Solutions Contest # 1

- 1. Let x = the number. So $x = 1 + \frac{1}{x}$. Solving, $x = \frac{1 \pm \sqrt{5}}{2}$. But only the \pm solution is positive.
- 2. \angle ACD is an exterior angle of \triangle ABC, so x > 35. In \triangle ACD, one angle is 40, so x < 140.
- 3. $\triangle ABE \sim \triangle CDE$, so $\frac{14}{26} = \frac{CD}{13}$ and thus CD = 7
- 4. Case I: x < 2. So $2-x+5-x=4 \Rightarrow x=1.5$. Case II: $2 \le x \le 5$: So $x-2+5-x=4 \Rightarrow 3=4$ so no solutions in this case. Case III: x > 5. So $x-2+x-5=4 \Rightarrow x=5.5$
- 5. The midpoints are (1,12), (4,5), (1,-2), and (-2,5). The quadrilateral they form has diagonals which are perpendicular, so the area is half their product. So Area = .5(14)(6) = 42Alternate solution,: Using encasement, the area of the original quadrilateral is 84, so the midpoint quadrilateral has area $\frac{1}{2}84 = 42$
- 6. Any combination with only \wedge , \vee is false if both p and q are false. If both are \rightarrow , then false when p false and q true. So exactly one must be \rightarrow . Try the four cases. Only $(p \wedge q) \rightarrow p$ and $(p \rightarrow q) \vee p$ are always true.