Important Maclaurin Series

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

$$= 1 + x + x^2 + x^3 + \dots \qquad R = 1$$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

$$= 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \quad R = \infty$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots \quad R = \infty$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots \quad R = \infty$$

$$\tan^{-1} x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots \quad R = 1$$

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots \quad R = 1$$

$$(1+x)^k = \sum_{n=0}^{\infty} {k \choose n} x^n = 1+kx + \frac{k(k-1)}{2!} x^2 + \frac{k(k-1)(k-2)}{3!} x^3 \dots$$

R = 1

Important Angles

Fundamental Identities

$$\sin^2\theta + \cos^2\theta = 1$$

$$\theta \quad \sin \theta \quad \cos \theta \quad \tan \theta$$

$$0 \quad 0 \quad 1 \quad 0$$

$$\frac{\pi}{6} \quad \frac{1}{2} \quad \frac{\sqrt{3}}{2} \quad \frac{\sqrt{3}}{3}$$

 $\csc^2 \theta - \cot^2 \theta = 1$

 $\sec^2\theta - \tan^2\theta = 1$

Half-Angle Formulae

$$\cos^2 x = \frac{1 + \cos 2\theta}{2}$$

$$\sin^2 x = \frac{1 - \cos 2\theta}{2}$$

Double-Angle Formulae

$$\cos 2x = \cos^2 x - \sin^2 x$$

$$=2\cos^2 x - 1$$

$$= 1 - 2\sin^2 x$$

$$\sin 2x = 2\sin x \cos x$$

$$\tan 2x = \frac{2\tan x}{1 - \tan x}$$

$-2\cot u\csc^2 u$	$2 \tan u \sec^2 u$	2 tan u sec² u	$-2\sin u\cos u$	2 sin u cos u	$-\csc^2 u$	-cscucotu	sec <i>u</i> tan <i>u</i>	$\sec^2 u$	$-\sin u$	cosu	$\frac{1}{u}$	$-u^{-2}$	e^{u}	e ^u	$\frac{\mathrm{d}}{\mathrm{d}u}f(u)$
csc ² u	$\sec^2 u$	tan ² u	$\cos^2 u$	$\sin^2 u$	cot u	cscu	secu	tan u	cos u	$\sin u$	$\ln u$	<u>u</u> -1	a^u	e^{u}	f(u)
-cot <i>u</i>	tan u	$\tan u - u$	$\frac{1}{2}u + \frac{1}{4}\sin 2u$	$\frac{1}{2}u - \frac{1}{4}\sin 2u$	$\ln \sin u $	$\ln \csc u - \cot u $	$\ln \sec u + \tan u $	$\ln \sec u $	sin u	$-\cos u$	$u \ln u - u$	$\ln u $	$\frac{a^u}{\ln a}$	еи	$\int f(u) du$
		65	64	63	13	15	14	12			100				

 $-2\cot u\csc^2 u$

 $\cot^2 u$

 $-\cot u - u$

66

74: cosⁿ u

102: $\frac{1}{u \ln u}$

12:
$$tan u$$
 64: $cos^2 u$ 75: $tan^n u$

13: $cot u$ 65: $tan^2 u$ 76: $cot^n u$

14: $sec u$ 66: $cot^2 u$ 77: $sec^n u$

15: $csc u$ 67: $sin^3 u$ 78: $csc^n u$

16: $\frac{1}{\sqrt{a^2 + u^2}}$ 68: $cos^3 u$ 82: $u sin u$

18: $\frac{1}{u\sqrt{u^2 - a^2}}$ 70: $cot^3 u$ 92: $u arctan u$

19: $\frac{1}{a^2 - u^2}$ 71: $sec^3 u$ 96: ue^{au}

20: $\frac{1}{u^2 - a^2}$ 72: $csc^3 u$ 97: $u^n e^{au}$

21: $\sqrt{a^2 + u^2}$ 73: $sin^n u$ 100: $ln u$