Outline

Point Estimation: Maximum Likelihood

Example: Wetland Species Richness

Simple Linear Regression Model

Simple Linear Regression Model Fitting

Binomial Distribution: Probability

• Suppose $Y \sim B(n, \pi)$ with probability density function

$$P(Y = y) = \frac{n!}{y!(n-y)!}\pi^y(1-\pi)^{n-y},$$

where y = 0, 1, ..., n.

• For example, n = 5 and $\pi = 0.4$. Plot P(Y = y) versus y:

Binomial Distribution: Statistics

- Suppose there are n = 5 trials and the observed number of successes is y = 2.
- Q: How to estimate π ?
- A method of moment (MOM) estimator is

Likelihood Function

• Consider the probability mass function evaluated at y = 2:

$$P(Y=2) = \frac{5!}{2!3!}\pi^2(1-\pi)^3.$$

Thus, we have

			0.6	
P(Y=2)	0.2048	0.3456	0.2304	0.0512

Likelihood Function

• Plot P(Y = 2) versus $\pi = 0.01, 0.02, \dots, 0.98, 0.99$:

• Q: What value of π makes the given data most likely?

Likelihood Function

• That is, find the value of π that maximizes

$$\frac{5!}{2!3!}\pi^2(1-\pi)^3$$

Given n and y, the function

$$\mathcal{L}(\pi) = \frac{n!}{y!(n-y)!} \pi^y (1-\pi)^{n-y}$$

is the **likelihood function** of the unknown parameter π .

• Further, the **log-likelihood function** of π is:

$$\ell(\pi) = y \ln(\pi) + (n - y) \ln(1 - \pi) + \ln\left\{\frac{n!}{v!(n - v)!}\right\}.$$

Maximum Likelihood (ML) Estimation

• To maximize the log-likelihood function, set the derivative to 0 and solve for π :

$$\frac{d\ell(\pi)}{d\pi} = \frac{y}{\pi} - \frac{n-y}{1-\pi} = 0.$$

• The maximum likelihood estimate (MLE) of π is:

The maximum log-likelihood value is

$$\ell(\hat{\pi}) = y \ln(\hat{\pi}) + (n - y) \ln(1 - \hat{\pi}) + \ln\left\{\frac{n!}{y!(n - y)!}\right\}$$

$$= 2 \times \ln\left(\frac{2}{5}\right) + 3 \times \ln\left(\frac{3}{5}\right) + \ln\left(\frac{5!}{2!3!}\right)$$

$$= -1.0625$$

Definition (MLE)

The MLE for a parameter θ is the statistics $\hat{\theta} = T(y)$ whose value for the given data y satisfies the condition

$$L(\hat{\theta}|y) = \sup_{\theta \in \Theta} L(\theta|y),$$

where $L(\theta|y)$ is the likelihood function for θ .

Properties:

- MLEs are invariant; i.e., $MLE(g(\theta)) = g(MLE(\theta)) = g(\hat{\theta})$.
- MLEs are asymptotically normal and asymptotically unbiased.

Gaussian Distribution: ML Estimation

- Suppose $Y \sim N(\mu, 1)$ (i.e., $\sigma^2 = 1$ is known).
- Given the data y=4, the maximum likelihood estimate (MLE) of μ is:

ullet The likelihood function of μ is:

$$\mathcal{L}(\mu) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}(4-\mu)^2\right\}.$$

ullet The log-likelihood function of μ is:

$$\ell(\mu) = -\frac{1}{2}\ln(2\pi) - \frac{1}{2}(4-\mu)^2.$$

Gaussian Distribution: ML Estimation

Point Estimation

A good estimate $\hat{\theta}$ should

- Be unbiased: $\mathbb{E}(\hat{\theta}) = \theta$
- Have small variance: small $Var(\hat{\theta})$
- Be efficient: its mean squared error (MSE) is minimum among all competitors.

$$\mathsf{MSE}(\hat{\theta}) \equiv \mathbb{E}(\hat{\theta} - \theta)^2 = \mathsf{Bias}^2(\hat{\theta}) + \mathsf{Var}(\hat{\theta}),$$

where $Bias(\theta) = \mathbb{E}(\hat{\theta}) - \theta$.

Be consistent:

$$\hat{\theta} = \hat{\theta}(n) \to \theta$$
 in probability, as the sample size $n \to \infty$.

Comparison

Method of Moment:

- Pros: easy to compute, consistent
- Cons: not necessarily the most efficient estimate; sometimes outside the valid range; may not be unique.

Maximum likelihood estimator:

- Pros: asymptotically unbiased, consistent, normally distributed, and efficient
- Cons: can be highly biased for small samples; sometimes, MLE has no closed-form.

Outline

Point Estimation: Maximum Likelihood

Example: Wetland Species Richness

Simple Linear Regression Model

Simple Linear Regression Model Fitting

- A study was performed on insect species richness in 58 wetlands in Ontario, Canada.
- The goal of the study was to determine the relationship between forest density around the wetland and insect species richness.
- The investigators sample insects in each wetland and then recorded the number of species present in each sample.
- The percent forest cover within a 1500-meter buffer around the wetland was also recorded, among other wetland characteristics.

	wetland	У	X	wetland	<i>y</i> 5	X
	1	10	0.056	30		0.637
	2	8	0.546	31	6	0.488
	3	10	0.637	32	9	0.580
	4	8	0.815	33	4	0.705
	5	10	0.676	34	11	0.439
	6	9	0.871	35	8	0.705
	7	4	0.467	36	5	0.680
	8	3	0.684	37	10	0.396
	9	3	0.496	38	10	0.467
	10	4	0.415	39	5	0.306
	11	7	0.680	40	10	0.684
	12	7	0.773	41	6	0.415
	13	9	0.319	42	10	0.684
	14	10	0.127	43	10	0.340
	15	3	0.306	44	7	0.871
	16	6	0.676	45	9	0.871
	17	8	0.684	46	7	0.680
	18	10	0.546	47	18	0.263
	19	10	0.542	48	12	0.396
	20	15	0.263	49	6	0.306
	21	11	0.488	50	4	0.359
	22	7	0.359	51	6	0.439
	23	7	0.680	52	8	0.542
	24	6	0.393	53	4	0.705
	25	4	0.773	54	11	0.127
	26	3	0.815	55	7	0.496
	27	11	0.642	56	10	0.263
	28	8	0.580	57	10	0.127
	29	11	0.396	58	11	0.546
-						

Specific Goals

- To describe the relationship between the percent forest cover (x) and the number of species (y).
- To estimate or predict the number of species for a given percent forest cover.

Q: How to account for uncertainty in the fitted line and variation?

Outline

Point Estimation: Maximum Likelihood

Example: Wetland Species Richness

Simple Linear Regression Model

Simple Linear Regression Model Fitting

Modeling Idea

- Model y by a random variable Y.
- Regard x as fixed, or condition on x (x could be modeled by a random variable X.)
- Consider the model of Y conditional on X = x:

$$E(Y|X=x)=\beta_0+\beta_1x.$$

• β_0, β_1 are fixed unknown parameters (i.e., the intercept and slope) characterizing the relationship between X and Y.

Simple Linear Regression Model

The formal simple linear regression (SLR) model for the data (x_i, y_i) is:

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

for i = 1, 2, ..., n, where

- Y_i is the *i*th **response variable**.
- X_i is the ith explanatory variable (also called predictors, covariates).
- ε_i is the *i*th **random error** term.
 - The random errors follow a normal distribution with mean zero and variance σ^2 and are independent of each other.
 - That is, $\varepsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$.

Features of Simple Linear Regression Model

Under the SLR model for the data (x_i, y_i) :

- Simple
- Linear
- Regression
- Randomness
- Independence
- The model parameters are:

Model Assumptions

 A straight line relationship between the response variable Y and the explanatory variable X:

$$E(Y_i|X_i)=\beta_0+\beta_1x_i.$$

Equal variance:

$$Var(Y_i|X_i) = \sigma^2.$$

• Independence (conditional on X_i, X'_i):

$$Cov(Y_i, Y_{i'}) = 0$$
 for $i \neq i'$.

Normal distribution:

$$Y_i|X_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2).$$

Equivalent Model Assumptions

Equivalently, the assumptions are

 A straight line relationship between the response variable Y and the explanatory variable X:

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
 where $E(\varepsilon_i) = 0$

Equal variance:

$$Var(\varepsilon_i) = \sigma^2.$$

Independence:

$$Cov(\varepsilon_i, \varepsilon_{i'}) = 0$$
 for $i \neq i'$.

Normal distribution:

$$\varepsilon_i \sim N(0, \sigma^2).$$

Model Parameters

- The model parameters are β_0, β_1 , and σ^2 (population parameters).
- β_0 and β_1 : regression coefficients.
- β_0 : intercept. When the model scope includes x = 0, β_0 can be interpreted as the mean of Y at x = 0.
- β₁: slope.
 Interpreted as the change in the mean of Y per unit increase in x.
- σ^2 : **error variance**, sometimes written as σ_{ε}^2 or $\sigma_{Y|X}^2$.

Outline

Point Estimation: Maximum Likelihood

- Simple Linear Regression Model
- 4 Simple Linear Regression Model Fitting

Estimation of Model Parameters

- Our goal is to estimate these model parameters by estimators $\hat{\beta}_0$, $\hat{\beta}_1$, and $\hat{\sigma}^2$, based on data.
- Two methods:
 - Least squares (LS).
 - Maximum likelihood (ML).
- Additional notation:
 - Let $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$ denote the *i*th fitted value.
 - Let $e_i = Y_i \hat{Y}_i$ denote the *i*th residual.

Estimation of β_0 and β_1

• Both LS and ML give the same estimator for β_0 and β_1 :

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}$$

$$\hat{\beta}_{0} = \frac{1}{n} \left(\sum_{i=1}^{n} Y_{i} - \hat{\beta}_{1} \sum_{i=1}^{n} X_{i} \right) = \bar{Y} - \hat{\beta}_{1} \bar{X}.$$

- Note: $\hat{\beta}_0$ and $\hat{\beta}_1$ are denoted as b_0 and b_1 in some texts.
- We now give **two methods** for these estimations.

Least Squares (LS) Estimation

Consider the criterion:

$$Q = \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i)^2.$$

- The LS estimators of β_0 and β_1 are those values, $\hat{\beta}_0$ and $\hat{\beta}_1$, that minimize Q, for the given observed data $(X_1, Y_1), \ldots, (X_n, Y_n)$.
- Graphical interpretation?

LS Derivation

• Differentiate Q with respect to β_0 and β_1 :

(a) :
$$\frac{\partial Q}{\partial \beta_0} = -2 \sum_{i=1}^n (Y_i - \beta_0 - \beta_1 X_i)$$
(b) :
$$\frac{\partial Q}{\partial \beta_1} = -2 \sum_{i=1}^n (Y_i - \beta_0 - \beta_1 X_i) X_i$$

- Set (a) and (b) equal to 0 and let the solutions to these two equations be $\hat{\beta}_0$ and $\hat{\beta}_1$.
- Let $\beta = (\beta_0, \beta_1)'$.
- Since $\frac{\partial^2 Q}{\partial \beta \partial \beta'}$ is positive definite, $\hat{\beta}_0$ and $\hat{\beta}_1$ minimize Q.

Gaussian Distribution: ML Estimation

- Suppose $Y_1, Y_2, \ldots, Y_n \sim \text{iid } N(\mu, \sigma^2)$.
- Given the data y_1, y_2, \dots, y_n , the likelihood function of μ, σ^2 is

$$\mathcal{L}(\mu, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{\frac{n}{2}}} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2\right\}.$$

• The log-likelihood function of μ, σ^2 is

$$\ell(\mu, \sigma^2) = -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \mu)^2.$$

• The maximum likelihood estimate (MLE) for μ , σ^2 are:

General Distribution: ML Estimation

- In a general setting, let Y_1, \ldots, Y_n be iid with probability density function $f(y; \theta)$.
- With $\mathbf{y} = (y_1, \dots, y_n)'$, the likelihood function for θ is

$$\mathcal{L}(\boldsymbol{\theta}; \boldsymbol{y}) = \prod_{i=1}^{n} f(y_i; \boldsymbol{\theta}).$$

- Find the value of θ that maximizes $\mathcal{L}(\theta; \mathbf{y})$.
- ullet Equivalently, find the value of eta that maximizes the log-likelihood

$$\ell(\theta; \mathbf{y}) = \log \mathcal{L}(\theta; \mathbf{y}) = \log \prod_{i=1}^{n} f(y_i; \theta) = \sum_{i=1}^{n} \log f(y_i; \theta).$$

Intuition:

ML Derivation

- Let $\theta = (\beta_0, \beta_1, \sigma^2)'$.
- We have $Y_i \sim \operatorname{ind} N(\beta_0 + \beta_1 X_i, \sigma^2)$.
- Thus,

$$f_i(y_i; \boldsymbol{\theta}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2} \left\{y_i - (\beta_0 + \beta_1 x_i)\right\}^2\right].$$

The likelihood function is

$$\mathcal{L}(\boldsymbol{\theta}; \boldsymbol{y}) = \prod_{i=1}^{n} f_{i}(y_{i}; \boldsymbol{\theta})$$

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left[-\frac{1}{2\sigma^{2}} \left\{y_{i} - (\beta_{0} + \beta_{1}x_{i})\right\}^{2}\right]$$

ML Derivation

The log-likelihood function is

$$\ell(\boldsymbol{\theta}; \boldsymbol{y}) = \sum_{i=1}^{n} \log f_i(y_i; \boldsymbol{\theta})$$

$$= -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log\sigma^2 - \frac{1}{2\sigma^2}\sum_{i=1}^n \{y_i - (\beta_0 + \beta_1 x_i)\}^2$$

Set the first-order partial derivatives equal to 0:

$$0 = \frac{\partial \ell(\boldsymbol{\theta}; \mathbf{y})}{\partial \beta_0} = \frac{2}{2\sigma^2} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)$$

$$0 = \frac{\partial \ell(\boldsymbol{\theta}; \boldsymbol{y})}{\partial \beta_1} = \frac{2}{2\sigma^2} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) x_i$$

$$0 = \frac{\partial \ell(\boldsymbol{\theta}; \boldsymbol{y})}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2.$$

ML Derivation

Solve for the parameters and obtain the ML estimates:

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}$$

$$\hat{\beta}_{0} = \bar{Y} - \hat{\beta}_{1}\bar{X}$$

$$\tilde{\sigma}^{2} = \frac{\sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2}}{n}$$

Properties of Fitted Regression Line

For the fitted values $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$ and residuals $e_i = Y_i - \hat{Y}_i$, we have:

- The regression line always goes through (\bar{X}, \bar{Y}) .
- $\sum_{i=1}^{n} e_i^2$ is a minimum.
- $\sum_{i=1}^{n} e_i = 0$.
- $\sum_{i=1}^{n} X_i e_i = 0$.
- $\sum_{i=1}^{n} Y_i = \sum_{i=1}^{n} \hat{Y}_i$.
- $\sum_{i=1}^{n} \hat{Y}_{i}e_{i} = 0.$

Estimation of σ^2

 Define an error sum of squares (SSE) (or, residual sum of squares):

SSE =
$$\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^{n} e_i^2$$
.

• Under simple linear regression, an unbiased estimate of σ^2 is an **error mean square (MSE)** (or, **residual mean square**):

$$\hat{\sigma}^2 = MSE = \frac{SSE}{n-2} = \frac{\sum_{i=1}^n e_i^2}{n-2}.$$

• The ML estimate of σ^2 is:

$$\tilde{\sigma}^2 = \frac{\mathsf{SSE}}{n} = \frac{\sum_{i=1}^n e_i^2}{n}.$$

In the wetland species richness example, we have

SSE =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} e_i^2 = 479.04$$

Under LS, we have

$$\hat{\sigma}^2 = MSE = \frac{SSE}{n-2} = \frac{479.04}{56} = 8.554$$

Under ML, we have

$$\tilde{\sigma}^2 = \frac{\text{SSE}}{n} = \frac{479.04}{58} = 8.259.$$

Which estimator is better?