Natural Language Processing

Lecture 11

Dirk Hovy

dirk.hovy@unibocconi.it

Examples

CLUSTERING

Latent Dimensions

DOCUMENT DATA MATRIX "TOPICS" CLUSTERS VIEW

Goals for Today

- Learn about matrix factorization and its use for semantic similarity and visualization
- Learn about k-means and agglomerative clustering
- Learn about evaluation criteria

Matrix Factorization

- "principal component analysis": discover the dimensions that matter
- idea: matrix is made up of few hidden dimensions
- Dimensions correspond to documents, terms, and latent concepts

reduce principal components/concepts to smaller number

reconstruct original matrix in new concept space:
 Latent Semantic Analysis

1	2	3	4
4	5	6	7
1	4	6	7
2	5	7	8
1	4	7	9

0,9	2,	1	3,2	3,8
			6	
1,1	3	8) ,9	7,2
2,2	4,	7	6,9	8,2
0,8	4,	3	7,1	8,8

Non-negative Matrix Factorization

- Use only positive values
- Find approximation of two components

Comparison

	SVD	NMF
Negative values (embeddings) as input?	yes	no
#components	3: <i>U, S, V</i>	2: W, H
document view?	yes: U	yes: W
term view?	yes: V	yes: H
strength ranking?	yes: S	no
exact?	yes	no
"topic" quality	mixed	better
sparsity	low	medium

Yes, but: What is it Good for?

- Find top words for each latent dimension (≈ "topics")
- Find word similarity in latent space (alternative: Word2Vec)
- Find document similarity in latent space (alternative: Doc2Vec)
- Reduce dimensionality for visualization

Latent Word Dimensions

NMF(10) FOR MOBY DICK

ahab, captain, cried, captain ahab, cried ahab chapter, folio, octavo, ii, iii like, ship, sea, time, way man, old, old man, look, young man oh, life, starbuck, sweet, god said, stubb, queequeg, don, starbuck sir, aye, let, shall, think thou, thee, thy, st, god whale, sperm, sperm whale, white, white whale ye, look, say, ye ye, men

Dimensionality Reduction for Visualizations

Dimensions as RGB

Hovy et al., 2019

Dimensions as RGB

Dimensions as Position

t-SNE

- Map/preserve neighborhood structure of high-dimensional space in lower-dimensional space
- Minimize difference between probability distributions over neighbors in both dimensions

+ Nicer spatial images

Stochastic

Many parameters

Clustering

Making Sense of Clusters

NEUTRAL perspicacious

lacerate kissed

induce platypus

recognize

mortify

blue

pie

k-Means Clustering

ASSIGN POINTS TO CENTROIDS

RECOMPUTE CENTROIDS

Agglomerative Clustering

Building Up

ADJACENCY

MATRIX

Dialect Clusters

Evaluation Metrics

Homogeneity

Completeness

cluster has only 1 gold label gold label has only 1 cluster

Good:

Comparison

	<i>k</i> -means	Agg
scalable	yes	no (up to ~20k)
repeatable result	no	yes
include external info	no	yes
Good on dense clusters?	no	yes

Wrapping Up

When to Use What

	Discrete Features	Embeddings
Latent topics	NMF	Not applicable
RGB translation	NMF	SVD + scaling
Plotting	SVD	t-SNE
Clustering	Reduce dimensions	Use as-is

Take-Home Points

- Matrix factorization assumes latent concept dimensions
 - Can be used for semantic similarity (LSA)
 - Reduced components can be visualized in graphs or as RGB colors
- Clusters can group input in new ways
- Trade-off between speed and interpretability

