EE 305 Project Report

Introduction:

The parallel-plate waveguide is a classic configuration in electromagnetic eld theory which consists of two metal plates separated by a distance H. The material between the plates can be electric, magnetic, and/or lossy assuming a dielectric constant ε_r , relative permeability μ_r , electrical conductivity σ , and a magnetic conductivity γ .

Between the plates, there exists an electromagnetic field with two possible polarizations. Under TE polarization, the electric field \bar{E} is parallel to the plates and has only a z-oriented component. Under TM polarization, the magnetic field is z-oriented. In either case, the electric field is governed by the vector Helmholtz equation in two dimensions, given by

$$(\Delta)^2 E + k^2 E = 0$$
 where k is intrinsic wavenumber

Here, we are considering a parallel-plate waveguide made of two perfectly conducting plates separated by a lossless dielectric medium with constitutive parameters ε_r , μ_r . The plates are assumed to be infinite along x- and z-directions, and separated by a distance of b in y-direction. Let's consider a y-polarized TM_n mode wave propagating in +z-direction. Now, we need to determine the cut off frequency of the propagating wave for different modes:

We know, the governing equation for TM analysis i.e. $H_z = 0$ is

$$\frac{d^2 E_{0,z}}{dx^2} + \frac{d^2 E_{0,z}}{dy^2} - k_c^2 E_{0,z} = 0 \text{ where } k_c^2 = k^2 - \beta^2 \qquad \dots equation-1$$

After solving the above equation, we can calculate the remaining components as:

$$H_{0,x} = \frac{j\omega\varepsilon}{k_c^2} \frac{dE_{0,z}}{dy}$$
, $H_{0,y} = \frac{j\omega\varepsilon}{k_c^2} \frac{dE_{0,z}}{dx}$, $E_{0,x} = \frac{-j\beta}{k_c^2} \frac{dE_{0,z}}{dx}$, $E_{0,y} = \frac{-j\beta}{k_c^2} \frac{dE_{0,z}}{dy}$ and $H_z = 0$

Since the waveguide is in direction of x-axis, we can write $\frac{d}{dx} = 0$ and $\frac{d^2}{dx^2} = 0$

$$\therefore$$
 we can write equation-1 as: $\frac{d^2 E_{0,z}}{dv^2} - k_c^2 E_{0,z} = 0$

The general solution of the above equation: $E_{0,z} = Asin(k_c y) + Bcos(k_c y)$

Since the Electric Field component $E_{0,z}$ is tangential to the interfaces $\cdot \cdot \cdot$ we can apply boundary conditions directly. The first boundary condition:

$$E_{0,z}(x, 0) = Asin(0) + Bcos(0) = B = 0$$
 which give $B = 0$

The second boundary condition: $E_{0,z}(x,b) = Asin(k_c b) = 0$

We can't choose A = 0 since it would give a trivial solution. Hence, the term $sin(k_c b)$ must be 0 at y = b.

$$sin(k_c b) = 0$$
 which gives $k_c b = n\pi$ where $n = 0, 1, 2, 3,...$

Hence, the cut off wave number is $k_c = \frac{n\pi}{b}$ where n = 0, 1, 2, 3,...

Here, n = 0 is allowed since it doesn't force the field to be entirely zero but does however force the field to be perfectly uniform. Thus, TM_0 is the TEM mode.

Cut-off Frequency:

We have earlier defined $k_c^2 = k^2 - \beta^2$ in equation-1. Now, we got $k_c = \frac{n\pi}{b}$.

Hence, we can write: $k^2 - \beta^2 = \left(\frac{n\pi}{b}\right)^2$

Now, we can write phase constant β as $\beta_n = \sqrt{k^2 - \left(\frac{n\pi}{b}\right)^2}$ where n = 0, 1, 2, 3,...For this to exist, β must be real. i.e. $\beta > 0$ or k > k. Hence, cut-off condition will be:

$$\omega\sqrt{\mu\varepsilon}=k_{c}=\frac{n\pi}{b} \Longrightarrow 2\pi f_{c}\sqrt{\mu\varepsilon}=\frac{n\pi}{b}\Longrightarrow f_{c}=\frac{n}{2b\sqrt{\mu\varepsilon}}=\frac{k_{c}}{2\pi\sqrt{\mu\varepsilon}}$$

Hence, the cut off frequency $f_c = \frac{n}{2b\sqrt{\mu\epsilon}}$ where n = 0, 1, 2, 3,...

Submitted By:

Pallavi Upadhyay (190002043) Patnam Harshey (190002045) Sai Pranavi (190002055) Sakshi Verma (190004029)