Essays in Consumption

Edmund Crawley

May 6, 2019

Overview

Chapter 1 Time Aggregation in Panel Data on Income and Consumption

Overview

- Chapter 1 Time Aggregation in Panel Data on Income and Consumption
- Chapter 2 Consumption Heterogeneity: Micro Drivers and Macro Implications
- Chapter 3 Monetary Policy with Many Agents

Overview

- Chapter 1 Time Aggregation in Panel Data on Income and Consumption
- Chapter 2 Consumption Heterogeneity: Micro Drivers and Macro Implications
- Chapter 3 Monetary Policy with Many Agents

- Natural Experiments \sim 0.2 0.7
- Ask people ~ 0.2 0.5
- ullet Blundell, Pistaferri, and Preston (2008) \sim 0.05

- Natural Experiments ~ 0.2 0.7
- Ask people \sim 0.2 0.5
- ullet Blundell, Pistaferri, and Preston (2008) \sim 0.05

- Natural Experiments \sim 0.2 0.7
- Ask people \sim 0.2 0.5
- ullet Blundell, Pistaferri, and Preston (2008) \sim 0.05

- Natural Experiments \sim 0.2 0.7
- Ask people \sim 0.2 0.5
- ullet Blundell, Pistaferri, and Preston (2008) \sim 0.05

Three methods to estimate Marginal Propensity to Consume

- Natural Experiments ~ 0.2 0.7
- Ask people \sim 0.2 0.5
- ullet Blundell, Pistaferri, and Preston (2008) \sim 0.05

Outlier downward biased due to the Time Aggregation Problem This paper corrects estimate to be ~ 0.25

Income consists of permanent and transitory shocks

Transitory shock year t

$$\Delta y_{t+1} = \Delta p_{t+1} + \Delta \varepsilon_{t+1}$$
 is a valid instrument for ε_t

Income consists of *permanent* and *transitory* shocks

Transitory shock year t

$$\Delta y_{t+1} = \Delta p_{t+1} + \Delta \varepsilon_{t+1}$$
 is a valid instrument for ε_t

Negatively correlated with transitory shocks in year t

Income consists of permanent and transitory shocks

Transitory shock year t

$$\Delta y_{t+1} = \Delta p_{t+1} + \Delta \varepsilon_{t+1}$$
 is a valid instrument for ε_t

Negatively correlated with transitory shocks in year t

Uncorrelated with permanent shocks in year t

Income consists of *permanent* and *transitory* shocks

Transitory shock year t

$$\Delta y_{t+1} = \Delta p_{t+1} + \Delta \varepsilon_{t+1}$$
 is a valid instrument for ε_t

Negatively correlated with transitory shocks in year t

Uncorrelated with permanent shocks in year t

Observed permanent income growth is *positively* autocorrelated

BPP misinterprets *positive* permanent income shocks as *negative* transitory shocks

Thinks negative transitory shocks result in consumption increasing

If the Permanent Income Hypothesis holds, BPP will estimate the MPC to be -0.6

Observed permanent income growth is *positively* autocorrelated

BPP misinterprets *positive* permanent income shocks as *negative* transitory shocks

→ Thinks negative transitory shocks result in consumption increasing

If the Permanent Income Hypothesis holds, BPP will estimate the MPC to be -0.6

Observed permanent income growth is *positively* autocorrelated

BPP misinterprets positive permanent income shocks as negative transitory shocks

⇒ Thinks negative transitory shocks result in consumption increasing

Observed permanent income growth is positively autocorrelated

BPP misinterprets positive permanent income shocks as negative transitory shocks

⇒ Thinks negative transitory shocks result in consumption increasing

If the Permanent Income Hypothesis holds, BPP will estimate the MPC to be -0.6

Results

Estimate of consumption: $0.05 \rightarrow 0.24$

- Exact Same PSID data
- Exact Same Moments of the data
- Exact Same Assumptions on consumption behavior

Adjusted to Continuous Time

BUT: Result is *very* sensitive to short term dynamics of consumption

Results

Estimate of consumption: $0.05 \rightarrow 0.24$

- Exact Same PSID data
- Exact Same Moments of the data
- Exact Same Assumptions on consumption behavior

→ Adjusted to Continuous Time

BUT: Result is *very* sensitive to short term dynamics of consumption

Measuring MPC Heterogeneity

New **method** addresses bias in previous results

New data allows sharp focus on household heterogeneity

Measuring MPC Heterogeneity

Time Aggregation Problem Robust to short term dynamics

New method addresses bias in previous results

New data allows sharp focus on household heterogeneity

Measuring MPC Heterogeneity

Time Aggregation Problem Robust to short term dynamics

New **method** addresses bias in previous results

New data allows sharp focus on household heterogeneity

Sample size in millions Detailed balance sheet

Why Do We Care? (as macroeconomists)

- 1) Heterogenous agent models have testable micro behavior
- 2) Quantify Macro Implications

Why Do We Care? (as macroeconomists)

e.g. Consumption smoothing requires liquid wealth

- 1) Heterogenous agent models have testable micro behavior
- 2) Quantify Macro Implications

Why Do We Care? (as macroeconomists)

e.g. Consumption smoothing requires liquid wealth

- 1) Heterogenous agent models have testable micro behavior
- 2) Quantify Macro Implications

e.g. Redistribution in Monetary Policy

What do we find? (Liquid Wealth)

Low Liquid Wealth Households:

- Hand-to-Mouth
- Spend 85 cents out of every marginal dollar, both transitory and permanent

High Liquid Wealth Households:

- Large Response to Transitory Shocks (25 cents per dollar)
- Small Response to Permanent Shocks (60 cents per dollar)

 Intive to Permanent Income Hypothesis or Ruffer Stock model

What do we find? (Liquid Wealth)

Low Liquid Wealth Households:

- Hand-to-Mouth
- Spend 85 cents out of every marginal dollar, both transitory and permanent

High Liquid Wealth Households:

- Large Response to Transitory Shocks (25 cents per dollar)
- Small Response to Permanent Shocks (60 cents per dollar)

relative to Permanent Income Hypothesis or Buffer-Stock models

MPX: Marginal Propensity to eXpend (includes durables)

Decrease spending a *lot*

Increase spending a little

 $\begin{array}{c} \text{1yr rate } \uparrow \text{ 1\%} \\ \text{Aggregate Spending } \downarrow \text{ 26 basis points} \end{array}$

Through this redistribution channel alone

How Does Heterogeneity Effect Monetary Policy Transmission?

Chapter 2 Interest Rate Exposure is key *empirically*

This Chapter What drives transmission in New Keynesian models with heterogeneity?

Can we apply Auclert (2017) to these models?

How Does Heterogeneity Effect Monetary Policy Transmission?

Chapter 2 Interest Rate Exposure is key empirically

This Chapter What drives transmission in New Keynesian models with heterogeneity?

Can we apply Auclert (2017) to these models?

Two Agent New Keynesian Model (TANK)

Ricardian Households

Behave as Representative Agent NK model

Keynesian Households

- Live hand-to-mouth
- Only labor income
- Can borrow a fixed fraction of steady-state income

Monetary Policy Transmission with No Debt

Monetary Policy Transmission with Debt

Appicability of Auclert (2017)

Capital

- Shocks become persistent
- Reasonable adjustment costs reduce persistence

Heterogeneous Agent New Keynesian (HANK) model

- Change is wealth distribution induces little persistence
- GHH preferences are a big problem

Appicability of Auclert (2017)

Capital

- Shocks become persistent
- Reasonable adjustment costs reduce persistence

Heterogeneous Agent New Keynesian (HANK) model

- Change is wealth distribution induces little persistence
- GHH preferences are a big problem

rogeneity Chapter 3: Monetary Policy with Many Agents
00000●

Thank You!