Esercizi sui sistemi formali

Tutorato di Fondamenti di Informatica 20/03/2024

Martin Gibilterra

Università di Catania

github.com/w8floosh

in linkedin.com/in/w8floosh

Derivabilità e ammissibilità

Si consideri il seguente sistema formale \mathcal{D} i cui giudizi sono stringhe sull'alfabeto $\{a, b\}$.

$$(Ax)$$
 $\frac{w}{aaa}$, $w \in \{a\}^+$ (R') $\frac{b}{waa}$

Discutere la derivabilità e l'ammissibilità di R' in \mathfrak{D} .

È cambiato qualcosa?

Posto CL' uguale a CL con l'aggiunta della regola in basso, gli insiemi dei teoremi di CL' e CL sono identici? Perché?

$$(CONG)$$
 $\frac{M=N}{MP=NQ}$ $\frac{P=Q}{MP=NQ}$

2.2 CL: un esempio di sistema formale

Definizione 2.11 (Il sistema formale CL) Chiamiamo sistema formale CL il sistema formale così definito:

- S = {k, s, (,), =} (alfabeto);
- W = {P = Q|P, Q ∈ τ} dove τ è l'insieme dei termini così definito:
 - 1. $k \in \tau, d \in \tau$;
 - 2. se $P, Q \in \tau$ allora $(PQ) \in \tau$;
 - 3. nient'altro è un termine;
- Ax: per ogni P, Q, R ∈ τ i seguenti sono schemi di assioma:
 - -((kP)Q) = P(Axk);
 - P = P (assioma di riflessività);
 - -(((sP)Q)R) = ((PR)(QR)) (Axs);
- nient'altro è un assioma. (Si noti che uno schema di assioma è un modo per descrivere un numero eventualmente infinito di assiomi con un'unica espressione).
- $R = \{R_1, R_2, R_3, R_4\}$ dove:
 - $-R_1 = \{(P = Q, Q = P)|P, Q \in \tau\} \subseteq W^2$

 - $-R_3 = \{(R = R', (PR) = (QR), (PR) = (QR'))|P, Q, R, R' \in \tau\}$ $ovvero: \frac{R = R'}{(PR) = (QR)} (CONGR1);$
 - $-R_4 = \{(R = R', (RP) = (RQ), (RP) = (R'Q))|P, Q, R, R' \in \tau\}$ $ovvero: \frac{R = R'}{(RP) = (RQ)} \frac{(RP) = (RQ)}{(RP) = (RQ)}$ (CONGR2).

Suggerimento: Se la regola CONG è derivabile in CL, cosa si può dire sui teoremi di CL?

Aggiungi un posto a tavola

Dimostrare (ksk)(kkk) = sk aggiungendo la seguente regola a CL:

$$(CONG)$$
 $\frac{M=N}{MP=NQ}$ $\frac{P=Q}{MP=NQ}$

(ksk)(kkk) = sk si può derivare senza la regola CONG?

2.2 CL: un esempio di sistema formale

Definizione 2.11 (Il sistema formale CL) Chiamiamo sistema formale CL il sistema formale così definito:

- S = {k, s, (,), =} (alfabeto);
- W = {P = Q|P, Q ∈ τ} dove τ è l'insieme dei termini così definito.
- 1. $k \in \tau, d \in \tau$;
- 2. se $P,Q \in \tau$ allora $(PQ) \in \tau$;
- 3. nient'altro è un termine,
- • Ax: per ogni $P,Q,R\in \tau$ i seguenti sono schemi di assioma:
 - -((kP)Q) = P (Axk);
 - P = P (assioma di riflessività);
 - -(((sP)Q)R) = ((PR)(QR)) (Axs);
 - mient'altro è un assioma. (Si noti che uno schema di assioma è un modo per descrivere un numero eventualmente infinito di assiomi con un'unica espressione).
- $R = \{R_1, R_2, R_3, R_4\}$ dove:
 - $R_1 = \{(P = Q, Q = P)|P, Q \in \tau\} \subseteq W^2$ overo: $P = Q \cap P \cap Q \in T$
 - Q = P, $R_2 = \{(P = Q, Q = R, P = R) | P, Q, R \in \tau\} \subseteq W^3$
 - overo: $\frac{P = 0^+ \cdot Q = R}{P = R}$ (TRANS); $-R_3 = \{(R = R', (PR) = (QR), (PR) = (QR'))|P, Q, R, R' \in \tau\}$ overo: $\frac{R = R' \cdot (PR) = (QR)}{(PR) \cdot (PR) = (QR)}$ (CONGR1);
 - $-R_4 = \{(R = R', (RP) = (RQ), (RP) = (R'Q))|P, Q, R, R' \in \tau\}$ $overo: \frac{R=R' - (RP) = (RQ)}{(RP) = (R'Q)} - (CONGR2).$

Completa la dimostrazione

La seguente sequenza di fbf dimostra $\{k = sk\} \vdash_{CL} P = Q$.

1. ??	(ipotesi)	Assiomi	e regole:
2. ??	(Axr)	(Axk)	$\overline{kMN=M}$
3. kP = skP	(CONGR2)(1. e 2.)		
4. kPQ = kPQ	(Axr)	(Axs)	$\overline{sMNR=MR(NR)}$
5. kPQ = skPQ	(CONGR2)(3. e 4.)		
6. ??	(Axk)	(Axr)	$\overline{M=M}$
7. ??	(SYM)(5.)		
8. skPQ = P	??	(CONGR2)	$\frac{R=R'}{RM=RN}$
9. skPQ = kQ(PQ)	(Axs)		KIVI—K IV
10. kQ(PQ) = Q	(Axk)	(SYM)	$\frac{M=N}{N=M}$
11. $skPQ = Q$	(TRANS)(9. e 10.)	,	IN=IVI
12. $P = skPQ$??	(TRANS)	$\underline{M=N}$ $\underline{N=R}$
13. ??	??	(11411(0))	M=R

Completa la dimostrazione

Soluzione

La seguente sequenza di fbf dimostra $\{k = sk\} \vdash_{CL} P = Q$.

1.
$$k = sk$$
 (ipotesi)
 Assiomi e regole:

 2. $kP = kP$
 (Axr)
 (Axr)

 3. $kP = skP$
 (CONGR2)(1. e 2.)

 4. $kPQ = kPQ$
 (Axr)
 (Axs)

 5. $kPQ = skPQ$
 (CONGR2)(3. e 4.)

 6. $kPQ = P$
 (Axk)
 (Axr)

 7. $skPQ = kPQ$
 (SYM)(5.)

 8. $skPQ = P$
 (TRANS)(7. e 6.)
 (CONGR2)

 9. $skPQ = kQ(PQ)$
 (Axs)

 10. $kQ(PQ) = Q$
 (Axk)
 (SYM)

 11. $skPQ = Q$
 (TRANS)(9. e 10.)

 12. $P = skPQ$
 (SYM)(8.)

 13. $P = O$
 (TRANS)(12. e 11.)

Pensa! Che cosa possiamo dire sull'insieme di ipotesi $\{k = sk\}$?

Il sistema formale di Garfield

Garfield il gatto vuole creare un sistema formale che gli permetta di comporre le sue lasagne preferite, perciò ha inventato il sistema formale 3 che permette di creare delle lasagne complesse a partire da una singola fetta di pasta. Il suo sistema formale è definito correttamente?

$\Sigma = \{f, r, p, b\}$ (alfabeto degli ingredienti)	Assiomi e (Axf)	
$S = \left\{ frX \mid X \in \Sigma / \{f, r\} \right\}$	(ADDr)	$\frac{f-r}{fr}$
(insieme degli strati possibili)	(ADDX)	$\frac{X ext{ fr}}{\text{fr}X}$
$W = \left\{ \mathit{Lf} \mid \mathit{L} \in \bigcup_{i=1}^{n} W_{i}, W_{i} = \{ \mathit{Y} \mid \mathit{Y} \in \mathit{S}^{i} \}, n \in \mathbb{N} \right\}$	(ADDS)	$\frac{X}{LX}$
(insieme delle fbf)	(END)	$\frac{L f}{Lf}$

Il sistema formale di Garfield

Correzione

Il sistema non è definito correttamente, in quanto le regole e gli assiomi non sono composti dalle fbf definite in W. Inoltre, nella definizione della lasagna parziale L, non veniva esplicitato il fatto che l'ingrediente I in ciascuno strato può variare.

```
\begin{split} \Sigma &= \{f,r,p,b\} \\ \text{(alfabeto degli ingredienti)} \\ \Theta &= \Big\{frI \,|\, I \in \Sigma/\{f,r\}\Big\} \\ \text{(insieme degli strati possibili)} \\ W_m &= \Big\{\theta = (\theta_{1_{i_1}}\theta_{2_{i_2}}...\theta_{m_{i_m}}) \in \Theta^m \,|\, i_k \in \Sigma/\{f,r\}, k = 1,...,m\Big\} \\ \text{(insieme delle lasagne parziali con } m \text{ strati)} \\ W &= \Big\{Lf \,|\, L \in \bigcup_{j=1}^n W_j, n \in \mathbb{N}\Big\} \\ \text{(insieme delle fbf)} \end{split}
```

Il sistema formale di Garfield

Riflessioni

Il sistema formale creato da Garfield può essere semplificato? Ci sono delle regole eliminabili?

Una lasagna vuota (ff) è una fbf?

Se $n=\infty$, qual è la cardinalità dell'insieme delle conseguenze $Con_{\mathbb{G}}(\emptyset)$?