Klausur Testtheorie - Teil II

1 LST Mess-Strukturmodell

Zu 2 Zeitpunkten wurden 2 Testwertvariablen $(Y_{11}, Y_{21}, Y_{12} \text{ und } Y_{22})$ erhoben. Bezüglich dieser Testwertvaria-blen wurde das folgende Modell geschätzt:

Messmodell: $\mathbf{Y} = \nu + \mathbf{\Lambda} \eta + \varepsilon$ und $\boldsymbol{\Theta}$ -Matrix

$$\begin{bmatrix} Y_{11} \\ Y_{21} \\ Y_{12} \\ Y_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 1.715 \\ 0 \\ 1.385 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \eta_1 \\ \eta_2 \\ \theta \end{bmatrix} + \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{21} \\ \varepsilon_{12} \\ \varepsilon_{22} \end{bmatrix} \qquad \boldsymbol{\Theta}\text{-Matrix} = \begin{bmatrix} 3.035 \\ 0 & 2.958 \\ 0 & 0 & 2.771 \\ 0 & 0 & 0 & 2.583 \end{bmatrix}$$

Strukturmodell: $\eta = \alpha + \mathbf{B}\eta + \zeta$ und Ψ -Matrix

$$\begin{bmatrix} \eta_1 \\ \eta_2 \\ \theta \end{bmatrix} = \begin{bmatrix} 0 \\ 1.179 \\ 20.296 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} \eta_1 \\ \eta_2 \\ \theta \end{bmatrix} + \begin{bmatrix} \zeta_1 \\ \zeta_2 \\ \zeta_3 \end{bmatrix} \qquad \mathbf{\Psi}\text{-Matrix} = \begin{bmatrix} 10.475 \\ 0 & 13.861 \\ 0 & 0 & 11.290 \end{bmatrix}$$

Welche der folgenden Aussagen sind dann korrekt?

- 1. $E(Y_{21}) = 22.011$
- 2. $Var(Y_{21}) = 24.723$
- 3. $Con(Y_{11}) = 0.457$
- 4. $Spe(Y_{11}) = 0.424$

2 LST lavaan

Latent Variables				
	Estimate	Std.Err	z-value	P(> z)
eta1 =~				
y11	1.000			
y21	1.000			
eta2 =~				
y12	1.000			
y22	1.000			
theta =~				
eta1	1.000			
eta2	1.000			
Intercepts:				
	Estimate	Std.Err	z-value	P(> z)
.y11	0.000			
. y21 (a	a) 1.752	0.124	14.090	0.000
.y12	0.000			
.y22 (a	a) 1.752	0.124	14.090	0.000
eta1	0.000			
eta2	0.811	0.387	2.096	0.036
theta	20.279	0.361	56.172	0.000
Variances:				
	Estimate	Std.Err	z-value	P(> z)
.y11	2.744	0.831	3.302	0.001
. y21	3.253	0.851	3.824	0.000
.y12	2.437	0.826	2.951	0.003
.y22	2.920	0.843	3.465	0.001
eta1	10.624			0.000
eta2	13.941	2.291	6.084	0.000
theta	11.146	2.009	5.548	0.000

Welchen der nachfolgenden Aussagen zu diesem lavaan Output können Sie zustimmen?

- 1. Es wurde ein Multi-State Single-Trait Modell mit essentieller η_t Äquivalenz und essentieller θ -Äquivalenz geschätzt.
- 2. Die Reliabilität der ersten Testwertvariable zum ersten Messzeitpunkt ist $Rel(Y_{11}) \approx 0.888$
- 3. Die Spezifität der zweiten Testwertvariable zum ersten Messzeitpunkt ist $Spe(Y_{21}) \approx 0.425$
- 4. Die Konsistenz der zweiten Testwertvariable zum zweiten Messzeitpunkt ist $Con(Y_{22}) \approx 0.398$

3 LST Varianz-Kovarianzstruktur

Für 3 Testwertvariablen, die zu 2 Messzeitpunkten erhoben wurden, gilt ein Multi-State Modell mit essentieller η_t -Äquivalenz. Welche der nachfolgenden Aussagen sind dann korrekt?

- 1. $Cov(Y_{11}, Y_{21}) = Cov(Y_{31}, Y_{21})$
- 2. $Cov(Y_{11}, Y_{21}) = Cov(Y_{12}, Y_{22})$
- 3. $Cov(Y_{11}, Y_{22}) = Cov(Y_{21}, Y_{12})$
- 4. $Rel(Y_{11}) = \frac{Cov(Y_{11}, Y_{21})}{Var(Y_{11})}$