# **ELP305 Design and Systems Lab**

# Dept of Electrical Engg - IIT Delhi

Final Report #3

Submitted by Team G on 06 Mar 2021

For the period 28 Feb-06 Mar 2021

# Design of a SMPS based power supply for charging a mobile phone

### **Authors**

|                       | Name                    | Email                      | Phone      | Responsibility                           | Entry<br>Number |
|-----------------------|-------------------------|----------------------------|------------|------------------------------------------|-----------------|
| Lead Coordinator      | Varun Desai             | varun.desai1012@gmail.com  |            | Leading the team                         | 2018EE10511     |
| Activity Coordinators | Ishita Chawla           | chawlaishita13@gmail.com   | 8375883773 | Documentation                            | 2018EE10468     |
|                       | Kashish Arora           | kashish0405@gmail.com      | 9871402591 | Documentation                            | 2018EE30549     |
|                       | Rocktim Jyoti<br>Das    | rocktimjyotidas@gmail.com  | 7086723038 | PCB Design                               |                 |
|                       | Amenreet Singh<br>Sodhi | ee1180440@iitd.ac.in       |            | PCB Design                               |                 |
|                       | Aravind Reddy           | ee1180445@iitd.ac.in       |            | Electrical Design/Simulation             |                 |
|                       | Himanshu<br>Rajput      | ee1180467@iitd.ac.in       | 9968573374 | Schematics                               | 2018EE10467     |
|                       | Achint Aggarwal         | ee1180433@iitd.ac.in       | 9582456143 | Schematics                               | 2018EE10433     |
|                       | Arshad Warsi            | warsiarshad384@gmail.com   | 9534390072 | Electrical and Mechanical Specifications | 2018MT10743     |
|                       | Jayant<br>Choudhary     | ee3180547@iitd.ac.in       | 9602437669 | Electrical and Mechanical Specifications | 2018EE30547     |
|                       | Rithvik Iruganti        | rithvik0iruganti@gmail.com | 8448556642 | Enclosure                                |                 |
|                       |                         |                            |            |                                          |                 |
|                       |                         |                            |            |                                          |                 |
|                       |                         |                            |            |                                          |                 |
|                       |                         |                            |            |                                          |                 |

### Date: 06 Mar 2021

| Doc ID                                    | v2.3                                                        |
|-------------------------------------------|-------------------------------------------------------------|
| Team Name:                                | G                                                           |
| Approved for submission:                  | Varun Desai (LC) / 6 March 2021 / 13:30 hours               |
| Contact for any correction/clarification: | Ishita Chawla / chawlaishita13@gmail.com / 8375883773       |
| Submitted to:                             | Prof. Subrat Kar, Instructor, ELP305 Design and Systems Lab |
| Date of submission:                       | 06 March 2021, 1800 hours                                   |

### **About this Document**

### **Text Statistics**

| # sentences | # words | # complex words | % of complex words | Avg # words per sentences | Avg # of syllables per word |
|-------------|---------|-----------------|--------------------|---------------------------|-----------------------------|
| 861         | 2995    | 459             | 15.33 %            | 3.48                      | 1.65                        |

### **Readability Indices**

We generate these indices from the online tool .[18]

### **Test Result**

Your page has an average grade level of about 5. It should be easily understood by 10 to 11 year olds.

| Description<br>Index                     | Value | Typical range and explanation                                                                                                                                                                                                                                                   |
|------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flesch<br>Kincaid<br>Reading<br>Ease     | 63.9  | Based on a 0-100 scale. A high score means the text is easier to read. Low scores suggest the text is complicated to understand. 206.835 - 1.015 x (words/sentences) - 84.6 x (syllables/words) A value between 60 and 80 should be easy for a 12 to 15 year old to understand. |
| Flesch<br>Kincaid<br>Grade level         | 5.2   | Grade Level indicators These equate the readability of the text to the US schools grade level system. Flesch Kincaid Grade Level _0.39 x (words/sentences) + 11.8 x (syllables/words) - 15.59                                                                                   |
| Gunning Fog<br>Score                     | 5.4   | 0.4 x ( (words/sentences) + 100 x (complexWords/words) )                                                                                                                                                                                                                        |
| SMOG Index                               | 4.6   | 1.0430 x sqrt( 30 x complexWords/sentences ) + 3.1291                                                                                                                                                                                                                           |
| Coleman Liau<br>Index*                   | 10.2  | 5.89 x (characters/words) - 0.3 x (sentences/words) - 15.8                                                                                                                                                                                                                      |
| Automated<br>Readability<br>Index (ARI)* | 1.2   | 4.71 x (characters/words) + 0.5 x (words/sentences) - 21.43                                                                                                                                                                                                                     |

# Requirements

The requirements of the charger are as follows:

- ullet The input of the charger is a standard 220V, 50Hz AC Mains supply.
- It delivers a constant 5V DC Output (up to 1A current).

- The output voltage should settle to 5% of its final value in less than 5ms.
- Stable output for a range of inputs ( 100V 260V )

# **Specifications**

#### • Electrical Specifications

The following electrical components have been used for the circuit design

| Device/ Component           | Rating/ Value   | Quantity |
|-----------------------------|-----------------|----------|
| Silicon Diode               | 1 <i>N</i> 4148 | 4        |
| High Voltage Buck Converter | LT8631          | 1        |
| Capacitor                   | 4.7 pF          | 1        |
| Capacitor                   | 0.1 $\mu F$     | 1        |
| Capacitor                   | 5nF             | 1        |
| Capacitor                   | 1 $\mu F$       | 1        |
| Capacitor                   | 2.2 $\mu F$     | 2        |
| Capacitor                   | 47 $\mu F$      | 1        |
| Capacitor                   | 100 $\mu F$     | 2        |
| Capacitor                   | 1000 $\mu F$    | 1        |
| Resistor                    | 25.5 $K\Omega$  | 1        |
| Resistor                    | 1 $K\Omega$     | 1        |
| Resistor                    | 191 $K\Omega$   | 1        |
| Inductor                    | 22 $\mu H$      | 1        |

### • Mechanical Specifications

The following mechanical components will be used for the charger

| Component                                                    | Description (if applicable)                                                                                                                                    | Quantity                      |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| USB 3.1 Gen 1 A Male to<br>USB 3.1 Type C Male<br>Cable      | IEEE 1394 Cables USB 3.1 Gen 1 A Male to USB 3.1 Type C Male, 1M length, 5Gibps, Black 1, Datasheet                                                            | 1                             |
| USB Connector USB 3.1<br>GEN2 STD A                          | USB-A (USB TYPE-A) USB 3.2 Gen 1 (USB 3.1 Gen 1, Superspeed (USB 3.0)) Receptacle Connector 9 Position Board Edge, Cutout; Through Hole, Right Angle Datasheet | 1                             |
| PCB                                                          | LxBxH= (53.340 mm x 29.210 mm x 1.6 mm). Number of layers=6                                                                                                    | 1                             |
| Enclosure                                                    | Material- ABS(Acrylonitrile butadiene Styrene) Plastic; Polycarbonate, Weight - 20-25 grams, Input Voltage- 100-200 V, Current 3-5 Amp; 2-5 mm Thickness etc.  | 1                             |
| Relimate connectors/Port<br>for input (male female<br>plugs) | 2 pin polarized wired Connecter : Relimate Connector                                                                                                           | (2 pin -<br>male +<br>female) |
| Power plug pins                                              | Material-Brass, Coating-Nickel, Chrome or Tin. Length- Upto 5 Inch, Material Grade-IS 319,BS 249, Finishing- Natural Brass                                     | 2                             |

# **Previous (Failed/ Discarded) Attempts**

This subsection aims to list down our attempts at making the mobile phone charger circuit. We started from a very basic circuit [4] and went on improving/changing it with the help of online sources [2]. Our attempts are as follows:

#### · Design based on linear power supply

This design ([4]) was made by (almost) all of our team members as their first design of the charger circuit. The design included a transformer to step down the voltage from 220V, a rectifier for conversion to DC and a regulator for constant 5V output. The typical circuit used by most of our team members is as follows:



This was a simple circuit, and the transformer in such a circuit (working at 50Hz) would take up a lot of space and would be bulky. Due to these disadvantages, we discarded this design completely and designed the circuit from scratch using an SMPS (switched mode power supply)([6][9]).

#### SMPS Design 1

We now made a Switch Mode Power Supply (SMPS) based design. The following circuit uses LTC3639[1][10]. LTC3639 is a 150V, 100mA, synchronous step-down converter(Buck Converter) + a regulator to step down and regulate the output, respectively. This approach did not work because LTC3639 couldn't handle a load current >100mA.



The AC to DC conversion is achieved using a bridge rectifier. The buck converter is part of LTC3639 and can handle no more than 150V of the input voltage. Hence we use 2 capacitors ( $100\mu F$  each) using which some voltage was dropped across the first capacitor and then this voltage (<150V) was fed into the LTC3639 where the buck converter stepped it down further.

#### SMPS Design 2

The following circuit was obtained from ([2]). We simulated it in LTSpice but we were not able to get it to work well because we could not find an appropriate transistor (rating 800V, 3A) which was originally mentioned in the source([2]).



This circuit uses a flyback 5V,2A single switching power supply i.e. it uses a transformer to store energy in the primary winding and propagate this energy to the secondary winding. There is no isolation transformer in this circuit.

The input voltage (220V) is rectified using the bridge rectifier (constructed using the 4, 1N4007 diodes). The capacitor C1 smoothens out this rectified voltage to output 311V(pk-pk). The voltage step-down is achieved using the primary (L1) to secondary (L3) transformer assembly in the circuit. Voltage regulation is carried out on the auxiliary winding (L2) and this regulates the output voltage.

# Flow diagram and Final Schematic

The following flow and schematic were finalised.





Schematic

#### LT8631 - 100V, 1A Synchronous µPower Step-Down Regulator High Voltage Buck Converter Input: 6.5V to 100V Output: 5V @ 1A, Fsw=400KHz C6 C5 Vin INTVcc 2.2µ 2.2µ BST C1 **C7** U1 .1μ 100µ Mode SW 1N4148 SINE(0 311 50) Rser=0.0001 **C8** C10 ≈ 22µ PG IND 100µ 1μ C9 1N4148 1N4148 1000µ .005µ R1 C2 1Mea 4.7p FB R2 GND 191K Note:

A smaller SS capacitor is being used to reduce simulation time. See datashet for typical values.

If the simulation model is not found please update with the "Sync Release" command from the "Tools" menu.

It remains the customer's responsibility to verify proper and reliable operation in the actual application.

Component substitution and printed circuit board layout may significantly affect circuit performance or reliability.

Contact your local sales representative for assistance. This circuit is distributed to customers only for use with LTC parts.

Copyright © 2015 Linear Technology Inc. All rights reserved.

The input (220V, 50Hz) is taken from mains. Voltage division is done using two capacitors, and not via resistors to minimize  $I^2R$  losses. This is then rectified using a bridge rectifier, and a capacitor is placed at the output to generate a stable DC voltage. This DC voltage, which is of the order of 100V, is the input into the high voltage buck converter IC. The values of the peripheral components were chosen as given in the datasheet of the IC, to generate a stable 5V output. Another capacitor, C3 is placed across the output to smoothen out any residual perturbations in the output voltage.

#### PCB design

We used a 6 layer pcb design. The dimensions of the pcb are: thickness = 1.6mm, length = 54.00 mm, width = 30.023 mm. Keeping the temperature tolerance into account, the length of the wire used in designing the PCB is calculated using PCV trace width tool ([17]). For instance, a wire of thickness 0.7mm is used from IC to output.

An LED was connected to the output of the circuit along with a resistor to indicate that th ecircuit was working correctly.



Circuit Schematic in KiCad



PCB layout



3D model top view



3D model isometric

| Current                                                      | 1.5      |                                      |                                   | Am   | ps               |
|--------------------------------------------------------------|----------|--------------------------------------|-----------------------------------|------|------------------|
| Thickness                                                    | 2        |                                      |                                   | oz   | /ft^2 <b>~</b>   |
| Optional Inp                                                 | uts:     |                                      |                                   |      |                  |
| Temperature                                                  | Rise     | 10                                   |                                   |      | Deg C            |
| Ambient Tem                                                  | perature | 25                                   |                                   |      | Deg C            |
| Trace Length                                                 |          | 1                                    |                                   |      | inch 🗸           |
|                                                              |          |                                      |                                   |      |                  |
| Required Trace Width                                         |          | 0.684                                |                                   |      | mm v             |
| Resistance                                                   |          | 0.00                                 | 938                               |      | Ohms             |
| Resistance<br>Voltage Drop                                   |          | 0.00                                 |                                   |      | Ohms             |
|                                                              |          |                                      | 41                                |      |                  |
| Voltage Drop                                                 |          | 0.01                                 | 41<br>211<br>s in <i>l</i>        | Air: | Volts            |
| Voltage Drop Power Loss Results for E                        |          | 0.01<br>0.02<br><b>Layer</b>         | 41<br>211<br><b>s in</b> <i>1</i> | Air: | Volts            |
| Voltage Drop<br>Power Loss<br>Results for E<br>Required Trac |          | 0.01<br>0.02<br><b>Layer</b><br>0.26 | 41<br>211<br>s in 7               | Air: | Volts<br>  Watts |

Calculation of Track length for the PCB



DRC results depicting correctness of PCB



### **Simulation Results**



Simulation of regulated DC output(5V).

The time required to attain steady voltage(on 220V,50Hz input) is 1.5 ms.



The settling time of a dynamical system such as an amplifier or other output device is the time elapsed from the application of an ideal instantaneous step input to the time at which the output has entered and remained within a specified error band

Input voltage (RMS) was varied from 100V (like in Japan)  $\rightarrow$  260V in steps of 40V. Decreasing the input voltage causes the settling time to increase, that is, it takes longer to settle to 5V. But, the difference is very minute and is of not much practical significance.



Output current of IC LT8631 at 1.5A output loading.

When a current of more than 1.5A is drawn from the output, the voltage falls steeply.

## **Enclosure Design**

The details and salient features of the enclosure design are as follows:

- Consists of 2 parts, which press fit into each other.
- In Part 1, the pins are placed keeping in mind the standard dimensions of a 2 pin europlug [13].
- Tolerences in the range of 0.0059-0.00059mm are introduced for a satisfactory fitting of part 1 into part 2 of the enclosure.
- · Comes with grips on the side easy removal and handling of the charger as well as better ergonomics for the person holding it.
- $\bullet\,$  For inserting the PCB, our enclosure part 2 has rails on the side, which hold the PCB
- We have a slot (hole) for inserting a USB into the PCB and a hole which makes the 3mm led visible and helps the person to see if the phone is charging
- The overall dimensions of the charger is length = 60mm, width = 34 mm, height = 29.6 mm [17].

### Part 1



Part 2



Isometric view of 3D charger



# **Back Side view of 3D charger**



# Future work/ improvements

We propose and aim to work on the following to improve the design, output and other specifications of the charger by the end of the assignment.

- Increasing the output current of the circuit for faster charging.
- Include safety precautions within our circuit. This can be done by preventing short circuits by the use of fuses so that the charger isn't completely damaged and is usable (after replacing the fuse).
- Increase the rated output from 5W to a higher value (eg 10-15 W).

# **Bill of Materials[8]**

### • Bill of Electrical Materials

| TYPE                                 | RATING      | MANUFACTURER                    | DATASHEET<br>LINK | VENDOR<br>LINK | MIN<br>QTY | PRICE PER<br>UNIT                                            | QTY      | SUBTOTAL     |
|--------------------------------------|-------------|---------------------------------|-------------------|----------------|------------|--------------------------------------------------------------|----------|--------------|
| Silicon<br>Diodes                    | 1N4148      | ON Semiconductor<br>1N4148      | Link              | Link           | 4          | ₹7.30 for 1unit,<br>₹0.511 per unit<br>for 50,000<br>units   | 2,00,000 | ₹1,02,500    |
| High<br>Voltage<br>Buck<br>Converter | LT8631      | Analog Devices<br>LT8631IFE#PBF | Link              | Link           | 1          | ₹653.35 for<br>1unit, ₹365.00<br>per unit for<br>1,000 units | 50,000   | ₹1,82,50,000 |
| Capacitor 2                          | 4.7pF       | AVX<br>0603ZA4R7CAT2A           | Link              | Link           | 1          | ₹19.71 for<br>1unit, ₹2.56<br>per unit for<br>24,000 units   | 50,000   | ₹1,28,000    |
| Capacitor 4                          | 5nF         | AVX<br>0402ZC501KAT2A           | Link              | Link           | 1          | ₹23.36 for<br>1unit, ₹3.36<br>per unit for<br>20,000 units   | 50,000   | ₹1,68,000    |
| Capacitor 1                          | $0.1 \mu F$ | Nichicon<br>UUP1H0R1MCL1GS      | Link              | Link           | 1          | ₹43.80 for<br>1unit, ₹12.19<br>per unit for<br>2,000 units   | 50,000   | ₹6,09,500    |
| Capacitor<br>10                      | $1 \mu F$   | Panasonic EEE-<br>1HA010NR      | Link              | Link           | 1          | ₹23.36 for<br>1unit, ₹5.55<br>per unit for<br>2,000 units    | 50,000   | ₹2,77,500    |
| Capacitor<br>5,6                     | $2.2 \mu F$ | Panasonic ECE-<br>A1HKA2R2B     | Link              | Link           | 2          | ₹15.33 for<br>1unit, ₹2.85<br>per unit for<br>2,000 units    | 1,00,000 | ₹2,85,000    |
| Capacitor 3                          | $47 \mu F$  | Panasonic ECA-<br>1EHG470C      | Link              | Link           | 1          | ₹16.06 for<br>1unit, ₹2.56<br>per unit for<br>50,000unit     | 50,000   | ₹1,28,000    |
| Capacitor 7                          | $100 \mu F$ | Panasonic EEH-<br>ZS1V331P      | Link              | Link           | 2          | ₹130.67 for<br>1unit, ₹52.12<br>per unit for<br>2500 units   | 50,000   | ₹26,06,000   |

| TYPE        | RATING        | MANUFACTURER                 | DATASHEET<br>LINK | VENDOR<br>LINK | MIN<br>QTY | PRICE PER<br>UNIT                                            | QTY    | SUBTOTAL   |
|-------------|---------------|------------------------------|-------------------|----------------|------------|--------------------------------------------------------------|--------|------------|
| Capacitor 8 | $100 \mu F$   | Panasonic ECA-<br>1CM101     | Link              | Link           | 1          | ₹11.68 for<br>1unit, ₹2.12<br>per unit for<br>50,000unit     | 50,000 | ₹1,06,000  |
| Capacitor 9 | $1000 \mu F$  | Panasonic EEU-<br>FP1E102B   | Link              | Link           | 1          | ₹78.84 for 1<br>unit, ₹23.00<br>per unit for<br>25,000 units | 50,000 | ₹11,50,000 |
| Resistor 3  | $25.5k\Omega$ | Panasonic ERJ-<br>P06F2552V  | Link              | Link           | 1          | ₹14.60 for<br>1unit, ₹1.68<br>per unit for<br>5,000 units    | 50,000 | ₹84,000    |
| Resistor 1  | $100k\Omega$  | Panasonic ERA-<br>3VEB1003V  | Link              | Link           | 1          | ₹38.69 for<br>1unit, ₹8.03<br>per unit for<br>5,000 units    | 50,000 | ₹4,01,500  |
| Resistor 2  | $191k\Omega$  | Panasonic ERJ-<br>U12D1913U  | Link              | Link           | 1          | ₹48.91 for<br>1unit, ₹8.54<br>per unit for<br>5,000 units    | 50,000 | ₹4,27,000  |
| Inductor    | $22 \mu H$    | Coilcraft RFC0807B-<br>223KE | Link              | Link           | 1          | ₹59.13 for<br>1unit, ₹27.52<br>per unit for<br>2,000 units   | 50,000 | ₹13,76,000 |

Total Cost = ₹26,099,500

Cost Per Charger = ₹521.99

### • Bill of Mechanical Materials

| NAME                                                       | DESCRIPTION                                                                              | MANUFACTURER (if applicable) | DATASHEET<br>LINK | VENDOR<br>LINK | MIN<br>QTY | PRICE<br>PER UNIT                                               | QUANTITY | SUB-<br>TOTAL |
|------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------|-------------------|----------------|------------|-----------------------------------------------------------------|----------|---------------|
| USB 3.1 Gen 1<br>A Male to USB<br>3.1 Type C<br>Male Cable | IEEE 1394 Cables USB 3.1 Gen 1 A Male to USB 3.1 Type C Male, 1M length, 5Gibps, Black 1 | Qualtek                      | Link              | Link           | 1          | ₹911.04<br>for 1 unit,<br>₹550.42<br>per unit for<br>1000 units | 50000    | ₹27521000     |

| NAME                                                            | DESCRIPTION                                                                                                                                                    | MANUFACTURER (if applicable)                       | DATASHEET<br>LINK | VENDOR<br>LINK | MIN<br>QTY | PRICE<br>PER UNIT                                                | QUANTITY | SUB-<br>TOTAL |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------|----------------|------------|------------------------------------------------------------------|----------|---------------|
| USB Connector<br>USB 3.1 GEN2<br>STD A                          | USB-A (USB TYPE-A) USB 3.2 Gen 1 (USB 3.1 Gen 1, Superspeed (USB 3.0)) Receptacle Connector 9 Position Board Edge, Cutout; Through Hole, Right Angle           | Molex                                              | Link              | Link           | 1          | ₹113.12<br>for 1 unit,<br>₹60.77 per<br>unit for<br>50000units   | 50000    | ₹3038844      |
| PCB Board                                                       | LxBxH= (53.340<br>mm x 29.210<br>mm x 1.6 mm)<br>Number of<br>layers=6                                                                                         | PCB Cart                                           |                   | Link           | 1          | ₹31.19 per<br>unit for<br>50000<br>units                         | 50000    | ₹15,59,500    |
| Power plug<br>pins                                              | Material-Brass, Coating-Nickel, Chrome or Tin. Length- Upto 5 Inch, Material Grade-IS 319,BS 249, Finishing- Natural Brass                                     | Prime industrial components                        |                   | Link           | 1          | ₹1 per unit<br>for 10000<br>units                                | 50000    | ₹50000        |
| Enclosure<br>Manufacturing                                      | Material- ABS(Acrylonitrile butadiene Styrene) Plastic; Polycarbonate, Weight - 20-25 grams, Input Voltage- 100- 200 V, Current 3-5 Amp; 2-5 mm Thickness etc. | Sushil Engineering<br>Works; Aditya<br>Enterprises |                   | Link           | 1          | ₹80 per<br>unit for<br>3000 units                                | 50000    | ₹4000000      |
| Relimate<br>connectors/Port<br>for input (male<br>female plugs) | 2pin Polarized wired Connecter : Relimate Connector (2 pin - male + female) Specification Relimate Wired Connector 2 pins Pitch: 2.54mm                        |                                                    |                   | Link           | 1          | ₹4.24 per<br>unit ₹3.90<br>per unit for<br>50 units<br>and above | 50000    | ₹195,000      |

Total Cost = ₹3,63,64,344

### References

- 1. LTspice® Demo Circuits | Design Center | Analog Devices. https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator/lt-spice-demo-circuits.html. Accessed 27 Feb. 2021.
- "Alimentation à découpage Flyback 5V sans régulateur." Astuces Pratiques, 9 June 2011, https://www.astucespratiques.fr/electronique/alimentation-a-decoupage-flyback-5v-sans-regulateur.
- 3. An Intro to KiCad Part 8: Generate Gerbers and Order Boards | DigiKey. www.youtube.com, https://www.youtube.com/watch?v=ENmDnoKs2hM. Accessed 27 Feb. 2021.
- 4. Cell Phone Charger Circuit Diagram. https://circuitdigest.com/electronic-circuits/cell-phone-charger-circuit-diagram#:~:text=This circuit mainly consists a,Filtration (4) Voltage Regulation. Accessed 27 Feb. 2021.
- 5. Connector USB. https://kicad.github.io/footprints/Connector USB. Accessed 27 Feb. 2021.
- 6. How Does a Mobile Charger Work? SMPS with Opto-Coupler. www.youtube.com, https://www.youtube.com/watch?v=2N\_T7VFymFg. Accessed 27 Feb. 2021.
- 7. Opening a Power Adapter. www.youtube.com, https://www.youtube.com/watch?v=HUbEc2wXSy4. Accessed 27 Feb. 2021.
- 8. PCB Cost Calculator | Online PCB Manufacturing Quote. https://www.pcbcart.com/quote. Accessed 27 Feb. 2021.
- "Switch Mode Power Supply (SMPS) Design, Buck, Boost." Electronics Hub, 23 May 2017, https://www.electronicshub.org/switch-mode-power-supply-smps/.
- LTC3639 Datasheet and Product Info | Analog Devices https://www.analog.com/media/en/technical-documentation/data-sheets/3639fd.pdf
- LTC8631 Datasheet and Product Info | Analog Devices https://www.mouser.in/datasheet/2/609/8631fb-1271396.pdf
- 12. Best Practices for Press-Fit Assembly. https://www.assemblymag.com/articles/93984-best-practices-for-press-fit-assembly?v=preview. Accessed 6 Mar. 2021.
- 13. "Europlug." Wikipedia, 28 Jan. 2021. Wikipedia, https://en.wikipedia.org/w/index.php?title=Europlug&oldid=1003414675.
- 14. FreeCAD 0.19 Basic Part Design Tutorial (English). www.youtube.com, https://www.youtube.com/watch?v=c1K-jBWytSQ. Accessed 6 Mar. 2021.
- 15. Front Page | USB-IF. https://www.usb.org/. Accessed 6 Mar. 2021.
- 16. Tutorials FreeCAD Documentation. https://wiki.freecadweb.org/Tutorials. Accessed 6 Mar. 2021.
- 17. PCB Trace Width Calculator for Manufacturing Printed Circuit Boards. https://www.4pcb.com/metric-converter.html. Accessed 6 Mar. 2021.
- 18. Readable | Free Readability Test Tool. https://www.webfx.com/tools/read-able/. Accessed 6 Mar. 2021.