Решения некоторых задач по курсу "Дополнительные главы кибернетики и теории управляющих систем" 1

E-mail: horseHolder@yandex.ru

Часть І

Асимптотически оптимальные методы синтеза и оценки высокой степени точности для ряда функций Шеннона. Синтез схем для функций из специальных классов.

Задача 1. Установить асимптотическое поведение функции Шеннона $L^{\mathbb{C}}(Q(n))$, $n=1,2,\ldots$, где Q(n) – множество $\Phi A \mathcal{I}$, монотонных по $B\Pi$ x_1,x_2 .

Решение.

1. Нижняя оценка. Найдем мощность класса Q(n). Функция $f(x_1, x_2, \ldots, x_n)$ монотонна по x_1 и x_2 в том и только том случае, когда для каждого набора $\sigma' = (\sigma_3, \ldots, \sigma_n)$ функция $f(x_1, x_2, \sigma')$ является монотонной. Всего существует 6 монотонных функций от двух перменных: $0, 1, x_1, x_2, x_1 \vee x_2, x_1x_2$. Потому любая подфункция $f(x_1, x_2, \sigma_3, \ldots, \sigma_n)$ функции $f(x_1, x_2, \ldots, x_n) \in Q(n)$ равна одной из этих шести функций. Наборов вида $\sigma' \in B^{n-2}$ всего 2^{n-2} , потому число функций $f \in Q(n)$ равно числу способов задать на каждом из 2^{n-2} таких наборов одну из шести подфункций. То есть $|Q(n)| = 6^{2^{n-2}}$.

Класс Q(n) является невырожденным, так как

$$J(|Q(n)|) = \frac{\log |Q(n)|}{\log \log |Q(n)|} \gg n + 1,$$

а значит (по соответствующему утверждению из лекций) $L^{\rm C}(Q(n))\gtrsim J(|Q(n)|),$ то есть

$$L^{\mathcal{C}}(Q(n)) \gtrsim \frac{\log 6}{4} \cdot \frac{2^n}{n}$$

2. Верхняя оценка. Для получения верхней оценки воспользуемся принципом локального кодирования О.Б. Лупанова. Пусть $1\leqslant q\leqslant n$. Функции вида $f(x_1,x_2,x_3,\ldots,x_q,\sigma_{q+1},\ldots,\sigma_n)$, где $f\in Q(n)$, лежат в классе $Q(q),\ |Q(q)|=6^{2^{q-2}}$. Закодируем все функции из этого класса двоичными наборами длины $\lambda=\lceil\log|Q(n)|\rceil=\lceil 2^{q-2}\log 6\rceil$. Схему Σ_f для реализации произвольной функции $f\in Q(n)$ построим следующим образом. Пусть оператор $\mathbf O$ по набору $(\sigma_{q+1},\ldots,\sigma_n)$ получает код функции $f(x_1,x_2,x_3,\ldots,x_q,\sigma_{q+1},\ldots,\sigma_n)\in Q(q)$, а

 $^{^{1}}$ Рассмотренные задачи предлагались на контрольных. В решениях возможны ошибки.

оператор ${\bf A}^{(2)}$ по набору $(\sigma_1,\ldots,\sigma_q)$ и этому коду получает значение $f(\sigma)$. То есть, ${\bf O}\in P_2^\lambda(n-q),\,{\bf A}^{(2)}\in P_2(q+\lambda),$ следовательно,

$$L(\mathbf{O}) \lesssim \lambda \cdot \frac{2^{n-q}}{n-q},$$

$$L(\mathbf{A}^{(2)}) \lesssim \frac{2^{q+\lambda}}{q+\lambda}.$$

Положим $q = \lfloor \log n \rfloor$, тогда $L(\mathbf{O}) \lesssim \frac{\log 6}{4} \cdot \frac{2^n}{n}$, $L(\mathbf{A}^{(2)}) = O(2^{\frac{3}{4}n}) = o\left(\frac{2^n}{n}\right)$. Таким образом, $L(\Sigma_f) \lesssim \frac{\log 6}{4} \cdot \frac{2^n}{n}$.

Окончательно, с учетом полученных оценок, имеем:

$$L^{\mathcal{C}}(Q(n)) \sim \frac{\log 6}{4} \cdot \frac{2^n}{n}.$$

Задача 2. Установить асимптотическое поведение функции Шеннона $L^{\mathbb{C}}(Q(n))$, $n=1,2,\ldots$, где Q(n) – множество всех тех $\Phi A \mathcal{I}$ из $P_2(n)$, которые обращаются в 0 на наборах, содержащих не более $\frac{n}{2}$ единиц.

Решение.

1. Нижняя оценка. Любая функция $f \in Q(n)$ полностью определяется значениями на наборах, содержащих более $\frac{n}{2}$ единиц. Таких наборов при нечётном n в точности 2^{n-1} . При четном же n их $2^{n-1} - \frac{1}{2}C_n^{n/2}$. Это означает, что

$$|Q(n)| = \begin{cases} 2^{2^{n-1}}, \text{при нечетном } n, \\ 2^{2^{n-1} - \frac{1}{2}C_n^{n/2}}, \text{при четном } n. \end{cases}$$

Класс Q(n) является невырожденным, так как

$$J(|Q(n)|) = \frac{\log |Q(n)|}{\log \log |Q(n)|} \gtrsim \frac{2^{n-1}}{n} \gg n + 1$$

(с учетом того, что $C_n^{n/2} = o(2^{n-1})$, то есть $|Q(n)| \sim 2^{2^{n-1}}$), а значит (по соответствующему утверждению из лекций),

$$L^{\mathcal{C}}(Q(n)) \gtrsim \frac{1}{2} \cdot \frac{2^n}{n}$$

2. Верхняя оценка (1ый способ). Для получения верхней оценки воспользуемся принципом локального кодирования О.Б. Лупанова. Занумеруем произвольным образом наборы куба B^n , на которых функция не обязана принимать значение 0. Количество таких наборов есть $\lambda \sim 2^{n-1}$, двоичная длина номера есть $\lceil \log \lambda \rceil$. Для любой функции $f, f \in Q(n)$, ее кодом будем считать столбец из ее значений на этих наборах в соответствии со введенной нумерацией, т.е. столбец длины λ , который можно рассматривать как столбец значений функции g от $\lceil \log \lambda \rceil$ переменных. Кусок кода, достаточный для вычисления $f(\sigma)$ – это значение функции g на номере набора σ , если в этом наборе больше $\frac{n}{2}$ единиц, и произвольное значение иначе.

Таким образом, оператор $\mathbf{A}^{(1)}$ по набору определяет, верно ли, что в этом наборе больше $\frac{n}{2}$ единиц, и если верно, то возвращает номер σ – набор длины $\lceil \log \lambda \rceil$, иначе возвращает произвольный набор. Основной оператор \mathbf{O} вычисляет значение функции g на этом наборе, при этом это и будет $f(\sigma)$, если в σ больше $\frac{n}{2}$ единиц. Оператор $\mathbf{A}^{(2)}$ по куску кода, полученному от \mathbf{O} , и по набору σ получает $f(\sigma)$, то есть выдает либо 0, либо полученный кусок кода.

Основная сложность – в операторе ${\bf O}$. Он реализует функцию g от $\lceil \log \lambda \rceil$ переменных, поэтому $L({\bf O}) \sim \frac{2^{n-1}}{n}$. Операторы ${\bf A}^{(1)}$ и ${\bf A}^{(2)}$ можно реализовать за O(n). Таким образом, $L(Q(n)) \lesssim \frac{1}{2} \cdot \frac{2^n}{n}$.

2'. Верхняя оценка (20й способ). Верхнюю оценку можно получить и более "красиво". Пусть $g - \Phi A \Pi$, равная 0 на наборах, содержащих не более $\frac{n}{2}$ единиц, и равная 1 в остальных случаях, то есть g – характеристическая $\Phi A \Pi$ множества тех наборов, на которых функции из Q(n) не обязаны обращаться в 0 (эту функцию можно реализовать в СФЭ со сложностью $o(\frac{2^n}{n})$). Тогда любая $\Phi A \Pi$ $f, f \in Q(n)$, может быть представлена в виде: $f = g \cdot h$, где h – частичная булева функция, область определенности которой есть множество тех наборов, на которых g = 1, $|\delta(h)| \sim 2^{n-1}$, $h \in \widehat{P}_2(n, |\delta(h)|)$, потому, согласно утверждению о схемной сложности частичных $\Phi A \Pi$,

$$L^{\mathcal{C}}(h) \lesssim \frac{2^{n-1}}{n}.$$

Искомая СФЭ Σ_f состоит из двух СФЭ, реализующих g и h, и конъюнктирует их выходы, таким образом,

$$L(\Sigma_f) \lesssim \frac{1}{2} \cdot \frac{2^n}{n}.$$

Окончательно, с учетом полученных оценок, имеем:

$$L^{\mathcal{C}}(Q(n)) \sim \frac{1}{2} \cdot \frac{2^n}{n}$$

Задача 3. Для произвольной $\Phi A \Pi$ f от $B\Pi$ $X(n) = \{x_1, \ldots, x_n\}$ построить WKC Σ_f , состоящую из обычных (неориентированных) контактов и итеративных контактов, проводимость которых задается $\Phi A \Pi$ вида $x_i^{\sigma} \cdot y_j$, где $1 \leq i \leq n$, $\sigma \in \{0, 1\}$, а y_j – произвольная итеративная $B\Pi$, и реализующую $\Phi A \Pi$ f таким образом, что сложность (число контактов) WKC Σ_f дает верхнюю AOBCT для функции Шеннона, характеризующей сложность WKC из рассматриваемого класса. Указать поведение данной функции Шеннона на уровне AOBCT.

Решение. Пусть А – класс ИКС из условия задачи.

1. Hижняя оценка. Оценим число попарно неэквивалентных схем в A, сложности не более, чем L, и реализующих функции от n переменных:

$$\|\mathcal{U}^{A}(L,n)\| \leqslant (2n)^{L} \|\mathcal{U}^{MKC}(L,n)\| \leqslant \left(\frac{cn(L+n)^{2}}{\log^{3}(L+n)}\right)^{L+2n}.$$

Первое из этих неравенств справедливо в силу того, что каждая схема класса A может быть получена из некоторой ИКС, состоящей только из итеративных контактов, приписыванием пометке каждого контакта x_i^{σ} (т.е. для каждого из L контактов - 2n вариантов). Второе неравенство следует из верхней оценки числа ИКС сложности не более чем L, и реализующих Φ A Π от x_1, \ldots, x_n . Теперь воспользуемся тем, что

$$\|\mathcal{U}^A(L_A(n), n)\| = 2^{2^n},$$

так как любую функцию можно реализовать схемой из класса A; и тем, что $L_A(n) \asymp \frac{2^n}{n}$; тогда получим:

$$L_A(n) \geqslant \frac{2^{n-1}}{n} \left(1 + \frac{2\log n - O(1)}{n} \right).$$

2. Верхняя оценка. Для получения верхней оценки модифицируем асимптотически наилучший метод синтеза ИКС. Так же представим произвольную функцию f в виде

$$f(x', x'') = \bigvee_{\sigma'' \in B^{n-1}} K_{\sigma''}(x'') f_{\sigma''}(x').$$

Все конъюнкции $K_{\sigma''}(x'')$ реализуются контактным деревом, функции $f_{\sigma''}(x')$ реализуются через φ -УМ G, то есть $f_{\sigma''}(x') = \varphi(g_1, \ldots, g_p)$, где g_1, \ldots, g_p – функции из G. В качестве функции φ возьмем функцию $x_1y_1y_{t+1} \vee \ldots \vee x_ty_ty_{2t}, \ p = 3t$, реализующий которую блок показан на рис. 1.

Здесь переменные y_i , $i=1,\ldots,t$, – управляющие. Эта функция имеет нетривиальное селекторное разбиение ее БП D=

²Если Вам очевидно решение этой задачи, то этот файл не для Вас.

 $(\{x_1\},\ldots,\{x_t\},\{y_1\},\ldots,\{y_t\},\{y_{t+1},\ldots,y_{2t}\})$. φ -УМ порядка q построми по утверждению из лекций, выбрав $s_1=\ldots=s_t=\log n$, $s_{t+1}=\ldots=s_{2t}=n-3\log n$, $s_{2t+1}=n-2\log n$. (Тут необходимо взять целую часть, возможно увеличить/уменьшить параметры на константу). При этом должно выполняться: $t\log n+t(n-3\log n)+t(n-2\log n)\geqslant 2^q$, откуда следует выбор параметра t таким: $\frac{2^q}{2n-4\log n}$ (с необходимой целой частью).

Схему для $\Phi A \Pi f$ построим так же, как и при построении AOBCT для ИКС, но использованием других звезд – другой функции φ .

Рис. 1: Основной блок – звезды в схеме

Основная сложность и будет заключаться в этих звездах. Их 2^{n-q} , в каждой звезде t контактов. Из соображений метода для обычных ИКС выберем $q = \lceil 2 \log n \rceil$, откуда $t \approx n$, то есть (по утверждению, используемому для построения универсального множества)

$$L^{\mathcal{C}}(\overrightarrow{G}) \leqslant t \cdot 2^{\log n} + t \cdot \frac{2^n}{n^3} + \frac{2^n}{n^2} = O\left(\frac{2^n}{n^2}\right),$$

то есть подсхема для φ -УМ G не основная по сложности, так же, как и контактное дерево для конъюнкций $K_{\sigma''}(x'')$. Сложность звезд есть

$$2^{n-q} \cdot t \leqslant \frac{2^q \cdot 2^{n-q}}{2n - 4\log n - \text{const}} = \frac{2^{n-1}}{n - 2\log n - \text{const}} \leqslant \frac{2^{n-1}}{n} \left(1 + \frac{2\log n + O(1)}{n} \right).$$

Итак, получаем, что

$$L_A(n) = \frac{2^{n-1}}{n} \left(1 + \frac{2\log n \pm O(1)}{n} \right)$$

Задача 4. Для произвольной $\Phi A \Pi$ f от $B\Pi \ X(n) = \{x_1, \ldots, x_n\}$ построить $KC \ \Sigma_f$, состоящую из ориентированных замыкающих и размыкающих контактов веса 1 и 2

соответственно, которая реализует $\Phi A \Pi$ f таким образом, что сложность (сумма весов контактов) $KC \Sigma_f$ дает верхнюю AOBCT для функции Шеннона, характеризующей сложность KC из рассматриваемого класса. Указать поведение данной функции Шеннона на уровне AOBCT.

Peшение. Пусть A – класс КС из условия задачи.

1. Нижняя оценка. Оценим число $\|\mathcal{U}^A(\mathcal{L}, n)\|$ попарно неэквивалентных схем в A, взвешенной сложности не более, чем \mathcal{L} , и реализующих функции от n переменных. Обозначим за q_1 количество замыкающих контактов в схеме, а за q_2 – размыкающих. Тогда $\mathcal{L} = q_1 + 2q_2$. Число способов при фиксированном \mathcal{L} выбрать такие q_1 и q_2 сверху можно оценить (очень грубо) как $e_1^{\mathcal{L}}$, здесь все e_i = const. При этом количество рёбер в схеме $q_1 + q_2$. Число попарно не изоморфных ориентированных графов с таким числом рёбер не больше чем

$$\left(\frac{e_2(q_1+q_2)}{\log^2(q_1+q_2)}\right)^{q_1+q_2},\,$$

согласно соответствующему утверждению из лекций. Эту величину сверху можно ограничить выражением

$$\left(\frac{e_3\mathcal{L}}{\log^2(\mathcal{L})}\right)^{\mathcal{L}}$$
.

Число способов пометок q_1 рёбер символами переменных, а q_2 рёбер – символами отрицания переменных, есть $n^{q_1+q_2} \leq n^{\mathcal{L}}$. В результате

$$\|\mathcal{U}^{A}(\mathcal{L}, n)\| \leqslant \left(\frac{e_3 e_1 n \mathcal{L}}{\log^2(\mathcal{L})}\right)^{\mathcal{L}} = \left(\frac{e_4 n \mathcal{L}}{\log^2(\mathcal{L})}\right)^{\mathcal{L}}.$$

Используя то, что $\mathcal{L}_A(n) \asymp \frac{2^n}{n}$ и $\|\mathcal{U}^A(\mathcal{L}_A(n),n)\| = 2^{2^n}$, где $\mathcal{L}_A(n)$ – искомая функция Шеннона, получим, что

$$\mathcal{L}_A(n) \geqslant \frac{2^n}{n} \left(1 + \frac{2\log n - O(1)}{n} \right).$$

2. Верхняя оценка. Для получения верхней оценки воспользуемся асимптотически наилучшим методом синтеза ориентированных контактных схем. Для произвольной $\Phi A \Pi f$ построим схему так, как это сделано в этом методе. Основная её сложность – в звёздах, реализующих функцию $\varphi = y_1 y_{t+1} \lor \ldots \lor y_t y_{2t}$. Заметим, что все контакты в них – замыкающие, то есть имеют вес 1. А это значит, что основная взвешенная сложность равна обычной сложности, а взвешенная сложность остальной части схемы не превосходит обычной сложности этой части, умноженной на 2. Тем самым,

$$\mathcal{L}_A(n) \leqslant \frac{2^n}{n} \left(1 + \frac{2\log n + O(1)}{n} \right),$$

согласно оценке для $L^{\overrightarrow{K}}(n)$.

Таким образом,

$$\mathcal{L}_A(n) = \frac{2^n}{n} \left(1 + \frac{2\log n \pm O(1)}{n} \right).$$

Часть II

Синтез схем для индивидуальных функций и оценки их сложности.

Задача 5. Доказать, что сложность $L^K(\overrightarrow{Q}(n))$ асимптотически равна $2^{2^{n-1}+2}$, если Q(n) – множество всех тех $\Phi A \Pi$ из $P_2(n)$, которые имеют вид

$$g(x_1,\ldots,x_{n-1})\oplus\alpha_n\cdot x_n,$$

 $ede \ g \in P_2(n-1) \ u \ \alpha_n \in \{0,1\}.$

Доказательство. Нетрудно видеть, что $|Q(n)| = 2^{2^{n-1}} \cdot 2 = 2^{2^{n-1}+1}$. Построим схему для $\overrightarrow{Q}(n)$ по методу каскадов с разложением по переменным в порядке, в котором x_n последняя (тогда в схеме будет только по одному контакту x_n и \overline{x}_n). На каждую из |Q(n)| функций приходится по два контакта. Потому сложность такой схемы асимптотически не больше, чем $2 \cdot |Q(n)| = 2^{2^{n-1}+2}$, тем самым верхняя оценка получена.

Пусть \widehat{Q} – множество тех ФАЛ $f, f \in Q(n)$, у которых есть нулевая грань размерности большей, чем (n-r). Оценим мощность этого множества. Пусть \widehat{Q}_1 – множество тех функций f из \widehat{Q} , которые имеют вид $f = g(x_1, \dots, x_{n-1}) \oplus 0 \cdot x_n$, а $\widehat{Q}_2 = \widehat{Q} \setminus \widehat{Q}_1$. Тогда ³

$$|\widehat{Q}_1| = C_{n-1}^{n-r} \cdot 3^r \cdot 2^{2^{n-1}-2^{n-r}},$$

то есть $|\widehat{Q}_1| = o(2^{2^{n-1}})$ при $r = \lceil \frac{n}{2} \rceil$. Аналогично, $|\widehat{Q}_2| = o(2^{2^{n-1}})$, и $|\widehat{Q}| = |\widehat{Q}_1| + |\widehat{Q}_2| = o(2^{2^{n-1}})$. Согласно соответствующему утверждению из лекций,

$$L^{K}(\overrightarrow{Q}(n)) \geqslant 2|Q|\left(1 - \frac{5}{\sqrt{r}}\right) - 2|\widehat{Q}|,$$

следовательно, при $r = \lceil \frac{n}{2} \rceil$,

$$L^K(\overrightarrow{Q}(n)) \gtrsim 2 \cdot 2^{2^{n-1}+1} = 2^{2^{n-1}+2}.$$

³Каждую нулевую грань куба B^{n-1} задает набор из $\{0,1,2\}^{n-1}$, где 2 означает, что соответствующая переменная может принимать любое значение. Грань размерности (n-r) задается набором с (n-r) двойками. Число способов выбрать (n-r) позиций для двоек, задающих грань в (n-1)-мерном кубе есть C_{n-1}^{n-r} , число способов задать остальные r значений набора, соответствующего грани размерности большей (n-r), есть 3^r . Выбрав так нулевую грань размерности большей (n-r), задаем функцию нулем на ней. На остальных наборах значения могут быть произвольными (0 или 1), этих наборов не больше чем $2^{n-1}-2^{n-r}$, так как количество наборов в грани размерности большей (n-r) не меньше чем 2^{n-r} .

Задача 6. Доказать, что $L^K(s_5^{\{1,4\}}) \geqslant 16$.

Доказательство. Функция $s_5^{\{1,4\}}(x_1,x_2,x_3,x_4,x_5)$ не является ни монотонной, ни антимонотонной ни по одной из ее переменных. Это означает, что контакты вида $x_1, x_2, x_3, x_4, x_5, \bar{x}_1, \bar{x}_2, \bar{x}_3, \bar{x}_4, \bar{x}_5$ встречаются в минимальной для $s_5^{\{1,4\}}$ схеме Σ хотя бы 1 раз.

Докажем, что все замыкающие контакты, за исключением, быть может двух, встречаются в Σ хотя бы 2 раза. Пусть это не так, и замыкающие контакты переменных x_1, x_2, x_3 встречаются в Σ один раз. Рассмотрим тогда схему $\Sigma \big|_{x_4 \cdot x_5}$. Она реализует $\Phi A \Pi \ s_5^{\{1,4\}}(x_1, x_2, x_3, 1, 1) = s_3^2(x_1, x_2, x_3)$ и содержит не более одно контакта каждого вида из x_1, x_2, x_3 . Но s_3^2 – сферическая функция, а потому любая реализующая ее схема содержит замыкающие контакты всех, за исключением, быть может, двух, переменных хотя бы по два раза (см. утверждение о сферических $\Phi A \Pi$). Противоречие. Откуда следует, что замыкающих контактов в Σ не менее, чем $5 \cdot 2 - 2 = 8$.

Аналогично, с рассмотрением схемы для функции $s_5^{\{1,4\}}(x_1,x_2,x_3,0,0)=s_3^1(x_1,x_2,x_3)$, являющейся (111)-сферической, доказывается, что все размыкающие контакты $\bar{x}_1, \bar{x}_2, \bar{x}_3, \bar{x}_4, \bar{x}_5$, за исключением, быть может двух, встречаются в Σ хотя бы 2 раза, и что размыкающих контактов в Σ не менее, чем 8.

Из сказанного выше вытекает, что в КС Σ не менее 16 контактов, что и требовалось доказать.

Задача 7. Доказать, что сложность

$$L^{C}(\mu_{n}(x_{1},\ldots,x_{n},y_{0},\ldots,y_{2^{n}-1})\vee\mu_{n}(x_{1},\ldots,x_{n},z_{0},\ldots,z_{2^{n}-1}))$$

асимптотически равна $3 \cdot 2^n$.

Доказательство.

- 1. Нижняя оценка. Пусть Σ СФЭ, реализующая указанную функцию. При забивании переменной y_0 константой 0 уйдет хотя бы один элемент (это свойство СФЭ в стандартном базисе). Тогда затем забьем переменные y_1,\ldots,y_{2^n-1} нулями, получим схему Σ' такую, что $L(\Sigma') \leqslant L(\Sigma) 2^n$. Так как $\mu_n(x_1,\ldots,x_n,0,\ldots,0) = 0$, то схема Σ' реализует $\mu_n(x_1,\ldots,x_n,z_0,\ldots,z_{2^n-1})$, то есть обычную мультиплексорную ФАЛ порядка n, а потому $L(\Sigma') \gtrsim 2^{n+1}$, следовательно $L(\Sigma) \gtrsim 3 \cdot 2^n$.
- 2. Верхняя оценка. Заметим, что

$$\mu_n(x_1,\ldots,x_n;y_0,\ldots,y_{2^n-1})\vee\mu_n(x_1,\ldots,x_n;z_0,\ldots,z_{2^n-1}) = \mu_n(x_1,\ldots,x_n;y_0\vee z_0,\ldots,y_{2^n-1}\vee z_{2^n-1}).$$

Построим схему, реализующую указанную функцию, следующим способом. Сначала построим 2^n дизъюнкций $y_0 \lor z_0, \ldots, y_{2^n-1} \lor z_{2^n-1} \ (2^n \Phi \ni "\lor")$, а затем их подадим на оптимальную схему для мультиплексора порядка n (сложности 2^{n+1} .) Получаем схему $\Sigma'': L(\Sigma'') = 3 \cdot 2^n$, что доказывает верхнюю оценку.

 $^{^4}$ не важно каких переменных: функция симметрическая

Задача 8. Доказать, что $L^{\pi}(s_4^{[2,4]}(x_1,x_2,x_3,x_4) \vee s_8^{\{3,5\}}(x_5,\ldots,x_{12})) \geqslant 65.$

 \mathcal{A} оказательство. Так как множества переменных функций $s_4^{[2,4]}(x_1,\dots,x_4)$ и $s_8^{\{3,5\}}(x_5,\ldots,x_{12})$ не пересекаются, то

$$L^{\pi}(s_4^{[2,4]}(x_1,\ldots,x_4)\vee s_8^{\{3,5\}}(x_5,\ldots,x_{12}))=L^{\pi}(s_4^{[2,4]}(x_1,\ldots,x_4))+L^{\pi}(s_8^{\{3,5\}}(x_5,\ldots,x_{12})).$$

Функция $s_4^{[2,4]}$ – монотонная симметрическая ФАЛ с порогом 2, а для таких функций известно точное значение сложности в классе π -схем⁵, то есть $L^{\pi}(s_4^{[2,4]}) = r(4) = 8$.

Для получения нижней оценки величины $L^{\pi}(s_8^{\{3,5\}})$ воспользуемся теоремой Храпченко. Пусть $\mathcal{N}'=B_3^8\cup B_5^8$ — на этом множестве функция принимает значение 1, здесь B_k^n – k-ый слой куба B^n . При этом $|\mathcal{N}'| = C_8^3 + C_8^5 = 112$. Пусть, далее, $\mathcal{N}'' = B_4^8 \cup B_2^8 \cup B_6^8$ — подмножество множества наборов, на котором функция $s_8^{\{3,5\}}$ равна $0, |\mathcal{N}''| = C_8^4 + C_8^2 + C_8^6 = 126$. Найдем мощность множества $\mathcal{R}(\mathcal{N}', \mathcal{N}'')$ всех ребер, соединяющих \mathcal{N}' и \mathcal{N}'' в кубе B^8 . Это ребра, которые выходят из третьего слоя и из пятого слоя этого куба и только они. То есть $|\mathcal{R}(\mathcal{N}',\mathcal{N}'')| = C_8^3 \cdot 8 + C_8^5 \cdot 8 = 896$, так как из каждой вершины куба B^n выходит n рёбер. Тогда, по теореме Храпченко,

$$L^{\pi}(s_8^{\{3,5\}}) \geqslant \frac{|\mathcal{R}(\mathcal{N}', \mathcal{N}'')|^2}{|\mathcal{N}'| \cdot |\mathcal{N}''|} = \frac{896^2}{112 \cdot 126} \geqslant 57,$$

учитывая, что сложность – целое число. Таким образом,
$$L^{\pi}(s_4^{[2,4]}(x_1,\ldots,x_4)\vee s_8^{\{3,5\}}(x_5,\ldots,x_{12}))\geqslant 8+57=65.$$

 $^{^{5}}L^{\pi}(s_n^{[2,n]}) = r(n) = |\log n| \cdot 2^{\lfloor \log n \rfloor} + (|\log n| + 2)(n - 2^{\lfloor \log n \rfloor})$