Факультет вычислительной математики и кибернетики Кафедра системного анализа

Отчет по практикуму по курсу «Динамическое программирование»

Студент 415 группы В. Я. Каушанский

Руководитель практикума ассистент Ю. Ю. Минаева

1 Постановка задачи

1. Написать солвер на Matlab для регуляризации одномерных ODE: $\dot{y} = f(t,y)$ с областью определения правой части y > 0. В качестве тестового примера взять

$$\dot{y} = \sqrt{y} - 3\sin^2 t + m(t)$$

на отрезке $[0,4\pi]$ с начальным условием y(0)=1, где m(t) — регуляризирующая добавка, которая выбирается так, чтобы у всегда оставалось в области у >0, иногда скользя вдоль ее границы на некотором расстоянии ε .

- 2. Построить внутреннюю эллипсоидальную аппроксимацию с регуляризацией для простейшей двумерной линейной системы.
- 3. Построить внутреннюю аппроксимацию с регуляризацией для простейшей многомерной системы.

2 Теоретические выкладки

Рассмотрим систему

$$\begin{cases} \dot{x}(t) = A(t)x(t) + B(t)u(t) + C(t)v(t), \\ x(t_0) \in \mathcal{X}^0 = \mathcal{E}(x_0, X_0), \\ u(t) \in \mathcal{U}_c(t) = \mathcal{E}(p(t), P(t)), \\ v(t) \in \mathcal{V}(t) = \mathcal{E}(q(t), Q(t)), \\ u(t) \in \mathbb{R}^m, v(t) \in \mathbb{R}^k, x(t) \in \mathbb{R}^n. \end{cases}$$

$$(1)$$

Определение 1. Множеством достижимости с непрерывной коррекцией $\mathcal{X}(\tau,t,\mathcal{X}^0,\mu)$ для системы (1) на момент времени τ из множества \mathcal{X}^0 называется совокупность точек x таких, для каждой из которых существует стратегия управления в форме обратной связи и точка $x_0 \in \mathcal{X}^0$ такие, что для любых $v(\cdot) \in \mathcal{V}$ выполнено включение:

$$\mathcal{X}(\tau, t_0, x_0 | \mathcal{U}, v(\cdot)) \in x + \mu B_1(0), \mu \geq 0.$$

Обобщим Определение 1 на случай, когда $\mu(\cdot)$ есть функция от τ . Для этого рассмотрим систему разбиений отрезка $[t_0,\tau]$ на k+1 точек $\tau_i=t_0+\sum_{j=1}^i\sigma_j$, где $\sigma_i\in\Sigma_k=\{\sigma_j\}_{j=1}^{k+1},\sigma_j>0$, и произвольную непрерывную на отрезке $[t_0,t_1]$ функцию $\mu(s)\geq 0$. Каждому множеству Σ_k диаметра $d(\Sigma_k)=\max_{1\leq i\leq k+1}\sigma_i$ можно поставить в соответствие множество достижимости максиминного типа с k коррекциями:

$$\mathcal{X}_{k}^{-}(\tau, t_{0}, \mathcal{X}_{0}, \Sigma_{k}, \mu(\cdot)) = \left(\left(\cdots \left(\left(\mathcal{X}^{0} + B_{\mu_{1}}\right) + \int_{t_{0}}^{\tau_{1}} \mathcal{P}(s)ds\right)\right)$$

$$\dot{-} \int_{t_{0}}^{\tau_{1}} \left(-\mathcal{Q}(s)\right) ds + \cdots B_{\mu_{k+1}} + \int_{\tau_{k}}^{\tau} \mathcal{P}(s)ds + \int_{\tau_{k}}^{\tau} \left(-\mathcal{Q}(s)\right) ds ds + \cdots + \int_{\tau_{k}}^{\tau} \left(-\mathcal{Q}(s)\right) ds ds ds$$

где $\mu_i = \int_{\tau_{i-1}}^{\tau_i} \mu(s) ds$. Данное множество состоит из точек, которые достигаются из некоторой начальной точки множества \mathcal{X}^0 , с коррекциями на управление на основе состояния системы в моменты времени τ_i при условии, что помеха на отрезках $[\tau_{i-1}, \tau_i]$ заранее известна в точках τ_{i-1} .

Множество достижимости минимаксного типа с k коррекциями, в котором в отличии от максиминного типа помеха вначале отрезка заранее не известна и управление выбирается из расчета на любую помеху:

$$\mathcal{X}_{k}^{+}(\tau, t_{0}, \mathcal{X}_{0}, \Sigma_{k}, \mu(\cdot)) = \left(\left(\cdot\cdot\cdot\left(\left(\mathcal{X}^{0} + B_{\mu_{1}}\right) - \int_{t_{0}}^{\tau_{1}}(-\mathcal{Q}(s))ds\right) + \int_{t_{0}}^{\tau_{1}}\mathcal{P}(s)ds\right) + \cdots + \int_{t_{0}}^{\tau_{1}}\mathcal{P}(s)ds\right) + \cdots + \int_{t_{0}}^{\tau_{1}}\mathcal{P}(s)ds\right) + \cdots + \int_{t_{0}}^{\tau_{1}}\mathcal{P}(s)ds\right)$$

Определение 2. Альтернированным множеством достижимости $\mathcal{X}(\tau, t_0, \mathcal{X}_0, \mu(\cdot))$ системы (1) будем называть Хаусдорфов предел максиминных множеств достижимости $\mathcal{X}_k^-(\tau, t_0, \mathcal{X}_0, \Sigma_k, \mu(\cdot))$ по измельчающимся последовательностям Σ_k при $d(\Sigma_k) \to 0$.

2.1 Регуляризация задачи достижимости

Определение 3. Квадратичной суммой двух множеств A и B назовем множество, определяемое опорной функцией

$$\rho(l|A \oplus B) = \sqrt{\rho(l|A - c(A))^2 + \rho(l|B - c(B))^2} + c(A) + c(B)$$

zде c(A), c(B) соответствующие Чебышеские центры.

Утверждение 1. Для произвольного множества $\mathcal{X} \in conv(\mathbb{R}^n)$ такого, что int $\mathcal{X} \neq 0$, и матрицы конфигурации эллипсоида $M \geq 0$, при малых $\varepsilon > 0$ справедливы следующие оценки

$$\mathcal{X} + \varepsilon B_{\mu_{-}(\mathcal{X},\mathcal{M})}(0) \subseteq \mathcal{X} \oplus \mathcal{E}(0, \varepsilon \mathcal{M}) + B_{1}(0)o(\varepsilon)$$
 (2)

$$\mathcal{X} \oplus \mathcal{E}(0, \varepsilon M) \subseteq \mathcal{X} + \varepsilon B_{\mu_{+}(\mathcal{X}, M)}(0),$$
 (3)

где

$$\mu_{-}(\mathcal{X}, \mathcal{M}) = \min \left\{ \frac{(l, \mathcal{M}l)}{2\rho(l|\mathcal{X})} | l \in B_1(0) \right\}, \mu_{+}(\mathcal{X}, \mathcal{M}) = \max \left\{ \frac{(l, \mathcal{M}l)}{2\rho(l|\mathcal{X})} | l \in B_1(0) \right\}$$

непрерывны в метрике Хаусдорфа, как функции \mathcal{X} , в любой точке $\mathcal{X}_0 \neq \varnothing$.

Утверждение 2. Для $\mathcal{X} \in conv(\mathbb{R}^n)$, $int\mathcal{X} \neq \varnothing$, $\mathcal{A} \in conv(\mathbb{R}^n)$ и матрицы $M \geq 0$ выполнено

$$\rho(l|(\mathcal{X} + \varepsilon \mathcal{A}) \oplus \mathcal{E}(0, \varepsilon \mathcal{M})) - \rho(l|\mathcal{X} \oplus \mathcal{E}(0, \varepsilon \mathcal{M}) + \varepsilon \mathcal{A}) = -\varepsilon^2 \frac{(l, \mathcal{M}l)\rho(l, \mathcal{A})}{2\rho(l|\mathcal{X})^2} + ||l||o(\varepsilon^2)$$
(4)

Если $\mathcal{X} \stackrel{.}{-} \varepsilon \mathcal{A} \neq \varnothing$, также выполнено

$$\begin{split} \rho(l|(\mathcal{X} \stackrel{\cdot}{-} \varepsilon \mathcal{A}) \oplus \mathcal{E}(0, \varepsilon \mathcal{M})) - \rho(l|\mathcal{X} \oplus \mathcal{E}(0, \varepsilon \mathcal{M}) \stackrel{\cdot}{-} \varepsilon \mathcal{A}) = \\ = \varepsilon \left(\alpha(l, \varepsilon, \mathcal{X} \oplus \mathcal{E}(0, \varepsilon \mathcal{M}), \mathcal{A}) - \alpha(l, \varepsilon, \mathcal{X}, \mathcal{A}) + \varepsilon \frac{(l, \mathcal{M}l) \left(\rho(l|\mathcal{A}) + \alpha(l, \varepsilon, \mathcal{X}, \mathcal{A}) \right)}{2\rho(l|\mathcal{X})^2} \right) + ||l||o(\varepsilon^2), \\ \varepsilon \partial e \end{split}$$

$$\alpha(l,\varepsilon,H_1,H_2) = \left(\rho(l|H_1) - \rho(l|\varepsilon H_2) - \rho(l|H_1 - \varepsilon H_2)\right)/\varepsilon, \forall H_1, H_2 \in conv\mathbb{R}^n.$$

Тем самым показано, что перестановка операций квадратичной суммы и геометрической суммы, а также квадратичной суммы и геометрической разности множеств достаточно малого диаметра ε дают погрешность порядка ε^2 .

2.2 Квадратичная регуляризация альтернированного множества достижимости

Опираясь на свойства квадратичной суммы, введем аналог максиминного множества достижимости с k коррекциями, в котором мы заменим в каждой точке коррекции прибавление в шара $B_{\mu_k}(0)$ на прибавление эллипсоида

$$\mathcal{M}_i = \mathcal{E}\left(0, \int_{\tau_{i-1}}^{\tau_i} \mathcal{M}(s) ds\right)$$

в квадратичном смысле, где непрерывная функция $M(s) \ge 0$ в каждой точке задает эллипсоид $\mathcal{E}(0,M(s))$.

Тем самым получим

$$\mathcal{X}_{k}^{q,-}(\tau, t_{0}, \mathcal{X}_{0}, \Sigma_{k}, \mathcal{M}(\cdot)) = \left(\left(\cdots \left(\left(\mathcal{X}^{0} \oplus \mathcal{M}_{1}\right) + \int_{t_{0}}^{\tau_{1}} \mathcal{P}(s)ds\right) - \int_{t_{0}}^{\tau_{1}} \left(-\mathcal{Q}(s)\right) ds\right) + \cdots \oplus \mathcal{M}_{k+1} + \int_{\tau_{k}}^{\tau} \mathcal{P}(s)ds\right) - \int_{\tau_{k}}^{\tau} \left(-\mathcal{Q}(s)\right) ds\right)$$

Определение 4. Для любой матричной функции $M(\cdot)$, удовлетворяющей определенным предположениям, квадратично регуляризированным альтернированным множеством достижимости $\mathcal{X}^q(\tau, t_0, \mathcal{X}^0, M(\cdot))$ назовем предел максиминных множеств $\mathcal{X}_k^{q,-}(\tau, t_0, \mathcal{X}_0, \Sigma_k, M(\cdot))$ по измельчающимся последовательностям Σ_k при $d(\Sigma_k) \to 0$.

Теорема 1. Квадратично регуляризированное множество достижимости является максимальным по включению решением следующего эвалюционного уравнения интегральных воронок.

$$\lim_{\sigma \to 0} \frac{1}{\sigma} h^{+} \left(\mathcal{X}(t+\sigma) - \sigma \mathcal{E}(q(t), Q(t)), (I+\sigma A(t))(\mathcal{X}(t) \oplus \mathcal{E}(0, \sigma M(t))) + \sigma \mathcal{E}(p(t), P(t)) \right) = 0,$$

$$\mathcal{X}[t_{0}] = \mathcal{E}(x_{0}, X_{0}).$$

Теперь получим оценку регуляризационного множества достижимости через обычное множество достижимости.

Теорема 2. Справедливы следующие оценки:

$$\mathcal{X}(\tau, t_{0}, \mathcal{X}^{0}, \mu_{-}(\cdot)) \subseteq \mathcal{X}^{q}(\tau, t_{0}, \mathcal{X}^{0}, M(\cdot)) \subseteq \mathcal{X}(\tau, t_{0}, \mathcal{X}^{0}, \mu_{-+}(\cdot)),
\mu_{-}(t) = \min \left\{ \frac{(l, M(t)l)}{2\rho(l|\mathcal{X}^{q}[t])} | l \in B_{1}(0) \right\},
\mu_{+}(t) = \max \left\{ \frac{(l, M(t)l)}{2\rho(l|\mathcal{X}^{q}[t])} | l \in B_{1}(0) \right\}.$$

2.3 Внутренние эллипсоидальные оценки

Определение 5. Пусть $l(\cdot): T \to \mathbb{R}^n$ — гладкая векторная функция. Оценку $\mathcal{E}(x(t), X(t))$ множества $\mathcal{X}(\tau, t_0, \mathcal{X}^0, \mathcal{M}(\cdot))$ назовем тугой по направлению $l(\cdot)$ на отрезке $[t_0, \tau]$, если выполнено

$$\rho(l(s)|\mathcal{X}(s, t_0, \mathcal{X}^0, \mathcal{M}(\cdot))) = \rho(l(s)|\mathcal{E}(x(s), X(s))), \forall s \in [t_0, \tau].$$
(5)

Специфика тугих эллипсоидальных оценок вдоль направлений $l \in B_1(0)$, для которых в некоторый момент времени t нарушается продолжимость, что в этот момент времени они вырождаются, поскольку в матрице эллипсоида появляются нулевые собственные значения. Можно ввести эллипсоидальный аналог техники прибавления регуляризирующего шара радиуса μ_i для обеспечения продолжаемости , который заключается в прибавлении регуляризирующего эллипсоида в смысле \oplus к эллипсоидальной оценке, полученной на предыдущем шаге.

Теорема 3. Эллипсоидальная оценка $\mathcal{E}_{-}[t] = \mathcal{E}(x_{-}(t), X_{-}(t))$ с параметрами, определяемые из следующих соотношений, является внутренней тугой оценкой множества $\mathcal{X}^{q}(t, t_{0}, \mathcal{X}^{0}, \mathcal{M}(\cdot))$ на отрезке $[t_{0}, \tau]$ вдоль направления $l(\cdot)$, определяемого как

$$l(t) = X^{T}(t_0, t)l_0, (6)$$

если матричная функция $M(\cdot)$ такова, что решение матричного уравнения

$$\dot{X}_{-}(t) = G(A(t)X_{-}(t) + X_{-}^{1/2}(t)S(t)(B(t)P(t)B^{T}(t))^{1/2}) - \pi(t)X_{-}(t) - \pi^{-1}(t)C(t)Q(t)C^{T}(t) + \mathcal{M}(t)$$
(7)

продолжимо на отрезке $[t_0, \, au]$.

 Γ де $G(A) = A + A^T$, а матрица S(t) выбрана в виде $S(t) = S_a(t)S_b^T(t)$, $S_a(t)$, $S_b(t)$ — ортогональные матрицы таковы, что

$$S_a(t)(B(t)P(t)B^T(t))^{1/2}l(t) = \lambda_a(t)l_1, \lambda_a(t) = (B(t)P(t)B^T(t)l(t), l(t))^{1/2},$$

$$S_b(t)(X_-(t)^{1/2}l(t) = \lambda_b(t)l_1, \lambda_b(t) = (X_-(t)l(t), l(t))^{1/2}$$

выполнены для некоторого $l_1 \in B_1(0)$, а функция $\pi(t)$ определена как

$$\pi(t) = \frac{(l(t), C(t)Q(t)C^{T}(t))^{1/2}}{(l(t), X_{-}(t)l(t))^{1/2}}.$$

Центр эллипсоида вычисляется по обычной формуле:

$$\dot{q}_c(t) = A(t)q_c(t) + B(t)p(t) + C(t)q(t).$$
 (8)

3 Принцип работы программы

В программе для вычисления центров и матриц внутренних оценок используются формулы (7), (8):

$$\begin{cases}
\dot{q}_{c}(t) = A(t)q_{c}(t) + B(t)p(t) + C(t)q(t), \\
q_{c}(t_{0}) = x_{0}, \\
\dot{X}_{-}(t) = G(A(t)X_{-}(t) + X_{-}^{1/2}(t)S(t)(B(t)P(t)B^{T}(t))^{1/2}) - \pi(t)X_{-}(t) - \pi^{-1}(t)C(t)Q(t)C^{T}(t) + M(t), \\
X_{-}(t_{0}) = X_{0}.
\end{cases}$$
(9)

Решив данную систему, получим центр и матрицу эллипсоида, который является внутренней оценкой множества достижимости для каждого момента времени t. Для решения системы дифференциальных уравнений на матрицу эллипсоида используется специальный солвер, который регуляризирует собственные значения матрицы и не дает им обнулиться. Принципработы солвера будет описан ниже.

Теперь опишем пошагово алгоритм работы программы:

- 1. Будем перебирать всевозможные направления. Для этого, в силу положительной однородности, достаточно перебирать все направления на единичной сфере. Перебор будем осуществлять методом Монте-Карло.
- 2. В качество матрицы S_0 возьмем единичную матрицу. Чтобы вычислить матрицу S(t) воспользуемся сингулярным разложением. Обозначим за $x=(B(t)Q(t)B^T(t))^{1/2}l$, $v=X_(t)l$. Тогда задача свелась к следующей задачи: найти такую матрицу S(t): S(t)x=v. Чтобы решить эту задачу представим v в виде: $v=U_1S_1V_1$, где U_1 , V_1 ортогональные матрицы, S_1 диагональная матрица. Аналогично представим вектор x: $x=U_2S_2V_2$, где U_2 , V_2 ортогональные матрицы, S_2 диагональная матрица. Тогда искомая матрица S(t) будет равна $U_1V_1V_2^TU_2^T$.
- 3. Решим системц (9) и полцчим положение центра и матрицы эллипсоида
- 4. Далее спроецируем полученный эллипсоид на статическую или динамическую плоскость. Как это сделать написано в следующем пункте.
- 5. Далее будем объединять полученные эллипсоиды, чтобы получить итоговую внутреннюю оценку.

3.1 Проекция на статическую и динамическую плоскости

При построении внутренней оценки множества достижимости на статическую плоскость мы фиксируем 2 неколлинеарных вектора l_1 , l_2 , которые лежат в этой плоскости. Далее произведем процесс ортогонализации Грама-Шмидта и получим ортонормированный базис e_1 , e_2 . Далее спроецируем эллипсоид на плоскость. Для этого введем равномерную сетку на отрезке $[0,2\pi]$ и будем перебирать направления по единичной сфере в этой плоскости. Далее каждому направлению соответствует какая-то точка эллипсоида. Тем самым получим набор точек — проекцию эллипсоида на статическую плоскость.

Построение на динамическую плоскость немного отличается от статической. Чтобы построить проекцию на динамическую плоскость, надо вместо векторов l_1 , l_2 проецировать на плоскость, заданную векторами $l_1' = X^T(t_0,t)l_1$, $l_2'(t) = X^T(t_0,t)l_2$. Отличие динамической плоскости от статической состоит в том, что на динамической плоскости в каждый момент времени происходит касание.

Для построения трубки достижимости достаточно для каждого момента времени выполнить описанные выше процедуры.

3.2 Описание работы солвера

При реализации солвера был использован явный метод Адамса. Этот метод был выбран, потому что в него довольно легко внедрить добавление регуляризатора. Будем использовать метод Адамса 3 порядка аппроксимации. Опишем его схему:

$$\frac{x_n - x_{n-1}}{h} = \frac{23f_{n-1} - 16f_{n-2} + 5f_{n-3}}{12} \tag{10}$$

Значение x_0 берется равным начальному условию, а x_1 , x_2 вычисляются метедом Рунге-Кутта третьего порядка точности.

Зафиксируем некоторый ε такой, что ниже него не должно опускаться решение. Пусть в какой-то момент времени t_i $x_i < \varepsilon$. Тогда положим $x_i = \varepsilon$ и посмотрим, что надо добавить на предыдущем шаге, чтобы его получить. Перепишем схему метода Адамса в следующем виде:

$$\frac{x_i - x_{i-1}}{h} = \frac{23(f_{i-1} + m_{i-1}) - 16(f_{i-2} + m_{i-2}) + 5(f_{i-3} + m_{i-3})}{12}$$
(11)

Отсюда получим, что если в момент времени t_i произошла регуляризация, то в предыдущий момент времени добавок имеет следующий вид:

$$m_{i-1} = \frac{1}{23} \left(12 \frac{\varepsilon - x_{i-1}}{h} + 16 \left(f_{i-2} + mi - 2 \right) - 5 \left(f_{i-3} + m_{i-3} \right) \right) - f_{i-1}$$
 (12)

3.3 Примеры работы солвера на одномерных системах

Рис. 1: Решение уравнения $y' = \sqrt{y} - 3\sin^2 t$

Рис. 2: Регуляризатор для уравнения $y' = \sqrt{y} - 3\sin^2 t$

Рис. 3: Решение уравнения $y' = \sqrt{y} - 10 \sin t$

Рис. 4: Регуляризатор для уравнения $y'=\sqrt{y}-10\sin t$

3.4 Описание регуляризации эллипсоидов

Для регуляризации эллипсоидов немного модифицируем солвер. Пусть в момент времени t_i какое-то собственное значение матрицы эллипсоида стало меньше ε . Представим матрицу эллипсоида в следующем виде $X=SDS^{-1}$, где S— базис из собственных векторов,

а D — диагональная матрица, у которой диагональные элементы — собственные числа. Исправим собственные значения, которые меньше ε в матрице D, получим новую матрицу $X^* = SD^*S^{-1}$, она и будет регуляризованной матрицей.

При подсчете эллипсоидальных оценок для всех направлений должна быть одна и та же регуляризационная добавка, поэтому будем считать оценки для всех направлений параллельно и итоговая добавка будет сумма добавков по всем направлениям.

4 Примеры работы программы

4.1 Пример 1

В этом примере рассмотрим систему без регуляризации.

$$t_{0} = 0, t_{1} = 1,$$

$$A = \begin{bmatrix} 1 & 1 \\ 0 & -2 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 0.1 \\ 0 \end{bmatrix}, p = 0, P = 1, q = 0, Q = 0.01,$$

$$x_{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},$$

$$X_{0} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Рис. 5: Проекция на статическию плоскость

Рис. 6: Проекция трубки достижимости на трехмерную плоскость

4.2 Пример 2

$$t_{0} = 2, t_{1} = 4, A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -0.3 & 0 \\ 0 & 0 & -2 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, C = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, p = 0, P = 1, q = 0, Q = 0.01,$$

$$x_{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},$$

$$X_{0} = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}, l_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, l_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix},$$

Рис. 7: Проекция на динамическую плоскость

Рис. 8: Проекция трубки достижимости на трехмерную плоскость

Рис. 9: Регуляризатор

В данном примере видно, что в момент времени 3 происходит регуляризация, причем в данном примере регуляризация происходит только одного собственного значения, поэтому эллипсоид по другой оси почти вырожденный.

4.3 Пример 3

$$A = \begin{bmatrix} \cos t & 0 & -1 \\ -0.7 & -2\cos 2t & 0 \\ 1.5 & -3\sin 3t/2 & -2 \end{bmatrix}, B = \begin{bmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 10 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, p = \begin{bmatrix} 1 \\ \cos t \\ -\sin 2t \end{bmatrix},$$

$$P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, q = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},$$

$$Q = \begin{bmatrix} 0.1 & 0 & 0 \\ 0 & 0.1 & 0 \\ 0 & 0 & 0.5 \end{bmatrix},$$

$$x_0 = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix},$$

$$X_0 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, l_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, l_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$$

Рис. 10: Проекция на статическую плоскость

Рис. 11: Проекция на динамическую плоскость

Рис. 12: Проекция трубки достижимости на трехмерную статическую плоскость

Рис. 13: Проекция трубки достижимости на трехмерную динамическую плоскость

Рис. 14: Регуляризатор

В данной примере можно увидеть несколько моментов времени, когда происходит ругу-ляризация, и можно увидеть как меняется регуляризатор.

4.4 Пример колебательной системы

Рассмотрим колебательную систему с 4 степенями свободы во внешнем силовом поле при наличии трения и неизвестной, но ограниченной помехи, где первые 4 компоненты вектора х имеют смысл координаты, а последние четыре — скорости колебательной системы. При этом вектор силового поля принадлежит шару с центром, вращающимся вокруг нуля, а помеха ограничена эллипсоидом с центром в нуле.

Рис. 15: Проекция на статическую плоскость

Рис. 16: Проекция на динамическую плоскость

Рис. 17: Проекция трубки достижимости на трехмерную статическую плоскость

Рис. 18: Проекция трубки достижимости на трехмерную динамическую плоскость

Рис. 19: Регуляризатор

В данном примере можно увидеть поворот эллипсоида регуляризатора, это происходит из-за того, что происходит регуляризация разных собственных значений.