《机器学习》读书笔记

黄奕诚

目录

1	绪论	3
	1.1	引言
	1.2	基本术语 3
	1.3	假设空间 4
	1.4	归纳偏好 4
	1.5	发展历程 5
	1.6	应用现状 5
2	模型	评估与选择 6
	2.1	经验误差与过拟合 6
	2.2	评估方法 6
		2.2.1 留出法 6
		2.2.2 交叉验证法
		2.2.3 自助法 7
		2.2.4 调参与最终模型 8
	2.3	性能度量 8
		2.3.1 错误率与精度
		2.3.2 查准率、查全率与 F1
		2.3.3 ROC 与 AUC
		2.3.4 代价敏感错误率与代价曲线
	2.4	比较检验 12
		2.4.1 假设检验 12
		2.4.2 交叉验证 t 检验
		2.4.3 McNemar 检验

		2.4.4 Friedman 检验与 Nemenyi 后续检验	14
	2.5	偏差与方差	15
3	线性	模型	16
	3.1	基本形式	16
	3.2	线性回归	16
	3.3	对数几率回归	18
	3.4	线性判别分析	18
	3.5	多分类学习	20
	3.6	类别不平衡问题	21
4	决策	树	22
5	神经	网络	22
6	支持	- 向量机	22
7	贝叶	斯分类器	22
8	集成	学习	22
9	聚类		22
10	降维	主与度量学习	22
11	特征	E选择与稀疏学习	22
12	计算	上学习理论	22
13	半监	宣督学习	22
14	概率	· 图模型	22
15	规则]学习	22
16	强化	2学习	22

目录

Machine Learning

1 绪论

1.1 引言

- 机器学习致力于研究如何通过计算的手段,利用经验来改善系统自身的性能。
- 机器学习研究的主要内容:在计算机上从数据中产生"模型"的算法, 即"学习算法"。

1.2 基本术语

- 数据集 (data set): 一组记录的集合
- 示例 (instance) /样本 (sample): 每条记录, 即关于一个事件或对象 的描述
- 属性 (attribute) /特征 (feature): 反映事件或对象在某方面的表现或 性质的事项
- 属性值 (attribute value): 属性上的取值
- 属性空间 (attribute space) /样本空间 (sample space) /输入空间: 属性张成的空间,记为 X
- 特征向量 (feature vector): 一个示例 (在样本空间对应的坐标向量)
- 学习 (learning) /训练 (training): 从数据中学得模型的过程
- 训练数据 (training data): 训练过程中使用的数据
- 训练样本 (training sample): 训练数据中的每个样本
- 训练集 (training set): 训练样本组成的集合
- 假设 (hypothesis): 对应了关于数据的某种潜在规律的学得模型
- 真实 (ground-truth): 潜在规律自身
- 学习器 (learner): 学习算法在给定数据和参数空间上的实例化
- 标记 (label): 关于示例结果的信息

- 样例 (example): 拥有标记信息的示例
- 标记空间 (label space) /输出空间: 所有标记的集合, 记为 \mathcal{Y}
- 分类 (classification) : 预测的是离散值的学习任务 (二分类 $\mathcal{Y} = \{-1, +1\}$ 或 $\{0, 1\}$; 三分类 $|\mathcal{Y}| > 2$)
- 回归 (regression): 预测的是连续值的学习任务 ($\mathcal{Y} = \mathbb{R}$)
- 测试 (testing): 使用学得模型进行预测的过程
- 测试样本 (testing sample): 被预测的样本
- 无监督学习 (unsupervised learning): 训练数据中没有标记信息的学习任务, 代表是聚类 (clustering)
- 监督学习 (supervised learning): 训练数据中具有标记信息的学习任务, 代表是分类和回归
- 泛化 (generalization) 能力: 学得模型适用于新样本的能力

1.3 假设空间

- "从样例中学习"是一个归纳的过程。
- 可以把学习过程看作一个在所有假设组成的空间中进行搜索的过程, 搜索目标是找到与训练集"匹配"(fit)的假设。
- 假设空间可以表示为一课属性值中通配符逐渐被具体数值取代的树。
- 可以用许多策略对假设空间进行搜索,如自顶向下(从一般到特殊)、 自底向上(从特殊到一般)。
- 可能有多个假设与训练集一致,即存在着一个与训练集一致的"假设集合",称之为"版本空间"(version space)。

1.4 归纳偏好

• 多个与训练集一致的假设所对应的模型在面临新样本时,可能产生不同的输出。而对于一个具体的学习算法而言,必须要产生一个模型。此时学习算法本身的偏好会起到关键的作用。

- 归纳偏好 (inductive bias): 机器学习算法在学习过程中对某种类型假设的偏好。
- 奥卡姆剃刀 (Occam's razor): 若有多个假设与观察一致,则选最简单的那个。【常用的、自然科学研究中最基本的原则】
- 设 f 为希望学习的真实目标函数,则基于训练数据 X 的算法 \mathcal{L}_a 在训练集之外的所有样本上的误差与学习算法无关,即

$$\sum_{f} E_{ote}(\mathfrak{L}_a|X, f) = \sum_{f} E_{ote}(\mathfrak{L}_b|X, f)$$

"没有免费的午餐"定理 (NFL 定理): 所有学习算法的期望性相同。

1.5 发展历程

- 1. 二十世纪五十年代到七十年代初:"推理期"——赋予机器逻辑推理能力
- 2. 二十世纪七十年代中期开始:"知识期"
 - a. 机械学习(信息存储与检索)
 - b. 示教学习(从指令中学习)
 - c. 类比学习 (通过观察和发现学习)
 - d. 归纳学习(从样例中学习)
 - 符号主义学习(决策树、基于逻辑的学习)
 - 连接主义学习 (神经网络)
 - 统计学习(支持向量机、核方法)
 - 深度学习

1.6 应用现状

- 计算机科学诸多分支学科领域(如计算机视觉、自然语言处理)
- 交叉学科(如生物信息学)
- 数据挖掘(机器学习领域和数据库领域是数据挖掘的两大支撑)
- 人类日常生活 (天气预报、搜索引擎、自动驾驶、政治选举等)
- 促进人们理解"人类如何学习"

2 模型评估与选择

2.1 经验误差与过拟合

- 设在 m 个样本中有 a 个样本分类错误,则错误率 (error rate) 为 E=a/m,精度 (accuracy) 为 1-a/m。
- 误差 (error): 学习器的实际预测输出与样本的真实输出之间的差异。训练误差 (training error) /经验误差 (empirical error): 学习器在训练集上的误差。泛化误差 (generalization error): 学习器在新样本上的误差。想要使泛化误差最小,而新样本未知,所以努力使经验误差最小化。
- 过拟合 (overfitting): 学习器将训练样本自身的一些特点当作为所有 潜在样本都会具有的一般性质。【关键障碍、无法彻底避免】欠拟合 (underfitting): 学习器对训练样本的一般性质尚未学好。【较容易克服】若"P≠NP", 过拟合就不可避免。

2.2 评估方法

为了对学习器对泛化误差进行评估,需要使用一个测试集(testing set) 来测试学习器对新样本的判别能力,然后以测试集上的测试误差(testing error)作为泛化误差的近似。

若当前只有一个包含 m 个样例的数据集

$$D = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\}\$$

,则对其进行适当的处理,从中产生训练集S和测试集T。

2.2.1 留出法

直接将数据集 D 划分为两个互斥的集合,其中一个作为训练集 S,另一个作为测试集 T,即 $D=S\cup T,S\cap T=\emptyset$,在 S 上训练出模型后,用 T 来评估其测试误差,作为对泛化误差的估计。

划分尽可能保持数据分布的一致性,例如在分类任务中至少要保持样本的类别比例相似(分层采样)。

- 一般采用若干次随机划分、重复进行实验评估后取平均值作为评估结果。
- $S \to D$ 大小权衡没有完美的解决方案,常见做法是 $2/3\sim4/5$ 的训练样本比例。

2.2.2 交叉验证法

将数据集 D 划分为 k 个大小相似的互斥子集,即

$$D = D_1 \cup D_2 \cup \cdots \cup D_k, D_i \cup D_j = \emptyset (i \neq j)$$

每个子集 D_i 都尽可能保持数据分布的一致性(分层抽样)。然后从中选取 k-1 个子集为训练集,剩下一个子集为测试集。可进行 k 次训练和测试,最终返回 k 个测试结果的均值。也称为 "k 折交叉验证" (k-fold cross validation)。

- k 最常用的取值是 10, 常用的还有 5、20 等。
- 留一法 (Leave-One-Out) 不受随机样本划分的影响,评估结果比较准确,但计算开销大。

2.2.3 自助法

以自助采样法 (bootstrap sampling) 为基础, 给定包含 m 个样本的数据集 D, 每次随机从 D 中挑选一个样本, 将其拷贝放入 D', 再将该样本放回初始数据集 D 中。这个过程重复执行 m 次后, 得到了包含 m 个样本的数据集 D'。此时将 D' 用作训练集, $D\backslash D'$ 用作测试集。

- D 有约 36.8% 的样本未出现在采样数据集 D' 中。
- 亦称为"包外估计" (out-of-bag estimate)。
- 自助法在数据集较小、难以有效划分训练/测试集时很有用,且能从初始数据集中产生多个不同的训练集。
- 因为自助法产生的数据集改变了初始数据集的分布,会引入估计偏差。

2.2.4 调参与最终模型

- 常用的调参做法:对每个参数选定一个范围和变化步长,进行计算开 销和性能估计之间的折中。
- 在模型选择完成后,学习算法和参数配置已选定,此时用数据集 D 重新训练模型,使用所有 m 个样本,得到最终提交给用户的模型。

2.3 性能度量

给定样例集

$$D = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \dots, (\boldsymbol{x}_m, y_m)\}\$$

其中 y_i 是示例 x_i 的真实标记。要评估学习器 f 的性能,即把学习器预测结果 f(x) 与真实标记 y 进行比较。

回归任务中最常用的性能度量:"均方误差"(mean squared error)

$$E(f; D) = \frac{1}{m} \sum_{i=1}^{m} (f(\boldsymbol{x}_i) - y_i)^2$$

更一般地,对于数据分布D和概率密度函数 $p(\cdot)$,均方误差可描述为

$$E(f; \mathcal{D}) = \int_{x \sim \mathcal{D}} (f(\boldsymbol{x}) - y)^2 p(\boldsymbol{x}) d\boldsymbol{x}$$

对于分类任务——

2.3.1 错误率与精度

• 分类错误率

$$E(f; D) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{I}(f(\boldsymbol{x}_i) \neq y_i)$$

精度

$$acc(f; D) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{I}(f(x_i) = y_i) = 1 - E(f; D)$$

• 对于数据分布 \mathcal{D} 和概率密度函数 $p(\cdot)$, 错误率

$$E(f; \mathcal{D}) = \int_{x \sim \mathcal{D}} \mathbb{I}(f(x) \neq y) p(x) dx$$

精度

$$acc(f; \mathcal{D}) = \int_{x \sim \mathcal{D}} \mathbb{I}(f(x) = y) p(x) dx = 1 - E(f; \mathcal{D})$$

2.3.2 查准率、查全率与 F1

古宁桂汉	预测结果		
真实情况	正例	反例	
正例	TP (真正例)	FN(假反例)	
反例	FP (假正例)	TN (真反例)	

查准率 (precision)

$$P = \frac{TP}{TP + FP}$$

查全率 (recall)

$$R = \frac{TP}{TP + FN}$$

- 平衡点 (Break-Even Point, BEP): R = P 时的取值,数值越高可以认为学习器越优。
- F1 度量

实际上 F1 是 R 和 P 的调和平均

$$\frac{1}{F1} = \frac{1}{2}(\frac{1}{P} + \frac{1}{R})$$

• F_{β} 度量: 考虑 R 与 P 的不同偏好,设 β 为查全率 R 对查准率 P 的相对重要性,则

$$F_{\beta} = \frac{(1+\beta^2) \times P \times R}{(\beta^2 \times P) + R}$$

实际上 F_{β} 是加权调和平均

$$\frac{1}{F_{\beta}} = \frac{1}{1+\beta^2} (\frac{1}{P} + \frac{\beta^2}{R})$$

• 宏 F1: 在各混淆矩阵上分别计算出各自的 (P_i, R_i) , 再计算平均值:

$$macro-P = \frac{1}{n} \sum_{i=1}^{n} P_i$$

$$macro - R = \frac{1}{n} \sum_{i=1}^{n} R_i$$

$$\text{macro}{-F1} = \frac{2 \times \text{macro}{-P} \times \text{macro}{-R}}{\text{macro}{-P} + \text{macro}{-R}}$$

• 徽 F1: 先将各混淆矩阵的对应元素进行平均得到四个指标, 再基于这 些平均值计算 F1:

$$micro-P = \frac{\overline{TP}}{\overline{TP} + \overline{FP}}$$

$$micro - R = \frac{\overline{TP}}{\overline{TP} + \overline{FN}}$$

$$\label{eq:micro-F1} \text{micro-}F1 = \frac{2 \times \text{micro-}P \times \text{micro-}R}{\text{micro-}P + \text{micro-}R}$$

△ 混淆矩阵介绍:每一列代表了预测类别,每一列的总数表示预测 为该类别的数据的数目;每一行代表了数据的真实归属类别,每一行的 数据总数表示该类别的数据实例的数目。例如共有 150 个样本数据,预 测为 1、2、3 类各 50 个,分类结束后得到的混淆矩阵为

		预测		
		类 1	类 2	类 3
	类 1	43	2	0
实际	类 2	5	45	1
	类 3	2	3	49

2.3.3 ROC 与 AUC

ROC 全称是"受试者工作特征"(Receiver Operating Characteristic)曲线。横轴为"假正例率"(FPR),纵轴为"真正例率"(TPR)。

$$TPR = \frac{TP}{TP + FN}$$

$$FPR = \frac{FP}{TN + FP}$$

- 现实任务中 ROC 曲线的绘制方法: 给定 m^+ 个正例和 m^- 个反例,根据学习器预测结果对样例进行排序,然后把分类阈值设为最大,此时 FPR 和 TPR 都为 0. 在坐标 (0,0) 处标记一个点,然后将分类阈值依次设为每个样例的预测值。设当前一个标记点坐标为 (x,y),若当前为真正例,则对应标记点坐标为 $(x,y+\frac{1}{m^+})$;若当前为假正例,则对应标记点坐标为 $(x+\frac{1}{m^-},y)$,然后用线段连接相邻点即得。
- AUC (Area Under ROC Curve) 即为 ROC 曲线下各部分的面积之和。设 ROC 曲线是由坐标为 $\{(x_i,y_i)|1\leq i\leq m\}$ 的点按序连接而成,则 AUC 可估算为

$$AUC = \frac{1}{2} \sum_{i=1}^{m-1} (x_{i+1} - x_i) \cdot (y_i + y_{i+1})$$

• 给定 m^+ 个正例和 m^- 个反例,令 D^+ 和 D^- 分别表示正、反例集合,则排序"损失" (loss) 定义为

$$\ell_{rank} = \frac{1}{m^+m^-} \sum_{\boldsymbol{x}^+ \in D^+} \sum_{\boldsymbol{x}^- \in D^-} \left(\mathbb{I} \left(f(\boldsymbol{x}^+) < f(\boldsymbol{x}^-) \right) + \frac{1}{2} \mathbb{I} \left(f(\boldsymbol{x}^+) = f(\boldsymbol{x}^-) \right) \right)$$

它对应 ROC 曲线之上的面积, 有

$$AUC = 1 - \ell_{rank}$$

2.3.4 代价敏感错误率与代价曲线

• 不同类型的错误可能造成不同损失, 所以为错误赋予"非均等代价" (unequal cost)。

• 以二分类为例,可以设定一个"代价矩阵",如下表所示。

古分米则	预测类别		
真实类别	第 0 类	第1类	
第 0 类	0	$cost_{01}$	
第1类	$cost_{10}$	0	

• "代价敏感" (cost-sensitive) 错误率

$$E(f; D; cost) = \frac{1}{m} \left(\sum_{\boldsymbol{x}_i \in D^+} \mathbb{I}(f(\boldsymbol{x}_i) \neq y_i) \times cost_{01} + \sum_{\boldsymbol{x}_i \in D^-} \mathbb{I}(f(\boldsymbol{x}_i) \neq y_i) \times cost_{10} \right)$$

• 在非均等代价下,"代价曲线"(cost curve)可以刻画期望总体代价。设 p 是样例为正例的概率。横轴为正例概率代价

$$P(+)cost = \frac{p \times cost_{01}}{p \times cost_{01} + (1-p) \times cost_{10}}$$

纵轴为取值为[0,1]的归一化代价

$$cost_{norm} = \frac{\text{FNR} \times p \times cost_{01} + \text{FPR} \times (1 - p) \times cost_{10}}{p \times cost_{01} + (1 - p) \times cost_{10}}$$

• 代价曲线的绘制方法:将 ROC 曲线上的每一点转化为代价平面上的一条线段,取所有线段的下界,围成的面积即为所有条件下学习器的期望总体代价。

2.4 比较检验

本节默认以错误率 ϵ 为性能度量。

2.4.1 假设检验

• 设一个学习器的泛化错误率为 ϵ , 在 m 个样本中的测试错误率为 $\hat{\epsilon}$, 则 其被测得测试错误率为 $\hat{\epsilon}$ 的概率为

$$P(\hat{\epsilon}; \epsilon) = \binom{m}{\hat{\epsilon} \times m} \epsilon^{\hat{\epsilon} \times m} (1 - \epsilon)^{m - \hat{\epsilon} \times m}$$

它在 $\epsilon = \hat{\epsilon}$ 时最大。

• 二项检验: 假设 $\epsilon \leq \epsilon_0$,则在 $1-\alpha$ 的概率内所能观测到的最大错误率为

$$\sum_{i=\epsilon_0 \times m+1}^m \binom{m}{i} \epsilon^i (1-\epsilon)^{m-i} < \alpha$$

 $\bar{\epsilon} = \max \epsilon$

若测试错误率 $\hat{\epsilon}$ 小于临界值 $\bar{\epsilon}$,则能以 $1-\alpha$ 的置信度认为学习器的 泛化错误率不大于 ϵ_0 ,否则假设被拒绝。

• t 检验: 若得到了 k 个测试错误率 $\hat{\epsilon}_1, \hat{\epsilon}_2, \dots, \hat{\epsilon}_k$, 则平均测试错误率 μ 和方差 σ^2 为

$$\mu = \frac{1}{k} \sum_{i=1}^{k} \hat{\epsilon}_i$$

$$\sigma^{2} = \frac{1}{k-1} \sum_{i=1}^{k} (\hat{\epsilon}_{i} - \mu)^{2}$$

它们可看作泛化错误率 ϵ_0 的独立采样,则变量

$$\tau_t = \frac{\sqrt{k}(\mu - \epsilon_0)}{\sigma}$$

服从自由度为 k-1 的 t 分布。若 $|\mu-\epsilon_0|$ 位于 $[t_{-\alpha/2},t_{\alpha/2}]$ 内,则接受假设 $\mu=\epsilon_0$,否则拒绝该假设。

2.4.2 交叉验证 t 检验

• k 折交叉验证"成对 t 检验": 对每对结果求差 $\Delta_i = \epsilon_i^A - \epsilon_i^B$,若两个学习器性能相同,则差值均值为 0。做 t 检验,在显著度 α 下,若

$$\tau_t = |\frac{\sqrt{k}\mu}{\sigma}| < t_{\alpha/2,k-1}$$

则接受假设。其中 $t_{\alpha/2,k-1}$ 指自由度为 k-1 的 t 分布上尾部累积分 布为 $\alpha/2$ 的临界值。

考虑到交叉验证法等实验估计方法,不同轮次的训练集会有一定程度的重叠,导致测试错误率并不独立。故可采用 5×2 交叉验证法 (5次2 折交叉验证)。每次 2 折交叉验证之前随机将数据打乱,使得 5 次交

叉验证中的数据划分不重复。设 Δ_i^k 表示第i次第k上的差值。

$$\mu = 0.5(\Delta_1^1 + \Delta_1^2)$$

$$\sigma_i^2 = \left(\Delta_i^1 - \frac{\Delta_i^1 + \Delta_i^2}{2}\right)^2 + \left(\Delta_i^2 - \frac{\Delta_i^1 + \Delta_i^2}{2}\right)^2$$

变量

$$\tau_t = \frac{\mu}{\sqrt{0.2 \sum_{i=1}^5 \sigma_i^2}}$$

服从自由度为 5 的 t 分布, 其双边检验的临界值为 $t_{\alpha/2.5}$ 。

2.4.3 McNemar 检验

对于二分类问题,可统计两个学习器 A 和 B 的分类结果样本数差别,列出"列联表"(contingency table)

算法 B	算法 A		
	正确	错误	
正确	e_{00}	e_{01}	
错误	e_{10}	e_{11}	

假设两学习器性能相同,则 $e_{01}=e_{10}$, 于是 $|e_{01}-e_{10}|$ 服从正态分布,变量

$$\tau_{\chi^2} = \frac{(|e_{01} - e_{10}| - 1)^2}{e_{01} + e_{10}}$$

服从自由度为 1 的 χ^2 分布,若其小于临界值 χ^2_{α} 则接受假设,否则拒绝假设,较小者性能更优。

2.4.4 Friedman 检验与 Nemenyi 后续检验

- 在多个数据集上比较算法。
- 算法排序:使用留出法或交叉验证法得到每个算法在每个数据集上的测试结果,然后在每个数据集上根据测试性能由好到坏排序,序值从1递增,若相同则平分序值。
- "原始 Friedman 检验": 假定在 N 个数据集上比较 k 个算法,令 r_i 表示第 i 个算法的平均序值、暂不考虑平分序值、则 r_i 均值为 (k+1)/2,

方差为 $(k^2-1)/12$ 。 变量

$$\tau_{\chi^2} = \frac{k-1}{k} \cdot \frac{12N}{k^2 - 1} \sum_{i=1}^k \left(r_i - \frac{k+1}{2} \right)^2 = \frac{12N}{k(k+1)} \left(\sum_{i=1}^k r_i^2 - \frac{k(k+1)^2}{4} \right)$$

当 k 和 N 都较大时服从自由度为 k-1 的 χ^2 分布。

• Friedman 检验: 变量

$$au_F = \frac{(N-1)\tau_{\chi^2}}{N(k-1) - \tau_{\chi^2}}$$

服从自由度为k-1和(k-1)(N-1)的F分布。

• Nemenyi 检验: 若"所有算法的性能相同"这一假设被拒绝,此时计算 出平均序值差别的临界值域

$$CD = q_{\alpha} \sqrt{\frac{k(k+1)}{6N}}$$

若某两个算法的平均序值之差超出了CD,则以相应的置信度拒绝"这两个算法性能相同"这一假设。

Friedman 检验图: 横轴为平均序值,纵轴为各个算法,对每个算法以一个圆点表示平均序值,以圆点为中心的横线段表示临界值域的大小。若两个算法的横线段有交叠,则说明它们没有显著区别,否则可以进行显著比较。

2.5 偏差与方差

- 偏差-方差分解: 对学习算法的期望泛化错误率进行拆解。
- 学习算法的期望预测

$$\bar{f}(\boldsymbol{x}) = \mathbb{E}_D[f(\boldsymbol{x}; D)]$$

• 使用样本数相同的不同训练集产生的方差

$$var(\boldsymbol{x}) = \mathbb{E}[(f(\boldsymbol{x}; D) - \bar{f}(\boldsymbol{x})^2]$$

噪声

$$\varepsilon^2 = \mathbb{E}_D\big[(y_D - y)^2 \big]$$

• 偏差 (期望输出与真实标记的差别)

$$bias^2(\boldsymbol{x}) = (\bar{f}(\boldsymbol{x}) - y)^2$$

• 假定 $\mathbb{E}_D[y_D - y] = 0$, 则可通过多项式展开得到

$$E(f; D) = \mathbb{E}_D[(f(\boldsymbol{x}; D) - y_D)^2] = bias^2(\boldsymbol{x}) + var(\boldsymbol{x}) + \varepsilon^2$$

泛化误差可分解为偏差、方差与噪声之和。

- 偏差: 学习算法本身的拟合能力; 方差: 数据的充分性; 噪声: 学习问题本身的难度
- 偏差-方差窘境 (bias-variance dilemma): 训练不足时偏差主导,训练 加深时方差主导,训练充足时容易发生过拟合。

3 线性模型

3.1 基本形式

示例 $\mathbf{x}=(x_1;x_2;\ldots;x_d)$, 其中 x_i 是 \mathbf{x} 在第 i 个属性上的取值,则线性模型

$$f(\boldsymbol{x}) = w_1 x_1 + w_2 x_2 + \dots + w_d x_d + b = \boldsymbol{w}^T \boldsymbol{x} + b$$

3.2 线性回归

• 一元线性回归的目标

$$f(x_i) = wx_i + b$$
, 使得 $f(x_i) \simeq y_i$

其中

$$(w^*, b^*) = \arg_{(w,b)} \min \sum_{i=1}^m (y_i - wx_i - b)^2$$

利用"最小二乘法"的最小二乘"参数估计"将 $E_{(w,b)} = \sum_{i=1}^{m} (y_i - wx_i - b)^2$ 对 w 和 b 分别求导并令为零即可得到 w,b 最优解的闭式解

$$w = \frac{\sum_{i=1}^{m} y_i(x_i - \bar{x})}{\sum_{i=1}^{m} x_i^2 - \frac{1}{m} \left(\sum_{i=1}^{m} x_i\right)^2} \qquad b = \frac{1}{m} \sum_{i=1}^{m} (y_i - wx_i)$$

• 多元线性回归的目标

$$f(\boldsymbol{x}_i) = \boldsymbol{w}^T \boldsymbol{x}_i + b, \ \ \boldsymbol{\xi} \ \ \boldsymbol{\xi} f(\boldsymbol{x}_i) \simeq y_i$$

设 $\hat{\boldsymbol{w}} = (\boldsymbol{w}; b)$, 将数据集 D 表示为一个 $m \times (d+1)$ 大小的矩阵 \boldsymbol{X}

$$oldsymbol{X} = egin{pmatrix} x_{11} & x_{12} & \cdots & x_{1d} & 1 \ x_{21} & x_{22} & \cdots & x_{2d} & 1 \ dots & dots & \ddots & dots & dots \ x_{m1} & x_{m2} & \cdots & x_{md} & 1 \end{pmatrix} = egin{pmatrix} oldsymbol{x}_1^T & 1 \ oldsymbol{x}_2^T & 1 \ dots & dots \ oldsymbol{x}_{m}^T & 1 \end{pmatrix}$$

其中

$$\hat{\boldsymbol{w}}^* = \arg_{\hat{\boldsymbol{w}}} \min(\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{w}})^T (\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{w}})$$

令 $E_{\hat{w}} = (\mathbf{y} - \mathbf{X}\hat{w})^T (\mathbf{y} - \mathbf{X}\hat{w})$, 对 \hat{w} 求导并令为零即 $2\mathbf{X}^T (\mathbf{X}\hat{w} - \mathbf{y}) = 0$ 即可。若 $\mathbf{X}^T \mathbf{X}$ 正定 (满秩),则求出 $\hat{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$,此时

$$f(\hat{\boldsymbol{x}}_i) = \hat{\boldsymbol{x}}_i^T (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

若 X^TX 不满秩,则可能有多解,通过引入正则化由归纳偏好决定。

• 广义线性模型:考虑单调可微函数 $g(\cdot)$

$$y = g^{-1}(\boldsymbol{w}^T\boldsymbol{x} + b)$$

其中 $g(\cdot)$ 称为"联系函数"。

3.3 对数几率回归

 单位阶跃函数:对于二分类问题将线性回归模型的实值转化为 0/1 值。 其中预测值为临界值零可任意判别

$$y = \begin{cases} 0, & z < 0; \\ 0.5, & z = 0; \\ 1, & z > 0; \end{cases}$$

• 对数几率函数

$$y = \frac{1}{1 + e^{-(\boldsymbol{w}^T \boldsymbol{x} + b)}}$$

可化为

$$\ln \frac{y}{1-y} = \boldsymbol{w}^T \boldsymbol{x} + b$$

其中y可视为x作为正例的可能性,1-y可视为其作为反例的可能性。

• 对数几率回归的 w,b 估计方法: 极大似然法。【TODO: 细节待学完7.2 节极大似然法及梯度下降法再补充】

3.4 线性判别分析

思想:设法将样例投影到一条直线上,使得同类样例的投影尽可能接近、异类样例的投影尽可能远离。对于新样本根据其投影到这条直线的投影点位置进行分类。

△ L2 范数 (例如欧氏距离)

$$\parallel x \parallel_2 = \sqrt{\sum_{i=1}^k |x_i|^2}$$

• 目的: 使同类样例投影点的协方差 $(w^T \Sigma_0 w + w^T \Sigma_1 w)$ 尽可能小,使 类中心之间的距离 $(\|w^T \mu_0 - w^T \mu_1\|_2^2)$ 尽可能大。 • 类内散度矩阵

$$m{S}_w = \Sigma_0 + \Sigma_1 = \sum_{m{x} \in X_0} (m{x} - m{\mu}_0) (m{x} - m{\mu}_0)^T + \sum_{m{x} \in X_1} (m{x} - m{\mu}_1) (m{x} - m{\mu}_1)^T$$

• 类间散度矩阵

$$S_b = (\mu_0 - \mu_1)(\mu_0 - \mu_1)^T$$

• 欲最大化目标 $(S_b 与 S_w 的广义 Rayleigh 商)$

$$J = \frac{\parallel \boldsymbol{w}^T \boldsymbol{\mu}_0 - \boldsymbol{w}^T \boldsymbol{\mu}_1 \parallel_2^2}{\boldsymbol{w}^T \Sigma_0 \boldsymbol{w} + \boldsymbol{w}^T \Sigma_1 \boldsymbol{w}} = \frac{\boldsymbol{w}^T (\boldsymbol{\mu}_0 - \boldsymbol{\mu}_1) (\boldsymbol{\mu}_0 - \boldsymbol{\mu}_1)^T \boldsymbol{w}}{\boldsymbol{w}^T (\Sigma_0 + \Sigma_1) \boldsymbol{w}} = \frac{\boldsymbol{w}^T \boldsymbol{S}_b \boldsymbol{w}}{\boldsymbol{w}^T \boldsymbol{S}_w \boldsymbol{w}}$$

• 确定 w 的方法: J 中的解与 w 的长度无关,故令 $w^T S_w w = 1$,转化为: 已知 $w^T S_w w = 1$ 求 $-w S_b w$ 的最小值。由拉格朗日乘子法,即 $S_b w = \lambda S_w w$ 。又 $S_b w$ 方向恒为 $\mu_0 - \mu_1$,令 $S_b w = \lambda (\mu_0 - \mu_1)$,得

$$m{w} = m{S}_w^{-1}(m{\mu}_0 - m{\mu}_1)$$

对 S_w 进行奇异值分解 $S_w = U \Sigma V^T$,由 $S_w^{-1} = V \Sigma^{-1} U^{-1}$ 得到 w。

 \triangle 上例用拉格朗日乘子法的计算细节: 目标函数为 $f(x) = -wS_bw$, 约束方程 $g(x) = w^TS_ww - 1 = 0$ 。等价于由方程 g(x) = 0 确定的 d-1 维曲面上寻找能使 f(x) 最小化的点,满足

- (1) 约束曲面上任意点 x 的梯度 $\nabla g(x)$ 正交于约束曲面
- (2) 在最优点 x^* , f(x) 在该点的梯度 $\nabla f(x^*)$ 正交于约束曲面于是在最优点 x^* ,梯度 $\nabla g(x)$ 和 $\nabla f(x)$ 的方向必相同或相反,即存在 $\lambda \neq 0$ 使得

$$\nabla f(\boldsymbol{x}^*) + \lambda \nabla g(\boldsymbol{x}^*) = 0$$

即

$$S_b w = \lambda S_w w$$

• LDA 推广到多分类任务。假设存在 N 个类, 且第 i 类示例数为 m_i 。

设μ是所有示例的均值向量。全局散度矩阵

$$oldsymbol{S}_t = oldsymbol{S}_b + oldsymbol{S}_w = \sum_{i=1}^m (oldsymbol{x}_i - oldsymbol{\mu}) (oldsymbol{x}_i - oldsymbol{\mu})^T$$

类内散度矩阵

$$oldsymbol{S}_w = \sum_{i=1}^N oldsymbol{S}_{w_i} = \sum_{i=1}^N \sum_{oldsymbol{x} \in X_i} (oldsymbol{x} - oldsymbol{\mu}_i) (oldsymbol{x} - oldsymbol{\mu}_i)^T$$

类间散度矩阵

$$oldsymbol{S}_b = oldsymbol{S}_t - oldsymbol{S}_w = \sum_{i=1}^N m_i (oldsymbol{\mu}_i - oldsymbol{\mu}) (oldsymbol{\mu}_i - oldsymbol{\mu})^T$$

常用实现的优化目标

$$\max_{\boldsymbol{W}} \frac{\operatorname{tr}(\boldsymbol{W}^T \boldsymbol{S}_b \boldsymbol{W})}{\operatorname{tr}(\boldsymbol{W}^T \boldsymbol{S}_w \boldsymbol{W})}$$

可以通过广义特征值 $S_bW = \lambda S_wW$ 求解, W 的闭式解为 $S_w^{-1}S_b$ 的 d' 个最大非零广义特征值对应的特征向量组成的矩阵, 有 $d' \leq N-1$, 实现了降维。

3.5 多分类学习

- 基本思路:将多分类任务拆为若干个二分类任务求解,最经典的拆分策略有三种。
- 一对一 (OvO): 将 N 个类别两两配对,产生 N(N-1)/2 个二分类任务。最终把预测得最多的类别作为分类结果。
- 一对其余(OvR):每次将一个类的样例作为正例,所有其它类的样例作为反例,产生N个分类任务。最终若仅有一个分类器预测为正类,则对应的类别标记为最终分类结果,否则考虑各分类器的置信区间,选择置信度最大的类别标记作为分类结果。
- 多对多 (MvM): 每次将若干个类作为正类,若干个其它类作为反类,可用纠错输出码 (ECOC) 技术。
- ECOC 工作过程:

- (1) 编码 (类别划分): 对 N 个类别做 M 次划分,每次划分将一部分类别作为正类、一部分类别作为反类,产生 M 个分类器。
- (2) 解码 (距离比较): 用 M 个分类器对测试样本进行预测,这些预测标记组成一个编码,计算其与各个类别各自编码的距离,返回距离最小的类别作为分类结果。

常用的编码矩阵为二元码和三元码 (有停用类)。

任何两个类别之间的编码距离越远,纠错能力越强,而码长的增加会增大确定最优编码的难度。

3.6 类别不平衡问题

- 类别不平衡(class-imbalance):分类任务中不同类别的训练样例数目差别很大。以下为类别不平衡学习的策略。
- 再缩放 (rescaling): 假设"训练集是真实样本总体的无偏采样", 令

$$\frac{y'}{1-y'} = \frac{y}{1-y} \times \frac{m^-}{m^+}$$

也是代价敏感学习, 其中的 m^-/m^+ 可用 $cost^+/cost^-$ 代替。

- 欠采样 (undersampling) /下采样 (downsampling): 去除一些正例 (反例) 使得正、反例数目接近。可用 EasyEnsemble 算法将反例划分为若干个集合供不同学习器使用,全局上不会丢失重要信息。
- 过采样 (oversampling) /上采样 (upsampling): 增加一些正例 (反例) 使得正、反例数目接近。可用 SMOTE 算法对训练集中的正例进行插值。
- 阈值移动 (threshold-moving): 基于原始训练集学习,在用训练好的 分类器进行预测时将"再缩放"中的式子嵌入到决策过程中。

- 4 决策树
- 5 神经网络
- 6 支持向量机
- 7 贝叶斯分类器
 - 8 集成学习
 - 9 聚类
- 10 降维与度量学习
- 11 特征选择与稀疏学习
 - 12 计算学习理论
 - 13 半监督学习
 - 14 概率图模型
 - 15 规则学习
 - 16 强化学习