无锡学院 试卷

2023 - 2024 学年 第 2 学期

	线性代数						课程	呈试卷				
试卷类型 <u>A</u> (注明 A、B卷) 考试类型 <u>闭卷</u> (注明开、闭卷)												
注意: 1、本课程为 <u>必修</u> (注明必修或选修), 学时为 <u>48</u> , 学分为 <u>3</u> 2、本试卷共<u>6</u>页; 考试时间<u>120</u>分钟 ; 出卷时间: <u>2024</u> 年 <u>6</u> 月 3、姓名、学号等必须写在指定地方; 考试时间: <u>2024</u> 年_月												
4、本考卷适用专业年级: 2023 级理工文 任课教师:												
		,	(NTI	在 / 3 年入 7 ·	中央一		1					
题 号 一	$\vec{\Box}$	三	四	<i>Ξ</i> i.	六	七	八	总分				
得分												
评阅人												
•	1			•								

专业	年级	班级
学号	姓名	

请仔细阅读以下内容:

- 1、 考生必须遵守考试纪律。
- 2、 所有考试材料不得带离考场。
- 3、 考生进入考场后,须将学生证或身份证放在座位的左上角。
- 4、 考场内不许抽烟、吃食物、喝饮料。
- 5、 考生不得将书籍、作业、笔记、草稿纸带入考场,主考教师允许带入的除外。
- 6、 考试过程中,不允许考生使用通讯工具。
- 7、 开考 15 分钟后不允许考生进入考场,考试进行 30 分钟后方可离场。
- 8、 考生之间不得进行任何形式的信息交流。
- 9、 除非被允许,否则考生交卷后才能离开座位。
- 10、考试违纪或作弊的同学将被请出考场,其违纪或作弊行为将上报学院。

本人郑重承诺: 我已阅读上述 10 项规定,如果考试是违反了上述 10 项规定,本人将自愿接受学校按照有关规定所进行的处理。上面姓名栏所填姓名即表示本人已阅读本框的内容并签名。

评阅人 得分

一、选择题(每题 3 分, 共 10 题, 合计 30 分)选择题答案填在下面表格 里,否则不计分.

1	2	3	4	5	6	7	8	9	10

1. 已知 A, B 为 n 阶方阵,则必有().

A.
$$(A+B)(A-B) = A^2 - B^2$$
 B. $(AB)^T = B^T A^T$

B.
$$(AB)^T = B^T A^T$$

C. 若
$$A(B-C) = O$$
,则 $A = O$ 或 $B = C$ D. 若 $AB = E$,则 $BA \neq E$

D. 若
$$AB = E$$
,则 $BA \neq E$

2. 设n 阶方阵A,B,C 满足ABC = E, 其中E 是n 阶单位矩阵,则必有().

A.
$$ACB = E$$
 B. $CBA = E$ C. $BCA = E$ D. $BAC = E$

B.
$$CBA = E$$

C.
$$BCA = E$$

D.
$$BAC = B$$

3. 设 A, B 均为 3 阶方阵,且|A|=2,|B|=-2,则 $|2A|B^{-1}=$ ().

$$B. -8$$

$$D.\frac{1}{8}$$

4. 设 $D = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{vmatrix}$,则下列各式中与D相等的是().

$$A. \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{11} & a_{12} & a_{13} & a_{14} \end{vmatrix}$$

$$B. \begin{vmatrix} a_{11}+1 & a_{12}+1 & a_{13}+1 & a_{14}+1 \\ a_{21}+1 & a_{22}+1 & a_{23}+1 & a_{24}+1 \\ a_{31}+1 & a_{32}+1 & a_{33}+1 & a_{34}+1 \\ a_{41}+1 & a_{42}+1 & a_{43}+1 & a_{44}+1 \end{vmatrix}$$

$$C.\begin{vmatrix} a_{11} & a_{21} & a_{31} & a_{41} \\ a_{12} & a_{22} & a_{32} & a_{42} \\ a_{13} & a_{23} & a_{33} & a_{43} \\ a_{14} & a_{24} & a_{24} & a_{44} \end{vmatrix}$$

$$D.\begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ -a_{21} & -a_{22} & -a_{23} & -a_{24} \\ -a_{31} & -a_{32} & -a_{33} & -a_{34} \\ -a_{41} & -a_{42} & -a_{43} & -a_{44} \end{vmatrix}$$

5. 设向量组(I) $\alpha_1,\alpha_2,\cdots,\alpha_s$ 可由向量组(II) $\beta_1,\beta_2,\cdots,\beta_t$ 线性表示,则下列命题正确的 是().

- A. 若向量组(I)线性无关,则 $s \le t$. B. 若向量组(I)线性相关,则s > t.
- C. 若向量组(II)线性无关,则 $s \le t$. D. 若向量组(II)线性相关,则 s > t .

- 6. 设 A 是 4×3 矩阵,且 r(A) = 1, $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$,则 r(AB) = ().
 - A. 0
- B. 1
- C. 2
- - A. α_n 可由 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 线性表示. B. α_1 可由 $\alpha_{r+1}, \alpha_{r+2}, \cdots, \alpha_n$ 线性表示.

 - C. α_1 可由 $\alpha_1, \alpha_2, \dots, \alpha_r$ 线性表示. D. α_n 可由 $\alpha_{r+1}, \alpha_{r+2}, \dots, \alpha_n$ 线性表示.
- 8. 设向量 $\eta_1 = (2,4,5,0)^T$, $\eta_2 = (1,3,3,-1)^T$ 是非齐次线性方程组AX = b的特解,且 r(A)=3,则下列答案中不是方程组AX=b的通解的是(
 - A. $k(1,1,2,1)^T + (2,4,5,0)^T$ B. $k(1,1,2,1)^T + (1,3,3,-1)^T$
 - C. $k(1,1,2,1)^T + \left(\frac{3}{2}, \frac{7}{2}, 4, -\frac{1}{2}\right)^T$ D. $k(1,1,2,1)^T + \left(3,7,8,-1\right)^T$
- 9. 设 λ_1 与 λ_2 是A的两个互异特征值, ξ 与 η 分别为其特征向量,则下列说法正确的是().
- A. 对任意非零常数 $k_1, k_2, k_3 + k_2 \eta$ 均为 A 的特征向量.
- B. 存在非零常数 k_1, k_2 , 使得 $k_1\xi + k_2\eta$ 均为 A 的特征向量.
- C. 对任意非零常数 k_1,k_2 , $k_1\xi+k_2\eta$ 均不是 A 的特征向量.
- D. 存在唯一的一组非零常数 k_1, k_2 , 使得 $k_1 \xi + k_2 \eta$ 均为 A 的特征向量.
- 10. 二次型 $f(x_1, x_2, x_3) = x_1^2 + 4x_2^2 + 4x_3^2 4x_1x_2 + 4x_1x_3 8x_2x_3$ 的规范形是 ().
- A. $z_1^2 + z_2^2 + z_3^2$ B. $z_1^2 z_2^2 z_3^2$ C. $z_1^2 z_2^2$ D. z_1^2

				$\int 1$	1	3	1		
评阅人	得分	_	(40 八) 3几年7年 4	-1	-3	-2	-5	 ,求 <i>A</i> 的行最简形矩阵.	
71147	19.73	→ `	(10 分) 反矩阵 A =	_、 (10 分) 以起阵 A =	2	2	6	7	, XA的们取间形起阵.
				3	5	8	7		

	1		0	-1	-1	-1
评阅人	得分		١.			I
		三、(10分)计算行列式	1	1	-1 0	-1
			1	1	1	0

评阅人	得分

四、**(10 分)**设A,B均为二阶矩阵, A^*,B^* 分别为A,B的伴随矩阵.

评阅人	得分

五、(10分)设 $\alpha_1 = (\lambda - 5, 1, -3)^T$, $\alpha_2 = (1, \lambda - 5, 3)^T$, $\alpha_3 = (-3, 3, \lambda - 3)^T$,

求 λ 为何值时 $\alpha_1,\alpha_2,\alpha_3$ 线性相关, λ 为何值时 $\alpha_1,\alpha_2,\alpha_3$ 线性无关.

评阅人	得分

六、(10 分)已知向量组 a_1,a_2,a_3 与向量组 b_1,b_2,b_3 均为三维向量空间 R^3

的基,且 $b_1 = 2a_1 + 3a_2 + 3a_3, b_2 = 2a_1 + a_2 + 2a_3, b_3 = a_1 + 5a_2 + 3a_3,$

- (1) 求由基 b_1, b_2, b_3 到基 a_1, a_2, a_3 的过渡矩阵;
- (2) 若向量 α 在基 a_1,a_2,a_3 下的坐标为 $\left(1,-2,0\right)^T$,求 α 在基 b_1,b_2,b_3 下的坐标.

评阅人	得分

七、(10分)设三阶矩阵 A的特征值为 $\lambda_1=1,\lambda_2=0,\lambda_3=-1$,它们对应的

特征向量依次为
$$\boldsymbol{p}_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$
, $\boldsymbol{p}_2 = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$, $\boldsymbol{p}_3 = \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix}$, 求矩阵 A .

评阅人	得分

八、(10 分)求一个正交变换将二次型 $f = 2x_1^2 + 3x_2^2 + 3x_3^2 + 4x_2x_3$ 化成标准形.