Appl. Serial No.: 09/831,506 Attorney Docket No.: SCH-1806 Reply Dated <u>July 23, 2003</u>

Reply to Office Action of December 30, 2002

Amendments to the Specification:

Please replace the paragraph beginning on page 2, line 7, to page 5, line 2, with the amended paragraph below.

--It has now been found that compounds of general formula I

$$R^5$$
 R^7
 R^7
 R^3

in which

Α

stands for the group $=NR^2$,

W

stands for oxygen, sulfur, two hydrogen atoms or the

group = NR^8 ,

Z

stands for the group = NR^{10} or =N-,

 $-N(R^{10})$ - $(CH_2)_q$ -, branched or unbranched C_{1-6} alkyl or

the group

Reply Dated July 23, 2003

Reply to Office Action of December 30, 2002

or A, Z and R¹ together form the group

m, n and o

stand for 0-3,

q

stands for 1-6,

 R_a , R_b , R_c , R_d , R_e , R_f

independently of one another, stand for hydrogen, C_{1-4} alkyl or the group =NR¹⁰, and/or R_a and/or R_b can form a bond with R_c and/or R_d or R_c can form a bond with R_e and/or R_f or up to two of radicals R_a - R_f can close form a bridge with up to of no more than 3 C-atoms each to form and said bridge is connected to R^1 or R^2 ,

X

stands for the group $=NR^9$ or =N-,

Y

stands for the group $-(CH_2)_p$,

p

stands for 1-4,

 R^1

stands for unsubstituted or, optionally, one or more times with halogen, C_{1-6} alkyl, one or more times with halogen substituted C_{1-6} alkyl or C_{1-6} alkoxy substituted aryl or heteroaryl, with the exception of compounds in which aryl is bonded directly to the =NR² group in the

Page 3 of 39

Reply Dated July 23, 2003

Reply to Office Action of December 30, 2002

meaning of A,

 R^2 stands for hydrogen or C_{1-6} alkyl or with R_a-R_f from Z,

or to R1, forms a bridge with up to 3 ring members with

 R_a - R_f -from Z or to form R_t ,

R³ stands for monocyclic or bicyclic aryl or heteroaryl that

is unsubstituted or optionally substituted in one or more

places with halogen, C₁₋₆ alkyl, C₁₋₆ alkoxy or hydroxy,

R⁴, R⁵, R⁶, and R⁷, independently of one another, stand for hydrogen,

halogen, or C_{1-6} alkoxy, C_{1-6} alkyl or C_{1-6} carboxylalkyl

that is unsubstituted or optionally substituted in one or

more places with halogen,

or R5 and R6 together form the group

 R^8 , R^9 , and R^{10} ,

independently of one another, stand for hydrogen or C_{1-6}

alkyl,

as well as their isomers and salts, stop a tyrosine phosphorylation or persistent angiogenesis and thus prevent the growth and propagation of tumors.--

Please replace the paragraph on page 6, lines 6-8, with the amended paragraph below.

--If up to two of radicals R_a-R_f form a bridge with up to 3 C atoms to R[†] of no more than 3C atoms, and said bridge is connected to R¹, Z together with R¹ is a benzo- or hetaryl-condensed (Ar) cycloalkyl.--

Appl. Serial No.: 09/831,506 Attorney Docket No.: SCH-1806 Reply Dated <u>July 23, 2003</u>

Reply to Office Action of December 30, 2002

Please replace the paragraph on page 7, lines 1-3, with the amended paragraph below.

--If one of radicals R_a - R_f closes a bridge to form R^2 forms a bridge connected to R^2 , a nitrogen heterocycle that can be separated from R^1 by a group is formed.--

Please replace the section beginning on page 10, line 9, to page 12, line 6, with the amended section below.

 $--R^1$

stands for phenyl, pyridyl, 5-chloro-2,3-dihydroindenyl, 2,3-dihydroindenyl, thienyl, 6-fluoro-1H-indol-3-yl, naphthyl, 1,2,3,4-tetrahydronaphthyl, benzo-1,2,5-oxadiazole, 6,7-dimethoxy-1,2,3,4-tetrahydro-2-naphthyl or for phenyl or pyridyl that is substituted in one or more places with C_1 - C_4 alkyl, C_1 - C_4 alkoxy, hydroxy, halogen or trifluoromethyl, or for the group

Appl. Serial No.: 09/831,506 Attorney Docket No.: SCH-1806 Reply Dated <u>July 23, 2003</u> Reply to Office Action of December 30, 2002

ZINº .	N s	
		N CI
-250	Z=\ S CF,	
2-0		
-\sum_a	-STO-F	
-\D	N. N.	
		S OCF,
\$I)	- Ton	H,C
	H,C	Mc Cook

whereby phenyl, substituted phenyl or naphthyl is not Page 6 of 39

 R^2

Reply Dated July 23, 2003

Reply to Office Action of December 30, 2002

right in directly bonded to the $=NR^2$ group in the meaning of A,

stands for hydrogen or C_{1-6} alkyl or, with R_a - R_f from Z, or to R^1 , forms a bridge with up to 3 ring members with

Ra-Ra-from Z or to form Ra, --

Please replace the section beginning on page 14, line 8, to page 15, line 3, with the amended section below.

--R1

stands for phenyl, pyridyl, 5-chloro-2,3-dihydroindenyl, 2,3-dihydroindenyl, thienyl, 6-fluoro-1H-indol-3-yl, naphthyl, 1,2,3,4-tetrahydronaphthyl, benzo-1,2,5-oxadiazole, 6,7-dimethoxy-1,2,3,4-tetrahydro-2-naphthyl, or for phenyl or pyridyl that is substituted in one or more places with C₁-C₄ alkyl, C₁-C₄ alkoxy, hydroxy, halogen, trifluoromethyl, or for the group

Reply Dated July 23, 2003

Reply to Office Action of December 30, 2002

whereby phenyl, or substituted phenyl or naphthyl is not right in directly bonded to the $=NR^2$ group in the meaning of A,--