

GBI Tutorium Nr. 41

Foliensatz 10

Vincent Hahn - vincent.hahn@student.kit.edu | 10. Januar 2013

Outline/Gliederung

Vincent Hahn - vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat

Master-Theorem

Moore-Automat

Endliche Akzeptoren

2 Mealy-Automat

Moore-Automat

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat

Master-Theorem

Moore-Automat

2 Mealy-Automat

Endliche Akzeptoren

3 Moore-Automat

Master-Theorem

Vincent Hahn – vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Definition

Für einen rekursiven Algorithmus der Form

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- ① Wenn $f(n) \in \mathcal{O}\left(n^{\log_b a \varepsilon}\right)$ für ein $\varepsilon > 0$, dann ist $T(n) \in \Theta\left(n^{\log_b a}\right)$
- ② Wenn $f(n) \in \Theta(n^{\log_b a})$, dann ist $T(n) \in \Theta(n^{\log_b a} \log n)$
- ③ Wenn $f(n) ∈ Ω(n^{\log_b a + ε})$ für ein ε > 0, und wenn es eine Konstante d gibt mit 0 < d < 1, sodass für alle hinreichend großen n gilt af(n/ε) ≤ df(n), dann ist T(n) ∈ Θ(f(n))
 - Fall 2 wird etwa bei Quicksort benötigt
 - Fall 3 ist eher die Ausnahme

Master-Theorem

Vincent Hahn - vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Definition

Für einen rekursiven Algorithmus der Form

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- **1** Wenn $f(n) \in \mathcal{O}\left(n^{\log_b a \varepsilon}\right)$ für ein $\varepsilon > 0$, dann ist $T(n) \in \Theta\left(n^{\log_b a}\right)$
- ② Wenn $f(n) \in \Theta(n^{\log_b a})$, dann ist $T(n) \in \Theta(n^{\log_b a} \log n)$
- ③ Wenn $f(n) \in \Omega\left(n^{\log_b a + \varepsilon}\right)$ für ein $\varepsilon > 0$, und wenn es eine Konstante d gibt mit 0 < d < 1, sodass für alle hinreichend großen n gilt $af\left(n/b\right) \leq df\left(n\right)$, dann ist $T\left(n\right) \in \Theta\left(f\left(n\right)\right)$
 - Fall 2 wird etwa bei Quicksort benötigt
 - Fall 3 ist eher die Ausnahme

Master-Theorem

Vincent Hahn – vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Definition

Für einen **rekursiven** Algorithmus der Form

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- **1** Wenn $f(n) \in \mathcal{O}\left(n^{\log_b a \varepsilon}\right)$ für ein $\varepsilon > 0$, dann ist $T(n) \in \Theta\left(n^{\log_b a}\right)$
- ② Wenn $f(n) \in \Theta(n^{\log_b a})$, dann ist $T(n) \in \Theta(n^{\log_b a} \log n)$
- ③ Wenn $f(n) ∈ Ω(n^{\log_b a + ε})$ für ein ε > 0, und wenn es eine Konstante d gibt mit 0 < d < 1, sodass für alle hinreichend großen n gilt af(n/ε) ≤ df(n), dann ist T(n) ∈ Θ(f(n))
 - Fall 2 wird etwa bei Quicksort benötigt
 - Fall 3 ist eher die Ausnahme

Master-Theorem

Vincent Hahn - vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Definition

Für einen **rekursiven** Algorithmus der Form

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- **1** Wenn $f(n) \in \mathcal{O}\left(n^{\log_b a \varepsilon}\right)$ für ein $\varepsilon > 0$, dann ist $T(n) \in \Theta\left(n^{\log_b a}\right)$
- ② Wenn $f(n) \in \Theta(n^{\log_b a})$, dann ist $T(n) \in \Theta(n^{\log_b a} \log n)$
- Wenn $f(n) \in \Omega\left(n^{\log_b a + \varepsilon}\right)$ für ein $\varepsilon > 0$, und wenn es eine Konstante d gibt mit 0 < d < 1, sodass für alle hinreichend großen n gilt $af(n/b) \le df(n)$, dann ist $T(n) \in \Theta(f(n))$
 - Fall 2 wird etwa bei Quicksort benötigt
 - Fall 3 ist eher die Ausnahme

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat 1 Master-Theorem

- 3 Moore-Automat
- 4 Endliche Akzeptoren

Mealy-Automat

Vincent Hahn - vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Definition: Mealy-Automat

Der Mealy-Automat $A = (Z, z_0, X, f, Y, g)$ besteht aus

- der endlichen Zustandsmenge Z,
- @ dem Startzustand z₀,
- dem Eingabealphabet X,
- \bullet der Zustandsübergangsfunktion $\mathbf{f}: \mathbf{Z} \times \mathbf{X} \to \mathbf{Z}$,
- einem Ausgabealphabet Y und
- **6** der Ausgabefunktion $\mathbf{g}: \mathbf{Z} \times \mathbf{X} \to \mathbf{Y}^*$.

Getränkeautomat (ohne Ausgabe)

Vincent Hahn - vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat

Moore-Automat

Getränkeautomat

Vincent Hahn - vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Was ist was?

- Zustandsmenge Z: {(0, -), (0, R), (0, Z), (1, -), (1, R), (1, Z)}
- Eingabealphabet *X*: {1, *R*, *Z*, *C*, 0}
- Zustandsübergangsfunktion f: die Pfeile
- Ausgabealphabet Y: {1, R, Z}
- Ausgabefunktion g: bisher noch nicht eingezeichnet, siehe n\u00e4chste Folie

8/17

Getränkeautomat (mit Ausgabe)

Vincent Hahn - vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

9/17

Getränkeautomat

Vincent Hahn - vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Was ist was?

- Zustandsmenge Z: {(0, -), (0, R), (0, Z), (1, -), (1, R), (1, Z)}
- Eingabealphabet *X*: {1, *R*, *Z*, *C*, 0}
- Zustandsübergangsfunktion f: die Pfeile, was vor einem senkrechten Strich | steht
- Ausgabealphabet Y: {1, R, Z}
- Ausgabefunktion g: die Pfeile, was hinter einem senkrechten Strich steht

f* und f**

Vincent Hahn - vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Definition: *f** und *f* * *

 $f^* = f^*(z, w)$ kann im Gegensatz zu f ein ganzes Wort w als zweites Funktionsargument nehmen:

$$f^*: Z \times X^* \to Z$$
$$f^*(z, \varepsilon) = z$$
$$f^*(z, wx) = f(f^*(z, w), x)$$

f** kann im Gegensatz zu f* ganze Wörter anstatt einem Symbol ausgeben:

$$f^*: Z \times X^* \to Z^*$$

 $f^{**}(z, \varepsilon) = z$

f* und f**

Vincent Hahn - vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Definition: *f** und *f* * *

 $f^* = f^*(z, w)$ kann im Gegensatz zu f ein ganzes Wort w als zweites Funktionsargument nehmen:

$$f^*: Z \times X^* \to Z$$
$$f^*(z, \varepsilon) = z$$
$$f^*(z, wx) = f(f^*(z, w), x)$$

 f^{**} kann im Gegensatz zu f^* ganze Wörter anstatt einem Symbol ausgeben:

$$f^*: Z \times X^* \to Z^*$$

$$f^{**}(z, \varepsilon) = z$$

$$f^{**}(z, wx) = f^{**}(z, w) \cdot f(f^*(z, w), x)$$

Getränkeautomat (ohne Ausgabe)

Vincent Hahn - vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Was macht $f^*((0, -), R10)$?

Getränkeautomat (ohne Ausgabe)

Vincent Hahn - vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Was macht $f^*((0, -), R10)$? Berechnet $f^*((0, -), R10)$.

Getränkeautomat (ohne Ausgabe)

Vincent Hahn - vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Was macht $f^*((0,-),R10)$? Berechnet $f^*((0,-),R10)$. Was käme bei $f^{**}((0,-),R10)$ raus?

Getränkeautomat (mit Ausgabe)

Vincent Hahn - vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Was macht $g^*((0, -), R10)$?

Getränkeautomat (mit Ausgabe)

Vincent Hahn - vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Was macht $g^*((0, -), R10)$? Berechnet $g^*((0, -), R10)$.

Getränkeautomat (mit Ausgabe)

Vincent Hahn - vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Was macht $g^*((0,-),R10)$? Berechnet $g^*((0,-),R10)$. Was käme bei $g^{**}((0,-),R10)$ raus?

Getränkeautomat (mit Ausgabe)

Vincent Hahn - vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Was macht $g^*((0,-),R10)$? Berechnet $g^*((0,-),R10)$. Was käme bei $g^{**}((0,-),R10)$ raus? Was passiert bei $g^{**}((0,-),R110)=1R$

Alternativer Automat

Vincent Hahn - vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Gegeben sei der Automat mit

- $Z = \{z\},$
- $X = Y = \{a, b\},$
- g(z,a) = b,
- g(z,b) = ba.
- Zeichnet den Automaten,
- ② gebt $w_1 = g^{**}(z, a)$ an und
- **3** gebt $w_2 = g^{**}(z, w_1)$ an.

Wie sieht w_3 vermutlich aus? Allgemein, wie sieht w_i aus?

Alternativer Automat

 $Vincent\ Hahn-vincent.hahn@student.kit.edu$

Master-Theorem

Mealy-Automat

Moore-Automat

a|b, b|ba

•
$$w_1 = g^{**}(z, a) = g^{**}(z, \varepsilon) \cdot g^*(z, wx) = g(f^*(z, \varepsilon), a) = g(z, a) = b$$

•
$$w_2 = g^{**}(z, b) = g(z, b) = ba$$

•
$$w_3 = \cdots = baa$$

• Vermutung:
$$w_{i+1} = ba^i$$

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat

1 Master-Theorem

Moore-Automat

2 Mealy-Automat

Endliche Akzeptoren

Moore-Automat

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat

Master-Theorem

Moore-Automat

Mealy-Automat

Endliche Akzeptoren

Moore-Automat

Endliche Akzeptoren

17/17