L2 STUE : Mathématiques 4

TD 4

Intégrales curvilignes : suite

Exercice 1. Soit $\gamma: [a,b] \to \mathbb{R}^2$ le chemin défini en coordonnées polaires par $\gamma(t) = (r(t), \theta(t))$.

- 1. Écrire $\gamma(t)$ en coordonnées cartésiennes.
- 2. Calculer $\|\gamma'(t)\|$ et en déduire une formule pour la longueur du chemin γ .
- 3. Appliquer la formule précédente au cas $\theta(t) = t$ et $r(t) = \alpha t$ pour $\alpha > 0$, et pour $t \in [0, T]$. Esquisser la courbe que ces coordonnées polaires paramètrent.

Exercice 2. Dans une région montagneuse, on modélise la température souterraine T(x) en fonction de la profondeur x selon la loi empirique :

$$T(x) = T_0 + \alpha x,$$

où $T_0 = 15^{\circ}C$ dénote la température à la surface et $\alpha = 0.03^{\circ}C/m$ est le gradient géothermique moyen. Un filon minéral suit un chemin souterrain modélisé par $\gamma(t) = (x(t), y(t)) = (10t, 5t^2)$ avec $t \in [0, 2]$, où x est la profondeur en mètres et y est la position horizontale en mètres.

Calculer la température moyenne rencontrée le long de ce filon.

Circulation de champ de vecteurs

Exercice 3. Soit $X(x,y) = \left(\frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2}\right)$ un champ de vecteurs défini pour tout $(x,y) \neq (0,0)$.

- 1. Calculer la circulation de X le long du cercle centré en l'origine et de rayon r > 0. En déduire qu'il n'est pas conservatif.
- 2. Calculer la circulation de X le long du cercle centré en (2,0) et de rayon 1.

Exercice 4. Soit $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ un repère orthonormé de \mathbb{R}^3 et \overrightarrow{F} le champ de vecteur

$$\overrightarrow{F}(x,y,z) = (x+z)\overrightarrow{i} - 3xy\overrightarrow{j} + x^{2}\overrightarrow{k}.$$

Calculer sa circulation entre le point O de coordonnées (0,0,0) et le point P de coordonnées (1,2,-1) le long des chemins suivants :

- 1. $\gamma(t) = (t^2, 2t, -t)$.
- 2. Le segment de droite [O, P].

Que remarquez-vous? Proposer une explication.

Exercice 5. Calculer $\int_{\gamma} \langle X, d\gamma \rangle$ dans les cas suivants :

- 1. γ parcourt le bord du carré $[-1,1]^2$ dans le sens trigonométrique et X(x,y)=(-y,x).
- 2. γ parcourt le bord du carré $[-1,1]^2$ dans le sens horaire et X(x,y)=(x-y,x+y).
- 3. γ parcourt le bord de $[0, \pi/2]^2$ dans le sens trigonométrique et $X(x, y) = (\sin(x), \cos(y))$.
- 4. γ parcourt le bord du disque centré en l'origine et de rayon r > 0 dans le sens trigonométrique et $X(x,y) = (xy^2, -x^2y)$.

- 5. γ parcourt le bord du disque centré en l'origine et de rayon r>0 dans le sens trigonométrique et X(x,y) = (xy,xy).
- 6. γ parcourt le bord du disque centré en l'origine et de rayon r > 0 dans le sens trigonométrique et X(x,y) = (2y,x).

Exercice 6. [À faire après l'exercice 4.] Parmi les champs de vecteurs suivant, déterminer lesquels sont conservatifs et, pour ceux qui le sont, donner une fonction dont ils sont le gradient.

- 1. X(x,y) = (-y,x), défini sur \mathbb{R}^2 .
- 2. $X(x,y) = (\sin(x), \cos(y))$ défini sur \mathbb{R}^2 .
- 3. $X(x,y) = (y^2, 2xy + 2y)$ défini sur \mathbb{R}^2 .
- 4. $X(x,y,z) = (2x^2y + 2yz^2, x^3 + 2xz^2 2yz^2, 4xyz 2y^2z)$ défini sur \mathbb{R}^3 .
- 5. $X(x,y,z) = (xe^y, x^2e^y + \ln(|z|), \frac{y}{z})$ défini $\sup \mathbb{R}^3 \setminus \{z = 0\}.$ 6. $X(x,y,z) = \frac{1}{\|(x,y,z)\|^{\alpha}}(x,y,z)$ défini $\sup \mathbb{R}^3 \setminus \{(0,0,0)\}$ avec $\alpha > 0$ réel.

Exercice 7. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par $f(x,y) = x^2 + y^2$.

- 1. Représenter graphiquement (et au mieux) le gradient de f.
- 2. Représenter sur le même dessin les lignes de niveau de f.
- 3. Reprendre les question précédentes avec la fonction g(x,y) = xy.
- 4. Qu'observez-vous entre les lignes de niveau et le gradient de ces fonctions?

Exercice 8. Soit $X: \mathbb{R}^2 \to \mathbb{R}^2$ le champ de vecteurs défini par $X(x,y) = (ye^{-x}, e^x)$ et soit $f \colon \mathbb{R} \to \mathbb{R}$ une fonction \mathcal{C}^1 . On définit le champ de vecteurs $Y(x,y) = f(x) \cdot X(x,y)$.

- 1. Le champ X est-il conservatif?
- 2. Montrer que le champ de vecteurs Y est conservatif si et seulement si f'(x) = k(x)f(x)pour une fonction k(x) que vous devez déterminer explicitement.
- 3. En déduire que pour $f(x) = \exp\left(\frac{-e^{-2x}}{2} x\right)$ le champ de vecteurs Y est conservatif.