ESERCIZI DI ALGEBRA LINEARE E

COMPLEMENTI DI GEOMETRIA

Foglio 5*

Esempio 1. Dire se l'applicazione

$$f: M_2(\mathbb{C}) \longrightarrow \mathbb{C}^2$$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \longmapsto (a_{11} + a_{21}, a_{12} + a_{22})^t$$

è lineare.

Sol. Dobbiamo mostrare che per ogni $A, B \in M_2(\mathbb{C})$ e ogni $\alpha, \beta \in \mathbb{C}$, $f(\alpha A + \beta B) = \alpha f(A) + \beta(A)$. Siano $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ e $B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$.

$$f(\alpha A + \beta B) = (\alpha a_{11} + \alpha a_{21} + \beta b_{11} + \beta b_{21}), \alpha a_{12} + \alpha a_{22} + \beta b_{12} + \beta b_{22})^{t}$$

= $\alpha (a_{11} + a_{21}, a_{12} + a_{22})^{t} + \beta (b_{11} + b_{21}, b_{12} + b_{22})^{t}$
= $\alpha f(A) + \beta f(B)$

Quindi l'applicazione f è lineare.

Esempio 2. Sia $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definito da $T(x,y,z) = (2y+z,x-4y,3x)^t$ un'applicazione lineare di \mathbb{R}^3 in sè scritta rispetto alla base canonica \mathcal{E} e sia $\mathcal{F} = \{f_1 := (1,1,1)^t, f_2 := (1,1,0)^t, f_3 := (1,0,0)^t\}$ un insieme di vettori di \mathbb{R}^3 .

- 1. Dimostrare che \mathcal{F} è una base di \mathbb{R}^3 .
- 2. Scrivere la matrice $T_{\mathcal{E}\leftarrow\mathcal{E}}$ associata a T rispetto alla base canonica.
- 3. Scrivere la matrice del cambiamento di coordinate $M_{\mathcal{F}\leftarrow\mathcal{E}}$ dalla base canonica alla base \mathcal{F} .
- 4. Scrivere la matrice associata a T rispetto alla base \mathcal{F} .

Sol. 1. L'insieme \mathcal{F} definisce una base di \mathbb{R}^3 in quanto la matrice delle colonne $C(f_1, f_2, f_3)$ ha rango 3.

2.

$$T_{\mathcal{E}\leftarrow\mathcal{E}} \begin{bmatrix} 0 & 2 & 1\\ 1 & -4 & 0\\ 3 & 0 & 0 \end{bmatrix}$$

3. La matrice $M_{\mathcal{E}\leftarrow\mathcal{E}}$ è l'inversa della matrice $M_{\mathcal{E}\leftarrow\mathcal{F}}$, che ha per colonne i vettori f_1 , f_2 e f_3 , in quanto essi sono scritti rispetto alla base canonica. Quindi

$$M_{\mathcal{E} \leftarrow \mathcal{F}} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

e

$$M_{\mathcal{F}\leftarrow\mathcal{E}} = (M_{\mathcal{E}\leftarrow\mathcal{F}})^{-1} = \begin{bmatrix} 0 & 0 & 1\\ 0 & 1 & -1\\ 1 & -10 & \end{bmatrix}$$

^{*}Sono a grato a quanti mi indicheranno i molti errori presenti in questi fogli, al fine di fornire uno strumento migliore a quanti lo riterranno utile, e-mail: sansonetto@sci.univr.it

4.

$$T_{\mathcal{F}\leftarrow\mathcal{F}} = M_{\mathcal{F}\leftarrow\mathcal{E}} T_{\mathcal{E}\leftarrow\mathcal{E}} M_{\mathcal{E}\leftarrow\mathcal{F}} = \begin{bmatrix} 3 & 3 & 3 \\ -6 & -6 & -2 \\ 6 & 5 & 1 \end{bmatrix}$$

Esempio 3. Si consideri, al variare di $\alpha \in \mathbb{R}$, l'applicazione lineare $f_{\alpha} : \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ definita da $f_{\alpha}(x,y,z) = (-x + (2-\alpha)y + z, x - y + z, x - y + (4-\alpha)z)^{t}$.

- 1. Scrivere la matrice associata a f_{α} rispetto alla base canonica su dominio e codominio.
- 2. Determinare per quali $\alpha \in \mathbb{R}$ f_{α} è iniettiva.
- 3. Determinare per quali $\alpha \in \mathbb{R}$ f_{α} è suriettiva.
- 4. Determinare per quali $\alpha \in \mathbb{R}$ il vettore $(1,1,1)^t \in Im(f_\alpha)$.
- 5. Determinare $N(f_1)$.
- 6. Costruire, se possibile, un'applicazione lineare $g: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tale che $Im(g) = Im(f_0)$.
- 7. Costruire, se possibile, un'applicazione lineare $h: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tale che $N(h) = N(f_1)$.

Sol. 1. Dall'espressione di $f_{\alpha}(x,y,z)$ si ricava che $f_{\alpha}(e_1)=(-1,1,1)^t$, $f_{\alpha}(e_2)=(2-\alpha,-1,-1)^t$ e $f_{\alpha}(e_3)=(1,1,4-\alpha)^t$ e quindi la matrice associata a f_{α} rispetto alla base canonica su dominio e codominio è

$$(f_{\alpha})_{\mathcal{E}\leftarrow\mathcal{E}} \begin{bmatrix} -1 & 2-\alpha & 1\\ 1 & -1 & 1\\ 1 & -1 & 4-\alpha \end{bmatrix}$$

2. Basta determinare per quali $\alpha \in \mathbb{R}$ il vettore nullo $\mathbf{0}$ è l'unica soluzione del sistema lineare omogeneo

$$\begin{cases}
-x + (2 - \alpha)y + z = 0 \\
x - y + z = 0 \\
x - y + (4 - \alpha)z = 0
\end{cases}$$

Dobbiamo cioè determinare per quali α la matrice $(f_{\alpha})_{\mathcal{E}\leftarrow\mathcal{E}}$ ha rango 3. Applicando l'eliminazione di Gauss alla matrice $(f_{\alpha})_{\mathcal{E}\leftarrow\mathcal{E}}$ si ottiene la matrice

$$\begin{bmatrix} -1 & 2 - \alpha & 1 \\ 0 & 1 - \alpha & 2 \\ 0 & 0 & 2 - \alpha \end{bmatrix}$$

che ha rango 3 se e solo se $\alpha \neq 1$ e $\alpha \neq 3$. Quindi f_{α} è iniettiva se e solo se $\alpha \neq 1$ e $\alpha \neq 3$.

- 3. Essendo f_{α} un'applicazione lineare di \mathbb{R}^3 in sè dal Teorema nullità + rango si ricava che f_{α} è iniettiva se e solo se è suriettiva, quindi f_{α} è suriettiva se e solo se $\alpha \neq 1$ e $\alpha \neq 3$.
- 4. È sufficiente determinare per quali α il sistema

$$\begin{cases}
-x + (2 - \alpha)y + z = 1 \\
x - y + z = 1 \\
x - y + (4 - \alpha)z = 1
\end{cases}$$
(1)

ammette soluzione. Dal punto precedente sappiamo che per ogni $\alpha \neq 1, 3$ f_{α} è suriettiva e quindi per tali α il vettore $(1,1,1)^t$ sta sicuramente in $Im(f_{\alpha})$. Controlliamo cosa accade per $\alpha=1$ e $\alpha=1$.

 \bullet Sia $\alpha = 1$ e applichiamo al sistema (1) l'eliminazione di Gauss, ottenendo la matrice

$$\begin{bmatrix} -1 & 1 & 1 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Esercizi di Algebra Lineare e complementi di Geometria

La colonna dei termini noti di tale matrice è dominante, quindi il sistema lineare (1) non ammette soluzione e cioè il vettore $(1, 1, 1)^t$ non appartiene all'immagine di f_1 .

• Se $\alpha = 3$ il sistema (1) è equivalente al sistema di matrice

$$\begin{bmatrix} -1 & -1 & 1 & 1 \\ 0 & -2 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

La colonna dei termini noti non è dominante, quindi il sitema ammette soluzione, in particolare ammette infinite soluzioni dipendenti da un paramentro. Di conseguenza il vettore $(1, 1, 1)^t$ sta nell'immagine di f_3 .

5. $N(f_1) = \{ \mathbf{v} \in \mathbb{R}^3 | (f_1)_{\mathcal{E} \leftarrow \mathcal{E}} \mathbf{v} = \mathbf{0} \}$. Dobbiamo cioè determinare una base per lo spazio delle soluzioni del sistema

$$\begin{cases}
-x+y+z=0\\ x-y+z=0\\ x-y+3z=0
\end{cases}$$

Abbiamo già determinato in precedenza la forma ridotta della matrice associata a tale sistema, da cui si ricava che $N(f_1) = <(1,1,0)^t>$.

6. I punti rimanenti sono lasciati per esercizio.

7.

Esercizio 4. Sia V un \mathbb{R} -spazio vettoriale e sia $\mathfrak{B}_V = \{\mathbf{v_1}, \, \mathbf{v_2}, \, \mathbf{v_3}\}$ una sua base.

- 1. Esiste un'applicazione lineare ϕ di V in sè tale che $\phi(\mathbf{v_1}) = 4\mathbf{v_1} b\mathbf{v_2}, \ \phi(\mathbf{v_2}) = \mathbf{v_1} + v_2$ e $\phi(\mathbf{v_1} 3\mathbf{v_2}) = \mathbf{v_1} 10\mathbf{v_2}$? In caso affermativo determinarle tutte.
- 2. Determinare un'applicazione lineare φ di V in sè (esibirne una matrice associata) tale che $\varphi(\mathbf{v_1}) = \mathbf{v_1} \mathbf{v_2}$, $\varphi(\mathbf{v_1} + 2\mathbf{v_2}) = \mathbf{v_1} + \mathbf{v_2}$ e $\mathbf{v_3} \mathbf{v_1} \in N(\varphi)$. φ è unica?
- 3. Esiste un'applicazione lineare f di V in sè tale che $f(\mathbf{v_1}) = \mathbf{v_1} \mathbf{v_2}$, $f(\mathbf{v_2}) = 3\mathbf{v_1} + \mathbf{v_2}$ e $f(\mathbf{v_1} \mathbf{v_2}) = -2\mathbf{v_1} 2\mathbf{v_2}$? In caso affermativo determinarle tutte.

Esercizio 5. Sia $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ l'applicazione lineare definita da $f(x,y,z) = (x+y,x+y,z)^t$.

- 1. Scrivere la matrice associata a f rispetto alla base canonica.
- 2. Determinare N(f) e Im(f).
- 3. Mostrare che l'insieme $\mathcal{B} = \{b_1 := (1, 1, -1)^t, b_2 := (1, 1, 0)^t, b_3 := (1, -1, 0)^t\}$ è una base di \mathbb{R}^3 .
- 4. Scrivere la matrice associata a f rispetto alla base canonica nel dominio e alla base \mathcal{B} nel codominio.

Esercizio 6. Sia T l'applicazione lineare di \mathbb{R}^3 in sè definita da $T(e_1)=(3,2,1)^t$, $T(-e_2)=(1,-2,3)^t$ e $T(e_1-e_3)=(1,-2,3)^t$. Si consideri inoltre l'applicazione lineare $S_\alpha:\mathbb{R}^2\longrightarrow\mathbb{R}^3$ definita da $S_\alpha(1,2)=(6,4,2)^t$ e $S_\alpha(2,-1)=(\alpha,0,4)^t$.

- 1. Scrivere la matrice associata a T rispetto alla base canonica.
- 2. Determinare N(T) e Im(T). Calcolarne la dimensione ed esibirne una base. T è iniettiva? È Suriettiva?
- 3. Determinare per quali $\alpha \in \mathbb{R}$ $Im()T = Im(S_{\alpha})$, inoltre, calcolare la dimensione dello spazio $Im(T) \cap Im(S_{\alpha})$ al variare di $\alpha \in \mathbb{R}$.

Esercizio 7. Si consideri al variare di $\alpha \in \mathbb{R}$ la famiglia di applicazioni lineari $T_{\alpha} \longrightarrow M_{2}(\mathbb{R})$ definite da $T_{\alpha}(x,y,z) = \begin{bmatrix} x + \alpha y & 0 \\ z & x - \alpha y \end{bmatrix}$.

3

- 1. Scrivere la matrice associata a T_{α} rispetto alle basi canoniche degli spazi in questione.
- 2. Determinare, al variere di $\alpha \in \mathbb{R}$, $N(T_{\alpha})$ e $Im(T_{\alpha})$.
- 3. Data la matrice $B = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$, determinare la preimmagine di B relativa a T_{α} .

Esercizi di Algebra Lineare e complementi di Geometria

4. Posto $\alpha = 1$ e definita la matrice $B_{\mu} = \begin{bmatrix} 1 & \mu \\ 1 & 0 \end{bmatrix}$, determinare la preimmagine di B_{μ} rispetto a T_1 , al variare di $\mu \in \mathbb{R}$.

Esercizio 8. Considerare, al variare di $\alpha \in \mathbb{R}$, la famiglia di applicazioni lineari $T_{\alpha}: M_2(\mathbb{R}) \longrightarrow \mathbb{R}^{\leq 2}[x]^1$ definite da

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \longmapsto a + x(b + \alpha c) + x^2(b - \alpha c)$$

- 1. Scrivere lamatrice associata a T_{α} rispetto alle basi canoniche degli spazi in questione.
- 2. Dire per quali valori di α il polinomio $2x^2 + x + 1$ appartiene a ImT_{α} , quindi determinarne la preimmagine.
- 3. Posto $A := \bigcup_{\alpha \in \mathbb{R}} N(T_{\alpha})$, determinare lo spazio generato da A.
- 4. Determinare uno sottospazio vettoriale $W \leq M_2(\mathbb{R})$ tale che $A \oplus W = M_2(\mathbb{R})$.

Esercizio 9. Sia V un \mathbb{R} -spazio vettoriale di dimensione 3 e sia $\mathcal{B}=(b_1,b_2,b_3)$ una sua base.

- 1. Verificare che esiste ed è unica, per ogni $\beta \in \mathbb{R}$, l'applicazione lineare $T = T_{\beta}$ definita da $T_{\beta}(b_1 + b_2) = b_1 b_2$, $T_{\beta}(b_1 b_2) = b_1 b_2$ e $T(b_3) = \beta b_3 + b_1 b_2$.
- 2. Scrivere la matrice associata a T rispetto alla base \mathcal{B} su dominio e codominio.
- 3. Determinare, al variare di $\beta \in \mathbb{R}$, una base di $N(T_{\beta})$ e una base di $Im(T_{\beta})$.
- 4. Determinare, al variare di $\beta \in \mathbb{R}$, la preimmagine di $\mathbf{v} = b_1 b_2 + b_3$.

 $^{{}^{1}\}mathbb{R}^{\leq 2}[x]$ denota lo spazio dei polinomi di grado minore o uguale a 2.