

MODEL ODPOWIEDZI I SCHEMAT OCENIANIA KONKURS FIZYCZNY DLA UCZNIÓW KLAS VII-VIII SZKÓŁ PODSTAWOWYCH WOJEWÓDZTWA MAZOWIECKIEGO

ETAP REJONOWY 2023/2024

ZASADY OCENIANIA PRAC KONKURSOWYCH

- Każdy poprawny sposób rozwiązania przez ucznia zadań nie ujęty w modelu odpowiedzi powinien być uznawany za prawidłowy i uczeń otrzymuje maksymalną liczbę punktów.
- Treść i zakres odpowiedzi ucznia powinny wynikać z polecenia i być poprawne pod względem merytorycznym.
- Do zredagowania odpowiedzi uczeń używa poprawnej i powszechnie stosowanej terminologii naukowej.
- Jeżeli w jakiejkolwiek części uczeń przedstawi więcej niż jedno rozwiązanie i chociaż jedno będzie błędne, nie można uznać tej części rozwiązania za prawidłowe.
- Za odpowiedzi w zadaniach przyznaje się wyłącznie punkty całkowite. Nie stosuje się punktów ułamkowych.
- Wykonywanie obliczeń na wielkościach fizycznych powinno odbywać się z zastosowaniem rachunku jednostek.

Maksymalna liczba punktów za ten arkusz jest równa 20.

.

MODEL ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZADAŃ

Nr zadania	1	2	3	4	5	6	7	8
	В	D	С	С	D	D	В	A
Poprawna odpowiedź								
	1	1	1	1	1	1	1	1
Liczba pkt.								

Zadanie 9. (0 – 3 pkt.)

Przyjmijmy oznaczenia: P_0 – moc użyteczna kuchenki, P_1 – energia rozpraszana do otoczenia w jednostce czasu (moc strat energii cieplnej czajnika), Q – ciepło (energia cieplna) dostarczone do wody. Wówczas:

1 pkt – zauważenie, że $Q = (P_0 - P_1) \tau_1$;

1 pkt – zauważenie, że Q można obliczyć wykorzystując prawo stygnięcia $Q = P_1 \tau_2$;

1 pkt – obliczenie z otrzymanego układu równości $P_1/P_0 = \tau_1/(\tau_1 + \tau_2) = 0, 1 = 10 \%$.

Zadanie 10. (0-3 pkt.)

1 pkt – narysowanie na załączonej w treści zadania zależności prędkości samochodu osobowego od czasu $v_2(t)$ również zależności prędkości ciężarówki od czasu $v_1(t)$ (patrz wykres poniżej);

1 pkt – zauważenie, że prędkości samochodów zrównały się po 24 s i wtedy samochód

- osobowy znajdował się za ciężarówką w odległości równej polu powierzchni trójkąta No 1 na wykresie;
- **1 pkt** zauważenie, że ta odległość zostanie zredukowana do zera w ciągu kolejnych 24 s (pole powierzchni trójkąta No 2 będzie równe polu powierzchni trójkąta No 1), co oznacza, że oba pojazdy spotkały się po czasie 48 s od chwili startu samochodu osobowego, po przebyciu przez niego drogi S = 10 m/s x 48 s = 480 m = 0.48 km.

Zadanie 11. (0-3 pkt.)

- 1 pkt za wykonanie odpowiednich operacji zastępowania przedrostków potęgami liczby 10: $\tau = 10^{-4} \, \text{s}$, $I = 2 \, \text{x} \, 10^4 \, \text{A}$, $U = 10^8 \, \text{V}$; (Uwaga: jakakolwiek inna forma właściwego odczytania stosownych przedrostków i efektywnego użycia odpowiednich danych do otrzymania poprawnego ostatecznego wyniku jest akceptowalna!)
- 1 pkt zauważenie, że wartość energii wyzwalanej przy przepływie prądu o natężeniu I pomiędzy chmurami i ziemią przy napięciem U w czasie τ wynosi $E = U I \tau$;
- **1 pkt** wykonanie stosownych obliczeń, z uwzględnieniem operacji na potęgach liczby 10 oraz jednostkach $E = 2 \times 10^4 \text{A} \times 10^{-4} \text{ s} \times 10^8 \text{ V} = 2 \times 10^8 \text{ J} = 200 \text{ MJ}.$

Zadanie 12(0-3 pkt.)

- **1 pkt** zauważenie, że wypadkowa siła działająca na ciało ma, na podstawie II zasady dynamiki, wartość $F_w = ma = 1.0 \text{ kg} \times 5.0 \text{ m/s}^2 = 5.0 \text{ N};$
- 1 pkt zauważenie, że ze względu na prostopadłość działających sił ich wartości oraz wartość siły wypadkowej spełniają twierdzenie Pitagorasa $F_w^2 = F_1^2 + F_2^2$;
- **1 pkt** zauważenie, że $F_2^2 = F_w^2 F_1^2 = 25.0 \text{ N}^2 16.0 \text{ N}^2 = 9.0 \text{ N}^2$. Stąd $F_2 = 3.0 \text{ N}$.