```
library(dplyr)

rladies_global %>%
  filter(city == 'Your city')
```


R en Genética: Clusterización de Haplotipos

iHOla! Soy Tatiana Parlanti

Estudiante avanzada de Lic. en Ciencias Básicas con orientación en Matemática (FCEN-UNCUYO) tsparlanti@gmail.com

1. Conceptos básicos de Genética

Conceptos básicos de Genética

- Gen
- Cromosoma
- Locus y loci
- Alelo

Conceptos básicos de Genética

Estructura de ADN y Nucleótidos

Conceptos básicos de Genética

Cenetica online

2. Clusterización de haplotipos

Mendel

Mendel

-				
	AB	Ab	aB	ab
AB	AABB	AABb	AaBB	AaBb
Ab	AABb	AAbb	AaBb	Aabb
aB	AaBB	AaBb	aaBB	aaBb
ab	AaBb	Aabb	aaBb	aabb
) {	~~		
AB 9/1	6 Ab	3/16	aB 3/16	ab 1/16

Caracteres de tipo Cuantitativo

Caracteres de tipo Cuantitativo

Caracteres de tipo Cuantitativo

Caracteres de tipo Cuantitativo

Marcadores SNPs

Haplotipos

Haplotipos

Dada la alta
variabilidad alélica,
la probabilidad de
que dos individuos
no relacionados
presenten un mismo
haplotipo, es
prácticamente nula.

Clusterización de Haplotipos

A menudo, el procedimiento para la identificación del tipo de SNP que tiene cada individuo no se completa, lo que lleva a un faltante de valores.

Clusterización de Haplotipos

A menudo, el procedimiento para la identificación del tipo de SNP que tiene cada individuo no se completa, lo que lleva a un faltante de valores.

Clusterización de Haplotipos

El objetivo que se tiene es identificar los individuos que tengan todos sus marcadores especificados, a los que llamaremos *haplotipos*, los cuales serán tomados de referencia para emparentar los marcadores incompletos con un haplotipo semejante.

Esta operación es lo que se conoce como *clusterización*.

Ren acción

- Paquete: clusterhap*
- Agrupa genotipos en haplotipos semejantes

^{*}Gaston Quero, Sebastian Simondi, with contributions from Victoria Bonnecarrere and Lucia Gutierrez (2016). Clusterhap: Clustering Genotypes in Haplotypes. R package version 0.1. https://CRAN.R-project.org/package=clusterhap

Ejemplo

Ind	SNP.1	SNP.2	SNP.3	SNP.4	SNP.5	SNP.6
ind_1	A	C	G	A	T	C
ind_2	NA	C	NA	A	T	C
ind_3	C	C	T	A	T	C
ind_4	NA	C	NA	A	T	G
ind ₅	C	NA	NA	A	T	C

Ejemplo

Ind	SNP.1	SNP.2	SNP.3	SNP.4	SNP.5	SNP.6
ind_1	A	С	G	A	T	С
ind_2	NA	C	NA	A	T	C
ind_3	C	C	T	A	T	C
ind_4	NA	C	NA	A	T	G
ind ₅	C	NA	NA	A	T	C

Ind	SNP.1	SNP.2	SNP.3	SNP.4	SNP.5	SNP.6
ind_1	1	2	3	1	4	2
ind_2	O	2	O	1	4	2
ind_3	2	2	4	1	4	2
ind_4	O	2	0	1	4	3
ind_5	2	0	0	1	4	2

Ejemplo: Haplotipos

Ind	SNP.1	SNP.2	SNP.3	SNP.4	SNP.5	SNP.6		
ind_1	1	2	3	1	4	2	١- ا	Haplo 1
ind_2	0	2	0	1	4	2		
ind_3	2	2	4	1	4	2	١.	Haplo 2
ind_4	0	2	0	1	4	3		
ind_5	2	0	0	1	4	2		

	SNP.1	SNP.2	SNP.3	SNP.4	SNP.5	SNP.6
ind ₅	2	0	0	1	4	2
haplo 1	1	2	3	1	4	2
haplo 2	2	2	4	1	4	2

	SNP.1	SNP.2	SNP.3	SNP.4	SNP.5	SNP.6
ind ₅	2			1	4	2
haplo 1	1			1	4	2
haplo 2	2			1	4	2

	SNP.1	SNP.2	SNP.3	SNP.4	SNP.5	SNP.6
ind ₅	2			1	4	2
haplo 1	1			1	4	2
haplo 2	2			1	4	2

Haplotipo 1 Haplotipo 2
Ind 1 Ind 3
Ind 5

	SNP.1	SNP.2	SNP.3	SNP.4	SNP.5	SNP.6
ind_2		2		1	4	2
haplo 1		2		1	4	2
haplo 2		2		1	4	2

	SNP.1	SNP.2	SNP.3	SNP.4	SNP.5	SNP.6
ind_2		2		1	4	2
haplo 1		2		1	4	2
haplo 2		2		1	4	2

Haplotipo 1	Haplotipo 2
Ind 1	Ind 3
Ind 2	Ind 5
	Ind 2

	SNP.1	SNP.2	SNP.3	SNP.4	SNP.5	SNP.6
ind_4		2		1	4	3
haplo 1		2		1	4	2
haplo 2		2		1	4	2

	SNP.1	SNP.2	SNP.3	SNP.4	SNP.5	SNP.6
ind ₄		2		1	4	3
haplo 1		2		1	4	2
haplo 2		2		1	4	2

Haplotipo 1	Haplotipo 2	Indeterminados
Ind 1	Ind 3	Ind 4
Ind 2	Ind 5	
	Ind 2	

Algoritmo función clusterhap

```
> clusterhap::clusterhap
function (x, Print = FALSE)
    H_data_o <- x
    H_data <- x
    dir.create("clusterhap_reports", showWarnings = F)
    hplq.result <- NULL
    hplq.final <- NULL
    id <- H_data[, 1]
    Q <- H_data[, -1]
    hplq <- NULL
    hp <- NULL
    hp.1 <- NULL
    cq <- NULL
    W <- NULL
    cr <- NULL
    c.Q \leftarrow rowSums(Q == 0)
    y \leftarrow which(c.Q == 0)
    b \leftarrow Q[y,]
    Y <- b[!duplicated(b), ]
    for (i in 1:nrow(Q)) {
        for (j in 1:nrow(Y)) {
             cq \leftarrow rowSums(Q[i, ] == 0)
             W \leftarrow Q[i, ] - Y[i, ]
             cr <- rowSums(w == 0)
             zeros <- cq + cr
             if (zeros == ncol(Q)) {
                 hp <- cbind(hp, i)
                 hp.1 <- cbind(hp.1, j)
                 hp1 <- cbind(Q[i, ], j)
                 hpl1 <- cbind(id[i], hpl)
                 hplq <- rbind(hplq, hpl1)
    u <- H_data[-c(hp), ]
    if (nrow(u) == 0) {
```


Algoritmo función clusterhap

```
u <- u
else {
    undetermined <- cbind(u, "undetermined")
fa <- NULL
for (i in 1:nrow(Y)) {
   fa <- (cbind(fa, rowSums(hp.1 == i)))
hap.id <- paste("haplo", 1:nrow(Y))
Y <- cbind(hap.id, Y)
colnames(hplq)[colnames(hplq) == "id[i]"] <- "id.geno"
colnames(hplq)[colnames(hplq) == "j"] <- "haplo.qtl"</pre>
if (nrow(u) > 0) {
    colnames(undetermined) <- colnames(hplg)
    hplq.final <- rbind(hplq, undetermined)
else {
    hplg.final <- hplg
if (nrow(u) > 0) {
   fa <- cbind(fa, nrow(u))
   fr <- (fa/nrow(hplq.final)) * 100
    fh <- round(rbind(fa, fr), 1)
    colnames(fh) <- c(paste("haplo", 1:nrow(Y)), "undetermined")</pre>
    freq <- c("freq.abs", "freq.rel")
   fh <- data.frame(freq, fh)
else {
    fr <- (fa/nrow(hplg.final)) * 100
   fh <- round(rbind(fa, fr), 1)
    colnames(fh) <- c(paste("haplo", 1:nrow(Y)))
    freq <- c("freq.abs", "freq.rel")
   fh <- data.frame(freq, fh)
d <- duplicated(hplq.final[, 1]) | duplicated(hplq.final[,</pre>
```


Ejemplo clusterhap

```
> clusterhap::clusterhap(sim, Print = TRUE)
$h.result
                                                    haplo.qtl
   id.geno SNP.1 SNP.2 SNP.3 SNP.4 SNP.5 SNP.6
     ind.1
     ind. 2
     ind. 2
     ind. 3
     ind. 5
     ind.4
                                               3 undetermined
$haplotypes
  hap.id SNP.1 SNP.2 SNP.3 SNP.4 SNP.5 SNP.6
1 haplo 1
3 haplo 2
$duplicates
   id.geno SNP.1 SNP.2 SNP.3 SNP.4 SNP.5 SNP.6 haplo.gtl
     ind. 2
2
21
     ind. 2
$freq
      freq haplo.1 haplo.2 undetermined
1 freq.abs
               2.0
                                     1.0
2 freq.rel
              33.3
                         50
                                    16.7
$und
    ind SNP.1 SNP.2 SNP.3 SNP.4 SNP.5 SNP.6
4 ind. 4
```


Ejemplo clusterhap

Optimización

Optimización

Utilizando funciones vectorizadas

Familia apply


```
> clust2(sim, Print = TRUE)
$h.result
    ind SNP.1 SNP.2 SNP.3 SNP.4 SNP.5 SNP.6
                                                    hap. id
1 ind.1
                                                   haplo 1
2 ind. 2
                                                   haplo 1
3 ind. 3
                                                   haplo 2
4 ind. 2
                                                   haplo 2
5 ind. 5
                                                   haplo 2
6 ind. 4
                                            3 undetermined
$haplotypes
   hap.id SNP.1 SNP.2 SNP.3 SNP.4 SNP.5 SNP.6
1 haplo 1
3 haplo 2
$duplicates
    ind SNP.1 SNP.2 SNP.3 SNP.4 SNP.5 SNP.6
2 ind. 2
                                            2 haplo 1
4 ind. 2
                                            2 haplo 2
$freq
       freq haplo.1 haplo.2 undetermined
fa freq. abs
             2.0
                           3
                                      1.0
fr freq.rel
               33.3
                          50
                                     16.7
Sund
    ind SNP.1 SNP.2 SNP.3 SNP.4 SNP.5 SNP.6
                                                    hap. id
6 ind. 4
                                            3 undetermined
```

```
Algunas bases
de datos:
rice_qtl
```

> str(rice_qtl)

```
'data.frame':
               326 obs. of 38 variables:
            : Factor W/ 520 revers "El_Paso_144",...: 2 206 288 68 36 211 304 92 200 64 ...
$ idMG
$ S1_1001162: int 2 4 0 0 4 4 2 2 4 4 ...
$ 51_1001511: int 4 2 2 2 2 2 4 4 2 2 ...
$ S1_1009316: int 4 1 0 1 1
$ 51_1019523: int
$ 51_1019634: int
$ 51_1019648: int
$ 51_1020373: int
$ 51_1029542: int
$ 51 1030434: int
$ 51_1031758: int
$ 51_1049575: int
$ 51_1053530: int 1 4 4 4 4 4
$ S1_1053535: int 2 1 1 1 1
$ S1_1053703: int 1 0 1 2 2
$ 51_1059696: int 2 3 3 3
$ S1_1062835: int
$ S1 1062848: int 4 2 2 0 2 2
$ S1_1062853: int 4 1 1 0
$ 51_1062957: int
$ S1_1063050: int
$ 51_1066894: int
$ 51_1067113: int
$ 51_1067116: int
                  3 2 2 2 2
$ S1_1067668: int 2 0 4 4
$ S1_1069360: int 4 0 2 2 2
$ S1_1069362: int 4 0 1 1
$ 51_1069363: int 1 0 4 4 4 4
$ 51_1069365: int
$ S1 1069784: int 1 3 3 3
$ 51 1081413: int 1 0 2 2 2 2 1
$ 51_1089727: int 4 0 2 0 2 2
$ 51_1188838: int 4 0 2 2 2 2
$ S1_1196763: int
$ 51_1197550: int
$ S1_1199213: int 3 1 1 1 1 1
$ S1_1204373: int 4 2 2 0 2 2 4 0 2 2 ...
$ S1_1206067: int 2 1 1 0 1 1 2 2 1 1 ...
```

Algunas bases de datos: rice_qtl

Algunas bases de datos:

rice_qtl


```
> system.time(clusterhap(rice_qtl))
  user system elapsed
  22.06   0.15   22.33
> system.time(clust2(rice_qtl))
  user system elapsed
   1.64   0.12   1.78
```

Algunas bases de datos: qYAM

```
> str(datos.prueba)
                                                311 obs. of 346 variables:
classes 'tbl_df', 'tbl' and 'data.frame':
                     "5287" "8405" "8410" "842
 $ idMG
 $ YAM
                     67.7 70.5 70.1 69.3 69 ...
 $ PHR
                     59.7 64.2 64.3 61.1 61.1 ...
 $ GC
                     15.16 11.46 9.84 8.27 8.28 ...
 $ 56_26894298: num
                     2022222022...
 $ 56_26894513: num
 $ 56_26898904: num
 $ 56_26909453: num
 $ 56_26911368: num
 $ 56 26940622: num
 $ 56_26940711: num
 $ 56_26942437: num
 $ 56_26958005: num
 $ 56_26973106: num
 $ 56_26973138: num
 $ 56_26973422: num
 $ 56_27015435: num
 $ 56_27022159: num
 $ 56_27022161: num
 $ 56_27022312: num
 $ 56_27024677: num
 $ 56_27037310: num
 $ 56 27037621: num
 $ 56_27037652: num
 $ 56_27041425: num
 $ 56_27042784: num
 $ 56_27043406: num
 $ 56_27043422: num
 $ 56_27043424: num
 $ 56_27044221: num
 $ 56_27087128: num
 $ 56_27087150: num
 $ 56_27090546: num
 $ 56_27096003: num
 $ 56 27096533: num
 $ 56_27096548: num
 $ 56_27096886: num
 $ 56_27099594: num
                    3 3 3 3 3 3 3 3 3 ...
 $ 56_27120079: num 1 1 1 1 1 1 1 1 1 1 ...
 [list output truncated]
```

Algunas bases de datos: qYAM

3. Conclusiones

Conclusiones

- Dado un QTL pudimos asociarle un haplotipo a cada individuo, a través de un algoritmo de una menor cantidad de código.
- Comparamos la velocidad de cómputo del algoritmo original vs. el algoritmo nuevo, y obtuvimos una respuesta favorable hacia este último.
- Logramos el análisis de bases de datos numerosas, que el algoritmo original no podía resolver, y además acortamos los tiempos, ya que obtuvimos respuestas más rápidas.
- Por lo tanto, observamos una mejora sustancial al algoritmo original, que se traduce en una mayor capacidad de cómputo.

¡Muchas gracias!