

Library for Static Analysis of PE Malware

by Katja Hahn

Master Thesis

HTWK Leipzig

Fakultät Informatik, Mathematik und Naturwissenschaften

First Assessor: Prof. Dr. rer. nat. habil. Michael Frank (HTWK Leipzig)

Second Assessor: Max Mustermann

Leipzig, September 2014

Contents

Li	st of Figures	ii		
Li	ist of Tables			
Li	List of Acronyms			
1	Introduction			
2	Malware Taxonomy2.1 Behavioural Malware Types	4 4 5		
3	3 Detection by Antivirus Software 6			
4	4 Malware Hiding Techniques			
5	Malware Analysis 5.1 Malware Analysis Techniques	8 8		
6	Portable Executable Format 6.1 General Structure and PE Headers	9 9 11		
7	Static Analysis Library 14			
8	8 Evaluation 1			
9	Das Competence Information Portal			
Bi	Bibliography			

List of Figures

6.1	Structure of a PE file	10
6.2	Typical Import Section Layout by [4, p. 61]	13

List of Tables

List of Acronyms

DLL Dynamic-Link Library

EXE Executable File

IAT Import Address Table

NZ New Executable

PE Portable Executable

 $ject\ File\ Format\ Specification$

VM Virtual Machine

Introduction

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi. Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat.

Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi.

Nam liber tempor cum soluta nobis eleifend option congue nihil imperdiet doming id quod mazim placerat facer possim assum. Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat.

Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis.

At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, At accusam aliquyam diam diam dolore dolores duo eirmod eos erat, et nonumy sed tempor et et invidunt justo labore Stet clita ea et gubergren, kasd magna no rebum. sanctus sea sed takimata ut vero voluptua. est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat.

Consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus.

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi. Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat.

Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi.

Nam liber tempor cum soluta nobis eleifend option congue nihil imperdiet doming id quod mazim placerat facer possim assum. Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo

Malware Taxonomy

2.1 Behavioural Malware Types

Usually malware analysts make guesses about the malware's behaviour and shape their further analysis to confirm (or refute) these guesses. This approach helps to speed up the analysis. [2, p. 3] Hereafter is an overview to the different types of malware depending on its behaviour.

Definition 1 (Downloader) A downloader is a piece of software that downloads other malicious programs. (cf. [2, p. 3])

Definition 2 (Rootkit) A rootkit is a software that has the purpose of hiding the presence of other malicious programs or activities. (cf. [2, p. 4])

A rootkit may conceal login activities, log files and processes. Rootkits are often coupled with backdoor functionality (see definition 3).

Definition 3 (Backdoor) A backdoor allows access to the system by circumventing the usual access protection mechanisms. (cf. [2, p. 3])

The backdoor is used by the attacker or other malicious programs to get access to the system later on.

Definition 4 (Launcher) A launcher is a software that executes other malicious programs. (cf. [2, p. 4])

A launcher mostly uses unusual techniques for running the malicious program in the hopes of providing stealth.

Definition 5 (Spam-sending malware) Spam-sending malware uses the victim's machine to send spam. (cf. [2, p. 4])

Attackers use this kind of malware to sell their spam-sending services.

Definition 6 (Information stealer) An information stealer is a malicous program that reads confidential data from the victim's computer and sends it to the attacker. (cf. [2, p.4])

Examples for information stealers are: keyloggers, sniffers, password hash grabbers [2, p. 3] and also some kinds of deceptive malware. The latter makes the user input confidential data by convincing the user that it provides an advantage. An example for a deceptive information stealer is a program that claims to add more money to the user's Paypal account; actually it sends the Paypal credentials the user puts into the program to the attacker's e-mail server.

Definition 7 (Botnet) A botnet is a collection computer programs on different machines that receive and execute instructions from a single server.

While some botnets are used legally, malicious botnets are installed without consent of the computer's owners and may be used to perform distributed denial of service attacks or for spam-sending (see definition 5).

Definition 8 (Scareware) Scareware tries to trick a user into buying something by frightening him. (cf. [2, p. 4])

A typical scareware example is a program that looks like an antivirus scanner and shows the user fake warnings about malicious code found on the system. It tells the user to buy a certain software in order to remove the malicious code.

Definition 9 (Virus) A virus recursively replicates itself by infecting or replacing other programs or modifying references to these programs to point to the virus code instead. A virus possibly mutates itself with new generations. (cf. [5, p. 27, 36])

A typical virus is executed if the user executes an infected host file.

Definition 10 (Worm) "Worms are network viruses, primarily replicating on networks." [5, p. 36]

Typically worms don't need a host file and execute themselves without the need of user interaction. [5, p. 36] But there are exceptions from that: e.g. worms that spread by mailing themselves need user interaction. A worm is a subclass of a virus by definition 10.

2.2 Mass Malware and Targeted Malware

Malware is not only classified by behaviour, but also by the attacker's goals. If the malware was designed to infect as many machines as possible, it is a *mass malware*. A *targeted malware* on the other hand was written to infect a certain machine, organization or company.

Detection by Antivirus Software

Malware Hiding Techniques

Malware Analysis

Definition 11 "Malware analysis is the art of dissecting malware to understand how it works, how to identify it, and how to defeat or eliminate it." [2, p. xxviii]

5.1 Malware Analysis Techniques

Static Analysis

Definition 12 Static analysis is the examination of a program without running it. [2, p. 2]

Static analysis includes e.g. viewing the file format information, finding strings or patterns of byte sequences, disassembling the program and subsequent examination of the intructions.

Dynamic Analysis

Definition 13 Dynamic analysis is the examination of a program while running it. [2, p. 2]

Dynamic analysis includes e.g. observing the program's behaviour in a Virtual Machine (VM) or a dedicated testing machine or examining the program in a debugger.

Portable Executable Format

The Portable Executable (PE) is a file format for image files used by Microsoft products for 32- and 64-bit system architectures. It is the successor of the New Executable (NZ) file format for 16-bit systems. The PE format is described in the Microsoft Portable Executable and Common Object File Format Specification (PE/COFF specification) [4]

PE file types, which are relevant for this thesis, are Dynamic-Link Library (DLL) and EXE files. DLL files export functions or data other programs can use. They can have various file endings, including .sys, .dll, ocx, .cpl and .drv. (cf. [3]) A DLL usually has no main entry point, but is loaded into the context of another process. EXE files have the file ending .exe. They usually don't export any functions. The system creates a new process upon launching the EXE. The system recognizes the file type by a certain flag in the PE headers. (see 6.1)

Both, EXE and DLL files, are considered as *image files* by the PE/COFF specification, because they contain executable code. In contrast to image files are object files (Common Object File Format or COFF), which don't contain executable code. The Common Object File Format is not an issue in the thesis.

Beleg

PortEx extracts the information from the PE format to assist in analysing malware. Therefore knowledge about the PE format is neccessary to understand the inner workings of the library PortEx.

6.1 General Structure and PE Headers

Figure 6.1 illustrates the structure of a PE file. An executable PE file always starts with the MS-DOS Stub. This is an application which is able to run in MS-DOS. The standard MS-DOS stub prints the message "This program cannot be run in DOS mode" and closes right after.

MSDOS stub		
unused		
PE Signature		
COFF File Header		
Optional Header		
Section Table		
Section 1		
Section 2		
Section 3		
Section n		
Overlay		

Figure 6.1: Structure of a PE file

To determine if a file is of a certain file format, signatures are used. The file format signature is usually at the very beginning of the file. Since the PE starts with the MS-DOS stub, which has a file signature itself, the PE signature is placed after. The offset to the PE signature is defined in location 0x3c of the MS-DOS stub, thus enables Windows to properly execute the PE file.

MZ, PE00

Right after the signature follow the COFF File Header, the Optional Header and the Section Table. The COFF File Header contains information about the type of the target machine, the number of sections, a time date stamp that indicates when the file was created, the size of the Optional Header and flags that indicate file characteristics including a flag that indicates whether the file is a DLL.

Despite its name the Optional Header is mandatory for image files. Only object files don't need it. The Optional Header has three parts: Standard Fields, Windows Specific Fields and a Data Directory Table. The Standard Fields of the Optional Header contain information necessary for loading and running the file. They determine for example, whether the image file allows a 64-bit address space (PE32+) or is limited to a 32-bit address space (PE32). They also declare i. a. the size of initialized, uninitialized data, the size of the code, the linker versions and the entry point of the image file. The Windows Specific fields provide additional information for the Windows loader and linker like the operating systems the image file can run on, alignment values, dll characteristics and the number of data directories in the Data Directory Table. A Data Directory Table entry consists of address and size for a table or string that the system uses. Examples are the import table, the export table or the resource table.

references

The Section Table consists of the section headers for the sections that make up the rest of the PE file. A section header describes i. a. characteristics, size, name and location of a section.

While the PE Headers described above are located at a fixed file offset, the rest of the PE contains data defined by pointers in the PE Headers. Data that was appended to the file, but is not part of the PEformat is called *overlay*. Overlay is not mapped into memory. The overlay is used by some applications as an easy way to store arbitrary data.

6.2 Special Sections

Sections may contain arbitrary information, which is only relevant to the application using them; but some sections have a special meaning. Their format is described in the PE/COFF specification [4]. These sections are recognized by entries in the Data Directory Table of the Optional Header or certain flags in the Section Table. They have typical section names which are also used in the specification to refer to the sections. These names are not mandatory, but a convention. That's why they can not be relied on while trying to find certain sections. Some of these special sections are described right after.

sections that are recognized by portex

Import Section

Every image file that imports symbols has an *Import Section*, also called *.idata Section*. The Import Section contains the Import Directory Table, several Import Lookup Tables, the Hint-Name Table and the Import Address Table (IAT). A typical layout of the Import Section is in figure 6.2

Every Import Directory Table entry points to an Import Lookup Table. Each Import Lookup Table describes the imported symbols of a single DLL.

The Hint-Name table entries have a hint and an ASCII name of the import. Each hint is an index to the Export Name Pointer Table of the DLL the image is importing from. Hints speed up the lookup of imports.

Null entries mark the end of the Import Directory Table and the Import Lookup Table.

The IAT is identical to the Import Directory Table except while the image is bound. In the latter case the IAT entries are overwritten with memory addresses of the imported symbols.

Export Section

The .edata Section or Export Section is generally found in DLLs. The section begins with the Export Directory Table, which contains general information and addresses to resolve imports from this section. The Export Directory Table points to an array of addresses called Export Address Table. Each address either points to code or data within the current image file, or is a forwarder address which points to a symbol in another DLL.

Other image files have two ways to import symbols from the current image file: They either use an index into the Export Address Table (the index is also called *ordinal*) or they use a public name of the symbol. Ordinals are defined in the Ordinal Table; public names are defined in the Export Name Table.

Entries of the Ordinal Table correspond to the Export Name Pointer Table entries by their position. Every entry is an ordinal that represents an index in the Export Address Table.

The Export Name Pointer Table is an array of addresses which point to names of the Export Name Table. These names are null-terminated ASCII strings. They are the public names that other image files can use to import the symbols.

Resource Section

Debug Section

Figure 6.2: Typical Import Section Layout by [4, p. 61]

Static Analysis Library

Evaluation

Das Competence Information Portal

soll mit Hilfe eines Berichtssystems erleichtert werden. Dazu gehört die Möglichkeit.
Mitarbeiter

remove

Bibliography

- [1] KATH, RANDY: The Portable Executable File Format from Top to Bottom. http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile2.html, 2013.
- [2] MICHAEL SIKORSKI, ANDREW HONIG: Practical Malware Analysis. No Starch Press, Inc., 2012.
- [3] MICROSOFT COOPERATION: What is a DLL? https://support.microsoft.com/kb/815065/EN-US, December 2007.
- [4] MICROSOFT COOPERATION: Microsoft PE and COFF specification. http://msdn.microsoft.com/library/windows/hardware/gg463125, 2013.
- [5] Szor, Peter: The Art of Computer Virus Research and Defense. Addison Wesley Professional, February 2005.

Dritter verfasst habe, dass ich keine anderen als die angegebenen Quellen und
Hilfsmittel benutzt und Zitate kenntlich gemacht habe. Diese Arbeit ist bislang
keiner anderen Prüfungsbehörde vorgelegt und auch nicht veröffentlicht worden.

Unterschrift

Leipzig, den _____

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig, ohne Hilfe