Topic 2: Factor analysis concepts and interpretation

Factor analysis

Let $Y_i, i=1,2,...,n$ be independent $N_p(\mu,\Sigma)$ variables (think of the Y_i s as a results of a battery of p tests applied to the ith individual). Fundamental assumption in factor analysis:

$$\boldsymbol{Y}_i = \Lambda \boldsymbol{f}_i + \boldsymbol{e}_i \tag{4.3}$$

 $\Lambda \in M_{p,k}$ factor loading matrix (full rank);

 $m{f}_i \in \mathbb{R}^k (k < p)$ factor variable. The components of $m{f}_i$ are thought to be the (latent) factors. Usually $m{f}_i$ are taken to be independent $N(m{lpha}, I_k)$ (i.e., "orthogonal") but also "oblique" factors are considered sometimes with a covariance matrix $\neq I_k$.

 $m{e}_i$ independent $N(m{ heta}, \Sigma_e)$ with Σ_e diagonal, i.e., $\Sigma_e = \mathrm{diag}(\sigma_1^2, \sigma_2^2, .., \sigma_p^2)$.

Also, the $m{e}$ s are independent from the $m{f}$ s.

Then,

$$oldsymbol{\mu} = \Lambda oldsymbol{lpha} + oldsymbol{ heta}; \Sigma = \Lambda \Lambda^ op + \Sigma_e,$$

or, componentwise:

$$\operatorname{Var}(Y_{ir}) = \sum_{j=1}^k \lambda_{rj}^2 + \sigma_r^2 = ext{communality} + ext{uniqueness}.$$

$$\mathrm{Cov}(Y_{ir},Y_{is}) = \sum_{j=1}^k \lambda_{rj}\lambda_{sj}.$$

The fundamental idea of factor analysis is to describe the **covariance relationships** among **many** variables (p "large") in terms of few (k "small") underlying, not observable (latent) random quantities (the **factors**). The model is motivated by the following argument: suppose variables can be grouped by their correlations. That is, all variables in a particular group are highly correlated among themselves but have relatively small correlations with variables in a different group. It is then quite reasonable to assume that each group of variables represents a single underlying construct (**factor**) that is "responsible" for the observed correlations.

Optional viewing: Factor Analysis - an introduction

Ben Lambert. (2014). Factor Analysis - an introduction. Retrieved from: https://youtu.be/WV_jcaDBZ2I

Important notes

- The model (4.3) is similar to a linear regression model but the key differences are that f_i are random and are not observable.
- If we knew the Λ (or have found estimates of them), then using properties of orthogonal projections on the linear space spanned by the columns of Λ , we would get:

$$\hat{oldsymbol{lpha}} = (\Lambda^ op \Lambda)^{-1} \Lambda^ op ar{oldsymbol{Y}}; \hat{oldsymbol{ heta}} = ar{oldsymbol{Y}} - \Lambda \hat{oldsymbol{lpha}}.$$

Because of the above observation, we can consider only μ , Λ , and σ_i^2 , $i=1,2,\ldots,p$ as unknown parameters when parameterising the factor analysis model. Note also that primary interest in factor analysis is focused on estimating Λ .

• There is a fundamental indeterminacy in this model even when we require that ${
m Var}(m f)=I_k$ since, if $P\in\mathcal M_{k,k}$ is any orthogonal matrix then obviously

$$\Lambda \Lambda^{\top} = \Lambda P (\Lambda P)^{\top}; \ \Lambda \boldsymbol{f}_i = (\Lambda P) (P^{\top} \boldsymbol{f}_i).$$

Hence replacing Λ by ΛP and ${\pmb f}_i$ by $P^\top {\pmb f}_i$ leads to the same equations.

Maximum Likelihood Estimation

The likelihood function for the n observations $oldsymbol{Y}_1, oldsymbol{Y}_2, \dots, oldsymbol{Y}_n \in \mathbb{R}^p$ is

$$egin{aligned} L(oldsymbol{Y}; oldsymbol{\mu}, \Lambda, \sigma_1^2, \sigma_2^2, ..., \sigma_p^2) &= (2\pi)^{-np/2} |\Sigma|^{-n/2} \exp\left[-rac{1}{2} \sum_{i=1}^n (oldsymbol{Y}_i - oldsymbol{\mu})^ op \Sigma^{-1} (oldsymbol{Y}_i - oldsymbol{\mu})
ight] \ &= (2\pi)^{-np/2} |\Sigma|^{-n/2} \exp\left[-rac{n}{2} \left(\operatorname{tr}(\Sigma^{-1} oldsymbol{S}) + (ar{oldsymbol{Y}} - oldsymbol{\mu})^ op \Sigma^{-1} (ar{oldsymbol{Y}} - oldsymbol{\mu})
ight)
ight] \end{aligned}$$

with $m{S}=\frac{1}{n}\sum_{i=1}^n (m{Y}_i-\bar{m{Y}})(m{Y}_i-\bar{m{Y}})^{\top}$, and keeping in mind that Σ is a function of Λ and Σ_e (and therefore of $\sigma_1^2,\ldots,\sigma_p^2$). Taking $\log L$, we get:

$$\log L(oldsymbol{Y};oldsymbol{\mu},\Lambda,\sigma_1^2,\sigma_2^2,..,\sigma_p^2) = -rac{np}{2}\log(2\pi) - rac{n}{2}\log(|\Sigma|) - rac{n}{2}\left[ext{tr}(\Sigma^{-1}oldsymbol{S}) + (ar{oldsymbol{Y}} - oldsymbol{\mu})^ op \Sigma^{-1}(ar{oldsymbol{Y}})
ight]$$

After some vector calculus and matrix algebra, we find that,

$$(\Sigma_e^{-1/2} \mathbf{S} \Sigma_e^{-1/2}) \Sigma_e^{-1/2} \Lambda = \Sigma_e^{-1/2} \Lambda (I + \Lambda^{\top} \Sigma_e^{-1} \Lambda).$$
 (4.4)

Recall the note about indeterminacy of Λ . This can be a blessing in disguise, in particular (at least one) solution is one for which $\Lambda^{\top}\Sigma_e^{-1}\Lambda$ is **diagonal**. Then (4.4) implies that the matrix $\Sigma_e^{-1/2}\Lambda$ has as its columns k eigenvectors that correspond to the k eigenvalues of $\Sigma_e^{-1/2}S\Sigma_e^{-1/2}$. More subtle analysis shows that to obtain the maximum likelihood estimator, these have to be the eigenvectors that correspond to the **largest** eigenvalues of $\Sigma_e^{-1/2}S\Sigma_e^{-1/2}$.

Based on this fact, the following iterative solution (due to Lawley) has been proposed that can be described algorithmically as follows:

- 1. With an initial guess $\tilde{\Sigma}_e$, calculate $\tilde{\Sigma}_e^{-1/2}\tilde{\Lambda}$ by using the eigenvectors of the k largest eigenvalues of $\tilde{\Sigma}_e^{-1/2} \mathbf{S} \tilde{\Sigma}_e^{-1/2}$.
- 2. Then from $\tilde{\Sigma}_e^{-1/2}\tilde{\Lambda}$, get a (first iteration) value for $\tilde{\Lambda}$.
- 3. With this value of $\tilde{\Lambda}$ we can calculate the value of $\tilde{Q}(\tilde{\Sigma}_e) = \frac{1}{2}\log|\tilde{\Lambda}\tilde{\Lambda}^\top + \tilde{\Sigma}_e| + \frac{1}{2}\operatorname{tr}(\tilde{\Lambda}\tilde{\Lambda}^\top + \tilde{\Sigma}_e)^{-1}\boldsymbol{S}$ (which is the value of the functional). This functional only depends on the p nonzero values of $\tilde{\Sigma}_e$ and there are several powerful numerical procedures to find its minimum.
- 4. If it is achieved at Σ_e^* , then update $\tilde{\Sigma}_e$ with the new guess Σ_e^* and repeat from Step 1 to convergence.