Customer churn analysis

How decrease the customer churn rate

By: **Johny Vallejo** - Data Scientist, Mi Águila

Agenda

- Introduction
- EDA
- Modelling
- Predict
- Recomendations

Introduction

Company

Telecommunication company EagleSouth, a US-based Telecom.

EagleSouth has records since 72 months ago of them users.

Context

The company is concerned about customer retention. We've a database:

- 6,143 **users**
- 19 **variables**:
 - o 3 numeric
 - 16 categorical

Problem statement

Design a strategy to both understand the problem and implement new, cost-effective solutions.

EDA

Exploratory Data Analysis

1	gender	6143	non-null	object
2	SeniorCitizen	6143	non-null	int64
3	Partner	6143	non-null	object
4	Dependents	6143	non-null	object
5	tenure	6143	non-null	int64
6	PhoneService	6143	non-null	object
7	MultipleLines	6143	non-null	object
8	InternetService	6143	non-null	object
9	OnlineSecurity	6143	non-null	object
10	OnlineBackup	6143	non-null	object
11	DeviceProtection	6143	non-null	object
12	TechSupport	6143	non-null	object
13	StreamingTV	6143	non-null	object
14	StreamingMovies	6143	non-null	object
15	Contract	6143	non-null	object
16	PaperlessBilling	6143	non-null	object
17	PaymentMethod	6143	non-null	object
18	MonthlyCharges	6143	non-null	float64
19	TotalCharges	6143	non-null	object
20	Churn	6143	non-null	object

Drop records of new users

customerID	gender	SeniorCitizen	Partner	Dependents	tenure
A00307	Female	0	Yes	Yes	0
A00545	Female	0	Yes	Yes	0
A00936	Male	0	No	Yes	0
A02162	Male	0	Yes	Yes	0
A03137	Female	0	Yes	Yes	0
A03367	Male	0	Yes	Yes	0
A03555	Male	0	Yes	Yes	0
A04557	Female	0	Yes	Yes	0
A04862	Male	0	No	Yes	0
A04971	Female	0	Yes	Yes	0
A05316	Male	0	Yes	Yes	Ø

There're **11 new users** that was dropped from the dataset for avoid skewed the model.

Churn percent in the dataset

Our scope has 74% instance of **no churn (0).** Maybe the ML-models will be skewed for insufficient instance of **churn (1).**

Categorical variables (1/3)

Categorical variables (2/3)

OnlineSecurity

Numeric variables

Numeric variables

Users with **lower tenure** and **middle-higher monthly charges** tends **to churn**.

Users with **higher tenure** having more total charges over time. Thus, the relation is linear.

Modelling

ML-models

Supervised learning

We'll use 5 models for the classification problem:

- Logistic regression
- Gradient Boosting
- Random Forest
- SVM
- K-Neighbors

Accuracy score

Logistic Reg. : 0.785

Grad. Boosting: 0.803

Rand. Forest: 0.796

SVM : 0.782

KNeig : 0.762

Grad. Boosting precision recall f1-score support 0.84 0.91 0.87 4535 0.51 0.66 0.57 1597 0.80 6132 accuracy 0.75 0.72 0.71 6132 macro avg weighted avg 0.79 0.79 6132 0.80

Gradient Boosting shown the best prediction, we'll choose it.

Variables relevance

How we seen in the EDA, the **more important features** for predict the customer churn are:

- Contract: Month-to-Month
- Tenure
- Monthly charges
- Internet Service: Fiber optic
- Online Security: No
- Payment method: **Elec. check**
- Tech support: No

Predict

New database with possibility users to churn service

There are **259 users** with possibility to churn the services.

Online security

If we lose those clients, we'll lose more than USD 19,000 next month.

Next steps

Improve the model performance

- Tuning the hyperparameters of ML models.
- Trying with more advanced models as Neural Networks
- Analyzing the bias and variance in the model performance.