Discrete AdaBoost

Cary Goltermann

July 13, 2017

Introduction

Discrete AdaBoost, referred to hereafter as adaboost, is an application of forward stagewise additive modeling, the goal of which is to minimize, at each stage, m:

$$\min_{\phi} \sum_{i=1}^{N} L(y_i, f_{m-1}(x_i) + \phi(x_i)),$$

where $L(y, \hat{y})$ is come loss function and f is a sum of adaptive basis functions, ϕ , often referring to as a weak learning, frequently chosen to be a decision tree. The

additive part of the model can be seen in the equation that at each stage we will train a model $\phi(x)$ that minimizes the loss when it's opinion as added to the previous f, f_{m-1} .

AdaBoost

In the situation of a binary classification problem we can use exponential loss as our L, $L(y, f) = e^{-yf}$.

Here we will label $y \in \{-1, 1\}$, different than the usual $y \in \{0, 1\}$, will make the math work out more simply. Therefore, at step m we have to minimize:

$$L_m(\phi) = \sum_{i=1}^{N} e^{-y_i (f_{m-1}(x_i) + \beta \phi(x_i))}$$
$$= \sum_{i=1}^{N} w_{i,m} e^{-\beta y \phi(x_i)}$$

where $w_{i,m} = e^{-yf_{m-1}(x_i)}$ is a weight applied to observation i. This objective can be rewritten as:

$$L_{m} = e^{-\beta} \sum_{y_{i} = \phi x_{i}} w_{i,m} = e^{\beta} \sum_{y_{i} \neq \phi} y_{i} \neq \phi x_{i} w_{i,m}$$
$$= (e^{\beta} - e^{-\beta}) \sum_{i=1}^{N} w_{i,m} \mathbb{I}(y \neq \phi(x_{i})) + e^{-\beta} \sum_{i=1}^{N} w_{i,m}$$

Consequently the optimal function to add is:

$$\phi_m = \underset{\phi}{\operatorname{argmin}} \ w_{i,m} \mathbb{I}(y \neq \phi(x_i))$$

This can be found by fitting ϕ to a weighted version of the dataset, with weights $w_{i,m}$. Substituting ϕ_m into L(m) and solving for β we find:

$$\beta_m = \frac{1}{2}log\frac{1 - err_m}{err_m}$$

where

$$err_m = \frac{\sum_{i=1}^{N} w_i \mathbb{I}(y \neq \phi(x_i))}{\sum_{i=1}^{N} w_{i,m}}$$

The overall update becomes:

$$f_m(x) = f_{m-1}(x) + \beta_m \phi_m(x)$$

With this, the weights at the next iteration, w + 1, become:

$$\begin{split} w_{i,m+1} &= w_{i,m} e^{-\beta_m y_i \phi_m(x_i)} \\ &= w_{i,m} e^{-\beta_m (2 \mathbb{I}(y_i \neq \phi(x_i) - 1)} \\ &= w_{i,m} e^{-\beta_m (2 \mathbb{I}(y_i \neq \phi(x_i)))} e^{-\beta_m} \end{split}$$

Notice, we were exploiting the fact that $-y_i\phi_m(x_i) = -1$ if $y_i = \phi_m(x_i)$ and $-y_i\phi_m(x_i) = 1$ otherwise.

AdaBoost: Algorithm

This leads us to the full AdaBoost algorithm:

- 1. $w_i = \frac{1}{N};$
- 2. for m = 1 to M:
 - (a) Fit a classifier $\phi_m(x)$ to the training set using weights w;
 - (b) Compute $err_m = \frac{\sum_{i=1}^N w_i \mathbb{I}(y \neq \phi(x_i))}{\sum_{i=1}^N w_{i,m}}$;
 - (c) Compute $\alpha_m = log \frac{1 err_m}{err_m}$;
 - (d) Set $w_i \leftarrow w_i e^{\alpha_m \mathbb{I}(y \neq \phi(x_i))}$;
- 3. Return $f(x) = sgn\left[\sum_{m=1}^{M} \alpha_m \phi_m(x)\right]$