

UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS BIOLÓGICAS FACULDADE DE BIOTECNOLOGIA CURSO DE BACHARELADO EM BIOTECNOLOGIA

DAVI JOSUÉ MARCON

POTENCIAL BIOTECNOLÓGICO DE BACTÉRIAS ISOLADAS DO PARQUE ESTADUAL UTINGA - PARÁ

Belém 2022

UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS BIOLÓGICAS FACULDADE DE BIOTECNOLOGIA CURSO DE BACHARELADO EM BIOTECNOLOGIA

DAVI JOSUÉ MARCON

POTENCIAL BIOTECNOLÓGICO DE BACTÉRIAS ISOLADAS DO PARQUE ESTADUAL UTINGA - PARÁ

Trabalho de Conclusão de Curso apresentado para obtenção do grau de Bacharel em Biotecnologia.

Orientador: Prof. Dr. Rafael Azevedo Baraúna

Belém 2022

Este trabalho é dedicado a todos aqueles que, de alguma forma abdicaram de algo e/ou a si mesmos pela Ciência.

AGRADECIMENTOS

Agradecimentos aos que contribuiram diretamente para o desenvolvimento desse trabalho: Aos desenvovedores, usuários e contribuintes ao projeto abnTEX2e ao LATEX,

Agradecimentos aos que contribuiram indiretamente ao trabalho e diretamente com minha formação:

"A consistência é contrária à natureza, contrária à vida. As únicas pessoas completamente consistentes são os mortos. (Aldous Huxley - Do What You Will) **RESUMO**

Segundo a ABNT, o resumo deve ressaltar o objetivo, o método, os resultados e as conclusões

do documento. A ordem e a extensão destes itens dependem do tipo de resumo (informativo

ou indicativo) e do tratamento que cada item recebe no documento original. O resumo deve ser

precedido da referência do documento, com exceção do resumo inserido no próprio documento.

(...) As palavras-chave devem figurar logo abaixo do resumo, antecedidas da expressão Palavras-

chave:, separadas entre si por ponto e finalizadas também por ponto.

Palavras-chave: latex. abntex. editoração de texto.

SUMÁRIO

1	INTRODUÇÃO	7
1.1	Contexto	7
1.2	Justificativa	7
2	OBJETIVOS	8
2.1	Objetivo Geral	8
2.2	Objetivos Específicos	8
3	REFERENCIAIS TEÓRICOS	9
3.1	Metabolitos secundários e a descoberta de fármacos	9
3.2	Actinomicetos	9
3.2.1	Streptomyces	10
3.2.2	Rhodococcus	10
3.2.3	Kitastospora	10
3.3	Bacillus	10
3.4	Estudo genômico de MIB's	10
4	METODOLOGIA	12
4.1	Seleção de amostras	12
4.2	Extração de DNA	12
4.3	Sequênciamento e análise genômica	12
5	RESULTADOS E DISCUSSÃO	13
6	CONCLUSÃO	14
	REFERÊNCIAS	15
	APÊNDICES	17
		- 18
		19
	ANEXOS	20
		20 21
		21 22
		22 23
	ANDAY C - FUSCE FACILISIS DAVINIA DUL	43

1 INTRODUÇÃO

1.1 Contexto

- Necessidade de novos Compostos
- Uso de Biotecnologia para solução de problemas industriais
- Diversidade amazônica como reservatório de descobertas

1.2 Justificativa

Bactérias ambientais são interessantes alvos para a descoberta de compostos de relevância biotecnológica, especialmente como solução para os crescentes níveis de resistência a antimicrobianos encontrados em microorganismos patogênicos. A caracterização genômica e prospecção de genes de interesse desses microorganismos, especialmente do ambiente amazônico, são passos importantes em busca de compostos de potencial farmacológico e industrial.

2 OBJETIVOS

2.1 Objetivo Geral

Predizer o potencial biotecnológico de bactérias ambientais utilizando ferramentas *in silico*

2.2 Objetivos Específicos

- 1. Caracterizar os organismos sequênciados utilizando seus genomas
- 2. Predizer as características metabólicas dos organismos
- 3. Categorizar os microorganismos quanto a capacidade de produção de compostos de interesse biotécnológico

3 REFERENCIAIS TEÓRICOS

3.1 Metabolitos secundários e a descoberta de fármacos

O metabolismo celular bacteriano é o conjunto de processos bioquímicos anabólicos e catabólicos no qual as células bacterianas produzem novos substâncias a partir de substrato ou outras substâncias, os produtos dessas reações são conhecidos como metabólitos. Podendo ser classificados como primários ou secundários, sendo os primários o conjunto de substâncias essenciais para a sobrevivência do organismo, relacionadas a produção de energia e as funções vitais da célula, já os secundários não estão relacionados a sobrevivência da célula, mas sim sua perpetuação no ambiente utilizando estratégias de resistência a situações adversas (GOKULAN; KHARE; CERNIGLIA, 2014).

A maquinaria responsável pela produção desses compostos, normalmente está relacionada a aglomerados de genes biossintéticos (*Biosyntetic Genes Cluster - BGC*) que são dois ou mais genes agrupados codificam a via biosintética para a produção de um metabólito, sendo capazes de produzir compostos das seguintes classes: alcalóides, carboidratos, esteroídes, lipídeos, peptídeos (com ou sem modificações pós-traducionais), policetídeos e terpenóides (MEDEMA et al., 2015).

Esses metabólitos possuem uma diversa gama de funções, seja como metodologia de "guerra química" com outros microorganismos, mediadores de atividade mutualística entre espécies, simbiose química (O'BRIEN; WRIGHT, 2011). Apesar de não serem considerados essenciais para a vida desses organismos (DEMAIN; SANCHEZ, 2009) são de grande importância para sua dispersão e adaptação em ambientes hostis e excassos de nutrientes.

3.2 Actinomicetos

- A importancia dos metabólitos sec do filo do desenvolvimento de antimicrobianos e outros produtos biotecnológicos - Finaliza destacando que apesar de ser bastante explorado ainda tem muito a ser descoberto, por conta da grande diversidade etc, além das tecnologias atualmente disponives, porém não aprofunda pois vais abordar em outro tópico.

Actinomicetos são um filo de microorganismos gram-positivos de alto conteúdo guanina e citosina que contém as classes: Acidimicrobiia, Actinobacteria, Coriobacteriia, Nitriliruptoria, Rubrobacteria, e Thermoleophilia(YADAV et al., 2018). Dentre suas principais caracteristicas podemos ressaltar a presença de micélios e a produção de hifas filamentosas (CHATER, 2016). Sua dispersão ambiental é enorme e já foram isolados de ambientes diversos como: lagos salinos, mar profundo e solo (CLAVO et al., 2021; FELÍCIO et al., 2021; SAPKOTA et al., 2020). Além da simbose com animais, fungos, insetos, línquens e plantas (HEI et al., 2021; MEIJ et al., 2017). A capacidade de se adaptar a diversos ambientes está intimamente relacionada com a capacidade

de produzir substâncias bioativas com funções igualmente diversas (BERGEIJK et al., 2020)

Essas bactérias foram uma fonte importante para o desenvolvimento de compostos de funções diversas como: antibactericidas, antifungicos, antihelminticos, antitumorais, anticancererigenos, antinflamatorios, antivirais, imunossupressores, inseticidas e herbicidas (DEMAIN; SANCHEZ, 2009; JOSE; MAHARSHI; JHA, 2021). e segundo Genilloud (2017), continuam sendo uma fonte relevante para o isolamento de caracterização de compostos de interesse biotecnológicos, e com o emprego de metodologias modernas de investigação podem continuar a fornecer substâncias relevantes para mercado.

3.2.1 Streptomyces

O gênero dos Streptomicetos é de grande relevância, pois foi a fonte para descobertas de importantes antibióticos como: estreptomicina, gentamicina, kanamicina, eritromicina e diversos outros (DEMAIN; SANCHEZ, 2009). Jose, Maharshi e Jha (2021) descrevem que, do ano de 2014 a 2019 65% do 549 compostos descobertos de actinomicetos advinha de Streptomicetos, esse percentual demonstra que mesmo com o uso de técnicas cada vez mais avançadas para busca de compostos, o gênero continua sendo um alvo interessante para a descoberta de compostos.

- 3.2.2 Rhodococcus
- 3.2.3 Kitastospora

3.3 Bacillus

3.4 Estudo genômico de MIB's

- Nesse tópico podes iniciar abordando a questão do desinteresse em prospectar novas moleculas por conta dos processos padrões serem custosos, e que isso levou ao desinteresse da industria. - No entanto com o advento de novas tecnologias (escreve um pouco de cada), estão sendo retomadas a exploração pelo potencial biossintetico de microrg. - Que antes do sequenciamento do genoma pouco se sabia sobre o potencial biossintetico das bacterias - Depois inicia sobre a importancia das analises genomicas, cita estudos que mostram o amplo conteudo de genes biossinteticos - Podes abordar sobre cada ferramenta que vais utilizar, apesar de que eu acho que metodologia não deve ter na introdução.

Ramírez-Rendon et al. (2022) ressalta a relevância de bactérias para a descoberta de importantes fármacos e propõe que organismos de fontes não convencionais como cavernas, fontes termais, areas de alta salinidade, solos áridos, ocenos e mares continuem sendo estudados epecialmente com tecnologias como metagênomica e mineração genômica pois podem ter um

papel importante no combate de possíveis surtos de doeças como a SARS-COV2 e epidemias causadas por bactérias resistentes.

Em condições laboratoriais, muitos genes relacionados a síntese de compostos bioativos são silênciados, limitando a produção a produção desses produtos, propondo que o uso de eliciadores é necessário para expressão dos genes releacionados a produção desses compostos(RUTLEDGE; CHALLIS, 2015). Felício et al. (2021) propõe o uma metodologia de eliciação para expressão, purificação e caracterização desses compostos além de ressaltar que até 45% dos compostos produzidos por microorganismos são metabólitos secundários eliciados.

Através de Tecnologias modernas como a ferramenta ANTI-SMASH (MEDEMA et al., 2011) é possível predizer genes putativos e *clusters* gênicos relacionados a produção de metabólitos secundários e de síntese ribossomal. Essa tecnologia de mineração *in silico* permite prever redes metabólicas e possíveis promotores da expressão desses compostos, principalmente por utilizar bancos de dados produzidos a partir de outras ferramentas como BAGEL, NORINE e CLUSEAN (JONG et al., 2010; HEEL et al., 2013; CABOCHE et al., 2007; WEBER et al., 2009). A incorporação de diversas ferramentas e banco de dados permite uma análise robusta e completa utilizando tecnologias do estado da arte da biologia computacional.

4 METODOLOGIA

4.1 Seleção de amostras

Foram selecionados 4 microorganismos de espécies diferentes do banco de amostras ambientais provenientes do parque estadual Utinga - Belém, PA gentilmente disponibilizadas pelo Centro de Gênomica e Biologia de Sistemas. Incluindo três Actinobacterias: *Kitasatospora sp.,Rhodococcus sp.* e *Streptomyces sp.* e uma bactéria do filo *Firmicutes*: *Brevibacillus brevis*. Essa amostras foram previamente identificadas utilizando sequênciamento do gene de RNA ribossomal 16s utilizando os primers universais 8F: 5'-AGAGTTTGATCATGGCTCAG-3' e 1492R: 5'-CGGTTACCTTGTTACGACTT-3' com o sequenciador ABI Prism 3500 Genetic Analyzer (Applied BioSystems). Posteriormente as espécies foram preditas utilizando homologia baseada no alinhamento contra o banco de dados de RNA ribossomal do NCBI utilizando a ferramenta blast.

4.2 Extração de DNA

As amostras foram cultivadas em meio Tryptone Soy Broth (TSB) por 48 horas á 28 graus, e em seu DNA foi extraído utilizando o kit HiPureA Multi-sample DNA Purification Kit(HI-MEDIA) seguindo as orientações do fabricante. O DNA foi quantificado usando quantificador Quibit(TODO) e sua intigridade foi avaliada por eletroforese em gel de agarose 1% complementado com brometo de estídio 0.5%.

4.3 Sequênciamento e análise genômica

As bibliotecas foram preparadas utilizando o protocolo do fabricante e sequênciadas no equipamento Ion GeneStudio S5 Plus (Thermo Fisher) Após o sequênciamento as amostras foram submetidas ao pipeline Bactopia, o qual filtrou as leituras, montou e anotou o genoma. Após isso, foram utilizadas as ferramentas do Bactopia para análise de resistência, genes patogênicos, genes de produção de compostos, clusters gênicos e elementos moveis. Foram utilizados os softwares GoFeat,Anti-Smash versão 6, BRIG e R para criação de figuras a partir dos dados gerados.

5 RESULTADOS E DISCUSSÃO

6 CONCLUSÃO

REFERÊNCIAS

BERGEIJK, D. A. van et al. Ecology and genomics of actinobacteria: new concepts for natural product discovery. **Nature Reviews Microbiology**, Nature Publishing Group, v. 18, n. 10, p. 546–558, 2020.

CABOCHE, S. et al. Norine: a database of nonribosomal peptides. **Nucleic acids research**, Oxford University Press, v. 36, n. 1, p. D326–D331, 2007.

CHATER, K. F. Recent advances in understanding streptomyces. **F1000Research**, Faculty of 1000 Ltd, v. 5, 2016.

CLAVO, R. F. et al. Evaluation of antimicrobial and antiproliferative activities of actinobacteria isolated from the saline lagoons of northwestern peru. **PloS one**, Public Library of Science San Francisco, CA USA, v. 16, n. 9, p. e0240946, 2021.

DEMAIN, A. L.; SANCHEZ, S. Microbial drug discovery: 80 years of progress. **The Journal of antibiotics**, Nature Publishing Group, v. 62, n. 1, p. 5–16, 2009.

FELÍCIO, R. de et al. Chemical elicitors induce rare bioactive secondary metabolites in deep-sea bacteria under laboratory conditions. **Metabolites**, MDPI, v. 11, n. 2, p. 107, 2021.

GENILLOUD, O. Actinomycetes: still a source of novel antibiotics. **Natural product reports**, Royal Society of Chemistry, v. 34, n. 10, p. 1203–1232, 2017.

GOKULAN, K.; KHARE, S.; CERNIGLIA, C. Production of secondary metabolites of bacteria. In: BATT, C. A.; TORTORELLO, M. L. (Ed.). **Encyclopedia of Food Microbiology (Second Edition)**. Second edition. Oxford: Academic Press, 2014. p. 561–569. ISBN 978-0-12-384733-1. Disponível em: https://www.sciencedirect.com/science/article/pii/B9780123847300002032.

HEEL, A. J. V. et al. Bagel3: automated identification of genes encoding bacteriocins and (non-) bactericidal posttranslationally modified peptides. **Nucleic acids research**, Oxford University Press, v. 41, n. W1, p. W448–W453, 2013.

HEI, Y. et al. Antimicrobial activity and biosynthetic potential of cultivable actinomycetes associated with lichen symbiosis from qinghai-tibet plateau. **Microbiological Research**, Elsevier, v. 244, p. 126652, 2021.

JONG, A. D. et al. Bagel2: mining for bacteriocins in genomic data. **Nucleic Acids Research**, Oxford University Press, v. 38, n. suppl_2, p. W647–W651, 2010.

JOSE, P. A.; MAHARSHI, A.; JHA, B. Actinobacteria in natural products research: Progress and prospects. **Microbiological Research**, Elsevier, v. 246, p. 126708, 2021.

MEDEMA, M. H. et al. antismash: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. **Nucleic acids research**, Oxford University Press, v. 39, n. suppl_2, p. W339–W346, 2011.

MEDEMA, M. H. et al. Minimum information about a biosynthetic gene cluster. **Nature chemical biology**, Nature Publishing Group, v. 11, n. 9, p. 625–631, 2015.

MEIJ, A. Van der et al. Chemical ecology of antibiotic production by actinomycetes. **FEMS microbiology reviews**, Oxford University Press, v. 41, n. 3, p. 392–416, 2017.

Referências 16

O'BRIEN, J.; WRIGHT, G. D. An ecological perspective of microbial secondary metabolism. **Current Opinion in Biotechnology**, Elsevier, v. 22, n. 4, p. 552–558, 2011.

RAMÍREZ-RENDON, D. et al. Impact of novel microbial secondary metabolites on the pharma industry. **Applied Microbiology and Biotechnology**, Springer, p. 1–24, 2022.

RUTLEDGE, P. J.; CHALLIS, G. L. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. **Nature reviews microbiology**, Nature Publishing Group, v. 13, n. 8, p. 509–523, 2015.

SAPKOTA, A. et al. Isolation, characterization, and screening of antimicrobial-producing actinomycetes from soil samples. **International journal of microbiology**, Hindawi, v. 2020, 2020.

WEBER, T. et al. Clusean: a computer-based framework for the automated analysis of bacterial secondary metabolite biosynthetic gene clusters. **Journal of biotechnology**, Elsevier, v. 140, n. 1-2, p. 13–17, 2009.

YADAV, A. N. et al. Actinobacteria from rhizosphere: molecular diversity, distributions, and potential biotechnological applications. In: **New and future developments in microbial biotechnology and bioengineering**. [S.l.]: Elsevier, 2018. p. 13–41.

APÊNDICE A - QUISQUE LIBERO JUSTO

Quisque facilisis auctor sapien. Pellentesque gravida hendrerit lectus. Mauris rutrum sodales sapien. Fusce hendrerit sem vel lorem. Integer pellentesque massa vel augue. Integer elit tortor, feugiat quis, sagittis et, ornare non, lacus. Vestibulum posuere pellentesque eros. Quisque venenatis ipsum dictum nulla. Aliquam quis quam non metus eleifend interdum. Nam eget sapien ac mauris malesuada adipiscing. Etiam eleifend neque sed quam. Nulla facilisi. Proin a ligula. Sed id dui eu nibh egestas tincidunt. Suspendisse arcu.

APÊNDICE B - NULLAM ELEMENTUM URNA

Nunc velit. Nullam elit sapien, eleifend eu, commodo nec, semper sit amet, elit. Nulla lectus risus, condimentum ut, laoreet eget, viverra nec, odio. Proin lobortis. Curabitur dictum arcu vel wisi. Cras id nulla venenatis tortor congue ultrices. Pellentesque eget pede. Sed eleifend sagittis elit. Nam sed tellus sit amet lectus ullamcorper tristique. Mauris enim sem, tristique eu, accumsan at, scelerisque vulputate, neque. Quisque lacus. Donec et ipsum sit amet elit nonummy aliquet. Sed viverra nisl at sem. Nam diam. Mauris ut dolor. Curabitur ornare tortor cursus velit.

Morbi tincidunt posuere arcu. Cras venenatis est vitae dolor. Vivamus scelerisque semper mi. Donec ipsum arcu, consequat scelerisque, viverra id, dictum at, metus. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut pede sem, tempus ut, porttitor bibendum, molestie eu, elit. Suspendisse potenti. Sed id lectus sit amet purus faucibus vehicula. Praesent sed sem non dui pharetra interdum. Nam viverra ultrices magna.

Aenean laoreet aliquam orci. Nunc interdum elementum urna. Quisque erat. Nullam tempor neque. Maecenas velit nibh, scelerisque a, consequat ut, viverra in, enim. Duis magna. Donec odio neque, tristique et, tincidunt eu, rhoncus ac, nunc. Mauris malesuada malesuada elit. Etiam lacus mauris, pretium vel, blandit in, ultricies id, libero. Phasellus bibendum erat ut diam. In congue imperdiet lectus.

ANEXO A - MORBI ULTRICES RUTRUM LOREM

Sed mattis, erat sit amet gravida malesuada, elit augue egestas diam, tempus scelerisque nunc nisl vitae libero. Sed consequat feugiat massa. Nunc porta, eros in eleifend varius, erat leo rutrum dui, non convallis lectus orci ut nibh. Sed lorem massa, nonummy quis, egestas id, condimentum at, nisl. Maecenas at nibh. Aliquam et augue at nunc pellentesque ullamcorper. Duis nisl nibh, laoreet suscipit, convallis ut, rutrum id, enim. Phasellus odio. Nulla nulla elit, molestie non, scelerisque at, vestibulum eu, nulla. Ut odio nisl, facilisis id, mollis et, scelerisque nec, enim. Aenean sem leo, pellentesque sit amet, scelerisque sit amet, vehicula pellentesque, sapien.

ANEXO B - CRAS NON URNA SED

Sed consequat tellus et tortor. Ut tempor laoreet quam. Nullam id wisi a libero tristique semper. Nullam nisl massa, rutrum ut, egestas semper, mollis id, leo. Nulla ac massa eu risus blandit mattis. Mauris ut nunc. In hac habitasse platea dictumst. Aliquam eget tortor. Quisque dapibus pede in erat. Nunc enim. In dui nulla, commodo at, consectetuer nec, malesuada nec, elit. Aliquam ornare tellus eu urna. Sed nec metus. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

ANEXO C - FUSCE FACILISIS LACINIA DUI

Phasellus id magna. Duis malesuada interdum arcu. Integer metus. Morbi pulvinar pellentesque mi. Suspendisse sed est eu magna molestie egestas. Quisque mi lorem, pulvinar eget, egestas quis, luctus at, ante. Proin auctor vehicula purus. Fusce ac nisl aliquam ante hendrerit pellentesque. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Morbi wisi. Etiam arcu mauris, facilisis sed, eleifend non, nonummy ut, pede. Cras ut lacus tempor metus mollis placerat. Vivamus eu tortor vel metus interdum malesuada.