

MATHEMATICS APPLICATIONS

Investigation Finance 1, 2018

Section B - In Class Validation

ALL working must be shown for full marks.

/58 =

Calculators allowed Total:

Section A: To be completed at home. 35 marks
Section B: To be done in class on completion of part A

Rachel's Grandma has given her \$6000 for her birthday.

Question 1

(6 marks)

Investigate what happens to Rachel's money in the Term Deposit bank account below. You may have discovered in your research from part \boldsymbol{A} that different interest rates apply to term deposits of a different time period.

In the situation below:

One year term deposits earns 3%

Two year term deposits earns 3.25% Three year term deposits earns 3.5% Four year term deposits earns 3.75%

Five year term deposits earns 4%

Fill in the table below to find out Rachel's balance if she invested in a Term Deposit for 1, 2, 3, 4 or 5 years. Rachel first invested her \$6000 on the 11/3/18

TIME	DATE	PRINCIPAL	RATE	TIME	SIMPLE INTEREST SI=P x R x T	ACCOUNT BALANCE
One year	11/3/19	\$6 000	3% 0.03	1	\$6000 × 0.03 × 1 = \$150	\$6000 + \$180 =\$6180
Two years	11/3/20	\$6000	3.25% 0.0325	2	\$6000 × 0.0325 × 2 = \$360	\$6000 + \$390 =\$6390
Three years	11/3/21	\$6000	3. 5%	5	630 630	\$600+630 (n
Four years	11/3/22	\$ 6000	3.75%	4	6000 ×0.0315 × 4 = 900	6000 +900 (2
Five years	11/3/23	\$6000	4%	5	6000×0.04×5	6000 + 1200 (=\$7200

Instead of investing in a 5 year term deposit, Rachel thinks she will earn more interest if she re-invests her money into a new 1 year term deposit each year for 5 years. She will be earning interest on the interest from the previous years. This process is more like Compound Interest rather than earning Simple Interest for 5 years.

a) Investigate what happens to Rachel's money in the Term Deposit bank account below.

Rachel first invested her \$6000 on the 11/3/18 and is now earning 3% per annum in each 1 year Term Deposit.

Fill in the table below to find out Rachel's account balance after 1, 2, 3, 4 and 5 years.

TIME	DATE	PRINCIPAL	RATE	TIME	SIMPLE INTEREST SI=P x R x T	ACCOUNT BALANCE
year 1	11/3/19	\$6 000	3% 0.03	1	\$6000 × 0.03 × 1 = \$180	\$6000 + \$180 =\$6180
year 2	11/3/20	\$6180	3% 0.03	1	\$6180 × 0.03× 1 = \$185.4	\$6180 + \$185.40 =\$6365.40
year 3	11/3/21	\$6365.40	0.03	ì	\$6365.40 x0.0321	6365.40+9096 =\$6556.36
year 4	11/3/22	6556.36	0.03	l	\$6556-36,0.05x1 = 196-69.	\$6556-36+ 196-69 = \$6753-05
year 5	11/3/13	\$6753.05	003	Ì	\$6753.05×0.03×1	675305202.59. =\$6955.64

b) Was Rachel correct? Explain.

No, she was not correct. Investing at 1 year at a time gives \$6955.64. Compared to \$7200, \$244.36 less.

Rachel has decided she would also like to investigate what happens to her money in the 'Completely Compound' bank account paying 4% per annum COMPOUND INTEREST.

a) Give the formula for calculating Compound Interest that you used in your take home section. Use P - Principal, R - Rate and t - time in years.

$$CI = P(1+R)^{4} \qquad ()$$

b) Using the formula above, calculate the interest earned on Rachel's \$6000 at 4% pa compounded annually.

Question 4

(8, 1, 1, 1 = 11 marks)

Rachel later discovered that 'Completely Compound' bank account with interest at 4% pa can also be compounded six monthly, quarterly, monthly, weekly and daily.

a) Fill in the table below to find out Rachel's account balance every 6 months for the next 5 years.

TIME	DATE	PRINCIPAL	RATE	TIME years	FORMULAE	FINAL
1 st 6mths	11/9/18	\$6000	0.02	0.5	\$6000 × (1.02) ¹	\$6120
2 nd 6mths	11/3/19	\$6000,	0.02	1	\$6000 × (1.02) ²	\$6242.40
3 rd 6mths	11/9/19	ħ i	11	1.5	6000 × (1.02)3	\$6367.25
4 th 6mths	11/3/20	٧į	٤(2	6000 (1.02)4	\$6494.59
5 th 6mths	11/9/20	V (ų	(A) (31)	6000 × (1.02)5	\$6624.48
6 th 6mths	11/3/21	S (d	3	6000× (1.02)6	\$6756.97
7 th 6mths	11/9/21	ę i	, i	3.5	6000 × (1.027	\$6892.11
8 th 6mths	11/3/22	ų (ξ(4	6000 × (1.02)	\$7029.96
9 th 6mths	11/9/22.	c C	(1	4.5	6000 x (1.02)9	\$7170.56
10 th 6mths	11/3/23	(1	((5	6000 × (1.02)0	\$7313.97

c) How many times is interest paid in the year investment?

the interest when compounding six monthly;

d) Create a formula for the Compound Interest accounts that are not compounded annually. Use the following to construct your formula:

P - Principal

R - Rate

T - time in years and

n - is the number of interest payments each year.

Question 5

(2, 2, 2, 2 = 8 marks)

Use your formulae above to calculate the balance in Rachel's Completely Compound account from question 4, if her interest is now compounded

a) Quarterly

b) Monthly

c) Weekly

$$6000 \left(1 + \frac{0.04}{52}\right)^{5\times52} = $7327.85$$

d) Daily

For the 6 Completely Compound accounts of \$6000, invested at 4% compounded: annually, six monthly, quarterly, monthly, weekly and daily.

a) Which account will be the first to double and when will this occur?

b) After 5 years how much interest has each account earned?

(Vieach)

Question 7

(2, 2, 2, 2 = 8 marks)

Calculate the following amounts in each bank account for a \$20 000 investment at 4% pa for 25 years using the following accounts

- a) Simple interest
 - i) Total Amount

(reach)

ii) Interest only

- b) Compound Interest yearly
 - i) Total Amount

ii) Interest only

- c) Compound Interest monthly
 - i) Total Amount \$54275.30
 - ii) Interest only

- d) Compound Interest daily
 - i) Total Amount \$ 54 362.66
 - ii) Interest only

\$ 34362-66

Question 8 (5 marks)

Sharon invests \$1 000 on the day her son Robbie is born to be given to him on his 21st Birthday. The account pays Compounded Interest at 8% pa. What rate of Simple Interest would be required to achieve the same final balance in Robbie's account on his 21st Birthday?

$$S = \frac{1000(1+0.08)^{21}}{5} (1)$$

$$SI = P_{\times}R_{\times}T$$

 $4033.83 = 1000 \times R^{-} \times 21 (V)$

H	PPS EPW	1 - Take	Home
Def (1/2 a	best place, banks & or Time	to invest \$1	king key
Research	Savings (Savings (Rate, Min 8	(S) Lev	n Dep@ V late, Min Bal, Time
· Sav () 2 / 5 /	Sav 2 ote	rm Deput	Term Depos
· Spread She	TEN YY	nulae (V)	

3) Best Account V (-12) how long which Bank V (-12) how long offer factors V (-12) how long of their factors V (-12) how long to their questions V (-12) how long to their factors V (-12) how long to the long to their factors V (-12) how long to the long to the long to the long to their factors V (-12) how long to the l

4) Conclusion.

- sack I did (V)

- I found (V)

- _ was best (v)

- next time (V)