

IE415: CONTROL OF AUTONOMOUS SYSTEMS

TUNING PID CONTROLLERS USING TD3-RL FOR NONLINEAR SYSTEMS

Name: Jeet Patel

ID: 202201216

Prof. Sujay Kadam

FOR CHOOSING THIS TOPIC

INTRODUCTION

- Brief overview of PID controllers and their significance in control systems.
 - Proportional: Responds to current error.
 - Integral: Addresses accumulated error over time.
 - Derivative: Predicts and compensates for future error changes.
- Challenges in tuning PID for nonlinear systems.
 - Nonlinearity
 - Dynamic Changes
 - Manual Tuning
- Motivation for using Reinforcement Learning (RL) and TD3 algorithm
 - Adaptability
 - Optimal Control
 - Automation

OBJECTIVE

- Compare RL-based tuning with conventional PID tuning.
- Apply the TD3 algorithm to train a PID controller for a mass-spring-damper system.

SYSTEM DESCRIPTION

Behavior:

- Spring: Resists displacement proportionally (kx).
- Damper: Opposes velocity (cx') for stability.
- Mass: Reacts to applied forces with acceleration (mx").

Purpose:

- Models real-world systems like car suspensions or robotic joints.
- Used to analyze dynamic responses to various inputs (e.g., step, sinusoidal).

Control Objective:

 Achieve stable performance with minimal overshoot and fast settling by controlling the force F.

$$mx'' + cx' + kx = F$$

REINFORCEMENT LEARNING OVERVIEW

RLCONCEPTS

• Agent:

• The decision-maker that learns to optimize control by interacting with the environment.

Environment:

The system or process the agent interacts with (e.g., mass-spring-damper system).

• Policy:

Probability of selecting a possible action given a state and reward.

• State:

A representation of the system's current condition (e.g., position, velocity).

Action:

The control input applied by the agent to influence the environment (e.g., force).

Reward:

Feedback signal guiding the agent's learning, based on the desirability of its actions.

TD3 ALGORITHM

Twin Delayed Deep Deterministic Policy Gradient

DDPG shortcomings: i. Overestimation bias
 ii. Numerical instability

- To reduce Overestimation bias in:
 DDPG TD3 uses three techniques
- 1. Clipped double Q-learning
- 2. Target policy smoothing
- 3. Delayed policy and target updates

SIMULATION SETUP

- Simulink model components:
 - Observation block: Outputs P, I, D.
 - Reward block: Implements the designed reward function.
 - RL Agent: Uses TD3 to adjust KP, KI, KD.
- Training parameters:
 - Episodes: 500
 - Mini-batch size: 128
 - O Discount factor: 0.97
 - Learning rates for actor and critic.

REWARD FUNCTION DESIGN

- Reward components:
 - Penalty for overshooting: -2000.
 - Penalty for weak control: -100
 - Reward for staying within target: +3.
 - Penalty for undesirable ranges.
 - Specific rewards for fine-tuned output ranges.
 - Penalty for large deviations.

RESULTS

I: Conventional PID Tuning

II: RL-Tuned PID

I: CONVENTIONAL PID TUNING

II: RL-TUNED PID

Trail: 18

II: RL-TUNED PID

Trail: 23

COMPARISON

- Comparison Points:
 - Overshoot
 - Settling time
 - Adaptability
- TD3's Advantages in Dynamic Environments:
 - Reduced Overestimation Bias
 - Stable Policy Updates
 - Smooth Control

COMPARISON

Conventional PID Controller

Simscape Model

Example

RL-Tunned PID Controller

CORCLUSION

REFERENCES

- "Tuning of PID Controllers Using Reinforcement Learning for Nonlinear Systems Control" - Gheorghe Bujgoi and Dorin Sendrescu
- Simscape Model From Matlab's Community File Exchange Link
- MATLAB and Simulink documentation
- Reinforcement Learning Onramp

Thank You