Comparação do desempenho de modelos propostos para o ajuste de dados de esportes coletivos

Mariana de Castro Pasqualini

2022-05-16

1. Introdução

Modelos estatísticos podem ser aplicados em diferentes áreas do conhecimento. Uma delas, que tem crescido nos últimos anos, é a análise de dados de competições e eventos esportivos. O número de gols marcados, por exemplo, pode ser tratado como dados de contagem e representados por modelos discretos. Estes modelos são vastamente representados na literatura desde a década de 80, como em Pollard (1985) que utiliza a distribuição Binomial Negativa, enquanto Baxter (1988) apresentam as diferenças entre a Binomial Negativa e Poisson para modelar o placar de partidas de futebol. Tais modelos desconsideram uma estrutura de correlação entre os gols de cada oponente. Karlis (2003) sugere a distribuição Poisson bivariada, que permite uma correlação entre o número de gols marcados pelo mandante e visitante e, ainda, há uma proposta de um modelo bayesiano hierárquico com efeitos aleatórios como definido por Baio (2010). Neste trabalho, são implementados, ajustados e comparados modelos baseados na distribuição Poisson para dados do Campeonato Brasileiro de 2019, 2020 e 2021, obtido em Gomide (2022) utilizando o software Stan e RStan para inferência bayesiana.

2. Modelos

Para o problema de contagem do número de gols em uma partida, o modelo mais comum é baseado na distribuição de Poisson. Essa distribuição é discreta, representando o número de eventos ocorridos em um intervalo de tempo. Uma das limitações dela é que sua média λ e variância são iguais, portanto se há uma superdispersão nos dados, o modelo pode não ser tão apropriado. Todos os modelos que serão apresentados aqui são baseados nessa distribuição e ajustados aos dados do Campeonato Brasileiro, popularmente conhecido como Brasileirão, do ano de 2019.

Modelo 1

Baio (2010) sugere um modelo bayesiano hierárquico para os gols marcados em uma determinada partida. No modelo proposto, o número de gols realizados segue uma distribuição Poisson condicionalmente independentes, em que a correlação é incluída por meio dos hiperparâmetros. A distribuição Poisson é vastamente utilizada para problemas de contagem e amplamente aplicada à análises esportivas como sugerem M. Dixon e S. Coles (2007) e D. Karlis e I. Ntzoufras (2003), dentre outros autores.

O vetor $\mathbf{y} = (y_{q1}, y_{q2})$ como um vetor de contagens, podemos tomar

$$y_{qj}|\theta_{qj} \sim Poisson(\theta_{qj})$$

o vetor tendo uma distribuição Poisson condicional aos parâmetros $\theta = (\theta_{g1}, \theta_{g2})$, que representam a taxa de pontuação no g-ésimo jogo para o mandante, representado por j = 1 e o visitante j = 2.

Assumindo um modelo log-linear de efeitos aleatórios, tem-se

$$\log \theta_{q1} = home + att_{h(q)} + def_{a(q)}$$

$$\log \theta_{q2} = att_{a(q)} + def_{h(q)}$$

em que o parâmetro home é um efeito fixo representando a vantagem de ter um jogo em casa e a taxa de pontuação considera o ataque e a defesa dos dois times que estão jogando. Os índices representam o time que da casa h(g) e o time visitante a(g) no g-ésimo jogo.

Priori

Considerando que o modelo proposto segue a abordagem bayesiana, os efeitos aleatórios são objetos aleatórios de interesse e é apropriado definir uma distribuição à priori para cada um deles. As prioris sugeridas pelos autores são:

home
$$\sim Normal(0, 0.0001)$$

 $att_t \sim Normal(\mu_{att}, \tau_{att})$
 $def_t \sim Normal(\mu_{def}, \tau_{def})$

Sendo t
 cada um dos times do campeonato. A Normal é definida pela média e precisão. O modelo original foi implementado no WinBUGS, que utiliza a mesma parametrização apresentada no artigo. Como priori para μ é definida uma Normal(0,0.0001) tanto para o ataque quanto defesa, e Gamma(0.1,0.1) para os τ de ataque e defesa.

Nesse trabalho, o modelo foi implementado no Stan e uma adaptação foi necessária, considerando que a parametrização do software é diferente. A distribuição Normal é definida pela média e desvio padrão, então passamos a ter as prioris para os parâmetros:

$$att_t \sim Normal(\mu_{att}, \sigma_{att})$$

 $def_t \sim Normal(\mu_{def}, \sigma_{def})$

Além disso, é necessário definir também as distribuições a priori dos hiperparâmetros. Para as médias, como não há conhecimento de informações que podem ser agregadas à priori, a escolha são prioris pouco informativas:

- $\mu_{att} \sim Normal(0, 10)$
- $\mu_{def} \sim Normal(0, 10)$

Conforme demonstrado por por Gelman (2008) e comentado em Almeida Inácio (n.d.), a priori não-informativa recomendada para o desvio padrão é uma Cauchy, portanto:

$$\sigma_{att} \sim Cauchy(0, 2.5)$$

 $\sigma_{def} \sim Cauchy(0, 2.5)$

Para garantir a identificabilidade do modelo, os autores sugerem a seguinte restrição nos parâmetros específicos de cada time:

$$\sum_{t=1}^{T} att_t = 0$$

$$\sum_{t=1}^{T} de f_t = 0$$

Ainda é proposto a restrição em que um dos times é definido como ataque e defesa iguais a 0, o que implica interpretar os parâmetros para os outros times utilizando como referência o time de base. A proposta foi implementada neste trabalho, então, a restrição de identificabilidade é:

$$att_T = 0$$

$$def_T = 0$$

Tal restrição foi fundamental para que as cadeias de Markov convergissem, além de ser um método mais rápido para a execução do código.

Simulação

Para checar a implementação dos modelos e estimação correta dos parâmetros, foi feita uma simulação com 1000 réplicas de tamanho 380, que é o número de jogos de um campeonato com 20 times. Os parâmetros do modelo usados para simulação são definidos como:

- home = 0.13
- $\mu_{att} = 0.05$
- $\mu_{def} = 0.08$
- $\sigma_{att} = 0.56$
- $\sigma_{def} = 0.52$

Figure 1: Simulação - Modelo 1

Observa-se que as distribuições da média da distribuição a posteriori dos parâmetros estão centradas em torno dos valores reais.

Diagnóstico de convergência da simulação As simulações foram realizadas com apenas 01 cadeia e 5000 interações. O gráfico traceplot mostra que a cadeia converge e consegue caminhar pelo espaço paramétrico.

Outra estatística útil é o \hat{R} , que próximo de 1 é condição para convergência. Todos os parâmetros apresentaram \hat{R} próximo de 1, sendo o menor $\hat{R}=0.9995999$ e maior $\hat{R}=1.002963$.

Ajuste

Para verificar o comportamento do modelo com um conjunto de dados reais, assim como no artigo original o modelo é ajustado para dados do campeonato italiano, aqui ele será testado com dados do Campeonato Brasileiro do ano de 2019.

O dados foram disponibilizados por Gomide (2022) no Github, com o seguinte formato:

home_team	away_team	$home_score$	away_score	$home_team_index$	$away_team_index$
282	314	2	1	10	16
315	285	2	0	17	13
262	283	3	1	1	11
276	263	2	0	8	2
293	267	4	1	15	6
265	264	3	2	4	3

As colunas *home_team_index* e *away_team_index* foram criadas atribuindo um valor inteiro ordinal para cada time, seguindo a notação do modelo.

Comparando a pontuação **acumulada** ao longo do campeonato observada e a pontuação estimada pelo modelo, tem-se o seguinte comportamento para cada time:

Santos foi time com maior pontuação atribuída pelo modelo, estimando exatamente a pontuação obtida pelo time no campeonato e, assim, sendo o campeão segundo o modelo. Porém, o campeão de 2019 foi o Flamengo e o vice-campeão o Santos.

Diagnóstico de convergência do ajuste

Figure 2: Pontuação acumulada - Modelo 1

Figure 3: Convergência - Modelo 1

Time	Pontuação observada	Pontuação estimada (Modelo 1)
Atlético-MG	48	45
Atlético-PR	64	52
Avaí	20	27
Bahia	49	57
Botafogo	43	55
Ceará-SC	39	57
Chapecoense	32	31
Corinthians	56	65
Cruzeiro	36	37
CSA	32	41
Flamengo	90	70
Fluminense	46	44
Fortaleza	53	52
Goiás	52	41
Grêmio	65	59
Internacional	57	40
Palmeiras	74	77
Santos	74	80
São Paulo	63	47
Vasco	49	52

Modelo 2

Conforme dito anteriormente, a distribuição Poisson é um dos modelos mais utilizados na literatura para análises do número de gols marcados em uma partida de futebol. As variáveis-resposta são usualmente modeladas como duas Poisson independentes, considerando que o número de gols de um time não afeta o número de gols do outro time. Tal suposição não é muito razoável, considerando, por exemplo, que a força de defesa de um time interfere nas oportunidades para a marcação de gols do oponente. A partir disso, Karlis (2003) sugerem a modelagem do número de gols a partir de uma Poisson bivariada, que permite a inclusão de uma covariância positiva que faz o papel da dependência entre as duas variáveis Poisson que, marginalmente, são independentes.

Sendo $X = X_1 + X_3$ e $Y = X_2 + X_3$, duas variáveis aleatórias com $X_i \sim Poisson(\lambda_i)$, então X e Y seguem conjuntamente uma Poisson bivariada $\mathbf{BP}(\lambda_1, \lambda_2, \lambda_3)$.

Conforme mencionado anteriormente, tem-se duas Poisson independentes marginalmente com $E(X) = \lambda_1 + \lambda_3$ e $Y = \lambda_2 + \lambda_3$. Além disso, $cov(X, Y) = \lambda_3$. Se $\lambda_3 = 0$, então temos simplesmente duas Poisson independentes. Os autores sugerem que o parâmetro λ_3 representam as condições de jogo comuns aos dois times da partida, como ritmo do jogo e condições climáticas.

Contudo, tal modelagem tem uma limitação: levando em conta que a covariância entre X e Y também é o parâmetro da Poisson e o espaço paramétrico está definido em $(0, +\infty)$, a covariância também está limitada em $(0, +\infty)$. Isso significa que à medida que o número de gols de um dos times aumenta, o do outro time não tende a seguir a relação inversa e, por isso, a interpretação de condições favoráveis aos dois times simultaneamente. Porém, é razoável pensar que essa relação pode ser negativa, com o aumento do comportamento ofensivo de um time e a outra equipe sem muitas oportunidades de marcar gols.

Definindo diretamente o modelo aplicado à futebol, temos que para cada jogo i

$$X_i \sim Poisson(\lambda_{1i})$$

 $Y_i \sim Poisson(\lambda_{2i})$

e usando a função de ligação log para os preditores lineares, tem-se:

$$\log(\lambda_{1i}) = \mu + home + att_{h_i} + def_{g_i}$$
$$\log(\lambda_{2i}) = \mu + att_{g_i} + def_{h_i}$$

Para a inclusão da covariância como λ_3 , Karlis (2003) apresenta o preditor linear que permite combinar diferentes modelos:

$$\log(\lambda_{3i}) = \alpha^{con} + \gamma_1 \alpha_{h_i}^{home} + \gamma_2 \alpha_{g_i}^{away}$$

No qual γ_j é uma variável dummy, indicando quais parâmetros serão incluídos no modelo de interesse. Para o modelo 2, $\gamma_1 = \gamma_2 = 0$, ou seja, tem-se apenas uma covariância constante.

No artigo original, ataque e defesa são tratados como efeitos fixos, portanto o número de parâmetros é o número de times multiplicado por dois mais 1, para o parâmetro que representa a covariância. Para os dados utilizados por Karlis do Campeonato Italiano de 1991-1992, são 37 parâmetros, enquanto para o Campeonato Brasileiro de 2019 seriam 41 parâmetros. Por isso, na adaptação do modelo, ataque e defesa foram abordados como efeitos aleatórios.

A restrição de identificabilidade dos efeitos de ataque e defesa é a mesma do modelo 1, com o efeito do último time definido como:

$$att_T = 0$$
$$def_T = 0$$

Priori

A escolha das distribuições a priori deste modelo segue o mesmo princípio do modelo 1: prioris pouco informativas.

$$\begin{split} home &\sim Normal(0,10)\\ \sigma_{att} &\sim Cauchy(0,2.5)\\ \sigma_{def} &\sim Cauchy(0,2.5)\\ \mu &\sim Normal(0,10)\\ \alpha &\sim Normal(0,1)\\ \alpha^{home} &\sim Normal(0,1)\\ \alpha^{away} &\sim Normal(0,1) \end{split}$$

Simulação

Com o objetivo de verificar a estimação certa dos parâmetros, também foi feita uma simulação com 1000 réplicas de tamanho 380, representando o número de jogos de um campeonato com 20 times. Neste modelo, os parâmetros para simulação são definidos como:

- home = 0.13
- $\mu = 0.21$
- $\alpha = 0.20$
- $\sigma_{att} = 0.92$
- $\sigma_{def} = 0.80$

A partir dos resultados dos histogramas obtidos na simulação, tem-se que o modelo estima corretamente os parâmetros.

Figure 4: Simulação - Modelo 2

Diagnóstico de convergência da simulação

As simulações foram realizadas com apenas 01 cadeia e 5000 interações. O gráfico traceplot mostra que a cadeia converge e consegue iterar por todo espaço paramétrico.

A estatística \hat{R} para os parâmetros se mostrou próxima de 1, sendo o menor $\hat{R}=0.9995999$ e maior $\hat{R}=1.002963$.

Ajuste

Assim como o primeiro modelo, o modelo 2 foi ajustado para o Campeonato Brasileiro de 2019. Neste modelo, $\gamma_1 = \gamma_2 = 0$.

Figure 5: Pontuação acumulada - Modelo 2

O modelo 2 tem o Flamengo como maior pontuador ao longo do campeonato, acertando o vencedor. O segundo lugar ficou entre o Santos e Grêmio, segundo e quarto colocado respectivamente.

Além dos campeões, os quatro últimos times são rebaixados para a segunda divisão. Nesse modelo, há um empate na pontuação final dos times Cruzeiro e Ceará e, seguindo pelo critério do maior saldo de gols, o Cruzeiro seria rebaixado juntamente com Bahia, Chapecoense e CSA. Os times rebaixados no ano foram Cruzeiro, CSA, Chapecoense e Avaí, ou seja, o modelo 2 errou apenas uma das equipes.

Modelo 3

O modelo três é uma extensão do modelo 2, no qual $\gamma_1 = 1, \gamma_2 = 0$. Não foi feita uma simulação para o modelo por limitações de memória no computador.

Modelo 4

O modelo quatro é uma extensão do segundo modelo, no qual $\gamma_1=1, \gamma_2=1$. Também não foi realizada uma simulação pela mesma razão do modelo 3.

Figure 6: Pontuação acumulada - Modelo $3\,$

Figure 7: Pontuação acumulada - Modelo $4\,$

Time	Pontuação observada	Pontuação estimada (Modelo 2)
Atlético-MG	48	72
Atlético-PR	64	53
Avaí	20	43
Bahia	49	35
Botafogo	43	46
Ceará-SC	39	37
Chapecoense	32	33
Corinthians	56	61
Cruzeiro	36	37
CSA	32	26
Flamengo	90	75
Fluminense	46	53
Fortaleza	53	56
Goiás	52	50
Grêmio	65	73
Internacional	57	54
Palmeiras	74	54
Santos	74	73
São Paulo	63	68
Vasco	49	42

Modelo 5

O modelo quatro é uma extensão do segundo modelo, no qual $\gamma_1=0, \gamma_2=1.$ Também não foi realizada uma simulação pela mesma razão do modelo 3.

${\bf 3. \ Comparação \ dos \ modelos}$

Medidas de qualidade relativa dos modelos são fundamentais para seleção de modelos e avaliação da acurácia preditiva dos modelos.

Figure 8: Pontuação acumulada - Modelo $5\,$

Como o cálculo do LOO-CV é feito baseado na log-verossimilhança de cada observação, algumas delas podem ser muito influentes. Isso é especialmente sensível quando temos distribuições com caudas longas. Para isso, é calculado o PSIS.

4. Outros modelos

Um possível problema com modelos hierárquicos é um efeito de encolhimento, no qual observações extremas são arrastadas para a média global. Esse efeito faz com que equipes com um desempenho muito bom, que estão no topo da tabela, têm estimativas conservadoras e os times que estão nas últimas colocações são superestimados. O encolhimento é um possível problema do modelo 1 e Baio (2010) recomenda um modelo de mistura com três componentes para contornar esse efeito.

Uma outra possibilidade de mistura é um modelo inflado de zeros.

Exemplo Tabela

R Markdown

- ## Warning: `data_frame()` was deprecated in tibble 1.1.0.
- ## Please use `tibble()` instead.
- ## This warning is displayed once every 8 hours.
- ## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.

Table 1: Simulation parameters

parameter	value
λ_1 (old normal)	300
N (total days)	400
d_2 (time to new normal)	12

5. Referências

6. Apêndice

- 1. Traceplot para diagnóstico das cadeias
- Almeida Inácio, Marco Henrique de. n.d. "Introdução Ao Stan Como Ferramenta de Inferência Bayesiana." https://marcoinacio.com/stan.
- Baio, Marta, Gianluca e Blangiardo. 2010. "Bayesian Hierarchical Model for the Prediction of Football Results." *Journal of Applied Statistics* 37 (2): 253–64. https://doi.org/10.1080/02664760802684177.
- Baxter, Richard, Mike e Stevenson. 1988. "Discriminating Between the Poisson and Negative Binomial Distributions: an Application to Goal Scoring in Association Football." *Journal of Applied Statistics* 15 (3): 347–54. https://doi.org/10.1080/02664768800000045.
- Gelman, Aleks e Pittau, Andrew e Jakulin. 2008. "A Weakly Informative Default Prior Distribution for Logistic and Other Regression Models." The Annals of Applied Statistics 2 (4). https://doi.org/10.1214/08-AOAS191
- Gomide, Arnaldo, Henrique e Gualberto. 2022. CaRtola: Extração de Dados Da API Do CartolaFC, Análise Exploratória Dos Dados e Modelos Preditivos Em r e Python. https://github.com/henriquepgomide/caRtola.
- Karlis, Ioannis, Dimitris e Ntzoufras. 2003. "Analysis of Sports Data by Using Bivariate Poisson Models." Journal of the Royal Statistical Society: Series D (The Statistician) 52 (3): 381–93. https://doi.org/10.1 111/1467-9884.00366.
- Pollard, Richard. 1985. "69.9 Goal-Scoring and the Negative Binomial Distribution." The Mathematical Gazette 69 (447): 45–47. https://doi.org/10.2307/3616453.