Übungsaufgaben zur Vorlesung

Lineare Algebra und Analytische Geometrie I*

Prof. Dr. J. Kramer

Abgabetermin: 27.11.2018 in der Vorlesung

Bitte beachten:

JEDE Aufgabe auf einem neuen Blatt abgeben.

JEDES Blatt mit Namen, Matrikelnummer, Übungsgruppennummer versehen.

Serie 6 (40 Punkte)

Aufgabe 1 (10 Punkte)

Es sei V ein K-Vektorraum und \mathcal{B} eine Teilmenge von V. Beweisen Sie, dass die vier folgenden Aussagen äquivalent sind:

- (i) \mathcal{B} ist eine Basis von V.
- (ii) \mathcal{B} ist ein minimales Erzeugendensystem von V.
- (iii) \mathcal{B} ist eine maximal linear unabhängige Teilmenge von V.
- (iv) Jeder Vektor $v \in V$ lässt sich eindeutig als Linearkombination von Elementen aus \mathcal{B} darstellen.

Aufgabe 2 (10 Punkte)

Im \mathbb{R} -Vektorraum \mathbb{R}^4 betrachten wir die Vektoren

$$b_1 := \begin{pmatrix} 3 \\ 5 \\ 2 \\ 2 \end{pmatrix}, \ b_2 := \begin{pmatrix} 1 \\ 1 \\ 1 \\ -1 \end{pmatrix}, \ b_3 := \begin{pmatrix} 3 \\ 6 \\ 2 \\ 2 \end{pmatrix}, \ b_4 := \begin{pmatrix} 4 \\ 7 \\ 3 \\ 2 \end{pmatrix},$$

sowie

$$a_1 := \begin{pmatrix} 1 \\ 3 \\ 0 \\ 2 \end{pmatrix}, \ a_2 := \begin{pmatrix} -2 \\ 1 \\ 2 \\ 1 \end{pmatrix}.$$

- (a) Zeigen Sie, dass $\mathcal{B} := \{b_1, b_2, b_3, b_4\}$ eine Basis des \mathbb{R} -Vektorraums \mathbb{R}^4 bildet und dass $\mathcal{A} := \{a_1, a_2\}$ eine linear unabhängige Teilmenge ist.
- (b) Bestimmen Sie mit Hilfe des Austauschsatzes von Steinitz eine Basis \mathcal{C} des \mathbb{R} -Vektorraums \mathbb{R}^4 , für die $\mathcal{A} \subseteq \mathcal{C} \subseteq (\mathcal{A} \cup \mathcal{B})$ gilt.

Aufgabe 3 (10 Punkte)

(a) Es seien $U, U' \subseteq V$ zwei endlich erzeugte Unterräume des K-Vektorraums V. Es seien $\mathcal{B} := \{b_1, \ldots, b_n\}$ eine Basis von U und $\mathcal{B}' := \{b'_1, \ldots, b'_m\}$ eine Basis von U'.

Beweisen oder widerlegen Sie folgende Aussagen:

- (i) Die Menge $\mathcal{B} \cup \mathcal{B}'$ ist eine Basis von U + U'.
- (ii) Die Menge $\mathcal{B} \cup \mathcal{B}'$ ist ein Erzeugendensystem von U + U'.
- (iii) Die Menge $\mathcal{B} \cap \mathcal{B}'$ ist eine Basis von $U \cap U'$.
- (b) Im \mathbb{R} -Vektorraum \mathbb{R}^4 betrachten wir die Unterräume

$$U_1 := \left\{ \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \\ \xi_4 \end{pmatrix} \in \mathbb{R}^4 \middle| \begin{array}{c} \xi_1 + \xi_2 + \xi_3 = 0 \\ \xi_2 + \xi_3 - \xi_4 = 0 \end{array} \right\} \quad \text{und} \quad U_2 := \left\langle \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \\ 2 \end{pmatrix} \right\rangle.$$

Bestimmen Sie Basen der Unterräume U_1 , U_2 , $U_1 \cap U_2$ und $U_1 + U_2$ und geben Sie die Dimensionen dieser Unterräume an.

Aufgabe 4 (10 Punkte)

- (a) Im \mathbb{Q} -Vektorraum $\mathbb{Q}[X]_{\leq 3}$ der Polynome mit rationalen Koeffizienten vom Grad kleiner oder gleich 3 betrachten wir die Teilmenge $\mathcal{B} := \{X^3 X + 1, X^3 1, X^2 X, X^3\}.$
 - (i) Untersuchen Sie, ob die Menge \mathcal{B} linear unabhängig ist.
 - (ii) Nutzen Sie den Austauschsatz von Steinitz, um die Menge $\mathcal{A} := \{X 2, X^2 2\}$ durch Elemente aus \mathcal{B} zu einer Basis \mathcal{C} von $\mathbb{Q}[X]_{\leq 3}$ zu ergänzen.
- (b) Im \mathbb{R} -Vektorraum $\mathbb{R}[X]$ der Polynome mit reellen Koeffizienten betrachten wir die Menge $U := \{f(X) \in \mathbb{R}[X] \mid f(1) = 0\}.$
 - (i) Zeigen Sie, dass U ein Unterraum von $\mathbb{R}[X]$ ist.
 - (ii) Geben Sie eine Basis von U an und ergänzen Sie diese zu einer Basis von $\mathbb{R}[X]$.