Assignment 3

Eric Pereira

December 7^{th} , 2018

Contents

2																			
3																			
)	1																		
	2.	•	•																
	3.																		
	4.																		
	5.																		
	4.																		
=	1																		

Q1. Given the relation r(A,B,C) and the functional dependencies $A \rightarrow B$ and $B \rightarrow C$, give a lossless join dependency preserving decomposition of R into BCNF

Answer:

 $R_1(A,B)$

 $R_2(B,C)$

Q2. Consider the following functional dependencies for relation schema:

$$R = (A, B, C, D, E) : A \to BC, CD \to E, B \to D, E \to A.$$

Compute A^+

Answer: $A^+=\{A,B,C,D,E\}$

Q3. Consider the following set F of functional dependencies on the relation schema:

$$r(A, B, C, D, E, F)$$

 $A \to BCD, BC \to DE, B \to D, D \to A$)

1. Compute B⁺.

Answer: $B^+=\{ABCDE\}$

- 2. Prove (using Armstrong's axioms) that AF is a superkey.
- 1. A \rightarrow BCD (Given)
- 2. BC \rightarrow DE (Given)
- 3. BCD \rightarrow DE (Augmentation 2 & D)
- 4. BCD \rightarrow CDE (Augmentation 3 & C)
- 5. BCD \rightarrow BCDE (Augmentation 4 & B)
- 6. A \rightarrow BCDE (Transitivity 1 & 5)
- 7. AF \rightarrow BCDEF (Augmentation 6 & F)
- 0. $AF^+ \rightarrow ABCDEF$ (Augmentation 7 & A)

3. Compute a canonical cover for the above set fo functional dependencies F; give each step of your derivation with an explanation.

B→D is extraneous, so in the case A→BCD, so you could change it to A→BC.

D is also extraneous in BC \rightarrow DE because B \rightarrow D, so that would change to BC \rightarrow E

4. Give a 3NF decomposition of r based on the canonical cover.

$$R_0(A,B,C) \{A \rightarrow BC\}$$

$$R_1(B,D,E) \{B \rightarrow DE\}$$

$$R_2(A,D) \{D \rightarrow A\}$$

$$R_3(A,F) \{\}$$

5. Give a BCNF decomposition of r using the original set of functional dependencies.

$$\begin{array}{l} R_0(A,B,C) \ \{A \rightarrow BC\} \\ R_1(B,D,E) \ \{B \rightarrow DE\} \\ R_2(A,D) \ \{D \rightarrow A\} \\ R_3(A,F) \ \{\} \end{array}$$

Q4. Given the following functional dependencies:

$$A \to BCD, CD \to E, B \to D, E \to A, AD \to E$$

1. Find a canonical cover of the above set of dependencies (you must explain how you arrived at the answer).

AD \rightarrow E is not needed as this way is proven through transitivity with A \rightarrow BCD and CD \rightarrow E.

D is extraneous in A \rightarrow BCD as B \rightarrow D. Therefore, you will get A \rightarrow BC instead.

2. Normalize the relation to 3nF (again, you must explain how you arrived at the answer).

$$\begin{array}{l} R_0(A,B,C) \ \{A{\rightarrow}BC\} \\ R_1(B,D) \ \{B{\rightarrow}\ D\} \end{array}$$

$$\begin{array}{l} R_2(A,E) \ \{E{\rightarrow}A\} \\ R_3(C,D,E) \ \{C,D{\rightarrow}E\} \end{array}$$