Course	18NTO301T	Course	APPLICATIONS OF NANOTECHNOLOGY	Course	0	Open Elective Course	L	Т	Р	С
Code	1010103011	Name		Category	0		3	0	0	3

Pre-requisite Nil	Co-requisite Courses	Nil	Progressive Courses Nil	
Course Offering Department	Nanotechnology	Data Book / Codes/Standards	Nil	

Course L	earning Rationale (CLR):	The purpose of learning this course is to:	Lea	arnin	g
CLR-1:	LR-1: Acquire knowledge on environmental applications of nanotechnology				
CLR-2:	Understand the theory of	nanotechnology in agriculture and food technology			
CLR-3:	Familiarize Electrical, Electr	onics and Energy Applications of Nanotechnology	(Bloom)	%	@
CLR-4:	LR-4: Know Nanotechnology in Textiles and Cosmetics				Attainment (%)
CLR-5:	-5: Explore the concept of Biomedical Applications of Nanotechnology) Br	Proficiency (%)	l iii
CLR-6:	Understand current develop	ments and future prospects of Nanotechnology	i <u>ş</u>	į	雪
Course L	earning Outcomes (CLO):	At the end of this course, learners will be able to:	Level of Thinking	Expected F	Expected /
CLO-1:	Apply skills to identify new r	naterials for environmental applications	2	80	75
CLO-2:	Analyze the role of nanotec	hnology in agriculture and food technology	2	80	70
CLO-3:	Discriminate electrical, electrical	ronic and energy applications of nanotechnology	2	75	70
CLO-4:	.0-4: Apply the techniques of nanotechnology in textile and cosmetics		2	80	75
CLO-5:	: Appreciate the role of nanotechnology in advancing the biomedical industry				70
CLO-6:	Utilize the concept of bioser	nsor to analyze the material nature.	2	80	75

	Program Learning Outcomes (PLO)													
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO - 1	PSO - 2	PSO - 3
H	Н	Н	Ĥ	Н	Н	Н	Н	Н	Н	М	Н	Н	Н	Н
Н	М	М	Н	М	Н	Н	Н	М	Н	М	Н	М	М	М
Н	М	Н	Н	Н	Н	Н	М	Н	Н	Н	Н	Н	Н	Н
М	Н	Н	М	Н	Н	Н	Н	Н	Н	М	Н	Н	Н	Н
Н	Н	Н	Н	Н	М	Н	Н	М	Н	М	Н	Н	Н	Н
Н	М	М	Н	Н	Н	Н	Н	Н	Н	Μ	Н	Н	М	Н

Durat	ion (hour)	9	9	9	9	9
S-1	SLO-1	Environmental pollutants in air	Nanotechnology in Agriculture	Electronic circuit chips	Nanofibre production in Textiles	Introduction to biomedical applications
3-1	SLO-2	Environmental pollutants in water	Precision farming	Nanosensors and actuators	Electrospinning	Bioreceptors and their properties
	SLO-1	Environmental pollutants in soil	Smart delivery system	Optical switches	Controlling morphologies of nanofibers	Biochips
S-2	SLO-2	Types of toxic and hazards wastes	Nano fertilizers and types	Diodes	Nano-fillers embedded polypropylene fibers	Integrated nanosensor
S-3	SLO-1	Application of nanotechnology - Introduction	Nano urea and mixed fertilizers	Nano-wire transistors	Bionics	DNA based biosensors
3-3	SLO-2	Application of nanotechnology in industrial waste	Nano fertigation	Advantages of nano electrical and electronic devices	Swim-suits with shark-skin effect	Natural nanocomposite systems
S-4		Application of nanotechnology in waste water treatment	Nano pesticides	Memory storage	Soil repellence	Nanomaterials in bone substitutes and dentistry
	SLO-2	Drinking water purifications	Nano-seed Science	Lighting displays and filters	Lotus effect	Implants and Prosthesis
S-5	SLO-1	Air purifications	Nanotechnology in Food industry	Quantum computers	Nano finishing in textile	Tissue Engineering
3-3	SLO-2	Gas purifications	Nano packaging for enhanced shelf life		Modern textiles Nanopolymers in medical textiles	Neuroscience
	SLO-1	Nano Monitoring	Smart packaging	Lead-free solder	Introduction to cosmetics	Neuro-electronic Interfaces
S-6	SLO-2	Nano Biosensors - Overview	Intelligent packaging	Nano coatings and EMI shielding.	Formulation of Gels	Nanorobotics

6.7	SLO-1	Nano Biosensors for Pesticide Detection	Food processing	Energy devices	Shampoos	Photodynamic Therapy
S-7	SLO-2	Nano Biosensors for Plant Pathogen Detection	Food safety	Fuel cells	Hair-conditioners	Protein Engineering
S-8	SLO-1	Nano Bioremediation	NIO-SECTINIV	role of nanomaterials in fuel cell applications	Introduction to Sun-screen dispersions	Nanosensors in Diagnosis
3-0	SLO-2	Pesticide Degradation	Electrochemical sensors	Photovoltaic cells	Sun-screen dispersions for UV protection	Drug delivery
S-9	SLO-1	Soil Structure	sensors for food analysis	Application of nanotechnology in solar cells	Colour cosmetics	Cancer therapy
3-9	SLO-2	Soil structure Remediation	contaminant detection	Application of power in transportation	Types of Colour cosmetics	Other therapeutic applications

Learning
Resources

- Environmental Nanotechnology, by M. H. Fulekar, Bhawana Pathak
 Lynn J. Frewer, Willehm Norde, R. H. Fischer and W. H. Kampers, Nanotechnology in the Agri-food sector,
- Wiley-VCH Verlag, (2011).
 Jennifer Kuzma and Peter VerHage, Nanotechnology in agriculture and food production, Woodrow Wilson International Center, (2006).
- 4. P. J. Brown and K. Stevens, Nanofibers and Nanotechnology in Textiles, Woodhead Publishing Limited, Cambridge, (2007).

 5. Neelina. H, Malsch (Ed.), "Biomedical Nanotechnology", CRC Press 2005.

Learning Asse	Learning Assessment											
_	Bloom's	Continuous Learning Assessment (50% weightage)									(E00/ woightogo)	
	Level of Thinking			CLA – 2 (15%)		CLA – 3 (15%)		CLA – 4 (10%)#		Final Examination (50% weightage)		
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	30 %		30 %		30 %		30 %		30%		
Level I	Understand	30 %	-	30 %	-	30 %	-	30 %	-	30%	-	
Level 2	Apply	40 %		40 %		40 %	_	40 %		40%		
Level 2	Analyze	40 %	-	40 %	-	40 %	-	40 70	-	40%	-	
Level 3	Evaluate	30 %		30 %		30 %		30 %		30%		
Level 3	Create	30 %	-	30 %	-	30 %	-	30 %	-	30%	-	
	Total	100	0 %	100	0 %	10	0 %	10	0 %	10	0 %	

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. N. VIJAYAN, CSIR-NPL, nvijayan@nplindia.org	1. Prof. S. Balakumar, University of Madras, balakumar@unom.ac.in	Dr.J.Archana, SRMIST
2. Dr. Krishna SurendraMuvvala, Saint Gobain Research India, India, Krishna.muvvala@saintgobain.com	2. Prof. V. Subramaniyam, IIT Madras, vsubbu@itm.ac.in	Dr.S.Harish, SRMIST