Julia M. Worrell

(330) 612-6121—julia.worrell1@gmail.com

Education

B.S. Chemical Engineering | December 2016 | Florida Institute of Technology | G.P.A. 3.12

Work Experience

Universities Space Research Association (USRA) Intern/NASA, Johnson Space Center (JSC)

Crew and Thermal Systems, EC3 Branch, Advanced Exploration Systems

January –August 2015

<u>Microgravity Flight Experiment</u>: Thin film development as a function of pumping rate through a microchannel reactor

- Acted as a Co-Investigator, aiding in experiment design, test rigging, and data acquisition system
 design to satisfy requirements and contribute to the technology development of a micro-gravity
 compatible liquid CO2 scrubbing system
- Directed mechanical and electrical technicians during the build-up of test cart to ensure its compliance with safety standards for flying aboard JSC's C9 aircraft
- Led and contributed to the mechanical build-up of the test cart and conducted various load testing to ensure safety and NASA experiment development compliance
- Engineered on-the-spot modifications and solutions to the cart pre-flight to ensure the continuation of the mission
- Worked with fellow investigators on the submission of a Test Equipment Data Package that included a hazards analysis, experiment background, procedures, and structural verification
- Successfully operated the experiment on two parabolic micro-gravity flights and ensured the needs of the investigation were met
- Worked closely with teammates to ensure success as a group despite time constraints

<u>Brine De-Watering Test Stand Design, Procurement, and Build-up:</u> Creation of drying system around a capillary brine containment technology call Brine Residuals In-Containment, or BRIC

- Produced a prototype of a brine-dewatering system, laying the groundwork for the system to be flown as a functional part of the water reclamation system aboard the International Space Station
- Acted as the go-to test engineer and consulted with the customer and communicated system requirements to technicians for incorporation into the stand
- Designed, procured, and built-up test stand and allowed for JSC to participate in an agency-wide technology down select of brine dewatering technology
- Initiated a preliminary thermal analysis of a test stand component, preliminary trade studies on tube sizing, and designed tests to feed into a more intelligent design of future drying systems
- Assembled detailed Visio drawings, parts list, and descriptions for test stand documentation
- Worked with other engineers to modify Creo drawings and directed the 3D printing of prototype drying trays to be used in baseline demonstrations and testing of the system
- Developed and implemented experiments that led to a better understanding of drying behavior in capillary structures

<u>Cascade Distillation System (CDS)</u>- A robust system designed to allow for a high water recovery rate during deep space exploration missions

- Organized and conducted a Test Readiness Review to allow for test risk buy down for the 2.0 prototype build-up of the Cascade Distillation System
- Coordinated test safety personnel, test engineers, and customer requirements which allowed for very few action items coming out of the review session
- Aided in preparing test readiness review documentation including the modification of technical drawings of the system
- Supported system experts in developing and documenting a space flight-forward concept of operations for the CDS 2.0 prototype
- Presented Water Reclamation Technology and the Cascade Distillation System at a technical symposium hosted by the American Institute of Aeronautics and Astronautics

USRA Intern/JSC/ Crew and Thermal Systems, EC2 Branch

August –December 2014

- Supported a team of engineers during an integration test of a converted 20' diameter vacuum chamber into a closed environment for the examination of elevated CO2 levels on human performance
- Developed EASY5 models to simulate how various system would interact to allow for more intelligent testing
- Performed analysis and evaluated system performance and consumable usage
- Documented models and created a final report including graphical results, analysis, conclusions and recommendations to support future testing
- Conducted inter-division coordination, communication, and project integration
- Developed modeling and analysis skills such as determining model relevance and real-world grounding of the model

Skills

Technical and Computer: Apsen Plus, EASY5, Matlab, Microsoft Office, Google Documents, Data Fit, Polymath, LoggerPro, C++, Atomic Force Microscopy, Scanning Electron Microscopy, Ultraviolet Visible Spectrophotometer, Prototyping, Mechanical drawings, Test design, Test risk mitigation

Soft Skills: Written and Oral Communication, Documentation, Writing Procedures, Test Plan Writing, Team work, Leadership, Presentation, Problem Solving

Affiliations

Society for the Advancement of Material and Process Engineering American Institute of Chemical Engineers, Student Chapter Alpha Phi Omega National Service Fraternity January 2014-Present August 2011-Present January 2012-May 2013