### 2011147018 배진훈

## 1) your dataset

- Brief

Title: Concrete Compressive Strength Data Set

**Link**: https://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength

**Description**: Concrete is the core material in **civil engineering**. The concrete compressive strength(y) is a mostly non-linear function of ingredients and age(X).

- Detail

Input(X): Cement, Blast Furnace Slag, Fly Ash, Water, Superplasticizer, Coarse Aggregate, Fine Aggregate, Age

**Output(y)**: Concrete compressive strength (MPa, megapascals)

| Input                            | Data Type    | Measurement        |
|----------------------------------|--------------|--------------------|
| Cement (component 1)             | Quantitative | Kg in a m3 mixture |
| Blast Furnace Slag (component 2) |              |                    |
| Fly Ash (component 3)            |              |                    |
| Water (component 4)              |              |                    |
| Superplasticizer (component 5)   |              |                    |
| Coarse Aggregate (component 6)   |              |                    |
| Fine Aggregate (component 7)     |              |                    |
| Age                              |              | Day (1~365)        |
| Output                           | Data Type    | Measurement        |
| Concrete compressive strength    | Quantitative | MPa                |

Describe: 1030 rows

## 2) your overall approach

- Metric

According to KCS (KOREA CONSTRUCTION STARNDARDS), the design standard compressive strength of high-strength concrete is generally 40MPa or more, and high-strength lightweight aggregate concrete is 27 MPa or more. <sup>1</sup>That is, the absolute error and ratio of the error to actual value are important and it is easy to intuitively judge using **MAE** among various metrics used for

<sup>&</sup>lt;sup>1</sup> https://www.kcsc.re.kr/StandardCode/Viewer/517

regression. Then, I'll use mean error ratio(MER) calculated by dividing the absolute error by the actual target value

#### Baseline

#### Intro

Linear Model – Elastic Net Not feature extraction

### Result (MAE: 7.7MPa, MER: 33%)

```
020-06-24 04:14:10:pid_45692:parent:<INFO> mean of err_ratio: 32.924543776131735
       24 04:14:10:pid_45692:elastic_net:<INFO> tuned params: {'alpha': 10, 'l1_ratio': 0.0, 'max_iter': 10}
2020-06-24 04:14:10:pid_45692:elastic_net:<INFO> beta_coef:
            column
            Cement
                     0.087667
             Blast
               F1y
                     0.070557
             Water
                    -0.237636
  Superplasticizer
                     0.174586
              Fine
                     0.000539
               Age
         intercept
       24 04:14:10:pid_45692:parent:<INFO> metric is 7.716627039419666
```





### **Analysis**

It is not bad that MAE is 7-8. However, considering that MER is 33, it has a large error compared to the actual y value. It should be developed so that MER is at least 10%

# iii) your featuring engineering ideas

Processed

#### Intro

+ Feature extraction data\_analysis.ipynb





As a result of checking the histogram of the features, some features have a lot of zero values as sparse data. Especially in the case of 'Fly Ash', zero accounts

for about 50%. Therefore, 3 features were engineered into new ones by changing values greater than 0 to 1. And, other numeric features were normalized to close to the normal distribution

#### Result (MAE: 6.1MPa, MER: 23%)

```
2020-06-24 02:43:52:pid_32472:parent:<INFO> mean of err_ratio: 23.77682995908908
:020-06-24 02:43:52:pid_32472:elastic_net:<INFO> tuned params: {'alpha': 0, 'l1_ratio': 0.0, 'max_iter': 5}
2020-06-24 02:43:52:pid_32472:elastic_net:<INFO> beta_coef:
            column
                         beta
            Cement
             Blast
                    -0.507584
                    -0.029602
             Water
  Superplasticizer
                     8.763669
            Coarse
               Age 11.338167
         intercept 25.468510
 20-06-24 02:43:52:pid_32472:parent:<INFO> metric is 6.108020124279915
```





## **Analysis**

After feature extraction, both MAE and MER have been reduced significantly and will be further reduced by using advanced model.

## v) execution results

Method of execution is at the end & The result of 'baseline' & 'processed' is above.

Advanced

#### Intro

Ensemble Model - Gradient Boosting

+ Feature extraction

## Result (MAE: 2.5MPa, MER: 9%)

```
2020-06-24 04:12:03:pid_41104:parent:<INFO> mean of err_ratio: 9.111544788042194
2020-06-24 04:12:03:pid_41104:gradient_boost:<INFO> tuned params: {'max_depth': 10, 'max_features': 0.32, 'n_estimators': 200}
2020-06-24 04:12:03:pid_41104:parent:<INFO> metric is 2.5386993744579174
```





## **Analysis**

Finally, a reasonable result was obtained as lowering mean of error ratio to less than 10%. The variance of the error histogram decreased, and the error ratio also decreased overall. The error ratio less than 10% means that the error is within 3 when the concrete compressive strength is 30.

### **Furthermore**

- Model advancement (ex. Deep learning)
- Vast amounts of data
- Sophisticated hyperparameter tuning