Machine Learning II

Aplicar un modelo de regresion logistica haciendo previamente un masajeo de datos con imputación

- Importación del archivo de uso

```
import pandas as pd
In [ ]:
         import numpy as np
         import os
         import seaborn as sns
         import matplotlib.pyplot as plt
         os.chdir('E:\WORK IN PROGRESS\Data Analytics course\parte 2 python\week 26')
         # Se usa la funcion read csv para leer el archivo . csv
         # Tener en cuenta que esta vez el archivo tenia separadores el ;
         df = pd.read csv('bank-additional-full.csv',sep=';')
In [ ]:
         df.head()
Out[ ]:
            age
                       job marital education
                                               default housing loan
                                                                       contact month day_of_week ... campaign pdays previous poutcome emp.var.ı
             56 housemaid married
                                      basic.4y
                                                                  no telephone
                                                                                                                   999
                                                                                                                              0 nonexistent
                                                                                  may
                                                                                              mon ...
                                                                                                                   999
             57
                   services married high.school unknown
                                                                 no telephone
                                                                                                                              0 nonexistent
                                                                                  may
                                                                                              mon ...
                                                            no
         2
             37
                   services married high.school
                                                    no
                                                           yes
                                                                  no telephone
                                                                                  may
                                                                                              mon ...
                                                                                                                   999
                                                                                                                              0 nonexistent
                    admin. married
             40
                                                                 no telephone
                                                                                                                   999
                                                                                                                              0 nonexistent
                                      basic.6y
                                                    no
                                                            no
                                                                                  may
                                                                                              mon ...
             56
                   services married high.school
                                                                 ves telephone
                                                                                                                   999
                                                                                                                              0 nonexistent
                                                    no
                                                                                  may
                                                                                              mon ...
        5 rows × 21 columns
```

```
In [ ]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 41188 entries, 0 to 41187
        Data columns (total 21 columns):
             Column
                            Non-Null Count Dtype
                             -----
         0
             age
                             41188 non-null int64
         1
             iob
                            41188 non-null object
         2
             marital
                            41188 non-null object
             education
                            41188 non-null object
         4
             default
                             41188 non-null object
             housing
                             41188 non-null object
             loan
                             41188 non-null object
             contact
                            41188 non-null object
         8
             month
                            41188 non-null object
             day of week
                            41188 non-null object
         10 duration
                             41188 non-null int64
         11 campaign
                            41188 non-null int64
         12 pdays
                            41188 non-null int64
         13 previous
                            41188 non-null int64
         14 poutcome
                            41188 non-null object
         15 emp.var.rate
                            41188 non-null float64
         16 cons.price.idx 41188 non-null float64
         17 cons.conf.idx 41188 non-null float64
         18 euribor3m
                            41188 non-null float64
         19 nr.employed
                            41188 non-null float64
                            41188 non-null object
         20 y
        dtypes: float64(5), int64(5), object(11)
        memory usage: 6.6+ MB
In [ ]: # Del ejercicio anterior se vio que las siguientes son las columnas que tienen valores desconocidos.
        # Solo que dichos valores no aparecen como nulos porque se les fue asignado el nombre 'unknown'
        # Como se vera en el siguiente grafico.
        columns unknownvalues=['job', 'marital', 'education', 'default', 'housing', 'loan']
In [ ]: fig, axes = plt.subplots(nrows=6,ncols=1, figsize=(12,16))
        fig.tight layout(pad=2.0)
        for i, column in enumerate (columns_unknownvalues):
            df helper= df.groupby(column)[column].count().rename('count').reset index()
```

df_helper.plot.bar(x=column,ax=axes[i],color='seagreen')
axes[i].tick_params(labelrotation=360)


```
In [ ]: # La variable default es la que tiene el mayor tipo de valores desconocidos.
# En el ejercicio anterior lo que hice fue simplemente eliminar las columnas con valores desconocidos
# Ahora voy a utilizar el metoddo knn imputation para llevar a cabo la imputacion de los datos nulos.
```

Field Engineering

Hacer que los valores nulos se muestren como nulos:

```
df.replace('unknown',np.nan,inplace=True)
       df.info()
In [ ]:
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 41188 entries, 0 to 41187
        Data columns (total 21 columns):
            Column
                            Non-Null Count Dtype
            -----
                            _____
                            41188 non-null int64
            age
         1
            iob
                            40858 non-null object
            marital
                            41108 non-null object
         3
            education
                            39457 non-null object
            default
                            32591 non-null object
            housing
                            40198 non-null object
            loan
                            40198 non-null object
         7
            contact
                            41188 non-null object
         8
            month
                            41188 non-null object
         9
                            41188 non-null object
            day of week
         10
            duration
                            41188 non-null int64
         11 campaign
                            41188 non-null int64
         12 pdays
                            41188 non-null int64
         13 previous
                            41188 non-null int64
         14 poutcome
                            41188 non-null object
         15 emp.var.rate
                            41188 non-null float64
        16 cons.price.idx 41188 non-null float64
         17 cons.conf.idx
                            41188 non-null float64
         18 euribor3m
                            41188 non-null float64
         19 nr.employed
                            41188 non-null float64
         20 y
                            41188 non-null object
        dtypes: float64(5), int64(5), object(11)
        memory usage: 6.6+ MB
       missing_values_count = df.isnull().sum()
        missing values count
```

```
0
        age
Out[]:
        job
                            330
        marital
                            80
        education
                          1731
        default
                          8597
        housing
                           990
                           990
        loan
        contact
                              0
        month
                              0
        day of week
                              0
        duration
                              0
        campaign
                              0
                              0
        pdays
                              0
        previous
        poutcome
        emp.var.rate
        cons.price.idx
        cons.conf.idx
        euribor3m
                              0
        nr.employed
                              0
                              0
        dtype: int64
In [ ]: # Se realiza una copia del dataset original para empezar a realizar el masajeo de datos
        df1=df.copy()
        df1.nunique().sort_values(ascending=False)
```

```
1544
         duration
Out[ ]:
         euribor3m
                             316
                              78
         age
                              42
         campaign
                              27
         pdays
         cons.conf.idx
                              26
         cons.price.idx
                              26
         nr.employed
                              11
                              11
         iob
                              10
         month
                              10
         emp.var.rate
         previous
                               8
                               7
         education
                               5
         day of week
         poutcome
         marital
                               3
                               2
         default
                               2
         contact
                               2
         loan
                               2
         housing
                               2
         dtype: int64
```

Cambiar el formato de las variables 'job', 'marital','education','month','day_of_week','poutcome' de object a categorical.

```
In [ ]: df1['job']= df1['job'].astype('category')
    df1['marital']= df1['marital'].astype('category')
    df1['education']= df1['education'].astype('category')
    df1['month']= df1['month'].astype('category')
    df1['day_of_week']= df1['day_of_week'].astype('category')
    df1['poutcome']= df1['poutcome'].astype('category')
```

Cambiar el formato de las variables housing, loan, default, contact, y, de object a binary (int64).

```
In [ ]: df1.loc[df1["housing"] == "no", "housing"] = 0
    df1.loc[df1["housing"] == "yes", "housing"] = 1
    df1.loc[df1["loan"] == "no", "loan"] = 0
    df1.loc[df1["loan"] == "yes", "loan"] = 1
    df1.loc[df1["y"] == "no", "y"] = 0
    df1.loc[df1["y"] == "yes", "y"] = 1
```

```
df1.loc[df1["default"] == "no", "default"] = 0
        df1.loc[df1["default"] == "yes", "default"] = 1
        df1.loc[df1["contact"] == "telephone", "contact"] = 0
        df1.loc[df1["contact"] == "cellular", "contact"] = 1
In [ ]: df1['housing']= df1['housing'].astype('float')
        df1['loan']= df1['loan'].astype('float')
        df1['y']= df1['y'].astype('float')
        df1['default']= df1['default'].astvpe('float')
        df1['contact']= df1['contact'].astype('float')
In [ ]: df1.info()
        # Ahora el dataframe no tien mas columnas de tipo object.
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 41188 entries, 0 to 41187
        Data columns (total 21 columns):
             Column
                             Non-Null Count Dtype
                             41188 non-null int64
         0
             age
         1
             iob
                             40858 non-null category
         2
             marital
                             41108 non-null category
         3
             education
                             39457 non-null category
         4
             default
                             32591 non-null float64
             housing
                             40198 non-null float64
                             40198 non-null float64
             loan
         7
                             41188 non-null float64
             contact
         8
             month
                             41188 non-null category
         9
             day of week
                             41188 non-null category
         10 duration
                             41188 non-null int64
         11 campaign
                             41188 non-null int64
         12 pdays
                             41188 non-null int64
         13 previous
                             41188 non-null int64
         14 poutcome
                             41188 non-null category
         15 emp.var.rate
                             41188 non-null float64
         16 cons.price.idx 41188 non-null float64
         17 cons.conf.idx 41188 non-null float64
         18 euribor3m
                             41188 non-null float64
         19 nr.employed
                             41188 non-null float64
         20 y
                             41188 non-null float64
        dtypes: category(6), float64(10), int64(5)
        memory usage: 5.0 MB
```

```
In [ ]: # Ya no se tienen variables tipo objeto
```

Correlación

df1.corr().style.background gradient(cmap='Greens')\ .set properties(**{'font-size':'10px'}) C:\Users\oscah\AppData\Local\Temp\ipykernel 5288\2296899345.py:1: FutureWarning: The default value of numeric_only in DataFrame. corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric onl y to silence this warning. df1.corr().style.background gradient(cmap='Greens')\ Out[]: age default housing loan contact duration campaign pdays previous emp.var.rate cons.price.idx cons.conf.idx euribor3m 1.000000 0.002924 -0.001636 -0.007375 -0.007021 -0.000866 0.004594 -0.034369 0.024365 -0.000371 0.000857 0.129372 0.01076 age default 0.002924 1.000000 -0.004042 -0.004180 0.006760 -0.005752 0.002071 0.002419 0.005825 -0.002657 0.004990 -0.004207 0.00670 -0.001636 -0.004042 1.000000 0.046462 0.083022 -0.007806 -0.010649 0.021656 -0.060917 -0.081396 -0.034167 housing -0.011168 -0.05997 loan -0.007375 -0.004180 0.046462 1.000000 0.012078 -0.000207 0.005353 0.000050 -0.001924 0.001422 -0.004934 -0.013379 -0.00030 0.083022 0.012078 1.000000 -0.117970 0.212848 -0.007021 0.006760 0.026657 -0.077368 -0.393584 -0.591474 -0.251614 -0.39977 contact -0.000866 -0.005752 -0.007806 -0.000207 0.026657 1.000000 -0.071699 -0.047577 0.020640 -0.027968 0.005312 -0.008173 -0.03289 duration 1.000000 0.052584 campaign 0.004594 -0.004207 -0.011168 0.005353 -0.077368 -0.071699 -0.079141 0.150754 0.127836 -0.013733 0.13513 1.000000 -0.587514 pdays -0.034369 0.002071 -0.010649 0.000050 -0.117970 -0.047577 0.052584 0.271004 0.078889 -0.091342 0.29689 0.024365 0.002419 0.021656 -0.001924 0.212848 0.020640 -0.079141 -0.587514 1.000000 -0.420489 -0.203130 -0.050936 -0.45449 previous 0.150754 -0.420489 0.775334 0.196041 0.97224 emp.var.rate -0.000371 0.005825 -0.060917 0.001422 -0.393584 -0.027968 1.000000 cons.price.idx 0.000857 -0.002657 -0.081396 -0.004934 -0.591474 0.005312 0.127836 0.078889 -0.203130 0.775334 1.000000 0.058986 0.68823 cons.conf.idx 0.004990 -0.034167 -0.013379 -0.251614 -0.008173 -0.091342 -0.050936 0.058986 1.000000 0.129372 -0.013733 0.196041 0.27768 -0.454494 0.972245 euribor3m 0.010767 0.006700 -0.059978 -0.000300 -0.399773 -0.032897 0.135133 0.688230 0.277686 1.00000 nr.employed -0.017725 0.007258 -0.046455 0.004183 -0.269155 -0.044703 0.144095 -0.501333 0.906970 0.100513 0.94515 0.230181 0.030399 -0.003689 0.011662 -0.004682 0.144773 0.405274 -0.066357 -0.324914 -0.298334 -0.136211 0.054878 -0.30777

Se eliminan las variables con alto coeficiente de correlacion

```
df1.drop(['emp.var.rate','euribor3m','duration'],axis=1,inplace=True)
         # La variable duracion la eliminé por sugerencia del administración del dataset
         df1.head()
                        job marital education default housing loan contact month day of week campaign pdays previous poutcome cons.price.idx (
Out[ ]:
            age
             56 housemaid married
                                                   0.00
                                                            0.00
                                                                 0.00
                                                                          0.00
                                                                                                                 999
                                                                                                                            0 nonexistent
                                                                                                                                                  93.99
                                        basic.4v
                                                                                  may
                                                                                              mon
                    services married high.school
             57
                                                  NaN
                                                            0.00
                                                                 0.00
                                                                          0.00
                                                                                  may
                                                                                                                 999
                                                                                                                            0 nonexistent
                                                                                                                                                  93.99
                                                                                              mon
         2
             37
                    services married high.school
                                                   0.00
                                                            1.00
                                                                 0.00
                                                                          0.00
                                                                                                                 999
                                                                                                                            0 nonexistent
                                                                                                                                                  93.99
                                                                                  may
                                                                                              mon
                                                                                                                            0 nonexistent
             40
                     admin. married
                                        basic.6v
                                                   0.00
                                                            0.00
                                                                 0.00
                                                                          0.00
                                                                                  may
                                                                                                                 999
                                                                                                                                                  93.99
                                                                                              mon
                    services married high.school
             56
                                                   0.00
                                                            0.00
                                                                 1.00
                                                                          0.00
                                                                                                                999
                                                                                                                            0 nonexistent
                                                                                                                                                  93.99
                                                                                  may
                                                                                              mon
```

Se buscan variables numéricas con un alto sesgo

```
cols num=[col for col in df1.columns if (df1[col].dtypes=='float64') | (df1[col].dtypes=='int64')]
         cols num
         ['age',
Out[ ]:
          'default',
          'housing',
          'loan',
          'contact',
          'campaign',
          'pdays',
          'previous',
          'cons.price.idx',
          'cons.conf.idx',
          'nr.employed',
          'y']
In [ ]: fig, axes = plt.subplots(nrows=4, ncols=4, figsize=(18,16))
         for i, column in enumerate (cols_num):
```

sns.histplot(df1[column],ax=axes[i//4,i%4],kde=False)


```
In []: # Las variables age y campaign tienen un sesgo significativo hacia la derecha por lo cual
        # es pertinente usar logaritmo.
In [ ]: df1['age-log']=np.log(df1['age']+1)
        df1['campaign-log']=np.log(df1['campaign']+1)
In [ ]: cols_num=[col for col in df1.columns if (df1[col].dtypes=='float64') | (df1[col].dtypes=='int64')]
        cols num
        ['age',
Out[ ]:
         'default',
         'housing',
         'loan',
         'contact',
         'campaign',
         'pdays',
         'previous',
         'cons.price.idx',
         'cons.conf.idx',
         'nr.employed',
         'y',
          'age-log',
         'campaign-log']
In [ ]: fig, axes = plt.subplots(nrows=4, ncols=4, figsize=(18,16))
        for i, column in enumerate (cols num):
            sns.histplot(df1[column],ax=axes[i//4,i%4],kde=False)
```


balance de clases

```
In [ ]: pd.options.display.float_format='{:.2f}'.format
```

se revisa el porcentaje de cada variable con respesto al total para cada columna categorica

```
In []: categ_columns=['job','marital','education','month','day_of_week','poutcome']
for column in categ_columns:
    helper = df1.groupby(column)[column].count().rename('total').reset_index()

    helper['percent']=(helper['total']/helper['total'].sum())*100
    print('\n' + column)
    print(helper)
```

```
job
              job total percent
           admin.
                   10422
                             25.51
0
1
      blue-collar
                    9254
                             22.65
2
     entrepreneur
                    1456
                              3.56
3
        housemaid
                    1060
                              2.59
4
       management
                    2924
                              7.16
5
          retired
                              4.21
                    1720
    self-employed
                              3.48
                    1421
7
         services
                              9.71
                    3969
8
          student
                     875
                              2.14
9
       technician
                    6743
                             16.50
       unemployed
10
                    1014
                              2.48
marital
    marital total percent
              4612
                      11.22
  divorced
1
    married 24928
                      60.64
2
     single 11568
                      28.14
education
             education total
                                percent
0
              basic.4y
                          4176
                                  10.58
1
              basic.6y
                         2292
                                   5.81
2
              basic.9y
                         6045
                                  15.32
3
           high.school
                                  24.11
                         9515
4
            illiterate
                           18
                                  0.05
   professional.course
                                  13.29
                         5243
     university.degree 12168
                                  30.84
6
month
         total percent
  month
          2632
                   6.39
0
    apr
                  15.00
          6178
1
    aug
2
    dec
           182
                   0.44
3
    jul
          7174
                  17.42
    jun
                  12.91
4
          5318
                   1.33
5
    mar
           546
6
                  33.43
         13769
    may
7
    nov
          4101
                   9.96
8
    oct
           718
                   1.74
9
           570
                   1.38
    sep
```

day_of_week

```
day of week total percent
               7827
         fri
                       19.00
1
               8514
                       20.67
         mon
2
               8623
                       20.94
         thu
3
                       19.64
               8090
         tue
               8134
                       19.75
         wed
poutcome
     poutcome total
                      percent
      failure
                4252
                        10.32
1 nonexistent 35563
                        86.34
2
      success 1373
                         3.33
```

job

- Se ponen juntas aquellas opciones que tienen un valor menor al 5% en la categoria 'other'

```
In [ ]: df1['job'].replace({'entrepreneur':'other','housemaid':'other','retired':'other','self-employed':'other','student':'other','unemplace(figure for the figure fo
```

education

- Se elimina la oocion illiterate

```
In [ ]: df1['education']= df1['education'].astype('object')
    df1.drop(df1[df1['education']=='illiterate'].index,inplace=True)
    df1['education']= df1['education'].astype('category')
```

month

- Se agrupan los meses en tres grupos (1,2,3)

```
In [ ]: df1['month'].replace({'apr':1,'aug':2,'dec':3,'jul':2,'jun':2,'mar':1,'may':2,'nov':3,'oct':3,'sep':3}, inplace=True)
```

Marital y Poutcome

- No se le realiza ningun cambio

```
In [ ]: categ_columns=['job','marital','education','month','day_of_week','poutcome']

fig, axes = plt.subplots(nrows=6,ncols=1, figsize=(12,16))
fig.tight_layout(pad=2.0)
for i, column in enumerate (categ_columns):

    df_helper= df1.groupby(column)[column].count().rename('count').reset_index()
    df_helper.plot.bar(x=column,ax=axes[i],color='seagreen')
    axes[i].tick_params(labelrotation=360)
```



```
In []: for column in categ_columns:
    helper = df1.groupby(column)[column].count().rename('total').reset_index()

    helper['percent']=(helper['total']/helper['total'].sum())*100
    print('\n' + column)
    print(helper)
```

```
job
           job total percent
        admin. 10421
                         25.52
0
1
  blue-collar
                 9246
                         22.64
2
         other
                 7537
                         18.45
3
                 2924
                         7.16
   management
      services
                 3969
                         9.72
    technician
                 6743
                         16.51
marital
   marital total percent
  divorced
             4610
                      11.22
1
   married 24913
                      60.63
2
     single 11567
                      28.15
education
             education total
                               percent
0
             basic.4y
                         4176
                                 10.59
1
             basic.6y
                        2292
                                 5.81
             basic.9y
2
                         6045
                                 15.33
           high.school
                                 24.13
3
                         9515
  professional.course
                                 13.29
                         5243
     university.degree 12168
                                 30.85
month
  month total percent
          3176
0
      1
                   7.71
                 78.76
1
      2
        32426
2
      3
         5568
                 13.52
day of week
  day of week total percent
0
          fri
               7823
                        19.00
                        20.68
1
               8513
          mon
2
          thu
                8617
                        20.93
3
                8085
                        19.64
          tue
4
          wed
                8132
                        19.75
poutcome
      poutcome total percent
0
       failure
                4251
                         10.33
1
  nonexistent 35547
                         86.34
2
       success
                1372
                          3.33
```

• Solo un valor quedó menor al 5% (3.33% success in putcome)

```
df2=df1.copy()
In [ ]:
         categ columns=['job','marital','education','month','day of week','poutcome']
In [ ]:
         categ variables = df2[categ columns]
         categ dummies = pd.get dummies(categ variables, drop first=True)
         categ dummies.head()
Out[ ]:
           job_blue-
                     job_other job_management job_services job_technician marital_married marital_single education_basic.6y education_basic.9y education_
               collar
                                                                                                                   0
         0
                  0
                            1
                                                        0
                                                                     0
                                                                                    1
                                                                                                  0
                                                                                                                                    0
                  0
                                                                                                                                    0
                                                                                                                   0
         2
                  0
                            0
                                                        1
                                                                     0
                                                                                    1
                                                                                                  0
                                                                                                                   0
                                                                                                                                    0
                  0
                            0
                                                        0
                                                                                                  0
                                                                                                                                    0
                            0
                                                                     0
                                                                                                  0
                                                                                                                   0
         4
                  0
                                            0
                                                        1
                                                                                    1
                                                                                                                                    0
         df2 = df2.drop(categ columns, axis=1)
         df2 = pd.concat([df2, categ dummies], axis=1)
         df2.head()
```

Out[]:		age	default	housing	loan	contact	campaign	pdays	previous	cons.price.idx	cons.conf.idx	•••	$education_professional.course$	education_university
	0	56	0.00	0.00	0.00	0.00	1	999	0	93.99	-36.40		0	
	1	57	NaN	0.00	0.00	0.00	1	999	0	93.99	-36.40		0	
	2	37	0.00	1.00	0.00	0.00	1	999	0	93.99	-36.40		0	
	3	40	0.00	0.00	0.00	0.00	1	999	0	93.99	-36.40		0	
	4	56	0.00	0.00	1.00	0.00	1	999	0	93.99	-36.40		0	

5 rows × 34 columns

Se usa la funcion Iterative Imputer para imputar los valores nulos

```
In []: from sklearn.experimental import enable_iterative_imputer
    from sklearn.impute import IterativeImputer

impute_it = IterativeImputer()
    df_to_test=pd.DataFrame(impute_it.fit_transform(df2),columns=df2.columns)

df_to_test.head()
```

Out[]:		age	default	housing	loan	contact	campaign	pdays	previous	cons.price.idx	cons.conf.idx	•••	$education_professional.course$	education_universi
	0	56.00	0.00	0.00	0.00	0.00	1.00	999.00	0.00	93.99	-36.40		0.00	
	1	57.00	0.00	0.00	0.00	0.00	1.00	999.00	0.00	93.99	-36.40		0.00	
	2	37.00	0.00	1.00	0.00	0.00	1.00	999.00	0.00	93.99	-36.40		0.00	
	3	40.00	0.00	0.00	0.00	0.00	1.00	999.00	0.00	93.99	-36.40		0.00	
	4	56.00	0.00	0.00	1.00	0.00	1.00	999.00	0.00	93.99	-36.40		0.00	

5 rows × 34 columns

```
In [ ]: missing_values_count= df_to_test.isnull().sum().sum()
```

```
print("hay ", missing_values_count, "valores nulos en este dataset")
```

hay 0 valores nulos en este dataset

Data Split

```
In []: from sklearn.model_selection import train_test_split

X = df_to_test.drop('y',axis=1) #El array x (atributos) no va a contener la respuesta (num columnas x m)
y = df_to_test['y'] # Clase a predecir
#Se divide a X y Y en un ratio 70:30

# Convert categorical variables to dummy variables
# This will generate 467 additional columns

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3,random_state=1)
```

```
In [ ]: X_train.head(3)
```

Out[

[]:		age	default	housing	loan	contact	campaign	pdays	previous	cons.price.idx	cons.conf.idx	•••	education_professional.course	education_uni
	4895	46.00	0.00	1.00	0.00	0.00	4.00	999.00	0.00	93.99	-36.40		0.00	
	17063	56.00	0.00	1.00	0.00	1.00	4.00	999.00	0.00	93.92	-42.70		1.00	
	7305	37.00	-0.00	1.00	1.00	0.00	3.00	999.00	0.00	93.99	-36.40		0.00	

3 rows × 33 columns

```
print('Original Personal Loan True Values : {0} ({1:0.2f}%)'.format(len(y_train[y_train[:]==1]),(len(y_train[y_train[:]==1]))/len
print('Original Personal Loan False Values : {0} ({1:0.2f}%)'.format(len(y_train[y_train[:]==0]),(len(y_train[y_train[:]==0]))/len
print('Original Personal Loan True Values : {0} ({1:0.2f}%)'.format(len(y_test[y_test[:]==1]),(len(y_test[y_test[:]==1]))/len(y_te
print('Original Personal Loan False Values : {0} ({1:0.2f}%)'.format(len(y_test[y_test[:]==0]),(len(y_test[y_test[:]==0]))/len(y_test[y_test[:]==0]))/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test[:]==0])/len(y_test[y_test
```

Regresion logistica

```
In [ ]: from sklearn import metrics
      from sklearn.linear model import LogisticRegression
      # Adapta el modelo a los x train y y train (Entrenamiento)
      model= LogisticRegression(class weight={0:0.11,1:0.89}, solver="liblinear")
      model.fit(X train, y train)
      # Hace la prediccion en x test y la quarda en y predict
      y predict = model.predict(X test)
In [ ]: # La prediccion no es mas que un conjunto de 0s y 1s que se aplican al mismo dataset
      y predict[0:100]
      array([1., 0., 1., 0., 0., 0., 0., 1., 0., 1., 0., 0., 0., 1., 0., 0.,
            1., 0., 1., 0., 1., 0., 0., 1., 1., 0., 0., 0., 1., 1., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 1., 0., 0., 0.
In [ ]: # Construye un dataset con el valor original y la prediccion
      z= X test.copy()
      z['Response real']=y_test
```

```
z['Response prediccion']=y_predict
z[['Response real','Response prediccion']].head(10)
```

Out[]:		Response real	Response prediccion
	37604	0.00	1.00
	30687	0.00	0.00
	36985	0.00	1.00
	29143	1.00	0.00
	32278	0.00	0.00
	838	0.00	0.00
	17132	0.00	0.00
	6897	0.00	0.00
	28953	0.00	1.00
	9427	0.00	0.00

```
In []: # Genera Los coeficientes de la ecuacion
    coef_df = pd.DataFrame(model.coef_)
    coef_df.columns = X.columns
# Incluye el intercept
    coef_df['intercept']=model.intercept_
    coef_df.T.sort_values(by=0)
```

Out[]: **0**

age-log	-1.47
month_2	-0.80
month_3	-0.67
job_services	-0.21
job_blue-collar	-0.21
previous	-0.17
day_of_week_mon	-0.12
campaign	-0.07
loan	-0.05
housing	-0.05
job_technician	-0.04
default	-0.03
day_of_week_tue	-0.03
day_of_week_thu	-0.02
nr.employed	-0.01
pdays	-0.00
job_management	0.01
age	0.03
cons.conf.idx	0.05
education_basic.9y	0.05
education_high.school	0.05
education_professional.course	0.06
marital_married	0.08
job_other	0.08

	0
day_of_week_wed	0.13
campaign-log	0.13
education_university.degree	0.17
marital_single	0.21
education_basic.6y	0.22
poutcome_nonexistent	0.30
poutcome_success	0.38
cons.price.idx	0.64
intercept	0.67
contact	0.96

```
In [ ]: # Armar los valores de cada prediccion
```

Matriz de Confusion

- Entender Falsos positivos, Falsos negativos
- Medidas de precision de modelos

Out[]:

	Prediccion 1	prediccion 0
Observado 1	849	539
Observado 0	1694	9269

```
In [ ]: # Un TP es un valor que fue observado y predicho como positivo
# Un TN es un valor que fue observado y predicho como negativo
# Un FP es un valor que fue observado como negarivo pero predicho como positivo
# Un FN es un valor que fue observado como positivo pero predicho como negativo

TP= df_cm.iloc[0][0]
FP= df_cm.iloc[0][1]
FN= df_cm.iloc[1][0]
TN= df_cm.iloc[1][1]
```

```
print('TP =',TP,'FP =',FP,'FN =',FN,'TN =',TN)
        TP = 849 FP = 539 FN = 1694 TN = 9269
In [ ]: # Medidas del Modelo
        from sklearn.metrics import accuracy score, f1 score, precision score, recall score, roc auc score, classification report, confu
        v pred = model.predict(X test)
        model score = accuracy score(y test,y pred)
        recall score = recall score(y test,y pred)
        precision score = precision score(y test,y pred)
        f1 score=f1 score(y test,y pred)
        print('Medidas del Modelo')
        print(' ')
        print('Accuracy = {0:0.2f}'.format(model score))
        print('Precision = {0:0.2f}'.format(precision score))
        print('Recall = {0:0.2f}'.format(recall score))
        print('F1 Score = {0:0.2f}'.format(f1 score))
        print('Roc Auc Score = {0:0.2f}'.format(roc auc score(y test,y predict)))
        Medidas del Modelo
        Accuracy = 0.82
        Precision = 0.33
        Recall = 0.61
        F1 Score = 0.43
        Roc Auc Score = 0.73
```

- La exactitud (acuracy) de este modelo representa el porcentaje de predicciones correctas frente al total. Para este caso laexactitud fue del 82%
- la presición del modelo es mucho más baja (0.33) y se refiere a lo cerca que esta el modelo de predecir un valor verdadero.
- La sensibilidad (recall) es la proporcion entre los casos positivos bien clasificados por el modelo, respecto al total de positivos. para nuestro modelo esto equivale al 61% de lo que se podría decir que nuestro algoritmo de clasificación es medianamente sensible.

```
In []: # Create a dataframe with the prediction, y_hats
    y_hats = pd.DataFrame(y_pred)

# Resets index fory_test
    df_out = y_test.reset_index()
```

```
df_out['Actual']=y_test.reset_index()['y']
df_out['Prediction']=y_hats.reset_index()[0]
df_out.drop('index', axis=1, inplace=True)

df_out = df_out[df_out['Actual']!=df_out['Prediction']]
print(len(df_out),'registros donde lo observado <> predicho')
```

2233 registros donde lo observado <> predicho

In []: df_out

Out[]:		у	Actual	Prediction
	0	0.00	0.00	1.00
	2	0.00	0.00	1.00
	3	1.00	1.00	0.00
	8	0.00	0.00	1.00
	12	1.00	1.00	0.00
	•••			
	12304	0.00	0.00	1.00
	12318	0.00	0.00	1.00
	12320	0.00	0.00	1.00
	12322	0.00	0.00	1.00
	12332	1.00	1.00	0.00