Einführung in Sage - Einheit 6 Folgen, Reihen, Potenzreihen, Vertiefung Schleifen

Jochen Schulz

Georg-August Universität Göttingen

14. Februar 2010

Aufbau

- Folgen
- Reihen
- 3 Potenzreihen
- 4 Vertiefung Schleifen ??

Aufbau

- Folgen
- Reihen
- 3 Potenzreihen
- 4 Vertiefung Schleifen ??

Folgen

- Eine reelle Zahlenfolge kurz Folge genannt, ist eine Abbildung von $\mathbb N$ in $\mathbb R$.
- Statt $a: \mathbb{N} \to \mathbb{R}$ schreibt man in Anlehnung an die Vektornotation $(a_n)_{n \in \mathbb{N}}$ oder einfach $(a_n)_n$.
- Natürlich kann man auch Folgen $\mathbb{N} \to Y$ auf beliebigen Mengen Y betrachten. Aber wir beschränken uns auf den Fall $Y = \mathbb{R}$.
- Die Zahlen a_n heißen Glieder der Folge.
- Eine Teilfolge $(a_{n_i})_{n_i}$ ist eine Abbildung $a: N \to \mathbb{R}$, wobei $N \subset \mathbb{N}$ eine Menge mit unendlich vielen Elementen ist.

Konvergenz von Folgen

Eine Zahlenfolge $(a_n)_n$ ist konvergent gegen den Grenzwert oder Limes $a \in \mathbb{R}$, wenn es zu jedem $\varepsilon > 0$ ein $n_0 \in \mathbb{N}$ gibt, so dass für alle $n \geq n_0$ die Abschätzung

$$|a_n - a| < \varepsilon$$

gilt. Man schreibt

$$a=\lim_{n\to\infty}a_n.$$

Eine nicht konvergente Folge nennt man divergent.

Bemerkungen

- Konvergiert eine Folge gegen 0, so nennt man sie eine Nullfolge.
- Der Grenzwert einer konvergenten Teilfolge $(a_{n_i})_{n_i}$ heißt Häufungspunkt.
- Ein Folge kann keinen aber auch mehrere Häufungspunkte besitzten; konvergente Folgen haben genau einen Häufungspunkt.
- Eine Cauchy-Folge ist eine Folge $(a_n)_n$ bei der für alle $\varepsilon > 0$ ein $n_0 \in \mathbb{N}$ existiert, so dass für alle $n, m \geq n_0$ gilt: $|a_n a_m| < \varepsilon$. In \mathbb{R} ist eine Folge konvergent, genau dann wenn sie eine Cauchy-Folge ist (Vollständigkeit).
- Eine ε -Umgebung $U_{\varepsilon}(a)$ von a ist definiert durch

$$U_{\varepsilon}(a) := (a - \varepsilon, a + \varepsilon) := \{x \in \mathbb{R} \mid |x - a| < \varepsilon\}.$$

Beispiele

$$a_n := \frac{1}{n+1} \qquad 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$$

$$b_n := 2^{-n} \qquad 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots$$

$$c_n := 2^n \qquad 1, 2, 4, 8, \dots$$

$$d_n := \left(\frac{n+2}{n+1}\right)^{n+1} \qquad \frac{2^1}{1^1}, \frac{3^2}{2^2}, \frac{4^3}{3^3}, \dots$$

$$e_n = (-1)^n \qquad 1, -1, 1, -1, \dots$$

Die Folgen $(a_n)_n$, $(b_n)_n$ und $(d_n)_n$ konvergieren und $(c_n)_n$, $(e_n)_n$ divergieren.

Folgen in Sage I

Grenzwerte von Folgen $(a_n)_n$ können in Sage mit Hilfe von

```
limit(expr(x), x = oo, dir='above')
```

berechnet werden. Dabei ist expr(x) ein Ausdruck.

Beispiele:

```
_=var('n');limit(1/(n+1),n=00)
```

0

```
limit(((n+2)/(n+1))^(n+1),n=00)
```

е

```
limit((-1)^n,n=00)
```

ind

Folgen in Sage II

```
limit(2^n,n=00)
```

+Infinity

```
lim(x*sin(1/x), x=0)
```

0

Visualiseren von Folgen

Folgen können in Sage durch points visualisiert werden.

```
var('n');
point([(n,(-1)^n/n) for n in range(1,21)], pointsize=8)
```


Konvergenzkriterien

- Jede monotone, beschränkte Folge konvergiert.
- Sind $(a_n)_n$ und $(b_n)_n$ konvergente Folgen, $\alpha, \beta \in \mathbb{R}$, so ist auch die Folge $(\alpha a_n + \beta b_n)_n$ konvergent mit dem Grenzwert

$$\lim_{n\to\infty}(\alpha a_n+\beta b_n)=\alpha\lim_{n\to\infty}a_n+\beta\lim_{n\to\infty}b_n.$$

• Sind $(a_n)_n$ und $(b_n)_n$ konvergente Folgen, so ist auch die Folge $(a_nb_n)_n$ konvergent mit dem Grenzwert

$$\lim_{n\to\infty}(a_nb_n)=(\lim_{n\to\infty}a_n)\cdot(\lim_{n\to\infty}b_n).$$

 Weglassen oder Hinzufügen endlich vieler Glieder verändert das Konvergenzverhalten nicht.

Wichtige Sätze

- (Bolzano-Weierstrass) Jede beschränkte Folge besitzt (mindestens) eine konvergente Teilfolge.
- Jede Teilfolge einer konvergenten Folge konvergiert gegen den Grenzwert der ursprünglichen Folge.
- Jede konvergente Folge ist beschränkt, d.h. es gibt ein K > 0, so dass $|a_n| \le K$ gilt für alle $n \in \mathbb{N}$.
- Seien $(a_n)_n$ und $(b_n)_n$ konvergente Folgen mit $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$. Dann gilt für eine Folge $(c_n)_n$ mit $a_n \le c_n \le b_n$, $n \in \mathbb{N}$, dass sie konvergiert mit $\lim_{n\to\infty} c_n = \lim_{n\to\infty} b_n$.

Rekursive Folgen

Rekursive Folgen können durch rekursive Funktionen erzeugt werden.

Beispiel:

$$y_{n+2} := 2y_{n+1} - y_n + 2, \quad y_0 = -1, y_1 = a.$$

```
>>var('a')
>>def y(n):
    if n==0:
        return -1
    if n==1:
        return a
    return 2*y(n-1)-y(n-2)+2
```

```
4*a + 15
```

Aufbau

- Folgen
- Reihen
- 3 Potenzreihen
- 4 Vertiefung Schleifen ??

Reihen

Sei $(a_n)_n$ eine Folge reeller Zahlen. Eine (unendliche) Reihe mit den Gliedern a_n , in Zeichen

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots,$$

ist definiert durch die Folge $(s_n)_n$ der Partialsummen

$$s_n = \sum_{k=1}^n a_k = a_1 + a_2 + \cdots + a_n.$$

Der Grenzwert s der Folge $(s_n)_n$ wird als Wert oder Summe der Reihe bezeichnet. Man schreibt

$$s=\sum_{n=1}^{\infty}a_n.$$

Bemerkungen

- Beginnt die Indizierung statt bei 1 mit einer anderen ganzen Zahl m, so wird $\sum_{n=m}^{\infty} a_n$ entsprechend eingeführt.
- Bei Abänderung, Weglassen oder Hinzufügen endlich vieler Glieder bleiben Konvergenz und Divergenz unberührt. I.A. wird sich aber der Grenzwert ändern.
- Reihen sind eine spezielle Art von Folgen.

Beispiele I

• Die geometrische Reihe ist gegeben durch $\sum_{n=0}^{\infty} x^n$. Die Partialsummen lauten

$$s_n = 1 + x + x^2 + \ldots + x^n = \begin{cases} n+1, & \text{falls } x = 1 \\ \frac{1-x^{n+1}}{1-x}, & \text{falls } x \neq 1 \end{cases}$$

Also divergiert die Reihe für $|x| \ge 1$ und konvergiert für |x| < 1 mit dem Wert $\sum_{n=0}^{\infty} = \frac{1}{1-x}$.

• Die Reihe $\sum_{n=1}^{\infty} \frac{1}{n^2}$ konvergiert gegen $\pi^2/6$.

Beispiele II

- Die harmonische Reihe $\sum_{n=1}^{\infty} \frac{1}{n}$ divergiert.
- Die alternierende harmonische Reihe $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ konvergiert.
- Die Reihe $\sum_{n=1}^{\infty} \frac{1}{n^s}$ konvergiert für s > 1.
- Die Reihe $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^s}$ konvergiert für s>1 und divergiert für s=1.

Reihen mit Sage I

Der Befehl sum(f,i=a..b) sucht eine geschlossene Darstellung der Summe $\sum_{i=a}^{b} f(i)$. Dabei sind a,b ganze Zahlen, wobei auch unendlich (also infinity) erlaubt ist und f ist ein Ausdruck in i.

```
_=var('k'); sum(1/k^2,k,1,oo)
```

```
1/6*pi^2
```

```
sum((-1)^(k+1)/k,k,1,00)
```

log(2)

```
sum(1/k,k,1,00)
```

ValueError: Sum is divergent

Reihen mit Sage II

Oft ist die Konvergenz einer Reihe abhängig von bestimmten Parametern, wie z.B. bei der geometrischen Reihe. Und je nach Parameterwert zeigt die Reihe unterschiedliches Konvergenzverhalten

```
sum(x^k,k,0,00)
```

```
Is abs(x)-1 positive, negative, or zero?
```

Entsprechend gibt es keine geschlossene Form. Für x = 1/2 gilt jedoch

```
x = 1/2; sum(x^k,k,0,00)
```

2

Etwas mehr Sage

Definieren der Partialsumme

```
del x;_=var('x,n')
s = sum(x^k,k,0,n); s
```

```
(x^{n} + 1) - 1)/(x - 1)
```

• Die ersten 5 Glieder der Partialsumme

```
assume(x<>1); [s(n=m) for m in [1..6]]
[(x^2 - 1)/(x - 1), (x^3 - 1)/(x - 1), (x^4 - 1)/(x - 1), (x^5 - 1)/(x - 1), (x^7 - 1)/(x - 1)]
```

Etwas mehr Sage II

Bestimmen des Grenzwertes der Folge der Partialsummen

```
forget(); assume(abs(x)<1); limit(s, n=00)</pre>
```

$$-1/(x - 1)$$

```
forget();assume(x>1);limit(s,n=oo)
```

```
+Infinity
```

assume

Mit der Funktion assume kann man Funktionen wie expand, simplify oder solve mitteilen, dass für gewisse Bezeichner Annahmen über ihre Bedeutung gemacht wurden.

Beispiele:

```
assume(x,'real') x wird auf \mathbb{R} eingeschränkt!
assume(x>a) x wird auf \{y \in \mathbb{R} \mid y > a\} eingeschränkt!
```

Ruft man assume mehrmals für einen Bezeichner auf, werden zusätzliche Annahmen gemacht. Sind diese Widersprüchlich erhält man eine entsprechende Meldung.

Bemerkungen

- Umformungen oder Vereinfachungen für symbolische Bezeichner werden i.A. nur dann durchgeführt, wenn sie für alle komplexen Zahlen gelten. Hier kann ein Einschränken des Definitionsbereichs helfen.
- Mittels forget(x>a) wird die Annahme x>a gelöscht.
- Durch assumptions() können alle Annahmen ausgegeben werden.

Beispiele zu assume I

```
var('c'); assumptions()

c
[]

c = 2; assume(c>0)
```

AttributeError: 'bool' object has no attribute 'assume'

Beispiele zu assume II

```
del c;_=var('c')
assume(c,'integer'); assumptions()
 [c is integer]
sin(c*pi)
 sin(pi*c)
sin(c*pi).simplify()
    0
```

Beispiele zu assume III

```
assume(x>0)
sqrt(x^2).simplify()
```

x

??

??

>>

Einige Grundbereiche ??

Grundbereich	Erklärung
Type::Real	\mathbb{R}
Type::Rational	Q
Type::Integer	\mathbb{Z}
Type::Prime	Primzahlen
Type:: Intervall(a,b,T)	$\{x \in T a < x < b\}, T Grundbereich$
Type::Positive	\mathbb{R}_{+}
Type::NonZero	$\mathbb{C} \setminus \{0\}$
Type::NegRat	\mathbb{Q}_{-}

Konvergenzkriterien

- Cauchykriterium: Eine Reihe $\sum_{n=1}^{\infty} a_n$ konvergiert genau dann, wenn es zu jedem $\varepsilon > 0$ ein $n_0 \in \mathbb{N}$ gibt, so dass für alle $m, n \geq n_0$ gilt $|\sum_{k=m}^{n} a_k| < \varepsilon$.
- Notwendiges Kriterium: Konvergiert eine Reihe, so bilden ihre Glieder eine Nullfolge. Dieses Kriterium ist nicht hinreichend!
- Verdichtungskriterium: Eine Reihe $\sum_{n=1}^{\infty} a_n$ mit einer Folge nichtnegativer, monoton fallender Glieder konvergiert genau dann, wenn die Reihe $\sum_{n=1}^{\infty} 2^n a_{2^n}$ konvergiert.

Majorantenkriterium

- Gilt $0 \le c_n \le a_n \le b_n$ für alle $n \in \mathbb{N}$, so nennt man $\sum_{n=1}^{\infty} c_n$ eine Minorante und $\sum_{n=1}^{\infty} b_n$ eine Majorante von $\sum_{n=1}^{\infty} a_n$.
- Besitzt eine Reihe mit nichtnegativen Gliedern eine konvergente Majorante, so konvergiert sie.
- Besitzt eine Reihe mit nichtnegativen Gliedern dagegen eine divergente Minorante, so divergiert sie.

Konvergenzkriterien

Die Reihe $\sum_{n=1}^{\infty} a_n$ konvergiert, wenn...

- **Quotientenkriterium:** Die Glieder positiv sind und ein q<1 existiert, so dass für $n\in\mathbb{N}$ gilt $\frac{a_{n+1}}{a_n}\leq q$.
- **Wurzelkriterium:** Die Glieder positiv sind und ein q < 1 existiert, so dass für $n \in \mathbb{N}$ gilt $\sqrt[n]{a_n} \le q$.
- **Leibnizsches Kriterium:** Die Reihe $\sum_{n=1}^{\infty} (-1)^n a_n$ konvergiert, wenn die Folge $(a_n)_n$ eine monoton fallende Nullfolge ist.

Beispiele

• Betrachte $\sum_{n=0}^{\infty} n^4 e^{-n^2}$

```
f(n) = n^4.*exp(-n*n)

g(n) = f(n+1)/f(n)

limit(g(n),n=oo)
```

0

• Betrache $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^2}$

```
f(n) = 1/(n*(ln(n)^2))

g(n) = 2^n*f(2^n)

h(n) = 2^n*g(2^n)

limit(h(n+1)/h(n),n=oo)
```

1/2

Absolute und bedingte Konvergenz

Eine Reihe $\sum_{n=0}^{\infty} a_n$ heißt absolut konvergent genau dann wenn $\sum_{n=0}^{\infty} |a_n|$ konvergiert.

Eine konvergente, aber nicht absolut konvergente Reihe heißt bedingt konvergent.

- Absolut konvergente Reihen können beliebig umgeordnet werden.
- Dies ist i.d.R. bei nicht absolut konvergenten Reihen falsch!

Aufbau

- Folgen
- 2 Reihen
- 3 Potenzreihen
- 4 Vertiefung Schleifen ??

Potenzreihen

Eine Potenzreihe ist eine Reihe der Form

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n$$

mit $x_0 \in \mathbb{R}$. Das Konvergenzverhalten für verschiedene x wird durch den Konvergenzradius

$$\rho := \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}}$$

bestimmt. Für $|x-x_0|<\rho$ konvergiert die Potenzreihe absolut und für $|x-x_0|>\rho$ divergiert sie.

Bemerkungen

• Ist $a_n \neq 0$ für alle $n > n_0$, dann gilt für den Konvergenzradius:

$$\rho = \limsup_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}.$$

- Potenzreihen konvergieren innerhalb ihres Konvergenzradius absolut.
- Die Konvergenz an den Stellen $x_0-\rho$ und $x_0+\rho$ muss bei jeder Reihe individuell geprüft werden.
- Potenzreihen sind ein mächtiges Werkzeug innerhalb der Mathematik.

Beispiele

```
f(n) = 1/factorial(n)
rho = limit(expand(f(n+1)/f(n)), n=oo); rho
```

0

Die Potenzreihe konvergiert für alle $x \in \mathbb{R}$.

• $\sum_{n=0}^{\infty} n^s x^n$, s > 0

```
_=var('s');f(n)= n^s; assume(s>0)
limit(expand(f(n)^(1/n)),n=infinity)
```

1

Der Konvergenzradius ist 1.

Exponentialfunktion

Wir erklären die Exponentialfunktion durch

$$exp(x) := \sum_{i=0}^{\infty} \frac{x^n}{n!} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots, x \in \mathbb{R}.$$

Die Funktion ist auf ganz \mathbb{R} definiert. Plot:

Eigenschaften der Exponentialfunktion

- Es gilt $exp(x + y) = exp(x) \cdot exp(y)$.
- Es gilt $\exp(x) = \lim_{n \to \infty} (1 + \frac{x}{n})^n$.
- Es gilt $\exp(x) = 1/\exp(-x)$.
- Die Umkehrfunktion auf \mathbb{R}_+ der Exponentialfunktion ist die Logarithmusfunktion $\log(x)$. Es gilt

$$\exp(\log(x)) = x, \ x > 0, \quad \log(\exp(x)) = x, \ x \in \mathbb{R}.$$

• Die allgemeine Potenz ist durch $a^x := \exp(x \log a)$, $a \in \mathbb{R}_+$ definiert.

Sage

```
sum(x^n/factorial(n),n,0,00)
   e^x
exp(log(x))
   x
 ??
??
```

Trigonometrische Funktionen

Die Sinusfunktion und die Cosinusfunktion sind definiert durch

$$\sin(x) := \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \qquad \cos(x) := \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}.$$

Die Potenzreihen konvergieren für alle $x \in \mathbb{R}$. Plotten:

```
p = plot(sin,0,4*pi,color='red')
p += plot(cos,0,4*pi);
p += text('-- $\sin(x)$', (10, 1.0), color='red')
p += text('-- $\cos(x)$', (10, 0.85)); p.show()
```


Eigenschaften

Es gelten die Additionstheoreme:

$$\sin(x+y) = \sin x \cos y + \cos x \sin y$$
$$\cos(x+y) = \cos x \cos y - \sin x \sin y.$$

Es gilt:

$$\sin^2 x + \cos^2 x = 1.$$

- Wir definieren π , indem wir die kleinste positive Nullstelle von $\cos(x)$ als $\pi/2$ definieren.
- Es gilt:

$$\sin(x + \pi/2) = \cos(x)$$
$$\cos(x + \pi/2) = -\sin(x).$$

Sage

```
solve(cos(x) == 0,x)
```

```
[x == 1/2*pi]
```

??

??

Weitere Eigenschaften I

 Die Umkehrfunktionen von Sinus und Cosinus werden mit arcsin und arccos bezeichnet. In Sage: arcsin und arccos. Plotten:

```
p = plot(arcsin,-1,1,color='red')
p += plot(arccos,-1,1);
p += text('-- $arcsin(x)$', (-0.7, 1.0), color='red')
p += text('-- $arccos(x)$', (-0.7, 0.75)); p.show()
```


Weitere Eigenschaften II

• Der Tangens ist definiert durch $tan(x) := \frac{\sin(x)}{\cos(x)}$.

```
plot(tan,-4,4,detect_poles=True,ymax=4,ymin=-4)
```


Aufbau

- Folgen
- 2 Reihen
- 3 Potenzreihen
- **4** Vertiefung Schleifen ??

Schleifen I

Wir kennen bereits Schleifen durch das [.. for ..]-Konstrukt. Mit for können aber auch ganze Blöcke wiederholt werden.

```
for k in [1..4]:

x = k^2

print("Das Quadrat von \{0\} ist \{1\}").format(k,x)
```

Schleifen II

- Die Schleifenvariable k durchläuft die Werte 1, 2, 3 und 4. Dabei wird alles was ab : eingerückt ist k-mal durchlaufen.
- Ergebnisse, die in jedem Schleifenschritt berechnet werden, werden nicht auf dem Bildschirm ausgegeben.
- Eine Ausgabe wird durch den print-Befehl erzielt.

Schleifen III

Eine elegante Möglichkeit sind Schleifen über Listen oder Mengen.

```
L = [1..10]
for i in L:
    x = i^2
    print("Das Quadrat von {0} ist {1}").format(i,x)
```

Etwas Zahlentheorie

Wir geben für die natürlichen Zahlen ≤ 1000 an, wieviele Zahlen $1,2,3,\ldots$ Teiler haben.

```
Liste = [1..1000]
def anz_teiler(n): return len(divisors(n))
Liste2 = map(anz_teiler,Liste)
for k in [1..50]:
    print "{0} , {1}".format(k,len(filter(lambda x: x == k, Liste2)))
print divisors(840)
```

Alternative Schleifenkonstruktionen

Schleifen abwärts zählen

```
for j in reversed([2,4]):
    print("{0}, {1}").format(x,x^j)
```

Schrittweite modifizieren

```
for j in range(3,10,2):
    print(x,x^j)
```

Fixpunkt

Suche ein $x_{\mathrm{fix}} \in \mathbb{R}$ so dass

$$x_{\text{fix}} = \cos(x_{\text{fix}})$$

gilt.

Fixpunkt-Iteration

Fixpunkt-Iteration

$$x_{k+1} = cos(x_k)$$

bei geeignetem Startwert $x_0 = 0.2$.

Implementierung

```
def fixpunkt(f,In,x0,n):
    v = [x0]
    p = plot(f,(In[0],In[1]))
    p += plot(x,(In[0],In[1]))
    for i in [0..n-1]:
        y.append(float(f(y[i])))
        p += line([(y[i],y[i]), (y[i],y[i+1])],
           linestyle='--', color='red')
        p += line([(y[i],y[i+1]), (y[i+1],y[i+1])],
           linestyle='--', color='red')
   p.show()
    return(y)
```

Aufruf

```
fixpunkt(lambda x: cos(x),[0,1],0.2,10)

[0.200000000000000, 0.98006657784124163,
      0.55696725280964243, 0.84886216565827077,
      0.66083755111661502, 0.78947843776686832,
      0.70421571334199318, 0.76211956176066087,
      0.72337417210557109, 0.74957657633149311,
      0.73197742525819132]
```