Практическая работа №3

РАСЧЕТ ПРОЦЕНТОВ ЗАЗОРА И НАТЯГА В ПЕРЕХОДНЫХ ПОСАДКАХ

Вариант 1

$$\emptyset 10 \frac{Js}{h7}$$
.

1. Выписываем предельные отклонения валов и отверстий из ГОСТ 25347-89:

$$ES = +11 \text{ MKM} = +0.011 \text{ MM};$$

$$EI = -11 \text{ MKM} = -0.011 \text{ MM};$$

$$es = 0 \text{ MKM}$$
;

$$ei = -15 \text{ MKM} = -0.015 \text{ MM}.$$

2. Определяем предельные размеры и допуски вала и отверстия:

$$D_{max} = D_{H} + ES = 10 + 0.011 = 10.011$$
 mm;

$$D_{min} = D_{H} + EI = 10 - 0.011 = 9.989 \text{ MM};$$

$$d_{max} = d_{H} + es = 10 + 0 = 10$$
 MM;

$$d_{min} = d_{H} + ei = 10 - 0.015 = 9.985 \text{ mm};$$

$$T_D = ES - EI = 0.011 + 0.011 = 0.022$$
 mm;

$$T_d = es - ei = 0 + 0.015 = 0.015$$
 mm.

Строим схему расположения полей допусков:

Рисунок 1. Схема расположения полей допусков.

					Практическая работа №3				
Изм.	Лист	№ докум.	Подпись	Дата	· ·				
Разри	ıδ.	Γαлυцκυῦ И.Π.			Расчет процентов зазора	/lum.	Лист	Листов	
Провер.		Λαπκο Ο.Α.			'		1	2	
Реценз.					и натяга в переходных	ГГТУ им. П.О. Сухого, Гр. ТТ-21			
Н. Контр.					посадках				
Утве	D∂.					τρ. ττ-2τ			

Определяем предельные зазоры и допуски посадки:

$$S_{max} = D_{max} - d_{min} = 10,011 - 9,985 = 0,026 \text{ MM};$$

$$N_{max} = d_{max} - D_{min} = 10 - 9,989 = 0,011 \text{ MM};$$

$$S_{min} = -N_{max} = -0.011 \text{ mm};$$

$$N_{min} = -S_{max} = -0.026 \text{ MM}.$$

Определяем средний зазор и натяг:

$$S_c = \frac{S_{max} + S_{min}}{2} = \frac{0,026 - 0,011}{2} = 0,008 \text{ mm};$$
 $N_c = \frac{N_{max} + N_{min}}{2} = \frac{0,011 - 0,026}{2} = -0,008 \text{ mm}.$

3. Строим кривую распределения зазоров-натягов.

Определяя вероятность получения натяга в посадке, принимаем, что распределение погрешностей подчиняется нормальному закону и допуск деталей величине зоне рассеиваия, т. Е.

$$T=3\sigma_T$$
,

где σ_T – среднее квадратичное отклонения,

$$\sigma_T = \sqrt{\left(\frac{T_D}{6}\right)^2 + \left(\frac{T_d}{6}\right)^2} = \sqrt{\left(\frac{0,022}{6}\right)^2 + \left(\frac{0,015}{6}\right)^2} = 0,00444 \text{ mm};$$

$$T = 3 \cdot 0.00444 = 0.0133$$
 MM.

Кривая распределения зазоров-натягов:

Рисунок 2. Кривая распределения зазоров-натягов.

4. Определяем вероятность зазора и натяга.

Вероятность зазора в пределах от 0 до 21,3 мкм можно определить как сумму от 0 до 8 мкм и от 8 до 21,3 мкм с помощью функции Лапаса $\Phi(z)$, где $z=\frac{x}{\sigma_T}$, значение которой находим из таблицы.

$$P_{\text{3a3op}} = \Phi\left(\frac{13,3}{4,44}\right) + \Phi\left(\frac{8}{4,44}\right) = 0,4986 + 0,4641 = 0,9627 = 96,27 \%;$$

$$P_{\text{натяг}} = 100 - 96,27 = 3,73 \%.$$

						Лист
					Практическая раδота №3	
Изм.	Лист	№ докум.	Подпись	Дата		