Asymmetric Key Cryptography

Elliptic Curve Cryptography (ECC) over Binary Galois Extension Field \mathbb{F}_{2^k}

Priyank Kalla
Professor
Electrical & Computer Engineering

ECC in \mathbb{F}_{2^k}

- Over $\mathbb{F}_{2^k} \equiv \mathbb{F}_2[x] \pmod{P(x)}, P(x) = \text{primitive polynomial of degree } k$
- Cannot use the same curve as in $\mathbb R$ i.e. $E_{\mathbb R}: y^2=x^3+ax+b;$
- Curve equation used in \mathbb{F}_{2^k} : $E: y^2 + xy = x^3 + ax^2 + b, a, b \in \mathbb{F}_{2^k}, b \neq 0$
 - Such a curve is called "nonsupersingular", and the discriminant $\Delta = b \neq 0$
 - The rules for point addition and doubling in \mathbb{F}_{2^k} are different than those for \mathbb{R} or \mathbb{F}_p , because \mathbb{F}_{2^k} has characteristic 2

$$\lambda = (y_2 + y_1) / (x_2 + x_1)$$
• P+Q = R:
$$x_3 = \lambda^2 + \lambda + x_1 + x_2 + a \qquad y_3 = \lambda (x_1 + x_3) + x_3 + y_1$$

$$\lambda = x_1 + y_1 / x_1$$
 $x_3 = \lambda^2 + \lambda + a$
 $y_3 = x_1^2 + (\lambda + 1) x_3$

• P+P = 2P = R:

Deriving Point Doubling Computation in \mathbb{F}_{2^k}

- Let $E: y^2+xy=x^3+ax^2+b, a,b\in \mathbb{F}_{2^k}, b\neq 0$, and $P(x_1,y_1)$ be a point
- Write $E: y^2 + xy + x^3 + ax^2 + b = 0$; as $-1 = +1 \pmod{2}$
- Implicit differentiation of E (keep in mind, coeff. Reduced mod (2)):

$$2y\frac{dy}{dx} + (x\frac{dy}{dx} + y \cdot 1) + 3x^2 + 2ax = 0$$
$$x\frac{dy}{dx} + y + x^2 = 0$$

- $\frac{dy}{dx} = \frac{y + x^2}{x} = x + y/x$
- Therefore, slope at $P(x_1, y_1) = \lambda = x_1 + y_1/x_1$

Inverse points in \mathbb{F}_{2^k}

- Another issue to resolve in \mathbb{F}_{2^k} is inverse points
- Over \mathbb{R} , $P(x_1, y_1)$, then $-P = (x_1, -y_1)$
- But over \mathbb{F}_{2^k} , -1 = +1, so $-P = (x_1, -y_1) = (x_1, y_1)$
 - So P = -P for all points P? This gives -P + P = 2P, but we want P P = O, the zero point!
- For out curve $E: y^2 + xy = x^3 + ax^2 + b, a, b \in \mathbb{F}_{2^k}, b \neq 0$
- Inverse point = $P(x_1, y_1)$, then $-P = (x_1, x_1 + y_1)$
- Proof: In E, y appears in LHS only. Replace y with x+y:

$$E(x, x + y): (x + y)^{2} + x(x + y) = x^{3} + ax^{2} + b$$
$$x^{2} + y^{2} + 2xy + x^{2} + xy = x^{3} + ax^{2} + b$$

$$E(x,y): y^2 + xy = x^3 + ax^2 + b$$

ECC Curve Example

- Let $\mathbb{F}_8 = \mathbb{F}_2[x] \pmod{P(x) = x^3 + x + 1}$
- Let $P(\alpha) = 0 : \alpha^3 + \alpha + 1 = 0$, or $\alpha^3 = \alpha + 1$
- $\mathbb{F}_8 = \{0, 1 = \alpha^7, \alpha, \alpha^2, \alpha^3 = \alpha + 1, \alpha^4 = \alpha^2 + \alpha, \alpha^5 = \alpha^2 + \alpha + 1, \alpha^6 = \alpha^2 + 1\}$
- Let the ECC curve be $E: y^2 + xy = x^3 + \alpha^3 x^2 + 1$
- Find all the valid points on the curve E
 - For all $x \in \mathbb{F}_8$, compute corresponding values of y
 - E.g. x=0, $y^2=1$, y=1, 1 (two equal roots): two points (0,1),(0,1)
 - $x = \alpha : y^2 + \alpha y = \alpha^3 + \alpha^5 + 1 = \alpha^2 + 1$
 - $x = \alpha : y^2 + \alpha y + \alpha^2 + 1 = 0$. Quadratic equation of the form: $ay^2 + by + c$
 - Find roots using factorization (subst() and factorize() functions in Singular)

ECC Points Generation

- $E: y^2 + xy = x^3 + \alpha^3 x^2 + 1$, with $\alpha^3 + \alpha + 1 = 0$
- Points over the curve:

$$(0,1) \quad (0,1)$$

$$(\alpha, \alpha^{2}) \quad (\alpha, \alpha^{2} + \alpha = \alpha^{4})$$

$$(\alpha^{2},1) \quad (\alpha^{2}, \alpha^{2} + 1 = \alpha^{6})$$

$$(\alpha^{3}, \alpha^{2}) \quad (\alpha^{3}, \alpha^{2} + \alpha + 1 = \alpha^{5})$$

$$(\alpha^{4},0) \quad (\alpha^{4}, \alpha^{2} + \alpha = \alpha^{4})$$

$$(\alpha^{5},1) \quad (\alpha^{5}, \alpha^{2} + \alpha = \alpha^{4})$$

$$(\alpha^{6},\alpha) \quad (\alpha^{6}, \alpha^{2} + \alpha + 1 = \alpha^{5})$$

- But we cannot ignore the point at infinity, as that's the identity element of the group. So, include the point O.
- This gives us 13 distinct points above, 1 duplicate point (0,1), and O: giving us 14 distinct points: $E = \{O, (0,1), (\alpha, \alpha^2), ..., (\alpha^6, \alpha^5)\}$

ECC Points Generation

- $E: y^2 + xy = x^3 + \alpha^3 x^2 + 1$, with $\alpha^3 + \alpha + 1 = 0$
- We know now that $E = \{O, (0,1), (\alpha, \alpha^2), ..., (\alpha^6, \alpha^5)\}$ and that $\langle E, + \rangle$ forms an additive group.
- Does there exist a point in E that generates the group? Yes: (α, α^2) generates the whole group. But (0,1) does not.

$$P = (\alpha, \alpha^2) \qquad 2P = (\alpha^3, \alpha^5) \qquad 3P = 2P + P = (\alpha^2, 1)$$

$$4P = (\alpha^5, 1) \qquad 5P = (\alpha^4, \alpha^4) \qquad 6P = (\alpha^6, \alpha^5)$$

$$7P = (0, 1) \qquad 8P = (\alpha^6, \alpha) \qquad 9P = (\alpha^4, 0)$$

$$10P = (\alpha^5, \alpha^4) \qquad 11P = (\alpha^2, \alpha^6) \qquad 12P = (\alpha^3, \alpha^2)$$
• $13P = (\alpha, \alpha^4) \qquad 14P = O \qquad 15P = O + P = P$

• If P = (0,1), 2P = O: when x=0, slope = infy, so 2P = O

$$\lambda = x_1 + y_1 / x_1$$
 $x_3 = \lambda^2 + \lambda + a$
 $y_3 = x_1^2 + (\lambda + 1) x_3$

• R(x3,y3) = 2P(x1,y1)

How many points over E?

• The number of points on an elliptic curve over \mathbb{F}_q is given by a bound:

•
$$q+1-2\sqrt{q} \le \#E(\mathbb{F}_q) \le q+1+2\sqrt{q}$$

This is called Hesse-Weil formula

El Gamal over ECC in \mathbb{F}_{2^k}

- Choose curve $E(\alpha^3,1)$: and let $e_1=(\alpha^2,1)$, and d=2
- Calculate $e_2 = 2e_1 : \lambda = \alpha + 1, x_3 = \alpha^6, y_3 = \alpha^5$
- $e_2 = (\alpha^6, \alpha^5)$

El Gamal over ECC in \mathbb{F}_{2^k} : Encipherment

- Choose $E(\alpha^3,1): e_1 = (0,1), d = 2$. Compute $e_2 = 2e_1 = 0$
- Alice chooses r = 3: $C_1 = 3e_1 = 2e_1 + e_1 = O + e_1 = e_1$
- $C_2 = P + 3e_2 = P + 3O = P + O = P$ (encrypted = plaintext)
- Decryption: $C_2 (dC_1) = P 2e_1 = P O = P$ (we get plaintext back)

Projective Coordinates and Hardware Design

- For point addition and doubling operation, need to compute slope λ , which requires division
- Division = multiplicative inverse = extended Euclidean algorithm which is non-trivial
 to implement in a modulo arithmetic ALU
- To avoid computation of inverses, many hardware crypto systems use Projective Coordinates:
- $E: y^2 + xy = x^3 + ax^2 + b, a, b \in \mathbb{F}_{2^k}, b \neq 0$
- Put x = X/Z, y = Y/Z, $E: Y^2/Z^2 + (X/Z)(Y/Z) = X^3/Z^3 + aX^2/Z^2 + b$
- Homogenize E, i.e. multiply by Z^3 , we get $E: Y^2Z + XYZ = X^3 + aX^2Z + bZ^3$
- Affine Point $(x_1, y_1) \equiv (X_1 : Y_1 : Z_1)$ becomes the projective point, if $Z_1 \neq 0$, and inverse point $(x_1, x_1 + y_1) \equiv (X_1 : X_1 + Y_1 : Z_1)$.
- When $Z_1 = 0$, then point at infinity is represented as (0:1:0), or (1:m:0)

Projective Coordinates and Hardware Design

- $E: Y^2Z + XYZ = X^3 + aX^2Z + bZ^3$
- Affine Point $(x_1, y_1) \equiv (X_1 : Y_1 : Z_1)$ becomes the projective point, if $Z_1 \neq 0$, and inverse point $(x_1, x_1 + y_1) \equiv (X_1 : X_1 + Y_1 : Z_1)$.
- When $Z_1 = 0$, then point at infinity is represented as (0:1:0), or (1:m:0)
- (rX : rY : rZ) = r(X : Y : Z) = (X : Y : Z) = Equivalence class of points
- Two parallel lines of slope m intersect at (1 : m : 0), two vertical lines at (0:1:0). Point (0:0:0) is disallowed.
- Using Projective coordinates, point addition and doubling don't require inverses
- Given affine point (x_i, y_i) , how to select z_i for (x_i, y_i, z_i) ?
- Any $z_i \neq 0$ will do, so just select $z_i = 1$

Point addition in projective coordinates

 $C = B^2$

 $C = X_1 Z_1$,

$$Y^{2}Z + XYZ = X^{3} + a_{2}X^{2}Z + a_{6}Z^{3}.$$

Addition

Let $P = (X_1 : Y_1 : Z_1)$, $Q = (X_2 : Y_2 : Z_2)$ such that $P \neq \pm Q$ then $P \oplus Q = (X_3 : Y_3 : Z_3)$ is given by

$$A = Y_1 Z_2 + Z_1 Y_2,$$
 $B = X_1 Z_2 + Z_1 X_2,$
 $D = Z_1 Z_2,$ $E = (A + AB + a_2 C)D + BC,$
 $X_3 = BE,$ $Y_3 = C(AX_1 + Y_1 B)Z_2 + (A + B)E,$

Doubling

If $P = (X_1 : Y_1 : Z_1)$ then $[2]P = (X_3 : Y_3 : Z_3)$ is given by

$$A = X_1^2,$$
 $B = A + Y_1 Z_1,$ $D = C^2,$ $E = (B^2 + BC + a_2 D)$

$$X_3 = CE,$$
 $Y_3 = (B+C)E + A^2C$

Errors/Typos in this derivation From the "Handbook of ECC"

Correct formula on the next slides

No inverses needed, only GF addition, multiplication and squaring

Point addition: 16M + 2S;

Point Doubling: 8M + 2S

Point Addition in Projective Coordinates

$$E: Y^2Z + XYZ = X^3 + aX^2Z + bZ^3$$

$$A = x_{2}z_{1} + x_{1}$$

$$B = y_{2}z_{1} + y_{1}$$

$$C = A + B$$

$$D = A^{2}(A + az_{1}) + z_{1}BC$$

$$x_{3} = AD$$

$$y_{3} = CD + A^{2}(Bx_{1} + Ay_{1})$$

$$z_{3} = A^{3}z_{1}$$

- In our example, $a = \alpha^3, b = 1, \mathbb{F}_8$
- Where $P(\alpha) = \alpha^3 + \alpha + 1$

- $(x_3, y_3, z_3) = (x_1, y_1, z_1) + (x_2, y_2, z_2);$
- When affine (x_i, y_i) is given, choose $z_i = 1$ (simple!!)
- $P = (\alpha, \alpha^2), Q = 2P = (\alpha^3, \alpha^5), R = P + Q = (\alpha^2, 1)$
- $13P = (\alpha, \alpha^4), P = (\alpha, \alpha^2), R = 13P + P = 14P = (0 : \alpha + 1 : 0) = O$
- See the Singular file on Canvas: "ecc-projective.sing";

Point Doubling in Projective Coordinates

$$E: Y^2Z + XYZ = X^3 + aX^2Z + bZ^3$$

$$A = x_1 z_1$$

$$B = b z_1^4 + x_1^4$$

$$x_3 = AB$$

$$y_3 = x_1^4 A + B(x_1^2 + y_1 z_1 + A)$$

$$z_3 = A^3$$

•
$$(x_3, y_3, z_3) = 2(x_1, y_1, z_1);$$

• P = (0,1), 2P = O:
$$x_3 = 0, y_3 = 1, z_3 = 0$$

Final Remark on ECC Security

- Choose e_1 preferably as a generator of the group $\langle E, + \rangle$
- $e_2 = d \times e_1$
- Both e_1, e_2 are public. Can Eve find d?
- This is the elliptic curve discrete logarithm problem (ECDLP)
- Known methods for ECDLP is based on the Pollard Rho algorithm, and the "baby-step giant-step" algorithm
- Overall complexity is $O(\sqrt{r})$, where r is the number of elements in the group = order of the group = # of points on the curve
- $r \le q + 1 + 2\sqrt{q}$, $q = 2^n$, n = # of bits: If n = 163 (NIST spec)
- But ECC over \mathbb{F}_{2^n} is becoming vulnerable to side-channel attacks, so shielding is an important issue