Morphology

Jugal Kalita, University of Colorado at Colorado Springs

Adapted from Kathy McCoy, University of Delaware

September 2010

What is Morphology?

- The study of how words are composed of morphemes (the smallest meaning-bearing units of a language)
 - Stems core meaning units in a lexicon
 - Affixes (prefixes, suffixes, infixes, circumfixes) bits and pieces that combine with stems to modify their meanings and grammatical functions (can have multiple ones)
 - Immaterial
 - Trying
 - Absobl**dylutely, Man-f**king-hattan (infixing bloody or fucking)
 - Unreadable

Why is Morphology Important to the Lexicon?

Full listing versus Minimal Redundancy

- true, truer, truest, truly, untrue, truth, truthful, truthfully, untruthfully, untruthfulness
- Untruthfulness = un- + true + -th + -ful + -ness
- These morphemes appear to be productive
- By representing knowledge about the internal structure of words and the rules of word formation, we can save room and search time.

Need to do Morphological Parsing

Morphological Parsing (or Stemming)

- Taking a surface input and breaking it down into its morphemes
- foxes breaks down into the morphemes fox (noun stem) and —es (plural suffix)
- rewrites breaks down into re- (prefix) and write (stem) and -s (suffix)

Two Broad Classes of Morphology

Inflectional Morphology

- Combination of stem and morpheme resulting in word of same class
- Usually fills a syntactic feature such as agreement
- E.g., plural –s, past tense -ed

Derivational Morphology

- Combination of stem and morpheme usually results in a word of a different class
- Meaning of the new word may be hard to predict
- E.g., +ation in words such as computerization

Word Classes

- By word class, we have in mind familiar notions like noun and verb that we discussed a bit in the previous lecture.
- Right now we're concerned with word classes because the way that stems and affixes combine is based to a large degree on the word class of the stem.

English Inflectional Morphology

- Word stem combines with grammatical morpheme
 - Usually produces word of same <u>class</u>
 - Usually serves a syntactic function (e.g., agreement)

```
like → likes or liked bird → birds
```

- Nominal morphology
 - Plural forms
 - s or es
 - Irregular forms (next slide)
 - Mass vs. count nouns (email or emails)
 - Possessives

Complication in Morphology

- It can get a little complicated by the fact that some words misbehave (refuse to follow the rules)
- The terms regular and irregular will be used to refer to words that follow the rules and those that don't.

Regular (Nouns)

- Singular (cat, thrush)
- Plural (cats, thrushes)
- Possessive (cat's thrushes')

Irregular (Nouns)

- Singular (mouse, ox)
- Plural (mice, oxen)

Verbal inflection

- Main verbs (sleep, like, fear) are relatively regular
 - -s, ing, ed
 - And productive (i.e., can be used with newly formed verbs): Emailed, instant-messaged, faxed, Imed, SMSed
 - But eat/ate/eaten, catch/caught/caught: These are irregular.
- Primary (be, have, do) and modal verbs (can, will, must) are often irregular and not productive
 - Be: am/is/are/were/was/will/been/being
- Irregular verbs few (~250) but frequently occurring
- English verbal inflection is much simpler than e.g., Latin,
 Sanskrit or German

Regular and Irregular Verbs

- Regulars...
 - Walk, walks, walking, walked, walked
- Irregulars
 - Eat, eats, eating, ate, eaten
 - Catch, catches, catching, caught, caught
 - Cut, cuts, cutting, cut, cut

Derivational Morphology

- Derivational morphology is somewhat messy.
 - There is usually only a partial pattern to what is acceptable
 - Irregular meaning change
 - Changes of word class

English Derivational Morphology

- Word stem combines with grammatical morpheme
 - Usually produces a word of a different class
 - More complicated than inflectional
- Example: nominalization
 - -ize verbs → -ation nouns
 - generalize, realize → generalization, realization
 - verb \rightarrow -er nouns
 - Murder, spell → murderer, speller
- Example: verbs, nouns → adjectives
 - embrace, pity→ embraceable, pitiable
 - care, wit → careless, witless

- Example: adjective → adverb
 - happy → happily
- More complicated to model than inflection
 - Less productive: *science-less, *concern-less, *go-able,
 *sleep-able
 - It's difficult to know what works with which types of words
 - Meanings of derived terms harder to predict by rule
 - clueless, careless, nerveless

Derivational Examples

Verb/Adj to Noun

-ation	computerize	computerization
-ee	appoint	appointee
-er	kill	killer
-ness	fuzzy	fuzziness

Derivational Examples

Noun/Verb to Adj

-al	Computation	Computational
-able	Embrace	Embraceable
-less	Clue	Clueless

Compute

- Many paths are possible...
- Start with compute
 - Computer -> computerize -> computerization
 - Computation -> computational
 - Computer -> computerize -> computerizable
 - Compute -> computee

Parsing

- Taking a surface input and identifying its components and underlying structure
- Morphological parsing: parsing a word into stem and affixes and identifying the parts and their relationships
 - Stem and features:
 - goose → goose +N +SG or goose +V
 - geese → goose +N +PL
 - gooses → goose +V +3SG
 - Bracketing: indecipherable → [in [[de [cipher]] able]]

Why parse words?

- For spell-checking
 - Is muncheble a legal word?
- To identify a word's part-of-speech (pos)
 - For sentence parsing, for machine translation, ...
- To identify a word's stem
 - For information retrieval

What do we need to build a morphological parser?

- Lexicon: stems and affixes (w/ corresponding pos)
- Morphotactics of the language: model of the order in which morphemes can be affixed to a stem. E.g., plural morpheme follows noun in English
- Orthographic rules: spelling modifications that occur when affixation occurs
 - in → il in context of l (in- + legal)

Morphotactic Models

English nominal inflection

•Inputs: cats, goose, geese

- Big, bigger, biggest
- Cool, cooler, coolest, cooly
- Red, redder, reddest
- Clear, clearer, clearest, clearly, unclear, unclearly
- Happy, happier, happiest, happily
- Unhappy, unhappier, unhappiest, unhappily
- Real, unreal, really

- Big, bigger, biggest
- Cool, cooler, coolest, cooly
- Red, redder, reddest
- Clear, clearer, clearest, clearly, unclear, unclearly
- Happy, happier, happiest, happily
- Unhappy, unhappier, unhappiest, unhappily
- Real, unreal, really

- Big, bigger, biggest
- Cool, cooler, coolest, cooly
- Red, redder, reddest
- Clear, clearer, clearest, clearly, unclear, unclearly
- Happy, happier, happiest, happily
- Unhappy, unhappier, unhappiest, unhappily
- Real, unreal, really

- Big, bigger, biggest
- Cool, cooler, coolest, cooly
- Red, redder, reddest
- Clear, clearer, clearest, clearly, unclear, unclearly
- Happy, happier, happiest, happily
- Unhappy, unhappier, unhappiest, unhappily
- Real, unreal, really

- Big, bigger, biggest
- Cool, cooler, coolest, cooly
- Red, redder, reddest
- Clear, clearer, clearest, clearly, unclear, unclearly
- Happy, happier, happiest, happily
- Unhappy, unhappier, unhappiest, unhappily
- Real, unreal, really

- Big, bigger, biggest
- Cool, cooler, coolest, cooly
- Red, redder, reddest
- Clear, clearer, clearest, clearly, unclear, unclearly
- Happy, happier, happiest, happily
- Unhappy, unhappier, unhappiest, unhappily
- Real, unreal, really

Derivational morphology: adjective fragment

• Adj-root: clear, happy, real, big, red

Derivational morphology: adjective fragment

- Adj-root: clear, happy, real, big, red
- •BUT: unbig, redly, realest

- Big, bigger, biggest
- Cool, cooler, coolest, cooly
- Red, redder, reddest
- Clear, clearer, clearest, clearly, unclear, unclearly
- Happy, happier, happiest, happily
- Unhappy, unhappier, unhappiest, unhappily
- Real, unreal, really

- Big, bigger, biggest
- Cool, cooler, coolest, cooly
- Red, redder, reddest
- Clear, clearer, clearest, clearly, unclear, unclearly
- Happy, happier, happiest, happily
- Unhappy, unhappier, unhappiest, unhappily
- Real, unreal, really

Derivational morphology: adjective fragment

- Adj-root₁: clear, happy, real
- Adj-root₂: big, red

FSAs and the Lexicon

- First we'll capture the morphotactics
 - The rules governing the ordering of affixes in a language.
- Then we'll add in the actual words

Using FSAs to Represent the Lexicon and Do Morphological Recognition

Lexicon: We can expand each non-terminal in our NFSA into each stem in its class (e.g. adj_root₂ = {big, red}) and expand each such stem to the letters it includes (e.g. red → r e d, big → b i g)

Limitations

- To cover all of e.g. English will require very large FSAs with consequent search problems
 - Adding new items to the lexicon means recomputing the FSA
 - Non-determinism
- FSAs can only tell us whether a word is in the language or not – what if we want to know more?
 - What is the stem?
 - What are the affixes and what sort are they?
 - We used this information to build our FSA: can we get it back?

Parsing/Generation vs. Recognition

- Recognition is usually not quite what we need.
 - Usually if we find some string in the language we need to find the structure in it (parsing)
 - Or we have some structure and we want to produce a surface form (production/generation)
- Example
 - From "cats" to "cat +N +PL"

Finite State Transducers

- The simple story
 - Add another tape
 - Add extra symbols to the transitions
 - On one tape we read "cats", on the other we write "cat +N +PL"

Parsing with Finite State Transducers

- cats →cat +N +PL
- Kimmo Koskenniemi's two-level morphology
 - Words represented as correspondences between lexical level (the morphemes) and surface level (the orthographic word)
 - Morphological parsing: building mappings between the lexical and surface levels

С	a	t	Z	+PL	
С	а	t	S		

Finite State Transducers

- FSTs map between one set of symbols and another using an FSA whose alphabet Σ is composed of pairs of symbols from input and output alphabets
- In general, FSTs can be used for
 - Translator (Hello:Ciao)
 - Parser/generator (Hello:How may I help you?)
 - To map between the lexical and surface levels of Kimmo's
 2-level morphology

- FST is a 5-tuple consisting of
 - Q: set of states {q0,q1,q2,q3,q4}
 - Σ : an alphabet of complex symbols, each an i/o pair s.t. i \in I (an input alphabet) and o \in O (an output alphabet) and Σ is in I x O
 - q0: a start state
 - F: a set of final states in Q {q4}
 - $-\delta(q,i:o)$: a transition function mapping Q x Σ to Q
 - Emphatic Sheep → Quizzical Cow

Transitions

- c:c means read a c on one tape and write a c on the other
- +N:ε means read a +N symbol on one tape and write nothing on the other
- +PL:s means read +PL and write an s

FST for a 2-level Lexicon

FST for English Nominal Inflection

Combining (cascade or composition) this FSA with FSAs for each noun type replaces e.g. regn with every regular noun representation in the lexicon. ^ is morpheme boundary; # is word boundary

Problems with a 1-level FST

Of course, its not as easy as

```
- "cat +N +PL" <-> "cats"
```

- Or even dealing with the irregulars geese, mice and oxen
- But there are also a whole host of spelling/ pronunciation changes that go along with inflectional changes

Examples of Spelling Changes

Name	Rule	Example
Consonant Doubling	1-letter consonant doubled before <i>—ing/-ed</i>	beg/begging run/running
E deletion	Silent e dropped before –ing and -ed	make/making
E insertion	e added after –s, -z, -x, -ch, - sh before -s	miss/misses watch/watches mash/mashes
Y replacement	-y changes to −ie before −s,-i before -ed	try/tries
K insertion	Verbs ending in vowel + <i>-c</i> add <i>-k</i>	panic/panicked

Multi-Tape Machines

- To deal with this we can simply add more tapes and use the output of one tape machine as the input to the next
- So to handle irregular spelling changes we'll add intermediate tapes with intermediate symbols

Multi-Level Tape Machines

- We use one machine to transduce between the lexical and the intermediate level, and another to handle the spelling changes to the surface tape
- ^ is morpheme boundary; # is word boundary

Orthographic Rules and FSTs

 Define additional FSTs to implement rules such as consonant doubling (beg → begging), 'e' deletion (make → making), 'e' insertion (watch → watches), etc.

Lexical	f	0	X	+N	+PL	
Intermediate	f	0	X	٨	S	#
Surface	f	0	X	е	S	

Lexical to Intermediate Level

Intermediate to Surface

• The add an "e" rule as in fox^s# <-> foxes

Note

- A key feature of this machine is that it doesn't do anything to inputs to which it doesn't apply.
- Meaning that they are written out unchanged to the output tape.

Figure 3.20 Accepting *foxes*: The lexicon transducer T_{lex} from Fig. 3.14 cascaded with the E-insertion transducer in Fig. 3.17.

 Note: These FSTs can be used for generation as well as recognition by simply exchanging the input and output alphabets (e.g. ^s#:+PL)

Summing Up

- FSTs provide a useful tool for implementing a standard model of morphological analysis, Kimmo's two-level morphology
 - Key is to provide an FST for each of multiple levels of representation and then to combine those FSTs using a variety of operators (cf <u>AT&T FSM Toolkit</u>)
 - Other (older) approaches are still widely used, e.g. the rulebased Porter Stemmer