GARField

题目: GARField: Group Anything with Radiance Fields

来源: UC Berkeley 和 Luma Al 项目: https://www.garfield.studio/

文章目录

- 摘要
- 一、前言
- 二、相关工作
- 2.1 层次分组
 - <u>2.2 NeRF的分割</u>
 - 2.3 3D 特征场
- <u>E</u> method
- o <u>3.1 2D Mask 生成</u>
 - 3.2 Scale-Conditioned Affinity Field(尺度条件亲和场)
 - <u>3.2.1 对比监督</u>
 - 3.2.2 密集尺度监督
 - 3.2.3 射线和掩码采样
 - 3.3 实施细节
- 四、层次分解
- 五、实验
- o <u>5.1 场景分解 (定性)</u>
 - 5.2 层次结构 (定量)
- 六、局限性
- 七、代码
- 总结

摘要

提示: 这里可以添加本文要记录的大概内容:

分组(或者分割)本身是模糊的,因为在不同粒度级别上,场景的分割标准不同——**挖掘机的车轮应该被认为是独立的还是整体的一部分**?本文提出 **辐射场分组 GARField,一种将三维场景,从带pose图像的输入分解为语义组的方法**。方法通过物理尺度来接受群体的模糊性:通过优化一个按尺度划分的3D密切特征场,从SAM模型提供的二维mask来优化,以从粗到细的层次结构,通过自动树构造或用户交互推导出可能分组的层次结构。

GARField能够实现 **对象的集体、对象**和各种**子部分**,具有令人兴奋的下游应用程序,如3D资产提取或动态场景理解。

一、前言

如图1,虽然NeRFs等技术可以恢复场景的逼真的3D重建,但世界被建模为一个没有结构意义的单一体积。作为人类,我们不仅可以重建场景,但我们也有能力组在多个层次的粒度,分类理解场景。

图1:提出GARField,它将mask基于多层次组提取成NeRF,以创建一个尺度条件的3D亲和场(左上角)。训练后,亲和场就可以在各种尺度上聚类,以不同的粒度级别分解场景,比如将挖掘机分解成它的子部分(底部)。三维资产可以通过场景自动提取或通过用户点击从层次结构中提取,如这里所示(右上角)

提出了GARField方法,给定姿态的图像,**重建一个三维场景和一个 scale-conditioned affinity field,使将场景分解成组的层次结构**。例如,GARField可以提取整个挖掘机(图1右上)以及它的子部件(右下)。这种密集的层次3D分组使诸如3D资产提取和交互式分割等应用程序成为可能。

GARField将一组二维分割mask,提取成一个三维体积尺度条件的亲和场。因为分组是一项模糊的任务,二维标签可能是重叠或冲突的,导致了挑战。我们通过利用一个具有尺度条件的特征域来解决问题。具体地说,GARField优化了一个密集的三维特征场,它被监督,使特征距离反映了点的亲和力。尺度调节使两点在大尺度上具有较高的亲和力,而在较小尺度上具有较低的亲和力,如图2所示。

我们用SAM得到输入图像的候选分割mask。对于每个mask,基于场景几何计算一个物理比例,利用3D尺度来解决视图或候选掩模之间的不一致。

一个行为良好的亲和场de特点:

1)**可和性**,这意味着如果两个点与第三个点相互分组,它们本身应该分组在一起; 2)**包容**,这意味着如果两个点在一个小的尺度上分组,它们应该在更高的尺度上分组在一起。

GARField使用的对比损失和抑制辅助损失鼓励了这两种特性。

二、相关工作

2.1 层次分组

从前景分割开始,二维图像的研究一直很广泛。有几种方法基于光谱聚类的思想,通过经典的纹理 线索来提取轮廓,并通过一个自顶向下的[37]或自下而上的模型,用于多层次分割和更复杂的层次场景解 析[1,25,31]。

许多工作通过定义一组类别来规避分组中的模糊性问题,其中的实例将被分割,即全景分割 [10,14]。最近,SAM 将这种模糊性off-loads到提示中,每个像素上可以提出多个分割掩模。然而,SAM 不能在场景中恢复一组一致的层次组(我们通过多尺度三维蒸馏实现)

我们的方法从2维模型中提取信息:考虑完整的场景,并专注于3D对象。

2.2 NeRF的分割

现有的NeRF中的分割方法通常通过使用地面真值语义标签[29,38],匹配实例掩码[18],或在NeRF [34]上训练三维分割网络,将分割掩模提炼成三维分割网络。但是,这些技术不考虑层次结构分组,而只对对象或实例的平面层次结构感兴趣。Ren等人[27]利用图像涂鸦的形式的人类互动来分割对象。最近,Cen等人[3]试图通过用户提示跟踪相邻视图之间的2D掩模,从SAM中恢复3D一致掩模。Chen等人[4]尝试通过将SAM编码器特征提炼成3D并查询解码器。与这些方法相比,GARField不需要用户输入;它能够自动获得场景的分层分组,而且恢复的组根据定义是视图一致的。

2.3 3D 特征场

将高维特征分解成一个神经场,与辐射场(视角相关的颜色和密度)相结合,已经被彻底探索。 Semantic NeRF [38]、蒸馏特征场[16]、神经特征融合场[33]、Panoptic Lifting[29]等方法,将三维特征场优化的逐像素二维特征提炼成三维,重建体积渲染后的二维特征。这些特征可以来自预先训练好的视觉模型,如DINO或来自语义分割模型。LERF [13]将这一想法扩展到一个有尺度条件的特征领域,使其能够从像CLIP这样的全局图像嵌入中训练特征域。

GARField同样在三维空间,优化了尺度条件特征字段;然而,多尺度特征的目的是解决分组中的歧义,而不是像CLIP那样重建显式的二维特征。此外,LERF没有空间分组。上述方法都是基于对图像特征的直接监督,而其他方法,如NeRF-SOS [8]和对比Lift [2],使用基于相似性的射线对之间的对比损失,在单一尺度上优化任意特征场。GARField使用这种对比的方法,因为它允许基于掩码标签定义点之间的成对关系。然而,我们设计了一个尺度条件下的对比损失,它允许提取相互冲突的mask 到 3D。

三、method

3.1 2D Mask 生成

GARField以pose图像为输入,生成一个分层的三维场景分组,以及一个标准的三维体积辐射场和一个有尺度条件的亲和场。首先用SAM得到输入图像的候选mask。接下来,通过输入的三维位置和欧式尺度,优化一个体积辐射场和亲和场,并输出一个特征向量。亲和度是通过比较点对的特征向量来获得的。优化后,生成的亲和字段可以用于分解场景,通过以粗到细的方式递归地聚类三维特征嵌入,或者

用于分割用户指定的查询。整个管道如图3所示。

图3。GARField方法: (左)给定输入images,密集查询SAM来提取一组候选mask,并通过从NeRF中逆投影深度,来**为每个候选mask分配一个物理尺度Sa**,被用来训练某个 尺度条件下的亲和场(右)。训练时,如果成对采样的光线位于不同的mask,它们会被推开;反之则会被拉在一起。亲和力只在每个mask的尺度上被监督,这有助于解决冲突。

2D mask筛选: 首先用SAM的自动掩码生成器,得到图像的二维mask候选对象,为每个mask分配一个3D尺度。具体的,在一个点网格中查询SAM,并在每个查询点产生3个候选分割掩码。然后,通过置信度过滤这些掩模,并删除几乎相同的掩模,以产生多个大小的候选掩模列表,可以重叠或包括彼此。这个过程是独立于视点完成的,产生的mask可能不一致。目标是生成一个基于对象的物理大小的分组层次结构。因此,我们为每个2D mask分配了一个物理三维尺度,如图3所示。为此,我们部分地训练了一个辐射场,并渲染了一个来自每个训练摄像机pose的深度图像。接下来,对于每个mask,我们考虑该掩模内的三维点,并根据这些点的位置分布的范围来选择比例。该方法保证了掩模的三维尺度存在在相同的世界空间中,实现了尺度条件下的亲和力。

3.2 Scale-Conditioned Affinity Field(尺度条件亲和场)

尺度条件是GARField的一个关键组成部分,它允许整合不一致的二维掩码候选:相同的点可能取决于所需分组的粒度。尺度条件减轻了这种不一致性,因为它解决了查询应该属于哪个组的歧义。在尺度分割条件下,同一点的冲突掩模在训练过程中不再相互对抗,而是在不同的亲和尺度下在同一场景中共存。

我们在三维点 x 和欧氏尺度 s 上定义了尺度条件亲和场 $F_g(x,s) \to R^d$,类似于LERF [13]。输出特性被限制在一个单位超球体内,在一个尺度上两点之间的亲和性由 $A(x_1,x_2,s) = -||F_g(x_1,s) - F_g(x_2,s)||_2$ 定义。这些特征可以使用基于NeRF密度的相同渲染权重,以加权平均值进行体渲染,以获得每条射线的值。

3.2.1 对比监督

根据DrLIM [9],采用**margin-based contrastive 对比目标**进行监督。损失又两部分组成:给定的 尺度下,同一组中的特征接近,不同组中的特征分开。

具体来说,从同一训练图像中采样掩模 M_A 、 M_B 的两条射线 r_A 、 r_B ,以及相应的尺度 s_A 和 s_B 。我们可以沿每条射线,以体渲染方式得到尺度条件的亲和特征 F_A 和 F_B 。如果 M_A = M_B ,特性将通过L2距离拉在一起: L_{pull} = $||F_A$ - $F_B||$;反之,特性将被分开: L_{push} =ReLU(m- $||F_A$ - $F_B||$),其中m是下界距离或边界。这种损失只适用于从同一图像中采样的射线,因为在不同视点上的掩模没有对应关系。

3.2.2 密集尺度监督

仅有对比损失的监督,并不足以维持尺度分层。我们引入以下修改来解决:

持续尺度监督。使用3D mask尺度,分组只在mask对应的离散像素点处定义。这导致了大的无监督区域,如图9顶部所示。我们通过在当前的mask尺度和第二个最小的mask尺度之间均匀随机地扩大尺度s来加强尺度监督。当射线mask是给定视点的最小mask时,我们在0和s₀之间进行插值。确保了在整个领域的持续规模监督,没有留下无监督的区域

图9: 消融实验: 没有密集的层次监督, 点可能在不同尺度上有不一致的亲和关系: 1)在无监督尺度上存在虚假的大亲和度, 2)在较大尺度上亲和力的意外下降。

遏制辅助损失:如果两条射线 r₁ 和 r₂ 在同一个尺度为s的掩模中,那么它们也应该在任何大于s的尺度上被拉在一起。每个训练步骤中,对于以s尺度分组的光线,我们另外采样一个更大尺度的 s'>s,光线也被拉在一起。这确保了在小尺度上的亲和性在大尺度上不会失去。

3.2.3 射线和掩码采样

为平衡图像的数量和用于监督的点对的数量,每次采样16张图像,每幅图像采样256个点,每次序列迭代得到4096个样本

对于每个采样的射线,还必须选择一个mask作为训练的组标签。在每个训练步骤中,我们从每个光线对应的mask列表中随机选择一个mask。

1)选择mask的概率与掩模的二维像素面积的对数成反比,**防止大尺度控制采样过程**,因为可以通过更多的像素来选择更大的掩模。

2)在mask选择过程中,我们协调同一图像中光线选择的随机尺度,以增加正对的概率。为此,我们对每幅图像采样一个介于0到1之间的单个值,并以相同的值索引到每个像素的掩码概率CDF中,以确保位于同一组内的像素被分配相同的掩码。

3.3 实施细节

该方法是在Nerfacto[32]的基础上,为 grouping field 定义一个单独的输出头。 grouping field 用 24层的hashgrid[23]表示,每层特征维为2,有256个神经元和ReLU激活的4层MLP表示,以scale作为额外输入。我们将相机的范围限制在2×,并使用sklearn的 quantile transform对三维mask尺度分布的MLP输入进行归一化(第3.1节)。输出嵌入件的维数为d = 256维。来自亲和特性的梯度不影响来自NeRF的RGB输出,因为这些表示不共享任何权重或梯度。

经过2000步NeRF优化后,开始训练 grouping field,给出几何时间收敛。为了加速训练,**首先体渲染哈希值,然后将其作为MLP的输入,以获得射线特征**。使用这种延迟渲染,可以只用一个额外的MLP调用,以不同的尺度查询相同的射线。在输入MLP之前,我们将体积呈现的结果归一化为单位范数,对于点级查询,单个哈希网格值被归一化。预处理SAM大约需要3-10分钟,然后在GTX 4090上进行大约20分钟的训练

四、层次分解

一旦优化了尺度条件的亲和力,**GARField生成一个3D groups的层次结构,组织在树中,这样每个节点就被分解成潜在的子组**。为了做到这一点,我们通过减少亲和力的尺度来递归地聚类组,使用HDBSCAN [19],这是一种基于密度的聚类算法,不需要先验集群的数量。

这种聚类过程,可以在二维中对生成mask的图像中的体渲染特征进行,**或者在三维跨点中生成点**云。

图6.3D分解: GARField可以递归查询, 将场景聚为对象及其子部分。

Initialization hierarchy: 首先以一个大规模尺度 s_{max} 全局集群特征(实验设置为1.0,对应于输入摄像机的位置的程度),作为场景分解中的top节点。

递归聚类:为了生成场景节点的层次树,我们**迭代地减少一个固定的epsilon (我们使用0.05),在每个叶节点上运行HDBSCAN**。如果HDBSCAN为给定节点返回多个集群,那么我们将这些集群添加为子集群并递归。**持续到尺度0**,此时过程终止,返回当前树。

五、实验

现有的三维扫描数据集,倾向于关注对象级扫描,是模拟的,或主要包含室内家庭场景[6]。**为了评估GARField,我们使用了来自Nerfstudio和LERF数据集的各种室内和室外场景**。图3和图6提供了定性结果。

5.1 场景分解 (定性)

使用Gaussian Splatting [12]通过查询高斯中心的GARField亲和场来可视化分解。我们这样做是因为与nerf相比,Gaussian Splatting在3D中更容易分割。所有的渲染都是完整的3D模型,而不是2D图像视图的分割。

我们可视化了两种类型的分层聚类结果。**图7以手工选择的粗尺度对场景进行全局聚类,然后从聚类中,选择对应于少数对象的组,并将它们进一步分解为子组**。我们可视化了在连续递减的尺度上获得的簇,这增加了组的粒度。GARField实现高保真3d分组在广泛的场景和对象,从人造对象,如键盘,复杂的自然对象像植物,可以分组个体花以及他们的花瓣和叶子。通过改变尺度,在不同的层次上分离物体,例如花盆中的每一片叶子(左第一行)。

图7.**使用 Gaussian Splats产生三维可视化**:从GARField中,我们通过选择顶级集群从全局场景中提取对象,然后以递减的尺度可 视化其局部集群。GARField可以生成完整的3D mask,并根据输入mask将这些对象分解成有意义的子部分

5.2 层次结构 (定量)

使用两个指标进行定量评估:第一种测量来自多个视图中的标签的视图一致性,第二次通过mlOU对地面真实人类注释,测量各种层次mask的召回。

三维完整性:对于下游任务,组对应于完整的三维对象是很有用的,例如,包含整个对象而不是它的某一侧的组。虽然GARField总是通过构造生成与视图一致的组,但它可能不一定包含完整的对象。我们通过检查整个3D对象是否跨一系列视点组合在一起来评估其完整性。为了做到这一点,在5个场景中,选择一个3D点投影到3个不同的视点,并标记3个相应的视图一致的真实mask,包含在粗、中和精

细水平的点。在这些点上,我们以0.05的增量从GARField的多个尺度上挖掘多个掩模,在每个尺度上,基于0.9的特征相似性阈值获得一个mask。我们还通过点击图像中的点并拍摄所有3个面具来与SAM进行比较。我们报告了两种方法对所有候选mask计算的最大mIOU

结果如表1所示。GARField在跨视点上比SAM生成更完整的3D掩码,从而产生具有多视图人工对象注释的更高的mIOU。这种效果在最细粒度的层面上尤其明显。

Scene	Fine SAM Ours	Medium SAM Ours	Coarse SAM Ours	
teatime	81.6 92.7	97.3 97.9		
bouquet	17.4 76.0	73.5 81.6	76.1 85.4	
keyboard	65.3 88.8	73.6 98.4		
ramen	53.3 79.2	74.7 90.7	92.6 95.5	
living_room	85.3 90.5	74.2 80.7	88.6 94.4	

Scene	SAM [15]	Ours (-scale)	Ours (-dense)	Ours
ramen	74.9	64.1	74.1	85.6
teatime	64.9	67.7	66.1	86.6
keyboard	23.2	57.6	73.1	77.9
bouquet	34.4	49.8	72.9	76.4
living_room	59.6	49.7	62.1	76.6

Table 1. 3D Completeness.

Table 2. Hierarchical Grouping Recall

层次分组召回:测量GARField在多个粒度上的召回。在5个场景中,我们选择一个新的视点,并为1-2个对象标记多达3个Grountruth 层次组。GARField通过聚类图像空间特征,输出一组如第4节所述的mask,每个树节点输出一个mask。我们通过保留所有输出mask与SAM的自动mask生成进行了比较。我们通过两种方式删除了GARField:GARField(-尺度)删除了尺度划分;而GARField(-层次结构)删除了密集监督

消融表明,规模条件反射和规模致密化对于高质量的分组是必要的。图9显示了在单纯监督下的更高规模的亲和分解。

六、局限性

GARField的核心是从2D mask生成器中提取输出,因此如果2D mask不能包含所需的组,这将不会出现在3D中。视点不均匀的区域可能会出现人为的群体边界,例如,如果一个对象只从近距离观察,它可能永远不会被分组在一起,因为没有输入视图完整地包含它。我们使用物理大小来处理组的模糊性,但在一个尺度内可能有多个分组。例如,与容器中包含的对象可能会发生冲突,因为有该对象和没有该对象的容器可以具有相同的比例。未来的工作可以考虑其他方法来解决分组歧义,如功能支持。比例条件反射的另一个结果是,不同大小的对象部分分别从树中分支,而不是一次分支:同一个表上的多个对象可能出现在树的不同层次上。本工作中的树生成是一种单纯的贪婪算法,它可以导致更深层次的虚假的小群,如补充部分中的树所示。未来的工作可能会探索更复杂的层次集群的方法。