九州大学大学院数理学府 平成22年度修士課程入学試験 数学専門科目問題(数理学コース数学型)

- 注意 問題 [1][2][3][4][5][6][7][8][9] の中から 2 題を選択して解答せよ.
 - 解答用紙は、問題番号・受験番号・氏名を記入したものを必ず 2 題分 提出すること.
 - 以下 $\mathbb N$ は自然数の全体, $\mathbb Z$ は整数の全体, $\mathbb Q$ は有理数の全体, $\mathbb R$ は実数の全体, $\mathbb C$ は複素数の全体を表す.
- [1] G を位数 8 の非可換群とし、e をその単位元とする. 以下を証明せよ.
 - (1) G は位数 8 の元を持たない.
 - (2) G は位数 4 の元を持つ. 以下,位数 4 の元の一つを a とする.
 - (3) ある元 $b \in G$ が存在して, G は a,b で生成される.
 - (4) $bab^{-1} = a^3$.
 - (5) $b^2 = e$ または $b^2 = a^2$ がなりたつ.

- [2] R を単項イデアル整域とする. R の元 r で生成された R のイデアルを (r) と表す. 以下の問に答えよ.
 - (1) $I_1 \subset I_2 \subset \cdots \subset I_m \subset \cdots$ を R のイデアルの増大列とする.このときある自然数 m_0 があって,任意の自然数 $n \geq m_0$ に対し $I_{m_0} = I_n$ が成立することを示せ.

R の元 $a \neq 0$ は、以下の (i), (ii) の両方をみたすとき、既約元という. (i) a は可逆元でない、(ii) a = bc ならば b か c のどちらかは可逆元である.

- (2) a を R の既約元とする. R のイデアル (a) は素イデアルであることを示せ.
- (3) R の可逆元でない元 $a \neq 0$ は,既約元の有限個の積 $p_1p_2 \cdots p_r$ に分解されること,及びその分解は次の意味で一意的であることを示せ: $a = p_1p_2 \cdots p_r = q_1q_2 \cdots q_s$ ならば r = s である. さらに r 次の置換 σ があって,任意の i $(1 \leq i \leq r)$ に対し $(p_i) = (q_{\sigma(i)})$ が成立する.
- (4) $\mathbb{Z}[\sqrt{-5}]$ は単項イデアル整域か、理由をつけて答えよ.
- [3] F を可換体とする. 以下の問に答えよ.
 - (1) F 係数の n 次多項式は F の中に高々 n 個しか根を持たないことを示せ.
 - (2) F^{\times} を零元以外の F の元からなる乗法群とする. F^{\times} の有限部分群は巡回群であることを示せ.
 - (3) F が標数 p の有限体のとき、その位数は p^d $(d \in \mathbb{N})$ であること、及び F は $x^{p^d}-x$ の根の集合であることを示せ、
 - (4) 特に F が有限体 $\mathbb{F}_7 = \mathbb{Z}/7\mathbb{Z}$ のとき、 $f(x) = x^{16800} 1 \in \mathbb{F}_7[x]$ の最小分解体を E とする.拡大次数 $[E:\mathbb{F}_7]$ を求めよ.