

Exploring Generative 3D Shapes Using Autoencoder Networks

Yanwen Xu

Motivation

 We wanted to see if we could apply Machine Learning to some form of 3D procedural content generation

Umetani, 2017

Motivation

- Learning the 3D shape
 - Finding low dimensional manifold in space

Umetani, 2017

Preview of the Result: Our Latent Space

Parameterization problem

Shape need to be represented by fixed dimensional vector/tensor

Parameterization problem

- Triangle mesh are not suitable for Machine Learning
 - Topology and Number of points are inconsistent

Triangle mesh Umetani, 2017

Related work: Voxel model

• limited resolution / expensive memory cost, noise...

FPNN, Li et al., 2017

3D Shape as Height Field

- Storing XYZ coordinates is redundant
- Height field from a cube in its normal

Umetani, 2017

8

Hierarchical Projection

Repeat subdivision and projection to avoid distortion

Our Approach:

- Triangle mesh with constant topology
- Deforming a template mesh into input shape

Our Approach:

Sphere Normal

Spherical normal dare predefined for each vertex.

Subdivision & Projection

Example of Our Result

Autoencoder

• Input and output of network is as same as possible

Configuration of our autoencoder network.

Our Result

We obtained over 1,200 Car Shapes from ShapeNet [chang et al. 2015]

Future work

- Advanced generation framework
 - GAN / VAE

VAE

VAE

VAE

VAE/GAN

Non-Convex Shapes

Poly Cube

Umetani, 2018

References

- Nobuyuki Umetani. Exploring generative 3d shapes using autoencoder networks. In SIGGRAPH Asia 2017 Technical Briefs, page 24. ACM, 2017
- Umetani, Nobuyuki, and Bernd Bickel. "Learning threedimensional flow for interactive aerodynamic design." ACM Transactions on Graphics (TOG) 37.4 (2018): 89
- Angel X. Chang and (2015). ShapeNet: An Information-Rich 3D Model Repository. CoRR, abs/1512.03012