Universidade Federal de Minas Gerais - UFMG Curso de Graduação em Engenharia de Sistemas

EMA255 - Fluidos e Termodinâmica Computacional

Lista de Exercícios de Dinâmica dos Fluidos

Aluno: Raphael Henrique Braga Leivas

Matrícula: 2020028101

Belo Horizonte

Semestre 2023/1

1 Primeira Questão (6 pts)

1.1 Análise Analítica

Um fluido de viscosidade μ e massa específica ρ está em repouso sobre uma placa horizontal quando ela começa a se mover com velocidade constante U_0 . A Figura 1.1 exibe a geometria do problema.

Figura 1.1: Geometria da questão 1.

Fonte: elaboração própria.

Como mostra a Figura 1.1, a linha média do fluido começa a ser arrastada pelo movimento da placa, e a cada instante de tempo t_0 , t_1 e t_2 o movimento da placa atinge pontos cada vez mais altos da linha média do fluido. Nesse cenário, a velocidade horizontal u do fluido é uma função de duas variáveis: posição vertical y e tempo t.

A equação diferencial que modela o problema é

$$\frac{\partial u}{\partial t} = \frac{\mu}{\rho} \frac{\partial^2 u}{\partial y^2} \tag{1.1}$$

com as seguintes condições de contorno:

$$\begin{cases} u(0,t)=U_0, & \text{Condição de contorno 1} \\ u(H,t)=0, & \text{Condição de contorno 2} \\ u(y,0)=0, & \text{Condição inicial} \end{cases} \tag{1.2}$$

Veja que o problema é modelado por uma equação diferencial de segunda ordem em regime transiente, logo precisamos de duas condições de contorno e uma condição inicial.

No nosso sistema de coordenadas, y=0 corresponde ao ponto do fluido em contato com a placa, e y=H é a altura máxima que iremos considerar na análise. Note que, para H suficiente grande, faz sentido assumir que o movimento da placa não atinge esses pontos do fluido

a uma grande distância da placa, de modo que u(H,t)=0.

O problema dado por (1.1) e (1.2) possui solução analítica dada por

$$u(y,t) = U_0 \left[1 - erf\left(\frac{y}{2\sqrt{\frac{\mu}{\rho}t}}\right) \right]$$
 (1.3)

em que erf é a função erro dada por

$$erf(\beta) = \frac{2}{\sqrt{\pi}} \int_0^{\beta} e^{-x^2} dx$$
 (1.4)

Usando linguagem R e a IDE RStudio, é possível obter a distribuição de velocidades do fluido a partir da equação (1.3), uma vez que a função erro erf já está implementada em pacotes da linguagem. Usamos os seguintes parâmetros:

• Domínio de análise vertical: $H=10~\mathrm{cm}$

• Domínio de análise no tempo: $T=1~\mathrm{s}$

• Viscosidade: $\mu = 0.29 \, \text{kg m}^{-1} \, \text{s}^{-1}$

• Massa específica: $\rho = 891 \text{ kg m}^{-3}$

• Velocidade da placa: $U_0 = 1 \text{ m/s}$

A Figura 1.2 exibe os valores de u(y,t) em função do tempo e posição vertical obtidos através da equação (1.3) com os parâmetros acima.

Figura 1.2: Velocidade u do fluido função da posição e tempo.

Fonte: elaboração própria.

As velocidades obtidas analiticamente na Figura 1.2 são condizentes com o analisado da geometria na Figura 1.1. Conforme o tempo passa, os

pontos do fluido apresentam velocidade u cada vez maior, uma vez que são arrastados pelo movimento da placa. Os pontos em $y>7~{\rm cm}$ já não sofrem nenhum efeito do movimento da placa até $t=1~{\rm s.}$

Analisando os pontos específicos pedidos no exercício, temos

$$u(3 \text{ cm}, 0.5 \text{ s}) = 0.096 \text{ m/s}$$

 $u(3 \text{ cm}, 1 \text{ s}) = 0.24 \text{ m/s}$

1.2 Análise Numérica

Uma vez entendido o que está acontecendo analiticamente, podemos fazer uma análise numérica do problema usando o método de diferenças finitas. O primeiro passo é discretizar a equação diferencial (1.1), trocando os diferenciais por diferenças.

$$\frac{u^{p+1} - u^p}{\Delta t} = \frac{\mu}{\rho} \frac{u_{i+1} - 2u_i + u_{i-1}}{(\Delta y)^2}$$
 (1.5)

Em (1.5) adotamos a seguinte simbologia:

- Sobrescrito p: indica o tempo da velocidade u. p indica o tempo atual, p+1 o próximo tempo
- ullet Subscrito i: indica a posição vertical da velocidade u. i indica a posição atual, i+1 a próxima posição
- Δt : intervalo de discretização no tempo
- Δy : intervalo de discretização no espaço (vertical)

Assim, a linha média da Figura 1.1 é discretizada em $H/\Delta y$ elementos de comprimento Δy , e o tempo é transcorrido a partir de t=0 até t=T em intervalos de Δt . Vamos reescrever (1.5) de modo a expressar a velocidade futura em função da velocidade antiga.