Scalable constant k-means approximation via heuristics on well-clusterable data

Cheng Tang

tangch@gwu.edu
Department of Computer Science
George Washington University
Washington, DC, 22202

Claire Monteleoni

cmontel@gwu.edu
Department of Computer Science
George Washington University
Washington, DC, 22202

Supplementary of remaining proofs

Proof of Corollary 1

Proof. We first find a sufficient condition for Algorithm 1 to have a $1+\epsilon$ -approximation. Note, as in the proof of Theorem 1, the approximation guarantee is upper bounded by $(\frac{1}{1-4\gamma})^2$, where $\gamma \leq \frac{\sqrt{f}}{2f}$. So to have a $1+\epsilon$ -guarantee, it suffices to have $(\frac{1}{1-4\frac{\sqrt{f}}{2f}})^2 \leq 1+\epsilon$, which holds if $f=\Omega(\frac{1}{\epsilon^2})$. Now we find a sufficient condition for the success probability to be at least $1-\delta$. It suffices to require that $m\exp(-2(\frac{f}{4}-1)^2w_{\min}^2) \leq \frac{\delta}{2}$ and $k\exp(-mp_{\min}) \leq \frac{\delta}{2}$. So we need $\frac{1}{p_{\min}}\log\frac{2k}{\delta} \leq m \leq \frac{\delta}{2}\exp(2(\frac{f}{4}-1)^2w_{\min}^2)$. Note for this inequality to be possible, we also need $\frac{\delta}{2}\exp(2(\frac{f}{4}-1)^2w_{\min}^2) \geq \frac{1}{p_{\min}}\log\frac{2k}{\delta}$, imposing an additional constraint on f. Taking \log on both sides and rearrange, we get $(\frac{f}{4}-1)^2 \geq \frac{1}{2w_{\min}}\log(\frac{2}{\delta}\log\frac{2k}{\delta})$. Thus, it is sufficient for a $1+\epsilon$ -approximation to hold with probability at least $1-\delta$ if $f=\Omega\left(\sqrt{\log(\frac{1}{\delta}\log\frac{k}{\delta})}+\frac{1}{\epsilon^2}\right)$, and we choose m to be in the interval $[\frac{1}{p_{\min}}\log\frac{2k}{\delta},\frac{\delta}{2}\exp(2(\frac{f}{4}-1)^2w_{\min}^2)]$.

Proof of Theorem 2

Proof. The proof mostly relies on our analysis of Lloyd's algorithm in [1]. First, Theorem 4 of [1], an analogous result to Theorem 3 here (the former holds w.r.t. $d_{rs}^*(f)$ -center separability [1] instead of the weak center separability here), implies the upper bound on seeding $\|\mu_r - \nu_r^*\| \leq \frac{\sqrt{f}}{2} \sqrt{\frac{\phi_r^*}{n_r}} \leq \frac{\sqrt{f}}{2} \sqrt{\frac{\phi_r^*}{n_r}}, \forall r \in [k]$, satisfies the condition in Theorem 1[1]. Let $\{\nu_r^{fin}\}$ denote the set of k centroids obtained by running Lloyd's algorithm until convergence with seeding $\{\nu_r^*\}$ obtained from Algorithm 1. Applying Theorem 1 [1] repeatedly, we get $\max_r \|\nu_r^{fin} - \mu_r\| \leq \frac{128}{9f} \sqrt{\frac{\phi_r}{n_r}}$. Now we can proceed using the proof of Theorem 1 in this paper, only substituting γ with a tighter bound, that is, $\gamma \leq \frac{128}{f} = O(\epsilon)$ when $f = \Omega(\frac{1}{\sqrt{\epsilon}})$, which guarantees $\frac{1}{(1-4\gamma)^2} \leq 1 + \epsilon$. So the dependence of f on ϵ is now $\Omega(\frac{1}{\sqrt{\epsilon}})$.

Proof of Theorem 3

Proof. Consider $A\cap B$. Under this event, we know that the optimal clustering T_* induces a non-degenerate k-clustering of $\{\nu_i, i\in [m]\}$, which we denote by $\{V_r^*, r\in [k]\}$ with $V_r^*:=T_r\cap \{\nu_i, i\in [m]\}, \forall r\in [k]$. In addition, Lemma 4 implies the bi-partite edge sets E_{in}^* and E_{out}^* induced by $\{V_r^*, r\in [k]\}$ satisfies $\forall e_1\in E_{in}^*, e_2\in E_{out}^*$, $w(e_1)< w(e_2)$. Thus, by Lemma 2, if we

apply Single-Linkage on $G_0=(\cup_{r\in[k]}V_r^*,\emptyset)$ until k components remain, each returned connected component \tilde{S}_r corresponds to exactly one cluster V_r^* . In addition, with the seeding guarantee by event $A, \forall r \in [k], \|m(V_r^*) - \mu_r\| \leq \frac{1}{|V_r^*|} \sum_{\nu_i \in V_r^*} \|\nu_i - \mu_r\| \leq \frac{\sqrt{f}}{2} \sqrt{\frac{\phi_r^*}{n_r}}$. Noting $Pr(A \cap B) \geq 1 - m \exp(-2(\frac{f}{4}-1)^2 w_{\min}^2) - k \exp(-mp_{\min})$ by Lemma 3 and $m(V_r^*) = \nu_r^*$ completes the proof.

Theorem (Theorem 1 of [1]). Assume there is a dataset-solution pair (X,T_*) satisfying $d_{rs}^*(f)$ -center separability, with f>32. If at iteration t, $\forall r\in [k], \Delta_r^t<\beta_t\frac{\sqrt{\phi_*}}{\sqrt{n_r}}$ with $\beta_t<\max\{\gamma\frac{f}{8},\frac{128}{9f}\}$ with $\gamma<1$, then $\forall r\in [k], \Delta_r^{t+1}<\beta_{t+1}\frac{\sqrt{\phi_*}}{\sqrt{n_r}}$, with $\beta_{t+1}<\max\{\frac{\gamma}{2}\frac{f}{8},\frac{128}{9f}\}$.

Theorem (Theorem 4 of [1]). Assume (X,T_*) satisfies $d_{rs}^*(f)$ -center separability with $f>\frac{1}{\alpha}$. If we obtain seeds $\{\nu_r^*,r\in[k]\}$ by applying the Heuristic clustering algorithm (Algorithm 1 here) to X. Then $\forall \mu_r,\exists \nu_r^*$ s.t. $\|\mu_r-\nu_r^*\|\leq \frac{\sqrt{f}}{2}\sqrt{\frac{\phi_r^*}{n_r}}$ with probability at least $1-m\exp(-2(\frac{f}{4}-1)^2w_{\min}^2)-k\exp(-mp_{\min})$.

References

[1] Anonymous Authors. On Lloyds algorithm: new theoretical insights for clustering in practice. Submitted, 2015.