

$\begin{array}{c} {\bf Python~calculation~for~heat~pump}\\ {\bf SIN\text{-}6TU} \end{array}$

Parametric Heat Pump calculation

Dani Carbonell

dani.carbonell@solarenergy.ch

2019/03/12 at: 16:08:48 h

Table 1: Fitted coefficients for the heat pump.

Coefficient	Description	
	_	[kW]
PQ_1	1 st condenser polynomial coefficient	5.7227e+00
PQ_2	2^{st} condenser polynomial coefficient	5.7862e+01
PQ_3	3^{st} condenser polynomial coefficient	1.7105e+01
PQ_4	4^{st} condenser polynomial coefficient	-5.8641e + 01
PQ_5	5^{st} condenser polynomial coefficient	5.0943e+01
PQ_6	6^{st} condenser polynomial coefficient	-8.7032e+01
$PCOP_1$	1 st COP polynomial coefficient	6.4542e+00
$PCOP_2$	2^{st} COP polynomial coefficient	6.2041e+01
$PCOP_3$	3 st COP polynomial coefficient	-3.1154e+00
$PCOP_4$	4 st COP polynomial coefficient	-2.2610e + 02
$PCOP_5$	5^{st} COP polynomial coefficient	-5.4317e + 01
$PCOP_6$	6 st COP polynomial coefficient	-7.9441e+01
\dot{m}_{cond}	$1050.00 \ [kg/h]$	
\dot{m}_{evap}	$1050.00 \ [kg/h]$	
$\overline{COP_{nom} \text{ (B0W35)}}$	4.68	
$Q_{c,nom}$ (B0W35)	$6.13~\mathrm{kW}$	
COP_{nom} (B2W35)	4.93	
$Q_{c,nom}$ (B2W35)	$6.47~\mathrm{kW}$	
COP_{nom} (B10W35)	5.90	
$Q_{c,nom}$ (B10W35)	7.89 kW	

Table 2: Predicting results of the heat pump.

$T_{evap,in}$	$T_{evap,out}$	$T_{cond,in}$	$T_{cond,out}$	COP	Q_{cond}	Q_{evap}	W_{comp}	\dot{m}_{cond}	\dot{m}_{evap}	ΔT_{evap}	ΔT_{cond}
^{o}C	^{o}C	^{o}C	^{o}C	[-]	[kW]	[kW]	[kW]	kg/h	kg/h	K	K
-7.00	-10.35	25.94	30.00	4.01	4.97	3.73	1.24	1050	1050	3.3	4.1
-7.00	-10.18	34.72	38.75	3.55	4.93	3.54	1.39	1050	1050	3.2	4.0
-7.00	-9.79	43.63	47.50	2.92	4.72	3.11	1.62	1050	1050	2.8	3.9
-7.00	-9.08	52.68	56.25	2.13	4.36	2.31	2.05	1050	1050	2.1	3.6
-7.00	-7.47	61.84	65.00	1.16	3.87	0.53	3.34	1050	1050	0.5	3.2
-4.00	-7.81	25.53	30.00	4.45	5.46	4.24	1.23	1050	1050	3.8	4.5
-4.00	-7.62	34.32	38.75	3.92	5.41	4.03	1.38	1050	1050	3.6	4.4
-4.00	-7.22	43.25	47.50	3.22	5.20	3.58	1.61	1050	1050	3.2	4.3
-4.00	-6.49	52.31	56.25	2.35	4.82	2.77	2.05	1050	1050	2.5	3.9
-4.00	-4.90	61.47	65.00	1.30	4.31	1.00	3.31	1050	1050	0.9	3.5
-1.00	-5.27	25.11	30.00	4.87	5.97	4.75	1.23	1050	1050	4.3	4.9
-1.00	-5.07	33.92	38.75	4.27	5.91	4.53	1.38	1050	1050	4.1	4.8
-1.00	-4.65	42.85 51.92	47.50	3.51	5.68	4.06	1.62	1050	1050	3.6	4.6
-1.00	-3.90		56.25	2.56	5.29	3.22	2.06	1050	1050	2.9	4.3
-1.00 2.00	-2.31 -2.73	61.10 24.69	65.00 30.00	$1.44 \\ 5.29$	4.77 6.49	$1.46 \\ 5.27$	3.31 1.23	$1050 \\ 1050$	$1050 \\ 1050$	$\frac{1.3}{4.7}$	$\frac{3.9}{5.3}$
2.00	-2.73 -2.52	33.50	38.75	4.62	6.49	5.03	1.23	1050	1050 1050	4.7	5.3 5.2
2.00	-2.08	42.45	47.50	3.78	6.17	4.54	1.63	1050	1050	4.1	5.1
2.00	-1.31	51.53	56.25	2.77	5.77	3.69	2.08	1050	1050	3.3	4.7
2.00	0.29	60.71	65.00	1.57	5.24	1.90	3.33	1050	1050	1.7	4.3
5.00	-0.20	24.25	30.00	5.70	7.02	5.79	1.23	1050	1050	5.2	5.7
5.00	0.03	33.08	38.75	4.96	6.93	5.54	1.40	1050	1050	5.0	5.7
5.00	0.48	42.04	47.50	4.05	6.68	5.03	1.65	1050	1050	4.5	5.5
5.00	1.27	51.13	56.25	2.97	6.26	4.15	2.11	1050	1050	3.7	5.1
5.00	2.89	60.32	65.00	1.69	5.72	2.34	3.37	1050	1050	2.1	4.7
8.00	2.32	23.81	30.00	6.11	7.56	6.33	1.24	1050	1050	5.7	6.2
8.00	2.56	32.64	38.75	5.30	7.46	6.05	1.41	1050	1050	5.4	6.1
8.00	3.03	41.61	47.50	4.32	7.19	5.53	1.67	1050	1050	5.0	5.9
8.00	3.85	50.71	56.25	3.16	6.77	4.62	2.14	1050	1050	4.2	5.5
8.00	5.50	59.92	65.00	1.81	6.21	2.78	3.43	1050	1050	2.5	5.1
11.00	4.83	23.36	30.00	6.50	8.12	6.87	1.25	1050	1050	6.2	6.6
11.00	5.09	32.20	38.75	5.62	8.00	6.58	1.42	1050	1050	5.9	6.5
11.00	5.58	41.18	47.50	4.57	7.72	6.03	1.69	1050	1050	5.4	6.3
11.00	6.42	50.29	56.25	3.34	7.28	5.10	2.18	1050	1050	4.6	6.0
11.00	8.11	59.50	65.00	1.92	6.72	3.22	3.50	1050	1050	2.9	5.5
14.00	7.33	22.90	30.00	6.89	8.68	7.42	1.26	1050	1050	6.7	7.1
14.00	7.61	31.75	38.75	5.94	8.55	7.11	1.44	1050	1050	6.4	7.0
14.00	8.12	40.74	47.50	4.82	8.26	6.55	1.71	1050	1050	5.9	6.8
14.00	8.98	49.86	56.25	3.52	7.81	5.59	2.22	1050	1050	5.0	6.4
14.00	10.71	59.08	65.00	2.02	7.24	3.66	3.58	1050	1050	3.3	5.9
17.00	9.83	22.43	30.00	7.27	9.25	7.98	1.27	1050	1050	7.2	7.6
17.00	10.12	31.30	38.75	6.26	9.11	7.65	1.46	1050	1050	6.9	7.5
17.00	10.65	40.29	47.50	5.06	8.81	7.07	1.74	1050	1050	6.3	7.2
17.00	11.54	49.42	56.25	3.69	8.34	6.08	2.26	1050	1050	5.5	6.8
17.00	13.32	58.64	65.00	2.12	7.77	4.10	3.67	1050	1050	3.7	6.4
20.00	12.32	21.95	30.00	7.65	9.83	8.55	1.29	1050	1050	7.7	8.0 7.9
20.00	12.63 13.17	30.83 39.84	38.75 47.50	$6.56 \\ 5.30$	$9.68 \\ 9.37$	8.21 7.60	1.48 1.77	1050	$1050 \\ 1050$	7.4	7.9 7.7
20.00 20.00	13.17	39.84 48.97	47.50 56.25	3.85	9.37 8.89	6.58	2.31	$1050 \\ 1050$	1050 1050	6.8 5.9	7.7
20.00	15.92	48.97 58.20	65.00	2.20	8.31	4.54	3.77	1050	1050 1050	5.9 4.1	6.8
20.00	10.94	50.20	05.00	2.20	0.01	4.04	3.11	1000	1090	4.1	0.0

$\rm Meier/SIN\text{-}6TU/SIN\text{-}6TU\text{-}Cop.pdf$

Figure 1: COP Results for the heat pump at the selected points

$\rm Meier/SIN\text{-}6TU/SIN\text{-}6TU\text{-}Qc.pdf$

Figure 2: Q_c Results for the heat pump at the selected points