Messbare Mengen und messbare Funktionen

Definition

 $A \subseteq \mathbb{R}^n$ heißt (Lebesgue-)messbar (mb) : $\iff \exists$ Folge quadrierbarer Mengen (A_k) mit

$$A = \bigcup_{k=1}^{\infty} A_k$$

 $\mathfrak{L}_n := \{ A \subseteq \mathbb{R}^n : A \text{ ist messbar} \}$. Ist A quadrierbar $\implies A \in \mathfrak{L}_n$. Die Abbildung $\lambda_n \to \tilde{\mathbb{R}}$ definiert durch

$$\lambda_n(A) := \begin{cases} v_n(A) & \text{, falls } A \text{ quadrierbar} \\ \infty & \text{, falls } A \text{ nicht quadrierbar} \end{cases}$$

heißt das n-dimensional Lebesguemaß.

Beispiel

 $\mathbb{R}^n \in \mathfrak{L}_n, \lambda_n(\mathbb{R}^n) = \infty$

Satz 19.1

Es seien $A, B, A_1, A_2, \ldots \in \mathfrak{L}_n$

(1)
$$A \setminus B$$
, $\bigcup_{j=1}^{\infty} A_j$, $\bigcap_{j=1}^{\infty} A_j \in \mathfrak{L}_n$.

- (2) Sei $B \subseteq A$
 - (i) $\lambda_n(B) \leq \lambda_n(A)$.
 - (ii) Ist B quadrierbar $\implies \lambda_n(A \setminus B) = \lambda_n(A) \lambda_n(B)$

(3)
$$\lambda_n(\bigcup_{j=1}^{\infty} A_j) \le \sum_{j=1}^{\infty} \lambda_n(A_j).$$

(4) Aus $A_1 \subseteq A_2 \subseteq A_3 \subseteq \dots$ folgt

$$\lambda_n(\bigcup_{j=1}^{\infty} A_j) = \lim_{j=1} \lambda_n(A_j)$$

(5) Ist A_1 quadrierbar und $A_1 \supseteq A_2 \supseteq A_3 \supseteq \dots$ folgt

$$\lambda_n(\bigcap_{j=1}^{\infty} A_j) = \lim_{j=1} \lambda_n(A_j)$$

(6) Ist $A_j \cap A_k = \emptyset \ (j \neq k)$ folgt

$$\lambda_n(\bigcup_{j=1}^{\infty} A_j) = \sum_{j=1}^{\infty} \lambda_n(A_j)$$

Ohne Beweis!

Folgerung 19.2

- (1) Ist $A \subseteq \mathbb{R}^n$ offen $\implies A \in \mathfrak{L}_n$
- (2) Ist $A \subseteq \mathbb{R}^n$ abgeschlossen $\implies A \in \mathfrak{L}_n$

Beweis

- (1) folgt aus 17.10
- (2) $\mathbb{R}^n \setminus A$ ist offen $\stackrel{(1)}{\Longrightarrow} \mathbb{R}^n \setminus A \in \mathfrak{L}_n \stackrel{19.1(1)}{\Longrightarrow} A \in \mathfrak{L}_n$.

Definition

Sei $A \in \mathfrak{L}_n$ und $F: A \to \tilde{\mathbb{R}}$ eine Funktion. f heißt **messbar**: $\iff \exists$ Folge (φ_k) in \mathscr{T}_n : (φ_k) konvergiert fast überall auf \mathbb{R}^n punktweise gegen f_A .

Satz 19.3

 $A \in \mathfrak{L}_n, f, g: A \to \tilde{\mathbb{R}}$ seien Funktionen.

- (1) Ist $f \in L(A) \implies f$ ist messbar.
- (2) Sind f,g messbar $\Longrightarrow f+g, f^+, f^-, cf$ $(c \in \mathbb{R}), |f|^p$ $(p>0), \max(f,g), \min(f,g)$ sind messbar $(\infty^p := \infty)$

Ohne Beweis!