$^{15}\!/_{18}$

J2 Activity and Decay

A 'mole' of nuclei contains 6.02×10^{23} nuclei. The mass of one mole of nuclei (the 'molar mass') is approximately equal to $0.001~kg\times the$ mass number of the nucleus. Use this approximation wherever a question does not give the molar mass explicitly.

Complete the questions in the tables:

	Half life	Decay constant /s ⁻¹	Half life	Decay constant /s ⁻¹	
J2.1	53 s	(a)	12 years	(b)	
J2.2	(a)	3.2×10^{-10}	(b)	1.2×10^{-4}	

	Decay constant /s ⁻¹	Activ- ity /Bq	Number of nuclei	Mass of sample /kg	Molar mass /kg
J2.3	0 (isotope stable)	(a)	(b)	2.4×10^{-4}	0.012
J2.4	0.0138	230	(a)	(b)	0.085
J2.5	3.42×10^{-11}	5600	(a)	(b)	0.239
J2.6	1.83×10^{-9}	(a)	(b)	3.0×10^{-5}	0.003

- J2.7 a) How many nuclei are there in 5.0 mg of ¹⁴C?
 - b) What is the activity of the sample, if the half life is 5700 years?
- J2.8 a) 238 U has a half life of 4.47×10^9 years. How many 238 U nuclei are needed for an activity of 5000 Bq?
 - b) What is the mass of the ²³⁸U sample?
- J2.9 Long half lives are measured using the principle of activity. If 3.0 mg of 239 Pu has an activity of 6.9×10^6 Bq, calculate the half life of 239 Pu.
- J2.10 A 'radioactive battery' for a long range space probe uses a radioisotope with a decay constant of $4.4 \times 10^{-12} \ s^{-1}$, and a molar mass of 0.236 kg. Each time one nucleus decays, $2.5 \times 10^{-12} \ J$ of electrical energy is output by the generator. Calculate the mass of the radioactive sample if the spacecraft requires 200 W of electricity.