

SCCK9006HEH201 产品数据手册

版本号: 1.2

铸造工业最强芯 MAKE THE GREATEST INDUSTRIAL CHIP

SCCK9006HEH201

15μW 冷启动, 400nA 静态功耗, 微能量收集存储管理芯片

关键特性

- 超低功率启动:首次冷启动时,仅需400mV输入电压和15µW输入功率;冷启动后,仅需输入电压满足100mV~5V即可持续工作;可通过外部电阻配置冷启动阈值电压。
- 升压调节器:可通过2个管脚配置 MPPT,可配置为Vopen的70%、75%、85%或90%;每5秒检测一次 MPPT 开路电压;启动后输入电压范围100mV~5V;MPPT工作电压范围为100mV~5V。
- 低电压 LVLDO 输出:支持最大负载电流 20mA;输出电压 1.2V/1.8V 可选;可通过管脚控制开关。
- 高电压 HVLDO 输出: 支持最大负载电流 80mA (最大压降 300mV); 输出电压 1.8V~ (Vbat-0.3V)或 4.2V(建议 4.1V以下)可选/可调;可通过管脚控制开关。
- 电池管理:对可充电电池或超级电容器进行过充和 过放保护参数配置;支持超级电容快充电池耗尽时 进行提示;LDO可用时进行提示。

- 电池切换: 当储能电池耗尽时,自动切换到原电池; 当储能电池恢复后,自动切换到储能电池。
- 预定义模式配置:可通过3个管脚(CFG<2:0>)配置7种预定义模式,无需任何专用的外部组件即可覆盖大多数应用要求;支持自定义模式,允许用户定义存储元件保护级别和高压HVLDO输出电压。

应用领域

- 工业监测
- 光伏电池采集
- 电子健康监测
- 无线传感器节点

概述

SCCK9006HEH201 是一款集成微能量收集存储和电源管理功能的芯片。芯片冷启动仅需输入 400mV 电压和 15µW 功率,启动后可持续从太阳能电池板等能量转换器获取直流电,为充电电池或超级电容等储能元件充电,并通过两个 LDO 稳压器为不同负载稳定供电。

功能框图

图 1. SCCK9006HEH201

SCCK9006HEH201

目录

关键特性
应用领域
既述
功能框图
目录
修订历史
引脚定义
规格参数
绝对最大额定值
推荐工作条件
抗静电 (ESD)
ESD 警告
热阻
电气参数规格
功能时序图
典型小电感下升压效率
典型大电感下升压效率
典型 LDO 输出电压
典型 LDO 转换效率
工作原理
芯片工作原理
芯片配置说明
典型应用电路
封装尺寸信息
订购信息

修订历史

版本号	日期	作者	描述
1.0	2022-01	划羽	初始版本
1.1	2022-05	潘杰	完善内容和细节
1.2	2022-06	潘杰	文档模板调整

引脚定义

图 2. 芯片引脚定义

表 1. 引脚功能描述

12 ·· JIM	71 BOIDKE		
引脚号	引脚名称	类型 ¹	引脚功能描述
1	HARV	0	升压转换器的输出,连接到片外滤波电容
2	SWBK	О	降压转换器的开关节点
3	ВК	I	降压转换器的输出
4	VCF[2]	I	用于配置储能元件的阈值电压和 LDO 输出电压
5	VCF[1]	I	用于配置储能元件的阈值电压和 LDO 输出电压
6	VCF[0]	I	用于配置储能元件的阈值电压和 LDO 输出电压
7	MPPT[1]	I	用于最大功率点跟踪(MPPT)比率的配置
8	TEST1	A	调试管脚需要悬空

1 注释:

A = 模拟引脚

P = 电源引脚

D = 数字引脚

I = 输入引脚

O = 输出引脚

引脚号	引脚名称	类型 ¹	引脚功能描述
9	MPPT[0]	I	用于最大功率点跟踪(MPPT)比率的配置
10	FBPD	1	 若用原电池,用于原电池阈值配置;若不用原电池,连接 GND!
11	FBPU	1	若用原电池,用于原电池阈值配置;若不用原电池,连接 GND!
12	LOUT	0	低压 LVLDO 稳压器的输出
13	HOUTEN	1	高压 HVLDO 的使能引脚,高使能
14	FBHV	1	配置自定义模式下的高压 HVLDO 输出电压;若不用,保持悬空!
15	HOUT	0	高压 HVLDO 稳压器的输出
16	TEST2	А	调试管脚需要悬空
17	SECBAL	0	若用双超级电容,连接双超级电容的中间点;若不用双超级电容,连接 GND!
18	SECBAT	А	连接到储能元件、电池或电容,禁止悬空!
19	PRIMBAT	1	若用原电池,连接原电池;若不用原电池,连接 GND!
20	LOUTEN	1	低压 LVLDO 的使能引脚,高使能
21	INT[2]	0	逻辑输出,当芯片执行 MPPT 计算时置高位
22	INT[1]	0	逻辑输出,当电池电压低于 Vod 或芯片正从原电池取能时置高位
23	INT[0]	0	逻辑输出,LDO 时可以启用时置高位
24	TEST3	Α	调试管脚需要悬空
25	OCCFG	1	配置自定义模式下的储能元件阈值电压;若不用,必须悬空!
26	CRCFG	1	配置自定义模式下的储能元件阈值电压;若不用,必须悬空!
27	ODCFG	1	配置自定义模式下的储能元件阈值电压;若不用,必须悬空!
28	SPW	1	能量源输入端
29	FBCD	1	配置冷启动的阈值电压;若不用,连接 SPW!
30	CSPW	О	升压转换器的输入端,连接到片外滤波电容
31	SWBT	I	升压转换器的片内功率管输出,连接到片外电感
32	TEST4	А	调试管脚需要悬空
33	GROUND	Α	QFN32 基岛接地

规格参数

绝对最大额定值

表 2. 绝对最大额定值参数表

参数	最小值	最大值	单位
输入电压对地 (SPW 到地)	-0.3	5.5	V
工作结温	-40	125	°C
存储温度	-65	150	°C

推荐工作条件

表 3. 推荐工作条件参数表

-24 1H-13-H-11	7011 > 2000						
符号	参数		最小值	典型值	最大值	单位	
外部元器件	外部元器件						
C_{CSPW}	CSPW 输入管脚的滤波电容	8	10	150	μF		
C_{HARV}	Booster Converter 电容		10	22	25	μF	
L_{HARV}	Booster Converter 电感		4	10	25	μH	
C_BK	BK Converter 电容		8	10	22	μF	
L_BK	BK Converter 电感		4	10	25	μF	
C_LVOL	低电压 LVLDO 的滤波电容		8	10	14	μF	
C_HVOL	高电压 HVLDO 的滤波电容		8	10	14	μF	
C_{SECBAT}	当不接入储能元件时,SECBAT 管脚处配置	置的电容 (可选)	150	/	/	μF	
R_T	用于在自定义模式下设置电池阈值电压的	1	10	100	ΜΩ		
	R _T =R ₁ +R ₂ +R ₃ +R ₄ (可选)						
R_V	用于在自定义模式下设置高压 LDO 电压的	的电阻,R _V =R ₅ +R ₆ (可	1	10	40	ΜΩ	
	选)						
R_C	冷启动配置电阻, $R_C=R_9+R_{10}$ (可选)		0.1	/	10	ΜΩ	
R_P	原电池配置电阻, $R_P = R_7 + R_8$ (可选)		100	/	500	ΚΩ	
逻辑输入管脚				1	1	1	
HOUTEN	高电压 LDO 使能管脚	逻辑高 (VOH)	1.75	Vbk	Vbk	V	
		逻辑低 (VOL)	-0.01	0	0.01	V	
LOUTEN	低电压 LDO 使能管脚	逻辑高 (VOH)	1.75	Vbk	Vbt	V	
		逻辑低 (VOL)	-0.01	0	0.01	V	
MPPT[1:0]	用于 MPP 的配置管脚	逻辑高 (VOH)	连接 Vbk				
		逻辑低 (VOL)	连接 GNE)			
VCF[2:0]	用于储能元件的配置管脚	逻辑高 (VOH)	连接 Vbk				
		逻辑低 (VOL)	连接 GNE				

抗静电 (ESD)

表 4. 抗静电参数

参数	描述	值	单位
HBM JEDEC JS001-2017	人体模型	±500	V
CDM JEDEC JS002-2014	机器模型	±1000	V

ESD 警告

ESD (静电放电) 敏感产品

带电器件和电路板可能会在没有察觉的情况下放电。尽管本产品具有专利或专有保护电路,但在遇到高能量 ESD 时,产品可能会损坏。因此,应当采取适当的 ESD 防范措施,以避免器件性能下降或功能丧失。

热阻

产品的散热性能和 PCB 电路板设计以及工作环境直接相关。用户在使用产品时应注意 PCB 电路板的散热设计。 θ_{JA} 和 θ_{JC} 均针对最差条件,即器件焊接在 4 层 JEDEC 标准电路板上以实现表贴封装。

表 5. 热阻值

封装类型	θ_{JA}	θ _{JC}	单位
QFN32	38.1	2.181	°C/W

电气参数规格

除非另有说明,实测参数来自典型温度 $T_A = 25$ °C。

表 6.

1X U.						
符号	参数	条件	最小值	典型值	最大值	单位
功率转换						
P _{SPWCS}	冷启动所需输入源功率	冷启动期间	15	1	/	μW
V_{SPW}	输入源电压	冷启动期间	0.4	/	5	V
		冷启动后	0.1	1	5	V
I _{SPW}	输入源电流				100	mA
V_{CS}	自定义配置下的冷启动输入源电压	冷启动期间	0.5	1	4	V
Vbt	升压转换器的输出电压	正常工作期间	2.2	1	4.5	V
Vbk	降压转换器的输出电压	正常工作期间	2	2.2	2.5	V
储能元器件						
Vbat	储能元件电压	可充电电池	2.2	/	4.5	V

		电容	0	/	4.5	V
Tdly	从 INT[1]置高到关机的时间		400	600	800	ms
$V_{PRIMBAT}$	原电池的电压	/	0.6	/	5	V
I _{PRIMBAT}	原电池的电流			20		mA
Vfbpu	原电池反馈的最小电压水平	/	0.15	/	1.1	V
Voc	禁用升压转换器之前,储能元件上可接受 的最大电压	/	2.3	/	4.5	V
Vcr	冷启动后启用 LDO 之前,储能元件上所要求的最低电压	/	2.25	/	4.45	V
Vod	在切换到原电池模式或关机模式之前,储 能元件可接受的最小电压	/	2.2	/	4.4	V
低电压 LDO 稳	压器					
VI	低电压 LDO 输出电压	注1	1.2	/	1.8	V
II	低电压 LDO 的负载电流	/	0	/	20	mA
高电压 LDO 稳	压器	1		1	ı	ı
Vh	高电压 LDO 输出电压	注2	1.8		min(Vb at-0.3, 4.2V)	V
lh	高电压 LDO 的负载电流	注3	0		80 或 350	mA
逻辑输出管脚	ı	1	1	ı	ı	ı
INT[2:0]	芯片状态指示信号	逻辑高(VOH)	1.98	Vbat	/	V
		逻辑低(VOL)	-0.1	/	0.1	V

^{注1}: 1mA 负载下 VI 波动率为 1 % (典型仿真结果)

注2: 1mA 负载下 Vh 波动率为 1% (典型仿真结果)

^{注3}:请咨询销售确认对应子型号负载电流参数

功能时序图

图 3. SECBAT 接电容的冷启动过程

图 4. SECBAT 接电池的冷启动过程

图 5. 过压模式

图 6. 关机模式 (不带原电池的方案)

图 7. 电池过放电后切换至原电池模式

典型小电感下升压效率

L_{HARV}=10μH 时升压效率

图 8. 输入 100uA 时升压效率随输入电压的曲线

图 9. 输入 1mA 时升压效率随输入电压的曲线

图 10. 输入 10mA 升压效率随输入电压的曲线

图 11. 输入 100mA 升压效率随输入电压的曲线

典型大电感下升压效率

L_{HARV}=22µH 时升压效率

图 12.输入 100uA 时升压效率随输入电压的曲线

图 13.输入 1mA 时升压效率随输入电压的曲线

图 14.输入 10mA 时升压效率随输入电压的曲线

图 15.输入 100mA 时升压效率随输入电压的曲线

典型 LDO 输出电压

LDO 输出电压, 注意 Ih=180mA 或 350mA 是支持 Ih=350mA 的子型号仿真结果

图 16. HVLDO 在不同电流负载下输出 3.3V

图 17.HVLDO 在不同电流负载下输出 2.5V

图 18.LVLDO 在不同电流负载下输出 1.8V

图 19.LVLDO 在不同电流负载下输出 1.2V

典型 LDO 转换效率

LDO 效率,注意 lh=350mA 是支持 lh=350mA 的子型号仿真结果

图 20. LDO 开启或关闭时静态功耗

图 21.LVLDO 在不同电流负载输出 1.8V 效率

图 22.LVLDO 在不同电流负载输出 1.2V 效率

图 23.HVLDO 在不同电流负载输出 3.3V 效率

图 24.HVLDO 在不同电流负载输出 2.5V 效率

图 25.HVLDO 在不同电流负载输出 1.8V 效率

工作原理

图 26. 芯片应用场景图

SCCK9006HEH201 可采集高达 110 毫安的输入电流,集成了一个超低功耗升压转换器为存储元件充电,例如锂离子电池、薄膜电池、超级电容或传统电容。升压转换器的工作输入电压范围为 150 mV 至 5 V。集成了两个高效低噪声 LDO(低压差)稳压器,其中低压 LVLDO 可满足 1.2 V 或 1.8 V 的外部微处理器芯片供电需求,高压 HVLDO 可满足 1.8 V~(Vbat-0.3V)或 4.2V(建议 4.1V 以下)的外部无线电收发机芯片供电需求。

图 27. 芯片应用典型外围器件示意图

SCCK9006HEH201 具备外部管脚配置能力,实现预定义模式(过充电电压、过压放电电压及 HVLDO/LVLDO 输出电压)的硬件方式设置。在典型默认无线传感器供电情景下,仅需要五个电容(尺寸 0402)和两个电感(尺寸 0603),占用空间小,优化了 BOM 成本。

图 28. 芯片完整功能框图

芯片完整功能框图如图 28 所示,内部集成升压、降压、LDO 稳压器,具备灵活的外部配置手段,满足丰富的场景应用需求。

图 29. 芯片简化功能框图

芯片简化功能框图如图 29 所示,在极简配置下,外部仅需 7 个电感、电容器件。

芯片状态机如图 30 所示,唤醒模式是芯片从深睡眠模式冷启动并进入正常模式,过压模式实现对存储元件充电保护,原电池模式实现外部微能量不足时的作为备用能量的原电池功能,关机模式实现能量不可持续时对系统关机的保护。

芯片工作原理

深睡眠模式和唤醒模式

在深睡眠模式下,所有节点都被深度放电,没有可用的能源被芯片收集。当 SPW 管脚满足 400 mV 冷启动电压和 15μW 的功率输入时,芯片便会被激活进入唤醒模式,Vbt 和 Vbk 的电压先同步上升到 2.2 V,随后 Vbt 的电压继续上升至 Voc。在冷启动过程中,两个 LDO 都处于被内部关闭状态。当 Vbt 升至 Voc 后,升压电路从外部继续获取能量,并通过调节开关 M2,由管脚 SECBAT 对储能元件进行充电。此时,不同储能元件对应不同场景:

- (1) 储能元件是超级电容器。充电可从 0 V 开始,节点 SECBAT 被充电期间,两个 LDO 被内部关闭,且指示信号 INT[0]为低电平。当 Vbat 升至 Vcr 后,芯片进入正常模式,且指示信号 INT[0]为高电平。此时,用户可以对管脚 LOUTEN 和 HOUTEN 上拉,实现两个 LDO 输出开启。
- (2) 储能元件是电池。若电池电压低于 Vcr, 首先要对电池充电至 Vcr。若电池初始电压高于 Vcr 或电池被充电至 Vcr 后, 电路进入正常模式, 且指示信号 INT[0]为高电平。此时, 用户可以对管脚 LOUTEN 和 HOUTEN 上拉, 实现两个 LDO 输出开启。

正常模式

当芯片进入正常模式后,后续会有三种可能情况:

- (1) 若输入源的供能等于负载消耗时, Vbat 介于 Vod 和 Voc, 此时电路保持正常模式;
- (2) 若输入源的供能超过负载消耗时, Vbat 会超过 Voc, 此时电路进入过压模式;
- (3) 若輸入源的供能低于负载消耗时,Vbat 会降至 Vod,若方案中有原电池,则原电池通过管脚 PRIMBAT 供能,则电路将进入原电池充电模式;若方案中无原电池,则电路直接进入关机模式。

芯片正常工作时,从能量收集端到 LDO 输出端分为 3 个电压阶段:

- (1) 升压。管脚 CSPW 节点可用电压被提升至适合储能元件充电的管脚 HARV 节点电压(2.2 V~4.5 V)。升压转换器包括开关 M3、M4、片外电感 L_{HARV}和片外电容 C_{HARV}。在最大功率点跟踪电路(MPPT)控制下,开关 M1 周期性被断开,通过实时测量管脚 SPW 的开路电压来确定最优电压工作点。管脚 CSPW 接外部电容 C_{CSPW},起平滑滤波作用,可有效地抑制后级升压转化器的脉冲电压冲击。外接储能元件的管脚 SECBAT,通过开关 M2 与升压转换器输出相连。在正常模式下开关 M2 导通,储能元件与升压转化器输出短路(Vbat = Vbt)。在能量收集进行时,升压转换器提供了电池和负载之间的共享电流。当 Vbat 接近 Vod 时开关 M2 断开,可通过原电池对储能元件进行充电,直到将 Vbat 充电至 Vcr,在这个过程中,开关 M9 导通且开关 M1 断开,即 CSPW 直连 PRIMBAT 却与 SPW 断开。
- (2) 降压。电压从升压转换器输出电压 Vbt 降至 Vbk 稳定值(2.2V),降压转换器包括开关 M5、M6、片外电感 L_{BK} 和片外电容 C_{BK} 。
- (3) 线性稳压。芯片包含两个 LDO,可以输出不同输出电压,满足不同负载电流需要。
- 高压 LDO 从升压转换器输出端取电,通过开关 M7 对输出管脚 HOUT 为负载供电。该稳压器在 HOUT 上提供电压 (Vh),最大电流为 80 mA/350mA (注:最大电流参数,请咨询智芯微确认)。在预定义配置下,输出电压可以选择 1.8 V、2.5 V 或 3.3 V;在自定义配置下,输出电压可以在 2.2 V 至 Vbat-0.3 V 之间调节。正常模式下,高压 LDO 输出可以通过逻辑控制管脚 HOUTEN 实现动态地开启或关闭。注意,高压 LDO 输出端需要接板级去耦电容 C_{HVOL}。
- 低压 LDO 从降压转换器输出端取电,通过开关 M8 对输出管脚 LOUT 为负载供电。该稳压器在 LOUT 上提供电压 (VI = 1.8 V/1.2 V) ,最大电流为 20 mA。正常模式下,低压 LDO 输出可以通过逻辑控制管脚 LOUTEN 实现动态地开启或关闭。注意,低压 LDO 输出端需要接板级去耦电容 C_{LVOL}。

表 7. LDO 开启/关闭配置

LOUTEN	HOUTEN	低压 LVLDO	高压 HVLDO
1	1	开启	开启
1	0	开启	关闭
0	1	关闭	开启
0	0	关闭	关闭

过压模式

当 Vbat 达到 Voc 时,充电完成,芯片内部逻辑将控制 Vbat 维持在 Voc 附近(有几 mV 迟滞)以防止损坏储能元件和内部电路。此时,升压转换器会定期激活以维持 Vbat,LDO 处于可用状态。注意,当升压转换器关闭时开关管 M1 被关断,这样即便外部输入源电压 VSPW 高于 Voc 时也能避免电流直接从源端流向储能元件。

原电池模式

当 Vbat 降至 Vod 以下时,芯片内部会比较 PRIMBAT 电压与 FBPU 电压,以确定管脚 PRIMBAT 是否已连接有电原电池。FBPU 电压通过板级两个可选电阻设置,若 PRIMBAT 电压的 1/4 值高于 FBPU 电压,芯片认为原电池可用并进入原电源模式。在原电池模式,开关 M1 断开,开关 M9 导通,原电池接 CSPW,成为芯片的输入源,芯片保持在此模式,直到 Vbat 达到 Vcr。当 Vbat 达到 Vcr 时,电路进入正常模式。若无原电池,则必须将 PRIMBAT、FBPU 和FBPD 接地;若有原电池,建议 C_{CSPW}电容接板级 150uF。

关机模式

当 Vbat 降至 Vod 以下且原电池无法供电时,芯片进入关机模式以防止深度放电导致储能元件被损坏和 LDO 不稳定。两个 LDO 稳压器均保持启用状态。芯片通过管脚 INT[1]输出指示信号,通知用户芯片即将关机,注意此时两个 LDO 仍然维持可用。若无原电池供电,INT [1]低到高的跳变作为外部大系统中断信号,请确保在 SCCK9006HEH201 彻底关闭前采取有效措施来避免系统不因突然掉电而出现故障。若输入源能量可用且 Vbat 在 Tdly(约 680 ms)之内被恢复到 Vcr,则芯片返回正常模式;若 Vbat 在 Tdly 之后仍未达到 Vcr,则芯片进入深睡眠模式。在深睡眠模式,LDO 被禁用,且 SECBAT与 HARV 被断开以避免过放电损坏电池。在此之后,芯片只能通过唤醒模式才能被唤醒。

最大功率点跟踪

在正常模式、关断模式和唤醒模式的切换期间,升压转换器借助内部 MPPT(最大功率点跟踪)模块来调节。输入源开路电压(Vopen)取决于外部光伏电池/换能器,输入源最大功率点电压(Vmpp)取决于输入源可用功率。MPPT模块按照 Vopen 的特定比例估算 Vmpp。每隔约 5 秒,芯片内部间或性断开 CSPW 约 82 毫秒,MPPT 模块测算并维持 Vmpp。当输入源电压 Vcspw 超过 Vmpp(有轻微迟滞)时,升压转换器开启并从输入源抽取电荷,Vcspw 随之降低;当输入源电压 Vcspw 低于 Vmpp(有轻微迟滞)时,升压转换器关闭并等待外部光伏电池/换能器对 Ccspw 充电来恢复其电压。SCCK9006HEH201 支持 0.1 V 至 5 V 范围内的任何 Vmpp 电平,可通过配置管脚 MPPT [1:0]来选择 Vmpp / Vopen;MPPT 模块通过管脚 INT[2]给出指示信号,当 MPPT 进行最大功率点计算时 INT[2]被内部拉高。

双超级电容平衡

平衡电路可对双超级电容器内部单元电压做平衡,以避免某个单元因电压过高而损坏。若管脚 SECBAT 接电池、电容或单超级电容时,管脚 SECBAL 必须接地以确保平衡电路被关闭;若管脚 SECBAT 接双超级电容时,管脚 SECBAL 必须接双超级电容的两个单元中间节点,平衡电路自动补偿单元间失配以防止某一单元被过充,此时管脚 SECBAL 维持在 Vbat/2 附近。

芯片配置说明

电池及 LDO 配置

预定义配置

在预定义模式下,通过配置三个管脚(VCF [2:0]),用户可以选择预定义配置,可以满足大部分应用场景的需求,相关配置可以参考表 8。

表 8. VCF[2:0]的配置应用

724 01 1	CI [2:0]HJ							
配置管脚		储能器件电压		LDO 输出电压		典型应用		
VCF[2]	VCF[1]	VCF[0]	Voc	Vcr	Vod	Vh	VI	/
1	1	1	4.12V	3.67V	3.60V	3.3V	1.8V	Li-ion 电池
1	1	0	4.12V	4.04V	3.60V	3.3V	1.8V	固态电池
1	0	1	4.12V	3.67V	3.01V	2.5V	1.8V	Li-ion/NiMH 电池
1	0	0	2.70V	2.30V	2.20V	1.8V	1.2V	单超级电容
0	1	1	4.50V	3.67V	2.80V	2.5V	1.8V	双超级电容
0	1	0	4.50V	3.92V	3.60V	3.3V	1.8V	双超级电容
0	0	1	3.63V	3.10V	2.80V	2.5V	1.8V	LiFePO4 电池
0	0	0	自定义					/

三个电压阈值级别定义为:

Voc: 储能元件可接受的最大电压,一旦达到则立刻关闭升压转化器停止充电;

Vcr: 冷启动后,确保 LDO 可用前的储能元件最低电压;

Vod: 电池将耗尽(切换到原电池模式或进入关机模式)时,储能元件可接受的最小电压。

在预定义配置状态,必须将专用于自定义配置的电阻引脚(OCCFG,CRCFG,ODCFG,FBHV)悬空。在自定义配置状态,允许用户定义 Voc,Vcr,Vod 和 Vh。

自定义配置

配置管脚 VCF[2:0]通过接地,使芯片进入自定义配置状态。

图 31. 自定义配置简图

通过板级的6个电阻,按照错误!未找到引用源。连接,可以实现自定义配置。计算公式如下:

- (1) Voc, Vcr , Vod 由 R_1 - R_2 - R_3 - R_4 串联分压电阻网络配置,为简化表达,定义 R_T = R_1 + R_2 + R_3 + R_4 ,那么 R_1 ~ R_4 可以按照如下公式计算:
- $1 \text{ M}\Omega \leq R_T \leq 100 \text{ M}\Omega$
- $R_1 = R_T * (1 \text{ V/Voc})$
- $R_2 = R_T^* (1 \text{ V/Vcr} 1 \text{ V/Voc})$
- $R_3 = R_T^* (1 \text{ V/Vod} 1 \text{ V/Vcr})$
- $R_4 = R_T^*(1 1 \text{ V/Vod})$
- (2) Vh 由 R_5 - R_6 串联分压电阻网络配置,为简化表达,定义 R_V = R_5 + R_6 ,那么 R_5 和 R_6 可以按照如下公式计算:
- $1 \text{ M}\Omega \leq R_V \leq 40 \text{ M}\Omega$
- $R_5 = R_V * (1 \text{ V/Vh})$
- $R_6 = R_V * (1 1 V/Vh)$

注意事项:

第一, 电阻值尽量要大, 可以降低分压电阻网络功耗。

第二,必须遵从下列约束,确保芯片能正常工作。

Vcr + 0.05 V ≤ Voc ≤ 4.5 V

SCCK9006HEH201

- Vod + 0.05 V ≤ Vcr ≤ Voc 0.05 V
- 2.2 V ≤ Vod
- Vh ≤ Vod-0.3V

MPPT配置

通过专用配置管脚 MPPT [1:0],可以选择适当的 MPP 跟踪比,如表 9 所示:

表 9. MPPT[2:0]的配置应用

MPPT[1]	MPPT[0]	Vmpp/Vopen	
0	0	70%	
0	1	75%	
1	0	85%	
1	1	90%	

原电池配置

若用原电池,必须定义好 $V_{PRIMBAT_MIN}$,用来判定原电池已耗尽。当芯片评估 $V_{PRIMBAT_MIN}$ 时,电路会将 FBPD 接地;当芯片未评估 $V_{PRIMBAT_MIN}$ 时,电路会将 FBPD 悬空以避免外部分压电阻网络的静态功耗。定义 $R_P = R_7 + R_8$,那么 R_7 和 R_8 计算如下:

- $100k\Omega \le R_P \le 500k\Omega$
- $R_7 = (V_{PRIMBAT MIN} / 4) * R_P / 2.2V$
- \bullet R₈=R_P-R₇

注意事项:

若不用原电池, 务必将管脚 FBPD 和 FBPU 接地!

冷启动配置

通过管脚 FBCD,最小冷启动电压可以设置成 400mV 以上。在 SPW 和 GND 之间,片外电阻分压网络可将管脚 FBCD 设置在所需的冷启动电压阈值。定义 $R_C=R_9+R_{10}$,冷启动电压 V_{CS} ,那么 R_9 和 R_{10} 计算如下:

- $100k\Omega \le R_C \le 10M\Omega$
- $R_9 = 0.38V* (R_C / V_{CS})$

• $R_{10} = R_C - R_9$

注意事项:

若要配置成最低冷启动电压阈值(默认值),请将管脚 FBCD 短接至管脚 SPW!

无电池配置

若从环境收集到的能量永久可用并满足应用需求,或者无可收集能源时不用存储能量,可以在管脚 SECBAT 接 150μF 以上的电容代替储能元件。

储能元件配置

SCCK9006HEH201 支持的储能元件类型包括可充电电池、超级电容或大电容(150μF 以上)。选择原则,必须确保在峰值电流负载下电压在 Vod 之上。较大的电池内阻往往限制峰值电流负载能力,此时可以并联电容来解决。注意,管脚 SECBAT 不能悬空,即使不接电池,也必须接 150μF 以上电容。储能元件的漏电流越低越好,还要注意:

- (1) 电感。升压转换器和降压转换器各需要一颗微型电感,典型值 10μH, 开关频率大于 10MHz, 升压转换器电感峰值电流要大于 250mA, 降压转换器电感峰值电流要大于 50mA, 电感 ESR 越低越好, 有利于提升电压转换效率;
- (2) 电容。典型方案需要 4 颗 10 μ F 微型陶瓷电容和 1 颗 22 μ F 微型陶瓷电容,电容泄露电流越低越好,有利于降低系统静态功耗。
- C_{CSPW} 电容位于升压转换器的输入端,对后级开关电压扰动滤波,推荐值为 10 μF +/- 20%,如果采用原电池模式, 推荐值为 150 μF +/- 20%;
- C_{BK}电容位于降压转换器的输出端,对降压转换器开关电压扰动滤波,推荐值为 10 μF +/- 20%;
- C_{HARV}电容位于升压转换器的输出端,对升压转换器开关电压扰动滤波,推荐值为 22 μF +/- 20%;
- C_{HVOL}和 C_{LVOL}电容位于高压 HVLDO 和低压 LVLDO 的输出端,闭环稳定性要求 8 μF~14 μF。

典型应用电路

典型预定义方案

图 32. 典型预定义方案框图

在上图中,输入能量源为光伏电池,储能元件为锂离子电池,射频模块依靠 3.3V 供电,微处理器依靠 1.8V 供电。因为芯片采用预定义配置,节省了 BOM 成本。工作模式通过管脚 VCF[2:0]=111 设置,此时阈值 Voc = 4.12 V & Vcr = 3.67 V & Vod = 3.60 V,LDO 输出电压 Vh = 3.3 V & VI = 1.8 V。此应用方案中,原电池作为备用电源,其耗尽最低电压设置为 3.5V,配置电阻 R_P = 0.5 M Ω & R_7 = (3.54 V *0.5 M Ω)/2.2 V = 200 k Ω & R_8 = 0.5 M Ω -200 k Ω = 300 k Ω ; 最大功率点跟踪比=70%,配置管脚 MPPT[1:0]=00; 低压 LDO 保持常开,配置管脚 LOUTEN=Vbk。

微处理器靠使能管脚 LOUTEN 接 Vbk 的低压 LDO 供电,只要储能元件电压 Vbat 和升压转换器输出电压 Vbt 达到 Vcr,低压 LDO 立刻开启,随后微处理器完成上电。通过微处理器 GPIO 输出控制高压 LDO 使能管脚 HOUTEN,软件实现对射频模块供电的动态开启或关闭。

典型自定义方案

图 33. 典型自定义方案框图

在上图中,输入能量源为光伏电池,储能元件为双超级电容,该双超级电容在冷启动期间可以完全耗尽。管脚 SECBAL 接双超级电容中间点,能补偿单元之间失配,可以起到保护超级电容的目的。 芯片采用自定义配置,即管脚 VCF[2:0]=000,此时阈值 Voc=4.5V & Vcr= 4.2V & and Vod=3.5V。在此方案中,配置电阻 R_T =54 M Ω & R_1 =54 M Ω *(1V/4.5V) =12 M Ω & R_2 =54 M Ω *(1V/4.2V - 1V/4.5V) =850 k Ω & R_3 =54 M Ω *(1V/3.5V - 1V/4.2V) =2.57 M Ω & R_4 =54 M Ω *(1-1V/3.5V) =38.6 M Ω ; 低压 LVLDO 输出电压 VI=1.8 V,其使能管脚 LOUTEN 由微处 理器 GPIO 输出控制,软件实现对传感器和微处理器的上电或下电;高压 LDO 输出电压 Vh=3.3 V,配置电阻 R_V =35 M Ω & R_5 =35 M Ω *(1V/3.3V) =10.6 M Ω & R_6 =35 M Ω *(1-1V/3.3V) =24.4 M Ω ,其使能管脚 HOUTEN 通过接 Vbk 使能,只要储能元件电压 Vbat 和升压转换器输出电压 Vbt 达到 Vcr,高压 LDO 立刻开启,随后微处理器完成上电;最大功率点跟踪比=90%,配置管脚 MPPT[1:0]=11(接 Vbk);该方案不含原电池,务必保证管脚 FBPU 和FBPD 接地;冷启动电压 Vspw=700 mV,配置电阻 R_C =1 M Ω & R_9 =1 M Ω *0.4V/0.7V=576 k Ω & R_{10} =424 k Ω .

封装尺寸信息

图 34. 封装尺寸图

表 8. 封装尺寸

符号	最小值	典型值		最大值	单位
А	0.70	0.75		0.80	mm
	0.80	0.85		0.90	mm
	0.85	0.90		0.95	mm
A1	-	0.02		0.05	mm
b	0.18	0.25		0.30	mm
С	0.18	0.20		0.25	mm
D	4.90	5.00		5.10	mm
D2	3.40	3.50		3.60	mm
e	0.50BSC				mm
Ne	3.50BSC			mm	
E	4.90	5.00		5.10	mm
E2	3.40	3.50		3.60	mm
L	0.35	0.40		0.45	mm
h	0.30	0.35		0.40	mm
L/F 载体尺寸	150x150			130x130	mm

订购信息

产品型号	封装	温度范围	数量
SCCK9006HEH201	QFN32	−40°Cto 85°C	编带, 3k

版权 © 2022 北京智芯微电子科技有效公司。 商标及注册商标均版权所有。

