Contents

1	Introduction	1	2
	1.1 Basic inequalities and theorems	1	3
	1.2 Why bother?		
	1.2.1 Coin Tossing		
	1.2.2 Central Limit Theorem		
2	Exponential Inequalities	4	7
	2.1 Which inequality is better?	6	8
	2.2 Uniform Laws of Large Numbers	7	g
3	Application to Estimation of Data Dimension	8	10
	3.1 Chernoff-Okamoto Inequalities	8	11
	3.2 Proofs		
4	Applications to graph theory	14	13
	4.1 The Azuma-Hoeffding Inequality	14	14
	4.2 An heuristic algorithm for the Travelling Salesman Problem		
5	Applications to Vapnik–Chervonenkis theory	17	16

1 Introduction

1.1 Basic inequalities and theorems

Theorem 1.1 (Markov's inequality). For a random variable X with $\mathbf{P}\{X<0\}=0$ and

t > 0, we have

21

23

25

29

$$\mathbf{P}\{X \ge t\} \le \frac{\mathbf{E}\,X}{t}.$$

22 Proof. In the first place, note that

$$X = X \cdot \mathbb{1}_{\{X \ge t\}} + X \cdot \mathbb{1}_{\{X < t\}}$$

$$\ge t \cdot \mathbb{1}_{\{X \ge t\}} + 0,$$

24 and thus,

$$\mathbf{E} X \ge t \cdot \mathbf{E} \, \mathbb{1}_{\{X \ge t\}} = t \cdot \mathbf{P} \{X \ge t\}.$$

26

Theorem 1.2 (Chebyshev's inequality). For t > 0, a random variable X with mean $\mu = \mathbf{E} X$ and variance $\sigma^2 = \mathbf{Var} X$, we have

$$\mathbf{P}\{|X - \mu| \ge t\} \le \frac{\sigma^2}{t^2}.$$

³⁰ *Proof.* We apply Markov's inequality to the non-negative random variable $Y=|X-\mu|^2$

in order to obtain the desired result

$$\mathbf{P}\{|X-\mu| \ge t\} = \mathbf{P}\{|X-\mu|^2 \ge t^2\} \le \frac{\mathbf{E}\left[(X-\mu)^2\right]}{t^2} = \frac{\sigma^2}{t^2}.$$

33

1.2 Why bother?

The concentration inequalities are used to obtain information on how a random variable is distributed at some specific places of its domain. In the most common scenarios, these inequalities will be used to quantify how concentrated a random variable at its tails, for example,

$$\mathbf{P}\{|X - \mu| \ge t\} < f(t) << 1.$$

A concentration inequality is specially useful when this probability cannot be calculated at a low computational cost or estimated with high precision. The following will illustrate a case where using concentration inequalities achieves the best results.

1.2.1 Coin Tossing

A coin tossing game is fair if the chances of winning are equal to the chances of losing. We can verify from a sample of N games that the game is not rigged if the number of heads in the sample is not very distant from the average N/2. However, there's a chance that one may classify the coin as rigged, even when the coin is fair. By the Law of $Large\ Numbers$, we know that the larger the sample, the less likely it is to obtain a false positive. But let's ask ourselves how fast this probability converges to 0.

Let $S_N \sim \text{Bi}(N, 1/2)$ denote the number of heads in a fair coin tossing game. Then,

$$\mu = \mathbf{E} S_N = \frac{N}{2}, \qquad \sigma^2 = \mathbf{Var} S_N = \frac{N}{4}.$$

For a fixed $\varepsilon > 0$, we may classify a coin tossing game as rigged if, after N trials, the ratio of heads vs tails in the sample is greater than $[1 + \varepsilon : 1 - \varepsilon]$, or similarly,

$$S_N \ge \mu + \frac{\varepsilon}{2} N = \frac{1+\varepsilon}{2} N.$$

It's clear that calculating the exact probability of the previous event for any N, ε is a very demanding task computationally. The Chebyshev's inequality 1.2 gives us a "good-enough" result for this problem,

$$\mathbf{P}\left\{S_N \ge \mu + \frac{\varepsilon}{2}N\right\} \le \mathbf{P}\left\{|S_N - \mu| \ge \frac{\varepsilon}{2}N\right\} \le \sigma^2 \frac{4}{\varepsilon^2 N^2} = \frac{1}{\varepsilon^2 N}.$$

Therefore, the probability of bad events tends to 0 at least linearly with the number of games.

1.2.2 Central Limit Theorem

The proof of the following three theorems can be found in Boucheron et al. (2003)

Theorem 1.3. Let X_i be a i.i.d. sample. Let $S_N = \sum_{i=1}^N X_i$, with mean $\mu = \mathbf{E} S_N$ and variance $\sigma^2 = \mathbf{Var} S_N$. If

$$Z_N = \frac{S_N - N \cdot \mathbf{E} X_i}{\sqrt{N \cdot \mathbf{Var} X_i}} = \frac{S_N - \mu}{\sqrt{N} \sigma},$$

66 then,

$$Z_N \to Z \sim \mathcal{N}(0,1)$$
, in distribution.

Theorem 1.4 (Tails of the Normal Distribution). Let $Z \sim \mathcal{N}(0,1)$, for t > 0 we have

$$\left(\frac{1}{t} - \frac{1}{t^3}\right) \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-t^2}{2}\right) \le \mathbf{P}\{Z \ge t\} \le \frac{1}{t} \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-t^2}{2}\right).$$

With that in mind, we might naively assume that better bounds can be obtained by using the previous theorem. For a large enough N we can say that for the coin tossing,

$$Z_N = \frac{S_N - N/2}{\sqrt{N/4}}$$

$$\Rightarrow \mathbf{P}\left\{S_N \ge \frac{1+\varepsilon}{2}N\right\} = \mathbf{P}\left\{Z_N \ge \varepsilon\sqrt{N}\right\} \sim \mathbf{P}\left\{Z \ge \varepsilon\sqrt{N}\right\}.$$

However, this raises the question of whether we can draw the following conclusion from Theorem 1.4:

$$\mathbf{P}\left\{S_N \ge \frac{1+\varepsilon}{2}N\right\} \le \frac{1}{\varepsilon\sqrt{N}} \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-\varepsilon^2 \cdot N}{2}\right).$$

80 Unfortunately, the answer is no. The following theorem will show why.

Theorem 1.5 (Convergence Rate for Central Limit Theorem). For Z_N , Z in Theorem 1.3, we have:

$$|\mathbf{P}\{Z_N \ge t\} - \mathbf{P}\{Z \ge t\}| = O(\frac{1}{\sqrt{N}}).$$

Since the approximation error is greater than the bound, the previous results cannot be taken into account.

In the context of coin tossing, this may not matter at all because the linear bound obtained using Chebyshev's inequality indicates that the probability of wrongly classifying a fair coin as a rigged coin converges at least linearly to zero. Even the Central Limit Theorem shows in a less precise way this convergence. However, for some specific problems in statistics, these basic tools are not precise enough to solve them. In the following chapters, we will show some examples were better crafted strategies are needed in order to get bounds to the tails of the random variables.

2 Exponential Inequalities

Even if we are satisfied with the linear convergence rate provided by Chebyshev's inequality, there are simple ways to improve this bound. The following result will provide the idea from which the exponential inequalities derive

Theorem 2.1 (MGF inequality). Let X_i be independent random variables and let $S_N := \sum_{i=1}^N a_i X_i$. Let $\lambda > 0$ the following inequality holds,

$$\mathbf{P}\left\{S_N \ge t\right\} \le e^{-\lambda t} \cdot \prod_{i=1}^N \mathbf{E} \, e^{\lambda a_i X_i}$$

94

96

97

98 99

104

108

112 113

115

Proof. Let $\lambda > 0$, using Markov's inequality (Theorem 1.1) we assert that since $x \mapsto e^{\lambda x}$ 101 is a non-decreasing function,

$$\mathbf{P}\left\{S_{N} \ge t\right\} = \mathbf{P}\left\{e^{\lambda S_{N}} \ge e^{\lambda t}\right\} \le e^{-\lambda t} \cdot \mathbf{E} \exp\left(\lambda \sum_{i=1}^{N} a_{i} X_{i}\right).$$

Since X_i are independent, the MGF of S_N is the product of MGFs of each X_i :

$$\mathbf{E} \exp\left(\lambda \sum_{i=1}^{N} a_i X_i\right) = \prod_{i=1}^{N} \mathbf{E} e^{\lambda a_i X_i}$$

$$\implies \mathbf{P}\left\{S_N \ge t\right\} \le e^{-\lambda t} \cdot \prod_{i=1}^N \mathbf{E} \, e^{\lambda a_i X_i}.$$

The following two theorems are examples on how we can obtain tighter bounds than the ones provided by Chebyshev's inequality. In particular, these theorems are derived from the idea of the previous theorem and are considered as corollaries by some authors.

Theorem 2.2 (Chernoff's inequality). Let $X_i \sim \text{Be}(p_i)$ be independent random variables. Define $S_N = \sum_{i=1}^N X_i$ and let $\mu = \mathbf{E} S_N$. Then, for $t > \mu$, we have

$$\mathbf{P}\left\{S_N \ge t\right\} \le \left(\frac{\mu}{t}\right)^t e^{-\mu + t}.$$

Proof. In the first place, use Theorem 2.1 to assert that for a $\lambda > 0$ that

$$\mathbf{P}\left\{S_N \ge t\right\} \le e^{-\lambda t} \cdot \prod_{i=1}^N \mathbf{E} \, e^{\lambda X_i}$$

Now it is left to bound every X_i individually. Using the inequality $1+x \leq e^x$ we obtain

18
$$\mathbf{E} e^{\lambda X_i} = e^{\lambda} p_i + (1 - p_i) = 1 + (e^{\lambda} - 1) p_i \le \exp(e^{\lambda} - 1) e^{p_i}.$$

Finally, we plug this inequality on the equation to conclude that

$$e^{-\lambda t} \cdot \prod_{i=1}^{N} \mathbf{E} e^{\lambda X_i} \le e^{-\lambda t} \cdot \prod_{i=1}^{N} \exp((e^{\lambda} - 1)p_i) = e^{-\lambda t} \exp((e^{\lambda} - 1)\mu).$$

By using the substitution $\lambda = \ln(t/\mu)$ we obtain the desired result,

$$\mathbf{P}\left\{S_N \ge t\right\} \le \left(\frac{\mu}{t}\right)^t \exp\left(\frac{\mu t}{\mu} - \mu\right) = \left(\frac{\mu}{t}\right)^t e^{-\mu + t}.$$

Another exponential inequality that is derived using a similar technique is Hoeffding's

inequality:

Theorem 2.3 (Hoeffding's inequality). Let X_1, \ldots, X_N be independent random variables, such that $X_i \in [a_i, b_i]$ for every $i = 1, \ldots, N$. Define $S_N = \sum_{i=1}^N X_i$ and let $\mu = \mathbf{E} S_N$. Then, for every t > 0, we have

$$\mathbf{P}\left\{S_N \ge \mu + t\right\} \le \exp\left(\frac{-2t^2}{\sum (a_i - b_i)^2}\right).$$

Proof. Since $x \mapsto e^x$ is a convex function, it follows that, for a random variable $X \in [a, b]$:

$$e^{\lambda X} \le \frac{e^{\lambda a}(b-X)}{b-a} + \frac{e^{\lambda b}(X-a)}{b-a}, \quad a \le b.$$

Next, take expectations on both hands of the equation to obtain:

$$\mathbf{E} e^{tX} \le \frac{(b - \mathbf{E} X) \cdot e^{\lambda a}}{b - a} - \frac{(\mathbf{E} X - a) \cdot e^{\lambda b}}{b - a}.$$

To simplify the expression, let $\alpha = (\mathbf{E} X - a)/(b - a)$, $\beta = (b - \mathbf{E} X)/(b - a)$ and $u = \lambda(b - a)$. Since $a < \mathbf{E} X < b$, it follows that α and β are positive. Also, note that,

$$\alpha + \beta = \frac{\mathbf{E} X - a}{b - a} + \frac{b - \mathbf{E} X}{b - a} = \frac{b - a}{b - a} = 1.$$

137 Now,

138

140

123

$$\ln \mathbf{E} e^{\lambda X} \le \ln(\beta e^{-\alpha u} + \alpha e^{\beta u}) = -\alpha u + \ln(\beta + \alpha e^{u}).$$

This function is differentiable with respect to u.

$$L(u) = -\alpha u + \ln(\beta + \alpha e^{u})$$

$$L'(u) = -\alpha + \frac{\alpha}{\alpha + \beta e^{-u}}$$

$$L''(u) = \frac{\alpha}{\alpha + \beta e^{-u}} \cdot \frac{\beta e^{-u}}{\alpha + \beta e^{-u}}$$

Note that if $x = \frac{\alpha}{\alpha + \beta e^{-u}} \le 1$, then $L''(u) = x(1-x) \le \frac{1}{4}$. Remember that $\alpha + \beta = 1$. 141 Now, by expanding the Taylor series we obtain,

$$L(u) = L(0) + uL'(0) + \frac{1}{2}u^{2}L''(u)$$

$$= \ln(\beta + \alpha) + u\left(-\alpha + \frac{\alpha}{\alpha + \beta}\right) + \frac{1}{2}u^{2}L''(u)$$

$$= \frac{1}{2}u^{2}L''(u)$$

$$\leq \frac{1}{8}\lambda^{2}(b - a)^{2}.$$
(*)

143

Finally, use the inequality from Theorem 2.1 to conclude that

$$\mathbf{P}\{S_N - \mu \ge t\} \le e^{-\lambda t} \prod_{i=1}^N \mathbf{E} e^{\lambda X_i}$$

$$\le^{(\star)} e^{-\lambda t} \exp\left(\frac{1}{8} t^2 \sum_{i=1}^N (b_i - a_i)^2\right)$$
145

144

146

155

156

158

159

160

Corollary 2.3.1. Let X_1, \ldots, X_N be independent random Bernoulli variables such that $X_i \sim \text{Be}(p_i)$, then

$$\mathbf{P}\left\{\sum_{i=1}^{N}(X_i - p_i) \ge t\right\} \le \exp\left(\frac{-2t^2}{N}\right).$$

. 150

Returning to the coin tossing problem, we can now make a stronger assertion of the rate of convergence of a false negative classification using Hoeffding inequality: 152

$$\mathbf{P}\left\{S_N - \frac{N}{2} \ge \frac{\varepsilon}{2}N\right\} \le \exp\left(-\varepsilon N\right).$$

However, this raises the question of which of the previous inequalities is better for a given problem. In the previous case, we chose Hoeffding's inequality, but when dealing with any specific problem, one needs to determine the criteria for deciding whether it's more appropriate to use Chernoff, Hoeffding, or any other inequality. In the following section, we will try to identify situations where one of these inequalities is more suitable than the other.

2.1 Which inequality is better?

Let's start with a small improvement of the Chebyshev's bound for the one-sided tails 161

Theorem 2.4 (Cantelli's Inequality). For t > 0, a random variable X with mean $\mu = \mathbf{E} X$ and variance $\sigma^2 = \mathbf{Var} X$, we have

$$\mathbf{P}\{X - \mu \ge t\} \le \frac{\sigma^2}{t^2 + \sigma^2}.$$

165 *Proof.* In the first place note that,

166
$$\mathbf{P}\{Y \ge s\} \le \mathbf{P}\{Y \ge s\} + \mathbf{P}\{Y \le s\} = \mathbf{P}\{|Y| \ge s\} = \mathbf{P}\{Y^2 \ge s^2\}. \tag{*}$$

Let $u \geq 0$, define $Y = X - \mu + u$ and s = t + u to obtain

168
$$\mathbf{P}\{X - \mu \ge t\} = \mathbf{P}\{X - \mu + u \ge t + u\} = \mathbf{P}\{Y \ge s\}.$$

We use (\star) and Markov's inequality (1.1) on Y^2 to conclude,

$$\mathbf{P}\{Y \ge s\} \stackrel{(\star)}{\le} \mathbf{P}\{Y^2 \ge s^2\} \stackrel{(1.1)}{\le} \frac{\mathbf{E}\left[(X - \mu + u)^2\right]}{(t + u)^2}.$$

171 By linearity of expectation,

178

$$\mathbf{E}[(X - \mu + u)^{2}] = \mathbf{E}[(X - \mu)^{2}] + 2u \cdot \underbrace{\mathbf{E}(X - \mu)}_{0} + E(u^{2}) = \sigma^{2} + u^{2}.$$

Finally, we choose an optimal $u = \frac{\sigma^2}{t}$ to conclude

$$\mathbf{P}\{X - \mu \ge t\} \le \frac{\sigma^2 + u^2}{(t+u)^2} = \frac{\sigma^2 + \sigma^4/t^2}{(t+\sigma^2/t)^2} = \frac{\sigma^2(\frac{t^2 + \sigma^2}{t^2})}{\left(\frac{t^2 + \sigma^2}{t}\right)^2} = \frac{\sigma^2}{t^2 + \sigma^2}$$

175

On the other hand, the two-sided tail inequality, Cantelli's inequality is not always better than Chebyshev,

Corollary 2.4.1 (Two-sided Cantelli inequality).

$$\mathbf{P}\{|X - \mu| \ge t\} \le \frac{2\sigma^2}{t^2 + \sigma^2}.$$

In fact, this bound is only better than Chebyshev's $t^2 + \sigma^2 \le 2t^2$, or equivalently, when $\sigma^2 \le t^2$. However, in this case both inequalities give bounds greater than 1, and thus, are useless. Therefore, we conclude that in general Chebyshev's is better for two-sided tails and Cantelli's for one-sided tails.

2.2 Uniform Laws of Large Numbers

3 Application to Estimation of Data **Dimension**

3.1 Chernoff-Okamoto Inequalities

Applying Markov's Inequality to $Y = e^{uX}$, we can assert that

$$\mathbf{P}\{X \ge \lambda + t\} \le e^{-u(\lambda + t)} \mathbf{E} e^{uX} = e^{-u(\lambda + t)} (1 - p + pe^u)^n.$$
 188

The right hand equation is minimized when,

$$e^{u} = \frac{\lambda + t}{(n - \lambda - t)} \cdot \frac{1 - p}{p}.$$

184

185

186

187

189

191

199

205

206

Therefore, for $0 \le t \le n - \lambda$,

$$\mathbf{P}\{X \ge \lambda + t\} \le \left(\frac{\lambda}{\lambda + t}\right)^{\lambda + t} \left(\frac{n - \lambda}{n - \lambda - t}\right)^{n - \lambda - t} \tag{3.1}$$

Theorem 3.1. Let X be random variable with the binomial distribution Bi(n,p) with 193 $\lambda := np = \mathbf{E} X$, then for $t \geq 0$, 194

$$\mathbf{P}\{X \ge \lambda + t\} \le \exp\left(-\frac{t^2}{2(\lambda + t/3)}\right) \tag{3.2}$$

$$\mathbf{P}\{X \le \lambda - t\} \le \exp\left(-\frac{t^2}{2\lambda}\right) \tag{3.3}$$

Used in: Theorem 3.3 198

Proof. (**TODO** I've already written the proof on paper)

The article Díaz et al. (2019) explains how we can estimate the dimension d of a manifold M embedded on a Euclidean space of dimension m, say \mathbb{R}^m . First, we are going to introduce the method they used, and then, we will show how does the exponential inequalities can be used to prove two important results in the paper. The procedure 203 starts with an example on a uniformly distributed sample on a d-sphere $\mathbb{S}^{d-1} \subset \mathbb{R}^d$, but 204 will be later generalized for samples of any distribution on any manifold.

In the first place, let Z_1, \ldots, Z_k be a i.i.d. sample uniformly distributed on \mathbb{S}^{d-1} . Then, we have the following formula for the variance of the angles between $Z_i, Z_j, i \neq j$: 208

$$\beta_{d} := \mathbf{Var} \left(\arccos \left\langle Z_{i}, Z_{j} \right\rangle \right) = \begin{cases} \frac{\pi^{2}}{4} - 2 \sum_{j=1}^{k} (2j-1)^{-2}, & \text{if } d = 2k+1 \text{ is odd,} \\ \frac{\pi^{2}}{12} - 2 \sum_{j=1}^{k} (2j)^{-2}, & \text{if } d = 2k+2 \text{ is even.} \end{cases}$$
(3.4)

The previous formula for the angle variance is proven in Díaz et al. (2019). In order to give more insight on how we will be choosing an estimator \hat{d} of the dimension of the sphere, consider the following theorem.

Theorem 3.2 (Bounds for β_d). For every d > 1,

$$\frac{1}{d} \le \beta_d \le \frac{1}{d-1}.$$

215 .

Knowing that for every d > 1, β_d is in the interval $\left[\frac{1}{d}, \frac{1}{d-1}\right]$, one can guess the dimension of the sphere by estimating β_d , and then, taking d from the lower bound of the interval where our estimator is. Since β_d is the variance of the angles in our sphere, our best choice for an estimator is the angle's sample variance,

$$U_k = {k \choose 2}^{-1} \sum_{i < j \le k} \left(\arccos \langle Z_i, Z_j \rangle - \frac{\pi^2}{2} \right)^2.$$
 (3.5)

In Proposition 1. of Díaz et al. (2019) the authors prove that it's the Minimum Variance Unbiased Estimator for β_d on the unit sphere.

Furthermore, the authors also prove that this result can be generalized for any manifold with samples of any distribution. Let X_1, \ldots, X_n be a i.i.d. sample from a random distribution P on a manifold $M \subset \mathbb{R}^m$, and let $p \in M$ a point. For $C > 0 \in \mathbb{R}$, let $k = \lceil C \ln(n) \rceil$ and define $R(n) = L_{k+1}(p)$ as the distance between p and its (k+1)-nearest neighbor. W.L.O.G. assume that $p = 0 \in M$ and that X_1, \ldots, X_k are the k-nearest neighbors of p. Additionally, for the following theorem to be true, we requiere that at any neighborhood of p, the probability in that neighborhood is greater than 0.

The following theorem uses a special inequality from Chernoff-Okamoto, and it's crucial in the idea behind this generalization.

Theorem 3.3 (Bound k-neighbors). For any sufficiently large C > 0, we have that, there exists n_0 such that, with probability 1, for every $n \ge n_0$,

$$R(n) \le f_{p,P,C}(n) = O(\sqrt[d]{\ln(n)/n}),$$
 (3.6)

where the function $f_{p,P,C}$ is a deterministic function which depends on p, P and C.

. _____ 238

The following theorem, although it does not require concentration inequalities, is important for connecting the idea of the previous theorem to the main frame. Let $\pi: R^m \to T_p M$ be the orthogonal projection on the Tangent Space of M at p. Also, define $W_i := \pi(X_i)$ and then normalize,

$$Z_i := \frac{X_i}{\|X_i\|}, \quad \widehat{W}_i := \frac{W_i}{\|W_i\|}.$$
 (3.7) ₂₄₃

242

244

247

249

255

257

264

265

Theorem 3.4 (Projection Distance Bounds). For any $i < j \le n$,

(i)
$$||X_i - \pi(X_i)|| = O(||\pi(X_i)||^2)$$
 (3.8) 245

(ii)
$$||Z_i - \widehat{W}_i|| = O(||\pi(X_i)||)$$
 (3.9) 246

(iii) The inner products (cosine of angles) can be bounded as it follows:

$$|\langle Z_i, Z_j \rangle - \langle \widehat{W}_i, \widehat{W}_j \rangle| \le Kr, \tag{3.10}$$

for a constant $K \in \mathbb{R}$, whenever $r \geq \max(\|\pi(X_i)\|, \|\pi(X_i)\|)$.

What follows is that if we know W_1, \ldots, W_k are behaved similar to a uniformly distributed sample on the sphere \mathbb{S}^d , then, Z_1, \ldots, Z_k (the normalized k-nearest neighbors of p) also behave like they are uniformly distributed on \mathbb{S}^d . The following theorem is made by combining the ideas of the previous theorems.

Theorem 3.5 (Projection's Angle Variance Statistic). For $k = O(\ln n)$, let

$$V_{k,n} = {k \choose 2}^{-1} \sum_{i < j \le k} \left(\arccos \left\langle \widehat{W}_i, \widehat{W}_j \right\rangle - \frac{\pi^2}{2} \right)^2, \tag{3.11}$$

and let $U_{k,n} = U_k$ from equation 3.5. The following statements hold

(i)
$$k|U_{k,n} - V_{k,n}| \stackrel{n \to \infty}{\longrightarrow} 0$$
, in probability. (3.12)

(ii)
$$\mathbf{E} |U_{k,n} - V_{k,n}| \stackrel{n \to \infty}{\longrightarrow} 0.$$

□ 260

This last theorem is as far as this document is planned to cover. However, the last result in the paper provides the main statement. It says that if we estimate β_d as we did with $U_{k,n}$ from 3.5, and then, extract \hat{d} from the interval where $U_{k,n}$ is located, it follows that,

Theorem 3.6 (Consistency). When $n \to \infty$,

$$\mathbf{P}\{\hat{d} \neq d\} \to 0.$$

3.2 Proofs

268 Proof Theorem 3.2: The even and the odd cases must be distinguished:

(1): When d = 2k + 2 is even: In the first place, remember that,

$$\lim_{k \to \infty} \sum_{j=1}^{k} j^{-2} = \frac{\pi^2}{6}.$$

271 It follows that

272

274

276

$$\beta_d = \frac{\pi^2}{12} - 2\sum_{j=1}^k (2j)^{-2} = \frac{\pi^2}{12} - \frac{1}{2}\sum_{j=1}^k j^{-2}$$
$$= \frac{1}{2}\sum_{j=k+1}^\infty j^{-2}.$$

Since $(j^{-2})_{j\in\mathbb{N}}$ is a monotonically decreasing sequence, it follows that

$$\frac{1}{d} = \frac{1}{2k+2} = \frac{1}{2} \int_{k+1}^{\infty} x^{-2} dx$$

$$\leq \beta_d \leq \frac{1}{2} \int_{k+1/2}^{\infty} x^{-2} dx$$

$$= \frac{1}{2k+1} = \frac{1}{d-1}.$$

275 (2): When d = 2k + 3 is odd: On the other hand, note that

$$\lim_{k \to \infty} \sum_{j=1}^{k} (2j-1)^{-2} = \lim_{k \to \infty} \sum_{j=1}^{2k-1} j^{-2} - \sum_{j=1}^{k-1} (2j)^{-2}$$

$$= \lim_{k \to \infty} \sum_{j=1}^{2k-1} j^{-2} - \frac{1}{4} \sum_{j=1}^{k-1} j^{-2}$$

$$= \frac{\pi^2}{6} - \frac{\pi^2}{24} = \frac{\pi^2}{8}$$

Then,

$$\beta_d = \frac{\pi^2}{4} - 2\sum_{j=1}^k (2j-1)^{-2}$$
$$= 2\sum_{j=k+1}^\infty (2j-1)^{-2}.$$

Using a similar argument we conclude that

$$\frac{1}{d} = \frac{1}{2k+1} = 2 \int_{k+1}^{\infty} (2x-1)^{-2} dx$$

$$\leq \beta_d \leq 2 \int_{k+1/2}^{\infty} (2x-1)^{-2} dx$$

$$= \frac{1}{2k+2} = \frac{1}{d-1}.$$
280

279

281

282

288

292

294

Proof Theorem 3.3: The volume of a d-sphere of radius r is equal to:

$$v_d r^d = \frac{\pi^{d/2}}{\Gamma(\frac{n}{2} + 1)} r^d.$$
 283

Where v_d is the volume of the unit d-sphere. For the assumptions we made on P and M around p=0, we can say that for any r>0, there's a percent (greater than 0) of 285 the sample that is within a range r from p. This proportion is subordinated only by 286 the volume of a d-sphere of radius r and a constant $\alpha := \alpha(P)$ that depends on the 287 distribution P:

$$\rho = \mathbf{P}\{X \in M : |X| < r\} \ge \alpha v_d r^d > 0.$$

We can now define a binomial process based on how many neighbors does p has within a range r. Let $N = N_r \sim \text{Bi}(n, \rho)$ be the number of neighbors, using Theorem 3.1 with 291 $\lambda = n\rho$ and $t = \frac{\lambda}{2}$ we obtain,

$$\mathbf{P}\{N < \lambda - t\} = \mathbf{P}\{2N < \lambda\} < \exp(-\lambda/8).$$

Since $n(\alpha v_d r^d) \leq n\rho = \lambda$, it follows that, by choosing r(n) such that

$$r(n) = \left(\frac{C}{\alpha v_d} \cdot \frac{\ln n}{n}\right)^{1/d} = O(\sqrt[d]{\ln(n)/n}),\tag{\star}$$

and thus, 296

$$C \ln n = n(\alpha v_d r(n)^d) \le \lambda,$$

we obtain: 298

$$P\{2N < C \ln n\} < \mathbf{P}\{2N < \lambda\},\tag{299}$$

and, 300

$$\exp(-\lambda/8) \le \exp\left(\frac{-C\ln n}{8}\right) = n^{-C/8}.$$

Therefore, 302

$$P\{2N \le C \ln n\} \le n^{-C/8}.$$

3 Application to Estimation of Data Dimension

Finally, with this last expression we proved that if $k = \frac{C}{2} \ln n$, then the k-neighbors of p are contained in the ball of radius r(n) with a probability that converges exponentially to 1.

4 Applications to graph theory

4.1 The Azuma-Hoeffding Inequality

Definition 4.1. A sequence X_0, \ldots, X_n of random variables is consider a **martingale** if, for every $i \leq n$,

$$\mathbf{E}\left[X_{i+1}|X_i,\ldots,X_0\right] = X_i$$

307

308

309

310

312

314

319

320

321

322

325

326

328

The random graph G(n, p) has n labeled vertices and produces an edge between 2 of them with probability p. Let v_1, \ldots, v_n denote the vertices and e_1, \ldots, e_m the potential $\binom{n}{2}$ edges with the indicator function:

$$\mathbb{1}_{e_k \in G} = \begin{cases} 1, & e_k \in G \\ 0, & \text{otherwise} \end{cases}$$
 315

An edge exposure martingale is a sequence of random variables defined as the expected value of a function f(G) which depends on the information of the first j potential edges:

$$X_j = \mathbf{E}[f(G) \mid \mathbb{1}_{e_1 \in G}, \dots, \mathbb{1}_{e_j \in G}]$$
 318

Since all of the graph information is contained in its edges, the sequence transitions from no information: $X_0 = E(f(G))$, to the true value of the function: $X_m = f(G)$. Similarly, one can define a martingale which depends on how many vertices are revealed. The vertex exposure martingale is defined as it follows,

$$X_i = \mathbf{E} [f(G) \mid \mathbb{1}_{\{v_b, v_i\}}, \ k, j \le i]$$
 323

In the following section we are going to present an application of the Azuma-Hoeffding inequality to prove the convergence to the mean of a linear approximation algorithm for the *Travelling Salesman Problem*.

4.2 An heuristic algorithm for the Travelling Salesman Problem

Let X_1, \ldots, X_N be a sample of N uniformly distributed points in a compact square $[0, L] \times [0, L]$. The algorithm divides this square in M stripes of width L/M each. Then, it connects each of the points in each of the stripes vertically and connects the top-most of one stripe with the top-most of the next one (or viceversa as the image below shows).

In the reference Gzyl et al. (1990) the authors assert that by choosing a number of stripes $M^* = \lfloor 0.58N^{1/2} \rfloor$, one can achieve the best result in comparison to the real TSP

solution. If t_N is the TSP solution distance for our sample and d_N is the algorithm's answer with the optimal M^* , then the error is asymptotically:

$$\frac{d_N - t_N}{t_N} \approx 0.23.$$

The result that we are going to prove is that d_N converges with an exponential rate to its mean. To prove our point, we are going to modify the algorithm's trajectory as it follows. Let e_N be trajectory distance that for any empty stripe in the plane we sum the length of its diagonal $\sqrt{L^2 + L^2/M^2}$ and then it skips the empty stripe. When there are no empty stripes $e_N = d_N$ and the probability that any given stripe is empty converges exponentially to 0:

$$(1 - 1/M)^{N} = (1 - 0.58^{-1}N^{-1/2})^{N}$$
$$= ((1 - 1/M)^{M})^{0.58^{-1}N^{1/2}}$$
$$\sim \exp(-0.58^{-1}N^{1/2}).$$

Let $A_i := \sigma\{X_1, \dots, X_i\}$ be the sigma algebra corresponding to revealing the first i points, $A_0 = \{\emptyset, [0, L]^2\}$. The expected value of the trajectory e_N given that we only know the positions of the first i points in the sample is $\mathbf{E}(e_N|A_i)$. Define

$$Z_i = \mathbf{E} (e_N | \mathcal{A}_i) - \mathbf{E} (e_N | \mathcal{A}_{i-1}),$$

As the difference of this expectations when we reveal 1 more point. Note that since

$$\mathbf{E}\left(Z_{i}|\mathcal{A}_{i}\right) = \mathbf{E}\left(e_{N}|\mathcal{A}_{i},\mathcal{A}_{i}\right) - \mathbf{E}\left(e_{N}|\mathcal{A}_{i-1},A_{i}\right) = \mathbf{E}\left(e_{N}|\mathcal{A}_{i}\right) - \mathbf{E}\left(e_{N}|\mathcal{A}_{i}\right) = 0,$$

The $Z_i's$ form a vertex exposure martingale sequence.

Define $e_N^{[i]}$ as the distance of the trajectory when we remove the *i*-th point from the sample. Intuitively from the figure above and the triangle inequality, we can obtain

$$e_N^{[i]} \le e_N \le e_N + 2L/M,$$

4 Applications to graph theory

Figure 4.1: Evolution of the vertex exposure martingale

meaning that revealing one point cannot increase more than 2 widths the distance of the trajectory. Thus,

$$||Z_i||_{\infty} = \sup_{X_1,...,X_N} ||\mathbf{E}(e_N|\mathcal{A}_i) - \mathbf{E}(e_N|\mathcal{A}_{i-1})|| \le 2L/M.$$
 356

On the other hand, by telescopic sums we obtain that

$$e_N - Ee_N = \mathbf{E}\left(e_N|\mathcal{A}_N\right) - \mathbf{E}\left(e_N|\mathcal{A}_0\right) = \sum_{i=1}^N Z_i.$$
 358

Therefore, by the Azuma-Hoeffding inequality,

$$\mathbf{P}\{|e_N - Ee_N| > t\} \le 2 \exp\left(\frac{-t^2}{2} \sum_{i=1}^N \|Z_i\|_{\infty}^2\right).$$
 360

Finally,

$$\sum_{i=1}^{N} \|Z_i\|_{\infty}^2 \le \frac{4NL^2}{M^2},$$
362

357

359

363

which implies that

$$\mathbf{P}\{|e_N - Ee_N| > t\} \le 2 \exp\left(\frac{-t^2}{2} \sum_{i=1}^N \frac{4NL^2}{M^2}\right) \sim e^{-t^2KN},$$

for some $K \in \mathbb{R}^+$.

5 Applications to Vapnik–Chervonenkistheory

Stéphane Boucheron, Gábor Lugosi, and Olivier Bousquet. Concentration inequalities.	369
In Summer school on machine learning, pages 208–240. Springer, 2003.	370
Mateo Díaz, Adolfo J Quiroz, and Mauricio Velasco. Local angles and dimension esti-	371
mation from data on manifolds. Journal of Multivariate Analysis, 173:229–247, 2019.	372
H Gzyl, R Jiménez, and AJ Quiroz. The physicist's approach to the travelling salesman	373
problem—ii. Mathematical and Computer Modelling, 13(7):45–48, 1990.	374

Bibliography