

NextRAN-AI

ETH- Huawei Sweden

Marco Bertuletti <u>mbertuletti@iis.ee.ethz.ch</u>

Yichao Zhang <u>yiczhang@iis.ee.ethz.ch</u>

Mahdi Abdollahpour <u>mahdi.abdollahpout@unibo.it</u>

Alessandro Vanelli-Coralli <u>avanelli@iis.ee.ethz.ch</u>

Luca Benini <u>lbenini@iis.ee.ethz.ch</u>

PULP Platform

Open Source Hardware, the way it should be!

youtube.com/pulp_platform

We choosed to explore NeuralRX

Advantages of NeuralRX over other models

- **Flexible** = the same trained model supports different number of users, different number of subcarriers, different modulation schemes
- It generalizes well to many different channel models
- It is open-sourced and tested already on a real-time and standard compliant scenario (NeuralRX RT)

Next Steps:

- Reduce model size and computational complexity for edge-deployment
- Possibly extend to more subcarriers, transceivers
- Adequate TeraPool's computation per cycle

We will present these results on next meeting

 Add AI-specialization (more compute), keeping configurability

 Add AI-specialization (more compute), keeping configurability

How many accelerators?

T6 T5

SG₂

SG₀

G1

AI

1x8 1x8

 Add AI-specialization (more compute), keeping configurability

How many accelerators?
How big?

 Add AI-specialization (more compute), keeping configurability

How many accelerators?

How big?

How connected?

RedMulE - GEMM Accelerator

- General Purpose →
 - Attention/1D-Conv
 - Hermitian calculation
 - Beamforming
- Open-Source
- Parametrizable
- TCDM-compatible
- Programmed via register interface

github.com/pulp-platform/snitch

RedMulE – Operation $Z = Y \otimes (X \odot W)$

- 1. Preload the Z buffer with L rows $(H^*(P+1)^*16b$ elements each) from Y-matrix
- 2. Preload the X buffer with L rows ($H^*(P+1)^*$ 16b elements each) from X-matrix
- 3. Load **H*(P+1)** 16b weights from W-matrix, broadcast to all CE on a column
- 4. After **(P+1)** cycles pass the result to next CE, load other H*(P+1) 16b weights
- 5. After **H*(P+1)** cycles **feedback**

Designed for 1-cycle memory latency

- RedMulE has a 16b*H*(P+1) memory port to TCDM
- The memory requests are split by the TCDM protocol DataWdith (32b)
- If the memory has one cycle latency → Needs to be handled for TeraPool

Memory requests to different buffers are interleaved to access to 16b*H*(P+1) per cycle

Parametrization – How big accelerator?

PU

Double-buffering

- 1. Assumption: 1-cycle access to memory
- 2. Design-Choice: 1 RedMulE per Tile

3. Assumption: 2KiB-bank, 32-banks/Tile (memory occupation 50% or 100%)

Integration of RedMulE in the Tile

- RedMulE programmed by the Snitch core
- Parametrizable RedMulE accesses TCDM (32b at a time through remote ports)

Next steps

Low utilization of the CE because of NUMA latency

- Add functionalities to restrict weights/inputs allocation to the local memory (inside a Tile we have 1-cycle access)
- For **remote access** improve latency on large requests (e.g. bursts)

