12/7/2020 Homework 2 Ordinary Deast Squares (OLS) can be expressed as a minimization problem min | XB-y 1/2 y = XB is the general linear model X is the design matrix having predictors B is vector of regression coefficients or beta parameters. To find the value of B above eqn (an be written in the form y=XB, where y is the dependent or response variable Now, y=XB Taking left inxerse on both sides $(x^{T}x)^{-1}x^{T}y = ((x^{T}x)^{-1}x^{T}) \times \beta \qquad (2)$ Now, $(x^{T}x)^{-1} - (x^{T}x)^{-1}$ Now, $(X^TX)^{-1} - (X^TX)^{-1}$ $(X^TX)^{-1} \times (X^TX)^{-1} \cdot (X^TX) = T$

On Simplifying, eq. (2) becomes $\beta = (xTx)^{-1}xT \cdot y$ (3) for (xTx) - to exist, mandatory Condition is rank (XTX) should be same as number of columns of X. This means X should not have any column which is linearly dependent on other Column of x. Thus, if there are any dependent Column, The design matrix becomes Close to singular and as a result, the deast square estimate becomes highly sensitive to Kandom errors in the observed target, producing large variance. Q2.] Corrective measures: i) Design matrix should be a tall matrix, ie, no of rows should be more than no of colomns. ii) Using VIF to identify inderpendent

-

.

1

	/	
	Regularization techniques. iv) Removing highly correlated variables y) Linearly combine the correlated Variables combine to correlated	
	Regularization techniques.	
	iv) Removing highly correlated variables	
	x) Linearly combine the correlated	
	Variables, such as addition	
	VI) Use Principal Component Analysis	
	(PCA) to find variables (Principal	
	(omponents) which are dinearly	
	independent.	4
	VII) Using other estimators like Partial least square regression.	
	partial deast square regression.	
J		
		46
- 1		