Exponential Function

.0/10/2023 © PREPARED BY KYLE CHUNG

Interest Rate

The future value for the simple and compound interests calculations are calculated as follows:

 $V_F = V_P (1 + nr_{\text{int}})$

(simple interest calculation)

 $V_F = V_P (1 + r_{\text{int}})^n$

(compound interest calculation)

where V_p is the present value, V_F is the future value, r_{int} is the interest rate, and n is the time value for the interest rate.

Note that in accounting, $r_{\rm int}$ is taken as negative for the depreciation of non-current assets.

	Finance	Accounting							
	Appreciation $(r_{int} > 0)$	Depreciation ($r_{int} < 0$)							
$V_F = V_P (1 + n r_{\rm int})$	Simple interest	Straight-line method							
$V_F = V_P (1 + r_{\rm int})^n$	Compound interest	Reducing balance method							

10/10/202

PREPARED BY KYLE CHUNG

Interest Rate

For compound interest calculation, the adjustment on time value for the interest rate is as follows:

$$V_F = V_P (1 + \frac{r_{\text{int}}}{m})^{mn}$$

where m is the number of times interest is compounded per time period.

Example. Taking $V_p = 1$, and n = 1, then $V_F = (1 + \frac{r_{\text{int}}}{m})^m$.

When $r_{\text{int}} = 100\%$, we have

m	1	2	3	4	 20	 100		10000	 +∞
V_{F}	2	2.25	2.37	2.44	 2.65329	 2.7048	•••	2.718145927	 e

where e = 2.718281828...

When $r_{\text{int}} = 20\%$, we have

m	1	2	3	4	 20	 100		10000	 +∞
$V_{_F}$	1.2	1.21	1.213	1.215	 1.220	 1.221	• • • •	1.221400	 $e^{0.2}$

0/10/2023 © PREPARED BY KYLE CHUNG

Exponential Function - Definition

$$e^x = \lim_{m \to \infty} (1 + \frac{x}{m})^m$$

© DEEDADEDBY EVI CHING

Exponential Function - Derivative

Example

$$y = f(x) = e^{x} = \lim_{m \to \infty} \left(1 + \frac{x}{m} \right)^{m}$$

$$\frac{dy}{dx} = \lim_{x \to 0} \frac{\lim_{m \to \infty} \left(1 + \frac{x + \Delta x}{m} \right)^{m} - \lim_{m \to \infty} \left(1 + \frac{x}{m} \right)^{m}}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\lim_{m \to \infty} \left(1 + \frac{x}{m} + \frac{\Delta x}{m} \right)^{m} - \lim_{m \to \infty} \left(1 + \frac{x}{m} \right)^{m}}{\Delta x}$$

$$= \lim_{m \to \infty} \frac{\lim_{m \to \infty} \sum_{r=0}^{m} C_r^m \left(1 + \frac{x}{m} \right)^{m-r} \left(\frac{\Delta x}{m} \right)^r - \lim_{m \to \infty} \left(1 + \frac{x}{m} \right)^m}{\Delta x}$$

$$= \lim_{m \to \infty} \left(1 + \frac{x}{m} \right)^{m-1} = \lim_{m \to \infty} \frac{\left(1 + \frac{x}{m} \right)^{m}}{\left(1 + \frac{x}{m} \right)^{m}} = \frac{e^{x}}{1} = e^{x}$$

$$\Rightarrow \frac{d}{dx} e^{x} = e^{x}$$

10/10/2023

PREPARED BY KYLE CHUN

Euler's formula

$$e^{i\theta} = 1 + i\theta - \frac{\theta^2}{2!} - i\frac{\theta^3}{3!} + \frac{\theta^4}{4!} + i\frac{\theta^5}{5!} - \frac{\theta^6}{6!} - i\frac{\theta^7}{7!} + \dots$$

$$= \left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \frac{\theta^6}{6!} + \dots\right) + i\left(\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \frac{\theta^7}{7!} + \dots\right)$$

$$= \cos\theta + i\sin\theta$$

10/10/202

© PREPARED BY KYLE CHUNG

3