IMAGE CONSCIOUS PREFERENCES

Evan Piermont

October 2018

When a DM takes an action:

- > It results in a physical outcome:
 - Food, car, education, entertainment, ...
- > It releases information about the motivation of the DM:
 - This DM is charitable, fashionable, erudite, ...

An **image conscious** DM cares not only about the physical consequences of his actions, but also about his image—how his actions are perceived by observers.

An **image** is the set of preferences consistent with the observed choice.

- Depends on the choice constraints.
 - Is a 'revealed' preference exercise. The best we can do with the observables
- DM believes observer is naive; does not anticipate manipulation.
 - For tractability, but in line with psychology evidence.

Tyrone Slothrop is deciding where to take Katje on a date. There are three restaurants, equal in all ways excepting their wine lists:

- D^l offers only low quality (1)
- D^m offers l and also a mid-tier (m)
- D^h offers l and m and also a high-tier (h)

Despite the fact that Slothrop is an absolute cheapskate, he wishes to appear generous and refined:

- * at D^m , figuring it worth the small expense to impress Katje, he would publicly choose m.
- at D^h, Slothrop would choose l: the cost of sending a signal of refinement—choosing h—is now too high.

Anticipating this, Slothrop chooses to patronize D^m .

- At D^m or D^h he can manipulate his image by making a discriminating choice.
- ightharpoonup At D^m the cost of effecting a positive image is lower.

There is a connection between choice $\begin{cases} from \text{ menus} \\ between \text{ menus} \end{cases}$

- \triangleright At D^m , Slothrop could have chosen l
- This would result in the same consumption and same image as choosing l from D^h .
- D^m is revealed preferred to D^h

Dual Self

The 'observer' need not be an external entity.

- > DM cares about his self image.
- > Oddly, this seems manipulable.
 - Gino et al. (2016); Grossman and Van Der Weele (2017).

The Model

Two stage choice:

- 1. (Private) choice over menus.
 - Choosing a restaurant.
- 2. (Public) choice from the menu chosen in stage 1.
 - Choosing the bottle of wine.

Another Model

If first stage choices are *private* how does the modeler assess them? Later, I consider only second stage choice.

- Consumption takes place in \mathbb{R}^n .
- Consumption takes place in \mathbb{R} .
 $x \in \mathbb{R}^n$ referred to an action or consumption object.
- ⇒ \mathcal{D} = finite non-empty subsets of \mathbb{R}^n , ⇒ $\mathcal{D} \in \mathcal{D}$ referred to as stage 2 choice problem (2CP).
- $D \in \mathcal{D}$ referred to as stage 2 choice problem (2CP).
- M = finite non-empty subsets of D,
 M ∈ M referred to as stage 1 choice problems (1CPs).

Our primitive is a pair $\langle \mathscr{C}_1, \mathcal{C}_2 \rangle$,

st \mathscr{C}_1 is a choice function over \mathscr{M}

* C_2 is a choice function over \mathcal{D}

• $u \in \mathbb{R}^n$ defines a linear representation over \mathbb{R}^n :

$$u(x) = \sum_{i=1}^{n} u^{i} x^{i}.$$

* Call $I \subset \mathbb{R}^n$ an image if it is convex and $\lambda I \subset I$ for all $\lambda > 0$.

Vedical Care an image in tells convex and Ma in the accuse of

Let I denote the set of all images.

For $D \in \mathcal{D}$ and $x \in D$ let

$$\mathsf{nd} \ x \subset D \mathsf{l} \mathsf{a}$$

 $I_D^x = \{ u \in \mathbb{R}^n \mid u(x) \ge u(y), \text{ for all } y \in D \}.$

An image conscious representation of $\langle \mathscr{C}_1, \mathcal{C}_2 \rangle$ is a pair $\langle u, \Gamma \rangle$

where
$$u \in \mathbb{R}^n$$
 and $\Gamma: \mathbb{I} \to \mathbb{R} \cup \{-\infty\}$ such that

$$\mathcal{C}_2(D) = \underset{x \in D}{\arg\max} \left(u(x) + \Gamma(I_D^x) \right) \qquad \text{and} \qquad \text{(C2)}$$

$$\mathscr{C}_1(\mathcal{M}) = \underset{D \in \mathcal{M}}{\arg\max} \left(\underset{x \in D}{\max} \left(u(x) + \Gamma(I_D^x) \right) \right), \qquad \text{(C1)}$$

for all
$$D \in \mathcal{D}$$
 and $\mathcal{M} \in \mathcal{M}$.

Axiom 1—STAGE 1 WARP

If $D, D' \in \mathcal{M} \cap \mathcal{M}'$, $D \in \mathscr{C}_1(\mathcal{M})$ and $D' \in \mathscr{C}_1(\mathcal{M}')$ then $D \in \mathscr{C}_1(\mathcal{M}')$.

- There is no image effect in the first stage.
- Consistency between choices.

Axiom 2—WEAK CONTINUITY

For all $D \in \mathcal{D}$, $\mathit{UC}(D) \cap \mathcal{D}^1$ and $\mathit{LC}(D) \cap \mathcal{D}^1$ are closed and non-empty.

- \star UC(D) is the upper contour set of D.
- ${f \mathcal{D}}^1$ are single element menus.

Axiom 3—TRANSLATION INVARIANCE

For all
$$x \in \mathbb{R}^n$$
, $\mathcal{M} \in \mathcal{M}$ and $D \in \mathcal{D}$,

 $\mathscr{C}_1(\mathcal{M} + \{x\}) = \mathscr{C}_1(\mathcal{M}) + \{x\}$ and $C_2(D+x) = C_2(D) + x$

Axiom 4—SINGLETON HOMOGENEITY

For all $\lambda \in \mathbb{R}_{++}$, $\mathcal{M} \subset \mathcal{D}^1$,

$$\mathscr{C}_1(\lambda\mathcal{M}) = \lambda\mathscr{C}_1(\mathcal{M}).$$

No image concerns in singleton menus.

Lemma

If $\langle \mathscr{C}_1, \mathscr{C}_2 \rangle$ satisfies A1-4 then there exists a value function, $V: \mathcal{D} \to \mathbb{R}$ such that

$$\mathscr{C}_1(\mathcal{M}) = \{ D \in \mathcal{M} \mid D \in \underset{\mathcal{M}}{\operatorname{arg max}} V(D) \},$$

and, $u: x \mapsto V(\{x\})$ is a linear function over \mathbb{R}^n .

- * Look at the restriction of \mathscr{C}_1 to D^1 : satisfies EU axioms.
- ▶ Show that $UC(D) \cap LC(D) \cap D^1$ is non-empty for all $D \in \mathcal{D}$.

x is more revealing for D than D', written $D \stackrel{x}{\triangleright} D'$, if

1. we have $x \in D \cap D'$

2. $\operatorname{conv}(\alpha D' + (1 - \alpha)x) \subseteq \operatorname{conv}(D)$.

x is equally revealing for D than D' , written $D \stackrel{x}{\bowtie} D'$ if
$D \overset{x}{\triangleright} D'$ and $D' \overset{x}{\triangleright} D$

Axiom 5—IMAGE CONSISTENCY

Let $D, D' \in \mathcal{D}$ with $D \bowtie^x D'$ be such that $x \in \mathcal{C}_2(D)$. Then $x \in \mathcal{C}_2(D')$ if and only if $D \in \mathscr{C}_1(\{D, D'\})$.

- Revealed preference.
- Recall Slothrop and his wine selection.

Theorem

The following are equivalent:

- 1. $\langle \mathscr{C}_1, \mathscr{C}_2 \rangle$ satisfies A1-5,
- 2. $\langle \mathcal{C}_1, \mathcal{C}_2 \rangle$ has an image conscious representation $\langle u, \Gamma \rangle$.

Moreover, u is unique up to positive linear translations, and Γ is unique up to an additive constant on its effective domain.

Proof

For each $I \in \mathbb{I}$, define $\Gamma(I)$ to be

$$\Gamma(I) = \begin{cases} V(D) - u(x) & \text{if there exists } (D,x) \text{ with } \begin{cases} & x \in \mathcal{C}_2(D) \\ & I_D^x = I \end{cases}$$
 otherwise.

Proof: Γ is well defined

Let (D, x) and (D', x') be such that $I_D^x = I_{D'}^{x'}$ and $x \in \mathcal{C}_2(D)$ and $x' \in \mathcal{C}_2(D')$.

- WLOG x = x' by Translation Invariance.
- $I_D^x = I_{D'}^x$ implies $D \bowtie^x D'$.
- ightharpoonup By Image consistency and the prior Lemma, V(D)=V(D'):

$$V(D) - u(x) = V(D') - u(x).$$

Proof: $\langle u, \Gamma \rangle$ represents $\langle \mathscr{C}_1, \mathcal{C}_2 \rangle$

Let $x \in \mathcal{C}_2(D)$, and $y \in D$.

- Since x is chosen, $\Gamma(I_D^x) \neq -\infty$.
- If $\Gamma(I_D^y) = -\infty$, then $u(x) + \Gamma(I_D^x) > u(y) + \Gamma(I_D^y)$.
- $m{\cdot}$ If not, there exists a D' such that $y\in\mathcal{C}_2(D')$ and $I_{D'}^y=I_D^y$
 - ▶ By Image consistency, $V(D) \ge V(D')$.
- $u(x) + \Gamma(I_D^x) = V(D) ≥ V(D') = u(y) + \Gamma(I_D^y)$

On Privacy

Call a DM, $\langle \mathcal{C}_1, \mathcal{C}_2 \rangle$, **privacy seeking** if for all $D, D' \in \mathcal{D}$ with $D' \stackrel{x}{\triangleright} D$: If $x \in \mathcal{C}_2(D')$ then $D \in \mathcal{C}_1(\{D, D'\})$.

- Choosing x from D' induces the same consumption and reveals more.
- \triangleright If DM prefers privacy, this is worse than choosing x from D.

On Privacy

Call a DM, $\langle \mathcal{C}_1, \mathcal{C}_2 \rangle$, **privacy averse** if for all $D, D' \in \mathcal{D}$ with $D \overset{x}{\triangleright} D'$: If $x \in \mathcal{C}_2(D')$ then $D \in \mathscr{C}_1(\{D, D'\})$.

- Choosing x from D' induces the same consumption and reveals less.
- ▶ If DM wants to transfer information, this is worse than choosing x from D.

On Privacy

Theorem

1. If $\langle \mathscr{C}_1, \mathscr{C}_2 \rangle$ is privacy seeking then $D \in \mathscr{C}_1\{D, D'\}$ implies

$$D \in \mathscr{C}_1\{D, D \cup D'\}$$

2. If $\langle \mathscr{C}_1, \mathscr{C}_2 \rangle$ is privacy averse then

$$D \cup D' \in \mathscr{C}_1\{D, D \cup D'\}$$

What if \mathscr{C}_1 is unobservable. Because either	
The DM cannot choose constraints; it is degenerate	

The DM makes choices privately, so the modeler cannot observe.

Idea: Recall in the example, WARP violations in stage 2 indicated image concerns.

Problem: Geometric dependence between menu and images—highly incomplete preferences.

Say $I, J \in \mathbb{I}$ are directly comparable if there is a D such that $I = I_D^x, J = I_D^y$ and $x \in \mathcal{C}_2(D)$

We know:

$$\Gamma(I) - \Gamma(J) \ge u(y) - u(x).$$

- We can bound $\Gamma(I) \Gamma(J)$ for all I, J in the transitive closure of the 'directly comparability' relation.
 - This is an equivalence relation. It will turn out we can independently normalize over each class.

Axiom 1°—Scale Acyclicity

Let $0 < \lambda^1 < \lambda^2 < \lambda^3$ and $D \in \mathcal{D}$. If $x \in \frac{1}{\lambda^1} \mathcal{C}_2(\lambda^1 D) \cap \frac{1}{\lambda^3} \mathcal{C}_2(\lambda^3 D)$ then $x \in \frac{1}{\lambda^2} \mathcal{C}_2(\lambda^2 D)$.

- \triangleright As λ gets bigger, consumption utility matters more.
- This is monotone.

In the limit (well defined by Scale Acyclicity) only consumption matter.

 $C_2^{\infty}: D \mapsto \lim_{\lambda \to \infty} \frac{1}{\lambda} C_2(\lambda D).$

Axiom 2°—LIMIT CONTINUITY

The upper and lower contour sets of \mathcal{C}_2^∞ are closed, kinda.

Axiom 3°—TRANSLATION INVARIANCE

We know what this looks like!

Lemma

If \mathcal{C}_2 satisfies A1°-3° then there exists a linear $u:\mathbb{R}^n \to \mathbb{R}$ such that

that
$$\mathcal{C}_2^\infty(D) \subseteq rg\max_D u.$$

Moreover, u is unique up to positive linear transformations.

Define \succeq over $(\mathbb{R}^n \times \mathbb{I})$:

• exists $D \supseteq \{x, y\}$ with $I_D^x = I$ and $I_D^y = J$, and $x \in \mathcal{C}_2(D)$

 $(x, I) \succcurlyeq (y, J)$ if and only if

Axiom 4° $-\{x | x \neq \text{'KITCHEN SINK'}\}$

 \geq is acyclic and well behaved with respect to u.

Well behaved:

MONO
$$v(z) \ge 0$$
 and $(x, I) \succcurlyeq (y, J)$ then not $(y, J) \succcurlyeq (x + z, I)$

BND For all I, J: $\inf\{v(z) \mid (z, I) \succcurlyeq (\mathbf{0}, J)\} > -\infty$

CONT
$$v(x_n) \to 0$$
 and $(x_k, I) \succcurlyeq (y, J)$ for all k , then for any x with $v(x) = 0$, if $(y, J) \succcurlyeq (x, I)$ then $(x, I) \succcurlyeq (y, J)$

Theorem

The following are equivalent:

- are equivater
 - 1. \mathcal{C}_2 satisfies A1°-4°

2. C_2 has an image conscious representation $\langle u, \Gamma \rangle$. Moreover, u is unique up to positive linear translations.

Proof Idea

Imagine some complete \succcurlyeq^* over $\mathbb{R}^n \times \mathbb{I}$ was magically identified and preserved the relevant structure and extended \succcurlyeq .

- Fix $I^* \in \mathbb{I}$ and set $\Gamma(I^*) = 0$
- For each I let $x^I \in \mathbb{R}^n$ such that $(x^I, I) \sim (\mathbf{0}, I^*)$
 - Exists by BND and CONT
- \blacktriangleright We can recover Γ :

$$\Gamma: I \mapsto -u(x^I)$$

Proof Idea

We need to complete \geq to \geq^* .

- 1. ≽ by adding comparisons that must hold because of transitivity, monotonicity, or continuity.
- 2. If there are still images I and J such that no x satisfies $(x, I) \sim (\mathbf{0}, J)$: Just pick some x and extend the relation by adding $(x, I) \sim (\mathbf{0}, J)$.
 - > If we added anything, go back to step 1.

Repeating the process for different I's and J's creates a partial order of extensions of \succeq , which, by Zorn's Lemma, has maximal element that must be complete.