$\int f(x) \cdot Cop x = g(x) = mix$ $\int Cop x = mix \Rightarrow x = \frac{\pi}{4}$ $\int Cop x = mix \Rightarrow x = \frac{\pi}{4}$ $\int Cop x = mix \Rightarrow x = \frac{\pi}{4}$ $\int Cop x = mix \Rightarrow x = \frac{\pi}{4}$ $\int Cop x = mix \Rightarrow x = mix$ $\int Cop x = mix$ \int

 $y'' = 2x + 6 \qquad y = x - 1$ $x = \frac{1}{2}y^{2} - 3 = x = y + 1$ $\frac{1}{2}y^{2} - y - 4 = 0 \Rightarrow y^{2} + 2y - \delta = 0$ y = -2, 4 $Area = \int_{-2}^{4} (y + 1 - \frac{1}{2}y^{2} + 3) dy$ $= -\frac{1}{6}y^{3} + \frac{1}{2}y^{2} + 4y \Big|_{-2}^{4}$ $= -\frac{32}{3} + 8 + 16 - \frac{24}{3} - 2 + 8$ $= 18 \quad \text{unif}^{2}$

(a) $y'=2x+6=(x-1)^2 \Rightarrow 2x+6=x^2-2x+1$ $x^2-(1x-5=0) \Rightarrow x=-1,5$ $A = \int_{-1}^{5} (2x+6-x^2+2x-1) dx$ 3/ $y^{4} = x$ $y = \sqrt{2} - x$ (x = 2) y = 0 $y^{4} = x = (2 - x)^{2}$

7 = x = (2 -x)2 = 4 - 4x + x2

x 2 - 5x + cl = 0 = 0 x = 1, (4) s not in domain

Anca = $\int_{0}^{1} x'^{1/4} dx + \int_{0}^{2} (2-x)^{1/2} d(2-x)$ $= \frac{4}{3} x'^{1/4} - \frac{2}{3} (2-x)^{3/2} \Big|_{0}^{2}$

 $= \frac{3}{5} - \frac{2}{3}(0-1)$ $= \frac{3}{5} + \frac{2}{3}$

or $X = y^{4} = -y^{2} + 2$ $y^{4} + y^{2} - 2 = 0 \Rightarrow y^{2} = 1, -x$ y = 1 and y = 1A rea = $\int_{0}^{1} (2 - y^{2} - y^{4}) dy$ $= 2y - \frac{1}{3}y^{3} - \frac{1}{5}y^{5}/2$ $= 2 - \frac{1}{3} - \frac{1}{5}$ $= \frac{22}{15} \quad \text{unt}^{2}$