```
In [2]: import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns
```

In [3]: a=pd.read_csv(r"C:\Users\user\Downloads\13_placement.csv")
a

Out[3]:

		cgpa	placement_exam_marks	placed
-	0	7.19	26.0	1
	1	7.46	38.0	1
	2	7.54	40.0	1
	3	6.42	8.0	1
	4	7.23	17.0	0
	995	8.87	44.0	1
	996	9.12	65.0	1
	997	4.89	34.0	0
	998	8.62	46.0	1
	999	4.90	10.0	1

In [4]: a=a.head(50)
a

Out[4]:

	cgpa	placement_exam_marks	placed
0	7.19	26.0	1
1	7.46	38.0	1
2	7.54	40.0	1
3	6.42	8.0	1
4	7.23	17.0	0
5	7.30	23.0	1
6	6.69	11.0	0
7	7.12	39.0	1
8	6.45	38.0	0
9	7.75	94.0	1
10	6.82	16.0	1
11	6.38	7.0	1
12	6.58	16.0	1
13	5.68	26.0	0
14	7.91	43.0	0
15	7.10	21.0	0
16	6.53	19.0	0
17	7.56	22.0	1
18	6.93	27.0	0
19	7.63	29.0	0
20	6.69	47.0	0
21	7.43	33.0	1
22	6.76	54.0	1
23	6.05	11.0	0
24	6.44	11.0	0
25	6.28	58.0	1
26	7.45	0.8	1
27	6.53	46.0	0
28	7.23	19.0	0
29	6.51	15.0	1
30	7.46	16.0	0
31	7.66	44.0	0
32	5.91	11.0	1
33	6.23	27.0	0
34	8.15	9.0	0
35	7.48	12.0	0
36	6.85	16.0	1
37	8.51	9.0	1

	cgpa	placement_exam_marks	placed
38	6.58	20.0	1
39	7.25	17.0	0
40	6.60	86.0	1
41	6.70	38.0	0
42	7.46	71.0	1
43	7.85	63.0	0
44	7.88	55.0	0
45	6.92	10.0	1
46	7.30	15.0	0
47	6.92	46.0	0
48	6.29	42.0	0
49	8.23	28.0	1

In [5]: a.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
Data columns (total 3 columns):

dtypes: float64(2), int64(1)

memory usage: 1.3 KB

In [6]: a.columns

Out[6]: Index(['cgpa', 'placement_exam_marks', 'placed'], dtype='object')

In [7]: a.head()

Out[7]:

	cgpa	placement_exam_marks	placed
0	7.19	26.0	1
1	7.46	38.0	1
2	7.54	40.0	1
3	6.42	8.0	1
4	7.23	17.0	0

In [8]: a.describe()

Out[8]:

	cgpa	placement_exam_marks	placed
count	50.000000	50.000000	50.000000
mean	7.037400	29.940000	0.480000
std	0.629619	20.398489	0.504672
min	5.680000	7.000000	0.000000
25%	6.542500	15.250000	0.000000
50%	7.015000	24.500000	0.000000
75%	7.460000	41.500000	1.000000
max	8.510000	94.000000	1.000000

In [10]: |sns.distplot(a['placed'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarnin
g: `distplot` is a deprecated function and will be removed in a future version. Please
adapt your code to use either `displot` (a figure-level function with similar flexibil
ity) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[10]: <AxesSubplot:xlabel='placed', ylabel='Density'>


```
In [11]: x1=a[['cgpa', 'placement_exam_marks']]
```

```
In [12]: sns.heatmap(x1.corr())
```

Out[12]: <AxesSubplot:>


```
In [13]: x=a[['cgpa', 'placement_exam_marks']]
y=a['placed']
```

```
from sklearn.linear_model import LinearRegression
In [15]:
          lr=LinearRegression()
         lr.fit(x_train,y_train)
Out[15]: LinearRegression()
In [16]: print(lr.intercept_)
          -0.4274121363355689
In [17]:
         coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
         coeff
Out[17]:
                               Co-efficient
                          cgpa
                                 0.124675
          placement_exam_marks
                                 0.000374
In [18]:
         prediction=lr.predict(x_test)
         plt.scatter(y_test,prediction)
Out[18]: <matplotlib.collections.PathCollection at 0x22ea6360670>
           0.60
           0.55
           0.50
           0.45
           0.40
           0.35
           0.30
                0.0
                        0.2
                                0.4
                                         0.6
                                                 0.8
                                                         1.0
In [19]:
         print(lr.score(x_test,y_test))
          -0.10787488726719108
In [20]: from sklearn.linear_model import Ridge,Lasso
In [21]: rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
Out[21]: Ridge(alpha=10)
In [22]: rr.score(x_test,y_test)
Out[22]: -0.06197645191152246
```

```
In [23]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[23]: Lasso(alpha=10)
In [24]: la.score(x test,y test)
Out[24]: -0.023323615160349753
In [29]: from sklearn.linear model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[29]: ElasticNet()
In [30]: print(en.coef_)
         [0. 0.]
In [32]: print(en.intercept_)
         0.45714285714285713
In [33]: print(en.predict(x_test))
         [0.45714286 0.45714286 0.45714286 0.45714286 0.45714286 0.45714286
          0.45714286 0.45714286 0.45714286 0.45714286 0.45714286 0.45714286
          0.45714286 0.45714286 0.45714286]
In [36]: en.score(x_test,y_test)
Out[36]: -0.023323615160349753
In [38]: from sklearn import metrics
In [39]: |print("Mean Absolute Error",metrics.mean_absolute_error(y_test,prediction))
         Mean Absolute Error 0.5182154600086817
In [40]: |print("Mean Squared Error", metrics.mean squared error(y test, prediction))
         Mean Squared Error 0.27573774971983417
In [43]: |print(" Root Mean Squared Error",np.sqrt(metrics.mean_squared_error(y_test,prediction))
          Root Mean Squared Error 0.525107369706267
```