MATA 3201 Lecture 3

Example: 80 lue BVB below USINg fruite différence methods with five equidistant nedes.

BVP:
$$y'' = 4y$$

 $(y(0) = 1, y(1) = 3)$

Spa Answer:

First, replace Continous derivations with discrete appreximations;

$$\frac{y_{i+1} - 2y_i + y_{i-1}}{l^2} - 4y_i = 0$$

Next, evaluate discrete form equatilen over Standard grid at

discrete intervals.

$$BCs: \mathcal{J}(X_a=e)=\mathcal{J}_a=1$$

$$y(x_4=1) = y_4 = 3$$
 $h = \frac{1-0}{4} = \frac{1}{4}$

at
$$x_2$$
 at x_3 : $y_2 + y_3(-2-4h^2) + y_4^2 = 0$

$$\begin{bmatrix} -\frac{9}{4} & 1 & 0 \\ 1 & -\frac{9}{4} & 1 \\ 0 & 1 & -\frac{9}{4} \end{bmatrix} \begin{bmatrix} \frac{9}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{9}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} &$$

$$\begin{aligned} & = 3 + 3 \cdot (-2 - 4h^2) + 3 = 0 \\ & = 3 \cdot (-2 - 4h^2) + 3 = 0 \\ & = 3 \cdot (-2 - 4h^2) + 3 = 0 \\ & = 3 \cdot (-2 - 4h^2) + 3 \cdot (-2 - 4h^2) +$$

0.25 0.5 0.75 17 X X X X X

2 3 Estimation

J= | real solution

$$y_1 = 1.0249$$
 $y_2 = 1.3661$

Exact solution: for the BVP:

characteristic:
$$r^2 - 4 = 0 \rightarrow r = \pm 2$$

eq (Two distinct rests)

$$|3C.|3(0)=1$$
 $|3(1)=3$
 $|3(1)=3$
 $|3(1)=3$
 $|3(1)=3$
 $|3(1)=3$
 $|3(1)=3$

8 pecific 8 elutiler
$$y(x) = 0.39 e^{2x} + 0.61 e^{-2x}$$

 $y(0.25) = \frac{1}{100} = 1.0181$

$$y(0.75) = y_3 = 1.9049$$

(Χ;	J:	Y'i	
0	0	ASSERTA I	V	- 9
Ì	0.25	10249	1.0181	210
2	0-5	1.3061	1.2961	error
3	0.75	1.9138	1.9049	
4		3	3	
)	•	

BVP Com be non-linear. After substituting of discrete approximatiles for denvetives, two possible situations: / linear BVP THE Fer non-linear BVP: We take one mere step, to the Compare toith solvy linear BYPs. Example: BPP: $y'' = 18y^2$ y(1) = 1/3 > y(2) = 1/12First: replace Continous derivatives with discrete approximations: $\frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} = 18y_i^2$ we use our grid: $\Delta x = h = \frac{2-1}{N} = \frac{1}{N}$ BC: $\begin{cases} x_0 = 1 & \rightarrow \theta_0 = 1/3 \\ x_0 = 2 & \rightarrow y_0 = 1/12 & x_0 = 1 \end{cases}$ Fer i=1; $\frac{1}{2}$ - 24, + $\frac{1}{3}$ = 18 $\frac{1}{2}$ $\frac{2}{3}$ For i=2: 43-242+4, = 18h242

Fer i=N-1; / -2y + 7 = 18 h 2 7 N-1

$$\begin{cases}
y_{2} - 2y_{1} - 18h^{2}(y_{2}) = -1/3 \\
y_{3} - 2y_{1} - 18h^{2}(y_{2}) + y_{1} = 0
\end{cases}$$
We cannot write the system above as $Ax = b$ because of hon-linear terms: y_{1}^{2} , y_{2}^{2} , ..., y_{N-1}^{2} .

We take take another stop: we write the system (#) as $F(y) = 0$ which we can carry out by Newton's method.

$$F(y) = 0 \text{ where } y = \begin{pmatrix} y_{1} \\ y_{2} \\ y_{N-1} \end{pmatrix} + y_{2} = 0$$

$$F(y) = 0 \text{ where } y = \begin{pmatrix} y_{1} \\ y_{2} \\ y_{N-1} \end{pmatrix} + y_{2} = 0$$

$$F(y) = 0 \text{ where } y = \begin{pmatrix} y_{1} \\ y_{2} \\ y_{N-1} \end{pmatrix} + y_{2} = 0$$

$$F(y) = 0 \text{ where } y = \begin{pmatrix} y_{1} \\ y_{2} \\ y_{N-1} \end{pmatrix} + y_{2} = 0$$

$$F(y) = 0 \text{ where } y = \begin{pmatrix} y_{1} \\ y_{2} \\ y_{1} \\ y_{1} \end{pmatrix} + y_{2} = 0$$

$$F(y) = 0 \text{ where } y = \begin{pmatrix} y_{1} \\ y_{2} \\ y_{1} \\ y_{1} \end{pmatrix} + y_{2} = 0$$

$$F(y) = 0 \text{ where } y = \begin{pmatrix} y_{1} \\ y_{2} \\ y_{1} \\ y_{1} \end{pmatrix} + y_{2} = 0$$

$$F(y) = 0 \text{ where } y = \begin{pmatrix} y_{1} \\ y_{2} \\ y_{1} \\ y_{1} \end{pmatrix} + y_{2} = 0$$

$$F(y) = 0 \text{ where } y = \begin{pmatrix} y_{1} \\ y_{2} \\ y_{1} \\ y_{2} \\ y_{3} \\ y_{4} \end{pmatrix} + y_{2} = 0$$

$$F(y) = 0 \text{ where } y = \begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \\ y_{4} \\ y_{4} \\ y_{5} \\ y_{4} \\ y_{5} \\ y_{5$$

Start with an initial guess; $y^{(0)} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ (Note: we will lack)

(Note: we

Book: Timothy Saver

see fer Matlab implementation example.

Estimation error is o (h²) which is Corning from the

Jerivativa approximations.