Intégration et

probabilités Convergence en loi et

théorème central limite

Question 1/13

Caractérisation de la convergence en loi par la fonction de répartition

Réponse 1/13

Si $(X_n)_{n\in\mathbb{N}}$ et X sont des variables aléatoires réelles, alors $X_n \xrightarrow[n \to +\infty]{\text{loi}} X$ si et seulement si pour tout x tel que F_X est continue en x, $F_{X_n}(x) \xrightarrow[n \to +\infty]{} F_X(x)$

Question 2/13

Convergence en loi

Réponse 2/13

 (X_n) une suite de variables aléatoires dans (E,d) converge en loi vers X si \mathbb{P}_{X_n} converge étroitement vers \mathbb{P}_X

De manière équivalente, si pour toute f continue et bornée, $\mathbb{E}(f(X_n)) \xrightarrow[n \to +\infty]{} \mathbb{E}(f(X))$

Question 3/13

Théorème de convergence de Lévy Version forte

Réponse 3/13

Si (X_n) est une suite de variables aléatoires à valeurs dans \mathbb{R}^d telle que $\varphi_{X_n}(\xi) \xrightarrow[n \to +\infty]{} \psi(x)$ continue en 0 alors il existe une variable

aléatoire X telle que $\psi = \varphi_X$ et $X_n \xrightarrow{\text{loi}} X$

Réciproquement, si $X_n \xrightarrow[n \to +\infty]{\text{loi}} X$ alors $\varphi_{X_n}(\xi) \xrightarrow[n \to +\infty]{} \varphi(\xi)$ pour tout $\xi \in \mathbb{R}^d$

Question 4/13

Convergence étroite pour des variables aléatoires à valeurs dans \mathbb{N}

Réponse 4/13

Si $(X_n)_{n \in [1, +\infty]}$ sont des variables aléatoires à valeurs dans \mathbb{N} alors $X_n \xrightarrow[n \to +\infty]{\text{loi}} X_\infty$ si et seulement si, pour tout $x \in \mathbb{N}$, $\mathbb{P}(X_n = k) \xrightarrow[n \to +\infty]{} \mathbb{P}(X_\infty = k)$

Question 5/13

Conséquence du théorème de Helly pour la convergence en probabilités

Réponse 5/13

Si (X_n) est une suite de variables aléatoires à valeurs dans \mathbb{R} (ou \mathbb{R}^d), si $\sup(\mathbb{P}(|X_n| > K)) \xrightarrow{K \to +\infty} 0$ alors il existe (X_{n_k}) qui converge en loi vers X

Question 6/13

Théorème de convergence de Lévy Version faible

Réponse 6/13

Si (X_n) est une suite de variables aléatoires à valeurs dans \mathbb{R}^d telle que $\varphi_{X_n}(\xi) \xrightarrow[n \to +\infty]{} \varphi_X(x)$

valeurs dans
$$\mathbb{R}^d$$
 telle que $\varphi_{X_n}(\xi) \xrightarrow[n \to +\infty]{} \varphi_X(x)$
alors $X_n \xrightarrow[n \to +\infty]{} X$

Réciproquement, si $X_n \xrightarrow[n]{\text{loi}} X$ alors $\varphi_{X_n}(\xi) \xrightarrow[n \to +\infty]{} \varphi(\xi)$ pour tout $\xi \in \mathbb{R}^d$

Question 7/13

Stabilité de la convergence en loi

Réponse 7/13

Si
$$X_n \xrightarrow[n \to +\infty]{\text{loi}} X_\infty$$
 et $f \in \mathcal{C}_b(E, F)$ avec F un espace métrique alors $f(X_n) \xrightarrow[n \to +\infty]{\text{loi}} f(X_\infty)$

Question 8/13

Restriction des fonctions test pour la convergence en probabilités sur \mathbb{R}^d

Réponse 8/13

Si H est un ensemble de fonctions mesurables $\mathbb{R}^d \to \mathbb{R}$ dont l'adhérence pour $\|\cdot\|_{\infty}$ contient $\mathcal{C}_c(\mathbb{R}^d,\mathbb{R})$ alors si $(X_n)_{n\in\mathbb{N}}$ et X sont des variables aléatoires dans \mathbb{R}^d , si $\mathbb{E}(f(X_n)) \xrightarrow[n \to +\infty]{} \mathbb{E}(f(X))$ pour tout $f \in H$

alors $X_n \xrightarrow[n \to +\infty]{\text{loi}} X$

Question 9/13

Théorème de Portemanteau

Réponse 9/13

Si $(X_n)_{n\in\mathbb{N}}$ et X sont des variables à valeurs dans (E,d) métrique,

il y a équivalence entre

$$X_n \xrightarrow[n \to +\infty]{\text{loi}} X$$

$$\forall f: E \to \mathbb{R}, \text{ 1-lipschitzienne bornée, } \mathbb{E}(f(X_n)) \xrightarrow[n \to +\infty]{} \mathbb{E}(f(X))$$

$$\forall O \subset E \text{ ouvert}, \liminf_{n \to +\infty} (\mathbb{P}(X_n \in O)) \geqslant \mathbb{P}(X \in O)$$

$$\forall F \subset E \text{ ferm\'e}, \lim \sup(\mathbb{P}(X_n \in F)) \leqslant \mathbb{P}(X \in F)$$

$$\forall A \in \mathcal{B}(E), \ \mathbb{P}(X \in \partial A) = 0 \Rightarrow \lim_{n \to +\infty} (\mathbb{P}(X_n \in A)) = \mathbb{P}(X \in A)$$

$$\forall f: E \to \mathbb{R} \text{ born\'ee, continue } \mathbb{P}_X\text{-pp, } \mathbb{E}(f(X_n)) \xrightarrow[n \to +\infty]{} \mathbb{E}(f(X))$$

Question 10/13

Lien entre convergence en probabilités et convergence en loi

Réponse 10/13

Si (X_n) converge en probabilités vers X sur (E,d) alors (X_n) converge en loi vers X Si (X_n) converge en loi vers une constante alors (X_n) converge en probabilités vers cette constante

Question 11/13

Lemme de Scheffé

Réponse 11/13

Si les $(f_n)_{n \in [1,+\infty]}$ sont des densités de mesures de probabilités et si pour λ presque tout $x \in \mathbb{R}^d$, $f_n(x) \xrightarrow[n \to +\infty]{} f_\infty(x)$ alors, pour (X_n) tel que $\mathbb{P}_{X_n}(\mathrm{d}x) = f_n(x)\mathrm{d}x$, alors

 $X_n \xrightarrow[n \to +\infty]{\text{loi}} X_\infty$

Question 12/13

Convergence étroite

Réponse 12/13

 $(\mu_n)_{n\in[1,+\infty]}$ une suite de mesures de probabilités sur un espace métrique (E,d)converge étroitement vers μ_{∞} si pour toute fcontinue et bornée alors $\int_{E} f(x) \, \mu_{n}(\mathrm{d}x) \xrightarrow[n \to +\infty]{} \int_{E} f(x) \, \mu_{\infty}(\mathrm{d}x)$

Question 13/13

Théorème de sélection de Helly

Réponse 13/13

Si (F_n) est une suite de fonctions de répartition alors il existe (F_{n_k}) qui converge simplement vers F croissante, continue à droite et à valeurs dans [0,1] tel que pour tout x tel que F_X est continue en x, $F_{X_n}(x) \xrightarrow[n \to +\infty]{} F_X(x)$