Densely Connected Convolutional Networks

SKT Fellowship

LEE JINKYU

Department of Civil, Environmental and Architectural Engineering, Korea University

December 10, 2022

Introduction

About DenseNet

- 1. What is DenseNet
- 2. ResNet to DenseNet
- 3. Structure of DenseNet
- Dense connectivity
- Pooling layers
- Bottleneck layers
- Compression
- 4. Advantages of DenseNet
- Strong Gradient Flow
- Parameters & Computational Efficiency
- Maintain Low Complexity Features

What is DenseNet

Densely Connected Network

Network가 Deep해짐에 따라 Vanishing gradient가 발생한다는 문제를 해결하기 위해 Skip-Connection 사용(Resnet) Skip-Connection을 adjacent layer끼리 사용하는 것이 아닌 모든 layer에 연결하여 Dense Connectivity를 만듦

- → Dense-Connectivity로 인한 Gradient의 직접적 연결을 통해 Deep Network로 인해 발생하는 Optimize 문제를 해결
- → 적은 Parameters와 Narrow Network

ResNet to DenseNet

Why DenseNet is better

Resnet의 후속 연구를 통해 깊은 네트워크에서 모든 layer가 유의미하지 않음을 확인 (Stochastic Depth, dropout layers randomly → 깊은 레이어를 쌓는 것 보다 각 레이어를 병렬적으로 연결해 Compact Network를 생성함 (Feature reuse, Efficient)

+ Summation Skip-Connection 방식이 input information과 skip-connected information을 혼합시켜 오히려 성능을 방해할 수 있다 (DenseNet은 concate을 통해 두 information을 구분)

: Channel-wise concatenation

Resnet

Densenet

$$x_l = H_l(x_{l-1}) + x_{l-1} \quad x_l = H_l([x_0, x_1, \dots, x_{l-1}])$$

DenseNet – Dense Connectivity

DenseNet Structure

H_I(X_I)에서 나온 값을 모두 합쳐 input information으로 활용

Composite function H_1을 BN – RELU – 3X3 CONV로 구성하고 input과 output size를 유지한다 (Basic DenseNet)

DenseNet – Pooling layers

DenseNet Structure

Information들의 concate을 위해선 information들의 size가 모두 동일해야한다 But, CNN의 기본 개념은 **차원, 크기 축소에 따른 특징 추출에** 있다 (Pooling)

Figure 2: A deep DenseNet with three dense blocks. The layers between two adjacent blocks are referred to as transition layers and change feature-map sizes via convolution and pooling.

- → Network를 Dense Blocks로 나눈다
- → 각 Dense Block은 Dense Connectivity 상태이며 size가 동일하다
- → Dense Block 사이에 transition layers (CONV, POOL)를 통해 차원 축소를 한다

DenseNet – Pooling layers

DenseNet Structure

Layers	Output Size	DenseNet-121	DenseNet-169	DenseNet-201	DenseNet-264
Convolution	112 × 112	7×7 conv, stride 2			
Pooling	56 × 56	3 × 3 max pool, stride 2			
Dense Block	56 × 56	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 6$	X 6	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 3 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 3 \end{bmatrix} \times 6$
(1)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 6}$		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 6}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 6}$
Transition Layer	56 × 56	$1 \times 1 \text{ conv}$			
(1)	28 × 28	2 × 2 average pool, stride 2			
Dense Block	28 × 28	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$
(2)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 12}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 12}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 12}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 12}$
Transition Layer	28 × 28	$1 \times 1 \text{ conv}$			
(2)	14 × 14	2 × 2 average pool, stride 2			
Dense Block	14 × 14	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 24 \end{bmatrix} \times 24$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 32 \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 3 \end{bmatrix} \times 48$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 64 \end{bmatrix}$
(3)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{24}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{32}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{46}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$
Transition Layer	14×14	$1 \times 1 \text{ conv}$			
(3)	7 × 7	2 × 2 average pool, stride 2			
Dense Block	7 × 7	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 16$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 48 \end{bmatrix} \times 48$
(4)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{10}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{32}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{32}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{46}$
Classification	1 × 1	7×7 global average pool			
Layer		1000D fully-connected, softmax			

DenseNet – Growth Rate

DenseNet Structure

H_l을 통해 k feature-maps가 생성된다고 했을 때, l_th layer는 k_0 + k(l-1) feature-maps를 갖는다 (k : hyper-parameters, Network Depth를 결정)

→ DenseNet이 narrow 할 수 있는 이유

DenseNet – Bottleneck layers

DenseNet Structure

H_l : 더 efficient한 network를 위해 Conv(1x1)을 통해 각 layer의 input Channel을 줄이고 계산 (Densenet-B)

DenseNet – Compression

DenseNet Structure

Network의 Compactness를 위해 Dense Block에서 뿐만이 아니라 Transition layer에서도 thelta를 통해 Channels의 크기를 축소 (Densenet-BC)

Advatages of DenseNet – Strong Gradient Flow

Avoid Vanishing Gradient

초기 layers와도 직접적인 연결을 통해 Vanishing Gradient 없이 back-propagation 진행

Advatages of DenseNet – Parameters & Computational Efficiency

Cost Efficient Modeling

Fixed Growth rate, Bottleneck을 통해 Narrow한 Network를 만들어 기존 CNN, ResNet에 비해 적은 Computational Cost

Advatages of DenseNet – Maintain Low Complexity Features

Use all size of complexity

Low & High level feature들을 병렬적으로 사용함으로서 적은 데이터로도 특징 추출이 잘 일어날 수 있게 함 (모든 Complexity의 Features 사용)

