

Universidad Tecnológica de la Mixteca

Clave DGP: 557524

Maestría en Ciencias de Materiales

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA

Sistemas dispersos en Ciencia de Materiales

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Optativa	300505	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Transmitir los conocimientos sobre la formación de los sistemas dispersos y su implementación en la síntesis de materiales.

TEMAS Y SUBTEMAS

1. Sistemas Surfactante-Aceite-Agua (SOW)

- 1.1. Tensión superficial e interfacial
- 1.2. Tipos de surfactantes
- 1.3. Sistemas ternarios con surfactantes
- 1.4. Comportamiento de fases

2. Microemulsiones

- 2.1. Sistemas micelares
- 2.2. Estructuras de microemulsión
- 2.3. Formulación óptima y su calidad
- 2.4. Sistemas de tensiones ultra-bajas

3. Cristales Líquidos de sistemas SOW

- 3.1. Clasificación
- 3.2. Cristales líquidos liotrópicos
- 3.3. Cristales líquidos poliméricos
- 3.4. Métodos de caracterización

4. Emulsiones y nanoemulsiones

- 4.1. Clasificación
- 4.2. Obtención

- 4.3. Propiedades
- 4.4. Caracterización

5. Síntesis de Materiales a partir de sistemas dispersos. Aplicaciones

- 5.1. Preparación de partículas metálicas y óxidos coloidales
- 5.2. Obtención de nanomateriales
- 5.3. Membranas
- 5.4. Polimerización en emulsión

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico a través de computadora, medios digitales y prácticas de laboratorio.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales que tendrán una equivalencia del 50% y un examen final que tendrá 50%. Las evaluaciones serán escritas, orales y prácticas; estas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de problemas asociados a temas del curso; la suma de estos dos porcentajes dará la calificación final. Además se considerará el trabajo extra clase, la participación durante las sesiones del curso y la asistencia a las asesorías.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

- Microemulsions. Background, new concepts, applications, perspectives. C. Stubenrauch. Wiley-Blackwell (2008). 1.
- Emulsions formation, stability, industrial applications, T. F. Tadros. Walter de Gruyter Gmbh, Berlin/Boston (2016).
- Intermolecular and surface forces, J. N. Israelchivili, Amsterdam, Boston: Academic press; Elsevier, (2011). 3.
- Nanoscience with liquid crystals. From self-organized nanostructures to applications, Q. Li , Springer (2014). 4.

Consulta:

- Nanocomposite structures and dispersions science and nanotechnology Fundamental principles and colloidal particles, I. Capek. Elsevier Science & Technology, (2006).
- Food emulsions (Food science and technology series, Vol 38), K. Larsson, S.E. Friberg, Marcel Dekker Inc (1997).
- Nanomaterials for water remediation: Carbon-based materials. Volume 1. A. K. Mishra. Smithers Rapra Technology (2016).
- Nanomaterials for Water Remediation: Inorganic Oxide Materials Volume 2. jay Kumar Mishra. (Ed). Smithers Rapra Technology (2016).

PERFIL PROFESIONAL DEL DOCENTE

Maestría o Doctorado en Físico-química, Formulación, sistemas dispersos y áreas afines

Vo.Bo

DR. JOSÉ ANIBAL ARIAS AGUILARION DE ESTUDIOS JEFE DE LA DIVISIÓN DE ESTUDIOS DE POSGRADO

AUTORIZÓ DR. AGUSTÍN SANTIAGO ALVARADO VICE-RECTOR ACADÉMICO