ANALÝZA KOMBINAČNÝCH OBVODOV Ondrej Krajčovič Zadanie:

Urobte analýzu kombinačného logického obvodu, ktorého štruktúra je daná na obrázku nižšie.

- 1. Zo známej štruktúry obvodu:
 - Odvoďte boolovské funkcie zodpovedajúce výstupom Y a Z obvodu,
 - Boolovské funkcie s použitím pravidiel boolovskej algebry upravte na minimálnu DNF a zapíšte do Karnaughových máp (najskôr do máp, v ktorých vystupujú všetky vstupné premenné obvodu a potom do najmenších máp),
 - Boolovské funkcie s použitím pravidiel boolovskej algebry upravte na minimálnu KNF a zapíšte do Karnaughových máp (najskôr do máp, v ktorých vystupujú všetky vstupné premenné obvodu a potom do najmenších máp).

2. Pomocou systému LOGISIM (príp. LOG/FITBOARD):

- Vytvorte schému zadaného obvodu a simuláciou overte správnosť mapových zápisov boolovských funkcií (pre jednotlivé kombinácie hodnôt na vstupoch porovnajte výstupy s hodnotami v mapách),
- Vytvorte schému obvodu z rovníc, ktoré ste získali pri úprave na DNF formu,
- Vytvorte schému obvodu z rovníc, ktoré ste získali pri úprave na KNF formu,
- Všetky tri vytvorené schémy pripojte na spoločné vstupy a zodpovedajúce si výstupy obvodov umiestnite vedľa seba (viď. obrázok príkladu).

Zadanie 1: NAND - NAND - NAND - XNOR - XOR

1. Schéma zadania obvodu

Typy použitých logických členov: NAND – NAND – NAND – XNOR – XOR

1. Schéma zadania obvodu

Odvodenie výrazov pre výstupné funkcie Y a Z

1) Vyjdeme zo štruktúry obvodu a zostavíme výrazy zodpovedajúce výstupom Y a Z:

$$Y = x_1. x_2 + \overline{x_1}. \overline{x_2}$$

$$Z = x_2. \overline{x_3} + \overline{x_2}. x_3$$

Pre l'ubovol'né výrazy A,B platí:

1. A+B=B+A Komutatívnosť

A.B = B.A

2. A+(B+C) = (A+B)+C Asociatívnosť

A.(B.C) = A.(B.C)

3. A+B.C = (A+B).(A+C) Distributívnosť

A.(B+C) = A.B+A.C

4. A+A+...+A=A

A.A....A = A

5. $\overline{A+B} = \overline{A}.\overline{B}$ de Morganové pravidlá

 $\overline{A.B} = \overline{A} + \overline{B}$

6. $\bar{A} = A$ Pravidlá o dvojnásobnej a viacnásobnej negácii

 $\bar{\bar{\bar{A}}} = \bar{A}$

7. $A + \bar{A} = 1$ Pravidlá o komplemente

 $A.\bar{A}=0$

8. A+1 = 1 Pravidlá o adresívnosti hodnôt 0 a 1

A.0 = 0

9. A+0=A Pravidlá o neutrálnosti hodnôt 0 a 1

A.1 = A

10. $(A + B) \cdot (\bar{A} + B) = B$ Pravidlá spojovania

 $A.B + \bar{A}.B = B$

11. A+A.B=A Pravidlá absorbcie

A.(A+B) = A

12. $A + \bar{A} \cdot B = A + B$

 $A.(\bar{A}+B)=A.B$

13. $A.B + \bar{A}.C + B.C = A.B + \bar{A}.C$ Konsenzus teorem $(\bar{A} + \bar{B}).(\bar{B} + \bar{C}).(A + \bar{C}) = (\bar{A} + \bar{B}).(A + \bar{C})$

2) Výrazy prepíšeme na ekvivalentné normálne formy typu DNF:

DNF - Y:

$$Y = x_1 \cdot x_2 + \overline{x_1} \cdot \overline{x_2}$$

$$x_1 = \overline{A \cdot B}$$
 $x_1 = \overline{A} + \overline{B}$
 $x_2 = \overline{C \cdot \overline{D}}$
De Morganovo pravidlo
 $x_2 = \overline{C} + \overline{D}$
De Morganovo pravidlo
 $x_1 = A \cdot B$
De Morganovo pravidlo
De Morganovo pravidlo
De Morganovo pravidlo
De Morganovo pravidlo

$$Y = x_1.x_2 + \overline{x_1}.\overline{x_2}$$

$$= (\overline{A} + \overline{B}) \cdot (\overline{C} + D) + (A.B) \cdot (C \cdot \overline{D})$$
 Dosadenie za x_1 a x_2

$$= \overline{A}.\overline{C} + \overline{A}.D + \overline{B}.\overline{C} + \overline{B}.D + A.B.C.\overline{D} = \text{DNF Y}$$
 Roznásobenie zátvoriek

Počet použitých logických členov: 6 (5xAND, 1xOR)

Počet vstupov pre logickú funkciu: 17(4*(2 do AND), 4 do AND, 5 do OR)

DNF - Z:

$$Z = x_2.\overline{x_3} + \overline{x_2}.x_3$$

$Z = x_2.\overline{x_3} + \overline{x_2}.x_3$	
$x_2 = \overline{C . \overline{D}}$	
$x_2 = \bar{C} + \overline{\bar{D}}$	De Morganovo pravidlo
$x_2 = \bar{C} + D$	Pravidlo o dvojnásobnej negácii
$x_3 = \overline{B \cdot D}$	
$x_3 = \bar{B} + \bar{D}$	De Morganovo pravidlo
— c 5	5.17
$\overline{x_2} = C \cdot \overline{D}$	De Morganovo pravidlo
$\overline{x_3} = B \cdot D$	De Morganovo pravidlo
$7 - y = \overline{y} \perp \overline{y} \times y$	
$Z = x_2.\overline{x_3} + \overline{x_2}.x_3$	

$$Z = x_2. x_3 + x_2. x_3$$

$$= (\bar{C} + D) . (\bar{B} + \bar{D}) + (C . \bar{D}) . (B . D)$$
Dosadenie za $x_1 a x_2$

$$= \bar{C} . B . D + B . D + C . \bar{B} . \bar{D} + C . \bar{D}$$
Roznásobenie zátvoriek
$$= B . D + C . \bar{B} . \bar{D} + C . \bar{D}$$
Pravidlo absorbcie
$$= B . D + C . \bar{D} = DNF Z$$
Pravidlo absorbcie

Počet použitých logických členov: 3 (2xAND, 1xOR)

Počet vstupov pre logickú funkciu: 6 (2 do AND, 2 do AND, 2 do OR)

3) Zostavíme mapové zápisy funkcií, ktoré zodpovedajú výrazom Y a Z vo forme DNF:

Sumár obvodov DNF:

Počet použitých logických členov: 9 (7xAND, 2xOR) = (6+3)

Počet vstupov pre logickú funkciu: 23 (6*(2 do AND), 4 do AND, 5 do OR, 2 do OR) = (17+6) Pozn.: pri zapojení obvodov som použil 4x NOT priamo z vstupov A,B,C,D aby bol obvod čo najefektívnejší

4) Výrazy prepíšeme na ekvivalentné normálne formy typu KNF:

KNF - Y

mKNF vypoočítame dvojitým negovaním mDNF danej funkcie

$$Y = \overline{\overline{A}.\overline{C} + \overline{A}.D + \overline{B}.\overline{C} + \overline{B}.D + A.B.C.\overline{D}}$$
 De Morganovo pravidlo
$$= (\overline{\overline{A}} + \overline{\overline{C}}).(\overline{\overline{A}} + \overline{D}).(\overline{\overline{B}} + \overline{\overline{C}}).(\overline{\overline{B}} + \overline{D}).(\overline{A} + \overline{B} + \overline{C} + \overline{D})$$
 Pravidlo o dvojnásobnej negácii
$$= (A + C).(A + \overline{D}.(B + C).(B + \overline{D}).(\overline{A} + \overline{B} + \overline{C} + D)$$
 Distributívnosť
$$= (A + C.\overline{D}).(B + C.\overline{D}).(\overline{A} + \overline{B} + \overline{C} + D)$$
 Roznásobenie zátvoriek
$$= \overline{A.C.\overline{D}} + \overline{B.C.\overline{D}} + \overline{C.C.D} + \overline{C.C.D} + \overline{C.D.D} + \overline{A.A.B} + \overline{A.B.B} + \overline{A.B.C} + \overline{A.B.D}$$
 **
$$= \overline{A.C.\overline{D}} + \overline{B.C.\overline{D}} + \overline{0.D} + 0.D + 0.D + 0.B + A.0 + A.B.\overline{C} + A.B.D$$
 **
$$= \overline{A.C.\overline{D}} + \overline{B.C.\overline{D}} + A.B.\overline{C} + A.B.D$$
 De Morganovo pravidlo
$$= (\overline{A} + \overline{C} + \overline{D}).(\overline{A} + \overline{B} + \overline{C}).(\overline{A} + \overline{B} + \overline{D})$$
 Pravidlo o dvojnásobnej negácii
$$= (A + \overline{C} + D).(B + \overline{C} + D).(\overline{A} + \overline{B} + D) = KNFY$$

Počet použitých logických členov: 5(4xOR, 1x AND)

Počet vstupov pre logickú funkciu: 16 (4*(3 do OR), 4 do AND)

KNF - Z

mKNF vypoočítame dvojitým negovaním mDNF danej funkcie

$$Z = \overline{\overline{B.D} + \overline{C.\overline{D}}}$$

$$= \overline{(\overline{B} + \overline{D}).(\overline{C} + \overline{\overline{D}})}$$

$$= \overline{(\overline{B} + \overline{D}).(\overline{C} + \overline{D})}$$
Pravidlo o dvojnásobnej negácii
$$= \overline{(\overline{B} + \overline{D}).(\overline{C} + D)}$$
Roznásobenie zátvoriek
$$= \overline{B.C} + \overline{B.D} + \overline{C.D} + \overline{D.D}$$
Konsenzus teorem
$$= \overline{B.D} + \overline{D.C}$$
De Morganovo pravidlo
$$= (\overline{B} + \overline{D}).(\overline{D} + \overline{C})$$
Pravidlo o dvojnásobnej negácii
$$= (\overline{B} + \overline{D}).(D + C) = KNF Z$$

Počet použitých logických členov: 3 (2xOR, 1xAND)

Počet vstupov pre logickú funkciu: 6 (2*(2 do OR), 2 do AND)

5) Zostavíme mapové zápisy funkcií, ktoré zodpovedajú výrazom Y a Z vo forme KNF:

^{*} Pravidlo o komplemente

^{**} Pravidlo o adresívnosti 0

		D_		<u>C</u> -	-					
	1	0	1	1						
В	0	1	0	0						
	1	0	1	1						
A	1	0	1	1						
		Y			-					
C					-					
	0	0	1	0				D	(<u> </u>
В	1	1	1	0					1	
	1	1	1	0		_	0	0	1	0
A	0	0	1	0		В	1	1	1	0
I		Z	1	I	J			Z		

Sumár obvodov KNF:

Počet použitých logických členov: 8 (6xOR, 2xAND) = (5+3)

Počet vstupov pre logickú funkciu: 22 (4*(3 do OR), 2*(2 do OR), 1 do AND, 4 do AND) = (16+6) Pozn.: pri zapojení obvodov som použil 4x NOT priamo z vstupov A,B,C,D aby bol obvod čo

najefektívnejší

Zhodnotenie:

Nakoľko pri DNF musíme použiť o jednu logickú bránu a o dva vstupy viac, KNF je efektívnejšie. Pri konkrétnom pohľade na jednotlivé obvody však vidíme, že oba obvody funkcie Z(DNF; KNF) používajú rovnaký počet vstupov a rovnaký počet logických brán, oba sú tým pádom rovnako efektívne. V obvode pre funkciu Y však nastáva rozdiel, pretože DNF používa o jednu logickú bránu a dva vstupy viac, z čoho je nám jasné, že KNF je pre Y efektívnejšie. (v obvode sú použité okrem spomínaných logických brán 4 NOT brány, zabezpečujúce negované vstupy do funkcií, nakoľko sa však použijú 4 na KNF a 4 na DNF, nemajú efekt na výsledok)

