Формальные грамматики. HW#2

Тураев Тимур, SPbAU, SE, 604 group

1. Постоить обыкновенную грамматику в нормальном виде Хомского для языка Дика $D = \{\varepsilon, ab, aabb, abab, aaabbb, \ldots\}$ над алфавитом $\{a,b\}$. Для этой грамматики и для входной строки $w = abaabba \notin D$, построить таблицу разбора $T_{i,j}$, как в алгоритме Кокка-Касами-Янгера.

Обыкновенная грамматика не в нормальной форме:

$$S \to aSb \mid SS \mid \varepsilon$$

Приведем эту грамматику к нормальной форме Хомского:

ullet Удалим длинное правило S o aSb

$$S \to Tb \mid SS \mid \varepsilon$$

$$T \to aS$$

• Удалим ε -правила:

$$S \to C \mid \varepsilon$$

$$C \to Tb \mid CC$$

$$T \to a \mid aC$$

• Удалим цепные правила:

$$S \to Tb \mid CC \mid \varepsilon$$

$$C \to Tb \mid CC$$

$$T \to a \mid aC$$

• Последний шаг: заменим терминалы на нетерминалы (бесполезных символов в грамматике нет):

$$\begin{split} S &\to TB \mid CC \mid \varepsilon \\ C &\to TB \mid CC \\ T &\to a \mid AC \\ A &\to a \\ B &\to b \end{split}$$

Таблица разбора в алгоритме Кокка-Касами-Янгера:

	a	b	a	a	b	b	a
a	$\{A, T\}$	$\{S, C\}$	Ø	Ø	Ø	$\{S, C\}$	Ø
b		$\{B\}$	Ø	Ø	Ø	Ø	Ø
a			$\{A, T\}$	Ø	$\{T\}$	$\{S, C\}$	Ø
a				$\{A, T\}$	$\{S, C\}$	Ø	Ø
b					$\{B\}$	Ø	Ø
b						$\{B\}$	Ø
a							$\{A, T\}$

По значению отсутствию нетерминала S в $T_{0,7}$ видно что да, данная строка не принадлежит языку.

2. Рассмотреть работу алгоритма Валианта для грамматики, построенной в прошлом упражнении. Среди всех действий, производимых алгоритмом, найти то произведение булевых матрии, после вычисления которого станет верным условие $S \in f(P_{0,6})$, где S — начальный символ грамматики. Описать, когда и как именно вычисляется это произведение — то есть, какая процедура, вызванная с какими значениями, и какой оператор в ней умножает какие две булевы матрицы какого размера, каков результат умножения, и какие элементы $P_{i,j}$ будут этим затронуты?

Рассмотрим работу алгоритма Валианта. Единственной функцией, вызванной из main(), будет compute(0,8). Она вызовет compute(0,4) и compute(4,8) на двух больших зеленых треугольниках. Эти две функции, в свою очередь, запустят compute(0,2), compute(2,4), compute(4,6), compute(6,8), который обещают посчитать маленькие светло-зеленые треугольники; и успешно их обсчитают: каждая такая функция compute(k,k+2) запустит единственную complete(k,k+1,k+1,k+2), которая, выполнив 19-я строку алгоритма, заполнит все $T_{i,j}$, стоящие на светло-зеленых клетках. Получится следующее:

Кроме обсчета маленьких светло-зеленых треугольников, функии compute(0,4) и compute(4,8) обсчитают и темнозеленые квадраты:

Таким образом, функции compute(0,4) и compute(4,8) (внутри вызова compute(0,8)) закончат свою работу. Далее вызовется функция complete(0,4,4,8). Она поделит большой красный квадрат на 4 квадрата D, E, C, D' и запустит complete(C), то есть complete(2,4,4,6). Эта функция его обсчитает аналогично тому как обсчитывались темно-зеленые квадраты. 9-я строка алгоритма внутри complete(0,4,4,8) выполнилась.

		a	b	a	a	b	b	a
a	_	$\{A, T\}$	$\{S, C\}$	Ø	Т)		E
b		_	{B}	Ø	_	,		T.
a			_	$\{A, T\}$	Ø	$\{T\}$		D,
\mathbf{a}				_	$\{A, T\}$	$\{S, C\}$		D
b					_	{B}	Ø	Ø
b						_	{B}	Ø
a							_	$\{A, T\}$
								_

Далее выполнятся строки 10-11 (обсчет матрицы D) и стркои 12-13 (обсчет матрицы D') внутри **complete(0, 4, 4, 8)**.

		a	b	\mathbf{a}	a	b	b	a
a	_	$\{A, T\}$	{S, C}	Ø	Ø	Ø	1	F.
b		_	{B}	Ø	Ø	Ø	1	ש
a			_	$\{A, T\}$	Ø	$\{T\}$	{S, C}	Ø
a				_	$\{A, T\}$	$\{S, C\}$	Ø	Ø
b					_	{B}	Ø	Ø
b						_	{B}	Ø
a							_	$\{A, T\}$
								_

Наконец алгоритм перейдет к строке **14**: $P_E = P_E \cup (T_B \times T_{D'})$. Подматрица P_E это матрица $\binom{P_{0,6} \ P_{0,7}}{P_{1,6} \ P_{1,7}}$. Подматрица T_B на рисунке выше – это первая темно-зеленая, то есть $\binom{P_{0,2} \ P_{0,3}}{P_{1,2} \ P_{1,3}} = \binom{\{S,C\} \ \varnothing}{\{B\} \ \varnothing}$, а матрица T_D' это темно-красная матрица $\binom{P_{2,6} \ P_{2,7}}{P_{3,6} \ P_{3,7}} = \binom{\{S,C\} \ \varnothing}{\varnothing}$. Именно их алгоритм собираться перемножать, используя произведение булевых матриц.

Алгоритм работает так: по каждой паре нетерминалов $\{A,B\}$ (их у нас $|N|^2=25$) строются две булевы матрицы: матрица X^A , элемент которой (булев бит) означает есть ли нетерминал A в соответствующем элементе первой матрицы; и матрица Y^B , элемент которой (булев бит) означает есть ли нетерминал B в соответствующем элементе второй матрицы. Получившаяся в результате умножения булева матрица, которую можно назвать Z^{AB} , означает «где в итоговой матрице $(T_B \times T_{D'})$ будет элемент-пара нетерминалов $\{A,B\}$ ».

В нашем случае, когда дело дойдет до рассмотрения пары $\{C,C\}$, матрица X^C будет иметь вид $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, а матрица Y^C $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Их произведение: $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, что означает, пара $\{C,C\}$ гарантированно будет стоять на первой строке первого столбца матрицы P_E . А это в свою очередь означает, что когда алгоритм дойдет до 16 строки (complete(E)), затем вызовется (complete(D) = complete(0,1,6,7)), в матрице T на месте (0,6) появится нетерминал S, потому что существует правило $S \to CC$ (вместе с ним, в этом же множестве нетерминалов, из-за пары $\{C,C\}$ появится еще и C, так как существует правило $C \to CC$).

Итак, собираем все вместе и отвечаем на вопросы в задании:

- какая процедура с какими параметрами complete(0, 4, 4, 8) (вызванная из compute(0, 8), которая в свою очередь вызвана из main())
- \bullet какой оператор в ней 14-я строка алгоритма, $(\mathbf{T}_{\mathbf{B}} \times \mathbf{T}_{\mathbf{D}'})$
- ullet какие две булевы матрицы какого размера умножаются 2 матрицы 2×2 : $\mathbf{X^C} = \left(\begin{smallmatrix} 1 & 0 \\ 0 & 0 \end{smallmatrix} \right)$ и $\mathbf{Y^C} = \left(\begin{smallmatrix} 1 & 0 \\ 0 & 0 \end{smallmatrix} \right)$
- ullet каков результат умножения этих булевых матриц $\mathbf{Z^{CC}} = \left(egin{smallmatrix} 1 & 0 \ 0 & 0 \end{smallmatrix}
 ight)$
- \bullet общий результат умножения $\left(T_B\times T_{D'}\right)-\left(\begin{smallmatrix}\{\{S,S\},\{C,C\},\{S,C\},\{C,S\}\}&\varnothing\\\{\{B,S\},\{B,C\}&\varnothing\end{smallmatrix}\right)$
- какие элементы $P_{i,j}$ будут этим затронуты при этом умножении затронуты будут элементы подматрицы $P_E = \binom{P_{0,6} \ P_{0,7}}{P_{1,6} \ P_{1,7}}$

3. Замкнут ли класс LL языков относительно пересечения с регулярными языками? Если замкнут, привести построение, а если незамкнут, привести пример LL грамматики и регулярного языка с доказательством несуществования LL грамматики для их пересечения

Рассмотрим язык L_1 , который задает все строки четной длины, первая половина которых состоит только из букв a, a вторая – из любых сочетаний букв b и c:

$$L_1 = \{a^n (b|c)^n \mid n \geqslant 0\}$$

Это LL(1)-язык, для него можно построить такую грамматику:

$$S \to aSB \mid \varepsilon$$
$$B \to b \mid c$$

и следующую таблицу разбора:

Наряду с L_1 рассмотрим язык L_2 , задающий все слова, в котором сначала идет какое-то (возможно нулевое) число букв a, а затем какое-то (возможно нулевое) число букв b:

$$L_2 = \{a^n b^m + a^n c^m \mid n, m \ge 0\}$$

Это тоже LL(1)-язык, для него можно построить такую грамматику:

$$\begin{split} S &\to AE \\ A &\to aA \mid \varepsilon \\ E &\to bB \mid cC \mid \varepsilon \\ B &\to bB \mid \varepsilon \\ C &\to cC \mid \varepsilon \end{split}$$

и следующую таблицу разбора:

	\mathbf{a}	b	\mathbf{c}	ε
S	$S \to AE$	$S \to AE$	$S \to AE$	$S \to AE$
\mathbf{E}	_	$\mathrm{E} o \mathrm{bB}$	$\mathrm{E} ightarrow \mathrm{cC}$	$E \to \varepsilon$
В	_	$\mathrm{B} \to \mathrm{bB}$	_	$B \to \varepsilon$
С	_	_	$\mathrm{C} \to \mathrm{c}\mathrm{C}$	$C \to \varepsilon$

Кроме того, этот язык, очевидно, является регулярным:

$$L_2 = a^*(b^* \mid c^*)$$

$$\downarrow b$$

$$\downarrow q_1$$

$$\downarrow q_1$$

$$\downarrow c$$

$$\downarrow q_2$$

Пересечением этих языков является язык L_3 :

$$L_1 \cap L_2 = L_3 = \{a^n b^n + a^n c^n \mid n \geqslant 0\}$$

который, как мы знаем, не является LL(k) ни для какого k (см пример 8.4 конспекта 11 лекции). Отсюда делаем вывод, что класс LL языков не замкнут относительно пересечения с регулярными языками.

4. Построить линейную грамматику для языка $f(L_0)$, где $L_0 = \{w\$w^R \mid w \in \{a,b\}^*\}$ $f(L) = \{[w_{1,1}\# \dots \# w_{1,k_1}] \dots [w_{m,1}\# \dots \# w_{m,k_m}] \mid \exists i_1, \dots, i_m : w_{1,i_1}w_{2,i_2}\dots w_{m,i_m} \in L\}$ S это правильная строка, то есть строка, заключенная в квадратные скобки.

$$S \to [A]$$

Внутри это строки делаем что угодно, при условии, что в каждом блоке, заключенный в квадратные скобки, будет возможность выбрать пустую строку, то есть никак не испортить итоговое слово $w_{1,i_1}w_{2,i_2}\dots w_{m,i_m}$:

$$\begin{split} A &\to][A \mid A][\mid B \mid \#C \mid B' \mid C'\# \mid L \\ B &\to aB \mid bB \mid \#B \mid \#\#C \mid D \\ C &\to aC \mid bC \mid \#C \mid][A \\ D &\to aD \mid bD \mid \#D \mid \#][A \\ B' &\to B'a \mid B'b \mid B'\# \mid C'\#\# \mid D' \\ C' &\to C'a \mid C'b \mid C'\# \mid A][\\ D' &\to D'a \mid D'b \mid D'\# \mid A][\# \end{split}$$

Наконец, когда-нибудь дойдем до правила $A \to L$. Правило L' (как и R') дописывает к уже имеющейся последовательности с кусочком полупалиндрома (либо к пустой его части) любую последовательность букв и решеток:

$$\begin{split} L &\rightarrow L' \mid F \\ L' &\rightarrow aL' \mid bL' \mid \#L' \mid \#R \\ R &\rightarrow R' \mid F \\ R' &\rightarrow R'a \mid R'b \mid R'\# \mid F\# \end{split}$$

Наконец, правило F порождает либо \$, либо буквы a или b слева от знака доллара и запускает генерацию бесполезных блоков с самого начала. Кроме того, правило O генерирует бесполезные подблоки уже после вставленных букв a или b.

$$F \to$$
\$ | $aFa | bFb |$][A][|][C'# | #C][| #O# $O \to aO | bO |$ #O | Oa | Ob | O# |][A][

5. Разрешима ли такая задача: «по данной обыкновенной грамматике, определить, порождает ли она хотя бы одну строку чётной длины»? Если разрешима, привести алгоритм, а если неразрешима, доказать это с помощью методов лекции 15 (использовав язык VALC в готовом виде, или же определив новый его вариант).

Разрешима.

Приведем данную нам обыкновенную грамматику $G = (\Sigma, N, R, S)$ к нормальному виду Хомского. Далее, предположим, что грамматика не порождает пустое слово (нет правила $S \to \varepsilon$, иначе все очевидно).

Заведем для каждого $A \in N$ по 2 булевых флага: первый флаг означает, порождает ли A хотя бы одно слово четной длины. Изначально все флаги для всех нетерминальных символов сброшены.

Рассмотрим правила вида $A \to \alpha$, где $\alpha \in \Sigma$ и установим флаг «порождает слово нечетной длины» всем таким A.

Далее в алгоритме будет несколько итераций. На каждой итерации для каждого правила $A \to BC$, в котором для A еще не выставлен флаг «порождает слово нечетной длины», попытаемся его уставновить следующим образом: если B и

C порождают слова длиной разной четности (установлены разные флаги), то флаг выставляем, иначе нет. Абсолютно аналогично действуем для флага «порождает слово четной длины» (там правило будет такое: у B и C установлены оба каких-либо флагов).

Продолжаем итерации до тех пор, пока устанавливается хотя бы один флаг. Алгоритм, очевидно, закончится, ибо флагов и правил конечное число. Кроме того, так как грамматика в нормальной форме, то у нас не существует бесполезных символов. Также достаточно ясно, что алгоритм даст верный ответ, это видно из правил установки флагов.

6. Разрешима ли такая задача: «по данной обыкновенной грамматике, определить, порождает ли она хотя бы одну строку-палиндром w, m.e., строку, для которой $w = w^R$ »?

Не разрешима.

Для данной нам Тьюринг-машины построим грамматики $G_1 = (\Sigma, N_1, R_1, S_1)$ и $G_2 = (\Sigma, N_2, R_2, S_2)$ так, как это сделано в лемме 11.1.

Построим грамматику $G_2^R = (\Sigma, N_2^R, R_2^R, S_2^R)$, такую, что $L(G_2^R) = \{w \mid w^R \in L(G_2)\}$, то есть грамматику, порождающую все слова в языке $L(G_2)$, но записанные в обратном порядке. Это сделать довольно просто: так как грамматика G_2 линейна (и даже LL(1)), то достаточно просто записать все ее правила в обратном порядке. Более того, так как большая часть правил симметрична, то переписать придется лишь 2 правила – первое $S_2 \to aS_2$ перепишется в $S_2 \to S_2 a$ и правило $E \to \$E\#$ перепишется в $E \to \#E\$$ (все остальные правила останутся без изменений, см. конец доказательства леммы 11.1). Далее, переобозначим все нетерминальные символы, дописав у каждого букву S_2 .

Далее, построим новую грамматику $G = (\Sigma \cup \{\%\}, N_1 \cup N_2^R \cup \{S\}, R_1 \cup R_2^R \cup R, S) \ (\% \notin \Sigma)$, которая комбинирует грамматики G_1 и G_2^R в соответствии со следующим правилом:

$$S \rightarrow S_1 \% S_2^R$$

Нетрудно понять, какой язык порождает эта грамматика: $L(G) = \{u\%v \mid u \in L(G_2) \land v \in L(G_2^R)\}$, то есть все слова, записанные через знак процента, левая часть которых (до знака процента) – слово из языка, порождаемого первой грамматикой, а развернутая правая часть – слово из языка, порождаемого второй грамматикой.

Грамматика G порождает хотя бы один палиндром тогда и только тогда, когда найдется хотя бы одно слово, которое принадлежит и $L(G_1)$ и $L(G_2)$. Иными словами поставленная задача разрешима тогда и только тогда, когда разрешима задача определения $L(G_1) \cap L(G_2) = \emptyset$?. А эта задача неразрешима по теореме 11.1. Значит и исходная задача тоже неразрешима.