0.1 H14 数学選択

- $\boxed{\mathbb{D}}$ $(1)f(t)=\sum a_it^i,g(t)=\sum b_jt^j$ とする. $\deg f>\deg g$ なら $f(t)^2+g(t)^2$ の次数は $2\deg f>0$ となる. $\deg f=\deg g$ なら $f(t)^2+g(t)^2$ なら最高次の係数は $a_n^2+b_n^2>0$ より定数でない.
- (2) 同型写像 $\phi: \mathbb{R}[x,y]/(x^2+y^2-1) \to \mathbb{R}[t]$ があると仮定する. $x^2+y^2=1 \in \mathbb{R}[x,y]/(x^2+y^2-1)$ より $\phi(x)^2+\phi(y)^2=1 \in \mathbb{R}[t]$ である.
 - ψ は \mathbb{R} 上の同型写像であるから $\phi(x), \phi(y) \notin \mathbb{R}$ である. これは (1) に矛盾.
- $(3)(x^2+y^2-1)$ が素イデアルであることを示せばよく,そのためには $\mathbb{R}[x,y]$ は UFD であるから x^2+y^2-1 が既約であることを示せばよい.

 $\mathbb{R}[x]$ は UFD であるから、 $\mathbb{R}[x][y]$ 上の既約性は $\mathbb{R}(x)[y]$ 上の既約性と同値である.

可約なら $x^2+\frac{f(x)^2}{g(x)^2}=1$ となる $f(x),g(x)\in\mathbb{R}[x]$ が存在する.このとき $x^2g(x)^2+f(x)^2=g(x)^2$ である.x の次数は $\max(2+2\deg g,2\deg f)>2\deg g$ となり矛盾.したがって x^2+y^2-1 は既約である.