Лекция 19. Теоремы Пикара.

Теория функций комплексного переменного

Гиперболическая метрика

Определение 12.18. Пусть $U \subset \mathbb{C}$ — открытое множество. Для всякой точки $a \in U$ обозначим через $\Psi_U(a)$ верхнюю грань чисел $|\psi'(0)|$ для всевозможных голоморфных отображений $\psi\colon D_1=D\to U$, для которых $\psi(0)=a$. Тогда число $\rho_U(a)=1/\Psi_U(a)$ называется плотностью гиперболической метрики на множестве U в точке a. (Мы не исключаем случая $\Psi_U(a)=+\infty$; тогда $\rho_U(a)=0$.)

• Если $U=\mathbb{D}$, то $\rho_U(0)=1$. Следовательно, гиперболическая метрика совпадает с $\rho_U(z)=rac{1}{1-|z|^2}.$

Гиперболическая длина

Предложение 12.19. Если $U \subset \mathbb{C}$ — односвязная область, отличная от \mathbb{C} , то для $a \in U$ имеем $\rho_U(a) = |F'(a)|$, где $F: U \to D$ — конформное отображение, переводящее точку a b нуль.

Предложение 12.21. Если $H = \{z : \text{Im } z > 0\}$ — верхняя полуплоскость, то для всякой $a \in H$ имеем $\rho_H(a) = 1/(2 \text{ Im } a)$.

Определение 12.22. Пусть $U \subset \mathbb{C}$ — область, и пусть $\gamma \colon [p;q] \to U$ — кусочно гладкий путь. Тогда *гиперболической длиной* пути γ называется число

$$h-length_{U}(\gamma) = \int_{\gamma} \rho_{U}(z) |dz|. \tag{12.11}$$

Голоморфные отображения сжимают гиперболическую метрику

Предложение 12.23. Пусть $U, V \subset \mathbb{C}$ — связные открытые множества, и пусть $f: U \to V$ — голоморфное отображение.

- (1) Для всякой $a \in U$ имеем $\rho_V(f(a)) \cdot |f'(a)| \leq \rho_U(a)$.
- (2) Для всякого кусочно гладкого пути $\gamma: [p;q] \to U$ имеем

$$\text{h-length}_V(f \circ \gamma) \leq \text{h-length}_U(\gamma).$$

Следствие 12.24. Если $V \subset U$ — связные открытые подмножества в \mathbb{C} , то $\rho_V(a) \geqslant \rho_U(a)$ для всякой точки $a \in V$.

Следствие 12.25. *Если* $f: U \to V —$ конформный изоморфизм, то:

- (1) для всякой $a \in U$ имеем $\rho_V(f(a)) = \rho_U(a)/|f'(a)|$;
- (2) если $\gamma: [p;q] \to U$ кусочно гладкий путь, то

$$\text{h-length}_V(f \circ \gamma) = \text{h-length}_U(\gamma).$$

Теорема об униформизации

Теорема. Пусть $V \subset \overline{\mathbb{C}}$ открыто, причем $\left|\overline{\mathbb{C}} \setminus V\right| > 2$. Существует голоморфное накрытие $\pi \colon \mathbb{D} \to V$.

Метрика Пуанкаре на $V \subset \overline{\mathbb{C}}, |\overline{\mathbb{C}} \setminus V| > 2$

- Голоморфное накрытие $\pi : \mathbb{D} \to V$ позволяет перенести метрику Пуанкаре на $V : \|\pi_*(v)\| \coloneqq \|v\|$.
- Это и есть гиперболическая метрика, т.к. любое голоморфное отображение $f: \mathbb{D} \to V$ имеет вид $f = \pi \circ g$ для некоторого голоморфного $g: \mathbb{D} \to \mathbb{D}$.
- Проколы выглядят (относительно метрики Пуанкаре) как каспы.

Гиперболическая метрика около проколов

Предложение 12.26. Пусть $D^* = \{z \colon 0 < |z| < 1\}$ — проколотый единичный диск. Тогда для всякой $a \in D^*$ имеем

$$\rho_{D^*}(a) = 1/(2|a|\ln(1/|a|)).$$

- Можно показать, что вблизи любой проколотой точки гиперболическая метрика выглядит так (с точностью до умножения на функцию, ограниченную сверху и снизу двумя положительными константами). Частный случай этого утверждения теорема Ландау из учебника.
- В частности, площадь проколотой окрестности конечна!

Малая и большая теоремы Пикара

Малая теорема Пикара. Областью значений целой функции, отличной от константы, является вся комплексная плоскость, за исключением, быть может, лишь одной точки.

Доказательство. Пусть $f: \mathbb{C} \to V$ целая, $|\mathbb{C} \setminus V| > 1$. Поднимем на универсальное накрытие: $g: \mathbb{C} \to \mathbb{D}$.

Большая теорема Пикара. Пусть функция f голоморфна в проколотой окрестности $U(z_0)$ точки $z_0 \in \mathbb{C}$ и имеет в точке z_0 существенную особенность. Тогда f принимает в $U(z_0)$ все значения, кроме, быть может, одного, бесконечное число раз.

Идея доказательства: метрика Пуанкаре.

Эмиль Пикар (1856 – 1941)

- Член (с 1910 президент) Парижской академии наук, член французской академии, член-корр Петербургской АН, почетный член АН СССР, иностранный член АН США, член Лондонского королевского общества.
- Руководил ICM в 1908 (Рим) и 1920 (Страсбург).

Принцип соответствия границ

- Пусть $U \subset \mathbb{C}$ открытая односвязная область, $U \neq \mathbb{C}$.
- Рассмотрим конформный изоморфизм $\phi \colon \mathbb{D} \to U$ (отображение Римана).
- Вопрос. Существует ли непрерывное продолжение $\overline{\phi} \colon \overline{\mathbb{D}} \to \overline{U}$?
- Не всегда. Пример: $U = \{x + iy | y > \sin(1/x)\}.$
- **Теорема Каратеодори**. Отображение Римана допускает непрерывное отображение на границу тогда и только тогда, когда дU локально связна.
- В частности, это так, если граница ∂U кусочно гладкая.

Границы четырех односвязных областей

Неравенство длина-площадь

- Пусть $\rho(z)|dz|$ конформная метрика на $I^2 = I \times I, \ I = [0,1].$
- Площадь квадрата и длина горизонтального отрезка:

$$\mathcal{A} = \int \int_{I^2} \rho(x+iy)^2 dx dy, \ L(y) = \int_{x \in I} \rho(x+iy) dx.$$

17.1. Лемма. Неравенство длин-площадей. Если площадь \mathcal{A} конечна, то длина L(y) конечна для почти всех значений $y \in I$, и выполняется неравенство

$$\frac{1}{\delta} \int_{I} (L(y))^2 dy \leqslant \mathcal{A}. \tag{17:1}$$

Выбор конформной метрики

- Рассмотрим конформный изоморфизм $f: \mathbb{H} \to U$, где U область с «хорошей границей».
- Метрика на полуполосе $\{x + iy \in \mathbb{C} | x < -M, y \in [0, \pi] \}$

индуцируется голоморфным отображением $g(u) = f(e^u)$.

- Относительно этой метрики площадь полуполосы конечна.
- Значит, короткие вертикальные отрезки встречаются сколь угодно далеко слева.

В лекции использованы иллюстрации и материалы из следующих источников:

- С.М. Львовский, «Принципы комплексного анализа». МЦНМО.
- Дж. Милнор, «Голоморфная динамика», РиХД 2000.
- https://wikipedia.org
- https://mathworld.wolfram.com/

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ