10. Numerische Integration

Lernziele

- Sie verstehen die Herleitung von Integrationsformeln basierend auf Polynominterpolation.
- Sie kennen die Bedeutung der Ordnung eines Integrationsverfahrens.
- Sie erkennen die Vorteile von zusammengesetzten Integrationsformeln gegenüber einfachen Integrationsformeln.
- Sie verstehen den Zusammenhang zwischen der Wahl der Knoten und der Genauigkeit bzw. Effizienz der Verfahren.

Literatur:

- Quarteroni A.: Wissenschaftliches Rechnen mit MATLAB, Kap. 4.2
- \bullet Chapra S. C.: Applied Numerical Methods with Matlab, Chap. 19.1 19.5 + 20.3 20.4

10.1 Einführung

Ansatz für numerische Integration (Quadratur) auf dem Intervall $\left[0,1\right]$

$$\int_0^1 f(t) dt \approx \sum_{j=0}^k \alpha_j f(t_j)$$

t_j Knoten

 α_j Gewichte

Beispiel:
$$\int_0^1 f(t) dt \approx f\left(\frac{1}{2}\right)$$
 $k = 0, t_0 = \frac{1}{2}, \alpha_0 = 1$

Rutteck- Regel

Ansatz auf beliebigem Interval
$$[a, b]$$

Ersetze $x = a + (b-a)t \Rightarrow dx = (b-a)dt$

$$f(x) dx = f(a+(b-a)t) \cdot (b-a)dt$$

$$f(x) dx = f(a+(b-a)t) \cdot (b-a)dt$$

$$f(x) dx = f(a+(b-a)t) \cdot (b-a)dt$$

$$f(x) dx = f(a+(b-a)t)$$

$$f(x) dx$$

3/27

Ansatz auf [a, b]

$$\int_a^b f(x) dx \approx (b-a) \sum_{j=0}^k \alpha_j f(x_j)$$

- Es genügt Formeln auf dem Intervall [0, 1] aufzustellen.
- Konvention: t auf Intervall [0,1], x auf Intervall [a,b]

Frage: Wie sind die

- Gewichte und
- Knoten

zu wählen, um möglichst genaue und effiziente Verfahren zu erhalten?

◆ロト ◆個ト ◆差ト ◆差ト 差 めるぐ

10.2 Newton-Cotes Regeln

Herleitung

- $\textbf{ W\"{a}hle } k+1 \text{ Knoten auf } [0,1] \text{ } (0 \leq t_0 < t_1 < \cdots < \cdots < t_k \leq 1)$
- ② Finde das Interpolationspolynom $p_k(t)$ vom Grad k durch $(t_0, f(t_0)), \ldots, (t_k, f(t_k))$.
- **3** Das Integral des Interpolationspolynoms p_k dient als Approximation für das Integral der Funktion:

$$\int_0^1 f(t) dt \approx \int_0^1 p_k(t) dt = \sum_{j=0}^k \alpha_j f(t_j).$$

Das Interpolationspolynonm muss nicht explizit aufgestellt werden, sondern dient nur vorab der Bestimmung der Gewichte α_j

Ansatz von Lagrange für
$$p_k(t) = \sum_{j=0}^{K} f(t_j) \cdot L_j(t)$$

$$= \sum_{j=0}^{k} \int_{0}^{1} (f(t_{j}) \cdot L_{j}(t)) dt = \sum_{j=0}^{k} f(t_{j}) \int_{0}^{1} L_{j}(t) dt$$

$$= \sum_{j=0}^{k} \int_{0}^{1} (f(t_{j}) \cdot L_{j}(t)) dt = \sum_{j=0}^{k} f(t_{j}) \int_{0}^{1} L_{j}(t) dt$$

$$= \sum_{j=0}^{k} \int_{0}^{1} (f(t_{j}) \cdot L_{j}(t)) dt = \sum_{j=0}^{k} f(t_{j}) \int_{0}^{1} L_{j}(t) dt$$

$$= \sum_{j=0}^{k} \int_{0}^{1} (f(t_{j}) \cdot L_{j}(t)) dt = \sum_{j=0}^{k} f(t_{j}) \int_{0}^{1} L_{j}(t) dt$$

$$= \sum_{j=0}^{k} \int_{0}^{1} (f(t_{j}) \cdot L_{j}(t)) dt = \sum_{j=0}^{k} f(t_{j}) \int_{0}^{1} L_{j}(t) dt$$

$$= \sum_{j=0}^{k} \int_{0}^{1} (f(t_{j}) \cdot L_{j}(t)) dt = \sum_{j=0}^{k} f(t_{j}) \int_{0}^{1} L_{j}(t) dt$$

$$= \sum_{j=0}^{k} \int_{0}^{1} (f(t_{j}) \cdot L_{j}(t)) dt = \sum_{j=0}^{k} f(t_{j}) \int_{0}^{1} L_{j}(t) dt$$

$$= \sum_{j=0}^{k} \int_{0}^{1} (f(t_{j}) \cdot L_{j}(t)) dt = \sum_{j=0}^{k} f(t_{j}) \int_{0}^{1} L_{j}(t) dt$$

Für Trapez-Regel: k=1 (2 Stützpunkte) (0) f(0) (1, f(1)) => $p_1(t) = f(0) \cdot L_0(t) + f(1) \cdot L_1(t)$

$$|Q| f(0) = \frac{1}{1 + 1} = 1 - \frac{1}{1 - 1} = \frac{1}{1 - 1} =$$

Trapezregel

• Lineare Interpolation zwischen $t_0 = 0$ und $t_1 = 1$ (k = 1):

$$p_1(t) = f(0) + (f(1) - f(0))t = f(0) (1-t)$$

 $f(1) \cdot t$

$$\int_{0}^{1} f(t) dt \approx \int_{0}^{1} p_{1}(t) dt = \alpha_{0} \cdot f(0) + \alpha_{n} f(0)$$

$$= \frac{1}{2} \left(f(0) + f(0) \right)$$

•
$$\alpha_0 = \frac{1}{2}, \ \alpha_1 = \frac{1}{2}.$$

Herleitung s. oben

- ◆□▶◆@▶◆意▶◆意▶ · 意 · かへぐ

Transformation von

$$\int_0^1 f(t) dt \approx \frac{1}{2} \left(f(0) + f(1) \right)$$

auf beliebiges Interval [a, b]:

Trapezregel

$$\int_{a}^{b} f(x) dx \approx \frac{(b-a)}{2} (f(a) + f(b)) =: T_{\bullet} \quad \text{Antahl der}$$

$$T_{y} = \frac{1}{2} (f(0) + f(1))$$

• Berechnen Sie mit der Trapezregel näherungsweise $\int_{0}^{1} e^{t} dt$. (exakter Wert: e^{-1})** 1.7183

$$\int_{0}^{1} e^{t} dt \approx \frac{1}{2} (e^{o} \cdot e^{1}) \approx 1.86 \Rightarrow \frac{\text{rel. Fehler}}{8.14\%}$$

$$T_a = \frac{(b-a)}{2} (f(a) + f(b))$$

• Berechnen Sie mit der Trapezregel näherungsweise $\int_{-2}^{\infty} e^{x} dx$. (exakter Wert: $e^{3} - e^{-2}$) \approx 19.35

$$T_{\mu} = \frac{5}{2} \left(e^{-2} + e^{3} \right) \approx 50.55$$
 => rel. Tehler

Newton-Cotes Regeln

Newton-Cotes Regeln

Basierend auf äquidistanten Knoten $t_j = \frac{j}{k}$

k			α_i			Methode	Ordnung p	
1	$\frac{1}{2}$	$\frac{1}{2}$				Trapez	2	<u>k</u>
2	$\frac{1}{6}$	$\frac{4}{6}$	$\frac{1}{6}$			Simpson	4	$\sum_{j=0}^{\infty} \alpha_j^2 = 1$
3	1/8	<u>3</u>	38	<u>1</u>		$\frac{3}{8}$ -Rule	4	
4	7 90	32 90	12 90	32 90	$\frac{7}{90}$	Milne	6)	ordnung größer

Integrationsregeln mit positiven Gewichten sind stabil.

Die Newton-Cotes-Regeln für $k \le 7$ und k = 9 haben positive Gewichte.

Merleitung der Gewichte für Simpson - Regel:

3 Knoten punkte
$$(0, f(0))$$
, $(0.5, f(0.5))$, $(1, f(1))$
 $p_2(t) = f(0) \cdot L_0(t) + f(0.5) \cdot L_1(t) + f(1) \cdot L_2(t)$
 $L_0(t) = \frac{(t - 0.5)(t - 1)}{(0 - 0.5) \cdot (0 - 1)} = 2(t^2 - \frac{3}{2}t + \frac{1}{2})$
 $= 2t^2 - 3t + 1$
 $\alpha_0 = \int_0^1 L_0(t) dt = \left[\frac{2}{3}t^3 - \frac{3}{2}t^2 + t\right]_0^1 = \frac{2}{3} - \frac{3}{2}t^1 = \frac{1}{6}$

 $L_{n}(t) = \frac{(t \cdot 0)(t \cdot 1)}{(0.5 \cdot 0)(0.5 \cdot 1)} = -4(t^{2} - t) = 4t - 4t^{2}$ $\alpha_{1} = \int_{0}^{1} L_{1}(t) dt = \left[2t^{2} - \frac{4}{3}t^{3}\right]_{0}^{1} = \frac{4}{6}$

$$\alpha_1 = \int_0^1 L_1(t) dt = \left[2t^2 - \frac{1}{3}t^3\right]_0^1 = \frac{1}{6}$$

$$L_{2}(t) = \frac{(t-0)(t-0.5)}{(1-0)(1-0.5)} = 2(t^{2} - \frac{1}{2}t) = 2t^{2} - t$$

$$x_{2} = \int_{0}^{1} L_{2}(t) dt = \left[\frac{2}{3}t^{3} - \frac{1}{2}t^{2}\right]_{0}^{1} = \frac{1}{6}$$

$$\alpha_2 = \int_0^1 L_2(t) dt = \left[\frac{2}{3}t^3 - \frac{1}{2}t^2\right]_0^1 = \frac{1}{6}$$

Beispiele:

$$S_4 = \frac{1}{6} (f(0) + 4 \cdot f(0.5) + f(1))$$

ullet Berechnen Sie mit der Simpson-Regel näherungsweise $\int\limits_{-}^{1}e^{t}\,\mathrm{d}t.$

$$S_{4} = \frac{b-a}{2} \cdot \frac{1}{3} \left(f(0) + 4 \cdot f(0.5) + f(1) \right)$$

$$S_1 = \frac{b-a}{6} \left(f(a) + 4 f\left(\frac{a+b}{2}\right) + f(b) \right)$$

• Berechnen Sie mit der Simpson-Regel näherungsweise $\int\limits_{-2}^{\cdot} e^x \, \mathrm{d}x$.

$$S_4 = \frac{5}{6} \left(e^{-2} + 4 \cdot e^{6.5} + e^3 \right) \approx 22.35$$
rel. Fehler \approx 12 %

• Berechnen Sie näherungsweise $\int\limits_0^{\frac{\pi}{2}} \sin x \, \mathrm{d}x$ mit der Trapezregel und Simpson-Regel.

Summenformeln

Alternative zu Methode mit höherem Polynomgrad (gleichbedeutend mit mehr Knoten):

Zerlege [a, b] in n Teilintervalle: $a = x_0 < x_1 < \cdots < x_n = b$ und wende einfachere Integrationsregel auf jedes Teilintervall an.

Summenformel T_n für Trapezregel

Für Teilintervalle mit gleicher Länge $h = \frac{b-a}{n}$:

$$T_n = h\left(\frac{f(x_0)}{2} + f(x_1) + \cdots + f(x_{n-1}) + \frac{f(x_n)}{2}\right)$$

Beispiel:

• Berechnen Sie $\int_{2}^{3} e^{x} dx$ näherungsweise durch T_{2} bzw. T_{4} .

n=2:
$$T_2 = \frac{5}{2} \left(\frac{1}{2} e^{2} + e^{0.5} + \frac{1}{2} e^{3} \right) \approx 29.4$$
absoluter Fehler: 9.45

h=4:
$$T_{4} = \frac{5}{4} \left(\frac{1}{2}e^{-2} + e^{-0.75} + e^{0.5} + e^{1.75} + \frac{1}{2}e^{3}\right) \approx 22.48$$

1.25

S. Folie 19 (Halbierung von h reduziert

absoluter Fehler: 2.53 $\approx \frac{1}{4}$) 9.45 Fehler um Taktor

 $n = 4$
 $\frac{1}{4}$

SummenfomeIn

Beachte: Für die Anwendung der Simpson-Regel benötigt man eine gerade Anzahl von Teilintervallen!

Summenformeln S_n für Simpson-Regel 4 4 4 4

Für 2n Teilintervalle mit gleicher Länge $h = \frac{b-a}{2n}$, d. h. Knoten $x_0, x_1, \dots, x_{2n-1}, x_{2n}$:

$$S_2 = \frac{h}{3}(f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + f(x_4))$$

$$\begin{array}{c} b - a \\ \hline 2n \end{array} \cdot \frac{1}{3} = \begin{array}{c} b - a \\ \hline n \end{array} \cdot \frac{1}{6}$$

$$S_2 = \frac{h}{3}(f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + 4f(x_4) + 4f(x_$$

$$S_3 = \frac{h}{3} \left(f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + 4f(x_5) + f(x_6) \right)$$

Beispiele:

$$S_2$$
: Intervall [-2,3] wird in 4 Teilinter valle der Länge $\frac{5}{4}$ = 1.25 unterteilt

• Berechnen Sie $\int_{0}^{3} e^{x} dx$ näherungsweise durch S_{2} .

$$S_2 = \frac{5}{4} \cdot \frac{1}{3} \left(e^{-2} f 4 e^{-0.75} + 2 e^{0.5} + 4 e^{1.75} + e^{3} \right)$$

$$\approx 20.18$$

• Berechnen Sie
$$\int_{0}^{\frac{\pi}{2}} \sin(x) dx$$
 näherungsweise durch S_2 .
Exakt: = $\left[-\cos(x)\right]_{0}^{\frac{\pi}{2}} = 1$

$$5_2 = \frac{\pi}{8} \cdot \frac{1}{3} \left(\sin 0 + 4 \cdot \sin \frac{\pi}{8} + 2 \cdot \sin \frac{\pi}{4} + 4 \cdot \sin \frac{3\pi}{8} + \sin \frac{\pi}{2} \right)$$

≈ 1.00013

10.3 Fehler der Quadratur

Ordnung einer Integrationsregel

Eine Integrationsregel hat Ordnung p, wenn sie für Polynome vom Grad $\leq p-1$ exakte Werte liefert. (p Knoten)

- Ordnung der Trapezregel T1: 2 (exakt für Geraden u. konst. Fkt.)
- Ordnung der Newton-Cotes Regeln: Fix k+1 Knoten mind. Ordnung
- \bullet Zeigen Sie, dass die Simpson-Regel S_1 Ordnung 4 besitzt.

s. nachste Tolie

• Warum gilt für eine Integrationsregel der Ordnung ≥ 1 : $\sum_{j=0}^{K} \alpha_j = 1$?

• Ordnung 1: Verfahren exakt für Funktionen f(t) = c• $c = \int c dt = \sum_{j=0}^{K} \alpha_j f(t_j) = \sum_{j=0}^{K} \alpha_j \cdot c = 1$

Über prüfung der Ordnung eines Verfahrens am

Beispiel der Simpson-Regel:

Ordnung 1:
$$1=\int 1 dt \stackrel{?}{=} \frac{1}{6} (f(0)+4\cdot f(0.5)+f(1)) = 1$$

lexakt für kons. Tkt.)

 $f(t)=1$

Ordnung 2: $\frac{1}{2}=\int t dt \stackrel{?}{=} \frac{1}{6} (0+4\cdot 0.5+1) = \frac{1}{2}$
 $(f(t)=t)$
 $\frac{1}{2}t^2$
 $\frac{1}{6}$
 $\frac{1}{2}t^2$
 $\frac{1}{6}$
 $\frac{1}{2}t^2$
 $\frac{1}{6}$
 $\frac{1}{2}t^2$
 $\frac{1}{6}$
 $\frac{1}{2}t^2$
 $\frac{1}{6}$
 $\frac{1}{2}t^2$
 $\frac{1}{6}$
 $\frac{1}{2}t^2$

Ordnung 3:
$$\frac{1}{3} = \int_{0}^{4} t^{2} dt = \frac{1}{6} \left(0^{2} + 4 \cdot \left(\frac{1}{2}\right)^{2} + 1^{2}\right) = \frac{1}{3}$$

Ordnung 4: $\frac{1}{4} = \int_{0}^{4} t^{3} dt = \frac{1}{6} \left(0^{3} + 4 \cdot \left(\frac{1}{2}\right)^{3} + 1^{3}\right) = \frac{1}{4}$

Office t^{3}

Ordnung 5:
$$\frac{1}{5} = \int_{0}^{5} t^{4} dt \stackrel{?}{=} \frac{1}{6} \left(\sigma^{4} + 4 \cdot \frac{1}{16} + 1 \right) = \frac{5}{24}$$

Fehler der Quadratur

Für den (globalen) Fehler e einer Integrationsregel der Ordnung p auf [a,b] gilt

$$e = (b-a) \cdot h^p \cdot K f^{(p)}(\xi), \quad \xi \in]a, b[$$

(K heißt Fehlerkonstante des Verfahrens)

unbekannt, d.h. Fehler
kann nur durch max f^(p)(x)
asxib

abgeschätzt werden

Fehler der Summenformeln

Intervalllänge reduziert den Fehler um den Faktor $\frac{1}{4}$. Verifizieren Sie dies an den gerechneten Beispielen!

• Ein Integral kann beliebig genau approximiert werden, wenn h entsprechend klein gewählt wird.

Aber auf Kosten von Funktionsauswertungen -> Rundungs-Bei Verfahren höherer Ordnung lässt sich größere Genauigkeit mit weniger Knoten erreichen

Fehler der Simpson-Regel
$$p = 4$$
 | $k = \frac{1}{180}$ | $k = \frac{1}{18$

Auflösen hach n in
$$|e_{sn}| \leq \frac{1}{480} \left(\frac{b-a}{2h}\right)^4 (b-a) \max_{\alpha \leq x \leq b} |f^{(4)}(x)|$$

□ ▶ ◀∰ ▶ ◀불 ▶ ◀불 ▶ ○ 불 · ∽) Q ()

Fehler der zusammengesetzten Newton-Cotes Regeln

Grenzen der Newton-Cotes-Regeln

Einfache Verfahren, aber

- Bei Verwendung vieler aquidistanter Knoten treten die bekannten Probleme von Interpolationspolynomen hoheren Grades auf.
 - \implies Gewichte werden negativ, also Verfahren instabil
- Die sog. geschlossenen Newton-Cotes-Regeln machen Funktionsauswetungen an den Grenzen des Intervalls erforderlich.
 - ⇒ Problem mit Singularitäten
- Die Newton-Cotes-Regeln erreichen aufgrund der äquidistanten Knoten nicht die größtmögliche Ordnung.

Gauß-Quadratur zur Vermeidung dieser Probleme!

Mit möglichst wenig Funktionsauswertungen soll ein Verfahren

möglichst hoher Ordnung erreicht werden - Knoten variabel

10.4 Gauß-Quadratur

Idee: Wähle die Knoten (t_j) und Gewichte (a_j) so, dass man ein Verfahren möglichst großer Ordnung p erhält.

Bedingung:

$$\int_{0}^{1} p_{r}(t)dt = \sum_{j=0}^{k} \alpha_{j} p_{r}(t_{j}) \text{ für alle Polynome vom Grad} \leq p-1$$

$$\Leftrightarrow \frac{1}{r+1} = \int_{0}^{1} t^{r} dt = \sum_{j=0}^{k} \alpha_{j} t_{j}^{r} \text{ für alle } 0 \leq r \leq p-1$$

$$2.3. \frac{1}{r-1} = \int_{0}^{1} t^{r} dt = \sum_{j=0}^{k} \alpha_{j} t_{j}^{r} \text{ für alle } 0 \leq r \leq p-1$$

$$2k+2 \text{ Freiheitsgrade } (\alpha_{j}, t_{j}, j=0, \ldots, k) \Longrightarrow \text{ Ordnung } p=2k+2$$

$$2k+2 \text{ Freiheitsgrade } (\alpha_{j}, t_{j}, j=0, \ldots, k) \Longrightarrow \text{ Ordnung } p=2k+2$$

$$4k+2 \text{ Freiheitsgrade } (\alpha_{j}, t_{j}, j=0, \ldots, k) \Longrightarrow \text{ Ordnung } p=2k+2$$

$$4k+2 \text{ Freiheitsgrade } (\alpha_{j}, t_{j}, j=0, \ldots, k) \Longrightarrow \text{ Ordnung } p=2k+2$$

$$4k+2 \text{ Freiheitsgrade } (\alpha_{j}, t_{j}, j=0, \ldots, k) \Longrightarrow \text{ Ordnung } p=2k+2$$

$$4k+2 \text{ Freiheitsgrade } (\alpha_{j}, t_{j}, j=0, \ldots, k) \Longrightarrow \text{ Ordnung } p=2k+2$$

$$4k+2 \text{ Freiheitsgrade } (\alpha_{j}, t_{j}, j=0, \ldots, k) \Longrightarrow \text{ Ordnung } p=2k+2$$

$$4k+2 \text{ Freiheitsgrade } (\alpha_{j}, t_{j}, j=0, \ldots, k) \Longrightarrow \text{ Ordnung } p=2k+2$$

$$4k+2 \text{ Freiheitsgrade } (\alpha_{j}, t_{j}, j=0, \ldots, k) \Longrightarrow \text{ Ordnung } p=2k+2$$

$$4k+2 \text{ Freiheitsgrade } (\alpha_{j}, t_{j}, j=0, \ldots, k) \Longrightarrow \text{ Ordnung } p=2k+2$$

$$4k+2 \text{ Freiheitsgrade } (\alpha_{j}, t_{j}, j=0, \ldots, k) \Longrightarrow \text{ Ordnung } p=2k+2$$

$$4k+2 \text{ Freiheitsgrade } (\alpha_{j}, t_{j}, t_{j}$$

Für
$$k=0$$
:
$$1 = \int_{0}^{1} 1 dt \stackrel{!}{=} \alpha_{0} \cdot t_{0}^{\circ} = P \quad \alpha_{0} = 1$$

$$\frac{1}{2} = \int_{0}^{1} t dt \stackrel{!}{=} \alpha_{0}^{\circ} t_{0} = P \quad t_{0} = \frac{1}{2}$$

Mittelpunktsregel: If(1) dt & f(2)

hat Ordnung 2

(I)
$$1 = \int_{1}^{2} 1 \, dt = \alpha_{0} \cdot 1 \neq \alpha_{0} \cdot 1$$

(II) $\frac{1}{2} = \int_{1}^{2} 1 \, dt = \alpha_{0} \cdot 1 \neq \alpha_{0} \cdot 1 + \alpha_{1} \cdot 1 = \alpha_{0} \cdot 1 + \alpha_{1} \cdot 1 = \alpha_{0} \cdot 1 = \alpha_{0} \cdot 1 + \alpha_{1} \cdot 1 = \alpha_{0} \cdot 1 = \alpha_$

Gewichte

Für K=1, d.h. 2 Stützstellen

$$(\overline{\mathbf{m}}) \frac{\pi}{3} = \int t^2 dt \stackrel{!}{=} \alpha_0 t_0^3 + \alpha_1 t_1^3$$

$$(\overline{\mathbf{N}}) \frac{\pi}{4} = \int t^3 dt \stackrel{!}{=} \alpha_0 t_0^3 + \alpha_1 t_1^3$$

$$\begin{cases} \overline{\mathbf{N}} = \frac{1}{4} + \frac{1}{4} +$$

Ordnung 4 ?

Gauß-Quadraturformeln

Gauß-Quadraturformeln

k		α_j			Ordnung		
0	1			$\frac{1}{2}$			2
1	$\frac{1}{2}$	$\frac{1}{2}$		$\frac{1}{2} - \frac{\sqrt{3}}{6}$	$\frac{1}{2} + \frac{\sqrt{3}}{6}$		4
2	5 18	$\frac{8}{18}$	$\frac{5}{18}$	$\frac{1}{2} - \frac{\sqrt{15}}{10}$	$\frac{1}{2}$	$\frac{1}{2} + \frac{\sqrt{15}}{10}$	6

Nur positive Gewichte!

Beispiel

Zeigen Sie, dass die Gauß-Quadraturformel für k=1

$$\int_0^1 f(t) dt \approx \frac{1}{2} \left[f\left(\frac{1}{2} - \frac{\sqrt{3}}{6}\right) + f\left(\frac{1}{2} + \frac{\sqrt{3}}{6}\right) \right].$$

Ordnung 4 besitzt.

Gauß-Lobatto Quadraturformeln

Zusätzliche Bedingung: $t_0 = 0, t_k = 1$

Gauß-Lobatto Quadraturformeln

k			α_i					t _i			Ord.
1	$\frac{1}{2}$	$\frac{1}{2}$				0	1				2
2	$\frac{1}{6}$	$\frac{4}{6}$	$\frac{1}{6}$			0	$\frac{1}{2}$	1			4
3	$\frac{1}{12}$	$\frac{5}{12}$	$\frac{5}{12}$	$\frac{1}{12}$		0	$\frac{1}{2} - \frac{\sqrt{5}}{10}$	$\frac{1}{2} + \frac{\sqrt{5}}{10}$	1		6
4	9 180	$\frac{49}{180}$	$\frac{64}{180}$	$\frac{49}{180}$	$\frac{9}{180}$	0	$\frac{1}{2} - \frac{\sqrt{21}}{14}$	$\frac{1}{2}$	$\frac{1}{2} + \frac{\sqrt{21}}{14}$	1	8

Vergleich der Verfahren

N,k+1: Newton-Cotes-Regeln

G,k+1: Gauß-Quadraturformeln

