Logistic Regression (Classification)

Classification

Definition of the word "Classification" from Oxford dictionary:

things into a group or class (= of classifying them)

Classification

In machine learning, a classification problem is a type of supervised learning task where the objective is to assign input data to one of several predefined categories or classes.

Examples of classification problems include:

- Binary Classification.
- · Multi-class Classification.
- Multi-class Multi-label Classification.

Question: give examples for each type of classification problems.

Regression vs. Classification

Comparison between Regression and Classification on weather prediction problem.

Binary classification

Binary classification is a type of classification task in machine learning where the objective is to categorize input data into one of **two classes**.

Examples of binary classification:

- Spam mail classification: Spam / Non-spam
- Online transaction fraud detetion: Yes / No
- Tumor recognition: Malignant / Benign

Label of binary classification: $y = \{0,1\}$

- 0 is negative class.
- 1 is possitive class.

Question: what does the label of multi-class classification look like?

Binary classification – Probablity calculation

Instead of just predicting the class, binary classifier gives the probability of the data sample being that class, for example:

- Spam mail classification: P(Spam|Email content)
- Online transaction fraud detetion: *P*(Yes|Transaction details)
- Tumor recognition: *P*(Malignant|Medical image)

Recall that in binary classification:

- $0 \le P(\text{event}) \le 1$
- $P(\text{event}) + P(\neg \text{event}) = 1$

Therefore, to solve the binary classification problem, the classifier only needs to calculate P(event), then $P(\neg \text{event}) = 1 - P(\text{event})$.

Logistic regression

Logistic regression is a type of supervised learning algorithm used for classification tasks, particularly binary classification.

Logistic regression uses **sigmoid** function (or logistic function) to map the linear combination of input features to a value between 0 and 1.

The sigmoid function is defined as:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Here, z is the linear combination of input features, expressed as $z=\theta_0+\theta_1x_1+\theta_2x_2+\cdots+\theta_dx_d$ where θ are the model parameters and x are input features.

Question: What is the motivation behind using z? Is it similar to a concept we've previously learned?

7

Logistic regression – Sigmoid function

Sigmoid function is to map input values to a range between 0 and 1.

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Logistic regression – Output prediction

The output of the logistic function represents the probability of the input belonging to the positive class (e.g., class 1). Typically, a threshold (e.g., 0.5) is applied to decide the class label.

- If $\sigma(z) \ge 0.5$, the output is classified as class 1.
- If $\sigma(z) < 0.5$, the output is classified as class 0.

Example: spam mail classification with labels 1 (spam) and 0 (non-spam). Consider the threshold of 0.5 and a mail sample having z=2:

$$\sigma(2) = \frac{1}{1 + \rho^{-2}} = 0.88 \ge 0.5$$

Therefore, this mail sample is classified as spam.

Question: What is the intuition and impact of having the threshold

- larger than 0.5?
- smaller than 0.5?

Logistic regression – Another way to look at it

Logistic regression is **linear regression wrapped in a sigmoid function**, ensuring that the output is a probability value between 0 and 1.

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

where
$$\theta^T x = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_d x_d$$

Question: How can we train a logistic regression model? Hints:

- Logistic regression is a supervised learning model.
- Recall how linear regression model was trained.

Logistic regression – Training

Question: How can we train a logistic regression model? Hints:

- Logistic regression is a supervised learning model.
 - We have data features and data labels.
- Recall how linear regression model was trained.
 - Setup the model and the loss function.
 - Calculate gradient of the loss function.
 - Update model parameters using gradient descent.

Logistic regression – Issue of MSE Loss function

Recall the MSE loss function of Linear regression

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^n \bigl(h_\theta\bigl(x^{(i)}\bigr) - y^{(i)}\bigr)^2$$
 where $h_\theta(x) = \theta^T x$ which makes $J(\theta)$ a **quadratic** function

(polynomial function of degree 2) and thus convex.

However, in Logistic regression $h_{\theta}(x) = \frac{1}{1+e^{-\theta^T x}}$, if we use the MSE loss function, $I(\theta)$ is a **non-convex** function that poses challenges for the convergence of the gradient descent algorithm.

Logistic regression – Binary Cross Entropy (BCE) Loss function

We want a convex loss function $J(\theta)$ of Logistic regression model as follows:

$$J(\theta) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Logistic regression – Intuition behind BCE Loss function

We want a convex loss function $J(\theta)$ of Logistic regression model as follows:

$$J(\theta) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

If y = 1:

- $J(\theta) = 0$ if prediction is correct.
- As $h_{\theta}(x) \to 0$, $J(\theta) \to \infty$
- Captures intuition that larger mistakes should get larger penalties, e.g., predict $h_{\theta}(x) = 0$, but y = 1.

Logistic regression – Intuition behind BCE Loss function

We want a convex loss function $I(\theta)$ of Logistic regression model as follows:

$$J(\theta) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

If y = 0:

- J(θ) = 0 if prediction is correct.
 As h_θ(x) → 1, J(θ) → ∞

 - Captures intuition that larger mistakes should get larger penalties, e.g., predict $h_{\theta}(x) = 1$, but y = 0.

Logistic regression – Simplification of BCE Loss function

We want a convex loss function $J(\theta)$ of Logistic regression model as follows:

$$J(\theta) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Question: How can the BCE Loss function be expressed in a single line?

16

Logistic regression – Simplification of BCE Loss function

We want a convex loss function $J(\theta)$ of Logistic regression model as follows:

$$J(\theta) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Question: How can the BCE Loss function be expressed in a single line?

Answer:

$$J(\theta) = -y \log(h_{\theta}(x)) - (1 - y) \log(1 - h_{\theta}(x))$$

• If
$$y = 1$$
, $J(\theta) = -\log(h_{\theta}(x))$

• If
$$y = 0$$
, $J(\theta) = -\log(1 - h_{\theta}(x))$

Logistic regression - BCE Loss function

The BCE loss function is averaged on all data samples:

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} \left(-y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) - (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right)$$

Objective:

$$\min_{\theta} \operatorname{minimize} J(\theta)$$

To make prediction on a new data sample x':

$$h_{\theta^*}(x') = \frac{1}{1 + e^{-\theta^* x'}} = P(y = 1 | x', \theta^*)$$

where θ^* is the value at which $J(\theta)$ is minimized, i.e., convergence point.

١ŏ

Logistic regression – Gradient descent algorithm

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} \left(-y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) - (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right)$$

To minimize $I(\theta)$, use Gradient descent algorithm:

- Initialize θ .
- Repeat until convergence:

$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

$$\theta_{j} = \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta)$$
where $\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{1}{n} \sum_{i=1}^{n} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right) x_{j}^{(i)}$

This looks identical to Linear regression. However, the form of the model is different: $h_{\theta}(x) = \frac{1}{1+e^{-\theta T_x}}$

Logistic regression – Regularization

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} \left(-y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) - (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right)$$

$$J_{regularized}(\theta) = J(\theta) + \frac{\lambda}{2} \sum_{j=1}^{u} \theta_{j}^{2}$$
L2 regularization

To minimize $J_{regularized}(\theta)$, use Gradient descent algorithm:

- Initialize θ .
- Repeat until convergence:

$$\theta_{j} = \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J_{regularized}(\theta)$$

$$\theta_{j} = \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J_{regularized}(\theta)$$
where $\frac{\partial}{\partial \theta_{j}} J_{regularized}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_{j}^{(i)} + \lambda \theta_{j}$

Multi-class classification

Example of multi-class classification:

- Object classification: desk / chair / monitor / keyboard.
- Animal classification: dog / cat / chicken.

Question: how can Logistic regression be used to solve multi-class classification?

Multi-class classification – One-vs-all approach

Questions:

- How to determine the prediction output?
- What is the drawback of One-vs-all approach?

Example: A multi-class classification includes dog, cat and chicken class. Given data features of a data sample, we want:

Example: A multi-class classification includes dog, cat and chicken class. Given data features of a data sample, we want:

Example: A multi-class classification includes dog, cat and chicken class. Given data features of a data sample, we want:

Softmax regression is a generalization of logistic regression to solve multi-class classification problems.

Note: In this example, the data feature vector has a shape of 1x4, the learnable matrix θ has a shape of 3x4, and the unscaled output vector has a shape of 1x3.

Softmax regression

Softmax regression is a generalization of logistic regression to solve multi-class classification problems.

Softmax regression

Softmax regression is a generalization of logistic regression to solve multi-class classification problems.

Loss =
$$-1 \times log_2 0.7 - 0 \times log_2 0.2 - 0 \times log_2 0.1 = 0.51$$

This loss is then used to calculate the gradient and to update learnable matrix of parameters θ using the gradient descent algorithm.

Evaluation metrics

General method: calculate the difference between ground-truth labels and model predictions.

Example: testing 165 emails in a spam/non-spam classification problem.

	Prediction YES	Prediction NO
Actual YES	100	5
Actual NO	10	50

Confusion matrix

Evaluation metrics

Example: testing 165 emails in a spam/non-spam classification problem.

	Prediction YES	Prediction NO
Actual YES	100	5
Actual NO	10	50

Confusion matrix

- Precision = 100/(100+10) ~ 91%: how many predicted items are relevant.
- Recall = 100/(100+5) ~ 95%: how many relevant items are predicted.

Evaluation metrics

Example: testing 165 emails in a spam/non-spam classification problem.

	Prediction YES	Prediction NO
Actual	True Positive	False Negative
YES	TP	FN
Actual	False Positive	True Negative
NO	FP	TN

$$Recall = \frac{TP}{TP + FN}$$

$$F1 = \frac{2 \times Precision \times Recall}{Precision + Recall}$$

 $Precision = \frac{TP}{TP + FP}$

Confusion matrix

Summary

Binary Classification

Decision Boundary

Logistic Regression

- Sigmoid function
- Cost Function
- Optimization
- Regularization

Multi-class (Multinomial Classification)

- One-vs-all
- Softmax regression

Evaluation metrics

Q&A

Thank you