The group G is isomorphic to the group labelled by [44, 3] in the Small Groups library. Ordinary character table of $G \cong D44$:

	1a	2a	2b	11a	2c	22a	11b	22b	11c	22c	11d	22d	11e	22e
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	-1	1	1	-1	1	-1	1	-1	1	-1	1	-1
χ_3	1	-1	1	1	-1	1	1	1	1	1	1	1	1	1
χ_4	1	1	-1	1	-1	-1	1	-1	1	-1	1	-1	1	-1
χ_5	2	0	2	$E(11)^4 + E(11)^7$	0	$E(11)^4 + E(11)^7$	$E(11)^3 + E(11)^8$	$E(11)^3 + E(11)^8$	$E(11) + E(11)^{10}$	$E(11) + E(11)^{10}$	$E(11)^5 + E(11)^6$	$E(11)^5 + E(11)^6$	$E(11)^2 + E(11)^9$	$E(11)^2 + E(11)^9$
χ_6	2	0	2	$E(11)^5 + E(11)^6$	0	$E(11)^5 + E(11)^6$	$E(11) + E(11)^{10}$	$E(11) + E(11)^{10}$	$E(11)^4 + E(11)^7$	$E(11)^4 + E(11)^7$	$E(11)^2 + E(11)^9$	$E(11)^2 + E(11)^9$	$E(11)^3 + E(11)^8$	$E(11)^3 + E(11)^8$
χ_7	2	0	2	$E(11)^2 + E(11)^9$	0	$E(11)^2 + E(11)^9$	$E(11)^4 + E(11)^7$	$E(11)^4 + E(11)^7$	$E(11)^5 + E(11)^6$	$E(11)^5 + E(11)^6$	$E(11)^3 + E(11)^8$	$E(11)^3 + E(11)^8$	$E(11) + E(11)^{10}$	$E(11) + E(11)^{10}$
χ_8	2	0	2	$E(11)^3 + E(11)^8$	0	$E(11)^3 + E(11)^8$	$E(11)^5 + E(11)^6$	$E(11)^5 + E(11)^6$	$E(11)^2 + E(11)^9$	$E(11)^2 + E(11)^9$	$E(11) + E(11)^{10}$	$E(11) + E(11)^{10}$	$E(11)^4 + E(11)^7$	$E(11)^4 + E(11)^7$
χ_9	2	0	2	$E(11) + E(11)^{10}$	0	$E(11) + E(11)^{10}$	$E(11)^2 + E(11)^9$	$E(11)^2 + E(11)^9$	$E(11)^3 + E(11)^8$	$E(11)^3 + E(11)^8$	$E(11)^4 + E(11)^7$	$E(11)^4 + E(11)^7$	$E(11)^5 + E(11)^6$	$E(11)^5 + E(11)^6$
χ_{10}	2	0	-2	$E(11)^4 + E(11)^7$	0	$-E(11)^4 - E(11)^7$	$E(11)^3 + E(11)^8$	$-E(11)^3 - E(11)^8$	$E(11) + E(11)^{10}$	$-E(11) - E(11)^{10}$	$E(11)^5 + E(11)^6$	$-E(11)^5 - E(11)^6$	$E(11)^2 + E(11)^9$	$-E(11)^2 - E(11)^9$
χ_{11}	2	0	-2	$E(11)^5 + E(11)^6$	0	$-E(11)^5 - E(11)^6$	$E(11) + E(11)^{10}$	$-E(11) - E(11)^{10}$	$E(11)^4 + E(11)^7$	$-E(11)^4 - E(11)^7$	$E(11)^2 + E(11)^9$	$-E(11)^2 - E(11)^9$	$E(11)^3 + E(11)^8$	$-E(11)^3 - E(11)^8$
χ_{12}	2	0	-2	$E(11)^2 + E(11)^9$	0	$-E(11)^2 - E(11)^9$	$E(11)^4 + E(11)^7$	$-E(11)^4 - E(11)^7$	$E(11)^5 + E(11)^6$	$-E(11)^5 - E(11)^6$	$E(11)^3 + E(11)^8$	$-E(11)^3 - E(11)^8$	$E(11) + E(11)^{10}$	$-E(11) - E(11)^{10}$
χ_{13}	2	0	-2	$E(11)^3 + E(11)^8$	0	$-E(11)^3 - E(11)^8$	$E(11)^5 + E(11)^6$	$-E(11)^5 - E(11)^6$	$E(11)^2 + E(11)^9$	$-E(11)^2 - E(11)^9$	$E(11) + E(11)^{10}$	$-E(11) - E(11)^{10}$	$E(11)^4 + E(11)^7$	$-E(11)^4 - E(11)^7$
χ_{14}	2	0	-2	$E(11) + E(11)^{10}$	0	$-E(11) - E(11)^{10}$	$E(11)^2 + E(11)^9$	$-E(11)^2 - E(11)^9$	$E(11)^3 + E(11)^8$	$-E(11)^3 - E(11)^8$	$E(11)^4 + E(11)^7$	$-E(11)^4 - E(11)^7$	$E(11)^5 + E(11)^6$	$-E(11)^5 - E(11)^6$

Trivial source character table of $G \cong D44$ at p = 11:

Normalisers N_i	N_1				N_2			
p-subgroups of G up to conjugacy in G	P_1				P_2			
Representatives $n_j \in N_i$	1a	2a	2b	2c	1a	2b	2a	2c
$\boxed{0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}}$	11	-1	11	-1	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	11	1	11	1	0	0	0	0
$ 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} $		-1	-11	1	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14}$	11	1	-11	-1	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	1	1	1	1	1	1	1	1
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} $	1	1	-1	-1	1	-1	1	-1
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} $	1	-1	1	-1	1	1	-1	-1
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	1	-1	-1	1	1	-1	-1	1

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1, 28, 12, 40, 24, 8, 36, 20, 4, 32, 16)(2, 30, 14, 42, 26, 10, 38, 22, 6, 34, 18)(3, 31, 15, 43, 27, 11, 39, 23, 7, 35, 19)(5, 33, 17, 44, 29, 13, 41, 25, 9, 37, 21)]) \cong C11$

 $N_1 = Group([(1,2)(3,5)(4,42)(6,40)(7,44)(8,38)(9,43)(10,36)(11,41)(12,34)(13,39)(14,32)(15,37)(16,30)(17,35)(18,28)(19,33)(20,26)(21,31)(22,24)(23,29)(25,27), \\ (1,3)(2,24)(23,29)(25,27), (1,3)(2,24)(23,29)(25,27), (1,3)(2,24)(23,29)(25,27), \\ (1,3)(2,24)(23,29)(25,27), (1,3)(2,24)(23,29)(25,27), \\ (1,3)(2,24)(23,29)(25,27), (1,3)(2,24)(23,29)(25,27), \\ (1,3)(2,24)(23,29)(25,27), (1,3)(2,24)(23,29)(25,27), \\ (2,3)(2,24)(23,29)(25,27), (1,3)(2,24)(23,29)(25,27), \\ (2,3)(2,2$