Övningar till lektion 6

Strukturer, sanning, ekvivalens och konsekvens

```
Låt \sigma_1 = \langle a; ; P, Q, R \rangle \text{ med ställighet } \langle 0; ; 1, 1, 2 \rangle, \sigma_2 = \langle a; \oplus; \rangle \text{ av ställighet } \langle 0; 2; \rangle, \sigma_3 = \langle ; ; R \rangle \text{ av ställighet } \langle ; ; 3 \rangle, \sigma_4 = \langle ; ; E, F \rangle \text{ av ställighet } \langle ; ; 1, 1 \rangle \text{ och } \sigma_5 = \langle a; ; S \rangle \text{ av ställighet } \langle 0; ; 2 \rangle.
```

- 1. Låt $\mathcal{M} = \langle \{a_0, b_0, c_0\}, b_0; \{a_0, c_0\}, \{b_0\}, \{(a_0, c_0), (b_0, c_0)\} \rangle$ vara en σ_1 struktur (så $a^{\mathcal{M}} = b_0$).
 - Rita en bild och visualisera hur \mathcal{M} ser ut.

Vilka av följande stämmer? Förklara också varför det stämmer eller inte gör det. Avgör också om det som står till höger om ' \models ' är en sats i $LR(\sigma_1)$ eller ej.

- (a) $\mathcal{M} \models Q(a) \land P(a_0)$
- (b) $\mathcal{M} \models \exists x (R(x, a))$
- (c) $\mathcal{M} \models \forall y(Q(y) \rightarrow R(y, c_0))$
- (d) $\mathcal{M} \models \forall y (P(y) \rightarrow R(y, c_0))$
- (e) $\mathcal{M} \models \exists z \forall x (R(z,x))$
- (f) $\mathcal{M} \models \exists z \forall x \neg (R(x, z))$
- 2. Låt $\mathcal{N} = \langle \{a_0, b_0, c_0\}, a_0; \{a_0, b_0\}, \{c_0\}, \{(a_0, b_0), (b_0, c_0), (a_0, c_0)\} \rangle$ vara en σ_1 struktur (och notera att där $a^{\mathcal{N}} = a_0$ i denna struktur).
 - Rita en bild och visualisera hur \mathcal{M} ser ut.

Vilka av (a) – (d) stämmer? Förklara också varför det stämmer eller inte stämmer. Avgör också om det som står till höger om ' \models ' är en sats i $LR(\sigma_1)$.

- (a) $\mathcal{N} \models Q(a) \land P(a_0)$
- (b) $\mathcal{N} \models \exists x (R(x, a))$
- (c) $\mathcal{N} \models \forall y(Q(y) \rightarrow R(y, c_0))$
- (d) $\mathcal{N} \models \forall y (P(y) \rightarrow R(y, c_0))$
- (e) Följande stämmer: $\mathcal{N} \models \exists y(Q(y) \rightarrow R(y, c_0))$. Motivera varför.
- 3. Hitta satser (dvs slutna formler) $\varphi_1, \varphi_2, \varphi_3, \varphi_4 \in LR(\sigma_1)$ så att för \mathcal{M} och \mathcal{N} i uppgift 2 respektive 3:
 - (a) $\mathcal{M} \models \varphi_1 \text{ men } \mathcal{N} \not\models \varphi_1$.
 - (b) $\mathcal{M} \not\models \varphi_2 \text{ men } \mathcal{N} \models \varphi_2$.
 - (c) $\mathcal{M} \models \varphi_3$ och $\mathcal{N} \models \varphi_3$.
 - (d) $\mathcal{M} \not\models \varphi_4$ och $\mathcal{N} \not\models \varphi_4$.

- 4. Låt $\mathcal{A} = \langle \{0,1\} ; a^{\mathcal{A}}; \oplus^{\mathcal{A}}; \rangle$ vara en σ_2 -struktur där $a^{\mathcal{A}} = 0$ samt $0 \oplus^{\mathcal{A}} c = 0$ och $1 \oplus^{\mathcal{A}} c = 1$ för alla $c \in \{0,1\}$. Avgör om följande stämmer. Förklara också varför det stämmer eller inte gör det.
 - (a) $\mathcal{A} \models \forall x (x \oplus a = x)$
 - (b) $\mathcal{A} \models \forall x (x \oplus x = a \rightarrow x = a)$
 - (c) $\mathcal{A} \models \forall x \forall y ((x \oplus y = y \oplus x) \rightarrow x = y)$
 - (d) $\mathcal{A} \models \exists x \forall y (x \oplus y = y)$
- 5. För var och en av formlerna i deluppgifterna till föregående uppgift, hitta en σ_2 -struktur som gör formeln falsk. (*Tips: Återanvänd* \mathcal{A} *när du kan*)
- 6. Definiera följande begrepp och notationer, där σ är någon signatur, $\varphi, \psi \in LR(\sigma)$ är satser och $T \subseteq LR(\sigma)$ är en mängd av satser, med andra ord en σ -teori (eller bara teori):
 - (a) \mathcal{M} är en modell av/för φ , med symboler: $\mathcal{M} \models \varphi$ (eller $\models_{\mathcal{M}} \varphi$).
 - (b) \mathcal{M} är en modell av/för T, med symboler: $\mathcal{M} \models T$ (eller $\models_{\mathcal{M}} T$).
 - (c) φ och ψ är (logiskt) ekvivalenta.
 - (d) φ är en (logisk) konsekvens av T, med symboler: $T \models \varphi$. (Man kan också skriva ' \models_{σ} ' för att tydliggöra vilken signatur man använder).
 - (e) \mathcal{M} är ett motexempel till φ (eller till T). (Vi kan också säga motmodell.)
 - (f) \mathcal{M} är ett motexempel till $T \models \varphi$.
 - (g) φ är satisfierbar/konsistent.
 - (h) φ är valid (eller logisk sanning).
 - (i) φ är osatisfierbar/inkonsistent.
 - (j) Följande stämmer: φ och psi är ekvivalenta om och endast om $\varphi \models \psi$ och $\psi \models \varphi$. Förklara varför.
- 7. (svårare) Låt T vara följande σ_3 -teori:

$$T \ = \ \{\exists x\exists y \forall z R(x,y,z), \ \forall x \forall y (R(x,y,y) \leftrightarrow R(x,x,y)), \ \forall x \neg R(x,x,x), \ \forall x \forall y (\neg x = y \rightarrow R(y,x,y))\}$$

- (a) Hitta en modell \mathcal{B} för T och en σ_3 -struktur \mathcal{C} som inte är en modell för T.
- (b) Hitta en modell för T som har o \ddot{a} ndligt universum (o \dot{c} kså kallat dom \ddot{a} n).
- (c) Finns det någon modell för T som har exakt 1 element i sitt universum?
- (d) Låt φ vara formeln nedan. Finns det någon modell \mathcal{M} för T så att $\mathcal{M} \models \varphi$? Om 'Nej', motivera varför. Om 'Ja' svara då även på: hur många element kan en sådan struktur innehålla?

$$\forall x \forall y \forall z \Big((x \neq y \land R(x, y, z)) \rightarrow \neg (R(z, x, z) \land R(x, z, x)) \Big)$$

- 8. Följande satser i $LR(\sigma_4)$ är inte logiska sanningar, visa detta genom att hitta motmodeller till vardera påståendet.
 - (a) $\exists x (E(x) \lor \neg F(x))$
 - (b) $\forall x ((E(x) \rightarrow F(x)) \lor \neg E(x))$
 - (c) $\forall x \exists y (E(x) \lor F(y))$
 - (d) $\forall x \forall y \Big(\big((E(x) \land F(y)) \to E(y) \big)$

- 9. Nedan görs påståenden om satser från $LR(\sigma_5)$ som säger att satsen till höger om ' $\not\models$ ' inte är en logisk konsekvens av satsen/satserna till vänster om ' $\not\models$ '. Visa detta genom att hitta en motmodell i vart och ett av fallen.
 - (a) $\exists x \exists y R(x, y) \not\models \exists x R(a, x)$
 - (b) $\exists x R(x, a) \not\models \forall x R(x, a)$
 - (c) $\forall x R(x, a) \not\models \forall x R(a, x)$
 - (d) $\{ \forall x (R(x, a) \to R(a, x)), R(a, a) \} \not\models \forall x R(x, x)$
 - (e) $\{ \forall x \exists y R(x, y), \exists x R(x, x) \} \not\models \exists x R(x, a)$