

MYESIAN CLASSIFIED	7-327
	. =
x-> feature C-> class => (1=0, C2=0)	100
C-) class => (1=0, C2=0)	
Given a feature, noe need to calculate if it belong	gs to cifq.
P(ci/x)	
L-> Posterior probability.	
If P(C1/X) < P(C2/X) then x is assigned to C2	11111
$P(Ci)(x) = \frac{P(Ci) \cdot P(x Ci)}{P(x)}$	
Cor leature may occur in both o	lasses)
- 13 -07 Exat / 6 8 10001. Orang 154 15 W KE (3)	illy
$= P(Ci) \cdot P(X Ci)$	
PCCD. PCX CD) + P (CD). PCX CD)	sofh elasses) Dekelihood FOCS)
Prier probability	eeus in both classes) X/C2) Millional Dekelihood Lift neek 50.1. of the time.
= P(Ci).P(X Ci) -> class conditional Dek	elihood
P(ci) P(x ci)	- 15
4	
P1	
- A doctor knows that meningitis causes stiff neck 50.1. - Paler probability - meningitis - 450,000	of the time.
- n n - Stiff neek - 1/20	
If a patient has still neek, P(Menangitis) =?	
P(MIS) = P(M).P(SIM)	1
4 1 2)
$=\frac{1}{50,000}\left(\frac{1}{2}\right)$	
\$0,000 (1) ± 1/40 (4)	
9(MIS) = 1 5000	

Consider the "Cancer test Rit" problem, which has the following yealties. Given that the subject has cancer "e", the probability of the test bit producing a positive decision "t" is =0-98. Britishility of the Rit preducing a negative decision "-" given that the subject is healthy "11" is 0-97. The pulox probability of cancer in the population=0.01.

We would like to know the probability that the subject has concer given that the test kit generated a "the decision?

P(e)+)

During Training

(X,y)

Emple: P(X|Ci) you all Cl & for all X. & P(Ci)

X 16 multinational

X -5 X1,9 Xa Xp

 $P(x|Ci) = P(x_1,x_2....x_p|Ci)$

= P(x,|Cl) P(x2|Cl). . . P(xp|Cl)

Day						2-1 7277 37	
DT	Sway	Hot	rugh		7	3	
D_2	Swing	Hot	righ		H	1, 1, 1	
D3	Orecease	Hol	reigh	a sed	Υ.		
Dq	Rain	meid	Mornal	heeak	A		
D5	Rath	Cool	H	10	y.	177	
D ₆	Cresease	loop	N	S	N,		
D¥	Suny	ceel	H	S	7.		
D8	Survey	meld	H 7.51	1 N	N		
D9	V	Cool	N	W	y		
Dio	Rain	Mild	N	W	٧,	(11))1	
Dy	Swry	Mild	N	5	γ		
D12	ornease	Meld	H	S	4		
DIB	Overeast	Hot	N	W	4.		
DI4	Rain	neld	H	S	N.		
PCXICI			(x ¹ c1) > P((x' c ₂)			
	angeneral lange of transport of the formal property of the desired land of the contract	P(×)		1 1	Darata	107)	
P(C2 X	$(k) = P(C_2)$) P(x' C2 PCx)) = 5/14	23] · 10		(1) >) f	
	· · · · · · · · · · · · · · · · · · ·	1 10 kg		1 1/24	Yes	No	
Yeg PCX IY				Sunny	49	3/5	
		7 1	1119	Rain	3/4	2/5 X)Y	
	looklyes), unnylyes)=	¥q.		Preleast	3/9 3/9	0,20	
	V		1 1.				

P(x' Yes) = P(Yes) P(Sunny)Yes)	P(eool/yes)	P(High/Yes)	P(Strong) ya
J		0 / 6/ 1 100	

9(NO) = P(NO)

Tid	Refund	Marital Status	Taxable Income	
1	Y	S	125 129 has to	
2	7	М	100	
3	7	s S	58 0 000 MADDON 1. 44 K	
4	À	и		
5	N	P	50 × 50	
G	N	М)	
7	У	D	41. 4 1. 00	11/24/2012
8	N	S	·	
9	N	MITTER	11/2 - 14/4 - 14/4 -	
lo	N	S		
		141	Carlo and Habi	

$$P(x_1 | c=c_1) = \frac{1}{\sqrt{2\pi\sigma_p}} exp\left(-\frac{(x_1-\mu_p)^2}{2\sigma_p^2}\right)$$

BURE & SECTION X July July This Alle, - - 1 Johns

P (x class= No) =	*×-
Entropy	1 4
$(D) = \sum_{i=1}^{k} -p_{m}^{i} \log_{2} p_{m}^{i}$	Mizh
Gain (D,A) = Entropy (D) - $\sum_{j=1}^{V} \frac{ D_j }{ D }$ Entropy (Dj) \longrightarrow for an attribute.	
A→ attribute considered	7 (04)4
Y→ total outcome for an attribute.	,
Dj > Subset satisfying the attribute.	7.71
Dataset H, if a student buys computation.	3
5	6
$Y_1 = y cs Y_2 = no$	14
Entropy (D) = = - pilogepi	0
9/14 LOg2 9/14 - 5/4 Log 2 5/14.	4 1212
	. 12
= -9/14 (-0.6375) - 5/14 (-1.4856)	
= 0.4098 + 0.5 306	10 mm, 10 mm
= 0.9404, (1) - 191 (1) 2 1X19	
Gain (Age) = 0.9404 - [+5 Entropy (Young) + 4 Entropy (number) + 5 Entropy (14	lodu)
+ 5 Entropy (Senine)]
Harry Comments	014
Entropy $(y) = -\frac{9}{5} \log_2 2/5 = \frac{3!0!9!}{5!0!9!} = +0.5288 + 0.$	1722
Entropy (m) = - 4 logs 1/4 = 1.0011;	3
Entropy (5) = -3/5 log 3/15 - 3/107 3/5 = 100 2/51.	

Quen = 0.9404 - [
$$\frac{5}{14}$$
(0.941) + $\frac{4}{14}$ (0) + $\frac{5}{14}$ (0.947)]

= 0.9404 - [$\frac{5}{0.6936}$]

= 0.2468

Gain (Income) = 0.029

gaen (student) = 0.151 Galn (eredit) = 0,048

High value is for age .. Select age as the root.

K-MEANS

dij= [(xee-2je)2	Distance blu xil xj can be
) \ i=1	elaborated as x=(x1, x12 xip)
	zj = (zj1, zj2 zjp)

Ex:	EX	2	y	Test point is 5.
,	1	0.5	_	1 - S from from
	2	30	_	V1 = (5-0.5)2 = 415
	3	415	+	V2 = √(5-3) = 29
	4	4.6	+	V3 = V6-45) = 0.5.
	5	419	+	V4 = V(6-4.6)2 20.4
	6	5.2	_	V5 = 15-4,92 = 0r)
	7	5:3	134. N	V6 2 (5-5.2) 2 0.2
	ç	5.5	+	V7 = (5-5.3)2 = 0.3
	9	4.0	_	Vg = (5-5.5) = 2 0.5
	10	9,5	_	V9 = 15-47 2 2
				V10 = \(\bar{k} - 9.5)^2 = 4.5

from 5 to 4.9 (I rearest neighbour) class label for 5 is +?

3 Nearest neighbour _ points are 6th & 1th, majority is -. class label of 5 is -

4.4. de 6. les

हिर्देशक कर मेरी हैं देशक विकास

Problem

Example	x1 (Acidity)	ad (Stringth)	classification
1	#	#	classification Bnd
2	4	4	Bad
3	3	Lf	good good
4	7	H	Good.

$$\sqrt{(3-4)^{2}+(1-4)^{2}} = 4$$

$$\sqrt{(3-4)^{2}+(1-4)^{2}} = \sqrt{(6+9)} = 5$$

$$\sqrt{(3-1)^{2}+(1-4)^{2}} = \sqrt{(3-1)^{2}+(1-4)^{2}} =$$

The value of K=3

3, 3.6055, 4. Livery Tool

3,4,1

Good Good Bad

.. Max Good.

UNSUPERVISED LEARNING

an add in the second I be not as the country is and a set to assist

Kneans horno of dusters. centroids means of the clusters

problems	

1)	pata	Point	ΧI	X 2
4)	y 0	-		

ereate two elusters. Let A & C be the initial clusters.

$$e_1 = C(1/1)$$
 $c_2 = (0/2)$

Data point	× ₁	¥2	Cı	C2.	Assign	(Based on the least value blw C1, C2)
Δ	1		0	1.4	CI	7
R		.0	1	2 ، 2	c,	J.
C.	0	2	104	0	C2	30.1
D	2	4	3,2	2,8	c2	
E	3	5	H.5	4.2	C2	4

New centroid

$$C_{2} = (0 + 2 + 3, 2 + 4 + 5)$$

Continues....

ત(લ, લું)	= min xiga ₁	$x^{5} \in G$ $\{d(x^{\gamma}, x^{5})\}$	Adistance blu each gro	up 4
Data Pt	×τ	×2	4	
А	1			
В	-17-1	Man and get in	Fill Adam and	Last
c	0	2		
D	,2_	4	(1.1)	181
E	3	5		
		(1,)	D	710
	A	BCD	E	4,5
A	0	1 1.41 3.16	4.47	0.12
В		0 1432 4.123	5.385 Chr.	UD
C	1.41	1.832 0 2.88	3.46	312
D	3-16	4-123 282 0	ı. н)	,
£	4.47	5.385 4.2431 1.41	•	7 212 1
		1.1	12	
bonsidu the	smal	lest, group them. He	ue it is 1. neige A,	P
		(,)	161 6 0	
	AB	C D E	1.41 \$ 2.232	
AB	0	1.41 3.16 4.47	Min [(AB,c)]	41
C		0 2.82 4.24	Min (AB, D) 3.16 2 4.123	. 6
(DE		2-820 1.41	Man ((AB, E) 785	47 4136
E	444	4.24 1.41 0	i) OIA	VA.
Merge CD	15, T	3 - 9) - 60 (001) (011, 111).	(*)
Line	ABC E	2D / E	4.24 2 2	. 2 9
V				. 9