Collaborative Filtering

based on user similarity

Zhe Xie, Kugelmann Stephan, Massé Benoit, Freitag Francois

Task

Several users already rated an item

One user haven't rated it yet

 \rightarrow Will he like it?

Task

Several users already rated an item

One user haven't rated it yet

 \rightarrow Will he like it?

Goal: Predict his rating for this item

How: Similarity between users

Main issue

How to measure the similarity?

Efficiency of the algorithm?

Algorithm

message	# Ken	Lee	Meg	Nan
1	1	4	2	2
2	5	2	4	4
3			3	
4	2	5		5
5	4	1		1
6	?	2	5	?

Figure 5: a sample matrix of ratings.

Step 1: Sample matrix

Algorithm

message	Ken	Lee	Meg	Nan
1	1	4	2	2
2	5	2	4	4
3			3	
4	2	5		5
5	4	1		1
6	?	2	5	?

Figure 5: a sample matrix of ratings.

Step 1: Sample matrix

$$r_{KL} = \frac{Cov(K, L)}{\sigma_K \sigma_L}$$

$$= \frac{\sum_i (K_i - \overline{K})(L_i - \overline{L})}{\sqrt{\sum_i (K_i - \overline{K})^2} \sqrt{\sum_i (L_i - \overline{L})^2}}$$

$$= \frac{-2 - 2 - 2 - 2}{\sqrt{10} \sqrt{10}} = -0.8$$

Step 2: Define the normalized covariance matrix

Algorithm

	1			
message #	Ken	Lee	Meg	Nan
1	1	4	2	2
2	5	2	4	4
3			3	
4	2	5		5
5	4	1		1
6	?	2	5	?
_		*	•	

Figure 5: a sample matrix of ratings.

Step 1: Sample matrix

	Ken	Lee	Meg	Nan
Ken	1	-0.8	1	0
Lee	-0.8	1	-1	0.6
Meg	1	-1	1	1
Nan	0	0.6	1	1

Covariance matrix

$$r_{KL} = \frac{Cov(K, L)}{\sigma_K \sigma_L}$$

$$= \frac{\sum_i (K_i - \overline{K})(L_i - \overline{L})}{\sqrt{\sum_i (K_i - \overline{K})^2} \sqrt{\sum_i (L_i - \overline{L})^2}}$$

$$= \frac{-2 - 2 - 2 - 2}{\sqrt{10} \sqrt{10}} = -0.8$$

Step 2: Define the normalized covariance matrix

$$K_{6_{\text{Pred}}} = \overline{K} + \frac{\sum (J_6 - \overline{J}) r_{\text{KJ}}}{\sum J |r_{\text{KJ}}|} = \frac{3 + \frac{2r_{\text{KM}} - r_{\text{KL}}}{|r_{\text{KM}}| + |r_{\text{KL}}|}}{1 + |r_{\text{KL}}|} = 3 + \frac{2 - (-.8)}{|1| + |-.8|} = 4.56$$

Step 3: Define the rating based on the others users weighted rating

Introduction to the dataset

Dataset: MovieLens data set

collected by the GroupLens Research Project at the University of Minnesota

http://grouplens.org/node/73

943 users
1682 movies
Grades from 1 to 5
100 000 ratings

User	Movie	Grade
1	1	4
2	1	1
3	2	5

Extraction from the dataset

Histogram

Questions