전 기 이 론

- 1. 상이한 두 금속선의 접촉부를 통해 전류가 흐를 때 나타나는 열의 발생 또는 흡수작용을 무엇이라 하는가?
 - ① 톰슨효과
 - ② 핀치효과
 - ③ 펠티에효과
 - ④ 제벡효과
 - ⑤ 홀효과
- 2. 다음 회로에서 전압 V를 가하니 20[A]의 전류가 흘렀다. 이 회로 의 역률은?

- 3. 무한평판도체 표면에서 수직거리 d[m]인 위치에 Q[C]의 점전하가 주어진 경우 이 점전하에 작용하는 힘(F)은?

- 4. 40[mH] 인덕터에 $100\cos 10\pi t$ [mA]의 전류가 흐른다. $t=\frac{1}{30}$ [sec]에서 에너지[J]는?
 - ① $50[\mu J]$
 - ② 100[μJ]
 - ③ 150[μJ]
 - 4 200[μJ]
 - ⑤ 250[μJ]
- 5. 5개의 20[mH] 인덕터와 10개의 10[mH] 인덕터를 직렬 또는 병렬로 연결하여 얻을 수 있는 인덕턴스[H]의 최소값은? (단, 상호인덕턴스는 무시한다.)
 - ① 0.2[mH]
 - ② 0.4[mH]
 - ③ 0.6[mH]
 - ④ 0.8[mH]
 - ⑤ 1.0[mH]
- 6. 다음 R-L 회로에서 ${\bf t}={\bf 0}$ 일 때 스위치 K를 닫았다. 흐르는 전류 i(t)를 구하여라. (단, i(0)=0이다.)

- ① $i(t) = 2 2e^{-2t}$
- $2i(t) = 2 2e^{-t}$
- $3i(t) = 2 2e^{-0.5t}$
- $(4) i(t) = 1 e^{-2t}$
- $(5) i(t) = 1 e^{-t}$
- 7. 다음 회로에서 단자 ab에 나타나는 전압 $V_{ab}[V]$ 는? (소수점 둘째 자리에서 반올림 하시오.)

8. 다음 회로에서 저항 $6[\Omega]$ 의 양단 전압이 5[V]일 때, 전압 $V_0[V]$ 는?

- ① 7
- (2) -7
- 3 5
- 4 3
- ⑤ -3
- 9. 200회 감은 코일과 쇄교하는 자속이 0.1초 동안에 0.5[Wb]에서 0.3[Wb]로 감소했다. 이때 유기되는 기전력[V]은?
 - ① 40
 - 2 160
 - 3 400
 - 4 1,600
 - ⑤ 2,000
- 10. 다음 회로에서 전류의 방향과 전압의 극성을 정할 때, 전류 I 및 전압 V_1 과 V_2 의 값으로 옳은 것은?

- ① I = 2[A], $V_1 = -16[V]$, $V_2 = 8[V]$
- ② I = -2[A], $V_1 = 16[V]$, $V_2 = -8[V]$
- 4 $I = 2[A], V_1 = 16[V], V_2 = 8[V]$
- ⑤ $I = -2[A], V_1 = -16[V], V_2 = 8[V]$

- 11. 권수가 100, 한 변의 길이가 0.5[m]인 정사각형 코일이 0.2[T]의 자속밀도를 가지는 평등자계 내에 놓여 있다. 이 코일에 작용하는 최대토크가 $4\times10^{-2}[\text{N}\cdot\text{m}]$ 라 하면 코일에 흐르는 전류는?
 - ① 8[mA]
 - ② 80[mA]
 - ③ 12.5[mA]
 - 4 125[mA]
 - ⑤ 10[mA]

12. 다음은 각각 무엇의 단위인가?

¬. [C/s]	ㄴ. [J/s]	⊏. [C/V] =	. [J/C]
٦	L	⊏	2
① 커패시턴스	전류	전압	전력
② 전압	전력	커패시턴스	전류
③ 전류	커패시턴스	전력	전압
④ 전류	전력	커패시턴스	전압
⑤ 커패시턴스	전압	전류	전력

- 13. 반 무한장 도선이 z축을 따라 z=0에서 z= ∞ 사이에 걸쳐 있다. 이 도선에서 전류 I 가 +z 방향을 따라 흐른다면 z=0인 x-y평면에서 도선으로부터의 거리가 r[m]되는 위치에서의 자계의 세기[H]는?
 - $\bigcirc \frac{I}{2\pi r}$
 - $2 \frac{I}{4\pi r}$
 - $3 \frac{I}{2\pi r^2}$
 - $\textcircled{4} \frac{I}{4\pi r^2}$

14. 어떤 직류 전원에 $10[\Omega]$ 의 저항을 연결하였더니 3[A]의 전류가, $50[\Omega]$ 을 연결하였더니 1[A]가 흘렀다. 테브난 등가회로로 본 전압 원 (V_{Tb}) 과 내부 저항 (R_{Tb}) 은?

- ① V_{Th} =60[V], R_{Th} =10[Ω]
- ② V_{Th} =50[V], R_{Th} =12[Q]
- ③ V_{Th} =30[V], R_{Th} =20[Ω]
- 4 V_{Th} =20[V], R_{Th} =30[Ω]
- (5) V_{Th} =10[V], R_{Th} =60[Ω]
- 15. 3상 불평형 전압에서 역상 전압이 50[V]이고, 정상 전압이 250[V], 영상 전압이 20[V]이면, 전압의 불평형률[%]은?
 - 1 5
 - 2 10
 - ③ 15
 - **4** 20
 - ⑤ 25
- 16. 다음 회로에서 스위치가 충분히 오랜 시간 동안 닫혀 있다가 t=0인 순간에 열렸다. $t\geq 0$ 일 때의 전압 $v_c(\hbar[V])$ 는?

- ① $5e^{-0.5t}$
- ② $5e^{-5t}$
- $310e^{-0.5t}$
- $4.05e^{-0.5t}$
- ⑤ $15e^{-5t}$

- 17. 피상 전력이 25[kVA]인 부하의 역률이 0.8이라면 무효전력[Var]은?
 - ① 18,600
 - 2 18,000
 - 3 17,600
 - 4 16,000
 - ⑤ 15,000
- 18. 다음 회로에서 부하저항 R_L 을 얼마로 할 때 최대 전력이 부하로 전달되는가? 또, 그 때 전달되는 전력 (P_M) 은?

- ① $R_L = 25[\Omega], P_M = 900[W]$
- ② R_L = 50[Ω], P_M = 450[W]
- $3 R_L = 25[\Omega], P_M = 1,296[W]$
- $\textcircled{4} \ R_L = 50 [\Omega], \ P_M = 750 [\mathrm{W}]$
- $\ \ \ \ \ \ \ R_L$ = 25[\Omega], P_M = 1,080[W]
- 19. 다음 회로 중 저항 $1[M\Omega]$ 에서 t = 0.5[sec]동안 소비되는 에너지[J]는?
 - ① 2.5×10^{1}
 - 2.5
 - 32.5×10^{-1}
 - 4.5×10^{-2}
 - 52.5×10^{-3}

- 20. 대지의 고유저항이 $\rho[\Omega m]$ 일 때 반지름 a[m]인 반구형 접지전극의 접지저항[Ω]은?
 - ① $2\pi\rho a$
 - $\bigcirc \frac{2\pi a}{\rho}$
 - $\Im \frac{\rho}{4\pi a}$
 - $\stackrel{\Phi}{=} \frac{\rho}{2\pi a}$
 - $5 4\pi\rho a$