

单按键触摸检测 IC

概述

● TTP233D-BA6 TonTouch[™] 是单按键触摸检测芯片,此触摸检测芯片内建稳压电路,提供稳定的电压给触摸感应电路使用,稳定的触摸检测效果可以广泛的满足不同应用的需求,此触摸检测芯片是专为取代传统按键而设计,触摸检测 PAD的大小可依不同的灵敏度设计在合理的范围内,低功耗与宽工作电压,是此触摸芯片在 DC 或 AC 应用上的特性。

特点

- 工作电压 2.4V ~ 5.5V
- 内建稳压电路提供稳定的电压给触摸检电路使用
- 内建低压重置(LVR)功能
- 工作电流 @VDD=3V, 无负载 低功耗模式下典型值 2.5uA、最大值 5uA
- 最长响应时间大约为低功耗模式 220ms @VDD=3V
- 可以由外部电容 (1~50pF) 调整灵敏度
- 稳定的人体触摸检测可取代传统的按键开关
- 提供低功耗模式
- 提供输出模式选择 (TOG pin) 可选择直接输出或锁存 (toggle) 输出
- Q pin 为 CMOS 输出,可由 (AHLB pin) 选择高电平输出有效或低电平输出有效
- 上电后约有 0.5 秒的稳定时间,此期间内不要触摸检测点,此时所有功能都被禁止
- 自动校准功能 刚上电的 8 秒内约每 1 秒刷新一次参考值,若在上电后的 8 秒内有触摸按键或 8 秒后仍未触摸按键,则重新校准周期切换为 4 秒

应用范围

- 各种消费性产品
- 取代按钮按键

方块图

脚位定义

脚位顺序	脚位名称	I/O 类型	脚位定义
1	Q	0	CMOS 输出脚
2	VSS	Р	负电源供应,接地
3	I	I/O	传感器输入埠
4	AHLB	I-PL	输出高电平有效或低电平有效选择 0(默认值) →高电平有效: 1→低电平有效
5	VDD	Р	正电源供应
6	TOG	I-PL	输出模式选择接脚 0(默认值)→直接输出; 1→锁存 (toggle) 输出

接脚类型

■ CMOS 单纯输入

● O CMOS 输出

● I/O CMOS 输入/输出

● P 电源/接地

• I-PH CMOS 输入内置上拉电阻

• I-PL CMOS 输入内置下拉电阻

• OD 开漏输出,无二极管保护电路

电气特性

• 最大绝对额定值

参数	符号	条件	値	单位
工作温度	T _{OP}	_	-40∼+85	$^{\circ}\!\mathbb{C}$
储存温度	T _{STG}	_	-50∼+125	$^{\circ}\!\mathbb{C}$
电源供应电压	VDD	Ta=25°C	VSS-0.3~VSS+5.5	V
输入电压	V _{IN}	Ta=25°C	VSS-0.3∼VDD+0.3	V
芯片抗静电强度 HBM	ESD	_	5	KV

备注:VSS 代表系统接地

• DC / AC 特性: (测试条件为室温 = 25 ℃)

参数	符号	测试条件	最小値	典型値	最大値	单位
工作电压	VDD		2.4	3	5.5	V
内部稳压电路输出	VREG		2.2	2.3	2.4	V
工作电流	I _{OPL}	VDD=3V 低功耗模式(无负载)		2.5	5	uA
	I _{OPF}	VDD=3V 快速模式(无负载)		5.0	10	
输入埠	V _{IL}	输入低电压	0		0.2	VDD
输入埠	V _{IH}	输入高电压	0.8		1.0	VDD
输出埠灌电流 Sink Current	I _{OL}	VDD=3V, V _{OL} =0.6V		8		mA
输出埠源电流 Source Current	I _{OH}	VDD=3V, V _{OH} =2.4V		-4		mA
输入脚位下拉电阻	R _{PL}	VDD=3V(TOG、AHLB)		25K		ohm
输出响应时间	T _R	VDD=3V、快速模式			60	mS
¥助171州州)77.11,1日1		VDD=3V、低功耗模式			220	IIIO

功能描述

I. 灵敏度调整

PCB 上接线的电极大小与电容之总负载,会影响灵敏度,故灵敏度调整必须符合 PCB 的实际应用。TTP233D-BA6 提供一些外部调整灵敏度的方法。

- 1. 调整检测板尺寸的大小 在其它条件不变的情况下,使用较大的检测板尺寸可增加灵敏度,反之则会降低灵敏度;但电 极尺寸必须在有效范围内使用。
- 2. 调整介质(面板)厚度 在其它条件不变的情况下,使用较薄的介质可增加灵敏度,反之则会降低灵敏度;但介质厚度 必须在最大限制值以下。
- 3. 调整 Cs 电容值(请参阅下图) 在其它条件不变的情况下,若未在触摸 PAD 对 VSS 接上 Cs 电容时,灵敏度是最灵敏的,Cs 电容在可用范围内(1≤Cs≤50pF),Cs 电容值越大其灵敏度越低。

Ⅱ. 输出模式(利用 TOG、AHLB 脚位选择)

TOG 脚位: 选择直接输出或锁存 (toggle) 输出。 AHLB 脚位: 选择输出高电平有效或低电平有效。

Q 脚位(CMOS 输出)选项特性:

TOG	AHLB	端口 Q 选项特性
0	0	直接模式,CMOS 高电平有效
0	1	直接模式,CMOS 低电平有效
1	0	锁存(toggle)输出,上电状态 = 0
1	1	锁存(toggle)输出,上电状态 = 1

Ⅲ. 低功耗模式

TTP233D-BA6 在低功耗模式下运行,可节省能耗,在此模式下侦测到按键触摸后,会切换至快速模式,直到按键触摸释放,并将保持约 10 秒,然后返回低功耗模式。

IV. 选项脚位

基于节能及封装选项的考虑,所有功能选择脚位设计为锁存类型,在上电时的初始状态为0或1;若那些脚位被连接至VDD或VSS,状态会变成1或0,也不会有任何的电流漏电而影响节能问题。

功能选择脚位	上电后的初始状态
AHLB	0
TOG	0

应用电路

P.S. :

- 1. 在 PCB 上,从触摸板到 IC 接脚的线长越短越好。且此接线与其它线不得平行或交叉。
- 2. 电源供应必须稳定,若供应电源之电压发生飘移或快速漂移或移位,可能造成灵敏度异常或误侦测。
- 3. 覆盖在 PCB 上的板材,不得含有金属或导电组件的成份,表面涂料亦同。
- 4. 必须在 VDD 和 VSS 间使用 C1 电容;且应采取与装置 IC 的 VDD 和 VSS 接脚最短距离的布线。
- 5. 可利用 Cs 电容调整灵敏度,Cs 电容值越小灵敏度越高,灵敏度调整必须根据实际应用的 PCB 来做调整,Cs 电容值的范围为 $1{\sim}50pF$ 。
- **6**. 调整灵敏度的电容(Cs)必须选用较小的温度系数及较稳定的电容器;如 X7R、NPO,故针对触摸应用,建议选择 NPO 电容器,以降低因温度变化而影响灵敏度。

封装外观尺寸

封装类型 SOT23-6L

NOTES:

- 1.DIMENSION D1 & E1 DOES NOT INCLUDE MOLD PROTRUSION.
- 2.COPLANARITY OF ALL LEADS SHALL BE (BEFORE TEST) 0.1 MAX. FROM THE SEATING PLANE. UNLESS OTHERWISE SPECIFIED.
- 3.GENERAL PHYSICAL OUTLINE SPEC IS REFER TO TMC'S FINAL VISUAL INSPECTION SPEC UNLESS OTHERWISE SPECIFIED.

封装配置

TTP233D-BA6

封装类型 SOT23-6L

	订	购	信	息			
	TTP233D-BA6						
	封装型号			芯片型	号	晶圆型号	
•	TT	ГР233D	-BA6	No supp	ort	No support	