Supplementary Material of "PM_{2.5}-bound Organosulfates in two Eastern Mediterranean cities: The dominance of isoprene organosulfates"

Panagiotis Georgios Kanellopoulos^a, Sevasti Panagiota Kotsaki^a, Eirini Chrysochou^a, Konstantinos Koukoulakis^a, Nikolaos Zacharopoulos^b, Athanassios Philippopoulos^b, Evangelos Bakeas^a*

Contents

- **Table S1.** Mean concentrations of O₃, NO_x and SO₂ for each seasonal period at both sampling sites.
- **Table S2.** Mass spectrometry parameters of the standards compounds.
- **Table S3**. Validation data of the applied method for the determination of OS.
- **Table S4**. Identification and quantification data about the studied OS compounds.
- **Table S5.** Mean concentrations of PAHs and inorganic ions for each seasonal period at both sampling sites.
- **Fig. S1.** Correlation of the different OS groups mean concentrations (ng m-3) with the wind patterns.
- Fig. S2. Mean relative abundance (%) of the different mtOS species at both sampling sites.
- Fig. S3. Mean contribution of Σ OS to PM during each seasonal period at both sampling sites.
- **Fig. S4.** Correlations between each individual NOS compound, SO_2 and NO_x during each sampling period in Patra (* indicate p<0.05).

^a National and Kapodistrian University of Athens, Laboratory of Analytical Chemistry, Department of Chemistry, Zografou, GR, 15784, Greece

^b National and Kapodistrian University of Athens, Laboratory of Inorganic Chemistry, Department of Chemistry, Zografou, GR, 15784, Greece

Table S1. Mean concentrations of O_3 , NO_x and SO_2 for each seasonal period at both sampling sites.

Athens	Winter	Spring	Summer	Autumn		
O ₃ (μg m ⁻³)	20.8 ± 9.49	34.2 ± 10.6	29.9 ± 13.1	23.2 ± 14.0		
NO_x (µg m ⁻³)	77.7 ± 33.3	71.2 ± 27.5	72.6 ± 20.8	130 ± 80.6		
SO_2 (µg m ⁻³)	14.0 ± 2.61	3.34 ± 2.44	2.92 ± 1.71	3.02 ± 1.37		
Patra	Winter	Spring	Summer	Autumn		
O ₃ (μg m ⁻³)	32.4 ± 7.57	34.2 ± 8.33	80.8 ± 15.5	54.7 ± 6.57		
NO_x (µg m ⁻³)	98.1 ± 29.2	53.9 ± 11.5	31.6 ± 5.81	86.9 ± 27.9		
*SO ₂ levels in Patra were not available						

Table S2. Mass spectrometry parameters of the standards compounds.

Compounds/	Molecular ion	Exact mass	Mass error (ppm)	Product ions	Collision
Purity (%)	[M-H] ⁻			(m/z)	Energy (eV)
MeS	CH ₃ O ₄ S ⁻	110.9758	-2.70	·SO ₃ (79.9572)	27
				$-SO_4^{-}(95.9523)$	
EtS	$C_2H_5O_4S^-$	124.9914	+0.80	HSO ₄ (96.9601)	16
				$\cdot SO_3^-(79.9572)$	
PrS (94%)	$C_3H_7O_4S^-$	139.0071	-2.88	HSO ₄ (96.9601)	17
				$-SO_3^-$ (79.9572)	
OctS (95%)	$C_8H_{17}O_4S^{-}$	209.0853	-0.48	HSO ₄ (96.9601)	23
				$-SO_3^-$ (79.9572)	
BS (>99%)	$C_7 H_7 O_4 S^{-}$	187.0071	+1.07	SO ₄ (95.9523)	25
				$-SO_3^-$ (79.9572)	
PhS (98%)	$C_6H_5O_4S^{-1}$	172.9914	+2.89	$C_6H_5O \cdot (93.0340)$	17
	0 3 4			SO ₃ (79.9572)	
m-MBS (>99%)	$C_8^{}H_9^{}O_4^{}S^{}$	201.0227	-1.60	$-SO_4^-(95.9523)$	27
				SO ₃ (79.9572)	
p-MBS (>99%)	$C_8^{}H_9^{}O_4^{}S^{}$	201.0227	+4.48	$-SO_4^-(95.9523)$	27
				$-SO_3^-$ (79.9572)	
p-MPhS (85%)	$C_7H_7O_4S^{-1}$	187.0071	+3.48	$C_7H_7O \cdot (107.0497)$	17
	, , .			SO ₃ (79.9572)	
HAS (95%)	$C_3H_5O_5S^-$	152.9863	-1.56	$-SO_3^-(79.9572)$	21
				HSO ₄ (96.9601)	
GAS (40%)	$C_2H_3O_6S^-$	154.9656	+2.58	HSO ₄ (96.9601)	19
				$C_2H_3O_3 \cdot (75.0082)$	
LAS (13%)	$C_3H_5O_6S^-$	168.9812	+0.59	HSO ₄ (96.9601)	14
				$C_3H_5O_3$ (75.0082)	
Et-d5S	$C_2D_5O_4S$	130.0228	+3.87	DSO ₄ (97.9658)	22
				$-SO_3(79.9572)$	
10-CSA	$C_{10}H_{15}O_4S^{-}$	231.0697	+1.30	-	-

Table S3. Validation data of the applied method for the determination of OS.

Compound	Linear range	Linearity	\mathbb{R}^2	Precision, RSD% (intraday)		Accuracy \pm SD (%)		LOD	LOQ
				25.0 ppb	100 ppb	25.0 ppb 100 ppb		ng sample ⁻¹	
MeS	34.0-500	$y=0.0052(\pm0.00023) \text{ x-}0.0117(\pm0.0589)$	0.9961	7.83	2.61	86.1 ± 5.67	81.1 ± 3.98	11	34
EtS	1.7-500	$y=0.0081(\pm 0.00012) \text{ x}-0.0242(\pm 0.0234)$	0.9988	1.20	2.00	98.1 ± 5.02	85.8 ± 4.40	0.57	1.7
PrS	2.4-500	$y=0.0174(\pm0.00027) \text{ x-}0.0569(\pm0.0536)$	0.9986	2.76	2.27	82.0 ± 4.26	78.5 ± 3.52	0.80	2.4
OctS	1.5-250	$y=0.0394(\pm0.00035) \text{ x}-0.0484(\pm0.0037)$	0.9996	1.60	0.44	89.2 ± 4.32	83.2 ± 4.14	0.51	1.5
BS	1.8-250	$y=0.0346(\pm0.00032) \text{ x}-0.0386(\pm0.0332)$	0.9996	1.83	1.09	91.9 ± 3.92	104 ± 5.09	0.59	1.8
PhS	2.3-250	$y=0.0215(\pm0.00018) \text{ x-}0.0132(\pm0.0191)$	0.9997	1.42	0.76	83.4 ± 4.72	77.5 ± 3.41	0.77	2.3
m+p-MBS	2.4-250	$y=0.0695(\pm0.00064) \text{ x-}0.0090(\pm0.0067)$	0.9995	1.39	0.37	85.0 ± 3.24	94.5 ± 4.43	0.78	2.4
p-MPhS	8.0-250	$y=0.0068(\pm0.00005) \text{ x}+0.0221(\pm0.0048)$	0.9998	4.06	2.04	82.1 ± 5.03	90.6 ± 1.22	2.6	8.0
HAS	1.00-500	$y=0.0029(\pm0.00002) \text{ x}-0.0087(\pm0.0048)$	0.9996	8.81	1.79	92.3 ± 5.45	85.8 ± 1.63	0.12	0.37
GAS*	11.0-5000	$y=0.0003(\pm0.000006) \text{ x}-0.0240(\pm0.0125)$	0.9969	6.42	4.87	91.3 ± 2.14	83.2 ± 2.75	3.5	11
LAS*	100-5000	$y=0.0004(\pm0.000007) \text{ x}-0.0409(\pm0.0158)$	0.9988	9.30	8.98	108 ± 3.77	103 ± 6.36	27	81
10-CSA	2.2-250	$y=0.0040(\pm0.00004) \text{ x}+0.0104(\pm0.0042)$	0.9995	3.72	0.39	86.7 ± 5.46	89.4 ± 3.52	0.72	2.2

^{*}The respective concentrations of GAS and LAS for the precision and accuracy experiments were 250 ppb and 1000 ppb

^{**}The RSD of the precision experiments for the internal standard (ethyl-d5 sulfate) was <5.00%

Table S4. Identification and quantification data about the studied OS compounds

Compound	Molecular ion	Exact mass	Possible precursor	Quantification
-	$[M-H]^{-}$	$[M-H]^{-}$	-	
iOS139	$C_2H_3SO_5^-$	138.9707	Isoprene ^a	HAS
iOS167	$C_4H_7SO_5^-$	167.0014	MACR, MVK b	HAS
iOS171	$C_3H_7SO_6^-$	170.9969	Isoprene ^c	HAS
iOS183	$\mathrm{C_4H_7SO_6}^-$	182.9963	Isoprene, MACR, MVK b, d	LAS
iOS185	$C_3H_5SO_7$	184.9761	Isoprene ^c	LAS
iOS197	$C_5H_9SO_6^-$	197.0112	Isoprene, MACR, MVK ^a	LAS
iOS199	$C_4H_7SO_7^-$	198.9918	Isoprene, MVK a, d, e	LAS
iOS211	$C_5H_7SO_7^-$	210.9918	Isoprene ^{a, d}	LAS
iOS213	$C_5H_9SO_7^-$	213.0074	Isoprene ^{a, d}	LAS
iOS215	$C_5H_{11}SO_7^-$	215.0231	Isoprene a, d	LAS
iOS229	$C_5H_9SO_8^-$	229.0024	Isoprene ^c	LAS
iOS231	$C_5H_{11}SO_8^-$	231.0180	Isoprene ^c	LAS
mtOS249	$C_{10}H_{17}SO_5^{-1}$	249.0802	Monoterpenes f	10-CSA
mtOS251	$C_9H_{15}SO_6^-$	251.0589	Limonene, β-caryophyllene ^{a, h}	10-CSA
mtOS267	$C_9H_{15}SO_7^-$	267.0544	Limonene, α-pinene ^{a, f}	10-CSA
mtOS279	$C_{10}H_{15}SO_{7}^{-}$	279.0544	Monoterpenes e, g	10-CSA
mtOS281	$C_9H_{14}O_8S^{-1}$	281.0338	α-Pinene ⁱ	10-CSA
iNOS260	$C_5H_{10}NSO_9^-$	260.0082	Isoprene ^{a, d}	OctS
mtNOS294	$\mathrm{C}_{10}\mathrm{H}_{16}\mathrm{NSO}_7^-$	294.0653	Monoterpenes a, d	OctS
1NOS296	$C_9H_{14}NSO_8^-$	296.0446	Limonene a, d	OctS
mtNOS310	$C_{10}H_{16}NSO_8^-$	310.0602	α+β-Pinene ^a	OctS
dNOS326	$C_{10}H_{16}NSO_9^-$	326.0551	decalin ^j	OctS
napOS257	$C_{10}H_9SO_6^-$	257.0139	naphthalene ^k	PhS
napOS273	$C_{10}H_9SO_8^-$	273.0063	naphthalene ^k	PhS
napOS275	$C_{10}H_{11}SO_8^-$	275.0228	naphthalene ^k	PhS
napOS320	$C_{10}H_{10}NSO_9^-$	320.0021	naphthalene ^k	PhS
mnapOS217	$C_6H_4NSO_6^-$	217.9751	2-methylnaphthalene ^k	PhS
mnapOS231	$C_9H_{11}SO_5^-$	231.0333	2-methylnaphthalene ^k	PhS
mnapOS287	$C_{11}H_{11}SO_7^-$	287.0243	2-methylnaphthalene ^k	PhS
mnapOS289	$C_{11}H_{13}SO_7^-$	289.0387	2-methylnaphthalene k	PhS
cdOS251	$C_{10}H_{19}SO_{5}^{-}$	251.0950	cyclodecane ^j	OctS
cdOS265	$C_{10}H_{17}SO_6^-$	265.0751	cyclodecane ^j	OctS
dOS269	$C_9H_{17}SO_7^-$	269.0700	decalin ^j	OctS
dOS295	$C_{10}H_{15}SO_8^-$	295.0493	decalin ^j Oc	
doOS279	$C_{12}H_{23}SO_5^-$	279.1272	dodecane ^j	OctS

^aSurrat et al., 2008 ^b Schindelka et al., 2013 ^c Chen et al., 2020 ^d Hettiyadura et al., 2019 ^e Nozière et al., 2010 ^f Wang et al., 2017 ^g Kristensen and Glasius 2011 ^h Chan et al., 2011 ⁱ Brüggemann et al., 2019 ^j Riva et al., 2016 ^k Riva et al., 2015

Table S5. Mean concentrations of PAHs and inorganic ions for each seasonal period at both sampling sites.

Athens	Winter	Spring	Summer	Autumn
Naphthalene (pg m ⁻³)	9.72 ± 0.44	9.50 ± 0.34	9.63 ± 0.31	9.66 ± 0.34
Acenaphthylene (pg m ⁻³)	17.2 ± 0.78	16.8 ± 0.61	17.0 ± 0.54	17.1 ± 0.60
Acenaphthene (pg m ⁻³)	4.49 ± 0.20	4.38 ± 0.16	32.5 ± 45.8	101 ± 205
Fluorene (pg m ⁻³)	15.5 ± 16.6	4.01 ± 8.16	25.2 ± 44.9	1.86 ± 0.07
Phenanthrene (pg m ⁻³)	4.11 ± 0.19	46.9 ± 44.5	191 ± 236	43.8 ± 55.7
Anthracene (pg m ⁻³)	6.38 ± 0.29	68.6 ± 61.4	26.3 ± 51.7	6.31 ± 0.22
Patra	Winter	Spring	Summer	Autumn
Naphthalene (pg m ⁻³)	248±832	13.1 ± 0.99	41.4 ± 75.9	13.7 ± 1.1
Acenaphthylene (pg m ⁻³)	331 ± 1147	23.3 ± 1.74	39.7 ± 5.91	24.3 ± 1.92
Acenaphthene (pg m ⁻³)	247 ± 901	6.08 ± 0.45	26.0 ± 47.8	6.34 ± 0.50
Fluorene (pg m ⁻³)	220 ± 696	28.6 ± 39.3	4.26 ± 0.64	2.64 ± 0.21
Phenanthrene (pg m ⁻³)	182 ± 547	160 ± 68.8	91.2 ± 123	5.82 ± 0.46
Anthracene (pg m ⁻³)	237 ± 727	208 ± 85.3	14.5 ± 2.18	8.99 ± 0.71
Na^+ (µg m ⁻³)	0.89 ± 0.65	0.24 ± 0.23	ND	0.010 ± 0.024
$NH_4^+ (\mu g \ m^{-3})$	0.34 ± 0.41	1.50 ± 0.55	0.53 ± 0.37	1.15 ± 0.93
K^+ (µg m ⁻³)	0.78 ± 0.43	0.43 ± 0.39	0.04 ± 0.14	0.30 ± 0.26
$\mathrm{Mg}^{+2}(\mathrm{\mu g}\;\mathrm{m}^{-3})$	0.03 ± 0.05	0.02 ± 0.06	0.05 ± 0.08	ND
Ca^{+2} (µg m ⁻³)	1.25 ± 0.90	0.68 ± 0.53	1.22 ± 0.60	0.07 ± 0.20
$\text{Cl}^{\text{-}}$ (µg m ⁻³)	0.78 ± 0.73	0.64 ± 0.44	0.40 ± 0.42	ND
$NO_3^- (\mu g m^{-3})$	3.38 ± 1.88	1.97 ± 1.04	1.23 ± 0.66	0.66 ± 0.45
SO_4^{-2} (µg m ⁻³)	2.71 ± 1.48	4.12 ± 1.72	1.25 ± 1.71	3.29 ± 2.82

Non-sea salt sulfate (NSS) was calculated using the following equation, as described in (Mukherjee et al., 2021)

 $NSS = [SO_4^{-2}]_{total} - [Na^+] \ x \ 0.25$

where 0.25 is the weight ratio of SO_4^{-2}/Na^+ in seawater

Fig. S1. Correlation of the different OS groups mean concentrations (ng m-3) with the wind patterns.

Fig. S2. Mean relative abundance (%) of the different mtOS species at both sampling sites.

Fig. S3. Mean contribution of Σ OS to PM during each seasonal period at both sampling sites.

Fig. S4. Correlations between each individual NOS compound, SO₂ and NO_x during each sampling period in Patra (* indicate p<0.05).

References

Brüggemann, M., Van Pinxteren, D., Wang, Y., Yu, J.Z., Herrmann, H., 2019. Quantification of known and unknown terpenoid organosulfates in PM10 using untargeted LC-HRMS/MS: contrasting summertime rural Germany and the North China Plain. Environ. Chem. 16 (5), 333–346.

Chan, M.N., Surratt, J.D., Chan, A.W.H., Schilling, K., Offenberg, J.H., Lewandowski, M., Edney, E.O., Kleindienst, T.E., Jaoui, M., Edgerton, E.S., Tanner, R.L., Shaw, S.L., Zheng, M., Knipping, E.M., Seinfeld, J.H., 2011. Influence of aerosol acidity on the chemical composition of secondary organic aerosol from β-caryophyllene. Atmos. Chem. Phys. 11 (4), 1735–1751.

Chen, Y., Zhang, Y., Lambe, A.T., Xu, R., Lei, Z., Olson, E.N., Zhang, Z., Szalkowski, T., Cui, T., Vizuete, W., Gold, A., Turpin, B.J., Ault, A.P., Chan, M.N., Surratt, J.D., 2020. Heterogeneous Hydroxyl Radical Oxidation of Isoprene Epoxydiol- Derived Methyltetrol Sulfates: Plausible Formation Mechanisms of Previously Unexplained Organosulfates in Ambient Fine Aerosols. Environ. Sci. Technol. Lett. 7 (7), 460–468.

Hettiyadura, A.P.S., Al-Naiema, I.M., Hughes, D.D., Fang, T., Stone, E.A., 2019. Organosulfates in Atlanta, Georgia: Anthropogenic influences on biogenic secondary organic aerosol formation. Atmos. Chem. Phys. 19 (5), 3191–3206.

Kristensen, K., Glasius, M., 2011. Organosulfates and oxidation products from biogenic hydrocarbons in fine aerosols from a forest in North West Europe during spring. Atmos. Environ. 45 (27), 4546–4556.

Mukherjee, P., Marsay, C.M., Yu, S., Buck, C.S., Landing, W.M., Gao, Y., 2021. Concentrations and size-distributions of water-soluble inorganic and organic species on aerosols over the Arctic Ocean observed during the US GEOTRACES Western Arctic Cruise GN01. Atmos. Environ. 261, 118569.

Nozière, B., Ekström, S., Alsberg, T., Holmström, S., 2010. Radical-initiated formation of organosulfates and surfactants in atmospheric aerosols. Geophys. Res. Lett. 37 (5), L05806.

Riva, M., Tomaz, S., Cui, T., Lin, Y., Perraudin, E., Gold, A., Stone, E.A., Villenave, E., Surratt, J.D., 2015. Evidence for an Unrecognized Secondary Anthropogenic Source of Organosulfates and Sulfonates: Gas-Phase Oxidation of Polycyclic Aromatic Hydrocarbons in the Presence of Sulfate Aerosol. Environ. Sci. Technol. 49 (11), 6654–6664.

Riva, M., Da Silva Barbosa, T., Lin, Y.H., Stone, A.E., Gold, A., Surratt, J.D., 2016. Chemical characterization of organosulfates in secondary organic aerosol derived from the photooxidation of alkanes. Atmos. Chem. Phys. 16 (17), 11001–11018.

Schindelka, J., Iinuma, Y., Hoffmann, D., Herrmann, H., 2013. Sulfate radical-initiated formation of isoprene-derived organosulfates in atmospheric aerosols. Faraday Discuss. 165, 237–259.

Surratt, J.D., Gomez-Gonzalez, Y., Chan, A.W.H., Vermeylen, R., Shahgholi, M., Kleindienst, T.E., Edney, E.O., Offenberg, J.H., Lewandowski, M., Jaoui, M., Maenhaut, W., Claeys, M., Flagan, R.C., Seinfeld, J.H., 2008. Organosulfate Formation in Biogenic Secondary Organic Aerosol. J. Phys. Chem. A 112 (36), 8345–8378.

Wang, Y., Ren, J., Huang, X.H.H., Tong, R., Yu, J.Z., 2017. Synthesis of Four Monoterpene-derived Organosulfates and their Quantification in Atmospheric Aerosol Samples. Environ. Sci. Technol. 51 (12), 6791–6801.