TP 1: Equations de diffusion

Im4, EDP

2017-2018, Semestre 2

Equation de la chaleur par schéma numérique

1) Ecrire une fonction void Chaleur(Image * I, Image * O, double dt, double D, int n) qui implémente l'équation de la chaleur vue en cours:

$$\partial_t u = D\Delta u$$

à partir de l'image d'entrée I et renvoie l'image O obtenue au temps n dt.

On supposera qu'on dispose d'une fonction void Filtrage (Image * I, Image * 0, Filtre * filtre) pour réaliser la discrétisation du laplacien, par exemple à l'aide du filtre 3×3 :

0	1	0
1	-4	1
0	1	0

2) Que se passe-t-il si dt=1 ? si dt=0.1 ? Trouvez une valeur seuil du phénomène observé.

Filtrage gaussien

Ecrire une fonction

void FiltreGaussien(Image * I, Image * 0, double t) qui calcule le produit de convolution de l'image I par une gaussienne de variance t dont on redonne la formule:

$$G_t(x,y) = \frac{1}{4\pi t} \exp\left(-\frac{x^2 + y^2}{4t}\right)$$

On fera bien attention à choisir une taille de support raisonnable pour le filtre.

Equation de la chaleur et filtrage gaussien

Comparez le résultat de l'équation de la chaleur avec celui du filtre gaussien. En particulier trouvez une relation entre n, t et dt telle que les deux images résultat soient très ressemblantes.