Assignment 1

SEMISTER 3rd

fall-2024

SUBJECT

Computer Networks

COURSE CODE

CC210

PROGRAMME

BS (4 year)

ABBOTTABAD UNIVERSITY OF SCIENCE AND TECHNOLOGY ISLAMABAD

SUBMITTED TO

Ms.Muqaddas

SUBMITTED BY

Haroon Imran

STUDENT ROLL NO

14723

SUBMISSION DATE

28 October 2024

Assignment 1

1: ELOBRATE the difference between TCP/IP and OSI Refrence Model?

Answer:

Difference between TCP/IP And OSI Refrence Model:

OSI Reference Model:

- Provides useful way to describe and think
- about networking
- Breaks networking down into series of
- related tasks
- Each aspect is conceptualized as a layer
- Each task can be handled separately

Understanding Layers:

- Layering helps clarify process of
- networking
- Groups related tasks and requirements
- OSI model provides theoretical frame of
- reference
- Clarifies what networks are
- Explains how they work

Application Layer

- Layer 7 is top layer of OSI reference model
- Provides general network access
- Includes set of interfaces for applications to access variety of
- networked services such as:
- File transfer
- E-mail message handling
- Database query processing
- May also include error recovery
- PDU at this layer and the next two layers is referred to as data
- Examples of software that resides at this layer include FTP, HTTP
- (the protocol used to transfer Web pages), and components of client
- software such as the Client for Microsoft Networks

Presentation Layer

- Layer 6 handles data formatting and protocol
- conversion
- Converts outgoing data to generic networked format
- Performs data encryption and decryption
- Handles character set issues and graphics commands
- May include data compression
- Includes redirector software that redirects service
- requests across network
- ❖ Software components that operate at this layer are
- usually built into the Application layer

Session Layer

- Layer 5 opens and closes sessions
- Performs data and message exchanges
- Monitors session identification and security
- Performs name lookup and user login and logout
- Provides synchronization services on both ends
- Determines which side transmits data, when, and for
- how long
- Transmits keep-alive messages to keep connection open
- during periods of inactivity
- Some of the common network functions handled by this
- layer include name lookup and user login and logout

Transport Layer

- Layer 4 conveys data from sender to receiver
- Breaks long data payloads into chunks called segments
- Includes error checks
- Re-sequences chunks into original data on receipt
- Handles flow control
- PDU at this layer is called a segment
- The components that work at this layer include the TCP
- portion of the TCP/IP protocol suite and the SPX portion
- of the IPX/SPX protocol suite

Network Layer

- Layer 3 addresses messages for delivery
- Translates logical network address into physical MAC
- address
- Decides how to route transmissions
- Handles packet switching, data routing, and congestion
- control
- Through fragmentation or segmentation, breaks data
- segments from Layer 4 into smaller PDUs called packets
- Reassembles data packets on receiving end
- The software components include the IP component of
- ❖ TCP/IP and the IPX component of IPX/SPX
- Routers operate at this layer

Data Link Layer

- Layer 2 creates data frames to send to Layer 1
- On receiving side, takes raw data from Layer 1 and
- packages into data frames
- Data frame is basic unit for network traffic on the
- wire
- ❖ See Figure 5-3 for contents of typical data frame
- Performs Cyclic Redundancy Check (CRC) to verify data
- integrity
- Detects errors and discards frames containing errors
- PDU at Layer 2 is called a frame
- The software component that operates at this layer is
- the NIC driver; the hardware components that operate
- here include the NIC and switches

Physical Layer

- Layer 1 converts bits into signals for outgoing messages and signals into bits for incoming messages
- Manages computer's interface to medium
- ❖ Instructs driver software and network interface to send data across medium
- Sets timing and interpretation of signals across medium

- Translates and screens incoming data for delivery to receiving computer
- The components include all of the cables and connectors used on the medium plus repeaters and hubs

TCP/IP model:

The TCP/IP model, much like the OSI model, breaks down networking into various layers, but it condenses these tasks into four main layers instead of seven. Here's a restructured description of networking tasks using the TCP/IP model:

Understanding the TCP/IP Model:

- Provides a practical framework for networking
- Organizes networking functions into layers that can work independently
- Facilitates the design and understanding of how networks operate
- Defines protocols for data communication over networks

Application Layer (TCP/IP):

- The Application layer is the top layer in the TCP/IP model.
- Handles all application-related tasks such as data formatting and network services.
- Manages network access for programs such as email, file transfer (FTP), and web services (HTTP).
- Includes error recovery, data presentation, and session management in this layer.
- Protocols in this layer: HTTP, FTP, SMTP, DNS, etc.

Transport Layer (TCP/IP):

- The Transport layer in the TCP/IP model ensures reliable data transmission between sender and receiver.
- It breaks large data into smaller segments and ensures they arrive in the correct order.
- Handles flow control, retransmissions, and error detection.

- Protocols used at this layer include TCP (Transmission Control Protocol) for reliable transmission and UDP (User Datagram Protocol) for faster, but less reliable, communication.
- PDU at this layer is referred to as a segment (TCP) or datagram (UDP).

Internet Layer (TCP/IP):

- This layer corresponds to the OSI Network layer and is responsible for packet routing and addressing.
- It manages logical addressing (IP addressing), packet fragmentation, and reassembly.
- Controls how packets travel from source to destination across networks.
- The main protocol used here is IP (Internet Protocol), and components like routers function at this layer.
- PDU at this layer is called a packet.

Network Access Layer (TCP/IP):

- The Network Access layer encompasses both the OSI Data Link and Physical layers.
- It manages the hardware aspects of data transmission such as framing, error detection (CRC), and the physical transmission of signals over media.
- Responsible for taking packets from the Internet layer and transmitting them across a physical network (e.g., Ethernet, Wi-Fi).
- Hardware like NICs (Network Interface Cards), switches, cables, and hubs operate at this layer.
- PDU at this layer is known as a frame for wired connections and can be referred to as bits at the lowest level.

Key Differences Between OSI and TCP/IP Models:

• **Fewer layers:** The TCP/IP model consolidates several functions from the OSI model into fewer layers.

- **Real-world application:** The TCP/IP model is more widely used in modern networking, particularly the Internet.
- **Flexible structure:** Unlike the OSI model, the TCP/IP model layers can function independently, making it more practical for real-world network implementations.