Wanchang Lin

2020-12-21

Contents

Data preparation												2
Data clustering												3
Gene network												3
Enrichment analysis												9
Exploratory analysis												11

Data preparation

The human ionomics data set has been pre-processed. We need to get the symbolic data:

```
dat <- read.table("./test-data/human.csv", header = T, sep = ",")
dat <- dat[!duplicated(dat[, 1]), ]
colnames(dat)[1] <- "Line"
dat_symb <- symbol_data(x = dat, thres_symb = 3)</pre>
```

Some of ionomics data and symbolic data are like:

Table 1: lonomics data

Line	As	В	Ca	Cd	Со	Cu	Fe	K	Li	Mg	Mn	Мо	Na	Ni	Р	S	Se	Zn
AARS	0.66	1.38	1.79	-0.78	0.89	-1.45	0.58	0.50	0.78	0.01	-0.92	0.71	1.72	0.47	0.60	0.26	0.56	-0.24
AARSL	0.74	-0.27	0.52	-2.86	0.38	1.13	-0.45	0.65	2.63	-0.20	1.42	-3.81	-0.58	0.65	-2.61	1.74	0.07	-0.57
ABCB7	0.38	0.84	1.34	1.09	1.29	-0.82	-3.06	0.73	1.69	1.04	-0.67	-0.12	0.87	0.04	0.60	1.42	-0.49	1.41
ABCC10	1.03	0.32	1.20	1.19	1.79	-0.27	-0.38	-1.64	1.07	-1.67	1.79	1.64	0.89	1.22	-2.29	1.50	1.03	-1.92
ABCC1	-0.49	1.24	2.50	-2.50	2.06	-1.60	-0.95	-0.28	1.32	-1.64	0.06	2.26	1.53	-0.11	-2.81	0.62	3.50	-2.19
ABCC12	-0.06	-2.16	0.59	-3.02	-0.20	2.18	0.55	0.99	-0.19	1.72	1.19	0.14	-1.27	-2.84	2.18	-0.47	-2.60	0.60
ABCC13	1.32	1.87	1.12	-0.46	0.76	-0.97	-0.16	1.13	-1.02	0.87	0.13	0.23	1.85	1.65	-0.62	0.30	1.59	-2.41
ABCC11	-0.83	1.90	-0.97	1.74	-0.88	-1.86	-0.91	-3.49	-1.84	-2.29	-1.74	0.50	0.56	-0.17	-2.04	2.49	3.38	-2.10
ABCD1	0.60	1.10	0.30	-0.75	2.00	2.59	0.17	-1.03	0.15	-1.83	2.49	0.26	1.04	-0.41	-2.73	2.57	0.62	-3.25
ABCD2	-1.88	-1.89	-2.42	-1.58	-1.75	0.64	-2.22	1.75	-1.52	1.11	-2.08	-1.90	-2.26	-0.29	2.05	-5.12	-0.37	1.95

Table 2: Symbolic data

Line	As	В	Ca	Cd	Со	Cu	Fe	K	Li	Mg	Mn	Мо	Na	Ni	Р	S	Se	Zn
AARS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AARSL	0	0	0	0	0	0	0	0	0	0	0	-1	0	0	0	0	0	0
ABCB7	0	0	0	0	0	0	-1	0	0	0	0	0	0	0	0	0	0	0
ABCC10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ABCC1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
ABCC12	0	0	0	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ABCC13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ABCC11	0	0	0	0	0	0	0	-1	0	0	0	0	0	0	0	0	1	0
ABCD1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1
ABCD2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	0	0

These data are filtered, i.e. remove all zero genes in symbolic data set:

```
idx <- rowSums(abs(dat_symb[, -1])) > 0
dat <- dat[idx, ]
dat_symb <- dat_symb[idx, ]
dim(dat)
#> [1] 434 19
```

Data clustering

The hierarchical cluster analysis is the key part of gene network and gene enrichment analysis. The methodology is as follow:

- Compute the distance of symbolic data
- Hierarchical cluster analysis on the distance
- Identify clusters/groups with a threshold of minimal number of cluster size

One example is:

```
min <- 8
clust <- gene_clus(dat_symb[, -1], min_clust_size = min)</pre>
names(clust)
#> [1] "clus"
               "idx"
                        "tab" "tab_sub"
clust$tab_sub
#> cluster nGenes
#> 1
      35
               16
#> 2
        14
              11
#> 3
       4
               10
#> 4
               10
         24
#> 5
        79
               10
```

Gene network

The gene network uses both the ionomics and symbolic data. The similarity measures on ionomics data are used to construct the network. Before creating a network, these analyses are further filtered by:

- clustering of symbolic data;
- and the similarity threshold located between 0 and 1;

The methods implemented are: pearson, spearman, kendall, cosine, mahal_cosine or hybrid_mahal_cosine.

We use the Pearson correlation as similarity measure for network analysis:

```
min_clust_size = min,
thres_corr = 0.6,
method_corr = "pearson")
```

The network with nodes coloured by the symbolic data clustering is:

net\$plot.pnet1

Figure 1: Network with Pearson correlation: symbolic clustering

The same network, but nodes are coloured by the network community detection:

```
net$plot.pnet2
```

The network analysis also returns a network impact and betweenness plot:

```
\verb"net$plot.impact_betweenness"
```


Figure 2: Network with Pearson correlation: community detction

Figure 3: Network with Pearson correlation: impact and betweenness

For comparison purposes, we use Mahalanobis Cosine:

Figure 4: Network with Mahalanobis Cosine

 $\mathsf{net}_{2} \\ \mathsf{plot.pnet2}$

Figure 5: Network with Mahalanobis Cosine

Enrichment analysis

The enrichment analysis is for group data. The genes in the group are considered target gene sets while genes in the whole data set is the universal gene set.

The netowk analysis retunes a vertex attributes matrix:

The second and third columns are symbolic clustering and network community cluster, respectively.

If we perform enrichment analysis on the network community centre, the matrix should include the first column (gene IDs) and the third colum:

Table 3: KEGG enrichment analysis

```
comm_centre KEGGID Pvalue Count Size Term
```

Note that there could be no results returned for KEGG enrichment analysis.

The GO Terms enrichment analysis with ontology of BP (other two are MF and CC):

```
go <- go_enrich(mat = mat, pval = 0.05, ont = "BP", annot_pkg = "org.Hs.eg.db")
#' go
dim(go)
#> [1] 6 7
go %>%
    kable(caption = 'GO Terms enrichment analysis',
```

Table 4: GO Terms enrichment analysis

comm_centre	ID	Description	Pvalue	Count	CountUniverse	Ontology
Cluster 2 (12 genes)	GO:0051056	regulation of small GTPase mediated signal transduction	0.0498	2	2	BP
Cluster 5 (6 genes)	GO:0043410	positive regulation of MAPK cascade	0.0321	2	3	BP
Cluster 6 (9 genes)	GO:0042256	mature ribosome assembly	0.0158	2	2	BP
Cluster 6 (9 genes)	GO:0009792	embryo development ending in birth or egg hatching	0.0443	2	3	BP
Cluster 6 (9 genes)	GO:0010876	lipid localization	0.0443	2	3	BP
Cluster 8 (15 genes)	GO:0071826	ribonucleoprotein complex subunit organization	0.0206	3	3	BP

We can also perform enrichment analysis on the symbolic clustering. To do so, use the first and second columns:

Table 5: KEGG enrichment analysis

symb_pheno	KEGGID	Pvalue	Count	Size	Term
Cluster 24 (10 genes): Cu(+)	00510	0.037	2	2	N-Glycan biosynthesis
Cluster 79 (10 genes): Cu(-)	00520	0.005	2	3	Amino sugar and nucleotide sugar metabolism

Note that there could be no results returned for KEGG enrichment analysis.

The GO Terms enrichment analysis with ontology of BP (other two are MF and CC):

Table 6: GO Terms enrichment analysis

symb_pheno	ID	Description	Pvalue	Count	CountUniverse	Ontology
Cluster 14 (11 genes): Zn(+)	GO:0051090	regulation of DNA-binding transcription factor activity	0.0415	2	2	BP
Cluster 14 (11 genes): Zn(+)	GO:0051092	positive regulation of NF-kappaB transcription factor activity	0.0415	2	2	BP
Cluster 14 (11 genes): Zn(+)	GO:0051188	cofactor biosynthetic process	0.0415	2	2	BP
Cluster 24 (10 genes): Cu(+)	GO:0007611	learning or memory	0.0339	2	2	BP
Cluster 24 (10 genes): Cu(+)	GO:0050877	nervous system process	0.0339	2	2	BP
Cluster 24 (10 genes): Cu(+)	GO:0043170	macromolecule metabolic process	0.0395	9	32	BP
Cluster 35 (16 genes): Cd(-)	GO:0071826	ribonucleoprotein complex subunit organization	0.0206	3	3	BP
Cluster 4 (10 genes): Mo(+)	GO:0007059	chromosome segregation	0.0271	2	2	BP
Cluster 4 (10 genes): Mo(+)	GO:0009615	response to virus	0.0271	2	2	BP
Cluster 4 (10 genes): Mo(+)	GO:0042256	mature ribosome assembly	0.0271	2	2	BP
Cluster 79 (10 genes): Cu(-)	GO:0010629	negative regulation of gene expression	0.0261	3	6	BP

Exploratory analysis

The explanatory analysis performs PCA and correlation analysis for ions in terms of genes. Note that this analysis treats ions as samples/replicates while genes are treated as variables/features. The explanatory analysis is initially employed at an early stage of the analysis.

We apply it to the pre-processed data dat before any other analysis:

```
expl <- ExploratoryAnalysis(data = dat)
names(expl)
#> [1] "plot.pca" "data.pca.load" "plot.corr" "plot.corr.heat"
#> [5] "plot.heat" "plot.net"
```

The PCA plot is:

```
expl$plot.pca
```

The Person correlation of ions are shown in correlation plot, heatmap and network plot:

```
expl$plot.corr

expl$plot.corr.heat

expl$plot.net
```

The correlation between ions and genes are shown in heatmap with dendrogram:

```
expl$plot.heat
```


Figure 6: Ion PCA plot on pre-processed data

Figure 7: Ion correlation plots on pre-processed data

Figure 8: Ion correlation plots on pre-processed data

Figure 9: Ion correlation plots on pre-processed data

Figure 10: Correlation between ions and genes on pre-processed data