$$a = \frac{P}{(1-e^2)} = \frac{6R_{\Phi}}{1-86} = \left[5.9795 \times 10^{4} \text{ km}\right]$$

$$r_0 = \frac{P}{1 + e \cos \theta_2^*} = \frac{P}{1 + e \cdot 0} = P = \left(\frac{3.8269 \times 0^4 \times m}{1 + e \cdot 0} \right)$$

$$z = \frac{v_0^2}{2} - \frac{\mu}{r_0} \Rightarrow v_0 = \sqrt{2(z + \frac{\mu}{r_0})} = \left(3.7637 + \mu \right)$$

$$(oSE_o^* = \frac{\alpha - r_o}{ae}) = E_o^* = cos^{-1}(\frac{a - r_o}{ae}) = (53.1301)$$

(Vo = Five.) This correct as the spacecraft is on an elliptic orbit.

At this Ritant. PEP, 0=-0

$$V_{f} = \alpha (1 - e \cos E_{f}^{*}) = \left[8.5164 \times 10^{4} \times 10^{4} \right]$$

$$r_{f} = \frac{P}{1 + e \cos \theta_{f}^{*}} \Rightarrow \theta_{f}^{*} = \cos^{-1}\left(\frac{P}{er_{f}} - \frac{1}{e}\right) = 203.4018$$

$$\gamma = cos \left(\frac{\Gamma_{\mu\rho}}{r J^{2} F} \right) = los^{-1} \left(\frac{r_{\rho}}{s F} \right)$$

4-to. 10*, 5E

$$\int_{a^{3}}^{M} (t - t_{p}) = E - e \sin E$$

$$t - t_{p} = \frac{E - e \sin E}{\sqrt{Ma^{3}}}$$

△E = E+ -E0 = 171,8699°

d)

2. 6) GMAT takes in semi-major axis (a), eventricity (e), inclination (INC), right a)cension of the ascending node (RAAN) argument of periapsis (ATP) and true anomaly (TA/Ot) as initial state.

The rest of quantities can be found in the report file garameter 1:s+. $V = \int x^2 + y^2$, V = FPA, E = EA, $W = \int yx^2 + yy^2$

From GMAT, start time is 02 Oct, 2020, 00:00:00 000 end time is 03 Oct 2020, 01.06:53,595, the time difference is 25 hours 6 minutes, 53 595 seconds which is 9.0414 ×104 seconds. This is the same as the calculation in problem!

Thus is the same as the calculation in problem!

Every other calculation also matches the result from GMAT.

This orbit
is also the
some as the one
plotted on mortals.

b) Report parameters at to & to

-							
Time	γ(deg)	$\theta^*(deg)$	E(deg)	r ê(km)	$r \hat{p}$ (km)	v ê(km/s)	v p̂ (km/s)
02 Oct 2020	59.036243467	90	53.13010235415596	-6.15409240559453e-12	38268.80000000002	-3.227352966736025	1.936411780041615
00:00:00.000	92647						
03 Oct 2020	117.93835276	203.401839	225.0000000786629	-78158.44992306236	-33825.16003131537	1.281831493055231	-1.025465191627488
01:06:53.595	21815	0604809					

Propagare
from to = 90°
till spaceraft
reaches periapsis

les, the mox velocity location is at the periapsis.

3. a)
$$r_{p} = R_{\theta} + 225$$

$$V_{c} = \sqrt{\frac{M}{r_{p}}} = \sqrt{\frac{7.7695 \text{ km/s}}{7.7695 \text{ km/s}}}$$

$$V_{esap} = \sqrt{2} V_{c} = (10.9877 \text{ km/s})$$

$$\frac{V_{esap} - V_{c}}{V_{c}} \times 100\% = 41.421990$$

$$\frac{1}{3} - \frac{N}{r} = 0 \qquad P = r_{p} \cdot (1+e) = 2r_{p}$$

$$V = \sqrt{\frac{2M}{r}} \qquad r^{-1} \frac{p}{1 + 1080^{*}} = 0 \qquad (\frac{p}{r} - 1)$$

$$\sqrt{\frac{M}{r}} (t - t_{p}) = tan^{\frac{30^{*}}{a}} + 3tan^{\frac{6^{*}}{a}} = 0 \qquad (t + t_{p}) = \frac{1}{6} \sqrt{\frac{p^{2}}{r}} \left(tan^{\frac{30^{*}}{a}} + 3tan^{\frac{6^{*}}{a}}\right)$$

r	v (km/s)	θ^* (deg)	$t-t_p$ (days)
2R⊕	7.9054	87.9784	0.0176
10 <i>R</i> ⊕	3.5354	142.4616	0.1591
75 <i>R</i> ⊕	1.2909	166.5056	2.9178
200R⊕	0.7905	171.7483	12.5471
800R⊕	0.3953	175.8768	99.7995
420R⊕	0.5455	174.3084	38.0299

€ extra distance

$$b^* + y^* = 180^\circ$$
 at $b^* = (20^\circ)$.

Votelao = 2.6413×104 km } 7 = 60°

d) At r=75 Ro, the authoration due to the Earth is $\frac{14}{r^2}=1.7419 \times 10^{-6} \text{ km/s}^2,$

Even though it is small, but over course of the flight in terms of days, its affect on the spacecraft is still significant. (VIIR) V200RB)
Thus we should still model it as a two body problem at this point.

$$\frac{(q) = 7050}{r_p = R_0 + 800}$$
= 2.5382×10³ km

$$V_{p} = \sqrt{\frac{2}{r_{p}} + \frac{M}{|\alpha|}} = \left(2.1351 \text{ km/s}\right)$$

$$e = 1 + \frac{r_P}{|a|} = 1.3600$$

$$\begin{cases} = 2\sin^{-1}\left(\frac{1}{e}\right) = \boxed{94.6616}$$

$$V_{\infty} = \int \frac{M}{(a)} = (0.8339 \text{ tm/s})$$

$$\frac{7}{4} = \frac{10.3477 + 13}{2101}$$

$$\frac{2}{(Y_0 - 3.5656 \times 10^3 \text{ tm})}$$
 $(V_0 = 1.8562 \text{ tm/s})$

$$Y_{0} = \cos \left(\sqrt{\frac{\mu P}{r_{0} V_{0}}} \right) = \overline{\left(35.0334^{\circ}\right)}$$

6).()

$$A + f , D_{s}^{*} = 100^{\circ}$$

$$Y_{f} = 7.8423 \times 10^{3} \text{ km}$$

$$V_{f} = 1.3949 \text{ km/s}$$

$$V_{f} = 60.3041^{\circ}$$