DATI TECNICI

RISOLUZIONE DI PROBLEMI DI TORNITURA NOC)2
CONTROLLO DEL TRUCIOLO DURANTE LA TORNITURA ················· N00)4
EFFETTI DEI PARAMETRI DI TAGLIO PER TORNITURA ·················· N00)5
FUNZIONE DELLE CARATTERISTICHE DEGLI UTENSILI PER TORNITURA ··· NOC)7
FORMULE PER POTENZA DI TAGLIO ····································	11
RISOLUZIONE DI PROBLEMI DI FRESATURA IN SPIANATURA ······· N01	12
FUNZIONE DELLE CARATTERISTICHE DEGLI UTENSILI	
PER FRESATURA IN SPIANATURA NOT	13
FORMULE PER FRESATURA IN SPIANATURA···································	
RISOLUZIONE DI PROBLEMI PER FRESATURA FRONTALE ················· N01	18
CARATTERISTICHE E SPECIFICHE DELLA FRESA FRONTALE·············· N01	19
SELEZIONE DEL PASSO DI AVANZAMENTO	
PER PROFONDITA' DI PASSATA (CONTORNATURA) ······················· N02	
RISOLUZIONE DI PROBLEMI DI FORATURA ····································	22
USURA DELLA PUNTA E DANNI AL TAGLIENTE ···································	
CARATTERISTICHE E SPECIFICHE DELLE PUNTEN02	24
FORMULE PER FORATURA ····································	
TABELLA DI CONFRONTO FRA I MATERIALI NO2	
RUGOSITÀ SUPERFICIALE ····································	
TABELLA DI CONFRONTO DELLE DUREZZE··································	
TABELLA DELLE TOLLERANZE IDONEE (FORO)···································	
TABELLA DELLE TOLLERANZE IDONEE (ALBERO)····································	
DIAMETRI DELLE PUNTE PER MASCHIATURA ····································	
DIMENSIONE DEL FORO PER BULLONE A TESTA ESAGONALE INCASSATA ····· NO	
SISTEMA DI UNITÀ DI MISURA INTERNAZIONALI ····································	
USURA E DANNEGGIAMENTO DELL'UTENSILE····································	41
MATERIALI PER UTENSILI DA TAGLIO ····································	
CATENA DI GRADI	
TABELLA DI <mark>CONFRONTO TRA GR</mark> ADI····································	
TABELLA DI <mark>CONFRONTO TRA ROMPI</mark> TRUCIOLO E INSERTO NOS	50

DATI TECN

RISOLUZIONE DI PROBLEMI DI TORNITURA

		Columinus	Se	elezio	one o	lel serto		Pa di	ram tag	etri lio			1	Tipo dell'	e de	esig	n	_		Macchina zione dell'	
Pı		Soluzione	Scegliere un grado più duro	Scegliere un grado più tenace	Scegliere un grado con maggiore resistenza allo shock termico			Avanzamento	ità di taglio		Determinare il taglio a secco o a umido	Selezionare il rompitruciolo	Spoglia	nta	Angolo di inclinazione	L'onatura rinforza il tagliente		Migliorare la rigidità del portautensile	ozzad ləp		Ridurre la potenza della macchina e del gioco meccanico
		Grado inadeguato dell'utensile	•	Ø	S E	N E				ta Š	а	S					0.5	≥ŏ	ΔĀ	K <u>o</u>	œ E
ısile	Rapida usura dell'inserto	Geometria inadeguata del tagliente										•	<i>*</i>	<i>*</i>	*	•					
ita uter		Velocità inadeguata del tagliente					• 🗡	*			A umido										
Riduzione della durata della vita utensile		Grado inadeguato dell'utensile		•																	
lurata		Parametri di taglio scorretti						•	•												
della c	Scheggiatura o	Mancanza di robustezza del tagliente.ili										•		*		*					
uzione	tagliente	Rottura termica			•		• ×	•	•	•	A secco										
Rid		Tagliente di riporto				•	*	*		•	A umido										
		Rigidità insufficiente																•	•	•	•
ej Inza	Dimensioni non	Precisione insufficiente dell'inserto															•				
Al di fuori dei lori di tolleran	costanti	Elevata resistenza al taglio e usura del fianco										•	•	•	•	•		•	•	•	•
Al di fuori dei valori di tolleranza	A causa di un sovradimensionamento è necessaria una	Grado inadeguato dell'utensile	•																		
	frequente regolazione	Parametri di taglio scorretti					• 🗡	*													
Generazione Deterioramento della di calore finitura superficiale		Adesione dei trucioli Geometria					*			•	A umido										
ioramei ira supe	Pessima finitura superficiale	inadeguata del tagliente										•		*							
e Deter finitu		(leggera vibrazione)					•	•	•									•	•	•	•
erazione calore	Il surriscaldamento del pezzo da lavorare può causare scarsa	Parametri di taglio scorretti					•	Š	•												
Gene di c	precisione e ridurre la vita dell'inserto	Geometria inadeguata del tagliente										•	*			•					

		Soluzione	Se grad	elezio lo de	one c	lel serto		Pa di	ram tag	etri lio			1	ripo dell'	e de	esig nsile	n		installa	Macchina zione dell	, 'utensile
Pı		aftor;	Scegliere un grado più duro	Scegliere un grado più tenace	Scegliere un grado con maggiore resistenza allo shock termico	Scegliere un grado con maggiore resistenza all'adesione		n Avanzamento	Profondità di taglio		Determinare il taglio as a secco o a umido at	Selezionare il rompitruciolo	Spoglia	e Raggio di punta	Angolo di inclinazione		Classe di inserto (non rettificato)	Migliorare la rigidità del portautensile	Aumentare la rigidità del bloccaggio dell'utensile e del pezzo	Ridurre lo sbalzo del portautensili	Ridurre la potenza della macchina e del gioco meccanico
		Craterizzazione	•																		
	Bave (acciaio, alluminio)	Parametri di taglio scorretti					•	*			A umido										
		Geometria inadeguata del tagliente										•	*	•	•	•					
a ecc.		Parametri di taglio scorretti						•	•												
giatura	Scheggiatura dell'utensile (ghisa)	Geometria inadeguata del tagliente										•	*	*	*	•					
Bave, scheggiatura ecc.		Vibrazioni																•	•	•	•
Bave,		Grado inadeguato dell'utensile				•															
	Bave	Parametri di taglio scorretti					*			•	A umido										
	(acciaio dolce)	Geometria inadeguata del tagliente										•	*			•					
		Vibrazioni																•	•	•	•
olo		Parametri di taglio scorretti					•	*	*		A umido										
l truci	Trucioli lunghi	Ampio range di controllo del truciolo										•									
one de		Geometria inadeguata del tagliente												•	•						
spersi		Parametri di taglio scorretti						•	•		A secco										
ırsa di:	S I trucioli sono piccoli e distribuiti	Range ridotto di controllo del truciolo										•									
Sca		Geometria inadeguata del tagliente												<i>*</i>	*						

CONTROLLO DEL TRUCIOLO DURANTE LA TORNITURA

PARAMETRI DI ROTTURA DEI TRUCIOLI NELLA TORNITURA DELL'ACCIAIO

Tipo	Tipo A	Tipo B	Tipo C	Tipo D	Tipo E
Profondità di taglio ridotta d < 7mm	SE S	MANANALLICEEN	Mark Market St. Att.	3-50	
Profondità di taglio ampia d=7-15mm			SEE!		
Lunghezza spira	Senza spira	I ≥ 50mm	l ≤ 50mm 1−5 spira	≒ 1 spira	Meno di 1 spira, ½ spira
Nota	Forma continua irregolare Grovigli attorno all'utensile e al pezzo da lavorare	Forma continua regolareTrucioli lunghi	Ottimo	Ottimo	Spargimento di trucioli Crepito (leggera vibrazione) Pessima finitura superficiale Massimo

Velocità di taglio e range di controllo del truciolo del rompitruciolo

In linea generale, aumentando la velocità di taglio, si riduce il range di controllo del truciolo.

Effetti del refrigerante sul range di controllo del truciolo di un rompitruciolo

A parità di velocità di taglio, il controllo del truciolo varia in funzione dell'utilizzo o meno del refrigerante.

EFFETTI DEI PARAMETRI DI TAGLIO PER TORNITURA

EFFETTI DEI PARAMETRI DI TAGLIO

I parametri di taglio ideali sono breve tempo di taglio, lunga vita dell'utensile ed elevata precisione di taglio. Per ottenere questi parametri, è necessario selezionare parametri di taglio e utensili efficienti in base a materiale di lavoro, durezza, forma e capacità della macchina.

VELOCITÀ DI TAGLIO

La velocità di taglio influisce notevolmente sulla durata di vita dell'utensile. Aumentando la velocità di taglio, si aumenta la temperatura di taglio e si riduce la vita dell'utensile. La velocità di taglio varia a seconda del tipo e della durezza del materiale di lavoro. È necessario selezionare un grado di utensile idoneo alla velocità di taglio.

Effetti della velocità di taglio

- 1. Aumentando la velocità di taglio del 20%, si riduce la durata di vita dell'utensile del 50%. Aumentando la velocità di taglio del 50%, si riduce la durata di vita dell'utensile dell' 80%.
- 2. Il taglio a bassa velocità di taglio (20–40 m/min) tende a causare leggere vibrazioni. Di conseguenza, si riduce la durata di vita dell'utensile.

EFFETTI DEI PARAMETRI DI TAGLIO PER TORNITURA

AVANZAMENTO

Quando si effettua il taglio con un portautensili generico, l'avanzamento è la distanza percorsa da un portautensili per numero di giri del pezzo da lavorare. Durante la fresatura, l'avanzamento è la distanza percorsa da una tavola del macchinario per numero di giri della fresa, diviso per il numero di inserti. Per questo è indicato come avanzamento per dente. La velocità di avanzamento va riferita alla rugosità della finitura superficiale.

Effetti dell'avanzamento

- 1. Riducendo la velocità di avanzamento, si causa l'usura sul fianco e si riduce la durata di vita dell'utensile.
- Aumentando la velocità di avanzamento, si aumenta la temperatura di taglio e l'usura sul fianco. Tuttavia, gli effetti sulla durata di vita dell'utensile sono minimi rispetto alla velocità di taglio.
- 3. Aumentando la velocità di avanzamento, si migliora l'efficienza della lavorazione.

PROFONDITÀ DI TAGLIO

La profondità di taglio è determinata in base alla rimozione del sovrametallo necessaria, alla forma del pezzo da lavorare, alla potenza e alla rigidità dell'utensile.

Effetti della profondità di taglio

- 1. La modifica della profondità di taglio non incide particolarmente sulla durata di vita dell'utensile.
- 2. Le profondità di taglio ridotte causano attrito quando si taglia lo strato temprato di un pezzo da lavorare. Di conseguenza si riduce la durata di vita dell'utensile.
- 3. Quando si tagliano superfici con crosta o superfici in ghisa, la profondità di taglio deve essere aumentata tanto quanto consentito dalla potenza del macchinario al fine di evitare di lavorare sulla crosta del pezzo con la punta del tagliente per impedire la formazione di trucioli e l'usura anomala.

FUNZIONE DELLE CARATTERISTICHE DEGLI UTENSILI PER TORNITURA

ANGOLO DI SPOGLIA

L'angolo di spoglia è un angolo del tagliente che influisce notevolmente sulla resistenza al taglio, evacuazione dei trucioli, temperatura di taglio e durata di vita dell'utensile.

Effetti dell'angolo di spoglia

- 1. Aumentando l'angolo di spoglia in direzione positiva (+), si aumenta la taglienza.
- 2. Aumentando l'angolo di spoglia di 1° in direzione positiva (+), si riduce la robustezza di taglio di circa l'1%.
- Aumentando l'angolo di spoglia in direzione positiva (+) si riduce la forza del tagliente e in direzione negativa (-) si aumenta la resistenza al taglio.

Quando aumentare l'angolo di spoglia in direzione negativa (-)

- O Pezzi da lavorare duri.
- Quando si richiede elevata robustezza del tagliente, ad esempio per le superfici grezze e per il taglio interrotto.

Quando aumentare l'angolo di spoglia in direzione positiva (+)

- O Pezzi da lavorare teneri.
- Il pezzo da lavorare è facilmente lavorabile.
- Se il pezzo da lavorare o la macchina presentano scarsa rigidità.

ANGOLO DEL FIANCO (o spoglia inferiore)

L'angolo di fianco impedisce l'attrito tra superficie di fianco e pezzo da lavorare determinando un avanzamento scorrevole.

Effetti dell'angolo del fianco (o spoglia inferiore)

- Aumentando l'angolo di fianco si riduce l'occorrenza dell'usura sul fianco.
- Aumentando l'angolo del fianco si riduce la robustezza del tagliente.

Quando si riduce l'angolo del fianco

- O Pezzi da lavorare duri.
- Se è richiesta la robustezza del tagliente.

Quando si aumenta l'angolo del fianco

- O Pezzi da lavorare teneri.
- I pezzi da lavorare sono facilmente soggetti a incrudimento.

FUNZIONE DELLE CARATTERISTICHE DEGLI UTENSILI PER TORNITURA

ANGOLO DEL TAGLIENTE PRINCIPALE (ANGOLO DI INCLINAZIONE)

L'angolo del tagliente principale e l'angolo dello smusso tagliente riducono il carico d'impatto e incidono sulla forza di avanzamento, sforzo di compressione e spessore del truciolo.

Effetti dell'angolo del tagliente principale (angolo di inclinazione)

- 1. A parità di velocità di avanzamento, aumentando l'angolo del tagliente principale si aumenta la lunghezza di contatto del truciolo e si riduce lo spessore del truciolo. Di conseguenza, la forza di taglio si disperde su un tagliente più lungo e la durata di vita dell'utensile viene prolungata (fare riferimento al diagramma).
- 2. Aumentando l'angolo del tagliente principale, si aumenta la forza a'. Quindi, i pezzi da lavorare lunghi e sottili possono essere soggetti a curvatura.
- 3. Aumentando l'angolo del tagliente principale, si riduce il controllo del truciolo.
- 4. Aumentando l'angolo del tagliente principale, si riduce lo spessore del truciolo e si aumenta la larghezza del truciolo. Di conseguenza la rottura dei trucioli risulta difficoltosa

Durata dell'utensile (min) 10 3 150 200 Velocità di taglio (m/min) Tagliente principale e vita dell'utensile

lavorare : Acciaio legato Grado : STi120

Profondità di taglio : 3mm Avanzamento : 0.2mm/giro

Taglio a secco

Pezzo da lavorare :

80

60

40

30

20

Quando si riduce l'angolo d'inclinazione

- O Finitura con profondità di taglio ridotta.
- Pezzi da lavorare sottili e lunghi.
- Quando la macchina presenta scarsa rigidità.

Quando si aumenta l'angolo d'inclinazione

- Pezzi da lavorare duri che producono temperature di taglio elevate.
- Quando si sgrossa un pezzo da lavorare di diametro elevato.
- Quando la macchina presenta elevata rigidità.

La forza A si divide Ricevere forza A. in a e a'.

ANGOLO DEL TAGLIENTE SECONDARIO

L'angolo di entrata (5°-15°) impedisce interferenze tra il pezzo da lavorare e l'utensile.

Effetti dell'angolo del tagliente secondario

- 1. Diminuendo l'angolo del tagliente secondario, si aumenta la robustezza del tagliente, ma si aumenta anche la temperatura del tagliente.
- 2. Diminuendo l'angolo del tagliente secondario, si aumenta lo sforzo di compressione e si causano crepitii e vibrazioni durante la lavorazione.
- 3. Si consigliano angoli del tagliente secondario ridotti per la sgrossatura e angoli elevati per la finitura.

INCLINAZIONE DEL TAGLIENTE

L'inclinazione del tagliente indica l'inclinazione della superficie di spoglia. Durante l'asportazione pesante, il tagliente subisce uno shock estremamente forte all'inizio di ogni taglio. L'inclinazione del tagliente impedisce al tagliente di subire questo shock e ne evita la rottura. Si consigliano 3°-5° per la tornitura e 10°-15° per la fresatura.

Effetti dell'inclinazione del tagliente

- 1. L'inclinazione negativa (-) del tagliente elimina i trucioli nella direzione del pezzo da lavorare, mentre l'inclinazione positiva (+) elimina i trucioli in direzione opposta.
- 2. L'inclinazione negativa (-) del tagliente aumenta la robustezza del tagliente, ma aumenta anche lo sforzo di compressione di resistenza al taglio. Di conseguenza possono facilmente verificarsi vibrazioni.

ONATURA E FASE

Onatura e fase sono forme del tagliente che mantengono la robustezza del tagliente.

L'onatura può essere di tipo arrotondato o rinforzato. La larghezza di onatura ottimale è di circa1/2 dell'avanzamento.

La fase è la stretta superficie piana sull'angolo di spoglia o sulla superficie del fianco.

Effetti dell'onatura

- 1. Ampliando l'onatura, si aumentano la resistenza del tagliente e la vita dell'utensile e si riduce la rottura.
- 2. Ampliando l'onatura, si aumenta l'occorrenza di usura sul fianco e si riduce la vita dell'utensile. L'onatura non influisce sull'usura sulla spoglia.
- 3. Ampliando l'onatura, si aumentano la resistenza al taglio e le vibrazioni.

Si riducono le dimensioni dell' onatura

- Se si effettua la finitura con profondità di taglio ridotta e avanzamento ridotto.
- Pezzi da lavorare teneri.
- Se il pezzo da lavorare o la macchina presentano scarsa rigidità.

Si aumentano le dimensioni dell' onatura

- O Pezzi da lavorare duri.
- Quando è necessario un tagliente resistente per superfici non lavorate e lavorazioni con taglio interrotto.
- Quando la macchina presenta elevata rigidità.
- *Gli inserti in metallo duro, UTi, diamante rivestito e cermet presentano già un'onatura arrotondata come standard.

FUNZIONE DELLE CARATTERISTICHE DEGLI UTENSILI PER TORNITURA

RAGGIO

Il raggio influenza la robustezza del tagliente e la finitura superficiale. In generale si raccomanda un raggio di punta 2–3 volte superiore all'avanzamento.

Effetti del raggio di punta

- 1. Aumentando il raggio di punta, viene migliorata la finitura superficiale.
- 2. Aumentando il raggio di punta, viene migliorata la robustezza del tagliente.
- Aumentando eccessivamente il raggio di punta, viene aumentata la resistenza al taglio e viene generato crepitio.
- 4. Aumentando il raggio di punta, si riduce l'usura sul fianco e sulla spoglia.
- 5. Aumentando eccessivamente il raggio di punta, si ha uno scarso controllo del truciolo.

Si riduce il raggio di punta

- Finitura con profondità di taglio ridotta.
- O Pezzi da lavorare sottili e lunghi.
 O Quando la macchina presenta
- Quando la macchina presenta scarsa rigidità.

Si aumenta il raggio di punta

- Quando è necessario un tagliente resistente per superfici non lavorate e lavorazioni con taglio interrotto.
- Ouando si sgrossa un pezzo da lavorare di diametro elevato.
- Quando la macchina presenta elevata rigidità.

Raggio di punta e campo di controllo del truciolo

(Nota) Consultare pag. N004 per le forme del truciolo (A, B, C, D, E).

FORMULE PER POTENZA DI TAGLIO

POTENZA DI TAGLIO (Pc)

$$Pc = \frac{ap \cdot f \cdot vc \cdot Kc}{60 \times 10^3 \times \eta} \text{ (kW)}$$

: Potenza di taglio effettiva Pc (kW) ap (mm) : Profondità di taglio f (mm/giro) : Avanzamento per numero di giri vc (m/min) : Velocità di taglio Kc (MPa) : Forza di taglio specifica η : (Coefficiente macchina)

(Problema) Trovare la potenza di taglio necessaria per la lavorazione dell'acciaio dolce sapendo che la velocità di taglio è di 120 m/min con profondità di taglio di 3 mm e avanzamento di 0.2 mm/giro (coefficiente macchina 80%).

(Risposta) Inserire la forza di taglio specifica Kc=3100MPa nella formula.

$$Pc = \frac{3 \times 0.2 \times 120 \times 3100}{60 \times 10^3 \times 0.8} = 4.65 \text{ (kW)}$$

• Kc		56,6,1		60×10 ³ ×0).8 - 4.65 (KV	•,
Materiale da lavorate	Resistenza alla trazione		Forza	di taglio specifica Kc	(MPa)	
iviateriale da lavorate	(MPa) e durezza	0.1 (mm/giro)	0.2 (mm/giro)	0.3 (mm/giro)	0.4 (mm/giro)	0.6 (mm/giro)
Acciaio dolce	520	3610	3100	2720	2500	2280
Acciaio medio	620	3080	2700	2570	2450	2300
Acciaio duro	720	4050	3600	3250	2950	2640
Acciaio per utensili	670	3040	2800	2630	2500	2400
Acciaio per utensili	770	3150	2850	2620	2450	2340
Acciaio al cromo/manganese	770	3830	3250	2900	2650	2400
Acciaio al cromo/manganese	630	4510	3900	3240	2900	2630
Acciaio al cromo/molibdeno	730	4500	3900	3400	3150	2850
Acciaio al cromo/molibdeno	600	3610	3200	2880	2700	2500
Acciaio al nickel/cromo/molibdeno	900	3070	2650	2350	2200	1980
Acciaio al nickel/cromo/molibdeno	352HB	3310	2900	2580	2400	2200
Ghisa dura	46HRC	3190	2800	2600	2450	2270
Ghisa meehanite	360	2300	1930	1730	1600	1450
Ghisa grigia	200HB	2110	1800	1600	1400	1330

VELOCITÀ DI TAGLIO (vc)

$$vc = \frac{\pi \cdot Dm \cdot n}{1000} (m/min) \begin{vmatrix} vc & (m/min) & : Velocità di taglio \\ Dm & (mm) & : Diametro del pezzo da lavorare \\ \pi & (3.14) & : Pi \\ n & (min^{-1}) & : Velocità del mandrino dell'asse principale$$

*Dividere per 1000 per passare da mm a m.

(Problema) Trovare la velocità di taglio sapendo che la velocità del mandrino dell'asse principale è 700 min^{-1} e il diametro esterno è $\phi 50$.

(Risposta) Inserire $\pi = 3.14$, Dm = 50, n = 700 nella formula.

$$vc = \frac{\pi \cdot Dm \cdot n}{1000} = \frac{3.14 \times 50 \times 700}{1000} = 110 m/min$$

La velocità di taglio è 110 m/min

AVANZAMENTO (f)

(Problema) Trovare l'avanzamento per numero di giri sapendo che la velocità del mandrino dell'asse principale è 500 min⁻¹ e la lunghezza di taglio al minuto è 120 mm/min

(Risposta) Inserire n = 500, I = 120 nella formula.

$$f = \frac{I}{n} = \frac{120}{500} = 0.24 \text{mm/giro}$$
La risposta è 0.24 mm/giro

DURATA DI TAGLIO (Tc)

(Problema) Trovare la durata di taglio sapendo che il pezzo da lavorare da 100 mm viene lavorato a 1000 min⁻¹ con avanzamento = 0.2 mm/giro.

(Risposta) Calcolare anzitutto la lunghezza di taglio al minuto a partire dalla velocità di avanzamento e del mandrino.

$$I = f \times n = 0.2 \times 1000 = 200 \text{mm/min}$$

Inserire la suddetta risposta nella formula

$$Tc = \frac{Im}{I} = \frac{100}{200} = 0.5min$$
0.5 x 60=30 (sec.) La risposta è 30 sec.

RUGOSITÀ TEORICA DELLA FINITURA SUPERFICIALE (h)

DATI TECN

RISOLUZIONE DI PROBLEMI DI FRESATURA IN SPIANATURA

	<u> </u>				one c				Para di ta						T	ipo dell'	e de	esig	n			installa	Macchina zione dell	i, 'utensile
		To _{J.}	grado più duro	Scegliere un grado più tenace	Scegliere un grado con maggiore resistenza allo shock termico		Velocità di taglio	Avanzamento	► Profondità di taglio	oubedu		Determinare il taglio	Spoglia	Angolo dello smusso Tagliente	L'onatura rinforza il tagliente		Maggiore Numero di denti	Tasca del truciolo più ampia	Utilizzo di un inserto raschiante	Miglioramento della tolleranza di concentricità	Rigidità della fresa	Aumentare la rigidità del bloccaggio dell'utensile e del pezzo		Ridurre la potenza della macchina e del gioco meccanico
Pro	oblema		Scegliere un	Sceglier	Scegliere resistenz	Scegliere resistenz	(Giù	¥	≯ Su	Non utiliz taglio sol	Determi a secco		Giù		¥	Inferiore Maç	Tasca d	Utilizzo	Migliora di conce	Rigidità	Aumenta bloccagg	Ridurre	Ridurre
sile		Grado inadeguato dell'utensile	•																					
uten	Rapida usura	Geometria inadeguata del tagliente											*	3	•					•				
vita	dell'inserto	Velocità inadeguata del tagliente					•					A umido												
ella		Grado inadeguato dell'utensile		•			- 1					A ulliluo												
ırata c		Parametri di taglio scorretti						•	•															
la dı	Scheggiatura	Mancanza di robustezza del tagliente.													*									
Riduzione della durata della vita utensile	o rottura del tagliente	Rottura termica Tagliente di riporto			•	•	• X X •		•		•	A secco												
Ridu		Rigidità insufficiente										A umido									•	•	•	•
		Parametri di taglio scorretti	•				• X K •	•	•															
super	Pessima finitura	Adesione dei trucioli				•	6				•	A umido	*		•									
itura	superficiale	Tolleranza di concentricità insufficiente																	•	•				
ella fin		Crepitio (leggera vibrazione)					•	•	•	4			*		•		•				•	•	•	•
ento d		Flessione del pezzo						•	•				*	•	•		•					•		
terioramento della finitura superficiale	Superficie non parallela o irregolare	Gioco dell'utensile											A								•	•	•	•
Def		Notevole sforzo di compressione											•	2	•		2							
sile		Spessore del truciolo troppo elevato					*	•	•															
uten	Bave,	Diametro dell'utensile troppo elevato								*						•								
de II'	scheggiatura	Taglienza insufficiente											*		•									
ıra c		Ampio angolo di punta												•										
giatı		Parametri di taglio scorretti						•	•															
heg	Scheggiatura del bordo del	Taglienza insufficiente						1	1				*		•									
ı, sc	pezzo da lavorare	Ridotto angolo di punta												*	×									
Bava, scheggiatura dell'utensile		Crepitio (leggera vibrazione)					• ×	•	•	*			*		•		•				•	•	•	•
cioli	Scarsa dispersione	Adesione dei trucioli					*																	
Controllo dei trucioli	del truciolo, inceppamento del truciolo e compattazione	Spessore del truciolo troppo ridotto Diametro della fresa troppo ridotto					*	*								•								
Contr	del truciolo	Scarsa dispersione del truciolo									•	A umido				×	•	•						

FUNZIONE DELLE CARATTERISTICHE DEGLI UTENSILI PER FRESATURA IN SPIANATURA

FUNZIONE DI OGNI ANGOLO DEL TAGLIENTE NELLA FRESATURA IN SPIANATURA

Ogni Angolo Del Tagliente Nella Fresatura In Spianatura

_			,	
	Tipo di Angolo	Simbolo	Funzione	Effetto
A	Angolo di spoglia assiale	A.R	Determina la direzione di evacuazione del truciolo.	Positivi : Eccellente lavorabilità.
A	Angolo di spoglia radiale	R.R	Determina la taglienza.	Negativi : Ottima evacuazione del truciolo.
A	angolo dello smusso tagliente	СН	Determina lo spessore del truciolo.	Largo : Trucioli sottili e impatto di taglio ridotto. Notevole sforzo di compressione.
A	Angolo di spoglia effettivo	т	Determina la taglienza effettiva.	Positivo (ampio) : Eccellente lavorabilità. Saldatura minima. Negativo (ampio) : Scarsa lavorabilità. Tagliente robusto. Tagliente robusto
1 -	nclinazione del tagliente	1	Determina la direzione di evacuazione del truciolo.	Positivo (ampio) : Ottima evacuazione del truciolo. Scarsa robustezza del tagliente.

INSERTI STANDARD

Angolo di spoglia positivo e negativo

- Se il tagliente è posizionato in modo tale che sia la prima parte dell'inserto a contatto con il pezzo si ha un angolo di spoglia positivo.
- Se il tagliente è posizionato in modo tale che sia la seconda parte dell'inserto a contatto con il pezzo si ha un angolo di spoglia negativo.

Forma del tagliente standard

ANGOLO DELLO SMUSSO TAGLIENTE (CH) E CARATTERISTICHE DI TAGLIO

Pezzo da lavorare : DIN 41CrMo4 (281HB) Utensile : ø125mm Inserto singolo Parametri di taglio : vc=125.6m/min ap=4mm ae=110mm

Confronto di resistenza di taglio tra diverse forme di inserto

Tre forze di resistenza al taglio nella fresatura

Angolo dello smusso tagliente Lo sforzo di compressione è in direzione negativa. Solleva il pezzo da lavorare guando la rigidità del morsetto del pezzo da lavorare è ridotta. Angolo dello smusso tagliente o Angolo dello smusso tagliente Si consiglia un angolo dello smusso tagliente di 15° per la fresatura in spianatura dei pezzi da lavorare con scarsa rigidità, come i pezzi da lavorare sottili. Angolo dello smusso tagliente 15° Angolo dello smusso tagliente II massimo sforzo di compressione. Piega i pezzi da lavorare sottili e riduce la precisione di taglio. ★Impedisce la formazione di trucioli sul bordo Angolo dello smusso tagliente 45° del pezzo da lavorare nel taglio della ghisa.

- * Forza principale : La forza è nella direzione opposta alla rotazione della fresatura in spianatura.
- * Sforzo di compressione : Forza che preme in direzione assiale.
- ★ Forza di avanzamento: La forza è nella direzione di avanzamento ed è causata dall'avanzamento della tavola.

FUNZIONE DELLE CARATTERISTICHE DEGLI UTENSILI PER FRESATURA IN SPIANATURA

SMUSSO E DURATA DELL'UTENSILE

Smusso e spessore del truciolo

Se sono dati la profondità di taglio e l'avanzamento per dente, fz, vale la regola che maggiore è l'angolo di punta (CH), inferiore è lo spessore del truciolo (h) (per un CH pari a 45° lo spessore è all'incirca il 75% di quello per un CH pari a 0°). Aumentando il CH si riduce quindi la resistenza al taglio con conseguente aumento della durata dell'utensile.

Angolo di smusso e craterizzazione

La seguente tabella contiene campioni di usura relativi ai diversi angoli di smusso. Confrontando la craterizzazione per l'angolo di 0° e 45°, si deduce chiaramente che la craterizzazione è maggiore per un angolo pari a 0°. Questo fenomeno è dovuto al fatto che con uno spessore del truciolo relativamente elevato la resistenza al taglio aumenta, favorendo di conseguenza la craterizzazione. Sviluppandosi la craterizzazione, diminuisce la resistenza del tagliente che finisce per essere soggetto a rottura.

Pezzo da lavorare: Acciaio legato (287HB)

Utensile: D1=125

Inserto: M20 Carburo cementato
Parametri di taglio: ap=3.0mm

ae=110m fz=0.2m/dente

Taglio a secco

FRESATURA NEL SENSO DI AVANZAMENTO E CONTRO IL SENSO DI AVANZAMENTO

Nella scelta di un metodo di lavorazione la decisione a favore di una fresatura concorde o discorde dipende dalla macchina utensile, dal tipo di fresa e dall'applicazione. In linea generale si parte dal presupposto che la fresatura concorde produca maggiori vantaggi in termini di durata dell'utensile.

FINITURA SUPERFICIALE

Precisione di eccentricità del tagliente

La precisione di eccentricità del tagliente di inserti intercambiabili sul corpo fresa influenza notevolmente la finitura superficiale e la durata di vita dell'utensile.

Eccentricità del tagliente e precisione nella fresatura in spianatura

Migliore rugosità della finitura superficiale

Eccentricità del tagliente secondario e finitura superficiale

Dato che la larghezza normale del tagliente secondario dei materiali Mitsubishi è di 1.4 mm e i taglienti secondari sono impostati parallelamente al petto della fresa, in teoria la precisione della superficie finita dovrebbe essere mantenuta anche con scarsa precisione di eccentricità.

Problemi effettivi

- · Eccentricità del tagliente.
- · Inclinazione del tagliente secondario.
- · Precisione del corpo fresa.
- · Precisione dei ricambi.
- Saldatura, vibrazione, crepitio.

Contromisura

Inserto raschiante

* Lavorare una superficie che è già stata lavorata con inserti normali per produrre una finitura superficiale liscia

Inserto raschiante Inserto standard

- · Sostituire uno o due inserti normali con inserti raschianti.
- · Gli inserti raschianti sono registrati in modo da sporgere di 0.03—0.1mm rispetto agli inserti standard.

Come registrare un inserto raschiante

- · La lunghezza del tagliente secondario deve essere maggiore dell'avanzamento per numero di giri.
- * Un'eccessiva lunghezza del piano di spianatura causa rumore.
- · Quando il diametro della fresa è ampio e l'avanzamento per numero di giri è più lungo del tagliente secondario dell'inserto raschiante, utilizzare due o tre inserti eccentrici.
- · Quando si utilizza più di 1 inserto raschiante, si deve eliminare l'eccentricità degli inserti.
- · Utilizzare un grado di durezza elevata (elevata resistenza all'usura) per gli inserti raschianti.

FORMULE PER FRESATURA IN SPIANATURA

VELOCITÀ DI TAGLIO (vc)

π·D1·n 1000 (m/min)

*Dividere per 1000 per passare da mm a m.

vc (m/min): Velocità di taglio

D1 (mm): Diametro di taglio

 π (3.14) : Pi

n (min-1): Velocità del mandrino dell'asse principale

(Problema) Trovare la velocità di taglio sapendo che la velocità del mandrino dell'asse principale è 350 min⁻¹ e il diametro della fresa è ϕ 125.

(Risposta) Inserire π =3.14, D1 = 125, n = 350 nella formula.

$$vc = \frac{\pi \cdot D1 \cdot n}{1000} = \frac{3.14 \times 125 \times 350}{1000} = 137.4 \text{m/min}$$

La velocità di taglio è 137.4 m/min.

AVANZAMENTO PER DENTE (fz)

(mm/dente)

fz (mm/dente): Avanzamento per dente z: Codice inserto

vf (mm/min) : Avanzamento della tavola al minuto

n (min⁻¹) : Velocità del mandrino dell'asse principale (Avanzamento per numero di giri f = z x fz)

(Problema) Trovare l'avanzamento per dente sapendo che la velocità del mandrino dell'asse principale è 500 min-1, il numero di inserti è 10 e l'avanzamento della tavola è 500 mm/min.

(Risposta) Inserire le suddette cifre nella formula.

$$fz = \frac{vf}{z \times n} = \frac{500}{10 \times 500} = 0.1 \text{mm/dente}$$

La risposta è 0.1 mm/dente.

Direzione d

AVANZAMENTO DELLA TAVOLA (vf)

vf = fz·z·n (mm/min)

vf (mm/min) : Avanzamento della tavola al minuto. z : Codice inserto

fz (mm/dente): Avanzamento per dente

n (min-1) : Velocità del mandrino dell'asse principale

(Problema) Trovare l'avanzamento della tavola sapendo che l'avanzamento per dente è 0.1 mm/dente, il numero di inserti è 10 e la velocità del mandrino dell'asse principale è 500 min-1.

(Risposta) Inserire le suddette cifre nella formula.

 $vf = fz \times z \times n = 0.1 \times 10 \times 500 = 500 \text{mm/min}$

L'avanzamento della tavola è 500 mm/min.

DURATA DI TAGLIO (Tc)

Tc (min) : Durata di taglio

vf (mm/min): Avanzamento della tavola al minuto.

L (mm) : Lunghezza totale di avanzamento della tavola (Lunghezza del pezzo da lavorare : I+Diametro di taglio : D1)

(Problema) Trovare il tempo di taglio richiesto per la finitura superficiale di un blocco in ghisa di larghezza 100 mm e lunghezza 300 mm (GG20) sapendo che il diametro della fresa è 200 mm, il numero di inserti è 16, la velocità di taglio è 125 m/min e l'avanzamento per dente è 0.25 mm (la velocità del mandrino è 200 min⁻¹).

Calcolare l'avanzamento della tavola al minuto vf=0.25×16×200=800mm/min Calcolare la lunghezza totale di avanzamento della tavola. L=300+200=500mm Inserire la suddetta risposta nella formula.

$$Tc = \frac{500}{800} = 0.625 \text{ (min)}$$

0.625×60=37.5 (sec). La risposta è 37.5 sec.

POTENZA DI TAGLIO (Pc)

ap·ae·vf·Kc Pc = 60×10⁶×η

Pc (kW) : Potenza di taglio effettiva ap (mm) ae (mm) : Larghezza di taglio Kc (MPa)

: Profondità di taglio vf (mm/min) : Avanzamento della tavola al minuto.

: Forza di taglio specifica n: (Coefficiente macchina)

(Problema) Trovare la potenza di taglio richiesta per acciaio per (Risposta) utensili di fresatura sapendo che la velocità di taglio è di 80 m/min con profondità di taglio di 2 mm, la larghezza di taglio è 80 mm e l'avanzamento della tavola è di 280 mm/min per fresa ϕ 250 con 12 inserti. Coefficiente macchina 80%.

Calcolare anzitutto la velocità del mandrino per ottenere l'avanzamento per dente.

$$n = \frac{1000vc}{\pi D_1} = \frac{1000 \times 80}{3.14 \times 250} = 101.91 min^{-1}$$

Avanzamento per dente
$$fz = \frac{vf}{z \times n} = \frac{280}{12 \times 101.9} = 0.228 \text{mm/dente}$$

Sostituire i valori delle forze specifiche di taglio nella formula.

$$Pc = \frac{2 \times 80 \times 280 \times 1800}{60 \times 10^6 \times 0.8} = 1.68 \text{ kW}$$

Kc

Materiale da lavorate	Resistenza alla trazione		Forza	di taglio specifica Kc	(MPa)	
iviateriale da lavorate	(MPa) e durezza	0.1mm/dente	0.2mm/dente	0.3mm/dente	0.4mm/dente	0.6mm/dente
Acciaio dolce	520	2200	1950	1820	1700	1580
Acciaio medio	620	1980	1800	1730	1600	1570
Acciaio duro	720	2520	2200	2040	1850	1740
Acciaio per utensili	670	1980	1800	1730	1700	1600
Acciaio per utensili	770	2030	1800	1750	1700	1580
Acciaio al cromo/manganese	770	2300	2000	1880	1750	1660
Acciaio al cromo/manganese	630	2750	2300	2060	1800	1780
Acciaio al cromo/molibdeno	730	2540	2250	2140	2000	1800
Acciaio al cromo/molibdeno	600	2180	2000	1860	1800	1670
Acciaio al nickel/cromo/molibdeno	940	2000	1800	1680	1600	1500
Acciaio al nickel/cromo/molibdeno	352HB	2100	1900	1760	1700	1530
Acciaio inossidabile austenitico	155HB	2030	1970	1900	1770	1710
Ghisa	520	2800	2500	2320	2200	2040
Ghisa dura	46HRC	3000	2700	2500	2400	2200
Ghisa meehanite	360	2180	2000	1750	1600	1470
Ghisa grigia	200HB	1750	1400	1240	1050	970
Ottone	500	1150	950	800	700	630
Lega leggera (Al-Mg)	160	580	480	400	350	320
Lega leggera (Al-Si)	200	700	600	490	450	390
Lega leggera (Al-Zn-Mg-Cu)	570	880	840	840	810	720

DATI TECNI

RISOLUZIONE DI PROBLEMI PER FRESATURA FRONTALE

		Soluzione	Selezione del grado dell'inserto		F	ara	me	tri (di ta	agli	0			Tip de	o e Il'ut	des	igr sile	1	ins		Macc zione		a, I'uten	ısile
			estito	Velocità di taglio	Avanzamento	Profondità di taglio	Avanzamento a colpi	faglio dall'alto verso il basso	Utilizzo di aria compressa		fluido da in acqua		Angolo di inclinazione dell'elica	Codice inserto	Angolo di concavità del tagliente secondario	Diametro dell'utensile	la fresa	Tasca del truciolo più ampia	sbalzo dell'utensile	curatezza di lell'attacco dell'utensile	Aumentare la tolleranza di concentricità dell'attacco dell'utensile	Ispezione e sostituzione della pinza	Aumentare la potenza di bloccaggio del mandrino portafresa	Aumentare la rigidità di bloccaggio dell'utensile
Pr	oblema	àrion;	Utensile rivestito		Su Siù	<i>y</i>	₹ `\ Giù	Taglio dall'a	Utilizzo di a	Aumentare la di lubrificant	Non utilizzare fluido da taglio solubile in acqua	Determinare a secco o a	S		Mag		Rigidità della fresa	Tasca del tr	Ridurre lo s	Aumentare l'ac	Aumentare la t concentricità c	Ispezione e so	Aumentare la del mandrino	Aumentare bloccaggio
e e		Viene utilizzato un utensile non rivestito	•																					
ens	Estesa usura	Basso numero di taglienti												6										
a ut	periferica del tagliente	Parametri di taglio scorretti		•							•													
vita		Viene utilizzata fresatura discorde						Taglio dall'alto verso il basso																
ella		Parametri di taglio scorretti						udSS0																
a	Grave	Tagliente fragile															•							
Riduzione della durata della vita utensile	scheggiatura	Forza di bloccaggio insufficiente																				•	•	
a d		Bassa rigidità di bloccaggio																	•	•	•	•	•	•
del		Parametri di taglio scorretti				•																		
ne	Rottura	Bassa rigidità dell'utensile				×										3	•							
nzio	durante la lavorazione	Sbalzo più lungo del necessario				•													•					
Rid		Inceppamento dei trucioli				×				•								•						
_		Parametri di		•	•																			
iale	Vibrazioni durante la	taglio scorretti Bassa rigidità		×	X								3	3		3	•							
rfic	lavorazione	dell'utensile Bassa rigidità																				•	•	
itura superficiale		di bloccaggio Intensa usura																	Ť					
a SI	Scarsa finitura superficiale	del tagliente Parametri di																						
itur	sulle pareti	taglio scorretti Intasamento		~		2						•												
		trucioli. Il tagliente anteriore non				_			•	•	A	umido			3									
ella	Scarsa finitura superficiale	presenta un angolo concavo. Grande			2	2																		
ō	sui tratti piani	avanzamento					2																	
Deterioramento della fi	Frani	Intensa usura del tagliente	•																					
am.	Fuori verticale	Parametri di taglio scorretti			•	•																		
rioi		Scarsa rigidità dell'utensile											*	*		3	•							
ete	Precisione dimensionale	Parametri di taglio scorretti		•	•	•																		
	insufficiente	Bassa rigidità di bloccaggio																	•	•	•	•	•	•
900	Formazione	Parametri di taglio scorretti			•	•																		
jiatura	di bave o scheggiatura	Ampio angolo d'elica											•											
Schegg	Rapida	Craterizzazione	•																					
Save,	formazione di bave	Parametri di taglio scorretti		•	3																			
Scarsa dispersione Bave, scheggiatura ecc.	Intasamento	Volume di trucioli troppo elevato			•	•																		
carsa disp del truc	trucioli.	Gola di scarico trucioli mancante			1	1								· V				•						

DATI TECNIC

CARATTERISTICHE E SPECIFICHE DELLA FRESA FRONTALE

NOMENCLATURA

CONFRONTO DELL'AREA A SEZIONI DELLA TASCA DEL TRUCIOLO

PROPRIETÀ E APPLICAZIONI DI FRESE CON DIVERSO NUMERO DI TAGLIENTI

		A 2 tagli	A 3 tagli	A 4 tagli	A 6 tagli
Caratteristiche	Vantaggio	Eccellente evacuabilità del truciolo. Foratura semplice.	Eccellente evacuabilità del truciolo. Utilizzabile per affondi e fori.	Elevata rigidità	Elevata rigidità Durata superiore del tagliente
Caratte	Difetto	Scarsa rigidità	Diametro non facilmente misurabile.	Scarsa evacuabilità del truciolo.	L'evacuazione dei trucioli è insufficiente.
	Otilizzo	Fresatura di fessure, fresatura a tre tagli, incisione. Ampia gamma di utilizzi.	Fresatura di fessure, fresatura a tre tagli Asportazione pesante, finitura	Fresatura di fessure poco profonde, fresatura a tre tagli. Finitura	Fresatura di gole piatte, lavorazione di spallamenti in materiali estremamente duri

CARATTERISTICHE E SPECIFICHE DELLA FRESA FRONTALE

TIPO E GEOMETRIA

(1) Tagliente periferico

Tipo	Forma	Caratteristiche
Taglio normale		La geometria a taglio regolare illustrata è più comunemente usata per la sgrossatura e la finitura di fresatura a tre tagli, fresatura di fessure e spallamento.
Taglio conico		La geometria a taglio conico viene utilizzata per applicazioni speciali, quali sformi di matrici, e per applicare angoli conici dopo la convenzionale fresatura a tagliente rettilineo.
Taglio di sgrossatura		La geometria di sgrossatura ha un tagliente di forma ondulata e rompe il materiale in piccoli trucioli. Inoltre, la resistenza al taglio è bassa e consente elevate velocità di avanzamento durante la sgrossatura. La superficie interna del taglio è adatta alla riaffilatura.
Taglio formato		La geometria a forma speciale illustrata viene utilizzata per produrre raggi d'angolo sui componenti. Esiste un numero infinito di diverse geometrie che possono essere realizzate utilizzando questo genere di frese.

(2) Tagliente secondario

Tipo	Forma	Caratteristiche
Estremità quadrata (con foro centrale)		Generalmente utilizzato per fresatura in contornatura, fresatura di fessure e spallamento. Il taglio a tuffo non è possibile a causa del foro centrale che viene utilizzato per garantire una rettifica e raffilatura precisa dell'utensile.
Estremità quadrata (Tagliente al centro)		Generalmente utilizzato per fresatura in contornatura, fresatura di fessure e spallamento. Il taglio a tuffo è consentito ed è possibile aumentare l'efficienza del taglio a tuffo utilizzando meno tagli. È possibile realizzare la riaffilatura sul fianco.
Estremità sferica		Geometria totalmente adattata alla fresatura a superficie curva. Nel punto finale estremo, la tasca del truciolo è molto piccola, determinando un'evacuazione inefficiente del truciolo.
Estremità a raggio d'angolo		Utilizzato per profili raggiati e fresatura torica. Durante la fresatura per piani paralleli a passo costante si può utilizzare in modo efficiente una fresa torica di ampio diametro e raggio di punta ridotto.

(3) Parti di stelo e collo

Tipo	Forma	Caratteristiche
Standard (Stelo rettilineo)		Tipo più comunemente usato.
Stelo lungo		Tipo a stelo lungo per applicazioni a tasca e spalla profonde.
Scarico lungo		La geometria a scarico lungo può essere utilizzata per la fresatura di fessure profonde ed è idonea anche alla foratura.
Scarico conico		Le caratteristiche a scarico conico lungo sono sfruttate al meglio in applicazioni a fresatura di fessure profonde e sformi di matrici.

DATI TECNIC

SELEZIONE DEL PASSO DI AVANZAMENTO PER PROFONDITA' DI PASSATA (CONTORNATURA)

FRESATURA AD AVANZAMENTO PER LIVELLI (CONTORNATURA) CON FRESE FRONTALI A TESTA SEMISFERICA E FRESE FRONTALI CON RAGGIO D'ANGOLO

$$h=R \cdot \left[1-\cos\left\{\sin^{-1}\left(\frac{P}{2R}\right)\right\}\right]$$

R : Raggio della testa semisferica, raggio d'angolo

P : Avanzamento a colpi h : Altezza della cuspide

ALTEZZA DELLE CRESTE OTTENUTE IN BASE AL RAGGIO DI PUNTA DELLE FRESE E ALLA PROFONDITA' DI PASSATA Unità : mm

Р			Cre	esta corrisp	ondente alla	a profondità	di passata	(P)		
R	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
0.5	0.003	0.010	0.023	0.042	0.067	0.100	-	-	-	_
1	0.001	0.005	0.011	0.020	0.032	0.046	0.063	0.083	0.107	_
1.5	0.001	0.003	0.008	0.013	0.021	0.030	0.041	0.054	0.069	0.086
2	0.001	0.003	0.006	0.010	0.016	0.023	0.031	0.040	0.051	0.064
2.5	0.001	0.002	0.005	0.008	0.013	0.018	0.025	0.032	0.041	0.051
3		0.002	0.004	0.007	0.010	0.015	0.020	0.027	0.034	0.042
4		0.001	0.003	0.005	0.008	0.011	0.015	0.020	0.025	0.031
5		0.001	0.002	0.004	0.006	0.009	0.012	0.016	0.020	0.025
6		0.001	0.002	0.003	0.005	0.008	0.010	0.013	0.017	0.021
8			0.001	0.003	0.004	0.006	0.008	0.010	0.013	0.016
10			0.001	0.002	0.003	0.005	0.006	0.008	0.010	0.013
12.5			0.001	0.002	0.003	0.004	0.005	0.006	0.008	0.010

P			Cre	esta corrisp	ondente alla	a profondità	di passata	(P)		
R	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
0.5	_	-	-	_	-	-	-	_	-	-
1	_	_	_	_	_	_	_	_	_	_
1.5	0.104	-	_	-	-	-	_	-	_	_
2	0.077	0.092	0.109	_	_	_	_	_	_	_
2.5	0.061	0.073	0.086	0.100	_	_	_	_	_	_
3	0.051	0.061	0.071	0.083	0.095	0.109	_	_	_	_
4	0.038	0.045	0.053	0.062	0.071	0.081	0.091	0.103	_	_
5	0.030	0.036	0.042	0.049	0.057	0.064	0.073	0.082	0.091	0.101
6	0.025	0.030	0.035	0.041	0.047	0.054	0.061	0.068	0.076	0.084
8	0.019	0.023	0.026	0.031	0.035	0.040	0.045	0.051	0.057	0.063
10	0.015	0.018	0.021	0.025	0.028	0.032	0.036	0.041	0.045	0.050
12.5	0.012	0.014	0.017	0.020	0.023	0.026	0.029	0.032	0.036	0.040

DATI TECN

RISOLUZIONE DI PROBLEMI DI FORATURA

				_	Par	ame	tri <i>c</i>	di ta	alio	_			Т	ipo	e de	esig	n			Ma	acchi	na,	
	Soli	uzione					uii		giio							nsile	•		insta		ne de	ell'ute	nsile
			Velocità di taglio	Avanzamento	Avanzamento minore durante il taglio iniziale	Avanzamento minore durante la penetrazione	nto a fasi	Aumentare la precisione di esecuzione del foro pilota e la profondità		rigera		Larghezza del tagliente trasversale	Larghezza di onatura	Spessore centrale	Ridurre la lunghezza dell'elica	Ridurre l'altezza del labbro	Utilizzare la punta con refrigerante interno	Sostituire con una punta con assottigliamento a X	Aumentare la precisione di installazione dell'utensile	Ridurre lo sbalzo dell'utensile	Superficie piana del pezzo da lavorare	Aumentare la rigidità di bloccaggio dell'utensile	Ridurre il gioco meccanico e aumentare la rigidità
Pr	roblema	Tor,	Su Giù	<i>></i>	Avanzamer il taglio iniz	Avanzamen penetrazion	Avanzamento a fasi	Aumentare la del foro pilota	Aumentare il rapporto dell'olio	Aumentare il volume	Aumentare la pressione del refrigerante	G	Bu iiù	<i>y</i>	Ridurre la l	Ridurre l'al	Utilizzare la refrigerant	Sostituire cassottigliar	Aumentare installazior	Ridurre lo	Superficie da lavorare	Aumentare bloccaggio	Ridurre il g e aumentar
		Rigidità della punta insufficiente												4	•								
sile	Rottura	Parametri di taglio scorretti		•																			
ten	della punta	Intensa deflessione del portautensili		4															•				•
ta L		La superficie del pezzo è inclinata																			•		
Riduzione della durata della vita utensile	Usura elevata in corrispondenza del tagliente periferico	Parametri di taglio scorretti Aumento della temperatura nel punto di taglio Tolleranza di concentricità	•,						•	•							•		•				
dura		Parametri di																					
la c	Rottura del	taglio scorretti Intensa deflessione		2																			
de	tagliente periferico	del portautensili Rumore,											_						•	_		_	
one		vibrazioni Il tagliente trasversale											§							•		•	•
Riduzi	Rottura del tagliente	è troppo largo Ingresso insufficiente			•							•											
	trasversale	Crepitii, vibrazioni											•							•		•	•
	Il diametro	Rigidità della punta insufficiente												4	•								
_	del foro si ingrandisce	Geometria della punta inadeguata														•							
del foro		Aumento della temperatura nel punto di taglio							•	•							•						
del	II diametro del foro si	Parametri di taglio scorretti	•																				
lità	riduce	Geometria della punta inadeguata														•							
dna		Rigidità della punta insufficiente												3	•								
<u>a</u>	Rettilineità insufficiente	Intensa deflessione del portautensili																	•				•
e de	mouniciente	Pre-foro non corretto						•															
ion	Inquifficient!	Rigidità della punta insufficiente												7	•								
Riduzione della qualità	Insufficienti precisione della	Ingresso insufficiente																•					
2	posizione del foro, della rotondità e	Parametri di			•																		
	della qualità superficiale	Intensa deflessione																	•				•
Ф	Formazione di bave	del portautensili Geometria della											•										
Bave	in corrispondenza del foro di uscita	punta inadeguata Parametri di				•							×										
	Trucioli	taglio scorretti Parametri di taglio scorretti		4		-		•															
one del t	lunghi	Scarsa evacuazione dei trucioli.								•	•			•			•						
Scarsa dispersione del truciolo	Inceppamento	Parametri di taglio scorretti	•	•				•															
Scars	සි dei trucioli	Scarsa evacuazione dei trucioli.								•	•			2			•						

USURA DELLA PUNTA E DANNI AL TAGLIENTE

CONDIZIONI DI USURA DELLA PUNTA

La seguente tabella contiene un semplice disegno che rappresenta l'usura del tagliente di una punta. La formazione e l'entità dell'usura variano in funzione del materiale, del pezzo e delle condizioni di taglio. In generale, tuttavia, l'usura maggiore è quella periferica ed è quella che determina la durata di una punta. Durante la riaffilatura occorre asportare completamente la parte usurata sul fianco della punta. Se l'usura è elevata, occorre pertanto rimuovere una maggiore quantità di materiale per ripristinare il tagliente.

DANNI AL TAGLIENTE

Durante la foratura il tagliente può subire fenomeni di scheggiatura, rottura e danni anomali. In questi casi è importante valutare attentamente il tipo di danno, indagare la causa e adottare opportune contromisure.

CARATTERISTICHE E SPECIFICHE DELLE PUNTE

NOMENCLATURA

SPECIFICHE DI FORMA E CARATTERISTICHE DI TAGLIO

Angolo di inclinazione dell'elica	t è l'inclinazione del taglio rispetto alla direzione assiale di una punta, che corrisponde all'angolo di spoglia di uno scalpello. L'angolo di spoglia di una punta varia a seconda della posizione del tagliente e diminuisce notevolmente man mano che la circonferenza raggiunge il centro.						
	Materiale a elevata durezza Piccolo . Angolo di spoglia · Largo Materiale tenero (alluminio, ecc.)						
Lunghezza dell'elica	È determinata da profondità del foro, lunghezza della boccola e tolleranza di riaffilatura. Dato che la durata di vita dell'utensile viene notevolmente influenzata, è necessario ridurla il più possibile.						
Angolo tra i taglienti	Un angolo standard della punta ha il valore di 118° e deve essere modificato in base alle diverse applicazioni. Materiale tenero di ottima lavorabilità Piccolo Angolo tra i taglienti Largo Per materiali duri e lavorazioni ad alta efficienza						
Spessore del nocciolo	È un elemento importante che determina la rigidità e la capacità di rompere il truciolo di una punta. Lo spessore del nocciolo è fissato a seconda delle applicazioni. Bassa resistenza al taglio Scarsa rigidità Ottime capacità di evacuazione del truciolo Materiale lavorabile Sottile Spessore del nocciolo Spessore del nocciolo Materiale di elevata durezza Foratura a foro trasversale ecc.						
Margine	L'estremità della punta determina il diametro della punta e funge da guida della punta durante la foratura. La larghezza del margine viene determinata in considerazione dell'attrito con un foro trapanato. Scarsa prestazione di guida Piccolo . Larghezza del margine . Largo Ottima prestazione di guida						
Conicità posteriore del diametro	Per ridurre l'attrito con la parte interna del foro, la porzione del taglio dall'estremità della punta allo stelo è leggermente conica. Il grado di conicità è in genere rappresentato dall'entità della riduzione del diametro rispetto alla lunghezza del taglio, che è di circa 0.04–0.1 mm. È impostato su un valore superiore per punte ad alta efficienza e materiali di lavoro che consentono la chiusura di fori.						

GEOMETRIA DEL TAGLIENTE E RELATIVA INFLUENZA

Come mostra la tabella di seguito riportata, è possibile selezionare la geometria ottimale del tagliente per diversi tipi di applicazione. Se si utilizza la geometria ottimale del tagliente, si può ottenere una maggiore efficienza di lavorazione e una migliore precisione del foro.

Forme del Tagliente

Affilatura	Forma	Proprietà e caratteristiche	Applicazione
Conico		Il fianco è conico e l'angolo di spoglia inferiore diminuisce verso il centro della punta.	Impiego generico
Piatto		Il fianco è piatto. Riaffilatura semplice	Soprattutto per punte di piccolo diametro
Angoli a tre livelli		Data la mancanza del tagliente trasversale, si forma un'elevata forza centripeta e un sovradimensionamento dei fori piccoli. Richiede un'affilatrice speciale. Affilatura dei tre taglienti	Per operazioni di foratura che richiedono un'elevata precisione del foro e un esatto posizionamento
Punto spirale		 Per aumentare l'angolo di spoglia in prossimità del centro di foratura si combina l'affilatura conica con l'elica irregolare. Tagliente trasversale a S con elevata forza centripeta e precisione di lavorazione 	Per operazioni di foratura che richiedono un'elevata precisione
Labbro radiale		Il tagliente viene rettificato in senso radiale per distribuire il carico. Elevata precisione di foratura e qualità superficiale. Per fori passanti piccole bave sulla base Richiede un'affilatrice speciale.	Ghisa, Lega di alluminio Per piastre in ghisa Acciaio
Punta da centro		Questa geometria presenta un angolo di taglio a due livelli che assicura un miglior centraggio e una riduzione delle forze di taglio all'uscita dal pezzo.	Per operazioni di foratura in lamiere sottili

ASSOTTIGLIAMENTO DEL NOCCIOLO

L'angolo di spoglia del tagliente di una punta si riduce verso il centro e diventa un angolo negativo in corrispondenza del tagliente trasversale. Durante la foratura, il centro della punta frantuma il pezzo da lavorare, generando il 50–70% della resistenza al taglio. L'assottigliamento del nocciolo è molto efficace nel ridurre la resistenza al taglio di una punta, rimuovere immediatamente i trucioli tagliati sul tagliente trasversale e migliorare la presa iniziale.

Forma	X Tipo	XR Tipo	S Tipo	N Tipo
Caratteristich	Il carico di spinta si riduce sostanzialmente e migliorano le prestazioni di presa. È efficace quando il nocciolo è spesso.	Le prestazioni di presa sono leggermente inferiori a quelle del tipo X, ma il tagliente è rigido e il campo di applicazione è ampio.	Taglio semplice. Forma generalmente utilizzata.	Efficace quando il nocciolo è relativamente spesso.
Applicazion principali	Foratura generica e foratura a foro profondo.	Lunga durata di vita. Foratura generica e foratura dell'acciaio inossidabile.	Foratura generica per acciaio, ghisa e metalli non ferrosi.	Foratura a foro profondo.

CARATTERISTICHE E SPECIFICHE DELLE PUNTE

TRUCIOLI DI FORATURA

Tipi di trucioli	Forma	Caratteristiche e facilità di inclinazione
A spirale conica		I trucioli a forma di ventaglio tagliati dal tagliente vengono curvati dalla scanalatura. Trucioli di questo tipo si formano quando si lavora materiale duttile a bassi avanzamenti. Se il truciolo si rompe dopo parecchi giri, le prestazioni di inclinazione del truciolo sono soddisfacenti.
A passo lungo	many many	I trucioli a passo lungo fuoriescono senza avvolgimento e si avvolgono facilmente attorno alla punta.
A ventaglio		Si tratta di un truciolo rotto dal taglio della punta e dalla parete di un foro trapanato. Viene generato quando la velocità di avanzamento è elevata.
A segmento		Un truciolo a spirale conica che viene rotto subito prima che il truciolo cresca in una forma a passo lungo dalla parete del foro trapanato a causa di duttilità insufficiente. Eccellente evacuazione e scarico del truciolo.
A zig-zag	DAAAA	Un truciolo che viene deformato e piegato a causa della forma del taglio e delle caratteristiche del materiale. Causa facilmente la compattazione del truciolo nel taglio.
Ad ago		Trucioli rotti per vibrazione o rotti quando materiale fragile viene arricciato con raggio ridotto. Le prestazioni di rottura sono relativamente soddisfacenti, ma questi trucioli possono diventare estremamente compatti.

FORMULE PER FORATURA

VELOCITÀ DI TAGLIO (vc)

 $\pi \cdot D1 \cdot n$ · (m/min)

*Trasformare le unità (da "mm" a "m")

vc (m/min): Velocità di taglio

 π (3.14)

D1 (mm) : Diametro della punta

n (min⁻¹): Numero di giri del mandrino

(Problema) Trovare la velocità di taglio sapendo che la velocità del mandrino dell'asse principale è 1350 min-1 e il diametro di foratura è 12 mm.

Inserire π = 3.14, D1 = 12, n = 1350 nella formula (Risposta)

$$vc = \frac{\pi \cdot D1 \cdot n}{1000} = \frac{3.14 \times 12 \times 1350}{1000} = 50.9 \text{m/min}$$

La velocità di taglio è 50.9m/min.

AVANZAMENTO DEL MANDRINO PRINCIPALE (vf)

 $vf = f \cdot n (mm/min)$

vf (mm/min): Avanzamento del mandrino (asse Z)

f (mm/giro): Avanzamento per numero di giri

: Numero di giri del mandrino

(Problema) Trovare la velocità del mandrino (vf) sapendo che l'avanzamento per numero di giri è 0.2 mm/giro e la velocità del mandrino dell'asse principale è 1350 min-1.

(Risposta) Inserire f = 0.2, n=1350 nella formula

 $vf = f \times n = 0.2 \times 1350 = 270 mm/min$

L'avanzamento del mandrino è di 270 mm/min.

DURATA DELLA FORATURA (Tc)

: Durata della foratura Tc (min) (min⁻¹) : Velocità del mandrino : Profondità foro ld (mm)

(mm/giro): Avanzamento per numero di giri : Numero di fori

(Problema) Trovare il tempo di foratura necessario per praticare un foro lungo 30 mm in acciaio legato sapendo che la velocità di

taglio è 50 m/min e l'avanzamento è 0.15 mm/giro.

 $n = \frac{50 \times 1000}{17.0 \times 10} = 1061.57 \text{min}^{-1}$ (Risposta) Velocità del mandrino 15×3.14

DATI TEC

TABELLA DI CONFRONTO FRA I MATERIALI

ACCIAIO AL CARBONIO

Ger	mania	Regno	Unito	Francia	Italia	Spagna	Svezia	Giappone	USA	Cina
W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	JIS	AISI/SAE	GB
1.0038	RSt.37-2	4360 40 C	_	E 24-2 Ne	_	_	1311	STKM 12A STKM 12C	A570.36	15
1.0401	C15	080M15	_	CC12	C15, C16	F.111	1350	_	1015	15
1.0402	C22	050A20	2C	CC20	C20, C21	F.112	1450	_	1020	20
1.0715	9SMn28	230M07	1A	S250	CF9SMn28	F.2111 11SMn28	1912	SUM22	1213	Y15
1.0718	9SMnPb28	_	-	S250Pb	CF9SMnPb28	11SMnPb28	1914	SUM22L	12L13	_
1.0722	10SPb20	_	-	10PbF2	CF10Pb20	10SPb20	-	-	_	-
1.0736	9SMn36	240M07	1B	S300	CF9SMn36	12SMn35	-	-	1215	Y13
1.0737	9SMnPb36	_	-	S300Pb	CF9SMnPb36	12SMnP35	1926	-	12L14	_
1.1141	Ck15	080M15	32C	XC12	C16	C15K	1370	S15C	1015	15
1.1158	Ck25	_	-	-	_	_	-	S25C	1025	25
1.8900	StE380	4360 55 E	-	-	FeE390KG	_	2145	-	A572-60	-
1.0501	C35	060A35	-	CC35	C35	F.113	1550	_	1035	35
1.0503	C45	080M46	_	CC45	C45	F.114	1650	_	1045	45
1.0726	35S20	212M36	8M	35MF4	_	F210G	1957	_	1140	_
1.1157	40Mn4	150M36	15	35M5	_	_	_	_	1039	40Mn
1.1167	36Mn5	_	_	40M5	_	36Mn5	2120	SMn438(H)	1335	35Mn2
1.1170	28Mn6	150M28	14A	20M5	C28Mn	_	_	SCMn1	1330	30Mn
1.1183	Cf35	060A35	_	XC38TS	C36	_	1572	S35C	1035	35Mn
1.1191	Ck45	080M46	_	XC42	C45	C45K	1672	S45C	1045	Ck45
1.1213	Cf53	060A52	_	XC48TS	C53	_	1674	S50C	1050	50
1.0535	C55	070M55	9	_	C55	_	1655	_	1055	55
1.0601	C60	080A62	43D	CC55	C60	_	_	_	1060	60
1.1203	Ck55	070M55	-	XC55	C50	C55K	-	S55C	1055	55
1.1221	Ck60	080A62	43D	XC60	C60	_	1678	S58C	1060	60Mn
1.1274	Ck101	060A96	_	XC100	_	F.5117	1870	_	1095	-
1.1545	C105W1	BW1A	_	Y105	C36KU	F.5118	1880	SK3	W1	-
1.1545	C105W1	BW2	-	Y120	C120KU	F.515	2900	SUP4	W210	<u> </u>

ACCIAIO LEGATO

Ger	mania	Regno	Unito	Francia	Italia	Spagna	Svezia	Giappone	USA	Cina
W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	JIS	AISI/SAE	GB
1.0144	St.44.2	4360 43 C	_	E28-3	_	_	1412	SM400A, SM400B SM400C	A573-81	_
1.0570	St52-3	4360 50 B	_	E36-3	Fe52BFN Fe52CFN	_	2132	SM490A, SM490B SM490C	_	_
1.0841	St52-3	150M19	_	20MC5	Fe52	F.431	2172	_	5120	_
1.0904	55Si7	250A53	45	55S7	55Si8	56Si7	2085	_	9255	55Si2Mn
1.0961	60SiCr7	_	_	60SC7	60SiCr8	60SiCr8	_	_	9262	_
1.3505	100Cr6	534A99	31	100C6	100Cr6	F.131	2258	SUJ2	ASTM 52100	Gr15, 45G
1.5415	15Mo3	1501-240	_	15D3	16Mo3KW	16Mo3	2912	_	ASTM A204Gr.A	_
1.5423	16Mo5	1503-245-420	_	_	16Mo5	16Mo5	_	_	4520	_
1.5622	14Ni6	_	_	16N6	14Ni6	15Ni6	_	_	ASTM A350LF5	_
1.5662	X8Ni9	1501-509-510	_	_	X10Ni9	XBNi09	_	_	ASTM A353	_
1.5710	36NiCr6	640A35	111A	35NC6	-	_	-	SNC236	3135	_
1.5732	14NiCr10	_	_	14NC11	16NiCr11	15NiCr11	-	SNC415(H)	3415	_
1.5752	14NiCr14	655M13	36A	12NC15	-	_	-	SNC815(H)	3415, 3310	_
1.6523	21NiCrMo2	805M20	362	20NCD2	20NiCrMo2	20NiCrMo2	2506	SNCM220(H)	8620	_
1.6546	40NiCrMo22	311-Type 7	_	_	40NiCrMo2(KB)	40NiCrMo2	-	SNCM240	8740	_
1.6587	17CrNiMo6	820A16	_	18NCD6	_	14NiCrMo13	_	_	_	_
1.7015	15Cr3	523M15	_	12C3	-	_	_	SCr415(H)	5015	15Cr

Gerr	mania	Reand	Unito	Francia	Italia	Spagna	Svezia	Giappone	USA	Cina
W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	JIS	AISI/SAE	GB
1.7045	42Cr4	_	_	_	_	42Cr4	2245	SCr440	5140	40Cr
1.7176	55Cr3	527A60	48	55C3	_	_	_	SUP9(A)	5155	20CrMn
1.7262	15CrMo5	_	_	12CD4	_	12CrMo4	2216	SCM415(H)		_
1.7335	13CrMo4 4	1501-620Gr27	_	15CD3.5	14CrMo45	14CrMo45	_	_	ASTM A182	
				15CD4.5					F11, F12	_
4.7000	400-14-040	1501-622		12CD9	12CrMo9	T1111	0040		ASTM A182	
1.7380	10CrMo910	Gr31, 45	_	12CD10	12CrMo10	TU.H	2218	_	F.22	_
1.7715	14MoV63	1503-660-440	_	_	_	13MoCrV6	_	_	_	_
1.8523	39CrMoV13 9	897M39	40C	_	36CrMoV12	_	_	_	_	_
1.6511	36CrNiMo4	816M40	110	40NCD3	38NiCrMo4(KB)	35NiCrMo4	_	_	9840	_
1.6582	34CrNiMo6	817M40	24	35NCD6	35NiCrMo6(KB)	_	2541	_	4340	40CrNiMoA
1.7033	34Cr4	530A32	18B	32C4	34Cr4(KB)	35Cr4	_	SCr430(H)	5132	35Cr
1.7035	41Cr4	530M40	18	42C4	41Cr4	42Cr4	_	SCr440(H)	5140	40Cr
1.7131	16MnCr5	(527M20)	_	16MC5	16MnCr5	16MnCr5	2511	_	5115	18CrMn
1.7218	25CrMo4	1717CDS110 708M20	_	25CD4	25CrMo4(KB)	55Cr3	2225	SCM420 SCM430	4130	30CrMn
1.7220	34CrMo4	708A37	19B	35CD4	35CrMo4	34CrMo4	12234	SCM432 SCCRM3	4137 4135	35CrMo
1.7223	41CrMo4	708M40	19A	42CD4TS	41CrMo4	42CrMo4	2244	SCM 440	4140 4142	40CrMoA
1.7225	42CrMo4	708M40	19A	42CD4	42CrMo4	42CrMo4	2244	SCM440(H)	4140	42CrMo 42CrMnMo
1.7361	32CrMo12	722M24	40B	30CD12		F.124.A	2240	_	_	_
1.8159	50CrV4	735A50	47	50CV4	50CrV4	51CrV4	2230	SUP10	6150	50CrVA
1.8509	41CrAlMo7	905M39	41B	40CAD6 40CAD2	41CrAlMo7	41CrAlMo7	2940	_	_	_
1.2067	100Cr6	BL3	_	Y100C6	_	100Cr6	_	_	L3	CrV, 9SiCr
1.2419	105WCr6	_	_	105WC13	100WCr6 107WCr5KU	105WCr5	2140	SKS31 SKS2, SKS3	_	CrWMo
1.2713	55NiCrMoV6	BH224/5	_	55NCDV7	_	F.520.S	_	SKT4	L6	5CrNiMo
1.5662	X8Ni9	1501-509	_	_	X10Ni9	XBNi09	_	_	ASTM A353	_
1.5680	12Ni19	_	_	Z18N5	_	_	-	_	2515	_
1.6657	14NiCrMo134	832M13	36C	_	15NiCrMo13	14NiCrMo131	_	_	_	_
1.2080	X210Cr12	BD3	_	Z200C12	X210Cr13KU X250Cr12KU	X210Cr12	_	SKD1	D3 ASTM D3	Cr12
1.2601	X153CrMoV12	BD2	_	_	X160CrMoV12	_	_	SKD11	D2	Cr12MoV
1.2363	X100CrMoV5	BA2	_	Z100CDV5	X100CrMoV5	F.5227	2260	SKD12	A2	Cr5Mo1V
1.2344	X40CrMoV51	BH13	_	Z40CDV5	X35CrMoV05KU	X40CrMoV5	2242	SKD61	H13	400×N40\/F
	X40CrMoV51				X40CrMoV51KU				ASTM H13	40CrMoV5
1.2363	X100CrMoV51	BA2	_	Z100CDV5	X100CrMoV51KU	X100CrMoV5	2260	SKD12	A2	100CrMoV5
1.2436	X210CrW12	_	_	_	X215CrW121KU	X210CrW12	2312	SKD2	_	_
1.2542	45WCrV7	BS1	_	_	45WCrV8KU	45WCrSi8	2710	_	S1	_
1.2581	X30WCrV93	BH21	_	Z30WCV9	X28W09KU	X30WCrV9	_	SKD5	H21	30WCrV9
1.2601	X165CrMoV12	_	_	_	X165CrMoW12KU	X160CrMoV12	2310	_	_	_
1.2833	100V1	BW2	_	Y1105V	_	_	_	SKS43	W210	V
1.3255	S 18-1-2-5	BT4	-	Z80WKCV	X78WCo1805KU	HS18-1-1-5	-	SKH3	T4	W18Cr4VCo5
1.3355		BT1	_	Z80WCV	X75W18KU		_	SKH2	T1	
1.3401	G-X120Mn12		_	Z120M12	XG120Mn12		_	SCMnH/1	_	_
1.4718	X45CrSi93		52	Z45CS9		F.322	_	SUH1	HW3	X45CrSi93
1.3343		4959BA2	_		15NiCrMo13			SUH3	D3	_
1.3343	S6/5/2	BM2	-	Z85WDCV		F.5603	2722	SKH9, SKH51	M2	_
1.3348	S 2-9-2	-	-	_	HS2-9-2	HS2-9-2	2782	-	M7	_
1.3243	S6/5/2/5	BM35	_	6-5-2-5	HS6-5-2-5	F.5613	2723	SKH55	M35	

TABELLA DI CONFRONTO FRA I MATERIALI

ACCIAIO INOSSIDABILE (FERRITICO, MARTENSITICO)

Gerr	nania	Regno	Unito	Francia	Italia	Spagna	Svezia	Giappone	USA	Cina
W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	JIS	AISI/SAE	GB
1.4000	X7Cr13	403S17	_	Z6C13	X6Cr13	F.3110	2301	SUS403	403	OCr13 1Cr12
1.4001	X7Cr14	_	-	-	_	F.8401	-	_	_	_
1.4005	X12CrS13	416S21	_	Z11CF13	X12CrS13	F.3411	2380	SUS416	416	_
1.4006	X10Cr13	410S21	56A	Z10C14	X12Cr13	F.3401	2302	SUS410	410	1Cr13
1.4016	X8Cr17	430S15	60	Z8C17	X8Cr17	F.3113	2320	SUS430	430	1Cr17
1.4027	G-X20Cr14	420C29	56B	Z20C13M	_	_	_	SCS2	_	_
1.4034	X46Cr13	420S45	56D	Z40CM Z38C13M	X40Cr14	F.3405	2304	SUS420J2	_	4Cr13
1.4003	-	405S17	-	Z8CA12	X6CrAl13	_	_	_	405	_
1.4021	_	420S37	_	Z8CA12	X20Cr13	_	2303	_	420	_
1.4057	X22CrNi17	431S29	57	Z15CNi6.02	X16CrNi16	F.3427	2321	SUS431	431	1Cr17Ni2
1.4104	X12CrMoS17	_	_	Z10CF17	X10CrS17	F.3117	2383	SUS430F	430F	Y1Cr17
1.4113	X6CrMo17	434S17	_	Z8CD17.01	X8CrMo17	_	2325	SUS434	434	1Cr17Mo
1.4313	X5CrNi134	425C11	_	Z4CND13.4M	(G)X6CrNi304	_	2385	SCS5	CA6-NM	_
1.4724	X10CrA113	403S17	_	Z10C13	X10CrA112	F.311	_	SUS405	405	OCr13Al
1.4742	X10CrA118	430S15	60	Z10CAS18	X8Cr17	F.3113	_	SUS430	430	Cr17
1.4747	X80CrNiSi20	443S65	59	Z80CSN20.02	X80CrSiNi20	F.320B	_	SUH4	HNV6	_
1.4762	X10CrA124	_	_	Z10CAS24	X16Cr26	_	2322	SUH446	446	2Cr25N
1.4871	X53CrMnNiN219	349S54	_	Z52CMN21.09	X53CrMnNiN219	_	_	SUH35	EV8	5Cr2Mn9Ni4N
1.4521	X1CrMoTi182	_	-	_	_	_	2326	_	S44400	_
1.4922	X20CrMoV12-1	_	_	_	X20CrMoNi1201	_	2317	_	_	_
1.4542	<u> </u>	_	-	Z7CNU17-04	_	_	_	_	630	_

ACCIAIO INOSSIDABILE (AUSTENITICO)

Ger	mania	Regn	o Unito	Francia	Italia	Spagna	Svezia	Giappone	USA	Cina
W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	JIS	AISI/SAE	GB
1.4306	X2CrNi1911	304S11	_	Z2CN18.10	X2CrNi18.11	_	2352	SUS304L	304L	OCr19Ni10
1.4350	X5CrNi189	304S11	58E	Z6CN18.09	X5CrNi1810	F.3551 F.3541 F.3504	2332	SUS304	304	OCr18Ni9
1.4305	X12CrNiS188	303S21	58M	Z10CNF18.09	X10CrNiS18.09	F.3508	2346	SUS303	303	1Cr18Ni9MoZr
_	_	304C12	_	Z3CN19.10	_	_	2333	SUS304L	_	_
1.4306	X2CrNi189	304S12	_	Z2CrNi1810	X2CrNi18.11	F.3503	2352	SCS19	304L	-
1.4310	X12CrNi177	_	_	Z12CN17.07	X12CrNi1707	F.3517	2331	SUS301	301	Cr17Ni7
1.4311	X2CrNiN1810	304S62	_	Z2CN18.10	_	_	2371	SUS304LN	304LN	-
1.4401	X5CrNiMo1810	316S16	58J	Z6CND17.11	X5CrNiMo1712	F.3543	2347	SUS316	316	0Cr17Ni11Mo2
1.4308	G-X6CrNi189	304C15	_	Z6CN18.10M	_	_	-	SCS13	_	_
1.4408	G-X6CrNiMo1810	316C16	_	-	_	F.8414	_	SCS14	_	-
1.4581	G-X5CrNiMoNb1810	318C17	_	Z4CNDNb1812M	XG8CrNiMo1811	_	_	SCS22	_	_
1.4429	X2CrNiMoN1813	_	_	Z2CND17.13	_	_	2375	SUS316LN	316LN	OCr17Ni13Mo
1.4404	_	316S13	_	Z2CND17.12	X2CrNiMo1712	_	2348	_	316L	_
1.4435	X2CrNiMo1812	316S13	_	Z2CND17.12	X2CrNiMo1712	_	2353	SCS16 SUS316L	316L	OCr27Ni12Mo3
1.4436	_	316S13	_	Z6CND18-12-03	X8CrNiMo1713	_	2343, 2347	_	316	_
1.4438	X2CrNiMo1816	317S12	_	Z2CND19.15	X2CrNiMo1816	_	2367	SUS317L	317L	OOCr19Ni13Mo
1.4539	X1NiCrMo	_	_	Z6CNT18.10	_	_	2562	_	UNS V 0890A	_
1.4541	X10CrNiTi189	321S12	58B	Z6CNT18.10	X6CrNiTi1811	F.3553 F.3523	2337	SUS321	321	1Cr18NI9Ti
1.4550	X10CrNiNb189	347S17	58F	Z6CNNb18.10	X6CrNiNb1811	F.3552 F.3524	2338	SUS347	347	1Cr18Ni11Nb
1.4571	X10CrNiMoTi1810	320S17	58J	Z6CNDT17.12	X6CrNiMoTi1712	F.3535	2350	_	316Ti	Cr18Ni12Mo2T
1.4583	X10CrNiMoNb1812	_	_	Z6CNDNb1713B	X6CrNiMoNb1713	_	_	_	318	Cr17Ni12Mo3Mb

Gern	nania	Regno	Unito	Francia	Italia	Spagna	Svezia	Giappone	USA	Cina
W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	JIS	AISI/SAE	GB
1.4828	X15CrNiSi2012	309S24	_	Z15CNS20.12	X6CrNi2520	_	_	SUH309	309	1Cr23Ni13
1.4845	X12CrNi2521	310S24	_	Z12CN2520	X6CrNi2520	F.331	2361	SUH310	310S	OCr25Ni20
1.4406	X10CrNi18.08	_	58C	Z1NCDU25.20	_	F.8414	2370	SCS17	308	_
1.4418	X4CrNiMo165	_	_	Z6CND16-04-01	_	_	_	_	_	_
1.4568	_	316S111	_	Z8CNA17-07	X2CrNiMo1712	_	_	_	17-7PH	_
1.4504										
1.4563	_	_	_	Z1NCDU31-27-03	_	_	2584	_	NO8028	_
				Z1CNDU20-18-06AZ			2378		S31254	
1.4878	X12CrNiTi189	321S32	58B, 58C	Z6CNT18.12B	X6CrNiTi18 11	F.3523	_	SUS321	321	1Cr18Ni9Ti

ACCIAI RESISTENTI AL CALORE

Gern	nania	Regno	Unito	Francia	Italia	Spagna	Svezia	Giappone	USA	Cina
W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	JIS	AISI/SAE	GB
1.4864	X12NiCrSi3616	_	-	Z12NCS35.16	-	-	_	SUH330	330	_
1.4865	G-X40NiCrSi3818	330C11	_	_	XG50NiCr3919	_	-	SCH15	HT, HT 50	-

GHISA GRIGIA

Gerr	mania	Regno	Unito	Francia	Italia	Spagna	Svezia	Giappone	USA	Cina
W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	JIS	AISI/SAE	GB
_	_	_	-	_	-	-	0100	_	_	_
_	GG 10	_	-	Ft 10 D	_	_	0110	FC100	No 20 B	_
0.6015	GG 15	Grade 150	_	Ft 15 D	G15	FG15	0115	FC150	No 25 B	HT150
0.6020	GG 20	Grade 220	-	Ft 20 D	G20	_	0120	FC200	No 30 B	HT200
0.6025	GG 25	Grade 260	_	Ft 25 D	G25	FG25	0125	FC250	No 35 B	HT250
_	_	_	-	_	_	_	_	_	No 40 B	_
0.6030	GG 30	Grade 300	_	Ft 30 D	G30	FG30	0130	FC300	No 45 B	HT300
0.6035	GG 35	Grade 350	_	Ft 35 D	G35	FG35	0135	FC350	No 50 B	HT350
0.6040	GG 40	Grade 400	_	Ft 40 D	_	_	0140	_	No 55 B	HT400
0.6660	GGL NiCr202	L-NiCuCr202	_	L-NC 202	_	_	0523	_	A436 Type 2	_

GHISA SFEROIDALE

Gerr	nania	Regno	Unito	Francia	Italia	Spagna	Svezia	Giappone	USA	Cina
W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	JIS	AISI/SAE	GB
0.7040	GGG 40	SNG 420/12	_	FCS 400-12	GS 370-17	FGE 38-17	07 17-02	FCD400	60-40-18	QT400-18
_	GGG 40.3	SNG 370/17	_	FGS 370-17	_	_	07 17-12	_	_	_
0.7033	GGG 35.3	_	_	_	_	_	07 17-15	_	_	_
0.7050	GGG 50	SNG 500/7	_	FGS 500-7	GS 500	FGE 50-7	07 27-02	FCD500	80-55-06	QT500-7
0.7660	GGG NiCr202	Grade S6	_	S-NC202	_	_	07 76	_	A43D2	_
_	GGG NiMn137	L-NiMn 137	_	L-MN 137	_	_	07 72	_	_	_
_	GGG 60	SNG 600/3	_	FGS 600-3	_	_	07 32-03	FCD600	_	QT600-3
0.7070	GGG 70	SNG 700/2	-	FGS 700-2	GS 700-2	FGS 70-2	07 37-01	FCD700	100-70-03	QT700-18

GHISA MALLEABILE

Gerr	mania	Regno Unito		Francia Italia		Spagna	Svezia	Giappone	USA	Cina
W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	JIS	AISI/SAE	GB
_	_	8 290/6	_	MN 32-8	_	_	08 14	FCMB310	_	_
_	GTS-35	B 340/12	_	MN 35-10	_	_	08 15	FCMW330	32510	_
0.8145	GTS-45	P 440/7	_	Mn 450	GMN45	_	08 52	FCMW370	40010	_
0.8155	GTS-55	P 510/4	_	MP 50-5	GMN55	_	08 54	FCMP490	50005	-
_	GTS-65	P 570/3	_	MP 60-3	_	_	08 58	FCMP540	70003	_
0.8165	GTS-65-02	P 570/3	_	Mn 650-3	GMN 65	-	08 56	FCMP590	A220-70003	-
_	GTS-70-02	P 690/2	_	Mn 700-2	GMN 70	-	08 62	FCMP690	A220-80002	_

RUGOSITÀ SUPERFICIALE

RUGOSITÀ SUPERFICIALE

(Da JIS B 0601-1994)

Tipo	Simbolo	Determinazione	Esempio di determinazione (figura)
Rugosità media aritmetica	Ra	Ra è il valore ottenuto mediante la seguente formula ed espresso in micrometri (μ m) quando si campiona la sola lunghezza di riferimento a partire dalla curva di rugosità nella direzione della linea mediana, considerando l'asse X nella direzione della linea mediana e l'asse Y nella direzione dell'ingrandimento longitudinale di questa area campionata, e la curva di rugosità è espressa da y=f(x): $Ra = \frac{1}{\varrho} \int_{-\varrho}^{\varrho} \{f(x)\} dx$	Ra 1 May
Altezza massima	Rz	Rz è tale solo quando la lunghezza di riferimento viene campionata a partire dalla curva di rugosità nella direzione della linea mediana, la distanza tra la linea di picco del profilo superiore e la linea di valle del profilo inferiore sull'area campionata viene misurata nella direzione di ingrandimento longitudinale della curva di rugosità e il valore ottenuto è espresso in micrometri (μ m). (Nota) Nel calcolo di Rz, viene selezionata come lunghezza di campionatura un'area priva di picchi eccessivamente elevati o di valli eccessivamente basse, che potrebbero essere considerati difetti. $Rz = R_P + Rv$	
Rugosità media su dieci punti	Rzjis	Rzjis è tale solo se la lunghezza di riferimento viene campionata dalla curva di rugosità nella direzione della linea mediana, la somma del valore medio dei valori assoluti delle altezze di cinque picchi di profilo più alti (Yp) e delle profondità delle cinque valli di profilo più profonde (Yv) misurate nella direzione di ingrandimento verticale dalla linea mediana di tale area campionata, e tale somma è espressa in micrometri (μ m). $Rzjis = \frac{(Yp1+Yp2+Yp3+Yp4+Yp5)+(Yv1+Yv2+Yv3+Yv4+Yv5)}{5}$	Yp1, Yp2, Yp3, Yp4, Yp5: Altezze dei cinque picchi del profilo più alti dell'area campionata corrispondenti alla lunghezza di riferimento l. Yv1, Yv2, Yv3, Yv4, Yv5: Altezze delle cinque valli del profilo più profonde dell'area campionata corrispondente alla lunghezza di riferimento l.

RAPPORTO TRA MEDIA ARITMETICA (Ra) E DESIGNAZIONE CONVENZIONALE (DATI DI RIFERIMENTO)

· ·	dia aritmetica	Rugosità Max. Rz	Rugosità media su dieci punti	Lunghezza di campionatura per	Segno convenzionale
Serie standard	Valore di asportazione λc (mm)	Serie s	tandard	I (mm)	di finitura Mark
0.012 a	0.08	0.05s	0.05z	0.08	
0.025 a	0.25	0.1 s	0.1 z	0.08	
0.05 a	0.25	0.2 s	0.2 z	0.05	$\nabla\nabla\nabla\nabla$
0.1 a		0.4 s	0.4 z	0.25	
0.2 a		0.8 s	0.8 z		
0.4 a	0.8	1.6 s	1.6 z	0.0	
0.8 a		3.2 s	3.2 z	0.8	$\nabla\nabla\nabla$
1.6 a		6.3 s	6.3 z		
3.2 a	0.5	12.5 s	12.5 z		
6.3 a	2.5	25 s	25 z	2.5	$\nabla\nabla$
12.5 a		50 s	50 z		
25 a	8	100 s	100 z	0	abla
50 a		200 s	200 z	8	
100 a	_	400 s	400 z	_	

^{*}La correlazione tra i tre valori è puramente indicativa e non è esatta.

^{*}Ra: La lunghezza di valutazione di Rz e Rz. Is è data di valore di asportazione e dalla lunghezza di campionatura moltiplicati rispettivamente per 5.

TABELLA DI CONFRONTO DELLE DUREZZE

NUMERI DI CONVERSIONE DELLA DUREZZA DELL'ACCIAIO

140	IVILIX		OON	VLING		DLLL						CIAI					
10 mi	Brinell (HB), m sfera, : 3000kgf	(HX)	ı	Durezza R	ockwell (3))	Shore (HS)	Resistenza alla trazione	10 mi	Brinell (HB), m sfera, 3000kgf	za (HV)		Durezza R	ockwell (3))	Shore (HS)	Resistenza alla trazione
Sfera standard	Sfera carburo tungsteno	Durezza Vickers (HV)	Scala graduata A, carico: 60kgf, punta di diamante (HRA)	Scala graduata B, carico: 100kgf, 1/16" SFERICA (HRB)	Scala graduata C, carico: 150kgf, punta di diamante (HRC)	Scala graduata D, carico: 100kgf, punta di diamante (HRD)	Durezza Sho	(circa) MPa (2)	Sfera standard	Sfera carburo tungsteno	Durezza Vickers (HV)	Scala graduata A, carico: 60kgf, punta di diamante (HRA)	Scala graduata B, carico: 100kgf, 1/16" SFERICA (HRB)	Scala graduata C, carico: 150kgf, punta di diamante (HRC)	Scala graduata D, carico: 100kgf, punta di diamante (HRD)	Durezza Sho	(circa) MPa (2)
_	_	940	85.6	_	68.0	76.9	97	_	429	429	455	73.4	_	45.7	59.7	61	1510
_	_	920	85.3	_	67.5	76.5	96	–	415	415	440	72.8	_	44.5	58.8	59	1460
_	-	900	85.0	_	67.0	76.1	95	_	401	401	425	72.0	_	43.1	57.8	58	1390
_	(767)	880	84.7	_	66.4	75.7	93	_	388	388	410	71.4	_	41.8	56.8	56	1330
_	(757)	860	84.4	_	65.9	75.3	92	_	375	375	396	70.6	_	40.4	55.7	54	1270
_	(745)	840	84.1	_	65.3	74.8	91	_	363	363	383	70.0	_	39.1	54.6	52	1220
_	(733)	820	83.8	_	64.7	74.3	90	-	352	352	372	69.3	(110.0)	37.9	53.8	51	1180
_	(722)	800	83.4	_	64.0	73.8	88	_	341	341	360	68.7	(109.0)	36.6	52.8	50	1130
_	(712)	700	-	_	-	72.2	0.7	_	331	331	350	68.1	(108.5)	35.5	51.9	48	1095
_	(710) (698)	780 760	83.0 82.6	_	63.3 62.5	73.3 72.6	87 86	_	321	321	339	67.5	(108.0)	34.3	51.0	47	1060
	(090)	700	02.0	_	02.5	72.0	00		311	311	220	66.9	(107.5)	33.1	50.0	46	1025
_	(684)	740	82.2	_	61.8	72.1	_	_	302	302	328 319	66.3	(107.5)	32.1	49.3	45	1025
_	(682)	737	82.2	_	61.7	72.0	84	_	293	293	309	65.7	(107.0)	30.9	48.3	43	970
_	(670)	720	81.8	_	61.0	71.5	83	_	285	285	301	65.3	(105.5)	29.9	47.6	-	950
_	(656)	700	81.3	_	60.1	70.8	-	–	277	277	292	64.6	(104.5)	28.8	46.7	41	925
_	(653)	697	81.2	_	60.0	70.7	81	_									
_	(647)	690	81.1	_	59.7	70.5	_	_	269	269	284	64.1	(104.0)	27.6	45.9	40	895
_	(638)	680	80.8	_	59.2	70.1	80	_	262	262	276	63.6	(103.0)	26.6	45.0	39 38	875
_	630	670	80.6	_	58.8	69.8	_	_	255 248	255 248	269 261	63.0 62.5	(102.0) (101.0)	25.4 24.2	44.2 43.2	37	850 825
_	627	667	80.5	_	58.7	69.7	79	_	240 241	2 4 6 241	253	61.8	100	22.8	43.2	36	800
									241	241	233	01.0	100	22.0	42.0	30	800
_	_	677	80.7	_	59.1	70.0	_	_	235	235	247	61.4	99.0	21.7	41.4	35	785
_	601	640	79.8	_	57.3	68.7	77	_	229	229	241	60.8	98.2	20.5	40.5	34	765
		640	70.0		57.3	60.7			223	223	234	_	97.3	(18.8)	_	_	_
_	578	615	79.8 79.1	_	56.0	68.7 67.7	 75	_	217	217	228	_	96.4	(17.5)	_	33	725
	370						75		212	212	222	_	95.5	(16.0)	_	-	705
_	_	607	78.8	_	55.6	67.4	_	_	207	207	218	_	94.6	(15.2)	_	32	690
_	555	591	78.4	_	54.7	66.7	73	2055	201	201	212	_	93.8	(13.2)		31	675
		F70	70.0		540	00.4		2045	197	197	207	_	92.8	(12.7)	_	30	655
_	534	579 569	78.0 77.8	_	54.0 53.5	66.1 65.8	71	2015 1985	192	192	202	_	91.9	(11.5)	_	29	640
_	334	509	11.0	_	55.5	05.6	/ 1	1905	187	187	196	_	90.7	(10.0)	_	_	620
_	_	533	77.1	_	52.5	65.0	_	1915									
_	514	547	76.9	_	52.1	64.7	70	1890	183	183	192	_	90.0	(9.0)	_	28	615
									179	179	188	_	89.0	(8.0)	_	27	600
(495)	_	539	76.7	_	51.6	64.3	_	1855	174	174	182	_	87.8	(6.4)	_	-	585
_	_	530	76.4	_	51.1	63.9	_	1825	170	170	178	_	86.8	(5.4)	_	26	570
	495	528	76.3	_	51.0	63.8	68	1820	167	167	175	_	86.0	(4.4)	_	_	560
(477)	_	516	75.9	_	50.3	63.2	_	1780	163	163	171	_	85.0	(3.3)	_	25	545
	_	508	75.6	_	49.6	62.7	_	1740	156	156	163	_	82.9	(0.9)	_	_	525
	477	508	75.6	_	49.6	62.7	66	1740	149	149	156	_	80.8	_	_	23	505
									143	143	150	_	78.7	_	_	22	490
(461)	_	495	75.1	_	48.8	61.9	-	1680	137	137	143	_	76.4	_	_	21	460
_	-	491	74.9	_	48.5	61.7	_	1670									
	461	491	74.9	_	48.5	61.7	65	1670	131	131	137	_	74.0	_	_	_	450
444		47.	74.0		47.0	04.0		4505	126	126	132	_	72.0	_	_	20	435
444	_	474	74.3	_	47.2	61.0	_	1595	121	121	127	_	69.8	_	_	19	415
_	444	472 472	74.2 74.2	_	47.1 47.1	60.8 60.8	63	1585 1585	116	116	122 117	_	67.6 65.7	_	_	18 15	400
	7-1-1	712	17.4		71.1	00.0	03	1000	111	111	117	_	65.7	_	_	13	385

(Nota 1) Il suddetto elenco è identico a quello presente nel manuale dei metalli dell'AMS con resistenza alla trazione in valore metrico approssimativo e durezza Brinell superiore al campo raccomandato.

⁽Nota 2) 1MPa=1N/mm² (Nota 3) Le cifre tra parentesi () sono raramente utilizzate e sono incluse per puro riferimento. L'elenco è tratto dal 'Manuale JIS - Acciaio l'.

TABELLA DELLE TOLLERANZE IDONEE(FORO)

delle dir stan	cazione mensioni idard im)					C	classe de	ella zona	a di tolle	ranza g	eometrio	ca dei fo	ri				
>	≤	B10	C9	C10	D8	D9	D10	E7	E8	E9	F6	F7	F8	G6	G7	Н6	H7
_	3	+180 +140	+85 +60	+100 +60	+34 +20	+45 +20	+60 +20	+24 +14	+28 +14	+39 +14	+12 +6	+16 +6	+20 +6	+8 +2	+12 +2	+6 0	+10 0
3	6	+188 +140	+100 +70	+118 +70	+48 +30	+60 +30	+78 +30	+32 +20	+38 +20	+50 +20	+18 +10	+22 +10	+28 +10	+12 +4	+16 +4	+8 0	+12 0
6	10	+208 +150	+116 +80	+138 +80	+62 +40	+76 +40	+98 +40	+40 +25	+47 +25	+61 +25	+22 +13	+28 +13	+35 +13	+14 +5	+20 +5	+9 0	+15 0
10	14	+220	+138	+165	+77	+93	+120	+50	+59	+75	+27	+34	+43	+17	+24	+11	+18
14	18	+150	+95	+95	+50	+50	+50	+32	+32	+32	+16	+16	+16	+6	+6	0	0
18	24	+244	+162	+194	+98	+117	+149	+61	+73	+92	+33	+41	+53	+20	+28	+13	+21
24	30	+160	+110	+110	+65	+65	+65	+40	+40	+40	+20	+20	+20	+7	+7	0	0
30	40	+270 +170	+182 +120	+220 +120	+119	+142	+180	+75	+89	+112	+41	+50	+64	+25	+34	+16	+25
40	50	+280 +180	+192 +130	+230 +130	+80	+80	+80	+50	+50	+50	+25	+25	+25	+9	+9	0	0
50	65	+310 +190	+214 +140	+260 +140	+146	+174	+220	+90	+106	+134	+49	+60	+76	+29	+40	+19	+30
65	80	+320 +200	+224 +150	+270 +150	+100	+100	+100	+60	+60	+60	+30	+30	+30	+10	+10	0	0
80	100	+360 +220	+257 +170	+310 +170	+174	+207	+260	+107	+126	+159	+58	+71	+90	+34	+47	+22	+35
100	120	+380 +240	+267 +180	+320 +180	+120	+120	+120	+72	+72	+72	+36	+36	+36	+12	+12	0	0
120	140	+420 +260	+300 +200	+360 +200													
140	160	+440 +280	+310 +210	+370 +210	+208 +145	+245 +145	+305 +145	+125 +85	+148 +85	+185 +85	+68 +43	+83 +43	+106 +43	+39 +14	+54 +14	+25 0	+40 0
160	180	+470 +310	+330 +230	+390 +230													
180	200	+525 +340	+355 +240	+425 +240													
200	225	+565 +380	+375 +260	+445 +260	+242 +170	+285 +170	+355 +170	+146 +100	+172 +100	+215 +100	+79 +50	+96 +50	+122 +50	+44 +15	+61 +15	+29 0	+46 0
225	250	+605 +420	+395 +280	+465 +280													
250	280	+690 +480	+430 +300	+510 +300	+271	+320	+400	+162	+191	+240	+88	+108	+137	+49	+69	+32	+52
280	315	+750 +540	+460 +330	+540 +330	+190	+190	+190	+110	+110	+110	+56	+56	+56	+17	+17	0	0
315	355	+830 +600	+500 +360	+590 +360	+299	+350	+440	+182	+214	+265	+98	+119	+151	+54	+75	+36	+57
355	400	+910 +680	+540 +400	+630 +400	+210	+210	+210	+125	+125	+125	+62	+62	+62	+18	+18	0	0
400	450	+1010 +760	+595 +440	+690 +440	+327	+385	+480	+198	+232	+290	+108	+131	+165	+60	+83	+40	+63
450	500	+1090	+635	+730 +480	+230	+230	+230	+135	+135	+135	+68	+68	+68	+20	+20	0	0

(Nota) I valori riportati nell'area superiore delle rispettive righe indicano la tolleranza dimensionale massima, mentre i valori riportati nell'area inferiore delle rispettive righe indicano la tolleranza dimensionale minima.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Х7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-20 -30
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 24 - 36
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-28
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-43 -33
	-51 -38
	— 56
+33 +52 +84 -	- 46 - 67
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- 56
<u>-54</u> -61	- 77
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-
+46 +74 +120	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_
-38 -58 -78 -111	
+54	_
<u>-76</u> -101 -126 -166	
-48 -77 -107 -88 -117 -147	
+63	-
-53 -93 -131	
-93 -133 -171 -60 -105	
+72 +115 +185	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_
-67 -123 -113 -169	
+81 +130 +210 40 +5 +16 -9 0 -25 -14 -47 -36 -126	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-
+97 +155 +250	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_

TABELLA DELLE TOLLERANZE IDONEE(ALBERO)

delle dir stan	icazione mensioni idard im)					Class	e della zo	ona di to	lleranza	geometr	ica degli	alberi				
>	≤	b9	с9	d8	d9	e7	e8	е9	f6	f7	f8	g5	g6	h5	h6	h7
_	3	- 140 - 165	- 60 - 85	-20 -34	- 20 - 45	- 14 - 24	- 14 - 28	- 14 - 39	-6 -12	-6 -16	-6 -20	-2 -6	-2 -8	0 -4	0 -6	0 - 10
3	6	- 140 - 170	- 70 - 100	-30 -48	- 30 - 60	- 20 - 32	- 20 - 38	- 20 - 50	- 10 - 18	- 10 - 22	- 10 - 28	-4 -9	-4 -12	0 -5	0 -8	0 - 12
6	10	- 150 - 186	- 80 - 116	-40 -62	- 40 - 76	- 25 - 40	- 25 - 47	- 25 - 61	- 13 - 22	- 13 - 28	- 13 - 35	-5 -11	-5 -14	0 -6	0 -9	0 - 15
10	14	— 150	– 95	- 50	- 50	- 32	- 32	- 32	— 16	— 16	— 16	-6	-6	0	0	0
14	18	- 193	— 138	— 77	-93	- 50	— 59	- 75	-27	- 34	-43	— 14	— 17	-8	— 11	- 18
18	24	— 160	— 110	- 65	- 65	-40	-40	-40	-20	-20	-20	- 7	- 7	0	0	0
24	30	- 212	- 162	- 98	— 117	- 61	-73	- 92	-33	-41	- 53	- 16	-20	-9	- 13	- 21
30	40	- 170 - 232	- 120 - 182	-80	-80	— 50	- 50	- 50	— 25	— 25	— 25	- 9	-9	0	0	0
40	50	- 180 - 242	- 130 - 192	- 119	- 142	- 75	- 89	- 112	-41	- 50	- 64	-20	— 25	-11	- 16	- 25
50	65	- 190 - 264	- 140 - 214	— 100	— 100	-60	-60	-60	-30	-30	-30	-10	-10	0	0	0
65	80	- 200 - 274	- 150 - 224	- 146	- 174	— 90	- 106	- 134	- 49	- 60	- 76	-23	— 29	- 13	— 19	- 30
80	100	- 220 - 307	- 170 - 257	— 120	— 120	-72	-72	-72	-36	-36	-36	- 12	- 12	0	0	0
100	120	- 240 - 327	- 180 - 267	- 174	— 207	- 107	— 126	- 159	- 58	- 71	-90	— 27	- 34	- 15	— 22	- 35
120	140	- 260 - 360	- 200 - 300													
140	160	- 280 - 380	- 210 - 310	- 145 - 208	- 145 - 245	- 85 - 125	- 85 - 148	- 85 - 185	-43 -68	- 43 - 83	-43 -106	- 14 - 32	- 14 - 39	0 - 18	0 - 25	0 - 40
160	180	- 310 - 410	- 230 - 330													
180	200	- 340 - 455	- 240 - 355	470	470	400	400	400	50	50	50	45	45		0	0
200	225	- 380 - 495 - 420	- 260 - 375 - 280	— 170 — 242	- 170 - 285	— 100 — 146		- 100 - 215	— 50 — 79		- 50 - 122	— 15 — 35	— 15 — 44	0 - 20	0 - 29	0 - 46
225	250	- 420 - 535 - 480	- 395 - 300													
250	280	- 480 - 610 - 540	- 300 - 430 - 330	- 190 - 271		- 110 - 162		- 110 - 240		- 56 - 108	- 56 - 137	— 17 — 40	— 17 — 49	0 -23	0 - 32	0 52
280	315	- 670 - 600	- 330 - 460 - 360		320	102	191	240	00	100	131	40	49			5Z
315	355	- 600 - 740 - 680	- 360 - 500 - 400	- 210 - 299	- 210 - 350	— 125 — 182		— 125 — 265		- 62 - 119	- 62 - 151	- 18 - 43	— 18 — 54	0 25	0 - 36	0 57
355	400	- 820 - 760	- 400 - 540 - 440		- 330	— 16Z	-214	200	- 90	— 119	- 131	- 4 3	- 54	- 25	- 30	- 5/
400	450	- 760 - 915 - 840	- 440 - 595 - 480	- 230 - 327		— 135 — 198		— 135 — 290			— 68 — 165	- 20 - 47	-20 -60	0 - 27	0 40	0 63
450	500	- 995	- 635											valori rip		

(Nota) I valori riportati nell'area superiore delle rispettive righe indicano la tolleranza dimensionale massima, mentre i valori riportati nell'area inferiore delle rispettive righe indicano la tolleranza dimensionale minima.

h8	h9	js5	js6	js7	Classe de	k6	m5	m6	n6	р6	r6	s6	t6	u6	х6
0	0	-			+4	+6	+6	+8	+10	+12	+16	+20	10	+24	+26
- 14	-25	±2	±3	±5	0	0	+2	+2	+4	+6	+10	+14	_	+18	+20
0	0	.0.5	. 4	. 0	+6	+9	+9	+12	+16	+20	+23	+27		+31	+36
— 18	— 30	±2.5	±4	±6	+1	+1	+4	+4	+8	+12	+15	+19	_	+23	+28
0	0	±3	±4.5	±7	+7	+10	+12	+15	+19	+24	+28	+32	_	+37	+43
- 22	- 36				+1	+1	+6	+6	+10	+15	+19	+23		+28	+34
0	0				+9	+12	+15	+18	+23	+29	+34	+39		+44	+51 +40
— 27	— 43	±4	±5.5	±9	+9	+12	+15	+10	+23	+29	+34	+39	_	+33	+40
21	43				''	''	''	''	' 12	110	123	120		133	+45
														+54	+67
0	0			4.0	+11	+15	+17	+21	+28	+35	+41	+48	_	+41	+54
— 33	- 52	±4.5	±6.5	±10	+2	+2	+8	+8	+15	+22	+28	+35	+54	+61	+77
													+41	+48	+64
													+64	+76	
0	0	±5.5	±8	±12	+13	+18	+20	+25	+33	+42	+50	+59	+48	+60	_
-39	-62	10.0	10	-12	+2	+2	+9	+9	+17	+26	+34	+43	+70	+86	
											. 00	. 70	+54	+70	
0					. 45	.04	.04	. 20	. 20		+60	+72	+85	+106	
0 - 46	0 - 74	±6.5	±9.5	±15	+15 +2	+21 +2	+24 +11	+30 +11	+39 +20	+51 +32	+41	+53 +78	+66 +94	+87 +121	_
- 4 0	-74				72	72	711	711	+20	+32	+43	+59	+75	+102	
											+73	+93	+113	+146	
0	0				+18	+25	+28	+35	+45	+59	+51	+71	+91	+124	
- 54	— 87	±7.5	±11	±17	+3	+3	+13	+13	+23	+37	+76	+101	+126	+166	_
											+54	+79	+104	+144	
											+88	+117	+147		
											+63	+92	+122		
0	0	±9	±12.5	±20	+21	+28	+33	+40	+52	+68	+90	+125	+159	_	_
-63	— 100				+3	+3	+15	+15	+27	+43	+65	+100	+134		
											+93	+133	+171		
											+68	+108	+146		
											+77	+122			
0	0				+24	+33	+37	+46	+60	+79	+109	+159			
−72	<u>-115</u>	±10	±14.5	±23	+4	+4	+17	+17	+31	+50	+80	+130	_	_	_
											+113	+169			
											+84	+140			
											+126				
0	0	±11.5	±16	±26	+27	+36	+43	+52	+66	+88	+94	_	_		_
- 81	— 130		-10	120	+4	+4	+20	+20	+34	+56	+130				
											+98				
^					.00	. 40			. 70		+144				
0 89	0 - 140	±12.5	±18	±28	+29	+40	+46	+57 +21	+73 +27	+98	+108	_	_	_	_
— 89	<u> </u>				+4	+4	+21	+21	+37	+62	+150 +114				
											+114				
0					+32	±45	±50	±63	±80	±100	±126				

+32

+5

±31

+45

+5

+50

+23

+63

+23

+126

+172 +132

+108

+68

+80

+40

0 - 97

±13.5 ±20

DATI TEC

DIAMETRI DELLE PUNTE PER MASCHIATURA

• Filetto a vite metrica grossa

• Filetto per vite metrica fine

	Diametro della punta					
Nominale	HSS	Metallo duro				
M1 ×0.25	0.75	0.75				
M1.1×0.25	0.85	0.85				
M1.2×0.25	0.95	0.95				
M1.4×0.3	1.10	1.10				
M1.6×0.35	1.25	1.30				
M1.7×0.35	1.35	1.40				
M1.8×0.35	1.45	1.50				
M2 ×0.4	1.60	1.65				
M2.2×0.45	1.75	1.80				
M2.3×0.4	1.90	1.95				
M2.5×0.45	2.10	2.15				
M2.6×0.45	2.15	2.20				
M3 ×0.5	2.50	2.55				
M3.5×0.6	2.90	2.95				
M4 ×0.7	3.3	3.4				
M4.5×0.75	3.8	3.9				
M5 ×0.8	4.2	4.3				
M6 ×1.0	5.0	5.1				
M7 ×1.0	6.0	6.1				
M8 ×1.25	6.8	6.9				
M9 ×1.25	7.8	7.9				
M10 ×1.5	8.5	8.7				
M11 ×1.5	9.5	9.7				
M12 ×1.75	10.3	10.5				
M14 ×2.0	12.0	12.2				
M16 ×2.0	14.0	14.2				
M18 ×2.5	15.5	15.7				
M20 ×2.5	17.5	17.7				
M22 ×2.5	19.5	19.7				
M24 ×3.0	21.0	_				
M27 ×3.0	24.0	_				
M30 ×3.5	26.5	_				
M33 ×3.5	29.5	_				
M36 ×4.0	32.0	_				
M39 ×4.0	35.0	_				
M42 ×4.5	37.5	_				
M45 ×4.5	40.5	_				
M48 ×5.0	43.0					

Nominale	Diametro	della punta	Nominale	Diametro	della punta
Nominale	HSS	Metallo duro	Nominale	HSS	Metallo dur
M1 ×0.2	0.80	0.80	M20 ×2.0	18.0	18.3
M1.1×0.2	0.90	0.90	M20 ×1.5	18.5	18.7
M1.2×0.2	1.00	1.00	M20 ×1.0	19.0	19.1
M1.4×0.2	1.20	1.20	M22 ×2.0	20.0	_
M1.6×0.2	1.40	1.40	M22 ×1.5	20.5	_
M1.8×0.2	1.60	1.60	M22 ×1.0	21.0	_
M2 ×0.25	1.75	1.75	M24 ×2.0	22.0	_
M2.2×0.25	1.95	2.00	M24 ×1.5	22.5	_
M2.5×0.35	2.20	2.20	M24 ×1.0	23.0	_
M3 ×0.35	2.70	2.70	M25 ×2.0	23.0	_
M3.5×0.35	3.20	3.20	M25 ×1.5	23.5	_
M4 ×0.5	3.50	3.55	M25 ×1.0	24.0	_
M4.5×0.5	4.00	4.05	M26 ×1.5	24.5	_
M5 ×0.5	4.50	4.55	M27 ×2.0	25.0	_
M5.5×0.5	5.00	5.05	M27 ×1.5	25.5	_
M6 ×0.75	5.30	5.35	M27 ×1.0	26.0	_
M7 ×0.75	6.30	6.35	M28 ×2.0	26.0	_
M8 ×1.0	7.00	7.10	M28 ×1.5	26.5	_
M8 ×0.75	7.30	7.35	M28 ×1.0	27.0	_
M9 ×1.0	8.00	8.10	M30 ×3.0	27.0	_
M9 ×0.75	8.30	8.35	M30 ×2.0	28.0	_
M10 ×1.25	8.80	8.90	M30 ×1.5	28.5	_
M10 ×1.0	9.00	9.10	M30 ×1.0	29.0	_
M10 ×0.75	9.30	9.35	M32 ×2.0	30.0	
M11 ×1.0	10.0	10.1	M32 ×1.5	30.5	
M11 ×0.75	10.3	10.3	M33 ×3.0	30.0	
M12 ×1.5	10.5	10.3	M33 ×2.0	31.0	
M12 ×1.25	10.3	10.7	M33 ×1.5	31.5	_
M12 ×1.0	11.0	11.1	M35 ×1.5	33.5	
M14 ×1.5	12.5	12.7	M36 ×3.0	33.0	
M14 ×1.0	13.0	13.1	M36 ×2.0	34.0	_
M15 ×1.5	13.5	13.7	M36 ×1.5	34.5	
M15 ×1.0	14.0	14.1	M38 ×1.5	36.5	_
M16 ×1.5	14.5	14.7	M39 ×3.0	36.0	_
M16 ×1.0	15.0	15.1	M39 ×2.0	37.0	_
M17 ×1.5	15.5	15.7	M39 ×1.5	37.5	_
M17 ×1.0	16.0	16.1	M40 ×3.0	37.0	_
M18 ×2.0	16.0	16.3	M40 ×2.0	38.0	_
M18 ×1.5	16.5	16.7	M40 ×1.5	38.5	_
M18 ×1.0	17.0	17.1	M42 ×4.0	38.0	

Diametro della punta

HSS Metallo duro

39.0

40.0

40.5

41.0

42.0

43.0

43.5

44.0

45.0

46.0

46.5

47.0

48.0

48.5

Nominale

M42 ×3.0

M42 ×2.0

M42 ×1.5

M45 ×4.0

M45 ×3.0

M45 ×2.0

M45 ×1.5

M48 ×4.0

M48 ×3.0

M48 ×2.0

M48 ×1.5

M50 ×3.0

M50 ×2.0

M50 ×1.5

(Nota) È opportuno misurare le dimensioni del foro, dato che la precisione di un foro trapanato può variare a seconda dei parametri di foratura. Qualora ritenuto non idoneo per un foro di spillatura, è necessario correggere opportunamente il diametro della punta.

DIMENSIONE DEL FORO PER BULLONE A TESTA ESAGONALE INCASSATA

DIMENSIONI DI	DIMENSIONI DI CONTROFORATURA PER FORO PER VITE O BULLONE A TESTA ESAGONALE INCASSATA Unità : mm														
Dimensioni nominali del filetto d	МЗ	M4	M5	M6	M8	M10	M12	M14	M16	M18	M20	M22	M24	M27	M30
d1	3	4	5	6	8	10	12	14	16	18	20	22	24	27	30
d'	3.4	4.5	5.5	6.6	9	11	14	16	18	20	22	24	26	30	33
D	5.5	7	8.5	10	13	16	18	21	24	27	30	33	36	40	45
D'	6.5	8	9.5	11	14	17.5	20	23	26	29	32	35	39	43	48
Н	3	4	5	6	8	10	12	14	16	18	20	22	24	27	30
H'	2.7	3.6	4.6	5.5	7.4	9.2	11	12.8	14.5	16.5	18.5	20.5	22.5	25	28
H"	3.3	4.4	5.4	6.5	8.6	10.8	13	15.2	17.5	19.5	21.5	23.5	25.5	29	32

SISTEMA DI UNITÀ DI MISURA INTERNAZIONALI

TABELLA DI CONVERSIONE UNITARIA per SEMPLICE MODIFICA in UNITÀ SI (In Grassetto sono indicate le unità di misura nel sitema internazionale (SI))

Pressione

Pa	kPa	MPa	bar	kgf/cm ²	atm	mmH2O	mmHg o Torr
1	1×10 ⁻³	1×10 ⁻⁶	1×10 ⁻⁵	1.01972×10 ⁻⁵	9.86923×10 ⁻⁶	1.01972×10 ⁻¹	7.50062×10 ⁻³
1×10 ³	1	1×10 ⁻³	1×10 ⁻²	1.01972×10 ⁻²	9.86923×10 ⁻³	1.01972×10 ²	7.50062
1×10 ⁶	1×10 ³	1	1×10	1.01972×10	9.86923	1.01972×10 ⁵	7.50062×10 ³
1×10 ⁵	1×10 ²	1×10 ⁻¹	1	1.01972	9.86923×10 ⁻¹	1.01972×10 ⁴	7.50062×10 ²
9.80665×10 ⁴	9.80665×10	9.80665×10 ⁻²	9.80665×10 ⁻¹	1	9.67841×10 ⁻¹	1×10 ⁴	7.35559×10 ²
1.01325×10 ⁵	1.01325×10 ²	1.01325×10 ⁻¹	1.01325	1.03323	1	1.03323×10 ⁴	7.60000×10 ²
9.80665	9.80665×10 ⁻³	9.80665×10 ⁻⁶	9.80665×10 ⁻⁵	1×10 ⁻⁴	9.67841×10 ⁻⁵	1	7.35559×10 ⁻²
1.33322×10 ²	1.33322×10 ⁻¹	1.33322×10 ⁻⁴	1.33322×10 ⁻³	1.35951×10 ⁻³	1.31579×10 ⁻³	1.35951×10	1

(Nota) 1Pa=1N/m²

Forza

N	dyn	kgf
1	1×10 ⁵	1.01972×10 ⁻¹
1×10 ⁻⁵	1	1.01972×10 ⁻⁶
9.80665	9.80665×10 ⁵	1

Sollecitazione

Pa	MPa or N/mm ²	kgf/mm ²	kgf/cm ²
1	1×10 ⁻⁶	1.01972×10 ⁻⁷	1.01972×10 ⁻⁵
1×10 ⁶	1	1.01972×10 ⁻¹	1.01972×10
9.80665×10 ⁶	9.80665	1	1×10 ²
9.80665×10 ⁴	9.80665×10 ⁻²	1×10 ⁻²	1

(Nota) 1Pa=1N/m²

Lavoro / Energia / Quantità di calore

J	kW∙h	kgf•m	kcal	
1	2.77778×10 ⁻⁷	1.01972×10 ⁻¹	2.38889×10 ⁻⁴	
3.600 ×10 ⁶	1	3.67098×10 ⁵	8.6000 ×10 ²	
9.80665	2.72407×10 ⁻⁶	1	2.34270×10 ⁻³	
4.18605×10 ³	1.16279×10 ⁻³	4.26858×10 ²	1	

(Nota) 1J=1W∙s, 1J=1N∙m 1cal=4.18605J (Per la legge dei pesi e delle misure)

Potenza (velocità di produzione / forza motrice) / velocità del flusso di calore

W	kgf•m/s	PS	kcal/h		
1	1.01972×10 ⁻¹	1.35962×10 ⁻³	8.6000 ×10 ⁻¹		
9.80665	1	1.33333×10 ⁻²	8.43371		
7.355 ×10 ²	7.5 ×10	1	6.32529×10 ²		
1.16279	1.18572×10 ⁻¹	1.58095×10 ⁻³	1		

(Nota) 1W=1J/s, PS:Cavalli vapore francesi

1PS=0.7355kW

1cal=4.18605J

(Per la legge dei pesi e delle misure)

USURA E DANNEGGIAMENTO DELL'UTENSILE

CAUSE E CONTROMISURE

OAGGE E G	ONTROMISURE		
Forma danı	neggiata dell'utensile	Causa	Contromisura
Usura sul fianco		 Grado dell'utensile troppo tenero. Velocità di taglio troppo elevata. Angolo del fianco troppo piccolo. Velocità di avanzamento estremamente bassa. 	 Grado dell'utensile con elevata resistenza all'usura. Velocità di taglio più bassa. Aumentare l'angolo di fianco. Aumentare la velocità di avanzamento.
Craterizzazione		 Grado dell'utensile troppo tenero. Velocità di taglio troppo elevata. Velocità di avanzamento troppo elevata. 	Grado dell'utensile con elevata resistenza all'usura. Velocità di taglio più bassa. Velocità di avanzamento più bassa.
Scheggiatura		 Grado dell'utensile troppo duro. Velocità di avanzamento troppo elevata. Mancanza di robustezza del tagliente. Mancanza di rigidità dello stelo o del portautensili. 	Grado dell'utensile con elevata tenacità. Velocità di avanzamento più bassa. Aumentare l'onatura (l'onatura arrotondata deve essere modificata in onatura smussata). Utilizzare ampie dimensioni di stelo.
Rottura		 Grado dell'utensile troppo duro. Velocità di avanzamento troppo elevata. Mancanza di robustezza del tagliente. Mancanza di rigidità dello stelo o del portautensili. 	 Grado dell'utensile con elevata tenacità. Velocità di avanzamento più bassa. Aumentare l'onatura (l'onatura arrotondata deve essere modificata in onatura smussata). Utilizzare ampie dimensioni di stelo.
Deformazione plastica		 Grado dell'utensile troppo tenero. Velocità di taglio troppo elevata. Profondità di taglio e velocità di avanzamento troppo elevate. Temperatura di taglio elevata. 	 Grado dell'utensile con elevata resistenza all'usura. Velocità di taglio più bassa. Ridurre la profondità di taglio e la velocità di avanzamento. Grado dell'utensile con elevata conduttività termica.
Saldatura		Velocità di taglio bassa.Scarsa taglienza.Grado non idoneo.	Aumentare la velocità di taglio (per DIN ck45, velocità di taglio 80m/min.) Aumentare l'angolo di spoglia. Grado dell'utensile con bassa affinità (grado rivestito, grado cermet).
Incrinature da sollecitazione termica		 Espansione o restringimento dovuti al calore di taglio. Grado dell'utensile troppo duro. *Soprattutto nella fresatura. 	 Taglio a secco (per il taglio a umido, bagnare il pezzo da lavorare con fluido da taglio). Grado dell'utensile con elevata tenacità.
Intagliatura	THE PLANT OF THE PARTY OF THE P	Superfici dure come superfici non tagliate, parti conchigliate e lavorazione di strato temprato. Attrito causato da trucioli di forma seghettata (causati da piccole vibrazioni).	Grado dell'utensile con elevata resistenza all'usura. Aumentare l'angolo di spoglia per migliorare la taglienza.
Scheggiatura		Saldatura e adesione del tagliente.Scarsa evacuazione dei trucioli.	Aumentare l'angolo di spoglia per migliorare la taglienza. Allargare la tasca del truciolo.
Usura sul Fianco e Rottura		Danneggiamento dovuto alla mancanza di robustezza di un tagliente curvo.	Aumentare l'onatura. Grado dell'utensile con elevata tenacità.
*Danneggiamento per policristallini			
Craterizzazione e Rottura		Grado dell'utensile troppo tenero. La resistenza al taglio è troppo elevata e causa notevole calore di taglio.	Ridurre l'onatura. Grado dell'utensile con elevata resistenza all'usura.
*Danneggiamento per policristallini			

MATERIALI PER UTENSILI DA TAGLIO

Il carburo cementato (WC-Co) è stato sviluppato nel 1923 ed è stato successivamente migliorato aggiungendo TiC e TaC. Nel 1969 è stata messa a punto la tecnologia di rivestimento CVD e il carburo rivestito è da allora ampiamente usato. Il cermet basato su TiC-TiN è stato messo a punto nel 1974. Oggi i "gradi di carburo rivestito per sgrossatura e cermet per finitura" costituiscono una tendenza diffusa.

CARATTERISTICHE DEL GRADO

Materiali duri	Durezza (HV)	Formazione di energia (kcal/g·atom)	Solubilità in ferro (%.1250°C)	Conducibilità termica (W/m·k)	Espansione * termica (x 10 ⁻⁶ /k)	Materiale dell'utensile
Diamante	>9000	_	Altamente solubile	2100	3.1	Diamante sinterizzato
CBN	>4500	-	_	1300	4.7	CBN sinterizzato
Si3N4	1600	_	_	100	3.4	Ceramiche
Al2O3	2100	-100	≒ 0	29	7.8	Ceramiche Carburo cementato
TiC	3200	-35	< 0.5	21	7.4	Cermet Carburi rivestiti
TiN	2500	-50	-	29	9.4	Cermet Carburi rivestiti
TaC	1800	-40	0.5	21	6.3	Carburo cementato
WC	2100	-10	7	121	5.2	Carburo cementato

*1W/m•K=2.39×10⁻³cal/cm•sec•°C

DATI TECNIC

CATENA DI GRADI

TABELLA DI CONFRONTO TRA GRADI

CARBURO CEMENTATO

Cla	aşsifi-	ISO Simbolo	Mitsubishi Materials	Sandvik	Kennametal	Seco Tools	Iscar	Sumitomo Electric	Tungaloy	Kyocera	Dijet	Hitachi Tool
	P	P01										
		P10					IC70	ST10P	TX10S		SRT	WS10
		P20	UTi20T	SMA			IC70 IC50M	ST20E	UX30		SRT DX30	EX35
		P30	UTi20T	SM30			IC50M	A30	UX30	PW30	SR30 DX30	EX35
		P40					IC54 IC54	ST40E			SR30	EX45
	M	M10		H10A	KU10 K313	890	IC07	EH510 U10E			UMN	WA10B
		M20	UTi20T	H13A	K68 KU10 K313	НХ	IC07 IC08	EH520 U2	UX30		DX25 UMS	EX35
		M30	UTi20T	H10F SM30	K68	883	IC20 IC08 IC20	A30	UX30		DX25 UMS	EX45
		M40					IC28				UM40	EX45
Ī	K	K01	HTi05T		KU10 K313 K68			H1 H2	TH03 KS05F		KG03	WH05
Iornitura		K10	HTi10	H10 HM	KU10 K313 K68	890	IC20	EH10 EH510	TH10	KW10 GW15	KG10 KT9	WH10
Torr		K20	UTi20T	H13A	KU10 K313 K68	НХ	IC20	G10E EH20 EH520	KS15F KS20	GW25	CR1 KG20	WH20
		K30	UTi20T			883		G10E			KG30	
	N	N01		H10 H13A				H1 H2	KS05F	KW10		
		N10	HTi10		KU10 K313 K68	H15	IC08 IC20	EH10 EH510	TH10	KW10 GW15	KT9	WH10
		N20			KU10 K313 K68	НХ	IC08 IC20	G10E EH20 EH520	KS15F		CR1	WH20
		N30				H25						
	S	S01	RT9005							SW05	KG03	
		S10	RT9005 RT9010 MT9015	H10 H10A H10F H13A	K10 K313 K68	НХ	IC07 IC08	EH10 EH510	KS05F TH10	SW10	FZ05 KG10	
		S20	RT9010 TF15		K10 K313 K68	H25	IC07 IC08	EH20 EH520	KS15F KS20	SW25	FZ15 KG20	
		S30	TF15								KG30	
	Р	P10					10-00				SRT	
		P20	UTi20T		K125M		IC50M IC28	A30N	UX30		SRT DX30	EX35
		P30	UTi20T		GX		IC50M IC28	A30N	UX30	PW30	SR30 DX30	EX35
		P40					IC28			PW30	SR30	EX45
ا <u>ت</u>	M	M10									UMN	
arn		M20	UTi20T				IC08 IC20	A30N	UX30		DX25 UMS	EX35
resatura		M30	UTi20T	SM30			IC08 IC28	A30N	UX30		DX25 UMS	EX45
_		M40					IC28					EX45
	K	K01	HTi05T		K115M,K313						KG03	
		K10	HTi10		K115M K313		IC20	G10E	TH10	KW10 GW25	KG10	WH10
		K20	UTi20T	H13A		НХ	IC20	G10E	KS20	GW25	KT9 CR1 KG20	WH20
		K30	UTi20T								KG30	

MICROGRANO

		ISO	Mitsubishi	Sandvik Kennametal		Seco	Sumitomo	Tungaloy	Kyocera	Dijet	Hitachi
	cazione	Simbolo	Materials	•		Tools	Electric	· angair,	11,00010.	2.,01	Tool
			SF10	PN90				F		FZ05	
taglio	~	Z01	MF07	6UF,H3F			F0	MD05F		FB05	NM08
තු			MF10	8UF,H6F				MD1508		FB10	
10			HTi10				XF1	MD10		FZ10	
da		Z10	MF20	H10F		890	F1	MD0508	FW30	FZ15	NM15
			WII 20				AFU	MD07F		FB15	
Si			TF15			890	AF0			FZ15	BRM20
2		Z20	MF30	H15F		883	SF2			FB15	EF20N
ē			IVIF3U			003	AF1			FB20	EFZUIN
Uten	l	Z30				883	A1			FZ20	NM25
_		230				003	CC			FB20	INIVIZO

CERMET

	Classifi	ISO Simbolo	Mitsubishi Materials	Sandvik	Kennametal	Seco Tools	Iscar	Sumitomo Electric	Tungaloy	Kyocera	Dijet	Hitachi Tool
	P	P01	AP25N* VP25N*				IC20N IC520N*	T110A T1000A	NS520 AT520* GT520* GT720*	TN30 PV30* TN6010 PV7010*	LN10 CX50	
		P10	NX2525 AP25N* VP25N*	CT5015 GC1525*	KT315 KT125	TP1020 TP1030* CM CMP*	IC20N IC520N* IC530N*	T1200A T2000Z* T1500A T1500Z*	NS520 NS730 GT730* NS9530 GT9530	TN60 PV60* TN6010 PV7010*	CX50 CX75 PX75*	CZ25*
		P20	NX2525 AP25N* VP25N* NX3035 MP3025*	GC1525*	KT325 KT1120 KT5020*	TP1020 TP1030*	IC20N IC520N* IC30N IC530N* IC75T	T1200A T2000Z* T3000Z* T1500A T1500Z*	NS530 NS730 GT730* NS9530 GT9530	TN60 PV60* TN6020 PV7020* PV7025*	CX75 PX75* PX90*	CH550
		P30	MP3025* VP45N*				IC75T	T3000Z*		PV7025* PV90*	PX90*	
Tornitura	M	M10	NX2525 AP25N* VP25N*	GC1525*	KT125	TP1020 TP1030* CM CMP*		T110A T1000A T2000Z* T1500Z*	NS520 AT530* GT530* GT720*	TN60 PV60* TN6020 PV7020*	LN10 CX50	
Tor		M20	NX2525 AP25N* VP25N*					T1200A T2000Z* T1500A T1500Z*	NS530 GT730* NS730	TN90 TN6020 PV90* PV7020* PV7025*	CX50 CX75	CH550
		M30										
	K	K01	NX2525 AP25N*					T110A T1000A T2000Z* T1500Z*	NS710 NS520 AT520* GT520* GT720*	TN30 PV30* PV7005* TN6010 PV7010*	LN10	
		K10	NX2525 AP25N*	CT5015	KT325 KT125			T1200A T2000Z* T1500A T1500Z*	NS520 GT730* NS730	TN60 PV60* TN6020 PV7020* PV7025*	LN10	
		K20	NX2525 AP25N*					T3000Z*			CX75	
	Р	P10	NX2525			C15M	IC30N			TN60	CX75	MZ1000*
		P20	NX2525	CT530	KT530M HT7 KT605M	C15M MP1020	IC30N	T250A	NS530	TN100M TN60	CX75 CX90	CH550 CH7030 MZ1000* MZ2000*
ū		P30	NX4545				IC30N	T250A T4500A	NS530 NS540 NS740		CX90 CX99	MZ3000* CH7035
Ę	M	M10	NX2525				IC30N			TN60		
Fresatura		M20	NX2525	CT530	KT530M HT7 KT605M	C15M	IC30N		NS530	TN100M	CX75	CH550 CH7030 MZ1000* MZ2000*
		M30	NX4545					T250A	NS540 NS740		CX90 CX99	MZ3000* CH7035
	K	K01										
		K10	NX2525						NS530	TN60		
		K20	NX2525		KT530M HT7						CX75	

[★]Cermet rivestito

TABELLA DI CONFRONTO TRA GRADI

GRADO RIVESTITO CVD

	Classifi- cazione	ISO Simbolo	Mitsubishi Materials	Sandvik	Kennametal	Seco Tools	Iscar	Sumitomo Electric	Tungaloy	Kyocera	Dijet	Hitachi Tool
	Р	P01	UE6105	GC4205 GC4005	KCP05 KC9105	TP0500 TP1500	IC9150 IC8150 IC428	AC810P AC700G	T9105 T9005	CA510 CA5505	JC110V	HG8010
		P10	UE6105 UE6110 MY5015	GC4215 GC4015 GC4325	KCP10 KCP25 KC9110	TP1500 TP2500	IC9150 IC9015 IC8150 IC8250	AC810P AC700G AC2000 AC820P	T9105 T9005 T9115	CA510 CA5505 CA5515 CA515	JC110V JC215V	HG8010 HG8025 GM8020
		P20	UE6110 UE6020 MC6025 MY5015	GC4215 GC4225 GC4015 GC4025 GC4225	KCP25 KC9125	TP2500	IC9015 IC8250 IC9025 IC9250 IC8350	AC2000 AC820P AC830P	T9115 T9125	CA515 CA5515 CA5525 CR9025 CA525	JC110V JC215V	HG8025 GM8020 GM25
		P30	MC6025 UE6020 UE6035 UH6400	GC4225 GC4325 GC4235 GC4025 GC4035	KCP30 KCP40 KC8050	TP3500 TP3000	IC8350 IC9250 IC9350	AC830P AC630M	T9125 T9035 T9135	CA525 CA5525 CA5535 CR9025 CA530	JC215V JC325V	GM25 GM803
		P40	UE6035 UH6400	GC4235 GC4035	KCP30 KCP40 KC9140 KC9040 KC9240 KC9245	TP3500 TP3000	IC9350	AC630M	T9135 T9035	CA530 CA5535	JC325V JC450V	GM803: GX30
nra	M	M10	US7020 MC7015	GC2015	KCM15	TM2000	IC9250 IC6015 IC8250	AC610M	T9115	CA6515	JC110V	
Iornitura		M20	US7020 MC7015 MC7025	GC2015	KCM15 KC9225	TM2000	IC9250 IC6015 IC9025 IC656	AC610M AC630M	T6020 T9125	CA6515 CA6525	JC110V	HG8025 GM25
		M30	US735 MC7025	GC2025	KCM25 KC9230	TM4000	IC9350 IC6025 IC635	AC630M	T6030	CA6525		GM803: GX30
		M40	US735	GC2025	KCM35 KC9240 KC9245	TM4000	IC6025 IC9350	AC630M				GX30
	K	K01	MC5005 UC5105	GC3205 GC3210	KCK05	TH1500 TK1001 TK1000	IC5005 IC9007	AC405K AC410K	T5105	CA4505 CA4010	JC050W JC105V	HX3505 HG3305
		K10	MC5015 UC5115 MY5015	GC3205 GC3210 GC3215	KCK15 KCK20 KC9315	TK1001 TK1000 TK2000 TK2001	IC5005 IC5010 IC9150 IC428 IC4028	AC405K AC410K AC420K AC700G AC415K	T5115	CA4515 CA4010 CA4115	JC050W JC105V JC110V	HX3515 HG3315 HG8010
		K20	MC5015 UC5115 UE6110 MY5015	GC3215	KCK20 KC9110 KC9325	TK2001 TK2000	IC5010 IC8150 IC9150 IC9015 IC418	AC415K AC420K AC700G AC820P	T5115 T5125	CA4515 CA4115 CA4120	JC110V JC215V	HG8025 GM8020
		K30	UE6110		KC9125 KC9325		IC9015 IC418	AC820P	T5125		JC215	HG8025 GM802
	S	S01	US905	S05F						CA6515 CA6525		
	Р	P10				MP1500	IC9080 IC4100 IC9015				JC730U	
		P20	F7030	GC4220		MP1500 MP2500	IC5100 IC520M	ACP100	T3130		JC730U	GX2140
		P30	F7030	GC4230	KC930M	MP2500	IC4050	ACP100	T3130			GX2140 GX2160
		P40		GC4240	KC935M KC530M							GX2030 GX30 GX2160
	М	M10					IC9250					
ınıa		M20	MP7130 F7030		KC925M	MP2500	IC520M IC9350	ACP100	T3130		JC730U	GX2140
rresatura		M30	MP7130 F7030	GC2040	KC930M	MP2500	IC9350 IC4050	ACP100	T3130			GX2140 GX2160 GX30
_		M40			KC930M KC935M		IC635					GX2030 GX2160 GX30
	K	K01									JC600	3,100
		K10	MC5020					ACK100	T1115 T1015		JC600	
		K20	MC5020	GC3220 K20W	KC915M	MK1500 MK2000	IC5100 IC9150	ACK200	T1115 T1015		JC610	
		K30		GC3040	KC920M KC925M KC930M KC935M	MK2000 MK3000	IC4100 IC4050 IC520M				JC610	GX30

GRADO RIVESTITO PVD

	Classifi- cazione	ISO Simbolo	Mitsubishi Materials	Sandvik	Kennametal	Seco Tools	Iscar	Sumitomo Electric	Tungaloy	Kyocera	Dijet	Hitachi Tool
	Р	P01								PR915 PR1005		
		P10	VP10MF	GC1525 GC1025	KC5010 KC5510 KU10T	CP200 TS2000	IC250 IC350 IC507 IC570 IC807 IC907 IC908		AH710	PR915 PR1005 PR930 PR1025 PR1115 PR1225 PR1425		
		P20	VP10RT VP20RT VP15TF VP20MF	GC1525 GC1025 GC1125	KC5025 KC5525 KC7215 KC7315 KU25T	CP250 TS2500	IC228 IC250 IC308 IC328 IC350 IC354 IC507 IC528 IC570 IC807 IC808 IC907 IC908 IC928 IC1008 IC1028 IC3028	AC520U	AH710 AH725 AH120 SH730 GH730 GH130	PR930 PR1025 PR1115 PR1225		IP2000
		P30	VP10RT VP20RT VP15TF VP20MF	GC1025 GC1125	KC7015 KC7020 KU25T KC7235	CP500	IC228 IC250 IC328 IC330 IC354 IC528 IC1008 IC1028 IC3028	AC530U	AH725 AH120 SH730 GH730 GH130 AH740 J740			IP3000
		P40			KC7040 KC7140 KC7030	CP500	IC228 IC328 IC330 IC528 IC1008 IC1028 IC3028		AH740 J740			
	М	M01										
ä		M10	VP10MF	GC1005 GC1025 GC1125 GC1105	KC5010 KC5510 KC6005 KC6015	CP200 TS2000	IC330 IC354 IC507 IC520 IC570 IC807 IC907 IC3028		AH710	PR915 PR1025 PR1225 PR1425	JC5003 JC8015	IP050S
Tornitura		M20	VP10RT VP20RT VP15TF VP20MF	GC1005 GC1025 GC1125 GC1105	KC5025 KC5525 KC7020 KC7025	CP250 TS2500 CP500	IC250 IC330 IC354 IC808 IC908 IC1008 IC1028 IC3028	AC520U	AH710 AH725 AH120 SH730 GH730 GH130 GH330 AH630	PR1025 PR1125 PR1225 PR915 PR930	JC5003 JC5015 JC8015	IP100S
		M30	VP10RT VP20RT VP15TF VP20MF MP7035	GC1125 GC2035	KC7030 KC7225	CP500	IC228 IC250 IC328 IC330 IC1008 IC1028 IC3028	AC520U AC530U	GH330 AH725 AH120 SH730 GH730 GH130 J740 AH645	PR1125	JC5015 JC8015	
		M40	MP7035	GC2035			IC328 IC928 IC1008 IC1028 IC3028	AC530U	J740			
	K	K01										
		K10			KC5010 KC7210	CP200 TS2000	IC350 IC1008	AC510U	GH110 AH110 AH710	PR905		
		K20	VP10RT VP20RT VP15TF		KC7015 KC7215 KC7315	CP200 CP250 TS2000 TS2500	IC228 IC350 IC808 IC908 IC1008		GH110 AH110 AH710 AH725 AH120 GH730 GH130	PR905		
		K30	VP10RT VP20RT VP15TF		KC7225	CP500	IC228 IC350 IC808 IC908 IC1008		AH725 AH120 GH730 GH130			
	S	S01	MP9005 VP05RT				IC507 IC907		AH905		JC5003 JC8015	
		S10	MP9005 MP9015 VP10RT	GC1105 GC1005 GC1025	KC5010 KC5410 KC5510	CP200 CP250 TS2000 TS2500	IC507 IC903	AC510U	AH905 SH730 AH110 AH120		JC5003 JC5015 JC8015	
		S20	MP9015 MT9015 VP20RT	GC1025 GC1125	KC5025 KC5525	CP250 TS2500 CP500	IC300 IC808 IC908 IC928 IC3028 IC806	AC510U AC520U	AH120 AH725	PR1125	JC5015 JC8015	
		S30	VP15TF	GC1125				AC520U	AH725	PR1125		
	Р	P01									JC5003	ATH80D PTH08M PCA08M PCS08M
Fresatura		P10		GC1010 GC1025	KC715M		IC250 IC350 IC808 IC810 IC900 IC903 IC908 IC910 IC950	ACP200		PR730 PR830 PR1025 PR1225	JC5003 JC5030 JC8015 JC5015 JC5118	ACS05E CY9020 JX1005 JX102 PC20M JP402 PCA12M
Fre		P20	MP6120 VP15TF	GC1025 GC1010 GC2030	KC522M KC525M	F25M MP3000	IC250 IC300 IC328 IC330 IC350 IC528 IC808 IC810 IC830 IC900 IC908 IC910 IC928 IC950 IC1008	ACP200	AH725 AH120 GH330 AH330	PR730 PR830 PR1025 PR1225 PR1230 PR1525	JC5015 JC5030 JC5040 JC6235 JC8015 JC5118 JC6235	CY150 CY15 JX1015

TABELLA DI CONFRONTO TRA GRADI

Classifi- cazione	ISO Simbolo	Mitsubishi Materials	Sandvik	Kennametal	Seco Tools	Iscar	Sumitomo Electric	Tungaloy	Kyocera	Dijet	Hitachi Tool
Р	P30	MP6120 VP15TF MP6130 VP30RT	GC1010 GC1030 GC2030	KC725M KC530M	F25M MP3000 F30M	IC250 IC300 IC328 IC330 IC350 IC528 IC830 IC900 IC928 IC950 IC1008	ACP200 ACP300	AH725 AH120 AH130 AH140 GH130 AH730	PR660 PR1230	JC5015 JC5040 JC8015 JC5118	JS4045 JS4060 CY250 CY25 HC844 JX1045 PTH30E
	P40	VP30RT	GC1030	KC735M	F40M T60M		ACP300	AH140		JC5040 JC5118	JS4060 PTH40H JX1060 GF30 GX30
M	M01										PCS08M
	M10		GC1025 GC1030	KC715M		IC903			PR730 PR1025 PR1225	JC5118	CY9020 JX1020
	M20	VP15TF MP7130 MP7030 VP20RT	GC1025 GC1030 GC1040 GC2030	KC730 KC522M KC525M	F25M MP3000	IC250 IC300 IC808 IC830 IC900 IC908 IC928 IC1008	ACP200	AH725 AH120 GH330 AH330 GH110	PR730 PR660 PR1025 PR1225	JC5015 JC5040 JC5118 JC8015	CY150 CY15 JX1015
	M30	VP15TF MP7130 MP7030 VP20RT MP7140 VP30RT	GC1040 GC2030	KC725M KC735M	F30M F40M MP3000	IC250 IC300 IC328 IC330 IC830 IC928 IC1008		AH120 AH725 AH130 AH140 GH130 AH730 GH340		JC5015 JC8015 JC8050 JC5118	CY250 CY25 HC844 JM4060 JX1045
	M40	MP7140 VP30RT			F40M		ACP300	AH140		JC5015 JC5118 JC8050	JX1060 GF30 GX30
K	K01	MP8010						AH110 GH110 AH330		JC5003	ATH80D PTH08M PCA08M PCS08M
	K10	MP8010	GC1010	KC510M		IC350 IC810 IC830 IC900 IC910 IC928 IC950 IC1008		AH110 GH110 AH725 AH120 GH130 AH330	PR1210 PR905	JC5003 JC8015	ASC05E JX1005 JX1020 CY9020 CY100H CY10H
	K20	VP15TF VP20RT	GC1010 GC1020	KC520M KC525M	MK2000	IC350 IC808 IC810 IC830 IC900 IC908 IC910 IC928 IC950 IC1008	ACK300	GH130	PR1210 PR905	JC5015 JC5080 JC8015 JC6235	CY150 CY15 PTH13S JX1015
	K30	VP15TF VP20RT	GC1020	KC725M KC735M		IC350 IC808 IC830 IC908 IC928 IC950 IC1008	ACK300			JC5015 JC8015 JC5080	CY250 GX20 GX30 CY25 PTH40 PTH30E JX10
S	S01								PR905	JC5003 JC8015 JC5118	
	S10	MP9120 VP15TF	C1025	KC510M		IC903	EH520Z EH20Z		PR905	JC5003 JC5015 JC8015 JC5118	PCS08M PTH13S JS1025
	S20	MP9120 VP15TF MP9130 MP9030	GC1025 GC2030 S30T	KC522M KC525M		IC300 IC908 IC808 IC900 IC830 IC928 IC328 IC330	EH20Z ACK300		PR905	JC8015 JC5015 JC8050 JC5118	CY100H CY10H
	S30		GC2030	KC725M	F40M	IC830 IC928	ACP300			JC8050 JC5118	
Н	H01	MP8010				IC903				JC8003	
	H10	VP05HT VP15TF VP10H	GC1010 GC1030	KC635M	MH1000 F15M	IC900				JC8008 JC8003 JC8008 JC8015 JC5118	BH200 BH250
	H20	VP15TF	GC1010 GC1030	KC635M	F15M	IC900 IC808 IC908 IC1008				JC8015 JC5118	ATH80D PTH08M PCA08M JP4005 JX1005
				KC530M	MP3000	IC808 IC908					0/(1000

CBN

		ISO	Mitsubishi	Sandvik	Seco	Sumitomo	Tungalov	Kyocera	Dijet
	Classifi- cazione	Simbolo	Materials	Saliuvik	Tools	Electric	Tungaloy	Nyocera	Dijet
	Н	H01	MBC010 MB810		CBN060K	BNC100 BNX10 BN1000	BXM10 BX310	KBN050M KBN10M KBN510	
		H10	MBC020 BC8020 MB825 MB8025	CB7015	CBN010	BNC160 BNX20 BN2000	BXM20 BX330	KBN25M KBN525	JBN300
		H20	MBC020 BC8020 MB8025	CB7025 CB20	CBN150 CBN160C	BNC200 BNX25 BN250	BXM20 BX360	KBN30M	JBN245
		H30	BC8020 MB835	CB7525	CBN150 CBN160C	BNC300 BN350	BXC50 BX380	KBN35M	
	S	S01	MB730		CBN170	BN700 BN7000	BX950		
Tornitura		S10							
i i		S20							
ᅙ		S30							
	K	K01	MB710 MB5015			BN500 BNC500	BX930 BX910		
		K10	MB730 MB4020	CB7525		BN700 BN7500 BN7000	BX850	KBN60M	JBN795
		K20	MB730 MB4020		CBN200	BN700 BN7000	BX950	KBN60M	JBN500
		K30	BC5030 MBS140	CB7925	CBN300 CBN400C CBN500	BNS800	BX90S BXC90	KBN900	
			MB4020 MB835		CBN200	BN7500 BN7000	BX450 BX470 BX480	KBN65B KBN570 KBN65M KBN70M	

PCD

	Classifi- cazione	ISO Simbolo	Mitsubishi Materials	Sandvik	Seco Tools	Sumitomo Electric	Tungaloy	Kyocera	Dijet
ā	N	N01	MD205	CD05	PCD05	DA90	DX180 DX160	KPD001	JDA30 JDA735
豆豆		N10	MD220	CD10	PCD10	DA150	DX140	KPD010	
Ξ		N20	MD220		PCD20	DA2200	DX120		JDA715
2		N30	MD230		PCD30 PCD30M	DA1000	DX110	KPD230	JDA10

TABELLA DI CONFRONTO TRA ROMPITRUCIOLO E INSERTO

TIPO INSERTO NEGATIVO

Classifi- cazione ISO	Modalità di taglio	Mitsubishi Materials	Sandvik	Kennametal	Seco Tools	Sumitomo Electric	Tungaloy	Kyocera	Dijet	Hitachi Tool	Walter	TaeguTec
Р	Finitura	PK* FH	QF	FF	FF1, FF2	FA	01 * TF	DP * GP, PP		FE	FP5	FA
		FY	LC			FL	ZF	XP, XP-T, XF				
		LP	XF			SU		PQ	PF		MP3	
	Leggero	С	PF			LU	NS, 27			BE		
		SA, SH		LF*, FN	MF2	SX, SE	TSF, AS	HQ, CQ	UR, UA, UT	B, CE	NF3, NF4	FG
	Leggero (Acciaio dolce)	SY					17	XQ, XS				FC
	Leggero (Con Raschiante)	sw	WL, WF	FW	W-MF2	LUW, SEW	AFW, ASW	WP, WQ			NF	WS
		MP	PM		MF3	GU	NM, ZM	PG, CJ, GS		CT, AB	MP5	PC, MP
	Media	MA	QM, XM	Р	MF5, M3	UG	TM	PS, HS	PG	AH		MT
		MH		MN	M5	GE, UX	DM, 33, 37, 38	PT	UB	AY, AE		SM
	Media (Con Raschiante)	MW	WMX, WM	MW, RW	M6, W-M3 W-MF5	GUW					NM	WT
		RP	PR, HM	DN DD	MD0 MD7	MILL MAY MATE	TU	PH	Ш	RE	RP5	
	Sgrossatura	GH	XMR	RN, RP	MR6, MR7	MU, MX, ME	TH	GT	UD	KE	NM6, NM9	RT
		Std.				UZ	Std.	Std.	GG			
		HZ, HL	QR, PR	MR	R4, R5, R6	MP	THS	PX			NR6, NRF	RX, RH
	Pesante	HM, HX	HR, MR	RM	57, RR6, R7	HG, HP	TU		UC	HX		HD, HY, HT
		HV		RH	R8, RR9	HU, HW, HF	TUS			HE, H	NRR	HZ
M	Finitura Leggero	SH, LM	MF	FP LF*	MF1	SU	SS	MQ, GU		MP, AB, BH	NF4	SF
		MS, GM	ММ	MP	MF4	EX, UP	SA, SF	MS, MU	SF, SZ	PV, DE, SE		ML
	Media	MM, MA	QM			GU	SM	SU, HU, TK		AH	NM4	EM
		ES	K			НМ	S	ST	SG			VF
	Pesante	GH, RM	MR	UP, RP	M5, MR7 RR6	ми	TH, SH			AE	NR4, NR5	
		HZ	MR			MP						
K	Finitura Leggero	LK, MA	KF	FN	MF2, MF5, M3, M4		CF	Std.		VA, AH	MK5	
	Media	MK, GK, Std.	KM	RP,UN	M5	UZ, GZ, UX	CM, Std.	С	PG	V, AE	RK5, NM5	
	Sgrossatura	RK	KR					PH, GC	GG	RE	RK7	
	Pesante	Parte superiore piana		Parte superiore piana	MR3, MR4 MR7, Parte superiore piana	Parte superiore piana	CH, Parte superiore piana	ZS, Parte superiore piana	Parte superiore piana	Parte superiore piana	Parte superiore piana	
S	Finitura	FJ*	SF	FS, LF*	MF1	EF		MQ				
	Leggero	LS	SGF*	MS	MF4, MF5	su*					NF4, NFT	EA
	Media	MS	NGP*, SM	UP, P, NGP*	M1	EG, EX, UP	SA, HMM	MS, MU, TK			NMS, NMT	
	Pesante	RS, GJ	SR, SMR	RP	M5, MR3, MR4	MU					NRS, NRT	ET

*Inserto periferico di tipo rettificato.

TIPO INSERTO POSITIVO DA 7º

Classifi- cazione ISO	Modalità di taglio	Mitsubishi Materials	Sandvik	Kennametal	Seco Tools	Sumitomo Electric	Tungaloy	Kyocera	Dijet	Hitachi Tool	Walter	TaeguTec
P	Finitura	SMG*	υм*	LF*		FC*, SC*	JS*, 01*	CF*, CK* GQ*, GF*				
	Finitura Leggero	FP, FV LP, SV	PF, UF	UF, 11 LF, FP	FF1 F1	FP, LU SU	PF, PSF PS, PSS	GP XP		JQ	PF4	FA FG
	Leggero (Con Raschiante)	SW	WF	FW	W-F1	LUW						WS
	Media	MV MP, Std.	PM, UM	MF, MP	F2, MF2, M5	MU	23 PM, 24	HQ XQ, GK	FT	JE	PS5 PM5	PC MT
	Media (Con Raschiante)	MW	WM	MW	W-F2						PM	WT
M	Finitura Leggero	FM LM	MF	LF, UF FP	F1, F2	FC* LU SU	PF, PSF PS, PSS	CF*,CK* GQ*,GF* MQ		MP		
	Media	MM, Std.	MM	MP		MU	PM	HQ, GK				
K	Media	MK, Std., Parte superiore piana	KF, KM, KR	Parte superiore piana	F1, M3, M5	MU, Parte superiore piana	Parte superiore piana,	Parte superiore piaña				
N	Media	AZ*	AL*	HP*	AL*	AG*	AL*	AH*			PM2*	SA* FL*
S	Finitura Leggero	FJ*		LF* HP*				MQ				

^{*}Inserto periferico di tipo rettificato.

(Nota) La suddetta tabella è tratta da una pubblicazione. Non abbiamo ottenuto l'approvazione di ogni singola azienda.

TIPO INSERTO POSITIVO DA 11º

Classifi- cazione ISO	Modalità di taglio	Mitsubishi Materials	Sandvik	Kennametal	Seco Tools	Sumitomo Electric	Tungaloy	Kyocera	Dijet	Hitachi Tool	Walter	TaeguTec
Р		FV, SMG*		UF		SI	01*	GP, CF*				
	Finitura Leggero	SV	PF	LF		LU	PF, PSF	XP		JQ		
						SU	PS, PSS					
							PM	HQ				
	Media	MV	PM, UM	MF		MU	23	XQ		JE		
							24					
M	Finitura							*				
	Leggero	SV	MF			SU	PF, PS	GP, CF*		MP		
	Media	MV	MM			MU	PM	HQ				

^{*}Inserto periferico di tipo rettificato.

<u>Promemoria</u>