"PRIMER PRINCIPIO PARA SISTEMAS CERRADOS — ENERGÍA INTERNA" UNIDAD 3 C Y D

BIBLIOGRAFÍA:

- Cengel Y., Boles M., "Termodinámica"
- Calderón, Lisandro. Capítulos 2 y 3

UNIDAD 3:

PRIMER PRINCIPIO DE LA TERMODINAMICA PARA SISTEMAS CERRADOS

- 3.A. Calor. Naturaleza, concepto, unidades. Capacidad calorífica. Calor específico verdadero o instantáneo, variabilidad de los calores específicos. Calores específicos principales. Tablas de calores específicos. Calor específico medio. Flujo calorífico cuasiestático. Foco calorífico. Cálculo del calor intercambiado entre sistema y medio. Convención de signos.
- 3.B. Trabajo. Naturaleza, definición, concepto, signo. Cálculo del trabajo transferido entre sistema y medio. Trabajo de expansión o compresión cuasiestático o reversible. Diagrama P-V. Comparación entre calor y trabajo. Trabajo eléctrico. Equivalencia entre calor y trabajo.
- 3.C. Primer Principio de la Termodinámica. Primer principio, su enunciación experimental. Formulación matemática para un sistema cerrado, transformación cerrada y abierta Primer principio como balance de energía.
- 3.D. Energía Interna. Energía interna generalizada. Su naturaleza. Energía interna U como propiedad termodinámica. Experiencia de Joule. Ecuación energética de un Sistema Cerrado. Energía interna del gas ideal y no ideal.

PRIMER PRINCIPIO PARA UN SISTEMA CERRADO QUE SIGUE UNA TRANSFORMACIÓN CERRADA (CICLO)

Recordando:

TRANSFORMACIÓN CERRADA O CICLO

ENUNCIACIÓN EXPERIMENTAL DEL PRIMER PRINCIPIO

Ciclo I
$$\oint_I dQ = Q_I \qquad \qquad \qquad \qquad \qquad \qquad \oint_I dW = W_I$$
Ciclo II
$$\oint_{II} dQ = Q_{II} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \oint_{II} dW = W_{II} + W_{II}'$$
Ciclo III
$$\oint_{II} dQ = Q_{III} \qquad \oint_{II} dW = W_{III}$$

Coeficiente de equivalencia de unidades de energía.
Si Q y W se miden en unidades iguales J = 1

Entonces, en el ciclo se cumple:

$$\oint \mathbf{dQ} = \oint \mathbf{dW}$$

O bien,

$$\mathbf{Q}_{ciclo} = \mathbf{W}_{ciclo}$$

PRIMER PRINCIPIO PARA **UN SISTEMA CERRADO QUE** SIGUE UNA TRANSFORMAC. **CERRADA** (CICLO)

PRIMER PRINCIPIO PARA UN SISTEMA CERRADO QUE SIGUE UNA TRANSFORMACIÓN ABIERTA

$$\oint_{1A2B1} \mathbf{dQ} = \oint_{1A2B1} \mathbf{dW}$$

$$\oint_{1A2B1} \mathbf{dQ} - \oint_{1A2B1} \mathbf{dW} = 0$$

$$\oint_{1A2B1} (\mathbf{dQ} - \mathbf{dW}) = 0$$

$$\oint_{1A2B1} (\mathbf{dQ} - \mathbf{dW}) + \int_{1A2B1} (\mathbf{dQ} - \mathbf{dW}) = 0$$

$$\oint_{1A2B1} \mathbf{dQ} - \mathbf{dW} + \int_{1A2B1} \mathbf{dQ} - \mathbf{dW} = 0$$

$$\int_{\mathbf{A}_1}^2 (\mathbf{dQ} - \mathbf{dW}) = -\int_{\mathbf{B}_2}^1 (\mathbf{dQ} - \mathbf{dW})$$

$$\int_{\mathbf{A}_{1}}^{2} (\mathbf{dQ} - \mathbf{dW}) = \int_{\mathbf{B}_{1}}^{2} (\mathbf{dQ} - \mathbf{dW})$$

$$\int_{\mathbf{A}_{1}}^{2} (\mathbf{dQ} - \mathbf{dW}) = \int_{\mathbf{C}_{1}}^{2} (\mathbf{dQ} - \mathbf{dW})$$

$$\int_{\mathbf{A}_1}^2 (\mathbf{dQ} - \mathbf{dW}) = \int_{\mathbf{B}_1}^2 (\mathbf{dQ} - \mathbf{dW}) = \int_{\mathbf{C}_1}^2 (\mathbf{dQ} - \mathbf{dW})$$

Es función de punto : ES PROPIEDAD!

$$\int_{1}^{2} (dQ - dW) = \Delta E = E_{2} - E_{1}$$

$$E$$
"Energía total almacenada"

dE es diferencial exacta (no así dQ o dW)

$$\int_{1}^{2} \mathbf{dQ} - \int_{1}^{2} \mathbf{dW} = \int_{1}^{2} \mathbf{dE}$$

$$\mathbf{Q}_{12} - \mathbf{W}_{12} = \mathbf{E}_2 - \mathbf{E}_1$$

$$\int_{1}^{2} \mathbf{dQ} \neq \mathbf{Q}_{2} - \mathbf{Q}_{1} \qquad \mathbf{y} \qquad \int_{1}^{2} \mathbf{dW} \neq \mathbf{W}_{2} - \mathbf{W}_{1}$$

En un ciclo:

$$\oint (\mathbf{dQ} - \mathbf{dW}) = \oint \mathbf{dE} = 0$$

MACROSCÓPICAS

$$E = U + Ec + Ep + Ee + Em + Es$$

MICROSCÓPICA

U : Energía interna

Ec : Energía cinética

Ep: Energía potencial

Ee: Energía eléctrica

Em: Energía magnética

Es : Energía de superficie

Las formas <u>macroscópicas</u> de energía se relacionan con un marco de referencia externo:

- ➤ Ec: Movimiento del sistema con respecto a cierto marco de referencia;
 Ec=m c²/2
- ➤ Ep: Posición en el campo gravitatorio, con respecto a un nivel de referencia; Ep=mgz

$$E = U + Ec + Ep + Ee + Em + Es$$

> Ee: Posición relativa del sistema en un campo eléctrico.

>Em: Posición relativa del sistema en un campo magnético.

>Es: Se relaciona con la tensión superficial (interfase)

La energía microscópica "U" se relaciona con la estructura molecular del sistema y el grado de actividad molecular

En sistemas "simples compresibles", no son relevantes Ee, Em ni Es

Si además el sistema está en reposo: Ec = 0 y \(\Delta Ep=0 \)

$$\mathbf{Q}_{12} - \mathbf{W}_{12} = \mathbf{E}_2 - \mathbf{E}_1$$

$$\mathbf{Q}_{12} - \mathbf{W}_{12} = \mathbf{U}_2 - \mathbf{U}_1$$

PRIMER PRINCIPIO COMO BALANCE DE ENERGÍA

SISTEMA SIMPLE COMPRESIBLE, CERRADO Y EN REPOSO

11

Qentrada + Wentrada - Qsalida - W salida = Ufinal - Uinicial

Qentrada – Qsalida = Qneto entrante = Qif (+)

Wsalida – Wentrada= Wneto saliente = Wif (+)

NATURALEZA DE LA ENERGÍA INTERNA

Las formas microscópicas de energía se relacionan con la estructura molecular del sistema y el grado de actividad molecular

LA ENERGÍA INTERNA: PROPIEDAD TERMODINÁMICA

> U ES PROPIEDAD Y <u>SIRVE PARA CARACTERIZAR UN ESTADO</u> DE EQUILIBRIO DEL SISTEMA, AL IGUAL QUE P, V ó T

PUEDE UTILIZARSE JUNTO CON P, V Ó T COMO VARIABLE INDEPENDIENTE PARA DEFINIR EL ESTADO DEL SISTEMA

>U ES PROPIEDAD "EXTENSIVA" Y SU VALOR DEPENDE DE LA CANTIDAD DE MASA DEL SISTEMA

$$U_{total} = \sum_{i}^{N} U_{i}$$

LA ENERGÍA INTERNA: PROPIEDAD TERMODINÁMICA

> u = U / m : ENERGÍA INTERNA "ESPECÍFICA" →ES INDEPENDIENTE DE LA MASA Y PROPIEDAD "INTENSIVA" : SE PUEDE TABULAR

 \triangleright VIMOS QUE : Δ U = U₂ − U₁ = Q₁₂ − W₁₂ \rightarrow PODRÍA CALCULARSE Δ U MIDIENDO Q₁₂ Y W₁₂

>PARA OBTENER UN VALOR ABSOLUTO DE "U", DEBE SELECCIONARSE UN <u>ESTADO</u> <u>DE REFERENCIA</u> Y ATRIBUIRLE AL MISMO <u>EL VALOR CERO</u>

➤ EN LAS TABLAS DE PROPIEDADES DE SUSTANCIAS <u>PURAS</u> UTILIZADAS EN LA CÁTEDRA SE CONSIDERA —en el caso del agua- COMO ESTADO DE REFERENCIA EL DE LÍQUIDO SATURADO A LA TEMPERATURA DEL PUNTO TRIPLE Ej: Punto triple del agua Pt=0,006 atm y Tt=273,16 K (EL ESTADO DE REFERENCIA ES ARBITRARIO Y DEPENDE DEL AUTOR DE LA TABLA)

914
TABLAS DE PROPIEDADES, FIGURAS Y DIAGRAMAS (UNIDADES SI)

TABLA A-4

Agua saturada. Tabla de temperaturas

			n específico, m³/kg	Energía interna, kJ/kg				
Temp., T°C	Pres. sat., P _{sat} kPa	Líq. sat., v _f	Vapor sat., v _g	Líq. sat., u _f	Evap.,	Vapor sat., u_g		
0.01	0.6117	0.001000	206.00	0.000	2374.9	2374.9		
5	0.8725	0.001000	147.03	21.019	2360.8	2381.8		
10	1.2281	0.001000	106.32	42.020	2346.6	2388.7		
15	1.7057	0.001001	77.885	62.980	2332.5	2395.5		
20	2.3392	0.001002	57.762	83.913	2318.4	2402.3		
25	3.1698	0.001003	43.340	104.83	2304.3	2409.1		
30	4.2469	0.001004	32.879	125.73	2290.2	2415.9		
35	5.6291	0.001006	25.205	146.63	2276.0	2422.7		
40	7.3851	0.001008	19.515	167.53	2261.9	2429.4		
45	9.5953	0.001010	15.251	188.43	2247.7	2436.1		

PARA UN VAPOR HÚMEDO A CIERTA "Tsat" Y TÍTULO "x":

$$u = x u_g + (1-x) u_f = u_f + x u_{fg}$$

TABLA A-6

Vapor o	de agua sob	precalent	ado										
T	V	и	h	s	ν	и	h	5	v	и	h	s	
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg · K	m³/kg	k l/kg	kJ/kg	kJ/kg · K	m³/kg	k.l/kg	kJ/kg	kJ/kg · K	
	P =	0.01 MP	a (45.81	°C)*	P =	P = 0.05 MPa (81.32°C)				P = 0.10 MPa (99.61°C)			
Sat.†	14.670	2437.2	2583.9	8.1488	3.2403	2483.2	2645.2	7.5931	1.6941	2505.6	2675.0	7.3589	
50	14,867	2443.3	2592,0	8,1741									
100	17.196	2515.5	2687.5	8.4489	3.4187	2511.5	2682.4	7.6953	1.6959	2506.2	2675.8		
150	19.513	2587.9	2783.0	8.6893	3.8897	2585.7	2780.2	7.9413	1.9367	2582.9	2776.6		
200	21,826	2661.4	2879.6	8.9049	4,3562	2660.0	2877.8	8,1592	2,1724	2658,2	2875.5	7.8356	
250	24.136	2736.1	2977.5	9.1015	4.8206	2735.1	2976.2	8.3568	2,4062	2733.9	2974.5		
300	26.446	2812,3	3076.7	9,2827	5,2841	2811.6	3075.8	8.5387	2.6389	2810.7	3074.5	8,2172	
400	31.063	2969.3	3280.0	9.6094	6.2094	2968.9	3279.3	8.8659	3.1027	2968.3	3278.6	8.5452	
500	35,680	3132.9	3489.7	9.8998	7,1338	3132.6	3489.3	9.1566	3.5655	3132.2	3488.7	8,8362	
600	40.296	3303.3	3706.3	10.1631	8.0577	3303.1	3706.0	9.4201	4.0279	3302.8	3705.6	9.0999	
700	44,911	3480.8	3929.9	10,4056	8,9813	3480.6	3929.7	9,6626	4.4900	3480.4	3929.4	9.3424	
800	49.527	3665.4	4160.6	10.6312	9.9047	3665.2	4160.4	9.8883	4.9519	3665.0	4160.2	9.5682	
900	54.143	3856.9	4398.3	10.8429	10.8280	3856.8	4398.2	10.1000	5.4137	3856.7	4398.0	9.7800	
1000	58.758	4055.3	4642.8	11.0429	11.7513	4055.2	4642.7	10,3000	5.8755	4055.0	4642.6	9.9800	
1100	63.373	4260.0	4893.8	11.2326	12.6745	4259.9	4893.7	10.4897	6.3372	4259.8	4893.6	10.1698	
1200	67.989	4470.9	5150.8	11.4132	13,5977	4470.8	5150.7	10.6704	6.7988	4470.7	5150.6	10,3504	
1300	72.604	4687.4	5413.4	11.5857	14.5209	4687.3	5413.3	10.8429	7.2605	4687.2	5413.3	10.5229	
	P =	0.20 MP	a (120.2)	1°C)	P =	P = 0.40 MPa (143.61°C)							
Sat.	0.88578	2529.1	2706.3	7.1270	0,60582	2543.2	2724.9	6.9917	0.46242	2553.1	2738.1	6.8955	
150	0.95986	2577.1	2769.1	7.2810	0.63402	2571.0	2761.2	7.0792	0.47088	2564.4	2752.8	6.9306	
200	1.08049	2654.6	2870.7	7,5081	0.71643	2651.0	2865.9	7.3132	0.53434	2647.2	2860.9	7,1723	
250	1.19890	2731.4	2971.2	7.7100	0.79645	2728.9	2967.9	7.5180	0.59520	2726.4	2964.5	7.3804	
300	1.31623	2808.8	3072.1	7,8941	0.87535	2807.0	3069.6	7.7037	0.65489	2805.1	3067.1	7.5677	
400	1.54934	2967.2	3277.0	8.2236	1.03155	2966.0	3275.5	8.0347	0.77265	2964.9	3273.9	7.9003	
500	1.78142	3131.4	3487.7	8,5153	1,18672	3130.6	3486.6	8,3271	0,88936		3485.5		
600	2.01302	3302.2	3704.8	8.7793	1,34139	3301.6	3704.0	8.5915	1.00558		3703.3		
700	2,24434	3479,9	3928,8	9,0221	1,49580	3479.5	3928,2	8,8345	1,12152	3479.0	3927,6	8,7012	
800	2,47550	3664.7	4159.8	9.2479	1.65004	3664.3	4159.3	9.0605	1.23730		4158.9		
900	2.70656	3856.3	4397.7	9.4598	1.80417	3856.0	4397.3	9.2725	1.35298		4396.9		
1000	2.93755	4054.8	4642.3	9,6599	1.95824	4054.5	4642.0	9,4726	1,46859		4641.7		
1100	3.16848	4259.6	4893.3	9.8497	2.11226	4259.4	4893.1	9.6624	1.58414		4892.9		
1200	3,39938	4470.5	5150.4	10.0304	2,26624	4470.3	5150.2	9.8431	1.69966		5150.0		
1300	3.63026	4687.1	5413.1	10.2029	2,42019			10.0157	1.81516		5412.8		

TABLA	A-7												
Agua líquida comprimida													
T	٧	и	h	5	V	u	h	5	V	u	h	5	
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m³/kg	kJ/kg	kJ/kg	kJ/kg · K	
	P =	5 MPa (263.94 °0)	P =	10 MPa	(311.00 °	C)	P = 15 MPa (342.16 °C)				
Sat.	0.0012862	1148,1	1154.5	2.9207	0.0014522	1393.3	1407.9	3,3603	0.0016572	1585.5	1610.3	3.6848	
0	0,0009977	0,04	5,03	0,0001	0,0009952	0,12	10,07	0,0003	0,0009928		15,07	0,0004	
20	0.0009995	83,61	88.61	0.2954	0.0009973	83.31	93.28	0.2943	0.0009951	83.01	97.93	0.2932	
40	0.0010057	100/32	171.95	0.5705	0.0010035	166.23	176.37	0.5685	0.0010013	165.75	180.77	0.5666	
60	0.0010149	250,29	255,36	0.8287	0.0010127	249.43	259.55	0.8260	0.0010105	248,58	263.74	0.8234	
80	0.0010267	333.82		1.0723	0.0010244	332.69	342.94	1.0691	0.0010221	331.59	346.92		
100	0.0010410			1.3034	0.0010385	416.23	426,62	1,2996	0.0010361	414,85	430,39		
120	0.0010576		507.19	1.5236	0.0010549	500.18	510.73	1.5191	0.0010522		514.28		
140	0.0010769			1.7344	0.0010738	584,72	595.45	1.7293	0.0010708		598.75	1.7243	
160	0.0010988			1.9374	0.0010954	670.06	681.01	1.9316	0.0010920		684.01	1.9259	
180	0.0011240			2,1338	0.0011200	756.48	767.68	2,1271	0.0011160		770,32		
200	0.0011531			2.3251	0.0011482	844.32	855.80	2.3174	0.0011435		858.00	2.3100	
220	0.0011868			2.5127	0.0011809	934.01	945.82	2.5037	0.0011752		947.43	2.4951	
240	0.0012268		1037.7	2.6983	0.0012192		1038.3	2.6876	0.0012121		1039.2	2.6774	
260	0.0012755	1128.5	1134.9	2.8841	0.0012653		1134.3	2.8710	0.0012560		1134.0	2.8586	
280					0.0013226		1235.0	3.0565	0.0013096		1233.0	3.0410	
300					0.0013980	1329.4	1343.3	3.2488	0.0013783		1338.3	3.2279	
320									0.0014733		1454.0	3.4263	
340									0.0016311	1567.9	1592.4	3.6555	
	P =	20 MPa	(365.75 *	C)	P = 30 MPa				P = 50 MPa				
Sat.	0.0020378	1785.8	1826.6	4.0146									
0	0.0009904	0,23	20.03	0.0005	0.0009857	0.29	29.86	0.0003	0.0009767	0.29	49.13	-0.0010	
20	0.000992	82,71	.02.57	0.2921	0.0009886	82,11	11.77	0.2897	0.0009805	80.93	129.95	0.2845	
40	0.0009992	165,17	185.16	0.5646	0.0009951	154.05	193.90	0.5607	0.0009872	161.00	211.25	0.5528	
60	0.0010084	247,75	267,92	0.8208	0.0010042	246.14	276,26	0,8156	0.0009962	243,08	292,88	0.8055	
80	0.0010199			1.0627	0.0010155	328,40	358,86	1.0564	0.0010072		374.78		
100	0,0010337			1,2920	0,0010290	410,87	441,74	1,2847	0,0010201	405,94	456,94		
120	0.0010496			1.5105	0.0010445	493.66	525.00	1.5020	0.0010349		539.43		
140	0.0010679		602.07	1.7194	0.0010623	576.90	608.76	1.7098	0.0010517		622.36	1.6916	
160	0.0010886			1.9203	0.0010823	660.74	693.21	1.9094	0.0010704		705.85		
180	0.0011122			2.1143	0.0011049	745.40	778.55	2.1020	0.0010914		790,06	2,0790	
200	0.0011390			2.3027	0.0011304	831.11	865.02	2.2888	0.0011149		875.19	2.2628	
220	0.0011697			2.4867	0.0011595	918.15	952.93	2.4707	0.0011412		961.45	2.4414	
240	0.0012053		1040.2	2.6676	0.0011927		1042.7	2.6491	0.0011708			2.6156	
260	0.0012472		1134.0	2.8469	0.0012314		1134.7	2,8250	0.0012044		1138.4	2.7864	
280	0.0012978		1231.5	3.0265	0.0012770		1229.8	3,0001	0.0012430	_	1229.9	2.9547	
300	0.0013611		1334.4	3.2091	0.0013322		1328.9	3.1761	0.0012879		1324.0	3.1218	
320	0,0014450		1445.5	3,3996	0,0014014		1433.7	3,3558	0,0013409		1421.4	3,2888	

0.0014932 1502.4 1547.1 3.5438

0.0016276 1626.8 1675.6 3.7499

0.0018729 1782.0 1838.2 4.0026 0.0015884 1667.1 1746.5

0.0015693 1540.2 1571.6 3.6086

0.0018248 1703.6 1740.1 3.8787

380

3.4575

3.6301

3,8102

0.0014049 1452.9 1523.1

0.0014848 1556.5 1630.7

En la Tabla de líquido comprimido, se lee:

En Tabla líquido saturado a Tsat= 20°C, se lee

$$u_f(20^{\circ}C) = 83,913 \text{ kJ/kg}$$

>EN SISTEMAS INCOMPRESIBLES (Ej:Líquido)

Líquido saturado a la misma T

ENERGÍA INTERNA DE UN GAS IDEAL EXPERIENCIA DE JOULE (1843) (CON AIRE A Tambiente: GAS IDEAL)

Tcr aire= 132,5K

Tamb=300K

Tr=2,26

z~1

Estado inicial

EXPERIENCIA DE JOULE (CON AIRE A BAJA PRESIÓN: GAS IDEAL)

Estado final

$$\mathbf{W} = \int \mathbf{P}_{\mathbf{e}} \mathbf{dV}$$

Como en el compartimento B hay vacío, $P_e=0 \implies W=0$

$$Q = m \int c(T) dT$$

Como el gas mantuvo la misma temperatura, T=ctte y dT=0 → Q=O

Luego:

$$\mathbf{Q} - \mathbf{W} = \mathbf{U}_2 - \mathbf{U}_1 = 0 \Longrightarrow \mathbf{U}_1 = \mathbf{U}_2 \Longrightarrow \mathbf{U} = \mathbf{ctte}$$

Como de las tres propiedades del gas: P, v y T, la única que se mantuvo constante fue T

Se concluye que, para gases ideales, U depende sólo de T. (No depende de P ni de v)

O sea, para gases ideales es U=f(T)

Explicación a nivel microscópico de que U = f(T) para gases ideales:

En los gases ideales no hay fuerzas de atracción o repulsión entre moléculas

No hay aporte de energía potencial microscópica a la energía interna

La energía interna se debe sólo a la energía cinética microscópica

La energía cinética microscópica es función de la temperatura absoluta

La energía interna en los gases ideales es sólo función de la temperatura absoluta

- > ES LA EXPRESIÓN DE LA <u>RELACIÓN FUNCIONAL ENTRE "U" Y OTRAS VARIABLES</u> <u>DE ESTADO DEL SISTEMA</u>
- > CONVIENE CONSIDERAR LAS VARIABLES DE ESTADO P, v y T, DE FÁCIL MEDICIÓN
- EN <u>SISTEMAS QUÍMICOS DE COMPOSICIÓN CONSTANTE Y HOMOGÉNEOS</u> (<u>SIMPLES COMPRESIBLES</u>), AL DEFINIR <u>DOS PROPIEDADES INDEPENDIENTES</u>, QUEDA FIJADO EL ESTADO DE EQUILIBRIO Y POR LO TANTO EL VALOR DEL RESTO DE LAS PROPIEDADES DEL MISMO.
- > LA ECUACIÓN ENERGÉTICA ,PARA MASA UNITARIA, QUEDARÍA EXPRESADA COMO

$$u = f(T,v)$$

$$u = f'(T,P)$$

$$u = f''(P,v)$$

EN SISTEMAS QUÍMICOS DE COMPOSICIÓN VARIABLE, CON "q" COMPONENTES Y HOMOGÉNEOS, LA ECUACIÓN ENERGÉTICA QUEDARÍA EXPRESADA COMO

$$U= f (T,v, n_1, n_2, n_3, ..., n_q)$$

$$U= f'(T,P, n_1, n_2, n_3, ..., n_q)$$

$$U= f''(P,v, n_1, n_2, n_3, ..., n_q)$$

SI CONSIDERAMOS EN UN SISTEMA HOMOGÉNEO DE COMPOSICIÓN **CONSTANTE (SISTEMA SIMPLE COMPRESIBLE) LA ECUACIÓN** ENERGÉTICA EN FUNCIÓN DE "T" y "v":

$$u = f(T,v) \rightarrow$$

$$u = f(T,v) \longrightarrow du = \frac{\partial u}{\partial T_v} dT + \frac{\partial u}{\partial v_T} dv$$

(La diferencial total es la suma de las diferenciales parciales)

PARA INTEGRAR SE DEBERÁ PODER CALCULAR O MEDIR LOS **VALORES DE**

$$dq - P dv = du$$

Si una transformación es a volumen constante dv=0 , luego $dq_v = duv$

o sea
$$c_v dT = du_v$$
 of $c_v = \frac{\partial u}{\partial T_v}$

$$\mathbf{c}_{\mathbf{v}} = \frac{\partial \mathbf{u}}{\partial \mathbf{T}_{\mathbf{v}}}$$

PARA GASES IDEALES:

Como Δu sólo depende de T_1 y de T_2 , para gases ideales <u>siempre</u> podrá calcularse el Δu con la expresión recuadrada, <u>aunque la transformación no sea a volumen constante</u>. Sólo es necesario respetar T_1 y T_2 y el Δu valdrá el que resulta del cálculo anterior.

CÁLCULO DEL AU PARA GASES IDEALES

Como ΔU sólo depende de T₁ y de T₂, para gases ideales <u>siempre</u> podrá calcularse como si el proceso fuera a volumen constante <u>entre</u> <u>las mismas temperaturas.</u>

PARA <u>GASES REALES</u>, CONSIDERADOS COMO SUSTANCIAS SIMPLES COMPRESIBLES, VIMOS QUE:

$$du = \frac{\partial u}{\partial T} dT + \frac{\partial u}{\partial v} dv$$

DEMOSTRAREMOS MÁS ADELANTE QUE:

$$du = c_v dT + \left[T\left(\frac{\partial P}{\partial T}\right)_v - P\right] dv$$

