UNIT-3

Algebraic Structures

Algebraic Systems with One Binary Operation Binary Operation

Let *S* be a non-empty set. If $f: S \times S \to S$ is a mapping, then *f* is called a binary operation or binary composition in *S*.

The symbols +, \cdot , \star , θ etc are used to denote binary operations on a set.

- For $a, b \in S \Rightarrow a + b \in S \Rightarrow +$ is a binary operation in S.
- For $a, b \in S \Rightarrow a \cdot b \in S \Rightarrow \cdot$ is a binary operation in S.
- For $a, b \in S \Rightarrow a \circ b \in S \Rightarrow \circ$ is a binary operation in S.
- For $a, b \in S \Rightarrow a * b \in S \Rightarrow *$ is a binary operation in S.
- This is said to be the closure property of the binary operation and the set S is said to be closed with respect to the binary operation.

Properties of Binary Operations

Commutative: * is a binary operation in a set *S*. If for $a, b \in S$, a * b = b * a, then * is said to be commutative in *S*. This is called commutative law.

Associative: *is a binary operation in a set *S*. If for *a*, *b*, $c \in S$, (a*b)*c = a*(b*c), then *is said to be associative in *S*. This is called associative law.

Distributive: \circ , * are binary operations in *S*. If for *a*, *b*, $c \in S$, (i) $a \circ (b * c) = (a \circ b) * (a \circ c)$, (ii) $(b * c) \circ a = (b \circ a) * (c \circ a)$, then \circ is said to be distributive w.r.t the operation *. Example: *N* is the set of natural numbers.

- (i) +, · are binary operations in N, since for $a, b \in N$, $a + b \in N$ and $a \cdot b \in N$. In other words N is said to be closed w.r.t the operations + and ·.
- (ii) +, · are commutative in N, since for $a, b \in N$, a + b = b + a and $a \cdot b = b \cdot a$.
- (iii) +, · are associative in N, since for a, b, $c \in N$, a + (b + c) = (a + b) + c and $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
- (iv) is distributive w.r.t the operation + in N, since for a, b, $c \in N$, $a \cdot (b + c) = a \cdot b + a \cdot c$ and $(b + c) \cdot a = b \cdot a + c \cdot a$.
- (v) The operations subtraction (–) and division (÷) are not binary operations in N, since for 3, $5 \in N$ does not imply $3 5 \in N$ and $\frac{3}{5} \in N$.

Example: *A* is the set of even integers.

- (i) +, · are binary operations in A, since for $a, b \in A$, $a + b \in A$ and $a \cdot b \in A$.
- (i) +, · are commutative in A, since for $a, b \in A$, a + b = b + a and $a \cdot b = b \cdot a$.
- (ii) +, · are associative in A, since for a, b, $c \in A$, a + (b + c) = (a + b) + c and $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
- (iv) \cdot is distributive w.r.t the operation + in A, since for a, b, $c \in A$, $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(b+c) \cdot a = b \cdot a + c \cdot a$.

Example: Let *S* be a non-empty set and \circ be an operation on *S* defined by $a \circ b = a$ for $a, b \in S$. Determine whether \circ is commutative and associative in *S*.

Solution: Since $a \circ b = a$ for $a, b \in S$ and $b \circ a = b$ for $a, b \in S$.

$$\Rightarrow a \circ b = /b \circ a$$
.

 \therefore o is not commutative in *S*.

Since
$$(a \circ b) \circ c = a \circ c = a$$

 $a \circ (b \circ c) = a \circ b = a$ for $a, b, c \in S$.

 \therefore o is associative in *S*.

Example: \circ is operation defined on Z such that $a \circ b = a + b - ab$ for $a, b \in Z$. Is the operation \circ a binary operation in Z? If so, is it associative and commutative in Z?

Solution: If $a, b \in \mathbb{Z}$, we have $a + b \in \mathbb{Z}$, $ab \in \mathbb{Z}$ and $a + b - ab \in \mathbb{Z}$.

$$\Rightarrow a \circ b = a + b - ab \in \mathbb{Z}.$$

 \therefore o is a binary operation in Z.

$$\Rightarrow a \circ b = b \circ a$$
.

 \therefore o is commutative in Z.

Now

$$(a \circ b) \circ c = (a \circ b) + c - (a \circ b)c$$

= $a + b - ab + c - (a + b - ab)c$
= $a + b - ab + c - ac - bc + abc$

and

$$a \circ (b \circ c) = a + (b \circ c) - a(b \circ c)$$

= $a + b + c - bc - a(b + c - bc)$
= $a + b + c - bc - ab - ac + abc$
= $a + b - ab + c - ac - bc + abc$

$$\Rightarrow$$
 $(a \circ b) \circ c = a \circ (b \circ c)$. \therefore

 \circ is associative in Z.

Example: Fill in blanks in the following composition table so that 's is associative in $S = \{a, b, c, d\}$.

0	а	b	c	d
а	a	b	c	d
b	b	a	С	d
с	c	d	С	d
d				

Solution:
$$d \circ a = (c \circ b) \circ a[\because c \circ b = d]$$

$$=c \circ (b \circ a)$$
 [: \circ is associative]
 $=c \circ b$
 $=d$

$$d \circ b = (c \circ b) \circ b = c \circ (b \circ b) = c \circ a = c.$$

$$d \circ c = (c \circ b) \circ c = c \circ (b \circ c) = c \circ c = c$$
.

$$d \circ d = (c \circ b) \circ (c \circ b)$$

$$= c \circ (b \circ c) \circ b$$

$$= c \circ c \circ b$$

$$= c \circ (c \circ b)$$

$$= c \circ d$$

$$= d$$

Hence, the required composition table is

0	а	b	с	d
а	а	b	c	d
b	b	а	c	d
c	С	d	С	d
d	d	с	С	d

Example: Let P(S) be the power set of a non-empty set S. Let \cap be an operation in P(S). Prove that associative law and commutative law are true for the operation in P(S).

Solution: P(S)= Set of all possible subsets of S.

Let $A,B \in P(S)$.

Since $A \subseteq S$, $B \subseteq S \Rightarrow A \cap B \subseteq S \Rightarrow A \cap B \in P(S)$.

 \therefore \cap is a binary operation in P(S).

Also $A \cap B = B \cap A$

 $\therefore \cap$ is commutative in P(S).

Again $A \cap B$, $B \cap C$, $(A \cap B) \cap C$ and $A \cap (B \cap C)$ are subsets of S.

$$\therefore (A \cap B) \cap C, A \cap (B \cap C) \in P(S).$$

Since $(A \cap B) \cap C = A \cap (B \cap C)$

 \therefore \cap is associative in P(S).

Algebraic Structures

Definition: A non-empty set *G* equipped with one or more binary operations is called an *algebraic structure* or an *algebraic system*.

If \circ is a binary operation on G, then the algebraic structure is written as (G, \circ) .

Example: (N, +), (Q, -), (R, +) are algebraic structures.

Semi Group

Definition: An algebraic structure (S, \circ) is called a *semi group* if the binary oper-ation \circ is associative in S.

That is, (S, \circ) is said to be a semi group if

(i)
$$a, b \in S \Rightarrow a \circ b \in S$$
 for all $a, b \in S$

(ii)
$$(a \circ b) \circ c = a \circ (b \circ c)$$
 for all $a, b, c \in S$.

Example:

- 1. (N, +) is a semi group. For $a, b \in N \Rightarrow a + b \in N$ and $a, b, c \in N \Rightarrow (a + b) + c = a + (b + c)$.
- 2. (Q, -) is not a semi group. For 5,3/2, $1 \in Q$ does not imply (5 3/2) 1 = 5 (3/2 1).
- 3. (R, +) is a semi group. For $a, b \in R \Rightarrow a + b \in R$ and $a, b, c \in R \Rightarrow (a + b) + c = a + (b + c)$.