

Thing Testing in Web of Things

Ege Korkan

Technical University of Munich Faculty of Electrical and Computer Engineering Assistant Professorship of Embedded Systems and Internet of Things

Munich, 23. May 2018

Contents

- Testing: When
- Testing: What
- Testing: How
 - (JSON Schema Validation and Faker)
- Results
- Future Work
- Limitations

Testing: When

Simplified V-Model

Simplified V-Model

Simplified V-Model with TD

Simplified V-Model with TD

Testing: What

A black-box testing approach is used, which means:

- Testing something just by triggering the inputs and observing the outputs, without knowing the inner workings of the device.
- Testing as a user, doing only what the user can do

Testing: What

A black-box testing approach is used, which means:

- Testing something just by triggering the inputs and observing the outputs, without knowing the inner workings of the device.
- Testing as a user, doing only what the user can do

JSON Schema Extraction:

Testing relies heavily on JSON Schema which is hidden in the interaction JSON Object

```
EXAMPLE 4
   "properties": {
       "on": {
           "label": "0n/0ff",
           "type": "boolean",
           "forms": [...]
      },
       "status": {
           "readOnly": true,
           "type": "object",
           "properties": {
               "brightness": {
                   "type": "number",
                   "minimum": 0.0,
                   "maximum": 100.0,
```


JSON Schema Extraction:

Testing relies heavily on JSON Schema which is hidden in the interaction JSON Object

```
EXAMPLE 4
   "properties": {
      "on": {
           "label": "0n/0ff",
           "type": "boolean",
          "forms": [...]
      },
                                                                JSON Schema
       "status": {
           "readOnly": true,
           'type": "object",
           "properties": {
              "brightness": {
                  "type": "number",
                  "minimum": 0.0,
                  "maximum": 100.0,
```


Action Testing:

Property Testing:

Proposed Generic Test Flow:

JSON Schema Validation

JSON Faking based on JSON Schemas

```
651
                          JSON YAML
  "type": "integer",
  "minimum": 600,
  "maximum": 700,
  "multipleOf": 7,
  "exclusiveMinimum": true
}
                                            665
                          JSON YAML
  "type": "integer",
  "minimum": 600,
  "maximum": 700,
  "multipleOf": 7,
  "exclusiveMinimum": true
```


Online Tools to Play with ©

- https://www.jsonschemavalidator.net/
- http://json-schema-faker.js.org/

Results

Each interaction test can be stored for detailed analysis

Results

A simple report/table of failed number of tests can be provided

Test Scenario	TS1	TS2	TS3
Number			
Repetition Nb			
R0	0/3	2/3	1/3
R1	0/3	2/3	1/3
R2	0/3	2/3	1/3
R3	0/3	2/3	1/3
R4	0/3	2/3	1/3

Results

An analyzed report of tests can be provided

```
{
    "NonExecutedActions":[],
    "RepetitionDifference":false,
    "PassedAllTests":["IncreaseTemp"],
    "FailedAllTests":["ChangeFanSpeed","TurnOff"],
    "HasSameErrorId": ["TurnOff"]
}
```

Future Work

- Event pattern testing
- Observable property testing

Future Work

- Event pattern testing
- Observable property testing
- Out of range value injection to test the limits
- Security testing

Limitations

Event needs to be triggered by the Thing under test, no way to invoke it

Limitations

- Event needs to be triggered by the Thing under test, no way to invoke it.
- Cannot test how a response is constructed (white box testing)

Limitations

- Event needs to be triggered by the Thing under test, no way to invoke it.
- Cannot test how a response is constructed (white box testing)
- How precise a Thing can be tested depends on how precise its TD is

Contact

Ege Korkan

ege.korkan@tum.de

Jan Lauinger

janphlauinger@gmail.com

TUM-EI-ESI

Arcisstr. 21

D-80333 München

