1 Letztes Mal

Ableitung

Mittelwertsatz für Differenzialrechnung

Satz zur Monotonie

Zurück zu lokalen Extrema

Wir haben gesehen, dass für differenzierbare Funktionen auf offennen Intervallen gilt:

 $\{\text{Stellen lokaler Extrema von } f\} \subset \{\text{kritische Punkte von } f\}$

Wir benötigen noch eine hinreichende Bedingung für die Existenz lokaler Extrema.

Sei x_0 ein kritischer Punkt von f und sei f in x_0 2 mal differenzierbar. Dann gilt:

$$f''(x_0) > 0 \implies f$$
 hat in x_0 ein lok. Min. $f''(x_0) < 0 \implies f$ hat in x_0 ein lok. Max.

1.0.1 Beweis

$$f''(x_0) = \lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f'(x)}{x - x_0}$$

Sei
$$f''(x_0) > 0 \implies \lim_{x \to x_0} \frac{f'(x)}{x - x_0} > 0$$

$$\implies \exists \varepsilon > 0 : \frac{f'(x)}{x - x_0} > 0, \forall x \in (x - \varepsilon, x + \varepsilon) - \{x_0\}$$

für $x_0 < x : \Longrightarrow x - x_0 > 0$

$$\implies f'(x) > 0 \forall x \in (x_0, x_0 + \varepsilon)$$

Satz zur Monotonie $\implies f$ ist streng monoton wachsend auf $[x_0, x_0 + \varepsilon]$ für $x_0 > x \implies x - x_0 < 0$.

$$\implies f'(x) < 0 \forall x \in (x_0 - \varepsilon, x_0)$$

Satz zur Monotonie $\implies f$ ist streng monoton fallend auf $[x_0 - \varepsilon, x_0] \implies f$ besitzt ein lokales Min. in x_0 .

Vorzeichenbedingungen an die 2. Ableitung haben die geometrische Interpretation von Konvexitätsbedingungen.

Konvexität

Def. Sei $f:I\to\mathbb{R}$ eine Funktion auf einem Intervall $I,\ f$ heißt konvex auf I, wenn

$$\forall x, x' \in I, x < x', \forall t \in [0, 1] : (*) f(tx + (1 - t)x') \le t f(x) + (1 - t) f(x')$$

f heißt konkav auf I, wenn ein $(*) \geq$ gefordert wird, Gemoetrich:

- Der Graph befindet sich immer unterhalb der Sekante (konvex).
- Der Graph befindet sich immer oberhalf der Sekante (konkav).

Satz zur Konvexität

Sei $f:(a,b)\to\mathbb{R}$ zweimal differenzierbar.

$$f''(x) \ge 0 \forall x \in (a,b) \implies f \text{ ist konvex auf } (a,b)$$

$$f''(x) \le 0 \forall x \in (a,b) \implies f \text{ ist konkav auf } (a,b)$$

Beweis: Sei $x < x', x, x' \in (a, b)$, es gelte $f'' \ge 0$ Zu zeigen ist die Ungleichung (*).

$$t \in [0,1], x_0 := tx + (1-t)x'$$

Mittelwertsatz

$$\Rightarrow \exists \xi \in (x, x_0) : f'(\xi) = \frac{f(x_0) - f(x)}{x_0 - x}$$
$$\exists \xi' \in (x_0, x') \Rightarrow f'(\xi') = \frac{f(x') - f(x_0)}{x' - x_0}$$
$$f'' \ge 0 \Rightarrow f'$$

ist monoton wachsend.

$$\xi < \xi' \implies f'(\xi) \le f'(\xi')$$

$$\implies \frac{f(x_0) - f(x)}{x_0 - x} \le \frac{f(x') - f(x_0)}{x' - x_0}$$

$$x_0 - x = tx + (1 - t)x' - x = (1 - t)(x' - x)$$

$$x' - x_0 = x' - tx - (1 - t)x' = x' - tx + tx' = t(x' - x).$$

$$\frac{f(x_0) - f(x)}{(1 - t)(x' - x)} \le \frac{f(x') - f(x_0)}{t(x' - x)}$$

$$\implies \frac{f(x_0) - f(x)}{(1 - t)} \le \frac{f(x') - f(x_0)}{t}$$

$$\implies tf(x_0) - tf(x) \le (1 - t)f(x') - (1 - t)f(x_0)$$

Analog unter der Voraussetzung $f'' \leq 0$ Beispiel:

$$f(x) = \log x \cdot f'(x) = \frac{1}{x} \cdot f''(x) = -\frac{1}{x^2} \le 0$$

 $\implies f$ ist konkav.

$$\implies \log(\frac{x_1 + x_2}{2}) \ge \frac{1}{2}(\log(x_1) + \log(x_2)) = \log((x_1 x_2)^{\frac{1}{2}})$$

exp monoton wachsend $\implies \frac{x_1+x_2}{2} \ge (x_1,x_2)^{\frac{1}{2}}$ Auch die allgemeninen Form der Ungleichung zwischen aritmetischen und

Auch die allgemeninen Form der Ungleichung zwischen aritmetischen und geometrischen Mittel lässt sich mit Hilfe der Konkavität von log herleiten.

1.1 Die Regel von de l'Høpital

Seien $f,g:I\to\mathbb{R}$ stetige Funktionen und $\xi\in I,\,I$ ein Invervall.

$$g(\xi \neq 0) \implies \lim_{x \to \xi} \frac{f(x)}{g(x)} = \frac{f(\xi)}{g(\xi)}$$

$$g(\xi) = 0 \land f(\xi) \neq 0 \implies \nexists \lim_{x \to \xi} \frac{f(x)}{g(x)} \in \mathbb{R}$$

Es gelte nun $f(\xi)=0$ und $g(\xi)=0$ Regel von de l'Høpital: Ist

- $g'(x) \neq 0 \forall x \in I \{\xi\}$
- f, g differenzierbar auf $I \{\xi\}$
- es existiere $\lim_{x \to \xi} \frac{f'(x)}{g'(x)}$

Gelten diese Bedingungen, dann gilt

$$\lim_{x \to \xi} \frac{f(x)}{g(x)} = \lim_{x \to \xi} \frac{f'(x)}{g'(x)}$$

Beispiel:

$$\lim_{x\to 0}\frac{\sin x}{x}=\lim_{x\to 0}\frac{\cos x}{1}=\cos 0=1$$

Beweisen