GA'              | r CTG<br>Leu        | 1392 |
| AA0<br>Lys<br>465      | . Lev             | AAG<br>ASI         | C AAT<br>1 Asr       | GTY<br>Val        | ATG<br>Met<br>470 | Leu               | AAC<br>Asr         | TCA<br>Ser           | GAZ<br>Glu            | 47                | y Hi              | C ATO                 | C AAA<br>e Lys     | A ATO              | GCC<br>e Ala<br>480 | 1440 |
| GA(<br>As <sub>l</sub> | TTX<br>Phe        | G GGG<br>G Gly     | G ATK<br>y Met       | TG(<br>Cy:<br>48! | s Lys             | GAA<br>Glu        | A CAG              | C ATO                | 3 ATC<br>: Met<br>490 | t As              | T GG<br>p G1      | A GT<br>y Va          | C ACC              | G AC<br>r Th<br>49 | C AGG<br>r Arg<br>5 | 1498 |
| AC<br>Th               | C TTY<br>r Phe    | C TG               | C GGZ<br>s Gly<br>50 | y Th              | r CCC<br>r Pro    | G GAC             | TAC<br>Ty:         | C AT<br>r Ile<br>509 | e Ala                 | C CC<br>a Pr      | A GA<br>o Gl      | G AT<br>u Il          | A AT<br>e Il<br>51 | e Al               | T TAC<br>a Tyr      | 1536 |
| CA<br>Gl               | G CCC             | G TA<br>O Ty<br>51 | r Gl                 | G AA<br>y Ly      | G TC'<br>s Sei    | r GTA             | A GA<br>l As<br>52 | p Tŋ                 | G TG                  | G GC<br>p Al      | G TA<br>a Ty      | C GG<br>T G1<br>52    | y Va               | G CI<br>1 Le       | G CTG<br>u Leu      | 1584 |

|     |     |     |     |     |     |     |     |     |     |       | GGT<br>Gly<br>540 |     |     |       |                   | 1632 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|-------------------|-----|-----|-------|-------------------|------|
|     |     |     |     |     |     |     |     |     |     |       | TCC<br>Ser        |     |     |       |                   | 1680 |
|     |     |     |     |     |     |     |     |     |     |       | CTT<br>Leu        |     |     |       | _                 | 1728 |
|     |     |     |     |     |     |     |     |     |     |       | GAG<br>Glu        |     |     | _     |                   | 1776 |
|     |     |     |     |     |     |     |     |     |     |       | AAA<br>Lys        |     |     |       |                   | 1824 |
|     |     |     |     |     |     |     |     |     |     |       | GGC<br>Gly<br>620 |     |     |       |                   | 1872 |
|     |     |     |     |     |     |     |     |     |     |       | GTC<br>Val        |     |     |       | CCA<br>Pro<br>640 | 1920 |
|     |     |     |     |     |     |     |     |     |     |       | GAT<br>Asp        |     |     |       |                   | 1968 |
|     |     |     |     |     |     |     |     |     |     |       | TTG<br>Leu        |     |     | Ala   | GTA<br>Val        | 2016 |
|     |     |     |     |     |     |     |     |     |     |       |                   |     |     |       | CCA<br>Pro        | 2064 |
|     |     | Val |     |     |     |     | Asp |     |     |       |                   | Lys |     |       | GTT<br>Val        | 2112 |
|     |     |     |     |     |     |     |     |     |     |       | Lys               |     |     |       | AAA<br>Lys<br>720 | 2160 |
|     |     |     |     |     |     |     |     |     |     | Pro   |                   |     |     |       | GTC<br>Val        | 2208 |
|     |     |     |     |     |     |     |     |     | Phe |       |                   |     |     | Asp   | CAT<br>His        | 2256 |
| ATG | AAA | CAG | CAT | GAC | TTT | TTC | AAG | AGT | GCC | OTA : | CCC               | GAA | GGI | rat : | GTA               | 2304 |

| Met               | Lys               | Gln<br>755        | His               | Asp               | Phe               | Phe               | Lys<br>760        | Ser               | Ala               | Met               | Pro               | Glu<br>765        | Gly               | Tyr               | Val               |      |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| CAG<br>Gln        | GAA<br>Glu<br>770 | AGA<br>Arg        | ACT<br>Thr        | ATA<br>Ile        | TTT<br>Phe        | TAC<br>Tyr<br>775 | AAA<br>Lys        | GAT<br>Asp        | GAC<br>Asp        | GGG<br>Gly        | AAC<br>Asn<br>780 | TAC<br>Tyr        | AAG<br>Lys        | ACA<br>Thr        | CGT<br>Arg        | 2352 |
| GCT<br>Ala<br>785 | GAA<br>Glu        | GTC<br>Val        | AAG<br>Lys        | TTT<br>Phe        | GAA<br>Glu<br>790 | GGT<br>Gly        | GAT<br>Asp        | ACC<br>Thr        | CTT<br>Leu        | GTT<br>Val<br>795 | AAT<br>Asn        | AGA<br>Arg        | ATC<br>Ile        | GAG<br>Glu        | TTA<br>Leu<br>800 | 2400 |
| AAA<br>Lys        | GGT<br>Gly        | ATT               | GAT<br>Asp        | TTT<br>Phe<br>805 | AAA<br>Lys        | GAA<br>Glu        | GAT<br>Asp        | GGA<br>Gly        | AAC<br>Asn<br>810 | ATT<br>Ile        | CTT<br>Leu        | GGA<br>Gly        | CAC<br>His        | AAA<br>Lys<br>815 | ATG<br>Met        | 2448 |
| GAA<br>Glu        | TAC<br>Tyr        | AAT<br>Asn        | ТАТ<br>Туг<br>820 | AAC<br>Asn        | TCA<br>Ser        | CAT<br>His        | AAT<br>Asn        | GTA<br>Val<br>825 | TAC<br>Tyr        | ATC<br>Ile        | ATG<br>Met        | GCA<br>Ala        | GAC<br>Asp<br>830 | AAA<br>Lys        | CCA<br>Pro        | 2496 |
| AAG<br>Lys        | AAT<br>Asn        | GGC<br>Gly<br>835 | ATC<br>Ile        | AAA<br>Lys        | GTT<br>Val        | AAC<br>Asn        | TTC<br>Phe<br>840 | AAA<br>Lys        | ATT               | AGA<br>Arg        | CAC<br>His        | AAC<br>Asn<br>845 | ATT               | AAA<br>Lys        | GAT<br>Asp        | 2544 |
| GGA<br>Gly        | AGC<br>Ser<br>850 | Val               | CAA<br>Gln        | TTA<br>Leu        | GCA<br>Ala        | GAC<br>Asp<br>855 | His               | TAT<br>Tyr        | CAA<br>Gln        | CAA<br>Gln        | AAT<br>Asn<br>860 | Thr               | CCA<br>Pro        | ATT<br>Ile        | GGC<br>Gly        | 2592 |
| GAT<br>Asp<br>865 | Gly               | CCT<br>Pro        | GTC<br>Val        | CTT<br>Leu        | TTA<br>Leu<br>870 | Pro               | GAC<br>Asp        | AAC<br>Asr        | CAT<br>His        | TAC<br>Tyr<br>875 | Leu               | TCC<br>Ser        | ACG<br>Thr        | CA#               | TCT<br>Ser<br>880 | 2640 |
| GCC               | CTI<br>Lev        | TCC<br>Ser        | AAA<br>Lys        | GAT<br>Asp<br>885 | Pro               | AAC<br>Asr        | GAA<br>Glu        | AAC<br>Lys        | AGA<br>Arg<br>890 | Asp               | CAC<br>His        | ATC<br>Met        | ATC               | CT:<br>Lev<br>895 | CTT<br>Leu        | 2688 |
| GAC<br>Glu        | TTI<br>Phe        | r GTA<br>e Val    | ACA<br>Thr        | Ala               | GCT<br>Ala        | Gl <sup>7</sup>   | ATT               | ACA<br>Thi        | His               | GI)               | C ATY<br>Met      | G GAT             | GAA<br>Glu<br>910 | ı Le              | A TAC<br>1 Tyr    | 2736 |
|                   |                   | CAC<br>Glr<br>915 | ı Glu             |                   | Α.                |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 2751 |

- (2) INFORMATION FOR SEQ ID NO:73:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 916 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:

Met Ala Asp Val Tyr Pro Ala Asn Asp Ser Thr Ala Ser Gln Asp Val

| 1          |           |           |       | 5    |              |           |           |      | 10   |            |           |           |      | 15    |              |
|------------|-----------|-----------|-------|------|--------------|-----------|-----------|------|------|------------|-----------|-----------|------|-------|--------------|
| Ala        |           |           | 20    | Ala  | Arg          |           |           | 25   |      |            |           |           | 30   |       |              |
| Glu        |           | Lys<br>35 | Asp   | His  | Lys          | Phe       | Ile<br>40 | Ala  | Arg  | Phe        | Phe       | Lys<br>45 | Gln  | Pro   | Thr          |
| Phe        | Cys<br>50 | Ser       | His   | Cys  | Thr          | Asp<br>55 | Phe       | Ile  | Trp  | Gly        | Phe<br>60 | Gly       | Lys  | Gln   | Gly          |
| Phe<br>65  | Gln       | Cys       | Gln   | Val  | Cys<br>70    | Cys       | Phe       | Val  | Val  | His<br>75  | Lys       | Arg       | Суѕ  | His   | Glu<br>80    |
| Phe        |           |           |       | 85   | Cys          |           |           |      | 90   |            |           |           |      | 95    |              |
|            |           |           | 100   |      | His          |           |           | 105  |      |            |           |           | 110  |       |              |
|            |           | 115       |       |      | Cys          |           | 120       |      |      |            |           | 125       |      |       |              |
|            | 130       |           |       |      | Thr          | 135       |           |      |      |            | 140       |           |      |       |              |
| 145        |           |           |       |      | Leu<br>150   |           |           |      |      | 155        |           |           |      |       | 160          |
|            |           |           |       | 165  | Ala          |           |           |      | 170  |            |           |           |      | 175   |              |
|            |           |           | 180   |      | Asn          |           |           | 185  |      |            |           |           | 190  |       |              |
|            |           | 195       | ,     |      | Leu          |           | 200       |      |      |            |           | 205       |      |       |              |
|            | 210       |           |       |      | Thr          | 215       |           |      |      |            | 220       |           |      |       |              |
| 225        |           |           |       |      | 230          |           |           |      |      | 235        | ·         |           |      |       | Leu<br>240   |
|            |           |           |       | 245  | Asp          |           |           |      | 250  | )          |           |           |      | 255   | 1            |
|            |           |           | 260   | )    |              |           |           | 265  | ,    |            |           |           | 270  | )     | Ser          |
|            |           | 275       | 5     |      |              |           | 280       | )    |      |            |           | 285       | •    |       | val          |
|            | 290       | )         |       |      |              | 295       | 5         |      |      |            | 300       | )         |      |       | Lys          |
| 305        | ;         |           |       |      | 310          | )         |           |      |      | 315        | 5         |           |      |       | 20 320       |
| Ser        | Glu       |           |       | 325  | 5            |           |           |      | 330  | )          |           |           |      | 333   |              |
|            |           |           | 34    | 0    |              |           |           | 345  | 5    |            |           |           | 35   | 0     | y Lys        |
|            |           | 35        | 5     |      |              |           | 360       | )    |      |            |           | 36        | 5    |       | e Lys        |
|            | 370       | 0         |       |      |              | 37        | 5         |      |      |            | 38        | 0         |      |       | s Thr        |
| Met<br>385 |           | l Gl      | u Ly  | s Ar | g Va.<br>390 |           | u Ale     | a Le | u Le | u As<br>39 | р гу<br>5 | S PI      | O PI | O FII | e Leu<br>400 |
| Th         | r Glı     |           |       | 40   | r Cy:<br>5   | s Ph      |           |      | 41   | 0          |           |           |      | 41    |              |
|            |           |           | 42    | 1 As | n Gl         |           |           | 42   | 5    |            |           |           | 4.5  | U     | n Val        |
|            |           | 43        | ie Ly | s Gl |              |           | 44        | 0    |      |            |           | 44        | .5   |       | e Ser        |
|            | 4.5       | 0         |       |      |              | 45        | 5         |      |      |            | 46        | 0         |      |       | p Leu        |
| Ly         | s Le      | u As      | sn As | n Va | l Me         | t Le      | u As      | n Se | r Gl | u Gl       | у Ні      | s Il      | e L  | 's Il | e Ala        |

| 465        |     |       |              |     | 470 |     |       |       |       | 475 |       |       |      |       | 480        |
|------------|-----|-------|--------------|-----|-----|-----|-------|-------|-------|-----|-------|-------|------|-------|------------|
| Asp        |     |       |              | 485 |     |     |       |       | 490   |     |       |       |      | 495   |            |
|            |     |       | Gly<br>500   |     |     |     |       | 505   |       |     |       |       | 510  |       |            |
|            |     | 515   | Gly          |     |     |     | 520   |       |       |     |       | 525   |      |       |            |
|            | 530 |       | Leu          |     |     | 535 |       |       |       |     | 540   |       |      |       |            |
| 545        |     |       | Gln          |     | 550 |     |       |       |       | 555 |       |       |      |       | 560        |
|            |     |       | Glu          | 565 |     |     |       |       | 570   |     |       |       |      | 575   |            |
|            |     |       | Arg<br>580   |     |     |     |       | 585   |       |     |       |       | 590  |       |            |
|            |     | 595   | Phe          |     |     |     | 600   |       |       |     |       | 605   |      |       |            |
|            | 610 |       | Pro          |     |     | 615 |       |       |       |     | 620   |       |      |       |            |
| 625        |     |       | Lys          |     | 630 |     |       |       |       | 635 |       |       |      |       | 640        |
|            |     |       | Val          | 645 |     |     |       |       | 650   |     |       |       |      | 655   |            |
|            |     |       | Asn<br>660   |     |     |     |       | 665   |       |     |       |       | 670  |       |            |
|            |     | 675   | Met<br>Glu   |     |     |     | 680   |       |       |     |       | 685   |      |       |            |
|            | 690 |       | Gly          |     |     | 695 |       |       |       |     | 700   |       |      |       |            |
| 705        |     |       |              |     | 710 |     |       |       |       | 715 |       |       |      |       | 720        |
|            |     |       | Thr          | 725 |     |     |       |       | 730   |     |       |       |      | 735   |            |
|            |     |       | 740          |     |     |     |       | 745   |       |     |       |       | 750  |       | His        |
|            |     | 755   |              |     |     |     | 760   |       |       |     |       | 765   |      |       | Val        |
|            | 770 |       |              |     |     | 775 |       |       |       |     | 780   |       |      |       | Arg<br>Leu |
| 785        |     |       |              |     | 790 |     |       |       |       | 795 |       |       |      |       | 800        |
|            |     |       |              | 805 |     |     |       |       | 810   | )   |       |       |      | 815   |            |
|            |     |       | 820          |     |     |     |       | 825   |       |     |       |       | 830  | )     | Pro        |
|            |     | 835   | ,            |     |     |     | 840   | )     |       |     |       | 845   |      |       | Asp        |
| _          | 850 |       |              |     |     | 855 | 5     |       |       |     | 860   | )     |      |       | Gly        |
| Asp<br>865 | Gly | Pro   | Val          | rea | 870 |     | ) ASE | ) AST | i His | 875 |       | ı ser | 1111 | . G11 | 880        |
|            |     |       |              | 885 | ,   |     |       |       | 890   | )   |       |       |      | 895   |            |
| Glu        | Ph∈ | · Val | 1 Thr<br>900 |     | Ala | Gly | / Ile | 905   |       | Gly | / Met | . Asp | 910  |       | ı Tyr      |
| Lys        | Pro | 915   | n Glu        | 1   |     |     |       |       |       |     |       |       |      |       |            |

# (2) INFORMATION FOR SEQ ID NO:74:

# (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2157 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: cDNA

- (ix) FEATURE:
  - (A) NAME/KEY: Coding Sequence
  - (B) LOCATION: 1...2154
  - (D) OTHER INFORMATION:

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:

|                   | ( )               | .1) =             | EQUE              | 71/012           | DLSC              | 1/11/1            | 1014.             | 224               |                  |                   | •                |                   |                   |                  |                   |     |
|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|------------------|-------------------|-------------------|------------------|-------------------|-----|
| ATG<br>Met<br>1   | TCG<br>Ser        | TCC<br>Ser        | ATC<br>Ile        | TTG<br>Leu<br>5  | CCA<br>Pro        | TTC<br>Phe        | ACG<br>Thr        | CCG<br>Pro        | CCA<br>Pro<br>10 | GTT<br>Val        | GTG<br>Val       | AAG<br>Lys        | AGA<br>Arg        | CTG<br>Leu<br>15 | CTG<br>Leu        | 48  |
| GGA<br>Gly        | TGG<br>Trp        | AAG<br>Lys        | AAG<br>Lys<br>20  | TCA<br>Ser       | GCT<br>Ala        | GGT<br>Gly        | GGG<br>Gly        | TCT<br>Ser<br>25  | GGA<br>Gly       | GGA<br>Gly        | GCA<br>Ala       | GGC<br>Gly        | GGA<br>Gly<br>30  | GGA<br>Gly       | GAG<br>Glu        | 96  |
|                   |                   |                   |                   |                  |                   |                   |                   |                   |                  |                   |                  |                   |                   | AGT<br>Ser       |                   | 144 |
| GTG<br>Val        | AAG<br>Lys<br>50  | AAG<br>Lys        | CTA<br>Leu        | AAG<br>Lys       | AAA<br>Lys        | ACA<br>Thr<br>55  | GGA<br>Gly        | CGA<br>Arg        | TTA<br>Leu       | GAT<br>Asp        | GAG<br>Glu<br>60 | CTT<br>Leu        | GAG<br>Glu        | AAA<br>Lys       | GCC<br>Ala        | 192 |
| ATC<br>Ile<br>65  | ACC<br>Thr        | ACT<br>Thr        | CAA<br>Gln        | AAC<br>Asn       | TGT<br>Cys<br>70  | AAT<br>Asn        | ACT<br>Thr        | AAA<br>Lys        | TGT<br>Cys       | GTT<br>Val<br>75  | ACC<br>Thr       | ATA<br>Ile        | CCA<br>Pro        | AGC<br>Ser       | ACT<br>Thr<br>80  | 240 |
| TGC<br>Cys        | TCT<br>Ser        | GAA<br>Glu        | ATT<br>Ile        | TGG<br>Trp<br>85 | GGA<br>Gly        | CTG<br>Leu        | AGT<br>Ser        | ACA<br>Thr        | CCA<br>Pro<br>90 | AAT<br>Asn        | ACG<br>Thr       | ATA<br>Ile        | GAT<br>Asp        | CAG<br>Gln<br>95 | TGG<br>Trp        | 288 |
| GAT<br>Asp        | ACA<br>Thr        | ACA<br>Thr        | GGC<br>Gly<br>100 | CTT<br>Leu       | TAC<br>Tyr        | AGC<br>Ser        | TTC<br>Phe        | TCT<br>Ser<br>105 | GAA<br>Glu       | CAA<br>Gln        | ACC<br>Thr       | AGG<br>Arg        | TCT<br>Ser<br>110 | CTT<br>Leu       | GAT<br>Asp        | 336 |
| GGT<br>Gly        | CGT<br>Arg        | CTC<br>Leu<br>115 | Gln               | GTA<br>Val       | TCC<br>Ser        | CAT<br>His        | CGA<br>Arg<br>120 | AAA<br>Lys        | GGA<br>Gly       | TTG               | CCA<br>Pro       | CAT<br>His<br>125 | Val               | `ATA             | TAT<br>Tyr        | 384 |
| TGC<br>Cys        | CGA<br>Arg<br>130 | Leu               | TGG<br>Trp        | CGC<br>Arg       | TGG<br>Trp        | CCT<br>Pro<br>135 | Asp               | CTT<br>Leu        | CAC              | AGT<br>Ser        | CAT<br>His       | His               | GAA<br>Glu        | CTC              | AAG<br>Lys        | 432 |
| GCA<br>Ala<br>145 | Ile               | GAA<br>Glu        | AAC<br>Asn        | TGC<br>Cys       | GAA<br>Glu<br>150 | Tyr               | GCT<br>Ala        | TTI<br>Phe        | AAT<br>Asn       | CTI<br>Leu<br>155 | ı Lys            | A AAC<br>S Lys    | GAT<br>Asp        | GAA<br>Glu       | GTA<br>Val<br>160 | 480 |
| TGT               | GTA               | . AAC             | CCT               | TAC              | CAC               | TAT               | CAG               | AGA               | GTI              | GAC               | ACA              | A CCA             | A GT              | r TTC            | CCT               | 528 |

| Cys               | Val                  | Asn               | Pro               | Tyr<br>165        | His                 | Tyr                  | Gln               | Arg                   | Val<br>170        | Glu                | Thr                | Pro               | Val               | Leu<br>175        | Pro                   |      |
|-------------------|----------------------|-------------------|-------------------|-------------------|---------------------|----------------------|-------------------|-----------------------|-------------------|--------------------|--------------------|-------------------|-------------------|-------------------|-----------------------|------|
| CCA<br>Pro        | GTA<br>Val           | TTA<br>Leu        | GTG<br>Val<br>180 | CCC<br>Pro        | CGA<br>Arg          | CAC<br>His           | ACC<br>Thr        | GAG<br>Glu<br>185     | ATC<br>Ile        | CTA<br>Leu         | ACA<br>Thr         | GAA<br>Glu        | CTT<br>Leu<br>190 | CCG<br>Pro        | CCT<br>Pro            | 576  |
|                   |                      |                   |                   |                   |                     |                      |                   | CCA<br>Pro            |                   |                    |                    |                   |                   |                   |                       | 624  |
| GGA<br>Gly        | ATT<br>Ile<br>210    | GAG<br>Glu        | CCA<br>Pro        | CAG<br>Gln        | AGT<br>Ser          | AAT<br>Asn<br>215    | тат<br>Туг        | ATT<br>Ile            | CCA<br>Pro        | GAA<br>Glu         | ACG<br>Thr<br>220  | CCA<br>Pro        | CCT<br>Pro        | CCT<br>Pro        | GGA<br>Gly            | 672  |
| TAT<br>Tyr<br>225 | ATC<br>Ile           | AGT<br>Ser        | GAA<br>Glu        | GAT<br>Asp        | GGA<br>Gly<br>230   | GAA<br>Glu           | ACA<br>Thr        | AGT<br>Ser            | GAC<br>Asp        | CAA<br>Gln<br>235  | CAG<br>Gln         | TTG<br>Leu        | AAT<br>Asn        | CAA<br>Gln        | AGT<br>Ser<br>240     | 720  |
| ATG<br>Met        | GAC<br>Asp           | ACA<br>Thr        | GGC<br>Gly        | TCT<br>Ser<br>245 | CCA<br>Pro          | GCA<br>Ala           | GAA<br>Glu        | CTA<br>Leu            | TCT<br>Ser<br>250 | CCT<br>Pro         | ACT<br>Thr         | ACT<br>Thr        | CTT<br>Leu        | TCC<br>Ser<br>255 | CCT<br>Pro            | 768  |
| GTT<br>Val        | AAT<br>Asn           | CAT               | AGC<br>Ser<br>260 | TTG<br>Leu        | GAT<br>Asp          | TTA<br>Leu           | CAG<br>Gln        | CCA<br>Pro<br>265     | GTT<br>Val        | ACT<br>Thr         | TAC<br>Tyr         | TCA<br>Ser        | GAA<br>Glu<br>270 | Pro               | GCA<br>Ala            | 816  |
| TTI<br>Phe        | TGG<br>Trp           | TGT<br>Cys<br>275 | Ser               | ATA<br>Ile        | GCA<br>Ala          | тат<br>Туг           | ТАТ<br>Туг<br>280 | Glu                   | TTA<br>Leu        | TAA<br>naA         | CAG<br>Gln         | AGG<br>Arg<br>285 | Val               | GGA<br>Gly        | GAA<br>Glu            | 864  |
| ACC<br>Thr        | TTC<br>Phe<br>290    | His               | GCA<br>Ala        | TCA<br>Ser        | CAG<br>Gln          | CCC<br>Pro<br>295    | Ser               | CTC<br>Leu            | ACT<br>Thr        | GTA<br>Val         | GAT<br>Asp<br>300  | Gly               | TTI<br>Phe        | ACA<br>Thr        | GAC<br>Asp            | 912  |
| CCF<br>Pro<br>305 | Ser                  | AAT<br>Asr        | TCA<br>Ser        | GAG<br>Glu        | AGG<br>Arg<br>310   | Phe                  | TGC<br>Cys        | TTA<br>Leu            | GGT<br>Gly        | TTA<br>Leu<br>315  | Leu                | TCC<br>Ser        | AA1<br>Asr        | r GTT<br>n Val    | AAC<br>Asn<br>320     | 960  |
| CG/<br>Arg        | A AAT<br>J Asr       | GCC<br>Ala        | ACC<br>Thr        | GTA<br>Val        | Glu                 | ATG<br>Met           | ACA<br>Thi        | A AGA<br>c Arg        | AGG<br>Arg<br>330 | His                | T ATA              | GGA<br>Gly        | A AGA             | 335<br>335        | A GTG<br>/ Val        | 1008 |
| CGG               | TTA                  | A ТАС<br>1 ТУ1    | TAC<br>Ty:        | : Ile             | GGT<br>Gly          | GGC<br>Gly           | GAZ<br>Glv        | A GTT<br>u Val<br>345 | Phe               | GCT<br>Ala         | r GAC<br>a Glu     | TG(               | CTI<br>Let<br>35  | ı Se:             | r GAT<br>r Asp        | 1056 |
|                   |                      |                   | e Phe             |                   |                     |                      |                   | o Asr                 |                   |                    |                    |                   | д Ту              |                   | TGG<br>Y Trp          | 1104 |
| CA<br>Hi          | c cc<br>s Pro<br>370 | o Ala             | A AC              | A GTO             | G TGT<br>L Cys      | r AA<br>5 Lys<br>379 | s Il              | T CC?<br>e Pro        | A CC              | A GG(<br>o Gl:     | TG'<br>Y Cy:<br>38 | s As:             | r CT<br>n Le      | G AA<br>u Ly      | G ATC<br>s Ile        | 1152 |
| TT<br>Ph<br>38    | ∈ As                 | C AA<br>n As:     | C CA              | G GAI<br>n Gli    | A TT<br>1 Pho<br>39 | e Ala                | r GC<br>a Al      | T CT<br>a Lei         | r CTY             | G GC<br>u Al<br>39 | a Gl               | G TC<br>n Se      | T GT<br>r Va      | T AA<br>1 As      | T CAG<br>n Gln<br>400 | 1200 |

|                   |                   |                   |                   |              |                   |                   |                     |                   |                   |                   | TGC<br>Cys            |                   |                   |                     |                   | 1248 |
|-------------------|-------------------|-------------------|-------------------|--------------|-------------------|-------------------|---------------------|-------------------|-------------------|-------------------|-----------------------|-------------------|-------------------|---------------------|-------------------|------|
|                   |                   |                   |                   |              |                   |                   |                     |                   |                   |                   | AGG<br>Arg            |                   |                   |                     |                   | 1296 |
|                   |                   |                   |                   |              |                   |                   |                     |                   |                   |                   | GGA<br>Gly            |                   |                   |                     |                   | 1344 |
|                   |                   |                   |                   |              |                   |                   |                     |                   |                   |                   | TCA<br>Ser<br>460     |                   |                   |                     |                   | 1392 |
| AGC<br>Ser<br>465 | ATG<br>Met        | TCA<br>Ser        | TGG<br>Trp        | GTA<br>Val   | CCG<br>Pro<br>470 | CGG<br>Arg        | GCC<br>Ala          | CGG<br>Arg        | GAT<br>Asp        | CCA<br>Pro<br>475 | CCG<br>Pro            | GTC<br>Val        | GCC<br>Ala        | ACC<br>Thr          | ATG<br>Met<br>480 | 1440 |
|                   |                   |                   |                   |              |                   |                   |                     |                   |                   |                   | GTG<br>Val            |                   |                   |                     |                   | 1488 |
| GAG<br>Glu        | CTG<br>Leu        | GAC<br>Asp        | GGC<br>Gly<br>500 | Asp          | GTA<br>Val        | AAC<br>Asn        | GGC<br>Gly          | CAC<br>His<br>505 | AAG<br>Lys        | TTC<br>Phe        | AGC<br>Ser            | GTG<br>Val        | TCC<br>Ser<br>510 | Gly                 | GAG<br>Glu        | 1536 |
| GGC<br>Gly        | GAG<br>Glu        | GGC<br>Gly<br>515 | Asp               | GCC<br>Ala   | ACC<br>Thr        | TAC<br>Tyr        | GGC<br>Gly<br>520   | Lys               | CTG<br>Leu        | ACC<br>Thr        | CTG<br>Leu            | AAG<br>Lys<br>525 | TTC               | ATC<br>Ile          | TGC<br>Cys        | 1584 |
|                   |                   | Gly               |                   |              |                   |                   | Pro                 |                   |                   |                   | CTC<br>Leu<br>540     | Val               |                   |                     | CTG<br>Leu        | 1632 |
| ACC<br>Thr<br>545 | Tyr               | GGC               | GTG<br>Val        | CAG<br>Gln   | TGC<br>Cys<br>550 | Phe               | AGC<br>Ser          | CGC<br>Arg        | TAC<br>Tyr        | CCC<br>Pro<br>555 | Asp                   | CAC<br>His        | ATC<br>Met        | AAG<br>Lys          | Gln<br>560        | 1680 |
| CAC<br>His        | GAC<br>Asp        | TTC<br>Phe        | TTC<br>Phe        | Lys          | TCC               | Ala               | : ATC               | CCC<br>Pro        | GAA<br>Glu<br>570 | Gly               | TAC                   | GTC<br>Val        | Glr               | GAC<br>1 Glu<br>575 | Arg               | 1728 |
| ACC<br>Thr        | : ATC             | TTC<br>Phe        | TTC<br>Phe<br>580 | Lys          | GAC<br>Asp        | GAC<br>Asp        | Gly                 | AAC<br>Asr<br>585 | туг               | AAC<br>Lys        | G ACC                 | CGC<br>Arg        | GC0<br>Ala<br>590 | a Glu               | GTG<br>Val        | 1776 |
| AAG<br>Lys        | TTC<br>Phe        | GAC<br>Glu<br>599 | ı Gl              | GAC<br>Asp   | ACC<br>Thr        | CTC<br>Lev        | GT(<br>1 Val<br>600 | l Asr             | CGC<br>Arg        | TATO              | C GAC<br>e Glu        | CTC<br>Lev<br>605 | Ly:               | G GG(<br>S Gl)      | ATC<br>/ Ile      | 1824 |
| GAC<br>Asr        | TTC<br>Phe<br>610 | ≥ Lys             | G GAC             | GAC<br>1 Asp | GG(               | AAC<br>Asr<br>615 | ı Ile               | CTC<br>e Lev      | GGC<br>Gly        | G CAG             | C AAC<br>s Ly:<br>620 | s Leu             | G GAG             | G TAC               | AAC<br>Asn        | 1872 |
| TAC               | AA C              | AG(               | CAC               | DAA C        | GTO               | TA?               | TA T                | OTA C             | G GCC             | C GA              | C AAG                 | G CAC             | AA E              | G AA                | C GGC             | 1920 |

Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly ATC AAG GTG AAC TTC AAG ATC CGC CAC AAC ATC GAG GAC GGC AGC GTG Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val CAG CTC GCC GAC CAC TAC CAG CAG AAC ACC CCC ATC GGC GAC GGC CCC 2016 Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro 660 GTG CTG CCC GAC AAC CAC TAC CTG AGC ACC CAG TCC GCC CTG AGC 2064 Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser AAA GAC CCC AAC GAG AAG CGC GAT CAC ATG GTC CTG CTG GAG TTC GTG 2112 Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val 690 ACC GCC GCC GGG ATC ACT CTC GGC ATG GAC GAG CTG TAC AAG TAA 2157 Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys 710

#### (2) INFORMATION FOR SEQ ID NO:75:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 718 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:

Met Ser Ser Ile Leu Pro Phe Thr Pro Pro Val Val Lys Arg Leu Leu 10 1 Gly Trp Lys Lys Ser Ala Gly Gly Ser Gly Gly Ala Gly Gly Glu 25 Gln Asn Gly Gln Glu Glu Lys Trp Cys Glu Lys Ala Val Lys Ser Leu 40 Val Lys Lys Leu Lys Lys Thr Gly Arg Leu Asp Glu Leu Glu Lys Ala 55 Ile Thr Thr Gln Asn Cys Asn Thr Lys Cys Val Thr Ile Pro Ser Thr 75 70 Cys Ser Glu Ile Trp Gly Leu Ser Thr Pro Asn Thr Ile Asp Gln Trp 90 85 Asp Thr Thr Gly Leu Tyr Ser Phe Ser Glu Gln Thr Arg Ser Leu Asp 100 105 110 Gly Arg Leu Gln Val Ser His Arg Lys Gly Leu Pro His Val Ile Tyr 115 120 125 Cys Arg Leu Trp Arg Trp Pro Asp Leu His Ser His His Glu Leu Lys 135 140 Ala Ile Glu Asn Cys Glu Tyr Ala Phe Asn Leu Lys Lys Asp Glu Val 155 150 Cys Val Asn Pro Tyr His Tyr Gln Arg Val Glu Thr Pro Val Leu Pro

|            |            |            |            | 165        |     |            |                   |            | 170        |     |            |            |            | 175        |            |
|------------|------------|------------|------------|------------|-----|------------|-------------------|------------|------------|-----|------------|------------|------------|------------|------------|
| Pro        | Val        | Leu        | Val<br>180 | Pro        | Arg | His        | Thr               | Glu<br>185 | Ile        | Leu | Thr        | Glu        | Leu<br>190 | Pro        | Pro        |
| Leu        | Asp        | Asp<br>195 | Tyr        | Thr        | His | Ser        | Ile<br>200        | Pro        | Glu        | Asn | Thr        | Asn<br>205 | Phe        | Pro        | Ala        |
| Gly        | 11e<br>210 | Glu        | Pro        | Gln        | Ser | Asn<br>215 | Tyr               | Ile        | Pro        | Glu | Thr<br>220 | Pro        | Pro        | Pro        | Gly        |
| 225        |            |            |            | -          | 230 |            | Thr               |            |            | 235 |            |            |            |            | 240        |
|            |            |            |            | 245        |     |            | Glu               |            | 250        |     |            |            |            | 255        |            |
|            |            |            | 260        |            |     |            | Gln               | 265        |            |     |            |            | 270        |            |            |
|            |            | 275        |            |            |     |            | Tyr<br>280        |            |            |     |            | 285        |            |            |            |
|            | 290        |            |            |            |     | 295        | Ser               |            |            |     | 300        |            |            |            |            |
| 305        |            |            |            |            | 310 |            | Cys               |            |            | 315 |            |            |            |            | 320        |
|            |            |            |            | 325        |     |            | Thr<br>Glu        |            | 330        |     |            |            |            | 335        |            |
|            |            |            | 340        |            |     |            | Pro               | 345        |            |     |            |            | 350        |            |            |
|            |            | 355        |            |            |     |            | 360<br>Ile        |            | _          |     |            | 365        |            |            |            |
|            | 370        |            |            |            |     | 375        | Ala               |            |            |     | 380        |            |            |            |            |
| 385        |            |            |            |            | 390 |            |                   |            |            | 395 |            |            |            |            | 400        |
|            |            |            |            | 405        |     |            | Leu               |            | 410        |     |            |            |            | 415        |            |
|            |            |            | 420        | _          | _   |            | Ala               | 425        |            |     |            |            | 430        |            |            |
|            |            | 435        |            |            |     |            | Leu<br>440<br>Met |            |            |     |            | 445        |            |            |            |
|            | 450        | _          |            |            |     | 455        | Ala               |            |            |     | 460        |            |            |            |            |
| 465        |            |            |            |            | 470 |            |                   |            |            | 475 |            |            |            |            | 480        |
|            |            |            |            | 485        |     |            | Phe               |            | 490        |     |            |            |            | 495        |            |
|            |            |            | 500        |            |     |            |                   | 505        |            |     |            |            | 510        |            | Glu        |
|            |            | 515        |            |            |     |            | 520               |            |            |     |            | 525        |            |            | Cys        |
|            | 530        |            |            |            |     | 535        |                   |            |            |     | 540        |            |            |            | Leu        |
| 7nr<br>545 |            | GIY        | vai        | GIN        | 550 |            | Ser               | Arg        | ıyı        | 555 | Asp        | nis        | rie c      | Lys        | Gln<br>560 |
|            |            | Phe        | Phe        | Lys<br>565 |     |            | Met               | Pro        | Glu<br>570 |     | Tyr        | Val        | Gln        | Glu<br>575 | Arg        |
|            |            |            | 580        |            |     |            |                   | 585        |            |     |            |            | 590        |            | Val        |
|            |            | 595        |            |            |     |            | 600               |            |            |     |            | 605        |            |            | Ile        |
| •          | 610        | _          |            | _          | _   | 615        |                   |            |            |     | 620        | )          |            |            | Asn        |
| Tyr        | Asn        | Ser        | His        | Asn        | Val | Tyr        | Ile               | Met        | Ala        | Asp | Lys        | Gln        | Lys        | Asn        | Gly        |

| 625 630 635 640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val<br>645 650 655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 675 680 685<br>Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| 690 695 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys<br>705 710 715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| (2) INFORMATION FOR SEQ ID NO:76:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| (i) SEQUENCE CHARACTERISTICS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| (A) LENGTH: 2397 base pairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| (B) TYPE: nucleic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| (C) STRANDEDNESS: single (D) TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| A CONTROL OF THE PROPERTY OF T |     |
| (ii) MOLECULE TYPE: cDNA (ix) FEATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| (A) NAME/KEY: Coding Sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| (B) LOCATION: 12394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| (D) OTHER INFORMATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| ATG GAC AAT ATG TOT ATT ACG AAT ACA COA ACA AGT AAT GAT GCC TGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48  |
| Met Asp Asn Met Ser Ile Thr Asn Thr Pro Thr Ser Asn Asp Ala Cys  1 5 10 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| CTG AGC ATT GTG CAT AGT TTG ATG TGC CAT AGA CAA GGT GGA GAG AGT<br>Leu Ser Ile Val His Ser Leu Met Cys His Arg Gln Gly Gly Glu Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 96  |
| 20 25 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| GAA ACA TTT GCA AAA AGA GCA ATT GAA AGT TTG GTA AAG AAG CTG AAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 144 |
| GAA ACA TIT GCA AAA AGA GCA AIT GAA AGI IIG GIA AAG AAG CIG AAG<br>Glu Thr Phe Ala Lys Arg Ala Ile Glu Ser Leu Val Lys Lys Leu Lys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| 35 40 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| GAG AAA AAA GAT GAA TTG GAT TCT TTA ATA ACA GCT ATA ACT ACA AAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 192 |
| Glu Lys Lys Asp Glu Leu Asp Ser Leu Ile Thr Ala Ile Thr Thr Asn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 50 55 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| GGA GCT CAT CCT AGT AAA TGT GTT ACC ATA CAG AGA ACA TTG GAT GGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 240 |
| Gly Ala His Pro Ser Lys Cys Val Thr Ile Gln Arg Thr Leu Asp Gly 65 70 75 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| AGG CTT CAG GTG GCT GGT CGG AAA GGA TTT CCT CAT GTG ATC TAT GCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 288 |
| Arg Leu Gln Val Ala Gly Arg Lys Gly Phe Pro His Val Ile Tyr Ala<br>85 90 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 226 |
| CGT CTC TGG AGG TGG CCT GAT CTT CAC AAA AAT GAA CTA AAA CAT GTT<br>Arg Leu Trp Arg Trp Pro Asp Leu His Lys Asn Glu Leu Lys His Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 336 |
| arg Leu Trp Arg Trp Pro Asp Leu Ars Lys Ash Gra Leu Lys Ars 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| AAA TAT TGT CAG TAT GCG TTT GAC TTA AAA TGT GAT AGT GTC TGT GTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 384 |

| Lys               | Tyr                | Cys<br>115            | Gln                 | Tyr                | Ala                  |                       | Asp<br>120        | Leu                   | Lys                   | Cys                | Asp                   | Ser<br>125         | Val                  | Суѕ                   | Val                    |             |
|-------------------|--------------------|-----------------------|---------------------|--------------------|----------------------|-----------------------|-------------------|-----------------------|-----------------------|--------------------|-----------------------|--------------------|----------------------|-----------------------|------------------------|-------------|
| AAT<br>Asn        | CCA<br>Pro<br>130  | TAT<br>Tyr            | CAC<br>His          | TAC<br>Tyr         | GAA<br>Glu           | CGA<br>Arg<br>135     | GTT<br>Val        | GTA<br>Val            | TCA<br>Ser            | CCT<br>Pro         | GGA<br>Gly<br>140     | ATT<br>Ile         | GAT<br>Asp           | CTC<br>Leu            | TCA<br>Ser             | 432         |
| GGA<br>Gly<br>145 | TTA<br>Leu         | ACA<br>Thr            | CTG<br>Leu          | CAG<br>Gln         | AGT<br>Ser<br>150    | AAT<br>Asn            | GCT<br>Ala        | CCA<br>Pro            | TCA<br>Ser            | AGT<br>Ser<br>155  | ATG<br>Met            | ATG<br>Met         | GTG<br>Val           | AAG<br>Lys            | GAT<br>Asp<br>160      | 480         |
| GAA<br>Glu        | ТАТ<br>Туг         | GTG<br>Val            | CAT<br>His          | GAC<br>Asp<br>165  | TTT<br>Phe           | GAG<br>Glu            | GGA<br>Gly        | CAG<br>Gln            | CCA<br>Pro<br>170     | TCG<br>Ser         | TTG<br>Leu            | TCC<br>Ser         | ACT<br>Thr           | GAA<br>Glu<br>175     | GGA<br>Gly             | 528         |
| CAT<br>His        | TCA<br>Ser         | ATT<br>Ile            | CAA<br>Gln<br>180   | ACC<br>Thr         | ATC<br>Ile           | CAG<br>Gln            | CAT<br>His        | CCA<br>Pro<br>185     | CCA<br>Pro            | AGT<br>Ser         | AAT<br>Asn            | CGT<br>Arg         | GCA<br>Ala<br>190    | Ser                   | ACA<br>Thr             | 576         |
| GAG<br>Glu        | ACA<br>Thr         | TAC<br>Tyr<br>195     | Ser                 | ACC<br>Thr         | CCA<br>Pro           | GCT<br>Ala            | CTG<br>Leu<br>200 | Leu                   | GCC<br>Ala            | CC#<br>Pro         | TCI<br>Ser            | GAG<br>Glu<br>205  | Ser                  | AAT<br>Asn            | GCT<br>Ala             | 624         |
| ACC<br>Thr        | AGC<br>Ser<br>210  | Thr                   | GCC<br>Ala          | AAC<br>Asn         | TTT<br>Phe           | CCC<br>Pro<br>215     | AAC<br>Asn        | ATT                   | CCT<br>Pro            | GT(                | G GCT<br>L Ala<br>220 | a Ser              | ACA<br>Thr           | A AGT                 | CAG<br>Gln             | 672         |
| CCT<br>Pro        | Ala                | : AGT<br>Ser          | TATA                | CTG<br>Leu         | GGG<br>Gly<br>230    | Gly                   | AGC<br>Ser        | CAT<br>His            | AGT<br>Ser            | GAJ<br>Glu<br>23!  | ı Gly                 | A CTO              | TTC                  | G CAC                 | ATA<br>lle<br>240      | 720         |
| GC?<br>Ala        | A TCA              | . G17                 | G CCT               | CAC<br>Glr<br>245  | n Pro                | . GGA<br>. Gly        | CAC<br>Glr        | G CAG                 | G CAC<br>1 Glr<br>250 | n As               | T GG<br>n Gl          | A TT'<br>y Phe     | r AC'<br>e Th:       | r GG'<br>r Gly<br>25! | r CAG<br>y Gln<br>5    | <b>76</b> 3 |
| CC/<br>Pro        | A GC'<br>o Ala     | r ACT<br>a Thi        | г тас<br>тут<br>260 | His                | r CAT<br>s His       | `AAC<br>Asn           | : AG(<br>: Se:    | C ACT<br>c Thr<br>265 | Thi                   | C AC               | C TG<br>r Tr          | G AC<br>p Th       | T GG.<br>r Gl:<br>27 | y Se                  | r AGG<br>r Arg         | 816         |
| AC'               | T GC.              | A CCA<br>a Pro<br>27! | э Туг               | ACA<br>Thi         | A CCI                | TAA T                 | TTV<br>Lev<br>28  | u Pro                 | r CAG                 | C CA<br>s Hi       | C CA<br>s Gl          | A AA<br>n As<br>28 | n Gl                 | С СА<br>У Ні          | T CTT<br>s Leu         | 864         |
| CA<br>Gl          | G CA<br>n Hi<br>29 | s Hi                  | C CCC               | G CC'              | T ATO                | G CCC<br>E Pro<br>295 | o Pr              | C CA'                 | r CC<br>s Pr          | c GG<br>o Gl       | SA CA<br>y Hi<br>30   | s Ty               | C TG<br>T Tr         | G CC<br>P Pr          | T GTT<br>o Val         | 912         |
| СА<br>Ні<br>30    | s As               | T GA<br>n Gl          | G CT<br>u Le        | r GC.<br>u Al      | A TTO<br>a Pho<br>31 | e Gl                  | G CC<br>n Pr      | T CC                  | C AT                  | T TO<br>e Se<br>31 | er As                 | AT CA              | T CC                 | T GC                  | CT CCT<br>a Pro<br>320 | 960         |
| GA<br>Gl          | G TA<br>.u Ty      | T TG<br>T Tr          | G TG<br>p Cy        | T TC<br>s Se<br>32 | r Il                 | T GC'<br>e Al         | т та<br>а ту      | C TT<br>T Ph          | T GA<br>e G1<br>33    | u Me               | rg GÆ<br>et As        | AT GT<br>sp Va     | TT CA                | AG GT<br>In Va<br>33  | TA GGA<br>al Gly<br>85 | 1008        |
| G)                | AG AC<br>Lu Th     | CA TI                 | T AA<br>e Ly<br>34  | s Va               | T CC                 | T TC<br>o Se          | A AC              | GC TG<br>er Cy<br>34  | 's Pr                 | T A'               | TT G'<br>le V         | TT AG              | ar V                 | MT GA<br>al As<br>50  | AT GGA<br>sp Gly       | 1056        |

| TAC<br>Tyr        | GTG<br>Val           | GAC<br>Asp<br>355    | CCT<br>Pro        | TCT<br>Ser         | GGA (                 | Gly                   | GAT<br>Asp<br>360 | CGC<br>Arg            | TTT<br>Phe         | TGT<br>Cys         | TTG<br>Leu         | GGT<br>Gly<br>365          | CAA<br>Gln            | CTC<br>Leu         | TCC<br>Ser            | 1104 |
|-------------------|----------------------|----------------------|-------------------|--------------------|-----------------------|-----------------------|-------------------|-----------------------|--------------------|--------------------|--------------------|----------------------------|-----------------------|--------------------|-----------------------|------|
| AAT<br>Asn        | GTC<br>Val<br>370    | CAC<br>His           | AGG<br>Arg        | ACA<br>Thr         | GAA<br>Glu            | GCC<br>Ala<br>375     | ATT<br>Ile        | GAG<br>Glu            | AGA<br>Arg         | GCA<br>Ala         | AGG<br>Arg<br>380  | TTG<br>Leu                 | CAC<br>His            | ATA<br>Ile         | GGC<br>Gly            | 1152 |
| AAA<br>Lys<br>385 | GGT<br>Gly           | GTG<br>Val           | CAG<br>Gln        | TTG<br>Leu         | GAA<br>Glu<br>390     | TGT<br>Cys            | AAA<br>Lys        | GGT<br>Gly            | GAA<br>Glu         | GGT<br>Gly<br>395  | GAT<br>Asp         | GTT<br>Val                 | TGG<br>Trp            | GTC<br>Val         | AGG<br>Arg<br>400     | 1200 |
| TGC<br>Cys        | CTT<br>Leu           | AGT<br>Ser           | GAC<br>Asp        | CAC<br>His<br>405  | GCG<br>Ala            | GTC<br>Val            | TTT<br>Phe        | GTA<br>Val            | CAG<br>Gln<br>410  | AGT<br>Ser         | TAC<br>Tyr         | TAC<br>Tyr                 | TTA<br>Leu            | GAC<br>Asp<br>415  | AGA<br>Arg            | 1248 |
| GAA<br>Glu        | GCT<br>Ala           | GGG<br>Gly           | CGT<br>Arg<br>420 | GCA<br>Ala         | CCT<br>Pro            | GGA<br>Gly            | GAT<br>Asp        | GCT<br>Ala<br>425     | GTT<br>Val         | CAT<br>His         | AAG<br>Lys         | ATC<br>Ile                 | TAC<br>Tyr<br>430     | CCA<br>Pro         | AGT<br>Ser            | 1296 |
| GCA<br>Ala        | ТАТ<br>Туг           | ATA<br>Ile<br>435    | Lys               | GTC<br>Val         | TTT<br>Phe            | GAT<br>Asp            | TTG<br>Leu<br>440 | CGT<br>Arg            | CAG<br>Gln         | TGT<br>Cys         | CAT                | CGA<br>Arg<br>445          | CAG<br>Gln            | ATG<br>Met         | CAG<br>Gln            | 1344 |
| CAG<br>Gln        | CAG<br>Gln<br>450    | Ala                  | GCT<br>Ala        | ACT<br>Thr         | GCA<br>Ala            | CAA<br>Gln<br>455     | Ala               | GCA                   | GCA<br>Ala         | GCT<br>Ala         | GCC<br>Ala<br>460  | Gln                        | GCA<br>Ala            | GCA<br>Ala         | GCC<br>Ala            | 1392 |
| GTG<br>Val<br>465 | . Ala                | GGA<br>Gly           | AAC<br>Asn        | ATC                | CCT<br>Pro<br>470     | Gly                   | CCA<br>Pro        | GGA<br>Gly            | TCA<br>Ser         | GTA<br>Val<br>475  | . G13              | r GGA<br>/ Gly             | ATA<br>/ Ile          | GCT<br>Ala         | CCA<br>Pro<br>480     | 1440 |
| GCT<br>Ala        | ATC                  | AG1<br>Sei           | CTC               | TCA<br>Ser<br>485  | Ala                   | GCT<br>Ala            | GCT<br>Ala        | r GGA<br>a Gly        | ATT<br>116<br>490  | e Gl               | r GT<br>/ Val      | r GAT<br>l Asp             | r GAC<br>o Asp        | CTT<br>Lev<br>495  | CGT<br>Arg            | 1488 |
| CG(               | TTA<br>J Lev         | TG(                  | E ATA             | e Leu              | AGG<br>Arg            | ATC<br>Met            | AG:<br>Sei        | r TTT<br>r Phe<br>505 | e Val              | 3 AAi<br>l Lys     | A GGG              | C TG(<br>y Tr <sub>I</sub> | G GG7<br>D Gly<br>510 | / Pro              | G GAT                 | 1536 |
| TAC<br>Tyr        | C CCF                | A AG2<br>5 Arg<br>51 | g Glr             | 3 AGC<br>n Sei     | C ATC                 | AA.<br>Lys            | 52                | u Th                  | A CCI              | T TGG              | C TG<br>s Tr       | G AT'<br>p Ile<br>52!      | e Gl                  | A AT'              | r CAC<br>e His        | 1584 |
| TT.<br>Le         | A CAG<br>u Hi:<br>53 | s Ar                 | g GC0<br>g Ala    | C CTO              | C CAC                 | G CTY<br>n Lev<br>53! | ı Le              | A GA(<br>u As)        | C GAN<br>p Gl      | A GT.<br>u Va      | A CT<br>l Le<br>54 | u Hi                       | T AC                  | C AT<br>r Me       | G CCG<br>t Pro        | 1632 |
| AT<br>11<br>54    | e Al                 | A GA<br>a As         | C CC.<br>p Pr     | A CAI              | A CC'<br>n Pro<br>550 | o Lei                 | A GA<br>u As      | C TG<br>p Tr          | G GA'<br>p As      | T CC<br>p Pr<br>55 | o Pr               | G GT<br>O Va               | C GC<br>1 Al          | C AC<br>a Th       | C ATG<br>r Met<br>560 | 1680 |
| GT<br>Va          | G AG<br>1 Se         | C AA<br>r Ly         | G GG<br>s Gl      | C GA<br>y Gl<br>56 | u Gl                  | G CT                  | G TT<br>u Ph      | C AC<br>le Th         | c GG<br>r Gl<br>57 | y Vā               | G GI<br>1 Va       | G CC                       | C AT                  | C CT<br>e Le<br>57 | G GTC<br>Eu Val       | 1728 |
| GA                | G CT                 | G GA                 | .C GG             | C GA               | C GT                  | AA A                  | c GG              | C CA                  | CAA                | G TI               | C AC               | GC GI                      | TC TC                 | C GG               | C GAG                 | 1776 |

| Glu | Leu | Asp | Gly<br>580 | Asp | Val | Asn | Gly | His<br>585 | Lys               | Phe | Ser | Val | Ser<br>590 | Gly | Glu        |      |
|-----|-----|-----|------------|-----|-----|-----|-----|------------|-------------------|-----|-----|-----|------------|-----|------------|------|
|     |     |     |            |     |     |     | _   |            | CTG<br>Leu        |     |     |     | _          | _   |            | 1824 |
|     |     |     |            |     |     |     |     |            | CCC<br>Pro        |     |     |     |            |     |            | 1872 |
|     |     |     |            |     |     |     |     |            | TAC<br>Tyr        |     |     |     |            |     |            | 1920 |
|     |     |     |            |     |     |     |     |            | GAA<br>Glu<br>650 |     |     |     |            |     |            | 1968 |
|     |     |     |            |     |     |     |     |            | TAC<br>Tyr        |     |     |     |            |     |            | 2016 |
|     |     |     |            |     |     |     |     |            | CGC<br>Arg        |     |     |     |            |     |            | 2064 |
|     |     |     |            |     |     |     |     |            | GGG<br>Gly        |     |     |     |            |     |            | 2112 |
|     |     |     |            |     |     |     |     |            | GCC<br>Ala        |     |     |     |            |     | _          | 2160 |
|     |     |     |            |     |     |     |     |            | AAC<br>Asn<br>730 |     |     |     |            |     |            | 2208 |
|     |     |     |            |     |     |     |     |            | ACC<br>Thr        |     |     |     |            |     |            | 2256 |
|     |     |     |            |     |     |     |     |            | AGC<br>Ser        |     |     |     | Ala        |     | AGC<br>Ser | 2304 |
|     |     |     |            |     |     |     |     |            |                   |     |     | Leu |            |     | GTG<br>Val | 2352 |
|     |     |     |            |     |     |     |     |            | GAC<br>Asp        |     | Leu |     |            |     |            | 2397 |

(2) INFORMATION FOR SEQ ID NO:77:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 798 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGRENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:

Met Asp Asn Met Ser Ile Thr Asn Thr Pro Thr Ser Asn Asp Ala Cys 5 10 Leu Ser Ile Val His Ser Leu Met Cys His Arg Gln Gly Glu Ser 25 20 Glu Thr Phe Ala Lys Arg Ala Ile Glu Ser Leu Val Lys Lys Leu Lys 40 Glu Lys Lys Asp Glu Leu Asp Ser Leu Ile Thr Ala Ile Thr Thr Asn 55 Gly Ala His Pro Ser Lys Cys Val Thr Ile Gln Arg Thr Leu Asp Gly 75 70 Arg Leu Gln Val Ala Gly Arg Lys Gly Phe Pro His Val Ile Tyr Ala 90 85 Arg Leu Trp Arg Trp Pro Asp Leu His Lys Asn Glu Leu Lys His Val 105 110 100 Lys Tyr Cys Gln Tyr Ala Phe Asp Leu Lys Cys Asp Ser Val Cys Val 120 125 115 Asn Pro Tyr His Tyr Glu Arg Val Val Ser Pro Gly Ile Asp Leu Ser 140 135 Gly Leu Thr Leu Gln Ser Asn Ala Pro Ser Ser Met Met Val Lys Asp 155 150 Glu Tyr Val His Asp Phe Glu Gly Gln Pro Ser Leu Ser Thr Glu Gly 170 His Ser Ile Gln Thr Ile Gln His Pro Pro Ser Asn Arg Ala Ser Thr 185 Glu Thr Tyr Ser Thr Pro Ala Leu Leu Ala Pro Ser Glu Ser Asn Ala 200 205 Thr Ser Thr Ala Asn Phe Pro Asn Ile Pro Val Ala Ser Thr Ser Gln 215 220 Pro Ala Ser Ile Leu Gly Gly Ser His Ser Glu Gly Leu Leu Gln Ile 225 230 235 Ala Ser Gly Pro Gln Pro Gly Gln Gln Asn Gly Fhe Thr Gly Gln 250 245 Pro Ala Thr Tyr His His Asn Ser Thr Thr Thr Trp Thr Gly Ser Arg 265 260 Thr Ala Pro Tyr Thr Pro Asn Leu Pro His His Gln Asn Gly His Leu 280 Gln His His Pro Pro Met Pro Pro His Pro Gly His Tyr Trp Pro Val 300 295 His Asn Glu Leu Ala Phe Gln Pro Pro Ile Ser Asn His Pro Ala Pro 315 310 Glu Tyr Trp Cys Ser Ile Ala Tyr Phe Glu Met Asp Val Gln Val Gly 330 325 Glu Thr Phe Lys Val Pro Ser Ser Cys Pro Ile Val Thr Val Asp Gly 345 340 Tyr Val Asp Pro Ser Gly Gly Asp Arg Phe Cys Leu Gly Gln Leu Ser 360 365

Asn Val His Arg Thr Glu Ala Ile Glu Arg Ala Arg Leu His Ile Gly

375 Lys Gly Val Gln Leu Glu Cys Lys Gly Glu Gly Asp Val Trp Val Arg 390 395 Cys Leu Ser Asp His Ala Val Phe Val Gln Ser Tyr Tyr Leu Asp Arg 405 410 Glu Ala Gly Arg Ala Pro Gly Asp Ala Val His Lys Ile Tyr Pro Ser 425 420 Ala Tyr Ile Lys Val Phe Asp Leu Arg Gln Cys His Arg Gln Met Gln 440 435 Gln Gln Ala Ala Thr Ala Gln Ala Ala Ala Ala Gln Ala Ala Ala 455 460 Val Ala Gly Asn Ile Pro Gly Pro Gly Ser Val Gly Gly Ile Ala Pro 470 475 Ala Ile Ser Leu Ser Ala Ala Ala Gly Ile Gly Val Asp Asp Leu Arg 490 485 Arg Leu Cys Ile Leu Arg Met Ser Phe Val Lys Gly Trp Gly Pro Asp 505 500 Tyr Pro Arg Gln Ser Ile Lys Glu Thr Pro Cys Trp Ile Glu Ile His 520 515 Leu His Arg Ala Leu Gln Leu Leu Asp Glu Val Leu His Thr Met Pro 535 540 Ile Ala Asp Pro Gln Pro Leu Asp Trp Asp Pro Pro Val Ala Thr Met 550 555 Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val 565 570 575 Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu 580 585 590 Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys 595 600 605 Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Leu 620 615 Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln 630 635 His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg 645 650 Thr Ile Phe Fhe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val 660 665 Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile 680 685 Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn 700 695 Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly 705 710 715 Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val 730 725 Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Fro Ile Gly Asp Gly Pro 745 Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser 760 Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val 775 Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys

#### (2) INFORMATION FOR SEQ ID NO:78:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3138 base pairs

|                                                                                                           | (                                                                                                          | (C) S             | TRAN              |                     | ESS:             | aci<br>sin       |                   |                   |                  |                  |                   |                   |                  |                  |                  |     |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------|-------------------|---------------------|------------------|------------------|-------------------|-------------------|------------------|------------------|-------------------|-------------------|------------------|------------------|------------------|-----|
|                                                                                                           | (ii) MOLECULE TYPE: cDNA (ix) FEATURE:                                                                     |                   |                   |                     |                  |                  |                   |                   |                  |                  |                   |                   |                  |                  |                  |     |
|                                                                                                           | <ul><li>(A) NAME/KEY: Coding Sequence</li><li>(B) LOCATION: 13135</li><li>(D) OTHER INFORMATION:</li></ul> |                   |                   |                     |                  |                  |                   |                   |                  |                  |                   |                   |                  |                  |                  |     |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:  ATG GCG GGC TGG ATC CAG GCC CAG CAG CTG CAG GGA GAC GCG CTG CGC |                                                                                                            |                   |                   |                     |                  |                  |                   |                   |                  |                  |                   |                   |                  |                  |                  |     |
| ATG Met                                                                                                   | GCG<br>Ala                                                                                                 | GGC<br>Gly        | TGG<br>Trp        | ATC  <br>Ile  <br>5 | CAG (            | GCC (<br>Ala (   | CAG<br>Gln        | Gln               | CTG<br>Leu<br>10 | CAG<br>Gln       | GGA (             | GAC<br>Asp        | GCG<br>Ala       | CTG<br>Leu<br>15 | CGC<br>Arg       | 48  |
| CAG<br>Gln                                                                                                | ATG<br>Met                                                                                                 | CAG<br>Gln        | GTG<br>Val<br>20  | CTG<br>Leu          | TAC<br>Tyr       | GGC<br>Gly       | CAG<br>Gln        | CAC<br>His<br>25  | TTC<br>Phe       | CCC<br>Pro       | ATC<br>Ile        | GAG<br>Glu        | GTC<br>Val<br>30 | CGG<br>Arg       | CAC<br>His       | 96  |
| TAC<br>Tyr                                                                                                | TTG<br>Leu                                                                                                 | GCC<br>Ala<br>35  | CAG<br>Gln        | TGG<br>Trp          | ATT<br>Ile       | GAG<br>Glu       | AGC<br>Ser<br>40  | CAG<br>Gln        | CCA<br>Pro       | TGG<br>Trp       | GAT<br>Asp        | GCC<br>Ala<br>45  | ATT<br>Ile       | GAC<br>Asp       | TTG<br>Leu       | 144 |
| GAC<br>Asp                                                                                                | AAT<br>Asn<br>50                                                                                           | CCC<br>Pro        | CAG<br>Gln        | GAC<br>Asp          | AGA<br>Arg       | GCC<br>Ala<br>55 | CAA<br>Gln        | GCC<br>Ala        | ACC<br>Thr       | CAG<br>Gln       | CTC<br>Leu<br>60  | CTG<br>Leu        | GAG<br>Glu       | GGC<br>Gly       | CTG<br>Leu       | 192 |
| GTG<br>Val<br>65                                                                                          | CAG<br>Gln                                                                                                 | GAG<br>Glu        | CTG<br>Leu        | CAG<br>Gln          | AAG<br>Lys<br>70 | AAG<br>Lys       | GCG<br>Ala        | GAG<br>Glu        | CAC<br>His       | CAG<br>Gln<br>75 | GTG<br>Val        | GGG<br>Gly        | GAA<br>Glu       | GAT<br>Asp       | GGG<br>Gly<br>80 | 240 |
| TTT<br>Pì:e                                                                                               | TTA<br>Leu                                                                                                 | CTG<br>Leu        | AAG<br>Lys        | ATC<br>Ile<br>85    | AAG<br>Lys       | CTG<br>Leu       | GGG<br>Gly        | CAC<br>His        | TAC<br>Tyr<br>90 | GCC<br>Ala       | ACG<br>Thr        | CAG<br>Gln        | CTC              | CAG<br>Gln<br>95 | AAA<br>Lys       | 288 |
| ACA<br>Thr                                                                                                | ТАТ<br>Тух                                                                                                 | GAC<br>Asp        | CGC<br>Arg<br>100 | Cys                 | CCC<br>Pro       | CTG<br>Leu       | GAG<br>Glu        | CTG<br>Leu<br>105 | Val              | CGC<br>Arg       | TGC<br>Cys        | ATC<br>Ile        | CGC<br>Arg       | His              | ATT Ile          | 336 |
| CTG<br>Leu                                                                                                | TAC<br>Tyr                                                                                                 | AAT<br>Asn<br>115 | Glu               | . CAG<br>. Gln      | AGG<br>Arg       | CTG<br>Leu       | GTC<br>Val<br>120 | Arg               | GAA<br>Glu       | A GCC            | AAC<br>Asn        | AAT<br>Asr<br>125 | ) CA             | C AGC<br>S Ser   | TCT<br>Ser       | 384 |
| CCG<br>Pro                                                                                                | GCT<br>Ala                                                                                                 | Gly               | ATC               | : CTG               | GTT<br>Val       | GAC<br>Asp       | Ala               | ATG<br>Met        | TCC<br>Ser       | CA(              | AAG<br>Lys<br>140 | His               | CT<br>s Le       | r CAC<br>u Glr   | G ATC            | 432 |
| AAC                                                                                                       | CAC                                                                                                        | ACA               | TTT               | GAC                 | GAC              | CTC              | G CGF             | A CTC             | GTO              | C AC             | G CAC             | GA(               | C AC.            | A GAG            | TAA E            | 480 |

Asn Gln Thr Phe Glu Glu Leu Arg Leu Val Thr Gln Asp Thr Glu Asn

GAG CTG AAG AAA CTG CAG CAG ACT CAG GAG TAC TTC ATC ATC CAG TAC

Glu Leu Lys Lys Leu Gln Gln Thr Gln Glu Tyr Phe Ile Ile Gln Tyr

CAG GAG AGC CTG AGG ATC CAA GCT CAG TTT GCC CAG CTG GCC CAG CTG

| Gln Glu S                     | er Leu<br>180 | Arg Ile | Gln | Ala | Gln<br>185 | Phe | Ala | Gln | Leu | Ala<br>190 | Gln | Leu |      |
|-------------------------------|---------------|---------|-----|-----|------------|-----|-----|-----|-----|------------|-----|-----|------|
| AGC CCC C<br>Ser Pro G        |               |         |     |     |            |     |     |     |     |            |     |     | 624  |
| GTG TCT C<br>Val Ser L<br>210 |               |         |     |     |            |     |     |     |     |            |     |     | 672  |
| TAC CGC G<br>Tyr Arg V<br>225 |               |         |     |     |            |     |     |     |     |            |     |     | 720  |
| CGG AAG C<br>Arg Lys G        |               |         | _   |     |            |     |     |     |     |            |     |     | 768  |
| CGG CGG C<br>Arg Arg G        |               |         |     |     |            |     |     |     |     |            |     |     | 816  |
| GAC GTG C<br>Asp Val L        |               |         |     |     |            |     |     |     |     |            |     |     | 864  |
| AAC CGG C<br>Asn Arg G<br>290 |               |         |     |     |            |     |     |     |     |            |     |     | 912  |
| ATC CCC G<br>Ile Pro G<br>305 |               |         |     |     |            |     |     |     |     |            |     |     | 960  |
| ACG GAC A<br>Thr Asp I        |               |         |     |     |            |     |     |     |     | _          |     |     | 1008 |
| CAG CCT C                     |               |         |     |     |            |     |     |     |     |            |     |     | 1056 |
| CGC CTG C<br>Arg Leu L<br>3   |               |         |     |     |            |     |     |     |     |            |     |     | 1104 |
| GTG AAG G<br>Val Lys A<br>370 |               |         |     |     |            |     |     |     |     |            |     |     | 1152 |
| AAT GAG A<br>Asn Glu A<br>385 |               |         |     |     |            |     |     |     |     |            |     |     | 1200 |
| TGC GTG A                     |               |         |     |     |            |     |     |     |     |            |     |     | 1248 |

| AGG AAC AT<br>Arg Asn Me      | rG TCA<br>et Ser<br>420               | CTG AAG<br>Leu Lys        | AGG ATG                     | C AAG (<br>e Lys 2<br>425 | CGT G(<br>Arg A)      | CT GAC<br>la Asp         | CGG CG<br>Arg Ar<br>43  | g Gly                   | GCA<br>Ala              | 1296 |
|-------------------------------|---------------------------------------|---------------------------|-----------------------------|---------------------------|-----------------------|--------------------------|-------------------------|-------------------------|-------------------------|------|
| GAG TCC GT<br>Glu Ser Va      | rg ACA<br>al Thr<br>35                | GAG GAG<br>Glu Glu        | AAG TTO<br>Lys Pho          | e Thr                     | GTC C'<br>Val L       | TG TYT<br>eu Phe         | GAG TO<br>Glu Se<br>445 | CT CAG<br>er Gln        | TTC<br>Phe              | 1344 |
| AGT GTT G<br>Ser Val G<br>450 | GC AGC<br>ly Ser                      | AAT GAG<br>Asn Glu        | CTT GT<br>Leu Va<br>455     | G TTC<br>l Phe            | CAG G<br>Gln V        | TG AAG<br>al Lys<br>460  | ACT C                   | rg TCC<br>eu Ser        | CTA<br>Leu              | 1392 |
| CCT GTG G<br>Pro Val V<br>465 | TT GTC                                | ATC GTC<br>Ile Val<br>470 | His Gl                      | C AGC<br>y Ser            | Gln A                 | AC CAC<br>Sp His         | AAT G<br>Asn A          | CC ACG<br>la Thr        | GCT<br>Ala<br>480       | 1440 |
| ACT GTG C                     | TG TGG<br>eu Trp                      | GAC AAT<br>Asp Asr<br>485 | GCC TT<br>Ala Ph            | TT GCT<br>ne Ala          | GAG C<br>Glu F<br>490 | cc GGC<br>Pro Gly        | AGG G<br>Arg V          | TG CCA<br>al Pro<br>495 | Phe                     | 1488 |
| GCC GTG C<br>Ala Val F        | CT GAC<br>Pro Asp<br>500              | AAA GTO                   | CTG TO                      | G CCG<br>OP Pro<br>505    | CAG (                 | CTG TGT<br>Leu Cys       | Glu A                   | CG CTC<br>la Leu<br>10  | AAC<br>Asn              | 1536 |
| ATG AAA 1<br>Met Lys I        | MTC AAG<br>Phe Lys<br>515             | GCC GAA                   | ı Val G                     | AG AGC<br>ln Ser<br>20    | AAC (<br>Asn )        | CGG GG(<br>Arg Gl)       | CTG A<br>Leu T<br>525   | CC AAC                  | G GAG<br>Glu            | 1584 |
| AAC CTC (<br>Asn Leu V        | GTG TTC<br>Val Phe                    | CTG GCC                   | G CAG A<br>a Gln L<br>535   | AA CTG<br>ys Leu          | TTC I                 | AAC AAG<br>Asn Asi<br>54 | n Ser S                 | AGC AGC<br>Ser Sei      | C CAC<br>C His          | 1632 |
| CTG GAG (<br>Leu Glu )<br>545 | GAC TAC<br>Asp Tyr                    | AGT GG<br>Ser Gl;<br>55   | y Leu S                     | CC GTG<br>er Val          | Ser                   | TGG TC<br>Trp Se<br>555  | C CAG '                 | Phe Asi                 | n Arg<br>560            | 1680 |
| GAG AAC Glu Asn               | TTG CCC<br>Leu Pro                    | GGC TG<br>Gly Tr<br>565   | G AAC T<br>p Asn T          | AC ACC                    | TTC<br>Phe<br>570     | TGG CA<br>Trp Gl         | G TGG '<br>n Trp        | TTT GA<br>Phe As<br>57  | p Gly                   | 1728 |
| GTG ATG<br>Val Met            | GAG GTX<br>Glu Va:<br>580             | l Leu Ly                  | G AAG C<br>s Lys H          | AC CAC<br>is His<br>585   | Lys                   | CCC CA<br>Pro Hi         | C TGG<br>s Trp          | AAT GA<br>Asn As<br>590 | T GGG<br>p Gly          | 1776 |
| GCC ATC<br>Ala Ile            | CTA GG'<br>Leu Gl <sub>!</sub><br>595 | T TTT GI<br>y Phe Va      | l Asn I                     | AAG CAA<br>Jys Gli<br>300 | A CAG                 | GCC CA<br>Ala Hi         | C GAC<br>s Asp<br>605   | CTG CT<br>Leu Le        | C ATC                   | 1824 |
| AAC AAG<br>Asn Lys<br>610     | CCC GA                                | C GGG AC<br>p Gly Th      | CC TTC T<br>nr Phe I<br>615 | rTG TT<br>Leu Le          | G CGC<br>u Arg        | Phe Se                   | GT GAC<br>er Asp<br>20  | TCA GA                  | A ATC<br>Lu Ile         | 1872 |
| GGG GGC<br>Gly Gly<br>625     | ATC AC                                | r Ile A                   | CC TGG A<br>La Trp 1<br>30  | AAG TT<br>Lys Ph          | T GAC<br>e Asp        | TCC CC<br>Ser P:<br>635  | CG GAA<br>ro Glu        | CGC AM                  | AC CTG<br>sn Leu<br>640 | 1920 |
| TGG AAC                       | CTG AA                                | A CCA T                   | rc acc                      | ACG CG                    | g gat                 | TTC T                    | OTA OO                  | AGG TY                  | CC CTG                  | 1968 |

| Trp | Asn | Leu | Lys | Pro<br>645 | Phe               | Thr | Thr | Arg | Asp<br>650 | Phe | Ser | Ile | Arg | Ser<br>655 | Leu |      |
|-----|-----|-----|-----|------------|-------------------|-----|-----|-----|------------|-----|-----|-----|-----|------------|-----|------|
|     |     |     |     |            | GAC<br>Asp        |     |     |     |            |     |     |     |     |            |     | 2016 |
|     |     |     |     |            | GTC<br>Val        |     |     |     |            |     |     |     |     |            |     | 2064 |
|     |     |     |     |            | ТАТ<br>Туг        |     |     |     |            |     |     |     |     |            |     | 2112 |
|     |     |     |     |            | TCT<br>Ser<br>710 |     |     |     |            |     |     |     |     |            |     | 2160 |
|     |     |     |     |            | TCC<br>Ser        |     |     |     |            |     |     |     |     |            |     | 2208 |
|     |     |     |     |            | CCT<br>Pro        |     |     |     |            |     |     |     |     |            |     | 2256 |
|     |     |     |     |            | ATG<br>Met        |     |     |     |            |     | _   |     |     |            |     | 2304 |
|     |     |     |     |            | AGT<br>Ser        |     |     |     |            |     |     |     |     |            |     | 2352 |
|     |     |     |     |            | AGA<br>Arg<br>790 |     |     |     |            |     | _   |     |     |            |     | 2400 |
|     |     |     | _   | _          | ACC<br>Thr        |     | _   |     |            | _   | _   | _   |     |            |     | 2448 |
|     |     |     |     |            | CTG<br>Leu        |     |     |     |            |     |     |     |     |            |     | 2496 |
|     |     |     |     |            | GGC<br>Gly        |     |     |     |            |     |     |     |     |            |     | 2544 |
|     |     |     |     |            | ATC<br>Ile        |     |     |     |            |     |     |     |     |            |     | 2592 |
|     |     |     |     |            | ACC<br>Thr<br>870 |     |     |     |            |     |     |     |     |            |     | 2640 |

| TAC<br>Tyr         | CCC<br>Pro        | GAC<br>Asp        | CAC<br>His        | ATG<br>Met<br>885 | AAG<br>Lys        | CAG<br>Gln         | CAC<br>His        | GAC<br>Asp        | TTC<br>Phe<br>890 | TTC<br>Phe         | AAG<br>Lys         | TCC<br>Ser         | GCC<br>Ala        | ATG<br>Met<br>895 | CCC<br>Pro         | 2688 |
|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|--------------------|--------------------|--------------------|-------------------|-------------------|--------------------|------|
| GAA<br>Glu         | GGC<br>Gly        | TAC<br>Tyr        | GTC<br>Val<br>900 | CAG<br>Gln        | GAG<br>Glu        | CGC<br>Arg         | ACC<br>Thr        | ATC<br>Ile<br>905 | TTC<br>Phe        | TTC<br>Phe         | AAG<br>Lys         | GAC<br>Asp         | GAC<br>Asp<br>910 | GGC<br>Gly        | AAC<br>Asn         | 2736 |
| TAC<br>Tyr         | AAG<br>Lys        | ACC<br>Thr<br>915 | CGC<br>Arg        | GCC<br>Ala        | GAG<br>Glu        | GTG<br>Val         | AAG<br>Lys<br>920 | TTC<br>Phe        | GAG<br>Glu        | GGC<br>Gly         | GAC<br>Asp         | ACC<br>Thr<br>925  | CTG<br>Leu        | GTG<br>Val        | AAC<br>Asn         | 2784 |
| CGC<br>Arg         | ATC<br>Ile<br>930 | GAG<br>Glu        | CTG<br>Leu        | AAG<br>Lys        | GGC<br>Gly        | ATC<br>Ile<br>935  | GAC<br>Asp        | TTC<br>Phe        | AAG<br>Lys        | GAG<br>Glu         | GAC<br>Asp<br>940  | GGC<br>Gly         | AAC<br>Asn        | ATC<br>Ile        | CTG<br>Leu         | 2832 |
| GGG<br>Gly<br>945  | CAC<br>His        | AAG<br>Lys        | CTG<br>Leu        | GAG<br>Glu        | TAC<br>Tyr<br>950 | AAC<br>Asn         | TAC<br>Tyr        | AAC<br>Asn        | AGC<br>Ser        | CAC<br>His<br>955  | AAC<br>Asn         | GTC<br>Val         | тат<br>туг        | ATC<br>Ile        | ATG<br>Met<br>960  | 2880 |
| GCC<br>Ala         | GAC<br>Asp        | AAG<br>Lys        | CAG<br>Gln        | AAG<br>Lys<br>965 | AAC<br>Asn        | GGC<br>Gly         | ATC<br>Ile        | AAG<br>Lys        | GTG<br>Val<br>970 | AAC<br>Asn         | TTC<br>Phe         | AAG<br>Lys         | ATC               | CGC<br>Arg<br>975 | His                | 2928 |
| AAC<br>Asn         | ATC<br>Ile        | GAG<br>Glu        | GAC<br>Asp<br>980 | Gly               | AGC<br>Ser        | GTG<br>Val         | CAG<br>Gln        | CTC<br>Leu<br>985 | Ala               | GAC<br>Asp         | CAC                | TAC<br>Tyr         | CAC<br>Glr<br>990 | Gln               | AAC<br>Asn         | 2976 |
| ACC<br>Thr         | CCC               | ATC<br>Ile<br>995 | Gly               | GAC<br>Asp        | GGC<br>Gly        | CCC<br>Prc         | GTG<br>Val        | Leu               | CTG<br>Leu        | CCC<br>Pro         | GAC<br>Asp         | AAC<br>Asn<br>1005 | His               | TAC<br>TYT        | CTG<br>Leu         | 3024 |
| AGC<br>Ser         | Thr               | Gln               | TCC<br>Ser        | GCC<br>Ala        | CTG<br>Leu        | AGC<br>Ser<br>1015 | Lys               | GAC<br>Asp        | CCC<br>Prc        | AAC<br>Asn         | GAC<br>Glu<br>1020 | Lys                | G CGC             | GAT<br>J Asp      | CAC<br>His         | 3072 |
| ATG<br>Met<br>1025 | . Val             | CTC<br>Lev        | CTG               | GAG<br>Glu        | TTC<br>Phe        | · Val              | ACC<br>l Thr      | GCC<br>Ala        | GCC<br>Ala        | GGG<br>Gly<br>1035 | , Ile              | C ACT              | r CTY             | u Gly             | ATG<br>Met<br>1040 | 3120 |
|                    |                   |                   | TAC<br>Tyr        |                   |                   | A.                 |                   |                   |                   |                    |                    |                    |                   |                   |                    | 3138 |

# (2) INFORMATION FOR SEQ ID NO:79:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1045 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:

| Met<br>1  | Ala       | Gly        | Trp        | Ile<br>5   | Gln        | Ala       | Gln        | Gln        | Leu<br>10  | Gln       | Gly       | Asp        | Ala        | Leu<br>15 | Arg        |
|-----------|-----------|------------|------------|------------|------------|-----------|------------|------------|------------|-----------|-----------|------------|------------|-----------|------------|
| Gln       | Met       | Gln        | Val<br>20  | Leu        | Tyr        | Gly       | Gln        | His<br>25  | Phe        | Pro       | Ile       | Glu        | Val<br>30  | Arg       | His        |
| Tyr       | Leu       | Ala<br>35  | Gln        | Trp        | Ile        | Glu       | Ser<br>40  | Gln        | Pro        | Trp       | Asp       | Ala<br>45  | Ile        | Asp       | Leu        |
| Asp       | Asn<br>50 | Pro        | Gln        | Asp        | Arg        | Ala<br>55 | Gln        | Ala        | Thr        | Gln       | Leu<br>60 | Leu        | Glu        | Gly       | Leu        |
| Val<br>65 | Gln       | Glu        | Leu        | Gln        | Lys<br>70  | Lys       | Ala        | Glu        | His        | Gln<br>75 | Val       | Gly        | Glu        | Asp       | Gly<br>80  |
| Phe       | Leu       | Leu        | Lys        | Ile<br>85  | Lys        | Leu       | Gly        | His        | Tyr<br>90  | Ala       | Thr       | Gln        | Leu        | Gln<br>95 | Lys        |
| Thr       | Tyr       | Asp        | Arg<br>100 | Cys        | Pro        | Leu       | Glu        | Leu<br>105 | Val        | Arg       | Суѕ       | Ile        | Arg<br>110 | His       | Ile        |
|           | -         | 115        |            |            | Arg        |           | 120        |            |            |           |           | 125        |            |           |            |
|           | 130       |            |            |            | Val        | 135       |            |            |            |           | 140       |            |            |           |            |
|           | Gln       | Thr        | Phe        | Glu        | Glu        | Leu       | Arg        | Leu        | Val        |           | Gln       | Asp        | Thr        | Glu       |            |
| 145       | T         | 7          | 1          | T 011      | 150        | Cln       | mb ×       | Cln        | C1         | 155       | Pho       | Tlo        | TIO        | Cln       | 160        |
|           |           | -          | _          | 165        | Gln        |           |            |            | 170        | _         |           |            |            | 175       |            |
|           |           |            | 180        |            | Ile        |           |            | 185        |            |           |           |            | 190        |           |            |
|           |           | 195        |            | •          | Leu        |           | 200        |            |            |           |           | 205        |            | _         |            |
|           | 210       |            |            |            | Trp        | 215       |            |            |            |           | 220       |            |            |           |            |
| 225       |           |            |            |            | Ala<br>230 |           |            |            |            | 235       |           |            |            |           | 240        |
| _         | -         |            |            | 245        | Ile        |           |            | _          | 250        |           |           |            |            | 255       |            |
| _         | _         |            | 260        |            |            | _         |            | 265        |            |           |           |            | 270        |           | Leu<br>Gln |
|           |           | 275        |            |            |            |           | 280        |            |            |           |           | 285        |            |           | Pro        |
|           | 290       |            |            |            |            | 295       |            |            |            |           | 300       |            |            |           | Ile        |
| 305       |           | -          |            |            | 310        |           |            |            |            | 315       |           |            |            |           | 320        |
| Thr       | Asp       | Ile        | Ile        | Ser<br>325 | Ala        | Leu       | Val        | Thr        | Ser<br>330 | Thr       | Phe       | Ile        | Ile        | 335       | Lys        |
|           |           |            | 340        |            | Leu        |           |            | 345        |            |           |           |            | 350        |           |            |
| Arg       | Leu       | Leu<br>355 | Val        | Gly        | Gly        | Lys       | Leu<br>360 | Asn        | Val        | His       | Met       | Asn<br>365 | Pro        | Pro       | Gln        |
|           | 370       |            |            |            |            | 375       |            |            |            |           | 380       |            |            |           | Lys        |
| 385       |           |            |            |            | 390        |           |            |            |            | 395       |           |            |            |           | Cys<br>400 |
|           |           |            |            | 405        |            |           |            |            | 410        |           |           |            |            | 415       |            |
|           |           |            | 420        |            |            |           |            | 425        |            |           |           |            | 430        |           | Ala        |
| Glu       | Ser       | Val<br>435 |            | Glu        | Glu        | Lys       | Phe<br>440 |            | Val        | Leu       | Phe       | Glu<br>445 |            | Gln       | Phe        |
| Ser       | Val       | Gly        | Ser        | Asn        | Glu        | Leu       | Val        | Phe        | Gln        | Val       | Lys       | Thr        | Leu        | Ser       | Leu        |

|            | 450  |       |       |            |                     | 455   |       |           |           |            | 460          |       |      |          |      |            |
|------------|------|-------|-------|------------|---------------------|-------|-------|-----------|-----------|------------|--------------|-------|------|----------|------|------------|
| Pro        | Val  | Val   | Val   | Ile        | Val                 | His   | Gly   | Ser       | Gln       | Asp        | His          | Asn   | Ala  | Thi      | r A  | la         |
| 165        |      |       |       |            | 470                 |       |       |           |           | 475        |              |       |      |          | 4    | 30         |
| Thr        |      |       |       | 485        |                     |       |       |           | 490       |            | Gly          |       |      | 49       | 5    |            |
|            |      |       | 500   |            |                     |       |       | 505       |           |            | Суѕ          |       | 510  |          |      |            |
|            |      | 515   | Lys   |            |                     |       | 520   |           |           |            | Gly          | 525   |      |          |      |            |
|            | 530  | Val   |       |            |                     | 535   |       |           |           |            | Asn<br>540   |       |      |          |      |            |
| Leu<br>545 | Glu  | Asp   | Tyr   | Ser        | Gly<br>550          | Leu   | Ser   | Val       | Ser       | Trp<br>555 | Ser          | Gln   | Ph∈  | As       | n A  | rg<br>60   |
| Glu        |      |       |       | 565        |                     |       |       |           | 570       | )          | Gln          |       |      | 5/       | 5    |            |
|            |      |       | 580   | Leu        | Lys                 |       |       | 585       |           |            | His          |       | 590  | )        |      |            |
|            |      | 595   | ,     |            |                     |       | 600   |           |           |            | a His        | 605   | )    |          |      |            |
|            | 610  | ı     |       |            |                     | 615   |       |           |           |            | e Sei<br>620 | )     |      |          |      |            |
| Gly<br>625 |      | , Ile | • Thi | Ile        | Ala<br>630          |       | Lys   | Phe       | e Asp     | Se<br>63   | r Pro<br>5   | o Glu | ı Ar | g As     | sn 1 | Leu<br>540 |
| Trp        | Asr  |       |       | 64         | o Phe               | Thr   |       |           | 65        | 0          | e Se         |       |      | 6        | 55   |            |
|            |      |       | 66    | )          |                     |       |       | 665       | 5         |            | e Ty         |       | 6/   | U        |      |            |
|            |      | 67    | 5     |            |                     |       | 680   | )         |           |            | r Th         | 68    | 5    |          |      |            |
|            | 691  | n     |       |            |                     | 699   | 5     |           |           |            | е Lу<br>70   | 0     |      |          |      |            |
| 705        |      |       |       |            | 710                 | )     |       |           |           | 71         |              |       |      |          |      | 120        |
| Met        | As   |       |       | 72         | 5                   |       |       |           | 73        | 0          | ro Gl        |       |      | ,        | 35   |            |
|            |      |       | 74    | 0          |                     |       |       | 74        | 5         |            | sp Gl        |       | 75   | 0        |      |            |
|            |      | 75    | 5     |            |                     |       | 76    | 0         |           |            | is Vā        | 76    | 5    |          |      |            |
|            | 77   | 0     |       |            |                     | 77    | 5     |           |           |            | eu Se<br>78  | 30    |      |          |      |            |
| 70         | 5    |       |       |            | 79                  | 0     |       |           |           | 7          | rp Vä<br>95  |       |      |          |      | 800        |
| As         | p Pr |       |       | 80         | )5                  |       |       |           | 83        | 10         |              |       |      |          | 812  | Thr        |
|            |      |       | 83    | 20         |                     |       |       | 82        | 25        |            |              |       | 8    | 30       |      | His        |
|            |      | 83    | 3.5   |            |                     |       | 84    | 0         |           |            |              | 8     | 45   |          |      | Lys        |
|            | ρg   | 50    |       |            |                     | 85    | 55    |           |           |            | 8            | 60    |      |          |      | Trp        |
| Pr         | o Tì | ur L  | eu V  | al T       | nr Th               | ır Le | eu Th | ir T      | yr G      | ly V       | al G         | ln C  | ys P | he       | Ser  | Arg        |
| 86         | 5    |       |       |            | 87                  | 70    |       |           |           | 8          | 75           |       |      |          |      | 880        |
| Τ'n        | r P  | ro A  | sp H  |            | et L <u>y</u><br>85 | s G.  | ın H  | ıs A      | sp P<br>R | ne F<br>90 | TIE D        | ys S  | CI P | 110      | 895  | Pro        |
| G1         | .u G | ly T  |       | al G<br>00 | ln G                | Lu A: | rg Tì | nr I<br>9 |           |            | he L         | ys A  | ag A | sp<br>10 |      | Asn        |
| T          | r L  | ys T  | hr A  | rg A       | la G                | lu V  | al L  |           |           | lu C       | Sly A        | r ds  | hr I | .eu      | Va]  | . Asn      |

|            |             | 915        |            |             |                |       | 920          |            |            |            |      | 925         |            |            |            |    |
|------------|-------------|------------|------------|-------------|----------------|-------|--------------|------------|------------|------------|------|-------------|------------|------------|------------|----|
|            | 930         |            |            |             |                | 935   | Asp          |            |            |            | 940  |             |            |            |            |    |
| -          | His         | Lys        | Leu        | Glu         | Tyr<br>950     | Asn   | Tyr          | Asn        | Ser        | His<br>955 | Asn  | Val         | Tyr        | Ile        | Met<br>960 |    |
| 945<br>Ala | Asp         | Lys        | Gln        | Lys<br>965  |                | Gly   | Ile          | Lys        | Val<br>970 |            | Phe  | Lys         | Ile        | Arg<br>975 |            |    |
| Asn        | Ile         | Glu        | Asp<br>980 |             | Ser            | Val   | Gln          | Leu<br>985 |            | Asp        | His  | Tyr         | Gln<br>990 | -          | Asn        |    |
| Thr        | Pro         | 11e<br>995 |            | Asp         | Gly            |       | Val          | Leu        | Leu        | Pro        |      | Asn<br>1005 |            | Tyr        | Leu        |    |
|            | Thr<br>1010 |            | Ser        | Ala         |                |       | Lys          |            | Pro        |            |      |             | Arg        | Asp        | His        |    |
|            |             | Leu        | Leu        | Glu         |                |       | Thr          | Ala        | Ala        |            |      | Thr         | Leu        |            |            |    |
| 025        | -           | _          |            |             | 1030           |       |              |            |            | 1035       |      |             |            |            | 1040       |    |
| Asp        | Glu         | Leu        | _          | Lys<br>1045 |                |       |              |            |            |            |      |             |            |            |            |    |
|            |             | (2         | ) IN       | FORM        | ATIO           | n Fo  | R SE         | Q ID       | NO:        | 80:        |      |             |            |            |            |    |
|            |             | ·          |            |             |                |       |              |            |            |            |      |             |            |            |            |    |
|            | (           |            | -          |             |                |       | RIST<br>pai  |            |            |            |      |             |            |            |            |    |
|            |             |            |            |             | ucle           |       |              |            |            |            |      |             |            |            |            |    |
|            |             |            |            |             |                |       | ingl         | e          |            |            |      |             |            |            |            |    |
|            |             | (D)        | TOP        | OLOG        | Y: 1           | inea  | r            |            |            |            |      |             |            |            |            |    |
|            |             |            |            |             |                |       |              |            |            |            |      |             |            |            |            |    |
|            | (           | xi)        | SEQU       | ENCE        | DES            | CRIF  | MOIT         | I: SE      | Q II       | ) NO:      | 80:  |             |            |            |            |    |
| TGG        | GATO        | CTC        | AGGC       | CGTC        | CT G           | CTGC  | CCG          |            |            |            |      |             |            |            |            | 28 |
|            |             | (2         | ?) IN      | FORM        | IATIC          | N FC  | R SE         | Q II       | NO:        | 81:        |      |             |            |            |            |    |
|            | (           | i) S       | SEQUE      | NCE         | CHAR           | ACTE  | ERIST        | ICS:       |            |            |      |             |            |            |            |    |
|            |             |            |            |             |                |       | pai          | rs         |            |            |      |             |            |            |            |    |
|            |             |            |            |             | ucle           |       |              |            |            |            |      |             |            |            |            |    |
|            |             |            |            |             | SY: 1          |       | ingl<br>ir   | .e         |            |            |      |             |            |            |            |    |
|            |             | (-,        |            |             |                |       |              |            |            |            |      |             |            |            |            |    |
|            | ı           | (xi)       | SEQU       | JENCI       | E DES          | SCRI  | OITS         | J: SI      | EQ II      | ON C       | :81: |             |            |            |            |    |
| GTC        | TCGA        | AGGG       | AGCA       | ATGG        | GCA (          | CTT   | GCG          |            |            |            |      |             |            |            |            | 27 |
|            |             | (2         | 2) I!      | VFORI       | OITAN          | ON FO | OR SI        | EQ II      | ОИС        | :82:       |      |             |            |            |            |    |
|            |             |            |            |             |                |       | ERIS'        |            | :          |            |      |             |            |            |            |    |
|            |             |            |            |             |                |       | e pa         | irs        |            |            |      |             |            |            |            |    |
|            |             |            |            |             | nucle          |       | acid<br>sing | ا ۵        |            |            |      |             |            |            |            |    |
|            |             |            |            |             | EDNES<br>GY: : |       |              | r C        |            |            |      |             |            |            |            |    |
|            |             | , 2        | , 10.      |             |                |       | _            |            |            |            |      |             |            |            |            |    |
|            |             | (xi)       | SEÇ        | UENC:       | E DE           | SCRI  | PTIO         | N: S       | EQ I       | D NO       | :82: |             |            |            |            |    |

(2) INFORMATION FOR SEQ ID NO:83:

TGGGATCCGA GAAGTCTATA TCCCATC

27

| (1) SEQUENCE CHARACTERISTICS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| (A) LENGTH: 28 base pairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| (B) TYPE: nucleic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| (C) STRANDEDNESS: single                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| (D) TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| TGGGATCCTT AGAAGTCTAT ATCCCATC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28 |
| (2) INFORMATION FOR SEQ ID NO:84:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| (i) SEQUENCE CHARACTERISTICS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| (A) LENGTH: 28 base pairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| (B) TYPE: nucleic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| (C) STRANDEDNESS: single                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| (D) TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| GTCTCGAGCC ATGAACGCCC CCGAGCGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28 |
| GICICOAGCC AIGAACGCCC CCGAGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| (2) INFORMATION FOR SEQ ID NO:85:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| (i) SEQUENCE CHARACTERISTICS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| (A) LENGTH: 30 base pairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| (B) TYPE: nucleic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| (C) STRANDEDNESS: single                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| (D) TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| (b) TOPOLAGY: Timedi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| GTGAATTCTC GTCTGATTTC TGGCAGGAGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| (2) INFORMATION FOR SEQ ID NO:86:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| (i) SEQUENCE CHARACTERISTICS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| (A) LENGTH: 30 base pairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| (B) TYPE: nucleic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| (C) STRANDEDNESS: single                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| (D) TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| OCCUPATION DESCRIPTION DE CONCUENT DE CONCUENTA DE CONCUE | 30 |
| GTGAATTCTT TACGTCTGAT TTCTGGCAGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •  |
| (2) INFORMATION FOR SEQ ID NO:87:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| (i) SEQUENCE CHARACTERISTICS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| (A) LENGTH: 34 base pairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| (B) TYPE: nucleic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| (C) STRANDEDNESS: single                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| (D) TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |

34

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:

GTCTCGAGCC ATGGACGAAC TGTTCCCCCT CATC

| (2) INFORMATION FOR SEQ ID NO:88:                                                                                                                 |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 31 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li></ul> |    |
| (D) TOPOLOGY: linear                                                                                                                              |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:                                                                                                          |    |
| GTGGATCCAA GGAGCTGATC TGACTCAGCA G                                                                                                                | 31 |
| (2) INFORMATION FOR SEQ ID NO:89:                                                                                                                 |    |
| (i) SEQUENCE CHARACTERISTICS:                                                                                                                     |    |
| (A) LENGTH: 32 base pairs                                                                                                                         |    |
| (B) TYPE: nucleic acid                                                                                                                            |    |
| (C) STRANDEDNESS: single                                                                                                                          |    |
| (D) TOPOLOGY: linear                                                                                                                              |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:89:                                                                                                          |    |
| GTGGATCCTT AGGAGCTGAT CTGACTCAGC AG                                                                                                               | 32 |
| (2) INFORMATION FOR SEQ ID NO:90:                                                                                                                 |    |
| (i) SEQUENCE CHARACTERISTICS:                                                                                                                     |    |
| (A) LENGTH: 32 base pairs                                                                                                                         |    |
| (B) TYPE: nucleic acid                                                                                                                            |    |
| (C) STRANDEDNESS: single                                                                                                                          |    |
| (D) TOPOLOGY: linear                                                                                                                              |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:                                                                                                          |    |
| CCTCCTAAGC TTATCATGGA CCATTATGAT TC                                                                                                               | 32 |
| (2) INFORMATION FOR SEQ ID NO:91:                                                                                                                 |    |
| (i) SEQUENCE CHARACTERISTICS:                                                                                                                     |    |
| (A) LENGTH: 33 base pairs                                                                                                                         |    |
| (B) TYPE: nucleic acid                                                                                                                            |    |
| (C) STRANDEDNESS: single                                                                                                                          |    |
| (D) TOPOLOGY: linear                                                                                                                              |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:                                                                                                          |    |
|                                                                                                                                                   | 33 |
| CCTCCTGGAT CCCTGCGCAG GATGATGGTC CAG                                                                                                              |    |
|                                                                                                                                                   |    |

| (2) INFORMATION FOR SEQ ID NO:92:                                                                                                                                              |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 45 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:                                                                                                                                       |    |
| GGATGGAAGC TTCAATGGCT GCCATCCGGA AGAAACTGGT GATTG                                                                                                                              | 45 |
| (2) INFORMATION FOR SEQ ID NO:93:                                                                                                                                              |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 45 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:                                                                                                                                       |    |
| GGATGGGGAT CCTCACAAGA CAAGGCAACC AGATTTTTTC TTCCC                                                                                                                              | 45 |
| (2) INFORMATION FOR SEQ ID NO:94:                                                                                                                                              |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 29 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:                                                                                                                                       |    |
| GGGAAGCTTC CATGAGCGAG ACGGTCATC                                                                                                                                                | 29 |
| (2) INFORMATION FOR SEQ ID NO:95:                                                                                                                                              |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 28 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:                                                                                                                                       |    |
| CCCGGATCCT CAGGGAGAAC CCCGCTTC                                                                                                                                                 | 28 |
| (2) INFORMATION FOR SEQ ID NO:96:                                                                                                                                              |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 30 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li></ul>                              |    |

| (D) TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| GTGAATTCGA CCATGGAGCG GCCCCCGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30 |
| (2) INFORMATION FOR SEQ ID NO:97:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 27 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:97:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| GTGGTACCCA TTCTGTTAAC CAACTCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27 |
| (2) INFORMATION FOR SEQ ID NO:98:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 28 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:98:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| GTGGTACCTC ATTCTGTTAA CCAACTCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28 |
| (2) INFORMATION FOR SEQ ID NO:99:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 28 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| GTCTCGAGAG ATGCTGTCCC GTGGGTGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28 |
| (2) INFORMATION FOR SEQ ID NO:100:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 27 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| The state of the s | 27 |

GTGAATTCGC TTCCTCTTGA GGGAACC

| (2) INFORMATION FOR SEQ 10 NO.101.                                                                                                                                             |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 27 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:                                                                                                                                      |    |
| GTGAATTCAC TTCCTCTTGA GGGAACC                                                                                                                                                  | 27 |
| (2) INFORMATION FOR SEQ ID NO:102:                                                                                                                                             |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 29 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:                                                                                                                                      |    |
| GTCTCGAGCC ATGGAGAACT TCCAAAAGG                                                                                                                                                | 29 |
| (2) INFORMATION FOR SEQ ID NO:103:                                                                                                                                             |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 28 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:                                                                                                                                      |    |
| GTGGATCCCA GAGTCGAAGA TGGGGTAC                                                                                                                                                 | 28 |
| (2) INFORMATION FOR SEQ ID NO:104:                                                                                                                                             |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 29 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:                                                                                                                                      |    |
| GTGGATCCTC AGAGTCGAAG ATGGGGTAC                                                                                                                                                | 29 |
| (2) INFORMATION FOR SEQ ID NO:105:                                                                                                                                             |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 30 base pairs</li><li>(B) TYPE: nucleic acid</li></ul>                                                               |    |

| (C) STRANDEDNESS: single (D) TOPOLOGY: linear                                                                                                                                    |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:                                                                                                                                        |    |
| GTGAATTCGG CGATGCCAGA CCCCGCGGCG                                                                                                                                                 | 30 |
| (2) INFORMATION FOR SEQ ID NO:106:                                                                                                                                               |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 32 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul>   |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:                                                                                                                                        |    |
| GTGGATCCCA GGCACAGGCA GCCTCAGCCT TC                                                                                                                                              | 32 |
| (2) INFORMATION FOR SEQ ID NO:107:                                                                                                                                               |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 33 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul>   |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:                                                                                                                                        |    |
| GTGGATCCTC AGGCACAGGC AGCCTCAGCC TTC                                                                                                                                             | 33 |
| (2) INFORMATION FOR SEQ ID NO:108:                                                                                                                                               |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 2616 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |
| (ii) MOLECULE TYPE: cDNA (ix) FEATURE:                                                                                                                                           |    |
| <ul><li>(A) NAME/KEY: Coding Sequence</li><li>(B) LOCATION: 12613</li><li>(D) OTHER INFORMATION:</li></ul>                                                                       |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:108:                                                                                                                                        |    |
| ATG GTG AGC AAG GGC GAG GAG CTG TTC ACC GGG GTG GTG CCC ATC CTG Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu  1 5 10 15                                       | 48 |
| GTC GAG CTG GAC GGC GAC GTA AAC GGC CAC AAG TTC AGC GTG TCC GGC Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly                                                  | 96 |

| GAG<br>Glu        | GGC<br>Gly          | GAG<br>Glu<br>35   | GGC<br>Gly         | GAT<br>Asp            | GCC .<br>Ala        | Thr                  | TAC<br>Tyr<br>40   | GJY<br>GGC            | AAG<br>Lys          | CTG<br>Leu          | ACC<br>Thr          | CTG<br>Leu<br>45   | AAG<br>Lys          | TTC<br>Phe          | ATC<br>Ile             | 144 |
|-------------------|---------------------|--------------------|--------------------|-----------------------|---------------------|----------------------|--------------------|-----------------------|---------------------|---------------------|---------------------|--------------------|---------------------|---------------------|------------------------|-----|
| TGC<br>Cys        | ACC<br>Thr<br>50    | ACC<br>Thr         | GGC<br>Gly         | AAG<br>Lys            | CTG<br>Leu          | CCC<br>Pro<br>55     | GTG<br>Val         | CCC<br>Pro            | TGG<br>Trp          | CCC<br>Pro          | ACC<br>Thr<br>60    | CTC<br>Leu         | GTG<br>Val          | ACC<br>Thr          | ACC<br>Thr             | 192 |
| CTG<br>Leu<br>65  | ACC<br>Thr          | TAC<br>Tyr         | GGC<br>Gly         | GTG<br>Val            | CAG<br>Gln<br>70    | TGC<br>Cys           | TTC<br>Phe         | AGC<br>Ser            | CGC<br>Arg          | TAC<br>Tyr<br>75    | CCC                 | GAC<br>Asp         | CAC<br>His          | ATG<br>Met          | AAG<br>Lys<br>80       | 240 |
| CAG<br>Gln        | CAC<br>His          | GAC<br>Asp         | TTC<br>Phe         | TTC<br>Phe<br>85      | AAG<br>Lys          | TCC<br>Ser           | GCC<br>Ala         | ATG<br>Met            | CCC<br>Pro<br>90    | GAA<br>Glu          | GGC<br>Gly          | TAC<br>Tyr         | GTC<br>Val          | CAG<br>Gln<br>95    | GAG<br>Glu             | 288 |
| CGC<br>Arg        | ACC<br>Thr          | ATC                | TTC<br>Phe         | Phe                   | AAG<br>Lys          | GAC<br>Asp           | GAC<br>Asp         | GGC<br>Gly<br>105     | AAC<br>Asn          | TAC<br>Tyr          | AAG<br>Lys          | ACC<br>Thr         | CGC<br>Arg<br>110   | GCC<br>Ala          | GAG<br>Glu             | 336 |
| GTG<br>Val        | AAG<br>Lys          | TTC<br>Phe         | e Glu              | GGC<br>Gly            | GAC<br>Asp          | ACC<br>Thr           | CTG<br>Leu<br>120  |                       | AAC<br>Asn          | CGC<br>Arg          | : ATC               | GAG<br>Glu<br>125  | Leu                 | AAG<br>Lys          | GGC<br>Gly             | 384 |
| ATC<br>Ile        | GAC<br>Asp<br>130   | Phe                | C AAC              | G GAG                 | GAC<br>Asp          | GGC<br>Gly<br>135    | AAC<br>Asr         | : ATC                 | CTG<br>Leu          | GGC<br>Gly          | CAC<br>His          | : Lys              | CTC<br>Lev          | GAG<br>Glu          | TAC<br>Tyr             | 432 |
| AA(<br>Asi<br>14! | ı Tyr               | C AAC              | C AGO              | C CAC                 | AAC<br>Asn<br>150   | Val                  | TAT<br>Ty:         | r ATC                 | : ATC               | GCC<br>: Ala<br>159 | a Ası               | Z AAC<br>D Lys     | G CAC               | AAC<br>Lys          | AAC<br>Asn<br>160      | 480 |
| GG(               | C ATV               | C AAG<br>e Ly      | G GTY<br>s Va      | G AA0<br>1 Asi<br>16! | n Phe               | : AAG<br>: Lys       | TA ;               | e Arc                 | CAC<br>His          | s Ası               | n Il                | C GAG              | G GAG<br>L Asj      | GG(<br>G) Gly<br>17 | C AGC<br>y Ser<br>5    | 528 |
| GT<br>Va          | G CA                | G CT<br>n Le       | C GC<br>u Al<br>18 | a As                  | C CAC               | TAC                  | CAC                | G CAC<br>n Glr<br>189 | n Ası               | n Th                | C CC<br>r Pr        | C AT               | C GG<br>e Gl;<br>19 | y As                | c GGC<br>p Gly         | 576 |
| CC<br>Pr          | C GT<br>o Va        | G CT<br>1 Le<br>19 | u Le               | G CC                  | C GAG<br>o Asi      | AA(<br>Asi           | C CA<br>n Hi<br>20 | s Ty:                 | C CT<br>r Le        | G AG<br>u Se        | C AC                | C CA<br>r Gl<br>20 | n Se                | c GC<br>r Al        | C CTG<br>a Leu         | 624 |
| AC<br>Se          | C AA<br>er Ly<br>21 | s As               | C CC               | C AA                  | C GA(               | 3 AA0<br>u Ly:<br>21 | s Ar               | C GA                  | T CA<br>p Hi        | C AT<br>s Me        | G GT<br>et Va<br>22 | ıl L∈              | G CT<br>u Le        | G GA<br>u Gl        | G TTC<br>u Phe         | 672 |
| GT<br>Va<br>22    | al Th               | C GC<br>ir Al      | CC GC<br>la Al     | C GG<br>la Gl         | G ATO<br>y Il<br>23 | e Th                 | T CI<br>r Le       | rc GG<br>eu Gl        | С АТ<br>У Ме        | G GA<br>et As<br>23 | sp G]               | AG CI<br>lu Le     | YG TA               | C AA                | G TCC<br>'s Ser<br>240 | 720 |
| G(<br>G]          | GA CT               | rc Ad<br>eu Ai     | GA TO              | CT CC<br>er Ar<br>24  | g Al                | T CA<br>a Gl         | A GC<br>n Al       | CT TC<br>La Se        | G AA<br>er As<br>25 | n Se                | CG G(<br>er A)      | CG A               | rg co<br>et Pi      | co As               | AC CCC<br>sp Pro       | 768 |
| G                 | CG G(               | cg ci              | AC C               | rg co                 | C TT                | C TI                 | C T                | AC GG                 | C AC                | GC A'               | rc r                | CG C               | GT G                | CC G                | AG GCC                 | 816 |

| Ala               | Ala               | His        | Leu<br>260 | Pro        | Phe               | Phe               | Tyr        | Gly<br>265 | Ser        | Ile                   | Ser               | Arg        | Ala<br>270 | Glu        | Ala               |      |
|-------------------|-------------------|------------|------------|------------|-------------------|-------------------|------------|------------|------------|-----------------------|-------------------|------------|------------|------------|-------------------|------|
|                   |                   |            |            |            |                   |                   |            |            |            |                       | GGG<br>Gly        |            |            |            |                   | 864  |
|                   |                   |            |            |            |                   |                   |            |            |            |                       | CTG<br>Leu<br>300 |            |            |            |                   | 912  |
|                   |                   |            |            |            |                   |                   |            |            |            |                       | CAG<br>Gln        |            |            |            |                   | 960  |
|                   |                   |            |            |            |                   |                   |            |            |            |                       | CCG<br>Pro        |            |            |            |                   | 1008 |
|                   |                   |            |            |            |                   |                   |            |            |            |                       | TGC<br>Cys        |            |            |            |                   | 1056 |
|                   |                   |            |            |            |                   |                   |            |            |            |                       | CCG<br>Pro        |            |            |            |                   | 1104 |
|                   |                   |            |            |            |                   |                   |            |            |            |                       | CGC<br>Arg<br>380 |            |            |            |                   | 1152 |
|                   | Glu               |            |            |            |                   |                   |            |            |            |                       | AGC<br>Ser        |            |            |            |                   | 1200 |
|                   |                   |            |            |            |                   |                   |            |            |            |                       |                   |            |            |            | TAC<br>Tyr        | 1248 |
|                   |                   |            |            |            |                   |                   |            |            | Glu        |                       |                   |            |            | Ser        | GGG<br>Gly        | 1296 |
|                   |                   |            | Asp        |            |                   |                   |            | Leu        |            |                       |                   |            | Glu        |            | GGC<br>Gly        | 1344 |
| ACA<br>Thr        | TAC<br>Tyr<br>450 | Ala        | CTG<br>Leu | TCC        | CTC               | ATC<br>Ile<br>455 | Tyr        | GGG<br>Gly | AAG<br>Lys | ACC<br>Thr            | GTG<br>Val<br>460 | Tyr        | CAC<br>His | TAC        | CTC<br>Leu        | 1392 |
| ATC<br>11e<br>465 | Ser               | CAA<br>Gln | GAC<br>Asp | AAG<br>Lys | GCG<br>Ala<br>470 | Gly               | AAC<br>Lys | TAC<br>Tyr | TGC<br>Cys | : ATT<br>: Ile<br>475 | Pro               | GAC<br>Glu | GGC<br>GGC | ACC<br>Thr | AAG<br>Lys<br>480 | 1440 |
|                   |                   |            |            |            | Gln               |                   |            |            |            | Leu                   |                   |            |            |            | GAC<br>ASP        | 1488 |

|                   |                       |                   |                   |                   |                   |                   |                   |            |                   |                      |                       |                     |                     | GCC<br>Ala        |                     | 1536 |
|-------------------|-----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|----------------------|-----------------------|---------------------|---------------------|-------------------|---------------------|------|
| AAC<br>Asn        | GCC<br>Ala            | TCA<br>Ser<br>515 | GGG<br>Gly        | GCT<br>Ala        | GCT<br>Ala        | GCT<br>Ala        | CCC<br>Pro<br>520 | ACA<br>Thr | CTC<br>Leu        | CCA<br>Pro           | GCC<br>Ala            | CAC<br>His<br>525   | CCA<br>Pro          | TCC<br>Ser        | ACG<br>Thr          | 1584 |
| TTG<br>Leu        | ACT<br>Thr<br>530     | CAT<br>His        | CCT<br>Pro        | CAG<br>Gln        | AGA<br>Arg        | CGA<br>Arg<br>535 | ATC<br>Ile        | GAC<br>Asp | ACC<br>Thr        | CTC<br>Leu           | AAC<br>Asn<br>540     | TCA<br>Ser          | GAT<br>Asp          | GGA<br>Gly        | TAC<br>Tyr          | 1632 |
| ACC<br>Thr<br>545 | CCT<br>Pro            | GAG<br>Glu        | CCA<br>Pro        | GCA<br>Ala        | CGC<br>Arg<br>550 | ATA<br>Ile        | ACG<br>Thr        | TCC<br>Ser | CCA<br>Pro        | GAC<br>Asp<br>555    | AAA<br>Lys            | CCG<br>Pro          | CGG<br>Arg          | CCG<br>Pro        | ATG<br>Met<br>560   | 1680 |
| CCC<br>Pro        | ATG<br>Met            | GAC<br>Asp        | ACG<br>Thr        | AGC<br>Ser<br>565 | GTG<br>Val        | TAT<br>Tyr        | GAG<br>Glu        | AGC<br>Ser | CCC<br>Pro<br>570 | TAC<br>Tyr           | AGC<br>Ser            | GAC<br>Asp          | CCA<br>Pro          | GAG<br>Glu<br>575 | GAG<br>Glu          | 1728 |
|                   |                       |                   |                   |                   |                   |                   |                   |            |                   |                      |                       |                     |                     | ATA<br>Ile        |                     | 1776 |
| GAC<br>Asp        | ATT                   | GAA<br>Glu<br>595 | Leu               | GGC<br>Gly        | TGC<br>Cys        | GGC<br>Gly        | AAC<br>Asn<br>600 | TTT<br>Phe | GGC<br>Gly        | TCA<br>Ser           | GTG<br>Val            | CGC<br>Arg<br>605   | CAG<br>Gln          | GGC<br>Gly        | GTG<br>Val          | 1824 |
| TAC<br>Tyr        | CGC<br>Arg<br>610     | ATG<br>Met        | CGC<br>Arg        | AAG<br>Lys        | AAG<br>Lys        | CAG<br>Gln<br>615 | ATC<br>Ile        | GAC<br>Asp | GTG<br>Val        | GCC<br>Ala           | ATC<br>Ile<br>620     | Lys                 | GTG<br>Val          | CTG<br>Leu        | AAG<br>Lys          | 1872 |
| CAG<br>Gln<br>625 | Gly                   | ACG               | GAG<br>Glu        | AAG<br>Lys        | GCA<br>Ala<br>630 | GAC<br>Asp        | ACG<br>Thr        | GAA<br>Glu | GAG<br>Glu        | ATG<br>Met<br>635    | Met                   | CGC                 | GAG                 | GCG<br>Ala        | CAG<br>Gln<br>640   | 1920 |
| ATC<br>Ile        | ATG<br>Met            | CAC               | CAG<br>Gln        | CTG<br>Leu<br>645 | Asp               | AAC<br>Asn        | CCC<br>Pro        | TAC<br>Tyr | Ile<br>650        | Val                  | CGG<br>Arg            | CTC<br>Lev          | ATT                 | GGC<br>Gly<br>655 | Val                 | 1968 |
| TGC<br>Cys        | CAG<br>Gln            | GCC<br>Ala        | GAG<br>Glu<br>660 | Ala               | CTC<br>Leu        | ATG<br>Met        | Leu               | GTC<br>Val | Met               | GAC<br>Glu           | ATC                   | GCT<br>Ala          | GGC<br>1 Gly<br>670 | / Gly             | GGG<br>Gly          | 2016 |
| CCC               | CTG                   | CAC<br>His        | Lys               | TTC<br>Phe        | CTG               | GTC<br>Val        | 680<br>680        | / Lys      | AGG<br>Arg        | GAC<br>Glu           | G GAC                 | ATC<br>1 116<br>685 | Pro                 | r GTC<br>o Val    | AGC<br>Ser          | 2064 |
| AA1<br>Asr        | r GTC<br>n Val<br>690 | Ala               | GAG<br>Glu        | CTC<br>Lev        | CTC<br>Lev        | CAC<br>His<br>695 | Glr               | G GTC      | TCC<br>Ser        | ATY<br>Me            | G GGC<br>E Gly<br>700 | / Mel               | AA(                 | G TAC             | CTG<br>Leu          | 2112 |
| GA0<br>Gl:<br>70! | ı Glı                 | AA(               | 3 AAC<br>s Asr    | TT:               | GTC<br>Val        | His               | C CG              | T GAC      | CTC<br>Lev        | G GC0<br>1 Ala<br>71 | a Ala                 | C CGG               | C AAG<br>g Asi      | C GT(<br>n Val    | C CTG<br>Leu<br>720 | 2160 |
| CIX               | G GT                  | r aa              | c cc              | G CAG             | OAT C             | G GC              | DAA C             | YA E       | C AGG             | G GA                 | C TT                  | r gg                | C CT                | C TC              | AAA C               | 2208 |

| Leu        | Val               | Asn               | Arg               | His<br>725        | Tyr               | Ala               | Lys               | Ile               | Ser<br>730        | Asp        | Phe               | Gly               | Leu               | Ser<br>735        | Lys        |      |
|------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|------|
|            |                   |                   |                   |                   |                   |                   |                   |                   |                   |            |                   |                   |                   | GGG<br>Gly        |            | 2256 |
| TGG<br>Trp | CCG<br>Pro        | CTC<br>Leu<br>755 | AAG<br>Lys        | TGG<br>Trp        | TAC<br>Tyr        | GCA<br>Ala        | CCC<br>Pro<br>760 | GAA<br>Glu        | TGC<br>Cys        | ATC<br>Ile | AAC<br>Asn        | TTC<br>Phe<br>765 | CGC<br>Arg        | AAG<br>Lys        | TTC<br>Phe | 2304 |
| TCC<br>Ser | AGC<br>Ser<br>770 | CGC<br>Arg        | AGC<br>Ser        | GAT<br>Asp        | GTC<br>Val        | TGG<br>Trp<br>775 | AGC<br>Ser        | TAT<br>Tyr        | GGG<br>Gly        | GTC<br>Val | ACC<br>Thr<br>780 | ATG<br>Met        | TGG<br>Trp        | GAG<br>Glu        | GCC<br>Ala | 2352 |
|            |                   |                   |                   |                   |                   |                   |                   |                   |                   |            |                   |                   |                   | GAG<br>Glu        |            | 2400 |
| ATG<br>Met | GCC<br>Ala        | TTC<br>Phe        | ATC<br>Ile        | GAG<br>G1u<br>805 | Gln               | GGC<br>Gly        | AAG<br>Lys        | CGG<br>Arg        | ATG<br>Met<br>810 | GAG<br>Glu | TGC<br>Cys        | CCA<br>Pro        | CCA<br>Pro        | GAG<br>Glu<br>815 | TGT<br>Cys | 2448 |
| CCA<br>Pro | CCC<br>Pro        | GAA<br>Glu        | CTG<br>Leu<br>820 | Tyr               | GCA<br>Ala        | CTC<br>Leu        | ATG<br>Met        | AGT<br>Ser<br>825 | Asp               | TGC<br>Cys | TGC<br>Trp        | ATC<br>Ile        | TAC<br>Tyr<br>830 | Lys               | TGG<br>Trp | 2496 |
| GAG<br>Glu | GAT<br>Asp        | CGC<br>Arg<br>835 | Pro               | GAC<br>Asp        | TTC<br>Phe        | CTG               | ACC<br>Thr<br>840 | Val               | GAG<br>Glu        | CAG<br>Gln | CGC<br>Arg        | ATG<br>Met<br>845 | Arg               | A GCC<br>J Ala    | TGT<br>Cys | 2544 |
| TAC<br>Tyr | TAC<br>Tyr<br>850 | Ser               | CTC               | GCC<br>Ala        | : AGC             | AAG<br>Lys<br>855 | Val               | GAA<br>Glu        | Gly<br>GGG        | CCC<br>Pro | CC!<br>Pro<br>860 | Gl}               | AGC<br>Sei        | C ACA             | A CAG      | 2592 |
|            | Ala               |                   |                   |                   | TGT<br>Cys<br>870 | : Ala             | TGA               | <b>.</b>          |                   |            |                   |                   |                   |                   | ·          | 2616 |

## (2) INFORMATION FOR SEQ ID NO:109:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 871 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:109:

Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu 100 105 Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly 115 120 Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr 130 135 Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys Ser Gly Leu Arg Ser Arg Ala Gln Ala Ser Asn Ser Ala Met Pro Asp Pro Ala Ala His Leu Pro Phe Phe Tyr Gly Ser Ile Ser Arg Ala Glu Ala Glu Glu His Leu Lys Leu Ala Gly Met Ala Asp Gly Leu Phe Leu Leu Arg Gln Cys Leu Arg Ser Leu Gly Gly Tyr Val Leu Ser Leu Val His Asp Val Arg Phe His His Phe Pro Ile Glu Arg Gln Leu Asn Gly Thr Tyr Ala Ile Ala Gly Gly Lys Ala His Cys Gly Pro Ala Glu Leu Cys Glu Phe Tyr Ser Arg Asp Pro Asp Gly Leu Pro Cys Asn Leu Arg Lys Pro Cys Asn Arg Pro Ser Gly Leu Glu Pro Gln Pro Gly Val Phe Asp Cys Leu Arg Asp Ala Met Val Arg Asp Tyr Val Arg Gln Thr Trp Lys 370 375 Leu Glu Gly Glu Ala Leu Glu Gln Ala Ile Ile Ser Gln Ala Pro Gln 385 390 Val Glu Lys Leu Ile Ala Thr Thr Ala His Glu Arg Met Pro Trp Tyr His Ser Ser Leu Thr Arg Glu Glu Ala Glu Arg Lys Leu Tyr Ser Gly Ala Gln Thr Asp Gly Lys Phe Leu Leu Arg Pro Arg Lys Glu Gln Gly Thr Tyr Ala Leu Ser Leu Ile Tyr Gly Lys Thr Val Tyr His Tyr Leu Ile Ser Gln Asp Lys Ala Gly Lys Tyr Cys Ile Pro Glu Gly Thr Lys Phe Asp Thr Leu Trp Gln Leu Val Glu Tyr Leu Lys Leu Lys Ala Asp Gly Leu Ile Tyr Cys Leu Lys Glu Ala Cys Pro Asn Ser Ser Ala Ser

505 500 Asn Ala Ser Gly Ala Ala Ala Pro Thr Leu Pro Ala His Pro Ser Thr 520 525 Leu Thr His Pro Gln Arg Arg Ile Asp Thr Leu Asn Ser Asp Gly Tyr 540 535 Thr Pro Glu Pro Ala Arg Ile Thr Ser Pro Asp Lys Pro Arg Pro Met 555 545 550 Pro Met Asp Thr Ser Val Tyr Glu Ser Pro Tyr Ser Asp Pro Glu Glu 570 Leu Lys Asp Lys Lys Leu Phe Leu Lys Arg Asp Asn Leu Leu Ile Ala 585 Asp Ile Glu Leu Gly Cys Gly Asn Phe Gly Ser Val Arg Gln Gly Val 605 600 Tyr Arg Met Arg Lys Lys Gln Ile Asp Val Ala Ile Lys Val Leu Lys 615 620 Gln Gly Thr Glu Lys Ala Asp Thr Glu Glu Met Met Arg Glu Ala Gln 635 630 Ile Met His Gln Leu Asp Asn Pro Tyr Ile Val Arg Leu Ile Gly Val 645 650 Cys Gln Ala Glu Ala Leu Met Leu Val Met Glu Met Ala Gly Gly 670 660 665 Pro Leu His Lys Phe Leu Val Gly Lys Arg Glu Glu Ile Pro Val Ser 685 680 Asn Val Ala Glu Leu Leu His Gln Val Ser Met Gly Met Lys Tyr Leu 690 695 700 Glu Glu Lys Asn Phe Val His Arg Asp Leu Ala Ala Arg Asn Val Leu 705 710 715 Leu Val Asn Arg His Tyr Ala Lys Ile Ser Asp Phe Gly Leu Ser Lys 725 730 Ala Leu Gly Ala Asp Asp Ser Tyr Tyr Thr Ala Arg Ser Ala Gly Lys 745 740 Trp Pro Leu Lys Trp Tyr Ala Pro Glu Cys Ile Asn Phe Arg Lys Phe 760 765 Ser Ser Arg Ser Asp Val Trp Ser Tyr Gly Val Thr Met Trp Glu Ala 775 780 Leu Ser Tyr Gly Gln Lys Pro Tyr Lys Lys Met Lys Gly Pro Glu Val 795 790 Met Ala Phe Ile Glu Gln Gly Lys Arg Met Glu Cys Pro Pro Glu Cys 810 805 Pro Pro Glu Leu Tyr Ala Leu Met Ser Asp Cys Trp Ile Tyr Lys Trp 825 820 Glu Asp Arg Pro Asp Phe Leu Thr Val Glu Gln Arg Met Arg Ala Cys 835 840 845 Tyr Tyr Ser Leu Ala Ser Lys Val Glu Gly Pro Pro Gly Ser Thr Gln Lys Ala Glu Ala Ala Cys Ala

#### (2) INFORMATION FOR SEQ ID NO:110:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2598 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:

(A) NAME/KEY: Coding Sequence
(B) LOCATION: 1...2595

(D) OTHER INFORMATION:

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:110:

|                   | -                 | -                    | _                     |                  |                   |                   |                    |                               |                  |                   |                     |                     |                  |                       |                     |     |
|-------------------|-------------------|----------------------|-----------------------|------------------|-------------------|-------------------|--------------------|-------------------------------|------------------|-------------------|---------------------|---------------------|------------------|-----------------------|---------------------|-----|
| ATG<br>Met<br>1   | CCA<br>Pro        | GAC<br>Asp           | CCC<br>Pro            | GCG<br>Ala<br>5  | GCG<br>Ala        | CAC<br>His        | CTG<br>Leu         | CCC<br>Pro                    | TTC<br>Phe<br>10 | TTC<br>Phe        | TAC<br>Tyr          | GGC<br>Gly          | AGC<br>Ser       | ATC<br>Ile<br>15      | TCG<br>Ser          | 48  |
| CGT<br>Arg        | GCC<br>Ala        | GAG<br>Glu           | GCC<br>Ala<br>20      | GAG<br>Glu       | GAG<br>Glu        | CAC<br>His        | CTG<br>Leu         | AAG<br>Lys<br>25              | CTG<br>Leu       | GCG<br>Ala        | GGC<br>Gly          | ATG<br>Met          | GCG<br>Ala<br>30 | GAC<br>Asp            | GGG<br>Gly          | 96  |
| CTC<br>Leu        | TTC<br>Phe        | CTG<br>Leu<br>35     | CTG<br>Leu            | CGC<br>Arg       | CAG<br>Gln        | TGC<br>Cys        | CTG<br>Leu<br>40   | CGC<br>Arg                    | TCG<br>Ser       | CTG<br>Leu        | GGC<br>Gly          | GGC<br>Gly<br>45    | TAT<br>Tyr       | GTG<br>Val            | CTG<br>Leu          | 144 |
| TCG<br>Ser        | CTC<br>Leu<br>50  | GTG<br>Val           | CAC<br>His            | GAT<br>Asp       | GTG<br>Val        | CGC<br>Arg<br>55  | TTC<br>Phe         | CAC<br>His                    | CAC<br>His       | TTT<br>Phe        | CCC<br>Pro<br>60    | ATC<br>Ile          | GAG<br>Glu       | CGC<br>Arg            | CAG<br>Gln          | 192 |
| CTC<br>Leu<br>65  | AAC<br>Asn        | GGC<br>Gly           | ACC<br>Thr            | TAC<br>Tyr       | GCC<br>Ala<br>70  | ATT               | GCC<br>Ala         | GGC                           | GGC<br>Gly       | AAA<br>Lys<br>75  | GCG<br>Ala          | CAC<br>His          | TGT<br>Cys       | GGA<br>Gly            | CCG<br>Pro<br>80    | 240 |
| GCA<br>Ala        | GAG<br>Glu        | CTC<br>Leu           | TGC<br>Cys            | GAG<br>Glu<br>85 | TTC<br>Phe        | TAC<br>Tyr        | TCG<br>Ser         | CGC<br>Arg                    | GAC<br>Asp<br>90 | CCC<br>Pro        | GAC<br>Asp          | GGG<br>Gly          | CTG<br>Leu       | CCC<br>Pro<br>95      | TGC<br>Cys          | 288 |
| AAC<br>Asn        | CTG<br>Leu        | CGC<br>Arg           | AAG<br>Lys<br>100     | Pro              | TGC<br>Cys        | AA.C<br>Asn       | CGG<br>Arg         | CCG<br>Pro<br>105             | Ser              | GGC<br>Gly        | CTC<br>Leu          | GAG<br>Glu          | CCG<br>Pro       | Gln                   | CCG<br>Pro          | 336 |
| GGG<br>Gly        | GTC<br>Val        | TTC<br>Phe<br>115    | Asp                   | TGC<br>Cys       | CTG<br>Leu        | CGA<br>Arg        | GAC<br>Asp<br>120  | Ala                           | ATG<br>Met       | GTG<br>Val        | CGT<br>Arg          | GAC<br>Asp<br>125   | туг              | GTG<br>Val            | CGC<br>Arg          | 384 |
| CAG<br>Gln        | ACG<br>Thr<br>130 | Tro                  | AAG<br>Lys            | CTG              | GAG<br>Glu        | GGC<br>Gly<br>135 | Glu                | GCC<br>Ala                    | CTG<br>Leu       | GAC<br>Glu        | G CAG<br>Glr<br>140 | Ala                 | ATC              | ATC                   | AGC<br>Ser          | 432 |
| CAG<br>Gln<br>145 | Ala               | CCC                  | G CAC                 | GTC<br>n Val     | GAC<br>Glu<br>150 | ı Lys             | CTC<br>Lev         | ATI                           | GCT<br>Ala       | ACC<br>Thr<br>155 | Thi                 | GCC<br>Ala          | CAC<br>a His     | GAC<br>Glu            | G CGG<br>Arg<br>160 | 480 |
| ATC<br>Met        | CCC<br>Pro        | TGG<br>Tr            | TAC<br>Tyz            | CAC<br>His       | s Sei             | C AGO             | CTC                | ACC<br>Thr                    | G CGT<br>Arc     | g Glu             | G GAC               | GCC<br>1 Ala        | GA(              | G CGC<br>1 Arg<br>175 | AAA<br>A Lys        | 528 |
| CTT               | TAC<br>1 Ty1      | TC:<br>Se:           | r GG(<br>c Gly<br>180 | / Ala            | G CAC             | G ACC             | GA0                | GGC<br>Gl <sub>2</sub><br>189 | / Lys            | TTO<br>Phe        | C CTO               | G CT(               | G AGG<br>L Arg   | g Pro                 | G CGG<br>D Arg      | 576 |
| AA(<br>Lys        | G GAC             | G CAG<br>I Gli<br>19 | n Gl                  | C AC             | A TAC             | C GCC<br>r Ala    | CTY<br>a Let<br>20 | u Sei                         | CTC<br>r Lei     | TAT:              | C TA'<br>e Ty:      | r GG<br>r Gl;<br>20 | y Ly             | G ACC                 | G GTG<br>r Val      | 624 |

|     |     | Tyr | CTC               |     |     |     |     |     |     |     |     |     |     |     |     | 672  |
|-----|-----|-----|-------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
|     | Gly |     | AAG<br>Lys        |     |     |     |     |     |     |     |     |     |     |     |     | 720  |
|     |     |     | GAC<br>Asp        |     |     |     |     |     |     |     |     |     |     |     |     | 768  |
|     |     |     | AGC<br>Ser<br>260 |     |     |     |     |     |     |     |     |     |     |     |     | 816  |
|     |     |     | ACG<br>Thr        |     |     |     |     |     |     |     |     |     |     |     |     | 864  |
|     |     |     | TAC<br>Tyr        |     |     |     |     |     |     |     |     |     |     |     |     | 912  |
|     | Arg |     | ATG<br>Met        |     |     |     |     |     |     |     |     |     |     |     |     | 960  |
|     |     |     | GAG<br>Glu        |     |     |     |     |     |     |     |     |     |     |     |     | 1008 |
|     |     |     | GCT<br>Ala<br>340 |     |     |     |     |     |     |     |     |     |     |     |     | 1056 |
|     |     |     | GTG<br>Val        |     |     |     |     |     |     |     |     |     |     |     |     | 1104 |
|     |     |     | AAG<br>Lys        |     |     |     |     |     |     |     |     |     |     |     |     | 1152 |
|     |     |     | CAG<br>Gln        |     |     |     |     |     |     |     |     |     |     |     |     | 1200 |
|     |     |     | GTC<br>Val        |     |     |     |     |     |     |     |     |     |     |     |     | 1248 |
|     |     |     | GGG<br>Gly<br>420 |     |     |     |     |     |     |     |     |     |     |     |     | 1296 |
| ATC | CCT | GTG | AGC               | TAA | GTG | GCC | GAG | CTG | CTG | CAC | CAG | GTG | TCC | ATG | GGG | 1344 |

| Ile               | Pro                   | Val<br>435          | Ser                 | Asn                   | Val               |                            | Glu<br>440        | Leu                | Leu                  | His                | Gln                   | Val<br>445            | Ser                   | Met                | Gly                   |      |
|-------------------|-----------------------|---------------------|---------------------|-----------------------|-------------------|----------------------------|-------------------|--------------------|----------------------|--------------------|-----------------------|-----------------------|-----------------------|--------------------|-----------------------|------|
| ATG<br>Met        | AAG<br>Lys<br>450     | TAC<br>Tyr          | CTG<br>Leu          | GAG<br>Glu            | GAG<br>Glu        | AAG<br>Lys<br>455          | AAC<br>Asn        | TTT<br>Phe         | GTG<br>Val           | CAC<br>His         | CGT<br>Arg<br>460     | GAC<br>Asp            | CTG<br>Leu            | GCG<br>Ala         | GCC<br>Ala            | 1392 |
|                   |                       |                     |                     |                       |                   |                            |                   |                    |                      |                    | AAG<br>Lys            |                       |                       |                    |                       | 1440 |
| GGC<br>Gly        | CTC<br>Leu            | TCC<br>Ser          | AAA<br>Lys          | GCA<br>Ala<br>485     | CTG<br>Leu        | GGT<br>Gly                 | GCC<br>Ala        | GAC<br>Asp         | GAC<br>Asp<br>490    | AGC<br>Ser         | TAC<br>Tyr            | TAC<br>Tyr            | ACT<br>Thr            | GCC<br>Ala<br>495  | CGC<br>Arg            | 1488 |
|                   |                       |                     |                     |                       |                   |                            |                   |                    |                      |                    | CCC                   |                       |                       |                    |                       | 1536 |
| TTC<br>Phe        | CGC<br>Arg            | AAG<br>Lys<br>515   | TTC<br>Phe          | TCC<br>Ser            | AGC<br>Ser        | CGC<br>Arg                 | AGC<br>Ser<br>520 | GAT<br>Asp         | GTC<br>Val           | TGG<br>Trp         | AGC<br>Ser            | ТАТ<br>Туг<br>525     | GGG<br>Gly            | GTC<br>Val         | ACC<br>Thr            | 1584 |
| ATG<br>Met        | TGG<br>Trp<br>530     | GAG<br>Glu          | GCC<br>Ala          | TTG<br>Leu            | TCC<br>Ser        | TAC<br>Tyr<br>535          | GGC<br>Gly        | CAG<br>Gln         | AAG<br>Lys           | CCC                | TAC<br>Tyr<br>540     | Lys                   | AAG<br>Lys            | ATG<br>Met         | AAA<br>Lys            | 1632 |
| GGG<br>G1y<br>545 | Pro                   | GAG<br>Glu          | GTC<br>Val          | ATG<br>Met            | GCC<br>Ala<br>550 | TTC<br>Phe                 | ATC<br>Ile        | GAG<br>Glu         | CAG<br>Gln           | GGC<br>Gly<br>555  | / Lys                 | CGG<br>Arg            | ATG<br>Met            | GAG<br>Glu         | TGC<br>Cys<br>560     | 1680 |
| CC?<br>Pro        | CCA                   | GAC<br>Glu          | TGT<br>Cys          | CCA<br>Pro            | Pro               | GAA<br>Glu                 | CTG<br>Leu        | TAC<br>Tyr         | GCA<br>Ala<br>570    | Lev                | ATC<br>Met            | AGT<br>Ser            | GAC<br>Asp            | TGC<br>Cys<br>575  | TGG<br>Trp            | 1728 |
| ATC<br>Ile        | TAC<br>Tyr            | : AAC<br>: Lys      | 7GC<br>Trp<br>580   | Glu                   | GAT<br>Asp        | CGC<br>Arg                 | CCC               | GAC<br>Asp<br>585  | Phe                  | CTX                | G ACC                 | GTC<br>Val            | G GAC<br>L Glu<br>590 | ı Glr              | G CGC<br>1 Arg        | 1776 |
| AT(<br>Met        | G CGA                 | GC0<br>J Ala<br>599 | a Cys               | TAC<br>Tyr            | TAC<br>Tyr        | : AGC<br>Ser               | CTC<br>Lev        | ı Ala              | AGC<br>A Ser         | AAC<br>Ly:         | G GT(<br>s Val        | G GAZ<br>1 Glu<br>609 | ı Gl                  | G CCC              | C CCA<br>Pro          | 1824 |
| GG(<br>Gl)        | 2 AGC<br>/ Ser<br>610 | Th:                 | A CAC               | G AAC                 | GCT<br>Ala        | GAC<br>Glu<br>615          | ı Ala             | r GCC<br>a Ala     | TG:                  | r GCO<br>s Alo     | C TGG<br>a Trj<br>621 | p As                  | r cc                  | A CC               | G GTC<br>o Val        | 1872 |
| GC6<br>Al-        | a Thi                 | C ATY               | G GTY               | G AGG                 | AAC<br>Lys<br>630 | 3 Gl                       | GAC<br>Glv        | G GA0              | G CTO                | G TT<br>u Ph<br>63 | e Th                  | C GG<br>r Gl          | G GT<br>y Va          | G GTV<br>1 Va      | G CCC<br>1 Pro<br>640 | 1920 |
| AT<br>Il          | C CTO                 | G GT<br>u Va        | C GAG               | G CTY<br>u Let<br>64" | ı Ası             | C GG(<br>C Gly             | GA(<br>As)        | C GT.              | A AAG<br>1 Ası<br>65 | n Gl               | с са<br>у Ні          | C AA<br>s Ly          | G TT<br>s Ph          | C AG<br>e Se<br>65 | C GTG<br>r Val<br>5   | 1968 |
| TC<br>Se          | c GG<br>r Gl          | C GA<br>y Gl        | G GG<br>u Gl:<br>66 | y Gl                  | G GG(<br>u Gl     | C GA'<br>y As <sub>l</sub> | r GCC<br>p Al     | C AC<br>a Th<br>66 | r Ty                 | c GG<br>r Gl       | Ю AA<br>У Lу          | G CT<br>s Le          | G AC<br>u Th<br>67    | r Le               | G AAG<br>u Lys        | 2016 |

|                   |                   |                   |                   |            |                   |                   |                   |                   |            |                   |                   | CCC<br>Pro<br>685 |                   |            |                   | 2064 |
|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|------|
|                   |                   |                   |                   |            |                   |                   |                   |                   |            |                   |                   | TAC<br>Tyr        |                   |            |                   | 2112 |
|                   |                   |                   |                   |            |                   |                   |                   |                   |            |                   |                   | GAA<br>Glu        |                   |            |                   | 2160 |
|                   |                   |                   |                   |            |                   |                   |                   |                   |            |                   |                   | TAC<br>Tyr        |                   |            |                   | 2208 |
|                   |                   |                   |                   |            |                   |                   |                   |                   |            |                   |                   | CGC<br>Arg        |                   |            |                   | 2256 |
|                   |                   |                   |                   |            |                   |                   |                   |                   |            |                   |                   | GGG<br>Gly<br>765 |                   |            |                   | 2304 |
| GAG<br>Glu        | TAC<br>Tyr<br>770 | AAC<br>Asn        | TAC<br>Tyr        | AAC<br>Asn | AGC<br>Ser        | CAC<br>His<br>775 | AAC<br>Asn        | GTC<br>Val        | TAT<br>Tyr | ATC               | ATG<br>Met<br>780 | GCC<br>Ala        | GAC<br>Asp        | AAG<br>Lys | CAG<br>Gln        | 2352 |
| AAG<br>Lys<br>785 | AAC<br>Asn        | GGC<br>Gly        | ATC<br>Ile        | AAG<br>Lys | GTG<br>Val<br>790 | AAC<br>Asn        | TTC<br>Phe        | AAG<br>Lys        | ATC        | CGC<br>Arg<br>795 | CAC<br>His        | AAC<br>Asn        | ATC               | GAG<br>Glu | GAC<br>Asp<br>800 | 2400 |
|                   |                   |                   |                   |            | Ala               |                   |                   |                   |            | Gln               |                   |                   |                   |            | GGC<br>Gly        | 2448 |
| GAC<br>Asp        | GGC<br>Gly        | CCC               | GTG<br>Val<br>820 | Leu        | CTG<br>Leu        | CCC<br>Pro        | GAC<br>Asp        | AAC<br>Asn<br>825 | His        | TAC               | : CTG             | AGC<br>Ser        | ACC<br>Thr<br>830 | Glr        | TCC<br>Ser        | 2496 |
| GCC<br>Ala        | CTG<br>Leu        | AGC<br>Ser<br>835 | Lys               | GAC<br>Asp | CCC<br>Pro        | AAC<br>Asn        | GAG<br>Glu<br>840 | Lys               | CGC<br>Arg | GAT<br>Asp        | CAC<br>His        | ATG<br>Met<br>845 | . Val             | CTC<br>Lev | CTG<br>Leu        | 2544 |
| GAG<br>Glu        | TTC<br>Phe<br>850 | . Val             | ACC<br>Thr        | GCC<br>Ala | GCC<br>Ala        | GGG<br>Gly<br>855 | Ile               | ACT<br>Thr        | CTC        | GGC<br>Gly        | ATC<br>Met<br>860 | Asp               | GAC<br>Glu        | CTC        | G TAC<br>1 Tyr    | 2592 |
| AAG<br>Lys<br>865 |                   |                   |                   |            |                   |                   |                   |                   |            |                   |                   |                   |                   |            |                   | 2598 |

## (2) INFORMATION FOR SEQ ID NO:111:

<sup>(</sup>i) SEQUENCE CHARACTERISTICS:

<sup>(</sup>A) LENGTH: 865 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:

Met Pro Asp Pro Ala Ala His Leu Pro Phe Phe Tyr Gly Ser Ile Ser 10 Arg Ala Glu Ala Glu Glu His Leu Lys Leu Ala Gly Met Ala Asp Gly 25 20 Leu Phe Leu Leu Arg Gln Cys Leu Arg Ser Leu Gly Gly Tyr Val Leu 40 Ser Leu Val His Asp Val Arg Phe His His Phe Pro Ile Glu Arg Gln 55 Leu Asn Gly Thr Tyr Ala Ile Ala Gly Gly Lys Ala His Cys Gly Pro 75 70 Ala Glu Leu Cys Glu Phe Tyr Ser Arg Asp Pro Asp Gly Leu Pro Cys 85 90 Asn Leu Arg Lys Pro Cys Asn Arg Pro Ser Gly Leu Glu Pro Gln Pro 105 110 100 Gly Val Phe Asp Cys Leu Arg Asp Ala Met Val Arg Asp Tyr Val Arg 125 120 Gln Thr Trp Lys Leu Glu Gly Glu Ala Leu Glu Gln Ala Ile Ile Ser 140 135 Gln Ala Pro Gln Val Glu Lys Leu Ile Ala Thr Thr Ala His Glu Arg 155 150 Met Pro Trp Tyr His Ser Ser Leu Thr Arg Glu Glu Ala Glu Arg Lys 165 170 Leu Tyr Ser Gly Ala Gln Thr Asp Gly Lys Phe Leu Leu Arg Pro Arg 185 180 Lys Glu Gln Gly Thr Tyr Ala Leu Ser Leu Ile Tyr Gly Lys Thr Val 195 200 205 Tyr His Tyr Leu Ile Ser Gln Asp Lys Ala Gly Lys Tyr Cys Ile Pro 220 215 Glu Gly Thr Lys Phe Asp Thr Leu Trp Gln Leu Val Glu Tyr Leu Lys 230 235 Leu Lys Ala Asp Gly Leu Ile Tyr Cys Leu Lys Glu Ala Cys Pro Asn 250 245 Ser Ser Ala Ser Asn Ala Ser Gly Ala Ala Ala Pro Thr Leu Pro Ala 265 His Pro Ser Thr Leu Thr His Pro Gln Arg Arg Ile Asp Thr Leu Asn 280 Ser Asp Gly Tyr Thr Pro Glu Pro Ala Arg Ile Thr Ser Pro Asp Lys 295 Pro Arg Pro Met Pro Met Asp Thr Ser Val Tyr Glu Ser Pro Tyr Ser 310 315 Asp Pro Glu Glu Leu Lys Asp Lys Lys Leu Phe Leu Lys Arg Asp Asn 330 325 Leu Leu Ile Ala Asp Ile Glu Leu Gly Cys Gly Asn Phe Gly Ser Val 345 340 Arg Gln Gly Val Tyr Arg Met Arg Lys Lys Gln Ile Asp Val Ala Ile 360 365 Lys Val Leu Lys Gln Gly Thr Glu Lys Ala Asp Thr Glu Glu Met Met 375 380

Arg Glu Ala Gln Ile Met His Gln Leu Asp Asn Pro Tyr Ile Val Arg

| 205          |            |            |            |            | 390        |            |                    |            |      | 395        |            |            |            |            | 400        |
|--------------|------------|------------|------------|------------|------------|------------|--------------------|------------|------|------------|------------|------------|------------|------------|------------|
| 385<br>Leu : | Ile        | Glv        | Val        |            |            | Ala        | Glu                | Ala        |      |            | Leu        | Val        | Met        | Glu        | Met        |
|              |            |            |            | 405        |            |            |                    |            | 410  |            |            |            |            | 415        |            |
| Ala(         | Gly        | Gly        | Gly<br>420 | Pro        | Leu        | His        | Lys                | Phe<br>425 | Leu  | Val        | Gly        | Lys        | Arg<br>430 | Glu        | Glu        |
| Ile :        | Pro        | Val<br>435 | Ser        | Asn        | Val        | Ala        | Glu<br><b>44</b> 0 | Leu        | Leu  | His        | Gln        | Val<br>445 | Ser        | Met        | Gly        |
| Met :        | Lys<br>450 | Tyr        | Leu        | Glu        | Glu        | Lys<br>455 | Asn                | Phe        | Val  | His        | Arg<br>460 | Asp        | Leu        | Ala        | Ala        |
| Arg .<br>465 |            | Val        | Leu        | Leu        | Val<br>470 | Asn        | Arg                | His        | Tyr  | Ala<br>475 | Lys        | Ile        | Ser        | Asp        | Phe<br>480 |
| Gly          | Leu        | Ser        | Lys        | Ala<br>485 |            | Gly        | Ala                | Asp        | Asp  | Ser        | Tyr        | Tyr        | Thr        | Ala<br>495 | Arg        |
| Ser          | Ala        | Gly        | Lys<br>500 |            | Pro        | Leu        | Lys                | Trp<br>505 |      | Ala        | Pro        | Glu        | Cys<br>510 | Ile        | Asn        |
| Phe          | Arg        | Lys<br>515 | Phe        | Ser        | Ser        | Arg        | Ser<br>520         | Asp        | Val  | Trp        | Ser        | Tyr<br>525 | Gly        | Val        | Thr        |
|              | 530        | Glu        |            |            |            | 535        | Gly                |            |      |            | 540        |            |            |            |            |
| 545          |            |            |            |            | 550        |            | Ile                |            |      | 555        |            |            |            |            | 560        |
|              |            |            |            | 565        |            |            | Leu                |            | 570  |            |            |            |            | 575        |            |
|              |            |            | 580        |            |            |            | Pro                | 585        |      |            |            |            | 590        |            |            |
|              |            | 595        |            |            |            |            | 600                |            |      |            |            | 605        |            |            | Pro        |
|              | 610        |            |            |            |            | 615        |                    |            |      |            | 620        |            |            |            | Val        |
| 625          |            |            |            |            | 630        |            |                    |            |      | 635        |            |            |            |            | Pro<br>640 |
|              |            |            |            | 645        |            |            |                    |            | 650  | l          |            |            |            | 655        |            |
|              |            |            | 660        |            |            |            |                    | 665        |      |            |            |            | 670        | )          | Lys        |
|              |            | 675        |            |            |            |            | 680                |            |      |            |            | 685        |            |            | ı Val      |
|              | 690        |            |            |            |            | 695        | 5                  |            |      |            | 700        |            |            |            | His        |
| 705          |            |            |            |            | 710        | 1          |                    |            |      | 715        | ,          |            |            |            | 720        |
|              |            |            |            | 725        | ,          |            |                    |            | 730  | )          |            |            |            | 735        |            |
|              |            |            | 740        | )          |            |            |                    | 745        | 5    |            |            |            | 750        | )          | ı Leu      |
|              |            | 755        | 5          |            |            |            | 760                | )          |      |            |            | 765        | 5          |            | s Leu      |
|              | 770        | )          |            |            |            | 775        | 5                  |            |      |            | 780        | )          |            |            | s Gln      |
| 785          |            |            |            |            | 790        | )          |                    |            |      | 799        | 5          |            |            |            | u Asp      |
|              |            |            |            | 809        | 5          |            |                    |            | 810  | 0          |            |            |            | 81         |            |
|              |            |            | 820        | )          |            |            |                    | 82         | 5    |            |            |            | 83         | 0          | n Ser      |
|              |            | 83         | 5          |            |            |            | 840                | )          |      |            |            | 84         | 5          |            | u Leu      |
| Glu          | Phe        | e Va       | l Thu      | r Ala      | a Ala      | a Gl       | y Ile              | e Th       | r Le | u G1       | y Me       | t As       | p Gl       | u Le       | u Tyr      |

850 855 860

Lys 865

## (2) INFORMATION FOR SEQ ID NO:112:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1635 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: cDNA

#### (ix) FEATURE:

(A) NAME/KEY: Coding Sequence

(B) LOCATION: 1...1632

(D) OTHER INFORMATION:

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:112:

| ATG<br>Met<br>1  | GAG<br>Glu        | AAC<br>Asn        | TTC<br>Phe | CAA<br>Gln<br>5  | AAG<br>Lys       | GTG<br>Val        | GAA<br>Glu        | AAG<br>Lys | ATC<br>Ile<br>10 | GGA<br>Gly       | GAG<br>Glu        | GGC<br>Gly       | ACG<br>Thr     | TAC<br>Tyr<br>15 | GGA<br>Gly       | 48  |
|------------------|-------------------|-------------------|------------|------------------|------------------|-------------------|-------------------|------------|------------------|------------------|-------------------|------------------|----------------|------------------|------------------|-----|
|                  |                   |                   |            |                  |                  |                   |                   |            | ACG<br>Thr       |                  |                   |                  |                |                  |                  | 96  |
| AAG<br>Lys       | AAA<br>Lys        | ATC<br>Ile<br>35  | CGC<br>Arg | CTG<br>Leu       | GAC<br>Asp       | ACT<br>Thr        | GAG<br>Glu<br>40  | ACT<br>Thr | GAG<br>Glu       | GGT<br>Gly       | GTG<br>Val        | CCC<br>Pro<br>45 | AGT<br>Ser     | ACT<br>Thr       | GCC<br>Ala       | 144 |
|                  |                   |                   |            |                  |                  |                   |                   |            | CTT<br>Leu       |                  |                   |                  |                |                  |                  | 192 |
| AAG<br>Lys<br>65 | CTG<br>Leu        | CTG<br>Leu        | GAT<br>Asp | GTC<br>Val       | ATT<br>Ile<br>70 | CAC<br>His        | ACA<br>Thr        | GAA<br>Glu | AAT<br>Asn       | AAA<br>Lys<br>75 | CTC<br>Leu        | TAC<br>Tyr       | CTG<br>Leu     | GTT<br>Val       | TTT<br>Phe<br>80 | 240 |
| GAA<br>Glu       | TTT<br>Phe        | CTG<br>Leu        | CAC<br>His | CAA<br>Gln<br>85 | GAT<br>Asp       | CTC<br>Leu        | AAG<br>Lys        | AAA<br>Lys | TTC<br>Phe<br>90 | ATG<br>Met       | GAT<br>Asp        | GCC<br>Ala       | TCT<br>Ser     | GCT<br>Ala<br>95 | CTC<br>Leu       | 285 |
|                  |                   |                   |            |                  |                  |                   |                   |            | AGC<br>Ser       |                  |                   |                  |                | Leu              | CTC<br>Leu       | 336 |
| CAG<br>Gln       | GGC<br>Gly        | CTA<br>Leu<br>115 | Ala        | TTC<br>Phe       | TGC<br>Cys       | CAT<br>His        | TCT<br>Ser<br>120 | His        | CGG              | GTC<br>Val       | CTC<br>Leu        | CAC<br>His       | Arg            | . GAC<br>Asp     | CTT<br>Leu       | 384 |
| AAA<br>Lys       | CCT<br>Pro<br>130 | CAG<br>Gln        | AAT<br>Asn | CTG<br>Leu       | CTT<br>Leu       | ATT<br>Ile<br>135 | Asn               | ACA<br>Thr | GAG<br>Glu       | GGG<br>Gly       | GCC<br>Ala<br>140 | Ile              | : AAG<br>: Lys | CTA<br>Leu       | GCA<br>Ala       | 432 |
| GAC              | TTT               | GGA               | CTA        | GCC              | AGA              | GCT               | TTI               | GGA        | GTC              | CCI              | GTI               | CGT              | ACT            | TAC              | 2 ACC            | 480 |

| Asp I<br>145      | Phe               | Gly               | Leu               | Ala               | Arg<br>150        | Ala                   | Phe                  | Gly               |                   | Pro<br>155        | Va1                | Arg               | Thr                   | Tyr               | Thr<br>160        |             |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------------|----------------------|-------------------|-------------------|-------------------|--------------------|-------------------|-----------------------|-------------------|-------------------|-------------|
| CAT (             | GAG<br>Glu        | GTG<br>Val        | GTG<br>Val        | ACC<br>Thr<br>165 | CTG<br>Leu        | TGG<br>Trp            | TAC<br>Tyr           | CGA<br>Arg        | GCT<br>Ala<br>170 | CCT<br>Pro        | GAA<br>Glu         | ATC<br>Ile        | CTC<br>Leu            | CTG<br>Leu<br>175 | GGC<br>Gly        | 528         |
| TCG A             | AAA<br>Lys        | тат<br>туг        | ТАТ<br>Туг<br>180 | TCC<br>Ser        | ACA<br>Thr        | GCT<br>Ala            | GTG<br>Val           | GAC<br>Asp<br>185 | ATC<br>Ile        | TGG<br>Trp        | AGC<br>Ser         | CTG<br>Leu        | GGC<br>Gly<br>190     | TGC<br>Cys        | ATC<br>Ile        | 576         |
| TTT (             | GCT<br>Ala        | GAG<br>Glu<br>195 | ATG<br>Met        | GTG<br>Val        | ACT<br>Thr        | CGC<br>Arg            | CGG<br>Arg<br>200    | GCC<br>Ala        | CTG<br>Leu        | TTC<br>Phe        | CCT<br>Pro         | GGA<br>Gly<br>205 | GAT<br>Asp            | TCT<br>Ser        | GAG<br>Glu        | 624         |
| Ile               | GAC<br>Asp<br>210 | CAG<br>Gln        | CTC<br>Leu        | TTC<br>Phe        | CGG<br>Arg        | ATC<br>Ile<br>215     | TTT<br>Phe           | CGG<br>Arg        | ACT<br>Thr        | CTG<br>Leu        | GGG<br>Gly<br>220  | ACC<br>Thr        | CCA<br>Pro            | GAT<br>Asp        | GAG<br>Glu        | 672         |
| GTG<br>Val<br>225 | GTG<br>Val        | TGG<br>Trp        | CCA<br>Pro        | GGA<br>Gly        | GTT<br>Val<br>230 | ACT<br>Thr            | TCT<br>Ser           | ATG<br>Met        | CCT<br>Pro        | GAT<br>Asp<br>235 | TAC<br>Tyr         | AAG<br>Lys        | CCA<br>Pro            | AGT<br>Ser        | TTC<br>Phe<br>240 | 720         |
| CCC<br>Pro        | AAG<br>Lys        | TGG<br>Trp        | GCC<br>Ala        | CGG<br>Arg<br>245 | CAA<br>Gln        | GAT<br>Asp            | TTT<br>Phe           | AGT<br>Ser        | AAA<br>Lys<br>250 | GTT<br>Val        | GTA<br>Val         | CCT<br>Pro        | CCC<br>Pro            | CTG<br>Leu<br>255 | GAT<br>Asp        | 768         |
| GAA<br>Glu        | GAT<br>Asp        | GGA<br>Gly        | CGG<br>Arg<br>260 | AGC<br>Ser        | TTG<br>Leu        | TTA<br>Leu            | TCG<br>Ser           | CAA<br>Gln<br>265 | ATG<br>Met        | CTG<br>Leu        | CAC<br>His         | TAC<br>Tyr        | GAC<br>Asp<br>270     | CCT<br>Pro        | AAC<br>Asn        | 816         |
| AAG<br>Lys        | CGG<br>Arg        | ATT<br>Ile<br>275 | Ser               | GCC<br>Ala        | AAG<br>Lys        | GCA<br>Ala            | GCC<br>Ala<br>280    | Leu               | GCT<br>Ala        | CAC               | CCT<br>Pro         | TTC<br>Phe<br>285 | Phe                   | CAG<br>Gln        | GAT<br>Asp        | 86 <b>4</b> |
| GTG<br>Val        | ACC<br>Thr<br>290 | Lys               | CCA<br>Pro        | GTA<br>Val        | CCC<br>Pro        | CAT<br>His<br>295     | Leu                  | CGA<br>Arg        | CTC<br>Leu        | TGC<br>Trp        | GAT<br>Asp<br>300  | Pro               | CCG<br>Pro            | GTC<br>Val        | GCC<br>Ala        | 912         |
| ACC<br>Thr<br>305 | ATG<br>Met        | GTC<br>Val        | G AGC<br>Ser      | : AAC             | GGC<br>Gly<br>310 | Glu                   | GAC<br>Glu           | CTC<br>Leu        | TTC<br>Phe        | ACC<br>Thr        | G13                | GTC<br>Val        | GTC<br>Val            | CCC<br>Pro        | ATC<br>Ile<br>320 | 960         |
| CTG<br>Leu        | GTC<br>Val        | GAC<br>Glu        | CTC               | GAC<br>Asp<br>325 | o Gly             | GAC<br>Asp            | GTA<br>Val           | A AAC<br>L Asr    | 330               | , His             | AAC<br>Lys         | G TTC<br>S Phe    | C AGO                 | GTC<br>Val<br>335 | G TCC<br>Ser      | 1008        |
| GGC<br>Gly        | GAC<br>Glu        | GGG<br>Gly        | GAC<br>Glu<br>340 | ı Gly             | C GAT<br>y Asp    | GCC<br>Ala            | ACC<br>Thi           | TAC<br>Ty:        | Gly               | AA(               | G CTY              | G ACC             | C CTV<br>c Let<br>350 | ı Lys             | TTC<br>Phe        | 1056        |
| ATC<br>Ile        | TG(               | 2 ACC<br>35!      | c Thi             | GGC<br>Gl         | C AAC<br>y Lys    | G CTC                 | 9 CC0<br>1 Pro<br>36 | o Vai             | G CCC             | TGG<br>Trj        | G CCG              | C ACC<br>O Thi    | r Le                  | C GTY             | G ACC<br>l Thr    | 1104        |
| ACC<br>Thr        | CTY<br>Lev        | ı Th              | C TAC             | c GGG             | C GTG<br>y Val    | G CAG<br>1 Glr<br>379 | 1 Су                 | C TTV<br>s Ph     | C AGG<br>e Se:    | C CG              | С ТА<br>g Ту<br>38 | r Pr              | C GA                  | C CA              | C ATG<br>s Met    | 1152        |

| AAG<br>Lys<br>385 | CAG<br>Gln | CAC<br>His | GAC<br>Asp        | TTC<br>Phe | TTC<br>Phe<br>390 | AAG<br>Lys        | TCC<br>Ser | GCC<br>Ala | ATG<br>Met | CCC<br>Pro<br>395 | GAA<br>Glu        | GGC        | TAC<br>Tyr        | GTC<br>Val   | CAG<br>Gln<br>400 |   | 1200 |
|-------------------|------------|------------|-------------------|------------|-------------------|-------------------|------------|------------|------------|-------------------|-------------------|------------|-------------------|--------------|-------------------|---|------|
|                   |            |            |                   |            |                   | AAG<br>Lys        |            |            |            |                   |                   |            |                   |              |                   |   | 1248 |
|                   |            |            |                   |            |                   | GAC<br>Asp        |            |            |            |                   |                   |            |                   |              |                   |   | 1296 |
|                   |            |            |                   |            |                   | GAC<br>Asp        |            |            |            |                   |                   |            |                   |              |                   |   | 1344 |
|                   |            |            |                   |            |                   | AAC<br>Asn<br>455 |            |            |            |                   |                   |            |                   |              |                   |   | 1392 |
|                   |            |            |                   |            |                   | TTC<br>Phe        |            |            |            |                   |                   |            |                   |              |                   |   | 1440 |
|                   |            |            |                   |            |                   |                   |            |            |            |                   |                   |            |                   |              | GAC<br>Asp        |   | 1488 |
| GGC<br>Gly        | CCC        | GTG<br>Val | CTG<br>Leu<br>500 | CTG<br>Leu | CCC               | GAC<br>Asp        | AAC<br>Asn | CAC<br>His | Tyr        | CTG<br>Leu        | AGC<br>Ser        | ACC<br>Thr | CAG<br>Gln<br>510 | Ser          | GCC<br>Ala        |   | 1536 |
|                   |            |            | Asp               |            |                   |                   |            | Arg        |            |                   |                   |            | Lev               |              | GAG<br>Glu        |   | 1584 |
| TTC<br>Phe        | GTG<br>Val | Thr        | GCC<br>Ala        | GCC<br>Ala | GGG<br>Gly        | ATC<br>11e<br>535 | Thr        | CTC        | GGC<br>Gly | ATC               | GAC<br>Asr<br>540 | Glu        | CTC<br>Lev        | TAC<br>1 TY1 | AAG<br>Lys        | т | 1633 |
| AA                |            |            |                   |            |                   |                   |            |            |            |                   |                   |            |                   |              |                   |   | 1635 |

(2) INFORMATION FOR SEQ ID NO:113:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 544 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:113:

Met Glu Asn Phe Gln Lys Val Glu Lys Ile Gly Glu Gly Thr Tyr Gly
1 5 10 15

| Val V      | /al | Tyr       | Lys<br>20 | Ala   | Arg       | Asn       | Lys        | Leu<br>25 | Thr  | Gly         | Glu       | Val       | Val<br>30 | Ala    | Leu                 |
|------------|-----|-----------|-----------|-------|-----------|-----------|------------|-----------|------|-------------|-----------|-----------|-----------|--------|---------------------|
| Lys I      | _   | Ile<br>35 | Arg       | Leu   | Asp       | Thr       | Glu<br>40  | Thr       | Glu  | Gly         | Val       | Pro<br>45 | Ser       | Thr    | Ala                 |
| Ile i      |     |           | Ile       | Ser   | Leu       | Leu<br>55 | Lys        | Glu       | Leu  | Asn         | His<br>60 | Pro       | Asn       | Ile    | Val                 |
| Lys 1      |     | Leu       | Asp       | Val   | Ile<br>70 | His       | Thr        | Glu       | Asn  | Lys<br>75   | Leu       | Tyr       | Leu       | Val    | Phe<br>80           |
| Glu        |     |           |           | 85    |           |           |            |           | 90   |             |           |           |           | 95     |                     |
| Thr        |     |           | 100       |       |           |           |            | 105       |      |             |           |           | 110       |        |                     |
| Gln        |     | 115       |           |       |           |           | 120        |           |      |             |           | 125       |           |        |                     |
| Lys        | 130 |           |           |       |           | 135       |            |           |      |             | 140       |           |           |        |                     |
| Asp<br>145 |     |           |           |       | 150       |           |            |           |      | 155         |           |           |           |        | 160                 |
|            |     |           |           | 165   |           |           | Tyr        |           | 170  |             |           |           |           | 175    |                     |
|            |     |           | 180       |       |           |           | Val        | 185       |      |             |           |           | 190       |        |                     |
|            |     | 195       |           |       |           |           | Arg<br>200 |           |      |             |           | 205       |           |        |                     |
|            | 210 |           |           |       |           | 215       | Phe        |           |      |             | 220       |           |           |        |                     |
| 225        |     |           |           |       | 230       |           | Ser        |           |      | 235         |           |           |           |        | 240                 |
|            |     |           |           | 245   |           |           |            |           | 250  |             |           |           |           | 255    |                     |
|            |     |           | 260       |       |           |           |            | 265       |      |             |           |           | 270       |        | Asn                 |
|            |     | 275       |           |       |           |           | 280        |           |      |             |           | 285       |           |        | Asp                 |
|            | 290 |           |           |       |           | 295       |            |           |      |             | 300       |           |           |        | Ala                 |
| 305        |     |           |           |       | 310       |           |            |           |      | 315         |           |           |           |        | 320                 |
|            |     |           |           | 325   | •         |           |            |           | 330  | )           |           |           |           | 335    |                     |
|            |     |           | 340       | )     |           |           |            | 345       |      |             |           |           | 350       | )      | Phe Thr             |
|            |     | 355       | 5         |       |           |           | 360        | 1         |      |             |           | 365       | 5         |        | l Thr               |
|            | 370 |           |           |       |           | 375       | 5          |           |      |             | 380       | )         |           |        | l Gln               |
| 385        |     |           |           |       | 390       | )         |            |           |      | 395         | 5         |           |           |        | 400                 |
|            |     |           |           | 405   | 5         |           |            |           | 410  | )           |           |           |           | 41     | g Ala<br>5<br>u Lys |
|            |     |           | 420       | )     |           |           |            | 425       | 5    |             |           |           | 430       | )      | u Glu               |
|            |     | 435       | 5         |       |           |           | 440        | )         |      |             |           | 445       | 5         |        |                     |
|            | 450 | )         |           |       |           | 45        | 5          |           |      |             | 460       | )         |           |        | n Lys               |
| Asn<br>465 |     | 7 110     | e ry:     | s va. | 476       |           | = rÀs      | o 11€     | = wr | <b>4</b> 7. |           |           | . 01      | ر در د | p Gly<br>480        |

| Ser      | Val          | G        | ln 1         |                  | Ala<br>485 | Asp   | His            | Tyr        |            | Gln<br>490 | Asn   | Thr        | Pro :     | Ile        | GLY<br>495 | Asp          |              |
|----------|--------------|----------|--------------|------------------|------------|-------|----------------|------------|------------|------------|-------|------------|-----------|------------|------------|--------------|--------------|
| Gly      | Pro          | v        | al 1         |                  |            | Pro   | Asp            |            |            | Tyr        | Leu   | Ser        | Thr       |            | Ser        | Ala          |              |
|          | <b>6</b>     |          |              | 500              | Dro        | λεη   | Clu            |            | 505<br>Ara | Asn        | His   | Met        | Val       | 510<br>Leu | Leu        | Glu          |              |
|          |              | 5        | 15           |                  |            |       |                | 520        |            |            |       |            | 525       |            |            |              |              |
| Phe      | Val<br>530   |          | hr.          | Ala              | Ala        | Gly   | Ile<br>535     | Thr        | Leu        | Gly        | Met   | Asp<br>540 | Glu       | Leu        | Tyr        | Lys          |              |
|          |              |          | (2)          | INF              | ORMA       | TION  | , FOF          | SEQ        | ID         | NO:1       | 14:   |            |           |            |            |              |              |
|          |              |          |              |                  |            |       |                |            |            |            |       |            |           |            |            |              |              |
|          | ,            |          |              |                  |            |       | ACTER<br>bas   |            |            |            |       |            |           |            |            |              |              |
|          |              | (        | (B)          | TYPE             | : n        | ıcle: | ic ac          | id         |            |            |       |            |           |            |            |              |              |
|          |              |          |              |                  |            |       | S: si<br>inear |            | 2          |            |       |            |           |            |            |              |              |
|          |              | 1        | (ע)          | TOPC             | LCG.       |       | rnear          | •          |            |            |       |            |           |            |            |              |              |
|          |              | •        |              | OLEC             |            | TYP   | E: cI          | ONA        |            |            |       |            |           |            |            |              |              |
|          |              |          | (A)          | NAI              | Œ/K        | EY: ( | Codi           | ng Se      | eque       | nce        |       |            |           |            |            |              |              |
|          |              |          | (B)          | LO               | ITAC       | ON:   | 1              | 1632       |            |            |       |            |           |            |            |              |              |
|          |              |          | (D)          | OT               | HER        | INFO  | RMAT:          | ION:       |            |            |       |            |           |            |            |              |              |
|          |              | (×:      | i) 5         | EQU!             | ENCE       | DES   | CRIP           | TION       | : SE       | Q ID       | NO:   | 114:       |           |            |            |              |              |
|          |              | _        | 300          | N N C            | ccc        | Cac   | GAG            | CTG        | بالمائث    | ACC        | GGG   | GTG        | GTG       | CCC        | ATC        | CTO          | 3 48         |
| Met      | . Va         | 1        | Ser          | Lys              | Gly        | Glu   | Glu            | Leu        | Phe        | Thr        | Gly   | Val        | Val       | Pro        | Ile        | Le           | ג            |
| 1        |              |          |              |                  | 5          |       |                |            |            | 10         |       |            |           |            | 15         |              |              |
| GTC      | G GA         | G        | CTG          | GAC              | GGC        | GAC   | GTA            | AAC        | GGC        | CAC        | AAG   | TTC        | AGC       | GTG        | TCC        | GG(          | c 96         |
| Va.      | l Gl         | u        | Leu          | Asp              | Gly        | Asp   | val            | Asn        | Gly        | His        | Lys   | Phe        | e Ser     | Val        | Ser        | G1           | Y            |
|          |              |          |              | 20               |            |       |                |            | 25         |            |       |            |           | 30         |            |              |              |
| GAG      | G GC         | æ        | GAG          | GGC              | GAT        | GCC   | ACC            | TAC        | GGC        | AAC        | CTO   | ACC        | CTG       | AAG        | TTC        | TA           | C 144        |
| Gl       | u G3         | У        |              | Gly              | Asp        | Ala   | Thr            | Tyr<br>40  | Gly        | . Lys      | Let   | ı Thi      | Leu<br>45 | Lys        | Phe        | • II         | е            |
|          |              |          | 35           |                  |            |       |                |            |            |            |       |            |           |            |            |              |              |
| TG       | CAC          | CC       | ACC          | GGC              | AAC        | CTC   | CCC            | GTG        | CCC        | TGC        | CCC   | ACC        | CTC       | GTC        | ACC        | C AC         | C 192        |
| Cy:      | s Th<br>50   |          | Thr          | Gly              | Lys        | s Lev | 1 Pro          | ) vai      | Pro        | 111        | PIC   | 60         | r Leu     | val        |            |              | -            |
|          |              |          |              |                  |            |       |                |            |            |            |       |            | - 010     |            | 3 NOV      | ~ ~ ~        | .G 240       |
| CT       | G AG         | CC       | TAC          | GGC              | GTC        | G CAG | TGC            | TTC<br>Phe | : AGC      | CGC<br>Arc | CVT t | r Pr       | C GAC     | His        | . And      | s AA<br>t Ly | .G 240<br>'S |
| 65       |              | 11       | ıyı          | O <sub>1</sub> y | vu.        | 70    | . 0,1          |            |            |            | 75    |            | _         |            |            | 80           | )            |
|          |              |          |              | , mmc            | n mmv      | ~ >>/ | י יייי         |            | יייי אייי  | - 000      | - GA  | A GG       | C TAC     | · GTY      | CA(        | G GA         | AG 288       |
| CA<br>G1 | G C.<br>n H. | AC<br>is | ASE          | : TTC<br>> Phe   | Pne        | e Ly: | s Sei          | Ala        | Met        | e Pro      | o Gli | u Gl       | у Тул     | Va.        | Gl         | n Gl         | .u           |
|          |              |          | •            |                  | 85         |       |                |            |            | 90         |       |            |           |            | 95         |              |              |
| CG       | - L          |          | <b>ΥΤ</b> .4 | ጉ ጥጥር            | ידידי      | C AA  | G GA           | GAC        | GG(        | C AA       | C TA  | C AA       | G ACC     | CGG        | G GC       | C GA         | AG 336       |
| Ar       | g T          | hr       | Ile          | Phe              | e Ph       | e Ly  | s As           | o Asi      | o Gl       | y As:      | n Ty  | r Ly       | s Thi     | r Ar       | g Al       | a Gl         | lu           |
|          |              |          |              | 100              | )          |       |                |            | 10         | 5          |       |            |           | 11         | U          |              |              |
| GI       | YG A         | AG       | TTC          | GAG              | G GG       | C GA  | C AC           | CT         | G GTV      | g aa       | c cg  | C AT       | C GA      | G CT       | g AA       | .G G(        | GC 384       |
| Va       | l L          | ys       | Phe          | e Glu            | ı Gl       | y As  | p Th           | r Le       | u Va       | l As       | n Ar  | g Il       | e Gl      | u Le       | u Ly       | 's G         | ly           |
|          |              |          | 115          | 5                |            |       |                | 12         | O          |            |       |            | 12        | כ          |            |              |              |

| ATC<br>Ile        | GAC<br>Asp<br>130     | TTC<br>Phe        | AAG<br>Lys         | GAG<br>Glu         | GAC<br>Asp            | GGC .<br>Gly .<br>135 | AAC<br>Asn        | ATC<br>Ile         | C'I'G<br>Leu       | GGG<br>Gly         | CAC<br>His        | AAG<br>Lys         | CTG<br>Leu         | GAG<br>Glu            | TAC<br>Tyr            | 432  |
|-------------------|-----------------------|-------------------|--------------------|--------------------|-----------------------|-----------------------|-------------------|--------------------|--------------------|--------------------|-------------------|--------------------|--------------------|-----------------------|-----------------------|------|
| AAC<br>Asn<br>145 | TAC<br>Tyr            | AAC<br>Asn        | AGC<br>Ser         | CAC<br>His         | AAC<br>Asn<br>150     | GTC<br>Val            | TAT<br>Tyr        | ATC<br>Ile         | ATG<br>Met         | GCC<br>Ala<br>155  | GAC<br>Asp        | AAG<br>Lys         | CAG<br>Gln         | AAG<br>Lys            | AAC<br>Asn<br>160     | 480  |
| GGC<br>Gly        | ATC<br>Ile            | AAG<br>Lys        | GTG<br>Val         | AAC<br>Asn<br>165  | TTC<br>Phe            | AAG<br>Lys            | ATC<br>Ile        | CGC<br>Arg         | CAC<br>His<br>170  | AAC<br>Asn         | ATC<br>Ile        | GAG<br>Glu         | GAC<br>Asp         | GGC<br>Gly<br>175     | AGC<br>Ser            | 528  |
| GTG<br>Val        | CAG<br>Gln            | CTC<br>Leu        | GCC<br>Ala<br>180  | GAC<br>Asp         | CAC<br>His            | TAC<br>Tyr            | CAG<br>Gln        | CAG<br>Gln<br>185  | AAC<br>Asn         | ACC<br>Thr         | CCC<br>Pro        | ATC<br>Ile         | GGC<br>Gly<br>190  | GAC<br>Asp            | GGC<br>Gly            | 576  |
| CCC<br>Pro        | GTG<br>Val            | CTG<br>Leu<br>195 | CTG<br>Leu         | CCC<br>Pro         | GAC<br>Asp            | AAC<br>Asn            | CAC<br>His<br>200 | TAC<br>Tyr         | CTG<br>Leu         | AGC<br>Ser         | ACC<br>Thr        | CAG<br>Gln<br>205  | Ser                | GCC<br>Ala            | CTG<br>Leu            | 624  |
| AGC<br>Ser        | AAA<br>Lys<br>210     | GAC<br>Asp        | CCC                | AAC<br>Asn         | GAG<br>Glu            | AAG<br>Lys<br>215     | CGC<br>Arg        | GAT<br>Asp         | CAC<br>His         | ATG<br>Met         | GTC<br>Val<br>220 | Leu                | CTG<br>Leu         | GAG<br>Glu            | TTC<br>Phe            | 672  |
| GTG<br>Val<br>225 | Thr                   | GCC               | GCC<br>Ala         | GGG<br>Gly         | ATC<br>Ile<br>230     | ACT<br>Thr            | CTC<br>Leu        | GGC<br>Gly         | ATG<br>Met         | GAC<br>Asp<br>235  | Glu               | CTC<br>Lev         | ТАС<br>1 Тут       | AAC<br>Lys            | S TCC<br>Ser<br>240   | 720  |
| GGA<br>Gly        | CTC<br>Leu            | AGA<br>Arg        | TCT<br>Ser         | CGA<br>Arg<br>245  | , Ala                 | ATG<br>Met            | GAG<br>Glu        | AAC<br>Asn         | TTC<br>Phe<br>250  | Glr                | AAC<br>Lys        | GT(                | G GAZ<br>L Glu     | A AAC<br>1 Lys<br>255 | ATC Ile               | 768  |
| GGA<br>Gly        | GAG<br>Glu            | G17<br>GGC        | 260                | туг                | GGA<br>Gly            | GTT<br>Val            | GTC<br>Val        | TAC<br>Tyr<br>265  | Lys                | GCC<br>Alá         | AGA<br>A Arg      | AAA<br>iaA g       | 270                | s Lei                 | ACG<br>Thr            | 816  |
| GGA<br>Gly        | A GAC                 | GTC<br>Val<br>279 | l Va               | GCC<br>L Alá       | G CTI                 | AAG<br>Lys            | AAA<br>Lys<br>280 | : Ile              | C CGC              | CTC<br>J Lev       | G GAG             | C AC<br>o Th<br>28 | r Gl               | G AC'<br>u Thi        | r GAG<br>r Glu        | 864  |
| GG1<br>G13        | r GTC<br>7 Val<br>290 | Pro               | C AG'              | r ACT              | r GCC<br>r Ala        | 295                   | Arg               | A GAG              | TA E               | TC'<br>Se:         | r CTG<br>r Le     | u Le               | T AA<br>u Ly       | G GA                  | G CTT<br>u Leu        | 912  |
| AAC<br>Asi<br>30! | n His                 | r cc              | 'AA T              | r AT               | r GT0<br>e Va:<br>310 | l Lys                 | CTO               | G CTY              | G GA'<br>u Asj     | r GT<br>p Va<br>31 | 1 11              | т СА<br>е Ні       | C AC<br>s Th       | A GA<br>r Gl          | A AAT<br>u Asn<br>320 | 960  |
| AA:<br>Ly:        | A CTY                 | TA<br>L Ty        | C CT<br>r Le       | G GT<br>u Va<br>32 | 1 Ph                  | r GA/<br>e Glu        | A TT              | T CT<br>e Le       | G CA<br>u Hi<br>33 | s Gl               | A GA<br>n As      | T CI<br>p Le       | C AA               | G AA<br>'s Ly<br>33   | A TTC<br>s Phe        | 1008 |
| ATY<br>Me         | G GA'<br>t As         | T GC<br>p Al      | C TC<br>a Se<br>34 | r Al               | T CT<br>a Le          | C ACT                 | r GG<br>c Gl      | C AT<br>y Il<br>34 | e Pr               | T CT<br>o Le       | T CC              | C CI               | C AT<br>u Il<br>35 | e Ly                  | AG AGC<br>vs Ser      | 1056 |
| ТА<br>Ту          | T CT<br>r Le          | G TI<br>u Ph      | C CA               | G CT<br>n Le       | G CT                  | C CAG                 | G GG<br>n Gl      | с ст<br>у Le       | 'A GC              | T TI<br>a Ph       | ie C?             | C C/<br>/s H:      | AT TO              | er Hi                 | AT CGG<br>is Arg      | 1104 |

360 355 GTC CTC CAC CGA GAC CTT AAA CCT CAG AAT CTG CTT ATT AAC ACA GAG 1152 Val Leu His Arg Asp Leu Lys Pro Gln Asn Leu Leu Ile Asn Thr Glu 380 375 370 GGG GCC ATC AAG CTA GCA GAC TTT GGA CTA GCC AGA GCT TTT GGA GTC 1200 Gly Ala Ile Lys Leu Ala Asp Phe Gly Leu Ala Arg Ala Phe Gly Val 395 390 385 CCT GTT CGT ACT TAC ACC CAT GAG GTG GTG ACC CTG TGG TAC CGA GCT 1248 Pro Val Arg Thr Tyr Thr His Glu Val Val Thr Leu Trp Tyr Arg Ala 410 415 405 CCT GAA ATC CTC CTG GGC TCG AAA TAT TAT TCC ACA GCT GTG GAC ATC 1296 Pro Glu Ile Leu Leu Gly Ser Lys Tyr Tyr Ser Thr Ala Val Asp Ile 430 425 420 TGG AGC CTG GGC TGC ATC TTT GCT GAG ATG GTG ACT CGC CGG GCC CTG Trp Ser Leu Gly Cys Ile Phe Ala Glu Met Val Thr Arg Arg Ala Leu 445 435 440 TTC CCT GGA GAT TCT GAG ATT GAC CAG CTC TTC CGG ATC TTT CGG ACT 1392 Phe Pro Gly Asp Ser Glu Ile Asp Gln Leu Phe Arg Ile Phe Arg Thr 460 455 450 CTG GGG ACC CCA GAT GAG GTG GTG TGG CCA GGA GTT ACT TCT ATG CCT 1440 Leu Gly Thr Pro Asp Glu Val Val Trp Pro Gly Val Thr Ser Met Pro 475 470 GAT TAC AAG CCA AGT TTC CCC AAG TGG GCC CGG CAA GAT TTT AGT AAA 1488 Asp Tyr Lys Pro Ser Phe Pro Lys Trp Ala Arg Gln Asp Phe Ser Lys 490 485 GTT GTA CCT CCC CTG GAT GAA GAT GGA CGG AGC TTG TTA TCG CAA ATG Val Val Pro Pro Leu Asp Glu Asp Gly Arg Ser Leu Leu Ser Gln Met

CAC CCT TTC TTC CAG GAT GTG ACC AAG CCA GTA CCC CAT CTT CGA CTC T 1633 His Pro Phe Phe Gln Asp Val Thr Lys Pro Val Pro His Leu Arg Leu 540 535

1584

1635

505

CTG CAC TAC GAC CCT AAC AAG CGG ATT TCG GCC AAG GCA GCC CTG GCT

Leu His Tyr Asp Pro Asn Lys Arg Ile Ser Ala Lys Ala Ala Leu Ala 520

(2) INFORMATION FOR SEQ ID NO:115:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 544 amino acids
  - (B) TYPE: amino acid

500

515

GA

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:115:

| 1                     |      |      |            | 5          | Glu          |       |       |       | 10         |              |      |       |            | 15                     |              |
|-----------------------|------|------|------------|------------|--------------|-------|-------|-------|------------|--------------|------|-------|------------|------------------------|--------------|
|                       |      |      | 20         |            | Asp          |       |       | 25    |            |              |      |       | 30         |                        |              |
|                       |      | 35   |            |            | Ala          |       | 40    |       |            |              |      | 45    |            |                        |              |
|                       | 50   |      |            |            | Leu          | 55    |       |       |            |              | 60   |       |            |                        |              |
| 65                    | Thr  |      |            |            | Gln<br>70    |       |       |       |            | 75           |      |       |            |                        | 80           |
|                       |      |      |            | 85         | Lys          |       |       |       | 90         |              |      |       |            | 95                     |              |
|                       |      |      | 100        |            | Lys          |       |       | 105   |            |              |      |       | 110        |                        |              |
|                       |      | 115  |            |            | Asp          |       | 120   |       |            |              |      | 125   |            |                        |              |
|                       | 130  |      |            |            | Asp          | 135   |       |       |            |              | 140  |       |            |                        |              |
| Asn<br>145            | Tyr  | Asn  | Ser        | His        | Asn<br>150   | Val   | Tyr   | Ile   | Met        | Ala<br>155   | Asp  | Lys   | GIn        | Lys                    | 160          |
| Gly                   | Ile  | Lys  | Val        | Asn<br>165 | Phe          | Lys   | Ile   | Arg   | His<br>170 |              | Ile  | Glu   | Asp        | Gly<br>175             | Ser          |
|                       |      |      | 180        |            | His          |       |       | 185   |            |              |      |       | 190        |                        |              |
|                       |      | 195  |            |            | Asp          |       | 200   |       |            |              |      | 205   |            |                        |              |
|                       | 210  |      |            |            | Glu          | 215   |       |       |            |              | 220  |       |            |                        |              |
| 225                   |      |      |            |            | 11e<br>230   |       |       |       |            | 235          |      |       |            |                        | 240          |
|                       |      |      |            | 245        | Ala          |       |       |       | 250        | )            |      |       |            | 255                    |              |
|                       |      |      | 260        | )          | Gly          |       |       | 265   |            |              |      |       | 270        |                        |              |
|                       |      | 275  | 5          |            |              |       | 280   |       |            |              |      | 285   |            |                        | Glu          |
|                       | 290  | )    |            |            |              | 295   |       |       |            |              | 300  | )     |            |                        | Leu          |
| Asr<br>305            |      | Pro  | ) Asi      | ı Ile      | val<br>310   |       | Leu   | Leu   | Ası        | o Val<br>315 |      | e His | Thr        | GIU                    | 320          |
| Lys                   | Leu  |      |            | 325        | Phe          | Glu   |       |       | 330        | 3            |      |       |            | 335                    |              |
|                       |      |      | 34         | 0          |              |       |       | 345   | ,          |              |      |       | 350        | }                      | Ser          |
|                       |      | 35   | 5          |            |              |       | 360   | )     |            |              |      | 365   | 5          |                        | Arg          |
|                       | 370  | 0    |            |            |              | 375   | 5     |       |            |              | 38   | 0     |            |                        | c Glu        |
| Gl <sub>3</sub><br>38 |      | a Il | e Ly       | s Le       | Ala د<br>390 |       | ) Phe | e Gl3 | / Le       | u Al.<br>39  |      | g Ala | a Phe      | e GI                   | y Val<br>400 |
| Pro                   | o Va | l Ar | g Th       | r Ty:      | c Thr        |       | s Glu | ı Val | l Va<br>41 |              | r Le | u Tr  | р Ту:      | r Arg                  | g Ala<br>5   |
| Pro                   | o Gl | u Il | e Le<br>42 | u Le       |              | / Sei | r Lys | 5 Ty: | с Ту       |              | r Th | r Al  | a Va<br>43 | l As <sub>l</sub><br>O | p Ile        |
| Tr                    | p Se | r Le |            |            | s Ile        | e Phe | e Ala | a Glu | ı Me       | t Va         | l Th | r Ar  | g Ar       | g Al                   | a Leu        |

| Phe Pro                                                                                   | 435                                   |                                                            |                                                           |                                                      |                                                                          | 440                                          |                                       |                                              |                                        |                                        | 445                                                                   |                                       |                                      |                          |                  |
|-------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------|---------------------------------------|----------------------------------------------|----------------------------------------|----------------------------------------|-----------------------------------------------------------------------|---------------------------------------|--------------------------------------|--------------------------|------------------|
| 450                                                                                       |                                       |                                                            |                                                           |                                                      | 455                                                                      |                                              |                                       |                                              |                                        | 460                                    |                                                                       |                                       |                                      |                          |                  |
| Leu Gly                                                                                   | Thr I                                 | Pro A                                                      |                                                           |                                                      | Val                                                                      | Val                                          | Trp                                   |                                              |                                        | Val                                    | Thr                                                                   | Ser                                   | Met                                  |                          |                  |
| 465<br>Asp Tyr                                                                            | Lys 1                                 |                                                            | Ser :                                                     | 470<br>Phe                                           | Pro                                                                      | Lys                                          |                                       | Ala                                          | 475<br>Arg                             | Gln                                    | Asp                                                                   | Phe                                   |                                      | 480<br>Lys               |                  |
| Val Val                                                                                   |                                       | Pro 1                                                      | 485<br>Leu .                                              | Asp (                                                | Glu                                                                      | Asp                                          | Gly                                   | 490<br>Arg                                   | Ser                                    | Leu                                    | Leu                                                                   |                                       | 495<br>Gln                           | Met                      |                  |
| Leu His                                                                                   | Tyr .                                 | 500<br>Asp :                                               | Pro .                                                     | Asn                                                  | Lys                                                                      |                                              | 505<br>Ile                            | Ser                                          | Ala                                    | Lys                                    |                                                                       | 510<br>Ala                            | Leu                                  | Ala                      |                  |
| His Pro<br>530                                                                            | 515<br>Phe                            | Phe (                                                      | Gln                                                       |                                                      | Val<br>535                                                               | 520<br>Thr                                   | Lys                                   | Pro                                          | Val                                    | Pro<br>540                             | 525<br>His                                                            | Leu                                   | Arg                                  | Leu                      |                  |
|                                                                                           | (2)                                   | INF                                                        | ORMA                                                      | TION                                                 | FOF                                                                      | SEC                                          | ) ID                                  | NO:1                                         | 16:                                    |                                        |                                                                       |                                       |                                      |                          |                  |
| (:                                                                                        | , ,                                   | LENG                                                       | TH:                                                       | HARA<br>2532<br>clei                                 | bas                                                                      | se pa                                        |                                       |                                              |                                        |                                        |                                                                       |                                       |                                      |                          |                  |
|                                                                                           | (C)                                   | STRA                                                       | NDED                                                      | NESS<br>: li                                         | : si                                                                     | ngle                                         | <b>e</b>                              |                                              |                                        |                                        |                                                                       |                                       |                                      |                          |                  |
| 7                                                                                         | ii) M<br>ix) F                        |                                                            |                                                           | TYPE                                                 | : cI                                                                     | ONA                                          |                                       |                                              |                                        |                                        |                                                                       |                                       |                                      |                          |                  |
|                                                                                           | (B)                                   | LOC                                                        | CITA                                                      | EY: C<br>ON: 1<br>INFOR                              |                                                                          | 2529                                         | equer                                 | nce                                          |                                        |                                        |                                                                       |                                       |                                      |                          |                  |
| t:                                                                                        | vil S                                 |                                                            |                                                           |                                                      |                                                                          |                                              |                                       |                                              |                                        |                                        |                                                                       |                                       |                                      |                          |                  |
| ١.                                                                                        | <u> </u>                              | SEQUE                                                      | NCE                                                       | DESC                                                 | RIP                                                                      | LION                                         | ; SE                                  | 2 10                                         | NO:                                    | 116:                                   |                                                                       |                                       |                                      |                          |                  |
| ATG GTG<br>Met Val                                                                        | AGC                                   | AAG                                                        | GGC                                                       | GAG                                                  | GAG                                                                      | CTG                                          | TTC                                   | ACC                                          | GGG                                    | GTG                                    | GTG<br>Val                                                            | CCC<br>Pro                            | ATC<br>Ile<br>15                     | CTG<br>Leu               | 48               |
| ATG GTG<br>Met Val                                                                        | AGC<br>Ser                            | AAG<br>Lys<br>GAC                                          | GGC<br>Gly<br>5<br>GGC                                    | GAG<br>Glu<br>GAC                                    | GAG<br>Glu<br>GTA                                                        | CTG<br>Leu<br>AAC                            | TTC<br>Phe<br>GGC                     | ACC<br>Thr<br>10                             | GGG<br>Gly<br>AAG                      | GTG<br>Val                             | Val<br>AGC                                                            | Pro                                   | Ile<br>15<br>TCC                     | Leu                      | 48<br>96         |
| ATG GTG<br>Met Val<br>1<br>GTC GAG                                                        | AGC<br>Ser<br>CTG<br>Leu              | AAG<br>Lys<br>GAC<br>Asp<br>20<br>GGC                      | GGC<br>Gly<br>5<br>GGC<br>Gly                             | GAG<br>Glu<br>GAC<br>Asp                             | GAG<br>Glu<br>GTA<br>Val                                                 | CTG<br>Leu<br>AAC<br>Asn                     | TTC<br>Phe<br>GGC<br>Gly<br>25<br>GGC | ACC<br>Thr<br>10<br>CAC<br>His               | GGG<br>Gly<br>AAG<br>Lys               | GTG<br>Val<br>TTC<br>Phe               | Val<br>AGC<br>Ser                                                     | GTG<br>Val<br>30                      | Ile<br>15<br>TCC<br>Ser              | Leu GGC Gly              |                  |
| ATG GTG Met Val 1 GTC GAG Val Glu GAG GGG                                                 | AGC Ser  CTG Leu  GAG Glu 35          | AAG<br>Lys<br>GAC<br>Asp<br>20<br>GGC<br>Gly               | GGC<br>Gly<br>5<br>GGC<br>Gly<br>GAT<br>Asp               | GAG<br>Glu<br>GAC<br>Asp<br>GCC<br>Ala               | GAG<br>Glu<br>GTA<br>Val<br>ACC<br>Thr                                   | CTG<br>Leu<br>AAC<br>Asn<br>TAC<br>Tyr<br>40 | TTC Phe GGC Gly 25 GGC Gly            | ACC<br>Thr<br>10<br>CAC<br>His<br>AAG<br>Lys | GGG<br>Gly<br>AAG<br>Lys<br>CTG<br>Leu | GTG<br>Val<br>TTC<br>Phe<br>ACC<br>Thr | AGC Ser CTG Leu 45                                                    | GTG<br>Val<br>30<br>AAG<br>Lys        | TCC<br>Ser<br>TTC<br>Phe             | GGC GGY ATC FILE         | 96               |
| ATG GTG Met Val  1  GTC GAG Val Glu  GAG GGC Glu Gly  TGC ACC Cys Thr                     | AGC Ser  CTG Leu  GAG Glu 35  ACC Thr | AAG<br>Lys<br>GAC<br>Asp<br>20<br>GGC<br>Gly<br>GGC<br>Gly | GGC<br>Gly<br>5<br>GGC<br>Gly<br>GAT<br>Asp<br>AAG<br>Lys | GAG<br>Glu<br>GAC<br>Asp<br>GCC<br>Ala<br>CTG<br>Leu | GAG<br>Glu<br>GTA<br>Val<br>ACC<br>Thr                                   | CTG Leu AAC Asn TAC Tyr 40 GTG Val           | TTC Phe GGC Gly 25 GGC Gly CCC Pro    | ACC Thr 10 CAC His AAG Lys TGG Trp           | GGG Gly  AAG Lys  CTG Leu  CCC Pro     | GTG Val TTC Phe ACC Thr 60             | AGC Ser CTG Leu 45 CTG Leu GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG         | GTG<br>Val<br>30<br>AAG<br>Lys<br>Val | TCC<br>Ser<br>TTC<br>Phe<br>ACC      | GGC GGY ATC Ile          | 96<br>144        |
| ATG GTG Met Val  1  GTC GAG Val Glu  GAG GGC Glu Gly  TGC ACC Cys Thr 50  CTG ACC Leu Thr | AGC Ser  CTG Leu  GAG Glu 35  ACC Thr | AAG<br>Lys<br>GAC<br>Asp<br>20<br>GGC<br>Gly<br>GGC<br>Gly | GGC<br>Gly<br>5<br>GGC<br>Gly<br>GAT<br>Asp<br>AAG<br>Lys | GAG Glu GAC Asp GCC Ala CTG Leu CAG Gln 70           | GAG<br>Glu<br>GTA<br>Val<br>ACC<br>Thr<br>CCC<br>Pro<br>55<br>TGC<br>Cys | AAC Asn TAC Tyr 40 GTG Val                   | TTC Phe GGC Gly 25 GGC Gly Pro        | ACC Thr 10 CAC His AAG Lys TCG Trp CGC Arg   | GGG Gly  AAG Lys  CTG Leu  CCC Pro     | GTG Val  TTC Phe  ACC Thr  ACC Thr  60 | AGC Ser CTG Leu 45 CTG Leu 65 CTG | GTG Val 30 AAG Lys Val Val CAC His    | Ilee 15 TCC Ser TTC Phe TTC: ACC Thu | GGC GGY ATC Ile CACC Thr | 96<br>144<br>192 |

| GTG<br>Val        | AAG<br>Lys           | TTC<br>Phe<br>115  | GAG<br>Glu            | GGC<br>Gly         | GAC .<br>Asp          | ACC<br>Thr         | CTG<br>Leu<br>120 | GTG<br>Val            | AAC<br>Asn         | CGC<br>Arg         | ATC<br>Ile         | GAG<br>Glu<br>125   | CTG<br>Leu         | AAG<br>Lys          | GGC<br>Gly             | 384  |
|-------------------|----------------------|--------------------|-----------------------|--------------------|-----------------------|--------------------|-------------------|-----------------------|--------------------|--------------------|--------------------|---------------------|--------------------|---------------------|------------------------|------|
| ATC<br>Ile        | GAC<br>Asp<br>130    | TTC<br>Phe         | AAG<br>Lys            | GAG<br>Glu         | Asp                   | GGC<br>Gly<br>135  | AAC<br>Asn        | ATC<br>Ile            | CTG<br>Leu         | GGG<br>Gly         | CAC<br>His<br>140  | AAG<br>Lys          | CTG<br>Leu         | GAG<br>Glu          | TAC<br>Tyr             | 432  |
| AAC<br>Asn<br>145 | TAC<br>Tyr           | AAC<br>Asn         | AGC<br>Ser            | CAC<br>His         | AAC<br>Asn<br>150     | GTC<br>Val         | ТАТ<br>Тух        | ATC<br>Ile            | ATG<br>Met         | GCC<br>Ala<br>155  | GAC<br>Asp         | AAG<br>Lys          | CAG<br>Gln         | AAG<br>Lys          | AAC<br>Asn<br>160      | 480  |
| GGC<br>Gly        | ATC<br>Ile           | AAG<br>Lys         | GTG<br>Val            | AAC<br>Asn<br>165  | TTC<br>Phe            | AAG<br>Lys         | ATC<br>Ile        | CGC<br>Arg            | CAC<br>His<br>170  | AAC<br>Asn         | ATC<br>Ile         | GAG<br>Glu          | GAC<br>Asp         | GGC<br>Gly<br>175   | AGC<br>Ser             | 528  |
| GTG<br>Val        | CAG<br>Gln           | CTC<br>Leu         | GCC<br>Ala<br>180     | Asp                | CAC<br>His            | TAC<br>Tyr         | CAG<br>Gln        | CAG<br>Gln<br>185     | AAC<br>Asn         | ACC<br>Thr         | CCC                | ATC                 | GGC<br>Gly<br>190  | Asp                 | GGC<br>Gly             | 576  |
| CCC<br>Pro        | GTG<br>Val           | CTG<br>Leu<br>195  | Leu                   | CCC<br>Pro         | GAC<br>Asp            | AAC<br>Asn         | CAC<br>His<br>200 | Tyr                   | CTG<br>Leu         | AGC<br>Ser         | ACC                | CAG<br>Gln<br>205   | Ser                | GCC<br>Ala          | CTG<br>Leu             | 624  |
| AGC<br>Ser        | AAA<br>Lys<br>210    | Asp                | CCC<br>Pro            | AAC<br>Asn         | GAG<br>Glu            | AAG<br>Lys<br>215  | Arg               | GAT<br>Asp            | CAC<br>His         | ATG<br>Met         | GTC<br>Val<br>220  | Leu                 | CTC<br>Lev         | GAC<br>1 Glu        | TTC Phe                | 672  |
| GT0<br>Val<br>225 | Thr                  | GCC<br>Ala         | GCC<br>Ala            | GGG<br>Gly         | ATC<br>Ile<br>230     | Thr                | CTC               | GGC<br>Gly            | ATG<br>Met         | GAC<br>Asp<br>235  | Gli                | G CTC               | TAC                | AAC<br>Lys          | G TCC<br>S Ser<br>240  | 720  |
| GG#<br>Gly        | CTC                  | AGA                | A TCT<br>g Ser        | CGA<br>Arg<br>245  | Glu                   | ATC<br>Met         | CTC               | TCC<br>Ser            | CGT<br>Arg<br>250  | ; Gl               | TC                 | G TT                | r CAG<br>∋ Hi:     | C CG<br>S Arg<br>25 | A GAC<br>g Asp<br>5    | 768  |
| CT(<br>Lev        | C AGT                | r GGK              | G CTC<br>y Let<br>260 | ı Asp              | GCA<br>Ala            | GAC<br>Glu         | ACO<br>1 Thi      | C CTC<br>r Leu<br>265 | ı Let              | Ly:                | G GG<br>S Gl       | c cg<br>y Ar        | A GG<br>g Gl<br>27 | y Va                | C CAC<br>1 His         | 816  |
| GG'<br>Gl         | T AGO<br>y Se:       | 2 TT<br>r Ph<br>27 | e Le                  | G GCT<br>u Ala     | CGG<br>Arg            | CCC<br>Pro         | 28                | r Arg                 | D AAG              | G AAG              | c CA<br>n Gl       | G GG<br>n Gl;<br>28 | y As               | C TT<br>p Ph        | C TCG<br>e Ser         | 864  |
| CT(               | C TCC<br>u Se:<br>29 | r Va               | C AG                  | G GTK              | GG(                   | GA'<br>/ Asj<br>29 | o G1              | G GT(<br>n Va)        | G ACC              | C CA<br>r Hi       | T AT<br>s Il<br>30 | e Ar                | G AI<br>g Il       | C CA<br>e Gl        | G AAC<br>n Asn         | 912  |
| TC<br>Se<br>30    | r Gl                 | G GA<br>y As       | T TT<br>p Ph          | C TA'<br>e Ty:     | r GAG<br>r Ası<br>310 | Le                 | д ТА<br>u Ту      | T GG<br>r Gl          | A GG<br>y Gl       | G GA<br>y Gl<br>31 | u Ly               | AG TT<br>/s Ph      | T GC<br>Le Al      | G AC                | T CTG<br>ir Leu<br>320 |      |
| AC<br>Th          | A GA<br>r Gl         | G CT<br>u L∈       | G GT<br>eu Va         | G GA<br>1 G1<br>32 | и Ту                  | TA<br>r Ty         | C AC<br>r Th      | T CA                  | G CA<br>n Gl<br>33 | n Gl               | .G GC              | GT GT<br>ly Va      | C C                | eu G.               | AG GAC<br>ln Asp<br>35 | 1008 |
| CG                | C GA                 | .c ga              | C AC                  | C AT               | C AT                  | C CA               | C CI              | C AA                  | G TA               | c cc               | G C                | rg A                | AC TY              | GC TY               | CC GAT                 | 1056 |

| Arg        | Asp        | Gly        | Thr<br>340        | Ile               | Ile        | His            | Leu        | Lys<br>345        | Tyr        | Pro        | Leu           | Asn        | Cys<br>350        | Ser                | Asp                 |      |
|------------|------------|------------|-------------------|-------------------|------------|----------------|------------|-------------------|------------|------------|---------------|------------|-------------------|--------------------|---------------------|------|
|            |            |            | GAG<br>Glu        |                   |            |                |            |                   |            |            |               |            |                   |                    |                     | 1104 |
|            |            |            | CTG<br>Leu        |                   |            |                |            |                   |            |            |               |            |                   |                    |                     | 1152 |
|            |            |            | AGC<br>Ser        |                   |            |                |            |                   |            |            |               |            |                   |                    |                     | 1200 |
|            |            |            | GCT<br>Ala        |                   |            |                |            |                   |            |            |               |            |                   |                    |                     | 1248 |
| GTC<br>Val | ATG<br>Met | TGC<br>Cys | GAG<br>Glu<br>420 | GGT<br>Gly        | GGA<br>Gly | CGC<br>Arg     | TAC<br>Tyr | ACA<br>Thr<br>425 | GTG<br>Val | GGT<br>Gly | GGT<br>Gly    | TTG<br>Leu | GAG<br>Glu<br>430 | ACC<br>Thr         | TTC<br>Phe          | 1296 |
|            |            |            | ACG<br>Thr        |                   |            |                |            |                   |            |            |               |            |                   |                    |                     | 1344 |
|            |            |            | GGC<br>Gly        |                   |            |                |            |                   |            |            |               | Tyr        |                   |                    |                     | 1392 |
|            | Val        |            | GCG<br>Ala        |                   |            | Ile            |            |                   |            |            | Leu           |            |                   |                    | AAG<br>Lys<br>480   | 1440 |
|            |            |            |                   |                   | Asp        |                |            |                   |            | Gly        |               |            |                   |                    | TTT<br>Phe          | 1488 |
|            |            |            |                   | Lys               |            |                |            |                   | Asn        |            |               |            |                   | , Lei              | G GAA<br>1 Glu      | 1536 |
|            |            |            | Pro               |                   |            |                |            | / Lys             |            |            |               |            | a Ası             |                    | r CTC<br>e Leu      | 1584 |
|            |            | Asp        |                   |                   |            |                | Ile        |                   |            |            |               | g Asi      |                   |                    | C ATC               | 1632 |
|            | Gly        |            |                   |                   |            | e Asr          |            |                   |            |            | e Ly:         |            |                   |                    | G CTA<br>Leu<br>560 | 1680 |
| GG(        | C CCT      | GA?        | r GAC<br>o Glu    | AAC<br>Asr<br>565 | n Ala      | r aac<br>a Lys | ACC<br>Thi | TAC               | C ATC      | Ala        | C AGG<br>a Se | C CAG      | g GG<br>n Gl      | C TG<br>y Cy<br>57 | T CTG<br>s Leu<br>5 | 1728 |

| GAG<br>Glu        | GCC<br>Ala           | ACG<br>Thr           | GTC<br>Val<br>580 | AAT<br>Asn                    | GAC<br>Asp           | TTC<br>Phe            | TGG<br>Trp        | CAG<br>Gln<br>585 | ATG<br>Met        | GCG<br>Ala         | TGG<br>Trp         | CAG<br>Gln        | GAG<br>Glu<br>590     | AAC<br>Asn        | AGC<br>Ser            | 1776 |
|-------------------|----------------------|----------------------|-------------------|-------------------------------|----------------------|-----------------------|-------------------|-------------------|-------------------|--------------------|--------------------|-------------------|-----------------------|-------------------|-----------------------|------|
| CGT<br>Arg        | GTC<br>Val           | ATC<br>Ile<br>595    | GTC<br>Val        | ATG<br>Met                    | ACC<br>Thr           | ACC<br>Thr            | CGA<br>Arg<br>600 | GAG<br>Glu        | GTG<br>Val        | GAG<br>Glu         | AAA<br>Lys         | GGC<br>Gly<br>605 | CGG<br>Arg            | AAC<br>Asn        | AAA<br>Lys            | 1824 |
| TGC<br>Cys        | GTC<br>Val<br>610    | CCA<br>Pro           | TAC<br>Tyr        | TGG<br>Trp                    | CCC<br>Pro           | GAG<br>Glu<br>615     | GTG<br>Val        | GGC<br>Gly        | ATG<br>Met        | CAG<br>Gln         | CGT<br>Arg<br>620  | GCT<br>Ala        | TAT<br>Tyr            | GGG<br>Gly        | CCC<br>Pro            | 1872 |
| TAC<br>Tyr<br>625 | TCT<br>Ser           | GTG<br>Val           | ACC<br>Thr        | AAC<br>Asn                    | TGC<br>Cys<br>630    | GGG<br>Gly            | GAG<br>Glu        | CAT<br>His        | GAC<br>Asp        | ACA<br>Thr<br>635  | ACC<br>Thr         | GAA<br>Glu        | TAC<br>Tyr            | AAA<br>Lys        | CTC<br>Leu<br>640     | 1920 |
| CGT<br>Arg        | ACC<br>Thr           | TTA<br>Leu           | CAG<br>Gln        | GTC<br>Val<br>645             | TCC<br>Ser           | CCG<br>Pro            | CTG<br>Leu        | GAC<br>Asp        | AAT<br>Asn<br>650 | GGA<br>Gly         | GAC<br>Asp         | CTG<br>Leu        | ATT                   | CGG<br>Arg<br>655 | Glu                   | 1968 |
| ATC<br>Ile        | TGG<br>Trp           | CAT                  | TAC<br>Tyr<br>660 | CAG<br>Gln                    | TAC<br>Tyr           | CTG<br>Leu            | AGC<br>Ser        | TGG<br>Trp<br>665 | Pro               | GAC<br>Asp         | CAT<br>His         | GGG<br>Gly        | GTC<br>Val<br>670     | Pro               | AGT<br>Ser            | 2016 |
| GAG<br>Glu        | CCT<br>Pro           | GGG<br>Gly<br>675    | Gly               | GTC<br>Val                    | CTC<br>Leu           | AGC<br>Ser            | TTC<br>Phe<br>680 | Leu               | GAC<br>Asp        | CAG<br>Gln         | ATC<br>Ile         | AAC<br>Asn<br>685 | Gln                   | CGC<br>Arg        | CAG<br>Gln            | 2064 |
| GAA<br>Glu        | AGT<br>Ser<br>690    | Leu                  | CCT<br>Pro        | CAC<br>His                    | GCA<br>Ala           | GGG<br>Gly<br>695     | CCC               | : ATC             | : ATC             | GTG<br>Val         | CAC<br>His         | Cys               | AGC<br>Ser            | GCC<br>Ala        | G GGC                 | 2112 |
| ATC<br>11e<br>705 | e Gly                | CGC<br>Arg           | ACA<br>Thr        | Gly                           | ACC<br>Thr           | Ile                   | ATT<br>Ile        | GTC<br>Val        | ATC<br>Ile        | GAC<br>Asp<br>715  | Met                | CTC               | ATC<br>Met            | GA(               | AAC<br>Asn<br>720     | 2160 |
| ATC<br>Ile        | TCC<br>Ser           | ACC<br>Thi           | AAC<br>Lys        | GGG<br>G1 <sub>3</sub><br>725 | / Leu                | GAC<br>Asp            | TGT<br>Cys        | GAC<br>Asp        | 730               | e Asp              | TATY<br>O Ile      | C CAC             | AAC<br>1 Lys          | ACC<br>Th         | C ATC<br>r Ile<br>5   | 2208 |
| CA(<br>Glr        | TA E                 | GTC<br>Val           | l Arg             | G GCC<br>g Ala                | a Glr                | CGC<br>Arg            | Sei               | c Gly             | y Met             | G GTY              | G CAG              | G ACC             | G GA0<br>r G1:<br>75: | u Al              | G CAG<br>a Gln        | 2256 |
| TAC<br>Ty:        | C AAG                | 5 TT0<br>5 Pho<br>75 | e Ile             | TAC                           | c GTC                | GCC<br>Ala            | 76                | e Ala             | C CAG             | G TTO              | e Il               | T GA<br>e Gl      | u Th                  | C AC              | T AAG<br>r Lys        | 2304 |
| AA(<br>Ly:        | G AA(<br>s Ly:<br>77 | s Le                 | G GA0             | G GTV                         | CTX<br>l Lev         | G CAC<br>J Glr<br>775 | n Se              | G CAG             | G AA(<br>n Ly:    | G GG<br>s Gl       | C CA<br>y G1<br>78 | n Gl              | G TC<br>u Se          | G GA<br>r Gl      | G TAC<br>u Tyr        | 2352 |
| GG<br>G1<br>78    | y As                 | C AT<br>n Il         | C AC              | C TA                          | T CCC<br>r Pro<br>79 | o Pro                 | A GC<br>o Al      | C AT<br>a Me      | G AA<br>t Ly      | G AA<br>s As<br>79 | n Al               | C CA<br>a Hi      | T GC<br>s Al          | C AF<br>a Ly      | G GCC<br>s Ala<br>800 | 2400 |
| TC                | c cg                 | C AC                 | C TC              | G TC                          | C AA                 | A CA                  | C AA              | G GA              | G GA              | T GT               | G TA               | T GA              | G Aª                  | C C               | rg CAC                | 2448 |

Ser Arg Thr Ser Ser Lys His Lys Glu Asp Val Tyr Glu Asn Leu His 805 810 815

ACT AAG AAC AAG AGG GAG GAG AAA GTG AAG AAG CAG CGG TCA GCA GAC

Thr Lys Asn Lys Arg Glu Glu Lys Val Lys Lys Gln Arg Ser Ala Asp

820

825

830

AAG GAG AAG AGC AAG GGT TCC CTC AAG AGG AAG TGA Lys Glu Lys Ser Lys Gly Ser Leu Lys Arg Lys 835 840 2532

#### (2) INFORMATION FOR SEQ ID NO:117:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 843 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:117:

Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu 10 Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly 20 25 Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile 45 40 Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr 55 60 Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys 75 70 Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu 90 85 Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu 105 100 Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly 120 115 Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr 135 140 Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn 155 150 Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser 170 165 Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly 185 190 Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu 205 200 Ser Lys Asp Prc Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe 220 215 Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys Ser 225 230 235 Gly Leu Arg Ser Arg Glu Met Leu Ser Arg Gly Trp Phe His Arg Asp 250 245 Leu Ser Gly Leu Asp Ala Glu Thr Leu Leu Lys Gly Arg Gly Val His

|            |            |            | 260 |     |            |            |            | 265 |     |            |            |            | 270 |                    |            |
|------------|------------|------------|-----|-----|------------|------------|------------|-----|-----|------------|------------|------------|-----|--------------------|------------|
| Gly        | Ser        | Phe<br>275 | Leu | Ala | Arg        | Pro        | Ser<br>280 | Arg | Lys | Asn        | Gln        | Gly<br>285 | Asp | Phe                | Ser        |
| Leu        | Ser<br>290 | Val        | Arg | Val | Gly        | Asp<br>295 | Gln        | Val | Thr | His        | Ile<br>300 | Arg        | Ile | Gln                | Asn        |
| 305        |            |            |     |     | 310        |            |            |     |     | 315        |            |            |     | Thr                | 320        |
|            |            |            |     | 325 |            |            |            |     | 330 |            |            |            |     | Gln<br>335         |            |
|            |            |            | 340 |     |            |            |            | 345 |     |            |            |            | 350 | Ser                | _          |
|            |            | 355        |     |     |            |            | 360        |     |     |            |            | 365        |     | Gln                |            |
|            | 370        |            |     |     |            | 375        |            |     |     |            | 380        |            |     | Val                |            |
| 385        |            |            |     |     | 390        |            |            |     |     | 395        |            |            |     | Ser                | 400        |
|            |            |            |     | 405 |            |            |            |     | 410 |            |            |            |     | Ile<br>415         |            |
|            |            |            | 420 |     |            |            |            | 425 |     |            |            |            | 430 | Thr                |            |
|            |            | 435        |     |     |            |            | 440        |     |     |            |            | 445        |     | Ile                |            |
|            | 450        |            |     |     |            | 455        |            |     |     |            | 460        |            |     | Ala                |            |
| 465        |            |            |     |     | 470        |            |            |     |     | 475        |            |            |     | Asn                | 480        |
|            |            |            |     | 485 |            |            |            |     | 490 |            |            |            |     | Glu<br><b>4</b> 95 |            |
|            |            |            | 500 |     |            |            |            | 505 |     |            |            |            | 510 | Leu                |            |
|            |            | 515        |     |     |            |            | 520        |     |     |            |            | 525        |     | Ile                |            |
|            | 530        |            |     |     |            | 535        |            |     |     |            | 540        |            |     | Asn                |            |
| 545        |            |            |     |     | 550        |            |            |     |     | 555        |            |            |     | Leu                | 560        |
|            |            |            |     | 565 |            |            |            |     | 570 |            |            |            |     | Cys<br>575         |            |
|            |            |            | 580 |     |            |            |            | 585 |     |            |            |            | 590 | Asn                |            |
|            |            | 595        |     |     |            |            | 600        |     |     |            |            | 605        |     | Asn                |            |
|            | 610        |            |     |     |            | 615        |            |     |     |            | 620        |            |     | Gly                |            |
| 625        |            |            |     |     | 630        |            |            |     |     | 635        |            |            |     | Lys                | 640        |
|            |            |            |     | 645 |            |            |            |     | 650 |            |            |            |     | Arg<br>655         |            |
|            |            |            | 660 |     |            |            |            | 665 |     |            |            |            | 670 | Pro                |            |
|            |            | 675        |     |     |            |            | 680        |     |     |            |            | 685        |     | Arg                |            |
|            | 690        |            |     |     |            | 695        |            |     |     |            | 700        |            |     | Ala                |            |
| Ile<br>705 | Gly        | Arg        | Thr | Gly | Thr<br>710 | Ile        | Ile        | Val | Ile | Asp<br>715 | Met        | Leu        | Met | Glu                | Asn<br>720 |
| Ile        | Ser        | Thr        | Lys | Gly | Leu        | Asp        | Cys        | Asp | Ile | Asp        | Ile        | Gln        | Lys | Thr                | Ile        |

|                                                                                                                                         | 7:                                                                             | 25                                                                                               |                                                                       |                                        | 7                                            | 30                                                         |                                                |                                                            |                                |                     | 735                                            |                                 |                         |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------|----------------------------------------------|------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------|--------------------------------|---------------------|------------------------------------------------|---------------------------------|-------------------------|
| Gln Met Val                                                                                                                             | Arg A:                                                                         | la Gln                                                                                           |                                                                       | -                                      | 745                                          |                                                            |                                                |                                                            |                                | 750                 |                                                |                                 |                         |
| Tyr Lys Phe<br>755                                                                                                                      |                                                                                |                                                                                                  | •                                                                     | 760                                    |                                              |                                                            |                                                | •                                                          | 765                            |                     |                                                |                                 |                         |
| Lys Lys Leu<br>770                                                                                                                      |                                                                                |                                                                                                  | 775                                                                   |                                        |                                              |                                                            | 7                                              | 780                                                        |                                |                     |                                                |                                 |                         |
| Gly Asn Ile<br>785                                                                                                                      |                                                                                | 790                                                                                              |                                                                       |                                        |                                              | -                                                          | 795                                            |                                                            |                                |                     |                                                | 800                             |                         |
| Ser Arg Thr                                                                                                                             | 8                                                                              | 05                                                                                               |                                                                       |                                        |                                              | B10                                                        |                                                |                                                            |                                |                     | 815                                            |                                 |                         |
| Thr Lys Asn                                                                                                                             | 820                                                                            |                                                                                                  |                                                                       |                                        | 825                                          |                                                            |                                                | Gln .                                                      | Arg                            | 830                 | Ala                                            | Asp                             |                         |
| Lys Glu Lys<br>835                                                                                                                      |                                                                                | ys Gly                                                                                           |                                                                       | Leu<br>840                             | Lys .                                        | Arg 1                                                      | Lys                                            |                                                            |                                |                     |                                                |                                 |                         |
| (2                                                                                                                                      | ) INFC                                                                         | RMATIO                                                                                           | N FOR                                                                 | SEQ                                    | ID                                           | NO:1                                                       | 18:                                            |                                                            |                                |                     |                                                |                                 |                         |
|                                                                                                                                         |                                                                                | E CHAR                                                                                           |                                                                       |                                        |                                              |                                                            |                                                |                                                            |                                |                     |                                                |                                 |                         |
|                                                                                                                                         |                                                                                | H: 256<br>nucle                                                                                  |                                                                       |                                        | irs                                          |                                                            |                                                |                                                            |                                |                     |                                                |                                 |                         |
| (C)                                                                                                                                     | STRAN                                                                          | IDEDNES                                                                                          | S: si                                                                 | ngle                                   | <u> </u>                                     |                                                            |                                                |                                                            |                                |                     |                                                |                                 |                         |
| (D)                                                                                                                                     | TOPOL                                                                          | .OGY: 1                                                                                          | inear                                                                 |                                        |                                              |                                                            |                                                |                                                            |                                |                     |                                                |                                 |                         |
| , ,                                                                                                                                     | MOLECU<br>FEATUR                                                               | LE TYP<br>RE:                                                                                    | E: cI                                                                 | ALIO                                   |                                              |                                                            |                                                |                                                            |                                |                     |                                                |                                 |                         |
|                                                                                                                                         |                                                                                | E/KEY:                                                                                           |                                                                       |                                        | equer                                        | ice                                                        |                                                |                                                            |                                |                     |                                                |                                 |                         |
| (1                                                                                                                                      | B) LOCA                                                                        | : NOITA                                                                                          | 12                                                                    | 2559                                   |                                              |                                                            |                                                |                                                            |                                |                     |                                                |                                 |                         |
| (!                                                                                                                                      | O) OTH                                                                         | ER INFO                                                                                          | TAMAC                                                                 |                                        |                                              |                                                            |                                                |                                                            |                                |                     |                                                |                                 |                         |
|                                                                                                                                         |                                                                                |                                                                                                  |                                                                       | ION:                                   | : SEC                                        | ) ID                                                       | NO:1                                           | .18:                                                       |                                |                     |                                                |                                 |                         |
| (xi)                                                                                                                                    | SEQUE                                                                          | NCE DES                                                                                          | SCRIP:                                                                | ION:                                   |                                              |                                                            |                                                |                                                            | ccc                            | · CTYC              | GAT.                                           | GC A                            | 48                      |
| (xi)  ATG CTG TCG  Met Leu Se                                                                                                           | SEQUEI                                                                         | NCE DES                                                                                          | SCRIPT                                                                | ION:<br>TION:<br>CAC                   | CGA                                          | GAC                                                        | CTC                                            | AGT                                                        | GGG<br>Gly                     | CTG<br>Leu          | GAT<br>Asp<br>15                               | GCA<br>Ala                      | 48                      |
| (xi) ATG CTG TCG Met Leu Se                                                                                                             | SEQUEI<br>C CGT (<br>r Arg (                                                   | NCE DES<br>GGG TGG<br>Gly Trj<br>5                                                               | SCRIPT<br>G TTT<br>p Phe                                              | ION:<br>FION:<br>CAC<br>His            | CGA<br>Arg                                   | GAC<br>Asp<br>10                                           | CTC<br>Leu                                     | AGT<br>Ser                                                 | Gly                            | Leu                 | Asp<br>15                                      | Ala                             | <b>4</b> 8<br>96        |
| (xi)  ATG CTG TCG  Met Leu Se                                                                                                           | SEQUEI<br>C CGT (<br>r Arg (                                                   | NCE DES<br>GGG TGG<br>Gly Trj<br>5                                                               | SCRIPT G TTT p Phe                                                    | ION: ION: CAC His                      | CGA<br>Arg<br>GTC                            | GAC<br>Asp<br>10<br>CAC                                    | CTC<br>Leu<br>GGT                              | AGT<br>Ser<br>AGC                                          | Gly                            | Leu<br>CTC          | Asp<br>15<br>GCT                               | Ala                             |                         |
| (xi)  ATG CTG TCG  Met Leu Se  1  GAG ACC CTG  Glu Thr Le                                                                               | SEQUEI<br>C CGT (<br>r Arg (<br>G CTC :                                        | NCE DES<br>GGG TGG<br>Gly Tr<br>5<br>AAG GGG<br>Lys Gl:                                          | SCRIPT<br>G TTT<br>D Phe<br>C CGA<br>Y Arg                            | CAC<br>His<br>GGT<br>Gly               | CGA<br>Arg<br>GTC<br>Val<br>25               | GAC<br>Asp<br>10<br>CAC<br>His                             | CTC<br>Leu<br>GGT<br>Gly                       | AGT<br>Ser<br>AGC<br>Ser                                   | Gly<br>TTC<br>Phe              | CTC<br>Leu<br>30    | Asp<br>15<br>GCT<br>Ala                        | Ala<br>CGG<br>Arg               |                         |
| (xi)  ATG CTG TCG  Met Leu Se.  1  GAG ACC CTG  Glu Thr Le  CCC AGT CG  Pro Ser Ar                                                      | SEQUEI C CGT ( Arg ( C CTC ) Leu : 20                                          | NCE DES                                                                                          | SCRIPT G TTT D Phe C CGA y Arg                                        | CAC<br>His<br>GGT<br>Gly<br>GAC<br>Asp | CGA<br>Arg<br>GTC<br>Val<br>25               | GAC<br>Asp<br>10<br>CAC<br>His                             | CTC<br>Leu<br>GGT<br>Gly                       | AGT<br>Ser<br>AGC<br>Ser                                   | Gly TTC Phe                    | CTG Leu 30          | Asp<br>15<br>GCT<br>Ala                        | Ala<br>CGG<br>Arg               | 96                      |
| (xi)  ATG CTG TCC Met Leu Se  1  GAG ACC CTC Glu Thr Le  CCC AGT CG Pro Ser Ar  35                                                      | SEQUEI C CGT ( Arg ( Leu : 20 C AAG : g Lys :                                  | NCE DES<br>GGG TGG<br>G1y Try<br>5<br>AAG GGG<br>Lys G1;<br>AAC CA<br>Asn G1                     | SCRIPT TO Phe C CGA y Arg G GGT n Gly                                 | CAC<br>His<br>GGT<br>Gly<br>GAC<br>Asp | CGA<br>Arg<br>GTC<br>Val<br>25<br>TTC<br>Phe | GAC<br>Asp<br>10<br>CAC<br>His                             | CTC<br>Leu<br>GGT<br>Gly<br>CTC<br>Leu         | AGT<br>Ser<br>AGC<br>Ser<br>TCC<br>Ser                     | TTC<br>Phe<br>GTC<br>Val<br>45 | CTC Leu 30 AGC      | Asp<br>15<br>GCT<br>Ala<br>GCT<br>Val          | Ala<br>CGG<br>Arg<br>GGG<br>Gly | 96<br>144               |
| (xi)  ATG CTG TCG  Met Leu Se.  1  GAG ACC CTG  Glu Thr Le  CCC AGT CG  Pro Ser Ar                                                      | SEQUEI C CGT ( Arg ( Leu : 20 C AAG : g Lys :                                  | NCE DES<br>GGG TGG<br>G1y Try<br>5<br>AAG GGG<br>Lys G1;<br>AAC CA<br>Asn G1                     | SCRIPT TO Phe C CGA Y Arg G GGT n Gly T CGG                           | CAC His GGT Gly GAC Asp 40 ATC         | CGA<br>Arg<br>GTC<br>Val<br>25<br>TTC<br>Phe | GAC<br>Asp<br>10<br>CAC<br>His<br>TCG<br>Ser               | CTC<br>Leu<br>GGT<br>Gly<br>CTC<br>Leu         | AGT<br>Ser<br>AGC<br>Ser<br>TCC<br>Ser                     | TTC<br>Phe<br>GTC<br>Val<br>45 | CTC Leu 30 AGC Arg  | Asp<br>15<br>GCT<br>Ala<br>GGTC<br>Val         | CGG Arg GGG Gly                 | 96                      |
| (xi)  ATG CTG TCC Met Leu Se  1  GAG ACC CTC Glu Thr Le  CCC AGT CG Pro Ser Ar  35  GAT CAG GT                                          | SEQUEI C CGT ( Arg ( Leu : 20 C AAG : g Lys :                                  | NCE DES<br>GGG TGG<br>G1y Try<br>5<br>AAG GGG<br>Lys G1;<br>AAC CA<br>Asn G1                     | SCRIPT TO Phe C CGA Y Arg G GGT n Gly T CGG                           | CAC His GGT Gly GAC Asp 40 ATC         | CGA<br>Arg<br>GTC<br>Val<br>25<br>TTC<br>Phe | GAC<br>Asp<br>10<br>CAC<br>His<br>TCG<br>Ser               | CTC<br>Leu<br>GGT<br>Gly<br>CTC<br>Leu         | AGT<br>Ser<br>AGC<br>Ser<br>TCC<br>Ser                     | TTC<br>Phe<br>GTC<br>Val<br>45 | CTC Leu 30 AGC Arg  | Asp<br>15<br>GCT<br>Ala<br>GGTC<br>Val         | CGG Arg GGG Gly                 | 96<br>144               |
| (xi)  ATG CTG TCC Met Leu Se  1  GAG ACC CTC Glu Thr Le  CCC AGT CG Pro Ser Ar  35  GAT CAG GT Asp Gln Va 50  CTG TAT GG                | SEQUEI<br>C CGT (<br>Arg (<br>Leu :<br>20<br>C AAG :<br>G Lys :<br>G ACC 1 Thr | NCE DES<br>GGG TGG<br>G1y Try<br>5<br>AAG GGG<br>Lys G1;<br>AAC CA<br>Asn G1<br>CAT AT<br>His I1 | G GGT CGG Arg 55                                                      | CAC His GGT Gly ASP 40 ATC Ile         | CGA Arg GTC Val 25 TTC Phe CAG               | GAC<br>Asp<br>10<br>CAC<br>His<br>TCG<br>Ser<br>AAC<br>Asn | CTC<br>Leu<br>GGT<br>CTC<br>Leu<br>TCA<br>Ser  | AGT<br>Ser<br>AGC<br>Ser<br>TCC<br>Ser<br>GGG<br>Gly<br>60 | GTC Phe GTC Val 45 GAT Asi     | CTC Leu 30 CAGC Arc | Asp<br>15<br>GCT<br>Ala<br>GCT<br>Val          | CGG Arg GGG GJy GAC Asp         | 96<br>144               |
| (xi)  ATG CTG TCC Met Leu Se  1  GAG ACC CTC Glu Thr Le  CCC AGT CG Pro Ser Ar  35  GAT CAG GT Asp Gln Va 50                            | SEQUEI<br>C CGT (<br>Arg (<br>Leu :<br>20<br>C AAG :<br>G Lys :<br>G ACC 1 Thr | NCE DES<br>GGG TGG<br>G1y Try<br>5<br>AAG GGG<br>Lys G1;<br>AAC CA<br>Asn G1<br>CAT AT<br>His I1 | GCRIPT G TTT C Phe C CGA Y Arg G GGT n Gly T CGG E Arg 55 G TTT S Phe | CAC His GGT Gly ASP 40 ATC Ile         | CGA Arg GTC Val 25 TTC Phe CAG               | GAC<br>Asp<br>10<br>CAC<br>His<br>TCG<br>Ser<br>AAC<br>Asn | CTC<br>Leu<br>GGT<br>CTC<br>Leu<br>TCA<br>Ser  | AGT<br>Ser<br>AGC<br>Ser<br>TCC<br>Ser<br>GGG<br>Gly<br>60 | GTC Phe GTC Val 45 GAT Asi     | CTC Leu 30 CAGC Arc | Asp<br>15<br>GCT<br>Ala<br>GCT<br>Val          | CGG Arg GGG GJy GAC Asp         | 96<br>144<br>192        |
| (xi)  ATG CTG TCC Met Leu Se  1  GAG ACC CTC Glu Thr Le  CCC AGT CG Pro Ser Ar  35  GAT CAG GT Asp Gln Va 50  CTG TAT GG Leu Tyr Gl 65  | SEQUEI C CGT ( Arg ( Leu : 20 C AAG : G Lys : G ACC   Thr A GGG y Gly          | NCE DES                                                                                          | G GGT CGG Arg S5 Phe                                                  | CAC His GGT Gly GAC Asp 40 ATC Ile Ala | GGA Arg GTC Val 25 TTC Phe CAG Gln ACT Thr   | GAC Asp 10 CAC His TCG Ser AAC Asn CTG Leu                 | CTC Leu  GGT Gly  CTC Leu  TCA Ser  ACA Thr 75 | AGT Ser AGC Ser TCC Ser GGG Gly 60 GAG Glu                 | GTC Val. 45 Asp. CTC Let       | C ACC               | Asp<br>15<br>GCT<br>Ala<br>GCTA'<br>Val<br>Tyr | CGG Arg GGG GGY Asp GTAC TYr 80 | 96<br>144<br>192        |
| (xi)  ATG CTG TCC Met Leu Se  1  GAG ACC CTC Glu Thr Le  CCC AGT CG Pro Ser Ar  35  GAT CAG GT Asp Gln Va  50  CTG TAT GG Leu Tyr Gl 65 | SEQUEI C CGT ( Arg ( Leu : 20 C AAG : G Lys : G ACC   Thr A GGG y Gly          | NCE DES                                                                                          | G GGT CGG Arg S5 Phe                                                  | CAC His GGT Gly GAC Asp 40 ATC Ile Ala | GGA Arg GTC Val 25 TTC Phe CAG Gln ACT Thr   | GAC Asp 10 CAC His TCG Ser AAC Asn CTG Leu                 | CTC Leu  GGT Gly  CTC Leu  TCA Ser  ACA Thr 75 | AGT Ser AGC Ser TCC Ser GGG Gly 60 GAG Glu                 | GTC Val. 45 Asp. CTC Let       | C ACC               | Asp<br>15<br>GCT<br>Ala<br>GCTA'<br>Val<br>Tyr | CGG Arg GGG GGY Asp GTAC TYr 80 | 96<br>144<br>192<br>240 |

| His                | Leu               | Lys               | Tyr<br>100        | Pro                | Leu                   | Asn               | Cys               | Ser<br>105            | Asp               | Pro                 | Thr                  | Ser                   | Glu<br>110            | Arg                | Trp                   |      |
|--------------------|-------------------|-------------------|-------------------|--------------------|-----------------------|-------------------|-------------------|-----------------------|-------------------|---------------------|----------------------|-----------------------|-----------------------|--------------------|-----------------------|------|
| TAC<br>Tyr         | CAT<br>His        | GGC<br>Gly<br>115 | CAC<br>His        | ATG<br>Met         | TCT<br>Ser            | GGC               | GGG<br>Gly<br>120 | CAG<br>Gln            | GCA<br>Ala        | GAG<br>Glu          | ACG<br>Thr           | CTG<br>Leu<br>125     | CTG<br>Leu            | CAG<br>Gln         | GCC<br>Ala            | 384  |
| AAG<br>Lys         | GGC<br>Gly<br>130 | GAG<br>Glu        | CCC<br>Pro        | TGG<br>Trp         | ACG<br>Thr            | TTT<br>Phe<br>135 | CTT<br>Leu        | GTG<br>Val            | CGT<br>Arg        | GAG<br>Glu          | AGC<br>Ser<br>140    | CTC<br>Leu            | AGC<br>Ser            | CAG<br>Gln         | CCT<br>Pro            | 432  |
| GGA<br>Gly<br>145  | GAC<br>Asp        | TTC<br>Phe        | GTG<br>Val        | CTT<br>Leu         | TCT<br>Ser<br>150     | GTG<br>Val        | CTC<br>Leu        | AGT<br>Ser            | GAC<br>Asp        | CAG<br>Gln<br>155   | CCC<br>Pro           | AAG<br>Lys            | GCT<br>Ala            | GGC<br>Gly         | CCA<br>Pro<br>160     | 480  |
| GGC<br>Gly         | TCC<br>Ser        | CCG<br>Pro        | CTC<br>Leu        | AGG<br>Arg<br>165  | GTC<br>Val            | ACC<br>Thr        | CAC<br>His        | ATC<br>Ile            | AAG<br>Lys<br>170 | GTC<br>Val          | ATG<br>Met           | TGC<br>Cys            | GAG<br>Glu            | GGT<br>Gly<br>175  | GGA<br>Gly            | 528  |
| CGC<br>Arg         | TAC<br>Tyr        | ACA<br>Thr        | GTG<br>Val<br>180 | GGT<br>Gly         | GGT<br>Gly            | TTG<br>Leu        | GAG<br>Glu        | ACC<br>Thr<br>185     | TTC<br>Phe        | GAC<br>Asp          | AGC<br>Ser           | CTC<br>Leu            | ACG<br>Thr<br>190     | GAC<br>Asp         | CTG<br>Leu            | 576  |
| GTA<br>Val         | GAG<br>Glu        | CAT<br>His        | Phe               | AAG<br>Lys         | AAG<br>Lys            | ACG<br>Thr        | GGG<br>Gly<br>200 | ATT                   | GAG<br>Glu        | GAG<br>Glu          | GCC<br>Ala           | TCA<br>Ser<br>205     | Gly                   | GCC<br>Ala         | TTT<br>Phe            | 624  |
| GTC<br>Val         | TAC<br>Tyr<br>210 | Leu               | CGG<br>Arg        | CAG<br>Gln         | CCG<br>Pro            | TAC<br>Tyr<br>215 | ТАТ<br>Туг        | GCC<br>Ala            | ACG<br>Thr        | AGG<br>Arg          | GTG<br>Val<br>220    | Asn                   | GCG<br>Ala            | GCT<br>Ala         | GAC<br>Asp            | 672  |
| ATT<br>11e<br>225  | e Glu             | AAC<br>Asn        | CGA<br>Arg        | GTC<br>Val         | TTG<br>Leu<br>230     | Glu               | CTC<br>Leu        | AAC<br>Asn            | AAG<br>Lys        | AAC<br>Lys<br>235   | Glr                  | GAC<br>Glu            | TCC<br>Ser            | GAC<br>Glu         | GAT<br>Asp<br>240     | 720  |
| AC <i>A</i><br>Thr | A GCC             | : AAC             | GCT<br>Ala        | GGC<br>Gly<br>245  | / Phe                 | TGG<br>Trp        | GAC<br>Glu        | GAG<br>ıGlu           | TTT<br>Phe<br>250 | Glu                 | G AGT                | TTC<br>Lev            | G CAC                 | AAC<br>Lys<br>255  | G CAG<br>Gln          | 768  |
| GA(                | G GTC             | AAC<br>Lys        | AAC<br>Asn<br>260 | Leu                | G CAC                 | CAG<br>Gln        | CG?               | r CTG<br>g Lev<br>265 | Glu               | GG(                 | G CAC                | G CG(                 | G CCA<br>g Pro<br>270 | o Glu              | AAC<br>Asn            | 816  |
| AA(<br>Lys         | G GG(<br>B Gl)    | 275<br>275        | s Asr             | CGC<br>Arg         | ТАС<br>Туг            | : AAG<br>Lys      | AA(<br>ASI<br>28( | n Ile                 | CTC               | CCC<br>Pro          | TT'                  | T GAG<br>e Ası<br>28! | p Hi                  | C AGG<br>S Sen     | C CGA<br>r Arg        | 864  |
| GT(<br>Va)         | G ATS             | e Lei             | G CAC             | G GGZ              | A CGC                 | GAC<br>Asp<br>295 | se:               | r AAC<br>r Asr        | TATO              | C CC                | G GGG<br>G G1;<br>30 | y Se                  | C GA                  | С ТАО<br>р Ту      | C ATC                 | 912  |
| AA<br>As:          | n Al              | C AAG<br>a Asi    | TAC               | C ATY              | C AAC<br>e Lys<br>310 | s Ası             | C CAC             | G CT(<br>n Lev        | CT/               | A GG<br>u Gl:<br>31 | y Pr                 | T GA<br>o As          | T GA<br>p Gl          | G AA<br>u As       | C GCT<br>n Ala<br>320 | 960  |
| AA<br>Ly           | G AC              | C TAI             | C ATO             | C GC<br>e Al<br>32 | a Se                  | CAC               | G GG<br>n Gl      | C TG'<br>y Cy:        | r CTG<br>s Leg    | u Gl                | G GC<br>u Al         | C AC<br>a Th          | G GT<br>r Va          | C AA<br>1 As<br>33 | T GAC<br>n Asp<br>5   | 1008 |

| TTC<br>Phe        | TGG<br>Trp        | CAG<br>Gln        | ATG<br>Met<br>340 | GCG<br>Ala        | TGG<br>Trp           | CAG<br>Gln            | GAG<br>Glu            | AAC<br>Asn<br>345 | AGC<br>Ser        | CGT<br>Arg         | GTC<br>Val         | ATC<br>Ile            | GTC<br>Val<br>350 | ATG<br>Met          | ACC<br>Thr            | 1056 |
|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------|-----------------------|-----------------------|-------------------|-------------------|--------------------|--------------------|-----------------------|-------------------|---------------------|-----------------------|------|
| ACC<br>Thr        | CGA<br>Arg        | GAG<br>Glu<br>355 | GTG<br>Val        | GAG<br>Glu        | AAA<br>Lys           | GGC<br>Gly            | CGG<br>Arg<br>360     | AAC<br>Asn        | AAA<br>Lys        | TGC<br>Cys         | GTC<br>Val         | CCA<br>Pro<br>365     | TAC<br>Tyr        | TGG<br>Trp          | CCC<br>Pro            | 1104 |
| GAG<br>Glu        | GTG<br>Val<br>370 | GGC<br>Gly        | ATG<br>Met        | CAG<br>Gln        | CGT<br>Arg           | GCT<br>Ala<br>375     | TAT<br>Tyr            | GGG<br>Gly        | CCC<br>Pro        | TAC<br>Tyr         | TCT<br>Ser<br>380  | GTG<br>Val            | ACC<br>Thr        | AAC<br>Asn          | TGC<br>Cys            | 1152 |
| GGG<br>Gly<br>385 | GAG<br>Glu        | CAT<br>His        | GAC<br>Asp        | ACA<br>Thr        | ACC<br>Thr<br>390    | GAA<br>Glu            | TAC<br>Tyr            | AAA<br>Lys        | CTC<br>Leu        | CGT<br>Arg<br>395  | ACC<br>Thr         | TTA<br>Leu            | CAG<br>Gln        | GTC<br>Val          | TCC<br>Ser<br>400     | 1200 |
| CCG<br>Pro        | CTG<br>Leu        | GAC<br>Asp        | AAT<br>Asn        | GGA<br>Gly<br>405 | GAC<br>Asp           | CTG<br>Leu            | ATT<br>Ile            | CGG<br>Arg        | GAG<br>Glu<br>410 | ATC<br>Ile         | TGG<br>Trp         | CAT<br>His            | TAC<br>Tyr        | CAG<br>Gln<br>415   | TAC<br>Tyr            | 1248 |
| CTG<br>Leu        | AGC<br>Ser        | TGG<br>Trp        | CCC<br>Pro<br>420 | GAC<br>Asp        | CAT<br>His           | GGG<br>Gly            | GTC<br>Val            | CCC<br>Pro<br>425 | AGT<br>Ser        | GAG<br>Glu         | CCT<br>Pro         | GGG<br>Gly            | GGT<br>Gly<br>430 | Val                 | Leu                   | 1296 |
| AGC<br>Ser        | TTC<br>Phe        | CTG<br>Leu<br>435 | Asp               | CAG<br>Gln        | ATC<br>Ile           | AAC<br>Asn            | CAG<br>Gln<br>440     | Arg               | CAG<br>Gln        | GAA<br>Glu         | AGT<br>Ser         | CTG<br>Leu<br>445     | CCT               | CAC<br>His          | GCA<br>Ala            | 1344 |
| GGG<br>Gly        | CCC<br>Pro<br>450 | Ile               | : ATC             | GTG<br>Val        | CAC<br>His           | TGC<br>Cys<br>455     | AGC<br>Ser            | GCC<br>Ala        | GGC<br>Gly        | ATC<br>Ile         | GGC<br>Gly<br>460  | Arg                   | ACA<br>Thr        | GG(                 | ACC<br>Thr            | 1392 |
| ATC<br>Ile<br>465 | Ile               | GTC<br>Val        | : ATC             | GAC<br>Asp        | Met<br>470           | Leu                   | ATC<br>Met            | GAG<br>Glu        | AAC<br>Asn        | 11e                | Ser                | ACC<br>Thr            | Lys               | G GGG<br>G Gly      | CTG<br>Leu<br>480     | 1440 |
| GAC<br>Asp        | TGT<br>Cys        | GAC               | ATT<br>Ile        | GAC<br>Asp<br>485 | Ile                  | CAG<br>Gln            | AAC<br>Lys            | ACC<br>Thr        | 11e               | Glr                | ATC<br>Met         | GTC<br>Val            | CGC<br>L Arg      | g GCc<br>g Al<br>49 | G CAG<br>a Gln<br>5   | 1488 |
| CGC<br>Arg        | TCG<br>Ser        | GG(               | ATC<br>Met<br>500 | . Val             | G CAC                | ACG<br>Thr            | GAC<br>Glu            | ı Ala             | G CAC<br>Glr      | тул                | Lys                | TTC<br>Phe            | C ATG             | е Ту                | C GTG<br>r Val        | 1536 |
| GCC<br>Ala        | ATC               | GCC<br>Ala<br>515 | a Glr             | TTC               | C ATT                | GAÆ<br>Glu            | A ACC<br>1 Th:<br>520 | r Thr             | AAC<br>Lys        | AA(<br>ELY:        | G AAG<br>s Ly:     | G CTO<br>s Lev<br>52! | ı Gl              | G GT<br>u Va        | C CTG<br>l Leu        | 1584 |
| CAC<br>Glr        | TCC<br>Ser<br>530 | Gli               | g AAC<br>n Lys    | GGGG<br>Gly       | CAC<br>Gli           | G GAC<br>n Glu<br>535 | ı Se                  | G GAC<br>r Glu    | <b>ТА</b> (       | C GGG<br>r Gl      | G AA<br>y As<br>54 | n Il                  | C AC<br>e Th      | С ТА<br>r Ту        | T CCC<br>T Pro        | 1632 |
| CCA<br>Pro<br>545 | o Ala             | TATY<br>Me        | G AAG<br>t Ly:    | AA S<br>ASI       | r GCC<br>n Ala<br>55 | a Hi                  | r GC<br>s Al          | C AA(<br>a Ly:    | G GCG<br>S Ala    | C TC<br>a Se<br>55 | r Ar               | C AC<br>g Th          | C TC<br>r Se      | G TC                | C AAA<br>r Lys<br>560 | 1680 |
| CAG               | C AAC             | G GA              | G GA              | r GT              | G TA                 | T GA                  | g aa                  | CT                | G CA              | C AC               | T AA               | G AA                  | C AA              | G AC                | G GAG                 | 1728 |

| His               | Lys                   | Glu                   | Asp               | Val<br>565        | Tyr                   | Glu               | Asn                 | Leu               | His<br>570        | Thr                | Lys               | Asn               | Lys                    | Arg<br>575          | Glu                   |      |
|-------------------|-----------------------|-----------------------|-------------------|-------------------|-----------------------|-------------------|---------------------|-------------------|-------------------|--------------------|-------------------|-------------------|------------------------|---------------------|-----------------------|------|
| GAG<br>Glu        | AAA<br>Lys            | GTG<br>Val            | AAG<br>Lys<br>580 | AAG<br>Lys        | CAG<br>Gln            | CGG<br>Arg        | TCA<br>Ser          | GCA<br>Ala<br>585 | GAC<br>Asp        | AAG<br>Lys         | GAG<br>Glu        | AAG<br>Lys        | AGC<br>Ser<br>590      | AAG<br>Lys          | GGT<br>Gly            | 1776 |
| TCC<br>Ser        | CTC<br>Leu            | AAG<br>Lys<br>595     | AGG<br>Arg        | AAG<br>Lys        | CGA<br>Arg            | ATT<br>Ile        | CTG<br>Leu<br>600   | CAG<br>Gln        | TCG<br>Ser        | ACG<br>Thr         | GTA<br>Val        | CCG<br>Pro<br>605 | CGG<br>Arg             | GCC<br>Ala          | CGG<br>Arg            | 1824 |
| GAT<br>Asp        | CCA<br>Pro<br>610     | CCG<br>Pro            | GTC<br>Val        | GCC<br>Ala        | ACC<br>Thr            | ATG<br>Met<br>615 | GTG<br>Val          | AGC<br>Ser        | AAG<br>Lys        | GGC<br>Gly         | GAG<br>Glu<br>620 | GAG<br>Glu        | CTG<br>Leu             | TTC<br>Phe          | ACC<br>Thr            | 1872 |
| GGG<br>Gly<br>625 | GTG<br>Val            | GTG<br>Val            | CCC<br>Pro        | ATC<br>Ile        | CTG<br>Leu<br>630     | GTC<br>Val        | GAG<br>Glu          | CTG<br>Leu        | GAC<br>Asp        | GGC<br>Gly<br>635  | GAC<br>Asp        | GTA<br>Val        | AAC<br>Asn             | GGC<br>Gly          | CAC<br>His<br>640     | 1920 |
| AAG<br>Lys        | TTC<br>Phe            | AGC<br>Ser            | GTG<br>Val        | TCC<br>Ser<br>645 | GGC<br>Gly            | GAG<br>Glu        | GGC<br>Gly          | GAG<br>Glu        | GGC<br>Gly<br>650 | GAT<br>Asp         | GCC<br>Ala        | ACC<br>Thr        | TAC<br>Tyr             | GGC<br>Gly<br>655   | AAG<br>Lys            | 1968 |
| CTG<br>Leu        | ACC<br>Thr            | CTG<br>Leu            | AAG<br>Lys<br>660 | TTC<br>Phe        | ATC<br>Ile            | TGC<br>Cys        | ACC<br>Thr          | ACC<br>Thr<br>665 | GGC<br>Gly        | AAG<br>Lys         | CTG<br>Leu        | CCC<br>Pro        | GTG<br>Val<br>670      | Pro                 | TGG<br>Trp            | 2016 |
| CCC               | ACC<br>Thr            | CTC<br>Leu<br>675     | Val               | ACC<br>Thr        | ACC<br>Thr            | CTG<br>Leu        | ACC<br>Thr<br>680   |                   | GGC<br>Gly        | GTG<br>Val         | CAG<br>Gln        | TGC<br>Cys<br>685 | Phe                    | AGC<br>Ser          | CGC<br>Arg            | 2064 |
| TAC<br>Tyr        | CCC<br>Pro<br>690     | Asp                   | CAC<br>His        | ATG<br>Met        | AAG<br>Lys            | CAG<br>Gln<br>695 | His                 | GAC<br>Asp        | TTC<br>Phe        | TTC                | AAG<br>Lys<br>700 | Ser               | GCC<br>Ala             | : ATC               | CCC<br>Pro            | 2112 |
| GA2<br>G1u<br>705 | Gly                   | ТАС                   | GTC<br>Val        | CAG<br>Gln        | GAG<br>Glu<br>710     | Arg               | ACC                 | T ATC             | TTC<br>Phe        | TTC<br>Phe<br>715  | Lys               | GAC<br>Asp        | GAC<br>Asp             | GG(                 | AAC<br>Asn<br>720     | 2160 |
| ТАС<br>Туг        | AAC<br>Lys            | ACC<br>Thr            | CGC<br>Arg        | GCC<br>Ala<br>725 | Glu                   | GTG<br>Val        | AAC<br>Lys          | TTC<br>Phe        | GAG<br>Glu<br>730 | Gly                | GAC<br>Asp        | ACC<br>Thr        | CTC<br>Lev             | GTX<br>1 Va:<br>73! | AAC<br>Asn            | 2208 |
| CG(<br>Arg        | C ATO                 | GAC<br>Glu            | CTC<br>Lev<br>740 | ı Lys             | GGC<br>Gly            | ATC               | GAC<br>Asi          | 745               | E Lys             | GAC                | GAC<br>1 Asp      | GGG<br>Gly        | C AAC<br>3' Asi<br>750 | n Ile               | CTG<br>e Leu          | 2256 |
| GG(<br>Gly        | G CAC<br>/ His        | 2 AA0<br>3 Lys<br>75! | s Lev             | G GAC             | TAC<br>1 Tyr          | AAC<br>Asr        | ТАО<br>1 Ту:<br>760 | r Ası             | C AGO             | C CAG              | C AAG             | C GTO<br>n Val    | 1 Ty:                  | r AT                | C ATG<br>e Met        | 2304 |
| GC(               | C GAG<br>a Ası<br>770 | ) Ly:                 | G CAC             | 3 AAC<br>1 Lys    | G AAC<br>s Asr        | 775               | / Il                | C AAG<br>e Ly:    | G GTY             | G AA<br>l As       | n Pho             | e Ly              | G ATV<br>s Il          | C CG<br>e Ar        | C CAC<br>g His        | 2352 |
| AA<br>As:         | n Il                  | C GAG                 | G GA(<br>u Asj    | C GGG<br>C Gl     | C AGG<br>y Sei<br>790 | r Val             | G CA                | G CTO             | C GCC             | C GA<br>a As<br>79 | p Hi              | C TA<br>s Ty      | C CA<br>r Gl           | G CA<br>n Gl        | G AAC<br>n Asn<br>800 | 2400 |

|                       |  |     |  |  |  |  | TAC<br>Tyr<br>815 | 2448 |
|-----------------------|--|-----|--|--|--|--|-------------------|------|
|                       |  |     |  |  |  |  | GAT<br>Asp        | 2496 |
|                       |  |     |  |  |  |  | GGC<br>Gly        | 2544 |
| <br>GAG<br>Glu<br>850 |  | TAA |  |  |  |  |                   | 2562 |

# (2) INFORMATION FOR SEQ ID NO:119:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 853 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
  (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:119:

| Met<br>1   | Leu        | Ser        | Arg        | Gly<br>5   | Trp        | Phe        | His        | Arg        | Asp<br>10  | Leu        | Ser        | Gly        | Leu        | Asp<br>15  | Ala        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Glu        | Thr        | Leu        | Leu<br>20  | Lys        | Gly        | Arg        | Gly        | Val<br>25  | His        | Gly        | Ser        | Phe        | Leu<br>30  | Ala        | Arg        |
| Pro        | Ser        | Arg<br>35  | Lys        | Asn        | Gln        | Gly        | Asp<br>40  | Phe        | Ser        | Leu        | Ser        | Val<br>45  | Arg        | Val        | Gly        |
| _          | 50         |            |            |            |            | 55         |            |            |            |            | 60         |            |            | Tyr        |            |
| Leu<br>65  | Tyr        | Gly        | Gly        | Glu        | Lys<br>70  | Phe        | Ala        | Thr        | Leu        | Thr<br>75  | Glu        | Leu        | Val        | Glu        | Tyr<br>80  |
| Tyr        | Thr        | Gln        | Gln        | Gln<br>85  | Gly        | Val        | Leu        | Gln        | Asp<br>90  | Arg        | Asp        | Gly        | Thr        | Ile<br>95  | Ile        |
| His        | Leu        | Lys        | Tyr<br>100 | Pro        | Leu        | Asn        | Суѕ        | Ser<br>105 | Asp        | Pro        | Thr        | Ser        | Glu<br>110 | Arg        | Trp        |
| Tyr        | His        | Gly<br>115 | His        | Met        | Ser        | Gly        | Gly<br>120 | Gln        | Ala        | Glu        | Thr        | Leu<br>125 | Leu        | Gln        | Ala        |
| Lys        | Gly<br>130 | Glu        | Pro        | Trp        | Thr        | Phe<br>135 | Leu        | Val        | Arg        | Glu        | Ser<br>140 | Leu        | Ser        | Gln        | Pro        |
| Gly<br>145 | Asp        | Phe        | Val        | Leu        | Ser<br>150 | Val        | Leu        | Ser        | Asp        | Gln<br>155 | Pro        | Lys        | Ala        | Gly        | Pro<br>160 |
|            | Ser        | Pro        | Leu        | Arg<br>165 | Val        | Thr        | His        | Ile        | Lys<br>170 | Val        | Met        | Суѕ        | Glu        | Gly<br>175 | Gly        |
| Arg        | Tyr        | Thr        | Val<br>180 | Gly        | Gly        | Leu        | Glu        | Thr<br>185 | Phe        | Asp        | Ser        | Leu        | Thr<br>190 |            | Leu        |
| Val        | Glu        | His<br>195 | Phe        | Lys        | Lys        | Thr        | Gly<br>200 |            | Glu        | Glu        | Ala        | Ser<br>205 | Gly        | Ala        | Phe        |
| Val        | Tyr        |            | Arg        | Gln        | Pro        | Tyr        | Tyr        | Ala        | Thr        | Arg        | Val        | Asn        | Ala        | Ala        | Asp        |

| 2            | 10    |            |            |            |              | 215        |            |            |            |            | 220        |            |            |            |              |
|--------------|-------|------------|------------|------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------|
| Ile G        | ilu A | Asn        | Arg        |            | Leu (<br>230 | Glu        | Leu        | Asn        | Lys        | Lys<br>235 | Gln        | Glu        | Ser        | Glu        | Asp<br>240   |
| Thr A        | Ala I | Lys        | Ala        |            |              | Trp        | Glu        | Glu        | Phe<br>250 | Glu        | Ser        | Leu        | Gln        | Lys<br>255 | Gln          |
| Glu V        | /al 1 | Lys        | Asn<br>260 |            | His          | Gln        | Arg        | Leu<br>265 | Glu        | Gly        | Gln        | Arg        | Pro<br>270 | Glu        | Asn          |
| Lys (        |       | Lys<br>275 | Asn        | Arg        | Tyr          | Lys        | Asn<br>280 | Ile        | Leu        | Pro        | Phe        | Asp<br>285 | His        | Ser        | Arg          |
| Val 1        | Ile : | Leu        | Gln        | Gly        | Arg          | Asp<br>295 | Ser        | Asn        | Ile        | Pro        | Gly<br>300 | Ser        | Asp        | Tyr        | Ile          |
| Asn 2<br>305 | Ala   | Asn        | Tyr        | Ile        | Lys<br>310   | Asn        | Gln        | Leu        | Leu        | Gly<br>315 | Pro        | Asp        | Glu        | Asn        | Ala<br>320   |
| Lys :        | Thr   | Tyr        | Ile        | Ala<br>325 |              | Gln        | Gly        | Cys        | Leu<br>330 | Glu        | Ala        | Thr        | Val        | Asn<br>335 | Asp          |
| Phe '        | Trp   | Gln        | Met<br>340 | Ala        | Trp          | Gln        | Glu        | Asn<br>345 | Ser        | Arg        | Val        | Ile        | Val<br>350 | Met        | Thr          |
| Thr          | Arg   | Glu<br>355 | Val        | Glu        | Lys          | Gly        | Arg<br>360 | Asn        | Lys        | Cys        | Val        | Pro<br>365 | Tyr        | Trp        | Pro          |
| Glu          | 370   | Gly        |            |            |              | 375        |            |            |            |            | 380        |            |            |            |              |
| Gly :        | Glu   |            |            |            | 390          |            |            |            |            | 395        |            |            |            |            | 400          |
| Pro          | Leu   | Asp        | Asn        | Gly<br>405 | Asp          | Leu        | Ile        | Arg        | Glu<br>410 | Ile        | Trp        | His        | Tyr        | Gln<br>415 | Tyr          |
|              |       |            | 420        | Asp        |              |            |            | 425        |            |            |            |            | 430        |            | Leu          |
|              |       | 435        | Asp        | Gln        |              |            | 440        |            |            |            |            | 445        |            |            | Ala          |
|              | 450   | Ile        | Ile        |            |              | 455        |            |            |            |            | 460        |            |            |            | Thr          |
| 465          | Ile   |            |            |            | 470          |            |            |            |            | 475        | 5          |            |            |            | Leu<br>480   |
| Asp          |       |            |            | 485        |              |            |            |            | 490        | )          |            |            |            | 495        |              |
|              |       |            | 500        | )          |              |            |            | 505        | 5          |            |            |            | 510        | )          | Val          |
|              |       | 515        | ò          |            |              |            | 520        | )          |            |            |            | 525        | )          |            | l Leu        |
|              | 530   |            |            |            |              | 535        | 5          |            |            |            | 540        | )          |            |            | r Pro        |
| 545          |       |            |            |            | 550          | ٢          |            |            |            | 55         | 5          |            |            |            | r Lys<br>560 |
| His          |       |            |            | 565        | 5            |            |            |            | 57         | 0          |            |            |            | 5/         |              |
|              |       |            | 580        | )          |              |            |            | 58         | 5          |            |            |            | 59         | U          | s Gly        |
|              |       | 599        | 5          |            |              |            | 600        | 0          |            |            |            | 60         | )          |            | a Arg        |
|              | 610   | )          |            |            |              | 61         | 5          |            |            |            | 62         | 0          |            |            | e Thr        |
| 625          | Val   | l Va       |            |            | 630          | )          |            |            |            | 63         | 5          |            |            |            | y His<br>640 |
| Lys          | Phe   |            |            | 64         | 5            |            |            |            | 65         | 0          |            |            |            | 65         |              |
|              |       |            | 66         | 0          |              |            |            | 66         | 5          |            |            |            | 67         | 0          | o Trp        |
| Pro          | Thi   | r Le       | u Va       | 1 Th       | r Th         | r Le       | u Th       | r Ty       | r Gl       | y Vā       | il Gl      | n Cy       | s Ph       | ne Se      | er Arg       |

|                 |              | 675                  |                                     |                              |                    |                           | 680            |                    |                |                |                    | 685                              |                     |                      |                |     |
|-----------------|--------------|----------------------|-------------------------------------|------------------------------|--------------------|---------------------------|----------------|--------------------|----------------|----------------|--------------------|----------------------------------|---------------------|----------------------|----------------|-----|
| Tyr             | Pro<br>690   | Asp                  | His                                 | Met                          | Lys                | Gln<br>695                | His            | qzA                | Phe            | Phe            | Lys<br>700         | Ser                              | Ala                 | Met                  | Pro            |     |
| Glu<br>705      |              | Tyr                  | Val                                 | Gln                          | Glu<br>710         | Arg                       | Thr            | Ile                | Phe            | Phe<br>715     | Lys                | Asp                              | Asp                 | Gly                  | Asn<br>720     |     |
| Tyr             | Lys          | Thr                  | Arg                                 | Ala<br>725                   | Glu                | Val                       | Lys            | Phe                | Glu<br>730     | Gly            | Asp                | Thr                              | Leu                 | Val<br>735           | Asn            |     |
| Arg             | Ile          | Glu                  | Leu<br>740                          | Lys                          | Gly                | Ile                       | Asp            | Phe<br>745         | Lys            | Glu            | Asp                | Gly                              | Asn<br>750          | Ile                  | Leu            |     |
| Gly             | His          | Lys<br>755           | Leu                                 | Glu                          | Tyr                | Asn                       | Tyr<br>760     | Asn                | Ser            | His            | Asn                | Val<br>765                       | Tyr                 | Ile                  | Met            |     |
| Ala             | Asp<br>770   | Lys                  | Gln                                 | Lys                          | Asn                | Gly<br>775                | Ile            | Lys                | Val            | Asn            | Phe<br>780         | Lys                              | Ile                 | Arg                  | His            |     |
| 785             |              |                      |                                     |                              | Ser<br>790         |                           |                |                    |                | 795            |                    |                                  |                     |                      | 800            |     |
|                 |              |                      |                                     | 805                          | Gly                |                           |                |                    | 810            |                |                    |                                  |                     | 815                  |                |     |
|                 |              |                      | 820                                 |                              | Leu                |                           |                | 825                |                |                |                    |                                  | 830                 |                      |                |     |
| Met             | Val          | Leu<br>835           |                                     | Glu                          | Phe                | Val                       | Thr<br>840     |                    | Ala            | Gly            | Ile                | Thr<br>845                       |                     | Gly                  | Met            |     |
| Asp             | Glu<br>850   |                      | Tyr                                 | Lys                          |                    |                           |                |                    |                |                |                    |                                  |                     |                      |                |     |
|                 | (            | (D) (ii) (ix) (F     | TOF  MOLE FEAT  A) NF  B) LO  D) OT | CULE<br>URE:<br>ME/K<br>CATI | EY:<br>ON:<br>INFO | inea<br>E: c<br>Codi<br>1 | DNA ng S 2991  | eđne               |                |                | 100                |                                  |                     |                      |                |     |
|                 |              |                      |                                     |                              | E DES              |                           |                |                    |                |                |                    |                                  |                     |                      |                | 40  |
| ATO<br>Med<br>1 | G GTY        | G AGO                | C AAC<br>C Lys                      | GGG<br>Gly<br>5              | GAC<br>Glu         | G GAC                     | CTC            | J TTC<br>1 Phe     | Thi            | GGC<br>Gl      | g GTC<br>y Vai     | G GTV<br>l Va:                   | CCC<br>Pr           | 2 ATC<br>5 Ile<br>15 | c CTG<br>e Leu | 48  |
| GTY<br>Va       | C GAG        | G CTG                | G GAG<br>L Asi<br>20                | c GG(<br>c Gl <sub>2</sub>   | GAC<br>Asi         | C GTA                     | A AAG<br>L Asi | GGC<br>n Gly<br>25 | CAC<br>His     | C AAG<br>s Ly: | G TTO              | C AGG<br>e Se:                   | C GTV<br>r Va<br>30 | G TC                 | C GGC<br>r Gly | 96  |
| GA<br>G1        | G GGG        | C GAG<br>y Gli<br>35 | G GG(<br>u Gly                      | C GA'<br>Y Ası               | r GCC<br>o Ala     | a Thi                     | TAC<br>TY:     | c GG(<br>r Gly     | Z AAG<br>y Ly: | G CT           | G AC               | C CTV<br>r Le <sup>2</sup><br>45 | G AA<br>u Ly        | G TT<br>s Ph         | C ATC<br>e Ile | 144 |
| TG<br>Cy        | C AC<br>s Th | r Th                 | C GGG<br>r Gl                       | C AAG<br>y Ly:               | G CTY<br>s Le      | G CCG<br>u Pro<br>55      | C GT<br>O Va   | G CC               | C TG           | G CC<br>p Pr   | C AC<br>o Th<br>60 | r Le                             | C GT<br>u Va        | G AC<br>1 Th         | C ACC          | 192 |

CTG ACC TAC GGC GTG CAG TGC TTC AGC CGC TAC CCC GAC CAC ATG AAG 240

| Leu<br>65 | Thr | Tyr | Gly | Val | Gln<br>70 | Cys | Phe               | Ser | Arg | Tyr<br>75 | Pro | Asp | His | Met | Lys<br>80  |     |
|-----------|-----|-----|-----|-----|-----------|-----|-------------------|-----|-----|-----------|-----|-----|-----|-----|------------|-----|
|           |     |     |     |     |           |     | GCC<br>Ala        |     |     |           | _   |     | _   |     |            | 288 |
|           |     |     |     |     |           |     | GAC<br>Asp        | _   |     |           |     | _   |     |     |            | 336 |
|           |     |     |     |     |           |     | CTG<br>Leu<br>120 |     |     |           |     |     |     |     |            | 384 |
|           |     |     |     | _   |           | _   | AAC<br>Asn        | _   |     | _         |     |     |     | _   |            | 432 |
|           |     |     |     | · . |           |     | TAT<br>Tyr        |     |     |           |     |     | _   |     |            | 480 |
|           |     |     |     |     |           |     | ATC<br>Ile        |     |     |           |     |     |     |     |            | 528 |
|           |     |     |     |     |           |     | CAG<br>Gln        |     |     |           |     |     |     |     |            | 576 |
|           |     |     |     |     |           |     | CAC<br>His<br>200 |     |     |           |     | _   |     | _   |            | 624 |
|           |     |     |     |     |           |     | CGC<br>Arg        |     |     |           |     |     |     |     |            | 672 |
|           |     |     |     |     |           |     | CTC<br>Leu        |     |     |           |     |     |     |     |            | 720 |
|           |     |     |     |     |           |     | GCT<br>Ala        |     |     |           |     |     |     |     |            | 768 |
|           |     |     |     |     |           |     | GGC<br>Gly        |     |     |           | _   |     |     | Glu |            | 816 |
|           |     |     |     |     |           |     | AAC<br>Asn<br>280 |     |     |           |     |     |     |     | GAA<br>Glu | 864 |
|           |     |     |     |     |           |     | AAG<br>Lys        |     |     |           |     |     |     |     | ACC<br>Thr | 912 |

| AAA<br>Lys<br>305 | AAC<br>Asn        | AGA<br>Arg         | GAA<br>Glu            | Arg                   | TGG<br>Trp<br>310 | TGC<br>Cys        | CAT<br>His         | GAA<br>Glu            | Ile                   | CAG<br>Gln<br>315 | ATT<br>Ile                    | ATG<br>Met         | AAG<br>Lys         | AAG<br>Lys         | TTG<br>Leu<br>320     | 960  |
|-------------------|-------------------|--------------------|-----------------------|-----------------------|-------------------|-------------------|--------------------|-----------------------|-----------------------|-------------------|-------------------------------|--------------------|--------------------|--------------------|-----------------------|------|
| AAC<br>Asn        | CAT<br>His        | GCC<br>Ala         | AAT<br>Asn            | GTT<br>Val<br>325     | GTA<br>Val        | AAG<br>Lys        | GCC<br>Ala         | TGT<br>Cys            | GAT<br>Asp<br>330     | GTT<br>Val        | CCT<br>Pro                    | GAA<br>Glu         | GAA<br>Glu         | TTG<br>Leu<br>335  | AAT<br>Asn            | 1008 |
| ATT<br>Ile        | TTG<br>Leu        | ATT<br>Ile         | CAT<br>His<br>340     | GAT<br>Asp            | GTG<br>Val        | CCT<br>Pro        | CTT<br>Leu         | CTA<br>Leu<br>345     | GCA<br>Ala            | ATG<br>Met        | GAA<br>Glu                    | TAC<br>Tyr         | TGT<br>Cys<br>350  | TCT<br>Ser         | GGA<br>Gly            | 1056 |
| GGA<br>Gly        | GAT<br>Asp        | CTC<br>Leu<br>355  | CGA<br>Arg            | AAG<br>Lys            | CTG<br>Leu        | CTC<br>Leu        | AAC<br>Asn<br>360  | AAA<br>Lys            | CCA<br>Pro            | GAA<br>Glu        | AAT<br>Asn                    | TGT<br>Cys<br>365  | TGT<br>Cys         | GGA<br>Gly         | CTT<br>Leu            | 1104 |
| AAA<br>Lys        | GAA<br>Glu<br>370 | AGC<br>Ser         | CAG<br>Gln            | ATA<br>Ile            | CTT<br>Leu        | TCT<br>Ser<br>375 | TTA<br>Leu         | CTA<br>Leu            | AGT<br>Ser            | GAT<br>Asp        | ATA<br>Ile<br>380             | GGG<br>Gly         | TCT<br>Ser         | GGG                | ATT<br>Ile            | 1152 |
| CGA<br>Arg<br>385 | Tyr               | TTG<br>Leu         | CAT<br>His            | GAA<br>Glu            | AAC<br>Asn<br>390 | AAA<br>Lys        | ATT<br>Ile         | ATA<br>Ile            | CAT<br>His            | CGA<br>Arg<br>395 | GAT<br>Asp                    | CTA<br>Leu         | AAA<br>Lys         | CCT<br>Pro         | GAA<br>Glu<br>400     | 1200 |
| AAC<br>Asn        | ATA<br>Ile        | GTT<br>Val         | CTT<br>Leu            | CAG<br>Gln<br>405     | GAT<br>Asp        | GTT<br>Val        | GGT<br>Gly         | GGA<br>Gly            | AAG<br>Lys<br>410     | ATA<br>Ile        | ATA<br>Ile                    | CAT<br>His         | AAA<br>Lys         | ATA<br>Ile<br>415  | Ile                   | 1248 |
| GAT<br>Asp        | CTG<br>Leu        | GGA<br>Gly         | TAT<br>Tyr<br>420     | Ala                   | AAA<br>Lys        | GAT<br>Asp        | GTT<br>Val         | GAT<br>Asp<br>425     | Gln                   | GGA<br>Gly        | AGT<br>Ser                    | CTG                | TGT<br>Cys<br>430  | Thr                | TCT<br>Ser            | 1296 |
| TTI<br>Phe        | GTG<br>Val        | GGA<br>Gly<br>435  | Thr                   | CTG                   | CAG<br>Gln        | ТАТ<br>Туг        | CTC<br>Lev<br>440  | ı Ala                 | CCA<br>Pro            | GAG<br>Glu        | CTC<br>Lev                    | TTT<br>Phe<br>445  | e Glu              | AA7<br>Asr         | AAG<br>Lys            | 1344 |
| CCT<br>Pro        | TAC<br>Tyr<br>450 | Thi                | A GCC                 | ACT<br>Thr            | GTT<br>Val        | GAT<br>Asp<br>455 | ТУз                | r TGG<br>r Trp        | AGC<br>Ser            | TTT<br>Phe        | GGC<br>G1 <sub>2</sub><br>460 | Thi                | ATC<br>Me          | G GTA              | A TTT<br>l Phe        | 1392 |
| GAF<br>Glu<br>469 | 2 Cys             | TAT:               | r GCT<br>e Ala        | r GGA<br>a Gly        | TAT<br>Ty:        | Arg               | CC!                | r TTI<br>o Phe        | TTC                   | CAT<br>His<br>475 | Hi:                           | r CT(<br>s Le:     | G CAG              | g CC<br>n Pro      | A TTT<br>o Phe<br>480 | 1440 |
| ACC<br>Thi        | TGC<br>Trp        | G CA'              | r GAC<br>s Glv        | 3 AAC<br>1 Lys<br>485 | 3 Ile             | r AAC<br>e Lys    | AAG<br>Ly:         | G AAC<br>s Lys        | G GAT<br>S Asi<br>490 | Pro               | A AAG                         | G TG'<br>s Cy:     | T AT<br>s Il       | A TT<br>e Ph<br>49 | T GCA<br>e Ala<br>5   | 1488 |
| CĀ:               | T GA<br>S Glu     | A GA               | G ATO<br>u Met<br>500 | t Ser                 | A GG<br>r G1      | A GAA             | A GT<br>ı Va       | T CGC<br>1 Arg<br>505 | g Phe                 | T AG'<br>e Se:    | r AG<br>r Se                  | C CA<br>r Hi       | T TT<br>s Le<br>51 | u Pr               | T CAA<br>o Gln        | 1536 |
| CC.<br>Pr         | A AA'<br>o Asi    | r AG<br>n Se<br>51 | r Le                  | T TGʻ<br>u Cy:        | T AG'<br>s Se     | T TT/             | A AT<br>1 11<br>52 | e Va                  | A GAI                 | A CC              | C AT<br>o Me                  | G GA<br>t Gl<br>52 | u As               | C TG               | G CTA                 | 1584 |
| CA                | G TT              | G AT               | G TT                  | g AA                  | T TG              | G GA              | c cc               | T CA                  | G CA                  | g ag              | A GG                          | A GO               | A CC               | T GI               | T GAC                 | 1632 |

| Gln               | Leu<br>530 | Met               | Leu               | Asn               |                   | Asp<br>535 | Pro               | Gln               | Gln                   | Arg               | Gly<br>540        | Gly               | Pro               | Val               | Asp               |      |
|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
|                   |            |                   |                   |                   |                   |            |                   |                   |                       |                   | ATG<br>Met        |                   |                   |                   |                   | 1680 |
|                   |            |                   |                   |                   |                   |            |                   |                   |                       |                   | TCT<br>Ser        |                   |                   |                   |                   | 1728 |
| TCT<br>Ser        | TTT<br>Phe | CTG<br>Leu        | TTA<br>Leu<br>580 | CCA<br>Pro        | CCT<br>Pro        | GAT<br>Asp | GAA<br>Glu        | AGT<br>Ser<br>585 | CTT<br>Leu            | CAT<br>His        | TCA<br>Ser        | CTA<br>Leu        | CAG<br>Gln<br>590 | TCT<br>Ser        | CGT<br>Arg        | 1776 |
|                   |            |                   |                   |                   |                   |            |                   |                   |                       |                   | CAA<br>Gln        |                   |                   |                   |                   | 1824 |
|                   |            |                   |                   |                   |                   |            |                   |                   |                       |                   | GCC<br>Ala<br>620 |                   |                   |                   |                   | 1872 |
|                   | Asp        |                   |                   |                   |                   |            |                   |                   |                       |                   | GTT<br>Val        |                   |                   |                   |                   | 1920 |
|                   |            |                   |                   |                   |                   |            |                   |                   |                       |                   | TCC<br>Ser        |                   |                   |                   |                   | 1968 |
|                   |            |                   |                   | Tyr               |                   |            |                   |                   | Ser                   |                   | ATA<br>Ile        |                   |                   | Pro               |                   | 2016 |
| ATA<br>Ile        | CAG<br>Gln | CTG<br>Leu<br>675 | Arg               | AAA<br>Lys        | GTG<br>Val        | TGG<br>Trp | GCT<br>Ala<br>680 | Glu               | GCA<br>Ala            | GTC<br>Val        | CAC<br>His        | ТАТ<br>Тут<br>685 | Val               | TCT<br>Ser        | GGA<br>Gly        | 2064 |
|                   |            | Glu               |                   |                   |                   |            | Leu               |                   |                       |                   |                   | Arg               |                   |                   | ATG<br>Met        | 2112 |
| TTA<br>Let<br>705 | ı Ser      | CTI<br>Leu        | CTI<br>Lev        | 'AGA<br>Arg       | ТАТ<br>Туг<br>710 | Asn        | GCI<br>Ala        | AAC<br>Asr        | TTA<br>Leu            | ACA<br>Thi<br>715 | Lys               | ATC<br>Met        | AAC<br>Lys        | AAC<br>a Asr      | ACT<br>Thr<br>720 | 2160 |
| TT(<br>Let        | OTA E      | TCA<br>Ser        | A GCA<br>c Ala    | TCA<br>Ser<br>725 | Glr               | CAA<br>Gln | CTC               | S AAA<br>1 Lys    | A GCT<br>s Ala<br>730 | Ly                | A TTC             | GAC<br>1 Glu      | TT.               | TTT<br>Phe<br>735 | CAC<br>His        | 2208 |
|                   |            |                   |                   | ı Lev             |                   |            |                   |                   | y Tyr                 |                   |                   |                   |                   | t Thi             | TAT<br>Tyr        | 2256 |
|                   |            |                   | r Sei             |                   |                   |            |                   | ı Ly:             |                       |                   |                   |                   | ı Me              |                   | A GAA<br>u Glu    | 2304 |

| AAG (<br>Lys .    | GCC<br>Ala<br>770 | ATC<br>Ile        | CAC<br>His         | TAT (                 | Ala (                 | GAG (<br>Glu '    | GTT<br>Val                    | GGT<br>Gly         | GTC .<br>Val        | Ile                  | GGA<br>G1y<br>780     | TAC<br>Tyr           | CTG<br>Leu        | GAG<br>Glu         | GAT<br>Asp            | 2352 |
|-------------------|-------------------|-------------------|--------------------|-----------------------|-----------------------|-------------------|-------------------------------|--------------------|---------------------|----------------------|-----------------------|----------------------|-------------------|--------------------|-----------------------|------|
| CAG<br>Gln<br>785 | ATT<br>Ile        | ATG<br>Met        | TCT<br>Ser         | Leu                   | CAT (<br>His .        | GCT (             | GAA<br>Glu                    | ATC<br>Ile         | Met                 | GGG<br>Gly<br>795    | CTA<br>Leu            | CAG<br>Gln           | AAG<br>Lys        | AGC<br>Ser         | CCC<br>Pro<br>800     | 2400 |
| TAT<br>Tyr        | GGA<br>Gly        | AGA<br>Arg        | CGT<br>Arg         | CAG<br>Gln<br>805     | GGA<br>Gly            | GAC<br>Asp        | TTG<br>Leu                    | ATG<br>Met         | GAA<br>Glu<br>810   | TCT<br>Ser           | CTG<br>Leu            | GAA<br>Glu           | CAG<br>Gln        | CGT<br>Arg<br>815  | GCC<br>Ala            | 2448 |
| ATT<br>Ile        | GAT<br>Asp        | CTA<br>Leu        | тат<br>туг<br>820  | AAG<br>Lys            | CAG<br>Gln            | TTA<br>Leu        | AAA<br>Lys                    | CAC<br>His<br>825  | AGA<br>Arg          | CCT<br>Pro           | TCA<br>Ser            | GAT<br>Asp           | CAC<br>His<br>830 | TCC<br>Ser         | TAC<br>Tyr            | 2496 |
| AGT<br>Ser        | GAC<br>Asp        | AGC<br>Ser<br>835 | ACA<br>Thr         | GAG<br>Glu            | ATG<br>Met            | GTG<br>Val        | AAA<br>Lys<br>840             | ATC<br>Ile         | ATT<br>Ile          | GTG<br>Val           | CAC<br>His            | ACT<br>Thr<br>845    | GTG<br>Val        | CAG<br>Gln         | AGT<br>Ser            | 2544 |
| CAG<br>Gln        | GAC<br>Asp<br>850 | CGT<br>Arg        | GTG<br>Val         | CTC<br>Leu            | AAG<br>Lys            | GAG<br>Glu<br>855 | CTG<br>Leu                    | TTT<br>Phe         | GGT<br>Gly          | CAT<br>His           | TTG<br>Leu<br>860     | Ser                  | AAG<br>Lys        | TTG<br>Leu         | TTG<br>Leu            | 2592 |
| GGC<br>Gly<br>865 | Cys               | AAG<br>Lys        | CAG<br>Gln         | AAG<br>Lys            | ATT<br>Ile<br>870     | ATT<br>Ile        | GAT<br>Asp                    | CTA<br>Leu         | CTC<br>Leu          | CCT<br>Pro<br>875    | Lys                   | GTG<br>Val           | GAA<br>Glu        | GTC<br>Val         | GCC<br>Ala<br>880     | 2640 |
| CTC<br>Leu        | AGT<br>Ser        | AAT<br>Asr        | T ATC              | AAA<br>Lys<br>885     | Glu                   | GCT<br>Ala        | GAC<br>Asp                    | AAT<br>Asn         | ACT<br>Thr<br>890   | Val                  | ATG<br>Met            | TTC<br>Phe           | ATC<br>Met        | Glr<br>895         | G GGA<br>n Gly        | 2688 |
| AAA<br>Lys        | AGG<br>Arg        | Glr               | AAA<br>Lys         | Glu                   | ATA<br>Ile            | TGG<br>Trp        | CAT<br>His                    | CTC<br>Lev         | Lev                 | `AAA                 | ATT                   | GCC<br>Ala           | TG1<br>Cys<br>910 | Th                 | A CAG<br>r Gln        | 2736 |
| AGT<br>Ser        | TCT<br>Ser        | GC0<br>Ala        | a Arc              | TCT<br>Ser            | CTT                   | GTA<br>Val        | GG/<br>G1 <sub>3</sub><br>920 | / Ser              | AGI<br>Ser          | CTA<br>Lev           | A GAA                 | A GG'<br>1 Gl;<br>92 | y Ala             | A GT.<br>a Va      | A ACC<br>l Thr        | 2784 |
| CCT<br>Pro        | CAC<br>Glr<br>930 | ı Th              | A TCA              | A GCA                 | A TGG                 | 935               | ı Pro                         | C CCC              | G ACI               | r TCA                | A GCA<br>c Ala<br>941 | a Gl                 | A CA'<br>u Hi:    | r GA<br>s As       | T CAT<br>p His        | 2832 |
| TC:<br>Sei        | r Le              | G TC.<br>u Se     | A TG:              | r GTC<br>s Val        | G GT#<br>1 Va]<br>950 | Thi               | CC'                           | T CAI              | A GAT               | r GG(<br>p Gl;<br>95 | y Gl                  | G AC<br>u Th         | T TC.<br>r Se     | A GC<br>r Al       | A CAA<br>a Gln<br>960 | 2880 |
| ATC<br>Met        | G AT              | A GA<br>e Gl      | A GAI<br>u Gli     | A AA'<br>u Asi<br>96! | n Lei                 | AAC<br>1 Asi      | TG<br>n Cy                    | C CT               | T GG<br>u Gl;<br>97 | y Hi                 | T TT<br>s Le          | A AG<br>u Se         | C AC              | T AT<br>r Il<br>97 | T ATT<br>e Ile        | 2928 |
| CA'<br>Hi         | T GA<br>s Gl      | G GC<br>u Al      | A AA<br>a As<br>98 | n Gl                  | G GAA                 | A CAG<br>J Gli    | G GG<br>n Gl                  | С АА<br>у Аs<br>98 | n Se                | T AT<br>r Me         | G AT<br>t Me          | G AA<br>et As        | T CT<br>in Le     | u As               | AT TGG<br>Sp Trp      | 2976 |
| AG                | T TG              | G TI              | 'A AC              | A GA                  | A TG                  | A                 |                               |                    |                     |                      |                       |                      |                   |                    |                       | 2994 |

Ser Trp Leu Thr Glu 995

### (2) INFORMATION FOR SEQ ID NO:121:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 997 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:121:

Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu 10 Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly 20 25 Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile 40 Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr 55 60 Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys 70 75 Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu 90 Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu 100 105 Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly 120 125 Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr 135 Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn 150 155 Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser 165 170 Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly 185 190 Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu 200 Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe 215 220 Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys Ser 235 Gly Leu Arg Ser Arg Ala Gln Ala Ser Asn Ser Thr Met Glu Arg Pro 245 250 Pro Gly Leu Arg Pro Gly Ala Gly Gly Pro Trp Glu Met Arg Glu Arg 260 265 270 Leu Gly Thr Gly Gly Phe Gly Asn Val Cys Leu Tyr Gln His Arg Glu 280 Leu Asp Leu Lys Ile Ala Ile Lys Ser Cys Arg Leu Glu Leu Ser Thr 295 300 Lys Asn Arg Glu Arg Trp Cys His Glu Ile Gln Ile Met Lys Lys Leu 310 315 Asn His Ala Asn Val Val Lys Ala Cys Asp Val Pro Glu Glu Leu Asn

|     |            |            |            | 325        |       |            |            |            | 330        |      |            |            |            | 335        |            |
|-----|------------|------------|------------|------------|-------|------------|------------|------------|------------|------|------------|------------|------------|------------|------------|
|     |            |            | His<br>340 |            |       |            |            | 345        |            |      |            |            | 350        |            |            |
|     |            | 355        | Arg        |            |       |            | 360        |            |            |      |            | 365        |            |            |            |
|     | 370        |            | Gln        |            |       | 375        |            |            |            |      | 380        |            |            |            |            |
| 385 |            |            | His        |            | 390   |            |            |            |            | 395  |            |            |            |            | 400        |
| Asn | Ile        | Val        | Leu        | Gln<br>405 | Asp   | Val        | Gly        | Gly        | Lys<br>410 | Ile  | Ile        | His        | Lys        | Ile<br>415 | Ile        |
| Asp | Leu        | Gly        | Туг<br>420 | Ala        | Lys   | Asp        | Val        | Asp<br>425 | Gln        | Gly  | Ser        | Leu        | Cys<br>430 | Thr        | Ser        |
| Phe | Val        | Gly<br>435 | Thr        | Leu        | Gln   | Tyr        | Leu<br>440 | Ala        | Pro        | Glu  | Leu        | Phe<br>445 | Glu        | Asn        | Lys        |
| Pro | Tyr<br>450 | Thr        | Ala        | Thr        | Val   | Asp<br>455 | Tyr        | Trp        | Ser        | Phe  | Gly<br>460 | Thr        | Met        | Val        | Phe        |
| 465 |            |            | Ala        |            | 470   |            |            |            |            | 475  |            |            |            |            | 480        |
|     |            |            | Glu        | 485        |       |            |            |            | 490        |      |            |            |            | 495        |            |
|     |            |            | Met<br>500 |            |       |            |            | 505        |            |      |            |            | 510        |            |            |
|     |            | 515        |            |            |       |            | 520        |            |            |      |            | 525        |            |            |            |
|     | 530        |            | Leu        |            |       | 535        |            |            |            |      | 540        |            |            |            |            |
| 545 |            |            | Lys        |            | 550   |            |            |            |            | 555  |            |            |            |            | 560        |
|     |            |            |            | 565        | ,     |            |            |            | 570        |      |            |            |            | 575        |            |
|     |            |            | 580        |            |       |            |            | 585        |            |      |            |            | 590        | )          | Arg        |
|     |            | 595        | ,          |            |       |            | 600        |            |            |      |            | 605        |            |            | Ser        |
|     | 610        |            |            |            |       | 615        |            |            |            |      | 620        | •          |            |            | : Val      |
| 625 |            |            |            |            | 630   | )          |            |            |            | 635  |            |            |            |            | Asp<br>640 |
| _   |            |            |            | 645        | 5     |            |            |            | 650        | )    |            |            |            | 655        |            |
|     |            |            | 660        | )          |       |            |            | 665        |            |      |            |            | 670        | )          | lle        |
|     |            | 675        | 5          |            |       |            | 680        | )          |            |      |            | 685        | 5          |            | Gly        |
|     | 690        | )          |            |            |       | 695        | 5          |            |            |      | 700        | )          |            |            | a Met      |
| 705 | 5          |            |            |            | 710   | )          |            |            |            | 715  | 5          |            |            |            | 720        |
|     |            |            |            | 725        | 5     |            |            |            | 730        | )    |            |            |            | 73         |            |
|     |            |            | 740        | )          |       |            |            | 745        | 5          |      |            |            | 75         | 0          | r Tyr      |
|     |            | 75         | 5          |            |       |            | 760        | )          |            |      |            | 76         | 5          |            | u Glu      |
|     | 770        | )          |            |            |       | 775        | 5          |            |            |      | 78         | 0          |            |            | u Asp      |
| Gli | n Ile      | е Ме       | t Se       | r Le       | u His | s Ala      | a Glu      | ı Ile      | e Me       | t Gl | y Le       | u Gl:      | n Ly       | s Se       | r Pro      |

| 785        |            |            |            |            | 790        |            |            |            |            | 795        |            |            |            |            | 800        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Tyr        | Gly        | Arg        | Arg        | Gln<br>805 | Gly        | Asp        | Leu        | Met        | Glu<br>810 | Ser        | Leu        | Glu        | Gln        | Arg<br>815 | Ala        |
| Ile        | Asp        | Leu        | Tyr<br>820 | Lys        | Gln        | Leu        | Lys        | His<br>825 | Arg        | Pro        | Ser        | Asp        | His<br>830 | Ser        | Tyr        |
|            |            | 835        |            |            |            | Val        | 840        |            |            |            |            | 845        |            |            |            |
| Gln        | Asp<br>850 | Arg        | Val        | Leu        | Lys        | Glu<br>855 | Leu        | Phe        | Gly        | His        | Leu<br>860 | Ser        | Lys        | Leu        | Leu        |
| Gly<br>865 | Суѕ        | Lys        | Gln        | Lys        | Ile<br>870 | Ile        | Asp        | Leu        | Leu        | Pro<br>875 | Lys        | Val        | Glu        | Val        | Ala<br>880 |
| Leu        | Ser        | Asn        | Ile        | Lys<br>885 | Glu        | Ala        | Asp        | Asn        | Thr<br>890 | Val        | Met        | Phe        | Met        | Gln<br>895 | Gly        |
| Lys        | Arg        | Gln        | Lys<br>900 | Glu        | Ile        | Trp        | His        | Leu<br>905 | Leu        | Lys        | Ile        | Ala        | Cys<br>910 | Thr        | Gln        |
| Ser        | Ser        | Ala<br>915 | Arg        | Ser        | Leu        | Val        | Gly<br>920 | Ser        | Ser        | Leu        | Glu        | Gly<br>925 | Ala        | Val        | Thr        |
| Pro        | Gln<br>930 | Thr        | Ser        | Ala        | Trp        | Leu<br>935 | Pro        | Pro        | Thr        | Ser        | Ala<br>940 | Glu        | His        | Asp        | His        |
| Ser<br>945 | Leu        | Ser        | Cys        | Val        | Val<br>950 | Thr        | Pro        | Gln        | Asp        | Gly<br>955 | Glu        | Thr        | Ser        | Ala        | Gln<br>960 |
| Met        | Ile        | Glu        | Glu        | Asn<br>965 | Leu        | Asn        | Cys        | Leu        | Gly<br>970 | His        | Leu        | Ser        | Thr        | Ile<br>975 | Ile        |
| His        | Glu        | Ala        | Asn<br>980 | Glu        | Glu        | Gln        | Gly        | Asn<br>985 | Ser        | Met        | Met        | Asn        | Leu<br>990 | Asp        | Trp        |
| Ser        | Trp        | Leu<br>995 | Thr        | Glu        |            |            |            |            |            |            |            |            |            |            |            |
|            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |

# (2) INFORMATION FOR SEQ ID NO:122:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2991 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
  - (A) NAME/KEY: Coding Sequence
  - (B) LOCATION: 1...2988
  - (D) OTHER INFORMATION:

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:122:

|     | GAG<br>Glu |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 48  |
|-----|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|     | CGG<br>Arg |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 96  |
|     | CAT<br>His |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 144 |
| GAG | CTA        | AGT | ACC | AAA | AAC | AGA | GAA | CGA | TGG | TGC | САТ | GAA | ATC | CAG | ATT | 192 |

| Glu               | Leu<br>50         | Ser                | Thr                 | Lys                   |                   | Arg (<br>55       | Glu               | Arg                   | Trp (                 | Cys               | His<br>60         | Glu                | Ile                | Gln                | Ile                   |     |
|-------------------|-------------------|--------------------|---------------------|-----------------------|-------------------|-------------------|-------------------|-----------------------|-----------------------|-------------------|-------------------|--------------------|--------------------|--------------------|-----------------------|-----|
| ATG<br>Met<br>65  | AAG<br>Lys        | AAG<br>Lys         | TTG<br>Leu          | AAC<br>Asn            | CAT<br>His<br>70  | GCC<br>Ala        | AAT<br>Asn        | GTT<br>Val            | Val                   | AAG<br>Lys<br>75  | GCC<br>Ala        | TGT<br>Cys         | GAT<br>Asp         | GTT<br>Val         | CCT<br>Pro<br>80      | 240 |
| GAA<br>Glu        | GAA<br>Glu        | TTG<br>Leu         | AAT<br>Asn          | ATT<br>Ile<br>85      | TTG<br>Leu        | ATT<br>Ile        | CAT<br>His        | GAT<br>Asp            | GTG<br>Val<br>90      | CCT<br>Pro        | CTT<br>Leu        | CTA<br>Leu         | GCA<br>Ala         | ATG<br>Met<br>95   | GAA<br>Glu            | 288 |
| TAC<br>Tyr        | TGT<br>Cys        | TCT<br>Ser         | GGA<br>Gly<br>100   | GGA<br>Gly            | GAT<br>Asp        | CTC<br>Leu        | CGA<br>Arg        | AAG<br>Lys<br>105     | CTG<br>Leu            | CTC<br>Leu        | AAC<br>Asn        | AAA<br>Lys         | CCA<br>Pro<br>110  | GAA<br>Glu         | AAT<br>Asn            | 336 |
|                   |                   |                    |                     |                       |                   | AGC<br>Ser        |                   |                       |                       |                   |                   |                    |                    |                    |                       | 384 |
| GGG<br>Gly        | TCT<br>Ser<br>130 | GGG<br>Gly         | ATT<br>Ile          | CGA<br>Arg            | TAT<br>Tyr        | TTG<br>Leu<br>135 | CAT<br>His        | GAA<br>Glu            | AAC<br>Asn            | AAA<br>Lys        | ATT<br>Ile<br>140 | ATA<br>Ile         | CAT                | CGA<br>Arg         | GAT<br>Asp            | 432 |
| CTA<br>Leu<br>145 | Lys               | CCT<br>Pro         | GAA<br>Glu          | AAC<br>Asn            | ATA<br>Ile<br>150 | Val               | CTT<br>Leu        | CAG<br>Gln            | GAT<br>Asp            | GTT<br>Val<br>155 | Gly               | GGA<br>Gly         | AAG<br>Lys         | ATA<br>Ile         | ATA<br>Ile<br>160     | 480 |
| CAT<br>His        | AAA<br>Lys        | ATA<br>Ile         | ATT                 | GAT<br>Asp<br>165     | Leu               | GGA<br>Gly        | тат<br>туг        | GCC<br>Ala            | AAA<br>Lys<br>170     | GAT<br>Asp        | GTT<br>Val        | GAT<br>Asp         | CAA<br>Gln         | GGA<br>Gly<br>175  | AGT<br>Ser            | 528 |
| CTC               | TGI<br>1 Cys      | ACA<br>Thi         | TCT<br>Ser<br>180   | Ph∈                   | GTG<br>Val        | GGA<br>Gly        | ACA<br>Thr        | CTG<br>Leu<br>185     | Gln                   | ТАТ<br>Тут        | CTC               | GCC<br>Ala         | CCA<br>Pro         | Glu                | CTC<br>Leu            | 576 |
| TT.               | r GAC<br>e Glu    | AAN<br>Asr<br>199  | ı Lys               | CCT<br>Pro            | TAC<br>Tyr        | ACA<br>Thr        | GCC<br>Ala<br>200 | Thr                   | GTT<br>Val            | GA?<br>Ası        | r TAI             | TGC<br>Trp<br>205  | Ser                | TTT<br>Phe         | r GGG<br>e Gly        | 624 |
| ACC<br>Th:        | C ATO             | . Va               | A TTT               | GAF<br>Glu            | A TGT<br>1 Cys    | ATT<br>Ile<br>215 | Ala               | GGA<br>Gly            | тат<br>Туг            | ACC               | g CC:<br>g Pro    | ) Phe              | r TTC<br>e Lev     | G CAS              | r CAT<br>s His        | 672 |
| CT<br>Le          | u Gli             | G CC               | A TTI               | r ACC                 | TGC<br>Trp<br>230 | His               | GAC               | AAC<br>Lys            | ATT                   | AA(<br>Ly:<br>23! | s Ly:             | G AAG<br>s Ly:     | G GA'<br>s Asi     | r CC               | A AAG<br>o Lys<br>240 | 720 |
| TG<br>Cy          | T AT              | A TT               | T GCZ<br>e Ala      | A TG'<br>a Cy:<br>24! | s Glu             | A GAC<br>u Glu    | ATC               | TC/                   | A GGA<br>c Gly<br>250 | / G1              | A GT<br>u Va      | T CG               | G TT<br>g Ph       | T AG<br>e Se<br>25 | T AGC<br>r Ser<br>5   | 768 |
| CA<br>Hi          | T TT.<br>s Le     | A CC<br>u Pr       | T CA<br>o Gl:<br>26 | n Pr                  | A AA'<br>o Asi    | T AGC<br>n Sei    | CT:               | r TG:<br>1 Cy:<br>26: | s Ser                 | TT<br>Le          | A AT<br>u Il      | A GT<br>e Va       | A GA<br>1 G1<br>27 | u Pr               | C ATG<br>o Met        | 816 |
| GA<br>G1          | A AA<br>u As      | C TG<br>n Tr<br>27 | p Le                | A CA<br>u Gl          | G TTO             | G ATO             | TTX<br>Lev<br>28  | u Ası                 | r TGC<br>n Trī        | G GA<br>p As      | C CC<br>p Pr      | T CA<br>o Gl<br>28 | n Gl               | G AG<br>n Ar       | a GGA<br>g Gly        | 864 |

|     | CCT<br>Pro<br>290 |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 912  |
|-----|-------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
|     | CAC<br>His        |     |     |     |     |     | _   |     |     |     |     |     |     |     |     | 960  |
|     | AAG<br>Lys        |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 1008 |
|     | CAG<br>Gln        |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 1056 |
|     | CTT<br>Leu        |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 1104 |
|     | CAA<br>Gln<br>370 |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 1152 |
|     | TTG<br>Leu        |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 1200 |
|     | AGT<br>Ser        |     |     |     |     |     |     |     |     | _   | _   |     |     |     |     | 1248 |
|     | CTT<br>Leu        |     | _   | _   |     |     |     |     | _   |     | _   | _   | _   | _   |     | 1296 |
|     | GTG<br>Val        |     | _   |     |     |     |     |     |     |     |     | _   | _   |     |     | 1344 |
|     | GCA<br>Ala<br>450 |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 1392 |
|     | AAG<br>Lys        |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 1440 |
|     | TTT<br>Phe        |     |     |     |     |     |     |     |     |     | _   |     |     |     |     | 1488 |
| _   | ATG<br>Met        | _   |     | _   | _   |     |     | _   |     |     |     |     | _   |     |     | 1536 |
| GAA | ATG               | GAA | GAA | AAG | GCC | ATC | CAC | TAT | GCT | GAG | GTT | GGT | GTC | TTA | GGA | 1584 |

| Glu               | Met                   | Glu<br>515           | Glu                | Lys                   | Ala               |                   | His<br>520        | Tyr                | Ala                   | Glu                 |                       | Gly<br>525        | Val                | Ile                | Gly                   |      |
|-------------------|-----------------------|----------------------|--------------------|-----------------------|-------------------|-------------------|-------------------|--------------------|-----------------------|---------------------|-----------------------|-------------------|--------------------|--------------------|-----------------------|------|
| TAC<br>Tyr        | CTG<br>Leu<br>530     | GAG<br>Glu           | GAT<br>Asp         | CAG<br>Gln            | ATT<br>Ile        | ATG<br>Met<br>535 | TCT<br>Ser        | TTG<br>Leu         | CAT<br>His            | GCT<br>Ala          | GAA<br>Glu<br>540     | ATC<br>Ile        | ATG<br>Met         | GGG<br>Gly         | CTA<br>Leu            | 1632 |
| CAG<br>Gln<br>545 | AAG<br>Lys            | AGC<br>Ser           | CCC<br>Pro         | TAT<br>Tyr            | GGA<br>Gly<br>550 | AGA<br>Arg        | CGT<br>Arg        | CAG<br>Gln         | GGA<br>Gly            | GAC<br>Asp<br>555   | TTG<br>Leu            | ATG<br>Met        | GAA<br>Glu         | TCT<br>Ser         | CTG<br>Leu<br>560     | 1680 |
| GAA<br>Glu        | CAG<br>Gln            | CGT<br>Arg           | GCC<br>Ala         | ATT<br>Ile<br>565     | GAT<br>Asp        | CTA<br>Leu        | TAT<br>Tyr        | AAG<br>Lys         | CAG<br>Gln<br>570     | TTA<br>Leu          | AAA<br>Lys            | CAC<br>His        | AGA<br>Arg         | CCT<br>Pro<br>575  | TCA<br>Ser            | 1728 |
| GAT<br>Asp        | CAC<br>His            | TCC<br>Ser           | TAC<br>Tyr<br>580  | AGT<br>Ser            | GAC<br>Asp        | AGC<br>Ser        | ACA<br>Thr        | GAG<br>Glu<br>585  | ATG<br>Met            | GTG<br>Val          | AAA<br>Lys            | ATC<br>Ile        | ATT<br>Ile<br>590  | GTG<br>Val         | CAC<br>His            | 1776 |
| ACT<br>Thr        | GTG<br>Val            | CAG<br>Gln<br>595    | Ser                | CAG<br>Gln            | GAC<br>Asp        | CGT<br>Arg        | GTG<br>Val<br>600 | CTC<br>Leu         | AAG<br>Lys            | GAG<br>Glu          | CTG<br>Leu            | TTT<br>Phe<br>605 | GGT<br>Gly         | CAT<br>His         | TTG<br>Leu            | 1824 |
| AGC<br>Ser        | AAG<br>Lys<br>610     | Leu                  | TTG<br>Leu         | GGC<br>Gly            | TGT<br>Cys        | AAG<br>Lys<br>615 | CAG<br>Gln        | AAG<br>Lys         | ATT<br>Ile            | ATT                 | GAT<br>Asp<br>620     | CTA<br>Leu        | CTC                | CCT<br>Pro         | AAG<br>Lys            | 1872 |
| GTC<br>Val        | GAA<br>Glu            | GTG<br>Val           | GCC<br>Ala         | CTC<br>Leu            | AGT<br>Ser<br>630 | AAT<br>Asn        | ATC               | : AAA<br>: Lys     | GAA<br>Glu            | GCT<br>Ala<br>635   | Asp                   | AAT<br>Asn        | ACT<br>Thr         | GTC<br>Val         | ATG<br>Met<br>640     | 1920 |
| TTC<br>Phe        | ATG<br>Met            | CAC<br>Glr           | GGA<br>Gly         | AAA<br>Lys<br>645     | Arg               | CAG<br>Gln        | AAA<br>Lys        | GAA<br>Glu         | ATA<br>Ile<br>650     | Tr                  | CAT<br>His            | CTC<br>Leu        | CTI<br>Lev         | AAA<br>Lys<br>655  | ATT                   | 1968 |
| GC(               | TGT<br>Cys            | ACA                  | CAC<br>Glr<br>660  | ser                   | TCT<br>Ser        | GCC               | CGC               | TCI<br>Ser<br>665  | Leu                   | GTA<br>Val          | A GGA<br>L Gly        | TCC<br>Ser        | Ser<br>670         | Leu                | A GAA<br>1 Glu        | 2016 |
| GG'<br>G1         | r GCA<br>y Ala        | GTA<br>Val<br>675    | l Thi              | CCI<br>Pro            | CAG               | ACA<br>Thr        | TCA<br>Ser<br>680 | c Ala              | TGC                   | CTC                 | ı Pro                 | CCC<br>Pro<br>685 | Th:                | r TCA<br>r Sei     | A GCA<br>Ala          | 2064 |
| GA.<br>G1         | A CAT<br>u His<br>690 | a Ası                | CAT<br>His         | r TC1<br>s Ser        | CTC               | TCA<br>Ser<br>695 | Cys               | r GTC<br>s Val     | GTA<br>L Val          | A AC'               | r CCS<br>r Pro<br>700 | o Gli             | A GA'<br>n Asj     | r GG(<br>p Gl)     | G GAG<br>y Glu        | 2112 |
| AC<br>Th<br>70    | r Sei                 | A GC                 | A CAJ<br>a Gli     | A ATC                 | 710               | e Glu             | A GAZ             | A AA'<br>u Asi     | r TTC<br>n Lei        | 3 AA<br>1 As:<br>71 | n Cy                  | CT"<br>s Le       | r GG               | C CA'<br>y Hi      | T TTA<br>s Leu<br>720 | 2160 |
| AG<br>Se          | C AC'<br>r Thi        | r AT                 | T AT'              | r CAS<br>e His<br>725 | s Glu             | G GCA<br>1 Ala    | A AA'<br>a As     | T GAG              | G GAA<br>u Glu<br>730 | ı Gl                | G GG<br>n Gl          | y As:             | T AG<br>n Se       | T AT<br>r Me<br>73 | G ATG<br>t Met<br>5   | 2208 |
| AA<br>As          | T CT<br>n Le          | T GA<br>u <b>A</b> s | T TG<br>p Tr<br>74 | p Se                  | T TGO<br>T Tr     | G TT              | A AC.             | A GA<br>r Gl<br>74 | u Trj                 | G GT<br>p Va        | A CC<br>1 Pr          | G CG<br>o Ar      | G GC<br>g Al<br>75 | a Ar               | G GAT<br>g Asp        | 2256 |

| CCA<br>Pro        | CCG<br>Pro        | GTC<br>Val<br>755 | GCC<br>Ala        | ACC<br>Thr        | ATG<br>Met        | GTG<br>Val        | AGC<br>Ser<br>760 | AAG<br>Lys        | GGC<br>Gly        | GAG<br>Glu         | GAG<br>Glu          | CTG<br>Leu<br>765 | TTC<br>Phe        | ACC<br>Thr            | GGG<br>Gly        | 2304 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|---------------------|-------------------|-------------------|-----------------------|-------------------|------|
| GTG<br>Val        | GTG<br>Val<br>770 | CCC<br>Pro        | ATC<br>Ile        | CTG<br>Leu        | GTC<br>Val        | GAG<br>Glu<br>775 | CTG<br>Leu        | GAC<br>Asp        | GGC<br>Gly        | GAC<br>Asp         | GTA<br>Val<br>780   | AAC<br>Asn        | GGC<br>Gly        | CAC<br>His            | AAG<br>Lys        | 2352 |
| TTC<br>Phe<br>785 | AGC<br>Ser        | GTG<br>Val        | TCC<br>Ser        | GGC<br>Gly        | GAG<br>Glu<br>790 | GGC<br>Gly        | GAG<br>Glu        | GGC<br>Gly        | GAT<br>Asp        | GCC<br>Ala<br>795  | ACC<br>Thr          | TAC<br>Tyr        | GGC<br>Gly        | AAG<br>Lys            | CTG<br>Leu<br>800 | 2400 |
| ACC<br>Thr        | CTG<br>Leu        | AAG<br>Lys        | TTC<br>Phe        | ATC<br>Ile<br>805 | TGC<br>Cys        | ACC<br>Thr        | ACC<br>Thr        | GGC<br>Gly        | AAG<br>Lys<br>810 | CTG<br>Leu         | CCC<br>Pro          | GTG<br>Val        | CCC<br>Pro        | TGG<br>Trp<br>815     | CCC<br>Pro        | 2448 |
| ACC<br>Thr        | CTC<br>Leu        | GTG<br>Val        | ACC<br>Thr<br>820 | ACC<br>Thr        | CTG<br>Leu        | ACC<br>Thr        | TAC<br>Tyr        | GGC<br>Gly<br>825 | GTG<br>Val        | CAG<br>Gln         | TGC<br>Cys          | TTC<br>Phe        | AGC<br>Ser<br>830 | CGC<br>Arg            | TAC<br>Tyr        | 2496 |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                    |                     |                   | ATG<br>Met        |                       |                   | 2544 |
| GGC<br>Gly        | TAC<br>Tyr<br>850 | Val               | CAG<br>Gln        | GAG<br>Glu        | CGC               | ACC<br>Thr<br>855 | ATC               | TTC<br>Phe        | TTC<br>Phe        | <b>AA</b> G<br>Lys | GAC<br>Asp<br>860   | GAC<br>Asp        | GGC<br>Gly        | AAC<br>Asn            | TAC<br>Tyr        | 2592 |
| AAG<br>Lys<br>865 | ACC<br>Thr        | CGC<br>Arg        | GCC<br>Ala        | GAG<br>Glu        | GTG<br>Val<br>870 | AAG<br>Lys        | TTC<br>Phe        | GAG<br>Glu        | GGC<br>Gly        | GAC<br>Asp<br>875  | Thr                 | CTG               | GTG<br>Val        | AAC<br>Asn            | CGC<br>Arg<br>880 | 2640 |
| ATC<br>Ile        | GAG<br>Glu        | CTG<br>Leu        | AAG<br>Lys        | GGC<br>Gly<br>885 | Ile               | GAC<br>Asp        | TTC               | AAG<br>Lys        | GAG<br>Glu<br>890 | Asp                | GGC<br>Gly          | AAC<br>Asr        | ATC               | CTG<br>Leu<br>895     | Gly               | 2688 |
| CAC<br>His        | AAG<br>Lys        | CTG<br>Leu        | GAG<br>Glu<br>900 | Tyr               | AAC<br>Asn        | TAC<br>Tyr        | AAC<br>Asn        | AGC<br>Ser<br>905 | His               | AAC<br>Asr         | GTC<br>Val          | TAT<br>Tyr        | 11e               | Met                   | GCC<br>Ala        | 2736 |
| GAC<br>Asp        | Lys               | Glr               | Lys               | Asn               | GGC<br>Gly        | Ile               | Lys               | GTG<br>Val        | AAC<br>Asn        | TTC                | AAC<br>Lys          | 925               | e Arc             | CAC<br>His            | AAC<br>Asn        | 2784 |
| ATC<br>Ile        | GAG<br>Glu<br>930 | Asp               | GGC<br>Gly        | AGC<br>Ser        | GTG<br>Val        | Gln<br>935        | Lei               | GCC<br>Ala        | GAC<br>Asp        | CAC<br>His         | TAC<br>5 Ty:<br>940 | Glr               | G CAC             | AAC<br>Asn            | ACC<br>Thr        | 2832 |
| CCC<br>Pro<br>945 | Ile               | GGC<br>Gly        | GAC<br>Asp        | GGC<br>G1y        | CCC<br>Pro<br>950 | Val               | CTO<br>Let        | CTC<br>Leu        | CCC<br>Pro        | GA6<br>Asj<br>95   | p Ası               | C CAG             | ТА(<br>5 Ту)      | CTC                   | AGC<br>Ser<br>960 | 2880 |
| ACC<br>Thr        | CAC<br>Glr        | TCC<br>Sei        | GCC<br>Ala        | CTC<br>Lev<br>969 | ı Ser             | AAA<br>Lys        | GA(               | CCC<br>Pro        | AAC<br>Asr<br>970 | ı Gl               | G AAG<br>u Ly:      | G CG<br>s Ar      | C GA'<br>g Ası    | r CAC<br>P His<br>975 | ATG<br>Met        | 2928 |
| GTC               | CTC               | G CT              | G GAC             | TT                | GT                | ACC               | GC                | C GC(             | GGC               | TA E               | C AC'               | т ст              | c GG              | YEA C                 | G GAC             | 2976 |

Val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp 980 985 990

GAG CTG TAC AAG TAA Glu Leu Tyr Lys 995 2991

## (2) INFORMATION FOR SEQ ID NO:123:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 996 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:123:

Met Glu Arg Pro Pro Gly Leu Arg Pro Gly Ala Gly Gly Pro Trp Glu 10 5 Met Arg Glu Arg Leu Gly Thr Gly Gly Phe Gly Asn Val Cys Leu Tyr 20 25 Gln His Arg Glu Leu Asp Leu Lys Ile Ala Ile Lys Ser Cys Arg Leu 40 Glu Leu Ser Thr Lys Asn Arg Glu Arg Trp Cys His Glu Ile Gln Ile 60 55 Met Lys Lys Leu Asn His Ala Asn Val Val Lys Ala Cys Asp Val Pro 75 70 Glu Glu Leu Asn Ile Leu Ile His Asp Val Pro Leu Leu Ala Met Glu 90 85 Tyr Cys Ser Gly Gly Asp Leu Arg Lys Leu Leu Asn Lys Pro Glu Asn 105 110 100 Cys Cys Gly Leu Lys Glu Ser Gln Ile Leu Ser Leu Leu Ser Asp Ile 120 125 115 Gly Ser Gly Ile Arg Tyr Leu His Glu Asn Lys Ile Ile His Arg Asp 135 130 Leu Lys Pro Glu Asn Ile Val Leu Gln Asp Val Gly Gly Lys Ile Ile 155 150 145 His Lys Ile Ile Asp Leu Gly Tyr Ala Lys Asp Val Asp Gln Gly Ser 165 170 175 Leu Cys Thr Ser Phe Val Gly Thr Leu Gln Tyr Leu Ala Pro Glu Leu 185 190 180 Phe Glu Asn Lys Pro Tyr Thr Ala Thr Val Asp Tyr Trp Ser Phe Gly 200 205 Thr Met Val Phe Glu Cys Ile Ala Gly Tyr Arg Pro Phe Leu His His 220 215 Leu Gln Pro Phe Thr Trp His Glu Lys Ile Lys Lys Lys Asp Pro Lys 230 235 Cys Ile Phe Ala Cys Glu Glu Met Ser Gly Glu Val Arg Phe Ser Ser 255 250 245 His Leu Pro Gln Pro Asn Ser Leu Cys Ser Leu Ile Val Glu Pro Met 260 265 Glu Asn Trp Leu Gln Leu Met Leu Asn Trp Asp Pro Gln Gln Arg Gly 280 285 Gly Pro Val Asp Leu Thr Leu Lys Gln Pro Arg Cys Phe Val Leu Met

|            | 290   |            |       |            |            | 295  |            |      |            |            | 300        |            |          |            |            |
|------------|-------|------------|-------|------------|------------|------|------------|------|------------|------------|------------|------------|----------|------------|------------|
| Asp<br>305 | His   | Ile        | Leu   | Asn        | Leu<br>310 | Lys  | Ile        | Val  | His        | Ile<br>315 | Leu        | Asn        | Met      | Thr        | Ser<br>320 |
| Ala        | Lys   | Ile        | Ile   | Ser<br>325 | Phe        | Leu  | Leu        | Pro  | Pro<br>330 | Asp        | Glu        | Ser        | Leu      | His<br>335 | Ser        |
|            |       |            | 340   |            |            |      |            | 345  |            |            | Asn        |            | 350      |            |            |
| Glu        | Leu   | Leu<br>355 | Ser   | Glu        | Thr        | Gly  | Ile<br>360 | Ser  | Leu        | Asp        | Pro        | Arg<br>365 | Lys      | Pro        | Ala        |
|            | 370   |            |       |            |            | 375  |            |      |            |            | Asp<br>380 |            |          |            |            |
| 385        |       |            |       |            | 390        |      |            |      |            | 395        | Gly        |            |          |            | 400        |
|            |       |            |       | 405        |            |      |            |      | 410        |            | Gln        |            |          | 415        |            |
|            |       |            | 420   |            |            |      |            | 425  |            |            | Ala        |            | 430      |            |            |
|            |       | 435        |       |            |            |      | 440        |      |            |            | Leu        | 445        |          |            |            |
|            | 450   |            |       |            |            | 455  |            |      |            |            | Ala<br>460 |            |          |            |            |
| Met<br>465 |       | Asn        | Thr   | Leu        | Ile<br>470 | Ser  | Ala        | Ser  | Gln        | Gln<br>475 | Leu        | Lys        | Ala      | Lys        | Leu<br>480 |
| Glu        | Phe   | Phe        | His   | Lys<br>485 | Ser        | Ile  | Gln        | Leu  | Asp<br>490 | Leu        | Glu        | Arg        | Tyr      | Ser<br>495 | Glu        |
|            |       |            | 500   |            |            |      |            | 505  |            |            | Leu        |            | 510      |            |            |
|            |       | 515        |       |            |            |      | 520        |      |            |            | Val        | 525        |          |            |            |
| -          | 530   |            |       |            |            | 535  |            |      |            |            | Glu<br>540 |            |          |            |            |
| 545        | ,     |            |       |            | 550        |      |            |      |            | 555        |            |            |          |            | 560        |
|            |       |            |       | 565        | <u>,</u>   |      |            |      | 570        | )          |            |            |          | 575        |            |
|            |       |            | 580   |            |            |      |            | 585  | ,          |            |            |            | 590      | )          | His        |
|            |       | 595        | 5     |            |            |      | 600        | )    |            |            |            | 605        | <b>.</b> |            | Leu        |
|            | 610   | }          |       |            |            | 615  | <b>,</b>   |      |            |            | 620        |            |          |            | Lys        |
| Va]<br>629 |       | va]        |       |            | Ser<br>630 |      |            |      | GIU        | 635        |            | ASI        | 1 1111   | . vai      | Met<br>640 |
| Phe        | e Met |            |       | 645        | 5          |      |            |      | 650        | )          |            |            |          | 655        |            |
|            |       |            | 660   | )          |            |      |            | 665  | 5          |            |            |            | 670      | )          | ı Glu      |
|            |       | 675        | 5     |            |            |      | 680        | )    |            |            |            | 689        | 5        |            | Ala        |
|            | 690   | )          |       |            |            | 695  | 5          |      |            |            | 700        | )          |          |            | / Glu      |
| 70         | 5     |            |       |            | 710        | )    |            |      |            | 715        | 5          |            |          |            | 720        |
|            |       |            |       | 72         | 5          |      |            |      | 730        | 0          |            |            |          | 73         |            |
|            |       |            | 740   | C          |            |      |            | 74   | 5          |            |            |            | 75       | 0          | g Asp      |
| Pr         | o Pro | o Vai      | l Ala | a Th       | r Me       | t Va | l Se       | r Ly | s Gl       | y Gl       | u Gl       | ı Le       | u Ph     | e Th       | r Gly      |

760 755 Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys 775 780 Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu 790 795 Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro 815 810 805 Thr Leu Val Thr Thr Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr 825 Pro Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu 840 Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr 855 860 Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg 870 875 Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly 895 890 885 His Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala 910 900 905 Asp Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn 920 925 Ile Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr 935 940 Pro Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser 950 955 Thr Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met 965 970 Val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp 990 980 985 Glu Leu Tyr Lys 995

- (2) INFORMATION FOR SEQ ID NO:124:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1908 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
  - (A) NAME/KEY: Coding Sequence
  - (B) LOCATION: 1...1905
  - (D) OTHER INFORMATION:
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:124:

|     |     |     |     |     |     |     |     | TTC<br>Phe       |     |     |     |     | Pro |     |     | 48  |
|-----|-----|-----|-----|-----|-----|-----|-----|------------------|-----|-----|-----|-----|-----|-----|-----|-----|
|     |     |     |     |     |     |     |     | GGC<br>Gly<br>25 |     |     |     | Ser |     |     |     | 96  |
| GAG | GGC | GAG | GGC | GAT | GCC | ACC | TAC | GGC              | AAG | CTG | ACC | CTG | AAG | TTC | ATC | 144 |

| Glu               | Gly               | Glu<br>35         | Gly        | Asp               | Ala               | Thr               | Tyr<br>40  | Gly        | Lys        | Leu               | Thr               | Leu<br>45         | Lys        | Phe        | Ile               |     |
|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|------------|------------|------------|-------------------|-------------------|-------------------|------------|------------|-------------------|-----|
| TGC<br>Cys        |                   |                   |            |                   |                   |                   |            |            |            |                   |                   |                   |            |            |                   | 192 |
|                   |                   |                   |            |                   |                   |                   |            |            |            |                   |                   | GAC<br>Asp        |            |            |                   | 240 |
|                   |                   |                   |            |                   |                   |                   |            |            |            |                   |                   | TAC<br>Tyr        |            |            |                   | 288 |
|                   |                   |                   |            |                   |                   |                   |            |            |            |                   |                   | ACC<br>Thr        |            |            |                   | 336 |
|                   |                   |                   |            |                   |                   |                   |            |            |            |                   |                   | GAG<br>Glu<br>125 |            |            |                   | 384 |
|                   |                   |                   |            |                   |                   |                   |            |            |            |                   |                   | AAG<br>Lys        |            |            |                   | 432 |
|                   |                   |                   |            |                   |                   |                   |            |            |            |                   | Asp               | AAG<br>Lys        |            |            |                   | 480 |
|                   |                   |                   |            |                   |                   |                   |            |            |            | Asn               |                   | GAG<br>Glu        |            |            | Ser               | 528 |
|                   |                   |                   |            | Asp               |                   |                   |            |            | Asn        |                   |                   |                   |            | Asp        | GGC               | 576 |
| CCC<br>Pro        | GTG<br>Val        | CTG<br>Leu<br>195 | Leu        | CCC<br>Pro        | GAC<br>Asp        | AAC<br>Asn        | CAC<br>His | Tyr        | CTG<br>Leu | AGC<br>Ser        | ACC<br>Thr        | CAG<br>Gln<br>205 | Ser        | GCC<br>Ala | CTG<br>Leu        | 624 |
| AGC<br>Ser        | AAA<br>Lys<br>210 | Asp               | CCC        | : AAC<br>Asn      | GAG<br>Glu        | AAG<br>Lys<br>215 | Arg        | GAT<br>Asp | CAC<br>His | ATC<br>Met        | GTC<br>Val<br>220 | Leu               | CTC        | G GAC      | TTC<br>Phe        | 672 |
| GTG<br>Val<br>225 | Thr               | GCC<br>Ala        | GCC<br>Ala | GGG<br>Gly        | ATC<br>11e<br>230 | Thr               | CTC<br>Lev | GGC<br>Gly | ATC        | GAC<br>Asp<br>235 | o Glu             | CTC               | ТАС<br>ТУ1 | AAC<br>Lys | TCC<br>Ser<br>240 | 720 |
| GGA<br>Gly        | CTC<br>Lev        | AGA<br>Arg        | TC1        | CGA<br>Arg<br>245 | Ala               | CAA<br>Glr        | GCT<br>Ala | TCC<br>Ser | ATC<br>Met | : Sei             | GAC               | G ACC             | GTY<br>Vai | 25!        | ATG<br>Met        | 768 |
|                   |                   |                   |            | l Ile             |                   |                   |            |            | g Ala      |                   |                   |                   |            | и Ту       | r GAT<br>r Asp    | 816 |

| TAD<br>qzA        | GGC<br>Gly          | AAC<br>Asn<br>275   | AAG<br>Lys        | CGA<br>Arg          | TGG<br>Trp            | Leu                 | CCT<br>Pro<br>280 | GCT<br>Ala            | GGC<br>Gly                 | ACG<br>Thr           | GGT<br>Gly            | CCC<br>Pro<br>285     | CAG<br>Gln        | GCC<br>Ala            | TTC<br>Phe            | 864  |
|-------------------|---------------------|---------------------|-------------------|---------------------|-----------------------|---------------------|-------------------|-----------------------|----------------------------|----------------------|-----------------------|-----------------------|-------------------|-----------------------|-----------------------|------|
| AGC<br>Ser        | CGC<br>Arg<br>290   | GTC<br>Val          | CAG<br>Gln        | ATC<br>Ile          | TAC<br>Tyr            | CAC<br>His<br>295   | AAC<br>Asn        | CCC<br>Pro            | ACG<br>Thr                 | GCC<br>Ala           | AAT<br>Asn<br>300     | TCC<br>Ser            | TTT<br>Phe        | CGC<br>Arg            | GTC<br>Val            | 912  |
| GTG<br>Val<br>305 | GGC<br>Gly          | CGG<br>Arg          | AAG<br>Lys        | ATG<br>Met          | CAG<br>Gln<br>310     | CCC<br>Pro          | GAC<br>Asp        | CAG<br>Gln            | CAG<br>Gln                 | GTG<br>Val<br>315    | GTC<br>Val            | ATC<br>Ile            | AAC<br>Asn        | TGT<br>Cys            | GCC<br>Ala<br>320     | 960  |
| ATC<br>Ile        | GTC<br>Val          | CGG<br>Arg          | GGT<br>Gly        | GTC<br>Val<br>325   | AAG<br>Lys            | TAT<br>Tyr          | AAC<br>Asn        | CAG<br>Gln            | GCC<br>Ala<br>330          | ACC<br>Thr           | CCC<br>Pro            | AAC<br>Asn            | TTC<br>Phe        | CAT<br>His<br>335     | CAG<br>Gln            | 1008 |
| TGG<br>Trp        | CGC<br>Arg          | GAC<br>Asp          | GCT<br>Ala<br>340 | CGC<br>Arg          | CAG<br>Gln            | GTC<br>Val          | TGG<br>Trp        | GGC<br>Gly<br>345     | CTC<br>Leu                 | AAC<br>Asn           | TTC<br>Phe            | GGC<br>Gly            | AGC<br>Ser<br>350 | Lys                   | GAG<br>Glu            | 1056 |
| GAT<br>Asp        | GCG<br>Ala          | GCC<br>Ala<br>355   | CAG<br>Gln        | TTT<br>Phe          | GCC<br>Ala            | GCC<br>Ala          | GGC<br>Gly<br>360 | Met                   | GCC<br>Ala                 | AGT<br>Ser           | GCC<br>Ala            | CTA<br>Leu<br>365     | Glu               | GCG<br>Ala            | TTG<br>Leu            | 1104 |
| GAA<br>Glu        | GGA<br>Gly<br>370   | Gly                 | GGG<br>Gly        | CCC<br>Pro          | CCT<br>Pro            | CCA<br>Pro<br>375   | CCC               | CCA<br>Pro            | GCA<br>Ala                 | CTT                  | CCC<br>Pro<br>380     | Thr                   | TGG<br>Trp        | TCG<br>Ser            | GTC<br>Val            | 1152 |
| CCG<br>Pro<br>385 | Asn                 | GGC<br>Gly          | CCC<br>Pro        | TCC<br>Ser          | CCG<br>Pro<br>390     | Glu                 | GAG<br>Glu        | GTG<br>Val            | GAG<br>Glu                 | Gln<br>395           | Gln                   | AAA<br>Lys            | AGG<br>Arg        | G CAC                 | CAG<br>Gln<br>400     | 1200 |
| CCC               | GGC<br>Gly          | CCG<br>Pro          | TCG<br>Ser        | GAG<br>Glu<br>405   | His                   | ATA<br>Ile          | GAC<br>Glu        | G CGC                 | CGG<br>Arg<br>410          | Val                  | TCC<br>Ser            | AAT<br>Asr            | GCA<br>n Alá      | A GGA<br>A Gly<br>415 | A GGC<br>/ Gly        | 1248 |
| CCA<br>Pro        | CCI<br>Pro          | GCI<br>Ala          | CCC<br>Pro<br>420 | Pro                 | GCT<br>Ala            | GGG<br>Gly          | GGT<br>Gly        | r CCA<br>/ Pro<br>425 | Pro                        | CCA<br>Pro           | A CCA                 | A CCA                 | 430               | y Pro                 | r CCC<br>p Pro        | 1296 |
| CCI<br>Pro        | CCI<br>Pro          | r CCA<br>Pro<br>435 | Gly               | CCC<br>Pro          | Pro                   | Pro                 | Pro               | C CCA<br>D Pro        | Gl3                        | , Te                 | ı Pro                 | C CC'<br>D Pro<br>445 | Se:               | G GGG<br>r Gl         | G GTC<br>y Val        | 1344 |
| CC;<br>Pro        | A GCT<br>Ala<br>450 | a Ala               | A GCC<br>a Ala    | G CAC               | GG?<br>Gly            | A GCA<br>Ala<br>455 | Gly               | g GG/<br>y Gl         | A GG/<br>/ Gl <sub>2</sub> | A CC                 | A CCC<br>O Pro<br>460 | o Pro                 | T GC.             | A CC                  | C CCT<br>o Pro        | 1392 |
| CT0<br>Lev<br>465 | ı Pro               | G GCZ<br>o Ala      | A GCA<br>a Ala    | A CAC               | G GGG<br>1 Gly<br>470 | y Pro               | GG'<br>Gly        | r GG<br>y Gly         | r GG(<br>y Gly             | G GG.<br>y G1;<br>47 | y A1                  | T GG<br>a Gl          | g GC<br>y Al      | C CC<br>a Pr          | A GGC<br>o Gly<br>480 | 1440 |
| CT(<br>Let        | G GCC               | C GC.<br>a Al       | A GC'<br>a Ala    | r AT<br>a Ile<br>48 | e Ala                 | r GG/<br>a Gly      | A GC              | C AA<br>a Ly:         | A CTO<br>s Lev<br>49       | u Ar                 | G AA.<br>g Ly         | A GT<br>s Va          | C AG<br>1 Se      | C AA<br>r Ly<br>49    | G CAG<br>s Gln        | 1488 |
| GA(               | G GA                | G GC                | C TC              | A. GGK              | G GG                  | G CC                | CAC               | A GC                  | c cc                       | C AA                 | A GC                  | T GA                  | G AG              | T GG                  | T CGA                 | 1536 |

| Glu | Glu | Ala | Ser<br>500 | Gly | Gly | Pro        | Thr | Ala<br>505 | Pro | Lys | Ala | Glu | Ser<br>510 | Gly               | Arg |      |
|-----|-----|-----|------------|-----|-----|------------|-----|------------|-----|-----|-----|-----|------------|-------------------|-----|------|
|     |     |     | _          |     |     |            |     |            |     |     |     |     |            | GCC<br>Ala        |     | 1584 |
|     |     |     |            |     |     |            |     |            |     |     |     |     |            | GAA<br>Glu        |     | 1632 |
|     |     |     |            |     |     |            |     |            |     |     |     |     |            | GAA<br>Glu        |     | 1680 |
|     |     |     |            |     |     |            |     |            |     |     |     |     |            | ATG<br>Met<br>575 |     | 1728 |
|     |     |     |            |     |     |            |     |            |     |     |     |     |            | CCC<br>Pro        |     | 1776 |
|     |     |     |            |     |     |            |     |            |     |     |     |     |            | CTG<br>Leu        |     | 1824 |
|     |     |     |            |     |     |            |     |            |     |     |     |     |            | GAA<br>Glu        |     | 1872 |
|     |     |     |            |     |     | AAG<br>Lys |     |            | -   |     | TGA |     |            |                   |     | 1908 |

## (2) INFORMATION FOR SEQ ID NO:125:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 635 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:125:

 Met
 Val
 Ser
 Lys
 Gly
 Glu
 Glu
 Leu
 Phe
 Thr
 Gly
 Val
 Pro
 Ile
 Leu

 Val
 Glu
 Leu
 Asp
 Gly
 Asp
 Gly
 His
 Lys
 Phe
 Ser
 Val
 Ser
 Gly

 Glu
 Gly
 Gly
 Asp
 Ala
 Thr
 Tyr
 Gly
 Leu
 Thr
 Leu
 Leu
 Thr
 Ile
 Lys
 Phe
 Ile
 Ile
 Leu
 Ile
 Leu
 Ile
 Ile

| 65            |        |             | 7            | 70           |      |            |            |            | 75           |            |            |            |            | 80           |
|---------------|--------|-------------|--------------|--------------|------|------------|------------|------------|--------------|------------|------------|------------|------------|--------------|
| Gln His       |        |             | 85           |              |      |            |            | 90         |              |            |            |            | 95         |              |
| Arg Thr       |        | 100         |              |              |      |            | 105        |            |              |            |            | 110        |            |              |
| Val Lys       | 115    |             |              |              |      | 120        |            |            |              |            | 125        |            |            |              |
| Ile Ası       | )      |             |              | -            | 135  |            |            |            |              | 140        |            |            |            |              |
| Asn Ty        | r Asn  | Ser         |              | Asn \<br>150 | Val  | Tyr        | Ile        | Met        | A1a<br>155   | Asp        | Lys        | GIn        | гуѕ        | 160          |
| 145<br>Gly Il | e Lys  | Val         |              |              | Lys  | Ile        | Arg        | His<br>170 |              | Ile        | Glu        | Asp        | Gly<br>175 | Ser          |
| Val Gl        |        | 180         |              |              |      |            | 185        |            |              |            |            | 190        |            |              |
| Pro Va        | 195    | ,           |              |              |      | 200        |            |            |              |            | 205        |            |            |              |
| Ser Ly<br>21  | 0      |             |              |              | 215  |            |            |            |              | 220        |            |            |            |              |
| Val Th        | r Ala  | Ala         | Gly          | 11e<br>230   | Thr  | Leu        | Gly        | Met        | . Asp<br>235 | GIU        | Leu        | ТУГ        | БĀЗ        | 240          |
| Gly Le        | u Arg  | g Ser       |              | Ala          | Gln  | Ala        | Ser        | Met<br>250 | Ser          | Glu        | Thr        | Val        | 11e<br>255 | Met          |
| Ser Gl        | u Thi  | val<br>260  |              | Cys          | Ser  | Ser        | Arg<br>265 | Ala        |              | · Val      | Met        | Leu<br>270 | Тут        |              |
| Asp Gl        | Ly Asi | n Lys       | Arg          | Trp          | Leu  | Pro<br>280 |            | Gl7        | / Thr        | Gly        | Prc<br>285 | Gln        | Ala        | Phe          |
| Ser A         | rg Va  | l Gln       |              |              | 295  |            |            |            |              | 300        | )          |            |            |              |
| Val G         | ly Ar  | g Lys       | Met          |              | Pro  | Asp        | Glr        | Glr        | n Va.<br>31: | l Val      | . Il€      | e Asr      | СУ         | 320          |
| 305<br>Ile Va | al Ar  | g Gly       | . Val        | 310<br>Lys   | Tyr  | Asn        | Glr        | Ala        |              |            | ) Asr      | n Phe      | His        | s Gln        |
| Trp A         |        |             | 325          |              |      |            |            | 33         | 0            |            |            |            | 33         | )            |
|               |        | 340         | )            |              |      |            | 345        | 5          |              |            |            | 350        | )          |              |
| Asp A         | 35     | 5           |              |              |      | 360        | )          |            |              |            | 36         | 5          |            |              |
| Glu G<br>3    | 70     |             |              |              | 375  | 5          |            |            |              | 38         | 0          |            |            |              |
|               | sn Gl  | y Pro       | Ser          | Pro<br>390   |      | ı Glı      | ı Va       | l Gl       | u G1<br>39   | n Gl:<br>5 | n Ly       | s Ar       | g Gl       | n Gln<br>400 |
| 385<br>Pro G  | ly Pr  | o Se        | c Glu        | His          | Ile  | ≘ Glı      | u Ar       | g Ar<br>41 | g Va         |            | r As       | n Al       | a Gl<br>41 | y Gly<br>5   |
| Pro P         | ro Al  | a Pro       | o Pro        | Ala          | Gl   |            |            | o Pr       |              |            |            | o Gl<br>43 | y Pr<br>O  | o Pro        |
| Pro F         |        | co Gl;      | y Pro        | Pro          | Pro  | o Pr       | o Pr       |            | y Le         | eu Pr      | o Pr<br>44 | o Se<br>5  | r Gl       | y Val        |
| 4             | la A   | la Al       |              |              | 45   | 5          |            |            |              | 46         | 0          |            |            | o Pro        |
| Leu E         | Pro A  |             |              | 470          | )    |            |            |            | 47           | 75         |            |            |            | 60 Gly       |
| Leu A         | Ala A  | la Al       | a Ile<br>489 |              | G1;  | y Al       | a Ly       | s Le       | eu Ar<br>90  | g Ly       | 's Va      | al S∈      | r Ly<br>49 | /s Gln<br>95 |
|               |        | 50          | r Gly        | y Gly        |      |            | 50         | a Pi       | ro L         |            |            | 51         | er G:      | ly Arg       |
|               | 5      | ly Gl<br>15 | y Gl         |              |      | 52         | 20         |            |              |            | 52         | 25         |            | la Arg       |
| Arg A         | Arg L  | ys Al       | a Th         | r Gli        | n Va | l Gl       | y Gl       | u L        | ys T         | hr Pi      | co L       | ys As      | p G        | lu Ser       |

| 530                                                                                                                                                             |                                                                                                                                                     | 535                                                                                                                                                                                                                                                                 |                                                                                                   |                                                                                                      | 540                                                                                                  |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------|
| Ala Asn Gln G                                                                                                                                                   |                                                                                                                                                     | o Glu Ala                                                                                                                                                                                                                                                           | Arg V                                                                                             | al Pro<br>555                                                                                        | Ala G                                                                                                | ln Ser                                                        | Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ser<br>560                                                                     |                         |
| 545<br>Val Arg Arg P                                                                                                                                            | 55)<br>ro Trp Gl                                                                                                                                    | u<br>Lys Asn                                                                                                                                                                                                                                                        | Ser T                                                                                             | hr Thr                                                                                               | Leu P                                                                                                | ro Arg                                                        | g Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                |                         |
| Ser Ser Ser S                                                                                                                                                   | 565                                                                                                                                                 |                                                                                                                                                                                                                                                                     | 5                                                                                                 | 70                                                                                                   |                                                                                                      |                                                               | 575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                |                         |
| 5                                                                                                                                                               | 80                                                                                                                                                  |                                                                                                                                                                                                                                                                     | 585                                                                                               |                                                                                                      |                                                                                                      | 590                                                           | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |                         |
| Ser Ser Asp T                                                                                                                                                   |                                                                                                                                                     | 600                                                                                                                                                                                                                                                                 | )                                                                                                 |                                                                                                      | 6                                                                                                    | 05                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                         |
| Glu Val Lys L                                                                                                                                                   |                                                                                                                                                     | 615                                                                                                                                                                                                                                                                 |                                                                                                   |                                                                                                      | 620                                                                                                  | le Il                                                         | e Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ala                                                                            |                         |
| Phe Val Gln G<br>625                                                                                                                                            | lu Leu Ar<br>63                                                                                                                                     |                                                                                                                                                                                                                                                                     | g Gly S                                                                                           | Ser Pro<br>635                                                                                       |                                                                                                      |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                         |
| (2)                                                                                                                                                             | INFORMATI                                                                                                                                           | ON FOR S                                                                                                                                                                                                                                                            | EQ ID 1                                                                                           | NO:126:                                                                                              |                                                                                                      |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                         |
|                                                                                                                                                                 | UENCE CHA                                                                                                                                           |                                                                                                                                                                                                                                                                     |                                                                                                   |                                                                                                      |                                                                                                      |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                         |
|                                                                                                                                                                 | LENGTH: 13<br>TYPE: nucl                                                                                                                            |                                                                                                                                                                                                                                                                     | pairs                                                                                             |                                                                                                      |                                                                                                      |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                         |
| (C) :                                                                                                                                                           | STRANDEDNE                                                                                                                                          | ESS: sing                                                                                                                                                                                                                                                           | le                                                                                                |                                                                                                      |                                                                                                      |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                         |
|                                                                                                                                                                 | TOPOLOGY:                                                                                                                                           |                                                                                                                                                                                                                                                                     |                                                                                                   |                                                                                                      |                                                                                                      |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                         |
|                                                                                                                                                                 | DLECULE TY                                                                                                                                          | YPE: cDNA                                                                                                                                                                                                                                                           |                                                                                                   |                                                                                                      |                                                                                                      |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                         |
|                                                                                                                                                                 | NAME/KEY                                                                                                                                            |                                                                                                                                                                                                                                                                     |                                                                                                   | ce                                                                                                   |                                                                                                      |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                         |
|                                                                                                                                                                 | LOCATION<br>OTHER IN                                                                                                                                |                                                                                                                                                                                                                                                                     |                                                                                                   |                                                                                                      |                                                                                                      |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                         |
|                                                                                                                                                                 |                                                                                                                                                     |                                                                                                                                                                                                                                                                     |                                                                                                   |                                                                                                      |                                                                                                      |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                         |
| / C                                                                                                                                                             | בטו זוביאור בי די                                                                                                                                   | ECCRIPTIO                                                                                                                                                                                                                                                           | N SEC                                                                                             | ON CIT                                                                                               | :126:                                                                                                |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                         |
|                                                                                                                                                                 | EQUENCE D                                                                                                                                           |                                                                                                                                                                                                                                                                     |                                                                                                   |                                                                                                      |                                                                                                      | CTY - C                                                       | ርር <i>እ</i> ሞየ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r CTG                                                                          | 48                      |
| MENC CITY &CCC                                                                                                                                                  | ANG GGC G                                                                                                                                           | AG GAG CI                                                                                                                                                                                                                                                           | G TTC                                                                                             | ACC GG                                                                                               | G GTG                                                                                                | GTG C                                                         | ro II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C CTG<br>e Leu                                                                 | 48                      |
|                                                                                                                                                                 | ANG GGC G                                                                                                                                           | AG GAG CI                                                                                                                                                                                                                                                           | G TTC                                                                                             | ACC GG                                                                                               | G GTG                                                                                                | GTG C                                                         | CC ATO<br>ro Ilo<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C CTG<br>e Leu                                                                 | 48                      |
| ATG GTG AGC Met Val Ser 1                                                                                                                                       | AAG GGC G<br>Lys Gly G<br>5<br>GAC GGC G                                                                                                            | AG GAG CT<br>lu Glu Le                                                                                                                                                                                                                                              | TTC Phe AC GGC                                                                                    | ACC GG<br>Thr Gl<br>10                                                                               | G GTG y Val                                                                                          | AGC G                                                         | TG TC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c GGC                                                                          | 48<br>96                |
| ATG GTG AGC<br>Met Val Ser<br>1                                                                                                                                 | AAG GGC G<br>Lys Gly G<br>5<br>GAC GGC G                                                                                                            | AG GAG CT<br>lu Glu Le                                                                                                                                                                                                                                              | TTC Phe AC GGC                                                                                    | ACC GG<br>Thr Gl<br>10                                                                               | G GTG y Val                                                                                          | AGC G<br>Ser V                                                | TG TC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c GGC                                                                          |                         |
| ATG GTG AGC Met Val Ser 1 GTC GAG CTG Val Glu Leu                                                                                                               | AAG GGC G<br>Lys Gly G<br>5<br>GAC GGC G<br>Asp Gly A<br>20                                                                                         | AG GAG CT<br>lu Glu Le<br>AC GTA AA<br>ASP Val AS                                                                                                                                                                                                                   | ng TTC<br>eu Phe<br>AC GGC<br>sn Gly<br>25<br>AC GGC                                              | ACC GG Thr Gl 10 CAC AA His Ly                                                                       | G GTG y Val  G TTC rs Phe                                                                            | AGC G<br>Ser V<br>3                                           | TG TCG  TG TCG  TAG TCG  TAG TTG  TAG TTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c GGC<br>r Gly                                                                 |                         |
| ATG GTG AGC Met Val Ser 1 GTC GAG CTG Val Glu Leu GAG GGC GAG Glu Gly Glu                                                                                       | AAG GGC G<br>Lys Gly G<br>5<br>GAC GGC G<br>Asp Gly A<br>20                                                                                         | AG GAG CT<br>lu Glu Le<br>AC GTA AA<br>ASP VAI AS                                                                                                                                                                                                                   | AC GGC Shall GGC GGC GGC GGC GGC GGC GGC GGC GGC G                                                | ACC GG Thr Gl 10 CAC AA His Ly                                                                       | G GTG y Val  G TTC rs Phe                                                                            | AGC G<br>Ser V<br>3<br>CTG A<br>Leu L                         | TG TCG  TG TCG  TAG TCG  TAG TTG  TAG TTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c GGC<br>r Gly                                                                 | 96                      |
| ATG GTG AGC Met Val Ser 1 GTC GAG CTG Val Glu Leu GAG GGC GAG Glu Gly Glu 35                                                                                    | AAG GGC G<br>Lys Gly G<br>5<br>GAC GGC G<br>Asp Gly A<br>20<br>GGC GAT G                                                                            | AG GAG CT<br>lu Glu Le<br>AC GTA AA<br>sp Val As<br>GCC ACC TA<br>Ala Thr T                                                                                                                                                                                         | rG TTC<br>eu Phe<br>AC GGC<br>5n Gly<br>25<br>AC GGC<br>yr Gly<br>0                               | ACC GG Thr G1 10 CAC AA His Ly AAG C1 Lys Le                                                         | G GTG y Val  G TTC rs Phe  TG ACC eu Thr                                                             | AGC G<br>Ser V<br>3<br>CTG A<br>Leu I                         | TG TC<br>(al Se<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C GGC<br>r Gly<br>C ATC                                                        | 96<br>144               |
| ATG GTG AGC Met Val Ser 1 GTC GAG CTG Val Glu Leu GAG GGC GAG Glu Gly Glu 35                                                                                    | AAG GGC G<br>Lys Gly G<br>5<br>GAC GGC G<br>Asp Gly A<br>20<br>GGC GAT G<br>Gly Asp A                                                               | AG GAG CT<br>lu Glu Le<br>AC GTA AA<br>SP Val AS<br>SCC ACC TA<br>Ala Thr T                                                                                                                                                                                         | rG TTC eu Phe AC GGC sn Gly 25 AC GGC yr Gly 0                                                    | ACC GG Thr G1 10 CAC AA His Ly AAG C1 Lys Le                                                         | G GTG y Val  G TTC rs Phe rg ACC eu Thr                                                              | AGC G<br>Ser V<br>3<br>CTG A<br>Leu L<br>45                   | TG TC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C GGC r Gly C ATC e Ile                                                        | 96                      |
| ATG GTG AGC Met Val Ser 1 GTC GAG CTG Val Glu Leu GAG GGC GAG Glu Gly Glu 35                                                                                    | AAG GGC G<br>Lys Gly G<br>5<br>GAC GGC G<br>Asp Gly A<br>20<br>GGC GAT G<br>Gly Asp A                                                               | AG GAG CT<br>lu Glu Le<br>AC GTA AA<br>SP Val AS<br>SCC ACC TA<br>Ala Thr T                                                                                                                                                                                         | rG TTC eu Phe AC GGC sn Gly 25 AC GGC yr Gly 0                                                    | ACC GG Thr G1 10 CAC AA His Ly AAG C1 Lys Le                                                         | G GTG y Val  G TTC rs Phe rg ACC eu Thr                                                              | AGC G<br>Ser V<br>3<br>CTG A<br>Leu L<br>45                   | TG TC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C GGC r Gly C ATC e Ile                                                        | 96<br>144               |
| ATG GTG AGC Met Val Ser 1  GTC GAG CTG Val Glu Leu  GAG GGC GAG Glu Gly Glu 35  TGC ACC ACC Cys Thr Thr 50                                                      | AAG GGC G Lys Gly G 5  GAC GGC G Asp Gly A 20  GGC GAT G GGC AAG G Gly Lys I                                                                        | AG GAG CT<br>lu Glu Le<br>AC GTA AA<br>ASP Val AS<br>ACC ACC TA<br>Ala Thr TA<br>ACC CCC G<br>Leu Pro V<br>55                                                                                                                                                       | ng TTC<br>eu Phe<br>AC GGC<br>sn Gly<br>25<br>AC GGC<br>yr Gly<br>0<br>TG CCC<br>al Pro           | ACC GG Thr G1 10 CAC AA His Ly AAG CT Lys Le TGG CC Trp Pr                                           | G GTG y Val  G TTC rs Phe  TG ACC Thr  GC ACC TO Thr  GO ACC TO Thr                                  | AGC G<br>Ser V<br>3<br>CTG A<br>Leu I<br>45<br>CTC C<br>Leu V | TG TC:  TG TC:  AG TT   | C GGC r Gly C ATC e Ile C ACC nr Thr                                           | 96<br>144               |
| ATG GTG AGC Met Val Ser 1  GTC GAG CTG Val Glu Leu  GAG GGC GAG Glu Gly Glu 35  TGC ACC ACC Cys Thr Thr 50  CTG ACC TAC Leu Thr Tyr                             | AAG GGC G Lys Gly G S GAC GGC G Asp Gly A 20 GGC GAT G Gly Asp A GGC AAG C Gly Lys I GGC GTG C Gly Val C                                            | AG GAG CT<br>lu Glu Le<br>AC GTA AA<br>ASP Val AS<br>ACC ACC TA<br>Ala Thr TA<br>ACC CCC G<br>Leu Pro V<br>55                                                                                                                                                       | ng TTC<br>eu Phe<br>AC GGC<br>sn Gly<br>25<br>AC GGC<br>yr Gly<br>0<br>TG CCC<br>al Pro           | ACC GG Thr G1 10 CAC AA His Ly AAG CT Lys Le TGG CC Trp Pr                                           | G GTG y Val  G TTC rs Phe  G ACC eu Thr  GC ACC ro Thr  60  AC CCC yr Pro                            | AGC G<br>Ser V<br>3<br>CTG A<br>Leu I<br>45<br>CTC C<br>Leu V | TG TC:  TG TC:  AG TT   | C GGC r Gly C ATC e Ile C ACC nr Thr                                           | 96<br>144<br>192        |
| ATG GTG AGC Net Val Ser 1  GTC GAG CTG Val Glu Leu  GAG GGC GAG Glu Gly Glu 35  TGC ACC ACC Cys Thr Thr 50  CTG ACC TAC Leu Thr Tyr 65                          | AAG GGC G Lys Gly G 5  GAC GGC G Asp Gly A 20  GGC GAT G Gly Asp A GGC AAG G Gly Lys I GGC GTG G Gly Val G                                          | AG GAG CTIU GIU Le AC GTA AM ASP VAI AS ACC ACC TI AIA THE TI ACC CCC G Leu Pro V 55 CAG TGC T                                                                                                                                                                      | AC GGC Sn Gly 25 AC GGC yr Gly 0 TG CCC al Pro                                                    | ACC GG Thr G1 10  CAC AA His Ly  AAG CT Lys Le  TGG CC Trp Pr  CGC Tr  Arg T                         | G GTG y Val  G TTC rs Phe  G ACC ro Thr  60  AC CCC yr Pro 5                                         | AGC G<br>Ser V<br>3<br>CTG A<br>Leu I<br>45<br>CTC C<br>Leu V | TG TC:  TG TC:  AG TT  LAG TT  LYS Ph  CAC AT  His Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C GGC r Gly C ATC e Ile C ACC nr Thr CG AAG et Lys 80                          | 96<br>144<br>192        |
| ATG GTG AGC Met Val Ser 1  GTC GAG CTG Val Glu Leu  GAG GGC GAG Glu Gly Glu 35  TGC ACC ACC Cys Thr Thr 50  CTG ACC TAC Leu Thr Tyr                             | AAG GGC G Lys Gly G 5  GAC GGC G Asp Gly A 20  GGC GAT G Gly Asp A GGC AAG C Gly Lys I  GGC GTG C Gly Val C TTC TTC Phe Phe :                       | AG GAG CTIU GIU Le AC GTA AM ASP VAI AS ACC ACC TI AIA THE TI AIC CCC G Leu Pro V 55 CAG TGC T GIN Cys P                                                                                                                                                            | AC GGC En Gly 25 AC GGC yr Gly 0 TG CCC al Pro                                                    | ACC GG Thr G1 10  CAC AA His Ly  AAG CT Lys Le  TGG CC Trp Pr  CGC Tr  Arg Tr  7  CCC G Pro G        | G GTG y Val  G TTC rs Phe  G ACC ro Thr  60  AC CCC yr Pro 5                                         | AGC G<br>Ser V<br>3<br>CTG A<br>Leu I<br>45<br>CTC C<br>Leu V | TG TC:  AG TT  A | C GGC r Gly C ATC e Ile C ACC IT Thr C AAG | 96<br>144<br>192<br>240 |
| ATG GTG AGC Net Val Ser 1  GTC GAG CTG Val Glu Leu  GAG GGC GAG Glu Gly Glu 35  TGC ACC ACC Cys Thr Thr 50  CTG ACC TAC Leu Thr Tyr 65  CAG CAC GAC Gln His Asp | AAG GGC G Lys Gly G 5  GAC GGC G Asp Gly A 20  GGC GAT G Gly Asp A GGC AAG G Gly Lys I GGC GTG G Gly Val G TTC TTC TTC TTC TTC TTC TTC TTC TTC 85   | AG GAG CTILL GAG GAG GAG AG AG TCC GAG TCC GAG TCC TG GAG TCC GAG TCC GAG TCC TCG CCC TCG TCC TCC | AC GGC Sn Gly 25 AC GGC yr Gly 0 TG CCC al Pro TC AGC he Ser                                      | ACC GG Thr G1 10  CAC AA His Ly  AAG CT Lys Le  TGG CC Trp Pr  CGC Tr Arg Tr 7  CCC G Pro G          | G GTG y Val  G TTC rs Phe  TG ACC Thr  60  AC CCC yr Pro  5  AA GGC lu Gly                           | AGC G<br>Ser V<br>3<br>CTG A<br>Leu I<br>45<br>CTC C<br>Leu V | TG TC:  AG TT  VS Ph  CAC AT  His Me  GTC CA  Val G:  9!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C GGC r Gly C ATC le Ile C ACC lr Thr CG AAG et Lys 80 AG GAG ln Glu 5         | 96<br>144<br>192<br>240 |
| ATG GTG AGC Net Val Ser 1  GTC GAG CTG Val Glu Leu  GAG GGC GAG Glu Gly Glu 35  TGC ACC ACC Cys Thr Thr 50  CTG ACC TAC Leu Thr Tyr 65                          | AAG GGC G Lys Gly G 5  GAC GGC G Asp Gly A 20  GGC GAT G Gly Asp A GGC AAG G Gly Lys I  GGC GTG G Gly Val G TTC | AG GAG CT Lu Glu Le La                                                                                                                                                                                                          | AC GGC Sn Gly 25 AC GGC Yr Gly 0 TG CCC al Pro TC AGC Ser AGGC ATG AGC AGGC ATG AGC AGGC AGGC AGG | ACC GG Thr G1 10  CAC AA His Ly  AAG CT Lys Le  TGG CC Trp Pr  CGC Tr Arg Tr 7 CCC G Pro G 90  AAC T | G GTG y Val  G TTC rs Phe  TG ACC PU Thr  GC ACC TO Thr  60  AC CCC yr Pro  5  AA GGC lu Gly  AC AAC | AGC G Ser V 3 CTG A Leu I 45 CTC C Leu V GAC C Tyr S          | TG TC:  AG TTC  AG TTT  AG TT  A | C GGC r Gly C ATC le Ile C ACC lr Thr CG AAG et Lys 80 AG GAG ln Glu 5         | 96<br>144<br>192<br>240 |

| GTG<br>Val        | AAG<br>Lys           | TTC<br>Phe<br>115 | GAG<br>Glu        | GGC<br>Gly         | GAC .<br>Asp '        | Thr                   | CTG<br>Leu<br>120 | GTG<br>Val        | AAC<br>Asn          | CGC<br>Arg          | ATC<br>Ile         | GAG<br>Glu<br>125  | CTG<br>Leu          | AAG<br>Lys            | GGC<br>Gly            | 384  |
|-------------------|----------------------|-------------------|-------------------|--------------------|-----------------------|-----------------------|-------------------|-------------------|---------------------|---------------------|--------------------|--------------------|---------------------|-----------------------|-----------------------|------|
| ATC<br>Ile        | GAC<br>Asp<br>130    | TTC<br>Phe        | AAG<br>Lys        | GAG<br>Glu         | Asp                   | GGC<br>Gly<br>135     | AAC<br>Asn        | ATC<br>Ile        | CTG<br>Leu          | GGG<br>Gly          | CAC<br>His<br>140  | AAG<br>Lys         | CTG<br>Leu          | GAG<br>Glu            | TAC<br>Tyr            | 432  |
| AAC<br>Asn<br>145 | TAC<br>Tyr           | AAC<br>Asn        | AGC<br>Ser        | CAC<br>His         | AAC<br>Asn<br>150     | GTC<br>Val            | тат<br>Туг        | ATC<br>Ile        | ATG<br>Met          | GCC<br>Ala<br>155   | GAC<br>Asp         | AAG<br>Lys         | CAG<br>Gln          | AAG<br>Lys            | AAC<br>Asn<br>160     | 480  |
| GGC<br>Gly        | ATC<br>Ile           | AAG<br>Lys        | GTG<br>Val        | AAC<br>Asn<br>165  | TTC<br>Phe            | AAG<br>Lys            | ATC<br>Ile        | CGC<br>Arg        | CAC<br>His<br>170   | AAC<br>Asn          | ATC<br>Ile         | GAG<br>Glu         | GAC<br>Asp          | GGC<br>Gly<br>175     | AGC<br>Ser            | 528  |
| GTG<br>Val        | CAG<br>Gln           | CTC<br>Leu        | GCC<br>Ala<br>180 | GAC<br>Asp         | CAC<br>His            | TAC<br>Tyr            | CAG<br>Gln        | CAG<br>Gln<br>185 | AAC<br>Asn          | ACC<br>Thr          | CCC<br>Pro         | ATC                | GGC<br>Gly<br>190   | GAC<br>Asp            | GGC                   | 576  |
| CCC<br>Pro        | GTG<br>Val           | CTG<br>Leu<br>195 | Leu               | CCC<br>Pro         | GAC<br>Asp            | AAC<br>Asn            | CAC<br>His        | Tyr               | CTG<br>Leu          | AGC<br>Ser          | ACC<br>Thr         | CAG<br>Gln<br>205  | Ser                 | GCC<br>Ala            | CTG                   | 624  |
| AGC<br>Ser        | AAA<br>Lys<br>210    | Asp               | CCC<br>Pro        | AAC<br>Asn         | GAG<br>Glu            | AAG<br>Lys<br>215     | CGC               | GAT<br>Asp        | CAC<br>His          | ATG<br>Met          | GTC<br>Val<br>220  | Lev                | CTG<br>Leu          | GAG<br>Glu            | TTC<br>Phe            | 672  |
| GTC<br>Val<br>225 | . Thr                | GCC<br>Ala        | GCC<br>Ala        | GGG<br>Gly         | ATC<br>Ile<br>230     | Thr                   | CTC               | GGC<br>Gly        | : ATG<br>/ Met      | GAC<br>Asp<br>235   | Glu                | CTC<br>Leu         | TAC<br>Tyr          | AAC<br>Lys            | G TCC<br>Ser<br>240   | 720  |
| GG?<br>Gly        | CTC                  | : AGA             | A TCI<br>J Ser    | CGA<br>Arg         | , Ala                 | CAA<br>Gln            | GCT<br>Ala        | r TCA<br>a Ser    | A ATC<br>Met<br>250 | Ala                 | GCC<br>Ala         | OTA C              | CGC<br>Arg          | E AAC<br>J Lys<br>255 | G AAA<br>S Lys        | 768  |
| CT(<br>Lev        | GTC<br>ı Val         | AT'               | r GT1<br>e Val    | . Gl <sub>3</sub>  | GAT<br>Asp            | GGA<br>Gly            | GCC<br>Ala        | TG:               | s Gly               | A AAC               | F ACA              | A TGO              | TTX<br>s Let<br>270 | ı Lei                 | C ATA<br>u Ile        | 816  |
| GTY<br>Va         | C TTO                | 2 AG              | r Lys             | G GAC              | CAC<br>Glr            | TTC                   | CC<br>Pro         | o Gl              | G GTG<br>u Val      | G TAT               | r GTV              | G CC<br>1 Pr<br>28 | o Thi               | A GT<br>r Va          | G TTT<br>l Phe        | 864  |
| GA:               | G AAG<br>u Asi<br>29 | а Ту              | T GT(<br>r Vai    | G GCZ<br>l Ala     | A GAT<br>a Asp        | 7 ATC<br>5 Ile<br>299 | e Gl              | G GTv<br>u Va     | G GA'<br>1 Asi      | r GG/<br>p Gly      | A AA<br>y Ly<br>30 | s Gl               | G GT<br>n Va        | A GA<br>1 G1          | G TTG<br>u Leu        | 912  |
| GC<br>Al<br>30    | a Le                 | G TG<br>u Tr      | G GAG<br>p As     | C AC.              | A GCT<br>r Ala<br>310 | a Gl                  | g CA<br>y Gl      | G GA<br>n Gl      | A GA'<br>u As       | т та<br>р ту:<br>31 | r As               | T CG<br>p Ar       | C CT                | G AG<br>u Ar          | G CCC<br>g Pro<br>320 |      |
| CT<br>Le          | C TC<br>u Se         | C TA<br>r Ty      | C CC<br>r Pr      | A GA<br>o As<br>32 | p Th                  | C GA                  | T GT<br>p Va      | T AT              | A CT<br>e Le<br>33  | u Me                | G TG<br>t Cy       | T TI               | T TO                | C AT                  | C GAC<br>Le Asp<br>35 | 1008 |
| AG                | e cc                 | T GA              | T AG              | т тт               | A GA                  | A AA                  | C AI              | rc cc             | A GA                | AA A.               | G TO               | G AC               | cc cc               | A G                   | AA GTC                | 1056 |

| Ser | Pro | Asp | Ser<br>340 | Leu | Glu | Asn               | Ile | Pro<br>345 | Glu | Lys | Trp | Thr | Pro<br>350 | Glu | Val |      |
|-----|-----|-----|------------|-----|-----|-------------------|-----|------------|-----|-----|-----|-----|------------|-----|-----|------|
|     |     |     |            |     |     | GTG<br>Val        |     |            |     |     |     |     |            |     |     | 1104 |
|     |     |     |            |     |     | CAC<br>His<br>375 |     |            |     |     |     |     |            |     |     | 1152 |
|     |     |     |            |     |     | GAA<br>Glu        |     |            |     |     |     |     |            |     |     | 1200 |
|     |     |     |            |     |     | GAG<br>Glu        |     |            |     |     |     |     |            |     |     | 1248 |
|     |     |     |            |     |     | GCT<br>Ala        |     |            |     |     | -   |     |            |     |     | 1296 |
|     |     |     |            |     |     | TGC<br>Cys        |     |            |     | TGA |     |     |            |     |     | 1329 |

#### (2) INFORMATION FOR SEQ ID NO:127:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 442 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:127:

Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu 1 10 Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly 20 25 Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile 45 40 Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr 55 60 Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys 70 75 Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu 85 90 Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu 105 Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly 120 Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr

135 130 Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn 150 155 Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser 165 170 Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly 180 185 190 Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu 200 205 Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe 220 210 215 Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys Ser 235 230 Gly Leu Arg Ser Arg Ala Gln Ala Ser Met Ala Ala Ile Arg Lys Lys 250 255 245 Leu Val Ile Val Gly Asp Gly Ala Cys Gly Lys Thr Cys Leu Leu Ile 270 265 260 Val Phe Ser Lys Asp Gln Phe Pro Glu Val Tyr Val Pro Thr Val Phe 2.85 275 280 Glu Asn Tyr Val Ala Asp Ile Glu Val Asp Gly Lys Gln Val Glu Leu 300 295 Ala Leu Trp Asp Thr Ala Gly Gln Glu Asp Tyr Asp Arg Leu Arg Pro 310 315 Leu Ser Tyr Pro Asp Thr Asp Val Ile Leu Met Cys Phe Ser Ile Asp 330 335 325 Ser Pro Asp Ser Leu Glu Asn Ile Pro Glu Lys Trp Thr Pro Glu Val 350 340 345 Lys His Phe Cys Pro Asn Val Pro Ile Ile Leu Val Gly Asn Lys Lys 360 365 355 Asp Leu Arg Asn Asp Glu His Thr Arg Arg Glu Leu Ala Lys Met Lys 380 375 Gln Glu Pro Val Lys Pro Glu Glu Gly Arg Asp Met Ala Asn Arg Ile 395 390 Gly Ala Phe Gly Tyr Met Glu Cys Ser Ala Lys Thr Lys Asp Gly Val 405 410 415 Arg Glu Val Phe Glu Met Ala Thr Arg Ala Ala Leu Gln Ala Arg Arg 425 Gly Lys Lys Lys Ser Gly Cys Leu Val Leu 440

# (2) INFORMATION FOR SEQ ID NO:128:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1140 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
  - (A) NAME/KEY: Coding Sequence
  - (B) LOCATION: 1...1137
  - (D) OTHER INFORMATION:
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:128:

| Met<br>1               | Asp                | His                | Tyr                  | Asp<br>5                          | Ser                | Gln                | Gln               | Thr                | Asn<br>10        | Asp                | Tyr                | Met                           | Gln              | Pro<br>15          | Glu                   |             |
|------------------------|--------------------|--------------------|----------------------|-----------------------------------|--------------------|--------------------|-------------------|--------------------|------------------|--------------------|--------------------|-------------------------------|------------------|--------------------|-----------------------|-------------|
| GAG<br>Glu             | GAC<br>Asp         | TGG<br>Trp         | GAC<br>Asp<br>20     | CGG<br>Arg                        | GAC<br>Asp         | CTG<br>Leu         | CTC<br>Leu        | CTG<br>Leu<br>25   | GAC<br>Asp       | CCG<br>Pro         | GCC<br>Ala         | TGG<br>Trp                    | GAG<br>Glu<br>30 | AAG<br>Lys         | CAG<br>Gln            | 96          |
| CAG<br>Gln             | AGA<br>Arg         | AAG<br>Lys<br>35   | ACA<br>Thr           | TTC<br>Phe                        | ACG<br>Thr         | GCA<br>Ala         | TGG<br>Trp<br>40  | TGT<br>Cys         | AAC<br>Asn       | TCC<br>Ser         | CAC<br>His         | CTC<br>Leu<br>45              | CGG<br>Arg       | AAG<br>Lys         | GCG<br>Ala            | 144         |
| GGG<br>Gly             | ACA<br>Thr<br>50   | CAG<br>Gln         | ATC                  | GAG<br>Glu                        | AAC<br>Asn         | ATC<br>Ile<br>55   | GAA<br>Glu        | GAG<br>Glu         | GAC<br>Asp       | TTC<br>Phe         | CGG<br>Arg<br>60   | GAT<br>Asp                    | GGC<br>Gly       | CTG<br>Leu         | AAG<br>Lys            | 192         |
| CTC<br>Leu<br>65       | ATG<br>Met         | CTG<br>Leu         | CTG<br>Leu           | CTG<br>Leu                        | GAG<br>Glu<br>70   | GTC<br>Val         | ATC<br>Ile        | TCA<br>Ser         | GGT<br>Gly       | GAA<br>Glu<br>75   | CGC<br>Arg         | TTG<br>Leu                    | GCC<br>Ala       | AAG<br>Lys         | CCA<br>Pro<br>80      | 240         |
| GAG<br>Glu             | CGA<br>Arg         | GGC<br>Gly         | AAG<br>Lys           | ATG<br>Met<br>85                  | AGA<br>Arg         | GTG<br>Val         | CAC<br>His        | AAG<br>Lys         | ATC<br>Ile<br>90 | TCC<br>Ser         | AAC<br>Asn         | GTC<br>Val                    | : AAC<br>. Asr   | AAC<br>Lys<br>95   | GCC<br>Ala            | 288         |
| CTG<br>Leu             | GAT<br>Asp         | TTC<br>Phe         | ATA                  | Ala                               | AGC<br>Ser         | AAA<br>Lys         | GGC<br>Gly        | GTC<br>Val         | Lys              | CTG                | GTC<br>Val         | TCC<br>Ser                    | 110              | e Gly              | A GCC<br>/ Ala        | 336         |
| GAA<br>Glu             | GAA<br>Glu         | ATC<br>11e         | val                  | GAT<br>Asp                        | Gly                | AAT<br>Asn         | GTG<br>Val<br>120 | Lys                | ATG<br>Met       | ACC<br>Thr         | CTC                | GGG<br>Gl <sub>y</sub><br>125 | / Me             | G ATO              | TGG<br>Trp            | 384         |
| ACC<br>Thr             | 130                | Ile                | CTC                  | G CGC                             | AGG<br>Arg         | GAT<br>Asp<br>135  | Pro               | CCC<br>Pro         | GTC<br>Val       | GCC<br>Ala         | ACC<br>Thi         | Me                            | G GTV            | G AGG              | C AAC<br>r Lys        | 432         |
| GGC<br>Gly<br>145      | / Glu              | GAC<br>Glu         | G CTC                | TTC<br>1 Phe                      | ACC<br>Thr         | Gl3                | GTC<br>Val        | GTC<br>Val         | CCC<br>Pro       | 110<br>15          | e Lei              | G GT<br>u Va                  | C GA<br>1 G1     | G CT<br>u Le       | G GAG<br>u Ası<br>160 | )           |
| GG(<br>Gl <sub>y</sub> | C GAC              | GTA<br>Val         | AAA<br>laa l         | C GG(<br>n Gl <sub>y</sub><br>165 | / His              | AAC<br>Lys         | TTC<br>Phe        | : AGC<br>e Sei     | GTC<br>r Val     | l Se:              | c GGG<br>r Gl      | C GA<br>y Gl                  | G GG<br>u Gl     | C GA<br>y Gl<br>17 | G GGG<br>u Gly<br>5   | 528<br>Y    |
| GAT<br>Ası             | r GCC<br>p Ala     | C ACC              | C TAC<br>r Ty:<br>18 | r Gly                             | C AAC<br>y Ly:     | G CTO              | G ACC             | CTX<br>r Lev<br>18 | u Lys            | G TT               | C AT<br>e Il       | C TG<br>e Cy                  | C AC<br>s Tr     | ir Th              | c GG<br>r Gl          | C 576<br>Y  |
| AA(<br>Ly:             | G CTY<br>s Le      | G CC<br>u Pr<br>19 | o Va                 | G CCO                             | C TGO              | G CCO              | 20                | r Le               | C GTY<br>u Va    | 3 AC<br>1 Th       | C AC<br>r Th       | C CT<br>r Le                  | u Tì             | C TA               | AC GG<br>Mr Gl        | C 624<br>Y  |
| GTY<br>Va              | G CA<br>1 G1<br>21 | n Cy               | C TT<br>s Ph         | C AG<br>e Se                      | c cg<br>r Ar       | C TA<br>g Ty<br>21 | r Pr              | C GA<br>o As       | C CA<br>p Hi     | C AT<br>s Me       | G AA<br>t Ly<br>22 | 's G]                         | AG CZ<br>ln H:   | AC GA              | AC TI<br>sp Ph        | C 672<br>le |
| TT<br>Ph<br>22         | e Ly               | G TC<br>s Se       | c GC<br>r Al         | C AT<br>a Me                      | G CC<br>t Pr<br>23 | o Gl               | A GG<br>u Gl      | с та<br>у ту       | C GT<br>T Va     | C CA<br>1 G1<br>23 | n Gl               | kG CC                         | GC AG            | CC Ar<br>hr I      | TC TT<br>le Ph<br>24  | re          |

| TTC<br>Phe        | AAG<br>Lys        | GAC<br>Asp        | GAC<br>Asp        | GGC<br>Gly<br>245 | AAC<br>Asn        | TAC<br>Tyr        | AAG<br>Lys        | ACC<br>Thr        | CGC<br>Arg<br>250 | GCC<br>Ala        | GAG<br>Glu        | GTG<br>Val        | AAG<br>Lys        | TTC<br>Phe<br>255 | GAG<br>Glu        | 768  |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| GGC<br>Gly        | GAC<br>Asp        | ACC<br>Thr        | CTG<br>Leu<br>260 | GTG<br>Val        | AAC<br>Asn        | CGC<br>Arg        | ATC<br>Ile        | GAG<br>Glu<br>265 | CTG<br>Leu        | AAG<br>Lys        | GGC<br>Gly        | ATC<br>Ile        | GAC<br>Asp<br>270 | TTC<br>Phe        | AAG<br>Lys        | 816  |
| GAG<br>Glu        | GAC<br>Asp        | GGC<br>Gly<br>275 | AAC<br>Asn        | ATC<br>Ile        | CTG<br>Leu        | GGG<br>Gly        | CAC<br>His<br>280 | AAG<br>Lys        | CTG<br>Leu        | GAG<br>Glu        | TAC<br>Tyr        | AAC<br>Asn<br>285 | TAC<br>Tyr        | AAC<br>Asn        | AGC<br>Ser        | 864  |
| CAC<br>His        | AAC<br>Asn<br>290 | GTC<br>Val        | TAT<br>Tyr        | ATC<br>Ile        | ATG<br>Met        | GCC<br>Ala<br>295 | GAC<br>Asp        | AAG<br>Lys        | CAG<br>Gln        | AAG<br>Lys        | AAC<br>Asn<br>300 | GGC<br>Gly        | ATC<br>Ile        | AAG<br>Lys        | GTG<br>Val        | 912  |
| AAC<br>Asn<br>305 | TTC<br>Phe        | AAG<br>Lys        | ATC<br>Ile        | CGC<br>Arg        | CAC<br>His<br>310 | AAC<br>Asn        | ATC               | GAG<br>Glu        | GAC<br>Asp        | GGC<br>Gly<br>315 | Ser               | GTG<br>Val        | CAG<br>Gln        | CTC<br>Leu        | GCC<br>Ala<br>320 | 960  |
| GAC<br>Asp        | CAC<br>His        | TAC<br>Tyr        | CAG<br>Gln        | CAG<br>Gln<br>325 | AAC<br>Asn        | ACC<br>Thr        | CCC               | ATC<br>Ile        | GGC<br>Gly<br>330 | Asp               | GGC<br>Gly        | CCC<br>Pro        | GTG<br>Val        | CTG<br>Leu<br>335 | Leu               | 1008 |
| CCC<br>Pro        | GAC<br>Asp        | AAC<br>Asn        | CAC<br>His        | Туг               | CTG<br>Leu        | AGC<br>Ser        | ACC<br>Thr        | CAG<br>Gln<br>345 | Ser               | GCC<br>Ala        | CTO               | AGC<br>Ser        | Lys<br>350        | Asp               | CCC<br>Pro        | 1056 |
| AAC<br>Asn        | GAG               | AAG<br>Lys        | Arg               | GAT<br>Asp        | CAC<br>His        | ATG<br>Met        | GTC<br>Val<br>360 | Leu               | CTC               | GAC<br>1 Glu      | TTC<br>Phe        | GTC<br>Val<br>365 | Thr               | GCC<br>Ala        | GCC<br>Ala        | 1104 |
|                   |                   | Thi               |                   |                   | ATC               |                   | Gl                |                   |                   |                   |                   | Ą                 |                   |                   |                   | 1140 |

# (2) INFORMATION FOR SEQ ID NO:129:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 379 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:129:

 Leu Met Leu Leu Glu Val Ile Ser Gly Glu Arg Leu Ala Lys Pro 75 Glu Arg Gly Lys Met Arg Val His Lys Ile Ser Asn Val Asn Lys Ala 90 Leu Asp Phe Ile Ala Ser Lys Gly Val Lys Leu Val Ser Ile Gly Ala 105 Glu Glu Ile Val Asp Gly Asn Val Lys Met Thr Leu Gly Met Ile Trp 120 125 Thr Ile Ile Leu Arg Arg Asp Pro Pro Val Ala Thr Met Val Ser Lys 135 140 Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu Leu Asp 150 155 Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly Glu Gly 165 170 Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly 185 Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Leu Thr Tyr Gly 200 Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln His Asp Phe 215 Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile Phe 230 235 Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu 245 250 Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys 260 265 Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr Asn Ser 280 His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile Lys Val 295 Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu Ala 310 315 Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Leu Leu 325 330 Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys Asp Pro 340 345 350 Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr Ala Ala 360 Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys 375

#### (2) INFORMATION FOR SEQ ID NO:130:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 3516 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
  - (A) NAME/KEY: Coding Sequence
  - (B) LOCATION: 1...3513
  - (D) OTHER INFORMATION:
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:130:

| ATG<br>Met<br>1        | GTG<br>Val          | AGC<br>Ser       | AAG<br>Lys            | GGC<br>Gly<br>5     | GAG<br>Glu        | GAG<br>Glu            | CTG<br>Leu        | TTC<br>Phe            | ACC<br>Thr<br>10      | GGG<br>Gly          | GTG<br>Val         | GTG<br>Val          | CCC<br>Pro          | ATC<br>Ile<br>15 | CTG<br>Leu        | 48  |
|------------------------|---------------------|------------------|-----------------------|---------------------|-------------------|-----------------------|-------------------|-----------------------|-----------------------|---------------------|--------------------|---------------------|---------------------|------------------|-------------------|-----|
| GTC<br>Val             | GAG<br>Glu          | CTG<br>Leu       | GAC<br>Asp<br>20      | Gly                 | GAC<br>Asp        | GTA<br>Val            | AAC<br>Asn        | GGC<br>Gly<br>25      | CAC<br>His            | AAG<br>Lys          | TTC<br>Phe         | AGC<br>Ser          | GTG<br>Val<br>30    | TCC<br>Ser       | GGC<br>Gly        | 96  |
| GAG<br>Glu             | GGC<br>Gly          | GAG<br>Glu<br>35 | GGC<br>Gly            | GAT<br>Asp          | GCC<br>Ala        | ACC<br>Thr            | TAC<br>Tyr<br>40  | GGC<br>Gly            | AAG<br>Lys            | CTG<br>Leu          | ACC<br>Thr         | CTG<br>Leu<br>45    | AAG<br>Lys          | TTC<br>Phe       | ATC<br>Ile        | 144 |
| TGC<br>Cys             | ACC<br>Thr<br>50    | ACC<br>Thr       | GGC<br>Gly            | AAG<br>Lys          | CTG<br>Leu        | CCC<br>Pro<br>55      | GTG<br>Val        | CCC<br>Pro            | TGG<br>Trp            | CCC<br>Pro          | ACC<br>Thr<br>60   | CTC<br>Leu          | GTG<br>Val          | ACC<br>Thr       | ACC<br>Thr        | 192 |
| CTG<br>Leu<br>65       | ACC<br>Thr          | TAC<br>Tyr       | GGC                   | GTG<br>Val          | CAG<br>Gln<br>70  | TGC<br>Cys            | TTC<br>Phe        | AGC<br>Ser            | CGC<br>Arg            | TAC<br>Tyr<br>75    | CCC<br>Pro         | GAC<br>Asp          | CAC<br>His          | ATG<br>Met       | AAG<br>Lys<br>80  | 240 |
| CAG<br>Gln             | CAC<br>His          | GAC<br>Asp       | TTC<br>Phe            | TTC<br>Phe<br>85    | AAG<br>Lys        | TCC<br>Ser            | GCC<br>Ala        | ATG<br>Met            | CCC<br>Pro<br>90      | GAA<br>Glu          | GGC                | TAC<br>Tyr          | GTC<br>Val          | CAG<br>Gln<br>95 | GAG<br>Glu        | 288 |
| CGC<br>Arg             | ACC<br>Thr          | ATC              | TTC<br>Phe<br>100     | Phe                 | AAG<br>Lys        | GAC<br>Asp            | GAC<br>Asp        | GGC<br>Gly<br>105     | Asn                   | TAC                 | AAG<br>Lys         | ACC<br>Thr          | CGC<br>Arg<br>110   | Ala              | GAG<br>Glu        | 336 |
| GTG<br>Val             | AAG<br>Lys          | TTC<br>Phe       | e Glu                 | GGC<br>Gly          | GAC<br>Asp        | ACC<br>Thr            | CTG<br>Leu<br>120 | Val                   | AAC<br>Asn            | CGC<br>Arg          | : ATC              | GAG<br>Glu<br>125   | Lev                 | AAC<br>Lys       | GGC<br>Gly        | 384 |
| ATC<br>Ile             | GAC<br>Asp<br>130   | Phe              | AAG<br>Lys            | GAG<br>Glu          | GAC<br>Asp        | GGC<br>Gly<br>135     | Asr               | ATC                   | CTG<br>Lev            | GGG<br>GI           | CAC<br>His         | Lys                 | CTC<br>Lev          | GAC<br>1 Glu     | TAC<br>Tyr        | 432 |
| AAC<br>Asr<br>145      | туг                 | AAC<br>Ası       | AGC<br>N Ser          | CAC<br>His          | AAC<br>Asr<br>150 | Val                   | TAT               | T ATC                 | ATC<br>Met            | GCC<br>: Ala<br>155 | a Asp              | AAC<br>Lys          | G CAC               | AAC<br>Lys       | AAC<br>ASN<br>160 | 480 |
| GG(<br>Gl <sub>y</sub> | C ATO               | C AAG<br>≥ Lys   | G GTY                 | AAC<br>L Asr<br>165 | n Phe             | AAC<br>Lys            | ATC               | C CGC                 | C CAC<br>g His<br>170 | . Asr               | TATO               | C GA0<br>≥ Glu      | G GAG               | G GGG<br>G G1:   | AGC<br>y Ser      | 528 |
| GT(<br>Va:             | G CAC               | G CTO            | C GCC<br>u Ala<br>180 | a Asp               | CAC<br>His        | TAC<br>5 Tyı          | CAG               | G CAC<br>n Glr<br>185 | n Ası                 | C ACC               | c ccc              | TA C                | C GG<br>e Gl;<br>19 | y As             | c GGC<br>p Gly    | 576 |
| CC(<br>Pro             | C GTY<br>o Vai      | G CT<br>l Le     | u Lei                 | G CCC               | C GAG             | C AAG<br>p Asi        | CA<br>h Hi<br>20  | s Ty:                 | C CTV                 | G AG<br>u Se        | C ACC              | C CA<br>r Gl:<br>20 | n Se                | c GC<br>r Al     | C CTG<br>a Leu    | 624 |
| AG<br>Se               | C AA<br>r Ly:<br>21 | s As             | C CC                  | C AAG               | C GA              | G AAG<br>u Ly:<br>21! | s Ar              | C GA'<br>g Asi        | T CA<br>p Hi          | C AT<br>s Me        | G GT<br>t Va<br>22 | l Le                | G CT<br>u Le        | G GA<br>u Gl     | G TTC<br>u Phe    | 672 |
| GT                     | G AC                | c GC             | c GC                  | c gg                | G AT              | C AC'                 | г ст              | C GG                  | C AT                  | g ga                | C GA               | G CT                | G TA                | C AA             | G TCC             | 720 |

| Val Thr A | la Ala Gly                      | Ile Thr<br>230 | Leu Gly | Met Asp<br>235 | Glu Leu | Tyr Lys | Ser<br>240 |
|-----------|---------------------------------|----------------|---------|----------------|---------|---------|------------|
|           | GA TCT CGA<br>rg Ser Arg<br>245 | Ala Met        |         |                |         |         |            |
|           | GG GAC GCC<br>ly Asp Ala<br>260 |                |         |                |         |         |            |
| Glu Leu A | AC TTC TCC<br>sp Phe Ser<br>75  |                |         |                |         |         |            |
|           | AG CCG AAT<br>lu Pro Asn        |                |         |                |         |         |            |
|           | CC GAT GAT<br>ro Asp Asp        |                |         |                |         |         |            |
|           | GT CTC TCT<br>er Leu Ser<br>325 | Gly Glu        |         |                |         |         | Asp        |
|           | GG CCG CAG<br>ly Pro Gln<br>340 |                |         |                |         |         |            |
| Ser Gly L | TG AGC CCT<br>eu Ser Pro<br>55  |                |         |                |         |         |            |
|           | TG GGG CCC<br>al Gly Pro        |                |         |                |         |         |            |
|           | CC CTG GCC<br>ro Leu Ala        |                |         |                |         |         |            |
|           | GC TTC GAG<br>ly Phe Glu<br>405 | Gly Tyr        |         |                |         |         | Ala        |
|           | GC TCC TCT<br>ly Ser Ser<br>420 |                |         |                |         |         |            |
| Thr Ser P | CC TGC GTC<br>ro Cys Val<br>35  |                |         |                |         |         |            |
|           | TT CAA AAC<br>he Gln Asn        |                |         |                |         |         |            |

| ATA I<br>Ile I<br>465 | ATG<br>Met        | TCA<br>Ser         | CCT<br>Pro        | CGA<br>Arg           | ACC<br>Thr<br>470     | AGC<br>Ser        | CTC<br>Leu         | GCC<br>Ala         | Glu                   | GAC<br>Asp<br>475   | AGC<br>Ser        | TGC<br>Cys         | CTG<br>Leu         | GGC<br>Gly         | CGC<br>Arg<br>480     | 1440 |
|-----------------------|-------------------|--------------------|-------------------|----------------------|-----------------------|-------------------|--------------------|--------------------|-----------------------|---------------------|-------------------|--------------------|--------------------|--------------------|-----------------------|------|
| CAC His               | TCG<br>Ser        | CCC<br>Pro         | GTG<br>Val        | CCC<br>Pro<br>485    | CGT<br>Arg            | CCG<br>Pro        | GCC<br>Ala         | TCC<br>Ser         | CGC<br>Arg<br>490     | TCC<br>Ser          | TCA<br>Ser        | TCG<br>Ser         | CCT<br>Pro         | GGT<br>Gly<br>495  | GCC<br>Ala            | 1488 |
| AAG<br>Lys            | CGG<br>Arg        | AGG<br>Arg         | CAT<br>His<br>500 | TCG<br>Ser           | TGC<br>Cys            | GCC<br>Ala        | GAG<br>Glu         | GCC<br>Ala<br>505  | TTG<br>Leu            | GTT<br>Val          | GCC<br>Ala        | CT <b>G</b><br>Leu | CCG<br>Pro<br>510  | CCC<br>Pro         | GGA<br>Gly            | 1536 |
| GCC<br>Ala            | TCA<br>Ser        | CCC<br>Pro<br>515  | CAG<br>Gln        | CGC<br>Arg           | TCC<br>Ser            | CGG<br>Arg        | AGC<br>Ser<br>520  | CCC<br>Pro         | TCG<br>Ser            | CCG<br>Pro          | CAG<br>Gln        | CCC<br>Pro<br>525  | TCA<br>Ser         | TCT<br>Ser         | CAC<br>His            | 1584 |
| GTG<br>Val            | GCA<br>Ala<br>530 | CCC<br>Pro         | CAG<br>Gln        | GAC<br>Asp           | CAC<br>His            | GGC<br>Gly<br>535 | TCC<br>Ser         | CCG<br>Pro         | GCT<br>Ala            | GGG<br>Gly          | ТАС<br>Туг<br>540 | CCC<br>Pro         | CCT<br>Pro         | GTG<br>Val         | GCT<br>Ala            | 1632 |
| GGC<br>Gly<br>545     | TCT<br>Ser        | GCC<br>Ala         | GTG<br>Val        | ATC<br>Ile           | ATG<br>Met<br>550     | GAT<br>Asp        | GCC<br>Ala         | CTG<br>Leu         | AAC<br>Asn            | AGC<br>Ser<br>555   | CTC<br>Leu        | GCC<br>Ala         | ACG<br>Thr         | GAC<br>Asp         | TCG<br>Ser<br>560     | 1680 |
| CCT<br>Pro            | TGT<br>Cys        | GGG<br>Gly         | ATC               | CCC<br>Pro<br>565    | Pro                   | AAG<br>Lys        | ATG<br>Met         | TGG                | AAG<br>Lys<br>570     | Thr                 | AGC<br>Ser        | CCT<br>Pro         | GAC<br>Asp         | CCC<br>Pro<br>575  | TCG<br>Ser            | 1728 |
| CCG<br>Pro            | GTG<br>Val        | TCT<br>Ser         | GCC<br>Ala<br>580 | Ala                  | CCA<br>Pro            | TCC<br>Ser        | AAC<br>Lys         | GCC<br>Ala<br>585  | Gly                   | Len<br>CIG          | CCT<br>Pro        | CGC<br>Arg         | CAC<br>His         | Ile                | TAC<br>Tyr            | 1776 |
| CCG<br>Pro            | GCC               | GTC<br>Val<br>595  | Glu               | TTC<br>Phe           | CTG<br>Leu            | GGG<br>Gly        | Pro<br>600         | CA:                | GAG<br>Glu            | CAG<br>Gln          | GGC<br>G13        | GAC<br>Glu<br>605  | Arg                | AG/<br>Arg         | A AAC<br>g Asn        | 1824 |
| TCG<br>Ser            | GCT<br>Ala<br>610 | Pro                | GAA<br>Glu        | TCC<br>Sei           | ATC                   | CTC<br>Lev<br>615 | ı Lei              | G GT               | r CCG                 | CCC<br>Pro          | C ACT             | Tr                 | CCC<br>Pro         | AA(                | G CCG<br>S Pro        | 1872 |
| CTG<br>Leu<br>625     | (Val              | CC'                | r GCC             | AT.                  | r ccc<br>e Pro<br>630 | lle               | TG(                | C AGG<br>S Se:     | T Ile                 | C CCA<br>Pro<br>635 | o Vai             | G ACT              | r GC               | A TC               | C CTC<br>r Leu<br>640 | 1920 |
| CCI<br>Pro            | CCA<br>Pro        | A CT               | T GAG             | G TGG<br>u Trj<br>64 | p Pro                 | G CTO             | TCC<br>L Se:       | C AG<br>r Se       | T CAC<br>r Glr<br>650 | n Se                | A GG<br>r Gl      | C TC'<br>y Se:     | T TA               | C GA<br>r G1<br>65 | G CTG<br>u Leu<br>5   | 1968 |
| CGC<br>Arç            | TATO              | C GA               | G GTY<br>u Va:    | 1 G1                 | G CCO                 | C AAG<br>o Ly:    | G CC.<br>s Pr      | A CA<br>O Hi<br>66 | s Hi                  | c cg                | g GC<br>g Al      | C CA<br>a Hi       | С ТА<br>s Ту<br>67 | r Gl               | G ACA<br>u Thr        | 2016 |
| GA/<br>Glu            | A GGG             | C AG<br>y Se<br>67 | r Ar              | A GG<br>g Gl         | g gc<br>y Al          | T GTV<br>a Va     | C AA<br>1 Ly<br>68 | s Al               | T CC.<br>a Pr         | A AC<br>o Th        | T GG<br>r Gl      | A GG<br>y Gl<br>68 | у Ні               | C CC<br>s Pr       | T GTG                 | 2064 |
| GT.                   | r ca              | G CT               | C CA              | T GG                 | с та                  | C AT              | g ga               | AA AL              | C AA                  | .G CC               | T CI              | rg gg              | A CI               | T CA               | G ATC                 | 2112 |

| Val               | Gln<br>690            | Leu                | His                 | Gly               |                   | Met (<br>695      | Glu                | Asn                | Lys                | Pro                | Leu<br>700         | Gly               | Leu                   | Gln                 | Ile                   |      |
|-------------------|-----------------------|--------------------|---------------------|-------------------|-------------------|-------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-------------------|-----------------------|---------------------|-----------------------|------|
| TTC<br>Phe<br>705 | ATT<br>Ile            | GGG<br>Gly         | ACA<br>Thr          | GCT<br>Ala        | GAT<br>Asp<br>710 | GAG  <br>Glu      | CGG<br>Arg         | ATC<br>Ile         | CTT<br>Leu         | AAG<br>Lys<br>715  | CCG<br>Pro         | CAC<br>His        | GCC<br>Ala            | TTC<br>Phe          | TAC<br>Tyr<br>720     | 2160 |
| CAG<br>Gln        | GTG<br>Val            | CAC<br>His         | CGA<br>Arg          | ATC<br>Ile<br>725 | ACG<br>Thr        | GGG<br>Gly        | AAA<br>Lys         | ACT<br>Thr         | GTC<br>Val<br>730  | ACC<br>Thr         | ACC<br>Thr         | ACC<br>Thr        | AGC<br>Ser            | тат<br>туг<br>735   | GAG<br>Glu            | 2208 |
| AAG<br>Lys        | ATA<br>Ile            | GTG<br>Val         | GGC<br>Gly<br>740   | AAC<br>Asn        | ACC<br>Thr        | AAA<br>Lys        | GTC<br>Val         | CTG<br>Leu<br>745  | GAG<br>Glu         | ATC<br>Ile         | CCC<br>Pro         | TTG<br>Leu        | GAG<br>Glu<br>750     | CCC<br>Pro          | AAA<br>Lys            | 2256 |
| AAC<br>Asn        | AAC<br>Asn            | ATG<br>Met<br>755  | Arg                 | GCA<br>Ala        | ACC<br>Thr        | ATC<br>Ile        | GAC<br>Asp<br>760  | TGT<br>Cys         | GCG<br>Ala         | GGG<br>Gly         | ATC                | TTG<br>Leu<br>765 | Lys                   | CTT<br>Leu          | AGA<br>Arg            | 2304 |
| AAC<br>Asn        | GCC<br>Ala<br>770     | GAC<br>Asp         | ATT<br>Ile          | GAG<br>Glu        | CTG<br>Leu        | CGG<br>Arg<br>775 | AAA<br>Lys         | GGC<br>Gly         | GAG<br>Glu         | ACG<br>Thr         | GAC<br>Asp<br>780  | Ile               | GGA<br>Gly            | AGA<br>Arg          | AAG<br>Lys            | 2352 |
| AAC<br>Asn<br>785 | Thr                   | CGG<br>Arg         | GTG<br>Val          | AGA<br>Arg        | CTG<br>Leu<br>790 | GTT<br>Val        | TTC<br>Phe         | CGA<br>Arg         | GTT<br>Val         | CAC<br>His         | ; 11e              | CCA<br>Pro        | GAG<br>Glu            | TCC<br>Ser          | Ser<br>800            | 2400 |
| GG(<br>Gly        | AGA<br>Arg            | ATC                | GTC<br>Val          | TCT<br>Ser<br>805 | Leu               | CAG<br>Gln        | ACT<br>Thr         | GCA<br>Ala         | TCT<br>Ser<br>810  | Ası                | C CCC              | TATO              | C GAC<br>∈ Glv        | TG0<br>1 Cys<br>815 | TCC<br>S Ser          | 2448 |
| CAC<br>Gl:        | G CGA                 | TCT<br>Sei         | C GCT<br>Ala<br>820 | a His             | GAG<br>Glu        | CTG<br>Leu        | CCC                | ATO<br>Met<br>825  | . Val              | GAI<br>Glu         | A AGA              | A CAI<br>g Gli    | A GAG<br>n Ası<br>830 | o Thi               | A GAC<br>r Asp        | 2496 |
| AG(<br>Se:        | TGC<br>Cys            | CTC<br>Lev<br>83!  | . Va                | TAT<br>l Tyr      | GGC<br>Gly        | GGC<br>Gly        | CAC<br>Glr<br>840  | ı Glr              | YFA A              | ATO                | C CTO              | C ACC<br>u Th     | r Gl                  | G CA                | G AAC<br>n Asn        | 2544 |
| TT<br>Ph          | r ACA<br>e Thi<br>850 | s Se               | C GAG               | G TCC             | AAA<br>Lys        | GTI<br>Val<br>855 | . Va               | G TT               | r AC'<br>e Thi     | r GA               | G AA<br>u Ly<br>86 | s Th              | C AC<br>r Th          | A GA<br>r As        | T GGA<br>p Gly        | 2592 |
| CA<br>G1<br>86    | n Gl                  | A AT               | T TG                | G GAG<br>p Glu    | ATC<br>Met<br>870 | : Glu             | A GC0              | C ACC              | G GTG<br>r Va      | G GA<br>1 As<br>87 | p Ly               | G GA<br>s As      | C AA<br>p Ly          | G AG<br>s Se        | c CAG<br>r Gln<br>880 | 2640 |
| CC<br>Pr          | C AAG<br>o Asi        | C AT               | G CT<br>t Le        | T TT<br>u Ph      | e Vai             | r GAC<br>l Glu    | G AT               | C CC<br>e Pr       | T GA<br>o G1<br>89 | и Ту               | T CG               | G AA<br>g As      | C AA                  | G CA<br>rs Hi<br>89 | T ATC<br>s Ile        | 2688 |
| CG<br>Ar          | C AC.                 | A CC<br>r Pr       | T GT<br>o Va<br>90  | l Ly              | A GTO             | G AAG<br>l Ası    | TT<br>n Ph         | С ТА<br>е Ту<br>90 | r Va               | C AT<br>1 II       | C AA<br>e As       | T GC              | G A.<br>Ly Ly<br>91   | 's Ai               | GA AAA<br>ng Lys      | 2736 |
| CG<br>Ar          | GA AG<br>g Se         | T CA<br>r Gl<br>91 | n Pr                | T CA              | G CA<br>n Hi      | C TT<br>s Ph      | T AC<br>e Th<br>92 | r Ty               | C CA               | C CC<br>s Pi       | CA G1              | al Pi             | CA GC<br>co Al<br>25  | CC A                | TC AAG<br>le Lys      | 2784 |

| ACG (                  | GAG<br>Glu<br>930  | CCC<br>Pro         | ACG<br>Thr        | GAT<br>Asp          | GAA<br>Glu        | тат<br>Туг<br>935  | GAC<br>Asp         | CCC<br>Pro             | ACT<br>Thr          | CTG<br>Leu         | ATC<br>Ile<br>940      | TGC<br>Cys             | AGC<br>Ser          | CCC<br>Pro          | ACC<br>Thr             | 2832 |
|------------------------|--------------------|--------------------|-------------------|---------------------|-------------------|--------------------|--------------------|------------------------|---------------------|--------------------|------------------------|------------------------|---------------------|---------------------|------------------------|------|
| CAT<br>His<br>945      | GGA<br>Gly         | GGC<br>Gly         | CTG<br>Leu        | GGG<br>Gly          | AGC<br>Ser<br>950 | CAG<br>Gln         | CCT<br>Pro         | TAC<br>Tyr             | TAC<br>Tyr          | CCC<br>Pro<br>955  | CAG<br>Gln             | CAC<br>His             | CCG<br>Pro          | ATG<br>Met          | GTG<br>Val<br>960      | 2880 |
| GCC<br>Ala             | GAG<br>Glu         | TCC<br>Ser         | CCC<br>Pro        | TCC<br>Ser<br>965   | TGC<br>Cys        | CTC<br>Leu         | GTG<br>Val         | GCC<br>Ala             | ACC<br>Thr<br>970   | ATG<br>Met         | GCT<br>Ala             | CCC<br>Pro             | TGC<br>Cys          | CAG<br>Gln<br>975   | CAG<br>Gln             | 2928 |
| TTC<br>Phe             | CGC<br>Arg         | ACG<br>Thr         | GGG<br>Gly<br>980 | CTC<br>Leu          | TCA<br>Ser        | TCC<br>Ser         | CCT<br>Pro         | GAC<br>Asp<br>985      | GCC<br>Ala          | CGC<br>Arg         | TAC<br>Tyr             | CAG<br>Gln             | CAA<br>Gln<br>990   | CAG<br>Gln          | AAC<br>Asn             | 2976 |
| CCA<br>Pro             | GCG<br>Ala         | GCC<br>Ala<br>995  | GTA<br>Val        | CTC<br>Leu          | TAC<br>Tyr        | Gln                | CGG<br>Arg<br>1000 | Ser                    | AAG<br>Lys          | AGC<br>Ser         | Leu                    | AGC<br>Ser<br>1005     | CCC<br>Pro          | AGC<br>Ser          | CTG<br>Leu             | 3024 |
| Leu                    | GGC<br>Gly<br>1010 | тат<br>туг         | CAG<br>Gln        | CAG<br>Gln          | Pro               | GCC<br>Ala<br>1015 | CTC<br>Leu         | ATG<br>Met             | GCC<br>Ala          | Ala                | CCG<br>Pro<br>1020     | Leu                    | TCC<br>Ser          | CTT<br>Leu          | GCG<br>Ala             | 3072 |
| GAC<br>Asp<br>1025     | GCT<br>Ala         | CAC                | CGC               | TCT<br>Ser          | GTG<br>Val        | Leu                | GTG<br>Val         | CAC<br>His             | GCC                 | GGC<br>Gly<br>1035 | Ser                    | CAG<br>Gln             | GGC<br>Gly          | CAC<br>Glr          | AGC<br>Ser<br>1040     | 3120 |
| TCA<br>Ser             | GCC<br>Ala         | CTG<br>Leu         | CTC               | CAC<br>His          | Pro               | TCT<br>Ser         | CCC                | ACC<br>Thr             | AAC<br>Asr<br>1050  | Glr                | CAG<br>Glr             | GCC<br>Ala             | TCC<br>Ser          | Pro<br>1055         | r GTG<br>Val           | 3168 |
| ATC<br>Ile             | CAC                | TAC                | TCA<br>Ser        | Pro                 | ACC<br>Thr        | AAC<br>Asn         | CAC<br>Glr         | G CAG<br>n Glr<br>1065 | Lev                 | G CGC              | TGC<br>Cys             | C GGA<br>S Gly         | AGC<br>Sei<br>1070  | His                 | C CAG<br>s Gln         | 3216 |
| GAG<br>Glu             | TTC                | CAC<br>Glr<br>1075 | n His             | TATO                | C ATC             | TAC                | TG(<br>Cys         | s Glu                  | AAT<br>ASI          | r TTC              | GCA<br>Ala             | A CCA<br>a Pro<br>1089 | Gl:                 | C ACC               | C ACC<br>r Thr         | 3264 |
| Arg                    | CCT<br>Pro<br>1090 | Gly                | CCC<br>Pro        | Pro                 | c ccc             | val                | . Se               | T CAA                  | A GG'<br>n Gly      | r cac<br>y Gl:     | 3 AGG<br>1 Arg<br>1100 | g Lei                  | G AG                | c cc<br>r Pr        | G GGT<br>o Gly         | 3312 |
| TCC<br>Ser<br>1105     | Typ                | C CCC              | C ACZ             | A GTY               | C AT<br>1 110     | e Gl:              | G CAG              | G CA(                  | G AA'<br>n As:      | T GCO<br>n Al-     | a Th                   | G AG<br>r Se           | C CA<br>r Gl        | A AG<br>n Ar        | A GCC<br>g Ala<br>1120 | 3360 |
| GCC<br>Ala             | : AAA              | A AA(<br>s Asi     | c GGZ<br>n Gl     | A CC<br>y Pr<br>112 | o Pr              | G GTY              | C AG<br>l Se       | T GAG                  | C CA<br>p Gl<br>113 | n Ly               | G GA<br>s Gl           | A GT<br>u Va           | A TT<br>l Le        | A CC<br>u Pr<br>113 | T GCG<br>TO Ala        | 3408 |
| GG(<br>Gl <sub>y</sub> | G GTV<br>7 Va:     | G AC               | C AT              | e Ly                | A CA<br>s Gl      | G GAG              | G CA<br>u Gl       | G AA<br>n As<br>114    | n Le                | G GA<br>u As       | C CA<br>p Gl           | G AC<br>n Th           | С ТА<br>т Ту<br>115 | r Le                | G GAT                  | 3456 |
| GA7                    | r GT               | AA T               | T GA              | A AT                | T AT              | C AG               | G AA               | .G GA                  | G TI                | т тс               | A GG                   | SA CC                  | T CC                | T GO                | CC AGA                 | 3504 |

Asp Val Asn Glu Ile Ile Arg Lys Glu Phe Ser Gly Pro Pro Ala Arg 1155 1160 1165

CG TAA

AAT CAG ACG TAA Asn Gln Thr 1170

- (2) INFORMATION FOR SEQ ID NO:131:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1171 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:131:

|          | Val | Ser | Lys       | Gly<br>5 | Glu      | Glu   | Leu | Phe       | Thr   | Gly  | Val   | Val   | Pro        | Ile<br>15 | Leu        |
|----------|-----|-----|-----------|----------|----------|-------|-----|-----------|-------|------|-------|-------|------------|-----------|------------|
| l<br>Val | Glu | Leu | Asp<br>20 |          | Asp      | Val   | Asn | Gly<br>25 |       | Lys  | Phe   | Ser   | Val<br>30  | Ser       | Gly        |
|          |     | 35  | Gly       |          |          |       | 40  |           |       |      |       | 45    | Lys        |           |            |
|          | 50  |     |           |          |          | 55    |     |           |       |      | 60    |       | Val        |           |            |
| 65       |     |     |           |          | 70       |       |     |           |       | 75   |       |       | His        |           | 80         |
|          |     |     |           | 85       |          |       |     |           | 90    |      |       |       | Val        | 95        |            |
|          |     |     | 100       |          |          |       |     | 105       |       |      |       |       | Arg<br>110 |           |            |
|          |     | 115 |           |          |          |       | 120 |           |       |      |       | 125   | Leu        |           |            |
|          | 130 |     |           |          |          | 135   |     |           |       |      | 140   |       | Leu        |           |            |
| 145      |     |     |           |          | 150      |       |     |           |       | 155  |       |       |            |           | Asn<br>160 |
|          |     |     |           | 165      |          |       |     |           | 170   |      |       |       | Asp        | 175       |            |
|          |     |     | 180       |          |          |       |     | 185       |       |      |       |       | 190        |           | Gly        |
|          |     | 195 |           |          |          |       | 200 |           |       |      |       | 205   |            |           | Leu        |
|          | 210 |     |           |          |          | 215   | 1   |           |       |      | 220   | )     |            |           | Phe        |
| 225      |     |     |           |          | 230      | )     |     |           |       | 235  | 5     |       |            |           | Ser<br>240 |
|          |     |     |           | 245      | <u>,</u> |       |     |           | 250   | )    |       |       |            | 255       |            |
|          |     |     | 260       | )        |          |       |     | 269       | 5     |      |       |       | 270        | )         | Asp        |
|          |     | 275 | 5         |          |          |       | 280 | )         |       |      |       | 289   | 5          |           | Asn        |
| Glu      | Glu | Gli | ı Pro     | Asr      | n Ala    | a His | Lys | s Val     | l Ala | a Se | r Pro | o Pro | o Ser      | : G1)     | / Pro      |

3516

|     | 290  |      |      |      |      | 295  |            |      |      |      | 300  |      |      |      |       |
|-----|------|------|------|------|------|------|------------|------|------|------|------|------|------|------|-------|
| 305 | Tyr  |      |      |      | 310  |      | Asp '      |      |      | 315  |      |      |      |      | 320   |
| Leu |      |      |      | 325  |      |      | Pro        |      | 330  |      |      |      |      | 335  |       |
|     |      |      | 340  |      |      |      |            | 345  |      |      |      |      | 350  |      |       |
|     |      | 355  |      |      |      |      | Glu<br>360 |      |      |      |      | 365  |      |      |       |
|     | 370  |      |      |      |      | 375  | Met        |      |      |      | 380  |      |      |      |       |
| 385 |      |      |      |      | 390  |      | Ala        |      |      | 395  |      |      |      |      | 400   |
|     |      |      |      | 405  |      |      | Arg        |      | 410  |      |      |      |      | 415  |       |
|     |      |      | 420  |      |      |      | Phe        | 425  |      |      |      |      | 430  |      |       |
|     |      | 435  |      |      |      |      | Asn<br>440 |      |      |      |      | 445  |      |      |       |
|     | 450  |      |      |      |      | 455  | Ala        |      |      |      | 460  |      |      |      |       |
| 465 |      |      |      |      | 470  |      | Leu        |      |      | 475  |      |      |      |      | 480   |
|     |      |      |      | 485  |      |      | Ala        |      | 490  |      |      |      |      | 495  |       |
|     |      |      | 500  |      |      |      | Glu        | 505  |      |      |      |      | 510  |      |       |
|     |      | 515  | ,    |      |      |      | Ser<br>520 |      |      |      |      | 525  |      |      |       |
|     | 530  |      |      |      |      | 535  |            |      |      |      | 540  |      |      |      | Ala   |
| 545 | ,    |      |      |      | 550  |      | Ala        |      |      | 555  | 5    |      |      |      | 560   |
|     |      |      |      | 565  |      |      |            |      | 570  | )    |      |      |      | 575  |       |
|     |      |      | 580  | )    |      |      |            | 585  | )    |      |      |      | 590  | )    | Tyr   |
|     |      | 595  | 5    |      |      |      | 600        |      |      |      |      | 605  | )    |      | Asn   |
|     | 610  | )    |      |      |      | 615  | •          |      |      |      | 620  | )    |      |      | Pro   |
| 625 | 5    |      |      |      | 630  | )    |            |      |      | 63   | 5    |      |      |      | 640   |
|     |      |      |      | 645  | 5    |      |            |      | 65   | 0    |      |      |      | 655  |       |
|     |      |      | 660  | )    |      |      |            | 669  | 5    |      |      |      | 670  | )    | 1 Thr |
|     |      | 67   | 5    |      |      |      | 680        | )    |      |      |      | 689  | 5    |      | Val   |
|     | 69   | 0    |      |      |      | 695  | 5          |      |      |      | 70   | C    |      |      | n Ile |
| 70  | 5    |      |      |      | 710  | )    |            |      |      | 71   | 5    |      |      |      | 720   |
|     |      |      |      | 72   | 5    |      |            |      | 73   | 0    |      |      |      | 73   | _     |
|     |      |      | 74   | 0    |      |      |            | 74   | 5    |      |      |      | 75   | 0    | o Lys |
| As  | n As | n Me | t Ar | g Al | a Th | r Il | e Asp      | o CA | s Al | a Gl | y Il | e Le | u Ly | s Le | u Arg |

|     |             | 755   |      |       |       |      | 760  |      |      |                   |       | 765         |           |      |               |
|-----|-------------|-------|------|-------|-------|------|------|------|------|-------------------|-------|-------------|-----------|------|---------------|
|     | 770         |       |      |       |       | 775  |      |      |      | Thr               | 780   |             |           |      |               |
| 785 |             |       |      |       | 790   |      |      |      |      | His<br>795        |       |             |           |      | 008           |
|     |             |       |      | 805   |       |      |      |      | 810  | Asn               |       |             |           | 815  |               |
|     |             |       | 820  |       |       |      |      | 825  |      | Glu               |       |             | 830       |      |               |
|     |             | 835   |      |       |       |      | 840  |      |      | Ile               |       | 845         |           |      |               |
|     | 850         |       |      |       |       | 855  |      |      |      | Glu               | 860   |             |           |      |               |
| 865 |             |       |      |       | 870   |      |      |      |      | <b>Asp</b><br>875 |       |             |           |      | 880           |
|     |             |       |      | 885   |       |      |      |      | 890  |                   |       |             |           | 895  |               |
|     |             |       | 900  |       |       |      |      | 905  |      | Ile               |       |             | 910       |      |               |
|     |             | 915   |      |       |       |      | 920  |      |      | Pro               |       | 925         |           |      |               |
|     | 930         |       |      |       |       | 935  |      |      |      | Leu               | 940   |             |           |      |               |
| 945 |             |       |      |       | 950   |      |      |      |      | 955               |       |             |           |      | Val<br>960    |
|     |             |       |      | 965   |       |      |      |      | 970  |                   |       |             |           | 975  |               |
|     |             |       | 930  |       |       |      |      | 985  |      |                   |       |             | 990       | 1    | Asn           |
|     |             | 995   |      |       |       |      | 1000 |      |      |                   |       | 1005        | l .       |      | Leu           |
|     | 1010        |       |      |       |       | 1015 |      |      |      |                   | 1020  |             |           |      | Ala           |
| 025 |             |       |      |       | 1030  | 1    |      |      |      | 1035              | 1     |             |           |      | 1040          |
|     |             |       |      | 1045  |       |      |      |      | 1050 | )                 |       |             |           | 105  |               |
|     |             |       | 1060 | )     |       |      |      | 1065 | 5    |                   |       |             | 1070      | )    | Gln           |
|     |             | 1075  | 5    |       |       |      | 1080 | )    |      |                   |       | 1089        | 5         |      | r Thr         |
|     | 1090        | )     |      |       |       | 1095 | 5    |      |      |                   | 1100  | )           |           |      | o Gly         |
| 105 | ,           |       |      |       | 1110  | )    |      |      |      | 1119              | 5     |             |           |      | g Ala<br>1120 |
|     |             |       |      | 1125  | 5     |      |      |      | 113  | 0                 |       |             |           | 113  |               |
|     |             |       | 1140 | )     |       |      |      | 114  | 5    |                   |       |             | 115       | O    | u Asp         |
|     |             | 115   | 5    | ı Ile | e Ile | e Ar | 116  |      | u Ph | e Se:             | r Gly | y Pr<br>116 | o Pr<br>5 | o al | a Arg         |
| Asr | Gl:<br>1170 | n Thi | r    |       |       |      |      |      |      |                   |       |             |           |      |               |

# (2) INFORMATION FOR SEQ ID NO:132:

# (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3546 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

(A) NAME/KEY: Coding Sequence

(B) LOCATION: 1...3543

(D) OTHER INFORMATION:

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:132:

| Met              | AAC<br>Asn       | GCC<br>Ala        | CCC<br>Pro        | GAG<br>Glu<br>5   | CGG<br>Arg        | CAG<br>Gln        | CCC<br>Pro        | CAA<br>Gln        | CCC<br>Pro       | GAC<br>Asp        | GGC<br>Gly        | GGG<br>Gly        | GAC<br>Asp        | GCC<br>Ala<br>15 | CCA<br>Pro        | 48  |
|------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|-----|
| 1<br>GGC<br>Gly  | CAC<br>His       | GAG<br>Glu        | CCT<br>Pro<br>20  | GGG               | GGC<br>Gly        | AGC<br>Ser        | CCC<br>Pro        | CAA<br>Gln<br>25  | GAC<br>Asp       | GAG<br>Glu        | CTT<br>Leu        | GAC<br>Asp        | TTC<br>Phe<br>30  | TCC<br>Ser       | ATC<br>Ile        | 96  |
| CTC<br>Leu       | TTC<br>Phe       | GAC<br>Asp<br>35  | TAT<br>Tyr        | GAG<br>Glu        | TAT<br>Tyr        | TTG<br>Leu        | AAT<br>Asn<br>40  | CCG<br>Pro        | AAC<br>Asn       | GAA<br>Glu        | GAA<br>Glu        | GAG<br>Glu<br>45  | CCG<br>Pro        | AAT<br>Asn       | GCA<br>Ala        | 144 |
| CAT<br>His       | AAG<br>Lys<br>50 | GTC<br>Val        | GCC<br>Ala        | AGC<br>Ser        | CCA<br>Pro        | CCC<br>Pro<br>55  | TCC<br>Ser        | GGA<br>Gly        | CCC<br>Pro       | GCA<br>Ala        | TAC<br>Tyr<br>60  | CCC<br>Pro        | GAT<br>Asp        | GAT<br>Asp       | GTA<br>Val        | 192 |
| ATG<br>Met<br>65 | GAC<br>Asp       | TAT<br>Tyr        | GGC<br>Gly        | CTC<br>Leu        | AAG<br>Lys<br>70  | CCA<br>Pro        | TAC<br>Tyr        | AGC<br>Ser        | CCC<br>Pro       | CTT<br>Leu<br>75  | GCT<br>Ala        | AGT<br>Ser        | CTC               | TCT<br>Ser       | GGC<br>Gly<br>80  | 240 |
| GAG<br>Glu       | CCC<br>Pro       | CCC               | GGC<br>Gly        | CGA<br>Arg<br>85  | TTC<br>Phe        | GGA<br>Gly        | GAG<br>Glu        | CCG<br>Pro        | GAT<br>Asp<br>90 | AGG<br>Arg        | GTA<br>Val        | GGG<br>Gly        | CCG<br>Pro        | CAG<br>Gln<br>95 | AAG<br>Lys        | 288 |
| TTT<br>Phe       | CTG<br>Leu       | AGC<br>Ser        | GCG<br>Ala<br>100 | Ala               | AAG<br>Lys        | CCA<br>Pro        | GCA<br>Ala        | GGG<br>Gly<br>105 | GCC<br>Ala       | TCG<br>Ser        | GGC<br>Gly        | CTG<br>Leu        | AGC<br>Ser<br>110 | Pro              | CGG               | 336 |
| ATC<br>Ile       | GAG<br>Glu       | ATC<br>Ile<br>115 | Thr               | CCG<br>Pro        | TCC<br>Ser        | CAC<br>His        | GAA<br>Glu<br>120 | Lev               | ATC              | CAG<br>Glr        | GCA<br>Ala        | GTG<br>Val<br>125 | GJ?               | CCC<br>Pro       | CTC<br>Leu        | 384 |
| CGC<br>Arg       | ATG<br>Met       | Arg               | GAC<br>Asp        | GCG<br>Ala        | GGC<br>Gly        | CTC<br>Leu<br>135 | Leu               | GTC<br>Val        | GAC<br>Glu       | CAC<br>Glr        | CCT<br>Pro<br>140 | Pro               | CTC<br>Lev        | GCC<br>1 Ala     | GGG<br>Gly        | 432 |
| GTG<br>Val       | Ala              | GCC<br>Ala        | : AGC             | CCG<br>Pro        | AGG<br>Arg<br>150 | Phe               | ACC<br>Thr        | CTC               | G CCC            | GTC<br>Val<br>155 | l Pro             | GIY               | TTY<br>Phe        | C GAC            | GGC<br>Gly<br>160 | 480 |
| TAC<br>Tyr       | CGC              | GAC<br>GGL        | CCC<br>Pro        | CTI<br>Lev<br>165 | т СХ.             | TTG<br>Leu        | AGC<br>Sei        | C CCC             | C GC:            | a Ser             | C AGO             | GGG<br>Gly        | TCC<br>Se:        | r Sei            | r GCC<br>c Ala    | 528 |
| AGO              | TT               | C ATC             | r TC              | r GAC             | ACC               | TTC               | TCC               | C CC              | C TAC            | C AC              | C TC              | G CC              | TG                | CGT              | C TCG             | 576 |

| Ser | Phe | Ile | Ser<br>180 | Asp | Thr               | Phe | Ser | Pro<br>185 | T/r | Thr | Ser | Pro | Cys<br>190 | Val | Ser |      |
|-----|-----|-----|------------|-----|-------------------|-----|-----|------------|-----|-----|-----|-----|------------|-----|-----|------|
|     |     |     |            |     | CCC<br>Pro        |     |     |            |     |     |     |     |            |     |     | 624  |
|     | _   |     |            |     | CCC<br>Pro        |     |     |            |     |     |     |     |            |     |     | 672  |
|     |     | _   | _          |     | AGC<br>Ser<br>230 |     |     |            |     |     |     |     |            |     |     | 720  |
|     | _   |     |            |     | TCA<br>Ser        |     |     |            |     |     |     |     |            |     |     | 768  |
|     |     |     |            |     | GCC<br>Ala        |     |     |            |     |     |     |     |            |     |     | 816  |
|     |     |     |            |     | CAG<br>Gln        |     |     |            |     |     |     |     |            |     |     | 864  |
|     |     |     |            |     | TAC<br>Tyr        |     |     |            |     |     |     |     |            |     |     | 912  |
|     |     |     |            |     | CTC<br>Leu<br>310 |     |     |            |     |     |     |     |            |     |     | 960  |
|     |     |     |            |     | AGC<br>Ser        |     |     |            |     |     |     |     |            |     |     | 1008 |
|     |     | _   | _          |     | CCT<br>Pro        |     |     |            |     |     |     |     |            |     |     | 1056 |
|     |     |     |            |     | GGC<br>Gly        |     |     |            |     |     |     |     |            |     |     | 1104 |
|     |     |     |            |     | ACT<br>Thr        |     |     |            |     |     |     |     |            |     |     | 1152 |
|     |     |     |            |     | GTG<br>Val<br>390 |     |     |            |     |     |     |     |            |     |     | 1200 |
|     |     |     |            |     | GGC<br>Gly        |     |     |            |     |     |     |     |            |     |     | 1248 |

| AAG<br>Lys        | CCA<br>Pro            | CAT<br>His            | CAC<br>His<br>420 | CGG<br>Arg        | GCC<br>Ala            | CAC<br>His        | TAT<br>Tyr                    | GAG<br>Glu<br>425   | ACA<br>Thr        | GAA<br>Glu           | GGC<br>Gly            | AGC<br>Ser        | CGA<br>Arg<br>430   | GGG<br>Gly        | GCT<br>Ala            | 1296 |
|-------------------|-----------------------|-----------------------|-------------------|-------------------|-----------------------|-------------------|-------------------------------|---------------------|-------------------|----------------------|-----------------------|-------------------|---------------------|-------------------|-----------------------|------|
| GTC<br>Val        | AAA<br>Lys            | GCT<br>Ala<br>435     | CCA<br>Pro        | ACT<br>Thr        | GGA<br>Gly            | Gly               | CAC<br>His<br>440             | CCT<br>Pro          | GTG<br>Val        | GTT<br>Val           | CAG<br>Gln            | CTC<br>Leu<br>445 | CAT<br>His          | GGC<br>Gly        | TAC<br>Tyr            | 1344 |
| ATG<br>Met        | GAA<br>Glu<br>450     | AAC<br>Asn            | AAG<br>Lys        | CCT<br>Pro        | CTG<br>Leu            | GGA<br>Gly<br>455 | CTT<br>Leu                    | CAG<br>Gln          | ATC<br>Ile        | TTC<br>Phe           | ATT<br>Ile<br>460     | GGG<br>Gly        | ACA<br>Thr          | GCT<br>Ala        | GAT<br>Asp            | 1392 |
| GAG<br>Glu<br>465 | CGG<br>Arg            | ATC<br>Ile            | CTT<br>Leu        | AAG<br>Lys        | CCG<br>Pro<br>470     | CAC<br>His        | GCC<br>Ala                    | TTC<br>Phe          | TAC<br>Tyr        | CAG<br>Gln<br>475    | GTG<br>Val            | CAC<br>His        | CGA<br>Arg          | ATC<br>Ile        | ACG<br>Thr<br>480     | 1440 |
| GGG<br>Gly        | AAA<br>Lys            | ACT<br>Thr            | GTC<br>Val        | ACC<br>Thr<br>485 | ACC<br>Thr            | ACC<br>Thr        | AGC<br>Ser                    | TAT<br>Tyr          | GAG<br>Glu<br>490 | AAG<br>Lys           | ATA<br>Ile            | GTG<br>Val        | GGC                 | AAC<br>Asn<br>495 | ACC<br>Thr            | 1488 |
| AAA<br>Lys        | GTC<br>Val            | CTG<br>Leu            | GAG<br>Glu<br>500 | ATC<br>Ile        | CCC<br>Pro            | TTG<br>Leu        | GAG<br>Glu                    | CCC<br>Pro<br>505   | AAA<br>Lys        | AAC<br>Asn           | AAC<br>Asn            | ATG<br>Met        | AGG<br>Arg<br>510   | GCA<br>Ala        | ACC<br>Thr            | 1536 |
| ATC<br>Ile        | GAC<br>Asp            | TGT<br>Cys<br>515     | Ala               | GGG<br>Gly        | ATC                   | TTG<br>Leu        | AAG<br>Lys<br>520             | Leu                 | AGA<br>Arg        | AAC<br>Asn           | GCC<br>Ala            | GAC<br>Asp<br>525 | ATT                 | GAG<br>Glu        | CTG<br>Leu            | 1584 |
| CGG               | AAA<br>Lys<br>530     | Gly                   | GAG<br>Glu        | ACG<br>Thr        | GAC<br>Asp            | ATT<br>Ile<br>535 | GG.A<br>Gly                   | AGA<br>Arg          | AAG<br>Lys        | AAC<br>Asn           | ACG<br>Thr<br>540     | Arg               | GTG<br>Val          | AGA<br>Arg        | CTG                   | 1632 |
| GTT<br>Val<br>545 | Phe                   | CGA<br>Arg            | GTT<br>Val        | CAC<br>His        | ATC<br>Ile<br>550     | Pro               | GAC<br>Glu                    | TCC<br>Ser          | AGT<br>Ser        | GGC<br>Gly<br>555    | Arg                   | ATC               | GTC<br>Val          | TCT<br>Ser        | Leu<br>560            | 1680 |
|                   |                       |                       |                   |                   | Pro                   |                   |                               |                     |                   | Glr                  |                       |                   |                     |                   | GAG<br>Glu            | 1728 |
| CTC<br>Lev        | CCC<br>Pro            | ATC<br>Met            | GTT<br>Val<br>580 | Glu               | AGA<br>Arg            | CAA<br>Gln        | GAC<br>Asi                    | C ACA<br>Thi<br>585 | Asp               | AGC<br>Ser           | TGC<br>Cys            | CTY<br>Lev        | GT(<br>1 Va:<br>590 | l Tyr             | GGC<br>Gly            | 1776 |
| G17<br>GG(        | CAC<br>Glr            | G CAA<br>n Glr<br>595 | n Net             | F ATC             | CTC                   | ACG<br>Thr        | GG(<br>G1 <sub>2</sub><br>60) | y Glr               | AAC<br>n Asr      | TTC<br>Phe           | T ACA<br>∋ Thi        | A TCC             | r Gl                | G TCC             | AAA<br>Lys            | 1824 |
| GT'<br>Va         | r GTC<br>l Val<br>610 | l Phe                 | r ACT             | GAC               | AAC<br>1 Lys          | ACC<br>Thr        | Th                            | A GA'<br>r Asi      | r GG/<br>o Gly    | A CAG                | G CAM<br>n Gli<br>620 | n Il              | r TG                | G GAG<br>p Gli    | G ATG<br>u Met        | 1872 |
| GA:<br>G1:<br>62: | u Ala                 | C ACC                 | G GTK<br>r Val    | G GA'             | r AAG<br>5 Lys<br>630 | s Asp             | AA<br>Ly                      | G AGG<br>s Se       | C CAG             | G CCC<br>n Pro<br>63 | o Asi                 | C AT<br>n Me      | G CT<br>t Le        | T TT<br>u Ph      | T GTT<br>e Val<br>640 | 1920 |
| GA                | G AT                  | C CC                  | T GA              | A TA              | r cg                  | S AAC             | . AA                          | G CA                | TA T              | C CG                 | C AC                  | A CC              | T GT                | AA A              | a gtg                 | 1968 |

| Glu | Ile | Pro | Glu | Tyr<br>645 | Arg | Asn | Lys | His | Ile<br>650 | Arg               | Thr | Pro | Val | Lys<br>655 | Val |      |
|-----|-----|-----|-----|------------|-----|-----|-----|-----|------------|-------------------|-----|-----|-----|------------|-----|------|
|     |     |     | _   |            |     |     |     |     |            | CGA<br>Arg        |     |     |     |            |     | 2016 |
|     |     |     |     |            |     |     |     |     |            | ACG<br>Thr        |     |     |     |            |     | 2064 |
|     |     |     |     |            |     |     |     |     |            | CAT<br>His        |     |     |     |            |     | 2112 |
|     |     |     |     |            |     |     |     |     |            | GCC<br>Ala<br>715 |     |     |     |            |     | 2160 |
|     |     |     |     |            |     |     |     |     |            | TTC<br>Phe        |     |     |     |            |     | 2208 |
|     |     |     | _   |            |     |     |     |     |            | CCA<br>Pro        |     |     |     |            |     | 2256 |
| _   |     |     |     |            |     |     |     |     |            | CTG<br>Leu        |     |     |     |            |     | 2304 |
|     |     |     |     |            |     |     |     |     |            | GAC<br>Asp        |     |     |     |            |     | 2352 |
|     |     |     |     |            |     |     |     |     |            | TCA<br>Ser<br>795 |     |     |     |            |     | 2400 |
|     |     |     |     | _          | _   |     |     |     |            | ATC<br>Ile        |     |     |     |            |     | 2448 |
|     |     |     |     |            |     |     |     |     |            | GAG<br>Glu        |     |     |     |            |     | 2496 |
|     |     |     |     |            |     |     |     |     |            | AGA<br>Arg        |     |     |     |            |     | 2544 |
|     |     |     |     |            |     |     |     |     |            | TCC<br>Ser        |     |     |     |            |     | 2592 |
|     |     |     |     |            |     |     |     |     |            | GCC<br>Ala<br>875 |     |     |     |            |     | 2640 |

| GTC AGT GAC CA<br>Val Ser Asp Gl       | AA AAG GAA<br>ln Lys Glu<br>885    | GTA TTA<br>Val Leu             | CCT GCG<br>Pro Ala<br>890     | GGG GTG A                      | ACC ATT<br>Thr Ile           | AAA CAG<br>Lys Gln<br>895      | 2688 |
|----------------------------------------|------------------------------------|--------------------------------|-------------------------------|--------------------------------|------------------------------|--------------------------------|------|
| GAG CAG AAC TY<br>Glu Gln Asn Le<br>90 | rg GAC CAG<br>eu Asp Gln<br>00     | ACC TAC<br>Thr Tyr             | TTG GAT<br>Leu Asp<br>905     | GAT GTT A                      | AAT GAA<br>Asn Glu<br>910    | ATT ATC<br>Ile Ile             | 2736 |
| AGG AAG GAG T<br>Arg Lys Glu Pl<br>915 | TT TCA GGA<br>he Ser Gly           | CCT CCT<br>Pro Pro<br>920      | GCC AGA<br>Ala Arg            | Asn Gln                        | ACG AGA<br>Thr Arg<br>925    | ATT CTG<br>Ile Leu             | 2784 |
| CAG TCG ACG G<br>Gln Ser Thr V<br>930  | TA CCG CGG<br>al Pro Arg           | GCC CGG<br>Ala Arg<br>935      | GAT CCA<br>Asp Pro            | CCG GTC<br>Pro Val<br>940      | GCC ACC<br>Ala Thr           | ATG GTG<br>Met Val             | 2832 |
| AGC AAG GGC G<br>Ser Lys Gly G<br>945  | AG GAG CTG<br>lu Glu Leu<br>950    | TTC ACC<br>Phe Thr             | GGG GTG<br>Gly Val            | GTG CCC<br>Val Pro<br>955      | ATC CTG<br>Ile Leu           | GTC GAG<br>Val Glu<br>960      | 2880 |
| CTG GAC GGC G<br>Leu Asp Gly A         | AC GTA AAC<br>Asp Val Asn<br>965   | GGC CAC<br>Gly His             | AAG TTC<br>Lys Phe<br>970     | Ser Val                        | TCC GGC<br>Ser Gly           | GAG GGC<br>Glu Gly<br>975      | 2928 |
| GAG GGC GAT G<br>Glu Gly Asp A         | GCC ACC TAC<br>Ala Thr Tyr<br>980  | GGC AAG<br>Gly Lys             | CTG ACC<br>Leu Thr<br>985     | CTG AAG<br>Leu Lys             | TTC ATC<br>Phe Ile<br>990    | Cys Thr                        | 2976 |
| ACC GGC AAG C<br>Thr Gly Lys I<br>995  | CTG CCC GTG<br>Leu Pro Val         | CCC TGG<br>Pro Trp<br>1000     | Pro Thr                       | Leu Val                        | ACC ACC<br>Thr Thr<br>1005   | CTG ACC                        | 3024 |
| TAC GGC GTG C<br>Tyr Gly Val C<br>1010 | CAG TGC TTC<br>Gln Cys Phe         | AGC CGC<br>Ser Arg             | TAC CCC                       | GAC CAC<br>Asp His<br>1020     | ATG AAG<br>Met Lys           | CAG CAC                        | 3072 |
| GAC TTC TTC A<br>Asp Phe Phe I<br>1025 | AAG TCC GCC<br>Lys Ser Ala<br>1030 | a Met Pro                      | GAA GGG<br>Glu Gly            | TAC GTC<br>Y TYY Val<br>1035   | CAG GAG                      | G CGC ACC<br>Arg Thr<br>1040   | 3120 |
| ATC TTC TTC I                          | AAG GAC GAG<br>Lys Asp Asp<br>1045 | GGC AAC<br>Gly Asr             | TAC AAG<br>Tyr Lys<br>105     | s Thr Arg                      | GCC GAC<br>Ala Glu           | G GTG AAG<br>1 Val Lys<br>1055 | 3168 |
| TTC GAG GGC (<br>Phe Glu Gly 1         | GAC ACC CTO<br>Asp Thr Let<br>060  | G GTG AAC<br>u Val Asr         | C CGC ATO<br>n Arg Il<br>1065 | C GAG CTG<br>e Glu Leu         | AAG GGG<br>Lys Gly<br>1070   | y Ile Asp                      | 3216 |
| TTC AAG GAG Phe Lys Glu 1075           | GAC GGC AA<br>Asp Gly As           | C ATC CTC<br>n Ile Lev<br>1080 | u Gly Hi                      | C AAG CTC<br>s Lys Lei         | GAG TAG<br>1 Glu Ty:<br>1085 | C AAC TAC<br>r Asn Tyr         | 3264 |
| AAC AGC CAC<br>Asn Ser His<br>1090     | AAC GTC TA<br>Asn Val Ty           | T ATC ATC<br>r Ile Me<br>1095  | G GCC GA<br>t Ala As          | C AAG CAC<br>p Lys Glr<br>1100 | n Lys As                     | C GGC ATC<br>n Gly Ile         | 3312 |
| AAG GTG AAC                            | TTC AAG AT                         | C CGC CA                       | C AAC AT                      | C GAG GAG                      | C GGC AG                     | C GTG CAG                      | 3360 |

Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln 1110 1115 1105 CTC GCC GAC CAC TAC CAG CAG AAC ACC CCC ATC GGC GAC GGC CCC GTG 3408 Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val 1125 1130 CTG CTG CCC GAC AAC CAC TAC CTG AGC ACC CAG TCC GCC CTG AGC AAA 3456 Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys 1145 1140 GAC CCC AAC GAG AAG CGC GAT CAC ATG GTC CTG CTG GAG TTC GTG ACC 3504 Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr 1165 1160 1155 GCC GCC GGG ATC ACT CTC GGC ATG GAC GAG CTG TAC AAG TAA 3546 Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys 1180 1175 1170 (2) INFORMATION FOR SEQ ID NO:133: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1181 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (v) FRAGMENT TYPE: internal (xi) SEQUENCE DESCRIPTION: SEQ ID NO:133: Met Asn Ala Pro Glu Arg Gln Pro Gln Pro Asp Gly Gly Asp Ala Pro 10 1 5 Gly His Glu Pro Gly Gly Ser Pro Gln Asp Glu Leu Asp Phe Ser Ile 25 20 Leu Phe Asp Tyr Glu Tyr Leu Asn Pro Asn Glu Glu Glu Pro Asn Ala 40 His Lys Val Ala Ser Pro Pro Ser Gly Pro Ala Tyr Pro Asp Asp Val 55 60 Met Asp Tyr Gly Leu Lys Pro Tyr Ser Pro Leu Ala Ser Leu Ser Gly 70 75 80 Glu Pro Pro Gly Arg Phe Gly Glu Pro Asp Arg Val Gly Pro Gln Lys 90 85 Phe Leu Ser Ala Ala Lys Pro Ala Gly Ala Ser Gly Leu Ser Pro Arg 105 110 100 Ile Glu Ile Thr Pro Ser His Glu Leu Ile Gln Ala Val Gly Pro Leu 120 125 Arg Met Arg Asp Ala Gly Leu Leu Val Glu Gln Pro Pro Leu Ala Gly 140 130 135 Val Ala Ala Ser Pro Arg Phe Thr Leu Pro Val Pro Gly Phe Glu Gly 145 150 155 Tyr Arg Glu Pro Leu Cys Leu Ser Pro Ala Ser Ser Gly Ser Ser Ala 165 170 175 Ser Phe Ile Ser Asp Thr Phe Ser Pro Tyr Thr Ser Pro Cys Val Ser 180 185 190

Pro Asn Asn Gly Gly Pro Asp Asp Leu Cys Pro Gln Phe Gln Asn Ile

|            |       | 195  |            |            |              |      | 200   |            |            |            |            | 205  |            |            |              |
|------------|-------|------|------------|------------|--------------|------|-------|------------|------------|------------|------------|------|------------|------------|--------------|
|            | 210   | His  |            |            |              | 215  |       |            |            |            | Met<br>220 |      |            |            |              |
| Ser<br>225 | Leu   | Ala  | Glu        | Asp        | Ser<br>230   | Cys  | Leu   | Gly        | Arg        | His<br>235 | Ser        | Pro  | Val        | Pro        | Arg<br>240   |
| Pro        | Ala   | Ser  | Arg        | Ser<br>245 | Ser          | Ser  | Pro   | Gly        | Ala<br>250 | Lys        | Arg        | Arg  | His        | Ser<br>255 | Cys          |
| Ala        | Glu   | Ala  | Leu<br>260 | Val        | Ala          | Leu  |       | Pro<br>265 | Gly        | Ala        | Ser        | Pro  | Gln<br>270 | Arg        | Ser          |
|            |       | 275  |            |            |              |      | 280   |            |            |            | Ala        | 285  |            |            |              |
|            | 290   |      |            |            |              | 295  |       |            |            |            | Ser<br>300 |      |            |            |              |
| 305        |       |      |            |            | 310          |      |       |            |            | 315        |            |      |            |            | 320          |
|            |       |      |            | 325        |              |      |       |            | 330        |            | Val        |      |            | 335        |              |
|            |       |      | 340        |            |              |      |       | 345        |            |            | Ala        |      | 350        |            |              |
|            |       | 355  |            |            |              |      | 360   |            |            |            | Ala        | 365  |            |            |              |
|            | 370   |      |            |            |              | 375  |       |            |            |            | Val<br>380 |      |            |            |              |
| Ile<br>385 |       | Ser  | Ile        | Pro        | Val<br>390   | Thr  | Ala   | Ser        | Leu        | 9rc<br>395 | Pro        | Leu  | Glu        | Trp        | Pro<br>400   |
| Leu        | Ser   | Ser  | Gln        | Ser<br>405 | Gly          | Ser  | Tyr   | Glu        | Leu<br>410 |            | , Ile      | Glu  | Val        | Gln<br>415 | Pro          |
| Lys        | Pro   | His  | His        | Arg        |              | His  | Tyr   | Glu<br>425 |            | Glu        | ı Gly      | Ser  | Arg<br>430 |            | Ala          |
|            |       | 435  | ,          |            |              |      | 440   |            |            |            |            | 445  |            |            | Tyr          |
|            | 450   | )    |            |            |              | 455  |       |            |            |            | 460        | ,    |            |            | qzA ı        |
| 465        | 5     |      |            |            | 470          |      |       |            |            | 475        | 5          |      |            |            | 480          |
|            |       |      |            | 485        | i            |      |       |            | 490        | )          |            |      |            | 49         |              |
|            |       |      | 500        | )          |              |      |       | 505        | 5          |            |            |      | 510        | )          | a Thr        |
|            |       | 519  | 5          |            |              |      | 520   |            |            |            |            | 525  | 1          |            | ı Leu        |
|            | 530   | )    |            |            |              | 535  | •     |            |            |            | 540        | )    |            |            | g Leu        |
| 545        | 5     |      |            |            | 550          | )    |       |            |            | 55         | 5          |      |            |            | r Leu<br>560 |
| Gli        | n Thi |      |            | 565        | 5            |      |       |            | 57         | 0          |            |      |            | 57         |              |
|            |       |      | 580        | 5          |              |      |       | 58         | 5          |            |            |      | 590        | 0          | r Gly        |
|            |       | 59   | 5          |            |              |      | 600   | )          |            |            |            | 605  | 5          |            | r Lys        |
|            | 61    | 0    |            |            |              | 619  | 5     |            |            |            | 62         | 0    |            |            | u Met        |
| G1<br>62   |       | a Th | r Va       | l Ası      | p Lys<br>630 |      | ) Lys | s Se       | r Gl       | n Pr<br>63 |            | n Me | t Le       | u Ph       | e Val<br>640 |
| G1         | u Il  | e Pr | o Gl       | u Ty:      | r Arg        |      | n Ly: | s Hi       | s Il<br>65 |            | g Th       | r Pr | o Va       | l Ly<br>65 | s Val        |
| As         | n Ph  | е Ту | r Va       |            |              | n Gl | y Ly: | s Ar       |            |            | g Se       | r Gl | n Pr       | o G1       | n His        |

|            |      |      | 660   |              |              |      |      | 665  |            |            |       |       | 670  |       |                 |
|------------|------|------|-------|--------------|--------------|------|------|------|------------|------------|-------|-------|------|-------|-----------------|
|            |      | 675  | His   |              | Val          |      | 680  |      |            |            |       | 685   |      |       |                 |
|            | 690  |      |       |              |              | 695  |      |      |            |            | 700   |       |      |       |                 |
| 705        |      |      |       |              | Gln<br>710   |      |      |      |            | 715        |       |       |      |       | 720             |
|            |      |      |       | 725          | Ala          |      |      |      | 730        |            |       |       |      | 735   |                 |
|            |      |      | 740   |              | Tyr          |      |      | 745  |            |            |       |       | 750  |       |                 |
|            |      | 755  |       |              | Leu          |      | 760  |      |            |            |       | 765   |      |       |                 |
|            | 770  |      |       |              | Pro          | 775  |      |      |            |            | 780   |       |      |       |                 |
| 785        |      |      |       |              | Ser<br>790   |      |      |      |            | 795        |       |       |      |       | 800             |
|            |      |      |       | 805          | Gln          |      |      |      | 810        |            |       |       |      | 815   |                 |
|            |      |      | 820   |              | Суѕ          |      |      | 825  |            |            |       |       | 830  | 1     |                 |
| -          |      | 835  |       |              |              |      | 840  |      |            |            |       | 845   |      |       | Pro             |
|            | 850  |      |       |              |              | 855  |      |      |            |            | 860   | )     |      |       | Ile             |
|            |      | Glr  | ı Asn | Ala          | Thr<br>870   | Ser  | Gin  | Arg  | Alc        | 875        |       | ASI   | (GI) | , 110 | Pro<br>880      |
| 865<br>Val | Ser  | Asp  | Glr.  | Lys<br>885   | Glu          | Val  | Leu  | Pro  | Ala<br>890 | a Gly      |       | Thr   | Ile  | 895   | Gln             |
|            |      |      | 900   | Asp          | Gln          |      |      | 905  |            |            |       |       | 910  | )     | e Ile           |
|            |      | 91   | 5     |              |              |      | 920  |      |            |            |       | 925   | •    |       | e Leu           |
|            | 930  | )    |       |              |              | 935  | ,    |      |            |            | 94    | )     |      |       | val             |
|            |      | Gl;  | y Glu | ı Glu        | 1 Leu<br>950 |      | Thr  | Gly  | / Va       | 1 Va<br>95 | l Pro | o Ile | e Le | u va. | 1 Glu<br>960    |
| 945<br>Leu | ASI  | o Gl | y Asi | o Val<br>969 | Asr          |      | His  | Lys  | 97         | e Se       |       | l Sei | c Gl | y Gl  | a Gly           |
|            |      |      | 986   | a Thi        | туг          |      |      | 98   | 5          |            |       |       | 99   | U     | s Thr           |
|            |      | 99   | s Le  | u Pro        |              |      | 1000 | )    |            |            |       | 100   | 5    |       | u Thr           |
|            | 101  | n    |       |              |              | 1015 | 5    |      |            |            | 102   | 0     |      |       | n His           |
| 029        | 5    |      |       |              | 1030         | )    |      |      |            | 103        | 5     |       |      |       | g Thr<br>1040   |
|            |      |      |       | 104          | 5            |      |      |      | 105        | 0          |       |       |      | 105   |                 |
|            |      |      | 106   | 0            |              |      |      | 106  | 5          |            |       |       | 107  | 0     | e Asp           |
|            |      | 107  | 5     |              |              |      | 108  | 0    |            |            |       | 108   | 5    |       | n Tyr           |
|            | 109  | 0    |       |              |              | 109  | 5    |      |            |            | 110   | 00    |      |       | y Ile<br>al Gln |
| 10         | 5    |      |       |              | 111          | 0    |      |      |            | 111        | 15    |       |      |       | al Gln<br>1120  |
| Le         | u Al | a As | sp Hi | з Ту         | r Gl         | n Gl | n As | n Th | ır Pı      | 0 I        | le G  | ly As | sp G | ly Pi | co Val          |

1135 1125 1130 Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys 1140 1145 1150 Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr 1155 1160 1165 Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys 1175 1170 (2) INFORMATION FOR SEQ ID NO:134: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2802 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (ix) FEATURE: (A) NAME/KEY: Coding Sequence (B) LOCATION: 1...2799 (D) OTHER INFORMATION: (xi) SEQUENCE DESCRIPTION: SEQ ID NO:134: ATG GTG AGC AAG GGC GAG GAG CTG TTC ACC GGG GTG GTG CCC ATC CTG 48 Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu 5 GTC GAG CTG GAC GGC GAC GTA AAC GGC CAC AAG TTC AGC GTG TCC GGC Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly 25 GAG GGC GAG GGC GAT GCC ACC TAC GGC AAG CTG ACC CTG AAG TTC ATC Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile 35 40 TGC ACC ACC GGC AAG CTG CCC GTG CCC TGG CCC ACC CTC GTG ACC ACC 192 Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr 50 55 CTG ACC TAC GGC GTG CAG TGC TTC AGC CGC TAC CCC GAC CAC ATG AAG 240 Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys 75 65 CAG CAC GAC TTC TTC AAG TCC GCC ATG CCC GAA GGC TAC GTC CAG GAG 288 Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu 85 90 CGC ACC ATC TTC TTC AAG GAC GAC GGC AAC TAC AAG ACC CGC GCC GAG Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu 105 GTG AAG TTC GAG GGC GAC ACC CTG GTG AAC CGC ATC GAG CTG AAG GGC 384 Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly 120 ATC GAC TTC AAG GAG GAC GGC AAC ATC CTG GGG CAC AAG CTG GAG TAC 432

| Ile               | Asp<br>130        | Phe               | Lys                   | Glu                   | Asp                 | Gly<br>135        | Asn                | Ile               | Leu               | Gly               | His<br>140        | Lys                | Leu                | Glu                 | Tyr                   |      |
|-------------------|-------------------|-------------------|-----------------------|-----------------------|---------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|--------------------|--------------------|---------------------|-----------------------|------|
| AAC<br>Asn<br>145 | TAC<br>Tyr        | AAC<br>Asn        | AGC<br>Ser            | CAC<br>His            | AAC<br>Asn<br>150   | GTC<br>Val        | TAT<br>Tyr         | ATC<br>Ile        | ATG<br>Met        | GCC<br>Ala<br>155 | GAC<br>Asp        | AAG<br>Lys         | CAG<br>Gln         | AAG<br>Lys          | AAC<br>Asn<br>160     | 480  |
| GGC<br>Gly        | ATC<br>Ile        | AAG<br>Lys        | GTG<br>Val            | AAC<br>Asn<br>165     | TTC<br>Phe          | AAG<br>Lys        | ATC<br>Ile         | CGC<br>Arg        | CAC<br>His<br>170 | AAC<br>Asn        | ATC<br>Ile        | GAG<br>Glu         | GAC<br>Asp         | GGC<br>Gly<br>175   | AGC<br>Ser            | 528  |
| GTG<br>Val        | CAG<br>Gln        | CTC<br>Leu        | GCC<br>Ala<br>180     | GAC<br>Asp            | CAC<br>His          | TAC<br>Tyr        | CAG<br>Gln         | CAG<br>Gln<br>185 | AAC<br>Asn        | ACC<br>Thr        | CCC<br>Pro        | ATC<br>Ile         | GGC<br>Gly<br>190  | GAC<br>Asp          | GGC<br>Gly            | 576  |
| CCC<br>Pro        | GTG<br>Val        | CTG<br>Leu<br>195 | CTG<br>Leu            | CCC                   | GAC<br>Asp          | AAC<br>Asn        | CAC<br>His<br>200  | TAC<br>Tyr        | CTG<br>Leu        | AGC<br>Ser        | ACC<br>Thr        | CAG<br>Gln<br>205  | TCC<br>Ser         | GCC<br>Ala          | CTG<br>Leu            | 624  |
| AGC<br>Ser        | AAA<br>Lys<br>210 | GAC<br>Asp        | CCC                   | AAC<br>Asn            | GAG<br>Glu          | AAG<br>Lys<br>215 | CGC<br>Arg         | GAT<br>Asp        | CAC<br>His        | ATG<br>Met        | GTC<br>Val<br>220 | Leu                | CTG<br>Leu         | GAG<br>Glu          | TTC<br>Phe            | 672  |
| GTG<br>Val<br>225 | ACC<br>Thr        | GCC<br>Ala        | GCC<br>Ala            | GGG<br>Gly            | ATC<br>Ile<br>230   | ACT<br>Thr        | CTC<br>Leu         | GGC<br>Gly        | ATG<br>Met        | GAC<br>Asp<br>235 | Glu               | CTG<br>Leu         | TAC<br>Tyr         | AAG<br>Lys          | TCC<br>Ser<br>240     | 720  |
| GGA<br>Gly        | CTC<br>Leu        | AGA<br>Arg        | TCT<br>Ser            | CGA<br>Arg<br>245     | Gly                 | AGC<br>Ser        | ATG<br>Met         | GGC<br>Gly        | ACC<br>Thr<br>250 | Leu               | CGG<br>Arg        | GAT<br>Asp         | TTA<br>Leu         | CAG<br>Gln<br>255   | TAC                   | 768  |
| GCG<br>Ala        | CTC<br>Leu        | CAG<br>Gln        | GAG<br>Glu<br>260     | Lys                   | ATC<br>Ile          | GAG<br>Glu        | GAG<br>Glu         | CTG<br>Leu<br>265 | AGG<br>Arg        | CAC<br>Glr        | CGG<br>Arg        | GAT<br>Asp         | GCT<br>Ala<br>270  | Leu                 | ATC<br>Ile            | 816  |
| GAC<br>Asp        | GAG<br>Glu        | CTC<br>Lev<br>275 | Glu                   | CTC<br>Leu            | GAG<br>Glu          | TTG<br>Leu        | GAT<br>Asp<br>280  | Gln               | <b>AA</b> G       | GAC<br>Asp        | GAA<br>Glu        | Lev<br>285         | ı Ile              | CAC<br>Glr          | AAG<br>Lys            | 864  |
| CTG<br>Leu        | CAG<br>Gln<br>290 | Asr               | GAG<br>Glu            | CTC<br>Lev            | GAC<br>Asp          | AAG<br>Lys<br>295 | TAC<br>Tyr         | CGC<br>Arg        | TCC               | GTC<br>Val        | 300               | e Arç              | A CCA              | A GCC               | ACC<br>Thr            | 912  |
| CAG<br>Gln<br>305 | Glr               | GCC<br>Ala        | G CAC                 | AAC<br>Lys            | G CAG<br>Glr<br>310 | Ser               | GCG                | AGC<br>Ser        | ACC<br>Thi        | Lev<br>315        | ı Glı             | G GGC              | C GAG              | CCC<br>Pro          | G CGC<br>D Arg<br>320 | 960  |
| ACC<br>Thr        | : AAC             | G CGG             | G CAC                 | G GC0<br>1 Ala<br>325 | a Ile               | TCC<br>Ser        | GCC<br>Ala         | GAC<br>Glu        | CCC<br>Pro        | Th:               | C GCC             | C TT               | C GAG              | 2 ATG<br>2 Il<br>33 | C CAG<br>e Gln<br>5   | 1008 |
| GAT<br>Asp        | CTC<br>Lev        | AG(<br>1 Se:      | C CAT<br>r His<br>340 | s Va                  | G ACC               | CTC               | CCC<br>Pro         | TTC<br>Phe<br>345 | Ty:               | C CC              | C AA              | G AG<br>s Se       | c cc<br>r Pr<br>35 | o Gl                | G TCC<br>n Ser        | 1056 |
| AAC<br>Lys        | GAS               | r CT<br>D Le      | u Il                  | A AAG<br>e Ly:        | G GAZ               | A GCT             | TATO<br>11e<br>360 | e Le              | GA(               | C AA<br>p As      | T GA<br>n As      | C TT<br>p Ph<br>36 | e Me               | G AA<br>t Ly        | G AAC<br>s Asn        | 1104 |

|                   |            |            |            |                   |                   |            |            |            | GTG<br>Val        |                   |                |                |       |                     |                       | 1152 |
|-------------------|------------|------------|------------|-------------------|-------------------|------------|------------|------------|-------------------|-------------------|----------------|----------------|-------|---------------------|-----------------------|------|
|                   |            |            |            |                   |                   |            |            |            | AAA<br>Lys        |                   |                |                |       |                     |                       | 1200 |
|                   |            |            |            |                   |                   |            |            |            | GTT<br>Val<br>410 |                   |                |                |       |                     |                       | 1248 |
|                   |            |            |            |                   |                   |            |            |            | AAA<br>Lys        |                   |                |                |       |                     |                       | 1296 |
|                   |            |            |            |                   |                   |            |            |            | ACC<br>Thr        |                   |                |                |       |                     |                       | 1344 |
|                   |            |            |            |                   |                   |            |            |            | TGT<br>Cys        |                   |                |                |       |                     |                       | 1392 |
|                   | Thr        |            |            |                   |                   |            |            |            | TAT<br>Tyr        |                   |                |                |       |                     |                       | 1440 |
|                   |            |            |            |                   |                   |            |            |            | GAG<br>Glu<br>490 |                   |                |                |       |                     |                       | 1488 |
|                   |            |            |            |                   |                   |            |            |            | Asn               |                   |                |                |       | Ile                 | AGG<br>Arg            | 1536 |
|                   |            |            | Arg        |                   |                   |            |            | Phe        |                   |                   |                |                | Gly   |                     | GTA<br>Val            | 1584 |
|                   |            | Thr        |            |                   |                   |            | Pro        |            |                   |                   |                | Val            |       |                     | AGA<br>Arg            | 1632 |
| ACT<br>Thr<br>545 | Leu        | GGA<br>Gly | AAA<br>Lys | GGA<br>Gly        | GAC<br>Asp<br>550 | Trp        | TTI<br>Phe | GGA<br>Gly | GAG<br>Glu        | AAA<br>Lys<br>555 | : Ala          | TTC            | G CAC | G GG(<br>n Gly      | G GAA<br>/ Glu<br>560 | 1680 |
| GAT<br>Asp        | GTO<br>Val | AGA<br>Arg | ACA<br>Thr | GCA<br>Ala<br>565 | Asn               | GTA<br>Val | TTA .      | GCT<br>Ala | GCA<br>Ala<br>570 | Gli               | A GCT<br>1 Ala | r GTA<br>a Val | A ACC | TGG<br>r Cy:<br>57! | CTT<br>s Leu<br>5     | 1728 |
|                   |            |            |            | Asp               |                   |            |            |            | Leu               |                   |                |                |       | u As                | r GAT<br>p Asp        | 1776 |
| GT:               | r TCI      | r aa t     | AAA :      | GC#               | LAT A             | GAA        | GAT        | r GCA      | A GAA             | A GC              | r aa           | A GC           | AA A  | A TA                | T GAA                 | 1824 |

| Va1               | Ser                 | Asn<br>595          | Lys                  | Ala                   | Tyr                  | Glu                   | Asp<br>600        | Ala                | Glu                | Ala                | Lys                | Ala<br>605        | Lys                  | Tyr                   | Glu                   |      |
|-------------------|---------------------|---------------------|----------------------|-----------------------|----------------------|-----------------------|-------------------|--------------------|--------------------|--------------------|--------------------|-------------------|----------------------|-----------------------|-----------------------|------|
| GCT<br>Ala        | GAA<br>Glu<br>610   | GCG<br>Ala          | GCT<br>Ala           | TTC<br>Phe            | TTC<br>Phe           | GCC<br>Ala<br>615     | AAC<br>Asn        | CTG<br>Leu         | AAG<br>Lys         | CTG<br>Leu         | TCT<br>Ser<br>620  | GAT<br>Asp        | TTC<br>Phe           | AAC<br>Asn            | ATC<br>Ile            | 1872 |
| ATT<br>Ile<br>625 | GAT<br>Asp          | ACC<br>Thr          | CTT<br>Leu           | GGA<br>Gly            | GTT<br>Val<br>630    | GGA<br>Gly            | GGT<br>Gly        | TTC<br>Phe         | GGA<br>Gly         | CGA<br>Arg<br>635  | GTA<br>Val         | GAA<br>Glu        | CTG<br>Leu           | GTC<br>Val            | CAG<br>Gln<br>640     | 1920 |
| TTG<br>Leu        | AAA<br>Lys          | AGT<br>Ser          | GAA<br>Glu           | GAA<br>Glu<br>645     | TCC<br>Ser           | AAA<br>Lys            | ACG<br>Thr        | TTT<br>Phe         | GCA<br>Ala<br>650  | ATG<br>Met         | AAG<br>Lys         | ATT<br>Ile        | CTC<br>Leu           | AAG<br>Lys<br>655     | AAA<br>Lys            | 1968 |
| CGT<br>Arg        | CAC<br>His          | ATT                 | GTG<br>Val<br>660    | GAC<br>Asp            | ACA<br>Thr           | AGA<br>Arg            | CAG<br>Gln        | CAG<br>Gln<br>665  | GAG<br>Glu         | CAC                | ATC                | CGC<br>Arg        | TCA<br>Ser<br>670    | Glu                   | AAG<br>Lys            | 2016 |
| CAG<br>Gln        | ATC<br>Ile          | ATG<br>Met<br>675   | Gln                  | GGG<br>Gly            | GCT<br>Ala           | CAT<br>His            | TCC<br>Ser<br>680 | GAT<br>Asp         | TTC<br>Phe         | ATA<br>Ile         | GTG<br>Val         | AGA<br>Arg<br>685 | Leu                  | TAC<br>Tyr            | AGA<br>Arg            | 2064 |
| ACA<br>Thr        | TTT<br>Phe<br>690   | Lys                 | GAC<br>Asp           | AGC<br>Ser            | AAA<br>Lys           | ТАТ<br>Туг<br>695     | TTG<br>Leu        | TAT<br>Tyr         | ATG<br>Met         | TTC<br>Lev         | ATC<br>Met<br>700  | : Glu             | GCT<br>Ala           | TGI<br>Cys            | CTA<br>Leu            | 2112 |
| GGT<br>Gly<br>705 | Gly                 | GAC<br>Glu          | CTC                  | TGG<br>Trp            | ACC<br>Thr<br>710    | ATT                   | CTC<br>Leu        | AGG<br>Arg         | GAT<br>Asp         | AGA<br>Arg<br>715  | g Gly              | r TCC<br>/ Ser    | TTI<br>Phe           | GAÆ<br>Glu            | A GAT<br>Asp<br>720   | 2160 |
| TC1<br>Ser        | ACA<br>Thr          | A ACC               | C AGA                | A TTI<br>g Phe<br>725 | Tyr                  | ACA<br>Thr            | GCA<br>Ala        | . TGI<br>Cys       | GTG<br>Val         | . Va               | A GAI              | A GC:             | r TT:                | r GC0<br>≥ Ala<br>735 | TAT<br>Tyr            | 2208 |
| CT(<br>Let        | G CAT               | r TC(               | 2 AA<br>r Lys<br>740 | s Gly                 | ATC                  | ATI                   | TAC<br>Tyr        | AGC<br>Arc<br>745  | , Asr              | C CTO              | C AA               | G CC              | A GAZ<br>O Gli<br>75 | ı Ası                 | r CTC                 | 2256 |
| ATC<br>Ile        | CTA<br>E Lev        | A GA'<br>L As<br>75 | p Hi                 | C CGA                 | GGT<br>Gly           | тАТ<br>/ Туз          | GCC<br>Ala<br>760 | Lys                | A CTO              | G GT<br>u Va       | T GA<br>l As       | T TT<br>p Ph      | e Gl                 | C TT<br>y Ph          | T GCA<br>e Ala        | 2304 |
| AA(<br>Ly:        | G AA<br>s Ly:<br>77 | s Il                | A GG<br>e Gl         | A TT<br>y Phe         | r GGZ<br>e Gly       | A AAG<br>7 Ly:<br>77! | s Lys             | A AC               | A TGO              | G AC<br>p Th       | T TT<br>I Ph<br>78 | е Су              | T GG<br>s Gl         | G AC<br>y Th          | T CCA<br>r Pro        | 2352 |
| GA<br>G1<br>78    | и Ту                | T GT<br>r Va        | A GC<br>1 Al         | C CC<br>a Pr          | A GA(<br>o Gl)<br>79 | ı Il                  | c ATG             | C CTV              | G AA<br>u As       | C AA<br>n Ly<br>79 | s Gl               | C CA<br>y Hi      | T GA<br>s As         | C AT                  | T TCA<br>e Ser<br>800 | 2400 |
| GC<br>Al          | C GA<br>a As        | С ТА<br>Р Ту        | C TG                 | G TC<br>p Se<br>80    | r Le                 | G GG.<br>u Gl         | A ATO             | C CT<br>e Le       | A AT<br>u Me<br>81 | t Ty               | AT G#<br>Ar Gl     | A CI<br>lu Le     | C CI<br>u Le         | G AC<br>eu Th<br>81   | T GGC<br>ir Gly       | 2448 |
| AG<br>Se          | c cc<br>r Pr        | A CC                | TT TT<br>O Ph        | ie Se                 | A GG<br>r Gl         | c cc<br>y Pr          | A GA<br>o As      | T CC<br>p Pr<br>82 | o Me               | G AA               | AA AC<br>/s Tì     | CC TA             | r As                 | AC AT<br>sn II        | CC ATA<br>le Ile      | 2496 |

| TTG<br>Leu        | AGG<br>Arg        | GGG<br>Gly<br>835 | ATT<br>Ile        | GAC<br>Asp        | ATG<br>Met        | ATA<br>Ile        | GAA<br>Glu<br>840 | TTT<br>Phe        | CCA<br>Pro        | AAG<br>Lys        | AAG<br>Lys        | ATT<br>Ile<br>845 | GCC<br>Ala        | AAA<br>Lys        | AAT<br>Asn        | 2544 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| GCT<br>Ala        | GCT<br>Ala<br>850 | AAT<br>Asn        | TTA<br>Leu        | ATT<br>Ile        | AAA<br>Lys        | AAA<br>Lys<br>855 | CTA<br>Leu        | TGC<br>Cys        | AGG<br>Arg        | GAC<br>Asp        | AAT<br>Asn<br>860 | CCA<br>Pro        | TCA<br>Ser        | GAA<br>Glu        | AGA<br>Arg        | 2592 |
| TTA<br>Leu<br>865 | GGG<br>Gly        | AAT<br>Asn        | TTG<br>Leu        | AAA<br>Lys        | AAT<br>Asn<br>870 | GGA<br>Gly        | GTA<br>Val        | AAA<br>Lys        | GAC<br>Asp        | ATT<br>Ile<br>875 | CAA<br>Gln        | AAG<br>Lys        | CAC<br>His        | AAA<br>Lys        | TGG<br>Trp<br>880 | 2640 |
| TTT<br>Phe        | GAG<br>Glu        | GGC<br>Gly        | TTT<br>Phe        | AAC<br>Asn<br>885 | TGG<br>Trp        | GAA<br>Glu        | GGC<br>Gly        | TTA<br>Leu        | AGA<br>Arg<br>890 | AAA<br>Lys        | GGT<br>Gly        | ACC<br>Thr        | TTG<br>Leu        | ACA<br>Thr<br>895 | CCT<br>Pro        | 2688 |
| CCT<br>Pro        | ATA<br>Ile        | ATA<br>Ile        | CCA<br>Pro<br>900 | AGT<br>Ser        | GTT<br>Val        | GCA<br>Ala        | TCA<br>Ser        | CCC<br>Pro<br>905 | ACA<br>Thr        | GAC<br>Asp        | ACA<br>Thr        | AGT<br>Ser        | AAT<br>Asn<br>910 | Phe               | GAC<br>Asp        | 2736 |
| AGT<br>Ser        | TTC<br>Phe        | CCT<br>Pro<br>915 | Glu               | GAC<br>Asp        | AAC<br>Asn        | GAT<br>Asp        | GAA<br>Glu<br>920 | Pro               | CCA<br>Pro        | CCT               | GAT<br>Asp        | GAC<br>Asp<br>925 | Asn               | TCA<br>Ser        | GGA<br>Gly        | 2784 |
|                   | GAT<br>Asp<br>930 | Ile               |                   |                   | TAA               |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 2802 |

#### (2) INFORMATION FOR SEQ ID NO:135:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 933 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:135:

Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu 10 Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly 25 Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile 45 40 Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr 60 55 Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys 75 70 Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu 90 85 Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu 105 Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly

|       |     | 115   |      |            |            |       | 120        |       |            |            |            | 125  |      |            |              |
|-------|-----|-------|------|------------|------------|-------|------------|-------|------------|------------|------------|------|------|------------|--------------|
| Ile A |     |       | Lys  | Glu        |            |       |            | Ile   | Leu        | Gly        | His<br>140 | Lys  | Leu  | Glu        | Tyr          |
| Asn 1 | Tyr | Asn   | Ser  | His        | Asn<br>150 | Val   | Tyr        | Ile   | Met        | Ala<br>155 | Asp        | Lys  | Gln  | Lys        | Asn<br>160   |
| Gly : | Ile | Lys   | Val  | Asn<br>165 | Phe        | Lys   | Ile        | Arg   | His<br>170 | Asn        | Ile        | Glu  | Asp  | Gly<br>175 | Ser          |
| Val ( |     |       | 180  |            |            |       |            | 185   |            |            |            |      | 190  |            |              |
|       |     | 195   |      |            |            |       | His<br>200 |       |            |            |            | 205  |      |            |              |
|       | 210 |       |      |            |            | 215   | Arg        |       |            |            | 220        |      |      |            |              |
| 225   |     |       |      |            | 230        |       | Leu        |       |            | 235        |            |      |      |            | 240          |
| -     |     |       |      | 245        |            |       | Met        |       | 250        |            |            |      |      | 255        |              |
|       |     |       | 260  |            |            |       | Glu        | 265   |            |            |            |      | 270  |            |              |
|       |     | 275   |      |            |            |       | Asp<br>280 |       |            |            |            | 285  |      |            |              |
|       | 290 |       |      |            |            | 295   | Tyr        |       |            |            | 300        |      |      |            |              |
| 305   |     |       |      |            | 310        |       | Ala        |       |            | 315        |            |      |      |            | 320          |
|       |     |       |      | 325        |            |       | Ala        |       | 330        |            |            |      |      | 335        |              |
|       |     |       | 340  |            |            |       | Pro        | 345   |            |            |            |      | 350  |            |              |
| _     |     | 355   |      |            |            |       | Ile<br>360 |       |            |            |            | 365  |      |            |              |
|       | 370 |       |      |            |            | 375   |            |       |            |            | 380        |      |      |            |              |
| 385   |     |       |      |            | 390        |       | Ile        |       |            | 395        |            |      |      |            | 400          |
|       |     |       |      | 405        | ,          |       |            |       | 410        | )          |            |      |      | 415        |              |
|       |     |       | 420  | }          |            |       |            | 425   |            |            |            |      | 430  | }          | Ala          |
|       |     | 435   |      |            |            |       | 440        |       |            |            |            | 445  | •    |            | Asn          |
|       | 450 |       |      |            |            | 455   | •          |       |            |            | 460        | )    |      |            | Met          |
| 465   |     |       |      |            | 470        | )     |            |       |            | 475        | 5          |      |      |            | 480          |
|       |     |       |      | 485        | 5          |       |            |       | 490        | )          |            |      |      | 499        |              |
|       |     |       | 500  | )          |            |       |            | 505   | 5          |            |            |      | 510  | )          | Arg          |
|       |     | 515   | 5    |            |            |       | 520        | )     |            |            |            | 52   | 5    |            | val          |
|       | 530 | )     |      |            |            | 535   | 5          |       |            |            | 540        | )    |      |            | Arg          |
| 545   |     |       |      |            | 550        | 0     |            |       |            | 55         | 5          |      |      |            | y Glu<br>560 |
|       |     |       |      | 56         | 5          |       |            |       | 57         | 0          |            |      |      | 57         |              |
| Val   | Ile | e Ası | o Ar | g As       | p Se       | r Phe | e Lys      | s His | s Le       | u Il       | e Gl       | y Gl | y Le | u As       | p Asp        |

585 580 Val Ser Asn Lys Ala Tyr Glu Asp Ala Glu Ala Lys Ala Lys Tyr Glu 600 Ala Glu Ala Ala Phe Phe Ala Asn Leu Lys Leu Ser Asp Phe Asn Ile 620 615 Ile Asp Thr Leu Gly Val Gly Gly Phe Gly Arg Val Glu Leu Val Gln 635 630 Leu Lys Ser Glu Glu Ser Lys Thr Phe Ala Met Lys Ile Leu Lys Lys 650 645 Arg His Ile Val Asp Thr Arg Gln Gln Glu His Ile Arg Ser Glu Lys 665 660 Gln Ile Met Gln Gly Ala His Ser Asp Phe Ile Val Arg Leu Tyr Arg 680 Thr Phe Lys Asp Ser Lys Tyr Leu Tyr Met Leu Met Glu Ala Cys Leu 700 695 Gly Gly Glu Leu Trp Thr Ile Leu Arg Asp Arg Gly Ser Phe Glu Asp 715 710 Ser Thr Thr Arg Phe Tyr Thr Ala Cys Val Val Glu Ala Phe Ala Tyr 730 725 Leu His Ser Lys Gly Ile Ile Tyr Arg Asp Leu Lys Pro Glu Asn Leu 745 740 Ile Leu Asp His Arg Gly Tyr Ala Lys Leu Val Asp Phe Gly Phe Ala 765 760 Lys Lys Ile Gly Phe Gly Lys Lys Thr Trp Thr Phe Cys Gly Thr Pro 780 775 Glu Tyr Val Ala Pro Glu Ile Ile Leu Asn Lys Gly His Asp Ile Ser 790 795 Ala Asp Tyr Trp Ser Leu Gly Ile Leu Met Tyr Glu Leu Leu Thr Gly 805 810 815 Ser Pro Pro Phe Ser Gly Pro Asp Pro Met Lys Thr Tyr Asn Ile Ile 820 825 Leu Arg Gly Ile Asp Met Ile Glu Phe Pro Lys Lys Ile Ala Lys Asn 835 840 Ala Ala Asn Leu Ile Lys Lys Leu Cys Arg Asp Asn Pro Ser Glu Arg 855 860 Leu Gly Asn Leu Lys Asn Gly Val Lys Asp Ile Gln Lys His Lys Trp 875 870 Phe Glu Gly Phe Asn Trp Glu Gly Leu Arg Lys Gly Thr Leu Thr Pro 890 895 Pro Ile Ile Pro Ser Val Ala Ser Pro Thr Asp Thr Ser Asn Phe Asp 900 905 Ser Phe Pro Glu Asp Asn Asp Glu Pro Pro Pro Asp Asp Asn Ser Gly 920 915 Trp Asp Ile Asp Phe

#### (2) INFORMATION FOR SEQ ID NO:136:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2799 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
  - (A) NAME/KEY: Coding Sequence

(B) LOCATION: 1...2795

(D) OTHER INFORMATION:

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:136:

| ATG<br>Met<br>1   | GGC<br>Gly        | ACC<br>Thr        | TTG<br>Leu        | CGG<br>Arg<br>5   | GAT<br>Asp        | TTA<br>Leu        | CAG<br>Gln          | TAC<br>Tyr            | GCG<br>Ala<br>10 | CTC<br>Leu        | CAG<br>Gln                    | GAG<br>Glu         | AAG<br>Lys        | ATC<br>Ile<br>15      | GAG<br>Glu            | 48  |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------|-----------------------|------------------|-------------------|-------------------------------|--------------------|-------------------|-----------------------|-----------------------|-----|
| GAG<br>Glu        | CTG<br>Leu        | AGG<br>Arg        | CAG<br>Gln<br>20  | CGG<br>Arg        | GAT<br>Asp        | GCT<br>Ala        | CTC<br>Leu          | ATC<br>Ile<br>25      | GAC<br>Asp       | GAG<br>Glu        | CTG<br>Leu                    | GAG<br>Glu         | CTG<br>Leu<br>30  | GAG<br>Glu            | TTG<br>Leu            | 96  |
| GAT<br>Asp        | CAG<br>Gln        | AAG<br>Lys<br>35  | GAC<br>Asp        | GAA<br>Glu        | CTG<br>Leu        | ATC<br>Ile        | CAG<br>Gln<br>40    | AAG<br>Lys            | CTG<br>Leu       | CAG<br>Gln        | AAC<br>Asn                    | GAG<br>Glu<br>45   | CTG<br>Leu        | GAC<br>Asp            | AAG<br>Lys            | 144 |
| TAC<br>Tyr        | CGC<br>Arg<br>50  | TCG<br>Ser        | GTG<br>Val        | ATC<br>Ile        | CGA<br>Arg        | CCA<br>Pro<br>55  | GCC<br>Ala          | ACC<br>Thr            | CAG<br>Gln       | CAG<br>Gln        | GCG<br>Ala<br>60              | CAG<br>Gln         | AAG<br>Lys        | CAG<br>Gln            | AGC<br>Ser            | 192 |
| GCG<br>Ala<br>65  | AGC<br>Ser        | ACC<br>Thr        | TTG<br>Leu        | CAG<br>Gln        | GGC<br>Gly<br>70  | GAG<br>Glu        | CCG<br>Pro          | CGC<br>Arg            | ACC<br>Thr       | AAG<br>Lys<br>75  | CGG<br>Arg                    | CAG<br>Gln         | GCG<br>Ala        | ATC                   | TCC<br>Ser<br>80      | 240 |
| GCC<br>Ala        | GAG<br>Glu        | CCC               | ACC<br>Thr        | GCC<br>Ala<br>85  | TTC<br>Phe        | GAC<br>Asp        | ATC<br>Ile          | CAG<br>Gln            | GAT<br>Asp<br>90 | CTC               | AGC<br>Ser                    | CAT<br>His         | GTG<br>Val        | ACC<br>Thr<br>95      | CTG<br>Leu            | 288 |
| CCC<br>Pro        | TTC<br>Phe        | TAC<br>Tyr        | CCC<br>Pro<br>100 | AAG<br>Lys        | AGC<br>Ser        | CCA<br>Pro        | CAG<br>Gln          | TCC<br>Ser<br>105     | AAG<br>Lys       | GAT<br>Asp        | CTI<br>Leu                    | `ATA               | AAG<br>Lys<br>110 | Glu                   | GCT<br>Ala            | 336 |
| ATC<br>Ile        | CTT<br>Leu        | GAC<br>Asp<br>115 | ) Asn             | GAC<br>Asp        | TTT<br>Phe        | ATG<br>Met        | AAG<br>Lys<br>120   | Asn                   | TTG<br>Leu       | GAG<br>Glu        | CTC<br>Lev                    | TCG<br>Ser<br>125  | Gln               | ATC<br>lle            | CAG<br>Gln            | 384 |
| GAG<br>Glu        | ATT<br>Ile<br>130 | Val               | GAT<br>Asp        | TGI<br>Cys        | ATG<br>Met        | TAC<br>Tyr<br>135 | Pro                 | GTG<br>Val            | GAG<br>Glu       | TAT<br>TYT        | GG(<br>Gl <sub>2</sub><br>14( | / Lys              | GAC<br>Asp        | AGT<br>Ser            | TGC<br>Cys            | 432 |
| ATC<br>Ile<br>145 | Ile               | Lys               | A GAA<br>s Glu    | GGA<br>Gly        | GAC<br>Asp<br>150 | Val               | . G1 <u>y</u>       | TCA<br>Ser            | CTG              | GT(<br>Val<br>155 | l Tyı                         | r GTC<br>r Val     | Met               | G GAA                 | A GAT<br>1 Asp<br>160 | 480 |
| GGT<br>Gly        | `AAG              | GT<br>Va          | r GAÆ<br>l Glu    | GT1<br>Val<br>165 | Thr               | AAA<br>Lys        | s Glu               | A GGT<br>1 Gly        | / Val            | L Ly:             | s Le                          | n CA               | r ACC             | C ATO<br>r Met<br>17! | G GGT<br>t Gly<br>5   | 528 |
| CCA<br>Pro        | GGA<br>Gly        | A AA.             | A GTC<br>s Val    | Ph•               | r GGC<br>e Gly    | GAA<br>Glu        | A TTO               | G GCT<br>L Ala<br>185 | a Ile            | r CT              | T TAG                         | C AAG              | TG<br>n Cy:<br>19 | s Th                  | c ccc<br>r Arg        | 576 |
| ACA<br>Thi        | A GCC             | G AC              | r Vai             | D AAG             | G ACT             | r CT              | r GT.<br>ı Va<br>20 | l Ası                 | r GTZ<br>n Val   | A AA<br>l Ly      | A CT<br>s Le                  | C TG<br>u Tr<br>20 | p Al              | C AT<br>a Il          | T GAT<br>e Asp        | 624 |
| CGA               | A CA              | A TG              | т тт              | r ca              | A AC              | A AT              | TA A                | G ATY                 | G AG             | G AC              | A GG                          | A CT               | C AT              | C AA                  | G CAT                 | 672 |

| Arg               | Gln<br>210            | Cys                | Phe                   | Gln               |                     | Ile<br>215        | Met                | Met                   | Arg                   | Thr               | Gly<br>220        | Leu                | Ile                | Lys                  | His                   |      |
|-------------------|-----------------------|--------------------|-----------------------|-------------------|---------------------|-------------------|--------------------|-----------------------|-----------------------|-------------------|-------------------|--------------------|--------------------|----------------------|-----------------------|------|
| ACC<br>Thr<br>225 | GAG<br>Glu            | TAT<br>Tyr         | ATG<br>Met            | GAA<br>Glu        | TTT<br>Phe<br>230   | TTA<br>Leu        | AAA<br>Lys         | AGC<br>Ser            | GTT<br>Val            | CCA<br>Pro<br>235 | ACA<br>Thr        | TTC<br>Phe         | CAG<br>Gln         | AGC<br>Ser           | CTT<br>Leu<br>240     | 720  |
| CCT<br>Pro        | GAA<br>Glu            | GAG<br>Glu         | ATC<br>Ile            | CTC<br>Leu<br>245 | AGC<br>Ser          | AAG<br>Lys        | CTT<br>Leu         | GCT<br>Ala            | GAT<br>Asp<br>250     | GTC<br>Val        | CTT<br>Leu        | GAA<br>Glu         | GAG<br>Glu         | ACC<br>Thr<br>255    | CAC<br>His            | 768  |
| TAT<br>Tyr        | GAA<br>Glu            | AAT<br>Asn         | GGA<br>Gly<br>260     | GAA<br>Glu        | TAT<br>Tyr          | ATT<br>Ile        | ATC<br>Ile         | AGG<br>Arg<br>265     | CAA<br>Gln            | GGT<br>Gly        | GCA<br>Ala        | AGA<br>Arg         | GGG<br>Gly<br>270  | GAC<br>Asp           | ACC<br>Thr            | 816  |
| TTC<br>Phe        | TTT<br>Phe            | ATC<br>Ile<br>275  | ATC<br>Ile            | AGC<br>Ser        | AAA<br>Lys          | GGA<br>Gly        | ACG<br>Thr<br>280  | GTA<br>Val            | AAT<br>Asn            | GTC<br>Val        | ACT<br>Thr        | CGT<br>Arg<br>285  | GAA<br>Glu         | GAC<br>Asp           | TCA<br>Ser            | 864  |
| CCG<br>Pro        | AGT<br>Ser<br>290     | GAA<br>Glu         | GAC<br>Asp            | CCA<br>Pro        | GTC<br>Val          | TTT<br>Phe<br>295 | CTT<br>Leu         | AGA<br>Arg            | ACT<br>Thr            | TTA<br>Leu        | GGA<br>Gly<br>300 | AAA<br>Lys         | GGA<br>Gly         | GAC<br>Asp           | TGG<br>Trp            | 912  |
| TTT<br>Phe<br>305 | Gly                   | GAG<br>Glu         | AAA<br>Lys            | GCC<br>Ala        | TTG<br>Leu<br>310   | CAG<br>Gln        | GGG<br>Gly         | GAA<br>Glu            | GAT<br>Asp            | GTG<br>Val<br>315 | Arg               | ACA<br>Thr         | GCA<br>Ala         | AAC<br>Asn           | GTA<br>Val<br>320     | 960  |
| ATT               | GCT<br>Ala            | GCA<br>Ala         | GAA<br>Glu            | GCT<br>Ala<br>325 | Val                 | ACC<br>Thr        | TGC<br>Cys         | CTT                   | GTG<br>Val<br>330     | Ile               | GAC               | AGA<br>Arg         | GAC<br>Asp         | TCT<br>Ser<br>335    | TTT<br>Phe            | 1008 |
| AAA<br>Lys        | CAT<br>His            | TTG                | ATT<br>Ile<br>340     | Gly               | GGG<br>Gly          | CTG<br>Leu        | GAT<br>Asp         | GAT<br>Asp<br>345     | Val                   | TCT<br>Ser        | AAT<br>Asn        | 'AAA<br>Lys        | GCA<br>Ala<br>350  | Туг                  | GAA<br>Glu            | 1056 |
| GAT<br>Asp        | GCA<br>Ala            | GA#<br>Glu<br>355  | ı Ala                 | 'AAA              | GCA<br>Ala          | AAA<br>Lys        | ТАТ<br>Туг<br>360  | Glu                   | GCT<br>Ala            | GAZ<br>Glu        | A GCG             | GCT<br>Ala<br>365  | Phe                | TTC<br>Phe           | GCC<br>Ala            | 1104 |
| AAC<br>Asr        | 2 CTC<br>1 Let<br>370 | Lys                | G CTC                 | TCI<br>Ser        | GAT<br>Asp          | TTC<br>Phe<br>375 | Asr                | ATC                   | : ATI                 | GA:               | Thi<br>380        | Let                | GGA<br>Gly         | A GT:                | r GGA<br>l Gly        | 1152 |
| GG:<br>Gly<br>385 | y Phe                 | GG/                | A CGA<br>Y Arg        | A GTA             | A GAP<br>Glu<br>390 | ı Lev             | GTC<br>1 Val       | CAC<br>L Glr          | TTC                   | 39!               | s Sei             | r GAZ<br>c Glu     | A GAZ              | A TCC                | C AAA<br>r Lys<br>400 | 1200 |
| ACC<br>Thi        | G TT:                 | r GC/<br>e Ala     | A ATX<br>a Met        | AAC<br>Lys        | s Ile               | r CTC             | AAC<br>Ly:         | G AAA                 | A CG'<br>S Arg<br>410 | g Hi              | C AT              | r GTG<br>e Val     | G GAG              | C AC.<br>p Th:<br>41 | A AGA<br>r Arg<br>5   | 1248 |
| CA(               | G CA(                 | G GAG              | G CAG<br>u His<br>420 | s Ile             | C CGG               | TC<br>g Sei       | A GAG              | 3 AAG<br>1 Lys<br>42! | s Gl                  | G AT              | C ATO             | G CAG              | G GG<br>n Gl<br>43 | y Al                 | T CAT<br>a His        | 1296 |
| TC<br>Se          | C GA'<br>r As         | r TT<br>p Ph<br>43 | e Il                  | A GTY<br>e Va     | g AGA               | A CTO             | 3 TA<br>1 Ty<br>44 | r Ar                  | A AC.<br>g Th         | A TT<br>r Ph      | T AA<br>e Ly      | G GA<br>S As<br>44 | p Se               | C AA<br>r Ly         | A TAT                 | 1344 |

|     |     |     |     |     |     |     | TGT<br>Cys        |     |     |     |     |     |     |     |                   | 1392 |
|-----|-----|-----|-----|-----|-----|-----|-------------------|-----|-----|-----|-----|-----|-----|-----|-------------------|------|
|     |     |     |     |     |     |     | GAA<br>Glu        |     |     |     |     |     |     |     |                   | 1440 |
|     |     |     |     |     |     |     | GCC<br>Ala        |     |     |     |     |     |     |     |                   | 1488 |
|     |     |     |     |     |     |     | AAT<br>Asn        |     |     |     |     |     |     |     |                   | 1536 |
|     |     |     |     |     |     | _   | TTT<br>Phe<br>520 |     |     |     |     |     |     |     |                   | 1584 |
|     |     |     |     |     |     |     | ACT<br>Thr        |     |     |     |     |     |     |     |                   | 1632 |
|     |     |     |     |     |     |     | ATT<br>Ile        |     |     |     |     |     |     |     |                   | 1680 |
|     |     |     |     |     |     |     | ACT<br>Thr        |     |     |     |     |     |     |     |                   | 1728 |
|     |     |     |     |     |     |     | ATC<br>Ile        |     |     |     | _   |     |     |     | _                 | 1776 |
|     |     |     |     |     |     |     | AAA<br>Lys<br>600 |     |     |     |     |     |     |     | AAA<br>Lys        | 1824 |
|     |     |     |     |     |     |     | GAA<br>Glu        |     |     |     |     |     |     |     | GGA<br>Gly        | 1872 |
|     |     |     |     |     |     |     | AAA<br>Lys        |     |     |     | _   |     |     |     | GAA<br>Glu<br>640 | 1920 |
|     |     |     |     |     |     |     | ACA<br>Thr        |     |     |     |     |     |     |     | GCA<br>Ala        | 1968 |
|     |     |     |     |     |     |     |                   |     |     |     |     |     |     |     | GAT<br>Asp        | 2016 |
| GAA | CCA | CCA | CCT | GAT | GAC | AAC | TCA               | GGA | TGG | GAT | ATA | GAC | TTC | TCG | GAT               | 2064 |

| Glu               | Pro               | Pro<br>675            | Pro                  | Asp                           | Asp               |                   | Ser<br>680        | Gly                   | Trp                  | Asp                  | Ile                 | Asp<br>685          | Phe                | Ser                | Asp                   |      |
|-------------------|-------------------|-----------------------|----------------------|-------------------------------|-------------------|-------------------|-------------------|-----------------------|----------------------|----------------------|---------------------|---------------------|--------------------|--------------------|-----------------------|------|
| CCA<br>Pro        | CCG<br>Pro<br>690 | GTC<br>Val            | GCC<br>Ala           | ACC<br>Thr                    | ATG<br>Met        | GTG<br>Val<br>695 | AGC<br>Ser        | AAG<br>Lys            | GGC<br>Gly           | GAG<br>Glu           | GAG<br>Glu<br>700   | CTG<br>Leu          | TTC<br>Phe         | ACC<br>Thr         | GGG<br>Gly            | 2112 |
| GTG<br>Val<br>705 | GTG<br>Val        | CCC<br>Pro            | ATC<br>Ile           | CTG<br>Leu                    | GTC<br>Val<br>710 | GAG<br>Glu        | CTG<br>Leu        | GAC<br>Asp            | GGC<br>Gly           | GAC<br>Asp<br>715    | GTA<br>Val          | AAC<br>Asn          | GGC<br>Gly         | CAC<br>His         | AAG<br>Lys<br>720     | 2160 |
| TTC<br>Phe        | AGC<br>Ser        | GTG<br>Val            | TCC<br>Ser           | GGC<br>Gly<br>725             | GAG<br>Glu        | GGC<br>Gly        | GAG<br>Glu        | GGC<br>Gly            | GAT<br>Asp<br>730    | GCC<br>Ala           | ACC<br>Thr          | TAC<br>Tyr          | Gly                | AAG<br>Lys<br>735  | CTG<br>Leu            | 2208 |
| ACC<br>Thr        | CTG<br>Leu        | AAG<br>Lys            | TTC<br>Phe<br>740    | ATC<br>Ile                    | TGC<br>Cys        | ACC<br>Thr        | ACC<br>Thr        | GGC<br>Gly<br>745     | AAG<br>Lys           | CTG<br>Leu           | CCC<br>Pro          | GTG<br>Val          | CCC<br>Pro<br>750  | TGG<br>Trp         | CCC<br>Pro            | 2256 |
| ACC<br>Thr        | CTC<br>Leu        | GTG<br>Val<br>755     | ACC<br>Thr           | ACC<br>Thr                    | CTG<br>Leu        | ACC<br>Thr        | TAC<br>Tyr<br>760 | GGC<br>Gly            | GTG<br>Val           | CAG<br>Gln           | TGC<br>Cys          | TTC<br>Phe<br>765   | AGC<br>Ser         | CGC<br>Arg         | TAC<br>Tyr            | 2304 |
| CCC<br>Pro        | GAC<br>Asp<br>770 | CAC                   | ATG<br>Met           | AAG<br>Lys                    | CAG<br>Gln        | CAC<br>His<br>775 | GAC<br>Asp        | TTC<br>Phe            | TTC<br>Phe           | AAG<br>Lys           | TCC<br>Ser<br>780   | Ala                 | ATG<br>Met         | CCC<br>Pro         | GAA<br>Glu            | 2352 |
| GGC<br>Gly<br>785 | Tyr               | GTC<br>Val            | CAG<br>Gln           | GAG<br>Glu                    | CGC<br>Arg<br>790 | ACC<br>Thr        | ATC<br>Ile        | TTC<br>Phe            | TTC<br>Phe           | AAG<br>Lys<br>795    | Asp                 | GAC<br>Asp          | GGC                | AAC<br>Asn         | TAC<br>Tyr<br>800     | 2400 |
| AAG<br>Lys        | ACC<br>Thr        | CGC<br>Arg            | GCC<br>Ala           | GAG<br>Glu<br>805             | Val               | AAG<br>Lys        | TTC               | GAG<br>Glu            | GGC<br>Gly<br>810    | Asp                  | : ACC               | CTG<br>Leu          | GTC<br>Val         | AAC<br>Asn<br>815  | CGC<br>Arg            | 2448 |
| ATC<br>Ile        | GAG<br>Glu        | CTG<br>Leu            | AAG<br>Lys<br>820    | Gly                           | TATC              | GAC               | TTC<br>Phe        | AAG<br>Lys<br>825     | Glu                  | GAC<br>Asp           | GGC<br>Gly          | AAC<br>Asn          | TATC<br>110<br>830 | e Leu              | G GGG                 | 2496 |
| CAC<br>His        | AAG<br>Lys        | 6 CTC<br>6 Lev<br>835 | Glu                  | TAC<br>Tyr                    | AAC<br>Asn        | TAC<br>Tyr        | AAC<br>Asr<br>840 | Ser                   | CAC<br>His           | AAC<br>Asr           | GTC<br>n Val        | TAT<br>1 Tyr<br>845 | : 11               | TA C               | G GCC<br>Ala          | 2544 |
| GAC<br>Asp        | AAC<br>Lys        | Glr                   | AAC<br>Lys           | AAC<br>Asr                    | GGC<br>Gly        | 11e               | Lys               | G GTG<br>S Val        | AAC<br>Asr           | TTO                  | AAC<br>2 Ly:<br>860 | s Ile               | e Arg              | C CAG              | C AAC<br>s Asn        | 2592 |
| AT0<br>116<br>869 | e Glu             | GAC<br>1 Asp          | GG(                  | AGC<br>Sei                    | GTC<br>Val        | Glr               | CTC               | C GCC                 | GAG<br>ASI           | C CAG<br>P Hi:<br>87 | s Ty:               | C CAG               | G CA               | G AA<br>n As:      | C ACC<br>n Thr<br>880 | 2640 |
| CC0<br>Pro        | TA C              | C GG(<br>e Gly        | C GAG<br>Y Asi       | GG(<br>Gl <sub>2</sub><br>88! | y Pro             | GTC<br>Val        | G CTO             | G CTY                 | G CCG<br>2 Pro<br>89 | o As                 | C AA<br>p As:       | C CA                | С ТА<br>s Ту       | C CT<br>r Le<br>89 | G AGC<br>u Ser<br>5   | 2688 |
| AC(               | C CAC             | G TCC                 | C GCC<br>r Ala<br>90 | a Le                          | G AGG             | C AA              | A GA              | C CCC<br>p Pro<br>90! | aA c                 | C GA<br>n Gl         | G AA<br>u Ly        | G CG<br>s Ar        | C GA<br>g As<br>91 | рHi                | C ATG<br>s Met        | 2736 |

GTC CTG GAG TTC GTG ACC GCC GGC GGG ATC ACT CTC GGC ATG GAC 278

Val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp
915 920 925

GAG CTG TAC AA GTAA Glu Leu Tyr Lys 930 2799

### (2) INFORMATION FOR SEQ ID NO:137:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 932 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:137:

Met Gly Thr Leu Arg Asp Leu Gln Tyr Ala Leu Gln Glu Lys Ile Glu 10 1 5 Glu Leu Arg Gln Arg Asp Ala Leu Ile Asp Glu Leu Glu Leu Glu Leu 25 Asp Gln Lys Asp Glu Leu Ile Gln Lys Leu Gln Asn Glu Leu Asp Lys 40 Tyr Arg Ser Val Ile Arg Pro Ala Thr Gln Gln Ala Gln Lys Gln Ser 55 Ala Ser Thr Leu Gln Gly Glu Pro Arg Thr Lys Arg Gln Ala Ile Ser 75 70 65 Ala Glu Pro Thr Ala Phe Asp Ile Gln Asp Leu Ser His Val Thr Leu 90 85 Pro Phe Tyr Pro Lys Ser Pro Gln Ser Lys Asp Leu Ile Lys Glu Ala 105 110 Ile Leu Asp Asn Asp Phe Met Lys Asn Leu Glu Leu Ser Gln Ile Gln 125 120 115 Glu Ile Val Asp Cys Met Tyr Pro Val Glu Tyr Gly Lys Asp Ser Cys 140 135 Ile Ile Lys Glu Gly Asp Val Gly Ser Leu Val Tyr Val Met Glu Asp 155 150 Gly Lys Val Glu Val Thr Lys Glu Gly Val Lys Leu Cys Thr Met Gly 165 170 Pro Gly Lys Val Phe Gly Glu Leu Ala Ile Leu Tyr Asn Cys Thr Arg 190 185 Thr Ala Thr Val Lys Thr Leu Val Asn Val Lys Leu Trp Ala Ile Asp 200 205 Arg Gln Cys Phe Gln Thr Ile Met Met Arg Thr Gly Leu Ile Lys His 210 215 220 Thr Glu Tyr Met Glu Phe Leu Lys Ser Val Pro Thr Phe Gln Ser Leu 230 235 Pro Glu Glu Ile Leu Ser Lys Leu Ala Asp Val Leu Glu Glu Thr His 250 245 Tyr Glu Asn Gly Glu Tyr Ile Ile Arg Gln Gly Ala Arg Gly Asp Thr 270 265 260 Phe Phe Ile Ile Ser Lys Gly Thr Val Asn Val Thr Arg Glu Asp Ser

|     |      | 275  |      |      |                                              |       | 280   |       |      |      |          | 285  |      |      |                |
|-----|------|------|------|------|----------------------------------------------|-------|-------|-------|------|------|----------|------|------|------|----------------|
|     | 290  |      |      |      |                                              | 295   |       |       |      |      | 300      |      |      |      |                |
| 305 | =    |      |      |      | Leu<br>310                                   |       |       |       |      | 315  |          |      |      |      | 320            |
| Ile |      |      |      | 325  | Val                                          |       |       |       | 330  |      |          |      |      | 335  |                |
| _   |      |      | 340  |      | Gly                                          |       |       | 345   |      |      |          |      | 350  |      |                |
|     |      | 355  |      |      | Ala                                          |       | 360   |       |      |      |          | 365  |      |      |                |
|     | 370  |      |      |      | Asp                                          | 375   |       |       |      |      | 380      |      |      |      |                |
| 385 |      |      |      |      | Glu<br>390                                   |       |       |       |      | 395  |          |      |      |      | 400            |
|     |      |      |      | 405  | Ile                                          |       |       |       | 410  |      |          |      |      | 415  |                |
|     |      |      | 420  |      | Arg                                          |       |       | 425   |      |      |          |      | 430  |      |                |
|     |      | 435  |      |      | Arg                                          |       | 440   |       |      |      |          | 445  |      |      |                |
|     | 450  |      |      |      | Glu                                          | 455   |       |       |      |      | 460      |      |      |      |                |
| 465 |      |      |      |      | Ser<br><b>4</b> 70                           |       |       |       |      | 475  |          |      |      |      | 480            |
|     |      |      |      | 485  |                                              |       |       |       | 490  |      |          |      |      | 495  |                |
|     |      |      | 500  | 1    | Pro                                          |       |       | 505   |      |      |          |      | 510  |      |                |
|     |      | 515  | 5    |      |                                              |       | 520   |       |      |      |          | 525  |      |      | Lys            |
|     | 530  | )    |      |      |                                              | 535   |       |       |      |      | 540      | )    |      |      | Ile            |
| 545 | ,    |      |      |      | 550                                          |       |       |       |      | 555  | <b>,</b> |      |      |      | Gly<br>560     |
|     |      |      |      | 565  | <u>,                                    </u> |       |       |       | 570  | )    |          |      |      | 575  |                |
|     |      |      | 580  | )    |                                              |       |       | 585   |      |      |          |      | 590  | )    | Ile            |
|     |      | 595  | 5    |      |                                              |       | 600   |       |      |      |          | 605  | 5    |      | Lys            |
|     | 61   | )    |      |      |                                              | 615   | ı     |       |      |      | 620      | )    |      |      | Gly            |
| 625 | 5    |      |      |      | 630                                          | )     |       |       |      | 63   | 5        |      |      |      | Glu<br>640     |
|     |      |      |      | 645  | 5                                            |       |       |       | 650  | C    |          |      |      | 65   |                |
|     |      |      | 66   | 0    |                                              |       |       | 665   | 5    |      |          |      | 670  | 3    | n Asp          |
|     |      | 67   | 5    |      |                                              |       | 680   | )     |      |      |          | 68!  | 5    |      | r Asp          |
|     | 69   | 0    |      |      |                                              | 695   | 5     |       |      |      | 70       | 0    |      |      | r Gly<br>s Lys |
| 70  | 5    |      |      |      | 710                                          | )     |       |       |      | 71   | 5        |      |      |      | 720            |
|     |      |      |      | 72   | 5                                            |       |       |       | 73   | 0    |          |      |      | 73   |                |
| Th  | r Le | u Ly | s Ph | e Il | e Cy:                                        | s Th: | r Ini | L GT. | у гу | ച പല | u PI     | o va | T LT | J 11 | p Pro          |

|            |            |                                                     | 740                                    |                                                             |                                         |                              |                               | 745        |            |            |            |            | 750        |            |            |     |
|------------|------------|-----------------------------------------------------|----------------------------------------|-------------------------------------------------------------|-----------------------------------------|------------------------------|-------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|
| Thr        | Leu        | Val<br>755                                          | Thr                                    | Thr                                                         | Leu                                     | Thr                          | Tyr<br>760                    | Gly        | Val        | Gln        | Суѕ        | Phe<br>765 | Ser        | Arg        | Tyr        |     |
| Pro        | Asp<br>770 | His                                                 | Met                                    | Lys                                                         | Gln                                     | His<br>775                   |                               | Phe        | Phe        | Lys        | Ser<br>780 |            | Met        | Pro        | Glu        |     |
| Gly<br>785 | Tyr        | Val                                                 | Gln                                    | Glu                                                         | Arg<br>790                              | Thr                          | Ile                           | Phe        | Phe        | Lys<br>795 | Asp        | Asp        | Gly        | Asn        | Tyr<br>800 |     |
| Lys        | Thr        | Arg                                                 | Ala                                    | Glu<br>805                                                  |                                         | Lys                          | Phe                           | Glu        | Gly<br>810 |            | Thr        | Leu        | Val        | Asn<br>815 |            |     |
| Ile        | Glu        | Leu                                                 | Lys<br>820                             |                                                             | Ile                                     | Asp                          | Phe                           | Lys<br>825 |            | Asp        | Gly        | Asn        | Ile<br>830 | _          | Gly        |     |
| His        | Lys        | Leu<br>835                                          | Glu                                    | Tyr                                                         | Asn                                     | Tyr                          | Asn<br>840                    |            | His        | Asn        | Val        | Tyr<br>845 |            | Met        | Ala        |     |
| Asp        |            |                                                     | Lys                                    | Asn                                                         | Gly                                     |                              |                               | Val        | Asn        | Phe        |            |            | Arg        | His        | Asn        |     |
|            | 850<br>Glu | Asp                                                 | Gly                                    | Ser                                                         |                                         | 855<br>Gln                   | Leu                           | Ala        | Asp        |            | 860<br>Tyr | Gln        | Gln        | Asn        | Thr        |     |
| 865        | 710        | C1                                                  | 7.55                                   | C1                                                          | 870                                     | 1101                         | T                             | T 011      | D          | 875        |            | ,,,,,      | m          | •          | 880        |     |
|            |            |                                                     | Asp                                    | 885                                                         |                                         |                              |                               |            | 890        |            |            |            |            | 895        |            |     |
| Thr        | Gln        | Ser                                                 | Ala<br>900                             | Leu                                                         | Ser                                     | Lys                          | Asp                           | Pro<br>905 | Asn        | Glu        | Lys        | Arg        | Asp<br>910 | His        | Met        |     |
| Val        | Leu        | Leu<br>915                                          | Glu                                    | Phe                                                         | Val                                     | Thr                          | Ala<br>920                    | Ala        | Gly        | Ile        | Thr        | Leu<br>925 | Gly        | Met        | Asp        |     |
| Glu        | Leu<br>930 | Tyr                                                 | Lys                                    |                                                             |                                         |                              |                               |            |            |            |            | 3_3        |            |            |            |     |
|            | ( :        | (C)<br>(D)<br>(ii) N<br>(ix) N<br>(A)<br>(B)<br>(D) | TYPI STRA TOPO MOLEC FEATT NAI LOC OTE | ANDEI<br>DLOGY<br>CULE<br>JRE:<br>- TE/KI<br>CATIC<br>HER I | ONESS  (: 1:  TYPE  EY: (  ON: 1  INFOR | S: siinear<br>E: cI<br>Codir | ingle<br>DNA<br>ng Se<br>2181 | equer      |            | NO:1       | 138:       |            |            |            |            |     |
|            |            |                                                     |                                        |                                                             |                                         |                              |                               |            | -          |            |            |            |            |            |            |     |
|            |            |                                                     | AAG<br>Lys                             |                                                             |                                         |                              |                               |            |            |            |            |            |            |            |            | 4.8 |
|            |            |                                                     | GAC<br>Asp<br>20                       |                                                             |                                         |                              |                               |            |            |            |            |            |            |            |            | 96  |
|            |            |                                                     | GGC<br>Gly                             |                                                             |                                         |                              |                               |            |            |            |            |            |            |            |            | 144 |
|            |            |                                                     | GGC<br>Gly                             |                                                             |                                         |                              |                               |            |            |            |            |            |            |            |            | 192 |

| CTG .<br>Leu '    | ACC<br>Thr        | TAC<br>Tyr         | GGC<br>Gly            | GTG<br>Val        | CAG<br>Gln<br>70  | TGC<br>Cys        | TTC<br>Phe           | AGC<br>Ser          | Arg               | TAC<br>Tyr<br>75  | CCC<br>Pro        | GAC<br>Asp         | CAC<br>His         | ATG<br>Met         | AAG<br>Lys<br>80      | 240 |
|-------------------|-------------------|--------------------|-----------------------|-------------------|-------------------|-------------------|----------------------|---------------------|-------------------|-------------------|-------------------|--------------------|--------------------|--------------------|-----------------------|-----|
| CAG<br>Gln        | CAC<br>His        | GAC<br>Asp         | TTC<br>Phe            | TTC<br>Phe<br>85  | AAG<br>Lys        | TCC<br>Ser        | GCC<br>Ala           | ATG<br>Met          | CCC<br>Pro<br>90  | GAA<br>Glu        | GGC<br>Gly        | TAC<br>Tyr         | GTC<br>Val         | CAG<br>Gln<br>95   | GAG<br>Glu            | 288 |
| CGC<br>Arg        | ACC<br>Thr        | ATC<br>Ile         | TTC<br>Phe<br>100     | TTC<br>Phe        | AAG<br>Lys        | GAC<br>Asp        | GAC<br>Asp           | GGC<br>Gly<br>105   | AAC<br>Asn        | TAC<br>Tyr        | AAG<br>Lys        | ACC<br>Thr         | CGC<br>Arg<br>110  | GCC<br>Ala         | GAG<br>Glu            | 336 |
| GTG<br>Val        | AAG<br>Lys        | TTC<br>Phe<br>115  | GAG<br>Glu            | GGC<br>Gly        | GAC<br>Asp        | ACC<br>Thr        | CTG<br>Leu<br>120    | GTG<br>Val          | AAC<br>Asn        | CGC<br>Arg        | ATC<br>Ile        | GAG<br>Glu<br>125  | CTG<br>Leu         | AAG<br>Lys         | GGC<br>Gly            | 384 |
| ATC<br>Ile        | GAC<br>Asp<br>130 | TTC<br>Phe         | AAG<br>Lys            | GAG<br>Glu        | GAC<br>Asp        | GGC<br>Gly<br>135 | AAC<br>Asn           | ATC<br>Ile          | CTG<br>Leu        | GGG<br>Gly        | CAC<br>His<br>140 | AAG<br>Lys         | CTG<br>Leu         | GAG<br>Glu         | TAC<br>Tyr            | 432 |
| AAC<br>Asn<br>145 | TAC<br>Tyr        | AAC<br>Asn         | AGC<br>Ser            | CAC<br>His        | AAC<br>Asn<br>150 | GTC<br>Val        | TAT<br>Tyr           | ATC                 | ATG<br>Met        | GCC<br>Ala<br>155 | GAC<br>Asp        | AAG<br>Lys         | CAG<br>Gln         | AAG<br>Lys         | AAC<br>Asn<br>160     | 480 |
| GGC<br>Gly        | ATC<br>Ile        | AAG<br>Lys         | GTG<br>Val            | AAC<br>Asn<br>165 | Phe               | AAG<br>Lys        | ATC                  | CGC<br>Arg          | CAC<br>His<br>170 | AAC<br>Asn        | ATC<br>Ile        | GAG<br>Glu         | GAC<br>Asp         | GGC<br>Gly<br>175  | AGC<br>Ser            | 528 |
| GTG<br>Val        | CAG<br>Gln        | CTC                | GCC<br>Ala<br>180     | Asp               | CAC<br>His        | TAC<br>Tyr        | CAG<br>Gln           | CAG<br>Gln<br>185   | Asn               | ACC               | CCC               | ATC<br>Ile         | GGC<br>Gly<br>190  | Asp                | GGC<br>Gly            | 576 |
| CCC<br>Pro        | GTG<br>Val        | Lev<br>195         | Leu                   | CCC<br>Pro        | GAC<br>Asp        | AAC<br>Asn        | CAC<br>His<br>200    | Tyr                 | CTG<br>Leu        | AGC<br>Ser        | ACC<br>Thr        | CAC<br>Glr<br>205  | Ser                | GCC<br>Ala         | CTG<br>Leu            | 624 |
| AGC<br>Ser        | Lys<br>210        | Ası                | CCC<br>Pro            | AAC<br>Asr        | GAG<br>Glu        | AAG<br>Lys<br>215 | Arg                  | GAT<br>Asp          | CAC<br>His        | : ATC             | GTC<br>Val<br>220 | Leu                | CTC                | G GAG              | TTC Phe               | 672 |
| GTG<br>Val<br>225 | Thr               | GCC<br>Ala         | a Ala                 | GGC<br>Gly        | / Ile             | Thr               | Leu                  | ı Gly               | ATC               | : Asp             | Glu               | CTC                | TAC<br>Ty:         | C AAG              | G TCC<br>s Ser<br>240 | 720 |
| GGA<br>Gly        | A CTO             | AG<br>Arg          | A TCT<br>g Ser        | CGA<br>Arg<br>245 | g Gly             | ACC<br>Thr        | Met                  | S AGO               | GAC<br>Asr<br>250 | va:               | G GCT<br>l Ala    | T ATT              | r GTM<br>e Va      | G AA<br>1 Ly<br>25 | G GAG<br>s Glu<br>5   | 768 |
| GGT<br>Gly        | r TGO<br>7 Tri    | G CT               | G CAC<br>u His<br>260 | Ly:               | A CGA             | A GG(<br>g Gly    | G GAC                | TAC<br>1 Ty1<br>265 | : Ile             | C AAG<br>e Ly:    | G ACC             | TG(                | G CG<br>p Ar<br>27 | g Pr               | A CGC<br>o Arg        | 816 |
| TAC<br>Tyi        | r Ph              | C CT<br>e Le<br>27 | u Lei                 | C AAG             | G AA'<br>s Ası    | T GAT             | r GG(<br>5 Gl)<br>28 | y Thi               | r Phe             | C AT<br>e Il      | T GG(<br>e Gl     | C TA<br>y Ty<br>28 | r Ly               | G GA<br>s Gl       | G CGG<br>u Arg        | 864 |
| CCC               | G CA              | G GA               | T GT                  | G GA              | C CA              | A CG              | r ga                 | G GC                | r cc              | C CT              | C AA              | C AA               | C TI               | C IC               | T GTG                 | 912 |

| Pro | Gln<br>290 | Asp | Val | Asp | Gln               | Arg<br>295 | Glu | Ala | Pro | Leu | Asn<br>300 | Asn | Phe | Ser | Val |      |
|-----|------------|-----|-----|-----|-------------------|------------|-----|-----|-----|-----|------------|-----|-----|-----|-----|------|
|     |            |     |     |     | ATG<br>Met<br>310 |            |     |     |     |     |            |     |     |     |     | 960  |
|     |            |     |     |     | CAG<br>Gln        |            |     |     |     |     |            |     |     |     |     | 1008 |
|     |            |     |     |     | GAG<br>Glu        |            |     |     |     |     |            |     |     |     |     | 1056 |
|     |            |     |     |     | AAG<br>Lys        |            |     |     |     |     |            |     |     |     |     | 1104 |
|     | _          |     |     |     | GAC<br>Asp        |            |     |     |     |     |            |     |     |     |     | 1152 |
|     |            |     |     |     | CAC<br>His<br>390 |            |     |     |     |     |            |     |     |     |     | 1200 |
|     |            |     |     |     | GGC<br>Gly        |            |     |     |     |     |            |     |     |     |     | 1248 |
|     | _          |     | _   |     | TAC<br>Tyr        |            |     |     |     |     |            |     |     |     |     | 1296 |
| _   | _          | _   |     |     | GAG<br>Glu        |            |     |     |     |     |            |     |     |     |     | 1344 |
|     |            |     |     |     | CAC<br>His        |            |     |     |     |     |            |     |     |     |     | 1392 |
|     |            |     |     |     | CTC<br>Leu<br>470 |            |     |     |     |     |            |     |     |     |     | 1440 |
| _   |            |     |     |     | CTG<br>Leu        |            |     |     |     |     |            |     |     |     |     | 1488 |
|     |            |     |     |     | GCT<br>Ala        |            |     |     |     |     |            |     |     |     |     | 1536 |
|     |            |     |     |     | GTG<br>Val        |            |     |     |     |     |            |     |     |     |     | 1584 |

| CTG<br>Leu        | GAC<br>Asp<br>530 | AAG<br>Lys        | GAC<br>Asp        | GGG<br>Gly        | His                   | ATT<br>Ile<br>535 | AAG<br>Lys        | ATC<br>Ile        | ACA<br>Thr        | GAC<br>Asp            | TTC<br>Phe<br>540 | GGG<br>Gly            | CTG<br>Leu        | TGC<br>Cys        | AAG<br>Lys          | 1632 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------------|-------------------|-------------------|-------------------|-------------------|-----------------------|-------------------|-----------------------|-------------------|-------------------|---------------------|------|
| GAG<br>Glu<br>545 | GGG<br>Gly        | ATC<br>Ile        | AAG<br>Lys        | GAC<br>Asp        | GGT<br>Gly<br>550     | GCC<br>Ala        | ACC<br>Thr        | ATG<br>Met        | AAG<br>Lys        | ACC<br>Thr<br>555     | TTT<br>Phe        | TGC<br>Cys            | GGC<br>Gly        | ACA<br>Thr        | CCT<br>Pro<br>560   | 1680 |
| GAG<br>Glu        | TAC<br>Tyr        | CTG<br>Leu        | GCC<br>Ala        | CCC<br>Pro<br>565 | GAG<br>Glu            | GTG<br>Val        | CTG<br>Leu        | GAG<br>Glu        | GAC<br>Asp<br>570 | AAT<br>Asn            | GAC<br>Asp        | TAC<br>Tyr            | GGC<br>Gly        | CGT<br>Arg<br>575 | GCA<br>Ala          | 1728 |
| GTG<br>Val        | GAC<br>Asp        | TGG<br>Trp        | TGG<br>Trp<br>580 | GGG<br>Gly        | CTG<br>Leu            | GGC<br>Gly        | GTG<br>Val        | GTC<br>Val<br>585 | ATG<br>Met        | TAC<br>Tyr            | GAG<br>Glu        | ATG<br>Met            | ATG<br>Met<br>590 | TGC<br>Cys        | GGT<br>Gly          | 1776 |
| CGC<br>Arg        | CTG<br>Leu        | CCC<br>Pro<br>595 | Phe               | TAC<br>Tyr        | AAC<br>Asn            | CÁG<br>Gln        | GAC<br>Asp<br>600 | CAT<br>His        | GAG<br>Glu        | AAG<br>Lys            | CTT<br>Leu        | TTT<br>Phe<br>605     | GAG<br>Glu        | CTC<br>Leu        | ATC<br>Ile          | 1824 |
| CTC<br>Leu        | ATG<br>Met<br>610 | GAG<br>Glu        | GAG<br>Glu        | ATC<br>Ile        | CGC<br>Arg            | TTC<br>Phe<br>615 | CCG<br>Pro        | CGC<br>Arg        | ACG<br>Thr        | CTT<br>Leu            | GGT<br>Gly<br>620 | Pro                   | GAG<br>Glu        | GCC<br>Ala        | AAG<br>Lys          | 1872 |
| TCC<br>Ser<br>625 |                   | CTT<br>Leu        | TCA<br>Ser        | GGG<br>Gly        | CTG<br>Leu<br>630     | CTC<br>Leu        | AAG<br>Lys        | AAG<br>Lys        | GAC<br>Asp        | CCC<br>Pro<br>635     | Lys               | CAG<br>Gln            | AGG<br>Arg        | CTT<br>Leu        | GGC<br>Gly<br>640   | 1920 |
| GGG               | GGC<br>Gly        | TCC<br>Ser        | GAG<br>Glu        | GAC<br>Asp<br>645 | Ala                   | AAG<br>Lys        | GAG<br>Glu        | ATC<br>Ile        | ATG<br>Met        | Gln                   | CAT               | CGC<br>Arg            | TTC<br>Phe        | Phe               | GCC<br>Ala          | 1968 |
| GGT<br>Gly        | 'ATC              | GTC<br>Va]        | TGG<br>Trp        | Glr               | CAC<br>His            | GTG<br>Val        | ТАС<br>Туг        | GAG<br>Glu<br>665 | Lys               | AAG<br>Lys            | CTC<br>Lev        | AGC<br>Ser            | Pro<br>670        | Pro               | TTC<br>Phe          | 2016 |
| AAC<br>Lys        | CCC<br>Pro        | CAC<br>Glr<br>675 | ı Val             | ACC<br>Thr        | TCG<br>Ser            | GAC<br>Glu        | ACT<br>Thr        | Asp               | C ACC             | AGC<br>Arg            | TA:               | r TTT<br>c Phe<br>685 | Asr               | GAC               | G GAG               | 2064 |
| TTC<br>Phe        | ACC<br>Thr        | Ala               | CAC               | ATC               | ∶ll∈                  | ACC<br>Thr<br>695 | 116               | C ACA             | A CCA             | A CCT                 | GAG<br>ASI<br>70  | o Glr                 | GAT               | r GAG<br>o Asi    | AGC<br>Ser          | 2112 |
| ATO<br>Met        | : Glv             | TG'<br>Cy:        | r GTC<br>s Val    | GAC<br>LASI       | 2 AGC<br>5 Ser<br>710 | Glu               | G CG(             | C AGG<br>g Arg    | g CC              | C CAC<br>O His<br>71! | s Ph              | c cco                 | CAC<br>O Gli      | g TTO             | TCC<br>e Ser<br>720 | 2160 |
|                   | C TCC             |                   |                   |                   | r Thr                 |                   |                   | A                 |                   |                       |                   |                       |                   |                   |                     | 2184 |

- (2) INFORMATION FOR SEQ ID NO:139:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 727 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:139:

| 1          |            |           | Lys        | 5     |            |           |           |           | 10         |       |           |           |           | 15         |            |
|------------|------------|-----------|------------|-------|------------|-----------|-----------|-----------|------------|-------|-----------|-----------|-----------|------------|------------|
| Val        | Glu        | Leu       | Asp<br>20  | Gly   | Asp        | Val       |           | Gly<br>25 | His        | Lys   | Phe       | Ser       | Val<br>30 | Ser        | Gly        |
| Glu        | Gly        | Glu<br>35 | Gly        | Asp   | Ala        | Thr       | Tyr<br>40 | Gly       | Lys        | Leu   | Thr       | Leu<br>45 | Lys       | Phe        | Ile        |
| Cys        | Thr<br>50  | Thr       | Gly        | Lys   | Leu        | Pro<br>55 | Val       | Pro       | Trp        | Pro   | Thr<br>60 | Leu       | Val       | Thr        | Thr        |
| 65         | Thr        |           | Gly        |       | 70         |           |           |           |            | 75    |           |           |           |            | 80         |
|            |            |           | Phe        | 85    |            |           |           |           | 90         |       |           |           |           | 95         |            |
|            |            |           | Phe<br>100 |       |            |           |           | 105       |            |       |           |           | 110       |            |            |
|            |            | 115       | Glu        |       |            |           | 120       |           |            |       |           | 125       |           |            |            |
|            | 130        |           | Lys        |       |            | 135       |           |           |            |       | 140       |           |           |            |            |
| 145        |            |           | Ser        |       | 150        |           |           |           |            | 155   |           |           |           |            | 160        |
|            |            |           | Val        | 165   |            |           |           |           | 170        |       |           |           |           | 1/5        |            |
|            |            |           | Ala<br>180 |       |            |           |           | 185       |            |       |           |           | 190       |            |            |
|            |            | 195       |            |       |            |           | 200       |           |            |       |           | 205       |           |            | Leu        |
|            | 210        |           |            |       |            | 215       |           |           |            |       | 220       |           |           |            | Phe        |
| 225        |            |           |            |       | 230        |           |           |           |            | 235   |           |           |           |            | Ser<br>240 |
|            |            |           |            | 245   |            |           |           |           | 250        | )     |           |           |           | 255        |            |
|            |            |           | 260        |       |            |           |           | 265       | ,          |       |           |           | 270       |            | Arg        |
|            |            | 275       | 5          |       |            |           | 280       |           |            |       |           | 285       | )         |            | Arg        |
|            | 290        | )         |            |       |            | 295       | ,         |           |            |       | 300       | )         |           |            | val        |
| Ala<br>305 |            | ı Çys     | s Glr      | Let   | Met<br>310 |           | Thr       | Glu       | ı Arç      | 3 Pro | Arg       | g Pro     | ) Asr     | ı Tnı      | 2 Phe 320  |
| Il€        | ,<br>E Ile | e Arg     | g Cys      | Lei   |            |           | Thr       | Thr       | . Val      | l Ile | e Glu     | ı Arg     | y Thi     | Phe        | e His      |
|            | - C1.      | . Th      | - חיי      | 325   | . Gl       | . Arc     | , Gli     | . Gli     | 330<br>Tra |       | r Thi     | r Ala     | a Ile     | 339<br>Gl: | n Thr      |
|            |            |           | 340        | )     |            |           |           | 345       | 5          |       |           |           | 350       | נ          |            |
|            |            | 35.       | 5          |       |            |           | 360       | )         |            |       |           | 36        | 5         |            | e Arg      |
|            | 370        | C         |            |       |            | 37!       | 5         |           |            |       | 38        | 0         |           |            | l Ser      |
| Le         | ı Ala      | a Ly      | s Pro      | o Ly: | s His      | s Ar      | g Vai     | l Thi     | r Me       | t As  | n Gl      | u Ph      | e Gl      | и Ту       | r Leu      |

| 385        |            |            |            |            | 390               |            |            |            |            | 395        |            |            |            |            | 400        |
|------------|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Lys        | Leu        | Leu        | Gly        | Lys<br>405 | Gly               | Thr        | Phe        |            | Lys<br>410 | Val        | Ile        | Leu        | Val        | Lys<br>415 | Glu        |
| Lys        | Ala        | Thr        | Gly<br>420 | Arg        | Tyr               | Tyr        | Ala        | Met<br>425 | Lys        | Ile        | Leu        | Lys        | Lys<br>430 | Glu        | Val        |
| Ile        | Val        | Ala<br>435 | Lys        | Asp        | Glu               | Val        | Ala<br>440 | His        | Thr        | Leu        | Thr        | Glu<br>445 | Asn        | Arg        | Val        |
| Leu        | Gln<br>450 |            | Ser        | Arg        | His               | Pro        | Phe        | Leu        | Thr        | Ala        | Leu<br>460 | Lys        | Tyr        | Ser        | Phe        |
|            |            | His        | Asp        | Arg        | Leu<br>470        | Cys        | Phe        | Val        | Met        | Glu<br>475 | Tyr        | Ala        | Asn        | Gly        | Gly<br>480 |
| 465<br>Glu | Leu        | Phe        | Phe        | His        | Leu               | Ser        | Arg        | Glu        | Arg<br>490 |            | Phe        | Ser        | Glu        | Asp        | Arg        |
| Ala        | Arg        | Phe        | Tyr<br>500 |            | Ala               | Glu        | Ile        | Val        |            | Ala        | Leu        | Asp        | Tyr<br>510 | Leu        | His        |
| Ser        | Glu        | Lys<br>515 | Asn        | Val        | Val               | Tyr        | Arg<br>520 |            | Leu        | Lys        | Leu        | Glu<br>525 | Asn        | Leu        | Met        |
| Leu        | Asp        |            | Asp        | Gly        | His               | Ile<br>535 | Lys        | Ile        | Thr        | Asp        | Phe<br>540 | Gly        | Leu        | Cys        | Lys        |
| Glu<br>545 |            | Ile        | Lys        | Asp        | Gly<br>550        | Ala        | Thr        | Met        | Lys        | Thr<br>555 | Phe        | Cys        | Gly        | Thr        | Pro<br>560 |
|            | Tyr        | Leu        | Ala        | Pro<br>565 | Glu               | Val        | Leu        | Glu        | Asp<br>570 |            | Asp        | Tyr        | Gly        | Arg<br>575 | Ala        |
| Val        | Asp        | Trp        | Trp<br>580 | Gly        | Leu               | Gly        | Val        | Val<br>585 | Met        | Tyr        | Glu        | Met        | Met<br>590 | Суѕ        | Gly        |
| Arg        | Leu        | Pro        |            | Tyr        | Asn               | Gln        | Asp<br>600 | His        | Glu        | Lys        | Leu        | Phe<br>605 | Glu        | Leu        | Ile        |
| Leu        | Met<br>610 |            | Glu        | Ile        | Arg               | Phe<br>615 |            | Arg        | Thr        | Leu        | Gly<br>620 |            | Glu        | Ala        | Lys        |
| Ser<br>625 |            | Leu        | Ser        | Gly        | Leu<br>630        |            | Lys        | Lys        | Asp        | Pro<br>635 |            | Glr        | Arg        | Leu        | 640        |
| Gly        | Gly        | Ser        | Glu        | Asp<br>645 |                   | Lys        | Glu        | Ile        | Met<br>650 |            | His        | Arg        | p Phe      | Ph∈<br>655 | Ala        |
| _          |            |            | 660        | )          |                   |            |            | 665        |            |            |            |            | 670        | )          | Phe        |
|            |            | 675        | 5          |            |                   |            | 680        |            |            |            |            | 685        | 5          |            | ı Glu      |
|            | 690        | )          |            |            |                   | 695        | i          |            |            |            | 700        | )          |            |            | Ser        |
| 705        | 5          |            |            |            | Ser<br>710<br>Thr | )          |            | Arg        | Pro        | 715        |            | e Pro      | o Glr      | n Ph€      | 720        |
| тух        | . sei      | . Alā      | 1 561      | 729        |                   | . Ald      | •          |            |            |            |            |            |            |            |            |

- (2) INFORMATION FOR SEQ ID NO:140:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2394 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
  - (A) NAME/KEY: Coding Sequence
  - (B) LOCATION: 1...2391
  - (D) OTHER INFORMATION:

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:140:

|  |     |     | ATC<br>Ile        |     |     |  |  |            | 48  |
|--|-----|-----|-------------------|-----|-----|--|--|------------|-----|
|  |     |     | ATT<br>Ile        |     |     |  |  |            | 96  |
|  |     |     | GGG<br>Gly<br>40  |     |     |  |  |            | 144 |
|  |     |     | AAG<br>Lys        |     |     |  |  |            | 192 |
|  |     |     | GTG<br>Val        |     |     |  |  |            | 240 |
|  |     |     | CAC<br>His        |     |     |  |  |            | 288 |
|  |     |     | CTC<br>Leu        |     |     |  |  |            | 336 |
|  |     |     | TGT<br>Cys<br>120 |     |     |  |  |            | 384 |
|  |     |     | ACC<br>Thr        |     |     |  |  |            | 432 |
|  |     |     | TAC<br>Tyr        |     |     |  |  |            | 480 |
|  | Thr | Arg | CCA<br>Pro        | Gly | Arg |  |  |            | 528 |
|  |     |     |                   |     |     |  |  | GCC<br>Ala | 576 |
|  |     |     |                   |     |     |  |  | GGT<br>Gly | 624 |
|  |     |     |                   |     |     |  |  | ATT<br>Ile | 672 |

| GAG (<br>Glu '<br>225 | GTG<br>Val   | тат<br>Туг   | TTC<br>Phe     | ACG<br>Thr          | GGA<br>Gly<br>230     | CCA<br>Pro           | GGC<br>Gly         | TGG<br>Trp            | GAG<br>Glu         | GCC<br>Ala<br>235  | CGA<br><b>A</b> rg | GGC<br>Gly           | TCC<br>Ser            | TTT<br>Phe         | TCC<br>Ser<br>240  | r                 | 720  |
|-----------------------|--------------|--------------|----------------|---------------------|-----------------------|----------------------|--------------------|-----------------------|--------------------|--------------------|--------------------|----------------------|-----------------------|--------------------|--------------------|-------------------|------|
| CAA<br>Gln            | GCT<br>Ala   | GAT<br>Asp   | GTC<br>Val     | CAC<br>His          | Arg                   | CAA<br>Gln           | GTG<br>Val         | GCC<br>Ala            | ATT<br>Ile<br>250  | GTG<br>Val         | TTC<br>Phe         | CGG<br>Arg           | ACC<br>Thr            | CCT<br>Pro<br>255  | CCC<br>Pr          | C<br>0            | 768  |
| TAC<br>Tyr            | GCA<br>Ala   | GAC<br>Asr   | 260            | Ser                 | CTG<br>Leu            | CAG<br>Gln           | GCT<br>Ala         | CCT<br>Pro<br>265     | GTG<br>Val         | CGT<br>Arg         | GTC<br>Val         | TCC<br>Ser           | ATG<br>Met<br>270     | CAG<br>Gln         | CT<br>Le           | G<br>u            | 816  |
| CGG<br>Arg            | CGG<br>Arg   | CCT<br>Pro   | Se:            | GAC<br>Asp          | CGG<br>Arg            | GAG<br>Glu           | CTC<br>Leu<br>280  | AGT<br>Ser            | GAG<br>Glu         | CCC                | ATG<br>Met         | GAA<br>Glu<br>285    | TTC<br>Phe            | CAG<br>Gln         | TA<br>Ty           | C<br>T            | 864  |
| CTG<br>Leu            | CCA<br>Pro   | As           | r ac.<br>o Th  | A GAC<br>r Asp      | GAT<br>Asp            | CGT<br>Arg<br>295    | His                | CGG<br>Arg            | ATT                | GAG<br>Glu         | GAG<br>Glu<br>300  | Lys                  | CGT<br>Arg            | AAA<br>Lys         | A AC               | G<br>g            | 912  |
| ACA<br>Thr<br>305     | ТАТ<br>Тут   | GA           | G AC<br>u Th   | C TIV               | 2 AAC<br>2 Lys<br>310 | Ser                  | ATC                | ATG<br>Met            | AAG<br>Lys         | AAG<br>Lys<br>315  | Ser                | CCT<br>Pro           | TTC<br>Phe            | AGC<br>Sei         | r G                | GA<br>ly<br>20    | 960  |
| CCC<br>Pro            | ACC<br>Thr   | GA<br>As     | C CC<br>p Pr   | C CGG<br>O Arg      | g Pro                 | r CCA<br>o Pro       | A CCT              | r CGA<br>o Arg        | CGC<br>Arg         | Ile                | GCT<br>Ala         | r GTC<br>a Val       | CCT<br>Pro            | TC0<br>Se:         | r A                | GC<br>rg          | 1008 |
| AGC<br>Ser            | TC/<br>Sei   | A GC         | T TC<br>a Se   | r Va                | C CCO                 | C AAC<br>o Lys       | G CCA              | A GCA<br>D Ala<br>345 | Pro                | CAC<br>Gli         | G CCC              | C TAT                | r CCC<br>r Pro<br>350 | o Ph               | T A                | CG<br>hr          | 1056 |
| TCA<br>Ser            | TC(          | C CI<br>r Le | eu Se          | C AC                | C AT                  | C AA(<br>e Ası       | TA'<br>1 Ty:<br>36 | T GAT<br>r Asp<br>0   | GAC                | F TT               | T CC               | C ACC<br>O Th:<br>36 | r Me                  | G GT<br>t Va       | G T<br>.1 P        | TT<br>he          | 1104 |
| CCT                   | TC Se 37     | r G          | G CA           | AG AT<br>In Il      | C AG<br>e Se          | C CAG<br>r Gli<br>37 | n Al               | C TCC                 | GCC<br>Ala         | TT<br>a Le         | G GC<br>u Al<br>38 | a Pr                 | G GC<br>o Al          | C CC<br>a Pr       | T C                | cc                | 1152 |
| CAA<br>Glr<br>385     | ı Va         | C C'         | rg Co<br>eu P: | cc ca<br>ro Gl      | AG GC<br>.n Al        | a Pr                 | A GC<br>o Al       | C CC<br>a Pro         | r GCO              | C CC<br>a Pr<br>39 | O Al               | T CC<br>a Pr         | A GC                  | C AT               | י ספ               | GTA<br>Val<br>100 | 1200 |
| TC?<br>Ser            | A GC<br>r Al | T C<br>a L   | TG G<br>eu A   | la G                | AG GC<br>ln Al        | C CC<br>a Pr         | A GC<br>o Al       | c cc<br>a Pr          | r GT<br>o Va<br>41 | l Pr               | A GT<br>to Va      | C CI                 | 'A GC<br>eu Al        | a Pi               | CA (<br>ro (<br>15 | GC<br>Gly         | 1248 |
| CC'                   | T CC         | T C          | ln A           | CT G'<br>la V<br>20 | rg go<br>al Al        | CC CC                | A CC               | T GC<br>to Al<br>42   | a Pr               | C A.               | AG CC<br>/s Pi     | CC AC                | r G                   | AG G<br>In A<br>30 | CT (               | GG<br>Gly         | 1296 |
| GA<br>G1              | A GC<br>u Gl | уТ           | CG Chr L       | TG T<br>eu S        | CA GA<br>er G         | AG GC<br>lu Al       | a Le               | NG CT<br>eu Le<br>10  | G CA               | G Ci               | rg CA<br>eu Gi     | ln Fl                | MT GA<br>ne As<br>45  | AT G<br>sp A       | AT (               | GAA<br>Glu        | 1344 |
| GA                    | .c c1        | rg c         | GG C           | CC T                | TG C'                 | rt GO                | BC A               | AC AG                 | C AC               | A G                | AC C               | CA G                 | CT G                  | TG I               | TC                 | ACA               | 1392 |

| Asp                    | Leu<br>450        | Gly                | Ala               | Leu                   |                   | Gly .<br>455      | Asn               | Ser               | Thr                   | Asp               | Pro<br>460            | Ala                 | Val                           | Phe                | Thr                   |      |
|------------------------|-------------------|--------------------|-------------------|-----------------------|-------------------|-------------------|-------------------|-------------------|-----------------------|-------------------|-----------------------|---------------------|-------------------------------|--------------------|-----------------------|------|
| GAC<br>Asp<br>465      | CTG<br>Leu        | GCA<br>Ala         | TCC<br>Ser        | GTC<br>Val            | GAC<br>Asp<br>470 | AAC<br>Asn        | TCC<br>Ser        | GAG<br>Glu        | TTT<br>Phe            | CAG<br>Gln<br>475 | CAG<br>Gln            | CTG<br>Leu          | CTG<br>Leu                    | AAC<br>Asn         | CAG<br>Gln<br>480     | 1440 |
| GGC<br>Gly             | ATA<br>Ile        | CCT<br>Pro         | GTG<br>Val        | GCC<br>Ala<br>485     | CCC<br>Pro        | CAC<br>His        | ACA<br>Thr        | ACT<br>Thr        | GAG<br>Glu<br>490     | CCC<br>Pro        | ATG<br>Met            | CTG<br>Leu          | ATG<br>Met                    | GAG<br>Glu<br>495  | TAC<br>Tyr            | 1488 |
| CCT<br>Pro             | GAG<br>Glu        | GCT<br>Ala         | ATA<br>Ile<br>500 | ACT<br>Thr            | CGC<br>Arg        | CTA<br>Leu        | GTG<br>Val        | ACA<br>Thr<br>505 | GGG<br>Gly            | GCC<br>Ala        | CAG<br>Gln            | AGG<br>Arg          | CCC<br>Pro<br>510             | CCC<br>Pro         | GAC<br>Asp            | 1536 |
| CCA<br>Pro             | GCT<br>Ala        | CCT<br>Pro<br>515  | GCT<br>Ala        | CCA<br>Pro            | CTG<br>Leu        | GGG<br>Gly        | GCC<br>Ala<br>520 | CCG<br>Pro        | GGG<br>Gly            | CTC<br>Leu        | CCC<br>Pro            | AAT<br>Asn<br>525   | GGC<br>Gly                    | CTC<br>Leu         | CTT<br>Leu            | 1584 |
| TCA<br>Ser             | GGA<br>Gly<br>530 | GAT<br>Asp         | GAA<br>Glu        | GAC<br>Asp            | TTC<br>Phe        | TCC<br>Ser<br>535 | TCC<br>Ser        | ATT<br>Ile        | GCG<br>Ala            | GAC<br>Asp        | ATG<br>Met<br>540     | GAC<br>Asp          | TTC<br>Phe                    | TCA<br>Ser         | GCC<br>Ala            | 1632 |
| CTG<br>Leu<br>545      | Leu               | AGT<br>Ser         | CAG<br>Gln        | ATC<br>Ile            | AGC<br>Ser<br>550 | TCC<br>Ser        | TTG<br>Leu        | GAT<br>Asp        | CCA<br>Pro            | CCG<br>Pro<br>555 | Val                   | GCC<br>Ala          | ACC<br>Thr                    | : ATG<br>: Met     | GTG<br>Val<br>560     | 1680 |
| AGC<br>Ser             | AAG<br>Lys        | GGC<br>Gly         | GAG<br>Glu        | GAG<br>Glu<br>565     | CTG<br>Leu        | TTC<br>Phe        | ACC<br>Thr        | GGG<br>Gly        | GTG<br>Val<br>570     | GTG<br>Val        | CCC<br>Pro            | TATC                | CTC<br>Lev                    | GTC<br>Val         | GAG<br>Glu            | 1728 |
| CTG<br>Leu             | GAC<br>Asp        | GGC<br>GGC         | GAC<br>Asp<br>580 | Val                   | AAC<br>Asn        | GGC<br>Gly        | CAC               | AAG<br>Lys<br>585 | Phe                   | AGC<br>Ser        | GTC<br>Val            | TCC<br>Ser          | GG(<br>G1 <sub>2</sub><br>59( | / Glu              | GGC<br>Gly            | 1776 |
| GAC<br>Glu             | GGC<br>Gly        | GAT<br>Asp<br>595  | Ala               | ACC<br>Thr            | TAC<br>Tyr        | GGC               | AAG<br>Lys<br>600 | Leu               | ACC<br>Thr            | CTC               | AAC<br>Lys            | FTTC<br>FPhe<br>605 | e Ile                         | C TGC              | ACC<br>Thr            | 1824 |
| ACC<br>Thi             | GGC<br>Gly<br>610 | Lys                | CTC               | CCC<br>Pro            | GTG<br>Val        | CCC<br>Pro<br>615 | Trp               | CCC<br>Pro        | ACC<br>Thr            | CTC               | C GTY<br>L Val<br>620 | l Thi               | C ACC                         | C CTO              | ACC<br>Thr            | 1872 |
| ТАС<br>Туз<br>625      | c Gly             | GT(                | G CAC             | TGC                   | TTC<br>Phe        | Ser               | CG(               | TAC<br>TYI        | C CCC                 | GAG<br>Ası<br>63  | p Hi                  | C ATG               | G AA                          | G CAG              | G CAC<br>n His<br>640 | 1920 |
| GA(<br>As <sub>1</sub> | TTC<br>p Phe      | TTO                | C AAG<br>e Lys    | 5 TCC<br>5 Ser<br>645 | : Ala             | ATG<br>Met        | CCC<br>Pro        | GAZ<br>Gli        | A GG(<br>L Gl)<br>65( | у Ту              | C GT<br>r Va          | C CA                | G GA<br>n Gl                  | G CG<br>u Ar<br>65 | C ACC<br>g Thr<br>5   | 1968 |
| ATY<br>Il              | C TTO<br>e Pho    | C TTG<br>∋ Ph      | C AA0<br>e Ly:    | s Ası                 | C GAC             | GGC<br>Gly        | AA(<br>Asi        | TA<br>n Ty:<br>66 | r Ly:                 | G AC<br>s Th      | C CG<br>r Ar          | C GC<br>g Al        | C GA<br>a G1<br>67            | u Va               | G AAG<br>1 Lys        | 2016 |
| TT<br>Ph               | C GAG<br>e Gl     | G GG<br>u Gl<br>67 | y As              | C ACC                 | CTX               | G GTC<br>u Val    | AA<br>L As<br>68  | n Ar              | C AT                  | C GA<br>e Gl      | G CT<br>u Le          | G AA<br>u Ly<br>68  | s Gl                          | C AT               | C GAC<br>e Asp        | 2064 |

|                   | AAG<br>Lys<br>690 | GAG<br>Glu        | GAC<br>Asp        | GGC<br>Gly        | AAC<br>Asn        | ATC<br>Ile<br>695 | CTG<br>Leu        | GGG<br>Gly        | CAC<br>His        | AAG<br>Lys        | CTG<br>Leu<br>700 | GAG<br>Glu        | TAC<br>Tyr        | AAC<br>Asn        | TAC<br>Tyr        | 2112 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| AAC<br>Asn<br>705 | AGC<br>Ser        | CAC<br>His        | AAC<br>Asn        | GTC<br>Val        | тат<br>тут<br>710 | ATC<br>Ile        | ATG<br>Met        | GCC<br>Ala        | GAC<br>Asp        | AAG<br>Lys<br>715 | CAG<br>Gln        | AAG<br>Lys        | AAC<br>Asn        | GGC<br>Gly        | ATC<br>11e<br>720 | 2160 |
| AAG<br>Lys        | GTG<br>Val        | AAC<br>Asn        | TTC<br>Phe        | AAG<br>Lys<br>725 | ATC<br>Ile        | CGC<br>Arg        | CAC<br>His        | AAC<br>Asn        | ATC<br>Ile<br>730 | GAG<br>Glu        | GAC<br>Asp        | GGC<br>Gly        | AGC<br>Ser        | GTG<br>Val<br>735 | CAG<br>Gln        | 2208 |
| CTC<br>Leu        | GCC<br>Ala        | GAC<br>Asp        | CAC<br>His<br>740 | TAC<br>Tyr        | CAG<br>Gln        | CAG<br>Gln        | AAC<br>Asn        | ACC<br>Thr<br>745 | CCC<br>Pro        | ATC<br>Ile        | GGC<br>Gly        | GAC<br>Asp        | GGC<br>Gly<br>750 | CCC               | GTG<br>Val        | 2256 |
| CTG<br>Leu        | CTG<br>Leu        | CCC<br>Pro<br>755 | GAC<br>Asp        | AAC<br>Asn        | CAC<br>His        | TAC<br>Tyr        | CTG<br>Leu<br>760 | Ser               | ACC<br>Thr        | CAG<br>Gln        | TCC<br>Ser        | GCC<br>Ala<br>765 | Leu               | AGC<br>Ser        | AAA<br>Lys        | 2304 |
| GAC<br>Asp        | CCC<br>Pro<br>770 | Asn               | GAG<br>Glu        | AAG<br>Lys        | CGC               | GAT<br>Asp<br>775 | His               | ATG<br>Met        | GTC<br>Val        | CTG<br>Leu        | CTG<br>Leu<br>780 | Glu               | TTC<br>Phe        | GTG<br>Val        | ACC<br>Thr        | 2352 |
|                   | Ala               |                   |                   |                   |                   | Gly               |                   |                   | GAG               |                   | Туг               |                   |                   |                   |                   | 2394 |

#### (2) INFORMATION FOR SEQ ID NO:141:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 797 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:141:

Met Asp Glu Leu Phe Pro Leu Ile Phe Pro Ala Glu Pro Ala Gln Ala 10 Ser Gly Pro Tyr Val Glu Ile Ile Glu Gln Pro Lys Gln Arg Gly Met 20 25 Arg Phe Arg Tyr Lys Cys Glu Gly Arg Ser Ala Gly Ser Ile Pro Gly 40 Glu Arg Ser Thr Asp Thr Thr Lys Thr His Pro Thr Ile Lys Ile Asn 55 Gly Tyr Thr Gly Pro Gly Thr Val Arg Ile Ser Leu Val Thr Lys Asp 70 Pro Pro His Arg Pro His Pro His Glu Leu Val Gly Lys Asp Cys Arg 90 85 Asp Gly Phe Tyr Glu Ala Glu Leu Cys Pro Asp Arg Cys Ile His Ser 105 100 Phe Gln Asn Leu Gly Ile Gln Cys Val Lys Lys Arg Asp Leu Glu Gln

|                                                             |                                                             | 115                                                                |                                                                    |                                               |                                               |                                                                    | 120                                                                |                                                                    |                                                                    |                                               |                                         | 125                                                         |                                                                    |                                                                                  |                                               |
|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------|
| Ala                                                         | Ile<br>130                                                  | Ser                                                                | Gln                                                                | Arg                                           | Ile                                           | Gln<br>135                                                         | Thr                                                                | Asn                                                                | Asn                                                                | Asn                                           | Pro<br>140                              | Phe                                                         | Gln                                                                | Val                                                                              | Pro                                           |
| 11e<br>145                                                  | Glu                                                         | Glu                                                                | Gln                                                                | Arg                                           | Gly<br>150                                    | Asp                                                                | Tyr                                                                | Asp                                                                | Leu                                                                | Asn<br>155                                    | Ala                                     | Val                                                         | Arg                                                                | Leu                                                                              | Cys<br>160                                    |
| Phe                                                         | Gln                                                         | Val                                                                | Thr                                                                | Val<br>165                                    | Arg                                           | Asp                                                                | Pro                                                                | Ser                                                                | Gly<br>170                                                         | Arg                                           | Pro                                     | Leu                                                         | Arg                                                                | Leu<br>175                                                                       | Pro                                           |
| Pro                                                         | Val                                                         | Leu                                                                | Pro<br>180                                                         | His                                           | Pro                                           | Ile                                                                | Phe                                                                | Asp<br>185                                                         | Asn                                                                | Arg                                           | Ala                                     | Pro                                                         | Asn<br>190                                                         | Thr                                                                              | Ala                                           |
| Glu                                                         | Leu                                                         | Lys<br>195                                                         | Ile                                                                | Суѕ                                           | Arg                                           | Val                                                                | Asn<br>200                                                         | Arg                                                                | Asn                                                                | Ser                                           | Gly                                     | Ser<br>205                                                  | Cys                                                                | Leu                                                                              | Gly                                           |
| Gly                                                         | Asp<br>210                                                  | Glu                                                                | Ile                                                                | Phe                                           | Leu                                           | Leu<br>215                                                         | Суѕ                                                                | Asp                                                                | Lys                                                                | Val                                           | Gln<br>220                              | Lys                                                         | Glu                                                                | Asp                                                                              | Ile                                           |
| Glu<br>225                                                  | Val                                                         | Tyr                                                                | Phe                                                                | Thr                                           | Gly<br>230                                    | Pro                                                                | Gly                                                                | Trp                                                                | Glu                                                                | Ala<br>235                                    | Arg                                     | Gly                                                         | Ser                                                                | Phe                                                                              | Ser<br>240                                    |
| Gln                                                         | Ala                                                         | Asp                                                                | Val                                                                | His<br>245                                    | Arg                                           | Gln                                                                | Val                                                                | Ala                                                                | Ile<br>250                                                         | Val                                           | Phe                                     | Arg                                                         | Thr                                                                | Pro<br>255                                                                       | Pro                                           |
| _                                                           |                                                             |                                                                    | 260                                                                |                                               |                                               |                                                                    |                                                                    | 265                                                                | Val                                                                |                                               |                                         |                                                             | 270                                                                |                                                                                  |                                               |
| _                                                           |                                                             | 275                                                                |                                                                    |                                               |                                               |                                                                    | 280                                                                |                                                                    | Glu                                                                |                                               |                                         | 285                                                         |                                                                    |                                                                                  | _                                             |
|                                                             | 290                                                         | _                                                                  |                                                                    |                                               |                                               | 295                                                                |                                                                    |                                                                    | Ile                                                                |                                               | 300                                     |                                                             |                                                                    | _                                                                                |                                               |
| 305                                                         | •                                                           |                                                                    |                                                                    |                                               | 310                                           |                                                                    |                                                                    |                                                                    | Lys                                                                | 315                                           |                                         |                                                             |                                                                    |                                                                                  | 320                                           |
|                                                             |                                                             |                                                                    |                                                                    | 325                                           |                                               |                                                                    |                                                                    | -                                                                  | Arg<br>330                                                         |                                               |                                         |                                                             |                                                                    | 335                                                                              | _                                             |
|                                                             |                                                             |                                                                    | 340                                                                |                                               |                                               | _                                                                  |                                                                    | 345                                                                | Pro                                                                |                                               |                                         |                                                             | 350                                                                |                                                                                  |                                               |
|                                                             |                                                             | 355                                                                |                                                                    |                                               |                                               |                                                                    | 360                                                                |                                                                    | Glu                                                                |                                               |                                         | 365                                                         |                                                                    |                                                                                  |                                               |
|                                                             | 370                                                         | _                                                                  |                                                                    |                                               |                                               | 375                                                                |                                                                    |                                                                    | Ala                                                                |                                               | 380                                     |                                                             |                                                                    |                                                                                  |                                               |
| 385                                                         |                                                             |                                                                    |                                                                    |                                               | 390                                           |                                                                    |                                                                    |                                                                    | Ala                                                                | 395                                           |                                         |                                                             |                                                                    |                                                                                  | 400                                           |
|                                                             |                                                             |                                                                    |                                                                    | G1n<br>405                                    | Ala                                           | Pro                                                                | Ala                                                                | Pro                                                                | Val                                                                | Pro                                           | Val                                     | Leu                                                         | Ala                                                                | Pro                                                                              | GIY                                           |
|                                                             | Pro                                                         | GIn                                                                |                                                                    |                                               |                                               | _                                                                  | _                                                                  |                                                                    | 410                                                                | _                                             | _                                       |                                                             | -1                                                                 | 415                                                                              | ~-                                            |
| GIU                                                         | ~3                                                          | <b>(77)</b>                                                        | 420                                                                |                                               |                                               |                                                                    |                                                                    | 425                                                                | Pro                                                                |                                               |                                         |                                                             | 430                                                                | Ala                                                                              | _                                             |
| <b>3</b>                                                    | _                                                           | 435                                                                | 420<br>Leu                                                         | Ser                                           | Glu                                           | Ala                                                                | Leu<br>440                                                         | 425<br>Leu                                                         | Pro<br>Gln                                                         | Leu                                           | Gln                                     | Phe<br>445                                                  | 430<br>Asp                                                         | Ala<br>Asp                                                                       | Glu                                           |
| _                                                           | Leu<br>450                                                  | 435<br>Gly                                                         | 420<br>Leu<br>Ala                                                  | Ser<br>Leu                                    | Glu<br>Leu                                    | Ala<br>Gly<br>455                                                  | Leu<br>440<br>Asn                                                  | 425<br>Leu<br>Ser                                                  | Pro<br>Gln<br>Thr                                                  | Leu<br>Asp                                    | Gln<br>Pro<br>460                       | Phe<br>445<br>Ala                                           | 430<br>Asp<br>Val                                                  | Ala<br>Asp<br>Phe                                                                | Glu                                           |
| Asp<br>465                                                  | Leu<br>450<br>Leu                                           | 435<br>Gly<br>Ala                                                  | 420<br>Leu<br>Ala<br>Ser                                           | Ser<br>Leu<br>Val                             | Glu<br>Leu<br>Asp<br>470                      | Ala<br>Gly<br>455<br>Asn                                           | Leu<br>440<br>Asn<br>Ser                                           | 425<br>Leu<br>Ser<br>Glu                                           | Pro<br>Gln<br>Thr<br>Phe                                           | Leu<br>Asp<br>Gln<br>475                      | Gln<br>Pro<br>460<br>Gln                | Phe<br>445<br>Ala<br>Leu                                    | 430<br>Asp<br>Val<br>Leu                                           | Ala<br>Asp<br>Phe<br>Asn                                                         | Glu<br>Thr<br>Gln<br>480                      |
| Asp<br>465<br>Gly                                           | Leu<br>450<br>Leu<br>Ile                                    | 435<br>Gly<br>Ala<br>Pro                                           | 420<br>Leu<br>Ala<br>Ser<br>Val                                    | Ser<br>Leu<br>Val<br>Ala<br>485               | Glu<br>Leu<br>Asp<br>470<br>Pro               | Ala<br>Gly<br>455<br>Asn                                           | Leu<br>440<br>Asn<br>Ser<br>Thr                                    | 425<br>Leu<br>Ser<br>Glu<br>Thr                                    | Pro<br>Gln<br>Thr<br>Phe<br>Glu<br>490                             | Leu<br>Asp<br>Gln<br>475<br>Pro               | Gln<br>Pro<br>460<br>Gln<br>Met         | Phe<br>445<br>Ala<br>Leu<br>Leu                             | 430<br>Asp<br>Val<br>Leu<br>Met                                    | Ala<br>Asp<br>Phe<br>Asn<br>Glu<br>495                                           | Glu<br>Thr<br>Gln<br>480<br>Tyr               |
| Asp<br>465<br>Gly<br>Pro                                    | Leu<br>450<br>Leu<br>Ile<br>Glu                             | 435<br>Gly<br>Ala<br>Pro                                           | 420<br>Leu<br>Ala<br>Ser<br>Val<br>Ile<br>500                      | Ser<br>Leu<br>Val<br>Ala<br>485<br>Thr        | Glu<br>Leu<br>Asp<br>470<br>Pro               | Ala<br>Gly<br>455<br>Asn<br>His<br>Leu                             | Leu<br>440<br>Asn<br>Ser<br>Thr                                    | 425<br>Leu<br>Ser<br>Glu<br>Thr<br>Thr<br>505                      | Pro<br>Gln<br>Thr<br>Phe<br>Glu<br>490<br>Gly                      | Leu<br>Asp<br>Gln<br>475<br>Pro               | Gln<br>Pro<br>460<br>Gln<br>Met<br>Gln  | Phe<br>445<br>Ala<br>Leu<br>Leu                             | 430<br>Asp<br>Val<br>Leu<br>Met<br>Pro<br>510                      | Ala<br>Asp<br>Phe<br>Asn<br>Glu<br>495<br>Pro                                    | Glu<br>Thr<br>Gln<br>480<br>Tyr               |
| Asp<br>465<br>Gly<br>Pro                                    | Leu<br>450<br>Leu<br>Ile<br>Glu<br>Ala                      | 435<br>Gly<br>Ala<br>Pro<br>Ala<br>Pro<br>515                      | 420<br>Leu<br>Ala<br>Ser<br>Val<br>Ile<br>500<br>Ala               | Ser<br>Leu<br>Val<br>Ala<br>485<br>Thr        | Glu<br>Leu<br>Asp<br>470<br>Pro<br>Arg<br>Leu | Ala<br>Gly<br>455<br>Asn<br>His<br>Leu<br>Gly                      | Leu<br>440<br>Asn<br>Ser<br>Thr<br>Val<br>Ala<br>520               | 425<br>Leu<br>Ser<br>Glu<br>Thr<br>Thr<br>505<br>Pro               | Pro<br>Gln<br>Thr<br>Phe<br>Glu<br>490<br>Gly<br>Gly               | Leu<br>Asp<br>Gln<br>475<br>Pro<br>Ala<br>Leu | Gln Pro 460 Gln Met Gln Pro             | Phe<br>445<br>Ala<br>Leu<br>Leu<br>Arg<br>Asn<br>525        | 430<br>Asp<br>Val<br>Leu<br>Met<br>Pro<br>510<br>Gly               | Ala<br>Asp<br>Phe<br>Asn<br>Glu<br>495<br>Pro                                    | Glu<br>Thr<br>Gln<br>480<br>Tyr<br>Asp        |
| Asp<br>465<br>Gly<br>Pro<br>Pro                             | Leu<br>450<br>Leu<br>Ile<br>Glu<br>Ala<br>Gly<br>530        | Ala<br>Pro<br>Ala<br>Pro<br>515<br>Asp                             | Ala<br>Ser<br>Val<br>Ile<br>500<br>Ala<br>Glu                      | Ser<br>Leu<br>Val<br>Ala<br>485<br>Thr<br>Pro | Glu<br>Leu<br>Asp<br>470<br>Pro<br>Arg<br>Leu | Ala Gly 455 Asn His Leu Gly Ser 535                                | Leu<br>440<br>Asn<br>Ser<br>Thr<br>Val<br>Ala<br>520<br>Ser        | 425<br>Leu<br>Ser<br>Glu<br>Thr<br>Thr<br>505<br>Pro               | Pro<br>Gln<br>Thr<br>Phe<br>Glu<br>490<br>Gly<br>Gly<br>Ala        | Leu Asp Gln 475 Pro Ala Leu Asp               | Gln Pro 460 Gln Met Gln Pro Met 540     | Phe<br>445<br>Ala<br>Leu<br>Leu<br>Arg<br>Asn<br>525<br>Asp | 430<br>Asp<br>Val<br>Leu<br>Met<br>Pro<br>510<br>Gly               | Ala Asp Phe Asn Glu 495 Pro Leu Ser                                              | Glu<br>Thr<br>Gln<br>480<br>Tyr<br>Asp<br>Leu |
| Asp<br>465<br>Gly<br>Pro<br>Pro<br>Ser<br>Leu<br>545        | Leu<br>450<br>Leu<br>Ile<br>Glu<br>Ala<br>Gly<br>530<br>Leu | A1a<br>Pro<br>A1a<br>Pro<br>515<br>Asp                             | Ala Ser Val Ile 500 Ala Glu Gln                                    | Ser Leu Val Ala 485 Thr Pro Asp Ile           | Glu Leu Asp 470 Pro Arg Leu Phe Ser 550       | Ala<br>Gly<br>455<br>Asn<br>His<br>Leu<br>Gly<br>Ser<br>535<br>Ser | Leu<br>440<br>Asn<br>Ser<br>Thr<br>Val<br>Ala<br>520<br>Ser<br>Leu | 425<br>Leu<br>Ser<br>Glu<br>Thr<br>Thr<br>505<br>Pro<br>Ile<br>Asp | Pro<br>Gln<br>Thr<br>Phe<br>Glu<br>490<br>Gly<br>Gly<br>Ala<br>Pro | Leu Asp Gln 475 Pro Ala Leu Asp Pro 555       | Gln Pro 460 Gln Met Gln Pro Met Val     | Phe 445 Ala Leu Leu Arg Asn 525 Asp                         | 430<br>Asp<br>Val<br>Leu<br>Met<br>Pro<br>510<br>Gly<br>Phe<br>Thr | Ala<br>Asp<br>Phe<br>Asn<br>Glu<br>495<br>Pro<br>Leu<br>Ser<br>Met               | Glu Thr Gln 480 Tyr Asp Leu Ala Val 560       |
| Asp<br>465<br>Gly<br>Pro<br>Pro<br>Ser<br>Leu<br>545<br>Ser | Leu 450 Leu Ile Glu Ala Gly 530 Leu Lys                     | 435<br>Gly<br>Ala<br>Pro<br>Ala<br>Pro<br>515<br>Asp<br>Ser<br>Gly | 420<br>Leu<br>Ala<br>Ser<br>Val<br>Ile<br>500<br>Ala<br>Glu<br>Gln | Ser Leu Val Ala 485 Thr Pro Asp Ile Glu 565   | Glu Leu Asp 470 Pro Arg Leu Phe Ser 550 Leu   | Ala Gly 455 Asn His Leu Gly Ser 535 Ser                            | Leu<br>440<br>Asn<br>Ser<br>Thr<br>Val<br>Ala<br>520<br>Ser<br>Leu | 425<br>Leu<br>Ser<br>Glu<br>Thr<br>Thr<br>505<br>Pro<br>Ile<br>Asp | Pro Gln Thr Phe Glu 490 Gly Gly Ala Pro Val 570                    | Leu Asp Gln 475 Pro Ala Leu Asp Pro 555 Val   | Gln Pro 460 Gln Met Gln Pro Met 540 Val | Phe 445 Ala Leu Leu Arg Asn 525 Asp Ala Ile                 | 430<br>Asp<br>Val<br>Leu<br>Met<br>Pro<br>510<br>Gly<br>Phe<br>Thr | Ala<br>Asp<br>Phe<br>Asn<br>Glu<br>495<br>Pro<br>Leu<br>Ser<br>Met<br>Val<br>575 | Glu Thr Gln 480 Tyr Asp Leu Ala Val 560       |

|                 |               |                                           | 580                                   |                                              |                                             |                                     |                                 | 585                             |              |              |               |                    | 590                |                    |                |           |
|-----------------|---------------|-------------------------------------------|---------------------------------------|----------------------------------------------|---------------------------------------------|-------------------------------------|---------------------------------|---------------------------------|--------------|--------------|---------------|--------------------|--------------------|--------------------|----------------|-----------|
|                 |               | 595                                       | Ala                                   |                                              |                                             | Gly                                 | 600                             |                                 |              |              |               | 605                |                    |                    |                |           |
|                 | 610           |                                           |                                       |                                              |                                             | Pro<br>615                          |                                 |                                 |              |              | 620           |                    |                    |                    |                |           |
|                 | Gly           | Val                                       | Gln                                   | Cys                                          |                                             | Ser                                 | Arg                             | Tyr                             | Pro          | Asp<br>635   | His           | Met                | Lys                | Gln                | His<br>640     |           |
| 625<br>Asp      | Phe           | Phe                                       | Lys                                   | Ser<br>645                                   | 630<br>Ala                                  | Met                                 | Pro                             | Glu                             | Gly<br>650   |              | Val           | Gln                | Glu                | Arg<br>655         |                |           |
| Ile             | Phe           | Phe                                       | Lys<br>660                            |                                              | Asp                                         | Gly                                 | Asn                             | Tyr<br>665                      |              | Thr          | Arg           | Ala                | Glu<br>670         | Val                | Lys            |           |
| Phe             | Glu           | Gly<br>675                                |                                       | Thr                                          | Leu                                         | Val                                 | Asn<br>680                      |                                 | Ile          | Glu          | Leu           | Lys<br>685         | Gly                | Ile                | Asp            |           |
|                 | 690           | Glu                                       |                                       |                                              |                                             | Ile<br>695                          |                                 |                                 |              |              | 700           |                    |                    |                    |                |           |
| 705             | Ser           |                                           |                                       |                                              | 710                                         | Ile                                 |                                 |                                 |              | 715          |               |                    |                    |                    | 720            |           |
| Lys             |               |                                           |                                       | 725                                          |                                             |                                     |                                 |                                 | 730          |              |               |                    |                    | 735                |                |           |
| Leu             | Ala           | Asp                                       | His<br>740                            | Tyr                                          | Gln                                         | Gln                                 | Asn                             | Thr<br>745                      | Pro          | Ile          | Gly           | Asp                | Gly<br>750         |                    | Val            |           |
| Leu             | Leu           | Pro<br>755                                |                                       | Asn                                          | His                                         | Tyr                                 | Leu<br>760                      |                                 | Thr          | Gln          | Ser           | Ala<br>765         |                    | Ser                | Lys            |           |
| Asp             | Pro           | Asn                                       | Glu                                   | Lys                                          | Arg                                         | Asp<br>775                          | His                             | Met                             | Val          | Leu          | Leu<br>780    |                    | Ph€                | val                | Thr            |           |
| Ala<br>785      |               | Gly                                       | Ile                                   | Thr                                          | Leu<br>790                                  | Gly                                 | Met                             | . Asp                           | Glu          | Leu<br>795   |               | Lys                |                    |                    |                |           |
|                 | (             | (A) (B) (C) (D) (ii) (ix) (A) (I) (I) (I) | LEN TYF STR TOF MOLE FEAT A) NA 3) LC | GTH: PE: n LANDE POLOG CULE TURE: AME/I CATI | 239 Sucle EDNES SY: 1 E TYPE SEY: SON: INFO | ACTE 4 ba ic a S: s inea PE: c Codi | se r<br>cid<br>ingl<br>r<br>DNA | oairs<br>le<br>Seque<br>l       | ence         |              |               |                    |                    |                    |                |           |
|                 |               |                                           |                                       |                                              |                                             | SCRII                               |                                 |                                 |              |              |               |                    |                    |                    |                |           |
| ATO<br>Med<br>1 | G GTC         | G AGO                                     | C AAC                                 | G GG(<br>S Gly<br>5                          | GA(                                         | G GAG<br>u Glu                      | ı Le                            | G TTO<br>u Pho                  | e Th         | C GG<br>r Gl | G GTY<br>y Va | G GT<br>1 Va       | G CC<br>1 Pr       | C AT<br>o Il<br>15 | C CTG<br>e Lei | 5 48<br>1 |
| GT(<br>Va)      | C GAG         | G CTY<br>u Let                            | G GAG<br>u Ası<br>20                  | C GG<br>G G1                                 | C GAG                                       | C GTA                               | A AA<br>l As                    | C GG<br>n Gl <sub>j</sub><br>25 | C CA         | C AA<br>s Ly | G TT<br>s Ph  | C AG<br>e Se       | C GT<br>r Va<br>30 | l Se               | c GGG<br>r Gly | 96        |
| GA <sup>(</sup> | G GGG<br>u Gl | C GA<br>y Gl                              | G GG<br>u Gl                          | y As                                         | r GC<br>p Al                                | C ACC                               | C TA<br>r Ty<br>40              | r Gl                            | C AA<br>y Ly | G CT<br>s Le | G AC<br>u Th  | C CT<br>r Le<br>45 | u Ly               | AG TI<br>'s Ph     | C ATO          | 144<br>e  |
| TG              | C AC          | C AC                                      | c GG                                  | c aa                                         | G CT                                        | G CC                                | C GI                            | e cc                            | C TG         | G CC         | C AC          | C CI               | 'C G7              | rg ac              | C AC           | C 192     |

| Cys | Thr<br>50 | Thr | Gly | Lys | Leu               | Pro<br>55 | Val | Pro | Trp | Pro | Thr<br>60 | Leu | Val | Thr | Thr               |   |     |
|-----|-----------|-----|-----|-----|-------------------|-----------|-----|-----|-----|-----|-----------|-----|-----|-----|-------------------|---|-----|
|     |           |     |     | _   | CAG<br>Gln<br>70  |           |     |     |     |     |           |     |     |     |                   | : | 240 |
|     |           |     |     |     | AAG<br>Lys        |           |     |     |     |     | _         |     |     | _   | _                 |   | 288 |
|     |           |     |     |     | AAG<br>Lys        |           |     |     |     |     |           | _   |     |     | _                 |   | 336 |
|     |           |     |     |     | GAC<br>Asp        |           |     |     |     |     |           |     |     |     |                   |   | 384 |
|     |           |     |     |     | GAC<br>Asp        |           |     |     |     |     |           |     |     |     |                   |   | 432 |
|     |           |     |     |     | AAC<br>Asn<br>150 |           |     |     |     |     |           |     |     |     |                   |   | 480 |
|     |           |     |     |     | TTC<br>Phe        |           |     |     |     |     |           |     |     |     |                   |   | 528 |
|     |           |     |     |     | CAC<br>His        |           |     |     |     |     |           |     |     |     | GGC<br>Gly        |   | 576 |
|     |           |     |     |     |                   |           |     |     |     |     |           |     |     |     | CTG<br>Leu        |   | 624 |
|     |           |     |     |     |                   |           |     |     |     |     |           |     |     |     | TTC<br>Phe        |   | 672 |
|     |           |     |     |     |                   |           |     |     |     |     |           |     |     |     | TCC<br>Ser<br>240 |   | 720 |
|     |           |     |     |     |                   |           |     |     |     |     |           |     |     |     | CCG<br>Pro        |   | 768 |
|     |           |     |     |     |                   |           |     |     |     |     |           |     |     | Glu | CAG<br>Gln        |   | 816 |
|     |           |     |     |     |                   |           |     |     |     |     |           |     | Gly |     | TCC<br>Ser        |   | 864 |

| GCG<br>Ala        | GGC<br>Gly<br>290             | AGC<br>Ser            | ATC<br>Ile         | CCA<br>Pro        | Gly                 | GAG<br>Glu<br>295 | AGG<br>Arg        | AGC<br>Ser         | ACA<br>Thr         | GAT<br>Asp        | ACC<br>Thr<br>300   | ACC<br>Thr        | AAG<br>Lys          | ACC<br>Thr         | CAC<br>His            | 912  |
|-------------------|-------------------------------|-----------------------|--------------------|-------------------|---------------------|-------------------|-------------------|--------------------|--------------------|-------------------|---------------------|-------------------|---------------------|--------------------|-----------------------|------|
| CCC<br>Pro<br>305 | ACC<br>Thr                    | ATC<br>Ile            | AAG<br>Lys         | ATC<br>Ile        | AAT<br>Asn<br>310   | GGC<br>Gly        | TAC<br>Tyr        | ACA<br>Thr         | GGA<br>Gly         | CCA<br>Pro<br>315 | GGG<br>Gly          | ACA<br>Thr        | GTG<br>Val          | CGC<br>Arg         | ATC<br>Ile<br>320     | 960  |
| TCC<br>Ser        | CTG<br>Leu                    | GTC<br>Val            | ACC<br>Thr         | AAG<br>Lys<br>325 | GAC<br>Asp          | CCT<br>Pro        | CCT<br>Pro        | CAC<br>His         | CGG<br>Arg<br>330  | CCT<br>Pro        | CAC<br>His          | CCC<br>Pro        | CAC<br>His          | GAG<br>Glu<br>335  | CTT<br>Leu            | 1009 |
| GTA<br>Val        | GGA<br>Gly                    | AAG<br>Lys            | GAC<br>Asp<br>340  | TGC<br>Cys        | CGG<br>Arg          | GAT<br>Asp        | GGC<br>Gly        | TTC<br>Phe<br>345  | TAT<br>Tyr         | GAG<br>Glu        | GCT<br>Ala          | GAG<br>Glu        | CTC<br>Leu<br>350   | TGC<br>Cys         | CCG<br>Pro            | 1056 |
| GAC<br>Asp        | CGC<br>Arg                    | TGC<br>Cys<br>355     | ATC<br>Ile         | CAC<br>His        | AGT<br>Ser          | TTC<br>Phe        | CAG<br>Gln<br>360 | AAC<br>Asn         | CTG<br>Leu         | GGA<br>Gly        | ATC<br>Ile          | CAG<br>Gln<br>365 | TGT<br>Cys          | GTG<br>Val         | AAG<br>Lys            | 1104 |
| AAG<br>Lys        | CGG<br>Arg<br>370             | Asp                   | CTG<br>Leu         | GAG<br>Glu        | CAG<br>Gln          | GCT<br>Ala<br>375 | ATC<br>Ile        | AGT<br>Ser         | CAG<br>Gln         | CGC<br>Arg        | ATC<br>Ile<br>380   | Gln               | ACC<br>Thr          | AAC<br>Asn         | AAC<br>Asn            | 1152 |
| AAC<br>Asn<br>385 | Pro                           | TTC<br>Phe            | CAA<br>Gln         | GTT<br>Val        | CCT<br>Pro<br>390   | ATA<br>Ile        | GAA<br>Glu        | GAG<br>Glu         | CAG<br>Gln         | CGT<br>Arg<br>395 | Gly                 | GAC<br>Asp        | TAC<br>Tyr          | GAC<br>Asp         | CTG<br>Leu<br>400     | 1200 |
| AAT<br>Asn        | GCT<br>Ala                    | GTG<br>Val            | CGG<br>Arg         | CTC<br>Leu<br>405 | Cys                 | TTC<br>Phe        | CAG<br>Gln        | GTG<br>Val         | ACA<br>Thr<br>410  | Val               | CGG<br>Arg          | GAC<br>JASP       | CCA<br>Pro          | TCA<br>Ser<br>415  | GGC<br>Gly            | 1248 |
| AGG<br>Arg        | CCC<br>Pro                    | CTC                   | CGC<br>Arg<br>420  | Leu               | CCG<br>Pro          | CCT<br>Pro        | GTC<br>Val        | CT1<br>Leu<br>425  | Pro                | CAT<br>His        | CCC<br>Pro          | TATC              | TT1<br>Phe<br>430   | a Ası              | AAT<br>Asn            | 1296 |
| CGT<br>Arg        | GCC<br>Ala                    | 2 CCC<br>2 Pro<br>435 | Asn                | ACT<br>Thr        | GCC<br>Ala          | GAG<br>Glu        | CTC<br>Let<br>440 | ı Lys              | ATC                | TG(               | C CGA               | GTC<br>G Val      | l Ası               | C CG               | A AAC<br>g Asn        | 1344 |
| TCT<br>Ser        | GGC<br>Gl <sub>2</sub><br>450 | / Sei                 | TGC<br>Cys         | CTC<br>Lev        | GGI<br>Gly          | GGG<br>Gly<br>455 | Asī               | r GAC              | G ATO              | TTY<br>Pho        | CTZ<br>e Lev<br>460 | u Lev             | ICY:                | T GA               | C AAG<br>p Lys        | 1392 |
| GTC<br>Val        | l Glr                         | G AA                  | A GAC              | G GAC             | AT1<br>0 Ile<br>470 | e Glu             | GT(               | G TAT              | r TTC              | e Th              | r Gl                | A CC              | A GG<br>o Gl        | C TG<br>y Tr       | G GAG<br>p Glu<br>480 | 1440 |
| GC(               | C CGA                         | A GGG                 | C TCC<br>y Se:     | TT:               | e Sei               | G CAR             | A GC'             | T GA'<br>a Ası     | T GT<br>p Va<br>49 | l Hi              | C CG<br>s Ar        | A CA<br>g Gl:     | A GT<br>n Va        | G GC<br>1 Al<br>49 | C ATT<br>a Ile        | 1488 |
| GT<br>Va          | G TT                          | c cc<br>e Ar          | G AC<br>g Th<br>50 | r Pro             | r CC0               | С ТАС<br>Э Туз    | GC.               | A GA<br>a As<br>50 | p Pr               | C AG<br>o Se      | C CT                | G CA<br>u Gl      | .G GC<br>n Al<br>51 | a Pr               | CT GTG                | 1536 |
| CG                | T GT                          | C TC                  | C AT               | G CA              | G CT                | G CG(             | G CG              | G CC               | T TC               | C GA              | 'C CG               | G GA              | G CI                | C AC               | GT GAG                | 1584 |

| Arg V                  |      | Ser<br>515 | Met | Gln | Leu | Arg | Arg<br>520 | Pro | Ser | Asp | Arg | Glu<br>525 | Leu | Ser | Glu |      |
|------------------------|------|------------|-----|-----|-----|-----|------------|-----|-----|-----|-----|------------|-----|-----|-----|------|
| CCC A<br>Pro M<br>5    |      |            |     |     |     |     |            |     |     |     |     |            |     |     |     | 1632 |
| GAG G<br>Glu G<br>545  |      |            |     |     |     |     |            |     |     |     |     |            |     |     |     | 1680 |
| AAG A<br>Lys S         |      |            |     |     |     |     |            |     |     |     |     |            |     |     |     | 1728 |
| ATT G                  | _    | _          |     |     |     |     |            |     |     |     |     |            |     |     |     | 1776 |
| CAG C                  | Pro  |            |     |     |     |     |            |     |     |     |     |            |     |     |     | 1824 |
| TTT C<br>Phe P<br>6    |      |            |     |     |     |     |            |     |     |     |     |            |     |     |     | 1872 |
| TTG G<br>Leu A<br>625  | _    |            |     |     |     |     |            |     |     |     |     |            |     |     |     | 1920 |
| CCT G<br>Pro A         | _    |            |     |     |     |     |            |     |     |     |     |            |     |     |     | 1968 |
| CCA G<br>Pro V         | _    |            |     |     |     |     |            |     |     |     |     |            |     |     |     | 2016 |
| AAG C                  | ro ' |            |     |     |     |     |            |     |     |     |     |            |     |     |     | 2064 |
| CTG C.<br>Leu G        |      |            |     |     |     |     |            |     |     |     |     |            |     |     |     | 2112 |
| GAC CO<br>Asp P<br>705 |      |            |     |     |     |     |            |     |     |     |     |            |     |     |     | 2160 |
| CAG C.<br>Gln G        | _    |            |     |     |     |     |            |     |     |     |     |            |     |     |     | 2208 |
| CCC A                  |      |            |     |     |     |     |            |     |     |     |     |            |     |     |     | 2256 |

GCC CAG AGG CCC CCC GAC CCA GCT CCT GCT CCA CTG GGG GCC CCG GGG

Ala Gln Arg Pro Pro Asp Pro Ala Pro Ala Pro Leu Gly Ala Pro Gly
755

CTC CCC AAT GGC CTC CTT TCA GGA GAT GAA GAC TTC TCC ATT GCG

Leu Pro Asn Gly Leu Leu Ser Gly Asp Glu Asp Phe Ser Ile Ala
770

GAC ATG GAC TTC TCA GCC CTG CTG AGT CAG ATC AGC TCC TAA

Asp Met Asp Phe Ser Ala Leu Leu Ser Gln Ile Ser Ser
790

2304

2304

2304

2304

#### (2) INFORMATION FOR SEQ ID NO:143:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 797 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:143:

Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu 10 1 Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly 25 Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile 40 Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr 60 55 Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys 75 70 Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu 90 85 Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu 100 105 110 Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly 115 120 125 Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr 135 140 Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn 150 155 Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser 170 165 Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly 185 Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu 200 Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe 220 210 215 Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys Ser 230 235 Gly Leu Arg Ser Arg Ala Met Asp Glu Leu Phe Pro Leu Ile Phe Pro

|                                                         |                                                                           |                                                                           |                                                                                         | 245                                                         |                                                         |                                                             |                                                                                         |                                                                                         | 250                                                 |                                                      |                                                     |                                                                                                |                                                                                         | 255                                                  |                                                 |
|---------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------|
| Ala                                                     | Glu                                                                       | Pro                                                                       | Ala<br>260                                                                              | Gln                                                         | Ala                                                     | Ser                                                         | Gly                                                                                     | Pro<br>265                                                                              | Tyr                                                 | Val                                                  | Glu                                                 | Ile                                                                                            | Ile<br>270                                                                              | Glu                                                  | Gln                                             |
| Pro                                                     | Lys                                                                       | Gln<br>275                                                                | Arg                                                                                     | Gly                                                         | Met                                                     | Arg                                                         | Phe<br>280                                                                              | Arg                                                                                     | Tyr                                                 | Lys                                                  | Cys                                                 | Glu<br>285                                                                                     | Gly                                                                                     | Arg                                                  | Ser                                             |
| Ala                                                     | Gly<br>290                                                                | Ser                                                                       | Ile                                                                                     | Pro                                                         | Gly                                                     | Glu<br>295                                                  | Arg                                                                                     | Ser                                                                                     | Thr                                                 | Asp                                                  | Thr<br>300                                          | Thr                                                                                            | Lys                                                                                     | Thr                                                  | His                                             |
| Pro<br>305                                              | Thr                                                                       | Ile                                                                       | Lys                                                                                     | Ile                                                         | Asn<br>310                                              | Gly                                                         | Tyr                                                                                     | Thr                                                                                     | Gly                                                 | Pro<br>315                                           | Gly                                                 | Thr                                                                                            | Val                                                                                     | Arg                                                  | Ile<br>320                                      |
| Ser                                                     | Leu                                                                       | Val                                                                       | Thr                                                                                     | Lys<br>325                                                  | Asp                                                     | Pro                                                         | Pro                                                                                     | His                                                                                     | Arg<br>330                                          | Pro                                                  | His                                                 | Pro                                                                                            | His                                                                                     | Glu<br>335                                           | Leu                                             |
| Val                                                     | Gly                                                                       | Lys                                                                       | Asp<br>340                                                                              | Cys                                                         | Arg                                                     | Asp                                                         | Gly                                                                                     | Phe                                                                                     | Tyr                                                 | Glu                                                  | Ala                                                 | Glu                                                                                            | Leu<br>350                                                                              | Суѕ                                                  | Pro                                             |
|                                                         |                                                                           | 355                                                                       |                                                                                         |                                                             |                                                         |                                                             | 360                                                                                     |                                                                                         |                                                     | _                                                    |                                                     | 365                                                                                            | -                                                                                       | Val                                                  | -                                               |
| _                                                       | 370                                                                       |                                                                           |                                                                                         |                                                             |                                                         | 375                                                         |                                                                                         |                                                                                         |                                                     | _                                                    | 380                                                 |                                                                                                |                                                                                         | Asn                                                  |                                                 |
| 385                                                     |                                                                           |                                                                           |                                                                                         |                                                             | 390                                                     |                                                             |                                                                                         |                                                                                         |                                                     | 395                                                  |                                                     |                                                                                                |                                                                                         | Asp                                                  | 400                                             |
|                                                         |                                                                           |                                                                           |                                                                                         | 405                                                         | _                                                       |                                                             |                                                                                         |                                                                                         | 410                                                 |                                                      |                                                     | •                                                                                              |                                                                                         | Ser<br>415                                           | -                                               |
|                                                         |                                                                           |                                                                           | 420                                                                                     |                                                             |                                                         |                                                             |                                                                                         | 425                                                                                     |                                                     |                                                      |                                                     |                                                                                                | 430                                                                                     | Asp                                                  |                                                 |
|                                                         |                                                                           | 435                                                                       |                                                                                         |                                                             |                                                         |                                                             | 440                                                                                     | -                                                                                       |                                                     | _                                                    | _                                                   | 445                                                                                            |                                                                                         | Arg                                                  |                                                 |
|                                                         | 450                                                                       |                                                                           |                                                                                         |                                                             |                                                         | 455                                                         | _                                                                                       |                                                                                         |                                                     |                                                      | 460                                                 |                                                                                                | _                                                                                       | Asp                                                  | _                                               |
| 465                                                     |                                                                           |                                                                           |                                                                                         |                                                             | 470                                                     |                                                             |                                                                                         |                                                                                         |                                                     | 475                                                  | _                                                   |                                                                                                | _                                                                                       | Trp<br>Ala                                           | 480                                             |
| Ald                                                     | Arg                                                                       | GIY                                                                       | ser                                                                                     | 485                                                         | Ser                                                     | GIII                                                        | Ala                                                                                     | Asp                                                                                     | 490                                                 | HIS                                                  | Arg                                                 | GIII                                                                                           | vaı                                                                                     | 495                                                  | шe                                              |
| 1757                                                    | Dhe                                                                       | ara                                                                       | Thr                                                                                     |                                                             | Dro                                                     | T 12                                                        | 7 l a                                                                                   | 700                                                                                     | Pro                                                 | 502                                                  | T 011                                               | Cln                                                                                            | 77.                                                                                     |                                                      | 1107                                            |
|                                                         |                                                                           |                                                                           | 500                                                                                     | Pro                                                         |                                                         |                                                             |                                                                                         | 505                                                                                     |                                                     |                                                      |                                                     |                                                                                                | 510                                                                                     | Pro                                                  |                                                 |
| Arg                                                     | Val                                                                       | Ser<br>515                                                                | 500<br>Met                                                                              | Pro<br>Gln                                                  | Leu                                                     | Arg                                                         | Arg<br>520                                                                              | 505<br>Pro                                                                              | Ser                                                 | Asp                                                  | Arg                                                 | Glu<br>525                                                                                     | 510<br>Leu                                                                              | Pro<br>Ser                                           | Glu                                             |
| Arg<br>Pro                                              | Val<br>Met<br>530                                                         | Ser<br>515<br>Glu                                                         | 500<br>Met<br>Phe                                                                       | Pro<br>Gln<br>Gln                                           | Leu<br>Tyr                                              | Arg<br>Leu<br>535                                           | Arg<br>520<br>Pro                                                                       | 505<br>Pro<br>Asp                                                                       | Ser<br>Thr                                          | Asp<br>Asp                                           | Arg<br>Asp<br>540                                   | Glu<br>525<br>Arg                                                                              | 510<br>Leu<br>His                                                                       | Pro<br>Ser<br>Arg                                    | Glu<br>Ile                                      |
| Arg<br>Pro<br>Glu<br>545                                | Val<br>Met<br>530<br>Glu                                                  | Ser<br>515<br>Glu<br>Lys                                                  | 500<br>Met<br>Phe<br>Arg                                                                | Pro<br>Gln<br>Gln<br>Lys                                    | Leu<br>Tyr<br>Arg<br>550                                | Arg<br>Leu<br>535<br>Thr                                    | Arg<br>520<br>Pro<br>Tyr                                                                | 505<br>Pro<br>Asp<br>Glu                                                                | Ser<br>Thr<br>Thr                                   | Asp<br>Asp<br>Phe<br>555                             | Arg<br>Asp<br>540<br>Lys                            | Glu<br>525<br>Arg<br>Ser                                                                       | 510<br>Leu<br>His<br>Ile                                                                | Pro<br>Ser<br>Arg<br>Met                             | Glu<br>Ile<br>Lys<br>560                        |
| Arg<br>Pro<br>Glu<br>545<br>Lys                         | Val<br>Met<br>530<br>Glu<br>Ser                                           | Ser<br>515<br>Glu<br>Lys<br>Pro                                           | 500<br>Met<br>Phe<br>Arg<br>Phe                                                         | Pro<br>Gln<br>Gln<br>Lys<br>Ser<br>565                      | Leu<br>Tyr<br>Arg<br>550<br>Gly                         | Arg<br>Leu<br>535<br>Thr                                    | Arg<br>520<br>Pro<br>Tyr                                                                | 505<br>Pro<br>Asp<br>Glu<br>Asp                                                         | Ser<br>Thr<br>Thr<br>Pro<br>570                     | Asp<br>Asp<br>Phe<br>555<br>Arg                      | Arg<br>Asp<br>540<br>Lys<br>Pro                     | Glu<br>525<br>Arg<br>Ser<br>Pro                                                                | 510<br>Leu<br>His<br>Ile<br>Pro                                                         | Pro<br>Ser<br>Arg<br>Met<br>Arg<br>575               | Glu<br>Ile<br>Lys<br>560<br>Arg                 |
| Arg Pro Glu 545 Lys Ile                                 | Val<br>Met<br>530<br>Glu<br>Ser<br>Ala                                    | Ser<br>515<br>Glu<br>Lys<br>Pro<br>Val                                    | 500<br>Met<br>Phe<br>Arg<br>Phe<br>Pro<br>580                                           | Pro<br>Gln<br>Gln<br>Lys<br>Ser<br>565<br>Ser               | Leu<br>Tyr<br>Arg<br>550<br>Gly<br>Arg                  | Arg Leu 535 Thr Pro                                         | Arg<br>520<br>Pro<br>Tyr<br>Thr                                                         | 505<br>Pro<br>Asp<br>Glu<br>Asp<br>Ala<br>585                                           | Ser<br>Thr<br>Thr<br>Pro<br>570<br>Ser              | Asp<br>Asp<br>Phe<br>555<br>Arg<br>Val               | Arg Asp 540 Lys Pro                                 | Glu<br>525<br>Arg<br>Ser<br>Pro                                                                | 510<br>Leu<br>His<br>Ile<br>Pro<br>Pro<br>590                                           | Pro<br>Ser<br>Arg<br>Met<br>Arg<br>575<br>Ala        | Glu<br>Ile<br>Lys<br>560<br>Arg                 |
| Arg Pro Glu 545 Lys Ile Gln                             | Val<br>Met<br>530<br>Glu<br>Ser<br>Ala<br>Pro                             | Ser<br>515<br>Glu<br>Lys<br>Pro<br>Val<br>Tyr<br>595                      | 500<br>Met<br>Phe<br>Arg<br>Phe<br>Pro<br>580<br>Pro                                    | Pro<br>Gln<br>Gln<br>Lys<br>Ser<br>565<br>Ser<br>Phe        | Leu<br>Tyr<br>Arg<br>550<br>Gly<br>Arg                  | Arg Leu 535 Thr Pro Ser Ser                                 | Arg<br>520<br>Pro<br>Tyr<br>Thr<br>Ser<br>Ser<br>600                                    | 505<br>Pro<br>Asp<br>Glu<br>Asp<br>Ala<br>585<br>Leu                                    | Ser<br>Thr<br>Thr<br>Pro<br>570<br>Ser<br>Ser       | Asp<br>Phe<br>555<br>Arg<br>Val                      | Arg Asp 540 Lys Pro Pro                             | Glu<br>525<br>Arg<br>Ser<br>Pro<br>Lys<br>Asn<br>605                                           | 510<br>Leu<br>His<br>Ile<br>Pro<br>Pro<br>590<br>Tyr                                    | Pro<br>Ser<br>Arg<br>Met<br>Arg<br>575<br>Ala        | Glu<br>Ile<br>Lys<br>560<br>Arg<br>Pro          |
| Arg Pro Glu 545 Lys Ile Gln Phe                         | Val Met 530 Glu Ser Ala Pro Pro 610                                       | Ser<br>515<br>Glu<br>Lys<br>Pro<br>Val<br>Tyr<br>595<br>Thr               | 500<br>Met<br>Phe<br>Arg<br>Phe<br>Pro<br>580<br>Pro<br>Met                             | Pro Gln Gln Lys Ser 565 Ser Phe Val                         | Leu<br>Tyr<br>Arg<br>550<br>Gly<br>Arg<br>Thr           | Arg Leu 535 Thr Pro Ser Ser Pro 615                         | Arg<br>520<br>Pro<br>Tyr<br>Thr<br>Ser<br>600<br>Ser                                    | S05<br>Pro<br>Asp<br>Glu<br>Asp<br>Ala<br>585<br>Leu<br>Gly                             | Ser<br>Thr<br>Thr<br>Pro<br>570<br>Ser<br>Ser       | Asp Phe 555 Arg Val Thr                              | Arg Asp 540 Lys Pro Pro Ile Ser 620                 | Glu<br>525<br>Arg<br>Ser<br>Pro<br>Lys<br>Asn<br>605<br>Gln                                    | 510<br>Leu<br>His<br>Ile<br>Pro<br>590<br>Tyr                                           | Pro<br>Ser<br>Arg<br>Met<br>Arg<br>575<br>Ala<br>Asp | Glu<br>Ile<br>Lys<br>560<br>Arg<br>Pro<br>Glu   |
| Arg Pro Glu 545 Lys Ile Gln Phe Leu 625                 | Val<br>Met<br>530<br>Glu<br>Ser<br>Ala<br>Pro<br>Pro<br>610<br>Ala        | Ser<br>515<br>Glu<br>Lys<br>Pro<br>Val<br>Tyr<br>595<br>Thr               | 500<br>Met<br>Phe<br>Arg<br>Phe<br>Pro<br>580<br>Pro<br>Met<br>Ala                      | Pro Gln Gln Lys Ser 565 Ser Phe Val                         | Leu Tyr Arg 550 Gly Arg Thr Phe Pro 630                 | Arg Leu 535 Thr Pro Ser Pro 615 Gln                         | Arg<br>520<br>Pro<br>Tyr<br>Thr<br>Ser<br>600<br>Ser<br>Val                             | 505<br>Pro<br>Asp<br>Glu<br>Asp<br>Ala<br>585<br>Leu<br>Gly<br>Leu                      | Ser Thr Thr Pro 570 Ser Ser Gln Pro                 | Asp Phe 555 Arg Val Thr Ile Gln 635                  | Arg Asp 540 Lys Pro Ile Ser 620 Ala                 | Glu<br>525<br>Arg<br>Ser<br>Pro<br>Lys<br>Asn<br>605<br>Gln                                    | 510<br>Leu<br>His<br>Ile<br>Pro<br>590<br>Tyr<br>Ala<br>Ala                             | Pro Ser Arg Met Arg 575 Ala Asp Ser Pro              | Glu Ile Lys 560 Arg Pro Glu Ala Ala 640         |
| Arg Pro Glu 545 Lys Ile Gln Phe Leu 625 Pro             | Val<br>Met<br>530<br>Glu<br>Ser<br>Ala<br>Pro<br>610<br>Ala               | Ser<br>515<br>Glu<br>Lys<br>Pro<br>Val<br>Tyr<br>595<br>Thr               | 500<br>Met<br>Phe<br>Arg<br>Phe<br>Pro<br>580<br>Pro<br>Met<br>Ala                      | Pro Gln Gln Lys Ser 565 Ser Phe Val Pro Met 645             | Leu Tyr Arg 550 Gly Arg Thr Phe Pro 630 Val             | Arg Leu 535 Thr Pro Ser Ser Pro 615 Gln Ser                 | Arg<br>520<br>Pro<br>Tyr<br>Thr<br>Ser<br>600<br>Ser<br>Val                             | 505<br>Pro<br>Asp<br>Glu<br>Asp<br>Ala<br>585<br>Leu<br>Gly<br>Leu                      | Ser Thr Thr Pro 570 Ser Gln Pro Ala 650             | Asp Phe 5555 Arg Val Thr Ile Gln 635 Gln             | Arg Asp 540 Lys Pro Ile Ser 620 Ala                 | Glu<br>525<br>Arg<br>Ser<br>Pro<br>Lys<br>Asn<br>605<br>Gln<br>Pro                             | 510<br>Leu<br>His<br>Ile<br>Pro<br>590<br>Tyr<br>Ala<br>Ala                             | Pro Ser Arg Met Arg 575 Ala Asp Ser Pro 655          | Glu Ile Lys 560 Arg Pro Glu Ala Ala 640 Val     |
| Arg Pro Glu 545 Lys Ile Gln Phe Leu 625 Pro             | Val<br>Met<br>530<br>Glu<br>Ser<br>Ala<br>Pro<br>610<br>Ala<br>Ala<br>Val | Ser<br>515<br>Glu<br>Lys<br>Pro<br>Val<br>Tyr<br>595<br>Thr<br>Pro<br>Pro | 500<br>Met<br>Phe<br>Arg<br>Phe<br>Pro<br>580<br>Pro<br>Met<br>Ala<br>Ala<br>Ala<br>660 | Pro Gln Gln Lys Ser 565 Ser Phe Val Pro Met 645 Pro         | Leu Tyr Arg 550 Gly Arg Thr Phe Pro 630 Val             | Arg Leu 535 Thr Pro Ser Pro 615 Gln Ser Pro                 | Arg<br>520<br>Pro<br>Tyr<br>Thr<br>Ser<br>600<br>Ser<br>Val<br>Ala<br>Pro               | 505<br>Pro<br>Asp<br>Glu<br>Asp<br>Ala<br>585<br>Leu<br>Gly<br>Leu<br>Leu<br>Gln<br>665 | Ser Thr Thr Pro 570 Ser Gln Pro Ala 650 Ala         | Asp Phe 555 Arg Val Thr Ile Gln 635 Gln Val          | Arg Asp 540 Lys Pro Ile Ser 620 Ala Ala             | Glu 525<br>Arg Ser Pro Lys Asn 605<br>Gln Pro Pro                                              | 510<br>Leu<br>His<br>Ile<br>Pro<br>590<br>Tyr<br>Ala<br>Ala<br>Ala<br>Pro<br>670        | Pro Ser Arg Met Arg 575 Ala Asp Ser Pro 655 Ala      | Glu Ile Lys 560 Arg Pro Glu Ala 640 Val         |
| Arg Pro Glu 545 Lys Ile Gln Phe Leu 625 Pro Pro         | Val Met 530 Glu Ser Ala Pro 610 Ala Ala Val                               | Ser 515 Glu Lys Pro Val Tyr 595 Thr Pro Leu Thr 675                       | 500<br>Met<br>Phe<br>Arg<br>Phe<br>Pro<br>580<br>Pro<br>Met<br>Ala<br>Ala<br>660<br>Gln | Pro Gln Gln Lys Ser 565 Ser Phe Val Pro Met 645 Pro Ala     | Leu Tyr Arg 550 Gly Arg Thr Phe Pro 630 Val Gly         | Arg Leu 535 Thr Pro Ser Pro 615 Gln Ser Pro Glu             | Arg<br>520<br>Pro<br>Tyr<br>Thr<br>Ser<br>600<br>Ser<br>Val<br>Ala<br>Pro<br>630<br>680 | 505<br>Pro<br>Asp<br>Glu<br>Asp<br>Ala<br>585<br>Leu<br>Gly<br>Leu<br>Gln<br>665<br>Thr | Ser Thr Thr Pro 570 Ser Gln Pro Ala 650 Ala Leu     | Asp Phe 5555 Arg Val Thr Ile Gln 635 Gln Val Ser     | Arg Asp 540 Lys Pro Ile Ser 620 Ala Ala Glu         | Glu 525 Arg Ser Pro Lys Asn 605 Gln Pro Pro Ala 685                                            | 510<br>Leu<br>His<br>Ile<br>Pro<br>590<br>Tyr<br>Ala<br>Ala<br>Pro<br>670<br>Leu        | Pro Ser Arg Met Arg 575 Ala Asp Ser Pro 655 Ala Leu  | Glu Ile Lys 560 Arg Pro Glu Ala 640 Val Pro Gln |
| Arg Pro Glu 545 Lys Ile Gln Phe Leu 625 Pro Pro Lys Leu | Val Met 530 Glu Ser Ala Pro 610 Ala Ala Val Pro Gln 690                   | Ser 515 Glu Lys Pro Val Tyr 595 Thr Pro Leu Thr 675 Phe                   | 500 Met Phe Arg Phe Pro 580 Pro Met Ala Ala 660 Gln Asp                                 | Pro Gln Gln Lys Ser 565 Ser Phe Val Pro Met 645 Pro Ala Asp | Leu Tyr Arg 550 Gly Arg Thr Phe Pro 630 Val Gly Gly Glu | Arg Leu 535 Thr Pro Ser Ser Pro 615 Gln Ser Pro Glu Asp 695 | Arg 520 Pro Tyr Thr Ser 600 Ser Val Ala Pro 680 Leu                                     | 505<br>Pro<br>Asp<br>Glu<br>Asp<br>Ala<br>585<br>Leu<br>Gly<br>Leu<br>Gln<br>665<br>Thr | Ser Thr Thr Pro 570 Ser Gln Pro Ala 650 Ala Leu Ala | Asp Phe 5555 Arg Val Thr Ile Gln 635 Gln Val Ser Leu | Arg Asp 540 Lys Pro Ile Ser 620 Ala Ala Glu Leu 700 | Glu<br>525<br>Arg<br>Ser<br>Pro<br>Lys<br>Asn<br>605<br>Gln<br>Pro<br>Pro<br>Ala<br>685<br>Gly | 510<br>Leu<br>His<br>Ile<br>Pro<br>590<br>Tyr<br>Ala<br>Ala<br>Pro<br>670<br>Leu<br>Asn | Pro Ser Arg Met Arg 575 Ala Asp Pro 655 Ala Leu Ser  | Glu Ile Lys 560 Arg Pro Glu Ala 640 Val Pro Gln |

| 705        |            |            |            |            | 710        |            |            |            |            | 715        |            |            |            |            | 720 |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|
| Gln        | Gln        | Leu        | Leu        | Asn<br>725 | Gln        | Gly        | Ile        |            | Val<br>730 | Ala        | Pro        | His        | Thr        | Thr<br>735 | Glu |
| Pro        | Met        | Leu        | Met<br>740 | Glu        | Tyr        | Pro        | Glu        | Ala<br>745 | Ile        | Thr        | Arg        | Leu        | Val<br>750 | Thr        | Gly |
| Ala        | Gln        | Arg<br>755 | Pro        | Pro        | Asp        | Pro        | Ala<br>760 | Pro        | Ala        | Pro        | Leu        | Gly<br>765 | Ala        | Pro        | Gly |
| Leu        | Pro<br>770 | Asn        | Gly        | Leu        | Leu        | Ser<br>775 | Gly        | Asp        | Glu        | Asp        | Phe<br>780 | Ser        | Ser        | Ile        | Ala |
| Asp<br>785 | Met        | Asp        | Phe        | Ser        | Ala<br>790 | Leu        | Leu        | Ser        | Gln        | Ile<br>795 | Ser        | Ser        |            |            |     |

## (2) INFORMATION FOR SEQ ID NO:144:

| 151 | SECTENCE | CHARACTERISTICS: |
|-----|----------|------------------|
| (1) | SECUENCE | CHARACIERISITOS. |

- (A) LENGTH: 3381 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
  - (A) NAME/KEY: Coding Sequence
  - (B) LOCATION: 1...3378
  - (D) OTHER INFORMATION:

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:144:

|  |  |  | AGC<br>Ser       |  |  |  |  |            | 4  | 8  |
|--|--|--|------------------|--|--|--|--|------------|----|----|
|  |  |  | CAG<br>Gln       |  |  |  |  |            | 9  | 6  |
|  |  |  | GAC<br>Asp       |  |  |  |  |            | 14 | 4  |
|  |  |  | AAT<br>Asn<br>55 |  |  |  |  |            | 19 | 92 |
|  |  |  | GGT<br>Gly       |  |  |  |  |            | 24 | 10 |
|  |  |  |                  |  |  |  |  | ACA<br>Thr | 28 | 88 |

90

85

290

295

CCA ACC AGG AAA ATC TCT GCC TCT GAA TTT GAC CGG CCT CTT AGA CCC Pro Thr Arg Lys Ile Ser Ala Ser Glu Phe Asp Arg Pro Leu Arg Pro 100 105 ATT GTT GTC AAG GAT TCT GAG GGA ACT GTG AGC TTC CTC TCT GAC TCA 384 Ile Val Val Lys Asp Ser Glu Gly Thr Val Ser Phe Leu Ser Asp Ser 115 120 GAA AAG AAG GAA CAG ATG CCT CTA ACC CCT CCA AGG TTT GAT CAT GAT 432 Glu Lys Lys Glu Gln Met Pro Leu Thr Pro Pro Arg Phe Asp His Asp 130 135 GAA GGG GAC CAG TGC TCA AGA CTC TTG GAA TTA GTG AAG GAT ATT TCT 480 Glu Gly Asp Gln Cys Ser Arg Leu Leu Glu Leu Val Lys Asp Ile Ser 155 AGT CAT TTG GAT GTC ACA GCC TTA TGT CAC AAA ATT TTC TTG CAT ATC 528 Ser His Leu Asp Val Thr Ala Leu Cys His Lys Ile Phe Leu His Ile 165 170 CAT GGA CTG ATA TCT GCT GAC CGC TAT TCC CTG TTC CTT GTC TGT GAA 576 His Gly Leu Ile Ser Ala Asp Arg Tyr Ser Leu Phe Leu Val Cys Glu 180 185 GAC AGC TCC AAT GAC AAG TTT CTT ATC AGC CGC CTC TTT GAT GTT GCT 624 Asp Ser Ser Asn Asp Lys Phe Leu Ile Ser Arg Leu Phe Asp Val Ala 195 200 GAA GGT TCA ACA CTG GAA GAA GTT TCA AAT AAC TGT ATC CGC TTA GAA 672 Glu Gly Ser Thr Leu Glu Glu Val Ser Asn Asn Cys Ile Arg Leu Glu 210 TGG AAC AAA GGC ATT GTG GGA CAT GTG GCA GCG CTT GGT GAG CCC TTG 720 Trp Asn Lys Gly Ile Val Gly His Val Ala Ala Leu Gly Glu Pro Leu AAC ATC AAA GAT GCA TAT GAG GAT CCT CGG TTC AAT GCA GAA GTT GAC Asn Ile Lys Asp Ala Tyr Glu Asp Pro Arg Phe Asn Ala Glu Val Asp CAA ATT ACA GGC TAC AAG ACA CAA AGC ATT CTT TGT ATG CCA ATT AAG 816 Gln Ile Thr Gly Tyr Lys Thr Gln Ser Ile Leu Cys Met Pro Ile Lys 260 265 AAT CAT AGG GAA GAG GTT GTT GGT GTA GCC CAG GCC ATC AAC AAA 864 Asn His Arg Glu Glu Val Val Gly Val Ala Gln Ala Ile Asn Lys Lys 275 280 TCA GGA AAC GGT GGG ACA TTT ACT GAA AAA GAT GAA AAG GAC TTT GCT Ser Gly Asn Gly Gly Thr Phe Thr Glu Lys Asp Glu Lys Asp Phe Ala

| GCT<br>Ala<br>305 | TAT<br>Tyr   | TTG<br>Leu   | GCA<br>Ala         | TTT<br>Phe            | TGT<br>Cys<br>310     | GGT<br>Gly    | ATT<br>Ile   | GTT<br>Val         | CTT<br>Leu           | CAT<br>His<br>315     | AAT<br>Asn     | GCT<br>Ala     | CAG<br>Gln            | CTC<br>Leu         | TAT<br>Tyr<br>320     | 960  |
|-------------------|--------------|--------------|--------------------|-----------------------|-----------------------|---------------|--------------|--------------------|----------------------|-----------------------|----------------|----------------|-----------------------|--------------------|-----------------------|------|
|                   |              |              |                    |                       |                       |               |              |                    | AAT<br>Asn<br>330    |                       |                |                |                       |                    |                       | 1008 |
|                   |              |              |                    |                       |                       |               |              |                    | TCA<br>Ser           |                       |                |                |                       |                    |                       | 1056 |
|                   |              |              |                    |                       |                       |               |              |                    | ATG<br>Met           |                       |                |                |                       |                    |                       | 1104 |
|                   |              |              |                    |                       |                       |               |              |                    |                      |                       |                | Ser            |                       |                    | TTT<br>Phe            | 1152 |
|                   | Met          |              |                    |                       |                       |               |              |                    |                      |                       | Asp            |                |                       |                    | AGG<br>Arg<br>400     | 1200 |
|                   |              |              |                    |                       | Lys                   |               |              |                    |                      | Тут                   |                |                |                       |                    | : AAA<br>. Lys        | 1248 |
| AAT<br>Asr        | ACT<br>Thr   | ATC<br>Met   | GAA<br>Glu<br>420  | Pro                   | CTT<br>Leu            | AAT<br>Asn    | ATC          | CCA<br>Pro<br>425  | Asp                  | GTC<br>Val            | AGT<br>Ser     | AAC<br>Lys     | G GAT<br>S Asp<br>430 | Lys                | A AGA<br>S Arg        | 1296 |
|                   |              |              | Thr                |                       |                       |               |              | c Gly              |                      |                       |                |                | n Glr                 |                    | C ATT                 | 1344 |
|                   |              | Le           |                    |                       |                       |               | Ile          |                    |                      |                       |                | s Ly           |                       |                    | A GTT<br>s Val        | 1392 |
| AT:<br>110<br>46  | e Gly        | GT'<br>/ Va  | T TG(<br>l Cy:     | C CAA                 | A CTC<br>1 Let<br>470 | ı Val         | AA'<br>Asi   | T AAG              | G ATY                | G GA(<br>t Gl)<br>47! | u Gl           | G AA<br>u As   | T AC<br>n Th          | T GG<br>r Gl       | C AAG<br>y Lys<br>480 | 1440 |
| GT<br>Va          | T AAG        | G CC         | T TTO              | C AA(<br>e As:<br>48! | n Arg                 | AAA<br>BAA E  | r Gad        | C GAI              | A CAG<br>u Gli<br>49 | n Ph                  | T CT<br>e Le   | G GA<br>u Gl   | A GC<br>u Al          | T TT<br>a Ph<br>49 | T GTC<br>e Val<br>5   | 1488 |
| AT<br>Il          | C TT<br>e Ph | r TG<br>e Cy | T GG<br>s Gl<br>50 | y Le                  | G GGG<br>u Gl         | G ATY         | C CA         | G AA<br>n As<br>50 | n Th                 | G CA<br>r Gl          | G AT<br>n Me   | G TA           | T GA<br>T Gl<br>51    | u Al               | A GTG<br>a Val        | 1536 |
| GA<br>G1          | G AG<br>u Ar | A GC<br>g Al | C AT<br>a Me       | G GC                  | C AA<br>a Ly          | G CA<br>s Gl: | A AT<br>n Me | G GT<br>t Va       | C AC                 | A TT                  | rG GA<br>eu Gl | kG GT<br>Lu Vā | T CI                  | G TO               | G TAT                 | 1584 |

520 525 515 CAT GCT TCA GCA GCA GAG GAA GAA ACA AGA GAG CTA CAG TCG TTA GCG His Ala Ser Ala Ala Glu Glu Glu Thr Arg Glu Leu Gln Ser Leu Ala 535 530 GCT GCT GTG GTG CCA TCT GCC CAG ACC CTT AAA ATT ACT GAC TTT AGC 1680 Ala Ala Val Val Pro Ser Ala Gln Thr Leu Lys Ile Thr Asp Phe Ser 550 555 TTC AGT GAC TTT GAG CTG TCT GAT CTG GAA ACA GCA CTG TGC ACA ATT 1728 Phe Ser Asp Phe Glu Leu Ser Asp Leu Glu Thr Ala Leu Cys Thr Ile 565 CGG ATG TTT ACT GAC CTC AAC CTT GTG CAG AAC TTC CAG ATG AAA CAT 1776 Arg Met Phe Thr Asp Leu Asn Leu Val Gln Asn Phe Gln Met Lys His 585 GAG GTT CTT TGC AGA TGG ATT TTA AGT GTT AAG AAG AAT TAT CGG AAG 1824 Glu Val Leu Cys Arg Trp Ile Leu Ser Val Lys Lys Asn Tyr Arg Lys 595 600 AAT GTT GCC TAT CAT AAT TGG AGA CAT GCC TTT AAT ACA GCT CAG TGC 1872 Asn Val Ala Tyr His Asn Trp Arg His Ala Phe Asn Thr Ala Gln Cys 615 610 ATG TTT GCT GCT CTA AAA GCA GGC AAA ATT CAG AAC AAG CTG ACT GAC Met Phe Ala Ala Leu Lys Ala Gly Lys Ile Gln Asn Lys Leu Thr Asp 630 CTG GAG ATA CTT GCA TTG CTG ATT GCT GCA CTA AGC CAC GAT TTG GAT 1968 Leu Glu Ile Leu Ala Leu Leu Ile Ala Ala Leu Ser His Asp Leu Asp 650 645 CAC CGT GGT GTG AAT AAC TCT TAC ATA CAG CGA AGT GAA CAT CCA CTT 2016 His Arg Gly Val Asn Asn Ser Tyr Ile Gln Arg Ser Glu His Pro Leu 665 GCC CAG CTT TAC TGC CAT TCA ATC ATG GAA CAC CAT CAT TTT GAC CAG 2064 Ala Gln Leu Tyr Cys His Ser Ile Met Glu His His His Phe Asp Gln 680 675 TGC CTG ATG ATT CTT AAT AGT CCA GGC AAT CAG ATT CTC AGT GGC CTC 2112 Cys Leu Met Ile Leu Asn Ser Pro Gly Asn Gln Ile Leu Ser Gly Leu 700 695 690 TCC ATT GAA GAA TAT AAG ACC ACG TTG AAA ATA ATC AAG CAA GCT ATT 2160

Ser Ile Glu Glu Tyr Lys Thr Thr Leu Lys Ile Ile Lys Gln Ala Ile

TTA GCT ACA GAC CTA GCA CTG TAC ATT AAG AGG CGA GGA GAA TTT TTT Leu Ala Thr Asp Leu Ala Leu Tyr Ile Lys Arg Arg Gly Glu Phe Phe

730

710

725

|            |       |       |       |            | AAT<br>Asn        |       |       |              |            |       |       |       |       |              |                       | 2256 |
|------------|-------|-------|-------|------------|-------------------|-------|-------|--------------|------------|-------|-------|-------|-------|--------------|-----------------------|------|
|            |       |       |       |            | ATG<br>Met        |       |       |              |            |       |       |       |       |              |                       | 2304 |
|            |       |       |       |            | ATT<br>Ile        |       |       |              |            |       |       |       |       |              |                       | 2352 |
|            |       |       |       |            | GGA<br>Gly<br>790 |       |       |              |            |       |       |       |       |              |                       | 2400 |
|            |       |       |       |            | AAC<br>Asn        |       |       |              |            |       |       |       |       |              |                       | 2448 |
|            |       |       |       |            |                   |       |       |              |            |       |       |       |       | Ala          | CTG<br>Leu            | 2496 |
|            |       |       | Ser   |            |                   |       |       |              |            |       |       |       |       |              | Lys                   | 2544 |
|            |       | Gln   |       |            |                   |       |       |              |            |       |       | Glu   |       |              | CTG<br>Leu            | 2592 |
| Ile<br>865 | Asn   | Gly   | Glu   | Ser        | Gly<br>870        | Gln   | Ala   | Lys          | Arg        | 875   | Trp   | Val   | Pro   | Arg          | G GCC<br>g Ala<br>880 | 2640 |
| Arg        | Asp   | Pro   | Pro   | Val<br>885 | Ala               | Thr   | Met   | . Val        | Ser<br>890 | Lys   | s Gly | , Glu | ı Glu | 1 Let<br>895 |                       | 2688 |
| Thi        | : Gly | / Val | 900   | Pro        | ) Ile             | e Leu | ı Val | . Glu<br>905 | Leu<br>S   | ı Ası | ο Gly | / Asp | 910   | l Ası<br>O   | G GGC<br>n Gly        | 2736 |
|            |       |       | e Ser |            |                   |       |       | Gl)          |            |       |       |       | a Th  |              | c GGC<br>r Gly        | 2784 |
|            |       | נלT נ |       |            |                   |       | e Cys |              |            |       |       | s Le  |       |              | G CCC<br>1 Pro        | 2832 |
|            |       |       |       |            |                   |       |       |              |            |       |       |       |       |              | C AGC<br>e Ser        | 2880 |

| 945  |             |            |            |            | 950  |             |             |            |            | 955  |      |             |            |            | 960  |      |
|------|-------------|------------|------------|------------|------|-------------|-------------|------------|------------|------|------|-------------|------------|------------|------|------|
|      |             |            |            |            |      | AAG         |             |            |            |      |      |             |            |            |      | 2928 |
| Arg  | Tyr         | Pro        | Asp        | His<br>965 | Met  | Lys         | Gln         | His        | Asp<br>970 | Phe  | Phe  | Lys         | Ser        | Ala<br>975 | Met  |      |
|      |             |            |            |            |      | GAG         |             |            |            |      |      |             |            |            |      | 2976 |
| Pro  | Glu         | Gly        | 7yr<br>980 | Val        | Gln  | Glu         | Arg         | Thr<br>985 | Ile        | Phe  | Phe  | Lys         | Asp<br>990 | Asp        | Gly  |      |
|      |             |            |            |            |      | GAG         |             |            |            |      |      |             |            |            |      | 3024 |
| Asn  | Tyr         | Lys<br>995 | Thr        | Arg        | Ala  | Glu         | Val<br>1000 | Lys        | Phe        | Glu  |      | qzA<br>2001 | Thr        | Leu        | Val  |      |
|      |             | ,,,,       |            |            |      | •           | .000        |            |            |      |      | 1003        |            |            |      |      |
|      |             |            |            |            |      | GGC         |             |            |            |      |      |             |            |            |      | 3072 |
|      | Arg<br>1010 | Ile        | Glu        | Leu        |      | Gly<br>1015 | Ile         | Asp        | Phe        |      |      | Asp         | Gly        | Asn        | Ile  |      |
|      | 1010        |            |            |            |      | 1013        |             |            |            | •    | 1020 |             |            |            |      |      |
| CTG  | GGG         | CAC        | AAG        | CTG        | GAG  | TAC         | AAC         | TAC        | AAC        | AGC  | CAC  | AAC         | GTC        | TAT        | OTA  | 3120 |
|      | Gly         | His        | Lys        |            |      | Tyr         | Asn         | Tyr        | Asn        | Ser  | His  | Asn         | Val        | Tyr        | Ile  |      |
| 1025 |             |            |            |            | 1030 |             |             |            | 1          | 1035 |      |             |            |            | 1040 |      |
| ATG  | GCC         | GAC        | AAG        | CAG        | AAG  | AAC         | GGC         | ATC        | AAG        | GTG  | AAC  | TTC         | AAG        | ATC        | CGC  | 3168 |
|      |             |            |            |            |      | Asn         |             |            |            |      |      |             |            |            |      |      |
|      |             |            | 1          | 1045       |      |             |             | 1          | 1050       |      |      |             | :          | 1055       |      |      |
| CAC  | AAC         | OTA        | GAG        | GAC        | GGC  | AGC         | GTG         | CAG        | CTC        | GCC  | GAC  | CAC         | TAC        | CAG        | CAG  | 3216 |
|      |             |            |            |            |      | Ser         |             |            |            |      |      |             |            |            |      | 5525 |
|      |             | 1          | 060        |            |      |             | 1           | 1065       |            |      |      | 1           | 070        |            |      |      |
| AAC  | ACC         | CCC        | ATC        | GGC        | GAC  | GGC         | CCC         | GTG        | CTG        | CTG  | CCC  | GAC         | AAC        | CAC        | TAC  | 3264 |
|      |             |            |            |            |      | Gly         |             |            |            |      |      |             |            |            |      |      |
|      | -           | 1075       |            |            |      | 1           | 080         |            |            |      | 1    | .085        |            |            |      |      |
| CTG  | AGC         | ACC        | CAG        | TCC        | GCC  | CTG         | AGC         | AAA        | GAC        | CCC  | AAC  | GAG         | AAG        | CGC        | GAT  | 3312 |
|      |             |            |            |            |      | Leu         |             |            |            |      |      |             |            |            |      |      |
| 1    | 1090        |            |            |            | 3    | 1095        |             |            |            | 1    | 100  |             |            | ,          |      |      |
| CAC  | ATG         | GTC        | CTG        | CTG        | GAG  | TTC         | GTG         | ACC        | GCC        | GCC  | GGG  | ATC         | ACT        | CTC        | GGC  | 3360 |
|      |             |            |            |            |      | Phe         |             |            |            |      |      |             |            |            |      |      |
| 1105 |             |            |            | 1          | 110  |             |             |            | 1          | 115  |      |             |            | J          | 120  |      |
| ATG  | GAC         | GAG        | CTG        | TAC        | AAG  | TAA         |             |            |            |      |      |             |            |            |      | 3381 |
|      |             | Glu        |            |            |      |             |             |            |            |      |      |             |            |            |      | 2201 |
|      |             |            | 1          | 125        |      |             |             |            |            |      |      |             |            |            |      |      |

#### (2) INFORMATION FOR SEQ ID NO:145:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1126 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
  (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:145:

|          |       |       |       |              |       |          |        |                      |             |       |       |       |           | _         |            |
|----------|-------|-------|-------|--------------|-------|----------|--------|----------------------|-------------|-------|-------|-------|-----------|-----------|------------|
| Met      | Glu   | Arg   | Ala   | Gly<br>5     | Pro   | Ser      | Phe    | Gly                  | Gln<br>10   | Gln   | Arg   | Gln   | Gln       | Gln<br>15 | Gln        |
| 1<br>Pro | Gln   | Gln   | Gln   |              | Gln   | Gln      | Gln    | Ara                  |             | Gln   | Asp   | Ser   | Val       |           | Ala        |
| FIC      | GIII  | GIII  | 20    | טעם          | 0111  | 01       | 01     | 25                   |             |       |       |       | 30        |           |            |
| Trp      | Leu   | Asp   |       | His          | Trp   | Asp      | Phe    | Thr                  | Phe         | Ser   | Tyr   | Phe   | Val       | Arg       | Lys        |
| •        |       | 35    | =     |              | _     |          | 40     |                      |             |       |       | 45    |           |           |            |
| Ala      | Thr   | Arg   | Glu   | Met          | Val   | Asn      | Ala    | $\operatorname{Trp}$ | Phe         | Ala   | Glu   | Arg   | Val       | His       | Thr        |
|          | 50    |       |       |              |       | 55       |        |                      |             |       | 60    |       |           |           |            |
| Ile      | Pro   | Val   | Cys   | Lys          |       | Gly      | Ile    | Arg                  | Gly         | His   | Thr   | Glu   | Ser       | Cys       |            |
| 65       | _     | _     |       | -1           | 70    | <b>D</b> | 3      |                      | <b>&gt;</b> | 75    | C~~   | 1101  | Dro       | C114      | 80<br>Thr  |
| Cys      | Pro   | Leu   | Gin   | 61n<br>85    | Ser   | Pro      | Arg    | Ala                  | 90          | Asn   | Set   | vai   | PIO       | 95        | 1111       |
| Pro      | Thr   | Δra   | T.vs  |              | Ser   | Δla      | Ser    | Glu                  |             | Asp   | Ara   | Pro   | Leu       |           | Pro        |
| FIU      | 1111  | n g   | 100   | 110          | 001   |          |        | 105                  |             |       |       |       | 110       | _         |            |
| Ile      | Val   | Val   |       | Asp          | Ser   | Glu      | Gly    |                      | Val         | Ser   | Phe   | Leu   | Ser       | Asp       | Ser        |
|          |       | 115   | -     | _            |       |          | 120    |                      |             |       |       | 125   |           |           |            |
| Glu      | Lys   | Lys   | Glu   | Gln          | Met   | Pro      | Leu    | Thr                  | Pro         | Pro   | Arg   | Phe   | Asp       | His       | Asp        |
|          | 130   |       |       |              |       | 135      |        |                      |             |       | 140   |       |           |           |            |
| Glu      | Gly   | Asp   | Gln   | Суѕ          |       |          | Leu    | Leu                  | Glu         | Leu   | Val   | Lys   | Asp       | Ile       |            |
| 145      |       | _     |       |              | 150   |          |        | ۵                    | 114.0       | 155   | T10   | Dho   | Lou       | n; c      | 160        |
| Ser      | His   | Leu   | Asp   | 165          |       | Ala      | Leu    | Cys                  | 170         | Lys   | 116   | PHE   | Leu       | 175       | 116        |
| uic      | Gly   | Leu   | Tle   |              |       | Asn      | Ara    | Tyr                  |             |       | Phe   | Leu   | Val       |           | Glu        |
| nis      | Gly   | Deu   | 180   |              | 7.14  | ı        | 9      | 185                  |             |       | •     |       | 190       | -         |            |
| Asp      | Ser   | Ser   |       |              | Lys   | Phe      | Leu    | Ilė                  | Ser         | Arg   | Leu   | Phe   | Asp       | Val       | Ala        |
|          |       | 195   |       |              |       |          | 200    |                      |             |       |       | 205   |           |           |            |
| Glu      | Gly   | Ser   | Thr   | Leu          | Glu   | Glu      | Val    | Ser                  | Asn         | Asn   | Cys   | Ile   | Arg       | Leu       | Glu        |
|          | 210   |       |       |              |       | 215      |        | _                    |             |       | 220   |       | <b>01</b> | 5         | •          |
|          |       | Lys   | Gly   | Ile          |       |          | His    | : Val                | Ala         |       |       | G17   | GIU       | Pro       | Leu<br>240 |
| 225      |       | 7     | 7.00  | . או         | 230   |          | 700    | Dro                  | ) N T C     | 235   |       | ء ۵۱  | Glu       | Val       | Asp        |
| ASN      | 116   | Lys   | Asp   | 245          |       | GIU      | ASL    | FIC                  | 250         |       | . ASI | 7,20  | . 010     | 255       |            |
| Gln      | Ile   | Thr   | Glv   |              |       | Thr      | Gln    | . Ser                |             |       | Cys   | Met   | Pro       |           | Lys        |
| 02       |       |       | 260   |              | -     |          |        | 265                  |             |       |       |       | 270       |           |            |
| Asn      | His   | Arg   | Glu   | Glu          | Va]   | Val      | . Gly  | / Val                | Ala         | a Glr | . Ala | Ile   | e Asn     | Lys       | Lys        |
|          |       | 275   |       |              |       |          | 280    |                      |             |       |       | 285   |           |           |            |
| Ser      | Gly   | Asr   | Gly   | , Gl         | Thi   | Phe      | Thr    | Glu                  | ı Lys       | s Asp |       |       | Asp       | Ph∈       | Ala        |
|          | 290   |       |       |              |       | 295      |        |                      | _           |       | 300   |       | - G1      |           |            |
|          |       | Leu   | ı Ala | a Ph∈        |       |          | / Ile  | ∘ Val                | Let         |       |       | 1 Ala | a Gir     | Leu       | 320        |
| 305      |       |       |       |              | 310   |          |        | - N×0                | , her       | 315   |       | Lei   | ı T.ei    | ı Asr     |            |
| GIU      | Tnr   | ser   | . Let | 1 Let<br>325 |       | ASI      | ı riys | · WIC                | 33(         |       | . ve. | . 100 | ع عاد د   | 335       | Leu        |
| 212      | Ser   | T.et  | 1 716 |              |       | ıGlı     | ıGlr   | n Glr                |             |       | ı Glı | ı Vai | l Ile     |           | ı Lys      |
| VIG      |       |       | 340   |              |       |          |        | 345                  |             |       |       |       | 350       |           | -          |
| Lys      | : Ile | a Ala |       |              | : Ile | e Ile    | e Sei  |                      |             | t Glr | n Vai | Gl:   | n Lys     | суя       | 5 Thr      |
|          |       | 355   | 5     |              |       |          | 360    | О                    |             |       |       | 36    | 5         |           |            |
| Il∈      | Phe   | e Ile | e Val | l Ası        | o Glu | ı Ası    | o Cys  | s Se                 | r Ası       | p Se  | r Phe | e Se  | r Sei     | r Val     | l Phe      |
|          | 370   | )     |       |              |       | 375      | 5      |                      |             |       | 380   | )     |           |           |            |
|          |       |       |       |              |       |          |        |                      |             |       |       |       |           |           |            |

| His<br>385 | Met        | Glu        | Cys        | Glu        | Glu<br>390 | Leu        | Glu        | Lys        | Ser        | Ser<br>395 | Asp        | Thr        | Leu        | Thr        | Arg<br>400   |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------|
|            | His        | Asp        | Ala        | Asn<br>405 |            | Ile        | Asn        | Tyr        | Met<br>410 | Tyr        | Ala        | Gln        | Tyr        | Val<br>415 | Lys          |
| Asn        | Thr        | Met        | Glu<br>420 |            | Leu        | Asn        | Ile        | Pro        | Asp        | Val        | Ser        | Lys        | Asp<br>430 | Lys        | Arg          |
| Phe        | Pro        | Trp        |            | Thr        | Glu        | Asn        | Thr        | Gly        | Asn        | Val        | Asn        | Gln<br>445 | Gln        | Суѕ        | Ile          |
| Arg        | Ser        |            | Leu        | Cys        | Thr        | Pro        | Ile        | Lys        | Asn        | Gly        | Lys<br>460 | Lys        | Asn        | Lys        | Val          |
| Ile<br>465 |            | Val        | Суѕ        | Gln        | Leu<br>470 |            | Asn        | Lys        | Met        | Glu<br>475 | Glu        | Asn        | Thr        | Gly        | Lys<br>480   |
|            | Lys        | Pro        | Phe        | Asn<br>485 | Arg        | Asn        | Asp        | Glu        | Gln<br>490 | Phe        | Leu        | Glu        | Ala        | Fhe<br>495 | Val          |
| Ile        | Phe        | Cys        | Gly<br>500 | Leu        | Gly        | Ile        | Gln        | Asn<br>505 | Thr        | Gln        | Met        | Tyr        | Glu<br>510 | Ala        | Val          |
| Glu        | Arg        | Ala<br>515 | Met        | Ala        | Lys        | Gln        | Met<br>520 | Val        | Thr        | Leu        | Glu        | Val<br>525 | Leu        | Ser        | Tyr          |
| His        | Ala<br>530 |            | Ala        | Ala        | Glu        | Glu<br>535 | Glu        | Thr        | Arg        | Glu        | Leu<br>540 | Gln        | Ser        | Leu        | Ala          |
| 545        |            |            |            |            | 550        |            | Gln        |            |            | 555        |            |            |            |            | 560          |
|            |            |            |            | 565        |            |            | Asp        |            | 570        |            |            |            |            | 575        |              |
|            |            |            | 580        |            |            |            | Leu        | 585        |            |            |            |            | 590        |            |              |
|            |            | 595        |            |            |            |            | Leu<br>600 |            |            |            |            | 605        |            |            |              |
|            | 610        |            |            |            |            | 615        |            |            |            |            | 620        |            |            |            |              |
| 625        |            |            |            |            | 630        |            |            |            |            | 635        |            |            |            |            | Asp<br>640   |
|            |            |            |            | 645        |            |            |            |            | 650        |            |            |            |            | 655        |              |
|            |            |            | 660        |            |            |            |            | 665        |            |            |            |            | 670        | )          | Leu          |
|            |            | 675        | •          |            |            |            | 680        |            |            |            |            | 685        | i          |            | Gln          |
|            | 690        | )          |            |            |            | 695        | ,          |            |            |            | 700        |            |            |            | Leu          |
| 705        | ·<br>)     |            |            |            | 710        | 1          |            |            |            | 715        |            |            |            |            | 720<br>Phe   |
|            |            |            |            | 725        | <b>,</b>   |            |            |            | 730        | )          |            |            |            | 735        |              |
|            |            |            | 740        | )          |            |            |            | 745        | •          |            |            |            | 750        | )          | a Ile        |
|            |            | 755        | 5          |            |            |            | 760        | )          |            |            |            | 765        | 5          |            | a Thr        |
|            | 770        | )          |            |            |            | 775        | 5          |            |            |            | 780        | )          |            |            | e Glu        |
| 785        | 5          |            |            |            | 790        | )          |            |            |            | 795        | ·          |            |            |            | 800<br>r Met |
| P.T.(      | للللار     | , wal      | اعبدر      | 805        |            |            | , 010      |            | 810        |            |            |            |            | 81         |              |

Gln Val Gly Phe Ile Asp Ala Ile Cys Leu Gln Leu Tyr Glu Ala Leu 820 825 830 Thr His Val Ser Glu Asp Cys Phe Pro Leu Leu Asp Gly Cys Arg Lys 840 845 Asn Arg Gln Lys Trp Gln Ala Leu Ala Glu Gln Gln Glu Lys Met Leu 850 855 Ile Asn Gly Glu Ser Gly Gln Ala Lys Arg Asn Trp Val Pro Arg Ala 865 870 875 880 Arg Asp Pro Pro Val Ala Thr Met Val Ser Lys Gly Glu Glu Leu Phe 890 885 Thr Gly Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly 905 900 His Lys Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly 925 920 Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro 930 935 Trp Pro Thr Leu Val Thr Thr Leu Thr Tyr Gly Val Gln Cys Phe Ser 945 950 955 Arg Tyr Pro Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met 965 970 Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly 980 985 Asn Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val 995 1000 1005 Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile 1010 1015 1020 Leu Gly His Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile 1030 1035 1040 Met Ala Asp Lys Gln Lys Asn Gly Ile Lys Val Asn Fhe Lys Ile Arg 1045 1050 1055 His Asn Ile Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln 1065 1070 1060 Asn Thr Pro Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr 1080 1085 1075 Leu Ser Thr Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp 1090 1095 1100 His Met Val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly 1110 1115 Met Asp Glu Leu Tyr Lys 1125

## (2) INFORMATION FOR SEQ ID NO:146:

- (i) SEOUENCE CHARACTERISTICS:
  - (A) LENGTH: 2760 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
  - (A) NAME/KEY: Coding Sequence
  - (B) LOCATION: 1...2757

## (D) OTHER INFORMATION:

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:146:

| _ |  | _ |  |  |  |  | GAG<br>Glu<br>15  | <br>48  |   |
|---|--|---|--|--|--|--|-------------------|---------|---|
|   |  |   |  |  |  |  | GTG<br>Val        | 96      |   |
|   |  |   |  |  |  |  | CCC<br>Pro        | 144     |   |
|   |  |   |  |  |  |  | CAG<br>Gln        | 192     |   |
|   |  |   |  |  |  |  | CAT<br>His        | 240     |   |
|   |  |   |  |  |  |  | TCC<br>Ser<br>95  | 288     |   |
|   |  |   |  |  |  |  | AGC<br>Ser        | <br>336 |   |
|   |  |   |  |  |  |  | CAC<br>His        | 384     |   |
|   |  |   |  |  |  |  | TGC<br>Cys        | 432     |   |
|   |  |   |  |  |  |  | CGC<br>Arg        | 480     |   |
|   |  |   |  |  |  |  | GTC<br>Val<br>175 | 528     |   |
|   |  |   |  |  |  |  | CTG<br>Leu        | 576     |   |
|   |  |   |  |  |  |  | GAG<br>Glu        | 624     | : |

200 195 AAA CAG AAG ACC AAA ACC ATC AAA TGC TCC CTC AAC CCT GAG TGG AAT 672 Lys Gln Lys Thr Lys Thr Ile Lys Cys Ser Leu Asn Pro Glu Trp Asn 215 210 720 GAG ACA TTT AGA TTT CAG CTG AAA GAA TCG GAC AAA GAC AGA AGA CTG Glu Thr Phe Arg Phe Gln Leu Lys Glu Ser Asp Lys Asp Arg Arg Leu 235 230 TCA GTA GAG ATT TGG GAT TGG GAT TTG ACC AGC AGG AAT GAC TTC ATG 768 Ser Val Glu Ile Trp Asp Trp Asp Leu Thr Ser Arg Asn Asp Phe Met GGA TCT TTG TCC TTT GGG ATT TCT GAA CTT CAG AAG GCC AGT GTT GAT 816 Gly Ser Leu Ser Phe Gly Ile Ser Glu Leu Gln Lys Ala Ser Val Asp 864 GGC TGG TTT AAG TTA CTG AGC CAG GAG GAA GGC GAG TAC TTC AAT GTG Gly Trp Phe Lys Leu Leu Ser Gln Glu Glu Gly Glu Tyr Phe Asn Val 280 275 912 CCT GTG CCA CCA GAA GGA AGT GAG GCC AAT GAA GAA CTG CGG CAG AAA Pro Val Pro Pro Glu Gly Ser Glu Ala Asn Glu Glu Leu Arg Gln Lys 295 290 TIT GAG AGG GCC AAG ATC AGT CAG GGA ACC AAG GTC CCG GAA GAA AAG 960 Phe Glu Arg Ala Lys Ile Ser Gln Gly Thr Lys Val Pro Glu Glu Lys 310 315 305 ACG ACC AAC ACT GTC TCC AAA TTT GAC AAC AAT GGC AAC AGA GAC CGG 1008 Thr Thr Asn Thr Val Ser Lys Phe Asp Asn Asn Gly Asn Arg Asp Arg 325 ATG AAA CTG ACC GAT TTT AAC TTC CTA ATG GTG CTG GGG AAA GGC AGC 1056 Met Lys Leu Thr Asp Phe Asn Phe Leu Met Val Leu Gly Lys Gly Ser TTT GGC AAG GTC ATG CTT TCA GAA CGA AAA GGC ACA GAT GAG CTC TAT 1104 Phe Gly Lys Val Met Leu Ser Glu Arg Lys Gly Thr Asp Glu Leu Tyr 360 355 GCT GTG AAG ATC CTG AAG AAG GAC GTT GTG ATC CAA GAT GAT GAC GTG Ala Val Lys Ile Leu Lys Lys Asp Val Val Ile Gln Asp Asp Val 375 GAG TGC ACT ATG GTG GAG AAG CGG GTG TTG GCC CTG CCT GGG AAG CCG 1200 Glu Cys Thr Met Val Glu Lys Arg Val Leu Ala Leu Pro Gly Lys Pro 395 390 385 CCC TTC CTG ACC CAG CTC CAC TCC TGC TTC CAG ACC ATG GAC CGC CTG Pro Phe Leu Thr Gln Leu His Ser Cys Phe Gln Thr Met Asp Arg Leu

410

|     |     |     |     |     |     |       |     |     | CTC<br>Leu        |       |       |       |                   | 1296 |
|-----|-----|-----|-----|-----|-----|-------|-----|-----|-------------------|-------|-------|-------|-------------------|------|
|     |     |     |     |     |     |       |     |     | GTA<br>Val        |       |       |       |                   | 1344 |
|     |     |     |     |     |     |       |     |     | AAG<br>Lys<br>460 |       |       |       |                   | 1392 |
|     |     |     |     |     |     |       |     |     | TCT<br>Ser        |       |       |       |                   | 1440 |
|     |     |     |     |     |     |       |     |     | ATC<br>Ile        |       |       |       |                   | 1488 |
|     |     |     |     |     |     |       |     |     |                   |       |       |       | ATA<br>Ile        | 1536 |
|     |     |     |     |     |     |       |     |     |                   |       | Ala   |       | GGA<br>Gly        | 1584 |
|     |     |     |     |     |     |       |     |     |                   | Phe   |       |       | GAG<br>Glu        | 1632 |
| Glu |     |     |     |     |     |       |     |     | His               |       |       |       | TAT<br>Tyr<br>560 | 1680 |
|     |     |     |     | Lys |     |       |     | Ile |                   |       |       |       | ATG<br>Met        | 1728 |
|     |     |     | Gly |     |     |       | Cys |     |                   |       |       | / Glu | A CGT<br>1 Arg    | 1776 |
|     |     | Glu |     |     |     | e Arg |     |     |                   |       | o Glu |       | A CTT<br>s Leu    | 1824 |
|     | Lys |     |     |     | Pro |       |     |     |                   | s Ala |       |       | G CGA<br>y Arg    | 1872 |
|     |     |     |     |     |     |       |     |     |                   |       |       |       | C CTA<br>l Leu    | 1920 |

| 625 |     |     |     | 630 |     |     |                   |     | 635 |       |     |       |       | 640               |      |
|-----|-----|-----|-----|-----|-----|-----|-------------------|-----|-----|-------|-----|-------|-------|-------------------|------|
|     |     |     |     |     |     |     | AGG<br>Arg        |     |     |       |     |       |       |                   | 1968 |
|     |     |     |     |     |     |     | GAA<br>Glu<br>665 |     |     |       |     |       |       |                   | 2016 |
|     |     |     |     |     |     |     | ATG<br>Met        |     |     |       |     |       |       |                   | 2064 |
|     |     |     |     |     |     |     | GTC<br>Val        |     |     |       |     |       |       |                   | 2112 |
|     |     |     |     |     |     |     | GAG<br>Glu        |     |     |       |     |       |       |                   | 2160 |
|     |     |     |     |     |     |     | TGC<br>Cys        |     |     |       |     |       |       | GTG<br>Val        | 2208 |
|     |     |     |     |     |     |     |                   |     |     |       |     |       | Cys   | TTC<br>Phe        | 2256 |
|     |     |     |     |     |     |     | Gln               |     |     |       |     | Lys   |       | GCC               | 2304 |
|     |     |     |     |     |     | Glu |                   |     |     |       | Phe |       |       | GAC<br>Asp        | 2352 |
|     | Asn |     |     |     | Ala |     |                   |     |     | e Glu |     |       |       | CTG<br>Leu<br>800 | 2400 |
|     |     |     |     | Leu |     |     |                   |     | Phe |       |     |       |       | AAC<br>Asn        | 2448 |
|     |     |     | Lys |     |     |     |                   | Туг |     |       |     |       | ı Val | TAT<br>L Tyr      | 2496 |
|     |     | Asp |     |     |     |     | n Gly             |     |     |       |     | n Phe |       | G ATC             | 2544 |

|  |  |            |     | GTG<br>Val |  |  |  |            | 2592 |
|--|--|------------|-----|------------|--|--|--|------------|------|
|  |  |            |     | CCC<br>Pro |  |  |  |            | 2640 |
|  |  |            |     | AGC<br>Ser |  |  |  |            | 2688 |
|  |  |            |     |            |  |  |  | CTC<br>Leu | 2736 |
|  |  | TAC<br>Tyr | TAA |            |  |  |  |            | 2760 |

#### (2) INFORMATION FOR SEQ ID NO:147:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 919 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:147:

Met Ala Asp Pro Ala Ala Gly Pro Pro Pro Ser Glu Gly Glu Glu Ser 10 5 Thr Val Arg Phe Ala Arg Lys Gly Ala Leu Arg Gln Lys Asn Val His Glu Val Lys Asn His Lys Phe Thr Ala Arg Phe Phe Lys Gln Pro Thr 40 Phe Cys Ser His Cys Thr Asp Phe Ile Trp Gly Phe Gly Lys Gln Gly 55 Phe Gln Cys Gln Val Cys Cys Phe Val Val His Lys Arg Cys His Glu 75 70 Phe Val Thr Phe Ser Cys Pro Gly Ala Asp Lys Gly Pro Ala Ser Asp 85 90 Asp Pro Arg Ser Lys His Lys Phe Lys Ile His Thr Tyr Ser Ser Pro 100 105 110 Thr Phe Cys Asp His Cys Gly Ser Leu Leu Tyr Gly Leu Ile His Gln 125 120 Gly Met Lys Cys Asp Thr Cys Met Met Asn Val His Lys Arg Cys Val 135 140 Met Asn Val Pro Ser Leu Cys Gly Thr Asp His Thr Glu Arg Arg Gly 160 150 155

| Arg        | Ile        | Tyr        | Ile        | Gln<br>165      | Ala          | His          | Ile        | Asp          | Arg<br>170 | Asp          | Val        | Leu        | Ile        | Val<br>175              | Leu          |
|------------|------------|------------|------------|-----------------|--------------|--------------|------------|--------------|------------|--------------|------------|------------|------------|-------------------------|--------------|
| Val .      | Arg        | qzA        | Ala<br>180 |                 | Asn          | Leu          | Val        | Pro<br>185   |            | Asp          | Pro        | Asn        | Gly<br>190 | Leu                     | Ser          |
| Asp        | Pro        | Tyr<br>195 | Val        | Lys             | Leu          | Lys          | Leu<br>200 | Ile          | Pro        | Asp          | Pro        | Lys<br>205 | Ser        | Glu                     | Ser          |
|            | 210        |            | Thr        |                 |              | 215          |            |              |            |              | 220        |            |            |                         |              |
| Glu<br>225 | Thr        | Phe        | Arg        | Phe             | Gln<br>230   | Leu          | Lys        | Glu          | Ser        | Asp<br>235   | Lys        | Asp        | Arg        | Arg                     | Leu<br>240   |
|            | Val        | Glu        | Ile        | Trp<br>245      |              | Trp          | Asp        | Leu          | Thr<br>250 | Ser          | Arg        | Asn        | Asp        | Phe<br>255              | Met          |
| Gly        | Ser        | Leu        | Ser<br>260 |                 | Gly          | Ile          | Ser        | Glu<br>265   | Leu        | Gln          | Lys        | Ala        | Ser<br>270 | Val                     | Asp          |
| Gly        | Trp        | Phe<br>275 | Lys        | Leu             | Leu          | Ser          | Gln<br>280 | Glu          | Glu        | Gly          | Glu        | Tyr<br>285 | Phe        | Asn                     | Val          |
| Pro        | Val<br>290 | Pro        | Pro        | Glu             | Gly          | Ser<br>295   | Glu        | Ala          | Asn        | Glu          | Glu<br>300 | Leu        | Arg        | Gln                     | Lys          |
| Phe<br>305 | Glu        | Arg        | Ala        | Lys             | Ile<br>310   | Ser          | Gln        | Gly          | Thr        | Lys<br>315   | Val        | Pro        | Glu        | Glu                     | Lys<br>320   |
| Thr        | Thr        | Asn        | Thr        | Val<br>325      |              | Lys          | Phe        | Asp          | Asn<br>330 | Asn          | Gly        | Asn        | Arg        | Asp<br>335              | Arg          |
| Met        | Lys        | Leu        | Thr<br>340 | Asp             | Phe          | Asn          | Phe        | Leu<br>345   | Met        | Val          | Leu        | Gly        | Lys<br>350 |                         | Ser          |
| Phe        | Gly        | Lys<br>355 | Val        | Met             | Leu          | Ser          | Glu<br>360 | Arg          | Lys        | Gly          | Thr        | Asp<br>365 |            | Leu                     | Tyr          |
| Ala        | Val<br>370 |            | Ile        | Leu             | Lys          | Lys<br>375   |            | Val          | Val        | Ile          | Gln<br>380 | Asp        | Asp        | Asp                     | Val          |
| Glu<br>385 | Cys        | Thr        | Met        | Val             | Glu<br>390   | Lys          | Arg        | Val          | Leu        | Ala<br>395   | Leu        | Pro        | Gly        | Lys                     | Pro<br>400   |
|            | Phe        | Leu        | Thr        | Gln<br>405      |              | His          | Ser        | Суs          | Phe        |              | Thr        | Met        | Asp        | Arg<br>415              | Leu          |
| Tyr        | Phe        | Val        | Met<br>420 |                 | Tyr          | Val          | Asn        | Gly<br>425   |            | Asp          | Leu        | Met        | 430        |                         | Ile          |
| Gln        | Gln        | Val        |            | Arg             | Phe          | Lys          | Glu<br>440 |              | His        | Ala          | Val        | Ph∈        |            | Ala                     | Ala          |
| Glu        | Ile<br>450 |            | ılle       | Gly             | Leu          | Phe 455      |            | Leu          | Gln        | Ser          | Lys<br>460 |            | ' Ile      | e Ile                   | Tyr          |
| Arg<br>465 |            | Leu        | Lys        | Leu             | 470          |              | val        | Met          | Leu        | 475          |            | Glu        | ı Gly      | / His                   | 11e<br>480   |
|            |            | Ala        | a Asp      | Phe<br>485      | e Gly        |              | : Суя      | Lys          | Glu<br>490 |              | Ile        | Tr         | Ası        | Gl <sub>y</sub>         | / Val        |
| Thr        | Thr        | Lys        | Thr        | Phe             |              | Gly          | / Thr      | Pro          | Asp        |              | Ile        | e Ala      | 9 Pro      |                         | ılle         |
| Ile        | Ala        | тул<br>515 |            | n Pro           | туг          | Gly          | / Lys      |              | Va]        | l Asp        | Tr         | 525        |            | a Phe                   | e Gly        |
| Val        | Let<br>530 | ı Lev      |            | Glu             | ı Met        | : Lev<br>535 |            | a Gly        | / Glr      | n Ala        | Fro<br>540 |            | e Gl       | u Gly                   | y Glu        |
| Asp<br>545 | Glu        |            | o Glu      | ı Lev           | Phe ب<br>550 |              | n Sei      | : Ile        | e Met      | : Glv<br>555 |            | s Ası      | n Va       | l Al                    | a Tyr<br>560 |
|            |            | s Sei      | r Met      | Se:<br>56!      | r Lys        |              | ı Ala      | a Val        | L Ala      | a Ile        |            | s Ly       | s Gl       | y Le <sup>.</sup><br>57 | u Met        |
| Thr        | Lys        | s His      | 5 Pro      | Gl <sub>y</sub> |              | s Arg        | g Le       | u Gly<br>585 | y Cys      |              | y Pro      | o Gl       | u G1<br>59 |                         | u Arg        |

Asp Ile Lys Glu His Ala Phe Phe Arg Tyr Ile Asp Trp Glu Lys Leu 600 Glu Arg Lys Glu Ile Gln Pro Pro Tyr Lys Pro Lys Ala Cys Gly Arg 615 620 Asn Ala Glu Asn Phe Asp Arg Phe Phe Thr Arg His Pro Pro Val Leu 635 630 Thr Pro Pro Asp Gln Glu Val Ile Arg Asn Ile Asp Gln Ser Glu Phe 645 650 Glu Gly Phe Ser Phe Val Asn Ser Glu Phe Leu Lys Pro Glu Val Lys 665 670 Ser Ser Asp Pro Pro Val Ala Thr Met Val Ser Lys Gly Glu Glu Leu 680 685 Phe Thr Gly Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn 695 Gly His Lys Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr 710 715 720 Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val 725 730 Pro Trp Pro Thr Leu Val Thr Thr Leu Thr Tyr Gly Val Gln Cys Phe 745 740 Ser Arg Tyr Pro Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala 760 Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp 775 Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu 790 795 Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn 805 810 Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr 825 Ile Met Ala Asp Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile 840 Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln 855 Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His 870 875 Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg 885 890 Asp His Met Val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu 905 Gly Met Asp Glu Leu Tyr Lys 915

#### (2) INFORMATION FOR SEQ ID NO:148:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3009 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:

(A) NAME/KEY: Coding Sequence

(B) LOCATION: 1...3006

(D) OTHER INFORMATION:

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:148:

|            |            |            |                     |            |            |                   |            |                   | TTA<br>Leu<br>10 |            |              |              |                   |            |                   | 48  |
|------------|------------|------------|---------------------|------------|------------|-------------------|------------|-------------------|------------------|------------|--------------|--------------|-------------------|------------|-------------------|-----|
|            |            |            |                     |            |            |                   |            |                   | AAC<br>Asn       |            |              |              |                   |            |                   | 96  |
|            |            |            |                     |            |            |                   |            |                   | AAG<br>Lys       |            |              |              |                   |            |                   | 144 |
|            |            |            |                     |            |            |                   |            |                   | ATC<br>Ile       |            |              |              |                   |            |                   | 192 |
|            |            |            |                     |            |            |                   |            |                   | AGC<br>Ser       |            |              |              |                   |            |                   | 240 |
|            |            |            |                     |            |            |                   |            |                   | GAT<br>Asp<br>90 |            |              |              |                   |            |                   | 288 |
| GCG<br>Ala | GGA<br>Gly | CGG<br>Arg | S AGT<br>Ser<br>100 | Pro        | TTG        | GAT<br>Asp        | CCC<br>Pro | ATG<br>Met<br>105 | Thr              | AGC<br>Ser | CCA<br>Pro   | . GGA<br>Gly | TCC<br>Ser<br>110 | Gly        | CTA<br>Leu        | 336 |
|            |            |            | Ala                 |            |            |                   |            | Ser               |                  |            |              |              | sei               |            | CTG<br>Leu        | 384 |
| ТАТ<br>Туг | CGA<br>Arg | Ser        | GAC<br>Asp          | AGC<br>Ser | GAT<br>Asp | TAT<br>Tyr<br>135 | Asp        | CTC<br>Lev        | TCT<br>Ser       | CC;        | A AAC<br>Lys | Sei          | T ATC             | TCC<br>Ser | CGG<br>Arg        | 432 |
|            | ı Ser      |            |                     |            |            | : Asp             |            |                   |                  |            | Ası          |              |                   |            | ACT<br>Thr<br>160 | 480 |
|            |            |            |                     |            | l Le       |                   |            |                   |                  | Th:        |              |              |                   |            | TTT<br>n Phe      | 528 |
|            |            |            |                     | r Ası      |            |                   |            |                   | g Ala            |            |              |              |                   | g Se       | A CCC<br>r Pro    | 576 |

| ATG<br>Met        | TGC<br>Cys        | AAC<br>Asn<br>195 | CAA<br>Gln        | CCA<br>Pro        | TCC<br>Ser        | Ile               | AAC<br>Asn<br>200 | AAA<br>Lys        | GCC .<br>Ala      | ACC<br>Thr        | ATA<br>Ile        | ACA (Thr (        | GAG (             | GAG (             | GCC<br>Ala            | 624  |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------------|------|
| TAC<br>Tyr        | CAG<br>Gln<br>210 | AAA<br>Lys        | CTG<br>Leu        | GCC<br>Ala        | AGC<br>Ser        | GAG<br>Glu<br>215 | ACC<br>Thr        | CTG<br>Leu        | GAG<br>Glu        | GAG<br>Glu        | CTG<br>Leu<br>220 | GAC<br>Asp        | TGG<br>Trp        | TGT<br>Cys        | CTG<br>Leu            | 672  |
| GAC<br>Asp<br>225 | CAG<br>Gln        | CTA<br>Leu        | GAG<br>Glu        | ACC<br>Thr        | CTA<br>Leu<br>230 | CAG<br>Gln        | ACC<br>Thr        | AGG<br>Arg        | CAC<br>His        | TCC<br>Ser<br>235 | GTC<br>Val        | AGT<br>Ser        | GAG<br>Glu        | ATG<br>Met        | GCC<br>Ala<br>240     | 720  |
| TCC<br>Ser        | AAC<br>Asn        | AAG<br>Lys        | TTT<br>Phe        | AAA<br>Lys<br>245 | AGG<br>Arg        | ATG<br>Met        | CTT<br>Leu        | AAT<br>Asn        | CGG<br>Arg<br>250 | GAG<br>Glu        | CTC<br>Leu        | ACC<br>Thr        | CAT<br>His        | CTC<br>Leu<br>255 | TCT<br>Ser            | 768  |
| GAA<br>Glu        | ATG<br>Met        | AGT<br>Ser        | CGG<br>Arg<br>260 | TCT<br>Ser        | GGA<br>Gly        | TAA<br>Asn        | CAA<br>Gln        | GTG<br>Val<br>265 | TCA<br>Ser        | GAG<br>Glu        | TTT<br>Phe        | ATA<br>Ile        | TCA<br>Ser<br>270 | AAC<br>Asn        | ACA<br>Thr            | 816  |
| TTC<br>Phe        | TTA<br>Leu        | GAT<br>Asp<br>275 | Lys               | CAA<br>Gln        | CAT<br>His        | GAA<br>Glu        | GTG<br>Val<br>280 | Glu               | ATT               | CCT               | TCT               | CCA<br>Pro<br>285 | ACT<br>Thr        | CAG<br>Gln        | AAG<br>Lys            | 864  |
| GAA<br>Glu        | AAG<br>Lys<br>290 | Glu               | AAA<br>Lys        | AAG<br>Lys        | AAA<br>Lys        | AGA<br>Arg<br>295 | CCA<br>Pro        | ATG<br>Met        | TCT               | CAG               | ATC<br>Ile<br>300 | AGT<br>Ser        | GGA<br>Gly        | GTC<br>Val        | AAG<br>Lys            | 912  |
| AAA<br>Lys<br>305 | Leu               | ATC<br>Met        | CAC<br>His        | : AGC<br>Ser      | Ser<br>310        | Ser               | Leu               | ACT<br>Thr        | `AAT<br>Asn       | TCA<br>Ser<br>315 | Ser               | r ATC             | CCA<br>Pro        | AGG<br>Arg        | Phe 320               | 960  |
| GGA<br>Gly        | A GTM<br>/ Val    | r AA/<br>Lys      | A ACT             | GAA<br>Glu<br>325 | ı Glr             | A GAA             | GAT<br>Asp        | r GTC<br>o Val    | CTT<br>Leu<br>330 | Ala               | AA(               | G GAA<br>S Glu    | CTA<br>Leu        | GAA<br>Glu<br>335 | A GAT                 | 1008 |
| Va:               | l Ası             | ı Ly:             | 340               | o Gly             | y Let             | ı His             | va:               | 1 Phe<br>349      | e Arg             | j Il∙             | e Ala             | a Glu             | 350               | ser               | GGT Gly               | 1056 |
| As:               | n Ar              | g Pr              | o Le              | u Th              | r Vai             | l Ile             | 36                | t His             | s Thi             | r Il              | e Ph              | e Gli<br>369      | n Glu             | ı Arç             | G GAT<br>g Asp        | 1104 |
| Le                | u Le<br>37        | u Ly<br>0         | s Th              | r Ph              | e Ly              | 37                | e Pr<br>5         | o Vai             | l As <sub>l</sub> | p Th              | r Le<br>38        | u Il              | e Th:             | r Ty              | T CTT<br>r Leu        | 1152 |
| Me<br>38          | t Th              | r Le              | eu Gl             | u As              | р Ні<br>39        | s Ту<br>0         | r Hi              | s Al              | a As              | p Va<br>39        | 1 Al              | а Ту              | r Hi              | s As              | C AAT<br>n Asn<br>400 | 1200 |
| TA<br>Il          | C CA<br>e Hi      | T GC<br>.s Al     | T GC<br>.a Al     | A GA<br>a As      | T GT<br>p Va      | T GT<br>l Va      | C CA<br>1 Gl      | G TC<br>n Se      | T AC              | T CA<br>r Hi      | T GT<br>s Vā      | NG CT             | A TT<br>u Le      | A TO<br>u Se      | T ACA<br>Thr          | 1248 |

415

405 CCT GCT TTG GAG GCT GTG TTT ACA GAT TTG GAG ATT CTT GCA GCA ATT Pro Ala Leu Glu Ala Val Phe Thr Asp Leu Glu Ile Leu Ala Ala Ile 425 TTT GCC AGT GCA ATA CAT GAT GTA GAT CAT CCT GGT GTG TCC AAT CAA 1344 Phe Ala Ser Ala Ile His Asp Val Asp His Pro Gly Val Ser Asn Gln 435 TTT CTG ATC AAT ACA AAC TCT GAA CTT GCC TTG ATG TAC AAT GAT TCC 1392 Phe Leu Ile Asn Thr Asn Ser Glu Leu Ala Leu Met Tyr Asn Asp Ser 455 TCA GTC TTA GAG AAC CAT CAT TTG GCT GTG GGC TTT AAA TTG CTT CAG 1440 Ser Val Leu Glu Asn His His Leu Ala Val Gly Phe Lys Leu Leu Gln 475 470 GAA GAA AAC TGT GAC ATT TTC CAG AAT TTG ACC AAA AAA CAA AGA CAA 1488 Glu Glu Asn Cys Asp Ile Phe Gln Asn Leu Thr Lys Lys Gln Arg Gln 490 485 TCT TTA AGG AAA ATG GTC ATT GAC ATC GTA CTT GCA ACA GAT ATG TCA 1536 Ser Leu Arg Lys Met Val Ile Asp Ile Val Leu Ala Thr Asp Met Ser 505 500 AAA CAC ATG AAT CTA CTG GCT GAT TTG AAG ACT ATG GTT GAA ACT AAG 1584 Lys His Met Asn Leu Leu Ala Asp Leu Lys Thr Met Val Glu Thr Lys 520 515 AAA GTG ACA AGC TCT GGA GTT CTT CTT GAT AAT TAT TCC GAT AGG Lys Val Thr Ser Ser Gly Val Leu Leu Leu Asp Asn Tyr Ser Asp Arg 530 535 ATT CAG GTT CTT CAG AAT ATG GTG CAC TGT GCA GAT CTG AGC AAC CCA Ile Gln Val Leu Gln Asn Met Val His Cys Ala Asp Leu Ser Asn Pro 550 ACA AAG CCT CTC CAG CTG TAC CGC CAG TGG ACG GAC CGG ATA ATG GAG 1728 Thr Lys Pro Leu Gln Leu Tyr Arg Gln Trp Thr Asp Arg Ile Met Glu 570 565 GAG TTC TTC CGC CAA GGA GAC CGA GAG AGG GAA CGT GGC ATG GAG ATA 1776 Glu Phe Phe Arg Gln Gly Asp Arg Glu Arg Glu Arg Gly Met Glu Ile 580 AGC CCC ATG TGT GAC AAG CAC AAT GCT TCC GTG GAA AAA TCA CAG GTG 1824 Ser Pro Met Cys Asp Lys His Asn Ala Ser Val Glu Lys Ser Gln Val 600 595 GGC TTC ATA GAC TAT ATT GTT CAT CCC CTC TGG GAG ACA TGG GCA GAC Gly Fhe Ile Asp Tyr Ile Val His Pro Leu Trp Glu Thr Trp Ala Asp 615

| CTC (<br>Leu '<br>625 |  |  |  |  |  |  |  | 1920 |
|-----------------------|--|--|--|--|--|--|--|------|
| CGT (                 |  |  |  |  |  |  |  | 1968 |
| GAT (                 |  |  |  |  |  |  |  | 2016 |
| GAA (                 |  |  |  |  |  |  |  | 2064 |
| GC A                  |  |  |  |  |  |  |  | 2112 |
| TGT Z<br>Cys '        |  |  |  |  |  |  |  | 2160 |
| GAA (                 |  |  |  |  |  |  |  | 2208 |
| GTC A                 |  |  |  |  |  |  |  | 2256 |
| GTA (                 |  |  |  |  |  |  |  | 2304 |
| GAG (                 |  |  |  |  |  |  |  | 2352 |
| GAC (<br>Asp \<br>785 |  |  |  |  |  |  |  | 2400 |
| GCC A                 |  |  |  |  |  |  |  | 2448 |
| CTG (                 |  |  |  |  |  |  |  | 2496 |
| CAG '                 |  |  |  |  |  |  |  | 2544 |

AAG TCC GCC ATG CCC GAA GGC TAC GTC CAG GAG CGC ACC ATC TTC TTC 2592 Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe 850 855 AAG GAC GAC GGC AAC TAC AAG ACC CGC GCC GAG GTG AAG TTC GAG GGC Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu Gly 870 GAC ACC CTG GTG AAC CGC ATC GAG CTG AAG GGC ATC GAC TTC AAG GAG 2688 Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu 890 GAC GGC AAC ATC CTG GGG CAC AAG CTG GAG TAC AAC TAC AAC AGC CAC 2736 Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr Asn Ser His AAC GTC TAT ATC ATG GCC GAC AAG CAG AAG AAC GGC ATC AAG GTG AAC 2784 Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile Lys Val Asn 920 915 TTC AAG ATC CGC CAC AAC ATC GAG GAC GGC AGC GTG CAG CTC GCC GAC 2832 Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu Ala Asp 940 930 935 CAC TAC CAG CAG AAC ACC CCC ATC GGC GAC GGC CCC GTG CTG CCC 2880 His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Leu Leu Pro 955 945 950 GAC AAC CAC TAC CTG AGC ACC CAG TCC GCC CTG AGC AAA GAC CCC AAC 2928 Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys Asp Pro Asn 965 970 GAG AAG CGC GAT CAC ATG GTC CTG CTG GAG TTC GTG ACC GCC GCC GGG 2976 Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr Ala Ala Gly 985 980 3009 ATC ACT CTC GGC ATG GAC GAG CTG TAC AAG TAA Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys 995 1000

840

835

#### (2) INFORMATION FOR SEQ ID NO:149:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1002 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
  (v) FRAGMENT TYPE: internal

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:149:

| Met<br>1   | Ala        | Gln        | Gln        | Thr<br>5   | Ser        | Pro        | Asp        | Thr        | Leu<br>10  | Thr        | Val        | Pro        | Glu        | Val<br>15  | Asp        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Asn        | Pro        | His        | Суs<br>20  | Pro        | Asn        | Pro        | Trp        | Leu<br>25  | Asn        | Glu        | Asp        | Leu        | Val<br>30  | Lys        | Ser        |
| Leu        | Arg        | Glu<br>35  | Asn        | Leu        | Leu        | Gln        | His<br>40  | Glu        | Lys        | Ser        | Lys        | Thr<br>45  | Ala        | Arg        | Lys        |
| Ser        | Val<br>50  | Ser        | Pro        | Lys        | Leu        | Ser<br>55  | Pro        | Val        | Ile        | Ser        | Pro<br>60  | Arg        | Asn        | Ser        | Pro        |
| Arg<br>65  | Leu        | Leu        | Arg        | Arg        | Met<br>70  | Leu        | Leu        | Ser        | Ser        | Asn<br>75  | Ile        | Pro        | Lys        | Gln        | Arg<br>80  |
| Arg        | Phe        | Thr        | Val        | Ala<br>85  | His        | Thr        | Cys        | Phe        | Asp<br>90  | Val        | Asp        | Asn        | Gly        | Thr<br>95  | Ser        |
|            |            |            | 100        |            |            | -          |            | 105        |            |            |            | -          | 110        | Gly        |            |
| Ile        | Leu        | Gln<br>115 | Ala        | Asn        | Phe        | Val        | His<br>120 | Ser        | Gln        | Arg        | Arg        | Glu<br>125 | Ser        | Phe        | Leu        |
|            | 130        |            |            |            |            | 135        | _          |            |            |            | 140        |            |            | Ser        |            |
| 145        |            |            |            |            | 150        |            |            |            |            | 155        |            |            |            | Val        | 160        |
|            |            |            |            | 165        |            |            |            |            | 170        |            |            |            |            | Asn<br>175 |            |
|            |            |            | 180        |            |            |            |            | 185        |            |            |            |            | 190        | Ser        |            |
|            |            | 195        |            |            |            |            | 200        |            |            |            |            | 205        |            | Glu        |            |
|            | 210        |            |            |            |            | 215        |            |            |            |            | 220        | -          | -          | Cys        |            |
| 225        |            |            |            |            | 230        |            |            | _          |            | 235        |            |            |            | Met        | 240        |
|            |            |            |            | 245        |            |            |            |            | 250        |            |            |            |            | Leu<br>255 |            |
|            |            |            | 260        |            |            |            |            | 265        |            |            |            |            | 270        | Asn        |            |
|            |            | 275        |            |            |            |            | 280        |            |            |            |            | 285        |            | Gln        | •          |
|            | 290        |            |            |            |            | 295        |            |            |            |            | 300        |            |            | Val        |            |
| 305        | Leu        | Met        | His        | Ser        | 310        | Ser        | Leu        | Thr        | Asn        | Ser<br>315 | Ser        | Ile        | Pro        | Arg        | Phe<br>320 |
| Gly        | Val        | Lys        | Thr        | Glu<br>325 | Gln        | Glu        | Asp        | Val        | Leu<br>330 | Ala        | Lys        | Glu        | Leu        | Glu<br>335 | Asp        |
| Val        | Asn        | Lys        | Trp<br>340 | Gly        | Leu        | His        | Val        | Phe<br>345 | Arg        | Ile        | Ala        | Glu        | Leu<br>350 | Ser        | Gly        |
| Asn        | Arg        | Pro<br>355 | Leu        | Thr        | Val        | Ile        | Met<br>360 | His        | Thr        | Ile        | Phe        | Gln<br>365 | Glu        | Arg        | qzA        |
| Leu        | Leu<br>370 | Lys        | Thr        | Phe        | Lys        | Ile<br>375 | Pro        | Val        | Asp        | Thr        | Leu<br>380 | Ile        | Thr        | Tyr        | Leu        |
| Met<br>385 | Thr        | Leu        | Glu        | Asp        | His<br>390 | Tyr        | His        | Ala        | Asp        | Val<br>395 | Ala        | Tyr        | His        | Asn        | Asn<br>400 |
| Ile        | His        | Ala        | Ala        | Asp<br>405 | Val        | Val        | Gln        | Ser        | Thr<br>410 | His        | Val        | Leu        | Leu        | Ser<br>415 | Thr        |

| Pro        | Ala          | Leu        | Glu<br>420   | Ala          | Val        | Phe        |            | Asp<br>425 | Leu        | Glu               | Ile          | Leu        | Ala<br>430   | Ala          | Ile          |
|------------|--------------|------------|--------------|--------------|------------|------------|------------|------------|------------|-------------------|--------------|------------|--------------|--------------|--------------|
| Phe        | Ala          | Ser<br>435 |              | Ile          | His.       |            | Val<br>440 | Asp        | His        | Pro               | Gly          | Val<br>445 | Ser          | Asn          | Gln          |
| Phe        | Leu<br>450   | Ile        | Asn          | Thr          | Asn        | Ser<br>455 | Glu        | Leu        | Ala        | Leu               | Met<br>460   | Tyr        | Asn          | Asp          | Ser          |
| Ser        | Val          | Leu        | Glu          | Asn          | His        | His        | Leu        | Ala        | Val        | Gly               | Phe          | Lys        | Leu          | Leu          | Gln          |
| 465        |              |            |              |              | 470        |            |            |            |            | 475               |              |            |              |              | 480          |
|            |              |            |              | 485          | Ile        |            |            |            | 490        |                   |              |            |              | 495          |              |
|            |              |            | 500          |              | Val        |            |            | 505        |            |                   |              |            | 510          |              |              |
| Lys        | His          | Met<br>515 | Asn          | Leu          | Leu        | Ala        | Asp<br>520 | Leu        | Lys        | Thr               | Met          | Val<br>525 | Glu          | Thr          | Lys          |
| Lys        | Val<br>530   | Thr        | Ser          | Ser          | Gly        | Val<br>535 | Leu        | Leu        | Leu        | Asp               | Asn<br>540   | Tyr        | Ser          | Asp          | Arg          |
| Ile<br>545 | Gln          | Val        | Leu          | Gln          | Asn<br>550 | Met        | Val        | His        | Cys        | Ala<br>555        | Asp          | Leu        | Ser          | Asn          | Pro<br>560   |
| Thr        | Lys          | Pro        | Leu          | Gln<br>565   | Leu        | Tyr        | Arg        | Gln        | Trp<br>570 | Thr               | Asp          | Arg        | Ile          | Met<br>575   | Glu          |
| Glu        | Phe          | Phe        | Arg<br>580   |              | Gly        | Asp        | Arg        | Glu<br>585 | Arg        | Glu               | Arg          | Gly        | Met<br>590   | Glu          | Ile          |
| Ser        | Pro          | Met<br>595 |              | Asp          | Lys        | His        | Asn<br>600 | Ala        | Ser        | Val               | Glu          | Lys<br>605 | Ser          | Gln          | Val          |
| Gly        | Phe          | Ile        |              | Tyr          | Ile        | Val<br>615 | His        | Pro        | Leu        | Trp               | Glu<br>620   | Thr        | Trp          | Ala          | Asp          |
| Leu        |              |            | Pro          | Asp          | Ala        |            | Asp        | Ile        | Leu        | Asp               | Thr          | Leu        | Glu          | Asp          | Asn          |
| 625        |              |            |              |              | 630        |            |            |            |            | 635               |              |            |              |              | 640          |
|            |              |            |              | 645          |            |            |            |            | 650        |                   |              |            |              | 655          |              |
|            |              |            | 660          |              |            |            |            | 665        |            |                   |              |            | 670          | H            | Phe          |
|            |              | 675        | )            |              |            |            | 680        |            |            |                   |              | 685        | ·            |              | Ser          |
|            | 690          | )          |              |              |            | 695        |            |            |            |                   | 700          | ı          |              |              | Leu          |
| 705        | •            |            |              |              | 710        |            |            |            |            | 715               | 5            |            |              |              | 720          |
| Glu        | Glu          | Glu        | ı Ala        | Val<br>725   |            | Glu        | Glu        | Glu        | Glu<br>730 |                   | Glr          | Pro        | o Gli        | a Ala<br>735 | Cys          |
| Val        | . Ile        | e Asp      | Asp<br>740   | Arg          |            | Pro        | Asp        | Thr<br>745 |            | Gly               | / Ile        | e Lev      | 3 Glr<br>750 |              | Thr          |
| Va]        | Pro          | 755        |              | a Arg        | , Asp      | Pro        | Pro<br>760 |            | Alā        | a Thi             | r Met        | 769        |              | r Ly:        | s Gly        |
| Glu        | າ Glu<br>770 |            | ı Phe        | e Thr        | Gly        | Val<br>775 |            | Pro        | Ile        | e Lei             | u Val<br>780 |            | ı Lei        | ı Ası        | o Gly        |
| Asp<br>785 | o Val        |            | Gly          | / His        | Lys<br>790 |            | Ser        | · Val      | Sei        | c Gl <sub>3</sub> |              | ı Gly      | y Gli        | u Gl         | qzA y<br>008 |
|            |              | с Ту:      | r Gly        | 7 Lys<br>809 | s Leu      |            | Leu        | Lys        | Phe 810    | e Il              |              | s Th       | r Th         | r Gl;<br>81  | y Lys<br>5   |
| Le         | ı Pro        | o Vā       | 1 Fro<br>820 | Tr           |            | Thr        | Leu        | . Val      | Th         |                   | r Le         | u Th       | r Ty<br>83   | r Gl         | y Val        |
| Glı        | n Cv:        | s Ph       |              |              | ı Tyr      | Pro        | Asp        |            |            | t Ly              | s Gl         | n Hi       |              |              | e Phe        |
|            |              | 83         |              |              |            |            | 840        |            |            |                   |              | 84         |              |              |              |

| Lys | Ser<br>850   | Ala        | Met          | Pro          | Glu          | Gly<br>855   | Tyr         | Val        | GIn   | GIu        | 860    | Thr   | 11e        | Pne        | Phe        |     |
|-----|--------------|------------|--------------|--------------|--------------|--------------|-------------|------------|-------|------------|--------|-------|------------|------------|------------|-----|
| Lys |              | Asp        | Gly          | Asn          |              | Lys          | Thr         | Arg        | Ala   |            | Val    | Lys   | Phe        | Glu        | Gly<br>880 |     |
| 865 | Thr          | Len        | V-1          | λen          | 870<br>Ara   | Tle          | Glu         | Leu        | Lvs   | 875<br>Glv | Ile    | Asp   | Phe        | Lys        |            |     |
| ASP | 1111         | Leu        | Val          | 885          | A. g         | 110          | Old         | Dea        | 890   | 017        |        |       |            | 895        |            |     |
| Asp | Gly          | Asn        | Ile<br>900   | Leu          | Gly          | His          | Lys         | Leu<br>905 | Glu   | Tyr        | Asn    | Tyr   | Asn<br>910 | Ser        | His        |     |
|     |              | 915        |              |              |              |              | Lys<br>920  |            |       |            |        | 925   |            |            |            |     |
|     | 930          |            |              |              |              | 935          | Glu         |            |       |            | 940    |       |            |            |            |     |
| His | Tyr          | Gln        | Gln          | Asn          |              | Pro          | Ile         | Gly        | Asp   |            | Pro    | Val   | Leu        | Leu        | Pro<br>960 |     |
| 945 |              | II.        | m            | Lou          | 950          | ሞb r         | Gln         | Ser        | Ala   | 955<br>Leu | Ser    | Lvs   | Asp        | Pro        |            |     |
| ASP | ASI          | nıs        | туг          | 965          | Sei          | 1111         | GIII        | Ser        | 970   | Dea        | Der    | 210   |            | 975        |            |     |
| Glu | Lys          | Arg        | Asp<br>980   |              | Met          | Val          | Leu         | Leu<br>985 | Glu   | Phe        | Va1    | Thr   | Ala<br>990 |            | Gly        |     |
| Ile | Thr          | Leu<br>995 |              | Met          | Asp          |              | Leu<br>1000 | Тут        | Lys   |            |        |       |            |            |            |     |
|     |              |            |              |              | <b></b>      |              |             | 0.75       | NO    | 150.       |        |       |            |            |            |     |
|     |              | (2         | ) IN         | FORM         | ATIC         | N FO         | R SE        | Ŏ ID       | NO:   | 150:       |        |       |            |            |            |     |
|     | (            | i) S       | EQUE         | NCE          | CHAR         | ACTE         | RIST        | ICS:       |       |            |        |       |            |            |            |     |
|     |              |            |              |              |              |              | se p        | airs       |       |            |        |       |            |            |            |     |
|     |              |            | TYF          |              |              |              |             | _          |       |            |        |       |            |            |            |     |
|     |              |            | STR          |              |              |              | ingl<br>r   | e          |       |            |        |       |            |            |            |     |
|     |              | (D)        | 101          | ODOC         | ,            | 1            | -           |            |       |            |        |       |            |            |            |     |
|     | (            | ii)        | MOLE         | CULI         | E TYP        | E: c         | DNA         |            |       |            |        |       |            |            |            |     |
|     | (            | ix)        | FEAT         | TURE :       |              |              |             |            |       |            |        |       |            |            |            |     |
|     |              | ()         | A) NA        | AME/I        | ŒY:          | Codi         | .ng S       | Seque      | ence  |            |        |       |            |            |            |     |
|     |              |            |              |              |              |              | 3198        |            |       |            |        |       |            |            |            |     |
|     |              | (1         | 0) 07        | THER         | INFO         | RMAT         | : NOI       |            |       |            |        |       |            |            |            |     |
|     |              | (xi)       | SEOL         | IENC!        | E DES        | SCRIE        | 401T        | 1: SI      | EO II | ON C       | : 150  | :     |            |            |            |     |
|     |              |            |              |              |              |              |             |            |       |            |        |       |            |            |            |     |
| ΥTA | G GAG        | GC.        | A GAG        | G GGG        | AG(          | AG(          | GCC         | CCC        | G GC  | C CG       | G GC   | G GG( | AG         | C GG       | A GAG      | 48  |
|     | t Glu        | ı Al       | a Glu        |              | y Se:        | r Sei        | c Ala       | a Pro      |       | a Ar       | g Al   | a GI  | / Se       | r GI<br>15 | y Glu      |     |
| 1   |              |            |              | 5            |              |              |             |            | 10    |            |        |       |            | 13         |            |     |
| GG  | C AG         | G GA       | C AG         | C GC         | C GG         | C GG         | G GCC       | C ACC      | G CT  | C AA       | A GC   | c cc  | C AA       | G CA       | T CTC      | 96  |
|     |              |            |              |              |              |              |             |            |       |            |        |       | ) Ly       | s Hi       | s Leu      |     |
|     |              |            | 20           |              |              |              |             | 25         |       |            |        |       | 30         |            |            |     |
| m~- | C 7 C        | 3 C2       | C GM         | G CA         | G CA         | C C A        | C CAC       | TA         | a ca  | G CT       | c ca   | G CA  | G CC       | C CA       | G TTC      | 144 |
| Tr  | o Ar         | g Hi       | s Gl         | u Gl         | n Hi         | s Hi         | s Gli       | n Ty       | r Pr  | o Le       | u Ar   | g Gl  | n Pr       | o Gl       | n Phe      |     |
|     | -            | 35         |              |              |              |              | 40          |            |       |            |        | 45    |            |            |            |     |
| _   |              |            |              | m            | a <b>a</b> : | m ~:         | C C :       | C C        | c cc  | C CC       | .c. cc | ים רר | ھ در       | י אַ ריר   | C TCG      | 192 |
| CG  | C CT<br>a Le | C CT       | G CA<br>u Hi | r CC<br>s Pr | c ca<br>o Hi | r CA<br>s Hi | s Hi        | s Le       | u Pr  | o Pr       | o Pr   | o Pr  | o Pr       | o Pr       | o Ser      |     |
| Λı  | 9 De<br>50   |            | - 111        |              |              | 55           |             |            | _     |            | 60     |       |            |            |            |     |

| CCC<br>Pro<br>65  | CAG<br>Gln    | CCC<br>Pro            | CAG<br>Gln            | CCC<br>Pro           | CAG<br>Gln<br>70  | TGT<br>Cys   | CCG<br>Pro        | CTA<br>Leu         | CAG Gln              | CCG<br>Pro<br>75    | CCG<br>Pro   | CCG<br>Pro           | CCG<br>Pro          | CCC<br>Pro            | CCC<br>Pro<br>80       | 240        |
|-------------------|---------------|-----------------------|-----------------------|----------------------|-------------------|--------------|-------------------|--------------------|----------------------|---------------------|--------------|----------------------|---------------------|-----------------------|------------------------|------------|
| CTG<br>Leu        | CCG<br>Pro    | CCG<br>Pro            | CCC<br>Pro            | CCG<br>Pro<br>85     | CCG<br>Pro        | CCG<br>Pro   | CCC<br>Pro        | GGG<br>Gly         | GCT<br>Ala<br>90     | GCC<br>Ala          | CGC<br>Arg   | GGC<br>Gly           | CGC<br>Arg          | TAC<br>Tyr<br>95      | GCC<br>Ala             | 288        |
| TCG<br>Ser        | AGC<br>Ser    | GGG<br>Gly            | GCC<br>Ala<br>100     | ACC<br>Thr           | GGC<br>Gly        | CGC<br>Arg   | GTC<br>Val        | CGG<br>Arg<br>105  | CAT<br>His           | CGC<br>Arg          | GGC<br>Gly   | TAC<br>Tyr           | TCG<br>Ser<br>110   | GAC<br>Asp            | ACC<br>Thr             | 336        |
| GAG<br>Glu        | CGC<br>Arg    | TAC<br>Tyr<br>115     | CTG<br>Leu            | TAC<br>Tyr           | TGT<br>Cys        | CGC<br>Arg   | GCC<br>Ala<br>120 | ATG<br>Met         | GAC<br>Asp           | CGC<br>Arg          | ACC<br>Thr   | TCC<br>Ser<br>125    | TAC<br>Tyr          | GCG<br>Ala            | GTG<br>Val             | 384        |
|                   |               |                       |                       |                      |                   |              |                   |                    | AAA<br>Lys           |                     |              | Met                  |                     |                       |                        | 432        |
| TCC<br>Ser<br>145 | Ser           | TIC                   | CAG<br>Gln            | GGA<br>Gly           | CTC<br>Leu<br>150 | Arg          | CGT<br>Arg        | TTT                | GAT<br>Asp           | GTG<br>Val<br>155   | Asp          | AAT<br>Asn           | GGC<br>Gly          | ACA<br>Thr            | TCT<br>Ser<br>160      | 480        |
| GCG<br>Ala        | GGA<br>Gly    | CGC                   | AGT<br>Ser            | CCC<br>Pro<br>165    | Leu               | GAT<br>Asp   | CCC<br>Pro        | ATG<br>Met         | ACC<br>Thr<br>170    | Ser                 | Pro          | GGA<br>Gly           | TCC<br>Ser          | : GGC<br>: Gly<br>175 | CTA<br>Leu             | 528        |
| ATT<br>Ile        | CTC           | CA/                   | A GCA<br>n Ala<br>180 | Asn                  | TTT<br>Phe        | GTC<br>Val   | CAC<br>His        | AGT<br>Ser<br>185  | Gln                  | CGA<br>Arg          | Yrā          | G GAC                | TCC<br>Sei<br>190   | r Phe                 | C CTG<br>e Leu         | 576        |
| TAT<br>Tyt        | r CGA         | A TCC<br>g Se:<br>19! | r Asp                 | AGC<br>Ser           | GAT<br>Asp        | PAT T        | GAC<br>Asp<br>200 | Lei                | TCT<br>1 Ser         | CCA<br>Pro          | A AAC        | TC:<br>Ser<br>209    | r Me                | G TC                  | c CGG<br>r Arg         | 624        |
|                   |               | r Se                  |                       |                      |                   |              | o Ile             |                    |                      |                     |              | p Le                 |                     |                       | G ACT<br>1 Thr         |            |
| CC.<br>Pr<br>22   | o Ph          | T GC<br>e Al          | T CA                  | G GTY                | 230               | u Ala        | AGʻ<br>a Se:      | r Le               | G CGA                | A AC'<br>Thi<br>23: | r Va         | A CG<br>1 <b>A</b> r | A AA<br>g As        | C AA<br>n As          | C TTT<br>in Phe<br>240 | 2          |
| GC<br>Al          | T GC.<br>a Al | A TT<br>a Le          | A AC<br>u Th          | T AA'<br>r As:<br>24 | n Le              | G CA<br>u Gl | A GA'<br>n As     | T CG<br>p Ar       | A GCZ<br>g Ala<br>25 | a Pr                | T AG<br>o Se | C AA                 | A AG                | A TO                  | CA CCC<br>er Pro       | 768        |
| AT<br>Me          | G TG<br>t Cy  | C AA                  | C CA<br>n Gl<br>26    | n Pr                 | A TC<br>o Se      | C AT         | C AA<br>e As      | C AA<br>n Ly<br>26 | s Al                 | C AC<br>a Th        | C AT         | 'A AC<br>.e Th       | A GA<br>ir Gl<br>27 | lu G                  | AG GCC<br>lu Ala       | 2 816<br>a |
| TA<br>T)          | C CA          | G AA<br>L' n.         | A CI                  | G GC                 | C AG              | C GA         | G AC<br>u Th      | C CI               | rg GA<br>eu Gl       | G GA<br>u Gl        | G CI<br>u Le | rG GA<br>eu As       | AC TO<br>sp Ti      | G TY<br>CP C          | GT CT<br>ys Le         | G 864<br>u |

275 280 285 GAC CAG CTA GAG ACC CTA CAG ACC AGG CAC TCC GTC AGT GAG ATG GCC 912 Asp Gln Leu Glu Thr Leu Gln Thr Arg His Ser Val Ser Glu Met Ala 295 TCC AAC AAG TTT AAA AGG ATG CTT AAT CGG GAG CTC ACC CAT CTC TCT 960 Ser Asn Lys Phe Lys Arg Met Leu Asn Arg Glu Leu Thr His Leu Ser 315 310 GAA ATG AGT CGG TCT GGA AAT CAA GTG TCA GAG TTT ATA TCA AAC ACA 1008 Glu Met Ser Arg Ser Gly Asn Gln Val Ser Glu Phe Ile Ser Asn Thr 330 325 TTC TTA GAT AAG CAA CAT GAA GTG GAA ATT CCT TCT CCA ACT CAG AAG 1056 Phe Leu Asp Lys Gln His Glu Val Glu Ile Pro Ser Pro Thr Gln Lys 345 340 GAA AAG GAG AAA AAG AAA AGA CCA ATG TCT CAG ATC AGT GGA GTC AAG 1104 Glu Lys Glu Lys Lys Lys Arg Pro Met Ser Gln Ile Ser Gly Val Lys 360 355 AAA TTG ATG CAC AGC TCT AGT CTG ACT AAT TCA AGT ATC CCA AGG TTT 1152 Lys Leu Met His Ser Ser Ser Leu Thr Asn Ser Ser Ile Pro Arg Phe 375 CGA GTT AAA ACT GAA CAA GAA GAT GTC CTT GCC AAG GAA CTA GAA GAT 1200 Gly Val Lys Thr Glu Gln Glu Asp Val Leu Ala Lys Glu Leu Glu Asp 395 GTG AAC AAA TGG GGT CTT CAT GTT TTC AGA ATA GCA GAG TTG TCT GGT 1248 Val Asn Lys Trp Gly Leu Eis Val Phe Arg Ile Ala Glu Leu Ser Gly 410 405 AAC CGG CCC TTG ACT GTT ATC ATG CAC ACC ATT TTT CAG GAA CGG GAT 1296 Asn Arg Pro Leu Thr Val Ile Met His Thr Ile Phe Gln Glu Arg Asp 425 420 TTA TTA AAA ACA TTT AAA ATT CCA GTA GAT ACT TTA ATT ACA TAT CTT Leu Leu Lys Thr Phe Lys Ile Pro Val Asp Thr Leu Ile Thr Tyr Leu 440 435 ATG ACT CTC GAA GAC CAT TAC CAT GCT GAT GTG GCC TAT CAC AAC AAT Met Thr Leu Glu Asp His Tyr His Ala Asp Val Ala Tyr His Asn Asn 455 450 ATC CAT GCT GCA GAT GTT GTC CAG TCT ACT CAT GTG CTA TTA TCT ACA Ile His Ala Ala Asp Val Val Gln Ser Thr His Val Leu Leu Ser Thr 470 CCT GCT TTG GAG GCT GTG TTT ACA GAT TTG GAG ATT CTT GCA GCA ATT 1488 Pro Ala Leu Glu Ala Val Phe Thr Asp Leu Glu Ile Leu Ala Ala Ile

490

|     |      |       |       |     |     |     |       | CAT<br>His        |     |     |      |    |     |                   | 1536 |
|-----|------|-------|-------|-----|-----|-----|-------|-------------------|-----|-----|------|----|-----|-------------------|------|
|     |      |       |       |     |     |     |       | GCC<br>Ala        |     |     |      |    |     |                   | 1584 |
|     |      |       |       |     |     |     |       | GTG<br>Val        |     |     |      |    |     |                   | 1632 |
|     |      |       |       |     |     |     |       | TTG<br>Leu        |     |     |      |    |     |                   | 1680 |
|     |      |       |       |     |     |     |       | GTA<br>Val<br>570 |     |     |      |    |     |                   | 1728 |
|     |      |       |       |     |     |     |       | AAG<br>Lys        |     |     |      |    | Thr |                   | 1776 |
|     |      | Ser   |       |     |     |     | Leu   | CTT<br>Leu        |     |     |      |    |     |                   | 1824 |
|     | Val  |       |       |     |     | Val |       |                   |     |     | Leu  |    |     | CCA<br>Pro        | 1872 |
| Lys |      |       |       |     | Tyr |     |       |                   |     | Asp |      |    |     | GAG<br>Glu<br>640 | 1920 |
|     |      |       |       | Gly |     |     |       |                   | Glu |     |      |    |     | ATA<br>lle        | 1968 |
|     |      |       | : Asr |     |     |     |       | a Ser             |     |     |      |    | Glr | G GTG<br>n Val    | 2016 |
|     |      | e Asp |       |     |     |     | s Pro |                   |     |     |      | Tr |     | A GAC<br>a Asp    | 2064 |
|     | l Hi |       |       |     |     | As; |       |                   |     |     | r Le |    |     | C AAT<br>p Asn    | 2112 |
|     |      |       |       |     |     |     |       |                   |     |     |      |    |     | A CCT<br>a Pro    | 2160 |

| 705        |                   |                   |                       |                   | 710          |                   |                   |                    |                   | 715        |                   |                   |                    |                     | 720                 |      |
|------------|-------------------|-------------------|-----------------------|-------------------|--------------|-------------------|-------------------|--------------------|-------------------|------------|-------------------|-------------------|--------------------|---------------------|---------------------|------|
|            |                   |                   |                       |                   |              |                   |                   | GG <b>T</b><br>Gly |                   |            |                   |                   |                    |                     |                     | 2208 |
|            |                   |                   |                       |                   |              |                   |                   | GAG<br>Glu<br>745  |                   |            |                   |                   |                    |                     |                     | 2256 |
|            |                   |                   |                       |                   |              |                   |                   | AGC<br>Ser         |                   |            |                   |                   |                    |                     |                     | 2304 |
| TGT<br>Cys | ACT<br>Thr<br>770 | CAA<br>Gln        | GAC<br>Asp            | TCA<br>Ser        | GAG<br>Glu   | TCT<br>Ser<br>775 | ACT<br>Thr        | GAA<br>Glu         | ATT<br>Ile        | CCC<br>Pro | CTT<br>Leu<br>780 | GAT<br>Asp        | GAA<br>Glu         | CAG<br>Gln          | GTT<br>Val          | 2352 |
|            |                   |                   |                       |                   |              |                   |                   | GAG<br>Glu         |                   |            |                   |                   |                    |                     |                     | 2400 |
| GTC<br>Val | ATA<br>Ile        | GAT<br>Asp        | GAT<br>Asp            | CGT<br>Arg<br>805 | TCT<br>Ser   | CCT<br>Pro        | GAC<br>Asp        | ACG<br>Thr         | ACG<br>Thr<br>810 | GGA<br>Gly | ATT<br>Ile        | CTG<br>Leu        | CAG<br>Gln         | TCG<br>Ser<br>815   | ACG<br>Thr          | 2448 |
|            |                   |                   |                       | Arg               |              |                   |                   |                    |                   |            |                   |                   |                    | Lys                 | GGC                 | 2496 |
| GAG<br>Glu | GAG<br>Glu        | CTG<br>Leu<br>835 | Phe                   | ACC<br>Thr        | GGG<br>Gly   | GTG<br>Val        | GTG<br>Val<br>840 | Pro                | ATC<br>Ile        | CTG        | GTC<br>Val        | GAG<br>Glu<br>845 | . Lev              | GAC<br>Asp          | GGC Gly             | 2544 |
| GAC<br>Asp | GTA<br>Val<br>850 | Asr               | GGC<br>Gly            | CAC<br>His        | AAG<br>Lys   | TTC<br>Phe<br>855 | Ser               | GTG<br>Val         | TCC<br>Ser        | GGC        | GAG<br>Glu<br>860 | Gly               | GAC                | GG(                 | GAT<br>/ Asp        | 2592 |
|            | Thr               |                   |                       |                   |              | Thr               |                   |                    |                   |            | э Сув             |                   |                    |                     | AAG<br>Y Lys<br>880 | 2640 |
| CTC<br>Let | CCC<br>Pro        | GT(               | G CCC                 | TGC<br>Trp<br>885 | Pro          | ACC<br>Thr        | CTC               | GTG<br>Ual         | Thr<br>890        | Thu        | CTC               | ACC<br>1 Thi      | TAC<br>Ty:         | c GG<br>r Gl;<br>89 | C GTG<br>y Val<br>5 | 2688 |
| CA(<br>Glr | TGC               | TTO               | 2 AG(<br>e Sei<br>90( | : Arg             | ТАС<br>Э Туг | CCC<br>Pro        | GAC<br>Asi        | CAC<br>His<br>905  | Met               | AA(        | G CAC             | G CAG             | GA(<br>S As;<br>91 | p Ph                | C TTC<br>e Phe      | 2736 |
|            |                   |                   | a Me                  |                   |              |                   |                   | r Val              |                   |            |                   |                   | r Il               |                     | C TTC<br>e Phe      | 2784 |

| AAG GAC GAC GGC AAC TAC AAG ACC CGC C<br>Lys Asp Asp Gly Asn Tyr Lys Thr Arg 2<br>930 935                                                                                       |               |  |  |  |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|--|--|--|--|--|--|--|--|--|--|
| GAC ACC CTG GTG AAC CGC ATC GAG CTG Asp Thr Leu Val Asn Arg Ile Glu Leu 1945                                                                                                    |               |  |  |  |  |  |  |  |  |  |  |  |  |
| GAC GGC AAC ATC CTG GGG CAC AAG CTG<br>Asp Gly Asn Ile Leu Gly His Lys Leu<br>965                                                                                               |               |  |  |  |  |  |  |  |  |  |  |  |  |
| AAC GTC TAT ATC ATG GCC GAC AAG CAG<br>Asn Val Tyr Ile Met Ala Asp Lys Gln<br>980 985                                                                                           |               |  |  |  |  |  |  |  |  |  |  |  |  |
| TTC AAG ATC CGC CAC AAC ATC GAG GAC Phe Lys Ile Arg His Asn Ile Glu Asp 995 1000                                                                                                |               |  |  |  |  |  |  |  |  |  |  |  |  |
| CAC TAC CAG CAG AAC ACC CCC ATC GGC<br>His Tyr Gln Gln Asn Thr Pro Ile Gly<br>1010 1015                                                                                         |               |  |  |  |  |  |  |  |  |  |  |  |  |
| GAC AAC CAC TAC CTG AGC ACC CAG TCC<br>Asp Asn His Tyr Leu Ser Thr Gln Ser<br>1025                                                                                              |               |  |  |  |  |  |  |  |  |  |  |  |  |
| GAG AAG CGC GAT CAC ATG GTC CTG CTG<br>Glu Lys Arg Asp His Met Val Leu Leu<br>1045                                                                                              |               |  |  |  |  |  |  |  |  |  |  |  |  |
| ATC ACT CTC GGC ATG GAC GAG CTG TAC  Ile Thr Leu Gly Met Asp Glu Leu Tyr  1060 1065                                                                                             |               |  |  |  |  |  |  |  |  |  |  |  |  |
| (2) INFORMATION FOR SEQ ID NO:151:                                                                                                                                              |               |  |  |  |  |  |  |  |  |  |  |  |  |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 1066 amino acids</li><li>(B) TYPE: amino acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |               |  |  |  |  |  |  |  |  |  |  |  |  |
| <pre>(ii) MOLECULE TYPE: protein (v) FRAGMENT TYPE: internal</pre>                                                                                                              |               |  |  |  |  |  |  |  |  |  |  |  |  |
| (xi) SEQUENCE DESCRIPTION: SE                                                                                                                                                   | EQ ID NO:151: |  |  |  |  |  |  |  |  |  |  |  |  |

Met Glu Ala Glu Gly Ser Ser Ala Pro Ala Arg Ala Gly Ser Gly Glu

Gly Ser Asp Ser Ala Gly Gly Ala Thr Leu Lys Ala Pro Lys His Leu

25

1 5 10

| Trp A |            | His<br>35  | Glu        | Gln   | His   | His        | Gln<br>40  | Tyr        | Pro  | Leu         | Arg        | Gln<br>45  | Pro        | Gln   | Phe        |
|-------|------------|------------|------------|-------|-------|------------|------------|------------|------|-------------|------------|------------|------------|-------|------------|
| Arg I |            |            | His        | Pro   |       | His<br>55  | His        | Leu        | Pro  | Pro         | Pro<br>60  | Pro        | Pro        | Pro   | Ser        |
| Pro C | 3ln        | Pro        | Gln        | Pro   | Gln   | Cys        | Pro        | Leu        | Gln  | Pro         | Pro        | Pro        | Pro        | Pro   |            |
| 65    |            |            |            |       | 70    |            |            |            | _    | 75          |            | _,         |            | _     | 80         |
| Leu I |            |            |            | 85    |       |            |            |            | 90   |             |            |            |            | 95    |            |
| Ser S | Ser        | Gly        | Ala<br>100 | Thr   | Gly   | Arg        | Val        | Arg<br>105 | His  | Arg         | Gly        | Tyr        | Ser<br>110 | Asp   | Thr        |
| Glu A | Arg        | Tyr<br>115 | Leu        | Tyr   | Cys   | Arg        | Ala<br>120 | Met        | Asp  | Arg         | Thr        | Ser<br>125 | Tyr        | Ala   | Val        |
| Glu ' | Thr<br>130 | Gly        | His        | Arg   | Pro   | Gly<br>135 | Leu        | Lys        | Lys  | Ser         | Arg<br>140 | Met        | Ser        | Trp   | Pro        |
| Ser : | Ser        | Phe        | Gln        | Gly   | Leu   | Arg        | Arg        | Phe        | Asp  | Val         | Asp        | Asn        | Gly        | Thr   | Ser        |
| 145   |            |            |            |       | 150   |            |            |            |      | 155         |            |            |            |       | 160        |
| Ala   |            |            |            | 165   |       |            |            |            | 170  |             |            |            |            | 175   |            |
|       |            |            | 180        |       |       |            | His        | 185        |      |             |            |            | 190        |       |            |
| Tyr   | Arg        | Ser<br>195 |            | Ser   | Asp   | Tyr        | Asp<br>200 | Leu        | Ser  | Pro         | Lys        | Ser<br>205 | Met        | Ser   | Arg        |
|       | Ser<br>210 | Ser        | Ile        | Ala   | Ser   | Asp<br>215 | Ile        | His        | Gly  | Asp         | 220        |            | Ile        | Val   | Thr        |
|       |            | Ala        | Gln        | Val   | Leu   | Ala        | Ser        | Leu        | Arg  | Thr         | Val        | Arg        | Asn        | Asn   | Phe        |
| 225   |            |            |            |       | 230   |            |            |            |      | 235         | )          |            |            |       | 240        |
|       |            |            |            | 245   |       |            |            |            | 250  | )           |            |            |            | 255   |            |
|       |            |            | 260        | )     |       |            |            | 265        |      |             |            |            | 270        | )     | Ala        |
|       |            | 275        |            |       |       |            | 280        |            |      |             |            | 285        | ·          |       | Leu        |
|       | 290        |            |            |       |       | 295        | ,          |            |      |             | 300        | )          |            |       | Ala        |
|       | Asn        | Lys        | Ph€        | . Lys |       |            | Leu        | Asn        | Arg  | g Glv<br>31 |            | ı Thi      | His        | s Lev | Ser<br>320 |
| 305   | 110 6      | Cox        | - 7        | , 661 | 310   |            | Gln        | Val        | Set  |             |            | 2 Ile      | e Sei      | r Ası | n Thr      |
|       |            |            |            | 325   | 5     |            |            |            | 330  | )           |            |            |            | 335   | 5          |
|       |            |            | 340        | )     |       |            |            | 345        | ·    |             |            |            | 35         | 0     | Lys        |
|       |            | 355        | 5          |       |       |            | 360        | )          |      |             |            | 36         | 5          |       | l Lys      |
|       | 370        | )          |            |       |       | 375        | 5          |            |      |             | 386        | 0          |            |       | g Phe      |
| Gly   | Va]        | l Ly:      | s Th       | r Glu | ı Glr | ı Glı      | ı Asp      | Va:        | Le   | u Al        | a Ly:      | s Gl       | u Le       | u Gl  | u Asp      |
| 385   |            |            |            |       | 390   |            |            |            |      | 39          |            |            |            |       | 400        |
|       |            |            |            | 40    | 5     |            |            |            | 41   | 0           |            |            |            | 41    |            |
|       |            |            | 42         | 0     |       |            |            | 42         | 5    |             |            |            | 43         | 0     | g Asp      |
| Leu   | Le         | ц Ly<br>43 |            | r Ph  | e Ly: | s Il       | e Pro      |            | l As | p Th        | r Le       | u I1<br>44 |            | r Ty  | r Leu      |
| Met   | Th         | r Le       | u Gl       | u As  | p Hi  | з Ту       | r His      | s Al       | a As | p Va        | l Al       | а Ту       | r Hi       | s As  | n Asn      |
|       | 45         |            |            |       |       | 45         |            |            |      |             | 46         |            |            |       |            |

|            | His        | Ala        | Ala          | Asp        | Val          | Val          | Gln        | Ser               | Thr        | His          | Val        | Leu         | Leu          | Ser        | Thr<br>480   |
|------------|------------|------------|--------------|------------|--------------|--------------|------------|-------------------|------------|--------------|------------|-------------|--------------|------------|--------------|
| 465        |            | <b>.</b>   | C3           | 71-        | 470<br>Val   | Dho          | ጥኮሎ        | y c.c.            | Len        |              | Tlo        | T en        | Ma           | Δla        |              |
|            |            |            |              | 485        |              |              |            |                   | 490        |              |            |             |              | 495        |              |
| Phe        | Ala        | Ser        | Ala<br>500   | Ile        | His          | Asp          | Val        | <b>Asp</b><br>505 | His        | Pro          | Gly        | Val         | Ser<br>510   | Asn        | Gln          |
| Phe        | Leu        | Ile<br>515 | Asn          | Thr        | Asn          | Ser          | Glu<br>520 | Leu               | Ala        | Leu          | Met        | Tyr<br>525  | Asn          | Asp        | Ser          |
| Ser        | Val<br>530 | Leu        | Glu          | Asn        | His          | His<br>535   | Leu        | Ala               | Val        | Gly          | Phe<br>540 | Lys         | Leu          | Leu        | Gln          |
| Glu        |            | Asn        | Cvs          | Asp        | Ile          |              | Gln        | Asn               | Leu        | Thr          | Lys        | Lys         | Gln          | Arg        | Gln          |
| 545        | 010        |            | -1-          |            | 550          |              |            |                   |            | 555          | -          |             |              |            | 560          |
|            | Leu        | Arg        | Lys          | Met<br>565 | Val          | Ile          | Asp        | Ile               | Val<br>570 | Leu          | Ala        | Thr         | Asp          | Met<br>575 | Ser          |
| Lys        | His        | Met        | Asn<br>580   |            | Leu          | Ala          | Asp        | Leu<br>585        | Lys        | Thr          | Met        | Val         | Glu<br>590   | Thr        | Lys          |
| Lys        | Val        | Thr        |              | Ser        | Gly          | Val          | Leu<br>600 | Leu               | Leu        | Asp          | Asn        | Tyr<br>605  | Ser          | Asp        | Arg          |
| Ile        | Gln<br>610 |            | Leu          | Gln        | Asn          | Met<br>615   | Val        | His               | Cys        | Ala          | Asp<br>620 | Leu         | Ser          | Asn        | Pro          |
| Thr        |            | Pro        | Leu          | Gln        | Leu          |              | Arg        | Gln               | Trp        | Thr          | Asp        | Arg         | Ile          | Met        | Glu          |
| 625        |            |            |              |            | 630          |              |            |                   |            | 635          |            |             |              |            | 640          |
| Glu        | Phe        | Phe        | Arg          | Gln<br>645 | Gly          | Asp          | Arg        | Glu               | Arg<br>650 |              | Arg        | Gly         | Met          | Glu<br>655 |              |
| Ser        | Pro        | Met        | Суѕ          | Asp        | Lys          | His          | Asn        | Ala               | Ser        | Val          | Glu        | Lys         | Ser          | Gln        | Val          |
|            |            |            | 660          |            |              |              |            | 665               |            |              |            |             | 670          |            |              |
|            |            | 675        |              |            |              |              | 680        |                   |            |              |            | 685         |              |            | Asp          |
|            | 690        |            |              |            |              | 695          |            |                   |            |              | 700        |             |              |            | ) Asn        |
| Arg<br>705 |            | Trp        | туг          | Gln        | Ser<br>710   |              | Ile        | Pro               | Glr        | n Ser<br>715 |            | Ser         | Pro          | Ala        | 720          |
|            |            | Pro        | Glu          | Glu<br>725 | Gly          |              | Gln        | Gly               | Glr        | ı Thı        |            | Lys         | : Phe        | Glr<br>735 | n Phe        |
| Glu        | Leu        | Thi        |              | Glu        |              | Asp          | Gly        | Glu<br>745        | Ser        |              | Thr        | Glu         | ı Lys<br>750 | s Asp      | Ser          |
| Gly        | / Ser      |            |              |            | ı Glu        | Asp          |            | Ser               |            | s Sei        | Asp        | Ser<br>765  | c Lys        |            | Leu          |
| <u> </u>   | . mb.s     | 759        |              | . 501      | - Glu        | Sar          | 760        |                   | , T]       | o Pro        | n Lei      |             |              | ı Glr      | n Val        |
|            | 770        |            |              |            |              | 775          | ·          |                   |            |              | 780        | )           |              |            |              |
|            |            | ı Git      | ı Ala        | a Val      | 790          |              | 1 610      | l Gil             | 1 611      | u se.<br>79! |            | 1 110       | 0 01         | u Ai       | a Cys<br>800 |
| 785        |            | 7.51       | n Acr        | ) Arc      |              |              | . Asr      | Thi               | r Th       |              |            | e Lei       | u Gl:        | n Se:      | r Thr        |
| va.        | 1 116      | - ASI      | o voř        | 809        |              |              | , ,,,,,    |                   | 81         |              | ,          |             |              | 81         |              |
| Va:        | l Pro      | Arq        | g Ala<br>820 | a Arg      |              | Pro          | Pro        | Val<br>825        |            | a Th         | r Me       | t Va        | 1 Se<br>83   |            | s Gly        |
| Glv        | ı Glv      | Lei<br>83  | ı Phe        |            | r Gly        | / Val        | l Val      | Pro               |            | e Le         | u Va       | 1 G1:<br>84 |              | u As       | p Gly        |
| Asj        | p Va:      | l As:      |              | y Hi:      | s Lys        | 5 Phe<br>859 | e Ser      |                   | l Se       | r Gl         | y Gl       | u Gl        |              | u Gl       | y Asp        |
|            | a Th       |            | r Gl         | y Ly:      |              | ı Thi        |            | ı Ly:             | s Ph       | e Il<br>87   | е Су       |             | r Th         | r Gl       | y Lys<br>880 |
| 86         |            | o 17-      | 1 n~         | ~ ~~       | 870<br>n Pro |              | rte        | , 1/2             | ገ ጥኮ       |              |            | ս ԴԴ        | r T∨         | r Gl       | y Val        |
| re.        | u PT       | υ va       | ı PI         | 88         |              | 1111 ر       | r ne       | , va              | 89         |              | 20         | - • • • •   | 1            | 89         |              |

| GIII                                 | Cys                                          | Phe                                                                          | Ser<br>900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Arg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tyr                                                                                  | Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Asp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | His                                                 | Met                            | Lys                                    | Gln                                    | His                                   | Asp<br>910              | Phe                                   | Phe                             |            |
|--------------------------------------|----------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------|----------------------------------------|----------------------------------------|---------------------------------------|-------------------------|---------------------------------------|---------------------------------|------------|
| Lys                                  | Ser                                          | Ala<br>915                                                                   | Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Glu                                                                                  | Gly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tyr<br>920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     | Gln                            | Glu                                    | Arg                                    | Thr<br>925                            |                         | Phe                                   | Phe                             |            |
| Lvs                                  | Asp                                          | Asp                                                                          | Glv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Asn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tvr                                                                                  | Lvs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ara                                                 | Ala                            | Glu                                    | Val                                    |                                       | Phe                     | Glu                                   | Glv                             |            |
| -                                    | 930                                          | •                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      | 935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                   |                                |                                        | 940                                    | -,, 0                                 |                         | 010                                   | 011                             |            |
| Asp                                  | Thr                                          | Leu                                                                          | Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Asn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Arg                                                                                  | Ile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Leu                                                 | Lys                            | Gly                                    | Ile                                    | Asp                                   | Phe                     | Lys                                   | Glu                             |            |
| 945                                  |                                              |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 950                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                | 955                                    |                                        |                                       |                         |                                       | 960                             |            |
| qzA                                  | Gly                                          | Asn                                                                          | Ile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Leu<br>965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gly                                                                                  | His                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Leu                                                 | Glu<br>970                     | Tyr                                    | Asn                                    | Tyr                                   | Asn                     | Ser<br>975                            | His                             |            |
| Asn                                  | Val                                          | Tyr                                                                          | Ile<br>980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ala                                                                                  | Asp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gln<br>985                                          | Lys                            | Asn                                    | Gly                                    | Ile                                   | Lys<br>990              | Val                                   | Asn                             |            |
| Phe                                  | Lys                                          | Ile                                                                          | Arg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | His                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Asn                                                                                  | Ile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Asp                                                 | Gly                            | Ser                                    | Val                                    | Gln                                   | Leu                     | Ala                                   | Asp                             |            |
|                                      |                                              | 995                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |                                |                                        |                                        | 1005                                  |                         |                                       |                                 |            |
|                                      |                                              | Gln                                                                          | Gln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Asn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gly                                                 | Asp                            |                                        |                                        | Val                                   | Leu                     | Leu                                   | Pro                             |            |
|                                      | 1010<br>Asn                                  | His                                                                          | ጥረት                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T.e.u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                      | 1015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CJn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S07                                                 | פות                            |                                        | 1020                                   | TAG                                   | Acn.                    | Dro                                   | 700                             |            |
| 025                                  | VSII                                         | 1115                                                                         | ıyı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1030                                                                                 | 1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Gill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ser                                                 |                                | 1035                                   | ser                                    | rys                                   | Asp                     |                                       | 1040                            |            |
|                                      | Lys                                          | Arg                                                                          | Asp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      | Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Leu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Leu                                                 |                                |                                        | Val                                    | Thr                                   | Ala                     |                                       |                                 |            |
|                                      |                                              |                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                                                   | 1050                           |                                        |                                        |                                       | :                       | 1055                                  | _                               |            |
| Ile                                  | Thr                                          | Leu                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Asp                                                                                  | Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Leu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tyr                                                 | Lys                            |                                        |                                        |                                       |                         |                                       |                                 |            |
|                                      |                                              |                                                                              | 1060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1065                                                |                                |                                        |                                        |                                       |                         |                                       |                                 |            |
|                                      |                                              | (2)                                                                          | TNT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ישמט.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TOITE                                                                                | T EO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ת דר                                                | NO.                            | 150.                                   |                                        |                                       |                         |                                       |                                 |            |
|                                      |                                              | (2)                                                                          | , 2112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Oran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11101                                                                                | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ( DL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 110                                               | 110                            | 152.                                   |                                        |                                       |                         |                                       |                                 |            |
|                                      | (:                                           | i) SI                                                                        | EQUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CE (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CHARA                                                                                | ACTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ics:                                                |                                |                                        |                                        |                                       |                         |                                       |                                 |            |
|                                      |                                              | (A)                                                                          | LENC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GTH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3024                                                                                 | 1 bas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | se pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | airs                                                |                                |                                        |                                        |                                       |                         |                                       |                                 |            |
|                                      |                                              | (B)                                                                          | <b>my DE</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - i d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |                                |                                        |                                        |                                       |                         |                                       |                                 |            |
|                                      |                                              |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E: nu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                |                                        |                                        |                                       |                         |                                       |                                 |            |
|                                      |                                              | (C)                                                                          | STRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ANDEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ONESS                                                                                | S: si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ingle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e                                                   |                                |                                        |                                        |                                       |                         |                                       |                                 |            |
|                                      |                                              | (C)                                                                          | STRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ANDEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                      | S: si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ingle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e                                                   |                                |                                        |                                        |                                       |                         |                                       |                                 |            |
|                                      | (:                                           | (C)<br>(D)                                                                   | STRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ANDEI<br>DLOG!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ONESS<br>7: li                                                                       | S: si<br>inear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ingle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ÷                                                   |                                |                                        |                                        |                                       |                         |                                       |                                 |            |
|                                      |                                              | (C)                                                                          | STRA<br>TOPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ANDEI<br>OLOGY<br>TULE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ONESS<br>7: li                                                                       | S: si<br>inear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ingle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | è                                                   |                                |                                        |                                        |                                       |                         |                                       |                                 |            |
|                                      |                                              | (C)<br>(D)<br>ii) 1                                                          | STRA<br>TOPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ANDEI<br>OLOGY<br>TULE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ONESS<br>7: li                                                                       | S: si<br>inear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ingle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ÷                                                   |                                |                                        |                                        |                                       |                         |                                       |                                 |            |
|                                      |                                              | (C)<br>(D)<br>ii) M<br>ix) H                                                 | STRATOPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ANDEI<br>DLOGY<br>CULE<br>JRE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ONESS<br>Y: li<br>TYPE                                                               | S: si<br>inear<br>E: cI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ingle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     | nce                            |                                        |                                        |                                       |                         |                                       |                                 |            |
|                                      |                                              | (C)<br>(D)<br>ii) N<br>ix) H<br>(A)<br>(B)                                   | STRATOPO  MOLEO FEATU  NAM  LOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ANDEI<br>DLOGY<br>TULE<br>JRE:<br>ME/KI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ONESS<br>Y: li<br>TYPE<br>EY: C                                                      | S: si<br>inear<br>E: cI<br>Codir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ingle  ONA  ag Se  3021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     | nce                            |                                        |                                        |                                       |                         |                                       |                                 |            |
|                                      |                                              | (C)<br>(D)<br>ii) N<br>ix) H<br>(A)<br>(B)                                   | STRATOPO  MOLEO FEATU  NAM  LOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ANDEI<br>DLOGY<br>TULE<br>JRE:<br>ME/KI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ONESS<br>Y: li<br>TYPE                                                               | S: si<br>inear<br>E: cI<br>Codir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ingle  ONA  ag Se  3021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     | nce                            |                                        |                                        |                                       |                         |                                       |                                 |            |
|                                      | (:                                           | (C)<br>(D)<br>ii) N<br>ix) N<br>(A)<br>(B)<br>(D)                            | STRATOPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ANDEI<br>DLOGY<br>TULE<br>JRE:<br>JE/KH<br>CATIC<br>HER J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ONESS TYPE TYPE EY: CON: I                                                           | S: si<br>inear<br>E: cI<br>Codir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ingle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | equer                                               |                                | NO:                                    | 152:                                   |                                       |                         |                                       |                                 |            |
|                                      | (:                                           | (C)<br>(D)<br>ii) N<br>ix) H<br>(A)<br>(B)                                   | STRATOPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ANDEI<br>DLOGY<br>TULE<br>JRE:<br>JE/KH<br>CATIC<br>HER J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ONESS TYPE TYPE EY: CON: I                                                           | S: si<br>inear<br>E: cI<br>Codir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ingle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | equer                                               |                                | NO::                                   | 152:                                   |                                       |                         |                                       |                                 |            |
| DTA                                  | (:                                           | (C)<br>(D)<br>ii) N<br>ix) N<br>(A)<br>(B)<br>(D)                            | STRATOPO HOLEO FEATU NAN LOO OTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ANDEI DLOGY TULE JRE: TE/KI CATIC HER J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ONESS Y: li TYPE EY: C ON: l INFOR                                                   | S: siinear E: cI Codir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ingle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | equer<br>: SEÇ                                      | Q ID                           |                                        |                                        | GGG                                   | GCC                     | TGG                                   | GAA                             | 48         |
|                                      | (;<br>(s)<br>AGC                             | (C) (D)  ii) 1  (A) (B) (D)                                                  | STRATOPO MOLECTERATURE NAME LOCUMENT OTHER SEQUE TCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ANDEI DLOGY TULE JRE: ME/KH CATIC HER I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DNESS Y: li TYPE EY: CON: I INFOE DESC                                               | S: sinear Codir Codir CMATI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ingle  ONA  ag Se  BO21  EON:  TION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | equer<br>: SEX<br>ACG                               | Q ID<br>CAG                    | ACA                                    | TGT                                    |                                       |                         |                                       |                                 | 48         |
|                                      | (;<br>(s)<br>AGC                             | (C) (D)  ii) N  ix) H  (A) (B) (D)  ci) S                                    | STRATOPO MOLECTERATURE NAME LOCUMENT OTHER SEQUE TCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ANDEI DLOGY TULE JRE: ME/KH CATIC HER I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DNESS Y: li TYPE EY: CON: I INFOE DESC                                               | S: sinear Codir Codir CMATI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ingle  ONA  ag Se  BO21  EON:  TION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | equer<br>: SEX<br>ACG                               | Q ID<br>CAG                    | ACA                                    | TGT                                    |                                       |                         |                                       |                                 | 48         |
| Met<br>1                             | (;<br>AGC<br>Ser                             | (C)<br>(D)<br>(iii) M<br>(A)<br>(B)<br>(D)<br>(D)<br>TGG                     | STRATOPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ANDEI CULE JRE: JRE/KI LCATIC CATIC CATIC CCT Pro 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TYPE TYPE TYPE TYPE TYPE TYPE TYPE TYPE                                              | S: sinean<br>inean<br>inean<br>inean<br>codir<br>inean<br>inean<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>codir<br>co | ong Se 3021 CON:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | equer<br>SEÇ<br>ACG<br>Thr                          | CAG<br>Gln<br>10               | ACA<br>Thr                             | TGT<br>Cys                             | Gly                                   | Ala                     | Trp<br>15                             | Glu                             |            |
| Met<br>1<br>ATG                      | (;<br>AGC<br>Ser                             | (C) (D) (D) (A) (A) (A) (A) (B) (D) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C   | STRATOPO IOLEO IOL | ANDEIDLOGY TULE THE CATIO THE CATIO TO THE C | ONESS (: li TYPP  TYPP  (NFOF  TCC  Ser  GGG                                         | S: siinean inean i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ODNA  Second Sec | equer<br>SEC<br>ACG<br>Thr                          | CAG<br>Gln<br>10               | ACA<br>Thr<br>GGA                      | TGT<br>Cys                             | Gly<br>GTC                            | Ala<br>ATC              | Trp<br>15<br>CGA                      | Glu<br>TGG                      | <b>4</b> 8 |
| Met<br>1<br>ATG                      | (;<br>AGC<br>Ser                             | (C)<br>(D)<br>(iii) M<br>(A)<br>(B)<br>(D)<br>(D)<br>TGG                     | STRIVE TOPO  IOLEO  IOL | ANDEIDLOGY TULE THE CATIO THE CATIO TO THE C | ONESS (: li TYPP  TYPP  (NFOF  TCC  Ser  GGG                                         | S: siinean inean i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ODNA  Second Sec | equer<br>SE(<br>ACG<br>Thr<br>GGA<br>Gly            | CAG<br>Gln<br>10               | ACA<br>Thr<br>GGA                      | TGT<br>Cys                             | Gly<br>GTC                            | Ala<br>ATC<br>Ile       | Trp<br>15<br>CGA                      | Glu<br>TGG                      |            |
| Met<br>1<br>ATG                      | (;<br>AGC<br>Ser                             | (C) (D) (D) (A) (A) (A) (A) (B) (D) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C   | STRATOPO IOLEO IOL | ANDEIDLOGY TULE THE CATIO THE CATIO TO THE C | ONESS (: li TYPP  TYPP  (NFOF  TCC  Ser  GGG                                         | S: siinean inean i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ODNA  Second Sec | equer<br>SEC<br>ACG<br>Thr                          | CAG<br>Gln<br>10               | ACA<br>Thr<br>GGA                      | TGT<br>Cys                             | Gly<br>GTC                            | Ala<br>ATC              | Trp<br>15<br>CGA                      | Glu<br>TGG                      |            |
| Met<br>1<br>ATG<br>Met               | (;<br>AGC<br>Ser<br>AAA<br>Lys               | (C) (D) (D) (A) (A) (A) (A) (B) (D) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C   | TOPC  IOLEC  NAN  LOC  OTF  TCA  Ser  CGC  Arg  20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ANDEI  CULE  IRE:  IE/KH  CATIC  CCT  Pro  5  CTT  Leu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ONESS  (: li  TYPE  EY: ( ON: li  CNFOF  DESC  TCC  Ser  GGG  GJy                    | S: sinear inear in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ng Se<br>3021<br>CON:<br>ACA<br>Thr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SEÇ<br>ACG<br>Thr<br>GGA<br>G1y<br>25               | CAG<br>Gln<br>10<br>TTT<br>Phe | ACA<br>Thr<br>GGA<br>Gly               | TGT<br>Cys<br>AAT<br>Asn               | Gly<br>GTC<br>Val                     | ATC<br>Ile<br>30        | Trp<br>15<br>CGA<br>Arg               | Glu<br>TGG<br>Trp               |            |
| Met<br>1<br>ATG<br>Met               | (; AGC Ser AAA Lys                           | (C)<br>(D)<br>(ii) 1<br>(A)<br>(B)<br>(D)<br>(C)<br>TGG<br>Trp               | STRATOPOOLOGICAL TOPOOLOGICAL TOPOOLOGICA TOPOOLOGICAL TOPOOLOGICA TOPOOLOGICA TOPOOLOGICA TOPOOLOGICA TOPOOLOGICA TOPOOLO | ANDEI  | ONESS (: li TYPE EY: (C ON: li INFOF  DESC TCC Ser GGG Gly GGT                       | S: sinear inear inear Codir Codir Codir CTG Leu ACA Thr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ng Se<br>3021<br>CON:<br>ACA<br>Thr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SEQ ACG Thr GGA Gly 25                              | CAG<br>Gln<br>10<br>TTT<br>Phe | ACA<br>Thr<br>GGA<br>Gly               | TGT<br>Cys<br>AAT<br>Asn               | Gly<br>GTC<br>Val                     | Ala<br>ATC<br>Ile<br>30 | Trp<br>15<br>CGA<br>Arg               | Glu<br>TGG<br>Trp<br>CAG        | 96         |
| Met<br>1<br>ATG<br>Met               | (; AGC Ser AAA Lys                           | (C)<br>(D)<br>(ii) I<br>(A)<br>(B)<br>(D)<br>(D)<br>TGG<br>Trp<br>GAG<br>GAU | STRATOPOOLOGICAL TOPOOLOGICAL TOPOOLOGICA TOPOOLOGICAL TOPOOLOGICA TOPOOLOGICA TOPOOLOGICA TOPOOLOGICA TOPOOLOGICA TOPOOLO | ANDEI  | ONESS (: li TYPE EY: (C ON: li INFOF  DESC TCC Ser GGG Gly GGT                       | S: sinear inear inear Codir Codir Codir CTG Leu ACA Thr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ng Se<br>3021<br>CON:<br>ACA<br>Thr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SEQ ACG Thr GGA Gly 25                              | CAG<br>Gln<br>10<br>TTT<br>Phe | ACA<br>Thr<br>GGA<br>Gly               | TGT<br>Cys<br>AAT<br>Asn               | Gly<br>GTC<br>Val                     | Ala<br>ATC<br>Ile<br>30 | Trp<br>15<br>CGA<br>Arg               | Glu<br>TGG<br>Trp<br>CAG        | 96         |
| Met<br>1<br>ATG<br>Met<br>CAC<br>His | (;<br>AGC<br>Ser<br>AAA<br>Lys<br>AAT<br>ASn | (C) (D) (D) (A) (A) (B) (D) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C           | STRATOPO IOLEO IOL | ANDEI  | ONESS (: li TYPE  TYPE  TYPE  TYPE  TYPE  TYPE  GON: 1  TCC  Ser  GGG  Gly  GGT  Gly | S: si<br>inear<br>inear<br>Codir<br>L3<br>MATI<br>CTG<br>Leu<br>ACA<br>Thr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ONA  ag Se 3021 ON: TION: ACA Thr  GGG Gly  CAG GGIn 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SEQ<br>ACG<br>Thr<br>GGA<br>Gly<br>25<br>ATT<br>Ile | CAG Gln 10 TTT Phe             | ACA<br>Thr<br>GGA<br>Gly<br>ATC        | TGT<br>Cys<br>AAT<br>Asn<br>AAG<br>Lys | Gly<br>GTC<br>Val<br>CAG<br>Gln<br>45 | Ala ATC Ile 30 TGC Cys  | Trp<br>15<br>CGA<br>Arg<br>CGG<br>Arg | Glu<br>TGG<br>Trp<br>CAG<br>Gln | 96<br>144  |
| Met<br>1<br>ATG<br>Met<br>CAC<br>His | (): AGC Ser AAAA Lys AAT Asn                 | (C) (D) (D) (A) (A) (B) (D) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C           | STRATOPO MOLEC FEATURE NAM LOC OTF TCA Ser CGC Arg 20 GAA Glu CCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ANDEIDLOGY TULE TRE: TE/KE TE/KE TE/KE TE/KE TO T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ONESSON (: 1) TYPE Y: ( ON: 1) ( ONFOR  TCC  Ser  GGG  Gly  GGT  GAAC                | S: sinear inear inear inear Codir Codir Codir CTG Leu ACA Thr GAG Glu CGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ona Section Se | SEQ<br>ACG<br>Thr<br>GGA<br>Gly<br>25<br>ATT<br>Ile | CAG Gln 10 TTT Phe GCC Ala     | ACA<br>Thr<br>GGA<br>Gly<br>ATC<br>Ile | TGT<br>Cys<br>AAT<br>Asn<br>AAG<br>Lys | Gly<br>GTC<br>Val<br>CAG<br>Gln<br>45 | Ala ATC Ile 30 TGC Cys  | Trp<br>15<br>CGA<br>Arg<br>CGG<br>Arg | Glu<br>TGG<br>Trp<br>CAG<br>Gln | 96         |

Ser Ser Leu Pro Tyr Pro Asn Asn Leu Asn Ser Val Leu Ala Glu Arg 265

260

|     |     |            |     |     |     |     | ATG<br>Met<br>280 |     |     |     |     |            |     |     |     | 864  |
|-----|-----|------------|-----|-----|-----|-----|-------------------|-----|-----|-----|-----|------------|-----|-----|-----|------|
|     |     |            |     |     |     |     | CCC<br>Pro        |     |     |     |     |            |     |     |     | 912  |
|     |     |            |     |     |     |     | GTT<br>Val        |     |     |     |     |            |     |     |     | 960  |
|     |     |            |     |     |     |     | ACA<br>Thr        |     |     |     |     |            |     |     |     | 1008 |
|     |     |            |     |     |     |     | ACG<br>Thr        |     |     |     |     |            |     |     |     | 1056 |
|     |     |            |     |     |     |     | GCG<br>Ala<br>360 |     |     |     |     |            |     |     |     | 1104 |
|     |     |            |     |     |     |     | TTA<br>Leu        |     |     |     |     |            |     |     |     | 1152 |
|     |     |            |     |     |     |     | AAC<br>Asn        |     |     |     |     |            |     |     |     | 1200 |
|     |     |            |     |     |     |     | GAA<br>Glu        |     |     |     |     |            |     |     |     | 1248 |
|     |     |            |     |     |     |     | TTC<br>Phe        |     |     |     |     |            |     |     |     | 1296 |
| Val | Trp | His<br>435 | Ser | Ile | Gln | Thr | CTG<br>Leu<br>440 | Lys | Glu | Asp | Cys | Asn<br>445 | Arg | Leu | Gln | 1344 |
|     |     |            |     |     |     |     | ATG<br>Met        |     |     |     |     |            |     |     |     | 1392 |
|     |     |            |     |     |     |     | ATG<br>Met        |     |     |     |     |            |     |     |     | 1440 |
|     |     |            |     |     |     |     | ACC<br>Thr        |     |     |     |     |            |     |     |     | 1488 |

TAC AGC GAG CAA ACC GAG TTT GGG ATC ACA TCA GAT AAA CTG CTG CTG Tyr Ser Glu Gln Thr Glu Phe Gly Ile Thr Ser Asp Lys Leu Leu GCC TGG AGG GAA ATG GAG CAG GCT GTG GAG CTC TGT GGG CGG GAG AAC Ala Trp Arg Glu Met Glu Gln Ala Val Glu Leu Cys Gly Arg Glu Asn GAA GTG AAA CTC CTG GTA GAA CGG ATG ATG GCT CTG CAG ACC GAC ATT Glu Val Lys Leu Leu Val Glu Arg Met Met Ala Leu Gln Thr Asp Ile GTG GAC TTA CAG AGG AGC CCC ATG GGC CGG AAG CAG GGG GGA ACG CTG Val Asp Leu Gln Arg Ser Pro Met Gly Arg Lys Gln Gly Gly Thr Leu GAC GAC CTA GAG GAG CAA GCA AGG GAG CTG TAC AGG AGA CTA AGG GAA Asp Asp Leu Glu Glu Gln Ala Arg Glu Leu Tyr Arg Arg Leu Arg Glu AAA CCT CGA GAC CAG CGA ACT GAG GGT GAC AGT CAG GAA ATG GTA CGG Lys Pro Arg Asp Gln Arg Thr Glu Gly Asp Ser Gln Glu Met Val Arg CTG CTG CTT CAG GCA ATT CAG AGC TTC GAG AAG AAA GTG CGA GTG ATC Leu Leu Gln Ala Ile Gln Ser Phe Glu Lys Lys Val Arg Val Ile TAT ACG CAG CTC AGT AAA ACT GTG GTT TGC AAG CAG AAG GCG CTG GAA Tyr Thr Gln Leu Ser Lys Thr Val Val Cys Lys Gln Lys Ala Leu Glu CTG TTG CCC AAG GTG GAA GAG GTG GTG AGC TTA ATG AAT GAG GAT GAG Leu Leu Pro Lys Val Glu Glu Val Val Ser Leu Met Asn Glu Asp Glu AAG ACT GTT GTC CGG CTG CAG GAG AAG CGG CAG AAG GAG CTC TGG AAT Lys Thr Val Val Arg Leu Gln Glu Lys Arg Gln Lys Glu Leu Trp Asn CTC CTG AAG ATT GCT TGT AGC AAG GTC CGT GGT CCT GTC AGT GGA AGC Leu Leu Lys Ile Ala Cys Ser Lys Val Arg Gly Pro Val Ser Gly Ser CCG GAT AGC ATG AAT GCC TCT CGA CTT AGC CAG CCT GGG CAG CTG ATG Pro Asp Ser Met Asn Ala Ser Arg Leu Ser Gln Pro Gly Gln Leu Met TOT CAG COO TOO ACG GOO TOO AAC AGO TTA COT GAG COA GOO AAG AAG Ser Gln Pro Ser Thr Ala Ser Asn Ser Leu Pro Glu Pro Ala Lys Lys 

|   |   |  |   |   | CAT<br>His        |  |  |  | 2160 |
|---|---|--|---|---|-------------------|--|--|--|------|
|   |   |  |   |   | GAA<br>Glu        |  |  |  | 2208 |
| _ |   |  |   | _ | GAA<br>Glu<br>745 |  |  |  | 2256 |
| _ |   |  |   |   | GCC<br>Ala        |  |  |  | 2304 |
|   |   |  |   |   | TTC<br>Phe        |  |  |  | 2352 |
| _ | _ |  | _ |   | GGC<br>Gly        |  |  |  | 2400 |
|   |   |  |   |   | GGC<br>Gly        |  |  |  | 2448 |
|   |   |  |   |   | CCC<br>Pro<br>825 |  |  |  | 2496 |
|   |   |  |   |   | AGC<br>Ser        |  |  |  | 2544 |
|   |   |  |   |   | ATG<br>Met        |  |  |  | 2592 |
|   |   |  |   |   | GGC<br>Gly        |  |  |  | 2640 |
|   |   |  |   |   | GTG<br>Val        |  |  |  | 2688 |
| _ |   |  |   |   | ATC<br>Ile<br>905 |  |  |  | 2736 |
|   |   |  |   |   | ATC<br>Ile        |  |  |  | 2784 |

925

GGC ATC AAG GTG AAC TTC AAG ATC CGC CAC AAC ATC GAG GAC GGC AGC 2832 Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser 930 935 GTG CAG CTC GCC GAC CAC TAC CAG CAG AAC ACC CCC ATC GGC GAC GGC Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly 945 950 CCC GTG CTG CCC GAC AAC CAC TAC CTG AGC ACC CAG TCC GCC CTG 2928 Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu 970 965 AGC AAA GAC CCC AAC GAG AAG CGC GAT CAC ATG GTC CTG GAG TTC 2976 Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe 985

920

GTG ACC GCC GCG GGG ATC ACT CTC GGC ATG GAC GAG CTG TAC AAG TAA 3024 Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys 1000 995

## (2) INFORMATION FOR SEQ ID NO:153:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1007 amino acids
- (B) TYPE: amino acid

980

915

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:153:

Met Ser Trp Ser Pro Ser Leu Thr Thr Gln Thr Cys Gly Ala Trp Glu 10 Met Lys Glu Arg Leu Gly Thr Gly Gly Phe Gly Asn Val Ile Arg Trp 25 His Asn Gln Glu Thr Gly Glu Gln Ile Ala Ile Lys Gln Cys Arg Gln 40 Glu Leu Ser Pro Arg Asn Arg Glu Arg Trp Cys Leu Glu Ile Gln Ile 55 Met Arg Arg Leu Thr His Pro Asn Val Val Ala Ala Arg Asp Val Pro 70 Glu Gly Met Gln Asn Leu Ala Pro Asn Asp Leu Pro Leu Leu Ala Met 90 Glu Tyr Cys Gln Gly Gly Asp Leu Arg Lys Tyr Leu Asn Gln Phe Glu 105 Asn Cys Cys Gly Leu Arg Glu Gly Ala Ile Leu Thr Leu Leu Ser Asp 120 125 115 Ile Ala Ser Ala Leu Arg Tyr Leu His Glu Asn Arg Ile Ile His Arg 135 140 130

| Asp 1 | Leu | Lys        | Pro        | Glu        | Asn<br>150 | Ile   | Val :      | Leu             | Gln        | Gln<br>155 | Gly  | Glu        | Gln        | Arg        | Leu<br>160   |
|-------|-----|------------|------------|------------|------------|-------|------------|-----------------|------------|------------|------|------------|------------|------------|--------------|
| Ile   | His | Lys        | Ile        | Ile<br>165 |            | Leu   | Gly        | Tyr             | Ala<br>170 | Lys        | Glu  | Leu        | Asp        | Gln<br>175 | Gly          |
| Ser : | Leu | Cys        | Thr<br>180 | Ser        | Phe        | Val   |            | Thr<br>185      | Leu        | Gln        | Tyr  | Leu        | Ala<br>190 | Pro        | Glu          |
| Leu : | Leu | Glu<br>195 | Gln        | Gln        | Lys        | Tyr   | Thr<br>200 | Val             | Thr        | Val        | Asp  | Tyr<br>205 | Trp        | Ser        | Phe          |
|       | 210 |            |            |            | Glu        | 215   |            |                 |            |            | 220  |            |            |            |              |
| Asn   | Trp | Gln        | Pro        | Val        | Gln        | Trp   | His        | Ser             | Lys        |            | Arg  | Gln        | Lys        | Ser        |              |
| 225   |     |            |            |            | 230        |       |            |                 |            | 235        | _,   |            |            | <b>5</b> 1 | 240          |
|       |     |            |            | 245        | Ser        |       |            |                 | 250        |            |      |            |            | 255        |              |
|       |     |            | 260        |            | Pro        |       |            | 265             |            |            |      |            | 270        |            |              |
|       |     | 275        |            |            | Gln        |       | 280        |                 |            |            |      | 285        |            |            |              |
| -     | 290 |            |            |            | Tyr        | 295   |            |                 |            |            | 300  |            |            |            |              |
| 305   |     |            |            |            | Lys<br>310 |       |            |                 |            | 315        |      |            |            |            | 320          |
|       |     |            |            | 325        |            |       |            |                 | 330        |            |      |            |            | 335        |              |
| _     |     |            | 340        |            | Gln        |       |            | 345             |            |            |      |            | 350        |            |              |
|       |     | 355        |            |            | Gly        |       | 360        |                 |            |            |      | 365        |            |            |              |
|       | 370 |            |            |            | Gly        | 375   |            |                 |            |            | 380  |            |            |            |              |
| 385   |     |            |            |            | 390        |       |            |                 |            | 395        | •    |            |            |            | Gln<br>400   |
|       |     |            |            | 405        | ,          |       |            |                 | 410        | )          |      |            |            | 415        |              |
|       |     |            | 420        | )          |            |       |            | 425             | i          |            |      |            | 430        | )          | Gln          |
|       |     | 435        | 5          |            |            |       | 440        |                 |            |            |      | 445        | 5          |            | ı Gln        |
|       | 450 | )          |            |            |            | 455   |            |                 |            |            | 460  | )          |            |            | c Cys        |
| 465   |     |            |            |            | 470        | )     |            |                 |            | 479        | 5    |            |            |            | 1 Lys<br>480 |
|       |     |            |            | 485        | 5          |       |            |                 | 49         | 0          |      |            |            | 49         |              |
|       |     |            | 500        | Э          |            |       |            | 505             | 5          |            |      |            | 51         | 0          | ı Leu        |
|       |     | 51         | 5          |            |            |       | 520        | )               |            |            |      | 52         | 5          |            | u Asn        |
|       | 53  | 0          |            |            |            | 535   | 5          |                 |            |            | 54   | 0          |            |            | p Ile        |
| Val   | As  | p Le       | u Gl       | n Ar       |            |       | o Met      | Gl <sub>2</sub> | y Ar       |            |      | n Gl       | y Gl       | y Th       | r Leu        |
| 545   |     |            | - 2        |            | 550        |       |            | - 63            | • -        | 55<br>m    |      | ~ n~       | a 10       | 11 A×      | 560<br>a Glu |
| Asp   | As; | p Le       | u Gl       | u Gl<br>56 |            | n Ala | a Arg      | المانى تى       | u Le<br>57 |            | ı Ar | y MI       | a re       | u A1<br>57 | g Glu<br>5   |

| Lys F      | Pro Z      | Arg        | Asp<br>580 | Gln        | Arg          | Thr        |            | Gly<br>585 | Asp        | Ser        | Gln          |             | Met<br>590 | Val        | Arg          |
|------------|------------|------------|------------|------------|--------------|------------|------------|------------|------------|------------|--------------|-------------|------------|------------|--------------|
| Leu I      |            | Leu<br>595 |            | Ala        | Ile          | Gln        |            |            | Glu        | Lys        | Lys          | Val<br>605  | Arg        | Val        | Ile          |
| Tyr 7      |            |            | Leu        | Ser        |              | Thr<br>615 |            | Val        | Cys        | Lys        | Gln<br>620   | Lys         | Ala        | Leu        | Glu          |
| Leu I      |            | Pro        | Lys        | Val        |              |            | Val        | Val        | Ser        | Leu        | Met          | Asn         | Glu        | qaA        | Glu          |
| 625        |            |            |            |            | 630          |            |            |            |            | 635        |              |             |            |            | 640          |
| Lys '      | Thr        | Val        | Val        | Arg<br>645 | Leu          | Glr.       | Glu        | Lys        | Arg<br>650 | Gln        | Lys          | Glu         | Leu        | 77p        | Asn          |
| Leu 1      | Leu        | Lys        | Ile<br>660 | Ala        | Cys          | Ser        | Lys        | Val<br>665 | Arg        | Gly        | Pro          | Val         | Ser<br>670 | Gly        | Ser          |
| Pro .      | Asp        | Ser<br>675 | Met        | Asn        | Ala          | Ser        | Arg<br>680 | Leu        | Ser        | Gln        | Pro          | Gly<br>685  | Gln        | Leu        | Met          |
| Ser        | Gln<br>690 |            | Ser        | Thr        | Ala          | Ser<br>695 | Asn        | Ser        | Leu        | Pro        | Glu<br>700   | Pro         | Ala        | Lys        | Lys          |
|            |            | Glu        | Leu        | Val        | Ala<br>710   | Glu        | Ala        | His        | Asn        | Leu<br>715 | Cys          | Thr         | Leu        | Leu        | Glu<br>720   |
|            | Ala        | Ile        | Gln        | Asp<br>725 | Thr          | Val        | Arg        | Glu        | Gln<br>730 | Asp        | Gln          | Ser         | Phe        | Thr<br>735 | Ala          |
| Leu        | Asp        | Trp        | Ser<br>740 |            | Leu          | Gln        | Thr        | Glu<br>745 | Glu        | Glu        | Glu          | His         | Ser<br>750 |            | Leu          |
| Glu        | Gln        | Ala<br>755 |            | Trp        | Val          | Pro        | Arg<br>760 |            | Arg        | Asp        | Pro          | Pro         |            | Ala        | Thr          |
| Met        |            |            | Lys        | Gly        | Glu          | Glu<br>775 | Leu        | Phe        | Thr        | Gly        | Val          |             | Pro        | Ile        | Leu          |
|            | 770<br>Glu | Leu        | Asp        | Gly        | Asp<br>790   | Val        |            | Gly        | His        | Lys<br>795 | Phe          |             | Val        | Ser        | Gly<br>800   |
| 785<br>Glu | Gly        | Glu        | Gly        | Asp<br>805 | Ala          |            | Tyr        | Gly        | Lys<br>810 | Leu        |              | Leu         | Lys        | Phe 815    | lle          |
| Cys        | Thr        | Thr        | Gly<br>820 | Lys        |              | Pro        | Val        | Pro        | Trp        |            | Thr          | Leu         | Val        | Thr        | Thr          |
| Leu        | Thr        | Туг<br>835 | Gly        |            | Gln          | Суз        | Fhe        | . Ser      |            | туг        | Pro          | Asp<br>845  | His        |            | Lys          |
| Gln        |            | Asp        |            | Phe        | Lys          | Ser<br>855 | Ala        |            | Pro        | Glu        | 1 Gly<br>860 | туг         |            | l Glr      | n Glu        |
|            | 850<br>Thr |            | Phe        | Phe        |              | Asp        |            | Gly        | / Asr      | тут<br>875 | Lys          |             | r Arg      | g Ala      | a Glu<br>880 |
| 865        | Two        | Dhe        | . Glu      | . Glv      | 870<br>Asr   |            | Let        | ı Val      | Asr        |            |              | e Gli       | ı Let      | ı Ly:      | s Gly        |
|            |            |            |            | 885        | )            |            |            |            | 890        | )          |              |             |            | 89         | 5            |
|            |            |            | 900        | )          |              |            |            | 905        | 5          |            |              |             | 91         | 0          | u Tyr        |
|            |            | 915        | 5          |            |              |            | 920        | )          |            |            |              | 925         | 5          |            | s Asn        |
|            | 930        | )          |            |            |              | 93         | 5          |            |            |            | 940          | 3           |            |            | y Ser        |
| Val        | Gln        | Let        | Ala د      | a Asp      |              |            | r Glr      | n Gli      | n Asi      |            |              | o Il        | e Gl       | y As       | p Gly        |
| 945<br>Pro |            | Lei        | ı T.e.     | ı Pro      | 950<br>124 c |            | n Hi       | s Tv       | r Le       | 95<br>u Se |              | r Gl        | n Se       | r Al       | 960<br>a Leu |
|            |            |            |            | 96         | 5            |            |            |            | 97         | 0          |              |             |            | 97         | 5            |
|            |            |            | 98         | 0          |              |            |            | 98         | 5          |            |              |             | 99         | 0          | u Phe        |
| Val        | Thr        | Al.<br>99  |            | a Gl       | y Ile        | e Th       | 100        |            | у ме       | t AS       | b er         | u Le<br>100 |            | r hÀ       | 3            |

## (2) INFORMATION FOR SEQ ID NO:154:

(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 2793 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

(A) NAME/KEY: Coding Sequence

(B) LOCATION: 1...2790(D) OTHER INFORMATION:

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:154:

|  | _ |  |  | TTT<br>Phe        |  |  |  |   | 48  |
|--|---|--|--|-------------------|--|--|--|---|-----|
|  |   |  |  | GCG<br>Ala<br>25  |  |  |  |   | 96  |
|  |   |  |  | ATT<br>Ile        |  |  |  | 1 | 44  |
|  |   |  |  | тат<br>Туг        |  |  |  | 1 | .92 |
|  |   |  |  | AAC<br>Asn        |  |  |  | 2 | 240 |
|  |   |  |  | CCA<br>Pro        |  |  |  | 2 | 38  |
|  |   |  |  | GCT<br>Ala<br>105 |  |  |  | 3 | 36  |
|  |   |  |  | ATG<br>Met        |  |  |  | 3 | 884 |
|  |   |  |  | TAC<br>Tyr        |  |  |  | 4 | 132 |

|       |       |     |     |     |     |     |       |       |     | GAG<br>Glu        |     |     |      |                       | 480  |
|-------|-------|-----|-----|-----|-----|-----|-------|-------|-----|-------------------|-----|-----|------|-----------------------|------|
|       |       |     |     |     |     |     |       |       |     | TTT<br>Phe        |     |     |      |                       | 528  |
|       |       |     |     |     |     |     |       |       |     | CGG<br>Arg        |     |     |      |                       | 576  |
|       |       |     |     |     |     |     |       |       |     | AAG<br>Lys        |     |     |      |                       | 624  |
|       | Pro   |     |     |     |     |     |       |       |     | AAA<br>Lys<br>220 |     |     |      |                       | 672  |
| Ser   |       |     |     |     |     |     |       |       |     | CAC<br>His        |     |     |      |                       | 720  |
|       |       |     |     |     |     |     |       |       |     |                   |     |     |      | GAT<br>Asp            | 768  |
|       |       |     | Glu |     |     |     |       | Asn   |     |                   |     |     | His  | GTT<br>Val            | 816  |
|       |       | Ala |     |     |     |     | / Asr |       |     |                   |     | Val |      | ATG<br>Met            | 864  |
|       | : Ile |     |     |     |     | Asp |       |       |     |                   | Ph€ |     |      | CCA<br>Pro            | 912  |
| l Ası |       |     |     |     | туг |     |       |       |     | ي Glv             |     |     |      | C CAT<br>r His<br>320 | 960  |
|       |       |     |     | His |     |     |       |       | Al. |                   |     |     |      | C CAG<br>1 Gln<br>5   | 1008 |
|       |       |     | Let |     |     |     |       | o Ala |     |                   |     |     | 1 Ph | T ACA<br>e Thr        | 1056 |
|       |       |     |     |     |     |     |       |       |     |                   |     |     |      | T GTA<br>p Val        | 1104 |

355 360 365

| GAT (     |     |       |     |     |       |     |     |     |     |      |                   |     |     |       |                       | 1152 |
|-----------|-----|-------|-----|-----|-------|-----|-----|-----|-----|------|-------------------|-----|-----|-------|-----------------------|------|
| CTT Leu . |     |       |     |     |       |     |     |     |     |      |                   |     |     |       |                       | 1200 |
|           |     |       |     |     |       |     |     |     |     |      | TGT<br>Cys        |     |     |       |                       | 1248 |
|           |     |       |     |     |       |     |     |     |     |      | AAA<br>Lys        |     |     |       |                       | 1296 |
|           |     |       |     |     |       |     |     |     |     |      | AAT<br>Asn        |     |     |       |                       | 1344 |
|           |     |       |     |     |       |     |     |     |     |      | AGC<br>Ser<br>460 |     |     |       |                       | 1392 |
|           |     |       |     |     |       |     |     |     |     |      | CTT<br>Leu        |     |     |       |                       | 1440 |
|           |     |       |     |     | Ser   |     |     |     |     |      |                   |     |     |       | CGC<br>Arg            | 1488 |
|           |     |       |     | Arg |       |     |     |     | Phe |      |                   |     |     | / Asp | CGA<br>Arg            | 1536 |
|           |     |       | Arg |     |       |     |     | Ser |     |      |                   |     | Lys |       | AAT<br>Asn            | 1584 |
|           |     | . Val |     |     |       |     | val |     |     |      |                   | тут |     |       | CAT<br>His            | 1632 |
|           | Let |       |     |     |       | Ala |     |     |     |      | s Pro             |     |     |       | G GAT<br>n Asp<br>560 | 1680 |
|           |     |       |     |     | ı Glı |     |     |     |     | ı Tr |                   |     |     |       | A ATC<br>r Ile<br>5   | 1728 |

|     |     |     |     |       |     |       |     | GAC<br>Asp        |     |     |     |       |       |                   | 1776 |
|-----|-----|-----|-----|-------|-----|-------|-----|-------------------|-----|-----|-----|-------|-------|-------------------|------|
|     |     |     |     |       |     |       |     | CTA<br>Leu        |     |     |     |       |       |                   | 1824 |
|     |     |     |     |       |     |       |     | AGT<br>Ser        |     |     |     |       |       |                   | 1972 |
|     |     |     |     |       |     |       |     | ACT<br>Thr        |     |     |     |       |       |                   | 1920 |
|     |     |     |     |       |     |       |     | GAG<br>Glu<br>650 |     |     |     |       |       |                   | 1968 |
|     |     |     |     |       |     |       |     | ATA<br>Ile        |     |     |     |       | Pro   |                   | 2016 |
|     |     | Ile |     |       |     |       |     |                   |     |     |     | Asp   |       | CCG<br>Pro        | 2064 |
|     | Thr |     |     |       |     | Gly   |     |                   |     |     | Thr |       |       | GTG<br>Val        | 2112 |
| ıle |     |     |     |       | Asp |       |     |                   |     | Gly |     |       |       | AGC<br>Ser<br>720 | 2160 |
|     |     |     |     | , Glu |     |       |     |                   | Тут |     |     |       |       | C CTG             | 2208 |
|     |     |     | Thr |       |     |       |     | Pro               |     |     |     |       | o Thi | C CTC<br>r Leu    | 2256 |
|     |     | Let |     |       |     |       | Glr |                   |     |     |     | y Ty: |       | GAC<br>O Asp      | 2304 |
|     | Lys |     |     |       |     | e Phe |     |                   |     |     | Pr  |       |       | C TAC<br>y Tyr    | 2352 |
|     |     |     |     |       |     |       |     |                   |     |     |     |       |       | G ACC<br>s Thr    | 2400 |

| 785        |                   |            |                   |     | 790        |            |            |                   |            | 795        |            |     |     |       | 800        |      |
|------------|-------------------|------------|-------------------|-----|------------|------------|------------|-------------------|------------|------------|------------|-----|-----|-------|------------|------|
| CGC (      |                   |            |                   |     |            |            |            |                   |            |            |            |     |     |       |            | 2448 |
| CTG .      |                   |            |                   |     |            |            |            |                   |            |            |            |     |     |       |            | 2496 |
| CTG<br>Leu |                   |            |                   |     |            |            |            |                   |            |            |            |     |     |       |            | 2544 |
| CAG<br>Gln |                   |            |                   |     |            |            |            |                   |            |            |            |     |     |       |            | 2592 |
|            |                   |            |                   |     |            |            |            |                   | TAC<br>Tyr |            |            |     |     |       |            | 2640 |
|            |                   |            |                   |     | Leu        |            |            |                   |            | His        |            |     |     |       | CAG<br>Gln | 2688 |
| TCC<br>Ser | GCC<br>Ala        | CTG<br>Leu | AGC<br>Ser<br>900 | Lys | GAC<br>Asp | CCC<br>Pro | AAC<br>Asn | GAG<br>Glu<br>905 | Lys        | CGC<br>Arg | GAT<br>Asp | CAC | Met | . Val | CTG<br>Leu | 2736 |
|            |                   |            | Val               |     |            |            |            | / Ile             |            |            |            |     | Asp |       | G CTG      | 2784 |
|            | AAG<br>Lys<br>930 |            |                   |     |            |            |            |                   |            |            |            |     |     |       |            | 2793 |

- (2) INFORMATION FOR SEQ ID NO:155:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 930 amino acids
  - (E) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:155:

Met Met His Val Asn Asn Phe Pro Phe Arg Arg His Ser Trp Ile Cys
1 5 10 15

| Phe        | Asp        | Val         | Asp<br>20    | Asn        | Gly          | Thr        | Ser        | Ala<br>25    | Gly        | Arg          | Ser         |             | Leu<br>30    | Asp        | Pro          |
|------------|------------|-------------|--------------|------------|--------------|------------|------------|--------------|------------|--------------|-------------|-------------|--------------|------------|--------------|
|            |            | 35          | Pro          |            | Ser          |            | 40         |              |            |              |             | 45          |              |            |              |
|            | 50         |             |              |            |              | 55         |            |              |            |              | 60          |             |              |            |              |
| Leu<br>65  | Ser        | Pro         | Lys          | Ser        | Met<br>70    | Ser        | Arg        | Asn          | Ser        | Ser<br>75    | Ile         | Ala         | Ser          | Asp        | Ile<br>80    |
| His        | Gly        | Asp         | Asp          | Leu<br>85  | Ile          | Val        | Thr        | Pro          | Phe<br>90  | Ala          | Gln         | Val         | Leu          | Ala<br>95  | Ser          |
| Leu        | Arg        | Thr         | Val          | Arg        | Asn          | Asn        | Phe        | Ala<br>105   | Ala        | Leu          | Thr         | Asn         | Leu<br>110   | Gln        | Asp          |
| Arg        | Ala        | Pro         |              | Lys        | Arg          | Ser        | Pro        | Met          | Суѕ        | Asn          | Gln         | Pro<br>125  | Ser          | Ile        | Asn          |
| Lys        | Ala<br>130 |             | Ile          | Thr        | Glu          | Glu<br>135 | Ala        | Tyr          | Gln        | Lys          | Leu<br>140  | Ala         | Ser          | Glu        | Thr          |
| Leu<br>145 | Glu        | Glu         | Leu          | Asp        | Trp<br>150   |            | Leu        | Asp          | Gln        | Leu<br>155   | Glu         | Thr         | Leu          | Gln        | Thr<br>160   |
|            |            | Ser         | Val          | Ser<br>165 | Glu          | Met        | Ala        | Ser          | Asn<br>170 |              | Phe         | Lys         | Arg          | Met<br>175 | Leu          |
| Asn        | Arg        | Glu         | Leu<br>180   |            | His          | Leu        | Ser        | Glu<br>185   | Met        | Ser          | Arg         | Ser         | Gly<br>190   |            | Gln          |
| Val        | Ser        | Glu<br>195  | Phe          |            | Ser          | Asn        | Thr<br>200 |              | Leu        | Asp          | Lys         | Gln<br>205  | His          | Glu        | Val          |
| Glu        | 11e        | Pro         |              | Pro        | Thr          | Gln<br>215 | Lys        | Glu          | Lys        | Glu          | Lys<br>220  |             | Lys          | Arg        | Pro          |
| Met        |            |             | ılle         | Ser        |              | Val        | Lys        | Lys          | Leu        |              |             | Ser         | Ser          | Ser        | Leu<br>240   |
| 225        | her        | Ser         | · Ser        | · Tle      | 230<br>Pro   | Ara        | Phe        | Glv          | . Val      | 235<br>Lvs   |             | Glu         | Gln          | Glu        | Asp          |
|            |            |             |              | 245        |              |            |            |              | 250        | )            |             |             |              | 255        | )            |
|            |            |             | 260          | )          |              |            |            | 265          |            |              |             |             | 270          | )          | : Val        |
|            |            | 275         | 5            |            |              |            | 280        | )            |            |              |             | 285         | •            |            | Met<br>-     |
|            | 290        | )           |              |            |              | 295        |            |              |            |              | 300         | )           |              |            | Pro          |
|            |            | o Thi       | r Lev        | ı Ile      | Thr<br>310   |            | Let        | ı Met        | Thi        | r Leu<br>319 |             | ı Asp       | His          | з Туз      | His 320      |
| 305<br>Ala | o<br>a Asp | o Vai       | l Ala        | а Туг      |              |            | Asr        | ı Ile        | Hi:        |              |             | a Asp       | o Val        | l Vai      | l Gln        |
|            |            |             |              | 325        | 5            |            |            |              | 33         | 0            |             |             |              | 33:        | 5            |
| Sei        | c Th       | r Hi        | s Va.<br>340 |            | ı Lev        | Ser        | Thi        | r Pro<br>345 |            | a Le         | 1 G11       | ı Ala       | a va.<br>350 |            | e Thr        |
| Asj        | p Le       | u Gl:<br>35 | u Ile        |            | ı Ala        | a Ala      | 11e        | e Phe        |            | a Se         | r Al        | a Ile<br>36 |              | s As       | p Val        |
| Asj        | р Ні<br>37 | s Pr        |              | y Vai      | l Ser        | Asr<br>375 | ı Glı      |              | e Le       | u Il         | e As:<br>38 |             | r Ası        | n Se       | r Glu        |
| Le         |            |             | u Me         | t Ty:      |              |            | Se:        | r Se:        | r Va       |              |             | u As        | n Hi         | s Hi       | s Leu        |
| 38<br>גיג  |            | ງເາ         | v Ph         | e Tar      | 390<br>5 Leu |            | ı Gl:      | n Gli        | u Gl       | 39<br>u As   |             | s As        | p Il         | e Ph       | 400<br>e Gln |
|            |            |             |              | 40         | 5            |            |            |              | 41         | 0            |             |             |              | 41         | 5            |
|            |            |             | 42           | 0          |              |            |            | 42           | 5          |              |             |             | 43           | 0          | e Asp        |
| Il         | e Va       | 1 Le<br>43  |              | a Th       | r Asj        | o Me       | t Se<br>44 |              | s Hi       | s Me         | t As        | n Le        |              | u Al       | a Asp        |

| Leu        | Lys<br>450   | Thr        | Met          | Val        | Glu        | Thr<br>455 | Lys        | Lys        | Val        | Thr        | Ser<br>460   | Ser          | Gly          | Val         | Leu          |
|------------|--------------|------------|--------------|------------|------------|------------|------------|------------|------------|------------|--------------|--------------|--------------|-------------|--------------|
| Leu<br>465 | Leu          | Asp        | Asn          | Tyr        | Ser<br>470 | Asp        | Arg        | lle        | Gln        | Val<br>475 | Leu          | Gln          | Asn          | Met         | Val<br>480   |
|            | Cys          | Ala        | Asp          | Leu<br>485 | Ser        | Asn        | Pro        | Thr        | Lys<br>490 | Pro        | Leu          | Gln          | Leu          | Tyr<br>495  | Arg          |
| Gln        | Trp          | Thr        | Asp          |            | Ile        | Met        | Glu        | Glu<br>505 | Phe        | Phe        | Arg          | Gln          | Gly<br>510   | Asp         | Arg          |
| Glu        | Arg          | Glu<br>515 |              | Gly        | Met        | Glu        | Ile<br>520 |            | Pro        | Met        | Cys          | Asp<br>525   | Lys          | His         | Asn          |
| Ala        | Ser<br>530   |            | Glu          | Lys        | Ser        | Gln<br>535 |            | Gly        | Phe        | Ile        | Asp<br>540   | Tyr          | Ile          | Val         | His          |
| Pro        |              | Trp        | Glu          | Thr        | Trp<br>550 |            | Asp        | Leu        | Val        | His<br>555 | Pro          | Asp          | Ala          | Gln         | Asp<br>560   |
|            | Leu          | Asp        | Thr          | Leu<br>565 | Glu        | Asp        | Asn        | Arg        | Glu<br>570 |            | Tyr          | Gln          | Ser          | Thr<br>575  |              |
| Pro        | Gln          | Ser        | Pro<br>580   |            | Pro        | Ala        | Pro        | Asp<br>585 |            | Pro        | Glu          | Glu          | Gly<br>590   |             | Gln          |
| Gly        | Gln          | Thr<br>595 |              | Lys        | Phe        | Gln        | Phe        |            | Leu        | Thr        | Leu          | Glu<br>605   |              | Asp         | Gly          |
| Glu        | Ser<br>610   |            | Thr          | Glu        | Lys        | Asp<br>615 |            | Gly        | Ser        | Gln        | Val<br>620   | Glu          | Glu          | Asp         | Thr          |
| Ser<br>625 |              | Ser        | Asp          | Ser        | Lys<br>630 | Thr        | Leu        | Cys        | Thr        | Gln<br>635 | Asp          | Ser          | Glu          | Ser         | Thr<br>640   |
|            | Ile          | Pro        | Leu          | Asp<br>645 | Glu        | Gln        | Val        | Glu        | Glu<br>650 | Glu        | Ala          | Val          | Gly          | Glu<br>655  |              |
| Glu        | Glu          | Ser        | Gln<br>660   |            | Glu        | Ala        | Cys        | Val<br>665 |            | Asp        | Asp          | Arg          | Ser<br>670   |             | qzA          |
| Thr        | Thr          | Gly<br>675 |              | Leu        | Gln        | Ser        | Thr<br>680 |            | Pro        | Arg        | Ala          | Arg<br>685   |              | Pro         | Pro          |
| Val        | Ala<br>690   |            | Met          | Val        | Ser        | Lys<br>695 |            | Glu        | Glu        | Leu        | Phe          |              | Gly          | Val         | Val          |
| Pro<br>705 |              | Leu        | Val          | Glu        | Leu<br>710 | Asp        | Gly        | Asp        | Val        | Asn<br>715 |              | His          | Lys          | Phe         | Ser<br>720   |
|            |              | Gly        | Glu          | Gly<br>725 |            | Gly        | Asp        | Ala        | Thr<br>730 |            | Gly          | Lys          | Leu          | 735         | Leu          |
| Lys        | Phe          | Ile        | Cys<br>740   |            | Thr        | Gly        | Lys        | Leu<br>745 |            | Val        | Pro          | Trp          | 750          |             | Leu          |
| Val        | Thr          | Thr<br>755 |              | Thr        | Tyr        | Gly        | Val<br>760 |            | . Cys      | Fhe        | e Ser        | 765          |              | Pro         | qzA o        |
| His        | Met<br>770   |            | Gln          | His        | Asp        | Phe<br>775 |            | Lys        | Ser        | Ala        | Met<br>780   |              | Glu          | ı Gly       | 7yr          |
| Val<br>785 |              | Glu        | Arg          | Thr        | 790        |            | Phe        | Lys        | Asp        | Asp<br>795 |              | / Asr        | туг          | Lys         | 800          |
| Arg        | Ala          | Glu        | Val          | Lys<br>805 |            | Glu        | Gly        | Asp        | Thr<br>810 |            | ı Val        | Asr          | n Arg        | g Ile<br>81 | e Glu<br>5   |
| Leu        | Lys          | Gly        | , Ile<br>820 |            | ) Phe      | Lys        | Glu        | Asp<br>825 |            | / Asr      | ı Ile        | e Lei        | u Gly<br>830 |             | s Lys        |
| Leu        | ı Glu        | туя<br>835 |              | Tyr        | Asn        | Ser        | His<br>840 |            | ı Val      | Туз        | r Ile        | e Met<br>849 |              | a As        | o Lys        |
| Glr        | 1 Lys<br>850 |            | Gly          | / I16      | e Lys      | Val<br>855 |            | n Ph€      | e Lys      | s Ile      | e Arg<br>860 |              | s Ası        | n Il        | e Glu        |
| Asp<br>865 |              | / Sei      | r Val        | Glr        | 870        |            | a Asp      | His        | s ТУ1      | 61i<br>87: |              | n Asi        | n Th         | r Pr        | o Ile<br>880 |

| Gly Asp Gly Pro Val Leu Le<br>885              | u Pro Asp          | Asn His Tyn<br>890 | Leu Ser | Thr Gln<br>895 |    |
|------------------------------------------------|--------------------|--------------------|---------|----------------|----|
| Ser Ala Leu Ser Lys Asp Pr                     | o Asn Glu<br>905   | Lys Arg Ası        | His Met | Val Leu        |    |
| Leu Glu Phe Val Thr Ala Al                     | a Gly Ile          | Thr Leu Gl         | Met Asp | Glu Leu        |    |
| Tyr Lys                                        | J <b>2</b> 0       |                    |         |                |    |
| 930                                            |                    |                    |         |                |    |
| (2) INFORMATION F                              | OR SEQ ID          | NO:156:            |         |                |    |
| (i) SEQUENCE CHARACT (A) LENGTH: 37 bas        |                    |                    |         |                |    |
| (B) TYPE: nucleic                              |                    |                    |         |                |    |
| (C) STRANDEDNESS:                              | single             |                    |         |                |    |
| (D) TOPOLOGY: line                             | ar:                |                    |         |                |    |
| (xi) SEQUENCE DESCR                            | [PTION: SE         | Q ID NO:156        | :       |                |    |
| GTAAGCTTCG AACATGATGC ACG                      |                    |                    |         |                | 37 |
|                                                |                    |                    |         |                |    |
| (2) INFORMATION                                | FOR SEQ ID         | ) NO:15/:          |         |                |    |
| (i) SEQUENCE CHARAC                            | reristics:         |                    |         |                |    |
| (A) LENGTH: 34 ba                              |                    |                    |         |                |    |
| <pre>(B) TYPE: nucleic (C) STRANDEDNESS:</pre> |                    |                    |         |                |    |
| (C) STRANDEDNESS: (D) TOPOLOGY: lin            |                    |                    |         |                |    |
| (2)                                            |                    |                    |         |                |    |
| (xi) SEQUENCE DESCR                            | IPTION: SE         | EQ ID NO:157       | 7:      |                |    |
| GTAAGCTTCG AACATGGAGG CAG                      | agggcag c <i>i</i> | AGC                |         |                | 34 |
| (2) INFORMATION                                | FOR SEQ II         | NO:158:            |         |                |    |
| (i) SEQUENCE CHARAC                            | TERISTICS          | :                  |         |                |    |
| (A) LENGTH: 34 ba                              |                    |                    |         |                |    |
| (B) TYPE: nucleio                              | acid               |                    |         |                |    |
| (C) STRANDEDNESS:                              | -                  |                    |         |                |    |
| (D) TOPOLOGY: lin                              | ear                |                    |         |                |    |
| (xi) SEQUENCE DESCR                            | IPTION: S          | EQ ID NO:15        | 8:      |                |    |
| GTAAGCTTCG AACATGGCTC AGC                      | AGACAAG C          | CCG                |         |                | 34 |
| (2) INFORMATION                                | FOR SEQ I          | D NO:159:          |         |                |    |
| (i) SEQUENCE CHARAC                            | TERISTICS          | :                  |         |                |    |
| (A) LENGTH: 37 ba                              |                    |                    |         |                |    |
| (B) TYPE: nucleio                              |                    |                    |         |                |    |
| (C) STRANDEDNESS                               | single             |                    |         |                |    |

| (D) TOPOLOGY: linear                                                                                                                                                           |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:159:                                                                                                                                      |    |
| GTGAATTCCC GTCGTGTCAG GAGAAGCATC ATCTATG                                                                                                                                       | 37 |
| (2) INFORMATION FOR SEQ ID NO:160:                                                                                                                                             |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 24 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:160:                                                                                                                                      |    |
| GTGAATTCAA CCATGGAGCG GGCC                                                                                                                                                     | 24 |
| (2) INFORMATION FOR SEQ ID NO:161:                                                                                                                                             |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 23 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:161:                                                                                                                                      |    |
| GTGGTACCCA GTTCCGCTTG GCC                                                                                                                                                      | 23 |
| (2) INFORMATION FOR SEQ ID NO:162:                                                                                                                                             |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 24 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:162:                                                                                                                                      |    |
| GTCTCGAGGC AAGATGGCTG ACCC                                                                                                                                                     | 24 |
| (2) INFORMATION FOR SEQ ID NO:163:                                                                                                                                             |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 25 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |

| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:163:                                                                                                                                      |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| GTGGATCCGA GCTCTTGACT TCGGG                                                                                                                                                    | 25 |
| (2) INFORMATION FOR SEQ ID NO:164:                                                                                                                                             |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 31 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:164:                                                                                                                                      |    |
| GTAAGCTTAC ATGAGCTGGT CACCTTCCCT G                                                                                                                                             | 31 |
| (2) INFORMATION FOR SEQ ID NO:165:                                                                                                                                             |    |
| <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 25 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |    |
| (ii) MOLECULE TYPE: cDNA                                                                                                                                                       |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:165:                                                                                                                                      |    |
| GTGGTACCCA TGAGGCCTGC TCCAG                                                                                                                                                    | 25 |

# METHOD AND APPARATUS FOR HIGH DENSITY FORMAT SCREENING FOR BIOACTIVE MOLECULES

## FIELD OF THE INVENTION

The invention relates to a method and apparatus for screening large numbers of molecules for biological activities.

## BACKGROUND OF THE INVENTION

Current technology is able to generate large numbers of molecules which may possess potential therapeutic value. Compounds having potentially interesting biological activity may be products of combinatorial or traditional chemistry, a natural product, proteins isolated by one- or two-dimensional gel electrophoresis, or compounds secreted from or expressed by natural or genetically modified animal, plant, microbial or fungal cells (or parts thereof), or displayed by natural or genetically modified viral or phage particles.

Screening methods have been developed which achieve very high throughputs of test compounds. Such methods are termed Ultra High Throughput Screening (UHTS). The present generation of UHTS machines rely upon essentially serial additions of test compounds, usually one test compound per discrete test well. Test well array densities range from between 96 to 3456 wells per plate. Such UHTS machines require sophisticated technologies to dispense microvolumes of many different fluids to selected locations, and also require that the detecting surface for each test molecule generally be separated from other detecting surfaces within the array.

There is a need to develop a method which allows simultaneous screening of large numbers of test compounds for biological activity and potential therapeutic use while avoiding the complications associated with dispensing multiple fluid microvolumes.

### BRIEF SUMMARY OF THE INVENTION

The invention is directed to a screening method which eliminates the need for delivering microfluid volumes and allows simultaneous parallel screening of large numbers of test compounds. Accordingly, the invention is drawn to a method for screening test

compounds for bioactivity, by contacting an array of test compounds with a detector layer capable of detecting bioactivity, wherein a cell response is indicative of bioactivity.

The method of the invention is a high throughput system for parallel screening of a large number of test compounds. In one embodiment of the method of the invention, 96 to 10,000 test compounds are simultaneously screened for bioactivity in an assay; in a more specific embodiment, 96 to 3456 test compounds are simultaneously screened for bioactivity.

In a more specific embodiment, invention is drawn to a method for screening test compounds for bioactivity, comprising:

- (a) contacting a solid support comprising an array of test compounds with a liquid layer, wherein the liquid layer is in immediate contact with a detector layer and wherein each test compound comes into contact with a localized portion of the liquid layer; and
- (b) registering a response of the detector layer to the test compound, wherein a bioactive test compound is identified.

By "high throughput screening" is meant a method able to screen large number of test compounds for biological activity within a given machine time (i.e. at a rate anywhere from 100 to 100,000 compounds per hour per machine).

The term "parallel screening" refers to a method by which very many compounds are applied simultaneously to the detector layer, and similarly, signals from that detector layer are collected contemporaneously rather than sequentially.

By "array" is meant a regular two-dimensional arrangement of test compounds by which compounds are disposed at the nodes of a rectilinear grid pattern whereby a compound position can be identified by a simple 2-dimensional coordinate.

A "detector layer" means any two-dimensional system which can be used to report biologically relevant information. In one specific embodiment of the method of the invention the detector layer is a monolayer of living cells loaded with a fluorescent reporter dye such as Fluo-3.

By "bioactive" or "bioactivity" is meant an action or influence of a test compound upon the detector layer which results in a response from the detector layer that has direct biological significance or can be interpreted as being a biologically relevant response.

Bioactive agents have the ability to effect physiological parameters of living cells and tissues. Bioactivity includes inducing or suppressing the expression of a protein, activating or inhibiting transcription of a gene, and/or effecting cellular function(s) such as, for example,

intracellular movement and storage of calcium ions, and membrane transportation.

The capacity of a test compound to affect a detector layer, i.e. bioactivity, may be determined in a number of ways known to the art. In specific embodiments of the method of the invention, bioactivity is determined by changes or movements of fluorescent probes present in the detector layer which indicate changes in ionic content, cell metabolism, growth or viability. In a preferred method of the invention, living cells form the detector layer and have specific protein components tagged with a fluorescent agent, such as green fluorescent protein (GFP); changes in GFP fluorescence or distribution within cells indicate a particular cellular response which may be selected for identification of bioactivity.

The phrase "a change in fluorescence" means any change in absorption properties, such as wavelength and intensity, or any change in spectral properties of the emitted light, such as a change of wavelength, fluorescence lifetime, intensity or polarization.

A "solid support comprising an array of multiple test compounds" or similar terms, mean a fixed matrix to which test compounds have been fixed. As an example, the solid support of the invention includes a membrane or other surface comprising an array of printed test compounds. In one specific embodiment of the invention, the test compounds are deposited as discrete spots on a porous track-etched polycarbonate membrane 10 to 20 microns thickness, the spots being between 10 microns to 2 mm diameter. The quantity of compound contained in each discrete spot will depend on the concentration of the stock solution from which it was derived, and the volume of that stock solution applied to the support. In another specific embodiment of the invention, compounds are printed onto a non-porous solid support which is optically clear.

By "test compounds" is meant a fixed array of compounds to be screened for ability to effect physiological parameters of a cell or tissue. In one embodiment, the test compounds are proteins or peptides generated by combinatorial protein chemical methods known to the art. In another embodiment, the test compounds are chemical compounds generated by combinatorial chemistry methods known in the art. In another embodiments, the test compounds are chemical compounds which are naturally occurring compounds more or less purified from their native state, are the products of genetically engineered cells, or are viral or bacteriophage particles engineered to display compounds upon their surfaces (phage display).

In one embodiment, the detector layer is an undemarcated area of living cells growing on a flat culture surface. The cells on this surface may or may not be grown to confluence,

may be transformed and/or engineered cells, or directly derived from animal tissues and grown as primary cell culture.

In one embodiment, a test compound reaches the detector layer by diffusion through a porous membrane to a liquid layer immediately overlaying the detector layer. A variety of commercially available porous membranes are useful in the method of the invention. A preferred porous membrane is a track-etched polyester or polycarbonate support in which parallel channels of identical size are formed by a selective etching process following exposure of the membrane to a source of high energy ions. The method of the invention allows each test compound affixed to a solid support to come into contact with a limited fluid volume, which fluid volume is in immediate contact with the detector layer. In one embodiment, each test compound contacts the detector layer by diffusion through a liquid-containing channel directly adjacent to the detector layer.

One advantage of the method of the invention is that it allows massive parallel screening of a large array of test compounds for biological activity. When living cells are the detector layer of the invention, they are maintained under physiologically viable conditions. Provision of these conditions requires the use of solutions able to supply essential nutrients and buffer pH changes normal to the continued growth of living cells. Such solutions may be complete cell culture media (i.e. any of those commercially available, for instance from Life Technologies Ltd.), optionally supplemented with antibiotics and serum preparations for optimal cell growth conditions. Buffer solutions may also be of the type known as "chemically defined". Cells will also require controlled temperature conditions, in the range 20° to 37°C, and the provision of gases essential to continued cell growth and maintenance of buffer capacity (O<sub>2</sub>, and optionally 5% CO<sub>2</sub>, depending on the type of buffer being used).

These and other objectives, advantages, and features of the invention will become apparent to those persons skilled in the art upon reading the details of the method as more fully described below.

## BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing features of the present invention may be fully understood from the following detailed disclosure of a specific preferred embodiment in conjunction with the accompanying drawings in which:

Fig. 1 is a schematic representation of the apparatus useful in one specific embodiment of the invention: Light from a high energy light source 1 is collected and collimated by unit 2, directed through a shutter assembly 3 and passes through a excitation filter-changer 4. A light guide 5 directs excitation light into the lensing and epi-illumination optics housed in unit 7. Excitation light emerging from 7 illuminates the horizontal detector layer located in the multi-component assembly having two solid layers 10 and 11 fixed relative to a supporting stage unit 8. Layer 11 is moved vertically downward on guide pins (17 Fig. 2b) controlled by arm 12 driven by unit 13. Four sprung contacts 14 attached to 12 press upon the frame of layer 11 to drive it downwards as arm 12 descends. Specified devices (3, 4, 9, 13, 15, 16) are controlled by central processing unit 6 which issues commands and collects data and status information from the devices attached to it. Unit 6 includes a central processing unit, RAM, multi-channel serial input/output cards with onboard A/D and D/A converters, one of which cards controls the camera 16 and captures images from it.

Figs. 2a-c: Figs. 2a and 2b are side view of the test stage (not to scale); Fig. 2c is a top view of the test stage. A supporting stage 8 has a rectangular central aperture the shape and size of which is the same as the area 19 of Fig. 2c. The position of stage 8 is adjusted in the horizontal and vertical axes by the 3-axis positioner 9. Components of the test stage shown include, solution layer 18, (not shown: detector layer 20 and array of test compounds 21 in Figs 3 and 4). The array 21 is held away from the liquid layer by pins 17 which pass through holes (24 in Fig. 5) in the corners of the frame 11. Arm 12 is moved down by the drive unit 13, and the four sprung contacts 14 it bears exert pressure on the frame 11 moving it down the guide pins 17 and into close proximity to the upper surface of 10, from which it is separated by a thin liquid layer 18.

Fig. 3 is a schematic showing the relative positions of the different layers in the test-array/detector layers used in one specific embodiment. The layers are depicted in apposition, as they would appear after arm 12 has pushed component 11 down the support pins 17. An array of discrete spots of test compounds 21 on a porous membrane 19 is in contact with a liquid layer 18 overlaying the detector layer 20 which is supported by an optically transparent

solid substrate 10. The compounds fill the parallel capillary spaces in the track-etched membrane 22.

Fig. 4 is a schematic drawing of a second embodiment of the screening method of the invention. The layers are depicted in apposition, as they would appear after arm 12 has pushed component 11 down the support pins 17. A detector layer 20 supported on an optically clear porous membrane 19, and overlayed by a liquid layer 23, is placed onto an optically clear solid substrate 10 bearing an array of test compounds 21. The thin space 18 between components 19 and 10 is filled with solution from 23 which has passed through the porous membrane 19. Bioactivity is detected by measuring changes in fluoresence of the detector layer resulting from responses to the diffusion of test compounds through the porous membrane to the detector layer.

Figs. 5a-c are schematics illustrating transfer printing of an array of compounds onto a surface of a track-etched membrane. Compounds are stored in 16 separate 96-well microtitre plates and defined amounts are transferred simultaneously by a 96-pin printing head to the surface 19 (Fig. 5a). The contents of each successive 96-well plate are printed at a slightly offset position, generating an array after 4 such printing operations (Fig. 5b), and a full array of 1536 compounds after 16 printing operations (Fig. 5c).

## DETAILED DESCRIPTION

Before the present method and solutions used in the method are described, it is to be understood that this invention is not limited to particular methods, components, or solutions described, as such methods, components, and solutions may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and

materials are now described. All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited.

Generally, the invention is drawn to a method for high throughput screening of test compounds, by contacting a solid support comprising an array of multiple test compounds with a detector layer, wherein each test compound comes into contact with a localized liquid which is in contact with a detector layer, and detecting a response of the detector layer to the test compound, wherein a bioactive test compound is identified.

The high density format screening system (HDFS) of the invention, rests in part on the realization that the delivery of test compounds to detector surfaces can be greatly simplified by doing away with the need for complicated microfluidics. Test compounds are applied to the detector surface in a massively parallel manner, and the method is applicable to a large range of different types of test compounds.

Central to the specific embodiments of the method and apparatus of the invention, described below, is the use of living cells as detectors, their responses being signalled via changes in the fluorescent or luminescent properties of various specific probes located within. However many different types of detector systems could be used in place of cells in such a system, for example, appropriate variants of Scintillation Proximity Assay (SPA) systems (Amersham Pharmacia Biotech) and enzyme-linked immuno-sorbent assay (ELISA) systems (Amersham).

## Test Compound Arrays

The array of test compounds is formatted to have the same dimensions as the detector surface. In one specific embodiment of the invention, array and detector layers have a width of 8 cm and length of 12.5 cm, so as to fit within the format of conventional 96-well or 384-well microtiter plates. Preparation of the test arrays will depend on their origin.

Test compounds held in formatted arrays. Current methods for the production of single compounds by combinatorial methods are under development which involve miniaturization and patterned arrays of tethered solid-phase substrates. Thus, test compounds generated by combinatorial methods can be used to synthesize an array directly or indirectly on a carrier sheet. In one embodiment, vapor phase solubilization is used to produce a test compound array on the synthetic substrate, followed by a printing process of the test

compound array on to an absorbent membrane. In this embodiment, the test array is the printed membrane. An attractive feature of this method is that multiple copies of the same test array can be produced at one time to be screened against multiple cell systems for specific activities which minimizes stock handling from library archives.

Currently most compounds to be screened come in 96-well format. However, the 96-well format can be altered by repeated off-set printings, to any chosen density of format that the transfer substrate and assay can support. The optimum density of compounds in the test array will depend very much on the fraction of compounds in an array which generate bioactive responses in the detector layer ("hit rate"). The hit rate will depend on how well the compound library being tested matches the targets in the assay. If the hit rate is low, e.g., 1:20,000 - 100,000 compounds tested, a test array with center to center spacing of 200 µm (giving 240,000 separate compounds in a 12 cm x 8 cm area) may be preferable, providing 2 to 10 hits per plate. At a spacing of 1 mm, 9,600 test compounds may be screened simultaneously.

The density of the format may be adjusted as required without requiring any changes in the hardware used to perform the re-formatting; rather, adjustment may be made in the degree of off-set and the number of print operations used per array.

## Detection

Fluorescent imaging provides a way to monitor physiological responses of living cells in a non-invasive manner. Ion- and voltage-sensitive probes, as well as the new generation of recombinant fluorescent probes, for instance, hybrid proteins comprising fusions of green fluorescent protein variants (GFPs) to cellular proteins involved in intracellular signaling, can be used singly or in combination to report on many aspects of cellular microphysiology. Due to the strong fluorescence of GFP, the luminescence of cells expressing the probes may easily be detected and analyzed by employing a combination of fluorescence microscopy and image analysis. Furthermore, these probes described are easily introduced into cells, as they can be expressed in the cells of interest after transfection with a suitable expression vector.

Recombinant probes for second messengers and enzyme activity, such as kinase activity, are not only useful in basic research but also in screening programs aiming at identifying novel biologically active substances. As an example, any currently used screening program designed to find compounds that affect cAMP concentration and protein kinase

activity are based on receptor binding and/or immuno detection and/or reporter gene expression. The recombinant probes described herein, on the other hand, make it possible to develop an entirely new types of screening assays able to monitor immediate and transient changes of cAMP concentration and protein kinase activity in intact living cells.

The HDFS method of the invention monitors the response of cell populations to test compounds. Lens systems are currently available which can simultaneously epi-illuminate and image the fluorescence from areas in excess of 8.5 x 13 cm, the size of a standard 96-well plate. The detection method used herein collects a variety of fluorescent signals from all cells in a field, with responses from discrete areas of the field being apparent in the real image of the fluorescence from that field as formed on the surface of the photosensitive detector (imaging camera).

## Delivery of Test Compounds to Detector Cells

In a first embodiment of the method of the invention, delivery of large arrays of test compounds to cells is achieved with test compounds which are present on or transferred to a porous carrier sheet. In specific embodiments, test compounds are printed on the carrier sheet, and the sheet is applied (overlayed) to a field of cells of the same area. The test compounds reach the detector cells by diffusion through a localized buffer layer immediately in contact with an area of the detector cell layer. This embodiment is shown in the schematic of Figs. 2 & 3.

Porous carrier sheet for delivery of test compounds: Test compound arrays are fixed onto the porous carrier sheet by a variety of methods known to the art. For example, an array of test compounds may be transferred and fixed to the carrier sheet by the method of contact printing, whereby an array of inert flat-ended pins (e.g. made of stainless steel) is used to transfer defined volumes of individual test compounds (in the range 50 nl to 2  $\mu$ l) in solution form to discrete points on a dry carrier sheet.

A porous membrane useful in the delivery of test compounds is a membrane constructed of a non-absorbent material with pores of regular and defined diameter which traverse the membrane directly from the upper to the lower side. The property of orthogonal capillarity is useful in these membranes to limit lateral spread of test compounds applied to the membranes as discrete spots of liquid, since it is important that the compounds remain as discrete spots upon the membrane. A variety of membranes of different thicknesses,

materials, and pore densities are commercially available from a number of manufacturers. For example, porous membranes useful in the method of the invention include a track-etched polycarbonate or polyester membrane (Corning Costar or Whatman/Polyfiltronics). These are available in thicknesses from 6 to 23 microns, with pores of 14 to 0.015 microns, at 100,000 to 1,000,000,000 pores/cm<sup>2</sup>. For delivery of test compounds with maximum ease of handling and loading of test compounds, polycarbonate membranes are preferred, particularly of a thickness of greater than 10 microns, with pores between 1 and 10 microns diameter at densities of between 20,000,000 to 100,000 pores/cm<sup>2</sup>, respectively. One preferred membrane is Nucleopore® from Corning Costar.

Alternative membranes useful for the delivery of compounds include cast cellulose acetate (Membra-fil®), PTFE membranes (e.g. Filinert™), and glass fiber filters, all available from Corning Costar. These thicker membranes encourage lateral spread of liquid samples applied to their surfaces, but are thicker and could thus be used to deliver larger amounts of compounds.

Track-etched and cast cellulosic membranes may also be given hydrophilic or hydrophobic surface treatments. It is useful to have membranes whose surfaces have defined wettability properties.

When the test compound is soluble, the compound will dissolve into the buffer upon contact with the buffer medium, and directly contact the detector layer immediately underlying the buffer layer. In this embodiment, the test compounds dissolve upon contact with the buffer medium, and fall vertically onto the detector layer as a result of having a higher density than the surrounding liquor. It is generally preferred that the thin buffer layer between the test compound membrane and detector layer not be stirred significantly by convection. At the detector layer, the vertical fall of a solution of test compound is expected to spread radially by displacement and diffusion. The radial extent of a measured response may thus be use as an indicator of the bio-potency of the compounds involved.

Test compounds of limited solubility, such as those expressed on the surface of a carrier system, for instance, a cell membrane, viral or phage particle, must be brought into very close proximity, including direct contact, with the detector layers.

Buffer and Detector layer. The detector layer may be a continuous or non-continuous layer of living cells. In a specific embodiment, the detector layer is a continuous cell monolayer corresponding in size to the test compound array. In more specific embodiments,

thin glass substrate, suitably tissue culture treated is preferred for fluorescent probes requiring excitation wavelengths below 400 nm.

Living cells are maintained under physiologically viable conditions, as defined by such parameters as oxygen consumption, membrane potential, mitochondrial potential and cytoplasmic ion balance. Provision of these conditions requires the use of solutions able to supply essential nutrients and buffer pH changes normal to the continued growth of living cells. Such solutions may be complete cell culture media (i.e. any of those commercially available, for instance from Life Technologies Ltd.) optionally supplemented with antibiotics and serum preparations for optimal cell growth conditions. Buffer solutions may also be of the type known as "chemically defined" (e.g. phosphate buffered saline solutions). Cells will also require controlled temperature conditions, in the range 20° to 37°C, and the provision of gases essential to continued cell growth and maintenance of buffer capacity (O<sub>2</sub>, and optionally 5% CO<sub>2</sub>, depending on the type of buffer being used).

Detection of bioactivity. Detection of bioactivity may be determined by a number of methods known in the art. In a preferred embodiment, detection of bioactivity is determined by cellular imaging of fluorescence. For example, imaging may be conducted of a cell layer on a clear glass substrate. A glass substrate having a surface pitted with a regular array of very shallow (approx 20 μm) depressions may be used for this purpose (Corning). This glass substrate is useful because it ensures a regular and defined spacing between the overlying test array and the cells beneath.

In one embodiment, the detector layer is an undemarcated area of living cells growing on a flat culture surface. The cells on this surface may or may not be grown to confluence, may be transformed and/or engineered cells, or directly derived from animal tissues and grown as primary cell culture. In a second embodiment of the method of the invention, the array of test compounds is laid out onto a non-porous substrate (such as thin coverglass sheet) which is transparent or optically clear. Imaging will be through this surface, and through the cell support membrane lying above. The substrate (Fig. 4, 10) should be inert and solvent tolerant. For example, borosilicate glass sheets of about 200 microns thickness, which may be further surface-treated to give either hydrophobic or hydrophilic properties as desired. This embodiment is shown in the schematic of Fig. 4.

Detector layer: In one embodiment of the invention, the detector layer is a layer of

living cells cultured on a thin porous membrane. A porous membrane useful in the culture and transfer of cells is a transparent non-absorbent membrane with pores of regular and defined diameter which traverse the membrane directly from the upper to the lower side. A porous sheet suitable for cell growth is a track-etched polyester membrane about 10 microns thick with pores between 0.015 and 5 microns diameter at densities of between 600,000,000 to 400,000 pores/cm² repectively (Nucleopore® from Corning Costar).

Delivery of test compounds to detector layer. The porous membrane which supports the detector layer, complete with the buffer medium which overlays it, is applied onto the (dry) test array. Buffer medium wets the lower surface of the porous membrane (Fig. 4, 19) and forms a continuous thin film 23 between the array of test compounds 21 and the porous membrane 19. Test compounds diffuse up through the pores to the detector layer above. In one embodiment of the invention the detector layer is a monolayer of living cells overlayed with physiological buffer solution. The invention includes the possibility that under some conditions it is desirable to have cells grow processes through the membrane to make direct contact with substances on the test array below, with the use of a membrane having an appropriate pore diameter.

Further embodiments and general considerations. Where a test array is generated as a complex mixture of components, such as from the "teabag" method of combinatorial synthesis, or from cDNA library expression systems, a separation step may first necessary. Separation of test components may be conducted in any number of ways known to the art. In one embodiment, components may be separated by the use of one- or two-dimensional separation techniques in non-denaturing gels. The resulting gels may be used directly as test arrays.

Specific separation methods will be tailored to the components involved. Any bioactive compounds from such an array would be identified from identical copies of the original test gel.

## Detection of Bioactivity.

Lens and illumination system. Specialized light sources and optics are needed to illuminate and image the fluorescence coming from an area the size of a microtiter plate (96-well plate). Such a system is available from: Imaging Research Inc., St Catherines, Ontario, Canada, and consists of a high-power light source directed through a specialized lens which

acts both as a wide-field epi-illuminator and imaging device.

An illumination system useful in the HDFS device is able to deliver excitation light over an area of at least 8.5 by 13 cm at an intensity sufficient to excite measurable fluorescence from that test field (which in most cases will be living cells loaded with fluorescent reporters). The illumination may come from a scanned beam, or be wide-field for simultaneous illumination of the entire area. The imaging system will collect fluorescent light from the entire test area and bring it to focus onto a sensitive imaging photodetector, such as a cooled CCD camera chip.

Screening. The practice of screening large libraries of samples of unknown composition for the few which may contain a compound of specific biological activity is one of the more common methods of new drug discovery. The samples of unknown composition are in most cases biological material, such as plant extracts or microbial fermentation broths. Screening these for biological activity is normally accomplished by performing binding assays or, more recently, functional assays. A binding assay is an attempt to find compounds of interest by identifying those which adhere with some desired affinity to cells or cell products. This can be done using fluorescent, luminescent, or radioactive detection methods. These assays are based not on a biological response, but passive processes of adherence and displacement. They cannot be construed as functional assays or as real-time assays. Another way to determine biological activity is to measure up-regulation or down-regulation of expression of a known genc. This is done by inserting DNA which codes for something which can be readily measured into a cell's genome such that the expression of interest is coupled to expression of the inserted DNA. While this is a true functional assay, it also is not a real time assay. In addition, it is only capable of finding compounds which affect gene expression. In many cases this is not the response of interest.

The CytoSensor described in U.S. Patent No. 4,915,812 and U.S. Patent No. 5,395,503 is a commercial instrument which has been billed as a screening instrument. It is based on the detection of increased cellular proton flux by means of a semiconducting electrode. The instrument is applicable to high through-put screening, but can only detect cellular events that result in changes in extracellular pH. Again, many responses of interest are not associated with changes in extracellular pH.

The growth over the last few decades in the knowledge of cellular signaling has presented extremely rich opportunities for new ways of screening for biologically active

compounds. Armed with knowledge of the biological process which one wants to affect with a new product, it is possible to monitor the actual process as a way of looking for compounds which affect it. The development of fluorescent probe molecules which upon interaction with intracellular signaling molecules (e.g. ions, enzymes, cyclic nucleotides) change their spectral properties has enabled the real-time monitoring of dynamic biological responses within living cells. Most of these probes can be introduced non-invasively into cells and will, depending on the detection system, allow characterization of cellular events in high temporal resolution (microseconds to seconds) and high spatial resolution (nanometers to micrometers). This probe technology, in combination with the technology of cellular imaging which is described below, has had a major impact on cell biology in that it has enabled monitoring of complex, cross-reacting intracellular events that could not be unravelled by conventional invasive biochemical techniques.

Imaging of cellular functions using luminescent probes. Visualization of intracellular function using luminescent (fluorescent or bioluminescent) probes has become one of the mainstay techniques in modern cell biology. Using traditional optical microscopes with quantitative detectors in place of the human eye, both the concentration and distribution in the cell of a variety of intracellular molecules of interest can be measured. While luminescent probes can be measured in large populations of cells using other techniques, imaging is the only way to learn what is going on in single cells or small populations of cells. The imaging capabilities of the HDFS apparatus will be limited to rather low spatial resolution - fluorescent changes will be imaged from the entire field of detector layer up to 8cm by 12.5 cm. When the detector layer comprises living cells, individual cells need not be resolved in the image, only the fluorescent signals from regions in which cells are present.

The imaging times will vary depending on the responses and parameters being monitored. Signaling responses, for instance changes in the level of free calcium in cellular cytoplasm, may first be seen within seconds or minutes following delivery of test compounds to the detector layer. Such changes can be monitored by changes in the fluorescent properties of specific chemical probes, for instance Fluo-3 or Fura 2 may be used to report on cytoplasmic calcium. The way in which these changes develop within cells (time-response profile) is an important diagnostic feature of the signaling processes giving rise to them. Rapid responses are therefore recorded by sequences of images, where the time between images in a sequence is between 0.1 and 30 seconds (depending on the response being

screened for). Transcription mediated events may require minutes to hours to develop. Monitoring may be continuos or intermittent. For slow responses, two images can be sufficient to gauge the level of response, the first taken before application of test compounds, the second after a period during which the response is estimated to have reached its maximum extent.

Controls relevant to the parameters being measured can be incorporated into the test arrays, both as a check for cell responsiveness and as co-ordinate markers within the arrays. The detector layer is continuous and undemarcated, but because of the close apposition of the test array to the detector layer, the center point of a response in the detector layer corresponds to a conjugate coordinate in the test array. It is helpful to have compounds in the test array which will generate known responses at known coordinates in the detector layer. Responses at the conjugate coordinates in the detector layer act as controls for the system's response, against which responses of the detector layer to unknown compounds may be compared; the points of response to control substances also act as reference points in the detector layer from which the coordinates of other responses can be mapped. For example, when bioactivity is determined as the ability to alter the level of free calcium in cellular cytoplasm, common calcium-mobilizing agonists such as carbamylcholine or adenosine trisphosphate are included in the test array at known coordinates.

As another example, when a change in the cellular ratio of inherently fluorescent NAD(P)H/FAD is the biological parameter being assayed, metabolic inhibitors such as KCN or rotenone may be used as a control and marker compounds.

In many instances, diffusion within a thin fluid layer will be involved in many applications of the screening method of the invention, and a concentration gradient will be established from each test point. Those few compounds in a test array which have bioactivity should be detected as spreading rings of response from the focus point of diffusion, within a field of the detector showing no response. The extent of the response areas (measured over time), compared with those from control substances, will provide an indication of potency and solubility of the compound responsible, and also obviate the need to make serial dilutions of test compounds. Toxic or inhibitory substances may also be determined by causing blank sectors in response rings from known agonists. Inhibitory compounds may be determined by their actions on a (pre-)stimulated detector field. Detection of bioactive compounds may incorporate simple image processing to determine the focus, extent and potency/efficacy from

the areas of activity measured in a detector field.

## **Apparatus**

In specific embodiments, the apparatus and method of the invention are as shown in Figs. 1-4. Fig. 1 shows a high energy light source 1, either a mercury or xenon arc lamp, light from which is collected and collimated by unit 2, directed through a shutter assembly 3 and passes through a excitation filter-changer 4. A high-quality light guide 5, either of fused quartz or a UV-compatible liquid light guide, directs excitation light into the lensing and epi-illumination optics housed in unit 7. Excitation light emerging from 7 evenly illuminates the horizontal detector layer located in the multi-component assembly labeled 10 and 11.

Further details of this assembly are shown in Figs. 2a-c, 3, and 4. The assembly comprises two solid layers of which 10 is fixed relative to the stage unit 8 which supports it, while layer 11 is moved vertically downward on guide pins (17 in Figs. 2a,b,c) to bring test compounds into contact with the detector layer. Vertical movement of 11 is controlled by arm 12 driven by unit 13. Four sprung contacts 14 attached to 12 press upon the frame of layer 11 to drive it downwards as arm 12 descends. A separate drive unit 9 controls position of the stage 8 in the horizontal plane, and also is used to adjust focus by movement along the vertical axis.

Fluorescent light emitted by the detector layer is collected by lensing unit 7, passes through an emission filter-changer 15 and is brought to focus on the photosensitive surface of an imaging detector housed in unit 16.

Specified devices (3, 4, 9, 13, 15, 16) are controlled by a central processing unit 6 which issues commands to, and collects data and status information from the devices attached to it. Collected data (images) can also be analyzed by unit 6, or passed to a subsidiary analysis station (not shown). Unit 6 comprises: central processing unit (Intel Pentium chip, or better), RAM, multi-channel serial input/output cards with onboard A/D and D/A converters, one of which cards controls the camera 16 and captures images from it, also a video controller card, VDU, and hard disk memory units.

Figs. 2a,b,c are schematic diagrams of the test stage, which includes a supporting stage 8 with large rectangular central aperture, the shape and size of which is the same as the area labeled 19. The position of stage 8 is adjusted in the horizontal and vertical axes by the

3-axis positioner 9. These diagrams are drawn for the specific embodiment in which the detector layer is a layer of living cells growing on the upper surface of the solid transparent component 10, which also serves to contain the liquid layer 18 which overlays the cells in the detector layer and provides them with necessary nutrients and conditions to keep them alive. The printed array of test compounds 21 is borne on a sheet of track-etched membrane 19 held by a rectangular rigid frame 11. At the beginning of the screening assay, the array 21 is not in contact with the fluid layer 18. The array 21 is held away from the liquid layer by pins 17 which pass through holes 24 in the corners of the frame 11 and which, by friction or "click-stops", prevent it from falling (Fig. 2a). At the appropriate moment, arm 12 is moved down by the drive unit 13 and the four sprung contacts it bears 14 exert pressure on the frame 11 moving it down the guide pins 14 and into the liquid 18 below to a position where it is in very close proximity to the underlying layer of detector cells 20 grown on top of the solid substrate 10 (Fig. 2b). Throughout this procedure, the entire area of the detector layer corresponding to the size and shape of area 19 is illuminated and imaged from below by the additional apparatus shown in Fig. 1.

The apparatus can also be used in a second embodiment of the screening method of the invention, where the test array is laid out on the upper surface of component 10, and components 11 and 19 are a frame and thin transparent track-etched membrane, respectively. In this specific embodiment, the frame 11 is sufficiently deep to contain culture liquid as required to sustain the detector layer of living cells growing on the upper surface of the membrane 19.

Figs. 3 and 4 are schematics to show the relative positions of the different layers in the test-array/detector layers used in the specific embodiments of the invention. Fig. 3 shows the arrangement in which an array of discrete spots of test compounds 21 on a porous membrane 19 is in contact with a liquid layer 18 overlaying the detector layer 20 which is supported by an optically transparent solid substrate 10. The compounds fill the parallel capillary spaces 22 in the track-etched membrane 19. Bioactivity is detected by measuring changes in fluorescence in the detector layer 20 resulting from responses to the diffusion of test compounds through the porous membrane to the detector layer.

Fig. 4 is a schematic drawing of a second embodiment of the screening method in which a detector layer 20 supported on an optically clear porous membrane 19, and overlayed

by a liquid layer 23, is placed onto an optically clear solid substrate 10 bearing an array of test compounds 21. The thin space 18 between components 19 and 10 is filled with solution from 23 which has passed through the porous membrane 19. Bioactivity is again detected by measuring changes in fluorescence of the detector layer resulting from responses to the diffusion of test compounds through the porous membrane to the detector layer.

Fig. 5 is a schematic illustrating the way in which an array of 1536 compounds can be created on a membrane surface, such as would be useful in the first embodiment described above, by simple transfer printing. Compounds are stored in 16 separate 96-well microtiter plates and defined amounts are transferred simultaneously by a 96-pin printing head to the surface 19. The contents of each successive 96-well plate are printed at a slightly offset position, generating an array as shown in Fig. 5b after 4 such printing operations, and a full array of 1536 compounds (Fig. 5c) after 16 printing operations. The holes 24 in frame 11 are used to position and guide the completed array on the pins 17 indicated in Figs. 2b and 2c. The process illustrated in Fig. 5 can also be used to transfer an array of test compounds to a solid surface such as would be useful for component 10 in the second embodiment of the method described above.

### **EXAMPLE**

# **Example 1.** Screening of 1536 Test Compounds for Bioactivity.

The following description of the use of one embodiment of the apparatus of the invention in the screening method disclosed. An array of test compounds are supplied in 96-well microtiter plates, as is common practice for compounds produced by methods commonly known as combinatorial chemistry, or for compounds extracted from natural sources. In this example, the compounds are provided in soluble form, and the concentrations and solvents used have previously been tested for compatibility with the apparatus. In this example, 1536 compounds are tested simultaneously against a known cellular target, specifically a G-protein coupled receptor (GPCR) of the Gq type expressed in a transformed cell line. Gq GPCRs give clearly identifiable changes in intracellular calcium when activated.

First, physiologically viable living cells are cultured to a near confluent monolayer in a transparent culture dish (10, Fig. 2a-c) in appropriate culture medium and conditions.

Immediately prior to being used in the experiment, the cells are loaded with the fluorescent

indicator of free cytoplasmic calcium concentration, Fluo-3 (from Molecular Probes, Oregon). This is accomplished by incubating the cells with a 2 to 5  $\mu$ M solution of Fluo-3 acetoxymethyl ester (AM) for a period of 10 to 15 minutes, followed by a series of solution exchanges to wash away excess Fluo-3 AM.

The method of transfer of compounds to the track-etched membrane Fig. 2a-c 19 is illustrated in Fig. 5. In this example, 1536 compounds are printed as an array 21 on a single track-etched membrane 19, from sixteen individual 96-well microtiter plates in the following manner: A 96-pin printing head is used to transfer defined volumes of compounds (in the range 0.05 to 0.5 µl of each compound), one compound per pin, from each 96-well plate in turn (with wash steps between source plates to avoid cross-contamination). Each 96-point print to the membrane occurs in an offset grid, such that 16 print operations are made sequentially on the same membrane and the printed spots of compounds remain discrete and separated from each other (three of these spots are indicated in Fig. 5a, 21). Fig. 5a shows the result of a single 96-point print operation, Fig. 5b after four such operations, and Fig. 5c the finished array after 16 print operations. In this way, just sixteen print operations (and sixteen intermediate wash steps for a single print head) are sufficient to transfer 1536 compounds to a single test array. The procedure can be readily automated, and multiple copies of each printed sheet made for multiple tests.

Completed arrays are fixed to the pins 17 (Figs. 2b-c) projecting from the culture dish 10 such that they are supported some small distance above the thin fluid layer 18 covering the living cells which form the detector layer. Once the test array is fixed in place over the Fluo-3-loaded cells, the entire assembly is placed onto the test stage as shown in Fig. 2a.

The following events are synchronized by sequential instructions from the computer processing unit 6. First, the test stage is centered over the lensing unit 7 (Fig. 1) and the detector layer it supports is brought into focus by the motor unit 9. Fluo-3 is excited by light of 490 nm, and its fluorescent emissions are collected in the range 505-540 nm. The intensity of emission is increased when the dye binds free calcium. Thus the computer brings a 490 nm band-pass excitation filter into line of the light path coming from units 1 and 2 using the filter changer unit 4. At the same time, a band-pass emission filter for the range 505-540 nm is positioned in the imaging path by unit 15. The shutter 3 is opened for a pre-determined exposure period (typically 50 to 500 milliseconds), and during this time the whole area of the

detector layer is illuminated with 490 nm light. Fluorescent emission from the Fluo-3 in the cells is collected by the lens 7 and focused into the camera. The camera captures the image and sends it to the processing unit 6 where it is stored and displayed. At regular intervals thereafter, images are captured in sequence by repeatedly opening the shutter 3. Intervals between successive images are typically in the range 0.5 to 30 seconds, depending on the speed of the response expected. Intervals of 0.5 to 2 seconds are usual and sufficient to sample the dynamics of most changes in cellular calcium. At a predetermined time during this continuing sequence of images, the test array is pushed down the guide pins 17 by the actuating arm 12 and its sprung contacts 14, driven by unit 13. In close apposition to the cells in the detector layer, the test array begins to release the compounds it carries. The compounds dissolve into the liquid layer, and these fall vertically downwards onto the cells below. Because there is only a thin liquid layer between the membrane of the test array and the cells below, there is insignificant intermixing of adjacent test compounds. If a test compound activates cells below it bearing Gq GPCRs, these cells will respond with an immediate increase in free cytoplasmic calcium, and the fluorescence signal from the Fluo-3 dve they contain will increase. The sequence of images collected during the period of the response (which is typically of 1 to 10 minutes duration) will reveal which cells have so responded, and their position in the area of the detector layer will be correlated with the identity of the compound in the array above. An analysis of the entire area of each image in the sequence, performed on-line by the processing unit 6, yields the following information: the identity of the compound eliciting the response, the profile of the response with time, the intensity of the response, and also the potency of the compound with reference to a chosen standard. The latter information is contained in the radius of the area of cells responding within a particular time, and can be compared directly to a known standard which is included in the array at known points. The use of standard compounds at known points in the array also provides a control for the experiment, and helps to identify coordinates in the detector layer from which other responses can be mapped.

At the end of the screening assay, the sequence of images is stopped, the actuating arm 12 raised, and the test assembly removed. The next assembly is then moved in and the sequence begun afresh. Assembling the test units and exchanging them on the test stage can be automated by appropriate robotic control (not shown in the diagrams).

One of the advantages of the method of the invention is that the method does not require that either the components of the detector layer (e.g. living cells), or the different test compounds, be isolated from one another within discrete chambers or compartments, as is common to all high throughtput screening procedures currently in use or development. The method also removes the need to dispense microvolumes of test compounds during the period of the assay itself. Delivery of test compounds to detector layers is either by direct contact or by simple diffusion across thin liquid films. Delivery and detection becomes a (massively) parallel process.

#### **CLAIMS**

#### What is claimed is:

- 1. A method for screening test compounds for bioactivity, comprising:
- (a) contacting an array of test compounds with a detector layer; and
- (b) detecting a detector layer response, wherein a response is indicative of bioactivity.
- 2. The method of claim 1, wherein the detector layer is comprised of physiologically viable cells.
- 3. The method of claim 2, wherein the detector layer is supported by an optically clear substrate.
- 4. The method of claim 3, wherein the reactive sensing surface is held stationary in the field of view of the optical detector and the sample surface is moved into contact with it during the course of the measurement.
- 4. The method of claim 1, wherein the detection of step (b) is a change in a fluorescence or luminescence property of the cell.
- 5. The method of claim 4, wherein detection is determined with an illumination system capable of exciting the fluorescence of the reactive surface with any of a number of previously selected wavelengths with defined order and of defined time duration.
- 6. The method of claim 2, wherein the physiologically viable cells form a monolayer.
- 7. The method of claim 1, wherein the test compounds are generated on a solid support by combinatorial chemistry.
- 8. The method of claim 1, wherein the test compound array is generated by one- or two-dimensional gel electrophoresis.

- 9. A method for high throughput screening of test compounds for bioactivity, comprising:
- (a) contacting a solid support comprising an array of multiple test compounds with a cell layer, wherein each test compound comes into contact with a localized liquid which is in contact with a detector layer; and
- (b) detecting a response of the detector layer to the test compound, wherein a response is indicative of a bioactive compound.
- 10. A method for simultaneously exposing an array of test compounds with a reactive sensing surface, comprising the steps of:
- (a) contacting an array of test compounds on a solid matrix with a porous membrane which is in contact with a liquid layer overlaying a reactive sensing surface layer; and
- (b) allowing the test compounds to diffuse through the porous membrane to the liquid layer overlaying the reactive sensing surface.
- 11. An apparatus for screening an array of test compounds for bioactivity, comprising:
  - (a) a solid support comprising an array of test compounds;
  - (b) a porous membrane; and
- (c) a detector layer layer, wherein a liquid layer is between the porous membrane and detector layer layer, and wherein the test compounds contact the detector layer layer by diffusion through the porous membrane.

# METHOD AND APPARATUS FOR HIGH DENSITY FORMAT SCREENING FOR BIOACTIVE MOLECULES

#### Abstract

A method and apparatus for screening an array of test compounds for bioactivity by contacting an array of test compounds with a detector layer capable of detecting bioactivity, and detecting a detector layer response. The detector layer is comprised of physiologically viable cells. The method and apparatus allow a large number of test compounds to be simultaneously assayed in parallel.

Fig. 1 Schematic view of equipment; not to scale



Fig. 2

# Side views of test stage; not to scale







Top view of test stage; not to scale

# 3-D sectional representations of portions of the test-array/detector layers: not to scale





# Changes in intracellular cAMP visualised using a cAMP-dependent protein kinase-green fluorescent protein hybrid.

Kasper Almholt, Bernard R. Terry\*, Ole Skyggebjerg, Søren Tullin, Kurt Scudder, and Ole Thastrup

BioImage, Novo Nordisk A/S, 28 Mørkhøj Bygade, DK-2860 Søborg.

Keywords: PKA, cAK, C-subunit, cAMP, measurement, live-cell, GFP, redistribution

\*corresponding author:

Tel.: +45 4442 6341 Fax: +45 4442 1411 e-mail: bobt@novo.dk

## **ABSTRACT**

A novel method to monitor changes in intracellular cAMP concentration ([cAMP]) within intact living cells has been developed based on a fusion of the catalytic subunit of cAMP-dependent protein kinase to green fluorescent protein (GFP). In stably transfected unstimulated fibroblasts, fusion protein fluorescence was highly concentrated in aggregates throughout the cytoplasm and absent in the nucleus. Stimulation with the adenylate cyclase activator forskolin caused the release of tagged catalytic subunits from the cytoplasmic aggregates within minutes, resulting in an increasingly homogeneous distribution of GFP fluorescence throughout the cytoplasm. The observed redistribution was completely reversible: removal of forskolin led to the return of fluorescence to the cytoplasmic aggregates. Spot-photobleach measurements showed that the rate of exchange of GFP-labelled catalytic subunits at these aggregates increased in proportion to [cAMP]. The localisation of the fusion protein was also sensitive to receptor stimulation. In fibroblasts stably expressing the G-protein coupled glucagon receptor, generation of an increased [cAMP], through glucagon stimulation resulted in a redistribution of tagged catalytic subunit similar to that observed after forskolin addition. Conversely, in fibroblasts overexpressing the G-protein coupled α2a adrenoreceptor, addition of norepinephrine after forskolin stimulation led to a reversal of the fusion protein redistribution.

#### INTRODUCTION

The cAMP-dependent protein kinase (cAK)<sup>1</sup> is a ubiquitous serine/threonine protein kinase. cAK is recognised as the only mediator of intracellular cAMP signals in eukaryotes<sup>2</sup>, with the exception of certain ion channels<sup>3</sup>. The cAK holoenzyme is an  $R_2C_2$  tetramer consisting of a regulatory (R) dimer and two catalytic (C) subunits<sup>2</sup>. Presently, four isoforms of the regulatory subunit (RI $\alpha$ , RI $\beta$ , RII $\alpha$  and RII $\beta$ ) and three isoforms of the catalytic subunit (C $\alpha$ , C $\beta$  and C $\gamma$ ) have been described<sup>2</sup>. Splice variants of C $\alpha$  and C $\beta$ <sup>4</sup> and possible R heterodimers, as reported for RI $\alpha$  and RI $\beta$ <sup>5</sup>, add to the complexity of the cAK holoenzyme. Although the C $\gamma$  isoform is unique with respect to substrate specificity, inhibition and tissue distribution<sup>6</sup>, few reports suggest different roles for C $\alpha$  and C $\beta$  isoforms of the catalytic subunit<sup>7</sup>. In contrast, the RI and RII subunits are reported to be distinct. The cAKI (RI<sub>2</sub>C<sub>2</sub>) holoenzyme is thought to be mainly soluble and cytoplasmic<sup>2</sup> although RI is reported to be associated with

sarcoplasmic membranes<sup>8</sup> and also with a detergent-resistant structure in mammalian sperm<sup>9</sup>. cAKII (RII<sub>2</sub>C<sub>2</sub>) on the other hand is thought to be particulate and RII has been reported to bind to a number of intracellular components, most notably Golgi membranes<sup>10,11</sup> and centrosomes<sup>10,11</sup> but also mitochondria<sup>12</sup>, nuclei<sup>13,14</sup> and cytoskeletal components<sup>11,12</sup>. RII subunits interact with a family of proteins called A-kinase anchoring proteins (AKAP)<sup>15</sup> and this may also be true of RI subunits<sup>16</sup>. The AKAP-RII subunit interaction is presumed to be responsible for localising the cAKII tetramer at these intracellular sites. The NH<sub>2</sub>-terminus of the C subunit is myristoylated<sup>17</sup>, a post-translational modification usually associated with membrane insertion. However, the C subunit does not appear to be membrane attached and while myristoylation may increase the thermostability of the protein, the possible role of myristoylation in its targeting or substrate specificity is still not clear<sup>18</sup>.

The C subunit in the assembled tetramer is believed, although not unanimously<sup>19</sup>, to be catalytically inactive. Activation of cAK is physiologically mediated through G<sub>s</sub>-protein coupled plasma membrane receptors. G<sub>s</sub>-protein activation leads to activation of adenylate cyclases, which generate cAMP. Binding of two molecules of cAMP to each R subunit causes the release and activation of the C subunits. Dissociated C subunits phosphorylate cytoplasmic substrates<sup>20,21</sup> and have been shown to relocalise to the nucleus<sup>22</sup>. The nuclear redistribution mechanism of C subunits may be by simple diffusion through nuclear pores<sup>21</sup>. To date a large number of cytoplasmic and a few nuclear cAK substrates have been reported. An incomplete list of 25 *in vitro* substrates<sup>23</sup> includes several enzymes involved in basic metabolism such as phosphorylase kinase, glycogen synthase and fructose bisphosphatase. Nuclear C subunit regulates transcription of genes under control of the cAMP response element (CRE) by phosphorylating the continuously bound CRE binding protein, (CREB)<sup>24,25</sup>.

Several factors decrease the level of cAK activity. Stimulation of plasma membrane bound G<sub>i</sub>-protein coupled receptors inhibits adenylate cyclases and cAMP is continuously being broken down by a variety of phosphodiesterases. Despite the importance of the cAMP/cAK signalling pathway, there is no easy method to monitor intracellular cAMP concentrations ([cAMP]<sub>i</sub>) in intact living cells. The current method of choice involves fluorescence resonance energy transfer (FRET) between microinjected fluorescently labelled R and C subunits<sup>26</sup>. In the work described herein, the Cα subunit was tagged with a highly fluorescent variant of green fluorescent protein (GFP) containing F64L and S65T amino acid substitutions (GFP<sup>LT</sup>) (International

Publication No. WO97/11094). This approach provides a transfectable probe for monitoring the intracellular trafficking of C subunits in response to changes in [cAMP], and represents the first easy method to evaluate changes in [cAMP], in intact living cells in response to extracellular signals.

## Results

# GFP<sup>LT</sup> tagged C had the expected molecular weight.

Lysates of glucagon receptor-transfected baby hamster kidney cells (BHK/GR) stably expressing the C-GFP<sup>LT</sup> fusion protein were characterised by Western blot analysis using polyclonal antibodies directed against the NH<sub>2</sub>-terminus of C $\alpha$  (Fig. 1). In a separate experiment, lysates of BHK cells, transiently expressing either of the two fusion proteins, were characterised by Western blot analysis using polyclonal antibodies that recognise GFP (data not shown). Taken together, these experiments show that C-GFP<sup>LT</sup> fusion protein is recognised as a unique protein of the expected size by the anti-C $\alpha$  antibody in stably transfected cells and that both fusion proteins have the same molecular weight.

# The fusion protein localised to cytoplasmic aggregates.

The localisation of the two fusion proteins, when transiently expressed in Chinese hamster ovary (CHO) cells, was very different. While GFP<sup>LT</sup>-C was evenly distributed throughout the cytoplasm (Fig. 2A), C-GFP<sup>LT</sup> was found in highly fluorescent aggregates in the cytoplasm (Fig. 2B). These distinct patterns for the two fusions was also seen in transiently transfected human embryonic kidney (HEK293) and BHK/GR cells (data not shown). For unknown reasons it was not possible to make stable transfectants expressing the GFP<sup>LT</sup>-C fusion, whereas this procedure was straightforward with the C-GFP<sup>LT</sup> fusion. The distribution of GFP<sup>LT</sup>-C in transiently transfected CHO cells did not change when [cAMP], was raised by the addition of 50 µM forskolin (n=6, data not shown). The following results are therefore based only on work with the C-GFP<sup>LT</sup> fusion.

# Increased [cAMP]<sub>i</sub> caused the release of fusion protein from cytoplasmic aggregates.

Within 2-3 minutes of treatment of CHO/C-GFP<sup>LT</sup> cells with forskolin, C-GFP<sup>LT</sup> fluorescence dispersed from the bright aggregates and filled the cytoplasm (Fig. 3A, 1 μM forskolin), remaining in this distribution for as long as forskolin was present (cells were followed up to two hours). The probe did not enter the nuclear compartment to any clearly observable extent. Higher doses of forskolin increased the rate and extent of probe redistribution. The responses depicted in Figure 3B-G have all been quantified from image data, as described in the experimental protocol. Table 1 gives a comparison of the average temporal profiles of fusion protein redistribution in response to the three forskolin concentrations shown in Figure 3B. Addition of 1 mM dibutyryl cAMP (dbcAMP) (n=6), a membrane permeable cAMP analogue, which is not degraded by phosphodiesterases, caused a similar but slower response (Fig. 3C). Addition of 100  $\mu M$ 3-isobutyl-1-methylxanthine (IBMX) (n=4), a cell permeable phosphodiesterase inhibitor, caused a similar, slow response (Fig. 3D), even in the absence of adenylate cyclase stimulation. Addition of buffer (n=2) had no effect (data not shown). As a control for the behaviour of the fusion protein, GFP1.7 alone was expressed in CHO cells and these also given 50  $\mu M$  forskolin (n=5); the uniform diffuse distribution characteristic of GFP in these cells was unaffected by such treatment (data not shown).

To test the reversibility of the fusion protein redistribution, CHO/C-GFP<sup>LT</sup> cells were treated with 10  $\mu$ M forskolin (n=2) and washed repeatedly (5-8 times) with 37°C buffer. Although the plant terpenoid forskolin is lipophilic, it is possible to remove its effect by washing with aqueous buffer<sup>22</sup>. In these experiments, fusion protein began to return to its prestimulatory localisation within 2-3 min (Fig. 3E). In fact the fusion protein returned to a pattern of fluorescent cytoplasmic aggregates virtually indistinguishable from that observed before forskolin stimulation. To test whether the return of fusion protein to the cytoplasmic aggregates reflected a decreased [cAMP], cells were treated with a combination of 10  $\mu$ M forskolin and 100  $\mu$ M IBMX (n=2); when washed repeatedly (5-8 times) with 37°C buffer containing 100  $\mu$ M IBMX the fusion protein did not return to its prestimulatory localisation after removal of forskolin (Fig. 3E).

To test the probe's response to receptor activation of adenylate cyclase, stably transfected BHK/GR,C-GFP<sup>LT</sup> cells were exposed to glucagon stimulation. In these cells, addition of 100 nM glucagon (n=2) caused the release of C-GFP<sup>LT</sup> from the cytoplasmic aggregates and a resulting permanent redistribution of the fusion protein to

a more even cytoplasmic distribution within 2-3 min (Fig. 3F). Similar but less pronounced effects were seen at lower glucagon concentrations (n=2, data not shown). Addition of buffer (n=2) had no effect over time (data not shown). CHO/C-GFP<sup>LT</sup> cells, transiently transfected with the  $\alpha$ 2a adrenoreceptor (AR $\alpha$ 2a), were treated with 10  $\mu$ M forskolin then, in the continued presence of forskolin, exposed to 10  $\mu$ M norepinephrine to stimulate the exogenous adrenoreceptors. This treatment led to reaggregation of C-GFP<sup>LT</sup> within the fluorescent structures, consistent with a receptor-induced decrease in [cAMP] (Fig. 3G).

# Rate of recovery from photobleach of C-GFP<sup>LT</sup> aggregates is dependent on forskolin concentration.

Photobleach measurements were made to confirm that changes seen in the distribution of C-GFP<sup>LT</sup> fluorescence were a result of changes in the rate of turnover of C-GFP<sup>LT</sup> upon the aggregates. The fluorescence of an entire C-GFP<sup>LT</sup> aggregate within a cell could be effectively bleached within 2 to 5 seconds by a stationary laser beam at full intensity. After bleaching, aggregates recovered their fluorescence, indicating a dynamic exchange of C-GFP<sup>LT</sup> at these loci (Fig. 4A). The rate of recovery from spot photobleach was highly reproducible at each particular concentration of forskolin even in different cells (Fig. 4B). Both the extent and rate of recovery increased with the forskolin treatment given. Most recovery curves required at least two exponentials to fit them adequately. Given the limits of the experimental procedure, the curves are used here only to estimate half-times of recovery. To an approximation, half times for recovery can be estimated directly from the slope of reciprocal plots of the fluorescence displacement for the first few time points<sup>27</sup>. Values for half times estimated within the first 3.0 seconds of recovery (Fig. 4C) are plotted as a dose response curve in Figure 5, giving an estimated ½-maximal concentration for forskolin of about 3 μM

## Fusion protein redistribution correlated with [cAMP]i

As described above, the time it took for a response to come to completion was inversely related to the forskolin dose (Table 1). In addition the extent of a response was also dose dependent. In an automated imaging system we stimulated CHO/C-GFP<sup>LT</sup> cells with 5 increasing doses of forskolin (n=8). Images were analysed with the same algorithm used

to construct Figure 3B-G. From the results shown in Figure 5, a half maximal stimulation was observed at 1.7  $\mu$ M forskolin by this method. In parallel, CHO/C-GFP<sup>LT</sup> cells were stimulated with 8 increasing concentrations of forskolin (n=N) and the relative amount of cAMP produced was measured in a scintillation proximity assay (SPA). The ½-maximal concentration for forskolin in the SPA assay was determined to be 9.3  $\mu$ M (Fig. 5).

# Co-localisation of C-GFP<sup>LT</sup> with labelled ceramide distributions

Figure 6A is an overlay of green and red fluorescence emissions from CHO/C-GFP<sup>LT</sup> cells stained with BODIPY<sup>®</sup> FL C<sub>5</sub>-ceramide (ceramide-FL). The green channel contains the ceramide-FL and GFP<sup>LT</sup> fluorescence; the red channel shows only the ceramide-FL excimer emission. The ceramide-FL probe preferentially accumulates in Golgi membranes<sup>28</sup>. This is most obvious in images formed from the red excimer emissions of the FL-ceramide. The GFP<sup>LT</sup>-bright structures do not stain with the ceramide probe indicating that they are clearly distinct from Golgi membranes.

# Structure of the GFP<sup>LT</sup> -bright aggregates

Figure 6B shows an iso-surface rendering of 25 deconvolved and reconstructed through-focus wide-field images of a single large C-GFP<sup>LT</sup> aggregate. Each aggregate appears to have the structure of a convoluted tubule or glomerulus, and this is more obvious in the stereo pair (Fig. 6C) derived from the same data set from which the iso-surface rendering was made. It is not completely clear whether each structure is formed from a single fully connected tubule or a small number of discrete tubules in close apposition. The structure is however clearly compact and more complex and structured than a simple amorphous aggregation of C-GFP<sup>LT</sup> molecules. Figure 6B-C is typical of the larger aggregates which are of the order of 2 to 4 μm across. The more numerous smaller aggregates (less than 1 μm across) appear to share the same underlying structural component(s) as their larger counterparts.

## Discussion

The aim of the present study was to develop a transfectable probe for monitoring changes in [cAMP],. Since cAK is by far the major intracellular effector for cAMP<sup>2</sup>, a measure of its activation should closely reflect physiologically relevant changes in [cAMP].

 $NH_2$ - and COOH-terminal fusions of C subunit were made to a highly fluorescent variant of GFP. Only the C-GFP<sup>LT</sup> fusion responded to changes in [cAMP], The three-dimensional structure of the C subunit<sup>29,30</sup> reveals that both the  $NH_2$ - and COOH-termini, while far apart, are both located opposite the catalytic cleft and close to the surface of the protein. Comparison with the closely related cGMP-dependent protein kinase, whose R and C subdomains are contained within the same polypeptide chain in R-C order<sup>31</sup>, suggests that the R subunit of cAK may be expected to interact with the  $NH_2$ -terminal region of the C subunit. Furthermore, the surface of the C subunit in the  $NH_2$ -terminal region is hydrophobic<sup>29</sup>, supportive of a protein-protein interaction in this area. An  $NH_2$ -terminal  $GFP^{LT}$  tag would also prevent post-translational myristoylation (of the  $NH_2$ -terminus) of the C subunit as reported specifically for mouse  $C\alpha^{18}$ , while the C- $GFP^{LT}$  fusion may well be myristoylated. These factors may explain the very different behaviours of the  $NH_2$ - and COOH-terminal fusions of C subunit to  $GFP^{LT}$ .

There are reasons to believe, that the C-GFP<sup>LT</sup> fusion protein behaves like the endogenous kinase both with regard to localisation and activation kinetics. Li *et al.* (1996)<sup>11</sup> have, for instance, reported that RII subunits occur as "intensely fluorescent spots" within perinuclear cytoplasm. Skålhegg *et al.* (1997)<sup>32</sup> also reported a granular distribution of RII in both human B and T lymphocytes. Also, the time frame of fusion protein redistribution in response to forskolin addition reported here, corresponds well to the observation of dissociation of microinjected RI $\alpha_2$ C $\alpha_2$  holoenzyme in response to forskolin within 1-2 minutes<sup>26</sup> and the dissociation of endogenous RII<sub>2</sub>C<sub>2</sub> in response to forskolin observed by immunofluorescence after less than 5 min<sup>22</sup>.

In contrast with previous work with microinjected RIIa<sub>2</sub>Ca<sub>2</sub> holoenzyme and Ca subunit<sup>24</sup>, we did not observe any translocation of C-GFP<sup>LT</sup> to the nucleus. A possible explanation could be the increased size of the fusion protein relative to endogenous C subunit. Nuclear pores are thought to allow passage by diffusion of globular proteins of less than 45-60 kDa<sup>33</sup>. The putative size limit of 45-60 kDa may adequately explain the exclusion of the fusion protein (68 kDa), yet passage of endogenous C subunit (41 kDa).

Consistent with this, a microinjected 65 kDa fusion protein of glutathione S-transferase and mouse Ca subunit (GST-C) was excluded from the nucleus<sup>21</sup>.

That the C-GFP<sup>LT</sup> fusion can be released by dbcAMP or treatments which increase [cAMP], suggests that it must recognise and attach to endogenous R subunits (or some subset of the same) and therefore that these R subunits are naturally collected at or on the structures seen in Figures 3A and 6. Reversal of elevated [cAMP], e.g. by removal of forskolin or stimulation of G-coupled receptors, results in rapid return of fluorescence to the original prestimulatory locations within cytoplasm. These anchoring structures therefore appear to be persistent features within the cytoplasm of CHO/C-GFP<sup>LT</sup> cells. Similar structures and C-GFP<sup>LT</sup> behaviour were also found in transfected BHK cells.

The distribution of fluorescence between aggregates and cytoplasm should reflect the position of a dynamic equilibrium within each cell, determined principally by [cAMP]. This is confirmed by results from spot-photobleach measurements. The rate of fluorescence recovery of aggregates following photobleach measures the net rate of turnover of C subunits at these sites. The rate of recovery is the sum of on and off rates for the association of catalytic with regulatory subunits at these loci, both of which will be governed principally by the concentration of cAMP within the cell (the off rate being governed directly by [cAMP]; the on rate being dependent on the concentration of free C-GFP<sup>LT</sup> in the cytoplasm). Most aggregates completely disappear after full stimulation with forskolin. However, often one aggregate remains, and this is always the biggest and brightest from the unstimulated cell. Nevertheless, as photobleaching can demonstrate, there is active turnover of C-GFP<sup>LT</sup> even at these large fluorescent aggregates which remain in fully stimulated cells. As a further observation, there appears to be considerable mobility of catalytic subunits within the structure of an aggregate, since a stationary laser beam (approx. 0.5-1.0 µm diameter) is able to bleach fluorescence from an entire aggregate of 2-3 µm diameter in 2 to 5 seconds.

The lack of colocalisation of C-GFP<sup>LT</sup> and ceramide fluorescence, the position of aggregates within the cell and their unusual form, suggest that these structures are definitely not associated with Golgi, but may well be constructed of membrane tubules with C-GFP<sup>LT</sup> on the outer surface. Although we have been unable as yet to ascertain the identity of these structures, we have ruled out Golgi membranes. They may however be membranous since fusion protein is apparently freely mobile on them, possible tubular judging by the 3-D recontructed image, and clearly the catalytic subunits are able to

bind to and release from R subunits with ease, suggesting that the latter are anchored to the surface of these structures. They are also persistent within the cytoplasm, and found in all cells transfected thus far with the C-GFP<sup>LT</sup> construct (CHO, HEK293 and BHK).

Figure 5 gives a comparison of an SPA assay conducted in parallel with two different forskolin dose response experiments using the cAK fusion protein. These experiments showed a direct correlation of three parameters: level of [cAMP], turnover rate of C-GFP<sup>LT</sup> at cytoplasmic aggregates, and overall degree of fusion protein redistribution. Data from these three greatly varying methods agree on an ½-maximal concentration for forskolin of between 1.7 to 9.3 μM in this system. As these results show, the cAK fusion protein represents a novel and reliable probe by which dynamic changes in [cAMP], can be measured in intact living cells as they respond to extracellular signals.

# **Experimental protocol**

# Hybrid cDNA construction

Hybrid cDNAs encoding  $NH_2$ - and COOH-terminal fusions of murine  $C\alpha$  subunit<sup>34</sup> to GFP<sup>LT</sup> were inserted into the multiple cloning site of the pZeoSV (Invitrogen Corp., San Diego, CA, USA) mammalian expression vector, generating the fusion constructs C-GFP<sup>LT</sup> and GFP<sup>LT</sup>-C. Briefly, cDNAs encoding C and GFP<sup>LT</sup> were amplified by PCR 5'-C. primers: following using TTGGACACAGCTTTGGACACCCTCAGGATATGGGCAACGCCGCCGCCCCC 3'-C. GTCATCTTCTCGAGTCTTTCAGGCGCGCCCAAACTCAGTAAACTCCTTGCCA 5'-GFPLT, CAC TTGGACACAGCTTTGGACACGGCGCGCCATGAGTAAAGGAGAAGAACTTT 3'-GFPLT. and TC GTCATCTTCTCGAGTCTTACTCCTGAGGTTTGTATAGTTCATCCATGCCATGT . HindIII/AscI restriction endonuclease digested C subunit PCR amplification product and AscI/XhoI digested GFPLT PCR product were ligated with the HindIII/XhoI digested vector for the generation of the C-GFP<sup>LT</sup> fusion construct. Correspondingly the GFP<sup>LT</sup>-C construct was generated by ligating HindIII/Bsu36I digested GFP<sup>LT</sup> PCR product and Bsu36I/XhoI digested C subunit PCR product with the HindIII/XhoI digested vector. To generate a similar construct which allowed the expression of GFP<sup>LT</sup> alone, the GFP<sup>LT</sup> PCR product was digested with HindIII/XhoI and ligated with the HindIII/XhoI digested vector.

## Cell cultures

CHO cells were transfected with the vectors containing hybrid cDNA for the C-GFP<sup>LT</sup> or the GFP<sup>LT</sup>-C fusion proteins using the calcium phosphate precipitate method in HEPES-buffered saline<sup>35</sup>. Stable transfectants were selected using 1000 μg Zeocin/ml (Invitrogen) in the growth medium (DMEM with 1000 mg glucose/l, 10 % foetal bovine serum (FBS), 100 μg penicillin-streptomycin mixture ml<sup>-1</sup>, 2 mM L-glutamine purchased from Life Technologies Inc., Gaithersburg, MD, USA). Untransfected CHO cells were used as the control. To assess the effect of glucagon on fusion protein redistribution, the constructs were stably expressed in BHK/GR cells (Novo Nordisk, Bagsværd, Denmark) overexpressing the human GR. Untransfected BHK/GR cells were used as the control. Expression of GR was maintained with 500 μg G418/ml (*Neo* marker) and C-GFP<sup>LT</sup> was maintained with 500 μg Zeocin/ml (*Sh ble* marker). CHO cells were also simultaneously co-transfected with vectors containing cDNAs for C-GFP<sup>LT</sup> and the human ARα2a (ATCC). Transfected cells are referred to as *e.g.* CHO/C-GFP<sup>LT</sup> cells in the text.

For fluorescence microscopy, cells were allowed to adhere to Lab-Tek chambered coverglasses (Nalge Nunc Int., Naperville, IL, USA) for at least 24 hours and cultured to about 80% confluence. Prior to experiments, the cells were cultured over night without selection pressure in HAM's F12 medium with glutamax (Life Technologies), 100  $\mu$ g penicillin-streptomycin mixture ml¹ and 0.3 % FBS. This medium has low autofluorescence enabling fluorescence microscopy of cells straight from the incubator.

### *Immunoblotting*

Samples containing 10 μg of protein, determined according to the method of Bradford<sup>36</sup> using the Bio-Rad Protein Assay (Bio-Rad Laboratories, Hercules, CA, USA), were added to SDS sample buffer<sup>35</sup> and run on precast 7.5 % SDS-PAGE gels with a 4 % stacking gel (Bio-Rad). The proteins were transferred to PH79 nitrocellulose membranes (Scleicher & Schuell GmbH., Dassel, Germany) for an hour at 4°C using a Bio-Rad Transfer Blot apparatus (80 V). Non-specific adhesion was blocked by

incubating the membranes over night in 3 % bovine serum albumin Fraction V (Sigma Chemical Company, St. Louis, MO, USA) in Tris-buffered saline (TBS) containing 50 mM Tris pH 7.5 and 0.15 M NaCl and for an hour in 3 % skim milk powder (Difco Laboratories, Detroit, MI, USA) in TBS with 0.1 % Tween20 (TBST). The membranes were incubated for an hour in TBST with 3 % skim milk powder and the primary polyclonal rabbit anti-Cα antibody (Upstate Biotechnology Inc., Lake Placid, NY, USA), which was raised against a peptide corresponding to a 16 amino acid N-terminal stretch of human Ca, diluted 1:1000. After 4 washes of 5 min each with TBST, antibody (horse radish peroxidase-conjugated donkey anti-rabbit secondary immunoglobulin from Amersham International plc, Buckinghamshire, UK) diluted 1:5000 in TBS with 3 % skim milk powder was added and incubated for an hour. After 4 washes in TBST and one in TBS, immunoreactivity was detected by enhanced chemiluminescence (ECL) as described by the manufacturer (Amersham) and exposed on Biomax® MR film (Eastman Kodak Company, Rochester, NY, USA). All the steps were performed at room temperature unless otherwise stated.

# Time-lapse recording of fusion protein movement.

Cells were cultured in HAM's F12 medium as described above. The chambers were placed on a temperature regulated microscope stage and kept at 37°C. Fluorescence images were captured using an Axiovert 135 inverted light microscope (Carl Zeiss, Oberkochen, Germany) equipped with a Fluar x40, NA 1.3 oil immersion objective (Zeiss) and a cooled (-40°C) CH1 charged coupled device (CCD) camera (Photometrics Ltd., Tucson, AZ. USA). The microscope was equipped with a 470±20 nm excitation filter, a 505 nm dichroic mirror and a 515±15 nm emission filter (Delta Lys & Optik, Lyngby, Denmark). The excitation light source was a 100W HBO arc lamp.

Redistribution of the C-GFP<sup>LT</sup> fusion protein was quantified using an image analysis program custom written in LabVlEW (National Instruments, Austin, TX, USA). Fluorescent aggregates are segmented from each image using an automatically found threshold based on maximisation of the information measure between the object and the background. The *a priori* entropy of the image histogram is used as the information measure<sup>37</sup>. The area occupied by aggregates in each image is calculated by counting pixels in the segmented areas. The value thus obtained for each image in a series, or treatment pair, is normalised to the value found for the first (unstimulated) image

collected. A value of zero (0) indicates no redistribution of fluorescence from the starting condition. A value of one (1) by this method equals full redistribution.

### Spot photobleaching

A Zeiss LSM 410 with x40 Fluar (as above) was used in spot scan mode at 488 nm to bleach individual fluorescent C-GFP<sup>LT</sup> aggregates within CHO cells variously treated with forskolin. Fluorescence recovery at the locus of each aggregate was monitored immediately after bleach with successive small-area raster scans just large enough to include most of the cell in which the aggregate lay. Nominal output of the laser at 488 nm, before launch into the microscope, was 10 mW. Subsequent raster scans were also run with the laser at full intensity and without a confocal aperture to allow the first to be made within 0.2 seconds of bleach, and for each scan to be completed within 0.3 seconds (100 x 100 pixels per scan). The recovery of fluorescence for the majority of bleach experiments was measured over a period of 215 seconds, recorded in three consecutive blocks of 10 scans having successive intervals between frames of 0.5, 1 and 5 seconds, and a final set of 15 scans each 10 seconds apart. A single scan collected prior to each bleach exposure served both to establish depth of bleach and to estimate maximum recoverable fluorescence in each experiment. Bleach recovery scans (8-bit images) were analysed using IPlab Spectrum software (Signal Analytics Corp., Vienna, VI, USA). A small region of interest (ROI) of between 6x6 to 10x10 pixels was used to define the area for which fluorescence recovery would be monitored in each experiment, and the average fluorescence within that ROI was measured for successive frames in each time series. The measurement ROIs were slightly larger than the bleached C-GFPLT aggregates to allow for cytoplasmic movements during the measurement period. The total average fluorescence within each frame was also measured to allow fluorescence recovery within C-GFP<sup>LT</sup> aggregates to be corrected for the minor effects of photobleaching caused by the series of measurement scans.

Results of the spot-bleach experiments are presented as normalised values of displacement from photobleach,  $\Delta F(t)$ , versus time t:

$$\Delta F(t) = [F(\infty) - F(t)]/[F(\infty) - F(0)]$$

where 
$$F(\infty) = F_i \cdot R_i / R_i$$

 $F(\infty)$  being the maximum recoverable fluorescence within a measurement ROI calculated from the pre-bleach intensity of the target aggregate,  $F_i$ , corrected for total loss of fluorophores within the cell,  $R_i/R_i$ , during the bleach exposure and recovery periods.

#### SPA

CHO/C-GFP<sup>LT</sup> cells were cultured in HAM's F12 medium as described above, but in 96-well plates. The medium was exchanged with Ca<sup>2+</sup>-HEPES buffer containing 100 μM IBMX. The cells were stimulated with different concentrations of forskolin for 10 min. Reactions were stopped with addition of NaOH to 0.14 M and the amount of cAMP produced was measured with the cAMP-SPA kit, RPA538 (Amersham) as described by the manufacturer.

### Automated imaging

A Diaphot300 microscope (Nikon Corp., Tokyo, Japan) coupled to a camera based on the SITe back illuminated 512 x 512 CCD camera (Princeton Instruments Inc., Trenton, NJ, USA) and integrated with a digital data acquisition system using LabVIEW software was configured to allow automated focusing and image-based analyses in 96-well plates. CHO/C-GFP<sup>LT</sup> cells were cultured as described above but in 96-well plates and kept at 37°C throughout the experiments. A fluorescence micrograph of the same field of cells, initially chosen at random, was acquired before and 30 min after forskolin stimulation and analysed as described above.

### Endomembrane labelling with fluorescently tagged ceramides

Golgi membranes in CHO/C-GFP<sup>LT</sup> cells were labelled with ceramide-FL (Molecular Probes Inc., Eugene, OR, USA) at 0.5  $\mu$ M for 20 minutes before washing. Ceramide-FL excited at 480 nm normally emits in the green at about 510 nm, but when concentrated (as in Golgi membranes) the fluorophore forms excimers, resulting in a shift in the emission maximum to greater than 600 nm<sup>38</sup>. Images were collected at both 520  $\pm$  10 nm and beyond 570 nm, allowing good separation of GFP<sup>LT</sup> and ceramide-FL signals.

# Structure of the GFP<sup>LT</sup>-bright aggregates

Through-focus images of individual C-GFP<sup>LT</sup> aggregates were collected from chilled cells with a x63 NA 1.4 oil-immersion objective. The built-in focus motor of the Zeiss LSM 410 was used to advance the objective 0.2 µm between images, 25 images per data set. Effective pixel size in the images was 65.6 nm. Data sets were corrected for bleaching and fluctuations in illumination intensity. Out-of-focus information in the images was removed using iterative, constrained, three-dimensional deconvolution (DeltaVision from Applied Precision Inc., Seattle, WA, USA) based on a theoretically calculated point-spread function. The deconvolved images were then reconstructed into a 3-D rotational projection of 40 images (9 degrees between images) using the method of maximum intensity ray-tracing (DeltaVision, Applied Precision, Inc., Seattle, USA). Two adjacent images in this set, re-sized and pixel-smoothed, were used to create the stereo pair shown in Figure 6C. An iso-surface rendering of the 3-D reconstruction was created using Milan software (BitPlane AG, Zurich, Switzerland) (Fig. 6B).

# **Acknowledgments**

We acknowledge Dr. S. P. Bjørn (Novo Nordisk) for developing a mutagenised cDNA clone for the highly fluorescent derivative of green fluorescent protein used in this study, Dr. G. S. McKnight, Howard Hughes Medical Research Institute, Seattle, USA for providing us with his cDNA clone of the  $C\alpha$  subunit of murine cAK and G. Hagel for expert technical assistance.

## References

- 1. Walsh, D.A., Perkins, J.P., and Krebs, E.G. 1968. An adenosine 3'.5'-monophosphate-dependant protein kinase from rabbit skeletal muscle. *J. Biol. Chem.* 243:3763-3765.
- 2. Taskén, K., Skålhegg, B.S., Taskén, K.A., Solberg, R., Knutsen, H.K., Levy, F.O., Sandberg, M., Ørstavik, S., Larsen, T., Johansen, A.K., Vang, T., Schrader, H.P., Reinton, N.T.K., Torgersen, K.M., Hansson, V., and Jahnsen, T. 1997. Structure, function, and regulation of human cAMP-dependent kinases. *Adv. Second Messenger Phosphoprotein Res.* 31:191-204.
- Kingston, P.A., Zufall, F., and Barnstable, C.J. 1996. Rat hippocampal neurons express genes for both rod retinal and olfactory cyclic nucleotide-gated channels: Novel targets for cAMP/cGMP function. *Proc. Natl. Acad. Sci. USA* 93:10440-10445.
- 4. Taskén, K., Solberg, R., Foss, K.B., Skålhegg, B.S., Hansson, V., and Jahnsen, T. 1995. *The Protein Kinase Facts Book: Protein-Serine Kinases* (Eds., Hardie, G., and Hanks, S.), Academic Press Ltd., London, UK, pp 58-63
- Taskén, K., Skålhegg, B.S., Solberg, R., Andersson, K.B., Taylor, S.S., Lea, T., Blomhoff, H.K., Jahnsen, T., and Hansson, V. 1993. Novel isozymes of cAMPdependent protein kinase exist in human cells due to formation of RIα-RIβ heterodimeric complexes. J. Biol. Chem. 268:21276-21283.
- Beebe, S.J., Salomonsky, P., Jahnsen, T., and Li, Y. 1992. The Cγ subunit is a unique isozyme of the cAMP-dependent protein kinase. J. Biol. Chem. 267:25505-25512.
- 7. Gamm, D.M., Baude, E.J., and Uhler, M.D. 1996. The major catalytic subunit isoforms of cAMP-dependent protein kinase have distinct biochemical properties *in vitro* and *in vivo*. *J. Biol. Chem.* **271:**15736-15742
- 8. Robinson, M.L., Wallert, M.A., Reinitz, C.A., and Shabb, J.B. 1996. Association of the type I regulatory subunit of cAMP-dependent protein kinase with cardiac myocyte sarcolemma. *Arch. Biochem. Biophys.* 330:181-187.
- 9. Moos, J., Peknicová, J., Geussová, G., Philimonenko, V., and Hozák, P. 1998. Association of protein kinase A type I with detergent-resistant structures of mammalian sperm cells. *Mol. Reprod. Dev.* 50:79-85.

- 10. Nigg, E.A., Schäfer, G., Hilz, H., and Eppenberger, H.M. 1985. Cyclic-AMP-dependent protein kinase type II is associated with the Golgi complex and with centrosomes. *Cell* 41:1039-1051.
- 11. Li, Y., Ndubuka, C., and Rubin, C.S. 1996. A kinase Anchor protein 75 targets regulatory (RII) subunits of cAMP-dependent protein kinase II to the cortical actin cytoskeleton in non-neuronal cells. *J. Biol. Chem.* 271:16862-16869.
- 12. Pariset, C., and Weinman, S. 1994. Differential localization of two isoforms of the regulatory subunit RIIα of cAMP-dependent protein kinase in human sperm: Biochemical and cytochemical study. *Mol. Reprod. Dev.* **39:**415-422.
- 13. Shmyrev, I.I., Grozdova, I.D., Kondratyev, A.D., Mamayeva, E.G., and Severin, E.S. 1990. Immunofluorescence localization of the regulatory subunit type II of cAMP-dependent protein kinase in PC12 and 3T3 cells in different proliferative states. *Mol. Cell. Biochem.* 93:47-52.
- 14. Zhang, Q., Carr, D.W., Lerea, K.M., Scott, J.D., and Newman, S.A. 1996. Nuclear localization of type II cAMP-dependent protein kinase during limb cartilage differentiation is associated with a novel developmentally regulated A-kinase anchoring protein. *Dev. Biol.* 176:51-61.
- 15. Coghlan, V.M., Bergeson, S.E., Langeberg, L., Nilaver, G., and Scott, J.D. 1993. *A-K*inase Anchoring Proteins: a key to selective activation of cAMP-responsive events? *Mol. Cell. Biochem.* 127/128:309-319.
- 16. Huang, L.J.-S., Durick, K., Weiner, J.A., Chun, J., and Taylor, S.S. 1997. D-AKAP2, a novel protein kinase A anchoring protein with a putative RGS domain. *Proc. Natl. Acad. Sci. USA* 94:11184-11189.
- 17. Carr, S.A., Biemann, K., Shoji, S., Parmelee, D.C., and Titani, K. 1982. *n*-Tetradecanoyl is the NH<sub>2</sub>-terminal blocking group of the catalytic subunit of cyclic AMP-dependent protein kinase from bovine cardiac muscle. *Proc. Natl. Acad. Sci. USA* **79:**6128-6131.
- 18. Adie, E.J., Thomas, P.H., Munday, M.R., and Clegg, R.A. 1995. Subcellular targeting of recombinant and mammalian Cα subunits of cAMP-dependent protein kinase. *Biochem. Soc. Trans.* 23:451S.
- 19. Yang, S., Fletcher, W.H., and Johnson, D.A. 1995. Regulation of cAMP-dependent protein kinase: Enzyme activation without dissociation. *Biochemistry* **34:**6267-6271.

- 20. Hardie, D.G. 1991. Biochemical Messengers: Hormones, Neurotransmitters and Growth Factors, Chapman & Hall, London, UK
- 21. Harootunian, AT., Adams, SR., Wen, W., Meinkoth, J.L., Taylor, S.S., and Tsien, R.Y. 1993. Movement of the free catalytic subunit of cAMP-dependent protein kinase into and out of the nucleus can be explained by diffusion. *Mol. Biol. Cell* **4:**993-1002.
- 22. Nigg, E.A., Hilz, H., Eppenberger, H.M., and Dutly, F., 1985. Rapid and reversible translocation of the catalytic subunit of cAMP-dependent protein kinase type II from the Golgi complex to the nucleus. *EMBO J.* **4:**2801-2806.
- 23. Walsh, D.A., and Van Patten, S.M. 1994. Multiple pathway signal transduction by the cAMP-dependent protein kinase. *FASEB J.* 8:1227-1236.
- 24. Mellon, P.L., Clegg, C.H., Correll, L.A., and McKnight, G.S. 1989. Regulation of transcription by cyclic AMP-dependent protein kinase. *Proc. Natl. Acad. Sci. USA* **86:**4887-4891.
- 25. Hagiwara, M., Brindle, P., Harootunian, A., Armstrong, R., Rivier, J., Vale, W., Tsien, R., and Montminy, M.R. 1993. Coupling of hormonal stimulation and transcription via the cyclic AMP-responsive factor CREB is rate limited by nuclear entry of protein kinase A. *Mol. Cell. Biol.* 13:4852-4859.
- 26. Adams, S.R., Harootunian, A.T., Buechler, Y.J., Taylor, S.S., and Tsien, R.Y. 1991. Fluorescence ratio imaging of cyclic AMP in single cells. *Nature* **349**:694-697.
- 27. Elson, E.L., and Qian, H. 1989. Interpretation of fluorescence correlation spectroscopy and photobleaching recovery in terms of molecular interactions. *Methods Cell Biol.* **30:**307-332.
- 28. Lipsky, N.G., and Pagano, R.E. 1985. A vital stain for the Golgi apparatus. *Science* 288:745-747.
- 29. Knighton, D.R., Zheng, J., Ten Eyck, L.F., Ashford, V.A., Xuong, N.-h., Taylor, S.S., and Sowadski, J.M. 1991. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. *Science* 253:407-414.
- 30. Knighton, D.R., Zheng, J., Ten Eyck, L.F., Xuong, N.-h., Taylor, S.S., and Sowadski, J.M. 1991. Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. *Science* 253:414-420.

- 31. Scott, J.D. 1991. Cyclic nucleotide-dependent protein kinases. *Pharmacol. Ther.* **50:**123-145.
- 32. Skålhegg, B.S., Keryer, G., Torgersen, K.M., Aandahl, E.M., Levy, F.O., Jahnsen, T., Hansson, V., and Taskén, K. 1997. Function and localization of cAMP-dependent protein kinase type I and II in lymphoid cells. *FEBS special meeting* 1997: Cell signalling mechanisms, Elsevier Science, The Netherlands, Abstract P6-123
- 33. Akey, C.W. 1995. Structural plasticity of the nuclear pore complex. J. Mol. Biol. 248:273-293.
- 34. Uhler, M.D., Carmichael, D.F., Lee, D.C., Chrivia, J.C., Krebs, E.G., and McKnight, G.S. 1986. Isolation of cDNA clones coding for the catalytic subunit of mouse cAMP-dependent protein kinase. *Proc. Natl. Acad. Sci. USA* 83:1300-1304.
- 35. Sambrook, J., Fritsch, E.F., and Maniatis, T. 1989. *Molecular Cloning: A Laboratory Manual, 2nd Ed.*, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- 36. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal. Biochem.* 72:248-254.
- 37. Kapur, J.N., Sahoo, P.K., and Wong, A.K.C. 1985. A new method for gray-level picture thresholding using the entropy of the histogram. *Computer Vision, Graphics, and Image Processing* **29:**273-285.
- 38. Haugland, R.P. 1996. *Handbook of fluorescent probes and research chemicals*, 6th Ed. Molecular Probes, Oregon, USA, p281.

# Figure legends

Table 1. Time from initiation of a response to half maximal  $(t_{1/2 max})$  and maximal  $(t_{max})$  C-GFP<sup>LT</sup> redistribution. The data was extracted from curves such as shown in Figure 3B. All  $t_{1/2 max}$  and  $t_{max}$  values are given as mean±SD and are based on a total of 26-30 cells from 2-3 independent experiments for each forskolin concentration. Since the observed redistribution is sustained over time, the  $t_{max}$  values were taken as the earliest time point at which complete redistribution is reached. Note that the values do not relate to the degree of redistribution.

Figure 1. Western blot analysis of lysates containing C-GFP<sup>LT</sup> fusion proteins. Total lysates of BHK/GR,C-GFP<sup>LT</sup> (A) and control BHK/GR (B) cells were probed with an anti-Cα antibody. 500 ng of purified bovine C subunit (C) was included as a positive control and to identify the endogenous C subunit. Although the antibody clearly reacts unspecifically with several proteins in the total lysates, the fusion protein (f) is recognised as a specific band, migrating with an apparent size of 60 kDa, in the transfected cells (A). The endogenous C subunit (e) migrated as predicted by its molecular weight of 41 kDa. It is possible to compare the expression levels of endogenous hamster C subunit and overexpressed mouse fusion proteins in these blots since the immunogenic peptide is conserved between these two species.

Figure 2. Fluorescence micrographs of CHO cells expressing C subunit fusion proteins. The two fusion proteins of the C subunit of cAK show distinct localisation patterns. A. The NH<sub>2</sub>-terminal GFP<sup>LT</sup>-C fusion protein is localised almost evenly throughout the cytoplasm. B. The COOH-terminal C-GFP<sup>LT</sup> fusion protein is highly concentrated in cytoplasmic aggregates, often in one large and several minor structures per cell. Scale bar 10 μm.

Figure 3. Time-lapse analyses of fluorescence redistribution in CHO/C-GFP<sup>L1</sup> cells treated with various agonists. The raw data of each experiment consisted of 60 fluorescence micrographs acquired at regular intervals including several images acquired before the addition of agonist. Six of these images are shown (A) for the typical response to 1  $\mu$ M forskolin, taken at the time points indicated. The time point t=0 corresponds to the image acquired immediately before the cells were challenged with agonist. Scale bar

10 μm. The charts (B-G) each show a quantification of the responses in each time series. The total area of the highly fluorescent aggregates (see Experimental Protocol) is plotted versus time for each experiment. (B) Redistribution time profiles of the C-GFP<sup>LT</sup> fusion following treatment of cells with various concentrations of forskolin. (C) Response following addition of 1 mM dbcAMP. (D) The effect of 100 μM IBMX on the fusion protein distribution. (E) Demonstrates the reversibility of the forskolin-induced redistribution of C-GFP<sup>LT</sup>, where 10 μM forskolin (open arrow) is followed shortly by repeated washings with buffer (dark arrow). In a parallel experiment, treatment with 10 μM forskolin plus 100 μM IBMX is followed by repeated washing with buffer containing 100 μM IBMX. (F) BHK/GR,C-GFP<sup>LT</sup> cells treated with 100 nM glucagon. (G) CHO/C-GFP<sup>LT</sup> cells transiently transfected with the ARα2a were pretreated with 10 μM forskolin (open arrow) to increase [cAMP], then given 10 μM norepinephrine in the continued presence of forskolin.

Figure 4. (A) Four frames from the recovery sequence following spot photobleach of a large aggregate (arrow) in a CHO/C-GFP<sup>LT</sup> cell exposed to 25 μM forskolin. Times are seconds after bleach. (B) Normalised displacement curves of the fluorescence recovery process in cells exposed to various levels of forskolin. Measurement points are averages±sem (n=4). (C) Linear fits to the first five points of the normalised recovery curves shown in (B). The slope of each line is used as an estimate of the half-time of recovery from bleach at each forskolin concentration.

Figure 5. Parallel dose response analyses of forskolin effects in CHO/C-GFP<sup>LT</sup> cells on: [cAMP], elevation (□), the rate of recovery from spot photobleach (Δ) and induced change in C-GFP<sup>LT</sup> redistribution (•). [cAMP], was measured by SPA assay, analysing the effects of buffer or 8 increasing concentrations of forskolin in these cells. The graph shows a trace of the mean±sem expressed in arbitrary units (n=4 for each data point). Half times for recovery from spot photobleach were estimated from the first 5 time points of the mean value (n=4) curves in Figure 4B. Changes induced in C-GFP<sup>LT</sup> distribution were quantified as described (Experimental Protocol) using fluorescence micrographs taken of the same field of cells prior to and 30 min after the addition of forskolin. The graph shows a trace of the mean±sem at each forskolin concentration (n=8 for each data point). The fitted curves indicate ½-maximal concentration values for

forskolin as: 1.7  $\mu$ M, image-based assay ( $\square$ ); 3.0  $\mu$ M, spot photobleach assay ( $\Delta$ ); 9.3  $\mu$ M, SPA ( $\bullet$ ).

Figure 6. (A) Two images of CHO/C-GFP<sup>LT</sup> cells stained with ceramide-FL, in emission ranges of  $520 \pm 10$  nm and >570 nm, have been superimposed to demonstrate the distinct separateness of Golgi membranes (orange) and C-GFP<sup>LT</sup> fluorescence (green). Scale bar is  $10 \mu m$ . (B) An iso-surface rendering of a single large C-GFP<sup>LT</sup> aggregate (similar to that arrowed in 6A). The image is a reconstruction from 25 through-focus images deconvolved and processed as described (Experimental Protocol). Scale bar  $1 \mu m$ . (C) Stereo pair of the reconstructed images used to generate the iso-surface seen in (B). Each image is smoothed for presentation, the structure originally being 35 pixels high by 27 wide in this orientation. Scale bar  $1 \mu m$ .

Figure 1



Figure 2



# A















Figure 4

A
0.5
6.0
20.0
165.0







# Figure 6

A

В





 $\mathbf{C}$ 





Left

Right

# Table 1

| [foral-1: 1/ > |                |                      |
|----------------|----------------|----------------------|
| [forskolin]/µM | $t_{1/2max}/s$ | t <sub>max</sub> / s |
| 1              | 115±21         | 310±31               |
| 10             | 69±14          | 224±47               |
| 50             | 47±10          | 125±28               |

| k/<br>E |  |  |  |
|---------|--|--|--|
|         |  |  |  |
|         |  |  |  |