OCT Expanded Clinical Data Analysis

Mary Van Baalen¹, Ali Tafreshi², Nimesh Patel³, Millennia Young¹, Sara Mason⁴, Christian Otto⁵, Brian Samuels⁶, Matthew Koslovsky⁵, Caroline Schaefer⁴, Wafa Taiym⁵, Mary Wear⁵, Charles Gibson⁵, William Tarver¹

¹ NASA Johnson Space Center, ² Heidelberg Engineering, ³ University of Houston-Optometry, ⁴ MEIT, ⁵ KBRwyle, ⁶ University of Alabama Birmingham

Vision changes identified in long duration space fliers has led to a more comprehensive clinical monitoring protocol. Optical Coherence Tomography (OCT) was recently implemented on board the International Space Station in 2013. NASA is collaborating with Heidelberg Engineering to expand our current OCT data analysis capability by implementing a volumetric approach. Volumetric maps will be created by combining the circle scan, the disc block scan, and the radial scan. This assessment may provide additional information about the optic nerve and further characterize changes related microgravity exposure. We will discuss challenges with collection and analysis of OCT data, present the results of this reanalysis and outline the potential benefits and limitations of the additional data.