```
1/9/1
DIALOG(R) File 351: Derwent WPI
(c) 2006 Thomson Derwent. All rts. reserv.
             **Image available**
014789380
WPI Acc No: 2002-610086/200266
XRPX Acc No: N02-483124
Automotive seat belt shoulder harness attachment has belt sliding
surface
separated from bolt attachment centre point by defined gap
Patent Assignee: JANZ N (JANZ-I)
Inventor: JANZ N
Number of Countries: 002 Number of Patents: 004
Patent Family:
                     Date
                             Applicat No
                                            Kind
                                                   Date
Patent No
              Kind
DE 20205570
               U1 20020814
                             DE 2002U2005570 U
                                                  20020411
                                                            200266 B
DE 10153062
               C1
                  20030424
                            DE 1053062
                                             Α
                                                 20011030 200328
US 20030080547 A1 20030501 US 200256429
                                              Α
                                                  20020124
                  20040309 US 200256429
US 6702327
               B2
                                             Α
                                                 20020124
                                                           200418
Priority Applications (No Type Date): DE 1053062 A 20011030
Patent Details:
Patent No Kind Lan Pg
                         Main IPC
                                     Filing Notes
DE 20205570
             111
                  21 B60R-022/24
                       B60R-022/24
DE 10153062
              C1
US 20030080547 A1
                        B60R-022/00
US 6702327
              B2
                       B60R-022/24
Abstract (Basic): DE 20205570 U1
        NOVELTY - An automotive seat belt shoulder harness is secured
to
    the vehicle frame by a one-piece cold-formed sheet steel attachment
    (1). The attachment has a bolt hole (9) and an eye (11) for the
sliding
    belt web. The eye (11) translates to a sliding surface (13) for the
    web. The web sliding surface is especially 19-24 mm from the bolt
    (9) centre point. The fixture further has a plastic adapter insert
(2)
    and side-adapters (4).
        USE - Automotive seat belt shoulder harness attachment.
        ADVANTAGE - The attachment is suited both for concealed
    installation in a vehicle door pillar or for super-mounting on the
    pillar.
        DESCRIPTION OF DRAWING(S) - The drawing shows the steel
attachment
    and adapter fittings in different sizes.
        Metal attachment (1)
        plastic adapter (2, 4)
        bolt hole (9)
        bolt head surface (10)
        belt eye (11)
        belt guide (12)
        belt slide surface (13)
        bush (17)
        spacer (18)
        pp; 21 DwgNo 1/7
```

Title Terms: AUTOMOTIVE; SEAT; BELT; SHOULDER; HARNESS; ATTACH; BELT; SLIDE

; SURFACE; SEPARATE; BOLT; ATTACH; CENTRE; POINT; DEFINE; GAP

Derwent Class: Q17

International Patent Class (Main): B60R-022/00; B60R-022/24

File Segment: EngPI

?

DEUTSCHLAND

BUNDESREPUBLIK @ Gebrauchsmusterschrift

⑤ Int. CI.7: B 60 R 22/24 [®] DE 202 05 570 U 1

DEUTSCHES PATENT- UND MARKENAMT

(2) Aktenzeichen:

Anmeldetag: Eintragungstag: 4

Bekanntmachung im Patentblatt:

202 05 570.1

11. 4.2002 14. 8. 2002

19. 9.2002

66) Innere Priorität:

101 53 062.5

30. 10. 2001

(73) Inhaber:

Janz, Norbert, Dipl.-Ing., 14612 Falkensee, DE

(74) Vertreter:

Honke und Kollegen, 45127 Essen

(M) Umlenkelement für einen Sicherheitsgurt in Kraftfahrzeugen

Umlenkelement für einen Sicherheitsgurt in Kraftfahrzeugen mit einem durch Kaltumformung aus Stahlblech hergestellten einstückigen Metallkörper (1), der eine Befestigungsöffnung (9) in einer rückseitigen Montagefläche (10), eine Gurtöse (11) und einen die Gurtöse unterseitig sowie seitlich einfassenden Gurtführungsabschnitt (12) aufweist, wobei der Gurtführungsabschnitt (12) als doppelwandiges Randprofil (14) ausgeformt ist und eine im Querschnitt gerundete Lauffläche (13) für einen Sicherheitsgurt bildet und wobei die Außenabmessungen innerhalb eines mit einem Radius von 43 mm um die Befestigungsöffnung gezogenen Kreises liegen, dadurch gekennzeichnet.

dass die Gurtlauffläche (13) in einem Abstand von 19 mm bis 24 mm von dem Mittelpunkt der Befestigungsöffnung (9) angeordnet ist,

dass an den Metallkörper (1) ein Kunststoffadapter (2) angeschlossen ist, der einen in die Befestigungsöffnung (9) einsetzbaren Kragen (17) sowie einen an der oberen Berandung der Gurtöse fixierbaren Verdrängungskörper (18) zur Begrenzung der Spaltbreite des Gurtschlitzes auf-

dass zur Anpassung an die Einbausituation im Kraftfahrzeug seitlich auf das Randprofil des Metallkörpers (1) aufschiebbare und durch eine Steckverbindung gekoppelte Kunststoffseitenteile (4) am Umfang des Metallkörpers (1) angeordnet sind.

ANDREJEWSKI, HONKE & SOZIEN

PATENTANWÄLTE EUROPEAN PATENT AND TRADEMARK ATTORNEYS

Diplom-Physiker
DR. WALTER ANDREJEWSKI (- 1996)
Diplom-Ingenieur
DR.-ING. MANFRED HONKE
Diplom-Physiker
DR. KARL GERHARD MASCH
Diplom-Ingenieur
DR.-ING. RAINER ALBRECHT
Diplom-Physiker
DR. JÖRG NUNNENKAMP
Diplom-Chemiker
DR. MICHAEL ROHMANN
Diplom-Physiker
DR. ANDREAS VON DEM BORNE

Anwaltsakte: 94 473/Ko/Al

D 45127 Essen, Theaterplatz 3 D 45002 Essen, P.O. Box 10 02 54

9. April 2002

Gebrauchsmusteranmeldung

Dipl.-Ing. Norbert Janz Starstraße 21 14612 Falkensee

Umlenkelement für einen Sicherheitsgurt in Kraftfahrzeugen

Innere Priorität aus 101 53 062.5 vom 30. Oktober 2001

1

Beschreibung:

Die Erfindung betrifft ein Umlenkelement für einen Sicherheitsgurt in Kraftfahrzeugen mit einem durch Kaltumformung aus Stahlblech hergestellten, einstückigen Metallkörper, der eine Befestigungsöffnung in einer rückseitigen Montagefläche, eine Gurtöse und einen die Gurtöse unterseitig sowie seitlich einfassenden Gurtführungsabschnitt aufweist, wobei der Gurtführungsabschnitt als doppelwandiges Randprofil ausgeformt ist und eine im Querschnitt gerundete Lauffläche für einen Sicherheitsgurt bildet und wobei die Außenabmessungen innerhalb eines mit einem Radius von 43 mm um die Befestigungsöffnung gezogenen Kreises liegen.

- DE 100 11 725 Cl bekannt. Es ist als Stahlblechprägeteil ausgebildet, dessen Abmessungen so gewählt sind, dass das Umlenkelement innerhalb der Verkleidung einer B-Säule eines Kraftfahrzeuges angeordnet werden kann. Zur Herstellung des Stahlblechprägeteils ist ein mehrstufiger Umformvorgang erforderlich. Die Anpassung des Umlenkelementes an unterschiedliche Einbausituationen ist mit einem großen fertigungstechnischen Aufwand verbunden.
- Der Erfindung liegt die Aufgabe zugrunde, ein Umlenkelement anzugeben, das mit einfachen Mitteln an unterschiedliche Einbausituationen angepasst werden kann. Es soll sowohl als sichtbarer Gurtumlenker einsetzbar als auch für einen verdeckten oder halbverdeckten Einbau innerhalb der Säule eines Kraftfahrzeuges geeignet sein. Dabei werden möglichst geringe Abmessungen des Umlenkelementes angestrebt.

Andrejewski, Honke & Sozien, Patentanwälte in Essen

2

Ausgehend von einem Umlenkelement mit den eingangs beschriebenen Merkmalen wird die Aufgabe erfindungsgemäß dadurch gelöst,

dass die Gurtlauffläche in einem Abstand von 19 mm bis 24 mm von dem Mittelpunkt der Befestigungsöffnung angeordnet ist,

10

20

25

30

dass an den Metallkörper ein Kunststoffadapter angeschlossen ist, der einen in die Befestigungsöffnung einsetzbaren Kragen sowie einen an der oberen Berandung der Gurtöse fixierbaren Verdrängungskörper zur Begrenzung der Spaltbreite des Gurtschlitzes aufweist, und

dass zur Anpassung an die Einbausituation im Kraftfahrzeug seitlich auf das Randprofil des Metallkörpers aufschiebbare und durch eine Steckverbindung gekoppelte Kunststoffseitenteile am Umfang des Metallkörpers angeordnet sind.

Erfindungsgemäß bildet der Metallkörper eine Systemkomponente, die konstruktiv nicht verändert wird, wenn Anpassungen des Umlenkelementes an die jeweilige Einbausituation erforderlich sind. Die Anpassung an die jeweilige Einbausituation erfolgt durch Modifizierung der lösbar angeschlossenen Kunststoffteile, die kostengünstig als Spritzformteile hergestellt werden können. Durch Austausch der seitlich an den Metallkörper lösbar angeschlossenen Kunststoffseitenteile können Modifikationen vorgenommen werden, so dass das Umlenkelement für einen halbverdeckten Einbau, einen verdeckten Einbau oder auch für einen externen Aufbau

3

eingesetzt werden kann. Auch horizontale Einbausituationen können verwirklicht werden. Die Verwendung des Metallkörpers als Standardteil in Kombination mit unterschiedlichen Kunststoffteilen erlaubt eine rationelle Fertigung der für unterschiedliche Fahrzeugtypen benötigten Umlenkelemente und vereinfacht wesentlich die Lagerhaltung.

Der Metallkörper ist vorzugsweise aus Stahlblech mit einer Materialstärke von 2 bis 4 mm gefertigt. Durch die bei der Kaltumformung auftretenden Fließvorgänge können die ver-Bereiche geringere Wandstärken aufweisen. Metallkörper ist durch mehrstufige Kaltumformung herstellbar. Zur Herstellung eines die Gurtösen umgebenden rückseitigen Stulpkragens wird zunächst in das Material ein 15 Schnitt eingebracht, der die obere Berandung der Gurtöse formt. Das im Bereich der späteren Gurtöse verbleibende Material bildet einen Blechlappen, der anschließend zur Rückseite unter Bildung eines Stulpkragens umgeformt wird. Der in die Gurtöse eingeformte rückseitige Kragen bildet zusammen mit der wulstförmigen Vorderseite eine breite, im 20 Querschnitt bogenförmig gerundete Gurtlauffläche für den Sicherheitsgurt, die sich stufenlos bis in die Eckbereiche der Gurtöse erstreckt. Auf dieser breiten Gurtlauffläche ist der Sicherheitsgurt sicher geführt, wenn das Umlenkele-25 ment in einer Crashsituation Schwenkbewegungen ausführt.

Gemäß einer bevorzugten Ausführung der Erfindung weist die Gurtlauffläche eine den Gurtlauf zentrierende Wölbung auf. Über die Breite der Gurtöse betrachtet kann die Wölbung bis zu 0,5 mm betragen.

30

Andrejewski, Honke & Sozien, Patentanwälte in Essen

4

Eine Deformation der Gurtlauffläche kann im Crashfall die Führung des Sicherheitsgurtes weiter stabilisieren und dazu beitragen, dass der Sicherheitsgurt nicht zu einer Ecke der Gurtöse verrutscht. Gemäß einer bevorzugten Ausführung der Erfindung wird das Profil der Gurtlauffläche für den Sicherheitsgurt so dimensioniert, dass die Gurtlauffläche unter Prüfbedingungen, die eine Crashsituation simulieren, eine den Sicherheitsgurt auf der Lauffläche zentrierende Durchbiegung erfährt. Prüfbedingungen meint einen Aufprallversuch, bei dem das Umlenkelement in eine Sitzgurteinrichtung eingebaut wird und ein Aufprallversuch mit vorgegebener Aufprallgeschwindigkeit und einem Dummy durchgeführt wird. Es hat sich gezeigt, dass sich eine verhältnismäßig biegeweich ausgelegte Auflage für den Sicherheitsgurt günstig auf die Gurtführung im Crashfall auswirkt. Bei der Dimensionierung der Auflage gehen Materialstärke sowie die Breite der umgeformten Blechabschnitte ein. Die konstruktive Festlegung ist durch Festigkeitsberechnungen und/oder anhand weniger empirischer Versuche festlegbar. Die angeschlossenen Kunststoffseitenteile beeinflussen das Verhalten des Umlenkelementes im Crashfall nicht. Während eine begrenzte Verformbarkeit der Gurtlauffläche gewünscht wird, sollte der an die Gurtlauffläche anschließende Gurtführungsabschnitt eine hohe Formsteifigkeit aufweisen. Vorzugsweise fasst das den Gurtführungsabschnitt bildende doppelwandige Randprofil die rückseitige Montagefläche seitlich bis zur Höhe der Befestigungsöffnung ein, so dass der Gurtführungsabschnitt bis zur Gurtlauffläche eine hohe Formsteifigkeit aufweist und im Crashfall auftretende Kräfte im Wesentlichen deformationsfrei aufnimmt.

10

15

20

25

Andrejewski, Honke & Sozien, Patentanwälte in Essen

5

Die wulstförmig geformte Vorderseite der Gurtlauffläche des Metallkörpers ist zweckmäßig mit einer im Wesentlichen geraden Abschlusskante ausgebildet. Zweckmäßig weist der Metallkörper ferner eine den Reibungswiderstand reduzierende Gleitbeschichtung auf. Hierbei kann es sich um galvanisch aufgetragene Schichten, z. B. Chromschichten, handeln. Derartige metallische Beschichtungen weisen eine gute Abriebfestigkeit und lange Standzeiten aus. Bessere Reibwerte werden jedoch erzielt, wenn gemäß einer besonders bevorzugten Ausführung der Erfindung eine Gleitbeschichtung mit einer Fluorpolymermatrix und darin eingelagerten Verstärkungsstoffen verwendet wird, die eine Schichtdicke von weniger als 100 µm aufweist. Während die Fluorpolymermatrix der Gleitbeschichtung eine ausreichende Temperaturfestigkeit verleiht, sorgen die eingelagerten, vorzugsweise partikelförmigen Verstärkungsstoffe für eine ausreichende Abriebfestigkeit. Durch die geringe Schichtdicke von weniger als 100 µm, vorzugsweise von 15 bis 80 µm, ist eine qute Wärmeabfuhr an den Metallkörper gewährleistet, was sich wiederum günstig auf die bei einem Crashfall auftretende Erwärmung der Lauffläche auswirkt. Ferner zeichnet sich die beschriebene Beschichtung durch eine im Vergleich zu kunststoffummantelten Ausführungen oder verchromten Ausführungen deutlich geringere Geräuschemission beim Gurtauszug aus.

10

15

20

25

30

Der an der Montagefläche des Metallkörpers befestigte Kunststoffadapter leistet einen wesentlichen Beitrag zur ordnungsgemäßen Funktion des Sicherheitsgurtes. Er weist einen an der oberen Berandung der Gurtöse fixierbaren Verdrängungskörper zur Begrenzung der Spaltbreite des Gurt-

Andrejewski, Honke & Sozien, Patentanwälte in Essen

6

schlitzes auf. Die Spaltbreite ist an den Sicherheitsgurt angepasst und so gewählt, dass dieser im Wesentlichen ohne Berührung des Kunststoffmaterials innerhalb des Gurtschlitbewegt werden kann und ein Umschlagen Sicherheitsgurtes ausgeschlossen ist. Der Kunststoffadapter ist ein Führungselement, das in einem Crashfall keinen Beanspruchungen ausgesetzt ist. Es ist als einfaches Spritzformteil ausführbar und durch Steckverbindungen an dem Metallkörper befestigbar. Durch die Gestaltung der am Umfang des Metallkörpers angeordneten Kunststoffseitenteile 10 sind Anpassungen an die Einbausituation möglich. Bei einer externen Anordnung des Umlenkelementes, also bei der sichtbaren Montage an der Außenseite der Fahrzeuginnenverkleidung, sind die Kunststoffseitenteile als gerundete Kantenschutzprofile ausgebildet. Ferner ist an der Vor-15 derseite des Metallkörpers eine Abdeckkappe befestigt, welche die Montagefläche sowie eine der Befestigung des Umlenkelementes dienende Befestigungsschraube verkleidet.

Wenn das Umlenkelement für einen verdeckten oder halb ver-20 deckten Einbau in der Säule der Fahrzeugkarosserie bestimmt sind die Kunststoffseitenteile als Sichtblenden ausgebildet. Sie weisen seitlich abstehende Lappen auf, welche die Berandung der das Umlenkelement aufnehmenden und Schwenkbewegungen zulassenden Öffnung in einer fahrzeug-25 karosserieseitigen Verkleidung hinterfassen. Sie können ferner eine an die Gurtlauffläche des Metallkörpers bündig anschließende kreissegmentförmige Sichtfläche aufweisen, die an die Berandung der Öffnung in der fahrzeugkarosserie-30 seitigen Verkleidung angepasst ist. Die seitlichen Lappen schließen mit einem Absatz an diese Sichtfläche an.

7

Im Folgenden wird die Erfindung anhand einer lediglich ein Ausführungsbeispiel darstellenden Zeichnung erläutert. Es zeigen schematisch:

- 5 **Fig. 1** Teile eines Bauelementensatzes, aus dem ein erfindungsgemäßes Umlenkelement für einen Sicherheitsgurt in Kraftfahrzeugen aufgebaut ist,
- Fig. 2 ein aus dem Bauelementensatz montiertes Umlenkelement für einen Sicherheitsgurt in einer perspektivischen Darstellung der Vorderseite,
- Fig. 3 das in Fig. 2 dargestellte Umlenkelement in einer perspektivischen Darstellung der Vorderseite, jedoch ohne seitlich angeschlossene Kunststoffteile,
 - Fig. 4 eine Seitenansicht des in Fig. 3 dargestellten Gegenstandes,
 - Fig.5 eine weitere Ausgestaltung eines aus dem Bauelementensatz gefertigten Umlenkelementes,
- Fig. 6 einen halbverdeckten Einbau des in Fig. 5
 25 dargestellten Umlenkelementes in der B-Säule eines
 Kraftfahrzeuges,
 - Fig. 7 ein aus dem Bauelementensatz gefertigtes Umlenkelement für eine außenseitige Befestigung.

30

8

Der in Fig. 1 dargestellte Bauelementensatz umfasst einen durch Kaltumformung aus Stahlblech hergestellten einstückigen Metallkörper 1, einen Kunststoffadapter 2 sowie Kunststoffseitenteile 4, die je nach Einbausituation unterschiedlich ausgebildet sind und seitlich auf ein Randprofil des Metallkörpers aufschiebbar und durch eine Steckverbindung 5 paarweise koppelbar sind. Der Bauelementensatz kann erweitert werden durch zusätzliche Anschlagscheiben 6 mit angeformten Anschlagelementen 7 zur Schwenkwinkelbegrenzung sowie einer Abdeckkappe 8, die an der Vorderseite des Metallkörpers befestigbar ist und eine Montagefläche sowie eine der Befestigung des Umlenkelementes an der Fahrzeugkarosserie dienenden Befestigungsschraube verkleidet.

10

Der Metallkörper 1 weist eine Befestigungsöffnung 9 in 15 einer rückseitigen Montagefläche 10, eine Gurtöse 11 und einen die Gurtöse 11 unterseitig sowie seitlich einfassenden Gurtführungsabschnitt 12 auf. Insbesondere der Fig. 3 entnimmt man, dass der Gurtführungsabschnitt als doppelwan-20 diges Randprofil ausgeformt ist und eine im Querschnitt gerundete Lauffläche 13 für einen Sicherheitsgurt bildet. Der Metallkörper 1 weist als Standardbauteil unabhängig von der konkreten Einbausituation des Umlenkelementes einheitlich festgelegte Abmessungen auf, die einen Einbau des Metallkörpers 1 in der B-Säule von Kraftfahrzeugen zulassen. Die Außenabmessungen des Metallkörpers liegen innerhalb eines mit einem Radius von 43 mm um die Befestigungsöffnung 9 gezogenen Kreises. Der Abstand a zwischen der Befestigungsöffnung 9 und der Gurtlauffläche 13 ist in einem Bereich von 19 mm bis 24 mm festgelegt. 30

Andrejewski, Honke & Sozien, Patentanwälte in Essen

9

Einer vergleichenden Betrachtung der Fig. 3 und 4 entnimmt man, dass der Gurtführungsabschnitt 12 des Metallkörpers 1 eine wulstförmig gerundete Vorderseite 15 und innerhalb der Gurtöse einen zur Rückseite umgestülpten Kragen 16 aufweist. Der rückseitige Kragen 16 und die wulstförmig geformte Vorderseite 15 bilden ein im Querschnitt bogenförmiges Profil als Gurtlauffläche 13 für den Sicherheitsgurt. Das Profil ist so dimensioniert, dass die Gurtlauffläche 13 unter Prüfbedingungen, die für eine Crashsituation gelten, 10 eine den Sicherheitsgurt auf der Lauffläche zentrierenden Durchbiegung mit einer bleibenden Deformation in der Laufflächenmitte erfährt. Bei den Prüfbedingungen wird der Aufprall eines Fahrzeuges simuliert. Bei dem Aufprall des Fahrzeuges bzw. der mit einem Dummy bestückten Testeinrich-15 tung auf ein Hindernis ist das Umlenkelement Belastungen durch den Sicherheitsgurt ausgesetzt. Es hat sich gezeigt, dass sich eine definierte Durchbiegung der Gurtlauffläche 13, die mit der angegebenen bleibenden Deformation verbunden ist, günstig auf die Kraftverteilung auswirkt, die der 20 Sicherheitsgurt auf die zu sichernde Person ausübt, und dass eine ordnungsgemäße Führung des Sicherheitsgurtes in der Crashsituation durch die Deformation begünstigt wird. Während im Crashfall eine Deformation der Gurtlauffläche zugelassen wird, ist der Aufhängebereich des erfindungsgemäßen Umlenkelementes formsteif ausgebildet. 25 Dies wird erfindungsgemäß dadurch erreicht, dass das doppelwandige Randprofil 14 die rückseitige Montagefläche 10 seitlich bis etwa zur Höhe der Befestigungsöffnung 9 einfasst.

10

Die Gurtlauffläche 13 kann eine den Gurtlauf zentrierende Wölbung aufweisen. Die Wölbung beträgt über die Breite der Gurtöse betrachtet bis zu 0,5 mm.

Der Metallkörper 1 besteht aus Stahlblech und ist aus einer Blechplatine mit einer Blechstärke von 2 bis 4 mm gefertigt. Durch den Materialfluss bei der Kaltumformung vermindert sich die Materialstärke in den umgeformten Bereichen. Durch Materialstärke, Materialeigenschaften und Profilgebung kann die Gurtlauffläche 13 so dimensioniert werden, dass die vorstehend genannten Bedingungen eingehalten werden.

Der Metallkörper 1 kann eine den Reibungswiderstand reduzierende Gleitbeschichtung aufweisen. Bevorzugt ist eine 15 Gleitbeschichtung aus einer Fluorpolymermatrix und darin eingelagerten Verstärkungsstoffen. Die Beschichtung ist dünn und weist eine Schichtdicke von weniger als 100 µm auf. Sie ist sehr glatt und erreicht eine Oberflächenrauhigkeit Ra von weniger als 2 µm. Das Beschichtungsmaterial 20 kann durch eine elektrostatische Pulverbeschichtung mit anschließender thermischer Behandlung, ein Nasslackierverfahren oder nach einem Wirbelstromsinterverfahren auf den Metallkörper 1 aufgebracht werden. Dabei wird das Auftragsverfahren so geführt, dass eine möglichst dünne Gleitschicht resultiert, die aber zum Zwecke des Korrosionsschutzes des Metallkörpers 1 eine dichte Oberfläche bildet. Zur Erhöhung der Haftung der Gleitbeschichtung auf dem Untergrund kann der Metallkörper 1 vor der Beschichtung 30 einer Vorbehandlung unterworfen werden.

11

Der Kunststoffadapter 2 weist einen in die Befestigungsöffnung 9 des Metallkörpers 1 einsetzbaren Kragen 17 sowie einen an der oberen Berandung der Gurtöse 11 fixierbaren Verdrängungskörper 18 zur Begrenzung der Spaltbreite des Gurtschlitzes auf.

Die Kunststoffseitenteile 4 sind seitlich auf das Randprofil 14 des Metallkörpers 1 aufschiebbar und durch eine
Steckverbindung paarweise koppelbar. Sie können seitlich
abstehende Lappen 19 aufweisen, die bei einem verdeckten
Einbau oder einem in Fig. 6 dargestellten halbverdeckten
Einbau des Umlenkelementes eine Öffnung in der Verkleidung
20 der Fahrzeugsäule als Sichtblenden hinterfassen. Die
Öffnung lässt Schwenkbewegungen des Umlenkelementes zu.
Dabei decken die Sichtblenden 19 stets den verbleibenden
Teil der Öffnung ab.

Aus den Teilen des Bauelementensatzes können ohne weiteres auch Umlenkelemente gefertigt werden, die sichtbar an Innenflächen des Fahrzeuginnenraumes angeordnet werden. Die Fig. 7 zeigt eine solche Ausführung. In das Randprofil 14 des Metallkörpers 1 sind als Kunststoffseitenteile 4 gerundete Kantenschutzprofile eingesetzt. Ferner ist eine zusätzliche Abdeckkappe 8 an der Vorderseite des Metallkörpers 1 befestigt, welche die Montagefläche sowie eine der Befestigung des Umlenkelementes an der Fahrzeugkarosserie dienende Befestigungsschraube verkleidet.

20

Die erfindungsgemäße Verwendung des Metallkörpers als Stan-30 dardteil in Kombination mit an die Einbausituation angepassten unterschiedlichen Kunststoffteilen erlaubt eine

Andrejewski, Honke & Sozien, Patentanwälte in Essen

12

sehr rationelle Fertigung von Umlenkelementen, die an die jeweiligen Einbausituationen angepasst werden können. Die beim Gebrauch des Sicherheitsgurtes wesentlichen Eigenschaften erhält das Umlenkelement dabei stets durch den Metallkörper, der optimal zur Aufnahme der bei einer Crashsituation auftretenden Kräfte ausgelegt und mit einer die Laufeigenschaften des Gurtes verbessernden Gleitbeschichtung ausgerüstet werden kann.

Andrejewski, Honke & Sozien, Patentanwälte in Essen

13

Schutzansprüche:

1. Umlenkelement für einen Sicherheitsgurt in Kraftfahrzeugen mit einem durch Kaltumformung aus Stahlblech hergestellten einstückigen Metallkörper (1), der eine Befestigungsöffnung (9) in einer rückseitigen Montagefläche (10), eine Gurtöse (11) und einen die Gurtöse unterseitig sowie seitlich einfassenden Gurtführungsabschnitt (12) aufweist, wobei der Gurtführungsabschnitt (12) als doppelwandiges Randprofil (14) ausgeformt ist und eine im Querschnitt gerundete Lauffläche (13) für einen Sicherheitsgurt bildet und wobei die Außenabmessungen innerhalb eines mit einem Radius von 43 mm um die Befestigungsöffnung gezogenen Kreises liegen, dad urch gekennzeich nzeich net,

15

30

10

dass die Gurtlauffläche (13) in einem Abstand von 19 mm bis 24 mm von dem Mittelpunkt der Befestigungsöffnung (9) angeordnet ist,

dass an den Metallkörper (1) ein Kunststoffadapter (2) angeschlossen ist, der einen in die Befestigungsöffnung (9) einsetzbaren Kragen (17) sowie einen an der oberen Berandung der Gurtöse fixierbaren Verdrängungskörper (18) zur Begrenzung der Spaltbreite des Gurtschlitzes aufweist, und

dass zur Anpassung an die Einbausituation im Kraftfahrzeug seitlich auf das Randprofil des Metallkörpers (1) aufschiebbare und durch eine Steckverbindung gekoppelte Kunststoffseitenteile (4) am Umfang des Metallkörpers (1) angeordnet sind.

14

- 2. Umlenkelement nach Anspruch 1, dadurch gekennzeichnet, dass die Gurtlauffläche (13) eine den Gurtlauf zentrierende Wölbung aufweist.
- 5 3. Umlenkelement nach Anspruch 2, dadurch gekennzeichnet, dass die Wölbung über die Breite der Gurtöse (11) betrachtet bis zu 0,5 mm beträgt.
- 4. Umlenkelement nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das den Gurtführungsabschnitt (12) bildende doppelwandige Randprofil (14) die rückseitige Montagefläche (10) seitlich bis etwa zur Höhe der Befestigungsöffnung (9) einfasst, so dass der Gurtführungsabschnitt (12) bis zur Gurtlauffläche (13) eine hohe Formsteifigkeit aufweist und im Crashfall auftretende Kräfte im Wesentlichen deformationsfrei aufnimmt, und dass der Gurtführungsabschnitt (12) im Bereich der Gurtlauffläche (13) so dimensioniert ist, dass die Gurtlauffläche (13) unter Prüfbedingungen, die eine Crashsituation simulieren, eine den Sicherheitsgurt auf der Lauffläche zentrierende Durchbiegung erfährt.
- Umlenkelement nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die wulstförmig geformte Vorderseite
 (15) der Gurtlauffläche (13) des Metallkörpers (1) mit einer im Wesentlichen geraden Abschlusskante ausgebildet ist.
- 6. Umlenkelement nach einem der Ansprüche 1 bis 5, dadurch 30 gekennzeichnet, dass der Metallkörper (1) eine den Reibungswiderstand reduzierende Gleitbeschichtung aufweist,

15

die aus einer Fluorpolymermatrix und darin eingelagerten Verstärkungsstoffen besteht und eine Schichtdicke von weniger als $100~\mu m$ aufweist.

- 5 7. Umlenkelement nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Kunststoffseiteteile (4) als gerundete Kantenschutzprofile ausgebildet sind.
- 8. Umlenkelement nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass an der Vorderseite (15) des Metallkörpers (1) eine Abdeckkappe (8) befestigt ist, welche die Montagefläche (10) sowie eine der Befestigung des Umlenkelementes dienende Befestigungsschraube verkleidet.
- 9. Umlenkelement nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Kunststoffseitenteile (4) als Sichtblenden ausgebildet sind, die bei einem verdeckten oder halbverdeckten Einbau des Umlenkelementes die Berandung einer das Umlenkelement aufnehmenden und Schwenk-
- 20 bewegungen zulassenden Öffnung in einer fahrzeugkarosserieseitigen Verkleidung (20) hinterfassen.
 - 10. Umlenkelement nach Anspruch 9, dadurch gekennzeichnet, dass die als Sichtblenden eingesetzten Kunststoff-
- 25 seitenteile (4) seitlich abstehende Lappen (19) aufweisen.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
Octor or black and white photographs
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.