

SISTEMAS EMBARCADOS

MANUSEIO DE PLACAS

- Não ficar pegando a placa com os dedos nas trilhas, por baixo ou por cima;
- Sempre usem as bordas ou o suporte azul na parte de cima para segurá-la;

TENSÃO ELÉTRICA

 A tensão elétrica ou diferença de potencial (ddp) é a quantidade de energia gerada por pilhas ou baterias que move cargas elétricas para o restante do circuito elétrico, sendo de suma importância para o funcionamento dos circuitos. Ela é medida em Volt e calculada por meio da primeira lei de Ohm.

TENSÃO ELÉTRICA

- A **tensão elétrica** é comumentemente **chamada de ddp** (diferença de potencial elétrico).
- A unidade de medida da tensão elétrica é Volt, representado por V, em homenagem a Alessandro Volta.
- Podemos calcular a tensão elétrica de diversas formas, mas a fórmula mais utilizada é a da primeira lei de Ohm.
- A corrente elétrica é o deslocamento das cargas elétricas resultado da diferença de potencial elétrico.

TENSÃO ELÉTRICA

• A tensão elétrica é uma grandeza física que mensura a diferença de potencial elétrico entre dois pontos de um circuito elétrico.

PRIMEIRA LEI DE Ohm

- Fórmula:
 - U=R·i
 - *U* → tensão elétrica, medida em **Volt**.
 - $R \rightarrow$ resistência elétrica, medida em **Ohm**.
 - $i \rightarrow$ corrente elétrica, medida em **Ampere**.

EXEMPLO:

- Um resistor ôhmico de resistência elétrica igual a 10,0 Ω é atravessado por uma corrente elétrica de 15 A. Determine a tensão elétrica desse resistor.
- Encontraremos a tensão elétrica por meio da fórmula de tensão que se relaciona com a resistência e corrente elétricas:
 - U = R·i
 - U = 10.15
 - U = 150 V

MULTÍMETRO

- Multímetro é o aparelho utilizado para medir corrente elétrica, tensão contínua, tensão alternada e resistência elétrica;
- A grandeza a ser medida é escolhida utilizando a chave seletora localizada abaixo do painel;
- A grande diferença do multímetro digital para o analógico é a obtenção direta do valor da grandeza a ser medida;

MULTÍMETRO

- Cabo vermelho:
 - Ligar no V para se medir resistência e tensão;
 - Ligar no mA para se medir corrente;
- Cabo preto:
 - Ligar sempre no COM;

PROJETO ARDUÍNO

• O projeto do Arduino se iniciou na Itália, mais precisamente na cidade de Ivrea no ano de 2005. A ideia foi juntar numa única placa, um microcontrolador com comunicação serial (as placas que utilizam entradas USB são conversores) sem a necessidade de um gravador e ainda com fácil programação.

ARDUÍNO

 Um Arduino é um microcontrolador de placa única e um conjunto de software para programá-lo. O hardware consiste em um projeto simples de hardware livre para o controlador, com um processador Atmel AVR e suporte embutido de entrada/saída. O software consiste de uma linguagem de programação padrão e do bootloader que roda na placa.

	UNO	MEGA 2560	LEONARDO	DUE	ADK	NANO	PRO MINI	ESPLORA
Microcontrolador	ATmega328	ATmega2560	ATmega32u4	AT91SAM3X8E	ATmega2560	ATmega168 (versão 2.x) ou ATmega328 (versão3.x)	ATmegal68	ATmega32u4
Portas digitais	14	54	20	54	54	14	14	-
Portas PWM	6	15	7	12	15	6	6	
Portas analógicas	6	16	12	12	16	8	8	-
Memória	32K (0,5K usado pelo bootloader)	256K (8K usado pelo bootloader)	32K (4K usado pelo bootloader)	512K disponível para aplicações	256K {8K usado pelo bootloader}	16K (ATmegal68) ov 32K (ATmega328) (bootloader: 2K)	16K (2K usado pelo bootloader)	32K (4K usado pelo bootloader)
Clock	16Mhz	16Mhz	16Mhz	84Mhz	16Mhz	16Mhz	8Mhz (modelo 3.3v) ou 16Mhz (modelo 5v)	16Mhz
Conexão	USB	USB	Micro USB	Micro USB	USB	USB Mini-B	Serial/Módulo USB externo	Micro USB
Conector para alimentação externa	Sim	Sim	Sim	Sim	Sim	Não	Não	Não
Tensão de operação	5V	5V	5V	3.3V	5V	5V	3.3 ou 5V, dependendo do modelo	5V
Corrente máxima portas E/S	40mA	40mA	40mA	130mA	40mA	40mA	40mA	
Alimentação	7-12Vdc	7-12Vdc	7-12Vdc	7-12Vdc	7-12Vdc	7-12Vdc	3,35-12V (modelo 3,3v) ou 5-12V (modelo 5v)	5V

GRANDEZAS DIGITAIS E ANALÓGICAS

- As grandezas digitais são aquelas que podem ser definidas por meio de saltos entre valores bem definidos dentro de uma faixa de valores.
- As grandezas analógicas são aquelas que, ao contrário das grandezas digitais, podem assumir infinitos valores de amplitude dentro de uma faixa de valores.

GRANDEZAS DIGITAIS

- Os circuitos e equipamentos elétricos ditos digitais trabalham com apenas dois níveis de tensão definidos. No caso do Arduino UNO, estes são:
- Um nível lógico alto, correspondente a 5V;
- Um nível lógico baixo, correspondente a **0V**.

GRANDEZAS ANALÓGICAS

• Os conversores analógico-digital do Arduino UNO possuem uma resolução de 10 bits e o intervalo de tensão no qual são realizadas as discretizações (degraus da escada) é de 0 a 5V, ou seja, este intervalo será dividido em 1024 pedaços (2¹º, onde 10 é a resolução do conversor), de forma que, o valor atribuído à tensão presente em um determinado pino será o valor discreto (um dos 1024 valores) mais próximo da mesma.

SIMULADOR