Lecture 12: Spatial Dependence

Big Data and Machine Learning for Applied Economics Econ 4676

Ignacio Sarmiento-Barbieri

Universidad de los Andes

September 17, 2020

Recap

- ► Types of Spatial Data
- Reading and Mapping spatial data in R
- Projections
- Creating Spatial Objects
- Measuring Distances

Agenda

- 1 Motivation
- 2 Closeness
- 3 Weights Matrix
 - Examples of Weight Matrices
 - Weights Matrix in R
- **4** Traditional Spatial Regressions
- 5 Prediction with SAR Models
- 6 Further Readings

Motivation

- Independence assumption between observation is no longer valid
- Attributes of observation i may influence the attributes of observation j.
- We will consider various alternatives to model spatial dependence
- ► Think as a way to model f(X)

Motivation

- Independence assumption between observation is no longer valid
- ► Attributes of observation *i* may influence the attributes of observation *j*.
- Positive Spatial correlation arises when units that are *close* to one another are more similar than units that are far apart
- Similarly spatial heterogeneity arises when some areas present more variability than others

Closeness

"Everything is related to everything else, but close things are more related than things that are far apart" (Tobler, 1979).

- ▶ One of the major differences between standard econometrics and standard spatial econometrics lies, in the fact that, in order to treat spatial data, we need to use two different sets of information
 - 1 Observed values of the economic variables
 - 2 Particular location where those variables are observed and to the various links of proximity between all spatial observations

Closeness

Rook criterion: two units are close to one another if they share a side

Queen criterion: two units are close if they share a side or an edge.

Weights Matrix

▶ At the heart of traditional spatial econometrics is the definition of the *weights matrix*:

$$W = \begin{pmatrix} w_{11} & \cdots & w_{n1} \\ \vdots & w_{ij} & \vdots \\ \vdots & \ddots & \vdots \\ w_{n_1} & \cdots & w_{nn} \end{pmatrix}_{n \neq n}$$

$$(1)$$

with generic element:

$$w_{ij} = \begin{cases} 1 & \text{if } j \in N(i) \\ 0 & \text{o.w} \end{cases} \tag{2}$$

N(i) being the set of neighbors of location j. By convention, the diagonal elements are set to zero, i.e. $w_{ii} = 0$.

Weights Matrix

- ▶ The specification of the neighboring set (N(i)) is quite arbitrary and there's a wide range of suggestions in the literature.
 - Rook criterion
 - Queen criterion
 - ▶ Two observations are neighbors if they are within a certain distance, i.e., $j \in N(j)$ if $d_{ij} < d_{max}$ where d is the distance between location i and j.
 - Closest neighbor, ties can be solved randomly
 - More general matrices can also be specified by considering entries of w_{ij} as functions of geographical, economic or social distances between areas rather than simply characterized by dichotomous entries

Region 1			
		Region 2	
		Region 4	
			Region 3
Region 5	Region 6	Region 7	
			Region 8

Adjacency Criterion

Nearest Neighbor

Region 1		Region 2	
		Region 4	
			Region 3
Region 5	Region 6	Region 7	
			Region 8

$$W = \left(\begin{array}{ccccccccc} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ \end{array}\right)_{8 \times 8}$$

Distance < 2

Conver hull

																			All A X
	ANTONIO NARIS	O TUNJUELITO RAFAEI	L URIBE URIBE CAN	DELARIA BARRIO	S UNIDOS TEUSAC	QUILLO PUENTE	ARANDA LOS	MARTIRES SUM	MAPAZ L	ISAQUEN CHA	PINERO SANTA	FE SA	N CRISTOBAL	USME CIUDA	ND BOLIVAR BI	isa kenn	EDY FONT	TIBON ENG	ATIVA SUBA
ANTONIO NARIÑO																			
TUNJUELITO																			
RAFAEL URIBE URIBE																			
CANDELARIA																			
BARRIOS UNIDOS																			
TEUSAQUILLO																			
PUENTE ARANDA																			
LOS MARTIRES																			
SLMAPAZ																			
USAQUEN																			
CHAPINERO																			
SANTA FE																			
SAN CRISTOBAL																			
USME																			
CIUDAD BOLIVAR																			
BOSA																			
KENNEDY																			
FONTIBON																			
ENGATIVA																			
SIRA		0 0		8									9						1 8

Quite often the W matrices are standardized to sum to one in each row

$$w_{ij}^* = \frac{w_{ij}}{\sum_{j=1}^n} w_{ij} \tag{3}$$

This can be quite useful since

$$L(y) = W^*y \tag{4}$$

in which each single element is equal to

$$L(y_{i}) = \sum_{j=1}^{n} w_{ij}^{*}y_{j}$$

$$= \sum_{j=1}^{n} \frac{w_{ij}y_{j}}{\sum_{j=1}^{n} w_{ij}}$$

$$= \frac{\sum_{j \in N(i)} y_{j}}{\#N(i)}$$

$$\#N(i)$$

$$(5)$$

$$\#N(i)$$

$$\#N(i)$$

$$\#N(i)$$

	ANTONIO NARIÑO	TUNJUELITO RAFAEL	. WRIBE URIBE	CANDELARIA	BARRIOS UNIDOS	TEUSAQUILLO	PUENTE ARANDA	LOS MARTIRES	SUMAPAZ	USAQUEN	CHAPINERO	SANTA FE	SAN CRISTOBAL	USME	CIUDAD BOLIVAR	BOSA	KENNEE
ANTONIO NARIÑO		0.1666667	0.1666667	0.0000000	0.0000000	0.0000000	0.1666667	0.1666667	0.0	0.00	0.0000000	0.1666667	0.1666667	0.0000000	0.0000000	0.00	9999999
TUNJUELITO	0.1666667	8.8988888	0.1666667	0.0000000	0.0000000	0.0000000	0.1666667	0.0000000	0.0	0.00	0.0000000	0.0000000	0.0000000	0.1666667	0.1666667	0.00	0.166666
RAFAEL URIBE URIBE	0.2500000	0.2500000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0	0.00	0.00000000	0.0000000	0.2500000	0.2500000	0.0000000	8.98	9000000
CANDELARIA	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000			0.0000000		0.0000000	0.0000000	0.0000000	0.00	9000000
BARRIOS UNIDOS	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.2000000	0.0000000	0.0000000	0.0	0.20	0.2000000	0.0000000	0.0000000	0.0000000	0.0000000	0.00	9999999
TEUSAQUILLO	0.0000000	0.0000000	0.0000000	0.0000000	0.1428571	0.0000000	0.1428571	0.1428571	0.0	0.00	0.1428571	0.1428571	0.0000000	0.0000000	0.0000000	8.98	9000000
PUENTE ARANDA	0.1666667	0.1666667	0.0000000	0.0000000	0.0000000	0.1666667	0.0000000	0.1666667	0.0	0.00	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.00	0.16666€
LOS MARTIRES	0.2500000	0.0000000	0.0000000	0.0000000	0.0000000	0.2500000	0.2500000	0.0000000	0.0	0.00	0.0000000	0.2500000	0.0000000	0.0000000	0.0000000	0.00	3000000
SUMAPAZ	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0	0.00	0.0000000	0.0000000	0.0000000	1.0000000	0.0000000	8.98	9000000
USAQUEN	0.0000000	0.0000000	0.0000000	0.0000000	0.3333333	0.0000000	0.0000000	0.0000000	0.0	0.00	0.3333333	0.0000000	0.0000000	0.0000000	0.0000000	0.00	9000000
CHAPINERO	0.0000000	0.0000000	0.0000000	0.0000000	0.2000000	0.2000000	0.0000000	0.0000000	0.0	0.20	0.0000000	0.2000000	0.0000000	0.0000000	0.0000000	0.00	3000000
SANTA FE		0.0000000	0.0000000	0.1666667	0.0000000	0.1666667	0.0000000	0.1666667	0.0	0.00	0.1666667	0.0000000	0.1666667	0.0000000	0.0000000	8.98	9000000
SAN CRISTOBAL	0.2500000	0,2000000	0.2500000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0	0.00	0.0000000	0.2500000	0.0000000	0.2500000	0.0000000	8.98	9000000
USME	0.0000000	0 2000000	0.2000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.2	0.00	0.0000000	0.0000000	0.2000000	0.0000000	0.2000000	0.00	3000000
CIUDAD BOLIVAR	0.0000000	0.2500000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0	0.00	0.0000000	0.0000000	0.0000000	0.2500000	0.0000000	0.25	0.250000
BOSA	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0	0.00	0.0000000	0.0000000	0.0000000	0.0000000	0.5000000	8.98	0.500000
KENNEDY	0.0000000	0.2000000	0.0000000	0.0000000	0.0000000	0.0000000	0.2000000	0.0000000			0.0000000		0.0000000	0.0000000	0.2000000	0.20	3000000
FONTIBON	0.0000000	0.0000000	0.0000000	0.0000000	8.0000000	0.2500000	0.2500000	0.0000000	0.0	0.00	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.00	0.250000
ENGATIVA	0.0000000	0.0000000	0.0000000	0.0000000	0.2500000	0.2500000	0.0000000	0.0000000	0.0	0.00	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	8.98	9000000
SUBA	0.0000000	0.0000000	0.0000000	0.0000000	0.2500000	0.0000000	0.0000000	0.0000000	0.0	0.25	0.2500000	0.0000000	0.0000000	0.0000000	0.0000000	0.00	998698.6

								_		
	Piemonte	Valle D'Aosta Lombardia	Trentino-Alto A	dige Veneto	Friuli	Venezia Giuli	a Liguria	Emilia-Romagna T	oscana Umbria	Marche
iemonte	0.0000000	0.25 0.2500000		0.00000000		0.0	0.2500000	0.2500000 0.0	000000 0.0000000	0.0000000
	1.0000000	0.00 0.0000000		0.00000000			0.0000000	0.00000000 0.0	000000 0.0000000	0.0000000
	0.2500000	0.00 0.0000000		0.25 0.2500000			0.0000000		000000 0.0000000	0.0000000
rentino-Alto Adige	0.0000000	0.00 0.5000000		0.00 0.5000000		0.0	0.0000000	0.00000000 0.0	000000 0.0000000	0.0000000
eneto .	0.0000000	0.00 0.2500000		0.25 0.00000000		0.2	5 0.0000000	0.2500000 0.0	000000 0.0000000	0.0000000
riuli Venezia Giulia	0.0000000	0.00 0.0000000		3.00 1.0000000		0.0	0.0000000	0.00000000 0.0	000000 0.0000000	0.0000000
iguria.	0.3333333	0.00 0.0000000		0.00000000		0.0	0.0000000	0.3333333 0.3	333333 0.0000000	0.0000000
milia-Romagna	0.1666667	0.00 0.1666667		0.00 0.1666667		0.0	0.1666667	0.0000000 0.1	666667 0.0000000	0.1666667
oscana	0.0000000	0.00 0.0000000		0.00000000		0.0	0.2000000	0.2000000 0.0	000000 0.2000000	0.2000000
Jmbria	0.0000000	0.00 0.0000000		0.00000000		0.0	0.0000000	0.0000000 0.3	333333 0.0000000	0.3333333
Marche	0.0000000	0.00 0.0000000		0.00000000		0.0	0.0000000	0.2000000 0.2	800000 0.2000008	0.0000000
.azio	0.0000000	0.00 0.0000000		0.00000000		0.0	0.0000000	0.0000000 0.1	666667 0.1666667	0.1666667
Abruzzo	0.0000000	0.00 0.0000000		0.00000000		0.0	0.0000000	0.00000000 0.0	000000 0.0000000	0.3333333
folise	0.0000000	0.00 0.0000000		0.00000000		0.0	0.0000000	0.00000000 0.0	0.000000 0.0000000	0.0000000
ampania	0.0000000	0.00 0.0000000		0.00000000		0.0	0.0000000	0.00000000 0.0	0.000000	0.0000000
uglia	0.0000000	0.00 0.0000000		0.00000000		0.0	0.0000000	0.00000000 0.0	0.000000	0.0000000
Basilicata	0.0000000	0.00 0.0000000		0.0000000.0000000		0.0	0.0000000	0.00000000 0.0	8600000 0.00000000	0.0000000
alabria	0.0000000	0.00 0.0000000		0.0000000.0000000			0.0000000		8600000 0.00000000	0.0000000
icilia	0.0000000	0.00 0.0000000		0.0000000.0000000		0.0	0.0000000	0.00000000 0.0	000000 0.0000000	0.0000000
ardegna	0.0000000	0.00 0.0000000		0.00 0.0000000		0.0	0.0000000	0.00000000 0.0	8600000 0.0060000	0.0000000
	Lazio	Abruzzo Molise Car	pania Puglia	Basilicata C	alabria	Sicilia Sarde	gna			
iemonte	0.0000000	0.0000000 0.0000000 0.00	000000 0.0000000	0.0000000 0.	8669866	ø	. 0			
alle D'Aosta	0.0000000	0.0000000 0.0000000 0.00	000000 0.0000000	0.0000000 0.	8669866	ø	0			
ombardia	0.0000000	0.0000000 0.0000000 0.00	000000 0.0000000	0.0000000 0.	8669866	ø	0			
rentino-Alto Adige	0.0000000	0.0000000 0.0000000 0.00	000000 0.0000000	0.0000000 0.	8669866	ø	0			
eneto -	0.0000000	0.0000000 0.0000000 0.00	000000 0.0000000	0.0000000 0.	8669866	ø	0			
riuli Venezia Giulia	0.0000000	0.0000000 0.0000000 0.00	000000 0.0000000	0.0000000 0.	8669866	ø	0			
iguria	0.0000000	0.0000000 0.0000000 0.00	000000 0.0000000	0.0000000 0.	8669866	ø	0			
milia-Romaana	0.0000000	0.0000000 0.0000000 0.00	000000 0.0000000	0.0000000 0.	8669866					
oscana	0.2000000	0.0000000 0.0000000 0.00	000000 0.0000000	0.0000000 0.	8669866					
Imbria	0.3333333	0.0000000 0.0000000 0.00	000000 0.0000000	0.0000000 0.	8669866					
farche	0.2000000	0.2000000 0.0000000 0.00	000000 0.0000000	0.0000000 0.	8669866	ø				
azio	0.00000000	0.1666667 0.1666667 0.16	66667 0.0000000	0.0000000 0.	8669866	ø				
bruzzo	0.3333333	0.0000000 0.3333333 0.00	000000 0.0000000	0.0000000 0.	0000000	ø				
folise	0.2500000	0.2500000 0.0000000 0.25	00000 0.2500000	0.0000000 0.	0000000	0	9			
ampania	0.2500000	0.0000000 0.2500000 0.00	00000 0.2500000	0.2500000 0.	0000000	0	9			
uglia	0.0000000	0.0000000 0.3333333 0.33	33333 0.0000000	0.3333333 0.	0000000	0	9			
asilicata		0.0000000 0.0000000 0.3		0.00000000 0.		ō	ø			
alabria	0.0000000	0.0000000 0.0000000 0.00	000000 0 0000000	1.0000000 0.	0000000	0	0			
icilia		0.0000000 0.0000000 0.00		0.0000000 0.		ō	0			
		9,0000000 0,0000000 0,00				ō	-0-)			
· · · · · · · · · · · · · · · · · · ·							$-\lambda$			

```
require("sf")
require("spdep")
require("dplyr")

chi.poly<-read_sf("foreclosures/foreclosures.shp")
st_crs(chi.poly) #doesn't have a projection

## Coordinate Reference System: NA
```

```
chi.poly<-st_transform(chi.poly, 26916) #reproject planarly
#NAD83 UTM Zone 16N
st_crs(chi.poly) /
## Coordinate Reference System:
     User input: EPSG: 26916
##
     wkt.
## PROJCS["NAD83 / UTM zone 16N",
      GEOGCS["NAD83".
##
##
           DATUM["North American Datum 1983".
               SPHEROID["GRS 1980",6378137,298.257222101,
##
                   AUTHORITY["EPSG", "7019"]],
##
               TOWGS84[0.0.0.0.0.0.0].
##
##
               AUTHORITY["EPSG", "6269"]].
          PRIMEM["Greenwich".0.
##
               AUTHORITY ["EPSG", "8901"]],
##
##
          UNIT["degree", 0.0174532925199433,
##
               AUTHORITY ["EPSG", "9122"]],
           AUTHORITY["EPSG","4269"]],
##
      PROJECTION["Transverse Mercator"].
##
      PARAMETER["latitude of origin".0].
##
       PARAMETER["central meridian".-87].
##
      PARAMETER["scale factor".0.9996].
##
##
      PARAMETER["false_easting",500000],
##
      PARAMETER["false_northing",0],
      UNIT["metre",1,
##
##
          AUTHORITY["EPSG","9001"]].
       AXIS["Easting", EAST],
##
       AXIS["Northing", NORTH],
##
##
      AUTHORITY["EPSG","26916"]]
```

2014-2015

```
str(chi.poly)
```

```
## tibble [897 x 17] (S3: sf/tbl df/tbl/data.frame)
## $ SP ID : chr [1:897] "1" "2" "3" "4" ...
## $ fips : chr [1:897] "17031010100" "17031010200" "17031010300" "17031010400" ...
## $ est fcs : int [1:897] 43 129 55 21 64 56 107 43 7 51 ...
## $ est mtgs : int [1:897] 904 2122 1151 574 1427 1241 1959 830 208 928 ...
## $ est_fcs_rt: num [1:897] 4.76 6.08 4.78 3.66 4.48 4.51 5.46 5.18 3.37 5.5 ...
## $ res_addr : int [1:897] 2530 3947 3204 2306 5485 2994 3701 1694 443 1552 ...
## $ est 90d va: num [1:897] 12.61 12.36 10.46 5.03 8.44 ...
## $ county " Cook County " Co
## $ fips num : num [1:897] 1.7e+10 1.7e+10 1.7e+10 1.7e+10 1.7e+10 ...
## $ totpop : int [1:897] 5391 10706 6649 5325 10944 7178 10799 5403 1089 3634 ...
       $ tothu : int [1:897] 2557 3981 3281 2464 5843 3136 3875 1768 453 1555 ...
       $ huage : int [1:897] 61 53 56 60 54 58 48 57 61 48 ...
       $ oomedval : int [1:897] 169900 147000 119800 151500 143600 145900 153400 170500 215900 114700 ...
       $ property : num [1:897] 646 914 478 509 641 612 678 332 147 351 ...
## $ violent : num [1:897] 433 421 235 159 240 266 272 146 78 84 ...
## $ geometry :sfc_POLYGON of length 897; first list element: List of 1
         ..$: num [1:15, 1:2] 443923 444329 444814 444839 444935 ...
## ..- attr(*, "class")= chr [1:3] "XY" "POLYGON" "sfg"
## - attr(*, "sf column")= chr "geometry"
## ..- attr(*, "names")= chr [1:16] "SP_ID" "fips" "est_fcs" "est_mtgs" ...
```



```
Folse (Rook)
list.queen <-poly2nb(chi.poly), queen=TRUE)
W<-nb2listw(list.queen, style="W", zero.policy=TRUE)
W nhlnot -> motr ( 7
                                                  row stand
## Characteristics of weights list object:
## Neighbour list object:
                                           I Inchye e 60 g'
motiener reina
## Number of regions: 897
## Number of nonzero links: 6140
## Percentage nonzero weights: 0.7631036
## Average number of links: 6.845039
##
## Weights style: W
## Weights constants summary:
          nn SO
                     S1
## W 897 804609 897 274,4893 3640,864
```

```
plot(W,st_geometry(st_centroid(chi.poly)))
```



```
coords <- st_centroid(st_geometry(chi.poly), of_largest_polygon=TRUE)
W_dist<-dnearneigh(coords,0,1000)
W_dist</pre>
```

```
## Number of regions: 897

## Number of nonzero links: 5448

## Percentage nonzero weights: 0.6770991

## Average number of links: 6.073579

## 55 regions with no links:
```

141 142 143 145 153 154 155 158 462 631 637 638 642 643 644 645 655 656 657 658 659 758 759 769 820 821 822

plot(W_dist, coords)

Neighbour list object:


```
W_dist<-dnearneigh(coords,0,4300)
W_dist
```

```
## Number of regions: 897

## Number of nonzero links: 87988

## Percentage nonzero weights: 10.9355

## Average number of links: 98.09142
```

plot(W_dist, coords)

Neighbour list object:

Traditional Spatial Econometrics

Spatial Autoregressive (SAR) Models

TS yt = yt 1 60 yt = Lyt + Ct

 Spatial lag dependence in a regression setting can be modeled similar to an autoregressive process in time series. Formally,

similar to the presence of

- ▶ Wy induces a nonzero correlation with the error term, similar to the presence of an endogenous variable.
- ▶ Unlike to time series, Wy_i is always correlated with ϵ_i
- ▶ OLS estimates in the non spatial model will be biased and inconsistent. (Anselin and Bera, 1998)
- ► The estimation of the SAR model can be approached in two ways.
 - 1 Assume normality of the error term and use maximum likelihood.
 - 2 Use 2SLS
- ► In R the function lagsarlm uses MLE

► The usual prolegomena

```
set.seed(101010) #sets a seed
#70% train
indic<-sample(1:nrow(chi.poly),floor(.7*nrow(chi.poly)))

#Partition the sample
train<-chi.poly[indic,]
test<-chi.poly[-indic,]

ols<-lm(violent_est_fcs_rt+bls_unemp, data=train)
test$yhat<-predict(ols,newdata=test)
mean((test$violent_test$yhat)^2)</pre>
```

```
## [1] 29773.64
```

▶ Modeling the spatial structure with a SAR Model

```
list.queen_train<-poly2nb(train, queen=TRUE)
W_train<-nb2listw(list.queen_train, style="W", zero.policy=TRUE)
W_train

Error in print.listw(x) : regions with no neighbours found, use zero.policy=TRUE
plot(train["fips"])</pre>
```


Use distance instead

```
coords <- st_centroid(st_geometry(train), of_largest_polygon=TRUE)</pre>
W_train<-dnearneigh(coords,0,4300)
W_train <-nb2listw(W_train, style="W", zero.policy=TRUE)
coords <- st_centroid(st_geometry(test), of_largest_polygon=TRUE)</pre>
W_test<-dnearneigh(coords,0,4300)
W_test <- nb2listw(W_test, style="W", zero.policy=TRUE)
require("spatialreg")
sar.chi<-lagsarlm(yiolent~est_fcs_rt+bls_unemp, data=train, W_train)</pre>
test$yhat_sar<-predict(sar.chi,newdata=test,listw=W_test)
```

Comparing to OLS

```
mean((test$violent-test$yhat)^2)

## [1] 29773.64

mean((test$violent-test$yhat_sar)^2)
```

[1] 28662.23

Review & Next Steps

- ► Today:
 - Closeness
 - Weights Matrix
 - Examples of Weight Matrices Weights Matrix in R
 - Traditional Spatial Regressions
 - Prediction with SAR Models
- Next class: More on Spatial Regressions
- Questions? Questions about software?

Further Readings

style & Bure

- Arbia, G. (2014). A primer for spatial econometrics with applications in R. Palgrave Macmillan. (Chapter 2 and 3)
- Anselin, Luc, & Anil K Bera. 1998. "Spatial Dependence in Linear Regression Models with an Introduction to Spatial Econometrics." Statistics Textbooks and Monographs 155. MARCEL DEKKER AG: 237–90.
- Sarmiento-Barbieri, I. (2016). An Introduction to Spatial Econometrics in R. http: //www.econ.uiuc.edu/~lab/workshop/Spatial_in_R.html
- ► Tobler, WR. 1979. "Cellular Geography." In Philosophy in Geography, 379–86. Springer.