Decoding from many neurons: population codes

- Population code formulation
- N.e.hed; for decoding:
 - → population vector
 - → Bayesianinference
 - → maximum Welihood
 - → maximum a pos i zi

Fisher information

Cricket cercal cells

The wind velocity is transduced into an electrical signal by the movements of these

hairs. They're innovated at their base by

Biology

Cricket cercal cells

Theunissen & Miller, 1991; in Dayan and Abbott, *Theoretical Neuroscience*

Population vector

RMS error mest ne

只需要2个basis就能够表达二维空间的方向,但是这里有4个basis why?
因为没有负的firing rate来coding负方向

Theunissen & Miller, 1991; in Dayan and Abbott, Theoretical Neuroscience

Population coding in M1

Cosine tuning curve of a motor cortical new o

Population coding in M1

Cosine tuning:

$$\left(\frac{\langle r \rangle - r_0}{r_{\text{max}}}\right) = \left(\frac{f(s) - r_0}{r_{\text{max}}}\right)_a = \vec{v} \cdot \vec{c}_a$$
Pop. vector:

$$\vec{v}_{\text{pop}} = \sum_{a=1}^{N} \left(\frac{r - r_0}{r_{\text{max}}} \right) \vec{c}_a$$

For sufficiently large N,

is parallel to the direction of arm movement

Is this the best one can do?

The population vector is neither general nor optimal.

"Optimal":
make use of all it for my wan in the stimulus/response distributions

Bayesian inference

Bayes' law:

Bayesian inference

Bayes' law:

likelihood function

$$\frac{p[s|\mathbf{r}]}{p[\mathbf{r}]} = \frac{p[\mathbf{r}|s]p[s]}{p[\mathbf{r}]}$$

a posteriori distribution

Find maximum of P[r|s] over s

More generally, probability of the data given the "model"

"Model" = stimulus

assume parametric form for tuning curve

Bayesian inference

Bayes' law:

likelihood function

$$\frac{p[s|\mathbf{r}]}{p[\mathbf{r}]} = \frac{p[\mathbf{r}|s]p[s]}{p[\mathbf{r}]}$$

a posteriori distribution

Decoding strategies

In general, these are going to differ because of the role of the prior, that's what makes the two sides differ.

That means in maximizing the a posteriori distribution, we're biasing our choice for what we know about the stimulus in advance.

Maximum Likelihood: s* which maximizes p[r|s]

likelihood function

$$\frac{p[s|\mathbf{r}]}{p[\mathbf{r}]} = \frac{p[\mathbf{r}|s]p[s]}{p[\mathbf{r}]}$$

a posteriori distribution

Maximum *a posteriori*: s* which maximizes p[s|r]

Decoding an arbitrary continuous stimulus

Let's take a particular case....

不同神经元和不同的tuning function

- assume independence
- assume Poisson firing

Decoding an arbitrary continuous stimulus

Let's take an example: Gaussian tuning curves

$$f_a(s) = r_{\text{max}} \exp\left(-\frac{1}{2} \left[\frac{(s - s_a)}{\sigma_a}\right]^2\right)$$

Assume good coverage: $\sum_{a=1}^{N} f_a(s)$ const.

Need to know full P[r|s]

Population response of 11 cells with Gaussian tuning our as

Need to know full P[r|s]

T个neuron

这里都是对likelihood function的假设

1. Assume Poisson:

$$P_{T}[k] = (rT)^{k} \exp(-rT)/k!$$

$$P[r_a|s] = \frac{(f_a(s)T)^{r_aT}}{(r_aT)!} \exp(-f_a(s)T)$$

2. Assume independent: $P[\mathbf{r}|s] = \prod_{n=1}^{N} \frac{(f_a(s)T)^{r_aT}}{(r_aT)!} \exp(-f_a(s)T)$

$$\prod_{s=1}^{N} \frac{(f_a(s)T)^{r_aT}}{(r_aT)!} \exp(-f_a(s)T)$$

$$P[\mathbf{r}|s] = \prod_{a=1}^{N} \frac{(f_a(s)T)^{r_aT}}{(r_aT)!} \exp(-f_a(s)T)$$

Maximize $\ln P[\mathbf{r}|s]$ with respect to s

$$P[\mathbf{r}|s] = \prod_{a=1}^{N} \frac{(f_a(s)T)^{r_aT}}{(r_aT)!} \exp(-f_a(s)T)$$

$$\lim_{a \to \infty} \Pr[\mathbf{r}|s] = \sum_{a=1}^{N} \left\{ f_a \mathbf{r} \ln (f_a(s)T) - f_a(s)T - \ln (u(s)) \right\}$$

Maximize $\ln P[\mathbf{r}|s]$ with respect to s

$$\ln P[\mathbf{r}|s] = T \sum_{a=1}^{N} r_a \ln(f_a(s)) + \dots$$

$$\frac{\partial}{\partial s} \ln P(r|s) = T \sum_{a=1}^{N} r_a \frac{f_a(s)T}{f_a(s)}$$

$$= T \sum_{a} r_a \frac{f'(s)}{f(s)} = 0 \qquad \text{Assume good coverage: } \sum_{a=1}^{N} f_a(s) \text{ const.}$$

$$\sum_{a=1}^{N} f_a(s) \text{ const}$$

Set derivative to zero, use sum = constant

$$\sum_{a=1}^{N} r_a \frac{f'(s^*)}{f(s^*)} = 0$$

$$\sum_{a=1}^{N} r_a \frac{f'(s^*)}{f(s^*)} = 0$$

对f(s)的假设

From Gaussianity of tuning curves,

$$s^* = \frac{\sum r_a s_a / \sigma_a^2}{\sum r_a / \sigma_a^2}$$

所有neuron的tuning curves的sigma

If all σ same

$$s^* = \frac{\sum r_a s_a}{\sum r_a}$$

Maximum *a posteriori*

Maximize $\ln p[s|\mathbf{r}]$ with respect to s

$$\ln p[s|\mathbf{r}] = \ln P[\mathbf{r}|s] + \ln p[s] - \ln P[\mathbf{r}]$$
$$\ln p[s|\mathbf{r}] = T \sum_{a=1}^{N} r_a \ln(f_a(s)) + \ln p[s] + \dots$$

Set derivative to zero, use sum = constant

$$\sum_{a=1}^{N} r_a \frac{f'(s^*)}{f(s^*)} + \frac{p'[s]}{p[s]} = 0$$

From Gaussianity of tuning curves,

$$s^* = \frac{T \sum r_a s_a / \sigma_a^2 + s_{\text{prior}} / \sigma_{\text{prior}}^2}{T \sum r_a / \sigma_a^2 + 1 / \sigma_{\text{prior}}^2}$$

Maximum a posteriori

Maximize $\ln p[s|\mathbf{r}]$ with respect to s

$$\ln p[s|\mathbf{r}] = \ln P[\mathbf{r}|s] + \ln p[s] - \ln P[\mathbf{r}]$$

$$\ln p[s|\mathbf{r}] = T \sum_{a=1}^{N} r_a \ln(f_a(s)) + \ln p[s] + \dots$$

Given this data:

Limitations of these approaches

- Tuning curve/mean firing rate 没有考虑到快速的时间变异
- Correlations in the population 这一点很重要

The importance of correlation

The importance of correlation

The importance of correlation

