Extramaterial: Formler och räkneregler · 1MA020

Vilhelm Agdur¹

¹vilhelm.agdur@math.uu.se

20 februari 2023

I detta dokument ligger en samling av viktiga resultat och räkneregler, sammanfattade utan bevis.

Den tolvfaldiga vägen

	Generellt <i>f</i>	Injektivt f	Surjektivt f
Bägge särskiljbara	Ord ur X av längd n	Permutation ur X av längd n	Surjektion från N till X
	χ^n	$\frac{x!}{(x-n)!}$	$x!\binom{n}{x}$
Osärskiljbara objekt	Multi-delmängd av X	Deleger des Verretedeler	Kompositioner av n
	av storlek <i>n</i>	Delmängd av X av storlek n	av längd x
	$\binom{n+x-1}{n}$	$\binom{x}{n}$	$\binom{n-1}{n-x}$
Osärskiljbara lådor	Mängdpartition av N	Mängdpartition av N	Mängdpartition av N
	$i \le x$ delar	$i \le x$ delar av storlek 1	i x delar
	$\sum_{k=1}^{x} {n \brace k}$	1 om $n \le x$, 0 annars	$\binom{n}{x}$
Bägge osärskiljbara	Heltalspartition av n i $\leq x$ delar $p_x(n+x)$	Sätt att skriva <i>n</i> som	Heltalspartitioner av n
		summan av $\leq x$ ettor	i x delar
		1 om $n \le x$, 0 annars	$p_x(n)$

Räkneregler för genererande funktioner

Lemma 1 (Räkneregler för genererande funktioner). *Antag att vi har en följd* $\{a_k\}_{k=0}^{\infty}$, med genererande funktion F_a . Då gäller det att

1. För varje $j \geq 1$ är

$$\sum_{k=j}^{\infty} a_k x^k = \left(\sum_{k=0}^{\infty} a_k x^k\right) - \left(\sum_{k=0}^{k=j-1} a_k x^k\right) = F_a(x) - \sum_{k=0}^{k=j-1} a_k x^k$$

2. För alla $m \ge 0$, $l \ge -m$ gäller det att

$$\sum_{k=m}^{\infty} a_k x^{k+l} = x^l \left(\sum_{k=m}^{\infty} a_k x^k \right) = x^l \left(F_a(x) - \sum_{k=0}^{m-1} a_k x^k \right)$$

3. Det gäller att²

$$\sum_{k=0}^{\infty} k a_k x^k = \frac{F_a'(x)}{x}.$$

Vanliga genererande funktioner

² Denna räkneregel kan förstås generealiseras till att högre potenser av k motsvarar högre derivator – och om vi istället delar med någon potens av k får vi primitiva funktioner till den genererande funktionen.

Följd		Genererande funktion	
(1,0,0,.	1		
(1,1,1,)		$\frac{1}{1-x}$	
$a_k = 1 \text{ om } k \le r$, 0 annars	$\frac{1-x^{n+1}}{1-x}$	
Fixt n , $a_k = \binom{n}{k}$		$(1+x)^n$	
Fixt n , $a_k = \binom{n+k-1}{k}$		$\frac{1}{(1-x)^n}$	
Fibonaccit	alen	$\frac{1}{1-r-r^2}$	
$f_0 = f_1 = 1, f_{k+1} = f_k + f_{k-1} \text{ för } k \ge 1$			
Indikatorfunktion fo	ör jämna talen	$\frac{1}{1-x^2}$	
(1,0,1,0,1,	0,)	1-x2	
Catalanta	$\frac{1-\sqrt{1-4x}}{2x}$		
Följd	Exponentiell ger	nererande funktion	
(1,0,0,)		1	
$(1,1,1,\ldots)$		e^{x}	
(0!, 1!, 2!, 3!,)	.	$\frac{1}{1-x}$	
Fixt n , $a_k = \frac{n!}{(n-k)!}$	(1	$(x^n + x)^n$	