Social Information Networks <u>Digital Assignment-1</u>

Name-Devansh Bajpai

Registration No.-:20BCE0807

Slot-: B2

GEPHI FOR SOCIAL NETWORK VISUALIZATION

1.Average Degree

2. Network Diameter

3. Graph Density

4. HITS Metric Report

5. Page Rank Distribution

6. Modularity

7. Statistical Inference Report

8.Average Clustering Coefficient

9. Eigen Vector Centrality

10.Average Path Length

Social Network Visualization using igraph library in Python

Code-:

```
import igraph as ig
# Create a graph with 6 nodes and 7 edges
g = ig.Graph()
g.add_vertices(21)
g.add_edges([(10, 8),(8, 1),(1, 3),(3, 7),(7,5),(5, 6),(6, 9),(9,10),(10, 4),(4, 9),(9, 0),(0, 6),(0,
4),(4, 2),(0, 2),(2, 1),(2, 3),(4, 8),(0, 5),(2, 7)])
# Calculate various network measures
degree = g.degree() # nodal degree
betweenness = g.betweenness() # betweenness centrality
local clustering = g.transitivity local undirected() # local clustering coefficients
global clustering = g.transitivity undirected() # global clustering coefficient
density = g.density() # density
membership = [0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1]
modularity = g.modularity(membership)# modularity
eigenvector centrality = g.evcent() # eigenvector centrality
# Print the results
print("Degree:", degree)
print("Betweenness Centrality:", betweenness)
print("Local Clustering Coefficients:", local_clustering)
print("Global Clustering Coefficient:", global_clustering)
print("Density:", density)
```

```
print("Modularity:", modularity)
print("Eigenvector Centrality:", eigenvector centrality)
```

Output-:

In []: