AMENDMENT OF CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

Listing of Claims:

1-67: (cancelled)

68. (currently amended): A method for treating or preventing an inflammatory disorder associated with TACE (TNF- α) and/or MMP, comprising administering to a subject in need thereof a therapeutically effective amount of a compound of Formula (I):

$$V = \begin{bmatrix} T \\ W \end{bmatrix}_n - X - U - R^1$$

$$V = \begin{bmatrix} R^2 \\ R^2 \end{bmatrix}$$
(I)

or a pharmaceutically acceptable salt, solvate or isomer thereof, wherein:

M is $-(C(R^{30})(R^{40}))_{m}$, wherein m is 1;

T is selected from the group consisting of R^{21} -substituted alkyl, cycloalkyl, heterocycloalkyl, cycloalkenyl, heterocycloalkenyl, aryl, heteroaryl, $-OR^3$, $-C(O)R^4$, $-C(O)OR^3$, $-C(O)NR^{24}R^{25}$, $-C(O)NR^{24}OR^3$, $-C(O)SR^3$, $-NR^{24}R^{25}$, $-NR^{25}C(O)R^4$, $-NR^{25}C(O)R^3$, $-NR^{25}C(O)NR^{24}R^{25}$, $-NR^{25}C(O)NR^{24}OR^3$, $-SR^3$, $-S(O)_xNR^{24}R^{25}$, $-S(O)_xNR^{25}OR^3$, -CN, $-P(O)(R^{24})(OR^{24})$, $-P(O)(OR^{24})(OR^{24})$, $-C(R^4)(=N(OR^3))$, $-C(O)-AA-NR^{24}R^{25}$ and $-C(O)-AA-NR^{25}OR^3$,

wherein each of the cycloalkyl, heterocycloalkyl, cycloalkenyl, heterocycloalkenyl, aryl and heteroaryl groups of T is independently unsubstituted or substituted with one to five independently selected R²⁰ moieties which can be the same or different, each R²⁰ moiety being independently selected from the group of R²⁰ moieties below;

V is selected from the group consisting of alkyl, R^{21} -substituted alkyl, cycloalkyl, heterocycloalkyl, cycloalkenyl, heterocycloalkenyl, aryl, heteroaryl, $-OR^3$, $-C(O)R^4$, $-(CR^{23}R^{24})_{n1}C(O)OR^3$, $-C(O)NR^{24}R^{25}$, $-(CR^{23}R^{24})_{n1}C(O)NR^{25}OR^3$, $-C(O)SR^3$, $-NR^{24}R^{25}$, $-NR^{25}C(O)R^4$, $-NR^{25}C(O)OR^3$, $-NR^{25}C(O)NR^{24}R^{25}$, $-NR^{25}C(O)NR^{24}OR^3$, $-SR^3$, $-S(O)_xNR^{24}R^{25}$, $-S(O)_xNR^{25}OR^3$, -CN, $-P(O)(R^{24})(OR^{24})$, $-P(O)(OR^{24})(OR^{24})$, $-C(R^4)(=N(OR^3))$, $-C(O)-AA-NR^{24}R^{25}$ and $-C(O)-AA-NR^{25}OR^3$,

wherein each of the cycloalkyl, heterocycloalkyl, cycloalkenyl, heterocycloalkenyl, aryl and heteroaryl groups of V is independently

unsubstituted or substituted with one to three independently selected R²⁰ moieties which can be the same or different, each R²⁰ moiety being independently selected from the group of R²⁰moieties below;

W is –(CH₂)-; X is unsubstituted phenyl; U is –O-(CH₂)-; n is 0 to 2; n1 is 0 to 2; x is 0 to 2;

AA is , wherein R³¹ and R³² are the same or different and are each independently selected from the group consisting of H, alkyl, cycloalkyl, aryl, heteroaryl, -NR²⁴R²⁵, -(CH₂)₃NH(C=NH)NH₂, -CH₂C(O)NH₂, -CH₂C(O)OH, -CH₂SH, -CH₂S-SCH₂CH(NH₂)C(O)OH, -CH₂CH₂C(O)OH, -CH₂CH₂C(O)NH₂, -(CH₂)₄NH₂, -CH₂CH₂CH(OH)CH₂NH₂, -CH₂CH(CH₃)₂, -CH(CH₃)CH₂(CH₃), -CH₂CH₂SCH₃, -CH₂OH, -CH(OH)(CH₃),

$$-H_2C$$
 NH
 $-H_2C$
 OH
and

or R³¹ and R³², together with the N to which R³¹ is attached and the C to which R³¹ is attached, form a 5-membered ring which is unsubstituted or independently substituted with a hydroxyl group;

R¹ is selected from the group consisting of unsubstituted quinolyl, alkyl-substituted quinolyl and aryl-substituted quinolyl;

each R^2 , R^4 and R^5 is the same or different and each is independently selected from the group consisting of H, halo, alkyl, R^{22} -substituted alkyl, cycloalkyl, heterocycloalkyl, cycloalkenyl, heterocycloalkenyl, aryl, heteroaryl, $-OR^6$, $-C(O)R^7$, $-C(O)OR^6$, $-NR^{24}R^{25}$, $-NR^{24}C(O)R^{25}$, $-N(=C-O-NR^{24}R^{25})$,

-NR²⁴S(O)₂R²⁵,

wherein each of the cycloalkyl, heterocycloalkyl, cycloalkenyl, heterocycloalkenyl, aryl and heteroaryl groups of R², R⁴ and R⁵ is independently unsubstituted or substituted with one to four independently selected alkyl, R²²-substituted alkyl or R²² moieties which can be the same or different, each R²² moiety being independently selected from the group of R²² moieties below;

each R³ is the same or different and is independently selected from the group consisting of H, alkyl, R²²-substituted alkyl, cycloalkyl, heterocycloalkyl, cycloalkenyl, heterocycloalkenyl, aryl, heteroaryl, -OR⁶, -C(O)R⁷, -C(O)OR⁶, -NR²⁴R²⁵, -NR²⁴C(O)R²⁵, -N(=C-O-NR²⁴R²⁵) and -NR²⁴S(O)₂R²⁵,

each of the cycloalkyl, heterocycloalkyl, cycloalkenyl, heterocycloalkenyl, aryl and heteroaryl groups of R^3 is independently unsubstituted or substituted with one to four independently selected alkyl, R^{22} -substituted alkyl or R^{22} moieties which can be the same or different, each R^{22} moiety being independently selected from the group of R^{22} moieties below;

each R⁶ is independently selected from the group consisting of H, alkyl and -OCF₃;

each R⁷ is independently selected from the group consisting of H, alkyl, heteroaryl and –CF₃;

each R^{20} is independently selected from the group consisting of: alkyl, R^{21} -substituted alkyl, $-OR^3$, halo, -CN, $-NO_2$, $-NR^{24}R^{25}$, $-C(O)R^3$, $-C(O)NR^{24}R^{25}$, $-S(O)_xNR^{24}R^{25}$, $-S(O)_xR^5$, $-CF_3$, $-OCF_3$, $-CF_2CF_3$, $-C(=NOH)R^3$, aryl, halo-substituted aryl, heteroaryl, cycloalkyl, heterocycloalkyl, $-N(R^{25})S(O)_xR^5$, $-N(R^{25})C(O)R^5$, and $-N(R^{25})C(O)NR^{24}R^{25}$,

wherein each of the aryl, halo-substituted aryl, heteroaryl, cycloalkyl and heterocycloalkyl groups of R^{20} is independently unsubstituted or substituted with one to four independently selected R^{22} moieties which can be the same or different, each R^{22} moiety being independently selected from the group of R^{23} moieties below,

or two R²⁰ groups taken together with the carbon to which both R²⁰

groups are attached is C=O;

 R^{21} is one to three substituents independently selected from the group consisting of: -OR³, halo, -CN, -NO₂, -NR²⁴R²⁵, -C(O)R³, -C(O)OR³, -C(O)NR²⁴R²⁵, -S(O)_xNR²⁴R²⁵, -SO_xR⁵, -CF₃, -OCF₃, -CF₂CF₃, -C(=NOH)R³, R²³-substituted alkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, -N(R²⁵)S(O)_xR⁵, -N(R²⁵)C(O)R⁵, and -N(R²⁵)C(O)NR²⁴R²⁵;

wherein each of the aryl, halo-substituted aryl, heteroaryl, cycloalkyl, and heterocycloalkyl groups of R²¹ is independently unsubstituted or substituted with one to four independently selected R²³ moieties which can be the same or different, each R²³ moiety being independently selected from the group of R²³ moieties below,

or two R²¹ groups taken together with the carbon to which both R²¹

groups are attached is C=O;

each R^{22} is independently selected from the group consisting of: halo, alkynyl, aryl, heteroaryl, $-OR^{24}$, $-(C_1-C_6$ alkyl)- OR^{24} , -CN, $-NO_2$, $-NR^{24}R^{25}$, $-C(O)R^{23}$, $-C(O)OR^{23}$, $-C(O)NR^{24}R^{25}$, $-S(O)_xNR^{24}R^{25}$, $-S(O)_xR^{23}$, $-CF_3$, $-CF_3$, $-CF_2CF_3$, $-C(=NOH)R^{23}$, $-N(R^{24})S(O)_xR^{25}$, $-N(R^{24})C(O)R^{25}$, and $-N(R^{24})C(O)NR^{24}R^{25}$,

or two R²² groups taken together with the carbon to which both R²²

groups are attached is C=O;

each R²³ is independently selected from the group consisting of H, hydroxyl, halo and alkyl;

each R²⁴ is independently selected from the group consisting of H and alkyl;

each R^{25} is independently selected from the group consisting of H, hydroxyl, alkyl, hydroxyalkyl, aryl, cycloalkyl, heteroaryl, -NR²⁴R²⁴, -(C₁ to C₆ alkyl)NR²⁴N²⁴, -CF₃ and -S(O)_xR²³;

each R²⁶ is independently selected from the group consisting of H, hydroxyl, alkyl, hydroxyalkyl, aryl, cycloalkyl, heteroaryl and -NR³R⁴;

R²⁷ is independently selected from the group consisting of heteroaryl, heterocycloalkyl and –NR²⁴R²⁵;

R³⁰ is independently selected from the group consisting of H and R²⁰ substituent groups above;

R⁴⁰ is independently selected from the group consisting of H and R²⁰ substituent groups above,

or R³⁰ and R⁴⁰, taken together with the carbon to which R³⁰ and R⁴⁰ are

attached, is C=O;

with the proviso that at least one of V or T is selected from the group consisting of $-C(O)N(R^3)(OR^4)$, $-C(O)OR^3$ and $-C(O)NR^{24}R^{25}$.

69-72: (cancelled).

73. (new claim): A method of treating rheumatoid arthritis, osteoarthritis, periodontal disease, cancer or osteoporosis in a subject comprising: administering to the subject in need of such treatment a therapeutically effective amount of a compound of Formula (I):

$$V = \begin{bmatrix} T \\ W \end{bmatrix}_n - X - U - R^1$$

$$V = \begin{bmatrix} R^2 \\ R^2 \end{bmatrix}$$
(I)

or a pharmaceutically acceptable salt, solvate or isomer thereof, wherein:

M is $-(C(R^{30})(R^{40}))_{m}$, wherein m is 1;

T is selected from the group consisting of R^{21} -substituted alkyl, cycloalkyl, heterocycloalkyl, cycloalkenyl, heterocycloalkenyl, aryl, heteroaryl, $-OR^3$, $-C(O)R^4$, $-C(O)OR^3$, $-C(O)NR^{24}R^{25}$, $-C(O)NR^{24}OR^3$, $-C(O)SR^3$, $-NR^{24}R^{25}$, $-NR^{25}C(O)R^4$, $-NR^{25}C(O)OR^3$, $-NR^{25}C(O)NR^{24}R^{25}$, $-NR^{25}C(O)NR^{24}OR^3$, $-SR^3$, $-S(O)_xNR^{24}R^{25}$, $-S(O)_xNR^{25}OR^3$, -CN, $-P(O)(R^{24})(OR^{24})$, $-P(O)(OR^{24})(OR^{24})$, $-C(R^4)(=N(OR^3))$, $-C(O)-AA-NR^{24}R^{25}$ and $-C(O)-AA-NR^{25}OR^3$,

wherein each of the cycloalkyl, heterocycloalkyl, cycloalkenyl, heterocycloalkenyl, aryl and heteroaryl groups of T is independently unsubstituted or substituted with one to five independently selected R²⁰ moieties which can be the same or different, each R²⁰ moiety being independently selected from the group of R²⁰ moieties below;

V is selected from the group consisting of alkyl, R^{21} -substituted alkyl, cycloalkyl, heterocycloalkyl, cycloalkenyl, heterocycloalkenyl, aryl, heteroaryl, $-OR^3$, $-C(O)R^4$, $-(CR^{23}R^{24})_{n1}C(O)OR^3$, $-C(O)NR^{24}R^{25}$, $-(CR^{23}R^{24})_{n1}C(O)NR^{25}OR^3$, $-C(O)SR^3$, $-NR^{24}R^{25}$, $-NR^{25}C(O)R^4$, $-NR^{25}C(O)OR^3$, $-NR^{25}C(O)NR^{24}R^{25}$, $-NR^{25}C(O)NR^{24}OR^3$, $-SR^3$, $-S(O)_xNR^{24}R^{25}$, $-S(O)_xNR^{25}OR^3$, -CN, $-P(O)(R^{24})(OR^{24})$, $-P(O)(OR^{24})(OR^{24})$, $-C(R^4)(=N(OR^3))$, $-C(O)-AA-NR^{24}R^{25}$ and $-C(O)-AA-NR^{25}OR^3$,

wherein each of the cycloalkyl, heterocycloalkyl, cycloalkenyl, heterocycloalkenyl, aryl and heteroaryl groups of V is independently unsubstituted or substituted with one to three independently selected R²⁰ moieties which can be the same or different, each R²⁰ moiety being independently selected from the group of R²⁰moieties below;

W is $-(CH_2)$ -; X is unsubstituted phenyl; U is -O- (CH_2) -; n is 0 to 2; n1 is 0 to 2; x is 0 to 2;

AA is , wherein R³¹ and R³² are the same or different and are each independently selected from the group consisting of H, alkyl, cycloalkyl, aryl, heteroaryl, -NR²⁴R²⁵, -(CH₂)₃NH(C=NH)NH₂, -CH₂C(O)NH₂, -CH₂C(O)OH, -CH₂SH, -CH₂S-SCH₂CH(NH₂)C(O)OH, -CH₂CH₂C(O)OH, -CH₂CH₂C(O)NH₂, -(CH₂)₄NH₂, -CH₂CH₂CH(OH)CH₂NH₂, -CH₂CH(CH₃)₂, -CH(CH₃)CH₂(CH₃), -CH₂CH₂SCH₃, -CH₂OH, -CH(OH)(CH₃),

$$-H_2C$$
 H_2C
 H_2C

or R³¹ and R³², together with the N to which R³¹ is attached and the C to which R³¹ is attached, form a 5-membered ring which is unsubstituted or independently substituted with a hydroxyl group;

R¹ is selected from the group consisting of unsubstituted quinolyl, alkyl-substituted quinolyl and aryl-substituted quinolyl;

each R^2 , R^4 and R^5 is the same or different and each is independently selected from the group consisting of H, halo, alkyl, R^{22} -substituted alkyl, cycloalkyl, heterocycloalkyl, cycloalkenyl, heterocycloalkenyl, aryl, heteroaryl, $-OR^6$, $-C(O)R^7$, $-C(O)OR^6$, $-NR^{24}R^{25}$, $-NR^{24}C(O)R^{25}$, $-N(=C-O-NR^{24}R^{25})$, $-NR^{24}S(O)_2R^{25}$.

wherein each of the cycloalkyl, heterocycloalkyl, cycloalkenyl, heterocycloalkenyl, aryl and heteroaryl groups of R², R⁴ and R⁵ is independently unsubstituted or substituted with one to four independently selected alkyl, R²²-substituted alkyl or R²² moieties which can be the same or

different, each R²² moiety being independently selected from the group of R²² moieties below;

each R³ is the same or different and is independently selected from the group consisting of H, alkyl, R²²-substituted alkyl, cycloalkyl, heterocycloalkyl, cycloalkenyl, heterocycloalkenyl, aryl, heteroaryl, -OR⁶, -C(O)R⁷, -C(O)OR⁶, -NR²⁴R²⁵, -NR²⁴C(O)R²⁵, -N(=C-O-NR²⁴R²⁵) and -NR²⁴S(O)₂R²⁵,

each of the cycloalkyl, heterocycloalkyl, cycloalkenyl, heterocycloalkenyl, aryl and heteroaryl groups of R³ is independently unsubstituted or substituted with one to four independently selected alkyl, R²²-substituted alkyl or R²² moieties which can be the same or different, each R²² moiety being independently selected from the group of R²² moieties below;

each R⁶ is independently selected from the group consisting of H, alkyl and -OCF₃;

each R⁷ is independently selected from the group consisting of H, alkyl, heteroaryl and –CF₃;

each R^{20} is independently selected from the group consisting of: alkyl, R^{21} -substituted alkyl, $-OR^3$, halo, -CN, $-NO_2$, $-NR^{24}R^{25}$, $-C(O)R^3$, $-C(O)NR^{24}R^{25}$, $-S(O)_xNR^{24}R^{25}$, $-S(O)_xR^5$, $-CF_3$, $-OCF_3$, $-CF_2CF_3$, $-C(=NOH)R^3$, aryl, halo-substituted aryl, heteroaryl, cycloalkyl, heterocycloalkyl, $-N(R^{25})S(O)_xR^5$, $-N(R^{25})C(O)R^5$, and $-N(R^{25})C(O)NR^{24}R^{25}$,

wherein each of the aryl, halo-substituted aryl, heteroaryl, cycloalkyl and heterocycloalkyl groups of R²⁰ is independently unsubstituted or substituted with one to four independently selected R²² moieties which can be the same or different, each R²² moiety being independently selected from the group of R²³ moieties below,

or two R²⁰ groups taken together with the carbon to which both R²⁰

groups are attached is C=O;

 R^{21} is one to three substituents independently selected from the group consisting of: -OR³, halo, -CN, -NO₂, -NR²⁴R²⁵, -C(O)R³, -C(O)OR³, -C(O)NR²⁴R²⁵, -S(O)_xNR²⁴R²⁵, -SO_xR⁵, -CF₃, -OCF₃, -CF₂CF₃, -C(=NOH)R³, R²³-substituted alkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, -N(R²⁵)S(O)_xR⁵, -N(R²⁵)C(O)R⁵, and -N(R²⁵)C(O)NR²⁴R²⁵;

wherein each of the aryl, halo-substituted aryl, heteroaryl, cycloalkyl, and heterocycloalkyl groups of R^{21} is independently unsubstituted or substituted with one to four independently selected R^{23} moieties which can be the same or different, each R^{23} moiety being independently selected from the group of R^{23} moieties below,

or two R²¹ groups taken together with the carbon to which both R²¹

groups are attached is C=O;

each R^{22} is independently selected from the group consisting of: halo, alkynyl, aryl, heteroaryl, $-OR^{24}$, $-(C_1-C_6$ alkyl)- OR^{24} , -CN, $-NO_2$, $-NR^{24}R^{25}$, $-C(O)R^{23}$, $-C(O)OR^{23}$, $-C(O)NR^{24}R^{25}$, $-S(O)_xNR^{24}R^{25}$, $-S(O)_xR^{23}$, $-CF_3$, $-CF_3$, $-CF_2CF_3$, $-C(=NOH)R^{23}$, $-N(R^{24})S(O)_xR^{25}$, $-N(R^{24})C(O)R^{25}$, and $-N(R^{24})C(O)NR^{24}R^{25}$,

or two R²² groups taken together with the carbon to which both R²²

groups are attached is C=O;

each R²³ is independently selected from the group consisting of H, hydroxyl, halo and alkyl;

each R²⁴ is independently selected from the group consisting of H and alkyl;

each R^{25} is independently selected from the group consisting of H, hydroxyl, alkyl, hydroxyalkyl, aryl, cycloalkyl, heteroaryl, -NR²⁴R²⁴, -(C₁ to C₆ alkyl)NR²⁴N²⁴, -CF₃ and -S(O)_xR²³;

each R²⁶ is independently selected from the group consisting of H, hydroxyl, alkyl, hydroxyalkyl, aryl, cycloalkyl, heteroaryl and -NR³R⁴;

R²⁷ is independently selected from the group consisting of heteroaryl, heterocycloalkyl and –NR²⁴R²⁵;

R³⁰ is independently selected from the group consisting of H and R²⁰ substituent groups above;

R⁴⁰ is independently selected from the group consisting of H and R²⁰ substituent groups above,

or R^{30} and R^{40} , taken together with the carbon to which R^{30} and R^{40} are

attached, is C=O;

with the proviso that at least one of V or T is selected from the group consisting of $-C(O)N(R^3)(OR^4)$, $-C(O)OR^3$ and $-C(O)NR^{24}R^{25}$.