Package 'BMTAR'

October 12, 2022

Type Package

Date 2021-01-18
Title Bayesian Approach for MTAR Models with Missing Data
Version 0.1.1
Author Valeria Bejarano Salcedo <vbejaranos@unal.edu.co>, Sergio Alejandro Calderon Villanueva <sacalderonv@unal.edu.co> Andrey Duvan Rincon Torres <adrincont@unal.edu.co></adrincont@unal.edu.co></sacalderonv@unal.edu.co></vbejaranos@unal.edu.co>
Maintainer Andrey Duvan Rincon Torres <adrincont@unal.edu.co></adrincont@unal.edu.co>
Depends R (>= $3.6.0$)
Description Implements parameter estimation using a Bayesian approach for Multivariate Threshold Autoregressive (MTAR) models with missing data using Markov Chain Monte Carlo methods. Performs the simulation of MTAR processes (mtarsim()), estimation of matrix parameters and the threshold values (mtarns()), identification of the autoregressive orders using Bayesian variable selection (mtarstr()), identification of the number of regimes using Metropolised Carlin and Chib (mtarnumreg()) and estimate missing data, coefficients and covariance matrices conditional on the autoregressive orders, the threshold values and the number of regimes (mtarmissing()). Calderon and Nieto (2017) <doi:10.1080 03610926.2014.990758="">.</doi:10.1080>
License GPL (>= 2)
Encoding UTF-8
$\textbf{Imports} \ \ Brobdingnag, MASS, MCMC pack, expm, ks, mvtnorm, compiler, do Parallel, parallel, ggplot 2$
LazyData true
NeedsCompilation no
Repository CRAN
Date/Publication 2021-01-19 05:30:02 UTC
R topics documented:
autoplot

2 autoplot

autoplot.tsregime	5
auto_mtar	6
datasim	7
datasim_miss	8
datasim_numreg	9
diagnostic_mtar	9
dmnormB	10
dwishartB	11
hydrodata	11
lists_ind	12
missingest	12
mtaregime	13
mtarinipars	14
mtarmissing	17
mtarNAIC	18
mtarns	20
mtarnumreg	22
mtarsim	23
mtarstr	25
print	27
print.regime_missing	28
print.regime_model	29
print.regime_number	
print.tsregime	31
prodB	
repM	32
tsregime	33
	٠.
	35

autoplot

Index

Create a complete ggplot appropriate to a particular data type

Description

autoplot uses ggplot2 to draw a particular plot for an object of a particular class in a single command. This defines the S3 generic that other classes and packages can extend.

Usage

```
autoplot(object, ...)
```

Arguments

object an object, whose class will determine the behaviour of autoplot
... other arguments passed to specific methods

Value

```
a ggplot object
```

See Also

```
autolayer(), ggplot() and fortify()
```

```
autoplot.regime_missing
```

regime_missing object ggplot for the outputs on the function outputs mtarmissing

Description

Produces a ggplot object for the results of the mtarmissing function.

Usage

```
## S3 method for class 'regime_missing'
autoplot(object, type = 1,...)
```

Arguments

object Object of class "regim_missing". Not NULL

type character string giving the type of plot to be computed. Allowed values are

1 for "Missing data (Yt) chains" (the default) or 2 for "Missing data (Ut =

[Zt,Xt]) chains".

... other arguments passed to specific methods

Details

Graph the strings for the outputs corresponding to the functions "mtarmissing" which return an object of class "regim_missing". The chains corresponding to the samplings in each case do not contain the burning period.

Value

Return a ggplot object.

Author(s)

Valeria Bejarano <vbejaranos@unal.edu.co> & Andrey Rincon <adrincont@unal.edu.co>

References

Calderon, S. and Nieto, F. (2017) *Bayesian analysis of multivariate threshold autoregress models* with missing data. Communications in Statistics - Theory and Methods 46 (1):296–318. doi:10.1080/03610926.2014.990758

See Also

```
mtarmissing
```

Examples

```
library(ggplot2)
data('missingest')
autoplot.regime_missing(missingest,1)
```

autoplot.regime_model regime_model object ggplot for the outputs on the function outputs mtarns and mtastr

Description

Produces a ggplot object for the results of the mtarns and mtarstr functions.

Usage

```
## S3 method for class 'regime_model'
autoplot(object, type = 1,...)
```

Arguments

object Object of class "regime_model". Not NULL

type character string giving the type of plot to be computed. Allowed values are

1 for "Thresholds chains" (the default), 2 for "Sigma chains", 3 for "Theta

chains", 4 for "Gamma chains" or 5 for "Output process fit"

... other arguments passed to specific methods

Details

Graph the strings for the outputs corresponding to the functions "mtarns" and "mtarstr" which return an object of class "regime_model". The chains corresponding to the samplings in each case do not contain the burning period.

Value

Return a ggplot object.

Author(s)

Valeria Bejarano <vbejaranos@unal.edu.co> & Andrey Rincon <adrincont@unal.edu.co>

References

Calderon, S. and Nieto, F. (2017) *Bayesian analysis of multivariate threshold autoregress models* with missing data. Communications in Statistics - Theory and Methods 46 (1):296–318. doi:10.1080/03610926.2014.990758

autoplot.tsregime 5

See Also

```
mtarns, mtarstr
```

Examples

autoplot.tsregime

tsregime object ggplot for the outputs on the function tsregime

Description

Produces a ggplot object for the results of the tsregime function.

Usage

```
## S3 method for class 'tsregime'
autoplot(object, type = 1,...)
```

Arguments

object Object of class "tsregime".

type character string giving the type of plot to be computed. Allowed values are 1 for

"Output process" (the default), 2 for "Threshold process", 3 for "Covariate

process"

... other arguments passed to specific methods

Details

Graph for the stochastic processes of the object \dQuote \code tsregime for: Output process and if they exist for: Threshold process and Covariates process. In the case that there are missing data, a red line is drawn at the indicated time.

Value

Return a ggplot object.

6 auto_mtar

Author(s)

Valeria Bejarano <vbejaranos@unal.edu.co> & Andrey Rincon <adrincont@unal.edu.co>

References

Calderon, S. and Nieto, F. (2017) *Bayesian analysis of multivariate threshold autoregress models* with missing data. Communications in Statistics - Theory and Methods 46 (1):296–318. doi:10.1080/03610926.2014.990758

See Also

```
tsregime
```

Examples

```
data("datasim")
yt = datasim$Sim
Yt = yt$Yt
Zt = yt$Zt
data = tsregime(Yt,Zt)
autoplot.tsregime(data)
```

auto_mtar

Estimation of a MTAR model for some data

Description

Compute by Bayesian methodology a MTAR model for some data

Usage

```
auto_mtar(Yt, Zt = NULL, Xt = NULL, 10_min = 2, 10_max = 3,
maxorders = list(pj = 2,qj = 0,dj = 0),
niter = 3000, chain = FALSE, method = 'KUO',parallel = FALSE)
```

Arguments

Yt	matrix type object, observed process. Not NULL
Zt	matrix type object, threshold process. Default NULL
Xt	matrix type object, covariate process. Default NULL
10_min	numeric type between 1 and 4, number of regimes minimum to consider. Default 2
10_max	numeric type between 1 and 4, number of regimes maximum to consider. Default $\boldsymbol{3}$
maxorders	list type object with names (pj,qj,dj), maximum lags consider for the processes in each regime. Default pj = 2, qj = 0,dj = 0
niter	numeric type, number of runs for every estimation. Default 3000

datasim 7

chain logical type, if return chains of estimations parameters and values (if missing)

method character type, must be one "KUO" or "SSVS"

parallel logical, if parallel package should be used. Default FALSE

Details

The default arguments are designed for rapid estimation of models for any data (Yt, Zt and Xt). Returns the fit of MTAR model. The function conducts Bayesian estimation with "niter" chains of the number of regimes with maximum "10" and within the maximum lags orders provided "maxorders". It can be a little be faster when used "parallel" for parallel package.

Value

Return list type object

tsregime class "tsregime" object, if missing values completed with estimations

numreg class "regime_number", number of regimes estimated

pars class "regime_model" object with final estimations of parameters

Author(s)

Valeria Bejarano <vbejaranos@unal.edu.co>, Sergio Calderon <sacalderonv@unal.edu.co> & Andrey Rincon <adrincont@unal.edu.co>

References

Calderon, S. and Nieto, F. (2017) *Bayesian analysis of multivariate threshold autoregress models* with missing data. Communications in Statistics - Theory and Methods 46 (1):296–318. doi:10.1080/03610926.2014.990758

Examples

```
data('datasim')
data = datasim$Sim
auto = auto_mtar(Yt = data$Yt, Zt = data$Zt,niter = 1000)
```

datasim

Simulated Multivariate threshold autoregressive process simulation

Description

simulated MTAR process

Usage

```
data(datasim)
```

8 datasim_miss

Format

Object with class mtarsim

Source

R Simulate

References

Calderon, S. and Nieto, F. (2017) *Bayesian analysis of multivariate threshold autoregress models* with missing data. Communications in Statistics - Theory and Methods 46 (1):296–318. doi:10.1080/03610926.2014.990758

datasim_miss

Multivariate threshold autoregressive process simulation with missing data

Description

simulated MTAR process with missing data

Usage

data(datasim)

Format

Object with class mtarsim

Source

R Simulate

References

Calderon, S. and Nieto, F. (2017) *Bayesian analysis of multivariate threshold autoregress models with missing data.* Communications in Statistics - Theory and Methods 46 (1):296–318. doi:10.1080/03610926.2014.990758

datasim_numreg 9

datasim_numreg

Multivariate threshold autoregressive process simulation for estimate number of regimes

Description

```
object of class "regime_number"
```

Usage

data(datasim_numreg)

Format

Object with class regime_number

Source

R Simulate

References

Calderon, S. and Nieto, F. (2017) *Bayesian analysis of multivariate threshold autoregress models* with missing data. Communications in Statistics - Theory and Methods 46 (1):296–318. doi:10.1080/03610926.2014.990758

diagnostic_mtar

Residual diagnosis for model MTAR

Description

Tests to help evaluate some assumptions about the MTAR model. calculating some tests and graphs.

Usage

```
diagnostic_mtar(regime_model,lagmax = NULL,alpha = '0.05')
```

Arguments

regime_model Object of class "regime_model". Not NULL

lagmax maximum lag at which to calculate the acf and pacf. Default NULL

alpha level of significance for the graphs, should take values in c('0.10','0.05','0.025','0.01','0.005').

Default '0.05'

10 dmnormB

Details

For the graphical tests it returns: "Residuals plot" and "Residuals density plot" (overlaps a standard normal density), "Residuals plot" and "Residuals plot", "CUSUM" statistic for residuals, "ACF" and "PACF" plots for residuals series.

Value

Returns a list of ggplot objects with the graphics mentioned before.

Author(s)

Valeria Bejarano <vbejaranos@unal.edu.co>, Sergio Calderon <sacalderonv@unal.edu.co> & Andrey Rincon <adrincont@unal.edu.co>

References

Calderon, S. and Nieto, F. (2017) *Bayesian analysis of multivariate threshold autoregress models* with missing data. Communications in Statistics - Theory and Methods 46 (1):296–318. doi:10.1080/03610926.2014.990758

Examples

dmnormB

Multivariate normal density using Brobdingnag class

Description

Compute multivariate normal density with class Brobdingnag objects.

Usage

```
dmnormB(x, mean, sigma)
```

Not NULL

Arguments

X	numeric type object, value to compute the density of multivariate normal distribution. Not NULL
mean	numeric type, mean of multivariate normal distribution. Not NULL
sigma	matrix type object, covariance parameter of multivariate normal distribution.

dwishartB 11

Value

object class Brobdingnag

dwishartB

Wishart density using Brobdingnag class

Description

Compute Wishart density with class Brobdingnag objects.

Usage

```
dwishartB(x,nu,S)
```

Arguments

x matrix type object, value to compute the density of Wishart distribution. Not

NULL

nu numeric type, degrees of freedom. Not NULL

S matrix type object, parameter of Wishart distribution. Not NULL

Value

object class Brobdingnag

hydrodata

Hydrological data of Colombia

Description

Diary rainfall (in mm) and the diary river flow (in m³/s) of two rivers where a river empties into the other one in a region of department of Cauca in Colombia.

Usage

data(hydrodata)

Format

data.frame

Source

IDEAM, the oficial Colombian agency for hydrological and meteorological studies

12 missingest

References

Calderon, S. and Nieto, F. (2017) *Bayesian analysis of multivariate threshold autoregress models* with missing data. Communications in Statistics - Theory and Methods 46 (1):296–318. doi:10.1080/03610926.2014.990758

lists_ind

Create indicator vector for the regimen of each observation

Description

From a threshold variable and the corresponding processes calculate a vector indicating the number of the regime of each observation.

Usage

```
lists_ind(r,Zt,l,...)
```

Arguments

r value for the threshold variableZt threshold processes univariate

1 number of regimes

... other arguments passed to specific methods

Value

Vector of length N indicating the number of the regime of each observation

missingest

simulated data

Description

results example missing data estimation process for a mtar process

Usage

```
data(missingest)
```

Format

Object whit class mtar_missing

Source

R Simulation

mtaregime 13

References

Calderon, S. and Nieto, F. (2017) *Bayesian analysis of multivariate threshold autoregress models with missing data*. Communications in Statistics - Theory and Methods 46 (1):296–318. doi: 10.1080/03610926.2014.990758.

regime Object class "regime" creation

Description

Create an object of class "regime" given nonstructural and structural parameters for each regime.

Usage

```
mtaregime(orders = list(p = 1,q = 0,d = 0), cs = NULL, Phi, Beta = NULL, Delta = NULL, Sigma)
```

Arguments

orders	list type object with names (p,q,d) , number of lags of Yt, Xt and Zt, respectively. Default $p=1,q=0,d=0$
cs	matrix type object, the constant term of the regime specification. Default NULL
Phi	list type object with names (phi1,, phip), each one a matrix (kxk) type object autoregressive specification. Not NULL
Beta	list type object with names (beta1,, betaq), each one a matrix $(kx\nu)$ type object covariate parameters specification Default NULL
Delta	list type object with names (delta1,, deltad), each one a matrix $(kx1)$ type object parameter specification of Threshold process. Default NULL
Sigma	a positive-definite symmetric matrix (kxk) , specification of errors covariate matrix. Not NULL

Details

Causes creation of the object class "regime". Sigma matrix corresponds to Σ (root of the covariance matrix). When cs is not specified or only matrices are delivered for some lags, the function assumes unspecified 0 (matrix). Rows number in the Phi, Beta and Delta matrix should be the same (k dimension of variables in Yt).

Value

Return list type object of class "regime" with the values of the arguments

Author(s)

Valeria Bejarano <vbejaranos@unal.edu.co> & Andrey Rincon <adrincont@unal.edu.co>

14 mtarinipars

References

Calderon, S. and Nieto, F. (2017) *Bayesian analysis of multivariate threshold autoregress models* with missing data. Communications in Statistics - Theory and Methods 46 (1):296–318. doi:10.1080/03610926.2014.990758

See Also

mtarsim

Examples

```
# Creation of parameters for regimen with orders = c(2,1,1), nu = 1 y k = 2. ## previous objects orders = list(p = 2,q = 1,d = 1) Phi = list(phi2 = matrix(c(0.1,0.6,-0.4,0.5),2,2, byrow = TRUE)) Beta = list(beta1 = matrix(c(0.3,-0.4),2, 1)) Delta = list(delta1 = matrix(c(0.6,1),2,1)) Sigma = matrix(c(1,0.6,0.6,1.5),2,2,byrow = TRUE) cs = matrix(c(1,-1),nrow = 2) ## creacion de la clase regime Ri = matrix(c(0.6,0.6,1.5),0.2,byrow = 1.5) Rigma = matrix(c(0
```

mtarinipars

Organization and check model specification

Description

Model specification of data, known or unknown parameters and its prior distributions

Usage

```
mtarinipars(tsregime_obj, list_model = list(pars = list(1 = 2, orders = list(pj = c(1,1), qj = c(0,0), dj = c(0,0)), r = NULL, Sigma = NULL), orders = NULL, 10_min = NULL, 10_max = NULL, method = NULL, theta_prior = NULL, sigma_prior = NULL, gamma_prior = NULL, r_prior = NULL)
```

Arguments

```
tsregime_obj class "tsregime" object. Not NULL list_model list type object with at least one of the names (pars, orders, 10). {pars: list type object with one of the names (1, orders, 10). {pars: list type object with one of the names (1, orders, 10). Default 2 orders: list type object with names (10). Default 2 orders: list type object with names (10), 100 each a vector of length 101, specificate lags orders in each regime. Default list(100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 10
```

mtarinipars 15

Sigma: list type object with names (R1, ..., Rl) each a matrix type object, specification of error covariate matrix. Default NULL)

orders: list type object with names (pj,qj,dj) each a vector of length l,specificate maximum lags orders in each regime if not known. Default NULL

10_min: numeric type, number minimum of regimes to consider for the model if not known. Default NULL

l0_max: numeric type, number maximum of regimes to consider for the model if not known. Default NULL}

method character type object, if orders not known or enter 10 it must be one "KUO" or

"SSVS", when known it is not necessary. Default NULL

theta_prior list type object with names (R1, ..., Rl), each one a list type object with at least

one of the names (theta0j,cov0j)(if method "SSVS" (theta0j,cov0j,Cij,Tauij,R)),specification

of mean and covariate matrix of the prior distribution for θ parameter. Default

NULL

sigma_prior list type object with names (R1, ..., Rl), each one a list type object with at least

one of the names (S0j,nu0j) specification of matrix and degrees of freedom of

the prior distribution for Σ parameter. Default NULL

gamma_prior list type object with names (R1, ..., RI), each one a vector of prior probabilities

for γ parameter. Default NULL

r_prior list type object with at least one name (za, zb, val_rmh), each one a numeric

type object with the minimum, maximum value for r and its parameter for

Metropolis-Hasting respectively. Default NULL

Details

list_model its a easy way to identify what need to be estimated in the MTAR model. First, pars refers to known parameters in the model like "l" number of regimes, "orders" lags for output, covariate and threshold processes, "r" threshold value and "Sigma" covariance error matrix for each regime. Also when lags orders or l0 are unknown this could be added to this list. Second, in order to identify autoregressive orders in MTAR models, two methods for stochastic search are selected because it permits us that the estimation is done in only one step. The first method, called Kuo and Mallick (Kuo), was introduced in (Kuo & Mallick, 1998) for variable selection in regression models. The second one was proposed in (George & McCulloch, 1993) and it is called Stochastic Search Variable Selection (SSVS). Then "method" refers to one of this two for estimating structural parameters of the MTAR model. Third, all related to prior distributions of our parameters of interest

$$\theta_{j} \sim N(\theta_{0}j, \Sigma_{0}j) in Regime j and \theta_{j} = vec(A_{j}) A_{j} = [\Phi_{0}\Phi_{1} : p\beta_{1} : q\delta_{1} : d]$$

$$\Sigma_{j} \sim W(S_{0}j, \nu_{0}j)$$

$$\gamma_{i}j \sim Ber(p_{i}j0) where i = 1, ..., k * p_{j} + nu * q_{j} + d$$

$$r \sim U(za, zb) and its proposal for MHalgorithm U(-val_{r}mh, val_{r}mh)$$

Value

Return a list type object of class "regime_inipars"

tsregime_obj = tsregime_obj

16 mtarinipars

```
pars = list_model$pars
orders = list_model$orders or list_model$pars$orders
method = method
init$r = r_prior
init$Theta = theta_prior
init$Sigma = sigma_prior
init$Gamma = gamma_prior
```

Author(s)

Valeria Bejarano <vbejaranos@unal.edu.co> & Andrey Rincon <adrincont@unal.edu.co>

References

Calderon, S. and Nieto, F. (2017) *Bayesian analysis of multivariate threshold autoregress models* with missing data. Communications in Statistics - Theory and Methods 46 (1):296–318. doi:10.1080/03610926.2014.990758

```
data("datasim")
tsregime_obj = datasim$Sim
# for estimate non-structural parameters:
# mtarns: l always known,
\# Sigma = NULL = list(R1,R2) can be known, r = NULL can be known
# Sigma and r known
parameters = list(l = length(datasim$Reg),
Sigma = list(R1 = datasim$Reg$R1$sigma,R2 = datasim$Reg$R2$sigma),
r = tsregime_obj$r,
orders = list(pj = datasim$pj, qj = datasim$qj, dj = datasim$dj))
initpars_Sr = mtarinipars(tsregime_obj,list_model = list(pars = parameters))
#only r known
parameters = list(1 = length(datasim$Reg),Sigma = NULL, r = tsregime_obj$r,
orders = list(pj = datasim$pj, qj = datasim$qj, dj = datasim$dj))
initpars_r = mtarinipars(tsregime_obj,list_model = list(pars = parameters))
#r and Sigma unknown
parameters = list(l = length(datasim$Reg),Sigma = NULL, r = NULL,
orders = list(pj = datasim$pj, qj = datasim$qj, dj = datasim$dj))
initpars = mtarinipars(tsregime_obj,list_model = list(pars = parameters))
# for estimate structural and non-structural parameters
# mtarstr: l always known
parameters = list(l = length(datasim$Reg))
orders = list(pj = c(2,2), dj = c(1,1))
initpars_KUO = mtarinipars(tsregime_obj,
list_model = list(pars = parameters, orders = orders), method = 'KUO')
initpars_SSVS = mtarinipars(tsregime_obj,
list_model = list(pars = parameters, orders = orders), method = 'SSVS')
# mtarnumreg 10_min or 10_max and method always
initpars_1 = mtarinipars(tsregime_obj,list_model = list(10_max = 3),method = 'KUO')
```

mtarmissing 17

mtarmissing	Estimation of missing values of observed, covariate and threshold pro-
	cesses

Description

Estimation using Bayesian methodology of missing values in observed(output), covariate and threshold processes.

Usage

```
mtarmissing(ini_obj,niter = 1000, chain = FALSE, level = 0.95,
burn = NULL, cU = 0.5, b = NULL)
```

Arguments

ini_obj	class "regime_inipars" object, here specificate in pars: l, orders and r known. Not NULL
niter	numeric type, number of runs of MCMC. Default 1000
chain	logical type, if return chains of parameters. Default FALSE
level	numeric type, confident interval for estimations. Default 0.95
burn	numeric type, number of initial runs. Default NULL (10% of niter)
cU	numeric type, coefficient of the diagonal covariance matrix of process $Ut = (Zt,Xt)$. Default 0.5
b	numeric type greater or equal 1, autoregressive order of $Ut = (Zt,Xt)$. Default NULL meaning 1

Details

The MTAR model

$$Y_t = \phi_0^{(j)} + \sum_{i=1}^{p_j} \phi_i^{(j)} Y_{t-i} + \sum_{i=1}^{q_j} \beta_i^{(j)} X_{t-i} + \sum_i i = 1^{d_j} \delta_i^{(j)} Z_{t-i} + \sum_{(j)}^{1/2} \epsilon_t i f r_{j-1} < Z_t \le r_j,$$

is written into a state space model with regime-switching where the matrices depend on the threshold variable. In order to estimate the missing data in the observed vector Y_t , it is necessary to obtain samples of the full conditional distribution of the state vector α_t , for all times $t=1,\cdots,T$ using Kalman Filter. It is assumed that the process $U_t=(X_t,Z_t)$ is a Markov chain, and in order to get samples of the full conditional distribution of $U_t,t=1,\cdots,T$, it is supposed that kernel and initial distribution are Gaussian for simplicity. However, in the next updates, we are going to get flexibility at this point.

Value

Return list type object of class "regime_missing"

tsregime ini_obj\$tsregime_obj with estimated observations
estimates confident interval and mean of estimated missing values
Chain if chain TRUE, chains of the estimated missing values

18 mtarNAIC

Author(s)

Valeria Bejarano <vbejaranos@unal.edu.co>, Sergio Calderon <sacalderonv@unal.edu.co> & Andrey Rincon <adrincont@unal.edu.co>

References

Calderon, S. and Nieto, F. (2017) *Bayesian analysis of multivariate threshold autoregress models* with missing data. Communications in Statistics - Theory and Methods 46 (1):296–318. doi:10.1080/03610926.2014.990758

Examples

```
data("datasim")
yt = datasim$Sim
# some missing data
data_yt = yt$Yt
data_zt = yt$Zt
posNA = sample(c(1:500),8)
data_yt[c(posNA),] = c(NA,NA)
posNA = sample(c(1:500),8)
data_zt[c(posNA)] = NA
data_final = tsregime(data_yt,data_zt,r = yt$r)
autoplot.tsregime(data_final,1)
autoplot.tsregime(data_final,2)
initial = mtarinipars(tsregime_obj = data_final,
list_model = list(pars = list(l = 2,r = datasim$Sim$r,
orders = list(pj = c(1,1), qj = c(0,0),dj = c(0,0)))))
missingest = mtarmissing(ini_obj = initial,chain = TRUE,
niter = 500, burn = 500)
print(missingest)
autoplot.regime_missing(missingest,1)
datasim$Sim$Yt[is.na(data_yt[,1]),]
missingest$tsregime$Yt[is.na(data_yt[,1]),]
```

mtarNAIC

Compute NAIC of a MTAR model

Description

Compute the Non-linear Akaike information criterion (NAIC) of a "regime_model" class object.

Usage

```
mtarNAIC(regimemodel)
```

Arguments

```
regimemodel object of class "regime_model"
```

mtarNAIC 19

Details

Estimation of thresholds was made before starting the Bayesian procedure via the Non-linear Akaike information criterion (NAIC) (Tong, 1990), in MTAR model. The NAIC for a MTAR model with I regimes is:

$$NAIC = \sum_{j=1}^{l} AICj(r) / \sum_{j=1}^{l} N_j$$
$$AICj(r) = Njln(|Sj/Nj|) + 2k\eta_j$$

Nj: number of observations in each regime.

$$S_j = \sum_{t:j_t=j} (y_t - YP)'(y_t - YP)$$

$$YP = \Phi_0^{(j)} + \sum_{i=1}^{p_j} \Phi_i^{(j)} Y_{t-i} + \sum_{i=1}^{q_j} \beta_i^{(j)} X_{t-i} + \sum_{i=1}^{d_j} \delta_i^{(j)} Z_{t-i}$$

Value

Return a list type object:

AICj numeric type, AIC for each regime

NAIC numeric type, NAIC value

Author(s)

Valeria Bejarano <vbejaranos@unal.edu.co>, Sergio Calderon <sacalderonv@unal.edu.co> & Andrey Rincon <adrincont@unal.edu.co>

References

Calderon, S. and Nieto, F. (2017) *Bayesian analysis of multivariate threshold autoregress models* with missing data. Communications in Statistics - Theory and Methods 46 (1):296–318. doi:10.1080/03610926.2014.990758

```
data("datasim")
data = datasim
# Estimate number of regimes with NAIC
initial1 = mtarinipars(tsregime_obj = data$Sim,
list_model = list(pars = list(l = 2,
orders = list(pj = c(1,1),dj = c(1,1)), r = 0.2)))
estruc1 = mtarns(ini_obj = initial1,niter = 100,chain = TRUE,burn = 100)
initial2 = mtarinipars(tsregime_obj = data$Sim,
list_model = list(pars = list(l = 2,
orders = list(pj = c(1,1),dj = c(1,1)), r = 0.3)))
estruc2 = mtarns(ini_obj = initial2,niter = 100,chain = TRUE,burn = 100)
#NAIC
mtarNAIC(estruc1)
mtarNAIC(estruc2)
```

20 mtarns

mtarns	Estimation of non-structural parameters for MTAR model

Description

Bayesian method for estimating non-structural parameters of a MTAR model with prior conjugate.

Usage

```
mtarns(ini_obj, level = 0.95, burn = NULL, niter = 1000,
chain = FALSE, r_init = NULL)
```

Arguments

ini_obj	class "regime_inipars" object, here specificate 1 and orders known, might know r or Sigma. Not NULL. Default $l=2$, orders = list(pj = $c(2,2)$)
level	numeric type, confident interval for estimations. Default 0.95
burn	numeric type, number of initial runs. Default NULL (30% of niter)
niter	numeric type, number of runs of MCMC. Default 1000
chain	logical type, if return chains of parameters. Default FALSE
r_init	numeric type of length l - 1. If r not known, starting value of the chain. Default NULL

Details

Based on the equation of the Multivariate Threshold Autoregressive(MTAR) Model

$$Y_{t} = \phi_{0}^{(j)} + \sum_{i=1}^{p_{j}} \phi_{i}^{(j)} Y_{t-i} + \sum_{i=1}^{q_{j}} \beta_{i}^{(j)} X_{t-i} + \sum_{i=1}^{q_{j}} \delta_{i}^{(j)} X_{t-i} + \sum_{i=1}^{q_{j}} \delta_{i}^{(j)} Z_{t-i} + \sum_{i=1}^{1/2} \epsilon_{t} i f r_{j-1} < Z_{t} \le r_{j},$$

where process $\{\epsilon_t\}$ is a k-variate independent Gaussian process, $\{Y_t\}$ is k-variate process, $\{X_t\}$ is a ν -variate process. The function implements Bayesian estimation of non-structural parameters of each regime $\mathbf{j}(\phi_0^{(j)}\phi_i^{(j)},\beta_i^{(j)},\delta_i^{(j)}$ and $\mathbf{j}(\mathbf{j})$ is carried out. The structural parameters: Number of Regimes(1), Thresholds (r_1,\cdots,r_{l-1}) , and autoregressive orders (p_j,q_j,d_j) must be known. Prior distributions where selected in order to get conjugate distributions.

Value

Return a list type object of class "regime_model"

Nj	number of observations in each regime
estimates	list for each regime with confident interval and mean value of the parameters
regime	"regime" class objects with final estimations
Chain	if chain TRUE list type object with parameters chains
fitted.values	matrix type object with fitted.values of the estimated model
residuals	matrix type object with residuals of the estimated model

mtarns 21

logLikj log-likelihood of each regime with final estimations data list type object Yt and Ut = (Zt,Xt) r final threshold value with acceptance percentage or r if known orders list type object with names (pj,qj,dj) known

Author(s)

Valeria Bejarano <vbejaranos@unal.edu.co>, Sergio Calderon <sacalderonv@unal.edu.co> & Andrey Rincon <adrincont@unal.edu.co>

References

Calderon, S. and Nieto, F. (2017) *Bayesian analysis of multivariate threshold autoregress models* with missing data. Communications in Statistics - Theory and Methods 46 (1):296–318. doi:10.1080/03610926.2014.990758

```
data("datasim")
data = datasim
#r known
parameters = list(1 = 2,
                  orders = list(pj = c(1,1)),
                  r = data$Sim$r)
initial = mtarinipars(tsregime_obj = data$Sim,
                      list_model = list(pars = parameters))
estim1 = mtarns(ini_obj = initial,niter = 1000,chain = TRUE)
print.regime_model(estim1)
autoplot.regime_model(estim1,2)
autoplot.regime_model(estim1,3)
autoplot.regime_model(estim1,5)
diagnostic_mtar(estim1)
#r unknown
parameters = list(1 = 2, orders = list(pj = c(1,1)))
initial = mtarinipars(tsregime_obj = data$Sim,
list_model = list(pars = parameters))
estim2 = mtarns(ini_obj = initial, niter = 500, chain = TRUE)
print.regime_model(estim2)
autoplot.regime_model(estim2,1)
autoplot.regime_model(estim2,2)
autoplot.regime_model(estim2,3)
autoplot.regime_model(estim2,5)
diagnostic_mtar(estim2)
```

22 mtarnumreg

mtarnumreg	Estimation of the number of regimes in a MTAR model	

Description

Compute estimation of number of regimes by NAIC or Carlin and Chib methodology for a MTAR model

Usage

```
mtarnumreg(ini_obj, level = 0.95, burn_m = NULL,niter_m = 1000,
iterprev = 500, chain_m = FALSE, list_m = FALSE,
NAIC = FALSE,ordersprev = list(maxpj = 2,maxqj = 0,maxdj = 0),
parallel = FALSE)
```

Arguments

ini_obj	class "regime_inipars" object, here specificate 10_min, 10_max and method. Not NULL. Default 10_min = 2, 10_max = 3, method = 'KUO'
level	numeric type, confident interval for estimations. Default 0.95
burn_m	numeric type, number of initial runs. Default NULL (10% of niter)
niter_m	numeric type, number of runs of MCMC. Default 1000
iterprev	numeric type, number of runs for pseudo values. Default 500
chain_m	logical type, if return chains of parameters. Default FALSE
list_m	logical type, if return list of regimes considered. Default FALSE
NAIC	logical type, if return estimation of number of regimes by NAIC (not run Carlin and Chip for l). Default FALSE $$
ordersprev	list type object with names (maxpj,maxqj,maxdj), maximum number of lags of each process consider in the pseudo values for each number of regimes considered . Default maxpj = 2 ,maxqj = 0 , maxdj = 0
parallel	logical type, if package parallel should be used. Default FALSE

Details

Two proposals to identify or estimate the number of regimes l are implemented. Metropolised Carlin and Chib methodology takes into account the changing dimension in the parameter vector when the number of regimes changes, that proposal is Bayesian model selection. Other methodology consists in calculating the information criterion NAIC.

Value

Return a list type object of class "regime_number"

tsregime ini_obj\$tsregime_obj

list_m TRUE list of models considered

mtarsim 23

m_chain if chain_m TRUE chains of m

estimates table of the proportions of m estimated

final_m numeric type, final number of regimes estimated

If NAIC TRUE

tsregime ini_obj\$tsregime_obj
list_m list of consider models

NAIC list type of NAIC for each considered model

NAIC_final_m numeric type, final number of regimes by this criteria

Author(s)

Valeria Bejarano <vbejaranos@unal.edu.co>, Sergio Calderon <sacalderonv@unal.edu.co> & Andrey Rincon <adrincont@unal.edu.co>

References

Calderon, S. and Nieto, F. (2017) *Bayesian analysis of multivariate threshold autoregress models* with missing data. Communications in Statistics - Theory and Methods 46 (1):296–318. doi:10.1080/03610926.2014.990758

Examples

```
data("datasim")
data = datasim
initial = mtarinipars(tsregime_obj = data$Sim,
list_model = list(l0_max = 3),method = 'KUO')

estim = mtarnumreg(ini_obj = initial,iterprev = 500,niter_m = 500,
burn_m = 500, list_m = TRUE,ordersprev = list(maxpj = 2))
estim$final_m
```

mtarsim

Multivariate threshold autoregressive process simulation

Description

Given an list object of the class "regime" (length = 1) with the model specification simulates N observations for a MTAR (Multivariate threshold autoregressive process) process.

Usage

```
mtarsim(N, Rg, r = NULL, Xt = NULL, Zt = NULL, seed = NULL)
```

24 mtarsim

Arguments

N	numeric type greater than 0. Number of observation to simulate. Not NULL
Rg	list type object of length l number of regimes of the process with names (R1,, Rl), each a class "regime" object. Not NULL
r	numeric type of length l - l , threshold value (within the range of Z_t). Default NULL
Xt	matrix $(Nx\nu)$ type object, covariate process (admit NA values). Default NULL
Zt	matrix $(Nx1)$ type object, threshold process (admit NA values). Default NULL
seed	numeric type, set a seed for simulation

Details

Given a list of length 1 of object of class "regime" (model specification), it simulates observations of a MTAR process (\$ Sim) and returns them an object of the class "mtarsim". We have an MTAR process is given by:

$$Y_{t} = \Phi_{0}^{(j)} + \sum_{i=1}^{p_{j}} \Phi_{i}^{(j)} Y_{t-i} + \sum_{i=1}^{q_{j}} \beta_{i}^{(j)} X_{t-i} + \sum_{i=1}^{d_{j}} \delta_{i}^{(j)} Z_{t-i} + \sum_{(j)}^{1/2} \epsilon_{t}$$
$$ifr_{j-1} < Z_{t} \le r_{j}$$

The simulation has 100 burn observations to stabilize the process. It is possible to simulate univariate (TAR, SETAR, etc.) or multivariate (VAR) processes, properly specifying the regime type object according to the model.

Value

Return a list type object of class "mtarsim":

Sim	object class "tsregime"
Reg	list type object with names (R1,, Rl) each one class "regime"
pj	vector of autoregressive orders in each regime
qj	vector of covariate lags orders in each regime
dj	vector of lags orders of threshold process in each regime

Author(s)

Valeria Bejarano <vbejaranos@unal.edu.co>, Sergio Calderon <sacalderonv@unal.edu.co> & Andrey Rincon <adrincont@unal.edu.co>

References

Calderon, S. and Nieto, F. (2017) *Bayesian analysis of multivariate threshold autoregress models* with missing data. Communications in Statistics - Theory and Methods 46 (1):296–318. doi:10.1080/03610926.2014.990758

See Also

mtaregime, mtarns, mtarstr, mtarmissing, mtarnumreg

mtarstr 25

Examples

```
## get Ut data process
Tlen = 500
Sigma_ut = 2
Phi_ut = list(phi1 = 0.3)
R_ut = list(R1 = mtaregime(orders = list(p = 1,q = 0,d = 0),Phi = Phi_ut,Sigma = Sigma_ut))
Ut = mtarsim(N = Tlen,Rg = R_ut,seed = 124)
Zt = Ut\$Sim\$Yt
# Yt process
k = 2
## R1 regime
Phi_R1 = list(phi1 = matrix(c(0.1, 0.6, -0.4, 0.5), k, k, byrow = TRUE))
Sigma_R1 = matrix(c(1,0,0,1),k,k,byrow = TRUE)
R1 = mtaregime(orders = list(p = 1,q = 0,d = 0),Phi = Phi_R1,Sigma = Sigma_R1)
## R2 regime
Phi_R2 = list(phi1 = matrix(c(0.3, 0.5, 0.2, 0.7), 2, 2, byrow = TRUE))
Sigma_R2 = matrix(c(2.5, 0.5, 0.5, 1), 2, 2, byrow = TRUE)
R2 = mtaregime(orders = list(p = 1, q = 0, d = 0),
Phi = Phi_R2, Sigma = Sigma_R2)
## create list of regime-type objects
Rg = list(R1 = R1, R2 = R2)
r = 0.3
# get the simulation
datasim = mtarsim(N = Tlen, Rg = Rg, r = r, Zt = Zt, seed = 124)
autoplot.tsregime(datasim$Sim,1)
autoplot.tsregime(datasim$Sim,2)
```

mtarstr

Estimation of structural parameters of MTAR model

Description

Estimate structural and non-structural parameters of a MTAR model when the number of regimes is fixed.

Usage

```
mtarstr(ini_obj, level = 0.95, niter = 1000, burn = NULL, chain = FALSE,
r_init = NULL, parallel = FALSE)
```

Arguments

ini_obj class "regime_inipars" object, here specificate in pars: 1 known, orders not known. Not NULL. Default for l=2, orders = list(pj = c(2,2)) and method = 'KUO'

level numeric type, confident interval for estimations. Default 0.95

26 mtarstr

burn numeric type, number of initial runs. Default NULL (30% of niter)

niter numeric type, number of runs of MCMC. Default 1000

chain logical type, if return chains of parameters. Default FALSE

r_init numeric type of length l - 1. If r not known, starting value of the chain. Default

NULL

parallel logical type, if package parallel should be used. Default FALSE

Details

If the number of regimes l is known or fixed, we can estimate other structural parameters of the MTAR model: Thresholds (r_1,\cdots,r_{l-1}) , and autoregressive orders (p_j,q_j,d_j) . Of course, the non-structural parameters are also estimated. The problem of estimation the autoregressive orders is addressed to the problem of Bayesian variable selection in regression using Gibbs Variable selection(GVS) or Kuo and Mallick Methodologies. Samples of the full conditional distribution for Threshold values are extracted using Random Walk Metropolis-Hastings Algorithm.

Value

Return a list type object of class "regime_model"

Nj number of observations in each regime

estimates list for each regime with confident interval and mean value of the parameters

regime "regime" class objects with final estimations

Chain if chain TRUE list type object with parameters chains

fitted.values matrix type object with fitted.values of the estimated model residuals matrix type object with residuals of the estimated model logLikj log-likelihood of each regime with final estimations

data list type object Yt and Ut = (Zt,Xt)

r final threshold value estimation with acceptance percentage

orders list type object with names (pj,qj,dj) final estimations

Author(s)

Valeria Bejarano <vbejaranos@unal.edu.co>, Sergio Calderon <sacalderonv@unal.edu.co> & Andrey Rincon <adrincont@unal.edu.co>

References

Calderon, S. and Nieto, F. (2017) *Bayesian analysis of multivariate threshold autoregress models* with missing data. Communications in Statistics - Theory and Methods 46 (1):296–318. doi:10.1080/03610926.2014.990758

print 27

Examples

```
data("datasim")
data = datasim
# KUO method
initial = mtarinipars(tsregime_obj = data$Sim,method = 'KUO',
list_model = list(pars = list(l = 2),orders = list(pj = c(2,2))))
estruc = mtarstr(ini_obj = initial,niter = 500,chain = TRUE)
autoplot.regime_model(estruc,1)
autoplot.regime_model(estruc,2)
autoplot.regime_model(estruc,3)
autoplot.regime_model(estruc,4)
autoplot.regime_model(estruc,5)
# method can also be 'SSVS'
```

print

print an object appropriate to a particular data type

Description

print a particular output for an object of a particular class in a single command. This defines the S3 generic that other classes and packages can extend.

Usage

```
print(object, ...)
```

Arguments

object an object, whose class will determine the behaviour of autoplot

... other arguments passed to specific methods

Value

print an output

28 print.regime_missing

 $\begin{array}{ll} \textbf{Print estimates of a regime_missing object of the function output} \\ \textbf{mtarmissing} \end{array}$

Description

Print estimates output of mtarmissing function.

Usage

```
## S3 method for class 'regime_missing'
print(object, ...)
```

Arguments

object Object of class "regime_model". Not NULL
... Other plotting parameters to affect the plot.

Details

Print the estimates for the outputs corresponding to the function "mtarmissing" which return an object of class "regime_missing".

Value

Return to console.

Author(s)

Valeria Bejarano <vbejaranos@unal.edu.co> & Andrey Rincon <adrincont@unal.edu.co>

References

Calderon, S. and Nieto, F. (2017) *Bayesian analysis of multivariate threshold autoregress models* with missing data. Communications in Statistics - Theory and Methods 46 (1):296–318. doi:10.1080/03610926.2014.990758

See Also

```
mtarmissing
```

```
data('missingest')
print.regime_missing(missingest)
```

print.regime_model 29

print.regime_model

print regime_model object for the function outputs mtarns and mtastr

Description

Print estimates for the results of the mtarns and mtarstr functions.

Usage

```
## S3 method for class 'regime_model'
print(object, ...)
```

Arguments

```
object Object of class "regime_model". Not NULL
... Other print parameters that affect.
```

Details

Print estimates outputs corresponding to functions "mtarns" and "mtarstr" which return an object of class "regime_model".

Value

Return to console.

Author(s)

Valeria Bejarano <vbejaranos@unal.edu.co> & Andrey Rincon <adrincont@unal.edu.co>

References

Calderon, S. and Nieto, F. (2017) *Bayesian analysis of multivariate threshold autoregress models* with missing data. Communications in Statistics - Theory and Methods 46 (1):296–318. doi:10.1080/03610926.2014.990758

See Also

```
mtarns, mtarstr
```

30 print.regime_number

print.regime_number

print regime_number object for the function outputs mtarnumreg

Description

Print estimates for the results of the mtarnumreg function.

Usage

```
## S3 method for class 'regime_number'
print(object, ...)
```

Arguments

object

Object of class "regime_number". Not NULL

. . .

Other print parameters that affect.

Details

Print estimates outputs corresponding to function "mtarnumreg" which return an object of class "regime_number".

Value

Return to console.

Author(s)

Valeria Bejarano <vbejaranos@unal.edu.co> & Andrey Rincon <adrincont@unal.edu.co>

References

Calderon, S. and Nieto, F. (2017) *Bayesian analysis of multivariate threshold autoregress models* with missing data. Communications in Statistics - Theory and Methods 46 (1):296–318. doi:10.1080/03610926.2014.990758

See Also

mtarnumreg

```
data("datasim_numreg")
print.regime_number(datasim_numreg)
```

print.tsregime 31

print.tsregime

Print tsregime object

Description

Print the structure of a object class "tsregime".

Usage

```
## S3 method for class 'tsregime'
print(object, ...)
```

Arguments

object Object of class "tsregime". Not NULL
... Other parameters that affect print.

Details

Print the structure of a object class "tsregime".

Value

Return to console.

Author(s)

Valeria Bejarano <vbejaranos@unal.edu.co> & Andrey Rincon <adrincont@unal.edu.co>

References

Calderon, S. and Nieto, F. (2017) *Bayesian analysis of multivariate threshold autoregress models* with missing data. Communications in Statistics - Theory and Methods 46 (1):296–318. doi:10.1080/03610926.2014.990758

See Also

tsregime

```
data("datasim")
data = datasim
print.tsregime(data$Sim)
```

32 repM

prodB

Function to make product of elements of a list

Description

Auxiliary function of some functions in the MTAR package

Usage

```
prodB(x)
```

Arguments

Х

list of objects to make the product

Value

float number result of the product

repM

Function to create list of matrix objects

Description

Auxiliary function of some functions in the MTAR package

Usage

```
repM(M,r)
```

Arguments

M matrix type object

r integer indicating the length of the list

Value

List of matrix of length r

tsregime 33

tsregime

Creation of class "tsregime" for some data

Description

The function tsregime is used to create time-series-regime objects.

Usage

```
tsregime(Yt, Zt = NULL, Xt = NULL, r = NULL)
```

Arguments

Yt	matrix (Nxk) type object, observed process (admit NA values). Not NULL
Zt	matrix $(Nx1)$ type object, threshold process (admit NA values). Default NULL
Xt	matrix $(Nx\nu)$ type object, covariate process (admit NA values). Default NULL
r	numeric type, threshold value (within the range of Z_t) if known. Default NULL

Details

Create a class "tsregime" object composed of: Y_t and X_t stochastics processes such that $Y_t = [Y_{1t},...,Y_{kt}]$ ', $X_t = [X_{1t},...,X_{\nu t}]'$ and Z_t is a univariate process. Where Y_t follows a MTAR model with threshold variable Z_t

$$Y_{t} = \Phi_{0}^{(j)} + \sum_{i=1}^{p_{j}} \Phi_{i}^{(j)} Y_{t-i} + \sum_{i=1}^{q_{j}} \beta_{i}^{(j)} X_{t-i} + \sum_{i=1}^{d_{j}} \delta_{i}^{(j)} Z_{t-i} + \sum_{(j)}^{1/2} \epsilon_{t}$$

$$ifr_{i-1} < Z_{t} \le r_{j}$$

Missing data is allowed for processes Y_t , X_t and Z_t (can then be estimated with "mtarmissing" function). In the case of known r, the output returns the percentages of observations found in each regimen.

Value

Return a list type object of class "tsregime":

Yt stochastic output process

Xt stochastic covariate process (if enter)
Zt stochastic threshold process (if enter)

N number of observations k number of variables

If r known:

r threshold value

Ind numeric type, number of the regime each observation belong

Summary_r data.frame type, number and proportion of observations in each regime

34 tsregime

Author(s)

Valeria Bejarano <vbejaranos@unal.edu.co> & Andrey Rincon <adrincont@unal.edu.co>

References

Calderon, S. and Nieto, F. (2017) *Bayesian analysis of multivariate threshold autoregress models* with missing data. Communications in Statistics - Theory and Methods 46 (1):296–318. doi:10.1080/03610926.2014.990758

See Also

```
mtaregime, mtarinipars, mtarsim
```

```
data("datasim")
yt = datasim$Sim
Yt = yt$Yt
Zt = yt$Zt
(datos = tsregime(Yt,Zt))
autoplot.tsregime(datos,1)
autoplot.tsregime(datos,2)
```

Index

* AIC	missingest, 12
mtarNAIC, 18	st prior distribution
* Bayesian estimation	mtarinipars, 14
auto_mtar, 6	
mtarmissing, 17	auto_mtar, 6
mtarns, 20	autolayer(), 3
mtarnumreg, 22	autoplot, 2
mtarstr, 25	autoplot.regime_missing, 3
* Carlin and Chib	autoplot.regime_model, 4
mtarnumreg, 22	autoplot.tsregime,5
* Covariate process	datasim, 7
mtarsim, 23	datasim_miss, 8
* MCMC	datasim_numreg, 9
mtarns, 20	diagnostic_mtar, 9
mtarstr, 25	dmnormB, 10
* MTAR	dwishartB, 11
mtarNAIC, 18	dwishartb, 11
mtarsim, 23	fortify(), 3
* Metropolis - Hasting	
mtarinipars, 14	ggplot(), 3
* Multivariate threshold autoregressive	
model	hydrodata, 11
mtaregime, 13	
* NAIC	lists_ind, 12
mtarNAIC, 18	missingset 12
* Observed process	missingest, 12 mtaregime, 13, 24, 34
tsregime, 33	mtarinipars, 14, 34
* Regime	mtarmissing, 4, 17, 24, 28
mtaregime, 13	mtarNAIC, 18
* State Space Form	mtarns, 5, 20, 24, 29
mtarmissing, 17	mtarnumreg, 22, 24, 30
* Threshold process	mtarsim, 14, 23, 34
mtaregime, 13	mtarstr, 5, 24, 25, 29
mtarsim, 23	med 3e1, 3, 27, 23, 27
* datasets	print, 27
datasim, 7	print.regime_missing, 28
datasim_miss, 8	print.regime_model, 29
datasim_numreg, 9	print.regime_number, 30
hydrodata, 11	print.tsregime, 31

36 INDEX

```
prodB, 32
repM, 32
tsregime, 6, 31, 33
```