$$\int \tan x \, dx$$

$$\int_{-\sqrt{3}}^{\sqrt{3}} \sqrt{3 - x^2} \, dx$$

$$\int \log x \, dx$$

$$\int \log x \, dx$$

$$\int \frac{1}{\pi} \frac{\log(\sin x)}{\tan x} \, dx$$

$$\int e^x \cos x \, dx$$

$$\int \frac{dx}{\sin^3 x}$$

$$\int \tan^4 x \, dx$$

$$\int \frac{dx}{\sin^2 x}$$

$$\int \sqrt{1 - x} \, dx$$

$$\int_0^{\frac{\pi}{2}} \cos^2 x \, dx$$

$$\int x^2 \sin x \, dx$$

$$\int_0^{\frac{\pi}{2}} \sqrt{1 + \cos x} \, dx$$

$$\int_0^{\frac{\pi}{3}} \sqrt{1 + \sin x} \, dx$$

$$\int_0^1 \frac{dx}{1 + x^2}$$

$$\int_{0}^{1} \frac{dx}{3+x^{2}}$$

$$\int_{0}^{1} \frac{dx}{x^{2}+x+1}$$

$$\int x^{x}(1+\log x) dx$$

$$\int \frac{dx}{\sqrt{1+x^{2}}}$$

$$\int_{2}^{3} \frac{dx}{\sqrt{x^{2}-1}}$$

$$\int \sqrt{1-e^{-2x}} dx$$

$$\int_{0}^{1} \frac{dx}{1+x^{3}}$$

$$\int \frac{dx}{\sin^{4}x}$$

$$\int \frac{dx}{\sqrt{x}+\sqrt{x+2}}$$

$$\int_{0}^{e} \frac{e^{x}}{e^{e-x}+e^{x}} dx$$

$$\int \int \sqrt{1-e^{-2x}} dx$$

$$\int \tan^{2}x dx$$

$$\int \tan^{3}x dx$$

$$\int \tan^{5}x dx$$

$$\int_a^b f(x) \, dx = \int_a^b f(a+b-x) \, dx$$

$$t = a+b-x \, と 置換する$$

$$dx = -dt$$

$$\therefore \int_b^a -f(t) \, dt = \int_a^b f(t) \, dt$$

$$= \int_a^b f(x) \, dx \, (\because 定積分では変数を変更してもよい)$$
因って、 $\int_a^b f(x) \, dx = \int_a^b f(a+b-x) \, dx$

x	$a \rightarrow b$
t	$b \rightarrow a$

$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx \, \left(\because \tan x = \frac{\sin x}{\cos x} \right)$$
$$= -\int \frac{-\sin x}{\cos x} \, dx$$
$$= -\log|\cos x| + C \left(\because \int \frac{f'(x)}{f(x)} \, dx = \log|f(x)| + C \right)$$

$$\int_{-\sqrt{3}}^{\sqrt{3}} \sqrt{3-x^2} \, dx$$

$$x = \sqrt{3} \sin t \, \geq \pm \zeta$$

$$dx = \sqrt{3} \cos t \, dt$$

$$\int_{-\sqrt{3}}^{\sqrt{3}} \sqrt{3-x^2} \, dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{3-\left(\sqrt{3}\sin t\right)^2} \sqrt{3}\cos t \, dt$$

$$= 3 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{1-\sin^2 t} \cos t \, dt$$

$$= 3 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} |\cos t| \cos t \, dt$$

$$= 3 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} |\cos t| \cos t \, dt$$

$$= 3 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} |\cos t| \cos t \, dt$$

$$= 3 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} |\cos t| \cos t \, dt$$

$$= 3 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 + \cos 2t \, dt \, \left(\because \cos^2 x = \frac{1+\cos 2x}{2} \quad c.f. \sin^2 x = \frac{1-\cos 2x}{2}\right)$$

$$= \frac{3}{2} \left[t + \frac{1}{2}\sin 2t\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$$

$$= 3 \left[t + \frac{1}{2}\sin 2t\right]_{0}^{\frac{\pi}{2}}$$

$$= \frac{3}{2}\pi$$

$$\int \frac{dx}{\sin^2 x} = \int \frac{dx}{\cos^2(\frac{\pi}{2} - x)} \left(\because \sin x = \cos(\frac{\pi}{2} - x) \right)$$
$$= -\tan(\frac{\pi}{2} - x) + C$$
$$= -\frac{1}{\tan x} + C \left(\because \tan x = \tan(\frac{\pi}{2} - x) \right)$$

$$\int_{-1}^{1} \sqrt{1 - x^2} \, dx$$

$$x = \sin t \, \geq \pm i \, \langle$$

$$dx = \cos t \, dt$$

$$\int_{-1}^{1} \sqrt{1 - x^2} \, dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{1 - \sin^2 t} \cos t \, dt$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} |\cos t| \cos t \, dt$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} |\cos^2 t \, dt \, \left(\because -\frac{\pi}{2} \le x \le \frac{\pi}{2} \Rightarrow 0 \le \forall \cos x \right)$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1 + \cos 2t}{2} \, dt \, \left(\because \cos^2 x = \frac{1 + \cos 2x}{2} \right) \, c.f. \sin^2 x = \frac{1 - \cos 2x}{2} \right)$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{1}{2} + \frac{\cos 2t}{2} \right) \, dt$$

$$= \frac{1}{2} \left[t + \frac{1}{2} \sin 2t \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$$

$$= \frac{\pi}{2}$$

$$\begin{array}{c|c} x & -1 \to 1 \\ \hline t & -\frac{\pi}{2} \to \frac{\pi}{2} \\ \end{array}$$

$$\int_0^1 \frac{dx}{1+x^2}$$

$$x = \tan t \, \xi \, \sharp \, \zeta$$

$$\frac{1}{1+x^2} = \frac{1}{\cos^2 t}$$

$$dx = \frac{dt}{\cos^2 t}$$

$$\int_0^1 \frac{dx}{1+x^2} = \int_0^{\frac{\pi}{4}} \frac{\frac{1}{\cos^2 t}}{\frac{1}{\cos^2 t}} \, dt$$

$$= \int_0^{\frac{\pi}{4}} dt$$

$$= \frac{\pi}{4}$$

x	$0 \rightarrow 1$
t	$0 \rightarrow \frac{\pi}{4}$

$$\int \tan^4 x \, dx = \int \tan^2 x \tan^2 x \, dx$$

$$= \int \tan^2 x \left(\frac{1}{\cos^2 x} - 1\right) dx$$

$$= \int \frac{\tan^2 x}{\cos^2 x} \, dx - \int \tan^2 x \, dx$$

$$= \frac{1}{3} \tan^3 x - \tan x + x + C$$

$$\int \log x \, dx = \int 1 \cdot \log x \, dx$$
$$= x \log x - \int x \cdot \frac{1}{x} \, dx$$
$$= x \log x - x + C$$

$$\int \tan^3 x \, dx = \int \tan x \cdot \tan^2 x \, dx$$

$$= \int \tan x \left(\frac{1}{\cos^2 x} - 1 \right) dx$$

$$= \int \frac{\tan x}{\cos^2 x} \, dx - \int \tan x \, dx$$

$$= \frac{1}{2} \tan^2 x + \log|\cos x| + C$$

$$\int \tan^2 x \, dx = \int \left(\frac{1}{\cos^2 x} - 1\right) dx$$
$$= \tan x - x + C$$

$$\int_0^{\frac{\pi}{2}} \cos^2 x \, dx = \int_0^{\frac{\pi}{2}} \sin^2 x \, dx$$

$$I = \int_0^{\frac{\pi}{2}} \cos^2 x \, dx$$

$$2I = \int_0^{\frac{\pi}{2}} \cos^2 x + \sin^2 x \, dx$$

$$= \int_0^{\frac{\pi}{2}} dx$$

$$= \frac{\pi}{2}$$

$$\therefore I = \frac{\pi}{4}$$

$$\int \frac{\log(\sin x)}{\tan x} dx = \int \frac{\cos x \log(\sin x)}{\sin x} dx$$
$$= \int \frac{\log t}{t} dt$$
$$= \frac{1}{2} (\log t)^2 + C$$
$$= \frac{1}{2} (\log(\sin x))^2 + C$$

$$\int \frac{dx}{\sqrt{1+x^2}}$$

$$x = \sinh t$$

$$dx = \cosh t \, dt$$

$$\int \frac{dx}{\sqrt{1+x^2}} = \int \frac{1}{\sqrt{1+\sinh^2 t}} \cosh t \, dt$$

$$= \int dt$$

$$= t + C$$

$$= \log(x + \sqrt{1+x^2}) + C$$

$$\int \tan^5 x \, dx = \int \tan^3 x \left(\frac{1}{\cos^2 x} - 1 \right) dx$$
$$= \frac{1}{4} \tan^4 x - \frac{1}{2} \tan^2 x + \log|\cos x| + C$$

$$\int \frac{dx}{\cos^4} = \int \frac{1}{\cos^2 x} \cdot \frac{1}{\cos^2 x} dx$$
$$= \int (1 + \tan^2 x) \frac{dx}{\cos^2 x}$$
$$= \frac{1}{3} \tan^3 x + \tan x + C$$

x	$0 \rightarrow 1$
t	$0 \rightarrow \frac{\pi}{6}$

$$\int x^2 \sin x \, dx$$
$$\int x^2 \sin x \, dx = x^2 \sin x + 2x \cos x - 2 \sin x + C$$

$$\begin{array}{rrrr}
+ & x^2 & \sin x \\
- & 2x & -\cos x \\
+ & 2 & -\sin x
\end{array}$$

$$\int \frac{dx}{\cos^3 x} = \int \frac{\cos x}{\cos^4 x} dx$$

$$= \int \frac{\cos x}{(1 - \sin^2 x)^2} dx$$

$$= \int \frac{dt}{(1 - t^2)^2} (t = \sin x)$$

$$\frac{1}{(1 - t^2)} = \frac{1}{2} \left(\frac{1}{1 + t} + \frac{1}{1 - t} \right)$$

$$\left(\frac{1}{(1 - t^2)} \right)^2 = \left(\frac{1}{2} \left(\frac{1}{1 + t} + \frac{1}{1 - t} \right) \right)^2$$

$$= \frac{1}{4} \left(\frac{1}{(1 + t)^2} + \frac{1}{(1 - t)^2} + \frac{2}{1 - t^2} \right)$$

$$= \frac{1}{4} \left(\frac{1}{(1 + t)^2} + \frac{1}{(1 - t)^2} + \frac{1}{1 + t} + \frac{1}{1 - t} \right)$$

$$\int \frac{dt}{(1 - t^2)^2} = \frac{1}{4} \int \left(\frac{1}{(1 + t)^2} + \frac{1}{(1 - t)^2} + \frac{1}{1 + t} + \frac{1}{1 - t} \right) dt$$

$$= \frac{1}{4} \left(\frac{1}{1 + t} - \frac{1}{1 - t} + \log \left| \frac{1 + t}{1 - t} \right| \right) + C$$

$$= \frac{1}{4} \left(\frac{1}{1 + \sin x} - \frac{1}{1 - \sin x} + \log \left| \frac{1 + \sin x}{1 - \sin x} \right| \right) + C$$

$$\int \frac{dx}{\sin^4 x}$$

$$t = \tan x$$

$$\cos^2 x = \frac{1}{1 + \tan^2 x}$$

$$= \frac{1}{1 + t^2}$$

$$\sin^2 x = \cos^2 x \tan^2 x$$

$$= \frac{t^2}{1 + t^2}$$

$$dt = \frac{dx}{\cos^2 x}$$

$$dx = \frac{dt}{1 + t^2}$$

$$\int \frac{dx}{\sin^4 x} = \int \frac{(1 + t^2)^2}{t^4} \cdot \frac{dt}{1 + t^2}$$

$$= \int \frac{1 + t^2}{t^4} dt$$

$$= \int \frac{dt}{t^4} + \int \frac{dt}{t^2}$$

$$= -\frac{1}{3t^3} - \frac{1}{t} + C$$

$$= -\frac{1}{3\tan^3 x} - \frac{1}{\tan x} + C$$

$$\int_0^{2\pi} \sqrt{1 + \cos x} \, dx = \int_0^{2\pi} \sqrt{2 \cos^2 \frac{x}{2}} \, dx$$
$$= \sqrt{2} \int_0^{2\pi} \left| \cos \frac{x}{2} \right| dx$$
$$= 2\sqrt{2} \left[\sin \frac{x}{2} \right]_0^{2\pi}$$
$$= 0$$

$$\int_0^{\frac{\pi}{3}} \sqrt{1 + \sin x} \, dx = \int_0^{\frac{\pi}{3}} \sqrt{1 + \cos\left(\frac{\pi}{2} - x\right)} \, dx$$

$$= \sqrt{2} \int_0^{\frac{\pi}{3}} \left| \cos\left(\frac{\pi}{4} - \frac{x}{2}\right) \right| \, dx$$

$$= -2\sqrt{2} \left[\sin\left(\frac{\pi}{4} - \frac{x}{2}\right) \right]_0^{\frac{\pi}{3}}$$

$$= -2\sqrt{2} \left(\frac{\sqrt{6} - \sqrt{2}}{4} - \frac{1}{\sqrt{2}} \right)$$

$$= 3 - \sqrt{3}$$