Advanced Theory of Probability

2022年10月9日

目录

1	Mea	asure Theory	2
2	Laws of Large Numbers		
	2.1	Independence	2
	2.2	Weak Laws of Large Numbers	3
	2.3	Borel-Cantelli Lemmas	3
	2.4	Strong Law of Large Numbers	4
	2.5	Convergence of Random Series	4
	2.6	Large Deviations	5
	2.7	Percolation	7

1 Measure Theory

- Fatou's lemma: If $f_n \ge 0$ then $\liminf_{n \to \infty} \int f_n d\mu \ge \int \liminf_{n \to \infty} f_n d\mu$.
- Monotone convergence theorem: If $f_n \geq 0$ and $f_n \uparrow f$ then $\int f_n d\mu \uparrow \int f d\mu$.
- Dominated convergence theorem: If $f_n \to f$ a.e., $|f_n| \le g$ for all n, and g is integrable, then $\int f_n d\mu \to \int f d\mu$.
- Suppose $X_n \to X$ a.s. Let g, h be continuous functions with (i) $g \ge 0$ and $g(x) \to \infty$ as $|x| \to \infty$; (ii) $|h(x)|/g(x) \to 0$ as $|x| \to \infty$; (iii) $\mathbb{E}g(X_n) \le K < \infty$ for all n. Then $\mathbb{E}h(X_n) \to \mathbb{E}h(X)$.
- Fubini's theorem: If $f \geq 0$ or $\int |f| d\mu < \infty$, then $\int_X \int_Y f(x,y) \mu_2(dy) \mu_1(dx) = \int_{X \times Y} f d\mu = \int_Y \int_X f(x,y) \mu_1(dx) \mu_2(dy)$.

2 Laws of Large Numbers

2.1 Independence

- Two events A and B are independent if $P(A \cap B) = P(A)P(B)$. Two random variables X and Y are independent if for all $C, D \in \mathbb{R}$, $P(X \in C, Y \in D) = P(X \in C)P(Y \in D)$. Two σ -fields \mathcal{F} and \mathcal{G} are independent if for all $A \in \mathcal{F}$ and $B \in \mathcal{G}$ the events A and B are independent.
- σ -fields $\mathcal{F}_1, \dots, \mathcal{F}_n$ are independent if whenever $A_i \in \mathcal{F}_i$ for $i = 1, \dots, n$, we have $P(\bigcap_{i=1}^n A_i) = \prod_{i=1}^n P(A_i)$. Random variables X_1, \dots, X_n are independent if whenever $B_i \in \mathbb{R}$ for $i = 1, \dots, n$ we have $P(\bigcap_{i=1}^n \{X_i \in B_i\}) = \prod_{i=1}^n P(X_i \in B_i)$. Sets A_1, \dots, A_n are independent if whenever $I \subset \{1, \dots, n\}$ we have $P(\bigcap_{i \in I} A_i) = \prod_{i \in I} P(A_i)$.
- A sequence of events A_1, \dots, A_n with $P(A_i \cap A_j) = P(A_i)P(A_j)$ for all $i \neq j$ is called pairwise independent.
- π - λ theorem: If \mathcal{P} is a π -system and \mathcal{L} is a λ -system that contains \mathcal{P} then $\sigma(\mathcal{P}) \subset \mathcal{L}$.
- Suppose A_1, \dots, A_n are independent and each A_i is a π -system. Then $\sigma(A_1), \dots, \sigma(A_n)$ are independent.
- Suppose $\mathcal{F}_{i,j}$, $1 \leq i \leq n, 1 \leq j \leq m(i)$ are independent and let $\mathcal{G}_i = \sigma(\cup_j \mathcal{F}_{i,j})$. Then $\mathcal{G}_1, \dots, \mathcal{G}_n$ are independent.
- If for $1 \leq i \leq n, 1 \leq j \leq m(i), X_{i,j}$ are independent and $f_i : \mathbb{R}^{m(i)} \to \mathbb{R}$ are measurable then $f_i(X_{i,1}, \dots, X_{i,m(i)})$ are independent.
- If X_1, \dots, X_n are independent and have (a) $X_i \geq 0$ for all i, or (b) $\mathbb{E}|X_i| < \infty$ for all i then $\mathbb{E}(\prod_{i=1}^n X_i) = \prod_{i=1}^n \mathbb{E}X_i$.
- If X and Y are independent, $F(x) = P(X \le x)$, and $G(y) = P(Y \le y)$, then $P(X + Y \ge z) = \int F(z y) dG(y)$.

2.2 Weak Laws of Large Numbers

- L^2 weak law: Let X_1, X_2, \cdots be uncorrelated random variables with $\mathbb{E}X_i = \mu$ and $\text{var}(X_i) \leq C < \infty$. If $S_n = X_1 + \cdots + X_n$, then as $n \to \infty$, $S_n/n \to \mu$ in L^2 and in probability.
- Let $\mu_n = \mathbb{E}[S_n], \sigma_n^2 = \text{var}(S_n)$. If $\sigma_n^2/b_n^2 \to 0$ then $\frac{S_n \mu_n}{b_n} \to 0$ in probability.
- Truncation: To truncate a random variable X at level M means to consider $\bar{X}_M = X1_{\{|X| \leq M\}}$.
- For each n, let $X_{n,k}$, $1 \le k \le n$ be independent. Let $0 < b_n \to \infty$ and $\bar{X}_{n,k} = X_{n,k} \mathbf{1}_{\{|X_{n,k}| \le b_n\}}$. Suppose that as $n \to \infty$ (1) $\sum_{k=1}^n P(|X_{n,k}| > b_n) \to 0$; (2) $b_n^{-2} \sum_{k=1}^n \text{var}(\bar{X}_{n,k}) \to 0$. If we let $S_n = \sum_{k=1}^n X_{n,k}$ aand $a_n = \sum_{k=1}^n \mathbb{E}[\bar{X}_{n,k}]$, then $\frac{S_n - a_n}{b_n} \to 0$ in probability.
- Let X_1, X_2, \cdots be i.i.d. with $xP(|X_1| > x) \to 0$ as $x \to \infty$. Let $S_n = X_1 + \cdots + X_n$ and let $\mu_n = \mathbb{E}[X_1 1_{\{|X_1| \le n\}}]$. Then $S_n/n \mu_n \to 0$ in probability.
- If $Y \geq 0$ and p > 0 then $\mathbb{E}[Y^p] = \int_0^\infty py^{p-1}P(Y > y)dy$.
- Let $\{X_i\}_{i=1}^{\infty}$ be i.i.d. with $\mathbb{E}[|X_i|] < \infty$. Let $S_n = X_1 + \cdots + X_n$ and let $\mu = \mathbb{E}[X_1]$. Then $S_n/n \to \mu$ in probability.
- The distribution of X is infinitely divisible iff for any $n \in \mathbb{N}$, there exists i.i.d. Y_i 's such that $X = \sum_{i=1}^n Y_i$.
- The distribution of X is stable if for all a, b > 0, and X_1, X_2 i.i.d. copies of X, $aX_1 + bX_2 \stackrel{d}{=} cX + d$ for some c > 0.

2.3 Borel-Cantelli Lemmas

• If A_n is a sequence of subsets of Ω , then we write

$$\limsup A_n = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m = \{\omega : \omega \text{ in infinitely many } A_i \text{'s}\}$$
$$\liminf A_n = \bigcup_{m=1}^{\infty} \bigcap_{m=n}^{\infty} A_m = \{\omega : \omega \text{ in all but finitely many } A_i \text{'s}\}$$

- $P(\limsup A_n) \ge \limsup P(A_n)$, $P(\liminf A_n) \le \liminf P(A_n)$.
- Borel-Cantelli lemma: If $\sum_{i} P(A_i) < \infty$, then $P(A_n \text{ i.o.}) = 0$.
- Let y_n be a sequence of elements of a topological space. If every subsequence $y_{n(m)}$ has a further subsubsequence $y_{n(m_k)}$ that converges to y, then $y_n \to y$.
- $X_n \to X$ in probability iff for every subsequence $X_{n(m)}$ there is a further subsubsequence $X_{n(m_k)}$ that converges a.s. to X.
- If f is continuous and $X_n \to X$ in probability then $f(X_n) \to f(X)$ in probability. If in addition f is bounded then $\mathbb{E}[f(X_n)] \to \mathbb{E}[f(X)]$.
- Let X_1, X_2, \cdots be i.i.d. with $\mathbb{E}[X_i] = \mu$ and $\mathbb{E}[X_i^4] < \infty$. Then $S_n/n \to \mu$ a.s.
- For events $A_n, n = 1, 2, \dots$, independent such that $\sum_{n=1}^{\infty} P(A_n) = \infty$, then $P(A_n \text{ i.o.}) = 1$.

- If X_1, X_2, \cdots are i.i.d. random variables with $\mathbb{E}[X_i] = \infty$, then $P(|X_n| \ge n \text{ i.o.}) = 1$. Let $C = \{\lim S_n/n \text{ exists \& is finite}\}$. Then P(C) = 0.
- If A_1, A_2, \cdots are pairwise independent and $\sum_{n=1}^{\infty} P(A_n) = \infty$ then $\sum_{i=1}^{n} 1_{A_i} / \sum_{i=1}^{n} P(A_i) \to 1$ a.s. as $n \to \infty$.
- For a sequence of increasing events A_n , $P(A_n \text{ i.o.}) = 1$ iff $\sum_n P(A_n | A_{n-1}^c) = \infty$.

2.4 Strong Law of Large Numbers

- Strong law of large numbers: Let X_1, X_2, \cdots be pairwise independent identically distributed random variables with $\mathbb{E}[X_i] < \infty$. Let $\mathbb{E}X_i = \mu$ and $S_n = X_1 + \cdots + X_n$. Then $S_n/n \to \mu$ a.s. as $n \to \infty$.
- Let X_1, X_2, \cdots be i.i.d. with $\mathbb{E}[X^+] = \infty$ and $\mathbb{E}[X^-] < \infty$, then $S_n/n \to \infty$ a.s.
- Let X_1, X_2, \cdots be i.i.d. with $0 < X_i < \infty$, write $T_n = X_1 + \cdots + X_n$ and let $N_t = \sup\{n : T_n \le t\}$. If $\mathbb{E}[X_1] = \mu \le \infty$, then as $t \to \infty$, $N_t/t \to 1/\mu$, a.s.
- If $X_n \to X_\infty$ a.s. and $N(n) \to \infty$ a.s. then $X_{N(n)} \to X_\infty$ a.s. But the analogous result for convergence in probability is false!
- Empirical distribution functions: Let X_1, X_2, \cdots be i.i.d. with distribution F and let $F_n(x) = \frac{\sum_{i=1}^n 1_{X_i \leq x}}{n}$. As $n \to \infty$, $\sup_x |F_n(x) F(x)| \to 0$ a.s.
- Uniform law of large numbers: Suppose $f(x,\theta)$ is continuous in $\theta \in \Theta$ for some compact Θ . Let X_1, X_2, \cdots be a sequence of i.i.d. random variables. If f is continuous at θ for a.s. all $x \in \mathbb{R}$ and measurable of x at each θ and there exists some function d(x) such that $\mathbb{E}[d(X_i)] < \infty$ and for all $\theta \in \Theta$, $|f(x,\theta)| \leq d(x)$. Then $\sup_{\theta \in \Theta} |\frac{1}{n} \sum_{i=1}^n f(X_i,\theta)/n \mathbb{E}[f(X_1,\theta)]| \stackrel{\text{a.s.}}{\to} 0$.

2.5 Convergence of Random Series

- Let $X_1, X_2, \dots, X_n, \dots$ be a sequence of random variables. Define $\mathcal{F}'_n = \sigma(X_n, X_{n+1}, \dots)$ as the information of the future after time n. Let $\mathcal{I} = \bigcap_{n=1}^{\infty} \mathcal{F}'_n$ be the tail σ -field, i.e., the information in the remote future. Intuitively, $A \in \mathcal{T}$ if and only if changing a finite number of values does not affect the occurrence of the event.
- Kolmogorov's 0-1 law: If $X_1, X_2, \dots, X_n, \dots$ are independent and $A \in \mathcal{I}$, then P(A) = 0 or 1.
- A finite permutation of \mathbb{N} is a map from \mathbb{N} onto \mathbb{N} such that there is a finite I with $\pi(i) = i$ for all $i \geq I$. For $S^{\mathbb{N}}$, associated with its natural product sigma field \mathcal{F}^{N} , and any $\omega = (\omega_{1}, \omega_{2}, \cdots)$, let $\pi(\omega) = (\omega_{\pi(1)}, \omega_{\pi(2)}, \cdots)$. An event $A \in \mathcal{F}^{\mathbb{N}}$ is permutable if $\pi^{-1}(A) = A$ for any finite permutation π . All permutable events form the exchangeable σ -field, denoted by \mathcal{E} . All events in the tail σ -field \mathcal{T} are permutable.
- Hewitt-Savage 0-1 law: If X_1, X_2, \cdots , are i.i.d. and $B \in \mathcal{E}(\mathbb{R}^N)$. Denote $X = (X_1, X_2, \cdots)$. Then $P(X \in B) = 0$ or 1.

- Kolmogorov's maximal inequality: Suppose X_1, X_2, \dots, X_n are independent with $\mathbb{E}[X_i] = 0$, $\operatorname{var}(X_i) < \infty$. Let $S_n = X_1 + \dots + X_n$, then $P(\max_{k \le n} |S_k| \ge x) \le \frac{\operatorname{var}(S_n)}{r^2}$.
- We call a sequence of r.v's S_1, S_2, \cdots a martingale if (i) there is a sequence of σ -algebras $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots$ and $S_i \in \mathcal{F}_i$ for all i; (ii) S_i 's are integrable; (iii) For each k, $\mathbb{E}[S_{k+1}|\mathcal{F}_k] = S_k$. If the "=" in (iii) is replaced by \geq (resp. \leq), then we say that this sequence is a submartingale (resp. supermartingale).
- Second-moment criterion: Suppose X_1, X_2, \cdots are independent and centered (i.e., for all i, $\mathbb{E}[X_i] = 0$). If $\sum_{n=1}^{\infty} \operatorname{var}(X_n) < \infty$, then $P(\sum_{n=1}^{\infty} X_n(\omega) \text{ converges}) = 1$.
- Kronecker's lemma: If $a_n \uparrow \infty$ and $\sum_{n=1}^{\infty} x_n/a_n$ converges, then $a_n^{-1} \sum_{m=1}^n x_m \to 0$.
- Let X_1, X_2, \cdots be i.i.d. random variables with $\mathbb{E}[X_i] = 0$ and $\mathbb{E}[X_i^2] = \sigma^2 < \infty$. Let $S_n = X_1 + \cdots + X_n$. If $\epsilon > 0$, then $S_n/n^{1/2}(\log n)^{1/2+\epsilon} \to 0$ a.s.
- Let X_1, X_2, \cdots be i.i.d. with $\mathbb{E}[X_i] = 0$ and $\mathbb{E}[|X_i|^p] < \infty$ where $1 . Write <math>S_n = X_1 + \cdots + X_n$. Then $S_n/n^{1/p} \to 0$ a.s.
- Let X_1, X_2, \cdots be i.i.d. with $\mathbb{E}[X_1] = \infty$ and let $S_n = X_1 + \cdots + X_n$. Let a_n be a sequence of positive numbers with a_n/n increasing. Then $\limsup_{n\to\infty} |S_n|/a_n = 0$ or ∞ according as $\sum_n P(|X_1| \ge a_n) < \infty$ or $= \infty$.
- Kolmogorov's three-series theorem: Let $X_1, X_2, \dots, X_n, \dots$ be independent random variables. Let A > 0 and $Y_i = X_i 1_{|X_i| \le A}$. In order to show that $\sum X_i$ converges a.s., it is necessary and sufficient that (i) $\sum_{n=1}^{\infty} P(|X_n| > A) < \infty$; (ii) $\sum_{n=1}^{\infty} \mathbb{E}[Y_n]$ converges; (iii) $\sum_{n=1}^{\infty} \text{var}(Y_n) < \infty$.

2.6 Large Deviations

- Let X_1, X_2, \cdots be i.i.d. with $\mathbb{E}[X_1] = \mu$ and let $S_n = X_1 + X_2 + \cdots + X_n$. According to CLT, the typical value of $S_n n\mu$ is $O(\sqrt{n})$. What about atypical deviations of $S_n n\mu$? According to WLLN, we know that for any $a > \mu$, $P(S_n > na) \to 0$. We want to discuss the existence and value of the limit: $\lim_{n \to \infty} \frac{1}{n} \log P(S_n > na)$.
- Let $\pi_n = P(S_n \ge na)$. Then $\pi_{n+m} \ge P(S_n \ge na, S_{n+m} S_n \ge ma) = \pi_n \pi_m$. Let $\gamma_n = \log \pi_n, \gamma_{n+m} \ge \gamma_n + \gamma_m$. As $n \to \infty$ the limit of γ_n exists and $\lim_{n \to \infty} \frac{\gamma_n}{n} = \sup_n \frac{\gamma_n}{n}$. We define $\gamma(a) = \lim_{n \to \infty} \gamma_n / n \le 0$. Then for any distribution and any n and n, $P(S_n \ge na) \le e^{n\gamma(a)}$. We want to show $\gamma(a) < 0$ if $n > \mu$.
- If the moment generating function $\psi(\theta) = \mathbb{E}[\exp(\theta X_1)] < \infty$ for some $\theta > 0$, then $P(S_n \ge na) \le \exp[n(\log \psi(\theta) \theta a)]$. Let $\kappa(\theta) = \log \psi(\theta)$. If $a > \mu$, then $a\theta \kappa(\theta) > 0$ for all sufficiently small θ .
- We will further strengthen our upper bounds by finding the maximum of $\lambda(\theta) = a\theta \kappa(\theta)$. Let $\theta_+ = \sup\{\theta : \psi(\theta) < \infty\}$ and $\theta_- = \inf\{\theta : \psi(\theta) < \infty\}$. Now since that $\psi(\theta) \in C^{\infty}$ within (θ_-, θ_+) , we have $\lambda'(\theta) = a \frac{\psi'(\theta)}{\psi(\theta)}$. So the maximal point of λ must satisfy $\psi'(\theta)/\psi(\theta) = a$. For

the existence and uniqueness of such point(s), we introduce a new distribution, and use a trick named "tilting".

- We now introduce the distribution F_{θ} by "reweighting F": $F_{\theta}(x) = \frac{1}{\psi(\theta)} \int_{-\infty}^{x} e^{y\theta} dF(y)$. By simple calculus, $\int x dF_{\theta}(x) = \frac{\psi'(\theta)}{\psi(\theta)}, \ \psi''(\theta) = \int x^2 e^{\theta x} dF(x), \ \frac{d}{d\theta} \frac{\psi'(\theta)}{\psi(\theta)} = \int x^2 dF_{\theta}(x) (\int x dF_{\theta}(x))^2 \ge 0.$ If we assume the distribution F is not a point mass at μ , then $\frac{\psi'(\theta)}{\psi(\theta)}$ is strictly increasing and $a\theta - \log \psi(\theta)$ is concave. Since we have $\frac{\psi'(0)}{\psi(0)} = \mu$, this shows that for each $a > \mu$ there is at most one $\theta_a \geq 0$ that solves $a = \frac{\psi'(\theta_a)}{\psi(\theta_a)}$, and this value of θ maximizes $a\theta - \log \psi(\theta)$. Let F^n be the c.d.f. of $S_n = X_1 + \dots + X_n$ and F_{λ}^n be the c.d.f. of $S_n^{\lambda} = X_1^{\lambda} + \dots + X_n^{\lambda}$ where X_i i.i.d. $\sim F$ and X_i^{λ} i.i.d. $\sim F_{\lambda} = \frac{1}{\psi(\lambda)} \int_{-\infty}^{x} e^{y\theta} dF(y)$. By induction, $\frac{dF^n}{dF_{\lambda}^n} = e^{-\lambda x} \psi(\lambda)^n$. Then as $n \to \infty$, $n^{-1}\log P(S_n \ge na) \to -a\theta_a + \log \psi(\theta_a)$
- Some important information: $\kappa(\theta) = \log \psi(\theta), \kappa'(\theta) = \frac{\psi'(\theta)}{\psi(\theta)}, \ \theta_a \text{ solves } \kappa'(\theta_a) = a, \ \gamma(a) = 0$ $\lim_{n\to\infty} \frac{1}{n} \log P(S_n > na) = -a\theta_a + \kappa(\theta_a)$
- Suppose $x_o = \sup\{x : F(x) < 1\} = \infty, \theta_+ < \infty$, and $\psi'(\theta)/\psi(\theta)$ increases to a finite limit a_0 as $\theta \uparrow \theta_+$. If $a_0 \le a < \infty$, $n^{-1} \log P(S_n \ge na) \to -a\theta_+ + \log \psi(\theta_+)$, i.e. $\gamma(a)$ is linear for $a \ge a_0$.
- Suppose $x_o = \sup\{x : F(x) < 1\} < \infty$ and F has no mass at x_o . Then $\psi(\theta) < \infty$ for all $\theta > 0$ and $\psi'(\theta)/\psi(\theta) \to x_o$ as $\theta \to \infty$.
- Now, we have shown the decaying asymptotic for all possible situations:

Now, we have shown the decaying asymptotic for all possible situations:
$$\begin{cases} a < x_o : \text{ exponential, rate} = \theta_a \\ a = x_o : \text{ exponential if } P(X_1 = x_o) > 0, 0 \text{ otherwise} \\ a > x_o : 0 \end{cases}$$
 If $\theta_+ = \infty$: exponential, rate $\theta_- = \theta_-$ If $\theta_+ < \infty$:
$$\begin{cases} \text{If } \theta_+ = \infty : \text{ exponential, rate} = \theta_- \\ \text{If } \theta_+ < \infty : \begin{cases} \text{If } \psi'(\theta)/\psi(\theta) \to \infty \text{ as } \theta \to \theta_+ : \text{ exponential, rate} = \theta_- \\ \text{If } \psi'(\theta)/\psi(\theta) \to a_0 \text{ as } \theta \to \theta_+ : \begin{cases} a < a_0 : \text{ exponential, rate} = \theta_- \\ a \ge a_0 : \text{ exponential, rate} = \theta_+ \end{cases}$$

- Cramér's theorem: Let I(a) be the Legendre transform of $\log \psi(\cdot)$: $I(a) := \sup_{\theta \in \mathbb{R}} (\theta a \log \psi(\theta))$. Then for any closed set F, $\limsup_{n\to\infty} n^{-1} \log P(\frac{S_n}{n} \in F) \le -\inf_{x\in F} I(x)$; for any open set G, $\lim\inf_{n\to\infty} n^{-1}\log P(\tfrac{S_n}{n}\in G)\geq -\inf_{x\in G}I(x).$
- Intuition behind the tilting: Why do we want to introduce the measure F_{θ} ? Intuitively, the new measure is like a "distorting mirror" – it "distorts" our view on how each event is likely to happen. So, when we want to estimate a rare event A under P, suppose (1) we can construct a new measure Q such that Q[A] is easily calculable, e.g., $Q[A] \approx 1$; (2) we have a unifrom lower bound of the R-N derivative $dP/dQ \geq c$ on A. Then we can conclude that $P[A] = \int_A \frac{dP}{dQ} dQ \ge cQ[A].$
- Let $\Sigma = \{a_1, \dots\}$ stand for a finite-size alphabet. Let $M_1(\Sigma)$ be the space of all probability measures on Σ . The entropy of some $\nu \in M_1(\Sigma)$ is $H(\nu) := -\sum_{i=1}^{|\Sigma|} \nu(a_i) \log(\nu(a_i))$. The relative entropy of ν with respect to some other $\mu \in M_1(\Sigma)$ is $H(\nu|\mu) := \sum_{i=1}^{|\Sigma|} \nu(a_i) \log \frac{\nu(a_i)}{\mu(a_i)}$

- Let Y_i be i.i.d. r.v.s, $\mu \in M_1(\Sigma)$. For $n \geq 1$, write $Y = (Y_1, \dots, Y_n)$ and call $L_n^Y \in M_1(\Sigma)$ be the empirical frequency of Y. Let $T_n(\nu)$ be the set of y a sequence of n letters whose empirical measure is ν .
- If $y \in T_n(\nu)$, then $P_{\mu}(Y = y) = e^{-n(H(\nu) + H(\nu|\mu))}$. In particular, if $y \in T_n(\mu)$, then $P_{\mu}(Y = y) = e^{-nH(\mu)}$.
- For every possible empirical measure ν of n letters, $(n+1)^{-|\Sigma|}e^{nH(\nu)} \leq |T_n(\nu)| \leq e^{nH(\nu)}$.
- For every possible empirical measure ν of n letters, $(n+1)^{-|\Sigma|}e^{nH(\nu|\mu)} \leq P_{\mu}(L_n^T = \nu) \leq e^{nH(\nu|\mu)}$.
- Sanov's theorem: For every set $\Gamma \subset M_1(\Sigma)$, $-\inf_{\nu \in \Gamma^{\circ}} H(\nu|\mu) \leq \liminf_n \frac{1}{n} \log P_{\mu}(L_n^Y \in \Gamma) \leq \limsup_n \frac{1}{n} \log P_{\mu}(L_n^Y \in \Gamma) \leq -\inf_{\nu \in \Gamma} H(\nu|\mu)$.

2.7 Percolation

- Fix $p \in [0, 1]$ and consider the d-dimensional lattice \mathbb{Z}^d . Assign to each edge $e \in \mathbb{E}$ an independent Bernoulli r.v. I(e) with parameter p. If I(e) = 1, we say that this edge is open, otherwise closed. Consider the connected components of open egdes, then for any $p \in [0, 1]$, $P_p(A) = 0$ or 1 where $A = \{\exists \text{ infinite open clusters}\}$.
- If A is translation-invariant, then P(A) = 0 or 1.
- Actually we can go further and show that for any $N=0,1,\cdots,\infty,\ P_p[A(N)]=0$ or 1, where $A(N)=\{\exists N \text{ infinite open clusters}\}$. Or even further: for $N=2,3,\cdots$ and $N=\infty,\ P_p[A(N)]=0$.
- Let $p_c = p_c(d) = \sup\{p : P_p(A) = 0\}$. Then one can show that $1/3 \le p_c(2) \le 2/3$. More generally, $p_c(1) = 1$ and for $d \ge 2$, $1/(2d-1) \le p_c(d) \le p_c(2) (= 1/2)$.
- By knowledge of Galton-Watson tree and the analogy between \mathbb{Z}^d and 2d-regular tree in high dimensions, we can take an educated guess that $p_c(d) \sim \frac{1}{2d}$ as $d \to \infty$.