3. Нормальный закон распределения

- (закон Лапласа-Гаусса) наиболее часто встречающийся на практике з.р. непрерывных случайных величин
- является предельным законом, к которому приближаются другие законы распределения при часто встречающихся (типичных) условиях.

Карл Фридрих Гаусс (1777-1855)

Пьер-Симон де Лаплас (1749-1827) © I.Krivtsova ITMO University

Определение 3

Непрерывная с.в. X имеет нормальный закон распределения, если ее плотность распределения имеет вид:

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-a)^2}{2\sigma^2}}, \ x \in R$$

где $a \in \mathbb{R}$, $\sigma > 0$ – параметры нормального распределения.

Обозначение: $X \sim N(a, \sigma)$

Свойства функции f(x)

1.
$$f(x) \ge 0 \ \forall x \in R$$

$$2. \int_{0}^{+\infty} f(x) dx = 1$$

$$3. \quad \lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = 0$$

$$f(x-a) = f(-(x-a))$$
 $x=a$ ось симметрии $x=a$ точка максимума: $f_{\max} = \frac{1}{\sigma\sqrt{2\pi}};$

$$x_1 = a - \sigma$$
, $x_2 = a + \sigma$ точки перегиба

Плотность нормального распределения

Интеграл Эйлера-Пуассона:

$$\int_{-\infty}^{+\infty} e^{-y^2} dy = \sqrt{\pi}$$

$$\int_{-\infty}^{+\infty} e^{-\frac{y^2}{2}} dy = \sqrt{2} \int_{-\infty}^{+\infty} e^{-\left(\frac{y}{\sqrt{2}}\right)^2} d\left(\frac{y}{\sqrt{2}}\right) = \sqrt{2} \sqrt{\pi} = \sqrt{2\pi}$$

Числовые характеристики нормального закона

1. Математическое ожидание:

$$m_{x} = \int_{-\infty}^{+\infty} x \cdot f(x) dx$$

$$m_{x} = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{+\infty} xe^{-\frac{1}{2}\left(\frac{x-a}{\sigma}\right)^{2}} dx = \left\langle no\partial cmahoeka \ y = \frac{x-a}{\sigma}, \right\rangle = \left\langle x = \sigma y + a, \ dx = \sigma dy \right\rangle$$

$$= \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{+\infty} (\sigma y + a) \ e^{-\frac{1}{2}y^2} \sigma dy = \frac{a}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{y^2}{2}} dy = \frac{a}{\sqrt{2\pi}} \sqrt{2\pi} = a.$$

$$m_x = a$$

2. Дисперсия:

$$D_{x} = \int_{-\infty}^{+\infty} x^{2} f(x) dx - m_{x}^{2}$$

$$D_{x} = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{+\infty} x^{2} e^{-\frac{1}{2}\left(\frac{x-a}{\sigma}\right)^{2}} dx - a^{2} = \left\langle \begin{array}{c} uhmezpupyeM \\ no \ uacmsM \end{array} \right\rangle = 0$$

$$=\frac{\sigma^2}{\sqrt{2\pi}}\sqrt{2\pi}=\sigma^2.$$

$$D_{x} = \sigma^{2}$$
 и $\sigma_{x} = \sigma$

При a=0, $\sigma=1$ нормальный закон называется стандартным (нормированным), его плотность обозначается $\varphi(x)$ и имеет вид:

$$\varphi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}, \quad x \in R$$

Функция $\varphi(x)$ называется функцией Гаусса.

Значения функции $\varphi(x)$ табулированы.

Функция распределения имеет вид:

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(y-a)^2}{2\sigma^2}} dy$$

При a=0, $\sigma=1$ ее обозначают

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{y^2}{2}} dy$$

 функция стандартного нормального распределения.

$$\Phi(0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} e^{-\frac{y^2}{2}} dy = \frac{1}{\sqrt{2\pi}} \frac{1}{2} \int_{-\infty}^{+\infty} e^{-\frac{y^2}{2}} dy =$$

$$= \frac{1}{\sqrt{2\pi}} \frac{1}{2} \sqrt{2\pi} = \frac{1}{2}$$
© I.Krivtsova ITMO University

$$\Phi(0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} e^{-\frac{y^2}{2}} dy =$$

$$= \frac{1}{\sqrt{2\pi}} \frac{1}{2} \int_{-\infty}^{+\infty} e^{-\frac{y^2}{2}} dy =$$

$$=\frac{1}{\sqrt{2\pi}}\,\frac{1}{2}\,\sqrt{2\pi}=\frac{1}{2}$$

Функция распределения нормального закона

Обозначим

$$\Phi_0(x) = \frac{1}{\sqrt{2\pi}} \int_0^X e^{-\frac{y^2}{2}} dy$$

Функция $\Phi_0(x)$ называется функцией Лапласа или интегралом вероятностей.

Значения функции $\Phi_0(x)$ табулированы.

Свойства функции Лапласа

1.
$$\Phi_0(0)=0$$

2.
$$\Phi_0(-x) = -\Phi_0(x)$$

3.
$$\Phi_0(-\infty) = -0.5$$
 $\Phi_0(+\infty) = 0.5$

4.
$$\Phi(x) = \Phi_0(x) + 0.5$$

$$\Phi_0(+\infty) = \frac{1}{\sqrt{2\pi}} \int_0^{+\infty} e^{-\frac{t^2}{2}} dt = \frac{1}{\sqrt{2\pi}} \cdot \frac{1}{2} \sqrt{2\pi} = \frac{1}{2}.$$

СР Докажите, что

$$\Phi(x) = \Phi_0(x) + 0.5$$

Теорема

Вероятность попадания с.в. X, распределенной по нормальному закону, в интервал $(\alpha, \beta) \subset \mathbb{R}$ вычисляется по формуле:

$$P(\alpha < X < \beta) = \Phi_0\left(\frac{\beta - a}{\sigma}\right) - \Phi_0\left(\frac{\alpha - a}{\sigma}\right)$$

Значения интеграла Лапласа $\Phi_0(x)=rac{1}{\sqrt{2\pi}}\int\limits_0^x e^{-rac{t^2}{2}}\,dt$

x	Сотые доли х									
	0	1	2	3	4	5	6	7	8	9
0,0	0,00000	00399	00798	01197	01595	01994	02392	02790	03188	03586
0.1	03983	04380	04776	05172	05567	05962	06356	06749	07142	07535
0,2	07926	08317	08706	09095	09483	09871	10257	10642	11026	11409
0,3	11791	12172	12552	12930	13307	13683	14058	14431	14803	15173
0,4	15542	15910	16276	16640	17003	17364	17724	18082	18439	18793
),5	19146	19497	19847	20194	20540	20884	120000000000000000000000000000000000000	100000000000000000000000000000000000000	800	10000000
0,6	22575	22907	23237	23565	23891	24215	21226	21566	21904	22240
),7	25804	26115	26424	26730	27035	27337	24537 27637	24857	25175	25490
0,8	28814	29103	29389	29673	29955	30234	30511	27935	28230	28524
0,9	31594	31859	32121	32381	32639	32894		30785	31057	31327
	200000000000000000000000000000000000000	100000000000000000000000000000000000000	20000000	B 1018 S 2016	100000000000000000000000000000000000000	200000000000000000000000000000000000000	33147	33398	33646	33891
1,0	34134	34375	34614	34850	35083	35314	35543	35769	35993	36214
1,1	36433	36650	36864	37076	37286	37493	37698	37900	38100	38298
1,2	38493	38686	38877	39065	39251	39435	39617	39796	39973	4014
1,3	40320	40490	40658	40824	40988	41149	41308	41466	41621	41774
1,4	41924	42073	42220	42364	42507	42647	42786	42922	43056	43189
1,5	43319	43448	43574	43699	43822	43943	44062	44179	44295	44408
1,6	44520	44630	44738	44845	44950	45053	45154	45254	45352	45449
1,7	45543	45637	45728	45818	45907	45994	46080	46164	46246	4632
1,8	46407	46485	46562	46638	46712	46784	46856	46926	46995	47062
1,9	47128	47193	47257	47320	47381	47441	47500	47558	47615	47670
2,0	47725	47778	47831	47882	47932	47982	48030	48077	48124	48169
2,1	48214	48257	48300	48341	48382	48422	48461	48500	48537	48574
2,2	48610	48645	48679	48713	48745	48778	48809	48840	48870	48899
2,3	48928	48956	48983	49010	49036	49061	49086	49111	49134	49158
2,4	49180	49202	49224	49245	49266	49286	49305	49324	49343	4936
		100000000000000000000000000000000000000	200000000000000000000000000000000000000	DESCRIPTIONS	100000000000000000000000000000000000000	49461	49477	49492	49506	4952
2,5	49379	49396	49413	49430	49446 49585	49461	49477	49492	49632	4964
2,6	49534	49547	49560	49573	CONTRACTOR OF THE PERSON NAMED IN	49598	49009	49720	49728	4973
2,7	49653	49664	49674	49683	49693	49702	49711	49795	49801	4980
2,8	49744	49752	49760	49767	49774	The second second second	49700	49851	49856	4986
2,9	49813	49819	49825	49831	49836	49841	49040	43001	43000	4300
x	Десятые доли х									
	0		2		4		6		8	
3,0	0,49865 49997		49931 49999		49966		49984		49993	

© I.Krivtsova
ITMO University

Вероятность отклонения с.в. X, распределенной по нормальному закону, от своего математического ожидания на величину 3σ :

$$P(/X - a/< 3\sigma) = 2\Phi_0(3) \approx 0.9973$$

Правило «трех сигм»:

если с.в. имеет нормальное распределение, то абсолютная величина ее отклонения от математического ожидания не превосходит утроенного среднего квадратического отклонения.

