Université Mohamed Boudiaf - M'sila Faculté des Sciences et Technologies Département de Genie Civil Année Universitaire 2021-2022

Matière: Probabilités-Statistiques

Correction de TD N° 5

Exercice n°1:

Posons : P(M) = 0.15; P(ph) = 0.25 et $P(M \cap ph) = 0.10$

a) On cherche P(M/ph)

$$P(M/ph) = \frac{P(M \cap ph)}{P(ph)} = \frac{0.10}{0.25} = 0.4$$

b) On cherche P(ph/M)

$$P(ph/M) = \frac{P(M \cap ph)}{P(M)} = \frac{0.10}{0.15} = 0.667$$

Remarque $P(M/ph) \neq P(ph/M)$

Exercice n°2:

On a trois évènements incompatibles A, B et C , tel que $\Omega = A \cup B \cup C$, tels que P(A) = 0.50; P(B) = 0.30; P(C) = 0.20

Posons : D = Pièce défectueuse et D = Pièce non défectueus.

$$P(D/A) = 0.03$$
. $P(D/B) = 0.04$; $P(D/C) = 0.05$

i) On cherche P(D) = ?

$$P(D) = P(A) P(D/A) + P(B) P(D/B) + P(C) P(D/C)$$

$$= 0.5 \times 0.03 + 0.3 \times 0.04 + 0.2 \times 0.05$$

$$= 0.037$$

$$= 3.7\%$$

ii) On cherche P(A/D) = ?

$$P(A/D) = \frac{P(A \cap D)}{P(D)} = \frac{P(A) P(D/A)}{P(D)}$$

$$= \frac{0.5 \times 0.03}{0.037}$$

$$= 0.40541$$

$$= 40.54\%$$

iii) On cherche $P(C/\bar{D}) = ?$. D'après la question ii) on trouve

$$P(\bar{D}) = 1 - P(D) = 1 - 0.037 = 0.963$$

donc,

$$P\left(C/\bar{D}\right) = \frac{P\left(C \cap \bar{D}\right)}{P\left(\bar{D}\right)} = \frac{0.2 \times 0.95}{0.963}$$
$$= 0.1973$$
$$= 19.73\%$$

Exercice n°3:

a) l'Univers : $\Omega = \{ppp, ppf, pff, pfp, fff, ffp, fpf, fpp\}$

b)
$$A = \{fff, ffp, fpf, fpp\}; B = \{pff, pfp, fff, ffp\} A \cap B = \{fff, ffp\}.$$

$$P(B) = \frac{4}{8} = 0.5$$

$$P(A) = \frac{4}{8} = 0.5$$

$$P(A \cap B) = \frac{2}{8} = 0.25$$

$$P(B/A) = \frac{P(A \cap B)}{P(A)} = \frac{0.25}{0.5} = 0.5$$

$$P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{0.25}{0.5} = 0.5$$

c) $P(A \cap B) = 0.25 = 0.5 \times 0.5 = P(A) \times P(B)$, donc A et B sont indépendants

Exercice n°4:

On dispose des informations suivantes sur 100 étudiants d'une faculté

	porte des lunettes	ne porte pas de lunette	total
fille	15	45	60
garçon	10	30	40
total	25	75	100

1)

$$P(L) = \frac{25}{100} = 0.25,$$

$$P(L \cap F) = \frac{15}{60} = 0.25,$$

$$P(F) = \frac{60}{100} = 0.6,$$

$$P(F/L) = \frac{15}{25} = 0.6$$

$$P(L/F) = \frac{15}{60} = 0.25.$$

- 2) P(F/L) = 0.6 = P(F), donc les évènements F et L sont indépendants
- 3) $P(L \cap F) = 0.25 \neq 0$, donc les évènements F et L ne sont pas incompatibles

Exercice n°5:

a) Soit $B \subset \Omega$ tel que P(B) > 0, alors

$$P(\phi/B) = \frac{P(\phi \cap B)}{P(B)} = \frac{P(\phi)}{P(B)} = \frac{0}{P(B)} = 0$$
$$P(\Omega/B) = \frac{P(\Omega \cap B)}{P(B)} = \frac{P(B)}{P(B)} = \frac{P(B)}{P(B)} = 1$$

:

b) Soit $A \subset \Omega$, alors

$$P(\bar{A} \nearrow B) = \frac{P\left(\bar{A} \cap B\right)}{P\left(B\right)} = \frac{P\left(B\right) - P\left(A \cap B\right)}{P\left(B\right)} = \frac{P\left(B\right)}{P\left(B\right)} - \frac{P\left(A \cap B\right)}{P\left(B\right)} = 1 - P(A \nearrow B)$$

c) Soient $C; D \subset \Omega$, alors

$$P((C \cup D)/B) = \frac{P((C \cup D) \cap B)}{P(B)}$$

$$= \frac{P((C \cup D) \cap B)}{P(B)} = \frac{P((C \cap B) \cup (D \cap B))}{P(B)}$$

$$= \frac{P(C \cap B) + P(D \cap B) - P((C \cap B) \cap (D \cap B)))}{P(B)}$$

$$= \frac{P(C \cap B)}{P(B)} + \frac{P(D \cap B)}{P(B)} - \frac{P((C \cap D \cap B))}{P(B)}$$

$$= P(C/B) + P(D/B) - P((C \cap D)/B)$$

Le responsable de la matière : Merini Abdelaziz