Departamento de Matemática - UFV MAT 131-Introduao a Algebra

Primeira Avaliação - PER2020 - GABARITO

Pontuação: A prova tem valor de 15 pontos distribuídos da seguinte forma:

- 1. 9 pontos via plataforma;
- 2. 6 pontos via redação das questões 1b, 4 e 5b.
- 1. A proposição w é dada pelo esquema abaixo. Pede-se:

$$[(p \longrightarrow q) \lor r] \lor \{[(\sim p \lor q) \land (\sim s \lor r \lor t)] \lor [(p \lor \sim q) \land (\sim s \lor r \lor t)]\}$$

- (a) Indicar uma condição suficiente para que v(w) = V. Justifique!
- (b) Determinar a menor proposição equivalente a proposição dada.

Solução:

- (a) Sabemos que $V \lor p \equiv V$. Desse modo, para v(w) = V é suficiente que $v[(p \longrightarrow q) \lor r] = V$ ou $v[(\sim p \lor q) \land (\sim s \lor r \lor t)] = V$ ou $v[(p \lor \sim q) \land (\sim s \lor r \lor t)] = V$. Escolhemos $v[(p \longrightarrow q) \lor r] = V$, que para ser verdadeira, é suficiente que v(r) = V. Assim, uma condição suficiente para saber que v(w) = V é saber que v(r) = V.
- (b) Para encontrar a menor proposição equivalente, devemos simplificar a proposição dada. Simplifiquemos primeiro:

(i)
$$[(\sim p \lor q) \land (\sim s \lor r \lor t)] \lor [(p \lor \sim q) \land (\sim s \lor r \lor t)] \equiv [(\sim p \lor q) \lor (p \lor \sim q)] \land (\sim s \lor r \lor t)$$

 $\equiv [(\sim p \lor p) \lor (\sim q \lor q)] \land (\sim s \lor r \lor t)$
 $\equiv V \land (\sim s \lor r \lor t)$
 $\equiv (\sim s \lor r \lor t)$

Agora,

$$\begin{split} [(p \longrightarrow q) \lor r] \lor (\sim s \lor r \lor t) &\equiv (\sim p \lor q \lor r) \lor (\sim s \lor r \lor t) \\ &\equiv (\sim p \lor \sim s) \lor (q \lor r \lor t) \\ &\equiv \sim (p \land s) \lor (q \lor r \lor t) \\ &\equiv (p \land s) \longrightarrow (q \lor r \lor t) \end{split}$$

Assim, a proposição mais simples equivalente à proposição dada é $(p \land s) \longrightarrow (q \lor r \lor t)$.

- 2. Para o enunciado abaixo. Pede-se:
 - (a) Formalizar e negar em linguagem proposicional;
 - (b) Verificar se o argumento dado neste enunciado é válido.

Se um futuro brilhante me aguarda, então receberei uma substanciosa herança ou terei que estudar muito. Mas, não receberei a substanciosa herança. Consequentemente, se eu não estudar muito, então não me espera um futuro promissor ou é indiferente para mim ter sucesso na vida.

Solução:

(a) Fazendo p: Me aguarda um futuro brilhante, q: Eu receberei uma substanciosa herança, r: Eu terei que estudar muito, t: Para mim é indiferente ter sucesso na vida Com isto, a formalização do enunciado é:

$$\{[p \longrightarrow (q \lor r)] \land \sim q\} \longrightarrow \{\sim r \longrightarrow (\sim p \lor t)\}$$

(b) Vamos supor que este argumento não é válido. Nesse caso, $v\{[p \longrightarrow (q \lor r)] \land \sim q\} = V$ e $v\{\sim r \longrightarrow (\sim p \lor t)\} = F$.

De $v\{\sim r\longrightarrow (\sim p\lor t)\}=F$, temos v(r)=F e $v(\sim p\lor t)=F$. E daqui, v(p)=V e v(t)=F.

De $v\{[p \longrightarrow (q \lor r)] \land \sim q\} = V$, temos v(q) = F e $[p \longrightarrow (q \lor r)] = V$.

Como v(r) = F, v(q) = F e $[p \longrightarrow (q \lor r)] = V$, resulta que v(p) = F.

Assim, v(p) = V e v(p) = F, que contradiz o princípio do terceiro excluído. Isto indica que nossa suposição do argumento ser falso não é adequada, pois nos leva a uma contradição.

Portanto, o argumento dado é válido.

3. Sejam $x, y \in \mathbb{R}^+$. Mostre que se $\sqrt{xy} \neq \frac{x+y}{2}$, então $x \neq y$.

Solução: Suponha que x=y. Então, $\sqrt{xy}=\sqrt{x^2}=|x|=x$, pois x>0. Logo, $\sqrt{xy}=x=\frac{x+x}{2}=\frac{x+y}{2}$, que é a negação da hipótese.

Portanto, de acordo com a prova pela contrapositiva, é válido que se $\sqrt{xy} \neq \frac{x+y}{2}$, então $x \neq y$.

4. Mostre que para todo $n \in \mathbb{N}$, $1^3 + 2^3 + 3^3 + \ldots + n^3 = \frac{n^2(n+1)^2}{4}$.

Solução: Usaremos o princípio de indução finita para mostrar a afirmação.

Seja
$$p(n): 1^3 + 2^3 + 3^3 + \ldots + n^3 = \frac{n^2(n+1)^2}{4}$$

- (a) p(1) é verdadeira, pois $1^3 = \frac{1^2(1+1)^2}{4}$.
- (b) Suponhamos que $p(k) = 1^3 + 2^3 + 3^3 + \ldots + k^3 = \frac{k^2(k+1)^2}{4}$ é verdadeira, para k > 1. Queremos mostrar que p(k+1) também é verdadeira. De fato,

 $1^3 + 2^3 + 3^3 + \ldots + k^3 = \frac{k^2(k+1)^2}{4}$. Acrescentando $(k+1)^3$ a ambos os lados da igualdade temos

$$1^{3} + 2^{3} + 3^{3} + \dots + k^{3} + (k+1)^{3} = \frac{k^{2}(k+1)^{2}}{4} + (k+1)^{3}$$

$$= (k+1)^{2} \left[\frac{k^{2}}{4} + (k+1) \right]$$

$$= (k+1)^{2} \left[\frac{k^{2} + 4k + 4}{4} \right]$$

$$= (k+1)^{2} \left[\frac{(k+2)^{2}}{4} \right]$$

$$= \frac{(k+1)^{2} [(k+1) + 1]^{2}}{4}$$

Assim, p(k+1) é válido.

Portanto, pelo PIF,
$$1^3 + 2^3 + 3^3 + \ldots + n^3 = \frac{n^2(n+1)^2}{4}$$
 é válido para todo $n \in \mathbb{N}$.

5. O Zé Carioca, estudando lógica, criou o operador lógico @, definido por $p@q \equiv \sim p \wedge \sim q$. Ele notou que $\sim p \equiv \sim p \wedge \sim p \equiv p@p$. Isto lhe sugeriu que todos os operadores lógicos padrões podem ser escritos em função do operador @. Ajude o Zé Carioca a escrever as seguintes proposições em função do operador @.

(a)
$$p \wedge q$$
 (b) $p \longrightarrow q$

Solução:

(a)
$$p \wedge q \equiv \sim (\sim p) \wedge \sim (\sim q) \equiv (\sim p) @ (\sim q) \equiv (p@p) @ (q@q)$$

 $p \wedge q \equiv (p@p) @ (q@q)$

(b)
$$p \longrightarrow q \equiv (\sim p) \lor q \equiv \sim (p \land \sim q) \equiv \sim [\sim (\sim p) \land \sim q] \equiv \sim [(\sim p)@q]$$

 $p \longrightarrow q \equiv \sim [(p@p)@q] \equiv [(p@p)@q]@[(p@p)@q]$
 $p \longrightarrow q \equiv [(p@p)@q]@[(p@p)@q]$

Boa Prova!